Zoonotic parasitism in dogs from the department of Vaupés, Colombia

Parasitismo zoonótico em cães do departamento de Vaupés, Colômbia

DOI:10.34119/bjhrv2n4-103

Hollman Alfonso Miller Hurtado
Formación superior: Especialista en Epidemiología, Entomología
M.Sc.(Cand) Microbiología Tropical
Actividad Institucional: Coordinador Programa ETV-Zoonosis y Enfermedades Desatendidas de la Secretaría de Salud del Departamento del Vaupés.
Dirección: Carrera 14 Nº 10-119 Mitú Vaupés Colombia
E-mail: hollmanmiller@gmail.com

Julio César Giraldo Forero
Formación superior: M.Sc. En Biología área parasitología tropical
Especialista en Pruebas de Diagnóstico Parasitológico
Actividad Institucional: Docente Investigador programa de Biología Universidad Incca de Colombia.
Dirección: Carrera 13 Nº 24-15 Bogotá. D.C.
E-mail: jcesargiraldo@gmail.com

ABSTRACT

Objective: To determine the prevalence of intestinal parasitism and relevant public health zoonotic ectoparasites in canines of indigenous communities of the Colombian Amazon.
Materials and methods: This study included 421 canines from 68 communities, whose owners participated voluntarily in educational talks, interviews, and epidemiological surveys. Fecal samples were obtained by rectal palpation, and they were processed using the formalin-gasoline concentration technique. Double-blind triplicate microscopic analysis was carried out. Results: Parasite infection occurred in 89.8% of the samples, 57.7% protozoans and 73.9% helminthes. Hookworms were noteworthy, including Toxocara spp., Strongyloides spp., Alaria spp., and Giardia spp., among others. Ectoparasites were found in 32.8% of the cases. Conclusion: Our study showed the potential risk of transmission of zoonotic infections by canine parasites and the possibility of jungle transmission of the rabies virus, which require intervention with preventive and control programs by the health sector.

Keywords: Hookworms, Toxocara spp., Strongyloides spp., Alaria spp., Giardia spp., canines.

RESUMO

Objetivo: determinar a prevalência de parasitismo intestinal e ectoparasitos zoonóticos de saúde pública relevantes em caninos de comunidades indígenas da amazônia colombiana. materiais e métodos: este estudo incluiu 421 caninos de 68 comunidades, cujos proprietários participaram voluntariamente de palestras educativas, entrevistas e levantamentos epidemiológicos. amostras fecais foram obtidas por palpação retal e processadas pela técnica de concentração de
formalina-gasolina. análise microscópica em triplicata duplo-cega foi realizada. resultados: infecção por parasitas ocorreu em 89,8% das amostras, 57,7% em protozoários e 73,9% em helmintos. os ancílóstomos eram notáveis, incluindo toxocara spp., strongyloides spp., alaria spp. e giardia spp., entre outros. ectoparasitas foram encontrados em 32,8% dos casos. conclusão: nosso estudo demonstrou o risco potencial de transmissão de infecções zoonóticas por parasitas caninos e a possibilidade de transmissão de vírus da raiva na selva, o que requer intervenção com programas de prevenção e controle pelo setor de saúde.

Palavras-chave: Ancilostomídeos, Toxocara spp., Strongyloides spp., Alaria spp., Giardia spp., Caninos.

1 INTRODUCTION

Canines in urban and rural environments are at risk of infections that may cause gastrointestinal parasitic diseases due to helminthes and protozoans. This causes a reduction in food intake, blood and plasma protein loss, protein metabolism disorders, mineral decrease, enzyme inactivation, and diarrhea (1-4). Some of these parasites might be transmitted to humans, causing affections such as visceral and cutaneous larva migrans, strongyloidiasis, and giardiasis, given the zoonotic character of these infections and the lack of knowledge about the mechanisms and ways of transmission (5,6).

