Therapeutic Efficacy of Antibacterial Ocellatin Peptides—A Comprehensive Review

Chandra Sekar Ponnusamy 1, Rajasekaran Ramalingam 1,*

1 Bioinformatics Lab, Department of Biotechnology, School of BioSciences and Technology, VIT Deemed to be University, Vellore, Tamil Nadu, India
* Correspondence: rrajasekaran@vit.ac.in (R.R.); Scopus Author ID 21739948000

Received: 22.09.2021; Revised: 20.10.2021; Accepted: 24.10.2021; Published: 20.11.2021

Abstract: Antimicrobial peptides (AMPs), ascribed to their decreased microbial drug resistance, can be employed as potent small-molecule drugs to treat various diseases. AMPs have been conserved in a wide variety of living organisms as a result of the evolution of the innate immune system. Notably, Ocellatin AMPs derived from South American Leptodactylus genus frogs have a higher therapeutic efficacy against infections. Inhibitory activity of Ocellatin AMPs against bacterial membranes is determined by the dynamic interplay of peptide cationic, hydrophobicity, helicity, and amphipathicity. Another advantage of using AMPs as drug candidates is their cell selectivity that is non-hemolytic to human cells. Ocellatin AMPs with optimal hydrophobic residues would therefore be a recommended therapeutic candidate. Henceforth, such AMPs could be used as an alternative strategy in curbing antimicrobial resistance. It is noteworthy that the therapeutic efficacy of Ocellatins is to be appreciated for its broad application as it has been proved to be active against several humans, animal, and plant bacterial pathogens.

Keywords: antimicrobial peptides; Ocellatin, antibiotic resistance; membranolytic peptides; therapeutic modifications.

© 2021 by the authors. This article is an open-access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

1. Introduction

Antibiotics, invented by Alexander Fleming after World War I, have been used as a wonder drug for almost a century [1]. However, such antibiotics are becoming a failure due to their extensive overuse in recent decades, resulting in antimicrobial resistance (AMR) [2]. This alarming rate of antibiotic failure prompted scientists to emphasize alternate therapeutics [3–5]. Nothing in biology makes sense unless viewed from the perspective of evolution, from which we seek asylum in antimicrobial peptides (AMPs), that has evolved as innate host molecules in a wide range of organisms around 2.5 billion years ago [6–8].

Compared to AMPs from other organisms, AMPs isolated from the skin secretion of anurans (frogs and toads) hold out as a promising therapeutic candidate for antimicrobial resistance [9]. Generally, the skin serves as a gateway between an organism’s internal and external environments, as well as a barrier to a variety of microbes attempting to invade our cells as their home [10]. The skin of anurans, in particular, has evolved AMPs to enable them to survive and thrive in both terrestrial and aquatic habitats [11]. According to Antimicrobial Peptide Database-3 (APD3), over 980 AMPs out of 1093 anuran AMPs demonstrated antibacterial activity [12].
More specifically, experimental studies have established that Ocellatin peptides derived from the skin secretions of *Leptodactylus* genus frogs have a broad spectrum of antibacterial activities [13]. Nascimento et al., 2004 first discovered Ocellatin-1 in the skin dorsal glands of the Amazonian Argus frog, *Leptodactylus ocellatus*, and reported it to be active against the Gram-negative bacterium *E.coli*. Inconsequent studies, the peptides from the same species [14–16] and evolutionarily similar frog species *L. pustulatus* [17], *L. syphax* [18] *L. validus* [19] *L. laticeps* [20], and *L. labirynthicus* [21,22] have revealed the membranolytic activities against several bacteria including multidrug-resistant strains [23]. Moreover, recent studies on *L. latrans* [24], *L. vastus* [25], *L. insularum* [26], and *L. nesiotus* [26] have further revealed antibacterial properties of newly characterized Ocellatin AMPs. Considering the lack of inclusive data regarding this emerging topic, a comprehensive review of the aforementioned Ocellatin peptides in terms of their therapeutic potential is presented.

2. Basic Features of Anuran AMPs and their Action Mechanism

Anuran AMPs are mostly alpha-helical amphipathic peptides containing hydrophobic and hydrophilic residues with a range in length from 5 to 50 amino acids. In general, these AMPs are cationic because they contain more positively charged amino acids such as lysine (K), arginine (R), and histidine (H) [27,28]. The cationic property, frog-skin peptides in their early phase are electrostatically attracted to the anionic bacterial membrane [29]. Following that, such AMPs self-associate as carpet, barrel-stave, or toroid models, as illustrated in Figure 1.

Self-associated AMPs can permeabilize bacterial membranes in two ways either micellization or pore formation [30]. For instance, Aurein AMP from the Golden-bell frog (*Litoria aurea*) develops a detergent-like carpet model after reaching a particular threshold level and aggregates around the membrane, leading to micellization [31]. On the other hand, toroidal and barrel-stave models result in pore formation, leading to membrane depolarization and cell death. For instance, the Magainin AMPs from African clawed frog (*Xenopus laevis*) assemble into transmembrane pores of the toroidal type [32]. Also, the buforin AMPs from Asiatic toads (*Bufo gargarizans*) self-associate in the barrel-stave paradigm, which allows hydrophobic components of peptides to interact with hydrophilic membrane surface [33]. As a result, a transmembrane pore forms with a core lumen, which is followed by an efflux of cellular constituents and consequent cell death.

![Figure 1. General mechanism of action of anuran alpha-helical AMPs against the bacterial membrane.](https://biointerfaceresearch.com/)
3. Selective Permeability of Ocellatin Peptides

In general, AMPs with high bacterial permeability are considered valuable in therapeutics, where the cell permeability is determined by amphipathic (hydrophobic and hydrophilic) residues [34]. Amphipathicity of AMPs ought to be optimal because a greater value will enable them to penetrate eukaryotic membranes, while a lower value will prevent an AMP from even penetrating bacterial membranes [35,36]. However, Ocellatin AMPs with optimum hydrophobic residues would indeed be a preferred therapeutic priority, which has been demonstrated in various investigations. Moreover, the self-associating tendency of AMPs is also dependent on their immense amphipathic values [37]. Similarly, increased amphipathic values found in Ocellatin-4 exhibit a cascade of antibacterial activity as a result of its self-association in solutions.

