Diffusion on a hypersphere: application to the Wright–Fisher model

Kishiko Maruyama and Yoshiaki Itoh

The Institute of Statistical Mathematics and The Graduate University for Advanced Studies, 10-3 Midori-cho, Tachikawa, Tokyo 190-8562, Japan

Received 23 August 2015, revised 26 December 2015
Accepted for publication 18 January 2016
Published 22 February 2016

Abstract
The eigenfunction expansion by Gegenbauer polynomials for the diffusion on a hypersphere is transformed into the diffusion for the Wright–Fisher model with a particular mutation rate. We use the Ito calculus considering stochastic differential equations. The expansion gives a simple interpretation of the Griffiths eigenfunction expansion for the Wright–Fisher model. Our representation is useful to simulate the Wright–Fisher model as well as Brownian motion on a hypersphere.

Keywords: diffusion on hypersphere, stochastic differential equation, eigenfunction expansion, Wright–Fisher model

1. Introduction
Here, we show that the diffusion on a hypersphere [3] is transformed into the diffusion for the Wright–Fisher model with a particular mutation rate [7–9], by using the relation, \(x_i = y_i^2 \), where \(x_i \)'s denote the relative abundance of alleles and \(y_i \)'s denote the position of a particle of the diffusion on a hypersphere. Diffusion on a sphere has been applied to various problems in physics, chemistry, mathematics, etc. [1, 4, 22, 28]. The Wright–Fisher model is widely used to study the random sampling effect in population genetics [5, 6, 16, 26].

We consider stochastic differential equations in the Ito sense [20]. We represent the Wright–Fisher model for \(k \) alleles as well as the diffusion on a \((k - 1)\)-dimensional sphere [17], by using \(\binom{k}{2} \) independent standard Brownian motion \(b_{ij}(t) i > j \) with the skew symmetry \(b_{ij}(t) + b_{ji}(t) = 0 \) [11, 13, 14, 18]. Our representation is useful to simulate the Wright–Fisher model [19, 23]. There are effective simulation methods to simulate a Brownian motion on a hypersphere, for example [2]. Our representation is simple and may be useful to simulate the Brownian motion on a hypersphere.
2. Stochastic differential equation for the Wright–Fisher model

In the Wright–Fisher model, each of the genes of the next generation is obtained by a random choice among the genes of the previous generation and that the whole population changes all at once. In Moran’s model [21] it is supposed that there are 2N individuals each formed from k alleles A_1, A_2, \ldots, A_k, and that each instant at which the state of the model may change, one individual of the alleles, chosen at random, dies and is replaced by a new individual which is A_i with probability $k_i/2N$, where k_i is the abundance of the allele A_i. It is supposed that the probability of any individual ‘dying’ during an interval $(t, t + dt)$ and then being replaced by a new individual is λdt. Hence, the mean number of such events in unit time is λ and the mean length of a generation is λ^{-1}. The following model of interacting particles [12] is equivalent to the Moran model.

Consider a population of N particles each of which is one of k types, A_1, A_2, \ldots, A_k. The types may represent species, alleles, genotypes or other classification. We then consider random interactions between particles, which are assumed to occur at the rate λdt per time interval $(t, t + dt)$ for each particle. If a pair of particles of different types i and j interact, then after the interaction both particles are type i with probability 1/2 and type j with probability 1/2. If the type of the interacting particles is the same, no change occurs.

We can approximate the behavior of our interacting particle system by a stochastic differential equation (1). In it, the relative abundance of type i increases by $c\sqrt{x_i(t)}x_j(t) db_j(t)$ and decreases by $c\sqrt{x_i(t)}x_j(t) db_j(t)$ with the interaction of the particles of type j, where $c = \sqrt{\lambda/2N}$. Hence, our interacting particle system automatically makes the following equation (1), which has the genetic drift matrix with the elements $c^2x_i(t)(b_j - x_j(t))dt$ for $i, j = 1, 2, \ldots, k$ as covariances.

