ARTIGO ORIGINAL

Terapia de magneto-hipertermia no modelo de tumor de glioblastoma on-a-Chip

Magnetic hyperthermia therapy in glioblastoma tumor on-a-Chip model

Javier Bustamante Mamani1, Bruna Souto Marinho1, Gabriel Nery de Albuquerque Rego1, Mariana Penteado Nucci2, Fernando Alvieri1, Ricardo Silva dos Santos2, João Victor Matias Ferreira1, Fernando Anselmo de Oliveira1, Lionel Fernel Gamarra1

1 Hospital Israelita Albert Einstein, São Paulo, SP, Brasil.
2 Hospital das Clínicas, Faculdade de Medicina, Universidade de São Paulo, São Paulo, SP, Brasil.

DOI: 10.31744/einstein_journal/2020AO4954

RESUMO

Objetivo: Avaliar a terapia de magneto-hipertermia em modelo de tumor de glioblastoma on-a-Chip.

Métodos: As nanopartículas magnéticas recobertas com aminosílica foram utilizadas para a terapia da magneto-hipertermia, sendo avaliada a taxa de absorção específica das nanopartículas magnéticas em 300 Gauss e 305kHz. Uma pré-cultura de células C6 foi realizada e, seguidamente, foi feito o cultivo das células 3D no chip. O processo de magneto-hipertermia no chip foi realizado após administração de 20µL de nanopartículas magnéticas (10mgFe/mL), utilizando os parâmetros que geraram o valor da taxa de absorção específica. A eficácia da terapia de magneto-hipertermia foi avaliada pela viabilidade celular por meio dos corantes fluorescentes acetoximetiléster de calceína (492/513nm), para células vivas, e etídio homodímero-1 (526/619nm), para células mortas. Resultados: As nanopartículas magnéticas, quando submetidas ao campo magnético alternado (300 Gauss e 305kHz), produziram um valor médio da taxa de absorção específica de 115,4±6,0W/g. A cultura 3D das células C6 avaliada por imagem de microscopia de campo claro mostrou a proliferação e a morfologia das células antes da aplicação da terapia de magneto-hipertermia. As imagens de fluorescência mostraram diminuição da viabilidade das células cultivadas no organ-on-a-Chip em 20% e 100% após 10 e 30 minutos, respectivamente, da aplicação da terapia de magneto-hipertermia. Conclusão: O processo terapêutico da magneto-hipertermia no modelo de tumor glioblastoma on-a-chip foi eficaz para produzir lise total das células após 30 minutos de terapia.

Descritores: Glioblastoma/terapia; Hipertermia; Nanopartículas; Microfluídica; Células C6

ABSTRACT

Objective: To evaluate the magnetic hyperthermia therapy in glioblastoma tumor-on-a-Chip model using a microfluidics device. Methods: The magnetic nanoparticles coated with aminosilane were used for the therapy of magnetic hyperthermia, being evaluated the specific absorption rate of the magnetic nanoparticles at 300 Gauss and 305kHz. A preculture of C6 cells was performed before the 3D cells culture on the chip. The process of magnetic hyperthermia on the Chip was performed after administration of 20µL of magnetic nanoparticles (10mgFe/mL) using the parameters that generated the specific absorption rate value. The efficacy of magnetic hyperthermia therapy was evaluated by using the cell viability test through the following fluorescence staining: calcein acetoxyethyl ester (492/513nm), for live cells, and ethidium homodimer-1 (526/619nm) for dead cells dyes. Results: Magnetic nanoparticles when submitted to the alternating magnetic field (300 Gauss and 305kHz) produced a mean value of the specific absorption rate of 115.4±6.0W/g. The 3D culture of C6 cells evaluated by light field microscopy imaging showed the proliferation and morphology of the cells prior to the application of magnetic hyperthermia therapy. Fluorescence...
images showed decreased viability of cultured cells in organ-on-a-Chip by 20% and 100% after 10 and 30 minutes of the magnetic hyperthermia therapy application respectively. Conclusion: The study showed that the therapeutic process of magnetic hyperthermia in the glioblastoma on-a-chip model was effective to produce the total cell lise after 30 minutes of therapy.

