Myocarditis-inducing Epitope of Myosin Binds Constitutively and Stably to I-A\(^k\) on Antigen-presenting Cells in the Heart

By David L. Donermeyer,* Kirk W. Beisel,§ Paul M. Allen,* and Stacy C. Smith‡

From the *Center for Immunology, Department of Pathology, and ‡Division of Cardiology, Department of Medicine, Washington University, St. Louis, Missouri 63110; and §Boys Town National Research Hospital, Omaha, Nebraska 68131

Summary

Immune interactions in the heart were studied using a murine model of myosin-induced autoimmune myocarditis. A T cell hybridoma specific for mouse cardiac myosin was generated from A/J mice and used to demonstrate that endogenous myosin/I-A\(^k\) complexes are constitutively expressed on antigen-presenting cells in the heart. This T cell hybridoma, Seu.5, was used as a functional probe to identify a myocarditis-inducing epitope of cardiac myosin. Overlapping peptides based on the cardiac myosin heavy chain \(\alpha\) (myhc\(\alpha\)) sequences were synthesized and tested for their ability to stimulate Seu.5 T cells. One peptide, myhc\(\alpha\)(325–357) strongly stimulated the Seu.5 T cells, localizing the epitope to this region of the myhc\(\alpha\) molecule. Using truncated peptides, the epitope was further localized to residues 334–352. The myhc\(\alpha\)(334–352) peptide strongly induced myocarditis when administered to A/J mice, which was histologically indistinguishable from that induced by myosin. The myhc\(\alpha\)(334–352) epitope was present in cardiac myosin and not skeletal muscle myosins, providing a biochemical basis for the cardiac specificity of this autoimmune disease. Induction of myocarditis by this epitope was restricted to the myhc\(\alpha\) isoform and not the myhc\(\beta\) isoform, suggesting there may be a difference in the efficiency of generating tolerance to these isoforms of cardiac myosin, which are differentially developmentally regulated. The myhc\(\alpha\)(334–352) epitope bound to purified I-A\(^k\) molecules in a similar manner to other I-A\(^k\)-restricted immunogenic epitopes, HEL(48–61) and RNase(43–56). Importantly, the myhc\(\alpha\)(334–352) epitope was able to bind to I-A\(^k\) molecules on the surface of antigen-presenting cells in a stable manner. These findings demonstrate that autoantigenic epitopes can behave in a dominant manner and constitutively bind to class II molecules in the target organ in a similar manner to foreign immunogenic epitopes.

An important property of the immune system is the ability to distinguish self from nonself. Normally this discrimination occurs very efficiently; however, under certain circumstances autoimmune responses develop. Many explanations have been proposed to explain these autoimmune responses, including failures in central or peripheral tolerance, molecular mimicry between a pathogen and a self-antigen, and inadequate regulatory mechanisms (1–3). Despite an intense research effort in this area by numerous laboratories, the cellular and molecular basis for the induction of autoimmune diseases is unknown. The study of autoimmunity has been greatly facilitated by the development of rodent models of autoimmune disease and the identification of the autoantigenic epitopes involved in disease induction (4–7). For example, in the study of experimental autoimmune encephalomyelitis, identification of the disease-inducing epitopes has resulted in a significant advancement in our understanding of autoimmune processes (8–10).

We have a long-standing interest in how the immune system induces cardiac damage, and have used the model of myosin-induced myocarditis to study these interactions (11–13). This model was based on the observation that autoantibodies against cardiac myosin were found in Coxsackievirus B3–infected mice with myocarditis, suggesting cardiac myosin as a candidate autoantigen in autoimmune heart disease (14). Immunization of mice with purified cardiac myosin resulted in the induction of myocarditis with similar pathology to that observed in the Coxsackievirus-infected mice (15). We have previously demonstrated that myosin-induced autoimmune myocarditis is a CD4\(^+\) T cell–mediated disease, as depletion of CD4\(^+\) T cells prevented induction of myocarditis and transfer of purified myosin-reactive T cells into SCID mice resulted in myocarditis in the absence of anti-myosin antibodies (11). We further explored the requirements for myocarditis induction and used T cell hybridomas specific for cardiac myosin.
to show that processed myosin/I-A^d complexes are expressed on endogenous I⁺ APC in the normal mouse heart (13). Thus, in this model, tissue injury is not required for expression of the autoantigen because the myosin/Ia complexes are constitutively present in the heart.

In this report, we have extended our previous work with myosin-specific T cells, and used these cells as functional probes to identify an epitope of myosin that induces autoimmune myocarditis in mice. We generated a cardiac myosin-specific T cell hybridoma in A/J mice which detected myosin/Ia complexes that were constitutively expressed in the normal A/J heart. We then used a series of overlapping peptides corresponding to the myosin heavy chain α (myhca) sequence to identify the epitope recognized by this T cell. This myosin epitope induced myocarditis in A/J mice, and bound to I-A<sup<k</sup>k molecules in an SDS-stable conformation on the surface of APCs. These findings show that an immunodominant epitope because it is constitutively expressed and stably bound to class II molecules on normal APC in the target organ of this disease model, and suggest that autoantigenic epitopes can be presented in a dominant manner. The stable expression of autoantigen within the target organ in this model of autoimmune disease suggests that the important steps in the induction of myocarditis occur at the level of T cell and/or APC activation.

