Biochemical and Immunological Characterization of *Toxoplasma gondii* Macrophage Migration Inhibitory Factor*

Received for publication, September 14, 2012, and in revised form, February 4, 2013 Published, JBC Papers in Press, February 26, 2013, DOI 10.1074/jbc.M112.419911

Caroline Sommerville1, Julia M. Richardson1, Roderick A. M. Williams1,†, Jeremy C. Mottram1, Craig W. Roberts2, James Alexander3, and Fiona L. Henriquez1,†

From the 1Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow G4 0RE, Scotland, United Kingdom, 2School of Biological Sciences, University of Edinburgh, Mayfield Road, Edinburgh EH9 3JR, Scotland, United Kingdom, 3Wellcome Trust Centre for Molecular Parasitology, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G12 8TA, Scotland, United Kingdom, and 4Institute of Biomedical and Environmental Health Research School of Science, University of the West of Scotland, Paisley PA1 2BE, Scotland, United Kingdom

Macrophage migration inhibitory factor (MIF) is a proinflammatory molecule in mammals that, unusually for a cytokine, exhibits tautomerase and oxidoreductase enzymatic activities. Homologues of this well conserved protein are found within diverse phyla including a number of parasitic organisms. Herein, we produced recombinant histidine-tagged *Toxoplasma gondii* MIF (TgMIF), a 12-kDa protein that lacks oxidoreductase activity but exhibits tautomerase activity with a specific activity of 19.3 μmol/min/mg that cannot be inhibited by the human MIF inhibitor ISO-1. The crystal structure of the TgMIF homotrimer has been determined to 1.82 Å, and although it has close structural homology with mammalian MIFs, it has critical differences in the tautomerase active site that account for the different inhibitor sensitivities. We also demonstrate that TgMIF can elicit IL-8 production from human peripheral blood mononuclear cells while also activating ERK MAPK pathways in murine bone marrow-derived macrophages. TgMIF may therefore play an immunomodulatory role during *T. gondii* infection in mammals.

Toxoplasma gondii is an obligate intracellular protozoan parasite of significant economical and public health importance. Infection with *T. gondii* is common, and it is estimated that ~30% of the world’s population is chronically infected with this parasite. Typically, infection with *T. gondii* results in the induction of a classical type 1 response with the production of proinflammatory cytokines such as IFN-γ by natural killer cells and T cells controlling acute infection characterized by the rapidly dividing tachyzoite (1, 2). This response is not only essential for host survival, but it also creates an environment that is favor-
Toxoplasma Homologue of MIF

these proteins facilitate the manipulation of the host immune response during infection (17–21).

Herein, we report the biochemical and immunological characterization of a homologue of MIF in *T. gondii*, TgMIF, for which the crystal structure has been solved to 1.82-Å resolution. Furthermore, we have shown that TgMIF is a biochemically active protein that is capable of inducing IL-8 production from human peripheral blood mononuclear cells (PBMCs) while also activating ERK MAPK pathways in murine bone marrow-derived macrophages. The existence of TgMIF may facilitate parasitism in the definitive (Felidae), intermediate (*Mus musculus*), and incidental (*Homo sapiens*) hosts.

EXPERIMENTAL PROCEDURES

Alignment—MIF sequences were retrieved from NCBI. Sequence alignments were performed using Tcoffee, and ESPript was then used to assemble Fig. 1.

Cloning, Expression, and Purification of C-terminal Histagged TgMIF—TgMIF was amplified from cDNA of the RH strain using primers that had been specifically designed to include NdeI and XhoI restriction sites (underlined) in the forward and reverse primers, respectively, for cloning into vector pET21a+. Primer sequences were as follows: forward primer, 5’-GGGGCATATGCCCAAGTGCATGATCTTTT-GCC-3’; and reverse primer, 5’-GGGGCTCGAGGCCGAAA-GTTCCGTTCGCCCATGGC-3’. The reverse primer was designed to omit the stop codon and allow translation of the TgMIF ORF. The TgMIF ORF was subsequently ligated into expression vector pET21a+ (Novagen). *Escherichia coli* BL21 competent cells (Rosetta strain) were transformed, and expression was induced by the addition of 1 mM isopropyl 1-thio-D-galactopyranoside at 30 °C overnight. Cells were then lysed by sonication and the addition of lysozyme (1 µg/ml). Recombinant proteins were purified using Ni^2+^-nitrilotriacetic acid columns (Qiagen), eluted with 10 mM imidazole, and stored in a Tris-HCl buffer, pH 8 at –80 °C. For biological assays, endotoxin was removed from protein samples using the ProteoSpin Endotoxin Removal Maxi kit (Novagen), and endotoxin levels were then quantified using the QCL-1000 chromogenic *Limonus amebocyte lysate end point assay* (Cambrex).

