Nonlinear Electronic Density Response in Warm Dense Matter

Tobias Dornheim, Jan Vorberger, and Michael Bonitz

1Center for Advanced Systems Understanding (CASUS), Göttingen, Germany
2Helmholtz-Zentrum Dresden-Rossendorf, Bautzner Landstrasse 400, D-01328 Dresden, Germany
3Institut für Theoretische Physik und Astrophysik, Christian-Albrechts-Universität zu Kiel, Leibnizstraße 15, D-24098 Kiel, Germany

Warm dense matter (WDM)—an exotic state with high temperatures and densities that occurs e.g. in astrophysical objects—constitutes one of the most active fields in plasma physics and materials science. These conditions can be realized in the lab by shock compression or laser excitation, and the most accurate experimental diagnostics is achieved with lasers and free electron lasers which is theoretically modeled using linear response theory. Here, we present first ab initio path integral Monte Carlo results for the nonlinear density response of correlated electrons in WDM and show that for many situations of experimental relevance nonlinear effects cannot be neglected.

Warm dense matter (WDM) is an exotic state with extreme densities \(r_s = \rho / a_B \sim 1 \) with \(\rho \) and \(a_B \) being the average interparticle distance and first Bohr radius, and high temperatures \(\theta = k_B T / E_F \sim 1 \) with \(T \) and \(E_F \) being the temperature and Fermi energy) that occurs, e.g., in astrophysical objects \([1-4]\) and laser-excited solids \([5,6]\), and on the pathway towards inertial confinement fusion \([7]\). Consequently, WDM has emerged as one of the most active frontiers in plasma physics and materials science \([8-10]\), and WDM conditions are routinely realized in experiments in large research facilities around the globe (e.g., NIF, SLAC and the European XFEL), see Refs. \([11-13]\) for review articles.

On the other hand, the theoretical description of WDM constitutes a formidable challenge \([14, 15]\) due to the complicated interplay of 1) Coulomb coupling, 2) thermal excitations, and 3) electronic quantum degeneracy effects. Moreover, the bulk of WDM theory assumes a weak response of the electrons to an external perturbation, i.e., they rely on linear response theory (LRT). This assumption enters, for example, in the interpretation of XRTS experiments \([9, 16]\), the characterization of the stopping power in WDM \([17]\), the construction of effective potentials \([18-20]\), density functional theory (DFT) calculations \([21, 22]\), and the computation of energy relaxation rates \([6, 23, 24]\). Consequently, numerous works have been devoted to the description of the density response of electrons both in the ground state \([25-34]\) and at finite temperature \([35-43]\). These efforts have culminated in the recent machine-learning representation \([44]\) of the static electronic density response that is based on ab initio path integral Monte Carlo (PIMC) simulations \([45-47]\) and covers the entire WDM regime. Moreover, even the dynamic density response can be computed from PIMC simulations \([48, 49]\), and the reported negative dispersion relation of a uniform electron gas (UEG) constitutes an active topic of investigation.

On the other hand, very little is known about the density response of correlated electrons beyond the linear regime. In particular, it is unclear up to which perturbation strength LRT remains accurate. This question becomes increasingly urgent, as free electron lasers become more powerful and peak intensities of up to \(I \sim 10^{22}\text{W/cm}^2 \) \([50]\) have been reported. Furthermore, intense VUV lasers are used to probe WDM \([51]\). A particular promising tool are THz lasers \([52]\) as they allow for probing the low-frequency end of the density response, short pulse characterization, and streaking \([53-55]\). Yet, THz field applications might require in many cases a theoretical description beyond LRT, as we indicate below.

In this work, we go beyond linear response theory by carrying out extensive PIMC simulations of a harmonically perturbed electron gas \([41, 42]\) (cf. Eq. (1) below) in WDM conditions. This allows us to measure the actual density response of the electrons without any a-priori assumptions (including the fluctuation dissipation theorem) and, thus, to unambiguously characterize the validity range of LRT. In addition, going beyond the linear regime allows us to gauge the systematic errors of LRT as a function of perturbation strength, and to report the first results for the cubic response function \(\chi_3(q) \) over the entire relevant wave number range for different densities and temperatures including all exchange–correlation effects. Therefore, our results provide the basis for a generalized theory of the electronic density response beyond LRT, extending earlier work for classical plasmas \([56, 57]\) and moderately coupled quantum plasmas \([58, 59]\).

