Remote Power Side-Channel Attacks on CNN Accelerators in FPGAs

Shayan Moini, Shanquan Tian, Jakub Szefer, Daniel Holcomb, and Russell Tessier

Abstract—To lower cost and increase the utilization of Cloud FPGAs, researchers have recently been exploring the concept of multi-tenant FPGAs, where multiple independent users simultaneously share the same FPGA. Despite its benefits, multi-tenancy opens up the possibility of malicious users co-locating on the same FPGA as a victim user, and extracting sensitive information. This issue becomes especially serious when the user is running a machine learning algorithm that is processing sensitive or private information. To demonstrate the dangers, this paper presents the first remote, power-based side-channel attack on a deep neural network accelerator running in a variety of Xilinx FPGAs and also on Cloud FPGAs using Amazon Web Services (AWS) F1 instances. This work in particular shows how to remotely obtain voltage estimates as a deep neural network inference circuit executes, and how the information can be used to recover the inputs to the neural network. The attack is demonstrated with a binarized convolutional neural network used to recognize handwriting images from the MNIST handwritten digit database. With the use of precise time-to-digital converters for remote voltage estimation, the MNIST inputs can be successfully recovered with a maximum normalized cross-correlation of 84% between the input image and the recovered image on local FPGA boards and 77% on AWS F1 instances. The attack requires no physical access nor modifications to the FPGA hardware.

Index Terms—Remote Attacks, Deep Neural Networks, Convolutional Neural Networks, Side-channel Attacks, Power Attacks, Time-to-Digital Converters (TDC)

I. INTRODUCTION

Cloud FPGAs have recently emerged as an important computing paradigm where users can rent access to high-end FPGA resources on-demand from public cloud providers. Most major cloud providers now offer some form of remote, pay-per-use access to FPGAs [1], [2], [3], [4], [5]. Furthermore, recent proposals for multi-tenancy have the promise of increasing FPGA utilization, especially in data center settings, by fitting multiple users’ designs onto a single FPGA at the same time. A number of research projects [6], [7], [8], [9], [10], [11], [12], [13] have focused on exploring how to implement FPGA multi-tenancy. The sharing of an FPGA by many users, unfortunately, opens up multi-tenant FPGA platforms to many new, potential attacks in which a malicious user can be co-located next to a victim user.

Once co-located, a malicious user can try to learn information about the victim through a side channel. When the multi-tenant FPGAs are deployed in a remote data center, the malicious user is limited to only using attacks that do not require physical access. For example, previous work [14], [15], [16], [17], [18] has shown that crosstalk between long routing wires on an FPGA can be used to leak sensitive information from cryptographic circuits using remote attacks. Meanwhile, voltage and power-based attacks have been used to remotely extract encryption keys for both RSA [19] and AES [20] using circuits implemented on an FPGA by a malicious user.

The danger of such attacks becomes especially worrisome as there is more and more interest in the FPGA acceleration of machine learning for image recognition, or other tasks, where sensitive information is processed. Existing work on machine learning (ML) algorithm accelerators, and especially deep neural networks, using FPGAs [21], [22], [23], [24] has shown that these algorithms, when deployed on FPGAs, can significantly speed up the inference operations. Further, many cloud providers tout FPGAs as especially well-suited for the acceleration of ML workloads [25], [26]. However, today, there is lack of security considerations in the current deployment of deep neural networks in data centers, and existing research has not considered the potential impacts of multi-tenancy on security.

To show potential threats when machine learning accelerators are combined with multi-tenant FPGA deployment, this paper demonstrates the first, remote power-based side-channel attack on a binarized convolutional neural network (CNN) in an FPGA. In our attack, voltage fluctuations, caused by the changes in the power consumption of the convolution unit in the CNN are used to accurately reconstruct images that are input into the CNN accelerator during the inference operations. Being able to recover the images that are processed by the ML algorithm could reveal personal medical information (e.g. X-rays) or other sensitive imagery [27]. To highlight the dangers, this work shows how to recover such input images remotely, where an attacker uses a time-to-digital (TDC) converter as a remote power sensor in a multi-tenant FPGA setting. Outside of multi-tenant scenarios, the same attack could be used whenever the accelerator resides on an FPGA alongside untrusted 3rd-party IPs that might contain unknown sensing circuits.

Unlike previous attacks on machine learning accelerators on FPGAs [27], [28], [29], [30], our attack can be performed remotely with no physical hardware access by the attacker. We illustrate the details of our attack on the convolution unit of a CNN-based circuit that is used to recognize the handwriting images from the MNIST handwritten digit database [31]. Our attack and corresponding image recovery is successfully demonstrated on multiple generations of Xilinx FPGAs including...
A. Convolutional Neural Networks

Deep neural networks (DNNs) [36] are a class of artificial neural networks that use multiple layers. In a DNN, each layer is responsible for extracting relevant features, and the output of each layer is passed as the input to the next layer. DNNs combine feature extraction with the classification capability of classical neural networks to map input data to a set of predictions. DNNs can be used to perform, for example, image classification.

