Short Period Spectral Acceleration Zonation of Tehran a Comparison between Slip and Activity Rates Data’s

Hadi Jarahi, Noushin Naraghiaraghi and Malihe Nadalian

1Department of Geosciences, North Tehran Branch, Islamic Azad University (IAU), Tehran, Iran
2Department of Geophysics, University Science Malaysia (USM), 11800, Penang, Malaysia
3Department of Geosciences, Shahrood University of Technology, Shahrood, Iran

Abstract: This study presents seismic hazard analysis and provides spectral iso acceleration maps based on slip rate (SR) and also activity rate (AR) of the faults. Nowadays modern seismic design of structures is complicated so special attention to the nature of the seismicity in active seismic zones like Tehran is required. Many studies, based on seismic hazard analysis have been done in Tehran. However, none of these studies provided comparison between SR, AR and spectral seismic zonation. In order to reduce the loss of life and property in metropolitan Tehran such studies are undeniable. The process of this study is identification of seismic sources, estimation of seismic parameters and interpretation the results of paleoseismology. Seismic hazard assessment for grid points has been done based on seismic sources and the determination of shear wave velocity. Based on these studies, the shear wave velocity for the upper 30 m has been prepared as a basic parameter for seismic hazard analysis. In addition, iso acceleration spectral maps were prepared based on the SR and AR, for 475 years return period. Referring to paleoseismology studies, it is apparent that some faults in South and South East of Tehran should be considered as an ancient coast line; therefore, they were excluded from the seismic studies. As a result, acceleration in South East Tehran has dramatically declined. In a general comparison, it can be stated that the acceleration based on data from the SR is higher than the AR for the period of 0.4 seconds. The results are equal, in period of 0.4 s and after that the acceleration based on AR is higher than SR.

Keywords: Spectral Iso Acceleration Map, Activity Rate, Slip Rate, Paleoseismology, Seismic Sources

Introduction

Tehran area with a population of over 15 million is one of the most active seismic zones in the Middle East. Iran plateau is situated between the interaction of Arabian plate and Eurasian plate (Copley and Jackson, 2006) which is waiting for a huge catastrophe this collision area stretches from west of Turkey to east of Iran and Alborz Mountain forms the most part of it. Iran is situated between two old continents Eurasia; in north and Africa-Arabia in south and behaves like a brittle platform and is known for its tectonics. Awareness of the dangers of such earthquakes in this area needs study seismic hazard analysis. Some seismic hazard studies have been done based on activity rate in this area, but none of them considered paleoseismology or slip rate (Gholipur et al., 2006; Mansouri et al., 2010; JICA, 2000; Mansouri and Ghaforiy-Ashtiany, 2009; Jafari, 2003a; 2003b; Jafari et al., 2005; Ghodrati et al., 2003; 2008; 2010; Majd Jabari and Zare, 2007). The list of events used in this study included from 30000 BC to 2014 (Ambraseys and Melville, 1982; Berberian, 1994; Engdahl et al., 2006; Moinifar et al., 1994; Berberian, 2014; ICS center) that according to the long recurrence periods earthquake in this region no longer properly
reflects the seismicity and seismotectonics nature of seismic sources (Gholipur et al., 2006; Ghodrati et al., 2010). In other words, considering only paleoseismology for Tehran faults may hide the effect of the recent seismicity of the sources. Therefore, in this metropolis, studies based on both types of data, based on seismic slip rates and activity rate seem to be useful. This research is about a comparison between the results of activity rate and slip rate, by using the spectral seismic zonation of acceleration in Tehran (Pitilakis et al., 2006; Borcherdt, 1994; Zaslavsky et al., 2009). In this study, the seismic sources have been defined (Nazari, 2005; Hessami et al., 2003; Abbasi and Shabanian, 1999; Berberian, 2014; Berberian et al., 1985). Earthquake catalogue of Tehran and adjacent areas was updated and seismic parameters have been estimated (Gutenberg and Richter, 1956; Kijko, 2010; 2012) then slip rate was determined for each seismic source, based on paleoseismology. To determine the distribution of shear wave velocity, in the top 30 m of soil, \(V_{S30} \) as the key variables in the calculation, \(V_{S30} \) distribution map was prepared. After study the tectonics (Shoja-Taheri et al., 2010) and attenuation relations (Douglas, 2011, five New Generation Attenuation relations (NGA) have been selected and considered for this study (Chiou and Youngs, 2008; Campbell and Bozorgnia, 2008; Idriss, 2008; Abrahamson and Silva, 2008; Boore and Atkinson, 2008). Finally, regular grid points were selected and spectral acceleration seismic zonation, based on the slip rate and activity rate, were considered.

