Deciphering the role of innate immune NF-κB pathway in pancreatic cancer

Namrata Khurana
Washington University School of Medicine in St. Louis

Paarth B Dodhiawala
Washington University School of Medicine in St. Louis

Ashenafi Bulle
Washington University School of Medicine in St. Louis

Kian-Huat Lim
Washington University School of Medicine in St. Louis

Follow this and additional works at: https://digitalcommons.wustl.edu/open_access_pubs

Recommended Citation
Khurana, Namrata; Dodhiawala, Paarth B; Bulle, Ashenafi; and Lim, Kian-Huat, "Deciphering the role of innate immune NF-κB pathway in pancreatic cancer." Cancers (Basel). 12,9. . (2020).
https://digitalcommons.wustl.edu/open_access_pubs/9625

This Open Access Publication is brought to you for free and open access by Digital Commons@Becker. It has been accepted for inclusion in Open Access Publications by an authorized administrator of Digital Commons@Becker. For more information, please contact vanam@wustl.edu.
Deciphering the Role of Innate Immune NF-κB Pathway in Pancreatic Cancer

Namrita Khurana, Paarth B. Dodhiwala, Ashenafi Bulle and Kian-Huat Lim

Division of Oncology, Department of Internal Medicine, Barnes-Jewish Hospital and The Alvin J. Siteman Comprehensive Cancer Center, Washington University School of Medicine, St. Louis, MO 63110, USA; nkhusaraou@wustl.edu (N.K.); dodhiwalaap@wustl.edu (P.B.D.); ashenafibulle@wustl.edu (A.B.)

* Correspondence: kian-huat.lim@wustl.edu; Tel.: +1-314-568-4157; Fax: +1-314-747-9320

Received: 1 September 2020; Accepted: 17 September 2020; Published: 19 September 2020

Simple Summary: Chronic inflammation is a major mechanism that underlies the aggressive nature and treatment resistance of pancreatic cancer. In many ways, the molecular mechanisms that drive chronic inflammation in pancreatic cancer are very similar to our body’s normal innate immune response to injury or invading microorganisms. Therefore, during cancer development, pancreatic cancer cells hijack the innate immune pathway to foster a chronically inflamed tumor environment that helps shield them from immune attack and therapies. While blocking the innate immune pathway is theoretically reasonable, untoward side effects must also be addressed. In this review, we comprehensively summarize the literature that describe the role of innate immune signaling in pancreatic cancer, emphasizing the specific role of this pathway in different cell types. We review the interaction of the innate immune pathway and cancer driving signaling in pancreatic cancer and provide an updated overview of novel therapeutic opportunities against this mechanism.

Abstract: Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal cancers with no effective treatment option. A predominant hallmark of PDAC is the intense fibro-inflammatory stroma which not only physically collapses vasculature but also functionally suppresses anti-tumor immunity. Constitutive and induced activation of the NF-κB transcription factors is a major mechanism that drives inflammation in PDAC. While targeting this pathway is widely supported as a promising therapeutic strategy, clinical success is elusive due to a lack of safe and effective anti-NF-κB pathway therapeutics. Furthermore, the cell type-specific contribution of this pathway, specifically in neoplastic cells, stromal fibroblasts, and immune cells, has not been critically appraised. In this article, we highlighted seminal and recent literature on molecular mechanisms that drive NF-κB activity in each of these major cell types in PDAC, focusing specifically on the innate immune Toll-like/IL-1 receptor pathway. We reviewed recent evidence on the signaling interplay between the NF-κB and oncogenic KRAS signaling pathways in PDAC cells and their collective contribution to cancer inflammation. Lastly, we reviewed clinical trials on agents that target the NF-κB pathway and novel therapeutic strategies that have been proposed in preclinical studies.

Keywords: NF-κB; pancreatic cancer; inflammation; IRAK4; TPL2; TAK1

1. Introduction

Pancreatic ductal adenocarcinoma (PDAC) has recently emerged as the third leading cause of cancer-related death in the US and is projected to be the second by 2030 [1]. Due to a lack of early symptoms and effective screening strategies, only 10–15% of PDAC patients are diagnosed at an early stage that allows surgical resection. For these patients, adjuvant chemotherapies are routinely offered [2–4]. Yet, the majority of these patients succumb to disease relapse, indicating the
strong resistance of PDAC cells to chemotherapy. For patients with inoperable or metastatic diseases, combination chemotherapies including FOLFIRINOX (cocktail of 5-FU, oxaliplatin, leucovorin and irinotecan) and gemcitabine/nab-paclitaxel are the mainstay treatment [5,6], but treatment response is neither universal nor durable. This discord scenario translates into an estimated 47,050 deaths, or ~82% of new 77,600 PDAC cases diagnosed in the US in 2020 [7]. The 5-year survival rate for all PDAC patients is currently at ~9%, the lowest among all major cancer types. Despite decades of intensive research from the academia and industry, newer treatment modalities including molecular-targeted and immunotherapies, which are part of standard treatments for other cancer types, remain largely unsuccessful in PDAC.