Frequently, especially in rural areas where they are in constant contact with other domestic and wild animals, aside from endoparasites, dogs present with ectoparasites such as scabies, tungiasis, pulicosis, and myiasis. They may also become reservoirs of those that cause leishmaniasis and trypanosomiasis. Another risk factor for human health that could be attributed to them in jungle regions is the transmission of the rabies virus because of the continuous exposure to hematophagous chiroptera bites (7-10).

In the indigenous populations of the Colombian Amazon region, dogs are very important for obtaining food in hunting and in daily activities, and as rewards, they are given raw entrails and leftovers, which are parasite infection risk factors. Intestinal parasite eggs, larvae, and cysts are excreted in feces, causing environmental contamination and human infection (11). Additionally, the lack or misuse of latrines at home and defecating outdoors favor animal coprophagy, which in turn perpetuates the transmission of intestinal parasites among dogs and the communities (12,13). Furthermore, direct contact of canines with other animals helps ectoparasite infestation, which get transported to the houses and establish their life cycles in the households as what occurs with Tunga penetrans (14).

The objective of this research was to determine the frequency of intestinal parasitism and ectoparasitism in canines dedicated to hunting, and possible associated variables in
indigenous communities in the department of Vaupés in the Colombian Amazon region, and to highlight the risk of human infection.

2 MATERIALS AND METHODS

2.1 STUDY AREA AND POPULATION

Study design

We carried out a cross-section descriptive study, and we collected 421 fecal samples from mixed breed dogs, 257 males and 164 females. The average age was 26.7 months; animals were fed leftovers, and their main activity was hunting in indigenous communities in the department of Vaupés in the Colombian Amazon region. They were from nine biogeographical zones and 68 communities, as follows: Cuduyari, 29 (6.9%); Alto Apaporis, 96 (22.8%); Asatrizy (Yapú), 54 (12.8%); Asatia (Acaricuara), 50 (11.9%); Acazuni, 29 (6.9%); Alubva (Bajo), 15 (3.6%); Querari, 41 (9.7%); Aatizot (Iquíe), 36 (8.6%); and Acaipi (Ira Paraná), 71 (16.9%).

The department of Vaupés, whose capital is Mitú, is located between 00° 14” and 10° 48” N, 69° 50’ and 70° 30’ W, in the southeastern part of Colombia in the Amazon region. It is a humid forest at 200 meters above sea level, with an average temperature of 24° C (15), 42,817 inhabitants and an area of 54,135 km². Indigenous people make up 80% of the population, mestizos are 15%, and settlers 5%. The culture of veterinary service for dogs in the urban areas is limited, and it is non-existent in rural areas (16).

Information collection

The inclusion criteria were being canines with homes in the rural area, whose specific activity was hunting, and whose owner participated voluntarily in the study. The information was collected through structured epidemiological surveys applied to 68 rural communities in nine biogeographical zones, by means of a house call and an invitation to participate in the informational talks about canine parasitism and its repercussion in human health, with emphasis in children and pregnant women. Participants were interviewed, asked to sign an informed consent format and the authorization to take direct fecal samples from dogs (17).

The survey included the following variables: gender, race, height, physical condition, type of supplied food, frequency of anti-parasite therapy, and vaccination. The physical evaluation of the animal helped to complete the information about the presence of ectoparasites and skin affections caused by chiroptera bites and dipteran larvae, among other aspects. The
field phase was carried out in the last trimester of 2014 by specialized technician staff from the health secretary of the department of Vaupés.

Sampling

We took a 5 g sample, approximately, from each of the canines by rectal palpation. They were placed in a labeled plastic container and we added 5% formol until it was completely covered. They were mixed thoroughly trying to preserve parasite structures and then they were refrigerated at 4 °C and sent to Bogotá to the GIPAMT laboratory of the Universidad Incca de Colombia and to the Laboratorio de Investigaciones en Enfermedades Infecciosas of the School of Medicine of the Universidad Militar Nueva Granada (UMNG) (13).

