The first activation study of a δ-carbonic anhydrase: TweCAδ from the diatom *Thalassiosira weissflogii* is effectively activated by amines and amino acids

Andrea Angelia, Fatmah A. S. Alasmay, Sonia Del Prete, Sameh M. Osman, Zeid AlOthman, William A. Donald, Clemente Capasso and Claudiu T. Supuran

Department of Neurofarba, Sezione di Scienze Farmaceutiche e Nutraceutiche, Università degli Studi di Firenze, Florence, Italy;
Department of Chemistry, College of Science, King Saud University, Riyadh, Saudi Arabia;
Istituto di Bioscienze e Biorisorse, CNR, Napoli, Italy;
School of Chemistry, University of New South Wales, Sydney, Australia

ABSTRACT

The activation of the δ-class carbonic anhydrase (CAs, EC 4.2.1.1) from the diatom *Thalassiosira weissflogii* (TweCAδ) was investigated using a panel of natural and non-natural amino acids and amines. The most effective activator of TweCAδ was D-Tyr (K_A of 51 nM), whereas several other amino acids and amines, such as L-His, L-Trp, d-Trp, dopamine and serotonin were submicromolar activators (K_A from 0.51 to 0.93 μM). The most ineffective activator of TweCAδ was 4-amino-L-Phe (18.9 μM), whereas L-His, l-/d-Phe, l-/d-DOPA, l-Tyr, histamine, some pyridyl-alkylamines, L-adrenaline and aminoethyl-piperazine/morpholine were moderately potent activators (K_A from 1.34 to 8.16 μM). For any δ-CA, there are no data on the crystal structure, homology modelling and the amino acid residues that are responsible for proton transfer to the active site are currently unknown making it challenging to provide a detailed rationale for these findings. However, these data provide further evidence that this class of underexplored CA deserves more attention.

ARTICLE HISTORY

Received 28 January 2018
Revised 25 February 2018
Accepted 26 February 2018

KEYWORDS
Carbonic anhydrase; metalloenzymes; diatoms; activators; *Thalassiosira weissflogii*

1. Introduction

Carbonic anhydrases are an ubiquitous family of enzymes that catalyse the rapid interconversion between CO_2 and water to bicarbonate and protons. Of the seven genetically distinct families of CA enzymes known to date, the δ-class carbonic anhydrases (CAs, EC 4.2.1.1) are the least investigated. In 2000, Morel’s group discovered δ-CAs in the diatom *Thalassiosira weissflogii*, which was initially denominated TWCA1. Subsequently, a number of orthologues of this specific enzymes have been identified in most diatoms from natural phytoplankton assemblages and are responsible (along with other CAs) for CO_2 fixation by marine organisms. A related species of the original diatom in which these enzymes were reported, *T. pseudonana*, was demonstrated to possess genes for three δ-, five γ-, four α- and one ζ-CAs. However, none of these enzymes have been cloned and characterised in detail to date. Thus, diatoms can be considered the organisms with the most intricate and poorly understood distribution of CAs, and the roles of CAs are far from being well understood with the exception of their important role in CO_2 fixation and photosynthesis, as they provide bicarbonate or CO_2 to ribulose-1, 5-bisphosphate carboxylase/oxygenase (RUBISCO).

In 2013, Lee et al. cloned and purified the δ-CA from *T. weissflogii* and investigated its esterase activity (and not its CO_2 hydrase activity) using the substrate, 4-nitrophenyl acetate. Our group demonstrated that such esterase activity is artefactual; i.e. the activity does not result from hydrolysis of the ester at the zinc hydroxide active site of the enzyme. This was confirmed by performing the esterase hydrolysis catalysed reaction in the presence of the enzyme with and without a potent CA inhibitor (CAI) that selectively binds to the zinc active site. This highlights the importance of performing control experiments to confirm CA enzymatic activity. Our group characterised the CO_2 hydrase activity of this enzyme (denominated by us TweCAδ) and reported the first anion and sulphonamide inhibition studies for any δ-class enzyme. These data demonstrate that TweCAδ is similar to other CAs belonging to the α-, β-, γ-, ζ-, η- and θ-CAs, i.e. TweCAδ is an excellent catalyst for the hydration of CO_2 to bicarbonate and hydronium ions, and that its activity may be inhibited by anions and sulphonamides, the two main classes of simple CAs. However, no activation studies of this enzyme have been reported to date, although the CA activators (CAAs) are an important class of modulators for the activity of CA enzymes.