For $i, j = 1, 2, \ldots, k$, consider

$$dx_i(t) = \sum_{j=1, j \neq i}^k c\sqrt{x_i(t)}x_j(t) db_j(t)$$

(1)

with $b_i(t) + b_j(t) = 0$, where $b_i(t)$ ($i > j$) are mutually independent one-dimensional Brownian motion with the mean 0 and the variance t [11, 13, 14, 18]. This representation of the Wright–Fisher model [11] is applied to make computer simulations on models in population genetics [19, 23]. Here, we make use of equation (1) to discuss the exact solutions of the diffusion equations considering the diffusion on a unit sphere.

3. Diffusion on a hypersphere

The isotropic diffusion on the $(k - 1)$-dimensional unit sphere is given by the following stochastic differential equation in the Ito sense.

$$dy_i(t) = \frac{-c^2}{8}(k - 1)y_i(t)dt + \frac{c}{2} \sum_{j=1}^k y_j(t) db_j(t)$$

(2)

with $b_i(t) + b_j(t) = 0$, for $i = 1, 2, \ldots, k$, where $b_i(t)$ ($i > j$) are mutually independent one-dimensional Brownian motion with the mean 0 and the variance t. Let $dy = (dy_1, \ldots, dy_k)$. By using the Ito calculus [20], we have for the stochastic differential
\[d\left(\sum_{i}Y_i(t)^2\right) = 0. \]

Hence, starting from a point on the unit hypersphere, the trajectory is on the unit hypersphere \(\sum_{i}Y_i(t)^2 = 1 \). Consider the dot product for a unit vector \(\mathbf{l} = (l_1, l_2, \ldots, l_k) \),

\[\mathbf{l} \cdot d\mathbf{y} = \sum_{i} l_i \left[\frac{e}{2} \sum_{j} (y_j(t) db_j(t)) + \frac{e^2}{8} (k - 1) y_i(t) dt \right]. \]

On the tangent hyperplane at \(\mathbf{y} = (y_1, y_2, \ldots, y_k) \) of the hypersphere, for \(\mathbf{l} \) which is perpendicular to \(\mathbf{y} \), we have

\[\mathbf{l} \cdot d\mathbf{y} = \frac{e}{2} \sum_{i} l_i \left(\sum_{j} y_j(t) db_j(t) \right). \]

We have the expectation

\[E(\mathbf{l} \cdot d\mathbf{y}) = 0. \]

We have

\[\text{Var}(\mathbf{l} \cdot d\mathbf{y}) = \left(\frac{e}{2} \right)^2 \sum_{i,j} (l_i y_j - l_j y_i)^2 dt = \left(\frac{e}{2} \right)^2 dt, \]

since

\[
\sum_{i,j} (l_i y_j - l_j y_i)^2 = \sum_{i<j} [(l_i y_j)^2 + (y_j l_i)^2 - 2l_i y_j l_j] + \left(\sum_{i} l_i y_i \right)^2 \\
= \sum_{i<j} [(l_i y_j)^2 + (y_j l_i)^2] + \sum_{i} (l_i y_i)^2 = \left(\sum_{i} l_i^2 \right) \left(\sum_{i} y_i^2 \right) = 1.\
\]

\(\text{Var}(\mathbf{l} \cdot d\mathbf{y}) \) does not depend on the direction \(\mathbf{l} \) at the tangential point \(\mathbf{y} \) of the tangential plane. Hence, we see the diffusion is isotropic and we have the Fokker–Planck equation on the hypersphere for the Laplace–Beltrami operator [3] in space \(S_{k-1} \),

\[
\frac{\partial}{\partial t} \rho(\mathbf{y}, t|\mathbf{y'}, 0) = D \delta^{S_{k-1}} \rho(\mathbf{y}, t|\mathbf{y'}, 0)
\]