Several factors, both intrinsic and extrinsic, contribute to the aggressive behavior of PDAC. PDAC cells are intrinsically driven by powerful oncogenic mutations, including activating KRAS mutations, loss of TP53, and CDKN2A/B and SMAD4 tumor suppressor genes [8], which endow PDAC cells with superior capabilities to survive in adverse environments, withstand therapeutic attacks, and metastasize. Externally, the tumor microenvironment (TME) of PDAC is characterized by a thick, densely fibrotic (desmoplastic) matrix consisting of collagen, hyaluronan, and fibronectin, which can constitute up to 80-90% of the tumor bulk [9]. Studies over the past two decades have shown that the desmoplastic stroma not only limits vascularity and delivery of therapeutics but is also heavily infiltrated with suppressive immune cells that incapacitate anti-tumor T cells [10-13]. However, addition of stroma-depleting agents, especially sonic Hedgehog inhibitors or pegylated hyalurondase, to chemotherapy failed to benefit patients in clinical trials [14-17]. Furthermore, mouse models suggest that depletion of stromal fibroblasts alone carries a risk of reverting PDAC cells to a progenitor-like and aggressive state that is more treatment-resistant [13,18]. Therefore, an in-depth understanding of the tumor-intrinsic and -extrinsic signaling pathways that contribute to desmoplasia is essential in devising effective therapeutic strategies.

2. Chronic Inflammation Drives Desmoplasia and Neoplastic Progression in PDAC

Chronic inflammation is the central mechanism that drives desmoplasia and neoplastic progression in PDAC [19]. The driving force of inflammation can originate from both neoplastic cells and external environmental stimuli. In genetically engineered mouse models (GEMMs), expression of oncogenic KRAS (such as KRASG12D) and loss-of-function Trp53 mutants in pancreatic lineage cells (p48-Cre or PDX-Cre; Trp53W1248C or Trp53F918W; LSL-KrasG12D, generally termed KPC mice) results in the formation of highly desmoplastic PDAC [20-22], strongly suggesting that secreted factors or physical cues from the neoplastic PDAC cells are sufficient in driving desmoplasia. On the other hand, in the absence of Trp53 mutations, p48-Cre, or PDX-Cre; LSL-KrasG12D (or KC), mice have very low penetrance of developing PDAC [23]. However, the addition of external inflammatory stimuli, such as by treating mice with caerulein [24,25], cigarette smoking [25] or a high-fat diet [26], can greatly accelerate the development of highly desmoplastic PDACs. These latter scenarios are distinctly reminiscent of human patients, where autoimmune pancreatitis, alcoholism, smoking, obesity, chronic biliary inflammation, and advanced age increase the lifetime risk of developing PDAC [27-29]. In addition, PDAC patients are characterized by significant cachexia even at an early stage of diagnosis, largely due to increased serum levels of pro-inflammatory cytokines interleukin (IL)-1β, IL-6, tumor necrosis factor (TNF)-α, and interferon (IFN)-γ [30]. Therefore, chronic inflammation is a core component in the pathophysiology of PDAC, from tumor initiation to progression to clinical manifestations.

3. NF-κB Pathway: A Major Driver of Inflammation in PDAC

Aberrant activation of the NF-κB family of transcription factors is perhaps the most common and dominant mechanism that drives chronic inflammation in human cancers. The NF-κB factors comprise of five different members: RELA (p65), RELB, c-REL, p50/p105, and p52/p100 [31]. They are classified as NF-κB (κB) proteins as they all share a κB homology domain (RHD) in the N-terminus, which is critical for homo- or hetero-dimerization and binding to κB cognate DNA elements in target genes. The activity
of NF-κB is principally regulated by inhibitors of NF-κB (IκBs) which mask the nuclear localization signals (NLS) of NF-κB, keeping them sequestered in an inactive latent complex in the cytoplasm [32]. There are canonical and non-canonical NF-κB pathways. In the canonical pathway, the IκB kinases (IKK) phosphorylate IκB upon receiving extracellular signals, such as cytokines, stress, free radicals, or radiation, resulting in the polyubiquitination and proteasomal degradation of IκB. This leads to the release of p65 and p50 which can translocate into the nucleus to transactivate NF-κB-dependent genes [33]. The non-canonical pathway involves p100/ReLouB complexes which, at baseline, are inactive in the cytoplasm. Signaling through cytokine receptors, such as CD40 and the lymphotxin β receptor (LTβR), activates the NF-κB-inducing kinase (NIK), which in turn activates IKKα, leading to phosphorylation of p100 at the C-terminal residues. This results in polyubiquitination and proteasomal processing of p100 to p52 which can translocate into the nucleus and complex with RELB to transactivate target genes [34]. In PDAC, the canonical pathway is the main driving mechanism of NF-κB activity.