CAAs have been demonstrated to participate in the CA catalytic cycle, which is shown schematically in the following equations:

\[\text{H}_2\text{O} \rightarrow \text{EZn}^{2+} + \text{OH}^- + \text{CO}_2 \leftrightarrow \text{EZn}^{2+} + \text{HCO}_3^- \leftrightarrow \text{EZn}^{2+} + \text{OH}^- + \text{H}^+ \]

In the first step, a zinc-bound hydroxide species of the enzyme nucleophilically attacks the CO_2 substrate, which is bound in a hydrophobic pocket nearby and is optimally orientated for the hydration reaction to occur (Equation (1)). The second part of the process involves the replacement of bicarbonate formed in the hydration reaction by an incoming water molecule to form the acidic enzymatic species, EZn^{2+} + OH^- (Equation (1)). In order to
regenerate the zinc hydroxide species, a proton is transferred from the Zn(II)-bound water molecule to the external medium (Equation (2)), which is the rate-determining step of the entire catalytic cycle: 9:

\[
\text{EZn}^{2+} + \text{OH}_2^+ + \text{A} \rightleftharpoons [\text{EZn}^{2+} - \text{OH}_2^- - \text{A}] \\
\rightleftharpoons [\text{EZn}^{2+} - \text{HO}^- - \text{AH}^+] \rightleftharpoons \text{E}^\text{−} + \text{HO}^- + \text{AH}^+ \quad (3)
\]

enzyme – activator complexes

In the presence of activators (A in Equation (3)), this rate-determining step is facilitated by an additional proton release pathway, which involves the activator A bound within the enzyme active site. By forming an enzyme-activator complex, the proton transfer reaction becomes intramolecular and thus more rapid compared to the intermolecular process in which for example buffers can take part.5,10 The enzyme–activator complexes were thoroughly characterised for α-CAs of human (h) origin, such as hCA I and II, by means of kinetic and X-ray crystallographic techniques, which allowed the activator-binding site within the CA cavity and the structure–activity relationship governing these processes to be determined.5,10 However, CAA research has been relatively neglected compared with that for CAI. Inhibitors of the sulphonamide type5,11–13 that target CAs belonging to various classes and from various organisms have been extensively studied, and possess clinical applications as drugs for the treatment of oedema, glaucoma, epilepsy, obesity and cancer.14,15 Recently, CAs were also proposed as an alternative for the management of neuropathic pain,16 cerebral ischemia,17 arthritis17 and potentially as anti-infectives18. In contrast, the activation of CAs by naturally occurring amines and amino acids may play a role in increasing the activity of CAs in pathogens.19 In this paper, we report the first activation study of a δ-CA, investigating the activation profile with amines and amino acids of TweCAδ.

2. Materials and methods

2.1. Materials

Amino acids and amines (1–19) were commercially available, highest purity reagents from Sigma-Aldrich, Milan, Italy. TweCAδ was a recombinant protein produced as reported earlier by our group.5

