Effect of Oxygen Tension on Human Peripheral Blood Leukocytes: Lysosomal Enzyme Release and Metabolic Responses during Phagocytosis

JOHN L. SKOSEY, DONALD C. CHOW, STEVEN NUSINOW, JAMES MAY, VITA CESTAUTAS, and YUKIE NIWA

Department of Medicine, University of Illinois College of Medicine, Chicago, Illinois 60612, and Department of Medicine and Franklin McLean Memorial Research Institute, The University of Chicago, Chicago, Illinois

ABSTRACT We found that nonlethal lysosomal enzyme release from human peripheral blood leukocytes during phagocytosis of opsonized zymosan in vitro was modified by the oxygen tension under which the cells were incubated; with decreasing PO₂, zymosan-induced release of lysosomal enzymes was potentiated. The effect on enzyme release could not be attributed secondarily to an effect on phagocytosis, because, as others have reported, PO₂ had little effect on that response. Metabolic responses that accompany phagocytosis were also modified by oxygen tension. Stimulation of oxidation by way of the pentose cycle was further enhanced by increasing PO₂. Conversely, anaerobic glycolysis was promoted by decreasing oxygen tension. ATP levels fell as a function of time and concentration of phagocytic stimulus, mirroring lysosomal enzyme release as modified by PO₂. Cyclic AMP levels fell during phagocytosis and lysosomal enzyme release, a change that could act to facilitate lysosomal enzyme release. However, the fall in nucleotide level was greatest with highest PO₂ (i.e., when lysosomal enzyme release was least). The inverse relationship between oxidative metabolism and enzyme release suggested that a product of oxidative metabolism might adversely influence enzyme release. Sulfhydryl antioxidants (cysteine, glutathione) and scavengers of oxygen-derived reactants (superoxide dismutase, catalase, benzoate, hypoxanthine, xanthine, histidine, azide) all potentiated zymosan-stimulated enzyme release. These findings are consistent with the interpretation that one or more factors (e.g., superoxide anion, hydrogen peroxide, hydroxyl radical, singlet oxygen), generated in association with the burst of oxidative metabolism which accompanies phagocytosis, acts to inhibit lysosomal enzyme release.

Neutrophils play an essential role in the pathogenesis of inflammation (1). Lysosomal enzymes released from neutrophils stimulated at sites of inflammation are capable of degrading tissue (2). Toxic by-products of oxidative metabolism may also damage cells and extracellular tissue components (3). Phagocytosis and release of lysosomal enzymes by neutrophils are associated with enhanced glucose oxidation by way of the pentose cycle and enhanced lactate production that results from anaerobic glycolysis (4). Results of experiments in which anaerobic glycolysis was suppressed by metabolic inhibitors have been interpreted as indicating that this pathway must be intact to support both phagocytosis (4) and release of lysosomal enzymes (5). To elucidate further the interrelationships between neutrophil function and metabolism, we have altered cell metabolism by incubating cells in media with varying oxygen tension (PO₂), a technique that does not depend on the use of drugs or metabolic inhibitors. With this method, we

1 Abbreviations used in this paper: H₂O₂, hydrogen peroxide; KRP, Krebs-Ringer phosphate buffer; LDH, lactate dehydrogenase; O₂⁻, superoxide anion; OH⁻, hydroxyl radical; 'O₂, singlet oxygen; PO₂, partial pressure of oxygen; SOD, superoxide dismutase.
Materials and Methods