where \(D = \frac{e}{2} \) from (7). The operator \(\delta^{S_{k-1}} \) is for \(k - 1 \) spherical coordinates \(\theta_1, \theta_2, \ldots, \theta_{k-1} \) of the unit vector \(\mathbf{y} = (y_1, \ldots, y_k) \) of \(S_{k-1} \) defined by the relations

\[
y_1 = \sin \theta_{k-1} \ldots \sin \theta_2 \sin \theta_1 \\
y_2 = \sin \theta_{k-1} \ldots \sin \theta_2 \cos \theta_1 \\
\vdots \\
y_{k-1} = \sin \theta_{k-1} \cos \theta_{k-2} \\
y_k = \cos \theta_{k-1},
\]

where \(0 \leq \theta_i < 2\pi \) and \(0 \leq \theta_i < \pi \) for \(i \neq 1 \). The integration measure in \(S_{k-1} \) is defined as

\[dy = \frac{1}{A_{k-1}} \sin^{k-1} \theta_{k-1} \ldots \sin \theta_1 d\theta_1 \ldots d\theta_{k-1}, \]

where \(A_{k-1} = 2\pi^{k/2}/\Gamma(k/2) \) is the surface of the sphere \(S_{k-1} \). With this normalization \(\int_{S_{k-1}} dy = 1 \).
The solution [3], the transition probability density for the isotropic diffusion on a hypersphere, is obtained by using the definitions and notations of chapter IX of the book [24]. The Gegenbauer polynomial \(C_L^p \) is defined as the coefficient of \(h^L \) in the power-series expansion of the function

\[
(1 - 2h + h^2)^{-p} = \sum_{L=0}^{\infty} C_L^p(t)h^L.
\]

The transition probability density from \(y \) (with \(n - 1 \) spherical coordinates \(\theta_1', ..., \theta_{n-1}' \)) at 0 to \(y \) (with \(\theta_1, ..., \theta_{n-1} \)) at \(t > 0 \) is given [3] by

\[
\rho(y, t|y', 0) = \frac{1}{A_{k-1}} \sum_{L=0}^{\infty} \frac{2L + k - 2}{k - 2} C_{L}^{k-1}(y \cdot y')\exp(-DL(L + k - 2)t),
\]

for the dot product \(y \cdot y' = \sum_{i,j} y'_i y'_j \), where

\[
C_{L}^{k-1}(z) = \frac{[L/2]}{\sum_{j=0}^{(L/2)} (-1)^j \Gamma(L - j/2 - 1) \Gamma(k/2 - 1)j! (L - 2j)! (2z)^{L-2j}.}
\]

4. Solution for the Wright–Fisher model with parent-independent mutation

Let \(A_i, ..., A_k \) denote \(k \) allele types in a population. The general neutral alleles model has a probability \(u_{ij} \) of a mutation from \(A_i \) to \(A_j \). An exact solution is known for the case of the 0 mutation rate case in three dimensions [16]. Assuming parent-independent mutation [7], \(u_{ij} = u \). An expansion of the transition probability density [7], from the initial relative abundances \(x' = (x'_1, ..., x'_j) \) to the relative abundances \(x = (x_1, ..., x_k) \), is obtained for the following Fokker–Planck equation (18),

\[
\frac{\partial \rho(x, t|x', 0)}{\partial t} = \sum_{i=1}^{k-1} \partial_{x_i} \left(\frac{1}{2} \sum_{j=1}^{k} \partial_{x_j} (\delta_{ij} - x_j) - \frac{1}{2} M_i \right) \rho(x, t|x', 0)
\]

where \(M_i = \varepsilon_i - \mu x_i, \mu = \sum_{i=1}^{k} \varepsilon_i \). For \(\varepsilon_i > 0, i = 1, 2, ..., k \), the stationary density [25, 27] is given by

\[
\Gamma(\mu) \prod_{i=1}^{k} x_i^{\varepsilon_i - 1} / \Gamma(\varepsilon_i).
\]

