Response of phytohormone mediated plant homeodomain (PHD) family to abiotic stress in upland cotton (*Gossypium hirsutum* spp.)

Huanhuan Wu
Chinese Academy of Agricultural Sciences Cotton Research Institute

Lei Zheng
Chinese Academy of Agricultural Sciences Cotton Research Institute

Ghulam Qanmber
Chinese Academy of Agricultural Sciences Cotton Research Institute

Mengzhen Guo
Chinese Academy of Agricultural Sciences Cotton Research Institute

Zhi Wang
Chinese Academy of Agricultural Sciences Cotton Research Institute

Zuoren Yang (yangzuoren4012@163.com)
Chinese Academy of Agricultural Sciences Cotton Research Institute
https://orcid.org/0000-0003-0337-9573

Research article

Keywords: Cotton, PHD, Transcription factor, Phytohormone, Stress tolerance, Co-expression network, Transcriptome analysis

Posted Date: December 8th, 2020

DOI: https://doi.org/10.21203/rs.2.22544/v4

License: This work is licensed under a Creative Commons Attribution 4.0 International License.
Read Full License

Version of Record: A version of this preprint was published at BMC Plant Biology on January 6th, 2021.
See the published version at https://doi.org/10.1186/s12870-020-02787-5.
Abstract

Background: The sequencing and annotations of cotton genomes provide powerful theoretical support to unravel more physiological and functional information. Plant homeodomain (PHD) protein family has been reported to be involved in regulating various biological processes in plants. However, their functional studies have not yet been carried out in cotton.

Results: In this study, 108, 55, and 52 PHD genes were identified in *G. hirsutum*, *G. raimondii*, and *G. arboreum*, respectively. A total of 297 PHD genes from three cotton species, *Arabidopsis*, and rice were divided into five groups. We performed chromosomal location, phylogenetic relationship, gene structure, and conserved domain analysis for *GhPHD* genes. *GhPHD* genes were unevenly distributed on each chromosome. However, more *GhPHD* genes were distributed on At_05, Dt_05, and At_07 chromosomes. *GhPHD* proteins depicted conserved domains, and *GhPHD* genes exhibiting similar gene structure were clustered together. Further, whole genome duplication (WGD) analysis indicated that purification selection greatly contributed to the functional maintenance of *GhPHD* gene family. Expression pattern analysis based on RNA-seq data showed that most *GhPHD* genes showed clear tissue-specific spatiotemporal expression patterns elucidating the multiple functions of *GhPHDs* in plant growth and development. Moreover, analysis of *cis*-acting elements revealed that *GhPHDs* may respond to a variety of abiotic and phytohormonal stresses. In this regard, some *GhPHD* genes showed good response against abiotic and phytohormonal stresses. Additionally, co-expression network analysis indicated that *GhPHDs* are essential for plant growth and development, while *GhPHD* genes response against abiotic and phytohormonal stresses may help to improve plant tolerance in adverse environmental conditions.

Conclusion: This study will provide useful information to facilitate further research related to the vital roles of *GhPHD* gene family in plant growth and development.

Background

Plants often face various abiotic and biotic stress conditions. Abiotic stresses include heat, cold, drought, and salinity, whereas biotic stresses mainly come from bacteria, fungi, viruses, and insects. These abiotic and biotic stresses significantly reduce crop quality and productivity world-wide [1, 2]. In order to adapt such unfavorable environment, plants have established a comprehensive mechanism to combat stress signals and mitigate their effects on plant growth and development [3]. Phytohormones play significant roles in regulating developmental processes and signal transduction networks, which respond to various abiotic stresses. brassinosteroid (BR), jasmonate (JA), gibberellin (GA), salicylic acid (SA), auxin, and abscisic acid (ABA) regulate plant growth, development, stress, and defense responses [4-11], but how phytohormones mediate the growth and stress trade-off is unclear.

Zinc finger protein motifs are part of many protein families and widely distributed in eukaryotic organisms. The term “zinc finger” represents the sequence motif in which cysteines and/or histidines coordinate the zinc atom(s) to form the local peptide structure that are required for their specific
functions. The “finger” structural motif has been divided into different types, such as TFIIIA-type zinc finger (EPF1, SUPERMAN) [12, 13], WRKY family (WRKY1, 2, and 3), GATA1-type protein (NTL1) [14, 15], Dof family (Dof1) [16, 17], RING-finger type (COP1) [18], PHD-finger family (AtHAT3.1 and ZmHOX1a) [19, 20], LIM family (SF3) [21, 22], and other uncategorized types. Plant homeodomain (PHD) zinc fingers are small reader domains found in several chromatin-binding proteins. In plants, PHD proteins are usually zinc finger proteins with one or more PHD domains, which have a Cys4-His-Cys3 zinc-binding motif consisting of about 60 amino acids [23]. It is worth noting that the number of amino acids between cysteine and histidine or between cysteine residues in the PHD domain are conserved, while second amino acid (before the penultimate cysteine residue) is usually an aromatic amino acid, such as tryptophan [24].

Since the discovery of the first PHD protein HAT3.1 (Histone acetyltransferase 3.1) in Arabidopsis, more PHD proteins have been identified to participate in many physiological and biochemical processes involved in the structure and transcription of chromatin [25]. In Arabidopsis, PHD protein MMD1 (Male meiocyte death 1)/DUET is specifically expressed in male meiocytes and involved in regulating gene expression during meiosis, mutations of mmd1 gene leads to the death of male meiotic cells [26-28]. Epigenetic regulation in eukaryotes is performed through complex signal interactions between chromatin markers and small RNA species. AtVIM1 (Variant in methylation 1) functions in DNA methylation-histone interface to maintain the centromeric heterochromation in Arabidopsis [29]. In addition, PHD proteins are involved in regulating plant response to abiotic stresses and altering plant growth and development [30, 31]. In soybean, six Aln1-type PHD proteins were identified to respond against salt, cold, drought, and ABA treatment. For instance, GmPHD2 improve salt tolerance in transgenic Arabidopsis plants compared with the wild type plants [32]. In Arabidopsis, AtVIN3 (Vernalization insensitive 3) protein binds to modified histone in vitro to change the binding specificity of PHD-finger domain and accelerate the vernalization reaction in vivo [33]. During seed germination, the AL PHD-PRC1 complex affect seed developmental genes from the active state associated with H3K4me3 to the repressive transcriptional state associated with H3K27me3, thereby promote seed germination [34]. PHD protein GSR1 (Germostatin resistance locus 1) is a member of auxin-mediated genetic network for seed germination and form a corepressor with ARF16 (Auxin response factor 16) to regulate seed germination [35]. Therefore, PHD proteins play irreplaceable roles in the biological processes of life.

At present, the PHD protein family has been studied in several plants, such as Arabidopsis thaliana, poplar (Populus trichocarpa) [36], maize (Zea mays) [37], moso bamboo (Phyllostachys edulis) [38], carrot (Daucus carota L.) [39], potato (Solanum tuberosum) [40], and pear (Pyrus bretschneideri) [41]. However, comprehensive identification and characterization of cotton PHD protein family has not been carried out till date. Upland cotton (Gossypium hirsutum) is the most important natural fiber crop in the world. Recently, the availability of the complete genome sequence and annotations of G. hirsutum [42], G. arboreum [43], and G. raimondii [44] provided an excellent opportunity to identify and characterize PHD transcription factors in cotton. In this study, we performed the whole genome-wide analysis, tissue expression pattern analysis, relative expression level analysis under different stresses and phytohormones treatment, and co-expression network analysis of GhPHD genes in upland cotton. Our
results indicated that *GhPHD* genes are involved in various processes of plant growth and development, and phytohormones mediate responses of *GhPHD* genes against abiotic stresses.

Results

Genome-wide identification of PHD proteins in cotton

Based on the homology of protein sequences, 108, 52, and 55 PHD proteins were identified in three cotton species *G. hirsutum*, *G. arboreum*, and *G. raimondii*, respectively. In addition, 39 and 43 PHD proteins were identified in *Arabidopsis* and rice, respectively (*Table S1*). Among 108 GhPHD proteins, 56 members belong to the At subgenome and 52 members belong to the Dt subgenome. The predicted biophysical characteristic of *GhPHDs* (*Table 1*) indicates that the length of GhPHD proteins ranges from 159 aa (*GhPHD28*) to 2231 aa (*GhPHD39*) with an average length of 741 aa. Moreover, the molecular weight of GhPHD proteins ranges from 17.76 kD (*GhPHD28*) to 247.42 kD (*GhPHD39*) with an average value of 93.09 kD. The isoelectric point (pI) of GhPHD proteins ranges from 4.58 (*GhPHD38*) to 10.41 (*GhPHD103*) with an average value of 6.89. Furthermore, the predicted subcellular localization indicated that 93 GhPHD proteins are located in nucleus, ten in cytoplasm, and five are extracellular.

