On two conjectural series for π and their q-analogues

Chuanan Wei

1School of Biomedical Information and Engineering
Hainan Medical University, Haikou 571199, China
Email address: weichuanan78@163.com

Abstract. In terms of the operator method, we prove two conjectural series for π of Sun involving harmonic numbers of order two. Furthermore, we also give q-analogues of six π-formulas including the two ones just mentioned.

Keywords: hypergeometric series; harmonic number; basic hypergeometric series; q-analogues

AMS Subject Classifications: 33D15; 05A15

1 Introduction

For a complex variable x, define the well-known Gamma function to be

$$\Gamma(x) = \int_0^\infty t^{x-1}e^{-t}dt \text{ with } Re(x) > 0.$$

Three important properties of it can be stated as follows:

$$\Gamma(x+1) = x\Gamma(x), \quad \Gamma(x)\Gamma(1-x) = \frac{\pi}{\sin(\pi x)}, \quad \lim_{n \to \infty} \frac{\Gamma(x+n)}{\Gamma(y+n)} \frac{n^{y-x}}{n!} = 1,$$

which will be used directly in this paper. For a nonnegative integer n, define the shifted-factorial as

$$(x)_n = \frac{\Gamma(x+n)}{\Gamma(x)}.$$

Then we can provide the definition of the hypergeometric series

$$\,_{r}F_{s}\left[\begin{array}{c}a_{1}, a_{2}, \ldots, a_{r} \\ b_{1}, b_{2}, \ldots, b_{s}\end{array}; z\right] = \sum_{k=0}^{\infty} \frac{(a_{1})_{k}(a_{2})_{k} \cdots (a_{r})_{k} z^{k}}{(b_{1})_{k}(b_{2})_{k} \cdots (b_{s})_{k} k!}.$$

In 1914, Ramanujan [20] listed 17 series for $1/\pi$ without proof. Decades later, Borweins [3] proved all of them firstly. Three of Ramanujan’s formulas are expressed as

$$\sum_{k=0}^{\infty} (6k+1) \frac{(1/2)_k^3}{k!^3 4^k} = \frac{4}{\pi}, \quad (1.1)$$

The work is supported by the National Natural Science Foundation of China (No. 12071103).
\[
\sum_{k=0}^{\infty} (8k + 1) \frac{\binom{1}{k} \binom{1}{k} \binom{3}{k}}{k!^3 9^k} = \frac{2\sqrt{3}}{\pi},
\]
\[
\sum_{k=0}^{\infty} (42k + 5) \frac{\binom{3}{k}^2}{k!^3 64^k} = \frac{16}{\pi}.
\]

There are a lot of different \(\pi\)-formulas in the literature. Two of them (cf. [27, Equation (23)] and [11, P. 221]) read

\[
\sum_{k=0}^{\infty} \frac{k!}{(2k+1)!!} = \frac{\pi}{2},
\]
\[
\sum_{k=0}^{\infty} (3k + 2) \frac{\binom{3}{k}^2}{\binom{4}{k} 4^k} = \frac{\pi^2}{4},
\]

where the double factorial has been defined by

\[
(1 + 2k)!! = \frac{(2k + 1)!}{2^k k!}.
\]

In 2021, Guo and Lian [14] conjectured the interesting double series for \(\pi\) related to (1.1):

\[
\sum_{k=0}^{\infty} (6k + 1) \frac{\binom{3}{k}^3}{k!^3 4^k} \sum_{j=1}^{k} \left\{ \frac{1}{(2j - 1)^2} - \frac{1}{16 j^2} \right\} = \frac{\pi}{12},
\]

which has been proved by the author [25]. Moreover, the author and Ruan [26] discovered the following double series for \(\pi\) associated with (1.2):

\[
\sum_{k=0}^{\infty} (8k + 1) \frac{\binom{1}{k} \binom{1}{k} \binom{3}{k}}{k!^3 9^k} \sum_{i=1}^{k} \left\{ \frac{1}{(2i - 1)^2} - \frac{1}{36 i^2} \right\} = \frac{\sqrt{3} \pi}{54}.
\]

For more known series on \(\pi\), we refer the reader to the papers [2, 4, 12, 19, 24, 28].

For a complex variable \(x\) and two positive integers \(\ell, n\), define the generalized harmonic number of order \(\ell\) to be

\[
H_{n}^{(\ell)}(x) = \sum_{k=1}^{n} \frac{1}{(x + k)^\ell}.
\]

When \(x = 0\), it becomes the harmonic number of order \(\ell\):

\[
H_{n}^{(\ell)} = \sum_{k=1}^{n} \frac{1}{k^\ell}.
\]
Taking $\ell = 1$ in $H_n^{(\ell)}(x)$, we have the generalized harmonic number:

$$H_n(x) = \sum_{k=1}^{n} \frac{1}{x + k}.$$

The $x = 0$ case of it is the classical harmonic number:

$$H_n = \sum_{k=1}^{n} \frac{1}{k}.$$

In 2015, Sun [21] proved a nice series for π^3 containing harmonic number of order two related to (1.4):

$$\sum_{k=0}^{\infty} \frac{k!}{(2k + 1)!!} H_k^{(2)} = \frac{\pi^3}{48}. \quad (1.8)$$

In a recent paper [23], he rewrote (1.6) and (1.7) as

$$\sum_{k=0}^{\infty} (6k + 1) \left(\frac{1}{2} \right)^{\frac{3}{2}} \frac{k!}{k! 3^{k} 4k} \left\{ H_{2k}^{(2)} - \frac{5}{16} H_{k}^{(2)} \right\} = \frac{\pi}{12},$$

$$\sum_{k=0}^{\infty} (8k + 1) \left(\frac{1}{2} \right)^{\frac{3}{2}} \frac{k!}{k! 9^{k} 12k} \left\{ H_{2k}^{(2)} - \frac{5}{18} H_{k}^{(2)} \right\} = \frac{\sqrt{3} \pi}{54},$$

and proposed the following two conjectures associated with (1.5) and (1.3) (cf. [23 Equations (3.67) and (3.13)]).

Theorem 1.1.

$$\sum_{k=0}^{\infty} (3k + 2) \left(\frac{1}{2} \right)^{\frac{3}{2}} \frac{k!}{k! 3^{k} 4k} \left\{ H_{2k+1}^{(2)} - \frac{5}{4} H_{k}^{(2)} \right\} = \frac{\pi^4}{48}. \quad (1.9)$$

Theorem 1.2.

$$\sum_{k=0}^{\infty} (42k + 5) \left(\frac{1}{2} \right)^{\frac{3}{2}} \frac{k!}{k! 6^{k} 64k} \left\{ H_{2k}^{(2)} - \frac{25}{92} H_{k}^{(2)} \right\} = \frac{2\pi}{69}. \quad (1.10)$$

For an integer n and two complex numbers x, q with $|q| < 1$, define the q-shifted factorial as

$$(x; q)_n = \prod_{i=0}^{n-1} (1 - xq^i), \quad (x; q)_\infty = \frac{(x; q)_n}{(xq^n; q)_\infty}.$$

For convenience, we sometimes utilize the compact notation:

$$(x_1, x_2, \ldots, x_r; q)_m = (x_1; q)_m (x_2; q)_m \cdots (x_r; q)_m.$$
where \(r \in \mathbb{Z}^+ \) and \(m \in \mathbb{Z}^+ \cup \{0, \infty\} \). Then following Gasper and Rahman \([10]\), the basic hypergeometric series can be defined by

\[

r \phi_s \left[\frac{a_1, a_2, \ldots, a_r}{b_1, b_2, \ldots, b_s} ; q, z \right] = \sum_{k=0}^{\infty} \frac{(a_1, a_2, \ldots, a_r ; q)_k}{(b_1, b_2, \ldots, b_s ; q)_k} (-1)^k q^k z^k.

