FULL GROUPS AND SOFICITY

GÁBOR ELEK

(Communicated by Varghese Mathai)

ABSTRACT. First, we answer a question of Giordano and Pestov by proving that the full group of a sofic equivalence relation is a sofic group. Then, we give a short proof of the theorem of Grigorchuk and Medynets that the topological full group of a minimal Cantor homeomorphism is LEF. Finally, we show that for certain non-amenable groups all the generalized lamplighter groups are sofic.

1. Introduction

1.1. Sofic groups and LEF groups. The notion of sofic groups was introduced by Weiss [12] and Gromov [5] (in a somewhat different form). A group Γ is sofic if for any finite set $F \subset \Gamma$ and $\epsilon > 0$ there exists a finite set A and a mapping $\Theta : \Gamma \to \text{Map}(A)$ such that

\begin{align*}
&\bullet \text{ If } f, g, fg \in F, \text{ then } d_H(\Theta(fg) - \Theta(f)\Theta(g)) \leq \epsilon, \text{ where } \\
&\quad d_H(\alpha, \beta) = \frac{|\{x \in A \mid \alpha(x) \neq \beta(x)\}|}{|A|}.
\end{align*}

\begin{itemize}
\item \bullet If $1 \neq f \in F$, then $d_H(\Theta(f), 1) > 1 - \epsilon$.
\item $\Theta(1) = 1$.
\end{itemize}

All amenable and residually finite groups are sofic. It is an open question whether non-sofic groups exist. If we add the extra requirement that $\Theta(fg) = \Theta(f)\Theta(g)$, then we get the class of LEF-groups (locally embeddable into finite groups). This class of groups was introduced by Gordon and Vershik [11]. Clearly, all residually finite groups are LEF. However, simple, finitely presented groups are not LEF. Nevertheless, by a recent result of Juschenko and Monod [6] (and Theorem 2), there exist simple, finitely generated LEF-groups.

1.2. Sofic equivalence relations. Let $X = \{0, 1\}^\mathbb{N}$ be the standard Borel space with the natural product measure μ. Let $\Phi : \mathbb{F}_\infty \acts X$ be a (not necessarily free) Borel action of the free group of countably infinite generators $\{\gamma_1, \gamma_1^{-1}, \gamma_2, \gamma_2^{-1}, \ldots\}$ preserving μ. Note that $\mathbb{F}_\infty = \bigcup_{r=1}^\infty \mathbb{F}_r$, where \mathbb{F}_r is the free group of rank r. Hence, we also have probability measure preserving (p.m.p.) Borel actions $\Phi_r : \mathbb{F}_r \acts X$. We say that $x, y \in X$ are equivalent, $x \sim_\Phi y$ if there exists $w \in \mathbb{F}_\infty$, such that $w(x) = y$. Note that slightly abusing the notation we write $w(x)$ instead of $\Phi(w)(x)$. Thus, the action Φ represents a countable measured equivalence relation E_Φ on X. Similarly, each Φ_r represents a countable measured equivalence relation E_{Φ_r} on X.

Received by the editors November 18, 2012 and, in revised form, November 6, 2013.

2010 Mathematics Subject Classification. Primary 20F65, 37A20.

This work was supported in part by a Marie Curie grant, TAMOP 4.2.1/B-09/1/KMR-2010-003 and MTA Renyi “Lendulet” Groups and Graphs Research Group.

©2014 American Mathematical Society

1943
and $E_\Phi = \bigcup_{i=1}^\infty E_{\Phi^i}$. Each equivalence relation E_{Φ^i} defines a graphing $[7] G_r$ on X:

- $V(G_r) = X$.
- $(x, y) \in E(G_r)$ if $\gamma_i x = y$ or $\gamma_i y = x$ for some i (so, there may be loops in G_r).

Observe that each component of G_r is a countable graph of bounded vertex degrees. We label each directed edge (x, y) with all the generators mapping x to y. Thus an edge, even a loop, may have multiple labels.