Sample processing and analysis

Samples were processed using the formalin-gasoline concentration technique (18); readings were done by specialized professional personnel in double-blinded triplicate occasions. Those that presented at least one parasite structure were considered positive. They were measured with a lens calibrated with a micrometer, and confronted with the literature and positive controls from the ‘coprotheques’ at the research laboratories of UNINCCA and UMNG (13,16,19). Records were entered in Excel tables for their treatment and statistical analysis.

Statistical analysis

The variables of the study were included in a spreadsheet in Excel-Windows, and then imported to Epi-Info, v.7.2.2.6, for analyses (20); we also characterized the positive and negative groups according to the variable to be analyzed. We determined frequencies and proportions in order to establish the most relevant characteristics in both groups, and we compared the categorical variables by means of the chi square test. To analyze the risk factors we used the corresponding OR with a 95 % CI for the numerical variables, and we calculated the averages and standard deviations; the respective comparisons were determined by applying Student’s t test for independent groups, and we considered \(p \leq 0.05 \) as a significant value criterion (21).

3 RESULTS

The presence of parasite species in the animals was 89.8% (378/421), 57.7% (243/421) by helminthes: hookworms, 17.6% (74/421); *Toxocara* spp., 12.6% (53/421); *Spirocercalupi,*
7.4% (31/421); Alaria spp., 6.9% (29/421); Dipylidium caninum, 5.7% (24/421); Strongyloides spp., 5.5% (23/421); and Trichuris vulpis, 2.1% (9/421). Protozoan infection was present in 73.9% (311/421): Entamoeba spp., 73.9% (311/421); Giardia spp., 31.8% (134/421); and Blastocystis spp., 14.7% (62/421). Ectoparasites—pulicosis, myiasis, scabies, and tungiasis—were found in 32.8% (138/421); 9.7% (41/421) presented hematophagous chiroptera bites. A total of 79.1% (333/421) of the animals showed poliparasitism by helminthes, protozoans and arthropodes. Parasite infection in males was 89.1% (229/257), and in females it was 90.9% (149/164).

The distribution by age group was as follows: 1 to 12 months, 33.5% (141/421); 13 to 48 months, 57.2% (241/421), and 49 months and older, 9.3% (39/421); 57.2% (241/421) had normal weight, 38.7% had cachexia (163/421), and we did not have available information for 4.0% (17/421) of the animals.

Mongrel dogs, hunting activity and agricultural labor were 100% in evaluated dogs that had not been treated for parasites when the study was conducted.

Evaluated variables

This study evaluated gender, physical condition, animal use, residence, type of food, vaccination, parasite treatment, race, age, and height; we found no statistical significance between animals that were treated for parasites and the variables, with p≥0.05 and OR≤1.0.

4 DISCUSSION

In Colombia, various studies on intestinal parasites in pet dogs have been reported, with prevalences of 37.4% and 76% (13). They are a risk factor for human infection by zoonotic parasites that cause toxocariasis, uncinariasis, strongyloidiasis, giardiasis, and in rural indigenous communities, jungle transmission of the rabies virus, where the culture of vaccinating and treating dogs for parasites is not part of the good practices of wellbeing and animal health (8,13,23,24).

This report is the first on canine parasitism whose main activity was hunting in indigenous populations of rural jungle areas of the country, and even though its prevalence greatly differs from what was previously reported, its importance lies in the environmental, socioeconomical, and population differences in the evaluated regions in the department of Vaupés. It is necessary to clarify that the diagnostic technique used in all the studies was the same (25).
Among identified helminthiases, hookworms accounted for 17.6%, which was similar to that in the municipality of La Mesa (17.2%), 16.8% and 13.9% for the departments of Huila and Quindío (10,11,24), and 8.6% in the municipality of Coyaima, which are regions of semi-desert and low-rain environments. This evidences the adaptability capacity of these parasites to extreme conditions, given the fact that this infection is cutaneously transmitted after contact with soils where filariform larvae live (13).

