The Immune Signatures data resource, a compendium of systems vaccinology datasets

Joann Diray-Arce1,2,3,28, Helen E. R. Miller2,3,28, Evan Henrich2,3,28, Bram Gerritsen4, Matthew P. Mule5,6, Slim Fourati7, Jeremy Gygi8, Thomas Hagan9,10,11, Lewis Tomalin12, Dmitry Rychkov13, Dmitri Kazmin14, Daniel G. Chawla8, Hailong Meng4, Patrick Dunn15, John Campbell15, The Human Immunology Project Consortium (HIPC)4, Minnie Sarwal13, John S. Tsang5, Ofer Levy1,2,3,16, Bali Pulendran10, Rafick Sekaly7, Aris Floratos17, Raphael Gottardo2,3,18, Steven H. Kleinstein4,28 & Mayte Suárez-Fariñas12,19,28

Vaccines are among the most cost-effective public health interventions for preventing infection-induced morbidity and mortality, yet much remains to be learned regarding the mechanisms by which vaccines protect. Systems immunology combines traditional immunology with modern ‘omic profiling techniques and computational modeling to promote rapid and transformative advances in vaccinology and vaccine discovery. The NIH/NIADD Human Immunology Project Consortium (HIPC) has leveraged systems immunology approaches to identify molecular signatures associated with the immunogenicity of many vaccines. However, comparative analyses have been limited by the distributed nature of some data, potential batch effects across studies, and the absence of multiple relevant studies from non-HIPC groups in ImmPort. To support comparative analyses across different vaccines, we have created the Immune Signatures Data Resource, a compendium of standardized systems vaccinology datasets. This data resource is available through ImmuneSpace, along with code to reproduce the processing and batch normalization starting from the underlying study data in ImmPort and the Gene Expression Omnibus (GEO). The current release comprises 1405 participants from 53 cohorts profiling the response to 24 different vaccines. This novel systems vaccinology data release represents a valuable resource for comparative and meta-analyses that will accelerate our understanding of mechanisms underlying vaccine responses.

1Precision Vaccines Program, Boston Children’s Hospital, Boston, MA, USA. 2Harvard Medical School, Boston, MA, USA. 3Fred Hutchinson Cancer Research Center, Seattle, WA, USA. 4Yale School of Medicine, New Haven, CT, USA. 5Multiscale Systems Biology Section, Laboratory of Immune System Biology, NIAID NIH Center for Human Immunology, NIH, Bethesda, MD, USA. 6NIH-Oxford-Cambridge Scholars Program, Department of Medicine, Cambridge University, Atlanta, GA, USA. 7Emory University School of Medicine, Atlanta, GA, USA. 8Interdepartmental Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT, USA. 9Stanford University School of Medicine, Stanford University, Stanford, CA, USA. 10Division of Infectious Diseases, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA. 11Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA. 12Department of Population Health Sciences and Policy, Icahn School of Medicine at Mount Sinai, New York, New York, USA. 13University of California, San Francisco, San Francisco, CA, USA. 14The Jackson Laboratory for Genomic Medicine, Farmington CT, Rockville, MD, USA. 15ImmPort Curation Team, NG Health Solutions, Rockville, MD, USA. 16Broad Institute of MIT & Harvard, Cambridge, MA, USA. 17Columbia University Medical Center, New York, NY, USA. 18University of Lausanne and University Hospital of Lausanne, Lausanne, Switzerland. 19Department of Genetics and Genomics, Icahn School of Medicine at Mount Sinai, New York, New York, USA. 20These authors contributed equally: Joann Diray-Arce, Helen E. R. Miller, Evan Henrich, Steven H. Kleinstein, Mayte Suárez-Fariñas. *A list of authors and their affiliations appears at the end of the paper. **e-mail: joann.arce@childrens.harvard.edu; mayte.suarezfarinas@mssm.edu
Background & Summary

Vaccines, one of humanity’s greatest public health achievements, save millions of lives every year by preventing infectious diseases\(^1\). Despite their widespread use and efficacy, much remains to be learned regarding their molecular mechanisms of action. This is true both for vaccines against pandemic infections such as influenza\(^2\) and SARS-coronavirus-2\(^4\), as well as for infections for which there are currently no authorized or approved vaccines such as HIV\(^3\)-7. Elucidating the commonalities and differences in the immune responses induced by different vaccines and their association with protective antibody responses will provide deeper insight and a framework for the evidence-based design of better vaccines or vaccination strategies. Recent technologies have provided tools to probe the immune response to vaccination and integrate hierarchical levels of the biological system\(^8\). Alluded to as systems vaccinology\(^9\), this new application of systems biology tools provides new insights into molecular mechanisms of vaccine-induced immunogenicity and protection\(10-13\).

The National Institute of Allergy and Infectious Diseases (NIAID) established a multi-institutional consortium, Human Immunology Project Consortium (HIPC)\(^14,15\), to characterize the immune system in diverse populations in response to a stimulus, such as vaccination, using high-dimensional ‘omic platforms and modern computational tools\(^14\). Since the inception of the consortium in 2010, members of HIPC have published >500 articles, including many that describe molecular signatures associated with vaccine-induced protection. These studies include molecular signatures that predict the immunogenicity of vaccination against yellow fever\(^16-19\), seasonal influenza in healthy young adults, elderly\(20-24\), and children\(25\), shingles\(26-27\), dengue\(28,29\), malaria\(30,31\), and meta-analyses of common signatures across different vaccines\(32-33\). These molecular signatures resulted from large-scale data analysis using high-throughput systems biology approaches coupled with detailed clinical phenotyping in well-characterized human cohorts.

Predicting immunogenicity from ‘omic signatures remains challenging, prompting methodological innovation to advance the field towards delivering on the promises of precision vaccination\(34-38\). The factors that contribute to robust vaccination responses are highly complex and span multiple biological scales. The vast collection of high-dimensional profiling datasets poses significant challenges for comparative analysis of these studies, including biological variability as well as data challenges such as volume, technical noise, and diverse sample processing pipelines. Data integration of cellular and molecular signatures to predict vaccine responses requires harmonization and normalization of data from multiple sources\(37\). The generation of big data poses simultaneous challenges and opportunities with the potential of contributing to precision medicine. The biological interpretation of the resulting molecular features correlated with robust responses is another key factor. Understanding how effective vaccines stimulate protective immune responses, and how these mechanisms may differ between vaccine types and targeted pathogens remains a substantial challenge for the field. Moreover, the systems vaccinology field has been limited by a lack of a formal framework to standardize immune signatures gathered from diverse studies, creating a bottleneck for comparative analysis. To address these challenges, and in support of advances in systems vaccinology by the HIPC project and the broader scientific community, we present the creation of the Immune Signatures Data Resource, a compendium of systems vaccinology studies that enables standardized comparative analysis to identify molecular signatures that correlate with the outcomes of vaccinations.

The current release of the Immune Signatures Data Resource consists of 4795 transcriptomic samples from 1405 participants curated from 30 ImmPort studies (16 from HIPC-related studies, 14 non-HIPC studies) (Fig. 2, Table 1). The transcriptomic profiling dataset is derived from 53 cohorts of 820 young adults (18–49 years old) and 585 (>50 years old) older adult samples. The data resource covers 24 vaccines targeting 11 pathogens and 6 vaccine types (Figs. 1b, 4a, Table 2), thus creating a critical mass of data that will serve as a valuable resource for the broader scientific community. Additionally, data assembly and integration of these data set enables derivation of comparable signatures for each study for comparative analysis of the underlying data.