Geographical Location and General Tectonic

The considered region covers a quadrangle, limited by 35° 33’ 58” N to 35 50’ 6”N and 51 03’ 34” E to 51 35’ 48”E including North of Iran in Tehran province. Active tectonics plays an important role in shaping this part of the Iranian plateau, between Eurasia and Arabian plate (Berberian, 1983; Berberian and King, 1981; Berberian et al., 1982) and shows Convergence of about 25 mm per year in direction of north, north east-south and south west (Sella et al., 2002). Current physiographic and active morphotectonic in this region, including high mountains, fertile plains, springs of water and active faults in the vicinity of the mountain passages, are caused by this compression. Measured current changes by GPS, in crust of Iran, in period of two years (Vernant et al., 2004) and six years (Masson et al., 2007) reported historical earthquakes. Till 1755 morphotectonic evidences show that the faults in this area are active, hence knowledge of seismic design variables for retrofitting this metropolis has a great importance (Fig. 1).
Seismicity Variables

These variables are generally divided into two parts; slip rate and activity rate. The estimation of these variables will be discussed (Golabatunchi, 2013).

Slip Rate

Many researchers in recent decades such as Nazari (2006; Nazari et al., 2009; 2010; Ritz et al., 2006; 2012) and others have been studied about the paleoseismology and historical events in Tehran region (Table 1). The review of existing research results together, with paleoseismology studies, have been considered in this study. The results of such studies can be divided into two main parts in the following. The first part is about the date and magnitude of the pre historical events and the second part shows slip rate of fault, based on millimeter per year (during the active time). Normally, geochronology data are associated with errors and in some cases; geochronology is not useful for some events. Also magnitude of the each seismic event could not be exactly determined. Therefore, these earthquakes cannot be used in statistical analysis. However, since the amount of displacement along the fault is known, the total slip rate can be calculated with good accuracy. Hence the study of slip rate could be useful and important.

In South-East Tehran, over the past 4 decades, many researchers have categorized the linear structures, which are sometimes associated with scrap (south alluvial plain is considered as fault scarp) (Emami et al., 1993; Berberian et al., 1985; Martini et al., 1997; Ghodrati-Amiri et al., 2003; Hessami et al., 2003; Nazari, 2005). Based on historical events related to Rey and adjacent area and geomorphology evidences north Rey, south Rey and Khrizak faults are known as the most prominent faults in south of Tehran. Last studies (Nazari, 2006; Nazari et al., 2009; 2010) show that these faults are the remains of an ancient lake shoreline that covers large parts of Iran's central Dasht-e Kavir so they could not be considered as seismic sources (Table 1). Several studies on other faults in Tehran area have been done and the results are shown in Table 1 including Mosha fault (Allen et al., 2003; Bachmanov et al., 2004; Ritz et al., 2006), Firoozkooh fault (Nazari et al., 2007; Ritz et al., 2006), North Tehran fault (Ritz et al., 2012; Eslami, 1999; Soleimani et al., 2003), Taleghan fault (Nazari, 2006; Nazari et al., 2009), Pishva fault (Majidiniri et al., 2011), Kahrizak fault (Nazari et al., 2010; Martini et al., 1997), North Rey and south Rey (Berberian, 2014; Nazari et al., 2009; 2010; Nazari, 2006).

Activity Rate

A uniform catalog of earthquakes containing prehistoric, historical and instrumental events covering the period from 30000 BC to 2014 is used. The earthquake database is mainly compiled from ISC and USGS/NEIC for the modern instrumental time period (1964-2012), (also Engdahl et al., 2006; Moinfar et al., 1994; Zare et al., 2014) and the catalog of earthquakes provided by Ambroseys and Melville (1982) and Berberian (1994) is the basic source of parameters for the historical (before 1900) and early instrumental (1900-1963) time periods. Prehistoric earthquakes are given from Ritz et al. (2012) paleoseismological studies (Table 2).

