Abstract—A packet-switched network node with constant capacity (in bps) is considered, where packets within each flow are served in the first in first out (FIFO) manner. While this single node system is perhaps the simplest computer communication system, its stochastic service curve characterization and independent case analysis in the context of stochastic network calculus (SNC) are still basic and many crucial questions surprisingly remain open. Specifically, when the input is a single flow, what stochastic service curve and delay bound does the node provide? When the considered flow shares the node with another flow, what stochastic service curve and delay bound does the node provide to the considered flow, and if the two flows are independent, can this independence be made use of and how? The aim of this paper is to provide answers to these fundamental questions.

I. INTRODUCTION

Network calculus is a theory dealing with queueing type problems encountered in packet-switched computer networks. To simplify the analysis, an important idea in network calculus is to characterize the traffic and service processes using some bounds and perform analysis based on such bounds. Network calculus has developed along two tracks — deterministic and stochastic. Deterministic network calculus, coined by [7], has been extensively studied since its introduction in early 1990s, and is nicely covered by two excellent books [2][22]. Stochastic network calculus is the probabilistic extension or generalization of deterministic network calculus. The development of stochastic network calculus (SNC) began also in early 1990s. However, due to challenges specific to stochastic networks, it is recently that crucial network calculus properties have been proved for SNC. Interested readers may refer to [19][25][10][17] and references therein for more information.

In SNC, stochastic service curve is the fundamental concept for server modeling. If some flows and servers are independent, it is expected that tighter analytical bounds can be obtained by making use of this independence information in the analysis. In this paper, we consider a work-conserving constant capacity node serving flows. Each flow consists of a sequence of packets that are served in the first in first out (FIFO) manner. This single node system is perhaps the simplest computer communication system. For such a system, an immediate impression is perhaps that it has been thoroughly investigated and is well understood, given the current SNC literature. Unfortunately, this impression has no solid supporting ground and can hence be highly misleading. Indeed, while the SNC literature has a lot of results based on its various stochastic arrival curve and stochastic service curve models, the following questions remain largely open. What stochastic service curve and delay bound does the node provide when the input is a single flow? What stochastic service curve and delay bound does the node provide when the considered flow shares the node with another flow? If the two flows are independent, can this independence be made use of and how?

The objective of this paper is to derive results to provide answers to these fundamental questions. In the next section, the system model and notation are defined. In Sec. III, stochastic network calculus basics are given. In Sec. IV, the difficulties for stochastic service curve and delay bound analysis, when packetization effect is not ignored, are discussed. In Sec. V, we focus on the single flow case. In Sec. VI, we take cross traffic into consideration, and find stochastic service curves and delay bounds for the traversing flow. In Sec. VII, we give examples. In Sec. VIII, discussion on related work is provided. Finally, concluding remarks are given in Sec. IX.

II. THE SYSTEM MODEL AND NOTATION

We consider a work-conserving network node serving flows in a packet-switched network. It is a discrete-time system with time indexed by $t = 0, 1, 2, \ldots$. The servicing capacity of the node is constant, denoted by C (in bps). Flow f traverses this node and is referred as the traversing flow. In addition, the node may also serve another flow f^c, which is the aggregate flow of crossing traffic and is referred as the crossing flow. Packets within each flow are served in the FIFO manner. Between flows, some scheduling policy is employed, but within this paper, it is not specified.

By convention, a packet is said to have arrived to (respectively served by) the node when and only when its last bit has arrived to (respectively left) the node. When a packet arrives seeing the node busy, the packet will be queued and the buffer size for such a queue is assumed to be large enough ensuring no packet loss. All queues are initially empty.

For the traversing flow f, we let p^f_i denote the ith packet ($i = 1, 2, \ldots$) of the flow. For each p^f_i, we denote by a^f_i its arrival time to the node, d^f_i its departure time from the node, and l^f_i its length (in bits). Similarly, for the crossing flow f^c, we let p^c_i denote the ith packet ($i = 1, 2, \ldots$), a^c_i its arrival time, d^c_i its departure time, and l^c_i its length.

We further use $A^f(t)$ and $A^c(t)$ to denote the amount of traffic (in bits) that has arrived from the traversing flow and the crossing flow to the node within time period $[0, t]$ respectively. Correspondingly, $A^f(s, t) = A^f(t) - A^f(s)$ and $A^c(s, t) = A^c(t) - A^c(s)$ respectively denote the amount of traffic (in bits) that has arrived from them within time $[s, t]$.
A flow is said to have a v.b.c (virtual backlog centric) stochastic arrival curve $\alpha(t)$ with bounding function \bar{F}, if its arrival process $A(t)$ satisfies, for any $t \geq 0$ \cite{8,26,20},

$$P\{A(t) - A(t) \odot \alpha(t) > x\} \leq \bar{F}(x)$$

where $\alpha(t)$ is non-negative non-decreasing on t, and $\bar{F}(x)$ non-negative non-increasing on x.

In Definition 1, if $\bar{F}(0) = 0$, implying $\bar{F}(x) = 0$ for any $x \geq 0$ or in other words $A(t) \leq A(t) \odot \alpha(t)$, $\alpha(t)$ is also called (a deterministic) arrival curve.

Definition 2. A system is said to provide a stochastic service curve $\beta(t)$ with bounding function G, if there holds, for all $t \geq 0$ \cite{8,19},

$$P\{A(t) - A(t) \odot \beta(t) > x\} \leq G(x)$$

where $\beta(t)$ is non-negative non-decreasing on t, and $G(x)$ non-negative non-increasing on x.

In Definition 2, if $\bar{G}(0) = 0$, implying $\bar{G}(x) = 0$ for any $x \geq 0$ or in other words $A(t) \geq A(t) \odot \beta(t)$, $\beta(t)$ is also called (a deterministic) service curve.

B. Related Results

This paper focuses on stochastic service curve and delay bound analysis. The following presents some related results.

In the SNC literature, the following result, called the leftover service property, has been widely used for finding the stochastic service curve characterization of the service provided to a flow (e.g. see \cite{5,24}).

Proposition 1. Consider a system with cross traffic. If the system provides a stochastic service curve $\beta(t)$ with bounding function $\bar{G}(x)$ and the crossing flow has a v.b.c. stochastic arrival curve $\alpha(t)$ with bounding function $\bar{F}(x)$, then the leftover service provided to the traversing flow has a stochastic service curve $\bar{G}^f(x) = (\beta(t) - \bar{G}(t))$ with bounding function $\bar{F}^f(x) = \bar{F}(x) \odot \bar{G}(x)$.

For delay bound analysis, the following result has been proved (e.g. see \cite{8,19}).