Our investigation of the nonlinear density response of electrons in WDM should be relevant for many other fields, and spark similar investigations in other domains as we note that LRT is one of the most successful concepts in physics \([60, 61]\). It is of paramount importance in many fields, such as for describing phonons in solid state physics \([62, 63]\), excitations in systems of ultracold atoms \([64, 65]\), and screening or quasiparticle excitations in plasmas \([66, 67]\). Moreover, it has allowed for profound physical insights into, e.g., superfluidity \([65, 68]\), collective excitations \([25, 69]\), and quantum dynamics \([21, 70]\).

All PIMC data are available online \([71]\) and can be used to benchmark theoretical models and approximate simulation techniques like DFT.
Results. We simulate a harmonically perturbed electron gas governed by the Hamiltonian (we assume Hartree atomic units throughout this work)

$$\hat{H} = \hat{H}_{\text{UEG}} + 2A \sum_{k=1}^{N} \cos(\hat{r}_k \cdot \hat{q}) ,$$

(1)

with \hat{H}_{UEG} being the usual (unperturbed) UEG Hamiltonian [47, 61, 72], A being the perturbation amplitude, and the wave vector $\hat{q} = 2\pi/L(n_x, n_y, n_z)^T$ (with $n_i \in \mathbb{Z}$, and L being the length of the simulation box). Note that we use a canonical adaption [73] of the worm algorithm by Boninsegni et al. [74, 75] without any assumptions on the nodal structure of the thermal density matrix. Therefore, our simulations are computationally involved due to the fermion sign problem [76, 77], but are exact within the given statistical uncertainty.

To measure the density response, we compute the induced density

$$\rho(\mathbf{q}, A) := \langle \hat{\rho}_\mathbf{q} \rangle_A = \frac{1}{V} \left\langle \sum_{k=1}^{N} e^{-i\mathbf{q} \cdot \hat{r}_k} \right\rangle_A ,$$

(2)

where $\langle \ldots \rangle_A$ indicates the expectation value computed from Eq. (1). The PIMC results for Eq. (2) are shown in Fig. 1a) as the green crosses for the electron gas with a metallic density ($\nu_s = 2$) at the Fermi temperature, $\theta = 1$, for a wave number of $q \approx 0.84q_F$. For small A, LRT is accurate and it holds $\rho(\mathbf{q}, A) = \chi(\mathbf{q})A$, and the density response function $\chi(\mathbf{q})$ does not depend on A. In this context, we mention that the linear response function can be computed from a simulation of the unperturbed UEG via the imaginary-time version of the fluctuation–dissipation theorem, which states that

$$\chi(\mathbf{q}) = -n \int_{0}^{\beta} d\tau F(q, \tau) ,$$

(3)

with $F(q, \tau)$ being the usual intermediate scattering function [9] evaluated at an imaginary time argument $\tau \in [0, \beta]$, see Ref. [44] for details. The LRT result for ρ as obtained from Eq. (3) is depicted by the solid red line and is in excellent agreement to the PIMC data for $A \lesssim 0.15$. This can be seen particularly well in Fig. 1b), where the black squares correspond to the relative deviation between the PIMC data and LRT. We note that LRT systematically overestimates the density response, and the deviation to LRT appears to be parabolic in the depicted A-range.

