In search of the dark matter dark energy interaction: a kinematic approach

Ankan Mukherjee and Narayan Banerjee

Department of Physical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur, West Bengal-741246, India

E-mail: ankan_ju@iiserkol.ac.in and narayan@iiserkol.ac.in

Received 14 September 2016, revised 7 December 2016
Accepted for publication 20 December 2016
Published 10 January 2017

Abstract

The present work deals with a kinematic approach to modelling the late time dynamics of the universe. This approach is based upon the assumption of constant value of cosmological jerk parameter, which is the dimensionless representation of the third order time derivative of the scale factor. For the ΛCDM model, the value of jerk parameter is -1 throughout the evolution history. Now any model dependent estimation of the value of the jerk parameter would indicate the deviation of the model from the cosmological constant. In the present work, it has also been shown that for a constant jerk parameter model, any deviation of its value from -1 would not allow the dark matter to have an independent conservation, thus indicating an interaction between dark matter and dark energy. Statistical analysis with different observational data sets (namely the observational Hubble parameter data (OHD), the type Ia supernova data (SNe), and the baryon acoustic oscillation data (BAO)) lead to well constrained values of the jerk parameter and the model remains at a very close proximity of the ΛCDM. The possibility of interaction is found to be more likely at high redshift rather than at the present epoch.

Keywords: cosmology, dark energy, reconstruction, deceleration parameter, jerk parameter, interacting dark energy

(Some figures may appear in colour only in the online journal)

1. Introduction

The recent cosmic acceleration has emerged as an intriguing phenomenon in cosmology. It was first observed during supernova observations in the late 1990s [1]. Subsequent cosmological observations like type Ia supernova data [2, 3], galaxy cluster measurement [4] etc, have confirmed the accelerated expansion of the universe. The discovery of this phenomenon has propelled the research in cosmology towards a new direction, particularly the basic
understanding about the contents of the universe has been changed radically. The spectacular
development in cosmological observations in the last two decades has imposed tighter con-
straints on various cosmological models, but the genesis of the cosmic acceleration is still far
from being resolved.

Various possibilities are explored in order to find an explanation of the late time cosmic
acceleration. One way is to introduce an exotic component in the matter sector. This exotic
component, dubbed as *dark energy*, with a characteristic negative pressure, leads to the repul-
sive nature of gravity at cosmological scale. The most popular model of dark energy is the cos-
mological constant Λ, which is based upon the assumption that the constant vacuum energy
density serves as the candidate of dark energy. The appearance of Λ in cosmological models is
not new and thus a less radical change in the cosmological models. Though strongly supported
by observations, the ΛCDM (cosmological constant Λ with pressureless cold dark matter)
model suffers from various inconsistencies, mainly the fine tuning problem. An elaborate dis-
cussion on the merits and problems of the ΛCDM model and various related issues has been
made by Padmanabhan [5]. Dark energy candidates that evolve with time provide efficient
alternatives, but have the disadvantage of not being properly motivated from other branches of
physics. There are some excellent reviews on different dark energy models [6]. The other way
to look for a plausible reason behind the cosmic acceleration is to find a suitable modification
of the general relativity (GR) such as $f(R)$ gravity models [7], scalar-tensor theories [8] and
different higher dimensional gravity theories [9]. The most common problem of such models
is that they can hardly match GR in the context of local astronomy.

The recent trend in the modelling of cosmic evolution is to build up the model from observa-
tional data. This reverse way of finding a cosmological model viable is called *reconstruction*.
Pioneering work in this direction was by Starobinsky [10], where the scalar field potential,
used as the dark energy, has been reconstructed by using the density perturbation data. The
data of distance measurement of supernova has been utilized in the context of reconstruction
by Huterer and Turner [11] and by Saini et al [12]. Parametrization of quintessence scalar
field and potential from effective equation of state of dark energy has been discussed by Guo
et al [13]. Construction of non-canonical kinematic terms has been discussed by Li et al [14].
There are two types of practice in reconstruction. The first one is parametric reconstruction
which is based upon the assumption of a parametric form of cosmological quantities like the
dark energy equation of state (w_{DE}), dark energy density (ρ_{DE}), the quintessence potential etc
[15, 16] and an estimation of the parameters from the available data. The other one is a non-
parametric reconstruction which is an attempt to estimate the evolution of w_{DE} directly from
observational data without an assumption of any parametric form [17].

