Research Article

Stopping Power and Range for Proton Interaction with Lymph Tissues

Shaima M. Hadi
Iraqi Ministry of Education, Rusafa Third, Baghdad, Iraq.
Contact email: shaima.mo2015@gmail.com

Received: July 29, 2021; Accepted: September 15, 2021; Published: December 25, 2021

Abstract: In this paper, we calculated the mass stopping power (in MeV cm²/g) and the range (cm) of proton in one of the types of body tissues (lymph), from 1 Kev to 200 MeV energy range. They are using the Bethe and Ziegler equations, SRIM program (version 2013) and Ziegler (Vol. 3) data by considering the tissue composed of several elements, so the atomic number (Z) and atomic weight (A) for the component in the tissue are meaning. The calculation results show that the Ziegler equation gives better results than using the Bethe equation. However, in terms of the loss of proton energy in the tissue, the four methods used are approximately the same.

Keywords: Bethe Equation, Proton Therapy, Stopping Power, SRIM Program, Ziegler Equation.

1. Introduction

Nuclear science has contributed significantly to tumor therapy with heavy charged particles [1]. Radiation therapy uses the radiobiological effects of ionizing radiation (charged particles, neutrons, gamma rays or x-rays) to destroy tumor cells. The success of radiotherapy depends on the ability of the therapy system to concentrate the quantity (dose) of radiation on the target region (tumor). Ideally, a lethal while minimizing the irradiation of adjacent healthy tissues [2]. The biological effect of ionizing radiation on human beings depends on the absorbed dose, type of radiation energy, and organs irradiated [3]. Information on stopping power is essential in many fields involving radiation. Their accuracy may critically affect calculations, measurements, and interpretation of experiments [4]. Protons have a necessary effect in radiation therapy as they can deliver their energies to the target, and is no radiation beyond the range end. The total stopping power for proton interacting with each element or chemical composition (in the lymph tissue) are calculated by the Bethe formula [5]; it is the preferred method of evaluating the stopping power at sufficiently high energies (above 1MeV for protons). This theory contains a key parameter, (l) the mean excitation energy of the stopping medium flowing [6].

1.1. Beth Equation

The Bethe formula or Bethe-Bloch formula [7], the mean energy loss per distance travelled of swift charged particles (protons, alpha particles, atomic ions) traversing matter (or the stopping power of the material).

\[
\frac{dE}{dx} = \frac{Mev}{10^{12} at. cm^{-2}} = 0.239114 \frac{Zt}{E_p} \ln \left[\frac{2.17 \times 10^{-3}}{E_p} \right] \text{ MeV/}cm
\]

(1)

\[
dE/dx = \text{stopping power.} \\
Zt = \text{atomic number of the target.} \\
l = \text{the mean excitation energy of the target.} \\
E_p = \text{Energy of the proton.}
\]

\[
l(eV) = 9.76 + 58.8 \times Z^{-1.19}Z
\]

(2)
The results of this formula are valid for energies > 1 MeV, where more consistent results are recorded. Good agreements with the results of SRIM and PSTAR are observed [8].

1.2. Ziegler Formula
To bridge the gap between the high- and low-energy theories, interpolation formulas of different levels of complexity were proposed by Varelas and Biersack [9], [10]:

\[S = \frac{S_{\text{low}} S_{\text{High}}}{S_{\text{low}} + S_{\text{High}}} \] \hspace{1cm} (3)

Where \(S_{\text{Low}} \) (Low Energy Stopping) And \(S_{\text{High}} \) (High Energy Stopping)

\[Stopping = A_1 E^{1/2} \] \hspace{1cm} (4)

From (1-10 HeV):

\[(Stopping)^{-1} = (S_{\text{Low}})^{-1} + (S_{\text{High}})^{-1} \] \hspace{1cm} (5)

Where:

\[S_{\text{Low}} = A_2 E^{0.45} \] \hspace{1cm} (6)

\[S_{\text{High}} = \left(\frac{A_3}{E}\right) \ln \left[1 + \left(\frac{A_4}{E}\right) + (A_5 E)\right] \] \hspace{1cm} (7)

From (1000 KeV-100000 KeV):

\[Stopping = \frac{A_6}{\beta^2} \ln \left[\frac{A_7 \beta^2}{1 - \beta^2}\right] - \beta^2 - \sum_{i=3}^{7} \frac{A_i}{E} (\ln E)^i \] \hspace{1cm} (8)

\(\text{in}\ \frac{eV}{10^{18}\text{atoms/cm}^2} \)

Here A1... Ai, are fitting constants represented in the reference [5].

