ORIGINAL ARTICLE

Quality of Life During Chemotherapy in Japanese Patients with Unresectable Advanced Pancreatic Cancer

Kaoru SHIBAYAMA 1) Yasunori KAWAGUCHI 2) Taiga OTSUKA 3) Futa KOGA 4)
Shunya NAKASHITA 4) Noriko OZA 4) Norio URESHINO 5) Eiji SADASHIMA 6)
Kentaro KUROBE 7) Toshifumi KOSUGI 8) Koichi SHINCHI 1)

1) Institute of Nursing, Faculty of Medicine, Saga University, Saga, Japan
2) Department of Gastroenterology, Asakura Medical Association Hospital, Fukuoka, Japan
3) Minato Medical Clinic, Fukuoka, Japan
4) Department of Hepatobiliary and Pancreatoleg, Saga-Ken Medical Centre Koseikan, Saga, Japan
5) Department of Medical Oncology, Kimitsu Chuo Hospital, Chiba, Japan
6) Life Science Research Institute, Saga-Ken Medical Centre Koseikan, Saga, Japan
7) Department of Pharmacy, Saga-Ken Medical Centre Koseikan, Saga, Japan
8) Department of Palliative Care, Saga-Ken Medical Centre Koseikan, Saga, Japan

ABSTRACT

Objectives: To assess the quality of life (QoL) in Japanese patients receiving standard chemotherapy for unresectable pancreatic cancer.

Patients and Methods: This prospective observational study included 30 Japanese patients with unresectable pancreatic cancer (PS 0–1) who were starting standard first-line chemotherapy. QoL was assessed using the European Organization for Research and Treatment for Cancer Quality of Life Core Questionnaire, version 3.0. Anxiety and depression were measured using the Hospital Anxiety and Depression Scale. Assessments were performed at baseline, 2 weeks, and then monthly during chemotherapy.

Results: At baseline, the global health status (GHS) score was low (50/100), and 9 patients (30%) were experiencing significant levels of mental distress. Scores for the GHS, five functional scales (physical, role, emotional, cognitive, and social), nine symptoms (fatigue, nausea and vomiting, pain, dyspnea, insomnia, appetite loss, constipation, diarrhea, and financial difficulties), anxiety and depression generally did not deteriorate during chemotherapy. However, the QoL scores varied during chemotherapy according to the patients’ characteristics. Patients who achieved tumor control tended to have well-controlled QoL scores. A high survival rate was significantly associated with having a high baseline GHS score.

Conclusions: Japanese patients with unresectable pancreatic cancer might maintain their QoL during standard chemotherapy, with tumor control being associated with well-controlled QoL. In addition, a high QoL at baseline was associated with a good prognosis.

Key-words: quality of life, pancreatic cancer, chemotherapy, anxiety, depression

kaorus@cc.saga-u.ac.jp (Kaoru SHIBAYAMA; Japan)

Asian J Human Services, 2020, 19:42-54. © 2020 Asian Society of Human Services
I. Introduction

Pancreatic cancer is the fourth leading cause of cancer-related death in Japan, with approximately 34,000 deaths estimated in 2017. While the number of patients is increasing, the 5-year survival rate remains as low as 7%, as most diagnoses occur at late disease stages.

The standard regimens for patients with unresectable pancreatic cancer are oxaliplatin/irinotecan/fluorouracil/leucovorin (FOLFIRINOX) or gemcitabine/nab-paclitaxel (GnP), which have improved QoL and overall survival (OS) relative to those for gemcitabine monotherapy in Western patients with advanced pancreatic cancer. Although phase II studies of FOLFIRINOX and GnP in Japanese patients with metastatic pancreatic cancer revealed equivalent efficacies to those reported in the original studies, the effects on the QoL remain unclear. Furthermore, FOLFIRINOX treatment may reduce the QoL, based on reports of elevated rates of toxicity in Japanese patients relative to those in Western patients (grades 3–4 neutropenia: 77.8% vs. 45.7%, febrile neutropenia: 22.2% vs. 5.4%). Thus, a modified FOLFIRINOX regimen (mFOLFIRINOX) has been generally used in Japan, as a phase II study of the mFOLFIRINOX regimen revealed a comparable response rate to that of FOLFIRINOX, with fewer adverse events.

In patients with advanced cancer, it is important to decide the treatment considering both benefits and risks according to individual needs. Since the prognosis of patients with advanced pancreatic cancer is very poor, their QoL should be considered as important as their duration of survival.

