Efficient Clustering with Limited Distance Information*

Konstantin Voevodski
Department of Computer Science
Boston University
Boston, MA 02215, USA

Maria-Florina Balcan
College of Computing
Georgia Institute of Technology
Atlanta, GA 30332, USA

Heiko Röglin
Department of Quantitative Economics
Maastricht University
Maastricht, The Netherlands

Shang-Hua Teng
Computer Science Department
University of Southern California
Los Angeles, CA 90089, USA

Yu Xia
Bioinformatics Program and Department of Chemistry
Boston University
Boston, MA 02215, USA

Editor:

Abstract

Given a point set S and an unknown metric d on S, we study the problem of efficiently partitioning S into k clusters while querying few distances between the points. In our model we assume that we have access to one versus all queries that given a point $s \in S$ return the distances between s and all other points. We show that given a natural assumption about the structure of the instance, we can efficiently find an accurate clustering using only $O(k)$ distance queries. Our algorithm uses an active selection strategy to choose a small set of points that we call landmarks, and considers only the distances between landmarks and other points to produce a clustering. We use our procedure to cluster proteins by sequence similarity. This setting nicely fits our model because we can use a fast sequence database search program to query a sequence against an entire dataset. We conduct an empirical study that shows that even though we query a small fraction of the distances between the points, we produce clusterings that are close to a desired clustering given by manual classification.

Keywords: clustering, active clustering, k-median, approximation algorithms, approximation stability, clustering accuracy, protein sequences

* A preliminary version of this article appeared under the same title in the Proceedings of the Twenty-Sixth Conference on Uncertainty in Artificial Intelligence, AUAI Press, Corvallis, Oregon, 632-641.
1. Introduction

Clustering from pairwise distance information is an important problem in the analysis and exploration of data. It has many variants and formulations and it has been extensively studied in many different communities, and many different clustering algorithms have been proposed.

Many application domains ranging from computer vision to biology have recently faced an explosion of data, presenting several challenges to traditional clustering techniques. In particular, computing the distances between all pairs of points, as required by traditional clustering algorithms, has become infeasible in many application domains. As a consequence it has become increasingly important to develop effective clustering algorithms that can operate with limited distance information.

In this work we initiate a study of clustering with limited distance information; in particular we consider clustering with a small number of one versus all queries. We can imagine at least two different ways to query distances between points. One way is to ask for distances between pairs of points, and the other is to ask for distances between one point and all other points. Clearly, a one versus all query can be implemented as $|S|$ pairwise queries, but we draw a distinction between the two because the former is often significantly faster in practice if the query is implemented as a database search.

Our main motivating example for considering one versus all distance queries is sequence similarity search in biology. A program such as BLAST ([Altschul et al. 1990]) (Basic Local Alignment Search Tool) is optimized to search a single sequence against an entire database of sequences. On the other hand, performing $|S|$ pairwise sequence alignments takes several orders of magnitude more time, even if the pairwise alignment is very fast. The disparity in runtime is due to the hashing that BLAST uses to identify regions of similarity between the input sequence and sequences in the database. The program maintains a hash table of all words in the database (substrings of a certain length), linking each word to its locations. When a query is performed, BLAST considers each word in the input sequence, and runs a local sequence alignment in each of its locations in the database. Therefore the program only performs a limited number of local sequence alignments, rather than aligning the input sequence to each sequence in the database. Of course, the downside is that we never consider alignments between sequences that do not share a word. However, in this case an alignment may not be relevant anyway, and we can assign a distance of infinity to the two sequences. Even though the search performed by BLAST is heuristic, it has been shown that protein sequence similarity identified by BLAST is meaningful ([Brenner et al. 1998]).

Motivated by such scenarios, in this paper we consider the problem of clustering a dataset with an unknown distance function, given only the capability to ask one versus all distance queries. We design an efficient algorithm for clustering accurately with a small number of such queries. To formally analyze the correctness of our algorithm we assume that the distance function is a metric, and that our clustering problem satisfies a natural approximation stability property regarding the utility of the k-median objective function in clustering the points. In particular, our analysis assumes the (c, ϵ)-property of [Balcan et al. 2009]. For an objective function Φ (such as k-median), the (c, ϵ)-property assumes that any clustering that is a c-approximation of Φ has error of at most ϵ. To define what we mean by error we assume that there exists some unknown relevant “target” clustering
Our first main contribution is designing an algorithm that given the \((c, \epsilon)\)-property for the \(k\)-median objective finds an accurate clustering with probability at least \(1 - \delta\) by using only \(O(k + \ln \frac{1}{\delta})\) one versus all queries. In particular, we use the same assumption as Balcan et al. (2009), and we obtain effectively the same performance guarantees as Balcan et al. (2009) but by only using a very small number of one versus all queries. In addition to handling this more difficult scenario, we also provide a much faster algorithm. The algorithm of Balcan et al. (2009) can be implemented in \(O(|S|^3)\) time, while the one proposed here runs in time \(O((k + \ln \frac{1}{\delta})|S| \log |S|)\).

Our algorithm uses an active selection strategy to choose a small set of landmark points. We then construct a clustering using only the distances between landmarks and other points. The runtime of our algorithm is \(O(|L||S| \log |S|)\), where \(L\) is the set of landmarks that have been selected. Our adaptive selection procedure significantly reduces the query and time complexity of the algorithm. We show that using our adaptive procedure it suffices to choose only \(O(k + \ln \frac{1}{\delta})\) landmarks to produce an accurate clustering with probability at least \(1 - \delta\). Using a random selection strategy we need \(O(k \ln \frac{1}{\delta})\) landmarks if the clusters of the target clustering are balanced in size, and otherwise performance degrades significantly because we may need to sample points from much smaller clusters.

We use our algorithm to cluster proteins by sequence similarity, and compare our results to gold standard manual classifications given in the Pfam (Finn et al., 2010) and SCOP (Murzin et al., 1995) databases. These classification databases are used ubiquitously in biology to observe evolutionary relationships between proteins and to find close relatives of particular proteins. We find that for one of these sources we obtain clusterings that usually closely match the given classification, and for the other the performance of our algorithm is comparable to that of the best known algorithms using the full distance matrix. Both of these classification databases have limited coverage, so a completely automated method such as ours can be useful in clustering proteins that have yet to be classified. Moreover, our method can cluster very large datasets because it is efficient and does not require the full distance matrix as input, which may be infeasible to obtain for a very large dataset.

Related Work: A property that is related to the \((c, \epsilon)\)-property is \(\epsilon\)-separability, which was introduced by Ostrovsky et al. (2006). A clustering instance is \(\epsilon\)-separated if the cost of the optimal \(k\)-clustering is at most \(\epsilon^2\) times the cost of the optimal clustering using \(k - 1\) clusters. The \(\epsilon\)-separability and \((c, \epsilon)\) properties are related: in the case when the clusters are large the Ostrovsky et al. (2006) condition implies the Balcan et al. (2009) condition (see Balcan et al., 2009).

Ostrovsky et al. also present a sampling method for choosing initial centers, which when followed by a single Lloyd-type descent step gives a constant factor approximation of the \(k\)-means objective if the instance is \(\epsilon\)-separated. However, their sampling method needs information about the full distance matrix because the probability of picking two points as two cluster centers is proportional to their squared distance. A very similar (independently proposed) strategy is used by Arthur and Vassilvitskii (2007) to obtain an \(O(\log k)\)-approximation of the \(k\)-means objective on arbitrary instances. Their work was further extended by Ailon et al. (2009) to give a constant factor approximation using
$O(k \log k)$ centers. The latter two algorithms can be implemented with k and $O(k \log k)$ one versus all distance queries, respectively.