Crystallization—Crystals were grown by the hanging drop, vapor diffusion method in 24-well Linbro plates. Crystals of TgMIF grew at 277 K over a well solution containing 1.82 M ammonium sulfate and 100 mM Tris, pH 6.5. The drop contained 2 µl of protein solution at 15 mg/ml in 50 mM Tris, pH 7.5 plus 2 µl of well solution. Prior to data collection, crystals were briefly immersed in a cryoprotectant solution containing 20% (v/v) glycerol plus well solution and then flash frozen in liquid nitrogen.

X-ray Data Collection and Structure Determination—All data collection were collected at 100 K on beam-line I03 at the Diamond Light Source (Oxfordshire, UK), indexed with iMosflm, and merged and scaled with SCALA (22). For molecular replacement, a homology model of the TgMIF structure was generated using the SwissModel server and used as the search model in PHASER (22). Structure building and refinement was performed using Coot (23) and Refmac, respectively. Data collection and refinement statistics are shown in Table 1. The structure has been deposited in the Research Collaboratory for Structural Bioinformatics Protein Data Bank under accession code 4DH4.

Enzyme Assays—Tautomerase assays were performed as described previously (24). Tautomerase activity was measured at 37 °C by the addition of 48 µl of DOPA methyl ester (10 mM) (ε = 3700 M⁻¹ cm⁻¹) to 32 µl of sodium periodate (20 mM) to which an equal volume of sodium phosphate buffer (10 mM, pH 6.2) with 1 mM EDTA was added. To start the reaction, 80 µg of TgMIF and 0.5 µg of human MIF (HsMIF) (R&D Systems) were added, and tautomerization of DOPA methyl ester was then measured at λ absorbing 470 nm. The inhibitory effect of (S,R)-3-(4-hydroxyphenyl)-4,5-dihydro-5-isoxazole acetic acid (ISO-1) (Sigma) was determined by the preincubation of 80 µg of TgMIF and 0.5 µg of HsMIF with 10 µM ISO-1 for 30 min prior to adding it to the substrate.

Culture of Human Peripheral Blood Mononuclear Cells—Human PBMCs were isolated from freshly drawn blood using Histopaque (Sigma-Aldrich). Isolated mononuclear cells were seeded to 96-well plates at 5 × 10⁶ cells/ml in RPMI 1640 medium containing 10% heat-inactivated fetal calf serum, 2 mM l-glutamine, 100 units/ml penicillin, and 100 µg/ml streptomycin and incubated at 37 °C in 5% CO₂. Cells were stimulated with increasing concentrations of endotoxin-free TgMIF (1–1000 ng/ml) for 24 h following which cell supernatants were collected for analysis by ELISA.

IL-8 Assay—To detect IL-8 in cell supernatants, 96-well plates were coated with purified mouse anti-human IL-8 (Pharmpigen) at 2 µg/ml in PBS, pH 9 and incubated overnight at 4 °C. Following the addition of supernatants to wells, recombinant human IL-8 was also added to corresponding wells in doubling dilutions ranging from 20 ng/ml to 387.5 pg/ml. Biotinylated anti-human IL-8 (Pharmpingen) was added to each well at 1 µg/ml before the addition of streptavidin-alkaline phosphate (Pharmpingen) diluted 1:2000. Finally, p-nitrophenyl phosphate (Sigma) at 1 mg/ml in glycine buffer was added, and absorbances were recorded at 450 nm. All assays were carried out in triplicate.

Isolation of Macrophages from Bone Marrow Stem Cells and Sample Preparation—Femurs were removed from male BALB/c mice and flushed using a 25-gauge needle with medium consisting of 30% L cell-conditioned supernatant, 20% heat-inactivated fetal calf serum, 2 mM l-glutamine, 100 units/ml penicillin, and 100 µg/ml streptomycin in Dulbecco’s modified Eagle’s medium supplemented with sodium pyruvate, glucose, and pyridoxine hydrochloride (Invitrogen). Flushed bone marrow stem cells were passed through a 21-gauge needle before being split between Petri dishes and incubated at 37 °C in 5% CO₂. Cultures were then supplemented with media on days 3 and 7. Confluent macrophages were harvested and washed on day 10 and seeded at 1 × 10⁶/ml in RPMI 1640 medium supplemented with 10% heat-inactivated fetal calf serum, 2 mM l-glutamine, 100 units/ml penicillin, and 100 µg/ml streptomycin. Macro-
phages were incubated at 37 °C in 5% CO2 throughout the duration of the experiment.

