Equids from the late Middle Pleistocene to Early Holocene of the Apulia Peninsula (southern Italy): reassessment of their taxonomy and biochronology

Beniamino MECOZZI
Dipartimento di Scienze della Terra, PaleoFactory, Sapienza Università di Roma, Piazzale Aldo Moro, 5, I-00185 Rome (Italy) beniamino.mecozzi@uniroma1.it (corresponding author)

Flavia STRANI
Dipartimento di Scienze della Terra, PaleoFactory, Sapienza Università di Roma, Piazzale Aldo Moro, 5, I-00185 Rome (Italy) and Istituto Italiano di Paleontologia Umana, via U. Aldrovandi 18, I-00197 Rome (Italy) flavia.strani@uniroma1.it

Submitted on 2 February 2020 | accepted on 10 July 2020 | published on 14 January 2022

ABSTRACT
The Apulian Peninsula represents a key-region for the study of climatic changes and paleoenvironmental dynamics during the Quaternary. Both large and small-sized horses are well documented in this region during the Pleistocene and are frequently found associated. The caballoid horses from Middle to Late Pleistocene of Europe show a large intraspecific ecomorphological variation, emphasizing a strong link between skeletal adaptations and specific aspects of the palaeoenvironment. This large variability led to an extended debate concerning the taxonomy of equids and their evolutionary history. In the Italian Peninsula, fossils from the Middle to the Late Pleistocene have been historically referred to several species (or even subspecies), emphasizing the uncertainty of the taxonomic attribution. Here, a large craniodental sample of Equidae fossils from late Middle Pleistocene to the Early Holocene localities of the Apulia Peninsula are described for the first time. The comparison of the protocone index allowed us to determine the first occurrences of Equus mosbachensis von Reichenau, 1903 in the Apulian Peninsula, from a few localities chronologically referred to late Middle Pleistocene. Most of the material from the late Middle to the end of the Late Pleistocene is instead attributed to Equus ferus Boddaert, 1785. The results of this work thus add novel information on the biochronology of Italian fossil equids and their evolutionary history through the Middle and Late Pleistocene.

KEY WORDS
Caballoid horse, Aurelian, Mediterranean, body-size, biometry.

Mecozzi B. & Strani F. 2022. — Equids from the late Middle Pleistocene to Early Holocene of the Apulia Peninsula (southern Italy): reassessment of their taxonomy and biochronology. Geodiversitas 44 (2): 17–45. https://doi.org/10.5252/geodiversitas2022v44a2. http://geodiversitas.com/44/2
INTRODUCTION

The Italian Peninsula is considered a crossroads in the Mediterranean area, representing a key area for the study of climatic changes and palaeoenvironmental dynamics during the Quaternary. The Apulian region, or Apulian Peninsula (AP; southern Italy), is a “peninsula within a peninsula” due to its isolated position which extends mostly along the latitudinal axis (Fig. 1). The AP maintained this conformation through most of the Pleistocene Epoch and is rich in localities with mammal fossil remains frequently associated to lithic artefacts referred to both the Middle (Middle to Late Pleistocene) and the Upper Palaeolithic (Late Pleistocene to Early Holocene) (Berto et al. 2017; Spinapolicé 2018; Sardella et al. 2018, 2019; Zanchetta et al. 2018). The abundance of Middle Pleistocene and Early Holocene sites makes this region a key-territory to study the evolution of the mammal fauna and of the climatic changes that took place during the Quaternary in the Mediterranean area (e.g., Mecozzi & Bartolini Lucenti 2018; Iannucci et al. 2020; Iurino et al. 2020).

In many of these fossil localities of the AP caballoid horses are well represented and frequently associated with fossil remains of Equus hydruntinus Regàlia, 1907 (European ass) (e.g., Grotta Paglicci, Boschin & Boscato 2016; Melpignano, Rustioni 1998; Tana delle Iene, Conti et al. 2010). The fossil record often only faunal lists are reported for unheated in archeological sites of the AP. With the exception of the material from Tana delle Iene (Conti et al. 2010) and Grotta del Cavallo (Sarti et al. 1998, 2002) horse fossil materials usually are not formally studied and described. Moreover, due to the probable exploitation of the carcasses by human populations (Sarti et al. 1998; Boscato et al. 2006), equid fossil remains are often highly fragmented. Consequently, fossil material from many archeological localities of the AP is rarely studied from a paleontological perspective. Nevertheless, the isolated and fragmentary craniodental remains can represent an important source of information for the study of the evolution of equids in the AP through the Middle Pleistocene and Early Holocene.

Several preliminary studies were conducted on the material from Cardamone (Rustioni 1998), Cava Spagnulo (Mecozzi et al. 2018), Grotta del Cavallo (Sarti et al. 1998, 2002), Grotta Paglicci (Boscato 1994), Melpignano (Rustioni 1998) and Tana delle Iene (Conti et al. 2010) where the material were referred to Equus ferus. The material from San Sidero was attributed to the large-sized Equus chosaricus by Eisenmann (1991b) and Equus ferus by De Giuli (1983) and Rustioni (1998). The taxonomic attribution of other material from the AP was mainly based on the chronology of deposits and therefore frequently ascribed to Equus ferus (Table 1).

Equids were considered an important and a very common component of European large vertebrate fauna during the Middle and Late Pleistocene, but their taxonomy remains controversial (Eisenmann 1991b; Forstén 1991; van Asperen 2012; Boulbes & van Asperen 2019). The lack of clear diagnostic morphological characters has led the proliferation of species and subspecies mainly due to the notable size variation observed in the Middle Pleistocene Equus (van Asperen 2012; Boulbes & van Asperen 2019).

For Pleistocene equid taxa, a useful character for taxonomic determination is the protocone index (length of protocone x 100/length of tooth). Caloi & Palombo (1987) effectively utilized this index for differentiating late Early to early Middle Pleistocene Equus material from different Italian localities. Caloi (1997) used the index for differentiating late Pliocene to early Middle Pleistocene Equus samples from European
sites. The protocone index, calculated on the upper teeth has allowed the comparison of teeth of various sizes to establish relative protocone length (Caloi & Palombo 1987; Caloi 1997). Recently, the validity of the protocone index for taxonomic determination in stenonid group was corroborated by Boulbes & van Asperen (2019), who nevertheless rejected the use of the length of protocone for paleoenvironmental inferences. Moreover, this approach was also followed by Hadjouis (1998) for the study of *E. ferus* from the Middle Pleistocene site of Maisons-Alfort (Val-de-Marne, France) and Langlois (2005) for that of *Equus mosbachensis* micoqui Langlois, 2005 from the Middle Pleistocene site of La Micoque (Les Eyzies-de-Tayac, France). Likewise, the postflexid index was also tested for taxonomical purpose, but the analysis of the fossil Equidae sample highlighted its poor reliability (Boulbes 2010). The postflexid index, calculated on lower teeth [(length of postflexid × 100)/ length of teeth], allows the comparison of teeth of various sizes to establish relative postflexid length (Caloi & Palombo 1987; Caloi 1997; Boulbes 2010).

In this scenario, we perform a comparison of protocone and postflexid indices in order to investigate the biometric variability and taxonomy through the Middle to Late Pleistocene equids from AP. In this work, we present for the first time the craniodental material of fossil *Equus* from late Middle to Late Pleistocene selected sites of the AP: Grotta di Capelvenere, Grotta delle Tre Porte, Grotta Mario Bernardini; Grotta Uluzzo C, Castellaneta, Grotta dei Giganti, Grotta Santa Croce, Grotta Laceduzza, Grotta Zinzulusa, Fondo Focene and Santa Maria d’Agnano. In addition, the revision of the material from Cardamone, Melpignano and San Sidero is carried out. The results allow us to assemble a preliminary evolutionary framework for the horses during the Middle Pleistocene to Early Holocene.