Another noteworthy geohelminthiasis was caused by *Toxocara* spp. in 12.6% of cases. Human infection occurs after the ingestion of eggs, which causes visceral larval migration, eye toxocariasis or neurotoxocariasis, among other manifestations. In canines, aside from fecal-oral infection, transplacental or transmammary transmission in lactating pups could occur (26). The entrails of game are part of the food given to dogs in indigenous communities, complemented with leftovers, which are thrown on the floor of the household making transmission easier due to infection by larved eggs from contaminated soil. An association between food supply and toxocariasis infection has been reported by other authors (23,27,28). Transmammary and transplacental infections are recurring in pups, due to the fact that their immune system is deficient in the first stages of their lives (13,29-31).

In the case of *D. caninum*, a common cestode in dogs, 5.7% of the infections presented in animals younger than two years of age, consistent with reports that found them in puppies between 6 and 24 months of age (23,32). Helmithiases, such as *Strongyloides* spp., were 5.5% which is a relevant zoonotic parasite in public health. Various species infect animals; even though it favors a host, its specificity is not strict, and dogs may act as reservoirs, facilitating human infection and displaying a variety of clinical manifestations and syndromes ranging from a self-contained and well-tolerated infection to an uncontrolled self-infection due to massive intestinal hyperinfection and, occasionally, an invasive fatal one (33,34).

One particular finding was the identification of trematode eggs in 6.9% of the samples. We calculated their length and diameter with the arithmetic mean of 53 measurements taken from the different structures, plus two standard deviations. The obtained measurement was a 67.5μm long and 37.5μm diameter egg. By means of photographic registries and a literature review, we identified an infection caused by *Alaria* spp. (Trematoda, Strigeiidae), a parasite in wild carnivores, including canines, as reported by Rigonatto, et al. (figure 1) (35).

The adult phase of *Alaria* spp. is located in the small intestine of the definitive host and eggs are excreted in the feces. Its life cycle requires aquatic environments where it can find the first intermediate hosts –fresh water snails– which are infected by miracidia released from the
eggs and where the cercariae develop. Subsequently, they infect tadpoles that later
metamorphose into frogs with mesocercariae, which acquire the parasitosis after being predated
by wild or domestic canines or being ingested by humans (36).

![Figure 1. Alaria spp. 1a. Operculated egg with double elliptical membrane. 1b, 1c. 67.5 x 37.5 μm eggs, observed with a lugol solution, 40X.](image)

Humans and some vertebrates may act as paratenic hosts for Alaria spp. Alariosis might
cause ophthalmic affections, and even though no pathognomonic symptoms have been
described yet, it could be considered an emerging parasitic entity. Differential diagnosis is done
with an infection by ocular toxocariasis (36,37). Finding this trematode in the evaluated canine
population confirms its parasitic character in hunting animals and rural life in jungle
environments and it is the first report on dogs in Colombia.

Other identified parasites were protozoans in 73.9% of cases: Giardia spp. 31.8%. We
confirmed the prevalence of this zoonotic parasitosis in several regions of Colombia after
comparing it with 2.5% of a study in a veterinary clinic in Teusaquillo in Bogotá in animals
that were treated and seen periodically, as well as 16% in dogs from the municipality of
Coyaima, and 39% for Tunja in domestic and stray dogs. Likewise, they state that giardiasis
and toxocariasis present indiscriminately in animals treated regularly for parasites and those
left untreated, which is an indicator of resistance to anti-parasitic drugs or frequent reinfection
(13,38-40).

Our results were 73.9% for Entamoeba spp., and 14.7% for Blastocystis spp.,
respectively. Human blastocystosis caused by this zoonotic chromista, whose pathogenic
character is still being discussed, ratifies fecal infection (41).

Ectoparasites identified in 32.8% of cases were larvae of dipterans causing myiasis, 10.9%; pulicosis, 22.6%; tungiasis, 12.6%; and scabies, 7.8%. The pathologies presented by the dogs were dermatitis and hematophagous chiroptera bites, which poses the risk of possible jungle transmission of wild rabies virus (7,13,14).

