Oxidative Stress as a Potential Target in Acute Kidney Injury

Anamaria Magdalena Tomsa Equal first author, 1, Alexandru Leonard Alexa 2, Monica Lia Junie Equal first author, 3, Andreea Liana Rachisan Corresp., 1, Lorena Ciumarnean 4

1 Department of Pediatrics II, University of Medicine and Pharmacy of Cluj-Napoca, Cluj-Napoca, Romania
2 Department of Anesthesia and Intensive Care I, University of Medicine and Pharmacy of Cluj-Napoca, Cluj-Napoca, Romania
3 Department of Microbiology, University of Medicine and Pharmacy of Cluj-Napoca, Cluj-Napoca, Romania
4 Department of Internal Medicine IV, University of Medicine and Pharmacy of Cluj-Napoca, Cluj-Napoca, Romania

Corresponding Author: Andreea Liana Rachisan
Email address: andreea_rachisan@yahoo.com

Background Acute kidney injury (AKI) is a major problem for health systems being directly related to short and long-term morbidity and mortality. In the last years, the incidence of AKI has been increasing. AKI and chronic kidney disease (CKD) are closely interconnected, with a growing rate of CKD linked to repeated and severe episodes of AKI. AKI and CKD can occur also secondary to imbalanced oxidative stress reactions, inflammation and apoptosis. The kidney is particularly sensitive to oxidative stress (OS). OS is known as a crucial pathogenetic factor in cellular damage, with a direct role in initiation, development and progression of AKI. The aim of this review is to focus on the pathogenetic role of OS in AKI in order to gain a better understanding. We exposed the potential relationships between OS and the perturbation of renal function and we also presented the redox-dependent factors that can contribute to early kidney injury. In the last decades, promising advances have been made in understanding the pathophysiology of AKI and its consequences, but more studies are needed in order to develop new therapies that can address OS and oxidative damage in early stages of AKI.
Oxidative Stress as a Potential Target in Acute Kidney Injury

Anamaria Magdalena Tomsa¹, Alexandru Leonard Alexa², Lia Monica Junie³, Andreea Liana Rachisan¹, Lorena Ciumarnean⁴

1 Department of Pediatrics II, University of Medicine and Pharmacy Cluj-Napoca, Romania
2 Department of Anesthesia and Intensive Care I, University of Medicine and Pharmacy Cluj-Napoca, Romania
3 Department of Microbiology, Iuliu Hatieganu University of Medicine and Pharmacy Cluj-Napoca, Romania
4 Department of Internal Medicine IV, University of Medicine and Pharmacy Cluj-Napoca, Romania

Corresponding Author:
Andreea Liana Rachisan
3 Crisan Street, Cluj-Napoca, Cluj, Romania
Email address: andreea_rachisan@yahoo.com

Abstract

Background
Acute kidney injury (AKI) is a major problem for health systems being directly related to short and long-term morbidity and mortality. In the last years, the incidence of AKI has been increasing. AKI and chronic kidney disease (CKD) are closely interconnected, with a growing rate of CKD linked to repeated and severe episodes of AKI. AKI and CKD can occur also secondary to imbalanced oxidative stress reactions, inflammation and apoptosis. The kidney is particularly sensitive to oxidative stress (OS). OS is known as a crucial pathogenetic factor in cellular damage, with a direct role in initiation, development and progression of AKI. The aim of this review is to focus on the pathogenetic role of OS in AKI in order to gain a better understanding. We exposed the potential relationships between OS and the perturbation of renal function and we also presented the redox-dependent factors that can contribute to early kidney injury. In the last decades, promising advances have been made in understanding the pathophysiology of AKI and its consequences, but more studies are needed in order to develop new therapies that can address OS and oxidative damage in early stages of AKI.

Methods
We searched PubMed for relevant articles published up to May 2019. In this review we incorporated data from different types of studies, including observational and experimental, both in vivo and in vitro, studies that provided information about oxidative stress in the pathophysiology of AKI.
Results

The results show that oxidative stress plays a major key role in the initiation and development of AKI, providing the chance to find new targets that can be therapeutically addressed.

Discussion

AKI represents a major health issue that is still not fully understood. Research in this area still provides new useful data that can help obtain a better management of the patient. Oxidative stress represents a major focus point in many studies, and a better understanding of its implications in AKI might offer the chance to fight new therapeutic strategies.

Introduction

Acute kidney injury (AKI) represents a syndrome in which the renal function deteriorates due to a sudden drop in the glomerular filtration rate. Traditionally, it has been viewed in an anatomical context (prerenal, intrarenal, and postrenal), while at the same time it has been considered to rarely transition to chronic kidney disease (CKD)\(^1\). Nowadays, the emphasis has been put on an improved understanding of AKI and its pathophysiological mechanisms, as it is considered a major risk factor for developing CKD. The fact that each episode of AKI significantly influences the outcome and accelerates the development of CKD, while a patient who suffers from CKD is more predisposed to suffer new episodes of AKI, has led to the idea that these entities, previously considered independent from each other, actually represent an interconnected syndrome\(^1,2\).

Up until recently, the real incidence of AKI was not known due to the fact that there was no consensus on what AKI actually represents. The lack of a standard definition for AKI led to different approaches to these patients, with each medical center using its own definition for AKI\(^3\). In 2004 the first standard definition was created, based on the RIFLE criteria (Risk, Injury, Failure, Loss, End-stage kidney disease) by the Second International Consensus Conference of the Acute Dialysis Quality Initiative (ADQI) Group\(^4\). Nowadays, the reported incidence shows that this syndrome represents a major public health problem, with about 1 in 4 hospitalized patients worldwide\(^5\). The mortality rates vary by age, with 23.9% in adults and 13.8% in pediatric patients\(^6\). The severity of this syndrome in the affected patients is considered to be an independent risk factor for their outcome and mortality\(^7,8\).

Emerging evidence highlights that AKI represents a major risk factor for developing CKD independent from the renal function recovery in the affected patients, even in those who seemed to have completely recover after an episode of AKI\(^9,10,11\). Recent experimental results showed that the transition from AKI to CKD may be caused by a maladaptive cellular response or by a reparative response that has been misdirected or maladaptive\(^11,12,13\). Also, oxidative stress (OS) plays a crucial role in both AKI and CKD, as it has been considered a central aggravating factor\(^14,15\). Excessive accumulation of reactive oxygen species (ROS) determines the activation of adaptive gene programs, which experimental mouse models suggest they offer insufficient protection\(^16\).
This review aims to summarize the current knowledge about the role that oxidative stress plays in the pathophysiology of AKI, in order to gain a better understanding of this ubiquitous pathology. New biomarkers and new therapeutic strategies are needed in order to address this syndrome, therefore a detailed knowledge about its underlying mechanisms is mandatory. At this moment, there is little data about this subject in the literature, even though OS represents a major focus point in many diseases. In this review we detailed the main sources of oxidative stress in AKI, their mechanisms of action and their effect on different cellular structures. Furthermore, we included the main antioxidants that can be found in the renal tissues and data about oxidative stress biomarkers. We address this review to nephrology residents and specialists, and to whomever wants to gain a more in-depth view in this particular subject.

Survey Methodology
We completed an electronic literature search in the PubMed database and we included pertinent articles published up to May 2019, that provided information about oxidative stress and its role in the pathophysiology of AKI. In our search we used the following terms: “acute kidney injury”, “acute kidney failure”, “acute kidney insufficiency” in combination with “oxidative stress”, “reactive oxygen species” or “reactive nitrogen species”. In order to write this review, we comprised data from numerous types of studies, including observational and experimental studies, both in vitro and in vivo, including randomized controlled ones. For the purpose of this review we used overall selected papers.