Convolutional neural networks [36] are a subset of DNNs that are mostly used for classifying multi-dimensional data (e.g., images or video). The main distinctive property of CNNs is the convolution layer, which implements feature extraction by performing a convolution operation between the high-dimensional input data (called input feature maps) and kernels (small matrices of parameters that are computed during the training phase) to generate the output of the layer (called output feature maps). As shown in Figure 1, the output feature maps of each layer are passed to the next layer as the input feature maps. Other layers in a typical CNN include a non-linear function (creating complex input-output mappings), pooling (reducing the dimensionality of input feature maps by choosing the largest value out of each window of each input feature map and discarding the rest), and fully-connected layers (where each element of the output feature map is calculated by point-wise multiplication between a whole input feature map and a kernel of the same size). Our attack targets the first convolution layer in a CNN, which processes the input images directly, and we show that during the processing of this first convolution layer, there is information leakage through voltage changes.

B. Binarized Neural Networks

Binarized neural networks (BNNs) [37] use aggressive quantization so that each element of the convolution kernel can be represented as either -1 or $+1$. This quantization helps reduce the memory bandwidth needed to load network parameters from off-chip memory during the execution of each layer and replaces multipliers with simple add and subtract operations. In BNNs, all convolution input feature maps and kernels are comprised of binary values except for the first input layer which generally receives its input feature maps as matrices of integer values, e.g., representing the pixels of input images.

For this work, we assume the input to the BNN is a grayscale image with each pixel being represented by an integer value. This image is the input feature map to the first convolution layer which convolves the input with $n \times n$ binary kernels. Each element of the convolution output (an output feature map) is calculated by multiplying a kernel with a $n \times n$ window of the input feature map and summing the resulting values. Sweeping an $n \times n$ kernel across the input feature map generates an output feature map. The convolution operation is followed by a maximum pooling operation which reduces the size of its input feature maps by choosing the largest value out of each $k \times k$ window of each input feature map and discarding the rest. The next layer, batch normalization, normalizes its input feature maps value by value. Here, the numbers are represented as fixed-point values between -1 and +1. The non-linear function layer truncates the output feature map values of the batch normalization layer into either -1 or +1 based on their sign. This process is replicated for other convolution steps with the exception that their input feature maps are the binary outputs of the previous non-linear function layer.

For this work, the BNN is pre-trained separately with the MNIST database on an Nvidia GTX 1080 GPU, and the derived parameters, including convolution kernel values, are used in the BNN accelerator on an FPGA. We used the Keras framework [38] to train the BNN. The trained network is used during the inference stage to classify the input images of digits into one of ten categories (0 to 9). The BNN contains two convolution layers and two fully connected layers. Convolution is performed with a standard 64 kernels per layer [38]. All convolution and fully-connected layers, except for the first layer, receive binary inputs, have 3×3 binary kernels (e.g. $n = 3$), and generate output feature maps in integer format. The first convolution layer receives the input image, a 28×28 pixel grayscale image of a number, as a matrix of integer values between 0 and 255 and performs the convolution operation with binary kernels. Each convolution layer is followed by a pooling layer, a batch normalization layer, and a non-linear function. Pooling is performed with a 2×2 window (e.g., $k = 2$). The non-linear function after each convolution layer is used to binarize its input feature map to be used in the next convolution (or fully-connected) layer. The output of the
TABLE I: Details of the trained BNN. The accuracy of the trained network with the MNIST test set is 98.24%.

Layer #	Layer Type	Input Size	Kernel Size
1	Convolution	28×28	3×3×64
2	Pooling	28×28×64	2×2
3	Batch norm	14×14×64	
4	Non-linear function	14×14×64	
5	Convolution	14×14×64	(3×3×64)×64
6	Batch norm	14×14×64	2×2
7	Batch norm	7×7×64	500×(7×7×64)
8	Non-linear function	7×7×64	
9	Fully-connected	7×7×64	
10	Batch norm	500	
11	Non-linear function	500	
12	Fully-connected	500	10×500
13	Batch norm	10	

network is a ten element array that shows the likelihood of the input image being each of the ten digits with the highest number being the predicted digit for the input image. Table I shows the details of the BNN architecture used in this work.

C. Attacks on DNN FPGA Accelerators

Several researchers [27], [28], [30], [29] have explored attacks on DNN accelerators on FPGAs. All of these approaches used physical access to the FPGA to collect needed information for the attacks. Meanwhile, we present the first, remote, power-based side channel that does not require physical access to FPGA supply voltage pins, uses on-chip voltage sensors to detect voltage fluctuations, and is demonstrated to work with four different FPGA boards.

Wei et al. [27] used power traces recovered from FPGA voltage supply pins to extract the input image data of a binarized convolutional neural network. An oscilloscope was used to measure the voltage drop across a 1Ω resistor placed on the power supply rail of a SAKURA-G board [39]. Their attack method relies on per-clock cycle power consumption of convolution operations. Dubey et al. [28] targeted an FPGA accelerator of a fully-connected BNN. They were able to successfully extract the parameter values of the model by finding the highest correlation of the model power consumption for a collection of known input values. Voltage traces gathered by an oscilloscope connected to the supply voltage pin of a Kintex-7 FPGA on a SAKURA-X board [40] were used to perform this attack.

