HTLV-1/2 prevalence in two Amazonian communities

Elida CG Mata¹, Roberto M Bezerra², Aldo A Proietti Júnior², Luana KS Pamplona³, Lilian O Gomes³, Valmir C Corrêa³, Jordan SR Caluff³, Geanny S Borges³, J Casseb¹ and LIB Kanzaki¹*

¹ Laboratory of Bioprospection, Department of Pharmacy, Faculty of Health Sciences, University of Brasília, DF, Brazil
² Laboratory of Bioprospection and Atomic Absorption, Federal University of Amapá, Macapá, AP, Brazil
³ Nutritional Management Consulting, Belém, Pará, Brazil
⁴ Secretary of Health, Oiapoque, Amapá, Brazil

Abstract

Introduction: The human T-cell lymphotropic virus type 1 (HTLV-1) is aetiologically linked to myelopathy/tropical spastic paraparesis (HAM/TSP) and adult T cell leukaemia (ATL) besides other less incident pathologies, while the type 2 has not been definitively linked to any diseases.

Objectives: To determine the HTLV-1/2 seroprevalence in two Brazilian communities in northern Brazil.

Methods: In 2010 and 2015, HTLV-1/2 serological surveys were carried out in the Oiapoque county at the Brazilian border with French Guiana and in Santa Cruz do Arari, Marajó Island. Serum and breast-milk samples from 317 women (pregnant, lactating and non-pregnant non-lactating) resident in the Oiapoque county, together with serum samples from 217 females and 70 males living in Santa Cruz do Arari county, were twice screened by two distinct commercial immunoassay methods for antibodies to HTLV-1/2. Seroreactivity was confirmed by a commercial Western blot technique. Participants were interviewed for data concerning their health, socioeconomic and educational status.

Results: None of the Oiapoque women, mostly young and descendants of migrants, had antibodies to HTLV-1/2, despite the high HTLV-1 prevalence in neighbouring French Guiana and Caribbean Islands, while five females and three males living in Santa Cruz do Arari county were HTLV-1 infected as confirmed by Western blot testing. In contrast, the Santa Cruz do Arari community lives in relative isolation and is descended mostly from black African people with high consanguinity.

Conclusion: Despite the proximity between Oiapoque and Santa Cruz do Arari counties, ethnic, age differences, community isolation and consanguinity may explain the distinct HTLV-1/2 epidemiology in these areas of northern Brazil.

Keywords: HTLV-1/2, pregnant/lactating women, Oiapoque, Marajó Island, Santa Cruz do Arari county, Northern Brazil

Introduction

The deltaretrovirus genus comprises agents infecting mammals including humans, simians and bovines [1]. Virions are mainly transmitted by sexual intercourse, via breastfeeding from mothers to infants and by blood transfusion. The human T-cell lymphotropic virus, HTLV, now grouped into four types (HTLV-1–4), presents distinct pathological features. The detection of HTLV-1 infection has been well documented in various human diseases and is thought to be aetiologically involved in neumomyelopathy initially described in 1985 by Gessain et al. [2] and named tropical spastic paraparesis (TSP) by Zaninovic et al. [3] in South America and HTLV-1–associated myelopathy (HAM) by Osame et al. [4] in Japan, and adult T cell leukaemia/lymphoma, first described in Japan by Takatsuki et al. [5].

Both HTLV-1 and HTLV-2 were initially isolated in the USA in Robert Gallo’s laboratory by Poiesz et al. in 1980, and Kalyanaraman et al. in 1982, respectively [6,7]. HTLV-1 infection occurs worldwide while HTLV-2 was initially mainly restricted to Amerindians and people who inject drugs on the American continent [8,9]. In Brazil, HTLV-1 and HTLV-2 prevalence changes according to geographical location, and is mainly determined by ethnicity. HTLV-1 prevalence is high in areas that have received waves of African people brought to Brazil as slaves, particularly Maranhão, Bahia and Pará states, with a prevalence in blood donors of 1.0%, 0.94% and 0.91%, respectively. The lowest HTLV-1 prevalence was found in Santa Catarina, 0.04%, predominantly populated by people of European origin [10,11].