The catalog of earthquakes has been made uniform using the relationships between M_s and M_b defined by Mirzaei et al. (1998) for Alborz-Azerbaijan seismotectonic province. Activity rate shows the number of earthquakes of a certain magnitude over a year and will be calculated based on statistical analysis of the seismic data, in a specific region. All aftershocks and foreshocks were detected and eliminated from the catalogue (Powell and Duda, 1975; Keilis-Borok et al., 1972; Gardener and Knopoff, 1974). Since we encountered an incomplete earthquake catalog in the study region, the procedures introduced by Kijko and Sellevoll (1992), which permit incorporation of magnitude uncertainty to estimate

Table 1. Data from the paleoseismology study of Tehran

No.	Seismic source	No.	Magnitude (Mw)	Period of Activity (y)	Slip rate (mm/y)	References
1	N-Tehran	5	7.0	30000	0.05±0.3	Ritz et al. (2012)
2	Mosha	8	6.5 to 7.0	8000	2	Eslami (1999)
3	Firuzkuh	4	6.6. to 7.5	2000	2.3	Nazari et al. (2006)
4	Taleqan	4	6.5 to 7.2	5300	0.6	Nazari et al. (2009)
5	Pishva	5	5.9 to 7.0	3265	1.8	Majidiniri et al. (2011)
6	N-Ray		Paleo-Shoreline			Nazari (2006)
7	S-Ray					Nazari et al. (2010)
8	Kahrizak					Berberian (2014)
seismicity parameters from incomplete data files, are applied to the uniform catalog of earthquakes for estimating the seismicity parameters. The seismicity parameters a and b and activity rate were calculated for each seismic source (Kijko and Sellevoll, 1992; Kijko, 2010; 2012). Results of the estimation of seismicity parameters in the study area are presented in Table 3. Seismic sources have been delimited mainly based on the fault extent, seismogenic crust (a part of the earth crust in which large earthquakes usually originate) and mechanism of earthquake faulting or a type of active faults. The estimation of maximum magnitude in potential seismic sources is usually according to the features of seismic activity and tectonic analogy.

Seismic Source

To identify the seismic sources, satellite images, seismotectonic maps and geomorphology studies were considered (Nazari, 2005; Hessami et al., 2003; Abbasi and Shabanian, 1999). Rupture length of each fault has been estimated (Ambraseys and Melville, 1982; Zare, 1995) based on empirical relations that have a good connection with seismicity and also seismicity of each source has been calculated (Ambraseys and Jackson, 1998; Wells and Coppersmith, 1994; Nowroozi, 1985; Zare, 1995). Other variables such as magnitude of completeness (Willemann, 1999), maximum magnitude (Kijko, 2004) and rupture variables (Wells and Coppersmith, 1994) are estimated and have been shown in Table 3.

Attenuation Relations

Different attenuation relations were studied (Douglas, 2011), based of geology, seismotectonic and tectonic characters of the region (Shoji-Taheri, 2010) and finally five New Generation Attenuation relations (NGA) have been selected and considered for seismic hazard assessment in this area (Chiou and Youngs, 2008; Campbell and Bozorgnia, 2008; Idriss, 2008; Abrahamson and Silva, 2008; Boore and Atkinson, 2008).

Shear Wave Velocity Distribution (V_{S30}) in Tehran

Geology and shear wave velocity in Rock and Alluvium, especially in upper 30 meters, play an important role in seismic hazard studies. To determine the distribution of shear wave velocity in the Greater Tehran, a down hole shear wave measurements data from last studies: Jafari et al. (2002) and Tehran Municipality (Appendix 1), were collected. All points were located by GIS and the V_{S30} contours were drawn.

Date Range	Magnitude Range (Ms)	Grand total				
	3-3.9	4-4.9	5-5.9	6-6.9	7-7.4	
Prehistoric (-30,000)	2	7	2	11		
Historical (0-1900)	6	6	4	16		
1900-1909	1			0		
1910-1919	1			1		
1920-1929	1			1		
1930-1939	9			9		
1940-1949	2	1	3	3		
1950-1959	5	5	2	3		
1960-1969	1	12	10	3		
1970-1979	1	40	8	49		
1980-1989	1	42	28	71		
1990-1999	69	22	91			
2000-2009	15	39	63			
2010-2014	111	44	5			
Grand Total	129	253	106	23		

Seismicity Parameters of seismic sources in study area. M_{max} is calculated as the percentage weight of every relationship as shown in front of it. In this process four empirical relations have been used and earthquakes associated with each fault as a determination factor for M_{max} is intended

