Aging metabolism: intervention strategies

Esteban Martinez
Infectious Diseases Unit, Hospital Clinic, University of Barcelona, Barcelona, Spain

ABSTRACT
Human beings are subjected to aging and age-associated diseases. Life expectancy has improved impressively in the last century due to social and economic development, but despite increasing improvement is still more limited than average in those ones with chronic diseases such as treated HIV infection. There has been a substantial research on the underlying factors responsible for aging both in the general and the HIV-infected populations. Several specific targets for potential intervention have been identified but studies so far have been limited to small experiments in cultured cells or living beings other than humans such as mice or flies. Time has come for designing and developing human studies with those candidate therapies showing most promising benefits and least potential toxicities to treat age-related diseases.

Introduction
Human aging and age-associated diseases have become one of the greatest social and economic challenges beyond health. Although average life expectancy has improved impressively in the last century, this fact has not been associated with a similar advance in healthy life prospect. This situation has been changing in recent years due to a better knowledge of the mechanisms involved in aging and to the results of different studies supporting that interventions addressed to slowing aging may be feasible. Several hallmarks of aging to which address potential interventions have been proposed. Primary hallmarks such as genomic instability, telomere attrition, epigenetic alterations, and loss of proteostasis are considered to be the primary causes of cellular damage. Antagonistic hallmarks such as deregulated nutrient sensing, mitochondrial dysfunction, and cellular senescence are considered to be part of compensatory or antagonistic responses to the damage; these responses initially mitigate the damage but they may become deleterious if maintained. Integrative hallmarks such as stem cell exhaustion and altered intercellular communication are the end result of the previous 2 groups of hallmarks and are ultimately responsible for the functional decline associated with aging.

As other chronic diseases, HIV has turned into a long-term manageable disease thanks to the effectiveness and availability of specific therapy. However, HIV-infected patients are still at risk of excess morbidity and mortality due to different factors. Modifiable contributing factors to the quantity and quality of life in adults aging with HIV include the injury from HIV infection (earlier diagnosis and treatment), the burden of harmful health behaviors (decreasing smoking, alcohol, and illicit drug use, and improving life style), the antiretroviral toxicity (safer drugs), and the general burden of age-associated comorbidities (better prevention and management). Although adults aging with HIV are subject to similar risk factors for age-related diseases and conditions as uninfected adults, they differ in the prevalence of harmful behaviors. They also experience ongoing HIV-associated inflammation and immune activation and adverse effects of chronic exposure to antiretroviral therapy leading to excess organ injury. The extent to which this excess is expressed in cellular aging, including cellular senescence, mitochondrial dysfunction, telomere attrition and epigenetic alteration is currently an area of active research.

Although HIV-infected adults tend to be less obese than uninfected adults, the prevalence of obesity has increased over time both in the general and the HIV-infected populations. In HIV patients, obesity is associated with the general aging process, earlier antiretroviral initiation, and increasingly widespread coverage. Weight gain after starting antiretroviral therapy is well documented and increase in weight usually surpasses that expected of demographically matched uninfected comparators. This weight gain is due in part to decreased metabolic...
demand from therapy-induced viral suppression coupled with therapy-induced fat accumulation and changes to appetite. In those HIV-infected patients that are overweight or obese, weight gain following antiretroviral therapy should be avoided as it may have a negative impact on survival. Furthermore, therapy-associated weight gain is associated with incident cardiovascular disease and diabetes. Increased visceral adipose tissue (VAT) is particularly problematic in HIV patients. Even with current antiretroviral therapy, VAT increases by 30% in the 2 y following therapy initiation. Increased VAT and peripheral lipoatrophy are associated with cardiovascular disease, and the risk is higher in HIV patients compared with uninfected adults irrespective of VAT level. Moreover, renin-angiotensin-aldosterone system activation associated with VAT accumulation contributes to insulin resistance in HIV infection, which contributes to the excess risk of diabetes associated with weight gain after antiretroviral therapy initiation.