Methods

Database background information and structure. Compatibility with immport and immune space, the central databases of the human immunology project consortium. Given the exponential growth of the number of datasets of multiple modalities, an urgent need emerged for data sharing across the broader scientific community. The HIPC implements the NIH Data Sharing policy to promote the principles of Findability, Accessibility, Interoperability, and Reusability (FAIR) via ImmPort, created under the National Institute of Allergy and Infectious Diseases Division of Allergy, Immunology, and Transplantation (NIAID-DAIT). ImmPort (ImmPort.org) is an open repository of participant-level large-scale human immunology data designed to aid scientists with data standards and guidelines for efficient secondary analyses\(39-39\). ImmPort facilitates data sharing of immunology studies creating a centralized knowledge base and resources, and serves as a central data repository for HIPC. ImmuneSpace\(40\) extends ImmPort, providing access to additional data (e.g., standardized gene expression matrices) and web-based R tools for data accession, analysis, and reporting. Studies in the Immune Signatures Data Resource are archived through the Shared Data Portal on ImmPort and ImmuneSpace repositories and may be updated over time. To provide a consistent data source for reproducible results, we also archived a static copy of the data as a “virtual study” in ImmuneSpace (Figs. 1a and 2).

Identification of vaccine study cohorts with transcriptomic profiles. Through a literature search conducted from July 2017 to January 2020 with terms including “Vaccine [AND] signatures”, “Vaccine [AND gene expression]”, “Vaccine [AND] immune response [AND] gene expression”, we identified target publications containing transcriptomics profiling datasets and vaccination responses. We found 16 HIPC-funded vaccinology studies in ImmPort with transcriptomics datasets generated with matching immune response outcomes and surveyed HIPC centers of their publications. We excluded non-human study cohorts, cohorts with B cell and T cell transcriptomics since most studies are PBMC or whole blood-derived, studies other than with
Fig. 1 HIPC Immune Signatures Data Resource pipeline and study demographics. (a) Systems vaccinology datasets from existing HIPC studies, as well as published systems vaccinology papers and databases, were submitted to the ImmPort database. ImmuneSpace captures these datasets to create a combined compendium dataset. Quality control assessments of these data include array quality checks for microarray studies, batch correction, imputations for missing age and sex/y-chromosome presence information, and normalization per study. The combined virtual study included transcriptional profiles and antibody response measurements from 1405 participants across 53 cohorts, profiling the response to 24 different vaccines. Note that Hepatitis A/B (Twinrix) cohort also received Diphtheria/Tetanus toxoid (Td) and Cholera inactivated vaccine at the same time (Dukoral). (b) Demographic data included biological sex, race, vaccine, and number of participants.
Intramuscular mode of vaccine route, studies with subjects beyond our target age range (<18), and those studies that lack vaccine stimulation. Notably, we have supplemented the HIPC data previously available in ImmPort by curating and submitting 14 additional human vaccination studies to ImmPort. For studies that were not in ImmPort/ImmuneSpace, we located the underlying data by surveying public transcriptome databases (e.g., Gene Expression Omnibus (GEO)) or reaching out to study authors to request data access, allowing us to submit to ImmPort on their behalf. These datasets were then made available via ImmuneSpace to be processed for standardization, preprocessing checks, and normalization. The standard analytical pipeline enables reproducibility and comparability of future studies to be correlated with publicly available immune response measurement. This process created the virtual study for the HIPC named the Immune Signatures Data Resource (Figs. 1a, 2).

Gene expression data processing pipeline. Data were read directly from ImmuneSpace using ImmuneSpaceR functions and subsequently preprocessed, quality controlled, and integrated using the following pipeline:

Quality control of microarray experiments. The ArrayQualityMetrics R package was used for quality control and assurance of all microarray experiments (Fig. 3a). Outlier detection was based on the following statistics: i)
Study Accession	Pathogen (Vaccine Type)	Number of Participants	Number of Samples	Vaccine	Adjuvant	Race	Ethnicity	Cohort	Matrix	Pubmed ID	Geographical Location
SDY1373	Ebola10 (Recombinant Viral Vector)	13	46	UKE Phase I rVSV ZEBOV	VSV	Not Specified	Not Specified	TIV 2007	SDY1373_WholeBlood_ LowDose_Geo,SDY1373_WholeBlood_HighDose_Geo	28854352	Metropolitan France
SDY1328	Hepatitis A/B18 (Inactivated/Recombinant protein)	164	325	Twinrix	None	White	Not Hispanic or Latino	healthy adults	SDY1328_WholeBlood_HealthyAdults_Geo	26742691	Canada
SDY1291	HIV16 (Recombinant Viral Vector)	10	50	Ad5/HIV	AdV	White, Black, or African American	Not Hispanic or Latino	healthy HIV-1-uninfected adults	SDY1291_PBMC_HealthyHIVUninfected_Geo	23151505	US: Washington
SDY1119	Influenza12 (Inactivated)	72	177	TIV (2011)	None	Not Specified	Not Specified	young and old type 2 diabetes cohorts	SDY1119_PBMC_YoungT2D_Geo,SDY1119_PBMC_YoungHealthy_Geo,SDY1119_PBMC_oldHealthy_Geo,SDY1119_PBMC_oldT2D_Geo	26682988	US: Georgia
SDY1276	Influenza10 (Inactivated)	218	828	TIV (2008)	None	Not Specified	Not Specified	Validation Cohort; Females 2008-2009 trivalent influenza vaccine,Discovery Cohort; Males 20082009 trivalent influenza vaccine	SDY1276_WholeBlood_Valuation_Geo,SDY1276_WholeBlood_Discovey_Geo	21357945	US: Texas
SDY180	Influenza21 (Inactivated)	12	102	TIV (2009)	None	Asian, White, Black or African American	Not Hispanic or Latino	Study group 2 2009-2010 Fluzone,Study group 1 2009-2010 Fluzone	SDY180_WholeBlood_Grp2Fluzone_Geo,SDY180_WholeBlood_Grp1Fluzone_Geo	23601689	US: Texas
SDY212	Influenza12 (Inactivated)	90	90	TIV (2008)	None	Other, White, Asian, American, Hawaiian or Alaska Native	Not Hispanic or Latino	Cohort_1_Cohort_2	SDY2121_WholeBlood_Grp2Fluzone_Geo,SDY2121_WholeBlood_Grp1Fluzone_Geo	23597775	US: California
SDY224	Influenza13 (Inactivated)	5	55	TIV (2010)	None	White, Black or African American, American Indian or Alaska Native	Not Hispanic or Latino	TTV 2010	SDY224_PBMC_TTV2010_InflPart	23900141	US: New York
SDY269	Influenza13 (Inactivated)	28	80	TIV (2008)	None	White, Asian, Black or African American, American Indian or Alaska Native	Not Hispanic or Latino	TTV Group 2008	SDY269_PBMC_TTV2008_Geo	21743478	US: Georgia
SDY270	Influenza13 (Inactivated)	28	83	TIV (2009)	None	White, Black or African American, Asian	Not Hispanic or Latino	TTV Group 2009	SDY270_PBMC_TTVGroup_Geo	21743478	US: Georgia
SDY400	Influenza13 (Inactivated)	30	120	TIV (2012)	None	White, Asian, Black or African American, Other	Not Hispanic or Latino	Young adults 21-30 years old, Older adults >= 65 years old	SDY400_PBMC_Young_Geo,SDY400_PBMC_Older_Geo	32060136	US: Connecticut
SDY404	Influenza15 (Inactivated)	39	156	TIV (2011)	None	White, Unknown, Other, Asian, Black or African American	Not Hispanic or Latino	Young adults 21-30 years old, Older adults >= 65 years old	SDY404_PBMC_Young_Geo,SDY404_PBMC_Older_Geo	25598619	US: Connecticut
SDY520	Influenza11 (Inactivated)	24	94	TIV (2013)	None	White, Asian, Black or African American	Not Hispanic or Latino	Young adults 21-30 years old, Older adults >= 65 years old	SDY520_WholeBlood_Young_gEO,SDY520_WholeBlood_Older_Geo	32060136	US: Connecticut
SDY56	Influenza12 (Inactivated)	63	288	TIV (2010)	None	White, Asian, Black or African American	Not Hispanic or Latino	Healthy adults 25-40 years old receiving TIV flu vaccine,Healthy adults >= 65 years old receiving TIV flu vaccine	SDY56_PBMC_Young,SDY56_PBMC_Older	26682988	US: Georgia
SDY61	Influenza13 (Inactivated)	9	27	TIV (2007)	None	White	Not Hispanic or Latino	TTV Group 2007	SDY61_PBMC_TTVGrp	21743478	US: Georgia
SDY63	Influenza15 (Inactivated)	19	72	TIV (2010)	None	White, Asian, Other, Black or African American	Not Hispanic or Latino	Young adults 21-30 years old, Older adults >= 65 years old	SDY63_PBMC_Young_Geo,SDY63_PBMC_Older_Geo	25598619	US: Connecticut

