Article
Systematic review of electricity demand forecast using ANN-based Machine Learning algorithms

Antón Román-Portabales 1, Martín López-Nores 2 and José Juan Pazos-Arias 2

1 Quobis; anton.roman@quobis.com
2 atlanTTic, Universidade de Vigo; mlnores@det.uvigo.es, jose@det.uvigo.es

Abstract: The forecast of electricity demand has been a recurrent research topic for decades, due to its economical and strategic relevance. Several Machine Learning (ML) techniques have evolved in parallel with the complexity of the electric grid. This paper reviews a wide selection of approaches that have used Artificial Neural Networks (ANN) to forecast electricity demand, aiming to help newcomers and experienced researchers to appraise the common practices and to detect areas where there is room for improvement in the face of the current widespread deployment of smart meters and sensors, which yields an unprecedented amount of data to work with. The review looks at the specific problems tackled by each one of the selected papers, at the results attained by their algorithms, and at the strategies followed to validate and compare the results. This way, it is possible to highlight some peculiarities and algorithm configurations that seem to consistently outperform others in specific settings.

Keywords: Electricity demand forecast; Machine Learning; Artificial Neural Networks; systematic review.

1. Introduction

Electricity is expected to increase its prevalence as the main energy vector in the near future for industrial, domestic and transportation use. This emphasizes the importance of electricity demand forecast, as it has direct impact on many operational and business processes. For decades, load forecast has been a recurrent research topic and a framework for the evolution of Machine Learning (ML) approaches based on Artificial Neural Networks (ANN), which are inherently suitable to deal with non-linearities and multiple types of inputs [10,11]. Nowadays, the massive deployment of smart meters and sensors along the grid yields a propitious environment for the optimization of such techniques.

The literature accumulated on the topic of load forecast using ANN-based models over the last 20 years is vast and difficult to grasp. This paper aims at classifying and reviewing the most relevant works. Our focus is on identifying what algorithm performs better for specific electricity demand problems and under what circumstances, including the selection of input variables and the optimal combination of parameters. Other distinguishing aspects of this systematic review are the following:

- We analyze the Key Performance Indicators (KPIs) used to evaluate the accuracy of the predictions and to compare the performance of different algorithms. In this regard, the predominance of some metrics (e.g. MAPE, the Mean Absolute Percentage Error) in the literature often leads to overlooking important quality parameters, such as the distribution of the error and the maximum forecast error.

1 The electricity demand of the grid is known as load in the electrical engineering jargon. We will use both terms interchangeably.
• We look at other fundamental aspects in ML problems, such as the data pre-processing techniques, the selection of training and validation sets, the tuning of the model hyper-parameters, the graphical representations and the presentation of the results.

• Last but not least, we discuss the ability to publicly access the datasets used to carry out the experiments and to validate the results and the code of each one of the selected papers. Lack of access makes the results of many papers very hard or impossible to reproduce, reducing their impact as sources of innovation and knowledge.

Previous reviews of approaches for electricity demand forecast (see [9,14,24]) surveyed the use of ANN-based techniques in a shallower manner, as they covered other ML techniques too. Other surveys looked at general uses of ML in energy systems, not only for load but also for generation, and not restricted to electricity but considering any sources of energy [1,13,72]. Our exclusive focus on ANN for electricity demand forecast allows providing deeper insight, to the point of questioning aspects that have been traditionally taken for granted, such as the non-linear nature of the forecast problem (to be discussed in Section 4.2). It is worth mentioning, though, that we cover not only pure uses of ANNs, but also hybrid approaches in which ANNs are combined with other algorithms and/or used to process the data in early or final stages.

2. Methodology

Initially, we used Elsevier’s ScienceDirect, Scopus and IEEE Xplore to search for relevant papers, thus ensuring essential quality requirements and coverage of the most relevant publications. We obtained an initial list by performing search queries for the keywords “ANN”, “neural networks”, “forecast”, “prediction”, “electricity”, “load”, “forecasting”, “machine learning”. We also considered the related papers that were recommended by the search engines and met the search requirements. Next, we left out all the papers that did not include ANN-based mechanisms or dealt with other energy sources than electricity – still, we included papers that compared ANN-based methods to other approaches such as Support Vector Machines (SVM). We proceeded iteratively to include all the papers referenced in the state of the art section of papers already included in our set.

Table 1 shows the sites from where we downloaded the papers covered in the review. 55% of them were retrieved from IEEE Explorer, acknowledging the fact that many relevant papers on electric load forecasting papers have been traditionally presented in IEEE conferences. MDPI and ScienceDirect also hosted a relevant number of original papers.

| Publisher  | Number of papers | References |
|------------|------------------|------------|
| IEEE       | 29               | [11] [21] [34] [32] [35] [38] [39] [42] [45] [43] [28] [48] [4] [7] [51] [37] [52] [23] [53] [30] [58] [58] [55] [14] [6] [32] [3] [56] [67] |
| ScienceDirect | 10               | [36] [19] [31] [40] [41] [47] [22] [49] [25] [61] [70] |
| MDPI       | 8                | [17] [46] [50] [59] [8] [18] [70] |
| Arxiv      | 3                | [2] [62] [63] |
| Others     | 2                | [20] [5] |

Table 1. Sources of papers for the review.

Having selected the papers, we put them on a data sheet with different columns to look at the specifics of each one. The columns were:

• Type of problem to solve.
• Algorithms used.
• Supporting tools.
• Input variables.
• Dataset characteristics.
• Performance indicators.
• Results.
- Particularities.

In the last column we wrote down comments about what made one paper different from others. This helped us to analyze and compare the different papers focusing on specific aspects that we will cover during the review. A simplified version of this table is included in Section 5 to be used as a quick reference by the readers.

3. State-of-the-art ANN-based algorithms used in load forecasting problems

Some of the reviewed papers use single ANN-based algorithms, whereas others combine them with other techniques. The single algorithms are the following:

- The Multi-Layer Perceptron (MLP) refers to a canonical feedforward artificial neural network, which typically consists of one input layer, one output layer and a set of hidden layers in between. Early works showed that a single hidden layer is sufficient to yield a universal approximator of any function, and so MLPs were commonly used in papers from the 90s and early 2000s. However they have been progressively replaced for more sophisticated recursive algorithms, which can better capture the complex patterns of load time-series.

- Self-Organizing Maps (SOM) are neural network-based dimensionality reduction algorithms, generally used to represent a high-dimensional dataset as a two-dimensional discretized pattern. They are also called feature maps, as they are essentially retraining the features of the input data, and grouping them according to similarity parameters. SOMs are used to recognize common patterns in the input space and training distinct ANNs to be used with the different patterns [25].

- Deep Learning refers to ANN networks capable of unsupervised learning from data that is unstructured or unlabeled. The adjective “deep” comes from the use of multiple hidden layers in the network to progressively extract higher-level features from the raw input.

- Many papers (e.g. [2,8,32]) use variants of Recursive Neural Networks (RNNs) that have the capability of learning from previous load time-series. Others use Long Short-Term Memory (LSTM) networks, a special kind of RNNs that can learn from long-term dependencies. These were introduced by Hochreiter and Schmidhuber [65] in 1997 and refined and popularized by many people in subsequent works.

The hybrid ANN-based algorithms found in the reviewed papers fall into three approaches:

- ANN and Genetic Algorithms (ANN-GA). In these works, the idea of the genetic algorithms is to iteratively apply three operations (referred to as selection, crossing and mutation) in order to optimize different parameters of the ANNs. For example, Wang et al. [26] used the GA to improve specifically the back-propagation weights, whereas Azadeh et al. [31] used GAs to tune all the parameters of an MLP.

- ANN and Particle Swarm Optimization (ANN-PSO). PSO is another optimization technique that tries to improve a candidate solution in a search-space with regard to a given measure of quality. It is a metaheuristic (i.e. it makes few or no assumptions about the problem being optimized) that can search very large spaces of candidate solutions, but it cannot guarantee that an optimal solution is ever found. As an example, Son and Kim [27] used PSO to select the 10 most relevant variables to be used as input variables for SVR (Support Vector Machine Regression) and ANN algorithms. Likewise, He and Xu [28] proposed the use of PSO to optimize the back-propagation process to tune the parameters of an MLP.