Cells were stimulated with concentrations of endotoxin-free TgMIF ranging from 1 to 1000 ng/ml over a 24-h period. Control cells were stimulated with 1 ng/ml HsMIF for 24 h before samples were collected. To collect samples, cells were washed in PBS and harvested by agitation in 150 μl of sample buffer after which samples were boiled to denature proteins.

ERK MAPK Western Blot—Stimulated macrophage samples were resolved by 14% SDS-PAGE. Proteins were first resolved in a polyacrylamide gel and then transferred to a nitrocellulose membrane (Amersham Biosciences) using the Novex Xcell Blot Module (Invitrogen) at 30 V for 90 min. The membrane was blocked for 2 h with a blocking buffer containing 10% FCS in PBS after which the membrane was incubated overnight at 4 °C in the blocking buffer containing the mouse anti-ERK antibody (1:7500 dilution) (Santa Cruz Biotechnology). The membrane was washed for 90 min, changing the wash buffer (PBS containing 0.05% Tween 20) every 15 min. Anti-mouse HRP-linked secondary antibody (diluted 1:7500) (Santa Cruz Biotechnology) in blocking buffer was incubated with the membrane for 2 h at room temperature. Antibody binding was measured by chemiluminescence and incubation of 2 ml of ECL substrate (Pierce) for 2 min. The film was then developed in the XOMAT (Konica) developer.

RESULTS

Cloning and Expression of T. gondii MIF—T. gondii encodes a single copy of MIF that is expressed in both tachyzoite and bradyzoite forms of the parasite (data not shown). Alignment of TgMIF from all three strains shows 99.7% nucleotide sequence identity and 100% identity of amino acids (data not shown). Interspecies sequence alignments reveal that TgMIF has 59% amino acid sequence similarity and 26% identity with mammalian MIFs from host species (Fig. 1A) and 41.7% similarity with other parasite MIFs (Fig. 1B). Amino acid numbering in this study begins with Pro1 because the starting methionine is cleaved. The alignments highlight the conservation of the N-terminal Pro1, which mediates tautomerase activity, and additional conserved residues located around the active site, notably Lys33, Tyr96, and Ile65. This suggests that TgMIF should have tautomerase activity. In contrast, the CXXC motif in human MIF that is required for oxidoreductase activity is absent in TgMIF in that the Cys59 found in humans is Ile60 in TgMIF. In accordance with other MIF proteins, no classical secretory signal sequence has been identified in TgMIF (25).

Crystal Structure of TgMIF—Crystals formed in space group P2_1 and x-ray diffraction data were collected at the Diamond Light Source (Table 1). The structure of TgMIF was determined...

Toxoplasma Homologue of MIF

TABLE 1

Crystallographic data and refinement statistics

r.m.s.d., root mean square deviation.
Crystal system
Unit cell dimensions (Å)
Vm
% solvent
Overall
Low resolution limit
High resolution limit
Wavelength
Rmerge (%)
Total observations
Unique observations
I/σ(I)
Completeness (%)
Multiplicity

Refinement

PDB ID	4DH4
R (%)	19.3
Rfree (%)	23.1
Bond length r.m.s.d. from ideality (Å)	0.006
Bond angle r.m.s.d. from ideality (°)	1.066
Rmsd chiral	0.080
Average B factor (Å²)	19.34
Ramachandran plot core (%)	95.9
allowed (%)	4.1
outlier (%)	0
Number of sulphate ions	3

Toxoplasma Homologue of MIF has tautomerase activity but no oxidoreductase activity—Mammalian MIF has been shown to catalyze tautomerase reactions in which isomeric organic compounds are readily interconverted (28). We have found TgMIF tautomerase activity to be stable for 4 days following purification (data not shown). As it has been suggested that MIF may mediate its biological functions via enzyme activity, only freshly purified protein was used in further biochemical and immunological assays. In a representative run, TgMIF tautomerase activity toward substrate L-DOPA methyl ester showed a specific activity of 19.3 μmol/min/mg of protein, which is 104- and 117-fold lower than that of mouse (2011 μmol s⁻¹ mg⁻¹; Ref. 19) and human (2262 μmol s⁻¹ mg⁻¹; this study) MIF, respectively (Fig. 3A). TgMIF tautomerase kinetics were fully characterized during which a K_{cat} of 9.6 μM, V_{max} of 30 μmol s⁻¹ mg⁻¹, and K_{cat}/K_{m} of 13.99 s⁻¹ M⁻¹ were measured (Fig. 3B). The oxidoreductase activity in TgMIF could not be detected up to 2 h after addition of protein (data not shown).

