Occurrence of clubroot and *Plasmodiophora brassicae* Wor. races in Finland

ANNIKKI LINNASALMI and ANNELI TOIVIAINEN

Agricultural Research Centre, Institute of Plant Protection, Plant Pathology Section
Jokioinen, Finland

Abstract. Examination of clubroot in cruciferous vegetables in Finland in 1974—1978 revealed the disease in 81% of the 101 communes inspected. The disease was most common in southern and central Finland, but was also discovered in the northern parts of the region in which cruciferous crops were cultivated (66—67° N. lat.). Clubroot was found in 65% of the 375 plant samples collected. It occurred in 68% of the samples of the most commonly cultivated vegetable, cabbage (56% of the material), in 63% of the cauliflower samples (22% of the material), in 56% of the samples of other cole species (13% of the material) and in 64% of the samples of cruciferous root crops (10% of the material). *P. brassicae* race determinations were performed on 90 samples. The classification system of Williams (1966) was applied. The races that were isolated were 1, 2, 3, 4, 6 and 7. Race 2 was by far the most common, being found in 32 communes; races 3, 4, 6 and 7 were each found in 9—12 communes; race 1 only in one commune. No clear differences in the occurrence of the races in the various parts of the country could be observed. A comparison is made between Williams' and the ECD (Buczacki et al. 1975) classification systems. In addition, the pathotypes in clubroot material from Norway and Iceland were determined.

Index words: clubroot, *Plasmodiophora brassicae* Wor., pathotypes, races, cruciferous vegetables

Introduction

The records on the occurrence of clubroot disease in Finland date back to the 1860s (Jamalanen 1936). It is assumed that the disease came to Finland from the east, from Russia (Rainio 1930). In his studies on the cause of crucifer hernia, Woronin (1878) mentions that cabbage plant materials used by him came from the regions of St. Petersburg (Leningrad) and Viborg⁴ in Finland. According to the information collected by the Department of Plant Pathology, Agricultural Research Centre, clubroot had spread all over the country, including the western regions, by the 1930s

⁴ Since 1944 that area has been part of the Soviet Union.
In the 1930s the susceptibility of cruciferous vegetable cultivars and wild *Brassicaceae* plants to the fungus *Plasmodiophora brassicae* Wor. was also studied at the Research Centre. In addition, experiments for chemical control of the disease were carried out (Jamalainen 1936). The efficiency of new pesticides was studied in 1944—1977 (Linnasalmi 1948, 1952, 1959; Linnasalmi and Tittanen 1960; Murtomaa and Uoti 1972; annual reports of the Department of Plant Pathology of the Agricultural Research Centre 1960—1977, mimeographs).

A preliminary study on *P. brassicae* races in Finland had been carried out in the years 1971—1972 (Linnasalmi and Palonen 1974).

In this study, the occurrence of clubroot and the pathotypes of *P. brassicae* in cruciferous vegetables in Finland in 1974—1978 were examined. In addition, the pathotypes in clubroot material sampled in Norway and Iceland were determined.

The study is a part of the Nordic clubroot project, NKJ project 27 1974—1977, of the Nordic Joint Committee for Agricultural Research: Breeding for clubroot resistance, *Plasmodiophora brassicae* Wor. races, and the efficiency of new pesticides.

Materials and methods

Collection of the basic material

Most of the material for studying the distribution of clubroot was collected by inspecting cruciferous vegetable fields throughout Finland during the growing season, from June to October. A small part of the material, about 2%, was sent in by agricultural research stations, advisers of agricultural information organizations and farmers. The inspections chiefly focused on large cole and root crop farms, but a considerable number of small farmers' crucifer fields were also inspected. The research material collected as described above can be assumed to give a general picture of the distribution of clubroot disease and the *P. brassicae* races in the period under study in the 1970s in Finland.

Samples of galls from the various cultivars affected with clubroot were taken for the analysis of *P. brassicae* races.

Propagation of *P. brassicae* club material and preparation of the inoculum

The young galls of the original samples were washed thoroughly with running water. They were crushed to prepare a water suspension, which was used to inoculate a steamed (at 100°C for 1 h) soil-peat medium. From the samples for race analysis additional club material was grown on the original plant species and, if possible, on the original cultivar or on a cultivar known to be susceptible to *P. brassicae*, such as cabbage cv. Ditmarsk and cauliflower cv. Erfurter. To check and ensure the viability of the inocula, the black mustard (*Brassica nigra* (L.) W.D.J. Koch) breeding line Sv. 72-6842 of the Swedish Seed Association, Sweden, which was very susceptible to clubroot, was also used as a host plant both during the propagation of club materials and later in identification tests of *P. brassicae* races.

During the initial stage of the study, the inoculation of the host was repeated two or three times as five-week growth periods. As the sampling technique improved, the club material from the first propagation could be used as basic material to grow callus cultures and small-club material. The material was stored at —18°C.

The callus cultures were prepared from young galls, 1—2 cm long, which were surface-disinfected with ethanol (C₂H₅OH, 94%) and mercuric chloride (HgCl₂, 1%) and rinsed with distilled water. Small pieces, ca. 2 mm in diameter, were cut from the inside of the galls, treated with ethanol (99.5%) for a few seconds and rinsed with distilled water. The pieces were placed in Erlenmeyer flasks or test tubes on an agar medium. The nutrient solution used was a modification of the solution of Murashige and Skoog (1962),
in which 3-indoleacetic acid had been replaced with 1-naphthylacetic acid. Coconut milk (100 ml/l) was added because our tests had shown that it increased the growth rate of callus tissue considerably. The cultures were incubated in the dark at ca. 22°C. Small pieces of callus tissue were transferred every 7 to 10 days to a fresh culture medium, the passages totaling three to four. The callus material was stored at —5°C.

Small-club inoculum material was made direct from young fresh or frozen (—18°C) galls, which were washed with running water and rinsed with distilled water.

For preparing the inoculum, the callus and small-club materials were crushed mechanically, suspended in distilled water and filtered through a nylon filter cloth. The filtrate was centrifuged (2400 g, 7 min.) three to four times. Before each test, the suspension used was diluted to a concentration of 10⁶ spores per ml, using a hemocytometer.

Isolation and identification of races

Method

The isolation and identification of races was carried out according to the system of Williams (1966), a method based on selecting four Brassicaceae plants as differential hosts and studying their resistance or susceptibility to P. brassicae.

The test plants were cabbage (Brassica oleracea L. convar. capitata (L.) Alef.), cultivars Jersey Queen and Badger Shipper, and swede (Brassica napus L. var. napobrassica (L.) Rchb.), cultivars Laurentian and Wilhelmsburger. On the basis of 16 possible interactions, 16 races can be isolated and classified according to the following scheme (Williams 1966).