- Adaptive Neuro-Fuzzy Inference System (ANFIS). Developed in 1993 by Jang [69], ANFIS overcomes the deficient parts of ANNs and fuzzy logic by combining both technologies. It is used in [14] to model load demand problems. It uses fuzzy inference in its internal layers which allows the model to be less dependent on proficient knowledge, improving its learning and making it more adaptable.
Recent papers combine at least two ANN-based algorithms. [67] integrates LSTM to forecast load demand from previous time-series with Deep Neural Networks (DNN) to predict from meteorological input variables. In this case LSTM captures the load forecast due to previous values thanks to its recursion features, and the DNN gives a more accurate value for the load demand specifically due to the weather conditions.

4. Particularities of electric load demand as a problem for ANNs

In this section, we shall highlight particular aspects about the use of ANNs for load forecasting. These are questions that must be taken into account in any research work, as they condition the type of algorithms that may be used.

4.1. Prediction range

According to the time range of the prediction we can distinguish three categories that have been used in the definition of energy forecast problems at least since 1995 [12]:

1. Short-term load forecasting (STLF) refers to up to 1 day ahead predictions.
2. Medium-term load forecasting (MTLF) refers to 1 day to 1 year ahead.
3. Long-term load forecasting (LTLF) refers to 1-10 years.

Table 2 shows that most of the reviewed papers that use ANN-based algorithms do so for STLF problems. Therefore, we can safely assume that ANN-based algorithms have been widely recognized as suitable for short-term prediction.

| Type of forecast | Number of papers |
|------------------|------------------|
| STLF             | 46               |
| MTLF             | 8                |
| LTLF             | 1                |

Table 2. Type of used input variables.

STLF has become particularly important (hence the greater presence in the scientific literature) since the massive introduction of renewable energy sources, as the forecasts help the electric companies to plan the production mix more efficiently. STLF is crucial for electric intra-day markets, where 1-day ahead forecasts are used to fix the prices for the next day in base of the expected demand. STLF is also important for the operation of electric companies and microgrids, where the predicted demand may drive operative decisions in order to be properly covered by the generation sources. Overall, it is no surprise that many electric operators are supporting these research efforts by providing significant amounts of data and funding.

ANN-based algorithms have been also proven to work well for MTLF when they can capture the weekly and seasonal patterns, as it happens with the recursion techniques of LSTM [61]. LTLF problems, in turn, seem harder to solve by using ML algorithms only. The expected demand in the next years depends heavily on demographic, geopolitical and technological evolution variables, which are hard to turn into numbers and for which there are no historical data to learn from.

4.2. Non-linearity with respect to input variables

In almost all the reviewed papers, the authors mention the fact that electricity demand is inherently non-linear, and therefore algorithms designed for linear problems are not a good choice for forecasting. This is typically taken for granted, without referring to papers which include mathematical analyses of demand time series in order to calculate the degree of linearity regarding input variables. In this line, Darbellay and Slama [19] carried out a correlation analysis that suggests that LTLF, at least with the data available from the Czech Republic, was primarily a linear problem. This was confirmed by the comparison of the predictions. Knowing that, the same authors discussed under which conditions
ANNs could be superior to linear models. It is relevant to mention that the computational cost of ANN-based algorithms can be easily assumed by research centers and companies of any size nowadays. Therefore, the superior mathematical knowledge required to create adapted linear models may not be worth even when the algorithms are typically lighter than the training and optimization process of ANN-based algorithms.

### 4.3. Load forecasting as a sequence prediction problem

In the electricity forecast field, sequences are typically series of past ordered load values indexed by time. Brownlee [16] differentiated two types of prediction problems:

- **Sequence prediction**: from a sequence of values a single value is predicted. For example, from a time series of previous load values we get a prediction for the next load value.
- **Sequence-to-Sequence (S2S) prediction**: we do not get a single value but a sequence of predicted values, defining how the load will evolve in a range of future time steps.

Our review covers papers featuring both approaches, and even combined strategies. For example, [30] compares direct use of LSTM with an S2S architecture using as well standard LSTM.

### 4.4. Input variables

In many cases the selection of input variables is determined by the available data. All the papers covered in this review consider the previous load (directly or applying some kind of transformation) as one of the input variables of the ML algorithm. In many cases, a time series of previous load is the only input to the algorithm, which is required to learn just from past values. In other cases, it is common to use additional data such as weather variables and economical activity indicators [27,43,48]. Table 3 shows the distribution of the input variables used in the analyzed papers.

| Input variable                                         | Number of papers |
|--------------------------------------------------------|------------------|
| Previous load time-series                             | 37               |
| Previous load and weather time series                 | 10               |
| Previous load, weather and economic variables time series | 3                |

**Table 3.** Type of used input variables.

Weather variables—especially temperature—are known to have a linear influence on the forecasting load [8]. Extensive analyses of the influence of weather variables, daylight hours and human activity in the electric demand, based on correlation coefficients, can be found in [23] and [64]. It has been shown (see [43]) that the load data over the same period or previous periods have greater influence, though, as those values of electric load implicitly capture effects of climate, daylight hours and human habits.

The values provided by the Advanced Metering Infrastructure (AMIs) deployed by electric companies give the amount of energy consumed during a period of time (typically 1h and 24h) but there are sensors that can provide instantaneous values of consumed power. All of them are valid for the predictions, but energy values in KW/h or W/h are the most commonly used in forecasting problems. The AMIs can also possible provide the peak values directly and in many cases the forecasting is focused on the peak values only, not on aggregated consumption.

### 4.5. Pre-processing of input variables

Any forecast problem requires processing of data before feeding them to whichever ML algorithm. Most often, the papers covered in this review do not explain the way they pre-process the numeric data, although it is a key part of the problem solution.

The pre-processing may differ depending on the used algorithm, but it will typically involve the following steps:
1. Removal of invalid or missing values. Either due to errors in the sensors or in the data processing, the time series may include invalid or missing data, making it necessary to apply well-known mechanisms to modify these values. For example, depending on the type and amount of missing data different approaches such as dropping the variable, complete with the mean value or the last observed value can be used. Almost none of the papers mention if any of these techniques was used and it may have a significant effect on the model performance.

2. Normalization, i.e. scaling of the original data range to values between 0 and 1. Normalization is useful when the data have varying scales and the algorithm used does not make assumptions about their distribution (as is the case of ANNs).

3. Standardization. This consists of re-scaling the data so that the mean of the values is 0 and the standard deviation is 1. Variables that are measured at different scales would not contribute equally to the analysis and might end up creating biased results through the ANNs. Standardization also avoids problems that would stem from measurements expressed with different units.

Both normalization and standardization, when applicable, are typically helpful to speed up the learning process and to favor the convergence of the algorithms. In other cases, it is also necessary to change the units of the input variables, as when the values need to be unified.

4.6. Output variables

In the reviewed papers we found two main possible output variables:

- A time-series of expected demand for the future, i.e. a list of the demand values predicted for specific moments.
- The peak value the electric grid at some point in the future (e.g. next day or next week peak).

As shown in Figure 1, the most common output is the 24-hour ahead prediction. As we explained before, this is especially relevant because the production is scheduled according to the negotiation of the intra-day electricity markets.

![Figure 1. Output variables of the reviewed papers that focus on STLF and MTLF. Some papers are counted in several columns.](image-url)

Figure 1 also shows that the number of papers that look only at peak values ([20–22]) is very low compared to those that predict the load time-series, and none of those was published after 2011. Narrowing to peak values only was apparently done to simplify the problem, but currently predicting
a complete time-series is more useful for operative purposes (and, of course, peak values can be drawn from the predicted time-series).

4.7. Measuring and comparing performance

The reviewed papers typically used the same data set with different algorithms or variants to decide which one performs better. Several Key Performance Indicators (KPI) have been used in order to define which one is the best, and to compare their results with other works.