Indeed, it is well known [31, 32] that the first term beyond $\chi(q)$ is cubic in A and can be obtained by fitting the PIMC data to

$$\rho(\mathbf{q}, A) = \chi_1(q)A + \chi_3(q)A^3 ,$$

(4)

where $\chi_1(q)$ and $\chi_3(q)$ are the free parameters. The results for Eq. (4) are included in Fig. 1a) as the dashed blue curve, and exhibit a significantly improved agreement with the PIMC data as compared to LRT. The vertical dashed grey line corresponds to the maximum A-value that has been included into the fit, but Eq. (4) remains accurate for significantly larger perturbation strengths, see also the blue diamonds in panel b). For completeness, we mention that it is, in principle, redundant to obtain $\chi_1(q)$ from the PIMC data, as it is already known from Eq. (3). On the other hand, comparing the two allows to check the consistency of our approach, and the two independent estimations of the LRT function are in perfect agreement with an uncertainty interval of 0.1%. Indeed, we use a canonical adaption [73] of the worm algorithm by Boninsegni et al. [74, 75] without any assumptions on the nodal structure of the thermal density matrix. Therefore, our simulations are computationally involved due to the fermion sign problem [76, 77], but are exact within the given statistical uncertainty.

Let us next investigate the dependence of the response function of warm dense electrons on the wave number q. This is shown in Fig. 2a) where the top and bottom half correspond to the cubic and linear response, respectively. The red symbols correspond to the usual LRT function computed from Eq. (3) for $N = 14$ (diamonds) and $N = 20$ (stars), and the dashed red line to $\chi(q)$ computed in the thermodynamic limit ($N \to \infty$) from the neural-net representation given in Ref. [44]. We note that they are in good agreement, as finite-size effects are small in this regime [44]. The black and blue symbols have been obtained from our new PIMC simulations of the perturbed system as

$$\chi(\mathbf{q}) = \frac{\rho(\mathbf{q}, A)}{A}$$

(5)
such that this pseudo response function converges to LRT in the limit of small perturbations, \(\lim_{A \to 0} \chi(q, A) = \chi(q) \). For \(A = 0.2 \) (black symbols), Eq. (5) is in good agreement to the LRT data both for small and large \(q \), but systematically deviates around \(q \sim q_F \). For \(A = 0.5 \) (blue symbols), the pseudo response function systematically underestimates the density response over the entire depicted \(q \)-range, and the discrepancy is again most pronounced for intermediate wave numbers, with a maximum deviation of \(\sim 20\% \). To more systematically investigate this trend, we have performed extensive \(A \)-scans such as depicted in Fig. 1 for different \(q \)-values over the entire relevant wave number range [71]. This has allowed us to obtain the first results for the cubic response function \(\chi_3(q) \), which are shown in the top half of Fig. 2a) as the green data points. As a side note, we mention that a single \(\chi_3(q) \) point requires \(10 \sim 15 \) independent PIMC simulations of Eq. (1) with different \(A \) values for each wave number, which results in a total computation cost of \(O \left(10^7 \right) \) CPU hours.

Overall, \(\chi_3(q) \) qualitatively somewhat mirrors \(\chi(q) \), although with some pronounced differences. First and foremost, we find that no finite-size effects can be resolved within the given error bars, and the results for \(N = 14 \) and \(N = 20 \) exhibit a smooth progression. The main difference is that they are available at different \(q \)-points, which is a direct consequence of the momentum quantization in the finite simulation cell, see, e.g., Refs. [78, 79]. Moreover, \(\chi_3(q) \) always has the opposite sign of \(\chi(q) \), as the system cannot react arbitrarily strong to the perturbation, and the response eventually saturates. While both the linear and the cubic response function vanish in the large- and small-\(q \) limits, this happens significantly sooner for the latter function. Heuristically, this can be understood as follows: for large \(q \)-values, only single-particle effects contribute to the response, the system as a whole remains hardly affected, and LRT is sufficient; similarly, the response is suppressed by the perfect screening [80] in the small-\(q \) limit. Lastly, we find that the maximum in \(\chi_3(q) \) appears to be slightly shifted to larger \(q \)-values compared to \(\chi(q) \), see also panel b) for the same trend at \(r_s = 6 \).

In summary, our results predict that nonlinear effects in the electronic density response manifest in an effectively damped response function [cf. the blue symbols in Fig. 2a)], with a maximum that is shifted to smaller wave numbers.