\]

Let \([n] = 1 + q + \cdots + q^{n-1}\) be the \(q\)-integer. Recently, Guo and Liu \([15]\) and Guo and Zudilin \([16]\) obtained the following \(q\)-analogues of (1.1) and (1.2):

\[

\sum_{k=0}^{\infty} q^{k^2}[6k + 1] \frac{(q; q^2)_k^2(q^2; q^4)_k}{(q^4; q^4)_k^3} = \frac{(1 + q)(q^2, q^6; q^4)_{\infty}}{(q^4; q^4)_{\infty}^2},

\sum_{k=0}^{\infty} q^{2k^2}[8k + 1] \frac{(q; q^2)_k^2(q; q^2)_{2k}}{(q^2; q^2)_{2k}(q^6; q^6)_k^2} = \frac{(q^3, q^3; q^6)_{\infty}}{(q^2; q^2)_{\infty}(q^6; q^6)_{\infty}}.

\]

The author \([25]\) and the author and Ruan \([26]\) got the following \(q\)-analogues of (1.6) and (1.7):

\[

\sum_{k=0}^{\infty} q^{k^2}[6k + 1] \frac{(q; q^2)_k^2(q^2; q^4)_k}{(q^4; q^4)_k^3} \sum_{j=1}^{k} \left\{ \frac{q^{2j^2}}{[2j - 1]^2} - \frac{q^{4j}}{[4j]^2} \right\} \]

\[

= \frac{(q^2; q^4)_{\infty}^2(q^3; q^4)_{\infty}}{(q; q^4)_{\infty}(q^4; q^4)_{\infty}^2} \sum_{i=1}^{\infty} (-1)^{i-1} \frac{q^{2i}}{[2i]^2},

\sum_{k=0}^{\infty} q^{2k^2}[8k + 1] \frac{(q; q^2)_k^2(q; q^2)_{2k}}{(q^2; q^2)_{2k}(q^6; q^6)_k^2} \sum_{j=1}^{k} \left\{ \frac{q^{2j-1}}{[2j - 1]^2} - \frac{q^{6j}}{[6j]^2} \right\} \]

\[

= \frac{(q^3, q^3; q^6)_{\infty}}{(q^2; q^2)_{\infty}(q^6; q^6)_{\infty}} \sum_{j=1}^{\infty} (-1)^{j-1} \frac{q^{2j}}{[3j]^2}.

\]

More \(q\)-analogues of \(\pi\)-formulas can be seen in the papers \([13, 17, 18, 22]\).

Inspired by the works just mentioned, we shall establish \(q\)-analogues of (1.4), (1.5), and (1.3) in the following theorem.

Theorem 1.3.

\[

\sum_{k=0}^{\infty} q^{k+1} \frac{(q; q)_k}{(q^3; q^2)_k} = \frac{(q^2; q^2)_{\infty}^2}{(q; q^2)_{\infty}},

\sum_{k=0}^{\infty} q^{k+1} [3k + 2] \frac{(q; q)_k^2(q^2; q^2)_k}{(q^3; q^2)^3_k} = \frac{(q^2; q^2)_{\infty}^4}{(q^3; q^2)_{\infty}^2(q^3; q^2)_{\infty}},

\sum_{k=0}^{\infty} q^{6k^2} \frac{(q; q^2)^3_k}{(q^2; q^2)^3_k} (1 + q^{1+2k})^3 (1 - q^{1+6k}) - q^{1+6k} (1 - q^{3+6k}) = \frac{(q^3, q^5; q^2)_{\infty}}{(q^4; q^2)_{\infty}}.

\]
Further, we shall furnish q-analogues of (1.8)-(1.10) in the following three theorems.

Theorem 1.4.

$$
\sum_{k=0}^{\infty} q^{(k+1)} \frac{(q; q)_k}{(q^3; q^2)_k} \sum_{i=1}^{k} \frac{q^i}{[i]^2} = \frac{(q^2; q^2)_\infty}{(q, q^3; q^2)_\infty} \sum_{j=1}^{\infty} \frac{q^{2j}}{[2j]^2} \tag{1.14}
$$

Theorem 1.5.

$$
\sum_{k=0}^{\infty} q^{(k+1)} [3k + 2] \frac{(q; q)_k^2 (q^2; q^2)_k}{(q^3; q^2)_k^3} \left\{ \sum_{i=1}^{k} \frac{q^i}{[i]^2} - \sum_{i=1}^{k+1} \frac{q^{2i-1}}{[2i-1]^2} \right\} = \frac{(q^2; q^2)_\infty^2}{(q, q^3; q^2)_\infty^2} \sum_{j=1}^{\infty} (-1)^j \frac{q^j}{[j]^2} \tag{1.15}
$$

Theorem 1.6.

$$
\sum_{k=0}^{\infty} q^{6k^2} \frac{(q; q)_k^6}{(q^2; q^2)_k^3} \left\{ \lambda_q(k) \sum_{i=1}^{2k} \frac{q^{2i}}{[2i]^2} - \mu_q(k) \sum_{i=1}^{k} \frac{q^{2i-1}}{[2i-1]^2} - \nu_q(k)(1 - q)q^{1+6k} \right\} = \frac{(q, q^3; q^2)_\infty^3}{(q^2; q^2)_\infty^3} \left\{ \sum_{j=1}^{\infty} \frac{q^{2j}}{[2j]^2} - \frac{3(1 + q)^3}{64} \sum_{j=1}^{\infty} \frac{q^{2j-1}}{[2j-1]^2} \right\}, \tag{1.16}
$$

where

$$
\lambda_q(k) = \frac{1 + 2q^{1+2k} - q^{1+6k}(2 + 2q^2 + q^{1+2k} + q^{3+2k} - 3q^{3+6k})}{(1 - q)(1 - q^{1+2k})(1 + q^{1+2k})^3},
$$

$$
\mu_q(k) = \frac{1 + 3q^{1+2k} + 3q^{2+4k} - 2q^{1+6k} + q^{3+6k} - 3q^{2+8k} - 3q^{3+10k}}{64(1 - q)(1 + q^{1+2k})^3(137q + 27q^2 + 9q^3)},
$$

$$
\nu_q(k) = \frac{3(1 + q)^3(1 + 2q^{1+2k} + 3q^{2+4k})}{64(1 - q^{1+2k})(1 + q^{1+2k})^3} - \frac{q^{1+2k}(1 + q^{1+2k} + q^{2+4k})^2}{(1 - q^{1+2k})(1 + q^{1+2k})^3}.
$$

