POLYNOMIAL INEQUALITIES ON THE $\pi/4$–CIRCLE SECTOR

G. ARAÚJO*, P. JIMÉNEZ-RODRÍGUEZ**, G. A. MUÑOZ-FERNÁNDEZ***, AND J. B. SEOANE-SEPÚLVEDA**

Abstract. A number of sharp inequalities are proved for the space $\mathcal{P}(\mathcal{D}(\frac{\pi}{4}))$ of 2-homogeneous polynomials on \mathbb{R}^2 endowed with the supremum norm on the sector $\mathcal{D}(\frac{\pi}{4}) := \{e^{\theta} : \theta \in [0, \frac{\pi}{4}]\}$. Among the main results we can find sharp Bernstein and Markov inequalities and the calculation of the polarization constant and the unconditional constant of the canonical basis of the space $\mathcal{P}(\mathcal{D}(\frac{\pi}{4}))$.

1. Preliminaries

The study of low dimensional spaces of polynomials can be an interesting source of examples and counterexamples related to more general questions. In this paper we mind 2-variable, real 2-homogeneous polynomials endowed with the supremum norm on the sector $\mathcal{D}(\frac{\pi}{4}) := \{e^{\theta} : \theta \in [0, \frac{\pi}{4}]\}$. The space of such polynomials is represented by $\mathcal{P}(\mathcal{D}(\frac{\pi}{4}))$. This paper can be seen as a continuation of [15] and [20].

Other publications in the same spirit can be found in [11, 12, 21, 22, 24, 25].

In order to obtain sharp polynomial inequalities in $\mathcal{P}(\mathcal{D}(\frac{\pi}{4}))$ we will use the Krein-Milman approach, which is based on the fact that norm attaining convex functions attain their norm at an extreme point of their domain. Hence, an explicit description of the norm $\|\cdot\|_{\mathcal{D}(\frac{\pi}{4})}$ and the extreme points of the unit ball $B_{\mathcal{D}(\frac{\pi}{4})}$, denoted by $\text{ext}\left(B_{\mathcal{D}(\frac{\pi}{4})}\right)$, will be required. Both are presented below:

Lemma 1.1. [20] Theorem 3.1 If $P(x,y) = ax^2 + by^2 + cxy$, then

$$\|P\|_{\mathcal{D}(\frac{\pi}{4})} = \max \left\{ |a|, \frac{1}{2} |a + b + c|, \frac{1}{2} a + b + \text{sign}(c) \sqrt{(a-b)^2 + c^2} \right\}$$

if $c(a-b) \geq 0$,

$$\max \left\{ |a|, \frac{1}{2} |a + b + c| \right\}$$

if $c(a-b) \leq 0$,

Lemma 1.2. [20] Theorem 4.4 The extreme points of the unit ball of $\mathcal{P}(\mathcal{D}(\frac{\pi}{4}))$ are given by

$$\text{ext}\left(B_{\mathcal{D}(\frac{\pi}{4})}\right) = \left\{ \pm P_t, \pm Q_s, \pm (1,1,0) : -1 \leq t \leq 1 \text{ and } 1 \leq s \leq 5 + 4\sqrt{2} \right\},$$

where

$$P_t : = (t, 4 + t + 4\sqrt{1 + t}, -2 - 2t - 4\sqrt{1 + t}),$$

$$Q_s : = (1, s, -2\sqrt{2(1 + s)}).$$

2010 Mathematics Subject Classification. Primary 46G25; Secondary 46B28, 41A44.

Key words and phrases. Bernstein and Markov inequalities, unconditional constants, polarizations constants, polynomial inequalities, homogeneous polynomials, extreme points.

*Supported by PDSE/CAPES 8015/14-7.

**The second named author’s research was performed during his stay at the Mathematics Department of Kent State University, USA.

***Supported by the Spanish Ministry of Science and Innovation, grant MTM2012-34341.
Let us describe now the three inequalities that will be studied in this paper. Section 2 is devoted to obtain a Bernstein type inequality for polynomials in $\mathcal{P}(2D(\frac{x}{4}))$. Namely, for a fixed $(x,y) \in D(\frac{x}{4})$, we find the best (smallest) constant $\Phi(x,y)$ in the inequality

$$\|\nabla P(x,y)\|_2 \leq \Phi(x,y)\|P\|_{D(\frac{x}{4})},$$

for all $P \in \mathcal{P}(2D(\frac{x}{4}))$, where $\|\cdot\|_2$ denotes the euclidean norm in \mathbb{R}^2. Similarly, we also obtain a Markov global estimate on the gradient of polynomials in $\mathcal{P}(2D(\frac{x}{4}))$, or in other words, the smallest constant $M > 0$ in the inequality

$$\|\nabla P(x,y)\|_2 \leq M\|P\|_{D(\frac{x}{4})},$$

for all $P \in \mathcal{P}(2D(\frac{x}{4}))$ and $(x,y) \in D(\frac{x}{4})$. It is necessary to mention that the study of Bernstein and Markov type inequalities has a longstanding tradition. The interested reader can find further information on this classical topic in [2, 13, 14, 16, 18, 19, 20, 21, 23, 24, 25, 26, 27, 29, 30, 31].

In Section 3 we find the smallest constant $K > 0$ in the inequality

$$\|L\|_{D(\frac{x}{4})} \leq K\|P\|_{D(\frac{x}{4})},$$

where P is an arbitrary polynomial in $\mathcal{P}(2D(\frac{x}{4}))$ and $L \in \mathcal{L}(2D(\frac{x}{4}))$ is the polar of P. Observe that here $\|L\|_{D(\frac{x}{4})}$ stands for the sup norm of L over $D(\frac{x}{4})$. Hence, what we do is to provide the polarization constant of the space $\mathcal{P}(2D(\frac{x}{4}))$. The calculation of polarization constants in various polynomial spaces is largely motivated as the extensive, existing bibliography on the topic shows (see for instance [10, 18, 17, 27]).

Finally, in Section 4 we investigate the smallest constant $C > 0$ in the inequality

$$(1.1) \quad \|\nabla P\|_{D(\frac{x}{4})} \leq C\|P\|_{D(\frac{x}{4})},$$

for all $P \in \mathcal{P}(2D(\frac{x}{4}))$, where $|P|$ is the modulus of P, i.e., if $P(x,y) = ax^2 + by^2 + cxy$, then $|P|(x,y) = |a|x^2 + |b|y^2 + |c|x y$. The constant C turns out to be the unconditional constant of the canonical basis of $\mathcal{P}(2D(\frac{x}{4}))$. It is interesting to note that already in 1914, H. Bohr [11] studied this type of inequalities for infinite complex power series. Actually, the study of Bohr radii is nowadays a fruitful field (see for instance [11, 12, 13, 14, 15, 17]). Observe that the relationship between unconditional constants in polynomial spaces and inequalities of the type (1.1) was already noticed in [7].

2. Bernstein and Markov-type inequalities for polynomials on sectors

In this section we provide sharp estimates on the Euclidean length of the gradient ∇P of a polynomial P in $\mathcal{P}(2D(\frac{x}{4}))$.

Theorem 2.1. For every $(x,y) \in D(\frac{x}{4})$ and $P \in \mathcal{P}(2D(\frac{x}{4}))$ we have

$$\|\nabla P\|_2 \leq \Phi(x,y)\|P\|_{D(\frac{x}{4})},$$

where

$$\Phi(x,y) = \begin{cases} 4 \left(13 + 8\sqrt{2}\right) x^2 + (69 + 48\sqrt{2}) y^2 - 2 (28 + 20\sqrt{2}) xy \quad & \text{if } 0 \leq y \leq \frac{\sqrt{2} - 1}{4} x 	ext{ or } (4\sqrt{2} - 5) x \leq y \leq x, \\ \frac{x^2}{2} + 4(x^2 + y^2) \quad & \text{if } \frac{\sqrt{2} - 1}{4} x \leq y \leq (\sqrt{2} - 1) x, \\ \frac{(3x^2 - 2xy + 3y^2)}{2(x^2 - y^2)} \quad & \text{if } (\sqrt{2} - 1) x \leq y \leq (4\sqrt{2} - 5) x. \end{cases}$$

Proof. In order to calculate $\Phi(x,y) := \sup\{\|\nabla P(x,y)\|_2 : \|P\|_{D(\frac{x}{4})} \leq 1\}$, by the Krein-Milman approach, it is sufficient to calculate

$$\sup\{\|\nabla P(x,y)\|_2 : P \in \text{ext}(B_{D(\frac{x}{4})})\}.$$

By symmetry, we may just study the polynomials of Lemma 1.2 with positive sign. Let us start first with $P_1(x,y) = tx^2 + (4 + t + 4\sqrt{1 + t}) y^2 - 2 (1 + t + 2\sqrt{1 + t}) xy$, $t \in [-1, 1]$. Then,

$$\nabla P_1(x,y) = (2tx - 2(1 + t + 2\sqrt{1 + t}) y, 2(4 + t + 4\sqrt{1 + t}) y - 2(1 + t + 2\sqrt{1 + t}) x),$$
so that
\[
\| \nabla P_t(x, y) \|_2^2 = 4 t^2 x^2 + 4 \left(1 + t + 2 \sqrt{1 + t} \right)^2 y^2 - 8 t \left(1 + t + 2 \sqrt{1 + t} \right) x y \\
+ 4 \left(4 + t + 4 \sqrt{1 + t} \right)^2 y^2 + 4 \left(1 + t + 2 \sqrt{1 + t} \right)^2 x^2 \\
- 8 \left(4 + t + 4 \sqrt{1 + t} \right) \left(1 + t + 2 \sqrt{1 + t} \right) x y
\]

Make now the change \(u = \sqrt{1 + t} \in [0, \sqrt{2}] \), so that
\[
\| \nabla P_u(x, y) \|_2^2 = 8(x - y)^2 u^2 + 16 \left(x^2 - 4 x y + 3 y^2 \right) u^3 \\
+ 8 \left(x^2 - 10 x y + 13 y^2 \right) u^2 + 32 \left(3 y^2 - x y \right) u + 4 \left(x^2 + 9 y^2 \right) .
\]

Since
\[
\frac{\partial}{\partial u} \| \nabla P_u(x, y) \|_2^2 = 16 \left(2(x - y)^2 u^2 + \left(x^2 - 8 x y + 7 y^2 \right) u + 2 y \left(3 y - x \right) \right) (u + 1),
\]
it follows that the critical points of \(\| DP_u(x, y) \|_2^2 \) are \(u = \frac{2y}{x-y} \), \(u = \frac{3y-x}{2(x-y)} \) and \(u = -1 \) if \(x \neq y \) and \(u = 4 \) and \(u = -1 \) if \(x = y \). Since we need to consider \(0 \leq u \leq \sqrt{2} \), we can directly omit the case \(x = y \).