Another property of AMPs that determines membrane permeability is their cationic [38]. In an experimental evaluation of Ocellatin-L2, it has been revealed that when negatively charged residues in the peptide were replaced with neutral residues, the peptide’s capacity to inhibit E. coli was compromised. Positive charges in peptides have been proven to exhibit enhanced bacterial permeability [39]. On the other hand, cationic Ocellatin AMPs selectively avoid adhering to zwitterionic eukaryotic membranes. AMPs are notably specific towards bacterial cells due to their net charge. For instance, in Ocellatin-4, two lysine residues have been neutralized by two aspartate residues, enabling it to be both antibacterial and non-hemolytic [40]. Conversely, the presence of an extra negatively charged aspartate residue in Ocellatin-PT peptides impedes negatively charged bacterial membrane, resulting in its decreased antibacterial efficacy. In our previous computational analyses, we revealed that Ocellatin-1’s net charge was lower than Ocellatin-F1, Ocellatin-K1, and Ocellatin-S1 due to the presence of negatively charged glutamic acid at position 23 (E23) [40]. Moreover, this conservation of E23 is found consistent with experimental results on Ocellatin-V1, Ocellatin-V2, Ocellatin-V3, and Ocellatin-P1.

4. Antibacterial Efficacy and Biofilm Inhibiting Potency

It is worth noting that numerous Ocellatin AMPs are efficient against a wide variety of bacterium, as denoted in Figure 2 [20]. Several Gram-negative bacteria, including Escherichia coli (E. coli), Klebsiella pneumoniae (K. pneumoniae), and Salmonella choleraesuis (S. choleraesuis) were inhibited by Ocellatin-PT1, Ocellatin-PT2, Ocellatin-PT4 and Ocellatin-PT8 peptides produced from L. pustulatus [24]. Peptides such as Ocellatin-S1 are equally effective to Gram-negative bacteria such as Escherichia coli and Gram-positive bacteria such as Staphylococcus aureus (S. aureus). However, various peptides, including Ocellatin-P1, Ocellatin-L1, and Ocellatin-F1, have been found to be more efficient against Gram-negative than Gram-positive bacteria (Table 1).

S.No	Peptide name	UNIPROT ID	Species	Sequence	Active against	Reference
1	Ocellatin-1	P83951	L. ocellatus	GVVDILKGAGKDLLAHVLVGKISEKV	E. coli	[14]
2	Ocellatin-2	P83866	L. ocellatus	GVLDFKDAAKQILAHAAEOI	E. coli	[14]
3	Ocellatin-3	P83867	L. ocellatus	GVLDFKDAAKQILAHAAEOI	E. coli	[14]
4	Ocellatin-4	P85090	L. ocellatus	GLLDFVTGVDIFDIAFQLIKQ	E. coli	[14,15]
5	Ocellatin-4 analogue	-NA-	L. ocellatus	KLLKFVTKVGKAIKALKAI	X. citri	[41]
					S. meliloti	