For a multivariable function $f(x_1, x_2, \ldots, x_m)$, define the partial derivative operator D_x by

$$
D_x f(x_1, x_2, \ldots, x_m) = \frac{d}{dx_i} f(x_1, x_2, \ldots, x_m) \quad \text{with} \quad 1 \leq i \leq m.
$$

Then there are the following two relations:

$$
D_x(x + y)_n = (x + y)_n H_n(x + y - 1),
$$

$$
D_x(xy; q)_n = -(xy; q)_n \sum_{i=1}^{n} yq^{i-1} \frac{1}{1 - x y q^{i-1}}.
$$

The rest of the paper is arranged as follows. We shall verify Theorems 1.1 and 1.2 via the partial derivative operator and some summation and transformation formulas for hypergeometric series in Section 2. Theorems 1.3-1.6 will be certified through the partial derivative operator and several summation and transformation formulas for basic hypergeometric series in Section 3.
2 Proof of Theorems 1.1 and 1.2

Above all, we shall prove Theorem 1.1.

Proof of Theorem 1.1. In order to achieve the goal, we need the summation formula for hypergeometric series due to Gosper (1977)(cf. [5] Equation (5.1e)):

\[
\begin{aligned}
7F_6 \left[a - \frac{1}{2}, \frac{2a+3}{3}, 2b-1, 2c-1, 1 + a - c, b + c - \frac{1}{2}, 2a + 2n, -2n \right] ; 1 \\
= \frac{(\frac{1}{2} + a)n(b)n(c)n(a - b - c + \frac{3}{2})n}{(\frac{1}{2})n(1 + a - b)n(1 + a - c)n(b + c - \frac{1}{2})n}.
\end{aligned}
\]

Apply the operator \mathcal{D}_b on both sides of the $c = 2 - b$ case of (2.1) to obtain

\[
\begin{aligned}
\sum_{k=0}^{n} \frac{(a - \frac{1}{2})_k(\frac{2a+2}{3})_k(2a - 2)_k(2b - 1)_k(3 - 2b)_k(a + n)_k(-n)_k}{(1)_k(\frac{2a-1}{3})_k(\frac{2}{3})_k(1 + a - b)_k(a + b - 1)_k(2a + 2n)_k(-2n)_k} \\
\times \left\{ 2H_k(2b - 2) - 2H_k(2 - 2b) + H_k(a - b) - H_k(a + b - 2) \right\} \\
\times \frac{(a + \frac{1}{2})_n(a - \frac{1}{2})_n(b)_n(2 - b)_n}{(\frac{1}{2})_n(\frac{3}{2})_n(1 + a - b)_n(a + b - 1)_n} \\
\times \left\{ H_n(b - 1) - H_n(1 - b) + H_n(a - b) - H_n(a + b - 2) \right\}.
\end{aligned}
\]

Employing the operator \mathcal{D}_b on both sides of it, we have

\[
\begin{aligned}
\sum_{k=0}^{n} \frac{(a - \frac{1}{2})_k(\frac{2a+2}{3})_k(2a - 2)_k(2b - 1)_k(3 - 2b)_k(a + n)_k(-n)_k}{(1)_k(\frac{2a-1}{3})_k(\frac{2}{3})_k(1 + a - b)_k(a + b - 1)_k(2a + 2n)_k(-2n)_k} \\
\times \left\{ \left[2H_k(2b - 2) - 2H_k(2 - 2b) + H_k(a - b) - H_k(a + b - 2) \right]^2 \\
- 4H_k^{(2)}(2b - 2) + 4H_k^{(2)}(2 - 2b) - H_k^{(2)}(a - b) - H_k^{(2)}(a + b - 2) \right\} \\
\times \frac{(a + \frac{1}{2})_n(a - \frac{1}{2})_n(b)_n(2 - b)_n}{(\frac{1}{2})_n(\frac{3}{2})_n(1 + a - b)_n(a + b - 1)_n} \\
\times \left\{ H_n(b - 1) - H_n(1 - b) + H_n(a - b) - H_n(a + b - 2) \right\}^2 \\
- \left[H_n^{(2)}(b - 1) + H_n^{(2)}(1 - b) - H_n^{(2)}(a - b) - H_n^{(2)}(a + b - 2) \right] \right\}.
\end{aligned}
\]

The $(a, b) = (\frac{3}{2}, 1)$ case of (2.2) engenders

\[
\begin{aligned}
\sum_{k=0}^{n} \frac{(\frac{5}{2})_k(1)_k(\frac{3}{2} + n)_k(-n)_k}{(\frac{3}{2})_k(\frac{2}{3})_k(3 + 2n)_k(-2n)_k} \left\{ 4H_{2k+1}^{(2)} - 5H_k^{(2)} - 4 \right\} \\
= \frac{\Gamma(2 + n)\Gamma(1 + n)^3 \Gamma(\frac{3}{2})\Gamma(\frac{3}{2})^3}{\Gamma(\frac{1}{2} + n)\Gamma(\frac{3}{2} + n)^3 \Gamma(2)\Gamma(1)^3} \left\{ 4H_{2n+1}^{(2)} - 2H_n^{(2)} - 4 \right\}.
\end{aligned}
\]
Since that the \((a, b, c) = (\frac{2}{3}, 1, 1)\) case of (2.1) reads
\[
\sum_{k=0}^{n} \frac{(\frac{2}{3})_k (\frac{3}{2} + n)_k (-n)_k}{(\frac{3}{2})_k (\frac{3}{2})_k (3 + 2n)_k (-2n)_k} = \frac{\Gamma(2 + n)\Gamma(1 + n)^3 \Gamma(\frac{1}{2})\Gamma(\frac{3}{2})^3}{\Gamma(\frac{1}{2} + n)\Gamma(\frac{3}{2} + n)^3 \Gamma(2)\Gamma(1)^3},
\]
(2.4)
the linear combination of (2.3) and (2.4) gives
\[
\sum_{k=0}^{n} \frac{(\frac{2}{3})_k (\frac{3}{2} + n)_k (-n)_k}{(\frac{3}{2})_k (\frac{3}{2})_k (3 + 2n)_k (-2n)_k} \left\{ 4H_{2k+1}^{(2)} - 5H_k^{(2)} \right\} = \frac{\Gamma(2 + n)\Gamma(1 + n)^3 \Gamma(\frac{1}{2})\Gamma(\frac{3}{2})^3}{\Gamma(\frac{1}{2} + n)\Gamma(\frac{3}{2} + n)^3 \Gamma(2)\Gamma(1)^3} \left\{ 4H_{2n+1}^{(2)} - 2H_n^{(2)} \right\}.
\]
Letting \((x, n) \to (\frac{1}{2}, \infty)\) and making use of Euer’s formula:
\[
\sum_{j=1}^{\infty} \frac{1}{j^2} = \frac{\pi^2}{6},
\]
(2.5)
we catch hold of (1.9).