Therefore, we can write
\[
\frac{\partial}{\partial u} \| \nabla P_u(x, y) \|_2^2 = 32(x - y)^2 \left(u - \frac{2y}{x-y} \right) \left(u - \frac{3y-x}{2(x-y)} \right) (u + 1).
\]

Let \(u_1 = \frac{2y}{x-y} \) and \(u_2 = \frac{3y-x}{2(x-y)} \) (Again, since we need to consider \(0 \leq u \leq \sqrt{2} \), we can omit the solution \(u = -1 \)). Also, we have the extra conditions \(u_1 \in [0, \sqrt{2}] \) whenever \(0 \leq y \leq (\sqrt{2} - 1) x \) and \(u_2 \in [0, \sqrt{2}] \) whenever \(\frac{1}{3} x \leq y \leq (4\sqrt{2} - 5) x \). Considering all these facts, we need to compare the quantities
\[
C_1(x, y) := \| \nabla P_{u_1}(x, y) \|_2^2 = \| \nabla P_{u_1} \|_2^2 = 4 \frac{x^6 - 4x^5 y + 7x^4 y^2 - 8x^3 y^3 + 7x^2 y^4 + 4x y^5 + y^6}{(x-y)^4}
\]
\[
= 4 \left(x^2 + y^2 \right) ,
\]
for \(0 \leq y \leq (\sqrt{2} - 1) x \) and \(t_1 = \frac{2y^2 + 2xy - y^2}{(x-y)^2} \),
\[
C_2(x, y) := \| \nabla P_{u_2}(x, y) \|_2^2 = \| \nabla P_{u_2} \|_2^2 = 9 \frac{x^6 - 30x^5 y + 55x^4 y^2 - 68x^3 y^3 + 55x^2 y^4 - 30x y^5 + 9y^6}{(x-y)^4}
\]
\[
= \frac{\left(3x^2 - 2xy + 3y^2 \right)^2}{2(x-y)^2},
\]
for \(\frac{1}{3} x \leq y \leq (4\sqrt{2} - 5) x \) and \(t_2 = \frac{5x^2 + 2xy - 3x^2}{4(x-y)^2} \),
\[
C_3(x, y) := \| \nabla P_{s=-1} \|_2^2 = 4 \left(x^2 + 9y^2 \right) ,
\]
and
\[
C_4(x, y) := \| \nabla P_{s=1} \|_2^2 = 4 \left[\left(13 + 8\sqrt{2} \right) x^2 + \left(69 + 48\sqrt{2} \right) y^2 - 2 \left(28 + 20\sqrt{2} \right) xy \right] .
\]

Let us focus now on \(Q_s = \left(1, s, -2\sqrt{2(1+s)} \right), 1 \leq s \leq 5 + 4\sqrt{2} \). Then, we have
\[
\| \nabla Q_s(x, y) \|_2^2 = 4x^2 + 4s^2 y^2 + 8(1+s)(x^2 + y^2) - 8(1+s)\sqrt{2(1+s)} xy
\]
Making the change \(v = \sqrt{2(1+s)} \in [2, 2 + 2\sqrt{2}] \), we need to study the function
\[
\| \nabla Q_v(x, y) \|_2^2 = v^2 \left(y^2 v^2 - 4xyv + 4x^2 \right) + 4 \left(x^2 + y^2 \right) .
\]
If \(x = y = 0 \) we have \(\| \nabla Q_v(x, y) \|_2^2 = 0 \), so we will assume both \(x \neq 0 \) and \(y \neq 0 \). The critical points of \(\| \nabla Q_v(x, y) \|_2^2 \) are \(v = \frac{x}{y}, v = \frac{2x}{y} \) and \(v = 0 \) (but \(0 \notin [2, 2 + 2\sqrt{2}] \)). Observe that \(v_1 = \frac{x}{y} \in [2, 2 + 2\sqrt{2}] \) whenever \(\frac{\sqrt{2} - 1}{x} \leq y \leq \frac{1}{x} \) and \(v_2 = \frac{2x}{y} \in [2, 2 + 2\sqrt{2}] \) whenever \(y \geq (\sqrt{2} - 1) x \). Thus, we also need to compare the quantities
\[
C_5(x, y) := \| \nabla Q_{v_1}(x, y) \|_2^2 = \| \nabla Q_{s_1}(x, y) \|_2^2 = \frac{x^4}{y^2} + 4 \left(x^2 + y^2 \right) ,
\]
for $\frac{\sqrt{2} - 1}{2} x \leq y \leq \frac{1}{2}x$ and $s_1 = \frac{x^2 - 2y^2}{2y^2}$,

$$C_6(x, y) := \|\nabla Q_{v_2}(x, y)\|_2^2 = \|\nabla Q_{s_2}(x, y)\|_2^2 = 4 \left(x^2 + y^2 \right),$$

for $(\sqrt{2} - 1) x \leq y \leq x$ and $s_2 = \frac{2x^2 - y^2}{y^2}$, and also

$$C_7(x, y) := \|\nabla Q_{s_1=1}\|_2^2 = 4 \left(x^2 + y^2 \right) + 16(x - y)^2,$$

and

$$C_8(x, y) := \|\nabla Q_{s_4=5+4\sqrt{2}}\|_2^2$$

$$= \left(12 + 8\sqrt{2} \right) \left[4x^2 + \left(12 + 8\sqrt{2} \right) y^2 - \left(8 + 8\sqrt{2} \right) xy \right] + 4 \left(x^2 + y^2 \right)$$

$$= 4 \left[\left(13 + 8\sqrt{2} \right) x^2 + \left(69 + 48\sqrt{2} \right) y^2 - 2 \left(28 + 20\sqrt{2} \right) xy \right].$$

Note that (the reader can take a look at Figures 1, 2 and 3)

$$C_1(x, y), C_6(x, y) \leq C_7(x, y) \leq \begin{cases} C_4(x, y) & \text{if } 0 \leq y \leq \frac{2-x^2}{2} \text{ or } \frac{1}{2} x \leq y \leq x, \\
C_5(x, y) & \text{if } \frac{2-x^2}{2} \leq y \leq \frac{1}{2} x, \end{cases}$$

$$C_3(x, y) \leq \begin{cases} C_2(x, y) & \text{if } \frac{1}{2} x \leq y \leq (4\sqrt{2} - 5) x, \\
C_4(x, y) & \text{if } 0 \leq y \leq \frac{1}{2} x \text{ or } (4\sqrt{2} - 5) x \leq y \leq x, \\
C_5(x, y) & \text{if } (\sqrt{2} - 1)x \leq y \leq (4\sqrt{2} - 5)x. \end{cases}$$

Hence, for $(x, y) \in D \left(\frac{\pi}{4} \right)$,

$$\Phi(x, y) = \sup \left\{ \|\nabla P(x, y)\|_2 : P \in \text{ext} \left(B_D \left(\frac{\pi}{4} \right) \right) \right\}$$

$$= \begin{cases} C_4(x, y) & \text{if } 0 \leq y \leq \frac{\sqrt{2}-1}{2} x \text{ or } (4\sqrt{2} - 5)x \leq y \leq x, \\
C_5(x, y) & \text{if } \frac{\sqrt{2}-1}{2} x \leq y \leq (\sqrt{2} - 1)x, \\
C_2(x, y) & \text{if } (\sqrt{2} - 1)x \leq y \leq (4\sqrt{2} - 5)x. \end{cases}$$

In order to illustrate the previous step, the reader can take a look at Figure 4. \hfill \Box

Corollary 2.2. If $P \in \mathcal{P} \left(D \left(\frac{\pi}{4} \right) \right)$, then

$$\sup \left\{ \|\nabla P(x, y)\|_2 : (x, y) \in D \left(\frac{\pi}{4} \right) \right\} \leq 4(13 + 8\sqrt{2}) \|P\|_{D \left(\frac{\pi}{4} \right)},$$

with equality for the polynomials $P_1(x, y) = \pm \left(x^2 + (5 + 4\sqrt{2})y^2 - 2(2 + 2\sqrt{2})xy \right)$.

