Isolation and identification of bacterial pathogen from mastitis milk in Central Java Indonesia

by Dian Wahyu Harjanti
Isolation and identification of bacterial pathogen from mastitis milk in Central Java Indonesia

To cite this article: D W Harjanti et al 2018 IOP Conf. Ser.: Earth Environ. Sci. 102 012076

View the article online for updates and enhancements.
Isolation and identification of bacterial pathogen from mastitis milk in Central Java Indonesia

D W Harjanti\textsuperscript{1}, R Ciptaningtyas\textsuperscript{2}, F Wahyona\textsuperscript{1} and ET Setiati\textsuperscript{1}

\textsuperscript{1}Department of Animal Science, Faculty of Animal and Agricultural Sciences, Diponegoro University, Indonesia.
\textsuperscript{2}Department of Clinical Microbiology, Faculty of Medicine, Diponegoro University, Indonesia.

*E-mail: xihanharjanti@undip.ac.id

Abstract. Mastitis is a multi-etiologic disease of the mammary gland characterized mainly by reduction in milk production and milk quality due to intramammary infection by pathogenic bacteria. Nearly 85% of lactating dairy cows in Indonesia are infected with mastitis in various inflammation degrees. This study was conducted to isolate and identify the pathogen in milk collected from mastitis-infected dairy cows. The study was carried out in ten smallholder dairy farms in Central Java Indonesia based on animal examination, California mastitis test, isolation bacterial pathogens, Gram staining, Catalase and Coagulase test, and identification of bacteria species using Vitek. Bacteriological examination of milk samples revealed 15 isolates where Streptococcus was predominant species (73.3%) and the coagulase negative Staphylococcus species was identified at the least bacteria (26.7%). The Streptococcus bacteria found were Streptococcus uberis (2 isolates), Streptococcus sanguinis (6 isolates), Streptococcus dysgalactiae (2 isolates) and Streptococcus faecalis (1 isolate). The Staphylococcus isolates comprising of Staphylococcus simulans (1 isolate) and Staphylococcus chromogenes (3 isolates). Contamination of raw milk with pathogenic bacteria can cause outbreaks of human disease (milk borne disease). Thus, proper milk processing method that could inhibit the growth or kill these pathogenic bacteria is important to ensure the safety of milk and milk products.

Keywords: milk, mastitis, pathogen, Central Java, Streptococcus

1. Introduction

Indonesian dairy industry is based on smallholder farms grouped into cooperatives. Most of the farms have three to five head lactating cows. The dairy farms are based on the cut and carry system, in which the forage grasses are being gathered from the outside of the farms. Nearly 97% dairy farms are concentrated in West, Central and East Java, whereas around 3% are located in Sumatra. According to the data from the Indonesian Government of Statistic Agency, Indonesia is estimated to have more than 260 millions inhabitants in 2017, with the population growth nearly 1.67% annually. Therefore, milk and dairy product consumptions continue to increase rapidly in Indonesia. Nonetheless, the domestic milk production fails to meet demands of the population in the country, also the needs of the processing industry in terms of both quantity and quality. The Indonesian dairy farmers are facing many challenges to improve milk production and quality. One of the main challenges that impact both milk quantity and quality is a disease named Mastitis.

Mastitis is a multi-etiologic disease of the mammary gland characterized mainly by reduction in milk production and milk quality due to intramammary infection by pathogenic bacteria. The mastitis
prevalence in tropical country like Indonesia is very high as 75-83\%[1]. Mastitis treatment with intramammary antibiotic has been done for many years in Indonesia. Antibiotic treatment of clinical and subclinical mastitis is a key component of mastitis control program. However, in fact, single injection may not enough to cure the inflammation. Many factors could influence to this problems. The bacteria may be resistant to the antibiotic or the commercial antibiotic used may not susceptible to the specific bacteria species in udder. Previously, research had been conducted to identify the bacteria-causing mastitis in Indonesia. In 2002, Estuningsih et al. [2] found Staphylococcus agalactiae from 7 farms in Java area by PCR. Furthermore, in 2005, Salasia et al. [3] did the comparative study on phenotypic and genotypic of Staphylococcus aureus isolates from bovine subclinical mastitis in Java and comparing them to the Staphylococcus aureus from Germany. Nonetheless, the bacteria causing mastitis is not only Staphylococcus agalactiae and Staphylococcus aureus and the pathogenicity of the same bacteria species might be change due to environment and the specific antibiotic used. Increasing antibiotic resistance has become a serious concern worldwide. The resistance patterns of coagulate negative bacteria species were highly correlated with the antibiotic used in herd [4]. Since the species bacteria will be killed or inactivated with the specific antibiotic, hence, the antibiotic must be chosen based on the bacteria species in the infected animals. Therefore, determination of bacteria species from mastitis-infected cow is extremely important to choose the appropriate antibiotic for treatment, also the proper milk processing method for specific dairy products. Nowadays, highly automated identification system the new VITEK gram positive and negative identification cards provide stable and decisive result of bacteria identification [5,6,7]. The result from this study will provide a data of specific mastitis-causing bacteria for further rapid detection, proper mastitis treatment and control, also precise method for milk processing to ensure food safety.

