Research and Analysis of Nonlinear Predictive Model Identification Control Based on Pumped Storage Unit in Construction Site

Xiaoping Gou 1, a, Wanjun Zhang 2, 3, 4, *, Feng Zhang1, b, Jingxuan Zhang1, c, Jingyi Zhang2, d and Jingyan Zhang2, e

1School of Physical Education, Longdong University, Qingyang 745000, China
2Gansu ZeDe Electronic Technology Company Limited, Gansu 741003, China
3Lanzhou Industry and Equipment Company Limited, Gansu 730050, China
4Xi’an Jiao tong University, 710049, Shaanxi, China

*Corresponding author e-mail: gszwj_40@163.com, *gouxiaoping12@sohu.com,
bzhangwanjun40@163.com, cgzhangwj40@163.com, dtszhangwj40@163.com,
e116543048@qq.com

Abstract. In this paper, a generalized predictive control method for the speed control system of pumped storage units is proposed, which is suitable for different working conditions of the power generation direction of pumped storage units. Through a combination of mechanism modeling and data-driven model order and parameter reduction strategy to determine the time delay and order of the instantaneous linear prediction model of the speed control system of pumped storage unit. According to the operation state and control target of the unit, the design scheme of the generalized predictive control frequency regulation mode and the opening regulation mode are given respectively, and the dynamic analysis of the control process under different operation conditions is carried out according to the actual parameters of the speed regulation system of a single 300MW pumped storage unit of a pumped storage power station in Central China, which verifies the effectiveness of the control method.

1. Introduction
In this paper, a generalized predictive control method for the speed control system of pumped storage units is proposed, which is suitable for different working conditions of the power generation direction of pumped storage units [1-13]. Through a combination of mechanism modeling and data-driven model order and parameter reduction strategy to determine the time delay and order of the instantaneous linear prediction model of the speed control system of pumped storage unit. According to the operation state and control target of the unit, the design scheme of the generalized predictive control frequency regulation mode and the opening regulation mode are given respectively, and the dynamic analysis of the control process under different operation conditions is carried out according to the actual parameters of the speed regulation system of a single 300MW pumped storage unit of a pumped storage power station in Central China, which verifies the effectiveness of the control method [14-20].
Hydropower units are widely distributed in modern power system, which have extremely complex nonlinear characteristics of hydro mechanical electrical coupling. They play a key role in energy supply, peak load regulation and emergency reserve. The safe, stable and efficient operation of hydropower units is of great significance to improve the power quality and maintain the stability of the power system [21-33]. In recent years, with the large capacity units and pumped storage units widely put into operation, the hydropower units show the development trend of large capacity and complex structure, which makes the control of the unit regulation system more and more complex. In order to improve the control performance of the unit and the stability of the unit under complex operating conditions, it is necessary to study the advanced control theory and method of the regulating system of the hydropower unit [34-42].

The least square (LS) method is a widely used mathematical tool in the system parameter estimation [43-48], which has the advantages of easy understanding, fast convergence and concise program. According to the solution principle of the algorithm, LS can be divided into many forms, including batch least square (BLS), recursive least square (RLS), orthogonal least square (OLS), recursive factor recursive least square (ffrls) with forgetting factor, etc.

In this paper, a generalized predictive control method for the speed control system [49-56] of pumped storage units is proposed, which is suitable for different working conditions of the power generation direction of pumped storage units. Through a combination of mechanism modeling and data-driven model order and parameter reduction strategy to determine the time delay and order of the instantaneous linear prediction model of the speed control system of pumped storage unit. According to the operation state and control target of the unit, the design scheme of the generalized predictive control frequency regulation mode and the opening regulation mode are given respectively, and the dynamic analysis of the control process under different operation conditions is carried out according to the actual parameters of the speed regulation system of a single 300MW pumped storage unit of a pumped storage power station in Central China, which verifies the effectiveness of the control method.