TgMIF Tautomerase Activity Is Not Inhibited by ISO-1—TgMIF tautomerase activity was not significantly inhibited by preincubation with inhibitor ISO-1, reflecting observations in other parasite MIF homologues (18, 29). HsMIF tautomerase activity, on the other hand, was inhibited by 60% following preincubation with 10 μM ISO-1 (Fig. 4A).

Structural analysis reveals amino acid substitutions in the area of the tautomerase active site that could ultimately alter the catalytic activity of TgMIF. Mammalian MIF tautomerase activity involves the Pro₁, Lys₃₂, and Ile₆⁴ of one monomer in an interaction with Tyr⁹⁵ and Asn⁹⁷ (corresponding to Pro¹, Lys³², Ile⁶⁴ of the adjacent monomer) (30).

Most amino acids of the active site are conserved in addition to Tyr³⁷ and Phe¹¹⁴, which surround the active site. However, replacement of Asn⁹⁷ for Thr⁹⁸ in the TgMIF tautomerase active site is of importance as this substitution prevents the formation of a hydrogen bond between MIF and the substrate molecule, L-DOPA methyl ester (19). An identical substitution has been reported previously in the Angiostrongylus cantonensis MIF homologue with the suggestion that this substitution may account for a weakened tautomerase activity (29). Further substitutions around the TgMIF tautomerase active site are observed whereby Val¹⁰⁶ is replaced by Trp¹⁰⁷, resulting in possible steric hindrance that prevents the successful binding of ISO-1 to the active site (Fig. 4B).

Endotoxin-free TgMIF Drives IL-8 Production from Human PBMCs and Induces ERK MAPK Activation in Bone Marrow-derived Macrophages—LPS in recombinant TgMIF was less than 0.008 ng/mg of protein (data not shown). TgMIF can drive the production of IL-8 in human PBMCs in a dose-dependent manner and is biologically active at 1 ng/ml. However, whereas 1 ng/ml HsMIF induced 22.5 ng/ml (S.E., ±0.545 ng/ml) IL-8 production from PBMCs, TgMIF induced 8.0 ng/ml IL-8 (S.E., ±0.721 ng/ml). Consequently, TgMIF was ~40% as effective at stimulating IL-8 as equivalent levels of HsMIF from PBMCs (Fig. 5A).

An increase in ERK MAPK activation was observed in murine bone marrow-derived macrophages stimulated with TgMIF at a final concentration of 100 ng/ml. The increase in ERK MAPK activation was represented by an increase in phosphorylation of p42/p44 ERK up to 30 min poststimulation, and thereafter phosphorylation decreased. After 30-min stimula-
tion with TgMIF, there was a ~30-fold increase in ERK MAPK activation compared with unstimulated control (Fig. 5B). The same pattern of activation was observed following stimulation of macrophages with 1 ng/ml HsMIF whereby phosphorylation peaked after 30 min of stimulation when phosphorylated ERK increased ~270-fold compared with unstimulated cells (Fig. 5B).

DISCUSSION

Since its discovery in 1966 (31, 32), MIF has emerged as an important and often critical mediator of the immune response (33–35). MIF has been described as a diverse cytokine with potent proinflammatory properties, which are potentially mediated via its unique enzyme activities (36). However, there are conflicting reports as to whether the tautomerase activity can facilitate MIF biological activities (16, 37, 38). In recent years, there have been studies describing homologues of MIF found in many parasitic species including some helminths and protozoa including Plasmodium, Leishmania, and Brugia species (17–19, 39). We report herein the characterization of the MIF homologue in the T. gondii RH strain that has 26% amino acid sequence identity to mammalian MIFs described herein. Production of recombinant TgMIF has facilitated structure determination as well as characterization of its biochemical properties and immunomodulatory capabilities.

MIF homologues from all species examined to date have been demonstrated to catalyze the tautomerization of the substrate L-DOPA methyl ester. This has been shown to be dependent on the N-terminal proline, which is also conserved in the TgMIF (40). Consistent with this, TgMIF exhibits measurable tautomerase activity; albeit this was significantly less than that observed for HsMIF in identical assay conditions. TgMIF tautomerase activity is of the same order as observed previously for Leishmania major MIF under the same assay conditions (19). Trichinella spiralis MIF has been reported to have tautomerase activity similar to those of TgMIF and LmMIF (39). However, extrapolation between studies should be done with caution because of differences in experimental protocol.