2. Material and Method

2.1 Sample collection and bacteria isolation

A total of twelve individual milk samples were collected from subclinical mastitis cows aseptically, after performing California Mastitis Test (CMT). The cows were obtained from 10 smallholder dairy farms in three different geographic regions in Central Java during June - July 2016. All milk samples were cultured in Microbiology Laboratory Faculty of Medicine, Diponegoro University. Refrigerated milk samples were warm at room temperature (25°C) for half an hour and then homogenized by gently shaken it in order to disperse bacteria from milk fat. One standard loop (10\muL) of milk sample was streaked on 5% sheep blood agar (Oxoid™ Blood Agar Base, CM0055) and streaked using the quadrant streaking method for each sample. The inoculated plates were then incubated at aerobic condition at 37°C and checked after 24 and 48 h to eliminate slow growing bacteria. The plates were examined for growth, morphologic features such as colony size, shape, color and hemolytic characteristics. Growth more than one type of colonies was determined as mixed growth. Presumptive colonies were selected and sub cultured on 5% sheep blood agar (Oxoid™ Blood Agar Base CM0055) and incubated at aerobic condition at 37°C for 24 h to get a pure culture. After incubation, pure colonies were stained using Gram stain reagent (BD Difco BBL™ ref. 212525 (Gram Crystal Violet), 212542 (Gram Iodine), 212527 (Gram Decolorizer), 212531 (Gram Safranin) and bacteria were differentiated based on Gram reaction (Gram-positive or Gram-negative), cell membrane morphology and arrangements of the bacteria. Additional catalase test (Hydrogen Peroxide 3%) was done for Gram positive cocci, followed by coagulate test for catalase positive.

2.2 Bacteria Identification

Identification has been done by automatic method (Vitek® 2 Compact, Biomérieux, France). Gram positive and negative bacteria were identify using GP ID card and GN ID card respectively (Biomérieux, France)
3. Result and Discussion

Relatively up to date data on the etiology of bovine mastitis are available in other subtropical countries, mainly Europe America, Australia and Japan [8,9,10], but not in tropical country like Indonesia. Management conditions in Indonesia greatly differ from management systems in developed countries, in particular the feeding and milking management also the high temperature and humidity contributing risk factors for developing mastitis. Hence, the species and pathogenicity of pathogens in Indonesia may be differed from those in other countries.

A total of 12 mastitis milk samples were collected and streaked on the sheep blood agar. The examination was conducted on the growth, morphologic features such as colony size, shape, colour and haemolytic characteristics as presented in Table 1. There were 3 samples showed the mixed growth of two bacteria species, whereas the others only showed single bacteria species. Four isolates were positive in the catalase test, indicating that the bacteria were respire using the oxygen as aerobic or facultative anaerobic bacteria. The catalase negative bacteria may be anaerobe or they may be facultative anaerobes that only ferment and do not respire using oxygen as terminal electron acceptor. Four catalase positive bacteria that have been further tested were negative in the coagulase test. Coagulase negative bacteria have become common bovine mastitis causing pathogen in many countries and could therefore be described as emerging mastitis pathogens [11].