Materials and Methods

T Cell Hybridomas and T Cell Assays. Myosin-specific T cell hybridomas were generated from myosin-immunized A/J mice as described previously (13). Briefly, A/J mice were immunized subcutaneously with 150 μg of myosin/CFA on days 0 and 7. On day 14 the draining lymph nodes were removed andacellstimulated in vitro for 7 d with cyanogen bromide–digested mouse cardiac myosin (5 μg/ml) and then restimulated with APC, antigen, and IL-2 for an additional 6 d. The viable cells were then fused to the TCR-α/β^B BW5147 thyroma cells and myosin-specific T cells were identified by their ability to produce IL-2 upon stimulation with myosin. The reactive T cell hybridomas were subcloned and MHC restriction was determined as previously described (13).

The T cell hybridoma assay was performed as described previously (16). The level of IL-2 production by the T cell hybridomas was assayed by [3H]thymidine incorporation into the IL-2–dependent CTLL-2 cells.

Peptides. Peptides were synthesized, purified, and analyzed as previously described (17). The peptides were synthesized on either an ABI model 432A (Perkin-Elmer, Foster City, CA), or a Symphony/Multiplex synthesizer (Rainin Instrument Co., Woburn, MA) using standard 9-fluorenlymethoxycarbonyl chemistry. The reagents for peptide synthesis were purchased from ABI, instruments, (Palo Alto, CA) and mass spectrometry (Protein Chemistry Laboratory, Washington University, St. Louis, MO), except the one series of 33 mers which were not HPLC purified. The concentration of each peptide was determined by amino acid analysis.

Myosin. Mouse cardiac myosin was purified following a modified procedure of Shiverick et al. (18). The myosin was solubilized and stored in 50 mM sodium pyrophosphate. The cyanogen bromide digest of myosin was prepared as previously described (13).

APCs. The CH27 antigen–presenting B cells line (19), cardiac APCs from normal A/J mice (13), and spleen cells (13) were prepared and used as described. Cardiac APCs are bone marrow–derived cells, approximately 15% of which express MHC class II antigens, with the predominant APC being dendritic cells (20, 21).

Induction and Quantitation of Autoimmune Myocarditis. Myocarditis was induced as described previously (11). Briefly, male A/J mice were injected subcutaneously with 100 μg of cardiac myosin emulsified in CFA on days 0 and 7. On day 0 the mice were also injected intraperitoneally with 500 ng of pertussis toxin (List Biochemicals, Campbell, CA). Mice receiving the myosin peptide were immunized with 50–150 nmol of the peptides emulsified in CFA in an identical manner, and received 100 ng of pertussis toxin as above. Immunization with higher concentrations of the peptides did not result in increased severity of myocarditis. The mice were killed on day 21 and the hearts were prepared for histologic examination. Serial step sections were made through the entire heart and stained with hematoxylin and eosin. Every fifth section was examined for the presence of myocarditis by light microscopy, and was evaluated according to previously published criteria describing the severity of myocarditis as follows: severe = >50% of the heart involved, moderate = 10–50% involved, minimal = <10% involved, or normal (11).

Peptide Binding to Ia Molecules. The binding of peptide antigens to purified I-A^k molecules was determined using a competitive binding assay as previously described in detail (22, 23). Briefly, 25 pmol purified I-A^k molecules were incubated with 0.25 pmol [³⁵S]-labeled HEL(YE52-61) in a total volume of 25 μl in the absence or presence of an unlabeled peptide. A range of concentrations (10–1,000 pmol) of the peptides were tested for their ability to inhibit the binding of the labeled HEL peptide compared to the ability of the unlabeled HEL peptide to inhibit binding to purified I-A^k. The level of labeled HEL bound to I-A^k was determined by Bio Spin F6 chromotography (Bio Rad Laboratories, Hercules, CA) (24). In a typical experiment 50,000 to 150,000 cpm of the peptide bound in the absence of competitor peptides, representing 25–40% of the input.

Ia Stability. The ability of peptides to induce a stable conformation of I-A^k on the surface of APCs was determined using the SDS/PAGE stability assay as described (23, 25, 26). Briefly, radiolabeled peptides were incubated with the I-A^k–expressing M12.C3.F6 B-lymphoma cells for 4 h. The cells were then harvested, washed, and lysed in PBS containing 1% Triton X-100, 10 mM iodoacetamide, 1 mM PMSF, and 20 μg/ml of leupeptin. The lysate was incubated with the monoclonal anti-I-A^k antibody 10.3.6.2 and the immunoprecipitates were analyzed by SDS/PAGE. The SDS stable I-A^k molecules were visualized by autoradiography. The level of I-A^k stability induced was determined by quantitating the stable and unstable bands using a phosphoimage analysis system (Molecular Dynamics, Inc., Sunnyvale, CA).

Results

Generation and Characterization of a Myosin-specific T Cell Hybridoma. T cell hybridomas were generated from A/J mice.
mice immunized with autologous cardiac myosin for use as functional probes in the identification of a myocarditis-inducing epitope. One T cell hybridoma, Seu.5, was selected for further characterization. Seu.5 strongly reacted to murine cardiac myosin (Fig. 1A). This hybridoma was CD4 dependent, did not respond to actin, troponin, tropomyosin, or myosin light chain, and was restricted by the I-A^k molecule (data not shown). Previous studies demonstrated that myocarditis in A/J mice was an I-A^-mediated disease (11). Thus, we had generated a cardiac myosin-specific T cell hybridoma, specific for the autoantigen and restricted by the appropriate MHC molecule, which we could use as a probe to identify an epitope involved in the induction of myocarditis.