2. Nonlinear predictive model identification control

The reference trajectory of the system output is represented by Equation (1):

\[
\begin{align*}
 y_{ref} (k) &= y(k) \\
 y_{ref} (k+i) &= \beta \cdot y_{ref} (k) + (1-\beta^i) \cdot \hat{y}_{set}; i = 1,2,...,N_p
\end{align*}
\] (1)

In Equation (1): \(y(k) \) is the system output at time \(k \); \(\hat{y} \) is the given value of the system; \(\beta \) is the flexibility coefficient used to slow down the sudden change of the system control quantity and the track tracking process of the smooth track. Setting the flexibility coefficient for the given signal of the system output can reduce the excessive fluctuation of the control signal, but it also inevitably prolongs the response speed of the system. For the fast dynamic process of generator excitation system control, in the control process, it is generally necessary to make the system output track the given value quickly without sacrificing part of the control smoothness.

The cost function of predictive control for generator excitation system is given by Equation (2) considering output trajectory tracking, control increment limit and terminal state penalty.

\[
J = \sum_{i=0}^{N_p-1} \left[\| \hat{y}(k+i) - \hat{y}_{ref}(k+i) \|^2 + \| \Delta U(k+i) \|^2 \right] + \| \hat{y}(k+N_p) - X_{ref}(k+N_p) \|^2
\] (2)

Subject to the following:
\[X(k+i+1|k) = f_d(X(k+i|k),U(k+i|k)) \]
\[Y(k+i|k) = h_d(X(k+i|k)) \]
(3)

\[U \in [U_{\min}, U_{\max}] \]
(4)

\[\Delta U \in [\Delta U_{\min}, \Delta U_{\max}] \]
(5)

\[X(k+N_p) - X_{\text{ref}}(k+N_p) \in \Omega \]
(6)

In the formula, operation \(\left\| X \right\|_2 = x^T \cdot A \cdot x \) is defined. \(R \in R^{m \times m}, P \in R^{r \times r} \) represents the weight matrix of system output, control input and terminal state penalty terms respectively; \(Q = \{ X \in R^{r \times r} \} \) represents terminal stability region.

3. Step of identification control
Because there may be model mismatch, random interference and other factors between the actual system and the prediction model, only using Equation (5) for state prediction will have some deviation from the actual situation. Therefore, in the sampling period of each controller, it is necessary to feedback and correct the state prediction value according to the real-time state information of the system. In this paper, the product of real-time system error and correction coefficient is used as the feedback correction method. The feedback correction formula is shown in Equation (7):

\[y(k+i|k) = y(k+i|k) + he(k) \]
(7)

In Equation (7), the deviation \(e(k) = y(k) - y(k|i|k - 1) \) of the system output at time \(k \). \(y(k|i|k - 1) \) is the step-by-step output prediction with feedback correction at \(k \) time; \(y(k|i|k + k) \) is the step-by-step output prediction without feedback correction calculated according to the prediction model at \(k \) time; \(h \) is the correction coefficient.

4. Simulation and Analysis
Taking the dynamic process of a 300MW pumped storage unit in a pumped storage power station in Central China as an example, without special instructions, the parameters of the controlled system and GPC controller are consistent. The first sampling period after the unit frequency reaches the switching frequency of closed-loop control is selected as the starting point of analysis, and the simulation time is 100s.

![Figure 1. Generalized predictive frequency regulation model control.](image)
Figure 2. Opening adjustment mode control.

Figure 3. Nonlinear predictive model identification control.

Figure 4. Model identification control 1.

Figure 5. Model identification control 2.
In Figure 1, 2, 3~7, through a combination of mechanism modeling and data-driven model order and parameter reduction strategy to determine the time delay and order of the instantaneous linear prediction model of the speed control system of pumped storage unit. According to the operation state and control target of the unit, the design scheme of the generalized predictive control frequency regulation mode and the opening regulation mode are given respectively, and the dynamic analysis of the control process under different operation conditions is carried out according to the actual parameters of the speed regulation system of a single 300MW pumped storage unit of a pumped storage power station in Central China, which verifies the effectiveness of the control method.