Additionally, among patients with various cancers, the overall prevalence of psychological distress is approximately 35%, and patients with pancreatic cancer have the poorest mental health on the basis of their anxiety and depression. Since psychological distress can interrupt chemotherapy, physical, psychological, social, and spiritual aspects of care should be considered for patients with advanced incurable cancer. Therefore, the present study investigated the QoL, based on multiple dimensions, in Japanese patients who were receiving standard chemotherapy for unresectable advanced pancreatic cancer.

II. Methods

1. Study design and Patients

This prospective observational study evaluated Japanese patients with unresectable advanced pancreatic cancer and an Eastern Cooperative Oncology Group performance status (ECOG PS) of 0 or 1. ECOG PS is a simple useful scale to evaluate a patient’s physical condition. It is commonly used to decide the indication of chemotherapy, and ECOG PS 0–1 means that the daily living abilities are almost preserved. All patients
were treated using FOLFIRINOX, mFOLFIRINOX, or GnP as first-line chemotherapy. The study period was between January 1, 2016 and January 31, 2018.

2. Treatment regimens

The FOLFIRINOX regimen consisted of oxaliplatin (85 mg/m\(^2\) as a 2-h intravenous infusion) followed by 5-leucovorin after 30 min (200 mg/m\(^2\) as a 2-h intravenous infusion), irinotecan (180 mg/m\(^2\) as a 90-min intravenous infusion), and fluorouracil (an intravenous bolus of 400 mg/m\(^2\) followed by a dose of 2,400 mg/m\(^2\) as a 46-h continuous intravenous infusion) once every 2 weeks.\(^2\) The mFOLFIRINOX regimen involved reducing the irinotecan dose to 150 mg/m\(^2\) and omitting the intravenous bolus of fluorouracil.\(^8,9\) The GnP regimen consisted of nab-paclitaxel (125 mg/m\(^2\) as a 30-min intravenous infusion) followed by gemcitabine (1,000 mg/m\(^2\) as a 30-min intravenous infusion) on days 1, 8, and 15, and every 4 weeks.\(^4\)

3. Assessment of treatment response

Contrast-enhanced computed tomography scans were reviewed to evaluate antitumor response according to the Response Evaluation Criteria in Solid Tumors (RECIST) version 1.1\(^{10}\) at baseline and then every 2–3 months afterwards. Patients were divided into progressive disease (PD) and non-PD depending on the best response during the first-line chemotherapy.

4. Evaluating the QoL

The patients’ QoL was assessed using the European Organization for the Research and Treatment of Cancer QoL Questionnaire C-30 (EORTC QLQ-C30) version 3.0\(^{16}\) and the Hospital Anxiety and Depression Scale (HADS).\(^{17}\) The EORTC QLQ-C30 version 3.0 tool is a self-administered 30-item questionnaire for patients with cancer\(^{16}\) that evaluates the global health status (GHS), five functional scales (physical, role, emotional, cognitive, and social), and nine symptoms (fatigue, nausea and vomiting, pain, dyspnea, insomnia, appetite loss, constipation, diarrhea, and financial difficulties). Responses to the questionnaire were transformed into scores of 0–100 according to the scoring manual, with higher scores for the GHS and functional scales indicating better levels of functioning, whereas higher scores for the symptom scales indicating worse symptoms. The validity of the Japanese version of the EORTC QLQ-C30 was established in a previous study.\(^{18}\)

The HADS questionnaire consists of 14 items and evaluates the degrees of anxiety and depression.\(^{17}\) Each item is rated on a 4-point scale (0–3), with a maximum score of 21 for anxiety and a maximum score of 21 for depression. Scores ≥11 on either subscale are considered to indicate “significant” psychological morbidity, whereas scores of 8–10 represent “borderline” morbidity and scores of 0–7 represent “normal” levels. The validity of the Japanese version of the HADS was also established in a previous study.\(^{19}\)
assessments were performed at baseline, 2 weeks, and then monthly after the initiation of chemotherapy.

5. Statistical analysis

Data are presented as medians (range) or numbers (percentage). Inter-group comparisons for each factor were performed using the Mann–Whitney U test for continuous variables and the χ² test or Fisher’s exact test for categorical variables. For continuous variables, the medians were used as the cutoff points to create categorical factors. The Friedman test followed by the Dunn–Bonferroni post-hoc test was used to evaluate longitudinal changes in the QoL scores. The OS interval was defined as the time from the start of chemotherapy to death from any cause, and was censored at the last follow-up for surviving patients. Differences in OS were evaluated using the Kaplan–Meier method and the log-rank test. The Cox proportional hazard model was applied to evaluate the effect of the GHS score while adjusting for potential confounding factors. P-values <0.05 were considered statistically significant. All analyses were performed using IBM SPSS software (version 22.0: IBM Corp., Armonk, NY).

