A nonuniform Littlewood-Offord inequality for all norms

Kyle Luh * David Xiang †

September 3, 2020

Abstract

Let \(v_i \) be vectors in \(\mathbb{R}^d \) and \(\{\varepsilon_i\} \) be independent Rademacher random variables. Then the Littlewood-Offord problem entails finding the best upper bound for \(\sup_{x \in \mathbb{R}^d} \mathbb{P}(\sum \varepsilon_i v_i = x) \).

Generalizing the uniform bounds of Littlewood-Offord, Erdős and Kleitman, a recent result of Dzindzalieta and Juškevičius provides a non-uniform bound that is optimal in its dependence on \(\|x\|_2 \). In this short note, we provide a simple alternative proof of their result. Furthermore, our proof demonstrates that the bound applies to any norm on \(\mathbb{R}^d \), not just the \(\ell_2 \) norm. This resolves a conjecture of Dzindzalieta and Juškevičius.

1 Introduction

Let \(\{\varepsilon_k\}_{k=1}^n \) be independent Rademacher random variables (i.e. \(\mathbb{P}(\varepsilon_k = 1) = 1/2 \) and \(\mathbb{P}(\varepsilon_k = -1) = 1/2 \)). We let \(R_n \) denote the sum of these random variables. In their study of random polynomials, Littlewood and Offord [8] encountered the following problem. What is the best bound on \(\mathbb{P}(\sum_{i=1}^n a_i \varepsilon_i = x) \) with \(|a_i| \leq 1 \). Littlewood and Offord established that \(\max_x \mathbb{P}(\sum a_i \varepsilon_i = x) = O(\log n/n^{1/2}) \) for all \(a_i \) such that \(|a_i| \leq 1 \). [8]. With a short, insightful argument, Erdős [3] established the optimal bound

\[
\rho(a) := \max_x \mathbb{P}\left(\sum_{i=1}^n a_i \varepsilon_i = x \right) \leq \frac{(\lfloor n/2 \rfloor)^2}{2n} = O(n^{-1/2}).
\]

(1)

The results of Littlewood, Offord and Erdős attracted the attention of many researchers and numerous variants of the Littlewood-Offord problem have been proposed and investigated. Erdős and Moser showed that an improved bound held when all the \(a_i \) are distinct [4]. Later, Sárközy and Szemerédi obtained the optimal bound for distinct \(a_i \). Many more results were obtained when considering more complex arithmetic structure of the \(a_i \)'s [12 6 11]. In a different direction, Erdős conjectured that a result analogous to (1) should hold in higher dimensions. This extension was non-trivial and it took two decades before such a result was verified by Kleitman [7].

Theorem 1.1. Let \(d \in \mathbb{N} \) and \(v_i \in \mathbb{R}^d \) with \(\|v_i\|_2 \leq 1 \) and \(v_i \neq 0 \). Then,

\[
\rho(v_1, \ldots, v_n) := \sup_{x \in \mathbb{R}^d} \mathbb{P}\left(\sum_{i=1}^n \varepsilon_i v_i = x \right) \leq \frac{(\lfloor n/2 \rfloor)^2}{2n}.
\]

*Department of Mathematics, University of Colorado Boulder. Email: kyle.luh@colorado.edu.
†Harvard University. Email: davidxiang@college.harvard.edu.
Inspired by the inverse problems of additive combinatorics, Tao and Vu began a line of work known as inverse Littlewood-Offord theorems which attempt to explain when \(\rho(a) \) is large \[13\]. Essentially, they showed that \(\rho(a) \) is large only when the entries of \(a \) reside in a generalized arithmetic progression. Many results in this direction followed and culminated in the optimal inverse Littlewood-Offord theorems of Nguyen and Vu \[10\]. This theory and its variants played an important role in estimating the singularity probability of random matrices (see \[13, 11, 5, 15\] and the references therein).

In another vein of work, Tiep and Vu \[14\] obtained a Littlewood-Offord-type inequality in the setting of non-commutative groups and Juškevičius and Šematulskis obtained optimal bounds for arbitrary groups. Bandeira, Ferber and Kwan proposed a new perspective and investigated a resilience version of the Littlewood-Offord problem, namely the number of coefficients in \(a \) that an adversary can change to force \(\rho(a) \) to be large \[1\].

Recently, Dzindzalieta and Juškevičius established a non-uniform Littlewood-Offord inequality in all dimensions. The bound is non-uniform in that it incorporates information about the vector \(x \).

