Building Information Modelling (BIM): Benefits for Small Scale Construction Industry

Ghaith R. Abdulghani¹ and Ahmed Gullu²

¹M.Sc Student, Department of Engineering Management, Istanbul Gedik University, TURKEY
²Associate Professor, Department of Civil Engineering, Istanbul Gedik University, TURKEY

¹Corresponding Author: ghaithrabeea@gmail.com

ABSTRACT

While time passes and life changes, the development of technology is taking place in every part of our life quickly, also it affects daily life. It creates new tools, procedures, and methods for all sectors, and simplifies many operations. Nowadays, design tools that depend on computers have been used in the construction industry, it has a direct effect on the whole project life, and it has made a revolution in the construction sector. Building information modeling (BIM) simply refers to the development of a building model generated by using the computer, that model is rich of data, object-oriented, smart and also a parametric digital representation of the building.

This paper discusses the advantages of implementation of BIM technology for the small scale construction industry, it will mainly focus on quantity takeoff and accuracy of projects, firstly it presents the definition and the main concept of BIM. Then, a case study of a 3-storey building project in Baghdad is done to evaluate the effect of BIM quantity takeoff, tendering, and other effects on the project. At the end, results and challenges will be discussed.

Keywords— Building Information Modeling (BIM), Quantity Takeoff, Cost Management

I. INTRODUCTION

Building information modeling (BIM) simply refers to the development of a building model generated by using the computer, that model is rich of data, object-oriented, smart and also a parametric digital representation of the building, which provides views, plans, and data convenient for different needs of users, it can be obtained easily and analyzed to get information that can help with making decisions and improving the operation of delivering the project.

One of the main differences between BIM 3D and 2D CAD is that 2D CAD represents the project by separated and independent drafts, such as plans, elevations and sections. When it is required to edit one of those drafts, all other drafts in the project must be checked to see the effect of editing on them, that process usually causes many faults and interactions between drafts, and quantities must be also checked. In addition, in 2D drafts, data are graphical elements only, such as lines, rectangles, arcs and circles, while in 3D BIM models, objects are smart elements and defined as walls, beams, columns, and slabs. The Associated General Contractors of America (AGC) defined BIM as the following: “Building Information Modelling (BIM) is the development and use of a computer software model to simulate the construction and operation of a facility”.

USA National Building Information Model Standard Project Committee (NBIM) provides the following definition: "Building Information Modeling (BIM) is a digital representative of the physical and functional properties of a plant. BIM is a common information source which creates a reliable basic for the decisions being taken for a plant during its lifecycle; is valid starting from the decision for the construction until the end of the demolition (NBIMS, 2016)".

II. BENEFITS OF BUILDING INFORMATION MODELING (BIM)

- 3-D visualization: Architectural 3-D rendering can be easily made with BIM.
- Shop drawings generating: shop drawings can be quickly and easily generated for different plans, sections and other parameters.
- Maintenance of buildings: BIM can be applied for renovation and maintenance of buildings.
- Material and cost estimating: Materials and cost estimating can be done with BIM softwares automatically and very quickly. In addition, when changing any part of the model, materials extracted and changed immediately.
- Interference detection: It is one of the most useful features of BIM. To make certain that no elements intersect with each other, all main systems and elements can be visually checked for interference.
- Structural Analytical model: Since BIM-based model has intelligent objects, it can be exported to other analytical softwares, for example, Autodesk Revit has analytical model feature.
• Reducing the time of project delivery: Stanford University center for integrated facilities engineering (CIFE) indicates that BIM can reduce project time up to 7%.

• Team work-friendly: Some BIM softwares like Autodesk Revit have the feature of “work set” which allows different users to have the access to the same model and also edit it if they have been given the authority to. however, every edit is recorded according to the user who has made it. This can help architects, structural, mechanical, and electrical designers to work in one platform, and that can save time and minimize the conflicts.

III. CASE STUDY

A case study of 3-storey building was applied using Autodesk Revit 2020, the model was created depending on the documents and drawings given by the contractor company. The project brief is as following:

- Project name: Salim Khdair - N95
- Project’s budget: 679,942,000IQD
- Main Structure: reinforced concrete
- Owner: private sector investor
- Contractor: Al-Khaled design and contracting Limited
- Design method: AutoCAD drawings
- Quantity takeoff: Traditional method (using AutoCAD, excel and hand calculations)

In this paper, the project was re modeled with Autodesk Revit 2020 depending on the drawings and information of the project. While creating the model with Autodesk Revit, all drawing objects were defined as intelligent objects, for example while creating the Raft foundation, it hasn’t been drawn as merely cube, but as a structural/foundation/Raft foundation. And by entering all the information and determining the orientations, the object was created. This can give many benefits, like quantity takeoff, rebars placement, member connections, and helps to detect any interference.