Identification of bacteria species from all samples were conducted by Vittek as shown in Table 2. The identified mastitis-causing bacteria were all gram positive Streptococci and Staphylococci bacteria. The Streptococcus bacteria found were Streptococcus uberis (2 isolates), Streptococcus sanguinis (6 isolates), Streptococcus dysgalactiae ssp dysgalactiae (1 isolate), Streptococcus mitis (1 isolate) and Streptococcus agalactiae (1 isolate), whereas Staphylococcus isolates comprising of Staphylococcus simulans (1 isolate) and Staphylococcus chromogenes (3 isolates). Evaluation on the occurrence of mastitis and identification of causing pathogen had been conducted in many countries. In Indonesia, previous studies in 2010 at the dairy farms in West and Central Java reported that Staphylococcus aureus and Streptococcus agalactiae were the major pathogen in mastitis milk with the prevalence rate 8.5% and 37.5% [12]. However in the present study, the Staphylococcus aureus is not present from all isolates. Previous study of Sugiri and Arri [12] was using a biochemical method to identify the mastitis causing bacteria, whereas we use Vittek in this study. Wallet et al [6] and Crowley et al [7] stated that Vittek system provided rapid and accurate bacteria identification. Staphylococci comprises 45 species and 21 subspecies which are known to be the main etiological agents of mastitis in dairy cows in worldwide [13]. Nonetheless, the clinical relevance of Staphylococcus aureus when isolated and cultured from mastitis milk are remained debatable. Some consider the Staphylococcus aureus as the major mastitis pathogens [14] and the others regard these bacteria as minor pathogens in bovine mastitis [15,16]. Therefore, we conducted an identification of coagulase negative Staphylococcus (CoNS) at the species level using Vittek to develop the effective control strategies for CoNS in bovine mastitis. Currently, our data showed that the Staphylococcus chromogenes was the most frequent isolated CoNS, indicating that this bacteria probably the most predominant CoNS causing mastitis in dairy cattle in Central Java. Previously in Iran, Hossein zadeh and Saei [13] reported that Staphylococcus haemolyticus (40.7%) and Staphylococcus chromogenes (15.7%) were the predominant CoNS in bovine mastitis cases. The catalase negative bacteria Streptococcus uberis, Streptococcus sanguinis, Streptococcus dysgalactiae ssp dysgalactiae, Streptococcus mitis, Streptococcus uberis, and Streptococcus agalactiae can cause persistent infections, which result in increased somatic cell count and decreased milk quality. The CMT results for those catalase negative bacteria found were varied from +++ to ++, which can be estimated containing 1,200,000 to 5,000,000 somatic cell/ml milk [17]. Based on current knowledge, it is difficult to know whether the coagulase negative bacteria behave as environmental or as contagious pathogens. Physiologically, lactoferrin secreted from secretary cells of mammary gland may act as antibacterial against the infection, thus, the lactoferrin concentration in milk will be higher during mastitis infection [18]. Dried manure, bedding and the decreased teat spincter patency due to the high teat sensitivity or late lactation can be the main factors of intramammary bacteria infection. Biosecurity against contagious mastitis pathogens such as post milking teat dip disinfection reduce coagulase negative species in the herd and the number of somatic cells in milk [19]. The continuous
monitoring of the bacteria found in current study in herds is needed. Moreover, special attention on the prevention and control of mastitis pathogens need to be placed in the top priority.

Table 1. California Mastitis Test Result, Morphologic features and characteristics of isolates.

| Sample number | CMT result | Colony types | Morphologic features | Haemolytic characteristics | Catalase test | Coagulase test |
|---------------|------------|--------------|----------------------|---------------------------|---------------|---------------|
| 1             | +++        | Mixed growth | Gram positive, cocci, translucent white | Weak hemolysis | Positive | Negative |
|               |            |              | Gram positive, cocci, translucent white and twisted (like a chain), translucent white | No hemolysis | Negative | - |
| 2             | +++        | Mixed growth | Gram positive, cocci, translucent white | Weak hemolysis | Negative | - |
| 3             | +++        | Single species | Gram positive, cocci, yellow | β- hemolytic | Positive | Negative |
| 4             | +++        | Single species | Gram positive, cocci, white | β- hemolytic | Negative | - |
| 5             | +++        | Single species | Gram positive, cocci and twisted (like a chain), translucent white | No hemolysis | Negative | - |
|               |            |              | Gram positive, cocci, yellow | β- hemolytic | Positive | Negative |
| 6             | +++        | Single species | Gram positive, cocci and chain, white | α-hemolytic | Negative | - |
| 7             | +++        | Single species | Gram positive, cocci and chain, white | α-hemolytic | Negative | - |
| 8             | +++        | Single species | Gram positive, cocci and chain, white | α-hemolytic | Negative | - |
| 9             | ++         | Single species | Gram positive, cocci, yellow | β- hemolytic | Positive | Negative |
| 10            | +++        | Single species | Gram positive, cocci and chain, white | α-hemolytic | Negative | - |
| 11            | +++        | Single species | Gram positive, cocci and chain, white | β- hemolytic | Negative | - |
| 12            | +++        | Single species | Gram positive, cocci and chain, white | α-hemolytic | Negative | - |

