Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company’s public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
COVID-19 vaccine perceptions and uptake in a national prospective cohort of essential workers

Karen Lutrick, Holly Groom, Ashley L. Fowlkes, Kimberly D Groover, Manjusha Gaglani, Patrick Rivers, Allison L. Naleway, Kimberly Nguyen, Meghan Herring, Kayan Dunnigan, Andrew Phillips, Joel Parker, Julie Mayo Lambert, Khaila Prather, Matthew S. Thiese, Zoe Baccam, Harmony Tyner, Sarang Yoon.

Family & Community Medicine, College of Medicine – Tucson, University of Arizona, Tucson, AZ, 655 N Alvernon Way, Suite 228, Tucson, AZ, 85721, United States
Center for Health Research, Kaiser Permanente Northwest, Portland, OR, United States
Epidemiology Prevention Branch, Influenza Division, Centers of Disease Control and Prevention, Atlanta, GA, United States
Abt Associates, Atlanta, GA, United States
Baylor Scott and White Health, Texas A&M University College of Medicine, Temple, TX, United States
Family & Community Medicine, College of Medicine – Tucson, University of Arizona, Tucson, AZ, United States
Assessment Branch, Immunization Services Division, Centers for Disease Control and Prevention, Atlanta, GA, United States
Baylor Scott and White Health, Texas A&M University College of Medicine, Temple, TX, United States
Occupational and Environmental Health, School of Medicine, University of Utah, Salt Lake City, UT, United States
Epidemiology and Biostatistics, College of Public Health, University of Arizona, Tucson, AZ, United States
St. Luke’s Infectious Disease Associates, St. Luke’s Hospital, Duluth, MN, United States

Introduction: In a multi-center prospective cohort of essential workers, we assessed knowledge, attitudes, and practices (KAP) by vaccine intention, prior SARS-CoV-2 positivity, and occupation, and their impact on vaccine uptake over time.

Methods: Initiated in July 2020, the HEROES-RECOVER cohort provided socio-demographics and COVID-19 vaccination data. Using two follow-up surveys approximately three months apart, COVID-19 vaccine KAP, intention, and receipt was collected; the first survey categorized participants as reluctant, reachable, or endorser.

Results: A total of 4,803 participants were included in the analysis. Most (70%) were vaccine endorsers, 16% were reachable, and 14% were reluctant. By May 2021, 77% had received at least one vaccine dose. KAP responses strongly predicted vaccine uptake, particularly positive attitudes about safety (aOR = 5.46, 95% CI: 1.4–20.8) and effectiveness (aOR = 5.0, 95% CI: 1.3–19.1). Participants’ with prior SARS-CoV-2 infection were 22% less likely to believe the COVID-19 vaccine was effective compared with uninfected participants (aOR 0.78, 95% CI: 0.64–0.96). This was even more pronounced in first responders compared with other occupations, with first responders 42% less likely to believe in COVID-19 vaccine effectiveness (aOR = 0.58, 95% CI 0.40–0.84). Between administrations of the two surveys, 25% of reluctant, 56% reachable, and 83% of endorser groups received the COVID-19 vaccine. The reachable group had large increases in positive responses for questions about vaccine safety (10% of vaccinated, 34% of unvaccinated), and vaccine effectiveness (12% of vaccinated, 27% of unvaccinated).

Abbreviations: FDA, U.S. Food and Drug Administration; CDC, Centers for Disease Control and Prevention; EUA, Emergency Use Authorization; KAP, Knowledge, attitudes, and practices; HEROES, Arizona Healthcare, Emergency Response and Other Essential Workers Surveillance RECOVER Study and Research on the Epidemiology of SARS-CoV-2 in Essential Response Personnel; H-R, HEROES-RECOVER; HCP, Health care personnel; FW, Frontline workers; PPE, Personal protective equipment.

E-mail addresses: klutrick@arizona.edu (K. Lutrick), holly.c.groom@kpchr.org (H. Groom), ahl4@cdc.gov (A.L. Fowlkes), kimberly.groover@abtassoc.com (K.D Groover), manjusha.gaglani@bswhealth.org (M. Gaglani), privers@arizona.edu (P. Rivers), allison.naleway@kpchr.org (A.L. Naleway), usxp1@cdc.gov (K. Nguyen), meghan.herring@abtassoc.com (M. Herring), kayan.dunnigan@bswhealth.org (K. Dunnigan), andy.phillips@hsc.utah.edu (A. Phillips), joelparker@arizona.edu (J. Parker), qsd7@cdc.gov (J. Mayo Lambert), khaila.prather@abtassoc.com (K. Prather), matts@hsc.utah.edu (M.S. These), zoe.baccam@arizona.edu (Z. Baccam), harmony.tyner@slhduluth.com (H. Tyner), sarang.yoon@hsc.utah.edu (S. Yoon).

https://doi.org/10.1016/j.vaccine.2021.11.094
0264-410X/ © 2021 The Authors. Published by Elsevier Ltd.
This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
1. Introduction

The SARS-CoV-2 pandemic has resulted in high levels of morbidity and mortality in the US [1]. In response, a global effort to develop COVID-19 vaccines generated evidence leading to the U.S. Food and Drug Administration (FDA) authorizing COVID-19 vaccines under an Emergency Use Authorization (EUA) mechanism, beginning in mid-December 2020 [2]. Essential workers, including healthcare personnel (HCP), first responders, and other frontline workers (FW), may be at an increased risk of SARS-CoV-2 infection because of their high rates of contact with patients, coworkers, and/or the general public [3–7]. They were prioritized to receive COVID-19 vaccines by the Centers for Disease Control and Prevention (CDC) Advisory Committee on Immunization Practices during initial, staggered distribution.

The COVID-19 vaccines have been shown to be safe and effective in adults and children ages 12 and older; despite this, vaccination rates are suboptimal, ranging from 40 to 75% of the surveyed population, with first responders reporting low rates of vaccine acceptance [8–18]. Common reasons for vaccine hesitancy included the novelty of the COVID-19 vaccines, concerns about potential adverse effects, and/or a distrust in government [8–13]. There is some indication that COVID-19 vaccine acceptance has changed over time, but evidence has been limited to cross-sectional surveys [11,19]. It remains unclear how individual vaccination intention has evolved as the public has gained more information regarding symptoms and outcomes of COVID-19 disease and risks and benefits of vaccinations.