Let us next investigate the dependence of the cubic response on the density parameter \(r_s \). To this end, we repeat our previous study for \(r_s = 6 \), and the results are shown in Fig. 2b) for \(\theta = 1 \). While such low densities are not typical for WDM applications, they can be realized experimentally in hydrogen jets [51] and evaporation experiments, e.g., at the Sandia Z-machine [81–84]. On the other hand, these conditions are highly interesting from a theoretical point of view, as electronic exchange–correlation effects are even more important due to the increased coupling strength [47, 85, 86].

First and foremost, we find that the nonlinear behaviour of the density response appears for significantly smaller perturbation amplitudes as compared to \(r_s = 2 \), which is due to the different energy scales in the system [87]. For example, for \(A = 0.1 \) the actual response (blue symbols) is suppressed by around 30\%, whereas
for low densities. On the other hand, intensities of up to $I = 10^{22} \text{W/cm}^2$ have been reported recently by employing the novel seeding technique [50], which results in $A \sim 2$ and clearly violates the boundaries of LRT for both for $r_s = 2$ and $r_s = 6$. Even current VUV lasers like Flash are capable to reach the nonlinear regime [51, 71]. Another application of our findings concerns the experimental probing of the low-frequency response of WDM using THz lasers [52]. For example, the recently reported setup with an intensity of 600kV/cm at around 1 THz leads to a perturbation amplitude of $A = 0.29$ Ha, such that a thorough theoretical interpretation of a corresponding scattering signal would most likely require to take into account scattering effects.

Summary. We have carried out extensive *ab initio* PIMC simulations of the harmonically perturbed electron gas. This has allowed us to 1) unambiguously characterize the validity range of LRT and 2) to obtain the first results for the cubic response function $\chi_3(q)$ of the warm dense electron gas, including all exchange–correlation effects. Firstly, we have found that including $\chi_3(q)$ significantly improves the accuracy of the density response function for larger perturbation amplitudes. Moreover, nonlinear effects are particularly important for intermediate wave numbers $q \sim q_F$, whereas $\chi_3(q)$ vanishes both in the small- and large-q regimes. Regarding physical parameters, we have found that nonlinear effects become more important at lower densities due to the intrinsic energy scale of the system. This makes materials of relatively low density a highly interesting laboratory to study the interplay of nonlinearity with electronic exchange–correlation effects, and a challenging benchmark for theory.

In addition, we have found that nonlinear effects are severely affected by the electronic temperature and vanish upon increasing θ. While our current simulations are limited to temperatures down to the Fermi temperature ($\theta = 1$), this is a strong indication that nonlinear effects might be even more important for lower temperatures $\theta = 0.1...0.5$, where many WDM experiments are located.

Our findings are particularly relevant for state-of-the-art WDM experiments with intense free electron lasers in the x-ray or VUV regime, and for low-frequency probing in the THz regime, where the diagnostics methods rely on theory input for the response functions [50–52]. Finally, our results will also be important for nonlinear optical diagnostics such as Raman or four-wave mixing spectroscopy, e.g. [88–90], or THz streaking [91] that could provide additional information on correlation effects in warm dense matter.

All PIMC data are available online [71] and can be used to benchmark approximate theories like DFT. Moreover, our new data are exact within the given confidence interval and thus provide the basis for a more general theory of the electronic density response beyond LRT thus further completing our understanding of the electron gas as...
a fundamental model system [47, 92].

ACKNOWLEDGMENTS

We acknowledge stimulating discussions with Richard Pausch and Dominik Kraus, and helpful comments by Michael Bussmann. This work was partly funded by the Center of Advanced Systems Understanding (CASUS) which is financed by Germany’s Federal Ministry of Education and Research (BMBF) and by the Saxon Ministry for Science and Art (SMWK) with tax funds on the basis of the budget approved by the Saxon State Parliament, and by the Deutsche Forschungsgemeinschaft (DFG) via project BO1366/13. The PIMC calculations were carried out at the Norddeutscher Verbund für Hoch- und Höchstleistungsrechnen (HLRN) under grant shp00015, and by the Deutsche Forschungsgemeinschaft (DFG) via the ion stopping models near the bragg peak in highly ionized systems at the european xfel,” Applied Sciences 7 (2017), 10.3390/app7060592.