Figure 1. Graphs of the mappings $C_1(1, \lambda)$, $C_6(1, \lambda)$, $C_7(1, \lambda)$.

with equality for the polynomials
3. Polarization constants for polynomials on sectors

In this section we find the exact value of the polarization constant of the space $P(2D(\pi/4))$. In order to do that, we prove a Bernstein type inequality for polynomials in $P(2D(\pi/4))$. Observe that if $P \in P(2D(\pi/4))$ and $(x,y) \in D(\pi/4)$ then the differential $DP(x,y)$ of P at (x,y) can be viewed as a linear
form. What we shall do is to find the best estimate for \(\|DP(x, y)\|_{D(\pi)} \) (the sup norm of \(DP(x, y) \) over the sector \(D(\pi) \)) in terms of \((x, y)\) and \(\|P\|_{D(\pi)} \). First, we state a lemma that will be useful in the future:

Lemma 3.1. Let \(a, b \in \mathbb{R} \). Then,

\[
\sup_{\theta \in [0, \pi]} |a \cos \theta + b \sin \theta| = \begin{cases}
\max \left\{ |a|, \frac{\sqrt{a^2 + b^2}}{2y} |a + b| \right\} & \text{if } \frac{b}{a} > 1 \text{ or } \frac{b}{a} < 0, \\
\sqrt{a^2 + b^2} & \text{otherwise.}
\end{cases}
\]

By symmetry, we may just study the polynomials of Lemma 1.2 with positive sign. Let us start first with

\[\Psi(x, y) = \begin{cases}
\sqrt{2} \left[(1 + 2\sqrt{2}) x - (3 + 2\sqrt{2}) y \right] & \text{if } 0 \leq y < \frac{2\sqrt{2} - 1}{2} x, \\
\sqrt{2} x^2 + 3y^2 & \text{if } \frac{2\sqrt{2} - 1}{2} x \leq y < (\sqrt{2} - 1) x, \\
2 \left(x + \frac{y^2}{x - y} \right) & \text{if } (\sqrt{2} - 1) x \leq y < (2 - \sqrt{2}) x, \\
4 (1 + \sqrt{2}) y - 2x & \text{if } (2 - \sqrt{2}) x \leq y \leq x
\end{cases}\]

Moreover, inequality (3.1) is optimal for each \((x, y) \in D(\pi)\).

Proof. In order to calculate \(\Psi(x, y) = \sup \{ \|DP(x, y)\|_{D(\pi)} : \|P\|_{D(\pi)} \leq 1 \} \), by the Krein-Milman approach, it suffices to calculate

\[
\sup \{ \|DP(x, y)\|_{D(\pi)} : P \in \text{ext}(B_{D(\pi)}) \}.
\]

By symmetry, we may just study the polynomials of Lemma 1.2 with positive sign. Let us start first with

\[P_t(x, y) = tx^2 + (4 + t + 4\sqrt{1 + t}) y - (2t + 4\sqrt{1 + t}) xy.
\]

So we may write

\[
\nabla P_t(x, y) = (2tx - (2t + 4\sqrt{1 + t}) y, 2 (4 + t + 4\sqrt{1 + t}) y - (2t + 4\sqrt{1 + t}) x),
\]

from which

\[
\|DP_t(x, y)\|_{D(\pi)} = \sup_{0 \leq \theta \leq \pi} \left| 2 \left[tx - (1 + t + 2\sqrt{1 + t}) y \right] \cos \theta + 2 \left[(4 + t + 4\sqrt{1 + t}) y - (1 + t + 2\sqrt{1 + t}) x \right] \sin \theta \right|
\]

\[
= 2x \sup_{0 \leq \theta \leq \pi} |f_{\lambda}(t, \theta)|,
\]

for \(f_{\lambda}(t, \theta) = \left[t - (1 + t + 2\sqrt{1 + t}) \lambda \right] \cos \theta + \left[(4 + t + 4\sqrt{1 + t}) \lambda - (1 + t + 2\sqrt{1 + t}) \right] \sin \theta \),

where \(\lambda = \frac{y}{x}, x \neq 0 \) (the case \(x = 0 \) is trivial, since the only point in \(D(\pi) \) where \(x = 0 \) is \((0, 0)\), in which case \(P_t(0, 0) = \|DP_t(0, 0)\|_{D(\pi)} = 0 \)).

We need to calculate

\[
\sup_{-1 \leq t \leq 1} \|DP_t(x, y)\|_{D(\pi)} = 2x \sup_{0 \leq \theta \leq \pi} |f_{\lambda}(t, \theta)|.
\]

Let us define \(C_1 = [-1, 1] \times [0, \frac{\pi}{4}] \). We will analyze 5 cases.

1. \((t, \theta) \in (-1, 1) \times (0, \frac{\pi}{4})\).

We are interested just in critical points. Hence,
\[
\frac{\partial f_\lambda}{\partial \theta}(t, \theta) = \left[\left(1 + \frac{2}{\sqrt{1+t}} \right) \lambda - \left(1 + \frac{1}{\sqrt{1+t}} \right) \right] \sin \theta \\
+ \left[1 - \left(1 + \frac{1}{\sqrt{1+t}} \right) \lambda \right] \cos \theta = 0,
\]

(3.2)

\[
\frac{\partial f_\lambda}{\partial \theta}(t, \theta) = \left[\left(1 + t + 2\sqrt{1+t} \right) \lambda - t \right] \sin \theta \\
+ \left[\left(4 + t + 4\sqrt{1+t} \right) \lambda - \left(1 + t + 2\sqrt{1+t} \right) \right] \cos \theta = 0
\]

(3.3)

Equation (3.3) tells us that

\[
\sin \theta = \frac{(4 + t + 4\sqrt{1+t}) \lambda - \left(1 + t + 2\sqrt{1+t} \right)}{t - \left(1 + t + 2\sqrt{1+t} \right) \lambda} \cos \theta.
\]

(3.4)

If we now plug (3.4) in equation (3.2), we obtain

\[
0 = \left\{ \left[1 - \left(1 + \frac{1}{\sqrt{1+t}} \right) \lambda \right] + \left[\left(1 + \frac{2}{\sqrt{1+t}} \right) \lambda - \left(1 + \frac{1}{\sqrt{1+t}} \right) \right] \right\} \times \frac{(4 + t + 4\sqrt{1+t}) \lambda - \left(1 + t + 2\sqrt{1+t} \right)}{t - \left(1 + t + 2\sqrt{1+t} \right) \lambda} \cos \theta.
\]

Using that \(0 < \theta < \frac{\pi}{2}\), we can conclude

\[
0 = \left[1 - \left(1 + \frac{1}{\sqrt{1+t}} \right) \lambda \right] \cdot \left[t - \left(1 + t + 2\sqrt{1+t} \right) \lambda \right] \\
+ \left[\left(1 + \frac{2}{\sqrt{1+t}} \right) \lambda - \left(1 + \frac{1}{\sqrt{1+t}} \right) \right] \cdot \left[(4 + t + 4\sqrt{1+t}) \lambda - (1 + t + 2\sqrt{1+t}) \right]
\]

\[
= t \left(1 + t + 2\sqrt{1+t} \right) \lambda - t \lambda + (1 + t + 2\sqrt{1+t}) \lambda^2 - \frac{\lambda t}{\sqrt{1+t}} \\
+ \frac{\lambda^2 t}{\sqrt{1+t}} \left(1 + t + 2\sqrt{1+t} \right) + \left(1 + \frac{2}{\sqrt{1+t}} \right) (4 + t + 4\sqrt{1+t}) \lambda^2 \\
- \left(1 + \frac{2}{\sqrt{1+t}} \right) (1 + t + 2\sqrt{1+t}) \lambda - \left(1 + \frac{1}{\sqrt{1+t}} \right) (4 + t + 4\sqrt{1+t}) \lambda \\
+ \left(1 + \frac{1}{\sqrt{1+t}} \right) (1 + t + 2\sqrt{1+t})
\]

