Resolution-limit-free and local Non-negative Matrix Factorization quality functions for graph clustering

Twan van Laarhoven† and Elena Marchiori‡
Institute for Computing and Information Sciences, Radboud University Nijmegen, The Netherlands

Many graph clustering quality functions suffer from a resolution limit, the inability to find small clusters in large graphs. So called resolution-limit-free quality functions do not have this limit. This property was previously introduced for hard clustering, that is, graph partitioning.

We investigate the resolution-limit-free property in the context of Non-negative Matrix Factorization (NMF) for hard and soft graph clustering. To use NMF in the hard clustering setting, a common approach is to assign each node to its highest membership cluster. We show that in this case symmetric NMF is not resolution-limit-free, but that it becomes so when hardness constraints are used as part of the optimization. The resulting function is strongly linked to the Constant Potts Model. In soft clustering, nodes can belong to more than one cluster, with varying degrees of membership. In this setting resolution-limit-free turns out to be too strong a property. Therefore we introduce locality, which roughly states that changing one part of the graph does not affect the clustering of other parts of the graph. We argue that this is a desirable property, provide conditions under which NMF quality functions are local, and propose a novel class of local probabilistic NMF quality functions for soft graph clustering.

I. INTRODUCTION

Graph clustering, also known as network community detection, is an important problem with real-life applications in diverse disciplines such as life and social sciences [1, 2]. Graph clustering is often performed by optimizing a quality function, that is a function that assigns a score to a clustering. During the last decades, many such functions (and algorithms to optimize them) have been proposed. However, relatively little effort has been devoted to the theoretical foundation of graph clustering quality functions, e.g. [3]. In this paper we try to provide a contribution in this direction by studying desirable locality properties of quality functions for hard and soft graph clustering.

We focus on the resolution-limit-free property, a property of hard graph clustering, recently introduced by Traag, Van Dooren, and Nesterov [4]. Resolution-limit-freeness is essentially a locality property. Informally this property states that a subset of an optimal clustering in the original graph should also be an optimal clustering in the induced subgraph containing only the nodes in the subset of clusters. As the name suggests, resolution-limit-free quality functions do not suffer from the so-called resolution limit, that is, the inability to find small clusters in large graphs. In the seminal work by Fortunato and Barthélemy [5], it was shown that modularity [6], a popular quality function used for network community detection, has a resolution limit, in the sense that it may not detect clusters smaller than a scale which depends on the total size of the network and on the degree of interconnectedness of the clusters.

Our goal is to investigate resolution-limit-freeness and other locality properties of Non-negative Matrix Factorization (NMF) graph clustering quality functions. NMF [7, 8] is a popular machine learning method initially used to learn the parts of objects, like human faces and text documents. It finds two non-negative matrices whose product approximates the input matrix. The non-negative constraints lead to a parts-based representation because they allow only additive, not subtractive, combinations. Recently NMF formulations have been proposed as quality functions for graph clustering, see for instance the surveys Wang et al. [9] and Li and Ding [10].

We consider symmetric and asymmetric NMF formulations based on Euclidean loss and a Bayesian NMF quality function recently proposed by Psorakis et al. [11], which can automatically determine the number of clusters.

The resolution-limit-free property is stated in the setting of hard clustering, where a clustering is a partition of the nodes. In contrast, NMF produces a soft clustering. Nodes have varying degrees of memberships of each clusters, and the clusters can overlap. To use NMF in the hard clustering setting, a common approach is to assign each node to its highest membership cluster.

In Section III we show that hard clustering based on NMF in this way is, in general, not resolution-limit-free. For symmetric NMF we show that resolution-limit-freeness can be obtained by using orthogonality constraints as part of the optimization, and that the resulting function is strongly linked to the Constant Potts Model (CPM). CPM was introduced by Traag et al. [4] as the simplest formulation of a (non-trivial) resolution-limit-free method. It is a variant of the Potts model by Reichardt and Bornholdt [12].

We argue in Section IV that in the soft clustering setting, resolution-limit-freeness is a too strong property and propose an alternative desirable locality property for soft graph clustering. We characterize an interesting class...
of local quality functions and show that symmetric and asymmetric NMF belong to this class. We show that Bayesian NMF is not local in general and that it suffers from a resolution limit. In Section VI we introduce a novel class of probabilistic NMF quality functions that are local, and hence do not suffer from a resolution limit.

A. Related work

The notion of resolution limit was introduced in Fortunato and Barthélemy [2], which detected a limitation of modularity, considered a state-of-the-art method for community detection. van Laarhoven and Marchiori [13] showed empirically that the resolution limit is the most important difference between quality functions in graph clustering optimized using a fast local search algorithm, the Louvain method [14]. Traag et al. [3] introduced the notion of resolution-limit-free objective functions, which provides the motivation of this study.

Other local properties of quality functions for clustering have been considered in theoretical studies but mainly in the hard setting, for distance based clustering [15], and for graph clustering [16]. Locality as defined in Ackerman et al. [15] is a property of clustering functions, wherein defined as functions mapping a data set and a positive integer k to a partition of the data into k clusters. This notion of locality was used together with other properties to characterize linkage based clustering. The locality property considered in van Laarhoven and Marchiori [16] is part of an axiomatic study of quality functions for hard graph clustering. It states that local changes to a graph should have only local consequences to a clustering. It is slightly weaker than the locality property considered in this study, which corresponds more closely to the property there called strong locality.

B. Definitions and Notation

A (weighted) graph is a pair (V, A) of a finite set V of nodes and a function $A : V \times V \rightarrow \mathbb{R}_{\geq 0}$ of edge weights. For compactness we view A as an adjacency matrix, and write $a_{ij} = A(i, j)$. Edges with larger weights represent stronger connections, so $a_{ij} = 0$ means that there is no edge between nodes i and j.

A graph $G' = (V', A')$ is a subgraph of $G = (V, A)$ if $V' \subseteq V$ and $a'_{ij} = a_{ij}$ for all $i, j \in V'$. Different clustering methods use different notions of a ‘cluster’ and ‘clustering’. For instance, in symmetric NMF a clustering is a matrix of membership coefficients; while in non-symmetric NMF there are two such matrices. Some methods also have additional parameters for each cluster.