5. Summary
In this paper, a generalized predictive control method for the speed control system of pumped storage units is proposed, which is suitable for different working conditions of the power generation direction of pumped storage units. Through a combination of mechanism modeling and data-driven model order and parameter reduction strategy to determine the time delay and order of the instantaneous linear prediction model of the speed control system of pumped storage unit. According to the operation state and control target of the unit, the design scheme of the generalized predictive control frequency regulation mode and the opening regulation mode are given respectively, and the dynamic analysis of the control process under different operation conditions is carried out according to the actual parameters of the speed regulation system of a single 300MW pumped storage unit of a pumped storage power station in Central China, which verifies the effectiveness of the control method.
Acknowledgements

The authors thank the financial supports from National Natural Science Foundation of China (Grant no. 51165024) and Science and Technology Major Project of “High-grade NC Machine Tools and Basic Manufacturing Equipment” (2010ZX040001-181).

Communication author: Wanjun Zhang received the, M.S. and Ph.D. degrees from, Lanzhou University of technology, Xi'an Jiaotong University, in 2011 and 2019, respectively. I am currently an associate professor in the School of Mechanical Engineering, Xi'an Jiaotong University, I am currently an Senior Engineer and Senior economist in Gansu ZeDe Electronic Technology Company Limited. His research involved in artificial intelligence, NC, control of complex mechatronic system and failure diagnoses.

Zhang Wanjun, Male, doctor of Engineering (Bachelor of law, Bachelor of Management), senior engineer (senior engineer), senior economist (mechanical engineer, senior technologist), senior member of the Mechanical Engineering, senior member of the agricultural machinery, senior member of the Mechanical Engineering, senior member of the China Electronics Society, senior member of the China electrotechnical society, senior member of the China Instrumentation Society, board member of China Invention Society, board member of Gansu Invention Society, member of Expert Committee of Modern Manufacturing Engineering (Chinese core, science and technology core), mainly engaged in numerical control technology equipment, control engineering (identification engineering, pattern recognition), new energy research and electromechanical transmission control and so on. The total number of patents granted has reached more than 600, of which more than 280 patents for inventions and utility models have been granted in the capacity of the first applicant (patentee) and the inventor, as the first applicant (the patentee) and the inventor, more than 380 design patents are granted, more than 70 academic papers are published in journals above the core, and more than 50 papers are retrieved by SCI/EI/ISTP, among which more than 70 are by EI and 5 are by SCI, E-mail:gszwj_40@163.com.

References

[1] Chen Diyi, Yang Pengchao, Ma Xiaoyi, et al. Chaos of Hydro-turbine governing system and its control [J]. Proceedings of the CSEE, 2011, 31 (14): 113-120.
[2] Song Zhiqiang, Liu Yunhe, Ma Zhenyue. Prototype coupled-vibration test of generator set and power-house and FEM feedback analysis [J]. Journal of Hydroelectric Engineering, 2007, 26 (6): 126-131.
[3] Gou Xiaoping, Zhang Wanjun, Zhang Feng, et al. Research on Fuzzy PID Control of Physical Exercise Supporting Robot Speed Control System [J]. Materials Science and Engineering, 2019, 11, Vol. 782: 2052-2059.
[4] Gou Xiaoping, Zhang Wanjun, Zhang Feng, et al. Research on Key Technologies of Elders Exoskeleton Robot Assisted by Physical Exercise Based on Fuzzy PID Control [J]. Materials Science and Engineering, 2019, 11, Vol. 782:2052-2059.
[5] Olanrewaju M J, Huang B, Afacan A. Online composition estimation and experiment validation of distillation processes with switching dynamics [J]. Chemical Engineering Science, 2010, 65 (5): 1597-1608.
[6] Combres P P, Duranton G, Gobillon L. The identification of agglomeration economies [J]. Journal of Economic Geography, 2011, 11 (2): 253-266.
[7] Shi Z K, Wu F X. Robust identification method for nonlinear model structures and its application to high-performance aircraft [J]. International Journal of Systems Science, 2013, 44 (6): 1040-1051.
[8] Dorobantu A, Murch A, Mettler B, Balas G. System identification for small, low-cost, fixed-wing unmanned aircraft [J]. Journal of Aircraft, 2013, 50 (4): 1117-1130.
[9] Wu Zaixin, Zhang Wanjun, Hu Chibing, et,al. Research on NURBS curve modified interpolation for CNC system [J]. Chinese Journal of Manufacturing Automation, 2011, 33 (22): 48-50.
Zhang Wanjun, Hu Chibing, Zhang Feng, et al. Honing machine motion control card three B spline curve interpolation algorithm [J]. Chinese Journal of Manufacturing Technology & Machine Tool, 2012 (8): 80-82.