Now let us consider transitive actions of F_r on countable sets. If $\alpha : F_r \curvearrowright Y$ is such an action, then we have a bounded degree graph structure on Y with multiple labels on the edges from the set $\{\gamma_1, \gamma_1^{-1}, \ldots, \gamma_r, \gamma_r^{-1}\}$. Let T_r be the set of graphs of all countable F_r-actions with a distinguished vertex (the root) such that all the vertices are labeled by the elements of $\{0, 1\}^r$. Let $G \in T_r$. We define the the k-ball around the root x, $B_k(x)$, as the induced subgraph on vertices of G in the form of $w(x)$, where $w \in F_r$ is a reduced word of length at most k. That is, $B_k(x)$ is the ball centered at x of radius k with respect to the shortest path metric of G. The ball $B_k(x)$ is a finite rooted graph with edge-colors from the set $\{\gamma_1, \gamma_1^{-1}, \ldots, \gamma_r, \gamma_r^{-1}\}$ and vertex labels from the set $\{0, 1\}^r$. We denote the set of all possible k-balls arising from F_r-actions by U^k_r. We can define a compact metric structure on the set T_r the following way. Let $d_r(G, H) = 1/k$ if k is the maximal number such that the k-balls around the roots of G, resp. H, are isomorphic as rooted, labeled graphs.

Observe that if $\Theta : F_\infty \curvearrowright X$ is a p.m.p. action, then for each $r \geq 1$ and $x \in X$ one can associate an element $G(\Theta, x) \in T_r$. Namely, the orbit graph of x, where the vertex labels are given by the X-values, restricted on the first r coordinates. Thus, we have a Borel map $\pi_\Theta : X \to T_r$. For $\kappa \in U^k_r$, let $\mu^{k,\kappa}_{\Theta_r}(\kappa) = (\pi_\Theta)_*(\mu(L_\kappa))$, where $L_\kappa \subset T_r$ is the set of elements G such that the k-ball around the root of G is isomorphic to κ. In other words, $\mu^{k,\kappa}_{\Theta_r}(\kappa)$ is the probability that the k-ball around a μ-random element of X is isomorphic to κ. Now let $\alpha : F_r \curvearrowright Y$ be an F_r-action on a finite set. Then for each element y of Y, we can associate an element of T_r; namely, Y itself with root y. Hence, we can define a probability distribution $\mu^{k,\kappa}_{\alpha_r}$ on U^k_r. Following [1] we say that the action $\Theta : F_\infty \curvearrowright X$ is sofic if for all $r \geq 1$, there exists a sequence of finite F_r-actions $\{\alpha_n\}_{n=1}^\infty$ such that for each $k \geq 1$ and $\kappa \in U^k_r$,

\[\lim_{n \to \infty} \mu^{k,\kappa}_{\alpha_n} = \mu^k_{\Theta_r}(\kappa). \]

In [1] the authors proved that

- Soficity is a property of the underlying equivalence relations. That is, if an action Θ_1 is orbit equivalent to a sofic action Θ_2, then Θ_2 is sofic as well.
- Treeable equivalence relations are sofic.
- Actions associated to Bernoulli shifts of sofic groups are sofic.

1.3. Full groups

Let $E(X, \mu)$ be a countable, measured equivalence relation on a Borel set X with invariant measure μ. The Borel full group of E is the group $[E]_B$ of all Borel bijections $T : X \to X$ such that for any $x \in X$, $T(x) \sim_E x$. We call two such bijections T_1, T_2 equivalent if

\[\mu(\{x \in X \mid T_1(x) = T_2(x)\}) = 1. \]
The measurable full group $[E]$ is the group formed by the equivalence classes. Obviously, $[E] = [E]_B/N$, where N is the normal subgroup of elements in $[E]_B$ fixing almost all points of X.

Now, let $T : C \to C$ be a homeomorphism of the Cantor set C. The topological full group $[[T]]$ is the group of homeomorphisms $S : C \to C$ such that C can be partitioned into finitely many clopen sets $C = \bigcup_{i=1}^n A_i$ such that $S|_{A_i} = T^{n_i}$ for some integer n_i.

1.4. Results. Answering a question of Giordano and Pestov, we prove the following theorem.

Theorem 1. The measurable full group of a sofic equivalence relation is sofic.

Then, we give a very short proof of a result of Grigorchuk and Medynets [4].

