SUPPORTING INFORMATION

Exploring photoswitchable properties of two nitro nickel(II) complexes with (N,N,O)-donor ligands and their copper(II) analogues

Patryk Borowski, a§ Sylwia E. Kutniewska, a§ Radosław Kamiński, a
Adam Krówczyński, a Dominik Schaniel, b Katarzyna N. Jarzembska a*

a Department of Chemistry, University of Warsaw, Żwirki i Wigury 101, 02-089 Warsaw, Poland
b Université de Lorraine, CNRS, CRM 2, 54000 Nancy, France

§ Both authors contributed equally
* Corresponding author: Katarzyna N. Jarzembska (katarzyna.jarzembska@uw.edu.pl)
Scheme 1S. Schematic representation of the synthetic protocol applied to obtain the studied compounds (M = Ni or Cu). Bold red-color bonds denote that either 2-picolyamine (black only) or 8-aminoquinoline (black & red together) were used in the synthesis of the 1a or 1b ligands (and consequently – M-2a or M-2b complexes), respectively.

Figure 1S. DSC curves obtained for Ni-2b when scanning the 120–300 K temperature range. Green area shows the monoclinic-to-triclinic phase transition upon temperature decrease, while the purple circle indicates the reverse process.
Figure 2S. PXRD patterns obtained for the Ni-2a bulk sample (top panel – full pattern, bottom – selected range magnification). Black curve – experimental pattern, red – Le Bail-fitted model, green bars – reflection positions (taking into account both Kα1-Kα2 splitting), blue – residual.
Figure 3S. PXRD patterns obtained for the Ni-2b bulk sample (top panel – full pattern, bottom – selected range magnification). Black curve – experimental pattern, red – Le Bail-fitted model, green bars – reflection positions (taking into account both Kα1-Kα2 splitting), blue – residual.
Figure 4S. PXRD patterns obtained for the Cu-2a bulk sample (top panel – full pattern, bottom – selected range magnification). Black curve – experimental pattern, red – Le Bail-fitted model, green bars – reflection positions (taking into account both Kα1-Kα2 splitting), blue – residual.
Figure 5S. PXRD patterns obtained for the Cu-2b bulk sample (top panel – full pattern, bottom – selected range magnification). Black curve – experimental pattern, red – Le Bail-fitted model, green bars – reflection positions (taking into account both $K\alpha_1$-$K\alpha_2$ splitting), blue – residual.
Table 1S. Summary of all collected X-ray diffraction datasets.

Complex	Crystal No.	Temperature, T / K	Data collection code	Remarks
Ni-2a	1st	290	Ni-2a-290K-dark-cooling-xtal-1	cooling cycle
		240	Ni-2a-240K-dark-cooling-xtal-1	cooling cycle
		200	Ni-2a-200K-dark-cooling-xtal-1	cooling cycle
		160	Ni-2a-160K-dark-cooling-xtal-1	cooling cycle
		140	Ni-2a-140K-dark-cooling-xtal-1	cooling cycle
		120	Ni-2a-120K-dark-cooling-xtal-1	cooling cycle
		100	Ni-2a-100K-dark-cooling-xtal-1	cooling cycle
		120	Ni-2a-120K-dark-heating-xtal-1	heating cycle
		140	Ni-2a-140K-dark-heating-xtal-1	heating cycle
		160	Ni-2a-160K-dark-heating-xtal-1	heating cycle
		180	Ni-2a-180K-dark-heating-xtal-1	heating cycle
		200	Ni-2a-200K-dark-heating-xtal-1	heating cycle
	2nd	140	Ni-2a-140K-dark-xtal-2	light-OFF data collection
		140	Ni-2a-140K-irr-140K-xtal-2	after irradiation at 140 K
		160	Ni-2a-160K-irr-140K-xtal-2	after irradiation at 140 K
		180	Ni-2a-180K-irr-140K-xtal-2	after irradiation at 140 K
		200	Ni-2a-200K-irr-140K-xtal-2	after irradiation at 140 K
Ni-2b	1st	290	Ni-2b-290K-dark-cooling-xtal-1	cooling cycle
		240	Ni-2b-240K-dark-cooling-xtal-1	cooling cycle
		200	Ni-2b-200K-dark-cooling-xtal-1	cooling cycle
		180	Ni-2b-180K-dark-cooling-xtal-1	cooling cycle
		160	Ni-2b-160K-dark-cooling-xtal-1	cooling cycle
	2nd	room temp.	Ni-2b-RT-dark-xtal-2	light-OFF data collection
		160	Ni-2b-160K-dark-xtal-2	light-OFF data collection
		160	Ni-2b-160K-irr-160K-xtal-2	after irradiation at 160 K
		440	Ni-2b-240K-irr-160K-xtal-2	after irradiation at 240 K
Table 2S. Selected X-ray data collection, processing and refinement parameters for all presented crystal structures.

