Multi-drug resistant *Vibrio cholerae* O1 variant El Tor isolated in northern Vietnam between 2007 and 2010

Huu Dat Tran,1,2 Munirul Alam,3 Nguyen Vu Trung,1,2 Nguyen Van Kinh,1,4 Hong Ha Nguyen,1 Van Ca Pham,1 Mohammad Ansaruzzaman,3 Shah Manzur Rashed,3 Nurul A. Bhuiyan,3 Tuyet Trinh Dao,1 Hubert P. Endtz3,5 and Heiman F. L. Wertheim6,7

1National Hospital of Tropical Diseases, 78 Giai Phong Street, Hanoi, Vietnam
2Department of Medical Microbiology, Hanoi Medical University, 1 Ton That Tung Street, Hanoi, Vietnam
3Enteric & Food Microbiology Laboratory, ICDDR,B: International Centre for Diarrhoeal Disease Research, Bangladesh GPO Box 128, Dhaka 1000, Bangladesh
4Department of Infectious Diseases, Hanoi Medical University, 1 Ton That Tung Street, Hanoi, Vietnam
5Department of Medical Microbiology & Infectious Diseases, Erasmus MC, University Medical Centre Rotterdam, The Netherlands
6Oxford University Clinical Research Unit Vietnam, Wellcome Trust Major Overseas Program, National Hospital of Tropical Diseases, 78 Giai Phong Road, Dong Da, Hanoi, Vietnam
7Centre for Tropical Medicine, Nuffield Department of Clinical Medicine, University of Oxford, Churchill Hospital, Old Road, Oxford OX3 7LJ, UK

Since 2007, there has been a re-emergence of cholera outbreaks in northern Vietnam. To understand the molecular epidemiological relatedness and determine the antibiotic susceptibility profiles of responsible *V. cholerae* O1 outbreak strains, a representative collection of 100 *V. cholerae* O1 strains was characterized. *V. cholerae* O1 strains isolated from diarrhoeal patients in northern Vietnam between 2007 and 2010 were investigated for antibiotic susceptibility and characterized by using phenotypic and genotypic tests, including PFGE analysis. Ten clinical *V. cholerae* O1 isolates from Bangladesh and Zimbabwe were included for comparison. The results revealed that all isolates were resistant to co-trimoxazole and nalidixic acid, 29% were resistant to tetracycline and 1% were resistant to azithromycin. All strains were susceptible to ampicillin–sulbactam, doxycycline, chloramphenicol and ciprofloxacin and 95% were susceptible to azithromycin. MIC values did show reduced susceptibility to fluoroquinolones and 63% of the strains were intermediate resistance to tetracycline. The isolates expressed phenotypic traits of both serogroup O1 Ogawa and El Tor and harboured an *rstr* El Tor and *ctxB* classical biotype. Among the outbreak isolates, only a single PFGE pattern was observed throughout the study period. This study shows that multi-drug resistant *V. cholerae* altered El Tor producing classical CT strains are now predominant in northern Vietnam.

INTRODUCTION

Cholera is an acute diarrhoeal disease, causing profuse watery stools, which, if untreated, leads to rapid dehydration and death (Kaper et al., 1995). Cholera is prevalent in developing countries with inadequate sanitation and poor access to safe drinking water (Zuckerman et al., 2007). From 1995 to 2005, approximately 100,000–300,000 cases of cholera causing 1500 deaths were reported annually to the WHO (Griffith et al., 2006). Cholera is caused by the Gram-negative bacterium *Vibrio cholerae* serogroups O1 and O139 (Kaper et al., 1995). Serogroup O1 can be categorized into two biotypes (classical or El Tor), and three serotypes...
(Ogawa, Inaba or Hikojima) (Sack et al., 2004). The seventh, and current, pandemic of cholera is being caused by the El Tor biotype while the fifth and sixth pandemics of cholera were caused by the classical biotype (Alam et al., 2010). Recently, new variants of *V. cholerae* O1 have emerged and spread throughout many countries of Asia, Africa and America that display a mixture of phenotypic and genotypic traits of both classical and El Tor biotypes (Alam et al., 2010; Ansaruzzaman et al., 2007).