The first epidemiologic bulletin for the integrated surveillance of human rabies in the department of Vaupés up to week 14 in 2018 notified six cases of rabies accidents from which five were in the rural region of the municipality of Mitú, with a rate of 13.3 cases per 100,000 inhabitants, and one case for the small town of Pacoa. The affections were associated with lesions caused by domestic dog bites. Females were mostly affected, 67% of cases, while males were affected 33%. The third week presented the highest number of cases of rabies accident in the department of Vaupés.

Under the new concept of “One health” of the World Organization for Animal Health (OIE), the public health studies in human and animal are framed within the world strategy of human and animal health care and the interaction with the environment. OIE argues that 60% of zoonotic human infectious diseases originate in domestic or wild animals due to the role they represent as a primary source for protein for communities. Additionally, it attributes 75% of the emerging agents that cause infectious diseases that impact public health, especially those that affect the health in developing country communities, particularly children (43).

The scope of this research on canine intestinal parasitism in rural communities of the department of Vaupés was to obtain the report of endemic parasitosis in this population for this region, especially those zoonotic species. It allowed us to detect some limiting factors such as the lack of census information on canine population, and the need for implementing programs to treat parasites and to vaccinate dogs against the rabies virus.

5 CONFLICTS OF INTEREST

The authors declare no conflicts of interest in this study.

ACKNOWLEDGEMENTS

We would like to thank the Ministerio de Salud y Protección Social of Colombia and the Pan American Health Organization for financing the trachoma elimination program within which we took the samples. We would also like to thank Sandra Patricia Ramírez, ESE Hospital San Antonio, and its health personnel, the indigenous communities, the UMNG School of
Medicine, the UNINCCA Biology Department, Luis Reinel Vásquez, professor and researcher from the School of Health Sciences of UNICAUCA, and Orlando Torres-Fernández and Gerardo Santamaría-Romero of the Grupo de Morfología Celular, Instituto Nacional de Salud.

REFERENCES

1. Castro C, Bianque J, Hernández J, Jiménez A, Jiménez M. Contaminación por parásitos gastrointestinales de caninos en dieciocho playas del Pacífico Central de Costa Rica. Cienc Vet. 2009;27(2):47-56.

2. Loza V, González J, Marín G. Estudio epidemiológico de *Toxocara* sp. y *Ancylostoma* sp. en canes de los distritos I al IV de Santacruz de la Sierra. REDVET. 2006;7:1560-71.

3. Cabrera P, Ordóñez O, Cotes J, Rodríguez J, Villamil L. Determinación de parásitos zoonóticos (helmintos y protozoarios) en caninos del centro de zoonosis en Bogotá, D.C. Biomédica. 2003;23:153.

4. Rodríguez R, Galera L, Domínguez J. Frecuencia de parásitos gastrointestinales en animales domésticos diagnosticados en Yucatán, México. Rev Biomed. 2001;12:19-25.

5. Gorman T, Soto A, Alcáño H. Parasitismo gastrointestinal en perros de comunas de Santiago de diferente nivel socioeconómico. Parasitol Latinoam. 2006;61(3-4):126-132. http://dx.doi.org/10.4067/S0717-77122006000200005

6. Vélez L, Ganad M, Reyes K, Rojas D, Calderón M, Cruz J, Arcos J. Riesgo potencial de parásitos zoonóticos presentes en heces caninas en Puerto Escondido, Oaxaca. Salud Pública Méx. 2014;56(6):625-30.

7. López-Valencia G, Parra-Hena GJ. Parásitos externos de importancia en medicina veterinaria. Medellín: Universidad CES; 2017.

8. Subdirección de Vigilancia y Control en Salud Pública. Protocolo de vigilancia y control de rabia. Bogotá: Instituto Nacional de Salud; 2010.

9. Díaz A, Pulido M, Giraldo J. Nematodos con potencial zoonótico en parques públicos de la ciudad de Tunja, Colombia. Salud Pública Mex. 2015;57:170-6.

