The catalytic power of magnesium chelatase: a benchmark for the AAA⁺ ATPases

Nathan B. P. Adams¹, Amanda A. Brindley¹, C. Neil Hunter¹ and James D. Reid²

¹ Department of Molecular Biology and Biotechnology, University of Sheffield, UK
² Department of Chemistry, University of Sheffield, UK

Correspondence
J. D. Reid, Department of Chemistry, University of Sheffield, Sheffield S3 7HF, UK
Fax: +44 114 222 9346
Tel: +44 114 222 29558
E-mail: j.reid@sheffield.ac.uk

(Received 1 April 2016, revised 6 May 2016, accepted 9 May 2016, available online 2 June 2016)
doi:10.1002/1873-3468.12214
Edited by Peter Brzezinski

In the first committed reaction of chlorophyll biosynthesis, magnesium chelatase couples ATP hydrolysis to the thermodynamically unfavorable Mg²⁺ insertion into protoporphyrin IX (ΔG° of circa 25–33 kJ mol⁻¹). We explored the thermodynamic constraints on magnesium chelatase and demonstrate the effect of nucleotide hydrolysis on both the reaction kinetics and thermodynamics. The enzyme produces a significant rate enhancement ($k_{\text{cat}}/k_{\text{uncat}}$ of 4×10^6 M⁻¹) and a catalytic rate enhancement, $k_{\text{cat}}/k_{\text{uncat}}^{\text{DIX}}$, of 3×10^{15} M⁻¹, increasing to 300×10^{15} M⁻¹ with the activator protein Gun4. This is the first demonstration of the thermodynamic benefit of ATP hydrolysis in the AAA⁺ family.

Keywords: ATP hydrolysis; ATPases associated with various cellular activities (AAA⁺) magnesium protoporphyrin IX; chelatase; chlorophyll biosynthesis; Gun4

Magnesium chelatase (EC 6.6.1.1) catalyzes the first committed reaction of chlorophyll biosynthesis—the insertion of Mg²⁺ into the protoporphyrin IX macrocycle. The chelatase reaction (Fig. 1) is thermodynamically unfavorable with a ΔG° of circa 25–33 kJ mol⁻¹ and is coupled to the hydrolysis of MgATP [1]. Magnesium chelatase from Synechocystis PCC6803 has an ATPase stoichiometry of 15 while the Rhodobacter capsulatus enzyme has a stoichiometry of 40 [1,2].

Magnesium chelatase is formed from three types of subunit; only one subunit, ChlI, has a confirmed ATPase activity, although the ChlD subunit is also a member of the AAA⁺ superfamily of ATPases [3,4] and allosterically regulates the chelatase [5–7]. This superfamily couples ATP hydrolysis to a wide variety of intracellular reactions, using the free energy of nucleotide hydrolysis to drive cellular processes that often, but not exclusively, involve macromolecular remodeling [8,9]. These ATP hydrolysis and remodeling activities are indirectly linked through protein conformational changes; in general, AAA⁺ enzymes do not phosphorylate their substrates.

Many AAA⁺ enzymes have high ATPase stoichiometries, but ATP hydrolysis is not always required to provide a thermodynamic driving force [1]. In order to understand the significance of nucleotide hydrolysis in these reactions, we need to understand the thermodynamic constraints and the effects of nucleotide hydrolysis on both the reaction kinetics and thermodynamics. We show here that ATP hydrolysis catalyzed by magnesium chelatase shifts the ratio of products to substrates ([MgDIX]/[Mg²⁺][DIX]) for the metal ion chelation reaction from the equilibrium ratio of 10^{-6} to circa 500 at low porphyrin concentrations. The chelatase can only maintain this ratio in the presence of ATP, and once nucleotide is consumed the ratio decays to the equilibrium position. Additionally, we have measured the first-order rate constant for magnesium porphyrin dechelation. Using the equilibrium constant and assuming that the chelation process can

Abbreviations
DIX, deuteroporphyrin IX; MgDIX, magnesium deuteroporphyrin IX.

FEBS Letters 590 (2016) 1687–1693 © 2016 The Authors. FEBS Letters published by John Wiley & Sons Ltd on behalf of Federation of European Biochemical Societies
This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
be described by a second-order rate constant, we show that the enzyme produces a significant rate enhancement, in the presence of ATP, with \(k_{\text{cat}}/k_{\text{uncat}} \) of \(400 \times 10^6 \) M and a catalytic rate enhancement, \(k_{\text{cat}}/K_{\text{m}} \) of \(30 \times 10^6 \) M\(^{-1}\) corresponding to a transition state disassociation constant \((K_{\text{TX}}) \) in the attomolar range. Taken together, our results provide the first clear view of the catalytic power of a member of the AAA\(^+\) enzyme superfamily, magnesium chelatase.