We therefore keep the notion of cluster abstract for now. All we require is a function supp from clusters to sets of nodes, called the support. We take a clustering to be a set of clusters. The support of a clustering C, written $\text{supp}(C)$, is the union of the support of all clusters in that clustering. If the support of a clustering C is a subset of a set V of nodes, then we say that C is a clustering of V. And for brevity, we also say that C is a clustering of a graph G if C is a clustering of the nodes of G.

Note that this definition implies that if C and D are clusterings of G, then $C \cup D$ is also a clustering of G. And if G is a subgraph of G', then C and D are also clusterings of G'.

The symmetric difference of two clusterings is denoted $C \triangle D$, and is defined as the symmetric difference of sets, that is $C \triangle D = (C \cup D) \setminus (C \cap D)$.

Graph clustering can be cast as an optimization problem. The objective that is being optimized is the clustering quality function, which is a function from graphs G and clusterings of G to real numbers. In this paper we take the convention that the quality is maximized.

Given a clustering quality function q, and a clustering C of some graph G. We say that C is q-optimal if $q(G, C) \geq q(G, C')$ for all clusterings C' of G.

II. NON-NEGATIVE MATRIX FACTORIZATION

At its core, Non-negative Matrix Factorization decomposes a matrix A as a product $A \approx WH^T$, where all entries in W and H are non-negative. For graph clustering the matrix A is the adjacency matrix of a graph. For undirected graphs the adjacency matrix is symmetric, in which case it makes sense to decompose it as $A \approx HH^T$. Since the optimal non-symmetric factorization of a symmetric matrix does not necessarily have $W = H$ [17].

The columns of W and H can be interpreted as clusters. To fit with the definition of ‘cluster’ from the previous paragraph we need to take a slightly different view. In the case of symmetric NMF, a cluster c consists of a function h_c from nodes to non-negative real numbers, called the membership coefficients. For a fixed set of nodes h_c can be represented as a vector, and a set of such vectors can be seen as a matrix. The support of such a cluster c is the support of the function h_c, that is, the set of nodes for which the membership is positive. For non-symmetric NMF, a cluster is a tuple $c = (w_c, h_c)$ of two such functions w_c and h_c; and for Bayesian NMF, each cluster also contains a β_c parameter.

A common notion to all NMF methods is that they predict a value for each edge. For symmetric NMF with per cluster membership h_c this prediction can be written as $\hat{a}_{ij} = \sum_{c \in C} h_{ci} h_{cj}$. For asymmetric NMF with cluster memberships w_c and h_c we can write $\hat{a}_{ij} = \sum_{c \in C} w_{ci} h_{cj}$.

The optimization problem then tries to ensure that $\hat{a}_{ij} \approx a_{ij}$. Different methods can have different interpretations of the ‘\approx’ symbol, and they impose different regularizations and perhaps additional constraints. Perhaps the simplest NMF quality function for undirected graphs uses Euclidean distance and no additional regu-
larization,
\[q_{\text{SymNMF}}(G, C) = -\frac{1}{2} \sum_{i,j \in V} (a_{ij} - \hat{a}_{ij})^2. \]

III. RESOLUTION-LIMIT-FREE FUNCTIONS FOR HARD CLUSTERING

Before we investigate the resolution limits of NMF, we will first look at traditional ‘hard’ clustering, where each node belongs to exactly one cluster. In this setting a cluster is simply a subset of the nodes, and its support is the cluster itself. There is the additional non-overlapping or orthogonality constraint on clusters: In a valid hard clustering \(C \) of \(V \), each node \(i \in V \) is in exactly one cluster \(c_i \in C \). For symmetric NMF we may formulate these constraints as
\[\sum_{c \in V} h_{ci}h_{di} = 0 \quad \text{for all } c, d \in C, c \neq d, \text{ and} \]
\[\sum_{c \in C} h_{ci} = 1 \quad \text{for all } i \in V. \]

Traag et al. \[4\] introduced a locality property of clustering quality functions, and called the functions that satisfy this property resolution-limit-free. Their definition is as follows.

Definition 1 (Resolution-limit-free). Let \(C \) be a \(q \)-optimal clustering of a graph \(G_1 \). Then the quality function \(q \) is called resolution-limit-free if for each subgraph \(G_2 \) induced by \(D \subset C \), the partition \(D \) is a \(q \)-optimal clustering of \(G_2 \).

Thus in the setting of hard clustering, a quality function is resolution-limit-free if any subset of clusters from an optimal clustering is also an optimal clustering on the graph that contains only the nodes and edges in those clusters.

NMF has been extended with a post-processing step to yield a hard clustering. This is done by assigning each node to the cluster with the largest membership coefficient.

We can now ask if NMF with this post-processing is resolution-limit-free. In Fig. 1 we give a counterexample that answers this question negatively for the NMF based methods of Psorakis et al. \[11\] and Ding et al. \[18\].

This counterexample consists of two cliques and one almost-clique. Additionally there is a node with unclear membership. When the entire graph is considered, its membership of one cluster is slightly higher, when one clique and its incident edges are removed, its membership of another cluster is slightly higher. This difference is very small. For example, with Ding et al.’s method in the optimal clustering of the large graph, the disputed node belongs to the second and third cluster with membership coefficients 0.2306 and 0.2311 respectively; while in the smaller subgraph the membership coefficients are 0.2284 and 0.2607.

Traag et al. \[4\] showed that the Constant Potts model (CPM) is the simplest formulation of any (non-trivial) resolution-limit-free method. The CPM quality function \(q_{\text{cpm}}(G, C) \) can be formulated as
\[q_{\text{cpm}}(G, C) = \sum_{i,j \in V} (a_{ij} - \gamma)1[c_i = c_j], \]
where \(1[c_i = c_j] \) is 1 if nodes \(i \) and \(j \) belong to the same cluster, and 0 otherwise.

Symmetric NMF and CPM are closely related. This can be shown with a technique similar to that used by Ding et al. \[18\] to link symmetric NMF and spectral clustering.