Most of the works compare the results of the simulation algorithm with the actual values. The most common metrics to do so is the Mean Absolute Percentage Error (MAPE), given by Eq. (1), where \( N \) represents the number of predicted values, \( F_t \) the predicted value at \( t \) and \( A_t \) the actual value which corresponds to the predicted value. MAPE gives a measurement of how accurate the prediction is based on the average percentage of error of each predicted value.

\[
\text{MAPE} = \frac{1}{N} \sum_{t=1}^{N} \left| \frac{A_t - F_t}{A_t} \right| 
\]  

(1)

The Mean Average Error (MAE), given by Eq. (2) is equivalent to the MAPE but gives an absolute value for the error, rather than a percentage.

\[
\text{MAE} = \sum_{t=1}^{N} \left| \frac{A_t - F_t}{A_t} \right| 
\]  

(2)

When the same dataset is used to compare the prediction algorithms, both MAPE and MAE can be used; however, they are not very helpful to compare results from different datasets. Even with the same dataset, the use of MAE may lead to confusing results if the units of any output are modified. Thus, MAPE is more common in the reviewed papers.

The second most common KPI is the Root Mean Square Percentage Error (RMSPE), given by Eq. (3). While the MAPE gives the same weight to all errors, the RMSPE penalizes variance, since it gives more weight to larger absolute values than errors with smaller absolute values. Like in the case of the MAE, there is an absolute version called RMSE (Eq. (4)), which also gives more weight to larger errors.

\[
\text{RMSPE} = \sqrt{\frac{1}{N} \sum_{t=1}^{N} \left( \frac{A_t - F_t}{A_t} \right)^2} 
\]  

(3)

\[
\text{RMSE} = \sqrt{\frac{1}{N} \sum_{t=1}^{N} (A_t - F_t)^2} 
\]  

(4)

RMSPE is considered more suitable to show bigger deviations and helps to provide a complete picture of the error distribution (see [33]); however, it is not commonly used in the analyzed papers. Chai and Draxler [33] claim that RMSE is more appropriate than MAE when the error distribution is expected to be Gaussian, but this is often disregarded in the reviewed papers even though it would help to extract more information from the results.

The following are other variables found in the literature, depending of the purpose of the research work:

- The Maximum Negative Error (MNE) and Maximum Positive Error (MPE) give the maximum negative and positive difference, respectively, between a predicted value and a real value. These values can be more relevant than the average error for some applications, for example to forecast the fuel stockage in a power central.
• The Residual Sum of Squares (RSS) is the sum of the squares of residuals (deviations predicted from actual values of data), so it can be calculated from the RMSE. It measures the discrepancy between the data and an estimation model.
• The Standard Deviation of Residuals describes the difference in standard deviations of observed values versus predicted values as shown by points in a regression analysis.
• The comparison of the correlation between the time-series produced by different algorithms and the real validation set is used by some authors to measure quality [39], too.

While computing the values above allows to compare the results attained by different techniques, such a simple analysis may not be very meaningful especially when the difference between algorithms is small or the data-set is not very long. In this line, Kandananond [17] used Wilcoxon signed-rank and paired t-tests to compare the results offered by ANN, MLR and ARIMA. The \( p \)-values obtained where well above \( \alpha = 0.05 \), so he concluded that the results were not meaningful and there was no real advantage of ANN over ARIMA or MLR.

4.8. Origin of the training data

All the reviewed papers used time-series of previous electric demand to train the models. Table 4 shows the origin of the data.

| Origin of data                  | Number of papers |
|--------------------------------|------------------|
| Aggregated data from a geographic area | 33               |
| Smart meters (AMI)             | 13               |
| Microgrids                    | 8                |

Table 4. Origin of load time-series data.

Many of the papers focused on certain geographic areas, so they handled problems of aggregated demand from thousands or millions of consumers. The use of ANN-based models to these problems has shown very good performance. The demand prediction problems using smart meter and microgrid data, in turn, seem to be in an early stage of evolution, as they handle load patterns whose distributions differ significantly from those of aggregated demands.

Several studies have proved that forecast is much more accurate when it is done over a aggregated data. For example, Kong et al. [56] proposes the use of a clustering technique called DBSCAN (Density-Based Spatial Clustering of Application with Noise) to evaluate the consistency in daily power profile, and found that aggregated data presents fewer outliers, which favors ANN convergence. The same authors compared the forecast accuracy of individual meters and checked how it improves with the level of aggregation, discovering that the aggregation of forecasts is more accurate than the forecast of the aggregation. Regarding the patterns of individual consumers, lifestyles are reflected in energy consumption even if consumers have common and repetitive behaviors [57].

5. Summary of the reviewed papers

Given the perspective of the previous section, next we provide a table containing the most relevant information from the reviewed papers, including the following:

• Title and reference.
• Year of publication.
• Objective of the paper.
• Description of the algorithms and optimization techniques used.
• Performance of the best algorithm.

Most of the papers used MAPE (and in some cases other related values) as the metrics to compare the performance of the algorithms. In order to give a reference to the reader of the performance of each algorithm, we only include the MAPE value in the table. When other non-normalized values were
used, we are not included them in the table to keep it coherent and avoid misunderstandings. If, in some specific case, the MAPE were not the most relevant value, it is indicated in the *Best algorithm* column.