Data set	Ni-2a-290K-dark-cooling-xtal-1	Ni-2a-240K-dark-cooling-xtal-1	Ni-2a-200K-dark-cooling-xtal-1	Ni-2a-160K-dark-cooling-xtal-1	Ni-2a-140K-dark-cooling-xtal-1	Ni-2a-120K-dark-cooling-xtal-1
Moiety formula	C16H15N3Ni1O3					
Moiety formula mass, M_r / a.u.	356.00					
Crystal system	triclinic					
Space group	$P\bar{1}$ (no. 2)					
Z	2					
F_{000}	368					
Crystal colour & shape	orange plate					
Crystal size / mm³	0.05×0.15×0.19					
T / K	290	240	200	160	140	120
a / Å	7.5324(3)	7.4868(3)	7.4560(4)	7.4308(4)	7.4166(4)	7.4036(5)
b / Å	8.1607(4)	8.1511(3)	8.1469(4)	8.1474(4)	8.1470(5)	8.1485(6)
c / Å	13.7040(7)	13.6670(6)	13.6490(7)	13.6372(7)	13.622(8)	13.6104(9)
α / °	100.410(4)	100.337(3)	100.302(4)	100.277(4)	100.289(5)	100.310(6)
β / °	101.755(4)	101.551(3)	101.435(4)	101.262(4)	101.159(5)	101.086(6)
γ / °	102.921(4)	102.899(3)	102.851(4)	102.891(5)	102.899(5)	102.899(6)
V / Å³	780.91(7)	774.28(6)	770.41(7)	767.74(8)	765.69(8)	764.01(10)
d_{calc} / g·cm⁻³	1.5140	1.5270	1.5347	1.5400	1.5441	1.5475
θ range	3.39° - 76.17°	3.40° - 76.22°	3.40° - 75.98°	3.40° - 75.88°	3.40° - 75.73°	3.31° - 75.39°
Absorption coefficient, μ / mm⁻³	1.956	1.973	1.983	1.990	1.995	2.000
No. of reflections collected / unique	9116 / 3168	9056 / 3145	8926 / 3128	8741 / 3112	8623 / 3102	8479 / 3083
R_{int}	3.00%	2.88%	3.29%	5.00%	5.40%	5.97%
No. of reflections with $I > 3\sigma(I)$	2483	2542	2517	2266	2218	2175
No. of parameters / restraints / constraints	209 / 0 / 60	209 / 0 / 60	209 / 0 / 60	216 / 2 / 70	219 / 0 / 67	219 / 0 / 67
$R[F]$ ($I > 3\sigma(I)$)	3.71%	3.51%	3.54%	4.31%	4.48%	4.78%
$R[F]$ (all data)	4.95%	4.62%	4.61%	6.28%	6.60%	7.07%
ϕ_{res} / e·Å⁻³	-0.28 / +0.34	-0.31 / +0.38	-0.28 / +0.40	-0.31 / +0.42	-0.31 / +0.49	-0.36 / +0.53
CCDC code	2110810	2110811	2110818	2110820	2110819	2110812
Data set	Ni-2a-100K-dark - cooling-xtal-1	Ni-2a-120K-dark - heating-xtal-1	Ni-2a-140K-dark - heating-xtal-1	Ni-2a-160K-dark - heating-xtal-1	Ni-2a-180K-dark - heating-xtal-1	Ni-2a-200K-dark - heating-xtal-1
-----------------------------	---------------------------------	---------------------------------	---------------------------------	---------------------------------	---------------------------------	---------------------------------
Moiety formula	$\text{C}_{16}\text{H}_{15}\text{N}_3\text{Ni}_1\text{O}_3$					
Moiety formula mass, M_r/ a.u.	356.00					
Crystal system	triclinic					
Space group	$\bar{P}1$ (no. 2)					
Z	2					
F_{000}	368					
Crystal colour & shape	orange plate					
Crystal size / mm3	0.05×0.15×0.19					
T / K	100	120	140	160	180	200
$a / \text{Å}$	7.4023(7)	7.4081(5)	7.4242(5)	7.4449(4)	7.4848(3)	7.4553(4)
$b / \text{Å}$	8.1523(7)	8.1507(6)	8.1555(6)	8.1616(5)	8.1532(4)	8.1473(4)
$c / \text{Å}$	13.6139(12)	13.6011(9)	13.6058(9)	13.6166(10)	13.6235(6)	13.6521(7)
$\alpha / ^\circ$	100.305(7)	100.336(6)	100.383(6)	100.413(6)	100.394(4)	100.286(4)
$\beta / ^\circ$	101.078(8)	101.060(6)	101.096(5)	101.156(5)	101.263(3)	101.447(5)
$\gamma / ^\circ$	102.856(8)	102.871(6)	102.858(6)	102.845(6)	102.848(3)	102.865(5)
$V / \text{Å}^3$	764.64(13)	764.27(10)	766.41(10)	769.47(9)	769.10(6)	770.51(7)
$d_{\text{calc}} / \text{g·cm}^{-3}$	1.5462	1.5470	1.5427	1.5365	1.5373	1.5345
θ range	$3.40^\circ - 77.52^\circ$	$3.40^\circ - 76.21^\circ$	$3.40^\circ - 75.95^\circ$	$3.40^\circ - 75.75^\circ$	$3.40^\circ - 76.08^\circ$	$3.40^\circ - 76.00^\circ$
Absorption coefficient, μ / mm^{-1}	1.998	1.999	1.994	1.986	1.987	1.983
No. of reflections collected / unique	8471 / 3080	8479 / 3089	8603 / 3107	8705 / 3115	8808 / 3122	8912 / 3130
R_{int}	6.38%	5.97%	5.53%	5.25%	3.84%	3.20%
No. of reflections with $I > 3\sigma(I)$	2068	2173	2215	2173	2215	2508
No. of parameters / restraints / constraints	219 / 0 / 67	219 / 0 / 67	219 / 0 / 67	219 / 0 / 67	219 / 0 / 67	209 / 0 / 60
$R[F] (I > 3\sigma(I))$	5.07%	4.83%	4.57%	4.55%	3.77%	3.64%
$R[F]$ (all data)	8.09%	7.36%	7.17%	6.83%	5.21%	4.80%
$\varphi_{\text{min/max}} / \text{e·Å}^{-3}$	-0.47 / +0.65	-0.39 / +0.47	-0.34 / +0.43	-0.25 / +0.45	-0.25 / +0.45	-0.32 / +0.35
CCDC code	2110815	2110821	2110813	2110814	2110816	2110817
Table 2S (continued). Selected X-ray data collection, processing and refinement parameters for all presented crystal structures.