Theorem 2. Symmetric NMF is an instance of CPM with \(\gamma = 1/2 \) and orthogonality constraints relaxed.

Proof. Recall that in symmetric NMF, \(\hat{a} \) is defined as \(\hat{a}_{ij} = \sum_{c \in C} h_{ci}h_{cj} \). With orthogonality constraints, any two nodes \(i \) and \(j \) are either in the same cluster, in which case \(\hat{a}_{ij} = 1 \), or they are in different clusters, in which case \(\hat{a}_{ij} = 0 \). So \(\hat{a}_{ij} = \hat{a}_{ij}^2 = 1[c_i = c_j] \).

Symmetric NMF is given by the optimization problem
\[\arg\max_{C} q_{\text{SymNMF}}(G, C) = -\frac{1}{2} \sum_{i,j \in V} (a_{ij} - \hat{a}_{ij})^2. \]

Expanding the square shows that this is equivalent to
\[\arg\max_{C} \sum_{i,j \in V} \left(a_{ij}\hat{a}_{ij} - \frac{1}{2}\hat{a}_{ij}^2 \right). \]

With orthogonality constraints this is equivalent to
\[\arg\max_{C} \sum_{i,j \in V} \left(a_{ij} - \frac{1}{2}\hat{a}_{ij} \right), \]
which is the CPM objective with \(\gamma = 1/2 \). \(\square \)
The CPM is resolution-limit-free. Therefore in order to perform hard clustering using symmetric NMF it is preferable to act on the quality function, for instance by enforcing orthogonality as done in [18, 19], instead of assigning each node to the cluster with the highest membership coefficient.

IV. RESOLUTION-LIMIT-FREE FUNCTIONS FOR SOFT CLUSTERING

The definition of resolution-limit-free hinges on the idea that, given some clusters in a graph, one can look at just the nodes that are in those clusters, without affecting other clusters. In the hard clustering setting if a node is in some cluster then it is not in another cluster. So if we look only at nodes in clusters from a set \(C \), then we automatically know that these nodes are not in clusters not in \(C \). When clusters can overlap this is no longer true.

We could still try to directly adapt Definition 1 to the soft clustering setting, by defining what a graph induced by a subclustering is. The obvious idea is to include all nodes in the support of the subclustering. So for a clustering \(C \) of \(G \), the graph \(G' \) induced by \(D \subseteq C \) would contain only the nodes which are in at least one cluster in \(D \), that is, \(V' = \text{supp}(D) \), and all edges between these nodes from the original graph.

However, optimal clusterings might have clusters in \(C \setminus D \) that overlap with clusters in \(D \). This makes this notion of resolution-limit-free too restrictive, and no NMF will satisfy it. But these NMF methods might still be resolution-limit-free in the sense that optimal clusterings depend on the size of the entire graph. So there should be a weaker notion that ensures that a quality function does not suffer from the problems associated with the resolution limit.

This makes this notion of resolution-limit-free too restrictive, since it effectively disallows any interesting uses of overlapping clusters. Consider the graph with two overlapping 5-cliques shown in Fig. 2. A reasonable clustering of this graph is the one with two overlapping clusters, \(c_1 \) and \(c_2 \), corresponding to the two cliques. In an NMF style method, the optimal membership coefficients of the two shared nodes (dark in the figure) for each of the clusters will be smaller than the membership of the other nodes to these clusters, since the edge between them is in both clusters. If the membership coefficients for all nodes were the same, then the prediction for the edge between the two nodes that are in both clusters would be twice as large as the prediction for other edges, which is not optimal. So the membership of these nodes in both clusters must be smaller than that of the other nodes. But the subgraph induced by the left cluster \(c_1 \) is just a clique with 5 nodes. So the single cluster in the optimal clustering on this subgraph has equal membership for all nodes. In other words, the optimal clustering on the subgraph is not the same as \(c_1 \). Hence no NMF method is resolution-limit-free in this sense.

An alternative approach is to only consider subclusterings with disjoint support in the definition of resolution-limit-free. That is, with \(\text{supp}(D) \cap \text{supp}(C \setminus D) = \emptyset \). Unfortunately this variant has the opposite problem: the condition almost never holds. So, many quality functions would trivially satisfy this variant of resolution-limit-freeness. For example, the optimal clusterings in NMF methods based on a Poisson likelihood will always have overlapping clusters covering every edge, so the disjointness condition only holds when the graph has multiple connected components.

Clearly we need a compromise.

A. Locality

The resolution-limit-free property looks at the behavior of a clustering quality function on graphs of different sizes. Intuitively a quality function suffers from a resolution limit if optimal clusterings at a small scale depend on the size of the entire graph.

As shown in the previous paragraph we can not just zoom in to the scale of any subclustering \(D \) by discarding the rest of the graph.

But if we let go of only considering the optimal clustering, it does become possible to zoom in only partially, leaving the part of the graph covered by clusters that overlap clusters in \(D \) intact. If \(D \) is an optimal clustering of the original graph, then it should be a ‘locally optimal’ clustering of the smaller graph in some sense.

We take this to mean that if a clustering \(D \) is better than some other clustering \(D' \) on the original graph, then the same holds on the smaller graph, as long as \(D \) and \(D' \) induce the same zoomed in graph.

It then makes sense to not only consider zooming in by discarding the rest of the graph, but also consider arbitrary changes to the rest of the graph, as well as arbitrary changes to clusters not overlapping with \(D \) or \(D' \).

More precisely, if one subclustering \(D \) is better than another subclustering \(D' \) on a subgraph of some graph \(G_1 \), and one changes the graph to \(G_2 \) in such a way that the changes to the graph and to the clustering are disjoint
from the support of D and D', then D will stay a better clustering than D'.

This idea is illustrated in Fig. 3 and formalized in Definition 3.

Definition 3 (Locality). A clustering quality function q is local if for all graphs G_1, G_2, and common subgraphs G_S of G_1 and G_2, for all clusterings C_1 of G_1, C_2 of G_2, and D, D' of G_S, such that $\text{supp}(C_1 \triangle C_2) \cap \text{supp}(D \cup D') = \emptyset$, it is the case that $q(G_1, C_1 \cup D) \geq q(G_1, C_1 \cup D')$ if and only if $q(G_2, C_2 \cup D) \geq q(G_2, C_2 \cup D')$.

