Translocation, switching and gating: potential roles for ATP in long-range communication on DNA by Type III restriction endonucleases

Mark D. Szczelkun1

DNA-Protein Interactions Unit, School of Biochemistry, Medical Sciences Building, University of Bristol, Bristol BS8 1TD, U.K.

Abstract

To cleave DNA, the Type III RM (restriction–modification) enzymes must communicate the relative orientation of two recognition sequences, which may be separated by many thousands of base pairs. This long-range interaction requires ATP hydrolysis by a helicase domain, and both active (DNA translocation) and passive (DNA sliding) modes of motion along DNA have been proposed. Potential roles for ATP binding and hydrolysis by the helicase domains are discussed, with a focus on bipartite ATPases that act as molecular switches.

Introduction

Many cellular transactions require enzymes that bind and hydrolyse nucleoside triphosphates. Many of these are ‘molecular motors proteins’: they couple chemical energy to mechanical events such as protein motion. The helicases represent one class of motor protein [1]. They are widespread in all domains of life and play roles in every aspect of genome biology. On the basis of amino acid sequence motifs, they are classified into six SFs (superfamilies). All are NTPases and the classically defined role of a ‘helicase’ is separation of two strands of DNA/RNA. A large body of evidence has coalesced into a basic mechanism for coupling NTP-binding and hydrolysis to stepwise motion along a polynucleotide (see below) [1–4]. However, there are also a growing number of examples of helicases that can unwind multiple base pairs without stepwise motion and with the consumption of relatively few ATP molecules [5]. In addition, there are numerous other examples where ATP-coupling appears to play an alternative role to strand separation, e.g. in dsDNA (double-stranded DNA) translocation [6]. This review considers one such non-classical system, the Type III RM (restriction–modification) enzymes [7,8]. Possible roles for nucleotide-binding are discussed by analogy to NTP-driven motors and molecular switches.

The ATP-dependent Type III RM enzymes

Type III RM enzymes cleave DNA following recognition of specific DNA sequences (e.g. 5′-CAGCAG-3′ for EcoP151) and play an important role in bacteria and archaea by protecting against infection by parasitic nucleic acids. They form heterotetramers of two Res and two Mod subunits [9,10]: Mod contains motifs characteristic of an adenine MTase (methyltransferase), recognizes the target site and methylates one DNA strand to prevent host genome cleavage; Res contains motifs characteristic of SF2 DNA helicases [in the NTD (N-terminal domain)] and PD(D/E)XK nucleases [in the CTD (C-terminal domain)] [7,11]. DNA cleavage requires two Res:Mod2 complexes to bind two target recognition sequences on the same DNA molecule in an indirectly repeated orientation, i.e. either HhH (head-to-head) or TtT (tail-to-tail) [12]. Type III enzymes thus show ‘site orientation selectivity’ [8]. ATP hydrolysis is absolutely required for DNA cleavage via long-range communication between the sites [13,14].

Despite the presence of dual helicase subunits, there is no known role for duplex unwinding by Type III enzymes. Instead, and by analogy to the related ATP-dependent Type I RM enzymes, it was first suggested that Type III enzymes couple ATP hydrolysis to unidirectional dsDNA loop translocation [8,15]. Evidence for loop translocation has been obtained using AFM (atomic force microscopy) [16,17]. Translocation without loop formation has also been suggested [18]. However, other studies did not find evidence for either long-lived DNA loops or directional translocation [12,19,20]. Alternatively, it was suggested that ATP is used to catalyse a conformational switch from DNA recognition to one-dimensional DNA diffusion (also known as ‘DNA sliding’) [8,19]. Communication is therefore driven by thermal energy and does not require ATP hydrolysis except during initiation.