Dietary interventions involving calorie restriction

The best characterized form of fasting evaluated has been the feeding every other day for a long period. Prolonged fasting, in which no food is taken for more than 2 consecutive days, has been investigated in lower eukaryotes and rodents. The pathways of fasting comprise downregulation of the Tor-S6K and Ras-adenylate cyclase-PKA, followed by a stimulation of stress resistance transcription Ms2/4 and Gis1, which protectively govern many metabolic genes. Prolonged fasting reduced both inflammatory markers and clinical symptoms in adults with rheumatoid arthritis and decreased adverse effects of chemotherapy in humans. The consequences of intermittent fasting have been more comprehensively assessed than those of prolonged fasting in humans. Reductions in weight, body fat, abdominal fat, insulin resistance markers and blood pressure have been consistently reported. Prolonged or intermittent fasting should be done under medical supervision because they may have adverse effects that could be life-threatening for persons with very low weight, those who are old and fragile, or insulinized diabetic patients. These issues emphasize the need of diets that imitate the effects of fasting while diminishing associated-adverse effects.

Drugs imitating the effects of calorie restriction

Inhibitors of the TOR pathway

mTOR plays a critical role in determining antigen-induced effector and regulatory T cell (Treg) fate decisions. mTOR activation is essential for T cell commitment for Th1, Th2, and Th17 effector lineages. When mTOR is blocked, naïve T cells preferentially differentiate into Treg cells. There are 2 complexes of mTOR kinase: mTORC1 and mTORC2. Reduction of mTORC1 blocks cellular growth. The drug sirolimus (also called rapamycin) used to prevent organ transplant rejection is a specific inhibitor of mTOR. Sirolimus is well known in clinical practice. However, it may have important adverse effects including insulin resistance and hematopoietic proliferative defects, which seriouly limit any further development as anti-aging therapy. The metabolic effects have been attributed to mTORC2 inhibition, suggesting that more specific inhibitors of mTORC1 could retain efficacy while being safer.

Inhibitors of glycolysis

Several studies in animals with inhibitors of glycolytic enzymes show effects similar to those of dietary restriction, although at the expense of important adverse effects. The first candidate in this category, 2-deoxyglucose as an inhibitor of the phosphoglucone isomerase, produced cardiotoxicity in rats. Mannohexotulose as an inhibitor of the hexokinase improved insulin resistance and increased lifespan in mice.

Inhibitors of the GH/IGF-1 axis

Persons with reduced IGF-1 have a lower risk for cancer and diabetes. Inhibitors of the IGF-1 receptor have been used in clinical trials as antineoplastic agents, but they are not approved for clinical use. Somatostatin analogs have been used to treat acromegaly by suppressing pituitary GH secretion and ultimately reducing IGF-1, but they may be associated with adverse effects. Another agent used to treat acromegaly, pegvisomat, does not decrease GH secretion but inhibits its action through blockade of GH receptor leading to a decrease of IGF-1. Pegvisomat has few adverse events and therefore it could be potential agent to test for longevity studies.

Activators of the sirtuin pathways

Some deacetylases called sirtuins produce effects similar to dietary restriction ultimately leading to longevity. Several metabolites derived from plants such as anthocyanidins, chalcones, flavones and stilbenes are potent sirtuin-activating compounds (STACs). Resveratrol is the best known natural compound activating sirtuins and attempts have been done to synthetize more potent
compounds. Another way of activating sirtuins is to increase NAD\(^+\) levels with NAD precursors, activators of NAD synthesis, or blockers of NAD hydrolysis.

AMPK pathway activators

The AMP-activated protein kinase is stimulated when cellular energy declines, promoting an increase in AMP levels. AMPK activation increases insulin sensitivity raising muscular glucose uptake, diminishing hepatic glucose production and promoting fatty acid oxidation. Exercise naturally stimulates AMPK. The biguanide metformin is a drug of choice for type 2 diabetes mellitus; it stimulates AMPK in the liver and, in contrast with other antidiabetic agents, has been shown to reduce the risk of cardiovascular disease, cancer incidence, cognitive decline, and overall mortality in diabetic patients.