Theorem 1.2. Let \(\mathbf{v}_i \in \mathbb{R}^d \) with \(\|\mathbf{v}_i\|_2 \leq 1 \) and \(\mathbf{v}_i \neq 0 \) for all \(i \in [n] \). Then,

\[
P\left(\sum_{i=1}^{n} \varepsilon_i \mathbf{v}_i = \mathbf{x} \right) \leq P(R_n = k + \delta_{n,k}) = \frac{\left\lceil \frac{n+k}{2} \right\rceil}{2^n}.
\]

where \(k = \lceil \|x\|_2 \rceil \) and \(\delta_{n,k} \) is defined as follows:

\[
\delta_{n,k} = \begin{cases}
1 & \text{if } n + k \text{ is even} \\
0 & \text{otherwise}
\end{cases}
\]

This result is optimal in \(n \) and \(\|x\|_2 \) as can be seen by setting \(\mathbf{v}_i = (\frac{\|x\|_2}{k + \delta_{n,k}}, 0, \ldots, 0) \). In \[2\], it was conjectured that the result should hold for any norm on \(\mathbb{R}^d \), not just the \(\ell_2 \) norm.

Conjecture 1.3. \[2, Conjecture 2\] Let \(\|\cdot\| \) be an arbitrary norm on \(\mathbb{R}^d \). Let \(\mathbf{v}_i \in \mathbb{R}^d \) be such that \(\|\mathbf{v}_i\| \leq 1 \) and \(\mathbf{v}_i \neq 0 \) for all \(i \in [n] \). Then,

\[
P\left(\sum \varepsilon_i \mathbf{v}_i = \mathbf{x} \right) \leq P(R_n = k + \delta_{n,k}).
\]

In \[2\], they used a rotation argument to reduce the multi-dimensional case to the one dimensional case. However, their rotation only preserves the \(\ell_2 \) norm and so their argument only applies to this norm. In this short note, we provide an alternate proof of the main result in \[2\] and prove Conjecture \[1.3\].

Theorem 1.4. Let \(\|\cdot\| \) be an arbitrary norm on \(\mathbb{R}^d \). Let \(\mathbf{v}_i \in \mathbb{R}^d \) be such that \(\|\mathbf{v}_i\| \leq 1 \) and \(\mathbf{v}_i \neq 0 \) for all \(i \in [n] \). Then,

\[
P\left(\sum \varepsilon_i \mathbf{v}_i = \mathbf{x} \right) \leq P(R_n = k + \delta_{n,k}).
\]

where \(k = \lceil \|x\| \rceil \) and \(\delta_{n,k} \) is defined as follows:

\[
\delta_{n,k} = \begin{cases}
0 & \text{if } n + k \text{ is even} \\
1 & \text{otherwise}
\end{cases}
\]
Acknowledgements

We thank Victor Reis and Aleksei Kulikov for pointing out an error in our first draft. We also thank Aleksei for suggesting the perturbation argument at the end of the note.

2 Auxiliary Results

We will make use of the following one dimensional non-uniform Littlewood-Offord bound.

Proposition 2.1. [2] For non-zero \(a_i \in \mathbb{R} \) such that \(|a_i| \leq 1 \), we have that

\[
\mathbb{P}(\sum_{i=1}^{n} \epsilon_i a_i = x) \leq \mathbb{P}(R_n = k + \delta_{n,k})
\]

where \(k = \lceil |x| \rceil \).

We will also utilize the basic theory of dual norms.

Definition 2.2. Let \(\| \cdot \| \) be a norm on \(\mathbb{R}^d \). Let \(\| \cdot \|_* \) denote the dual norm where for any \(u \in \mathbb{R}^d \),

\[
\| u \|_* = \sup\{ \langle u, x \rangle : \| x \| \leq 1 \}
\]

where \(\langle \cdot, \cdot \rangle \) is the standard inner product on \(\mathbb{R}^d \).

We then have a basic Cauchy-Schwarz type inequality. We include the elementary proof for the reader’s convenience.

Lemma 2.3. Let \(\| \cdot \| \) be a norm on \(\mathbb{R}^d \) and \(\| \cdot \|_* \) be its dual. Then, for \(x, y \in \mathbb{R}^d \),

\[
|\langle x, y \rangle| \leq \| x \| \| y \|_*
\]

Proof. Let \(v = x/\| x \| \). Then we have

\[
\langle x, y \rangle = \| x \| \langle v, y \rangle \leq \| x \| \| y \|_*.
\]

To include the absolute value, we apply the same argument to \(-x \). \qed

Additionally, we will make use of the standard fact that in finite-dimensional spaces, the double dual norm is the same as the original norm.