We have previously shown that cardiac myosin is constitutively processed and presented by cardiac APCs using an I-A^d-restricted myosin-specific T cell hybridoma (13). We next determined if the epitope recognized by Seu.5 was also processed and presented in the hearts of normal A/J mice. As shown in Fig. 1B, residential A/J cardiac APCs strongly stimulated Seu.5 T cells. The expression of the myosin-I-A^d complexes was tissue specific because no complexes were detected by Seu.5 T cells in the spleens from the same animals (Fig. 1C). These findings indicated that the myosin epitope recognized by Seu.5 is constitutively processed and presented in the target organ of this model of autoimmune myocarditis.

Identification of the Region of Myosin Recognized by Seu.5. To identify the epitope of myosin recognized by Seu.5, we synthesized a series of peptides based on the A/J murine cardiac myhcx isoform sequence (27). None of the peptides in a series of overlapping peptides covering residues 1-149 stimulated Seu.5 (data not shown). We then synthesized 24 peptides encompassing residues 145-637 of the myhcx sequence, each 33 amino acids long with overlaps of 13 amino acid residues. Each of the peptides was then tested for its ability to stimulate Seu.5 and the results are shown in Fig. 2. One of the peptides, myhcx(325-357), strongly stimulated Seu.5, whereas none of the others stimulated Seu.5. Thus, the myhcx epitope recognized by Seu.5 was contained within the peptide 325-357 (Fig. 3A).

Characterization of the myhcx(325-357) Determinant. To identify the actual Seu.5 stimulatory determinant, we generated a series of truncated peptides based upon the myhcx(325-357) sequence (Fig. 3A). The inability of the overlapping peptides myhcx(305-337) and myhcx(345-377) to stimulate Seu.5 (Fig. 2), suggested that the stimulatory epitope was not contained in the amino or carboxy terminal regions of the myhcx(325-357) sequence. Therefore, we initially focused on the central portion of the 325-357 epitope by synthesizing the peptide myhcx(334-352). The myhcx(334-352) peptide stimulated Seu.5 T cells as strongly as the myhcx(325-357), indicating that the epitope was contained within this 19 mer (Fig. 3B). The optimal length of class II-restricted epitopes varies, but is generally 13-15 amino acids. To identify the optimal length of the Seu.5 epitope, we generated truncated peptides of the myhcx(334-352) sequence (Fig. 3A). The 14 mer, myhcx(335-348) peptide strongly stimulated Seu.5 T cells, whereas the same length peptide shifted one amino acid in register, myhcx(334-347), was completely nonstimulatory (Fig. 3B). This failure to stimulate appeared to be due to the lack of the A348 residue, since the peptide myhcx (334-348) was strongly stimulatory. Thus, we had localized the Seu.5 stimulatory myhcx epitope to the 14-amino acid peptide myhcx(335-348).

Figure 1. Reactivity of Seu.5 T cell hybridoma. (A) Seu.5 recognizes mouse cardiac myosin. Seu.5 T cells (10^6) were stimulated for 20 h with CNBr-digested mouse cardiac myosin at the indicated concentrations using CH27 cells (3 x 10^4) as the APC as described in Materials and Methods. The level of stimulation was determined by quantitating the level of IL-2 production by [3H]thymidine incorporation in the IL-2-dependent cell line, CTLL-2. Stimulation by APC without any antigen resulted in <200 cpm. The values represent the mean +/- standard deviation of triplicate determinations. Identical results were obtained in at least three separate experiments. (B) Seu.5 recognizes myosin/I-A^k complexes expressed constitutively on cardiac APCs. Seu.5 cells were stimulated with increasing numbers of purified cardiac APCs (CAPC) from A/J mice without the addition of exogenous antigen as described in A. The values represent the mean +/- standard deviation of triplicate determinations. Identical results were obtained in at least three separate experiments. (C) Endogenous myosin/I-A^k complexes are expressed in the heart but not in the spleen. Seu.5 T cells (10^6) were stimulated with (1) A/J CAPC (2 x 10^4/well) with no additional antigen, (2) spleen cells (5 x 10^4) from the same mice alone, or (3) with the addition of 10 µg/ml of CNBr-digested mouse cardiac myosin. The values represent the mean +/- standard deviation of triplicate determinations. Identical results were obtained in three separate experiments.
myhcc\((334-352)\) Induces Myocarditis. Having identified the myosin epitope recognized by the Seu.5 T cells, we next wanted to determine if this epitope could induce myocarditis. When A/J mice were immunized with the myhcc\((334-352)\) peptide, 11 of 11 mice developed myocarditis in three separate experiments (Fig. 4 A). The frequency and severity of myocarditis induced by myhcc\((334-352)\) was similar to native myosin and the inflammatory lesions appeared histologically similar (Fig. 4 B), although neutrophils were more common in myosin-induced disease than in peptide-induced disease. With the large size of myhcc, it would be surprising if this disease was restricted to a single epitope. However, these data indicate that myhcc\((335-348)\) is a major epitope of myosin involved in autoimmune myocarditis because immunization with this peptide induced significant myocarditis. Thus, we have identified an epitope of the \(\alpha\) isoform of cardiac myosin which is constitutively expressed on cardiac APC and can induce autoimmune myocarditis.