Awasthi et al. (2010) have since improved the approximation guarantee of Ostrovsky et al. (2006) and some of the results of Balcan et al. (2009). In particular, they show a way to arbitrarily close approximate the k-median and k-means objective when the Balcan et al. (2009) condition is satisfied and all the target clusters are large. In their analysis they use a property called weak deletion-stability, which is implied by the Ostrovsky et al. (2006) condition and the Balcan et al. (2009) condition when the target clusters are large. However, in order to find a c-approximation (and given our assumption a clustering that is ϵ-close to the target) the runtime of their algorithm is $n^{O(1/(c-1)^2)}k^{O(1/(c-1))}$. On the other hand, the runtime of our algorithm is completely independent of c, so it remains efficient even when the (c, ϵ)-property holds only for some very small constant c.

Approximate clustering using sampling has been studied extensively in recent years (see Mishra et al., 2001; Ben-David, 2007; Czumaj and Sohler, 2007). The methods proposed in these papers yield constant factor approximations to the k-median objective using at least $O(k)$ one versus all distance queries. However, as the constant factor of these approximations is at least 2, the proposed sampling methods do not necessarily yield clusterings close to the target clustering C_T if the (c, ϵ)-property holds only for some small constant $c < 2$, which is the interesting case in our setting.

Our landmark selection strategy is related to the farthest first traversal used by Dasgupta (2002). In each iteration this traversal selects the point that is farthest from the ones chosen so far, where distance from a point s to a set X is given by $\min_{x \in X} d(s, x)$. This traversal was originally used by Gonzalez (1985) to give a 2-approximation to the k-center problem. It is used in Dasgupta (2002) to produce a hierarchical clustering where for each k the induced k-clustering is a constant factor approximation of the optimal k-center clustering. Our selection strategy is somewhat different from farthest first traversal because in each iteration we uniformly at random choose one of the furthest points from the ones selected so far. In addition, the theoretical guarantees we provide are quite different from those of Gonzales and Dasgupta.

2. Preliminaries

Given a metric space $M = (X, d)$ with point set X, an unknown distance function d satisfying the triangle inequality, and a set of points $S \subseteq X$, we would like to find a k-clustering C that partitions the points in S into k sets C_1, \ldots, C_k by using one versus all distance queries.

In our analysis we assume that S satisfies the (c, ϵ)-property of Balcan et al. (2009) for the k-median objective function. The k-median objective is to minimize $\Phi(C) = \sum_{i=1}^{k} \sum_{x \in C_i} d(x, c_i)$, where c_i is the median of cluster C_i, which is the point $y \in C_i$ that minimizes $\sum_{x \in C_i} d(x, y)$. Let $OPT_\Phi = \min_C \Phi(C)$, where the minimum is over all k-clusterings of S, and denote by $C^* = \{C_1^*, \ldots, C_k^*\}$ a clustering achieving this value.

To formalize the (c, ϵ)-property we need to define a notion of distance between two k-clusterings $C = \{C_1, \ldots, C_k\}$ and $C' = \{C_1', \ldots, C_k'\}$. As in Balcan et al. (2009), we define the distance between C and C' as the fraction of points on which they disagree under the
optimal matching of clusters in C to clusters in C':

$$\text{dist}(C, C') = \min_{\sigma \in S_k} \frac{1}{n} \sum_{i=1}^{k} |C_i - C'_\sigma(i)|,$$

where S_k is the set of bijections $\sigma: \{1, \ldots, k\} \rightarrow \{1, \ldots, k\}$. Two clusterings C and C' are ϵ-close if $\text{dist}(C, C') < \epsilon$.

We assume that there exists some unknown relevant “target” clustering C_T and given a proposed clustering C we define the error of C with respect to C_T as $\text{dist}(C, C_T)$. Our goal is to find a clustering of low error.

The (c, ϵ)-property is defined as follows.

Definition 1 We say that the instance (S, d) satisfies the (c, ϵ)-property for the k-median objective function with respect to the target clustering C_T if any clustering of S that approximates OPT_Φ within a factor of c is ϵ-close to C_T, that is, $\Phi(C) \leq c \cdot \text{OPT}_\Phi \Rightarrow \text{dist}(C, C_T) < \epsilon$.

In the analysis of the next section we denote by c^*_i the center point of C^*_i, and use OPT to refer to the value of C^* using the k-median objective, that is, $\Phi(C) = \text{OPT}$. We define the weight of point x to be the contribution of x to the k-median objective in C^*: $w(x) = \min_i d(x, c^*_i)$. Similarly, we use $w_2(x)$ to denote x’s distance to the second-closest cluster center among $\{c^*_1, c^*_2, \ldots, c^*_k\}$. In addition, let w be the average weight of the points: $w = \frac{1}{n} \sum_{x \in S} w(x) = \frac{\text{OPT}}{n}$, where n is the cardinality of S.

3. Clustering With Limited Distance Information

Algorithm 1 Landmark-Clustering($S, \alpha, \epsilon, \delta, k$)

- $b = (1 + 17/\alpha)en$;
- $q = 2b$;
- $\text{iter} = 4k + 16 \ln \frac{1}{\delta}$;
- $s_{\text{min}} = b + 1$;
- $n' = n - b$;
- $L = \text{Landmark-Selection}(q, \text{iter})$;
- $C' = \text{Expand-Landmarks}(s_{\text{min}}, n', L)$;
- Choose some landmark l_i from each cluster C'_i;
- for each $x \in S$ do
 - Insert x into the cluster C''_j for $j = \arg\min_i d(x, l_i)$;
- end for
- return C''.

In this section we present a new algorithm that accurately clusters a set of points assuming that the clustering instance satisfies the (c, ϵ)-property for $c = 1 + \alpha$, and the clusters in the target clustering C_T are not too small. The algorithm presented here is much faster than the one given by Balcan et al., and does not require all pairwise distances.
as input. Instead, we only require $O(k + \ln \frac{1}{\delta})$ one versus all distance queries to achieve the same performance guarantee as in (Balcan et al., 2009) with probability at least $1 - \delta$.

Our clustering method is described in Algorithm 1. We start by using the Landmark-Selection procedure to adaptively select a small set of landmarks. This procedure repeatedly chooses uniformly at random one of the q furthest points from the ones selected so far, for an appropriate q. We use $d_{\min}(s)$ to refer to the minimum distance between s and any point selected so far. Each time we select a new landmark l, we use a one versus all distance query to get the distances between l and all other points in the dataset, and update $d_{\min}(s)$ for each point $s \in S$. To select a new landmark in each iteration, we choose a random number $i \in \{n - q + 1, \ldots, n\}$ and use a linear time selection algorithm to select the ith furthest point. We note that our algorithm only uses the distances between landmarks and other points to produce a clustering.

Algorithm 2 Landmark-Selection(q, iter)

Choose $l \in S$ uniformly at random;
$L = \{l\}$;
for each $d(l, s) \in \text{QUERY-ONE-VS-ALL}(l, S)$ do
$d_{\min}(s) = d(l, s)$;
end for
for $i = 1$ to iter − 1 do
Let s_1, \ldots, s_n be an ordering of the points in S such that $d_{\min}(s_i) \leq d_{\min}(s_{i+1})$ for $i \in \{1, \ldots, n - 1\}$;
Choose $l \in \{s_{n-q+1}, \ldots, s_n\}$ uniformly at random;
$L = L \cup \{l\}$;
for each $d(l, s) \in \text{QUERY-ONE-VS-ALL}(l, S)$ do
if $d(l, s) < d_{\min}(s)$ then
$d_{\min}(s) = d(l, s)$;
end if
end for
end for
return L;

Expand-Landmarks then expands a ball B_l around each landmark $l \in L$ chosen by Landmark-Selection. We use the variable r to denote the radius of all the balls: $B_l = \{s \in S \mid d(s, l) \leq r\}$. The algorithm starts with $r = 0$, and increments it until the balls satisfy a property described below. For each B_l there are n relevant values of r to try, each adding one more point to B_l, which results in at most $|L|n$ values to try in total.