Theorem 2. The topological full group of a minimal Cantor homeomorphism is LEF.

Let X be a countably infinite set and Γ be a countable group acting faithfully and transitively on X. Then Γ can be represented by automorphisms on the Abelian group $\bigoplus_{x \in X} \{0, 1\}$. The groups $\bigoplus_{x \in X} \{0, 1\} \rtimes \Gamma$ are called the lamplighter group of the Γ-action. If the action is the natural translation action on Γ, then we get the classical lamplighter group $\bigoplus_{\gamma \in \Gamma} \{0, 1\} \rtimes \Gamma$ is sofic. If Γ is amenable, then all its generalized lamplighter groups are amenable, hence sofic. Nevertheless, we show that there exist non-amenable groups for which all the generalized lamplighter groups are sofic.

Theorem 3. Let Γ^k be the k-fold free product of the cyclic group of two elements. Then, for any transitive, faithful action of Γ^k on a countable set the associated lamplighter group is LEF.

2. Compressed sofic representations

Let Γ be a countable sofic group with elements $\{\gamma_1, \gamma_2, \ldots\}$. A compressed sofic representation of Γ is defined in the following way. For any $i \geq 1$ we have a constant $\epsilon_i > 0$, and for any $n \geq 1$ we have mappings $\Theta_n : \Gamma \to Map(A_n)$ such that $|A_n| < \infty$ satisfying the following condition: For all $r > 0$ and $\epsilon > 0$ there exists $K_{r, \epsilon} > 0$ such that if $n > K_{r, \epsilon}$, then

- $d_H(\Theta_n(\gamma_i \gamma_j) \Theta_n(\gamma_i) \Theta_n(\gamma_j)) < \epsilon$ if $1 \leq i, j \leq r$.
- $d_H(\Theta_n(\gamma_i), Id) > \epsilon_i$ if $1 \leq i \leq r$.

Thus, in a compressed sofic representation we allow a large amount of fixed points for each $\gamma \in \Gamma$.

Lemma 2.1. If Γ has a compressed sofic representation, then Γ is sofic.

Proof. Let $\tilde{\Theta}_n^k : \Gamma \to Map(A_n^k)$ be defined by

$$\tilde{\Theta}_n^k(\gamma)(x_1, x_2, \ldots, x_k) = (\Theta_n(\gamma)(x_1), \Theta_n(\gamma)(x_2), \ldots).$$

Observe that if $\gamma, \delta \in \Gamma$, then

- $d_H(\tilde{\Theta}_n^k(\gamma \delta), \tilde{\Theta}_n^k(\gamma) \tilde{\Theta}_n^k(\delta)) \leq (1 - d_H(\Theta_n(\gamma \delta), \Theta_n(\gamma) \Theta_n(\delta)))^k$.
- $d_H(\tilde{\Theta}_n^k(\gamma), Id) > 1 - (1 - d_H(\Theta_n(\gamma), Id))^k$.

1MR2566316-MathSciNet Review.
Hence, we can choose \(\epsilon, n \) and \(k \) appropriately to obtain for any \(F \subset \Gamma \) and \(\epsilon' > 0 \) a map \(\Theta \) as in the Introduction, proving the soficity of \(\Gamma \). \(\square \)

3. The proof of Theorem 1

Let \(\Phi : F_\infty \curvearrowright \{0,1\}^N \) be a sofic action preserving the product measure \(\mu \). Let \(\Gamma \subset [E] \) be a finitely generated group, where \([E]\) is the equivalence relation defined by \(\Phi \). So, we have an action \(\Phi_\Gamma : \Gamma \curvearrowright \{0,1\}^N \). Our goal is to construct a compressed sofic representation of \(\Gamma \). Let \(\{\gamma_n\}_{n=1}^\infty \) be an enumeration of the elements of \(\Gamma \). Let \(\epsilon_n = \mu(\text{Fix}(\Phi_\Gamma(\gamma_n)))/2 \). Since \(\Gamma \) is in the full group, \(\epsilon_n > 0 \).