To identify the true communication mechanism, it is important to resolve the role of ATP. In addressing this problem one needs to consider: (i) why two Res subunits (and thus two helicases) are present; and (ii) the apparently high ATP coupling efficiency compared with Type I RM enzymes [15,19,21].
Figure 1 | Models for ATP-coupling by Type III restriction enzymes
(A) Modified inchworm model for dsDNA translocation [6,22]. ATP binding between the N- and C-core RecA domains of Res causes domain motions that are coupled to motion along one strand of intact dsDNA. In making 1 bp steps, the motor or DNA must rotate around the helical axis (not shown) [22]. (B) 3D DNA looping to shorten DNA translocation distances. The Mod complex is represented as a blue oval, and a non-specific bound protein as a brown circle. Each single base pair step along DNA consumes one ATP molecule. (C) Facilitated diffusion against a reflecting barrier [29]. Separate helicase subunits are shown as green and brown squares and DNA is shown as a black line.

Translocating: nucleotide hydrolysis coupled to stepping motion on nucleic acids
SF2 helicase structures reveal a protein architecture built around two linked RecA-like domains (N-core and C-core) that are involved in nucleotide binding, polynucleotide binding and mechanochemical coupling [1]. N- and C-cores form a nucleotide-binding pocket within which are arrayed conserved amino acid helicase motifs. Binding of ATP between the domains ‘zippers up’ the pocket, causing a conformation change that is coupled to the DNA or RNA. For the classical helicases, this results in the ‘inchworm’ model in which alternating protein contacts are used to walk along single-stranded polynucleotides with the consumption of one ATP molecule per nucleotide moved [1–4]. This underlying mechanochemical coupling appears universal and dsDNA translocases show a similar unitary coupling ratio [22]. dsDNA translocation also requires principal motor contacts to one duplex strand and can be said to have a polarity [6]. A modified inchworm mechanism for 3′–5′ dsDNA translocation is illustrated (Figure 1A).

Although inchworm translocation appears an attractive option given the similarities between the RM enzymes, an important limitation in applying the model to Type III enzymes is that they consume at least 1000-fold fewer ATP molecules than their Type I counterparts. Although a coupling ratio has not been measured directly, one can be inferred by comparing ATP and DNA hydrolysis rates. This gives a range of (at least) tens to hundreds of base pairs communicated per ATP molecule [19,21]. These values are incompatible with current structural views of helicases. Moreover, in contrast with the Type I enzymes [22], the ATPase kinetics of the Type III enzymes have not provided simple Michaelis–Menten relationships [13]. Finally, triplex displacement assays that have been successfully used with every other bona fide translocase have failed to provide evidence for Type III translocation [19]. Without invoking Brobdingnagian helicase step sizes, two models have been suggested that could account for unexpected bp/ATP coupling ratios.

Movement of the motor by passive 3D (three-dimensional) looping to a distant site
Based on the observation by AFM of stable DNA loops formed by Type III REs (restriction endonucleases) [16], it was suggested that 3D DNA looping could shorten the distance to a target, thus giving a larger apparent coupling ratio (Figure 1B). However, while DNA looping should allow Type III motors to by-pass downstream DNA-binding proteins, communication is actually inhibited by protein roadblocks [12,15]. Another important issue is that without special geometric constraints, passive 3D looping will not preserve relative site orientation and will also allow communication between sites on separate DNA strands [23–25]. Type II REs that use 3D looping can communicate between DNA catenane rings [26–28], whereas Type III REs cannot [20].
'Facilitated diffusion against a reflecting barrier'
The ‘facilitated diffusion against a reflecting barrier’ scheme was originally suggested for the DNA MMR (mismatch repair) protein MutS to account for similar observations of low ATPase rates and DNA loops [29]. Two ATPase domains alternate between tight and loose DNA binding states. During the loose-bound state, DNA diffuses back-and-forth past the enzyme. This could produce loops, allow movement of >1 bp per ATP molecule, and retain relative binding orientation. It also requires a ‘two cylinder’ mechanism using dual ATPase domains, consistent with two Res subunits. Because DNA loop motion is passive, this model is essentially a modified sliding scheme. However, DNA cleavage by Type III REs is force-independent [19], suggesting that loops do not play a critical role in diffusive motion.