Of note, TgMIF lacks an active oxidoreductase activity, which is similar to other parasite MIF homologues (19). This is likely to be caused by the absence of a second cysteine residue in
the CXXC motif at position 60 that is necessary for optimum activity (41).

Analysis of the TgMIF structure reveals key differences compared with mammalian MIFs (including human, cat, and murine) around the tautomerase active site. These differences might account for poor tautomerase activity and the subsequent inability of the competitive inhibitor ISO-1 to bind to this site. There are five key amino acids in the catalytic site associated with tautomerase activity. However, reduced catalytic ability in the TgMIF is predicted to be attributed to a substitution of Asn97 for a Thr, which along with the steric hindrance caused by the replacement of Val106 with Tyr prevents easy access of the substrate/inhibitor to the active site. Notably, the MIF homologue of *A. ceylanicum* is also unaffected by ISO-1. The discriminative nature in which ISO-1 selectively binds to HsMIF and not TgMIF (or other parasite MIFs) highlights significant differences in the tautomerase active site that could potentially be exploited in the development of new antiparasite inhibitors (18, 29).

MIF has been associated with a diverse variety of biological processes including its ability to counteract the immunosuppressive properties of glucocorticoids (12) and to induce angiogenesis (42). However, a recent study (13) has highlighted the inconsistency in reporting endotoxin removal procedures and the presence of residual endotoxin levels present in protein batches in MIF studies. Subsequently, the production of LPS-free recombinant TgMIF was essential to provide reliable and robust data; and therefore, we ensured that all protein used in biological assays had negligible levels of residual LPS.

The initial description of MIF was as a soluble mediator secreted by the T cells of rodents that inhibited the random migration of monocytes and directed them to the site of inflammation (31, 32). More recent studies have demonstrated that MIF activates ERK pathways in both mice and humans to induce production of the chemokine IL-8 (43, 44). Expression of the murine homologue of IL-8, MIP-2, is similarly dependent on activation of ERK MAPK (45), and significantly in the present study, we have demonstrated that ERK signaling pathways are promoted by TgMIF as well as HsMIF. IL-8 as well as its murine homologue MIP-2 is secreted by many cells such as endothelial and epithelial cells in response to challenge by foreign antigen and functions mainly as a chemoattractant for cells of the immune response including macrophages but primarily neutrophils (46). HsMIF has been shown previously to induce IL-8 production from THP-1 cells and human PBMCs (13). In this study, we also confirmed the ability of recombinant endotoxin-free TgMIF to induce IL-8 production from human PBMCs in a dose-dependent manner with TgMIF having activ-
ity roughly comparable to that of HsMIF (40%). In addition, IL-8 production has been observed in studies of other MIF homologues; e.g., both Brugia malayi MIF homologues have been shown to induce IL-8 production from human monocytes (20). Furthermore, IL-8 production from fibroblasts and HeLa cells has been reported from cells infected with T. gondii tachyzoites (47). Significantly, it has been observed in the acute stages of T. gondii infection that there is a rapid recruitment of neutrophils to the site of infection (48), and this has been demonstrated to be essential for resolution of infection. Paradoxically, the early recruitment of neutrophils to the site of infection may also aid the spread of infection as T. gondii has been shown...
Toxoplasma Homologue of MIF

to trigger neutrophil synthesis of CC chemokine ligand (CCL) 3, CCL4, CCL5, and CCL20 (49). These are strongly chemotactic for immature dendritic cells, subpopulations of which have been described in recent studies as Trojan horses to facilitate *T. gondii* dissemination (50, 51). Consequently, TgMIF may not only serve to limit the severity of infection, which would be beneficial for host survival, but also to facilitate parasite dissemination to host tissue, which would promote the potential successful completion of the parasite life cycle.

Overall, our studies demonstrate the presence of a MIF homologue in the *T. gondii* genome that is enzymatically and immunologically active in vitro. We also hypothesize a role for this parasite protein in modulating host immune responses to provide a favorable environment suitable for long term parasite residence, potentially exerting these effects by interactions with the human MIF receptor, CD74.