Since the first variants of *V. cholerae* O1 El Tor were identified in Bangladesh, several other atypical El Tor strains have been identified and reported (Ansaruzzaman et al., 2007; Choi et al., 2010). Genotypic tests to differentiate *V. cholerae* O1 biotypes include *ctxB* (cholera toxin B), *rstR* (repeat sequence transcriptional) and *tcpA* (toxin-coregulated pili) gene typing (Safa et al., 2010). The El Tor strains that cause cholera in many countries have shifted from genotype 3 (found in El Tor strains from the seventh pandemic and the Latin American epidemic) to genotype 1 (found in strains of classical biotype worldwide and US Gulf Coast El Tor strains). In addition, atypical El Tor strains of *V. cholerae* O1 from Asia and Africa harboured an *rstR* allele known as *rstR*_	ext{Classical}, which corresponds with CTX_\text{Classical} and are reported as hybrid strains of the El Tor biotype (Ansaruzzaman et al., 2004). Moreover, the multi-drug resistant *V. cholerae* O1 altered El Tor has emerged as major problem in many countries in Asia and Africa (Ang et al., 2010; Jain et al., 2011; Kumar et al., 2010; Quilici et al., 2010).

In 2007, a cholera outbreak emerged in northern Vietnam, where only a few cases of cholera had previously been reported (Dalsgaard et al., 1999). The strains of *V. cholerae* O1 responsible for this outbreak were variants of the El Tor biotype displaying combinations of classical and El Tor features (Nguyen et al., 2009). New cholera cases continued to be detected in northern Vietnam until 2010, especially in Hanoi. The *V. cholerae* O1 strains associated with cholera outbreaks between 2007 and 2010 in northern Vietnam have not yet been characterized and their susceptibility to antimicrobials has not been reported. Moreover, there is lack of information about the genetic diversity among *V. cholerae* O1 strains isolated from patients in northern Vietnam between 2007 and 2010.

In the present study, we investigated the antimicrobial susceptibilities and the molecular epidemiological traits of *V. cholerae* O1 strains isolated in northern Vietnam from 2007 to 2010. *V. cholerae* O1 strains from Bangladesh and Zimbabwe were also included for comparison.

METHODS

Bacterial strains. In this study, we combined two collections of *V. cholerae* O1 strains that were selected randomly from diarrhoeal patients admitted to the National Hospital for Tropical Diseases (NHTD), a tertiary-care hospital in Hanoi, Vietnam. The NHTD served as a referral centre during the cholera outbreaks in Hanoi and the surrounding areas between 2007 and 2010. Antimicrobial susceptibility testing was performed on 100 isolates from patients admitted in 2008. A second collection contained 100 randomly selected strains isolated from patients with acute diarrhoea who were admitted to the NHTD between 2007 and 2010 (25 isolates for each year). *V. cholerae* was identified and confirmed by using standard biochemical methods (Islam et al., 2009). Serological identification of isolates was done by performing slide agglutination tests with commercially available polyvalent antiserum against *V. cholerae* O1 and monovalent antiserum against *V. cholerae* O1 serogroups Ogawa and Inaba (Bio-Rad) (Dalsgaard et al., 1999). The second collection was shipped in soft agar at ambient temperature to the ICDDR,B for phenotypic and genotypic testing and PFGE analysis. Reference strains for each of the *V. cholerae* O1 biotypes were used: classical (O395) and El Tor (N16961). Ten clinical isolates each of *V. cholerae* O1 from Bangladesh and Zimbabwe were included for comparison.

Serotyping and biotyping. Vietnamese *V. cholerae* strains were serotyped by using the slide agglutination test with specific polyvalent antiserum to *V. cholerae* O1 and serotype specific antisera to Inaba and Ogawa from the ICDDR,B (Ansaruzzaman et al., 2004). For biotype analysis, we used chicken erythrocyte agglutination, sensitivity to polymycin B and Mukerjee classical phage IV and Mukerjee El Tor phage 5 tests (Kaper et al., 1995; Sack et al., 2004).