[10] K. Falk, “Experimental methods for warm dense matter research,” High Power Laser Sci. Eng 6, 659 (2018).

[11] E. I. Moses, R. N. Boyd, B. A. Remington, C. J. Keane, and R. Al-Ayat, “The national ignition facility: Ushering in a new age for high energy density science,” Physics of Plasmas 16, 041006 (2009), https://doi.org/10.1063/1.3116505.

[12] Christoph Bostedt, Sébastien Boutet, David M. Fritz, Zhirong Huang, Hae Ja Lee, Henrik T. Lemke, Aymeric Robert, William F. Schlott, Joshua J. Turner, and Garth J. Williams, “Linac coherent light source: The first five years,” Rev. Mod. Phys. 88, 015007 (2016).

[13] Thomas Tschentscher, Christian Bressler, Jan Grnert, Anders Madsen, Adrian P. Marcuso, Michael Meyer, Andreas Scherz, Harald Sinn, and Ulf Zastrau, “Photon beam transport and scientific instruments at the european xfel,” Applied Sciences 7 (2017), 10.3390/app7060592.

[14] M. Bonitz, T. Dornheim, Zh.A. Moldabekov, S. Zhang, P. Hamann, A. Filinov, K. Ramakrishna, and J. Vorberger, (Ab initio simulation of warm dense matter) arXiv:1912.09884.

[15] F. Graziani, M. P. Desjarlais, R. Redmer, and S. B. Trickey, eds., Frontiers and Challenges in Warm Dense Matter (Springer, International Publishing, 2014).

[16] D. Kraus, B. Bachmann, B. Barbrel, R. W. Falcone, L. B. Fletcher, S. Frydychy, E. J. Gamboa, M. Gauthier, D. O. Gerick, S. H. Glenzer, S. Göde, E. Granados, N. J. Hartley, J. Helfrich, H. J. Lee, B. Nagler, A. Ravanso, W. Schumaker, J. Vorberger, and T. Döppner, “Characterizing the ionization potential depression in dense carbon plasmas with high-precision spectrally resolved x-ray scattering,” Plasma Phys. Control Fusion 61, 014015 (2019).

[17] W. Cayzac, A. Frank, A. Oertner, V. Bagnoud, M. M. Basko, S. Bedachtr, C. Bläsner, A. Blazevic, S. Busold, O. Deppert, J. Ding, M. Ehret, P. Fiala, S. Frydychy, D. O. Gerick, L. Hallo, J. Helfrich, D. Jahn, E. Kjartansson, A. Knetisch, D. Kraus, G. Malka, N. W. Neumann, K. Pépines, D. Pepler, S. Sander, G. Schumann, Th. Schlegel, N. Schreiber, D. Schumacher, M. Seibert, An Tauschwitz, J. Vorberger, F. Wagner, S. Weih, Y. Zobus, and M. Roth, “Experimental discrimination of ion stopping models near the bragg peak in highly ionized matter,” Nature Communications 8, 15693 (2017).

[18] G. Senatore, S. Moroni, and D. M. Ceperley, “Local field factor and effective potentials in liquid metals,” J. Non-Cryst. Sol 205-207, 851–854 (1996).

[19] Zh.A. Moldabekov, S. Groth, T. Dornheim, H. Kähler, M. Bonitz, and T. S. Ramazanov, “Structural characteristics of strongly coupled ions in a dense quantum plasma,” Phys. Rev. E 98, 023207 (2018).

[20] Zh.A. Moldabekov, H. Kähler, T. Dornheim, S. Groth, M. Bonitz, and T. S. Ramazanov, “Dynamical structure factor of strongly coupled ions in a dense quantum plasma,” Phys. Rev. E 99, 053203 (2019).