Moiety formula	Ni-2a-140K-dark-xtal-2	Ni-2a-140K-irr-140K-xtal-2	Ni-2a-160K-irr-140K-xtal-2	Ni-2a-180K-irr-140K-xtal-2	Ni-2a-200K-irr-140K-xtal-2
Moiety formula mass, M_r/ a.u.	356.00				
Crystal system	triclinic				
Space group	$P\bar{1}$ (no. 2)				
Z	2				
F_{000}	368				
Crystal colour & shape	orange plate				
Crystal size / mm3	0.05×0.15×0.25				
T / K	140	140	160	180	200
a / Å	7.4121(4)	7.4646(9)	7.4870(15)	7.426(4)	7.4497(3)
b / Å	8.1490(4)	8.1753(6)	8.1749(12)	8.166(3)	8.1435(3)
c / Å	13.6104(6)	13.5119(9)	13.5286(19)	13.623(8)	13.6386(5)
α / $^\circ$	100.221(4)	100.600(6)	100.684(12)	100.88(4)	100.279(3)
β / $^\circ$	101.157(4)	100.480(8)	100.490(14)	101.52(5)	101.386(4)
γ / $^\circ$	102.885(5)	102.812(8)	102.696(15)	102.76(4)	102.913(4)
V / Å3	764.28(7)	768.69(13)	772.0(2)	765.7(7)	768.87(6)
d_{calc} / g·cm$^{-3}$	1.5470	1.5381	1.5314	1.5441	1.5377
θ range	3.40$^\circ$ – 72.88$^\circ$	3.42$^\circ$ – 72.96$^\circ$	3.42$^\circ$ – 73.52$^\circ$	3.41$^\circ$ – 73.45$^\circ$	3.40$^\circ$ – 73.04$^\circ$
Absorption coefficient, μ / mm$^{-1}$	1.999	1.988	1.979	1.995	1.987
No. of reflections collected / unique	11924/2996	11792/3017	10837/3028	10339/3004	11560/3021
R_{int}	4.33%	6.12%	7.62%	14.12%	4.50%
No. of reflections with $I > 3\sigma(I)$	2356	2078	1780	1037	2385
No. of parameters / restraints / constraints	209 / 0 / 60	219 / 0 / 67	216 / 0 / 70	208 / 0 / 60	208 / 0 / 60
$R[F]$ (I > 3$\sigma(I)$)	3.37%	6.52%	8.77%	13.05%	3.79%
$R[F]$ (all data)	4.79%	9.45%	13.89%	24.35%	5.05%
$\sigma_{min/\max}$ / e·Å$^{-3}$	$-0.25 / +0.35$	$-0.49 / +0.87$	$-0.73 / +1.06$	$-1.20 / +3.14$	$-0.28 / +0.42$
CCDC code	2110822	2110824	2110825	2110823	2110826
Table 2S (continued). Selected X-ray data collection, processing and refinement parameters for all presented crystal structures.