In favouring an inchworm model (Figure 1A), one must also question the role of dual Res subunits. Helicases display a variety of oligomerization states, but are principally active as hexamers or monomers [1]. Unlike the hexameric helicases where a composite ATPase active site is formed at the interface of two subunits, SF2 enzymes use contacts between N- and C-cores in one subunit. Where dimers do form, each helicase domain remains independent [30]. A hand-over-hand (or ‘rolling’) model for motion by helicase dimers has been superseded by the monomeric inchworm model. Dimerization may be an evolutionary accident that simply sequesters hydrophobic interfaces. Alternatively, it may activate helicase activity by sequestering autoinhibitory domains [31].

Switching and gating: NTPases that modulate protein conformations

Rather than being coupled to a power stroke, NTP hydrolysis can also allow cycling between multiple conformational states, producing a so-called ‘molecular switch’ as first described for small monomeric GTPases (Figure 2A) [32]. In these G-proteins, signalling is activated by GTP binding and inactivated by GTP hydrolysis. Regulators guide the switching: GAPs (GTPase-activating protein) increase GTP hydrolysis, whereas GEFs (guanine-nucleotide-exchange factors) potentiate GDP release. Roles for similar NTP-driven molecular switches on DNA and RNA now appear widespread. One example are rRNA chaperones (Figure 2B), where monomeric helicase domains can unwind multiple base pairs through a conformational change upon binding a single ATP molecule [5]. Hydrolysis actually drives product release so that the enzyme can turn over. This is quite distinct to the inchworm model and illustrates that helicases can also act as one-step switches.

Both the above examples require only a single NBD (nucleotide-binding domain). But there are also dimeric switches in which two nucleotides must bind and where nucleotide-binding stabilizes composite active sites. Two motor classes will be considered here. The first of these are members of the GHKL (gyrase, heat-shock protein 90, histidine kinase and MutL) ATPase SF [33], including the protein chaperone Hsp90 (90 kDa heat-shock protein), the DNA MMR protein MutL and the type II topoisomerases. The family shares a common NBD architecture (the Bergerat fold) and has a necessity for dimerization coupled to large-scale conformational changes as part of their ATP-binding cycles. Domain sharing during dimerization activates ATP hydrolysis because some catalytic residues must act in trans between subunits. ATP-binding and domain dimerization also initiates a cascade of protein–protein assembly events, a common feature of the dual ATP switches. Hydrolysis of ATP and ADP/Pi, release then allows the proteins to release their cofactors and turnover. Measured ATPase rates are often relatively low (<1/min) [34], which may in part reflect their switch role.

Hsp90

Hsp90 comprises three domains, with a stable dimer interface between the CTDs and reversible dimerization of the NTDs driven by ATP binding [35]. In the absence of nucleotides, the NTDs are free and highly flexible (Figure 2C). Association of two ATP molecules causes a pincer movement that dimerizes the NBDs and entraps client proteins for stabilization or partial refolding. ATP hydrolysis and ADP/Pi, opens the clamp and releases the client, resetting Hsp90 for another binding event. The ATPase cycle is also tightly linked to the binding of other co-chaperones.

MutL

Bacterial MutL and eukaryotic homologues play molecular ‘matchmaker’ roles in MMR and other repair pathways [36]. The bacterial enzymes are homodimers with a CTD dimer interface and N-terminal NBDs that both dimerize upon nucleotide binding and alter in orientation relative to the CTDs (Figure 2D) [34]. As above, the ATPase cycles (and thus conformational changes) are intimately coupled to the recruitment of other proteins. It is not clear, however, if dimerization directly entraps other proteins and/or DNA. The eukaryotic homologues are heterodimers with different ATP hydrolysis rates in each subunit, leading to asymmetry in the reaction cycle [36].