TAXONOMY OF MIDDLE-LATE PLEISTOCENE HORSES

After decades of debate, the systematics of caballoid horses has been recently redefined. In 2003, the International Commission on Zoological Nomenclature proposed to use *Equus ferus* Boddaert, 1785 a wild horse, to distinguish it from the domestic species *Equus caballus* Linnaeus, 1758 (Gentry et al. 2004). Although many studies focused on caballoid horses and their biostatigraphic importance, the taxonomic status of the Middle and Late Pleistocene fossils is still a controversial topic (Forstén 1991; van Asperen 2012; Boulbes & van Asperen 2019). The main issue concerns the interpretation of the morphological changes and biometric variations as intra-specific variability or ecomorphotypes (Azzaroli 1983; Forstén 1988; Cramer 2002; van Asperen 2012; Boulbes & van Asperen 2019). The diffusion of the first caballoid horses into Europe occurred in the early Middle Pleistocene and led to the development of several ecomorphotypes through the Middle and Late Pleistocene, including: *E. ferus mosbachensis* von Reichenau, 1903, *E. ferus germanicus* Nehring, 1804, *Equus ferus gallicus* Prat, 1968, *E. ferus gmelini* Antonius, 1912. These subspecies of *E. ferus* are mainly distinguished by their overall size and differences in skeletal proportions. According to van Asperen (2013), this inter- and intraspecific variability cannot be explained by sexual dimorphism and/or age variability in adult skeletal elements. Indeed, the author found no differences in size related to age and sex variation in the extant specimens, assuming these factors have a very limited effect on studies of fossil samples.

Based on the European fossil record, *Equus mosbachensis* von Reichenau, 1903 is the first occurring caballine *sensu lato* from the early Middle Pleistocene from the Germany localities of Mauer (MIS 17/15; 609 ± 40 ka; Wagner et al. 2011) and Süssenborn (MIS 16, 640-620 ka, Kahlke 2014) (Eisenmann et al. 1985; Langlois 2005; Boulbes & van Asperen 2019). This taxon has been instituted by von Reichenau (1915) based on the material from the fossiliferous sites of Mosbach (about 0.5 Ma) (Germany). Although the Mosbach horse (*E. mosbachensis*) shared several features with the wild horse (*E. ferus*), it possesses some “archaic” morphological features (presence of the tendon insertion of the anterior brachialis muscle on the inner edge of the diaphysis of the radius, strong supraarticular tuberosities on metapodials) (Bonifay 1980; Eisenmann 1991a; Guadelli & Prat 1995; Hadjouis 1998; Langlois 2005; Boulbes & van Asperen 2019). The affinity of the morphological features between *E. ferus* and *E. mosbachensis* suggests a close phyletic relationship between them, supported by the lack of clear craniodental diagnostic characters. This homogeneous overall morphology led some authors (van Asperen 2012) to refer the European Middle Pleistocene sample to a singles species, *E. ferus* ssp., where the slight morphological and biometric variability is considered to reflect the adaptive responses to local climatic and paleoenvironmental conditions. These differences could otherwise be considered to be due to normal population variability. However, there is a substantial consensus considering *Equus mosbachensis* as a distinct taxon because of its large-sized and robust build (Eisenmann et al. 1985;
Hadjouis 1998; Langlois 2005, Uznidis 2017; Boulbes & van Asperen 2019).

In Italy, the first occurrence of large-sized and robust caballid horses is reported in the Faunal Unit of Slivia (~ 0.9 Ma; Epivillage Mammal Age) (Sala et al. 1992; Bologna et al. 1994; Mecozzi et al. 2019; this work). Palombo & Alberdi (2017) suggested that the caballid horses first appeared in the Ponte lafranchian Mammal Age (Sala et al. 1992), highlighting the uncertain taxonomic attribution and the difficult to reconstruct the phylogeny of this group (Caloi & Palombo 1987; Caloi 1997 and Rustioni 1998), mainly based on its body size. Finally, Rustioni (1998) proposed to attribute large-sized fossil horses of the late Middle Pleistocene from the Middle Pleistocene of Italy (0.8-0.3 Ma) have been referred Equus caballus ssp., E. cf. E. mosbachensis, Equus caballus malatestai Caloi, 1997 and Equis sp., highlighting the uncertain taxonomic attribution and the difficult to reconstruct the phylogeny of this group (Caloi & Palombo 1987; Caloi 1997; Palombo & Alberdi 2017; Strani et al. 2018, 2019). In addition, Berzi (1972) attributed the astragalus from Monte Oliveto (Siena, central Italy), chronologically referred to early Middle Pleistocene, to Equus caballus cf. mosbachensis, mainly based on its body size. Finally, Rustioni (1998) proposed to attribute large-sized fossil horses of the late Middle Pleistocene from the
Italian Peninsula, to *E. mosbachensis*, and the small-sized ones from the Late Pleistocene to *E. ferus germanicus*.

In this scenario, the taxonomic attribution of the European caballoid horse from Middle to Late Pleistocene (300-12 Ka) is still a controversial topic. The proliferation of the subspecies reflects the homogeneous overall morphology and the lack of clear diagnostic characters, which should allow the identification of the different taxa.

MATERIAL AND METHODS

The sample of *Equus* studied in this work is part of several collections stored in different Italian Institutions and Museums (Table 1).

The skull and dental features of Middle to Late Pleistocene *Equus* has been poorly investigated, which prevents a large morphological comparison of the studied material. A morphological description of the studied crania from San Sidero and Cardamone has been reported in Appendix 1.

Following Eisenmann (1981), 5 cranial variables have been considered to be important for discriminating species of *Equus*: basilar length (BL), muzzle length (ML), length of the check teeth (P2-M3 LL), facial length (FaL), frontal length (FrL), muzzle breadth at the posterior borders of I3 (MB) (Appendix 1). Following Eisenmann (1980), we also measured 24 for upper and lower teeth: length, breadth and length of protocone of the upper teeth (P3 L, P3 B, P3 Pr, P3 4 L, P3 4 B, P3 4 Pr, M1 1 L, M1 1 B, M1 2 Pr, M3 L, M3 B, M3 Pr) and length, breadth and length of postflexid of the lower teeth (P3 L, P3 B, P3 Pr, P3 4 L, P3 4 B, P3 4 Pr, M1 1 L, M1 1 B, M1 2 Pr, M1 2 L, M3 L, M3 B, M3 Pr). The measurements were taken in occlusal view to the nearest 0.1 mm with a digital caliper. We used literature data on fossil horses from the Late Pleistocene to Early Holocene of the AP (Table 1).

We further assessed the degree of affinity between late Middle to Late Pleistocene *Equus* from Apulia by conducting a statistical analysis. First, in order to explore the affinity among the samples from different fossiliferous sites, we compared the samples from different fossiliferous sites, we compared the upper and lower teeth from San Sidero to those from the other samples (p.value > 0.05). The statistical analysis was performed using the R software (Team 2000). Very worn teeth were excluded by statistical analysis.

In addition, in order to evaluate the dental variability in the considered samples, the protocone index ([(length of protocone * 100)/length of teeth] and postflexid index ([(length of postflexid * 100)/length of teeth] were compared. The ratio of the length and the breadth of the muzzle could represent an adaptation to climate, where the short and large muzzle should be found in specimens from sites attributed to glacial stage and *vice versa* (see Crègue-Bonnoure et al. 2018 for discussion). In order to investigate this adaptations we created standard bivariate plots of muzzle breadth at the posterior borders of I3 (MB) and muzzle length (ML).

INSTITUTIONAL ABBREVIATIONS

IGF Museum of Natural History of the University of Florence, section of Geology and Paleontology, Florence (Italy);
IsIPU Italian Institute of Human Paleontology, Anagni (Italy) ?;
ITCGC Commercial Technical Institute “Galilei-Costa”, Lecce (Italy);
MPCCSM Museum of Pre-Classical Civilizations of Southern Murgia, Brindisi (Italy);
MPUN Palaeontological Museum of the University of Naples Federico II, Naples (Italy);
PF PaleoFactory Laboratory, Sapienza University of Rome, Rome (Italy).