Data set	Ni-2b-290K-dark-cooling-xtal-1	Ni-2b-240K-dark-cooling-xtal-1	Ni-2b-200K-dark-cooling-xtal-1	Ni-2b-180K-dark-cooling-xtal-1	Ni-2b-160K-dark-cooling-xtal-1	Ni-2b-RT-dark-xtal-2
Moiety formula	C_{19}H_{15}N_{3}Ni_{1}O_{3}	C_{19}H_{15}N_{3}Ni_{1}O_{3}	C_{19}H_{15}N_{3}Ni_{1}O_{3}	C_{19}H_{15}N_{3}Ni_{1}O_{3}	C_{19}H_{15}N_{3}Ni_{1}O_{3}	C_{19}H_{15}N_{3}Ni_{1}O_{3}
Moiety formula mass, M_r / a.u.	392.04	392.04	392.04	392.04	392.04	392.04
Crystal system	monoclinic	triclinic	triclinic	monoclinic	monoclinic	monoclinic
Space group	$P 2_1/c$ (no. 14)	$P 1$ (no. 2)	$P 1$ (no. 2)	$P 2_1/c$ (no. 14)	$P 1$ (no. 2)	$P 2_1/c$ (no. 14)
Z	4	4	4	4	4	4
F_{000}	808	808	808	808	808	808
Crystal colour & shape	brown plate					
Crystal size / mm3	1.88×0.13×0.11	1.88×0.13×0.11	1.88×0.13×0.11	0.08×0.11×0.13	0.08×0.11×0.13	0.08×0.11×0.13
T / K	290	240	200	180	160	290
a / Å	14.1514(7)	14.1275(4)	14.1166(3)	14.1196(6)	14.1181(4)	14.1146(7)
b / Å	6.8027(3)	6.7861(12)	6.7699(8)	6.7595(13)	6.7551(10)	6.7593(13)
c / Å	17.9707(6)	17.9317(9)	17.8897(8)	17.8685(11)	17.8553(10)	17.8675(7)
α / $^\circ$	90	89.017(6)	88.801(4)	88.760(7)	88.714(5)	90
β / $^\circ$	103.885(4)	103.987(5)	104.046(4)	104.018(6)	104.113(5)	103.816(4)
γ / $^\circ$	90	93.019(6)	93.747(4)	93.966(7)	94.140(5)	90
V / Å3	1679.45(13)	1665.8(3)	1655.0(2)	1650.6(3)	1646.5(3)	1678.78(13)
d_{calc} / g·cm$^{-3}$	1.884	1.899	1.912	1.917	1.921	1.884
Absorption coefficient, μ / mm$^{-1}$	3.22$^\circ$ - 75.55$^\circ$	2.54$^\circ$ - 75.56$^\circ$	2.55$^\circ$ - 75.59$^\circ$	2.55$^\circ$ - 80.79$^\circ$	2.55$^\circ$ - 75.77$^\circ$	3.22$^\circ$ - 75.61$^\circ$
No. of reflections collected / unique	12943 / 3428	13035 / 6230	13044 / 6192	12983 / 6182	12887 / 6140	13530 / 3452
R_{int}	3.76%	6.07%	6.27%	8.93%	6.44%	2.72%
No. of reflections with $I > 3\sigma(I)$ / restraints / constraints	2309 / 0 / 60	469 / 0 / 120	469 / 0 / 120	469 / 0 / 120	469 / 0 / 120	235 / 0 / 60
$R[F](I > 3\sigma(I))$	5.13%	9.61%	8.22%	11.07%	9.36%	4.36%
$R[F]$ (all data)	7.21%	14.44%	12.10%	16.53%	13.94%	6.54%
φ_{max} / φ_{min} / e·Å$^{-3}$	-0.66 / +0.65	-0.72 / +1.98	-0.64 / +1.95	-1.41 / +2.07	-0.91 / +2.27	-0.53 / +0.42
CCDC code	2110831	2110833	2110832	2110835	2110834	2110827
Data set	Ni-2b-160K-darkxtal-2	Ni-2b-160K-irr-160K-xtal-2	Ni-2b-240K-irr-160K-xtal-2	Cu-2a	Cu-2b	
------------------	-----------------------	----------------------------	---------------------------	------------	------------	
Moiety formula	C_{19}H_{15}N_3NiO_3	C_{19}H_{15}N_3NiO_3	C_{19}H_{15}N_3NiO_3			
Moiety formula mass, M_r / a.u.	392.04	360.86	396.89			
Crystal system	triclinic	triclinic	triclinic			
Space group	P̅1 (no. 2)	P̅1 (no. 2)	P̅1 (no. 2)			
Z	4	2	2			
F_000	808	370	406			
Crystal colour & shape	brown plate	brown plate	green plate			
Crystal size / mm³	0.08×0.11×0.13	0.05×0.19×0.22	0.04×0.11×0.20			
T / K	160	160	240	100	100	
a / Å	14.1083(10)	14.1508(14)	14.1382(13)	8.435(2)	6.804(2)	
b / Å	6.7505(3)	6.7652(5)	6.8015(8)	9.513(2)	9.080(2)	
c / Å	17.8681(8)	17.8650(9)	17.9478(8)	10.739(2)	13.866(3)	
α / °	88.724(3)	90.025(5)	89.744(7)	69.07(3)	75.87(3)	
β / °	104.156(5)	103.718(6)	103.931(6)	69.65(3)	83.43(3)	
γ / °	94.061(4)	90.165(7)	90.193(9)	72.48(3)	84.76(3)	
V / Å³	1645.88(16)	1661.5(2)	1675.1(3)	739.0(3)	824.2(4)	
d_calc / g·cm⁻³	1.5821	1.5673	1.5545	1.6216	1.5992	
θ range	2.55° - 75.75°	2.55° - 75.59°	2.54° - 77.80°	4.58° - 75.56°	3.30° - 75.76°	
Absorption coefficient, μ / mm⁻¹	1.922	1.904	1.889	2.260	2.091	
No. of reflections collected / unique	18886 / 6654	10519 / 5836	19389 / 6800	17061 / 3031	17819 / 3393	
R_int	6.15%	3.62%	8.49%	4.31%	10.28%	
No. of reflections with I > 3σ(I)	3505	3136	2935	2791	2818	
No. of parameters / restraints / constraints	469 / 0 / 120	459 / 0 / 196	469 / 0 / 120	208 / 0 / 60	235 / 0 / 60	
R[F] (I > 3σ(I))	11.73%	10.90%	6.89%	3.33%	5.46%	
R[F] (all data)	17.23%	16.51%	12.63%	3.60%	6.43%	
ϕ_max / e·Å⁻³	-1.15 / +3.36	-1.22 / +1.66	-0.82 / +1.16	-0.38 / +0.48	-0.78 / +0.98	
CCD code	2110828	2110829	2110830	2110808	2110809	
Table 3S. Selected interactions engaging the nitro group adopting both the nitro and endo-nitrito binding modes in the Ni-2a crystal structure (Ni-2a-140K-irr-140K-xtal-2 data set).