Proposition 2. If a system provides a stochastic service curve $\beta(t)$ with bounding function \bar{G} to a flow f, which has v.b.c stochastic arrival curve $\alpha_f(t)$ with bounding function $\bar{F}_f(x)$, then the flow has a delay bound as

$$P\{D_f(t) > h(\alpha_f(t) + x, \beta(t))\} \leq \bar{F}_f \odot \bar{G}(x).$$

When the system is shared by the traversing flow and the crossing flow, the following delay bound follows immediately from Proposition 1 and Proposition 2 \cite{19}.

Proposition 3. Under the same condition as Proposition 1, if the traversing flow has a stochastic arrival curve $\alpha_f(t)$ with bounding function $\bar{F}_f(x)$, then its delay is bounded as

$$P\{D_f(t) > h(\alpha_f(t) + x, \beta_f(t))\} \leq \bar{F}_f \odot \bar{F}_x \odot \bar{G}(x).$$
IV. THE DIFFICULTIES

The difficulties are inherent in the SSC definition. Suppose $S(t)$ is the service process provided by the node to the flow and $S(s,t) \equiv S(t) - S(s)$. The following equation, called the min-plus convolution queueing principle [15], holds [19]:

$$A^*(t) = \inf_{0 \leq s \leq t} \{ A(s) + S(s,t) \}. \quad (10)$$

Essentially, SSC defines a way to characterize the service process $S(t)$.

A. Difficulty in Finding SSC

When the packetization effect is taken into account, finding stochastic service curves for the node is surprisingly challenging, even though it has constant capacity.

Indeed, the network calculus literature has shown that a constant server with capacity C has a deterministic service curve $(C \cdot t - L^\text{max})^+$, where L^max denotes the maximum packet length in the system. Fundamentally, the following inequality can be proved [11]:

$$A^*(t) \geq A(t) \otimes (C \cdot t - L^\text{max}(t))^+, \quad (11)$$

where $L^\text{max}(t) \equiv \max\{l_1, l_2, l(t)\}$ with $l(t)$ denoting the length of the most recent packet that arrived before or at t, and $L^\text{max} = \lim_{t \to \infty} L^\text{max}(t)$. With simple manipulation based on the definition of \otimes, we obtain

$$A(t) \otimes (C \cdot t) - A^*(t) \leq L^\text{max}(t)$$

which implies

$$P\{A(t) \otimes (C \cdot t) - A^*(t) > x\} \leq P\{L^\text{max}(t) > x\} \equiv F^\text{L}^\text{max}(t)(x). \quad (12)$$

Then, we can conclude that the constant capacity node provides a stochastic service curve $C \cdot t$ with bounding function $F^\text{L}^\text{max}(t)(x)$.

Unfortunately, $L^\text{max}(t)$ is non-decreasing with t, implying that $F^\text{L}^\text{max}(t)(x)$ may approach 1 as t grows [6]1. Consequently, using $F^\text{L}^\text{max}(t)$ as a bounding function is meaningless.

The problem becomes even more challenging when there is cross traffic. First, in order to apply the leftover service property to obtain a stochastic service curve for the traversing flow, we need to know the stochastic service curve of the node. However, the above discussion implies that the stochastic service curve of the node is yet to be found. Second, the packet length process is a mixture of the packet length process of the traversing flow and that of the crossing flow. This makes the determination of $F^\text{L}^\text{max}(t)$ and consequently the stochastic service curve characterization of the node even more difficult.

To tackle the time-growing $F^\text{L}^\text{max}(t)$ problem, one may introduce a compromised service curve $(C - \theta) \cdot t$, for some $\theta \geq 0$, with a resultant bounding function related to $\int_x^\infty F^1(y)dy$, by exploiting an approach used in SNC in dealing with maximal random processes [19]. Recently, the effort in [23] shows that, without compromising the service curve expression $C \cdot t$, a bounding function, which is also related to $\int_x^\infty F^1(y)dy$, can be found, when the packet length process is stationary and satisfies some conditions.

Note that intuitively, a packetized system can be treated as the concatenation of a fluid system followed by a packetizer [2][22]2. Since the fluid system provides deterministic service curve $C \cdot t$ as discussed above, the stochastic behavior of the node is hence determined by the packet length distribution. Based on this, we boldly conjecture that the constant capacity node provides a stochastic service curve $C \cdot t$ with bounding function simply as F^1. However, while the intuition is perhaps straightforward, proving the validity of the conjecture is far from direct as to be shown in the next section.

B. Difficulty in Making Use of Independence Information

Besides the difficulty in finding the SSC characterization of the node, it is even more difficult to make use of potential independence information in the analysis. This is due to that, the service process $S(t)$ and the arrival process $A(t)$ are inherently dependent, implied by (10). More specifically, both $S(t)$ and $A(t)$ are functions of the lengths of packets that are counted in. For a simple example, suppose flow f only has one packet $p^{f,1}$ whose length $l^{f,1}$ is a random variable. It is clear that $A(t) = l^{f,1}$ and also $S(t) = l^{f,1}$ for any $t \geq d^{f,1}$, which indicates strong dependence between $A(t)$ and $S(t)$.

The inherent dependence between $A(t)$ and $S(t)$ makes it difficult to make use of potential independence in the analysis. Particularly, when there is cross traffic present, even though the traversing flow may be independent of the crossing flow, this independence information cannot be exploited when applying the existing SNC results as reviewed in Sec. III. This is due to that, the stochastic service curve characterization of the service process $S(t)$ provided by the node is dependent on the packet lengths of both flows. A consequence is that, with the SSC decided from Proposition 1, it is not possible to make use of the independence information to improve the (independence-information-unaware) delay bound in Proposition 3.

To this point, we would like to remark that, if all packets have the same length or their lengths are upper-bounded, the service process of the node has a deterministic service curve. For this case, independent case analysis may be conducted by following the approaches proposed in [13] and [9].

However, for the more general case, even though it is intuitive that the independence information of the two flows should allow improving the analysis, how specifically to make use of this independence information in the analysis remains to be addressed.

1An exception is when all packets have the same length L or their lengths are upper-bounded by L, of which, the fluid-flow is a special case with infinitely small packet length. In this case, for any t, $F^\text{L}^\text{max}(t)(x) \leq 1$ for all $x \leq L$; otherwise $F^\text{L}^\text{max}(t)(x) = 0$ for all $x > L$. In other words, the node provides a deterministic service curve $(C \cdot t - L)^+$.

2A packetizer is an element gathering all bits in a packet, which delivers the entire packet with no delay until and immediately after receiving the last bit of the packet.
V. Stochastic Service Curve and Delay Bounds: The Single Flow Case

In this section, we first prove the stochastic service curve as suggested by the conjecture. Then, delay bounds are derived for the traversing flow. To deal with the difficulty in finding the SSC, a novel approach is introduced.

