Moments of Subsets of General Equiangular Tight Frames

Marina Haikin
Amazon, Tel Aviv, Israel
mkokotov@gmail.com

Ram Zamir
Tel Aviv University, Israel
zamir@eng.tau.ac.il

Abstract

This note outlines the steps for proving that the moments of a randomly-selected subset of a general ETF (complex, with aspect ratio $0 < \gamma < 1$) converge to the corresponding MANOVA moments. We bring here an extension for the proof of the 'Kesten-Mckay' moments (real ETF, $\gamma = 1/2$) [1]. In particular, we establish a recursive computation of the rth moment, for $r = 1, 2, \ldots$, and verify, using a symbolic program, that the recursion output coincides with the MANOVA moments.

I. RECURSIVE COMPUTATION OF MOMENTS

Let F be a unit-norm equiangular tight frame comprised of n vectors in \mathbb{C}^m, $\gamma = \frac{m}{n} < 1$ is the aspect ratio of the frame. We define $s = \frac{1}{2} \frac{(1-x)}{\sqrt{x}}$, where $x = \gamma^{-1} - 1$ and denote a generalized conference matrix as

$$S = \sqrt{\frac{n-1}{x}} \cdot \left(F'F - \frac{1}{2\gamma} \cdot I_n \right)$$

(1)

which satisfies:

(i) $S_{i,i} = \text{constant} = \sqrt{n-1}(1-x)/2\sqrt{x} \triangleq \sqrt{n-1} \cdot s$,
(ii) S is conjugate-symmetric and $|S_{i,j}| = 1$ for every $i, j \in [n]$ with $i \neq j$, and
(iii) $S'S \propto I_n$, i.e., the off-diagonal elements of S^2 are zero, while the diagonal elements are equal to $(n-1)(x+1)^2/4x$.

Note that $x/(n-1)$ is the Welch bound, i.e., the squared absolute cross correlation between the frame vectors. For $\gamma = 0.5$, we have $x = 1, s = 0$, so $S = \sqrt{n-1} \cdot (F'F - I_n)$, and $S'S = (n-1)I$, in agreement with the properties of the conference matrix in [1].

\[^1 \text{Now at Amazon. Previously at Tel Aviv University where this work was performed.} \]
We extend the proof in [1] to derive the expression for moments of the random submatrix $X_S = P S P$ defined as

$$m_k^S = \frac{1}{n^{k/2+1}} \cdot E \left\{ \text{trace}(X_S^k) \right\} = \sum_{t=1}^{k} \left(\sum_{\pi \in \Pi(k,t)} V_n(\pi) \right) \cdot p^t$$

(2)

where P is a diagonal matrix such that the diagonal elements are independent random variables Bernoulli(p). For every partition π of $[k]$ into t blocks, $V_n(\pi)$ is sum of products of k elements from the generalized conference matrix S, as a function of the partition. The sum is over all possible t distinct values from $[n]$ according to the blocks of π (value per block),

$$V_n(\pi) \triangleq \frac{1}{n^{k/2+1}} \sum_{a \in L_n(\pi)} S_{a(1),a(2)} S_{a(3),a(4)} \cdots S_{a(k),a(1)},$$

(3)

$$L_n(\pi) \triangleq \{ a : [k] \rightarrow [n] : \{a^{-1}(a(i)) : i \in [k] \} = \pi \}.$$

(4)

The main difference from the KM case will be the computation of $V_n(\pi)$. Lemma 16 in [1] will be replaced by

Lemma 1. For every non-crossing partition $\pi \in \Pi(k,t)$, the following holds: if the edges of G_π partition into m simple cycles of sizes l_1, \ldots, l_m, then as $n \rightarrow \infty$,

$$V_n(\pi) \rightarrow A_{l_1} \cdots A_{l_m}$$

(5)

where

$$A_{l+1} = - \sum_{i=1}^{l} A_i A_{l+1-i}, \quad A_1 = s, A_2 = 1.$$

(6)

Note that for $\gamma = 0.5$, $s = 0$ and we get that for odd cycle, i.e., odd l_i, $A_{l_i} = 0$, and for even l_i, $A_{l_i} = (-1)^{l_i/2-1} \cdot C_{l_i/2-1}$. Thus if G_π contains any odd cycle, then $V_n(\pi) \rightarrow 0$ otherwise $V_n(\pi)$ converges to a product of Catalan numbers, in agreement with Lemma 16 in [1].