The normal practice in cosmology is to write down Einstein equations, $G_{\mu\nu} = -8\pi GT_{\mu\nu}$ for
a spatially homogenous and isotropic model with the right hand side taking care of the mat-
ter sector. The present work has a completely different approach. We assume a spatially flat
homogeneous and isotropic metric and define the usual kinematical quantities like the Hubble parameter H, the deceleration parameter q and the jerk parameter j, which are, respectively,
the first order, second order and third order time derivatives of the scale factor a. The deriva-
tives are all fractional derivatives and furthermore q and j are dimensionless. We have obser-
vational results of the evolution of q, in the sense that the parameter is negative at the present
epoch and had been positive in a recent past, the epoch of transition from the decelerated to the
accelerated expansion is also known. The natural choice of the kinematical quantity of interest
is thus the evolution of q, which is the jerk parameter j. We now assume a constant jerk and
find the evolution of the other kinematical quantities from the definition of jerk. The values of
the various kinematical quantities and the model parameters, which come out as the constant
of integration and the value of j, are then estimated from known observational data sets.
The reconstruction technique normally involves finding out the equation state parameter \(w_{DE} \) given by \(w_{DE} = \frac{p_{DE}}{\rho_{DE}} \), the ratio of the contribution to the pressure and density sectors from the dark energy. The approach is indeed physical, as it directly talks about the nature of the dark energy sector. Although much less used, the kinematical approach has the virtue of not having any \textit{a priori} prejudice regarding the dark energy. Pioneering work in the kinematic modelling of cosmic acceleration was by Riess \textit{et al} [18] where a linear parametrization of the deceleration parameter has been adopted to estimate the redshift at which the transition from decelerated to accelerated expansion phase occurred. Different parametrizations of deceleration parameter have been discussed by Shapiro and Turner [19], Gong and Wang [20], Xu and Liu [21] and Elgaroy and Multamaki [22]. Recently, the kinematic method to investigate the cosmic acceleration has been discussed by Barboza and Carvalho [23].

As already mentioned, the jerk parameter had hardly been used until very recently. However, its importance in building a cosmological model had been emphasized long back in terms of a ‘state-finder’ parameter [24]. The indication of importance of jerk as a future tool for the reconstruction of cosmological models was also indicated by Alam, Sahni, Saini and Starobinsky [25]. The reason for its being overlooked as the starting point of reconstruction was perhaps the unavailability of clean data. Reconstruction of dark energy model using deceleration parameter \((q)\) and jerk \((j)\) as model parameters was discussed by Rapetti \textit{et al} [26], where the present values of the kinematical parameters have been constrained using observational data. Parametrization of time evolving jerk parameter models has been discussed recently by Zhai \textit{et al} [27] and by Mukherjee and Banerjee [28].

If the agent driving the present acceleration is the cosmological constant, then certainly the dark matter sector follows its own conservation equation. However, if the dark energy is an evolving one, there is always a possibility that the two dark sectors interact with each other, one may grow at the expense of the other. Naturally there is a lot of work in the literature where the interacting dark energy model has been discussed. Cosmological evolution of interacting phantom dark energy has been discussed by Guo, Cai and Zhang [29]. Guo, Ohta and Tsujikawa have emphasised the observational constraints on the coupling between different dark components of the universe [30]. The last two investigations assume that the interaction is proportional to the total energy density. An interacting dark energy model has recently been given by Pan, Bhattacharaya and Chakraborty [31] where again the interaction term is assumed to be proportional to the total energy density. Holographic dark energy models with Hubble scale as the infra red cutoff require the interaction between dark energy and dark matter to yield the recent accelerated expansion with a history of a decelerated expansion in the past. Interacting holographic dark energy model has been discussed by Zimdahl and Pavon [32]. For a \textit{graceful entry} of the universe from a decelerated to an accelerated phase in Brans–Dicke theory, the interaction of the Brans–Dicke scalar field and the quintessence scalar field had been discussed by Das and Banerjee [33]. An attempt towards a covariant Lagrangian formulation of the interaction has been made by Faraooni, Dent and Saridakis [34]. Reconstruction of the interaction rate in holographic dark energy model has been discussed by Sen and Pavon [35] where the reconstruction has been done with a prior assumption about the dark energy equation of state. Reconstruction of interaction rate in holographic dark energy from parametrizations of deceleration parameter has been discussed by Mukherjee [36]. Recently, non-parametric reconstruction of dark energy interaction using Gaussian process has been discussed by Yang \textit{et al} [37] where the signature of dark energy interaction has been obtained for a deviation of dark energy equation of state parameter from the value \(-1\).

The present work is an attempt to reconstruct the possible interaction of various matter components from the data sets in a kinematical approach. The starting point is a constant jerk
parameter. The result is that any deviation from the ΛCDM model indicates a possibility of an interaction amongst various matter sectors. The best fit values, however, are tantalizingly close to the ΛCDM scenario. Another important result is that the allowance of any interaction is more stringent at recent times, but slightly more relaxed in the past.

It should also be mentioned at the outset that the entire work depends upon the dogma that a ΛCDM model should be included as a possibility in an endeavour leading to the reconstruction of the dark energy, at least as a limit.

In the following (section 2), the reconstruction of the model has been discussed. The results of the statistical analysis have been presented in section 3. A discussion of the results and some concluding remarks have been included in section 4.