PCR assays. The characterization of biotype and genotype were performed with molecular methods. Species-specific identification of *V. cholerae* was carried out by using *V. cholerae* species-specific *ompW* PCR (Nandi et al., 2000). The serogroups of these strains were reconfirmed by multiplex PCR targeted to identify genes encoding O1 (*rfb*) and O139 (*rfb*), specific O biosynthetic genes and the cholera toxin (*ctx*) gene (ctxA) (Hoshino et al., 1998). Biotype specific characterizations were performed by using PCR assays targeted to detect tcpA (Classical and El Tor) (Keasler & Hall, 1993) and the type of the *rstR* (El Tor and Classical alleles) gene encoding the phase transcriptional regulator (Bhattacharya et al., 2006). Mismatch amplification mutation assay (MAMA)-PCR to detect sequence polymorphism between the classical and El Tor *ctxB* gene was performed to distinguish the type of CTXB of the *V. cholerae* O1 strains included in this study (Morita et al., 2008); primers and procedures were used as described previously (Alam et al., 2010).

Antimicrobial susceptibility. Antimicrobial susceptibility to ampicillin (AMP), ampicillin/sulbactam (AXS), nalidixic acid (NAL), ciprofloxacin (CIP), trimethoprim/sulfamethoxazole (SXT), chloramphenicol (CHL), tetracycline (TCY), levofloxacin (LVX), azithromycin (AZM), doxycycline (DOX) was determined using E-test strips (bioMérieux), according to the manufacturer’s instructions. Cut-off levels for assessing resistance were used according to CLSI document M45 guidelines (CLSI, 2010a). For nalidixic acid, the MIC break point for *Enterobacteriaceae* was used, as published in CLSI document M100 (CLSI, 2010b).

PFGE. Intact agarose-embedded chromosomal DNA from 16 representative strains of *V. cholerae* O1 from Vietnam and four strains from Bangladesh and Zimbabwe was prepared and PFGE was performed using contour-clamped homogeneous electric field apparatus (Bio-Rad) according to the PulseNet procedure (Cooper et al., 2006). Genomic DNA was digested with the *Nol* restriction enzyme (Gibco-BRL). The electrophoresis was performed by using CHEF-DR II system apparatus and conditions. Images were captured and converted to *tif* files for computer analysis (Nusrin et al., 2009). *Salmonella enterica* serotype Braenderup strain H9812 was used as a molecular size marker.
RESULTS

Serotyping and biotyping
Serogrouping and bio-typing of Vietnamese *V. cholerae* strains revealed that all the strains belonged to the serogroup O1 Ogawa and the biotype El Tor (Table 1). Slide agglutination tests with antisera showed that all strains were positive to polyvalent O1 and monovalent Ogawa. Biotyping showed that all strains were resistant to polymycin B 50 IU, agglutinated to chicken erythrocytes and were resistant to classical phage IV and sensitive to El Tor phage 5, which are typical traits of the El Tor biotype.

PCR assays
Examination of genotypic traits also confirmed that the Vietnamese *V. cholerae* were of the O1 serogroup and altered El Tor variant (Table 1). PCRs for the *V. cholerae* species-specific gene *ompW* and serogroup-specific gene *rfbO1* were positive for all strains. All strains harboured *rst*R*el* and tcpA genes which are specific to strains of the El Tor biotype. Results of MAMA-PCR showed that all the *V. cholerae* isolates from Vietnam in this study harboured the ctxB1 allele which had been identified in strains of the classical biotype worldwide and in US Gulf Coast El Tor strains. All strains were positive for the ctxA gene.

Antimicrobial susceptibility
The percentages of the isolates that were susceptible, intermediate resistant or resistant to each microbial agent as well as the mean and range of MIC values are presented in Table 2. The data revealed that the isolates were susceptible to ampicillin (98%), amoxicillin/sulbactam (100%), doxycycline (100%), chloramphenicol (100%), ciprofloxacin (100%), levofloxacin (100%), and azithromycin (95%). However, the isolates exhibited high rate of resistance to trimethoprim/sulfamethoxazole (100%), nalidixic acid (100%) and tetracycline (29%). In addition, most isolates were intermediate resistant to tetracycline (63%).

There were four resistance patterns (Table 3) among the 100 strains tested. The most prevalent pattern was a resistance to nalidixic acid, co-trimoxazole and tetracycline (including cases of intermediate resistance).