Table 1. List of antibacterial Ocellatin peptides.
S.No	Peptide name	UNIPROT ID	Species	Sequence	Active against	Reference
6	Ocellatin-5	P85443	*L. ocellatus*	GLDILGKAAGKVLTVNL	*E. coli*	[14]
7	Ocellatin-6	-NA-	*L. ocellatus*	AVLDFIKAAGKGLTVNIMEKV	*E. coli*	[16]
8	Ocellatin-7	-NA-	*L. latrans*	GVVDILKDTGKLLSLMEKIG	-NA-	[24]
9	Ocellatin-8	-NA-	*L. latrans*	GVVDILKDTGKLLSLMEKIG	-NA-	[24]
10	Ocellatin-9	-NA-	*L. latrans*	GVLDIFIKDTGKLLSLMEKIG	-NA-	[24]
11	Ocellatin-10	-NA-	*L. latrans*	GLDILGKAAGKVLTVNKEVG	-NA-	[24]
12	Ocellatin-11	-NA-	*L. latrans*	GLDIFKDAAGKGLAHAAEKIG	-NA-	[24]
13	Ocellatin-F1	P0DQ38	*L. fallax*	GVVDILGKAADIGHLASKVMNK	*E. coli*	[21,22,43]
14	Ocellatin- F1(1-22)	C0HKF1	*L. labrinthicus*	GVVDILGKAADIGHLASKVM	*A. actinomycetemcomitans*	[21,22]
15	Ocellatin- F1(1-23)	C0HKF2	*L. labrinthicus*	GVVDILGKAADIGHLASKVM	*A. actinomycetemcomitans*	[21,22]
16	Ocellatin-K1	P86711	*L. knueseni*	GLDILGKAADIGHLASKVMK	-NA-	[25,40]
17	Ocellatin- K1(1-16)	-NA-	*L. vastus*	GVVDILGKAADGLAGH	-NA-	[25]
18	Ocellatin- K1(1-21)	-NA-	*L. vastus*	GVVDILGKAADGLHASKV	-NA-	[25]
19	Ocellatin-1I	-NA-	*L. insularum*	GLDILGKAADIGHLASKVM	*E. coli*	[26]
20	Ocellatin-1I(1-16)	-NA-	*L. insularum*	GLDILGKAADIGHLASKVM	*K. pneumonia*	[26]
21	Ocellatin-2I	-NA-	*L. insularum*	GLDILGKAADIGHLASKVM	*E. coli*	[26]
22	Ocellatin-2I(1-16)	-NA-	*L. insularum*	GLDILGKAADIGHLASKVM	*P. aeruginosa*	[26]
23	Ocellatin-3I	-NA-	*L. insularum*	GLDILGKAADIGHLASKVM	*K. pneumonia*	[26]
24	Ocellatin-1N	-NA-	*L. nesiotus*	GLDILGKAADIGHLASKVM	*E. coli*	[26]
25	Ocellatin-2N	-NA-	*L. nesiotus*	GLDILGKAADIGHLASKVM	*P. aeruginosa*	[26]
26	Ocellatin-3N	-NA-	*L. nesiotus*	GLDILGKAADIGHLASKVM	*S. typhimurium*	[26]
27	Ocellatin-4N	-NA-	*L. nesiotus*	GLDILGKAADIGHLASKVM	*P. aeruginosa*	[26]
28	Ocellatin-S1	P85279	*L. syphax*	GLDILGKAADIGHLASKVM	*E. coli*	[18]
29	Ocellatin-L1	P0DQL0	*L. laticeps*	GLDILGKAADIGHLASKVM	*E. coli*	[20]
30	Ocellatin-L2	P0DQL1	*L. laticeps*	GLDILGKAADIGHLASKVM	*E. coli*	[20]
31	Ocellatin- PT1	C0HJZ6	*L. pustulatus*	MAFKLKSLFLVFLGLVSLICDEEK RQDEDDDDDEEK RVVDIADKAGQ LVHAMAHKIAEKV	*E. coli*	[17]
32	Ocellatin- PT2	C0HJZ7	*L. pustulatus*	MAFKLKSLFLVFLGLVSLICDEEK RQDEDDDDDEEK RVVDIADKAGQ LVHAMAHKIAEKV	*K. pneumonia*	[17]
33	Ocellatin- PT3	C0HJZ8	*L. pustulatus*	MAFKLKSLFLVFLGLVSLICDEEK RQDEDDDDDEEK RVVDIADKAGQ LVHAMAHKIAEKV	*S. aureus*	[17]
S.No	Peptide name	UNIPROT ID	Species	Sequence	Active against	Reference
------	--------------	------------	---------------	---	--	-----------
34	Ocellatin-PT4	C0HJZ9	*L. pustulatus*	MAFLKSLFLVLGLVLSICDEEKRQDEDDDDDEEKEKRGVIKAGQQLIAHAMGKIAEKV	*E.coli* *S.aureus* *K.pneumoniae* *S.choleraesuis*	[17]
35	Ocellatin-PT5	C0HK00	*L. pustulatus*	MAFLKSLFLVLGLVLSICDEEKRQDEDDDDDEEKEKRGVIKAGQLVAHAMGKIAEKV	*E.coli* *S.aureus* *K.pneumoniae* *S.choleraesuis*	[17]
36	Ocellatin-PT6	C0HK01	*L. pustulatus*	MAFLKSLFLVLGLVLSICDEEKRQDEDDDDDEEKEKRGVIKAGQLIAHAMEKIAEKVGLNKDGN	*E.coli* *S.aureus* *K.pneumoniae* *S.choleraesuis*	[17]
37	Ocellatin-PT7	C0HK02	*L. pustulatus*	MAFLKSLFLVLGLVLSICDEEKRQDEDDDDDEEKEKRGVIKAGQLIAHAMEKIAEKVGLNKDGN	*E.coli* *S.aureus* *K.pneumoniae* *S.choleraesuis*	[17]
38	Ocellatin-PT8	C0HK03	*L. pustulatus*	MAFLKSLFLVLGLVLSICDEEKRQDEDDDDDEEKEKRGVIKAGQLIAHAMEKIAEKVGLNKDGN	*E.coli* *S.aureus* *K.pneumoniae* *S.choleraesuis*	[17]
39	Ocellatin-P1	P0DQ17	*L. pentadactylus*	GLDTLKGAANVVGSLASKVMEKL	*E.coli* *E. cloacae* *K.pneumoniae* *P.aeruginosa* *S.aureus* *S. epidermidis* *E. faecalis*	[43]
40	Ocellatin-V1	-NA-	*L. validus*	GVVDILKGAAGKDLLAHALSKLEK	*E.coli* *S.aureus*	[19]
41	Ocellatin-V2	-NA-	*L. validus*	GVLIDLKGAAGKDLLAHALKISEK	*E.coli* *S.aureus*	[19]
42	Ocellatin-V3	-NA-	*L. validus*	GVLIDLTGAGKDLLAHALKSEK	*E.coli* *S.aureus*	[19]

-NA- Not Applicable

4.1. Gram negative bacteria.

Gram-negative bacteria like *E.coli* and *K. pneumoniae* are common in our gut as commensals and do not affect humans. However, they begin as primary food contamination and expect multi-organ diseases affecting the lungs, brain, heart, and urinary tract. In which nearly all Ocellatin peptides inhibit *E.coli* (Table 1). Conversely, Ocellatin-F1 and Ocellatin-PT1-PT8 excluding PT2 inhibited carbapenem-resistant *K. pneumoniae* bacteria producing lung illness [42, 43]. *Salmonella typhimurium* (*S. typhimurium*), a food-borne pathogen, is resistant to antibiotics such as chloramphenicol, tetracycline, cephalosporins, sulfonamides, and streptomycin [44]. Owing to its multidrug-resistant nature, typhoid and associated gastroenteritis in humans turn challenging to treat [45]. However, Ocellatin 1N, 1I, 2I, 3N exhibited resistance against *S. typhimurium* with minimum inhibition concentration (MIC) at the range of 31.25–62.5 μM.

Another opportunistic Gram-negative bacterium resistant to many drugs is *Pseudomonas aeruginosa* (*P. aeruginosa*) [46]. The evolved communication mechanisms in *P. aeruginosa*, besides quorum sensing, endorsed it to develop biofilms [47,48]. However, AMPs act as a new class of anti-biofilm compounds since they can either restrict biofilm formation or remove established biofilms [49,50]. *P. aeruginosa* can be inhibited with Ocellatin PT3 (MIC=16 μg/ml), which is the most effective of the extensively investigated Ocellatin peptides (PT2-PT6) [51].
Figure 2. A schematic representation depicting Ocellatin peptides and three major forms of diseases they combat.