Seismic source	M_{max} (Mw)	Rate type	Activity (event/y)
N-Tehran	7.2	3.20E-01	4.30E-02
Mosha	7.0	2.00E-00	2.87E-02
Firuzkuh	6.5	2.30E-00	2.89E-02
Taleqan	6.9	6.0E-00	2.60E-02
Pishva	6.8	1.80E-00	1.40E-02
Parchin	6.2	2.80E-02	

1. Zare (1995); 2. Wells and Coppersmith (1994); 3. Nowroozi (1985); 4. Ambraseys and Jackson (1998); 5. Occurrence Events
Finally, using similar geology of sedimentary materials in this region contours were corrected and shear wave distribution V_{S30} map, based on NEHRP (BSSC, 2001) was achieved in Tehran. In some areas where no data is available (or not consistent with the geology) V_{S30} were estimated, based on relationship between the slope of the Earth and shear wave velocity (Allen and Wald, 2007; 2009; Wald and Allen, 2007; Wald et al., 2004; Farr and Kobrick, 2000).

Spectral Acceleration Zoning

Normal zoning and spectrum zoning is largely similar to each other, except that in the spectral method, acceleration is calculated for periods higher than zero (Pitilakis et al., 2006; Borcherdt, 1994; Zaslavsky et al., 2009). Based on this method and other studies (Jarahi et al., 2013; Jarahi, 2011), spectral acceleration zoning in short periods of 0, 0.2, 0.5 and 1 s, based on probability of exceedance in 100 years (McGuire, 1995), were calculated for Tehran Region. For this purpose, 400 of points with the distance of 1km have been considered (Fig. 2). Horizontal acceleration has been calculated according to attenuation relations and V_{S30} for each point. Calculation has been done in two parts, based on activity rate and slip rate (Fig. 3). At a glance, it can be clearly seen that the greatest danger is on the north east of Tehran, where there is a sharp bend in the region of North Tehran fault (Madadi, 2012). Most of metropolitan Tehran residential areas are located in the southern and center part. The acceleration is low to moderate in this regions and this is against of previous studies (Gholipur et al., 2006; Mansouri et al., 2010; JICA, 2000; Mansouri and Ghafoory-Ashtiany, 2009; Jafari, 2003a; 2003b; Jafari et al., 2005; Ghodrati et al., 2003; 2008; 2010). As mentioned, active faults in the south and southeast of the region (North Rey, South Rey and Kahrizak Fault) were the beach line and never considered as the seismic source, consequently the southern and south-east and the vast majority of residential metropolitan Tehran has been placed in low-risk areas. Therefore seismic design standards such as the 2800 Code should be reformed. Seismicity rate, after removal of mentioned faults in this area, remains constant in sequence most probably the attributed events to these faults are related to the other seismic sources, like North Tehran, Firoozkooh and Mosha faults. Actually, the seismic share of other faults has been increased dramatically and the acceleration related to other sources has been increased. This results in the more residential areas of northwest of Tehran, in the area, with high relative risk, is justified.

![Fig. 2. Shear wave velocity V_{S30} map in Tehran, based on NEHRP. Most part of Tehran city (black parts) is situated in areas with velocity less than 360 m/s. Higher values of V_{S30} are situated in northern, eastern and southern mountain areas and categorized in A, B. On the other hand, V_{S30} changes in Tehran plain from B to the north of Tehran, C to the north and center of area and D in south of Tehran. Based on V_{S30} values, it can be clearly resulted that older parts show higher values. In Tehran there is no area categorized in E zone.](image)
Fig. 3. Tehran seismic hazard zonation based on AR (left) and SR (right) for a return period of 475 years at 5% damping for periods PGA, 0.2, 0.5 and 1 second. Tehran metropolitan area is shown in dash line. Red lines are faults and yellow lines are paleoshorelines.
Comparing results based on activity rate and slip rate shows that for the period of 0 to 0.4 s maximum and minimum spectrum acceleration is higher for the data based on slip rate comparing with the data of activity rate. For the period of 0.4 s spectrum acceleration is equal for both data and after this period Spectral acceleration values of the slip rate is less than the rate of activity rate (Fig. 4 and Table 4).