Inhibitors of inflammation

Low-grade inflammation is involved in the pathogenesis of multiple comorbidities that may develop with the process of aging. Tissues in which chronic inflammation has been identified include the immune system, fat, muscle, liver and gut. The gut contains huge amounts of bacteria that can translocate or release substances into the circulation and both factors may promote systemic inflammation. However, the mechanistic processes triggering chronic inflammation are largely unknown. Stimuli can be chronic infections by agents such as cytomegalovirus, but also by-products of cellular turn-over such as reactive oxygen species and circulating mitochondrial DNA. The Mediterranean diet or diets enriched with omega-3 fatty acids may be an strategy to reduce chronic inflammation. Data from a recent systematic review on the effects of probiotics in HIV infection suggest possible benefits for CD4 count, recurrence or management of bacterial vaginosis and diarrhea management.

Epigenetic pathways modulating agents

Epigenetics refers to heritable phenotypic abnormalities induced by changes in the chromatin after cell replication. Studies in twins point out that genetics at birth may exert a relatively small influence on lifespan, suggesting that epigenetics (influenced by diet, lifestyle, and exogenous stress) contribute in a much higher proportion. Therefore, strategies addressed to these targets can improve age-associated cellular dysfunction. Inhibition of histone acetyltransferases in human and yeast cells has resulted in higher resistance to oxidative stress and lower cell death.

Other promising potential targets

Statins have shown clear beneficial effects in different types of aging-related morbidities and overall mortality human beyond reductions in lipids, blood, pressure, or cardiovascular disease. Considering the wide availability of statins, it seems worth to assess further its potential consequences on lifespan of healthy adults irrespective of cholesterol-lowering targets. Also, chronic \(\beta \)-blockers, nordihydroguaiaretic acid, activation of hexosamine pathway, deletion of upstream DNA damage responses, stem cell-based interventions, and blockers of retrotransposable elements could be also potential targets to prevent age-associated abnormalities and extending healthy lifespan.

Conclusions

There has been substantial research on the underlying factors responsible for aging both in the general and the HIV-infected populations. Several specific targets for potential intervention have been identified but studies so far have been limited to small experiments in cultured cells or living beings other than humans such as mice or flies. Time has come for designing and developing human studies with those candidate therapies showing most promising benefits and least potential toxicities to treat age-related diseases.

Disclosure of potential conflicts of interest

No potential conflicts of interest were disclosed.

References

[1] Hung WW, Ross JS, Boockvar KS, Siu AL. Recent trends in chronic disease, impairment and disability among older adults in the United States. BMC Geriatr 2011; 11:47; PMID:21851629; https://doi.org/10.1186/1471-2318-11-47

[2] Lopez-Otin C, Blasco MA, Partridge L, Serrano M, Kroemer G. The hallmarks of aging. Cell 2013; 153:1194-217; PMID:23746838; https://doi.org/10.1016/j.cell.2013.05.039

[3] Legarth RA, Ahlström MG, Kronborg G, Larsen CS, Pedersen C, Pedersen G, Mohey R, Gerstoft J, Obel N. Long-term mortality in HIV-infected individuals 50 years or older: a nationwide, population-based cohort study. J Acquir Immune Defic Syndr 2016; 73(1): 2318-11-47; PMID:21851629; https://doi.org/10.1186/1471-2318-11-47

[4] Marcus J, Chao C, Leyden WA, Xu L, Quenbyennet CP, Jr, Klein DB, Towner WJ, Horberg MA, Silverberg MJ. Narrowing the gap in life expectancy for HIV+ compared with HIV-Infected and HIV- Uninfected Individuals With Access to Care. J Acquir Immune Defic Syndr 2016; 73(1): 39-46; https://doi.org/10.1097/QAI.0000000000001014

[5] Wada NI, Jacobson LP, Margolick JB, Breen EC, Macatangay B, Penugonda S, Martinez-Maza O, Bream JH. The effect of HAART-induced HIV suppression on
cirugating markers of inflammation and immune activation. AIDS 2015; 29:463-71; PMID:25630041; https://doi.org/10.1097/QAD.0000000000000545