The solution of equation (18) is given by an expansion in orthogonal polynomials [7]. For the case \(\varepsilon_i = \varepsilon, i = 1, ..., k \), we have the solution [7],

\[
p(x, t|x', 0) = \Gamma(\mu) \prod_{i=1}^{k} x_i^{\varepsilon - 1} \sum_{n=0}^{\infty} \exp \left\{ -\frac{1}{2} n(n - 1)t - \frac{1}{2} \mu nt \right\} Q_n(x, x')
\]

for \(x_j > 0, j = 1, 2, ..., k \), where \(Q_n \) is given by

\[
Q_n(x, x') = (\mu + 2n - 1)(n!)^{-1} \sum_{m=0}^{n} (-1)^{n-m} \binom{n}{m} (\mu + m)(n - 1) \xi_m
\]
with
\[
\xi_m = \alpha_m \Gamma(e)^{\frac{k}{k}} \sum_{l_0 + \ldots + l_m = m, 0 \leq l_j \leq 1, \ldots, k} \frac{m!}{l_0! \ldots l_m!} \frac{(x_j x'_j)^{l_j}}{\Gamma(l_j + \varepsilon)},
\] (22)
for the notation \(\alpha_m = \alpha (\alpha + 1) \ldots (\alpha + m - 1)\). We give the particular cases as,
\[
\begin{align*}
Q_0(x, x') &= 1, \\
Q_1(x, x') &= (\mu + 1)(\xi_1 - 1), \\
Q_2(x, x') &= \frac{1}{2}(\mu + 3)[(\mu + 2)\xi_2 - 2(\mu + 1)\xi_1 + \mu],
\end{align*}
\] (23) (24) (25)
with
\[
\begin{align*}
\xi_1 &= \mu \sum_{j=1}^{k} \frac{x_j x'_j}{\varepsilon} \\
\xi_2 &= \mu (\mu + 1) \sum_{j=1}^{k} \frac{(x_j x'_j)^2}{\varepsilon (\varepsilon + 1)} + 2 \sum_{j<k} \frac{x_j x'_j x'_j}{\varepsilon^2}.
\end{align*}
\] (26) (27)
For \(i = 1, \ldots, k\), putting \(y_i^2 = x_i\), the isotropic diffusion (2) on the \((k - 1)\)-dimensional sphere is transformed to
\[
dx_i(t) = \frac{c^2}{4}(1 - k x_i(t))dt + \sum_{j=1}^{k} c \sqrt{x_j(t)x_j(t)}db_j(t).
\] (28)
The diffusion process governed by equation (18) is expressed as,
\[
dx_i(t) = M_i dt + \sum_{j=1}^{k} \sqrt{x_j(t)x_j(t)}db_j(t).
\] (29)
Thus, the corresponding Fokker–Planck equation of equation (28) is a special case of equation (18), putting \(\varepsilon_i = 1/2\) for all \(i\) and taking \(c = 1\).
The transition probability density \(p(x, t|x', 0)\) for equation (18) with \(\varepsilon_i = 1/2\), \(i = \ldots, k\) on the relative abundances \(x = (x_1, \ldots, x_k)\) starting from \(x' = (x'_1, \ldots, x'_k)\) is represented by using the transition probability density \(\rho(y, t|y', 0)\), for equation (16), on \(y = (y_1, \ldots, y_k)\) with spherical coordinates \(\theta_1, \ldots, \theta_k\) of the \((k - 1)\)-dimensional sphere starting from \(y' = (y'_1, \ldots, y'_k)\) with spherical coordinates \(\theta'_1, \ldots, \theta'_k\), as
\[
p(x, t|x', 0) \left| \begin{array}{c}
\frac{\partial(x_1, \ldots, x_{k-1})}{\partial(\theta_1, \ldots, \theta_{k-1})} \\
\end{array} \right| d\theta_1 \ldots d\theta_{k-1}
\] (30)
\[
\rho(y, t|y', 0) \left| \begin{array}{c}
\frac{\partial(y_1, \ldots, y_{k-1})}{\partial(\theta_1, \ldots, \theta_{k-1})} \\
\end{array} \right| d\theta_1 \ldots d\theta_{k-1}.
\] (31)
We have
\[
\left| \begin{array}{c}
\frac{\partial(x_1, \ldots, x_{k-1})}{\partial(\theta_1, \ldots, \theta_{k-1})} \\
\end{array} \right| = 2^{k-1} \left(\prod_{i=1}^{k} y_i \right) \left| \begin{array}{c}
\frac{\partial(y_1, \ldots, y_{k-1})}{\partial(\theta_1, \ldots, \theta_{k-1})} \\
\end{array} \right|.
\] (32)
Considering equation (16), (17), (32) we have