Conclusion

As mentioned before, spectral acceleration zoning has not been done in Tehran before, so this research has a considerable importance in seismic design of structures. The main results of this study could be summarized as followed:

- Based on Paleoseismology North Rey, South Rey and Kahrizak are considered as ancient lake shore not an active fault
- Based on Vs30 most dense, urban areas are situated on alluvial materials with shear wave velocity less than 360 m/s
- Acceleration is increased in period of 0 to 0.2 s and in this period, it reaches to its maximum value and then shows downward trend
- Comparing results, based on activity rate and slip rate, shows that for the period of 0 to 0.4 s, maximum and minimum spectrum acceleration, is higher for the data, based on slip rate comparing with the data of activity rate. For the period of 0.4 s spectrum acceleration is equal, for both data and after this period Spectral acceleration values of the slip rate is less than the rate of activity rate so combination of both method based on logic tree, is recommended to estimate spectrum acceleration for seismic designs

Acknowledgements

The authors express their appreciation of the Tehran municipality, in order to provide geotechnical test results. In addition, special thanks to Prof. Mohsen Pourkermani due to his valuable guidance in this research.

Author’s Contributions

Hadi Jarahi: Developed the conceptual idea, designed the study, collected data and made the interpretation.

Noushin Naraginiarghi: Made the interpretation and edited the manuscript.

Malihe Nadalian: Carried out the study and helped to data collection.
Ethics

This article is original and contains unpublished materials. The corresponding author confirms that all of the other authors have read and approved the manuscript and there are no ethical issues involved.

References

Abbasi, M.R. and E. Shahanian, 1999. Fault map of North Tehran. International Institute of Earthquake Engineering and Seismology, Tehran, Iran.
Abrahamson, N.A. and W.J. Silva, 2008. Summary of the Abrahamson and Silva NGA ground-motion relations. Earthq. Spectra, 24: 67-97. DOI: 10.1193/1.2924360
Allen, M.B., M.R. Ghassemi, M. Shahrabi and M. Qorashi, 2003. Accommodation of late Cenozoic oblique shortening in the Alborz range, northern Iran. J. Structural Geol., 25: 659-672. DOI: 10.1016/S0191-8141(02)00064-0
Allen, T.I. and D.J. Wald, 2007. Topographic slope as a proxy for seismic site-conditions (Vs30) and amplification around the globe. U.S. Geological Survey Open-File Report.
Allen, T.I. and D.J. Wald, 2009. On the use of high-resolution topographic data as a proxy for seismic site conditions (Vs30) and amplification around the globe. U.S. Geological Society Open-File Report.
Ambraseys, N.N. and C.P. Melville, 1982. A History of Persian Earthquakes. 1st Edn., Cambridge University Press, New York, ISBN-10: 052124112X, pp: 236.
Ambraseys, N.N. and J.A. Jackson, 1998. Faulting associated with historical and recent earthquakes in the eastern Mediterranean region. Geophys. J. Int., 133: 390-406. DOI: 10.1046/j.1365-246X.1998.00508.x
Bachmanov, D.M., V.G. Trifonov, K.T. Hessami, A.I. Kozhurin and T.P. Ivanova et al., 2004. Active faults in the Zagros and central Iran. Tectonophysics, 380: 221-241. DOI: 10.1016/j.tecto.2003.09.021
Berberian, M. and G.C.P. King, 1981. Towards a paleogeography and tectonic evolution of Iran. Canad. J. Earth Sci., 18: 210-265. DOI: 10.1139/e81-019
Berberian, F., I.D. Muir, R.J. Pankhurst and M. Berberian, 1982. Late cretaceous and early Miocene Andean-type plutonic activity in northern Makran and Central Iran. Geol. Society, 139: 605-614. DOI: 10.1144/gsigs.139.5.0605
Berberian, M., 1983. The Southern Caspian: A compressional depression floored by a trapped, modified oceanic crust. Canad. J. Earth Sci., 20: 163-183. DOI: 10.1139/e83-015
Berberian, M., M. Qorashi, B. Arzhangravesh and A. Mohajer-Asgha, 1985. Recent tectonics, seismotectonics and earthquake-fault hazard study of the Greater Tehran region. Geol. Surv. Iran, 56: 316-316.
Berberian, M., 1994. A Natural Hazards and the First Earthquake Catalogue of Iran. Historical Hazards in Iran Prior to 1900, A UNESCO/IIEES Publication during UN/IDNDR.
Berberian, M., 2014. Earthquakes and Coseismic Surface Faulting on the Iranian Plateau. 1st Edn., Elsevier Science, Oxford, ISBN-10: 0444632972, pp: 776.
Boore, D.M. and G.M. Atkinson, 2008. Ground-motion prediction equations for the average horizontal component of PGA, PGV and 5%-Damped PSA at spectral periods between 0.01 s and 10.0 s. Earthquake Spectra, 24: 99-138. DOI: 10.1193/1.2830434
Borcherdt, R.D., 1994. Estimates of site-dependent response spectra for design (methodology and justification). Earthquake Spectra, 10: 617-653. DOI: 10.1193/1.1585791
BSSC, 2001. NEHRP recommended provision for seismic regulations for new buildings and other structure. Building Seismic Safety council for the federal Emergency Management Agency.
Campbell, K.W. and Y. Bozorgnia, 2008. NGA ground motion model for the geometric mean horizontal component of PGA, PGV, PGD and 5% damped linear elastic response spectra for periods ranging from 0.01 to 10 s. Earthquake Spectra, 24: 139-172. DOI: 10.1193/1.2857546
Chiou, B. and R.R. Youngs, 2008. An NGA model for the average horizontal component of peak ground motion and response spectra. Earthquake Spectra, 24: 173-216. DOI: 10.1193/1.2894832
Douglas, J., 2011. Ground-motion prediction equations 1964-2010. Bureau de Recherches Géologiques et Minières (BRGM).
Copley, A. and J. Jaekson, 2006. Active tectonics of the Turkish- Iranian plateau. Tectonics. DOI: 10.1029/2005TC001906
Emami, M.H., B. Amini, K. Jamshidi and A.M. Afsharyanzadeh, 1993. Geology Map of Tehran (1:100000 scale). Geological Survey of Iran. Engdahl, E.R., J.A. Jackson, S.C. Myers, E.A. Bergman and K. Priestly, 2006. Relocation and assessment of seismicity in the Iran region. Geophys. J. Int., 167: 761-778. DOI: 10.1111/j.1365-246X.2006.03127.x
Eslami, A., 1999. Sedimentology and tectonic study of Mosh and Mobarakabad Valleys. M.Sc. Thesis, IIEES.
Farr, T.G. and M. Kobrick, 2000. Shuttle radar topography mission produces a wealth of data. EOS Trans., 81: 583-585. DOI: 10.1029/EO081i048p00583
Gardener, J.K. and L. Knopoff, 1974. Is the sequence of earthquakes in Southern California with aftershocks removed, Poissonian. Bull. Seism. Society Am., 64: 1363-1367.

