Overview of the CKM Matrix

Tim Gershon
University of Warwick & CERN

Lepton Photon 2011
The XXV International Symposium on Lepton Photon Interactions at High Energies

27th August 2011

With thanks to numerous contributing experiments, theorists, fitting groups, and especially working group conveners from

CKM2010
http://ckm2010.warwick.ac.uk
The Cabibbo-Kobayashi-Maskawa
Quark Mixing Matrix

\[
V_{\text{CKM}} = \begin{pmatrix}
V_{ud} & V_{us} & V_{ub} \\
V_{cd} & V_{cs} & V_{cb} \\
V_{td} & V_{ts} & V_{tb}
\end{pmatrix}
\]

Dirac medal 2010

Nobel prize 2008
The Cabibbo-Kobayashi-Maskawa Quark Mixing Matrix

\[V_{\text{CKM}} = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix} \]

- A 3x3 unitary matrix
- Described by 4 parameters – **allows CP violation**
 - PDG (Chau-Keung) parametrisation: \(\theta_{12}, \theta_{23}, \theta_{13}, \delta \)
 - Wolfenstein parametrisation: \(\lambda, A, \rho, \eta \)
- Highly predictive

Tim Gershon
CKM Matrix Overview
Range of CKM phenomena

- nuclear transitions
 - pion decays
 - kaons
 - hyperon decays
 - tau decays
 - neutrino interactions
 - charm
 - bottom

- W decays

- top
Range of CKM phenomena

- nuclear transitions
- pion decays
- kaons
- hyperon decays
- tau decays
- neutrino interactions
- charm
- bottom
- W decays
- top

- PIBETA
- NA48, KTeV, KLOE, ISTRA
- CHORUS
- KEDR, FOCUS, CLEO, BES
- BABAR, BELLE, LHCb
- ALEPH, DELPHI, L3, OPAL
- CDF, D0, ATLAS, CMS

- dispersion relations
- hadronic matrix elements
- chiral perturbation theory
- lattice QCD
- flavour symmetries
- heavy quark effective theories
- operator product expansion
- perturbative QCD

- apologies for omissions

Tim Gershon
CKM Matrix Overview
Outline

• CKM phenomenology

• **Measurements of magnitudes of CKM matrix elements through tree-level processes**
 - $|V_{ud}|, |V_{us}|, |V_{cd}|, |V_{cs}|, |V_{cb}|, |V_{ub}|$
 - tree-level measurements of $|V_{tx}|$ covered in top session on Tuesday
 - loop-level level measurements covered in following talks

• **Measurements of CP violation in the quark sector**
 • Direct CP violation in D & B systems
 • Unitarity Triangle angles: α, β, γ
 - CP violation in D^0 and B_s^0 oscillations covered in followed talks

• **Summary**

Tim Gershon
CKM Matrix Overview

apologies for omissions
CKM phenomenology

- CKM theory is highly predictive
 - huge range of phenomena over a massive energy scale predicted by only 4 independent parameters

- CKM matrix is hierarchical
 - theorised connections to quark mass hierarchies, or (dis-)similar patterns in the lepton sector
 - origin of CKM matrix from diagonalisation of Yakuwa (mass) matrices after electroweak symmetry breaking
 - distinctive flavour sector of Standard Model not necessarily replicated in extended theories → strong constraints on models

- CKM mechanism introduces CP violation
 - only source of CP violation in the Standard Model ($m_{\nu} = \theta_{\text{QCD}} = 0$)
Wolfenstein parametrisation

\[V_{CKM} = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix} = \begin{pmatrix} 1 - \frac{1}{2} \lambda^2 & \lambda & A \lambda^3 (\rho - i \eta) \\ -\lambda & 1 - \frac{1}{2} \lambda^2 & A \lambda^2 \\ A \lambda^3 (1 - \rho - i \eta) & -A \lambda^2 & 1 \end{pmatrix} + O(\lambda^4) \]

Expansion parameter
\[\lambda = \sin(\theta_c) \sim 0.22 \]