| Title                                                                 | Year | Goal                                                                 | Algorithms                                                                 | Best algorithm                      |
|-----------------------------------------------------------------------|------|----------------------------------------------------------------------|----------------------------------------------------------------------------|--------------------------------------|
| An artificial neural network based short term load forecasting with special tuning for weekends and seasonal changes [21] | 1993 | To compare the performance of ANN using season, day of week, temperature and previous power peaks as inputs to forecast 1-week ahead peaks. | MLP                                                                          | MAPE MLP: 1.60%                     |
| A recurrent neural network for short-term load forecasting [34]       | 1993 | To compare the performance of recurrent and feedforward ANNs.         | Feedforward 3-layer MLP                                                   | MAPE RNN with diffusion learning: 2.07% |
| Practical experiences with an adaptive neural network short-term load forecasting system [35] | 1995 | To compare performance of statistical method and MLP to forecast demand 7 days ahead in blocks of 3 hours. | 3-layer MLP (hidden layer with 3 neurons) with daily, weekly and monthly adaptation | MAPE MLP: 6%                         |
| A real-time short-term peak and average load forecasting system using a self-organising fuzzy neural network [36] | 1998 | To predict the demand peak 1 day and 1 week ahead comparing the performance of SFNN (Self-organising Fuzzy Neural Network), FFN (Fuzzy Neural Network) and MLP. | SFNN, FFN and MLP                                                          | MAPE SFNN: 1.8% for 1 day ahead peak load forecast and 1.6% for 1 week ahead |
| Forecasting the short-term demand for electricity: Do neural networks stand a better chance? [19] | 2000 | To comparing feedforward ANN with ARIMA and ARMAX using previous demand and temperature as inputs. To analyze the non-linearity of the demand forecast problem. | ARIMA, ARMAX and MLP                                                        | MAPE MLP: 0.8%                        |
| Title                                                                 | Year | Description                                                                                                                                                                                                 | Methodological details                                                                                                                                                                                                 | MAPE |
|-----------------------------------------------------------------------|------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| Global model for short-term load forecasting using artificial neural networks [38] | 2002 | To check performance of MLPs trained for classes defined using self-organizing maps with statistical methods. No comparison with other algorithms.                                                                 | Kohonen’s self-organising map + Elman Recurrent Network                                                                                                                                                                   | 1.15-1.61% |
| A new approach using artificial neural network and time series models for short term load forecasting [39]                  | 2003 | To check accuracy of ANN to predict forecast using input variables selected depending on their correlation coefficient compared with ARIMA.                                                                 | MLP using correlation coefficient to calculate weights                                                                                                                                                                   | 2.241%  |
| Forecasting electrical consumption by integration of Neural Network, time series and ANOVA [40]                         | 2007 | To compare the performance of MLP to predict aggregated load from time-series using analysis of variance and time series approach. Linear regression ANOVA and Duncan’s Multiple Range Test are used to validate results. | MLP                                                                                                                                                                                                                   | MLP 1.56% |
| Integration of artificial neural networks and genetic algorithm to predict electrical energy consumption [31]             | 2007 | To check performance of MLP and GA for LTLF in the Iranian agricultural sector.                                                                                                                                   | MLP + GA                                                                                                                                                                                                             | 0.13%  |
| Annual electricity consumption forecasting by neural network in high energy consuming industrial sectors [41]            | 2008 | To check the performance of ANN algorithm to predict annual load of energy intensive industries using different input variables such as electricity price, number of consumers, fossil fuel price, previous load and industrial sector. ANOVA and Duncan’s multiple range test are used for formal comparison and validation. | MLP using different networks and regression.                                                                                                                                                                          | MLP 0.99% |
| Daily load forecasting using recursive Artificial Neural Network vs. classic forecasting approaches [42]                | 2009 | To compare the performance of RNN for 24-ahead for a region of Romania with other analytical methods.                                                                                                                                                           | RNN (using hyperbolic tangent as activation function).                                                                                                                                                                 | RNN performs better. Least square value used instead of MAPE. |
| Study                                                                 | Year | Methodology                                                                 | Forecasting Results                                                                 |
|----------------------------------------------------------------------|------|-----------------------------------------------------------------------------|-------------------------------------------------------------------------------------|
| Short-term load forecasting using artificial neural networks [45]    | 2009 | To compare the performance of ANN for one hour ahead performance using previous load, weekday, month and temperature as input values with the results of other studies. ISO-New England control data are used to validate the algorithm. | Feed-Forward MLP using LM as BP algorithm. MAPE: 0.439% (for ISO-New England) |
| Dynamic neural network based genetic algorithm optimizing for short term load forecasting [43] | 2010 | To compare BP and Genetic Algorithm-based BP to find the optimal weights of a 3-layer MLP for one hour ahead load forecast using load time series and weather variables. | 3-layer MLP using BP and GA-BP MAPE: GA-BP 1.6% (data calculated from results for day max load) |
| The comparison of mid term load forecasting between multi-regional and whole country area using Artificial Neural Network [44] | 2010 | To compare the forecasting results using MLP with data of Thailand as a whole or disaggregated in several regions. | MLP MAPE monthly consumption multi-region: 1.45 peak: 2.48 |
| Forecasting electricity demand in Thailand with an Artificial Neural Network approach [17] | 2011 | To compare MLP with ARIMA and Multi-Linear Regression for LTLF for Thailand using previous load time-series and economical variables. | Different topologies of MLP and RBF. MAPE MLP: 0.96% |
| A new neural network approach to short term load forecasting of electrical power systems [46] | 2011 | To compare performance of ANN using MHS (Modified Harmony Search) learning algorithm with other techniques STLF forecast using PJM ISO data | ARMA, RBF, MLP trained by BR (Bayesian Regularization), MLP trained by BFGS (Broyden, Fletcher, Goldfarb, Shanno) and MLP neural network trained by LM MAPE: MLP MHS 1.39% |
| PREDICT – Decision support system for load forecasting and inference: A new undertaking for Brazilian power suppliers [47] | 2011 | To analyze the use of wavelets, time series analysis methods and artificial neural networks, for both mid and long term forecasts. | MLP with BP and LM MAPE: 0.72% |
| Year | Title                                                                 | Method                                                                 | MAPE          |
|------|-----------------------------------------------------------------------|------------------------------------------------------------------------|---------------|
| 2011 | Monthly electricity demand forecasting based on a weighted evolving fuzzy neural network approach [22]. | To compare WEFuNN (Weighted Evolving Fuzzy Neural Network) with ENN and BPN for one-month ahead load forecast. | WEFuNN, Winter’s, MRA | MAPE WEFuNN: 6.43% |
| 2012 | Short-term power load forecasting based on self-adapting PSO-BP neural network model [28] | To show that PSO-BP algorithm can obtain optimal MLP parameters outperforming BP to forecast hourly 1-day ahead load demand for a city of China. | MLP getting the parameters with PSO-BP and BP | MAPE PSO-BP: 2.39% |
| 2012 | A comparison of support vector machines and artificial neural networks for mid-term load forecasting [48] | To compare the performance of SVM and ANN for MTLF with load and weather data. | MLP with several different numbers of neurons (2, 5, 8, 20/30). Usage of GA and PSO to get optimal SVMs models. | Authors conclude that both ANN and SVM are suitable, but SVM is more reliable and stable for load forecasting. |
| 2013 | Load forecasting in a smart grid oriented building [4] | To compare performance of ARIMA, MLP, SVM and STLF (next hour forecast) in University campus microgrid. | Seasonal ARIMA, MLP and SVM. | MAPE MLP: 5.3% |
| 2013 | Short-term load forecasting for microgrids based on Artificial Neural Networks [50] | To check ANN performance for load forecasting in a microgrid-sized Spanish region from previous load time-series. | MLP (16 neurons in hidden layer) | MAPE: 2%–5% |
| 2013 | Multi-substation control central load area forecasting by using HP-filter and double neural networks (HP-DNNs) [49] | To compare the use of HP (Hodris-Prescott) filter to decompose the previous load signals into trend and cyclical signals and DNN (Double Neural Network) for LTFL with other algorithms. | HP-DNN | MAPE HP-DNN: 1.42% - 3.20% |
| 2014 | Check the performance of MLP using SOM and k-means to find the right number of MLPs for STLF for a microgrid in Spain [25]. | To check the performance of MLP using SOM and k-means to find the right number of MLPs for STLF for a microgrid in Spain. | 3-stage: SOM + k-means clustering and MLP. No other algorithms were tested. | MAPE: 2.73% - 3.22% |
| Study Description                                                                 | Year | Objective                                                                                                                                     | Model Details                                                                 | Metrics                        |
|---------------------------------------------------------------------------------|------|-----------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|-------------------------------|
| PI-controlled ANN-based energy consumption forecasting for smart grids [7].      | 2015 | To compare ANN and PI-ANN (Proportional Integral ANN) to predict consumption of individual devices.                                    | PI-ANN and MLP.                                                               | N/A                           |
| Short-term load cross-forecasting using pattern-based neural models [51]         | 2015 | To check if a combination of daily and weekly patterns performs better than the models individually for SLTF from previous load.        | Unspecified neural model                                                      | MAPE cross-forecasting: 0.85% |
| Input data analysis for optimized short term load forecasts [52]                 | 2016 | To compare the performance of MLP, SVR and clustering for 24-ahead forecast for Germany load demand.                                     | MLP(1,1,1) with (LM) algorithm, SVR and k-means cluster.                      | MAPE SRV: 2.1%                |
| Hourly load forecasting model based on real-time meteorological analysis [23]   | 2016 | To check the influence of weather variables in load forecast using MLP.                                                                     | 3-layer MLP                                                                  | MAPE: 2.7233%                 |
| Neural network based short-term electricity demand forecast for Australian states [53] | 2016 | To check the performance of FFNN (Feed Forward Neural Network) forecasting model for the different regions of Australia for STFL.        | FFNN (using LM for training)                                                  | MAPE: 2.7233%                 |
| Building energy load forecasting using deep neural networks [30]                 | 2016 | To compare standard LSTM and LSTM-based Sequence to Sequence for STFL for 1-minute resolution 1 hour ahead.                              | LSTM and LSTM-based S2S.                                                      | RMSE LSTM-S2S: 0.667          |
| Deep neural network based demand side short term load forecasting [37]           | 2016 | To compare DNN forecasting results for individual industrial consumers from Korea with typical three layered shallow neural network (SNN), ARIMA, and Double Seasonal Holt-Winters (DSHW) model | DNN (4 hidden layers with 150 neurons per layer and using RBM and ReLU), ARIMA, DSHW, MLP | DNN RBM: MAPE 8.84% RRMSE 10.62% |
| Forecasting daily electricity load by wavelet neural networks optimized by Cuckoo search algorithm [54] | 2017 | To check performance of MLP using wavelet for data-preprocessing and Cuckoo algorithm to get parameters.                              | MLP (using Wavelet and Cuckoo algorithm), ARIMA, MLR                          | MAPE Wavelet ANN-CS: 0.058    |
| Title                                                                 | Year | Description                                                                                                                      | Algorithms                                                                 | MAPE |
|----------------------------------------------------------------------|------|----------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|------|
| Short-term forecasting of electricity demand for the residential sector using weather and social variables [27] | 2017 | Comparing algorithms to forecast 1-month ahead demand in South Korea.                                                             | SVR, Fuzzy-rough feature selection with PSO, MLP, MLR and ARIMA.          | MAPE 2.13% |
| A comparison of artificial neural networks and support vector machines for short-term load forecasting using various load types [55] | 2017 | To compare SVM and ANN to predict the load of Trinidad and Tobago for three industrial customer with different consumption patterns: continuous, batch, batch-continuous. | 3-layer MLP and SVM.                                                      | MAPE 1.04% |
| Short-term load forecasting using EMD(Empirical Mode Decomposition)-LSTM neural networks with a Xgboost algorithm for feature importance evaluation [59] | 2017 | To compare SD(Similar Days)-EMD-LSTM algorithm with others used for STLF.                                                        | SD-EMD-LSTM, LSTM, SD-LSTM, EMD-LSTM, ARIMA, BPNN, SVR                   | MAPE SD-EMD-LSTM 24h: 1.04% 168h: 1.56% |
| Deep learning for household load forecasting—A novel pooling deep RNN [32] | 2018 | To compare the performance of PDRNN (Diagonal Recurrent Neural Networks) with other algorithms for STLF household forecast.       | PDRNN with ARIMA, SVR, DRNN, SIMple RNN.                                  | MAPE PDRNN: 0.2510% |
| Long short term memory networks for short-term electric load forecasting [58] | 2017 | To compare algorithms for STLF regional load forecasting.                                                                         | LSTM, MLP, ARIMA.                                                        | MAPE LSTM: 3.8% |
| Long short term memory networks for short-term electric load forecasting [58] | 2017 | To compare algorithms for STLF regional load forecasting.                                                                         | LSTM, MLP, ARIMA.                                                        | MAPE LSTM: 3.8% |
| A State-of-the-Art Review of Artificial Intelligence Techniques for Short-Term Electric Load Forecasting [14] | 2017 | To compare performance of ANFIS, MLP and SVM for STLF in a large region.                                                          | MLP, SVM and ANFIS                                                       | MAPE SVM: 1.790% |
| Short term load forecasting using deep neural networks (DNN) [60]     | 2018 | Comparison of different transfer functions using MLP for STFL in Iberian region.                                                   | MLP using different transfer functions: sigmoid, ReLU and ELU.            | MAPE MLP ELU-ELU: 2.03% |
| Title                                                                 | Year | Objectives                                                                 | Algorithms                                                                 | MAPE/LASS/MAE                                                                 |
|----------------------------------------------------------------------|------|-----------------------------------------------------------------------------|---------------------------------------------------------------------------|-----------------------------------------------------------------------------|
| Residential load forecasting using deep neural networks (DNN)        | 2018 | To compare DNN algorithms for STFL day-ahead for residential users.         | LSTM, GRU, RNN, ARIMA, GLM, RF, SVM, FFNN.                                 | MAPE LSTM: 29%                                                              |
| Optimal deep learning LSTM model for electric load forecasting using Feature Selection and Genetic Algorithm: Comparison with Machine Learning Approaches [8] | 2018 | To find optimal algorithm for STFL and MTFL for region load, using GA to find optimal parameters. | LSTM+GA, Ridge Regression, Random Forest, Gradient Boosting, Neural network, Extra Trees. | RMSE LSTM 0.61% |
| Predicting electricity consumption for commercial and residential buildings using deep recurrent neural networks [61] | 2018 | To evaluate an LSTM-based algorithm using MLP for encoding for MTLF of different residential building load profiles. | LSTM + MLP + SMBO                                                           | N/A                                                                         |
| Predicting electricity consumption using deep recurrent neural networks [62] | 2019 | To compare RNN and LSTM to predict load in STLF MTLF and LTLF.              | RNN, LSTM, ARIMA, MLP, DNN                                                | ARIMA for STLF RNN and LSTM for MTLF and LTLF                               |
| Short-term load forecasting in grid-connected microgrid [3]          | 2019 | To compare performance of algorithms for STLF in microgrid.                 | GMDH, MLP-LM                                                              | RMSE MLP: 0.062%                                                           |
| Short-term load forecasting at different aggregation levels with predictability analysis [63] | 2019 | To compare different algorithms for STLF at different aggregation levels.   | MLP, LSTM, GBRT, Linear regression, SVR                                   | N/A                                                                         |
| Short-term residential load forecasting based on LSTM recurrent neural network [56] | 2019 | To compare the performance of forecast algorithms depending on the level of aggregation of AMI data. | BNPP-D, BNPP-T, LSTM, KNN and mean.                                       | MAPE LSTM: ind 44.39%, aggregated forecast: 8.18%, forecast aggregation: 9.14% |
| Day-ahead prediction of microgrid electricity demand using a hybrid Artificial Intelligence model [18] | 2019 | To compare different optimization algorithms before using FFANN for STLF using load and economic input variables. | SA-FFANN, WT-SA-FFANN, GA-FFANN, BP-FFANN, (PSO)-FFANN                    | MAPE WT-SA-FFANN: 2.95%                                                    |
To compare the combination of LSTM and DNN for STLF with LSTM alone.