6. Ethical considerations

This study was conducted with the approval of the institutional review board of Saga-Ken Medical Centre Koseikan (approval number: 16-02-2-01). All the patients provided written informed consent before enrollment into the study.

III. Results

1. Patient characteristics

Thirty patients were enrolled in this study; their baseline characteristics are shown in Table 1. The median age was 64 years (range: 47–79 years), and 60% of the patients were men. The median body mass index (BMI) was 20.7 kg/m² (range: 15.7–26.2 kg/m²) and 16 patients (53.3%) had BMI <21 kg/m². All patients had an ECOG PS of 0 at baseline. Twenty-three patients (76.7%) had distant metastases, and the most common site of metastasis was the liver (40%). Eight patients were treated using FOLFIRINOX, 12 patients were treated using mFOLFIRINOX, and 10 patients were treated using GnP, as first-line chemotherapy. Seventeen patients (56.7%) subsequently received second-line chemotherapy and 6 patients (20%) received third-line chemotherapy. The median duration of follow-up was 6.0 months (range: 1–16 months).
<Table 1> Baseline characteristics of the 30 patients

Characteristic	Value
Age, years	64 (47–79)
Male, n (%)	18 (60)
Body mass index, kg/m²	20.7 (15.7–26.2)
ECOG PS 0, n (%)	30 (100)
Working, n (%)	16 (53.3)
Pancreatic tumor location, n (%)	
Head	13 (43.3)
Body	10 (33.3)
Tail	6 (20)
Multicentric	1 (3.3)
Stage, n (%)	
Locally advanced	7 (23.3)
Metastatic	23 (76.7)
Metastatic sites, n (%)	
Liver	12 (40)
Lungs	3 (10)
Peritoneum	4 (13.3)
Other	4 (13.3)
Biliary stent use, n (%)	8 (26.7)
Opioid use, n (%)	9 (30)
Non-opioid use, n (%)	11 (36.7)
Celiac plexus block, n (%)	4 (13.3)
First-line regimen, n (%)	
FOLFIRINOX	8 (26.7)
mFOLFIRINOX	12 (40.0)
GnP	10 (33.3)

Data are expressed as medians (range) or numbers (percentage).

BMI, body mass index; ECOG PS, Eastern Cooperative Oncology Group performance status; FOLFIRINOX, oxaliplatin/irinotecan/fluorouracil/l-leucovorin; mFOLFIRINOX, modified FOLFIRINOX: GnP, gemcitabine plus nab-paclitaxel.

2. Baseline QoL

The baseline scores for each scale are shown in Table 2, with median scores on the functional scales ranging from 66.7 to 86.7. In contrast, the median GHS score was only 50 (out of a possible 100), and patients had poor scores for the symptom scales regarding fatigue, pain, insomnia, appetite loss, constipation, and financial difficulties (median: ≥33.3). The median anxiety score was 7 and the median depression score was 8. Seven patients (23.3%) had borderline anxiety and 7 patients (23.3%) had significant anxiety. Twelve patients (40%) had borderline depression and 5 patients (16.7%) had significant depression. Thus, a total of 9 patients (30%) had clinical levels of mental distress (significant anxiety or depression, based on scores ≥11).
Although the anxiety scores fluctuated, there was a trend toward improvement after 1 month. Constipation was more commonly observed in men, whereas diarrhea was more common in younger patients (<65 years) (Fig. 2c, 3a). The HADS scores for each scale range from 0 to 21. The QLQ-C30 scores for each scale range from 0 to 100. Differences in the median values were evaluated using the Friedman test, and p-values of <0.05 were considered statistically significant. The QLQ-C30 scores for each scale range from 0 to 100. The QLQ-C30 scores for each scale range from 0 to 100. Differences in the median values were evaluated using the Friedman test, and p-values of <0.05 were considered statistically significant. The QLQ-C30 scores for each scale range from 0 to 100. Differences in the median values were evaluated using the Friedman test, and p-values of <0.05 were considered statistically significant. The QLQ-C30 scores for each scale range from 0 to 100.

3. Changes in the QoL during chemotherapy

The scores for the GHS, the five functions, and the nine symptoms did not generally deteriorate during chemotherapy (Table 2). In addition, the emotional function scores were improved at 4 months after starting chemotherapy, relative to baseline levels (p=0.032). Pain was well-controlled using opioids and celiac plexus blocks (Table 1). Although the anxiety scores fluctuated, there was a trend toward improvement after starting chemotherapy. However, the depression scores remained high.