2.2. CA enzyme activation assay

An SX.18Mw-R Applied Photophysics (Oxford, UK) stopped-flow instrument has been used to assay the catalytic activity of various CA isozymes for CO2 hydration reaction.18 Phenol red (at a concentration of 0.2 mM) was used as indicator, working at the absorbance maximum of 557 nm, with 10 mM Hepes (pH 7.5) as buffer, and 0.1 M Na2SO4 (for maintaining constant ionic strength, absorbance maximum of 557 nm, with 10 mM Hepes (pH 7.5) as concentration of 0.2 mM) was used as indicator, working at the instrument has been used to assay the catalytic activity of various enzymes are very similar. In the presence of 10 μM L-Trp as activator, the KM of TweCAδ remained unchanged (data not shown) but the kcat remained 8.15 times higher than in the absence of the activator (Table 1). This situation has been observed for all CAs investigated to date, belonging to all known CA genetic families, proving that presumably the CA activation mechanism is similar for all enzyme classes, involving facilitation of the proton transfer process by the activator molecule bound within the enzyme active site in the enzyme-activator complex.

Data of Table 2 show the TweCAδ activation with amino acids and amines (1–19). The activation profile with the same compounds for the widespread, physiologically relevant isoforms hCA I and II (belonging to the α-CA family) are also shown for comparison reasons. The following structure-activity relationship can be inferred for TweCAδ activation with these compounds: (i) the most effective TweCAδ activator was d-Tyr, with an activation constant of 51 nM, whereas several other amino acids and amines, such as L-His, L-Trp, D-Trp, dopamine and serotonin were submicromolar activators, with KM ranging between 0.51 and 0.93 μM; (ii) the most ineffective activator of TweCAδ was 4-amino-L-Phe, with an activation constant of 18.9 μM; (iii) the remaining derivatives investigated were effective to moderately potent activators, with KM ranging between 1.34 and 8.16 μM. Thus, the SAR for these compounds is rather “flat” because most were rather effective activators of this enzyme. However, some features will be discussed. The stereochemistry of the chiral centre for the amino acid derivatives seems to not be very important, since both L- (e.g. L-His, L-Trp) and D-amino acid derivatives (e.g. D-Trp, D-Tyr) showed effective TweCAδ activation (Table 2). Small changes in the scaffold of an activator led to important differences of activity. For example, introduction of an amino moiety in the 4 position of the phenyl ring in L-Phe (a rather effective activator) led to a massive loss of efficacy in compound 11, which was 8.8 times a less efficient

\[
v = \frac{v_{\text{max}}}{1 + \text{KM}/(1 + [\text{A}]_f/\text{KM})} \quad (4)
\]

where [A]f is the free concentration of activator.

Working at substrate concentrations considerably lower than KM ([S] < KM), and considering that [A]f can be represented in the form of the total concentration of the enzyme ([E]t) and activator ([A]t), the obtained competitive steady-state equation for determining the activation constant is given by the following equation:

\[
v = v_0 \cdot K_a - \left([\text{A}]_f - 0.5 \left((\frac{[\text{A}]_f + [\text{E}]_f + \text{KM}) - ([\text{A}]_f + [\text{E}]_f + \text{KM})^2 - 4\text{[A]}_f[\text{E}]_f \right)^{1/2} \right) \quad (5)
\]
Amino acids 1–11 and amines 12–19 investigated as TweCAα activators.

Table 1. Activation of human carbonic anhydrase (hCA) isozymes I, II, and TweCAα with l-Trp, at 25 °C, for the CO2 hydration reaction.

Isozyme	K_a (s$^{-1}$)	K_a^{a} (mM)	K_{cat} (s$^{-1}$)	K_s (µM)	l-Trp
hCA Ia	2.0 × 104	4.0	3.4 × 105	44	
hCA IIa	1.4 × 106	9.3	4.9 × 106	27	
TweCAαd	1.3 × 105	3.9	10.6 × 105	0.93	

aObserved catalytic rate without activator. K_M values in the presence and the absence of activators were the same for the various CAs (data not shown).

bObserved catalytic rate in the presence of 10 µM activator.

cThe activation constant (K_a) for each enzyme was obtained by fitting the observed catalytic enhancements as a function of the activator concentration.

dMean from at least three determinations by a stopped-flow CO2 hydrase method. Standard errors were in the range of 5–10% of the reported values (data not shown).