S. choleraesuis is yet another Gram-negative bacterium that causes swine pneumonia in pigs and affects the pork supply chain [52]. Moreover, the contaminated pork poses a health risk to humans. Because it causes illness in pigs and humans, the economic cost is doubled by *S. choleraesuis* [53]. Ocellatin-PT1 and PT3-PT8 may mitigate Salmonella infection, whereas Ocellatin-PT2 binds to lipopolysaccharide (LPS) at first, but the peptide cannot suppress Gram-negative bacterial growth [51,54]. *Xanthomonas citri* (*X. citri*), a common phytopathogen, is a rod-shaped Gram-negative bacterium [55,56]. Interestingly, analogs of Ocellatin-4 have been proven to be potent against *X. citri*, preventing citrus fruit damage and possibly increasing the economic value. *Aggregatibacter actinomycetemcomitans* (*A. actinomycetemcomitans*) is another Gram-negative facultative bacterium that can cause aggressive dental gum inflammation (periodontitis) [57]. Periodontitis may be caused by non-infectious risk factors like smoking, stress, and aging, and hormonal changes in addition to bacterial infection that result in dental biofilms [58,59]. However, Ocellatin-F1 (1-22) and Ocellatin-F1 (1-23), commonly known as Ocellatin-LB1 and Ocellatin-LB2, are employed to treat periodontitis.

4.2. Gram-positive bacteria.

The gram-positive bacterium, *Staphylococcus aureus* (*S. aureus*), causing multi-organ illness, is still a serious public health problem, as it causes nosocomial (hospital-acquired) infections [60]. Ocellatin-3N, Ocellatin-5, Ocellatin-6, Ocellatin-F1, Ocellatin-S1, Ocellatin-L1, and Ocellatin-PT1-PT8, all curbed methicillin-resistant *S. aureus*. *Enterococcus faecium*, a Gram-positive gut commensal, causes a significant proportion of hospital-acquired infections with high mortality [61]. Ocellatin-3N, on the other hand, acts potently against that bacteria.
5. Therapeutic Modifications to Enhance Antibacterial Potential

One of the essential post-translational modifications in any alpha-helical AMP is C-terminal amidation in which the hydroxyl (OH) group is substituted with the amide (NH2) group at C-terminus [62,63]. C-terminal amidation regulates peptide stability and functionality in various ways viz., i) stabilizing helicity ii) increasing cationic iii) altering dipole moment iv) degenerating carboxypeptidases and thereby, (v) increasing bactericidal activity [64]. C-terminal amidation aspects have been reported to be highly effective in Ocellatin peptides such as Ocellatin-PT1 to Ocellatin-PT5, Ocellatin-5, and Ocellatin-6 (Figure 3).

![Figure 3. The illustration of therapeutic modifications in Ocellatin peptides notably, C-terminal amidation and antibacterial synergism.](image)

Synergizing the effects of antibiotics with AMPs is beneficial for combating multidrug-resistant bacteria [65]. Cefazidime (cephalosporin antibiotic) and Ciprofloxine (quinolone antibiotic) have been synergized with Ocellatin-PT3. With the help of Ocellatin-PT3, these alkaloid drugs have substantially improved their permeability of cell membranes of multi-drug resistant (MDR) isolates. Moreover, for evaluating antiviral activity against the Rabies virus, Ocellatin-I was conjugated with the serotonin-derived alkaloid Bufotenine [66].

6. Limitations and Future Perspectives

There are a few drawbacks of using AMPs on a wide scale. Mostly alpha-helical AMPs are degraded by extracellular proteinases due to their co-evolution with AMP-producing hosts. Henceforth, the pathogens also develop various resistance mechanisms such as the loss of activity at human physiological salt concentrations and increased hemolytic effect cleaving human erythrocytes. Another important limitation in using AMP like Ocellatin is the lack of appropriate strategies to deliver drugs sustainably [67].

Pertinently, this could be avoided in the future by incorporating D-form non-natural amino acids or by employing non-peptide backbones via peptidomimetics, which could lead to the development of alpha-helical AMPs as potential antimicrobial drugs. Particularly, D-amino substitutions will reduce the hemolytic activity by increasing the antibacterial activity simultaneously [68,69]. Further, understanding the supramolecular chemistry of peptide self-assembly can better understand how biofilms and secondary targets function, leading to new directions in the formulation of self-assembled Ocellatin peptide nanostructures in therapeutics. Furthermore, the emergence of new big data design methods like machine
learning will facilitate researchers to explore new targets for Ocellatin AMPs other than the membrane.

7. Conclusions

To summarise, the entire globe seeks novel drugs to combat alarming antimicrobial resistance and antibiotic failure. However, the alpha-helical AMPs isolated from multi-habitat organisms such as frogs would be a preferable alternative for the pharmaceutical industry to employ AMPs as medications in the future. Considering the versatility of Ocellatin AMPs, they can be used in animal husbandry and agricultural sectors in addition to clinical applications. We anticipate that this review article will help pharmaceutical and agricultural researchers to understand the potential of Ocellatin.

Funding

The authors thank VIT Deemed to be University for providing ‘VIT SEED GRANT (VIT/SG/2020-21/43)’ for carrying out this review.

Acknowledgments

We thank VIT Deemed to be University for their infrastructure support in compiling this review article.

Conflicts of Interest

The authors declare no conflict of interest.