\[
= t (1 - 2\lambda + 2\lambda^2 - 2\lambda + 1) + (-2\lambda + 2\lambda^2 + 4\lambda^2 - 2\lambda - 4\lambda + 2) \sqrt{1+t} \\
+ \frac{t}{\sqrt{1+t}} (-\lambda + \lambda^2 + 2\lambda^3 - 2\lambda - \lambda + 1) + \frac{1}{\sqrt{1+t}} (\lambda^3 + 8\lambda^2 - 2\lambda - 4\lambda + 1) \\
+ (-\lambda + \lambda^2 + 2\lambda^3 + 4\lambda^2 - \lambda - 4\lambda + 2 + 2\lambda^2 - 8\lambda) \\
= 2t(\lambda - 1)^2 + 6\sqrt{1+t}(\lambda - 1) \left(\lambda - \frac{1}{3} \right) + 3\frac{t}{\sqrt{1+t}}(\lambda - 1) \left(\lambda - \frac{1}{3} \right) \\
+ \frac{1}{\sqrt{1+t}}(3\lambda - 1)^2 + 15 \left(\lambda - \frac{1}{3} \right) \left(\lambda - \frac{3}{5} \right).
\]
Working with this last expression, we get
\[0 = 2t\sqrt{1+t}(\lambda - 1)^2 + 6(1+t)(\lambda - 1) \left(\lambda - \frac{1}{3} \right) + 3t(\lambda - 1) \left(\lambda - \frac{1}{3} \right) \]
\[+ (3\lambda - 1)^2 + 15\sqrt{1+t} \left(\lambda - \frac{1}{3} \right) \left(\lambda - \frac{3}{5} \right) \]
and hence, rearranging terms,
\[\sqrt{1+t} \left[15 \left(\lambda - \frac{1}{3} \right) \left(\lambda - \frac{2}{5} \right) + 2t(\lambda - 1)^2 \right] = -9t(\lambda - 1) \left(\lambda - \frac{1}{3} \right) - 15 \left(\lambda - \frac{1}{3} \right) \left(\lambda - \frac{3}{5} \right). \]
If \(\lambda = 1 \), we obtain
\[\sqrt{1+t} + 1 = 0 \]
and so, in particular, we have \(\lambda \neq 1 \). Equation (3.5) has two solutions,
\[t_1(\lambda) = \frac{-1 + 2\lambda + 3\lambda^2}{(\lambda - 1)^2} \quad \text{and} \quad t_2(\lambda) = \frac{5\lambda^2 + 2\lambda - 3}{4(\lambda - 1)^2}. \]
Using equation (3.2), we may see
\[\tan \theta = \frac{\left(1 + \frac{\lambda}{\sqrt{1+t}} \right) \lambda - 1}{\left(1 + \frac{2}{\sqrt{1+t}} \right) \lambda - \left(1 + \frac{1}{\sqrt{1+t}} \right)}. \]
In particular, evaluating in \(t_1(\lambda) \) we obtain
\[\tan \theta_1 = \frac{\left(1 + \frac{\lambda}{\lambda - 1} \right) \lambda - 1}{\left(1 + \frac{1}{\lambda - 1} \right) \lambda - \left(1 + \frac{1}{\lambda - 1} \right)} = \lambda, \]
in which case we have
\[D_{1,1}(\lambda) := |f_\lambda(t_1, \theta_1)| = \left| -\sqrt{1 + \lambda^2} \right| = \sqrt{1 + \lambda^2}. \]
Regarding \(t_2(\lambda) \), we obtain
\[\tan \theta_2 = \frac{\left(1 + \frac{1}{4(\lambda - 1)^2} \right) \lambda - 1}{\left(1 + 2\sqrt{4(\lambda - 1)^2} \right) \lambda - \left(1 + \frac{4(\lambda - 1)^2}{(\lambda - 1)^2} \right)}. \]
Since \(\theta_2 \in (0, \frac{\pi}{4}) \), we need to guarantee \(0 < \tan \theta_2 < 1 \), and for this we need \(0 < \lambda < \frac{1}{5} \). Therefore
\[\tan \theta_2 = \frac{5\lambda - 1}{7\lambda - 3} \]
and in this case,
\[D_{1,2}(\lambda) := |f_\lambda(t_2, \theta_2)| \]
\[= \left| \frac{5\lambda^2 + 2\lambda - 3}{4(\lambda - 1)^2} - \frac{9\lambda^2 - 6\lambda + 1}{4(\lambda - 1)^2} + \frac{3\lambda - 1}{\lambda - 1} \right| \frac{3 - 7\lambda}{\sqrt{74\lambda^2 - 52\lambda + 10}} \]
\[+ \left| \frac{3 + 9\lambda^2 - 6\lambda + 1}{4(\lambda - 1)^2} + \frac{6\lambda - 2}{\lambda - 1} \right| \lambda \left(9\lambda^2 - 6\lambda + 1 \right) - \frac{3\lambda - 1}{\lambda - 1} \right| \frac{1 - 5\lambda}{\sqrt{74\lambda^2 - 52\lambda + 10}} \]
\[= \left| \frac{-78\lambda^4 - 208\lambda^3 + 196\lambda^2 - 80\lambda + 14}{4(\lambda - 1)^2\sqrt{74\lambda^2 - 52\lambda + 10}} \right| \frac{1}{\sqrt{74\lambda^2 - 52\lambda + 10}} \]
\[= \frac{39\lambda^2 - 26\lambda + 7}{2\sqrt{74\lambda^2 - 52\lambda + 10}}. \]
(2) \(\theta = 0, -1 \leq t \leq 1. \)
We have
\[f_\lambda(t, 0) = t - (1 + t + 2\sqrt{1 + t}) \lambda. \]

Then,
\[f_\lambda(-1, 0) = -1, \]
\[f_\lambda(1, 0) = 1 - 2 \left(1 + \sqrt{2} \right) \lambda, \]

and hence
\[
|f_\lambda(1, 0)| = \begin{cases}
1 - 2(1 + \sqrt{2})\lambda & \text{if } 0 \leq \lambda < \frac{\sqrt{2} - 1}{2} \\
2(1 + \sqrt{2})\lambda - 1 & \text{if } \frac{\sqrt{2} - 1}{2} \leq \lambda \leq 1.
\end{cases}
\]

Working now on \((-1, 1),\) since
\[f'_\lambda(t, 0) = 1 - \left(1 + \frac{1}{\sqrt{1 + t}} \right) \lambda, \]

the critical point of \(f_\lambda(t, 0)\) is
\[t = \frac{\lambda^2}{(1 - \lambda)^2} - 1. \]

Recall that we need to make sure that \(-1 < t < 1.\) Therefore, in this case we also need to ask
\[\lambda < \frac{\sqrt{2}}{1 + \sqrt{2}} = 2 - \sqrt{2}. \]

Plugging the critical point of \(f_\lambda(t, 0)\) into \(f_\lambda(t, 0),\) we obtain
\[f_\lambda \left(\frac{\lambda^2}{(\lambda - 1)^2} - 1, 0 \right) = \frac{\lambda^2}{(\lambda - 1)^2} - 1 - \left[\frac{\lambda^2}{(\lambda - 1)^2} + \frac{2\lambda}{1 - \lambda} \right] \lambda = \frac{\lambda^2}{\lambda - 1} - 1, \]

and hence
\[
\left| f_\lambda \left(\frac{\lambda^2}{(\lambda - 1)^2} - 1, 0 \right) \right| = 1 + \frac{\lambda^2}{1 - \lambda}.
\]

- Assume first \(0 \leq \lambda < \frac{\sqrt{2} - 1}{2}.\) Then,
\[
\sup_{-1 \leq t \leq 1} |f_\lambda(t, 0)| = \max \left\{ 1, 1 - 2 \left(1 + \sqrt{2} \right) \lambda, 1 + \frac{\lambda^2}{1 - \lambda} \right\} = 1 + \frac{\lambda^2}{1 - \lambda}.
\]

- Assume now \(\frac{\sqrt{2} - 1}{2} \leq \lambda < 2 - \sqrt{2}.\) Then,
\[
\sup_{-1 \leq t \leq 1} |f_\lambda(t, 0)| = \max \left\{ 1, 2 \left(1 + \sqrt{2} \right) \lambda - 1, 1 + \frac{\lambda^2}{1 - \lambda} \right\} = 1 + \frac{\lambda^2}{1 - \lambda}.
\]

- Assume finally \(2 - \sqrt{2} \leq \lambda \leq 1.\) Then,
\[
\sup_{-1 \leq t \leq 1} |f_\lambda(t, 0)| = \max \left\{ 1, 2 \left(1 + \sqrt{2} \right) \lambda - 1 \right\} = 2 \left(1 + \sqrt{2} \right) \lambda - 1.
\]

So, in conclusion,
\[
\sup_{-1 \leq t \leq 1} |f_\lambda(t, 0)| = \begin{cases}
1 + \frac{\lambda^2}{1 - \lambda} & \text{if } 0 \leq \lambda < 2 - \sqrt{2}, \\
(2 + 2\sqrt{2})\lambda - 1 & \text{if } 2 - \sqrt{2} \leq \lambda \leq 1,
\end{cases}
\]

=:
\[
D_{2,1}(\lambda) \quad \text{if } 0 \leq \lambda < 2 - \sqrt{2},
\]

\[
D_{2,2}(\lambda) \quad \text{if } 2 - \sqrt{2} \leq \lambda \leq 1.
\]

(3) \(\theta = \frac{\pi}{4}\) and \(-1 \leq t \leq 1.\)

We have
\[f_\lambda \left(t, \frac{\pi}{4} \right) = \frac{\sqrt{2}}{2} \left[t - (1 + t + 2\sqrt{1 + t}) \lambda + (4 + t + 4\sqrt{1 + t}) \lambda - (1 + t + 2\sqrt{1 + t}) \right] = \frac{\sqrt{2}}{2} \left[(3 + 2\sqrt{1 + t}) \lambda - (1 + 2\sqrt{1 + t}) \right].\]
Again, we have
\[
\begin{align*}
f_\lambda \left(-1, \frac{\pi}{4} \right) &= \frac{\sqrt{2}}{2} (3\lambda - 1), \\
f_\lambda \left(1, \frac{\pi}{4} \right) &= \frac{\sqrt{2}}{2} \left((3 + 2\sqrt{2}) \lambda - (1 + 2\sqrt{2}) \right), \\
f_\lambda' \left(t, \frac{\pi}{4} \right) &= \frac{\sqrt{2}}{2} \left(\frac{\lambda}{\sqrt{1+t}} - \frac{1}{\sqrt{1+t}} \right).
\end{align*}
\]
and \(f_\lambda'(t, \frac{\pi}{4}) = 0 \) implies \(\lambda = 1 \) (in which case \(f_\lambda(t, \frac{\pi}{4}) = \sqrt{2} \) for every \(t \)).