Incubation

Leukocytes were isolated from normal human peripheral blood as previously described (6) and suspended in Krebs-Ringer phosphate buffer (KRP) (7) containing glucose (5 mM) and gelatin (1 mg/ml). Incubation tubes containing 0.9 ml of buffer with desired additions were sealed with rubber diaphragm stoppers (Kontes Co., Vineland, N. J.) and gassed for 60 min with O_2, 48% O_2, 52% N_2, air, or N_2. The gas was delivered through a 21-gauge needle, with a 25-gauge needle used as a vent. Preliminary experiments demonstrated that the P_o_2 of the incubation medium reached a constant level by the end of this time and was sustained for at least 3 h after the addition of cells. The incubation medium contained zymosan (Sigma Chemical Co., St. Louis, Mo.), which had been boiled, opsonized by incubation with 50% fresh serum (from the cell donor), washed, and suspended to give the desired final concentration as indicated in the figure legends. Cysteine, reduced glutathione, sodium benzoate, hypoxanthine, xanthine, histidine, sodium azide, superoxide dismutase (SOD) (EC 1.15.1.1), and catalase (EC 1.11.1.6) were obtained from Sigma Chemical Co. The enzymes were heat-inactivated, where indicated, by autoclaving at 120°C for 60 min. They were diluted in buffer to yield the desired final concentration. Trace quantities of [14C]insulin (1 μCi/ml) or [1-14C]glucose (0.5 μCi/ml) (Amersham Corp., Arlington Heights, Ill.) were present when either [14C]insulin uptake or [14C]CO₂ production, respectively, was examined. To start the incubation, 0.1 ml of cell suspension was injected into each tube. The incubation mixtures contained 2.1-12.1 x 10^8 leukocytes/ml, 67-100% neutrophils.

Assay Methods

At the end of the desired incubation times, 3 ml of chilled KRP containing insulin, 1 mg/ml, was added to the tubes, which were then centrifuged at 250 g for 10 min. Supernate was saved for assay of enzyme activities, as described below. The cell pellet was washed twice with the chilled insulin solution, dissolved by standing overnight in 0.2 ml of 2 N NaOH, and diluted with 1.3 ml of water. Aliquots were taken for determination of [14C] by liquid scintillation counting and for measurement of protein concentration (6). The uptake of extracellular water (using [14C]-insulin as a marker), believed to enter pinocytic and phagocytic vacuoles, served as a measure of endocytosis (6, 8), and is expressed as microliters per milligram of cell protein.

The supernate was assayed for activities of lysosomal enzymes and lactate dehydrogenase (LDH). Lysosome activity was measured as described by Wright and Malawista (9). The activity of β-glucuronidase was measured as previously described with the use of phenolphthalein glucuronide as substrate (10). The LDH activity, measured to estimate leakage of cytoplasmic enzymes as the result of nonspecific cell damage, was determined as previously described (11). For the determination of total cell activity of each enzyme assayed, aliquots of cell suspensions were sonified in buffer containing 0.2% Triton X-100, diluted appropriately, and assayed.

Cells were incubated in parallel for the measurement of glucose oxidation (production of [14C]CO₂ from [1-14C]glucose) (6, 12) and lactate production (6, 13). When cell ATP or cyclic AMP levels were measured, the incubation was stopped by placing the tubes in a boiling water bath for 3 min, followed by centrifugation. The ATP level in the supernatant fluid was determined by the firefly luminescence method (14). Cyclic AMP was determined by a protein-binding assay (15).

Incubation medium was aspirated into 1-ml syringes for determination of oxygen tension with use of a Radiometer (Copenhagen) model pH 927b gas monitor and E5021 microelectrode unit, with a constant-temperature water bath. The oxygen tension of cell suspensions was measured before and after incubation of cells to verify that P_o_2 was unchanged during the incubation period.

When enzyme release, phagocytosis, [14C]CO₂ production, and lactate production were determined, blanks measured on tubes removed at zero time were subtracted from other values.

Results

Effect of P_o_2 on Zymosan-stimulated Lysosomal Enzyme Release

The release of lysosomal β-glucuronidase in response to zymosan was proportional to the log concentration of particles suspended in the incubation medium (Fig. 1). This response was also dependent on oxygen tension, being greatest when cells were incubated at the lowest P_o_2 tested (50 mm Hg), and diminishing as the oxygen tension was raised. The release of cytoplasmic LDH was unaffected by any of the conditions of incubation, which indicated that neither zymosan nor variation in P_o_2 nonspecifically alters cell membrane permeability to intracellular enzymes.