Continued
Study Accession	Pathogen (Vaccine Type)	Number of Participants	Number of Samples	Vaccine	Adjuvant	Race	Ethnicity	Cohort	Matrix	Pubmed ID	Geographical Location
SDY640	Influenza21 (Inactivated)	20	79	TIV (2014)	None	White,Asian,Unknown	Not Hispanic or Latino,Hispanic or Latino	Young adults 21-30 years old,Older adults >= 65 years old	SDY640_WholeBlood_Young,Geo,SDY640_WholeBlood_Older,Geo	32060136	US: Connecticut
SDY80	Influenza21 (Inactivated)	61	286	TIV (2009) + pH1N1	None	White,Asian,Other,Black or African American	Other,Hispanic or Latino	Cohort2	SDY80_PBMCM_Cohort2,geo	24725414	US: Maryland
SDY269	Influenza21 (Live attenuated)	28	83	LAIV (2008)	LAIV	White,Black or African American,Asian	Not Hispanic or Latino,Hispanic or Latino	LAIV group 2008	SDY269_PBMCM_LAIV_Geo	21743478	US: Georgia
SDY1293	Malaria35 (Recombinant protein)	44	165	RTS5/AS01 or RTS7/S/AS02	AS01/AS02	Not Specified	Not Specified	Adjuvanted RTS5 malaria vaccine cohort	SDY1293_PBMCM_Vaccinated,geo	20078211	US: Maryland
SDY1260	Meningococcus29 (Conjugate)	17	51	MCV4	None	Not Specified	Not Specified	MCV4	SDY1260_PBMCM_MCV4_Geo	24336226	US: Georgia
SDY1325	Meningococcus28 (Conjugate)	5	10	MenACWY-CRM	None	Not Specified	Not Specified	Intramuscular MenACWY-CRM	SDY1325_PBMCM_IntramuscularCRM_Geo	28137280	England
SDY1260	Meningococcus29 (Poly saccharide)	13	39	MPSV4	None	Not Specified	Not Specified	MPSV4	SDY1260_PBMCM_MPSV4_Geo	24336226	US: Georgia
SDY1325	Meningococcus28 (Poly saccharide)	5	10	MenACWY-PS	None	Not Specified	Not Specified	Intramuscular MenACWY-PS	SDY1325_PBMCM_IntramuscularPS_Geo	28137280	England
SDY180	Pneumococcus25 (Poly saccharide)	12	101	Pneumovax 23	None	White,Black or African American,Asian	Not Hispanic or Latino,Hispanic or Latino	Study group 2, Pneumovax23, Study group 1, Pneumovax23	SDY180_PBMCM_Pneumovax23_Geo	23601689	US: Texas
SDY1370	Smallpox24 (Live virus)	4	24	DryVax	Vaccinia	Unknown	Not Specified	DryVax	SDY1370_PBMCM_Dryvax_geo	21921208	US: Massachusetts
SDY1370	Smallpox24 (Live virus)	4	24	LC16m8	Vaccinia	Unknown	Not Specified	LC16m8	SDY1370_PBMCM_Lc16m8_geo	21921208	US: Massachusetts
SDY1364	Tuberculosis9 (Recombinant Viral Vector)	12	36	MVA85A	Vaccinia	Not Specified	Not Specified	MVA85A intramuscular	SDY1364_PBMCM_Intramuscular_Geo	23844129	England
SDY984	Varicella Zoster27 (Live attenuated)	72	288	Zostavax	VZV	White,Black or African American,Unknown,Asian	Not Hispanic or Latino,Hispanic or Latino	young,elderly	SDY984_PBMCM_You _Geo,SDY984_PBMCM_Elderly_Geo	28502771	US: Georgia, US: Colorado
SDY1264	Yellow Fever26 (Live attenuated)	25	87	YF17D	YF17D	Not Specified	Not Specified	Trial2,Trial1	SDY1264_PBMCM_Trial2_Geo,SDY1264_PBMCM_Trial1_Geo	19029902	US: Georgia
SDY1289	Yellow Fever26 (Live attenuated)	25	117	YF17D	YF17D	Not Specified	Not Specified	In vivo vaccination study Montreal adult cohort, In vivo vaccination study Lausanne adult cohort	SDY1289_PBMCM_MontrealCohort_Geo,SDY1289_PBMCM_LausanneCohort_Geo	19047440	Canada, Switzerland, US: Georgia
SDY1294	Yellow Fever26 (Live attenuated)	21	109	YF17D	YF17D	Asian	Not Hispanic or Latino	Chinese cohort	SDY1294_PBMCM_ChineseCohort_Geo	28687661	China
SDY1529	Yellow Fever26 (Live attenuated)	36	180	YF17D	YF17D	Black or African American	Not Hispanic or Latino	healthy adults	SDY1529_PBMCM_HealthyAdults_PreVax_Geo,SDY1529_PBMCM_HealthyAdults_PostVax_Geo	19047440	Uganda

Table 1. Overview of Immune Signatures Data Resource Study Participants Metadata.

Mean absolute difference of M-values (log-ratios) of each pair of arrays, ii) the Kolmogorov-Smirnov statistic K_v between each array’s signal intensity distribution and the distribution of the pooled data and, iii) the Hoeffding’s statistic D_v on the joint distribution of A (average) and M values for each array. Using pre-specified criteria within an established public microarray data reuse pipeline40, we flagged for removal arrays that failed all three quality control statistics.