Keywords: Glioblastoma/therapy; Hyperthermia; Nanoparticles; Microfluidics; C6 cells

INTRODUÇÃO

Na última década, a nanotecnologia e os nanomateriais deram lugar a uma nova área na medicina, a denominada “nanomedicina”. Como resultado das pesquisas desenvolvidas nesta área, diversos produtos já estão sendo comercializados e usados na clínica médica, como as nanopartículas biocompatíveis aplicadas tanto na terapia como no diagnóstico de tumores. Uma das técnicas aplicadas no tratamento de tumores é a terapia hipertémica, que utiliza estratégias baseadas em ondas de radiofrequência, ultrassom e microndas, bem como tratamentos com laser associado ao uso de nanopartículas com propriedades magnéticas. As nanopartículas magnéticas (NPM), quando submetidas a um campo magnético alternado (CMA), geram aquecimento, mediante a transformação de energia magnética em energia térmica usada no tratamento de tumores, como mostrado na figura 1. O incremento da temperatura, denominando de hipertémia, usando NPM, corresponde ao que é chamado de terapia de magneto-hipertémia (MHT). A MHT tem sido alvo de pesquisas no tratamento de tumores de glioblastoma (GBM).
Terapia de magneto-hipertermia no modelo de tumor de glioblastoma on-a-Chip

MÉTODOS

O estudo foi realizado no Centro de Pesquisa Experimental e no Centro de Experimentação e Treinamento em Cirurgia do Instituto Israelita de Ensino e Pesquisa do Hospital Albert Einstein, São Paulo, Brasil.

Nanopartículas magnéticas

As NPM dispersas em meio aquoso formando um ferrofluido, disponíveis comercialmente como fluidMAG-Amine (Chemicell, Berlin, Germany), foram usadas na terapia da MHT no modelo GBM on-a-chip. As NPM possuem núcleo com fase cristalina da magnetita (Fe₃O₄), sendo cobertas com aminosilana, que as torna biocompatíveis. O diâmetro hidrodinâmico das NPM é de 100nm, com número de nanopartículas ~1,8±10¹⁵/g e densidade de ~1,25g/cm³.

Descrição do equipamento de magneto-hipertermia

A terapia de MHT no dispositivo microflúdico foi aplicada usando sistema de aquecimento magnético composto por: aplicador DM100 (nB nanoScale Biomagnétics, Zaragoza, Spain) de campo magnético ajustável (50-300 Gauss) em diversos modos de frequências (305, 557, 715 e 874kHz); e um módulo controlador DMC1 (nB nanoScale Biomagnéticas, Zaragoza, Spain), que permitiu realizar a programação dos ensaios, monitorização das medições e análise dos resultados. A monitorização da temperatura foi realizada mediante sonda de temperatura de fibra ótica (Luxtron 3204, Luxtron Corporation, Northwestern Parkway, CA, USA). O sistema foi controlado pelo software MaNiaC (nB nanoScale Biomagnéticas, Zaragoza, Spain), que facilitou a programação e o processamento de dados.

Determinação da taxa de absorção específica das nanopartículas magnéticas de óxido de ferro

A determinação da taxa de absorção específica (SAR - specific absorption rate) das NPM (10mgFe/mL) foi realizada submetendo estas ao CMA (300 Gauss, 305kHz), registrando a variação da temperatura no tempo e que, para fins estatísticos, foram realizadas em quatro medidas. O cálculo da SAR foi realizado mediante o software MaNiaC, utilizando a relação

\[
SAR \ (W/g) = \frac{m_{NP} c_{NP} m_1 c_1}{m_{NP}} \left(\frac{dT}{dt} \right)_{max},
\]

onde \(m_{NP}\) é a massa das NPM, \(m_1\) massa da água (1000kg/m³), \(c_{NP}\) o calor específico da magnetita

OBJETIVO

 Avaliar a eficiência da terapia de magneto-hipertermia em tumores de glioblastoma on-a-chip.
(0,16kCal/kg°C), c_1 o calor específico da água (1,0kCal/kg°C) e $(dT/dt)_{max}$ é máxima variação da curva de aquecimento das NPM.