43
Gholipour, Y., Y. Bozorgnia, M. Rahnama, M. Ghodrati Amiri, G., H. Mahmoodi and S.A. Razavian, 2010. Probabilistic seismic hazard assessment of Tehran based on arias intensity. IJE Trans. B: Appllic., 23: 1-20.

Ghodrati Amiri, G., R. Motamed and H.R. ES-Haghi, 2009. Seismic hazard assessment of Tehran based on arias intensity parameter. International Seismic Engineering Conference Commemorating the 1908 Messina and Reggio Calabria Earthquake, (RCE’ 08), Reggio Calabria, Italy, pp: 270-276.

Gholipur, Y., Y. Bozorgnia, M. Rahnama, M. Berberian and M. Qureshi et al., 2006. Probabilistic Seismic Hazard Analysis-Phase1 Greater Tehran Range. 1st Edn., Optimization Research Group Engineering, Tehran University, pp: 185.

Golabatunchi, I., 2013. Study of tectonic, morphotectonic and seismotectonic indices in the range of Talwar, Moshampa Azad and Behjatabad dam. Ph.D. Thesis, University of Science and Research.

Gutenberg, B. and C.F. Richter, 1956. Earthquake magnitude, intensity, energy and acceleration. Bull. Seism. Society Am., 46: 105-145.

Hessami, K., F. Jamali and H. Tabassi, 2003. Active fault maps of Iran. Department of Seismotectonic, Seismology Research Center, IIEES, Iran.

Idriss, I.M., 2008. An NGA empirical model for estimating the horizontal spectral values generated by shallow crustal earthquakes. Earthquake Spectra, 24: 217-242. DOI: 10.1119/1.2924362

Jafari, M.K., A. Shafiee and A. Razmkhah, 2002. Dynamic properties of fine grained soils in south of Tehran. J. Seismol. Afghanistan Eng., 4: 25-37.

Jafari, M.K., 2003a. Site affects microzonation for North Tehran. J. Seismol. Society Am., 46: 105-145.

Jafari, M.K., 2003b. Complementary Microzonation Studies for South of Tehran. IIEES, Tehran, Iran.