References

1. Gaynes, R. The Discovery of Penicillin—New Insights After More Than 75 Years of Clinical Use. Emerg. Infect. Dis. 2017, 23, 849–853, https://doi.org/10.3201/eid2305.161556.
2. Kasimanickam, V.; Kasimanickam, M.; Kasimanickam, R. Antibiotics Use in Food Animal Production: Escalation of Antimicrobial Resistance: Where Are We Now in Combating AMR? Medical Sciences 2021, 9, https://doi.org/10.3390/medscin9010014.
3. Kumar, M.; Sarma, D.K.; Shubham, S.; Kumawat, M.; Verma, V.; Nina, P.B.; Jp, D.; Kumar, S.; Singh, B.; Tiwari, R.R. Futuristic Non-Antibiotic Therapies to Combat Antibiotic Resistance: A Review. Front. Microbiol. 2021, 12, https://doi.org/10.3389/fmicb.2021.609459.
4. Zaman, S.B.; Hussain, M.A.; Nye, R.; Mehta, V.; Mamun, K.T.; Hossain, N. A Review on Antibiotic Resistance: Alarm Bells Are Ringing. Cureus 2017, https://doi.org/10.7759/cureus.1403.
5. Gan, B.H.; Gaynord, J.; Rowe, S.M.; Deingruber, T.; Spring, D.R. The Multifaceted Nature of Antimicrobial Peptides: Current Synthetic Chemistry Approaches and Future Directions. Chem. Soc. Rev. 2021, 50, 7820–7880, https://doi.org/10.1039/D0CS00729C.
6. Hancock, R.E.W.; Diamond, G. The Role of Cationic Antimicrobial Peptides in Innate Host Defences. Trends in Microbiology 2000, 8, 402–410, https://doi.org/10.1016/S0966-842X(00)01823-0.
7. Mahlapuu, M.; Hákansson, J.; Ringstad, L.; Björn, C. Antimicrobial Peptides: An Emerging Category of Therapeutic Agents. Front. Cell. Infect. Microbiol. 2016, 6, https://doi.org/10.3389/fcimb.2016.00194.
8. Rončević, T.; Puizina, J.; Tossi, A. Antimicrobial Peptides as Anti-Infective Agents in Pre-Post-Antibiotic Era? JIMIS 2019, 20, https://doi.org/10.3390/jims20225713.
9. Cardoso, P.; Glossop, H.; Meikle, T.G.; Aburto-Medina, A.; Conn, C.E.; Sarojini, V.; Valery, C. Molecular Engineering of Antimicrobial Peptides: Microbial Targets, Peptide Motifs and Translation Opportunities. Biophys Rev 2021, 13, 35–69, https://doi.org/10.1007/s12551-021-00784-y.
10. Coates, M.; Blanchard, S.; MacLeod, A.S. Innate Antimicrobial Immunity in the Skin: A Protective Barrier against Bacteria, Viruses, and Fungi. PLoS Pathog 2018, 14, https://doi.org/10.1371/journal.ppat.1007353.
11. Varga, J.F.A.; Bui-Marinos, M.P.; Katzenback, B.A. Frog Skin Innate Immune Defences: Sensing and Surviving Pathogens. Front. Immunol. 2019, 9, https://doi.org/10.3389/fimmu.2018.03128.
12. Wang, Y.; Liu, M.; Gao, J. Enhanced Receptor Binding of SARS-CoV-2 through Networks of Hydrogen-Bonding and Hydrophobic Interactions. *Proc Natl Acad Sci USA* 2020, 117, 13967–13974, https://doi.org/10.1073/pnas.2008290117.

13. Cunha Neto, R. dos S.; Vigerrelli, H.; Jared, C.; Antoniazzi, M.M.; Chaves, L.B.; da Silva, A. de C.R.; Melo, R.L. de; Sciani, J.M.; Pimenta, D.C. Synergic Effects between Ocellatin-F1 and Bufotenine on the Inhibition of BHK-21 Cellular Infection by the Rabies Virus. *J Venom Anim Toxins Incl Trop Dis* 2015, 21.

14. Nascimento, A.C.C.; Zanotta, L.C.; Kyaw, C.M.; Schwartz, E.N.F.; Schwartz, C.A.; Sebben, A.; Sousa, M.V.; Fontes, W.; Castro, M.S. Ocellatins: New Antimicrobial Peptides from the Skin Secretion of the South American Frog Leptodactylus Ocellatus (Anura: Leptodactylidae). *Protein J* 2004, 23, 501–508, https://doi.org/10.1007/s10930-004-7877-z.

15. Nascimento, A.; Chapeaurouge, A.; Perales, J.; Sebben, A.; Sousa, M.V.; Fontes, W.; Castro, M.S. Purification, Characterization and Homology Analysis of Ocellatin 4, a Cytolytic Peptide from the Skin Secretion of the Frog Leptodactylus Ocellatus. *Toxicon* 2007, 50, 1095–1104, https://doi.org/10.1016/j.toxicon.2007.07.014.

16. Leite, J.M.A.; Silva, L.P.; Silva-Leite, R.R.; Ferrari, A.S.; Noronha, S.E.; Silva, H.R.; Bloch, C.; Leite, J.R.d.S.d.A. Leptodactylus Ocellatus (Amphibia): Mechanism of Defense in the Skin and Molecular Phylogenetic Relationships. *J Exp Zool A Ecol Genet Physiol* 2010, 313, 1–8, https://doi.org/10.1002/jez.551.

17. Marani, M.M.; Durado, F.S.; Quelemes, P.V.; de Araujo, A.R.; Perfeito, M.L.G.; Barbosa, E.A.; Véras, L.M.C.; Coelho, A.L.R.; Andrade, E.B.; Eaton, P.; Longo, J.F.P.; Azevedo, R.B.; Devere-Matos, C.; Leite, J.R.S.A. Characterization and Biological Activities of Ocellatin Peptides from the Skin Secretion of the Frog *Leptodactylus Pustulatus*. *J Nat. Prod.* 2015, 78, 1495–1504, https://doi.org/10.1021/np500907t.

18. Durado, F.S.; Leite, J.R.S.A.; Silva, L.P.; Melo, J.A.T.; Bloch, C.; Schwartz, E.F. Antimicrobial Peptide from the Skin Secretion of the Frog Leptodactylus Sympax. *Toxicon* 2007, 50, 572–580, https://doi.org/10.1016/j.toxicon.2007.04.027.

19. King, J.D.; Leprince, J.; Vaudry, H.; Coquet, L.; Jouenne, T.; Conlon, J.M. Purification and Characterization of Antimicrobial Peptides from the Caribbean Frog, *Leptodactylus Validus* (Anura: Leptodactylidae). *Peptides* 2008, 29, 1287–1292, https://doi.org/10.1016/j.peptides.2008.04.005.