The use of genetically uniform, homozygous differential host material is a prerequisite for the reliability of the race determinations. The seed material used in this study was supplied by NKJ project member Dr. R. Jönsson, and produced or acquired by the Swedish Seed Association (nowadays Svalöf AB), Svalöv, Sweden.

Testing

The tests were carried out in a glasshouse, mean temperature 22°C (20—24°C). When necessary (in winter), Osram HQL 400 W/R mercury high-pressure lamps were used for supplementary lighting.

The growing medium, Enhetsjord K (AB W. Plantin & Co, Oxie, Sweden), was a fully fertilized, fine-grained mixture of clay and peat, pH 6.3 ± 0.2. It was steamed at 100°C for 1 h. Seeds of differential hosts were sown in 9 × 9 cm pots of thermosetting plastic, 10 seeds/pot, four replicates. Each pot had a plastic tray of its own. Inoculation with the spore suspension, 10 ml/pot, was performed after the sowing and the seeds were covered with a 0.5 cm layer of the growing medium. Throughout the growing period, the plants were watered by pouring water into the trays to keep the moisture even and to prevent the possibility of cross-contamination.

The growing period was from four to six weeks. The galls were well developed, the
average size being 0.5 to 1.0 cm	extsuperscript{3}. They were light in colour and usually contained a great number of spores.

To conclude the test, the roots were washed with running water and rinsed with distilled water. The degree of clubroot infection of each plant was assessed on a scale of 0—3, and the clubroot index was calculated according to Williams (1966):

\[
\text{clubroot index} = \frac{0 \times n_0 + 10 \times n_1 + 60 \times n_2 + 100 \times n_3}{n_0 + n_1 + n_2 + n_3}
\]

\(n_0\) = no clubs
\(n_1\) = a few small clubs on the secondary roots
\(n_2\) = considerable clubbing on the lateral roots
\(n_3\) = severe clubs on the primary and secondary roots

This was the primary analysis. The clubs from the replicates of each differential host were combined to make a spore suspension, which was used to re-inoculate all four differential host plants, in accordance with the following scheme:

```
Original host

\begin{array}{c}
\text{JQ} \\
\text{BS} \\
\text{L} \\
\text{W}
\end{array}
```

```
\begin{array}{c}
\text{JQ} \\
\text{BS} \\
\text{L} \\
\text{W}
\end{array}
```

```
\begin{array}{c}
\text{JQ} \\
\text{BS} \\
\text{L} \\
\text{W}
\end{array}
```

```
\begin{array}{c}
\text{JQ} \\
\text{BS} \\
\text{L} \\
\text{W}
\end{array}
```

If the result of this cross-testing was similar to that of the primary analysis with respect to both degree of infection and clubroot index, the race determination could be considered to be reliable. If the result was not similar, the cross-testing was repeated three to four times.\(^2\)

Comparison with the ECD classification system

Comparison with the ECD classification system, developed by the International Clubroot Working Group (Buczacki et al. 1975) was performed with some of our \textit{P. brassicae} isolates (totalling 12) classified by Williams’ system. The seeds of ECD differential hosts in \textit{Brassica campestris}, \textit{B. napus} and \textit{B. oleracea} groups (totalling 15 hosts) were received in 1976 from Dr. H. Toxopeus, Institut de Haaff, Stichting voor Plantenveredeling, Wageningen, the Netherlands.

The test arrangement and the growth conditions were the same as in the tests performed with Williams’ method (p. 417).

Results and their evaluation

Occurrence of clubroot

Regional distribution

Of the 192 farms, 61 %, and of the collected plant samples, altogether 375, 65 %, showed occurrence of clubroot (Table 1, Fig. 1). Thus the study revealed that clubroot was quite common all over Finland. Although the locations inspected were distributed over the country, the number of samples from the various areas differed so much that it is impossible to draw far-reaching conclusions about regional differences in the occurrence of the disease. It can, however, be noted that clubroot was fairly common in the old, densely populated farming areas, Uusimaa (N), Varsinais-Suomi (Ab) and Etelä-Häme (Ta), and also in Etelä-Savo (Sa) and Etelä-Karjala (Ka). The disease was more severe in eastern Finland than in western Finland. This was possibly partly caused by cultivation techniques, mainly by the fewer opportunities for crop rotation on the farms in eastern Finland. In these areas many farmers had to give up the production of cruciferous vegetables altogether because of clubroot disease in the 1960s and ’70s.

It also turned out that clubroot was often more common, and even more severe, on smaller than on larger farms, one probable reason being the limited opportunities for crop rotation. This was evident, for example, in gardens around population centres, where var-

\(^2\) Purified and identified race material was sent to the Scandinavian members of this project from 1974 onwards to be used in their resistance breeding work. Since 1980 the type isolate material has been deposited in the race bank at the Swedish University of Agricultural Sciences, Department of Resistance Biology, Alnarp, Sweden.
Table 1. Distribution of clubroot and occurrence of *Plasmodiophora brassicae* Wor. races in Finland, 1974—1978.

Biological province	Communes inspected	Farms inspected	Samples	*P. brassicae* races				
	total no.	with clubroot %	total no.	with clubroot %	total no.	with clubroot %	no. of isolates	total
Ab Varsinais-Suomi	13	100	19	100	46	100	0 6 1 2 2 1	12
N Uusimaa	6	100	11	100	28	100	0 3 1 2 0 1	7
Ka Etelä-Karjala	4	100	9	56	14	71	0 3 1 0 0 0	4
St Satakunta	12	75	21	48	26	42	0 4 0 4 0 0	8
Ta Etelä-Häme	20	95	37	73	88	77	0 11 0 1 8 3	23
Sa Etelä-Savo	8	50	13	54	20	55	0 1 4 0 0 1	6
Oa Etelä-Pohjanmaa	12	58	27	37	44	32	0 2 0 2 0 2	6
Tb Pohjois-Häme	9	56	25	24	46	24	0 1 0 1 0 2	4
Sb Pohjois-Savo	7	100	10	80	19	84	1 1 4 0 2 0	8
Kb Pohjois-Karjala	6	83	10	60	23	52	0 7 1 0 0 0	8
Om Keski-Pohjanmaa	2	50	5	60	6	50	0 1 0 0 0 0	1
Ob Pohjois-Pohjanmaa	2	100	5	100	15	100	0 0 0 0 2 1	3
total/mean	101	81	192	61	375	65	1 40 12 12 14 11	90

1 Heikinheimo and Raatikainen (1971).

In the 1980s, the areas of cabbage and cauliflower remained roughly the same, totalling some 1000 ha. The area of swede decreased markedly, from almost 2000 to 400 ha. The cultivation of Chinese cabbage increased to 600 ha. The total area of the other cole species was some 80 ha and that of radish and turnip totalled some 40 ha.