Phylogenetic analysis, chromosomal location, and gene duplication

In order to understand the phylogenetic relationship of PHD proteins in rice, *Arabidopsis*, and cotton, we constructed a NJ phylogenetic tree and classified PHD proteins into five groups (A-E) (*Fig. 1*). Among them, most of the orthologous PHD proteins between the diploid and allotetraploid cotton are grouped in the same clade exhibiting maximum homology in phylogenetic relationship. Each group contains PHD proteins of these five species, of which group A and D are the first and second largest groups, containing 97 and 79 members, respectively. While, there are relatively few PHD members in groups B, C, and E. Chromosome location analysis showed that 108 *GhPHD* genes are positioned on 26 chromosomes, including 13 chromosomes from the At subgenome and 13 chromosomes from the Dt subgenome (*Fig. S1* and *Table S2*). Deeper insights indicated that At_05, At_07, and Dt_05 chromosomes contain more number of genes (eight *GhPHD* genes on each) and display a dense distribution at the top. However, some chromosomes contain only two *GhPHD* genes, such as At_10, At_11, Dt_03, and Dt_11.

We further investigated the whole genome duplication (WGD) event experienced by *GhPHD* genes. As a result, 73 *GhPHD* gene pairs depict segmental duplication and four gene pairs show tandem duplication events (*Table 2*), indicating that WGD is the main contributor of *GhPHD* gene family expansion. Duplication gene pairs may have undergone three alternative fates during the evolution process, namely non-functionalization, neo-functionalization, and sub-functionalization [45]. In order to study the evolutionary history of *GhPHD* genes, the Ka/Ks calculator 2.0 is used to calculate the synonymous and non-synonymous substitution rates. The Ka/Ks ratio of 76 duplicated gene pairs is less than 1, indicating that *GhPHD* genes underwent purification selection pressure with limited functional divergence. However, there is only one gene pair with the Ka/Ks greater than 1, indicating the occurrence of positive selection
pressure. Collectively, these results indicated that the great contribution of purification selection pressure in the functional maintenance of GhPHD genes in upland cotton.

Gene structure and conserved motifs analysis

To better understand the similarity and diversity of GhPHD proteins in upland cotton, we analyzed the phylogenetic tree, exon-intron structure, and conserved motif. Phylogenetic tree grouped GhPHD proteins according to protein homology, conserved gene structure, and motif distribution (Fig. 2). GhPHD49 shows the longest genomic sequence with 26 exons, while GhPHD12 displays the shortest genomic sequence with only two exons (Fig. 2 and Table S3). Furthermore, a total of three motifs are identified in all GhPHD proteins, and all GhPHD proteins have a typical PHD domain (i.e., motif 1). Phylogenetic tree showed that 21 GhPHD proteins are clustered in a clade. Except for GhPHD28, all other GhPHD proteins contain three motifs with similar gene structure and motif distribution (Fig. 2).

Protein sequence alignment shows that GhPHD proteins have a typical Cys4-His-Cys3 motif, which consists of about 60 amino acids and is accompanied by nine conserved amino acid residues (Fig. S2). The conserved histidine (H) is separated from the fourth conserved cysteine (C) by four amino acids and two amino acids from subsequent conserved cysteine (C) residue. The third and fourth conserved cysteine (C) before histidine (H) are separated by one or two amino acids, but the interval number between other conserved amino acids is uncertain. However, GhPHD17, GhPHD27, GhPHD71, and GhPHD81 exhibit maximum homology, but show less conserved PHD domain (Fig. 2 and Fig. S2).

Cis-acting element analysis

Many studies have showed that PHD genes are involved in various stress responses [30, 31, 46]. To elucidate the putative function of GhPHDs under different stresses, we first identified the cis-acting elements in the promoter region that respond to stresses and phytohormones. We identified many cis-acting elements that respond to ABA (ABRE), auxin (TGA and AuxRR-core), GA (TATC-box, P-box, CARE, and GARE), ethylene (ERE), SA (TCA), and MeJA (CGTCA). These results indicated that a total of 85 GhPHD genes are responsive to ethylene, followed by ABA, GA, and MeJA. 73 GhPHD genes have cis-acting elements that respond to three or more phytohormones. Interestingly, the promoters of GhPHD5, GhPHD47, GhPHD56, and GhPHD65 genes contain cis-elements that respond to the above six phytohormones. In addition, we found that many abiotic stresses response elements (TC-rich repeat, MBS, and LTR), circadian control elements, and light-responsive elements (G-box) are also present in the promoters of various GhPHD genes (Fig. 3 and Table S5). These results indicated that GhPHD genes may participate in various signal transduction pathways, such as phytohormones, light response, and abiotic stresses, and play important roles in regulating plant growth and development.

Tissue-specific expression pattern of GhPHD genes

To predict the physiological functions of GhPHD genes in cotton growth and development, we used the online transcriptome data to analyze the tissue-specific expression profile of GhPHD genes in different
tissues such as root, stem, leaf, petal, stamen, pistil, ovule, and fiber. According to the expression features and hierarchical clustering (Fig. 4), *GhPHD* genes are mainly clustered into four groups (A-D). The nine *GhPHD* genes in group A are highly expressed in all tissues, indicating that they may play important roles in plant growth and development. In particular, *GhPHD23* and *GhPHD77* show maximum expression levels in ovule and fiber tissues, demonstrating that these two genes may be involved in the development of ovule and fiber. Further, 43 *GhPHDs* in group B show lower expression levels in all tissues, while six *GhPHD* genes (*GhPHD56, GhPHD108, GhPHD40, GhPHD93, GhPHD19*, and *GhPHD73*) are predominantly expressed in the early stage of ovule development, indicating that they may play important roles in ovule and seed development. Moreover, *GhPHD* genes in group C show higher expression levels in ovule. However, *GhPHD* genes in group D show poor expression in all observed tissues. These results indicated that *GhPHDs* may be involved in regulating cotton growth and development, especially in the development of ovule and fiber.

Identification of stress-related PHD genes in upland cotton

Analysis of the transcriptome data showed that 66 *GhPHD* genes have higher expression levels under heat, cold, salt, and drought treatments (Fig. S3). In order to further estimate the responses of *GhPHDs* under abiotic stresses, we treated four-week-old cotton seedlings with heat, cold, salt, and drought, and observed the relative expression level of 12 *GhPHD* genes (Fig. 5). The relative expression level of *GhPHD18* is up-regulated under all stresses, indicating that *GhPHD18* may be involved in multiple stresses response mechanisms. *GhPHD23* is up-regulated only under heat treatment, indicating that *GhPHD23* responds positively to heat stimuli. Further, *GhPHD34, GhPHD40, and GhPHD43* are up-regulated after heat and salt treatment, while *GhPHD80* and *GhPHD88* are up-regulated after heat and drought tolerance at various time points. In addition, we found that *GhPHD5* is up-regulated against salt and drought, while *GhPHD72* and *GhPHD107* are up-regulated against salt and heat, respectively. These results indicated that *GhPHD* genes may be involved in abiotic stress to improve plant tolerance in adverse environments.

Identification of GhPHD genes in response to phytohormones

To further determine whether *GhPHD* genes respond to phytohormones, we treated four-week-old cotton seedlings with GA, MeJA, IAA, SA, and BL, and identified changes in the relative expression of *GhPHD* genes (Fig. 6). The relative expression level of *GhPHD5* increases significantly after MeJA, IAA, and BL treatment. While *GhPHD5* shows higher expression after 0.5 hour after SA treatment indicating that *GhPHD5* may respond to multiple phytohormones signal transduction pathway, which is consistent with the fact that *GhPHD5* promoter contains cis-acting elements related to multiple phytohormones. *GhPHD40* is significantly up-regulated under SA treatment, indicating that *GhPHD40* responds positively to SA signal. Similarly, *GhPHD43* is significantly up-regulated under all phytohormone treatments, especially under BL. The relative expression levels of *GhPHD80* and *GhPHD88* reach at peak after 0.5 hour of GA treatment. The relative expression level of *GhPHD88* increases gradually under SA treatment. Moreover, *GhPHD107* expression significantly increases to the maximum level after one hour of GA, IAA,
and BL treatment. These results indicated that \textit{GhPHD} genes are involved in regulating multiple phytohormone signal transduction pathways.