Locality as defined in Ackerman et al. [12] differs from our definition because it is a property of clustering functions. The locality property considered in van Laarhoven and Marchiori [10] differs from our definition because it also enforces ‘agreement on the neighborhood’ of the common subgraph. They also briefly discussed and dismissed a “strong locality” property, which is closer to our definition.

Even in the case of hard clustering locality and resolution-limit-free are not equivalent. For hard clustering, locality implies resolution-limit-freeness, but the converse is not true.

Theorem 4. If a hard clustering quality function is local, then it is resolution-limit-free.

Proof. Let q be a local hard cluster quality function, and C be a q-optimal clustering of a graph $G_1 = (V_1, A_1)$. Consider the subgraph G_2 induced by $D \subset C$.

Let $C_1 = C \setminus D$ and $C_2 = \emptyset$, so $C_1 \triangle C_2 = C_1$. Because C is a partition of V_1, we have for every clustering D' of G_2 that $\text{supp}(C_1 \triangle C_2) \cap \text{supp}(D \cup D') = \emptyset$.

Then for each clustering D' of G_2 we have $q(G_1, C_1 \cup D) \geq q(G_1, C_1 \cup D')$ because $C_1 \cup D = C$ is an optimal clustering of G_1. By locality it follows that $q(G_2, C_2 \cup D) \geq q(G_2, C_2 \cup D')$.

So D is a q-optimal clustering of G_2.

Theorem 5. If a hard clustering quality function is resolution-limit-free then it is not necessarily local.

Proof. Consider the following quality function

$$q(G, C) = \max_{c \in C} |c| + \min_{c \in C} |c|$$

For each graph $G = (V, A)$, the clustering $C = \{V\}$ is the single q-optimal clustering, with quality $2|V|$. Since there are no strict subsets of C the quality function is trivially resolution-limit-free.

Now consider the graphs G_1 with nodes $\{1, 2, \ldots, 7\}$ and G_2 with nodes $\{1, 2, \ldots, 6\}$, both with no edges. These graphs agree on the set $X = \{1, 2, \ldots, 6\}$. Take the clusterings $E = \emptyset$, $D = \{(1, 2, 3, 4), (5), (6)\}$, $D' = \{(1, 2, 3), (5, 6, 7)\}$, $C_1 = \{\{7\}\}$ and $C_2 = \{\}$.

Then $q(G_1, C_1 \cup D) = 5 > 4 = q(G_1, C_1 \cup D')$, while $q(G_2, C_2 \cup D) = 5 < 6 = q(G_2, C_2 \cup D')$.

So q is not local.

This counterexample is illustrated in Figure 4.

Figure 4. The counterexample from the proof of Theorem 5.

B. Characterizing local quality functions

Many quality functions can be written as a sum with a term for each edge, characterizing a goodness of fit, a term for each node, controlling the amount of overlap, and a term for each cluster, indicating some kind of complexity penalty. There might also be a constant term not actually depending on the clustering, and so not affecting the optimum. We call such quality functions additive.

Definition 6. A quality function is additive if it can be written as

$$q(G, C) = q_{\text{graph}}(G) + \sum_{c \in C} q_{\text{clus}}(c)$$

$$+ \sum_{i \in V} q_{\text{node}}(\{c \in C \mid i \in \text{supp}(c)\})$$

$$+ \sum_{i \in V, j \in V} q_{\text{edge}}(a_{ij}, \{c \in C \mid i, j \in \text{supp}(c)\})$$

for some functions $q_{\text{graph}}, q_{\text{clus}}, q_{\text{node}}, q_{\text{edge}}$.

Note that q_{node} can depend on all clusters that contain node i, and q_{edge} can depend on all clusters that contain the edge ij.
Theorem 7. If a quality function is additive, then it is local.

Proof. Let \(q \) be an additive quality function. Let \(G_1 \) and \(G_2 \) be graphs such that \(G_S = (V,A) \) be graphs such that \(G_S \) is a subgraph of both \(G_1 \) and \(G_2 \).

Let \(C_1 \) be a clustering of \(G_1 \), \(C_2 \) a clustering of \(G_2 \) and, \(D, D' \) clusterings of \(G_S \) such that \(\text{supp}(C_1 \triangle C_2) \cap \text{supp}(D \cup D') = \emptyset \).

Let \(E = C_1 \cap C_2 \). Then for every node \(i \in \text{supp}(C_1 \setminus C_2) \), we have \(i \notin \text{supp}(D) \), so \(\{ c \in C_1 \cup C_2 \ | \ i \in \text{supp}(c) \} = \{ c \in C_1 \cup D' \ | \ i \in \text{supp}(c) \} = \{ c \in C_1 \ | \ i \in \text{supp}(c) \} \).

Conversely, for every node \(i \notin \text{supp}(C_1 \setminus C_2) \), we have \(\{ c \in C_1 \cup D \ | \ i \in \text{supp}(c) \} = \{ c \in E \cup D \ | \ i \in \text{supp}(c) \} \).

Therefore

\[
q(G_1, C_1 \cup D) - q(G_1, C_1 \cup D') = \sum_{c \in D} \sum_{c \in D'} q_{\text{clus}}(c) + \sum_{i \in V} \left(\sum_{c \in D} q_{\text{node}}(\{ c \in E \cup D \ | \ i \in \text{supp}(c) \}) - \sum_{c \in D'} q_{\text{node}}(\{ c \in E \cup D' \ | \ i \in \text{supp}(c) \}) \right) + \sum_{i,j \in V} \left(\sum_{c \in D} q_{\text{edge}}(a_{ij}, \{ c \in E \cup D \ | \ i,j \in \text{supp}(c) \}) - \sum_{c \in D'} q_{\text{edge}}(a_{ij}, \{ c \in E \cup D' \ | \ i,j \in \text{supp}(c) \}) \right),
\]

and similarly for \(G_2 \) and \(C_2 \) in place of the \(G_1 \) and \(C_1 \).