Preprocessing. Raw probe intensity data for Affymetrix studies were background-corrected and summarized using the RMA algorithm41 while the function read.limma (limma R package) was used to read and background correct Illumina raw probe intensities. To integrate RNA-seq and microarray data, raw counts for RNA-seq data were transformed using the variance stabilizing transformation (VST). VST yields expression values that are
Study Accession	Pathogen (Vaccine type)	Sample type	featureSetName	featureSetName2	featureSetVendor	Time post last vaccination	GEO Accession
SDY1373	Ebola (Recombinant Viral Vector)	Whole blood	SDY1373_customAnno	RNA-seq	NA	0, 1, 3, 7	GSE97590
SDY1328	Hepatitis A/B (Inactivated/Recombinant protein)	Whole blood	Affy_HumanRSTAcustom	RNA-seq	Affymetrix	0, 7	GSE65834
SDY1291	HIV (Recombinant Viral Vector)	PBMC	Affy_HumanExonST_1_0_v2	Affy_HumanExonST_1_0_v2	Affymetrix	0, 25, 1, 3, 7	GSE22768
SDY1119	Influenza (Inactivated)	PBMC	HGU133_plus_PM	HGU133_plus_PM	Affymetrix	0, 3, 7	GSE74817
SDY1276	Influenza (Inactivated)	Whole blood	HumanHT-12_v3_2018	HumanHT-12_2018	Illumina	0, 1, 3, 14	GSE48024/GSE48018
SDY180	Influenza (Inactivated)	Whole blood	HumanHT-12_v3_2018	HumanHT-12_2018	Illumina	~7, 0, 0.5, 1, 3, 7, 10, 14, 21, 28	GSE48782
SDY212	Influenza (Inactivated)	Whole blood	HumanHT-12_v3_2018	HumanHT-12_2018	Illumina	0	GSE41080
SDY224	Influenza (Inactivated)	PBMC	SDY224_CustomAnno	RNA-seq	NA	0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10	GSE45735
SDY269	Influenza (Inactivated)	PBMC	HGU133_plus_PM	HGU133_plus_PM	Affymetrix	0, 3, 7	GSE29615/GSE29617/GSE29614
SDY270	Influenza (Inactivated)	PBMC	HGU133_plus_PM	HGU133_plus_PM	Affymetrix	0, 3, 7	GSE29615/GSE29614
SDY400	Influenza (Inactivated)	PBMC	HumanHT-12_v4_2018	HumanHT-12_2018	Illumina	0, 2, 4, 7, 28	GSE59743/GSE59584
SDY404	Influenza (Inactivated)	PBMC	HumanHT-12_v4_2018	HumanHT-12_2018	Illumina	0, 2, 4, 7, 28	GSE59654
SDY520	Influenza (Inactivated)	Whole blood	HumanHT-12_v4_2018	HumanHT-12_2018	Illumina	0, 2, 7, 28	GSE101709
SDY56	Influenza (Inactivated)	PBMC	HGU133_plus_PM	HGU133_plus_PM	Affymetrix	0, 1, 3, 7, 14	GSE74817
SDY61	Influenza (Inactivated)	PBMC	hgu133plus2	hgu133plus2	Affymetrix	0, 3, 7	GSE29617/GSE29614
SDY63	Influenza (Inactivated)	PBMC	HumanHT-12_v4_2018	HumanHT-12_2018	Illumina	0, 4, 7, 28	GSE59635
SDY640	Influenza (Inactivated)	Whole blood	HumanHT-12_v4_2018	HumanHT-12_2018	Illumina	0, 2, 7, 28	GSE101710
SDY80	Influenza (Inactivated)	PBMC	HuGene-1_0-st-v1	HuGene-1_0-st-v1	Affymetrix	~7, 0, 1, 7, 70	GSE47353
SDY269	Influenza (Live attenuated)	PBMC	HGU133_plus_PM	HGU133_plus_PM	Affymetrix	0, 3, 7	GSE29615/GSE29617/GSE29614
SDY1293	Malaria (Recombinant protein)	PBMC	hgu133plus2	hgu133plus2	Affymetrix	0, 1, 3, 14	GSE18323
SDY1260	Meningococcus (Conjugate)	PBMC	HGU133_plus_PM	HGU133_plus_PM	Affymetrix	0, 3, 7	GSE52245
SDY1325	Meningococcus (Conjugate)	Whole blood	HumanHT-12_v4_2018	HumanHT-12_2018	Illumina	0, 7	GSE92884
SDY1260	Meningococcus (Poly saccharide)	PBMC	HGU133_plus_PM	HGU133_plus_PM	Affymetrix	0, 3, 7	GSE52245
SDY1325	Meningococcus (Poly saccharide)	Whole blood	HumanHT-12_v4_2018	HumanHT-12_2018	Illumina	0, 7	GSE92884
SDY180	Pneumococcus (Poly saccharide)	Whole blood	HumanHT-12_v3_2018	HumanHT-12_2018	Illumina	~7, 0, 0.5, 1, 3, 7, 10, 14, 21, 28	GSE48762
SDY1370	Smallpox (Live virus)	PBMC	HEEBOHumanSetV1_2019	HEEBOHumanSetV1_2019	Stanford Functional Genomics Facility	0, 3, 7, 10, 13, 21	GSE22121
SDY1370	Smallpox (Live virus)	PBMC	HEEBOHumanSetV1_2019	HEEBOHumanSetV1_2019	Stanford Functional Genomics Facility	0, 3, 7, 10, 13, 21	GSE22121
SDY1364	Tuberculosis (Recombinant Viral Vector)	PBMC	HumanHT-12_v4_2018	HumanHT-12_2018	Illumina	0, 2, 7	GSE40719
SDY984	Varicella Zoster (Live attenuated)	PBMC	HGU133_plus_PM	HGU133_plus_PM	Affymetrix	0, 1, 3, 7	GSE79396
SDY1264	Yellow Fever (Live attenuated)	PBMC	hgu133plus2	hgu133plus2	Affymetrix	0, 1, 3, 7, 21	GSE13485
SDY1289	Yellow Fever (Live attenuated)	Whole blood	IlluminaHumanRef8_v2	IlluminaHumanRef8_v2	Illumina	0, 3, 7, 10, 14, 28, 60	GSE13699
SDY1294	Yellow Fever (Live attenuated)	PBMC	AffyPrimeView_2016	AffyPrimeView_2016	Affymetrix	0, 0.166666666666667, 1, 2, 3, 5, 7, 14, 28	GSE82152
SDY1529	Yellow Fever (Live attenuated)	Whole blood	HumanHT-12_v4_2018	HumanHT-12_2018	Illumina	0, 3, 7, 14, 84	GSE125921/GSE136163

Table 2. Overview of Transcriptomics Datasets Included in the Resource.
normalized across samples and by library size and approximately homoskedastic. After a proper log-2 transformation they can be analyzed as microarray data, using linear models in the limma framework. Expression data within each study were quantile normalized and log-transformed separately for each cohort/sample type.