Knowledge, attitudes, and practices (KAP) toward vaccination are often examined to understand factors associated with the acceptability of vaccines and inform strategies for increasing vaccine uptake [20]. We utilize a multi-center prospective cohort of essential workers with the following objectives: 1) examine KAP as predictors of vaccine uptake; 2) assess differences in KAP by vaccine intention, prior SARS-CoV-2 positivity, and occupation group; and 3) assess individual-level change in KAP over time.

2. Methods

2.1. Study design & population

The HEROES-RECOVER studies represent a multi-center network of prospective cohorts, including Arizona Healthcare, Emergency Response and Other Essential Workers Surveillance Study (HEROES) and Research on the Epidemiology of SARS-CoV-2 in Essential Response Personnel (RECOVER) funded by the CDC with sites in Phoenix, Tucson, and other areas in Arizona; Miami, Florida; Duluth, Minnesota; Portland, Oregon; Temple, Texas; and Salt Lake City, Utah. Details of the protocols of the studies have been previously published [21,22]. Ongoing enrollment began in July 2020 and included HCP, first responders, and FW who worked at least 20 hours per week and had routine occupational exposure to coworkers or the public.

Participants completed detailed epidemiologic surveys at enrollment and at approximately three-month intervals (Follow-up surveys 1 and 2). Text message-based surveys were completed weekly to monitor illness and potential COVID-19 contact in the past 7 days. The study is ongoing; for this analysis, only participants actively enrolled during the Follow-up 1 survey distribution were included. Data analyzed included SARS-CoV-2 infection, COVID-19 vaccination, and KAP data through May 19, 2021.

To identify SARS-CoV-2 infections, participants self-collected mid-turbinate nasal swabs weekly for SARS-CoV-2 RT-PCR testing and provided blood specimens at enrollment and three-month intervals (supplemental Figure 1 for study timing). Beginning in December 2020, participants were prompted to report uptake of the COVID-19 vaccine; vaccine survey distribution was based on vaccine availability data from state and county health departments. Vaccination was verified by participant-provided vaccination cards, electronic medical records, or State Immunization Information Systems.

All protocols were reviewed and approved by each site’s Institutional Review Boards; study participants provided informed consent for all study activities.

2.2. Primary outcomes

Vaccine intention and KAP questions were included in two follow-up surveys: Follow-up survey 1 (distributed late December 2020-February 2021) and Follow-up survey 2 (distributed late March-May 2021). Participants that joined the studies during the follow-up periods received the KAP questions at the time of enrollment.

Vaccine intention was derived using participants’ first response to the question, “What are the chances that you will get a COVID-19 vaccination?” and vaccination status at the time of Follow-up survey 1. Participants were grouped into three intention categories: 1) reluctant as those who answered, “almost zero chance” or “very small chance” and were unvaccinated, 2) reachable as those who answered, “small chance”, “do not know”, or “moderate” and were unvaccinated, or 3) endorser as those who answered, “large chance”, “very large chance”, or “almost certain”, or were vaccinated at Follow-up survey 1. Participants’ vaccine intention group did not change based upon Follow-up survey 2 KAP responses or a change in vaccination status between surveys.

The surveys included six questions to assess the KAP constructs regarding COVID-19: knowledge of SARS-CoV-2 and COVID-19 vaccines; attitudes about safety, effectiveness, trust in the government; and perceived risk of becoming ill if they were not vaccinated (Table 1). Responses to each question were rated on a 5- or 7-level Likert scale indicating lowest to highest ranking.

2.3. Predictors and confounders

For models examining KAP differences and predictors of vaccination the following variables were included: socio-demographic (including gender, age, race, ethnicity, education, household income), study site, occupation and occupational setting, and participant health status (including SARS-CoV-2 infection status and medical history), and COVID-19 vaccination status. HCP were categorized into “HCP inpatient” for any individual that works in a...
Table 1
Knowledge, Attitude, and Practice (KAP) Questions.

Topic	Question Text	Range
Vaccine Intention	What are the chances that you will get a COVID-19 vaccination?	8-point Likert (1 = Don’t know, 8 = Almost certain)
Chance of getting sick if not vaccinated	If you are unable to or don’t get a COVID-19 vaccination, what do you think your chance of getting sick with COVID-19 this year will be?	7-point Likert (1 = Almost zero, 8 = Almost certain)
Virus Knowledge	How much do you know about the SARS-CoV-2 (COVID-19) virus and the illness it causes?	5-point Likert (1 = Nothing at all, 5 = A great deal)
Vaccine Knowledge	How much do you know about the COVID-19 vaccine? Would you say…?	5-point Likert (1 = Not at all, 5 = Extremely safe)
Vaccine Safety	How safe do you think the COVID-19 vaccine is?	5-point Likert (1 = Not at all, 5 = Extremely effective)
Vaccine Effectiveness	How effective do you think the COVID-19 vaccine is in preventing you from getting sick with COVID-19?	5-point Likert (1 = Not at all, 5 = Extremely effective)
Trust in government vaccine	I trust what the government says about the COVID-19 vaccine	5-point Likert (1 = Strongly disagree, 5 = Strongly agree)

3. Results

Overall Participants. From December 2020 to February 2021, 4,803 (87%) of 5,527 participants responded to Follow-up survey 1; 1,105 (23%) HCP inpatient, 1,323 (28%) other HCP, 729 (15%) firefighter, 255 (5%) other first responders, 990 (21%) FW public, and 285 (6%) other FW (Table 2). Most participants were female (62%) and aged < 45 years (58%). Additionally, 72% were non-Hispanic White and 14% Hispanic. Participants were highly educated, including 76% with at least a college degree. Participants were healthy, with only 24% reporting an underlying condition. At the time of the Follow-up 1 survey, 960 (20%) of participants had previously been infected with SARS-CoV-2 and 1720 (36%) had received a COVID-19 vaccination.