2. Reconstruction of the model for a constant jerk parameter

The mathematical framework of cosmology begins with the assumption of a homogeneous and isotropic universe, where the distance element is defined as

\[ds^2 = -dt^2 + a^2(t) \left(\frac{dr^2}{1 - kr^2} + r^2d\Omega^2 \right). \]

Here \(k \), which can have values 0 or \(\pm 1 \), conveys the information regarding the nature of spatial curvature. The time dependent quantity in the coefficient of the spatial part of the metric, \(a(t) \), is called the scale factor. It takes care of the time evolution of the spatial separation of two space-time point. Here further calculations have been continued assuming the spatial flatness of the universe, i.e. \(k = 0 \).

The fractional rate of expansion of the linear size of the universe, dubbed as the Hubble parameter, is defined as

\[H(t) = \frac{\dot{a}}{a}, \]

where the overhead dot denotes a derivative with respect to the cosmic time \(t \). To understand the nature of the expansion, higher order time derivatives of the scale factor are to be invoked. The measure of cosmic acceleration is presented in a dimensionless way by the deceleration parameter \(q \), defined as

\[q(t) = -\frac{\dot{a}/a - \ddot{a}/a^2}{\dddot{a}/a^3} = -1 - \frac{\ddot{H}}{H^2}. \]

If the value of the deceleration parameter is negative, then the expansion is accelerated.

The cosmic ‘jerk parameter’, which is the dimensionless representation of the third order time derivative of the scale factor, is defined as

\[j(t) = -\frac{1}{aH^3} \left(\frac{d\dddot{a}}{dt} \right). \]

It is convenient to convert the time derivatives to the derivatives with respect to the redshift \(z \) (where \(1 + z = a_0/a \), \(a_0 \) being the present value of \(a \)) for studying the dynamics of the universe as \(z \) is a dimensionless quantity. From the equation (4), the expression for the jerk parameter will be
\[j(z) = -1 + (1 + z) \frac{\frac{\dot{h}(z)^2}{h^2}}{\frac{1}{2} (1 + z)^2 \frac{\ddot{h}(z)^2}{h^2}}, \]

(5)

where \(h(z) = \frac{H(z)}{H_0} \) (\(H_0 \) being the present value of the Hubble parameter) and a prime denotes the derivative with respect to \(z \). In the present work, the reconstruction is done with the assumption that \(j \) is a slowly varying quantity, and will be considered a constant in the subsequent discussion. The solution of the differential equation (5) yields the expression of \(h^2(z) \) as

\[h^2(z) = A(1 + z)^{\frac{3 + \sqrt{9 - 8(1 + j)}}{2}} + B(1 + z)^{-\frac{3 - \sqrt{9 - 8(1 + j)}}{2}}, \]

(6)

where \(A \) and \(B \) are the constant dimensionless coefficients. Now the relation between \(A \) and \(B \) is obtained from the boundary condition \(h(z = 0) = 1 \) as \(A + B = 1 \). Finally \(h^2(z) \) is written as a function of redshift \(z \) and two parameters \(j \) and \(A \) as

\[h^2(z) = A(1 + z)^{\frac{3 + \sqrt{9 - 8(1 + j)}}{2}} + (1 - A)(1 + z)^{-\frac{3 - \sqrt{9 - 8(1 + j)}}{2}}. \]

(7)

Therefore, this is effectively a two parameter model where \(j \) and \(A \) are the model parameters. The value of \(j \) obtained from the statistical analysis of the reconstructed model using different observational data would indicate the consistency or deviation of this model from the \(\Lambda \) CDM and it exactly mimics the \(\Lambda \) CDM for \(j = -1 \). The deceleration parameter (defined in equation (3)) can also be expressed for the present model in terms of the model parameters and the redshift as,

\[q(z) = -1 + \frac{A \left(1 + z \right)^{\frac{3 + \sqrt{9 - 8(1 + j)}}{2}}}{h^2(z)} + \frac{(1 - A) \left(1 + z \right)^{-\frac{3 - \sqrt{9 - 8(1 + j)}}{2}}}{h^2(z)}. \]

(8)

One component of the matter content of the universe, whether it interacts with the dark energy sector or not, is generally believed to be a cold dark matter with an equation of state \(p = 0 \). If we stick to this presupposition, and attempt to recover a non-interacting pressureless fluid at least as a limit from equation (7) for some value of \(j \), we find that the second term of the right hand side of equation (7) can yield a highest power of \((1 + z)^3 \) behaviour in the first term. So we identify the first term to represent the contribution from the cold dark matter, which, in the non-interacting limit, yields a \((1 + z)^3 \) behaviour as in the standard dust model. The rest of the work will depend on this identification. One should note that this is not the only plausible choice. It may well be possible to find a corresponding pressure to each of the contributions to the matter sector so that both the components conserve by themselves.