Motif	E_{int} / kJ·mol$^{-1}$	Selected interactions	Motif	E_{int} / kJ·mol$^{-1}$	Selected interactions
Ni01	-60.5	C1-H1⋯O1a	Ni01	-48.4	C1-H1⋯O1b
		C2-H2⋯O1a			C2-H2⋯O1b
Ni02	-24.3	C7-H7⋯O2a			-
NiS1	-44.7	C14-H14⋯O1a	NiS1	-45.9	C14-H14⋯O1b
		C11(π)⋯C14(π)			C11(π)⋯C14(π)
NiS2	-126.0	C4-H4⋯O1a	NiS2	-132.4	C4-H4⋯O1b
		C6-H6b⋯O1a			C6-H6b⋯O1b
		C1(π)⋯C8(π)			C1(π)⋯C8(π)
NiS2'	-142.1	C6-H6a⋯O2a	NiS2'	-128.1	C6-H6a⋯O2b
		C1(π)⋯C8(π)			C1(π)⋯C8(π)

Table 3S (continued). Selected interactions engaging the nitro group adopting both the nitro and endo-nitrito binding modes in the Ni-2a crystal structure (Ni-2a-140K-irr-140K-xtal-2 data set).

Motif	E_{int} / kJ·mol$^{-1}$	Selected interactions	Motif	E_{int} / kJ·mol$^{-1}$	Selected interactions
Ni01	-54.3	C1-H1⋯O1a	Ni01	-48.4	C1-H1⋯O1b
		C2-H2⋯O1a			C2-H2⋯O1b
Ni02	-23.9	C7-H7⋯O2a			-
NiS1	-45.3	C14-H14⋯O1a	NiS1	-45.3	C14-H14⋯O1b
		C11(π)⋯C14(π)			C11(π)⋯C14(π)
NiS2	-129.2	C4-H4⋯O1a	NiS2	-129.2	C4-H4⋯O1b
		C6-H6b⋯O1a			C6-H6b⋯O1b
		C1(π)⋯C8(π)			C1(π)⋯C8(π)
NiS2'	-129.2	C6-H6a⋯O2a	NiS2'	-128.1	C6-H6a⋯O2b
		C1(π)⋯C8(π)			C1(π)⋯C8(π)
Table 4S. Selected intermolecular interactions for both nitro and endo-nitrito isomers for the Ni-2b complex (Ni-2b-160K-irr-160K-xtal-2 data set).

Motif	E_{int} / kJ·mol$^{-1}$	Selected interactions	Motif	E_{int} / kJ·mol$^{-1}$	Selected interactions
Ni$_{01}$	-39.6	C2-H2⋯O4	Ni$_{01}$	-37.0	C2-H2⋯O4
		C2'-H2'⋯O2			C2'-H2'⋯O2
Ni$_{03}$	-44.6	C13-H13⋯O3'	Ni$_{03}$	-43.5	C13-H13⋯O3'
		C15-H15⋯O4			C15-H15⋯O4
Ni$_{52}$	-95.1	C5(π)⋯C6(π)	Ni$_{52}$	-93.1	C5(π)⋯C6(π)
Ni$_{52'}$	-94.6	C5'(π)⋯C6'(π)	Ni$_{52'}$	-91.0	C5'(π)⋯C6'(π)

Table 4S (continued). Selected intermolecular interactions for both nitro and endo-nitrito isomers for the Ni-2b complex (Ni-2b-160K-irr-160K-xtal-2 data set).