There is a proportional correlation between populations of African and Japanese descendants and areas of high HTLV-1 prevalence in Brazil. Even in areas of low HTLV-1 endemicity, there is a significant prevalence of HTLV-1 among Japanese immigrants, for example in central Brazil, Campo Grande, Mato Grosso do Sul state [12], or in areas of high endemicity such as northern Brazil Tomé-Açu, Pará state [13].

Few studies have been published regarding HTLV-1/2 prevalence in Amapá state in northern Brazil, near the border with French Guiana. Among Waíãpi Amerindians inhabiting the northwestern region of the Amapá state, we have found one in 94 individuals to be HTLV-1 infected as confirmed by immunofluorescence and Western blotting (WB) techniques, while members of other Amerindian ethnicities (Galbis, Kubenkroke, Munduruku, Palikur and Yanomami) were negative for HTLV-1 antibodies [14].

In 2004, Pouliquen et al. [15] reported an HTLV-1 prevalence of 3.1% among blood donors in Guiana, and in 1999, Talarmin et al. [16], found a 0.59% HTLV-1 seropositivity among Amerindians in French Guiana.

In this study, we have determined the HTLV-1 seroprevalence in two municipalities in northern Brazil with an emphasis on women of reproductive age who are mothers, pregnant and/or breastfeeding.

Methods

Ethical approval

All participants who took part in the study gave authorization for blood and breast-milk testing, after signing the free and clarified consent terms included in the approval documents of the Committee of Ethics (registration number 175/09 and 042/02).

Amazonian communities

Two municipalities, Oiapoque (03° 51’ 19.75” N/ 051° 47’ 48.72” W) and Santa Cruz do Arari (00° 36’ 00” S/ 49° 11’ 00” W), located in the two neighbouring Brazilian states of Amapá and

*Corresponding author: LIB Kanzaki, SHIN QI 08, CJ 02, Casa 24, Lago Norte, Brasília, DF, CEP 71520-220, Brazil
Email: kanzaki@unb.br

© 2018 The Authors. Journal of Virus Eradication published by Mediscript Ltd
This is an open access article published under the terms of a Creative Commons License.
Pará, respectively, were selected for the serological survey (Figure 1).

The last population census in Amapá state dating from 2010, reported 669,526 inhabitants with Oiapoque county accounting for 3.06% (20,509 inhabitants) of the state population (https://cidades.ibge.gov.br/v4/brasil/ap/oiapoque/panorama). Santa Cruz do Arari county, located in the centre of Marajó Island, in the Pará state, has an urban population of 3994 inhabitants, representing 0.05% of the state population.

Population survey

The sero-epidemiological survey enrolled 317 women, representing 10.28% of women of reproductive age (15–39 years old) in the Oiapoque urban area (Table 1), and 217 females and 70 males in Santa Cruz do Arari county, representing 7.2% of its population (Table 2).

All enrolled participants were interviewed and information regarding their educational, economic and health status was recorded. These data were used to produce a descriptive profile of the tested population.

Serological assays

Samples of serum and breast milk were tested twice for antibodies by two different ELISA kits: the Enzyme Linked Immunosorbent Assay (Abbot Murex HTLV I + II, UK), and the Gold ELISA HTL V-1/II REM (Indústria e Comércio Ltda, SP, Brazil). Seroreactive samples were confirmed by a commercial Western blot assay, the HTLV-1/2 Blot 2.4 (Genelabs Diagnostics, Singapore).

Statistics

Descriptive statistics used data including the number of participants enrolled in the study, gender, socioeconomic and health status and the number of seropositive participants.

