Symplectic Resolutions for Symmetric Products of Surfaces

Baohua Fu

March 3, 2022

Abstract

Let S be a smooth complex connected analytic surface which admits a holomorphic symplectic structure. Let $S^{(n)}$ be its nth symmetric product. We prove that every projective symplectic resolution of $S^{(n)}$ is isomorphic to the Douady-Barlet resolution $S^{[n]} \rightarrow S^{(n)}$.

1 Introduction

Let X be a normal complex analytic variety. Following [Bea], the variety X is said to have symplectic singularities if there exists a holomorphic symplectic 2-form ω on X_{reg} such that for any resolution of singularities $\pi : \tilde{X} \rightarrow X$, the 2-form $\pi^* \omega$ defined a priori on $\pi^{-1}(X_{\text{reg}})$ can be extended to a holomorphic 2-form on \tilde{X}. If furthermore the 2-form $\pi^* \omega$ extends to a holomorphic symplectic 2-form on the whole of \tilde{X} for some resolution of X, then we say that X admits a symplectic resolution, and the resolution π is called symplectic.

There are two classes of examples of symplectic singularities. One consists of normalizations of closures of nilpotent orbits in a complex semi-simple Lie algebra. For these singularities, we proved in [Fu] that every symplectic resolution is isomorphic to the collapsing of the zero section of the cotangent bundle of a projective homogeneous space.

The other class of examples consists of so called quotient singularities, i.e. singularities of the form V/G, with V a symplectic variety and G a finite group of symplectic automorphisms of V. In this note, we are interested in the following special case. Let S be a complex analytic manifolds which
admits a holomorphic symplectic structure. Then by Proposition 2.4 (Bea), the symmetric product \(S^{(n)} = S^n / \Sigma_n \) is a normal variety with symplectic singularities, where \(\Sigma_n \) is the permutation group of \(n \) letters. By Theorem 2.1 (Fub), \(S^{(n)} \) (for \(n > 1 \)) admits no symplectic resolution as soon as \(\dim(S) > 2 \). From now on, we will suppose that \(\dim(S) = 2 \), i.e. \(S \) is a smooth complex connected analytic surface admitting a symplectic structure. Examples of such surfaces include \(K3 \) surfaces, abelian surfaces, cotangent bundles of algebraic curves etc..

Recall that the Douady space \(S^{[n]} \) parametrizes zero-dimensional analytic subspaces of length \(n \) in \(S \). It is well-known that \(S^{[n]} \) is a \(2n \)-dimensional smooth complex manifolds. If \(S \) is algebraic, it is the usual Hilbert scheme \(\text{Hilb}^n(S) \) of points on \(S \). The Douady-Barlet morphism \(S^{[n]} \to S^{(n)} \) provides a projective resolution of singularities for \(S^{(n)} \). If \(S \) admits a symplectic structure, then \(S^{[n]} \) is again symplectic (see Bea). In this case \(S^{[n]} \) gives a projective symplectic resolution for \(S^{(n)} \). Our purpose of this note is to prove the following:

Theorem 1. Let \(S \) be a smooth connected complex analytic surface, which admits a symplectic structure. Then every projective symplectic resolution of \(S^{(n)} \) is isomorphic to the Douady-Barlet resolution \(S^{[n]} \to S^{(n)} \).

One should bear in mind that in general there may be more than one symplectic resolutions for a variety with symplectic singularities. Such an example is given by a Richardson nilpotent orbit admitting two or more polarizations with non-conjugate Levi factors (see Fu).

A similar result for symplectic quotients of \(\mathbb{C}^{2n} \) has been proved by D. Kaledin (see Theorem 1.9 [Ka]).

Acknowledgments: I would like to thank A. Beauville and A. Hirschowitz for helpful discussions.

2 Proof of the theorem

Lemma 2. Let \(X \) be a normal variety with symplectic singularities and \(U \) its smooth part. Let \(\text{Sing}(X) = \bigcup_{i=1}^k F_i \) be the decomposition into irreducible components of the singular part of \(X \). Suppose that \(X \) admits a projective symplectic resolution \(\pi : Z \to X \). Furthermore we suppose that:

(i) \(\text{Pic}(U) \) is a torsion group;
(ii). for any \(i \), there exists an analytic proper sub-variety \(B_i \) in \(F_i \), such that the restricted map \(\pi' : Z_* \to X_* \) is the blow-up of \(X_* \) with center \(\bigcup_i (F_i - B_i) \), where \(X_* = X - \bigcup_i B_i \) and \(Z_* = \pi^{-1}(X_*) \).

Then every \(F_i \) is of codimension \(2 \) in \(X \), and the morphism \(\pi : Z \to X \) is isomorphic to the blow-up \(Bl(X, \cap_i m_i^{d_i}) \) for some integers \(d_i \), where \(m_i \) is the ideal \(m_{F_i} \) defining \(F_i \).

Proof. That \(X \) is normal implies \(X - U \) has codimension at least \(2 \) in \(X \), thus the Weil divisor group \(Cl(X) \) is isomorphic to the Picard group \(Pic(U) \), which is of torsion by hypothesis (i). This shows that \(X \) is \(\mathbb{Q} \)-factorial. Now the first affirmation follows from Corollary 1.3 \([Fu]\).