Source of CP violation

Tim Gershon
CKM Matrix Overview
Magnitudes of CKM matrix elements (starting with a digression)
The Fermi constant $w^{(*)}$

$$\frac{1}{\tau_{\mu}} = \frac{G_F^2 m_{\mu}^5}{192 \pi^3} (1 + \Delta q)$$

MuLan experiment
PRL 106 (2011) 079901

World's best measurement of the muon lifetime:

$$\tau_{\mu^+} = \left(2196980.3 \pm 2.2 \right) \text{ps}$$

$$G_F = \left(1.1663788 \pm 7 \right) \times 10^{-5} \text{GeV}^{-2}$$

< 1 part per million precision! (PDG 2010: 9 ppm)
\[|V_{ud}| \text{ determination} \]

From \(0^+ \rightarrow 0^+\) nuclear beta decays

Measure

- energy gap \(Q\) \(\rightarrow f\)
- half-life \(\rightarrow t\)
- branching fraction \(\rightarrow f_t\)

\[f_t = \frac{K}{2G_F^2|V_{ud}|^2} \]

Correct for nuclear medium related effects

- radiative and isospin breaking corrections
 \(\rightarrow\) nucleus-independent quantity \(F_t\)
 confirmed to be constant to \(3 \times 10^{-4}\)

\[|V_{ud}| = 0.97425 \pm 0.00022 \]
Alternative approaches to $|V_{ud}|$

- Can also measure $|V_{ud}|$ from
 - alternative nuclear decays ("nuclear mirrors")
 - neutron and pion β decay
 - do not require nucleus dependent or isospin breaking corrections
 - pion β decay is a pure vector transition (like $0^+ \rightarrow 0^+$)
 - potential for more precise future measurements
\[|V_{us}| \text{ from semileptonic kaon decays} \]

\[
|V_{us}| = 0.2254 \pm 0.0013
\]

Comparison with
- \(|V_{us}|/|V_{ud}|\) from leptonic kaon and pion decays (using lattice input on \(f_K/f_\pi\))
- \(|V_{ud}|\)

Tim Gershon
CKM Matrix Overview

Unitarity holds to better than \(10^{-3}\)
Alternative approaches to $|V_{us}|$

- Can also measure $|V_{us}|$ from
 - hyperon decays
 - strange vs. non-strange hadronic tau branching fractions

$$|V_{us}| = 0.2166 \pm 0.0019 \text{(exp)} \pm 0.0005 \text{(th)}$$

- discrepancy from $|V_{us}|$ from kaons: 3.7σ
 - also discrepant with $|V_{us}|$ from $B(\tau \to K\nu)/B(\tau \to \pi\nu) + f_K/f_\pi$ from lattice
 - several multibody tau decays not measured yet

- improved measurements urgently needed
$|V_{cd}|$ and $|V_{cs}|$ from charm decays

- Benchmark measurement of $|V_{cd}|$ from charm production in nuclear interactions $|V_{cd}| = 0.230 \pm 0.011$
- Measurements from semileptonic charm decays suffer form-factor uncertainties
 - further improvement in lattice calculations needed

$|V_{cd}| = 0.234 \pm 0.007 \pm 0.002 \pm 0.025$ $|V_{cs}| = 0.961 \pm 0.011 \pm 0.024$

CLEOc experiment
PRD 80 (2009) 032005

Lattice input from
PRD 82 (2010) 114506
Alternative approaches to $|V_{cd}|$ and $|V_{cs}|$

- Leptonic D^+ and D_s^+ decays probe $f_D |V_{cx}|$, e.g.

$$\Gamma (D_s^+ \rightarrow l^+ \nu) = \frac{G_F^2}{8\pi} f_{D_s}^2 m_l^2 M_{D_s^+} \left(1 - \frac{m_l^2}{M_{D_s^+}^2}\right)^2 |V_{cs}|^2$$