Subsequently, we shall display the proof of Theorem 1.2.

Proof of Theorem 1.2 Recall a transformation formula for hypergeometric series (cf. [9 Theorem 31]):
\[
\sum_{k=0}^{\infty} (-1)^k \frac{(b)_k (c)_k (d)_k (e)_k}{(1 + a - b - c)_k (1 + a - b - d)_k (1 + e)_k} \frac{(1 + a - c - d)_k (1 + a - c - e)_k (1 + a - d - e)_k}{(1 + 2a - b - c - d - e)_k} \sigma_k(a, b, c, d, e)
\]
\[
= \sum_{k=0}^{\infty} \frac{(a + 2k)(b)_k (c)_k (d)_k (e)_k}{(1 + a - b)_k (1 + a - c)_k (1 + a - d)_k (1 + a - e)_k},
\]
where
\[
\sigma_k(a, b, c, d, e)
\]
\[
= \frac{(1 + 2a - b - c - d + 3k)(a - e + 2k)}{(1 + 2a - b - c - d - e + 2k)} + \frac{(e + k)(1 + a - b - c + k)}{(1 + a - b + 2k)(1 + a - d + 2k)}
\]
\[
\times \frac{(1 + a - b - d + k)(1 + a - c - d + k)(2 + 2a - b - d - e + 3k)}{(1 + 2a - b - c - d - e + 2k)(2 + 2a - b - c - d - e + 2k)}
\]
\[
+ \frac{(c + k)(e + k)(1 + a - b - c + k)(1 + a - b - d + k)}{(1 + a - b + 2k)(1 + a - c + 2k)(1 + a - d + 2k)(1 + a - e + 2k)}
\]
\[
\times \frac{(1 + a - b - e + k)(1 + a - c - d + k)(1 + a - d - e + k)}{(1 + 2a - b - c - d - e + 2k)(2 + 2a - b - c - d - e + 2k)}.
\]
Choosing \((a, b, c, d, e) = (\frac{1}{2}, \frac{1}{2}, x, 1 - x, -n)\) in the last equation and calculating the series on the right-hand side by Dougall’s \(5F_4\) summation formula (cf. [1, P. 71]):

\[
5F_4 \left[\frac{a, 1 + \frac{a}{2}, b, c, -n}{\frac{a}{2}, 1 + a - b, 1 + a - c, 1 + a + n + 1} \right] = \frac{(1 + a)_n (1 + a - b - c)_n}{(1 + a - b)_n (1 + a - c)_n},
\]

we arrive at

\[
\sum_{k=0}^{n} (-1)^k \frac{\left(\frac{1}{2}\right)_k (1 + n)_k (-n)_k}{(1)_2k(\frac{1}{2} + n)_{2k}(\frac{3}{2} + n)_{2k}} \frac{(x)_{2k}^2 (1 - x)_{2k} (\frac{1}{2} + x + n)_k (\frac{3}{2} - x + n)_k}{(\frac{1}{2} + x)_{2k} (\frac{3}{2} - x)_{2k}}
\times \Omega_k(x; n) = \frac{(\frac{1}{2})_n (\frac{3}{2})_n}{(\frac{1}{2} + x)_n (\frac{3}{2} - x)_n},
\]

where

\[
\Omega_k(x; n) = (1 + 6k) + \frac{4(x + k)(1 - x + k)(3 + 2x + 2n + 6k)(k - n)}{(1 + 2x + 4k)(1 + 2n + 4k)(3 + 2n + 4k)} + \frac{16(x + k)^2(1 - x + k)(1 + 2x + 2n + 2k)(1 + n + k)(k - n)}{(1 + 2x + 4k)(3 - 2x + 4k)(1 + 2n + 4k)(3 + 2n + 4k)^2}.
\]

Apply the operator \(D_x\) on both sides of (2.6) to get

\[
\sum_{k=0}^{n} (-1)^k \frac{\left(\frac{1}{2}\right)_k (1 + n)_k (-n)_k}{(1)_2k(\frac{1}{2} + n)_{2k}(\frac{3}{2} + n)_{2k}} \frac{(x)_{2k}^2 (1 - x)_{2k} (\frac{1}{2} + x + n)_k (\frac{3}{2} - x + n)_k}{(\frac{1}{2} + x)_{2k} (\frac{3}{2} - x)_{2k}}
\times \left\{ 2H_k(x - 1) - 2H_k(-x) - H_{2k}(x - \frac{1}{2}) + H_{2k}(\frac{1}{2} - x) + H_k(x - \frac{1}{2} + n) - H_k(\frac{1}{2} - x + n) \right\} \Omega_k(x; n)
\]

\[
+ \sum_{k=0}^{n} (-1)^k \frac{\left(\frac{1}{2}\right)_k (1 + n)_k (-n)_k}{(1)_2k(\frac{1}{2} + n)_{2k}(\frac{3}{2} + n)_{2k}} \frac{(x)_{2k}^2 (1 - x)_{2k} (\frac{1}{2} + x + n)_k (\frac{3}{2} - x + n)_k}{(\frac{1}{2} + x)_{2k} (\frac{3}{2} - x)_{2k}}
\times D_x \Omega_k(x; n) = \frac{(\frac{1}{2})_n (\frac{3}{2})_n}{(\frac{1}{2} + x)_n (\frac{3}{2} - x)_n} \left\{ H_n(\frac{1}{2} - x) - H_n(x - \frac{1}{2}) \right\}.
\]

Dividing both sides by \(1 - 2x\) and utilizing the relation

\[
\frac{1}{v - u - 2x} \left\{ H_m(x + u) - H_m(v - x) \right\} = \sum_{i=1}^{m} \frac{1}{(x + u + i)(v - x + i)},
\]

Equation (2.7) can be manipulated as
\[
\sum_{k=0}^{n} (-1)^k \frac{\left(\frac{1}{2}\right)_k^2 (1+n)_k (-n)_k}{(1)_{2k} \left(\frac{1}{2} + n\right)_{2k} \left(\frac{3}{2} + n\right)_{2k}} \frac{(x)_{k}^2 (1-x)_{k}^2 \left(\frac{1}{2} + x + n\right)_k \left(\frac{3}{2} - x + n\right)_k}{(\frac{1}{2} + x)_{2k} \left(\frac{3}{2} - x\right)_{2k}} \times \left\{ 2 \sum_{i=1}^{k} \frac{1}{(x - 1 + i)(-x + i)} - \sum_{i=1}^{2k} \frac{1}{(x - \frac{1}{2} + i)(\frac{1}{2} - x + i)} + \sum_{i=1}^{k} \frac{1}{(x - \frac{1}{2} + n + i)(\frac{1}{2} - x + n + i)} \right\} \Omega_k(x; n)
\]

\[
+ \sum_{k=0}^{n} (-1)^k \frac{\left(\frac{1}{2}\right)_k^2 (1+n)_k (-n)_k}{(1)_{2k} \left(\frac{1}{2} + n\right)_{2k} \left(\frac{3}{2} + n\right)_{2k}} \frac{(x)_{k}^2 (1-x)_{k}^2 \left(\frac{1}{2} + x + n\right)_k \left(\frac{3}{2} - x + n\right)_k}{(\frac{1}{2} + x)_{2k} \left(\frac{3}{2} - x\right)_{2k}} \times \mathcal{D}_x \Omega_k(x; n) = \frac{1}{1 - 2x}
\]

