Introduction

Selective destruction of relatively homogeneous neuronal populations by means of specific neurotoxins represents an important experimental tool for modelling various pathological conditions of the central nervous system. The neurotoxin DSP-4, N(2-chloroethyl)-N-ethyl-2-bromobenzylamine, has a predilection for the noradrenergic terminals of the brainstem nucleus of the locus coeruleus. It readily passes the blood-brain barrier when administered systemically to rats and causes a rapid and long-lasting depletion of norepinephrine (NE) in the cerebral cortex, hippocampus, cerebellum and spinal cord (4,6). Although the effect of systemic administration of DSP-4 was studied extensively enough (5,7,9), a lack of information exists on the local "lesion" strategy. That is why we studied retention of spatial orientation in the T-maze with food motivation in rats subjected to DSP-4 lesions of selected brain areas. Effects of DSP-4 and halucinogenic mescaline, administered in the same way, were compared. The action of both drugs tested are possibly mediated via their spontaneously formed cyclic aziridinium ion derivatives in the brain (8,22).

Materials and methods

Fifty four adult male Wistar rats weighing 210 - 250 g were used at the beginning of experiments. The animals were adapted to the conditions of the laboratory vivarium for a period of 14 days. Out of the experimental sessions, the rats were kept in plexiglass cages with three animals in each. During the experiments with appetitive motivation in the T-maze the diet was decreased to 8 pellets for a rat per day, water was accessible ad libitum. One group always consisted of six animals.

The T-maze was composed of fine segments (each 12 cm wide, 30 cm long, 11 cm high) fitted on one to another. Both the starting and finishing parts were the same measuring 26 x 26 cm. The experimental conditions utilized the rats ability to find their way along a set of passages. The hungry animal had the task to make its way through the maze, without turning aside into various arms, until it reached the exit, where food awaited it in form of a few pellets.

The rats were trained in the T-maze once a day for 14 days. The longest time spent in the maze was 3 minutes. Those animals which did not reach the exit or took longer than permitted 3 minutes were discarded. Completing their training, the rats were divided into six experimental groups (both drugs administered into three selected brain structures separately) and three groups of control sham-operated rats administered only saline into the same brain structures to check up on effects of anaesthesia and surgery. Throughout the actual sessions, the time latency taken to reach the target and the number of incorrect turns aside were counted.

Administration of drugs tested was performed by means of permanently introduced cannula. Animals were placed in a stereotaxic frame under sodium thiopental (50 mg/kg Thiopental VUF B in., intraperitoneally) anaesthesia. After incision and retraction of skin, connective tissue and muscle, trephine openings approximately 1 mm in diameter were placed onto the exposed skull unilaterally to the left with respect to the sagittal suture. The stereotaxic coordinates of the intracerebral cannulae were as follows: the ventriculus lateralis cerebri - 1.0 mm behind the bregma, 3.75 mm below the surface of the skull (V) and 1.6 mm laterally to the
sagittal suture (L), the nucleus basalis of Meynert (nBM) - 0.8 mm behind the bregma, V=8.0 mm, L=2.6 mm, the nucleus septi medialis (nsm) - 0.75 mm before the bregma, V=5.5 mm, L=0. Recovery period between surgery and drug administration was 48 hours. DSP-4 and mescaline were given in a dose of 0.1 mg in a volume of 3 µl of 0.9 % saline.

Effect of mescaline was investigated 60 and 120 minutes after administration and further during 22 successive days (one trial per day). Effect of DSP-4 was investigated 30 and 90 minutes after administration and then during 9 consecutive days (one trial per day).

At the end of this study, the experimental animals were given a lethal dose of sodium thiopental, brains were removed after tracing the cannula pathway with methylene blue for verification of targeted brain structures, frontal brain sections were processed by standard histological method for hematoxyline-eosin stained slides.

The statistical analyses were performed on a PC with the BMDP program P7D: analysis of variance (ANOVA), t-test with Bonferoni’s correction.