The algorithm maintains a graph $G_B = (V_B, E_B)$, where vertices correspond to balls that have at least s_{\min} points in them, and two vertices are connected by an (undirected) edge if the corresponding balls overlap on any point: $(v_{l_1}, v_{l_2}) \in E_B$ iff $B_{l_1} \cap B_{l_2} \neq \emptyset$. In addition, we maintain the set of points in these balls Clustered = $\{s \in S \mid \exists l: s \in B_l\}$ and a list of the connected components of G_B, which we refer to as Components(G_B) = $\{\text{Comp}_1, \ldots, \text{Comp}_m\}$.

In each iteration, after we expand one of the balls by a point, we update G_B, Components(G_B), and Clustered. If G_B has exactly k components, and $|\text{Clustered}| \geq n'$, we terminate and
report points in balls that are part of the same component in G_B as distinct clusters. If this condition is never satisfied, we report no-cluster. A sketch of the algorithm is given below. We use (l^*, s^*) to refer to the next landmark-point pair that is considered, corresponding to expanding B_{l^*} to include s^* (Figure 1).

Algorithm 3 Expand-Landmarks(s_{\min}, n', L)

1: while $((l^*, s^*) = \text{Expand-Ball}()) \neq \text{null}$ do
2: \hspace{1em} $r = d(l^*, s^*)$;
3: \hspace{1em} update G_B, Components(G_B), and Clustered
4: \hspace{1em} if $|\text{Components} (G_B)| = k$ and $|\text{Clustered}| \geq n'$ then
5: \hspace{2em} return $C = \{C_1, ..., C_k\}$ where $C_i = \{s \in S | \exists l: s \in B_l$ and $v_l \in \text{Comp}_i\}$.
6: \hspace{1em} end if
7: \hspace{1em} end while
8: \hspace{1em} return no-cluster;

The last step of our algorithm takes the clustering C' returned by Expand-Landmarks and improves it. We compute a set L' that contains exactly one landmark from each cluster $C'_i \in C'$ (any landmark is sufficient), and assign each point $x \in S$ to the cluster corresponding to the closest landmark in L'.

We now present our main theoretical guarantee for Algorithm 1.

Theorem 2 Given a metric space $M = (X, d)$, where d is unknown, and a set of points S, if the instance (S, d) satisfies the $(1 + \alpha, \epsilon) \cdot$-property for the k-median objective function and if each cluster in the target clustering C_T has size at least $(4 + 51/\alpha)\epsilon n$, then Landmark-Clustering outputs a clustering that is ϵ-close to C_T with probability $1 - \delta$ in time $O((k + \ln \frac{1}{\delta})|S| \log |S|)$ using $O(k + \ln \frac{1}{\delta})$ one versus all distance queries.

Before we prove the theorem, we will introduce some notation and use an analysis similar to the one in Balcan et al. [2009] to argue about the structure of the clustering instance. Let $\epsilon^* = \text{dist}(C_T, C^*)$. By our assumption that the k-median clustering of S...
satisfies the \((1 + \alpha, \epsilon)\)-property we have \(\epsilon^* < \epsilon\). Since each cluster in the target clustering has at least \((4 + 51/\alpha)en\) points, and the optimal \(k\)-median clustering \(C^*\) differs from the target clustering by \(\epsilon^*n \leq \epsilon n\) points, each cluster in \(C^*\) must have at least \((3 + 51/\alpha)en\) points.

Let us define the critical distance \(d_{\text{crit}} = \frac{\omega w}{17}\). We call a point \(x\) good if both \(w(x) < d_{\text{crit}}\) and \(w_2(x) - w(x) \geq 17d_{\text{crit}}\), else \(x\) is called bad. In other words, the good points are those points that are close to their own cluster center and far from any other cluster center. In addition, we will break up the good points into good sets \(X_i\), where \(X_i\) is the set of the good points in the optimal cluster \(C_i^*\). So each set \(X_i\) is the “core” of the optimal cluster \(C_i^*\).

Note that the distance between two points \(x, y \in X_i\) satisfies \(d(x, y) \leq d(x, c_i^*) + d(c_i^*, y) = w(x) + w(y) < 2d_{\text{crit}}\). In addition, the distance between any two points in different good sets is greater than \(16d_{\text{crit}}\). To see this, consider a pair of points \(x \in X_i\) and \(y \in X_{j \neq i}\). The distance from \(x\) to \(y\)’s cluster center \(c_j^*\) is at least \(17d_{\text{crit}}\). By the triangle inequality, \(d(x, y) \geq d(x, c_j^*) - d(y, c_j^*) > 17d_{\text{crit}} - d_{\text{crit}} = 16d_{\text{crit}}\).

If the \(k\)-median instance \((M, S)\) satisfies the \((1 + \alpha, \epsilon)\)-property with respect to \(C_T\), and each cluster in \(C_T\) has size at least \(2\epsilon n\), then

1. less than \((\epsilon - \epsilon^*)n\) points \(x \in S\) on which \(C_T\) and \(C^*\) agree have \(w_2(x) - w(x) < \frac{\omega w}{\epsilon}\).
2. at most \(17\epsilon n/\alpha\) points \(x \in S\) have \(w(x) \geq \frac{\omega w}{17}\).

The first part is proved by Balcan et al. (2009). The intuition is that if too many points on which \(C_T\) and \(C^*\) agree are close enough to the second-closest center among \(\{c_1^*, c_2^*, \ldots, c_k^*\}\), then we can move them to the clusters corresponding to those centers, producing a clustering that is far from \(C_T\), but whose objective value is close to \(\text{OPT}\), violating the \((1 + \alpha, \epsilon)\)-property. The second part follows from the fact that \(\sum_{x \in S} w(x) = \text{OPT} = wn\).

Then using these facts and the definition of \(\epsilon^*\) it follows that at most \(\epsilon^*n + (\epsilon - \epsilon^*)n + 17\epsilon n/\alpha = en + 17\epsilon n/\alpha = (1 + 17/\alpha)en = b\) points are bad. Hence each \(|X_i| = |C_i^* \setminus B| \geq (2 + 34/\alpha)en = 2b\).

In the remainder of this section we prove that given this structure of the clustering instance, Landmark-Clustering finds an accurate clustering. We first show that almost surely the set of landmarks returned by Landmark-Selection has the property that each of the cluster cores has a landmark near it. We then argue that given a set of landmarks with this property, Expand-Landmarks finds a partition \(C'\) that clusters most of the points in each core correctly. We conclude with the proof of the theorem, which argues that the clustering returned by the last step of our procedure is a further improved clustering that is very close to \(C^*\) and \(C_T\).

The Landmark-Clustering algorithm first uses Landmark-Selection(\(q, \text{iter}\)) to choose a set of landmark points. The following lemma proves that for an appropriate choice of \(q\) after selecting only \(\text{iter} = O(k + \ln \frac{1}{\delta})\) landmarks with probability at least \(1 - \delta\) one of them is closer than \(2d_{\text{crit}}\) to some point in each good set.

Lemma 3 Given \(L = \text{Landmark-Selection}(2b, 4k + 16 \ln \frac{1}{\delta})\), with probability at least \(1 - \delta\) there is a landmark closer than \(2d_{\text{crit}}\) to some point in each good set.
Proof Because there are at most b bad points and in each iteration we uniformly at random choose one of $2b$ points, the probability that a good point is added to L is at least 1/2 in each iteration. Using a Chernoff bound we show that the probability that fewer than k good points have been added to L after $t > 2k$ iterations is less than $e^{-t(1-\frac{2b}{t})^2/4}$ (Lemma 4). For $t = 4k + 16 \ln \frac{1}{\delta}$

$$e^{-t(1-\frac{2b}{t})^2/4} < e^{-(4k+16\ln \frac{1}{t})0.5^2/4} < e^{-16\ln \frac{1}{t}/16} = \delta.$$

Therefore after $t = 4k + 16 \ln \frac{1}{\delta}$ iterations this probability is smaller than δ.