3.1. The Role of NF-κB in PDAC Cells

Constitutive activation of NF-κB occurs in ~70% of PDAC samples [35,36], as seen by increased immunohistochemical staining of phosphorylated or nuclear RELA in neoplastic cells. Apart from inflammation, the NF-κB transcription factors control genes that contribute to various hallmarks of cancer, which include proliferation, evasion from apoptosis, enhanced angiogenesis, metastasis, and invasion [35,37,38]. Several review articles have been published delineating the pro-tumorigenic roles of NF-κB in PDAC, and these will not be described in detail here. Importantly, NF-κB activity can be further induced under stress conditions, including DNA damage, and is a major mechanism that confers resistance to chemotherapeutic agents, such as gemcitabine [39–42]. Mechanistically, NF-κB activation slows down the cell cycle, thereby desensitizing PDAC cells to chemotherapy, inducing anti-apoptotic proteins that block the caspase activation, and inducing stemness [43,44].

3.2. The Role of NF-κB in CAIs

Cancer-associated fibroblasts (CAFs) play a major role in treatment resistance and progression of PDAC [45,46]. However, near depletion of CAFs paradoxically promotes the development of more aggressive and poorly differentiated PDAC [13,18]. It is now clear that PDAC CAFs consist of at least three different transcriptional subtypes: inflammatory CAFs (iCAFs), myofibroblastic CAFs (mCAFs), and antigen-presenting CAFs (apCAFs) [47,48]. Robust phosphorylation of RELA was observed in a subset of PDAC CAFs and is critical for collagen deposition and secretion of inflammatory cytokines, including IL-6 and IL-1β [49], suggesting NF-κB to be the driving force in iCAFs. Importantly, the abundance of IL-1β staining in CAFs is associated with poor prognosis. Mechanistically, RELA activation in CAFs is driven by IL-1β secreted from CAFs, and surrounding PDAC cells and can be blocked by interleukin-1 receptor-associated kinase (IRAK)4 inhibition. PDAC cells injected into IRAK4-null mice or co-injected with IRAK4-silenced CAFs develop markedly smaller and less fibrotic tumors [49]. Notably, IRAK4 inhibitors markedly reduce tumor fibrosis and synergize with gemcitabine, leading to significantly better tumor control. These results provide a tractable strategy to selectively target CAFs to improve therapeutic response. In addition, recent evidence has shown that pancreatic stellate cells (PSCs) secrete chemokine (C-X-C motif) ligand 2 (CXCL2) by engaging p50 to block CD8+ T cell infiltration in PDAC [50]. This further supports the rationale to target the NF-κB cascade in CAFs.

3.3. The Role of NF-κB in Immune Cells

The role of NF-κB factors in immune cells is extremely complicated, context-dependent, and mostly studied using conditional knockout mouse models. The role of NF-κB in each immune subset in PDAC is largely unclear. In PDAC, certain subsets of myeloid-derived suppressor cells (MDSCs) and tolerogenic regulatory T (Treg) cells actively contribute to tumor progression and treatment resistance [51,52]. Granulocytic MDSCs (G-MDSCs) constitute ~70–80%, or higher, whereas mononuclear MDSCs (M-MDSCs) constitute 20–30% of the total population of MDSCs. On the other hand, anti-tumor
CD4+ and CD8+ T cells are either scarce or dysfunctional. The crosstalk of MDSCs with immune cells, such as tumor-associated macrophages (TAMs), Tregs, and dendritic cells (DCs), within the tumor microenvironment (TME) suppresses effector T cells. The role of NF-κB in driving the phenotypes of these immune cells and the impact of targeting the canonical or non-canonical NF-κB pathways in PDAC is largely unclear and should be investigated. Until then, it is important to appreciate the role of the NF-κB pathway in the development of each immune cell type. Both the canonical and non-canonical pathways are essential for normal differentiation and self-renewal of hematopoietic stem cells [53,54]. Vav-Cre driven deletion of RELA, which ablates RELA expression in all hematopoietic cells, resulted in accumulation of hematopoietic stem cells that are defective in further differentiation into progenitors [53]. Interestingly, myeloid-specific deletion or pharmacologic suppression of IKKβ resulted in granulocytosis and rendered mice more susceptible to endotoxin-induced shock due to increased circulating IL-1β and TNFα [55]. On the other hand, bone marrow transplant experiments showed that IKKβ-deleted stem cells failed to mature into T cells due to overwhelming TNFα induced apoptosis, and this defect could be fixed/prevented by co-deletion of TNF receptor (TNFR) [56]. Tightly regulated canonical NF-κB activity is essential for positive and negative selection of major histocompatibility complex (MHC)-I restricted CD8+ T cell selection, as these processes are abrogated by excessive or inadequate canonical NF-κB activity mimicked by expression of activated IKKβ mutant or dominant negative IkB in T cells [57]. Intriguingly, these mutant T cells retained a normal ability to undergo MHC-II restricted CD4+ T cell selection, suggesting that the canonical NF-κB activity is dispensable in CD4+ T cell selection [57]. That said, RELA is critical for maintenance of tolerogenic CD4+ Foxp3+ Treg as deletion of RELA in this subset induces autoimmune disorders [58]. The activation of NF-κB downstream of MyD88 has a critical role in the activation and functionality of MDSCs. The ability of MyD88™ MDSCs to suppress the activity of T cells and secrete immunoregulatory cytokines was considerably reduced compared to the wild type MDSCs both in vitro and in vivo. Also, the activation of NF-κB signaling in TAMs contributes to carcinogenesis in various models of inflammation-associated cancers including PDAC [59]. In B cells, IKKβ is essential for survival, proliferation, maturation, and mounting antibody response to T cell dependent and independent antigens [60–63].

