DEGREE ONE MILNOR K-INVARIANTS OF GROUPS OF MULTIPlicative TYPE

ALEXANDER WERTHEIM

ABSTRACT. Let G be a commutative affine algebraic group over a field F, and let $H : \text{Fields}_F \rightarrow \text{AbGrps}$ be a functor. A (homomorphic) H-invariant of G is a natural transformation $\text{Tors}(\cdot, G) \rightarrow H$, where $\text{Tors}(\cdot, G)$ is the functor $\text{Fields}_F \rightarrow \text{AbGrps}$ taking a field extension L/F to the group of isomorphism classes of G_L-torsors over $\text{Spec}(L)$. The goal of this paper is to compute the group $\text{Inv}_{\text{hom}}^1(G, H)$ of H-invariants of G when G is a group of multiplicative type, and H is the functor taking a field extension L/F to $L^\times \otimes_{\mathbb{Z}} \mathbb{Q}/\mathbb{Z}$.

1. INTRODUCTION

Let G be an affine algebraic group over a field F (of arbitrary characteristic), and let Fields_F denote the category of field extensions of F. Let $H : \text{Fields}_F \rightarrow \text{AbGrps}$ be a functor. In [GMS03], an H-invariant of G is defined to be a natural transformation of set-valued functors $I : \text{Tors}(\cdot, G) \rightarrow H$ where $\text{Tors}(\cdot, G)$ is the functor from Fields_F to Sets taking a field extension L/F to $\text{Tors}(L, G_L)$, the set of isomorphism classes of G_L-torsors over $\text{Spec}(L)$. Invariants were first introduced by Serre in [Ser95, Section 6], where he defined invariants in the case when H is a (Galois) cohomological functor.

There is another type of invariant that one may consider, however. Namely, since any affine group scheme over F may be viewed as a functor from F-algebras to groups, we define a type-zero H-invariant of G to be a natural transformation of set-valued functors $G \rightarrow H$, where by G we mean the restriction of G to Fields_F. We denote the group of type-zero H-invariants of G by $\text{Inv}^0(G, H)$. To distinguish the invariants introduced in the previous paragraph from type-zero invariants, we will call them type-one invariants, and we denote the group of type-one H-invariants of G by $\text{Inv}^1(G, H)$.

In this paper, we study type-one invariants when G is an algebraic group of multiplicative type, i.e. when G is a twisted form of a diagonalizable group. We note that every torus is a group of multiplicative type; in general, groups of multiplicative type need not be smooth or connected. We consider a slightly more restrictive class of invariants than those introduced above, however. If G is commutative, then for any affine F-scheme X, the pointed set $\text{Tors}(X, G)$ can be given the structure of an abelian group. Since groups of multiplicative type are commutative, we may view the functor $\text{Tors}(\cdot, G)$ as a functor from Fields_F to AbGrps. Accordingly, we will focus our attention on invariants which are morphisms of group-valued functors. We will call such invariants homomorphic, and we denote the subgroup of homomorphic type-one H-invariants of G by $\text{Inv}_{\text{hom}}^1(G, H)$. Likewise, one may consider homomorphic type-zero invariants, which we will similarly denote $\text{Inv}_{\text{hom}}^0(G, H)$.

The goal of this paper is to determine $\text{Inv}_{\text{hom}}^1(G, K^M_1 \otimes_{\mathbb{Z}} \mathbb{Q}/\mathbb{Z})$, the group of (type-one) degree one Milnor K-invariants of G, where K^M_1 denotes the functor sending a field
extension L/F to the ith Milnor K-group of L (see [Mil70]); we recall that $K^M_0(L) = Z, K^M_1(L) = L^\times$. For any $n \in \mathbb{N}$, let K^M_1/n denote the functor $K^M_1 \otimes \mathbb{Z}/n\mathbb{Z}$. The embedding $\mathbb{Z}/n\mathbb{Z} \rightarrow \mathbb{Q}/\mathbb{Z}$ induces a morphism of functors $\iota_n: K^M_1/n \rightarrow K^M_1 \otimes \mathbb{Q}/\mathbb{Z}$; likewise, if n and m are positive integers such that n divides m, then the embedding $\mathbb{Z}/n\mathbb{Z} \rightarrow \mathbb{Z}/m\mathbb{Z}$ sending $[1]_n$ to $[m/n]_m$ induces a morphism of functors $\beta_{n,m}: K^M_1/n \rightarrow K^M_1/m$. One may check that the collection of functors $\{K^M_1/n \otimes \mathbb{Q}/\mathbb{Z}\}_{n \in \mathbb{N}}$ defines the data of a cycle module in the sense of Rost (see [Ros96]), as does $\{K^M_1 \otimes \mathbb{Z}/m\mathbb{Z}\}_{n \in \mathbb{N}}$ for any $m \in \mathbb{N}$. The functors $K^M_1 \otimes \mathbb{Q}/\mathbb{Z}$ and K^M_1/m respectively form the first graded components of these cycle modules.

As we will explain in Section 5.1, a classic Kummer theory argument shows that there is an isomorphism $\Sigma_n: K^M_1/n \rightarrow \text{Tors}(\mu_{n,F})$ of group valued functors. On the other hand, any $\chi \in \text{Hom}(G, \mu_{n,F}) = G^*[n]$ gives rise to a morphism of group-valued functors $\text{Tors}_*(\chi): \text{Tors}(-, G) \rightarrow \text{Tors}(-, \mu_{n,F})$. Thus, we may associate to any element $\chi \in G^*[n]$ a homomorphic invariant $I_\chi \in \text{Inv}^1_{\text{hom}}(G, K^M_1/n)$ which is the composition of $\text{Tors}_*(\chi)$ with Σ_n^{-1}. This leads us to our first main theorem.

Theorem A (5.4). The map $\Phi(G,n): G^*[n] \rightarrow \text{Inv}^1_{\text{hom}}(G, K^M_1/n)$ sending χ to I_χ is a group isomorphism.

The composition of any such I_χ with ι_n produces an element of $\text{Inv}^1_{\text{hom}}(G, K^M_1 \otimes \mathbb{Q}/\mathbb{Z})$, and so defines a group homomorphism $\hat{\Phi}(G,n): G^*[n] \rightarrow \text{Inv}^1_{\text{hom}}(G, K^M_1 \otimes \mathbb{Q}/\mathbb{Z})$ for each $n \in \mathbb{N}$. Passing to the colimit as n varies, we obtain a universally induced group morphism $\Phi(G): G^*_{\text{tors}} \rightarrow \text{Inv}^1_{\text{hom}}(G, K^M_1 \otimes \mathbb{Q}/\mathbb{Z})$.

Theorem B (5.6). The map $\Phi(G): G^*_{\text{tors}} \rightarrow \text{Inv}^1_{\text{hom}}(G, K^M_1 \otimes \mathbb{Q}/\mathbb{Z})$ is a group isomorphism.

Our proofs of Theorems 5.4 and 5.6 depend critically on the determination of homomorphic type-zero invariants for tori with values in K^M_1/n for each $n \in \mathbb{N}$. The following result was proven by Merkurjev (cf. [Mer99, Corollary 3.7]) in the case when the characteristic of F does not divide n; we give a proof in this paper which holds independent of the characteristic of F.

Theorem C (1.5). If T is an algebraic torus, then $\text{Inv}^0_{\text{hom}}(T, K^M_1/n) \cong H^0(F, T^{\ast}_{\text{sep}}/(T^{\ast}_{\text{sep}})^n)$.

The results we have obtained above follow a rich history of work on cohomological invariants: here are a few related recent examples. In [Tot20], Totaro computed all mod p cohomological invariants for many important affine group schemes in characteristic p; in particular, under the assumption that char(F) = $p > 0$, Totaro independently computed $\text{Inv}^1(G, K^M_1/p)$ for any affine group scheme ([Tot20, Theorem 12.2]). The computation of invariants for smooth linear algebraic groups with values in $H^2(-, \mathbb{Q}/\mathbb{Z}(1))$ was carried out by Alexandre Lourdeaux in [Lou20].

1.1. **Acknowledgments.** I would like to express my gratitude to my advisor, Alexander Merkurjev, for his advice, encouragement, and many helpful meetings. I am also grateful to Bar Roytman, David Hemminger, Will Baker, and Burt Totaro for helpful conversations.

1.2. **Notation and Conventions.** Throughout, F denotes a fixed base field of arbitrary characteristic, and F_{sep} denotes a fixed separable closure. We put $\Gamma = \text{Gal}(F_{\text{sep}}/F)$. If G is a group scheme over F, we write G_{sep} to denote the base change of G to F_{sep}, and G^{\ast} to denote the character group of G. For an abelian group A and a positive integer n, we write $A[n]$ to denote the subgroup of n-torsion elements of A. All group schemes are affine unless otherwise indicated. For any group scheme G over F and any F-algebra R, we write
\[\varepsilon_R \text{ to denote the identity element of } G(R). \] If \(\varphi: Q \to Q' \) is a morphism of commutative \(F \)-group schemes, we write \(Q^\varphi \) to denote the image of the embedding \(Q \to Q \times Q' \) induced by \(\text{Id}_Q \) and the composition of \(\varphi \) with the inversion map \(Q' \to Q' \). For an \(F \)-scheme \(X \), we write \(\text{Tors}_*(\varphi)(X) \) to denote the morphism \(\text{Tors}(X, Q) \to \text{Tors}(X, Q') \) induced by \(\varphi \). Likewise, if \(f: Y \to X \) is a morphism of \(F \) schemes, we write \(\text{Tors}^*(f)(Q) \) to denote the pullback morphism \(\text{Tors}(X, Q) \to \text{Tors}(Y, Q) \).

2. An Outline of the Argument

In this section, we give a structural overview of our argument.

2.1. Resolution by Tori. Recall that a group scheme \(G \) over \(F \) is said to be diagonalizable if the natural embedding \(G^* \to F[G]^\times \) induces an isomorphism of Hopf \(F \)-algebras \(F(G^*) \to F[G] \), where \(F(G^*) \) denotes the group algebra of \(G^* \) over \(F \). As noted in the introduction, a group scheme \(G \) over \(F \) is a group of multiplicative type if \(G_{\text{sep}} \) is diagonalizable over \(F_{\text{sep}} \). The functors

\[
G \mapsto G^*_{\text{sep}}, \quad M \mapsto (F^\times_{\text{sep}}(M))^\Gamma
\]

define a short exact sequence-preserving equivalence between the category of (algebraic) groups of multiplicative type over \(F \) and the category of (finitely generated) \(\Gamma \)-modules ([Mil17, Theorem 12.23]). Under this equivalence, the full subcategory of diagonalizable \(F \)-group schemes is equivalent to the subcategory of \(\Gamma \)-modules with trivial \(\Gamma \)-action.

When \(G \) is an algebraic group of multiplicative type, \(G \) may be embedded in a quasisplit torus \(P \) such that every \(G_{L} \) torus over a field \(L/F \) is the pullback of the \(G \)-torsor \(P \to P/G \) along an \(L \)-point of \(P/G \). Indeed, since \(G^*_{\text{sep}} \) is finitely generated, it admits a surjective morphism of \(\Gamma \)-modules \(W \to G^*_{\text{sep}} \) from a permutation \(\Gamma \)-module \(W \). If \(S \) denotes the kernel of this map, then let \(P,T \) be the groups of multiplicative type respectively associated to \(W,S \). Note that \(P \) is a quasisplit torus, \(T \) is a torus, and the exact sequence

\[
1 \to S \to W \to G^*_{\text{sep}} \to 1
\]

defines a short exact sequence of \(\Gamma \)-modules yielding an exact sequence

\[
1 \to G \xrightarrow{f} P \xrightarrow{g} T \to 1
\]

of \(F \)-group schemes. We will call such an exact sequence \(2.1 \) a resolution of \(G \) by tori.