Pré-cultura celular da linhagem C6

Foram utilizadas, neste estudo, células C6 de glioma, uma linhagem de GBM multiforme de ratos (Banco de Células de Rio de Janeiro – BCRJ, código: 0057), que tem a capacidade de formar tumores in vivo e compartilhar várias características malignas com o GBM humano.\(^{(17,18)}\) Estas células C6 foram cultivadas em meio RPMI (GIBCO® Invitrogen Corporation, CA, USA), suplementado com 10% de soro fetal bovino (SFB) (GIBCO® Invitrogen Corporation, CA, USA), 1% de penicilina-estreptomicina (GIBCO® Invitrogen Corporation, CA, USA) e 1% de L-glutamina (GIBCO® Invitrogen Corporation, CA, USA) a 37°C (5% CO\(_2\)), em garrafas de cultura celular de 75cm\(^2\) (Corning, USA). Ao atingir confluência celular de 85%, as células foram tripsinizadas utilizando 0,25% tripsina (GIBCO® Invitrogen Corporation, CA, USA), coletadas, centrífugadas a 800rpm por 5 minutos, ressuspensas em meio de cultura na concentração celular de 10\(^7\) células/mL e mantidas resfriadas em banho de gelo.

Cultura celular 3D das células C6 on-a-chip

Para mimetizar o tecido tumoral de GBM, foi utilizada o dispositivo microfluídico da SynVivo Inc (Huntsville, AL, US). Este chip era formado por dois compartimentos, um central e outro externo, separados por interface porosa, visando à cultura de células C6 em 3D na cavidade central, sendo preparado como descrito no protocolo da SynVivo.\(^{(19)}\) Basicamente, 15μL de Matrigel® (40mg/cm\(^2\)) (EMD Milipore, Billerica MA) foram injetados no compartimento central, utilizando seringa e tubulação estéril de Tygon (0,02″ ID × 0,06″ OD) (SynVivo Inc, Huntsville, AL, US) e mantidos na geladeira a 5°C por um período de 2 horas. Meio de cultura RPMI não suplementado foi injetado para lavagem do compartimento, e as células C6 (10\(^7\) células/mL) foram semeadas na cavidade central, a uma vazão de 2μL/minuto, utilizando bomba 11 Elite Nanomite (Harvard Apparatus, Holliston, MA). No compartimento externo, foi escoado RPMI suplementado com 10% SFB a 5μL/minuto e mantido durante todo o período de cultura. O chip foi colocado em estufa de dióxido de carbono a 5% e 37°C para a cultura 3D das células C6, com troca do meio de cultura da cavidade a cada 4 horas, durante 48 horas.

Ensaio do processo de magneto-hipertermia no glioblastoma on-a-chip

Após 48 horas de cultura 3D das células C6 on-a-chip, foi realizado o ensaio de MHT. Para tal finalidade, o chip foi retirado da estufa, e a cavidade central foi lavada com RPMI (0%SFB); seguidamente, foram injetados 20μL de NPM, na concentração de 10mgFe/mL no mesmo local, utilizando a bomba de infusão. O chip foi levado ao equipamento de MHT e colocado no aplicador, como mostrado na figura 2. O experimento foi planejado para aplicação do CMA (300 Gauss, 305kHz) no chip por um período de 30 minutos. Com a finalidade de ter o controle da temperatura na faixa terapêutica de 41 a 43°C, foi utilizada quantidade da suspensão coloidal de NPM (200μL contidos em um eppendorf na concentração de 10mgFe/mL) como amostra referencial, que foi submetida ao mesmo CMA, em conjunto com o chip e a temperatura monitorada mediante o sistema de fibra ótica.

![Figura 2. Aplicação da magneto-hipertermia no glioblastoma on-a-chip.](image)

(A) Equipamento de magneto-hipertermia e o aplicador de campo magnético alternado (seta amarela indica a localização do chip); (B) Imagem mostrando o chip inserido na região central da bobina que gera o campo magnético alternado; (C) Tumor de glioblastoma on-a-chip para a terapia da magneto-hipertermia.