\[
p(x, t|x', 0) = \frac{\Gamma(k/2)}{\pi^{k/2}} \left(\prod_{i=1}^{k} x_i^{-1/2} \right) 2^{-k} \sum_{\gamma_i^2=\gamma_i^2, 0 \leq \gamma_i < 1}^{\infty} \sum_{y=1, \ldots, k} \frac{2L + k - 2}{k - 2} C^{k/2-1}(y \cdot y') \exp(-DL(L + k - 2)t).
\] (33)

Thus, we proved solution (33) is equivalent to solution (20) for the case \(\varepsilon = 1/2 \). Let us observe the two forms of the solution. Consider the eigenvalues of the two diffusion equations (9) and (18). The Caillol solution [3] of (9), expanded by the Gegenbauer polynomials, is applied in equation (33). The Gegenbauer polynomials for odd \(L \) in equation (33) cancel with each other as we can see from equation (17). Hence, there is no term for odd \(L \) in equation (33), [17]. Put \(L = 2n \), and take \(D = 1/8 \) (\(\varepsilon = 1 \) in (7)), for particular mutation rate \(\varepsilon_i = 1/2, \ i = 1, \ldots, k \). Then, the exponential functions \(\exp(-DL(L + k - 2)t) \) in equation (33) coincide with those of the Griffiths solution (20). The above \(Q_0(x, x') \), \(Q_1(x, x') \), and \(Q_2(x, x') \) in solution (20) are obtained from the terms in the expansion (33) by using \(x_i = y_i^\varepsilon \) and \(x'_i = y_i^{\varepsilon'} \) for \(i = 1, \ldots, k \), as we can easily calculate. Also, we see

\[
\frac{\Gamma(k/2)}{\pi^{k/2}} \left(\prod_{i=1}^{k} x_i^{-1/2} \right) = \frac{\Gamma(\mu)}{\Gamma(\varepsilon)} \prod_{i=1}^{k} \frac{x_i^{\varepsilon-1}}{x_i^{\varepsilon}}.
\] (34)

Our study naturally connects the diffusion on a hypersphere with the Wright–Fisher model for a particular mutation rate of the parent-independent mutation.

Remark 1. The connection between the diffusion on a hypersphere and the one-dimensional Wright–Fisher diffusion has been derived before (p 338 in [15]). The equation (13.33) in [15] corresponds to equation (16). They derive the spectral expansion for a wider range of parameters. To extend this argument to the multidimensional case is one of our next problems.

Remark 2. The eigenfunctions in our equation (33) and the eigenfunction (21) in the Griffiths solution for the particular mutation rate look different, although they are identical. We do not have the algebraic proof in our present work and propose to have it in our next work. The form of the polynomials in our expansion means that they are the reproducing kernel polynomials for orthogonal polynomials on the Dirichlet measure [10], because all the pairs of the polynomials of the same degree are added to form the coefficient of a given eigenvalue.