LATE MIDDLE TO LATE PLEISTOCENE APULIAN FOSSIL EQUIDAE

Melpignano

The karst infilling deposits of Melpignano, locally known as “ventarole”, are located in the area of the village of Maglie. These karst deposits were firstly described by Mirigliano (1941), since then several Institutions, as the IsIPU...
and Italian Institute of Prehistory and Protohistory (IIPP), with the support of local Salentine Speleological groups, investigated this area (de Lorentiis 1962; Cardini 1962a). The “ventarole” are generally filled with reddish sediments (called “terre rosse”) in the lower part, and brownish sediments (called “terre brune”) in the upper, particularly rich in vertebrate fossil remains (Bologna et al. 1994) (Fig. 1). The *Equus* sample was recovered from the “terre rosse” of the “ventarole” of Mirigliano, Cava Nuzzo and Cava Bianco.

Repository and studied material

Repository	Material Description
MPUN	Mirigliano collection – 17 upper teeth, 24 lower teeth;
	Cava Nuzzo – PF 2 hemimandibles, 4 lower teeth (Fig. 3C);
	Cava Bianco – PF 17 upper teeth, 2 hemimandibles, 9 lower teeth.

SAN SIDER
The “ventarole” of San Sidero are located along the state road (SS16) between the villages of Corigliano d’Otranto and Maglie. The first description of the deposit and its faunal assemblage was reported by Cardini (1962a). The mammal fauna from San Sidero was also studied by other authors (De Giuli 1980, 1983; Petrucci et al. 2012; Iurino et al. 2013, 2015). Similarly to the Melpignano sediments, these “ventarole” include “terre

Fig. 2. — Crania in right view from late Middle to Late Pleistocene of Apulia: A, IGF16329, cranium of male of *Equus mosbachensis* von Reichenau, 1903 from San Sidero; B, CC467, cranium of female of *Equus ferus* from Cardamone; C, CC468, cranium of male of *Equus ferus* Boddaert, 1785 from Cardamone. Scale bars: 5 cm.
Fig. 3. — Mandible of *Equus* from late Middle to Late Pleistocene of Apulia in labial (1), lingual (2) and occlusal (3) views: A1-A3, IGF16330, *Equus mosbachensis* von Reichenau, 1903 from San Sidero; B1-B3, CC414, *Equus ferus* Boddaert, 1785 from Cardamone; C1-C3, MPND396 (ex. Cur11), left hemimandible of *Equus mosbachensis* from Melpignano; D1-D3, C2 20b 77, right hemimandible from SMA-esterno; E1-E3, C2 20b 80, left hemimandible from SMA-esterno. Scale bars: 5 cm.
The coastal cave, located near the village of Santa Caterina (Lecce), occurs in a Cretaceous limestone (Calcari di Melissano Formation) at 20 m a.s.l. and about 100 m from the current seashore. The cave was discovered in 1960 and was only partially excavated in 1971, 1974 and 1975 (Borzatti von Löwenstern 1961; Giusti 1979, 1980). Outside the cave, a nearby conglomerate deposit at about 8 m a.s.l. has been referred to Tyrrenian beach (MIS 5) (Patriarchi 1980). The stratigraphic sequence can be divided into two main complexes separated from a speleothem: in the upper part, the brownish sediment, where domestic fauna, ceramics and artefacts appeared, has been referred to Iron Age. Instead, in the lower part ten levels including vertebrate fossils and artefacts have been referred to Mousterian (Borzatti von Löwenstern 1961; Giusti 1979, 1980; Patriarchi 1980). The studied sample comes from the lower part of the sedimentary succession.

Repository and studied material

Site	Repository	Material
IGF	IG	18 upper teeth, five hemimandibles, 26 lower teeth.

Grotta del Gigante

The coastal cave, located between Punta Ristola and Punta Marchiello, was discovered by the Italian Institute of Human

Grotta del Gigante

The coastal cave, located between Punta Ristola and Punta Marchiello, was discovered by the Italian Institute of Human

Grotta dei Giganti

The coastal cave, located between Punta Ristola and Punta Marchiello, was discovered by the Italian Institute of Human

Grotta Uluzzo C

The cave is located in the Uluzzo Bay near the village of Nardò, opening into the Cretaceous limestone. The stratigraphic succession was described by Borzatti von Löwenstern (1965, 1966) and Borzatti von Löwenstern & Magaldi (1969). In particular, the green volcanic sand from the bottom of the complex II could be correlated with the tephra found at the top of the level F of Grotta del Cavallo, dated at 45 700 ± 1 000 ka by Zanchetta et al. (2018). Instead, the complex II-1 transition, consisting of a grey volcanic sand, could be correlated with the Ignimbrite Campana (CI) identified at the bottom of the level C of Grotta del Cavallo, dated at 39 850 ± 140 ka by Zanchetta et al. (2018). The presence of a reworked tephra in the top of the complex IV could represent a marker for the lower deposit. Further investigations needed to confirm the age of these volcanic levels. Moreover, Borzatti von Löwenstern (1965, 1966) reported a preliminary list of the fossil mammals recovered from this locality. The studied sample come from the complex IV, III and II (Table 1; Appendix 2). Whereas, artefacts from the complex IV and III were attributed to Middle Palaeolithic, instead those from the complex II to early Upper Palaeolithic.

Repository and studied material

Site	Repository	Material
IGF	IG	21 upper teeth, two hemimandibles, 33 lower teeth.

Repository and studied material

Site	Repository	Material
IGF	IG	27 upper teeth, one hemimandible, 27 lower teeth.
Paleontology during a field survey conducted by Gian Alberto Blanc in the 1930s (Blanc 1958). The authors also reported a mammal faunal list. In addition, Alessio et al. (1978) attempted to carry out radiocarbon dating without success. However, the fossil material was found associated to Middle Palaeolithic artefacts.

Repository and studied material

IsIPU
12 upper teeth, 20 lower teeth;

ITCGC
four upper teeth, three lower teeth.

Grotta Santa Croce

The cave, located near the small village of Bisceglie, was discovered in the 1937 (Segre & Cassoli 1987). The first systematic excavations directed by Luigi Cardini were carried out by Italian Institute of Human Palaeontology (IsIPU) during the 1950s (Mallegnini et al. 1987; Segre & Cassoli 1987; Boscato et al. 2006). The sedimentary succession includes several levels attributed to Middle and Upper Palaeolithic and Neolithic (Segre & Cassoli 1987; Arrighi et al. 2009; Ranaldo et al. 2017). Radiocarbon dated indicated an age of 24 900 ± 150 BP for the level B and 31 500 ± 400 BP for the level C (Arrighi et al. 2009; Ranaldo et al. 2017). There are no radiocarbon dating results for levels H-D that are referred to MIS 5 and MIS 4, respectively (Arrighi et al. 2009; Ranaldo et al. 2017). The fossil remains of mammals from the level D were studied by Segre & Cassoli (1987). Recently, new material was also discovered from this level and Equus ferus and Boa primigenius Bojanus, 1827 were identified (Boscato et al. 2006). The studied material was recovered from the level D, associated with lithic artefacts attributed to Middle Palaeolithic.

Repository and studied material

IsIPU
seven upper teeth, seven lower teeth.

Grotta Lanceduza

The cave deposit, located near the village of San Michele Salentino, was discovered by the “Gruppo Speleologico Salentino Pasquale de Lorentiis” in 1970 (Coppola 2005, 2012). The lower part of the sedimentary succession includes fossil remains of mammals and artefacts referred to Middle Palaeolithic. A preliminary mammal list was recently reported, including a rich sample of Meles meles (Linnaeus, 1758) (Mecozi et al. 2019). The Equus material was recovered from the lower part of the deposit, associated to Middle Palaeolithic artefacts.

Repository and studied material

MPCCSM
nine upper teeth, 12 lower teeth.