Yoshida et al. [29] used FPGA side-channel electromagnetic leakage measurements to extract the kernel values of a multi-layer perceptron (MLP) accelerator in the presence of weight encryption. An external probe was used to collect these measurements. Hua et al. [30] extracted the structure of a convolutional neural network, including the size of the input feature map and kernels of each layer by studying the off-chip memory access patterns of the FPGA accelerator while the operations of each layer were performed. Their attack revealed the structure of neural networks in the presence of weight encryption.

D. Voltage Sensing Using TDCs

In FPGAs, small drops in supply voltage occur in the vicinity of power consumption due to both IR and $L\frac{di}{dt}$ drops in the power distribution network and the chip packaging [41]. Given that the propagation delay of combinational logic varies as a function of supply voltage, circuit delay in a specially designed sensor circuit can be used as a proxy for measuring the changes in the supply voltage. This approach is commonly used in voltage sensors based on ring oscillator (RO) [42] or TDC [20] circuits. ROs need long measurement periods for precision and are therefore unsuitable for side channels that rely on fast transients. Meanwhile, TDCs are often used to overcome the limitations of ring oscillator-based sensors [42]. In time-to-digital converters, each measurement reflects the delay of a circuit within a single clock cycle by observing how far through a tapped delay line a signal can travel during the cycle. This makes TDC sensors suitable for sensing short transient voltage fluctuations on the order of a single clock cycle. Because delay changes are only observable if they cause the signal to reach the next tap in the delay line, the precision of a TDC is limited by the delay between successive taps. As we show in Section III-B, following others who previously exploited TDC designs [42], [20], the high-speed carry logic in modern FPGAs makes a suitable delay line with taps that are on the order of 5-25 ps apart, depending on the FPGA technology and architecture.

III. DETAILS OF THE ATTACK

In this section, we provide an overview of our threat model. We then focus on the details of the attack and its implementation in a multi-tenant setting.

A. Threat Model

This work focuses on a multi-tenant FPGA scenario where the victim user is running a machine learning inference algorithm on a hardware module that is co-located on the same FPGA with the malicious user’s modules. The adversary simultaneously uses the FPGA platform without sharing logic or I/O resources with the victim. We assume that the attacker knows the structure of the BNN architecture that is used by the victim. The victim circuit’s input (e.g., the input image) is sent to the BNN accelerator in the FPGA in a secure manner (e.g., the input may be encrypted). The same input image may be sent by the victim to the FPGA multiple times, a common case in video processing. It is assumed that the adversary is not able to access the inputs. Hence the goal of the adversary is to learn the inputs. Further, the adversary is not able to learn the inputs through information leakage (e.g., crosstalk) on the input wires, which would make the attack trivial. The output is likewise assumed to be securely sent back to the user, and the adversary is not able to learn the output directly (if they did, they again would not need the attack).

In this work the focus is on using a TDC to measure voltage changes. The data from the TDC is used by the adversary to estimate the voltage drop across the FPGA power distribution network (PDN) during the execution of the convolution layer, as the BNN accelerator does the image classification. The
acquired voltage estimates serve as a side channel that can be used to extract the victim’s input image data. The recovered image approximates the input image by distinguishing between foreground and background pixels.

B. Attack Implementation

The attack implementation details are shown in Figure 2. In this setup, there is the victim circuit and attacker circuit co-located on same FPGA. To extract the input image from the BNN accelerator, the adversary focuses on the first convolution layer which directly processes the input image. The TDC outputs voltage estimates during each clock cycle of the interval when the BNN accelerator processes the first convolution layer. The estimates are measured using the TDC sensor.

In the first convolution layer, an image is convolved with multiple distinct kernels to generate multiple output feature maps. In our attack, we use a voltage estimate trace from the execution of the first kernel of the first convolutional layer for an input image. Since we assume that the same image is evaluated by the FPGA accelerator multiple times, multiple (N) similar traces are collected using the same input image. After collecting multiple traces, the adversary takes the mean of the data values in the traces to obtain a single average trace of the voltage estimates during the execution of the first kernel of the first convolution layer. A high-pass filter is then used to remove noise. Background and foreground pixels can then be distinguished by observing the different magnitudes of the voltage measurements. This information is represented in a histogram of instance counts of magnitude values in the filtered trace. Points in the histogram are used to label pixels as belonging to the image foreground or background based on the magnitude of their voltage measurement. An image denoising filter is applied to this preliminary recovered image to improve clarity. The result of the analysis is a reconstructed image that approximates the input image. The procedure is shown in Figure 3 and discussed in more detail in Section V.

The convolution operation can be represented as [27]:

\[
O_{x,y}^j = \sum_{i=1}^{M} \sum_{a=0}^{K_y-1} \sum_{b=0}^{K_x-1} \sum_{a,b} \omega_{a,b} \times I_{S_x+a,y+S_y+b}^i
\]

(1)

The \(O_{x,y}^j\) parameter represents the location (x,y) in the jth output feature map which is calculated by convolving a window (same size as the kernel) of the ith input feature map \(I_i\) and the corresponding kernel \(\omega_{x,y}\) and then adding the M results together where M equals the number of input feature maps. The \(S_x\) and \(S_y\) values represent the convolution step sizes which are equal to 1 in our BNN implementation. The \(K_x\) and \(K_y\) values represent kernel sizes in the x and y dimensions.