Zhang Wanjun, Hu Chibing, Zhang Feng, et al. Modification algorithm of Three B Spline curve interpolation technology [J]. Chinese Journal of Manufacturing Technology & Machine Tool, 2013 (02): 147-150.

Zhang Wanjun, Zhang Feng, Zhang Wanliang, et al. Fuzzy Control of Wind Turbine Based on Directional Power Conversion [J]. Electric Power Construction, 2014, 10, 35 (10): 13-16.

Zhang WanJun, Zhang Feng, Zhang Guohua. Research on modification algorithm of Cubic B-spline curve interpolation technology [J]. Applied Mechanics and Materials, Vol. 687-691, pp.1596-1599, December 2014.

Zhang Wanjun, Zhang Feng, Zhang Guohua. Research on a algorithm of adaptive interpolation for NURBS curve [J]. Applied Mechanics and Materials, Vol. 687-691, pp.1600-1603, December 2014.

Zhang Wanjun, Zhang Feng, Zhang Wanliang, et al. Research on NURBS curve of timing / interrupt interpolation algorithm for CNC system [J]. Chinese Journal of Manufacturing Technology & Machine Tool, 2015 (04): 210-214.

Zhang WanJun, Zhang Feng, Zhang Wan-liang. Research on high-grade CNC machines tools CNC system for B-Spline curve method of High-speed real-time interpolation arithmetic [J]. Chinese Journal of Manufacturing Technology & Machine Tool, 2015 (08): 179-183.

Zhang Wanjun, Hu Chibing, Zhang Feng, et al. Finite Element Analysis and Structural Optimization on the Fasteners Testing Head of Wind Power Equipment [J]. Chinese Journal of Mechanical Research & Application, 2016 (04): 19-22.

Zhang Wanjun, Zhang Feng, Zhang Jingxuan, et al. Application of PLC in the air driven control system [J].Chinese Journal of Manufacturing Automation, 2017, 39 (05): 49-51, 58.

Zhang Wanjun, Zhang Feng, Zhang Jingxuan, et al. Research on NURBS interpolation algorithm based on Newton-Raphson iteration method [J]. Chinese Journal of Industrial Instrumentation & Automation, 2017, 39 (05): 49-51, 58.

Zhang Wanjun, Zhang Feng, Zhang Jingxuan, et al. Research on fuzzy control of reference model of brushless DC motor system [J]. Chinese Journal of Industrial Instrumentation & Automation, 2018, (05): 130-134.

Zhang Wanjun, Zhang Feng, Zhang Jingxuan, et al. Research on Cross-coupled Contour Error Compensation Technology of CNC Machine Tool with Multi Axis Linkage [J]. Machine Tool & Hydraulics, 2019, 47 (2): 1-5.

Zhang Wanjun, Zhang Feng, Zhang Jingxuan, et al. Study on System Recognition Method for Newton-Raphson Iterations [C] // Proceedings of the IEEE International Conference on Computers, Signals and systems. Dalian, 2018: 130-135.

Zhang Wanjun, Zhang Feng, Zhang Jingxuan, et al. Modeling and identification of system model parameters based on information granularity method [C] // Proceedings of the IEEE International Conference on Computers, Signals and systems. Dalian, 2018: 114–118.