[6] Deeks SG. HIV infection, inflammation, immunosenescence, and aging. Annu Rev Med 2011; 62:141-55; PMID:21090961; https://doi.org/10.1146/annurev-med-042909-093756

[7] Horvarth S, Levine AJ. HIV-1 infection accelerates age according to the epigenetic clock. J Infect Dis 2015; 212:1563-73; PMID:25969563; https://doi.org/10.1093/infdis/jiv277

[8] Park LS, Hernandez-Ramirez RU, Silverberg MJ, Horvarth S, Levine AJ. HIV-1 infection accelerates age according to the epigenetic clock. J Infect Dis 2015; 212:1563-73; PMID:25969563; https://doi.org/10.1093/infdis/jiv277

[9] Koethe JR, Jenkins CA, Lau B, Shepherd BE, Justice AC, Tate JP, Buchacz K, Napravnik S, Mayor AM, Horberg MA, et al. Rising obesity prevalence and weight gain among adults starting antiretroviral therapy in the United States and Canada. AIDS Res Hum Retroviruses 2016; 32:50-8; PMID:26352511; https://doi.org/10.1093/aid.2015.0147

[10] Hasse B, Iff M, Ledergerber B, Calmy A, Schmid P, Hauser C, Cavassini M, Bernasconi E, Marzolini C, Tarr PE, et al. Obesity trends and body mass index changes after starting antiretroviral treatment: the Swiss HIV Cohort Study. Open Forum Infect Dis 2014; 1:ofu040; PMID:25734114; https://doi.org/10.1093/ofid/ofu040

[11] Yuh B, Tate J, Butt AA, Crothers K, Freiberg CL, Rimland D, Logea S, Rimland D, Rodriguez-Barradas MC, Ruser C, et al. Weight change after antiretroviral therapy and mortality. Clin Infect Dis 2015; 60:1852-9; PMID:25761868; https://doi.org/10.1093/cid/civ192

[12] Batterham MJ. Investigating heterogeneity in studies of resting energy expenditure in persons with HIV/AIDS: a meta-analysis. Am J Clin Nutr 2005; 81:702-13; PMID:15755842

[13] Achtra AC, Mirocot A, Reiss P, Sabin C, Ryom L, de Wit S, Smith CJ, d’Arminio Monforte A, Phillips A, Weber R, et al. Short-term weight gain after antiretroviral therapy initiation and subsequent risk of cardiovascular disease and diabetes: the D:A:D study. HIV Med 2016; 17:255-68; PMID:26216031; https://doi.org/10.1111/hiv.12299

[14] Lake JE, Stanley T, Apovian C, Bhasin S, Brown TT, Capeau J, Currier JS, Dube M, Falutz J, Grinspoon SK, et al. Practical Review of Recognition and Management of Obesity and Lipohypertrophy in HIV Infection. Clin Infect Dis 2017. Advance online publication. https://doi.org/10.1093/cid/cix178

[15] Lake JE, Wohlf D, Scherzer R, Grunfeld C, Tien PC, Sidney S, Currier JS. Regional fat deposition and cardiovascular risk in HIV infection: the FRAM study. AIDS Care 2011; 23:929-38; PMID:21767228; https://doi.org/10.1080/09540121.2010.543885

[16] Srinivasa S, Fitch KV, Wong K, Torriani M, Mayhew C, Stanley T, Lo J, Adler GK, Grinspoon SK. RAAS activation is associated with visceral adiposity and insulin resistance among HIV-infected patients. J Clin Endocrinol Metab 2015; 100:2873-82; PMID:26086328; https://doi.org/10.1210/jc.2015-1461

[17] Herrin M, Tate JP, Akigun KM, Butt AA, Crothers K, Freiberg MS, Gibert CL, Leaf DA, Rimland D, Rodriguez-Barradas MC, et al. Weight gain and incident diabetes among HIV-infected veterans initiating antiretroviral therapy compared to uninfected individuals. J Acquir Immune Defic Syndr 2016; 73:228-36; PMID:27171741; https://doi.org/10.1097/QAI.0000000000001071