Co-expression network with functional modules for \textit{G. hirsutum} and \textit{G. arboreum}

Gene co-expression network analysis is a network diagram constructed on the basis of similarity of gene expression data, reflecting the relationship of expression regulation between genes [47]. We analyzed the co-expression network of \textit{GhPHD} genes using ccNET software, and predicted many co-expressed genes and interaction proteins (Table S6). Among these, \textit{GhPHD5} is positively co-expressed with a plant-specific DNA ligase, which is related to seed germination and DNA repair. In addition, \textit{GhPHD5} is also positively co-expressed with SLOMO protein, which is a F-box protein required for auxin homeostasis and the normal timing of lateral organ initiation at the shoot meristem [48] illustrating that \textit{GhPHD5} may be involved in the regulation of auxin signal transduction pathway, and mediates seed germination and organ formation to regulate plant growth and development. Similarly, \textit{GhPHD18} interacts with highly hydrophilic proteins that regulate FLC (Flowering locus C) expression [49] and shows positively co-expressed with SHAGGY-related kinases involved in meristem organization, indicating that \textit{GhPHD18} may affect the flowering time of meristem. Further, \textit{GhPHD34} negatively co-expressed with ERF (Ethylene response factor) subfamily B-1, participating in ethylene signaling pathway and responding to abiotic stresses. \textit{GhPHD107} positively co-expressed with \textit{ARF-GAP} and \textit{ERF} genes, and may be involved in the signal pathways of auxin and ethylene. More interestingly, we predicted many proteins that interact with \textit{GhPHD88}, such as leucine-rich repeat protein kinase (LRRK), late embryogenesis abundant (LEA) protein, AP2/B3 transcription factor, R2R3 factor, DREB subfamily A-2, cellulose synthase, gibberellin-regulated family protein (GRP), and ethylene response factor (ERF) (Fig. 7A and Table S6), suggesting that \textit{GhPHD88} may be involved in many physiological processes such as plant growth and development, phytohormone signal transduction, and stress response. Further, Gene Ontology (GO) analysis of \textit{GhPHDs} indicated that protein binding and zinc ion binding are the most abundant functional terms (Fig. 7B), which is consistent with the existing results that the cysteine residues exhibit high affinity for zinc ions (Zn$^{2+}$), and Zn$^{2+}$-cysteine complexes are key medium for protein structure, catalysis, and regulation [50].

In summary, \textit{GhPHDs} were involved in regulating cotton growth and development, especially ovule and fiber development. Further, \textit{GhPHDs} not only respond to multiple phytohormones signal transduction pathways, but also improve cotton's tolerance to adverse environments such as heat, salt, and drought. Particularly, \textit{GhPHD5}, \textit{GhPHD80}, \textit{GhPHD88} are prominent in their responses. Combining the predicted results of co-expressed genes and interacting proteins, we inferred that phytohormones could improve plant tolerance to abiotic stresses through \textit{GhPHD} genes and their cofactors, but their regulatory mechanism and interaction network still need further research.

Discussion

Phylogenetic analysis and duplication
Phylogenetic tree was used to analyze the evolutionary relationship between PHD proteins in cotton, rice, and *Arabidopsis*. A total of 297 PHD proteins were divided into five groups (A-E). The relationship between cotton PHD proteins and AtPHD proteins was closer than that of OsPHD proteins, which is consistent with the evolutionary relationship between cotton, *Arabidopsis*, and rice. Although the *G. arboreum* genome is about twice that of the *G. raimondii* genome, however, more GrPHD proteins were identified than GaPHD proteins. Most PHD proteins from two diploids and one allotetraploid were closely distributed in phylogenetic tree, which is coherent with the fact that upland cotton evolved from the hybridization of A and D genomes [51].

We identified 108 GhPHD proteins in the *G. hirsutum* genome, which are more than previously identified PHD protein family members in *Arabidopsis*, maize, potato, and pear [37, 40, 41]. The main reason for the more number of GhPHDs is that upland cotton underwent polyploidization and promoted gene duplication. Upland cotton is an allotetraploid cotton produced by the hybridization between *G. arboreum* (A$_2$ genome) and *G. raimondii* (D$_5$ genome) [51]. The At and Dt subgenome donors of upland cotton are orthologous relatives and share the same number of ortholog genes, resulting in the duplication and doubling of GhPHD genes in upland cotton. Therefore, the sum total of GaPHD genes and GrPHD genes was approximately equal to the number of GhPHD genes. Previous studies have reported that gene duplication, including whole genome duplication, segment duplication, tandem duplication, and transposition events was the main reason for gene family expansion [52, 53]. In our study, a total of 77 duplicated gene pairs were identified in GhPHD family, including 73 segmental duplicated pairs and four tandem duplicated pairs (Table 2). The Ka/Ks values of most GhPHD duplication gene pairs was less than 1, which indicated that GhPHD family experienced strong purification selection pressure. Purification selection dominated the expansion of GhPHD genes, eliminated deleterious loss-of-function mutations at both duplicated loci, increased fixation, and retained the function of the new duplicated genes [54].

Conserved amino acid residues, protein motifs, and gene structure analysis

Conserved amino acid residues analysis showed that GhPHD domain was highly conserved during the process of evolution. The amino terminus of GhPHD domain contained the Cys4-His-Cys3 zinc finger motif composed of 50 to 80 amino acids with the regular arrangement of cysteine residues, an important medium for zinc ion binding and protein structure [50]. In addition, a total of three motifs were identified in GhPHD proteins and the motif distribution was relatively conservative, indicating that GhPHD proteins may play different physiological functions, and the subtle differences between GhPHD proteins in different clade may be related to cotton growth, development, and stress tolerance.

Gene structure may be determined by the insertion/deletion events and is an important parameter to predict gene evolution and new function generation [55]. Gene structure analysis indicated that the duplication genes showed similar gene structures with varied intron length indicating that the intron length may play major roles in the functional diversification of GhPHD genes. In this study, we found that the intron number varies from 1 to 25, but most GhPHD genes contained 2 to 11 introns which supported
the previous research that cotton is a new evolution species that experience a decrease in the number of introns during the early stages of evolution [56].

GhPHD genes expression in tissues, abiotic and phytohormone stresses

Many studies demonstrated that PHD proteins are the main mediators of transcriptional regulation during plant developmental processes such as meiosis and postmeiotic events [57], germination [34], pollen maturation [58], flowering time [59], embryo meristem initiation, and root development [57, 60]. Gene’s expression profiles showed that *GhPHDs* may play important regulatory roles in cotton growth and development, especially during the development of ovule and fiber. In addition, we have also identified some *GhPHD* genes that respond to abiotic stress and phytohormones in upland cotton. The analysis of *cis*-acting elements and seedlings treatment experiments indicated that *GhPHD* genes may respond to abiotic stress and participate in the signal transduction of phytohormones. For example, *GhPHD* genes (*GhPHD5, GhPHD40, GhPHD43, GhPHD80, and GhPHD88*) respond positively to heat, salt, and drought and they may be important genetic materials for improving plant tolerance under adverse environments.

Research reports indicated that phytohormones may regulate the response to abiotic stress in plants. Auxin response factors (ARFs) are a type of transcription factors that regulate the expression of auxin-responsive genes [61, 62]. The significant up-regulation of the transcription level of ARFs under stress indicates that they are potential mediators for plants to respond to adverse environments [63, 64]. Ethylene response factors belong to the ERF subfamily of the AP2/ARF transcription factor family, and are widely involved in plant development, phytohormones response, disease resistance, and adversity response [65, 66]. In this study, co-expression network analysis indicated that *GhPHD* genes may improve plant tolerance to abiotic stresses by phytohormone signaling pathways. For instance, *GhPHD5* may improve tolerance to heat, salt, and drought by regulating auxin homeostasis. Similarly, *GhPHD34* and *GhPHD107* may be involved in auxin and ethylene signal transduction pathways to improve heat tolerance and promote growth and development. *GhPHD88* regulates the signal transduction of various phytohormones and abiotic stresses, and promotes growth and development. Although *GhPHDs* are indispensable in the course of life, the physiological functions of *GhPHDs* in crosstalk between abiotic stress and phytohormone need further study.

Conclusions

In this study, a total of 297 PHD proteins were identified in total five plant species including *G. hirsutum, G. arboreum, G. raimondii*, rice, and *Arabidopsis*. The PHD proteins were divided into five groups based on the phylogenetic analysis. Segmental duplication events were the main contributors toward the expansion of *GhPHD* gene family in upland cotton. Moreover, duplicated gene pairs of *GhPHD* gene family might have experienced functional divergence, since their expression patterns were different in different tissues. Tissues specific expression patterns indicated that *GhPHDs* are very important for growth and development, especially ovule and fiber development. The phytohormones and stresses treatment and co-expression network analysis showed that *GhPHDs* may improve the tolerance to
adverse environments by phytohormones signal transduction pathway. Taken together, our study provides key basic knowledge to understand the functional mechanisms of cotton growth and development, as well as candidate genes for cotton breeding resistant to abiotic stresses and phytohormone stimulation.

Methods

Sequence retrieval, multiple sequence alignment, and phylogenetic analysis

The genome sequence and information of cotton (G. hirsutum, G. raimondii, and G. arboreum) were acquired from the CottonFGD (https://cottonfgd.org/) [67]. HMMER (https://www.ebi.ac.uk/Tools/hmmer/) software with default parameters was used to search for the corresponding protein sequences, and used the conserved PHD domain sequence as a query. We used BLAST program to further identify PHD sequences based on homology. The conserved domain of PHD proteins was predicted by Pfam [68] and SMART [69] software. Multiple sequence alignment of PHD proteins were performed using Clustal X [70]. MEGA 6.0 [71] was used to construct phylogenetic trees, using the neighbor-joining (NJ) algorithm with default parameters and 1000 bootstrap replicates. The molecular weight (MW), isoelectric point (pi), and GRAVY value of GhPHD proteins were predicted using ExPASy [72], and the subcellular localization of GhPHD proteins was predicted by the CELLO v2.5 server [73].