We argue that once we select k good points using our procedure, one of them must be closer than $2d_{\text{crit}}$ to some point in each good set. Note that the selected good points must be distinct because we must have chosen at least k good points after $b+k$ iterations and we cannot choose the same point twice in the first $n-2b$ iterations. There are two possibilities regarding the first k good points added to L: they are either selected from distinct good sets, or at least two of them are selected from the same good set.

If the former is true then the statement trivially holds. If the latter is true, consider the first time that a second point is chosen from the same good set X_i. Let us call these two points x and y, and assume that y is chosen after x. The distance between x and y must be less than $2d_{\text{crit}}$ because they are in the same good set. Therefore when y is chosen, $\min_{l \in L} d(l, y) \leq d(x, y) < 2d_{\text{crit}}$. Moreover, y is chosen from $\{s_{n-2b+1}, \ldots, s_n\}$, where $\min_{l \in L} d(l, s_i) \leq \min_{l \in L} d(l, s_{i+1})$. Therefore when y is chosen, at least $n-2b+1$ points $s \in S$ (including y) satisfy $\min_{l \in L} d(l, s) \leq \min_{l \in L} d(l, y) < 2d_{\text{crit}}$. Since each good set satisfies $|X_i| \geq 2b$, it follows that there must be a landmark closer than $2d_{\text{crit}}$ to some point in each good set.

Lemma 4 The probability that fewer than k good points have been chosen as landmarks after $t > 2k$ iterations of Landmark-Selection is less than $e^{-t(1-\frac{2b}{t})^2/4}$.

Proof Let X_i be an indicator random variable defined as follows: $X_i = 1$ if point chosen in iteration i is a good point, and 0 otherwise. Let $X = \sum_{i=1}^t X_i$, and μ be the expectation of X. In other words, X is the number of good points chosen after t iterations of the algorithm, and μ is its expected value.

Because in each round we uniformly at random choose one of $2b$ points and there are at most b bad points in total, $E[X_i] \geq 1/2$ and hence $\mu \geq t/2$. By the Chernoff bound, for any $\delta > 0$, $\Pr[X < (1-\delta)\mu] < e^{-\mu\delta^2/2}$.

If we set $\delta = 1 - \frac{2b}{t}$, we have $(1-\delta)\mu = (1 - (1 - \frac{2b}{t}))\mu \geq (1 - (1 - \frac{2b}{t}))t/2 = k$. Assuming that $t \geq 2k$, it follows that $\Pr[X < k] \leq \Pr[X < (1-\delta)\mu] < e^{-\mu\delta^2/2} = e^{-\mu(1-\frac{2b}{t})^2/2} \leq e^{-t/2(1-\frac{2b}{t})^2/2}.$

The algorithm then uses the Expand-Landmarks procedure to find a k-clustering C'. The following lemma states that C' is an accurate clustering, and has an additional property that is relevant for the last part of the algorithm.
Figure 2: Balls B_i and B_j of radius r^* are shown, which contain good sets X_i and X_j, respectively. The radius of the balls is small in comparison to the distance between the good sets.

Lemma 5 Given a set of landmarks L chosen by Landmark-Selection so that the condition in Lemma 3 is satisfied, Expand-Landmarks$(b + 1, n - b, L)$ returns a k-clustering $C' = \{C'_1, C'_2, \ldots, C'_k\}$ in which each cluster contains points from a distinct good set X_i. If we let σ be a bijection mapping each good set X_i to the cluster $C'_{\sigma(i)}$ containing points from X_i, the distance between c^*_i and any landmark l in $C'_{\sigma(i)}$ satisfies $d(c^*_i, l) < 5d_{\text{crit}}$.

Proof Lemma 6 argues that since the good sets X_i are well-separated, for $r < 4d_{\text{crit}}$ no ball of radius r can overlap more than one X_i, and two balls that overlap different X_i cannot share any points. Moreover, since we only consider balls that have more than b points in them, and the number of bad points is at most b, each ball in G_B must overlap some good set. Lemma 7 argues that since there is a landmark near each good set, there is a value of $r^* < 4d_{\text{crit}}$ such that each X_i is contained in some ball around a landmark of radius r^*. We can use these facts to argue for the correctness of the algorithm.

First we observe that for $r = r^*$, G_B has exactly k components and each good set X_i is contained within a distinct component. Each ball in G_B overlaps with some X_i, and by Lemma 3 since $r^* < 4d_{\text{crit}}$, we know that each ball in G_B overlaps with exactly one X_i. From Lemma 6 we also know that balls that overlap different X_i cannot share any points and are thus not connected in G_B. Therefore balls that overlap different X_i will be in different components in G_B. Moreover, by Lemma 7 each X_i is contained in some ball of radius r^*. For each good set X_i let us designate by B_i a ball that contains all the points in X_i (Figure 2), which is in G_B since the size of each good set satisfies $|X_i| > b$. Any ball in G_B that overlaps X_i will be connected to B_i, and will thus be in the same component as B_i. Therefore for $r = r^*$, G_B has exactly k components, one for each good set X_i that contains all the points in X_i.

Since there are at least $n - b$ good points that are in some X_i, this means that for $r = r^*$ the number of points that are in some ball in G_B (which are in Clustered) is at least $n - b$. Hence the condition in line 4 of Expand-Landmarks will be satisfied and the algorithm will terminate and return a k-clustering in which each cluster contains points from a distinct good set X_i.

10
Now let us suppose that we start with \(r = 0 \). Consider the first value of \(r = r' \) for which the condition in line 4 is satisfied. At this point \(G_B \) has exactly \(k \) components and the number of points that are not in these components is at most \(b \). It must be the case that \(r' \leq r^* < 4d_{\text{crit}} \) because we know that the condition is satisfied for \(r = r^* \), and we are considering all relevant values of \(r \) in ascending order. As before, each ball in \(G_B \) must overlap some good set \(X_i \). Again using Lemma \(6 \) we argue that since \(r < 4d_{\text{crit}} \), no ball can overlap more than one \(X_i \) and two balls that overlap different \(X_i \) cannot share any points. It follows that each component of \(G_B \) contains points from a single \(X_i \) (so we cannot merge the good sets). Moreover, since the size of each good set satisfies \(|X_i| > b\), and there are at most \(b \) points left out of \(G_B \), each component must contain points from a distinct \(X_i \) (so we cannot split the good sets). Thus we will return a \(k \)-clustering in which each cluster contains points from a distinct good set \(X_i \).

To prove the second part of the statement, let \(\sigma \) be a bijection matching each good set \(X_i \) to the cluster \(C'_{\sigma(i)} \) containing points from \(X_i \). Clearly, \(C'_{\sigma(i)} \) is made up of points in balls of radius \(r < 4d_{\text{crit}} \) that overlap \(X_i \). Consider any such ball \(B_l \) around landmark \(l \) and let \(s^* \) denote any point on which \(B_l \) and \(X_i \) overlap. By the triangle inequality, the distance between \(c_i^* \) and \(l \) satisfies \(d(c_i^*, l) \leq d(c_i^*, s^*) + d(s^*, l) < d_{\text{crit}} + r < 5d_{\text{crit}} \). Therefore the distance between \(c_i^* \) and any landmark \(l \in C'_{\sigma(i)} \) satisfies \(d(c_i^*, l) < 5d_{\text{crit}} \).

\[\square \]

Lemma 6 A ball of radius \(r < 4d_{\text{crit}} \) cannot contain points from more than one good set \(X_i \), and two balls of radius \(r < 4d_{\text{crit}} \) that overlap different \(X_i \) cannot share any points.

