16S rRNA Gene Amplicon Profiling of Anaerobic Bulking-Associated Prokaryotic Microbiota in a Mesophilic Expanded Granular Sludge Bed Reactor for Beverage Wastewater Treatment

Takeshi Yamada, a Jun Harada, a Yuki Okazaki, a, b Tsuyoshi Yamaguchi, b Atsushi Nakano c

a Department of Applied Chemistry and Life Science, Toyohashi University of Technology, Toyohashi, Aichi, Japan
b Department of Civil and Environmental Engineering, National Institute of Technology, Matsue College, Matsue, Shimane, Japan
c Sumitomo Heavy Industries Environment Co., Ltd., Shinagawa, Tokyo, Japan

ABSTRACT

Information regarding prokaryotic microbiota associated with anaerobic bulking is limited. Here, we provide 16S rRNA gene-based prokaryotic diversity profiles for anaerobic bulking and healthy granular sludge in a mesophilic expanded granular sludge bed (EGSB) reactor. These data were tabulated at the phylum level based on high-quality reads.

Upflow anaerobic sludge blanket (UASB) and expanded granular sludge bed (EGSB) reactors are core anaerobic wastewater treatment reactors for medium- and high-strength organic wastewater (1). Healthy granular sludge formation inside these reactors is essential. However, changes in granular sludge sedimentation due to the overgrowth of specific filamentous microorganisms contribute to anaerobic bulking, leading to the outflow of granular sludge from UASB and EGSB reactors (2–4). Anaerobic bulking, identified during the startup of a full-scale mesophilic (30 to 32°C) EGSB reactor (established in Shizuoka, Japan, in February 2014) for beverage wastewater treatment, was caused by certain filamentous microorganisms. 16S rRNA gene amplicon profiles of the microbiota were generated to determine biotechnological applications for reactor recovery and anaerobic bulking prevention.

Bulking sludge and two healthy granular sludges (500 ml each) were collected from a sampling port located 2 m from the EGSB reactor bottom (reactor volume, 177 m³) (Table 1). The composition of wastewater supplied to the EGSB reactor, including chemical oxygen demand (COD), was measured as reported previously (3, 5, 6). Most of the COD content in the wastewater comprised carbohydrates, proteins, and some organic acids, 2,880, 457, and 922 mg COD/liter, respectively. DNA was extracted from the sludges as described previously (5). PCR amplification of the V4 region of the 16S rRNA gene was performed using Blend Taq polymerase (Toyobo, Osaka, Japan) and a 515F/806R primer set (7). PCR product sequences were analyzed using the MiSeq platform and MiSeq reagent kit v2 (2 × 300 bp; Illumina, San Diego, CA, USA) at the Bioengineering Lab. Co., Ltd. (Kanagawa, Japan) with six to seven technical replicates. The adaptor, index, and primer regions of each raw sequence read were trimmed using the FASTX-Toolkit v0.0.13 (8). Read sequences of ≤40 bp and with ambiguous bases and low-quality sequences (quality score, ≤Q20) were filtered out, together with their paired-end reads, using Sickle v1.33 (9). High-quality paired-end reads were merged using PEAR v0.9.10 with default settings (10). Merged sequences of ≤245 and ≥260 bp were discarded using SeqKit v0.8.0 (11). Operational taxonomic units (OTUs) of the sludge microbiota were classified using QIIME v1.9.1 (12) and the SILVA database (release 132) with 97% identity (13). The

Citation Yamada T, Harada J, Okazaki Y, Yamaguchi T, Nakano A. 2019. 16S rRNA gene amplicon profiling of anaerobic bulking-associated prokaryotic microbiota in a mesophilic expanded granular sludge bed reactor for beverage wastewater treatment. Microbiol Resour Announc 8:e00678-19. https://doi.org/10.1128/MRA.00678-19.

Editor J. Cameron Thrash, University of Southern California

Copyright © 2019 Yamada et al. This is an open-access article distributed under the terms of the Creative Commons Attribution 4.0 International license.

Address correspondence to Takeshi Yamada, tyamada@chem.tut.ac.jp.

Received 5 June 2019
Accepted 1 July 2019
Published 25 July 2019
representative OTUs (>0.1%) at the phylum level within the domains Bacteria and Archaea are summarized in Table 1.

Finally, 99,979 to 151,163 high-quality reads were obtained from each sample. The bacterial and archaeal taxa were similar between bulking sludge and healthy granular sludge but differed in abundance. The predominant microorganisms (>1%) belonged to Euryarchaeota (bulking: 1.4%, healthy: 6.8 to 18.4%), Bacteroidetes (bulking: 79.7%, healthy: 38.4 to 63.8%), Chloroflexi (bulking: 4.1%, healthy: 15.1 to 10.7%), Firmicutes (bulking: 2.9%, healthy: 2.6 to 4.5%), Proteobacteria (bulking: 7.6%, healthy: 8.3 to 21.4%), and Spirochaetes (bulking: 1.8%, healthy: 1.4 to 2.6%) (Table 1). These data provide clues for addressing the issue of anaerobic bulking in EGSB reactors, e.g., by regulation of feed wastewater composition.