1. Oxidative stress overview
Oxidative stress represents a metabolic disturbance caused by the enhancement of pro-oxidants, reactive oxygen species (ROS) and/or reactive nitrogen species (RNS) which surpasses the endogenous antioxidant capacity, due to various causes. Defined for the first time in 1985 by Stahland and Sies, OS has recently been intensely studied as a regulatory element in various diseases. A free radical (FR) is defined as a species that presents a single or more unpaired electrons, and which exists autonomously¹⁷. FRs are considered essential in biological evolution as they play a major role in several biochemical reactions¹⁹.

Up to this moment, oxidative stress (OS) has been proved to represent a pathogenetic factor in cardiovascular diseases, neurodegenerative diseases, cancer, aging and many others¹⁸,¹⁹. OS also represents a major factor in the development of kidney damage²⁰, therefore it might play a crucial role in therapeutic intervention when targeted. Also, OS presents damaging effects on biomolecules such as DNA, RNA, proteins, lipids, enzymes, etc. The changes that reactive species (RS) make upon these molecules could be highlighted and used as biomarkers for OS¹⁹.

1.1. Are reactive species important in maintaining homeostasis?
It is considered that reactive species are important for maintaining homeostasis when they are present in low concentrations, in certain compartments, at a certain moment. ROS and RNS are
responsible for normal redox signaling, and therefore they represent a promoter for cell survival, growth and proliferation.21

In the kidney, the blood flow and the glomerular filtration rate are maintained at a constant level by renal autoregulation, despite all the physiological changes or pathological states that may take place in the body. Two key mechanisms are responsible for the renal autoregulation: the myogenic response and tubuloglomerular feedback. Studies show that both vasoreactivity and the myogenic response are influenced by the presence of reactive species such as nitric oxide (NO) and superoxide (O$_2^-$).22,23,24,25

NO is a vasodilator factor generated by endothelial nitric oxide synthase (eNOS), and it defends the renal cells (endothelial and mesangial cells) from fibrosis and apoptosis by inducing the expression of antioxidative genes and promoting a physiological renal hemodynamics.21 It is well known that NO is a major factor in modulating the myogenic response, with numerous studies showing that inhibition of NOS decreases renal blood flow and increases the renal vascular resistance in both pressor dosages26,27 as well as in dosages that have no impact on the blood pressure.22,28 Also, the infusion of NO donors (sodium nitroprusside) and NO precursors (L-arginine) seems to counteract renal vasoconstriction.29,30

Intracellularly, low levels of NO may inhibit cytochrome-c (cyt-c) oxidase, altering the generation of ROS in the mitochondria.31 When ROS produced by mitochondria increase moderately, they stabilize hypoxia-inducible factor (HIF) in endothelial cells, and stimulate the nuclear factor erythroid 2–related factor 2 (Nrf2).32,33 Both HIF and Nrf2 protect the renal tissues against OS, therefore ROS may exhibit renoprotective effects in certain concentrations.21,34 Nrf2 represents the main regulator of the response to OS.35

Interestingly, one study that focused on the effects of endogenous O$_2^-$ showed that it becomes a crucial factor in maintaining a physiological tone in the renal vasculature when it is induced by vascular NADPH oxidase (NOX).36 This further demonstrates that reactive species might play a crucial role in maintaining homeostasis.

1.2. What reactive species are generated in AKI?

The main etiologies of AKI are linked to ischemia and hypoxia. Due to the decrease in the renal blood flow, the cellular nutrient and oxygen uptake is limited, leading do the development of inflammation and acute tubular necrosis.37 Renal ischemia and reperfusion represent major triggers of reactive oxygen species with consequential damage in renal function and tissue integrity.28 In sepsis-induced AKI there is an extensive immune response that is responsible for renal vasoconstriction, endothelial injury, and localized hypoxia, which ultimately triggers the formation of ROS.38 Further, uremia is highly associated with an increase in circulating levels of indole and carbonyl compounds, which are able to upregulate systemic OS.52

Some of the initial changes that are observed with AKI development are depletion of ATP and changes in the structure of the mitochondria, leading to alterations and dysfunction in the energetic metabolism.29,52,55 Each type of renal cell presents a different number of mitochondria, which is considered to be one of the major sources of ROS,39 therefore the production of ROS...
varies between the renal structures. Mitochondria is also responsible for producing molecules that counteract the OS19. In the kidney, NOX and the mitochondrial respiratory chain are considered to be the main sources of ROS production40.

One study evaluated the mitochondrial function, structure and redox state in rodents with induced nephrotoxic and ischemic AKI via in vivo exogenous and endogenous multi-photon imaging. The results showed changes in mitochondrial NADH levels and proton motive force, and upregulated levels of mitochondrial O\textsubscript{2}-, along with disjointed mitochondria. They concluded that mitochondria represents a major source of reactive oxygen species, and that an alteration in mitochondrial function plays an important role in the early phase of renal ischemia41,52. In contrast, after gentamycin exposure, the first alterations to appear were at lysosomal level in the renal epithelium, along with anomalies in brush border cells. The mitochondrial dysfunction, with changes in morphology of the mitochondria, alterations in NADH levels, reactive species and altered proton motive force occurred later in the development of nephrotoxic acute kidney injury52,78. Mitochondria is, therefore, directly responsible for increased levels of oxidative stress in AKI.

Despite the abundance of studies conducted on this topic, the exact mechanism through which reactive species are generated in AKI remains unknown. However, OS might represent a potential therapeutic target. Table 1 summarizes the main ROS found in AKI.

The production of the superoxide anion O\textsubscript{2}- is the result of the one-electron reduction of oxygen in its molecular form42. Superoxide can be generated by a large variety of oxidase enzymes, and can also be generated inside the mitochondria by components of the electron transport chain. O\textsubscript{2}- is mainly transported through anion channels, therefore the diffusion across different membranes is limited. Superoxide anion is a rather selective free radical, which is able to form a non-radical ROS (H\textsubscript{2}O\textsubscript{2}) via dismutation. The reaction can take place spontaneously, but it can also be facilitated by enzymatic catalysis21. The presence of the superoxide anion triggers a cascade of events, as its presence leads to the generation of other ROS. O\textsubscript{2}- may also be produced from xanthine by xanthine oxidase (XO), and from NADPH and NADH by various oxidase enzymes which are induced by an inflammatory response28. The most potent action of O\textsubscript{2}- is represented by the scavenging of NO. As the levels of superoxide anion increases, it is able to disrupt the iron-sulfur centers, and it may react with catecholamines21. Local ischemia and cytokines generated in AKI induced by sepsis activate the endothelium of the renal vasculature and recruit cells from the immune system that are able to generate O\textsubscript{2}- via NOX29.

Hydrogen peroxide (H\textsubscript{2}O\textsubscript{2}) can be generated by dismutation but also by oxidases which are able to directly reduce the molecular oxygen. H\textsubscript{2}O\textsubscript{2} diffuses across different biological membranes in a similar way to water, which makes it able to express its oxidative properties in other cellular compartments and even in other cells. Peroxides are able to react with different molecules containing iron, leading to generation of additional ROS. When peroxides react with Fe2+ they generate the hydroxyl radical (HO-), known as the Fenton reaction. When peroxide is metabolized by specific heme peroxidase in the presence of other molecules such as chloride or nitrite, it can generate hypochlorous acid, and nitrogen dioxide21,66.
The hydroxyl radical (HO•) may be generated by the Fenton reaction. This radical alters and reacts with almost every cellular component, generating additional ROS31. It produces lipid peroxidation with subsequent membrane damage and toxic compounds release, including aldehydes66.