PFGE
In the present study, PFGE analysis of the representative Vietnamese strains isolated between 2007 and 2010 showed an indistinguishable PFGE banding pattern that was typical of *V. cholerae* O1 El Tor (Fig. 1). The *Not*I restriction enzyme cleaved the chromosomal genome into 18 fragments with fragment sizes ranging from 20 to 398 kb. The PFGE patterns of isolates from Bangladesh and Zimbabwe differed slightly from the Vietnamese strains by a single band position, suggesting genetic divergence (Fig. 1).
When cluster analysis was performed to produce dendrograms, prepared using the Dice similarity coefficient and unweighted pair group method with arithmetic mean (UPGMA) clustering, using the PFGE patterns, all the El Tor strains shared a major cluster (Fig. 2) in which all the Vietnamese strains shared 100% similarity, whereas the Bangladesh and Zimbabwe strains formed another closely related cluster showing 98% similarity to the Vietnamese strains.

The PFGE (Fig. 1) results also indicate that the altered strains from Vietnam are more closely related to the El Tor reference strain (N16961) than to the classical reference strain (O395).

DISCUSSION

According to the new biotyping scheme proposed for *V. cholerae* O1 (Raychoudhuri et al., 2008), the results show that the Vietnamese *V. cholerae* O1 strains are variant El Tor strains. The strains have phenotypic traits of the El Tor biotype and genotypic traits of both El Tor and classical biotypes (rstR^{El}/ctxB¹). These variant strains were first reported in Bangladesh (Nair et al., 2002, 2006). The emergence and spread of a new variant of *V. cholerae* O1 urges the redefinition of *V. cholerae* classification (Raychoudhuri et al., 2008; Safa et al., 2010). Recently, a new biotyping scheme was proposed, using the molecular marker genes ctxB, rtxC, tlc, tcpA and RS element, which added a further two biotypes, designated ‘hybrid’ and ‘El Tor variant’, to the classification of newly emerging *V. cholerae* O1 strains (Raychoudhuri et al., 2008).

Earlier work already showed that cholera outbreaks in northern Vietnam in 2007 and early 2008 were caused by a *V. cholerae* O1 El Tor variant biotype strain producing ‘classical’ CTXB. This El Tor variant strain was probably imported into northern Vietnam around 2007 and subsequently replaced the endemic strains which contained a tandem repeat of the classical CTX prophage on the small chromosome, similar to the Mozambican variant, and were responsible for small cholera outbreaks before 2007 in Vietnam (Nguyen et al., 2009). Our genotyping data reveal that cholera outbreaks in northern Vietnam between 2007 and 2010 were caused by a single clone, confirming that the new *V. cholerae* O1 El Tor variant strain is predominant and has replaced the traditional El Tor biotype.

Table 2. Antimicrobial susceptibility profile of *V. cholerae* O1 strains using the E-test method

All MIC values are given in µg ml^{−1}. ND, Not determined.

Antimicrobial(s)	No. strains	Resistance pattern	Mean MIC values	Range of MIC values			
		Sensitive	Intermediately resistant	Resistant			
		Percentage of strains tested	MIC	Percentage of strains tested	MIC	Percentage of strains tested	MIC
Ampicillin	100	98	≤8	2	16	0	≥32
Ampicillin/ sulbactam (2/1)	92	100	≤8/4	0	16/8	0	≥32/16
Tetracycline	100	8	≤4	63	8	29	≥16
Doxycycline	97	100	≤4	0	8	0	≥16
Trimethoprim/ sulfamethoxazole (1/19)	100	0	≤2/38	0	ND	100	≥4/76
Chloramphenicol	100	100	≤8	0	16	0	≥32
Ciprofloxacin	100	100	≤1	0	2	0	≥4
Levofloxacin	100	100	≤2	0	4	0	≥8
Nalidixic acid*	100	0	≤16	0	ND	100	≥32
Azithromycin	100	95	≤2	4	4	1	≥8

*MIC interpretive standard for Enterobacteriaceae.