Which implies that \(q(G_1, C_1 \cup D) - q(G_1, C_1 \cup D') = q(G_2, C_2 \cup D) - q(G_2, C_2 \cup D') \).

And so \(q(G_1, C_1 \cup D) \geq q(G_1, C_1 \cup D') \) if and only if \(q(G_2, C_2 \cup D) \geq q(G_2, C_2 \cup D') \).

In other words, \(q \) is local.

The converse of Theorem 7 does not hold; not all local quality functions are additive. For example, any monotonic function of a local quality function is also local.

Another example are quality functions that use higher order interactions, that is, it includes terms not only for nodes and edges, but also for triangles and larger structures. For instance, the clique percolation method finds clusters which are cliques. That method is local, but it is not additive. We could imagine including higher-order terms in the definition of additivity,

\[
q(G, C) = \cdots + \sum_{i,j,k \in V} q_{\text{triangle}}(a_{ij}, a_{ik}, a_{jk}, \{ c \in C \ | \ i,j,k \in \text{supp}(c) \}),
\]

and so on. But for most purposes the edge term is sufficient; and the local quality functions that we consider in this paper are all additive in the sense of Definition 6.

Additivity provides additional insight into how quality functions behave: the quality is composed of the goodness-of-fit of a the clustering to nodes and edges (and perhaps larger structures), together with a cost term for each cluster. By Theorem 7 it also gives us a convenient way to prove that a certain quality function is local, while locality can more convenient if we want to reason about the behavior of a quality function.

For symmetric NMF, \(\hat{a}_{ij} \) can be written as a sum over clusters that contain nodes \(i \) and \(j \),

\[
\hat{a}_{ij} = \sum_{c \in C \text{ s.t. } i,j \in \text{supp}(c)} h_{ci} h_{cj}.
\]

As a consequence, NMF quality functions without regularization, such as \(q_{\text{SymNMF}} \), are additive. Therefore these quality functions are local.

Many regularization terms can also be encoded in an additive quality function. For example the L2 term \(\sum_{i \in C} \sum_{i \in V} h_{ci}^2 \) is a sum over clusters and independent of the graph, and so it fits in \(q_{\text{clus}} \).

C. Fixed number of clusters

The question of automatically finding the right number of clusters is still not fully solved. Therefore in most NMF based clustering methods the number of clusters \(k \) is specified by the user.

For most quality functions, if they are optimized directly without taking this restriction into account, then the number of clusters will tend to infinite. So we somehow need to fix the number of clusters.

The most direct way to incorporate this restriction of a fixed number of clusters is by adding it as a constraint to the quality function. That is, use \(q(G, C, k) = q(G, C) + 1 \) if \(|C| = k \). Strictly speaking this is not a function to the real numbers. But we never need the fact that \(q \) is such a function, all we need is that the quality of different clusterings can be compared. Unfortunately, encoding a fixed \(k \) restriction in the quality function violates locality.

Take two clusterings \(C \) and \(D \) of a graph \(G \), with a different number of clusters. Let \(C', D' \) be copies of \(C \) and \(D \) on a disjoint set of nodes, and let \(k \) be \(|C| + |D| \). Then the quality \(q(G \cup G', D \cup C', k) \) is finite, while \(q(G \cup G', D \cup D', k) \) is infinite. On the other hand, \(q(G \cup G', C \cup C', k) \) is infinite, while \(q(G \cup G', C \cup D', k) \) is finite. This contradicts locality.

Instead, we need to consider the restriction on the number of clusters as separate from the quality function. In that case the definition of locality can be used unchanged.

Equivalently, if we call a clustering consisting of \(k \) clusters a \(k \)-clustering, then we can extend the definitions of locality to take the restricted number of clusters into account. This approach is also used by Ackerman and Ben-David.

If we call a function \(q(G, C, k) \) for graphs \(G \), clusterings \(C \) and number of clusters \(k \) a fixed-size quality function, then this leads to the following fixed-size variant of locality.
Definition 8 (Fixed size locality). A fixed-size quality function \(q \) is fixed-size local for all graphs \(G_1, G_2 \) and a common subgraph \(G \), for all \(k_1 \)-clusterings \(C_1 \) of \(G_1 \), \(k_2 \)-clusterings \(C_2 \) of \(G_2 \), and \(m \)-clustering \(D \) of \(G \), such that \(\text{supp}(C_1 \cup C_2) \cup \text{supp}(D) = \emptyset \) it is the case that \(q(G_1, C_1 \cup D, k_1 + m) \geq q(G_1, C_1 \cup D', k_1 + m') \) if and only if \(q(G_2, C_2 \cup D, k_2 + m) \geq q(G_2, C_2 \cup D', k_2 + m'). \)

Every local quality function that does not depend on \(k \) is fixed-size local when combined with a constraint that the number of clusters must be \(k \). And so NMF with a fixed number of clusters is fixed-size local.

D. Varying number of clusters

Psorakis et al.\cite{Psorakis} formulated a Bayesian formulation of NMF for overlapping community detection that uses automatic relevance determination (ARD)\cite{JMLR} to determine the number of clusters. Their quality functions can be written as

\[
q_{\text{BayNMF}} = - \sum_{i \in V} \sum_{j \in V} \left(v_{ij} \log \frac{v_{ij}}{\hat{v}_{ij}} + \hat{v}_{ij} \right) - \frac{1}{2} \sum_{c \in C} \left(\sum_{i \in V} \beta_c w_{ci}^2 + \sum_{i \in V} \beta_c h_{c_i}^2 - 2|V| \log \beta_c \right) - \sum_{c \in C} (\beta_c b - (a - 1) \log \beta_c) - \kappa,
\]

where each cluster is a triple \(c = (w_c, h_c, \beta_c) \), and \(\kappa \) is a constant. ARD works by fixing the number of clusters to some upper bound. In the optimal clustering many of these clusters will be empty, that is, have \(\text{supp}(c) = \emptyset \).