Grotta Zinzulusa

The cave is located along the Adriatic coast near the town of Castro. In 1793, Francesco Antonio Del Duca, bishop of the diocese of Castro described the cave in a letter to Ferdinando IV, king of the Kingdom of the Two Sicilies. Nevertheless, the Pleistocene infilling deposit was presented only after a century from the discovery by Botti (1874). The cave consists of several saloons, where Pleistocene deposits were found (Blanc 1962). The sedimentary succession can be divided in two complexes, the lower part, the level B6, where fossil remains of mammals and artefacts referred to Middle Palaeolithic were found, and the upper part, the levels B5-3 including fossil remains of mammals and artefacts referred to Upper Palaeolithic. The Equus material comes from the levels B5-3, where also artefacts referred to Middle Palaeolithic were found.

Repository and studied material

IsIPU
B5-6 upper teeth, five lower teeth.

Cardamone

The karst infilling deposit was discovered by Cosimo De Giorgi in 1872 (Botti 1890). The site is located in a region where several quarries are opened for the extraction of a Plio-Pleistocene calcarenite, and, unfortunately, the deposit was destroyed. The mammal assemblage from Cardamone, initially described by Botti (1890), was recently revised by Rustioni et al. (2003). Based on the presence of the wholly rhino (Coelodonta antiquitatis (Blumenbach, 1799)) and the wholly mammoth (Mammuthus primigenius (Blumenbach, 1799)), the association was referred to “Mammuthus–Coelodonta Faunal Complex” and chronologically attributed to climax of the Last Glacial Maximum (22-18 kyr).

Repository and studied material

IsIPU
16 upper teeth, 33 lower teeth;

ITCGC
two crania (Fig. 2B, C), 13 maxillaries, 83 upper teeth, four hemimandibles, 112 lower teeth (Fig. 3B).

Fondo Focone

The site, discovered during a survey conducted by Decio de Lorentiis in the early 1960s, is located near the village of Ugento. The first excavation campaign was carried out by Luigi Cardini (Cardini 1962b). The fieldwork, direct by Eugenia Segre Naldini, continued during the 1970s, who opened a trench, 3 x 3 m, called “Trincea B” (Cancelleri 2017). Fossil remains of mammals and the artefacts referred to Upper Palaeolithic (early Epigravettian) were found (Cardini 1962b; Cancelleri 2017).

Table 2. — Table of p-values for the linear model of the upper teeth with corner point parameterization testing the null hypothesis of no-differences between the mean of the MIS 9-8 and the other samples (p-value > 0.05).

Age	Number of specimen	P2	P3-4	M1-2	M3
MIS 9-8	5 19 20 6	–	–	–	–
MIS 7-5	3 6 1	0.14	0.00	0.01	–
MIS 5	3 9 8 4	0.10	0.00	0.00	0.57
MIS 4	7 12 9	0.04	0.00	0.00	0.80
MIS 3	14 29 16 20	0.03	0.00	0.00	0.01
MIS 2	37 76 66 13	0.01	0.00	0.00	0.00
MIS 1	3 5 3 1	0.10	0.00	0.01	0.13
Considerating the MIS chronology, the length of P² and M³ of the sample from MIS 9-8 is larger only of samples from MIS 3 (P², p-value < 0.05; M³ p-value < 0.05) and MIS 2 (P², p-values < 0.05; M³ p-value < 0.05). Whilst, the length of P²-4 and M¹-2 of the sample from MIS 9-8 are larger than those from the late Middle Pleistocene (MIS 7) to Early Holocene (MIS 1) (p-values < 0.05). In the lower dentition, the length of the teeth from MIS 9-8 are larger than those from Late Pleistocene (MIS 5) to Early Holocene (MIS 1) (p-values < 0.05), whereas they are similar to those from late Middle to early Late Pleistocene (MIS 7-5) in the P² (p-value > 0.05), P²-4 (p-value > 0.05) and M³ (p-value > 0.05) (Fig. 5, Table 3).

The protocone index of the Grotta di Capelvenere, Melpignano and San Sidero shows a trend closer to that reported for E. mosbachensis, with M³ value higher than M¹-2 one and P²-4 value higher or sub-equal than M¹-2 one (Fig. 6). On the contrary, the pattern of the other samples is closer to that reported for E. ferus, with M¹-2 value higher than both P²-4 and M³. Finally, the sample from Tana delle Mura possesses a well different values compared to the others, resembling those reported for Equus hydruntinus. In fact, in E. hydruntinus the values for P²-4 and M¹-2 are significantly lower than those of both E. mosbachensis and E. ferus, whereas they are similar in P² and M³ values.

Whereas, the postflexid index has been investigated, but no trend can be detected through the time and/or differences among the considered taxa (Fig. 7).

Finally, in the standard bivariate plot of muzzle proportions (Fig. 8), two groups can be recognized. The first includes the specimen from the fossiliferous sites referred to glacial stages (Appendix 9), which display a large muzzle in relation to their length. An exception is the cranium of Equus ferus antunensis Cardoso and Eisenmann, 1989 from Fontainhas (Portugal), where the muzzle is longest. The specimen from Cardamone falls in the variability of the glacial horses, and is similar to that from Cuane de l’Arago (Fig. 8). A second group is composed by crania from deposits referred to interglacial stages, where the muzzle is narrow compared to its total length. The cranium from San Sidero falls in this variability.

RESULTS

Equus samples from the late Middle Pleistocene to Early Holocene of AP show a large variation in dental dimensions and proportions. In particular, the length of P² and M³ are highly variable both within and between samples (Appendices 3; 4; 7). On the contrary, the length of P²-4 from San Sidero is closer (p-value > 0.05) to those from Cava Spagnulo, Grotta di Capelvenere, Grotta Mario Bernardini – II and Grotta Uluzzo C (Appendix 7). The length of M¹-2 from San Sidero is similar (p-value > 0.05) to those from Castellaneta, Fondo Cattie, Grotta di Capelvenere, Grotta Mario Bernardini – III, Grotta Santa Croce, Grotta Zinzulusa, Melpignano and Tana delle Iene (Appendix 7). As in the case of the upper teeth, even the length of P³ and M₄ show a huge variability (Appendices 5; 6). The P₂-3 from San Sidero is closer (p-value > 0.05) to those from Grotta di Capelvenere, Grotta dei Giganti, Grotta Mario Bernardini – IV, Grotta delle Tre Porte, Grotta Zinzulusa and Tana delle Iene (Appendices 5; 6; 8). Whilst, the M¹-2 from San Sidero is closer (p-value > 0.05) to Grotta Santa Croce, Grotta delle Tre Porte, Grotta Zinzulusa, Grotta Uluzzo C – II, Melpignano and Tana delle Iene (Appendices 5; 6; 8).

DISCUSSION

The taxonomy of Middle to Late Pleistocene European Equus remains controversial (Forstén 1991; van Asperen 2012). The large variability of the morphological features and biometric traits of caballoid horses has been the subject of controversy amongst many authors. No consensus exists on how to define this variability, as it is either treated as being intra-specific or inter-specific events (Azzaroli 1983; Forstén 1988; Cramer 2002; van Asperen 2012). This unresolved taxonomic issue has led a proliferation of taxa, identified as either species or subspecies (E. mosbachensis, E. steinheimensis Von Reichenau, 1915, E. achenheimensis Nobis, 1971, E. taubachensis Freudenberg, 1911) (see van Asperen 2012 for discussion). In the Italian fossil record, the specific attribution of the fossil samples from Middle Pleistocene sites reflects this
Equids from the late Middle Pleistocene to Early Holocene of the Apulia Peninsula (southern Italy)

and the comparison of the protocone index carried out in this work allow to refer the material from San Sidero to *E. mosbachensis*. In this scenario, the analysis of a relatively large sample of *Equus* fossils from late Middle to Late Pleistocene localities of AP allows us to reassess the taxonomy and the evolutionary trend of local horse species. Based on the results of the statistical analyses and the comparison of the protocone indexes, *E. mosbachensis* is identified for the first time from few Apulian fossiliferous sites, among which are included San Sidero, Melpignano and Grotta di Capelvenere. *Equus mosbachensis* possesses larger upper and lower teeth than those of *E. ferus* (Figs 4, 5; Tables 2, 3) and different values of the P3-4, M1-2 and M3 protocone index (Fig. 6). The Grotta di Capelvenere, Melpignano and San Sidero samples displays a M1-2 protocone index value lower than those both P3-4 and M3 (Fig. 6). The