Tab. 1: Control and experimental groups, their characterization, number of animals in each group used, concentration of chemicals, site of their administration in the brain structures, and time schedule of examination

Group	Drug	Structure	Time of Examination
Control	0.9 % saline	v.c.l.	30, 60, 90, 120 min.
Experiment 1	Mescaline	nBM	1, 2, 3, 4, 5, 6, 7, 8
Experiment 2	DSP-4	nsm	9, 10, 14, 15, 16, 19
n = 6	0.1 mg in 3 µl	21, 22 days	
	0.9% saline		

Results

Mescaline lengthened time latency of finding the goal in the T-maze 60 and 120 minutes after its administration into the nBM and nsm. At the same time, the effect of in-tracerobroventricular administration of mescaline did not differ from the control group with saline only. After mescaline administration, the deterioration of spatial orientation was observed in all groups with strains tested on day 1 and day 2. However, decline in time latency outlasted for much longer time in the nBM group, and especially in the nsm group in comparison with rats given the mes-caline into the lateral cerebral ventricle (Fig. 1). DSP-4 worsened the performance in the T-maze 30 and 90 minutes after its administration into the lateral cerebral ventricle, this effect lasted only 48 hours. Protraction of time latency was somewhat longer (until day 3) after administration of DSP-4 into the nBM. On the contrary, the lengthening of time latency was lesser in case of DSP-4 administration into the nsm (Fig. 2). Histological verifica-tion proved the right placement of the cannula tip into all targeted structures.

Discussion

We have previously demonstrated mescaline capability to impair spatial orientation and movement of experimental animals in an open field after systemic administration (10,11). Attempting to obtain further information on possible sites of intervention of neurotoxins in the brain, we chose a local mode of administration into the selected brain structures in the present study.

The nBM and nsm represent the source of two principal cholinergic systems of the brain (12,19). The role which septum plays for the hippocampus is similar to that of the nBM for the neocortex. At present, the key role of the nBM in the etiopathogenesis of senile dementia of Alzheimers type is recognized: it holds true particularly for early stages of this disease (15,18).

Mescaline showed the most marked suppressive effect on spatial behavior of experimental animals after administration into the nBM, and especially into the nsm. On the other hand, the administration into the lateral cerebral ventricle was less effective. These changes make us think of possible participation of monoaminergic neurotransmission in its mechanism of action. There are evidences that combined disruption of noradrenergic and cholinergic transmission may result in some cognitive disturbances (12,15). At two-phase effect of mescaline was also noted. It consisted of initial prolongation of examined time latency, followed by a certain shortening of it, which was followed by further period of latency prolongation. Similar pattern was observed by Davis and Hatton (1987) in case of active evasive reaction. This effect could be explained by gradual interference of mescaline with more than only one neuronal mechanism. The first one could react „immediately“, i.e., in hours or maximally days after administration of single dose of drug. The second one is „delayed“ after latency of more than one week. We suppose that former „immediate“ mechanism is based on a direct action predominantly at the receptor level, whereas the „delayed“ reaction probably reflects the actual destructive changes of the whole neuronal populations induced by the neurotoxic effect (8).

Also the results of experiments with DSP-4 make us think of participation of a central noradrenergic mecha-nism. Published data confirm participation of this system in some forms of learning and memory (13,14,16,17,20). Depletion of norepinephrine after DSP-4 administration generally results in a decrease of searching activity, a decreased reaction to novelty, and increased latency of approach behaviour (4).

Acknowledgements

The technical help of Mrs. Helena Antlová and Mrs. Eva Reslová is gratefully acknowledged. Statistical analyses were performed by Mgr. Vaclav Bliha of the Biostatistic Unit of the Pukyne Military Medical Academy. This work was partly supported by grant No. 307/95/1537 from the Grant Agency of the Czech Republic.
sagittal suture (L), the nucleus basalis of Meynert (nBM) - 0.8 mm behind the bregma, V=8.0 mm, L= 2.6 mm, the nucleus septi medialis (nsm) - 0.75 mm before the bregma, V=5.5 mm, L= 0. Recovery period between surgery and drug administration was 48 hours. DSP-4 and mescaline were given in a dose of 0.1 mg in a volume of 3 µl of 0.9 % saline.

Effect of mescaline was investigated 60 and 120 minutes after administration and further during 22 successive days (one trial per day). Effect of DSP-4 was investigated 30 and 90 minutes after administration and then during 9 consecutive days (one trial per day).

