High-precision QCD physics at FCC-ee

Francesco Giuli

CERN - European Organization for Nuclear Research, Espl. des Particules 1, 1211 Meyrin, Switzerland
E-mail: francesco.giuli@cern.ch

The Future Circular Collider (FCC) is a post-LHC project aiming at direct and indirect searches for physics beyond the SM in a new 100 km tunnel at CERN. In addition, the FCC-ee offers unique possibilities for high-precision studies of the strong interaction in the clean environment provided by e^+e^- collisions, thanks to its broad span of center-of-mass energies ranging from the Z pole to the top-pair threshold, and its huge integrated luminosities yielding 10^{12} and 10^8 jets from Z and W bosons decays, respectively, as well as 10^5 pure gluon jets from Higgs boson decays. In this contribution, we will summarize studies on the impact the FCC-ee will have on our knowledge of the strong force including: (i) QCD coupling extractions with per-mille uncertainties, (ii) parton radiation and parton-to-hadron fragmentation functions, (iii) jet properties (light-quark-gluon discrimination, e^+e^- event shapes and multijet rates, jet substructure, etc.), (iv) heavy-quark jets (dead cone effect, charm-bottom separation, gluon $\rightarrow c\bar{c}, b\bar{b}$ splitting, etc.); and (v) non-perturbative QCD phenomena (color reconnection, baryon and strangeness production, Bose-Einstein and Fermi-Dirac final-state correlations, etc.).
1. Introduction

A crucial aspect for many physics measurements is a precise understanding of Quantum Chromodynamics (QCD). An accurate determination of the strong coupling constant α_S is mandatory to improve the precision of the production cross sections and decays calculation. The computation of higher-order N^nLO and N^nLL resummation corrections is also central because it can increase the precision in observables predictivity. Another pivotal ingredient is a precise picture of jet substructure, parton showering, hadronization and colour reconnection, whose understanding benefits any hadronic final state.

The FCC-ee program [1], with its large integrated luminosities and clean environment, offers a rich QCD program. QCD studies with an unprecedented precision can be performed due to the large expected number of events at the FCC-ee of roughly $\sim 10^{11}$ Z at $\sqrt{s} = 91$ GeV, $\sim 10^7$ W^+W^- at $\sqrt{s} = 160$ GeV and $\sim 10^6$ ZH at $\sqrt{s} = 240$ GeV.

2. The strong coupling constant

The least precisely known of all interaction coupling constants is α_S, with an overall uncertainty at per-mille level, $\delta\alpha_S \sim 10^{-3}$. Currently, α_S is determined by comparing 7 experimental observables to perturbative QCD (pQCD) predictions, plus a global average at the Z pole scale. The relevant observable for e^+e^- collisions are e^+e^- jet shapes and hadronic τ leptons and W/Z bosons decays.

2.1 α_S from e^+e^- event shapes and jet rates

As already done at LEP [2], the thrust (τ) and the C-parameter defined in Eq. 1 can be used to extract α_S:

$$\tau = 1 - T = 1 - \max \frac{\sum |\vec{p}_i \cdot \hat{n}|}{\sum |\vec{p}_i|}$$

$$C = \frac{3}{2} \frac{\Sigma_{i,j} |\vec{p}_{i,j}| \sin^2 \theta_{i,j}}{(\Sigma |\vec{p}_i|)^2},$$

with $\theta_{i,j}$ the angle between particle i and j and $\vec{p}_{i,j}$ the momentum respectively. Other quantities which are sensitive to α_S are the n-jet rates, $R_n = \frac{\sigma_{n-jet}}{\sigma_{tot}}$, and therefore were used to extract the strong coupling constant. The comparison between the experimental measurements and N^3LO+N^2LL predictions yields $\alpha_S(m_Z) = 0.1171 \pm 0.0027$ ($\pm 2.6\%$).

At lower \sqrt{s}, the n-jet rates up to 7 jets could be studied, while runs at higher \sqrt{s} could be used to study jet rates in regimes where the probability of hard gluon emission increases. Moreover, a better understanding of hadronization mechanism and improvements in logarithmic resummation to N^3LL for jet rates would allow the extraction of α_S at $\delta\alpha_S/\alpha_S < 1\%$ at the FCC-ee.