Patients with lower BMI (<21 kg/m²) had poorer GHS and physical function scores, as well as greater fatigue, relative to those in patients with higher BMI (≥21 kg/m²) (Fig. 1a-c). Constipation was more commonly observed in men, whereas diarrhea was more common in women (Fig. 2a, b). Financial difficulties were more common in men and younger patients (<65 years) (Fig. 2c, 3a), especially in younger male patients (Fig. 3b).

Table 2 Changes in quality of life scores based on the EORTC QLQ-C30 and HADS tools from baseline to 6 months

EORTC QLQ-C30	Baseline	0.5 month	1 month	2 months	3 months	4 months	5 months	6 months	p value	
Global health status	50.0 (16.7–91.7)	50.0 (16.7–91.7)	50.0 (16.7–91.7)	50.0 (16.7–91.7)	50.0 (16.7–91.7)	50.0 (16.7–91.7)	50.0 (16.7–91.7)	50.0 (16.7–91.7)	50.0 (16.7–91.7)	0.989
Physical function	86.7 (80.0–88.3)	86.7 (80.0–88.3)	86.7 (80.0–88.3)	86.7 (80.0–88.3)	86.7 (80.0–88.3)	86.7 (80.0–88.3)	86.7 (80.0–88.3)	86.7 (80.0–88.3)	86.7 (80.0–88.3)	0.989
Role function	83.3 (76.7–93.3)	83.3 (76.7–93.3)	83.3 (76.7–93.3)	83.3 (76.7–93.3)	83.3 (76.7–93.3)	83.3 (76.7–93.3)	83.3 (76.7–93.3)	83.3 (76.7–93.3)	83.3 (76.7–93.3)	0.989
Emotional function	86.7 (83.3–90.0)	83.3 (80.0–86.7)	86.7 (80.0–86.7)	86.7 (80.0–86.7)	86.7 (80.0–86.7)	86.7 (80.0–86.7)	86.7 (80.0–86.7)	86.7 (80.0–86.7)	86.7 (80.0–86.7)	0.989
Social function	66.7 (63.3–70.0)	66.7 (63.3–70.0)	66.7 (63.3–70.0)	66.7 (63.3–70.0)	66.7 (63.3–70.0)	66.7 (63.3–70.0)	66.7 (63.3–70.0)	66.7 (63.3–70.0)	66.7 (63.3–70.0)	0.989
Fatigue	33.3 (33.3–33.3)	44.4 (33.3–44.4)	33.3 (33.3–44.4)	33.3 (33.3–44.4)	33.3 (33.3–44.4)	33.3 (33.3–44.4)	33.3 (33.3–44.4)	33.3 (33.3–44.4)	33.3 (33.3–44.4)	0.989
Nausea and vomiting	0 (0–50)	18.7 (0–50)	0 (0–50)	18.7 (0–50)	0 (0–50)	18.7 (0–50)	0 (0–50)	18.7 (0–50)	0 (0–50)	0.989
Pain	0 (0–50)	0 (0–50)	0 (0–50)	0 (0–50)	0 (0–50)	0 (0–50)	0 (0–50)	0 (0–50)	0 (0–50)	0.989
Dyspnea	0 (0–33.3)	0 (0–33.3)	0 (0–33.3)	0 (0–33.3)	0 (0–33.3)	0 (0–33.3)	0 (0–33.3)	0 (0–33.3)	0 (0–33.3)	0.989
Insomnia	33.3 (0–33.3)	33.3 (0–33.3)	33.3 (0–33.3)	33.3 (0–33.3)	33.3 (0–33.3)	33.3 (0–33.3)	33.3 (0–33.3)	33.3 (0–33.3)	33.3 (0–33.3)	0.989
Appetite loss	33.3 (0–33.3)	33.3 (0–33.3)	33.3 (0–33.3)	33.3 (0–33.3)	33.3 (0–33.3)	33.3 (0–33.3)	33.3 (0–33.3)	33.3 (0–33.3)	33.3 (0–33.3)	0.989
Constipation	33.3 (0–33.3)	33.3 (0–33.3)	33.3 (0–33.3)	33.3 (0–33.3)	33.3 (0–33.3)	33.3 (0–33.3)	33.3 (0–33.3)	33.3 (0–33.3)	33.3 (0–33.3)	0.989
Diarrhea	0 (0–66.7)	0 (0–66.7)	0 (0–66.7)	0 (0–66.7)	0 (0–66.7)	0 (0–66.7)	0 (0–66.7)	0 (0–66.7)	0 (0–66.7)	0.989
Financial difficulties	33.3 (0–33.3)	33.3 (0–33.3)	33.3 (0–33.3)	33.3 (0–33.3)	33.3 (0–33.3)	33.3 (0–33.3)	33.3 (0–33.3)	33.3 (0–33.3)	33.3 (0–33.3)	0.989