Type II topoisomerases

These enzymes illustrate another property of switches: the co-ordinated opening and closing of multiple protein ‘gates’ (Figure 2E) [37]. For example, bacterial DNA gyrase is a heterotetramer of two GyrA subunits and two GyrB subunits (the latter containing the NBDs). Gates are formed from protein dimer interfaces. Changes in DNA topology occur by crossing two dsDNA, cutting one of the helices (the G-segment) and passing the other (the T-segment) through it, before resealing the break. ATP-induced dimerization of the NBDs forms the ATP gate that captures the T-segment and sets in motion the cascade of domain motions. The exact role of ATP hydrolysis has been much debated as many of the reactions of gyrase are energetically favourable [38]. Since the broken G-segment is potentially lethal, ATP
binding and hydrolysis may be vital in tightly regulating gating.

The second family of dual ATP switches is the ABC transporter (ATP-binding cassette transporter) SF [39], which includes the membrane-bound ABC transporters, the DNA MMR protein MutS and the SMC (structural maintenance of chromosome)-related DNA repair enzyme Rad50. They share a RecA-like fold similar to the helicases and other ATP-dependent machines [40]. However, the NBDs associate as head-to-tail dimers [41], with ATP molecules bridging the interface to interact with Walker A and B motifs in one subunit and with an ABC-specific signature motif in the partner subunit. As above, ATPase rates can be relatively low [42].

Rad50

Rad50 is a required component of double strand break repair and comprises an NBD with a >600-residue heptad repeat insertion that forms a coiled-coil between the N- and C-terminal ATPase lobes (Figure 2F) [39,41]. Nucleotide-binding promotes dimerization of NBDs leading to formation of a globular head at the end of two large coiled-coil arms, with the latter forming assembly sites for DNA breaks and protein cofactors.

MutS

Homodimeric bacterial MutS and heterodimeric eukaryotic homologues recognize DNA mismatches and initiate MMR
Roles for ATP in the Type III RM enzymes

Taking a straightforward view of the Res subunits as dsDNA translocases (Figure 1A), one possible role for ATP might be to catalyse stepping along a short stretch of dsDNA adjacent to the target site that pulls (or pushes) the Mod2 complex into a sliding configuration. This is akin to established models for nucleoprotein remodelling by helicases, for example a sliding scheme is illustrated in Figure 2(G). The ADP-bound form (which is a stable enzyme–product complex) binds to the mismatch, exchanges with ATP and forms a sliding clamp. On linear DNA substrates with free ends, ATP induces MutS dissociation, while on linear DNA with ends blocked with streptavidin, the ATP-induced dissociation is significantly reduced. Similarly, DNA cleavage by Type III REs is enhanced on linear DNA with streptavidin-blocked ends [19]. Upon release of MutS from the DNA, ATP hydrolysis resets the ADP-bound state for another repair cycle.

Asymmetry in nucleotide binding and hydrolysis between each MutS ATPase site produces different nucleotide bound states with different affinities for hetero- and homo-duplex DNA [42]. It is not clear how cellular nucleotide levels would influence the model. Since many of these studies used isolated MutS rather than the complete MMR machinery, ATP-induced MutL conformational changes (and other protein cofactors) could further alter the mechanism.

ABC membrane transporters

This large family of membrane-associated importers and exporters comprise four domains, two TMDs (transmembrane domains) and two or four polypeptides [44]. A substrate import mechanism is shown in Figure 2(H). Substrate enters the TMD, partially crossing the bilayer as far as a membrane gate. NBD dimerization causes TMD rearrangements, closing the entry gate and opening the membrane gates. The substrate can now exit and ATP hydrolysis resets the system. A stoichiometry of two ATP molecules per transported cargo molecule has been measured [45], suggesting a coupled mechanism, although alternative models have also been discussed [46].