LSTM+DNN, LSTM and DNN

MAPE
LSTM+DNN: 4.28%

2020

To compare LSTM with other algorithms for MTLF.

SVR, MLP, ARIMA, MLR, LSTM

MAPE
LSTM: 0.07%

2020

6. Ability to reproduce the experiments

As shown in Table 6, we found that less than 40% of the reviewed papers used publicly-accessible data that could be used to reproduce the experiment. In the other cases, the researchers typically had some type of agreement with the operator providing the data, and the original data are not accessible. This makes the experiments hard to reproduce and validate, especially in the case of new algorithms. In any case, aggregated demand and generation is commonly available in developed countries, and the same goes for the generation data due to the regulation of the electric market. In contrast, smart meter data is harder to achieve due to data protection laws, but it is possible to gain access to anonymized load time-series of individual and industrial consumers which can be freely used for experiments.

| Data source | Number of papers |
|-------------|------------------|
| Public data | 14 (2,8,27,32,38,41,45,46,51,52,56,59,62,63) |
| Private data | 37 |

Table 6. Data source in the reviewed papers.

Another factor that affects the reproducibility of the experiments are the tools and the code used to conduct them. The growing adoption of ML algorithms to extract value from the massive amount of data available in numerous fields of applications has fostered an active ML open-source community. Some of the most relevant ML and data science related projects (e.g. PyTorch, Tensorflow and its high-level API Keras) are supported by big Internet companies such as Facebook and Google. Research in ML can now take advantage of these valuable tools, reducing the programming efforts and making it easier to focus on the problems and try different alternatives. In Table 7, we see that MATLAB remains the main tool used in the reviewed papers, while several authors used custom code implemented ad-hoc. In many of the papers, the tool used for the implementation is not even mentioned.

| Tool                 | Number of papers |
|----------------------|------------------|
| Not mentioned        | 19               |
| MATLAB               | 12               |
| Tensorflow-based     | 6                |
| Custom code          | 3                |

Table 7. Tools used in the reviewed papers.

Regarding the code used to conduct the experiments, only one of the reviewed papers offers it to the reader [2]. However, sharing the code seems to be a growing trend in data science and ML papers [66] so, it reasonable to expect this for load demand forecasting papers in the near future.
7. Conclusion

The use of ANN-based ML algorithms for electricity demand forecast is an idea that goes back to the 1990s, but continues to be the subject of intensive research nowadays. Chronologically, the papers we have reviewed show how ANNs evolved from a sensible and promising concept—due to the cyclic nature of load demand—to a widely used reality in production environments.

The generalized use of MAPE to measure the performance of the algorithms enables to extract some relevant conclusions. The first of them is that the use of ANN-based algorithms (and especially LSTM, which is the most used algorithm in the reviewed papers) has proved to achieve very good results in aggregated load forecast and the prediction gets typically more accurate as the number of electricity consumers grows. We cannot say that the values are getting clearly better in the last years, but a significant number of papers show MAPE values below 3% for the best cases.

Regarding the ability to compare the different algorithms, we understand that just comparing the MAPE values from different papers can give a raw orientation for future research works. However, we are also aware this is not the best approach, since they are performing the prediction over different datasets, which in many cases are not accessible to the scientific community. Also using the MAPE as the single KPI may not be always fair, since the RMSE may be a better metric for many applications where high forecast errors need to be avoided. It is worth noticing that recently-published papers typically include (at least) both values, which a positive practice to enable more complete algorithm comparisons in the future.