HADS

| Anxiety | 7 (1–15) | 5 (1–15) | 5 (1–15) | 7 (1–15) | 4.5 (1–15) | 5 (1–15) | 5 (1–15) | 4.5 (1–15) | 5 (1–15) | 0.040 |
| Depression | 8 (1–15) | 9 (1–15) | 9 (1–15) | 8 (1–15) | 8 (1–15) | 8 (1–15) | 8 (1–15) | 8 (1–15) | 8 (1–15) | 0.361 |

Data are expressed as medians (range). Differences in the median values were evaluated using the Friedman test, and p-values of <0.05 were considered statistically significant. The QLQ-C30 scores for each scale range from 0 to 100.

The HADS scores for each scale based from 0 to 21.

* Baseline vs. 4 months based on the Dunn–Bonferroni post-hoc test (p=0.032).

EORTC QLQ-C30, European Organization for the Research and Treatment of Cancer QoL Questionnaire C-30; HADS, Hospital Anxiety and Depression Scale.
Similar tendencies were observed for reduced social functioning (Fig. 3c). Tumor control was associated with better function scores, as well as well-controlled pain, nausea/vomiting, appetite loss and constipation (Fig. 4). There were no significant differences in QoL scores according to the first-line regimen.

![Figure 1](Changes in quality of life scores according to the Body Mass Index. Data are expressed as medians (interquartile range). BMI of <21 kg/m² (n=16) vs. BMI of ≥21 kg/m² (n=14). *p<0.05, **p<0.01 from the Mann–Whitney U test. BMI, body mass index.]

![Figure 2](Changes in quality of life scores according to sex. Data are expressed as medians (interquartile range). Male sex (n=18) vs. female sex (n=12). *p<0.05, **p<0.01 from the Mann–Whitney U test.)

![Figure 3](Changes in quality of life scores according to age and sex. Data are expressed as medians (interquartile range). Age of <65 years (n=17) vs. age of ≥65 years (n=13). Males who were <65 years old (n=11) vs. others (n=19). *p<0.05, **p<0.01 from the Mann–Whitney U test.)
Figure 4: Changes in quality of life scores according to the progressive disease (PD) status. Data are expressed as medians (interquartile range). The best overall response during treatment was defined as progressive disease (PD) or all other results (Non-PD). PD (n=12) vs. Non-PD (n=12). *p<0.05, **p<0.01 on the Mann–Whitney U test.

4. Survival according to the baseline GHS score

We observed a significant difference in OS according to the baseline GHS score (median OS: 18.3 months for scores ≥50 vs. 6.4 months for scores <50, p=0.043) (Fig. 5). The multivariate cox regression analysis revealed that GHS score was an independent predictive prognostic factor (HR: 4.355, 95% CI: 1.178, 16.106, p=0.027; Table 3). There were no significant differences in the baseline characteristics of patients with GHS scores ≥50 and <50 (Table 4); however, the BMI tended to be lower in patients with GHS scores <50 (median [range]: 19.1 [15.7–22.6] kg/m² vs. 21.3 [16.0–26.2] kg/m²).
Kaplan–Meier survival curves according to the baseline global health status (GHS) score. The median survival was 18.3 months in patients with GHS scores of ≥50 (n=20) and 6.4 months in patients with GHS scores of <50 (n=10).

The Cox proportional hazard analysis of factors related to overall survival:

parameters	adjusted HR (95%CI)	p value
GHS score≥50	4.355 (1.178, 16.106)	0.027
Age	1.105 (1.006, 1.213)	0.036
Sex (Female)	2.330 (0.670, 8.105)	0.183

HR, hazard ratio; 95%CI, 95% confidence interval.

