THE SOLVABILITY OF BOUNDARY VALUE PROBLEM
FOR NONLINEAR ELLIPTIC-PARABOLIC EQUATIONS

Gunel Guseynova
Institute of Mathematics and Mechanics
of NAS of Azerbaijan
AZ1141, Baku, AZERBAIJAN

Abstract: The nonlinear elliptic-parabolic equations of nondivergent structure is considered. The solvability of the boundary value problems is investigated.

AMS Subject Classification: 35J25, 35J70
Key Words: nonlinear elliptic-parabolic equations; solvability

1. Introduction

The theory of elliptic-parabolic equations ascends to the classical paper by Keldysh [1] in which the correct statements of the boundary value problems for the equations with one space variable were found. G. Ficera [2] has established a weak solvability of the first boundary value problem for a wide class of the second order equations with the non-negative characteristic form (see also [3]). As to strong solvability of the first boundary value problem for elliptic-parabolic equations in the non-divergent form with smooth coefficients, we shall note in this connection the papers [4, 5, 6]. The similar result for the equations in the case when the coefficients satisfy the Cordes condition is obtained in [7].

The theory of nonlinear elliptic-parabolic equation have many applications. For example, the class of nonlinear operators represent the well-known Richards equation, which serves as a basic model for the filtration of water in unsaturated soils (see [9, 10]), see also [11, 12, 13].
Let us consider in $Q_T = \Omega \times (0; T)$, where Q_T be the cylinder, Ω is a bounded domain in \mathbb{R}^n, $n \geq 2$ with the smooth boundary $\partial \Omega$, following the boundary value problem

$$Lu = \sum_{i,j=1}^{n} a_{ij}(x,t,u) u_{ij} + \psi(x,t) u_{tt} - u_t = f(x,t),$$

(1)

$$u|_{\Gamma(Q_T)} = 0.$$

(2)

Here

$$u_{ij} = \frac{\partial^2 u}{\partial x_i \partial x_j}, \ u_i = \frac{\partial u}{\partial x_i}, \ u_t = \frac{\partial u}{\partial t}, \ u_{tt} = \frac{\partial^2 u}{\partial t^2},$$

$$\Gamma(Q_T) = (\partial \Omega \times (0,T)) \cup \{(x,t): t = 0, x \in \Omega\}$$

is parabolic boundary of Q_T and

$$\psi(x,t) = \omega(t) \lambda(\rho) \varphi(T-t),$$

(3)

where $\lambda(\rho) \geq 0$, $\lambda(\rho) \in C^1[0,diam\Omega]$, $\varphi(z) \geq 0$, $|\lambda(\rho)| \leq \alpha \sqrt{\lambda(\rho)}$, $\varphi'(z) \geq 0$, $\varphi(z) \in C^1[0,T]$, $\varphi(0) = \varphi'(0) = 0$, $\varphi(z) \geq \beta z \varphi'(z)$, $\omega(t) \in C^1[0,T]$, $\omega(t) \geq 0$, and α, β are positive constants.

Assume that the coefficients of the equation (1) the following conditions hold: $(a_{ij}(x,t))$ is a real symmetrical matrix with real measurable elements in Q_T for every $(x,t) \in Q_T$, and $\xi \in \mathbb{R}^n$ and satisfies the inequalities hold:

$$\gamma |\xi|^2 \leq \sum_{i,j=1}^{n} a_{ij}(x,t,u) \xi_i \xi_j \leq \gamma^{-1} |\xi|^2,$$

(4)

where $\gamma \in (0,1]$, is a constant.

The purpose of this paper is to obtain solvability boundary problem for nonlinear equations in an appropriate Sobolev spaces.

Before we obtained some a coercive estimations which be used to proving a unique strong solvability of the first boundary value problem (1)-(2) at every $f(x,t) \in L_2(Q_T)$.

The paper is organized as follows. In Section 2 we present some definitions and preliminary results. In Section 3 we give main results.

2. Definitions and preliminary results

For $R > 0$ and $x^0 \in \mathbb{R}^n$ we denote the ball $B_R(x^0) = \{x: |x - x_0| < < R\}$ and a cylinder $B_R(x^0) \times (0,T) = Q^R_T(x_0)$. Let $\overline{B}_R(x^0) \subset \Omega$. We say that $u(x,t) \in$
A \left(Q^R_T(x^0) \right) if u(x,t) \in C^\infty \left(\overline{Q^R_T(x^0)} \right), u|_{t=0} = 0 and \sup \rho u \in \left(\overline{Q^\rho_T(x^0)} \right) for some \rho \in (0, R).