Table 2. Activation constants of hCA I, hCA II and the bacterial TweCAα with amino acids and amines 1–19, by a stopped-flow CO2 hydrase assay.

No.	Compound	hCA Ib	hCA IIb	TweCAαd
1	L-His	0.03	10.9	0.75
2	D-His	0.09	43	4.90
3	L-Phe	0.07	0.013	2.15
4	D-Phe	86	0.035	1.96
5	L-DOPA	3.1	11.4	2.11
6	D-DOPA	4.9	7.8	6.24
7	L-Trp	41	12	0.69
8	D-Trp	0.02	0.011	1.52
9	L-Tyr	0.04	0.013	0.051
10	D-Tyr	0.24	0.15	18.9
11	4-H$_2$N-L-Phe	2.1	125	1.34
12	Histamine	13.5	9.20	0.51
13	Dopamine	45	50	0.90
14	Serotonin	2.5	34	5.28
15	2-Pyridy-methylamine	26	34	5.28
16	(2-Amino-ethyl)pyridine	17	15	8.16
17	1-(2-Aminoethyl)-piperazine	7.4	2.30	4.37
18	4-(2-Aminoethyl)-morpholine	0.19	7.39	2.43

aMean from three determinations by a stopped-flow CO2 hydrase method. Standard errors were in the range of 5–10% of the reported values (data not shown).

bHuman recombinant isozymes, stopped flow CO2 hydrase assay method.

dDiatom enzyme, this work.

4. Conclusions
The first activation study of a δ-class CA is reported. The most effective TweCAα activator was δ-Tyr, with an activation constant of 51 nM, whereas several other amino acids and amines, such as

Figure 1. Amino acids 1–11 and amines 12–19 investigated as TweCAα activators.
References

1. Cox EH, McLendon GL, Morel FM, et al. The active site structure of Thalassiosira weissflogii carbonic anhydrase 1. Biochemistry 2000;39:12128–30.

2. McGinn PJ, Morel FM. Expression and regulation of carbonic anhydrases in the marine diatom Thalassiosira pseudonana and in natural phytoplankton assemblages from Great Bay, New Jersey. Physiol Plant 2008;133:78–91.

3. Tachibana M, Allen AE, Kikutani S, et al. Localization of putative carbonic anhydrases in two marine diatoms, Phaeodactylum tricornutum and Thalassiosira pseudonana. Photosynth Res 2011;109:205–21.

4. Lee RB, Smith JA, Rickaby RE. Cloning, expression and characterization of the δ-carbonic anhydrase of Thalassiosira weissflogii (Bacillariophyceae). J Phycol 2013;49:170–7.

5. (a) Del Prete S, Vullo D, Scozzafava A, et al. Cloning, characterization and anion inhibition study of the δ-class carbonic anhydrase (TweCA) from the marine diatom Thalassiosira weissflogii. Bioorg Med Chem 2014;22:531–7. (b) Vullo D, Del Prete S, Osman SM, et al. Sulfonamide inhibition studies of the δ-carbonic anhydrase from the diatom Thalassiosira weissflogii. Bioorg Med Chem Lett 2014;24:275–9. (c) Del Prete S, Vullo D, De Luca V, et al. Biochemical characterization of the δ-carbonic anhydrase from the marine diatom Thalassiosira weissflogii, TweCA. J Enzyme Inhib Med Chem 2014;29:906–11.

6. (a) Capasso C, Supuran CT. An overview of the alpha-, beta- and gamma-carbonic anhydrases from Bacteria: can bacterial carbonic anhydrases shed new light on evolution of bacteria? J Enzyme Inhib Med Chem 2015;30:325–32. (b) Del Prete S, Vullo D, Fisher GM, et al. Discovery of a new family of carbonic anhydrases in the malaria pathogen Plasmodium falciparum—the η-carbonic anhydrases. Bioorg Med Chem Lett 2014;24:4389–96. (c) Supuran CT. Structure-based drug discovery of carbonic anhydrase inhibitors. J Enzyme Inhib Med Chem 2012;27:759–72.