For the first convolution layer of a BNN trained on the MNIST handwritten digit database with a 28×28 grayscale image as the input and 64 kernels of size 3×3, Equation 1 can be simplified to:

\[
O_{x,y}^j = \sum_{a=0}^{2} \sum_{b=0}^{2} \omega_{a,b} \times I_{x+a,y+b} \quad j \in [1, 64]
\]

(2)

and represented by the operations shown in Figure 4.

The convolution unit uses a line buffer architecture to hold and provide data values to the convolution [27]. As shown by the line buffer at the right in Figure 5, the line buffer is arranged in three rows, each of which processes one line of the convolution operation. The line buffer is a shift register that receives one pixel from the input feature map (the image) per clock cycle and shifts its values to the right. The length of each row in the line buffer matches the length of the input feature map of the convolution operation (28 for the first layer in our implementation). The rightmost word of each row of the line buffer enters the next row from the left, and the rightmost word of the last row is discarded. The rightmost three words of each of the three rows of the line buffer constitute the image
window whose values are multiplied with values from the 3×3 kernel. Since binary kernels are used, each image pixel in the current image window is added to or subtracted from (based on a kernel value of -1 or +1) the other pixels in one clock cycle using a combinational adder tree. One output feature map value is generated every clock cycle.

An adversary can take advantage of the shared FPGA PDN to sense local supply voltage changes, which can reveal information about the per-cycle power consumption in the convolution unit. The power consumption is due in part to the switching activity in the BNN accelerator, including the convolution unit, which causes supply voltage to be correlated to the data processed (larger magnitude data values lead to increased switching). The small PDN fluctuations are reflected in the sampled values of the time-to-digital converter (TDC), and the TDC samples are then used to recover a facsimile of the input image. The 256-stage TDC contains an adjustable delay followed by a chain of fast fixed-purpose FPGA elements typically used to perform timing-critical carry operations in arithmetic circuits (Carry4 or Carry8 depending on FPGA family). TDC elements are manually placed in the FPGA for controlled and predictable delay that is matched to the clock frequency at which the TDC operates.

The TDC is activated by sending the rising edge of a clock through the adjustable delay and the carry chain to the flip-flops attached to the 256 stages of the carry logic. The Hamming weight of the sample indicates how far through the carry chain the rising edge has propagated by the time the next rising clock edge arrives. When the supply voltage drops, the propagation delay of the circuit increases, and the rising edge will have propagated through fewer carry stages before the next rising clock edge, and hence the sample captured in the flip flops will have a lower Hamming weight. Conversely, if the supply voltage is higher, the propagation delay decreases, and the Hamming weight of the sample increases. The adjustable delay stages before the carry chain calibrate the TDC for process variation so that the Hamming weight of the sampled values is nominally around 128, which ensures that the sensor will not saturate under small voltage fluctuations that increase or decrease the Hamming weight of the samples. The 256-bit TDC measurements are saved in on-chip FIFOs (256-bit word width) at run-time and collected by the adversary after the convolution operation is finished.

In this section, we describe the experimental platforms and implementations used to evaluate the efficacy of our attack. Four Xilinx FPGA-based boards, listed in Table II, were used for experimentation. The first three boards in the table, locally situated in the authors’ laboratories, were used for characterization and testing. AWS F1 instances listed in the last row of the table were used for cloud-based experiments.

A. Local Experimental Platforms

The ChipWhisperer CW305 board [32], [43] provides a platform for examining power side-channel attack scenarios. The board supports low-noise off-chip voltage measurement using an oscilloscope or a capture board via a low-noise and high-bandwidth connection to the main FPGA 1V DC supply pin. Voltage measurements can be obtained by an adjacent ChipWhisperer-Lite capture board [44] that contains a 10-bit analog-to-digital converter (ADC) with 105 MS/s sampling rate. As described in Section V, both the capture board and an on-FPGA TDC were used on the ChipWhisperer to obtain voltage traces.

Xilinx ZCU104 [33] and VCU118 [34] evaluation boards were also used for evaluation, with on-FPGA TDC-based sensors used to collect voltage traces. Off-chip FPGA supply voltage measurements were not collected for these two boards. The latter board contains an FPGA that is the same as the one located on F1 instances. For the F1 instances, likewise, an on-FPGA TDC-based sensor was used since there is no physical access for making off-chip supply voltage measurements.

B. Implementation on Local Boards

The implementation of the attack architecture for the three local boards is similar. The BNN accelerator and supporting
The on-chip controller in Figure 6 sets memory addresses and controls the operation of the convolution unit. This controller has registers that set the parameters of the three on-chip block memories used to store on-chip data. Data_In stores the input feature map (input image), Data_Out stores the result of the convolution (output feature map), and Param stores the binary values of the convolution kernels for the current layer with +1 represented by the bit value 1 and -1 by the bit value 0. For each layer of the BNN, the input feature map and corresponding kernel values are loaded into Data_In and Param memories by the user, then the convolution operation is performed, and finally the results are collected from Data_Out.

C. Implementation on AWS F1

In addition to the local boards, the attack architecture was implemented on AWS F1 instances. The architecture on AWS F1 with functional modules TDC & FIFO and BNN Accelerator matches the implementations tested on the local FPGAs (Figure 6). The AWS virtual machine (VM) is able to send input images to the FPGA and read TDC outputs from the FPGA, using built-in peek() and poke() functions. The TDC & FIFO modules are physically separated from the BNN Accelerator without any direct communication.