Hypochlorous acid (HClO), a highly reactive lipid soluble molecule21, is generated by phagocyte myeloperoxidase (MPO) in inflammatory cells when local ischemia is present29, and it may react with amines, producing chloroamines.

Peroxyxinitrite (ONOO•) is generated when superoxide anion reacts with nitric oxide. The spontaneous decomposition of peroxyxinitrite generates nitrogen dioxide (NO2). Also, NO2 is generated by heme peroxidase enzymes from the nitrate metabolism. These reactive species are able to activate a variety of signaling mechanisms by oxidizing or nitrating thiols, sometimes influencing processes that are also targeted by peroxide. When RNS react with unsaturated fatty acids (FA), the result is oxidized and nitrated FA which present a multitude of biological actions. ONOO• seems to be a major inhibitor of the mitochondrial respiration chain, irreversibly disrupting the centers of iron-sulfur21.

Nitric oxide (NO) represents a soluble gas that is able to bind to ferrous sites of heme. It is generated by NOS enzymes, and in normal amounts it is a part of physiological signaling processes: it binds to guanylate cyclase in order to regulate the production of cGMP, and it binds to cytochrome c oxidase to regulate the mitochondrial respiration. While it is mainly generated by regulating the activity of nNOS (NOS1) and eNOS (NOS3), an inflammatory status is able to induce iNOS (NOS2) expression (iNOS – inducible nitric oxide synthase; nNOS – neuronal nitric oxide synthase). This process leads to the generation of larger quantities of NO which consequently modulates the inflammatory processes. Larger levels of NO interact with bound iron, and produce NO-derived RNS that can nitrosate thiols. When the concentration of NO equalizes the levels of local antioxidant enzymes, it competes with them for the scavenging of O2•, generating ONOO•21,66. However, it has been shown that when using agents to inhibit the global production of NO, including the NO production from constitutive eNOS, the effect on renal IRI was not renoprotective43.

Another study showed that mice who were deficient in iNOS were resistant to renal IRI, concluding that a constant release of NO from NOS2 could be a pathogenetic factor44. NOS2 is constitutively expressed in the renal tissue45, underlining that NO presents a physiological role in kidney functioning46. These mechanisms may potentially contribute to the development of renal disease.

Carbonyls, nitrated lipids, and unsaturated aldehydes are just some of the toxic reactive molecules that can be generated by ROS and RNS. These molecules are able to trigger signaling processes, at low levels of OS. As the level of OS increases, these molecules promote oxidative damage and cellular death21,66. Out of all possible etiologies for AKI, two of the most common are ischemia-reperfusion injury and sepsis32.
Ischemia-reperfusion injury induced AKI

Ischemia-reperfusion injury (IRI) represents a major cause of AKI, and the main cause of delayed renal graft function, and renal graft loss after kidney transplantation\(^\text{47}\). In IRI, the reperfusion phase is the crucial moment when the most IRI damage might occur. The initial event that takes place immediately after reperfusion is a sudden increase in superoxide anion production in the mitochondria which is released inside the cell, and represents the main trigger for the pathology that follows reperfusion\(^\text{48,49}\). In IRI, this mechanism plays a crucial role in initiating AKI, but also in maintaining it\(^\text{50}\). Also, the early inflammatory response in IRI consists mainly of neutrophils, which generate ROS, and are recruited by ROS\(^\text{51}\).

One study that focused on the pathophysiology of renal IRI showed that pericytes express adhesion protein-1, a key protein that generates a local H_2O_2 gradient which further stimulates the neutrophil infiltration\(^\text{52}\), proving that reactive species are directly involved in developing renal injury following ischemia.

Another study concluded that, following renal IRI, Nrf2-regulated cell defense genes presented significantly high levels in the kidneys of wild-type mice but not in Nrf2-knockout (\(-/-\)) mice\(^\text{53,54}\). The same study showed that the loss of Nrf2 leads to an increase in severity of renal IRI, which also proves that oxidative stress plays a crucial role in the pathogenesis and outcome of renal IRI.

Tracz et al\(^\text{32,55}\) showed that mice who were heme oxygenase-1 knockout (HO-1\(^{-/-}\)) had increased sensitivity to renal IRI, and expressed a higher inflammatory response and oxidative damage and an increase in mortality when compared to wild-type mice.

Another study demonstrated that mice deficient in transient receptor potential melastatin 2 (TRPM2) who were subjected to renal IRI showed resistance to OS and apoptosis\(^\text{56}\). TRPM2 is a nonselective cation channel (for calcium, sodium, and potassium) activated by OS, ADP-ribose, TNF-\(\alpha\), and intracellular calcium, all of which are considered to be increased in kidney ischemia. Gao et al. showed that TRPM2-knockout mice are resistant to IRI, with a reduction in OS, NADPH oxidase activity, and apoptosis in the kidney. Also, they obtained similar results by pharmacologically inhibiting TRPM2. The cationic channel was identified mainly in the proximal tubule epithelial cells, and Gao et al. showed that its effects are attributable to expression in parenchymal cells. Also, they showed that the activation of RAC1, a constituent of the NADPH oxidase complex, was promoted by TRPM2 following renal ischemia. In contrast, inhibition of RAC1 in vivo reduced ischemic injury and OS. This further shows that OS and ischemic injury are closely interrelated.

Sepsis-induced AKI

In intensive care units, sepsis represents the major cause of acute kidney injury\(^\text{57}\). Of all the bacterial pathogens that induce AKI, Gram-negative bacteria represent a major threat due to the composition of their outer membrane. One of the main components of their outer membrane is represented by lipopolysaccharide (LPS), an endotoxin considered to be an important trigger of
the inflammatory response in sepsis. These lipopolysaccharides are recognized by Toll-like receptor (TLR), a transmembrane protein expressed in renal tubules. Once the LPS bind to TLRs, the immune system is triggered, and the acquired immunity develops an antigen-specific response58.

TLR4 binds specifically to the LPS ligand, and their binding triggers a cascade of events that leads to OS and a pro-inflammatory response, with new cytokines and mediators being further released. Tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β) are just two of the newly generated molecules which consequently promote the \(\text{H}_2\text{O}_2 \) formation, with oxidative damage which further enhances the inflammatory response59.

Many studies suggest that both sepsis and ischemia upregulate TLR460,61,62. Hato et al63 studied the effect of endotoxin preconditioning and concluded that it confers renal epithelial protection \textit{in vivo}, by preventing peroxisomal damage, abolishing OS and tubule injury. Oxidative stress was measured in both preconditioned and nonpreconditioned mice, with measurements performed after 4 hours from LPS inoculation intraperitoneally. High levels of OS were determined in proximal tubules of NP wild-type mice, whereas in preconditioned wild-type mice OS was absent. TLR4-/- mice showed no OS, which confirms that TLR4 plays a crucial role in LPS signaling pathway. Also, in preconditioned mice, KIM-1 and NGAL, markers for tubular injury, were significantly reduced, suggesting renal protection. This study proves that sepsis indeed upregulates TLR4, and leads to high levels of OS in renal proximal tubules, with subsequent oxidative damage.