Annotation. We annotated the manufacturing IDs (probes from microarray/Illumina) to their corresponding gene alias. Gene aliases were mapped to the recent gene symbols from the HUGO Gene Nomenclature Committee [accessed Dec 23, 2020]. For the rare case where a gene alias mapped to more than one gene symbol, the mapping was resolved by the following: i) If a gene alias mapped to itself as a symbol, as well as other symbols, then it was mapped to itself; ii) if the gene alias mapped to multiple symbols that did not include itself, then the gene alias was dropped from the study. As a result, the raw gene expression matrix was reduced to 10086 HUGO gene aliases with known unique mapping.

Gene-based expression profiles. Expression data were summarized at the probe level (for microarray data) and gene-alias level (RNA-seq) to the canonical Gene-Symbol level. The probes/gene-aliases were summarized by selecting the probe or gene-alias with the highest average expression (mean of probes across all samples, take the highest mean) across all samples within the matrix (cohort and sample type).

Cross-Study normalization. One of the main assumptions in expression analysis is that differences in gene expression across conditions occur in a relatively small number of processes. As such, the distribution across conditions should be similar, and departures of these assumptions are corrected, for example, using quantile normalization. This procedure usually creates a target distribution using all samples available, but we observed dissimilar distributions in our collection stemming from various platforms used. Such differences lead to extensive distributions and introduce artifacts in the data (Fig. 3b,c). The target distribution was obtained from samples using Affymetrix platforms, resulting in a well-defined distribution, and each sample in our collection was quantile normalized to this target distribution. Before cross-study normalization, there were 35,725 representative gene symbols present. There were 25,639 genes removed after normalization, as these genes were not present in all the studies. This yielded a final expression matrix of 4795 samples from 1405 participants representing 10,086 genes (Fig. 2).

Determining and adjusting for technical confounders. We studied the primary sources of variation in the data, including the study effect (which also encompasses the impact of different expression platforms (RNA-seq, Affymetrix arrays, Illumina arrays, etc.), sample types (Whole blood, PBMC), as well as demographics. We conducted Principal Component Analysis (PCA) to visualize such associations in a bidimensional space of principal components (PCs) and applied Principal Variance Component Analysis (PVCA) to quantify the amount of variability attributed to different experimental conditions. This approach models the multivariate distribution of the PCs computed for the PCA as a function of experimental factors and estimates the total variance explained by each factor via mixed-effect models. Since many studies included only one vaccine, temporal variations due to vaccine response were confounded with the study effect. The assessment of the primary technical sources of variation was carried out using only the pre-vaccination data, not affected by the targeted pathogen and vaccine type used in the different studies. Of note, all studies enrolled healthy volunteers, and the first biosample was obtained pre-vaccination. The targeted pathogen and vaccine type should not affect these baseline data.

Platform, study, and sample types were identified as significant sources of variation in the gene expression matrix. The effect of those three variables was estimated by modeling gene expression at baseline (at which no vaccine or timepoint effect exists) with a linear model using the limma framework, including feature set vendor (Platform/Affy), study (batch factors), and sample type, Y-chromosome genes presence, as covariates. Study and cell-type effects were estimated using a linear model with age, Y-chromosome genes presence (biological sex), study, sample type (Whole Blood/PBMC), study, and platform as additive effects. From here, the study, platform, and cell-type effects were eliminated from the entirety of the expression matrix. There were three studies (SDY1276, SDY1264, SDY180) that contained multiple cohorts and were treated as separate studies.

Biological sex imputation. Imputation of biological sex, as defined by the presence of a Y-chromosome, was carried out based on the gene expression profiles of 13 Y-chromosome genes. Within each study, a multidimensional scaling was first applied to the Y-chromosome gene expression profiles. K-means clustering was then used to cluster samples into two groups. Participants in the cluster with higher mean expression values wereconsidered male (i.e., the Y-chromosome was present) while those in the cluster with lower expression were considered female (i.e., the Y-chromosome was absent). The consistency of the Y-chromosome presence assignment across time points was verified (Fig. 3d). In the (few) cases where imputation was not in agreement across all time points, the reported sex was used and if no sex was reported, imputation followed a majority rule principle.

Age imputation. Age imputation for studies without reported ages (SDY1260, SDY1264, SDY1293, SDY1294, SDY1364, SDY1370, SDY1373, SDY984) employed the RAPtRoR R v1.5.15 package. The RAPtRoR algorithm takes in a reference set of gene expression time series with reported ages and generates a near-continuous, high-temporal resolution from the interpolated reference dataset. Transcriptomic profiles of participants without reported ages were compared to the reference dataset via a correlation profile, providing age estimates for the sample. Finally, random subsets of genes from the subject's transcriptomic profile were bootstrapped to ascertain a confidence interval for the imputed age. We generated the reference dataset using the transcriptomic profiles of 21 studies in our resource for which age was reported. The studies were split into younger (age < 50) and older
(age ≥50) cohorts, thus two different models were generated, and only baseline transcriptomic profiles were used in the reference dataset. As RAPToR also enables phenotypic data to be incorporated into the interpolation model, each possible combination of phenotypic features was tested. These phenotypic features included the top variables found during our PVCA tests as well as demographic information such as reported age, cohort and matrix type, Y chromosome imputation, study accession, feature set vendor and platform names, and cell types. For each combination, RAPToR predicted the age of participants in the 21 studies with known age, and the goodness of fit was evaluated by the coefficient of determination (R²) and confirmed via RMSE. The best model for the younger and older cohorts was then used to impute ages for the 7 studies without reported age (Fig. 3e,f).

Immune response datasets processing pipeline. To identify the molecular signatures that correlate with vaccine immunogenicity, we included immune response readouts in the creation of this data resource. For studies that were missing vaccine response endpoints in their public data deposition, we contacted study authors and requested available antibody response measures to vaccine antigens. Once shared, these data were submitted to ImmPort and linked to the relevant studies. These readouts include neutralizing antibody titers (Nab), hemagglutination inhibition assay (HAI) results for influenza studies, and Immunoglobulin IgG ELISA assay results. In participants for whom the humoral immune response was measured with multiple assays, the preference was given to HAI for influenza or Nab for non-influenza studies, then IgG ELISA datasets. The antibody measures...
were normalized within each study by estimating the fold-change differences between the post-vaccination time-point (generally between day 28 or day 30) compared to the baseline measurement. For influenza studies where the vaccine included multiple strains, the fold changes between the post-vaccination versus baseline were calculated for each strain, and the maximum fold change (MFC) over the strains was selected. Due to the variability in baseline antibody (Ab) levels and immune memory such as influenza vaccines, we also estimated the maximum residual after baseline adjustment (maxRBA) method by calculating the maximum residual across all vaccine strains to adjust for variable baseline Ab levels using the R package titer. A total of 30 studies with 1405 participants and 4795 samples have both transcriptomics and immune response readout data available (Fig. 2). This dataset enables researchers to carry out comparative analyses using immunogenicity data as well as prediction of the quality of response across multiple vaccines.

Table 3. Studies with corresponding Immune Response Data.