Baseline patient characteristics according to their global health status score:

Baseline global health status score	<50 (n=10)	≥50 (n=20)	p value
Age, years	64 (48–77)	64 (47–79)	0.846
Male, n (%)	5 (50)	13 (65)	0.461
BMI, kg/m²	19.1 (15.7–22.6)	21.3 (16.0–26.2)	0.061
Working, n (%)	7 (70)	9 (45)	0.260
Pancreatic tumor location, n	5/3/1/1	8/7/5/0	0.399
Metastasis, n (%)	9 (90)	14 (70)	0.372
Metastatic sites, n	5/0/2/2	7/3/2/2	0.547
Liver/lung/peritoneum/other	2 (20)	6 (30)	0.682
Biliary stent use, n (%)	3 (30)	6 (30)	1.000
Opioid use, n (%)	6 (60)	5 (25)	0.108
Non-opioid use, n (%)	1 (10)	3 (15)	1.000
Celiac plexus block, n (%)	5/5	15/5	0.231
First-line regimen, n	5/5	15/5	0.231

Data are expressed as medians (range) or numbers (percentage). Differences were evaluated using the Mann–Whitney U test for continuous variables and the χ² test or Fisher’s exact test for categorical variables. Differences were considered statistically significant at p values of <0.05. BMI, body mass index; FOLFIRINOX, oxaliplatin/irinotecan/fluorouracil/ 5FU/leucovorin; mFOLFIRINOX, modified FOLFIRINOX; GnP, gemcitabine plus nab-paclitaxel.
IV. Discussion

This prospective study evaluated the longitudinal changes in the QoL of Japanese patients who were receiving chemotherapy for unresectable advanced pancreatic cancer. These patients already had low QoL values before starting chemotherapy, especially in terms of the GHS and mental distress scores. However, these scores generally did not worsen during the chemotherapy treatment, which suggests that Japanese patients with advanced pancreatic cancer can maintain their QoL during standard chemotherapy, as previously observed in Western patients.3,5

The rate of mental distress (30%) in the present study was comparable to that in previous studies (13–50%).20,21 For example, patients with pancreatic cancer may develop depressive symptoms before receiving a diagnosis of cancer.22,23 A literature review has indicated that the pathophysiology can involve immunological effects (production of anti-serotonin antibodies), hormonal effects (increased urinary serotonin excretion), paraneoplastic effects (production of a false neurotransmitter), and biochemical effects (acid-base abnormalities, anemia, and metabolic abnormalities).24 Interestingly, while the depression score slightly improved immediately after starting chemotherapy, it subsequently regressed and then remained fairly consistent throughout the rest of the clinical course, regardless of the therapeutic effect. This suggests that various clinical and biological factors might influence mental status, which should be monitored in patients receiving chemotherapy for advanced pancreatic cancer. It has been reported that cognitive behavioral therapy might benefit cancer patients, mentally and physically, with an improvement in the QoL.25 Therefore, it may be prudent to consider combining pharmacological therapy with nonpharmacological treatments, such as cognitive behavioral therapy.

The patients’ characteristics were also associated with variability in QoL scores. For example, patients with lower BMI (<21 kg/m²) had poorer GHS and physical function scores, with greater fatigue during chemotherapy. Furthermore, the effects on defecation were variable, with men typically experiencing constipation and women typically experiencing diarrhea. In addition, younger men (<65 years old) tended to experience the worst financial difficulties and lowest social functioning, which may be related to their role in supporting families. Therefore, these patients should be educated regarding the available social support systems.

Some studies have indicated that the baseline QoL can be used to predict survival outcomes.3,26 Similarly, the present study revealed that high baseline GHS scores were associated with good OS among patients receiving chemotherapy for advanced pancreatic cancer. Thus, the GHS score might be useful as a prognostic factor before starting chemotherapy for advanced pancreatic cancer, although further studies are needed to evaluate this possibility.

The present study has several limitations. First, the sample size was relatively small,
limiting the power of the analyses. Second, the study did not include a control group that
did not receive standard chemotherapy. Thus, the findings might not generalize to all
Japanese patients with pancreatic cancer. Nevertheless, the present study provided a
prospective longitudinal evaluation of the QoL, and we are not aware of any similar
studies that have examined multiple dimensions of the QoL in Japanese patients
receiving chemotherapy for advanced pancreatic cancer. In clarifying the QoL of patients
in multiple dimensions, including those that involve physical, psychological and social
aspects, medical and nursing care may be improved.

V. Conclusions

The present findings suggest that Japanese patients with unresectable advanced
pancreatic cancer can maintain their QoL while receiving standard chemotherapy.
Furthermore, tumor control was associated with improved QoL in this setting and the
patients’ QoL scores varied during chemotherapy, depending on various characteristics.
In addition, high QoL at baseline was associated with a good prognosis. Therefore, we
believe that it is important to monitor QoL before and during chemotherapy in patients
with advanced pancreatic cancer.

Acknowledgments

The authors would like to express our deepest gratitude to the patients for their
participation in this study. In addition, the authors would like to thank the colleagues
who helped collecting the data.

Conflicts of Interest and Sources of Funding: The authors declare that they have no
conflicts of interest. This research was not supported by any funds or grants.

