Erection of Formwork with Optimum Spacing of Joists and Stringers

D.Muthu, C.Venkatassubramanian, G.Nandhini

Abstract: The success of any project depends on suitable and economical formwork arrangements and it accounts about 25% in the overall cost. The project completion time depends on the erection and de-shuttering of formwork. Proper planning, management and safety is very important to finish the project within the cost budget and satisfactory quality. This study focuses on the conventional type of form work using timber joists and stringers loaded with different types of spacing in an actually erected model. The soil has been compacted, consolidated before the erection of model. After erections, the entire model has been subjected to sand bag loading with the specified loading capacity per sq. m. The deflections due to the added load on the formwork is characterized by standard deflectometer for different spacing of timber joists. Accordingly, the shores spacing have also been obtained with the designed load bearing capacity. With this study it has been found that the stability of formwork is analyzed based on vibrations and deflections. Hence the study infers that optimum spacing of joists designed should be decreased for minimum deflection. The vibrations and key factors for this erection have been identified and the results are presented.

Key Words: Sheathing, Joist , stringer, shores, deflection, vibration, plywood, steel.

I. INTRODUCTION

A. FORMWORK:
Formwork has a self-supporting ability that gives particular dimension to the flowable fresh concrete. It also has the ability to take loads of concrete and working atmospheric loads caused by building activities. Formwork plays an important role in safety, quality, time, and cost of any RC building construction. Formwork is a interim structure in the sense that.

- It can be erected quickly.
- Has high imposed loads during placement of concrete.
- Ease of removal and fixation of formwork.

Normally the formwork consists of joist connections, braces and laces, anchorage, and other devices. The term “Temporary Structures” may not fully mean to be temporary, since some forms, tie hardware, and accessories are prone to repetitive loads, which needs high durability and maintenance characteristics and design that maximizes productivity.

II. OBJECTIVE

- Formwork is the major portion of the building construction.
- This project includes the experimental study of slab formwork, employed for various concrete construction with different dimensions using optimum section (skeleton) of sheathing, joist, stringer and shores.
- A comparison is made between timber and steel formwork system.
- The objective of this project is to determine the stability of slab form work to support construction loads and vibratory loads by computation of properties viz., vibration and deflection.
- To determine the optimum spacing of members of slab form work. To perform a graphical comparison between the obtained values for the economical evaluation.

III. LITERATURE REVIEW

The superlative design of some floor system, together with composite slab, one way waffle slab ,and formwork of concrete slab is performed[1].
Erection of Formwork with Optimum Spacing of Joists and Stringers

Along structuring with the reliability analysis for predictable steel scaffolding shoring structure deploy recent survey data on geometric and mechanical properties of steel scaffold members [2]. The dynamic characteristic of a scaled base slab are determined for different ground condition [5]. The conceptual design, the analytical modeling of the load bearing behavior and the bending tests that demonstrate its structural feasibility [7]. The main aim is to study primitive dynamic properties of an esteemed brick masonry upend bell-shaped, with the finite element analysis [4].

IV. METHODOLOGY

General: The general methodology of the present project is as follows:

1. Collection of materials
2. Loading the formwork.
3. Calculation and analysis
4. Result
5. Conclusion

A. COLLECTION OF MATERIAL:
Plywood and steel are used as sheathing material. 100x100 mm timber and H16 beams are adopted for joist and stringer. Shore made of timber and steel is 48.3 mm diameter. Vibrators are used for compaction of concrete. Vibration meter and deflectometer are taken.

B. MEASURING DEVICES:
Vibrators: In our project, needle vibrator is used for compaction of concrete.
- It comprise steel tube with one end closed and rounded having an eccentric vibrating element inside it.
- This steel tube called pokes is affixed to an electric motor. Size of steel tube is 40-100 mm dia.
- Frequency of vibration ranges from 3000-6000 rpm. Period of vibration is 30 sec-2 mins concrete should be propped in layers not more than 600 mm high.

C. VIBRATION METER:
Vibrators produce vibration in the concrete. Vibration is measured in terms of frequency using vibration meter. The unit for frequency is hertz.

D. DEFLECTOMETER:
Deflectometer is the device consists of dial gauge, used to find the deflection when the loads are applied. The least count of deflectometer is 0.01 mm. The unit of deflection is mm Figure 3.1

V. THEORETICAL PROCEDURE

Slab thickness = 150 mm
12 mm plywood as sheathing, 100 mm x 100 mm timber beam as the secondary and primary beam are available. Shores = 6 feet

Computation of loads:
Self weight of concrete slab = 0.15 x 26 = 3.8 KN/m²
Imposed load = 1.5 KN/m²
Load of formwork = 0.3 KN/m²
Total load on formwork = 5.7 KN/m²

Formulas:
Area = B x D ; I = BD^3/12 ; Zxx = 1/(D/2)
E = 7700 N/mm²

Theoretical procedure for timber and steel formwork:
Source: As per code Timber- Is:399-1963 , steel - Is:800-2007 , plywood- Is :4990-1993

Type of design	Span based on bending moment	Span based on shear force	Span based on deflection	Load