![CLEOc experiment PRD 79 (2009) 052001](image)

	f_D (MeV)	f_{D_s} (MeV)
CLEOc	206.7 ± 8.5 ± 2.5	259.0 ± 6.2 ± 3.0
BaBar	275 ± 16 ± 12	
Belle	258.6 ± 6.4 ± 7.5	
Lattice average	213.9 ± 4.2	248.9 ± 3.9

$|V_{cs}| = 1.005 \pm 0.026 \pm 0.016$

Tim Gershon
CKM Matrix Overview

$D_s^+ \rightarrow \mu^+ \nu$
$|V_{cb}|$ from semileptonic B decays

- Both **exclusive** and **inclusive** approaches

Belle experiment
PRD 82 (2010) 112007

PDG 2010 quotes

$|V_{cb}|^{(excl)} = (38.7 \pm 1.1) \times 10^{-3}$

$|V_{cb}|^{(incl)} = (41.5 \pm 0.7) \times 10^{-3}$

$|V_{cb}| = (37.5 \pm 0.2 \pm 1.1 \pm 1.0) \times 10^{-3}$

2σ tension

Lattice uncertainty – reduced to 0.7 in arXiv:1011.2166

Tension reduced (~1.6σ)
Searches for charged Higgs in $B \to D^{(*)}\tau\nu$

Branching fraction ratio ($R^{(*)}$) relative to $B \to D^{(*)}\ell\nu$ predicted in the Standard Model with reduced form-factor uncertainty

$B^{-} \to D^{0}\tau\nu$

$R(D) = 0.456 \pm 0.053 \pm 0.056$

$R^{SM}(D) = 0.31 \pm 0.02$

$R(D^*) = 0.325 \pm 0.023 \pm 0.027$

$R^{SM}(D^*) = 0.25 \pm 0.07$

$\bar{B}^{0} \to D^{+}\tau\nu$

BaBar experiment
EPS 2011 preliminary

$\bar{B}^{0} \to D^{*+}\tau\nu$

See also
Belle experiment
PRD 82 (2010) 072005

1.8σ excess over the Standard Model – more in Rare Decays talk
$|V_{ub}|$ from semileptonic B decays

- Both exclusive and inclusive approaches

$$|V_{ub}| = (3.09 \pm 0.08 \pm 0.12 \pm 0.29) \times 10^{-3}$$ $|V_{ub}| = (3.43 \pm 0.33) \times 10^{-3}$

Tim Gershon
CKM Matrix Overview

Belle experiment
PRD 83 (2011) 071101(R)

BaBar experiment
PRD 83 (2011) 052011
PRD 83 (2011) 032007

$B^0 \to \pi^- \nu$
$|V_{ub}|$ from semileptonic B decays

- Another tension between exclusive and inclusive
 - PDG2010 quotes
 \[
 |V_{ub}|(excl) = (3.38 \pm 0.36) \times 10^{-3}
 \]
 \[
 |V_{ub}|(incl) = (4.27 \pm 0.38) \times 10^{-3}
 \]
 - A distinguished theorist recently said:
 "... this tension may be due to the fact that over the last 30 years hundreds of theory papers have been devoted to the determination of V_{ub} with each author claiming that his/her work led to a decrease of the theoretical error ..."
 - In my view more, not less, theoretical attention is required
 - e.g. SIMBA collaboration to improve understanding of inclusive decays
 - N.B. $|V_{ub}|$ from leptonic decays covered in rare decays talk

Tim Gershon
CKM Matrix Overview
CP violation
CP violation and the matter-antimatter asymmetry

• Two widely known facts

1) CP violation is one of 3 “Sakharov conditions” necessary for the evolution of a baryon asymmetry in the Universe

2) The Standard Model (CKM) CP violation is not sufficient to explain the observed asymmetry

• Therefore, there must be more sources of CP violation in nature … but where?