At the end of this study, the experimental animals were given a lethal dose of sodium thiopental, brains were removed after tracing the cannula pathway with methylene blue for verification of targeted brain structures, frontal brain sections were processed by standard histological method for hematoxilin-eosine stained slides.

The statistical analyses were performed on a PC with the BMDP program P7D: analysis of variance (ANOVA), t-test with Bonferroni’s correction.

Tab. 1: Control and experimental groups, their characterization, number of animals in each group used, concentration of chemicals, site of their administration in the brain structures, and time schedule of examination

Results

Mescaline lengthened time latency of finding the goal in the T-maze 60 and 120 minutes after its administration into the nBM and nsm. At the same time, the effect of in-tracerebroventricular administration of mescaline did not differ from the control group with saline only. After mescaline administration, the deterioration of spatial orientation was observed in all groups with structures tested on day 1 and day 2. However, decline in time latency outlasted for much longer time in the nBM group, and especially in the nsm group in comparison with rats given the mescaleine into the lateral cerebral ventricle (Fig. 1). DSP-4 worsened the performance in the T-maze 30 and 90 minutes after its administration into the lateral cerebral ventricle, this effect lasted only 48 hours. Protraction of time latency was somewhat longer (until day 3) after administration of DSP-4 into the nBM. On the contrary, the lengthening of time latency was lesser in case of DSP-4 administration into the nsm (Fig. 2). Histological verification proved the right placement of the cannula tip into all targeted structures.

Discussion

We have previously demonstrated mescaline capability to impair spatial orientation and movement of experimental animals in an open field after systemic administration (10,11). Attempting to obtain further information on possible sites of intervention of neurotoxins in the brain, we chose a local mode of administration into the selected brain structures in the present study.

The nBM and nsm represent the source of two principal cholinergic systems of the brain (12,19). The role which septum plays for the hippocampus is similar to that of the nBM for the neocortex. At present, the key role of the nBM in the etiopathogenesis of senile dementia of Alzheimer’s type is recognized: it holds true particularly for early stages of this disease (15,18).

Mescaline showed the most marked suppressive effect on spatial behavior of experimental animals after administration into the nBM, and especially into the nsm. On the other hand, the administration into the lateral cerebral ventricle was less effective. These changes make us think of possible participation of monoaminergic neurotransmission in its mechanism of action. There are evidences that combined disruption of noradrenergic and cholinergic transmission may result in some cognitive disturbances (1,2,15). At two-phase effect of mescaline was also noted. It consisted of initial prolongation of examined time latency, followed by a certain shortening of it, which was followed by further period of latency prolongation. Similar pattern was observed by Davis and Hatzoun (1987) in case of active evasive reaction. This effect could be explained by gradual interference of mescaline with more than only one neuronal mechanism. The first one could react “immediately”, i.e., in hours or maximally days after administration of single dose of drug. The second one is „delayed“ after latency of more than one week. We suppose that former „immediate“ mechanism is based on a direct action predominantly at the receptor level, whereas the „delayed“ reaction probably reflects the actual destructive changes of the whole neuronal populations induced by the neurotoxic effect (8).

Also the results of experiments with DSP-4 make us think of participation of a central noradrenergic mechanism. Published data confirm participation of this system in some forms of learning and memory (13,14,16,17,20). Depletion of norepinephrine after DSP-4 administration generally results in a decrease of searching activity: a decreased reaction to novelty, and increased latency of approach behaviour (4).

Acknowledgements

The technical help of Mrs. Helena Antlová and Mrs. Eva Reslová is gratefully acknowledged. Statistical analyses were performed by Mgr. Vaclav Blaha of the Biostatistic Unit of the Purkyné Military Medical Academy. This work was partly supported by grant No. 307/95/1537 from the Grant Agency of the Czech Republic.

Tab. 1: Control and experimental groups, their characterization, number of animals in each group used, concentration of chemicals, site of their administration in the brain structures, and time schedule of examination

Group	Drugs Structure	Time of Examination
Control	0,9 % saline	v.c.l. 30, 60, 90, 120 min.
Experiment 1	Mescaline n.B.M.	1, 2, 3, 4, 5, 6, 7, 8
Experiment 2	DSP-4 n.s.m.	9, 10, 14, 15, 16, 19
n = 6	0.1 mg in 3 µl	21, 22 days
0,9 % saline		

Fig. 1: Effect of mescaline in a dose of 0.1 mg on spatial orientation of animals tested in the T-maze.