Now, fix a subset \(F \subset \Gamma \) and \(\epsilon > 0 \). We need to construct a map \(\Theta : F \to \text{Map}(A) \) for some finite set \(A \) such that if \(\gamma_i, \gamma_j, \gamma_i\gamma_j \in F \), then

\[
\begin{align*}
(1) & \quad d_H(\Theta(\gamma_i)\Theta(\gamma_j)) < \epsilon, \\
(2) & \quad d_H(\Theta(\gamma_i), 1) > \epsilon_i.
\end{align*}
\]

Let \(\{s_1, s_1^{-1}, s_2, s_2^{-1}, \ldots, s_m, s_m^{-1}\} \) be a symmetric generating set for \(\Gamma \). Observe that we have an action \(\Sigma_\Gamma : F_m \curvearrowright \{0,1\}^N \) preserving \(\mu \) such that \(\Sigma_\Gamma(\delta) = \Phi_\Gamma(\tau(\delta)) \), where \(\tau : F_m \to \Gamma \) is the natural quotient map. A dyadic \(E \)-map of depth \(k \) is a Borel map \(Q : X \to X \) defined in the following way. For each \(\rho \in \{0,1\}^k \) we pick \(\chi_\rho(\rho) \in F_k \subset F_\infty \) and define \(Q(x) = \Phi(\chi_\rho(\rho))(x) \) if the first \(k \)-coordinate of \(x \) is \(\rho \).

A dyadic approximation of \(\Gamma \) is a sequence of families \(\{Q_k(s_i)\}_{i=1}^m, \{Q_k(s_i^{-1})\}_{i=1}^m \), where for any \(1 \leq i \leq m \):

- \(Q_k(s_i) : X \to X, Q_k(s_i^{-1}) : X \to X \) are dyadic \(E \)-maps of depth \(k \).
- \(\lim_{k \to \infty} \mu(\{x \in X \mid Q_k(s_i)(x) \neq \Sigma_\Gamma(s_i)(x)\}) = 0 \).
- \(\lim_{k \to \infty} \mu(\{x \in X \mid Q_k(s_i^{-1})(x) \neq \Sigma_\Gamma(s_i)(x)\}) = 0 \).

We do not require \(Q_k \) to be a bijection. Nevertheless, \(Q_k \) can be extended to a homomorphism from \(F_m \) to \(\text{Map}(X) \). Note that for simplicity we identified the generating set of \(F_m \) by the set \(\{s_1, s_1^{-1}, s_2, s_2^{-1}, \ldots, s_m, s_m^{-1}\} \).

Since all the \(\Sigma_\Gamma(s_i) \)'s are Borel bijections, such dyadic approximations clearly exist. The following lemma is an immediate consequence of the definition of the dyadic approximation.

Lemma 3.1. For any \(\delta \in F_m \)

\[
\lim_{k \to \infty} \mu(\text{Fix}(Q_k(\delta))) = \mu(\text{Fix}(\Sigma_\Gamma(\delta))).
\]

Proposition 3.1. There exists a sequence of mappings \(\hat{\Theta}_k : F_m \to \text{Map}(B_k) \), where \(|B_k| < \infty \) such that for any \(\delta \in F_m \),

\[
\lim_{k \to \infty} \left(\mu(\text{Fix}(Q_k(\delta))) - \frac{|\text{Fix}(\hat{\Theta}_k(\delta))|}{|B_k|} \right) = 0.
\]

That is,

\[
\lim_{k \to \infty} \frac{|\text{Fix}(\hat{\Theta}_k(\delta))|}{|B_k|} = \mu(\text{Fix}(\Sigma_\Gamma(\delta))).
\]