Chromosomal location, gene structure, and conserved motif

The positional information of GhPHD genes was obtained from the General Feature Format (GFF) file downloaded from the CottonFGD website [67]. GhPHDs were mapped on the chromosome using MapInspect (https://mapinspect.software.informer.com/). For the exon-intron structural analysis of GhPHD genes, the coding sequences were used to align their genomic DNA sequences and the structure diagram was drawn using the online Gene Structure Display Server (GSDS 2.0) program [74]. Conserved motifs of GhPHD proteins were investigated using the online toolkit Multiple Expectation maximization for Motif Elicitation (MEME 5.0.5) [75]. The optimized parameters of MEME are as follows: the number of repetitions, any; the maximum number of motifs, 50; and the optimum width of each motif, between 6 and 300 residues, and retaining only motifs associated with an E value < e^-5. The identified protein motifs were further annotated with TBtools [76].

Identification of cis-acting elements and gene expression pattern

The 1500 bp promoter sequence before the transcription start site of GhPHD genes were downloaded from the CottonFGD website [67]. The cis-acting elements in the GhPHD promoter regions were predicted using the Plant Cis-Acting Regulatory Element website [77]. The tissue expression patterns of GhPHD genes were analyzed using the online cotton transcriptome data, and heatmap was drawn by TBtools [76]. The transcriptome data of root, stem, leaf, petal, stamen, pistil, ovule (-3, -1, 0, 1, 3, 5, 10, 20, 25, 35
DPA) and fiber (5, 10, 20, 25 DPA) was used in this study. The ccNET software [78] was used to analyze the gene co-expression network relationship.

Plant material, abiotic stresses and phytohormones treatment

Upland cotton ZM24 is a short-season cotton variety selected by the Cotton Research Institute of Chinese Academy of Agricultural Sciences. Firstly, ZM24 seeds were pre-germinated in the conical flask filled with water at room temperature for 48 hours. Pre-germinated seeds were then transferred to the liquid medium with a cultivation temperature of 30°C, a photoperiod of 16 hours light and 8 hours dark. Four-week-old cotton seedlings were treated with brassinolide (BL, 10 μM), gibberellin (GA, 100 μM), indole-3-acetic acid (IAA, 100 μM), salicylic acid (SA, 10 μM), and methyl jasmonate (MeJA, 10 μM) for 0.5, 1, 3, and 6 hours. Similarly, four-week-old cotton seedlings were treated with heat (38°C), cold (4°C), NaCl (200 mM), and polyethylene glycol (PEG) (20% mass fraction) for 1, 2, 4, and 6 hours. In the experiment, the untreated sample was used as the control group. The collected leaves were immediately frozen in liquid nitrogen and stored at -80°C for RNA extraction and RT-qPCR analysis. For abiotic stresses and phytohormones treatment, a total of 20 cotton seedlings were used for each treatment and three biological replicates were performed for each experiment.

RNA extraction and RT-qPCR analysis

Total RNA of the collected cotton leaves was extracted using the RNAprep Pure Plant Kit (Polysaccharides & Polyphenolics-rich) (TianGen, Beijing, China). In order to synthesize the first-strand cDNA, the EasyScript All-in-One First-strand cDNA synthesis SuperMix for RT-qPCR kit (TransGen, Beijing, China) was used in accordance with the manufacturer's protocol and the cDNA was used as template for subsequent RT-qPCR reaction. RT-qPCR was performed using TransStart Top Green qPCR SuperMix (TransGen, Beijing, China) in LightCycler 480 (Roche, Basel, Switzerland). Each PCR reaction was performed in triplicate, and three biological replicates were quantified. GhHistone 3 (GenBank accession no. AF024716) was used as an internal control [79]. The relative expression level was calculated as described previously [80]. The primers used for PCR analysis were listed in Table S7. For statistical analysis, the RT-qPCR data was considered as normal distribution and we conducted a two-tailed Student's t-test in Microsoft Excel 2007.

Declarations

Ethics approval and consent to participate

Not applicable. Our research did not involve in any human or animal subjects, material, or data. The plant materials used in this study were provided by the Institute of Cotton Research of Chinese Academy of Agricultural Sciences and are freely available for research purposes following institutional, national and international guidelines.

Consent to publication
Availability of data and materials

The data used or analyzed during the current study has been included in this article and additional materials. The genome sequence and annotation datasets that supported the findings of this study are available in:

A. thaliana: https://www.arabidopsis.org/

O. sativa: http://plants.ensembl.org/index.html

G. hirsutum, G. arboreum, and G. raimondii: https://cottonfgd.org/

Competing interests

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Funding

This study was supported by the Major Research Plan of National Natural Science Foundation of China (grant number 31690093). The funder was not involved in the experimental design of the study, data collection and interpretation, and in writing the manuscript.

Authors’ contributions

H.W. and G.Q. conceived and designed the experiments. H.W. and M.G. performed the experiment. H.W. and L.Z. analyzed the data. H.W. wrote the paper. Z.Y. and Z.W. revised the paper. All of the authors read and approved the final the manuscript.

Acknowledgements

None.

Abbreviations

Gh: *Gossypium hirsutum*; Ga: *Gossypium arboreum*; Gr: *Gossypium raimondii*; Os: *Oryza sativa*; At: *Arabidopsis thaliana*; DPA: Day post-anthesis; PHD: Plant homeodomain; NJ: Neighbor-joining; ARF: Auxin response factor; MMD1: Male meiocyte death 1; VIM1: Variant in methylation 1; VIN3: Vernalization insensitive 3; GSR1: Germostatin resistance locus 1; BR: Brassinosteroid; BL: Brassinolide; GA: Gibberellin; IAA: Indole-3-acetic acid; SA: Salicylic acid; MeJA: Methyl jasmonate; ABA: Abscisic acid; ET: Ethylene; CK: Cytokinin; PEG: Polyethylene glycol; RT-qPCR: Quantitative real-time polymerase chain reaction; GO: Gene Ontology; WGD: Whole genome duplication; FLC: Flowering locus C; ERF: Ethylene
response factor; GRP: Gibberellin-regulated family protein; LEA: Late embryogenesis abundant; LRRK: Leucine-rich repeat protein kinase.

References

1. Deinlein U, Stephan AB, Horie T, Luo W, Xu G, Schroeder JI: Plant salt-tolerance mechanisms. *Trends Plant Sci* 2014, 19(6):371-379.

2. Hossain MA, Li Z-G, Hoque TS, Burritt DJ, Fujita M, Munné-Bosch S: Heat or cold priming-induced cross-tolerance to abiotic stresses in plants: key regulators and possible mechanisms. *Protoplasma* 2018, 255(1):399-412.

3. Saeed M, Dahab A, Wangzhen G, Tianzhen Z: A cascade of recently discovered molecular mechanisms involved in abiotic stress tolerance of plants. *Omics: a journal of integrative biology* 2012, 16(4):188-199.

4. Planas-Riverola A, Gupta A, Betegón-Putze I, Bosch N, Ibañes M, Caño-Delgado Al: Brassinosteroid signaling in plant development and adaptation to stress. *Development* 2019, 146(5):dev151894.

5. Krishna P, Prasad BD, Rahman T: Brassinosteroid Action in Plant Abiotic Stress Tolerance. *Methods in molecular biology (Clifton, NJ)* 2017, 1564:193-202.

6. Farhangi-Abriz S, Ghassemi-Golezani K: Jasmonates: Mechanisms and functions in abiotic stress tolerance of plants. *Biocatalysis and Agricultural Biotechnology* 2019, 20:101210.

7. Colebrook EH, Thomas SG, Phillips AL, Hedden P: The role of gibberellin signalling in plant responses to abiotic stress. *The Journal of Experimental Biology* 2014, 217(1):67-75.

8. Khan MIR, Fatma M, Per TS, Anjum NA, Khan NA: Salicylic acid-induced abiotic stress tolerance and underlying mechanisms in plants. *Frontiers in plant science* 2015, 6:462-462.

9. Pandey V, Bhatt ID, Nandi SK: Chapter 20 - Role and Regulation of Auxin Signaling in Abiotic Stress Tolerance. In: *Plant Signaling Molecules*. Edited by Khan MIR, Reddy PS, Ferrante A, Khan NA: Woodhead Publishing; 2019: 319-331.

10. Leng P, Yuan B, Guo Y: The role of abscisic acid in fruit ripening and responses to abiotic stress. *Journal of experimental botany* 2014, 65(16):4577-4588.

11. Mehrotra R, Bhalothia P, Bansal P, Basantani MK, Bharti V, Mehrotra S: Abscisic acid and abiotic stress tolerance - different tiers of regulation. *Journal of plant physiology* 2014, 171(7):486-496.

12. Takatsuji H, Mori M, Benfey PN, Ren L, Chua NH: Characterization of a zinc finger DNA-binding protein expressed specifically in Petunia petals and seedlings. *Embo j* 1992, 11(1):241-249.