Since AWS F1 instance FPGAs currently only support use by a single customer at a time, this setup approximates a multi-tenant scenario. Our attack does work in the presence of the Shell interface circuitry and server environment that are not under user control.

V. ATTACK ANALYSIS ON CHIPWHISPERER

In this section, we describe characterization experiments using the ChipWhisperer CW305 board. These experiments use both on- and off-FPGA voltage measurements to examine voltage fluctuations during the convolution operation as input images are processed. The ChipWhisperer is an ideal board in that its bypass capacitors have been removed and dedicated voltage measurement resources are provided. With information gathered from the ChipWhisperer, the attack was then deployed on other, more realistic boards.

A. Off-Chip Characterization of Convolution

In an initial set of experiments, the ADC on the ChipWhisperer-Lite capture board was used to sample the FPGA core supply voltage level at the rising edge of each convolution unit clock cycle. The supply voltage level drops of all 28×28 (784) convolution operations for the first kernel applied to the input image, illustrated in Figure 7a, were measured. The experiment was run 10 times and the mean values of the voltage drops observed at the FPGA supply input at each clock cycle versus the steady state supply voltage were used to generate the trace shown in Figure 8. The 125 orange circles in Figure 8 show clock cycles during which the 125 pixels from the image foreground are used in convolution for the first time (the clock cycle when the foreground pixel is in location P9, multiplied by K9 in Figure 5). Figure 8 shows that the clock cycles corresponding to foreground pixels have a higher voltage drop compared to other clock cycles. These differences can be used to differentiate between foreground and background pixels.

The voltage drops induced by the foreground pixels can be explained by examining Equation 2. Each pixel of the output feature map \((O_{x,y})\) is calculated using an image window and a kernel. The image (a grayscale picture of a digit with each pixel an integer between 0 and 255) has low-valued pixels (close to 0) for background and high-valued pixels (close to 255) for the foreground. For the calculation of the output feature map, the kernel values are constant. However, the values of the processed input image pixels in specific locations in the line buffer change between background and foreground pixels during the convolution operation. The dynamic power consumption (and resulting voltage drop) of processing foreground pixels is larger than for background pixels. Specifically, foreground pixels result in the generation of larger magnitude results for the multiply and accumulate operations when the convolution operation processes these pixels. As a result of generating these
values, significant switching activity takes place in the adder tree of the convolution unit and resultant voltage drops can be observed.

To illustrate the range of voltage changes due to the convolution of the input image, a histogram of the absolute value of voltage drop measurements in Figure 8 is shown in Figure 9. The histogram contains 40 bins evenly distributed in value between 0 to 6 mV. The boundary between foreground and background pixels can be distinguished with a threshold.

Generally, the processing of background pixels leads to small voltage drops that are clustered on the left of the histogram and the processing of foreground pixels leads to a range of larger voltage drops on the right of the histogram. The threshold can be identified by locating a downward gradient in occurrence counts over multiple voltage bins. In the ChipWhisperer, this transition took place over five bins located just before 2 mV.

In Figure 9, the dashed red line shows the chosen threshold value. All voltage drops created by input pixels that fall to the left of the line are classified as background pixels, while the ones to the left are classified as foreground pixels. To decrease noise, remove stray pixels, and improve the quality of the recovered image, the Rudin-Osher-Fatemi denoising algorithm [46] with τ equal to 0.1 and tv_{weight} of 40 is applied to this result to generate a recovered image. The input image to the BNN accelerator and the recovered image using the threshold are shown in Figures 7a and 7b, respectively. The recovered image, unlike the input image which has a range of grayscale pixels, is binary with 0 value for background pixels and 255 value for foreground pixels.

B. TDC-Based Characterization of Convolution Operations

The characterization of convolution unit voltage drops described in the previous subsection was performed using voltage traces obtained by the ChipWhisperer-Lite capture board. In this section, we describe characterization experiments that use voltage measurements obtained by a TDC sensor implemented in the ChipWhisperer FPGA. The TDC architecture was described in Section III-B. The 256-bit TDC carry chain for the Artix-7 FPGA on the ChipWhisperer board consists of Carry4 carry primitives. The sensitivity for each TDC stage, as determined by the Xilinx Vivado 2019.1 software [47], is close to 25 picoseconds.

For each clock cycle, the flip-flop values from the TDC were saved in a 256-bit wide FIFO, forming one voltage estimate. This experiment was performed 100 times using the same input image and kernel. The voltage estimates at each clock cycle for the 100 traces were then averaged to minimize noise, forming a collection of 784 Hamming weights, one for each pixel. The resulting Hamming weights are shown in Figure 10a.

The plot in Figure 10a contains a low-frequency envelope due to the lack of bypass capacitors on the ChipWhisperer that affects supply voltage behavior. A high-pass Butterworth digital filter was applied to the values shown in the plot to
remove the envelope and retain voltage fluctuations due to convolution unit activity. For each point in the plot, the filter determines an average Hamming weight value over the previous ten clock cycles (a running average window). This value is then subtracted from the Hamming weight value at the current clock cycle, leading to the plot shown in Figure 10b. Subsequently, the image was recovered with the histogram threshold shown in Figure 10c and Rudin-Osher-Fatemi denoising steps described earlier in Section V-A. Figure 11c shows the recovered image obtained after applying the denoising algorithm.