References

1 Singleton, M.R., Dillingham, M.S. and Wigley, D.B. (2007) Structure and mechanism of helicases and nucleic acid translocases. Annu. Rev. Biochem. 76, 23–50
2 Dillingham, M.S., Wigley, D.B. and Webb, M.R. (2000) Demonstration of unidirectional single-stranded DNA translocation by PcrA helicase: measurement of step size and translocation speed. Biochemistry 39, 205–212
3 Saikrishnan, K., Powell, B., Cook, N.J., Webb, M.R. and Wigley, D.B. (2009) Mechanistic basis of 5′–3′ translocation in SF1B helicases. Cell 137, 849–859
4 Velankar, S.S., Soultanas, P., Dillingham, M.S., Subramanya, H.S. and Wigley, D.B. (1999) Crystal structures of complexes of PcrA DNA helicase with a DNA substrate indicate an inchworm mechanism. Cell 97, 75–84
5 Jankowsky, E. (2011) RNA helicases at work: binding and rearranging. Trends Biochem. Sci. 36, 19–29
6 Stanley, L.K., Seidel, R., Van Der Scheer, C., Dekker, N.H., Szczelkun, M.D. and Dekker, C. (2006). When a helicase is not a helicase: dsDNA tracking by the motor protein EcoR124I. EMBO J. 25, 2230–2239

Acknowledgements

I thank Kara van Aelst, Júlia Tóth, Friedrich Schwarz, David Dryden, Steve Halford, Mark Dillingham, Nigel Savery and Ralf Seidel for discussions on Type III enzymes.

Funding

This work was funded by the Wellcome Trust.

