Similarity Assessment through blocking and affordance assignment in Textual CBR

R. Rajendra Prasath* and Pinar Öztürk

Department of Computer and Information Science (IDI)
Norwegian University of Science and Technology (NTNU),
Sem Sælands Vei 7-9, NO - 7491, Trondheim, Norway,
{rajendra,pinar}@idi.ntnu.no.
http://www.idi.ntnu.no/~rajendra;
http://www.idi.ntnu.no/people/pinar;

Abstract. It has been conceived that children learn new objects through their affordances, that is, the actions that can be taken on them. We suggest that web pages also have affordances defined in terms of the users’ information need they meet. An assumption of the proposed approach is that different parts of a text may not be equally important / relevant to a given query. Judgment on the relevance of a web document requires, therefore, a thorough look into its parts, rather than treating it as a monolithic content. We propose a method to extract and assign affordances to texts and then use these affordances to retrieve the corresponding web pages. The overall approach presented in the paper relies on case-based representations that bridge the queries to the affordances of web documents. We tested our method on the tourism domain and the results are promising.

1 Introduction

World Wide Web (WWW) is a massively distributed and decentralized medium for information and services, and also one of the most egalitarian discoveries of mankind in modern times. However, the use of the web technology to its maximum possible extent requires development of flexible and effective searching approaches. To this end, we propose an approach in which the web can be searched through case representations that capture plausible connections between users’ queries and affordances of web documents.

This work presents an approach to document retrieval in the tourism domain, yet the underlying research objective is to develop a method for explication and capture of the affordance of documents that are available on the WWW. Gibson[3] introduced the term affordance to refer to the opportunities for action provided by a certain object. We suggest that web documents should similarly have affordances that refer to use-purposes of documents. The meaning of a content to the query of a user lies in its affordance. The question transforms then into how the affordance of documents are conveyed in textual format and can be extracted and represented in a reusable way.

* This work was carried out during the tenure of an ERCIM “Alain Bensoussan” Fellowship Programme.
A central idea of the presented method is that a document may contain information that matches different queries, each of which corresponds to an affordance. For example, a web document about New Delhi may provide information about the non-vegetarian restaurants, the bazaars, as well as the transportation within the city while the main focus may be on shopping. This would mean that most of the content revolves around bazaars, shopping malls, and the shopping norms (i.e., whether/where to bargain and when/where not). The main strategy of the approach is to divide the Web pages into text segments, determine affordance of each and use these to determine the information needs the documents afford. This may be considered as a special type of tagging technique, in the classical natural language processing terminology.

The use of Case Based Reasoning (CBR) in web context has attracted researchers for a while. For example, Limthan et al. [6] applied CBR in order to compose a complex web service from heterogeneous web services residing in different parts of the web, and [2] in order to search and select web services. Ha [4] investigated how the web usage data can be used to discover navigation patterns which, in turn, can be used to predict the user behavior. In this work, a web document has a corresponding case representation capturing information that bridges queries to documents through affordances. Query experiences are used to adjust the affordances of documents. This provides search-useful and re-usable information for future web searches. The key rationale of the proposed approach is based on two assumptions: (i) a web document embraces a number of text blocks each of which can be connected to one or several affordances, (ii) the web can be searched CBR-wise and relevance of a document can be judged on the basis of its affordance alignment with the current query case. Figure 1 illustrates the proposed approach in comparison with the web search.

Fig. 1. Blocking and affordance assignment approach in WebCBR
The paper is organized as follows: Next section presents the idea behind the web-affordance notion. Section 3 explains the proposed case-based approach and the case population. Section 4 presents the experimental results and discussions. Finally, section 5 wraps up with conclusions and future directions.

2 The affordance-guided querying approach

A main rationale behind the proposed approach is the hypothesis that a document may serve more than one information need, that is, it may have multiple affordances. This because different parts (here we consider them as blocks) of a document may have slightly different focuses. We defined a list of topics in advance (manually at the moment) each of which fulfills an information need of the user. In tourism domain, a user may need information related to accommodation at a particular place, easy and economical transport options, places to roam around, time to travel from one place to another place, food / types of restaurants, historical / important places to visit, shopping at famous places, so on and so forth. Currently we have a list of 18 topics for the tourism domain. Each web page may afford to one or several of such information needs.