Letting \((x, n) \to \left(\frac{1}{2}, \infty\right)\) and drawing upon Euler’s formula (2.5), there is
\[
\sum_{k=0}^{\infty} \frac{\left(\frac{1}{2}\right)_k^3}{k! 3^{64k}} \left\{ (42k + 5) \left[2\mathcal{H}_k^{(2)} - \mathcal{H}_{2k}^{(2)} \right] + \frac{9}{1 + 2k} \right\} = \frac{8\pi}{3}.
\] (2.9)

Recollect a summation formula for hypergeometric series (cf. [7, Corollary 2.33]):
\[
\sum_{k=0}^{\infty} \frac{(x)_{k}^3 (1-x)_{k}^3 k(1+3k)(3+9k+7k^2) + x(1-x)(1+6k+6k^2 + x - x^2)}{64^k}
\]

\[
= \frac{\sin(\pi x)}{\pi},
\] (2.10)

where we have replaced \(\sin(\pi x)/\pi x\) by \(\sin(\pi x)/\pi\) for correction. When \(0 < x < 1\), it is obvious that the series on the left-hand side is uniformly convergent. Employing the operator \(\mathcal{D}_x\) on both sides of (2.10) and taking advantage of (2.8), there holds
\[
3 \sum_{k=0}^{\infty} \frac{(x)_{k}^3 (1-x)_{k}^3 k(1+3k)(3+9k+7k^2) + x(1-x)(1+6k+6k^2 + x - x^2)}{64^k}
\]
\[
\times \frac{1}{(x - 1 + i)(-x + i)} \sum_{i=1}^{k} \frac{1}{(x - \frac{1}{2} + n + i)(\frac{1}{2} - x + n + i)}
\]
\[
+ \sum_{k=0}^{\infty} \frac{(x)_{k}^3 (1-x)_{k}^3 1 + 6k + 6k^2 + 2x(1-x)}{64^k} = \frac{\cos(\pi x)}{1 - 2x}.
\]

9
The $x \to \frac{1}{2}$ case of the upper identity provides

$$
\sum_{k=0}^{\infty} \frac{(\frac{1}{2})_k^3}{k!^3 6^{4k}} \left\{ (42k + 5) \left[4H_{2k}^{(2)} - H_k^{(2)} \right] + \frac{8}{1 + 2k} \right\} = \frac{8\pi}{3} \tag{2.11}
$$

Hence we deduce (1.10) from the linear combination of (2.9) and (2.11).

\[\square \]

3 Proof of Theorems 1.3-1.6

Firstly, we are ready to prove Theorem 1.3.

Proof of Theorem 1.3. For achieving the purpose, we require two identities for basic hypergeometric series (cf. [6 Equation (5.1d)] and [8 Theorem 17]):

$$
\sum_{k=0}^{n} \frac{1 - aq^{3k-1}}{1 - aq^{-1}} \frac{(aq^{3k-1}, aq^{2n}, a/q; q^2)_k}{(aq^{2k}/b, aq^{2k}/c, bc/q; q^2)_k} \frac{(b/q, c/q, aq^2/bc; q)_k}{q^k} = \frac{(aq, b, c, aq^3/bc; q^2)_n}{(aq^2/b, aq^2/c, bc/q; q^2)_n}, \tag{3.1}
$$

$$
\sum_{k=0}^{\infty} \frac{1 - aq^{3k}}{1 - aq^{-1}} \frac{(aq^{3k}, aq^{2n}, a/q; q^2)_k}{(aq^2/b, aq^2/c, bc/q; q^2)_k} \frac{(b/q, c/q, aq^2/bc; q)_k}{q^k} = \sum_{k=0}^{\infty} \frac{1 - aq^{2k}}{1 - a} \frac{(b, c, d, e; q)_k}{(aq, b, aq/c, aq/d, aq/e; q)_k} \left(\frac{a^2 q}{bcde} \right)^k, \tag{3.2}
$$

where

$$
A_k(a, b, c, d, e; q) = \frac{(1 - q^{2k} a/c)(1 - q^{1+3k} a^2/bcd)}{(1 - a)(1 - q^{1+2k}a^2/bcd)} + q^{2k} a \left(1 - q^{k} e \right) \left(1 - a \right) + \frac{q^{1+4k} a^2}{ce} \frac{(1 - q^{1-k} a/bc)(1 - q^{1+k} a/bc)(1 - q^{1+k} a/2bde)(1 - q^{2+3k} a^2/bde)}{(1 - q^{1+2k}a/b)(1 - q^{1+2k}a/c)(1 - q^{1+2k}a/d)(1 - q^{1+2k}a/2bcde)(1 - q^{2+2k}a^2/bcd)} \times \frac{(1 - q^{1-k} a/2bde)(1 - q^{1+4k} a^2/bcd)}{(1 - q^{1+2k}a^2/bcd)(1 - q^{2+2k}a^2/bcd)}. \tag{3.3}
$$

Notice that the $(a, b, c) = (0, q^2, q^2)$ case of (3.1) is

$$
\sum_{k=0}^{n} \frac{(q; q)_k (q^{2n}; q^2)_k}{(q^3; q^2)_k (q^{2n}; q)_k} q^k = \frac{(q^2; q^2)_n}{(q, q^3; q^2)_n}.
$$
Letting \(n \to \infty \) in the above identity, we obtain (1.11).

The \((a, b, c) = (q^3, q^2, q^2)\) case of (3.1) reads

\[
\sum_{k=0}^{n} \frac{1 - q^{3k+2} (q^3 q^2 q^2)^k (q^{2n+3} q^{2n} q^2)^k}{1 - q^2} \frac{(q^3, q^2, q^2)_k}{(q^{2n+3}, q^{2n}, q^2)_k} q^k = \frac{(q^2; q^4 n^3 (q^2)^{2})_n}{(q; q)_n (q^3; q^2)_n}.
\]

Letting \(n \to \infty \) in the upper identity, we get (1.12).