Proof To prove the first part, consider a ball \(B_l \) of radius \(r < 4d_{\text{crit}} \) around landmark \(l \). In other words, \(B_l = \{ s \in S \mid d(s, l) \leq r \} \). If \(B_l \) overlaps more than one good set, then it must have at least two points from different good sets \(x \in X_i \) and \(y \in X_j \). By the triangle inequality it follows that \(d(x, y) \leq d(x, l) + d(l, y) \leq 2r < 8d_{\text{crit}} \). However, we know that \(d(x, y) > 16d_{\text{crit}} \), giving a contradiction.

To prove the second part, consider two balls \(B_{l_1} \) and \(B_{l_2} \) of radius \(r < 4d_{\text{crit}} \) around landmarks \(l_1 \) and \(l_2 \). In other words, \(B_{l_1} = \{ s \in S \mid d(s, l_1) \leq r \} \), and \(B_{l_2} = \{ s \in S \mid d(s, l_2) \leq r \} \). Assume that they overlap with different good sets \(X_i \) and \(X_j \): \(B_{l_1} \cap X_i \neq \emptyset \) and \(B_{l_2} \cap X_j \neq \emptyset \). For the purpose of contradiction, let’s assume that \(B_{l_1} \) and \(B_{l_2} \) share at least one point: \(B_{l_1} \cap B_{l_2} \neq \emptyset \), and use \(s^* \) to refer to this point. By the triangle inequality, it follows that the distance between any point \(x \in B_{l_1} \) and \(y \in B_{l_2} \) satisfies\n
\[
 d(x, s^*) + d(s^*, y) \leq |d(x, l_1) + d(l_1, s^*)| + |d(s^*, l_2) + d(l_2, y)| \leq 4r < 16d_{\text{crit}}.
\]

Since \(B_{l_1} \) overlaps with \(X_i \) and \(B_{l_2} \) overlaps with \(X_j \), it follows that there is a pair of points \(x \in X_i \) and \(y \in X_j \) such that \(d(x, y) < 16d_{\text{crit}} \), a contradiction. Therefore if \(B_{l_1} \) and \(B_{l_2} \) overlap different good sets, \(B_{l_1} \cap B_{l_2} = \emptyset \).

\[\square \]

Lemma 7 Given a set of landmarks \(L \) chosen by Landmark-Selection so that the condition in Lemma \(5 \) is satisfied, there is some value of \(r^* < 4d_{\text{crit}} \) such that each \(X_i \) is contained in some ball \(B_l \) around landmark \(l \in L \) of radius \(r^* \).
Proof For each good set X_i choose a point $s_i \in X_i$ and a landmark $l_i \in L$ that satisfy $d(s_i, l_i) < 2d_{\text{crit}}$. The distance between l_i and each point $x \in X_i$ satisfies $d(l_i, x) \leq d(l_i, s_i) + d(s_i, x) < 2d_{\text{crit}} + 2d_{\text{crit}} = 4d_{\text{crit}}$.

Consider $r^* = \max_i \max_{x \in X_i} d(l_i, x)$. Clearly, each X_i is contained in a ball B_{l_i} of radius r^* and $r^* < 4d_{\text{crit}}$.

Lemma 8 Suppose the distance between c_i^* and any landmark l in $C'_{\sigma(i)}$ satisfies $d(c_i^*, l) < 5d_{\text{crit}}$. Then given point $x \in C_i^*$ that satisfies $w_2(x) - w(x) \geq 17d_{\text{crit}}$, for any $l_1 \in C'_{\sigma(i)}$ and $l_2 \in C'_{\sigma(j \neq i)}$ it must be the case that $d(x, l_1) < d(x, l_2)$.

Proof We will show that $d(x, l_1) < w(x) + 5d_{\text{crit}}$ (1), and $d(x, l_2) > w(x) + 12d_{\text{crit}}$ (2). This implies that $d(x, l_1) < d(x, l_2)$.

To prove (1), by the triangle inequality $d(x, l_1) \leq d(x, c_i^*) + d(c_i^*, l_1) = w(x) + d(c_i^*, l_1) < w(x) + 5d_{\text{crit}}$. To prove (2), by the triangle inequality $d(x, c_i^*) \leq d(x, l_2) + d(l_2, c_i^*)$. It follows that $d(x, l_2) \geq d(x, c_i^*) - d(l_2, c_i^*)$. Since $d(x, c_i^*) \geq w_2(x)$ and $d(l_2, c_i^*) < 5d_{\text{crit}}$ we have

$$d(x, l_2) > w_2(x) - 5d_{\text{crit}}.$$ (1)

Moreover, since $w_2(x) - w(x) \geq 17d_{\text{crit}}$ we have

$$w_2(x) \geq 17d_{\text{crit}} + w(x).$$ (2)

Combining Equations 1 and 2 it follows that $d(x, l_2) > 17d_{\text{crit}} + w(x) - 5d_{\text{crit}} = w(x) + 12d_{\text{crit}}$.

Proof [Theorem 2] After using Landmark-Selection to choose $O(k + \ln \frac{1}{\delta})$ points, with probability at least $1 - \delta$ there is a landmark closer than $2d_{\text{crit}}$ to some point in each good set. Given a set of landmarks with this property, each cluster in the clustering $C' = \{C'_1, C'_2, \ldots, C'_k\}$ output by Expand-Landmarks contains points from a distinct good set X_i. This clustering can exclude up to b points, all of which may be good. Nonetheless, this means that C' may disagree with C^* on only the bad points and at most b good points. The number of points that C' and C^* disagree on is therefore at most $2b = O(cn/\alpha)$. Thus, C' is at least $O(\epsilon/\alpha)$-close to C^*, and at least $O(\epsilon/\alpha + \epsilon)$-close to C_T.

Moreover, C' has an additional property that allows us to find a clustering that is ϵ'-close to C_T. If we use σ to denote a bijection mapping each good set X_i to the cluster $C'_{\sigma(i)}$ containing points from X_i, any landmark $l \in C'_{\sigma(i)}$ is closer than $5d_{\text{crit}}$ to c_i^*. We can use this observation to find all points that satisfy one of the properties of the good points: points x such that $w_2(x) - w(x) \geq 17d_{\text{crit}}$. Let us call these points the detectable points. To clarify, the detectable points are those points that are much closer to their own cluster center than to any other cluster center in C^*, and the good points are a subset of the detectable points that are also very close to their own cluster center.

To find the detectable points using C', we choose some landmark l_i from each C'_i. For each point $x \in S$, we then insert x into the cluster C''_j for $j = \text{arg} \min_i d(x, l_i)$. Lemma 8 argues that each detectable point in C''_i is closer to every landmark in $C'_{\sigma(i)}$ than to any
landmark in $C_{σ(j≠i)}'$. It follows that C'' and C' agree on all the detectable points. Since there are fewer than $(\epsilon - \epsilon^*)n$ points on which C_T and C' agree that are not detectable, it follows that $\text{dist}(C'', C_T) < (\epsilon - \epsilon^*) + \text{dist}(C_T, C^*) = (\epsilon - \epsilon^*) + \epsilon^* = \epsilon$.

Therefore using $O(k + \ln \frac{1}{\delta})$ landmarks we get an accurate clustering with probability at least $1 - \delta$. The runtime of Landmark-Selection is $O(|L|n)$, where $|L|$ is the number of landmarks. Using a min-heap to store all landmark-point pairs and a disjoint-set data structure to keep track of the connected components of G_B, Expand-Landmarks can be implemented in $O(|L|n \log n)$ time. A detailed description of this implementation is given in the next section. The last part of our procedure takes $O(kn)$ time, so the runtime of our implementation is $O(|L|n \log n)$. Therefore to get an accurate clustering with probability $1 - \delta$ the runtime of our algorithm is $O((k + \ln \frac{1}{\delta})n \log n)$. Moreover, we only consider the distances between the landmarks and other points, so we only use $O(k + \ln \frac{1}{\delta})$ one versus all distance queries.