Jafari, M.K., K. Amini Hosseini, M. Hosseini, M. Kamalian and F. Askari et al., 2005. Seismic Hazard Study. Final Report for Tehran Comprehensive Plan, IIEES, Iran.

JICA, 2000. The Study on Seismic Microzoning of the Greater Tehran Area in the Islamic Republic of Iran. Japan International Cooperation Agency, Final Report, Main Report.

Jarahi, H., 2011. Seismic hazard risk analysis in Behjatabad dam site. M.Sc. Thesis, Department of Geosciences, North Tehran Branch, Islamic Azad University.

Jarahi, H., M. Nadalian, M. Pourkermani and I. Golabatunchi, 2013. Seismic hazard assessment and nomination of controlling earthquake by Seismic Hazard Deaggregation Method and its effect on economic election in BehjatAbad Dam Site.

Keilis-Borok, V.I., V.M. Podgaetskaya and A.G. Prozorov, 1972. Local Statistics of Earthquake Catalogs. In: Computational Seismology, Keilis-Borok, V.I. (Ed.), Consultants Bureau, New York, ISBN-10: 0306108615, pp: 214-227.

Kijko, A., 2004. Estimation of the maximum earthquake magnitude, m_{max}. Pure Applied Geophys., 161: 1655-1681. DOI: 10.1007/s00024-004-2531-4

Kijko, A., 2010. Seismic Hazard Assessment for selected Area. Hazard Area Documentation MATLAB.

Kijko, A., 2011. Seismic Hazard. In: Encyclopedia of Solid Earth Geophysics, Gupta, H. (Ed.), Springer, Dordrecht, ISBN-10: 904818701X, pp: 1107-1121.

Kijko, A. and M.A. Sellevoll, 1992. Estimation of earthquake hazard parameters from incomplete data files. Part II. Incorporation of magnitude heterogeneity. Bull. Seismol. Society Am., 82: 120-134.

Madadi, M., 2012. Seismic hazard zonation from North Tehran fault activity based on paleoearthquake data. M.Sc. Thesis, Islamic Azad University.

Majd Jabari, A.R. and M. Zare, 2007. Spectral acceleration Map and Probabilistic hazard Analysis by using spectral attention attenuations in Tehran Area. Proceedings of the 5th International Conference on Seismology and Earthquake Engineering, (SEE’ 07), Tehran, Iran, p: 8-8.

Majdiniiri, T., H. Nazari, M. Ghoraishi, M. Talebian and A. Kavehfariruz, 2011. The first signs of historical earthquakes 1384AD Rey, an example based on fault paleoseismology cognitive research, southwest of Tehran. J. Geosci., 81: 169-178.

Mansouri, B., M. Ghafory-Ashtiany, K. Amini-Hosseini, R. Nourjou and M. Mousavi, 2010. Building seismic loss model for Tehran using GIS. Earthquake Spectra, 26: 153-168. DOI: 10.1119/1.3280377

Mansouri, B. and M. Ghafory-Ashtiany, 2009. Advancements in urban seismic risk modeling and quick loss estimation for Iran. PEER Report.

Martini, R.M., K. Hessami, D. Fantosti, D. Addezio and H. Alineghi et al., 1997. A geologic contribution to the evaluation of the seismic potential of the Kahrizak fault (Tehran, Iran). Tectonophysics, 287: 187-199. DOI: 10.1016/S0040-1951(98)80068-1

Masson, F., M. Anvari, Y. Djamour, A. Walpersdorf and F. Tavakoli et al., 2007. Large-scale velocity field and strain tensor in Iran inferred from GPS measurements: New insight for the present-day deformation pattern within NE Iran. Geophys. J. Int., 170: 436-440. DOI: 10.1111/j.1365-246X.2007.03477.x
McGuire, R.K., 1995. Probabilistic seismic hazard analysis and design earthquakes: Closing the loop. Bull. Seism. Soc. Am., 85: 1275-1284.

Mirzaei, N., M. Gao and Y.T. Chen, 1998. Seismic source regionalization for seismic zoning of Iran: Major seismotectonic provinces. J. Earthquake Predict. Res., 7: 465-495.

Mirzaei, N., M.R. Qeytanchi, M. Reisi and R. Zarifi et al., 2003. Basic Parameters of Earthquake in Iran. 1st Edn., Danesh Negar Issue, pp: 184.