13. Sakai H, Medrano LJ, Meyerowitz EM: Role of SUPERMAN in maintaining Arabidopsis floral whorl boundaries. *Nature* 1995, 378(6553):199-203.

14. Omichinski JG, Clore GM, Schaad O, Felsenfeld G, Trainor C, Appella E, Stahl SJ, Gronenborn AM: NMR structure of a specific DNA complex of Zn-containing DNA binding domain of GATA-1. *Science* 1993, 261(5120):438-446.
15. Daniel-Vedele F, Caboche M: A tobacco cDNA clone encoding a GATA-1 zinc finger protein homologous to regulators of nitrogen metabolism in fungi. *Molecular & general genetics: MGG* 1993, 240(3):365-373.

16. Yanagisawa S: Dof DNA-binding proteins contain a novel zinc finger motif. *Trends in Plant Science* 1996, 1(7):213-214.

17. Yanagisawa S, Izui K: Molecular cloning of two DNA-binding proteins of maize that are structurally different but interact with the same sequence motif. *Journal of Biological Chemistry* 1993, 268(21):16028-16036.

18. von Arnim AG, Deng XW: Ring finger motif of Arabidopsis thaliana COP1 defines a new class of zinc-binding domain. *Journal of Biological Chemistry* 1993, 268(26):19626-19631.

19. Schindler U, Beckmann H, Cashmore AR: HAT3.1, a novel Arabidopsis homeodomain protein containing a conserved cysteine-rich region. *Plant J* 1993, 4(1):137-150.

20. Bellmann R, Werr W: Zmhox1a, the product of a novel maize homeobox gene, interacts with the Shrunken 26 bp feedback control element. *Embo J* 1992, 11(9):3367-3374.

21. Sanchez-Garcia I, Rabbitts TH: The LIM domain: a new structural motif found in zinc-finger-like proteins. *Trends in genetics: TIG* 1994, 10(9):315-320.

22. Baltz R, Domon C, Pillay DT, Steinmetz A: Characterization of a pollen-specific cDNA from sunflower encoding a zinc finger protein. *The Plant journal: for cell and molecular biology* 1992, 2(5):713-721.

23. Kaadige MR, Ayer DE: The polybasic region that follows the plant homeodomain zinc finger 1 of Pf1 is necessary and sufficient for specific phosphoinositide binding. *J Biol Chem* 2006, 281(39):28831-28836.

24. Bienz M: The PHD finger, a nuclear protein-interaction domain. *Trends Biochem Sci* 2006, 31(1):35-40.

25. Martin DG, Baetz K, Shi X, Walter KL, MacDonald VE, Wlodarski MJ, Gozani O, Hieter P, Howe L: The Yng1p plant homeodomain finger is a methyl-histone binding module that recognizes lysine 4-methylated histone H3. *Molecular and cellular biology* 2006, 26(21):7871-7879.

26. Reddy TV, Kaur J, Agashe B, Sundaresan V, Siddiqi I: The DUET gene is necessary for chromosome organization and progression during male meiosis in Arabidopsis and encodes a PHD finger protein. *Development* 2003, 130(24):5975-5987.

27. Yang X, Makaroff CA, Ma H: The Arabidopsis MALE MEIOCYTE DEATH1 gene encodes a PHD-finger protein that is required for male meiosis. *Plant Cell* 2003, 15(6):1281-1295.

28. Andreuzza S, Nishal B, Singh A, Siddiqi I: The Chromatin Protein DUET/MMD1 Controls Expression of the Meiotic Gene TDM1 during Male Meiosis in Arabidopsis. *PLoS genetics* 2015, 11(9):e1005396.

29. Woo HR, Pontes O, Pikaard CS, Richards EJ: VIM1, a methylcytosine-binding protein required for centromeric heterochromatinization. *Genes Dev* 2007, 21(3):267-277.

30. Wang Q, Liu J, Wang Y, Zhao Y, Jiang H, Cheng B: Systematic Analysis of the Maize PHD-Finger Gene Family Reveals a Subfamily Involved in Abiotic Stress Response. *International journal of molecular
31. Alam I, Liu CC, Ge HL, Batool K, Yang YQ, Lu YH: Genome wide survey, evolution and expression analysis of PHD finger genes reveal their diverse roles during the development and abiotic stress responses in Brassica rapa L. BMC genomics 2019, 20(1):773.

32. Wei W, Huang J, Hao YJ, Zou HF, Wang HW, Zhao JY, Liu XY, Zhang WK, Ma B, Zhang JS et al: Soybean GmPHD-type transcription regulators improve stress tolerance in transgenic Arabidopsis plants. PLoS One 2009, 4(9):e7209.

33. Kim DH, Sung S: Accelerated vernalization response by an altered PHD-finger protein in Arabidopsis. Plant Signal Behav 2017, 12(5):e1308619.

34. Molitor AM, Bu Z, Yu Y, Shen WH: Arabidopsis AL PHD-PRC1 complexes promote seed germination through H3K4me3-to-H3K27me3 chromatin state switch in repression of seed developmental genes. PLoS Genet 2014, 10(1):e1004091.

35. Ye Y, Gong Z, Lu X, Miao D, Shi J, Lu J, Zhao Y: Germostatin resistance locus 1 encodes a PHD finger protein involved in auxin-mediated seed dormancy and germination. Plant J 2016, 85(1):3-15.

36. Wu S, Wu M, Dong Q, Jiang H, Cai R, Xiang Y: Genome-wide identification, classification and expression analysis of the PHD-finger protein family in Populus trichocarpa. Gene 2016, 575(1):75-89.

37. Wang Q, Liu J, Wang Y, Zhao Y, Jiang H, Cheng B: Systematic Analysis of the Maize PHD-Finger Gene Family Reveals a Subfamily Involved in Abiotic Stress Response. Int J Mol Sci 2015, 16(10):23517-23544.

38. Gao Y, Liu H, Wang Y, Li F, Xiang Y: Genome-wide identification of PHD-finger genes and expression pattern analysis under various treatments in moso bamboo (Phyllostachys edulis). Plant Physiology and Biochemistry 2018, 123:378-391.

39. Wu X-J, Li M-Y, Que F, Wang F, Xu Z-S, Xiong A-S: Genome-wide analysis of PHD family transcription factors in carrot (Daucus carota L.) reveals evolution and response to abiotic stress. Acta Physiologiae Plantarum 2016, 38(3):67.

40. Qin M, Luo W, Zheng Y, Guan H, Xie X: Genome-wide identification and expression analysis of the PHD-finger gene family in Solanum tuberosum. PloS one 2019, 14(12):e0226964-e0226964.

41. Cao Y, Han Y, Meng D, Abdullah M, Li D, Jin Q, Lin Y, Cai Y: Systematic analysis and comparison of the PHD-Finger gene family in Chinese pear (Pyrus bretschneideri) and its role in fruit development. Functional & integrative genomics 2018, 18(5):519-531.

42. Zhang T, Hu Y, Jiang W, Fang L, Guan X, Chen J, Zhang J, Saski CA, Scheffler BE, Stelly DM et al: Sequencing of allotetraploid cotton (Gossypium hirsutum L. acc. TM-1) provides a resource for fiber improvement. Nature biotechnology 2015, 33(5):531-537.

43. Li F, Fan G, Wang K, Sun F, Yuan Y, Song G, Li Q, Ma Z, Lu C, Zou C et al: Genome sequence of the cultivated cotton Gossypium arboreum. Nature genetics 2014, 46(6):567-572.

44. Paterson AH, Wendel JF, Gundlach H, Guo H, Jenkins J, Jin D, Llewellyn D, Showmaker KC, Shu S, Udall J et al: Repeated polyploidization of Gossypium genomes and the evolution of spinnable
cotton fibres. *Nature* 2012, 492(7429):423-427.

45. Lynch M, Conery JS: The evolutionary fate and consequences of duplicate genes. *Science* 2000, 290(5494):1151-1155.

46. Gao Y, Liu H, Wang Y, Li F, Xiang Y: Genome-wide identification of PHD-finger genes and expression pattern analysis under various treatments in moso bamboo (Phyllostachys edulis). *Plant physiology and biochemistry: PPB* 2018, 123:378-391.

47. Rao X, Dixon RA: Co-expression networks for plant biology: why and how. *Acta biochimica et biophysica Sinica* 2019, 51(10):981-988.

48. Lohmann D, Stacey N, Breuninger H, Jikumaru Y, Muller D, Sicard A, Leyser O, Yamaguchi S, Lenhard M: SLOW MOTION is required for within-plant auxin homeostasis and normal timing of lateral organ initiation at the shoot meristem in Arabidopsis. *Plant Cell* 2010, 22(2):335-348.

49. Searle I, He Y, Turck F, Vincent C, Formara F, Kröber S, Amasino RA, Coupland G: The transcription factor FLC confers a flowering response to vernalization by repressing meristem competence and systemic signaling in Arabidopsis. *Genes & development* 2006, 20(7):898-912.