Study Accession	Pathogen Vaccine Type	Number of Participants	Number of Samples	Assay	Digital Object Identifier (DOI)
SDY1328	Hepatitis A/B (Inactivated/ Recombinant protein)	160	320	ELISA	https://doi.org/10.21430/M3JDZ5X1434T
SDY1119	Influenza (Inactivated)	72	177	HAI	https://doi.org/10.21430/M3ZU7ZT14OV
SDY1276	Influenza (Inactivated)	214	816	HAI, NAb	https://doi.org/10.21430/M3JR2GZ4383
SDY180	Influenza (Inactivated)	12	102	HAI, NAb	https://doi.org/10.21430/M3H44H4R17
SDY212	Influenza (Inactivated)	88	88	HAI	https://doi.org/10.21430/M37NG2HMDS
SDY224	Influenza (Inactivated)	5	55	HAI	https://doi.org/10.21430/M37KM30Y71W
SDY269	Influenza (Inactivated)	28	80	HAI	https://doi.org/10.21430/M3CDX6TL4I
SDY272	Influenza (Inactivated)	28	83	HAI	https://doi.org/10.21430/M3H9N15SLO
SDY400	Influenza (Inactivated)	30	120	HAI	https://doi.org/10.21430/M3U7G9D0FFT
SDY404	Influenza (Inactivated)	39	156	HAI	https://doi.org/10.21430/M3GWQCR8DT
SDY520	Influenza (Inactivated)	24	94	HAI	https://doi.org/10.21430/M3KTVH7M35
SDY56	Influenza (Inactivated)	30	148	HAI	https://doi.org/10.21430/M3X9SKF48RQ
SDY61	Influenza (Inactivated)	9	27	HAI	https://doi.org/10.21430/M3HF50A25W0
SDY63	Influenza (Inactivated)	19	72	HAI	https://doi.org/10.21430/M38WXY3BDTS
SDY640	Influenza (Inactivated)	20	79	HAI	https://doi.org/10.21430/M3A66YD35L0
SDY67	Influenza (Inactivated)	159	477	HAI	https://doi.org/10.21430/M3Y6Y5CJ031
SDY80	Influenza (Inactivated)	60	281	NAb	https://doi.org/10.21430/M3STAIY6V6T
SDY269	Influenza (Live attenuated)	28	83	HAI	https://doi.org/10.21430/M3CDX6TL4I
SDY1260	Meningococcus (Conjugate)	17	51	ELISA	https://doi.org/10.21430/M3F47K5L3L
SDY1325	Meningococcus (Conjugate)	4	8	NAb	https://doi.org/10.21430/M3Q1ZB8WOG2
SDY1260	Meningococcus (Polysaccharide)	13	39	ELISA	https://doi.org/10.21430/M3F47K5L3SL
SDY1325	Meningococcus (Polysaccharide)	5	10	NAb	https://doi.org/10.21430/M3Q1ZBOG2
SDY180	Pneumococcus (Polysaccharide)	6	54	NAb	https://doi.org/10.21430/M3H44H4R17
SDY1370	Smallpox (Live virus)	4	24	ELISA	https://doi.org/10.21430/M3Q1F445SNF
SDY1364	Tuberculosis (Recombiant Viral Vector)	12	36	ELISA	https://doi.org/10.21430/M3N6T84G85T4
SDY984	Varicella Zoster (Live attenuated)	35	140	ELISA	https://doi.org/10.21430/M3SN165YFTS
SDY1264	Yellow Fever (Live attenuated)	25	87	NAb	https://doi.org/10.21430/M3XT8B8F18
SDY1269	Yellow Fever (Live attenuated)	14	84	NAb	https://doi.org/10.21430/M3GR98F4Q
SDY1294	Yellow Fever (Live attenuated)	21	109	NAb	https://doi.org/10.21430/M3L1W48VTY
SDY1359	Yellow Fever (Live attenuated)	36	180	NAb	https://doi.org/10.21430/M36EX8BH92

Data Records
The Immune Signatures Data Resource is available online for download by the research community from this website: https://doi.org/10.6084/m9.figshare.17096978. The data is hosted on ImmuneSpace and can be accessed in full detail via the R package ImmuneSpaceR (https://rglab.github.io/ImmuneSpaceR/). The resource is available for use by the scientific community and can be downloaded from a research data repository IS2 https://www.ImmuneSpace.org/is2.url. A summary of datasets, with their corresponding study ID, accession numbers and DOI, is provided in Table 3. This dataset enables researchers to carry out comparative analyses using immunogenicity data as well as prediction of the quality of response across multiple vaccines.

Technical Validation
Quality control and assurance. For global quality control across all public microarray data, we used a well-established pipeline available through the ArrayQualitymetrics R package. Using pre-specified criteria established in the existing public microarray data reuse pipeline, arrays that failed 3 out of 3 calculated quality control statistics were flagged for removal (see Methods). Consistent with standard practice to perform such quality control analysis prior to downstream analysis and dataset submission to the Gene Expression Omnibus, none
A few studies were missing information for sex and for age. To achieve data completeness, we included the biological sex imputation based on the imputed presence of the Y-chromosome using gene expression, as well as imputation of age when the variable was missing or defined by a broad range of values. Age imputation employed the RAPToR tool using 21 studies with reported age to define the best predictive model for the younger (age < 50 years) and older (age ≥ 50 years) cohorts separately. The model with the lowest root mean square error (RMSE) from the young cohort was generated by taking into account the model (X ~ age_reported + matrix) with a coefficient of determination of $R^2 = 0.367$ (Fig. 3e), while the old cohort yielded a prediction with R^2 of 0.536 for their highest performing model (Fig. 3f).

Definition of vaccination studies transcriptomic cohort. Data preprocessing in ImmuneSpace yielded a total of 30 studies and 59 cohorts, with 1482 participants and 5413 samples. After the data was preprocessed and quality control measures were performed, we further assessed the identified cohorts as defined in the flow diagram (Fig. 2). This curation included: i) removing participants that were not relevant to the objective (n = 34); ii) removing samples due to inconsistencies with time design determination (n = 178); iii) removing participants with no baseline expression data (n = 42). Some studies, such as SDY1368 and SDY67, were dropped from the normalized data sets as they did not include subjects within our target age range (18–50 years). In summary, we report that the final Immune Signatures Data Resource contains 53 cohorts from 30 studies with 1405 participants and 4795 samples.
Assessment and adjustment of the batch effects. We evaluated the main sources of variation on the gene expression matrix to identify and adjust technical confounders (RNA-seq, Affymetrix arrays, Illumina arrays, etc.), study, and specimen types (e.g., whole blood vs. PBMCs) using the baseline samples. Since all studies enrolled healthy volunteers, and the first sample was taken pre-vaccination, pathogen and vaccine type would not affect the baseline data. Figure 3b clearly demonstrates robust clustering of samples by study, which are also grouped by platform type. The study effect and type of platform used accounted for the vast majority (95%) of variation, followed by specimen types (3.6%). It is thus essential that the data are corrected for these major effects prior to any analytical usage [see Materials and Methods for further details]. The study, platform type, and specimen type-specific effects were estimated using a linear model that also included age and Y-chromosome presence as additive effects using only baseline expression. Once the study, platform, and specimen-type effects were estimated, they were eliminated from the entirety of the expression matrix. Figure 3b clearly demonstrates robust clustering of samples by study, which are also grouped by platform type. The study effect and type of platform used accounted for the vast majority (95%) of variation, followed by specimen types (3.6%). It is thus essential that the data are corrected for these major effects prior to any analytical usage [see Materials and Methods for further details]. The study, platform type, and specimen type-specific effects were estimated using a linear model that also included age and Y-chromosome presence as additive effects using only baseline expression. Once the study, platform, and specimen-type effects were estimated, they were eliminated from the entirety of the expression matrix. Figure 3b shows that those effects can successfully be adjusted from the data, thus leading to a matrix of expression that is free of most technical biases induced by the laboratory and cell-type effects.