20. Conlon, J.M.; Abdel-Wahab, Y.H.A.; Flatt, P.R.; Leprince, J.; Vaudry, H.; Jouenne, T.; Condamine, E. A Glycine-Leucine-Rich Peptide Structurally Related to the Plasticins from Skin Secretions of the Frog *Leptodactylus Laticeps* (Leptodactylidae). *Peptides* 2009, 30, 888–892, https://doi.org/10.1016/j.peptides.2009.01.008.

21. Gusmão, K.A.G.; dos Santos, D.M.; Santos, V.M.; Cortês, M.E.; Reis, P.V.M.; Santos, V.L.; Piló-Veloso, D.; Verly, R.M.; de Lima, M.E.; Resende, J.M. Ocellatin Peptides from the Skin Secretion of the South American Frog *Leptodactylus Labyrinthicus* (Leptodactylidae): Characterization, Antimicrobial Activities and Membrane Interactions. *J Venom Anim Toxins Incl Trop Dis* 2017, 23, https://doi.org/10.1186/s40409-017-0094-y.

22. Gomes, K.A.G.G.; dos Santos, D.M.; Santos, V.M.; Piló-Veloso, D.; Mundim, H.M.; Rodrigues, L.V.; Lião, L.M.; Verly, R.M.; de Lima, M.E.; Resende, J.M. NMR Structures in Different Membrane Environments of Three Ocellatin Peptides Isolated from *Leptodactylus Labyrinthicus*. *Peptides* 2018, 103, 72–83, https://doi.org/10.1016/j.peptides.2018.03.016.

23. Conlon, J.M. A Proposed Nomenclature for Antimicrobial Peptides from Frogs of the Genus *Leptodactylus*. *Peptides* 2008, 29, 1631–1632, https://doi.org/10.1016/j.peptides.2008.04.016.

24. Marani, M.M.; Aguilar, S.; Cuzziol Boccioni, A.P.; Cancelarich, N.L.; Basso, N.G.; Albericio, F. Identification of New Ocellatin Antimicrobial Peptides by CDNA Precursor Cloning in the Frame of This Family of Intriguing Peptides. *Antibiotics* 2020, 9, https://doi.org/10.3390/antibiotics9110751.

25. Sousa, N.A.; Oliveira, G.A.L.; de Oliveira, A.P.; Lopes, A.L.F.; Iles, B.; Nogueira, K.M.; Araújo, T.S.L.; Souza, L.K.M.; Araújo, A.R.; Ramos-Jesus, J.; Plácido, A.; Amaral, C.; Campelo, Y.D.M.; Barbosa, E.A.; Portugal, C.C.; Socodato, R.; Lobo, A.; Relvas, J.; Bemquerer, M.; Eaton, P.; Leite, J.R.S.A.; Medeiros, J.V.R. Novel Ocellatin Peptides Mitigate LPS-Induced ROS Formation and NF-KB Activation in Microglia and Hippocampal Neurons. *Sci Rep* 2020, 10, 2696, https://doi.org/10.1038/s41598-020-59665-1.

26. Barran, G.; Kolodziejek, J.; Coquet, L.; Leprince, J.; Jouenne, T.; Nowotny, N.; Conlon, J.M.; Mechkaraska, M. Peptidomic Analysis of Skin Secretions of the Caribbean Frogs *Leptodactylus Insularum* and *Leptodactylus Nesiotes* (Leptodactylidae) Identifies an Ocellatin with Broad Spectrum Antimicrobial Activity. *Antibiotics* 2020, 9, https://doi.org/10.3390/antibiotics9100718.

27. Yan, Y.; Li, Y.; Zhang, Z.; Wang, X.; Niu, Y.; Zhang, S.; Xu, W.; Ren, C. Advances of Peptides for Antibacterial Applications. *Colloids Surf B BioInterfaces* 2021, 202, https://doi.org/10.1016/j.colsurfb.2021.111682.