Proof. Let \(\Phi_k : F_k \curvearrowright \{0,1\}^N \) be the restriction of \(\Phi \). Since \(\Phi \) is sofic, there exists a sequence of mappings \(\{\chi^n_k : F_k \to \text{Perm}(C_{k,n})\}_{n=1}^\infty \), where \(C_{k,n} \) is a finite \(\{0,1\}^k \)-vertex labeled graph such that for any \(t \geq 1 \) and \(\kappa \in U_k^t \),

\[
\lim_{n \to \infty} \mu_{\Phi_k}^{t,k}(\kappa) = \mu_{\Phi_k}^{t,k}(\kappa).
\]
Recall that Q_k is not necessarily an action, only a homomorphism from F_m to $\text{Map}(X)$. Hence, the local statistics of Q_k cannot be described using the elements of U_k^l as in the case of honest F_m-actions. So, let W_k^l be the set of isomorphism classes of rooted t-balls of vertex degrees at most $2m$, where the vertices are labeled by elements of the set $\{0, 1\}^k$ and the edges (possibly loops) are labeled by subsets of $\{s_1, s_1^{-1}, s_2, s_2^{-1}, \ldots, s_m, s_m^{-1}\}$. Note that $U_k^l \subset W_k^l$. Let $x, y \in X$ be points such that $B_{k^2}^Q(x)$ and $B_{k^2}^Q(y)$ represent the same element in $U_k^{k^2}$. Here $B_{k^2}^Q(x)$ denotes the k-ball with respect to the graphing associated to Φ_k. Then, by the definition of the dyadic approximations $B_{k^2}^Q(x)$ and $B_{k^2}^Q(y)$ represent the same elements in W_k^k. Now we construct a sequence of maps $\hat{\Theta}_k^n : F_m \curvearrowright \text{Map}(C_{k, n})$ the following way:

$$\hat{\Theta}_k^n(s_i)(x) = \iota_k^n(w_{Q_k(s_i)}(\rho(x)))(x),$$

where $\rho(x)$ is the $\{0, 1\}^k$-label of x. By the previous observation, for any $\delta \in F_m$

$$\lim_{n \to \infty} \frac{|\text{Fix}(\hat{\Theta}_k^n(\delta))|}{|C_{k, n}|} = \mu(\text{Fix}(Q_k(\delta))).$$

This finishes the proof of the proposition. \hfill \square

Pick a section $\sigma : \Gamma \to F_m$, that is, a map such that $\tau \sigma = Id$. Let $\hat{\Theta}_k$ be as in Proposition 3.1. Define $\Theta_k : \Gamma \to \text{Map}(B_k)$ by

$$\Theta_k(\gamma) = \hat{\Theta}_k(\sigma(\gamma)).$$

Then $\{\Theta_k\}_{k = 1}^\infty$ is a compressed sofic representation of Γ. \hfill \square

4. The proof of Theorem 2

Let $T : C \to C$ be a minimal homeomorphism and $\Gamma \subset [[T]]$ be a finitely generated subgroup of the topological full group of T with symmetric generating set $S = \{a_1, a_2, \ldots, a_k\}$. It is enough to prove that Γ is LEF. Let $x \in C$ and consider the T-orbit $\{T^n(x)\}_{\infty}^{\infty}$. We define the map $\phi : \Gamma \to \text{Perm}(Z)$ of Γ into the permutation group of the integers in the following way. Let $\phi(\gamma)(n) = m$, if $\gamma(T^n(x)) = T^m(x)$. Since T acts freely on C, ϕ is well-defined.

Lemma 4.1. ϕ is an injective homomorphism.

Proof. If $\phi(\gamma) = Id$, then γ fixes all the elements of the orbit of x. Since all the orbits are dense, this implies that $\gamma = 1$. The fact that ϕ is a homomorphism follows immediately, since ϕ is the restriction of the T-action onto the orbit of x. \hfill \square

Let $a = \max |n|$, where for some $p \in C$ and $a_i \in S$, $a_i(p) = T^n(p)$. We define a sequence

$$l : Z \to \{-a, -a + 1, \ldots, 0, 1, \ldots, a - 1, a\}^S$$

in the following way. Let $l(n) := (t_{a_1}, t_{a_2}, \ldots, t_{a_k})$, where $a_i(T^n(x)) = T^{n + l_i}(x)$. The following lemma is well-known; we prove it for the sake of completeness.

Lemma 4.2. l is a repetitive sequence; that is, if we find a substring σ in l, then there exists $m \geq 1$ such that for any interval of length m we can find σ.