Zhang Wanjun, Zhang Feng, Zhang Jingxuan, et al. Optimization of identification structure parameters based on recursive maximum likelihood iteration [C] // Proceedings of the IEEE International Conference on Computers, Signals and systems. Dalian, 2018: 119–124.

Zhang Wanjun, Zhang Feng, Zhang Jingxuan, et al. Parameter optimization and model identification of identification model control based on improved generalized predictive control [C] // Proceedings of the IEEE International Conference on Computers, Signals and systems. Dalian, 2018: 125–129.

Zhang Wanjun, Zhang Feng, Zhang Jingxuan, et al. Cross coupled contour error compensation technology [J]. Materials Science and Engineering, 2018, 8, Vol. 394. 032031:1-5.

Zhang Wanjun, Zhang Feng, Zhang Jingxuan, et al. Research on the vector control system based on the difference frequency of wind turbine generator [J]. Materials Science and
[28] Zhang Wanjun, Zhang Feng, Zhang Jingxuan, et al. Curved Measurement Theory of Honing Pneumatic Measurement System and Optimization of Measurement Parameters [J]. Journal of Physics, 2018, 8, Vol. 1064. 012028: 1-14.

[29] Zhang Wanjun, Zhang Feng, Zhang Jingxuan, et al. Flow field analysis and parameter optimization of main and measured nozzles of differential pressure type gas momentum instrument based on CFD [J]. Journal of Physics, 2018, 8, Vol. 1064. 012028: 1-12.

[30] Zhang Wanjun, Zhang Feng, Zhang Jingxuan, et al. Research on a Kind of Adaptive Fuzzy Control Method and Its Application in Feeding System of CNC Honing Machine [J]. Materials Science and Engineering, 2018, 8, Vol. 452. 042076: 1-8.

[31] Zhang Wanjun, Zhang Feng, Zhang Jingxuan, et al. Application of PLC in Pneumatic Measurement Control System [J]. Materials Science and Engineering, 2018, 8, Vol. 042074: 1-11.

[32] Zhang Wanjun, Zhang Feng, Zhang Jingxuan, et al. Research and Analysis on the Identification Model of Multivariate Economic System [J]. Materials Science and Engineering, 2018, 8, Vol. 452. 022061: 1-11.

[33] Zhang Wanjun, Zhang Feng, Zhang Jingxuan, et al. Identification and Analysis of Economic Model Based on Longnan Southeast [J]. Materials Science and Engineering, 2018, 8, Vol. 452. 032058: 1-8.

[34] Zhang Wanjun, Zhang Feng, Zhang Jingxuan, et al. Based on Brushless DC Motor of Fuzzy and PID Control System [J]. Materials Science and Engineering, 2018, 8, Vol. 452. 042075: 1-10.

[35] Zhang Wanjun, Zhang Feng, Zhang Jingxuan, et al. Application of digital image processing technology in polyaniline deposition on the surface of carbonyl iron powder [J]. Earth and Environmental Science, 2018, 12, Vol. 252: 491-500.

[36] Zhang Wanjun, Zhang Feng, Zhang Jingxuan, et al. Effect of space stabilizer on in-situ deposition of polyaniline on carbonyl iron powder [J]. Earth and Environmental Science, 2018, 12, Vol. 252: 501-509.

[37] Zhang Wanjun, Zhang Feng, Zhang Jingxuan, et al. One-dimensional mathematical model of coal combustion in furnace and its simulation [J]. Earth and Environmental Science, 2018, 12, Vol. 252: 1822-1833.

[38] Zhang Wanjun, Zhang Feng, Zhang Jingxuan, et al. Research on Fuzzy Control Based on Directional Power Conversion of Wind Generator [J]. Earth and Environmental Science, 2018, 12, Vol. 252: 1912-1923.

[39] Avlyanov J K, Josefowicz J Y, MacDiarmid A. G. Atomic force microscopy surface morphology studies of in situ deposited polyaniline thin films [J]. Synth Met, 1995, 73: 205-208.