REFERENCES

1. Rytel, M. W., and Jones, T. C. (1966) Induction of interferon in mice infected with *Toxoplasma gondii*. Proc. Soc. Exp. Biol. Med. 123, 859–862
2. Kamiyama, T., and Hagiwara, T. (1982) Augmented followed by suppressed levels of natural cell-mediated cytotoxicity in mice infected with *Toxoplasma gondii*. Infect. Immun. 36, 628–636
3. Denkers, E. Y., and Gazzinelli, R. T. (1998) Regulation and function of T-cell-mediated immunity during *Toxoplasma gondii* infection. Clin. Microbiol. Rev. 11, 569–588
4. Gazzinelli, R. T., Wysocka, M., Hiens, Y., Scharton-Kersten, T., Cheever, A., Kuhn, R., Muller, W., Trinchieri, G., and Sher, A. (1996) In the absence of endogenous IL-10, mice acutely infected with *Toxoplasma gondii* succumb to a lethal immune response dependent on CD4+ T cells and accompanied by overproduction of IL-12, IFN-γ and TNF-α. J. Immunol. 157, 798–805
5. Lang, C., Gross, U., and Luder, C. G. (2007) Subversion of innate and adaptive immune responses by *Toxoplasma gondii*. Parasitol. Res. 105, 191–203
6. Denkers, E. Y., and Striepen, B. (2008) Deploying parasite profilin on a Toxoplasma Homologue of MIF: controller of systemic inflammation. Crit. Care Med. 33, 905–908
7. Flieger, O., Engler, A., Bucala, R., Lue, H., Nickel, W., and Bernhagen, J. (2003) Regulated secretion of macrophage migration inhibitory factor is mediated by a non-classical pathway involving an ABC transporter. FEMS Lett. 551, 78–86
8. Sun, H. W., Bernhagen, J., and Bucala, R. (2008) Macrophage migration inhibitory factor as a redox-regulated target. *Immunol. Cell Biol.* 86, 232–238
9. Mitchell, R. A., Metz, C. N., Peng, T., and Bucala, R. (1999) Sustained mitogen-activated protein kinase (MAPK) and cytoplasmic phospholipase A2 activation by macrophage migration inhibitory factor (MIF). Regulatory role in cell proliferation and glucocorticoid action. J. Biol. Chem. 274, 18100–18106
10. Calandra, T., and Roger, T. (2003) Macrophage migration inhibitory factor is important for the human monocyte response to migration inhibitory factor. J. Immunol. 168, 8250–8261
11. Mitchell, R. A., Liao, H., Chesney, J., Fingerle-Rowson, G., Baugh, J., David, J., and Bucala, R. (2002) Macrophage migration inhibitory factor (MIF) sustains macrophage proinflammatory function by inhibiting p53: regulatory role in the innate immune response. Proc. Natl. Acad. Sci. U.S.A. 99, 345–350
12. Kleemann, R., Rorsman, H., Rosengren, E., Mischke, R., Mai, N. T., and Bernhagen, J. (2000) Dissection of the enzymatic and immunologic functions of macrophage migration inhibitory factor. Full immunologic activity of N-terminally truncated mutants. *Eur. J. Biochem.* 267, 7183–7193
13. Augustijn, K. D., Kleemann, R., Thompson, J., Kooistra, T., Crawford, C. E., Reece, S. E., Pain, A., Siebum, A. H., Janse, C. J., and Waters, A. P. (2007) Functional characterization of the *Plasmodium falciparum* and *P. berghei* homologues of macrophage migration inhibitory factor. Infect. Immun. 75, 1116–1128
14. Kamir, D., Zierow, S., Leng, L., Cho, Y., Diaz, Y., Griffith, J., McDonald, C., Merk, M., Mitchell, R. A., Trent, J., Chen, Y., Kwong, Y. K., Xiong, H., Vermeire, J., Cappello, M., Mcmahon-Pratt, D., Walker, J., Bernhagen, J., Lolis, E., and Bucala, R. (2008) A *Leishmania* ortholog of macrophage migration inhibitory factor modulates host macrophage responses. *J. Immunol.* 180, 8250–8261
15. Richardson, J. M., Morrison, L. S., Bland, N. D., Bruce, S., Coombs, G. H., Mottram, J. C., and Walkinshaw, M. D. (2009) Structures of *Leishmania* major orthologues of macrophage migration inhibitory factor. *Biochem. Biophys. Res. Commun.* 380, 442–448