For general γ ($s \neq 0$), we don’t have yet an analogy to Lemma 8, but $\sum_{\pi \in \Pi(k,t)} V_n(\pi)$ can be computed by counting all $N(k,t)$ (Narayana number) non-crossing partitions of $[k]$ into t blocks and for each induced cactus to compute $V_n(\pi)$ according to Lemma [1].

The desired moments of a (Bernoulli-\(p\) selected) subset of ETF F are then derived by using (1) and the binom formula:

$$m_k \triangleq E \left\{ \frac{1}{n} \cdot \text{trace}((P F' F P)^k) \right\}$$

$$= \sum_{j=0}^{k} \binom{k}{j} \cdot x^{j/2} \cdot \left(\frac{x+1}{2} \right)^{k-j} \cdot p^{j=0} \cdot \frac{1}{n^{j/2+1}} \cdot E \left\{ \text{trace}(X_S^j) \right\}$$

$$= \left(\frac{x+1}{2} \right)^{k} \cdot p + \sum_{j=1}^{k} \binom{k}{j} \cdot x^{j/2} \cdot \left(\frac{x+1}{2} \right)^{k-j} \cdot m_j^S$$

(7)

where m_j^S is defined in [2], and $j = 0$ denotes 1 if $j = 0$ or 0 otherwise.
Before we turn to the proof, we apply the recursion for several first moments:

\[
\begin{align*}
V_0 & = 1 \\
A_1 & = s \\
A_2 & = 1 \\
A_3 & = -2s \\
A_4 & = 4s^2 - 1 \\
A_5 & = -8s^3 + 6s \\
A_6 & = 16s^4 - 24s^2 + 2
\end{align*}
\]

Proof. We follow the notations in \[1\] \(\Delta(a(1), a(2), \ldots, a(k)) = S_{a(1),a(2)}S_{a(2),a(3)}\cdots S_{a(k),a(1)}\). If \(a_j = a_{j+1}\) for any \(j \in [k-1]\) or \(a_k = a_1\),

\[
V_n(\pi) = \frac{1}{np^{k/2+1}} \sum_{a \in L_n(\pi)} \Delta(a(1), \ldots, a(j-1), a(j+1), \ldots, a(k))
\]

\[
= \frac{\sqrt{n} - 1}{np^{k/2+1}} \sum_{a \in L_n(\pi)} \Delta(a(1), \ldots, a(j-1), a(j+1), \ldots, a(k))
\]

\[
= \frac{s}{p(n-1)^{k/2+1}} \sum_{a \in L_n(\pi \setminus \{j\})} \Delta(a(1), \ldots, a(j-1), a(j+1), \ldots, a(k)) + o(1)
\]

were the first equality follows from the fact that the diagonal entries of \(S\) are \(s \sqrt{n-1}\), thus \(S_{a(j+1)a(j+1)} = s \sqrt{n-1}\). The restriction of \(\pi \setminus \{j\}\) to \([k] \setminus j\) results in a partition \(\pi'\) of \([k] \setminus j\) into same \(t\) blocks besides removing \(j\) from the block \(\pi(j)\). Thus the above expression of \(V_n(\pi)\) implies

\[
V_n(\pi) \to s \cdot V_n(\pi'),
\]

where throughout the proof, \(\to\) means as \(n \to \infty\). This means that two consecutive indices which belong to same block and contribute a loop to the graph \(G_\pi\), contribute a constant factor \(s\) to \(V_n(\pi)\). This claim, as well as the derivation in \[8\]-\[10\], extends for several loops. Given partition \(\pi\) with \(r\) loops in total (in one or more blocks), we can consider a *squeezed* partition \(\pi'\) with same number of blocks and \(k' = k - r\). Each block \(B_i'\) for \(i = 1, \ldots, t\), is a squeezed block \(B_i\), with only one representative index of sequence of several consecutive equal indices.

\[
V_n(\pi) \to s^r \cdot V_n(\pi')
\]

For example a partition 122234422333341 translated to 12342, with a factor of \(s^8\).