TLR9 identifies bacterial DNA with unmethylated CpG motifs64, but the TLR9 pathway is also activated by endogenous mitochondrial DNA (mtDNA)65. Tsuji et al.56 studied the role of mtDNA via TLR9 in septic AKI and showed that cytokine production, tubular mitochondrial disorders (ATP depletion) and splenic apoptosis are inflicted by the circulating mtDNA released in the early phase of sepsis. They used an animal model of sepsis in wild-type and TLR9-/- mice, but they also injected mitochondrial debris intravenously. The results show that TLR9-/- mice presented a lower bacteremia than wild-type mice, but with a higher level of leucocyte migration. Also, TLR9-/- mice presented lower levels of IFN-γ and IL-12 than wild-type mice, with attenuated production of superoxide in the proximal tubule cells. When injected with mitochondrial debris containing a substantial amount of mtDNA, wild-type mice had increased plasma levels of IL-12, but not of IFN-γ and TNF-α, while the levels of IL-12 in TLR9-/- mice did not increase as much. This study further shows that sepsis upregulates certain receptors that stimulate the production of reactive species and oxidative damage.

While sepsis remains ubiquitous, aforementioned studies suggest that the cascade of events that it triggers, including oxidative stress damage and inflammatory response, could be counteracted at receptor level. More studies are needed in order to gain a better perspective of how OS could be addressed in sepsis-induced AKI.

2. How do the kidneys combat oxidative stress?
Homeostasis is favored by balancing the production of both oxidants and antioxidants. It has been proved that ROS play a physiological role in renal function, but when reactive species are unregulated or upregulated with consequent local accumulation, they are able to induce OS, irreversibly damaging DNA, RNA, lipids, proteins, causing organelle dysfunctionality. The oxidant production is usually counterbalanced by formation of endogenous antioxidants which disrupt the damaging effects of OS. High levels of ROS may overrun the antioxidant activity, promoting dysfunction of the vasculature, triggering an inflammatory response, with consequent cytotoxicity on renal tubule cells, mechanisms that are observed in the pathogenesis of AKI. Antioxidants represent the body’s system to combat the reactive species that are constantly released inside the cell. They are molecules that intervene early in AKI development, by scavenging reactive species. There are several antioxidant systems able to protect the renal cells from OS. Exogenous antioxidants are mainly represented by dietary and/or supplementation substances which downregulate OS, consequently diminishing lipid peroxidation, and oxidative damage. Table 2 contains the main antioxidants that can be found in the renal tissue.

Modulating AKI with the help of antioxidants represents a focus point for many human and animal studies, which have shown that nephrotoxicity and renal ischemia induce an increased oxidative damage with low levels of local antioxidants.

Superoxide dismutase (SOD) isoforms represent some of the major enzymes that fight against OS, and they can be found in the kidneys. They are localized in both the extracellular space, and intracellular space (mitochondria, cytoplasm). SOD localization varies by species, but their renal activity is comparable in human, mouse, sheep, etc. SOD is a catalyst that helps the dismutation of O_2^- into O$_2$ and H$_2$O$_2$. It is considered to be the first system to fight OS. SOD1 (copper/zinc form of SOD) cannot be found inside the mitochondria, but is commonly present in other intracellular spaces. It is responsible for 80% of the activity that SOD has in the renal tissues, and for 1/3 of the SOD activity in the renal vasculature, where it stops disruption of NO signaling. SOD1 suppresses the clearing of nitric oxide by O$_2^-$ inside the cellular compartments, maintaining the production of H$_2$O$_2$.

SOD2 (manganese form of SOD) is present in great quantities inside the mitochondria, and it plays a key role in generating and releasing the peroxide from the mitochondria. ONOO$^-$ is able to inactivate SOD2. Overexpression of this isoform, but not catalase, ameliorates AKI induced by cisplatin in vitro, fact that shows the importance of superoxide anion in AKI.

One study in which SOD2 and SOD1 were ablated in mice, showed that the pathological phenotype was aggravated in SOD2-ablated mice, despite the fact that SOD1 is responsible for most of the SOD activity. This data suggests that the localization of reactive species is of great importance, indicating that mitochondria is crucial in the initiation and evolution of AKI. SOD3 is an extracellular copper/zinc SOD isoform responsible for protecting nitric oxide from O$_2^-$, and also for converting O$_2^-$ into H$_2$O$_2$ in the extracellular environment.

SOD mimetic activity can be found in pharmacologic agents Tempol and MnTMPyP which have proved to ameliorate both ischemia-induced AKI, and sepsis-induced AKI. Also, MnTMPyp
(which is both SOD and catalase mimetic) decreases SOD related to renal fibrosis after ischemic AKI.

Catalase, an enzyme containing heme, is responsible for further converting \(\text{H}_2\text{O}_2 \) into \(\text{O}_2 \) and \(\text{H}_2\text{O} \), without requiring additional cofactors\(^{21}\). It is ubiquitous in cells with aerobic metabolism, and high levels of catalase are found in renal cells\(^{78}\). Intracellular disposition shows that catalase is mainly found in the cytosol and in peroxisomes\(^{21}\). Its deficiency leads to ROS accumulation inside the mitochondrial matrix, causing mitochondrial dysfunction\(^{79}\). An experimental study of endotoxemia in mice showed that LPS can downregulate the catalase activity, aggravating renal damage\(^{80}\).

Thioredoxin peroxidase systems also consume \(\text{H}_2\text{O}_2 \), while oxidizing thioredoxin. The oxidized forms that result play a crucial role in several signaling mechanisms. These peroxidases can be found in most cellular compartments\(^{21}\).

Glutathione and glutathione peroxidase family are present in all cellular compartments (including the nucleus, mitochondria, cytoplasm)\(^{46,66,81}\). Glutathione is important for regulating the cellular redox, while being a part of the controlling mechanisms responsible for the cellular proliferation, DNA synthesis, and cellular apoptosis\(^{82}\). In the mitochondria, glutathione regulates apoptosis and necrosis, while in the nucleus it modulates the cellular division\(^{66}\).

Edaravone represents an approved stroke therapy in Japan. It has been studied in multiple experimental models, and it has been shown that it reduces the generation of ROS *in vitro* in the renal tubular cells, reduces lipid peroxidation *in vivo*\(^{52}\), improves kidney function in rats with IRI\(^{83}\), and also in rats with nephrotoxicity\(^{84}\). These results show that edaravone (norphenazone, MCI-186) might be able to avoid preservation injury in kidney transplantation\(^{52}\).

Vitamin C is a well-known antioxidant that attenuates OS, inflammation and improves kidney function in AKI animal models (ischemia-induced, chemically-induced, rhabdomyolysis-induced AKI)\(^{52}\). Vitamin C plays an important role for some enzymatic reactions as a cofactor, participating in several defense mechanisms. Vitamin C redox is preserved by diverse components of redox systems in the cell, reacting with oxidized forms of molecules (enzymes, free radicals)\(^{21}\).

Selenium (Se) represents a trace element that plays a role in cellular aerobic respiration by reducing free radicals\(^{85}\). Selenium deficiency was linked to AKI in rodent model\(^{86}\). Also, several experimental studies showed improved kidney function after Se supplementation in AKI induced by cisplatin\(^{71}\), and by gentamycin\(^{87}\). Selenium upregulated antioxidants in a pig model of transplanted kidneys (ischemia-reperfusion injury)\(^{88}\).

Sulforaphane, a natural dietary isothiocyanate, has been shown to be renoprotective and able to improve kidney function in an animal renal IRI model\(^{89}\). In this study, Shokeir et al showed that ischemic preconditioning and sulforaphane both enhanced gene expression (Nrf2, heme oxygenase-1 HO-1, NADPH-quinone oxidoreductase1 NQO-1) and diminished the inflammatory (TNF-α, IL-1, ICAM-1) and apoptotic markers (caspase-3), with better results for sulforaphane alone. Their combination improved the antioxidant gene expression and attenuated the inflammatory genes.
Antioxidants play a leading role in fighting oxidative stress and preventing oxidative damage. Both endogenous and exogenous (dietary/supplementation) seem to have a beneficial impact on renal function, with renoprotective effects and good outcomes even on the suffering kidneys.