To date, immunotherapy, specifically "immune checkpoint inhibitors" (ICD) and chimeric antigen receptor (CAR) T cells, remains largely unsuccessful in PDAC. Attempts to relieve T cell checkpoints with anti-programmed death (PD)-1 (anti-PD-L1/PD-L2 antibodies) and/or anti-cytotoxic T lymphocyte-associated protein 4 (CTLA4) are inadequate in mounting an effective therapeutic response. One of the major obstacles is T cell exhaustion, which is driven by upregulation of the transcription factors nuclear factor of activated T cells (NFAT), basic leucine zipper ATF-like transcription factor (BATF), and interferon regulatory factor 4 (IRF4) [60–65]. However, the molecular mechanisms that upregulate these factors remain largely unclear. Chronic engagement of the Toll-like receptor (TLR) by infection with HIV leads to anergy of CD4+ T cells via NFAT cytoplasmic 2 (NFATC2) [66]. Sustained engagement of T cell receptors or TLR engagement, as expected within the inflammatory TME of PDAC, may contribute to the upregulation of these exhaustion factors, but this speculation remains to be tested.

4. Mechanisms that Activate the NF-κB Pathway in PDAC

The Toll-like/Interleukin-1 receptor (TIR) and tumour necrosis factor receptor (TNFR) family members are the main triggers that drive the canonical NF-κB pathway in PDAC cells and CAFs. The TLR1–10 in humans specialize in sensing both damage-associated molecular patterns (DAMPs) and pathogen-associated molecular patterns (PAMPs) and are sentinels that initiate inflammation as part of the innate immune response. Engagement of TLRs results in cytoplasmic aggregation of adaptor proteins, including myeloid differentiation factor 88 (MyD88), TIR domain-containing adapter-inducing interferon-β (TRIF), TRIF-related adaptor molecule (TRAM), and sterile-n- and armadillo motif-containing proteins [67]. Specifically, MyD88 oligomerizes with the closely homologous IRAKs, including IRAK1, IRAK2, and IRAK4, whereby IRAK4 phosphorylates IRAK1,
leading to recruitment of TNFR receptor-associated factor (TRAF) 2, transforming growth factor-β (TGF-β)-activated kinase 1 (TAK1), IκBα complex, and activation of the Nf-κB, p38/mitogen-activated protein kinase (MAPK) and type-1 interferon pathways [68]. Additionally, engagement of the TNFRs leads to recruitment of TRAF2, which polyubiquitinates and activates receptor-interacting protein kinase (RIPK), which in turn binds and activates TAK1 [69,70] (Figure 1). In the following sections, we will review the role of these pathways in PDAC.

Figure 1. Overview of receptors and signaling pathways that activate the Nf-κB cascade. After recognition of their cognate ligands, IL-1β and TRAIL and recruit their adaptor protein, MyD88. MyD88 then associates with TRAF2 recruiting TNFR- receptor-associated factor (TRAF) 2, transforming growth factor-β (TGF-β)-activated kinase 1 (TAK1), IκBα complex, and activating Nf-κB, p38 and p44 MAPKs, and type-1 interferon pathways. In addition, engagement of the TNFRs recruits TNFR receptor-associated factor (TRAF) 2, activating TAK1.