For every field extension \(L/F \), the exact sequence on points \(1 \to G(L) \to P(L) \to T(L) \) may be continued as follows. Let \(\rho(L): T(L) \to \text{Tors}(L,G_{L}) \) be the group homomorphism sending a point \(\alpha \in T(L) \) to the pullback of the \(G \)-torsor \(P \to T \) along \(\alpha \). One may check that the sequence

\[
1 \to G(L) \xrightarrow{f(L)} P(L) \xrightarrow{g(L)} T(L) \xrightarrow{\rho(L)} \text{Tors}(L,G_{L}) \xrightarrow{\text{Tors}(f_{L})} \text{Tors}(L,P_{L})
\]

is exact; we note that this does not depend on the fact that \(G,P,T \) are of multiplicative type, and can be proven for any exact sequence of commutative group schemes. Since \(P_{L} \) is a quasisplit torus, every \(P_{L} \)-torsor over \(\text{Spec}(L) \) is trivial. Therefore, the map \(\rho(L): T(L) \to \text{Tors}(L,G_{L}) \) is surjective.

The surjectivity of \(\rho(L) \) allows us to relate type-zero invariants for \(G \) to type-zero invariants for tori, which are well understood for certain functors \(H \). As \(L \) varies over all field extensions of \(F \), the morphisms \(\rho(L) \) define a morphism of functors \(\rho: T \to \text{Tors}(-,G) \), which gives rise to a map \(\text{Inv}(\rho,H): \text{Inv}^1_{\text{hom}}(G,H) \to \text{Inv}^0_{\text{hom}}(T,H) \) given by composition with \(\rho \). Likewise, the group homomorphism \(g: P \to T \) is a natural transformation of
group-valued functors, and so induces a map \(\text{Inv}(g, H) : \text{Inv}^0_{\text{hom}}(T, H) \to \text{Inv}^0_{\text{hom}}(P, H) \) given by composition with \(g \). The exactness of (2.2) shows that the resulting sequence
\[
1 \to \text{Inv}^1_{\text{hom}}(G, H) \xrightarrow{\text{Inv}(g, H)} \text{Inv}^0_{\text{hom}}(T, H) \xrightarrow{\text{Inv}(g, H)} \text{Inv}^0_{\text{hom}}(P, H)
\]
is exact. To describe \(\text{Inv}^1_{\text{hom}}(G, H) \), it therefore suffices to determine the image of \(\text{Inv}(g, H) \) in \(\text{Inv}^0_{\text{hom}}(T, H) \).

2.2. The Argument. Fix a positive integer \(n \), let \(G, P, T \) be as in the exact sequence (2.1) and let \(H = K^M_1/n \). For any group scheme \(Q \) over \(F \), we say that a class \(V \in \text{Tors}(Q, G) \) is normalized if the pullback of \(V \) along \(\varepsilon_F \in Q(F) \) represents the trivial class in \(\text{Tors}(F, G) \). Let \(\text{Tors}_{\text{nm}}(Q, G) \) denote the subgroup of normalized \(G \)-torsors over \(Q \).

Consider the map \(\nu_n(G) : G^*[n] \to \text{Tors}_{\text{nm}}(T, \mu_{n,F}) \) which sends a character \(\chi \in G^*[n] \) to \((\text{Tors}_*(\chi))(T)(P \to T) \). We note that \(\nu_n(G) \) is a group homomorphism. Indeed, for any \(F \)-scheme \(X \), the map \(\text{Tors}(X, G) \times \text{Tors}(X, G) \to \text{Tors}(X, G \times G) \) sending a pair of representatives \(E_1 \to X, E_2 \to X \) to the universal map \(E_1 \times E_2 \to X \) is a group isomorphism. If \(\Delta_G : G \to G \times G \) denotes the diagonal map, and \(m_G : G \times G \to G \) denotes the group multiplication, then up to the preceding identification, \(\text{Tors}_*(m_G)(X) \) is the group operation, and \(\text{Tors}_*(\Delta_G)(X) \) is the diagonal embedding. Hence, if \(\chi, \chi' \in G^*[n] \), then we have \(\text{Tors}_*(\chi \chi')(X) = \text{Tors}_*(\chi)(X) + \text{Tors}_*(\chi')(X) \), since \(\chi \chi' \) factors as \(m_{\mu_{n,F}} \circ (\chi \times \chi') \circ \Delta_G \). This argument also explains why \(\Phi(G, n) \) is a group homomorphism.

Suppose we were armed with the following facts:

1. The sequence
\[
1 \to G^*[n] \xrightarrow{\nu_n(G)} \text{Tors}_{\text{nm}}(T, \mu_{n,F}) \xrightarrow{\text{Tors}_*(g)(\mu_{n,F})} \text{Tors}_{\text{nm}}(P, \mu_{n,F})
\]
is exact.
2. For any smooth, connected, reductive group \(R \) over \(F \), there is a group isomorphism \(\hat{\Lambda}_n(R) : \text{Tors}_{\text{nm}}(R, \mu_{n,F}) \to \text{Inv}^0_{\text{hom}}(R, K^M_1/n) \).
3. The diagram
\[
G^*[n] \xrightarrow{\nu_n(G)} \text{Tors}_{\text{nm}}(T, \mu_{n,F}) \xrightarrow{\text{Tors}_*(g)(\mu_{n,F})} \text{Tors}_{\text{nm}}(P, \mu_{n,F}) \]
\[
\text{Inv}^1_{\text{hom}}(G, K^M_1/n) \xrightarrow{\text{Inv}(\rho, K^M_1/n)} \text{Inv}^0_{\text{hom}}(T, K^M_1/n) \xrightarrow{\text{Inv}(g, K^M_1/n)} \text{Inv}^0_{\text{hom}}(P, K^M_1/n)
\]
commutes.

If these three statements hold, then an easy diagram chase using the exactness of (2.4) and (2.2) shows that \(\Phi(G, n) \) is an isomorphism. The remainder of this paper is dedicated to proving these three facts, and carefully explaining why the induced map \(\Phi(G) \) is an isomorphism. The remaining sections are organized as follows.

Section 3 gives a thorough treatment of \(\mu_{n,F} \)-torsors, laying the groundwork for facts (1) and (2). We will provide a Galois theoretic-interpretation of the group \(\text{Tors}_{\text{nm}}(T, \mu_{n,F}) \) which will allow us to interpret sequence (2.4) as an exact sequence arising in Galois cohomology in section 5. We will also prove a pullback formula for \(\mu_{n,F} \)-torsors over a smooth, connected, reductive group \(R \) which shows that normalized \(\mu_{n,F} \)-torsors over \(R \) give rise to homomorphic type-zero invariants of \(R \).

Section 4 is devoted to constructing the map \(\hat{\Lambda}_n(R) \) for any smooth, connected, reductive group \(R \), and proving it is a group isomorphism. We also give a description of type-zero invariants for \(R \) with values in \(K^M_1 \otimes_{\mathbb{Q}} \mathbb{Q}/\mathbb{Z} \).
The final section (5) will prove facts (1) and (3), yielding Theorem [A]. As noted, we will then deduce Theorem [B] from Theorem [A] via a detailed examination of $\Phi(G)$.

3. $\mu_{n,F}$-Torsors

Throughout this section, let n denote a fixed positive integer. As indicated in the previous section, an essential ingredient in the proof of Theorem 5.4 is a robust understanding of $\mu_{n,F}$-torsors over an F-scheme X. In this section, we recall several well-known characterizations of $\mu_{n,F}$-torsors. Our main results are Theorems 3.9, 3.11 and 3.14. Theorem 3.9 explains that when G is a smooth, connected group, $\operatorname{Tors}(G, \mu_{n,F})$ may be identified with the kernel of the divisor map $\partial_n: F(G)^x/(F(G)^x)^n \to \operatorname{Div}(G)/n \operatorname{Div}(G)$. Under the further assumption that G is reductive, Theorem 3.11 proves a formula relating the Galois fixed points of $\operatorname{Tors}_{\text{sep}}(G, \mu_{n,F})$ along points $\alpha, \beta \in G(M)$ to its pullback along the product $\alpha \beta \in G(M)$, where M is a field extension of F. Theorem 3.14 computes the Galois fixed points of $\operatorname{Tors}_{\text{sep}}(G, \mu_{n,F})$ when G is geometrically integral, G_{sep} is torsion-free, and G_{sep} has trivial divisor class group.

3.1. The Group $\Psi(A, n)$

Definition 3.1. For any commutative ring A, let $\Psi(A, n)$ denote the set of equivalence classes of pairs (L, φ), where $L \in \operatorname{Pic}(A)[n]$, φ is an A-module isomorphism $L^\otimes_n \to A$, and two pairs $(L, \varphi), (L', \varphi')$ are equivalent if and only if there is an isomorphism of A-modules $\rho: L \to L'$ such that $\varphi' \circ \rho^\otimes_n = \varphi$.

We record the following observations about $\Psi(A, n)$, which are straightforward to check:

1. The tensor product induces a group operation on $\Psi(A, n)$: one defines the product of classes $[(L, \varphi)], [(L', \varphi')] \in \Psi(A, n)$ to be $[(L \otimes_A L', \varphi \otimes A \varphi')]$, where $\varphi \otimes A \varphi'$ really refers to the composition

 $$(L \otimes_A L')^\otimes_n \xrightarrow{\sim} (L^\otimes_n) \otimes_A (L')^\otimes_n \xrightarrow{\varphi \otimes A \varphi'} A \otimes_A A \xrightarrow{\sim} A.$$

 The identity class is represented by the pair (A, Id_A), and the inverse of a class $[(L, \varphi)]$ is given by $[(L^*, (\varphi^{-1})*)]$, where L^* is the dual bundle to L, and $(\varphi^{-1})^*$ is the composition

 $$(L^*)^\otimes_n \xrightarrow{\sim} (L^\otimes_n)^* \xrightarrow{(\varphi^{-1})^*} A^* \xrightarrow{\sim} A.$$

2. For any ring morphism $f: A \to B$, extension of scalars induces a group morphism $\Psi(-, n)(f): \Psi(A, n) \to \Psi(B, n)$ sending $[(L, \varphi)]$ to $[(L \otimes_A B, \varphi \otimes A \text{Id}_B)]$, where $\varphi \otimes A \text{Id}_B$ really denotes the composition

 $$(L \otimes_A B)^\otimes_n \xrightarrow{\sim} L^\otimes_n \otimes_A B \xrightarrow{\varphi \otimes A \text{Id}_B} A \otimes_A B \xrightarrow{\sim} B.$$

 In this way, the association $A \mapsto \Psi(A, n)$ defines a functor $\Psi(-, n)$ from CommRings to AbGrps.

3. For any positive integer m with n dividing m, there is a morphism of functors $\omega_{n,m}: \Psi(-, n) \to \Psi(-, m)$ defined for a commutative ring A by $\omega_{n,m}(A)[(L, \varphi)] = [(L, \varphi^\otimes m/n)]$, where by $\varphi^\otimes m/n$ we mean the composition of isomorphisms

 $$L^\otimes m \xrightarrow{\sim} (L^\otimes n)^{\otimes m/n} \xrightarrow{\varphi^\otimes m/n} A^{\otimes m/n} \xrightarrow{\sim} A.$$

 There is a convenient way to produce elements of $\Psi(A, n)$ which can be described as follows. Fix an element $y \in A^\times$, and consider the A-algebra $R_y := A[X]/(X^n - y)$; we denote the residue class of X in R_y by $y^{1/n}$ If L_y denotes the free A-submodule of R_y generated by $y^{1/n}$, one immediately sees that the “multiplication” map $\varphi_y: L_y^{\otimes n} \to A$
sending \(x_1 y^{1/n} \otimes \cdots \otimes x_n y^{1/n} \) to \(yx_1 x_2 \cdots x_n \) is an isomorphism of \(A \)-modules, and the pair \((L_y, \varphi_y)\) represents a class in \(\Psi(A, n) \).

One readily checks that the map \(A^x \to \Psi(A, n) \) sending \(y \in A^x \) to \([(L_y, \varphi_y)] \) is a group homomorphism whose kernel is exactly \((A^x)^n\), and so we obtain a well-defined injective group morphism \(\Delta_n(A) : A^x/(A^x)^n \to \Psi(A, n) \). Moreover, this collection of maps is functorial in \(A \): in other words, if \(\mathcal{K}^n \) denotes the functor from \textbf{CommRings} to \textbf{AbGrps} sending a commutative ring \(A \) to \(A^x/(A^x)^n \), the collection of maps \(\Delta_n(A) \) as \(A \) varies defines a natural transformation \(\Delta_n ; \mathcal{K}^n \to \Psi(_ , n) \).