[18] Trepanowski JF, Canale RE, Marshall KE, Kabir MM, Bloomer RJ. Impact of caloric and dietary restriction regimens on markers of health and longevity in humans and animals: a summary of available findings. Nutr 2011; 10:107; https://doi.org/10.1186/1475-2891-10-107

[19] Longo VD, Mattson MP. Fasting: molecular mechanisms and clinical applications. Cell Metab 2014; 19:181-92; PMID:24440038; https://doi.org/10.1016/j.cmet.2013.12.008

[20] Wei M, Fabrizio P, Ju H, Ge H, Cheng C, Li L, Longo VD. Life span extension by calorie restriction depends on Rim15 and transcription factors downstream of the Ras/PKA, Tor, and Sch9. PLoS Genet 2008; 4:e13; PMID:18225956; https://doi.org/10.1371/journal.pgen.0040013

[21] Michaelsen A, Riegert M, Lubcke R, Baecker M, Langhorst J, Schwickert M, Dobos GJ. Mediterranean diet or extended fasting’s influence on changing the intestinal microflora, immunoglobulin A secretion and clinical outcome in patients with rheumatoid arthritis and fibromyalgia: an observational study. BMC Complement Altern Med 2005; 5:22; PMID:16372904; https://doi.org/10.1186/1472-6882-5-22

[22] Safdie FM, Dorff T, Quinn D, Fontana L, Wei M, Lee C, Cohen P, Longo VD. Fasting and cancer treatment in humans: a case series report. Aging (Albany, NY) 2009; 1:988-1007; https://doi.org/10.18632/aging.100114

[23] Heilbronn LK, Smith SR, Martin CK, Anton SD, Ravussin E. Alternate-day fasting in nonobese subjects: effects on body weight, body composition, and energy metabolism. Am J Clin Nutr 2005; 81:69-73; PMID:15640462

[24] Harvie MN, Pegington M, Mattson MP, Frystyk J, Dillon B, Evans G, Cuzick J, Jebb SA, Martin B, Cutler RG, et al. The effects of intermittent or continuous energy restriction on weight loss and metabolic disease risk markers: a randomized trial in young overweight women. Int J Obes (Lond) 2010; 35:714-27; PMID:20921964; https://doi.org/10.1038/j.ijo.2010.171

[25] Mirzaii H, Suarez JA, Longo VD. Protein and aminoacid restriction, aging and disease: from yeast to humans. Trends Endocrinol Metab 2014; 25:558-66; PMID:25153840; https://doi.org/10.1016/j.ten.2014.07.002

[26] Peng W, Robertson L, Gallinetti, Mejia P, Vose S, Charlip A, Chu T, Mitchell JR. Surgical stress resistance induced by single amino acid deprivation requires Gcn2 in mice. Sci Transl Med 2012; 4:118ra111; https://doi.org/10.1126/scitranslmed.3002629

[27] Harputlugil E, Hine C, Vargas D, Robertson L, Manning BD, Mitchell JR. The TSC complex is required for the benefits of dietary protein restriction on stress resistance in vivo. Cell Rep 2014; 8:1160-70; PMID:25131199; https://doi.org/10.1016/j.celrep.2014.07.018

[28] Levine ME, Suarez JA, Brandhorst S, Balasubramanian P, Cheng CW, Madia F, Fontana L, Mirisola MG, Guera-Aguirre J, Wain J, et al. Low protein intake is associated with a major reduction in IGF-1, cancer, and overall...
mortality in the 65 and younger but not older population. Cell Metab 2014; 19(3):407-17; PMID:24606898; https://doi.org/10.1016/j.cmet.2014.02.006

[29] Coquillard C, Vilchez V, Marti F, Gedaly R. mTOR signaling in regulatory T cell differentiation and expansion. SOJ Immunol 2015; 3:1-10

[30] Ballou LM, Lin RZ. Rapamycin and mTOR kinase inhibitors. J Chem Biol 2008; 1:27-36; PMID:19568796; https://doi.org/10.1016/j.sib1154-008-0003-5