The myhcc\((334-352)\) Determinant Is Cardiac Specific. Autoimmune myocarditis is a cardiac-specific disease as immunization with cardiac myosin results in myocarditis, and not skeletal muscle myositis (15). Conversely, immunization with skeletal myosin induces myositis, but no cardiac inflammation (28). One explanation for this tissue specificity is that the myocarditis-inducing epitope is expressed on cardiac myosins and not skeletal muscle myosins. To ascertain if this possibility was correct, we compared the myhcc\((335-348)\) sequence to the corresponding region of other cardiac and skeletal myosins. Vertebrate myosins are part of a multigene family comprised of at least 10 different members, all of which have a conserved structure (29). Protein sequence alignments of the myosins revealed areas of complete conservation and others that are highly divergent. The 334–352 region of myosin is not conserved between different myosin molecules (Fig. 5 A). Several positions in rat, human, and mouse myosins differ in this region, including both cardiac and skeletal myosins (Fig. 5 A and not shown). The 334–352 region was identical between the three described allelic forms of the mouse myhcc gene (15, 27), consistent with them all being able to induce myocarditis (11). Thus, the observed cardiac specificity of this autoimmune disease can be explained by the myhcc\((334-352)\) sequence only being expressed in the cardiac isoform of myosin heavy chain.

Seu.5 Specifically Recognizes the myhcc Isoform of the \((334-352)\) Epitope. Two isoforms of the cardiac-specific myosin heavy chains are expressed in mammals, myhcc, and myhcb. The myhcc\((334-352)\) determinant differed from the murine and rat myhcb sequences at positions 341, 344, and 348–350, whereas rat myhcc differed only at position 350.
Figure 4. myhcx(334−352) induces myocarditis in A/J mice. (A) Summary of the severity of myocarditis induced by myhcx(334−352) in three separate experiments. A/J mice were immunized with 50–100 nmol of myhcx(334−352), myhcb(334−352), or cardiac myosin and the degree of inflammation in the hearts was determined as described in Materials and Methods. (B) Photomicrographs of cross-sections of hearts stained with hematoxylin and eosin obtained from mice from experiment 1 (Fig. 4 A) immunized with either 100 μg of myosin (a and b), or 100 nmol myhcx(334−352) (c and d). All magnifications are 200. (a) Normal, myosin-immunized. (b) Moderate myocarditis, myosin immunized. (c) Moderate myocarditis, myhcx(334−352) immunized. (d) Severe myocarditis, myhcx(334−352) immunized. Estimates of the severity of myocarditis are made based on examination of the entire cross-sectional area, as described in Materials and Methods.

Experiment	Antigen	Total	Normal	Minimal	Moderate	Severe
1	myhcx(334-352)	5	0	1	2	2
1	myosin	3	1	1	1	0
2	myhcx(334-352)	3	0	3	0	0
2	myhcb(334-352)	3	3	0	0	0
3	myhcx(334-352)	3	0	1	1	1
3	myhcb(334-352)	3	3	0	0	0
3	myosin	2	0	0	0	2
The ability of autoimmune disease-inducing epitopes to induce myocarditis was specific to the myhc\textsubscript{0\textalpha}(334-352) epitope. Therefore, the induction of myocarditis (Fig. 4 A). Therefore, the induction of myocarditis.

Myocarditis Induction by myhcx\textsubscript{(334-352)} Is Restricted to the myhcx Isoform. The Seu.5 T cell specifically recognized the myhc\textsubscript{0\textalpha}(334-352) epitope bound to the I-A^k molecule, a direct binding assay was performed (Fig. 6 A). These studies revealed that the myhc\textsubscript{(334-352)} epitope bound strongly to I-A^k. This binding was stronger than shown for the immunodominant I-A^k-restricted epitope, bovine R.Nase(43-56) (17), but was weaker than the canonical I-A^k binder, HEL(48-62) (22, 23). Thus, in contrast to the MBP(Ac1-11), the myhc\textsubscript{(335-348)} epitope bound strongly to its restriction element.

Figure 5. Fine specificity of the myhc\textsubscript{(334-352)} epitope. (A) Comparison of myhc\textsubscript{(334-352)} to other myosins. The sequence of myhc\textsubscript{(334-352)} epitope compared to the corresponding region in other myosin molecules (upper half) and myhc\textsubscript{(335-348)} and related peptides (lower half) are shown using standard one-letter amino acid codes. The "-" indicates identity to the myhc\textsubscript{(334-352)} sequence with the amino acid differences being shown. myhca, mouse cardiac myosin heavy chain \textalpha isoform (27); myhcb, mouse cardiac myosin heavy chain \textbeta isoform (Beisel, K.W., personal communication); myhce, rat cardiac myosin heavy chain \textalpha isoform (30); myhcb, rat cardiac myosin heavy chain \textbeta isoform (30); myhce, rat embryonic skeletal muscle myosin isoform (40). Peptides containing substituted amino acids are designated by the position and the substituted residue. (B) Seu.5 stimulation by myhc\textsubscript{(334-352)} and related peptides. Seu.5 T cells (10⁶) were stimulated with CH27 (3 x 10⁴) APC and various concentrations of the indicated peptides shown in A, as described in Fig. 1 A. The values represent the mean of triplicate determinations with the standard deviations not exceeding 15% of the mean. Identical results were obtained in three separate experiments. ■, myhc\textsubscript{(335-348)}; ○, myhcb\textsubscript{(335-348)}; □, myhc\textsubscript{(335-348)}G341; ▼, myhce\textsubscript{(335-348)}P344; ▽, myhc\textsubscript{(335-348)}N348.