2.2 α_S from hadronic τ decays

The very precise LEP and B-factories $e^+e^- \rightarrow \tau^+\tau^-$ data, together with higher-order pQCD corrections to the hadronic τ width, allow a remarkably accurate α_S extraction from hadronic τ decays. The quantity of interest is the ratio of the hadronic τ width and the electron τ width, defined as follows:

$$R_\tau = \frac{\Gamma(\tau^- \rightarrow \nu_\tau + \text{hadrons})}{\Gamma(\tau^- \rightarrow \nu_\tau e^- \bar{\nu}_e)} = S_{EW} N C \left(1 + \Sigma_{n=1}^4 c_n \left(\frac{\alpha_S}{\pi}\right)^n + O(\alpha_S^5) + \delta_{np}\right),$$

where S_{EW} is the electroweak factor, N is the number of quark flavors, and C is the Cabibbo-Kobayashi-Maskawa matrix element. The hadronic contribution is approximated by a power series in α_S, and the leading term is $\propto \alpha_S^3$. The remaining terms are resummation effects, which are treated up to order α_S^5.
High-precision QCD physics at FCC-ee
Francesco Giuli

Figure 1: $\Delta \chi^2$ fit profiles of the $\alpha_S(m_Z)$ extracted from the combined N3LO analysis of the total W width ($\Gamma_{\text{tot.}}$) and hadronic-to-leptonic W decay ratio (R_W), compared to the current $\alpha_S(m_Z)$ world average (vertical orange band). Left: Extraction with the present W data assuming (blue curve) or not (black curve) CKM unitarity. Right: Extraction expected at the FCC-ee, with the total (experimental, parametric, and theoretical in quadrature) uncertainties (outer parabola) and with the experimental uncertainties alone (inner parabola). These plots are taken from Ref. [3].

where S_{EW} represents the pure electroweak (EW) contribution to the ratio, N_C the number of colours, c_n the coefficients of the perturbative expansion, and δ_{np} power-suppressed non-perturbative (NP) corrections. Experimentally, this ratio has determined with a $\pm 0.23\%$ precision, and this leads to a determination of $\alpha_S(m_Z) = 0.1187 \pm 0.0018$ ($\pm 1.5\%$).

The dominant source of theoretical uncertainty in the extraction of α_S comes from the discrepancy between the Fixed Order Perturbation Theory (FOPT) and the Contour-Improved Perturbation Theory (CIPT), two different approaches for evaluating the perturbative expansion. Currently, this uncertainty is at the level of $\pm 1.5\%$. NP correction are also relevant in the determination of α_S from hadronic τ decays. These can be sizeable for $O(\Lambda_{QCD}^2/m^2_\tau)$ and they can be controlled by new high-precision measurements of the hadronic τ spectral function. Statistical uncertainty will be negligible at the FCC-ee, considering the $\sim 10^{11}$ τ produced at the Z-pole, and parametric and systematic uncertainties will dominate. To fully exploit this huge statistics, a reduction in the spread of theoretical determinations of R_τ is mandatory. This necessarily implies a better understanding of the discrepancies arising from the CIPT and FOPT comparison. Furthermore, a better determination of the spectral functions entering the R_τ calculation is compulsory, and this can be achieved exploiting new data coming from Belle II or the FCC-ee itself. In this way, the uncertainty on α_S can be reduced well below the current $\delta\alpha_S/\alpha_S \sim 1\%$ level.