16. Zang, X., Taylor, P., Wang, J. M., Meyer, D. J., Scott, A. L., Walkinshaw, M. D., and Maiels, R. M. (2002) Homologues of human macrophage migration inhibitory factor from a parasitic nematode. Gene cloning, protein activity, and crystal structure. *J. Biol. Chem.* 277, 44261–44267
17. Jang, S. I., Lillehoj, H. S., Lee, S. H., Kim, D. K., Pagès, M., Hong, Y. H., Min, W., and Lillehoj, E. P. (2011) Distinct immunoregulatory properties of macrophage migration inhibitory factors encoded by *Eimeria* parasites and their chicken host. *Vaccine* 29, 8998–9004
18. Collaborative Computational Project, Number 4 (1994) The CCP4 suite: programs for protein crystallography. *Acta Crystallogr. D Biol. Crystallogr.* 50, 760–763
19. Emsley, P., and Cowtan, K. (2004) Coot: model-building tools for molecular graphics. *Acta Crystallogr. D Biol. Crystallogr.* 60, 2126–2132
20. Pennock, J. L., Wipasa, J., Gordge, M. P., and Meyer, D. J. (1998) Interaction of macrophage migration-inhibitory factor with haematin. *Biochem. J.* 331, 905–908
21. Flieger, O., Engler, A., Bucala, R., Lue, H., Nickel, W., and Bernhagen, J. (2003) Regulated secretion of macrophage migration inhibitory factor is mediated by a non-classical pathway involving an ABC transporter. *FEBS Lett.* 551, 78–86
22. Sun, H. W., Bernhagen, J., Bucala, R., and Lolis, E. (1996) Crystal structure at 2.6-Å resolution of human macrophage migration inhibitory factor. *Proc. Natl. Acad. Sci. U.S.A.* 93, 5191–5196
23. Liu, D. Y., Yu, S. F., Remold, H. G., and David, J. R. (1985) Glycolipid receptor for human migration inhibitory factor: fusoc and sialic acid are important for the human monocyte response to migration inhibitory factor. *Cell. Immunol.* 90, 539–546
24. Rosengren, E., Bucala, R., Arman, P., Jacobsson, L., Odh, G., Metz, C. N., and Rorsman, H. (1996) The immunoregulatory mediator macrophage migration inhibitory factor (MIF) catalyzes a tautomeration reaction. *Mol. Med.* 2, 143–149
25. Cho, Y., Jones, B. F., Vermeire, J. I., Leng, L., DiFedele, L., Harrison, L. M., Xiong, H., Kwong, Y. K., Chen, Y., Bucala, R., Lolis, E., and Cappello, M. (2007) Structural and functional characterization of a secreted hookworm macrophage migration inhibitory factor (MIF) that interacts with the human MIF receptor CD74. *J. Biol. Chem.* 282, 23447–23456
26. Lubetsky, J. B., Swope, M., Dealwis, C., Blake, P., and Lolis, E. (1999) Pro-1 of macrophage migration inhibitory function factors as a catalytic base in the phenylpyruvate tautomerase activity. *Biochemistry* 38, 7346–7354
27. Bloom, B. R., and Bennett, B. (1966) Mechanism of a reaction in vitro associated with delayed-type hypersensitivity. *Science* 153, 80–82
28. David, J. R. (1966) Delayed hypersensitivity to protein free substances formed by lymphoid cell-antigen interaction. *Proc. Natl. Acad. Sci. U.S.A.* 56, 72–77
29. Bernhagen, J., Calandra, T., Mitchell, R. A., Martin, S. B., Tracey, K. J.,
Voelter, W., Manogue, K. R., Cerami, A., and Bucala, R. (1993) MIF is a pituitary-derived cytokine that potentiates lethal endotoxaemia. Nature 365, 756–759
34. Bozza, F. A., Gomes, R. N., Iapiressú, A. M., Soares, M., Castro-Faria-Neto, H. C., Bozza, P. T., and Bozza, M. T. (2004) Macrophage migration inhibitory factor levels correlate with fatal outcome in sepsis. Shock 22, 309–313
35. Sakai, Y., Masamune, A., Satoh, A., Nishihira, J., Yamagishi, T., and Shimosegawa, T. (2003) Macrophage migration inhibitory factor is a critical mediator of severe acute pancreatitis. Gastroenterology 124, 725–736
36. Al-Abed, Y., Dabideen, D., Aljabari, B., Valster, A., Messmer, D., Ochani, M., Tanovic, M., Ochani, K., Bacher, M., Nicoletti, F., Metz, C., Pavlov, V. A., Miller, E. J., and Tracey, K. J. (2005) ISO-1 binding to the tautomerase active site of MIF inhibits its pro-inflammatory activity and increases survival in severe sepsis. J. Biol. Chem. 280, 36541–36544