Avaliação da eficiência do processo de magneto-hipertermia no glioblastoma on-a-chip

A avaliação da eficiência da terapia de MHT no GBM on-a-chip foi realizada usando o kit LIVE/DEAD® (Molecular Probes, Eugene, Oregon, USA) de ensaio.
de viabilidade e/ou toxicidade celular, mediante imagem de fluorescência, no qual foram usados 4mM de acetoximetiléster de calceína (Ca-AM) e 12mM de etídio homodímero-1 (EthD-1). A fluorescência de ambos os corantes ocorre ao interagir com células vivas (para Ca-AM – excitação/emissão: 492/513nm) ou mortas (para EthD-1 – excitação/emissão: 526/619nm). O vermelho fluorescente da acetoximetiléster indica a atividade de esterase intracelular de células viáveis, e o vermelho fluorescente do EthD-1 indica perda de integridade da membrana plasmática. A análise da viabilidade celular antes e após a terapia de MHT nas células tumorais on-a-chip foi realizada injetando 15μL da solução formada por Ca-AM e EthD-1 na cavidade central do chip e, seguidamente, foram registradas imagens de fluorescência, utilizando um microscópio invertido Nikon Eclipse Ti-E (Tokio, Japan). As contagens de células vivas (verde) e mortas (vermelhas) foram feitas nas duas regiões do organ-on-a-chip (região I e II, a bifurcação da entrada dos fluidos e a cavidade central do chip, respectivamente). O experimento desde o cultivo celular 3D até a avaliação da viabilidade celular foi repetido três vezes.

II RESULTADOS
Avaliação da taxa de absorção específica das nanopartículas magnéticas de óxido de ferro
A capacidade de aquecimento das NPM foi caracterizada para aplicação na terapia da MHT. A curva de aquecimento das NPM é mostrada na figura 3, indicando rápido incremento da temperatura em um período de 60 segundos. O inset da figura 3 (box plot) mostra a avaliação da distribuição dos valores da SAR com valor médio de 115,4±6,0W/g.

Cultura celular 3D das células C6 on-a-chip
A cultura 3D das células C6 foi realizada na cavidade central do chip e avaliada mediante imagens de microscopia de campo claro. A figura 4, mostra imagens de células C6 em cultura após 4 e 48 horas da semeadura (Figuras 4A e 4B), respectivamente, assim como a morfologia das células C6 e sua proliferação (Figuras 4C e 4D) respectivamente, na região central do chip.

Nas imagens da figura 4, pode-se observar o início do crescimento das células C6 em regiões isoladas formando ilhas, com a proliferação celular nas ilhas, dando início ao cultivo celular em 3D sobre a estrutura de Matrigel® mimetizando a formação de um tecido tumoral de GBM.

Avaliação da eficiência da terapia da magneto-hipertermia no tumor de glioblastoma on-a-chip
Após crescimento do tecido tumoral no chip, foi aplicada a terapia de MHT para realização do ensaio de viabilidade das células C6, como mostrado na figura 5. O dispositivo microfluídico na figura 5A mostra as regiões de avaliação da viabilidade celular indicadas por quadros nas cores azul (região I, mostrando a bifurcação da entrada dos fluidos) e vermelho (região II, mostrando a cavidade central). As figuras 5B e 5C mostram imagens de microscopia de campo claro do cultivo de células C6 nas regiões I e II, respectivamente. Nas figuras 5D e 5E, são apresentadas imagens de fluorescência que correspondem às células C6 vivas reagentes a Ca-AM antes da terapia de MHT, nas regiões I e II do Chip, respec-

\[\text{B: campo magnético; f: frequência de oscilação do campo magnético; SAR: taxa de absorção específica; NPM: nanopartículas magnéticas.}\]

Figura 3. Curva de aquecimento das nanopartículas magnéticas submetidas a um campo magnético alternado de 300 Gauss e frequência de oscilação de 305kHz. O inset mostra a distribuição dos valores da taxa de absorção específica das nanopartículas magnéticas.