Vaccination Intention. Most participants were categorized as endorsers (70%), having either indicated a high likelihood to receive the COVID-19 vaccine (35%) or having already received it at the time of Follow-up 1 survey (36%); 16% of participants were considered reachable, and 14% reluctant. Prior SARS-CoV-2 infection was more common among reluctant (35%) and reachable participants (25%) compared with endorsers (16%). By May 19, 2021, 72% of participants had received at least one dose of a COVID-19 vaccine (Table 2); 86% of endorser, 53% of reachable, and 25% of reluctant groups having received at least one dose.

3.1. Objective 1: KAP as predictor for vaccine uptake

After adjusting for socio-demographic factors, health status, and hours of direct contact with the public, KAP responses strongly predicted vaccine uptake. Participants reporting more positive attitudes about COVID-19 vaccine safety were 5.5 times more likely to receive a COVID-19 vaccine compared with those reporting more negative attitudes (aOR = 5.46, 95% CI: 1.43–20.82). Those with a belief that the vaccine is effective were 5 times as likely to receive a COVID-19 vaccine (aOR = 4.98 95% CI: 1.30–19.14) (Table 3).
Table 2
Descriptive Statistics, Stratified by Vaccine Intent Group in a Survey of Essential Workers December 2020 through May 2021.

	TOTAL N (%)	Reluctant N (%)	Reachable N (%)	Endorser* N (%)	P-value
Socio-demographic Characteristics					
Gender*					0.03
Female	2960 (61.3%)	387 (59.3%)	513 (66.6%)	2060 (60.9%)	
Male	1827 (37.8%)	265 (40.6%)	255 (33.1%)	1307 (38.7%)	
Age (years)					<0.01
18–24	143 (3.0%)	24 (3.7%)	32 (4.2%)	87 (2.6%)	
25–44	2651 (54.9%)	358 (54.8%)	449 (58.3%)	1844 (54.6%)	
45–64	1908 (39.5%)	259 (39.7%)	265 (34.4%)	1384 (40.9%)	
65+	101 (2.1%)	12 (1.8%)	24 (3.1%)	65 (1.9%)	
Race/Ethnicity*					<0.001
Non-Hispanic-White	3449 (71.4%)	431 (66.0%)	525 (68.2%)	2493 (73.8%)	
African American	90 (1.9%)	18 (2.8%)	23 (3.0%)	49 (1.4%)	
Asian Am./Island Pacific	141 (2.9%)	14 (2.1%)	13 (1.7%)	114 (3.4%)	
Hispanic-White	694 (14.4%)	117 (17.9%)	121 (15.7%)	456 (13.5%)	
Multi-Racial/Other	429 (8.9%)	73 (11.2%)	88 (11.4%)	268 (7.9%)	
Education*					<0.001
Less than college	154 (3.2%)	35 (5.4%)	40 (5.2%)	79 (2.3%)	
Some college	856 (17.7%)	186 (28.5%)	201 (26.1%)	469 (13.9%)	
College degree or above	3685 (76.3%)	413 (62.2%)	513 (66.6%)	2795 (81.6%)	
Annual Income*					<0.001
< 50 k	702 (14.6%)	128 (19.6%)	152 (19.7%)	422 (12.5%)	
50 k-100 k	1955 (40.7%)	244 (37.4%)	280 (36.4%)	898 (26.6%)	
100 k+	2000 (41.6%)	261 (40.0%)	317 (41.2%)	1965 (58.1%)	
Occupation					<0.001
HCP inpatient	1105 (22.9%)	100 (15.3%)	115 (14.9%)	890 (26.3%)	
HCP other	1323 (27.4%)	148 (22.7%)	163 (21.2%)	1012 (29.9%)	
First responder firefighter	729 (15.1%)	119 (18.2%)	78 (10.1%)	532 (15.7%)	
First responder other	255 (5.3%)	54 (8.3%)	41 (5.3%)	160 (4.7%)	
FW public	950 (20.5%)	156 (23.9%)	261 (33.0%)	573 (17.0%)	
FW other	285 (5.9%)	57 (8.7%)	80 (10.4%)	148 (4.4%)	
Underlying Medical Conditions					0.990
Asthma	4292 (88.9%)	578 (88.5%)	685 (89.0%)	3029 (89.6%)	
Yes	446 (9.2%)	59 (9.0%)	72 (9.4%)	315 (9.3%)	
Diabetes	4576 (94.7%)	615 (94.2%)	733 (95.2%)	3228 (95.5%)	0.920
Yes	162 (3.4%)	22 (3.4%)	24 (3.1%)	116 (3.4%)	
Hypertension	4158 (86.1%)	556 (85.1%)	659 (85.6%)	2943 (87.1%)	0.710
Yes	580 (12.0%)	81 (12.4%)	98 (12.7%)	401 (11.9%)	
Any above condition*	3176 (66.1%)	425 (65.1%)	502 (65.2%)	2249 (66.5%)	0.869
No	1562 (32.5%)	212 (32.5%)	255 (33.1%)	1095 (32.4%)	
Yes					<0.001
SARS-CoV-2 Infection Prior to Follow-Up 1 Survey					
No	3843 (79.6%)	424 (64.9%)	576 (74.8%)	2843 (84.1%)	
Yes	960 (19.9%)	220 (35.1%)	194 (25.2%)	537 (15.9%)	
COVID-19 Vaccine received during the study					<0.001
Received Covid-19 Vaccine, Follow-up 1 No	3083 (64.2%)	653 (100%)	770 (100%)	1660 (49.1%)	
Yes	1720 (35.8%)	0 (0%)	0 (0%)	1720 (50.9%)	<0.001
Received Covid-19 Vaccine, Follow-up 2 No	1332 (27.7%)	489 (74.9%)	366 (47.5%)	477 (14.1%)	
Yes	3471 (72.3%)	164 (25.1%)	404 (52.5%)	2903 (85.9%)	
Responses to KAP questions					
Chances of getting sick if not vaccinated					<0.001
Negative/Neutral	2693 (55.8%)	544 (83.3%)	515 (66.0%)	1634 (48.3%)	
Positive	1985 (41.1%)	109 (16.7%)	252 (32.7%)	1624 (48.0%)	
Virus Knowledge	1575 (32.8%)	282 (43.2%)	322 (41.8%)	971 (28.7%)	<0.001
Negative/Neutral	3191 (66.4%)	371 (56.8%)	442 (57.4%)	2378 (70.4%)	
Positive					<0.001
Vaccine Knowledge	2838 (58.8%)	505 (77.3%)	582 (75.6%)	1751 (51.8%)	
Negative/Neutral	1935 (40.1%)	148 (22.7%)	187 (24.3%)	1600 (47.3%)	
Positive					<0.001
Vaccine Safety					