A. Stochastic Service Curve

We now present the approach to tackling the difficulty. In this approach, we relate the service provided by a (not-necessarily constant rate) system to a flow \(f \) to a virtual time function defined as

\[
V^{f,i}(R) = \max \{ a^{f,i}, V^{f,i-1} \} + \frac{t^{f,i}}{R}
\]

iteratively for \(i = 1, 2, \ldots \), with \(V^{f,0} = 0 \), where \(R \) is a constant rate parameter.

Applying iteratively to its right hand side, (14) becomes

\[
V^{f,i}(R) = \max_{1 \leq j \leq i} \{ a^{f,j} + \sum_{k=j}^{i} \frac{t^{f,k}}{R} \}.
\]

The following result is crucial, which establishes a link between the stochastic service curve model and the virtual time function. For deterministic network calculus, a similar relationship can be found in [12] (Lemma 2). The proof is long and omitted in the present paper due to space limitation, but can be found from the full version [18].

Lemma 1. Consider a flow \(f \) served by a system. For any time \(t > 0 \) and \(R > 0 \), the following relationship holds:

\[
A^f \otimes \beta(t) - A^{f^*}(t) \leq R \cdot [d_v^f(t) - V^{f,i(t)}(R)] + t^{f,i(t)}
\]

where \(\beta(t) = R \cdot t \), \(i(t) = \min \{ k : d_f^f \geq t \} \), and \(t^{f,i(t)} \) the length of packet \(p^{f,i(t)} \).

For the considered single node system with single input flow \(f \), consider any packet \(p^{f,i} \). There are two cases. One case is that when \(p^{f,i} \) arrives, the system is idle, which is \(A^{f,i} > d_v^{f,i-1} \). Hence, \(d^{f,i} = a^{f,i} + \frac{t^{f,i}}{R} \). Another case is that \(p^{f,i} \) arrives, the system is busy, which is \(a^{f,i} \leq d_v^{f,i-1} \). Then, it has to wait until the previous packet \(p^{f,i-1} \) has finished service. Hence, \(d^{f,i} = d_v^{f,i-1} + \frac{t^{f,i}}{R} \). Combining both cases, we must have \(d^{f,i} = \max \{ a^{f,i}, d_v^{f,i-1} \} + \frac{t^{f,i}}{R} \). Comparing it with \(V^{f,i}(C) \), the following result is proved.

Lemma 2. For the considered single node system with single input flow \(f \), there holds, for any packet \(p^{f,i} \) of the flow,

\[
d^{f,i} = V^{f,i}(C).
\]

Applying (17) to Lemma 1, the following is obtained for \(R = C \):

\[
A^f \otimes \beta(t) - A^{f^*}(t) \leq t^{f,i(t)}.
\]

It is worth highlighting that \(i(t) \) is random and packet \(p^{f,i(t)} \) may be different from one sample path to another

3 Intuitively, if at time \(t \), there is a packet under service from the flow, then \(p^{f,i(t)} \) is this packet; otherwise, \(p^{f,i(t)} \) is the first packet from this flow, which receives service after \(t \).

sample path. However, if all packets, \(t^{f,1}, t^{f,2}, \ldots \), have identically distributed packet lengths with CCDF \(F_1(x) \), or more generally if their lengths have the same upper-bounded CCDF \(F_1(x) \), the following follows from (18).

\[
P\{ A^f \otimes \beta(t) - A^{f^*}(t) > x \} \leq F_1(x).
\]

Summarizing the above discussion, we have validated the conjecture. Formally, the following theorem has been proved:

Theorem 1. Consider a work-conserving system with constant capacity \(C \) serving a flow \(f \). Suppose that all packets have length distributions that are identical with CCDF \(F_1(x) \) or whose CCDFs are all upper-bounded by \(F_1(x) \). Then, the system provides to the flow a stochastic service curve \(\beta(t) = C \cdot t \) with bounding function \(G(x) = F_1(x) \).

B. Delay Bounds

With Th. 1, the following delay bound follows directly from Proposition 2.

Corollary 1. Under the same condition as for Th. 1, if the traversing flow has a v.b.c. stochastic arrive curve \(\alpha(t) = r^f \cdot t \) with bounding function \(F^f \) and \(r^f \leq C \), then for any packet \(p^{f,i} \), its delay is bounded as:

\[
P\{ D^{f,i} > \tau \} \leq F^f \otimes F_1(C \cdot \tau)
\]

In Section IV, we have discussed the inherent dependence between the arrival process and the service process. When it comes to the delay bound analysis, we would like to highlight that the inherent dependence is specifically seen between \(A^f(t) \) and \(t^{f,i(t)} \), since by their definitions, \(t^{f,i(t)} \) may be counted in \(A^f(t) \). This partly explains why the min-plus convolution appears on the right hand side of (20) and in Proposition 2, which assumes no knowledge of potential independence information.

At this moment, it seems that nothing more than Corollary 1 could be done for delay bound analysis. In the following, we show that this is too pessimistic. Specifically, by exploiting the idea of the virtual time function, an improved delay bound is proved in the following theorem.

Theorem 2. Under the same condition as for Th. 1, if the traversing flow has a v.b.c. stochastic arrive curve \(\alpha(t) = r^f \cdot t \) with bounding function \(F^f \) and \(r^f \leq C \), then for any packet \(p^{f,i} \), its delay is bounded as (a.s.):

\[
P\{ D^{f,i} > \tau \} \leq F^f(C \cdot \tau).
\]

Proof: Consider any sample path of the system. By the definition of \(D^{f,i} \) and with Lemma 2, we have

\[
D^{f,i} = d^{f,i} - a^{f,i} = V^{f,i}(C) - a^{f,i}
\]

\[
= \frac{1}{C} \max_{1 \leq j \leq i} \{ \sum_{k=j}^{i} t^{f,k} - C(a^{f,i} - a^{f,j}) \}
\]

\[
\leq \frac{1}{C} \max_{0 \leq j \leq i} \{ A^f(\alpha(t) - \epsilon, a^{f,i} - C(a^{f,i} - a^{f,j} + \epsilon)) + \epsilon \}
\]

\[
\leq \frac{1}{C} \sup_{0 \leq s \leq t} \{ A^f(s, t) - r^f(t - s) \} + \epsilon
\]
where \(t = a^{f,i} \), \(\epsilon \to 0 \) and \(r^f \leq C \). In step (22), \(\epsilon \to 0 \) is introduced such that \(A^f(a^{f,j} - \epsilon, a^{f,j}) \) includes all arrivals in \([a^{f,j}, a^{f,j+1}]\).