Figura 4. Imagens de microscopia de campo claro da cultura celular 3D de células C6 on-a-chip. Imagem de células aderidas na cavidade central do chip após (A) 4 horas e (B) 48 horas de cultivo (4X); (C) Colônia de células C6 e sua morfologia (20X) e (D) Detalhes da proliferação celular (4X)
Mamani JB, Marinho BS, Rego GN, Nucci MP, Alvieri F, dos Santos RS, Ferreira JV, Oliveira FA, Gamarra LF

6

Einstein (São Paulo). 2020;18:1-8

O desenvolvimento destes sistemas microfluídicos para mimetizar tumores está sendo utilizado em diversas terapias, despertando o interesse na comunidade científica, afim de substituir o uso de modelos murinos. (21-23) Uma destas terapias é a aplicação de tratamentos hiper térmicos, como o MHT em tumores. Estudos de MHT em células tumorais utilizando NPM mostram grande potencial no tratamento para tumores de GBM, porém, devido à variedade de parâmetros da aplicação do MHT e ao uso de diferentes tipos de células tumorais, tem sido difícil a avaliação de quais são os melhores parâmetros desta terapêutica no tratamento tumoral, bem como configura-se um obstáculo para aplicação desta modalidade como padrão no tratamento de GBM.(24) Isto pode ser verificado na revisão de Gupta et al.,(25) que descreveram os diferentes parâmetros de aplicação do MHT em modelos de tumor in vitro e as características da NPM utilizadas. No estudo de Hanini et al.,(26) foi realizada a avaliação do MHT em células de glioma (U87-MG) tratadas com NPM de γ-Fe₂O₃ recobertas com poliol, com diâmetro de 10nm,

FIGURA 5. Ensaio de viabilidade das células C6 mostrando células vivas coradas com acetoximetiléster de calceína (verde) e células mortas coradas com etídio homodímero-1 (vermelho). (A) No dispositivo microfluídico, estão ressaltadas as duas regiões de análise: na cor azul, a região I (a bifurcação da entrada de fluidos no chip) e, na cor vermelha, a região II (a cavidade central do chip); (B e C) Imagens de microscopia de campo claro, mostrando o cultivo de células nas regiões I e II, respectivamente. (D e E) Imagens de fluorescência das células C6 vivas (em verde) antes da terapia da magneto-hipertermia. (F e G) Imagens de fluorescência das células C6 vivas (em verde) e mortas (em vermelho), após 10 minutos da terapia da magneto-hipertermia no chip. (H e J) Imagens de fluorescência das células C6 mortas (em vermelho) nas regiões I e II de análise, após 30 minutos de terapia de magneto-hipertermia. Todas as imagens de fluorescência apresentadas são compostas da sobreposição das imagens resultantes da análise de cada corante fluorescente (acetoximetiléster de calceína e etídio homodímero-1) e subtração posterior do background.

DISCUSSÃO

A microfluídica tem proporcionado grande desenvolvimento na engenharia de tecidos, visando ao entendimento de processos biológicos em estudos in vitro.(20) O desenvolvimento destes sistemas microfluídicos para mimetizar tumores está sendo utilizado em diversas terapias, despertando o interesse na comunidade científica, afim de substituir o uso de modelos murinos.(21-23) Os ensaios de fluorescência da figura 5 mostraram que NPM com valor de SAR (115,4±6,0W/g) foram adequadas para o aquecimento do tecido tumoral até a temperatura terapêutica, quando submetidas a um CMA com campo magnético de 300 Gauss e frequência de 305kHz. O tratamento hipertérmico mostrou redução da viabilidade celular em 20%, após 10 minutos, e em 100% após 30 minutos de MHT, mediante o uso do kit de viabilidade celular (LIVE/DEAD®).

Einstein (São Paulo). 2020;18:1-8
na concentração de 50μgFe/mL, submetidas ao CMA com frequência de oscilação de 700kHz e campo magnético de 289,67Oe, com tempo de aplicação de 60 minutos mantendo-se a uma temperatura terapêutica de 42°C e mostrando diminuição na viabilidade celular de 50%. Em outro estudo, foram utilizadas células de glioma C6 de rato e fibroblasto de camundongo utilizadas em nosso estudo, Gupta et al., (28) avaliaram as células de glioma C6 de rato e fibroblasto de camundongo NIH3T3, utilizando NPM de Fe2O3 revestidas com células de glioma C6 de rato e fibroblasto de camundongo utilizadas em nossos estudos, permitindo melhor avaliação de abordagens terapêuticas alternativas, como o MHT, combinadas ou não com outras técnicas em doenças com alta severidade e baixa resposta a tratamentos convencionais como são os GBM.