10. Llanos MM, Condori M, Ibáñez T, Loza-Murguía MG. Parasitosis entérica en caninos (*Canis familiaris*) en el área urbana de Coroico, Nor Yungas Departamento de La Paz, Bolivia.
11. Penagos J, Ardila A, Fernández J, Vargas J, Lozano C, López C. Parásitos gastrointestinales en caninos de 5 municipios del Huila y su importancia en salud pública. Infectio. 2004;8:138.

12. Balassiano B, Campos M, Pereira M. Factors associated with gastrointestinal parasite infection in dogs in Rio de Janeiro, Brazil. Prev Vet Med. 2009;91:234-40.

13. González AC, Giraldo JC. Prevalencia de parásitos intestinales zoonóticos en caninos (Canis lupus familiaris) del área urbana del municipio de Coyaima (Tolima). Revista Med. 2015;23(2):24-34.

14. Miller H, Rodríguez G. Tungiasis en población indígena del departamento de Vaupés: epidemiología, clínica, tratamiento y prevención. Biomédica. 2010;30(2):215-37.

15. Departamento del Vaupés. Disponible en:
https://www.todacolombia.com/departamentos-de-colombia/vaupes.html.

16. Beltrán M, Tello R, Naquira C. Manual de procedimientos de laboratorio para el diagnóstico de los parásitos intestinales del hombre. Serie de normas técnicas. Bogotá: Instituto Nacional de Salud; 2003. p. 70-8.

17. Toma y envío de muestras al laboratorio manual de procedimientos. Laboratorio de diagnóstico Livexlab. Disponible en:
http://www.livex.com.ec/uploads/documentos/Manual%20de%20Toma%20d e%20muestras.pdf.

18. Botero D, Restrepo M. Parasitosis humanas. Quinta edición. Medellín: CIB; 2012.

19. González-Ruiz A, Bendall RP. El tamaño importa: el uso del micrómetro ocular en la parasitología diagnóstica. Parasitología Hoy. 1995;11(2):83-5.

20. Vásquez LR, Campo-Daza VH, Vergara D, Rivera O, Cordero H, Dueñas J. Prevalencia de Toxocara canis y otros parásitos intestinales en caninos en la ciudad de Popayán, 2004. Revista de la Facultad de Ciencias de la Salud. 2005;7(4):13-21.
21. Solarte L, Castañeda R, Pulido A. Parásitos gastrointestinales en perros callejeros del centro de zoonosis de Bogotá, D.C., Colombia. Neotrop Helminthol. 2013;7(1):83-93.

23. Caraballo A, Jaramillo A, Loaiza J. Prevalencia de parásitos intestinales en caninos atendidos en el centro de veterinaria y zootecnia de la Universidad CES (Medellín). Revista CES/Medicina Veterinaria y Zootecnia. 2007;2:24-31.

24. Giraldo M, García N, Castaño J. Prevalencia de helmintos intestinales en caninos del departamento del Quindío. Biomédica. 2005;25(3):346-352.

25. Alarcón Z, Juyo V, Larrotta J. Caracterización epidemiológica de parásitos gastrointestinales zoonóticos en caninos con dueño del área urbana del municipio de La Mesa, Cundinamarca. Revista FMVZ-UN. 2015;62(1):20-36.

26. Roldán WH, Espinoza YA, Huapaya PE, Jiménez S. Diagnóstico de la toxocariosis humana. Rev Peru Med Exp Salud Publica. 2010;27(4):613-20.

27. Cazorla D, Morales P. Parásitos intestinales de importancia zoonótica en caninos domiciliarios de una población rural del estado Falcón, Venezuela. Boletín de Malaariología y Salud Ambiental. 2013;53(1):19-28.

28. González D, Moreno L, Hermosilla C. Parásitos en perros de San Juan Bautista, Isla Robinson Crusoe, Chile. Arch Med Vet. 2008;40:193-5.