7. (a) Supuran CT. Carbonic anhydrases: from biomedical applications of the inhibitors and activators to biotechnological use for CO2 capture. J Enzyme Inhib Med Chem 2013;28:229–30. (b) Supuran CT. How many carbonic anhydrase inhibition mechanisms exist? J Enzyme Inhib Med Chem 2016;31:345–60. (c) Alteiro V, Di Fiore A, D’Ambrosio K, et al. Multiple binding modes of inhibitors to carbonic anhydrases: how to design specific drugs targeting 15 different isoforms? Chem Rev 2012;112:4421–68. (d) Abbate F, Winum JY, Potter BV, et al. Carbonic anhydrase inhibitors: X-ray crystallographic structure of the adduct of human isozyme II with EMATE, a dual inhibitor of carbonic anhydrases and steroid sulfatase. Bioorg Med Chem Lett 2004;14:4231–4.

8. (a) Supuran CT. Structure and function of carbonic anhydrases. Biochem J 2016;473:2023–32. (b) Supuran CT. Advances in structure-based drug discovery of carbonic anhydrase inhibitors. Expert Opin Drug Discov 2017;12:61–88. (c) Supuran CT. Carbonic anhydrases: novel therapeutic applications for inhibitors and activators. Nat Rev Drug Discov 2008;7:168–81. (d) Neri D, Supuran CT. Interfering with pH regulation in tumours as a therapeutic strategy. Nat Rev Drug Discov 2011;10:767–77. (e) Supuran CT, Vullo D, Manole G, et al. Designing of novel carbonic anhydrase inhibitors and activators. Curr Med Chem Cardiovasc Hematol Agents 2004;2:49–68.

9. (a) Briganti F, Mangani S, Orioli P, et al. Carbonic anhydrase activators: X-ray crystallographic and spectroscopic investigations for the interaction of isozymes I and II with histamine. Biochemistry 1997;36:10384–92. (b) Clare BW, Supuran CT. Carbonic anhydrase activators. 3: structure-activity correlations for a series of isozyme II activators. J Pharm Sci 1994;83:768–73. (c) Illes M, Scozzafava A, Supuran CT. Carbonic anhydrase activators. In: Supuran CT, Scozzafava A, Conway J, editors. Carbonic anhydrase: its inhibitors and activators. Boca Raton: CRC Press; 2004: 317–52. (d) Supuran CT. Carbonic anhydrase activators. Future Med Chem 2010;12:561–73.

10. (a) Akocak S, Lokal N, Vullo D, et al. Synthesis and biological evaluation of histamine Schiff bases as carbonic anhydrase I, II, IV, VII, and IX activators. J Enzyme Inhib Med Chem 2017;3:1305–12. (b) Angeli A, Vaiano F, Mari F, et al. Psychoactive substances belonging to the amphetamine class potently activate brain carbonic anhydrase isoforms VA, VB, VII, and XII. J Enzyme Inhib Med Chem 2017;32:1253–9. (c) Licsandru E, Tanc M, Kocsis I, et al. A class of carbonic anhydrase I – selective activators. J Enzyme Inhib Med Chem 2017;32:37–46.

11. (a) Scozzafava A, Menabuoni L, Mincione F, Supuran CT. Carbonic anhydrase inhibitors. A general approach for the preparation of water-soluble sulfonamides incorporating polyanino – polycarboxylate tails and of their metal complexes possessing long-lasting, topical intraocular pressure-lowering properties. J Med Chem 2002;45:1466–76. (b) Pacchiano F, Aggarwal M, Avvaru BS, et al. Selective hydrophobic pocket binding observed within the carbonic anhydrase II active site accommodate different 4-substituted-ureido-benzenesulfonamides and correlate to inhibitor potency. Chem Commun (Camb) 2010;46:8371–3. (c) Carta F, Scozzafava A, Supuran CT. Sulfonamides: a patent review (2008–2012). Expert Opin Ther Pat 2012;22:747–58. (d) Puccetti L, Fasolis G, Vullo D, et al. Carbonic anhydrase inhibitors. Inhibition of cystosolic/tumor-associated carbonic anhydrase isozymes I, II, IX, and XII with Schiff’s bases incorporating chromone and aromatic sulfonamide moieties, and their zinc complexes. Bioorg Med Chem Lett 2005;15:3096–101.