4. Implementation of Expand-Landmarks

In order to efficiently expand balls around landmarks, we build a min-heap H of landmark-point pairs (l, s), where the key of each pair is the distance between l and s. In each iteration we find $(l^*, s^*) = H.\text{deleteMin}()$, and then add s^* to $\text{items}(l^*)$, which stores the points in B_{l^*}. We store points that have been clustered (points in balls of size larger than s_{min}) in the set Clustered.

Our implementation assigns each clustered point s to a “representative” landmark, denoted by $l(s)$. The representative landmark of s is the landmark l of the first large ball B_l that contains s. To efficiently update the components of G_B, we maintain a disjoint-set data structure U that contains sets corresponding to the connected components of G_B, where each ball B_l is represented by landmark l. In other words, U contains a set $\{l_1, l_2, \ldots, l_i\}$ iff $B_{l_1}, B_{l_2}, \ldots, B_{l_i}$ form a connected component in G_B. For each large ball B_l our algorithm considers all points $s \in B_l$ and performs Update-Components(l, s), which works as follows. If s does not have a representative landmark we assign it to l, otherwise s must already be in $B_{l(s)}$, and we assign B_l to the same component as $B_{l(s)}$. If none of the points in B_l are assigned to other landmarks, it will be in its own component. A detailed description of the algorithm is given below.
Algorithm 4 Expand-Landmarks(s_{min}, n', L)

1: A = ();
2: for each $s \in S$ do
3: $l(s) = \text{null}$;
4: for each $l \in L$ do
5: A.add($(l, s), d(l, s));
6: end for
7: end for
8: $H = \text{build-heap}(A)$;
9: for each $l \in L$ do
10: items(l) = (
11: end for
12: Set $\text{Clustered} = ()$;
13: U = ();
14: while H.hasNext() do
15: $(l^*, s^*) = H.\text{deleteMin}()$;
16: items(l^*).add(s^*);
17: if items(l^*).size() == s_{min} then
18: Activate(l^*);
19: end if
20: if items(l^*).size() > s_{min} then
21: Update-Components(l^*, s^*);
22: end if
23: if $\text{Clustered}.\text{size}() \geq n'$ and $U.\text{size}() == k$ then
24: return $\text{Format-Clustering}()$;
25: end if
26: end while
27: return no-cluster;

Algorithm 5 Update-Components(l, s)

1: if $l(s) == \text{null}$ then
2: $l(s) = l$;
3: else
4: $c_1 = U.\text{find}(l)$;
5: $c_2 = U.\text{find}(l(s))$;
6: $U.\text{union}(c_1, c_2)$;
7: end if

Algorithm 6 Activate(l)

1: $U.\text{MakeSet}(l)$;
2: for each $s \in \text{items}(l)$ do
3: Update-Components(l, s);
4: $\text{Clustered}.\text{add}(s)$;
5: end for
Algorithm 7 Format-Clustering()

1: C = ();
2: for each Set L in U do
3: Set Cluster = ();
4: for each l ∈ L do
5: for each s ∈ items(l) do
6: Cluster.add(s);
7: end for
8: end for
9: C.add(Cluster);
10: end for
11: return C;

During the execution of the algorithm the connected components of \(G_B \) correspond to the sets of \(U \) (where each ball \(B_l \) is represented by landmark \(l \)). Suppose that \(B_{l_1} \) and \(B_{l_2} \) are connected in \(G_B \), then \(B_{l_1} \) and \(B_{l_2} \) must overlap on some point \(s \). Without loss of generality, suppose \(s \) is added to \(B_{l_1} \) before it is added to \(B_{l_2} \). When \(s \) is added to \(B_{l_1} \), \(l(s) = l_1 \) if \(s \) does not yet have a representative landmark (lines 1-2 of Update-Components), or \(l(s) = l' \) and both \(l_1 \) and \(l' \) are put in the same set (lines 4-6 of Update-Components).

When \(s \) is added to \(B_{l_2} \), if \(l(s) = l_1 \), then \(l_1 \) and \(l_2 \) will be put in the same set. If \(l(s) = l' \), \(l' \) and \(l_2 \) will be put in the same set, which also contains \(l_1 \).

It follows that whenever \(B_{l_1} \) and \(B_{l_2} \) are in the same connected component in \(G_B \), \(l_1 \) and \(l_2 \) will be in the same set in \(U \). Moreover, if \(B_{l_1} \) and \(B_{l_2} \) are not in the same component in \(G_B \), then \(l_1 \) and \(l_2 \) can never be in the same set in \(U \) because both start in distinct sets (line 1 of Activate), and it is not possible for a set containing \(l_1 \) to be merged with a set containing \(l_2 \).

It takes \(O(|L|n) \) time to build \(H \) (linear in the size of the heap). Each deleteMin() operation takes \(O(\log(|L|n)) \) (logarithmic in the size of the heap), which is equivalent to \(O(\log(n)) \) because \(|L| \leq n\). If \(U \) is implemented by a union-find algorithm Update-Components takes amortized time of \(O(\alpha(|L|)) \), where \(\alpha \) denotes the inverse Ackermann function. Moreover, Update-Components may only be called once for each iteration of the while loop in Expand-Landmarks (it is either called immediately on \(l^* \) and \(s^* \) if \(B_{l^*} \) is large enough, or it is called when the ball grows large enough in Activate). All other operations also take time proportional to the number of landmark-point pairs. So the runtime of this algorithm is \(O(|L|n) + \text{iter} \cdot O(\log n + \alpha(|L|)) \), where iter is the number of iterations of the while loop. As the number of iterations is bounded by \(|L|/n\), and \(\alpha(|L|) \) is effectively constant, this gives a worst-case running time of \(O(|L|n \log n) \).

5. Empirical Study

We use our Landmark Clustering algorithm to cluster proteins using sequence similarity. As mentioned in the Introduction, one versus all distance queries are particularly relevant in this setting because of sequence database search programs such as BLAST (Altschul et al. [1990]) (Basic Local Alignment Search Tool). BLAST aligns the queried sequence to sequences in the database, and produces a “bit score” for each alignment, which is a measure...
of its quality (we invert the bit score to make it a distance). However, BLAST does not consider alignments with some of the sequences in the database, in which case we assign distances of infinity to the corresponding sequences. We observe that if we define distances in this manner they almost form a metric in practice: when we draw triplets of sequences at random and check the distances between them the triangle inequality is almost always satisfied. Moreover, BLAST is very successful at detecting sequence homology in large sequence databases, therefore it is plausible that clustering using these distances satisfies the \((c, \epsilon)\)-property for some relevant clustering \(C_T\).

We perform experiments on datasets obtained from two classification databases: Pfam \cite{Finn2010}, version 24.0, October 2009; and SCOP \cite{Murzin1995}, version 1.75, June 2009. Both of these sources classify proteins by their evolutionary relatedness, therefore we can use their classifications as a ground truth to evaluate the clusterings produced by our algorithm and other methods.

Pfam classifies proteins using hidden Markov models (HMMs) that represent multiple sequence alignments. There are two levels in the Pfam classification hierarchy: family and clan. In our clustering experiments we compare with a classification at the family level because the relationships at the clan level are less likely to be discerned with sequence alignment. In each experiment we randomly select several large families (of size between 1000 and 10000) from Pfam-A (the manually curated part of the classification), retrieve the sequences of the proteins in these families, and use our \textit{Landmark-Clustering} algorithm to cluster the dataset.

SCOP groups proteins on the basis of their 3D structures, so it only classifies proteins whose structure is known. Thus the datasets from SCOP are much smaller in size. The SCOP classification is also hierarchical: proteins are grouped by class, fold, superfamily, and family. We consider the classification at the superfamily level because this seems most appropriate given that we are only using sequence information. As with the Pfam data, in each experiment we create a dataset by randomly choosing several superfamilies (of size between 20 and 200), retrieve the sequences of the corresponding proteins, and use our \textit{Landmark-Clustering} algorithm to cluster the dataset.