- Assume first \(0 \leq \lambda < \frac{1}{4} \). Then,
 \[
 \sup_{-1 \leq t \leq 1} |f_\lambda \left(t, \frac{\pi}{4} \right)| = \frac{\sqrt{2}}{2} \max \left\{ (1 + 2\sqrt{2}) - (3 + 2\sqrt{2}) \lambda, 1 - 3\lambda \right\}
 = \frac{\sqrt{2}}{2} \left[(1 + 2\sqrt{2}) - (3 + 2\sqrt{2}) \lambda \right]
 \]

- Assume now \(\frac{1}{4} \leq \lambda < 4\sqrt{2} - 5 \). Then,
 \[
 \sup_{-1 \leq t \leq 1} |f_\lambda \left(t, \frac{\pi}{4} \right)| = \frac{\sqrt{2}}{2} \max \left\{ (1 + 2\sqrt{2}) - (3 + 2\sqrt{2}) \lambda, 3\lambda - 1 \right\}
 = \left\{ \begin{array}{ll}
 \frac{\sqrt{2}}{2} \left[(1 + 2\sqrt{2}) - (3 + 2\sqrt{2}) \lambda \right] & \text{if } \frac{1}{4} \leq \lambda < \frac{2\sqrt{2}+1}{\sqrt{2}} \\
 \frac{\sqrt{2}}{2} (3\lambda - 1) & \text{if } \frac{2\sqrt{2}+1}{\sqrt{2}} \leq \lambda < 4\sqrt{2} - 5.
 \end{array} \right.
 \]

- Assume finally \(4\sqrt{2} - 5 \leq \lambda \leq 1 \). Then,
 \[
 \sup_{-1 \leq t \leq 1} |f_\lambda \left(t, \frac{\pi}{4} \right)| = \frac{\sqrt{2}}{2} \max \left\{ 3\lambda - 1, (3 + 2\sqrt{2}) \lambda - (1 + 2\sqrt{2}) \right\} = \frac{\sqrt{2}}{2} (3\lambda - 1).
 \]

Hence, we can say that
\[
\sup_{-1 \leq t \leq 1} |f_\lambda (t, \frac{\pi}{4})| = \left\{ \begin{array}{ll}
 \frac{\sqrt{2}}{2} (1 + 2\sqrt{2} - (3 + 2\sqrt{2}) \lambda) & \text{if } 0 \leq \lambda < \frac{2\sqrt{2}+1}{\sqrt{2}} \\
 \frac{\sqrt{2}}{2} (3\lambda - 1) & \text{if } \frac{2\sqrt{2}+1}{\sqrt{2}} \leq \lambda \leq 1.
 \end{array} \right.
\]

(4) \(t = -1, 0 \leq \theta \leq \frac{\pi}{4} \).

Applying lemma 3.1 we obtain
\[
\sup_{0 \leq \theta \leq \frac{\pi}{4}} f_\lambda (-1, \theta) = \left\{ \begin{array}{ll}
 1 & \text{if } 0 \leq \lambda < \frac{1+\sqrt{2}}{4}, \\
 \frac{\sqrt{2}}{2} (3\lambda - 1) & \text{if } \frac{1+\sqrt{2}}{4} \leq \lambda \leq 1.
 \end{array} \right.
\]

(5) \(t = 1, 0 \leq \theta \leq \frac{\pi}{4} \).

We use again lemma 3.1, with \(a = 1 - (2 + 2\sqrt{2}) \lambda \) and \(b = (5 + 4\sqrt{2}) \lambda - (2 + 2\sqrt{2}) \). Through standard calculations, we see that \(\frac{b}{a} < 0 \) if and only if \(\lambda \in \left(0, \frac{\sqrt{2}-1}{2} \right) \cup \left(\frac{9-4\sqrt{2}}{4}, 1 \right] \) and \(\frac{b}{a} > 1 \) if and only
we can directly rule out case (3). Since (see Figures 5 and 7)

$$\sup_{0 \leq \theta \leq \frac{\pi}{4}} |f_\lambda(1, \theta)|$$

$$= \begin{cases}
\max \left\{ \frac{\sqrt{2}}{2} \left| (1 - (2 + 2\sqrt{2}) \lambda) \right|, \frac{\sqrt{2}}{2} \left| (3 + 2\sqrt{2}) \lambda - (1 + 2\sqrt{2}) \right| \right\} & \text{if } 0 \leq \lambda < \frac{3 + 4\sqrt{2}}{23}, \\
\sqrt{(1 - (2 + 2\sqrt{2}) \lambda)^2 + \left(\frac{2 + 4\sqrt{2}}{23} \lambda - (2 + 2\sqrt{2}) \right)^2} & \text{if } \frac{3 + 4\sqrt{2}}{23} \leq \lambda < \frac{5 - 2\sqrt{2}}{6}, \\
\max \left\{ \frac{\sqrt{2}}{2} \left| (1 - (2 + 2\sqrt{2}) \lambda) \right|, \frac{\sqrt{2}}{2} \left| (3 + 2\sqrt{2}) \lambda - (1 + 2\sqrt{2}) \right| \right\} & \text{if } \frac{5 - 2\sqrt{2}}{6} \leq \lambda \leq 1.
\end{cases}$$

Since $0 \leq \lambda < \sqrt{2} - 1$ implies $\left| 1 - (2 + 2\sqrt{2}) \lambda \right| < \frac{\sqrt{2}}{2} \left| (3 + 2\sqrt{2}) \lambda - (1 + 2\sqrt{2}) \right|$, it follows that

$$\sup_{0 \leq \theta \leq \frac{\pi}{4}} |f_\lambda(1, \theta)| = \begin{cases}
\frac{\sqrt{2}}{2} \left| (1 + 2\sqrt{2}) \lambda - (1 + 2\sqrt{2}) \right| & \text{if } 0 \leq \lambda < \frac{3 + 4\sqrt{2}}{23}, \\
\sqrt{48\sqrt{2}\lambda^2 - 56\lambda + 69\lambda^2 - 40\sqrt{2}\lambda + 8\sqrt{2} + 13} & \text{if } \frac{3 + 4\sqrt{2}}{23} \leq \lambda < \frac{5 - 2\sqrt{2}}{6}, \\
\frac{\sqrt{2}}{2} \left| (1 + 2\sqrt{2}) \lambda - (3 + 2\sqrt{2}) \lambda \right| & \text{if } \frac{5 - 2\sqrt{2}}{6} \leq \lambda \leq 1.
\end{cases}$$

Since (see Figures 5 and 6)

$$D_{1,1}(\lambda) \leq \begin{cases}
D_{2,1}(\lambda) & \text{if } 0 \leq \lambda < 2 - \sqrt{2}, \\
D_{2,2}(\lambda) & \text{if } 2 - \sqrt{2} \leq \lambda \leq 1,
\end{cases}$$

$$D_{1,2}(\lambda) \leq D_{3,1}(\lambda) \text{ for } 0 < \lambda < \frac{1}{2},$$

we can rule out case (1). Since

$$D_{3,1}(\lambda) = D_{5,1}(\lambda) \text{ for } 0 \leq \lambda \leq \frac{3 + 4\sqrt{2}}{23},$$

$$D_{3,2}(\lambda) = D_{4,2}(\lambda) \text{ for } \frac{1 + \sqrt{2}}{3} \leq \lambda \leq 1,$$

we can directly rule out case (3). Since (see Figures 5 and 7)

$$D_{4,1}(\lambda) = 1 \leq \begin{cases}
D_{2,1}(\lambda) & \text{if } 0 \leq \lambda < 2 - \sqrt{2}, \\
D_{2,2}(\lambda) & \text{if } 2 - \sqrt{2} \leq \lambda < \frac{1 + \sqrt{2}}{3},
\end{cases}$$

$$D_{4,2}(\lambda) \leq D_{2,2} \text{ for } \frac{1 + \sqrt{2}}{3} \leq \lambda \leq 1,$$

we can rule out case (4). Finally, since (see Figure 8)

$$D_{5,2}(\lambda) \leq D_{2,1}(\lambda) \text{ for } \frac{3 + 4\sqrt{2}}{23} \leq \lambda < \frac{5 - 2\sqrt{2}}{6},$$

$$D_{5,3}(\lambda) = D_{2,2}(\lambda) \text{ for } 2 - \sqrt{2} \leq \lambda \leq 1,$$

we can rule out the expressions $D_{5,2}(\lambda)$ and $D_{5,3}(\lambda)$ of case (5).
Thus, putting all the above cases together, we may reach the conclusion

\[
\sup_{(t, \theta) \in C_1} |f_\lambda(t, \theta)| = \begin{cases}
D_{5,1}(\lambda) & \text{if } 0 \leq \lambda < \frac{(2-3\sqrt{2})\sqrt{4\sqrt{2}+7+5\sqrt{2}+6}}{14}, \\
D_{2,1}(\lambda) & \text{if } \frac{(2-3\sqrt{2})\sqrt{4\sqrt{2}+7+5\sqrt{2}+6}}{14} \leq \lambda < 2 - \sqrt{2}, \\
D_{2,2}(\lambda) & \text{if } 2 - \sqrt{2} \leq \lambda \leq 1,
\end{cases}
\]

and hence

\[
\sup_{-1 \leq t \leq 1} \|DP_t(x, y)\|_{D(\xi)} = 2x \sup_{(t, \theta) \in C_1} |f_\lambda(t, \theta)|
\]

\[
= \begin{cases}
\sqrt{2} \left[(1 + 2\sqrt{2}) x - (3 + 2\sqrt{2}) y \right] & \text{if } 0 \leq y < \frac{(2-3\sqrt{2})\sqrt{4\sqrt{2}+7+5\sqrt{2}+6} x}{14}, \\
2 \left(x + \frac{y^2}{x-y} \right) & \text{if } \frac{(2-3\sqrt{2})\sqrt{4\sqrt{2}+7+5\sqrt{2}+6} x}{14} \leq y < (2 - \sqrt{2}) x, \\
4 \left(1 + \sqrt{2} \right) y - 2x & \text{if } (2 - \sqrt{2}) x \leq y \leq x,
\end{cases}
\]