Methods and materials

Materials

Porphyrins were supplied by Inochem (Carnforth, UK). All other chemicals were purchased from Sigma Aldrich unless otherwise stated.

Purification of chelatase subunits

The GUN4 gene from *Synechocystis* PCC6803 was subcloned from pGEX-4T-1SYNGun4 [10] using primers ABGun4SYNNdeI TCCATATGTCTGATAATTTGACC and ABGun4SYNBamHI TCGGATCCCTTACCAACCGTATTGGACC. The PCR product was digested with NdeI and BamHI and ligated into pET14b. The expression vectors pET9a-ChlI, pET9a-His6ChlD, and pET9a-His6ChlH [11] were used to produce recombinant protein. ChlI and His6-ChlH were overexpressed in *E. coli* Rosetta2(DE3) pLysS at 25 \(^\circ \)C for 20 h. His6-ChlD and His6-Gun4 were overexpressed in Rosetta2(DE3) pLysS, grown in LB medium at 37 \(^\circ \)C and induced with 0.4 mM IPTG at an absorbance \((600 \, \text{nm}) \) of 0.8–1.0. The temperature was then lowered to 18 \(^\circ \)C and cells harvested after 15 h. ChlI, His6-ChlH and His6-ChlD were then purified essentially as described previously [1,10,11]. His6-Gun4 was purified by metal affinity chromatography and exchanged into 50 mM Tricine pH 7.9, 200 mM NaCl, 300 mM glycerol using a PD10 column (GE Biosciences, Little Chalfont, Bucks, UK), prior to magnesium chelatase assays.

Assays of enzyme activity

Chelatase assays were performed at 34 \(^\circ \)C, \(I = 0.1 \) (KCl) and pH 7.7 in 50 mM MOPS/KOH, 300 mM glycerol, 1 mM DTT. The reaction was monitored observing product formation using a FluoStar Omega Plate Reader (BMG Labtech, Aylesbury, Bucks, UK) in fluorescence mode, \(\lambda_{\text{ex}} = 420 \pm 10 \, \text{nm}, \ \lambda_{\text{em}} = 580 \pm 10 \, \text{nm} \), as previously described [1].

Results

Steady-state product formation

Magnesium chelatase catalyzes the insertion of a Mg\(^{2+}\) ion into protoporphyrin (Fig. 1). This reaction shows an unusual but characteristic rise and fall in product concentration (Fig. 2). At the maximum product concentration, the rate of product formation equals the rate of loss so a steady state \((d[P]/dt \approx 0) \) is observed. This steady state is short-lived unless an ATP-regenerating system is added, whereupon magnesium chelatase can maintain the steady state for 7 or 8 h (Fig. 2). The steady-state concentration of MgDIX increases with an ATP-regenerating system, but only at low initial concentrations of MgATP2\(^-\), suggesting that the low steady-state concentrations of MgDIX are due to nucleotide depletion. The activating protein Gun4 provides a small, but consistent increase in the steady-state ratio of MgDIX to DIX obtained. The steady-state ratio, \([\text{MgDIX}]/[\text{DIX}]_{\text{ss}} \), depends on the initial concentration of both MgATP2\(^-\) (Fig. 3A) and porphyrin (Fig. 3B). At high concentrations of MgATP2\(^-\) this steady-state ratio tends to 0.5 and the activating protein, Gun4, shifts this ratio to 0.8; these ratios have essentially been achieved at circa 150 \(\mu \)M MgATP2\(^-\). Low initial concentrations of porphyrin allow a more complete conversion of porphyrin substrate to product (Fig. 3B). At 2.5 \(\mu \)M total porphyrin, the chelatase reaches a steady product:substrate state ratio of around 4 and Gun4 shifts this ratio to circa 8.

![Fig. 1. The insertion of Mg\(^{2+}\) into the ring of deuteroporphyrin.](image-url)
Increasing total porphyrin concentration reduces the ratio achieved by the enzyme. As these results were obtained at 10 mM free Mg\(^{2+}\), they correspond to \([\text{MgDIX}] / [\text{DIX}] \times [\text{Mg}^{2+}]\) ratios of circa 400–800 at low porphyrin concentrations and circa 100 at high porphyrin concentrations.