Let us introduce the Banach space of functions u(x,t) given on QT with finite norms
\[\|u\|_{W^{1,1}(QT)} = \left(\int_{QT} \left(u^2 + \sum_{i=1}^n u^2_{x_i} + u^2_t \right) \, dxdt \right)^{1/2} \]
and
\[\|u\|_{W^{2,2}(QT)} = \left(\int_{QT} \left\{ \left(u^2 + \sum_{i=1}^n u^2_i + \sum_{i,j=1}^n u^2_{ij} \right) + u^2_t + \psi^2(x,t)u^2_{tt} \right\} \, dxdt \right)^{1/2}. \]

Suppose W^{2,2}_{2,\psi}(QT) is a subspace of the space W^{2,2}_2(Q_T) that contains the set of all functions from C^\infty (\overline{Q_T}) vanishing on the parabolic boundary \Gamma (Q_T).

Let us consider the operator L which is arising by problem (1)-(2). Now we like to get some coercive estimates for strong solutions to the problem (1)-(2). First we give the results for the model operator and applying these estimates we obtain the following.

Lemma 1. Let condition (3)-(4) for coefficients and weight be fulfilled. Then for any function u(x,t) \in A \left(Q^R_T(x^0) \right), there exists T_1(\psi(x,t),n) such that for T \leq T_1 and following estimate holds:
\[
\int_{Q^R_T(x^0)} \left[\left(\sum_{i,j=1}^n u^2_{ij} + u^2_t \right) + \psi^2(x,t)u^2_{tt} + \psi(x,t)\sum_{i=1}^n u^2_{it} \right] \, dxdt \leq (1 + D(T)S) \int_{Q^R_T(x^0)} (Lu)^2 \, dxdt,
\]
where S = S(\psi,n) is some constant, D(T) = \sup_{[0,T]} \psi'(t) + \sup_{[0,T]} \varphi'(t).

Proof. For proof, we calculate \int_{QT} (Lu)^2 \, dxdt. We have
\[
\int_{QT} (Lu)^2 \, dxdt = i_1 + i_2 + i_3 + i_4 + i_5.
\]
Later we will consider each addend separately. Applying integration by parts with respect to variables x_i, x_j and taking into account $\frac{\partial u}{\partial x_j} \big|_{\partial B_R} = 0$ we obtain estimate of integrals i_1. Also we calculate integrals i_2, i_3, i_4, i_5.

Let $\delta = \sup_{Q_T} \left(\sum_{i,j=1}^{n} (a_{ij}(x,t,u) - \delta_{ij})^2 \right)^{\frac{1}{2}}$, where δ_{ij} are the Kronecker symbols.

Lemma 2. Let the coefficients of the operators L satisfy conditions (3)-(4). Then there exists T_2 such that for every $T \leq T_2$ and $\varepsilon > 0$ the estimate holds:

$$
\|u\|_{W^{2,2}_{2,\psi}(Q_T)} \leq C(\psi, \delta, n, \Omega) \|Lu\|_{L_2(Q_T)} + \varepsilon \|u\|_{W^{2,2}_{2,\psi}(Q_T)} + C(\psi, \delta, n, \Omega) \|u\|_{L_2(Q_T)}
$$

for any function $u(x,t) \in C^\infty(Q_T(x_0))$, $u|_{t=0} = 0$.

Lemma 3. Let the conditions of Lemma 2 be satisfied. Then at $T \leq T_2$ for any function $u(x,t) \in W^{2,2}_{2,\psi}(Q_T)$ it holds the estimate

$$
\|u\|_{W^{2,2}_{2,\psi}(Q_T)} \leq C(\psi, \delta, n, \Omega) \|Lu\|_{L_2(Q_T)} + C(\psi, \delta, n, \Omega) \|u\|_{L_2(Q_T)}.
$$

Similarly to Lemma 1, we can proof of Lemmas 2 and 3 with using Friedrich’s inequality.

Now we give the following coercive estimate for solution boundary problem (1)-(2).

Theorem 1. Let for strong solutions of the problem (1)-(2) the conditions (3),(4) be fulfilled. Then there exists $T_0(\psi, \delta, n\Omega)$ such that for every $T \leq T_0$ the estimate

$$
\|u\|_{W^{2,2}_{2,\psi}(Q_T)} \leq C(\psi, \delta, n, \Omega) \|Lu\|_{L_2(Q_T)}.
$$

holds for any functions $u(x,t) \in W^{2,2}_{2,\psi}(Q_T)$.