4.1. Toll-Like Receptors

TLRs are ubiquitously expressed type I transmembrane receptors consisting of an extracellular domain, transmembrane region, and intracellular domain [71]. The extracellular domain contains leucine-rich repeats and cysteine residues which identify and bind to evolutionary conserved regions in DAMPs or PAMPs, whereas the intracellular domain is greatly homologous amongst TLRs containing the TIR domain which is important for the intracellular activation of signaling cascades resulting in the secretion of cytokines and chemokines [72]. The role of TLRs in PDAC pathophysiology is highly context dependent and cell type-specific. In this review, we will focus mainly on TLR4, TLR9, and TLR3, for which more literature relevant to PDAC are available.

4.1.1. TLR4

Enhanced expression of TLR4 is found in neoplastic, stromal and inflammatory cells in PDAC [73]. Treatment with lipopolysaccharide (LPS), a ligand for TLR4, promotes the invasiveness of PDAC cells through enhanced production of matrix metalloproteinase 9 (MMP9) [74]. In the genetic p48-Cre;KrasG12D mouse model, LPS treatment accelerated stepwise progression from precancerous lesions to PDAC, which could be blocked by inhibiting TRIF, one of the two major downstream adaptor proteins recruited by TLR4. On the other hand, blockade of MyD88, the other adaptor protein downstream of TLR4, paradoxically exacerbated stromal inflammation and accelerated PDAC development through expansion of dendritic cells, which promotes development of antigen-specific
3.3.4 Treatment of TLR7/8 with TLR7/8 agonists

Treatment of TLR7/8 with TLR7/8 agonists can lead to therapeutic effects in various inflammatory and immune-related conditions. One of the mechanisms through which TLR7/8 agonists exert their therapeutic effects is by modulating the immune response. TLR7/8 agonists can upregulate the expression of inflammatory cytokines and chemokines, leading to the activation of immune cells, such as macrophages and dendritic cells. This activation can result in the production of pro-inflammatory cytokines, which can inhibit tumor growth and proliferation.

Another mechanism through which TLR7/8 agonists can exert their therapeutic effects is by promoting the differentiation of regulatory T cells (Tregs). TLR7/8 agonists can induce the differentiation of naive T cells into Tregs, which can suppress the immune response and prevent the progression of autoimmune diseases.

In addition, TLR7/8 agonists can also modulate the expression of adhesion molecules and integrins on immune cells, which can affect the migration and infiltration of immune cells into tissues and organs. This can have important implications for the treatment of inflammatory and immune-related conditions, such as autoimmune diseases and cancer.

Finally, TLR7/8 agonists can also modulate the expression of enzymes involved in the metabolism of inflammatory signaling molecules, such as nitric oxide synthase (NOS) and peroxisome proliferator-activated receptor-γ (PPAR-γ). This can affect the production of pro-inflammatory cytokines and chemokines, as well as the expression of adhesion molecules and integrins, leading to the modulation of the immune response.

Overall, the therapeutic potential of TLR7/8 agonists is promising, and further research is needed to fully understand their mechanisms of action and to develop effective therapeutic strategies for the treatment of inflammatory and immune-related conditions.
110. Fan, Y.; Yu, Y.; Mao, R.; Zhang, H.; Yang, J. TAK1 Lys-158 but not Lys-209 is required for IL-1beta-induced Lyn-63-linked TAK1 polyubiquitination and IKB/NF-kappaB activation. Cell Signal. 2012, 23, 660-665. [CrossRef]

111. Fan, Y.; Yu, Y.; Shi, Y.; Sun, W.; Xie, M.; Ge, N.; Mao, R.; Chang, A.; Xu, G.; Schneider, M.D.; et al. Lyn-63-linked polyubiquitination of TAK1 at lysine 158 is required for tumor necrosis factor alpha- and interleukin-1beta-induced IKB/NF-kappaB and JNK/AP-1 activation. J. Biol. Chem. 2010, 285, 5547-5560. [CrossRef]

112. Singhinumrus, P.; Suzuki, S.; Kawasaki, N.; Saij, I.; Sakurai, H. Critical roles of threeine 187 phosphorylation in cellular stress-induced rapid and transient activation of transforming growth factor-beta-activated kinase 1 (TAK1) in a signaling complex containing TAK1-binding protein TAK1 and TAB2. J. Biol. Chem. 2005, 280, 7399-7408. [CrossRef]

113. Yu, Y.; Ge, N.; Xie, M.; Sun, W.; Burlingame, A.; Pae, A.K.; Nordheim, J.G.; Zhang, D.; Pu, S.; Schneider, M.D.; et al. Phosphorylation of Thr-178 and Thr-184 in the TAK1 loop is required for interleukin (IL)-1-mediated optimal NF-kappaB and AP-1 activation as well as IL-6 gene expression. J. Biol. Chem. 2008, 283, 24497-24505. [CrossRef]

114. Sehara, R.; Sadler, C.L.; Thal, R.P.; Wassinger, N.; Cheung, P.C.; Neumann, D. Autoactivation of transforming growth factor-beta-activated kinase 1 is a sequential bimolecular process. J. Biol. Chem. 2010, 285, 25753-25764. [CrossRef]