Results

None of the women from the Oiapoque region showed reactivity for HTLV-1 or -2 by immunoassay, using either serum or breast milk samples, while five females and three males from the Santa Cruz do Arari county were reactive by ELISA testing and confirmed by WB (Table 2).

Of all the Oiapoque women participants enrolled into the study, 91.48% declared that they had lived in the Oiapoque region for the last 5 years, 5.7% in the Pará state, with the remaining from Goiás (Central-west region of Brazil), Maranhão and Paraíba states (Brazil northeastern region). Only 1.0% had lived in French Guiana.

When considering their parents’ origin, 41.9% were born in Amapá state, 34.4% in Pará state (neighbouring state, Brazil northern region), 17.4% in Maranhão state (Brazil northeastern region) and the remaining in the states of Piauí, Ceará, Paraíba and Bahia (northeastern region of Brazil), Minas Gerais and Rio de Janeiro.

Table 1. Age distribution of pregnant and breastfeeding mothers of Oiapoque county enrolled in the HTLV-1/2 epidemiological study.

Age	Pregnant	Reproductive status	Total	
	Breastfeeding	Non pregnant/non breastfeeding		
0–15	12	4	1	17
16–20	61	13	1	75
21–30	100	31	7	138
31–40	40	20	5	65
41–50	3	4	3	10
>51	0	0	3	3
Total	216	72	20	308

Table 2. Age distribution and HTLV-1/2 positivity of Santa Cruz do Arari county population enrolled in the epidemiological survey.

Age	Female	Male	HTLV-1 positive
	Female	Male	
0–15	32	13	0
16–20	27	4	0
21–30	50	14	1
31–40	46	11	2
41–50	33	14	1
>51	29	14	2
Total	217	70	5

HTLV-1/2 REM (Indústria e Comércio Ltda, SP, Brazil). Seroreactive samples were confirmed by a commercial Western blot assay, the HTLV-1/2 Blot 2.4 (Genelabs Diagnostics, Singapore).
Tell me the results of the study.
of black African descent located 106 km from Santa Cruz do Arari, both communities living on the Marajó Island. Workers dealing with cattle in Marajó Island move between farms on horseback in the summer, as do fishermen by boat, all attracted by the biggest lake in Santa Cruz do Arari, where people have traditionally been involved in water buffalo and fishery management, respectively. Therefore, human movement in the above-mentioned area of the Island could be an important factor in HTLV-1 transmission and its maintenance within the population.

Our previous studies in 1987 [19,40] reported the HTLV-1 ltr sequence circulating in Santa Cruz do Arari, which showed a minor genetic variability when compared to the HTLV-1 Japanese prototype ATK-1. Additionally, Pessôa et al. [41] have carried out amplification and sequencing of the HTLV-1 full-length genome from two overlapping fragments of 90 Brazilian isolates, distributed in 48 HTLV-1 asymptomatic carriers, 35 cases of HTLV-1-associated myelopathy and seven adult T-cell leukaemia/lymphoma (ATLL) patients using the Ilumina paired-end methodology. Authors have concluded that 95.5% of all isolates fitted the cosmopolitan transcontinental sub-subtypes, thereby confirming our previous results [20,40]. Vallinoto et al. have sequenced the HTLV-1 5’litr region placing the virus circulating in Santana do Arari community in the Cosmopolitan group, subgroup Transcontinental [39]. As previously mentioned, people from Santana do Arari freely move to Santa Cruz do Arari, as both communities are located on Marajó Island.

Despite a suspicion of an elevated HTLV-1 prevalence in the Oiapoque county, it was found to be very low as none of the mothers screened had antibodies to the virus. Ethnicity is not the sole factor influencing our results. As previously demonstrated, the mother’s age is an important variable, with 74.5% of the pregnant and breastfeeding women participants between the age of 16 and 30 years (Table 1). It is well known that during pregnancy, mainly in the first trimester, immunological alterations allow fertilisation and zygote implantation [42]. A comparative study between HTLV-1 carriers and non-carriers among pregnant women has also shown that immunological suppression is enhanced among HTLV-1 carriers [43].