Affordance of a text segment/block is represented as a vector of which each element specifies the extent the text affords a certain information need in the affordance list for the task domain. The affordance of a whole document is determined on the basis of the affordance vectors (AV) of its constituent blocks. The size of an affordance vector, consequently, is \(m \) in the example (ie., tourism) domain (here \(m = 18 \)).

The querying approach proposed in this paper relies on retrieving a number of documents relevant to the query using information retrieval (IR) techniques, and then employing an affordance-based ranking on this set. In the rest of the paper, we use the following notation:

\[
AV_{text} = \{A_1, A_2, \ldots, A_m\} \quad (1)
\]

where \(AV \) is a vector while \(A_i \) is a scalar representing the affordance with respect to the \(i^{th} \) element in the list of \(m \) affordances.

3 Case-Based, Affordance-Guided Web

The objective of this work is, given a query, to retrieve the web documents that meet the user’s information need in the best possible way, using a refined assessment of the document guided by affordances. The underlying assumption is that the web is informed about the affordance of each document, in a case base. There is a case for each document of which the problem description part consists of a term-set that represents the document in a concise way, and the identification of the document it represents. The term-set is, in a sense, a dimension-reduced version of the web page. The solution part informs about the affordance of the document indirectly, through affordances of its constituent blocks. Hence a case is represented as follows:

\[
C_i = \{ProbDescription, Solution\}
\]

where \(ProbDescription \) consist of a term-set representation of the web page while \(Solution \) has two components:
Solution = \{AV, I\}

AV is the affordance vector of size m (see Equation 1) and represents the affordances of the web page. AV, together with I (which is the identification of the corresponding document), constitutes the solution part of a case. The next section describes how the case base is populated.

3.1 Population of the Case Base

Initially, case base contains no cases and cases are constructed incrementally in the off-line mode. To build the case base, we apply link-to-text ratio which is defined as the ratio between the size of the text tagged with hyperlinks and the text without hyperlinks.

Problem description: A web page is first segmented into blocks and a textual description of each block b_i is extracted (after removing the markups and stop words) using link-to-text ratio. If link-to-text ratio is more then, all hyperlinked text will be skipped and link-to-text ratio is scaled in the normalized interval [0-1]. Then from each extracted block text, top k discriminative terms are selected (after stop word removal) and added to ProbDescription in the problem description of the case. This process is described in the ‘problem part’ of Algorithm 1.

Solution: The extracted text, say $text_i$, of the block b_i is processed to identify its affordance with the help of the resource terms (topics and # terms considered in each topic, are presented in the table 1). For each topic, the matching terms are identified, the affordance with respect to this topic is computed and the affordance vector of the block is updated (see ComputeBlockAffordance in the Algorithm 2) accordingly. The AV of the document, in turn, is computed by ComputeDocAffordance, as described in the ‘solution part’ of the Algorithm 1. A case is generated by coupling the problem description and the solution parts and is added to the case base.

```
Algorithm 1 Population of Case Base

Input: List of topic: $L_t$ (from table 1); A web document: $d$;

Procedure:
I: identification of $d$;

Problem Part:
1: Initialize probDesc to NULL;
2: for each block text data do
3: remove stop words and punctuation;
4: filter out top $k$ words from the block text and add it to probDesc;
5: end for

Solution Part:
1: $AV_d = \text{ComputeDocumentAffordance}(d)$
2: Soln = $<AV_d, I>$

Case Base:
1: Add the new case having $<\text{probDesc}, \text{Soln}>$ to the case base;

Output: The Case Base;
```
3.2 The Querying Process

Two main processes underlying the querying method are described in Algorithm 3. This part is similar to information retrieval for the given query, but retrieval is performed on a specific amount of extracted text from each block and the assigned affordances. During the retrieval, the problem description part of the cases are matched with the user’s query and top \(k \) cases are retrieved. These are then ranked using the solution of the case, where the AV of the query and the AV of cases are compared. AV of the query is computed on the basis of the terms (also called as ‘resource terms’) in each topic. After each such a retrieval episode, the AV of the top \(k \) number of cases are revised and modified in such a way that its currently experienced relevance to the query is properly reflected in the case representation.