Table 2. Identification of mastitis causing pathogens.

| Identification Result | Number of isolate(s) | Prevalence |
|-----------------------|----------------------|------------|
| Staphylococcus simulans | 1                    | 6.7%       |
| Staphylococcus chromogens | 3                   | 20%        |
| Streptococcus uberis   | 2                    | 13.3%      |
| Streptococcus sanguinis | 6                   | 40%        |
| Streptococcus dysgalactiae ssp dysgalactiae | 1 | 6.7% |
| Streptococcus mitis    | 1                    | 6.7%       |
| Streptococcus agalactiae | 1                   | 6.7%       |
Conclusion
In conclusion, *Streptococcus* is predominant and the coagulase negative *Staphylococcus* species is identified at the least mastitis causing pathogens. The mastitis causing pathogens are *Streptococcus uberis*, *Streptococcus sanguinis*, *Streptococcus dysgalactiae* ssp *dysgalactiae*, *Streptococcus mitis* and *Streptococcus agalactiae*.

References

[1] Sudarwanto MH, Latif H, and Noordin M 2006 The relationship of the somatic cell counting to sub-clinical mastitis to improve milk quality. *Proc. of the 1st Int. AAPS Scientific Conf. Jakarta, 12-13th July 2006. Jakarta. Indonesia.*

[2] Estuningsih S, Soedarmanto I, Fink K, Lämmler C, and Wibawan IWT 2002 Studies on *Streptococcus agalactiae* Isolated from Bovine Mastitis in Indonesia. *Zoonoses and Public Health*19 (2) 185

[3] Salasía SIO, Khushnan Z, Lämmler C, and Zschöck M 2005 Comparative studies on pheno- and genotypic properties of Staphylococcus aureus isolated from bovine subclinical mastitis in central Java in Indonesia and Hesse in Germany. *J. Vet. Sci.* 2 103

[4] Schulza PJ, Smith KL, Hogan JS and Lovec BC 2004 Antimicrobial susceptibility of mastitis pathogens from first lactation and older cows *Vet Microbiol.* 102(1-2) 33

[5] Funke G, and KissingPF 2005 Performance of the new VITEK 2 card for identification of medically relevant gram-positive cocci in a routine clinical laboratory. *J. Clin. Microbiol.* 43 84

[6] Wallet F, Loiez C, Renaux E, Lemaitre N and Courcol RJ 2005 Performances of VITEK 2 Colorimetric Cards for Identification of Gram-Positive and Gram-Negative Bacteria. *J. Clin. Microbiol.* 22(4) 402

[7] Crowley E, Bird P, Fisher K, Goetz K, Boyle M, Benzinger MJ, Juenger M, Agin J, Goins D, and Johnson R 2012 Evaluation of the VITEK 2 Gram-Negative (GN) Microbial Identification Test Card: Collaborative Study *JAOAC Int.* 95(3) 778

[8] Piepers S, Meulemeester LD, de Kruijf A and Opsomer G 2007 Prevalence and distribution of mastitis pathogens in subclinically infected dairy cows in Flanders, Belgium. *J. Dairy. Res.* 74(4) 478

[9] Plozza A, Lievaart JJ, Potts G. and Barkema HW 2011 Subclinical mastitis and associated risk factors on dairy farms in New South Wales *Aust. Vet. J.* 89 1

[10] Hayashi T, Sugita T, HataE, KatsudaK, Zhang F, Kiku Y, Sugawara K, Ozawa T, Matsubara T, Ando T, Obayashi T, Ito T, Yabusaki T, Kudo K, Yarumoto H, Koiwa M, Oshida T, Tagawa Y, and Kawai K 2013 Molecular-based identification of yeasts isolated from bovine clinical mastitis in Japan. *Vet Med Sci.* 75(3) 387

[11] Pyörälä S and Taponen S 2009 Coagulase-negative *Staphylococci*-emerging mastitis pathogens *Vet. Microbiol.* 134(1-3) 3

[12] Sugiri, YD and AnriA 2010 Prevalence of mastitis causing pathogens (Staphylococcus aureus dan Streptococcus agalactiae) in small holder dairy farms in Java, Indonesia (in Bahasa Indonesia). Research Report of West Java Livestock Department.