The data on the occurrence of clubroot in different plant species are presented in Table 2. Clubroot was found in 68% of the cabbage samples, in 63% of the cauliflower samples, in 56% of the samples of other cole species, and in 64% of the root crop samples. The distribution and number of samples from different plant species roughly indicate the frequency of cultivation of these crops.

Plasmodiophora brassicae races and their occurrence

As in practice it was not possible, within the limits of the study, to carry out a race determination of every clubroot sample, the samples for tests were chosen to represent as many communes as possible in each biological prov-
Fig. 1. Location of inspected farms growing cruciferous vegetables and occurrence of clubroot in Finland, 1974—1978.
Table 2. Occurrence of clubroot in different plant species.

Species	Samples total number	with clubroot	Plant species	
		number	% of samples	% with clubroot
Cabbage	209	143	56	68
Cauliflower	82	52	22	63
Broccoli	21	10		
Red cabbage	10	8		
Brussels sprouts	8	4		
Kohlrabi	3	3	13	56
Curly kale	3	1		
Marrowstem kale	2	1		
Chinese cabbage	1	0		
Swede	28	16		
Turnip	5	4	10	64
Fodder turnip	1	1		
Radish	2	2		

Total 375 245

ince, altogether 69 communes, or 84 % of the communes where clubroot was found. Most determinations were performed on club samples of the crucifers cultivated most frequently: cabbage and cauliflower. Some additional determinations were made on samples taken from less common species. The number of *P. brassicae* isolates totalled 90.

Races

The races isolated were 1, 2, 3, 4, 6 and 7 (Appendix 1). The identification results for races 1, 2, 4 and 7 were clear. The test results for races 3 and 6 showed some deviation from the classification scheme. Several isolates from both of these races showed slight contamination in Badger Shipper, although according to the scheme this differential host should have been resistant to these races.

As the identification tests with certain isolates of other races also showed more variation in the clubroot indices in Badger Shipper than in other differential hosts, it seems that the seed material of Badger Shipper may have had some genetic heterogeneity. It is also possible that the isolate materials classified as races 3 and 6 included some pathotypes that were variants of the main races. The possibility of mutation in the differential hosts or in the purified *P. brassicae* race isolates must also be taken into account.

A preliminary report on the occurrence of *P. brassicae* races determined in the present study was presented at the Brassica conference 1981 (LinnaSalmi and Toiviainen 1981).

Regional distribution

The regional distribution of the races is shown in Table 1 and on the map in Fig. 2. The communes from which the samples were taken and data on the original host are given in App. 1. Of the six races isolated, race 2 was by far the most common. It was found in 32 communes, i.e. in 46 % of the communes with clubroot. Races 3, 4, 6 and 7 were each found in about ten communes (9—12 communes, i.e. 14—17 %); race 1 occurred only once. Two different races were found in only a few communes: races 2 and 3 in Nurmijärvi (N) and Joutseno (Sa), races 2 and 6 in Haukivuori (Sb), races 6 and 7 in Hartola (Ta), Kangasala (Ta) and Oulu (Ob). On the basis of this study, no clear prevalence of races can be demonstrated in different parts of Finland. All races were distributed fairly evenly over the country, with the exception of the
Fig. 2. Occurrence of *Plasmodiophora brassicae* Wor. races in Finland, 1974—1978.
rare race 1. However, race 4 seems to show some prevalence in the western parts of the country, while race 3 occurs mostly in the east.

In the preliminary studies conducted in 1971—1972 on the occurrence of the *P. brassicae* races in Finland (Linnasalmi and Palonen 1974), the races 2, 4, 6 and 7 were isolated. In two test places the races that were found in 1972 were, according to the present study, still the same, viz. race 4 in the test field of the Institute of Plant Pathology in Tikkurila (Vantaa) and race 7 in the test field of the Institute of Horticulture in Piikkiö. Ten years earlier, in 1964, samples from these localities were sent to Prof. P.H. Williams. He identified race 7 from Piikkiö and race 2 from Tikkurila (Williams 1966).

Occurrence in different plant species

The races displayed the following distribution by different plant species: races 2, 3, 4, 6 and 7 were isolated from cabbage (60 isolates) and cauliflower (17 isolates); races 2, 3 and 7 from broccoli (4 isolates); race 4 from red cabbage and marrowstem kale (1 isolate from each); races 1, 2 and 4 from swede (5 isolates); and race 2 from turnip (2 isolates).

Of the cabbage cultivars grown in Finland, (cf. App. 2) only the Norwegian Resista and Respla (Weisaeth 1977) are partly resistant to some *P. brassicae* races. These cultivars were accepted for marketing in Norway in 1973 and in Finland in 1975. In our infection tests (glasshouse tests) with some of the *P. brassicae* races occurring in Finland, both cultivars were found to have some resistance to races 2, 4 and 7 when compared with the severely contaminated Blåtopp cultivar:

In some farms where these cultivars were grown in field sectors situated next to each other, severe contamination and consequently weaker growth of Blåtopp were evident, whereas Resista and Respla were only sparsely and slightly contaminated, and headed well.

The occurrence of *P. brassicae* races determined according to Williams’ system in other countries

Norway and Iceland

According to the working plan of NKJ project 27, the determination of *P. brassicae* races in Norwegian material was performed in Finland. The samples had mostly been taken from resistance breeding test fields in different parts of the country by the Norwegian project member, First Amanuensis G. Weisaeth. Half of the samples represented the breeding lines of cabbage. The test fields were located in 17 communes, and the number of samples totalled 38.

The race distribution was as follows:

race	communes no.	isolates no.	host plants
1	5	6	cabbage, swede
2	3	5	cabbage, swede, rape
4	13	21	cabbage, cauliflower, kohlrabi, swede
7	3	5	cabbage
9	1	1	swede

Detailed results from the race determinations of the Norwegian material, together with purified club material, were supplied annually to the Department of Vegetable Crops, Agricultural University of Norway, Ås, Norway. Some isolates from this material were used in our ECD test series (Table 3).

A report on the occurrence of races 1, 7 and 9 in Norway, in the Trøndelag region, is given in the publication of Linnasalmi and Weisaeth (1978). On the basis of our new sample material (cf. data given above), it would seem that race 4 is more common than the others elsewhere in Norway. There were some
differences between the Finnish and Norwegian race spectra: race 9 was not found in Finland, and races 3 and 6, which are fairly common in Finland, were not found in the Norwegian material. However, data on races 3, 5 and 6, as well as races 1 and 9, are presented in some earlier studies on the Norwegian race spectrum (WÉISAETH 1972). Two cabbage samples (WÉISAETH's breeding lines) from Iceland were analysed. Only race 7 was found in both samples (LINNASALMI and WÉISAETH 1978).