Now we focus on estimation of \(V_n(\pi')\). \(G_{\pi'}\) is a loop-free graph and thus Lemma 6 in \[1\] holds for the same reasons. Lemma 12(iv),12(v) also holds due to similar the properties of \(S\), and thus Lemma 14 - which relies on all of the above - holds. This proves the claim of vanishing crossing partitions, i.e., let \(\pi' \in \prod(k', t)\) be a crossing partition, then \(V_n(\pi') \to 0\).

We follow the proof by induction of Lemma 16 in \[1\]. Lemma 12(i) holds again by \(S\) properties and thus for \(t = 2\), \(V_n(\pi') = V_n(\{1\}, \{2\}) = 1\). As for \(G_\pi\), with assumed \(r\) cycles of sizes 1, proving the lemma for \(V_n(\pi')\), will immediately imply the proof for \(V_n(\pi)\), as \(A_1' = s^r\). Assuming that the (loops-removed) partition \(\pi'\) is non-crossing,
it follows that the graph $G_{\pi'}$ is a cactus, and by Lemma 15 it is guaranteed to contain a singleton leaf (block in the partition). As we deal with π', with $m' = m - r$ cycles, we aim to prove that

$$V_n(\pi') \rightarrow A_{l_1} \cdots A_{l_{m'}}.$$ \hfill (13)

Case I of the proof refers to the case when the singleton block resides in a cycle of length 2, i.e., if the singleton is $\{k\} \in \pi$, $\pi(1) = \pi(k)$. A similar derivation as in (1) implies

$$V_n(\pi') = V_n(\pi'') + o(1).$$ \hfill (14)

Our induction hypothesis and (14), imply

$$V_n(\pi') \rightarrow A_{l_1} \cdots A_{l_{m'-1}}.$$ \hfill (15)

Since $l_m = 2$ and $A_2 = 1$, this establishes (13).

Case II of the proof refers to the case when $\{k\} \in \pi$ (the singleton block) resides in a cycle of length $l \geq 3$. With similar analysis to (1) we get:

$$V_n(\pi') = - \sum_{i=2}^{l} V_n(\pi'^i) + o(1).$$ \hfill (16)

Assuming $l_m = l$ and applying the induction hypothesis, we have

$$V_n(\pi') \rightarrow -A_{l_1} \cdots A_{l_{m'-1}} \sum_{i=2}^{l} A_{l-1}A_{l-i+1} = -A_{l_1} \cdots A_{l_{m'-1}} \sum_{i=1}^{l-1} A_{l-i}. $$ \hfill (17)

Applying the identity (6), we get $V_n(\pi') \rightarrow A_{l_1} \cdots A_{l_{m'}}$, thereby establishing (13).