One can easily calculate the equation of state parameter \(w \) (given by \(w = \frac{\text{pressure}}{\text{density}} \)) for both the contributions. A straightforward calculation for a constant \(w \) will yield

\[9w(w + 1) + 2(1 + j) = 0, \]

(9)

It is easy to see that \(j = -1 \) again gives two solutions of equation (9) \(w = 0 \) and \(w = -1 \) leading to a \(\Lambda \) CDM behaviour where \(w = 0 \) corresponds to the cold dark matter and \(w = -1 \) corresponds to the cosmological constant. However, this will not lead to any interaction. One should also note that starting from the definition of the jerk parameter (equation (4)), with the assumption that \(j \) is a constant, one actually recovers one of the Einstein equations for the system, where the nature of the matter sector depends on the value of the parameter. Thus the
parameter \(A \) is equivalent to the matter density parameter \(\Omega_m^0 \) because for \(j = -1 \), the power of \((1 + z)\) in the first term on the right hand side of equation (7) is 3 and the second term is a constant, equivalent to the constant vacuum energy density. If the power of \((1 + z)\) in the first term is different from 3, the dark matter is not separately conserved. This invokes the possibility of interaction between the dark matter and the dark energy.

To investigate the nature of interaction for the present model, the total conservation equation which is a direct consequence of contracted Bianchi identity, can be divided into two parts as follows,

\[
\dot{\rho}_m + 3H \rho_m = \eta, \tag{10}
\]

and

\[
\dot{\rho}_{DE} + 3H(1 + w_{DE}) \rho_{DE} = -\eta. \tag{11}
\]

The overhead dots represent the differentiation with respect to cosmic time, \(\rho_m \) and \(\rho_{DE} \) are the matter density and dark energy density, respectively, and \(w_{DE} \) is the dark energy equation of state parameter. As the dark energy and dark matter interact with themselves, they are not conserved individually. The growth rate of one component, namely \(\eta \), is the decay rate of the other. In the present work, the possibility of interaction has been studied. For a dimensionless representation, \(\eta \) has been scaled by \((3H_0^2/8\pi G)\) and written as

\[
Q = \frac{8\pi G}{3H_0^2} \eta. \tag{12}
\]

For the \(\Lambda \)CDM model, the value of \(Q \) is zero. In the present work, observational constraints on the late time evolution of \(Q(z) \) have been obtained. As in the expression of the Hubble parameter (equation (7)), the first term of the right hand side, i.e. \(A(1 + z)^{3 + \sqrt{9 - 8(1 + j)}}/2 \), is considered to be the matter density scaled by the present critical density, from equation (10), the interaction term \(Q \) can be expressed in terms of the parameters and redshift, as

\[
Q(z) = A \left(\frac{3 - \sqrt{9 - 8(1 + j)}}{2} \right) (1 + z)^{3 + \sqrt{9 - 8(1 + j)}}/2 h(z). \tag{13}
\]

It is important to note that the second term on the right hand side of equation (7) is considered to be the contribution from the dark energy density. Thus the expression of the dark energy equation of state parameter \((w_{DE} = p_{DE}/\rho_{DE})\) looks like,

\[
w_{DE}(z) = - \left(\frac{3 + \sqrt{9 - 8(1 + j)}}{6} \right) - \left(\frac{A}{1 - A} \right) \left(\frac{3 - \sqrt{9 - 8(1 + j)}}{6} \right) (1 + z)^{\sqrt{9 - 8(1 + j)}}. \tag{14}
\]

3. Results of statistical analysis

Now the remaining task is to estimate the parameter values from observational data sets. In the present work, three different data sets have been adopted. These are (i) the observational Hubble parameter data (OHD), (ii) the distance modulus data of type Ia supernova (SNe) and (iii) baryon acoustic oscillation data (BAO).

For the first set of data, measurement of Hubble parameter at different redshifts by using differential age of galaxies as an estimator [38], measurement from red-enveloped galaxies
measurement of expansion rate of the universe by Moresco et al [40], measurement of expansion history from WiggleZ dark energy survey as discussed by Blake et al [41], measurement of Hubble parameter from Sloan digital sky survey (SDSS) data by Zhang et al [42], have been adopted in the present analysis. The recent measurement of Hubble parameter at $z = 2.34$ by Delubac et al [43] has also been incorporated into the present analysis. The present value of Hubble parameter H_0, estimated from the combined analysis with Planck + WP + highL + BAO [46], has also been adopted.

The supernova distance modulus data (SNe) of joint lightcurve analysis (jla) has been adopted in this work [3] for the second category. The binned data of jla has been used along with the covariance matrix of the binning.

Finally, baryon acoustic oscillation (BAO) measurements at three different redshifts (6dF galaxy surve at redshift $z = 0.106$ [44], the baryon oscillation spectroscopic survey at redshift $z = 0.32$ (BOSS LOWZ) and at redshift $z = 0.57$ (BOSS CMASS) [45]) along with the measurement of acoustic scale and comoving sound horizon at photon decoupling and drag epoch from CMB [46, 47] have been adopted.