On the other hand, for any commutative ring \(A \), there is a well-defined surjective group homomorphism \(\Theta_n(A) : \Psi(A, n) \to \text{Pic}(A)[n] \) which sends a class \([(L, \varphi)] \in \Psi(A, n) \) to \([L]\), and the collection of such \(\Theta_n(A) \) as \(A \) varies likewise determines a natural transformation \(\Theta_n : \Psi(_ , n) \to \text{Pic}(_)[n] \). The relationship between \(\Delta_n \) and \(\Theta_n \) is explained by the following proposition.

Proposition 3.2. For any commutative ring \(A \), the sequence

\[
1 \to A^x/(A^x)^n \xrightarrow{\Delta_n(A)} \Psi(A, n) \xrightarrow{\Theta_n(A)} \text{Pic}(A)[n] \to 0
\]

is exact.

Proof. The inclusion \(\text{Im}(\Delta_n(A)) \subset \ker(\Theta_n(A)) \) is immediate, since \(L_y \) is a free \(A \)-module for any \(y \in A^x \) by construction. Suppose that \((L, \varphi) \in \ker(\Theta_n(A)) \), i.e. that \(L \) is free. Let \(\psi : L \to A \) be an isomorphism of \(A \)-modules. Consider the composition of isomorphisms

\[
A \xrightarrow{\varphi^{-1}} L^{\otimes n} \xrightarrow{\psi^{-1}} A^{\otimes n} \xrightarrow{\sim} A.
\]

Every \(A \)-module isomorphism \(A \to A \) is given by multiplication by some invertible element of \(A \), so the composition above is multiplication by \(x \) for some \(x \in A^x \). Put \(y = x^{-1} \), and let \(a : A \to L_y \) be the isomorphism sending \(a \) to \(ay^{1/n} \). Then one easily checks that \(\alpha \circ \psi \) is an isomorphism between \((L, \varphi)\) and \((L_y, \varphi_y)\).

Corollary 3.3. If \(\text{Pic}(A)[n] = 0 \), then \(\Delta_n(A) \) is an isomorphism. \(\Box \)

Suppose now that \(A \) is an \(F \)-algebra. To any element \([(L, \varphi)] \) of \(\Psi(A, n) \), one may associate a \(\mathbb{Z}/n\mathbb{Z} \)-graded \(A \)-algebra \(\text{Tw}(L, \varphi) \). As an \(A \)-module, we set

\[
\text{Tw}(L, \varphi) := A \oplus L \oplus L^{\otimes 2} \oplus \cdots \oplus L^{\otimes n-1}.
\]

The multiplicative structure on \(\text{Tw}(L, \varphi) \) is induced by the isomorphisms \(L^{\otimes i} \otimes_A L^{\otimes j} \to L^{\otimes i+j} \) for \(i + j < n \), and \(L^{\otimes i} \otimes_A L^{\otimes j} \to L^{\otimes n} \otimes_A L^{\otimes (n-(i+j))} \xrightarrow{\varphi \otimes \Id} A \otimes_A L^{\otimes (n-(i+j))} \to L^{\otimes (n-(i+j))} \) for \(i + j \geq n \). Note that the inclusion morphism \(A \to \text{Tw}(L, \varphi) \) is faithfully flat, because \(\text{Tw}(L, \varphi) \) is finitely generated and projective as an \(A \)-module. In fact, the dual morphism \(\text{Spec}(\text{Tw}(L, \varphi)) \to \text{Spec}(A) \) is a \(\mu_{n,F} \)-torsor over \(\text{Spec}(A) \), and we can say yet more, as the next theorem explains. Let \(\lambda_n(A) : \Psi(A, n) \to \text{Tors}(\text{Spec}(A), \mu_{n,F}) \) be the set map sending \([(L, \varphi)] \) to the \(\mu_{n,F} \)-torsor class represented by the map \(\text{Spec}(\text{Tw}(L, \varphi)) \to \text{Spec}(A) \).

Theorem 3.4. The map \(\lambda_n(A) \) is a well-defined group isomorphism. Moreover, as \(A \) varies over all \(F \)-algebras, the collection of maps \(\lambda_n(A) \) defines a natural isomorphism \(\lambda_n : \Psi(_ , n) \to \text{Tors}(_ , \mu_{n,F}) \).

Proof. See [Sta20] [Tag 03PK]. Alternatively, see [Mil80] page 125. \(\Box \)

We note that for any \(y \in A^x \), the universal map \(A[X]/(X^n-y) \to \text{Tw}(L_y, \varphi_y) \) sending \(\overline{X} \) to \(y^{1/n} \in L_y \) is an isomorphism of \((\mathbb{Z}/n\mathbb{Z}) \)-graded \(A \)-algebras. Hence, the composition \(\lambda_n(A) \circ \Delta_n(A) \) takes \(y \in A^x \) to the class of the \(\mu_{n,F} \)-torsor \(\text{Spec}(A[X]/(X^n-y)) \to \text{Spec}(A) \). We put \(\Sigma_n := \lambda_n \circ \Delta_n \).
3.2. Divisors. When A is a domain, there is another description of $\Psi(A,n)$ in terms of divisors. Let K denote the field of fractions of A, and let $\text{Cart}(A)$ denote the group of invertible fractional ideals of A. Likewise, if A is a Krull domain, let $\text{Div}(A)$ be the free abelian group generated by the codimension 1 points of $\text{Spec}(A)$. We write $\text{div}(A): \text{Cart}(A) \rightarrow \text{Div}(A)$ to denote the usual valuation homomorphism which sends a fractional ideal I to the formal sum of its valuations at each height one prime of A. We let $\partial(A): K^\times \rightarrow \text{Div}(A)$ denote the group morphism sending $x \in K^\times$ to $\text{div}(xA).

Consider the set $C(A,n)$ consisting of pairs (I, f) where $I \in \text{Cart}(A)$, and $f \in K^\times$ such that $I^n = fA$. The binary operation on $C(A,n)$ defined by $(I, f) \cdot (I', f') = (II', ff')$ gives $C(A,n)$ the structure of a group with identity element $(A,1)$. There is a group homomorphism $K^\times \rightarrow C(A,n)$ sending $x \in K^\times$ to (xA, x^n), and we set $\text{Cart}(A,n)$ to be the cokernel of this morphism.

If we further assume that A is a Krull domain, then there is an analogous construction $\text{Div}(A,n)$. If $D(A,n)$ denotes the set of pairs (D, g) where $D \in \text{Div}(A)$ and $g \in K^\times$ such that $\partial(A)(g) = nD$, then $\text{Div}(A,n)$ is defined to be the cokernel of a group homomorphism $K^\times \rightarrow D(A,n)$ which sends $x \in K^\times$ to the pair $(\partial(A)(x), x^n)$. One may check that the map $\text{div}(A): \text{Cart}(A) \rightarrow \text{Div}(A)$ described above descends to a group morphism $\text{div}_n: \text{Cart}(A,n) \rightarrow \text{Div}(A,n)$, and this map is an isomorphism if A is regular.

For any element $I \in \text{Cart}(A)$, the multiplication map $I^\otimes n \rightarrow I^n$ is an isomorphism of A-modules, since I is projective of rank 1. Given a pair (I, f) in $C(A,n)$, we may produce a pair (I, m_f) which represents a class in $\Psi(A,n)$, where m_f is the composition of A-isomorphisms $I^\otimes n \sim \xrightarrow{f^{-1}} I^n \rightarrow A$. One may check that the results set map $\Omega(A): C(A,n) \rightarrow \Psi(A,n)$ sending a pair (I, f) to $[(I, m_f)]$ is a group homomorphism.

Proposition 3.5. The morphism $\Omega(A): C(A,n) \rightarrow \Psi(A,n)$ is surjective, and the kernel is precisely the image of the group morphism $K^\times \rightarrow C(A,n)$ sending $x \in K^\times$ to (xA, x^n). Therefore, $\Omega(A)$ descends to a well-defined group isomorphism $\Omega_n(A): \text{Cart}(A,n) \rightarrow \Psi(A,n)$.

Proof. Let $m: A^\otimes n \rightarrow A$ denote the multiplication map. If $(I, f) \in C(A,n)$ belongs to $\ker(\Omega(A))$, then there is an isomorphism $\rho: A \rightarrow I$ such that $m_f \circ \rho^\otimes n = m$. Then I is principal, generated by $\rho(1) = x \in K^\times$, and

$$1 = m(1 \otimes \cdots \otimes 1) = m_f(x \otimes \cdots \otimes x) = x^n/f,$$

so $x^n = f$, and $(I, f) = (xA, x^n)$. On the other hand, for any $x \in K^\times$, the class $[(xA, m_{x^n})]$ in $\Psi(A,n)$ is trivial, via the isomorphism $A \rightarrow xA$ sending 1 to x.

Now, let the pair (\mathcal{L}, φ) represent a class in $\Psi(A,n)$. Let $I \subset K$ denote the image of \mathcal{L} under the composition of the A-embedding $\mathcal{L} \rightarrow \mathcal{L} \otimes_A K$ with a fixed K-module isomorphism $\mathcal{L} \otimes_A K \rightarrow K$. After clearing denominators, we may assume that $I \subset A \subset K$, so that I is an ideal of A. Since \mathcal{L} is projective of rank 1, I is an invertible ideal of A.

Let $\alpha: \mathcal{L} \rightarrow I$ denote our A-module isomorphism of \mathcal{L} onto I. If f denotes the image of 1 under the sequence of isomorphisms $A \xrightarrow{\varphi^{-1}} \mathcal{L}^\otimes n \xrightarrow{\alpha \otimes n} I^\otimes n \sim \xrightarrow{f^{-1}} I^n$, then one sees that $I^n = fA$, and α is an isomorphism between (\mathcal{L}, φ) and (I, m_f).

The above proof shows that every element of $\Psi(A,n)$ admits a representative of the form (I, m_f) where $I \subset A$ is an invertible fractional ideal of A satisfying $I^n = fA$ for some nonzero $f \in A$. We will call such a representative an **ideal representative** of a class in $\Psi(A,n)$.

Corollary 3.6. Let A be a normal domain with field of fractions K, and let X be a class in $\Psi(A,n)$. Let M be a domain, and let $\alpha_1, \ldots, \alpha_n: A \rightarrow M$ be ring morphisms. Then
one can choose an ideal representative (\tilde{I}, m_f) for X such that $\alpha_i(\tilde{f}) \in M \setminus \{0\}$ for each $1 \leq i \leq n$.

Proof. For each $1 \leq i \leq n$, put $p_i = \ker(\alpha_i) \in \text{Spec}(A)$. Let S be the multiplicative subset of A defined by $S = A \setminus \bigcup_{i=1}^n p_i$; then $B := S^{-1}A$ is a semi-local ring whose maximal ideals are a subset of $\{p_iB\}_{i=1}^n$. Let (I, m_f) be an ideal representative for X, and put $J = S^{-1}I$. Since J is a B-module of constant rank 1 and B is semi-local, J is a free B-module of rank 1, hence principal. Say J is generated by $0 \neq y/z \in B$. Since $I^n = fA$, we have $J^n = fB$, whence

$$\frac{y^n}{z^n} = f \cdot u$$

for some unit $u \in B^\times$. If $u = v/w$ for $v \in A, w \in S$, we must have $v \in S$ as well. Put $g = vz/y \in K^\times$, so that

$$v^{n-1}w = y^n f,$$

and let $\tilde{I} = gI, \tilde{f} = v^{n-1}w \in S \subseteq A$. Then $\tilde{I}^n = g^n(I^n) = g^n fA = v^{n-1}wA$, and the map $I \to \tilde{I}$ given by multiplication by g is an isomorphism between (I, m_f) and $(\tilde{I}, m_{\tilde{f}})$ in $\Psi(A, n)$. Moreover, $\tilde{f} \in S$, and so $\alpha_i(\tilde{f}) \in M \setminus \{0\}$ for each i. It remains to show that $\tilde{I} \subseteq A$. Let $x \in I$; then $(gx)^n \in \tilde{I}^n \subseteq A$. But then gx is a root of $X^n - (gx)^n \in A[X]$, and so is integral over A, and therefore belongs to A. \qed

Notice that if M is a field, then $\text{Pic}(M)$ is trivial, so $\Delta_n(M)$ is an isomorphism by Corollary 3.8.