Since the traversing flow has a v.b.c stochastic arrive curve, we have by definition:

\[
P\{ \sup_{0 \leq s \leq t} \{ A^f(s, t) - r^f(t - s) \} > x \} \leq \bar{F}^f.
\]

Since this bounding function holds for all sample paths, (21) is then obtained.

At a first glance, the delay bound in Th. 2 may seem to be surprising, since the packetization effect is not directly seen from (21). However, an alert reader may have noticed that it is indeed consistent with a result in the deterministic network calculus literature, which states that in delay bound analysis, the last packetizer on the path of the flow may be ignored [2][22]. Th. 2 proves this property in the context of stochastic network calculus for the single node case.

Remark: An implication of Th. 2 is that, when delay bound analysis is performed, the node may be treated as if it would provide a deterministic service curve for the node and then Corollary 1 becomes the same as Th. 2.

VI. STOCHASTIC SERVICE CURVES AND DELAY BOUNDS: THE CASE WITH CROSS TRAFFIC

In this section, we consider the case where the traversing flow shares service of the node with the crossing flow. Specifically, we find a stochastic service curve for the node and two SSCs for the traversing flow, followed by deriving delay bounds for the traversing flow.

A. Stochastic Service Curves

1) A direct result: Let us treat the traversing flow and the crossing flow as an aggregate flow. For packets of the aggregate flow \(g \), which takes the packet order as that on the output link, the following relation can be easily verified:

\[
d^{g,j} = \max\{a^{g,j}, d^{g,j-1}\} + \frac{\beta^{g,j}}{C}.
\]

Comparing (24) with (14), it is clear that for the aggregate, \(d^{g,j} = V^{g,j}(C) \).

Note that in presenting (24), we do not make any assumption on the scheduling algorithm between the two flows, and (24) is only concerned about the aggregate. We call (24) the “aggregate behavior” of the node, which is in consistence with the definition of the aggregate per-hop behavior [14] under the Internet Differentiated Services architecture (DiffServ).

With (24) and following the same proof of Th. 1, the following result can be verified.

Lemma 3. Consider a work-conserving system with constant capacity \(C \), shared by a traversing flow \(f \) and a crossing flow \(f^c \). Suppose that all packets have length distributions that are identical with CCDF \(F^{f^c}(x) \) or whose CCDFs are all upper-bounded by \(F^{f^c}(x) \). Then, the system provides to the traversing flow an “aggregate behavior” stochastic service curve \(C \cdot t \) with bounding function \(F^{f^c}(x) \).

Recall that we are interested in the traversing flow. With Lemma 3 and the leftover property Proposition 1, the following stochastic service curve to the traversing flow is obtained:

Theorem 3. Consider the same system as in Lemma 3. If the crossing flow has a v.b.c. stochastic arrival curve \(\alpha^c(t) = r^c \cdot t \), with bounding function \(F^c(x) \), then the system provides to the traversing flow a stochastic service curve \(\beta(t) = (C - r^c) \cdot t \) with bounding function \(\bar{G}(x) \) as

\[
\bar{G}(x) = F^c \otimes \bar{F}^f(x).
\]

Note that in Th. 3, the resulting bounding function is \(F^c \otimes \bar{F}^f(x) \), which assumes no knowledge of potential independence information, even though the crossing flow may be independent of the traversing flow. This is due to that \(F^f \) is the length distribution of all packets, which include packets of the crossing flow, and hence \(F^f \) is inherently coupled with the traffic arrival process of the crossing flow.

2) An improved result: While Th. 3 is an improvement over those that are based on (13), it may be difficult to find \(F^f \) of the aggregate particularly when the traversing flow and the crossing flow have different packet length distributions.

The following theorem proves another stochastic service curve for the traversing flow, where there is no need to find \(F^f \), relieving the difficulty. In addition, if the two flows are independent, this independence information is made use of.

Theorem 4. Consider a work-conserving system with constant capacity \(C \), shared by a traversing flow \(f \) and a crossing flow \(f^c \). Suppose the crossing flow has a v.b.c. stochastic arrival curve \(\alpha^c(t) = r^c \cdot t \), with bounding function \(F^c \), and suppose all packets of the traversing flow have length distributions that are identical with CCDF \(\bar{F}^f(x) \) or whose CCDFs are all upper-bounded by \(F^f(x) \). Then, the node provides to the traversing flow a stochastic service curve \(\beta(t) = (C - r^c) \cdot t \) with bounding function \(\bar{G}(x) \) as

\[
\bar{G}(x) = F^c \otimes \bar{F}^f(x).
\]

and if the two flows are independent,

\[
\bar{G}(x) = 1 - F^c \ast F^f(x)
\]

where, \(F^f \equiv 1 - F^f, F^c \equiv 1 - F^c \), and \(F_1 \ast F_2(x) \equiv \int_0^x F_1(x-y) dF_2(y) \).

To prove Th. 4, Lemma 4 and Lemma 5 below are crucial, with which, Th. 4 is easily verified.

Lemma 4. For the considered single node system with cross traffic, there holds, for any packet \(p^{f,i} \) of the traversing flow,

\[
d^{f,i} \leq V^{f,i}(C-r^c) + \sup_{0 \leq s \leq d^{f,i}} \{ A^c(s, d^{f,i}) - r^c(d^{f,i} - s) \}
\]

for any \(C > r^c \geq 0 \).

Proof: As for (24), let us consider the aggregate flow \(g \). Since no specific scheduling between the two flows has been

\[\text{Strictly speaking, instead of directly applying Proposition 1, a separate proof is needed.} \]
assumed, a packet, which appears earlier on the output link in the aggregate flow, may actually arrive to the node later than another packet that appears later on the output link. In other words, we may not have $a^{g,j} \geq a^{g,j-1}$.

For any packet $p^{f,i}$, suppose its corresponding packet in the aggregate flow is $p^{g,j}$. Particularly, we suppose the departure time of $p^{f,i}$, i.e. $d^{f,i} = d^{g,j}$, is within the busy period that starts at t^0. Note that such a busy period always exists, since in the worst case, the period is only the service time period of $p^{f,i}$ and in this case, $t^0 = a^{g,j}$.

Since the node is work-conserving with constant service rate C and it is busy with serving between t^0 and $d^{g,j}$, there holds:

$$d^{g,j} = t^0 + \sum_{k=j_0}^j l^{g,k} \cdot \frac{C}{C},$$

where p^{g,j_0} denotes the packet whose arrival starts the busy period.

Among packets $p^{g,j_0}, \ldots, p^{g,j}$, some belong to the traversing flow and the rest the crossing flow. Let p^{f,i_0} denote the first packet from the traversing flow served in the busy period. There holds $a^{f,i_0} \geq t^0$.