References

1) Vital Statistics Japan. Ministry of Health, Labour and Welfare.
 URL: https://ganjoho.jp/reg_stat/statistics/dl/index.html#mortality. (updated 16,
 May 2019; cited 1, June 2019).
2) Conroy T, Desseigne F, Ychou M, Bouché O, Guimbaud R, Bécouarn Y et al.
 FOLFIRINOX versus gemcitabine for pancreatic cancer. *N Engl J Med.* 2011, 364,
 1817-1825. DOI: 10.1056/NEJMoa1011923
3) Gourgou-Bourgade S, Bascoul-Mollevi C, Desseigne F, Ychou M, Bouché O, Guimbaud R et al. Impact of FOLFIRINOX compared with gemcitabine on quality of life in patients with metastatic pancreatic cancer: results from the PRODIGE 4/ACCORD 11 randomized trial. *J Clin Oncol.* 2013, 31, 23-29. DOI: 10.1200/JCO.2012.44.4869

4) Von Hoff DD, Ervin T, Arena FP, Chiorean EG, Infante J, Moore M et al. Increased survival in pancreatic cancer with nab-paclitaxel plus gemcitabine. *N Engl J Med.* 2013, 369, 1691-1703. DOI: 10.1056/NEJMoa1304369

5) Chiritescu G, Dumon K, Verslype C, Prenen H, Houbiers G, Peeters M et al. Gemcitabine with nab-paclitaxel in patients with locally advanced or metastatic pancreatic ductal adenocarcinoma (PDAC): a quality of life randomized cross-over study (QOLINPAC). Abstract Journal, *Ann Oncol.* ESMO 20th World Congress on Gastrointestinal Cancer in Barcelona, 2018, 29.

6) Okusaka T, Ikeda M, Fukutomi A, Ioka T, Furuse J, Ohkawa S et al. Phase II study of FOLFIRINOX for chemotherapy-naïve Japanese patients with metastatic pancreatic cancer. *Cancer Sci.* 2014, 105, 1321-1326. DOI: 10.1111/cas.12501

7) Ueno H, Ikeda M, Ueno M, Mizuno N, Ioka T, Omuro Y et al. Phase I/II study of nab-paclitaxel plus gemcitabine for chemotherapy-naïve Japanese patients with metastatic pancreatic cancer. *Cancer Chemother Pharmacol.* 2016, 77, 595-603. DOI: 10.1007/s00280-016-2972-3

8) Yoshida K, Iwashita T, Uemura S, Maruta A, Okuno M, Ando N et al. A multicenter prospective phase II study of first-line modified FOLFIRINOX for unresectable advanced pancreatic cancer. *Oncotarget.* 2017, 8, 111346-111355. DOI: 10.18632/oncotarget.22795

9) Ozaka M, Ishii H, Sato T, Ueno M, Ikeda M, Uesugi K et al. A phase II study of modified FOLFIRINOX for chemotherapy-naïve patients with metastatic pancreatic cancer. *Cancer Chemother Pharmacol.* 2018, 81, 1017-1023. DOI: 10.1007/s00280-018-3577-9

10) Peppercorn JM, Smith TJ, Helft PR, DeBono DJ, Berry SR, Wollins DS et al. American society of clinical oncology statement: toward individualized care for patients with advanced cancer. *J Clin Oncol.* 2011, 29, 755-760. DOI: 10.1200/JCO.2010.33.1744

11) Zabora J, Brintzenhofeszoc K, Curbow B, Hooker C & Piantadosi S. The prevalence of psychological distress by cancer site. *Psychooncology.* 2001, 10, 19-28. DOI: 10.1002/1099-1611(200101/02)10:1<19::aid-pon501>3.0.co;2-6

12) Colleoni M, Mandala M, Peruzzotti G, Robertson C, Bredart A & Goldhirsch A. Depression and degree of acceptance of adjuvant cytotoxic drugs. *Lancet.* 2000, 356, 1326-7. DOI: 10.1016/S0140-6736(00)02821-X
13) Oken MM, Creech RH, Tormey DC, Horton J, Davis TE, McFadden ET et al. Toxicity and response criteria of the Eastern Cooperative Oncology Group. *Am J Clin Oncol*. 1982, 5, 649-655.

14) Common Toxicity Criteria, Version 2.0 Publish Date April 30, 1999. URL: http://www.jcog.jp/ (cited 5, September 2020).