• extended quark sector, lepton sector (leptogenesis), supersymmetry, anomalous gauge couplings, extended Higgs sector, quark-gluon plasma, flavour-diagonal phases, …

• Testing the consistency of the CKM mechanism provides the best chance to find new sources of CP violation today
Observations of CP violation

- Still a rare phenomenon:
 - only seen (>5σ) in K^0 and B^0 systems
- In B system, only
 - $\sin(2\beta)$ in $B^0 \to J/\psi K_{S,L}^0$ (etc.) – BaBar & Belle
 - $S(B^0 \to \eta'K_{S,L}^0)$ (etc.) – BaBar & Belle
 - $S(B^0 \to \pi^+\pi^-)$ – BaBar & Belle
 - $C(B^0 \to \pi^+\pi^-)$ – Belle
 - $A_{CP}(B^0 \to K^+\pi^-)$ – BaBar, Belle & LHCb

$A_{CP}(B^0 \to K^+\pi^-) = -0.088 \pm 0.011 \pm 0.008$
Unitarity Triangles

Build matrix of phases between pairs of CKM matrix elements

$\Phi_{ij} = \text{phase between remaining elements when row } i \text{ and column } j \text{ removed}$

unitarity implies sum of phases in any row or column $= 180^\circ \rightarrow 6 \text{ unitarity triangles}$

\[
\Phi = \begin{pmatrix}
d & s & b \\
u & \Phi_{ud} & \Phi_{us} & \Phi_{ub} \\
t & \Phi_{td} & \Phi_{ts} & \Phi_{tb}
\end{pmatrix}
\approx
\begin{pmatrix}
\beta_s \\
u & 1^\circ & 22^\circ & 22^\circ \\
t & 67^\circ & 90^\circ & 68^\circ
\end{pmatrix}
\]

$\beta \equiv \varphi_1$

$\alpha \equiv \varphi_2$

$\gamma \equiv \varphi_3$

$\varphi_D / 2$

"The Unitarity Triangle"
CP violation null tests: charm decays

- All (almost) CP violation effects in the charm system expected to be negligible
- searches for direct CP violation (see also talk on mixing)

Belle experiment
PRL 104 (2010) 181602

BaBar experiment
arXiv:1105.4410 (PRD(R))

LHCb experiment
EPS 2011 preliminary

All consistent with zero and with the Standard Model
\[\sin(2\beta) \text{ from } B^0 \rightarrow J/\psi K_{s,L} \text{ (etc.)} \]

BaBar experiment
PRD 79 (2009) 072009

Belle experiment
Moriond EW 2011 preliminary

\[\sin(2\beta) = \sin(2\phi) \]

Final Belle dataset (772M BB pairs) with reprocessed data

Tim Gershon
CKM Matrix Overview

THE UNIVERSITY OF WARWICK

Hagfa
Checking the quality of gold

- \(B^0 \rightarrow J/\psi K_S \) is a golden mode for \(\sin(2\beta) \)
 - Can check purity using flavour symmetries
 - \(B^0 \rightarrow J/\psi \pi^0 \) (related by SU(3))
 - \(B_s^0 \rightarrow J/\psi K_S \) (related by U spin)

CDF experiment
PRD 83 (2011) 052012

LHCb experiment
LHCb-CONF-2011-048

\[
\frac{B(B_s^0 \rightarrow J/\psi K_S)}{B(B^0 \rightarrow J/\psi K_S)} = 0.041 \pm 0.007 \text{ (stat)} \\
\pm 0.004 \text{ (syst)} \pm 0.005 \left(f_s / f_d \right)
\]

\[
\frac{B(B_s^0 \rightarrow J/\psi K_S)}{B(B^0 \rightarrow J/\psi K_S)} = 0.0378 \pm 0.0058 \text{ (stat)} \\
\pm 0.0020 \text{ (syst)} \pm 0.0030 \left(f_s / f_d \right)
\]
Other approaches to $\sin(2\beta)$

- Compare $b \to c\bar{c}s$ transitions (e.g. $B^0 \to J/\psi K_S$) with $b \to s\bar{s}s$ (e.g. $B^0 \to \eta'K_S$), $b \to c\bar{c}d$ (e.g. $B^0 \to D^+D^-$), or $b \to c\bar{u}d$ (e.g. $B^0 \to D_{CP}\pi^0$)

\[
\sin(2\beta^{\text{eff}}) \equiv \sin(2\phi_1^{\text{eff}})
\]