Proof. For a point $p \in C$, we can define its n-pattern

$$g_n(p) := \{-n, -n + 1, \ldots, 0, 1, \ldots, n - 1, n\} \to \{-a, -a + 1, \ldots, a - 1, a\}$$
by \(q_n(p)(j) := (a_{t_1}, t_{a_2}, \ldots, t_{a_k}) \), where \(a_i(T^j(x)) = T^{j+t_{a_i}}(x) \). Observe that the set of points with a given \(n \) pattern is closed. Now, let us suppose that for a sequence \(\{k_r\}_{r=1}^{\infty} \subset \mathbb{Z} \) the intervals \((k_r, k_r+r) \) do not contain \(\sigma \) as a substring. Then, if \(z \) is a limit point of \(\{T^{k_r}(x)\}_{r=1}^{\infty} \), no translates of \(z \) have \(\sigma \) as a part of their \(n \)-patterns. Therefore the orbit closure of \(z \) does not contain \(x \), in contradiction with the minimality of \(T \).

\[
\text{Proof.}
\]

We define a lazy random walk on \(p \) transition probability for each pair \(\gamma \in \Gamma \) that is the product of at most \(r \) generators by \(\phi(\gamma)(i) - i \leq ar \). Pick \(n > 10a^r \) such that

- \(l_1{-ar,-ar+1,...,ar-1,ar} = \sigma_r \).
- for any \(\gamma \in \Gamma \) that is the product of at most \(r \) generators, there is \(0 < j < n \) such that \(\gamma(j) \neq j \).

Now we define \(\phi_r : W^r \rightarrow \text{Perm}(\mathbb{Z}_n) \), where \(W^r \) is the set of elements in \(\Gamma \) that are products of at most \(r \) generators by \(\phi_r(i) = \phi(i)(\text{mod } n) \). Clearly, \(\phi_r \) is injective, and if \(x, y, xy \in W^r \), then \(\phi_r(x)\phi_r(y) = \phi_r(xy) \). This implies that \(\Gamma \) is LEF.

\[\square\]

5. THE PROOF OF THEOREM 5

Let \(\alpha : \Gamma^k \rightarrow X \) be a transitive and faithful action of the free product group. Consider the Schreier graph \(G_\alpha \) of the action with respect to the generators of the \(k \) cyclic groups \(\{a_1, a_2, \ldots, a_k\} \). Recall that \(V(G_\alpha) \) is \(X \) and \((x, y) \in E(G) \) if \(y = a_ix \) for some \(i \geq 1 \). Hence \(G_\alpha \) is a connected graph of vertex degree bound \(k \).

Proposition 5.1. Let \(\alpha \) be as above. Then for any \(1 \neq w \in \Gamma^k \), there exist infinitely many \(y \in X \) such that \(\alpha(w)(y) \neq y \).

Proof. We will need the following lemma.

Lemma 5.1. For any finite set \(S \subseteq X \), there exists \(g \in \Gamma^k \) such that \(gS \cap S = \emptyset \).

Proof. We define a lazy random walk on \(X \) in the following way. For \(y \in X \) the transition probability \(p(x, y) = 1/k \), where \(l \) is the number of generators \(a_i \) such that \(a_ix = y \). It is well-known (see e.g. [9], [8]) that the probabilities \(p_n(x, y) \) tend to zero for each pair \(x, y \in X \). Now consider the standard random walk on the Cayley graph of \(\Gamma^k \), the \(k \)-regular tree. Let \(P_n(g) \) be the probability being at \(g \) after taking \(n \) steps starting from the identity. Then,

\[
p_n(x, y) = \sum_{g \in \Gamma, gx = y} P_n(g).
\]

By the previous observation, if \(n \) is large enough, then

\[\sum P_n(g) < 1,\]

where the summation is taken for all \(g \in \Gamma^k \) such that \(gx \in S \), for some \(x \in S \). Hence, there exists \(g \in \Gamma^k \) such that \(gS \cap S = \emptyset \).