uncertainty (*Equus altidens* von Reichenau, 1915, *Equus aff. sussebornensis*, *Equus caballus* ssp., *E. cf. E. mosbachensis* *Equus caballus cf. mosbachensis* and *Equus sp.*) (Berzi 1972; Caloi & Palombo 1987; Strani et al. 2018, 2019). Preliminary studies on *Equus* samples from several AP sites led to the identification of *E. ferus* from the deposits of Cardamone (Rustioni 1998), Cava Spagnulo (Mecozi et al. 2018), Grotta del Cavallo (Sarti et al. 1998, 2002), Grotta Paglicci (Boscato 1994), Melpignano (Rustioni 1998) and Tana delle Iene (Conti et al. 2010), whereas the previous taxonomic attribution of the material from San Sidero has been questioned. In the revision of the Middle to Late Pleistocene *Equus* material from Europe, Eisenmann (1991b) attributed the material from San Sidero to the large-sized *Equus chosaricus*, whereas other authors (De Giuli 1983; Rustioni 1998) classified it as *Equus ferus*. Unlike, the results of the statistical analysis and the comparison of the protocone index carried out in this work allow to refer the material from San Sidero to *E. mosbachensis*.

In this scenario, the analysis of a relatively large sample of *Equus* fossils from late Middle to Late Pleistocene localities of AP allows us to reassess the taxonomy and the evolutionary trend of local horse species. Based on the results of the statistical analyses and the comparison of the protocone indexes, *E. mosbachensis* is identified for the first time from few Apulian fossiliferous sites, among which are included San Sidero, Melpignano and Grotta di Capelvenere. *Equus mosbachensis* possesses larger upper and lower teeth than those of *E. ferus* (Figs 4, 5; Tables 2, 3) and different values of the P3-4, M1-2 and M3 protocone index (Fig. 6). The Grotta di Capelvenere, Melpignano and San Sidero samples displays a M1-2 protocone index value lower than those both P3-4 and M3 (Fig. 6). The
taxonomic attribution to *E. ferus* of the material from other considered sites chronologically referred from late Middle Pleistocene (MIS 7) to the end of Late Pleistocene (MIS 2) is confirmed, based on the medium-size of the specimens and the values of the protocone index. In fact, besides displaying smaller upper and lower teeth than those of *E. mosbachensis* (Figs 4, 5; Tables 2, 3), the protocone index in the materials of *E. ferus* displays M$^{1-2}$ value higher than those both P$^{3-4}$ and M3 (Fig. 6). Furthermore, for the samples from Tana delle Iene and Grotta delle Mura, the protocone index differs. The values of P$^{3-4}$ and M$^{1-2}$ are much lower than those of caballoid horses. This atypical profile of IP index in the fossil materials of Tana delle Iene and Grotta della Mura could be due to the small size of the available samples.

Finally, following the literature, the postflexid index fails to discriminate *Equus* species from Middle to Late Pleistocene and no trend can be observed (Fig. 7). In accordance with Boulbes (2010), the significant variation of the postflexid index could be related to tooth ontogeny (relative wear).

 Whereas *E. mosbachensis* is widespread in Europe during the Middle Pleistocene, its presence in Italian Peninsula was quite scarce (Gliozzi et al. 1997), and documented only from few sites: Cesi (Ficcarelli et al. 1997), Venosa-Notarchirico (Palombo & Alberdi 2017), Fontana Ranuccio (Biddittu et al. 1979). In AP, the Mosbach horse is identified for the first time in a few localities, which unfortunately lack of absolute radiometric determinations. As for the European material, in the AP the Mosbach horse was well-distinct for its large teeth sized, which is larger to the wild horse (*E. ferus*) (Figs 4, 5; Tables 2, 3) and display different values of the protocone index (Fig. 6). According to several authors (Guadelli 2007; Uzunidis 2017),
the last occurrence of *E. mosbachensis* took place during the late Middle Pleistocene, probably during the MIS 6, although no general consensus was reached (Boulbes & van Asperen 2019). However, the first historical appearance of *E. ferus* in AP is from Grotta del Cavallo during the early Late Pleistocene (< 109 ka) (Zanchetta et al. 2018). Therefore, a new dispersal of *Equus* species could have taken place during the late Middle Pleistocene. This possible scenario is consistent with the results of the aDNA analysis performed on *E. ferus*, which revealed that the wild horse originated at about 240,000 years ago (late Middle Pleistocene), differing therefore from the earlier form of *Equus* (George & Rider 1986). Unfortunately, the taxonomic uncertainty for the Middle Pleistocene sample from Italian Peninsula record prevents an in-depth reconstruction of the caballoid horse lineage (Berzi 1972; Caloi & Palombo 1987; Strani et al. 2018, 2019, Strani 2020).

The last occurrence of *E. ferus* in the Italian Peninsula took place during the end of Late Pleistocene to Early Holocene (18-9.1 ka BP). During the end of Late Pleistocene (16-12 ka BP), *E. ferus* was well diffused across the Italian Peninsula, as documented by Leonardi et al. (2018) at Grotta delle Mura, Grotta Paglicci, Palidoro, Romito and Vado Arancio. During the Early Holocene however, its presence was exclusively reported from Grotta delle Mura (Bon & Boscato 1993) (Leonardi et al. 2018). The radiometric dating of level 3 indicates an age ranging from 17913-1738 to 13009-12688 cal BP, whereas that of level 2 varies between 9451-9125 to 9527-8982 cal BP.
The wild horse is a common element of the mammal assemblages from AP during the late Aurelian, showing a homogenous body size through the time. According to van Asperen (2012), size oscillations of *E. ferus* can occur in response to climatic change, with the specimens from glacial stages being smaller and more robust, possibly as an adaptation to colder environmental conditions (Mayr 1956; James 1970; Lindstedt & Boyce 1985; Blackburn et al. 1999). On the contrary, interglacial horses could be larger with more slender limb proportions. Some populations of interglacial *E. ferus* can also be characterized by small and robust individuals (always less robust than glacial ones). The body-size of *E. ferus* of the Apulia region during the MIS 7-5 to MIS 2 is quite constant and no changes can be detected. According to van Asperen (2010), this stasis could suggest that the wild horse BP (Leonardi et al. 2018; recalibrated using Oxcal v. 4.4, IntCal20 curve). Recently, new radiometric analysis has been performed on Grotta dei Cervi, which records the presence of *E. ferus* at 10175-9701 cal BP (De Grossi Mazzorin & Monteﬁnese 2017) (recalibrated using Oxcal v. 4.4, IntCal20 curve). A long gap was detected in the horse fossil record, between the occurrences from Grotta delle Mura and Grotta dei Cervi and those from the bronze age localities of Santa Rosa di Roviglio (4149-4112 to 3492-3355 cal BP) and Montale (4089-3057 to 3370-3219 cal BP) (recalibrated using Oxcal v. 4.4, IntCal20 curve). This gap has been interpreted as the local extinction of wild *E. ferus*, which was later reintroduced in the Italian Peninsula by recent human populations. This disappearance during the Early Holocene could be linked to a marked reduction of steppe- and tundra-like landscapes (Leonardi et al. 2018).