1.3. Stopping and Range of Ions in Matter (SRIM)
SRIM is a group of programs that calculate the stopping and range of ions (up to 2 GeV/AMU) into matter using a quantum mechanical treatment of ion-atom collisions (assuming a moving atom as an “ion”, and all target atoms as “atoms”). This calculation is very efficient using statistical algorithms that allow the ion to make jumps between calculated collisions and then average the collision results over the intervening gap. The ion and atom have a screened Coulomb collision during the clashes, including exchange and correlation interactions between the overlapping electron shells. The ion has long-range interactions creating electron excitations and plasmons within the target. These are described by including a description of the target’s collective electronic structure and interatomic bond structure when the calculation is set up (tables of nominal values are supplied). The charge state of the ion within the target is described using the concept of effective charge, which includes a velocity-dependent charge state and long-range screening due to the collective electron sea of the target [11].

1.4. Energy Loss in Compound and Mixture
When passing through matter, the fast charged particles ionize the molecule or atom they encounter; therefore, fast particles lose energy gradually in many small steps. Stopping power means the average energy loss of the particle per unit path length [9]. We have calculated the stopping power for each element in the tissue, then by a linear combination of the constituent stopping powers (Bragg’s additivity rule) found the total stopping power, as:

\[\frac{S}{\rho} = \sum_i w_i \left(\frac{S}{\rho}\right)_i \] \hspace{1cm} (9)

Where \(w_i \) is the fraction by weight, and \(\left(\frac{S}{\rho}\right)_i \) is the mass stopping power of the \(i \) constituent [12].

1.5. Range
The range is the distance travelled by the proton before stopping. The field with energy \((E_0) \) is calculated by integrating stopping power to zero point [13].

\[R(E_0) = \int_0^{E_0} (-dE/dx)^{-1} dE \] \hspace{1cm} (10)

Particles such as protons and neutrons with specific energies will lose all their powers in an actual distance in a medium, which is called the range [14].

2. Data Reduction and Analysis
The stopping power depends on the type and the energy of the particle and the properties of the material it passes through. The mass stopping power is valuable because it expresses the charged particle’s energy loss rate per g—cm\(^{-2}\) of the traversed medium. The mass stopping power is linear (MeV/cm) divided by density [12].
The energy transferred to tissue by protons is inversely proportional to the proton velocity as protons lose their power mainly in electromagnetic interactions with orbital electrons of atoms. The more the protons slow down, the higher the energy they transfer to tissue per track length, causing the maximum dose deposition at a certain depth in tissue [15].

Chemical compositions of human tissues are essential in studying micro-dosimetry distributions in humans irradiated with radiation one may represent human tissues by their atomic compositions (% wt by elements). Chemical compositions of human tissues generally depend on breed, diet, age, sex, health, and they may vary appreciably (5-10%) among individual human beings [16].

Each tissue consists of elements. Proton interacts with them; therefore, the knowledge of the ratios of these elements is essential to calculate the mass stopping power for protons in the tissues and the density of the tissue. These percentages and tissue density values are given in Table 1.

Table 1. Elemental composition of lymph tissue and density of the tissue [17].

Human Tissue	Density (Kg m⁻³)	Composition (element: fraction) by weight
Lymph tissue		H: 10.8
		C: 0.04 1
		N: 0.011
		O: 0.832
		Na: 0.003
		S: 0.001
		Cl: 0.004

After that, and according to Equation 2, found the ionization potential for any element in the tissue as shown in Table 2.

Table 2. Ionization potential and atomic numbers of elements considered for lymph tissue.