Once we cluster a particular dataset, we compare the clustering to the manual classification using the distance measure from the theoretical part of our work. To find the fraction of misclassified points under the optimal matching of clusters in \(C\) to clusters in \(C'\) we solve a minimum weight bipartite matching problem where the cost of matching \(C_i\) to \(C_{\sigma(i)}'\) is \(|C_i - C_{\sigma(i)}'|/n\). In addition, we compare clusterings to manual classifications using the F-measure, which was used in another study of clustering protein sequences \cite{Paccanaro2006}. The F-measure gives a score between 0 and 1, where 1 indicates an exact match between the two clusterings (see Appendix A). The F-measure has also been used in other studies \cite{Cheng2006}, and is related to our notion of distance (Lemma 9 in Appendix A).

5.1 Choice of Parameters

To run \textit{Landmark-Clustering}, we set \(k\) using the number of clusters in the ground truth clustering. For each Pfam dataset we use \(40k\) landmarks/queries, and for each SCOP dataset we use \(30k\) landmarks/queries. In addition, our algorithm uses three parameters
Figure 3: Comparing the performance of \(k \)-means in the embedded space (blue) and Landmark-Clustering (red) on 10 datasets from Pfam. Datasets 1-10 are created by randomly choosing 8 families from Pfam of size \(s \), 1000 \(\leq s \leq 10000 \). (a) Comparison using the distance measure from the theoretical part of our work. (b) Comparison using the F-measure.

\((q, s_{\text{min}}, n')\) whose value is set in the proof based on \(\alpha \) and \(\epsilon \), assuming that the clustering instance satisfies the \((1 + \alpha, \epsilon)\)-property. In practice we must choose some value for each parameter. In our experiments we set them as a function of the number of points in the dataset, and the number of clusters. We set \(q = 2n/k \), \(s_{\text{min}} = 0.05n/k \) for Pfam datasets, and \(s_{\text{min}} = 0.1n/k \) for SCOP datasets, and \(n' = 0.5n \). Since the selection of landmarks is randomized, for each dataset we perform several clusterings, compare each to the ground truth, and report the median quality.

Landmark-Clustering is most sensitive to the \(s_{\text{min}} \) parameter, and will not report a clustering if \(s_{\text{min}} \) is too small or too large. We recommend trying several reasonable values of \(s_{\text{min}} \), in increasing or decreasing order, until you get a clustering and none of the clusters are too large. If you get a clustering where one of the clusters is very large, this likely means that several ground truth clusters have been merged. This may happen because \(s_{\text{min}} \) is too small causing balls of outliers to connect different cluster cores, or \(s_{\text{min}} \) is too large causing balls in different cluster cores to overlap.

The algorithm is less sensitive to the \(n' \) parameter. However, if you set \(n' \) too large some ground truth clusters may be merged, so we recommend using a smaller value \((0.5n \leq n' \leq 0.7n)\) because all of the points are still clustered during the last step. Again, for some values of \(n' \) the algorithm may not output a clustering, or output a clustering where some of the clusters are too large. Our algorithm is least sensitive to the \(q \) parameter. Using more landmarks (if you can afford it) can make up for a poor choice of \(q \).
5.2 Results

Figure 3 shows the results of our experiments on the Pfam datasets. One can see that for most of the datasets (other than datasets 7 and 9) we find a clustering that is almost identical to the ground truth. These datasets are very large, so as a benchmark for comparison we can only consider algorithms that use a comparable amount of distance information (since we do not have the full distance matrix). A natural choice is the following algorithm: randomly choose a set of landmarks \(L \), \(|L| = d \); embed each point in a \(d \)-dimensional space using distances to \(L \); use \(k \)-means clustering in this space (with distances given by the Euclidian norm). Our embedding scheme is a Lipschitz embedding with singleton subsets (see Tang and Crovella, 2003), which gives distances with low distortion for points near each other in a metric space.

Notice that this procedure uses exactly \(d \) one versus all distance queries, so we can set \(d \) equal to the number of queries used by our algorithm. We expect this algorithm to work well, and if you look at Figure 3 you can see that it finds reasonable clusterings. Still, the clusterings reported by this algorithm do not closely match the Pfam classification, showing that our results are indeed significant.

Figure 4 shows the results of our experiments on the SCOP datasets. These results are not as good, which is likely because the SCOP classification at the superfamily level is based on biochemical and structural evidence in addition to sequence evidence. By contrast, the Pfam classification is based entirely on sequence information. Still, because the SCOP datasets are much smaller, we can compare our algorithm to methods that require distances between all the points. In particular, Paccanaro et al. (2006) showed that spectral clustering using sequence data works well when applied to the proteins in SCOP. Thus we use the exact method described by Paccanaro et al. (2006) as a benchmark for comparison on the SCOP datasets. Moreover, other than clustering randomly generated datasets from SCOP, we also consider the two main examples from Paccanaro et al., which are labeled A and B in the figure. From Figure 4 we can see that the performance of Landmark-Clustering is comparable to that of the spectral method, which is very good considering that the algorithm used by Paccanaro et al. (2006) significantly outperforms other clustering algorithms on this data. Moreover, the spectral clustering algorithm requires the full distance matrix as input, and takes much longer to run.

5.3 Testing the \((c, \epsilon)\) property

To see whether the \((c, \epsilon)\) property is a reasonable assumption for our data, we look at whether our datasets have the structure implied by our assumption. We do this by measuring the separation of the ground truth clusters in our datasets. For each dataset in our study, we sample some points from each ground truth cluster. We consider whether the sampled points are more similar to points in the same cluster than to points in other clusters. More specifically, for each point we record the median within-cluster similarity, and the maximum between-cluster similarity. If our datasets indeed have well-separated cluster cores, as implied by our assumption, then for a lot of the points the median within-cluster similarity should be significantly larger than the maximum between-cluster similarity. We can see that this is indeed the case for the Pfam datasets. However, this is not typically the case for the SCOP datasets, where most points have little similarity to the majority
(a) Comparison using fraction of misclassified points
(b) Comparison using the F-measure

Figure 4: Comparing the performance of spectral clustering (blue) and Landmark-Clustering (red) on 10 datasets from SCOP. Datasets A and B are the two main examples from Pacca-\n\naro et al. (2006), the other datasets (1-8) are created by randomly choosing 8 superfamilies from SCOP of size s, 20 ≤ s ≤ 200. (a) Comparison using the distance measure from the theoretical part of our work. (b) Comparison using the F-measure.

of the points in their ground truth cluster. These observations explain our results on the two sets of data: we are able to accurately cluster the Pfam datasets, and our algorithm is much less accurate on the SCOP datasets. The complete results of these experiments can be found at http://cs-people.bu.edu/kvodski/clusteringProperties/description.html.

6. Conclusion and Open Questions

In this work we presented a new algorithm for clustering large datasets with limited distance information. As opposed to previous settings, our goal was not to approximate some objective function like the k-median objective, but to find clusterings close to the ground truth. We proved that our algorithm yields accurate clusterings with only a small number of one versus all distance queries, given a natural assumption about the structure of the clustering instance. This assumption has been previously analyzed by Balcan et al. (2009), but in the full distance information setting. By contrast, our algorithm uses only a small number of queries, it is much faster, and it has effectively the same formal performance guarantees as the one introduced by Balcan et al. (2009).

To demonstrate the practical use of our algorithm, we clustered protein sequences using a sequence database search program as the one versus all query. We compared our results to gold standard manual classifications of protein evolutionary relatedness given in Pfam (Finn et al. 2010) and SCOP (Murzin et al. 1995). We find that our clusterings are comparable in accuracy to the classification given in Pfam. For SCOP our clusterings are as accurate as state of the art methods, which take longer to run and require the full distance matrix as input.
Our main theoretical guarantee assumes large target clusters. It would be interesting to design a provably correct algorithm for the case of small clusters as well.