Immune signatures transcriptomics and immune response datasets. We report the total number of assay samples collected from the transcriptomic and immune response datasets tallied by targeted pathogen and vaccine type, across multiple systems vaccinology datasets (Fig. 4a). We captured about ~3000 HAI antibody titer results from influenza studies that were measured by the standard HAI assay pre- and at multiple time points post-vaccination, depending on the study. Mean titers were calculated for the reported strains of the virus and were based on the highest dilution reported at day 28–30 post-vaccination. In addition, neutralizing antibody (NAB) titers and IgG ELISA results specific to each pathogen were determined by each study and are summarized (Fig. 4a). The overall transcriptomics dataset comprises multiple time points from 7 days pre-vaccination up to day 180 days post-vaccination (Fig. 4b). While most of the datasets focus on the young adult population (ages 18–50 years old), the data resource also includes studies that profile older adults following hepatitis B, influenza, and varicella vaccination (Fig. 4c) that may be useful for analysis. The Euler diagram describes the dataset overlap of participants with transcriptomics datasets and corresponding to one or more immune response datasets (Fig. 4d). Heterogeneity of the immune response to vaccination across targeted pathogens and vaccine types was reflected in variation in the longitudinal trajectories of HAI and NAB titer measurements (Fig. 5a,b). HAI

File name	Description
all_noNorm_eset.rds	Gene expression matrix of all participants, log2-normalized expression
all_noNorm_withResponse_eset.rds	Gene expression matrix of all participants with matched immune response data, log2-normalized expression
all_norm_eset.rds	Gene expression matrix of all participants that are cross-study normalized and batch corrected
all_norm_withResponse_eset.rds	Gene expression matrix of all participants with matched immune response dataset, cross-study normalized and batch corrected
young_noNorm_eset.rds	Gene expression matrix of participants aged 18–50, log2-normalized
young_noNorm_withResponse_eset.rds	Gene expression matrix of participants aged 18–50 with matched immune response data, log2-normalized
young_norm_eset.rds	Gene expression matrix of participants aged 18–50, cross-study normalized and batch corrected
young_norm_withResponse_eset.rds	Gene expression matrix of participants aged 18–50 with matched immune response data, cross-study normalized and batch corrected
old_noNorm_eset.rds	Gene expression matrix of participants aged 60–90, log2-normalized
old_noNorm_withResponse_eset.rds	Gene expression matrix of participants aged 60–90 with matched immune response data, log2-normalized expression
old_norm_batchCorrectedFromYoung_eset.rds	Gene expression matrix of participants aged 60–90, cross-study normalized and batch corrected using age correction coefficients from young
old_norm_batchCorrectedFromYoung_withResponse_eset.rds	Gene expression matrix of participants aged 60–90 with matched immune response data, cross-study normalized and batch corrected using age correction coefficients from young
extendedOld_noNorm_eset.rds	Gene expression matrix of participants aged 50–90, log2-normalized expression
extendedOld_noNorm_withResponse_eset.rds	Gene expression matrix of participants aged 50–90 with matched immune response data, log2-normalized counts
extendedOld_norm_batchCorrectedFromYoung_eset.rds	Gene expression matrix of participants aged 50–90, log2-normalized expression
extendedOld_norm_batchCorrectedFromYoung_withResponse_eset.rds	Gene expression matrix of participants aged 50–90 with matched immune response data, cross-study normalized, and batch corrected using correction coefficients from young

Table 4. List of data files for the Immune Signatures Data Resource.
Fig. 5 Immune Response Dataset Overview. (a) The longitudinal trajectory (summarized as a loess curve) of hemagglutinin inhibition assay (HAI) measurements (in log2 scale) by influenza vaccine type and year. (b) The longitudinal trajectory of neutralizing antibody (NAB) titers (in log2 scale) for influenza, meningococcus, pneumococcus, and yellow fever vaccines. (c) Neutralizing antibody titers were plotted for each unique combination of targeted pathogen and vaccine type to compare each participant’s post-vaccination (day 28-30) values versus baseline (day 0). The violin plot shows the variation in magnitude for each unique combination of targeted pathogen and vaccine type. (d) The correlation plot of influenza studies compares the maximum fold change (MFC) across strains for hemagglutinin inhibition assay (HAI) titers versus neutralizing antibody (NAB) titers. Size is proportional to the number of samples analyzed.
NAB titers generally increased by 14–28 days after vaccination but attenuated at different times for each vaccine (Fig. 5a,b). Change in NAB titers after vaccination were significantly different across the 5 unique combinations of targeted pathogen and vaccine types where these measurements were reported (ANOVA p < 10−10), with significant differences across all 5 groups except between meningococcus and yellow fever vaccines (Fig. 5c).

Some influenza vaccination studies reported both HAI and NAB measures of immunogenicity, and there was a significant positive correlation between the vaccination-induced changes in these titers across participants (Spearman’s rho = 0.45, p < 10−10) (Fig. 5d).

Usage Notes

The expression data and accompanying meta-data have been made available with different formats and options to ease usage. Data are available as standard expression sets (eSet) objects, the R/Bioconductor structure unifying expression values, metadata, and gene annotation. Both normalized data and batch-adjusted data are available (Table 4). Users interested in a single study or those planning to work exclusively within participants’ changes may opt for the normalized data without batch adjustment. For comparison of time points across studies or developing algorithms that use expression data, batch corrected matrices should be employed. Imputed age values for participants with no reported age were included to facilitate the use of age as a covariate in future analysis. Such analysis can be carried out with the complete data set and can be followed up by a sensitivity analysis using the small cohort with age-reported data. For the use of expression sets with the corresponding immune response per participant, these are available in eSets noted with a response. The selected immune response outcome per study is also summarized in Table 3.

Code availability

The source codes for the Immune Signatures Data Resource and all data are available in ImmuneSpace (https://www.immunespace.org/is2.url) and in Zenodo (https://doi.org/10.5281/zenodo.5706261) and FigShare (https://doi.org/10.6084/m9.figshare.17096978). Pre-processing code and supplementary data in full detail can be found in the ImmuneSignatures2 R package hosted on Github (https://github.com/RGLab/ImmuneSignatures2).