28. Moretta, A.; Sciuzzo, C.; Petrone, A.M.; Salvia, R.; Manniello, M.D.; Franco, A.; Lucchetti, D.; Vassallo, A.; Vogel, H.; Sgambato, A.; Falabella, P. Antimicrobial Peptides: A New Hope in Biomedical and Pharmaceutical Fields. *Front. Cell. Infect. Microbiol.* 2021, 11, 668632, https://doi.org/10.3389/fcimb.2021.668632.
29. Omardien, S.; Brul, S.; Zaat, S.A.J. Antimicrobial Activity of Cationic Antimicrobial Peptides against Gram-Positives: Current Progress Made in Understanding the Mode of Action and the Response of Bacteria. *Front. Cell Dev. Biol.* 2016, 4, https://doi.org/10.3389/fcell.2016.00111.
30. Bhattacharjya, S.; Straus, S.K. Design, Engineering and Discovery of Novel α-Helical and β-Boomerang Antimicrobial Peptides against Drug Resistant Bacteria. *IJMS* 2020, 21, 5773, https://doi.org/10.3390/ijms21165773.
31. Rai, D.K.; Qian, S. Interaction of the Antimicrobial Peptide Aurein 1.2 and Charged Lipid Bilayer. *Sci Rep* 2017, 7, https://doi.org/10.1038/s41598-017-03795-6.
32. Sengupta, D.; Leontiadou, H.; Mark, A.E.; Marrink, S.-J. Toroidal Pores Formed by Antimicrobial Peptides Show Significant Disorder. *Biochimica et Biophysica Acta (BBA) - Biomembranes* 2008, 1778, 2308–2317, https://doi.org/10.1016/j.bbamem.2008.06.007.
33. Tuerkova, A.; Kabelka, I.; Králová, T.; Sukeník, L.; Pokorná, Š.; Hof, M.; Vácha, R. Effect of Helical Kink in Antimicrobial Peptides on Membrane Pore Formation. *eLife* 2020, 9, https://doi.org/10.7554/eLife.47946.
34. Shi, J.; Chen, C.; Wang, D.; Tong, Z.; Wang, Z.; Liu, Y. Amphipathic Peptide Antibiotics with Potent Activity against Multidrug-Resistant Pathogens. *Pharmaceutics* 2021, 13, https://doi.org/10.3390/pharmaceutics13040438.
35. Elliott, A.G.; Huang, J.X.; Neve, S.; Zuegg, J.; Edwards, I.A.; Cain, A.K.; Boinett, C.J.; Barquist, L.; Lundberg, C.V.; Steen, J.; Butler, M.S.; Mobli, M.; Porter, K.M.; Blaskovich, M.A.T.; Locuiero, S.; Strandh, M.; Cooper, M.A. An amphipathic peptide with antibiotic activity against multidrug-resistant Gram-negative bacteria. *Nature Communications* 2021, 11, https://doi.org/10.1038/s41467-020-16950-x.
36. He, S.; Yang, Z.; Yu, W.; Li, J.; Li, Z.; Wang, J.; Shan, A. Systematically Studying the Optimal Amino Acid Distribution Patterns of the Amphiphilic Structure by Using the Ultrashort Amphiphiles. *Front. Microbiol.* 2020, 11, https://doi.org/10.3389/fmicb.2020.569118.
37. Petkov, P.; Lilкова, E.; Ilieva, N.; Litov, L. Self-Association of Antimicrobial Peptides: A Molecular Dynamics Simulation Study on Bombinin. *IJMS* 2019, 20, https://doi.org/10.3390/ijms20215450.
38. Chandra Sekar, P.; Chandrasekhar, G.; Rajasekaran, R. Hydrophobic Residues Confer the Helicity and Membrane Permeability of Ocellatin-1 Antimicrobial Peptide Scaffold Towards Therapeutics. *Int J Pept Res Ther* 2021, 27, 2459-2470, https://doi.org/10.1007/s10989-021-10265-1.
39. Jiang, Z.; Vasil, A.I.; Hale, J.D.; Hancock, R.E.W.; Vasil, M.L.; Hodges, R.S. Effects of Net Charge and the Number of Positively Charged Residues on the Biological Activity of Amphilic α-Helical Cationic Antimicrobial Peptides. *Biopolymers* 2008, 90, 369–383, https://doi.org/10.1002/bip.20911.
40. Sekar, P.C.; Paul, D.M.; Srinivasan, E.; Rajasekaran, R. Unravelling the Molecular Effect of Ocellatin-1, F1, K1 and S1, the Frog Skin-Antimicrobial Peptides to Enhance Its Therapeutics—Quantum and Molecular Mechanical Approaches. *J Mol Model* 2021, 27, https://doi.org/10.1007/s00894-020-04652-6.
41. Inui Kishi, R.N.; Stach-Machado, D.; Singulani, J. de L.; dos Santos, C.T.; Fusco-Almeida, A.M.; Cili, E.M.; Freitas-Astúia, J.; Picchi, S.C.; Machado, M.A. Evaluation of Cytotoxicity Features of Antimicrobial Peptides with Potential to Control Bacterial Diseases of Citrus. *PLoS ONE* 2018, 13, https://doi.org/10.1371/journal.pone.0203451.
42. Rollins-Smith, L.A.; King, J.D.; Nielsen, P.F.; Sonnevend, A.; Conlon, J.M. An Antimicrobial Peptide from the Skin Secretions of the Mountain Chicken Frog Leptodactylus Fallax (Anura:Leptodactylidae). *Regulatory Peptides* 2005, 124, 173–178, https://doi.org/10.1016/j.regpep.2004.07.013.
43. King, J.D.; Al-Ghafari, N.; Abraham, B.; Sonnevend, A.; Leprince, J.; Nielsen, P.F.; Conlon, J.M. Pentadactylin: An Antimicrobial Peptide from the Skin Secretions of the South American Bullfrog Leptodactylus Pentadactylus. *Comp Biochem Physiol C Toxicol Pharmacol* 2005, 141, 393–397, https://doi.org/10.1016/j.cbpc.2005.09.002.
44. Xiang, Y.; Li, F.; Dong, N.; Tian, S.; Zhang, H.; Du, X.; Zhou, H.; Xu, X.; Yang, H.; Xie, J.; Yang, C.; Liu, H.; Qiu, S.; Song, H.; Sun, Y. Investigation of a Salmonellosis Outbreak Caused by Multidrug Resistant Salmonella Typhimurium in China. *Frontiers in Microbiology* 2020, 11, https://doi.org/10.3389/fmicb.2020.00801.
45. Dyson, Z.A.; Klemm, E.J.; Palmer, S.; Dougan, G. Antibiotic Resistance and Typhoid. *Clinical Infectious Diseases* 2019, 68, S165–S170, https://doi.org/10.1093/cid/ciy1111.
46. Kousovska, R.; Athanasiou, C.; Liaskonis, K.; Ivopoulou, O.; Karalis, V. Association of Antibiotic Use with the Resistance Epidemiology of Pseudomonas Aeruginosa in a Hospital Setting: A Four-Year Retrospective Time Series Analysis. *Sci. Pharm.* 2021, 69, https://doi.org/10.3390/scipharm69010013.