Fig. 2: Effect of DSP-4 in a dose of 0.1 mg on spatial orientation of animals tested in the T-maze.
Chemicals

Materials and Methods

Introduction

Benfluron [5-(2-dimethylaminoethoxy)-3-oxo-7H-benzo[e][1,4]diazepine hydrochloride] is a potential antineoplastic agent (5,6) exhibiting interesting pharmacodynamic properties in experiments carried out in vitro (animal and human cells) and in vivo (2,9,10,11). Biotransformation of benfluron in vitro and benfluron was also studied with the use of experimental (2,9,10,11). Biotransformation of in vivo human cells) and (in animal and in vitro zo[]fluorene hydrochloride is a potential antineoplastic agent (5,6) exhibiting interesting pharmacodynamic properties in experiments carried out using a recirculating perfusion system. Benfluron was added to the reservoir as a bolus in doses of 200, 100, 30 mg/kg of body weight and 1 mg/perfusate volume and also as a continual infusion in a dose of 0.1 mg/min in separate series of experiments. The following metabolites formed during Phase I biotransformation were found in the perfusion liquid as well as in the bile: benfluron Noxide, 9-hydroxybenfluron, demethylated 9-hydroxybenfluron, demethylated benfluron, and reduced benfluron. The major Phase II metabolite found in the bile samples was the glucuronide of 9-hydroxybenfluron. The pharmacokinetic profile of benfluron in IPRL indicated its main disposition and metabolic pathway, i.e. its rapid extraction from perfusate by the liver (t1/2α = 3.76 min), 9-hydroxylation followed up Oguluronidation and excretion to the bile. It was revealed that 12.5 % of the total dose of the parent compound was excreted in the bile in the form of conjugates after the first hour of perfusion, 52 % during 1.5 hour, and 70 % during 2 hours after the administration of benfluron. The conjugates with glucuronic acid represented 96.98 % of all metabolites found in the bile.

Key words: Isolated perfused rat liver; Benfluron biotransformation, Glucuronide conjugation

References

1. Abe K, Horiuchi M, Yoshimura K. Potentiation by DSP-4 of EEG slowing and memory impairment in basal forebrain lesions. Eur J Pharmacol 1997;321:39-43.

2. Altman HL, Stone WS, rgen SO. Evidence for a possible functional interaction between serotonergic and cholinergic mechanisms in memory retrieval. Behav Neurosci 1997;11:125-4.

3. Chen Y, Chang J, Lu Y. Experimental procedures and new methods for the isolation and identification of drugs in the brain and liver. J Neurosci Methods 1998;71:125-54.

4. Diederich A, Mogilnicka E, Hunn C, Day DL. Novelty-induced behavior in the rat after selective damage of locus coeruleus projection by DSP-4, a new noradrenergic neurotoxin. Pharmacol Biochem Behav 1984;14:13-8.

5. Friml M, Gutfett M, Grinats K. The response of serotonergic neurons to systematically administered DSP-4 in the rat: an immunohistochemical study using antibodies to norepinephrine and dopamine-β-hydroxylase. J Chem Neuroanat 1999;1:309-21.

6. Gilbert CI. Injection of MAO B, but not MAO A, blocks DSP-4 toxicity on central NE neurons. European J Pharmacol 1997;34:13-5.

7. Grzanna R, Bürger U, Friml M, Gutfett M. Acute action of DSP-4 on central serotonergic neurons: biochemical and immunohistochemical evidence for differential effects. J Histochem Cytochem 1989;37:145-3.

8. Herlitz J, Kroupář M, Kröger B, Jäger P, Podolský J. Modelling of some neuro-pathological states of the central nervous system by antidepresant drugs. Curr Psychopharmacol 1992;2:141-7.

9. Jand-Eichler G and Zehnder LH. DSP-4: a novel compound with numerous effects on serotonergic neurons of adult and developing rats. Brain Res 1986;33:141-5.

10. Kroupař M and Herlitz J. Effects of muscimol and its derivative N(4,5,6,7-tetramethyl-2-thienyl)acetamide on the spatial orientation of rats in a T-maze. Physiol Behav 1989;38:497-302.