12. (a) Perfetto R, Del Prete S, Vullo D, et al. Cloning, expression and purification of the δ-carbonic anhydrase from the mantle of the Mediterranean mussel, Mytilus galloprovincialis. J Enzyme Inhib Med Chem 2017;32:1029–35. (b) Abdoli M, Angeli A, Bozdag M, et al. Synthesis and carbonic anhydrase I, II, VII, and IX inhibition studies with a series of...
benzo[d]thiazole-5- and 6-sulfonamides. J Enzyme Inhib Med Chem 2017;32:1071–8. (c) De Simone G, Langella E, Esposito D, et al. Insights into the binding mode of sulphamates and sulphamides to hCA II: crystallographic studies and binding free energy calculations. J Enzyme Inhib Med Chem 2017;32:1002–11. (d) Scozzafava A, Menabuoni L, Mincione F, et al. Carbonic anhydrase inhibitors: perfluoroalkyl/aryl-substituted derivatives of aromatic/heterocyclic sulfonamides as topical intraocular pressure-lowering agents with prolonged duration of action. J Med Chem 2000;43:4542–51.

13. (a) Supuran CT, Capasso C. Carbonic anhydrase from Porphyromonas gingivalis as a drug target. Pathogens 2017;6:E30. (b) Capasso C, Supuran CT. Inhibition of bacterial carbonic anhydrases as a novel approach to escape drug resistance. Curr Top Med Chem 2017;17:1237–48. (c) Supuran CT, Capasso C. New light on bacterial carbonic anhydrases phylogeny based on the analysis of signal peptide sequences. J Enzyme Inhib Med Chem 2016;31:1254–60. (d) Mastrolorenzo A, Rusconi S, Scozzafava A, et al. Inhibitors of HIV-1 protease: current state of the art 10 years after their introduction. From antiretroviral drugs to antifungal, antibacterial and antitumor agents based on aspartic protease inhibitors. Curr Med Chem 2007;14:2734–48.

14. (a) Carta F, Supuran CT. Diuretics with carbonic anhydrase inhibitory action: a patent and literature review (2005–2013). Expert Opin Ther Pat 2013; 23:681–91. (b) Masini E, Carta F, Scozzafava A, Supuran CT. Antiinfluenza carbonic anhydrase inhibitors: a patent review. Expert Opin Ther Pat 2013; 23:705–16. (c) Scozzafava A, Supuran CT, Carta F. Antiinfluenza carbonic anhydrase inhibitors: a literature and patent review. Expert Opin Ther Pat 2013;23:725–35.

15. (a) Monti SM, Supuran CT, De Simone G, Anticancer carbonic anhydrase inhibitors: a patent review (2008–2013). Expert Opin Ther Pat 2013;2:737–49. (b) Supuran CT. Carbonic anhydrase inhibition and the management of hypoxic tumors. Metabolites 2017;7:E48. (c) Ward C, Langdon SP, Mullen P, et al. New strategies for targeting the hypoxic tumour microenvironment in breast cancer. Cancer Treat Rev 2013;39:171–9. (d) Garaj V, Puccetti L, Fasolis G, et al. Carbonic anhydrase inhibitors: novel sulfonamides incorporating 1,3,5-triazine moieties as inhibitors of the cytosolic and tumour-associated carbonic anhydrase isozymes I, II and IX. Bioorg Med Chem Lett 2005;15:3102–8.