Proposition 3.7. Let A be a normal domain, and let M be a field. Let $\alpha : A \to M$ be a ring morphism. Let $X \in \Psi(A, n)$, and let $(I, m_f) \in \Psi(A, n)$ be an ideal representative for X satisfying $\alpha(f) \neq 0$. Then $(\Delta_n(M)^{-1} \circ \Psi(-, n)(\alpha))(X) = [\alpha(f)^{-1}]$.

Proof. Consider the morphism of M-vector spaces $\tau : I \otimes_A M \to \mathcal{L}_{\alpha(f)}^{-1}$ given on simple tensors by $\tau(x \otimes z) = \alpha(x)z\alpha(f)^{-1}/n$. Since $I \otimes_A M$ and $\mathcal{L}_{\alpha(f)}^{-1}$ are both M-vector spaces of dimension 1, the map τ is an isomorphism provided it is nonzero. Indeed, this is the case, since $f \in I$, and so $\tau(f \otimes 1) = \alpha(f)\alpha(f)^{-1}$ is nonzero. It is straightforward to check that τ is an isomorphism between $\Psi(-, n)(\alpha)(X)$ and $\mathcal{L}_{\alpha(f)}^{-1}$. \qed

Corollary 3.8. Let A be a normal domain with field of fractions K, let M be a field, and let $\alpha : A \to M$ be a morphism of rings. Let $x \in A^\times$, and let (I, m_f) be an ideal representative for $\Delta_n(A)(x)$. Then there is a nonzero element $y \in A$ such that $I = yA$ and $y^n/f = x$ in K, and $[\alpha(x)] = [\alpha(f)^{-1}]$ in $M^\times/(M^\times)^n$. We deduce $K^n(\alpha) = \Delta_n(M)^{-1} \circ \Psi(-, n)(\alpha) \circ \Delta_n(A)$.

Proof. Since $[(I, m_f)]$ and $[(\mathcal{L}_x, \varphi_x)]$ are equal as classes in $\Psi(A, n)$, there is an isomorphism of A-modules $\omega : \mathcal{L}_x \to I$ such that $m_f \circ \omega^{\otimes n} = \varphi_x$. As \mathcal{L}_x is free, I is a (nonzero) principal ideal, generated by $y := \omega(1 \cdot x^{1/n}) \in A$. We thus have

$$x = \varphi_x(x^{1/n} \otimes \cdots \otimes x^{1/n}) = m_f(\omega^n(x^{1/n} \otimes \cdots \otimes x^{1/n})) = m_f(y \otimes \cdots \otimes y) = y^n/f$$

as claimed. Moreover, since $xf = y^n$ and $\alpha(x), \alpha(f) \in M^\times$, this forces $\alpha(y) \in M^\times$, and so $[\alpha(x)] \cdot [\alpha(f)] = [\alpha(y)]^n = [1] \in M^\times/(M^\times)^n$. \qed

Suppose A is a normal domain, let K be its field of fractions, and let $\xi : A \to K$ be the canonical localization map. Fix $X \in \Psi(A, n)$, and let (I, m_f) be an ideal representative for X. By Proposition 3.7, $\Delta_n(K)^{-1}(\Psi(-, n)(\xi)(X)) = [\xi(f)^{-1}] = [1/f]$. If $\partial_n(A) : K^\times/(K^\times)^n \to \text{Div}(A)/n \text{Div}(A)$ denotes the map induced by $\partial(A)$, then

$$\partial_n(A)([1/f]) = -[\partial(A)(f)] = -[\text{div}(fA)] = -[n \text{ div}(I)] = 0 \in \text{Div}(A)/n \text{ Div}(A)$$
Hence, the map $\Delta_n(K)^{-1} \circ \Psi(-,n)(\xi)$ takes image in $\ker(\partial_n(A)) \subset K^\times/(K^\times)^n$. If we further assume A is regular, then Theorem 3.7 shows $\Delta_n(K)^{-1} \circ \Psi(-,n)(\xi)$ (viewed by abuse of notation as a map $\Psi(A,n) \to \ker(\partial_n(A))$) is an isomorphism.

Theorem 3.9. Let A be a regular domain, let K be its field of fractions, and let $\xi: A \to K$ be the canonical localization map. Then the map $\Delta_n(K)^{-1} \circ \Psi(-,n)(\xi): \Psi(A,n) \to \ker(\partial_n(A))$ is an isomorphism.

Proof. First, consider the morphism $\zeta(A): \ker(\partial_n(A)) \to \text{Cl}(A)[n]$ defined as follows: if $[x] \in K^\times/(K^\times)^n$ belongs to the kernel of $\partial_n(A)$, then $\partial(A)(x) \in n \text{Div}(A)$. Define $\zeta(A)$ by sending $[x]$ to $[D]$, where D satisfies $nD = \partial(A)(x)$; note that D must be unique, since $\text{Div}(A)$ is free. This map is well-defined, because if $x' = xy^n$ for $y \in K^\times$, then $\partial(A)(xy^n) = n(D + \partial(A)(y))$, and $[D] = [D + \partial(A)(y)]$ in $\text{Cl}(A)$. We claim that the sequence

$$1 \to A^\times/(A^\times)^n \xrightarrow{\kappa_n(\xi)} \ker(\partial_n(A)) \xrightarrow{\zeta(A)} \text{Cl}(A)[n] \to 0$$

is exact. Indeed, $\kappa_n(\xi)$ is an injection because A is integrally closed in K. Moreover, if $[D] \in \text{Cl}(A)[n]$, then $nD = \partial(A)(x)$ for some $x \in K^\times$, and so $\zeta(A)([x]) = [D]$. Hence, $\zeta(A)$ is surjective.

It remains to check exactness at $\ker(\partial_n(A))$. Clearly, $\text{Im}(\kappa_n(\xi)) \subset \ker(\zeta(A))$, so suppose that $[x] \in \ker(\zeta(A))$. Then $\partial(A)(x) = n\partial(A)(y) = \partial(A)(y^n)$ for some $y \in K^\times$, whence $x = y^n \cdot x'$ for some $x' \in A^\times$, and so $[x] = [x']$ in $K^\times/(K^\times)^n$.

Now, since A is regular, $\text{div}(A): \text{Cart}(A) \to \text{Div}(A)$ is an isomorphism, and so induces an isomorphism $\text{Pic}(A)[n] \to \text{Cl}(A)[n]$. Let $\nu(A): \text{Pic}(A)[n] \to \text{Cl}(A)[n]$ be the composition of this isomorphism with the inversion automorphism $\text{Cl}(A)[n] \to \text{Cl}(A)[n]$. I claim that $\zeta(A) \circ \Delta_n(K)^{-1} \circ \Psi(-,n)(\xi) = \nu(A) \circ \Theta_n(A)$. Indeed, let X be a class in $\Psi(A,n)$, and let (I,m_f) be an ideal representative for X. Then

$$(\nu(A) \circ \Theta_n(A))(X) = \nu(A)([I]) = -[\text{div}(I)].$$

On the other hand,

$$(\zeta(A) \circ \Delta_n(K)^{-1} \circ \Psi(-,n)(\xi))(X) = \zeta(A)([1/f])$$

by Proposition 3.7. But $I^n = fA$, so $\partial(A)(1/f) = -\text{div}(I^n) = -n\text{div}(I)$, and thus $\zeta(A)(1/f) = -[\text{div}(I)]$. By Proposition 3.8, $\kappa_n(\xi) = \Delta_n(K)^{-1} \circ \Psi(-,n)(\xi) \circ \Delta_n(A)$, so we have a commutative diagram of abelian groups

$$\begin{array}{ccc}
1 & \longrightarrow & A^\times/(A^\times)^n \\
\bigg\uparrow{\text{Id}_{A^\times/(A^\times)^n}} & & \bigg\uparrow{\Delta_n(A)} \\
1 & \longrightarrow & A^\times/(A^\times)^n \end{array}$$

whose rows are exact. Since $\text{Id}_{A^\times/(A^\times)^n}$ and $\nu(A)$ are isomorphisms, $\Delta_n(K)^{-1} \circ \Psi(-,n)(\xi)$ must be an isomorphism as well.

3.3. Pulling Back Torsors Along Products of Points.

Definition 3.10. Let G be an algebraic group over a field F, and let $A = F[G]$. Let $e_F \in G(F)$ denote the identity element. We say a class $X \in \Psi(A,n)$ is normalized if $X \in \ker(\Psi(-,n)(e_F))$. We denote the subgroup of $\Psi(A,n)$ consisting of normalized elements by $\Psi_{nm}(A,n)$. Likewise, we set $\text{Cart}_{nm}(A,n) = \Omega_n(A)^{-1}(\Psi_{nm}(A,n))$, and if G is smooth, then we set $\text{Div}_{nm}(A,n) = \text{div}_n(A)(\text{Cart}_{nm}(A,n))$.

We note the following properties of the subgroup $\Psi_{nm}(A,n)$:

(1) By Theorem 3.4, one sees that $\Psi_{nm}(A,n) = \lambda_n(A)^{-1}(\text{Tor}_{nm}(G, \mu_{n,F}))$.

(2) The assignment $A \mapsto \Psi_{nm}(A,n)$ defines a functor from the category of Hopf F-algebras to AbGrps. Moreover, if M/F is a field extension, and $\alpha: A \to A_M$ denotes the canonical base change morphism, then the restriction of $\Psi(-,n)(\alpha)$ to $\Psi_{nm}(A,n)$ takes image in $\Psi_{nm}(A_M,n)$.

(3) If G is a smooth, connected group, then $\Delta_n(A)^{-1}(\Psi_{nm}(A,n)) = G^*/(G^*)^n \subset A^*/(A^*)^n$.

This follows from Rosenlicht’s theorem ([Ros61, Theorem 3]).

Normalized elements play a key role in the following situation. Let M/F be a field extension, and fix a class $X \in \Psi(A,n)$. Consider the map $G(M) \to \Psi(M,n)$ which sends $\alpha \in G(M)$ to $\Psi(-,n)(\alpha)(X)$. Under what conditions is this map a group homomorphism? As the following theorem shows, this is the case precisely when X is normalized, provided that G is smooth, connected, and reductive.

Theorem 3.11. Let G be a smooth, connected, reductive, algebraic group over a field F. Put $A = F[G]$, and let M be a field extension of F. For any $\alpha, \beta \in G(M)$, and any class $X \in \Psi(A,n)$, we have

$$
\Psi(-,n)(\alpha)(X) \cdot \Psi(-,n)(\beta)(X) = \Psi(-,n)(\alpha \beta)(X) \cdot \Psi(-,n)(\varepsilon_M)(X)
$$

Proof. Let (I,m_f) be an ideal representative for X such that $\alpha(f), \beta(f), (\alpha \beta)(f), \varepsilon_M(f) \in M^\times$; this is possible by Corollary 3.6. By Proposition 3.7 it suffices to show that

$$[(\alpha \beta)(f) \varepsilon_M(f)] = [\alpha(f) \beta(f)]$$

as classes in $M^\times/(M^\times)^n$. Let $B = F[G \times_F G] = A \otimes_F A$, and let E be the field of fractions of B. Let $c, p_1, p_2: A \to B$ be the F-algebra morphisms corresponding respectively to the morphisms $G \times G \to G$ given by multiplication and projection onto each component. We note that c, p_1, p_2 are each flat, hence injective.