Now let us suppose that \(w \in \Gamma^k \) fixes all points of \(X \) outside a finite set \(S \). That is, \(\alpha(w)(S) = S \). Let \(gS \cap S = \emptyset \). Then \(gwg^{-1} \) fixes all the points of \(X \) outside \(gS \). Therefore the commutator \([w, gwg^{-1}] \) fixes all elements of \(X \), in contradiction with the assumption that the action is faithful.
Now fix a vertex $x \in X$ and consider the ball of radius n, $B_n(x)$, around x. We define an action $\alpha_n : \Gamma^k \looparrowright B_n(x)$ in the following way. Let $\partial B_n(x)$ be the boundary of the ball $B_n(x)$, that is, the set of all $y \in B_n(x)$ such that there exists a_i for which $\alpha(a_i)y \notin B_n(x)$. If $y \notin \partial B_n(x)$, then let $\alpha_n(a_i)y = \alpha(a_i)y$. If $y \in \partial B_n(x)$ and $\alpha(a_i)y \notin B_n(x)$, then let $\alpha_n(a_i)(y) = y$. Finally, if $y \in \partial B_n(x)$ and $\alpha(a_i)y \in B_n(x)$, then let $\alpha_n(a_i)(y) = \alpha(a_i)(y)$. Now let $L^k_n = \{0, 1\}^{B_n(x)} \times \alpha_n \alpha_n(\Gamma^k)$ be the associated finite lamplighter group and $L^k = \bigoplus_{x \in X} \{0, 1\} \times \alpha \Gamma^k$. Our goal is to embed L^k into L^k_n locally. That is, for any finite set $F \subset L^k$ we construct an injective map $\Theta : F \to L^k_n$ such that $\Theta(fg) = \Theta(f)\Theta(g)$. Recall that each element of L^k can be uniquely written in the form $a \cdot w$, where $a \in \bigoplus_{x \in X} \{0, 1\}$ and $w \in \Gamma^k$. We regard the elements of the lamplighter group as permutations of the set $\bigoplus_{x \in X} \{0, 1\}$. If $\kappa \in \bigoplus_{x \in X} \{0, 1\}$ and $p \in X$, then
\[(a \cdot w)(\kappa) |_p = a(p) + \kappa(a(w^{-1})(p)).\]

We will also use the product formula
\[(a_2 \cdot w_2)(a_1 \cdot w_1) = (a_2 + \alpha(w_2)(a_1), w_2w_1), \]
where $\alpha(w_2)(a_1)(q) = a_1(\alpha(w_2^{-1})(q))$. For $l \geq 1$, let H_l be the set of elements of L^k in the form of $a \cdot w$, where w is a word of length at most l and the support of a is contained in $B_l(x)$. For $n \geq l$ we define the map $\tau^n_l : H_l \to L^k_n$ by $\tau^n_l(a \cdot w) := a \cdot \alpha_n(w)$.

Lemma 5.2. If n is large enough, then τ^n_l is injective.

Proof. If n is large enough, then $B_n(x)$ contains a point y such that
- $\alpha(w)(y) \neq y$,
- $d(y, \partial B_n(x)) > l$,
- $d(y, B_l(x)) > l$,
where d is the shortest path distance on the Schreier graph G_{α}. Let $\kappa \in \bigoplus_{x \in X} \{0, 1\}$ be the element which is 1 at y and zero otherwise. Then
\[\tau^n_l(a \cdot w)(\kappa) |_{\alpha_n(w)(y)} = 1,\]
hence $\tau^n_l(a \cdot w)$ is not trivial. \hfill \square

The following lemma finishes the proof of Theorem 3.

Lemma 5.3. Suppose that $(a_1 \cdot w_1), (a_2 \cdot w_2)$ and $(a_2 \cdot w_2)(a_1 \cdot w_1) \in H_l$ and n is large enough. Then
\[\tau^n_l((a_2 \cdot w_2)(a_1 \cdot w_1)) = \tau^n_l((a_2 \cdot w_2)(a_1 \cdot w_1)).\]