Rate of the uncatalyzed dechelation of Mg-deuteroporphyrin

We have previously determined the equilibrium constant for magnesium chelation as \(10^{6}/C_0\); this observation was possible as MgDIX will spontaneously lose Mg\(^{2+}\) over around 24 h [1]. In the present work, we have determined the initial rates of this process (Fig. 4). In the concentration range examined, the process is first-order with a rate constant of \(31.7 \times 10^{-6} \pm 0.9 \times 10^{-6} \text{ s}^{-1}\). This implies that the second-order rate constant for metal ion chelation is circa \(30 \times 10^{-12} \text{ M}^{-1} \text{s}^{-1}\).

Care was taken during all of these measurements to minimize illumination of the sample as MgDIX is readily photolysed. Control experiments where MgDIX was illuminated for the same length of time (1800 flashes) within a 5-min time course showed negligible loss of porphyrin. We conclude that photolysis of MgDIX is insignificant in these experiments.

Discussion

Magnesium porphyrin formation is a slow and thermodynamically unfavorable process (Fig. 1). The enzyme magnesium chelatase catalyzes this reaction and uses the free energy of ATP hydrolysis to produce substantially more metalloporphyrin than would be expected from the \(K_{eq}\) alone. The effectiveness of magnesium chelatase at performing this reaction can be estimated in two distinct ways, firstly by rate acceleration when compared to the uncatalyzed reaction and secondly by the apparent shift in equilibrium position when compared to the uncoupled reaction. We show that magnesium chelatase not only provides a catalytic rate enhancement on the order of \(30 \times 10^{15} \text{ M}^{-1} \text{s}^{-1}\) but also generates at least \(10^{8}\)-fold more Mg porphyrin than would be expected from the equilibrium constant alone.

We can compare the rate constants of catalyzed and uncatalyzed metal ion chelation to estimate how effectively magnesium chelatase accelerates metal ion chelation. Under our conditions, dechelation of MgDIX is first-order with a rate constant of \((31.7 \pm 0.9) \times 10^{-6} \text{ s}^{-1}\) (Fig. 4). Given the previous determination of \(K_{eq}\) as \(10^{6}\) [1], and if we assume that magnesium chelation can be described as a second-order process, we can estimate the overall second-order rate constant for metal ion chelation as circa \(30 \times 10^{-12} \text{ M}^{-1} \text{s}^{-1}\). Is this an unusually slow uncatalyzed reaction?

To answer this question we need rate information from a reference set of biologically relevant reactions; this is available for a set of first-order reactions [13,14]. These reaction rate constants can be compared with the second-order magnesium chelation process if we consider a biologically reasonable Mg\(^{2+}\) concentration of 1 mM (this varies \(in vivo\), but is of the right order of magnitude). In this case, metal ion insertion will have a \(t_{1/2}\) of 0.7 million years, well within the range of half-times seen for biologically important
reactions in the absence of the appropriate catalyst [13,14]. As steady-state rate constants for the enzyme-catalyzed reaction are available [1] we can make a quantitative assessment of the rate enhancement. The rate enhancement offered by magnesium chelatase (\(k_{\text{cat}}/k_{\text{uncat}}\)) is 400 \(9\) \(10^6\) M or, in the presence of the activator protein Gun4, 550 \(9\) \(10^6\) M [10]. This is an estimate of the effectiveness of the active site environment in accelerating the reaction, but as metal ion chelation is not rate determining [15], \(k_{\text{cat}}/k_{\text{uncat}}\) sets a lower limit for the rate enhancement.

Fig. 3. Steady-state ratios of product to substrate achieved by magnesium chelatase (0.1 \(\mu\)M ChlD, 0.1 \(\mu\)M ChlI, and 0.4 \(\mu\)M ChlH) with (squares) or without (circles) 0.4 \(\mu\)M Gun4 at 34 °C, 50 mM MOPS, 300 mM glycerol, \(l\) 0.1, pH 7.9, 1 mM DTT 10 mM Mg2+, ATP-regenerating system (2 mM PEP, 2 U/mL PK) and (A) varying MgATP\(^2\) at 8 \(\mu\)M DIX, (B) varying DIX at 5 mM MgATP\(^2\). The lines in (A) are empirical.