Oxygen tension did not affect the initial rate of release of lysosomal enzymes (Fig. 2). However, the time required to reach maximal enzyme release was inversely proportional to P_o_2, i.e., cells incubated at lowest P_o_2 released enzymes for a longer period and thus to a greater extent than cells incubated at higher oxygen tension. As Fig. 2 again illustrates, the release of LDH was negligible as compared with that of the lysosomal enzymes.

![Figure 1](image1.png)

Figure 1 Enzyme release under varying P_o_2 in response to zymosan. Human peripheral blood leukocytes were incubated in stopped tubes with varying concentrations of opsonized zymosan. The tubes had been pre-gassed with 100% N_2, air, 52% N_2-48% O_2, or 100% O_2. P_o_2 in gassed tubes was determined to be 50, 143, 273, and 496 torr, respectively. After 1 h, cells and media were separated by centrifugation and the media were assayed for activities of cytoplasmic LDH and of lysosomal β-glucuronidase. Each symbol represents the mean of triplicate determinations, the vertical bars ± one standard error of the mean. Where no error bars are shown, they lie within the symbol. See Materials and Methods for further details.

![Figure 2](image2.png)

Figure 2 Time-course of enzyme release under varying P_o_2. Human peripheral blood leukocytes were incubated in stopped tubes with varying concentrations of opsonized zymosan. The tubes had been pre-gassed with 100% N_2, air, 52% N_2-48% O_2, or 100% O_2. P_o_2 in gassed tubes was determined to be 50, 143, 273, and 496 torr, respectively. After 1 h, cells and media were separated by centrifugation and the media were assayed for activities of cytoplasmic LDH and of lysosomal β-glucuronidase. Each symbol represents the mean of triplicate determinations, the vertical bars ± one standard error of the mean. Where no error bars are shown, they lie within the symbol. See Materials and Methods for further details.
Relationship of Endocytosis to Lysosomal Enzyme Release

Varying \(P_0 \) had little effect on phagocytosis (as estimated by uptake of extracellular water using \([^{14}C] \text{inulin as a marker} \) (Fig. 3). As \(P_0 \) was diminished, phagocytosis increased slightly and then declined again when cells were incubated at the lowest oxygen tension tested. As in previous experiments, the release of \(\beta \)-glucuronidase in response to zymosan was inversely proportional to oxygen tension.

Relationship of Cell Metabolism to Lysosomal Enzyme Release

While lysosomal enzyme release, which accompanies phagocytosis of zymosan, was promoted by decreasing \(P_0 \), the burst of pentose cycle oxidation, monitored by measuring the oxidation of [1-\(^{14} \text{C} \)]glucose to \(^{14} \text{CO}_2 \), was diminished as \(P_0 \) was lowered. However, glycolysis in response to zymosan, estimated by measurement of lactate production, is, like lysosomal enzyme release, promoted by decreasing \(P_0 \) (Fig. 4).

Because it has been suggested that ATP generated by anaerobic glycolysis furnishes energy for lysosomal enzyme release (5), we measured the effect of \(P_0 \) on cell ATP levels as lysosomal enzymes were released during phagocytosis of zymosan. The ATP level fell as zymosan concentration was increased. ATP fell to a greater extent at the lower \(P_0 \) tested, mirroring the release of \(\beta \)-glucuronidase activity into the incubation medium (Fig. 5). The time-course of the changes in ATP levels of cells incubated with zymosan under varying oxygen tension also mirrored the time-course of release of lysosomal \(\beta \)-glucuronidase (Fig. 6).

Cyclic AMP levels, after a slight initial rise, also fell during phagocytosis and lysosomal enzyme release (Fig. 7). Oxygen tension had little effect on cyclic AMP metabolism, although the nucleotide fell to slightly lower levels in cells incubated under the higher oxygen tension tested.