Equation (29) can be re-written as:

$$d^{f,i} \leq t^0 + \sum_{k=i_0}^i l^{f,k} \cdot \frac{C}{C} + A^c(t^0, d^{f,i}) \cdot \frac{C}{C},$$

where, by definition, $A^c(t^0, d^{f,i})$ represents the total length (in bits) of packets from the crossing flow served in $(t^0, d^{f,i})$.

Since the busy period starts at t^0, this implies that immediately before t^0, the node is idle. In other words, all packets, which arrived before t^0, have been served by t^0. So, we have $A^c(t^0) = A^c(t^0)$. In addition, crossing flow packets, which are served before $d^{f,i}$, must have arrived by $d^{f,i}$. So, we have $A^c(d^{f,i}) \leq A^c(d^{f,i})$. Combining both, we obtain:

$$A^c(t^0, d^{f,i}) \leq A^c(t^0, d^{f,i})$$

which, when applied to (30), results in

$$d^{f,i} \leq t^0 + \sum_{k=i_0}^i l^{f,k} \cdot \frac{C}{C} + A^c(t^0, d^{f,i}) \cdot \frac{C}{C}.$$

(31)

With (32), we obtain, for any $C > r^c \geq 0$,

$$d^{f,i} \leq t^0 + \sum_{k=i_0}^i l^{f,k} \cdot \frac{C}{C} + A^c(t^0, d^{f,i}) - r^c(d^{f,i} - t^0) \cdot \frac{C}{C},$$

(32)

Further with simple manipulation, we obtain

$$d^{f,i} \leq t^0 + \sum_{k=i_0}^i l^{f,k} \cdot \frac{C}{C} + A^c(t^0, d^{f,i}) - r^c(d^{f,i} - t^0) \cdot \frac{C}{C}.$$

(33)

Recall the virtual time function (14), it is easy to verify that, for the considered packet $p^{f,i}$, we have

$$V^{f,i}(C - r^c) \geq a^{f,i_0} + \sum_{k=i_0}^i l^{f,k} \cdot \frac{C}{C} - t^0 \geq a^{f,i_0} + \sum_{k=i_0}^i l^{f,k} \cdot \frac{C}{C} - t^0.$$

(34)

In addition, there holds

$$A^c(t^0, d^{f,i}) - r^c(d^{f,i} - t^0) \leq \sup_{0 \leq s \leq d^{f,i}} \{ A^c(s, d^{f,i}) - r^c(d^{f,i} - s) \}.$$

(35)

Applying (34) and (35) to (33), we obtain (28) and the lemma is proved.

We remark that when there is no cross traffic, i.e. $A^c(t) = 0$, then letting $r^c = 0$, Lemma 4 is reduced to Lemma 2 as expected.

Note that Lemma 1 provides a general relationship, with which, by letting $R = C - r^c$ in it, we obtain

$$A^f \otimes \beta(t) - A^{f^*}(t) \leq (C - r^c)[d^{f,i}(t) - V^{f,i}(t)(C - r^c)] + l^{f,i}(t)$$

(36)

Applying Lemma 4 to above immediately gives the following:

Lemma 5. For the considered single node system with cross traffic, for any time t and any sample path of the system, the following relationship holds for the traversing flow f,

$$A^f \otimes \beta(t) - A^{f^*}(t) \leq \sup_{0 \leq s \leq d^{f,i}(t)} \{ A^c(s, d^{f,i}(t)) - r^c \cdot (d^{f,i}(t) - s) \} + l^{f,i}(t)$$

(37)

where $\beta(t) = (C - r^c)\cdot t$, $i(t) = \min\{k : d^{f,k} \geq t\}$, and $l^{f,i}(t)$ is the length of packet $p^{f,i}(t)$.

Finally, since the crossing flow has a v.b.c stochastic arrival curve $r^f\cdot t$ with bounding function F^c, and all packet lengths have identical (or the same upper-bounded) CCDF F^c, Th. 4 is proved by applying these conditions to Lemma 5.

It is worth highlighting that while (26) looks similar to (25), there is a fundamental difference between them. Specifically, the packet length distribution F^g in (25) is that of the aggregate flow, while in (26), the packet length distribution F^c is only of the traversing flow.

B. Delay Bounds

1) **Delay bounds from Th.s 3 and 4:** With Th.s 3 and 4, the following delay bounds are directly obtained from Preposition 2 respectively.

Corollary 2. Under the same condition as for Th. 3, if the traversing flow has a v.b.c stochastic arrival curve $\alpha(t) = r^f\cdot t$ with bounding function F^f, and $r^f < C - r^c$, then for any packet $p^{f,i}$, it has a delay bound as:

$$P\{D^{f,i} > \tau\} \leq F^c \otimes F^g \otimes F^f ((C - r^c)\tau).$$

(38)

Corollary 3. Under the same condition as for Th. 4, if the traversing flow has a v.b.c stochastic arrival curve $\alpha(t) = r^f\cdot t$ with bounding function F^f, and $r^f < C - r^c$, then for any packet $p^{f,i}$, it has a delay bound as:

(i) if the two flows may be dependent,

$$P\{D^{f,i} > \tau\} \leq F^c \otimes F^i \otimes F^f ((C - r^c)\tau);$$

(39)

(ii) if the two flows are independent,

$$P\{D^{f,i} > \tau\} \leq (1 - F^c \cdot F^f) \otimes F^f ((C - r^c)\tau).$$

(40)
It is worth highlighting that in obtaining the bounding function in Th. 4, we have relied on the right hand side of (37), which and \(A(t)\) are inherently dependent due to \(f^{i,j}(t)\). This explains why in (40), the independence information cannot be further made use of.

2) An improved delay bound: In the following, an improved delay bound is presented.