115. Fan, Y.; Yu, Y.; Mao, R.; Tan, X.; Xu, G.; Zhang, H.; Lu, X.; Fu, S.; Yang, J. USP14 targets TAK1 to downregulate TNFalpha-induced NF-kappaB activation. Cell Death Differ. 2019, 16, 1547-1560. [CrossRef]

116. Ridley, W.K.; Jin, W.; Lee, A.; Wright, A.; Wu, T.; TeWalt, E.F.; Leonard, T.O.; Narbury, C.C.; Fitzpatrick, L.; Zhang, M.; et al. Deubiquitinating enzyme CYLD negatively regulates the ubiquitin dependent kinase TAK1 and prevents abnormal T cell responses. J. Exp. Med. 2007, 204, 1475-1485. [CrossRef] [PubMed]

117. Ahmed, N.; Zeng, M.; Sinha, L.; Polin, L.; Wu, W.; Ribavin, C.; Freavel, R.; Masoumi, K.; Veresstopol, K. The E3 ligases Itch and deubiquitinase CYLD act together to regulate TAK1 and inflammation. Nat. Immunol. 2011, 12, 1172-1183. [CrossRef] [PubMed]

118. Kajino, T.; Ren, H.; jamn, S.; Natsuma, T.; Stenfors, B.; Brustgut, D.L.; Matsumoto, K.; Ninomiya-Tsuji, J. Protein phosphatase 6 down regulates TAK1 kinase activity in the IL-1 signaling pathway. J. Biol. Chem. 2004, 280, 39991-39996. [PubMed]

119. Li, M.; Katsura, K.; Nemiyama, H.; Komasaki, K.; Ninomiya-Tsuji, J.; Matsumoto, K.; Kobayashi, T.; Tamura, S. Regulation of the interleukin-1-induced signaling pathways by a novel member of the protein phosphatase 2C family (PP2Ceapon). J. Biol. Chem. 2003, 278, 12003-12012. [CrossRef]

120. Zhong, H.; Li, Q.; Chen, H.; Zhang, J.; Ran, Y.; He, X.; Shi, H.B. The dual-specificity phosphatase DUSP14 negatively regulates tumor necrosis factor- and interleukin-1-induced nuclear factor-kappaB activation by dephosphorylating the protein kinase TAK1. J. Biol. Chem. 2013, 288, 619-625. [CrossRef]

121. Jadhichi, J.L.; O’Connor, M.B.; Couto-Arana, E. The TGF beta activated kinase TAK1 regulates vascular development in vivo. Development 2006, 133, 1529-1534. [CrossRef]

122. Shao, J.L.; Xiao, C.; Paschal, A.E.; Bailey, S.T.; Rau, T.; Hayden, M.S.; Lee, K.Y.; Butchey, C.; Stelick, M.; Takata, N.; et al. TAK1, but not TAB1 or TAB2, plays an essential role in multiple signaling pathways in vivo. Genes Dev. 2005, 19, 2664-2681. [CrossRef]

123. Kajino-Sakamoto, R.; Inagaki, M.; Lippert, E.; Akira, S.; Robine, S.; Matsumoto, K.; Jabon, C.; Ninomiya-Tsuji, J. Enterocyte-derived TAK1 signaling promotes epithelial apoptosis and the development of ileitis and colitis. J. Immunol. 2004, 173, 1143-1152. [CrossRef]

124. Singh, A.; Sweeney, M.F.; Yu, M.; Berger, A.; Gunning, P.; Beres, C.; Habel, D.A.; Settlemier, J. TAK1 inhibitor promotes apoptosis in KRAS dependent colon cancers. Cell 2012, 148, 639-650. [CrossRef]

125. Herrn, M.; Stellman, M.; Arslan, S.C.; Kharina, K.K.; Dittmar, G.; Schiedereit, C. A cytoplasmic ATM-TRAF6-TRAF2 module links nucleo DNA damage signaling to ubiquitin-mediated NF-kappaB activation. Mol. Cell 2008, 40, 46-56. [CrossRef] [PubMed]

126. Wu, Z.H.; Wang, E.T.; Shi, Y.; Niu, J.; Chen, Z.; Miyamoto, S.; Tsurugaoka, V. ATM- and NEMO-dependent ELKS ubiquitination coordinates TAK1-mediated IKK activation in response to genotoxic stress. Mol. Cell 2010, 40, 75-86. [CrossRef]

the diaphragm, liver and spleen [88]. Moreover, the combination of Cpg-ODNs and gemcitabine exists as a novel way to enhance the clinical response in the treatment of bulky disease (extensive peritoneal tumor burden), decreased metastasis, and enhanced survival time in comparison to gemcitabine treatment alone. Furthermore, TLR9 agonists have been shown to have therapeutic value, mainly through stimulating an anti-tumor response. In a Pan02 model expressing ovalbumin, the combination of a vaccine based on immune stimulatory complexes (ISCOM) and a TLR9 agonist could restore anti-tumor immune response by activating NK cells, cytotoxic T cells, and dendritic cells, leading to tumor regression [86]. The context dependent role of TLR9 in PDAC progression and treatment response underscores the importance of careful consideration of therapeutic strategies towards TLR9.