ANN-based approaches that can capture recurrent patterns (such as RNN and, specifically, LSTM) proved to perform well for load demand problems. In consequence, most of the papers covered in this survey presented one ANN-based algorithm as the best alternative compared to other approaches. However, there are some exceptions. For instance, in [27] a combination of PSO with SVR turned out to perform slightly better than PSO with ANN-based algorithms. Likewise, [61] found the autoregressive models of ARIMA to outperform RNN and LSTM for STLF problems. [14] presents the AI tools used in electric load forecasting and the different advantages and disadvantages of each other. Namely it compares MLP, ANFIS and SVM. This last algorithm is claimed to perform a bit better than MLP in an STLF problem. [48] also proposes that SVM may be more reliable and stable for load forecasting.

In general, combinations of MLP or LTSM with other algorithms do not show a huge advantage over the original algorithms, but the papers that compare innovative combinations typically show them as the optimal option over the traditional algorithm. There are innovative models, though, whose authors claim to obtain MAPE values below 1% [54]. However, without an extensive validation using different datasets, it remains unclear whether the model really shows a very good performance for generic load demand problems, or the results may be due to an over-fitted model (e.g. one that provides very good results only for the dataset with which it has been trained). An alternative to obtain more accurate models—at the cost of a higher complexity—could be the kind of combinations of different ANN-based algorithms as proposed in [67].

The accuracy of STLF and MTLF predictions for aggregated demand of a huge number of consumers is pretty good in general, which makes modern ANN-based algorithms a good tool for commercial and research purposes. In turn, load forecasting in microgrids is a complex problem to model according to the results provided by the analyzed papers. The MAPE results are typically above 10%. Still, this could be good enough, inasmuch as recent advances in energy storage techniques can easily absorb the forecast errors.

The problem of individual user load forecast seems to be the hardest to resolve, which is understandable due to the nature of some human behaviors. The high MAPE values showed by the few papers that tackle this problem (such as [56]) suggest that ANN may not be the best approach if very high levels of precision are needed. Again, the importance of individual consumer forecast is lower than aggregated load from the point of view of the industry, due to the recent improvements in power storage technologies that can absorb load oscillation in isolated systems. In any case, we
understand that there is still room for improvement for microgrids and individual load demand forecast models.

In order to make unbiased assessment of the performance of the different algorithms, load demand papers should use a common reference benchmark, which does not yet exist. This could use publicly available datasets, in addition to any specific dataset which can be used in the paper. For example, the comprehensive list of smart meter time-series included in [68] could be used as a starting point to define a reference dataset to benchmark the different algorithms in equivalent conditions. In the same line, the publication of results without making the source code and datasets available—which used to be the norm in load demand papers—makes it hard or impossible to reproduce the results. Fortunately, sharing the source code of the conducted experiments is also becoming common in the last years [66], so we are optimistic in this sense. Without a doubt, this will help to take forecast towards the limit of the ML techniques in the next years.

**Funding:** This research received no external funding.

**Conflicts of Interest:** The authors declare no conflict of interest. The authors has neither professional nor academic relationship with any of authors of the reviewed papers

**Abbreviations**
The following abbreviations are used in this manuscript:

AM\(I\) Advanced Metering Infrastructure  
ANFIS Adaptive Neuro-Fuzzy Inference System  
ANN Artificial Neural Network  
ARIMA Autoregressive integrated moving average  
ARMAX Autoregressive–moving-average model  
BFGS Broyden–Fletcher–Goldfarb–Shanno  
BP Back-Propagation  
BPN Back-Propagation Network  
BR Bayesian Regularization  
ENN Evolving Neural Network  
FFANN Feedforward Artificial Neural Network  
LM Levenberg Marquardt (BP algorithm)  
DNN Deep Neural Network  
GA Genetic Algorithm  
KPI Key Performance Indicator  
MAE Mean Absolute Error  
MAPE Mean Absolute Percentage Error  
MHS Modified Harmony Search  
ML Machine Learning  
MLP Multi-Layer Perceptron  
MLR Multiple Linear Regression  
MTLF Medium-Term Load Forecast  
LSTM Long-Short Term Memory networks  
LTF Short-Term Load Forecast  
PDRNN Diagonal Recurrent Neural Networks  
PJM Pennsylvania, New Jersey, and Maryland  
PSO Particle swarm optimization  
RBF Radial Basis Function  
RMSE Root Mean Square Error  
RMSPE Root Mean Square Percentage Error  
RNN Recurrent Neural Network  
SFNN Self-organising Fuzzy Neural Network  
SOM Self-Organizing Map  
STLF Short-Term Load Forecast  
SVM Support Vector Machine  
SVR Support Vector Machine Regression  
WEFuNN Weighted Evolving Fuzzy Neural Network

References

1. Mosavi, A., Salimi, M., Faizollahzadeh Ardabili, S., Rabczuk, T., Shamshirband, S., Varkonyi-Koczy, A.R. State of the Art of Machine Learning Models in Energy Systems. A Systematic Review. Energies 2019, 12, 1301.
2. T. Hossen, S. J. Plathottam, R. K. Angamuthu, P. Ranganathan and H. Salehfar, “Short-term load forecasting using deep neural networks (DNN),” 2017 North American Power Symposium (NAPS), Morgantown, WV, 2017, pp. 1-6.
3. J. Izzatillaev and Z. Yusupov, “Short-term Load Forecasting in Grid-connected Microgrid,” 2019 7th International Istanbul Smart Grids and Cities Congress and Fair (ICSG), Istanbul, Turkey, 2019, pp. 71-75.
4. S. R. Twanabasu and B. A. Bremdal, “Load forecasting in a Smart Grid oriented building,” 22nd International Conference and Exhibition on Electricity Distribution (CIRED 2013), Stockholm, 2013, pp. 1-4.
5. Hossen T.; Nair A. (2018). Residential Load Forecasting Using Deep Neural Networks (DNN).
6. Akarslan, Emre and Fatih Onur Hocaoglu. “Electricity demand forecasting of a micro grid using ANN.” 2018 9th International Renewable Energy Congress (IREC) (2018): 1-5.
7. Gezer, Gulsum, Tuna, Gurkan Kogias, Dimitrios, Gulez, Kayhan, Gungor, V. (2015). PI-controlled ANN-based Energy Consumption Forecasting for Smart Grids. ICINCO 2015 - 12th International Conference on Informatics in Control, Automation and Robotics, Proceedings. 1. 110-116. 10.5220/0005516801100116.

8. Bouktif, S.; Fiaz, A.; Ouni, A.; Serhani, M.A. Optimal Deep Learning LSTM Model for Electric Load Forecasting using Feature Selection and Genetic Algorithm: Comparison with Machine Learning Approaches. Energies 2018, 11, 1636.

9. Alfares, H.; Mohammad N. Electric load forecasting: literature survey and classification of methods. International Journal of Systems Science, 2002, volume 33, number 1, pages 23-34

10. Lee K. Y.; Park J. H.; Chang S.H., 1992, Short-term load forecasting using an artificial neural network. IEEE Transactions on Power Systems, 7, pages 124-130.

11. Peng T.M.; Hubele N. F.; KARADY G. G. 1990, An conceptual approach to the application of neural networks for short term load forecasting. Proceedings of the IEEE International Symposium on Circuits and Systems, New Orleans, LA, pp. 2942-2945.

12. Srinivasa N and Lee M. A., 1995, Survey of hybrid fuzzy neural approaches to electric load forecasting. Proceedings of the IEEE International Conference on Systems, Man and Cybernetics, Part 5, Vancouver, BC, pp. 40044008.

13. Mosavi, Salimi, Mohsen , Sina Rabczuk, Shamshirband, Varkonyi-Koczy, Annamaria. (2019). State of the Art of Machine Learning Models in Energy Systems, a Systematic Review. Energies. 12. 10.3390/en12071301.