47. Thi, M.T.T.; Wibowo, D.; Rehm, B.H.A. Pseudomonas Aeruginosa Biofilms. *Int. J. Mol. Sci.* 2020, 21, 8671, https://doi.org/10.3390/ijms21228671.
48. Moradali, M.F.; Ghods, S.; Rehm, B.H.A. Pseudomonas Aeruginosa Lifestyle: A Paradigm for Adaptation, Survival, and Persistence. *Front. Cell. Infect. Microbiol.* 2017, 7, https://doi.org/10.3389/fcimb.2017.00039.
49. Muhammad, M.H.; Idris, A.L.; Fan, X.; Guo, Y.; Yu, Y.; Jin, X.; Qiu, J.; Guan, X.; Huang, T. Beyond Risk: Bacterial Biofilms and Their Regulating Approaches. *Front. Microbiol.* 2020, 11, https://doi.org/10.3389/fmicb.2020.00928.
50. Di Somma, A.; Moretta, A.; Canè, C.; Cirillo, A.; Duilio, A. Antimicrobial and Antibiofilm Peptides. *Biomolecules* 2020, 10, https://doi.org/10.3390/biom10040652.
51. Bessa, L.J.; Eaton, P.; Dematei, A.; Plácido, A.; Vale, N.; Gomes, P.; Delerue-Matos, C.; SA Leite, J.R.; Gamage, P. Synergistic and Antibiofilm Properties of Ocellatin Peptides against Multidrug-Resistant Pseudomonas Aeruginosa. Future Microbiology 2018, 13, 151–163, https://doi.org/10.2217/fmb-2017-0175.
52. Leekitcharoenphon, P.; Sorensen, G.; Löfström, C.; Battisti, A.; Szabo, I.; Wasyl, D.; Slowey, R.; Zhao, S.; Brisabois, A.; Kornsohober, C.; Kärrsin, A.; Söldl, J.; Černy, T.; Svendsen, C.A.; Pedersen, K.; Aarestrup, F.M.; Hendriksen, R.S. Cross-Border Transmission of Salmonella Choleraesuis Var. Kunzendorf in European Pigs and Wild Boar: Infection, Genetics, and Evolution. Front. Microbiol. 2019, 10, 10.3389/fmicb.2019.00179.
53. Eng, S.-K.; Pusparajah, P.; Ab Mutalib, N.-S.; Ser, H.-L.; Chan, K.-G.; Lee, L.-H. Salmonella: A Review on Pathogenesis, Epidemiology and Antibiotic Resistance. Frontiers in Life Science 2015, 8, 284–293, https://doi.org/10.1080/21553769.2015.1051243.
54. Oliveira, M.; Gomes-Alves, A.G.; Sousa, C.; Mirta Marani, M.; Plácido, A.; Vale, N.; Delerue-Matos, C.; Gamo, P.; Kückelhaus, S.; S. A. Leite, J.R.; Eaton, P. Ocellatin-PT antimicrobial peptides: High-resolution microscopy studies in antileishmania models and interactions with mimetic membrane systems. Biopolymers 2016, 105, 873–886, https://doi.org/10.1002/bip.22925.
55. Martins, P.M.M.; Wood, T.K.; de Souza, A.A. Persiste Cells Form in the Plant Pathogen Xanthomonas Citri Subsp. Citri under Different Stress Conditions. Microorganisms 2021, 9, 10.3390/microorganisms9020038.
56. Pruvost, O.; Richard, D.; Boyer, K.; Javegny, S.; Boyer, C.; Chiroleu, F.; Grygiel, P.; Parvedy, E.; Robène, I.; Maillot, P.K.; Phukan, C.; Akhil, R.; Singh, A.; Ramakrishnan, V. Antimicrobial Effects of Syndiotactic Polypeptides. Ha Laboratory and Beyond. Sarkar, T.; Chetia, M.; Chatterjee, S. Antimicrobial Peptides and Proteins: From Nature’s Reservoir to the Future. Microbiol. 2019, 10, 10.3389/fmicb.2019.00179.
57. Eng, S.-K.; Pusparajah, P.; Ab Mutalib, N.-S.; Ser, H.-L.; Chan, K.-G.; Lee, L.-H. Salmonella: A Review on Pathogenesis, Epidemiology and Antibiotic Resistance. Frontiers in Life Science 2015, 8, 284–293, https://doi.org/10.1080/21553769.2015.1051243.
58. Oliveira, M.; Gomes-Alves, A.G.; Sousa, C.; Mirta Marani, M.; Plácido, A.; Vale, N.; Delerue-Matos, C.; Gameiro, P.; Kückelhaus, S.; S. A. Leite, J.R.; Eaton, P. Ocellatin-PT antimicrobial peptides: High-resolution microscopy studies in antileishmania models and interactions with mimetic membrane systems. Biopolymers 2016, 105, 873–886, https://doi.org/10.1002/bip.22925.
59. Martins, P.M.M.; Wood, T.K.; de Souza, A.A. Persiste Cells Form in the Plant Pathogen Xanthomonas Citri Subsp. Citri under Different Stress Conditions. Microorganisms 2021, 9, 10.3390/microorganisms9020038.
60. Pruvost, O.; Richard, D.; Boyer, K.; Javegny, S.; Boyer, C.; Chiroleu, F.; Grygiel, P.; Parvedy, E.; Robène, I.; Maillot, P.K.; Phukan, C.; Akhil, R.; Singh, A.; Ramakrishnan, V. Antimicrobial Effects of Syndiotactic Polypeptides. Ha Laboratory and Beyond. Sarkar, T.; Chetia, M.; Chatterjee, S. Antimicrobial Peptides and Proteins: From Nature’s Reservoir to the Future. Microbiol. 2019, 10, 10.3389/fmicb.2019.00179.
61. Eng, S.-K.; Pusparajah, P.; Ab Mutalib, N.-S.; Ser, H.-L.; Chan, K.-G.; Lee, L.-H. Salmonella: A Review on Pathogenesis, Epidemiology and Antibiotic Resistance. Frontiers in Life Science 2015, 8, 284–293, https://doi.org/10.1080/21553769.2015.1051243.
62. Oliveira, M.; Gomes-Alves, A.G.; Sousa, C.; Mirta Marani, M.; Plácido, A.; Vale, N.; Delerue-Matos, C.; Gameiro, P.; Kückelhaus, S.; S. A. Leite, J.R.; Eaton, P. Ocellatin-PT antimicrobial peptides: High-resolution microscopy studies in antileishmania models and interactions with mimetic membrane systems. Biopolymers 2016, 105, 873–886, https://doi.org/10.1002/bip.22925.
63. Martins, P.M.M.; Wood, T.K.; de Souza, A.A. Persiste Cells Form in the Plant Pathogen Xanthomonas Citri Subsp. Citri under Different Stress Conditions. Microorganisms 2021, 9, 10.3390/microorganisms9020038.
57. Eng, S.-K.; Pusparajah, P.; Ab Mutalib, N.-S.; Ser, H.-L.; Chan, K.-G.; Lee, L.-H. Salmonella: A Review on Pathogenesis, Epidemiology and Antibiotic Resistance. Frontiers in Life Science 2015, 8, 284–293, https://doi.org/10.1080/21553769.2015.1051243.