Proof. It is enough to prove the estimate (6) for smooth functions from
\(W^{2,2}_{2,\psi}(Q_T) \). We have for any \(t \in (0, T) \) and any \(x \in \Omega \)
\[
 u(x, t) = \int_0^t u_t(x, \tau) d\tau.
\]

Using the Cauchy-Bunyakovsky inequality, we write
\[
 u^2(x, t) = T \int_0^T u^2_t(x, \tau) d\tau.
\]

Then
\[
 \int_{Q^T_R} u^2(x, t) \, dx dt = T^2 \int_{Q^T_R} u^2_t(x, t) \, dx dt.
\]

Thus,
\[
 \|u\|_{L_2(Q^T_R)} \leq T \|u_t\|_{L_2(Q^T_R)} \leq T \|u\|_{W^{2,2}_{2,\psi}(Q_T)}.
\]

Let \(T_0 = \min \{ T_2, \frac{1}{2C} \} \). Then at \(T \leq T_0 \) we obtain estimate (6). The theorem is proved.

\[\Box\]

Theorem 2. Let for strong solutions of the problem (1)-(2) the conditions (3),(4) be fulfilled. Then there exists \(T_0(\psi, \delta, n\Omega) \) such that for every \(T \leq T_0 \) problem (1)-(2) is solvable in space \(W^{2,2}_{2,\psi}(Q_T) \) for any \(f(x, t) \in L_2(Q_T) \) and the estimate holds
\[
 \|u\|_{W^{2,2}_{2,\psi}(Q_T)} \leq C(\psi, \delta, n, \Omega) \|f\|_{L_2(Q_T)}.
\]

Proof. The estimate (7) and the uniqueness of the solution follow from the coercive estimates. The existence of a solution is proved by considering the family of operators.

\[\Box\]

References

[1] M.V. Keldysh, On some cases of degeneration of an equation of elliptic type on the domain boundary, *Dokl. Akad. Nauk SSSR*, 77, No 2 (1951), 181–183.

[2] G. Fichera, On a unified theory of boundary value problems for elliptic-parabolic equations of second order, *Matematika*, 7, No 6 (1963), 99–122.
[3] O.A. Oleynik, J.V. Radkevitch, Second order quations with nonnegative characteristic form, *VINITI, Ser. Itogi Nauki, Math. Analysis* (1971), 7–252.

[4] M. Franciosi, Sul de un equazioni elliptico-parabolica a coefficienti discontinu, *Boll. Un. Math. Ital.*, **6**, No 2 (1983), 63–75.

[5] M. Franciosi, Un theoreme di esistenza ed unicita per la soluzione di un’equazione elliptico-parabolica, a coefficienti-discontinui, in forma non divergenza, *Bull. Un. Mat. Ital.*, **6**, No 4-B (1985), 253–263.

[6] A. Alvino, G.Trombetti, Second order elliptic equation whose coefficients have their first derivatives weakly-L^n, *Annali di Matematica Pura ed Applicata*, **138** (1984), 331–340.

[7] T.S. Gadjiev, E. Gasimova, On smoothness of solution of the first boundary-value problem for second order degenerate elliptic-parabolic equations, *Ukrainian Mathematical Journal*, **60**, No 6 (2008), 723–736.

[8] S. Chanillo, R.L. Wheeden, Existence and estimates of Green’s function for degenerate elliptic equations, *Annali della Scuola Normale Superiore di Pisa-Classe di Scienze*, **15**, No 2 (1988), 309–340.

[9] P.A. Domenico, F.W. Schwartz, *Physical and Chemical Hydrogeology*, John Wiley and Sons, New York (1998).

[10] W.Merza, P. Rybka, Strong solutions to the Richards equation in the unsaturated zone, *Journal of Mathematical Analysis and Applications*, **371**, No 2 (2010), 741–749.

[11] T.S. Gadjiev, A.V. Mammadova, Regularity of solutions of classes nonlinear elliptic-parabolic problems, *Spectral Theory and its Applications*, Baku (2019), 68–70.

[12] T.S. Gadjiev, M.N. Kerimova, G. Gasanova, The solvability of boundary value problem for degenerate equations, *Ukrainian Mathematical Journal* **4** (2020), to appear.

[13] T.S. Gadjiev, S.Y. Aliev, M.N. Kerimova, The strong solvability boundary value problem for linear non-divergent degenerate equations of elliptic-parabolic type, *Proceedings of IAM*, **8**, No 1 (2019), 14–23.