No.	Elements	Atomic Number	Ionization Potential (MeV)
1	Hydrogen (H)	1	6.8560 x 10⁻⁵
2	Carbon (C)	6	1.0039 x 10⁻⁴
3	Nitrogen (N)	7	1.0895 x 10⁻⁴
4	Oxygen (O)	8	1.1769 x 10⁻⁴
5	Sodium (Na)	11	1.4464 x 10⁻⁴
6	Sulphur (S)	16	1.9088 x 10⁻⁴
7	Chlorine (Cl)	17	2.0024 x 10⁻⁴

3. Result and Discussions

The mass stopping power values for proton in lymph tissue calculated in units (MeV·cm²/g) in the energy range (1 KeV-200MeV) using the above methods show Compatible with the low and high energy region different at median energy range. As shown in Figure 1, At high energy (>1MeV), stopping power decrease with increased photon energy, i.e., does not have enough time to collide, and at intermediate energy region, stopping power reaches the maximum value (more ionization and excitation). In contrast, at low energies (E <25KeV), we observe the increase of the stopping power with the rise of the proton’s energy.

Figure 2 shows the proton range in (cm) and the energy range (1 KeV-200MeV) and is consistent with the experimental formula curve the proton range in the tissue is increased by increasing its energy. At energy (0.08 MeV), the proton reaches maximum energy loss in the tissue, where stopping power is (947.9906 MeV·cm²/g) and the range of the proton in that case (0.08MeV) is ~ (0.0135 cm), i.e., the tumor in this range requires the energy of the
proton is $\sim (0.0135$ MeV) to destroy it in the tissue. The percentage deviation between the experimental and the calculated stopping power values (using the above methods) for lymph tissue are shown in Table 3.

Table 3. Percentage Deviation (Stopping Power) in Lymph Tissue (MeV-cm2/g)

E_p (MeV)	Lymph Tissue	S.P (P.W)									
	Bethe	Error	Ziegler	Error	Ziegler (Vol. 3)	Error	SRIM	Error			
0.001	-	-	171.9211	-0.0568	171.7256	0.0570	-	-	171.8234		
1	241.0115	5.6478	264.4091	-3.7010	262.6737	-3.0648	250.3918	1.6900	254.6233		
2	205.5936	-15.3096	167.1687	4.1571	159.7417	8.9997	163.9561	6.1979	174.1180		
3	170.1757	-21.8434	123.4268	7.7590	117.9102	12.8007	120.4963	10.3797	133.0035		
4	134.7579	-21.2042	98.9881	7.2690	94.6882	12.1402	96.2983	10.2652	106.1835		
5	99.3400	-12.5447	85.5063	1.6043	81.8782	6.1065	80.7867	7.5401	86.8781		
6	63.9526	7.4841	72.0306	-4.5699	69.0740	-0.4851	69.8978	-1.6580	68.7389		
7	59.0160	4.8282	64.6296	-4.2770	62.0203	-0.2498	61.7956	0.1130	61.8654		
8	54.0794	2.5313	57.2314	-3.1516	54.9692	0.8716	55.5131	-0.1167	55.4843		
9	49.1428	3.0737	52.5000	-3.5175	50.4765	0.3503	50.4938	0.3159	50.6533		
10	44.2061	4.2444	47.7713	-3.5354	45.9863	0.2090	46.3658	-0.6112	46.0824		
15	30.9479	11.2896	37.3580	-7.8061	36.1010	-4.5960	33.3603	3.2419	34.4418		
20	24.1930	7.1831	26.9426	-3.7554	26.2137	-1.0792	26.3740	-1.6804	25.9308		
25	20.0058	9.4283	23.0407	-4.9855	22.5364	-2.8594	21.9851	-0.4235	21.8920		
30	17.1285	8.1297	19.1389	-3.2285	18.8590	-1.7922	18.9574	-2.3020	18.5210		
35	15.0183	9.3899	17.0574	-3.6870	16.9151	-2.8767	16.7231	-1.7616	16.4285		
40	13.3989	8.8933	14.9760	-2.5741	14.9713	-2.5435	15.0160	-2.8336	14.9505		
45	12.1136	10.5906	13.8735	-3.4382	13.9381	-3.8858	13.6608	-1.9347	13.3965		
50	11.0668	11.3809	12.7709	-3.4814	12.9048	-4.4828	12.5626	-1.8810	12.3263		
60	9.4608	10.2867	10.5659	-1.2484	10.8384	-3.7312	10.8708	-4.0181	10.4340		
70	8.2828	11.8752	9.4004	-1.4255	9.7466	-4.9268	9.6357	-3.8326	9.2664		
80	7.3793	11.6678	8.2349	0.0656	8.6549	-4.7903	8.6922	-5.1989	8.2403		
90	6.6629	12.9208	7.5088	0.1998	7.9762	-5.6719	7.9471	-5.3265	7.5238		
100	6.0801	10.3798	6.7826	-1.0527	7.2976	-8.0355	7.3423	-8.5954	6.7112		
150	4.2680	14.2127	-	-	-	-	-	-	5.4812	-11.0669	4.8746
200	-	-	-	-	-	-	-	-	4.5195	-	
X = energy loss of proton Ep and the equation in lymph tissue become:

\[F(x) = 0.0002368 \times E_p^{1.775 + 0.01352} \]

The error rate in these equations is 1.

Acknowledgments

Thanks to the Iraqi Ministry of Education for its support and those who helped to complete this research.

References

[1] H. Blattmann, “Tumor therapy with heavy charged particles,” in AIP Conference Proceedings, 1999, vol. 495, no. 1, pp. 444–449.
[2] D. Belkic, Theory of heavy ion collision physics in hadron therapy. Academic Press, 2012.
[3] S. R. Manohara, S. M. Hanagodimath, and L. Gerward, “Energy absorption buildup factors of human organs and tissues at energies and penetration depths relevant for radiotherapy and diagnostics,” J. Appl. Clin. Med. Phys., vol. 12, no. 4, pp. 296–312, 2011.
[4] H. Singh, S. K. Rathi, and A. S. Verma, “Stopping powers of protons in biological human body substances,” Univers. J. Med. Sci., vol. 1, no. 2, pp. 17–22, 2013.
[5] M. N. Sarsam, “Theoretical study of Energy loss of proton in human tissues,” Al-Qadisiyah J. pure Sci., vol. 18, no. 3, 2013.
[6] S. M. Seltzer and M. J. Berger, “Evaluation of the collision stopping power of elements and compounds for electrons and positrons,” Int. J. Appl. Radiat. Isot., vol. 33, no. 11, pp. 1189–1218, 1982.
[7] H. A. Bethe and J. Ashkin, “Experimental nuclear physics,” Wiley, New York, 1953.
[8] A. H. Ahmed, “Empirical Formulæ for Calculating Neutron Yield from (α, n) and (p, n) Reaction for the Light Element Targets Ph. D.” thesis, Salahadin University-Erbil, 2006.
[9] J. F. Ziegler, The stopping and ranges of ions in matter. Elsevier, 2013.
[10] H. H. Andersen and J. F. Ziegler, Hydrogen Stopping Powers and Ranges in All Elements, 3rd ed. New York: Pergamon Press, 1977.
[11] J. F. Ziegler, M. D. Ziegler, and J. P. Biersack, “SRIM—The stopping and range of ions in matter,” Nucl. Instruments Methods Phys. Res. Sect. B Beam Interact. with Mater. Atoms, vol. 268, no. 11–12, pp. 1818–1823, 2010.
[12] E. J. Brandas and J. R. Sabin, Advances in quantum chemistry. Academic Press, 2011.
[13] E. Sulistya, Kusminarto, and A. Hermanto, “Stopping Power and Range of Proton in Medium: A Study for Proton Radiotherapy,” in International Conference on Physics, 2012, pp. 147–152.
[14] J. Lilley, Nuclear physics: principles and applications. John Wiley & Sons, 2013.
[15] H. Paganetti, Proton therapy physics. CRC press, 2018.
[16] Y. S. Kim, “Human tissues: chemical composition and photon dosimetry data,” Radiat. Res., pp. 38–45, 1974.
[17] M. J. Berger et al., “Report 49,” J. Int. Comm. Radiat. Units Meas., no. 2, p. NP-NP, 1993.