Theorem 5. Suppose the traversing flow has a v.b.c stochastic arrival curve \(a(t) = r^i \cdot t\) with bounding function \(F^i\) and the crossing flow has a v.b.c stochastic arrival curve \(a(t) = r^c \cdot t\) with bounding function \(F^c\). If \(r^i + r^c < C\), then for any packet \(p^{f,i}_j\) of the traversing flow, its delay is bounded as (a.s.)

\[(i)\] if the two flows may be dependent,

\[P\{D^{f,i} > \tau\} \leq F^c \otimes F^i ((C - r^c)\tau)\] \hspace{1cm} (41)

\[(ii)\] if the two flows are independent,

\[P\{D^{f,i} > \tau\} \leq 1 - E^c * F^i ((C - r^c)\tau)\] \hspace{1cm} (42)

Proof: Consider any sample path. With Lemma 4 particularly (28), we obtain, for any packet \(p^{f,i}\),

\[D^{f,i} = d^{f,i} - a^{f,i}\]

\[\leq V^{f,i}(C - r^c) - a^{f,i}\]

\[+ \sup_{0 \leq s \leq d^{f,i}} \{A^c(s, d^{f,i}) - r^c \cdot (d^{f,i} - s)\}\]

\[= \max_{1 \leq j \leq \lambda} \{a^{f,j} + \sum_{k=j}^{i} F^{f,k} \cdot \frac{1}{C - r^c}\} - a^{f,i}\]

\[+ \sup_{0 \leq s \leq d^{f,i}} \{A^c(s, d^{f,i}) - r^c \cdot (d^{f,i} - s)\}\] \hspace{1cm} (43)

To ease the presentation, we move \((C - r^c)\) to the left and get

\[D^{f,i} \cdot (C - r^c)\]

\[\leq \max_{1 \leq j \leq \lambda} \{\sum_{k=j}^{i} F^{f,k} - (C - r^c)(a^{f,j} - a^{f,j})\}\]

\[+ \sup_{0 \leq s \leq d^{f,i}} \{A^c(s, d^{f,i}) - r^c \cdot (d^{f,i} - s)\}\]

\[\leq \max_{0 \leq s \leq d^{f,i}} \{A^f(s, a^{f,i}) - (C - r^c)(a^{f,j} - a^{f,j})\}

\[+ \sup_{0 \leq s \leq d^{f,i}} \{A^c(s, d^{f,i}) - r^c \cdot (d^{f,i} - s)\}\]

\[\leq \sup_{0 \leq s \leq a^{f,i}} \{A^f(s, a^{f,i}) - r^f(a^{f,i} - s)\}

\[+ \sup_{0 \leq s \leq d^{f,i}} \{A^c(s, d^{f,i}) - r^c \cdot (d^{f,i} - s)\}\]

\[\leq \sup_{0 \leq s \leq a^{f,i}} \{A^f(s, a^{f,i}) - r^f(a^{f,i} - s)\}

\[+ \sup_{0 \leq s \leq d^{f,i}} \{A^c(s, d^{f,i}) - r^c \cdot (d^{f,i} - s)\}\] \hspace{1cm} (44)

where \(\epsilon \rightarrow 0\).

Note that, given \(a^{f,i}\) as implied by the delay definition, the first two terms on the right hand side of (45) are independent. Consequently, the theorem follows (see [18] for more explanation.).

3) A further improved delay bound: In obtaining the improved delay bounds in Th. 5, we made no additional assumption on the arrival process of the traversing flow or that of the crossing flow. If, however, these processes satisfy some assumptions, a further improved delay bound can be obtained.

Specifically, if \(A^f(t)\) and \(A^c(t)\) are independent and they have independent stationary increments, a further improved delay bound can be obtained.

Theorem 6. Suppose that the traversing flow \(A^f(t)\) and the crossing flow \(A^c(t)\) are independent and they have independent stationary increments. Assume \(M^f(1) = E[e^{\theta A^f(t)}]\) and \(M^c(1) = E[e^{\theta A^c(t)}]\) exist for small \(\theta > 0\) and \(E[e^{\theta (A^f(t) + A^c(t) - C)}] \leq 1\). Then, for any packet \(p^{f,i}\) of the traversing flow, its delay is bounded as

\[P\{D^{f,i} > \tau\} \leq e^{-\theta(C-r^c)\tau}.\] \hspace{1cm} (46)

for any \(\theta \geq 0\) and any \(r^c\) satisfying \(E[e^{\theta (A^c(t) - r^c)}] \leq 1\).

Proof: Our starting point is (33), which is reproduced here:

\[d^{f,i} \leq \frac{\sum_{k=0}^{i} F^{f,k}}{C - r^c} + \frac{A^c(t_0, d^{f,i}) - r^c (d^{f,i} - t_0)}{C - r^c}\] \hspace{1cm} (47)

with which, the following is easily verified

\[(C - r^c) \cdot (d^{f,i} - a^{f,i})\]

\[\leq A^f(t_0, a^{f,i}) - (C - r^c) \cdot (a^{f,i} - t_0)\]

\[+ A^c(t_0, d^{f,i}) - r^c (d^{f,i} - t_0)\]

\[= A^f(t_0, a^{f,i}) + A^c(t_0, d^{f,i}) - C \cdot (a^{f,i} - t_0)\]

\[+ A^c(d^{f,i}, d^{f,i}) - r^c (d^{f,i} - a^{f,i})\]

\[\leq \sup_{0 \leq s \leq a^{f,i}} \{A^f(s, a^{f,i}) + A^c(s, a^{f,i}) - C \cdot (a^{f,i} - s)\}

\[+ A^c(a^{f,i}, d^{f,i}) - r^c (d^{f,i} - a^{f,i})\] \hspace{1cm} (48)

\[= \sup_{0 \leq s \leq a^{f,i}} \{A^f(s, a^{f,i}) + A^c(s, a^{f,i}) - C \cdot (a^{f,i} - s)\}

\[+ A^c(a^{f,i}, d^{f,i}) - r^c (d^{f,i} - a^{f,i})\] \hspace{1cm} (49)

where in step (48) we have used the fact that \(\sum_{k=0}^{i} F^{f,k} \leq A^f(t_0, a^{f,i}).\)

It is worth highlighting that, the two terms in (49) are independent, since the second term is determined by a period that is non-overlapping with the period involved in the first term, and the process \(A^i(t)\) has independent increments. Also due to this, in step (50), we have intentionally moved the second term inside \(\sup\). For ease of exposition, we let

\[Z = A^c(a^{f,i}, d^{f,i}) - r^c (d^{f,i} - a^{f,i})\]

for which, it is easily verified that, \(E[e^{\theta Z}] = (E[e^{\theta (A^c(t) - r^c)}])^{d^{f,i} - a^{f,i}} \leq 1\) for all \(d^{f,i}\) and hence \(E[e^{\theta Z}] \leq 1\), under the given assumptions.
Then, for any $\theta \geq 0$, there holds,

$$P\{C - r^{\ell} \mid D^{f,i} > x\} = P\{e^{\theta (C - r^{\ell}) (a_{f,i}^t - a_{f,i})} > e^{\theta x}\} \leq P\{e^{\sup_{0 \leq s \leq a_{f,i}} \theta (A(s) + A'(s - C) - C)} > e^{\theta x}\} = P\{\sup_{0 \leq s \leq a_{f,i}} e^{\theta (A(s) + A'(s - C) - C)} > e^{\theta x}\} \leq e^{-\theta x}\]

where step (51) is due to that both $A^{f}(t)$ and $A'(t)$ are stationary processes, step (52) is from the Doob's maximal inequalities for sub-(super-)martingales, step (53) is due to independence, and step (54) is from the assumptions of the theorem.