Algorithm 2 Procedures to compute Document and Block Affordance Vectors

Procedure: ComputeDocAffordance(\(d \))

Input: List of topics - \(L_t \); A web document - \(d \);

Procedure:

1. Segment \(d \) into blocks \(b_i \). Initialize \(AV_d := \text{NULL} \);
2. for each block \(b_i \) in \(d \) do
3. Compute \(AV_{b_i} := \text{ComputeBlockAffordance}(b_i) \)
4. Update \(AV_d := AV_d + AV_{b_i} \)
5. end for
6. return \(AV_d \)

Output: The AV of the given document \(b_i \)

Procedure: ComputeBlockAffordance(\(b_i \))

Input: List of topics - \(L_t \) (as in table 1); \(AV_{b_i} \) - affordance vector;

Procedure:

1. for each \(topic_j \) \(\in L_t \) do
2. Compute the number of matching terms in \(b_i \) and terms in \(topic_j \) \(\in L_t \)
3. Update this score for the corresponding affordance in \(AV_{b_i} \).
4. end for
5. return \(AV_{b_i} \)

Output: The affordance vector \(AV_{b_i} \) of the block \(b_i \)

4 Experimental Results

4.1 Web Corpus

The effectiveness of the proposed method is analyzed through experimental results on a corpus containing the web pages mostly related to the tourist places in India. The tourism web pages were collected by applying the crawling process according to a set of policies that filter the supplementary files. We have omitted the web pages having only hyperlinks, images, advertisements and graphical layouts (like the index page of the
Algorithm 3 Similarity Assessment through blocking and affordance assignment

Input: A query having \(n \) terms: \(q = \{ q_{t_1}, q_{t_2}, \ldots, q_{t_n} \} \)
Case base having \(m \) cases: \(\{ c_1, c_2, \ldots, c_m \} \)
\(L_t \) - List of topics;
\(AV_q \) - the query affordance vector
\(AV_c \) - the affordance vector of a case.

Procedure:
1: Retrieve top \(k \) cases using

\[
sim(q, c_j) = \sum_{t_{i \in q} \cap t_{j \in c_j}} \sim(t_i, t_j)
\]

where \(q \) is the query; \(c_j \) is the case and \(t_j \) are the matching terms in the problem part of \(c_j \)
2: for each retrieved case \(c_k \) do
3: compute the query affordance vector \(AV_q \) with respect to the topic list \(L_t \);
4: get \(AV_c \) from the solution of \(c_k \);
5: compute \(sim(AV_q, AV_c) \) using cosine metric; (see equation 5)
6: end for
7: return the ranked list of top \(k \) cases with respect to \(sim(AV_q, AV_c) \)

Output: The ranked list of cases sorted by their similarity scores

most of the sites). Additionally we skipped the pages containing redirect options, less significant textual description, only copyright information, etc. The remaining pages are collected to form a raw web corpus. Then preprocessing tasks were performed to generate the case base having problem description and solution parts through content and structure mining with focused information extraction.

4.2 Preprocessing

We have applied focused content filtering which performs the structural mining on each collected web page. This structural mining, based on table OR paragraph OR div tags, decomposes the given web page into blocks. Then for each block, we applied the link-to-text ratio to distinguish content noise and content text description. We perform duplicate sentences elimination both at the phrase level and at the whole sentence level in order to avoid repeating sentences in the solution parts of each block text. The extracted text content, if they are represented in hex code, are converted into unicode. So multilingual content using hex representation can also be processed (except for the pages using certain proprietary fonts / encodings). We have retained the headings and paragraph markers with selected top \(k \) terms for the problem description. But due to link to text ratio, some of the headings might have been removed. Specific patterns are hardly seen for eliminating the unlinked noise from such pages.

Among the total number of 112,522 web documents [1315 seed URLs were crawled to the depth 3], 14,033 web pages, containing both tourism and non tourism pages but having sufficient textual data (after filtering the web pages having spam contents like
unwanted, restricted contents, adult contents, etc), were selected for our experiments. We have manually crafted the list of 18 affordances related to tourism domain including the affordance miscellaneous.

Affordances	# Terms	Affordances	# Terms
Accommodation	59	Retreats	59
Attractions	59	Shopping	59
Beaches	59	Spirituality	59
Deserts	59	Sports	66
HealthCare	60	ThemeParks	59
Heritage	59	TourPackages	59
HillStations	59	Transport	61
Landscapes	59	Wildlife	59
Nature	59	Miscellaneous	Rest

Table 1. List of predefined affordances with number of terms in each affordance

4.3 Queries / New Cases

We have considered 25 tourism queries in English language used in Cross Lingual Information Access (CLIA) Project\(^1\) - a large project on cross-lingual information access systems for Indian languages, that is being funded by the Government of India, and being executed by a consortium of several academic institutions and industrial partners\[^7\]. Each query is presented in three forms: title - the actual query, desc - the expanded query and narr - the narration of the query. At present, we have attempted with title, desc parts. Here we considered each query (title / desc) as a new case.