Motif	E_{int} / kJ·mol$^{-1}$	Selected interactions	Motif	E_{int} / kJ·mol$^{-1}$	Selected interactions
Ni$_{01}$	-38.2	C2-H2⋯O4	Ni$_{01}$	-38.1	C2-H2⋯O4
		C2'-H2'⋯O2			C2'-H2'⋯O2
Ni$_{03}$	-44.3	C13-H13⋯O3'	Ni$_{03}$	-43.8	C13-H13⋯O3'
		C15-H15⋯O4			C15-H15⋯O4
Ni$_{52}$	-94.1	C5(π)⋯C6(π)	Ni$_{52}$	-94.1	C5(π)⋯C6(π)
Ni$_{52'}$	-92.8	C5'(π)⋯C6'(π)	Ni$_{52'}$	-87.7	C5'(π)⋯C6'(π)

Table 5S. Selected intermolecular interactions for the Ni-2b complex at RT (i.e. before phase transition; Ni-2b-RT-dark-xtal-2 data set).

Motif	E_{int} / kJ·mol$^{-1}$	Selected interactions
Ni$_{01}$	-41.3	C2-H2⋯O1
Ni$_{03}$	-43.1	C13-H13⋯O1
		C15-H15⋯O3
Ni$_{52}$	-95.9	C5(π)⋯C6(π)

Table 6S. Percentage contribution of selected interatomic contacts to the generated Hirshfeld surface.

Compound	Temperature / K	O-H	C-H	N-H	H-O	H-C	H-N	C-C	H-H
Ni-2aa	100	11.3	7.3	2.5	10.1	5.6	2.5	5.4	46.3
Cu-2a	100	10.0	14.1	6.7	8.1	11.9	5.3	1.9	37.6
Ni-2b (high T) b	290	13.5	9.5	0.3	11.5	8.1	0.2	4.9	41.7
Ni-2b (mol. A) (low T) c	160	13.3	9.4	0.4	11.2	8.0	0.3	5.2	41.4
Ni-2b (mol. B) (low T) c	160	13.4	9.6	0.5	11.4	8.0	0.5	5.4	41.0
Cu-2b	100	10.3	8.2	4.3	8.2	6.5	3.9	7.0	41.7

a Ni-2a-100K-dark-cooling-xtal-1 data set. b Ni-2b-290K-dark-cooling-xtal-1 data set. c Ni-2b-160K-dark-cooling-xtal-1.
Table 7S. Hirshfeld surface fingerprint plots generated for the Ni-2b complex; all and selected X⋯H contacts (data sets the same as in Table 6S).

Molecule	all⋯all	O⋯H	N⋯H	C⋯H
Ni-2b (high T)	![Plot](image1)	![Plot](image2)	![Plot](image3)	![Plot](image4)
Ni-2b (mol. A) (low T)	![Plot](image5)	![Plot](image6)	![Plot](image7)	![Plot](image8)
Ni-2b (mol. B) (low T)	![Plot](image9)	![Plot](image10)	![Plot](image11)	![Plot](image12)
Figure 6S. Theoretical IR spectra computed at the DFT(B3LYP)/6-311++G** level of theory for the analysed Ni-2a linkage isomers plotted using the GAUSSSUM program (full width at half maximum set to 10).
Figure 7S. Theoretical IR spectrum computed at the DFT(B3LYP)/6-311++G** level of theory for the analysed Ni-2b linkage isomers plotted using the GAUSSSUM program (full width at half maximum set to 10).
Table 8S. Key vibrational modes characteristic for the examined linkage isomers of the nitro group based on the theoretical data. Visualization of selected modes is attached in the form of GIF files.

Mode	Ni-2a (nitro)	Ni-2b (nitro)
ω(NO$_2$)	581.02	566.70
δ(NO$_2$)	835.94	838.41
ν(NO$_2$)	1391.62	1391.96
ν_ω(NO$_2$)	1493.96	1495.36
Ni-2a (endo-nitrito)	Ni-2b (endo-nitrito)	
δ(ONO)	845.05	845.04
ν(N–O)	1094.74	1080.76
ν(N=O)	1507.30	1513.02
Cu-2a (κ-nitrito)	Cu-2b (κ-nitrito)	
ω(ONO)	347.65	350.89
δ(ONO)	855.42	856.02
ν(N–O)	1154.95	1150.47
ν(N=O)	1454.98	1454.97
Cu-2a (nitro)	Cu-2b (nitro)	
δ(NO$_2$)	820.15	820.36
ν(NO$_2$)	1366.82	1369.82
ν_ω(NO$_2$)	1481.48	1487.37
Table 9S

IR spectral features characteristic for selected binding modes of the NO$_2$ group assigned based on the literature-reports of nickel(II) and copper(II) compounds. Note no information about ω(NO$_2$) were given.