VII. Examples

To demonstrate the obtained results, examples are presented in this section. The focus is on the obtained delay bounds. Without loss of generality and for ease of expression, we normalize the capacity and take $C = 1$.

A. Single Flow

For the single flow case, consider the arrival process $A^{f}(t)$ governed by a compound Poisson process. In this process, packets arrive according to a Poisson process with intensity λ. Packet lengths are independent and identically distributed, following a negative exponential distribution with mean $\frac{1}{\mu}$. Specifically:

$$A^{f}(t) = \sum_{n=1}^{N(t)} l^{f,i}$$

where $N(t)$ is a Poisson process with arrival intensity λ, which is independent of the packet lengths, and $l^{f,1}, l^{f,2}, \ldots$ are i.i.d. random variables with mean $\frac{1}{\mu}$.

For this compound Poisson process, it can be verified that it has a v.b.c. stochastic arrival curve [20] [16] $\alpha^{f}(t) = \frac{\lambda}{\mu} t$ with bounding function $\tilde{\rho}^{f}(x) = e^{-\theta x}$ for $\forall \theta > 0$ and $r^{f} = \frac{\lambda}{\mu} \leq 1$. Note that r^{f} here is a function of θ.

With Th. 2, under the condition that $r^{f} \leq 1$, the tightest delay bound is obtained by taking $\theta = \mu - \lambda$, which is:

$$E[D] = \frac{\rho}{\mu(1 - \rho^f)(1 - \rho)} + \frac{1}{\mu(1 - \rho)} [1 + \rho^c \rho^f \rho] \quad (58)$$

where $E[D]$ denotes the delay expectation, $\rho^f \equiv \frac{\lambda^f}{\mu}$, $\rho^c \equiv \frac{\lambda^c}{\mu}$, and $\rho \equiv \rho^c + \rho^f$.

1) **Delay expectation:** For the $M/M/1$ system, the classic queueing theory gives the following result:

$$E[D] = \frac{\rho}{\mu(1 - \rho^c)(1 - \rho^f)} \quad (59)$$

and consequently, a bound on delay expectation is as:

$$E[D] \leq \frac{2}{\mu(1 - \rho^c)} [1 + \frac{\rho^c}{\rho^f}] \quad (70)$$

2) **Bound on delay expectation, based on (42):** For the considered system, the following bound can be derived from Th. 5

$$P\{D > y\} \leq [1 + \frac{\lambda^f(1 - \mu)}{\rho} y] e^{-\frac{\lambda^f(1 - \mu)}{\rho} y}$$

and consequently, a bound on delay expectation is as:

$$E[D] \leq \frac{y}{\mu(1 - \rho^c)(1 - \rho^f)} \quad (71)$$

3) **Bound on delay expectation, based on (46):** For the considered system, letting $\theta = \mu - \lambda^f - \lambda$, and $r^c = \frac{\lambda^c}{\lambda^f + \lambda}$, the following can be verified: (1) $E[e^{\theta (A'((1 - r^c)) = e^{\theta (1 - r^c)} = 1$ and (2) $E[e^{\theta (A^f((1 - r^c))} = e^{\theta (1 - r^c)} = 1$. Then, from Th. 6, the delay bound (46) becomes

$$P\{D > \tau\} \leq e^{-\frac{\mu - \lambda^f - \lambda}{\rho} (1 - r^c) \tau}$$

with which, the following is obtained, which is better than (57) and close to (56) under a wide range of load conditions:

$$E[D] \leq \frac{1}{\mu(1 - \rho^c)(1 - \rho^f)} \quad (72)$$

B. With Cross Traffic

For the case with cross traffic, we suppose that priority scheduling is adopted, with the crossing flow at the high priority level.

We assume the traversing flow and the crossing flow are independent of each other. For both, the arrival process is governed by a compound Poisson process. Similar to the single flow case, we consider that in each traffic arrival process, packets arrive according to a Poisson process with intensity λ^{f} for the traversing flow (respectively λ^{c} for the crossing flow). In addition, to ease later comparison, we assume all packets (of both flows) have the same i.i.d. length, following a negative exponential distribution with mean $\frac{1}{\mu}$.

This system may be considered as an $M/M/1/priority$ system, for which, the classic queueing theory has exact result for the delay expectation of the low priority traffic.

Note that, given the delay CCDF $P\{D \geq \tau\}$, the average delay is obtained as [21]

$$E[D] = \int_{0}^{\infty} P\{D \geq \tau\} d\tau$$

The above relationship between the delay expectation and the CCDF readily allows us to find upper bounds on delay expectation from the obtained delay bounds. Among the various delay bounds derived in the previous sections, (42) and (46) are the tightest and will be compared against the exact solution.

1) **Delay expectation:** For the $M/M/1/priority$ system, the classic queueing theory gives the following result:

$$E[D] = \frac{\rho}{\mu(1 - \rho^c)(1 - \rho^f)} + \frac{1}{\mu(1 - \rho)} [1 + \rho^c \rho^f \rho] \quad (58)$$

where $E[D]$ denotes the delay expectation, $\rho^f \equiv \frac{\lambda^f}{\mu}$, $\rho^c \equiv \frac{\lambda^c}{\mu}$, and $\rho \equiv \rho^c + \rho^f$.

2) **Bound on delay expectation, based on (42):** For the considered system, the following bound can be derived from Th. 5

$$P\{D > y\} \leq [1 + \frac{\lambda^f(1 - \mu)}{\rho} y] e^{-\frac{\lambda^f(1 - \mu)}{\rho} y}$$

and consequently, a bound on delay expectation is as:

$$E[D] \leq \frac{y}{\mu(1 - \rho^c)(1 - \rho^f)} \quad (71)$$

3) **Bound on delay expectation, based on (46):** For the considered system, letting $\theta = \mu - \lambda^f - \lambda$, and $r^c = \frac{\lambda^c}{\lambda^f + \lambda}$, the following can be verified: (1) $E[e^{\theta (A'((1 - r^c)) = e^{\theta (1 - r^c)} = 1$ and (2) $E[e^{\theta (A^f((1 - r^c))} = e^{\theta (1 - r^c)} = 1$. Then, from Th. 6, the delay bound (46) becomes

$$P\{D > \tau\} \leq e^{-\frac{\mu - \lambda^f - \lambda}{\rho} (1 - r^c) \tau}$$

with which, the following is obtained, which is better than (57) and close to (56) under a wide range of load conditions:

$$E[D] \leq \frac{1}{\mu(1 - \rho^c)(1 - \rho^f)} \quad (72)$$
VIII. Discussion and Related Work

In deterministic network calculus, the delay bound derived from the Guaranteed Rate server model is better than that directly from the deterministic counterpart of (8). To overcome this difference, an interesting property has been proved, which says, in deterministic delay bound analysis, the last packetizer can be ignored [2][22]. For the considered single node case, this property implies that, for the concern of deterministic delay bound analysis, the constant capacity node could be treated as if it had a deterministic service curve $C \cdot t$ and hence Proposition 3 could be used directly. Results in this paper further imply that this property can also be extended to the stochastic network calculus context. Particularly, it is easily verified that, for the single flow case, delay bound (21) in Th. 2 is better than delay bound (20) in Corollary 1 by ignoring the packetization effect \bar{F}_l. In addition, for the case with cross traffic, Corollary 2 and Corollary 3 will lead to Th. 6 by ignoring the packetization effect.