(continued on next page)
infection status in the adjusted models (Table 3). fire fighters and other first responders were each approximately 40% less likely than inpatient HCP to believe the COVID-19 vaccine was effective (aOR = 0.58, 95% CI: 0.40–0.84 and aOR = 0.61, 95% CI 0.49–0.76, respectively). the other FW category was 51% more likely to believe the COVID-19 vaccine was effective compared to inpatient HCP (aOR = 1.49, 95% CI 1.26–1.77), followed by public-facing FW (aOR = 1.25, 95% CI 1.02–1.53) (Table 3).

Table 2 (continued)

Vaccine Interventions	TOTAL	Reluctant	Reachable	Endorser*
Negative/Neutral	1825	535	427	863
Positive	2945	114	343	2488
Vaccine Effectiveness				
Negative/Neutral	1825	498	392	935
Positive	2944	152	375	2417
Trust in the Government				
Negative/Neutral	2371	513	443	1415
Positive	2404	140	327	1937
N (%)				

Participants in the reachable and endorser groups showed decreases in positive responses for knowledge about the virus between the two time points (-19% and -22%, respectively) (Table 5). the reachable group had large increases in positive responses for questions about vaccine knowledge (25% of vaccinated, 25% of unvaccinated), vaccine safety (10% of vaccinated, 34% of unvaccinated), and vaccine effectiveness (12% of vaccinated, 27% of unvaccinated).

Change in vaccination status with change in KAP.

Amongst the overall sample, an increase of one point in response to the vaccine safety KAP corresponded with a 19 percent increase in the likelihood of becoming vaccinated. Each point-increase in belief in vaccine effectiveness resulted in a similarly strong increase in likelihood of vaccination (17% increase), with vaccine knowledge and trust in government showing moderate increases (11% and 9% respectively), and general knowledge of COVID-19 showing the smallest increase (2%). For all five, the effect was more pronounced in the endorser group than in the reluctant and reachable groups (Table 6).

4. Discussion

The HEROES-RECOVER prospective cohort provided a unique opportunity to examine COVID-19 vaccine knowledge, attitudes, and practices longitudinally in a large population of essential workers with high occupational COVID-19 exposure. The prospective design captured how vaccination intention, KAP, and vaccine uptake changed between December 2020 to May 2021, a critical time in COVID-19 vaccine roll-out in the United States.

First responders and participants with prior SARS-CoV-2 infection were more likely to be reluctant to receive the COVID-19 vaccine than other groups. First responders had the highest percentage of vaccine reluctant participants, especially the non-firefighter subcategory. Additionally, even first responders that were endorsers had low rates of vaccination.

Participants with prior SARS-CoV-2 infection were less likely to receive the COVID-19 vaccine and make up more than one-third of the vaccine reluctant group and one-quarter of the reachable group. Other studies have reported similar findings where previously infected were less concerned about reinfection and/or interest in vaccination [23], but better understanding why they report fewer positive attitudes toward vaccine effectiveness will be important in persuading them to get vaccinated. Additional studies highlighting the benefits of vaccination for those with prior infection may help to stress the importance of vaccination among this group [24].

Across vaccination intent, demographics, occupational, and prior SARS-CoV-2 infection groups, three KAP domains were con-
consistently correlated with intent to vaccinate and vaccine uptake: safety, effectiveness, and the chance of getting sick if not vaccinated. These indicators of vaccination continued to predict vaccination over time, with more favorable attitudes about vaccine safety and effectiveness substantially increasing the likelihood of vaccination.

Table 3
Difference in Knowledge, Attitude, and Practice (KAP) Questions Stratified by Vaccination Status, Intention Group, Occupation, and Prior SARS-CoV-2 Positivity in a Cohort of Essential Workers (N = 4803)