4.4 Evaluation Methodology

In the experiments, we compared the effectiveness of the retrieval using Lucene\(^2\) and the proposed approach. In Lucene, the similarity scoring function\[^5\] is derived from its conceptual formula as follows:

\[
sim(q, d) := \text{coord}(q, d) \cdot \text{queryNorm}(q) \cdot \sum_{t \in q} (tf(t \in d) \cdot idf(t))^2 \cdot t.getBoost() \cdot \text{norm}(t, d))
\]

where \(tf(t \in d)\) is the term frequency - the number of time \(t\) occurs in \(d\); \(idf(t)\) is the inverse document frequency of the term; \(\text{coord}(q, d)\) is the score factor based on how many of the query terms are found in the specified document; \(\text{queryNorm}(q)\) is the normalizing factor used to make scores between queries comparable (does not affect the document ranking); \(t.getBoost()\) is the field boost and \(\text{norm}(t, d)\) encapsulates a few (indexing time) boost and length factors. Here \(\text{norm}\) values is encoded during indexing time and decoded during search time. Thus encoding/decoding comes with the precision loss - that means \(\text{decode}(\text{encode}(x)) = x\) is not guaranteed. Lucene allows

\(^1\) http://www.clia.iitb.ac.in/clia-beta-ext/
\(^2\) http://lucene.apache.org/java/docs/
the users to customize its scoring formula by changing the boost factors for calculating the score of similarity between the query q and the document d. Lucene\cite{Lucene} sorts the retrieved results based on either their relevance or index order for the given query. Here we sort the retrieved results based on their relevance to the given query.

In the proposed approach, we weight the AV of the case in the similar way to\cite{1,8}:

- Weighted affordance of a case(W_{c_i}):
 \[
 W_{c_i} = \frac{w_{c_i}}{\sqrt{\sum_{i=1}^{m} w_{c_i}^2}} \tag{3}
 \]
 where w_{c_i} is the weight of the affordance i in the AV of the case.

- Weighted affordance of a Query(new case)(W_{q_i}):
 \[
 W_{q_i} = \frac{w_{q_i}}{\sqrt{\sum_{i=1}^{m} w_{q_i}^2}} \tag{4}
 \]
 where w_{q_i} is the weight of the affordance in the AV of the query.

Similarity between the query (new case) and the case is computed by:

\[
\text{sim}(q_i, c_i) := \text{sim}(AV_{q_i}, AV_{c_i}) := \sum_{\text{matching features}} W_{q_i} \times W_{c_i} \tag{5}
\]

During the estimation of case affordance vectors, the values of the elements in the vector increase with the number of matching terms between the solution part and the new case. In such situations, we could apply affordance vector length normalization. To length normalize the elements of the affordance vector AV_c, for the case c having m affordances: $\{A_{t_1}, A_{t_2}, \cdots, A_{t_m}\}$, to the unit vector, we do the following: $AV_c := \frac{AV_c}{|AV_c|}$ where denominator denotes the Euclidean length of the vector of the affordance t_i in c. In the mean time, we will take care of the effect of normalization factor in decreasing the chances of retrieval of the document.

Fig. 2. Effect of rank aggregation of lucene retrieval vs the proposed approach
We perform rank aggregation: Given a new case, retrieve top candidate cases using the problem description. Then similarity estimates of the affordance vector (solution part) of each of the candidate cases with the affordance vector of the query are computed. Finally the rank of all top \(k \) cases are aggregated with respect to their actual similarity scores and the results are compared. The figure 2 shows the effects of rank aggregation for the 25 tourism queries [title / desc parts are considered here]. Lucene retrieval score is influenced by index time boot factors and applies tf - idf tradeoff with overall content of the textual description. In the proposed approach, the point of focus is the affordance assignment with respect to the blocktext based on its maximum affordance. The queries Q12, Q13 and Q14 are proper names representing the places and each extracted block text, that speaks about these places specifically, contributes to the overall affordance. Similarly Q21 and Q22 focus on the specific event / hotel in the particular place. This gives combined affordance score with with the proper names. Hence this leads to a better performance for most of the queries (particularly for Q12, Q13, Q21 and Q21).