Figure 3 Phagocytosis and \(\beta \)-glucuronidase release under varying \(P_0 \). Leukocytes were incubated with (circles) or without (squares) zymosan, 5 mg/ml, for 1 h. A trace amount of \([^{14}C] \text{inulin was present in all tubes. Phagocytosis (solid symbols)} \) was estimated by the uptake of extracellular water into the cell pellets, using \([^{14}C] \text{inulin as a marker. \(\beta \)-Glucuronidase activity (open symbols) in incubation media was measured as an index of lysosomal enzyme release. See Fig. 1 and text for further details.}

Figure 4 Time-course of lysosomal enzyme release, enhanced glucose oxidation, and enhanced lactate production in response to zymosan under varying \(P_0 \). Cells were incubated with (solid symbols) or without (open symbols) zymosan, 3 mg/ml. Each symbol represents the mean of results from duplicate incubations. See Fig. 1 and text for further details.

Figure 5 Modification by \(P_0 \) of effect of zymosan on \(\beta \)-glucuronidase release and cell ATP level. Tubes containing leukocyte suspensions were incubated for 30 min. See Fig. 1 and text for further details.

Effects of Sulphydryl Antioxidants and Scavengers of Oxygen-derived Reactants on Lysosomal Enzyme Release

The time-course of lysosomal enzyme release from cells stimulated by zymosan under varying oxygen tensions and the inverse relationship between glucose oxidation and release of lysosomal enzymes suggest that a product or products dependent on oxidative metabolism could exert a negative feedback influence on lysosomal enzyme release. Oxygen-derived reactants such as superoxide anion (\(\text{O}_2^- \)), hydrogen peroxide (\(\text{H}_2\text{O}_2 \)), hydroxyl radical (\(\text{OH}^- \)), and singlet oxygen (\(^1\text{O}_2 \)), produced by stimulated neutrophils, could be responsible for such an effect. The sulphydryl-containing antioxidants cysteine and glutathione each potentiated zymosan-induced lysosomal enzyme release (Table 1). These agents had no significant effect on glucose oxidation, lactate production, or change in ATP levels in response to phagocytic stimuli. Scavengers of \(\text{O}_2^- \) (SOD), \(\text{H}_2\text{O}_2 \) (catalase), \(\text{OH}^- \) (benzoate, hypoxanthine, xanthine) and \(^1\text{O}_2 \) (hypoxanthine, xanthine, histidine, azide) were also tested. Catalase, Na-benzoate, xanthine, histidine, and Na-azide each also potentiated zymosan-induced lysosomal en-
zyme release (Table II). The effect of SOD was small and dependent upon the concentration of the scavenger enzyme. In low concentration, SOD inhibited enzyme release to a slight degree (Table II). At higher concentrations, SOD potentiated enzyme release slightly (data not shown).

DISCUSSION

We have studied the relationships between functional and metabolic responses of polymorphonuclear leukocytes to experimental stimuli. Cell metabolism was altered by a relatively innocuous means, i.e., by varying the oxygen tension under which cells were incubated. Incubation of cells under reduced oxygen tension enhanced release both of lysozyme (found in both specific and azurophilic granules) and of β-glucuronidase (confined to azurophilic granules). None of the experimental conditions listed resulted in enhanced release of cytoplasmic LDH which would be expected if enzyme release were a nonspecific event resulting from cell injury (16). Lactate production was linear over the incubation periods used in these studies, providing further evidence that neither alteration in P_0, nor stimulation with zymosan affected cell viability.

The observed effect of oxygen tension on release of lysosomal enzymes in response to stimulation with zymosan cannot be attributed secondarily to an effect of oxygen tension on phagocytosis. Phagocytosis of latex particles (17) and phagocytosis of bacteria and bacterial killing (18) by polymorphonuclear leukocytes are as effective when cells are incubated under anaerobic conditions as when aerobic conditions of incubation are used. In accord with these reports, we observed only a minimal effect of oxygen tension on endocytosis (Fig. 3).

