Preparation and characterization of ZnO/TiO₂ nanocomposite by Anodization and hydrothermal synthesis

BENKARA Salima¹, GHAMRI Houda²

¹Faculty of Science and Applied Science, Larbi Ben M'hidi, University, Oum El Bouaghi 04000, Algeria.
Laboratory of active components and materials
University Larbi Ben M'hidi Oum El Bouaghi 04000, Algeria

²Faculty of Science, Hadj Lakhader University Batna, 05000, Algeria.
E-mail address: sali_benkara@yahoo.fr, Ghamri_houda@yahoo.fr

Keywords: ZnO nanorods; TiO₂ nanotubes; Nanocomposites; Hydrothermal process; Anodic oxidation.

ABSTRACT:

ZnO nanorod arrays were deposited by hydrothermal process in an aqueous solution with ammonia and Zinc nitrate as inorganic precursors, using TiO₂ nanotube templates formed in HF solution by anodization method. The effect of NH₃, H₂O and Zn(NO₃)₂ concentration on ZnO nanorods morphology and crystallinity were investigated. XRD demonstrates that ZnO nanorods are wurtzite crystal structure preferentially oriented in c-axis direction. The length and the diameter of the ZnO nanorod range from 1.1 μm to 3.4 μm and from 250 to 500 nm respectively.

1. INTRODUCTION

One-dimensional (1D) nanostructures, including nanowires, nanotubes and nanorods have attracted significant interest owing to their unique geometries. [1] As a kind of 1D oxide material, ZnO nanorod arrays are considered as important functional oxide nanostructures in a wide area of high-technology applications such as a surface acoustic wave filters [2], ultraviolet laser devices [3], photonic crystals [4], photo detectors [5], field-emitting devices [6], sensors [7], electroactive materials [8], and solar cell electrodes [9].

Various physical, chemical, or electrochemical methods [10–13] have been developed to prepare 1D ZnO. Among these fabrication methods, ZnO nanorods are most commonly grown by vapor phase method like vapor–liquid–solid (VLS), chemical vapor transport, and thermal evaporation [11]. These approaches can produce high quality and vertically aligned nanorods, with a length of several microns. But, these fabrication procedures require higher temperatures, longer processes and high cost vacuum equipments are often involved in these techniques as well. Compared with those techniques, chemical solution method is attractive to synthesize ZnO nanostructures because of the low cost equipments, lower growth temperatures, promising for scaling up, and controlled easily technology of growing high-density nanorods array [16].

A template-assisted approach has been proven to be effective for the growth of nanostructure oxides. A major advantage of using templates is that the dimension of the tubes or rods is set by the size of template and can be varied easily by adjusting preparation conditions. Few efforts have been made on the study of the use of ZnO nanorods as a template. Yang [17] and Kim [18], demonstrated that inorganic nanotubes can be obtained by using ZnO nanorods grown from the desired substrates as template. Their procedures involve the use of catalysts, high temperature, and a vacuum technique, leading to increase the cost. Seok et al [19] successfully fabricated aligned TiO₂ nanotube arrays by electrodeposition of ZnO nanorod as a template. In contrast, preparation of ZnO nanorods using TiO₂ nanotubes as templates remain largely unexplored although a few studies. Zhonghai et al [20] prepared ZnO nanorods embedded
in highly ordered TiO2 nanotubes. Ning [21] has reported a strategy to prepare aligned ZnO nanorod films using TiO2 nanotube array films as template.

Therefore, in the present study we would like to present a detailed investigation on the preparation and characterization of ZnO/TiO2 nanocomposite film. The ZnO/TiO2 nanostructured composite film was prepared using two steps: (1) Formation of TiO2 nanotube arrays in HF solution by anodization method, which is a simple technique to control the structure parameters of TiO2 NTs. (2) Deposition of ZnO nanorods by hydrothermal process with ammonia and Zinc nitrate as inorganic precursors.

2. EXPERIMENTAL
A. Materials and chemicals

Pieces of Titanium sheets (98% purity, 0.5 mm thickness), Zinc nitrate hexahydrate (Zn(NO3)2.6H2O, AR), Hydrofluoric acid (HF), Acetone, Nitric acid, Hydrogen Ammonia solution NH4OH. Distilled water was used in all aqueous solution preparations and washing.

B. Preparation of TiO2 nanotubes

Anodic oxidation method was adopted to prepare TiO2 nanotube TNTs. Prior to anodization, titanium pieces were degreased in an ultrasonic bath of distilled water for 10 min, followed by etching in a mixture of HF solution, nitric acid and distilled water for 1 min; then cleaned with acetone, rinsed with distilled water and dried in air. Anodization is performed in 2 w \% HF solution and distilled water with voltage of 20 Volts for 5 h. Finally, samples were rinsed and annealed at 450 °C for 1 h.