[21] A. D. Baczewski, L. Shulenburger, M. P. Desjarlais, S. B. Hansen, and R. J. Magyar, “X-ray thomson scattering in warm dense matter without the chihara decomposition,” Phys. Rev. Lett 116, 115004 (2016).
[22] A. Pribram-Jones, P. E. Grabowski, and K. Burke, “Thermal density functional theory: Time-dependent linear response and approximate functionals from the fluctuation-dissipation theorem,” Phys. Rev. Lett 116, 233001 (2016).
[23] J. Vorberger, D. O. Gericke, Th. Bornath, and M. Schlanges, “Energy relaxation in dense, strongly coupled two-temperature plasmas,” Phys. Rev. E 81, 046401 (2010).
[24] L. X. Benedict, M. P. Surh, L. G. Stanton, C. R. Scullard, A. A. Correa, J. I. Castor, F. R. Graziani, L. A. Collins, O. Certk, J. D. Kress, and M. S. Murillo, “Molecular dynamics studies of electron-ion temperature equilibration in hydrogen plasmas within the coupled-mode regime,” Phys. Rev. E 95, 043202 (2017).
[25] D. Bohm and A. D. Pines, “Collective description of electron interactions: II. collective vs individual particle aspects of the interactions,” Phys. Rev. 85, 338 (1952).
[26] A. A. Kugler, “Theory of the local field correction in an electron gas,” J. Stat. Phys. 12, 35 (1975).
[27] K. S. Singwi, M. P. Tosi, R. H. Land, and A. Sjölander, “Electron correlations at metallic densities,” Phys. Rev 176, 589 (1968).
[28] P. Vashishta and K. S. Singwi, “Electron correlations at metallic densities v,” Phys. Rev. B 6, 875 (1972).
[29] A. Holas and S. Rahman, “Dynamic local-field factor of an electron liquid in the quantum versions of the Singwi-Tosi-Land-Sjölander and Vashishta-Singwi theories,” Phys. Rev. B 35, 2720 (1987).
[30] B. Farid, V. Heine, G. E. Engel, and I. J. Robertson, “Extremal properties of the harris-foulkes functional and an improved screening calculation for the electron gas,” Phys. Rev. B 48, 11602 (1993).
[31] S. Moroni, D. M. Ceperley, and G. Senatore, “Static response from quantum Monte Carlo calculations,” Phys. Rev. Lett 69, 1837 (1992).
[32] S. Moroni, D. M. Ceperley, and G. Senatore, “Static response and local field factor of the electron gas,” Phys. Rev. Lett 75, 689 (1995).
[33] C. Bowen, G. Sugiyama, and B. J. Alder, “Static dielectric function of the electron gas,” Phys. Rev. B 50, 14838 (1994).
[34] M. Corradini, R. Del Sole, G. Oudia, and M. Palummo, “Analytical expressions for the local-field factor $g(q)$ and the exchange-correlation kernel $K_{xc}(r)$ of the homogeneously charged electron gas,” Phys. Rev. B 57, 14569 (1998).
[35] S. Tanaka and S. Ichimaru, “Thermodynamics and correlation properties of finite-temperature electron liquids in the Singwi-Tosi-Land-Sjölander approximation,” J. Phys. Soc. Jpn 55, 2278–2289 (1986).
[36] H. K. Schweng and H. M. Böhm, “Finite-temperature electron correlations in the framework of a dynamic local-field correction,” Phys. Rev. B 48, 2037 (1993).
[37] F. Perrot and M. W. C. Dharma-wardana, “Spin-polarized electron liquid at arbitrary temperatures: Exchange-correlation energies, electron-distribution functions, and the static response functions,” Phys. Rev. B 62, 16536 (2000).
[38] W. Stolzmann and M. Rößler, “Static local-field corrected dielectric and thermodynamic functions,” Contrib. Plasma Phys 41, 203 (2001).
[39] T. Sjostrom and J. Duffy, “Uniform electron gas at finite temperatures,” Phys. Rev. B 88, 115123 (2013).
[40] S. Tanaka, “Correlational and thermodynamic properties of finite-temperature electron liquids in the hypernetted-chain approximation,” J. Chem. Phys 145, 214104 (2016).