II. IMPLEMENTATION OF THE DERIVED ALGORITHM

```python
import numpy as np
import sympy
from sympy.utilities.iterables import multiset_partitions
import scipy.special

# recursive calculation of A(l) for l=1..n, arr_A[i]=A(i+1)
def calc_A(n,s):
    arr_A = np.zeros(n)
    arr_A[0] = s
    arr_A[1] = 1
    for i in np.arange(n-2)+2:
        arr_A[i] = -sum([arr_A[j]*arr_A[i-j-1] for j in np.arange(i)])
    return arr_A

# generation of all non crossing partitions of k to t blocks
def calc_partitions_k_t(k,t):
    partitions = list(multiset_partitions(np.arange(k),t))
    non_crossing = []
    non_crossing_len = []
    for part in partitions:
        cross = 0
        n = len(part)
        if n == 1:
            non_crossing.append(part)
        else:
            for b in part:
                if len(b) == 1:
                    non_crossing.append(part)
    return non_crossing
```
for b1 in part:
 for b2 in part:
 if (b2[0]>b1[0]) & (len(np.array(np.where((b1>b2[0])&(b1<b2[-1]))))[0])>0:
 cross = 1
 break
 if cross==1:
 break
 if cross==0:
 non_crossing.append(part)
 non_crossing_len.append([len(b) for b in part])
return non_crossing

Find length of cactus leaves which correspond to a non-crossing partition

generate lists off all intervals within blocks of partition
list_pairs: a list of consecutive pairs in blocks [block[i],block[i+1]] for every block in the partition
list_pairs_intervals: a list of intervals between consecutive pairs in blocks block[i+1]-block[i] for every block in the partition
def create_pairs_lists(part):
 list_pairs = []
 list_pairs_intervals = []
 for block in part:
 b_len = len(block)
 if b_len > 1:
 for i in range(b_len-1):
 list_pairs.append([block[i],block[i+1]])
 list_pairs_intervals.append(block[i+1]-block[i])
 return [list_pairs,list_pairs_intervals]

sort the lists by the length of the intervals.
start computing the length of cycle which corresponds to an interval, from shorter to longer -
for each interval substruct the cycles which correspond to smaller intervals contained in the interval
def update_lists(list_pairs,list_intervals):
 zipped_lists = zip(list_intervals, list_pairs)
 sorted_pairs = sorted(zipped_lists)
 tuples = zip(*sorted_pairs)
 list_intervals, list_pairs = [list(tuple) for tuple in tuples]
 for i in range(len(list_intervals)):
 intersections_length = 0
 for j in range(i):
 if (list_pairs[j][0] > list_pairs[i][0]) & (list_pairs[j][1] < list_pairs[i][1]):
 intersections_length = intersections_length + list_intervals[j]
 list_intervals[i] = list_intervals[i] - intersections_length
 return list_intervals

generated the updated lists and add the cycle which correspond to an outer interval [k, 0],
the length of which is k - sum of all cycles
def partition_to_cactus_sizes(part,k):
 [list_pairs,list_intervals] = create_pairs_lists(part)
 if len(list_pairs)>0:
 list_intervals = update_lists(list_pairs,list_intervals)
 cactus_sizes = list_intervals
 cactus_sizes.append(k - sum(cactus_sizes))
 else:
 cactus_sizes = [k]
 return cactus_sizes

calculation of the 'centralized' moments

calculation of asymptotic V_n(pi) for a given partition by eq. 5 and sum over all possible (k,t) non-crossing partitions
def calc_V_pi_sum(k,t):
 V_pi_sum = 0
 cactuses = [partition_to_cactus_sizes(part,k) for part in calc_partitions_k_t(k,t)]
 for cactus in cactuses:
 V_pi_sum = V_pi_sum + np.prod(arr_A[np.array(cactus)-1])
 return V_pi_sum

calculation of m_s_k by eq. 2
def calc_m_s(k,p):
 m_s = 0
 for t in np.arange(k)+1:
 m_s = m_s + calc_V_pi_sum(k,t)*p**t
 return m_s

''
binom formula for 'de-centralization' of the moments, eq.7
''

def calc_m(k,x,p):
 m = ((x+1)/2)**k*p
 for j in np.arange(k)+1:
 m = m + scipy.special.binom(k,j)*x**(j/2)*((x+1)/2)**(k-j)*(m_s_vec[j-1])
 return m

run calculation of 10 first moments
gamma = np.sqrt(0.5)
p = 0.6
x = 1/gamma - 1
s = (1-x)/(2*np.sqrt(x))
d = 10

arr_A = calc_A(d,s)
m_s_vec = [calc_m_s(k,p) for k in np.arange(d)+1]
m_vec = [calc_m(k,x,p) for k in np.arange(d)+1]