Sweden

In connection with breeding work for clubroot resistance in cruciferous oil crops, R. JÖNSSON investigated the occurrence of *P. brassicae* races in Skåne, in southern Sweden. Using the method of WILLIAMS, JÖNSSON (1971, 1972) concluded that in the populations collected from various localities there was the possibility of occurrence of several *P. brassicae* races, and definite occurrence of race 15 in one case. Using the callus technique, JÖNSSON isolated races 1, 2, 3, 4, 6 and 7 (JÖNSSON 1981).

Other countries

In addition to the Nordic countries, information about the occurrence of *P. brassicae* races has been published from the following countries: USA: races 6 and 7 (WILLIAMS and WALKER 1963, STRANDBERG and WILLIAMS 1967); Canada: races 1, 2, 3, 4, 6 and 6A (AYERS 1972), races 2 and 6 (CHIANG and CRÉTE 1972, REYES et al. 1974); Japan: race 2 (YOSHIKAWA and BUCZACKI 1978); GDR: races 1, 3, 4, 6, 7 and 9 (WILLIAMS and SEIDEL 1968); Poland: races 2, 4, 6 and 7 (NOWICKI 1978); USSR: races 1, 6 and 7 (KRIVCHENKO et al. 1982). Moreover, mention should be made of the race identifications made by WILLIAMS (1966) on materials from the following countries: Czechoslovakia race 6; the UK race 1; FRG race 7; USSR race 2; Australia races 3, 6 and 7; New Zealand races 1, 2 and 4; Japan races 3 and 5.

Comparison between the WILLIAMS' and ECD classification systems

In this study with the *P. brassicae* race ma-

Isolate	Race	Williams' system	ECD code			
		Clubr. ind. in diff. hosts	B.c.	B.n.	B.o.	
		JQ	BS	L	W	
N 74048	1	22	0	83	86	16 — 31 — 12
F 117	2	97	92	100	0	16 — 03 — 31
F 118	2	90	93	97	0	16 — 19 — 31
F 1	2	79	83	97	0	16 — 19 — 31
F 147	3	96	1	99	0	16 — 18 — 30
F 155	4	89	68	94	80	16 — 31 — 31
F 168	4	76	60	82	74	17 — 31 — 31
F 106	6	68	0	0	0	16 — 00 — 30
F 171	7	94	86	0	0	16 — 00 — 31
N 74046	7	94	88	0	0	16 — 02 — 31
I 74040	7	86	70	0	0	16 — 02 — 31
I 74043	7	91	69	0	0	16 — 03 — 31

Diff. host symbols cf. App. 1. B.c. *Brassica campestris*; B.n. *Brassica napus*; B.o. *Brassica cleareacea*; ECD codes according to Toxopeus 1974.

Origin of isolates from Finland (F) in App. 1; from Norway (N) P74048 C Jersey Queen (Asker) and P74046 Badger Shipper (Stjørdal); from Iceland (I) P74040 cabbage lines 666 Weisaeth and P74043 line 696 Weisaeth (Hrunamannahreppur).
terial classified according to Williams' system (1966), a comparative test series was carried out using the ECD classification system (Buczacki et al. 1975). Pure isolates of races 1, 2, 3, 4, 6 and 7 (12 in total) were chosen for the tests. The results are shown in Table 3.

In the Brassica campestris group, the resistance and susceptibility of all differential hosts to the various races are the same, code number 16, with exception of one race 4 isolate, for which the code is 17 because of the susceptibility of differential host 01.

In the Brassica napus group, the differential hosts show more diversity in their reactions to the different races, but there is also variability with regard to isolates of the same race. For example, the codes for race 7 are 00, 02 and 03. Number 03 is also the code of one of the isolates of race 2. For the isolates of race 2, the reactions of the ECD differential hosts are to a large extent borderline cases between susceptibility and resistance, and therefore the code can be either 03 or 19. The differential hosts of the group do not serve to separate races 1 and 4. All are 100% susceptible, code 31.

In the Brassica oleracea group, some differences were found. The code numbers are 12, 30 and 31. Code 12 applies only to race 1, but code number 30 to both races 3 and 6, and code 31 to races 2, 4 and 7.

Few results corresponding to those of our ECD test are found in publications from other countries. Code 16-31-12, which corresponds to race 1 in our material (isolate from Norwegian material), has been reported from France (Rouxel et al. 1983). Code 16-31-31, corresponding to one of our race 4 isolates, has been reported from the USA (Campbell et al. 1981) and from Scotland, UK (Brokenshire and Lewis 1981), and code 17-31-31, corresponding to the other race 4 isolate, also from the UK (Brokenshire and Lewis 1981, Dixon et al. 1981). The codes 16-02-31 and 16-03-31, corresponding to our race 7 (isolates from the Norwegian and Icelandic materials), were reported by Dobson et al. (1983) from the USA. Data on code 16-02-31 have also been reported from Canada by Chiang and Crete (1983), who, however, mention it as the ECD code of their race 2 (sensu Williams). The survey of Toxopeus et al. (1986) of the ECD tests performed mostly in Western Europe up to 1982 includes code 16-31-12 (four occurrences), corresponding to our race 1; code 16-19-31 (two occurrences), corresponding to our race 2; codes 16-31-31 and 17-31-31 (65 and 5 occurrences respectively), corresponding to our race 4; codes 16-00-31, 16-02-31 and 16-03-31 (3, 51 and 13 occurrences respectively), corresponding to our race 7.

In addition to the studies mentioned above, determinations of P. brassicae pathotypes by the ECD system have been reported in the following publications: Toxopeus (1974) and Toxopeus and Jansen (1975) from the Netherlands, Heyn (1981) from the FRG, Jones et al. (1982 a) from the UK, Naiki et al. (1984) from Japan and Lammerink (1986) from New Zealand.

In comparing the advantages and disadvantages of Williams' method with the ECD method for isolating and classifying P. brassicae pathotypes, it can be concluded that Williams' system is a more time-saving method. By the cross-testing technique described previously (p. 418), it was possible to detect the main pathotypes in a large area (approx. 3 000 ha) by means of only four differential hosts. On the other hand, it is evident that with such a restricted set of differential hosts it is not possible to identify all possible pathotypes and pathotype variants with certainty. The ECD system, with its fifteen differential hosts, is much more laborious and the requirement for growing space is many times greater than with Williams' method. Even more serious is the fact that in our comparative test series, which was carried out with very clear and pure race isolates classified according to Williams' system, the ECD results showed uncertainties and contradictions, as can be seen in Table 3 and in the report of the results.