Compound	Isomer	ν_3(NO$_2$)	ν_4(NO$_2$)	ρ_w(ONO)	ν(N=O)	ν(N-O)
[Ni(py)$_4$(ONO)$_2$]	ONO	1393	1114	825	-	-
NiL$_2$(NO$_2$)$_2$L=4-(2-aminoethyl)morpholine	NO$_2$	1333	1310	808	-	-
[NiL$_2$(ONOO)$_2$L=4-(2-aminoethyl)morpholine]	ONO	1365, 1331	1318, 1304	828	-	-
Ni[1-(2-aminoethyl)piperidine]$_2$(NO$_2$)$_2$	NO$_2$	1360	1285	815	-	-
Ni[1-(2-aminoethyl)piperidine]$_2$(ONO)$_2$	ONO	1385	1138	820	-	-
Ni(C$_8$H$_{18}$N$_4$O$_2$)(NO$_2$)$_2$·H$_2$O	NO$_2$	1395	1274	814	-	-
Ni(C$_8$H$_{18}$N$_4$O$_2$)(ONO)$_2$·H$_2$O	ONO	1270	1269	798	1412	1208
[Cu(ONO)(tpa)]PF$_6$ tpa= tris[[2-pyridyl]methyl]amine	ONO	-	-	-	1426	1082
[Cu(NO$_2$)(tpa)]PF$_6$ tpa = tris[(2-pyridyl)methyl]amine	NO$_2$	1387	1333	-	-	-
(Pr-TPM)Cu(NO$_2$) TPM= tris(3,5-diisopropyl-1-pyrazolyl)methane	NO$_2$	1311	1282	814	-	-
(Et-TPM)Cu(NO$_2$) TPM= tris(3,5-diethyl-1-pyrazolyl)methane	NO$_2$	1310	1283	813	-	-
(Me-TPM)Cu(NO$_2$) TPM= tris(3,5-dimethyl-1-pyrazolyl)methane	NO$_2$	1314	1280	822	-	-
(Pr-TACN)Cu(NO$_2$) TAC= 1,4,7-triisopropyl-1,4,7-triazacyclononane	NO$_2$	1306	1268	809	-	-

References

[1] D. M. L. Goodgame, L. M. Venanzi, *J. Chem. Soc.* 1963, 616-627.

[2] T. Chattopadhyay, M. Ghosh, A. Majee, M. Nethaji, D. Das, *Polyhedron* 2005, 24, 1677-1681.

[3] D. Das, I. R. Laskar, A. Ghosh, A. Mondal, K-I. Okamoto, N. R. Chaudhuri, *J. Chem. Soc., Dalton Trans.* 1998, 3987-3990.

[4] M. S. Chao, H. H. Lu, M. L. Tsai, C. M. Lin, M. P. Wu, *Inorg. Chem. Comm.* 2012, 24, 254–258.

[5] K. Nobutoshi, N. Hirotaka, K. Yoshinori, A. Gin-ya, S. Masatatsu, U. Akira, T. Koji, *Bull. Chem. Soc. Jpn* 1995, 68, 581-589.

[6] M. Kujime, C. Izumi, M. Tomura, M. Hada, H. Fujii, *J. Am. Chem. Soc.* 2008, 130, 6088-6098.
Figure 8S. IR absorption spectra for the Ni-2a complex in the solid state recorded while cooling from 295 K to 10 K. As indicated in the legend the black solid line denotes the 295 K measurement, while red lines present spectra recorded after sample cooling down to 10 K.
Figure 9S. IR absorption spectra for the Ni-2b complex in the solid state recorded while cooling from 295 K to 10 K. As indicted in the legend the black solid line denotes the 295 K measurement, while red lines present spectra recorded after sample cooling down to 10 K.
Figure 10S. IR absorption spectra for the (a) Ni-2a and (b) Ni-2b complexes in the solid state recorded at 10 K after irradiation with the LED light (405–735 nm).
Figure 11S. Multi-temperature IR spectrum recorded after irradiation at 530 nm at 10 K and at selected temperature points during heating of the Ni-2a sample; intensity changes of the 567 cm\(^{-1}\) peak are shown.
Figure 12S. Expansion of the 400–1000 cm\(^{-1}\) region of the Ni-2a complex IR absorption spectra. Black solid line denotes the ground state spectrum, red line presents the spectrum collected after 10 min of LED irradiation, while blue line shows the difference spectrum. Observations with respect to the computational results (Table 8S): decrease of the bands at 569/578 cm\(^{-1}\) and 822/870 cm\(^{-1}\) corresponding to the \(\omega(\text{NO}_2)\) and \(\delta(\text{NO}_2)\) modes of the nitro configuration. Identification of genuinely new bands due to the endo-nitrito form is not obvious, as many bands might simply shift as a consequence of the NO\(_2\) isomerisation, \textit{e.g.} from 518 cm\(^{-1}\) to 529 cm\(^{-1}\).
Figure 13S. Expansion of the 1000−1550 cm$^{-1}$ region of the Ni-2a complex IR absorption spectra. Black solid line denotes the ground state spectrum, red line presents the spectrum collected after 10 min of LED irradiation, while blue line shows the difference spectrum. Observations with respect to the computational results (Table 8S): decrease of the bands at 1342 and 1378 cm$^{-1}$ corresponding to the v_s(NO$_2$) and v_{as}(NO$_2$) modes of the nitro configuration. Appearance of a new band at 1104 cm$^{-1}$ corresponding to the v(N−O) mode of the endo-nitrito configuration.
Figure 14S. Expansion of the 400–1000 cm$^{-1}$ region of the IR for Ni-2b complex IR absorption spectra. Black solid line denotes the ground state spectrum, red line presents the spectrum collected after 10 min of LED irradiation, while blue line shows the difference spectrum. Observations with respect to computational results (Table 8S): decrease of the bands at 553/597 cm$^{-1}$ and 824 cm$^{-1}$ corresponding to the ω(NO$_2$) and δ(NO$_2$) modes of the nitro configuration. Identification of genuinely new bands due to the endo-nitrito form is not obvious, as many bands might simply shift as a consequence of the NO$_2$ isomerisation, e.g. from 771 cm$^{-1}$ to 778 cm$^{-1}$.
Figure 15S. Expansion of the 1000–1550 cm\(^{-1}\) region of the Ni-2b complex IR absorption spectra. Black solid line denotes the ground state spectrum, red line presents the spectrum collected after 10 min of LED irradiation, while blue line shows the difference spectrum.