assuming in every moment \(x \neq 0 \) (in order to illustrate the previous step, the reader can take a look at Figure 9).
Let us deal now with the polynomials

\[Q_s(x, y) = x^2 + sy^2 - 2\sqrt{2(1 + s)}xy, \quad 1 \leq s \leq 5 + 4\sqrt{2}. \]
Then,
\[\nabla Q_s(x, y) = \left(2x - 2\sqrt{2(1 + s)}y, 2sy - 2\sqrt{2(1 + s)}x \right), \]
\[\|DQ_s(x, y)\|_{D(\xi)} = \sup_{0 \leq \xi \leq \frac{\pi}{4}} \left| 2x \left[1 - \sqrt{2(1 + s)} \right] \cos \theta + \left(s\lambda - \sqrt{2(1 + s)} \right) \sin \theta \right|, \]
and thus
\[\sup_{1 \leq s \leq 5 + 4\sqrt{2}} \|DQ_s(x, y)\|_{D(\xi)} = 2x \sup_{(s, \theta) \in C_2} |g_\lambda(s, \theta)|, \]
with
\[g_\lambda(s, \theta) = \left(1 - \sqrt{2(1 + s)} \right) \cos \theta + \left(s\lambda - \sqrt{2(1 + s)} \right) \sin \theta \]
and \(C_2 = [1, 5 + 4\sqrt{2}] \times [0, \frac{\pi}{4}] \). Again, we have several cases:

(6) \((s, \theta) \in (1, 5 + 4\sqrt{2}) \times (0, \frac{\pi}{4})\).

Let us first calculate the critical points of \(g_\lambda \) over \(C_2 \).

\[\frac{\partial g_\lambda}{\partial s}(s_0, \theta_0) = \frac{-\lambda}{\sqrt{2(1 + s_0)}} \cos \theta_0 + \left(\frac{\lambda - 1}{\sqrt{2(1 + s_0)}} \right) \sin \theta_0, \]
\[\frac{\partial g_\lambda}{\partial \theta}(s_0, \theta_0) = \left(s_0\lambda - \sqrt{2(1 + s_0)} \right) \cos \theta_0 - \left(1 - \sqrt{2(1 + s_0)} \lambda \right) \sin \theta_0, \]
so, if \(Dg_\lambda(s_0, \theta_0) = 0 \), using the first expression, we obtain \(\tan \theta_0 = \frac{\lambda}{\sqrt{2(1 + s_0)}\lambda - 1} \), and, using the second one, we obtain \(\tan \theta_0 = \frac{s_0\lambda - \sqrt{2(1 + s_0)}}{1 - \sqrt{2(1 + s_0)}\lambda} \).
Hence, we may say
\[\frac{s_0\lambda - \sqrt{2(1 + s_0)}}{1 - \sqrt{2(1 + s_0)}\lambda} = \frac{\lambda}{\sqrt{2(1 + s_0)}\lambda - 1}, \]
and thus
\[s_0 = \frac{2 - \lambda^2}{\lambda^2}. \]
Then, \(\tan \theta_0 = \lambda \) and also, if we want to guarantee that \(1 < s_0 < 5 + 4\sqrt{2} \), we need \(\sqrt{2} - 1 < \lambda < 1 \).
In that case, \(\sin \theta_0 = \frac{\lambda}{\sqrt{1 + \lambda^2}} \), and \(\cos \theta_0 = \frac{1}{\sqrt{1 + \lambda^2}} \), and then
\[g_\lambda(s_0, \theta_0) = \frac{-1}{\sqrt{1 + \lambda^2}} + \frac{-\lambda^2}{\sqrt{1 + \lambda^2}} = -\sqrt{1 + \lambda^2}, \]
so
\[D_0(\lambda) := |g_\lambda(s_0, \theta_0)| = \sqrt{1 + \lambda^2}. \]

(7) \(s = 1, 0 \leq \theta \leq \frac{\pi}{4} \).

Apply lemma 3.1 with \(a = 1 - 2\lambda \) and \(b = \lambda - 2 \). Using \(0 \leq \lambda \leq 1 \), observe that we always have \(b < 0 \) and \(b \leq a \). Also, \(a < (1 - \sqrt{2}) b \) if and only if \(\lambda > \frac{5 - 3\sqrt{2}}{4} \).
Putting everything together, we can say
\[\sup_{0 \leq \theta \leq \frac{\pi}{4}} |g_\lambda(1, \theta)| = \begin{cases} 1 - 2\lambda & \text{if } 0 \leq \lambda < \frac{5 - 3\sqrt{2}}{4}, \\ \frac{5 - 3\sqrt{2}}{4}(1 + \lambda) & \text{if } \frac{5 - 3\sqrt{2}}{4} \leq \lambda \leq 1, \end{cases} \]
\[=: \begin{cases} D_{7,1}(\lambda) & \text{if } 0 \leq \lambda < \frac{5 - 3\sqrt{2}}{4}, \\ D_{7,2}(\lambda) & \text{if } \frac{5 - 3\sqrt{2}}{4} \leq \lambda \leq 1. \end{cases} \]

(8) \(s = 5 + 4\sqrt{2}, 0 \leq \theta \leq \frac{\pi}{4} \).
Apply again lemma 3.1, this time to \(a = 1 - 2 \left(1 + \sqrt{2} \right) \lambda \) and \(b = (5 + 4 \sqrt{2}) \lambda - 2 \left(1 + \sqrt{2} \right) \). As usual, we notice that \(a < 0 \) if and only if \(\lambda > \frac{\sqrt{2} - 1}{2} \), \(b < 0 \) if and only if \(\lambda < \frac{2 - \sqrt{2}}{2} \) and \(a < b \) if and only if \(\lambda > \frac{3 + 4 \sqrt{2}}{23} \). All together, we can say that, for \(\frac{3 + 4 \sqrt{2}}{23} < \lambda < \frac{6 - 2 \sqrt{2}}{7} \), we have

\[
\sup_{0 \leq \theta \leq \frac{\pi}{4}} |g_\lambda(5 + 4 \sqrt{2}, \theta)| = \sqrt{a^2 + b^2} = \sqrt{13 + 8 \sqrt{2} - (56 + 40 \sqrt{2}) \lambda + (69 + 48 \sqrt{2}) \lambda^2}.
\]

Also, notice that, for any \(\lambda \in [0, 1] \), we are going to have \(b < - \left(1 + \sqrt{2} \right) a \) and \(a < \left(1 - \sqrt{2} \right) b \). Hence,

\[
\sup_{0 \leq \theta \leq \frac{\pi}{4}} |g_\lambda(5 + 4 \sqrt{2}, \theta)|
= \begin{cases}
\frac{\sqrt{2}}{2} \left[\left(1 + 2 \sqrt{2} \right) - (3 + 2 \sqrt{2}) \lambda \right] & \text{if } 0 \leq \lambda < \frac{3 + 4 \sqrt{2}}{23}, \\
\sqrt{13 + 8 \sqrt{2} - (56 + 40 \sqrt{2}) \lambda + (69 + 48 \sqrt{2}) \lambda^2} & \text{if } \frac{3 + 4 \sqrt{2}}{23} \leq \lambda < \frac{6 - 2 \sqrt{2}}{7}, \\
2 (1 + \sqrt{2}) |\lambda| - 1 & \text{if } \frac{6 - 2 \sqrt{2}}{7} \leq \lambda \leq 1,
\end{cases}
\]

As usual, \(g_\lambda(s, \pi) = 0 \) if and only if \(\lambda = 0 \) for \(\lambda \neq 0 \).

Thus,

\[
\sup_{1 \leq s \leq 5 + 4 \sqrt{2}} |g_\lambda(s, 0)| = \max \left\{ |1 - 2 \lambda|, |1 - 2 \left(1 + \sqrt{2} \right) \lambda| \right\}
= \begin{cases}
1 - 2 \lambda & \text{if } 0 \leq \lambda < \frac{2 - \sqrt{2}}{2}, \\
2 (1 + \sqrt{2}) |\lambda| - 1 & \text{if } \frac{2 - \sqrt{2}}{2} \leq \lambda \leq 1,
\end{cases}
\]

As usual, \(g_\lambda \left(s, \frac{\pi}{4} \right) = 0 \) if and only if \(s = \frac{(1 + \lambda)^2}{2 \lambda^2} - 1 \)
and since we need to ensure that \(1 < s_0 < 5 + 4 \sqrt{2} \), we need \(\frac{2 \sqrt{2} - 1}{7} < \lambda < 1 \). In that case,

\[
g_\lambda \left(s_0, \frac{\pi}{4} \right) = -\frac{\sqrt{2}(1 + 3 \lambda^2)}{4 \lambda}.
\]
Hence,
\[
\sup_{1 \leq s \leq 5 + 4\sqrt{2}} \left| g_\lambda \left(\frac{s}{4} \right) \right| = \begin{cases}
\frac{\sqrt{s}}{4} \left[(1 + 2\sqrt{2}) - (3 + 2\sqrt{2}) \lambda \right] & \text{if } 0 \leq \lambda < \frac{2\sqrt{2}-1}{7}, \\
\frac{\sqrt{2}}{4\lambda} \left(1 + 3\lambda^2 \right) & \text{if } \frac{2\sqrt{2}-1}{7} \leq \lambda \leq 1,
\end{cases}
\]
\[
= \begin{cases}
D_{10,1}(\lambda) & \text{if } 0 \leq \lambda < \frac{2\sqrt{2}-1}{7}, \\
D_{10,2}(\lambda) & \text{if } \frac{2\sqrt{2}-1}{7} \leq \lambda \leq 1.
\end{cases}
\]