2.3 α_S from hadronic W boson decays

Analogously to the case of the hadronic τ decays, the extraction of α_S from hadronic W boson decays can be performed considering the ratio of the hadronic width to the lepton with, as described in Eq. 3

$$R_W(Q) = \frac{\Gamma_{\text{had}}^W(Q)}{\Gamma_{\text{lep}}^W(Q)} = R_{W}^{\text{EW}} \left(1 + \sum_{i=1}^{4} a_i(Q) \left(\frac{\alpha_S(Q)}{\pi} \right)^i + O(\alpha_S^5) + \delta_{\text{mix}} + \delta_{np} \right)$$

(3)
High-precision QCD physics at FCC-ee

Francesco Giuli

Figure 2: $\Delta \chi^2$ fit profiles of $\alpha_S(m_Z)$ extracted from the combined Z pseudo-observables analysis and/or the global SM fit compared to the current world average (orange band). Left: Current results (solid lines) compared to the previous 2018 fit (dashed lines). Right: Extraction expected at the FCC-ee - with central value (arbitrarily) set to $\alpha_S(m_Z) = 0.12030$ and total (experimental, parametric, and theoretical in quadrature) uncertainties (outer parabola) and experimental uncertainties alone (inner parabola) – compared to the present one from the combined Z data (blue line). These plots are taken from Ref. [3].

with R_{EW}^W representing the pure EW contribution to the ratio, $a_i(Q)$ the coefficients of the perturbative expansion, δ_{mix} the mixed QCD+EW corrections, and δ_{np} the power-suppressed NP corrections. α_S is then extracted at N3LO from a simultaneous fit of 2 W boson pseudo-observables [3]: R_W and Γ_W^{tot}. With the assumption of CKM unitarity, a value of $\alpha_S(m_Z) = 0.101 \pm 0.027$ is obtained (with negligible theoretical and parametric uncertainties), as depicted in Fig. 1 (left). The large uncertainty is mostly due to the poor experimental knowledge of R_W and Γ_W^{tot}, which have been measured in $e^+e^- \rightarrow W^+W^-$ LEP events. If CKM unitarity is not assumed, the resulting value of the strong coupling constant is basically unconstrained, as shown in Fig. 1 (left).

At the FCC-ee, the uncertainties on R_W and Γ_W^{tot} will be largely reduced, thanks to the high statistics at the WW threshold. With a factor of 10 reduction of the theoretical uncertainties due to missing $a_5^2, a_3^3, a a_3^2$ and $a^2 a_5$ corrections, a final QCD coupling extraction of $\alpha_S(m_Z) = 0.11790 \pm 0.00023$ with 2 per-mille total error is possible, as illustrated in Fig. 1 (right).

2.4 α_S from hadronic Z boson decays

Following the same procedure described in Sec. 2.3, α_S can be extracted at N3LO from a simultaneous fit of 3 Z boson pseudo-observables [3]: R_Z, Γ_Z^{tot}, and σ_Z^{had}, yielding $\alpha_S = 0.1203 \pm 0.0029$ (2.3%), as depicted in Fig. 2 (left).

Having 10^5 times more Z bosons than at LEP, together with an exquisite systematic and parametric precision would allow a remarkable improvement in the theoretical predictions of the Z boson pseudo observables, and therefore a reduction in the strong coupling uncertainty by almost 2 orders of magnitude. This experimental precision has to be matched by a reduction in the theoretical uncertainties by almost a factor of 5 by computing missing $a_5^5, a^3, a a_5^2$ and $a^2 a_S$ corrections. In this way, α_S can be extracted with a 2 per-mille accuracy, namely $\alpha_S(m_Z) = 0.11790 \pm 0.00023$, as reported in Fig. 2 (right).
3. Jet substructure

Jet substructure studies play a crucial role in improving our knowledge of parton shower (PS) and hadronization mechanism. In particular, jet angularities [4], defined as $A_{\kappa}^{\beta} = \sum_{i \in \text{jet}} z_i^\kappa \theta_i^\beta$ (with z_i and θ_i representing the energy fraction and angular distance to jet axis of constituent i), constitute an intriguing starting point. The parameters $\kappa \geq 0$ and $\beta \geq 0$ regulate the energy and angular weighting respectively. Multiplicity ($\kappa = 0$, $\beta = 0$), width ($\kappa = 1$, $\beta = 1$), mass ($\kappa = 1$, $\beta = 2$), p_T ($\kappa = 0$, $\beta = 2$) and Les Houches Angularity ($\kappa = 1$, $\beta = 0.5$) are the most common examples. Specifically, this last quantity offers an incredible opportunity to study different PS algorithms between generators. The FCC-ee would be crucial in addressing such differences in PS and hadronization modelling. For example, the gluon radiation patterns could be studied exploiting the expected $10^6 e^+e^- \rightarrow ZH (\rightarrow gg)$ events, together with the $e^+e^- \rightarrow Z \rightarrow b\bar{b}g$ events (assuming that b-jets are tagged with high efficiency. Therefore, these studies conducted at the FCC-ee would lead directly to improved MC tuning, together with a better understanding of NP QCD.