Tim Gershon
CKM Matrix Overview

Hints of deviations in $b \to s\bar{s}s$ diminished
Belle update on $B^0 \rightarrow D^+D^-$

Belle experiment

EPS 2011 preliminary

$$S(D^+D^-) = -1.06 \pm 0.21 \pm 0.07$$
$$C(D^+D^-) = -0.43 \pm 0.17 \pm 0.04$$

Tim Gershon

CKM Matrix Overview

Belle – BaBar – Standard Model discrepancy diminished
\(\alpha \) from \(B \to \pi \pi, \rho \pi, \rho \rho \) systems

- Awaiting final results from both BaBar and Belle on
 - \(B^0 \to \pi^+ \pi^- \)
 - \(B^0 \to (\rho \pi)^0 \)
 - \(B^0 \to \rho^+ \rho^- \)
- World average
 \[
 \alpha = \left(89.0 \pm 4.4 \right)^\circ
 \]
 - dominated by \(B \to \rho \rho \)
 - strong influence of single (BaBar) measurement of \(B(B^+ \to \rho^+ \rho^0) \)
- Is \(\alpha = 90^\circ \)?
y from $B \to D^{(*)}K$ decays

Tree-level determination of y from interference of $B \to DK (b \to c\bar{u}s)$ and $B \to \bar{D}K (b \to u\bar{c}s)$ amplitudes

- need D and \bar{D} to decay to common final state

\[
\begin{align*}
B^- & \xrightarrow{b} K^- \\
& \xrightarrow{w} D^0 \\
& \propto V_{cb} V_{us}^* \\
& \xrightarrow{u} \bar{D}^0 \\
& \xrightarrow{\bar{c}} K^- \\
& \propto V_{ub} V_{cs}^* \end{align*}
\]

- colour allowed
- final state contains D^0

- colour suppressed
- final state contains \bar{D}^0
y from $B \to DK, \ D \to CP$ eigenstate (GLW)

Belle experiment
BELLE-CONF-1112

CP violation clearly established

Tim Gershon
CKM Matrix Overview
γ from $B \to DK$, $D \to$ suppressed states (ADS)

LHCb experiment
LHCb-CONF-2011-044

LHCb Preliminary

B$^+$(πK)*_D, DLL$_D$ > 4

B$^-$

B$^+$(πK)*_D, DLL$_D$ > 4

LHCb Preliminary

D$^-$Kπ K R$_{ADS}$

HFAG

BaBar:
PRD 82 (2010) 072006

Belle:
PRL 106 (2011) 231803

CDF:
PLHC2011 preliminary

LHCb:
EPS 2011 preliminary

Average

HFAG

0.0110 ± 0.0060 ± 0.0020

0.0163 ± 0.0060 ± 0.0020

0.0221 ± 0.0096 ± 0.0026

0.0166 ± 0.0039 ± 0.0024

0.0160 ± 0.0027

D$^-$Kπ K A$_{ADS}$

HFAG

BaBar:
PRD 82 (2010) 072006

Belle:
PRL 106 (2011) 231803

CDF:
PLHC2011 preliminary

LHCb:
EPS 2011 preliminary

Average

HFAG

-0.86 ± 0.47 ± 0.12

-0.39 ± 0.28 ± 0.04

-0.82 ± 0.44 ± 0.09

-0.39 ± 0.17 ± 0.02

-0.46 ± 0.13

All new results in last 2 years

ADS suppressed mode now clearly established ...