A Peptide	Sequence
myhc\textsubscript{(334-352)} | D S A F D V L S F T A E E K A |
myhc\textsubscript{(335-348)} | D S A F D V L S F T A E E K A |
rtmyhc\textsubscript{(334-352)} | G P G P N S I N S A |
rtmyhc\textsubscript{(335-348)} | G P G P N S I N S A |
rtmyhce\textsubscript{(334-352)} | G P G P N S I N S A |
rtmyhce\textsubscript{(335-348)} | G P G P N S I N S A |
myhc\textsubscript{(335-348)}G341 | G P G P N S I N S A |
myhc\textsubscript{(335-348)}P344 | G P G P N S I N S A |
myhc\textsubscript{(335-348)}N348 | G P G P N S I N S A |

Quotations were responsible for this specificity, singly substituted peptides were generated (Fig. 5 A). We used the myhc\textsubscript{(335-348)} sequence for this analysis because it was fully stimulatory, thereby eliminating positions 349 and 350 from study. Of the three remaining positions which differed between the myhc\textsubscript{a} and myhc\textsubscript{b} sequences, two of the residues, A344 and A348, appeared to be involved in this isoform specificity. Substitution at either position with the corresponding myhc\textsubscript{b} residue significantly decreased the ability of the peptides to stimulate Seu.5 T cells (Fig. 5 B), with A344 being ~30-fold and A348 being 100-fold less active. The S341 residue did not appear to be a critical residue because its replacement with a G did not significantly affect reactivity (Fig. 5 B). These findings indicated that the recognition of the myhc\textsubscript{(334-352)} determinant critically involved both P344 and N348 residues.

B Peptide Concentration (uM)	CPM
0.00 | 0- |
0.01 | 0- |
0.1 | 0- |
1 | 0- |
10 | 0- |
100 | 0- |
50000 | 0- |
60000 | 0- |
on the Tyr350 residue and tested for its ability to induce the SDS-stable conformation of the I-A\(^{a}\) molecules on the surface of live I-A\(^{a}\)-expressing APCs. The myhc\(\alpha\)(334-352) induced the formation of SDS-stable I-A\(^{a}\) molecules (Fig. 6 B). The level of stable I-A\(^{a}\) was 50%, demonstrating a propensity of myhc\(\alpha\)(334-352) to favor stable conformations of the I-A\(^{a}\) molecules. This level of stability was less than the strong stable inducer, HEL(48-61) (96% stable), but significantly higher than unstable variants of HEL(48-61) (21% stable). These findings showed that the myhc\(\alpha\)-(335-348) determinant bound to I-A\(^{a}\) with a good affinity and with a reasonable propensity to form a stable conformation. When APC were pulsed with the myhc\(\alpha\)(335-348) peptide in tissue culture assays, the Seu.5 T cells were strongly stimulated (data not shown), providing additional support of the myhc\(\alpha\)(334-352) epitope behaving as a dominant epitope. These findings are also consistent with our biological observations that this determinant is constitutively expressed on APC in the heart.

Discussion

In these studies we identified an autoantigenic epitope of mouse cardiac myosin heavy chain, myhc\(\alpha\)(334-352). This epitope induced myocarditis comparable to that induced by native cardiac myosin, indicating that it was the major autoantigenic determinant of myhc\(\alpha\) in A/J mice. The basis for the cardiac specificity of autoimmune myocarditis was provided by the sequence of the myhc\(\alpha\)(334-352) determinant, being uniquely expressed in myhc\(\alpha\) and not in the myhc\(\beta\) or in skeletal muscle myosins. The myhc\(\alpha\)(334-352) epitope bound strongly to purified I-A\(^{a}\) and had a good propensity to form stable complexes on the surface of live APCs.

The steps involved in the induction of an autoimmune disease are complicated and most likely heterogeneous in nature. Simplistic views of the normal mechanisms involved in preventing autoimmune disease involve the absence of a key component, such as the T cells or the antigen. Thus, under normal situations the autoreactive T cells would not exist, and some type of failure in tolerance would allow these T cells to persist. Our studies have clearly shown that myosin-specific autoreactive T cells are present in normal animals, thus the failure of normal mice to spontaneously develop myocarditis cannot be due to a lack of the autoreactive T cells. Prevention of autoimmune reactions by sequestering the autoantigen from the immune system is another related possibility. This sequestration model contends that tissue injury, release of the self antigen, and subsequent exposure to the immune system would result in autoimmunity. This mechanism could be operating for antigens such as MBP which are sequestered by the blood-brain barrier. However, the demonstration that a precursor of MBP is expressed in the thymus complicates the interpretation for the existence of MBP-reactive T cells (35). Sercarz and his colleagues have proposed that autoantigenic epitopes are part of the cryptic self repertoire and that dominant self epitopes induce tolerance (36).