4. Quark-gluon tagging

One of the most exciting (but challenging) prospects in pp collisions is light-quark gluon discrimination. Being able to efficiently identify the flavour of the parton which initiates the jet is critical for the success of the physics program of future EW factories [5]. An accurate light quark-gluon discrimination would allow precise Beyond the Standard Model (BSM) searches for signals without leptons, b- or top-quarks, as well as would produce an enhancement of light quark-rich signals i.e. $t\bar{t}H$ or pure EW $W/Z + jets$.

Recently, a new generation of advanced machine learning based jet tagging algorithms has been developed [6–9], bringing almost 2 orders of magnitude improvement in background rejection when comparing to the traditional approaches in Heavy Flavour and gluon tagging. In particular, within
the context of the FCC-ee, the ParticleNetIdea [10] has been developed, and Figure 3 shows its high performances in discriminating light quark jets from s-quark (left) and gluons (right).

5. Conclusion

To fully exploit present and future collider programs, a precise understanding of both perturbative and NP QCD is highly needed. At the FCC-ee, a plethora of unique QCD studies would be possible. Among them, the most relevant are the extraction of the strong coupling constant α_S from jet event shapes and hadronic $\tau/W/Z$ decays with a per mille level accuracy and jet substructure studies, which could greatly improve our current knowledge of parton shower and hadronization. Thanks to the large pure quark/gluon samples in the extremely clean environment of a lepton collider, precise quark-gluon discrimination studies would be carried out with a much better discriminating power than the one in $p\bar{p}/pp$ collisions. Finally, due to the large number of expected $e^+e^- \to W^+W^-$, the huge statistics ($\times 10^4$ LEP) could be exploited to measure the W boson mass, m_W, both (semi-)leptonically and hadronically to constrain colour reconnection at the 1% level or below.

References

[1] FCC Collaboration, [arXiv:2203.08310 [physics.acc-ph]].

[2] G. Dissertori et al., JHEP 08 (2009), 036 doi:10.1088/1126-6708/2009/08/036 [arXiv:0906.3436 [hep-ph]].

[3] D. d’Enterria and V. Jacobsen, [arXiv:2005.04545 [hep-ph]].

[4] A. J. Larkoski et al., JHEP 11 (2014), 129 doi:10.1007/JHEP11(2014)129 [arXiv:1408.3122 [hep-ph]].

[5] P. Azzi et al., Eur. Phys. J. Plus 137 (2022) no.1, 39 doi:10.1140/epjp/s13360-021-02223-z [arXiv:2107.05003 [hep-ex]].

[6] ATLAS Collaboration, JINST 11 (2016) no.04, P04008 doi:10.1088/1748-0221/11/04/P04008 [arXiv:1512.01094 [hep-ex]].

[7] CMS Collaboration, JINST 15 (2020) no.06, P06005 doi:10.1088/1748-0221/15/06/P06005 [arXiv:2004.08262 [hep-ex]].

[8] ATLAS Collaboration, ATL-PHYS-PUB-2017-003.

[9] E. Bols et al., JINST 15 (2020) no.12, P12012 doi:10.1088/1748-0221/15/12/P12012 [arXiv:2008.10519 [hep-ex]].

[10] F. Bedeschi et al., Eur. Phys. J. C 82 (2022) no.7, 646 doi:10.1140/epjc/s10052-022-10609-1 [arXiv:2202.03285 [hep-ex]].