Table 3. Antibiotic resistance profiles of both intermediately resistant and resistant *V. cholerae* O1 isolates

AMP, ampicillin; AXS, ampicillin/sulbactam; NAL, nalidixic acid; CIP, ciprofloxacin; SXT, trimethoprim/sulfamethoxazole; CHL, chloramphenicol; TCY, tetracycline; LVX, levofloxacin; AZM, azithromycin, DOX, doxycycline.

Type	Antibiotic resistance profile	No. strains
I	NAL, SXT	8
II	NAL, SXT, TCY	85
III	AZM, NAL, SXT, TCY	5
IV	AMP, NAL, SXT, TCY	2
Total		100
It is currently known that all the *V. cholerae* O1 strains isolated in Bangladesh after 2001 were atypical or El Tor variant strains as they were phenotypically and genetically similar to El Tor but had the *ctxB1* gene of the classical biotype (Nair *et al.*, 2002, 2006). Subsequent studies reported such variant strains in Mozambique (Ansaruzzaman *et al.*, 2004), Vietnam (Nguyen *et al.*, 2009), Zimbabwe (this study) and Mexico (Alam *et al.*, 2010). Although the Vietnamese *V. cholerae* strains isolated between 2007 and 2010 were of the El Tor variant biotype and had PFGE patterns closely related to those of *V. cholerae* strains isolated from contemporary cholera outbreaks in Zimbabwe and Bangladesh, they had minor but consistent divergences, suggesting that the Vietnamese strains had an independent lineage and occupied a local niche.

Using multi-locus variable number tandem repeat analysis, a recent study demonstrated that altered strains from Vietnam are distant from the El Tor prototype strain responsible for the seventh cholera pandemic (Choi *et al.*, 2010). In spite of the minor divergences observed in the present study, the Vietnamese *V. cholerae* O1 strains with the RS1–CTX prophage (El Tor type *rstR* and classical *ctxB*) array on the large chromosome is likely to be more closely related to *V. cholerae* O1 El Tor variant strains currently circulating in Bangladesh (Nair *et al.*, 2006), India (Goel *et al.*, 2010) and Thailand (Okada *et al.*, 2010). However, our data are insufficient to verify the source of the *V. cholerae* O1 strains currently circulating in Vietnam.

Most of the strains from Vietnam were multi-drug resistant with common resistance to nalidixic acid, co-trimoxazole...
and tetracycline. All isolates were susceptible to doxycycline. Resistance to tetracycline, a common antimicrobial agent for the treatment of cholera (WHO, 2005), was also high (29%). Both tetracycline and doxycycline belong to the tetracycline antibiotic group and cross-resistance between these agents exists (Fluit et al., 2005). The use of doxycycline for cholera treatment and the trend of V. cholerae O1 resistance to the tetracycline group of antibiotics should be monitored. All isolates were resistant to co-trimoxazole, a recommended first-line agent for children with diarrhoea. A high incidence of co-trimoxazole resistance in V. cholerae O1 strains has been reported in prior studies in Africa, Asia and South America (Goel & Jiang, 2010; Ibarra & Alvarado, 2007; Mandomando et al., 2007). In Vietnam, there is also an increase in resistance to co-trimoxazole among diarrhoeagenic strains of E. coli and Shigella isolated from children in Hanoi (Nguyen et al., 2005). This indicates that co-trimoxazole should not be the recommended treatment for children with diarrhoea in Vietnam.

All the O1 V. cholerae strains were susceptible to fluoroquinolones, including ciprofloxacin and levofloxacin. However, the MICa of ciprofloxacin was close to the susceptibility breakpoint of 1 mg l⁻¹. All the V. cholerae O1 strains from Vietnam were completely resistant to nalidixic acid (MIC 256 μg ml⁻¹). V. cholerae O1 strains resistant to fluoroquinolones have been reported from India (Krishna et al., 2006). The high incidence of nalidixic acid resistance in V. cholerae O1 and increased resistance of V. cholerae against ciprofloxacin is cause for concern (Islam et al., 2009). Although the MICs of ciprofloxacin for the Vietnamese V. cholerae O1 strains were still below the susceptibility breakpoint, they had increased compared to historical isolates; this may be an indication of the emergence of high-level fluoroquinolone resistance in the near future. The majority of the Vietnamese strains (95%) were still susceptible to azithromycin, although the majority were still borderline susceptible to fluoroquinolones and susceptible to azithromycin. Empirical treatment of cholera with fluoroquinolones needs to be reconsidered.