37. Swope, M., Sun, H. W., Blake, P. R., and Lolis, E. (1998) Direct link between cytokine activity and a catalytic site for macrophage migration inhibitory factor. EMBO J. 17, 3534–3541
38. Lubetsky, J. B., Dios, A., Han, J., Aljabari, B., Ruzzicska, B., Mitchell, R., Lolis, E., and Al-Abed, Y. (2002) The tautomerase active site of macrophage migration inhibitory factor is a potential target for discovery of novel anti-inflammatory agents. J. Biol. Chem. 277, 24976–24982
39. Tan, T. H., Edgerton, S. A., Kumari, R., McAlister, M. S., Roe, S. M., Nagl, S., Pearl, L. H., Selkirk, M. E., Bianco, A. E., Totty, N. F., Engwerda, C., Gray, C. A., Meyer, D. J., and Rowe, S. M. (2001) Macrophage migration inhibitory factor of the parasitic nematode Trichinella spiralis. Biochem. J. 357, 373–383
40. Nishihira, J., Fujinaga, M., Kuriyama, T., Suzuki, M., Sugimoto, H., Nakagawa, A., Tanaka, I., and Sakai, M. (1998) Molecular cloning of human ß-dopachrome tautomerase cDNA: N-terminal proline is essential for enzyme activation. Biochem. Biophys. Res. Commun. 243, 538–544
41. Kleemann, R., Kapurniotu, A., Frank, R. W., Gessner, A., Mischke, R., Flieder, O., Jütten, S., Brunner, H., and Bernhagen, J. (1998) Disulfide analysis reveals a role for macrophage migration inhibitory factor (MIF) as thiol-protein oxidoreductase. J. Mol. Biol. 280, 85–102
42. Shimizu, T., Abe, R., Nakamura, H., Ohkawara, A., Suzuki, M., and Nishihira, J. (1999) High expression of macrophage migration inhibitory factor in human melanoma cells and its role in tumor cell growth and angiogenesis. Biochem. Biophys. Res. Commun. 264, 751–758
43. Ren, Y., Chan, H. M., Li, Z., Lin, C., Nicholls, J., Chen, C. F., Lee, P. Y., Liu, V., Bacher, M., and Tam, P. K. (2004) Upregulation of macrophage migration inhibitory factor contributes to induced N-Myc expression by the activation of ERK signaling pathway and increased expression of interleukin-8 and VEGF in neuroblastoma. Oncogene 23, 4146–4154
44. Buchholz, K. R., and Stephens, R. S. (2007) The extracellular signal-regulated kinase/mitogen-activated protein kinase pathway induces the inflammatory factor interleukin-8 following Chlamydia trachomatis infection. Infect. Immun. 75, 5924–5929
45. Kurosaka, K., Takahashi, M., and Kobayashi, Y. (2003) Activation of extracellular signal-regulated kinase 1/2 is involved in production of CXCL chemokine by macrophages during phagocytosis of late apoptotic cells. Biochem. Biophys. Res. Commun. 306, 1070–1074
46. Leonard, E. J., and Yoshimura, T. (1990) Neutrophil attractant/activation protein-1 (NAP-1 [interleukin-8]). Am. J. Respir. Cell Mol. Biol. 2, 479–486
47. Denney, C. F., Eckmann, L., and Reed, S. L. (1999) Chemokine secretion of human cells in response to Toxoplasma gondii infection. Infect. Immun. 67, 1547–1552
48. Denkers, E. Y., Butcher, B. A., Del Rio, L., and Bennouna, S. (2004) Manipulation of mitogen-activated protein kinase/nuclear factor-κB-signaling cascades during intracellular Toxoplasma gondii infection. Int. J. Parasitol. 34, 411–421
49. Bennouna, S., Bliss, S. K., Curiel, T. J., and Denkers, E. Y. (2003) Cross-talk in the innate immune system: neutrophils instruct recruitment and activation of dendritic cells during microbial infection. J. Immunol. 171, 6052–6058
50. Lambert, H., Hitziger, N., Dellacasa, I., Svensson, M., and Barragan, A. (2006) Induction of dendritic cell migration upon Toxoplasma gondii infection potentiates parasite dissemination. Cell. Microbiol. 8, 1611–1623
51. Bierly, A. L., Shufesky, W. J., Sukhumavasi, W., Morelli, A. E., and Denkers, E. Y. (2008) Dendritic cells expressing plasmacytoid marker PDCA-1 are Trojan horses during Toxoplasma gondii infection. J. Immunol. 181, 8485–8491