We will use an idea of D. Kaledin \([Ka]\) to prove the second affirmation. Since \(\pi \) is projective, \(Z = \text{Proj} \oplus_k \pi_* L^k \) for some holomorphic line bundle \(L \) on \(Z \). Notice that \(Pic(\pi^{-1}(U)) = Pic(U) \) is of torsion, replacing \(L \) by some positive power, we can suppose \(L|_{\pi^{-1}(U)} \) is trivial, thus \(\pi_* L|_U \simeq O_X|_U \).

Since \(X \) is normal and \(X - U \) has codimension \(\geq 2 \), this gives an embedding \(\pi_* L \to O_X \), thus \(\pi \) is identified with the blow-up \(Bl(X, \pi_* L) \).

Let \(i : Z_* \to Z \) and \(j : X_* \to X \) be the natural inclusions. We have the following commutative diagram:

\[
\begin{array}{ccc}
Z_* & \xrightarrow{i} & Z \\
\downarrow {\pi'} & & \downarrow \pi \\
X_* & \xrightarrow{j} & X \\
\end{array}
\]

The projection formula gives \(L = i_* i^* L \), so \(\pi_* L = \pi_* i_* i^* L = j_* \pi'_* i^* L \). By hypothesis (ii), we have \(\pi'_* : Z_* \to X_* \) is the blow-up of \(X_* \) with center \(\bigcup_i (F_i - B_i) \), thus \(\pi'_* i^* L = j^*(\cap_i m_i^{d_i}) \) for some positive integers \(d_i \). This gives that \(\pi_* L = j_* j^*(\cap_i m_i^{d_i}) = \cap_i m_i^{d_i} \), which concludes the proof.

Lemma 3. Let \(\Delta = \{(z_1, z_2) \in \mathbb{C}^2 | |z_1| + |z_2| < 1 \} \) be the disc in \(\mathbb{C}^2 \) and \(X = \Delta^{(k_1)} \times \cdots \times \Delta^{(k_l)} \). Then \(X \) is a normal variety with symplectic singularities, \(\text{Sing}(X) \) consists of \(N = \# \{i | k_i > 1 \} \) co-dimension \(2 \) irreducible components \(F_i \) and any projective symplectic resolution of \(X \) is isomorphic to a blow-up \(Bl(X, \cap_i m_i^{d_i}) \) for some integers \(d_i \), where \(m_i = m_{F_i} \).

Proof. The first affirmation is easy. For the second affirmation, one notices that for \(k > 1 \), \(\text{Sing}(\Delta^{(k)}) \) is irreducible and of codimension \(2 \) in \(\Delta^{(k)} \). We will apply Lemma 2 to prove the third affirmation. Denote by

\[p : Y := \Delta^{k_1} \times \cdots \times \Delta^{k_l} \to X = \Delta^{(k_1)} \times \cdots \times \Delta^{(k_l)} \]
REFERENCES

the natural quotient by the product of permutation groups $\Sigma_{k_1} \times \cdots \times \Sigma_{k_l}$. Let U be the smooth part of X and $V = p^{-1}(U)$, then $Y - V$ is of codimension 2 in Y. In particular, we have $\text{Pic}(V) = \text{Pic}(Y) = 0$, which gives that $\text{Pic}(U)$ is of torsion, so condition (i) of Lemma 2 is verified.

We consider one component, say $F_1 = \text{Sing}(\Delta(k_1) \times \Delta(k_2) \times \cdots \times \Delta(k_l)) \ (k_1 > 1)$. Denote by $F_{1,*}$ the open set of F_1 consists of cycles of the form $2x_1 + x_2 + \cdots + x_{n-1}$, where $n = \sum_j k_j$, x_i are distinct points and $2x_1 + x_2 + \cdots + x_{k_1-1}$ is in $\text{Sing}(\Delta(k_1))$. We define $B_i = F_i - F_{i,*}$. In fact, $F_{1,*}$ is the smooth part of F_1 and B_1 is its singular part. Then locally on $F_{1,*}$, the singularities looks like $\mathbb{C}^{2n-2} \times (Q, 0)$, where Q is the cone over a smooth conic and 0 is its vertex. Recall that every crepant resolution of Q is the blow-up of Q with center 0. This gives that locally on $F_{1,*}$, any symplectic resolution $\pi : Z \to X$ is the blow-up of X along the subvariety $F_{1,*}$, so the second condition of Lemma 2 is also verified.

\end{proof}

\begin{remark}
The author does not know whether the product $S^{(n_1)} \times S^{(n_2)} \times \cdots \times S^{(n_l)}$ admits other projective symplectic resolutions than the one given by $S^{[n_1]} \times S^{[n_2]} \times \cdots \times S^{[n_l]}$.
\end{remark}

References

[Be] A. Beauville, Variétés Kähleriennes dont la première classe de Chern est nulle, J. Diff. Geom. 18(1983), 755-782

[Bea] A. Beauville, Symplectic Singularities, Invent. Math. 139(2000), 541–549
REFERENCES

[Fu] B. Fu, *Symplectic resolutions for nilpotent orbits*, Invent. Math. 151(2003), 167-186

[Fub] B. Fu, *Symplectic resolutions for quotient singularities*, preprint \texttt{math.AG/0206288}

[Ka] D. Kaledin, *Dynkin diagrams and crepant resolutions of quotient singularities*, preprint \texttt{math.AG/9903157} to appear in Selecta Math.

Labortoire J.A.Dieudonné, Parc Valrose
06108 Nice cedex 02, FRANCE
baohua.fu@polytechnique.org