The χ^2 minimization technique which is equivalent to the maximum likelihood analysis, has been adopted to find the best fit values of the model parameters. The results have been obtained for different combinations of the data sets. The χ^2 is defined as

$$\chi^2 = \sum_i \frac{(\epsilon_{\text{obs}}(z_i) - \epsilon_{\text{th}}(\{\theta\})))^2}{\sigma_i},$$

(15)

where ϵ_{obs} is the value of the observable measured at redshift z_i, ϵ_{th} from the observable quantity as a function of the set of model parameters $\{\theta\}$ and σ_i is the uncertainty associated to the measurement at z_i. The combined analysis has been carried out by adding the χ^2 of the individual data sets taken into account for that particular combination. The combined χ^2 is defined as,

$$\chi^2_{\text{combined}} = \sum_d \chi^2_d,$$

(16)

where d represents the individual data set.

The kinematic model discussed in the present work contains two parameters (A, j) where parameter A is coming as an integration constant and the j is the constant jerk parameter. As mentioned earlier, it is imperative to note that parameter A is equivalent to matter density parameter. The value of jerk parameter j, estimated from observational data, would indicate the deviation, if any, of the present model from ΛCDM, for $j = -1$, the present model mimics the ΛCDM.

The expression of the Hubble parameter obtained for the present model (equation (7)) shows that the matter sector has two components. The first one, with constant coefficient A, is the dark matter density and the other one is the dark energy density. As the energy density of relativistic particles, mainly the photon and neutrino, have an effective contribution to the dynamics of the of the universe at very high redshift, an additional energy density term, evolving as $(1 + z)^4$ for radiation, has been taken into account while using the angular diameter distance measurement in the analysis with BAO data. The present value of the energy density of relativistic particles scaled by the present critical density is taken to be $\Omega_m = 9.2 \times 10^{-5}$ with the adopted fiducial value of current CMB temperature $T_0 = 2.7255$ K. The adopted fiducial value of T_0 is based on the measurement of current CMB temperature $T_0 = 2.7255 \pm 0.0006$ K [48]. As the prime endeavour of the present work is to reconstruct the late time dynamics of the universe, the radiation energy density is not taken in account as it has a negligible contribution at late time, i.e. in equation (7).
Figure 1 shows the confidence contours on the 2D parameter space of the model for different combinations of the data sets and figure 2 presents the plots of marginalized likelihoods as functions of the model parameters. The likelihoods are well fitted to Gaussian distributions. Table 1 shows the results of the statistical analysis for different combinations of the data sets. The reduced χ^2 (i.e., χ^2/d.o.f.) values are also presented to have an estimation of the goodness of fitting. Both figure 1 and table 1 clearly show that the best fit value of j is very close to -1, indicating clearly that the model with a constant jerk parameter is tantalizingly close to ΛCDM model.

Figure 3 presents the plots of deceleration parameter $q(z)$ (left panel) and the effective or total equation of state $w_{\text{eff}}(z)$ (right panel) where $w_{\text{eff}} = p_{\text{DE}}/(\rho_m + p_{\text{DE}})$. The deceleration parameter plot clearly shows that the reconstructed model successfully generates the recent cosmic acceleration along with the decelerated expansion phase that prevailed in the past. The redshift of transition from decelerated to accelerated expansion phase obtained for the present model is 0.6–0.8 which is consistent with the result of recent analysis by Farooq and Ratra [49]. Figure 4 presents the plots of dark energy equation of state parameter w_{DE}, obtained from the analysis with different combinations of the data sets. The best fit curves remain very close to the corresponding ΛCDM value $w_{\text{DE}} = -1$ and the deviation increases at high redshift. The best fit curve obtained in the analysis combining OHD, SNe and BAO data sets shows
Table 1. Results of statistical analysis with different combinations of the data sets. The value of $\chi^2_{\text{min}}/d.o.f.$ and the best fit values of the parameters along with the associated 1σ uncertainties are presented.

Data	$\chi^2_{\text{min}}/d.o.f.$	A	j
OHD + SNe	47.30/54	0.305 ± 0.023	-0.861 ± 0.127
SNe + BAO	33.95/28	0.297 ± 0.024	-1.014 ± 0.045
OHD + SNe + BAO	48.28/54	0.286 ± 0.015	-1.027 ± 0.037

Figure 3. The plots of the deceleration parameter ($q(z)$) (left panel) and the effective equation of state parameter ($w_{\text{eff}}(z)$) (right panel) for the reconstructed model. The corresponding 1σ and 2σ confidence regions and the best fit curves obtained in the analysis combining OHD, SNe and BAO data sets, are presented.

Figure 4. The plots of the dark energy equation of state parameter ($w_{DE}(z)$), obtained from the analysis with different combinations of the data sets are presented. The corresponding 1σ and 2σ confidence regions and the best fit curves are shown.

Figure 5. The plots of interaction term ($Q(z)$), obtained from the analysis with different combinations of the data sets are presented. The corresponding 1σ and 2σ confidence regions and the best fit curves are shown. The $Q = 0$ straight line represents the ΛCDM model.
Table 2. The present value of the interaction term i.e. $Q(z = 0)$ obtained for different combinations of the data sets. The corresponding best fit values and the associated 1σ uncertainties are presented.