15) Eisenhauer EA, Therasse P, Bogaerts J, Schwartz LH, Sargent D, Ford R et al. New response evaluation criteria in solid tumours: Revised RECIST guideline (version 1.1). *Eur J Cancer*. 2009, 45, 228-247. DOI: 10.1016/j.ejca.2008.10.026

16)Aaronson NK, Ahmedzai S, Bergman B, Bullinger M, Cull A, Duez NJ et al. The European Organization for Research and Treatment of Cancer QLQ-C30: a quality-of-life instrument for use in international clinical trials in oncology. *J Natl Cancer Inst*. 1993, 85, 365-376. DOI: 10.1093/jnci/85.5.365

17) Zigmond AS & Snaith RP. The hospital anxiety and depression scale. *Acta Psychiatr Scand*. 1983, 67, 361-370. DOI: 10.1111/j.1600-0447.1983.tb09716.x

18) Kobayashi K, Takeda F, Teramukai S, Gotoh I, Sakai H, Yoneda S et al. A cross-validation of the European Organization for Research and Treatment of Cancer QLQ-C30(EORTC QLQ-C30) for Japanese with lung cancer. *Eur J Cancer*. 1998, 34, 810-815. DOI: 10.1016/s0959-8049(97)00395-x

19) Kugaya A, Akechi T, Okuyama T, Okamura H & Uchitomi Y. Screening for psychological distress in Japanese cancer patients. *Jpn J Clin Oncol*. 1998, 28, 333-338. DOI: 10.1093/jjco/28.5.333

20) Massie MJ. Prevalence of depression in patients with cancer. *J Natl Cancer Inst Monogr*. 2004, 32, 57-71. DOI: 10.1093/jncimonographs/lgh014

21) Akizuki N, Shimizu K, Asai M, Nakano T, Okusaka T, Shimada K et al. Prevalence and predictive factors of depression and anxiety in patients with pancreatic cancer: a longitudinal study. *Jpn J Clin Oncol*. 2016, 46, 71-77. DOI: 10.1093/jjco/hyv169

22) Green AI & Austin CP. Psychopathology of pancreatic cancer. A psychobiologic probe. *Psychosomatics*. 1993, 34, 208-221. DOI: 10.1016/S0033-3182(93)71882-4

23) Carney CP, Jones L, Woolson RF, Noyes R Jr & Doebbeling BN. Relationship between depression and pancreatic cancer in the general population. *Psychosom Med*. 2003, 65, 884-888. DOI: 10.1097/01.psy.000008588.23348.d5

24) Makrilia N, Indeck B, Syrigos K & Saif MW. Depression and pancreatic cancer: a poorly understood link. *JOP*. 2009, 10, 69-76.

25) Daniels S. Cognitive behavior therapy for patients with cancer. *J Adv Pract Oncol*. 2015, 6, 54-56.

26) Braun DP, Gupta D & Staren ED. Longitudinal health-related quality of life assessment implications for prognosis in stage IV pancreatic cancer. *Pancreas*. 2013, 42, 245-249. DOI: 10.1097/MPA.0b013e31825b9f56
CONTENTS

ORIGINAL ARTICLES

Structuring the Effects of Functional Recovery Care in a Private Home with Care Services for Older People
Yuko FUJIO et al. p.1

Advance Care Planning in Japan; Survey of the Primary Care Physicians’ View
Yumi FUKUYAMA et al. p.11

Communication Gaps in Intersectoral Healthcare Professional Collaboration for Hospital Discharge Process of Patients With Dementia
Miki ARAZOE et al. p.24

Quality of Life During Chemotherapy in Japanese Patients with Unresectable Advanced Pancreatic Cancer
Kaoru SHIBAYAMA et al. p.42

SHORT PAPERS

Examining the Relationship between Selective Mutism and Autism Spectrum Disorder
Toru SUZUKI et al. p.55

A Study of the Measures Taken by Local Governments for Care Prevention; Examination by Questionnaire Survey
Yuji MARUYAMA p.63

REVIEW ARTICLES

Current Status of Supporting Children and Families Needing Home Health Care; From the Viewpoint of a Coordinator
Reiko HATAKEYAMA et al. p.73

A Study on the Papers of Menstruation Scales; The Development of a Scale for Menstrual Abnormalities
Eriko YAMAMOTO p.89

Review the Framework of Intellectual Disability from a Physiological / Pathological Perspective in Japan
Chaeyoon CHO p.101

CASE REPORT & ACTIVITY REPORT

A Study on the Grief Work of an Elderly Woman Who Encountered the Unexpected Death of her Spouse at Home
Makiko YAMAUCHI et al. p.112

Published by
Asian Society of Human Services
Yamaguchi, Japan