The wild horse is a common element of the mammal assemblages from AP during the late Aurelian, showing a homogenous body size through the time. According to van Asperen (2012), size oscillations of *E. ferus* can occur in response to climatic change, with the specimens from glacial stages being smaller and more robust, possibly as an adaptation to colder environmental conditions (Mayr 1956; James 1970; Lindstedt & Boyce 1985; Blackburn et al. 1999). On the contrary, interglacial horses could be larger with more slender limb proportions. Some populations of interglacial *E. ferus* can also be characterized by small and robust individuals (always less robust than glacial ones). The body-size of *E. ferus* of the Apulia region during the MIS 7-5 to MIS 2 is quite constant and no changes can be detected. According to van Asperen (2010), this stasis could suggest that the wild horse

Fig. 7. — Postflexid index of the lower teeth of *Equus* species from the late Middle Pleistocene to Early Holocene sites of the Apulia. Abbreviations: see Table 1.
was in low competition for resources in a stable landscape constantly dominated by open-environments (i.e., steppe-like and/or grasslands). Another feature which could fluctuate as response to climatic change is the proportion of the muzzle, where the skulls from glacial stages possess a wide and short muzzle and vice versa (Eisenmann 2014; Crégut-Bonnoure et al. 2018; Boulbes & van Asperen 2019). Moreover, there is no chronological differences among cranial proportions of caballoid horse through the Middle to Late Pleistocene of Europe (Fig. 8), despite a possible evolutionary trend for explaining these different cranial proportions was proposed. Specimens from deposits attributed to glacial stages (n = 15) display a short and wide muzzle as in the cases of the Middle Pleistocene sites of Cuane de l’Arago (MIS 14-12) (France) (Eisenmann et al. 1985) and Igue des Rameaux (MIS 10-9) (France) (Uzunidis 2017) or Late Pleistocene ones of Coulet des Roches (MIS 2) (France) (Crégut-Bonnoure et al. 2018), Jaurens (MIS 3) (France) (Guérin 1999) and Sirejol (MIS 3) (France) (Philippe et al. 1980) (Appendix 9). Whereas, the crania from interglacial stages (n = 2) possess an elongated and narrow muzzle, as the specimens from Middle Pleistocene sites of Lunel-Viel (MIS 11) (France) (Bonifay 1980; Eisenmann et al. 1985) and Mosbach (MIS 13) (Germany) (Maul et al. 2000) (Fig. 8; Appendix 9). An exception is represented by the cranium from Last Glacial (MIS 2; 22,730 ± 835 ka) of Fontainhas (Portugal), since its proportions fall outside the variability of the glacial caballoid horses (Fig. 8; Appendix 9). The proportions of the two studied skulls, San Sidero and Cardamone specimens, corroborated the glacial/interglacial separation. Indeed, the skull from Cardamone biochronologically referred to Last Glacial falls in the variability of the glacial group, representing one of the largest specimens (Fig. 8; Appendix 9). Contrary, the proportions of the skull from San Sidero (MIS 9-8) differ from those of the glacial group, and are similar to those of Mosbach and Lunel-Viel ones (Fig. 8; Appendix 9). Finally, considering the large variability of the skull size of caballoid horses during the Middle and Late Pleistocene, no evolutionary trend can be recognized. Nevertheless, based on the proportions of the muzzle, two groups are identified from the Middle to Late Pleistocene of Europe, which reflect an adaptation to climate (glacial and interglacial stages). Therefore, the proportions of the muzzle of caballoid horse clearly reveal important information on climatic conditions and palaeoenvironment.

CONCLUSIONS

Our results highlight as the application of statistical analysis and the reconstruction of the protocone index in a large dataset represents a potential tool to redefine taxonomical attribution of equid fossil material in order to improve current biochronological information on key localities and areas of the Italian Peninsula. Most of the examined material originates from archeological sites where human exploitation produced a strong impact on fossil remains, which are often highly fragmented. Furthermore, *Equus* material from these localities was not studied from a paleontological perspective and most of the samples was taxonomical ascribed to *Equus ferus* according to the chronology of the deposit.

Therefore, our results allow us to redefine the taxonomical attribution of the material from Grotta di Capelvenere, Melpignano and San Sidero, which is referred to *Equus mosbachensis*. For the fossil material from the deposits attributed from the late Middle Pleistocene (MIS 7-6), Late Pleistocene (MIS 5-2) and Early Holocene the attribution to *E. ferus* is confirmed.

The presence of *E. mosbachensis* is reported from few AP localities, which lack of absolute radiometric dating, whereas

Fig. 8. — Standard bivariate plot of muzzle length (ML) and muzzle breadth at the posterior borders of I (MB) of caballoid horses from Middle to Late Pleistocene of Europe (Appendix 9). Symbol: square, Middle Pleistocene specimens; circle, Late Pleistocene specimens.
the first historical appearance of *E. ferus* is from the early Late Pleistocene of Grotta del Cavallo (MIS 5). Therefore, the Mosbach horse could disappear during the late Middle Pleistocene. In addition, in accordance with Leonardi *et al.* (2018), the last occurrence of *E. ferus* in Italian fossil record is from Early Holocene sites of Grotta delle Mura and Grotta dei Cervi.

Finally, the proportions of the muzzle of caballoid horses fluctuate as response to climate, where wide and short muzzle was found in specimens from deposits attributed to glacial stages and *vice versa*.

Acknowledgements

BM is indebted to professor Raffaele Sardella, supervisor of his PhD project, for his advice and support. We thank many colleagues for their useful suggestions and help: Luca Belucci, Jacopo Conti, Alessio Ianucci and Dario Sigari. Also, BM thank Antonio Profico for the support to perform the statistical analyses and Dawid Adam Lurino for the help in the study of the fossil collection of Cardamone. We are also grateful to the associate editor, Emmanuel Côtez, and two reviewers, Raymond L. Bernor and Nicolas Boubles, for providing insightful comments that allowed us to improve the manuscript. Finally, Grandi Scavi 2016, 2017, 2018, 2019 of Sapienza, University of Rome (resp. Raffaele Sardella) is acknowledged for funding.

REFERENCES

Alessio M., Allegri L., Bella F., Impota S., Belluomini G., Calderoni G., Cortesi C., Manfra L. & Turi B. 1978. — University of Rome carbon-14 dates XVI. Radiocarbon 20: 79-104. https://doi.org/10.1017/S003382220003921

Aureli D. & Ronchitelli A. 2018. — The Lower Tyrrhenian Versant: was it a techno-cultural area during the Middle Palaeolithic? Evolution of the lithic industries of the Riparo del Molare sequence in the frame of Neanderthal peopling dynamics in Italy, in: Borgia V., Cristiani E. (Eds.) Palaeolithic Italy Advanced Studies on Early Human Adaptations in the Apennine Peninsula. Sidestone Press Academic, Leiden. 59-94.

Arreghi S., Freggiola M., Rinaldo F. & Ronchitelli A. 2009. — Production and use in the lithic industry of the Mousterian in Santa Croce (Bisceglie, Italy). *Human evolution* 24 (2): 91-106.

Azzaroli A. 1983. — Quaternary mammals and the "end-Vil-lafranchian" dispersal event-a turning point in the history of Eurasia. *Palaeogeography, Palaeoclimatology, Palaeoecology* 44 (1-2): 117-139.

Baill B. 2015. — Les industries lithiques des occupations Epigravettien des SMA-esterno (Fouilles 2007-2010) (Santa Maria di Agnano, Ostuni, Italie). *Bulletin du Musée Anthroloqique préhistorique de Monaco* 55: 105-122.

Bedetti C., Palombo M. R. & Sardella R. 2001. — Last occurrences of large mammals and birds in the Late Quaternary of the Italian peninsula. *The world of Elephant – International congress, Rome* 701-703.

Bellai D. 1998. — Le cheval du gisement Pléistocène moyen de la Caune de l’Arago (Tautavel, P.-O.). *Quaternaire* 9: 325–335. https://doi.org/10.3406/quate.1998.1614

Bellucci L., Sardella R. & Rook L. 2014. — Large mammal biochronology framework in Europe at Jaramillo: the Epivilla-franchian as a formal biochron. *Quaternary International* 389: 84-89. https://doi.org/10.1016/j.quaint.2014.11.012

Berto C., BoscaIO P., Boschin F., Luzi E. & Ronchitelli A. 2017. — Paleoenvironmental and paleoclimatic context during the Upper Palaeolithic (late Upper Pleistocene) in the Italian Peninsula. The small mammal record from Grotta Paglicci (Rignano Garganico, Foggia, Southern Italy). *Quaternary Science Reviews* 168: 30-41.