Figure1 – Deflectometer

Figure2 – Components of formwork
Table I Span and load details based on bending

Design of sheathing	M=W\times L^2/8 ≤ 0.2	Q=W S L/2 ≤ 6	Δ=W L s^4/EI ≤ 360	Δ=W L s^4/185EI ≤ 360	W=total load

| Design of secondary beam | M= W S L^3/8 ≤ 1.167 | Q=W S L/2 ≤ 6 | Δ=W L s^4/384EI ≤ L/360 | W S, width x W |
|--------------------------|------------------------|---------------|--------------------------|----------------|---------------|

Design of primary beam	M=W P L^3/8 ≤ 1.167	Q=W P L/2 ≤ 6	Δ=W P L S^4/384EI ≤ L/360	W P, spacing

Table II theoretical and experimental values

MEMBER CONDITION	THEORETICAL	PRACTICAL		
SHEATHING	Dimension (mm)	Spacing (mm)	Density (mm)	Spacing (mm)
120x650x12	1200	1200x650x12	1200	
120x650x12	1200	1200x650x12	1200	
SECONDARY BEAM	100x100	350	100x100	350
PRIMARY BEAM	65x160	600	65x160	600
PRIMARY BEAM	100x100	1600	100x100	1600
PRIMARY BEAM	65x160	2000	65x160	2000

Design of shores/props: The total load on the intermediate shores/props = total load on the formwork x spacing of primary beam x span of the secondary beam. The total load value should be less than the permissible load carrying capacity of props (20Kn).

Calculation of frequency:

F=1/2π\sqrt{k/m} (k=\sqrt{p/\Delta})

Calculation of deflection:
The acceptance and frequency used values for permissible deflection are given. Sheathing should be less than 1.6mm. [Hao Zhang et al. (2012)]

VI. PRACTICAL PROCEDURE

This table indicates the theoretical and experimental values of sheathing, secondary beam, primary beam, shores for both timber and steel formwork.

Figure 3- Steel formwork

Figure 4 - Timber formwork
Erection of Formwork with Optimum Spacing of Joists and Stringers

Practical procedure for timber and steel formwork:

Application of load (self weight + Imposed load)

Stringers is placed and joist is placed perpendicular to stringers.

All the above are supported by shores

Deflectometer is kept under sheathing to measure the deflection after load applied

Vibration is imposed on load using vibrators

Vibration meter is used to measure vibration

Steel slab formwork

STABILITY PROPERTIES	Trail	VIBRATION(Hz)	DEFLECTION(mm)
THEORETICAL	1	0.8	1.6
	2	0.8	1.6
	3	0.8	1.6
PRACTICAL	1	3	5
	2	6	8
	3	8.5	9.7

Table III Onsite steel slab formwork

Timber slab formwork

STABILITY PROPERTIES	Trail	VIBRATION(Hz)	DEFLECTION(mm)
THEORETICAL	1	1.4	3

Table IV Onsite timber slab formwork
From the above graph it is known that optimum spacing of joist designed should be decreased for minimum deflection and vibration.

VII. CONCLUSION

Quality of steel formwork is easier to maintain as compared with timber formwork. Formwork is essential part of concrete work. Spacing of the secondary beam executed practically should be less than the designed spacing. Hence minimum spacing gives a stable structure.

In order to ensure good results formwork should be properly designed and used. The cost of formwork varies between 10% to 20% of the structural cost. By employing good formwork, finishing cost can be reduced. Proper engineered formwork, ensures safe and quality construction of durable and enduring structures.

REFERENCE

1. Puente et al. 2010 Lateral pressure over formwork on large dimension concrete blocks.
2. Engineering Structures, 32(1): 195-206.
3. A.Kaveh et al. 2012 Cost optimization of a composite floor system, one-way waffle slab, and concrete slab formwork using a charged system search algorithm | Scientia Iranica A (2012) 19(3), 410-416.
4. Hao zhang et al. 2012 Reliability assessment of steel scaffold shoring structures for concrete formwork, Engineering Structures 36:81-89.
5. Serge et al. 2014 Numerical simulation of formwork pressure while pumping self compacting concrete bottom-up, Engineering Structures 70: 218-233.
6. Chayanon et al. 2014 Ambient vibration tests and finite element analysis for dynamic properties of brick masonry inverted bell-shaped chedi, APCBEE Procedia, Vol. 9.
7. 2014, 212-216.
8. Temel et al. 2014 Ambient vibration test of building base slab for different ground Condition, Vol. 52, Pg: 77-84.

AUTHORS PROFILE

Muthu D, Assistant Professor, School of Civil Engineering, SASTRA Deemed To Be University, Thanjavur, Tamilnadu, India. Email : dmuthu@civil.sastra.edu

Venkata Subramaniam C, Associate Professor, School of Civil Engineering, SASTRA Deemed To Be University, Thanjavur, Tamilnadu, India. Email : cv@civil.sastra.edu

Nandhini G , Assistant professor, Parisutham institute of technology and science, Thanjavur, Tamilnadu, India.. E-mail : gdnandhiniganesh@gmail.com