50. Pace NJ, Weerapana E: Zinc-binding cysteines: diverse functions and structural motifs. *Biomolecules* 2014, 4(2):419-434.

51. Wendel J, Grover C: Taxonomy and Evolution of the Cotton Genus, *Gossypium*. In.; 2015.

52. Blanc G, Wolfe KH: Widespread paleopolyploidy in model plant species inferred from age distributions of duplicate genes. *Plant Cell* 2004, 16(7):1667-1678.

53. Flagel LE, Wendel JF: Gene duplication and evolutionary novelty in plants. *New Phytol* 2009, 183(3):557-564.

54. Tanaka KM, Takahasi KR, Takano-Shimizu T: Enhanced fixation and preservation of a newly arisen duplicate gene by masking deleterious loss-of-function mutations. *Genetics research* 2009, 91(4):267-280.

55. Xu G, Guo C, Shan H, Kong H: Divergence of duplicate genes in exon-intron structure. *Proceedings of the National Academy of Sciences of the United States of America* 2012, 109(4):1187-1192.

56. Roy SW, Penny D: Patterns of intron loss and gain in plants: intron loss-dominated evolution and genome-wide comparison of *O. sativa* and *A. thaliana*. *Mol Biol Evol* 2007, 24(1):171-181.

57. Sebastian J, Ravi M, Andreuzza S, Panoli AP, Marimuthu MP, Siddiqi I: The plant adherin AtSCC2 is required for embryogenesis and sister-chromatid cohesion during meiosis in Arabidopsis. *Plant J* 2009, 59(1):1-13.

58. Li H, Yuan Z, Vizcay-Barrena G, Yang C, Liang W, Zong J, Wilson ZA, Zhang D: PERSISTENT TAPETAL CELL1 encodes a PHD-finger protein that is required for tapetal cell death and pollen development in rice. *Plant Physiol* 2011, 156(2):615-630.

59. Lopez-Gonzalez L, Mouriz A, Narro-Diego L, Bustos R, Martinez-Zapater JM, Jarillo JA, Pineiro M: Chromatin-dependent repression of the Arabidopsis floral integrator genes involves plant specific PHD-containing proteins. *Plant Cell* 2014, 26(10):3922-3938.
60. Schlereth A, Moller B, Liu W, Kientz M, Flipse J, Rademacher EH, Schmid M, Jurgens G, Weijers D: MONOPTEROS controls embryonic root initiation by regulating a mobile transcription factor. *Nature* 2010, 464(7290):913-916.

61. Chandler JW: Auxin response factors. *Plant, cell & environment* 2016, 39(5):1014-1028.

62. Roosjen M, Paque S, Weijers D: Auxin Response Factors: output control in auxin biology. *Journal of experimental botany* 2018, 69(2):179-188.

63. Bouzroud S, Gouiaa S, Hu N, Bernadac A, Mila I, Bendaou N, Smouni A, Bouzayen M, Zouine M: Auxin Response Factors (ARFs) are potential mediators of auxin action in tomato response to biotic and abiotic stress (Solanum lycopersicum). *PloS one* 2018, 13(2):e0193517.

64. Chen Z, Yuan Y, Fu D, Shen C, Yang Y: Identification and Expression Profiling of the Auxin Response Factors in Dendrobium officinalis under Abiotic Stresses. *International journal of molecular sciences* 2017, 18(5).

65. Müller M, Munné-Bosch S: Ethylene Response Factors: A Key Regulatory Hub in Hormone and Stress Signaling. *Plant Physiol* 2015, 169(1):32-41.

66. Huang PY, Catinot J, Zimmerli L: Ethylene response factors in Arabidopsis immunity. *Journal of experimental botany* 2016, 67(5):1231-1241.

67. Zhu T, Liang C, Meng Z, Sun G, Meng Z, Guo S, Zhang R: CottonFGD: an integrated functional genomics database for cotton. *BMC Plant Biol* 2017, 17(1):101.

68. Sonnhammer EL, Eddy SR, Birney E, Bateman A, Durbin R: Pfam: multiple sequence alignments and HMM-profiles of protein domains. *Nucleic Acids Res* 1998, 26(1):320-322.

69. Letunic I, Bork P: 20 years of the SMART protein domain annotation resource. *Nucleic Acids Res* 2018, 46(D1):D493-d496.

70. Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R et al.: Clustal W and Clustal X version 2.0. *Bioinformatics* 2007, 23(21):2947-2948.

71. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S: MEGA6: Molecular Evolutionary Genetics Analysis version 6.0. *Mol Biol Evol* 2013, 30(12):2725-2729.

72. Artimo P, Jonnalagedda M, Arnold K, Baratin D, Csardi G, de Castro E, Duvau S, Flegel V, Fortier A, Gasteiger E et al.: ExPASy: SIB bioinformatics resource portal. *Nucleic Acids Res* 2012, 40(Web Server issue):W597-W603.

73. Yu C-S, Lin C-J, Hwang J-K: Predicting subcellular localization of proteins for Gram-negative bacteria by support vector machines based on n-peptide compositions. *Protein Sci* 2004, 13(5):1402-1406.

74. Hu B, Jin J, Guo AY, Zhang H, Luo J, Gao G: GSDS 2.0: an upgraded gene feature visualization server. *Bioinformatics* 2015, 31(8):1296-1297.

75. Bailey TL, Boden M, Buske FA, Frith M, Grant CE, Clementi L, Ren J, Li WW, Noble WS: MEME SUITE: tools for motif discovery and searching. *Nucleic Acids Res* 2009, 37(Web Server issue):W202-W208.

76. Chen C, Xia R, Chen H, He Y: TBtools, a Toolkit for Biologists integrating various HTS-data handling tools with a user-friendly interface. *bioRxiv* 2018:289660.
77. Lescot M, Dehais P, Thijs G, Marchal K, Moreau Y, Van de Peer Y, Rouze P, Rombauts S: PlantCARE, a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences. *Nucleic Acids Res* 2002, 30(1):325-327.

78. You Q, Xu W, Zhang K, Zhang L, Yi X, Yao D, Wang C, Zhang X, Zhao X, Provart NJ et al: ccNET: Database of co-expression networks with functional modules for diploid and polyploid Gossypium. *Nucleic Acids Res* 2017, 45(D1):D1090-d1099.

79. Wan Q, Guan X, Yang N, Wu H, Pan M, Liu B, Fang L, Yang S, Hu Y, Ye W et al: Small interfering RNAs from bidirectional transcripts of GhMML3_A12 regulate cotton fiber development. *The New phytologist* 2016, 210(4):1298-1310.

80. Livak KJ, Schmittgen TD: Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. *Methods* 2001, 25(4):402-408.

Additional Files

Additional file 1: Fig. S1.tif Chromosomal location of *GhPHD* genes on 26 chromosomes in *G. hirsutum*. The chromosome numbers were shown on the top of each chromosome. The scale bar indicated the length in megabases (Mb).

Additional file 2: Fig. S2.tif Alignment results from the conserved domain of 108 GhPHD proteins and PHD motifs with a typical C4HC3 model.

Additional file 3: Fig. S3.tif Expression profiles of *GhPHD* genes under cold, hot, salt, and drought. The expression characteristics of 108 *GhPHD* genes under four stress treatments were investigated using available transcriptomic data. 1 h, 3 h, 6 h, and 12 h indicate hours after different stress treatments. Gene names and the subfamilies are shown on the right. Blocks with colors represent the relative expression levels of *GhPHDs*.

Additional file 4: Table S1.xlsx The PHD members from *G. hirsutum*, *G. raimondii*, *G. arboreum*, *A. thaliana*, and *O. sativa*.

Additional file 5: Table S2.docx Chromosomal location and gene annotation of *GhPHD* genes in *G. hirsutum*.

Additional file 6: Table S3.docx Transcript-features of 108 *GhPHD* genes.

Additional file 7: Table S4.xlsx Distribution of major stress-related and phytohormone-related cis-acting elements in the promoter regions of *GhPHD* genes.

Additional file 8: Table S5.xlsx Number of cis-acting elements in the promoters of *GhPHD* genes.

Additional file 9: Table S6.xlsx Co-expression network analysis results.