Proof. We need to prove that
\[(a_2 \cdot \alpha_n(w_2))(a_1 \cdot \alpha_n(w_1)) = (a_2 + \alpha(w_2)(a_1)) \cdot \alpha_n(w_2w_1)\]
holds in L^k_n. Fix an element $\kappa \in \{0, 1\}^{B_n(x)}$. Let $n > 10l$ and $d(p, \partial B_n(x)) > 5l$. Then
\[(a_2 \cdot \alpha_n(w_2))(a_1 \cdot \alpha_n(w_1))(\kappa) |_p = (a_2 \cdot w_2)(a_1 \cdot w_1)(\kappa) |_p\]
and
\[(a_2 + \alpha(w_2)(a_1) \cdot \alpha_n(w_2w_1))(\kappa) |_p = (a_2 + \alpha(w_2)(a_1) \cdot (w_2w_1))(\kappa) |_p,\]
where κ is an extension of κ onto X. On the other hand, if $d(p, \partial B_n(x)) \leq 5l$,
then
\[
(a_2 \cdot \alpha_n(w_2))(a_1 \cdot \alpha_n(w_1))(\kappa)|_p = \alpha_n(w_2)\alpha_n(w_1)(\kappa)|_p
\]
\[
= \alpha_n(w_2w_1)(\kappa)|_p = (a_2 + \alpha(w_2)(a_1)) \cdot \alpha_n(w_2w_1)(\kappa)|_p.
\]
\[\square\]

Acknowledgement

The author thanks Nicolas Monod and Gábor Pete for valuable discussions.

References

[1] Gábor Elek and Gábor Lippner, *Sofic equivalence relations*, J. Funct. Anal. 258 (2010), no. 5, 1692–1708, DOI 10.1016/j.jfa.2009.10.013. MR2566316 (2011j:37009)

[2] Gábor Elek and Endre Szabó, *Hyperlinearity, essentially free actions and L^2-invariants. The sofic property*, Math. Ann. 332 (2005), no. 2, 421–441, DOI 10.1007/s00208-005-0640-8. MR2178069 (2007i:43002)

[3] Gábor Elek and Endre Szabó, *On sofic groups*, J. Group Theory 9 (2006), no. 2, 161–171, DOI 10.1515/JGT.2006.011. MR2220572 (2007a:20037)

[4] R. Grigorchuk and K. Medynets, *On algebraic properties of topological full groups* (preprint) http://arxiv.org/pdf/1105.0719.pdf

[5] M. Gromov, *Endomorphisms of symbolic algebraic varieties*, J. Eur. Math. Soc. (JEMS) 1 (1999), no. 2, 109–197, DOI 10.1007/PL00011162. MR1694588 (2000f:14003)

[6] Kate Juschenko and Nicolas Monod, *Cantor systems, piecewise translations and simple amenable groups*, Ann. of Math. (2) 178 (2013), no. 2, 775–787, DOI 10.4007/annals.2013.178.2.7. MR3071509

[7] Alexander S. Kechris and Benjamin D. Miller, *Topics in orbit equivalence*, Lecture Notes in Mathematics, vol. 1852, Springer-Verlag, Berlin, 2004. MR2095154 (2005j:37010)

[8] Russell Lyons, *Asymptotic enumeration of spanning trees*, Combin. Probab. Comput. 14 (2005), no. 4, 491–522, DOI 10.1017/S096354830500684X. MR2160416 (2006j:05048)

[9] B. Morris and Yuval Peres, *Evolving sets, mixing and heat kernel bounds*, Probab. Theory Related Fields 133 (2005), no. 2, 245–266, DOI 10.1007/s00440-005-0434-7. MR2198701 (2007a:60142)

[10] Liviu Păunescu, *On sofic actions and equivalence relations*, J. Funct. Anal. 261 (2011), no. 9, 2461–2485, DOI 10.1016/j.jfa.2011.06.013. MR2826401 (2012j:46089)

[11] A. M. Vershik and E. I. Gordon, *Groups that are locally embeddable in the class of finite groups* (Russian), Algebra i Analiz 9 (1997), no. 1, 71–97; English transl., St. Petersburg Math. J. 9 (1998), no. 1, 49–67. MR1458419 (98f:20025)

[12] Benjamin Weiss, *Sofic groups and dynamical systems*, Sankhya Ser. A 62 (2000), no. 3, 350–359. Ergodic theory and harmonic analysis (Mumbai, 1999). MR1803462 (2001j:37022)

Department of Mathematics, Lancaster University, Bailrigg, Lancaster, LA1 4YW, United Kingdom

E-mail address: g.elek@lancaster.ac.uk