Next we considered a few sample queries whose similarities are effectively computed through blocking and affordance assignment(fig. 3). For example, in Q1 (Query: "sunderbans national park"), the document with ID - 2092, ranked 14 in Lucene retrieval and the proposed method has brought it to rank 2. Here affordances related to wildlife, heritage and attractions are captured where as the affordances related to nature is hardly captured. This is due to the fact that park under the affordance nature contributed less to the overall affordance than to wildlife. In another example, for the query "Elephant Safari in Kaziranga", the document, with ID: 10417, having the dominating term of “safari”, has been brought to the top in lucene where as its affordance value score very less. At the same time, for the query Goddess Meenakshi Temple, the proposed approach captured the document, with ID: 5784, whose blocks describe different topics related to Meenakshi temple in Madurai, Tamil Nadu, India.

Even though the performance of the proposed system is promising, the effect of the noise and the accuracy of filtering approach along with the list of resource terms play a vital role in the effective retrieval of cases. The effect of spam pages will reduce the chances of retrieving the relevant document through boosting their scores by projecting the related themes. Owing to paucity of resources, we have limited our spam filtering to filter pages containing adult content along with tourism related textual content. This
effectively reflects in the retrieved results with the proposed approach. This is our preliminary attempt with manually crafted term list for each identified (predefined) affordance related to the tourism domain. Developing an automated process for the affordance identification irrespective of the domain may be attempted in the future.

5 Conclusion

We presented an approach for achieving an effective case retrieval through the similarity assessment based on blocking and identifying affordances of web documents. Affordance provides a visual clue to the case identification. Traditional methods dealing with textual content try to apply similarity metrics collectively for the heterogeneous blocks of text together presented in the same web content. This reduces the chances of the user expected contents (solutions). The proposed approach solves this issue by applying page segmentation through blocks, identifying valid text from these blocks, scoring each of the blocks with certain affordance scores and then applying similarity metrics to achieve the effective case retrieval. The actual performance of the proposed approach can be seen with the similarity scores computed using query affordance vector and case affordance vectors. The preliminary results show that the proposed approach would be promising for identifying the specific block text as the relevant solution.

Acknowledgement

We gratefully acknowledge: Prof. Sudeshna Sarkar (IIT Kharagpur) for initiating this work; the efforts of Mr. Parin and Mr. Gyan (IIT, Kharagpur) in getting the list of seed urls for crawling and Mr. David Kabath (NTNU) in preparing the list of (tourism related) keywords. Also authors thank the anonymous reviewers for their insights which improved the quality of the paper.

References

1. C. Buckley, G. Salton, J. Allan, and A. Singhal. Automatic query expansion using smart: Trec 3. In TREC, pages 0–, 1994.
2. O. G. F. Diaz, R. S. Salgado, I. S. Moreno, and G. Rodriguez-Ortiz. Searching and selecting web services using case based reasoning. In ICCSA (4), Lecture Notes in Computer Science, pages 50–57. Springer, 2006.
3. J. J. Gibson. The theory of affordances. In R. Shaw and J. Bransford, editors, In Perceiving, Acting, and Knowing, 1977.
4. S. Ha. A personalized counseling system using case-based reasoning with neural symbolic feature weighting (cansy). Appl. Intell., 29(3):279–288, 2008.
5. E. Hatcher and O. Gospodnetic. Lucene in Action (In Action series). Manning Publications Co., Greenwich, CT, USA, 2004.
6. B. Limthanmaphon and Y. Zhang. Web service composition with case-based reasoning. In ADC '03: Proceedings of the 14th Australasian database conference, pages 201–208, Darlinghurst, Australia, Australia, 2003. Australian Computer Society, Inc.
7. P. Majumder, M. Mitra, S. Parui, and P. Bhattacharyya. Initiative for indian language ir evaluation. In The First International Workshop on Evaluating Information Access, pages 14–16, Tokyo, Japan, 2007. EVIA.
8. A. Singhal, G. Salton, M. Mitra, and C. Buckley. Document length normalization. Inf. Process. Manage., 32(5):619–633, 1996.