This quality function is not additive, for two reasons. First of all, there is the term \(2|V| \log \beta_c \) for each cluster, which stems from the half-normal priors on \(W \) and \(H \). This term depends on the number of nodes. Secondly, the \(\kappa \) term actually depends on the number of clusters and the number of nodes, since it contains the normalizing constants for the hyperprior on \(\beta \), as well as constant factors for the half-normal priors. For a fixed graph and fixed number of clusters the \(\kappa \) term can be ignored, however.

As a result,Psorakis et al.’s method is also not local, as the following counterexample shows:

Theorem 9. \(q_{\text{BayNMF}} \) is not local.

Proof. Consider a graph \(G_1 \), consisting of a ring of \(n = 10 \) cliques, where each clique has \(m = 5 \) nodes, and two edges connecting it to the adjacent cliques.

We followPsorakis et al., and use hyperparameters \(a = 5 \) and \(b = 2 \). This choice is not essential, similar counterexamples exist for other hyperparameter values. As might be hoped, the \(q_{\text{BayNMF}} \)-optimal clustering \(C_1 \) of this graph then puts each clique in a separate cluster, with a small membership for the directly connected nodes in adjacent cliques.

This clustering is certainly better than the clustering \(C_2 \) with \(5 \) clusters each consisting of two cliques, and \(5 \) empty clusters.

However, on a larger graph with two disjoint copies of \(G_1 \), the clustering with two copies of \(C_2 \) is better than the clustering with two copies of \(C_1 \).

But by locality we would have \(q_{\text{BayNMF}}(G_1 \cup G'_1, C_1 \cup C'_1) \geq q_{\text{BayNMF}}(G_1 \cup G'_1, C_2 \cup C'_2) \) as well as \(q_{\text{BayNMF}}(G_1 \cup G'_1, C'_2 \cup C'_2) \geq q_{\text{BayNMF}}(G_1 \cup G'_1, C_1 \cup C'_1) \), where the primed variables indicate copies with disjoint nodes. So \(q_{\text{BayNMF}} \) is not local.

In the above counterexample things don’t change if one uses a ring of 20 cliques instead of two disjoint rings of 10 cliques. This is closer to the original characterization of the resolution limit by Fortunato and Barthélemy\cite{Fortunato}.

In a ring of 20 cliques, the solution with 10 clusters is better than the solution with 20 clusters. But it is harder to show that this violates locality.

V. NMF AS A PROBABILISTIC MODEL

NMF can be seen as a maximum likelihood fit of a generative probabilistic model. The quality function that is optimized is then the log likelihood of the model conditioned on the observed graph,

\[
q(C, G) = \log P(C | G).
\]

One assumes that there is some underlying hidden cluster structure, and the edges in the graph depend on this structure. The clustering structure in turn depends on the nodes under consideration. So, by Bayes rule we may decompose \(P(C | G) \) as

\[
P(C | V, A) = P(A | C, V) P(C | V) P(V) / P(V, A).
\]

The terms \(P(V) \) and \(P(V, A) \) are constant given the graph, so the quality function becomes

\[
q(C, G) = \log P(A | C, V) + \log P(C | V) + \kappa,
\]

where \(\kappa = \log P(V) - \log P(V, A) \) is a constant. The first term is the likelihood of the edges given the clustering, the second factor is the prior probability of a clustering for a certain set of nodes.

To make the above general formulation into an NMF model, one assumes that the edge weights are distributed independently, depending on the product of the membership matrices. Then a prior is imposed on the membership coefficients. Usually a conjugate prior is used, which for Gaussian likelihood has a half-normal distribution, and for Poisson likelihood has a gamma distribution. So the simplest symmetric Gaussian NMF method would be

\[
a_{ij} \sim \mathcal{N}(\hat{a}_{ij}, 1) \quad \hat{a}_{ij} = \sum_c h_{ci} h_{cj} \quad h_{ci} \sim \mathcal{HN}(0, \sigma)
\]
Which leads to the quality function
\[
q(C, G) = -\frac{1}{2} \sum_{i,j \in V} (a_{ij} - \tilde{a}_{ij})^2 - \frac{1}{2\sigma^2} \sum_{c \in C} \sum_{i \in V} h_{ci}^2 + |V|^2 \log \sqrt{2\pi} + |C||V| \log \sqrt{\pi\sigma^2}/2.
\]

This is a regularized variant of symmetric NMF discussed previously.

Such a model implicitly assumes a fixed number of clusters; and the corresponding quality function will not be local if the number of clusters is not fixed. Intuitively, this happens because the model has to ‘pay’ the normalizing constant of the prior distribution for each \(h_{ci}\), the number of which is proportional to the number of clusters.

Psorakis et al. method also stems from a probabilistic model. They use a Poisson likelihood and a half-normal prior. Note that these are not conjugate. For finding the \(w\) allows a sharply peaked distribution on \(\beta\) puts a gamma hyperprior on the inverse variance \(\beta\). This is local by Theorem 23.

To determine the number of clusters, Psorakis et al. puts a gamma hyperprior on the inverse variance \(\beta\). This allows a sharply peaked distribution on \(w\) and \(h\) when the support of a cluster is empty. The model is
\[
a_{ij} \sim \text{Poisson}(\tilde{a}_{ij}) \\
\tilde{a}_{ij} = \sum_c h_{ci} w_{cj} \\
h_{ci} \sim \mathcal{N}(0, 1/\sqrt{\beta_c}) \\
w_{ci} \sim \mathcal{N}(0, 1/\sqrt{\beta_c}) \\
\beta_c \sim \text{Gamma}(a, b)
\]

As shown in Section IV.D, the corresponding quality function is not local. The problems stem from the priors on \(W\), \(H\) and \(\beta\), which depend on the number of nodes and clusters. We will next try to find a different prior that is local.

A. A local prior

To get a local quality function from a probabilistic model, that doesn’t assume a fixed number of clusters, we clearly need a different prior. The approach we take will be to construct an additive quality function, which is local by Theorem 7.

First assume as above that the likelihoods of the edges are independent and depending on the product of membership degrees, that is \(P(A|C, V) = \prod_{ij} P(a_{ij} | \tilde{a}_{ij})\). This fits nicely into the fourth term, \(q_{\text{edge}}\), of an additive quality function.