Catalytic rate enhancement compares the effectiveness of catalyzed and uncatalyzed paths in converting substrate to product in solution. In single substrate and hydrolytic enzymes, \((k_{\text{cat}}/K_{\text{M}})/k_{\text{uncat}}\) is an effective measure of catalysis [13]. In multi-substrate, cooperative enzymes the situation is slightly more complex, but the kinetic parameter that best reflects the enzyme catalyzed reaction of free magnesium with porphyrin is \(k_{\text{cat}}/K_{\text{DIX}}K_{\text{M}}^{\text{Mg}}\). The ratio of this parameter to \(k_{\text{uncat}}\), 30 \(9\) \(10^15\) M\(^{-1}\) provides an estimate of the catalytic power of magnesium chelatase, with saturating ATP. We have shown previously that the biologically essential activator protein Gun4 exerts its major effect on the chelation reaction by a dramatic increase in \(k_{\text{cat}}/K_{\text{DIX}}K_{\text{M}}^{\text{Mg}}\) [10]. As a result, the Gun4-activated chelatase is a substantially more effective catalyst with a catalytic rate enhancement of at least 300 \(9\) \(10^15\) M\(^{-1}\).

Early kinetic studies of porphyrin metallation (reviewed in ref. [16]) revealed a clear pattern in the rates of metal ion chelation by porphyrins; Zn\(^{2+}\) is inserted relatively rapidly and then the rate constants decrease in accordance with the Irving–Williams series. The transition metals react more quickly than Mg\(^{2+}\). These rates of metal ion insertion are correlated with the rate of inner-sphere water exchange. But as the lifetime of bound water in the inner sphere of Mg\(^{2+}\) is roughly 1 \(\mu\)s [17], exchange is not likely to be rate determining in the magnesium chelatase reaction (1/\(k_{\text{cat}} = 75\) s, ref. [1]). Rather, both properties have a related cause; the small size and high charge density of the magnesium cation.

While mechanistic details of the magnesium chelation reaction are not known, parallels can be drawn with the well characterized ATP-independent iron-chelating enzyme ferrochelatase. The protoporphyrin IX ferrochelatase accelerates metal ion chelation by distorting the porphyrin ring of the substrate to...
present the pyrrole nitrogens to the incoming metal ion (reviewed in refs. [18,19]). This ring distortion and metal ion insertion are not the slowest steps in the reaction [20] and require no additional input of free energy from ATP hydrolysis—the free energy required to distort the ring is returned when the planar product is formed. The key difference between these two classes of chelatase comes in the relative preference of the metal ions for O vs. N type ligands; Fe(II) does not show a strong preference, while Mg(II) strongly prefers the more electronegative O over N. So if the gross mechanistic steps—distortion, deprotonation and metal ion donation—are similar in the two enzymes, the key difference is the relative energetics of the step where the metal exchanges O-type ligands for N-type: this exchange is significantly unfavorable in magnesium chelatase. This O-for-N exchange could be the final donation of metal ion into the porphyrin ring, or it could take place earlier if the metal ion is held in position by a set of nitrogen-containing ligands. Understanding these steps requires structural information on the magnesium chelatase active site and experimental probes of the magnesium transfer reactions. The recent publication of a structure for the porphyrin-binding domain of magnesium chelatase from Synechocystis suggests that information on the substrate-binding sites of magnesium chelatase should soon become available [21].

Ultimately, the key problem in magnesium insertion into a porphyrin is that the reaction is energetically unfavorable; simply accelerating the rate of reaction is inadequate as the rate of the reverse reaction must also increase in proportion. As well as accelerating the reaction, magnesium chelatase can also generate a product: substrate ratio far from equilibrium through coupling metalloporphyrin formation to ATP hydrolysis.

The consequences of this coupling of ATP hydrolysis to metalloporphyrin formation can be clearly seen in reaction progress curves where coupled formation of reaction product is followed by uncoupled, uncatalyzed dechelation as the driving force is exhausted (Fig. 2). In the presence of ATP, magnesium chelatase produces a steady-state product-substrate ratio ([MgDx]/[Dx][Mg++]]) shifted from the equilibrium constant by a factor of 108, a free energy change of 53 kJ·mol⁻¹. This substantial change is best treated as a lower limit because of the possibility of product inhibition or slight inactivation over these long reaction times. Using a reasonable in vivo ΔG° for ATP hydrolysis (~60 kJ·mol⁻¹) [22] we may expect an ATP: metalloporphyrin stoichiometry of 1. In fact, stoichiometries of 15 are observed with the Synechocystis enzyme [1]. Larger stoichiometries have been reported for chelatases from other species; the enzyme from Rhodobacter capsulatus requires 40 ATP to produce 1 metalloporphyrin [2].