In autoimmune myocarditis, we have convincingly shown that inaccessibility of the autoantigen to the immune system or being part of the cryptic self repertoire cannot be the explanation for the lack of stimulation of the myosin-reactive T cells. Our previous studies clearly demonstrated that cardiac myosin was constitutively processed and presented on APCs in the heart. In the work presented in this report, we have identified an epitope of myosin that can induce myocarditis by using an I-A\(^{a}\)-restricted myosin-specific T cell hybridoma as a functional probe. Though we do not have direct evidence that this hybridoma came from a T cell clone capable of inducing myocarditis, we believe Seu.5 is representative of a pool of myocarditis-inducing T cells because its stimulating epitope myhc\(\alpha\)(334-352) is
constitutively expressed on cardiac APC and causes myocarditis when injected into A/J mice. We have shown that the myocarditis-inducing epitope, myhco(334–352), binds strongly to I-Ak molecules and induces a stable conformation. This stable conformation of I-Ak has been previously shown to result in long-lived complexes on the surface of APC, and correlates directly with the immunodominance of the epitope. The finding that 334–352 induces stable I-Ak molecules supports our observation that the myhco(334–352)/I-Ak complexes are expressed constitutively on APC in the heart.

These results indicate that autoimmune disease–inducing epitopes can bind strongly and stably to the MHC molecules. Thus, the myhco(334–352) epitope is constitutively accessible to the immune system in an immunodominant manner, and the mechanism preventing myocarditis in normal mice is not due to either the lack of myosin-specific T cells or the availability of the myhco(334–352) epitope. Therefore, the view that the prevention of autoimmune reactions is due to the absence of either the T cells or available antigen appears to be too simplistic with regard to autoimmune myocarditis. Our findings would clearly indicate that it must be the activation state of the T cells, the APC, or the local environment in the heart, which normally prevents autoimmunity in the heart.

The identification of the myhco(334–352) epitope as a dominant myocarditis-inducing epitope permitted further characterization of the myosin-induced myocarditis model. These findings clearly demonstrate that the disease-inducing autoantigen is cardiac myosin. The cardiac specificity of this disease can also be explained because the myhco(334–352) epitope is only found in cardiac myosin, not in skeletal muscle myosins, and the constitutively expressed complexes are not found in other APCs outside of the heart. Interestingly, myocarditis induction by myhco(334–352) was specific for the myhco isoform, and not the β isoform. In rodents the β isoform predominates in the heart until birth, at which time the α isoform then becomes the dominant cardiac myhc isoform. After birth, the β isoform is expressed in the ventricles of the heart as well as in other noncardiac muscles. A simple explanation for our finding that induction of myocarditis is caused by the myhco epitope, would be that this area of the myosin molecule differs significantly between isoforms of myosin, including other muscle myosins and cardiac β isoform. The observed myhco specificity may not be due to differences in the β cardiac isoform per se, but may simply reflect that the myhco(334–352) epitope differs from the other myosins, whereas the myhcβ(334–352) determinant is similar to all of the other forms of myosin. Thus, the mice would be tolerant in this region to other forms of myosin, except myhco. Another more interesting possibility would be that somehow there is a difference in the level of tolerance to the different myhc isoforms. There could be more complete tolerance to the β isoform than the α, resulting in the deletion of the self-reactive T cells which could recognize the β isoform. Perhaps, the recognition of the β isoform during fetal and neonatal life by the developing immune system results in more efficient tolerance induction, because the α isoform is not expressed until after birth. Thus, this would be an example of a tolerance being affected by a developmentally expressed self-antigen. Obviously further studies must be performed to determine if tolerance due to differential developmental expression of the α and β cardiac myosin isoforms is directly related to the disease process.

The myhco(334–352) epitope, located in the S1 head region, has not been previously implicated in any immunological studies involving cardiac myosin. Wegmann et al. identified two myocarditogenic epitopes in rats, comprised of residues 1304–1320 and 1539–1555 (37). Liao et al. using bacterially expressed fragments of rat cardiac myosin heavy chains, concluded that some of the pathogenic epitopes of myosin resided in the S2 subunit, residues 736–1032 in BALB/c mice (38). The myhco(334–352) epitope identified in this report represents an immunodominant autoantigenic T cell epitope in A/J mice and most likely in other I-Ak–expressing strains; however, other epitopes of myosin are likely involved in this disease in strains of mice possessing different MHC alleles.

A key finding from this work is that autoantigenic epitopes can behave like immunodominant epitopes, bind strongly to the class II molecules, and remain stably expressed on the surface of an APC. Sette and colleagues (39) and Buus and colleagues (32) have made similar conclusions that autoantigenic epitopes do not necessarily have to be poor binders. These findings suggest that there is heterogeneity in the biochemical nature of autoantigenic epitopes with myhco(334–352) representing one group, and the MBP Ac1-11 representing another. The difference in stability of these epitopes binding to their respective restriction elements could indicate that different mechanisms may be responsible for the self-reactive T cells in the different autoimmune diseases. It is intriguing to speculate that the mechanism involved in myocarditis induction would be the developmental expression of the different isoforms of the cardiac myosin heavy chain, with the myhco, which contains the disease inducing epitope, not being expressed until birth and only in the heart.