[41] T. Dornheim, S. Groth, J. Vorberger, and M. Bonitz, “Permutation blocking path integral Monte Carlo approach to the static density response of the warm dense electron gas,” Phys. Rev. E 96, 023203 (2017).
[42] S. Groth, T. Dornheim, and M. Bonitz, “Configuration path integral Monte Carlo approach to the static density response of the warm dense electron gas,” J. Chem. Phys 147, 164108 (2017).
[43] P. Arora, K. Kumar, and R. K. Moudgil, “Spin-resolved correlations in the warm-dense homogeneous electron gas,” Eur. Phys. J. B 90, 76 (2017).
[44] T. Dornheim, J. Vorberger, S. Groth, N. Hoffmann, Zh.A. Moldabekov, and M. Bonitz, “The static local field correction of the warm dense electron gas: An ab initio path integral Monte Carlo study and machine learning representation,” J. Chem. Phys 151, 194104 (2019).
[45] T. Dornheim, T. Sjostrom, S. Tanaka, and J. Vorberger, “Strongly coupled electron liquid: ab initio path integral Monte Carlo simulations and dielectric theories,” Phys. Rev. B (in press) (2020).
[46] T. Dornheim, Zh.A. Moldabekov, J. Vorberger, and S. Groth, “Ab initio path integral Monte Carlo simulation of the uniform electron gas in the high energy density regime,” arXiv:2003:00858.
[47] T. Dornheim, S. Groth, and M. Bonitz, “The uniform electron gas at warm dense matter conditions,” Phys. Reports 744, 1–86 (2018).
[48] T. Dornheim, S. Groth, J. Vorberger, and M. Bonitz, “Ab initio path integral Monte Carlo results for the dynamic structure factor of correlated electrons: From the electron liquid to warm dense matter,” Phys. Rev. Lett. 121, 255001 (2018).
[49] S. Groth, T. Dornheim, and J. Vorberger, “Ab initio path integral Monte Carlo approach to the static and dynamic density response of the uniform electron gas,” Phys. Rev. B 99, 235122 (2019).
[50] L. B. Fletcher, H. J. Lee, T. Döpner, E. Galtier, B. Nagler, P. Heimann, C. Fortmann, S. LePape, T. Ma, M. Millot, A. Pak, D. Turnbull, D. A. Chapman, D. O. Gericke, J. Vorberger, T. White, G. Gregori, M. Wei, B. Barbrel, R. W. Falcone, C.-C. Kao, H. Nuhn, J. Welch, U. Zastrau, P. Neumayer, J. B. Hastings, and S. H. Glenzer, “Ultrabright x-ray laser scattering for dynamic warm dense matter physics,” Nature Photonics 9, 274–279 (2015).
[51] U. Zastrau, P. Sperling, M. Harmand, A. Becker, T. Bornath, R. Bredow, S. Dziarzhylski, T. Fennel, L. B. Fletcher, E. Forster, S. Gode, G. Gregori, V. Hilbert, D. Hochhaus, B. Holst, T. Laarmann, H. J. Lee, T. Ma, J. P. Mithen, R. Mitzner, C. D. Murphy, M. Nakatsutsumi, P. Neumayer, A. Przystawik, S. Roling, M. Schulz, B. Siemer, S. Skruszewicz, J. Tiggens, A. Przystawik, S. Toleikis, T. Tschentscher, T. White, M. Wöstmann, H. Zacharias, T. Doppner, S. H. Glenzer, and R. Redmer, “Resolving ultrafast heating of dense cryogenic hydrocarbon,” Phys. Rev. Lett 112, 105002 (2014).
[52] B. K. Ofori-Okai, M. C. Hoffmann, A. H. Reid, S. Edstrom, R. K. Jobe, R. K. Li, E. M. Mannebach, S. J. Park, W. Polzin, X. Shen, S. P. Weathersby, J. Yang, Q. Zheng, M. Zajac, A. M. Lindenberg, S. H. Glenzer, and X. J.
[91] B. Schütte, S. Bauch, U. Frühling, M. Wieland, M. Gensch, E. Plönjes, T. Gaumnitz, A. Azima, M. Bonitz, and M. Drescher, “Evidence for chirped auger-electron emission,” Phys. Rev. Lett 108, 253003 (2012).

[92] V. V. Karasiev, S. B. Trickey, and J. W. Dufty, “Status of free-energy representations for the homogeneous electron gas,” Phys. Rev. B 99, 195134 (2019).