	Unadjusted		Adjusted	
	OR 95% CI		OR 95% CI	
Vaccinated during the study (not vaccinated is the reference group)				
Virus Knowledge	1.58	1.40 – 1.79	2.49	2.17 – 2.87
Vaccine Knowledge	9.81	8.42 – 11.44	8.29	7.10 – 9.67
Vaccine Safety	4.40	3.87 – 5.00	4.15	3.58 – 4.81
Vaccine Effectiveness				
Trust in government				
Chances of getting sick				
By Intention Group (Endorser is the reference Group)				
Reluctant Virus Knowledge	0.53	0.45 – 0.62	0.30	0.26 – 0.35
Vaccine Knowledge	0.08	0.06 – 0.09	0.12	0.10 – 0.14
Vaccine Safety	0.20	0.17 – 0.23	0.23	0.20 – 0.27
Vaccine Effectiveness				
Trust in government				
Chances of getting sick				
Reachable Virus Knowledge	0.52	0.45 – 0.60	0.34	0.30 – 0.40
Vaccine Knowledge	0.33	0.28 – 0.38	0.40	0.35 – 0.47
Vaccine Effectiveness				
Trust in government				
Chances of getting sick				
Occupation (HCP inpatient is the reference group)				
HCP other Virus Knowledge	0.81	0.70 – 0.94	0.97	0.84 – 1.12
Vaccine Knowledge	0.91	0.79 – 1.06	1.02	0.87 – 1.18
Vaccine Safety	0.98	0.85 – 1.13	0.89	0.77 – 1.03
Vaccine Effectiveness				
Trust in government				
Chances of getting sick				
First responder firefighter Virus Knowledge	0.37	0.31 – 0.44	0.43	0.36 – 0.51
Vaccine Knowledge	0.43	0.36 – 0.51	0.43	0.36 – 0.51
Vaccine Safety	0.41	0.34 – 0.49	0.41	0.34 – 0.49
Vaccine Effectiveness				
Trust in government				
Chances of getting sick				
First responder other Virus Knowledge	0.20	0.15 – 0.25	0.19	0.15 – 0.25
Vaccine Knowledge	0.34	0.26 – 0.43	0.41	0.32 – 0.53
Vaccine Safety	0.48	0.37 – 0.60	0.62	0.52 – 0.73
Vaccine Effectiveness				
Trust in government				
Chances of getting sick				
FW Public Virus Knowledge	0.30	0.26 – 0.36	0.30	0.25 – 0.35
Vaccine Knowledge	0.65	0.55 – 0.76	0.75	0.64 – 0.88
Vaccine Safety	0.95	0.82 – 1.11	0.94	0.81 – 1.10
Vaccine Effectiveness				
Trust in government				
Chances of getting sick				
FW other Virus Knowledge	0.28	0.22 – 0.35	0.28	0.28 – 0.45
Vaccine Knowledge	0.59	0.47 – 0.75	0.59	0.47 – 0.75
Vaccine Effectiveness	0.72	0.56 – 0.91	0.72	0.56 – 0.91
Trust in government	0.86	0.68 – 1.08	0.86	0.68 – 1.08
Chances of getting sick	0.52	0.41 – 0.65	0.52	0.41 – 0.65
Prior SARS-CoV-2 Infection (No known prior infection as the reference group)				
Virus Knowledge	0.91	0.85 – 0.98	0.66	0.57 – 0.78
Vaccine Knowledge	0.48	0.44 – 0.52	0.51	0.47 – 0.55
Vaccine Effectiveness				
Trust in government				
Chances of getting sick				

* P-values not reported due to inconsistencies that occur with multi-level categorical variables. Statistical significance based on 95% confidence intervals.

* Non-significant adjusted point estimates and confidence intervals not reported. Bonferroni corrections were used for each of vaccination status, intention group, occupation, and prior positivity. The model was adjusted for socio-demographics, occupation and occupational setting, vaccine intention, and prior positivity for SARS-CoV-2 infection.
We found knowledge about the SARS-CoV-2 virus, or the COVID-19 vaccine had no association with vaccine uptake. It is difficult to ascertain whether participants who perceive themselves to be knowledgeable are truly informed, but attitudes about vaccine safety and effectiveness appear to be more informative of individual intentions to vaccinate. Vaccination efforts that highlight vaccine safety and effectiveness may have a stronger influence on vaccination uptake than general or historical information. Utilizing KAP assessments to gauge a population’s intentions or concerns in advance of vaccination campaigns is critical to not only gauge intention to vaccinate, but also to guide the development of vaccination messaging.

Utilizing the prospective cohort, we were able to examine shifts in KAP over time, subgrouping vaccinated versus unvaccinated par-

Table 4
Demographics of Vaccine Intention Groups, Stratified by Vaccination Status at Time of Follow-up Survey 2 in a Cohort of Essential Workers.

	Reluctant (N = 289)	Reachable (N = 94)	Endorser (N = 1232)	
Gender				
Female	168 (58.1%)	58 (61.7%)	133 (54.1%)	
Male	121 (41.9%)	36 (38.3%)	112 (45.5%)	
Age (years)				
18–24	11 (3.8%)	3 (3.2%)	10 (4.1%)	
25–44	158 (54.7%)	44 (46.8%)	132 (53.7%)	
45–64	111 (38.4%)	47 (50.0%)	99 (40.2%)	
65+	9 (3.1%)	2 (2.1%)	5 (2.0%)	
Race/Ethnicity				
Non-Hispanic-White	188 (65.1%)	60 (63.8%)	169 (68.7%)	
African American	8 (2.8%)	3 (3.2%)	4 (1.6%)	
Asian American	6 (2.1%)	2 (2.1%)	4 (1.6%)	
Hispanic-White	54 (18.7%)	17 (17.0%)	48 (19.5%)	
Multi-Racial	13 (4.5%)	4 (4.3%)	8 (3.3%)	
Education				
Less than High school	0 (0%)	0 (0%)	0 (0%)	
HS diploma/GED	15 (5.2%)	6 (6.4%)	11 (4.5%)	
Some college	78 (27.0%)	25 (26.6%)	72 (29.7%)	
College degree/above	187 (64.7%)	60 (63.8%)	172 (69.9%)	
Annual Income				
< 50 k	63 (21.8%)	10 (10.6%)	46 (18.7%)	
50 k-100 k	104 (36.0%)	40 (42.6%)	74 (30.3%)	
100 k-150 k	62 (21.5%)	22 (23.4%)	62 (25.2%)	
150 k-200 k	27 (9.3%)	8 (8.5%)	35 (14.2%)	
200 k+	20 (6.9%)	9 (9.6%)	23 (9.3%)	
Previously Tested Positive				< 0.001
No	181 (62.6%)	64 (68.1%)	166 (67.5%)	
Yes	108 (37.4%)	30 (31.9%)	104 (32.5%)	
Occupation				
HCP Inpatient	45 (15.6%)	17 (18.1%)	50 (20.3%)	
HCP Other	63 (21.8%)	16 (17.0%)	42 (17.1%)	
First responder firefighter	55 (19.0%)	15 (16.0%)	62 (25.2%)	
First responder other	29 (10.0%)	9 (9.6%)	16 (6.5%)	
FW Public	67 (23.2%)	28 (29.8%)	40 (16.3%)	
FW other	22 (7.6%)	7 (7.4%)	23 (9.3%)	
Asthma	873 (87.6%)	141 (92.8%)	221 (89.8%)	
Diabetes				
No	259 (89.6%)	85 (90.4%)	1091 (88.6%)	
Yes	22 (7.6%)	6 (6.4%)	122 (9.9%)	
Hypertension				
No	274 (94.8%)	87 (92.6%)	1167 (94.7%)	
Yes	7 (2.4%)	4 (4.3%)	46 (3.7%)	
Table 5	Change in Positive Response to Knowledge, Attitude, and Practice (KAP) Questions by Intention and Actual Vaccination from Follow-up Survey 1 to Follow-up Survey 2.			