Data	$Q(z = 0)$
OHD + SNe	0.0292 ± 0.0293
SNe + BAO	-0.0026 ± 0.0087
OHD + SNe + BAO	-0.0051 ± 0.0067

4. Discussion

The present work is an attempt to search for the possibility of interaction between the dark matter and the so-called dark energy with a kinematic approach. The other crucial factor is that we start from the dimensionless jerk parameter j which is a third-order derivative of the scale factor a. This choice is of natural interest, as the evolution of q, the second-order time derivative of a is an observational quantity now. We start from the geometrical definition of jerk, and do not use even Einstein equations to start with. We reiterate the word of caution, the conclusion that any deviation of the jerk parameter from -1 indicates an interaction between

a slight inclination towards the non-phantom nature of dark energy. But the phantom nature ($w_{DE} < -1$) is also well within the 1σ confidence region (figure 4). The interaction between the dark matter and dark energy that crosses the phantom barrier of $w_{DE} = -1$ has been discussed by Guo et al [50, 51]. It is clear from the plots that the nature of the best fit curve is sensitive to the combination of the data sets taken into account. The plots also show that the $w_{DE}(z)$ is constrained better at low redshift and the uncertainty increases at high redshift. It deserves mention in this context that the value of jerk parameter (j) and the evolution of dark energy equation of state parameter (w_{DE}), obtained in the analysis with different combinations of the data sets, indicate that the reconstructed model is at close proximity of ΛCDM.

Figure 5 shows the evolution of the interaction term $Q(z)$, defined in equation (13). For the present model, any deviation from ΛCDM indicates a possibility of interaction between dark energy and dark matter. For non-interacting models, the interaction term $Q(z)$ is zero. The plots of $Q(z)$ of the present model obtained from the analysis with different combinations of the data sets show that the evolution of $Q(z)$ is also sensitive to the choice of data sets. However, all combinations of the data sets taken in the present work show the possibility of interaction between dark energy and dark matter is very low at the present epoch. But the possibility of interaction is high at high redshift. The ΛCDM always remains within the 1σ confidence region. The result obtained from the combination of SNe, OHD shows a higher preference towards the interaction at high redshift (left panel of figure 5). But the addition of BAO data brings the best fit curve closer to ΛCDM. It is also easy to note that the present analysis allows both positive and negative value for the interaction term $Q(z)$. Table 2 presents the present values of the interaction term obtained from the analysis with different combinations of the data sets. The result obtained from the analysis combining SNe, OHD and BAO data shows that the best fit curve of $Q(z)$ has an inclination towards negative value. But the possibility of a positive $Q(z)$ is also well within the 1σ confidence region. The requirement of a positive $Q(z)$ in the context of thermodynamics has been discussed by Pavon and Wang [52].
dark matter and dark energy sectors is actually based on the particular choice of identification of the matter density term in equation (7).

The result obtained clearly shows that the best fit value of \(j \) (chosen as a constant parameter) is very close to \(-1\), which is consistent with a \(\Lambda \)CDM model. The interaction term \(Q \), in a dimensionless representation, is very close to zero at the present era. This is completely consistent as \(\Lambda \), being a constant, does not exchange energy with dark matter. Table 2 shows the best fit values of \(Q \) at \(z = 0 \) for various combinations of data sets. It is easily seen that the values are two orders of magnitude smaller than \(\Omega_{m0} \) and \(\Omega_{DE0} \), which are approximately 0.3 and 0.7, respectively. All these quantities are expressed in a dimensionless way. So this comparison is possible.

As already mentioned, investigations regarding a reconstruction of interaction are not too many. But the very recent work by Yang et al [37] is a rigorous and elaborate one. The method adopted is the Gaussian processes. Although the work is model dependent, as the equation of state parameter is not specified, it can be applied to a large variety of dark energy models. The \(w \)CDM model is particularly emphasized. The basic result is the same as that of the present work, the interaction appears to be negligible and consistent with the \(\Lambda \)CDM model at \(z = 0 \).

An intriguing feature in both the present work and that in [37], is that although the best fit value still hovers around being negligible, it is allowed to have a non-trivial value for higher \(z \) even in the 1\(\sigma \) confidence region. So the interaction, if any, took place in the earlier epoch. The physics of this is not yet quite understood.

Another interesting result in the present work is the fact that \(Q \), if it has a sizable value, can be both positive or negative, so the pumping of energy is possible both ways. Intuitively it might appear that the dark energy should grow at the expense of dark matter (\(Q < 0 \)). However, the thermodynamic considerations demand that the flow of energy should be the other way round, from dark energy to dark matter [52].