Agents that promote a rise in cell cyclic AMP levels inhibit lysosomal enzyme release (19). One could postulate that cyclic-AMP-dependent processes act to restrain enzyme release from resting cells. A fall in cell cyclic AMP level and release from the putative restraint might then be expected to accompany lysosomal enzyme release. We did observe a fall in the level of cyclic AMP in cells stimulated by zymosan (Fig. 7) which was preceded by a slight rise, as others have also observed (20). This fall in cyclic AMP may facilitate lysosomal enzyme release. There is little difference, however, between the cyclic AMP responses of cells incubated under high and those of cells incubated under low oxygen tension. Thus, these findings do not support the view that the effect of oxygen tension on lysosomal enzyme release is secondary to an effect on cyclic

![Figure 6](image)

Figure 6 Time-course of change in cell ATP level in response to zymosan under varying P_0. See Fig. 1 and text for details.

![Figure 7](image)

Figure 7 Time-course of change in cell cyclic AMP level in response to zymosan under varying P_0. See Fig. 1 and text for details.

| Table 1 |
|-----------------|-----------------|-----------------|
| **Enzyme released, percent total activity** | **β-Glucuronidase** | **Lysozyme** | **LDH** |
| Exp 1 |
Control	1.1 ± 0.2	4.9 ± 0.9	7.1 ± 0.6
Cysteine, 0.3 mM	2.6 ± 0.2	6.1 ± 0.7	6.4 ± 0.6
Cysteine, 3 mM	1.4 ± 0.1	3.5 ± 2.4	3.4 ± 0.2
Zymosan, 1 mg/ml	6.8 ± 0.9	17.9 ± 2.4	4.6 ± 1.4
Zymosan + Cysteine, 0.3 mM	9.2 ± 1.3	27.2 ± 4.2	5.3 ± 0
Zymosan + Cysteine, 3 mM	17.4 ± 1.0	37.5 ± 0.7	2.2 ± 0.6
Exp 2			
Control	0.5 ± 0.1	5.1 ± 1.4	1.1 ± 0.8
Glutathione, 0.1 mM	2.2 ± 0.4	8.0 ± 1.7	6.2 ± 0.7
Glutathione, 1 mM	1.2 ± 0.7	10.1 ± 0.3	2.5 ± 0.7
Zymosan, 1 mg/ml	8.4 ± 1.3	24.0 ± 1.3	1.0 ± 1.0
Zymosan + Glutathione, 0.1 mM	11.3 ± 0.2	26.1 ± 2.1	−1.8 ± 0.5
Zymosan + Glutathione, 1 mM	20.2 ± 1.5	47.5 ± 1.4	3.9 ± 1.2

Human peripheral blood leukocytes were incubated under an atmosphere of air for 1 h at 37°C. Zymosan, when present, had been opsonized by preincubation with fresh serum. Results are expressed as mean ± one standard error of the mean of triplicate determinations. See Fig. 1 and text for further details.
amp metabolism.

Henson and Oades (5) reported that agents that inhibit anaerobic glycolysis also inhibit exocytosis and suggested that energy derived from this metabolic process was required for enzyme release. Consonant with their suggestion, we observed concordant changes when anaerobic glycolysis (monitored by measuring lactate production) and lysosomal enzyme release in response to zymosan were modified by alterations in oxygen tension. Changes in ATP levels mirrored lysosomal enzyme release in response to zymosan (21). ATP metabolism is coupled to exocytosis remains to be elucidated.

TABLE II

Enzyme released, percent total activity
β-Glucuronidase
Resting
Control
SOD, 290 U/ml
SOD, heated
Catalase, 6,400 U/ml
Catalase, heated
Na-benzoate, 10 mM
Xanthine, 1 mM
Histidine, 10 mM
Na-azide, 10 mM

Exp 2

Control	1.5 ± 0.1	17.4 ± 0.5	2.4 ± 0.3	24.0 ± 0.6	2.3 ± 0.1	1.8 ± 0.0
Hypoxanthine, 4 mM	1.0 ± 0.3	27.2 ± 1.2	1.9 ± 0.4	30.8 ± 0.9	2.2 ± 0.5	3.9 ± 0.1
Xanthine, 1 mM	1.3 ± 0.3	19.6 ± 0.2	3.1 ± 0.6	26.6 ± 0.3	2.4 ± 0.0	2.3 ± 0.2
Xanthine, 4 mM	27.5 ± 0.9	29.5 ± 0.5	3.5 ± 0.1			
Xanthine, 8 mM	2.0 ± 0.1	30.4 ± 1.1	4.0 ± 0.4	30.1 ± 0.5	3.7 ± 0.1	3.8 ± 0.1