Figure 1 shows some parts of creating the model:

![Grids and levels](https://ssrn.com/abstract=3908390)
Figure 1: Some parts of creating the model
Figure 2: Placement of Rebars for columns

Figure 3: Placement of Rebars for beams.
IV. RESULTS AND DISCUSSION

By using Autodesk Revit, by selecting view/schedule/material takeoff, Quantity takeoff of different objects can be obtained automatically, it also provides many information and details that the designer or contractor might need. In this part, schedules will be created for the items mentioned in the BOQ that was made by the company, later, the results can be exported to an excel file and arranged and compared with the tender Quantities and prices.

Here are samples of the schedules obtained by Autodesk Revit:

Structural Foundation Schedule
Volume
255.76
64.22

Structural Column Schedule Ground Floor
Volume
26.57 m³

G.F column Rebar Schedule
weight
1.926187
0.16469
4.529825
6.620701

2nd. Floor Concrete & Formwork Schedule
Volume
89.59 m²

Stairs Material Takeoff
Top Level
Level 1
Level 2
Level 3

Fig (4) samples of the schedules obtained by Autodesk Revit

After getting those schedules, it has been arranged in one brief schedule comparing with the tender schedule as following:
No.	Description	Unit	Revit Quantity	Tender Quantity	Difference	Revit price	Tender price	Difference
1	Excavation 0.6m from the surface	m3	417	417	0.000	3753000	3753000	0
2	filling with subbase and compacting	m3	278	278	0.000	4865000	4865000	0
3	Blinding 12cm	m3	64.22	67	-2.780	7064200	7370000	-305800
4	sanitaries	-	-	-		2000000	2000000	0
5	Raft foundation's rebar,	Ton	11.06	12	-0.939	14379807	15600000	-1220193
6	raft foundation's formwork	-	-	-		1500000	1500000	0
7	raft foundation concrete 60 cm	m3	255.76	275	-19.240	24297200	26125000	-1827800
8	Ground floor's column concrete	m3	26.57	30	-3.430	2524150	2850000	-325850
9	Ground floor's column formwork & Rebar works	Count	41	41	0.000	6150000	6150000	0
10	rebar for G.F columns 10mm and 16mm	Ton	6.62	7	-0.379	6091045	6440000	-348955
11	concrete for slab and beams of G.F	m3	123.75	133	-9.250	11756250	12635000	-878750
12	rebar for G.F slab-beams and stair 10mm, 12mm and 16mm	Ton	11.96	12	-0.038	15550714	15600000	-49286
13	G.F formwork for slab-beam and stairs	m2	781.79	690	91.790	7817900	6900000	917900
14	rebar for 1st. Floor columns 10mm and 16mm	Ton	4.75	5.00	-0.251	4482124	4600000	-117876
15	First floor's column formwork & Rebar works	Count	39	39.00	0.000	5850000	5850000	0
16	First floor's column concrete	m3	18.02	21.00	-2.980	1756550	1995000	-238450
17	1st. floor formwork for slab-beam and stairs	m2	762.11	690	72.110	7621100	6900000	721100
18	rebar for 1st. slab-beams and stair 10mm, 12mm and 16mm	Ton	11.47	12.00	-0.534	14905289	15600000	-694711
19	concrete for slab and beams of 1st. Floor	m3	121.56	133	-11.440	11548200	12635000	-1086800
20	rebar for 2nd. Floor columns 10mm and 16mm	Ton	4.16	5.00	-0.836	3944486	4600000	-655514

Table 1: Material and Cost comparison
	Description	Unit	Count	Price	Revit Total Price (IQD)	Tender Total Price (IQD)	Difference (IQD)
21	second floor's column formwork & Rebar works		39	39.00	0.000	5850000	5850000
22	Second floor's column concrete	m3	18.02	21.00	-2.980	1756550	1995000
23	2nd. floor formwork for slab-beam and stairs	m2	798.92	710	88.915	7989151	710000
24	rebar for 2nd. floor slab-beams and stair 10mm, 12mm and 16mm	Ton	11.49	12.50	-1.005	14943078	1625000
25	concrete for slab and beams of 2nd. Floor	m3	127.49	136	-8.510	12111550	1292000
26	rebar for 3rd. Floor columns 10mm and 16mm	Ton	0.89	1.20	-0.309	820056	1104000
27	Third floor's column formwork & Rebar works		10	10.00	0.000	1500000	1500000
28	Third floor's column concrete	m3	4.39	5.00	-0.610	417050	475000
29	3rd. floor formwork for slab & beam	m2	128.07	95.00	33.070	1280700	950000
30	rebar for 3rd. floor slab & beams, 10mm, 12mm and 16mm	Ton	1.92	2.00	-0.076	2501296	2600000
31	concrete for slab and beams of 3rd. Floor	m3	19.16	17.00	2.160	1820200	1615000
32	DPC	M	215.85	170	45.845	1942605	1530000
33	Ground floor's Brickwall works	M3	162.44	155	7.440	26802600	25575000
34	First floor's Brickwall works	M3	120.44	108	12.440	19872600	17820000
35	Second floor's Brickwall works	M3	120.44	108	12.440	19872600	17820000
36	Third floor's Brickwall works	M3	44.07	48.00	-3.930	7271550	7920000