Without loss of generality we can split the prior into two parts. First the support of each cluster is determined, and based on this support the membership coefficients are chosen. If we define \(S = \{\text{supp}(c) | c \in C\}\), then this means that
\[
P(C|V) = P(C|V, S) P(S|V).
\]

A reasonable choice for the first term \(P(C|V, S)\) is to assume that the clusters are independent, and that the membership coefficients inside each cluster are also independent, so
\[
C = \{C_s \mid s \in S\}
\]

\[
P(C_s|V, s) = \prod_{c \in C} \left(\prod_{i \in s} P(h_{ci}) \prod_{i \in V \setminus s} \delta(h_{ci}, 0) \right),
\]

where \(\delta\) is the Kronecker delta, which forces \(h_{ci}\) to be zero for nodes not in \(s\). The logarithm of \(P(C|V, S)\) is a sum of terms that depend only on a single cluster, so it can be encoded in the \(q_{\text{clus}}\) term of an additive quality function.

Now consider \(P(S|V)\). If we know nothing about the nodes, then the two simplest aspects of \(S\) we can look at are: (1) how many clusters cover each node, and (2) how many nodes are in each cluster. The only local choice for (1) is to take the number of clusters that cover node \(i\), \(n_i = \#\{s \in S \mid i \in s\}\), be independent and identically distributed according to some \(f(n_i)\). While for (2), the probability of a cluster \(s \in S\) must be independent of the other clusters. And since we have no information about the nodes, the only property of \(s\) we can use is its size. This suggests a prior of the form
\[
P(S|V) = \frac{1}{Z} \prod_{i \in V} f(n_i) \prod_{s \in S} g(|s|),
\]

where \(n_i = |\{s \in S \mid i \in s\}|\) is the number of clusters covering node \(i\). The term \(f(n_i)\) is local to each node, and can be encoded in \(q_{\text{node}}\). The term \(g(|s|)\) is local to each cluster, and can therefore be encoded in \(q_{\text{clus}}\). The normalizing constant \(Z\) depends only on \(V\), and so it can be encoded in \(q_{\text{graph}}\).

If we take \(f(n_i) = 1[n_i = 1]\) and \(g(|s|) = (|s| - 1)!\), then the prior on \(S\) is exactly a Chinese Restaurant Process 25. If we relax \(f\), then we get a generalization where nodes can belong to multiple clusters. Another choice is \(f(n_i) = 1[n_i = 1]\) and \(g(|s|) = 1\). Then the prior on \(S\) is the flat prior over partitions, which is commonly used for hard clustering.

Yes another choice is to put a Poisson prior on either the number of clusters per node or the number of nodes per cluster. That is, take \(f(n_i) = \lambda^{n_i}/n_i! \exp -\lambda\) for some constant \(\lambda\), or do the same for \(g\). This parameter allows the user to tune the number or size of clusters that are expected a-priori.

To summarize, we obtain a local quality function of
shows that, as expected, the optimal solution shows the influence of the parameter λ of clusters-per-node (with normal prior on the supported membership coefficients will be in practice. We use a Poisson likelihood, a half
the previous section, to see what the optimal clustering
clusters is suddenly better).

In other words, if the cliques are clustered correctly in
a small ring, than this is true regardless of the number
of nodes per cluster. To find the optimal clustering we use a general purpose optimization method,
which has four independent parts: a score for a node
being in a certain number of clusters, a score for the size
of each cluster, a prior for each non-zero membership
coefficient, and the likelihood of an edge a_{ij} given the
\hat{aij}.

The discrete nature of this quality function makes it harder to optimize. It is not clear if the multiplicative gradient algorithm that is commonly employed for NMF
20 can be adapted to deal with a prior on the support of
clusters. On the other hand, it might become possible to
use discrete optimization methods, such as the successful
Louvain method used for modularity maximization.

B. Analysis of the quality functions on two types
of graphs

We will now investigate the local quality function pro-
posed in the previous section.

First consider the original resolution limit model F, which consists of a ring of cliques. Two possible cluster-
ings of a part of such a ring are illustrated in Fig.5.

If a quality function is local, then we know that if $D_1 \cup C$ is a better clustering than $D_2 \cup C$ in this subgraph, then D_1 will also be better than D_2 as part of a larger graph. In other words, if the cliques are clustered correctly in
a small ring, than this is true regardless of the number of
cliques in the ring (unless a clustering with very large
clusters is suddenly better).

We have performed experiments with the prior from
the previous section, to see what the optimal clustering
will be in practice. We use a Poisson likelihood, a half
normal prior on the supported membership coefficients
(with precision $\beta = 1$), a Poisson prior on the number
of clusters-per-node (with $\lambda = 1$) and a flat prior on
the number of nodes per cluster. To find the optimal
clustering we use a general purpose optimization method,
combined with a search over the possible supports of the
clusters.

Fig. 6 shows that, as expected, the optimal solution
is always to have one cluster per clique when using the
local quality function. For comparison we also looked at
the simpler non-local NMF method without a prior on
the support. In that case the optimal solution depends
strongly on the prior on membership coefficients β. If

β is small, then there is a penalty for every zero in the
membership matrix, and hence a penalty on the number of clusters that increases with the number of nodes. If β
is large enough, then the probability density $p(0) > 1$
and this penalty becomes a ‘bonus’. In that case adding
even an empty cluster would improve the quality, and the
optimal clustering has an infinite number of clusters.

The method of Psorakis et al. has the same resolution
limit problem, but to an even larger extent. To auto-
matically determine the number of clusters, this method
keeps the actual number of clusters fixed to a large upper
bound, for which the authors take the number of nodes.
This means that there are very many clusters which will
be empty in the optimal solution. For these empty clus-
ters, the parameter β_c becomes very large. And as said
in the previous paragraph, this results in a bonus for empty
clusters. Hence the method will tend to maximize the
number of empty clusters, which results in a few large
clusters actually containing the nodes. For this experi-
ment we used the prior $\beta_c \sim \text{Gamma}(5,2)$, as is also
done in the code provided by Psorakis et al. Note that
the jaggedness in the plot is due to the fact a ring of n
cliques can not always be divided evenly into m clusters
of equal size. Between 24 and 50 cliques, the optimal
number of clusters is always 8 or 9.