16. (a) Supuran CT. Carbonic anhydrase inhibition and the management of neuropathic pain. Expert Rev Neurother 2016;16:961–8. (b) Di Cesare Mannelli L, Micheli L, Carta F, et al. Carbonic anhydrase inhibition for the management of cerebral ischemia: in vivo evaluation of sulfonamide and coumarin inhibitors. J Enzyme Inhib Med Chem 2016;31:894–9.

17. (a) Margheri F, Ceruso M, Carta F, et al. Overexpression of the transmembrane carbonic anhydrase isoforms IX and XII in the inflamed synovium. J Enzyme Inhib Med Chem 2016;31:60–3. (b) Bua S, Di Cesare Mannelli L, Vullo D, et al. Design and synthesis of novel nonsteroidal anti-inflammatory drugs and carbonic anhydrase inhibitors hybrids (NSAIDs–CAIs) for the treatment of rheumatoid arthritis. J Med Chem 2017;60:1159–70.

18. (a) Del Prete S, Vullo D, Osman SM, et al. Anion inhibitors of the β-carbonic anhydrase from the pathogenic bacterium Francisella tularensis. Bioorg Med Chem 2017;25:4800–4. (b) Vullo D, Del Prete S, Di Fonzo P, et al. Comparison of the sulfonamide inhibition profiles of the β- and γ-carbonic anhydrases from the pathogenic bacterium Burkholderia pseudomallei. Molecules 2017;22:421–35. (c) Prete SD, Vullo D, di Fonzo P, et al. Sulfonamide inhibition profile of the γ-carbonic anhydrase identified in the genome of the pathogenic bacterium Burkholderia pseudomallei the etiological agent responsible of melioidosis. Bioorg Med Chem Lett 2017;27:490–5. (d) Chohan ZH, Supuran CT, Scozzafava A. Metal binding and antibacterial activity of ciprofloxacin complexes. J Enzyme Inhib Med Chem 2005;20:303–7. (e) Supuran CT, Scozzafava A, Mastrolorenzo A. Bacterial proteases: current therapeutic use and future prospects for the development of new antibiotics. Expert Opin Ther Pat 2001;11:221–59.
Carbonic anhydrase activators: the first X-ray crystallographic study of an adduct of isozyme I. Bioorg Med Chem Lett 2006;16:5152–6.

24. (a) Vullo D, Nishimori I, Innocenti A, et al. Carbonic anhydrase activators: an activation study of the human mitochondrial isozymes VA and VB with amino acids and amines. Bioorg Med Chem Lett 2007;17:1336–40. (b) Pastorekova S, Vullo D, Nishimori I, et al. Carbonic anhydrase activators: activation of the human tumor-associated isozymes IX and XII with amino acids and amines. Bioorg Med Chem 2008;16:3530–6. (c) Nishimori I, Onishi S, Vullo D, et al. Carbonic anhydrase activators: the first activation study of the human secretory isozyme VI. Bioorg Med Chem 2007;15:5351–7.

25. (a) Parkkila S, Vullo D, Puccetti L, et al. Carbonic anhydrase activators: activation of isozyme XIII with amino acids and amines. Bioorg Med Chem Lett 2006;16:3955–9. (b) Vullo D, Innocenti A, Nishimori I, et al. Carbonic anhydrase activators: activation of the human isoforms VII (cytosolic) and XIV (transmembrane) with amino acids and amines. Bioorg Med Chem Lett 2007;17:4107–12. (c) Vullo D, Nishimori I, Scozzafava A, Supuran CT. Carbonic anhydrase activators: activation of the human cytosolic isozyme III and membrane-associated isozyme IV with amino acids and amines. Bioorg Med Chem Lett 2008;18:4303–7.