[40] Mac Diarmid A. G. Progress on the study of polyaniline [J]. Synth Met.1997, 84: 27-32.

[41] Gou Xiaoping, Zhang Wanjun, Zhang Feng, et al. Research and analysis on parameter identification of model system based on running, gymnastics and other physical exercise population [J]. Earth and Environmental Science, 2020, 3, Vol. 612: 2048-2058.

[42] Gou Xiaoping, Zhang Wanjun, Zhang Feng, et al. Research on Simulation and Analysis of Monitoring Process of Hail-proof Apple Bagging Four-rotor Aircraft [J]. Materials Science and Engineering, 2019, 11, Vol. 612: 3826-3837.

[43] Gou Xiaoping, Zhang Wanjun, Zhang Feng, et al. Study on Quality Characteristics and Feasibility Analysis of Hail-proof Plastic Bagging of 5000 Mu in Gansu [J]. Earth and Environmental Science, 2020, 3, Vol. 612: 2038-2040.

[44] Gou Xiaoping, Zhang Wanjun, Zhang Feng, et al. Study on the Structure Design and Feasibility Analysis of Apple Inhaled Box Bags Based on Hailproof [J]. Earth and Environmental Science, 2018, 12, Vol. 252: 3826-3837.

[45] Gou Xiaoping, Zhang Wanjun, Zhang Feng, et al. Feasibility Analysis of Auxiliary Training Device for Backhand Turnover Based on Middle School Tumblers [J]. Advances in
[46] Gou Xiaoping, Zhang Wanjun, Zhang Feng, et al. Research and Simulation of Table Tennis Track Prediction Based on Double Concave Round Table Tennis [J]. Advances in Computer, Signals and Systems, 2019, 9, Vol.10: 252-260.

[47] Gou Xiaoping, Zhang Wanjun, Zhang Feng, et al. Based on the Physiological Performance Test of Sprinters Through Indoor Treadmill [J]. Materials Science and Engineering, 2019, 11, Vol. 612: 3826-3837.

[48] Zhang Wanjun, Gao Shanping, Zhang Sujia. Modification algorithm of NURBS curve interpolation [J]. Advances in Engineering Research, 2016, 83 (12): 507-512.

[49] Zhang Wanjun, Gao Shanping, Zhang Sujia. Modification algorithm of Cubic B-spline curve interpolation [J]. Advances in Engineering Research, 2016, 83 (12): 513-518.

[50] Zhang Wanjun, Gao Shanping, Zhang Sujia. Modification algorithm of NURBS curve interpolation [C] // 2016 4th International Conference on Machinery, Materials and Information Technology Applications, 2016: 507-512.

[51] Zhang Wanjun, Gao Shanping, Zhang Sujia. Modification algorithm of Cubic B-spline curve interpolation [C] // 2016 4th International Conference on Machinery, Materials and Information Technology Applications, 2016: 513-518.

[52] Zhang Wanjun, Gao Shanping, Zhang Sujia. A improved algorithm of three B-spline curve interpolation and simulation [J]. Advances in Materials, Machinery, Electronics I, 2017 (2): 41-46.

[53] Yang Chunhua, Zhang Wanjun, Gou Xiaoping, et al. Research and Analysis on Adaptive Model Identification of System Parameters Based on Sports Safety Model for Children with Different Physique [J]. Materials Science and Engineering, 2020, 5, Vol.612: 3816-3822.

[54] Guo Qiurong, Zhang Wanjun, Gou Xiaoping, et al. Research on parameter system identification characteristics of physical exercise population in Gansu Province Based on walking and Taijiquan [J]. Materials Science and Engineering, 2020, 5, Vol.612: 3826-3835.

[55] Bao Haiyan, Yang Jiandong, Li Jinping, et al. Discussion on the setting condition of surge chamber based on operation stability of hydropower station [J]. Journal of Hydropower Engineering, 2011, 30 (2): 44-48.

[56] Shen Zuyi. Hydraulic Turbine Regulation [M]. Beijing: China Water Power Press, 2008.