Table 2: Price difference

Description	Cost Comparison (IQD)
Revit Total price	284292461
Tender Total price	286992000
Difference	-2699539

This Work is under Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
Schedules obtained by Autodesk Revit are full of very detailed information, however, only necessary information listed. Those schedules can be used individually or collected in one schedule, in this work, data collected individually and listed in one table in the same style of the tender and also it was linked so that any change in Revit data will be reflected to the table. In addition, tender quantities and prices was listed in the same table to be compared.

The total price of the tender was 286,992,000 IQD while Revit-based price was 284,608,602 IQD with difference of -2,383,398, changing in price is less than 1%, so it is not a big difference especially in small scale projects.

Although the total price is nearly the same, the quantity takeoff shows a big difference, increasing and decreasing. Fig(5)(a) shows that Revit quantity is less than tender quantity in all concrete casting except the last floor’s slab and beams where 18% more than tender quantity. (B) shows that steel rebar quantity is less than tender quantity by different ratios. (c) shows that Revit-based formwork area is higher than tender formwork area with big gap. (d) shows that the bar chart is wiggling again, Revit-based brick wall quantity is more that tender quantity in 3 floors, while in the last floor it is less. This wiggling in quantities might be a serious problem, in case of any change order in during the construction phase, if the change was affecting the quantity of one material, it may change the price sharply and causing a big loss. Another option is that if the price of one material goes up the total difference in price will be more than 1% and it could also cause a big loss.

V. CONCLUSION

While bills of quantities are being calculated, the most common error occurring is that the quantities of some items tend to be more or less than they should be. This might be occurring because of forgetting some parts or repeating the calculation of some parts of the item(s).
small scale projects, this kind of problem can be obviated, it can decrease the expected profit or cause a little loss, but in large scale projects this issue cannot be avoided. if the errors of bills of quantities are too much, then the contractor will face many problems in proceeding and the work might reach a point that the project should be stopped. By using BIM softwares, quantities are being calculated automatically depending on the model created, which makes the designer engineers responsible of the accuracy of quantities takeoff.

According to investigations and information carried out in this study, it has been revealed that traditional quantities takeoff calculation method contains many serious errors that might cause big problems, losses, and delaying for projects, BIM-based quantities takeoff gives more accurate results, in addition to the benefits like quick design, 3-D rendering, interference detection, time controlling, team work platform, and other features. Finally, the researcher concludes that BIM technology should be implemented for small scale construction projects, also the level of awareness to implement this technology by stakeholders should be raised.

REFERENCES

[1] Dalu ZHANG & Zhili GAO. (2013). Project time and cost control using building information modeling. Department of Construction Management and Engineering, North Dakota State University.

[2] Salman Azhar, Michael Hein, & Blake Sketo. (2008). Building Information Modeling (BIM): Benefits, risks and challenges. Mc Whorter School of Building Science, Auburn University.

[3] Gao, H., Koch, C., & Wu, Y. (2019). Building information modelling based building energy modelling: A review. Applied Energy, 238, 320-343.

[4] East, B. & Smith, D. (2016). The United States National building information modeling standard: The first decade. In: 33rd CIB W78 Information Technology for Construction Conference (CIB W78 2016), Brisbane, Australia.

[5] Vandezande, J., Read, P., & Krygiel, E. (2011). Mastering autodesk revit architecture. John Wiley & Sons.

[6] Akkaya, D. (2012). Survey on building information modelling in construction sector. Istanbul: Yildiz Technical University, Institute of Sciences.

[7] Volk, R., Stengel, J., & Schultmann, F. (2014). Building Information Modeling (BIM) for existing buildings—Literature review and future needs. Automation in Construction, 38, 109-127.

[8] Building Information modeling. (2019). Available at: www.autodesk.com/buildinginformation.

[9] D. Bryde, M. Broquetas, & J.M. Volm. (2013). The project benefits of Building Information Modeling (BIM). Int. J. Proj. Manag., 31, 971–980.

[10] Burcin, B.G. & R. Samara. (2010). The perceived value of building information modeling in the U.S building industries. Journal of Information Technology in Construction.

[11] Ernstrom, B., Hanson, D., Hill, D., Clark, J. J., Holder, M. K., Turner, D. N., ... & Barton, T. W. (2006). The contractors' guide to BIM. Associated General Contractors of America.

[12] Teicholz Eastman & Liston Sacks. (2011). BIM handbook — A guide to building information modeling for owners, managers, designers, engineers and contractors. Hoboken: Wiley.