Soon after introduction of the ECD system, other workers also began to draw attention to
Discussion

Regardless of the classification system employed, one of the most important requirements for the reliable determination of pathotypes is that a genetically uniform inoculum material can be obtained. One way to achieve this is the single spore technique starting from the resting spores of the *P. brassicae* fungus. Difficulties have been encountered in developing the technique. In the studies of Buczacki (1977), Tinggal and Webster (1981) and Jones et al. (1982 b), with ECD population materials, in which *Brassica napus* and *B. campestris* varieties were used as test plants, the results have not been very promising; the infection rate remained low, 20—30 % at best (Tinggal and Webster). Moreover, Tinggal and Webster found that when two single spore isolates from ECD populations were tested further, roughly one half gave a result that corresponded with the original code, whereas four new races differentiated from one of the populations and two new races from the other.

The single spore technique can obviously be improved, but judging by what is known thus far about the multistage internal life cycle of *P. brassicae* and its development in the host plant (Ingram and Tommerup 1972, Ingram 1978), and about the microstructure of the fungus as revealed by electron microscopy (Dekhuijen 1979, Iegami et al. 1978, Buczacki et al. 1979), it may be difficult to achieve a homozygotic fungus material. Theoretically there are many possibilities for different recombinations of differential pathogenicity genes (cf. Crute et al. 1980 with references, Tinggal and Webster 1981).

The significance of the genetic properties of the host plants used in the *P. brassicae* infection studies began to receive attention in the 1950s. MacFarlane (1955) concluded that in certain cases the heterogeneity of the host plant population can cause variation in the infection results. In the 1960s Williams (1966), among others, stressed the importance of genetically uniform differential host materials in pathotype determinations. Since our preliminary work on *P. brassicae* races (Linnasalmi and Palonen 1974), our aim has been to use homozygotic seed material of the differential hosts (cf. p. 417). This criterion was not always taken into account prior to the 1980s. Difficulties have been encountered in the production of homozygotic test plant lines by conventional methods. According to Crute et al. (1980), heterogeneity is apparent in some differential host lines of the *B. oleracea* group, possible in the *B. campestris* group and less likely only in the *B. napus* group, because the species is strongly inbreeding.

However, new developments have improved the prospects of producing homozygotic test plant material that has the appropriate resistance/susceptibility qualities. For instance, the production of haploid plants from anther cultures via embryogenesis will allow rapid establishment of pure lines. So far haploid plants have been obtained from various *Brassicaceae* species, e.g. *B. napus*, *B. campestris*, *B. oleracea* var. *italica* (Keller and Armstrong 1977, 1979, 1983), *B. oleracea* var. *gemmifera* (Ockendon 1984) and *B. oleracea* var. capitata (Chiang et al. 1985).

The rapid advance of plant molecular biochemistry and genetics offers new opportunities for studying questions of resistance to diseases. One of the new possibilities already in sight is the application of gene technology to
modify the genom of a plant directly as desired. It remains to be seen how long it will take before the prerequisites exist for applying these techniques in the breeding of clubroot resistant cruciferous vegetable cultivars.

Acknowledgements. This study was partly funded by the National Research Council for Agriculture and Forestry of the Academy of Finland, which we acknowledge with gratitude. We express our sincere thanks to the organizations and persons who have given valuable help in our work. We are especially grateful for the skilful technical assistance of Ms. Kirsti Nieminen.
Appendix 1. Clubroot (*Plasmodiophora brassicae* Wor.) races in Finland, 1974—1978.

Differential plants: Jersey Queen JQ, Badger Shipper BS, Laurentian L, Wilhelmsburger W

Locality sample no.	Original host species	Original host cultivar	Clubroot index	Race			
			JQ	BS	L	W	
Pohjois-Savo Sb							
193 Virtasalmi	swede	Mustiala	18	0	81	67	1
Varsinais-Suomi Ab							
97 Lohja	cauliflower	Erfurter	56	37	60	0	2
253 Masku	cauliflower	Flora Blanca	93	94	96	0	2
162 Raasio	cabbage	Amager, hög	99	94	99	0	2
169 Rusko	cauliflower	Flora Blanca	47	68	78	0	2
11 Rymättylä	cauliflower	Flora Blanca	94	97	96	0	2
Uusimaa N							
1 Hyvinkää	cauliflower	Erfurter	79	83	97	0	2
76 Nurmiärvä	cabbage	Västernordland	93	87	95	0	2
86 Nurmiärvä	cabbage	Københavnvs Torve	90	57	77	0	2
Etelä-Karjala Ka							
154 Vehkalahi	cabbage	Ruhm von Enkhuizen	93	91	94	0	2
157 Vehkalahi	swede	Pandur	87	89	96	0	2
158 Anjalankoski	cabbage	Blåtopp Faales	94	94	99	0	2
Satukunta St							
196 Huittinen	cabbage	Futura	96	96	99	0	2
224 Kikka	marrowstem kale		78	94	68	0	2
227 Lappi Ti	cauliflower		91	83	85	0	2
221 Mouhiljärvi	broccoli	Greenia	53	71	41	0	2
Etelä-Häme Ta							
175 Asikkala	cabbage	Københavnvs Torve	85	70	87	0	2
176 Asikkala	cabbage	Blåtopp Faales	95	92	94	0	2
118 Hattula	cabbage	Ruhm von Enkhuizen	90	93	97	0	2
194 Kuhoiminen	turnip		93	69	96	0	2
205 Kuorevesi	turnip	Guldbåll	95	95	100	0	2
207 Lammi	cabbage	Blåtopp Faales	84	86	93	0	2
159 Orivesi	cabbage		85	73	92	0	2
117 Sahalahti	cabbage	Blåtopp Faales	97	92	100	0	2
199 Sahalahti	cabbage	Blåtopp	94	89	99	0	2
209 Tuolos	cabbage		93	95	94	0	2
126 Tampere	cabbage		98	94	99	2	2
Etelä-Savo Sa							
143 Joutseno	cabbage	Golden Acre	97	29	86	0	2
Etelä-Pohjanmaa Oa							
233 Jalasjärvi	cauliflower		74	71	67	0	2
236 Vähäkyrö	cabbage		99	99	99	1	2
Pohjois-Häme Tb							
214 Toivakka	cabbage		95	56	99	0	2
Pohjois-Savo Sb							
192 Haukivuori	cabbage	Amager	81	68	94	0	2
Pohjois-Karjala Kb							
63 Eno	swede	Östgöta	70	49	74	0	2
182 Pyhäselkä	cabbage	Blåtopp Faales	93	75	95	0	2
183 Pyhäselkä	cabbage	Västernordland	86	57	94	0	2
177 Rääkkylä	cabbage	Københavnvs Torve	95	28	97	0	2
178 Rääkkylä	cabbage	Blåtopp Faales	98	68	94	0	2
179 Rääkkylä	cabbage	Ruhm von Enkhuizen	81	92	88	0	2
180 Rääkkylä	cabbage	Golden Acre	93	95	98	0	2