Conclusion

Between 2007 and 2010, cholera outbreaks in Vietnam have been caused by a single clone of a variant V. cholerae O1 biotype El Tor strain. This variant was closely linked to similar variants of V. cholerae O1 El Tor strains isolated in Bangladesh and Zimbabwe but had a slightly divergent lineage, suggesting that they have evolved in solitary and independent ecosystem. A significant proportion of strains were multi-drug resistant, although the majority were still borderline susceptible to fluoroquinolones and susceptible to azithromycin. Empirical treatment of cholera with fluoroquinolones needs to be reconsidered.

ACKNOWLEDGEMENTS

This work is funded by grants from the Global Antibiotic Resistance Partnership (GARP, USA), the Wellcome Trust (UK) and the ICDDR,B (Bangladesh).

REFERENCES

Alam, M., Nusrin, S., Islam, A., Bhuiyan, N. A., Rahim, N., Delgado, G., Morales, R., Mendez, J. L., Navarro, A. & other authors (2010). Cholera between 1991 and 1997 in Mexico was associated with infection by classical, El Tor, and El Tor variants of Vibrio cholerae. J Clin Microbiol 48, 3666–3674.

Ang, G. Y., Yu, C. Y., Balqis, K., Elina, H. T., Azura, H., Hani, M. H. & Yean, C. Y. (2010). Molecular evidence of cholera outbreak caused by a toxigenic Vibrio cholerae O1 El Tor variant strain in Kelantan, Malaysia. J Clin Microbiol 48, 3963–3969.

Ansaruzzaman, M., Bhuiyan, N. A., Nair, B. G., Sack, D. A., Lucas, M., Deen, J. L., Ampuero, J., Chaignat, C. L. & Mozambique Cholera Vaccine Demonstration Project Coordination Group (2004). Cholera in Mozambique, variant of Vibrio cholerae. Emerg Infect Dis 10, 2057–2059.

Ansaruzzaman, M., Bhuiyan, N. A., Safa, A., Sultana, M., McCumule, A., Mondlane, C., Wang, X. Y., Deen, J. L., von Seidlein, L. & Clemens, J. (2007). Genetic diversity of El Tor strains of Vibrio cholerae O1 with hybrid traits isolated from Bangladesh and Mozambique. Int J Med Microbiol 297, 443–449.

Bhattacharya, T., Chatterjee, S., Maili, D., Bhadra, R. K., Takeda, Y., Nair, G. B. & Nandy, R. K. (2006). Molecular analysis of the rstR and orfU genes of the CTX prophages integrated in the small chromosomes of environmental Vibrio cholerae non-O1, non-O139 strains. Environ Microbiol 8, 526–634.

Choi, S. Y., Lee, J. H., Jeon, Y. S., Lee, H. R., Kim, E. J., Ansaruzzaman, M., Bhuiyan, N. A., Endtz, H. P., Niyogi, S. K. & other authors (2010). Multilocus variable-number tandem repeat analysis of Vibrio cholerae O1 El Tor strains harbouring classical toxin B. J Med Microbiol 59, 763–769.

CLSI (2010a). Methods for Antimicrobial Dilution and Disk Susceptibility Testing of Infrequently Isolated or Fastidious Bacteria. Approved Guideline 2nd edn, document M45–A2 (ISBN 1–56238–716–2). Wayne, PA: Clinical and Laboratory Standards Institute.

CLSI (2010b). Performance Standards for Antimicrobial Susceptibility Testing, 20th Informational Supplement, document M100–S20 (ISBN 1–56238–716–2). Wayne, PA: Clinical and Laboratory Standards Institute.

Cooper, K. L., Luey, C. K., Bird, M., Terajima, J., Nair, G. B., Kam, K. M., Arakawa, E., Safa, A., Cheung, D. T. & other authors (2006). Development and validation of a PulseNet standardized pulsed-field gel electrophoresis protocol for subtyping of Vibrio cholerae. Foodborne Pathog Dis 3, 51–58.