HTLV-1 prevalence among women increases with age and is mainly determined by the risk of viral sexual transmission. Vertical transmission from the mother to the infant depends on the duration of the breastfeeding period. However, in the Santa Cruz do Arari county, we have found and confirmed previous data of an elevated HTLV-1 prevalence among both women of reproductive age and men. This finding may be explained by the contribution of black African descendants in the ethnic composition of the community and its relative isolation, together with consanguinity. In the Santa Cruz do Arari county, we have found a high HTLV-1 prevalence, not only compared to that seen in the Oiapoque county, but also when compared to other counties on the same island, in Marajó and all over the country.

In conclusion, distinct HTLV-1/2 epidemiological profiles were found in two Brazilian communities located in close proximity but with different ethnic composition and behaviour. Our results confirm other reports regarding the elevated HTLV-1 prevalence among black African descendants with a high level of consanguinity in the Santa Cruz do Arari community.

Acknowledgements

This research work conducted in Oiapoque county was financially supported by the Brazilian Ministry of Health, Department of Surveillance, Prevention and Control of Sexually Transmissible Infections of HIV/AIDS and Viral Hepatitis and the United Nations Office on Drugs and Crime. We are indebted to the healthcare workers of Oiapoque county health unit districts and the Central Laboratory of Public Health for their invaluable support in carrying out biological sampling and data collection, and to Mrs Graça Pamplona, Ms Conceição Muçuan and Santa Cruz do Arari Municipality Staff for their support.