Virus Knowledge	Vaccine Knowledge	Vaccine Safety	Vaccine Effectiveness	Trust in government		
n(%)	p-value	n(%)	p-value	n(%)	p-value	
Reluctant						
Never Vaccinated	-26 (-9.0%)	0.044	58 (20.0%)	<0.001	13 (4.5%)	0.170
Vaccinated	-8 (-8.5%)	0.305	20 (21.2%)	0.02	25 (26.6%)	<0.001
Reachable						
Never Vaccinated	-29 (-19.0%)	0.001	38 (25.0%)	<0.001	15 (9.9%)	0.044
Vaccinated	2 (1.0%)	0.876	49 (25.2%)	<0.001	67 (34.7%)	<0.001
Endorser						
Never Vaccinated	-53 (-21.3%)	<0.001	53 (21.3%)	<0.001	8 (3.2%)	0.476
Vaccinated	13 (1.1%)	0.596	235 (19.1%)	<0.001	147 (11.9%)	<0.001

We found knowledge about the SARS-CoV-2 virus, or the COVID-19 vaccine had no association with vaccine uptake. It is difficult to ascertain whether participants who perceive themselves to be knowledgeable are truly informed, but attitudes about vaccine safety and effectiveness appear to be more informative of individual intentions to vaccinate. Vaccination efforts that highlight vaccine safety and effectiveness may have a stronger influence on vaccination uptake than general or historical information. Utilizing KAP assessments to gauge a population’s intentions or concerns in advance of vaccination campaigns is critical to not only gauge intention to vaccinate, but also to guide the development of vaccination messaging.

Utilizing the prospective cohort, we were able to examine shifts in KAP over time, subgrouping vaccinated versus unvaccinated par-
Change in Likelihood of Vaccination Status at Follow-up Survey 2 Compared to Follow-up Survey 1, by Change in Knowledge, Attitude, and Practice Questions in a Cohort of Essential Workers.

	Overall (n = 1983)	Endorser (n = 1262)	Reluctant & Reachable (n = 721)
Virus Knowledge	2.2*** (0.00839)	1.5 (0.0115)	-0.2 (0.0107)
Vaccine Knowledge	11.2*** (0.00782)	11.2*** (0.0108)	5.6*** (0.0105)
Vaccine Safety	18.7*** (0.00720)	18.0*** (0.0105)	13.6*** (0.0108)
Vaccine Effectiveness	17.2*** (0.00779)	16.1*** (0.0113)	11.7*** (0.0111)
Trust in government	9.4*** (0.00546)	8.1*** (0.00748)	6.3*** (0.00815)

*** p < 0.01, ** p < 0.05, * p < 0.1.

participants. The KAP factors that were most connected to vaccination remained influential over time. Our findings indicate that positive changes in individuals’ perceptions of vaccine safety and efficacy were associated with the receipt of vaccination. These findings indicate that these KAPs are important for understanding differences in vaccination status not only across individuals, but also for understanding correlates with within-person changes in vaccination status.

Our findings are consistent with other studies conducted prior to COVID-19 vaccine authorization and availability [13,15]. While vaccine intent was assessed in our study after the FDA granted EUA, our findings capture an initial uncertainty that was seemingly overcome with time and positive findings for vaccine safety and effectiveness [11].

5. Limitations

This study is subject to several limitations. First, the follow-up surveys were spread out over about six weeks due to site’s individual IRB timelines. As the level of information available evolved quickly during the study period, participants at sites where the follow-up surveys were administered later may have had access to a meaningfully different amount, or quality, of information. Secondly, all KAPs are self-reported and there may be a disconnect between perceived knowledge and actual level of knowledge. Next, while we are confident KAPs are successfully captured in our cohorts at the time of administration, due to the novelty of the COVID-19 vaccine, KAPs will likely continue to change and evolve past this analysis period. Finally, the mechanism prompting change in KAPs is not captured, so it is difficult to know why certain KAPs changed as they did over time; e.g., the change in certain KAPs between the two follow-up surveys may have been due to increased numbers of participants receiving the vaccine with few documented serious adverse event rates, increased access to information leading to more disease/vaccine literacy, changes in national and local COVID-19 incidence, etc. The demographic characteristics of the group that answered Follow-up 2 differed slightly from those that completed Follow-up 1, as there were more female participants (64% vs 60%), older participants (45% 40–65 years of age compared to 36%), and a different breakdown of occupations (FW 36% vs 20% and HCP 44% vs 58%). Race/ethnicity, education, and income were similar between the two groups. Finally, we did not differentiate between individual COVID-19 vaccine products in this analysis. In the first-differences analyses, other time-varying factors that may impact KAPs and vaccination status, such as changes in local policies, were unable to be accounted for in the model.

6. Public health implication

The HEROES-RECOVER cohort provides valuable insight into the perceptions and intentions of essential workers receiving the COVID-19 vaccine. With the current increase in cases, encouraging high-risk occupational groups to receive the COVID-19 vaccine is a critical next step. Our findings indicate that perceptions of the COVID-19 vaccine can shift over time and suggest that focusing on clear messages about the vaccine’s safety and effectiveness in reducing SARS-CoV-2 virus infection and illness severity may increase vaccine uptake for reluctant and reachable participants. Targeted messaging by key stakeholders and healthcare providers for participants with prior infection and in occupations with low vaccine coverage and low trust in the government (like first responders) would be especially useful.

7. Disclosures

The findings and conclusions in this report are those of the authors and do not necessarily represent the official position of the Centers for Disease Control and Prevention.

8. Statement of Contributions

K Lutrick, H Groom, A Fowlkes, K Groover, P Rivers, K Nguyen, M Herring, J Mayo Lamberte, K Prather, and S Yoon conceptualized the study and drafted the manuscript with the help of Z Baccam. J Parker, P Rivers, and K Groover conducted the statistical analysis. M Gaglani, A Naleway, K Dunnigan, A Phillips, M Thiese, and H Tyner were responsible for review and revision of the manuscript. All authors read and approved of the final manuscript.

Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper. Allison L. Naleway reported funding from Pfizer for a meningococcal B vaccine study unrelated to the submitted work.

Acknowledgements

Supported by the National Center for Immunization and Respiratory Diseases and the Centers for Disease Control and Prevention (contracts 75D30120R68013 to Marshfield Clinic Research Institute, 75D30120C08379 to the University of Arizona, and 75D30120C08150 to Abt Associates).

Mark G. Thompson, Lauren Grant, Young M. Yoo, Gregory Joseph, Josephine Mak, Monica Dickerson, Suxiang Tong, John Barnes, Eduardo Azziz-Baumgartner, Melissa L. Arvey, Preeta Kutty, Alicia M. Fry, Lenee Blanton, Jill Ferridinos, Anthony Fiore, Aron Hall, Adam MacNeill, L Clifford McDonald, Mary Reynolds, Sue Reynolds, Stephanie Schrag, Nong Shang, Robert Slaughter, Matthew J. Stuckey, Natalie Thornburg, Jennifer Verani, Vic Veguilla, Rose Wang, Bao-Ping Zhu, William Brannen, Stephanie Bialek, CDC; Jeffrey L. Burgess, Shawn Beitel, Patrick Rivers, Xiaoxiao Sun, Joe K. Gerald, Katherine Ellingson, Ed Bedrick, Janko Nikolich-Zugich.
Genesis Barron, Dimaye Calvo, Esteban Cardona, Andrea Carmona, Alissa Coleman, Emily Cooksey, Kiara Earley, Natalie Giroux, Sofía Grijalva, Allan Guidos, Adrianna Hernandez, James Hollister, Theresa Hopkins, Rezawana Islam, Krystal Jovel, Olivia Kavanagh, Jonathan Leyva, Sally Littau, Amelia Lobos, James Lopez, Veronica Lugo, Jeremy Makar, Taylor Maldonado, Enrique Marquez, Allyson Munoz, Assumpta Nsenyiguwya, Joel Parker, Jonathan Perez Leyva, Alexa Roy, Saskia Smidt, Isabella Terrazas, Tahilia Thompson, Heena Timsina, Erica Vanover, Mandie White, April Yingst, Kenneth Komatsu, Elizabeth Kim, Karla Ledezma, University of Arizona, Arizona Department of Health Services; David Engthalier, Translational Genomics Research Institute; Lauren E.W. Olsho, Danielle R. Hunt, Laura J. Edwards, Meredith G. Wesley, Tyler C. Morrill, Brandon P. Poe, Brian Sokol, Andrea Bronbaugh, Tana Brummer, Hala Deeb, Rebecca Devlin, Sauna Doka, Tara Earl, Jinli Etoule, Deanna Fleary, Jessic Flores, Chris Flygare, Isaiah Gerber, Louise Hadden, Jenna Harder, Lindsay LeClair, Nancy McGarry, Peenaz Mistry, Steve Pickett, Khalia Prather, David Pulaski, Rajbansi Raorane, Meghan Shea, John Thacker, Matthew Trombley, Pearl Zheng, Chao Zhou, Abt Associates; Spencer Rose, Tneida Zunie, Michael E. Smith, Kemppaara Murthy, Nicole Calhoum, Claire Mathenge, Arundhathi Rao, Manohar Mutnal, Lindin Morales, Shelby Johnson, Alejandro Arroliga, Madhava Beardern, Joel Blais, Jessica Ettlinger, Angela Kennedy, Natalie Settle, Rupande Patel, Elisa Priest, Jennifer Thomas, Taylor Scott & White Health; Jennifer L. Kuntz, Yolanda Prado, Daniel Sapp, Mi Lee, Chris Eddy, Matt Hornbrook, Danielle Millay, Dorothy Tubiolo, Ambrosia Bass, Kristi Bays, Kimberly Berame, Cathleen Bourdon, Carlea Buslach, Jennifer Gluth, Kenni Graham, Tarika Holness Emedu Luis, Abreanah Magdaleno, DeShawn Martin, Joan Smith-McGee, Martha Perley, Sam Peterson, Aaron Piepert, Krystll Phillips, Joanna Price, Sperry Robinson, Katrina Permanente Northwest; Jennifer Meece, Elisha Stefanski, Lynn Ivacic, Jake Andreade, Adam Bissonnette, Krystal Roese, Michaela Braun, Cody Dehamer, Timothy Dziedzic, Joseph Eddy, Heather Edgren, Wayne Frome, Nolan Herman, Mitchell Hertel, Erin Higdon, Rosebud Johnson, Steve Kaiser, Tammy Koepel, Sarah Kohn, Taylor Kent, Thao Le, Carrie Marcis, Megan Maronde, Isaac McCready, Nidhi Mehta, Daniel Miesbauer, Anne Nikolai, Brooke Olson, Lisa Ott, Cory Pike, Nicole Price, Christopher Reardon, Logan Schoen, Rachel Schoone, Jaklyn Schneider, Tapan Sharma, Melissa Strupp, Jany Walters, Alyssa Weber, Reynor Wilhorn, Ryan Wright, Benjamin Zimmerman, Marshfield Clinic Research Laboratory; Angelina Hunter, Jessica Lundgreen, Karley Respet, Jennifer Viergutz, Daniel Stafki, St. Luke's Regional Health Care System; Alberto J. Caban-Martinez, Natasha Schaeffer-Solle, Paola Louzado Feliciano, Carlos Silvera, Karla Montes, Cynthia Weaver, Katerina Sartino, University of Miami; Rachel T. Brown, Camie Schafer, Arlyne Arteaga, Matthew Brunner, Daniel Daws, Emilee Eden, Jenny Pragagst, Joseph Stanford, Jeannine Mear, Marcus Stucki, Riley Campbell, Kathy Cann, Madeleine Smith, Braydon Black, Madison Tallman, Chapman Cox, Derrick Wong, Michael Langston, Adriele Fugal, Fiona Tsang, Maya Wheeler, Gretchen Maughan, Taryn Hunt-Smith, Nikki Gallacher, Anika DSouza, Trevor Stubbs, Iman Ibrahim, Ryder Jordon, University of Utah; Marilyn J. Odean, White-Side Institute for Clinical Research; Allen Bateman, Erik Reisdorf, Kyleu Guenther, Erika Hanson, Wisconsin State Laboratory of Hygiene; the HEROES-RECOVER participants.