C. TDC-based Attack Summary

To summarize, the following steps are performed to recover a reconstructed image using the on-FPGA TDC:

1) Voltage estimates are collected for each input pixel during operation of the convolution unit for the first kernel of the first convolution layer.

2) Voltage estimates for each pixel are averaged across all runs with the image to generate a single trace. The averaged estimates are represented using Hamming weights.

3) A Butterworth high-pass filter is used to remove low-frequency power supply ripple from the averaged Hamming weights.

4) A histogram of the resulting values is created and a threshold is used to differentiate foreground and background pixels, forming a preliminary recovered image.

5) A Rudin-Osher-Fatemi denoising algorithm is used to improve the quality of the recovered image.

VI. IMAGE EXTRACTION USING THE ATTACK

After initial experimentation with the ChipWhisperer CW305, our attack was applied to the two local boards and AWS F1 instances described in Section IV to see how well the attack can perform on commercial off-the-shelf boards that were not designed to study side channel attacks. The hardware for these platforms was not modified for our experimentation. The experimental setup for these platforms including the BNN accelerator is shown in Figure 6. The clock speeds of the BNN accelerators in the FPGAs are listed in Table II. Our experiments consider the quality of the recovered images, the proximity of the TDC to the convolution unit on the FPGA chip, and the number of times each input image is used to create a recognizable recovered image (e.g., number of runs).

A. Image Recovery with Local Boards

Recovered images, both before and after denoising, for the ZCU104 and VCU118 boards using TDC measurements are shown in Figure 12. For these experiments, the TDC was placed adjacent to the BNN accelerator in the FPGA fabric (in the next row of logic blocks) to increase the accuracy of the voltage estimates. For example, the relative positions of the BNN accelerator and TDC in the ZCU104’s UltraScale+ FPGA for these experiments are shown in Figure 13a. The images were recovered after applying the steps outlined in Section V-B. For the ZCU104 and VCU118, the same input image and kernel were used 3,000 times.

The TDC’s ability to detect the small voltage drops caused by the convolution unit as it processes the input image is critical to image recovery. To study the importance of TDC location on the FPGA die relative to the location of the BNN accelerator, the BNN was moved to a location on the opposite side of the die, as shown in Figure 13b for the ZCU104’s UltraScale+ FPGA. The experiments from Section VI-A were rerun for the digital image shown in Figure 7a.

To compare the quality of the recovered images with cross-die placement of the TDC versus the results from adjacent placement for the selected digit, the normalized cross-correlation (CCR_norm) between the recovered images and the input image for both adjacent and cross-die TDC placements were calculated using Equations 3 and 4. The CCR_norm value provides a quantitative metric for comparing the similarity of the input image and a recovered image.
TABLE III: Normalized cross-correlation between original and recovered images before and after denoising under adjacent and cross-die TDC placement. The ZCU104 and AWS F1 FPGA floorplans are shown in Figures 13 and 17a.

Board	Adjacent Placement	Cross-die Placement
	w/o denoise	w/ denoise
ZCU104	0.745	0.594
	0.791	0.655
VCU118	0.678	0.646
	0.738	0.697
AWS F1	0.671	0.426
	0.716	0.547

Recovered images both before and after denoising were considered. Table III shows the normalized cross-correlations of the recovered images on the target boards. Figure 14 shows the recovered images for different placement strategies, both before and after denoising, for the two boards.

\[
CCR = \sum_{(i,j) \in N^{28 \times 28}} (A[i,j] \times B[i,j])^2
\]

\[
CCR_{norm} = \frac{CCR}{\sqrt{\sum A[i,j]^2 \times \sum B[i,j]^2}}
\]

Fig. 14: Recovered images with adjacent and cross-die placement for 3,000 runs. The input image is shown in Figure 7a.

This experiment shows that cross-die placement leads to the recovery of a lower-quality image compared to adjacent placement, which was predictable. However, the recovered image is still recognizable and the attack can be performed even if the BNN accelerator and TDC are not in close proximity.

To obtain recognizable reconstructed images, the same input image is processed by the same kernel numerous times. To evaluate the effect of number of runs on image quality, we again used the image shown in Figure 7a. For both local FPGA boards, the normalized cross-correlation (Equation 4) of the recovered image and the original image versus the number of times the input image was processed by the first kernel was calculated. Results from these experiments are shown in Figure 15. Denoising the recovered images clearly improves the image quality. Figure 16 shows recovered images for an increasing number of runs, before and after denoising. This figure clearly shows that after about 200 runs, the recovered image is recognizable.
B. Image Reconstruction with AWS F1

To show that our attack could be deployed on existing cloud FPGAs if multi-tenancy was allowed, our attack infrastructure was migrated to and tested on AWS F1 instances. The experimental setup for the attack was described in Section IV-C. The UltraScale+ FPGA used in AWS F1 contains three super logic regions (SLRs) (Figure 17a). Each SLR is a separate die containing logic and memory resources. As shown in Figure 17a, the Shell interface is located in the right-hand area of SLR0 and SLR1. Since the Shell has significant power consumption, it can influence the accuracy of TDC measurements. To assess these effects, experiments were performed with the BNN accelerator and TDC on SLR2 (same-SLR) and on separate SLRs (cross-SLR). In the same-SLR experiment (Figure 17a left), the TDC and the BNN are placed next to each other. Figure 17a (right) depicts the cross-SLR experiment, in which the BNN accelerator is on SLR1 and the TDC is on SLR2.