Dalsgaard, A., Forslund, A., Tam, N. V., Vinh, D. X. & Cam, P. D. (1998). Cholera in Vietnam: changes in genotypes and emergence of class I integrons containing aminoglycoside resistance gene cassettes in Vibrio cholerae O1 strains isolated from 1979 to 1996. J Clin Microbiol 37, 734–741.
Multi-drug resistant *Vibrio cholerae* in Vietnam

Nair, G. B., Faruque, S. M., Bhuiyan, N. A., Kamruzzaman, M., Siddique, A. K. & Sack, D. A. (2002). New variants of *Vibrio cholerae* O1 biotype El Tor with attributes of the classical biotype from hospitalized patients with acute diarrhea in Bangladesh. *J Clin Microbiol* 40, 3296–3299.

Nair, G. B., Cadri, F., Holmgren, J., Svennerholm, A. M., Safa, A., Bhuiyan, N. A., Ahmad, Q. S., Faruque, S. M., Faruque, A. S. & other authors (2006). Cholera due to altered El Tor strains of *Vibrio cholerae* O1 in Bangladesh. *J Clin Microbiol* 44, 4211–4213.

Nandi, B., Nandy, R. K., Mukhopadhyay, S., Nair, G. B., Shimada, T. & Ghose, A. C. (2000). Rapid method for species-specific identification of *Vibrio cholerae* using primers targeted to the gene of outer membrane protein OmpW. *J Clin Microbiol* 38, 4145–4151.

Nguyen, T. V., Le, P. V., Le, C. H. & Weintraub, A. (2005). Antibiotic resistance in diarrheagenic *Escherichia coli* and *Shigella* strains isolated from children in Hanoi, Vietnam. *Antimicrob Agents Chemother* 49, 816–819.

Nguyen, B. M., Lee, J. H., Cuong, N. T., Choi, S. Y., Hien, N. T., Anh, D. D., Lee, H. R., Ansaruzzaman, M., Endtz, H. P. & other authors (2009). Cholera outbreaks caused by an altered *Vibrio cholerae* O1 El Tor biotype strain producing classical cholera toxin B in Vietnam in 2007 to 2008. *J Clin Microbiol* 47, 1568–1571.

Nusrin, S., Gil, A. I., Bhuiyan, N. A., Safa, A., Asakura, M., Lanata, C. F., Hall, E., Miranda, H., Huapaya, B. & other authors (2009). Peruvian *Vibrio cholerae* O1 El Tor strains possess a distinct region in the *Vibrio* seventh pandemic island-II that differentiates them from the prototype seventh pandemic El Tor strains. *J Med Microbiol* 58, 342–354.

Okada, K., Chantaroj, S., Roobthaisong, A., Hamada, S. & Sawpanayanalert, P. (2010). A cholera outbreak of the *Vibrio cholerae* O1 El Tor variant carrying classical ctxB allele in northeastern Thailand in 2007. *Am J Trop Med Hyg* 82, 875–878.

Quilici, M. L., Massenet, D., Gake, B., Bwalyi, B. & Olson, D. M. (2010). *Vibrio cholerae* O1 variant with reduced susceptibility to ciprofloxacin, Western Africa. *Emerg Infect Dis* 16, 1804–1805.

Raychothuri, A., Mukhopadhyay, A. K., Ramamurthy, T., Nandy, R. K., Takeda, Y. & Nair, G. B. (2008). Biotyping of *Vibrio cholerae* O1: time to redefine the scheme. *Indian J Med Res* 128, 695–698.

Sack, D. A., Sack, R. B., Nair, G. B. & Siddique, A. K. (2004). Cholera. *Lancet* 363, 223–233.

Safa, A., Nair, G. B. & Kong, R. Y. (2010). Evolution of new variants of *Vibrio cholerae* O1. *Trends Microbiol* 18, 46–54.

Saha, D., Karim, M. M., Khan, W. A., Ahmed, S., Salam, M. A. & Bennish, M. L. (2006). Single-dose azithromycin for the treatment of cholera in adults. *N Engl J Med* 354, 2452–2462.

WHO (2005). The Treatment of Diarrhoea: A Manual for Physicians and Other Senior Health Workers, 4th rev. Geneva: World Health Organization.