26. (a) Innocenti A, Hilvo M, Parkkila S, et al. Carbonic anhydrase activators. Activation of the membrane-associated isozyme XV with amino acids and amines. Bioorg Med Chem Lett 2009;19:3430–3. (b) Supuran CT, Dinculescu A, Balaban AT. Carbonic anhydrase activators. Part 5. CA II activation by 2,4,6-trisubstituted pyridinium cations with 1-(α-aminoalkyl) side chains. Rev Roum Chim 1993;38:343–9. (c) Supuran CT, Barboiu M, Luca C, et al. Carbonic anhydrase activators. Part 14. Synthesis of mono- and bis-pyridinium salt derivatives of 2-amino-5-(2-aminoethyl)- and 2-amino-5-(3-aminopropyl)-1,3,4-thiadiazole, and their interaction with isozyme II. Eur J Med Chem 1996;31:597–606. (d) Ilies MA, Banciu MD, Ilies M, et al. Carbonic anhydrase activators. Part 17. Synthesis and activation study of a series of 1-(1,2,4-triazole-(1H)-3-yl)-2,4,6-trisubstituted-pyridinium salts against isozymes I, II and IV. Eur J Med Chem 1997;32:911–8.

27. (a) Ilies M, Banciu MD, Ilies MA, et al. Carbonic anhydrase activators: design of high affinity isozymes I, II, and IV activators, incorporating tri-/tetrasubstituted-pyridinium-azole moieties. J Med Chem 2002;45:504–10. (b) Dave K, Scozzafava A, Vullo D, et al. Pyridinium derivatives of histamine are potent activators of cytosolic carbonic anhydrase isoforms I, II and VII. Org Biomol Chem 2011;9:2790–800. (c) Dave K, Ilies MA, Scozzafava A, et al. An inhibitor-like binding mode of a carbonic anhydrase activator within the active site of isozyme II. Bioorg Med Chem Lett 2011;21:2764–8.

28. (a) Scozzafava A, Supuran CT. Carbonic anhydrase activators: human isozyme II is strongly activated by oligopeptides incorporating the carboxyterminal sequence of the bicarbonate anion exchanger AE1. Bioorg Med Chem Lett 2002;12:1177–80. (b) Scozzafava A, Supuran CT. Carbonic anhydrase activators: high affinity isozymes I, II, and IV activators, incorporating a beta-alanyl-histidine scaffold. J Med Chem 2002;45:284–91. (c) Abd MR, Vullo D, Saada MC, et al. Carbonic anhydrase activators: activation of human isozymes I, II and IX with phenylsulfonylhydrazido-l-histidine derivatives. Bioorg Med Chem Lett 2009;19:2440–3. (d) Saada MC, Montero JL, Vullo D, et al. Carbonic anhydrase activators: gold nanoparticles coated with derivatized histamine, histidine, and carnosine show enhanced activatory effects on several mammalian isoforms. J Med Chem 2011;54:1170–7. (e) Zhang Y, Legrand YM, Petit E, et al. Dynamic encapsulation and activation of carbonic anhydrase in multivalent dynamic host matrices. Chem Commun (Camb) 2016;52:4053–5.

29. (a) Vullo D, De Luca V, Scozzafava A, et al. The first activation study of a bacterial carbonic anhydrase (CA). The thermostable α-CA from Sulfitohydrogenibium yellowstonense YO3AOP1 is highly activated by amino acids and amines. Bioorg Med Chem Lett 2012;22:6324–7. (b) Innocenti A, Zimmerman SA, Scozzafava A, et al. Carbonic anhydrase activators: activation of the archaeal beta-class (Cab) and gamma-class (Cam) carbonic anhydrases with amino acids and amines. Bioorg Med Chem Lett 2008;18:6194–7. (c) Vullo D, Del Prete S, Osman SM, et al. Comparison of the amine/amino acid activation profiles of the β- and γ-carbonic anhydrases from the pathogenic bacterium Burkholderia pseudomallei. J Enzyme Inhib Med Chem 2018;33:25–30. (d) Vullo D, Del Prete S, Osman SM, et al. Burkholderia pseudomallei γ-carbonic anhydrase is strongly activated by amino acids and amines. Bioorg Med Chem Lett 2017;27:77–80.