C. Characterization of resulting films samples

The surface morphology of the film samples was observed through scanning electron microscopy (SEM-JEOLJSM-7600 and E0438y apparatus). The crystal phase composition of the samples were analyzed by X-ray diffraction (XRD, Bruker-Siemens D8- Advance, Cu.Kα radiation λ=1.5406 Å).

3. RESULTS AND DISCUSSION

Figure 1 is the profiles of the TiO2 nanotubes before and after annealing at 450 C° for 1 h. As shown in figure 1 b, peaks with a 2θ value of 25.6° correspond to the crystal plan of anatase (101) phase. And other peaks are corresponding to the titanium substrate, which is similar to the results found in early literatures [21] and [22].

Figure 2 presents XRD patterns of ZnO/TiO2 at different hydrothermal temperatures. Except for 5 peaks at titanium and titania, the diffraction peaks with 2θ value of: 32.1°, 34.7° and 51.9° agree well with the wurtzite hexagonal structure with the lattice constants of: a=0.32 nm and c=0.52 nm, according to the standard JCPDS card (No. 36-1451). Based on the higher (002) XRD peaks than (101) one, which is usually the highest in all XRD peaks of ZnO crystal.

XRD patterns in Figure 2 c show a disappearance of the peaks corresponding to titanium, at high temperature, the formation of ZnO increases with increasing of reaction rate into aqueous solution, and also the reaction rate between Ti and ZnO.
Figure 1. The XRD patterns of TiO$_2$ Nts (a) before and (b) after annealing.

Figure 2. The XRD patterns of ZnO/ TiO$_2$ at different hydrothermal temperature: at 80 °C (a), at 100 °C (b) and at 160° C.

No remarkable change in orientation of the films as the amount of ammonia was increased shown in Figure 3 but influenced the intensity of the preferred crystalline orientation.
Figure 3. The XRD patterns of ZnO/ TiO2 with (a) 0.3 M of ammonia and (b) 0.4 of ammonia.
The SEM image of the TiO2 nanotubes formed on the Ti substrate by anodization method shown in Figure 4 a, which reveals that high density, well ordered and uniform nanotubes array are formed.

The diameters of these nanotubes range from 60 nm to 95 nm and their length is about 1.7 µm detected by profilometry.

After ZnO deposition by hydrothermal process on the TiO2 NTs as shown in Figure 4 b, the ZnO grows oriented through the TiO2 NTs inner channels. The epitaxial growths of ZnO nanorods inside the TiO2 nanotube channels are spilled over the TiO2, which is in good agreement with one reported by Z. Zhang et al [20] and K. Yu et al [23].

4. CONCLUSION

ZnO/titania nanocomposites were fabricated via two step route. The TiO2 nanotubes were fabricated by anodization method. The hydrothermal process was employed to form ZnO nanorods in TiO2 nanotubes. The obtained TiO2 nanotubes and ZnO/TiO2 nanocomposite are characterized by different techniques: XRD, and SEM. TiO2 nanotubes are mainly anatase structure and well ordered. The diameter of these nanotubes ranges from 60 to 95 nm and the length is about 1.7 µm. The ZnO nanorods have high crystallinity of wurtzite hexagonal structure.