Figure 18 shows the averaged Hamming weights obtained for the same-SLR case using the digit image from Figure 7a for 6,000 runs. As shown in Figure 18a, the averaged values collected by the TDC are influenced by environmental noise, a decreasing voltage envelope. After high-pass filtering, identifiable peaks, indicating foreground pixels, can be identified, as shown in Figure 18b. The histogram and selected threshold used to extract the recovered image are shown in Figure 18c.

The recovered images of the same-SLR experiment are shown in Figures 12f and 12g. The normalized cross-correlations between the input and recovered images for the same-SLR case before and after denoising are 0.671 and 0.716, respectively. As shown in Figure 15, the normalized cross-correlations for denoised images for the same-SLR experiment on AWS F1 increase as the number of runs are increased.

Similar to the local board experiments, the positioning of the TDC at a distant location from the BNN accelerator results in a reduction in recovered image quality. The experiment
described in the previous paragraph was rerun on AWS F1 for the cross-SLR case. The recovered images of digit 6 are shown in Figure 17c, and the averages of normalized cross-correlation are listed in Table III. The results indicate that the normalized cross-correlation of the denoised image for the same-SLR experiment (0.716) is superior to the value for the cross-SLR experiment (0.547). The presence of the Shell in the same SLR as the BNN accelerator for the cross-die experiment influences the quality of the recovered image to a modest extent.

VII. CONCLUSION

This paper presents the first remote power side-channel attack on convolutional neural networks targeting multi-tenant FPGAs. We show that it is possible to accurately extract image inputs to a binarized convolutional neural network by collecting and analyzing on-chip voltage estimates. Time-to-digital converters are leveraged to obtain voltage estimates on the FPGA chip during execution of the algorithm. Our approach has been successfully applied to four FPGA boards, including on Xilinx UltraScale+ FPGAs located on Amazon AWS F1 cloud servers. Our experiments successfully recovered recognizable images for all ten digits from the MNIST handwritten digit database.

REFERENCES

[1] Amazon Web Services News Blog, “Developer preview – EC2 instances (F1) with programmable hardware,” Accessed: 2020-03-29. [Online]. Available: https://aws.amazon.com/blogs/aws/developer-preview-ec2-instances-f1-with-programmable-hardware/

[2] Alibaba Cloud, “Elastic compute service: Instance type families,” Accessed: 2020-03-29. [Online]. Available: https://www.alibabacloud.com/help/doc-detail/25378.htm#f1

[3] Xilinx, Inc., “Xilinx powers Huawei FPGA accelerated cloud server,” https://www.xilinx.com/news/press/2017/xilinx-powers-huawei-fpga-accelerated-cloud-server.html, Accessed: 2020-03-29.

[4] Baidu Cloud, “FPGA cloud compute,” https://cloud.baidu.com/product/fpga.html, Accessed: 2020-03-29.

[5] Tencent Cloud, “FPGA cloud computing,” https://cloud.tencent.com/product/fpga, Accessed: 2020-03-29.

[6] E. El-Araby, I. Gonzalez, and T. El-Ghazawi, “Virtualizing and sharing reconfigurable resources in high-performance reconfigurable computing systems,” in International Workshop on High-Performance Reconfigurable Computing Technology and Applications (HPRCTA), 2008.

[7] S. Byma, J. G. Steffan, H. Bannazadeh, A. L. Garcia, and P. Chow, “FPGAs in the cloud: Booting virtualized hardware accelerators with OpenStack,” in Field-Programmable Custom Computing Machines (FCCM), 2014.

[8] F. Chen, Y. Shan, Y. Zhang, Y. Wang, H. Franke, X. Chang, and K. Wang, “Enabling FPGAs in the cloud,” in ACM Conference on Computing Frontiers (CF), 2014.

[9] J. Weerasinghe, F. Abel, C. Haglmeier, and A. Herkersdorf, “Enabling FPGAs in hyperscale data centers,” in IEEE International Conference on Ubiquitous Intelligence and Computing, Autonomic and Trusted Computing, Scalable Computing and Communications (UIC-ATC-ScalCom), 2015.

[10] O. Knodel, P. R. Gessler, and R. G. Spallek, “Virtualizing reconfigurable hardware to provide scalability in cloud architectures,” in International Conference on Advances in Circuits, Electronics and Micro-electronics (CENIC), 2017.

[11] O. Knodel, P. R. Gessler, F. Erxleben, and R. G. Spallek, “FPGAs and the cloud – An endless tale of virtualization, elasticity and efficiency,” International Journal on Advances in Systems and Measurements, vol. 11, no. 3-4, pp. 230–249, 2018.

[12] A. Khovaylo, J. Landgraf, R. Prakash, M. Wei, E. Schufzufa, and C. J. Rossbach, “Sharing, protection, and compatibility for reconfigurable fabric with AMORPHOS,” in USENIX Symposium on Operating Systems Design and Implementation (OSDI), 2018.