By [Mil17, Theorems 16.56 and 21.84], any connected, reductive algebraic group over a separably closed field is rational, and so the natural map $\text{Pic}(B) \to \text{Pic}(A) \oplus \text{Pic}(A)$ is an isomorphism by [San81, Lemma 6.6]. Moreover, up to this identification, $\text{Pic}(c): \text{Pic}(A) \to \text{Pic}(B)$ is the diagonal embedding, and $\text{Pic}(p_i): \text{Pic}(A) \to \text{Pic}(B)$ is the embedding onto the ith component. Let $J_c = c(I)B, J_i = p_i(I)B$; since c, p_1, p_2 are flat, $J_c, J_1, J_2 \in \text{Cart}(B)$, and we have $[J_c] = [J_1] + [J_2]$ as classes in $\text{Pic}(B)$. In light of the classical exact sequence

$$(3.1) \quad 1 \to B^\times \to E^\times \to \text{Cart}(B) \to \text{Pic}(B) \to 0$$

there exists $h \in E^\times$ such that $J_c = hb \cdot J_1 \cdot J_2$. Raising each side of this equation to the nth power and using the relation $I^n = fA$ gives the equation $c(f)B = h^nB \cdot (f \otimes f)B$. Appealing again to (3.1), there exists $b \in B^\times$ such that $bc(f) = h^n(f \otimes f)$. Let $x, y \in B$ such that $h = x/y$, so that our equation reads $bc(f)y^n = x^n(f \otimes f)$.

Let $\omega: B \to M$ be the composition of $\alpha \otimes_F \beta: B \to M \otimes_F M$ and the multiplication map $M \otimes_F M \to M$. Then $\omega(c(f)) = (\alpha\beta)(f)$, and $\omega(f \otimes f) = \alpha(f)\beta(f)$, so applying ω to the equation above gives

$$(\alpha\beta)(f)\omega(b)\omega(y)^n = \alpha(f)\beta(f)\omega(x)^n$$

Since M is a field, $p := \ker(\omega)$ is a prime ideal of B. We know that $\alpha(f), \beta(f) \in M^\times$, so $f \otimes f$ belongs to $B \setminus p$. Hence, $h^n = bc(f)/(f \otimes f) \in B_p$. Since B is regular, it follows that B_p is integrally closed in E, so $h^n \in B_p$ implies $h \in B_p$; in particular, we have $\omega(y) \neq 0$. This also forces $\omega(x) \neq 0$, since $(\alpha\beta)(f), \omega(b) \in M^\times$, so we have

$$[(\alpha\beta)(f)\omega(b)] = [\alpha(f)\beta(f)]$$
as classes in $M^x/(M^x)^n$. It remains to show that $\omega(b)$ and $\varepsilon_M(f)$ belong to the same class in $M^x/(M^x)^n$. By Rosenlicht’s theorem (Ros61, Theorem 3), the map $F^x \oplus G^* \oplus G^* \rightarrow B^x$ sending (z, χ, ρ) to $z(x^2(t) \otimes \rho^2(t))$ is an isomorphism, so b can be written as $z(g \otimes g')$ for $g, g' \in A^x$ group-like elements, $z \in F^x$. Then $\omega(b) = z\alpha(g)\beta(g')$, and our equation in $M^x/(M^x)^n$ therefore reads

$$[(\alpha\beta)(f) \cdot z \cdot \alpha(g)\beta(g')] = [\alpha(f)\beta(f)]$$

Our derivation of this equation did not depend on our choice of $\alpha, \beta \in G(M)$, only on the fact that $\alpha(f), \beta(f), (\alpha\beta)(f) \in M^x$. In particular, since we arranged that $\varepsilon_M(f) \neq 0$, we can substitute ε_M for α or β in our equation. Plugging in $\alpha = \varepsilon_M$ and using $\varepsilon_M(g) = 1$ gives $[\varepsilon_M(f)] = [z\beta(g')]$, and likewise, plugging in $\beta = \varepsilon_M$ yields $[\varepsilon_M(f)] = [z\alpha(g)]$. Substituting both $\alpha = \varepsilon_M, \beta = \varepsilon_M$ simultaneously gives us $[z] = [\varepsilon_M(f)]$, whence $[\alpha(g)] = [\beta(g')] = 1$, and so $[z\alpha(g)\beta(g')] = [\varepsilon_M(f)]$, completing the proof. □

Corollary 3.12. Let G, A, M be as in the statement of Theorem 3.12. If $X \in \Psi_{nm}(A, n)$, then the map $G(M) \rightarrow \Psi(M, n)$ sending $\alpha \in G(M)$ to $\Psi(-, n)(\alpha)(X)$ is a group homomorphism. □

3.4. The Galois Action on Torsors.

Suppose that our group G is smooth and connected, and $\text{Pic}(G_{\text{sep}})[n] = 0$. Then putting $A = F[G]$, $\Delta_n(A_{\text{sep}})$ is an isomorphism by Corollary 3.3 and the subgroup of $\Psi_{nm}(A_{\text{sep}}, n)$ of $\Psi(A_{\text{sep}}, n)$ is the image of $G_{\text{sep}}^*/(G_{\text{sep}}^*)^n$. Via the embedding $\Gamma \rightarrow \text{Aut}_{F_{\text{alg}}}(A_{\text{sep}})$, Γ acts functorially on $A_{\text{sep}}^*/(A_{\text{sep}}^*)^n$ and $\Psi(A_{\text{sep}}, n)$, and the map $\Delta_n(A_{\text{sep}})$ is Γ-equivariant. Since the action of G on $A_{\text{sep}}^*/(A_{\text{sep}}^*)^n$ preserves the summand $G_{\text{sep}}^*/(G_{\text{sep}}^*)^n \subset A_{\text{sep}}^*/(A_{\text{sep}}^*)^n$, this shows that the action of Γ on $\Psi(A_{\text{sep}}, n)$ restricts to an action on $\Psi_{nm}(A_{\text{sep}}, n)$.

Throughout this section, let $\alpha: A \rightarrow A_{\text{sep}}$ denote the canonical base change morphism. The associated map $\Psi(-, n)(\alpha): \Psi_{nm}(A, n) \rightarrow \Psi_{nm}(A_{\text{sep}}, n)$ has image in $H^0(F, \Psi_{nm}(A_{\text{sep}}, n))$. If we assume that G is geometrically integral, then $\Psi(-, n)(\alpha)$ is an embedding with image $H^0(F, \Psi_{nm}(A_{\text{sep}}, n))$; this is the content of Theorem 3.14. First, we require a lemma.

Lemma 3.13. Let G be a smooth, geometrically integral group variety over F, and let $A = F[G]$. If $\text{Cl}(A_{\text{sep}}) = 0$, then there is an isomorphism $Z(A): H^1(F, G_{\text{sep}}^*) \rightarrow \text{Cl}(A)$.

Proof. Let $K_s = \text{Frac}(A_{\text{sep}})$; since G is geometrically integral, $K_s = K F_{\text{sep}}$. Since $\text{Cl}(A_{\text{sep}}) = 0$, we have an exact sequence of Γ-modules

$$1 \rightarrow (A_{\text{sep}})^x \rightarrow (K_s)^x \xrightarrow{\theta(A)} \text{Div}(A_{\text{sep}}) \rightarrow 0$$

and therefore obtain the following long exact sequence in Galois cohomology:

$$H^0(F, (A_{\text{sep}})^x) \rightarrow H^0(F, K_s^x) \rightarrow H^0(F, \text{Div}(A_{\text{sep}})) \xrightarrow{\delta} H^1(F, (A_{\text{sep}})^x) \rightarrow H^1(F, K_s^x) \rightarrow \cdots$$

Since $\Gamma \cong \text{Gal}(K F_{\text{sep}}/K) = \text{Gal}(K_s/K)$, we have $H^1(F, K_s^x)$ by Hilbert Theorem 90. As A is regular and geometrically integral, $\text{Div}(A)$ embeds $\text{Div}(A)$ onto $H^0(F, \text{Div}(A_{\text{sep}}))$. By Rosenlicht’s Theorem (Ros61, Theorem 3), the map $F_{\text{sep}}^x \oplus G_{\text{sep}}^* \rightarrow A_{\text{sep}}^*$ sending (z, χ) to $z\chi^2(t)$ is an isomorphism of Γ-modules. Hence, $H^1(F, (A_{\text{sep}})^x) \cong H^1(F, G_{\text{sep}}^*) \oplus H^1(F, (F_{\text{sep}})^x) = H^1(F, G_{\text{sep}}^*)$. We thus have a commutative diagram

$$\begin{array}{ccccccccc}
A^x & \rightarrow & K^x & \rightarrow & \text{Div}(A) & \rightarrow & \text{Cl}(A) & \rightarrow & 0 \\
\downarrow & & \downarrow & & \downarrow & & \downarrow & & \\
H^0(F, (A_{\text{sep}})^x) & \rightarrow & H^0(F, K_s^x) & \rightarrow & H^0(F, \text{Div}(A_{\text{sep}})) & \xrightarrow{\delta} & H^1(F, G_{\text{sep}}^*) & \rightarrow & 0
\end{array}$$
with exact rows and vertical arrows isomorphisms. By the universal property of the cokernel, \(\text{Div}(\alpha) \) descends to a well-defined map \(Z(A) : \text{Cl}(A) \to H^1(F, G^{*\text{sep}}) \) which sends the \([D] \in \text{Cl}(A) \) to \(\delta(\text{Div}(\alpha)(D)) \). By (e.g.) the Five Lemma, \(Z(A) \) is an isomorphism.

Note that we can be more explicit in describing \(Z(A) \). Let \([D] \in \text{Cl}(A) \), and set \(D' = \text{Div}(\alpha)(D) \). Since the map \(\partial(A_{\text{sep}}) : K^*_s \to \text{Div}(A_{\text{sep}}) \) is surjective, there exists \(x \in K^*_s \) such that \(D' = \partial(A_{\text{sep}})(x) \). One can accordingly define a cocycle \(\sigma_x : \Gamma \to A^*_s \) by setting \(\sigma_x(\gamma) = \gamma(x)/x \) for \(\gamma \in \Gamma \), and the class of \(\sigma_x \) in \(H^1(F, A^*_s) = H^1(F, G^{*\text{sep}}) \) does not depend on the choice of \(x \). The map \(Z(A) \) then takes \([D] \) to \(\partial(\sigma_x) \) in \(H^1(F, G^{*\text{sep}}) \).

Theorem 3.14. Let \(G \) be a geometrically integral, smooth group scheme over \(F \). Put \(A = F[G], K = \text{Frac}(A), \) and \(K_s = \text{Frac}(A_{\text{sep}}). \) Suppose that \(\text{Cl}(A_{\text{sep}}) = 0, \) and \(G^{*\text{sep}}[n] = 0. \) Then the natural map \(\Psi(-, n)(\alpha) : \Psi_{nm}(A, n) \to \Psi_{nm}(A_{\text{sep}}, n) \) is an embedding of \(\Psi_{nm}(A, n) \) onto \(H^0(F, \Psi_{nm}(A_{\text{sep}}, n)) \).

Proof. Put \(\eta(A) = \text{div}_n(A) \circ \Omega_n(A)^{-1} \circ \Delta_n(A) \). By Proposition 3.2, we have an exact sequence

\[
1 \to G^*/(G^*)^n \xrightarrow{\eta(A)} \text{Div}_{nm}(A, n) \to \text{Cl}(A) \xrightarrow{n} \text{Cl}(A) \to 0.
\]

Because \(G^{*\text{sep}}[n] = 0 \), there is an exact sequence of \(\Gamma \)-modules

\[
1 \to G^{*\text{sep}} \xrightarrow{n} G^{*\text{sep}} \to G^{*\text{sep}}/(G^{*\text{sep}})^n \to 1
\]

which yields the following long exact sequence in Galois cohomology:

\[
1 \to H^0(F, G^{*\text{sep}}) \xrightarrow{n} H^0(F, G^{*\text{sep}}) \to H^0(F, G^{*\text{sep}}/(G^{*\text{sep}})^n) \xrightarrow{\delta} H^1(F, G^{*\text{sep}}) \xrightarrow{n} H^1(F, G^{*\text{sep}}) \to \cdots
\]

We can rewrite the above (truncated) long exact sequence as

\[
1 \to G^*/(G^*)^n \to H^0(F, G^{*\text{sep}})/(G^{*\text{sep}})^n \xrightarrow{\delta} H^1(F, G^{*\text{sep}}) \to H^1(F, G^{*\text{sep}}).
\]

The boundary map \(\delta \) can be described as follows: let \(u \in H^0(F, G^{*\text{sep}})/(G^{*\text{sep}})^n \). Then \(\gamma(u)/u \in (G^{*\text{sep}})^n \) for any \(\gamma \in \Gamma \), so let \(x_\gamma \) be the unique element of \(G^{*\text{sep}} \) such that \(x_\gamma^\gamma = \gamma(u)/u \). Then \(\delta([u]) \) is the class of the cocycle \(\sigma_u : \Gamma \to G^{*\text{sep}} \) which sends \(\gamma \) to \(x_\gamma \).