Berzi A. 1972. — An Early Middle Pleistocene fauna at Monte Oliveto (S. Gimignano, Siena, Italy). *Palaeontographia Italica* 68: 29-33.

BiddittU L., CossI L. P., RadiCati DI Brozzolo F., Segre I. A. G. & Villa L. 1979. — Anagni, a K-Ar dated Lower and Middle Pleistocene site, Central Italy: preliminary report. *Quaternaria* 21: 53–71.

Blackburn T. M., Gaston K. J. & Loader N. 1999. — Geographic gradients in body size: a clarification of Bergmann’s rule. *Diversity and Distributions* 5: 165-174. https://doi.org/10.1046/j.1472-6462.1999.00046.x

Blanc A. C. 1962. — Relazione sulle osservazioni e ricerche stratigrafiche eseguite nella Grotta Zinzulusa (Castro Marina, Lecce) e sull’esito di alcuni sopraluoghi nel Salento. 22 Dicembre 1958 – 5 Gennaio 1959. *Quaternaria* 5: 330-334.

Blanc A. C. 1958. — Giacimenti musteriani con fauna ad elefante, rinoceronti e leone sulla scogliera del Capo di Leuca. *La Zagrillia* 1: 5-14.

BoddMert P. 1785. — Elenchus Animalium. Sistens quadrupedia huc usque nota, coruereum varietates. CR Hake. Rotterdarni [Rotterdam] 1: 1-173. https://www.biodiversitylibrary.org/page/28229893

Bologna P., Di Stefano G., Manzi G., Petronio C., Sardella R. & Squazzini E. 1994. — Late Pleistocene mammals from the Melpignano (LE) “Ventarole”: preliminary analysis and correlations correlations. *Bolletino delia Società Paleontologica Italiana* Is. 33 (2): 265-274.

Bon M. & BosCato P. 1993. — Analisi paleontologica e paleoecologica di macro e micromammiferi dei livelli romanelliani e mesolitici della Grotta delle Mura (Monopoli, Bari). *Quaternaria* 3: 53-104.

Bonifay M. F. 1980. — Le Cheval du Pléistocène moyen des grottes de Lunel-Viel (Hérault). *Gallia préhistoire* 23 (2): 233-281. https://doi.org/10.3406/galip.1980.1652

Borzatti van LonewSTern E. 1961. — Un saggio di scavo nella Grotta di Capelvenere, a Santa Caterina di Nardò. *Rivista di Scienze Preistoriche* 16: 207-216.

Borzatti van LonewSTern E. 1965. — La grotta-riparo di Uluzzo C. (Carpagno di scavi 1964). *Rivista di scienze preistoriche* 21: 1-32.

Borzatti van LonewSTern E. 1966. — Alcuni aspetti del Misteriano nel Salento: la grotta-riparo di Torre dell’Alto e la grotta di Uluzzo C. Scavi 1965 e 1966. *Rivista di scienze Preistoriche* 21: 203-287.

Borzatti van LonewSTern E. 1970. — Prima campagna di scavi nella grotta Mario Bernardini (Nardò-Lecce). *Rivista di scienze preistoriche* 25: 89-125.

Borzatti van LonewSTern E. 1971. — Seconda campagna di scavi nella grotta ‘Mario Bernardini’ (Nardò-Lecce). *Rivista di scienze preistoriche* 26: 51-62.

Borzatti van LonewSTern E. & Magaldis D. 1969. — Ultime ricerche nella Grotta dell’Alto (S. Caterina, Lecce). *Rivista di Scienze Preistoriche* 22: 205-250.

Boscato P. 1994. — Grotta Paglicci: la fauna a grandi mammiferi degli strati 22-24 (Gravettiano antico-Aurignaziano). *Rivista di Scienze Preistoriche* 46: 145-176.
Appendices. — Morphological description of crania from late Middle to Late Pleistocene of Apulian Peninsula.

Appendix 1. — Schematic stratigraphic log of Grotta Mario Bernardini (modified from Borzatti von Löwenstern 1970).
APPENDIX 2. — Schematic stratigraphical log of Grotta Uluzzo C (modified from Borzatti von Löwenstern & Magaldi 1969).
APPENDIX 3. — Boxplot of length of upper premolars (A, P₂L; B, P₃₋₄L) from the late Middle Pleistocene to Early Holocene sites of the Apulia. For the abbreviations: see Table 1.
APPENDIX 4. — Boxplot of length of upper molars (A, M₁⁻₂L; B, M₃L) from the late Middle Pleistocene to Early Holocene sites of the Apulia. Abbreviations: see Table 1.
APPENDIX 5. — Boxplot of length of lower premolars (A, P₂₇; B, P₃₄₇) from the late Middle Pleistocene to Early Holocene sites of the Apulia. Abbreviations see: Table 1.
Appendix 6. — Boxplot of length of lower molars (A, M\textsubscript{1-2}L; B, M\textsubscript{3}L) from the late Middle Pleistocene to Early Holocene sites of the Apulia Peninsula. Abbreviations see: Table 1.
APPENDIX 7. — Table of p-values for the linear model of the upper teeth with corner point parameterization testing the null hypothesis of no-differences between the mean of the San Sidero (SS) and the other samples (p-value > 0.05).

Site	Abbreviations	Number of specimen	P value						
		P2	P3-4	M1-2	M3	P2	P3-4	M1-2	M3
San Sidero	SS	2	7	4	2	1.00	1.00	1.00	1.00
Melpignano	Mel	3	7	12	3	0.56	0.04	0.36	0.37
Grottadi Capelvenere	CPv	6	4	1	1	0.14	0.08	0.44	
Grottadelle Tre Porte	GTP	3	2	2	1	0.25	0.04		
Grotta Mario Bernardini-VI	GMB-VI	1	4	1	1	0.22	0.04	0.03	
Grottadal Cavallo-HI	GCa-HI	3	3	3	3	0.02	0.03	0.22	
Castellaneta	Cas	3	6	5	7	0.08	0.00	0.10	0.22
Grotta Santa Croce	GSC	1	1	1	1	0.22	0.06	0.22	
Grotta Laceduzza	GLa	2	4	3	1	0.06	0.00	0.00	
Grotta Mario Bernardini-III	GMB-III	–	1	–	–	–	–	0.16	
Grotta Uluzzo-III	GUC-III	0.14	0.0	0.1		–	–	–	
Grotta Mario Bernardini-II	GMB-II	0.22	0.13	0.03	0.22				
Grottadelle Tre Porte	GTP	0.25	0.04						
Grotta Zinzulusa	GZi	0.03	0.00	0.01	0.22				
Grotta Paglicci	GP	0.08	0.00	0.01	0.22				
Grotta Uluzzo-II	GUC-II	0.13	0.13						
Cava Spagnulo	CS	0.08	0.00	0.01	0.22				
Fondo Cattie	FCa	0.03	0.00	0.00	0.05				
Tanadelle lene	TI	0.08	0.00	0.01	0.50				
Grottadal Cavallo-F	GCa-F	0.06	0.00	0.01	0.50				
Grotta Zinzulusa	GZi	0.12	0.01	0.01	0.22				
Grotta Laceduzza	GLa	0.08	0.01	0.03	0.22				
Fondo Focone	FFo	0.03	0.00	0.00	0.05				
SMA-Esterno-Gravettiano	SMA-G	0.13		0.13	0.13				

Age	P2	P3-4	M1-2	M3
MIS 9-8	1	1	1	1
MIS 7-5	0.14	0	0.1	
MIS 5-4	0.05	0	0	0.74
MIS 3	0.03	0	0	0.1
MIS 2	0.01	0	0	0
MIS 1	0.1	0	0.01	0.13
Appendix 8. — Table of p-values for the linear model lower teeth with corner point parameterization testing the null hypothesis of no-differences between the mean of the San Sidero (SS) and the other samples (p.value > 0.05).