1 Each index is the mean of four replicates.
Locality sample no.	Original host	Clubroot index 1	Race			
	species	JQ	BS	L	W	
Keski-Pohjanmaa Om						
243 Kalviä	cabbage	86	78	89	0	2
Varsinais-Suomi Ab						
80 Vihti	cabbage	90	5	24	0	3
Uusimaa N						
70 Nurmijärvi	cabbage	88	6	90	0	3
Etelä-Karjala Ka						
149 Kymi	cabbage	95	9	93	0	3
Etelä-Savo Sa						
146 Imatra	cabbage	72	1	66	0	3
147 Imatra	cabbage	96	1	99	0	3
142 Joutseno	broccoli	83	2	63	0	3
144 Joutseno	cabbage	38	0	60	0	3
Pohjois-Savo Sa						
58 Karitula	cabbage	84	6	93	0	3
197 Kuopio	cabbage	91	4	97	0	3
139 Maaninka	cabbage	87	2	85	0	3
198 Suonenjoki	cabbage	92	11	67	0	3
Pohjois-Karjala Kb						
69 Joensuu	broccol	87	5	91	0	3
Varsinais-Suomi Ab						
228 Laitila	cauliflower	61	23	85	71	4
168 Turku	cabbage	76	60	82	74	4
Uusimaa N						
246 Tuusula	swede	49	34	82	69	4
155 Vantaa	cabbage	89	68	94	80	4
Satavunta St						
225 Eura	cauliflower	72	43	84	84	4
223 Kokemäki	red cabbage	88	78	97	77	4
195 Köylö	cauliflower	81	54	98	97	4
229,248 Raumia	swede	69	63	83	9	4
Etelä-Häme Ta						
220 Loppi	cabbage	85	58	95	81	4
Etelä-Pohjanmaa Oa						
234 Ilmajoki	cauliflower	49	31	90	71	4
230 Isokyrö	cabbage	63	27	93	84	4
Pohjois-Häme Tb						
105,155 Jyväskylä	cabbage	82	30	87	85	4
Varsinais-Suomi Ab						
21 Sammatti	cabbage	47	0	0	0	6
22 Sammatti	cabbage	91	5	0	0	6
Etelä-Häme Ta						
55 Hartola	cabbage	26	0	0	0	6
122 Hauho	cabbage	61	2	1	0	6
112 Kangasala	cabbage	59	0	0	0	6
124 Kangasala	cabbage	98	4	0	0	6
106 Pälkäne	cabbage	68	0	0	0	6
107 Pälkäne	cabbage	25	0	0	0	6
108 Pälkäne	cabbage	52	1	0	0	6
170 Toijala	cabbage	91	3	0	0	6

1 Each index is the mean of four replicates.
Locality sample no.	Original host	Clubroot index¹	Race				
	species	cultivar	JQ	BS	L	W	
Pohjois-Savo Sb							
191 Haukivuori	cabbage	Blåtopp Faales	57	2	3	0	6
188 Joroinen	cauliflower	Erfurter	48	1	0	0	6
Pohjois-Pohjanmaa Ob							
67 Oulu	cauliflower		84	6	0	0	6
250 Oulu	cabbage		100	9	0	0	6
Varsinais-Suomi Ab							
171 Piikkiö	cabbage	TK 499 Weisaeth	94	86	0	0	7
Uusimaa N							
88 Espoo	cauliflower		97	19	0	0	7
Etelä-Häme Ta							
174 Hartola	cabbage	Toftegård	94	51	0	0	7
204 Längelmäki	cauliflower	Erfurter Dvärg	90	13	0	0	7
38 Kangasala	cabbage	Resista	100	27	0	0	7
Etelä-Savo Sa							
148 Lemi	cabbage	Blåtopp Faales	100	24	2	0	7
Etelä-Pohjanmaa Oa							
231 Alavus	cabbage		84	64	3	1	7
238 Laihia	cabbage	Futura	99	31	0	0	7
Pohjois-Häme Tb							
216 Jyväskylän mlk	broccoli		98	16	3	0	7
211 Keuruu	cabbage	Blåtopp Faales	100	21	0	0	7
Pohjois-Pohjanmaa Ob							
248 Oulu	cauliflower	Erfurter Dvärg	97	57	3	0	7

¹ Each index is the mean of four replicates.
Appendix 2. The list of species and cultivars.

Scientific nomenclature according to Zander Handwörterbuch der Pflanzennamen (Encke et al. 1981).

Species	Scientific Name
Cabbage	Brassica oleracea L.
Red cabbage	f. rubra: Amager Tagenshus, Haco
Cauliflower	Brassica oleracea L.
Broccoli	Brassica rapifera Metz.
Brussels sprouts	Brassica rapifera Metz.
Kohlrabi	Brassica campestris L.
Curly kale	Brassica campestris L.
Marrowstem kale	Brassica campestris L.
Chinese cabbage	Brassica campestris L.
Swede	Brassica campestris L.
Turnip	Brassica campestris L.
Radish	Brassica campestris L.

Varieties	Scientific Name
Cabbage	Brassica oleracea L.
Red cabbage	f. rubra: Amager Tagenshus, Haco
Cauliflower	Brassica oleracea L.
Broccoli	Brassica oleracea L.
Brussels sprouts	Brassica oleracea L.
Kohlrabi	Brassica oleracea L.
Curly kale	Brassica oleracea L.
Marrowstem kale	Brassica oleracea L.
Chinese cabbage	Brassica oleracea L.
Swede	Brassica oleracea L.
Turnip	Brassica oleracea L.
Radish	Brassica oleracea L.
References

AYERS, G.W. 1972. Races of *Plasmodiophora brassicae* infecting crucifer crops in Canada. Canad. Plant. Dis. Survey 52: 77—81.

BROKENSHIRE, T. & LEWIS, S.J. 1981. Clubroot populations in S.E. Scotland. Proc. Brassica Conf. 1981: 12—23.

BUCCAZKI, S.T. 1977. Root infections from single resting spores of *Plasmodiophora brassicae*. Trans. Brit. Mycol. Soc. 69: 328—329.

—, MOXHAM, S.E. & TURNER, R.H. 1979. Some morphological features of the resting spore of *Plasmodiophora brassicae*. Trans. Brit. Mycol. Soc. 73: 343—347.

—, TOXOEUS, H., MATTUSCH, P., JONSTON, T.D., DIXON, G.R. & HOBOLTH, L.A. 1975. Study of physiologic specialization in *Plasmodiophora brassicae*: proposals for attempted rationalization through an international approach. Trans. Brit. Mycol. Soc. 65: 295—303.