4.2. IL-10 and IL-1R

Enhanced systemic and intratumoral expression of IL-1α and IL-1β is common in PDAC patients. In GEMM, expression of oncogenic KRAS drives the IKB5-NF-κB axis via autocrine expression of IL-1α [87]. Activated NF-κB further increases expression of the target gene p62, which promotes ubiquitination of TRAFs which feeds back to the canonical NF-κB cascade. This process is critical for PDAC development. Secretion of IL-1β by tumor cells and stromal CAFs leads to increased NF-κB activity in both cell types, increased intratumoral collagen deposition and chemoresistance [49]. These studies provide a solid rationale for targeting IL-1R in combination with chemotherapy in PDAC. Recently, tumor-derived IL-1β was shown to foster an immunosuppressive TME by promoting M2 macrophage polarization and an influx of myeloid-suppressor cells, such as regulatory T and Th17 cells. On this basis, neutralizing the IL-1β antibody promotes intratumoral CD8+ T cell infiltration and synergizes with anti-PD1 [88].

4.3. TNF-α and TNFR

The PDAC TME is ripe with TNFα secreted by PDAC cells and also immune cells, such as macrophages [89,90]. TNF-α and Regulated Upon Activation, Normal T Cell Expressed and Presumably Secreted (RANTES) secreted by macrophages drive NF-κB activity in PDAC cells, resulting in the upregulation of several target genes, including AKT1, 3β1-14, 3β2A2, COX-2, CDK1, CCND1, PDGFβ, and several genes encoding matrix metalloproteinases. These genes result in stromal to ductal metaplasia (ADM) and progression to pancreatic intraductal neoplasia (PanIN) [89]. High intratumoral TNFα expression is associated with poor prognosis in PDAC patients [91]. The addition of anti-TNFα neutralizing antibodies infliximab or etanercept reduced tumor demascula and cooperated with chemotherapy in delaying tumor growth and mouse survival [91]. In human xenograft mouse models, infliximab reduced Ap-1 and NF-κB activity and attenuated PDAC growth and metastasis [90]. Unfortunately, the addition of etanercept failed to improve treatment response with gemcitabine in a phase 1/2 clinical trial [92]. It is becoming clear that TNFR signaling can trigger both pro-apoptotic and anti-apoptotic pathways. Therefore, it is critical to further dissect the contribution of downstream signaling cascades in order to devise therapeutic strategies that are more likely to be successful in the clinic.

4.4. IRAK4

IRAKs, which consist of four family members (IRAK1-4), are the key signal transducers for IL-1R and TLRs [93]. Activation of the 1R family member receptors results in recruitment of the adapter protein TRAM, the IRAKs and TRAF6. IRAK4 undergoes autophosphorylation at several residues, including Thr289 and Thr402, and subsequently phosphorylates IRAK1, resulting in the dissociation of IRAK1 and TRAF6 from the active complex [94]. After dissociation, IRAK1 binds to TAB-1, TAB-2, and TAK-1 (transforming growth factor-β-activated kinase), leading to activation of TAK-1 which phosphorylates the IKK complex (IKKA, IKKB, and IKKγ), JNK, and the p38 MAPKs [95].

In PDAC, the kinase activity of IRAK4, but not IRAK1, is essential for downstream signal transduction [36], making it an actionable target. In the absence of stimulation by a TLR ligand,
constitutive phosphorylation of IRAK4 was detected in 11 out of 12 human PDAC cell lines but not in the non-transformed pancreatic ductal cell line. Human pancreatic duct epithelial (HPDE) cell lines. Immunohistochemical (IHC) staining of p-IRA4 was evident in approximately 60% of human PDAC samples and strongly correlated with p-REL staining. The presence of p-IRA4 was predictive of higher postoperative relapse and poorer patient survival. Suppression of IRAK4 strongly decreased NF-κB activity, chemoresistance, anchorage-independent growth, and production of several pro-inflammatory cytokines, including IL-1β, IL-6, IL-8, CXCL1, CXCL2, and CCL2. As cytokines/chemokines have been shown to induce desmoplasia [92], IRAK4 inhibition led to the impairment of the ability of PDAC cells to proliferate, invasion, and migration of CAFs. Notably, strong p-IRA4 and p-REL IHC staining is also present in stromal CAFs. Targeting IRAK4 markedly reduced NF-κB activity and production of collagen and IL-1β by CAFs [49].