ACKNOWLEDGMENT

This work was supported by Ceramic Laboratory of Physic department, University of Constantine, Algeria. The authors are grateful to J. Carru of Calais University, France, and O. Abdelkader of Cadi Ayyad University, Morocco for their help in using the Scanning electron microscope.
References
[1] J.B. Chen, C.W. Wang, B.H. Ma, Y. Li, “Field emission from the structure of well-aligned TiO2/Ti nanotube arrays,” Thin Solid Films, vol 517, p. 4390, 2009.
[2] J.B. Lee, H.J. Kim, S.G. Kim, C.S. Hwang, S.H. Hong, Y.H. Shin, “Deposition of ZnO thin films by magnetron sputtering for a film bulk acoustic resonator,” Thin Solid Films, vol 435, p. 179, 2003.
[3] M. Zamfirescu, A. Kavokin, B. Gil, G. Mapluech, M. Kaliteevski, “ZnO as a material mostly adapted for the realization of room-temperature polariton lasers,” Phys. Rev, vol B 65, 161205, p. 1, 2002.
[4] Y. Wu, H. Yan, M. Huang, B. Messer, J.H. Song, P. Yang, “Inorganic Semiconductor Nanowires: Rational Growth Assembly, and Novel Properties,” Chem. Eur. vol J 8, p. 3060, 2002.
[5] Y.F. Mester, L.L. Zamora, J.M. Calatayud, “Flow-chemiluminescence, a growing modality of pharmaceutical analysis,” Luminescence, vol 16, p. 213, 2001.
[6] C.J. Lee, T.J. Lee, S.C. Lyu, Y. Zhang, H. Ruh, H.J. Lee, “Field emission from well-aligned zinc oxide nanowires grown at low temperature,” App. Phys. Lett, Vol 80, 3648, 2002.
[7] Q. Wan, Q.H. Li, Y.J. Chen, T.H. Wang, X.L. Hu, P. Li, Y.L. Lin, “Fabrication and ethanol sensing characteristics of ZnO nanowire gas sensors,” Acta Phys. Phys. Lett, vol84, p. 3656, 2004.
[8] Z.L. Wang, J.H. Song, Science, Vol. 412, pp. 242-246, 2006.
[9] C. Levy-Clement, R. Tena-Zaera, M.A. Ryan, A.B. Hodes, “CdSe-Sensitized p-CuSCN/Nanowire n-ZnO Heterojunctions,” Nano. Mater., vol 17, p. 1512, 2005.
[10] Y. Zhang, N. Wang, S. Gao, R. He, S. Miao, “Simple method to synthesize nanowires,” Chem. Mater, vol 14, p. 3564, 2002.
[11] D. Banerjee, J.Y. Lao, D.Z. Wang, Y. Huang, Z.F. Ren, D. Steeves, et al, “Large-quantity free-standing ZnO nanowires,” Nano. Lett 83, p. 2061, 2003.
[12] S.Y. Li, C.Y. lee, W.Y. Tseng, Y. Ery, “Copper-catalyzed ZnO nanowires on silicon (1 0 0) grown by vapor-solid–solid process,” Cryst Growth, vol 247, p. 3572, 2003.
[13] J.J. Wu, S.C. Liu, “Low-Temperature Growth of Well-Aligned ZnO Nanorods by Chemical Vapor Deposition,” Adv. Mater, vol 14, p. 215, 2002.
[14] P.C. Chang, S. Fan, D. Wang, W.Y. Tseng, W.A. Chiou, J. Honget, et al., “ZnO Nanowires Synthesized by Vapor Trapping CVD Method,” Chem. Mater, vol 16, p. 5133, 2004.
[15] J.J. Zhang, L.D. Zhang, G.H. Li, W.Z. Shen, “Fabrication and optical properties of large-scale size of ZnO nanowire arrays by one-step electrochemical deposition technique,” Chem. Phys. Lett, vol 363, p. 123, 2002.
[16] L.E. Greene, L.M. Law, J. Godberge, F. Kim, J.C. Johnson, Y. Zhang, et al., “Low-Temperature Wafer-Scale Production of ZnO Nanowire Arrays,” Chem. Int. Ed, vol 42, p. 3031, 2003.
[17] J. Godberge, R. He, S. Lee, Y. Hang, H. Yan, H. Chio, P. Yang, “Single-crystal gallium nitride nanotubes,” Nature, vol 422, p. 599, 2003.
[18] J. Hwang, B. Min, J.S. Lee, K. Keem, S. Kim, “Al2O3 Nanotubes Faricated by Wet Etching of ZnO/Al2O3 Core/Shell Nanofibers,” Adv Mater, vol 16, p. 422, 2004.
[19] S.I. Na, S.S. Kim, W.K. Hong, J.W. Park, J. Jo, Y.C. Nah, T. Lee, D.Y. Kim, “Fabrication of TiO2 nanotubes by using electrodeposited ZnO nanorod template and their application to hybrid solar cells,” Electrochim. Acta, vol 53, p. 2560, 2008.

[20] Z. Zhang, Y. Yuan, L. Li, Y. Cheng, “Preparation and photovoltaic activity of ZnO nanorods embedded in highly ordered TiO2 nanotube arrays electrode for azo dye,” Journal of Hazardous Materials, vol 158 p. 517, 2008.

[21] N. Wang, X. Li, Y. Wang, Y. Hou, X. Zou, G. Chen, “Synthesis of ZnO/TiO2 nanotube composite film by a two-step route,” Materials Letters, vol 62, p. 3691, 2008.

[22] J.B. Chen, C.W. Wang, B.H. Ma, Y. Li, J. Wang, “Field emission from the structure of well-aligned

[23] K. Yu, Z. Jin, X. Liu, J. Zhao, J. Feng, “Shape alterations of ZnO nanocrystal arrays fabricated from NH3·H2O solution,” Applied Surface Science, vol 253, p. 4072, 2007.

(Received 03 June 2015; accepted 29 June 2015)