[13] Hosseinizadeh S and Saei HD 2014 Staphylococcal species associated with bovine mastitis in the North West of Iran: Emerging of coagulase-negative staphylococci *Internl J. Vet. Sci.* 2 27

[14] Zhang S and Maddox CW 2000 Cytotoxic activity of coagulase-negative staphylococci in bovine mastitis *Infect Immun.* 68(102

[15] Schukken YH, Gonzalez RN, Tikosky LL, Schulte HF, Santiseteen CG, Welcome FL, Bennett GJ, Zurakowski MJ, Zadoks RN 2009 CNS mastitis: nothing to worry about? *Vet. Microbiol.* 134 9

[16] Supre K, Haesebrucke F, Zadoks RN, Vaneechoutte M, Piepers S, de Vliegher S 2011 Some coagulase-negative *Staphylococcus* species affect udder health more than others *J Dairy Sci.* 94 2329
[17] Middleton JR, HardinK, SteeverBJ and Tyler J 2004 Use of somatic cell counts and California mastitis test results from individual quarter milk samples to detect subclinical intramammary infection in dairy cattle from a herd with a high bulk tank somatic J Am Vet Med Assoc. 224 19

[18] Harjanti D W, Ciptaningtyas R, Al-Baarri A N and Kusumanti E 2017 Isolation and identification of lactoferrin and lactoperoxidase from the colostrum of Indonesian Uttawa crossbred goat Advanced Science Letters 23 3321

[19] Mahpudin, Wahyono F, and Harjanti DW. 2017. Effectiveness of Ageratum conyzoides leaves extract as green antiseptic for teat dipping practices in dairy cow (in Bahasa Indonesia) Agripet 17(1) 15
Isolation and identification of bacterial pathogen from mastitis milk in Central Java Indonesia

ORIGINALITY REPORT

| SIMILARITY INDEX | INTERNET SOURCES | PUBLICATIONS | STUDENT PAPERS |
|------------------|------------------|--------------|----------------|
| 13%              | 7%               | 11%          | 1%             |

PRIMARY SOURCES

1. J. A. Marengo, C. A. Nobre, G. Sampaio, L. F. Salazar, L. S. Borma. "Chapter 9 Climate change in the Amazon Basin: Tipping points, changes in extremes, and impacts on natural and human systems", Springer Science and Business Media LLC, 2011

2. www.tandfonline.com
   Internet Source

3. "10th National Congress of the Portuguese Society of Clinical Chemistry, Genetics and Laboratory Medicine", Clinical Chemistry and Laboratory Medicine (CCLM), 2018

4. microbeonline.com
   Internet Source

5. Hamza, Dalia A., Sohad M. Dorgham, and Amany Arafa. "Coagulase Gene Typing with Emphasis on Methicillin-Resistance
Staphylococci: Emergence to Public Health", Advances in Infectious Diseases, 2015.

J. P. Mpatswenumugabo, L. C. Bebora, G. C. Gitao, V. A. Mobegi, B. Iraguha, O. Kamana, B. Shumbusho. "Prevalence of Subclinical Mastitis and Distribution of Pathogens in Dairy Farms of Rubavu and Nyabihu Districts, Rwanda", Journal of Veterinary Medicine, 2017

Somayyeh Hosseinzadeh, Habib Dastmalchi Saei. "Staphylococcal species associated with bovine mastitis in the North West of Iran: Emerging of coagulase-negative staphylococci", International Journal of Veterinary Science and Medicine, 2014

M.C. González-Rodríguez, P. Cármenes. "Evaluation of the California mastitis test as a discriminant method to detect subclinical mastitis in ewes", Small Ruminant Research, 1996
K Getahun. "Bovine mastitis and antibiotic resistance patterns in Selalle smallholder dairy farms, central Ethiopia", Tropical Animal Health and Production, 05/2008

www.rohh.ugent.be

Internet Source

cdn.aphca.org

Internet Source

mediatum.ub.tum.de

Internet Source

Julia Traversari, Bart H. P. van den Borne, Claudio Dolder, Andreas Thomann, Vincent Perreten, Michèle Bodmer. "Non-aureus Staphylococci Species in the Teat Canal and Milk in Four Commercial Swiss Dairy Herds", Frontiers in Veterinary Science, 2019

Anjali Gangwal, SK Kashyap, Sushil Katiyar, Dheerendra Meena, Pramod Boyal, Kapil Gupta. "Isolation and Identification of Common Mastitis Causing Pathogens from Clinical Bovine Mastitic Milk", Journal of Pure and Applied Microbiology, 2017
Isolation and identification of bacterial pathogen from mastitis milk in Central Java Indonesia

GRADEMARK REPORT

FINAL GRADE

/0

GENERAL COMMENTS

Instructor