Since (the reader can take a look at Figure 10)
\[
D_0(\lambda) \leq \begin{cases}
D_{8,2}(\lambda) & \text{if } \sqrt{2} - 1 < \lambda < \frac{6-2\sqrt{2}}{7}, \\
D_{8,3}(\lambda) & \text{if } \frac{6-2\sqrt{2}}{7} \leq \lambda < 1,
\end{cases}
\]
we can rule out case (6). Since (see Figures 11 and 12)
\[
D_{7,1}(\lambda) \leq D_{10,1}(\lambda) \text{ for } 0 \leq \lambda < \frac{5-3\sqrt{2}}{7},
\]
\[
D_{7,2}(\lambda) \leq \begin{cases}
D_{10,1}(\lambda) & \text{if } \frac{5-3\sqrt{2}}{7} \leq \lambda < \frac{2\sqrt{2}-1}{7}, \\
D_{10,2}(\lambda) & \text{if } \frac{2\sqrt{2}-1}{7} \leq \lambda \leq 1,
\end{cases}
\]
we can rule out case (7). Since
\[
D_{8,1}(\lambda) = D_{10,1}(\lambda) \text{ for } 0 \leq \lambda < \frac{2\sqrt{2} - 1}{7},
\]
we can rule out the expression \(D_{8,1}(\lambda) \) of case (8). Since
\[
D_{9,1}(\lambda) = D_{7,1}(\lambda) \text{ for } 0 \leq \lambda < \frac{5-3\sqrt{2}}{7},
\]
\[
D_{9,2}(\lambda) = D_{8,3}(\lambda) \text{ for } \frac{6-2\sqrt{2}}{7} \leq \lambda \leq 1,
\]
we can directly rule out case (9). Furthermore, since (see Figure 13)
\[
D_{8,2}(\lambda) \leq D_{10,2}(\lambda) \text{ for } \frac{5+4\sqrt{2}}{7} \leq \lambda < \frac{6-2\sqrt{2}}{7},
\]
\[
D_{8,3}(\lambda) \leq D_{10,2}(\lambda) \text{ for } \frac{6-2\sqrt{2}}{7} \leq \lambda \leq \frac{(4\sqrt{2}-5)\sqrt{4\sqrt{2}+7}+8-5\sqrt{2}}{7},
\]
we can conclude that
\[
\sup_{(s, \theta) \in C_2} |g_\lambda(s, \theta)| = \begin{cases}
D_{10,1}(\lambda) & \text{if } 0 \leq \lambda < \frac{2\sqrt{2}-1}{7}, \\
D_{10,2}(\lambda) & \text{if } \frac{2\sqrt{2}-1}{7} \leq \lambda < \frac{(4\sqrt{2}-5)\sqrt{4\sqrt{2}+7}+8-5\sqrt{2}}{7}, \\
D_{8,3}(\lambda) & \text{if } \frac{(4\sqrt{2}-5)\sqrt{4\sqrt{2}+7}+8-5\sqrt{2}}{7} \leq \lambda \leq 1.
\end{cases}
\]
\[
= \begin{cases}
\frac{\sqrt{2}}{4\lambda} \left[(1 + 2\sqrt{2}) - (3 + 2\sqrt{2}) \lambda \right] & \text{if } 0 \leq \lambda < \frac{2\sqrt{2}-1}{7}, \\
\frac{\sqrt{2}}{4\lambda} \left(1 + 3\lambda^2 \right) & \text{if } \frac{2\sqrt{2}-1}{7} \leq \lambda < \frac{(4\sqrt{2}-5)\sqrt{4\sqrt{2}+7}+8-5\sqrt{2}}{7}, \\
2 \left(1 + \sqrt{2} \right) \lambda - 1 & \text{if } \frac{(4\sqrt{2}-5)\sqrt{4\sqrt{2}+7}+8-5\sqrt{2}}{7} \leq \lambda \leq 1.
\end{cases}
\]
and hence
\[
\sup_{1 \leq s \leq 5 + 4\sqrt{2}} \|DQ_s(x, y)\|_{D(\frac{1}{4})} = \begin{cases}
\frac{\sqrt{2}}{4\lambda} \left[(1 + 2\sqrt{2}) x - (3 + 2\sqrt{2}) y \right] & \text{if } 0 \leq y < \frac{2\sqrt{2}-1}{7} x, \\
\frac{\sqrt{2}}{4\lambda} \left(x^2 + 3y^2 \right) & \text{if } \frac{2\sqrt{2}-1}{7} x \leq y < \frac{(4\sqrt{2}-5)\sqrt{4\sqrt{2}+7}+8-5\sqrt{2}}{7} x, \\
4 \left(1 + \sqrt{2} \right) y - 2x & \text{if } \frac{(4\sqrt{2}-5)\sqrt{4\sqrt{2}+7}+8-5\sqrt{2}}{7} x \leq y \leq x.
\end{cases}
\]
Finally, if we compare the results obtained with P_t and Q_s, since $\frac{\sqrt{2}(1+3\lambda^2)}{4\lambda} \geq 1 + \frac{\lambda^2}{1-\lambda}$ whenever $\lambda \leq \sqrt{2} - 1$, we obtain

$$\Phi(x, y) = \begin{cases}
\sqrt{2} \left[(1+2\sqrt{2})x - (3+2\sqrt{2})y \right] & \text{if } 0 \leq y < \frac{2\sqrt{2}-1}{2}x, \\
\frac{\sqrt{2}}{2y} \left[x + \frac{x^2}{y} \right] & \text{if } \frac{2\sqrt{2}-1}{2}x \leq y < \left(\sqrt{2} - 1 \right)x, \\
4 \left(1 + \sqrt{2} \right) y - 2x & \text{if } \left(\sqrt{2} - 1 \right)x \leq y < (2 - \sqrt{2})x, \\
4 \left(1 + \sqrt{2} \right) y - 2x & \text{if } (2 - \sqrt{2})x \leq y \leq x.
\end{cases}$$
Proof. We just need to calculate words, the inequality

The unconditional constant of the canonical basis of Theorem 4.1.

Consider first the polynomials \(P \) for all \(P \in \mathcal{P}(^2 D (\frac{\pi}{4})) \), then

\[\|L\|_{D(\frac{\pi}{4})} \leq \left(2 + \frac{\sqrt{2}}{2} \right) \|P\|_{D(\frac{\pi}{4})}. \]

Moreover, equality is achieved for \(P(x, y) = Q_{5+4\sqrt{2}}(x, y) = x^2 + (5 + 4\sqrt{2}) y^2 - (4 + 4\sqrt{2}) xy \). Hence, the polarization constant of the polynomial space \(\mathcal{P}(^2 D (\frac{\pi}{4})) \) is \(2 + \frac{\sqrt{2}}{2} \).

4. Unconditional constants for polynomials on sectors

Here, we obtain a sharp estimate on the norm of the modulus of a polynomial in \(\mathcal{P}(^2 D (\frac{\pi}{4})) \) in terms of its norm. That sharp estimate turns out to be the unconditional constant of the canonical basis of \(\mathcal{P}(^2 D (\frac{\pi}{4})) \).

Theorem 4.1. The unconditional constant of the canonical basis of \(\mathcal{P}(^2 D (\frac{\pi}{4})) \) is \(5 + 4\sqrt{2} \). In other words, the inequality

\[\|P\|_{D(\frac{\pi}{4})} \leq (5 + 4\sqrt{2}) \|P\|_{D(\frac{\pi}{4})}, \]

for all \(P \in \mathcal{P}(^2 D (\frac{\pi}{4})) \). Furthermore, the previous inequality is sharp and equality is attained for the polynomials \(\pm P_1(x, y) = \pm Q_{5+4\sqrt{2}}(x, y) = \pm [x^2 + (5 + 4\sqrt{2}) y^2 - (4 + 4\sqrt{2}) xy] \).

Proof. We just need to calculate

\[\sup \left\{ \|P\|_{D(\frac{\pi}{4})} : P \in \text{ext} \left(B_{D(\frac{\pi}{4})} \right) \right\}. \]

In order to calculate the above supremum we use the extreme polynomials described in Lemma 1.2. If we consider first the polynomials \(P_t \), then \(|P_t| = (|t|, 4 + t + 4\sqrt{1 + t}, 2 + 2t + 4\sqrt{1 + t}) \). Now, using Lemma 1.1, we have

\[
\sup_{-1 \leq t \leq 1} \|P_t\|_{D(\frac{\pi}{4})} = \sup_{-1 \leq t \leq 1} \max \left\{ |t|, \frac{1}{2} (|t| + 4 + t + 4\sqrt{1 + t} + 2 + 2t + 4\sqrt{1 + t}) \right\} \\
= \sup_{-1 \leq t \leq 1} \frac{1}{2} (|t| + 6 + 3t + 8\sqrt{1 + t}) = 5 + 4\sqrt{2}.
\]

\[\square \]

Figure 13. Graphs of the mappings \(D_{8,2}(\lambda), D_{8,3}(\lambda) \) and \(D_{10,2}(\lambda) \).
Notice that the above supremum is attained at $t = 1$. On the other hand, if we consider the polynomials Q_s, we have $|Q_s| = (1, s, 2\sqrt{2(1+s)})$. Now, using Lemma 1.1 we have

$$
\sup_{1 \leq s \leq 5+4\sqrt{2}} \|Q_s\|_{D(\pi/4)} = \sup_{1 \leq s \leq 5+4\sqrt{2}} \max \left\{ \frac{1}{2} \left(1 + s + 2\sqrt{2(1+s)} \right) \right\} = \sup_{1 \leq s \leq 5+4\sqrt{2}} \frac{1}{2} \left(1 + s + 2\sqrt{2(1+s)} \right) = 5 + 4\sqrt{2}.
$$