[13] A. Vaishnav, K. D. Pham, and D. Koch, “A survey on FPGA virtualization,” in International Conference on Fieldprogrammable Logic and Applications (FPL), 2018.

[14] I. Giechaskiel, K. B. Rasmussen, and K. Eguro, “Leaky wires: Information leakage and covert communication between FPGA long wires,” in ACM Asia Conference on Computer and Communications Security (ASIACCS), 2018.

[15] I. Giechaskiel, K. Eguro, and K. B. Rasmussen, “Leakier wires: Exploiting FPGA long wires for covert- and side-channel attacks,” ACM Transactions on Reconfigurable Technology and Systems (TRETS), vol. 12, no. 3, pp. 1–29, Sep. 2019.

[16] I. Giechaskiel, K. B. Rasmussen, and J. Szefer, “Measuring long wire leakage with ring oscillators in cloud FPGAs,” in International Conference on Field Programable Logic and Applications (FPL), 2019.

[17] C. Ramesh, S. B. Patil, S. N. Dhanuskodi, G. Provelengios, S. Pillement, D. Holcomb, and R. Tessier, “FPGA side channel attacks without physical access,” in IEEE Symposium on Field-Programmable Custom Computing Machines (FCCM), 2018.

[18] G. Provelengios, C. Ramesh, S. B. Patil, K. Eguro, R. Tessier, and D. Holcomb, “Characterization of long wire data leakage in deep submicron FPGAs,” in ACM/SIGDA International Symposium on Field-Programmable Gate Arrays (FPGA), 2019.

[19] M. Zhao and G. E. Suh, “FPGA-based remote power side-channel attacks,” in 2018 IEEE Symposium on Security and Privacy (S&P). IEEE, 2018, pp. 229–244.

[20] F. Schellenberg, D. R. Gnad, A. Moradi, and M. B. Tahoori, “An inside job: Remote power analysis attacks on FPGAs,” in Design, Automation & Test in Europe Conference & Exhibition (DATE), 2018, pp. 1111–1116.

[21] R. Zhao, W. Song, W. Zhang, T. Xing, J.-H. Lin, M. Srivastava, R. Gupta, and Z. Zhang, “Accelerating binarized convolutional neural networks with software-programmable FPGAs,” in ACM/SIGDA International Symposium on FPGAs, 2017.

[22] Y. Chen, J. He, X. Zhang, C. Hao, and D. Chen, “Cloud-DNN: An open framework for mapping DNN models to cloud FPGAs,” in ACM/SIGDA International Symposium on FPGAs, 2019.

[23] S. Zeng, G. Dai, H. Sun, K. Zhong, G. Ge, K. Guo, Y. Wang, and H. Yang, “Enabling efficient and flexible FPGA virtualization for deep learning in the cloud,” in IEEE International Symposium on Field-Programmable Custom Computing Machines, 2020.

[24] S. Moini, B. Alizadeh, M. Emad, and R. Ebrahimpour, “A resource-limited hardware accelerator for convolutional neural networks in embedded vision applications,” IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 64, no. 10, pp. 1217–1221, 2017.

[25] K. Freund, “Amazon and Xilinx deliver new FPGA solutions,” Forbes, Sep. 2017.

[26] Microsoft Azure, “What are Field-Programmable Gate Arrays (FPGA) and how to deploy,” https://docs.microsoft.com/en-us/azure/machine-learning/how-to-deploy-fpga-web-service, Accessed: 2020-05-14.

[27] L. Wei, B. Luo, Y. Li, Y. Liu, and Q. Xu, “I know what you see: Power side-channel attack on convolutional neural network accelerators,” in Proceedings of the 34th Annual Computer Security Applications Conference. ACM, 2018, pp. 393–406.

[28] A. Dubey, R. Cammarota, and A. Aysu, “Maskednet: The first hardware inference engine aiming power side-channel protection,” 2019.

[29] K. Yoshida, T. Kubota, M. Shiozaki, and T. Fujino, “Model-extraction attack against FPGA-DNN accelerator utilizing correlation electromagnetic analysis,” in 2019 IEEE 27th Annual International Symposium on Field-Programmable Custom Computing Machines (FCCM), IEEE, 2019, pp. 318–319.

[30] W. Hua, Z. Zhang, and G. E. Suh, “Reverse engineering convolutional neural networks through side-channel information leaks,” in 2018 55th ACM/ESDA/IEEE Design Automation Conference (DAC). IEEE, 2018, pp. 1–6.

[31] Y. LeCun, C. Cortes, and C. Burges, “MNIST handwritten digit database.” AT&T labs, 2010.

[32] C. O’Flynn and Z. D. Chen, “ChipWhisperer: An open-source platform for hardware embedded security research,” in International Workshop on Constructive Side-Channel Analysis and Secure Design. Springer, 2014, pp. 243–260.

[33] Xilinx, Inc., “ZCU104 evaluation board,” https://www.xilinx.com/products/boards-and-kits/zcu104.html, 2020, Accessed: 2020-05-19.

[34] ——, “VCU118 evaluation board,” https://www.xilinx.com/products/boards-and-kits/vcu118.html, 2020, Accessed: 2020-05-19.

[35] Amazon.com, Inc., “Amazon AWS F1,” https://aws.amazon.com/ec2-instance-types/f1, 2020, Accessed: 2020-05-19.