CAMPBELL, R.N., GREATHED, A.S. & MYERS, D.F. 1981. Clubroot in California. Proc. Brassica Conf. 1981: 11.

CHIANG, M.S. & CRÈTE, R. 1972. Screening cutters for germplasm resistance to clubroot *Plasmodiophora brassicae*. Can. Plant Dis. Surv. 52: 45—50.

—, CRÈTE, R. 1983. Transfer of resistance to race 2 of *Plasmodiophora brassicae* from *Brassica napus* to cabbage (*B. oleracea* spp. *capitata*). V. The inheritance of resistance. Euphytica 32: 479—483.

—, FRECHETTE, S., KUO, C.G., CHONG, C. & DELAFIELD, S.J. 1985. Embryogenesis and haploid plant production from anther culture of cabbage (*Brassica oleracea* var. *capitata* L.). Can. J. Plant Sci. 65: 1033—1037.

CRUTE, I.R., GRAY, A.R., CRISP, P. & BUCCAZKI, S.T. 1980. Variation in *Plasmodiophora brassicae* and resistance to clubroot disease in brassicas and allied crops — a critical review. Pl. Breed. Abstr. 50: 91—104.

DEKHUIZEN, H.M. 1979. Electron microscopic studies in the root hairs and cortex of a susceptible and a resistant variety of *Brassica campestris* infected with *Plasmodiophora brassicae*. Neth. J. Pl. Path. 85: 1—17.

DIXON, G.R., JONES, D.R. & INGRAM, D.S. 1981. Studies on populations of *Plasmodiophora brassicae*. Proc. Brassica Conf. 1981: 25—28.

DORSON, R.L., ROB, J. & GABRIELSON, R.L. 1983. Pathotypes of *Plasmodiophora brassicae* in Washington, Oregon and California. Pl. Dis. 67: 269—271.

ENCKE, F., BUCHHEIM, G. & SEYBOLD, S. 1981. Zander Handwörterbuch der Pflanzennamen. 844p. 12. Aufl. Ulmer, Stuttgart. (Ref. Palmén, A. & Alanko, P. 1983. Viljelykasvien nimistö. Puutarhalliston opaskirj. 31, 152p. Helsinki.)

HEIKINHEIMO, O. & RAATIKAINEN, M. 1971. Paikan ilmoit-tamien Suomesta tallenentuessa biologisissa aineis-toisissa. Ann. Ent. Fenn. 37: 1a: 1—30.

HEYN, F.W. 1981. Studies on clubroot populations. Proc. Brassica Conf. 1981: 29—34.

IKEGAMI, H., MUKOBATA, H. & NAIKI, T. 1978. Scanning electron microscopy of *Plasmodiophora brassicae* in diseased root cells of turnip and Chinese cabbage. (Studies on the clubroot of cruciferous plants III). Ann. Phytopath. Soc. Japan 44: 456—464.

INGRAM, D.S. 1978. Internal life-cycling by *Plasmodiophora brassicae* Woron. during development of clubroot galls. Clubroot newsl. no. 6 1978: 10—11.

— & TOMMERUP, I.C. 1972. The life history of *Plasmodiophora brassicae* Woron. Proc. Royal Soc., London, B. 180: 103—112.

JAMALAINEN, E.A. 1936. Tutkimukisia möhöjuuresta (*Plasmodiophora brassicae* Wor.). Referat: Untersuchungen über die Kohlhernie (*Plasmodiophora brassicae* Wor.) Staatl. Landw. Versuchstät. Veröff. 85: 5—36.

JONES, D.R., INGRAM, D.S. & DIXON, G.R. 1982 a. Factors affecting tests for differential pathogenicity in populations of *Plasmodiophora brassicae*. Pl. Path. 31: 229—238.

— 1982 b. Characterization of isolates derived from single resting spores of *Plasmodiophora brassicae* and studies of their interaction. Pl. Path. 31: 239—245.

JONSSON, R. 1971. Rasprom. Nord. Jordbr. forskn. 54: 158—160.

— 1972. Undersökning rörande förekomst av raser av klumprot (*Plasmodiophora brassicae* Wor.) i Skåne. Sver. Utsådesför. Tidskr. 82: 83—87.

— 1981. Breeding for improved resistance to clubroot in oil rape. Proc. Brassica Conf. 1981: 44—46.

KELLER, W.A. & ARMSTRONG, K.K. 1977. Embryogenesis and plant regeneration in *Brassica napus* anther cultures. Z. Pfl. zücht. 80: 100—108.

— 1979. Stimulation of embryogenesis and haploid production in *Brassica campestris* anther culture by elevated temperature treatments. Theor. Appl. Genet. 55: 65—67.

— 1983. Production of haploid via anther culture in *Brassica oleracea* var. *italica*. Euphytica 32: 151—159.

KRIVCHENKO, V.I., BOOS, G.V. & SURMAYA, M.E. 1982. Harakteristika genofonda kapusty po ustojivosti k *Plasmodiophora brassicae* Woron. Trudy po Prikladnoi Botanike, Genetike i Selektii. 72: 113—120.

LAMMERINK, J. 1986. Identification of an eighth race of *Plasmodiophora brassicae*, the cause of clubroot, in New Zealand. N. Zealand J. Agric. Res. 29: 101—104.

LINNASALMI, A. 1948. Om bekämpandet av klumprot-sjuka. Prakt. Försöksverks. 4: 87—88.

— 1952. Möhöjuuren torjunnasta ristikukkasiviljelyk-sillä. Maatal. ja Koetoin. 6: 74—83.

— 1959. The use of mercurochrome chloride in the control of clubroot J. Sci. Agric. Finland 31: 228.

— & PALONEN, S. 1974. Om *Plasmodiophora brassicae*rasernas identifiering och kartering i Finland. Nord. Jordbr. forskn. 56: 6—10.
--- & Titttannen, K. 1960. Merkurokloridi-lindaani-valmisteen käyttö kaalin möhöjäuren ja kärpästoukkien torjunnassa. Koetoin. jää. 17: 17, 20.

--- & Toivainen, A. 1981. Races of Plasmodiophora brassicae Wor. in Finland. Proc. Brassica Conf. 1981: 24. Prelim. Rep.

--- & Weisaeth, G. 1978. Om klumprotraser i Trøndelag Plasmodiophora rase 1, 7 og 9. Summary: Races of clubroot in Trøndelag, Norway. Res. Norw. Agric. 1978: 229—239.

Macfarlane, I. 1955. Variation in Plasmodiophora brassicae. Ann. Appl. Biol. 43: 297—306.