Note that \(\text{Cl}(A_{\text{sep}}) \cong \text{Pic}(A_{\text{sep}}) = 0, \) and so \(\Delta_n(A_{\text{sep}}) \) is an isomorphism by Corollary 3.3.

Let \(\tau(A) \) denote the composition

\[
\text{Div}_{nm}(A, n) \xrightarrow{\Omega_n(A)\circ\text{div}_n(A)^{-1}} \Psi_{nm}(A, n) \xrightarrow{\Psi(-, n)(\alpha)} \Psi_{nm}(A_{\text{sep}}, n) \xrightarrow{\Delta_n(A_{\text{sep}})^{-1}} G^{*\text{sep}}/[(G^{*\text{sep}})^n].
\]

Explicitly, given the class of a pair \((D, g) \) in \(\text{Div}_{nm}(A, n) \), \(D' := \text{Div}(\alpha)(D) \) is principal, since \(\text{Cl}(A_{\text{sep}}) = 0, \) so there exists \(x \in K^*_s \) such that \(\partial(A_{\text{sep}})(x) = D' \); \(\tau(A) \) sends \([(D, g)] \) to \([x^n/g] \in G^{*\text{sep}}/[(G^{*\text{sep}})^n] \). If the diagram

\[
\begin{array}{ccccccccc}
1 & \longrightarrow & G^*/(G^*)^n & \xrightarrow{\eta(A)} & \text{Div}_{nm}(A, n) & \longrightarrow & \text{Cl}(A) & \xrightarrow{n} & \text{Cl}(A) & \longrightarrow & 0 \\
&& \downarrow \text{Id}_{G^*/(G^*)^n} & & \tau(A) & & Z(A) & & Z(A) & & \\
1 & \longrightarrow & G^*/(G^*)^n & \longrightarrow & H^0(F, G^{*\text{sep}})/(G^{*\text{sep}})^n & \xrightarrow{\delta} & H^1(F, G^{*\text{sep}}) & \xrightarrow{n} & H^1(F, G^{*\text{sep}}) & \longrightarrow & 0
\end{array}
\]

commutes, then \(\tau(A) \) must be an isomorphism, so \(\Psi(-, n)(\alpha) = \Delta_n(A_{\text{sep}})^{-1} \circ \Psi(-, n)(\alpha) \circ \Delta_n(A) \), which is easily seen to be the inclusion \(G^*/(G^*)^n \to G^{*\text{sep}}/[(G^{*\text{sep}})^n] \). It remains to show that the middle square commutes.

Let the pair \((D, g) \) represent a class in \(\text{Div}_{nm}(A, n) \), and put \(D' = \text{Div}(\alpha)(D) \). Let
Then we have properties:

Proposition 4.2. Suppose \(\xi \) is the canonical base change morphism, with comorphism \(\gamma : H \to G \). For any \(\gamma \in \Gamma \),

\[
\gamma(u) = \gamma(x^ng^{-1}) = \gamma(x^n) = \left(\frac{\gamma(x)}{x} \right)^n
\]

because \(g^{-1} \) is \(\Gamma \)-invariant. Therefore, \(\delta \) takes \([u] \) to the class of the cocycle \(\sigma_u : \Gamma \to G_{\text{sep}} \) defined by \(\gamma \mapsto \gamma(x)/x \). On the other hand, as explained in paragraph immediately following Theorem 3.13, \(Z(A) \) takes \([D] \) to the very same cocycle class, so we’re done. \(\square \)

4. Type-Zero Invariants for Connected Reductive Groups

Throughout this section, let \(G \) be a smooth, connected, reductive algebraic group over \(F \). Let \(A = F[G], K = F(G) \), and let \(\xi : A \to K \) denote the generic point of \(G \).

We are now equipped to determine the groups \(\text{Inv}^0_{\text{hom}}(G, H) \) for \(H = K_n \) and let \(n \in \mathbb{N} \); this is the content of Theorems 1.7 and 1.4 respectively. A key step is the observation that, under suitable conditions, a type-zero \(H \)-invariant of \(G \) is determined by its value at \(\xi \); precisely, the evaluation homomorphism \(ev_\xi(H) : \text{Inv}^0_{\text{hom}}(G, H) \to H(K) \) sending an invariant \(I \) to \(I(K)(\xi) \) is injective. Before proving this in Proposition 1.2, we need a technical lemma. For any positive integer \(n \), let \(p_n : G \to G \) denote the \(n \)th power map, which sends \(x \) to \(x^n \) for any \(F \)-algebra \(R \) and any \(x \in G(R) \).

Lemma 4.1. The map \(p_n \) is dominant.

Proof. Since the property of dominance descends under faithfully flat base change, we may assume that our base field \(F \) is algebraically closed. By (e.g.) [Mill17, Theorem 17.44], the union of the Cartan subgroups of \(G \) contains a dense open subset of \(G \). Since \(G \) is reductive, the Cartan subgroups of \(G \) are precisely the maximal tori in \(G \). But the restriction of \(p_n \) to any torus in \(G \) is surjective, and so the image of \(p_n \) contains every torus in \(G \). \(\square \)

Proposition 4.2. Suppose \(H \) is the \(d \)th graded component of a torsion cycle module. Let \(I \in \text{Inv}^0(G, H) \), and suppose \(I(K)(\xi) = 1_{H(K)} \). Suppose that for any field extension \(L/F \) and any \(\alpha, \beta \in G(L) \), \(I \) satisfies

\[
I(L)(\alpha)I(L)(\beta) = I(L)(\alpha\beta)I(L)(\xi).
\]

Then \(I \) is trivial.

Proof. Let \(L/F \) be a field extension, and fix \(t \in G(L) \). Put \(S := G_L \), and let \(g : S \to G \) be the canonical base change morphism, with comorphism \(f : A \to A_L \). Let \(E = L(S) \), and let \(\xi' : A_L \to E \) be the generic point of \(S \). Since \(f \) is injective, the composition \(\xi' \circ f \) extends to a morphism \(u : K \to E \) of \(F \)-algebras such that \(u \circ \xi = \xi' \circ f \). Put \(\xi_E := u \circ \xi \), and if \(n \) is a positive integer such that \(I(E)(\xi_E)^n = I(E)(\xi_E)^n = 1 \).

Suppose that there exist morphisms \(i : K \to E, j : L \to E \) satisfying the following two properties:

(a) \(H(j) : H(L) \to H(E) \) is injective;
(b) \(G(i)(\xi) = (\xi_E)^n \cdot t_E \), where \(t_E := j \circ t \).

Then we have

\[
H(j)(I(L)(t)) = I(E)(t_E) = I(E)(\xi_E)^n I(E)(t_E)I(E)(\xi_E)^{-n} = I(E)((\xi_E)^n \cdot t_E),
\]

whence we conclude

\[
H(j)(I(L)(t)) = I(E)(G(i)(\xi)) = H(i)(I(K)(\xi)) = 1_{H(E)}.
\]
We therefore devote the remainder of the proof to constructing such a pair \((i, j)\). Let
\(j : L \to E\) denote the composition of the structural map \(L \to A_L\) with \(\xi'\). Since \(S\) is a smooth algebraic \(L\)-variety such that \(S(L) \neq \emptyset\), \(H(j)\) is injective by [Mer99 Lemma 1.3]. To construct \(i\), let \(s : A_L \to L\) be the unique \(L\)-algebra morphism such that \(t = s \circ f = g(L)(t)\), and put \(s_E = j \circ s\), so that \(t_E = s_E \circ f\). Let \(p_{n,s} : S \to S\) be the morphism of \(L\)-schemes given by the composition of the \(n^\text{th}\) power map \(p_n\) with right translation by \(s\). By Corollary 4.4, \(p_{n,s}\) is dominant, and so the associated comorphism \(h : A_L \to A_L\) is injective. In particular, the composition \(\xi' \circ h\) extends to a morphism \(v : E \to E\) of \(L\)-algebras such that \(v \circ \xi' = \xi' \circ h\). Putting \(i = v \circ u\), we claim that \(i\) satisfies \((b)\).

On the one hand, we have \(p_{n,s}(E)(\xi') = \xi' \circ h\), but by definition of \(p_{n,s}\), we also have \(p_{n,s}(E)(\xi') = (\xi')^n \cdot s_E\). Accordingly, this yields
\[
G(i)(\xi) = v \circ u \circ \xi = \xi' \circ h \circ f = g(E)(p_{n,s}(E)(\xi')).
\]

But we compute
\[
g(E)(p_{n,s}(\xi')) = g(E)((\xi')^n \cdot s_E) = g(E)(\xi')^n \cdot g(E)(s_E) = (\xi_E)^n \cdot t_E,
\]
which establishes \((b)\).

\[\square\]

Corollary 4.3. The morphism \(\text{ev}_\xi(H) : \text{Inv}^0_{\text{hom}}(G, H) \to H(K)\) is injective.

For any fixed field extension \(L/F\), there is a map \(\Psi(A, n) \times G(L) \to L^\times/(L^\times)^n\) which sends the pair \((X, y)\) to \(\Delta_n(L)^{-1}(\Psi(-, n)(y)(X))\). If we fix a class \(X \in \Psi(A, n)\) in the first argument, we obtain a set map \(I_X : G(L) \to L^\times/(L^\times)^n\). As \(L\) varies, the collection of maps \(I_X\) determines an invariant in \(\text{Inv}^0(G, K_1^M/n)\). If \(X\) is normalized, then Corollary 3.12 shows that \(I_X\) is homomorphic. We thus obtain a group homomorphism \(\Lambda_n(G) : \Psi_{\text{nm}}(A, n) \to \text{Inv}^0_{\text{hom}}(G, K_1^M/n)\). As the next theorem shows, \(\Lambda_n(G)\) is in fact an isomorphism.

Theorem 4.4. The map
\[
\Lambda_n(G) : \Psi_{\text{nm}}(A, n) \to \text{Inv}^0_{\text{hom}}(G, K_1^M/n)
\]
sending a class \(X \in \Psi_{\text{nm}}(A, n)\) to the invariant \(I_X\) is an isomorphism.