One line of explanation proposes that the nucleotide hydrolysis is not solely used to provide thermodynamic driving force but is also used to accelerate the reaction [23]. This explanation appears reasonable as perfectly efficient free energy transducing systems have a zero rate [24,25]. Magnesium chelatase, however, achieves a catalytic rate enhancement of the order of 1017 m⁻¹, a value not out of the usual range for enzyme-catalyzed reactions. So it is not immediately obvious that magnesium chelatase needs to use nucleotide hydrolysis to provide rate acceleration.

Two other explanations appear reasonable. Firstly, in addition to providing free energy the ATPase could also regulate the chelatase, by controlling the conversion of active and inactive forms of the enzyme in a manner analogous to many GTPases [26,27]. Alternatively, the in vitro estimates of the ATPase stoichiometry could be overestimates of the in vivo situation; perhaps through the presence of an additional coupling factor. Magnesium chelatase is activated by further protein-protein interactions, most notably with Gun4, but this interaction does not substantially increase the amount of metalloporphyrin formed in our in vitro assays. The amount of Mg porphyrin formed by the magnesium chelatase from R. capsulatus, is substantially increased by the next enzyme in the pathway, BchM, but the ATPase stoichiometry under these conditions is not known [28].

As the ATP stoichiometry is high (15–40; refs. [1,2]) and the number of ATPase active sites is low (6 described in ref. [29]) we suggest that the link between ATP hydrolysis and metal ion chelation is probabilistic. That is the ATP hydrolysis cycle transiently shifts the ChIH subunit into a chelation competent conformation that has a well defined probability—1/15 in the Synechocystis enzyme—of inserting a magnesium. This suggests that only 6–7% of these transiently activated chelatase subunits successfully insert magnesium before the ATPase cycle rolls on and the AAA⁺ ring resets for another attempt.

Magnesium chelatase uses the free energy of ATP hydrolysis to offer a substantial thermodynamic benefit—the enzyme can hold the magnesium chelation reaction 53 kJ·mol⁻¹ from equilibrium. In general, the AAA⁺ ATPases use the free energy of ATP hydrolysis to drive macromolecular remodeling reactions, often with a high ATP stoichiometry [1]. To the best of our knowledge, an analysis of the sort presented here has not been carried out on any other member of the AAA⁺ superfamily. If magnesium chelatase is
representative, then our work suggests that the AAA⁺
motor unit can drive coupled reactions a factor of 10⁸
from their equilibrium positions.

Acknowledgements
We thank the BBSRC (UK) for funding (grant num-
bers BB/G021546/1 and BB/M000265/1).

Author contributions
NBPA conducted the majority of experiments. AAB
produced the Gun4 protein. NBPA, CNH, and JDR
wrote the paper.