It has already been mentioned that the reconstructed model mimics the \(\Lambda \)CDM for the value of cosmological jerk parameter \(j = -1 \) and prevents the possibility of interaction between dark energy and dark matter. Any observational measurement which is based on the fiducial assumption of a \(\Lambda \)CDM cosmology, might affect the results of statistical analysis by making the parameter values highly biased towards the corresponding \(\Lambda \)CDM values and leading to far too optimistic error bars. Hence such kind of data, like the CMB distance prior measurement, has not been introduced directly in the likelihood analysis. The correlations of distance modulus measurement of type Ia supernova have been taken into account as it might have its signature on the results. The error bars of dark energy equation of state parameter (\(w_{DE} \)) are found to be quite consistent with the results of Planck 2015 [53].

The recent works on the reconstruction of jerk show that a \(\Lambda \)CDM is definitely favoured [27, 28], where \(j \) was allowed to be a function of \(z \). Now a reconstruction of interaction through a constant \(j \) also indicates a similar result.

References

[1] Riess A et al 1998 Astron. J. 116 1009
Perlmutter S et al 1999 Astrophys. J. 517 565
[2] Tonry J L et al 2003 Astrophys. J. 594 1
Barris B J et al 2004 Astrophys. J. 602 571
Hicken M et al 2009 Astrophys. J. 700 1097
Suzuki N et al 2012 Astrophys. J. 746 85
[3] Betoule M et al 2014 Astron. Astrophys. 568 A22
[4] Allen S W et al 2008 Mon. Not. R. Astron. Soc. 383 879
[5] Padmanabhan T 2003 Phys. Rep. 380 235
[6] Sahni V and Starobinsky A A 2000 Int. J. Mod. Phys. D 09 373
 Carroll S M 2001 Living Rev. Relativ. 4 1
 Peebles P J E and Ratra B 2003 Rev. Mod. Phys. 75 559
 Copeland E J, Sami M and Tsujikawa S 2006 Int. J. Mod. Phys. D 15 1753
 Martin J 2008 Mod. Phys. Lett. A 23 1252
[7] Capozziello S, Carlioni S and Troisi A 2003 Recent Rev. Dev. Astron. Astrophys. 1 625
 Carroll S M, Duvvuri V, Trodden M and Turner M S 2004 Phys. Rev. D 70 043528
 Vollick D N 2003 Phys. Rev. D 68 063510
 Nojiri S and Odintsov S D 2003 Phys. Rev. D 68 123512
 Carroll S M et al 2005 Phys. Rev. D 71 063513
 Mena O, Santiago J and Weller J 2006 Phys. Rev. Lett. 96 041103
 Nojiri S and Odintsov S D 2006 Phys. Rev. D 74 086005
 Das S, Banerjee N and Dadhich N 2006 Class. Quantum Grav. 23 4159
 Nojiri S and Odintsov S D 2007 Phys. Lett. B 652 343
 Nojiri S and Odintsov S D 2007 Phys. Lett. B 657 238
 Nojiri S and Odintsov S D 2009 Phys. Lett. B 681 74
[8] Bertolami O and Martins P J 2000 Phys. Rev. D 61 064007
 Banerjee N and Paovn D 2001 Class. Quantum Grav. 18 593
 Banerjee N and Paovn D 2001 Phys. Rev. D 63 043504
 Sen S and Sen A A 2001 Phys. Rev. D 63 124006
 Mota D F and Barrow J D 2004 Mon. Not. R. Astron. Soc. 349 291
 Mota D F and Barrow J D 2004 Phys. Lett. B 581 141
 Das S and Banerjee N 2008 Phys. Rev. D 78 043512
 Defayet C et al 2002 Phys. Rev. D 65 044023
 Nojiri S, Odintsov S D and Sami M 2006 Phys. Rev. D 74 046004
 Dvali G R, Gabadadze G and Porrati M 2008 Phys. Lett. B 485 208
 Hossain M W, Myrzakulov R, Sami M and Saridakis E N 2014 Phys. Rev. D 90 023512
 Bamba K et al 2014 Phys. Rev. D 89 083518
[9] Starobinsky A A 1998 J. Exp. Theor. Phys. Lett. 68 757
 Starobinsky A A 1998 Pis'ma Zh. Eksp. Teor. Fiz. 68 721
 Huterer D and Turner M S 1999 Phys. Rev. D 60 081301
 Huterer D and Turner M S 2001 Phys. Rev. D 64 123527
 Saini T D, Raychaudhury S, Sahni V and Starobinsky A A 2000 Phys. Rev. Lett. 85 1162