And the output is:

gamma = 0.7071067811865476
p = 0.6
c---
x = 0.4142135623730949
s = 0.4550898605622756
c------------------------------
calc ETF moments until d = 10

A[l] for l = 1..10
[0.4550898605622756, 1.0, -0.9101797211244551, -0.1715728752538092, 1.976521599999434, -2.2842712474619047, -2.1862701245144653, 10.1269837220890917, -8.324794719173925, -21.347181155833745]
A[l] for l = 1..6 by manual application of eq.6
[0.4550898605622756, 1.0, -0.9101797211244551, -0.17157287525380915, -0.1715728752538092, 1.976521599999432, -2.2842712474619047]

example for all partitions (5,3) and the corresponding cactus lengths
[[0, 1, 2], [3, [4]] [1, 1, 3]
[[0, 1, 3], [2, [4]] [1, 2, 2]
[[0, 1], [2, 3], [4]] [1, 1, 3]
[[0, 1, 4], [2], [3]] [1, 3, 1]
[[0, 1], [2, 4], [3]] [1, 2, 2]
[[0, 1], [2], [3, 4]] [1, 1, 3]
[[0, 2, 3], [1], [4]] [1, 2, 2]
[[0, 2, 4], [1], [3]] [2, 2, 1]
[[0, 2], [1], [3, 4]] [1, 2, 2]
[[0, 3], [1, 2], [4]] [1, 2, 2]
The output of a symbolic calculation is:

```plaintext
gamma = gamma
p = p
------------------------------------
x = x
s = s
------------------------------------
calc ETF moments until d = 10
------------------------------------
A[l] for l = 1..10
[s, 1, -2*s, 4*s**2 - 1, -8*s**3 + 6*s, 16*s**4 - 24*s**2 + 2, 
-32*s**5 + 80*s**3 - 20*s, 64*s**6 - 240*s**4 + 120*s**2 - 5, -128*s**7 + 672*s**5 - 560*s**3 + 70*s, 
256*s**8 - 1792*s**6 + 2240*s**4 - 560*s**2 + 14]
A[l] for l = 1..6 by manual application of eq.6
[s, 1, -2*s, 4*s**2 - 1, -8*s**3 + 6*s, 16*s**4 - 24*s**2 + 2]
------------------------------------
m_s[k] for k = 1..10 [to save space we show only first 6]
p*s, p**2 + p*s**2, -2*p**3*s + 3*p**2*s**2 + p*s**3, 
p**4*(4*s**2 - 1) + p**3*(-8*s**2 + 2) + 6*p**2*s**2 + p*s**4, 
p**5*(-8*s**3 + 6*s) + p**4*(5*s*(4*s**2 - 1) - 10*s) + p**3*(-20*s**2 + 10*s) + 10*p**2*s**2 + p**2*s**3 + p*s**5, 
p**6*(16*s**4 - 24*s**2 + 2) + p**5*(36*s**2 + 6*s*(-8*s**3 + 6*s) - 6) + 
p**4*(15*s**2*(4*s**2 - 1) - 60*s**2 + 5) + p**3*(-40*s**4 + 30*s**2) + 15*p**2*s**4 + p*s**6, 
...
```

The example of cactus length for partition

\[[0,2],[1],[3],[4,5,7,10],[6],[8,9],[11]\]