11. Kroupař M, Herlitz J, Bäuerle J. Effects of antidepresant drugs N(4,5,6,7-tetramethyl-2-thienyl)acetamide and Zehnder LH. DSP-4 on the spatial orientation of rats in a T-maze. Physiol Behav 1989;38:497-302.

12. Moran PM, Le Maitre MH, Philouze V, Drayman JM, Allain H, Leonard BE. Methyl ester of 2,2-dimethoxy-2-phenylacetamide on the spatial orientation of rats in a T-maze. Physiol Behav 1989;38:497-302.

13. Morley MJ, Shah K, Brandau CM, Szabadi E. DSP-4 and Herlitz J. Novelty-induced behavior in the rat after selective damage of the nucleus basalis magnocellularis (NMB) by concurrent noradrenergic depletion using DSP-4 in the rat. Brain Res 1992;595:327-33.

14. Olivi M, Yoshimura A, Kohsaka Y, Nishino T. Neurotoxic DSP-4 lesion impairs learning of working memory provided by hippocampal muscarinic receptors. Brain Res. 1997;727:277-81.

15. Santucci AC, Homanics V, Drayman KL. Pharmacological evaluation of combined cholinergic/noradrenergic in vivo learning deficits in rats. Clin Neuropharmacol 1991;14:1-8.

16. Sirvi J, Riekkinen Jr P, Valjaka A, Jolkkonen J. The effects of norepinephrine neurons with DSP-4 impairs the acquisition of temporal discrimination but does not affect memory for a delayed conditional discrimination task. Psychopharmacology (Berl) 1997;130:163-73.

17. Zehnder LH and Jand-Eichler G. Neurexin of N(D4,5,6,7-tetramethyl-2-thienyl)acetamide hydrochloride (DSP-4) in rat brain was detected in the cerebellum. Eur J Pharmacol 1985;149:3-5.

RNDr. Marie Koupilová, CSc.,
Purkyně Military Medical Academy,
Dept. of Toxicology,
Stíinkova 878, 500 01 Hradec Králové,
Czech Republic.
e-mail: koupilova@pmfhk.cz

Zbyněk Svoboda1, Milan Nobilis1, Jaroslav Ředina1, Karel Lemos2

Institute of Experimental Biofarmaceutics, Joint Research Centre of PRO.MED.CS Praha a.s. and the Czech Academy of Sciences, Hradec Králové1, Palacky University, Olomouc: Department of Analytical Chemistry2

Summary: The isolated perfused rat liver method (IPRL) was used to find, isolate and identify further metabolites of Phase I and Phase II biotransformation of the potential cytostatic agent benfluron with special regard to the conjugation processes. Its pharmacokinetic profile during the perfusion was also estimated. The rat liver was isolated from the body and perfused in vitro using a recirculating perfusion system. Benfluron was added to the reservoir as a bolus in doses of 200, 100, 30 mg/kg of body weight and 1 mg/perfusate volume and also as a continual infusion in a dose of 0.1 mg/min in separate series of experiments. The following metabolites formed during Phase I biotransformation were found in the perfusion liquid as well as in the bile: benfluron Noxide, 9-hydroxybenfluron, demethylated 9-hydroxybenfluron, demethylated benfluron, and reduced benfluron. The major Phase II metabolite found in the bile samples was the glucuronide of 9-hydroxybenfluron. The pharmacokinetic profile of benfluron in IPRL indicated its main disposition and metabolic pathway, i.e. its rapid extraction from perfusate by the liver (t1/2α = 3.76 min), 9-hydroxylation followed up Oguluronidation and excretion to the bile. It was revealed that 12.5 % of the total dose of the parent compound was excreted in the bile in the form of conjugates after the first hour of perfusion, 52 % during 1.5 hour, and 70 % during 2 hours after the administration of benfluron. The conjugates with glucuronic acid represented 96.98 % of all metabolites found in the bile.

Key words: Isolated perfused rat liver; Benfluron biotransformation, Glucuronide conjugation

ORIGINAL ARTICLE

STUDY OF THE BIOTRANSFORMATION OF BENFLURON USING THE ISOLATED PERFUSED RAT LIVER