Murashige, T. & Skoog, F. 1962. A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol. Pl. 15: 473—497.

Murtomaa, A. & Uoti, J. 1972. Effect of benomyl fungicide on cabbage clubroot. Ann. Agric. Fenn. 11: 330—332.

Naiki, T., Tanahashi, K. & Kageyama, K. 1984. The relationship between root hair infection with Plasmodiophora brassicae Wor. and subsequent club formation among cruciferous species. Ann. Phytopath. Soc. Japan 50: 211—215.

Nowicki, B. 1978. The identification of Plasmodiophora brassicae races in Poland. Phytopath. Z. 93: 181—186.

Ockendon, D.J. 1984. Anther culture in Brussels sprouts (Brassica oleracea var. gemmifera). I. Embryo yields and plant regeneration. Ann. Appl. Biol. 105: 285—291.

Rainho, A.J. 1930. Kaalirevennäinen ja sen levinneisyys. Maatalous 23: 275—278.

Reyes, A.A., Davidson, T.R. & Marks, C.F. 1974. Races, pathogenicity and chemical control of Plasmodiophora brassicae in Ontario. Phytopath. 64: 173—177.

Rouxel, F., & Sanson, M.T., Renard, M. & Soum, B. 1983. Observations et premiers résultats de travaux sur la hernie dans les cultures de colza oleagineux (B. napus L.) en France. Pathotypes de Plasmodiophora brassicae et sensibilite varietale. Proc. Intern. Rapeseed Conf. 1983: 975—985.

Strandberg, J.O. & Williams, P.H. 1967. Inheritance of clubroot resistance in Chinese cabbage. Phytopath. 57: 330.

Tinggal, S.H. & Webster, J. 1981. Technique for single spore infection by Plasmodiophora brassicae. Trans. Brit. Myc. Soc. 76: 187—190.

Toxopeus, H. 1974. The coding of races of Plasmodiophora brassicae (Woron.). Proc. Eucarpia Meeting — Cruciferae 1974: 90—94.

--- & Dixon, G.R. & Mattusch, P. 1986. Physiological specialization in Plasmodiophora brassicae: An analysis by international experimentation. Trans. Brit. Mycol. Soc. 87: 279—287.

--- & Janssen, A.M.P. 1975. Clubroot resistance in turnip II. The 'slurry' screening method and clubroot races in the Netherlands. Euphytica 24: 751—755.

Weisaeth, G. 1972. Observasjoner vedrørende klumprot og Plasmodiophora-raser i Norge, i relasjon til problemer med sortresistens og vekstforedling. Nord. Jordbr. forskn. 54: 160—163.

--- 1977. Hodekålsortene 'Respla' og 'Resista' foredlinger med klumprotresistens. Inst. for grønnsakkjøring, Norges Landbr. høgsk. Meld. nr. 74: 937—939.

Williams, P.H. 1966. A system for determination of races of Plasmodiophora brassicae that infect cabbage and rutabaga. Phytopath. 56: 624—626.

--- & Seidel, D. 1968. Zum Vorkommen von Plasmodiophora brassicae-Rassen in der Deutschen Demokratischen Republik. Arch. Pfl. schutz 4: 31—36.

--- & Walker, J.C. 1963. Races of clubroot in North America. Pl. Dis. Rep. 47: 608—611.

Woronin, M. 1876. Plasmodiophora brassicae, Urheber der Kohlpflanzen-Hernie. J. buch Wiss. Bot. 11: 548—574. (Transl. C. Chupp Plasmodiophora brassicae The cause of cabbage hernia. Phytopath. classics 4: 9—31. Publ. Amer. Phytopath. Soc. 1934, Ithaca, N.Y.).

Yoshikawa, H. & Buczacki, S.T. 1978. Clubroot in Japan: Research and Problems. Rev. Pl. Path. 57: 253—257.

Ms received July 18, 1991
Möhöjuuritaudin ja *Plasmodiophora brassicae* Wor. rotujen esiintyminen Suomessa

Annikki Linnasalmi ja Anneli Toiviainen

Maatalouden tutkimuskeskus, Kasvinsuojelun tutkimuslaitos, Kasvitautien torjunnan tutkimusala
Jokioinen, Suomi

Tutkimuksessa selvitettiin môhöjuuritaudin ja *Plasmodiophora brassicae* Wor. patotyyppien esiintymistä ristikukkaisissa (*Brassicaceae*) vihanneskasveissa Suomessa v. 1974—1978. Tarkastetuista 101 kunnasta 81 %:ssa esiintyi môhöjuurta. Tauti oli yleisintä maan etelä- ja keskiosissa, mutta sitä tavattiin myös ristikukkaiskasvien viljelyalueen pohjoisosissa (66—67° Pohj. lev.). Kertyneisvaikeuksia oli 375 kasvinnäytteestä 65 % oli môhöjuurisia. Yleisimmäksi kasvillajiin, keräkaalin näytteistä (56 % aineistosta) 68 %, kukkakaalinäytteistä (22 % aineistosta) 63 %, muiden kaalilajien näytteistä (13 % aineistosta) 56 % ja ristikukkaisista juurikasvynäytteistä (19 % aineistosta) 64 % oli môhöjuurisia. *P. brassicae* rotumäärittelykset tehtiin 90 näytteestä. Käytettiin Williamsin (1966) luokitussysteemiä. Eristetyt rotut olivat 1, 2, 3, 4, 6 ja 7. Rotu 2 oli ylivoinaisena yleisin. Sitä tavattiin 32 kunnassa, rotuja 3, 4, 6 ja 7 mutta vain 9—12 kunnassa, rotua 1 vain yhdessä kunnassa. Selviä eroja rotujen esiintymisessä maan eri osissa ei voitu todeta. Suoritettiin Williamsin ja ECD (Buczacki et al. 1975) luokitussysteemien vertailu. Williamsin systeemissä rotut olivat 1, 2, 3, 4, 6 ja 7. Rotu 2 oli ylivoinaisena yleisin. Sitä tavattiin 32 kunnassa, rotuja 3, 4, 6 ja 7 mutta vain 9—12 kunnassa, rotua 1 vain yhdessä kunnassa. Selviä eroja rotujen esiintymisessä maan eri osissa ei voitu todeta. Suoritettiin Williamsin ja ECD systeemiä *P. brassicae* patotyyppien identifioimiseksi. Patotyyppit määritettiin myös Norjassa ja Islannissa kerätystä môhöjuuriraineistosta.

Tutkimus on osa pohjoismaisesta môhöjuuriprojektista, NKJ-projekti 27 1974—1977: Möhöjuuren kestävyysjalostus, *Plasmodiophora brassicae* Wor. rotu sekä uusien torjunta-aineiden tehotutkimus.