Observe that the last supremum is now attained at $s = 5 + 4\sqrt{2}$. □

5. Conclusions

Comparing the results obtained in [11] and [25] for polynomials on the simplex Δ, in [12] for polynomials on the unit square \Box, in [15] for polynomials on the sector $D\left(\frac{\pi}{2}\right)$ and the results obtained in the previous sections, we have the following:

	$P(2\Delta)$	$P(2D\left(\frac{\pi}{2}\right))$	$P(2D\left(\frac{\pi}{4}\right))$	$P(2\Box)$
Markov constants	$2\sqrt{10}$	$2\sqrt{5}$	$4(13 + 8\sqrt{2})$	$\sqrt{13}$
Polarization constants	3	2	$2 + \frac{\sqrt{2}}{2}$	$\frac{3}{2}$
Unconditional Constants	2	3	$5 + 4\sqrt{2}$	5

Furthermore, all the constants appearing in the previous table are sharp. Actually, the extreme polynomials where the constants are attained are the following:

1. $\pm(x^2 + y^2 - 6xy)$ for the simplex.
2. $\pm(x^2 + y^2 - 4xy)$ for the sector $D\left(\frac{\pi}{2}\right)$.
3. $\pm(x^2 + (5 + 4\sqrt{2})y^2 - (4 + 4\sqrt{2})xy)$ for the sector $D\left(\frac{\pi}{4}\right)$.
4. $\pm(x^2 + y^2 - 3xy)$ for the unit square.

Compare the previous table with similar results that hold for 2-homogeneous polynomials on the Banach spaces ℓ^2_1, ℓ^2_2 and ℓ^2_∞:

	$P(2\ell^2_1)$	$P(2\ell^2_2)$	$P(2\ell^2_\infty)$
Markov constants	4	2	$2\sqrt{2}$
Polarization constants	2	1	2
Unconditional Constants	$\frac{1+\sqrt{2}}{2}$	$\sqrt{2}$	$1 + \sqrt{2}$

Observe that the Markov constants of the spaces $P(2\ell^2_1)$ and $P(2\ell^2_\infty)$ can be calculated taking into consideration the description of the geometry of those spaces given in [5]. Also, the Markov constant of $P(2\ell^2_2)$ is twice its polarization constant, or in other words, 2.

On the other hand, the constants appearing in the second line of the previous table are well-known results (see for instance [27]).

Finally, the unconditional constants corresponding to the third line of the previous table were calculated in Theorem 3.5, Theorem 3.19 and Theorem 3.6 of [11].
References

1. F. Bayart, D. Pellegrino, J.B. Seoane-Sepúlveda, The Bohr radius of the n-dimensional polydisk is equivalent to $\sqrt{\frac{\log n}{n}}$, arXiv:1310.2834v2 [math.FA], (2013).

2. L. Bielas-Chez and P. Goetgheluck, Constants in Markov’s inequality on convex sets, East J. Approx. 1, (1995), no. 3, 379–389.

3. H. P. Boas, Majorant series, J. Korean Math. Soc. 37 (2000), 321-337. Several complex variables (Seoul, 1998).

4. H. Bohr, A theorem concerning power series, Proc. London Math. Soc. 13 (1914), 1–5.

5. Y. S. Choi and S. G. Kim, Exposed points of the unit balls of the spaces P_t^n ($p = 1, 2, \infty$), Indian J. Pure Appl. Math. 35 (2004), 37–41.

6. A. Defant and L. Frerick, A logarithmic lower bound for multidimensional Bohr radii, Israel J. Math. 152 (2006), 17-28.

7. A. Defant, D. García and M. Maestre, Bohr’s power series theorem and local Banach space theory, J. Reine Angew. Math. 557 (2003), 173–197.

8. A. Defant, D. García and M. Maestre, Estimates for the first and second Bohr radii of Reinhart domains, J. Approx. Theory 128 (2004), 53–68.

9. A. Defant and C. Prengel, Harald Bohr meets Stefan Banach. In Methods in Banach space theory, volume 337 of London Math. Soc. Lecture Note Ser., pages 317–339. Cambridge Univ. Press, Cambridge, 2006.

10. S. Dineen, Complex analysis on infinite-dimensional spaces, Springer Monographs in Mathematics. Springer-Verlag London, Ltd., London, 1999.

11. B. C. Greca, G. A. Muñoz-Fernández and J. B. Seoane Sepúlveda, Unconditional constants and polynomial inequalities, Journal of Approximation Theory, 161 (2009) 706-722.

12. J.L. Gámez-Merino, G.A. Muñoz-Fernández,V. M. Sánchez and J.B. Seoane-Sepúlveda, Inequalities for polynomials on the unit square via the Krein-Milman Theorem, J. Convex Anal. in press.

13. L. Harris, Bounds on the derivatives of holomorphic functions of vectors. Analyse fonctionnelle et applications (Comptes Rendus Colloq. Analyse, Inst. Mat., Univ. Federal Rio de Janeiro, Rio de Janeiro, 1972), pp. 145–163. Actualités Sci. Industr., No. 1367, Hermann, Paris, 1975.

14. L. Harris, A proof of Markov’s theorem for polynomials on Banach spaces, J. Math. Anal. Appl. 368 (2010), 374–381.

15. P. Jiménez-Rodríguez, G. A. Muñoz-Fernández, D. Pellegrino, and J. B. Seoane-Sepúlveda, Classical inequalities for polynomials on circle sectors. Preprint.

16. A. A. Kroó and Sz. Révész, On Bernstein and Markov-type inequalities for multivariate polynomials on convex bodies, J. Approx. Theory 99 (1999), no. 1, 134–152.

17. R. S. Martin, Ph. D. Thesis. Cal. Inst. of Tech, 1932.

18. L. Milev and S. G. Révész, Bernstein’s inequality for multivariate polynomials on the standard simplex, J. Inequal. Appl. 2005, no. 2, 145–163.

19. L. Milev, N. Naidenov, Strictly definite extreme points of the unit ball in a polynomial space, C. R. Acad. Bulgare Sci. 61 (2008), 1393-1400.

20. G. A. Muñoz-Fernández, D. Pellegrino, J. B. Seoane-Sepúlveda, and A. Weber, Supremum Norms for 2-Homogeneous Polynomials on Circle Sectors, J. Convex Anal. 21 (2014), no. 3, final page numbers not yet available.

21. G. A. Muñoz-Fernández, V. M. Sánchez and J. B. Seoane-Sepúlveda, Estimates on the derivative of a polynomial with a curved majorant using convex techniques, J. Convex Anal. 17 (2010), no. 1, 241–252.

22. G. A. Muñoz-Fernández, V. M. Sánchez and J. B. Seoane-Sepúlveda, L^p-analogues of Bernstein and Markov inequalities, Math. Inequal. Appl. 14 (2011), no. 1, 135–145.

23. G.A. Muñoz-Fernández and Y. Sarantopoulos, Bernstein and Markov-type inequalities for polynomials in real Banach spaces, Math. Proc. Camb. Phil. Soc. 133 (2002), 515–530.

24. G.A. Muñoz-Fernández, Y. Sarantopoulos and J.B. Seoane-Sepúlveda, An Application of the Krein-Milman Theorem to Bernstein and Markov Inequalities, J. Convex Anal. 15 (2008), 299–312.

25. G. A. Muñoz-Fernández, S. G. Révész and J. B. Seoane-Sepúlveda, Geometry of homogeneous polynomials on non symmetric convex bodies, Math. Scand. 105 (2009), 147–160.

26. D. Nadzhimiddinov and Yu. N. Subbotin, Markov inequalities for polynomials on triangles (Russian), Mat. Zametki 46 (1989), no. 2, 76–82, 159; translation in Math. Notes 46 (1989), no. 1-2, 627–631.

27. Y. Sarantopoulos, Estimates for polynomial norms on $L_p(\mu)$ spaces, Math. Proc. Cambridge Philos. Soc. 99 (1986), no. 2, 263–271.

28. Y. Sarantopoulos, Bounds on the derivatives of polynomials on Banach spaces, Math. Proc. Camb. Phil. Soc. 110 (1991), 307–312.

29. V. I. Skalyga, Bounds on the derivatives of polynomials on centrally symmetric convex bodies, (Russian), Izv. Ross. Akad. Nauk Ser. Mat. 69 (2005), no. 3, 179–192; translation in Izv. Math. 69 (2005), no. 3, 607–621.

30. E.V. Voronovskaya, The functional method and its applications. Appendix: V.A. Gusev: Derivative functionals of an algebraic polynomial and V. A. Markov’s theorem. American Mathematical Society (AMS) VI 203 (1970).

31. D. R. Wilhelmsen, A Markov inequality in several dimensions, J. Approx. Theory 11 (1974), 216–220.
POLYNOMIAL INEQUALITIES ON THE $\pi/4$-CIRCLE SECTOR

Departamento de Análisis Matemático,
Facultad de Ciencias Matemáticas,
Plaza de Ciencias 3,
Universidad Complutense de Madrid,
Madrid, 28040 (Spain).

E-mail address:
gdasaraajo@gmail.com
pablo.jimenez.rod@gmail.com
gustavo.fernandez@mat.ucm.es
jseoane@mat.ucm.es