3. Are there any biomarkers for detecting oxidative stress in early AKI?

The interest in defining biomarkers for acute illnesses is continuously increasing. Recent studies focused on molecules that might increase specifically in OS. Some of them, conducted in patients who suffered kidney damage induced by sepsis or by other critically illnesses, highlighted the presence of plasmatic biomarkers from protein and lipid oxidation that could be correlated with other markers for cytokines, pro-oxidative mediators and pro-inflammatory markers. Ischemia causes alterations in DNA structure and leads to lipids peroxidation, leading to increased levels of 3-nitrotyrosine, a well-known biomarker for ROS and RNS. One study showed that renal IRI causes increased urinary expression of thioredoxin1 (TRX), making it a possible biomarker for OS.

Costa et al. conducted a study in septic shock patients admitted to the Intensive Care Unit (ICU) and determined the protein carbonyl concentration upon admission. The levels of protein carbonyl were significantly higher in patients who developed septic AKI, and they were also positively correlated with the SOFA score. Moreover, protein carbonyl concentration was associated with development of septic AKI, and with mortality in these critical patients. This study shows a novel molecule that could be used as a biomarker in AKI with excellent reliability.

Recently, transfer RNA (tRNA) has been shown to be cleaved into half molecules under OS, resulting tRNA-derived stress-induced fragments (tiRNAs). Mishima et al. used a specific tRNA-specific modified nucleoside 1-methyladenosine (m1A) antibody to show that changes in RNA structure occur much earlier than DNA damage in OS exposure. Change in tRNA structure leads to further tRNA fragmentation, reflecting early stages of OS damage. Authors suggest that detecting tRNA damage could be a valuable tool for recognizing early organ damage and making a better medical decision.

Conclusions

Acute kidney injury, although common in clinical practice, is still poorly understood from the pathophysiological point of view. This leads to addressing AKI with only supportive therapies, instead of effective therapeutics to treat it. Research focuses on understanding the molecular pathways that are present in renal injury, but the large possible etiologies of AKI along with other comorbidities that patients might suffer from, make it really problematic to draw a conclusion. Also, animal models used in the experimental studies are more or less comparable to the human body from the physiological and pathophysiological point of view. Recent data shows that oxidative stress plays a crucial role in both initiating and further development of AKI, making it a possible target for therapies. Oxidative damage leading to DNA and RNA alterations, peroxidation of lipids, changes in the structure of proteins, represents an important cause of kidney damage that must be addressed when attempting to treat AKI. ROS, RNS, free radicals
are closely linked to AKI, and they must be very well understood in order to be targeted. Endogenous antioxidants represent a first line against oxidative damage, and their downregulation worsens the outcome in kidney injury. Antioxidant supplementation is intensely studied, showing promising renoprotective effects. Moreover, research focuses on OS biomarkers that can be detected in early phases of AKI, with apparently good results, whether we talk about detecting novel molecules or using newly-constructed monoclonal antibodies. Nonetheless, more studies are needed in order to establish new clinical guidelines. Oxidative stress in acute kidney injury, although accepted as a key component in the pathophysiology of AKI, is yet to be understood as a target for novel therapeutics.

Acknowledgements
None.

References
1. Chawla LS, Eggers PW, Star RA, Kimmel PL. Acute kidney injury and chronic kidney disease as interconnected syndromes. N Engl J Med 2014;371:58-66.
2. He L, Wei Q, Liu J, Yi M, Liu Y, Liu H, Sun L, Peng Y, Liu F, Venkatachalam MA, Dong Z. AKI on CKD: heightened injury, suppressed repair, and the underlying mechanisms. Kidney Int 2017;92:1071-1083.
3. Mehta RL, Chertow GM. Acute renal failure definitions and classification: time for change?. JASN 2003;14(8):2178–87.
4. Bellomo R, Ronco C, Kellum JA, Mehta RL, Palevsky P. Acute renal failure - definition, outcome measures, animal models, fluid therapy and information technology needs: the second international consensus conference of the acute dialysis quality initiative (ADQI) group. Critical Care 2004;8(4):204–12.
5. Palevsky PM1, Liu KD, Brophy PD, Chawla LS, Parikh CR, Thakar CV, Tolwani AJ, Waikar SS, Weisbord SD. KDOQI US commentary on the 2012 KDIGO clinical practice guideline for acute kidney injury. AJKD 2013;61(5):649–672.
6. Susantitaphong P, Cruz DN, Cerda J, Abulfaraj M, Alqahtani F, Koulouridis I, Jaber BL; Acute Kidney Injury Advisory Group of the American Society of Nephrology. Acute Kidney Injury Advisory Group of the American Society of N: World incidence of AKI: a meta-analysis. Clin J Am Soc Nephrol 2013;8:1482-1493.
7. Ostermann M, Chang RW. Acute kidney injury in the intensive care unit according to RIFLE. Critical Care Medicine 2007;35(8):1837–1843.
8. Bagshaw SM, George C, Dinu I, Bellomo R. A multicentre evaluation of the RIFLE criteria for early acute kidney injury in critically ill patients. NDT 2008;23(4):1203–1210.
9. Lameire NH, Bagga A, Cruz D, De Maeseneer J, Endre Z, Kellum JA, Liu KD, Mehta RL, Pannu N, Van Biesen W, Vanholder R. Acute kidney injury: an increasing global concern. Lancet 2013;382:170-179.
10. Wald R, Quinn RR, Luo J, Li P, Mamdani MM, Ray JG; University of Toronto Acute Kidney Injury Research Group. Chronic dialysis and death among survivors of acute kidney injury requiring dialysis. JAMA 2009;302:1179-1185.
11. Basile DP, Bonventre JV, Mehta R, Nangaku M, Unwin R, Rosner MH, Kellum JA, Ronco C, ADQI XIII Work Group. Understanding maladaptive repair processes to predict and identify therapeutic treatments. J Am Soc Nephrol 2016;27:687-697.
12. Agarwal A, Dong Z, Harris R, Murray P, Parikh SM, Rosner MH, Kellum JA, Ronco C, Acute Dialysis Quality Initiative XIII Working Group. Cellular and molecular mechanisms of AKI. J Am Soc Nephrol 2016;27:1288-1299.
13 Takaori K, Nakamura J, Yamamoto S, Nakata H, Sato Y, Takase M, Nameta M, Yamamoto T, Economides AN, Kohno K, Haga H, Sharma K, Yanagita M. Severity and frequency of proximal tubule injury determines renal prognosis. J am Soc Nephrol 2016;27:2393-2406.

14 Tanaka S, Tanaka T, Nagaku M. Hypoxia as a key player in the AKI-to-CKD transition. Am J Physiol Renal Physiol 2014;307:F1187-1195.

15 Ruiz S, Pergola PE, Zager RA, Vaziri ND. Targeting the transcription factor Nrf2 to ameliorate oxidative stress and inflammation in chronic kidney disease. Kidney Int 2013;83:1029-1041.

16 Nezu M, Souma T, Yu L, Suzuki T, Saigusa D, Ito S, Suzuki N, Yamamoto M. Transcription factor Nrf2 hyperactivation in early-phase renal ischemia-reperfusion injury prevents tubular damage progression. Kidney Int 2017;91:387-401.