Acknowledgments

Konstantin Voevodski was supported by an IGERT Fellowship through NSF grant DGE-0221680 awarded to the ACES Training Program at BU Center for Computational Science. Maria Florina Balcan was supported in part by NSF grant CCF-0953192, by ONR grant N00014-09-1-0751 and AFOSR grant FA9550-09-1-0538. Heiko Rögl was supported by a Veni grant from the Netherlands Organisation for Scientific Research. Shang-Hua Teng was supported in part by NSF grant CCR-0635102.
Appendix A.

In this section we reproduce the definition of F-measure, which is another way to evaluate the distance between two clusterings. We also show a relationship between our measure of distance and the F-measure.

A.1 F-measure

The F-measure compares two clusterings \(C \) and \(C' \) by matching each cluster in \(C \) to a cluster in \(C' \) using a harmonic mean of Precision and Recall, and then computing a “per-point” average. If we match \(C_i \) to \(C'_j \), Precision is defined as \(P(C_i, C'_j) = \frac{|C_i \cap C'_j|}{|C'_j|} \). Recall is defined as \(R(C_i, C'_j) = \frac{|C_i \cap C'_j|}{|C_i|} \). For \(C_i \) and \(C'_j \) the harmonic mean of Precision and Recall is then equivalent to \(\frac{2|C_i \cap C'_j|}{|C_i| + |C'_j|} \), which we denote by \(pr(C_i, C'_j) \) to simplify notation. The F-measure is then defined as

\[
F(C, C') = \frac{1}{n} \sum_{C_i \in C} |C_i| \max_{C'_j \in C'} pr(C_i, C'_j).
\]

Note that this quantity is between 0 and 1, where 1 corresponds to an exact match between the two clusterings.

Lemma 9 Given two clusterings \(C \) and \(C' \), if \(\text{dist}(C, C') = d \) then \(F(C, C') \geq 1 - 3d/2 \).

Proof Denote by \(\sigma \) the optimal matching of clusters in \(C \) to clusters in \(C' \), which achieves a misclassification of \(dn \) points. We show that just considering \(pr(C_i, C'_j) \) for each \(C_i \in C \) achieves an F-measure of at least \(1 - 3d/2 \):

\[
F(C, C') \geq \frac{1}{n} \sum_{C_i \in C} |C_i| \max_{C'_j \in C'} pr(C_i, C'_j) \geq 1 - 3d/2.
\]

To see this, for a match of \(C_i \) to \(C'_{\sigma(i)} \) we denote by \(m^1_i \) the number of points that are in \(C_i \) but not in \(C'_{\sigma(i)} \), and by \(m^2_i \) the number of points that are in \(C'_{\sigma(i)} \) but not in \(C_i \):

\[
m^1_i = |C_i | - |C'_{\sigma(i)}|, \quad m^2_i = |C'_{\sigma(i)}| - |C_i|.
\]

Because the total number of misclassified points is \(dn \) it follows that

\[
\sum_{C_i \in C} m^1_i = \sum_{C_i \in C} m^2_i = dn.
\]

By definition, \(|C_i \cap C'_{\sigma(i)}| = |C_i| - m^1_i \). Moreover, \(|C'_{\sigma(i)}| = |C'_{\sigma(i)} \cap C_i| + m^2_i \leq |C_i| + m^2_i \).

It follows that

\[
pr(C_i, C'_{\sigma(i)}) = \frac{2(|C_i| - m^1_i)}{|C_i| + |C'_{\sigma(i)}|} \geq \frac{2(|C_i| - m^1_i)}{2|C_i| + m^2_i} = \frac{2|C_i| + m^2_i}{2|C_i| + m^2_i} - \frac{m^2_i + 2m^1_i}{2|C_i| + m^2_i} \geq 1 - \frac{m^2_i + 2m^1_i}{2|C_i|}.
\]

We can now see that

\[
\frac{1}{n} \sum_{C_i \in C} |C_i| pr(C_i, C'_{\sigma(i)}) \geq \frac{1}{n} \sum_{C_i \in C} |C_i|(1 - \frac{m^2_i + 2m^1_i}{2|C_i|}) = \frac{1}{n} \sum_{C_i \in C} |C_i| - \frac{1}{2n} \sum_{C_i \in C} m^2_i + 2m^1_i = 1 - \frac{3dn}{2n}.
\]
References

N. Ailon, R. Jaiswal, and C. Monteleoni. Streaming k-means approximation. In Advances in Neural Information Processing Systems, 2009.

S.F. Altschul, W. Gish, W. Miller, E.W. Myers, and D.J. Lipman. Basic local alignment search tool. J. Mol. Biol., 215(3):403–410, 1990.

D. Arthur and S. Vassilvitskii. k-means++: the advantages of careful seeding. In Proc. of 18th ACM-SIAM Symp. on Discrete Algorithms (SODA), 2007.

P. Awasthi, A. Blum, and O. Sheffet. Stability yields a PTAS for k-median and k-means clustering. In Proc IEEE Symp on Foundations of Computer Science, 2010.

M. F. Balcan, A. Blum, and A. Gupta. Approximate clustering without the approximation. In Proc. of 20th ACM-SIAM Symp. on Discrete Algorithms (SODA), 2009.

S. Ben-David. A framework for statistical clustering with constant time approximation algorithms for k-median and k-means clustering. Machine Learning, 66(2-3):243–257, 2007.

S.E. Brenner, C. Chothia, and T.J. Hubbard. Assessing sequence comparison methods with reliable structurally identified distant evolutionary relationships. Proc. Natl. Acad. Sci. USA, 95(11):6073–6078, 1998.

D. Cheng, R. Kannan, S. Vempala, and G. Wang. A divide-and-merge methodology for clustering. ACM Trans. Database Syst., 31(4):1499–1525, 2006.

A. Czumaj and C. Sohler. Sublinear-time approximation algorithms for clustering via random sampling. Random Struct. Algorithms, 30(1-2):226–256, 2007.

S. Dasgupta. Performance guarantees for hierarchical clustering. In Jyrki Kivinen and Robert Sloan, editors, Computational Learning Theory, volume 2375 of Lecture Notes in Computer Science, pages 235–254. Springer Berlin / Heidelberg, 2002.

R.D. Finn, J. Mistry, J. Tate, P. Coggill, A. Heger, J.E. Pollington, O.L. Gavin, P. Gunesekaran, G. Ceric, K. Forsslund, L. Holm, E.L. Sonnhammer, S.R. Eddy, and A. Bateman. The pfam protein families database. Nucleic Acids Res., 38:D211–222, 2010.

T. F. Gonzalez. Clustering to minimize the maximum intercluster distance. Theoretical Computer Science, 38:293–306, 1985.

N. Mishra, D. Oblinger, and L Pitt. Sublinear time approximate clustering. In Proc. of 12th ACM-SIAM Symp. on Discrete Algorithms (SODA), 2001.

A.G. Murzin, S. E. Brenner, T. Hubbard, and C. Chothia. Scop: a structural classification of proteins database for the investigation of sequences and structures. J. Mol. Biol., 247: 536–540, 1995.
R. Ostrovsky, Y. Rabani, L. J. Schulman, and C. Swamy. The effectiveness of lloyd-type methods for the k-means problem. In Proc. of 47th IEEE Symp. on Foundations of Computer Science (FOCS), 2006.

A. Paccanaro, J. A. Casbon, and M. A. S. Saqi. Spectral clustering of protein sequences. Nucleic Acids Res., 34(5):1571–1580, 2006.

L. Tang and M. Crovella. Virtual landmarks for the internet. In IMC ’03: Proceedings of the 3rd ACM SIGCOMM conference on Internet measurement, pages 143–152, New York, NY, USA, 2003. ACM. ISBN 1-58113-773-7. doi: http://doi.acm.org/10.1145/948205.948223.