Additional file 10: Table S7.docx Primers for RT-qPCR in this study.
Table 1. Physicochemical parameters of 108 *GhPHD* genes in *G. hirsutum*
Name	Protein length (aa)	Molecular weight (kDa)	Charge	Isoelectric point	Grand average of hydropathy	Subcellular localization
GhPHD1	217	24.915	5	7.895	-0.694	Nuclear
GhPHD2	1,033	114.441	32.5	8.49	-0.274	Nuclear
GhPHD3	1,030	114.182	36	8.594	-0.306	Nuclear
GhPHD4	815	90.024	5	6.895	-0.323	Nuclear
GhPHD5	1,303	144.878	-9.5	6.002	-0.713	Nuclear
GhPHD6	700	79.363	-4.5	6.21	-0.308	Nuclear
GhPHD7	700	79.363	-4.5	6.21	-0.308	Nuclear
GhPHD8	345	39.474	12	8.648	-0.573	Nuclear
GhPHD9	251	28.253	-8	4.891	-0.621	Nuclear
GhPHD10	786	86.704	-35.5	4.631	-0.966	Nuclear
GhPHD11	216	24.846	8.5	8.262	-0.789	Nuclear
GhPHD12	375	42.862	5.5	7.542	-0.708	Nuclear
GhPHD13	237	26.757	-4	5.421	-0.596	Nuclear
GhPHD14	959	104.731	-3	6.227	-1.126	Nuclear
GhPHD15	733	82.869	40.5	9.936	-0.907	Nuclear
GhPHD16	252	29.239	9.5	9.628	-0.648	Cytoplasmic
GhPHD17	252	28.35	-7.5	4.894	-0.661	Nuclear
GhPHD18	238	27.277	4.5	7.669	-0.648	Nuclear
GhPHD19	493	55.306	5	7.03	-0.485	Nuclear
GhPHD21	159	17.763	0	6.496	-0.666	Extracellular
GhPHD22	733	80.954	22	8.271	-0.664	Nuclear
GhPHD23	1,084	122.987	34	8.276	-0.574	Nuclear
GhPHD24	253	28.577	-5.5	5.132	-0.736	Nuclear
GhPHD25	252	25.723	6.5	8.087	-0.682	Nuclear
GhPHD26	238	27.277	4.5	7.669	-0.648	Nuclear
GhPHD27	1,358	154.506	35	7.891	-0.677	Nuclear
GhPHD28	159	17.763	0	6.496	-0.666	Extracellular
GhPHD29	733	80.954	22	8.271	-0.664	Nuclear
GhPHD30	1,247	141.67	24	7.655	-0.43	Nuclear
GhPHD31	949	104.907	2.5	6.779	-0.416	Nuclear
GhPHD32	1,618	180.35	45	8.404	-0.446	Nuclear
GhPHD33	1,618	180.725	41.5	8.289	-0.442	Nuclear
GhPHD34	216	24.95	8.5	8.399	-0.783	Nuclear
GhPHD35	321	35.88	-4.5	5.599	-0.049	Extracellular
GhPHD36	822	88.768	2	6.651	-0.539	Nuclear
GhPHD37	1,305	143.316	-33.5	4.951	-0.624	Nuclear
GhPHD38	705	78.949	22	8.309	-0.315	Extracellular
GhPHD39	2,231	247.421	-36	5.321	-0.444	Nuclear
GhPHD40	226	25.942	6	8.086	-0.788	Nuclear
GhPHD41	1,685	187.671	-4.5	6.321	-0.389	Nuclear
GhPHD42	1,239	138.122	-0.5	6.487	-0.735	Nuclear
GhPHD43	253	28.585	-6	5.13	-0.76	Nuclear
GhPHD44	531	58.455	-4	5.77	-0.564	Nuclear
GhPHD45	389	44.625	26.5	9.906	-0.405	Nuclear
GhPHD46	803	90.452	-16.5	5.132	-0.836	Nuclear
GhPHD47	851	94.805	-26	4.895	-1.011	Nuclear
GhPHD48	212	23.802	26	10.41	-0.745	Nuclear
GhPHD49	1,019	116.396	18	7.609	-0.584	Nuclear
GhPHD50	655	74.308	11	7.433	-0.207	Cytoplasmic
GhPHD51	1,091	124.448	45	8.516	-0.59	Nuclear
GhPHD52	237	26.997	-3.5	5.244	-0.666	Nuclear
GhPHD53	216	24.723	6.5	8.049	-0.785	Nuclear
GhPHD54	716	81.912	-38.5	4.581	-1.1	Nuclear
GhPHD55	1,367	152.049	3	6.689	-0.451	Nuclear
GhPHD56	254	28.492	-6.5	5.136	-0.576	Cytoplasmic
GhPHD57	217	24.929	5	7.895	-0.684	Nuclear
GhPHD58	1,031	114.246	33.5	8.459	-0.299	Nuclear
GhPHD59	1,031	113.878	36.5	8.592	-0.306	Nuclear
GhPHD60	1,299	144.45	-11.5	5.886	-0.711	Nuclear
GhPHD61	290	32.821	-8.5	4.832	-0.419	Nuclear
GhPHD62	216	24.835	8.5	8.262	-0.789	Nuclear
GhPHD63	699	79.319	-4.5	6.21	-0.283	Nuclear
GhPHD64	345	39.311	13	8.745	-0.544	Nuclear
GhPHD65	1,084	123.101	34	8.275	-0.579	Nuclear
GhPHD66	237	26.615	-2	5.973	-0.561	Nuclear
GhPHD67	945	103.676	-2	6.329	-1.136	Nuclear
GhPHD68	684	77.195	23	9.073	-0.859	Nuclear
GhPHD69	733	83.057	34.5	9.713	-0.91	Nuclear
GhPHD70	252	28.414	-8.5	4.84	-0.697	Nuclear
GhPHD71	1,731	194.29	53	8.282	-0.675	Nuclear
GhPHD72	252	28.35	-7.5	4.894	-0.661	Nuclear
GhPHD73	224	25.664	7.5	8.248	-0.774	Cytoplasmic
GhPHD74	367	41.019	5	7.341	-0.49	Nuclear
GhPHD75	601	67.379	2	6.696	-0.611	Nuclear
GhPHD76	241	27.506	-0.5	6.269	-0.502	Extracellular
GhPHD77	253	28.677	-5.5	5.139	-0.752	Nuclear
GhPHD78	252	28.407	-7.5	4.889	-0.682	Nuclear
GhPHD79	186	21.734	1.5	6.851	-0.752	Cytoplasmic
GhPHD80	237	27.077	-4	5.221	-0.689	Extracellular
GhPHD81	1,356	154.398	31	7.737	-0.674	Nuclear
GhPHD82	236	26.789	-12	4.605	-0.598	Cytoplasmic
GhPHD83	676	74.819	22.5	8.253	-0.665	Nuclear
GhPHD84	1,382	156.796	34	7.925	-0.467	Nuclear
GhPHD85	949	104.967	2.5	6.779	-0.426	Nuclear
GhPHD86	1,653	183.656	37.5	8.15	-0.449	Nuclear
GhPHD87	1,618	180.589	39	8.234	-0.447	Nuclear
GhPHD88	216	24.836	5.5	7.902	-0.775	Cytoplasmic
GhPHD89	822	88.688	0	6.506	-0.531	Nuclear
GhPHD90	1,301	142.837	-35.5	4.873	-0.619	Nuclear
GhPHD91	705	78.888	23.5	8.373	-0.305	Nuclear
GhPHD92	2,182	241.654	-34	5.362	-0.441	Nuclear
GhPHD93	226	25.984	6	8.086	-0.767	Nuclear
GhPHD94	1,685	187.566	-4	6.345	-0.397	Nuclear
GhPHD95	1,237	137.855	-0.5	6.486	-0.718	Nuclear
GhPHD96	253	28.613	-6	5.13	-0.75	Nuclear
GhPHD97	696	78.217	18.5	8.023	-0.17	Nuclear
GhPHD98	503	55.441	-5.5	5.455	-0.597	Nuclear
GhPHD99	385	44.394	31	10.216	-0.428	Nuclear
GhPHD100	812	91.657	-29	4.818	-0.838	Nuclear
Gene	Size	Ka	Kb	Kd	---------------------------------	
-----------	------	-------	-------	-------	----------------------------------	
GhPHD101	859	95.86	-32.5	4.789	Nuclear	
GhPHD102	1,019	116.3	19	7.67	Nuclear	
GhPHD103	655	74.268	11.5	7.443	Cytoplasmic	
GhPHD104	1,091	124.625	43	8.46	Nuclear	
GhPHD105	889	101.493	-32	4.811	Nuclear	
GhPHD106	1,305	145.225	9.5	7.121	Nuclear	
GhPHD107	801	90.038	-12.5	5.251	Nuclear	
GhPHD108	252	28.259	-6.5	5.136	Cytoplasmic	