17 Halliwell, B. Reactive Species and Antioxidants. Redox Biology Is a Fundamental Theme of Aerobic Life. Plant Physiol 2006;141:312–322.

18 Valko M, Leibfritz D, Moncol J, Cronin MT, Mazur M, Telser J. Free radicals and antioxidants in normal physiological functions and human disease. Int J Biochem Cell Biol 2007;39:44–84.

19 Singh A, Kukreти R, Saso L, Kukreти S. Oxidative stress: A key Modulator in Neurodegenerative Diseases. Molecules 2019;24:1583.

20 Himmelfarb J, McMonagle E, Freedman S, Klenzak J, McMenamin E, Le P, Pupim LB, Ikizler TA, The PICARD Group. Oxidative stress is increased in critically ill patients with acute renal failure. J Am Soc Nephrol 2004;15:2449–2456.

21 Ratliff BB, Abdulmahdi W, Pawar R, Wolin MS. Oxidant Mechanisms in Renal Injury and Disease. Antioxid Redox Signal 2016;25:119-146.

22 Carlstrom M, Wilcox CS, Arendshorst WJ. Renal autoregulation in health and disease. Physiol Rev 2015;95:405-511.

23 Just A. Nitric oxide and renal autoregulation. Kidney Blood Press Res 1997;20:201-204.

24 Loutzenhiser RD, Griffin K, Williamson G, Bidani A. Renal autoregulation: new perspectives regarding the protective and regulatory roles of the underlying mechanisms. Am J Physiol Regul Integr Comp Physiol 2006;290:R1153-R1167.

25 Navar LG, Arendshorst WJ, Bell PD, Imig JD, Inscho EW, Pallone TL. Renal microcirculation In: Handbook of Physiology: Microcirculation, edited by Tuma RF, Duran WN, and Ley K. Academic, 2008. P. 550-683.

26 Baylis C, Qiu C. Importance of nitric oxide in the control of renal hemodynamics. Kidney Int 1996;48:1727–1731.

27 Majid DSA, Williams A, Navar LG. Inhibition of nitric oxide synthesis attenuates pressure-induced natriuretic response in anaesthetized dogs. Am J Phys 1993;264:F79–F87.

28 Deng A, Baylis C. Locally produced EDRF controls preglomerular resistance and ultrafiltration coefficient. Am J Phys 1993;264:F212–F215.

29 Kiyomoto H, Matsuo H, Tamaki T, Aki Y, Hong H, Iwao H, Abe Y.. Effect of L-NG-nitro-arginine, inhibitor of nitric oxide synthesis, on autoregulation of renal blood flow in dogs. Japan J Pharmacol 1992;58:147–155.

30 Kumagai K, Suzuki H, Ichikawa M, Jimbo M, Murakami M, Ryuza K, Ryuzaki M, Saruta T. Nitric oxide increased renal blood flow by interacting with the sympathetic nervous system. Hypertension 1994;24:220–226.

31 Brown GC. Nitric oxide regulates mitochondrial respiration and cell functions by inhibiting cytochrome oxidase. FEBS Lett 1995;369:136–139.

32 Plantadosi CA, Suliman HB. Mitochondrial transcription factor A induction by redox activation of nuclear respiratory factor 1. J Biol Chem 2006;281:324–333.