29. Oliveira-Sequeira T, Amarante A, Ferrari T, Nunes L. Prevalence of intestinal parasites in dogs from São Paulo State, Brasil. Vet Parasitol. 2002;103:19-27.

30. Fontanarosa M, Vezzani D, Basabe J, Eiras D. An epidemiological study of gastrointestinal parasites in dogs from Southern Greater Buenos Aires (Argentina): Age, gender, breed, mixed infections and seasonal and spatial patterns. Vet Parasitol. 2010;136(3-4):283-95.

31. López J, Abarca K, Paredes P, Insúa E. Parásitos intestinales en caninos y felinos con cuadros digestivos en Santiago de Chile. Consideraciones en salud pública. Rev Med Chile. 2006;134:193-200.

32. Vega S, Serrano E, Grande R, Pilco M, Quispe M. Parásitos gastrointestinales en
cachorros caninos provenientes de la venta comercial en el Cercado de Lima. Salud Tecnol Vet. 2014;2:71-7.

33. Pérez F, Núñez F, Martín N, Cabrera R, Rodríguez E. Falla orgánica múltiple por estrongiloidiasis diseminada: comunicación de un caso. Rev Chil Infectol. 2012;29(3):344-7. http://dx.doi.org/10.4067/S0716-10182012000300016

34. Coello R, Salazar M, Cedeño P. Strongyloides spp. en caninos de una zona rural del Guayas y el riesgo en Salud Pública. Revista Científica. 2017;1(5):271-87.

http://dx.doi:10.26820/recimundo/1.5.2017.271-287

35. Rigonatto T, Martínez FA, Núñez SE, Troiano JC, Gauna-Añasco L, Duchene A, et al. Hallazgo de Alaria sp. (Trematoda, Strigeidae) en carnívoros silvestres. UNAL del Nordeste. Comunicaciones Científicas y Tecnológicas. 2000.

36. Riehn K, Hamedy A, Alter T, Lücker E. Development of a PCR approach for differentiation of Alaria spp. Mesocercariae Parasitol Res. 2011;108:1327-32.

http://dx.doi:10.1007/s00436-010-2240-0

37. López S, González L, Fernández M, Rodríguez A. Visión de halos como manifestación inicial de oftalmomiosis interna posterior: reporte de un caso. Rev Mex Oftalmol. 2010;84(2):116-21.

38. Fernández J, Bernal M, Giraldo JC. Parásitos gastrointestinales en caninos domiciliados en la localidad de Teusaquillo (Bogotá, Colombia). Revista Científica Uninccca. 2015;20(1):67-73.

39. Pulido MO, Giraldo JC, Chavarro GI. Prevalence and risk factors of Giardia spp. from free living and owned dogs in Tunja, Boyacá, Colombia. Bulgarian Journal of Veterinary Medicine. 2017. http://dx.doi: 10.15547/bjvm.2078

40. Claerebout E, Casaert S, Dalemans A, Levecke B, Vercruysse J, Geurden T. Giardia and other parasites in different dog’s populations in northern Belgium. Vet Parasitol. 2009;161:41-6. http://dx.doi.org/10.1016/j.vetpar.2008.11.024

41. Ramírez JD, Flórez C, Olivera M, Bernal MC, Giraldo JC. Blastocystis subtyping and
its association with intestinal parasites in children from different geographical regions of Colombia. PloS One. 2017;12(2):e0172586.

https://doi.org/10.1371/journal.pone.0172586

42. Boletín Epidemiológico I. Hasta la semana 14 de reporte al SIVIGILA, Vaupés, periodo epidemiológico 1, año 2018. Available at:

http://vaupes.micolombiadigital.gov.co/sites/vaupes/content/files/000084/4168_boletin-epidemiologico-vaupes_14.pdf.

43. One Health. OIE, World Organization for Animal Health. Available at:

http://www.oie.int/es/para-los-periodistas/editoriales/detalle/article/one-world-one-health/.