Zuckerman, J. N., Rombo, L. & Fisch, A. (2007). The true burden and risk of cholera: implications for prevention and control. *Lancet Infect Dis* 7, 521–530.

de Saussure, P. P. (2009). Management of the returning traveler with diarrhea. *Therap Adv Gastroenterol* 2, 367–375.

Fluit, A. C., Florijn, A., Verhoef, J. & Milatovic, D. (2005). Presence of tetracycline resistance determinants and susceptibility to tigecycline and minocycline. *Antimicrob Agents Chemother* 49, 1636–1638.

Goel, A. K. & Jiang, S. C. (2010). Genetic determinants of virulence, antibiogram and altered biotype among the *Vibrio cholerae* O1 isolates from different cholera outbreaks in India. *Infect Genet Evol* 10, 814–818.

Goel, A. K., Jain, M., Kumar, P. & Jiang, S. C. (2010). Molecular characterization of *Vibrio cholerae* outbreak strains with altered El Tor biotype from southern India. *World J Microbiol Biotechnol* 26, 281–287.

Griffith, D. C., Kelly-Hope, L. A. & Miller, M. A. (2006). Review of reported cholera outbreaks worldwide, 1995–2005. *Am J Trop Med Hyg* 75, 973–977.

Hoshino, K., Yamasaki, S., Mukhopadhyay, A. K., Chakraborty, S., Basu, A., Bhattacharya, S. K., Nair, G. B., Shimada, T. & Takeda, Y. (1998). Development and evaluation of a multiplex PCR assay for rapid detection of toxigenic *Vibrio cholerae* O1 and O139. *FEMS Immunol Med Microbiol* 20, 201–207.

Ibarra, J. O. & Alvarado, D. E. (2007). Antimicrobial resistance of clinical and environmental strains of *Vibrio cholerae* isolated in Lima-Peru during epidemics of 1991 and 1998. *Braz J Infect Dis* 11, 100–105.

Islam, M. S., Midzi, S. M., Charimari, L., Cravioto, A. & Endtz, H. P. (2009). Susceptibility to fluoroquinolones of *Vibrio cholerae* O1 isolated from diarrheal patients in Zimbabwe. *JAMA* 302, 2321–2322.

Jain, M., Goel, A. K., Bhattacharya, P., Ghatole, M. & Kamboj, D. V. (2011). Multidrug resistant *Vibrio cholerae* O1 El Tor carrying classical ctxB allele involved in a cholera outbreak in South Western India. *Acta Trop* 117, 152–156.

Kaper, J. B., Morris, J. G., Jr & Levine, M. M. (1995). Cholera. *Clin Microbiol Rev* 8, 48–86.

Keasler, S. P. & Hall, R. H. (1993). Detecting and biotyping *Vibrio cholerae* O1 with multiplex polymerase chain reaction. *Lancet* 341, 1661.

Krishna, B. V., Patil, A. B. & Chandrasekhar, M. R. (2006). Fluoroquinolone-resistant *Vibrio cholerae* isolated during a cholera outbreak in India. *Trans R Soc Trop Med Hyg* 100, 224–226.

Kumar, P., Wilson, P. A., Bhai, R. & Thomas, S. (2010). Characterization of an SXT variant *Vibrio cholerae* O1 Ogawa isolated from a patient in Trivandrum, India. *FEMS Microbiol Lett* 303, 132–136.

Mandomando, I., Espasa, M., Vallès, X., Sacarlal, J., Sigauque, B., Ruiz, J. & Alonso, P. (2007). Antimicrobial resistance of *Vibrio cholerae* O1 serotype Ogawa isolated in Manhiça District Hospital, southern Mozambique. *J Antimicrob Chemother* 60, 662–664.

Morita, M., Ohnishi, M., Arakawa, E., Bhuiyan, N. A., Nusrin, S., Alam, M., Siddique, A. K., Qadri, F., Izumiya, H. & other authors (2008). Development and validation of a mismatch amplification mutation PCR assay to monitor the dissemination of an emerging variant of *Vibrio cholerae* O1 biotype El Tor. *Microbiol Immunol* 52, 314–317.