Lemma 2.4. (e.g. [3, Theorem 1.11.9]) Let \(\| \cdot \| \) be a norm on \(\mathbb{R}^d \). Then, for \(x \in \mathbb{R}^d \),

\[
\| x \| = \| x \|_{**}.
\]
3 Proof of Theorem 1.4

Proof. For any $y \in \mathbb{R}^d$, we have that

$$P \left(\sum_{i=1}^{n} \varepsilon_i v_i = x \right) \leq P \left(\left\langle \sum_{i=1}^{n} \varepsilon_i v_i, y \right\rangle = \langle x, y \rangle \right)$$

In particular, if we let $y = \arg\max \|u\| \leq 1 \langle x, u \rangle$, we can conclude that

$$P \left(\sum_{i=1}^{n} \varepsilon_i v_i = x \right) \leq P \left(\left\langle \sum_{i=1}^{n} \varepsilon_i v_i, y \right\rangle = \langle x, y \rangle \right) = P \left(\sum_{i=1}^{n} \langle v_i, y \rangle \varepsilon_i = \|x\|_* \right).$$

Since $\|v\| \leq 1$ by assumption, Lemma 2.3 implies that

$$|\langle v_i, y \rangle| \leq \|v\| \|y\|_* \leq 1.$$

Therefore, we can apply Proposition 2.1 so

$$P \left(\sum_{i=1}^{n} \varepsilon_i v_i = x \right) \leq P(R_n = k + \delta_{n,k})$$

where $k = \lceil \|x\|_* \rceil = \lceil \|x\| \rceil$. This final equality follows from Lemma 2.4. In our application of Proposition 2.1, we implicitly assumed that $\langle v_i, y \rangle \neq 0$. To ensure this, we can simply choose a small perturbation of y such that $\lceil \langle y, x \rangle \rceil = \lceil \|x\|_* \rceil$.

References

[1] A. S. Bandeira, A. Ferber, and M. Kwan. Resilience for the Littlewood-Offord problem. *Adv. Math.*, 319:292–312, 2017.

[2] D. Dzindzalieta and T. Juškevičius. A non-uniform Littlewood-Offord inequality. *Discrete Math.*, 343(7):111891, 5, 2020.

[3] P. Erdős. On a lemma of Littlewood and Offord. *Bull. Amer. Math. Soc.*, 51:898–902, 1945.

[4] P. Erdos and L. Moser. Elementary Problems and Solutions: Solutions: E736. *Amer. Math. Monthly*, 54(4):229–230, 1947.

[5] A. Ferber, V. Jain, K. Luh, and W. Samotij. On the counting problem in inverse littlewood–offord theory. *arXiv preprint arXiv:1904.10425*, 2019.

[6] G. Halász. Estimates for the concentration function of combinatorial number theory and probability. *Period. Math. Hungar.*, 8(3-4):197–211, 1977.
[7] D. J. Kleitman. On a combinatorial conjecture of Erdős. *Journal of Combinatorial Theory*, 1(2):209–214, 1966.

[8] J. E. Littlewood and A. C. Offord. On the number of real roots of a random algebraic equation. III. *Rec. Math. [Mat. Sbornik] N.S.*, 12(54):277–286, 1943.

[9] R. E. Megginson. *An introduction to Banach space theory*, volume 183. Springer Science & Business Media, 2012.

[10] H. Nguyen and V. Vu. Optimal inverse Littlewood-Offord theorems. *Adv. Math.*, 226(6):5298–5319, 2011.

[11] M. Rudelson and R. Vershynin. The Littlewood-Offord problem and invertibility of random matrices. *Adv. Math.*, 218(2):600–633, 2008.

[12] R. P. Stanley. Weyl groups, the hard Lefschetz theorem, and the Sperner property. *SIAM J. Algebraic Discrete Methods*, 1(2):168–184, 1980.

[13] T. Tao and V. H. Vu. Inverse Littlewood-Offord theorems and the condition number of random discrete matrices. *Ann. of Math. (2)*, 169(2):595–632, 2009.

[14] P. H. Tiep and V. H. Vu. Non-abelian Littlewood-Offord inequalities. *Adv. Math.*, 302:1233–1250, 2016.

[15] K. Tikhomirov. Singularity of random Bernoulli matrices. *Ann. of Math. (2)*, 191(2):593–634, 2020.