... very promising for γ determination

Tim Gershon
CKM Matrix Overview
y from $B \to D^*K$, $D \to$ suppressed states (ADS)

Belle experiment
BELLE-CONF-1112

Suppressed modes also appearing in D^*K?
γ from $B \to DK$, $D \to$ multibody states (GGSZ)

Study of $D \to K_S \pi^+ \pi^-$ Dalitz plot distribution provides good statistical sensitivity to γ but with model dependence

$BaBar$ experiment
PRL 105 (2010) 121801

$γ = \left(68^{+15}_{-14} \pm 4 \pm 3 \right)^°$

$Belle$ experiment
PRD 81 (2010) 112002

$γ = \left(78^{+11}_{-12} \pm 4 \pm 9 \right)^°$

Model independent (binned) approach exploiting $Ψ(3770) \to D\overline{D}$ data

$CLEOc$ experiment
PRD 82 (2010) 112006

Belle experiment
arXiv:1106.4046

$γ = \left(77^{+15}_{-12} \pm 4 \pm 4 \right)^°$
γ from $B_s \rightarrow D_s^- K^\pm$

γ can be extracted from time-evolution of $B_s \rightarrow D_s^- K$ decays

first stage: establish signals & measure branching fraction

yields split by magnet polarity

\[
B \left(B_s \rightarrow D_s^- K^\pm \right) = \left(1.97 \pm 0.18 \text{ (stat)} +0.19 -0.20 \text{ (syst)} +0.11 -0.10 (f_s/f_d) \right) \times 10^{-4}
\]

Promising for future γ measurement
Alternative ways to measure γ

- Test Standard Model by comparing γ from tree-level processes to γ from loop-dominated amplitudes
- various approaches exploiting flavour symmetries
 - $B^0 \rightarrow K^+\pi^-$ (see rare decays talk)
 - $B_s^0 \rightarrow K^+K^-$ & $B^0 \rightarrow \pi^+\pi^-$ (see LHCb talk)
 - $B^0 \rightarrow K_S^+\pi^-\pi^-$ & $B^0 \rightarrow K^+\pi^-\pi^0$

Tim Gershon
CKM Matrix Overview

BaBar experiment
PRD 83 (2011) 112010
Global CKM fits

http://ckmfitter.in2p3.fr

http://www.utfit.org

\[\overline{\rho} = 0.144 \pm 0.018 \quad (\text{CKMfitter}) = 0.132 \pm 0.020 \quad (\text{UTfit}) \]

\[\overline{\eta} = 0.343 \pm 0.014 \quad (\text{CKMfitter}) = 0.353 \pm 0.014 \quad (\text{UTfit}) \]

Different statistical approaches – similar results
Overall good consistency with the Standard Model

Does not include new results on γ shown today
Future projects

- Nuclear transitions
- Pion decays
- Kaons
- Hyperon decays
- Tau decays
- Neutrino interactions
- Charm
- Bottom
- Top
- Hadronic matrix elements
- Chiral perturbation theory
- Lattice QCD
- Dispersion relations
- Great progress in theory anticipated

Apologies for omissions

- KLOE-2, NA62, KOTO
- NA48, Kfiev, KEK-ETRA
- Project X
- Tau-charm factory
- BABAR, BELLE, LHCb
- Belle-2, SuperB, LHCb upgrade
- W decays
- Top
- CDF, D0, ATLAS, CMS

Tim Gershon
CKM Matrix Overview
Summary

- CKM paradigm continues its unreasonable success
- Current and future projects promise significant improvements
 - short term: BESIII, LHCb, lattice
- Look forward to discovering the destiny of our hopes and hints
 - one certainty: new sources of CP violation exist, somewhere
Summary

- CKM paradigm continues its unreasonable success
- Current and future projects promise significant improvements
 - short term: BESIII, LHCb, lattice
- Look forward to discovering the destiny of our hopes and hints
 - one certainty: new sources of CP violation exist, somewhere
- Will we be top of the world … ?

Tim Gershon
CKM Matrix Overview
Summary

- CKM paradigm continues its unreasonable success
- Current and future projects promise significant improvements
 - short term: BESIII, LHCb, lattice
- Look forward to discovering the destiny of our hopes and hints
 - one certainty: new sources of CP violation exist, somewhere
- Will we be top of the world … ?

... or do we have to wait for the historic achievement?