[31] Soeije SA, Karnad A, Brenner AJ. Common toxicities of mammalian target of rapamycin inhibitors. Target Oncol 2011; 6:125-9; PMID:21499766; https://doi.org/10.1007/s11523-011-0174-9

[32] Lamming DW, Ye L, Katajisto P, Goncalves MD, Saitoh A, Brace CS, Rensing N, Cliften P, Wozniak DF, Ikeno Y, Hubbard GB, Lee S, Cortez LA, Lew CM, Webb GK, Ganapathy-Kanniappan S, Geschwind JF. Tumor glycolysis: a target for cancer therapy: progress and prospects. Mol Cancer 2013; 12:152; PMID:24298908; https://doi.org/10.1186/1476-4588-12-152

[33] Ikono Y, Hubbard GB, Lee S, Cortez LA, Lew CM, Webb CR, Berryman DE, List EO, Kopchick JJ, Bartke A. Reduced incidence and delayed occurrence of fatal neoplastic diseases in growth hormone receptor/binding protein knockout mice. J Gerontol A Biol Sci Med 2009; 64:522-9; https://doi.org/10.1093/gerona/glu190

[34] Carboni JM, Wittman M, Yang Z, Lee F, Greer A, Hurlburt W, Hillerman S, Cao C, Cantor GH, Delf-John J, et al. BMS-754807, a small molecule inhibitor of insulin-like growth factor-1R/IR. Mol Cancer Ther 2009; 8:3341-9; PMID:19996272; https://doi.org/10.1158/1535-7163.MCT-09-0499

[35] Giustina A, Chanson P, Kleinberg D, Bronstein MD, Clemmons DR, Klibanski A, van der Lely AJ, Strasburger CJ, Lamberts SW, Ho KK, et al. Expert consensus document: a consensus on medical treatment of acromegaly. Nat Rev Endocrinol 2011; 7:1305-14; PMID:21499766; https://doi.org/10.1038/nrendo.2011.21

[36] van der Lely AJ, Kopchick JJ. Growth hormone receptor antagonists. Neuroendocrinology 2006; 83:264-8; PMID:17047392; https://doi.org/10.1159/000095537

[37] Satoh A, Brace CS, Rensing N, Cliften P, Wozniak DF, Herzog ED, Yamada KA, Imai S. Sirt1 extends life span in mice: a consensus on medical treatment of acromegaly. J Clin Investig 2013; 123:2764-72; PMID:23863634; https://doi.org/10.1172/JCI67227

[38] Song XM, Fiedler M, Galuska D, Ryder JW, Fernstrom M, Chibalin AV, Wallberg-Henriksson H, Zierath JR. 5-aminooimidazole-4-carboxamide ribonucleoside treatment improves glucose homeostasis in insulin-resistant diabetic (ob/ob) mice. Diabetologia 2002; 45:56-65; PMID:11845224; https://doi.org/10.1007/s125-002-8245-8

[39] Rena G, Pearson ER, Sakamoto K. Molecular mechanism of action of metformin: old or new insights? Diabetologia 2013; 56:1898-906; PMID:23835523; https://doi.org/10.1007/s00125-013-2991-0

[40] UK Prospective Diabetes Study. In: https://www.dtu.ox.ac.uk/ukpd

[41] Franceschi C, Campisi J. Chronic inflammation (inflammaging) and its potential contribution to age-associated diseases. J Gerontol A Biol Sci Med Sci 2014; 69(Suppl 1): S4-S9; PMID:24833586; https://doi.org/10.1093/gerona/glu057

[42] Biagi P, Nyland L, Candela M, Ostan R, Bucci L, Pini E, Nikkila J, Monti D, Satokari R, Franceschi C, et al. Through aging, and beyond: gut microbiota and inflammatory status in seniors and centenarians. PLoS One 2010; 5:e10067; PMID:20498852; https://doi.org/10.1371/journal.pone.0010667

[43] Pinti M, Cevenini E, Nasi M, De Biasi S, Salvioli S, Monti D, Benatti S, Bibellini L, Cottichini R, Stazi MA, et al. Circulating mitochondrial DNA increases with age and is a familiar trait: implications for “inflamm-aging.” Eur J Immunol 2014; 44:1552-62; PMID:24470107; https://doi.org/10.1002/eji.201343921