Fig. 7 shows the influence of the parameter λ of the
Poisson prior that we put on the number of clusters per
node. When λ becomes smaller, it becomes a priori more
likely for a node to be in only a single cluster, or in fact,
to be in no cluster at all. It actually requires a quite
strong prior to get two cliques to merge into one clus-
ter, when using 5-cliques, we need λ to be smaller than
approximately 10^{-5}.

A ring of cliques is not a realistic model of real world
graphs, since on most graphs the clustering is not as clear

$$q(G, C) = \sum_{i \in V} \log f(\{|c \in C \mid i \in \text{supp}(c)|\})$$
$$+ \sum_{c \in C} \log g(|\text{supp}(c)|)$$
$$+ \sum_{c \in C} \sum_{i \in \text{supp}(c)} \log P(h_{ci})$$
$$+ \sum_{i,j \in V} \log P(a_{ij} \mid \hat{aij})$$
$$+ \kappa,$$
Figure 6. (Color online) Optimal cluster size (average number of cliques per cluster) in a ring of n 5-cliques, when varying the number n of cliques.

Figure 7. (Color online) Optimal cluster size (average number of cliques per cluster) in a ring of 5-cliques, when varying the λ parameter of the Poisson prior on the number of clusters per node. The number of cliques in the ring doesn’t matter because of locality.

Figure 8. (Color online) Varying the number of within and between module edges. The modules each have 10 nodes. A Poisson prior on the number of clusters per node ($\lambda = 1$) was used. We consider two possible clusterings: (a) A solution with three clusters, two clusters for the two modules and one cluster for the between module edges. And (b) the solution with a single cluster containing all nodes. The color in the plot indicates which clustering has a higher quality. In the dark region, the clustering (a) with three clusters is better. In the light region, the solution (b) with a single cluster is better. Results are the average over 10 random graphs with the given number of edges.

VI. CONCLUSION

To our knowledge, this work is the first to investigate resolution-limit-free and local NMF quality functions for graph clustering. We gave a characterization of a class of good (i.e. local) additive quality functions for graph clustering that provides a modular interpretation of NMF for graph clustering. The definitions of locality and of additive quality functions are general, and can also be applied to other soft clustering methods. We proposed the class of local probabilistic NMF quality functions. The design and assessment of efficient algorithms for optimizing these quality functions remains to be investigated.

Results of this paper provide novel insights on NMF for hard clustering, on the resolution limit of Bayesian NMF for soft clustering, and on the beneficial role of a local prior in probabilistic formulations of NMF.
ACKNOWLEDGMENTS

This work has been partially funded by the Netherlands Organization for Scientific Research (NWO) within the NWO project 612.066.927.

[1] S. E. Schaeffer, Computer Science Review 1, 27 (2007).
[2] S. Fortunato, Physics Reports 486, 75 (2010).
[3] M. Ackerman and S. Ben-David, in NIPS, edited by D. Koller, D. Schuurmans, Y. Bengio, and L. Bottou (Curran Associates, Inc., 2008) pp. 121–128.
[4] V. A. Traag, P. Van Dooren, and Y. E. Nesterov, Phys. Rev. E 84, 016114 (2011).
[5] S. Fortunato and M. Barthélemy, Proc. Natl. Acad. Sci. USA 104, 36 (2007).
[6] M. E. J. Newman and M. Girvan, Phys. Rev. E 69, 026113 (2004).
[7] P. Paatero and U. Tapper, Environmetrics 5, 111 (1994).
[8] D. D. Lee and H. S. Seung, Nature 401, 788 (1999).
[9] F. Wang, T. Li, X. Wang, S. Zhu, and C. Ding, Data Min. Knowl. Discov. 22, 493 (2011).
[10] T. Li and C. H. Q. Ding, in Data Clustering: Algorithms and Applications (Chapman and Hall/CRC, 2013) pp. 149–176.
[11] I. Psorakis, S. Roberts, M. Ebden, and B. Sheldon, Phys. Rev. E 83, 066114+ (2011).
[12] J. Reichardt and S. Bornholdt, Phys. Rev. Lett. 93, 218701 (2004).
[13] T. van Laarhoven and E. Marchiori, Phys. Rev. E 87, 012812 (2013).
[14] V. D. Blondel, J.-L. Guillaume, R. Lambiotte, and E. Lefebvre, J. Stat. Mech. Theory Exp. 2008, P10008 (2008) arXiv:0803.0476.
[15] M. Ackerman, S. Ben-David, and D. Loker, in COLT, edited by A. T. Kalai and M. Mohri (Omnipress, 2010) pp. 270–281.
[16] T. van Laarhoven and E. Marchiori, Journal of Machine Learning Research 15, 193 (2014).
[17] M. Catral, L. Han, M. Neumann, and R. J. Plemmons, in Special Issue on Positivity in Linear Algebra (2004) pp. 107–126.
[18] C. Ding, X. He, and H. D. Simon, in SIAM International Conference on Data Mining (2005).
[19] C. Ding, T. Li, W. Peng, and H. Park, in Proceedings of the 12th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD ’06 (ACM, 2006) pp. 126–135.
[20] G. Palla, I. Derenyi, I. Farkas, and T. Vicsek, Nature 435, 814 (2005).
[21] M. Ackerman and S. Ben-David, Journal of Machine Learning Research (2013).
[22] V. Y. F. Tan and C. Févotte, in Proc. Workshop on Signal Processing with Adaptive Sparse Structured Representations (SPARS) (St-Malo, France, 2009).
[23] A. T. Cemgil, Intell. Neuroscience 2009, 4:1 (2009).
[24] S should be seen as a multiset, since multiple clusters can have the same support.
[25] J. Pitman, Lecture Notes for St. Flour Summer School (2002).
[26] D. D. Lee and H. S. Seung, in In NIPS (MIT Press, 2000) pp. 556–562.
[27] F. Radicchi, C. Castellano, F. Cecconi, V. Loreto, and D. Parisi, Proc. Natl. Acad. Sci. USA 101, 2658 (2004).