References

1. Burmeister T, Schwartz S, Hummel M et al. No genetic evidence for involvement of deaustroviruses in adult patients with precursor and mature T-cell neoplasms. Retrovirology 2007; 4: 11.
2. Gessain A, Barin F, Vernant JC et al. Antibodies to human T-lymphotropic virus type I in patients with tropical spastic paraparesis. Lancet 1985; ii: 407–410.
3. Zaninovic V, Arango C, Bajo R et al. Tropical spastic paraparesis in Colombia. Ann Neurol 1986; 23 Suppl. S127–132.
4. Osame M, Usuku K, Izumo S et al. HTLV-I associated myelopathy, a new clinical entity. Lancet 1986; i: 1031–1032.
5. Takatsuki K, Uchiyama T, Sagawa K, Yudoh J. Adult T cell leukaemia in Japan. In: Seno S, Takaku F, Irimo S, eds. Topics in Hematology. Amsterdam, Excerpta Medica; 1977: pp. 73–77.
6. Poiesz BJ, Ruscetti FW, Gazdar AF et al. Detection and isolation of type C retrovirus particles from fresh and cultured lymphocytes of a patient with cutaneous T-cell lymphoma. Proc Natl Acad Sci U S A 1980, 77: 7415–7419.
7. Kalyanaraman VS, Sagardhagtaan MG, Robert-Guroff M et al. A new subtype of human T-cell leukemia virus (HTLV-II) associated with a T-cell variant of hairy cell leukemia. Science 1982, 218: 571–577.
8. Kwok S, Gallo D, Hanson C et al. High prevalence of HTLV-II among intravenous drug abusers: PCR confirmation and typing. AIDS Res Hum Retroviruses 1990; 6: 561–565.
9. Willems EM. Comment. seroprevalence of HTLV-1/2 among blood donors in the state of Maranhão, Brazil. Rev Bras Hematol Hemoter 2014; 36: 12–13.
10. Catalan-Soares B, Carneiro-Proietti AB, Proietti FA. Interdisciplinary HTLV Research Group. Heterogeneous geographic distribution of human T-cell lymphotropic viruses I and II (HTLV-I/II): serological screening prevalence rates in blood donors from large urban areas in Brazil. Cad Saude Publica 2005; 21: 926–931.
11. Bandeira LM, Leheba SN, Asato MA et al. High prevalence of HTLV-I infection among Japanese immigrants in non-endemic area of Brazil. PLoS Negl Trop Dis 2015; 9: e000369.
12. Vallinoto AC, Muto NA, Pontes CS et al. Serological and molecular evidence of HTLV-I infection among Japanese immigrants living in the Amazon region of Brazil. Jpn J Infect Dis 2004; 57: 156–157.
13. Barros Kanczki L, Casseb J. Unusual finding of HTLV-I infection among Amazonian Amerindians. Arch Med Res 2007; 38: 897–900.
14. Poulquier JF, Hardy L, Lavergne A et al. High seroprevalence of human T-cell lymphotropic virus type I in blood donors in Guyana and molecular and phylogenetic analyses of new strains in the Guyana shelf (Guyana, Suriname, and French Guiana). J Clin Microbiol 2004; 42: 2020–2026.
15. Talarmin A, Vion B, Ureta-Vidal A et al. First seroepidemiological study and phylogenetic characterization of human T-cell lymphotropic virus type I and II infection among Amerindians in French Guiana. J Gen Virol 1999; 80: 3083–3088.
16. Kanczki LII. Epidemiologia do HTLV em a Amazonia brasileira. Seroprevalência e identificação do vírus circulante. [Thesis]. Monterrey: Universidad Autonoma de Nuevo Léon. 1995. Available at: http://eprints.uriil.unl.br/5729/1/2010212164.PDF (accessed June 2018).
17. Nakauchi CM, Linhares AC, Maruyama K et al. Prevalence of human T cell leukemia virus-I (HTLV-I) antibody among populations living in the Amazon region of Brazil (preliminary report). Mem Inst Oswaldo Cruz 1990; 85: 29–33.
18. Kanczki L, Maruyama K, Mochizuki S et al. Comparison of DNA sequences of the long terminal repeat of human T lymphotropic virus type I and Japanese and Brazilian american isolates. Oncol Rep 1997; 4: 1187–1188.
19. da Costa CA, Furtado KC, Ferreira L de S et al. Familial transmission of human T-cell lymphotropic virus: silent dissemination of an emerging but neglected infection. PLoS Negl Trop Dis 2013; 7: e2272.
20. de Castro Viana GM, Minczewski M do D, de Oliveira RA et al. Seroprevalence of HTLV-1/2 among blood donors in the state of Maranhão, Brazil. Rev Bras Hematol Hemoter 2014; 36: 50–53.
21. de Oliveira EH, Oliveira-Filho AB, Souza LA et al. Human T-cell lymphotropic virus in patients infected with HIV-1: molecular epidemiology and risk factors for transmission in Piauí, Northeastern Brazil. Curr HIV Res 2012; 10: 700–707.
22. Brouet N, de Queiroz Sousa A, Basilio FP, et al. Prevalence of HIV-1, HSV-2 and HTLV antibody, in Fortaleza, Ceara, Brazil, 1993–1994. Int J STD AIDS 1996; 7: 365–369.
23. Pimenta FC, Kashima Haddad S, de Medeiros Filho JG, et al. Prevalence ratio of HTLV-I in nursing mothers from the state of Paraíba, Northeastern Brazil. J Hum Lact 2008; 24: 289–292.
24. Linhares MI, Eizuru Y, de Andrade GP et al. Human T cell leukemia virus type 1 (HTLV-I) antibodies in healthy populations and renal transplanted patients in the north-east of Brazil. Microbiol Immunol 1998; 42: 475–478.
25. Nunes D, Boa-Sorte N, Graça MF et al. HTLV-1 is predominantly sexually transmitted in Salvador, the city with the highest HTLV-1 prevalence in Brazil. PLoS One 2017; 12: e0171303.
27. Sequeira CG, Tamegão-Lopes BP, Santos EJet al. Descriptive study of HTLV infection in a population of pregnant women from the state of Pará, Northern Brazil. Rev Soc Bras Med Trop 2012; 45: 453–456.