33 Guzy RD, Hoyos B, Robin E, Chen H, Liu L, Mansfield KD, Simon MC, Hammerling U, Schumacker PT. Mitochondrial complex III is required for hypoxia-induced ROS production and cellular oxygen sensing. Cell Metab 2005;1:401–408.
34 Nangaku M, Eckardt KU. Hypoxia and the HIF system in kidney disease. J Mol Med (Berl) 2007;85:1325-1330.
35 Ruiz S, Pergola PE, Zager RA, Vaziri ND. Targeting the transcription factor Nrf2 to ameliorate oxidative stress and inflammation in chronic kidney disease. Kidney Int 2013;83:1029-1041.
36 Haque MZ, Majid DS. Assessment of renal functional phenotype in mice lacking gp91PHOX subunit of NAD(P)H oxidase. Hypertension 2004;43:335-340.
37 Basile DP, Anderson MD, Sutton TA. Pathophysiology of acute kidney injury. Compr Physiol 2012;2:1303–1353.
38 Andrades ME, Morina A, Spasic S, Spasojevic I. Bench-to-bedside review: Sepsis—From the redox point of view. Crit Care 2011;15:230.
39 Duchen MR, Szabadkai G. Roles of mitochondria in human disease. Essays Biochem 2010;47:115–137.
40 Sureshbabu A, Ryter SW, Choi Me. Oxidative stress and autophagy: Crucial modulators of kidney injury. Redox Biology 2015;4:208-214.
41 Hall AM, Rhodes GJ, Sandoval RM, Corridon PR, Molitoris BA. In vivo multiphoton imaging of mitochondrial structure and function during acute kidney injury. Kidney Int 2013;83:72–83.
42 Noiri E, Addabbo F, Goligorsky M. Reactive oxygen and nitrogen species, oxidative and nitrosative stress, and their role in the pathogenesis of acute kidney injury. In: Studies on Renal Disorders, edited by Miyata T, Eckardt K, and Nangaku M. New York: Humana Press, 2011, pp. 161–177.
43 Yaquad M, Edelstein CL, Schrier RW. Role of nitric oxide and superoxide balance in hypoxia-reoxygenation proximal tubular injury. Nephrol Dial Transplant 1996; 11:1738–1742.
44 Ling H, Edelstein C, Gengaro P, Meng X, Lucia S, Knotek M, Wangsiriapaisan A, Shi Y, Schrier R. Attenuation of renal ischemia-reperfusion injury in inducible nitric oxide synthase knockout mice. Am J Physiol 1999;277:F383–F390.
45 Thomas DD, Heinecke JL, Ridnour LA, Cheng Ry, Kesarwala AH, Switzer CH, McVicar DW, Roberts DD, Glynn S, Fukuto JM, Wink DA, Miranda KM. Signaling and stress: The redox landscape in NOS2 biology. Free Radic Biol Med 2015; 87:204–225.
46 Araujo M, Welch WJ. Oxidative stress and nitric oxide in kidney function. Curr Opin Nephrol Hypertens 2006;15:72–77.
47 Bogdan C. Nitric oxide and the regulation of gene expression. Trends Cell Biol 2001;11:66–75.
48 Zweier JL, Flaherty JT, Weisfledt ML. Direct measurement of free radical generation following reperfusion of ischemic myocardium. Proc Natl Acad Sci U S A 1987;84:1404-1407.
49 Chouchani ET, Pell VR, James AM, Work LM, Saeb-Parsy K, Frezza C, Krieg T, Murphy MP. A unifying mechanism for mitochondrial superoxide production during ischemia-reperfusion injury. Cell Metab 2016;23:254-263.
50 Nath KA, Norby SM. Reactive oxygen species and acute renal failure. Am J Med 2000;109:665-678.
51 Friedewald JJ, Rabb H. Inflammatory cells in ischemic acute renal failure. Kidney Int 2004;66:486-491.
52 Tanaka S, Tanaka T, Kawakami T, Takano H, Sugahara M, Saito H, Higashijima Y, Yamaguchi J, Inagi R, Nangaku M. Vascular adhesion protein- 1 enhances neutrophil infiltration by generation of hydrogen peroxide in renal ischemia/reperfusion injury. Kidney Int 2017;92:154-164.
53 Leonard MO, Kieran NE, Howell K, Burne MJ, Varadarajan R, Dakshinamoorthy S, Porter AG, O'Farrelly C, Rabb H, Taylor CT. Reoxygenation-specific activation of the antioxidant transcription factor Nrf2 mediates cytoprotective gene expression in ischemia-reperfusion injury. FASEB J 2006;20:2624-2626.
54 Liu M, Grigoryev DN, Crow M, Haas M, Yamamoto M, Reddy SP, Rabb H. Transcription Factor Nrf2 is protective during ischemic and nephrotoxic acute kidney injury in mice. Kidney Int 2009;76:277-285.
55 Tracz MJ, Juncos JP, Croatt AJ, Ackerman A, Grande JP, Knutson KL, Kane GC, Terzic A, Griffin MD, Nath KA. Deficiency of heme oxygenase-1 impairs renal hemodynamics and exaggerates systemic inflammatory responses to renal ischemia. Kidney International 2007; 72(9):1073-1080.
575 56 Gao G, Wang W, Tadagavadi RK, Briley NE, Love MI, Miller BA, Reeves WB. TRPM2 mediates ischemic kid
576 ney injury and oxidant stress through RAC1. Journal of Clinical Investigation 2014; 124(11):4989-5001.
577 57 Uchino S, Kellum JA, Bellomo R, Doig GS, Morimatsu H, Morgera S, Schetz M, Tan I, Bouman C, Macedo
578 E, Gibney N, Tolwani A, Ronco C. Acute renal failure in critically ill patients: a multinational, multicenter
579 study. JAMA 2005;294:813-818.
580 58 Medzhitov R. Toll-like receptors and innate immunity. Nat Rev Immunol 2001;1:135-145.
581 59 Li Q, Engelhardt JF. Interleukin-1beta induction of NFkappaB is partially regulated by H2O2- mediated
582 activation of NFkappaB- inducing kinase. J Biol Chem 2006;281:1495-1505.
583 60 Wu H, Chen G, Wyburn KR, Yin J, Bertolino P, Eris JM, Alexander SI, Sharland AF, Chadban SJ. TLR4
584 activation mediates kidney ischemia/reperfusion injury. J Clin Invest 2007;117:2847-2859.
585 61 Pulskens WP, Teske GJ, Butter LM, Roelofs JJ, van der Poll T, Florquin S, Leemans JC. Toll-like receptor-4
586 coordinates the innate immune response of the kidney to renal ischemia/reperfusion injury. PLoS ONE
587 2008;3:e3596.
588 62 El-Achkar TM, Huang X, Plotkin Z, Sandoval RM, Rhodes GJ, Dagher PC. Sepsis induces changes in the
589 expression and distribution of Toll-like receptor 4 in the rat kidney. Am J Physiol Renal Physiol
590 2006;290:F1034-1043.
591 63 Hat T, Winfree S, Kalacheke R, Dube S, Kumar R, Yoshimoto M, Plotkin Z, Dagher PC. The macrophage
592 mediates the renoprotective effects of endotoxin preconditioning. J Am Soc Nephrol 2015;26:1347-1362.
593 64 Tsuji N, Tsuji T, Ohashi N, Kato A, Fujigaki Y, Yasuda H. Role of mitochondrial DNA in septic AKI via Toll-
594 Like Receptor 9. J Am Soc Nephrol 2016;27:2009-2020.
595 65 Zhang Q, Itagaki K, Hauser CJ: Mitochondrial DNA is released by shock and activates neutrophils via
596 p38 map kinase. Shock 2010; 34:55-59.
597 66 Dennis JM, Witting PK. Protective Role for Antioxidants in Acute Kidney Disease. Nutrients 2017;9:718.
598 67 Chatterjee PK. Novel pharmacological approaches to the treatment of renal ischemia-reperfusion
599 injury: A comprehensive review. Naunyn Schmiedebergs Arch Pharmacol 2007;376:1–43.
600 68 Paller MS, Hoidal JR, Ferris TF. Oxygen free radicals in ischemic acute renal failure in the rat. J Clin
601 Invest 1984;74:1156–1164.
602 69 Baliga R, Ueda N, Walker PD, Shah SV. Oxidant mechanisms in toxic acute renal failure. Drug Metab
603 Rev 1999;31:971–997.
604 70 Marklund SL. Extracellular superoxide dismutase and other superoxide dismutase isoenzymes in
605 tissues from nine mammalian species. Biochem J 1984;222:649–655.
606 71 Mates JM. Effects of antioxidant enzymes in the molecular control of reactive oxygen species
607 toxicology. Toxicology 2000;153:83–104.
608 72 Carlstrom M, Lai EY, Ma Z, Steege A, Patzak A, Eriksson UJ, Lundberg JO, Wilcox CS, Persson AE. Super
609 oxide dismutase 1 limits renal microvascular remodeling and attenuates arteriole and blood
610 pressure responses to angiotensin II via modulation of nitric oxide bioavailability. Hypertension 2010;56:
611 907–913.
612 73 Davis CA, Nick HS, Agarwal A. Manganese superoxide dismutase attenuates cisplatin-induced renal
613 injury: Importance of superoxide. J Am Soc Nephrol 2001;12:2683–2690.
614 74 Schieber M, Chandel NS. ROS function in redox signaling and oxidative stress. Curr Biol 2014;24:R453–
615 R462.
616 75 Chatterjee PK, Cuzzocrea S, Brown PA. Tempol, a membrane-permeable radical scavenger, reduces
617 oxidant stress-mediated renal dysfunction and injury in the rat. Kidney Int 2000;58:658–673.
618 76 Liang HL, Hilton G, Mortensen J, Regner K, Johnson CP, Nilakantan V. Mntmpyp, a cell-permeant sod
619 mimetic, reduces oxidative stress and apoptosis following renal ischemia-reperfusion. Am J Physiol Ren
620 Physiol 2009;296:F266–F276.
Kim J, Seok YM, Jung KJ, Park KM. Reactive oxygen species/oxidative stress contributes to progression of kidney fibrosis following transient ischemic injury in mice. Am J Physiol Ren Physiol 2009;297:F461–F470.

Deisseroth A, Dounce AL. Catalase: physical and chemical properties, mechanism of catalysis, and physiological role. Physiol Rev 1970;50:319–375.

Hwang I, Lee J, Huh JY, Park J, Lee HB, Ho YS, Ha H. Catalase deficiency accelerates diabetic renal injury through peroxisomal dysfunction. Diabetes 2012;61:728–738.

Deisseroth A, Dounce AL. Catalase: physical and chemical properties, mechanism of catalysis, and physiological role. Physiol Rev 1970;50:319–375.

Vasko R, Ratliff BB, Bohr S, Nadel E, Chen J, Xavier S, Chander P, Goligorsky MS. Endothelial peroxisomal dysfunction and impaired pexophagy promotes oxidative damage in lipopolysaccharide-induced acute kidney injury. Antioxid Redox Signal 2013;19:211–230.

Oberley TD, Verwiebe E, Zhong W, Kang SW, Rhee SG. Localization of the thioredoxin system in normal rat kidney. Free Radic Biol Med 2001;30:412–424.

Fukai T. Mitochondrial thioredoxin: novel regulator for NADPH oxidase and angiotensin II-induced hypertension. Hypertension 2009;54:224–225.

Doi K, Suzuki Y, Nakao A, Fujita T, Noiri E. Radical scavenger edaravone developed for clinical use ameliorates ischemia/reperfusion injury in rat kidney. Kidney Int 2004;65:1714–1723.