Received: 24 January 2022; Accepted: 22 September 2022; Published online: 20 October 2022

References

1. Plot, P. et al. Immunization: vital progress, unfinished agenda. Nature 575, 119–129, https://doi.org/10.1038/s41586-019-1656-7 (2019).
2. Pulendran, B. Systems vaccinology: probing humanity’s diverse immune systems with vaccines. Proc Natl Acad Sci USA 111, 12300–12306, https://doi.org/10.1073/pnas.1404076111 (2014).
3. Fineberg, H. V. Pandemic preparedness and response—lessons from the H1N1 influenza of 2009. N Engl J Med 370, 1335–1342, https://doi.org/10.1056/NEJMp1208002 (2014).
4. Fauci, A. S., Lane, H. C. & Redfield, R. R. Covid-19 - Navigating the Uncharted. N Engl J Med https://doi.org/10.1056/NEJMc200387 (2020).
5. Fauci, A. S. An HIV Vaccine Is Essential for Ending the HIV/AIDS Pandemic. JAMA 318, 1535–1536, https://doi.org/10.1001/jama.2017.13505 (2017).
6. Fauci, A. S., Folkers, G. K. & Marston, H. D. Ending the global HIV/AIDS pandemic: the critical role of an HIV vaccine. Clin Infect Dis 59(Suppl 2), S80–84, https://doi.org/10.1093/cid/ciu420 (2014).
7. Fauci, A. S. & Marston, H. D. Ending the HIV/AIDS Pandemic—Follow the Science. N Engl J Med 373, 2197–2199, https://doi.org/10.1056/NEJMp1502020 (2015).
8. Diercks, A. & Aderem, A. Systems approaches to dissecting immunity. Curr Top Microbiol Immunol 363, 1–19, https://doi.org/10.1007/82_2012_246 (2013).
9. Pulendran, B., Li, S. & Nakaya, H. I. Systems Vaccinology. Immunity 33, 516–529, https://doi.org/10.1016/j.immuni.2010.04.001 (2010).
10. Tsang, J. S. et al. Improving Vaccine-Induced Immunity: Can Baseline Predict Vaccine Outcome? Trends Immunol 41, 457–465, https://doi.org/10.1016/j.it.2020.04.001 (2020).
11. Nakaya, H. I., Li, S. & Pulendran, B. Systems vaccinology: learning to compute the behavior of induced immunity. Wiley Interdiscip Rev Syst Biol Med 4, 193–205, https://doi.org/10.1002/wsbm.163 (2012).
12. Nakaya, H. I. & Pulendran, B. Systems vaccinology: its promise and challenge for HIV vaccine development. Curr Opin HIV AIDS 7, 24–31, https://doi.org/10.1097/COH.0b013e32834dc37 (2012).
13. Zak, D. E. & Aderem, A. Overcoming limitations in the systems vaccinology approach: a pathway for accelerated HIV vaccine development. Curr Opin HIV AIDS 7, 58–63, https://doi.org/10.1097/COH.0b013e32834dd31 (2012).
14. Brusic, V., Gottardo, R., Kleinste, S. H. & Davis, M. M., committee, H. s. Computational resources for high-dimensional immune analysis from the Human Immunology Project Consortium. Nat Biotechnol 32, 146–148, https://doi.org/10.1038/nbt.2777 (2014).
15. Poland, G. A., Quill, H. & Togias, A. Understanding the human immune system in the 21st century: the Human Immunology Project Consortium. Vaccine 31, 2911–2912, https://doi.org/10.1016/j.vaccine.2013.04.043 (2013).
16. Muyanja, E. et al. Immune activation alters cellular and humoral responses to yellow fever 17D vaccine. J Clin Invest 124, 3147–3158, https://doi.org/10.1172/JCI75429 (2014).
17. Gaucher, D. et al. Yellow fever vaccine induces integrated multilineage and polyfunctional immune responses. J Exp Med 205, 3119–3131, https://doi.org/10.1084/jem.20082292 (2008).
18. Quercer, T. D. et al. Systems biology approach predicts immunogenicity of the yellow fever vaccine in humans. Nat Immunol 10, 116–125, https://doi.org/10.1038/ni.1688 (2009).
19. Quercer, T. et al. Yellow fever vaccine YE-17D activates multiple dendritic cell subsets via TLR2, 7, 8, and 9 to stimulate polyclonal immunity. J Exp Med 203, 413–424, https://doi.org/10.1084/jem.20051720 (2006).
20. Avey, S. et al. Seasonal Variability and Shared Molecular Signatures of Inactivated Influenza Vaccination in Young and Older Adults. J Immunol 204, 1661–1673, https://doi.org/10.4049/jimmunol.1900922 (2020).
21. Nakaya, H. I. et al. Systems Analysis of Immunity to Influenza Vaccination across Multiple Years and in Diverse Populations Reveals Shared Molecular Signatures. Immunity 43, 1186–1198, https://doi.org/10.1016/j.immuni.2015.11.012 (2015).
22. Nakaya, H. I. et al. Systems biology of vaccination for seasonal influenza in humans. Nat Immunol 12, 786–795, https://doi.org/10.1038/ni.2067 (2011).
23. Oh, J. Z. et al. TLRS-Mediated Sensing of Gut Microbiota Is Necessary for Antibody Responses to Seasonal Influenza Vaccination. Immunity 41, 478–492, https://doi.org/10.1016/j.immuni.2014.08.009 (2014).
This research was conducted within the Human Immunology Project Consortium (HIPC) and supported by the National Institute of Allergy and Infectious Diseases. This work was supported in part by NIH grants U19AI28949, U19AI118608, U19AI118626, and U19AI089992, U19AI090023, U19AI089992, U19AI128914, U19AI118610, U19AI128913. The HIPC projects are listed at https://www.immunoprofiling.org/hipc/page/showPage?pg=projects. This work was supported in part by the Canadian Institutes of Health Research [funding reference number FDN-154287].

Acknowledgements
Author contributions
All authors identified the datasets, performed quality control, and assurance and analyzed the datasets. J.D.-A., H.M., S.H.K. and M.S.F. led the writing and organization of the manuscript. H.M., E.H., P.D., together with the ImmuneSpace and ImmPort team, implemented the pipeline for data access and visualization. The HIPC Consortium contributed to the conception and design of the work, as well as the acquisition of data. All authors edited and approved the manuscript.

Competing interests
S.H.K. receives consulting fees from Northrop Grumman and Peraton. OL is an inventor on several patents relating to vaccine adjuvants and human in vitro systems predicting vaccine action. R.G. has received consulting income from Illumina, Takeda, and declares ownership in Ozette Technologies and Modulus Therapeutics. The other authors declare no competing interests.

Additional information
Correspondence and requests for materials should be addressed to J.D.-A. or M.S.-F.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher's note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open Access
This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2022

The Human Immunology Project Consortium (HIPC)
Alison Deckhut-Augustine20, Raphael Gottardo3, Elias K. Haddad21, David A. Hafler4, Eva Harris17, Donna Farber22, Ofer Levy2, Julie McElrath3, Ruth R. Montgomery4, Bjoern Peters23, Adeeb Rahman24, Elaine F. Reed25, Nadine Rouphael7, Ana Fernandez-Sesma24, Alessandro Sette23, Ken Stuart26, Alkis Togias20 & John S. Tsang27

20NIADDK, NIH, Bethesda, MD, USA. 21Drexel University, Philadelphia, PA, USA. 22Columbia University Medical Center, New York, NY, USA. 23La Jolla Institute for Immunology, La Jolla, CA, USA. 24Icahn School of Medicine at Mount Sinai, New York, New York, USA. 25David Geffen School of Medicine at University of California, Los Angeles, CA, USA. 26Seattle Children’s Research Institute, Seattle, WA, USA. 27NIADDK and Center for Human Immunology (CHI), NIH, Bethesda, MD, USA.