28. Dal Fabbro MM, Curtha RV, Bóia MN, et al. HTLV-1/2 infection: prenatal performance as a disease central strategy in State of Mato Grosso do Sul. Rev Soc Brasil Med Trop 2008; 41: 148–151.

29. Medeiros ACM, Vidal LRR, von Linsingen R, et al. Confirmatory molecular method for HTLV-1/2 infection in high-risk pregnant women. J Med Virol 2017; 90: 998–1001.

30. Mello MA, da Conceição AF, Sousa SM et al. HTLV-1 in pregnant women from the Southern Bahia, Brazil: a neglected condition despite the high prevalence. Viral J 2014; 11: 28.

31. Machado Filho AC, Sardinha JF, Ponte RL et al. Prevalence of infection for HIV, HTLV, HBV and of syphilis and chlamydia in pregnant women in a tertiary health unit in the western Brazilian Amazon region. Rev Bras Ginecol Obstet 2010; 32: 176–183.

32. Moura AA, de Mello MJ, Correa JB. Prevalence of syphilis, human immunodeficiency virus, hepatitis B virus, and human T-lymphotropic virus infections and coinfections during prenatal screening in an urban Northeastern Brazilian population. Int J Infect Dis 2015; 39: 10–15.

33. Guimarães de Souza V, Lobato Martins M, Camerino-Proietti AB, et al. High prevalence of HTLV-1 and 2 viruses in pregnant women in São Luís, state of Maranhão, Brazil. Rev Soc Bras Med Trop 2012; 45: 159–162.

34. Monteiro DL, Taquette SR, Sodré Barmpas DB, et al. Prevalence of HTLV-1/2 in pregnant women living in the metropolitan area of Rio de Janeiro. PLoS Negl Trop Dis 2014; 8: e3146.

35. Lima LH, Viana MC. Prevalence and risk factors for HIV, syphilis, hepatitis B, hepatitis C, and HTLV-I/II infection in low-income postpartum and pregnant women in Greater Metropolitan Vitória, Espirito Santo State, Brazil. Cad Saúde Pública 2009; 25: 668–676.

36. Olbrich Neto J, Meira DA. Soroprevalence of HTLV-I/II, HIV, syphilis and toxoplasmosis among pregnant women seen at Botucatu, São Paulo, Brazil: risk factors for HTLV-I/II infection. Rev Soc Bras Med Trop 2004; 37: 28–32.

37. Azevedo Rdo S, Oliveira CS, Vasconcelos PF. Chikungunya risk for Brazil. Rev Saude Publica 2015; 49: 58.

38. Nunes MR, Faria NR, de Vasconcelos JM et al. Emergence and potential for spread of Chikungunya virus in Brazil. BMC Med 2015; 13: 102.

39. Vallinoto AC, Pontes GS, Muto NA et al. Identification of human T-cell lymphotropic virus infection in a semi-isolated Afro-Brazilian quilombo located in the Marajo Island (Pará, Brazil). Mem Inst Oswaldo Cruz 2006; 101: 103–105.

40. Kanzaki L, Maruyama K, Fukushima T, et al. Markers of human T lymphotropic virus type I in patients with cancer of uterine cervix in Amazon, Brazil. Int J Onco1 1997; 10: 1021–104.

41. Pessoa R, Watanabe JT, Nukui Y, et al. Molecular characterization of human T-cell lymphotropic virus type 1 full and partial genomes by Illumina massively parallel sequencing technology. PLoS One 2014; 9:e93374.

42. Liu S, Diao L, Huang C, Li Y et al. The role of decidual immune cells on human pregnancy. J Reprod Immunol 2017; 124: 44–53.

43. Nakamura N, Miyazaki K, Kitano Y et al. Suppression of cytotoxic T-lymphocyte activity during human pregnancy. J Reprod Immunol 1993; 23: 119–130.