Performing the replacements \((a, b, c, d, e) \to (x, a, b, xq/c, xq/d)\) in (3.2) and then letting \(x \to 0 \), we find

\[
\sum_{k=0}^{\infty} \frac{(a, b, c/a, c/b, d/a, d/b; q)_k}{(c, d; 1)_{1+2k} (cd/abq; q)_{2+2k}} q^{6(k)} \frac{1}{(ab)} B_k(a, b, c, d; q)
\]

\[
= \sum_{k=0}^{\infty} \frac{(a, b; q)_k}{(c, d; q)_k} \left(\frac{cd}{ab} \right)^k q^{6k},
\]

where

\[
B_k(a, b, c, d; q) = (1 - q^{2k} a)(1 - q^{2k} b)(1 - q^{2k} cd/ab)(1 - q^{3k-1} cd/b) - \frac{q^{3k-1} cd}{a} (1 - q^k a) (1 - q^k c/b) (1 - q^k d/b) (1 - q^{3k} cd/a).
\]

When \(d = q \), the series on the right-hand side of (3.3) can be evaluated by the \(q\)-Gauss summation formula (cf. [10, Appendix II. 8]):

\[
\varphi_1 \left[\begin{array}{c} a, b \\ c \\ q, \frac{c}{ab} \end{array} \right] = (c/a, c/b; q)_\infty \left(\frac{c/a, c/b; q}{c, c/ab; q} \right)_\infty.
\]

So we have

\[
\sum_{k=0}^{\infty} \frac{(a, b, q/a, q/b, c/a, c/b; q)_k}{(q; q)_{1+2k} (c/a, c/b; q)_2} q^{3k^2-k} \left(\frac{c^2}{ab} \right)^k C_k(a, b, c; q)
\]

\[
= \frac{(c/a, c/b; q)_\infty}{(c, c/ab; q)_\infty},
\]

where

\[
C_k(a, b, c; q) = (1 - q^{2k} c)(1 - q^{1+2k} c')(1 - q^{1+2k} c/ab)(1 - q^{3k} c/b) - \frac{q^{3k} c}{a} (1 - q^k a) (1 - q^k c/b) (1 - q^{1+k} /b) (1 - q^{1+3k} c/a).
\]

Letting \((a, b, c, q) \to (q, q, q^2, q^2)\) in (3.4), we prove (1.13).

Secondly, we start to prove Theorem 1.4.
Proof of Theorem 1.4. Apply the operator \mathcal{D}_b on both sides of the $c \rightarrow q^4/b$ case of (3.1) to discover

$$
\sum_{k=0}^{n} \frac{1 - aq^{3k-1}}{1 - aq^{-1}} (q^{-2n}, aq^{2n}, a/q; q^2)_k \frac{(a/q^2, b/q, q^3/b; q)_k (q, aq^{2n}, q^{-2n}; q)_k}{(q, aq^{2n}, q^{-2n}; q)_k} q^k D_k(a, b) \n$$

$$
= \frac{(aq, a/q, b, q^4/b; q^2)_n}{(q, q^3, aq^2/b, ab/q^2; q^2)_n} E_n(a, b),
$$

where

$$
D_k(a, b) = \sum_{i=1}^{k} \frac{q^{i-2}}{1 - bq^{i-2}} - \sum_{i=1}^{k} \frac{q^{i+2}/b^2}{1 - q^{i+2}/b} + \sum_{i=1}^{k} \frac{aq^{2i}/b^2}{1 - aq^{2i}/b} - \sum_{i=1}^{k} \frac{aq^{2i-4}}{1 - abq^{2i-4}},
$$

$$
E_n(a, b) = \sum_{j=1}^{n} \frac{q^{2j-2}}{1 - bq^{2j-2}} - \sum_{j=1}^{n} \frac{q^{2j+2}/b^2}{1 - q^{2j+2}/b} + \sum_{j=1}^{n} \frac{aq^{2j}/b^2}{1 - aq^{2j}/b} - \sum_{j=1}^{n} \frac{aq^{2j-4}}{1 - abq^{2j-4}}.
$$

Employing the operator \mathcal{D}_b on both sides of the last equation, it is easy to show that

$$
\sum_{k=0}^{n} \frac{1 - aq^{3k-1}}{1 - aq^{-1}} (q^{-2n}, aq^{2n}, a/q; q^2)_k \frac{(a/q^2, b/q, q^3/b; q)_k (q, aq^{2n}, q^{-2n}; q)_k}{(q, aq^{2n}, q^{-2n}; q)_k} q^k \left\{ D_k(a, b)^2 - F_k(a, b) \right\}
$$

$$
= \frac{(aq, a/q, b, q^4/b; q^2)_n}{(q, q^3, aq^2/b, ab/q^2; q^2)_n} \left\{ E_n(a, b)^2 - G_n(a, b) \right\}, \quad (3.5)
$$

where

$$
F_k(a, b) = \sum_{i=1}^{k} \frac{q^{2i-4}}{(1 - bq^{i-2})^2} - \sum_{i=1}^{k} \frac{(q^{i+2}/b - 2)q^{i+2}/b^3}{(1 - q^{i+2}/b)^2} + \sum_{i=1}^{k} \frac{(aq^{2i}/b - 2)aq^{2i}/b^3}{(1 - aq^{2i}/b)^2} - \sum_{i=1}^{k} \frac{a^2q^{4i-8}}{(1 - abq^{2i-4})^2},
$$

$$
G_n(a, b) = \sum_{j=1}^{n} \frac{q^{4j-4}}{(1 - bq^{2j-2})^2} - \sum_{j=1}^{n} \frac{(q^{2j+2}/b - 2)q^{2j+2}/b^3}{(1 - q^{2j+2}/b)^2} + \sum_{j=1}^{n} \frac{(aq^{2j}/b - 2)aq^{2j}/b^3}{(1 - aq^{2j}/b)^2} - \sum_{j=1}^{n} \frac{a^2q^{4j-8}}{(1 - abq^{2j-4})^2}.
$$

The $(a, b) = (0, q^2)$ case of (3.5) produces

$$
\sum_{k=0}^{n} q^k \frac{(q; q)_k (q^{-2n}; q^2)_k}{(q^3; q^2)_k (q^{-2n}; q)_k} \sum_{i=1}^{k} \frac{q^i}{[i]^2} = \frac{(q^2; q^2)_n}{(q, q^3; q^2)_n} \sum_{j=1}^{n} \frac{q^{2j}}{[2j]^2}.
$$

Letting $n \rightarrow \infty$ in this identity, we catch hold of (1.14). \qed
Thirdly, we shall prove Theorem 1.6.

Proof of Theorem 1.5. The \((a, b) = (q^3, q^2)\) case of (3.5) provides

\[
\sum_{k=0}^{n} q^k \frac{1 - q^{3k+2}}{1 - q^2} \frac{(q; q)_k^2 (q^2; q^2)_k (q^{2n+3}; q^{-2n}; q^2)_k}{(q^3; q^3)_k^3} \left\{ \sum_{i=1}^{k} \frac{q^i}{[i]^2} - \sum_{i=1}^{k+1} \frac{q^{2i-1}}{[2i - 1]^2} \right\} = \frac{(q^2; q^2)_n^3 (q^4; q^2)_n}{(q; q)_n (q^3; q^2)_n^3}
\]

(3.6)

The \((a, b, c) = (q^3, q^2, q^2)\) case of (3.1) can be expressed as

\[
\sum_{k=0}^{n} q^k \frac{1 - q^{3k+2}}{1 - q^2} \frac{(q; q)_k^2 (q^2; q^2)_k (q^{2n+3}; q^{-2n}; q^2)_k}{(q^3; q^3)_k^3} \left\{ \sum_{i=1}^{k} \frac{q^i}{[i]^2} - \sum_{i=1}^{k+1} \frac{q^{2i-1}}{[2i - 1]^2} \right\} = \frac{(q^2; q^2)_n^3 (q^4; q^2)_n}{(q; q)_n (q^3; q^2)_n^3}
\]

(3.7)

According to the linear combination of (3.6) and (3.7), we have

\[
\sum_{k=0}^{n} q^k \frac{1 - q^{3k+2}}{1 - q^2} \frac{(q; q)_k^2 (q^2; q^2)_k (q^{2n+3}; q^{-2n}; q^2)_k}{(q^3; q^3)_k^3} \left\{ \sum_{i=1}^{k} \frac{q^i}{[i]^2} - \sum_{i=1}^{k+1} \frac{q^{2i-1}}{[2i - 1]^2} \right\} = \frac{(q^2; q^2)_n^3 (q^4; q^2)_n}{(q; q)_n (q^3; q^2)_n^3}
\]

(3.8)

Letting \(n \to \infty\) in this identity, we find (1.15).