Exp 3

Control	1.3 ± 0.4	9.6 ± 1.7	2.9 ± 0.4	22.5 ± 7.1	2.2 ± 0.3	1.7 ± 0.2
Na-azide, 3 mM	3.5 ± 0.3	17.6 ± 0.9	9.4 ± 4.4	45.8 ± 1.6	1.9 ± 0.4	1.7 ± 0.5
Na-azide, 10 mM	19.5 ± 1.1	46.7 ± 1.9	2.8 ± 0.8			
Na-azide, 30 mM	2.7 ± 0.2	20.7 ± 0.3	7.3 ± 4.0	44.6 ± 0.7	2.6 ± 0.5	1.8 ± 0.3

* Zymosan, 1 mg/ml. See Table I and text for further details.
interacts to trigger enzyme release could be damaged in a similar manner. It is also possible that the stimulus to enzyme release could be altered by oxidative damage. C5a, which interacts with specific receptors on neutrophil membranes, is inactivated by the myeloperoxidase-H2O2-halide system (26). IgG or an activated component of complement, which is adherent to zymosan and which interacts with a neutrophil membrane receptor, could be similarly inactivated. Regardless of the precise mode of action, our results are compatible with the interpretation that oxygen-derived reactants act to impede release of lysosomal enzymes from zymosan-stimulated neutrophils.

This work was supported in part by funds from the United States Public Health Service (grant AM-26094), the Illinois Chapter of the Arthritis Foundation, the E. F. Andrews Foundation, and the Campus Research Board of the University of Illinois at the Medical Center.

Portions of this work were presented at meetings of the Central Society for Clinical Research (1974, Clin. Res. 22:644A) and the Federation of American Societies for Experimental Biology (1976, Fed. Proc. 35:651; 1980, Fed. Proc. 39:646).

Received for publication 11 August 1980, and in revised form 6 October 1980.