© 2011 The Author(s)
7 Sistla, S. and Rao, D.N. (2004) S-adenosyl-L-methionine-dependent restriction enzymes. Crit. Rev. Biochem. Mol. Biol. 39, 1–19
8 Szczelkun, M.D., Friedhoff, P. and Seidel, R. (2010) Maintaining a sense of direction during long-range communication on DNA. Biochem. Soc. Trans. 38, 98–104
9 Janss, P., Sandmeier, U., Szczelkun, M.D. and Bickle, T.A. (2001) Subunit assembly and mode of DNA cleavage of the type III restriction endonucleases EcoPI and EcoP15I. J. Mol. Biol. 306, 417–431
10 Sears, A. and Szczelkun, M.D. (2005) Subunit assembly modulates the activities of the Type III restriction-modification enzyme PstI in vitro. Nucleic Acids Res. 33, 4789–4796
11 McClelland, S.E. and Szczelkun, M.D. (2004) The type I and III restriction endonucleases: structural elements in the molecular motors that process DNA. Nucleic Acids Mol. Biol. 14, 111–135
12 van Aelst, K., Koth, J., Ramanathan, S.P., Schwartz, F.W., Seidel, R. and Szczelkun, M.D. (2010) Type III restriction enzymes cleave DNA by long-range interaction between sites in both head-to-head and tail-to-tail inverted repeat. Proc. Natl. Acad. Sci. U.S.A. 107, 9123–9128
13 Saha, S. and Rao, D.N. (1995) ATP hydrolysis is required for DNA cleavage by EcoP1 restriction enzyme. J. Mol. Biol. 247, 559–567
14 Saha, S. and Rao, D.N. (1997) Mutations in the Res subunit of the EcoP1 restriction enzyme that affect ATP-dependent reactions. J. Mol. Biol. 269, 342–354
15 Meisel, A., Mackeldanz, P., Bickle, T.A., Kruger, D.H. and Schroeder, C. (1995) Type III restriction endonucleases translocate DNA in a reaction driven by recognition site-specific ATP hydrolysis. EMBO J. 14, 2958–2966
16 Gowers, D.M., Bellamy, S.R. and Halford, S.E. (2004) One recognition sequence, seven restriction enzymes, live reaction mechanisms. Nucleic Acids Res. 32, 3469–3479
17 Marshall, J.J., Gowers, D.M. and Halford, S.E. (2007) Restriction endonucleases that bridge and excise two recognition sites from DNA. J. Mol. Biol. 367, 419–431
18 Wood, K.M., Daniels, L.E. and Halford, S.E. (2005) Long-range communications between DNA sites by the dimeric restriction endonuclease SgrAI. J. Mol. Biol. 350, 240–253
19 Blackwell, J.L., Mastik, G., Bijnson, K.P., Bijnson, E.S. and Modrich, P. (1996) Nucleotide-promoted release of hMutSα from heteroduplex DNA is consistent with an ATP-dependent translocation mechanism. J. Biol. Chem. 273, 32055–32062
20 Rudolph, M.G. and Klöstermeier, D. (2009) The thermus thermophilus DEAD box helicase HefA contains a modified RNA recognition motif domain loosely connected to the helicase core. RNA 15, 1993–2001
21 Smith, A.J., Szczelkun, M.D. and Savery, N.J. (2007) Controlling the motor activity of a transcription-repair coupling factor: autoinhibition and the role of RNA polymerase. Nucleic Acids Res. 35, 1802–1811
22 Willinghoffer, A. and Pai, E.F. (1991) The structure of Rrs protein: a model for a universal molecular switch. Trends Biochem. Sci. 16, 382–387
23 Dutta, R. and Iouy, M. (2006) GHKL, an emergent ATPase/kinase superfamily. Trends Biochem. Sci. 25, 24–28
24 Ban, C., Junop, M. and Yang, W. (1999) Transformation of Mutl by ATP binding and hydrolysis: a switch in DNA mismatch repair. Cell 97, 85–97
25 Pearl, L.H., Podor, M. and Workman, P. (2008) The Hsp90 molecular chaperone: an open and shut case for treatment. Biochem. J. 410, 563–573
26 Polosa, Y.Y. and Cupples, C.G. (2010) Wot the ‘l-Does Mutl do? Mutat. Res. 705, 228–238
27 Schoeffler, A.J. and Berger, J.M. (2008) RNA topoisomerases: harnessing and constraining energy to govern chromosome topology. Q. Rev. Biophys. 41, 1–101
28 Bates, A.D. and Maxwell, A. (2010) The role of ATP in the reactions of Type II DNA topoisomerases. Biochem. Soc. Trans. 38, 438–442
29 Hopfner, K.P. and Tainer, J.A. (2003) Rd50/SMC proteins and ABC transporters: unifying concepts from high-resolution structures. Curr. Opin. Struct. Biol. 13, 249–255
30 Ye, J., Osborne, A.R., Groll, M. and Rappor, T.A. (2004) RecA-like motor ATPases: lessons from structures. Biochim. Biophys. Acta 1659, 1–18
31 Hopfner, K.P., Karcher, A., Shin, D.S., Craig, L., Arthur, L.M., Carney, J.P. and Tainer, J.A. (2000) Structural biology of Rd50 ATPase: ATP-driven conformational control in DNA double-strand break repair and the ABC-ATPase superfamily. Cell 101, 789–800
32 Kunkel, T.A. and Erie, D.A. (2005) DNA mismatch repair. Annu. Rev. Biochem. 74, 681–710
33 Iyer, R.R., Pluciennik, A., Burdett, V. and Modrich, P.L. (2006) DNA mismatch repair: functions and mechanisms. Chem. Rev. 106, 302–323
34 Locher, K.P. (2009) Structure and mechanism of ATP-binding cassette transporters. Philos. Trans. R. Soc. London Ser. B 364, 239–245
35 Patzlaff, J.S., Van Der Heide, T. and Poolman, B. (2003) The ATP/substrate stoichiometry of the ATP-binding cassette (ABC) transporter OpuA. J. Biol. Chem. 278, 29546–29551
36 Jones, P.M., O’Mara, M.L. and Georg, A.M. (2009) ABC transporters: a riddle wrapped in a mystery inside an enigma. Trends Biochem. Sci. 34, 520–531
37 Savery, N.J. (2007) The molecular mechanism of transcription-coupled DNA repair. Trends Microbiol. 15, 326–333
38 Selby, C.P. and Sancar, A. (1993) Molecular mechanism of transcription-repair coupling. Science 260, 53–58

Received 10 December 2010
doi:10.1042/BST0390589