Atualmente, o modelo organ on-a-chip de GBM tem sido utilizado para avaliar a capacidade de modelar a progressão de regiões hipercelulares do GBM, observando pacientes, imitando a obstrução de vasos sanguíneos e modelando a entrega de nutrientes e gradientes de oxigênio durante a evolução do GBM; (34) triagem de drogas de alto rendimento e liberação prolongada de drogas; (35-37) avaliar o compartimento vascular que apresenta uma rede de vasos em comunicação com tumores sólidos 3D imitando microambiente do tumor, incluindo o conhecido como efeito Enhanced Permeability and Retention (EPR), (38) entre outros. Portanto, a otimização da terapia da MHT em um dispositivo microflúdico que mimetize as características do GBM se apresenta com potencial aplicação para o translacional em humanos.

O modelo de GBM on-a-chip do presente trabalho proporcionou bases para a implementação da metodologia da técnica de MHT, visando avaliar seu potencial terapêutico em GBM temporalmente, embora nosso modelo tenha apresentado um fator limitante, que foi a falta da rede vascular associada ao tecido tumoral, mas que deve ser implementada em trabalhos futuros.

CONCLUSÃO

O presente estudo mostrou eficiência da terapia de magneto-hipertermia no tratamento de tumor de glioblastoma on-a-chip, com lise de todas as células tumorais após 30 minutos de terapia de magneto-hipertermia, usando nanopartículas de óxido de ferro recobertas com aminosilana (usadas em ensaios clínicos). Também, o valor de taxa de absorção específica foi o tipicamente usado em ensaios de terapia de magneto-hipertermia em tumores de glioblastoma humano.

AGRADECIMENTOS

Esta pesquisa foi financiada pelo Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) (400856/2016-6) e Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) (2016/21470-3; 2014/50983-3).

INFORMAÇÃO AOS AUTORES

Mamani JB: http://orcid.org/0000-0001-5038-0070
Marinho BS: http://orcid.org/0000-0003-3075-2724
Rego GN: http://orcid.org/0000-0003-2011-0373
Nucci MP: http://orcid.org/0000-0002-1502-9215
Alvieri F: http://orcid.org/0000-0001-9876-978X
dos Santos RS: http://orcid.org/0000-0001-7523-8425
Ferreira JV: http://orcid.org/0000-0001-8370-1862
Oliveira FA: http://orcid.org/0000-0002-7226-1694
Gamarra LF: http://orcid.org/0000-0002-3910-0047

AGRADECIMENTOS

Esta pesquisa foi financiada pelo Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) (400856/2016-6) e Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) (2016/21470-3; 2014/50983-3).
References

1. Boraschi D, Castellano LR, Italiani P. Editorial: Interaction of nanomaterials with the immune system: role in nanosafety and nanomedicine. Front Immunol. 2017;8:1688.

2. Marchesan S, Prato M. Nanomaterials for (Nano) medicine. ACS Med Chem Lett. 2012;4(2):147-9.

3. Etheridge ML, Campbell SA, Erdman AG, Haynes CL, Wolf SM, McCullough J. The big picture on nanomedicine: the state of investigational and approved nanomedicine products. Nanomedicine (Lond). 2013;9(1):1-14. Review.

4. Bhardwaj V, Kaushik A. Biomedical Applications of Nanotechnology and Nanomaterials. Micromachines (Basel). 2017;8(10). pii:E298.

5. Chaturvedi VK, Singh A, Singh VK, Singh MP. Cancer Nanotechnology: A New Revolution for Cancer Diagnosis and Therapy. Curr Drug Metab. 2019;20(6):416-29.

6. Elsherbini AA, Saber M, Aggag M, El-Shahawy A, Shokier HA. Laser and radiofrequency-induced hyperthermia treatment via gold-coated magnetic nanocomposites. Int J Nanomedicine. 2011;6:2155-65.

7. Perlman O, Weitz IS, Azhari H. Target visualisation and microwave hyperthermia monitoring using nanoparticle-enhanced transmission ultrasound (NETUS). J Hyperthermia. 2018;34(6):773-85.

8. Kaczmarek K, Hornowski T, Dobosz B, Józefczak A. Influence of Magnetic Nanoparticles on the Focused Ultrasound Hyperthermia. Materials (Basel). 2018;11(9):E1607.