We thank Shirley Petzold for her invaluable assistance in the Ia binding assays; Emil Unanue, Chris Nelson, and Jonathan Katz for their helpful comments and discussions; and Jerri Smith for assisting with manuscript preparation.

This work was supported by grants from the National Institutes of Health and the Council for Tobacco Research.

1298 Myocarditis-inducing Epitope
References

1. Fujinami, R.S., and M.B.A. Oldstone. 1989. Molecular mimicry as a mechanism for virus-induced autoimmunity. *Immunol. Res.* 8:3-15.

2. Theofilopoulos, A.N. 1995. The basis of autoimmunity. I. Mechanisms of aberrant self-recognition. *Immunol. Today.* 16: 90-98.

3. Sinha, A.A., M.T. Lopez, and H.O. McDevitt. 1990. Autoimmune diseases: the failure of self tolerance. *Science (Wash. DC).* 248:1380-1388.

4. Zamvill, S., P. Nelson, J. Trotter, D. Mitchell, R. Knobler, R. Fritz, and L. Steinman. 1985. T-cell clones specific for myelin basic protein induce chronic relapsing paralysis and demyelination. *Nature (Lond.)* 317:355-358.

5. Brand, D.D., L.K. Myers, K. Terato, K.B. Whittington, J.M. Stuart, A.H. Kang, and E.F. Rosloniec. 1994. Characterization of the T cell determinants in the induction of autoimmune arthritis by bovine α(II)-CB11 in H-2b mice. *J. Immunol.* 152:3098-3097.

6. Wall, K.A., J.-Y. Hu, P. Currier, S. Southwood, A. Sette, and A.J. Infante. 1994. A disease-related epitope of Torpedo acetylcholine receptor: residues involved in I-Ab binding, self/non-self discrimination, and TCR antagonism. *J. Immunol.* 152:4526-4536.

7. Katz, J.D., B. Wang, K. Haskins, C. Benoist, and D. Mathis. 1993. Following a diabetogenic T cell from genesis through pathogenesis. *Cell.* 74:1089-1100.

8. Zamvill, S.S., D.J. Mitchell, A.C. Moore, K. Kitamura, L. Steinman, and J.B. Rothbard. 1986. T-cell epitope of the autoantigen myelin basic protein that induces encephalomyelitis. *Nature (Lond.)* 324:258-260.

9. Acha-Orbea, H., D.J. Mitchell, L. Timmermann, D.C. Wrath, G.S. Tausch, M.K. Waldor, S.S. Zamvil, H.O. McDevitt, and L. Steinman. 1988. Limited heterogeneity of T cell receptors from lymphocytes mediating autoimmune encephalomyelitis allows specific immune intervention. *Cell.* 54:263-273.

10. Goverman, J., A. Woods, L. Larson, L.P. Weiner, L. Hood, and D.M. Zaller. 1993. Transgenic mice that express a myelin basic protein-specific T cell receptor develop spontaneous autoimmune. *Cell.* 72:551-560.

11. Smith, S.C., and P.M. Allen. 1991. Myosin-induced acute myocarditis is a T cell mediated disease. *J. Immunol.* 147: 2141-2147.

12. Smith, S.C., and P.M. Allen. 1992. Neutralization of endogenous tumor necrosis factor ameliorates the severity of myosin-induced myocarditis. *Circ. Res.* 70:856-863.

13. Smith, S.C., and P.M. Allen. 1992. Expression of myosin-class II major histocompatibility complexes in the normal myocardium occurs before induction of autoimmune myocarditis. *Proc. Natl. Acad. Sci. USA.* 89:9131-9135.

14. Alvarez, F.L., N. Neu, N.R. Rose, S.W. Craig, and K.W. Beisel. 1987. Heart-specific autoantibodies induced by coxsackievirus B3: identification of heart autoantigens. *Clin. Immunol. Immunopathol.* 43:129-139.

15. Neu, N., N.R. Rose, K.W. Beisel, A. Herskowitz, G. Gurri-Glass, and S.W. Craig. 1987. Cardiac myosin induces myocarditis in genetically predisposed mice. *J. Immunol.* 139: 3630-3636.

16. Lorenz, R.G., and P.M. Allen. 1988. Direct evidence for functional self protein/Ia-molecule complexes in vivo. *Proc. Natl. Acad. Sci. USA.* 85:5220-5223.

17. Lorenz, R.G., A.N. Tyler, and P.M. Allen. 1988. T cell recognition of bovine ribonuclease: self/non-self discrimination at the level of binding to the I-Ab molecule. *J. Immunol.* 141: 4124-4128.

18. Shiverick, K.T., L.L. Thomas, and N.R. Alpert. 1975. Purification of cardiac myosin application to hypertrophied myocardium. *Biochim. Biophys. Acta.* 393:124-133.

19. Evavold, B.D., J. Sloan-Lancaster, and P.M. Allen. 1993. Antagonism of superantigen-stimulated helper T-cell clones and hybridomas by altered peptide ligand. *Proc. Natl. Acad. Sci. USA.* 91:2300-2304.

20. Spencer, S.C., and J.W. Fabre. 1990. Characterization of the tissue macrophage and the interstitial dendritic cell as distinct leukocytes normally resident in the connective tissue of rat heart. *J. Exp. Med.* 171:1841-1851.