Data availability. The 16S rRNA gene amplicon data set was deposited in the DDBJ Sequence Read Archive (SRA) under accession number DRP005108 and SRA run accession numbers DRR180014 to DRR180032.

ACKNOWLEDGMENTS

This work was financially supported by JSPS KAKENHI grant 17H03333 (Grants-in-Aid for Scientific Research [B]) and JGC-S Scholarship Foundation Research grant program no. 1637.

We thank Masako Hamada for technical support at Toyohashi University of Technology.

REFERENCES

1. van Lier JB, van der Zee FP, Frijter CTM, Ersahin ME. 2015. Celebrating 40 years anaerobic sludge bed reactors for industrial wastewater treatment. Rev Environ Sci Biotechnol 14:681–702. https://doi.org/10.1007/s11157-015-9375-5.
2. Sekiguchi Y, Takahashi H, Kamagata Y, Ohashi A, Harada H. 2001. *In situ* detection, isolation, and physiological properties of a thin filamentous microorganism abundant in methanogenic granular sludges: a novel isolate affiliated with a clone cluster, the green non-sulfur bacteria, subdivision I. Appl Environ Microbiol 67:5740–5749. https://doi.org/10.1128/AEM.67.12.5740-5749.2001.

3. Yamada T, Yamauchi T, Shiraishi K, Hugenholtz P, Ohashi A, Harada H, Kamagata Y, Nakamura K, Sekiguchi Y. 2007. Characterization of filamentous bacteria, belonging to candidate phylum KS93, that are associated with bulking in methanogenic granular sludges. ISME J 1:246–255. https://doi.org/10.1038/ismej.2007.28.

4. Li J, Hu B, Zheng P, Qaisar M, Mei L. 2008. Filamentous granular sludge bulking in a laboratory scale UASB reactor. Bioresour Technol 99:3431–3438. https://doi.org/10.1016/j.biortech.2007.08.005.

5. Yamada T, Sekiguchi Y, Imachi H, Kamagata Y, Ohashi A, Harada H. 2005. Diversity, localization, and physiological properties of filamentous microbes belonging to *Chloroflexi* subphylum I in mesophilic and thermophilic methanogenic sludge granules. Appl Environ Microbiol 71:7493–7503. https://doi.org/10.1128/AEM.71.11.7493-7503.2005.

6. Yamada T, Tsuji H, Daimon H. 2018. Improvement of methanogenic activity of anaerobic activity by poly(β-lactic acid) with enhanced chemical hydrolyzability based on physicochemical parameters. J Environ Manage 226:476–483. https://doi.org/10.1016/j.jenvman.2018.08.034.

7. Caporaso JG, Lauber CL, Walters WA, Berg-Lyons D, Lunt Z, Turnbaugh PJ, Fierer N, Knight R. 2011. Global patterns of 16S rRNA diversity at a depth of millions of sequences per sample. Proc Natl Acad Sci U S A 108:4516–4522. https://doi.org/10.1073/pnas.1000080107.

8. Gordon A, Hannon GJ. 2010. FASTX-Toolkit. FASTQ/A short-reads pre-processing tools (version 0.0.13). http://hannonlab.cshl.edu/fastx_toolkit/.

9. Joshi NA, Fass JN. 2011. Sickle: a sliding-window, adaptive, quality-based trimming tool for FastQ files (version 1.33). https://github.com/najoshi/sickle.

10. Zhang J, Kober K, Flouri T, Stamatakis A. 2014. PEAR: a fast and accurate Illumina Paired-End read merger. Bioinformatics 30:614–620. https://doi.org/10.1093/bioinformatics/btt593.

11. Shen W, Li S, Li Y, Hu F. 2016. SeqKit: a cross-platform and ultrafast toolkit for FASTA/Q file manipulation. PLoS One 11:e0163962. https://doi.org/10.1371/journal.pone.0163962.

12. Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, Fierer N, Pena AG, Goodrich JK, Gordon JI, Huttley GA, Kelley ST, Knights D, Koenig JE, Ley RE, Luedtke CA, McDonald D, Muegge BD, Pirmust J, Reeder J, Sevinisky JR, Turnbaugh PJ, Walters WA, Widmann J, Yatsunenko T, Zaneveld J, Knight R. 2010. QIIME allows analysis of high-throughput community sequencing data. Nat Methods 7:335–336. https://doi.org/10.1038/nmeth.f.303.

13. Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, Peplies J, Glickner FO. 2012. The SILVA ribosomal RNA gene database project: improved data processing and Web-based tools. Nucleic Acids Res 41:D590–D596. https://doi.org/10.1093/nar/gks1219.