9. Liu H, Zhang W, Khan M, Lin L, Lin JM. MoS2-LA-PEI nanocomposite carrier for real-time imaging of ATP metabolism in glioma stem cells co-cultured with endothelial cells on a microfluidic system. Biosens Bioelectron. 2018;99:142-9.

10. Liu H, Zhang J, Chen X, Du XS, Zhang JL, Liu G, et al. Application of iron oxide nanoparticles in glioma imaging and therapy: from bench to bedside. Nanoscale. 2016;8(15):7808-26.

11. Liu H, Jie M, He Z, Li HF, Lin JM. Study of antioxidant effects on malignant glioma cells by constructing a tumor-microvascular structure on microchip. Anal Chim Acta. 2017;978:1-9.

12. Le Fèvre R, Durand-Dubief M, Chebbi I, Mandaawala C, Lagroix E, Valet JP, et al. Enhanced antitumor efficacy of biocompatible magnetosomes for the magnetic hyperthermia treatment of glioblastoma. Theranostics. 2017;7(18):4618-31.

13. Cheng Y, Muroski ME, Petit DC, Mansell R, Vemulkar T, Morshed RA, et al. Rotating magnetic field induced oscillation of magnetic particles for in vitro mechanical destruction of malignant glioma. J Control Release. 2016;223:75-84.

14. Chanon Y, Taki S, Sampeteanre O, Saya H, Sudo R. Endothelium-induced three-dimensional invasion of heterogeneous glioma initiating cells in a microfluidic coculture platform. Integr Biol. 2017;9(9):762-73.

15. Edmondsrorr N, Broglie JJ, Aducko AF, Yang L. Three-dimensional cell culture systems and their applications in drug discovery and cell-based biosensors. Assay Drug Dev Technol. 2014;12(4):207-18. Review.

16. Ahmed AA, Luo CJ, Perez-Garrido S, Browse CR, Thrashwolou C, Stoyanov SD, et al. Three-dimensional cancer cell culture in high-yield multiscale scaffolds by shear spinning. Biotechnol Prog. 2019;35(2):e2750.

17. Grobben B, De Deyn PP, Siegers H. Rat C6 glioma as experimental model system for the study of glioblastoma growth and invasion. Cell Tissue Res. 2002;310(3):257-70.

18. Barth RF, Kaur B. Rat brain tumor models in experimental neuro-oncology: the C6, 9L, 9T, RG2, F98, BT4C, RT-2 and CNS-1 gliomas. J Neurooncol. 2009;94(3):299-312.

19. Synvivo. 3D Tumor Assays Using SynTumor Idealized Network Kits and Chips - Technical Manual [Internet]. Huntsville, Alabama: Synvivo; 2018 [cited 2018 July 20]. Available from: https://www.synvivobo.com/wp-content/uploads/2016/07/SynBBB_3D-model-Basic-configuration-Technical-Manual.pdf

20. Sosa-Hernández JE, Villa-Carrillo AM, Romero-Castillo KD, Aguilar-Aguila-Isás MA, García-Reyes IE, Hernández-Antonio A, et al. Organs-on-a-Chip Module: A Review from the Development and Applications Perspective. Micromachines (Basel). 2018;9(10):E536. Review.

21. Kalinowska D, Grabowska-Jadach I, Liwinska M, Drozd M, Pietrzak M, Dybko A, et al. Studies on effectiveness of PDT on 3D tumor model under microfluidic conditions using aptamer-modified nanoshells. Biosens Bioelectron. 2019;126:214-21.

22. Shirive VS, Bi Y, Curtis MB, Lezía A, Goedgebeure MM, Goedgebeure SP, et al. Tumor-on-a-chip platform to investigate progression and drug sensitivity in cell lines and patient-derived organoids. Lab Chip. 2018;18(23):3687-702.

23. Weinhart M, Hooke A, Hippenstiel S, Kurreck J, Hedinich T. 3D organ models-Revolution in pharmacological research? Pharmacol Res. 2018;139:446-51. Review.

24. Mahmoudi K, Bouras D, Bozec D, Ikvov R, Hadipanayis C. Magnetic hyperthermia therapy for the treatment of glioblastoma: a review of the therapy’s history, efficacy and application in humans. Int J Hyperthermia. 2018;34(8):1316-28. Review.