Moinfar, A., A. Mahdavian and A. Malieki, 1994. A Collection of Basic Information on Iran Earthquakes. 1st Edn., Cultural Center of Trade Institution Press, pp: 446.

Nazari, H., 2005. Seismotectonic map of the central Alborz. Geological Survey of Iran, Seismotectonic Department.

Nazari, H., 2006. Analyse de la tectonique recente et active dans l'Alborz Central et la region de Teheran: Approche morphotectonique et paleoseismologique. PhD Thesis, Montpellier II, Montpellier.

Nazari, H., J.F. Ritz, R. Salamati, S. Solaymani and S. Balescu et al., 2007. Paleoseismological analysis in Central Alborz, Iran. Proceedings of the 50th Anniversary Earthquake Conference Commemorating the 1957 Gobi-Altay Earthquake, (GEA’ 07), Ulaanbaatar-Mongolia.

Nazari, H., J.F. Ritz, R. Salamati, A. Shafei and A. Ghassemi et al., 2009, Morphological and paleoseismological analysis along the Taleghan fault (Central Alborz, Iran). Geophys. J. Int., 178: 1028-1041. DOI: 10.1111/j.1365-246X.2009.04173.x

Nazari, H., J.F. Ritz, R. Salamati, A. Shahidi and H. Habibi et al., 2010. Distinguishing between fault scarps and shorelines: The question of the nature of the Kahrizak, North Rey and South Rey features in the Tehran plain (Iran). Terra Nova, 22: 227-237. DOI: 10.1111/j.1365-3126.2010.00938.x

Nowroozi, A.A., 1985. Empirical relations between magnitudes and fault parameters for earthquakes in Iran. Bull. Seism. Soc. Am., 75: 1327-1338.

Pitilakis, K., C. Gasepis and A. Anastasiadis, 2006. Design response spectra and soil classification for seismic codes provisions.

Powell, J. and S.J. Duda, 1975. A statistical study of earthquake occurrence. Pageoph, 113: 447-460. DOI: 10.1007/BF01592930

Ritz, J.F., H. Nazari, S. Balescu, M. Lamothe and R. Salamati et al., 2012. Paleoeearthquakes of the past 30,000 years along the North Tehran Fault (Iran). J. Geophys. Res. JGR, 117: B06305-B06305. DOI: 10.1029/2012JB009147

Ritz, J.F., H. Nazari, A. Ghassemi, R. Salamati and A. Shafei et al., 2006. Active transtension inside central Alborz: A new insight into northern Iran-southern Caspian geodynamics. Geol. Society Am., 54: 477-480. DOI: 10.1111/j.1365-2423.1

Sella, G.F., T.H. Dixon and A. Mao, 2002. REVEL: A model for recent plate velocities from space geodesy. J. Geophys. Res., 107: 11-32. DOI: 10.1029/2000JB000033

Shoja-Taheri, J., S. Nnaserieh and G. Hadi, 2010. A test of the applicability of NGA models to the strong ground-motion data in the Iranian plateau. J. Earthquake Eng., 14: 278-292. DOI: 10.1080/13632460903086051

Soleimani, S., K. Feqhi, A. Shbanyan, M. Abbasi and J. Ritz, 2003. Preliminary results from a study of Paleoseismology of Mosha fault in the Mosha Valley. J. Seismol. Earthquake Eng.

Vernant, P., F. Nilforooshan, D. Hatzfeld, M. Abbasi and C. Vigney et al., 2004. Present-day crustal deformation and plate kinematics in the Middle East constrained by GPS measurements in Iran and northern Oman. Geophys. J. Int., 157: 381-398. DOI: 10.1111/j.1365-246X.2004.02223.x

Wald, D.J., P.S. Earle and V. Quitoriano, 2004. Topographic slope as a proxy for seismic site correction and amplification. EOS. Trans. AGU, 85: F1424-F1424.

Wald, D.J. and T.I. Allen, 2007. Topographic slope as a proxy for seismic site conditions and amplification. Bull. Seism. Soc. Am., 97: 1379-1395. DOI: 10.1785/120060267

Wells, D.L. and K.J. Coppersmith, 1994. New empirical relationships among magnitude, rupture length, rupture width, rupture area and surface displacement. Bull. Seism. Soc. Am., 84: 974-1002.

Willemann, R.J., 1999. Regional thresholds of the ISC code (SI 413). The National Steering Committee for Earthquake Preparedness.
| No. | Longitude | Latitude | Vs30 No.