In the general sense of taking packetization effect into stochastic service curve and delay bound analysis, the work [1] is most related. However, the obtained results in [1] are mostly functions of $\int_{-\infty}^{x} \bar{F}'(y)dy$, while in our results, they are related directly to \bar{F}'. In addition, how to make use of independence information to improve the obtained results is not investigated in [1].

For the examples, delay bound analysis of $M/M/1$ using SNC can be found in [3][15]. However, the technique used in this paper has fundamental difference from the techniques used in [3][15]. Particularly in [3][15], the analysis directly works on the arrival process and the service process, without mapping the arrival process to the stochastic arrival curve characterization, nor proving the stochastic service curve characterization of the system taking into consideration the packetization effect. For delay bound analysis of $M/M/1$ priority using SNC, the same delay expectation bound as (59) may be found in [4]. However, besides the fundamental difference in the used analytical technique, the bound in [4] is derived under some additional conditions/assumptions, e.g., preemptive priority and ignoring the packetizer. Nevertheless, it is exciting to see the same bound derived when the packetization effect is taken into account.

IX. Conclusion

In this paper, we considered a packet-switched network node with constant capacity (in bps) and systematically derived stochastic service curves and delay bounds for the system. Specifically, we proved that the node provides a stochastic service curve with a bounding function equal to the CCDF of packet length distribution. In addition, we derived delay bounds, which imply that the last packetizer can be ignored property may be extended to SNC. Furthermore, we presented relations that allow to exploit independence information in the analysis. For the single flow case, a by-product is a new delay bound that matches with the exact result for $M/M/1$.

Recall that, while the considered system is perhaps the simplest computer network system, before this work, in the context of stochastic network calculus, little was known about how to make use of the independence information in the analysis, particularly when the packetization effect is considered. This paper makes one step forward. We believe the analysis may be extended to the network case, where how to make use of flow independence information to improve results (without ignoring the packetization effect) still remains largely mysterious.

REFERENCES

[1] A. Burchard, J. Liebeherr, and F. Ciucu. On superlinear scaling of network delays. IEEE/ACM Trans. Netw., 19(4):1043–1056, 2011.
[2] C.-S. Chang. Performance Guarantees in Communication Networks. Springer-Verlag, 2000.
[3] F. Ciucu. Network calculus delay bounds in queueing networks with exact solutions. In Proc. ITC 2007, 2007.
[4] F. Ciucu. Scaling Properties in the Stochastic Network Calculus. PhD thesis, University of Virginia, August 2007.
[5] F. Ciucu, A. Burchard, and J. Liebeherr. A network service curve approach for the stochastic analysis of networks. IEEE Trans. Information Theory, 52(6):2300–2312, June 2006.
[6] F. Ciucu and J. Schmitt. Perspectives on network calculus: no free lunch, but still good value. In ACM SIGCOMM, pages 311–322, 2012.
[7] R. L. Cruz. A calculus for network delay, part I and part II. IEEE Trans. Information Theory, 37(1):114–141, Jan. 1991.
[8] R. L. Cruz. Quality of service management in integrated services networks. In Proc. 1st Semi-Annual Research Review, CWC, UCSD, June 1996.
[9] M. Fidler. An end-to-end probabilistic network calculus with moment generating functions. In Proceedings of IWQoS, 2006.
[10] M. Fidler. A survey of deterministic and stochastic service curve models in the network calculus. IEEE Comm. Sur. & Tut., 12(1), 2010.
[11] Y. Jiang. Delay bounds for a network of Guaranteed Rate servers with FIFO aggregation. Computer Networks, 40(6):683–694, Dec. 2002.
[12] Y. Jiang. Relationship between guaranteed rate server and latency rate server. Computer Networks, 43(3):307–315, 2003.
[13] Y. Jiang. A basic stochastic network calculus. In Proc. ACM SIGCOMM 2006, pages 123–134, 2006.
[14] Y. Jiang. Per-domain packet scale rate guarantee for expedited forwarding. IEEE/ACM Trans. Networking, 14:630–643, 2006.
[15] Y. Jiang. Network calculus and queueing theory: Two sides of one coin. In Proc. ValueTools, 2009. Updated version on 16-March-2010.
[16] Y. Jiang. A note on applying stochastic network calculus, May 2010.
[17] Y. Jiang. Stochastic network calculus for performance analysis of internet networks: An overview and outlook. In Proc. ICNC, 2012.
[18] Y. Jiang. Stochastic service curve and delay bound analysis: A single node case. CoRR, arXiv:abs/1303.3026 (http://arxiv.org/abs/1303.3026), 2013.
[19] Y. Jiang and Y. Liu. Stochastic Network Calculus. Springer-Verlag, 2008.
[20] Y. Jiang, Q. Yin, Y. Liu, and S. Jiang. Fundamental calculus on generalized stochastically bounded bursty traffic for communication networks. Computer Networks, 53(12):2011–2021, 2009.
[21] L. Kleinrock. Queueing Systems, Volume I: Theory. John Wiley & Sons, 1975.
[22] J.-Y. Le Boudec and P. Thiran. Network Calculus: A Theory of Deterministic Queueing Systems for the Internet. Springer-Verlag, 2001.
[23] J. Liebeherr, A. Burchard, and F. Ciucu. Delay bounds in communication networks with heavy-tailed and self-similar traffic. IEEE Transactions on Information Theory, 58(2):1010–1024, 2012.
[24] Y. Liu, C.-K. Tam, and Y. Jiang. A calculus for stochastic QoS analysis. Performance Evaluation, 64:547–572, 2007.
[25] S. Mao and S. S. Panwar. A survey of envelope processes and their applications in quality of service provisioning. IEEE Comm. Sur. & Tut., 8(1-4):2–20, 2006.
[26] Q. Yin, Y. Jiang, S. Jiang, and P. Y. Kong. Analysis on generalized stochastically bounded bursty traffic for communication networks. In Proc. IEEE LCN ’02, 2002.