Acknowledgments

The authors thank Hidenori Tachida for the references in population genetics. The authors thank Shinichi Kotani, Tohru Ogawa and Geoffrey A. Watterson for helpful discussions and suggestions on the symmetry of special functions. The authors thank the reviewers for helpful comments and suggestions.

References

[1] Brillinger D R 1997 A particle migrating randomly on a sphere J. Theor. Probab. 10 429–43
[2] Carlsson T, Ekholm T and Elvingson C 2010 Algorithm for generating a Brownian motion on a sphere J. Phys. A: Math. Theor. 43 505001
[3] Caillol J M 2004 Random walks on hyperspheres of arbitrary dimensions J. Phys. A: Math. Gen. 37 3077
[4] Debye P 1929 Polar Molecules (London: Dover)
[5] Ewens W J 2004 Mathematical Population Genetics 1: I. Theoretical Introduction (New York: Springer) p 27
[6] Fisher R A 1922 On the dominance ratio Proceedings of the Royal Society of Edinburgh 42 321–41
[7] Griffiths R C 1979 A transition density expansion for a multi-allele diffusion model Advances in Applied Probability 11 310–25
[8] Griffiths R C 1980 Allele frequencies in multidimensional Wright-Fisher models with a general symmetric mutation structure Theoretical Population Biology 17 51–70
[9] Griffiths B 2009 Stochastic processes with orthogonal polynomial eigenfunctions J. Comput. Appl. Math. 233 739–44
[10] Griffiths R C and Spano D 2013 Orthogonal polynomial kernels and canonical correlations for Dirichlet measures Bernoulli 19 548–98
[11] Itoh Y 1979 Random collision process on oriented graph Research Memorandum, Institute of Statistical Mathematics (Tokyo) vol 154 pp 1–20
[12] Itoh Y 1979 Random collision models in oriented graphs J. Appl. Probab. 16 36–44
[13] Itoh Y 1993 Stochastic model of an integrable nonlinear system J. Phys. Soc. Japan 62 1826–8
[14] Itoh, Mallows C and Shepp L 1998 Explicit sufficient invariants for an interacting particle system J. Appl. Probab. 35 633–41
[15] Karlin S and Taylor H 1981 A Second Course in Stochastic Processes (New York: Academic Press)
[16] Kimura M 1956 Random genetic drift in a tri-allelic locus; exact solution with a continuous model Biometrics 12 57–66
[17] Maruyama K 1992 Generalized Random Frequency Modulation Model and Its Applications PhD Dissertation The Graduate University for Advanced Studies (in Japanese)
[18] Maruyama K and Itoh Y 1991 Stochastic differential equations for the Wright–Fisher model Proceedings of the Institute of Statistical Mathematics 39 47–52 (in Japanese with English summary)
[19] Maruyama T and Nei M 1981 Genetic variability maintained by mutation and overdominant selection in finite populations Genetics 98 441–59
[20] McKean H P 1969 Stochastic integrals 353 (American Mathematical Soc.)
[21] Moran P A P 1958 Random processes in genetics Mathematical Proceedings of the Cambridge Philosophical Society 54 (Cambridge: Cambridge University Press) 1958
[22] Perrin M F 1928 Mouvement brownien de rotation Ann. l'Ecole Norm. Sup. 45 1–51
[23] Takahata N 1981 Genetic variability and rate of gene substitution in a finite population under mutation and fluctuating selection Genetics 98 427–40
[24] Vilenkin N I 1978 Special functions and the theory of group representations 22 (American Mathematical Soc.)
[25] Watterson G A 1976 The stationary distribution of the infinitely-many neutral alleles diffusion model J. Appl. Prob. 13 639–51
[26] Wright S 1931 Evolution in Mendelian populations Genetics 16 97
[27] Wright S 1969 Evolution and the Genetics of Populations 2 (Chicago: University of Chicago Press)
[28] Yosida K 1949 Brownian motion on the surface of the 3-sphere The Annals of Mathematical Statistics 20 292–6