Finally, we begin to prove Theorem 1.6.

Proof of Theorem 1.6. Setting \((a, b, c, d, e) = (q^{1/2}, q^{1/2}, x, q/x, q^{-n})\) in (3.2) and calculating the series on the right-hand side by the \(q\)-analogue of Dougall’s \(sF_4\) summation formula (cf. [10, Appendix II. 21]):

\[
\phi_5^{(6)} \left[\begin{array}{c}
q^{a \frac{3}{2}} - qa \frac{3}{2}, aq, b, c, q^{-n} \\
a \frac{3}{2}, -a \frac{3}{2}, aq/b, aq/c, aq^{n+1}, q, -aq^{n+1} / bc
\end{array} \right] = \frac{(aq, aq/bc; q)_n}{(aq/b, aq/c; q)_n},
\]

there is

\[
\sum_{k=0}^{n} \frac{(q^{a \frac{3}{2}}; q)_k^2 (q^{a \frac{3}{2} + n}; q)_k (x; q)_k^2 (q/x; q)_k^2 (xq^{\frac{a + 1}{2}} + q^{\frac{a + n}{2}}/x; q)_k}{(q, q^{a \frac{3}{2} + n}, q^{a \frac{3}{2} + n}; q)_2 k (xq^{\frac{a + 1}{2}}, q^{\frac{a + n}{2}} / x; q)_2 k} \times (-1)^k q^{\frac{a}{2} + k} \cdot \frac{U_k(x, n; q)}{(xq^{\frac{a}{2}}, q^{\frac{a}{2}} / x; q)_n},
\]

where

\[
U_k(x, n; q) = \frac{1 - q^{\frac{a}{2} + 3k}}{1 - q^{\frac{a}{2}}} + \frac{q^{\frac{a}{2} + 2k + n}(1 - q^{k-n})(1 - xq^k)(1 - q^{1+k}/x)(1 - xq^{\frac{a}{2} + 3k+n})}{(1 - q^2)(1 + q^{k+n})(1 - q^{\frac{a}{2} + 2k + n})(1 - q^{\frac{a}{2} + 2k})}
\]
\[\frac{q^{2+4k+n}(1 - q^{1+k+n})(1 - q^{k-n})(1 - xq^k)^2(1 - q^{1+k}/x)(1 - xq^{1+k+n}/x)}{x(1 - q^{1/2})(1 + q^{1/2+k})(1 - q^{1/2+2k+n})(1 - q^{1/2+2k})^2(1 - xq^{1/2+2k})(1 - q^{1/2+2k}/x)} \]

Via the operator \(D_x \) and the last equation, it is clear that

\[\sum_{k=0}^{n} \left(\frac{q^{1+n}; q^{2+n}; q}{q^{2+n}; q} \right) (x; q)_k (q^2/x; q)_k (xq^{2+n}; q^{3+n}/x; q)_k
\times (-1)^k q^{5k^2+1k+n} U_k (x, n; q) V_k (x, n; q)
+ \sum_{k=0}^{n} \left(\frac{q^{3/2}; q^{3/2}; q}{q^{3/2}; q} \right) (x; q)_k (q^2/x; q)_k (xq^{3/2+n}; q^{3+n}/x; q)_k
\times (-1)^k q^{5k^2+1k+n} D_x U_k (x, n; q)
= \frac{(q^{1/2}; q^{3/2}; q)_n}{(xq^{1/2}; q^{3/2}/x; q)_n} \left\{ \sum_{j=1}^{n} \frac{q^{-j}}{1 - xq^{-j}} - \sum_{j=1}^{n} \frac{q^{j+1/2}/x^2}{1 - xq^{j+1/2}/x} \right\}, \tag{3.8} \]

where

\[V_k (x, n; q) = 2 \sum_{i=1}^{k} \frac{q^i/x^2}{1 - q^i/x} - 2 \sum_{i=1}^{k} \frac{q^{-i-1}}{1 - xq^{-i-1}} + \sum_{i=1}^{2k} \frac{q^{-i}}{1 - xq^{-i}}
- \sum_{i=1}^{2k} \frac{q^{i+1/2}/x^2}{1 - xq^{i+1/2}/x} + \sum_{i=1}^{k} \frac{q^{i+1/2+n}/x^2}{1 - xq^{i+1/2+n}/x} - \sum_{i=1}^{k} \frac{q^{i+1/2+n}}{1 - xq^{i+1/2+n}}. \]

Dividing both sides of (3.8) by \(1 - q/x^2 \) and then letting \((x, q, n) \to (q, q^2, \infty) \), there holds

\[\sum_{k=0}^{\infty} q^{6k^2} \frac{(q; q^2)_k^6}{(q^2; q^2)_k^{3/2}} \left\{ \sum_{i=1}^{2k} \frac{q^{2i}}{(2i)^2} - 2 \sum_{i=1}^{2k} \frac{q^{2i-1}}{(2i-1)^2} \right\}
\times \frac{1 + 2q^{1+2k} - q^{1+6k}(2 + 2q^2 + q^{1+2k} + q^{3+2k} - 3q^{3+6k})}{(1 - q)(1 - q^{2+4k})(1 + q^{1+2k})^2}
+ \sum_{k=0}^{\infty} q^{6k+8k^2} \frac{(q; q^2)_k^6}{(q^2; q^2)_k^{3/2}} \frac{(1 - q)(1 + q^{1+2k} + q^{2+4k})^2}{(1 - q^{2+4k})(1 + q^{1+2k})^4}
= \frac{(q, q^2; q^2)^{\infty}}{(q^2; q^2)^{\infty}} \sum_{j=1}^{\infty} \frac{q^{2j}}{[2j]^2}. \tag{3.9} \]