14. K. Zor, O. Timur and A. Teke, "A state-of-the-art review of artificial intelligence techniques for short-term electric load forecasting," 2017 6th International Youth Conference on Energy (IYCE), Budapest, 2017, pp. 1-7. doi: 10.1109/IYCE.2017.8003734

15. H. K. Temraz, M. M. A. Salama and A. Y. Chikhani, "Review of electric load forecasting methods," CCECE '97. Canadian Conference on Electrical and Computer Engineering. Engineering Innovation: Voyage of Discovery. Conference Proceedings, Saint Johns, Newfoundland, Canada, 1997, pp. 289-292 vol.1. doi: 10.1109/CCECE.1997.614846

16. Brownlee, J., Long Short-Term Memory Networks with Python. Develop Sequence Prediction Models With Deep Learning

17. Kandananond, K. Forecasting Electricity Demand in Thailand with an Artificial Neural Network Approach. Energies 2011, 4, 1246-1257.

18. Ma, Y.-J.; Zhai, M.-Y. Day-Ahead Prediction of Microgrid Electricity Demand Using a Hybrid Artificial Intelligence Model. Processes 2019, 7, 320.

19. Darbellay, G. A.; Slama, M.. Forecasting the short-term demand for electricity: Do neural networks stand a better chance?. International Journal of Forecasting, 2000, pp. 71-83, vol.16.

20. Bunnon, P.; Chalermyanont, K; Limsakul, C.. The Comparision of Mid Term Load Forecasting between Multi-Regional and Whole Country Area Using Artificial Neural Network. IJCEE 2010 Vol.2. doi: 10.7763/IJCEE.2010.V2.157

21. N. S. Moharari and A. S. Debs, An artificial neural network based short term load forecasting with special tuning for weekends and seasonal changes, [1993] Proceedings of the Second International Forum on Applications of Neural Networks to Power Systems, Yokohama, Japan, 1993, pp. 279-283, doi: 10.1109/ANN.1993.264334.

22. Pei-Chann Chang, Chin-Yuan Fan, Jyun-Jie Lin,Monthly electricity demand forecasting based on a weighted evolving fuzzy neural network approach,International Journal of Electrical Power & Energy Systems,Volume 33, Issue 1, 2011, Pages 17-27, ISSN 0142-0615, https://doi.org/10.1016/j.ijepes.2010.08.008.

23. Q. Huang, Y. Li, S. Liu and P. Liu, "Hourly Load Forecasting Model Based on Real-Time Meteorological Analysis," 2016 8th International Conference on Computational Intelligence and Communication Networks (CICN), Tehri, 2016, pp. 488-492, doi: 10.1109/CICN.2016.101.

24. Fallah, S.N.; Deo, R.C.; Shojar, M.; Conti, M.; Shamshirband, S. Computational Intelligence Approaches for Energy Load Forecasting in Smart Energy Management Grids: State of the Art, Future Challenges, and Research Directions. Energies 2018, 11, 596.

25. Luis Hernández, Carlos Baladrón, Javier M. Aguiar, Belén Carro, Antonio Sánchez-Esguevillas, Jaime Lloret, Artificial neural networks for short-term load forecasting in microgrids environment, Energy, Volume 75, 2014, Pages 252-264, ISSN 0360-5442, https://doi.org/10.1016/j.energy.2014.07.065.
26. Yan Wang, Yuanwei Jing, Weilun Zhao and Yan-e Mao, “Dynamic neural network based genetic algorithm optimizing for short term load forecasting,” 2010 Chinese Control and Decision Conference, Xuzhou, 2010, pp. 2701-2704, doi: 10.1109/CCDC.2010.5498743.

27. Hyojo Son, Changwan Kim, Short-term forecasting of electricity demand for the residential sector using weather and social variables, Resources, Conservation and Recycling, Volume 123, 2017, Pages 200-207, ISSN 0921-3449, https://doi.org/10.1016/j.resconrec.2016.01.016.

28. Y. He and Q. Xu, “Short-Term Power Load Forecasting Based on Self-Adapting PSO-BP Neural Network Model,” 2012 Fourth International Conference on Computational and Information Sciences, Chongqing, 2012, pp. 1096-1099, doi: 10.1109/ICCIS.2012.279.

29. Understanding LSTM networks. https://colah.github.io/posts/2015-08-Understanding-LSTMs/

30. D. L. Marino, K. Amarasinghe and M. Manic, “Building energy load forecasting using Deep Neural Networks,” IECON 2016 - 42nd Annual Conference of the IEEE Industrial Electronics Society, Florence, 2016, pp. 7046-7051, doi: 10.1109/IECON.2016.7793413.

31. A. Azadeh, S.F. Ghaderi, S. Tarverdian, M. Saberi, Integration of artificial neural networks and genetic algorithm to predict electrical energy consumption, Applied Mathematics and Computation, Volume 186, Issue 2, 2007, Pages 1731-1741, ISSN 0096-3003, https://doi.org/10.1016/j.amc.2006.08.093.

32. H. Shi, M. Xu and R. Li, "Deep Learning for Household Load Forecasting—A Novel Pooling Deep RNN," in IEEE Transactions on Smart Grid, vol. 9, no. 5, pp. 5271-5280, Sept. 2018, doi: 10.1109/TSG.2017.2686012.

33. Chai, T. and Draxler, R. R.: Root mean square error (RMSE) or mean absolute error (MAE)? – Arguments against avoiding RMSE in the literature, Geosci. Model Dev., 7, 1247–1250, https://doi.org/10.5194/gmd-7-1247-2014, 2014.

34. H. Mori and T. Ogasawara, “A recurrent neural network for short-term load forecasting,” [1993] Proceedings of the Second International Forum on Applications of Neural Networks to Power Systems, Yokohama, Japan, 1993, pp. 395-400, doi: 10.1109/ANN.1993.264315.

35. O. Mohammed et al., “Practical experiences with an adaptive neural network short-term load forecasting system,” in IEEE Transactions on Power Systems, vol. 10, no. 1, pp. 254-265, Feb. 1995, doi: 10.1109/59.373948.

36. P.K. Dash, H.P. Satpathy, A.C. Liew, A real-time short-term peak and average load forecasting system using a self-organising fuzzy neural network, Engineering Applications of Artificial Intelligence, Volume 11, Issue 2, 1998, Pages 307-316,https://doi.org/10.1016/S0952-1976(97)00069-9.

37. Seunghyoung Ryu, Jaeook Noh and Hongseok Kim, "Deep neural network based demand side short term load forecasting," 2016 IEEE International Conference on Smart Grid Communications (SmartGridComm), Sydney, NSW, 2016, pp. 308-313, doi: 10.1109/SmartGridComm.2016.7778779.

38. F. J. Marin, F. Garcia-Lagos, G. Joya and F. Sandoval, "Global model for short-term load forecasting using artificial neural networks," in IEEE Proceedings - Generation, Transmission and Distribution, vol. 149, no. 2, pp. 121-125, March 2002, doi: 10.1049/ip-gtd:20020224.

39. M. A. Abu-El-Magd and R. D. Findlay, “A new approach using artificial neural network and time series models for short term load forecasting,” CCECE 2003 - Canadian Conference on Electrical and Computer Engineering. Toward a Caring and Humane Technology (Cat. No.03CH37436), Montreal, Quebec, Canada, 2003, pp. 1723-1726 vol.3, doi: 10.1109/CCECE.2003.1226242.

40. A. Azadeh, S.F. Ghaderi, S. Sohrabkhani, Forecasting electrical consumption by integration of Neural Network, time series and ANOVA, Applied Mathematics and Computation, Volume 186, Issue 2, 2007, Pages 1753-1761, ISSN 0096-3003, https://doi.org/10.1016/j.amc.2006.08.094.

41. A. Azadeh, S.F. Ghaderi, S. Sohrabkhani, Annual electricity consumption forecasting by neural network in high energy consuming industrial sectors, Energy Conversion and Management, Volume 49, Issue 8, 2008, Pages 2272-2278, ISSN 0196-8904, https://doi.org/10.1016/j.enconman.2008.01.035.

42. D. Jigoria-Oprea, B. Lustrea, S. Kilyeni, C. Barbulescu, A. Kilyeni and A. Simo, “Daily load forecasting using recursive Artificial Neural Network vs. classic forecasting approaches,” 2009 5th International Symposium on Applied Computational Intelligence and Informatics, Timisoara, 2009, pp. 487-490, doi: 10.1109/SACI.2009.5136297.