Proof. By Lemma 3.9 the map \(\Delta_n(K)^{-1} \circ \Psi(-, n)(\xi) : \Psi(A, n) \to \ker(\partial_n(A))\) is an isomorphism. Thus, since \(\text{ev}_\xi(K_1^M/n) \circ \Lambda_n(G)\) coincides with the restriction of \(\Delta_n(K)^{-1} \circ \Psi(-, n)(\xi)\) to \(\Psi_{\text{nm}}(A, n)\), \(\Lambda_n(G)\) must be injective. Now, fix an invariant \(I \in \text{Inv}^0_{\text{hom}}(G, K_1^M/n)\). By Corollary 4.3 \(\text{ev}_\xi(K_1^M/n)\) is injective. The sequence
\[
\text{Inv}^0_{\text{hom}}(G, K_1^M/n) \xrightarrow{\text{ev}_\xi(K_1^M/n)} K^\times/(K^\times)^n \xrightarrow{\partial_n(A)} \text{Div}(A)/n \text{Div}(A)
\]
is a complex by [Mer99 Lemma 2.1], so \(\text{ev}_\xi(K_1^M/n)\) has image contained in \(\ker(\partial_n(A))\). Letting \(X \in \Psi(A, n)\) be a class such that \(\Delta_n(K)^{-1}(\Psi(-, n)(\xi)(X)) = I(K)(\xi)\), we have \(I_X(K)(\xi) = I(K)(\xi)\) by construction. We must therefore have \(I_X = I\) by Theorem 3.11 and Proposition 4.2. But as \(I\) is homomorphic, it must be the case that \(I_X(F)(\xi_F) = I(F)(\xi_F)\) is the trivial class in \(F^\times/(F^\times)^n\), whence \(X\) is normalized, and \(\Lambda_n(G)(X) = I\).

\[\square\]

Corollary 4.5. Suppose that \(G\) is a torus, and let \(\alpha : A \to A_{\text{sep}}\) be the canonical base change morphism. Then the map
\[
(\Delta(A_{\text{sep}}) \circ \Psi(-, n)(\alpha))^{-1} \circ \Lambda_n(G) : H^0(F, G_{\text{sep}}^*/(G_{\text{sep}}^*)^n) \to \text{Inv}^0_{\text{hom}}(G, K_1^M/n)
\]
is an isomorphism.

\[\square\]
For any natural number n, let $\text{Inv}^0(G, t_n)$ denote the group morphism $\text{Inv}^0_{\text{hom}}(G, K_1^M / n) \to \text{Inv}^0_{\text{hom}}(G, K_1^M \otimes \mathbb{Z} Q/\mathbb{Z})$ given by composition with t_n. Likewise, if n and m are positive integers such that n divides m, let $\text{Inv}^0(G, \beta_{n,m})$ denote the group morphism $\text{Inv}^0_{\text{hom}}(G, K_1^M / n) \to \text{Inv}^0_{\text{hom}}(G, K_1^M / m)$ given by composition with $\beta_{n,m}$. Since $t_n = t_m \circ \beta_{n,m}$, we obtain a universal induced map

$$
\text{colim}_{n \in \mathbb{N}} \text{Inv}^0(G, t_n) : \text{colim}_{n \in \mathbb{N}} \text{Inv}^0_{\text{hom}}(G, K_1^M / n) \to \text{Inv}^0_{\text{hom}}(G, K_1^M \otimes \mathbb{Z} Q/\mathbb{Z}).
$$

Proposition 4.6. The map $\text{colim}_{n \in \mathbb{N}} \text{Inv}^0(G, t_n)$ is an isomorphism.

Proof. We have the following commutative diagram:

$$
\begin{array}{ccc}
\text{colim}_{n \in \mathbb{N}} \text{Inv}^0_{\text{hom}}(G, K_1^M / n) & \xrightarrow{\text{colim}_{n \in \mathbb{N}} \text{ev}_{\zeta}(K_1^M / n)} & \text{colim}_{n \in \mathbb{N}} \text{ker}(\partial_n(A)) \\
\downarrow & & \downarrow \\
\text{Inv}^0_{\text{hom}}(G, K_1^M \otimes \mathbb{Z} Q/\mathbb{Z}) & \xrightarrow{\text{ev}_{\zeta}(K_1^M \otimes \mathbb{Z} Q/\mathbb{Z})} & \text{ker}(\partial(A) \otimes \mathbb{Z} \text{Id}_{\mathbb{Q}/\mathbb{Z}})
\end{array}
$$

The rightmost arrow is an isomorphism, and the lower and upper horizontal arrows are injective by Corollary 4.3, so it follows that $\text{colim}_{n \in \mathbb{N}} \text{Inv}^0(G, t_n)$ is injective. To see that $\text{colim}_{n \in \mathbb{N}} \text{Inv}^0(G, t_n)$ is surjective, fix an invariant $I \in \text{Inv}^0_{\text{hom}}(G, K_1^M \otimes \mathbb{Z} Q/\mathbb{Z})$ and let $x = I(K)(\xi) \in \text{ker}(\partial(A) \otimes \mathbb{Z} \text{Id}_{\mathbb{Q}/\mathbb{Z}})$. There exists some positive integer n and $y \in \text{ker}(\partial_n(A))$ such that $t_n(K)(y) = x$. Let $Y \in \Psi(A, n)$ with $\Psi(-, n)(\xi)(Y) = \Delta_n(K)(y)$. Then the associated invariant $I_Y \in \text{Inv}^0(G, K_1^M / n)$ satisfies $(t_n \circ I_Y)(K)(\xi) = x = I(K)(\xi)$, and so $t_n \circ I_Y = I$ by Theorem 3.11 and Proposition 4.2. In particular, $((t_n \circ I_Y)(F))(\varepsilon_F)$ is the trivial class in $F^x \otimes \mathbb{Z} Q/\mathbb{Z}$, which means that $z := I_Y(F)(\varepsilon_F)$ belongs to the kernel of $t_n(F) : F^x / (F^x)^n \to F^x \otimes \mathbb{Z} Q/\mathbb{Z}$.

This can only be the case if $z \in \text{ker}(\beta_{n,nd}(F))$ for some $d \in \mathbb{N}$, so fix such a d. For any field extension M/F, the diagram

$$
\begin{array}{ccc}
M^x / (M^x)^n & \xrightarrow{\Delta_n(M)} & \Psi(M, n) \\
\downarrow {\beta_{n,nd}(M)} & & \downarrow \omega_{n,nd}(M) \\
M^x / (M^x)^{nd} & \xrightarrow{\Delta_{nd}(M)} & \Psi(M, nd)
\end{array}
$$

commutes, and so putting $Y' = \omega_{n,nd}(A)(Y)$, $\Psi(-, nd)(\varepsilon_F)(Y') = \Delta_{nd}(F)(\beta_{n,nd}(F)(z))$, whence Y' is normalized. Thus, $I_{Y'} = \Lambda_{nd}(G)(Y')$ is homomorphic, and

$$(t_{nd} \circ I_{Y'})(K)(\xi) = t_{nd}(K)(\beta_{n,nd}(K)(y)) = t_n(K)(y) = x,$$

so $t_{nd} \circ I_{Y'} = I$ by Corollary 4.3. \hspace{1cm} \square

Corollary 4.7. If G is a torus, then $\text{Inv}^0_{\text{hom}}(G, K_1^M \otimes \mathbb{Z} Q/\mathbb{Z}) \cong H^0(F, G^*_{\text{sep}} \otimes \mathbb{Q}/\mathbb{Z})$.

Proof. If $\alpha : A \to A_{\text{sep}}$ denotes the canonical base change morphism, this follows from Proposition 4.6, Theorem 3.14, and the fact that the diagram
5. Computation of Degree One Milnor K-invariants of Groups of Multiplicative Type

In this section, we determine the degree one Milnor K-invariants of an algebraic group \(G \) of multiplicative type. To begin, fix a resolution of \(G \) by tori. Applying the snake lemma to the diagram

\[
\begin{array}{ccccccccc}
1 & \rightarrow & T^*_\text{sep} & \rightarrow & P^*_\text{sep} & \rightarrow & G^*_\text{sep} & \rightarrow & 1 \\
\downarrow & & \downarrow & & \downarrow & & \downarrow & & \downarrow \\
1 & \rightarrow & T^*_\text{sep} & \rightarrow & P^*_\text{sep} & \rightarrow & G^*_\text{sep} & \rightarrow & 1
\end{array}
\]

yields the exact sequence of \(\Gamma \)-modules

\[1 \rightarrow G^*_\text{sep}[n] \rightarrow T^*_\text{sep}/(T^*_\text{sep})^n \rightarrow P^*_\text{sep}/(P^*_\text{sep})^n, \]

and after taking \(\Gamma \)-fixed points we obtain the exact sequence

\[1 \rightarrow H^0(F, G^*_\text{sep}[n]) \rightarrow H^0(F, T^*_\text{sep}/(T^*_\text{sep})^n) \rightarrow H^0(F, P^*_\text{sep}/(P^*_\text{sep})^n) \]

of abelian groups. Let \(A = F[G], B = F[P], C = F[T], \) let \(g^*: C \rightarrow B, f^*: B \rightarrow A \) be the associated comorphisms, and let \(\alpha: X \rightarrow X_{\text{sep}} \) denote the canonical base change morphism for \(X = A, B, C. \) For \(Y = B, C, \) let \(\ell_n(Y) := \Delta_n(Y_{\text{sep}})^{-1} \circ \Psi(-, n)(\alpha_Y) \circ \lambda_n(Y)^{-1}. \)

Proposition 5.1. The diagram

\[
\begin{array}{ccccccccc}
G^*[n] & \xrightarrow{\nu_n(G)} & \text{Tors}_n(T, \mu_n, F) & \xrightarrow{\text{Tors}^*(g)(\mu_n, F)} & \text{Tors}_n(P, \mu_n, F) \\
\downarrow & \downarrow & \downarrow & \downarrow & \downarrow \\
H^0(F, G^*_\text{sep}[n]) & \xrightarrow{\kappa(g_{\text{sep}})} & H^0(F, T^*_\text{sep}/(T^*_\text{sep})^n) & \xrightarrow{\kappa(g_{\text{sep}})} & H^0(F, P^*_\text{sep}/(P^*_\text{sep})^n)
\end{array}
\]

commutes.

Proof. The right square commutes because \(\Delta_n \) and \(\lambda_n \) are natural transformations. To see that the left square commutes, fix \(\chi \in G^*[n]. \) Consider the commutative diagram

\[
\begin{array}{ccccccccc}
H^0(F, G^*_\text{sep}/(G^*_\text{sep})^m) & \xrightarrow{\Delta_n(A_{\text{sep}})^{-1} \circ \Psi(-, n)(\alpha)} & \Psi_{nm}(A, n) & \xrightarrow{\Lambda_n(G)} & \text{Inv}^0_{\text{hom}}(G, K^1_{M}/n) \\
\downarrow & & \downarrow & & \downarrow \\
H^0(F, G^*_\text{sep}/(G^*_\text{sep})^m) & \xrightarrow{\Delta_m(A_{\text{sep}})^{-1} \circ \Psi(-, m)(\alpha)} & \Psi_{nm}(A, m) & \xrightarrow{\Lambda_m(G)} & \text{Inv}^0_{\text{hom}}(G, K^1_{M}/m)
\end{array}
\]

commutes for all \(n, m \in \mathbb{N} \) with \(n \) dividing \(m. \) \(\square \)
of Γ-modules with exact rows, and let H denote the group of multiplicative type dual to $P_{\text{sep}}^* \times G_{\text{sep}}^* \mathbb{Z}/n\mathbb{Z}$. The F-group morphism $j: H \to T$ dual to j_{sep}^* is a $\mu_{n,F}$-torsor over T, and we claim that j represents the class $\nu_n(G)(\chi)$. Indeed, let $\pi_n: \mu_{n,F} \to H$, $\pi_P: P \to H$ be the morphisms dual to $(\pi_n)_{\text{sep}}^*$ and $(\pi_P)_{\text{sep}}^*$ respectively. The morphism of T-schemes $P \times \mu_{n,F} \to H$ defined on R-points by $(x,y) \mapsto \pi_P(R)(x)\pi_n(R)(y)$ for any F-algebra R and any $x \in P(R), y \in \mu_{n,F}(R)$ is constant on G^χ-orbits. It therefore descends to a universal map $(P \times \mu_{n,F})/G^\chi \to H$ over T, which one may check is $\mu_{n,F}$-equivariant.

Now, let $y \in P_{\text{sep}}^*$ be such that $f_{\text{sep}}(y) = \chi$, and let $z \in T_{\text{sep}}^*$ be such that $g_{\text{sep}}^*(z) = y^n$. We must show that $\text{Spec}(\mathbb{Z}/n\mathbb{Z}) \to \text{Spec}(\mathbb{Z})$ and j_{sep} are isomorphic as $\mu_{n,F}$-torsors over T_{sep}. Equivalently, we must exhibit a (n) (iso)morphism of $\mathbb{Z}/n\mathbb{Z}$-graded C_{sep}^*-algebras $s: C_{\text{sep}}[X]/(X^n - z) \to F_{\text{sep}}[H_{\text{sep}}]$. The condition that s respect the $\mathbb{Z}/n\mathbb{Z}$-grading ensures that the dual morphism of schemes $H \to \text{Spec}(\mathbb{Z}/n\mathbb{Z})/(X^n - z)$ is $\mu_{n,F}$-equivariant, hence an isomorphism of $\mu_{n,F}$-torsors.