Observations with respect to the computational results (Table 8S): decrease of the bands at 1333 and 1384 cm\(^{-1}\) corresponding to the \(\nu_s(\text{NO}_2)\) and \(\nu_{as}(\text{NO}_2)\) modes of the nitro configuration. Appearance of a new band at 1102 cm\(^{-1}\) corresponding to the \(\nu(\text{N–O})\) mode of the endo-nitrito configuration.
Figure 16S. Expansion of the 400–1000 cm$^{-1}$ region of the Cu-2a complex IR absorption spectra. Black solid line denotes the ground state spectrum, red line presents the spectrum collected after 10 min of LED irradiation, while blue line shows the difference spectrum.

Observations with respect to the computational results (Table 8S): decrease of the bands at 837 and 854 cm$^{-1}$ corresponding to the δ(ONO) mode of the κ-nitrito configuration and appearance of a new band at 820 cm$^{-1}$ corresponding to the δ(NO$_2$) mode of the nitro configuration. The other observable changes correspond to shifts induced by the ONO isomerisation on the other ligand groups.
Figure 17S. Expansion of the 1000–1550 cm$^{-1}$ region of the Cu-2a complex IR absorption spectra. Black solid line denotes the ground state spectrum, red line presents the spectrum collected after 10 min of LED irradiation, while blue line shows the difference spectrum. Observations with respect to the computational results (Table 8S): decrease of the bands at 1118 and 1402 cm$^{-1}$ corresponding to the ν(N-O) and ν(N=O) mode of the κ-nitrito configuration, respectively, and appearance of a new band at 1082 cm$^{-1}$ which might correspond to the ν(N-O) mode of an endo-nitrito configuration, for which also the increase around 1430 cm$^{-1}$ could be a signature (ν(N=O)).
Figure 18S. Expansion of the 400–1000 cm$^{-1}$ region of the Cu-2b complex IR absorption spectra. Black solid line denotes the ground state spectrum, red line presents the spectrum collected after 10 min of LED irradiation, while blue line shows the difference spectrum. Observations with respect to the computational results (Table 8S): decrease of the band at 837 cm$^{-1}$ corresponding to the δ(ONO) mode of the κ-nitrito configuration and appearance of a new band at 814 cm$^{-1}$ corresponding to the δ(NO$_2$) mode of the nitro configuration.
Figure 19S. Expansion of the 1000–1550 cm\(^{-1}\) region of the Cu-2b complex IR absorption spectra. Black solid line denotes the ground state spectrum, red line presents the spectrum collected after 10 min of LED irradiation, while blue line shows the difference spectrum. Observations with respect to the computational results (Table 8S): decrease of the band at 1134 cm\(^{-1}\) corresponding to the \(\nu\)(N–O) mode of the \(\kappa\)-nitrito configuration and appearance of a new band at 1363 cm\(^{-1}\) corresponding to the \(\nu_s\)(N–O) mode of the nitro configuration. The new band at 1080 cm\(^{-1}\) might correspond to the \(\nu\)(N–O) mode of an endo-nitrito configuration.
Figure 20S. Solid-state UV-Vis spectra collected for all studied samples at ambient conditions.

Table 10S. Energy differences (ΔE_{rel}) between the ground-state κ-nitrito and metastable nitro linkage isomers computed based on the optimized isolated-molecule geometries. Computations were performed at the DFT(B3LYP)/6-311++G** level of theory.

Complex	Form	Isolated mol.	ΔE_{rel} / kJ·mol⁻¹
Cu-2a	κ-nitrito	0.0	
	nitro		+12.6
Cu-2b	κ-nitrito	0.0	
	nitro		+7.8