\[[1, 1, 2, 2, 2, 4]\]

```plaintext
m_s[k] for k = 1..10
[0.273059163373365, 0.4842640687119286, 0.35144954734733014, 0.5249702161277665, 0.44014600164558493, 
0.6031675926696468, 0.5443213610399722, 0.7080038062958746, 0.668360374969959, 0.8395068505692707]
```

```plaintext
m_s[k] for l = 1..4 by manual application of eq.2
[0.273059163373365, 0.4842640687119286, 0.35144954734733014, 0.5249702161277665]
```

```plaintext
m[k] for k = 1..10
[0.6, 0.7491168824543142, 0.994902589451768, 1.3553641556371059, 1.8704311672940084, 2.60699842184038, 
3.6332128569262222, 5.09163541233709, 7.15107693458817, 10.05923853820702]
```

```plaintext
m[k] for l = 1..10 by Dubbs and Edelman (Manova moments triangles in Fig.1)
[0.6, 0.7491168824543142, 0.99490258945177, 1.355364155637106, 1.8704311672940082, 2.606998421840386, 
3.6332128569262222, 5.09163541233708, 7.151076934588165, 10.05923853820706]
```

The output of a symbolic calculation is:

```plaintext
gamma = gamma
p = p
------------------------------------
x = x
s = s
------------------------------------
calc ETF moments until d = 10
------------------------------------
A[l] for l = 1..10
[s, 1, -2*s, 4*s**2 - 1, -8*s**3 + 6*s, 16*s**4 - 24*s**2 + 2, 
-32*s**5 + 80*s**3 - 20*s, 64*s**6 - 240*s**4 + 120*s**2 - 5, -128*s**7 + 672*s**5 - 560*s**3 + 70*s, 
256*s**8 - 1792*s**6 + 2240*s**4 - 560*s**2 + 14]
A[l] for l = 1..6 by manual application of eq.6
[s, 1, -2*s, 4*s**2 - 1, -8*s**3 + 6*s, 16*s**4 - 24*s**2 + 2]
------------------------------------
m_s[k] for k = 1..10 [to save space we show only first 6]
p*s, p**2 + p*s**2, -2*p**3*s + 3*p**2*s**2 + p*s**3, 
p**4*(4*s**2 - 1) + p**3*(-8*s**2 + 2) + 6*p**2*s**2 + p*s**4, 
p**5*(-8*s**3 + 6*s) + p**4*(5*s*(4*s**2 - 1) - 10*s) + p**3*(-20*s**2 + 10*s) + 10*p**2*s**2 + p**2*s**3 + p*s**5, 
p**6*(16*s**4 - 24*s**2 + 2) + p**5*(36*s**2 + 6*s*(-8*s**3 + 6*s) - 6) + 
p**4*(15*s**2*(4*s**2 - 1) - 60*s**2 + 5) + p**3*(-40*s**4 + 30*s**2) + 15*p**2*s**4 + p*s**6, 
...
```

The output of a symbolic calculation is:
\[\begin{align*}
m[k] & \text{ for } k = 1..10 \\
0.5*p*(-x + 1) + p*(x/2 + 1/2), \\
1.0*p*(-x + 1)*(x/2 + 1/2) + p*(x/2 + 1/2)**2 + 1.0*x**1.0*(p**2 + p*(-x + 1)**2/(4*x)), \\
1.5*p*(-x + 1)*(x/2 + 1/2)**2 + p*(x/2 + 1/2)**3 + 3.0*x**1.0*(p**2 + p*(-x + 1)**2/(4*x))**2/(4*x)), \\
& \ldots \\
\end{align*}\]

\[\begin{align*}
m[k] & \text{ for } l = 1..10 \text{ by Dubbs&Edelman (Manova moments triangles in Fig.1)} \\
[p, \\
p**2*x + p, \\
p**3*(x**2 - x) + 3*p**2*x + p, \\
p**4*(x**3 - 3*x**2 + x) + p**3*(6*x**2 - 4*x) + 6*p**2*x + p, \ldots \\
\end{align*}\]

\[\begin{align*}
difference \text{ between the simplified symbolic expressions of first 10 moments} \\
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0] \\
\end{align*}\]

\textbf{REFERENCES}

[1] M. Magsino, D. G. Mixon, and H. Parshall, “Kesten–Mckay law for random subensembles of paley equiangular tight frames,” \textit{Constructive Approximation}, pp. 1–22, 2020.