[44] Berendsen A, Santoro A, Pini E, Cevenini E, Ostan R, Pietruszka B, Rolf K, Cano N, Caille A, Lyon-Belgy N, et al. A parallel randomized trial on the effect of a healthful diet on inflammingaging and its consequences in European elderly people: design of the NU-AGE dietary intervention study. Mech Ageing Dev 2013; 134:523-30; PMID:24211360; https://doi.org/10.1016/j.mad.2013.10.002

[45] Carter GM, Esmaeili A, Shah H, Indyk D, Johnson M, Andreade M, Sacks HS. Probiotics in HIV infection: a systematic review and evidence synthesis of benefits and risks. Open Forum Infect Dis 2016; 3:ofw164; PMID:27747250; https://doi.org/10.1093/ofid/ofw164

[46] Longo BD. Linking sirtuins, IGF-I signaling, and starvation. Exp Gerontol 2009; 44:70-4; PMID:18638538; https://doi.org/10.1016/j.exger.2008.06.005

[47] Eisenberg T, Knauer H, Schauer A, Bütter S, Ruckenstuhl C, Carmona-Gutierrez D, Ring J, Schroeder S, Magnes C, Antonacci L, et al. Induction of autophagy by sperrmidine promotes longevity. Nat Cell Biol 2009; 11:1305-14; PMID:19801973; https://doi.org/10.1038/ncb1975

[48] Nielsen SF, Nordestgaard BJ, Bojesen SE. Statin use and reduced cancer-related mortality. N Engl J Med 2013; 368:576-7; PMID:23388012

[49] Spindler SR, Mote PL, Li R, Lublin AL. Nordihydroguaiaretic acid extends the lifespan of long-live mice. Age (Dordr) 2013; 35:2099-30; PMID:23314750; https://doi.org/10.1007/s11523-011-0174-9

[50] Nielsen SF, Nordestgaard BJ, Bojesen SE. Statin use and reduced cancer-related mortality. N Engl J Med 2013; 368:576-7; PMID:23388012

[51] Spindler SR, Mote PL, Li R, Dhabhi JM, Yamakawa A, Flegal JM, Jeske DR, Li R, Lublin AL. Betal-adrenergic receptor blockade extends life span of Drosophila and long-live mice. Age (Dordr) 2013; 35:2099-109; PMID:23314750; https://doi.org/10.1007/s11523-012-9498-3

[52] Spindler SR, Mote PL, Lublin AL, Flegal JM, Dhabhi JM, Li R. Nordihydroguaiaretic acid extends the lifespan of Drosophila and mice, increases mortality-related tumors and hemorrhagic diathesis, and alters energy homeostasis in mice. J Gerontol A Biol Sci Med Sci 2014; 70:1479-89; https://doi.org/10.1093/gerona/glh190
[54] Denzel MS, Storm NJ, Gutschmidt A, Baddi R, Hinze Y, Jarosch E, Sommer T, Hoppe T, Antebi A. Hexosamine pathway metabolites enhance protein quality control and prolong life. Cell 2014; 156:1167-78; PMID:24630720; https://doi.org/10.1016/j.cell.2014.01.061

[55] Wang J, Sun Q, Morita Y, Jiang H, Gross A, Lechel A, Hildner K, Guachalla LM, Gompf A, Hartmann D, et al. A differentiation checkpoint limits hematopoietic stem cell self-renewal in response to DNA damage. Cell 2012; 148:1001-14; PMID:22385964; https://doi.org/10.1016/j.cell.2012.01.040

[56] Patel VK, Demontis F. GDF11/myostatin and aging. Aging (Albany, NY) 2014; 6:351-2; https://doi.org/10.18632/aging.100666

[57] Dai J, Huang Q, Boeke JD. Effect of reverse transcriptase inhibitors on LINE-1 and Ty1 reverse transcriptase activities and on LINE-1 retrotransposition. BMC Biochem 2011; 12:18; PMID:21545744; https://doi.org/10.1186/1471-2091-12-18