References

[1] Centers for Disease Control and Prevention. COVID-19. https://www.cdc.gov/coronavirus/2019-ncov/index.html. Accessed May 25, 2021.

[2] US Food & Drug Administration. Pfizer-BioNTech COVID-19 Vaccine. https://www.fda.gov/emergency-preparedness-and-response/coronavirus-disease-2019-covid-19/pfizer-biontech-covid-19-vaccine. Accessed May 25, 2021.

[3] Chen J, Eustace V-C, Wong S-C, Yuen KC. Development of the Hong Kong Coronavirus Disease 2019 Infection Risk in Health Care Workers. JAMA Netw Open 2020;3(5):e209687. https://doi.org/10.1001/jamanetworkopen.2020.9687.

[4] Nguyen LH, Drew DA, Caban-Martinez AJ, et al. Risk of COVID-19 among front-line health-care workers and the general community: a prospective cohort study. Lancet Public Health 2020;5(9):e475–83.

[5] Centers for Disease Control and Prevention. Interim List of Categories of Essential Workers Mapped to Standardized Industry Codes and Titles. https://www.cdc.gov/coronavirus/2019-covid-19/categories-essential-workers.html. Accessed June 1, 2021.

[6] Centers for Disease Control and Prevention. COVID data tracker: COVID-19 vaccinations. https://covid.cdc.gov/covid-data-tracker/#vaccinations. Published 2020. Accessed May 10, 2021.

[7] Centers for Disease Control and Prevention. COVID-19 Vaccination Intent, Perceptions, and Reasons for Not Vaccinating Among Groups Prioritized for Early Vaccination – United States, September and December 2020. MMWR Morb Mortal Wkly Rep 2021;70(6):217–22.

[8] Ruiz JB, Bell RA. Predictors of intention to vaccinate against COVID-19: Results of a nationwide survey. Vaccine 2021;39(7):1080–6.

[9] Caban-Martinez AJ, Silbera CA, Santiago KM, et al. COVID-19 Vaccine Acceptability Among US Firefighters and Emergency Medical Services Workers: A Cross-Sectional Study. Journal of occupational and environmental medicine. 2021;63(5):369.

[10] Pogue K, Jensen JL, Stancil CK, Ferguson DG, Hughes SJ, Mello EJ, et al. Influences on attitudes regarding potential COVID-19 vaccination in the United States. Vaccines 2020;8(4):582. https://doi.org/10.3390/vaccines8040582.

[11] Biswas N, Mustapha T, Khubchandani J, Price JH. The Nature and Extent of COVID-19 Vaccination Hesitancy in Healthcare Workers. J Community Health 2021;46(6):1244–51.

[12] Shu J, Stewart T, Anderson KR, et al. Assessment of US health care personnel (HCP) attitudes towards COVID-19 vaccination in a large university health care system. Clinical Infectious Diseases: An Official Publication of the Infectious Diseases Society of America. 2021.

[13] Centers for Disease Control and Prevention. COVID-19 data tracker: COVID-19 vaccinations in the United States. https://covid.cdc.gov/covid-data-tracker/#/vaccinations. Published 2021. Accessed May 10, 2021.

[14] Meyer MN, Gjorgjieva T, Santiago KM, et al. COVID-19 Vaccine Acceptability Among US Firefighters and Emergency Medical Services Workers: A Cross-Sectional Study. JAMA network open. 2021;4(3):e213544-e213544.

[15] Halbrook M, Gadoth A, Martin-Blais R, et al. Longitudinal assessment of COVID-19 vaccine acceptance and uptake among frontline medical workers in Los Angeles, California. Clin. Infect Dis. 2021.

[16] Akarsu B, Canbay Ozdemir D, Ayhan Baser D, Aksoy H, Fidancı I, Cankurtaran M, et al. Antibody responses in seropositive persons after a single dose of SARS-CoV-2 mRNA vaccine. N Engl J Med 2021;384(14):1372–4.

[17] Centers for Disease Control and Prevention. Interim List of Categories of Essential Workers Mapped to Standardized Industry Codes and Titles. https://www.cdc.gov/coronavirus/2019-covid-19/categories-essential-workers.html. Accessed June 1, 2021.

[18] Centers for Disease Control and Prevention. COVID-19 Vaccination Hesitancy in Healthcare Workers. JAMA Netw Open 2020;3(5):e209687. https://doi.org/10.1001/jamanetworkopen.2020.9687.

[19] Centers for Disease Control and Prevention. Interim List of Categories of Essential Workers Mapped to Standardized Industry Codes and Titles. https://www.cdc.gov/coronavirus/2019-covid-19/categories-essential-workers.html. Accessed May 25, 2021.

[20] Centers for Disease Control and Prevention. COVID-19 Vaccination Hesitancy in Healthcare Workers. JAMA Netw Open 2020;3(5):e209687. https://doi.org/10.1001/jamanetworkopen.2020.9687.

[21] Centers for Disease Control and Prevention. COVID-19 Vaccination Hesitancy in Healthcare Workers. JAMA Netw Open 2020;3(5):e209687. https://doi.org/10.1001/jamanetworkopen.2020.9687.

[22] Centers for Disease Control and Prevention. COVID-19 Vaccination Hesitancy in Healthcare Workers. JAMA Netw Open 2020;3(5):e209687. https://doi.org/10.1001/jamanetworkopen.2020.9687.

[23] Centers for Disease Control and Prevention. COVID-19 Vaccination Hesitancy in Healthcare Workers. JAMA Netw Open 2020;3(5):e209687. https://doi.org/10.1001/jamanetworkopen.2020.9687.

[24] Centers for Disease Control and Prevention. COVID-19 Vaccination Hesitancy in Healthcare Workers. JAMA Netw Open 2020;3(5):e209687. https://doi.org/10.1001/jamanetworkopen.2020.9687.