Site	Abbreviations	Number of specimen	P-value
		P₂ P₃-₄ M₁-₂ M₃	P₂ P₃-₄ M₁-₂ M₃
San Sidero	SS	7 5 4 4	1.00 1.00 1.00 1.00
Melpignano	Mel	5 7 11 6	0.99 0.01 0.79 0.04
Grotta di Capelvenere	CPv	2 8 4 1	0.35 0.32 0.03 0.16
Grotta delle Tre Porte	GTP	3 2 3 1	0.98 0.98 0.08 0.16
Grotta Mario Bernardini -VI	GMB-VI	– 1 5 1	– 0.16 0.01 –
Grotta Uluzzo - VI	GUC-VI	– – – 1	– – – 0.16
Grotta del Cavallo - HI	GCa-HI	3 8 16 3	1.00 0.04 0.00 0.03
Castellaneta	Cas	1 4 3 6	0.16 0.02 0.03 0.01
Grotta dei Giganti	GGi	5 6 2 6	0.07 0.09 0.06 0.03
Grotta Santa Croce	GSC	4 2 1	0.02 0.06 0.16
Grotta Laceduza	GLa	2 3 3 3	0.06 0.03 0.03 0.06
Grotta Mario Bernardini -III	GMB-III	– – 1 –	– – 0.16
Grotta Uluzzo - III	GUC III	– 4 4 3	0.02 0.02 0.03
Grotta Mario Bernardini -II	GMB-II	1 3 2 –	0.16 0.03 0.06 –
Grotta Uluzzo - II	GUC-II	– 1 – –	– – 0.16
Cava Spagnulo	CS	2 3 4 2	0.06 0.03 0.02 0.06
Fondo Cattie	FCa	7 26 20 11	0.22 0.02 0.01 0.00
Grotta del Cavallo - F	GCa-F	10 9 10 7	0.76 0.01 0.02 0.01
Tana delle Iene	Ti	7 16 12 2	0.26 0.06 0.15 0.06
Cardamone	Car	15 29 25 7	0.85 0.00 0.00 0.00
Fondo Focone	FFo	3 2 3 2	1.00 0.02 0.03 –
Grotta Paglicci	GP	13 9 19 8	0.13 0.03 0.01 0.01
Grotta Zinzulusa	GZi	1 2 1 –	0.16 0.98 0.16 –
SMA-Esterno - Gravettiano	SMA-G	8 8 14 –	9.00 0.01 0.00 0.03
Grotta delle Mura	GMu	3 8 10 3	0.16 0.01 0.01 0.03

Site	P₂ P₃-₄ M₁-₂ M₃
MIS 9-8	1 1 1 1
MIS 7-5	0.75 0.36 0.11
MIS 5-4	0 0 0 0
MIS 3	0 0 0 0
MIS 2	0.01 0 0 0
MIS 1	0.03 0 0 0.01
Appendix 9. — Equus crania from Middle to Late Pleistocene of Europe.

Species	Site	Specimen number	Age	Reference	ML	MB
Equus mosbachensis	Igue des Rameaux	–	Middle Pleistocene	Uzunidis (2017)	133.2	77.6
Equus mosbachensis	Caune de l’Arago	–	Middle Pleistocene	Bellai (1998)	135.8	81.6
Equus mosbachensis	Lunel-Viel	10110	Middle Pleistocene	Eisenmann (1985)	141.1	71.0
Equus mosbachensis	San Sidero	IGF16329	Middle Pleistocene	This work	145.0	78.3
Equus ferus antunesi	Fontainhas	–	Late Pleistocene	Cardoso & Eisenmann (1989)	138.0	66.0
Equus ferus gallicus	Jaurens	FSL 303 486	Late Pleistocene	https://vera-eisenmann.com/	121.0	71.0
Equus ferus gallicus	Jaurens	FSL 303 482	Late Pleistocene	https://vera-eisenmann.com/	126.0	74.0
Equus ferus gallicus	Jaurens	FSL 303 488	Late Pleistocene	https://vera-eisenmann.com/	119.0	77.0
Equus ferus gallicus	Coulet des Roches	N5.106	Late Pleistocene	Crégut-Bonnoure et al. (2014)	120.6	76.0
Equus ferus gallicus	Coulet des Roches	N4.289.1	Late Pleistocene	Crégut-Bonnoure et al. (2014)	124.0	82.5
Equus ferus gallicus	Coulet des Roches	M4.546	Late Pleistocene	Crégut-Bonnoure et al. (2014)	115.0	79.5
Equus ferus gallicus	Coulet des Roches	L4+M4 878 + 879	Late Pleistocene	Crégut-Bonnoure et al. (2014)	116.5	75.0
Equus ferus gallicus	Coulet des Roches	L6-41	Late Pleistocene	Crégut-Bonnoure et al. (2014)	128.0	73.8
Equus ferus gallicus	Coulet des Roches	L5-78	Late Pleistocene	Crégut-Bonnoure et al. (2014)	115.5	77.4
Equus ferus gallicus	Coulet des Roches	M6 437-1	Late Pleistocene	Crégut-Bonnoure et al. (2014)	124.4	82.4
Equus ferus gallicus	Coulet des Roches	M7 97	Late Pleistocene	Crégut-Bonnoure et al. (2014)	123.4	73.5
Equus ferus gallicus	Siréjol	100.854	Late Pleistocene	https://vera-eisenmann.com/	112.0	70.0
Equus ferus gallicus	Siréjol	100.856	Late Pleistocene	https://vera-eisenmann.com/	123.0	70.0
Equus ferus	Cardamone	CC467	Late Pleistocene	This work	128.1	82.5
San Sidero
The IGF16329 is a splancnocranium in poor state of preservation. The sutures are completely fused. In dorsal view, the nasal is narrow with the anterior part getting thinner, whereas the muzzle is long and broad. In lateral view, the frontal and nasal bones are flat, where the nasal incisive fossa opens at the level of the posterior border of P_2. In ventral view, the palatal is large at the level of M_2-M_3.

The specimen IGF16329 has permanent teeth and the right and left cheek toothrows are complete. The presence of the canines allows to refer the cranium to male. The incisors are disposed in semicircular, where the I_1 and I_2 are buccolingually elongated whereas the I_3 is mesiodistally elongated. The canine is mesiodistally elongated, with an evident crest along the margin of the teeth. Generally, the sketch of the caballine and protoconule folds is low complicated. The hypoconal groove is more pronounced in the premolars (P_3 and P_4) than that of the molars (M_1 and M_2), whereas the protoconal groove is low pronounced.

Cardamone
The CC467 is a well-preserved cranium, except for parietal, frontal, nasal, zygomatic and vomer bones, which are incomplete. The cranium is elongated rostrocaudally with the nasal and frontonasal sutures not completely fused. In dorsal view, the nasal bones are narrow and the frontal bone became wider at the zygomatic processes. In lateral view, the frontal is flat and the zygomatic processes are robust from which diverged the two temporal lines ending posteriorly to a short sagittal crest. In posterior view, nuchal crest is well-developed and the braincase has a rough surface. In lateral view, the frontal bone is flat, whereas the nasal and parietal bones are slightly convex. The infraorbital foramen is large and open around the posterior border of P_4. The zygomatic process is robust and the occipital bone is posteriorly directed.

In ventral view, the palatal bone is larger at the level of M_2-M_3, the basisphenoid bone and the basal part of occipital bone are robust, whereas the vomer bone is thin. The mandibular fossa is marked, the retroarticular process is robust and hypoglossal foramen is large and mesiodistally elongated. The specimen CC468 has permanent teeth, which includes the presence of left canine. Therefore, the cranium can be referred to male. The canine is mesiodistally elongated, with an evident crest along the margin of the teeth. The left and right cheek toothrow are complete, excepted for incisors. Generally, the sketch of the caballine and protoconule folds is low complicated. The hypoconal groove is more pronounced in the premolars (P_3 and P_4) than that of the molars (M_1 and M_2), whereas the protoconal groove is low pronounced.