 Guo Z-K, Ohta N and Zhang Y-Z 2005 Phys. Rev. D 72 023504
 Li H, Guo Z-K and Zhang Y-Z 2006 Mod. Phys. Lett. A 21 1683
 Chevallier M and Polarski D 2001 Int. J. Mod. Phys. D 10 213
 Linder E V 2003 Phys. Rev. Lett. 90 091301
 Cooray A R and Huterer D 1999 Astrophys. J. 513 L95
 Maor I, Brustein R and Steinhardt P J 2001 Phys. Rev. Lett. 86 6
 Weller J and Albrecht A J 2001 Phys. Rev. Lett. 86 1939
 Gerke B F and Efstathiou G 2002 Mon. Not. R. Astron. Soc. 335 33
 Gong Y and Wang A 2007 Phys. Rev. D 75 043520
 Mukherjee A 2016 Mon. Not. R. Astron. Soc. 460 273
[10] Sahlén M, Liddle A R and Parkinson D 2005 Phys. Rev. D 72 083511
 Sahlén M, Liddle A R and Parkinson D 2007 Phys. Rev. D 75 023502
 Holstclaw T et al 2010 Phys. Rev. D 82 103502
 Holstclaw T et al 2011 Phys. Rev. D 84 083501
 Crittenden R G, Zhao G B, Pogosian L, Samushia L and Zhang X 2012 J. Cosmol. Astropart. Phys. 0408
 Nair R, Jhingan S and Jain D 2014 J. Cosmol. Astropart. Phys. JCAP01(2014)005
 Riess A G 2004 Astrophys. J. 607 665
 Shapiro C and Turner M S 2006 Astrophys. J. 649 563
 Gong Y G and Wang A 2006 Phys. Rev. D 73 083506
 Xu L and Liu H 2008 Mod. Phys. Lett. A 23 1939
 Elgaroy O and Multamaki T 2006 J. Cosmol. Astropart. Phys. JCAP09(2006)002
[23] Barboza E M Jr and Carvalho F C 2012 Phys. Lett. B 715 19
[24] Sahni V, Saini T D, Starobinsky A A and Alam A 2003 J. Exp. Theor. Phys. Lett. 77 201
[25] Alam A, Sahni V and Starobinsky A A 2003 Mon. Not. R. Astron. Soc. 344 1057
[26] Rapetti R D, Allen S W, Amin M A and Blandford R D 2007 Mon. Not. R. Astron. Soc. 375 1510
[27] Zhai Z-X, Zhang M-J, Zhang Z-S, Liu X-M and Zhang T-J 2013 Phys. Lett. B 727 8
[28] Mukherjee A and Banerjee N 2016 Phys. Rev. D 93 043002
[29] Guo Z-K, Cai R-G and Zhang Y-Z 2005 J. Cosmol. Astropart. Phys. JCAP05(2005)002
[30] Guo Z-K, Ohta N and Tsujikawa S 2007 Phys. Rev. D 76 023508
[31] Pan S, Bhattacharaya S and Chakrabarty S 2015 Mon. Not. R. Astron. Soc. 452 3038
[32] Zimdahl W and Pavon D 2007 Class. Quantum Grav. 24 5461
[33] Das S and Banerjee N 2006 Mod. Phys. Lett. A 21 2663
[34] Faraoni V, Dent J B and Saridakis E N 2014 Phys. Rev. D 90 063510
[35] Sen A A and Pavon D 2008 Phys. Lett. B 664 7
[36] Mukherjee A 2016 J. Cosmol. Astropart. Phys. JCAP11(2016)055
[37] Yang T, Guo Z-K and Cai R-G 2015 Phys. Rev. D 91 123533
[38] Simon J, Verde L and Jimenez R 2005 Phys. Rev. D 71 123001
[39] Stern D, Jimenez R, Verde L, Kamionkowski M and Stanford S A 2010 J. Cosmol. Astropart. Phys. JCAP02(2010)008
Chuang C-H and Wang Y 2013 Mon. Not. R. Astron. Soc. 435 255
[40] Moresco M, Verde L, Pozzetti L, Jimenez R and Cimatti A 2012 J. Cosmol. Astropart. Phys. JCAP07(2012)053
[41] Blake C et al 2012 Mon. Not. R. Astron. Soc. 425 405
[42] Zhang C, Zhang H, Yuan S, Liu S, Zhang T-J and Sun Y-C 2014 Res. Astron. Astrophys. 14 1221
[43] Delubac T et al 2015 Astron. Astrophys. 574 A59
[44] Beutler F et al 2011 Mon. Not. R. Astron. Soc. 416 3017
[45] Anderson L et al 2014 Mon. Not. R. Astron. Soc. 441 24
[46] Ade P A R et al and Planck Collaboration 2014 Astron. Astrophys. 571 A16
[47] Wang Y and Wang S 2013 Phys. Rev. D 88 043522
[48] Fixsen D 2009 Astrophys. J. 707 916
[49] Faroq O and Ratra B 2013 Astrophys. J. 766 L7
[50] Guo Z-K, Piao Y-S, Zhang X and Zhang Y-Z 2004 Phys. Rev. D 74 127304
[51] Guo Z-K, Piao Y-S, Zhang X and Zhang Y-Z 2005 Phys. Lett. B 608 177
[52] Pavon D and Wang B 2009 Gen. Relativ. Grav. 41 1
[53] Ade P A R et al and Planck Collaboration 2016 Astron. Astrophys. 594 A13