25. Gupta R, Sharma D. Evolution of Magnetic Hyperthermia for Glioblastoma Multiforme Therapy. ACS Chem Neurosci. 2019;10(3):1157-72.

26. Hanini A, Lartigue L, Gavard J, Schmitt A, Kacem K, Wilhelm C, et al. Thermosensitivity profile of malignant glioma U87-MG cells and human endothelial cells following γ-Fe2O3 NPs internalization and magnetic field application. RSC Advances. 2016;6(19):15415-122.

27. Shinkai M, Yanase M, Honda H, Wakabayashi T, Yoshida J, Kobayashi T. Intracranial hyperthermia for cancer using magnetic cationic liposomes: in vitro study. Jpn J Cancer Res. 1996;87(11):1179-83.

28. Gupta R, Sharma D. Biofunctionalization of magnetic nanoparticles with stavevia: effect on the size and thermal behaviour for use in hyperthermia applications. Int J Hyperthermia. 2019;36(11):302-12.

29. Jordan A, Scholz R, Maier-Hauff K, van Landeghem FK, Widoefner N, Teichgraebuer U, et al. The effect of thermotherapy using magnetic nanoparticles on rat malignant glioma. J Neurooncol. 2006;78(1):7-14.

30. Araújo-Neto RP, Silva-Freitas EL, Carvalho JF, Pontes TR, Silva KL, Damasceno IH, et al. Monodisperse sodium oleate coated magnetite high susceptibility nanoparticles for hyperthermia applications. J Magn Mater. 2014;364:72-8.

31. Maier-Hauff K, Rothe R, Scholz R, Gneveckow U, Wust P, Thiesen B, et al. Influence of Magnetic Nanoparticles on the Focused Ultrasound Hyperthermia. Materials (Basel). 2018;9(11):E1607.

32. Maier-Hauff K, Ulrich F, Nestler D, Niehoff H, Wust P, Thiesen B, et al. The effect of thermotherapy using magnetic iron-oxide nanoparticles combined with external beam radiotherapy: results of a feasibility study on patients with glioblastoma multiforme. J Neurooncol. 2007;81(1):53-60.

33. Maier-Hauff K, Ulrich F, Nestler D, Niehoff H, Wust P, Thiesen B, et al. Efficacy and safety of intratumoral thermotherapy using magnetic iron-oxide nanoparticles combined with external beam radiotherapy on patients with recurrent glioblastoma multiforme. J Neurooncol. 2011;103(2):317-24.

34. van Landeghem FK, Maier-Hauff K, Jordan A, Hoffmann KT, Gneveckow U, Scholz R, et al. Post-mortem studies in glioblastoma patients treated with thermotherapy using magnetic nanoparticles. Biomaterials. 2009;30(1):52-7.

35. Ayuso JM, Monge R, Martinez-Gonzalez A, Virumales-Muñoz M, Llamazares GA, Berganzo J, et al. Glioblastoma on a microfluidic chip: generating pseudopalisades and enhancing aggressiveness through blood vessel obstruction events. Neuro-oncol. 2017;19(4):503-13.

36. Fan Y, Nguyen DT, Akay Y, Xu F, Akay M. Engineering a Brain Cancer Chip for High-throughput Drug Screening. Sci Rep. 2016;6(11):25062.

37. Pohlmann ES, Patel K, Guo S, Dukes MJ, Sheng Z, Kelly DF. Real-time visualization of nanoparticles interacting with glioblastoma stem cells. Nano Lett. 2015;15(4):2329-35.

38. Ma J, Li N, Wang Y, Wang L, Wei W, Shen L, et al. Engineered 3D tumor model for study of glioblastoma aggressiveness and drug evaluation on a detachably assembled microfluidic device. Biomed Microdevices. 2018;20(3):80.

39. Tang Y, Sorouf S, Sheffield JB, Wang B, Prabhakarpandian B, Kiani MF. A Biomimetic Microfluidic Tumor Microenvironment Platform Mimicking the EPR Effect for Rapid Screening of Drug Delivery Systems. Sci Rep. 2017;7(11):9359.