Satoh M, Kashihara N, Fujimoto S, Horike H, Tokura T, Namikoshi T, Sasaki T, Makino H. A novel free radical scavenger, edarabone, protects against cisplatin-induced acute renal damage in vitro and in vivo. J Pharmacol Exp Ther 2003;305:1183–1190.

Iglesias P, Selgas R, Romero S, Diez JJ. Selenium and kidney disease. J Nephrol 2013;26:266-272.

Randjelovic P, Veljkovic S, Stojiljkovic N, Velickovic L, Sokolovic D, Stojiljkovic M, Ilic I. Protective effect of selenium on gentamicin-induced oxidative stress and nephrotoxicity in rats. Drug Chem Toxicol 2012;35:141-148.

Shokeir AA, Barakat N, Hussein AM, Muldrew KL, Mayeux PR. Oxidative stress and reactive nitrogen species generation during renal ischemia. Toxicol Sci 2001;63:143–148.

Kasuno K, Shirakawa K, Yoshida H, Mori K, Kimura H, Takahashi N, Nobukawa Y, Shigemi K, Tanabe S, Yamada N, Koshiji T, Nogaki F, Kusano H, Yodoi J, Muso E, Iwano M. Renal redox dysregulation in AKI: application for oxidative stress marker of AKI. Am J of Physiol. Ren Physiol. 2001;307(12):F1342-F1351.

Costa NA, Gut AL, Azevedo PS, Tanni SE, Cunha NB, Fernandes AAH, Pogoletto BF, Zornoff LAM, de Paiva SAR, Balbi AL, Ponce D, Minicucci MF. Protein carbonyl concentration as a biomarker for development and mortality in sepsis-induced acute kidney injury. Bioscience Reports 2018; BSR20171238.

Yamasaki S, Ivanov P, Hu GF, Anderson P. Angiogenin cleaves tRNA and promotes stress-induced translational repression. J cell Biol 2009;185:35-42.

Mishima E, Inoue C, Saigusa D, Inoue R, Ito K, Suzuki Y, Jinno D, Tsukui Y, Akamatsu Y, Araki M, Araki K, Shimizu R, Shinke H, Suzuki T, Takeuchi Y, Shima H, Akiyama Y, Toyohara T, Suzuki C, Saiki Y, Tominaga T,
Miyagi S, Kawagishii N, Soga T, Ohkubo T, Yamamura K, Imai Y, Masuda S, Sabbisetti V, Ichimura T, Mount DB, Bonventre JV, Ito S, Tomioka Y, Itoh K, Abe T. Conformational change in transfer RNA is an early indicator of acute cellular damage. J aM Soc Nephrol 2014;25:2316-2326.
Table 1 (on next page)

The main reactive species in AKI
Table 1. The main reactive species in AKI

Species	Formula	Source/Generation	Function	Effects
Superoxide anion	O$_2^-$	Induced by NOX, XO and other enzymes, Generated by the mitochondrial respiratory chain	Maintains a physiological role in the renal vasculature, Generates other ROS (e.g. forms H$_2$O$_2$ via dismutation)	Scavenges NO, Disrupts the iron-sulfur centers, In sepsis-induced AKI, O$_2^-$ is generated by immune cells
Hydrogen peroxide	H$_2$O$_2$	Generated by dismutation, Generated by oxidases from molecular oxygen	Diffuses across biological membranes to other cellular compartments and other cells, Reacts with iron-containing molecules, releasing additional ROS	Lipid peroxidation, with subsequent membrane damage, Generates additional ROS
Hydroxyl radical	HO$^-$	Generated by Fenton reaction	Lipid peroxidation, with subsequent membrane damage, Generates additional ROS	Lipid soluble molecule, Reacts with amines, producing chloroamines
Hypochlorous acid	HClO	Generated by MPO in inflammatory cells	Lipid soluble molecule, Reacts with amines, producing chloroamines	Lipid soluble molecule, Reacts with amines, producing chloroamines
Peroxynitrite	ONOO$^-$	Generated from nitric oxide reacting with superoxide anion, Generated by heme peroxidase enzymes from the nitrate metabolism	Major inhibitor of the mitochondrial respiration chain, Oxidizes or nitrates thiol, Oxidizes and nitrates fatty acid, Irreversibly disrupts the centers of iron-sulfur	Oxidizes or nitrates thiol, Oxidizes and nitrates fatty acid, Irreversibly disrupts the centers of iron-sulfur
Nitric oxide	NO	Generated by eNOS and eNOS	Vasodilator and counteracts renal vasoconstriction, Modulates the myogenic response, Protects endothelial and mesangial cells from fibrosis and apoptosis, Induces antioxidative genes, Inhibits cyt-c oxidase and alters the generation of ROS in	Soluble gas, Larger levels of NO interact with bound iron, and produce NO-derived RNS that can nitrosate thiol, Mice deficient in iNOS were resistant to renal IRI

NO: Nitric oxide; AKI: Acute kidney injury; XO: Xanthine oxidase; MPO: Myeloperoxidase; IRI: Ischemia reperfusion injury; RNS: Reactive nitrogen species; cyt-c: Cytochrome-c; eNOS: Endothelial nitric oxide synthase; iNOS: Inducible nitric oxide synthase; ROS: Reactive oxygen species.
the mitochondria
Binds to guanylate
cyclase and regulates
the production of
cGMP
Table 2 (on next page)

The main antioxidants fighting oxidative stress in AKI
Table 2. The main antioxidants fighting oxidative stress in AKI

Antioxidant	Location and Isoform	Function	Gene Location
Superoxide dismutase SOD	Extracellular and intracellular (mitochondria, cytoplasm)	Catalysator Generates O_2 and H_2O_2 via dismutation Considered the first system to fight oxidative stress	Gene located on chromosome 21 (21q22.1)
SOD1 (copper/zinc isoform)	Cytoplasm	Suppresses the clearing NO, maintaining the production of H_2O_2	Gene located on chromosome 6 (6q25.3)
SOD2 (manganese isoform)	Mitochondria (great quantities)	Generates and releases peroxide from the mitochondria Inactivated by ONOO$^-$ Overexpression ameliorates cisplatin-induced AKI in vitro	Gene located on chromosome 4 (4p15.3-p15.1)
SOD3 (copper/zinc isoform)	Extracellular	Protects NO from O_2^- Converts O_2^- into H_2O_2	Gene located on chromosome 4
Catalase	Intracellular (mainly in the cytosol and in peroxisomes) In cells with aerobic metabolism	Converts H_2O_2 into O_2 and H_2O	
Thioredoxin peroxidase systems	Intracellular	Converts H_2O_2 by oxidizing thioredoxin	
Glutathione and glutathione peroxidase family		Reduce H_2O_2 Reduce lipid peroxides to lipid alcohols Regulate apoptosis versus necrosis Modulate DNA synthesis and cellular division	
Edaravone	Norphenazone MCI-186 Synthetic medication	Reduces ROS generation in the renal tubular cells, $in vitro$ Reduces lipid peroxidation, $in vivo$	Improve kidney function in rats with IRI, and in rats with nephrotoxicity
Vitamin C	Vitamin Dietary/ Supplementation intake	Reacts with oxidized forms of enzymes and free radicals Cofactor for some enzymatic reactions	Shown to improve kidney function in ischemia/chemically/rhabdomyolysis-induced AKI
Selenium	Trace element	Participates in aerobic respiration reducing FR Upregulates antioxidants Deficiency linked to AKI Improves kidney function in toxic AKI	
Sulforaphane	Isothiocyanate Dietary intake		Improves kidney function in renal IRI