21. Austyn, J.M., D.F. Hankins, C.P. Larsen, P.J. Morris, A.S. Rao, and J.A. Roake. 1994. Isolation and characterization of dendritic cells from mouse heart and kidney. *J. Immunol.* 152: 2401-2410.

22. Babitt, B.P., P.M. Allen, G. Matsueda, E. Haber, and E.R. Unanue. 1985. Binding of immunogenic peptides to Ia histocompatibility molecules. *Nature (Lond.)* 317:359-361.

23. Nelson, C.A., S.J. Petzold, and E.R. Unanue. 1993. Identification of two distinct properties of class II major histocompatibility complex-associated peptides. *Proc. Natl. Acad. Sci. USA.* 90:1227-1231.

24. Moiritsen, S., A.S. Hansen, B.L. Petersen, and S. Buus. 1992. pH dependence of the interaction between immunogenic peptides and MHC class II molecules: evidence for an acidic intracellular compartment being the organelle of interaction. *J. Immunol.* 148:1438-1444.

25. Sadegh-Nasseri, S., and R.N. Germain. 1991. A role for peptide in determining MHC class II structure. *Nature (Lond.)* 353:167-170.

26. Nelson, C.A., S.J. Petzold, and E.R. Unanue. 1994. Peptides determine the lifespan of MHC class II molecules in the antigen-presenting cell. *Nature (Lond.)* 371:250-252.

27. Quinn-Laquer, B.K., J.E. Kennedy, S.J. Wei, and K.W. Beisel. 1992. Characterization of the allelic differences in the mouse cardiac α-myosin heavy chain coding sequence. *Genomics.* 13:176-188.

28. Rosenberg, N.L., and B.L. Kotzin. 1989. Aberrant expression of class II MHC antigens by skeletal muscle endothelial cells in experimental autoimmune myocarditis. *J. Immunol.* 142: 4289-4294.

29. Schiaffino, S., and C. Reggiani. 1994. Myosin isoforms in mammalian skeletal muscle. *J. Appl. Physiol.* 77:493-501.

30. McNally, E.M., R. Kraft, M. Bravo-Zehnder, D.A. Taylor, and L.A. Leinwand. 1989. Full-length rat alpha and beta car-
diac myosin heavy chain sequences. Comparisons suggest a molecular basis for functional differences. *J. Mol. Biol.* 210: 665–671.

31. Fairchild, P.J., R. Wildgoose, E. Atherton, S. Webb, and D.C. Wraith. 1995. An autoantigenic T cell epitope forms unstable complexes with class II MHC: a novel route for escape from tolerance induction. *Int. Immunol.* 5:1151–1158.

32. Joosten, I., M.H.M. Wauben, M.C. Holewijn, K. Reske, L.O. Pedersen, C.F.P. Roosenboom, E.J. Hensen, W. van Eden, and S. Buus. 1994. Direct binding of autoimmune disease related T cell epitopes to purified Lewis rat MHC class II molecules. *Int. Immunol.* 6:751–759.

33. Brusic, V., G. Rudy, and L.C. Harrison. 1994. MHCPEP: a database of MHC-binding peptides. *Nucleic Acids Res.* 22: 3663–3665.

34. Babbitt, B.P., G.R. Matsueda, E. Haber, E.R. Unanue, and P.M. Allen. 1986. Antigenic competition at the level of the peptide-Ia binding. *Proc. Natl. Acad. Sci. USA.* 83:4509–4513.

35. Mathisen, P.M., S. Pease, J. Garvey, L. Hood, and C. Readhead. 1993. Identification of an embryonic isoform of myelin basic protein that is expressed widely in the mouse embryo. *Proc. Natl. Acad. Sci. USA.* 90:10125–10129.

36. Sercarz, E.E., P.V. Lehmann, A. Ametani, G. Benichou, A. Miller, and K.D. Moudgil. 1993. Dominance and crypticity of T cell antigenic determinants. *Annu. Rev. Immunol.* 11: 729–766.

37. Wegmann, K.W., W. Zhao, A.C. Griffin, and W.F. Hickey. 1994. Identification of myocarditogenic peptides derived from cardiac myosin capable of inducing experimental allergic myocarditis in the Lewis rat. *J. Immunol.* 153:892–900.

38. Liao, L., R. Sindhwani, L. Leinwand, B. Diamond, and S. Factor. 1993. Cardiac α-myosin heavy chains differ in their induction of myocarditis. Identification of pathogenic epitopes. *J. Clin. Invest.* 92:2877–2882.

39. Wall, M., S. Southwood, J. Sidney, C. Oseroff, M. del Guercio, A. G. Lamont, S.M. Colon, T. Arrhenius, F.C.A. Gaeta, and A. Sette. 1992. High affinity for class II molecules as a necessary but not sufficient characteristic of encephalitogenic determinants. *Int. Immunol.* 4:773–777.

40. Strehler, E.E., M.A. Strehler-Page, J.C. Perriard, M. Periasamy, and B. Nadal-Ginard. 1986. Complete nucleotide and encoded amino acid sequence of a mammalian myosin heavy chain gene. Evidence against intron-dependent evolution of the rod. *J. Mol. Biol.* 190:291–317.