By construction, $F_{\text{sep}}[H_{\text{sep}}]$ is the group algebra of $H_{\text{sep}}^* = P_{\text{sep}}^* \times G_{\text{sep}}^* \mathbb{Z}/n\mathbb{Z}$ over F_{sep}, and C_{sep} is likewise the group algebra $F_{\text{sep}}(T_{\text{sep}}^*)$. The comorphism j_{sep}^* corresponds to the Γ-module embedding $j_{\text{sep}}^*: T_{\text{sep}}^* \to H_{\text{sep}}^*$. For each $v \in \mathbb{Z}/n\mathbb{Z}$, put $Q_v := ((\pi_n)_{\text{sep}}^*)^{-1}(v)$. Note that $Q_v, Q_{v', v} \subseteq Q_{v', v}$, and $Q_v = (y, \mathbb{Z}[1])^k v^*(T_{\text{sep}}^*)$, where $k_v \in \mathbb{N}$ is the unique representative for v between 0 and $n - 1$. The $(\mathbb{Z}/n\mathbb{Z})$-grading on H_{sep} arises from the partition

$$H_{\text{sep}}^* = \coprod_{v \in \mathbb{Z}/n\mathbb{Z}} Q_v$$

by setting R_v to be the F_{sep}-subspace of $F_{\text{sep}}[H_{\text{sep}}]$ generated by Q_v. We clearly have $F_{\text{sep}}[H_{\text{sep}}] = \bigoplus_{v \in \mathbb{Z}/n\mathbb{Z}} R_v$, and $R_v R_{v'} \subseteq R_{v+v'}$ follows from $Q_v Q_{v'} \subseteq Q_{v+v'}$. Furthermore, R_v is the C_{sep}^*-submodule of $F_{\text{sep}}[H_{\text{sep}}]$ generated by $(y, [1])^k v$. With this in mind, let $s: C_{\text{sep}}[X]/(X^n - z) \to F_{\text{sep}}[H_{\text{sep}}]$ be the universal morphism of C_{sep}^*-algebras sending the class of X to $(y, [1])$. This respects the $(\mathbb{Z}/n\mathbb{Z})$-grading on each C_{sep}^*-algebra, since $(y, [1])$ belongs to the $[1]_{\text{sep}}$-graded component of H_{sep}, and C_{sep} embeds into each algebra as the $[0]_{\text{sep}}$-graded component.

Since all vertical arrows of the diagram in Proposition 5.1 are isomorphisms, this proves:

Corollary 5.2. The sequence

$$1 \to G^*[n] \xrightarrow{\nu_n(G)} \text{Tors}_{\text{nm}}(T, \mu_{n,F}) \xrightarrow{Tors^*_g(\mu_{n,F})} \text{Tors}_{\text{nm}}(P, \mu_{n,F})$$

is exact. □

For any smooth, connected, reductive group R over F, define $\bar{\Lambda}_n(R) : \text{Tors}_{\text{nm}}(R, \mu_{n,F}) \to \text{Inv}^\theta_{\text{hom}}(R, K^1_M/n)$ by $\bar{\Lambda}_n(R) = \Lambda_n(R) \circ \lambda_n(F[R])^{-1}$. As noted in section 2.2., the last crucial detail in our computation of $\text{Inv}^1_{\text{hom}}(G, K^1_M/n)$ is the following lemma.

Lemma 5.3. The diagram
\[\begin{array}{ccc}
G^*[n] & \xrightarrow{\nu_n(G)} & \text{Tors}_n(T, \mu_{n,F}) \\
\Phi(G,n) & & \text{Tors}_n(P, \mu_{n,F})
\end{array} \]

\[\text{Inv}^1_{\text{hom}}(G, K_1^M/n) \xrightarrow{\text{Inv}(\rho, K_1^M/n)} \text{Inv}^0_{\text{hom}}(T, K_1^M/n) \xrightarrow{\text{Inv}(g, K_1^M/n)} \text{Inv}^0_{\text{hom}}(P, K_1^M/n) \]

\[\text{Inv}^1_{\text{hom}}(G, K_1^M/n) \xrightarrow{\text{Inv}(\rho, K_1^M/n)} \text{Inv}^0_{\text{hom}}(T, K_1^M/n) \xrightarrow{\text{Inv}(g, K_1^M/n)} \text{Inv}^0_{\text{hom}}(P, K_1^M/n) \]

\[\text{Inv}^1_{\text{hom}}(G, K_1^M/n) \xrightarrow{\text{Inv}(\rho, K_1^M/n)} \text{Inv}^0_{\text{hom}}(T, K_1^M/n) \xrightarrow{\text{Inv}(g, K_1^M/n)} \text{Inv}^0_{\text{hom}}(P, K_1^M/n) \]

\[\text{Inv}^1_{\text{hom}}(G, K_1^M/n) \xrightarrow{\text{Inv}(\rho, K_1^M/n)} \text{Inv}^0_{\text{hom}}(T, K_1^M/n) \xrightarrow{\text{Inv}(g, K_1^M/n)} \text{Inv}^0_{\text{hom}}(P, K_1^M/n) \]

commutes.

Proof. Unwinding the definitions of \(\Lambda_n(T) \) and \(\Lambda_n(P) \), one sees that the commutativity of the right square is a consequence of the functoriality of the pullback map on torsors. To be precise, if \(\alpha : Y \to X, \beta : Z \to Y \) are morphisms of \(F \)-schemes, then \(\text{Tors}^*(\alpha \circ \beta) = \text{Tors}^*(\beta) \circ \text{Tors}^*(\alpha) \). The left square commutes because pullback operation on torsors commutes with changing the group. \(\square \)

As noted at the end of section 2.2, after a diagram chase, this proves:

Theorem 5.4. The map \(\Phi(G,n) : G^*[n] \to \text{Inv}^1_{\text{hom}}(G, K_1^M/n) \) is an isomorphism. \(\square \)

As was the case for type-zero invariants, for any natural number \(n \), there is a group morphism \(\text{Inv}^1(G, \tau_n) : \text{Inv}^1_{\text{hom}}(G, K_1^M/n) \to \text{Inv}^0_{\text{hom}}(G, K_1^M \otimes \mathbb{Q}/\mathbb{Z}) \) given by composition with \(\tau_n \). For positive integers \(n, m \) with \(n \) dividing \(m \), the maps \(\text{Inv}^1(G, \tau_n) \), \(\text{Inv}^0(G, \tau_m) \) are compatible with the map \(\text{Inv}^1(G, \beta_{n,m}) : \text{Inv}^1_{\text{hom}}(G, K_1^M/n) \to \text{Inv}_{\text{hom}}^0(G, K_1^M/m) \) given by composition with \(\beta_{n,m} \), and so we obtain a universal induced map

\[\text{colim}_{n \in \mathbb{N}} \text{Inv}^1(G, \tau_n) : \text{colim}_{n \in \mathbb{N}} \text{Inv}^1_{\text{hom}}(G, K_1^M/n) \to \text{Inv}^1_{\text{hom}}(G, K_1^M \otimes \mathbb{Z} \mathbb{Q}/\mathbb{Z}). \]

Proposition 5.5. The map \(\text{colim}_{n \in \mathbb{N}} \text{Inv}^1(G, \tau_n) \) is an isomorphism.

Proof. Set

\[u = \text{colim}_{n \in \mathbb{N}} \text{Inv}(\rho, K_1^M/n), v = \text{colim}_{n \in \mathbb{N}} \text{Inv}(g, K_1^M/n), \]

\[u' = \text{Inv}(\rho, K_1^M \otimes \mathbb{Z} \mathbb{Q}/\mathbb{Z}), v' = \text{Inv}(g, K_1^M \otimes \mathbb{Z} \mathbb{Q}/\mathbb{Z}). \]

We have a commutative diagram

\[\begin{array}{ccc}
\text{colim}_{n \in \mathbb{N}} \text{Inv}^1_{\text{hom}}(G, K_1^M/n) & \xrightarrow{u} & \text{colim}_{n \in \mathbb{N}} \text{Inv}^0_{\text{hom}}(T, K_1^M/n) \\
\text{colim}^1(G, \tau_n) & & \text{colim}^0(T, \tau_n) \\
\text{Inv}_{\text{hom}}^1(G, K_1^M \otimes \mathbb{Z} \mathbb{Q}/\mathbb{Z}) & \xrightarrow{u'} & \text{Inv}^0_{\text{hom}}(T, K_1^M \otimes \mathbb{Z} \mathbb{Q}/\mathbb{Z}) \\
\text{colim}_{n \in \mathbb{N}} & & \text{colim}_{n \in \mathbb{N}} \\
\text{Inv}^1_{\text{hom}}(G, K_1^M \otimes \mathbb{Z} \mathbb{Q}/\mathbb{Z}) & \xrightarrow{v'} & \text{Inv}^0_{\text{hom}}(P, K_1^M \otimes \mathbb{Z} \mathbb{Q}/\mathbb{Z})
\end{array} \]

whose rows are exact. Since \(\text{colim}^0(T, \tau_n) \) and \(\text{colim}^0(P, \tau_n) \) are isomorphisms by Proposition 5.4 and \(u, u' \) are injective, \(\text{colim}^1(G, \tau_n) \) is an isomorphism. \(\square \)

Theorem 5.6. The map \(\Phi(G) : G^*_{\text{tors}} \to \text{Inv}^1_{\text{hom}}(G, K_1^M \otimes \mathbb{Z} \mathbb{Q}/\mathbb{Z}) \) is a group isomorphism.

Proof. Let \(n, m \) be positive integers with \(n \) dividing \(m \), and let \(\tau_{n,m} : \mu_{n,F} \to \mu_{m,F} \) be the canonical embedding. We claim that the diagram
commutes, where $\sigma_{n,m}$ is the group morphism given by composition with $\tau_{n,m}$. Indeed, it is sufficient to show that $\Sigma_m(L) \circ \beta_{n,m}(L) = \text{Tors}_n(L) \circ \Sigma_m(L)$ for any field extension L/F. Fixing $[y] \in L$, put $U = \text{Spec}(L[X]/(X^n - y))$, $V = \text{Spec}(L[X]/(X^m - y^m/n))$. The morphism of L-schemes $U \times \mu_{m,L} \rightarrow V$ defined functorially by

$$U(R) \times \mu_{m,L}(R) \rightarrow V(R), (u, z) \mapsto uz$$

for any L-algebra R is constant on $\mu_{m,L}$-orbits, and so descends to a morphism of L-schemes $(U \times \mu_{m,L})/\langle \mu_{m,L} \rangle \rightarrow V$, which one may check is $\mu_{m,L}$-equivariant. This establishes that $\text{Tors}_n(L)(U) = V$.

The universally induced map $\colim_{n \in \mathbb{N}} \Phi(G, n)$: $G^* \rightarrow \colim_{n \in \mathbb{N}} \text{Inv}^1(G, K^M/n)$ is an isomorphism, as $\Phi(G, n)$ is an isomorphism for each n. Since $\Phi(G)$ is just the composition of $\colim_{n \in \mathbb{N}} \Phi(G, n)$ with the colim $\text{Inv}^1(G, t_n)$, it is an isomorphism by Proposition 5.5. □

REFERENCES

[CMR03] Skip Garibaldi, Alexander Merkurjev, and Jean-Pierre Serre, Cohomological invariants in Galois cohomology, University Lecture Series, vol. 28, American Mathematical Society, Providence, RI, 2003. MR 1999383

[Lou20] Alexandre Lourdeaux, Invariants cohomologiques des groupes algébriques linéaires, [hal-02440601], 2020.

[Mer99] Alexander Merkurjev, Invariants of algebraic groups, J. Reine Angew. Math. 508 (1999), 127–156. MR 1676873

[Mil70] John Milnor, Algebraic K-theory and quadratic forms, Invent. Math. 9 (1969/70), 318–344. MR 260844

[Ser95] Jean-Pierre Serre, Cohomologie galoisienne: progrès et problèmes, no. 227, 1995, Séminaire Bourbaki, Vol. 1993/94, pp. Exp. No. 783, 4, 229–257. MR 1321649

[Tot20] Burt Totaro, Cohomological invariants in positive characteristic, 2020, preprint, available at [https://www.math.ucla.edu/~totaro/papers/public_html/invariant.pdf].

E-mail address: awertheim@math.ucla.edu