References
1 Reid JD and Hunter CN (2004) Magnesium-dependent
ATPase activity and cooperativity of magnesium
chelatase from Synechocystis sp. PCC6803. J Biol Chem
279, 26893–26899.
2 Sawicki A and Willows RD (2008) Kinetic analyses
of the magnesium chelatase provide insights into
the mechanism, structure and formation of the complex.
J Biol Chem 283, 31294–31302.
3 Jensen PE, Gibson LCD and Hunter CN (1999)
ATPase activity associated with the magnesium-
protoporphyrin IX chelatase enzyme of Synechocystis
sp. PCC6803: evidence for ATP hydrolysis during Mg²⁺
insertion, and the MgATP-dependent interaction of
the ChlI and ChlD subunits. Biochem J 339, 127–134.
4 Reid JD, Siebert CA, Bullough PA and Hunter CN
(2003) The ATPase activity of the ChlI subunit of
magnesium chelatase and formation of a heptameric
AAA⁺ ring. Biochemistry 42, 6912–6920.
5 Adams NB and Reid JD (2013) The allosteric role of
the AAA⁺ domain of ChlD protein from the
magnesium chelatase of Synechocystis PCC6803.
J Biol Chem 288, 28727–28732.
6 Brindley AA, Adams NB, Hunter CN and Reid JD
(2015) Five glutamic acid residues in the C-terminal
domain of the ChlD subunit play a major role in
conferring Mg₂⁺ cooperativity upon magnesium
chelatase. Biochemistry 54, 6659–6662.
7 Adams NB, Marklew CJ, Brindley AA, Hunter CN
and Reid JD (2014) Characterization of the magnesium
chelatase from Thermosynechococcus elongatus. Biochem
J 457, 163–170.
8 Houry WA and Ortega J (2010) AAA proteins: movers
and shakers. Biochem Cell Biol 88, i–iv.
9 Hanson PJ and Whiteheart SW (2005) AAA⁺ proteins:
have engine, will work. Nat Rev Mol Cell Biol 6, 519–529.
10 Davison PA, Schubert HL, Reid JD, Iorg CD, Heroux
A, Hill CP and Hunter CN (2005) Structural and
biochemical characterization of Gun4 suggests a
mechanism for its role in chlorophyll biosynthesis.
Biochemistry 44, 7603–7612.
11 Jensen PE, Gibson LCD and Hunter CN (1998)
Determinants of catalytic activity with the use of
purified I, D and H subunits of the magnesium
protoporphyrin IX chelatase from Synechocystis sp.
PCC6803. Biochem J 334, 335–344.
12 Studier FW (2005) Protein production by auto-
induction in high density shaking cultures. Protein Expr
Purif 41, 207–234.
13 Wolffenberg R and Snider MJ (2001) The depth of
chemical time and the power of enzymes as catalysts.
Acc Chem Res 34, 938–945.
14 Wolffenberg R (2011) Benchmark reaction rates, the
stability of biological molecules in water, and the
evolution of catalytic power in enzymes. Annu Rev
Biochem 80, 645–667.
15 Viney J, Davison PA, Hunter CN and Reid JD (2007)
Direct measurement of metal-ion chelation in the active
site of the AAA⁺ ATPase magnesium chelatase.
Biochemistry 46, 12788–12794.
16 Lavallee D (1985) Kinetics and mechanisms of
metalloporphyrin reactions. Coord Chem Rev 61, 55–96.
17 Neely J and Connick R (1970) Rate of water exchange
from hydrated magnesium ion. J Am Chem Soc 92, 3476.
18 Al-Karadaghi S, Franco R, Hansson M, Shelnutt JA,
Isaya G and Ferreira GC (2006) Chelatases: distort to
select?. Trends Biochem Sci 31, 135–142.
19 Dailey HA and Dailey TA (2003) Ferrochelatase. In
The Porphyrin Handbook, Vol. 12 (Kadish KM, Smith
KM and Guildard R, eds), pp. 87–114. Academic Press,
London.
20 Hoggins M, Dailey HA, Hunter CN and Reid JD
(2007) Direct measurement of metal ion chelation in the
active site of human ferrochelatase. Biochemistry 46,
8121–8127.
21 Chen X, Pu H, Fang Y, Wang X, Zhao S, Lin Y,
Zhang M, Dai H-E, Gong W and Liu L (2015) Crystal
structure of the catalytic subunit of magnesium
chelatase. Nat Plants 1, 15125.
22 Nicholls DG and Ferguson SJ (1992) Bioenergetics.
Academic Press Inc., London.
23 Shen Y and Ryde U (2005) Reaction mechanism
of porphyrin metallation studied by theoretical methods.
Chemistry 11, 1549–1564.
24 Kedem O and Caplan SR (1965) Degree of coupling
and its relation to efficiency of energy conversion.
Trans Faraday Soc 61, 1897–1911.
25 Hill TL (1989) Free Energy Transduction and
Biochemical Cycle Kinetics. Springer-Verlag,
New York.
26 Goody RS (2003) The significance of the free energy
of hydrolysis of GTP for signal-transducing and
regulatory GTPases. Biophys Chem 100, 535–544.
Goody RS and Hofmann-Goody W (2002) Exchange factors, effectors, GAPs and motor proteins: common thermodynamic and kinetic principles for different functions. *Eur Biophys J* **31**, 268–274.

Sawicki A and Willows RD (2010) BchJ and BchM interact in a 1:1 ratio with the magnesium chelatase BchH subunit of *Rhodobacter capsulatus*. *FEBS J* **277**, 4709–4721.

Lundqvist J, Elmlund H, Wulff RP, Berglund L, Elmlund D, Emanuelsson C, Hebert H, Willows RD, Hansson M, Lindahl M *et al.* (2010) ATP-induced conformational dynamics in the AAA+ motor unit of magnesium chelatase. *Structure* **18**, 354–365.