43. Yan Wang, Yuanwei Jing, Weilun Zhao and Yan-e Mao, "Dynamic neural network based genetic algorithm optimizing for short term load forecasting," 2010 Chinese Control and Decision Conference, Xuzhou, 2010, pp. 2701-2704, doi: 10.1109/CCDC.2010.5498743.
44. Bunnoon, Pituk & Chalermyanont, Kusumal & Limsakul, Chusak. (2010). The Comparison of Mid Term Load Forecasting between Multi-Regional and Whole Country Area Using Artificial Neural Network. International Journal of Computer and Electrical Engineering. 2. 10.7763/IJCEE.2010.V2.157.

45. C. Y. Tee, J. B. Cardell and G. W. Ellis, "Short-term load forecasting using artificial neural networks," 41st North American Power Symposium, Starkville, MS, 2009, pp. 1-6, doi: 10.1109/NAPS.2009.5483996

46. Amjady, N.; Keynia, F. A New Neural Network Approach to Short Term Load Forecasting of Electrical Power Systems. Energies 2011, 4, 488-503.

47. Ádamo L. Santana, Guilherme B. Conde, Liviane P. Rego, Cláudio A. Rocha, Diego L. Cardoso, João C.W. Costa, Ubiratan H. Bezerra, Carlos R.L. Francês, PREDICT – Decision support system for load forecasting and inference: A new undertaking for Brazilian power suppliers, International Journal of Electrical Power & Energy Systems, Volume 38, Issue 1, 2012, Pages 33-45, ISSN 0142-0615, https://doi.org/10.1016/j.ijepes.2011.12.018.

48. Xinxing Pan and B. Lee, "A comparison of support vector machines and artificial neural networks for mid-term load forecasting," 2012 IEEE International Conference on Industrial Technology, Athens, 2012, pp. 95-101, doi: 10.1109/ICT.2012.6209920.

49. Pituk Bunnoon, Kusumal Chalermyanont, Chusak Limsakul, Multi-substation control central load area forecasting by using HP-filter and double neural networks (HP-DNNs), International Journal of Electrical Power & Energy Systems, Volume 44, Issue 1, 2013, Pages 561-570, ISSN 0142-0615, https://doi.org/10.1016/j.ijepes.2012.08.002.

50. Hernandez, L.; Baladrón, C.; Aguiar, J.M.; Carro, B.; Sanchez-Esguevillas, A.J.; Lloret, J. Short-Term Load Forecasting for Microgrids Based on Artificial Neural Networks. Energies 2013, 6, 1385-1408.

51. G. Dudek, "Short-term load cross-forecasting using pattern-based neural models," 2015 16th International Scientific Conference on Electric Power Engineering (EPE), Kouty nad Desnou, 2015, pp. 179-183, doi: 10.1109/EPE.2015.7161178.

52. K. A. Keitsch and T. Bruckner, "Input data analysis for optimized short term load forecasts," 2016 IEEE Innovative Smart Grid Technologies - Asia (ISGT-Asia), Melbourne, VIC, 2016, pp. 1-6, doi: 10.1109/ISGT-Asia.2016.7877278.

53. N. K. Singh, A. K. Singh and N. Paliwal, "Neural Network based short-term electricity demand forecast for Australian states," 2016 IEEE 1st International Conference on Power Electronics, Intelligent Control and Energy Systems (ICPEICES), Delhi, 2016, pp. 1-6, doi: 10.1109/ICPEICES.2016.7853603.

54. J. Chen and Q. H. Do, "Forecasting Daily Electricity Load by Wavelet Neural Networks Optimized by Cuckoo Search Algorithm," 2017 6th IIAI International Congress on Advanced Applied Informatics (IIAI-AAI), Hamamatsu, 2017, pp. 835-840, doi: 10.1109/IIAI-AAI.2017.89.

55. G. Mitchell, S. Bahadoorsingh, N. Ramsamoij and C. Sharma, "A comparison of artificial neural networks and support vector machines for short-term load forecasting using various load types," 2017 IEEE Manchester PowerTech, Manchester, 2017, pp. 1-4, doi: 10.1109/PTC.2017.7980814.

56. W. Kong, Z. Y. Dong, Y. Jia, D. J. Hill, Y. Xu and Y. Zhang, "Short-Term Residential Load Forecasting Based on LSTM Recurrent Neural Network," in IEEE Transactions on Smart Grid, vol. 10, no. 1, pp. 841-851, Jan. 2019, doi: 10.1109/TSG.2017.2753802.

57. Shove, E. and Pantzar, M. and Watson, M., "The Dynamics of Social Practice: Everyday Life and how it Changes", 2012, SAGE Publications

58. A. Narayan and K. W. Hipel, "Long short term memory networks for short-term electric load forecasting," 2017 IEEE International Conference on Systems, Man, and Cybernetics (SMC), Banff, AB, 2017, pp. 2573-2578, doi: 10.1109/SMC.2017.8123012.

59. Zheng, H.; Yuan, J.; Chen, L. Short-Term Load Forecasting Using EMD-LSTM Neural Networks with a Xgboost Algorithm for Feature Importance Evaluation. Energies 2017, 10, 1168.

60. Faisal Mohammad and Ki Boem Lee and Young-Chon Kim, Short Term Load Forecasting Using Deep Neural Networks,2018,1811.03242,arXiv

61. Aowabin Rahman, Vivek Srikumar, Amanda D. Smith,Predicting electricity consumption for commercial and residential buildings using deep recurrent neural networks, Applied Energy, Volume 212, 2018, ISSN 0306-2619
62. Y. Peng et al., "Short-term Load Forecasting at Different Aggregation Levels with Predictability Analysis," 2019 IEEE Innovative Smart Grid Technologies - Asia (ISGT Asia), Chengdu, China, 2019, pp. 3385-3390, doi: 10.1109/ISGT-Asia.2019.8881343.

63. Nugaliyadde, Anupiya & Somaratne, Upeka & Wong, Kok. (2019). Predicting Electricity Consumption using Deep Recurrent Neural Networks.

64. Hernández, L., Baladrón, C., Aguier, J. M., Calavia, L., Carro, B., Sánchez-Esguevillas, A., Cook, D. J., Chinarro, D., & Gómez, J. (2012). A Study of the Relationship between Weather Variables and Electric Power Demand inside a Smart Grid/Smart World Framework. Sensors (Basel, Switzerland), 12(9), 11571–11591. https://doi.org/10.3390/s120911571

65. Hochreiter, S. & Schmidhuber, J. (1997). Long Short-Term Memory. Neural Comput., 9(8), 1735–1780. https://doi.org/10.1162/neco.1997.9.8.1735.

66. Papers with code. https://paperswithcode.com/

67. M. Bashari and A. Rahimi-Kian, "Forecasting Electric Load by Aggregating Meteorological and History-based Deep Learning Modules," 2020 IEEE Power & Energy Society General Meeting (PESGM), Montreal, QC, Canada, 2020, pp. 1-5, doi: 10.1109/PESGM41954.2020.9282124.

68. Y. Wang, Q. Chen, T. Hong and C. Kang, "Review of Smart Meter Data Analytics: Applications, Methodologies, and Challenges," in IEEE Transactions on Smart Grid, vol. 10, no. 3, pp. 3125-3148, May 2019, doi: 10.1109/TSG.2018.2818167.

69. J. R. Jang, “ANFIS: Adaptive-Network-Based Fuzzy Inference System,” IEEE Trans. Syst. Man Cybern., vol. 23, iss. 3, pp. 665-685, 1993.

70. Son, H.; Kim, C. A Deep Learning Approach to Forecasting Monthly Demand for Residential–Sector Electricity. Sustainability 2020, 12, 3103. https://doi.org/10.3390/su12083103

71. Dimara, Asimina & Timplalexis, Christos & Krinidis, Stelios & Tzovaras, Dimitris. (2019). Indoor and Outdoor Temperature Impact on Residential Consumption -A Study in Greece. Research Development in Material Science. 11. 1220. 10.31031/RDMS.2019.11.000772.

72. K. Metaxiotis, A. Kagiannas, D. Askounis, J. Psarras, Artificial intelligence in short term electric load forecasting: a state-of-the-art survey for the researcher, Energy Conversion and Management, Volume 44, Issue 9, 2003, Pages 1525-1534, ISSN 0196-8904, https://doi.org/10.1016/S0196-8904(02)00148-6.