REFERENCES

1. Goldstein, I. M. 1974. Lysosomal hydrolases and inflammatory materials. In Mediators of Inflammation. G. Weissmann, editor. Plenum Press, New York. 51-84.
2. Weissmann, G. 1977. Lysosomes and rheumatoid joint inflammation. Arthritis Rheum. 20 (Suppl):S193-S204.
3. Johnston, R. B., Jr., and J. E. Lehmann. 1976. Elaboration of toxic oxygen by-products by neutrophils in a model of immune complex disease. J. Clin. Invest. 57:836-841.
4. Karnovsky, M. L., R. L. Baehner, S. Osthens, H. L. Simmons, and F. A. Glass. 1971. Correlations of metabolism and function in various phagocytes. In Immunopathology of Inflammation. B. K. Forsher, and J. C. Houck, editors. Excerpta Medica, Amsterdam. 123-132.
5. Hensel, P. M., and Z. A. Oades. 1975. Stimulation of human neutrophils by soluble and insoluble immunoglobulin aggregates. J. Clin. Invest. 56:1053-1061.
6. Skosy, J. L., D. Chow, E. Dangaard, and L. R. Sorensen. 1973. Effect of cytochalasin B on the response of human polymorphonuclear leukocytes to zymosan. J. Cell Biol. 57:237-240.
7. Cohen, P. P. 1957. Suspending media for animal tissues. In Manometric Techniques and Tissue Metabolism. W. W. Umbreit, R. H. Burris, and J. F. Stauffer, editors. Burgess Publishing Co., Minneapolis, Minn. 149-150. 3rd edition.
8. Berger, R. R., and M. L. Karnovsky. 1966. Biochemical basis of phagocytosis. V. Effect of phagocytosis on cellular uptake of extracellular fluid, and on the intracellular pool of L-a-glycerophosphate. Fed. Proc. 25:840-845.
9. Wright, D. G., and S. E. Malaivaste. 1972. The mobilization and extracellular release of granular enzymes from human leukocytes during phagocytosis. J. Cell Biol. 53:788-797.
10. Baehner, R. L., M. J. Karnovsky, and M. L. Karnovsky. 1969. Degradation of leukocytes in chronic granulomatous disease. J. Clin. Invest. 47:187-192.
11. Bergmeyer, H. U., E. Bernt, and B. Hess. 1963. Lactic dehydrogenase. In Methods of Enzymatic Analysis. H. U. Bergmeyer, editor. Academic Press, Inc., New York. 736-743.
12. Rodbell, M. 1964. Metabolism of isolated fat cells. I. Effects of hormones on glucose metabolism and lipolysis. J. Biol. Chem. 239:375-380.
13. Hoberst, H. J. 1965. L-(+)-lactate. Determination with lactic dehydrogenase and DPN. In Methods of Enzymatic Analysis. H. U. Bergmeyer, editor. Academic Press, Inc., New York. 266-270.
14. Stanley, P. E., and S. G. Williams. 1969. Use of the liquid scintillation spectrometer for determining adenosine triphosphate by the luciferase enzyme. Anal. Biochem. 20:381-392.
15. Gilman, A. G. 1972. Protein binding assays for cyclic nucleotides. In Advances in Cyclic Nucleotide Research. Vol. 2. P. Greengard, R. Palotto, and G. A. Robinson, editors. Raven Press, New York. 9-24.
16. Weissmann, G., P. Dekor, and G. Sessa. 1971. Studies on lysosomes: mechanisms of enzyme release from endocytic cells and a model for latency in vivo. In Immunopathology of Inflammation. B. K. Forsher, and J. C. Houck, editors. Excerpta Medica, Amsterdam. 107-117.
17. Oren, R., A. F. Farsham, K. Saito, E. Mildeborn, and M. L. Karnovsky. 1963. Metabolic patterns in three types of phagocytizing cells. J. Cell Biol. 17:487-501.
18. Mandell, G. L. 1974. Bactericidal activity of aerobic and anaerobic polymorphonuclear neutrophils. J. Infect. Immun. 9:337-341.
19. Weissmann, G., J. Goldstein, S. Hoffstein, G. Cahavet, and R. Robinska. 1973. Yin-Yang modulation of lysosomal enzyme release from polymorphonuclear leukocytes by bacterial nucleic acid. Ann. N. Y. Acad. Sci. 254:222-232.
20. Smolen, J. E., H. M. Korhak, and G. Weissmann. 1980. Increased levels of cyclic adenosine-3',5'-monophosphate in human polymorphonuclear leukocytes after surface stimulation. J. Clin. Invest. 65:1077-1085.
21. Rosen, H., and S. J. Klebanoff. 1979. Bactericidal activity of a superoxide anion generating system. A model for the polymorphonuclear leukocyte. J. Exp. Med. 149:27-39.
22. Goldstein, I. S., Hoffstein, J. Callies, and G. Weissmann. 1973. Mechanisms of lysosomal enzyme release from human leukocytes: microtubule assembly and membrane fusion induced by a component of complement. Proc. Natl. Acad. Sci. U. S. A. 70:2916-2920.
23. Baehner, R. L., A. A. Boxer, J. M. Allen, and J. D. Davis. 1977. Autolysis as a basis for altered function by polymorphonuclear leukocytes. Blood. 50:327-335.
24. Salm, M. L., and J. M. McCord. 1973. Free radicals and inflammation. J. Clin. Invest. 52:1319-1323.
25. Boxer, L. A., S. Richardson, and R. L. Baehner. 1978. Effects of surface-active agents on neutrophil receptors. Infect. Immun. 21:28-33.
26. Clark, R. A., and S. J. Klebanoff. 1979. Chemotactic factor inactivation by the myeloperoxidase-hydrogen peroxide-halide system. J. Clin. Invest. 64:913-920.

SKOSEY ET AL. P0ACTION AND LEUKOCYTE RESPONSES DURING PHAGOCYTOSIS 363