Table 2. Ka/Ks analysis for the duplicated PHD gene pairs from *G. hirsutum*
Duplicated gene 1	Duplicated gene 2	Ka	Ks	Ka/Ks	Purifying selection	Duplicate type
GhPHD1	GhPHD11	0.064	0.533	0.119	Yes	Segmental
GhPHD1	GhPHD62	0.064	0.533	0.119	Yes	Segmental
GhPHD2	GhPHD58	0.011	0.043	0.248	Yes	Segmental
GhPHD5	GhPHD60	0.016	0.039	0.411	Yes	Segmental
GhPHD5	GhPHD95	0.126	0.389	0.324	Yes	Segmental
GhPHD6	GhPHD63	0.004	0.048	0.089	Yes	Segmental
GhPHD9	GhPHD61	0.007	0.032	0.212	Yes	Segmental
GhPHD10	GhPHD14	0.232	0.441	0.526	Yes	Segmental
GhPHD10	GhPHD47	0.245	0.488	0.502	Yes	Segmental
GhPHD10	GhPHD67	0.241	0.471	0.512	Yes	Segmental
GhPHD10	GhPHD101	0.235	0.446	0.527	Yes	Segmental
GhPHD11	GhPHD53	0.039	0.606	0.064	Yes	Segmental
GhPHD11	GhPHD62	0.004	0.014	0.282	Yes	Segmental
GhPHD13	GhPHD66	0.009	0.053	0.169	Yes	Segmental
GhPHD14	GhPHD47	0.376	0.666	0.564	Yes	Segmental
GhPHD14	GhPHD67	0.018	0.046	0.387	Yes	Segmental
GhPHD15	GhPHD68	0.030	0.063	0.468	Yes	Segmental
GhPHD16	GhPHD28	0.089	0.311	0.285	Yes	Segmental
GhPHD16	GhPHD77	0.045	0.352	0.129	Yes	Segmental
GhPHD16	GhPHD82	0.053	0.405	0.130	Yes	Segmental
GhPHD17	GhPHD71	0.008	0.034	0.235	Yes	Segmental
GhPHD17	GhPHD81	0.075	0.381	0.196	Yes	Segmental
GhPHD19	GhPHD25	0.081	0.447	0.180	Yes	Segmental
GhPHD19	GhPHD40	0.083	0.451	0.184	Yes	Segmental
GhPHD19	GhPHD73	0.026	0.053	0.492	Yes	Segmental
GhPHD19	GhPHD79	0.083	0.496	0.167	Yes	Segmental
GhPHD19	GhPHD93	0.085	0.451	0.188	Yes	Segmental
GhPHD20	GhPHD74	0.024	0.032	0.753	Yes	Segmental
GhPHD22	GhPHD51	0.080	0.398	0.200	Yes	Segmental
GhPHD22	GhPHD65	0.007	0.028	0.240	Yes	Segmental
GhPHD22	GhPHD104	0.079	0.391	0.201	Yes	Segmental
GhPHD28	GhPHD77	0.085	0.284	0.298	Yes	Segmental
GhPHD28	GhPHD82	0.042	0.037	1.121	No	Segmental
GhPHD24	GhPHD78	0.003	0.039	0.086	Yes	Segmental
GhPHD25	GhPHD73	0.057	0.434	0.131	Yes	Segmental
GhPHD25	GhPHD79	0.016	0.017	0.982	Yes	Segmental
GhPHD26	GhPHD44	0.204	0.368	0.553	Yes	Segmental
GhPHD26	GhPHD98	0.186	0.344	0.541	Yes	Segmental
GhPHD29	GhPHD83	0.019	0.041	0.473	Yes	Segmental
GhPHD31	GhPHD85	0.011	0.031	0.356	Yes	Segmental
GhPHD32	GhPHD86	0.015	0.027	0.554	Yes	Segmental
GhPHD34	GhPHD88	0.006	0.021	0.288	Yes	Segmental
GhPHD36	GhPHD89	0.015	0.031	0.499	Yes	Segmental
GhPHD39	GhPHD92	0.014	0.040	0.339	Yes	Segmental
GhPHD40	GhPHD73	0.051	0.442	0.116	Yes	Segmental
GhPHD40	GhPHD93	0.002	0.054	0.035	Yes	Segmental
GhPHD41	GhPHD94	0.013	0.031	0.416	Yes	Segmental
GhPHD44	GhPHD98	0.022	0.052	0.413	Yes	Segmental
GhPHD46	GhPHD54	0.127	0.418	0.304	Yes	Segmental
GhPHD46	GhPHD100	0.014	0.055	0.256	Yes	Segmental
Gene 1	Gene 2	Score1	Score2	Score3	Conserved	Type
---------	---------	--------	--------	--------	-----------	------------
GhPHD46	GhPHD107	0.101	0.395	0.256	Yes	Segmental
GhPHD47	GhPHD67	0.231	0.450	0.514	Yes	Segmental
GhPHD47	GhPHD101	0.016	0.030	0.530	Yes	Segmental
GhPHD49	GhPHD102	0.006	0.035	0.163	Yes	Segmental
GhPHD50	GhPHD103	0.011	0.048	0.233	Yes	Segmental
GhPHD51	GhPHD65	0.079	0.389	0.202	Yes	Segmental
GhPHD51	GhPHD104	0.010	0.036	0.270	Yes	Segmental
GhPHD52	GhPHD80	0.038	0.528	0.072	Yes	Segmental
GhPHD53	GhPHD62	0.039	0.606	0.064	Yes	Segmental
GhPHD54	GhPHD100	0.140	0.416	0.336	Yes	Segmental
GhPHD54	GhPHD107	0.136	0.405	0.335	Yes	Segmental
GhPHD55	GhPHD106	0.023	0.045	0.497	Yes	Segmental
GhPHD56	GhPHD76	0.236	0.639	0.369	Yes	Segmental
GhPHD56	GhPHD108	0.007	0.051	0.132	Yes	Segmental
GhPHD60	GhPHD95	0.125	0.397	0.314	Yes	Segmental
GhPHD65	GhPHD104	0.078	0.386	0.203	Yes	Segmental
GhPHD67	GhPHD101	0.225	0.456	0.492	Yes	Segmental
GhPHD71	GhPHD81	0.075	0.369	0.203	Yes	Segmental
GhPHD73	GhPHD79	0.054	0.486	0.111	Yes	Segmental
GhPHD73	GhPHD93	0.053	0.419	0.127	Yes	Segmental
GhPHD76	GhPHD108	0.237	0.630	0.376	Yes	Segmental
GhPHD91	GhPHD38	0.016	0.052	0.298	Yes	Segmental
GhPHD100	GhPHD107	0.104	0.379	0.276	Yes	Segmental
GhPHD2	GhPHD3	0.035	0.122	0.289	Yes	Tandem
GhPHD32	GhPHD33	0.031	0.076	0.407	Yes	Tandem
GhPHD58	GhPHD59	0.029	0.138	0.212	Yes	Tandem
GhPHD86	GhPHD87	0.027	0.062	0.428	Yes	Tandem

Figures
Figure 1

Phylogenetic tree displaying relationships between 108 G. hirsutum, 52 G. arboreum, 55 G. raimondii, 39 O. sativa and 43 A. thaliana PHD proteins. The phylogenetic tree was constructed in MEGA 6.0 using the neighbor-joining method. The bootstrap test was performed with 1000 iterations. The five subgroups are shown with different colours. At, Arabidopsis thaliana; Ga, Gossypium arboreum; Gr, Gossypium raimondii; Gh, Gossypium hirsutum; Os, Oryza sativa.
Figure 2

Phylogenetic tree, gene structure, and conserved motif analysis of GhPHD proteins. A An unrooted phylogenetic tree was generated in MEGA 6.0 by neighbor-joining (NJ) method. B Exon-intron structure of GhPHD genes. The yellow boxes represent exons, black lines represent introns, and blue boxes represent the upstream/downstream UTRs. The sizes of exon and intron can be estimated using the scale bar at the bottom. C Motifs distribution of GhPHD proteins and different motif boxes are represented in different colors (motif 1 to 3). Motif 1 is the PHD domain.
Figure 3

Distribution of stress-related and phytohormone-related cis-acting elements in the promoter regions of GhPHD genes. The locations of cis-acting elements were confirmed using PlantCARE database. Different cis-acting elements were represented by different color boxes.
Figure 4

Tissue-specific expression patterns of GhPHD genes in upland cotton. A heatmap indicates the clustering of 108 GhPHD genes in eight tissues (shown at the bottom). DPA is days post anthesis. Gene names are shown on the right. Scale bars at the top show Log2 (FPKM+1) values of each gene.
Figure 5

The relative expression levels of 12 GhPHD genes under heat, cold, salt, and drought treatment. The relative expression levels were estimated by RT-qPCR. The error bars represent the standard deviations of three experiments.
Figure 6

The relative expression levels of six GhPHD genes under GA, MeJA, IAA, SA, and BL treatment. The relative expression levels were estimated by RT-qPCR. The error bars show the standard deviation of three biological replicates.
Figure 7

Co-expression networks analysis of GhPHD88 and GO enrichment analysis of 108 GhPHDs. A co-expression network analysis of GhPHD88 with functional modules for G. hirsutum and G. arboreum. Yellow and green colour indicates that query protein and interaction proteins, respectively. There are four interaction lines, red lines indicated ortholog gene pairs in G. hirsutum and G. arboreum; pink lines and blue lines indicate proteins own interaction and positive/negative co-expression relationship with target.
protein; orange lines indicate proteins own interaction and protein-protein relationship with target protein.
B GO enrichment analysis of all GhPHD genes.

Supplementary Files

This is a list of supplementary files associated with this preprint. Click to download.

- FigureS1.tif
- FigureS2.tif
- FigureS3.tif
- TableS1.xlsx
- TableS2.docx
- TableS3.docx
- TableS4.xlsx
- TableS5.xlsx
- TableS6.xlsx
- TableS7.docx