The \((a, b, c) = (x, q/x, q) \) case of (3.4) can be stated as

\[\sum_{k=0}^{\infty} \frac{(x, q/x; q)_k^3}{(q^2; q^2)_k^{3/2}} q^{3k^2} \left\{ (1 - q^{1+2k})^3(1 - xq^{3k}) - \frac{q^{1+3k}}{x}(1 - xq^k)^3(1 - q^{2+3k}/x) \right\}
= (1 - q) \frac{(x, q/x; q)^{\infty}}{(q^2; q^2)^{\infty}}. \tag{3.10} \]
When $0 < x < 1$, it is obvious that the series on the left-hand side of (3.10) is uniformly convergent. Through the operator D_x and (3.10), it is not difficult to see that

$$
3 \sum_{k=0}^{\infty} \frac{(x, q/x; q^2)_k^3}{(q^2; q^2)_k^3} q^{3k^2} \left\{ (1 - q^{1+2k})^3(1 - xq^k)^3 - \frac{q^{1+3k}}{x}(1 - xq^k)^3(1 - q^{2+3k}/x) \right\}
\times \left\{ \sum_{i=1}^{k} \frac{q^i/x^2}{1 - q^i/x} - \sum_{i=1}^{k} \frac{q^i-1}{1 - xq^{i-1}} \right\}
+ \sum_{k=0}^{\infty} \frac{(x, q/x; q^2)_k^3}{(q^2; q^2)_k^3} q^{3k^2+3k} (q - x^2)(x + 3xq^{2+4k} - 2x^2q^{1+3k} - 2q^{2+3k})
\frac{1}{x^3}
= (1 - q)^3 \frac{(x, q/x; q^2)}{(q^2; q^2)_\infty^2} \left\{ \sum_{j=1}^{\infty} \frac{q^j/x^2}{1 - q^j/x} - \sum_{j=1}^{\infty} \frac{q^j-1}{1 - xq^{j-1}} \right\}. \tag{3.11}
$$

Dividing both sides of (3.11) by $1 - q/x^2$ and then letting $(x, q) \to (q, q^2)$, we can verify that

$$
3 \sum_{k=0}^{\infty} q^{6k^2} \frac{(q; q^2)_k^6}{(q^4; q^2)_k^3} \frac{(1 - q^{2+4k})(1 - q^{1+6k}) - q^{1+6k}(1 - q^{1+2k})^3(1 - q^{3+6k})}{(1 - q)^4}
\times \sum_{j=1}^{k} \frac{q^{2i-1}}{[2i - 1]^2} + \sum_{k=0}^{\infty} q^{6k^2+6k} \frac{(q; q^2)_k^6}{(q^4; q^2)_k^3} q - 4q^{4+6k} + 3q^{5+8k}
\frac{1}{(1 - q)^2}
= (1 + q)^2 \frac{(q^3; q^2)^2}{(q^2, q^4; q^2)_\infty} \sum_{j=1}^{\infty} \frac{q^{2j-1}}{[2j - 1]^2}. \tag{3.12}
$$

By means of the linear combination of (3.9) and (3.12) multiplied, respectively, by (-64) and 3, we are led to (1.16). \qed

References

[1] G.E. Andrews, R. Askey, R. Roy, Special Functions, Cambridge University Press, Cambridge, 2000.
[2] A. Berkovich, H.H. Chan, M.J. Schlosser, Wronskians of theta functions and series for $1/\pi$, Adv. Math. 338 (2018), 266–304.
[3] J.M. Borwein, P.B. Borwein, π and the AGM: A Study in Analytic Number Theory and Computational Complexity, Wiley, New York, 1987.
[4] H.H. Chan, S.H. Chan, Z. Liu, Domb’s numbers and Ramanujan–Sato type series for $1/\pi$, Adv. Math. 186 (2004), 396–410.
[5] W. Chu, Inversion Techniques and Combinatorial Identities: A unified treatment for the $_7F_6$-series identities, Collect. Math. 45 (1994), 13–43.
[6] W. Chu, Inversion Techniques and Combinatorial Identities: Jackson’s q-analogue of the Dougall–Dixon Theorem and the dual formulae, Compos. math. 95 (1995), 43–68.
[7] W. Chu, Dougall’s bilateral $2H_2$-series and Ramanujan-like π-formulae, Math Comput. 276 (2011), 2223–2251.

[8] W. Chu, W. Zhang, Partial sums of Bailey’s $_6\psi_6$-series to faster convergent series, J. Difference Equ. Appl. 18 (2012), 239–260.

[9] W. Chu, W. Zhang, Accelerating Dougall’s $_5F_4$-sum and infinite series involving π, Math Comput. 285 (2014), 475–512.

[10] G. Gasper, M. Rahman, Basic Hypergeometric Series (2nd edition), Cambridge University Press, Cambridge, 2004.

[11] J. Guillera, Hypergeometric identities for 10 extended Ramanujan-type series, Ramanujan J. 15 (2008), 219–234.

[12] J. Guillera, Generators of some Ramanujan formulas, Ramanujan J. 11 (2006), 41–48.

[13] V.J.W. Guo, q-Analogues of three Ramanujan-type formulas for $1/\pi$, Ramanujan J. 52 (2020), 123–132.

[14] V.J.W. Guo, X. Lian, Some q-congruences on double basic hypergeometric sums, J. Difference Equ. Appl. 27 (2021), 453–461.

[15] V.J.W. Guo, J.-C. Liu, q-Analogues of two Ramanujan-type formulas for $1/\pi$, J. Difference Equ. Appl. 24 (2018), 1368–1373.

[16] V.J.W. Guo, W. Zudilin, Ramanujan-type formulae for $1/\pi$: q-analogues, Integral Transforms Spec. Funct. 29 (2018), 505–513.

[17] Q.-H. Hou, C. Krattenthaler, Z.-W. Sun, On q-analogues of some series for π and π^2, Prop. Amer. Math. Soc. 147 (2019), 1953–1961.

[18] Q.-H. Hou, Z.-W. Sun, q-Analogues of some series for powers of π, Ann. Comb. 25 (2021), 167–177.

[19] Z.-G. Liu, Gauss summation and Ramanujan type series for $1/\pi$, Int. J. Number Theory 8 (2012), 289–297.

[20] S. Ramanujan, Modular equations and approximations to π, Quart. J. Math. (Oxford) 45 (1914), 350–372.

[21] Z.-W. Sun, A new series for π^3 and related congruences, Internat. J. Math. 26 (2015), #1550055.

[22] Z.-W. Sun, Two q-analogues of Euler’s formula $\zeta(2) = \pi^2/6$, Colloq. Math. 158 (2019), 313–320.

[23] Z.-W. Sun, Series with summands involving harmonic numbers, preprint, 2023, arXiv: 2210. 07238v8.

[24] L. Wang, Y. Yang, Ramanujan-type $1/\pi$-series from bimodular forms, Ramanujan J. 59 (2022), 831–882.

[25] C. Wei, On two double series for π and their q-analogues, Ramanujan J. 60 (2022), 615–625.

[26] C. Wei, Double series for π and their q-analogues, preprint, 2022, arXiv: 2210. 01331v1.

[27] W.E. Weisstein, Pi formulas, MathWorld-A Wolfram Web Resource. http://mathworld.wolfram.com/PiFormulas.html.

[28] W. Zudilin, More Ramanujan-type formulae for $1/\pi^2$, Russian Math. Surveys 62 (2007), 634–636.