IRA4 is critical in innate immunity against microorganisms. IRAK4-/- mice are immunocompromised and do not respond to challenges by TLR ligands [97]. IRAK4-deficient patients are susceptible to invasive bacterial infections in infancy and early childhood [98,99]. However, the role of IRAK4 in immune cells in PDAC development and immune responses has not been investigated. Because TLR7 and TLR9 signal exclusively through IRAK4 and contribute to inflammation-associated PDAC development, it is foreseeable that IRAK4 in immune cells also contributes to PDAC development. While IRAK4 is critical for a TLR-mediated response, its role in T cell receptor-mediated responses remains controversial. Using almost identical in vitro and in vivo stimulation assays but independently generated IRAK4-/- C57Bl/6 mice, Suzuki et al showed that IRAK4 is absolutely essential for T cell activation [100]. However, Kawagoe et al showed that IRAK4 is dispensable [101]. In the context of anti-tumor T cell response, it is carefully to carefully evaluate the role of IRAK4 in its initial MHC-restricted T cell activation. The other hand, because chronic T cell receptor engagement is a potential mechanism that drives T cell exhaustion [102], a universal phenomenon in PDAC, targeting IRAK4 may be a strategy to revitalize anti-tumor T cells. Therefore, the utilization of IRAK4 inhibition in immune-oncologic regimens must be carefully evaluated preclinically.

4.5. TAK1

Transforming growth factor-β (TGF-β)-activated kinase 1 (TAK1) is a serine/threonine kinase in the family of mitogen-activated protein kinase (MAPK) [103]. It is also known as MAP3K4. TAK1 has a critical role in inflammation and cell survival by serving as the signaling hub downstream of several receptors, including IL-1R, TLR, TGFβ, and TLRs, and upstream of the JNK, MAPK, NF-κB, and activator protein-1 (AP-1) pathways [104,105]. Upon receptor engagement, TAK1 undergoes K63-linked polyubiquitylation, specifically at the K185 residue, by E2 ligase UBC13/UEV1A and E3 ligase TRAF6/TAK2 [106,107]. Once polyubiquitinated, TAK1 undergoes autophosphorylation at T184, T187, and M192 to become fully activated [108-110]. On the other hand, TAK1 is negatively regulated by several mechanisms. For instance, deubiquitinating enzymes, including ubiquitin-specific peptidases-4 (USP4) and CYLD, remove K63-polyubiquitylation of TAK1, thereby blocking its activation [111-113]. Furthermore, both E3 ubiquitin ligase mediates the K48-linked polyubiquitylation of TAK1 at K72 and targets it for degradation [114]. In addition, TAK1 is dephosphorylated by phosphatases, including protein phosphatase 6, protein phosphatases 2C family members, and dual-specificity phosphatase 14 [114-116].

Global deletion of TAK1 in mice results in profound vascular maldevelopment and early embryonic lethality [117,118]. Tissue-specific depletion of TAK1 in enterocytes results in rapid development of intestinal inflammation driven by IL-1β, TNFα, and MIP2, followed by massive apoptosis of enterocytes, all of which are attenuated in TNFRI1-deleted mice [119]. Therefore, TAK1 is critical in maintaining the homeostasis of intestinal epithelial cells by driving survival genes to evade the pro-apoptotic effect of TNFα. In colon cancer cells, oncogene KRAS stimulates morphogenetic protein (BMP)-7 secretion and autocrine BMP7 signaling, leading to TAK1 activation and activation of the Wnt/β-catenin

86. Jacono, C.; Duwell, P.; Herbeckmüller, K.; Wei, J.; Baurmeister, F.; Efferer, J.; Klaeser, U.; Bauer, C.A.; Duerer, M.; Egleit, A., et al. An ISCOM vaccine combined with a TLR agonist breaks immune evasion mediated by regulatory T cells in an autologous model of pancreatic carcinoma. Int. J. Cancer 2011, 128, 897-907. [CrossRef]
87. Liang, J.; Kang, Y.; Zhao, R.; Xiao, Q.; Lee, D.F.; Chang, Z.; Li, J.; Peng, B.; Fleming, J.B.; Wang, H., et al. KrasG12D-induced IRF5/NF-κB activation by E1a and p53 (feedforward loop) is required for development of pancreatic ductal adenocarcinoma. Cancer Cell 2013, 23, 105-120. [CrossRef]
88. Das, S.; Shapira, B.; Vuck, I.A.; Vogt, S.; Bar-Sagi, D. Tumor Cell-Derived IL-1β Promotes Desmoplasia and Immune Suppression in Pancreatic Cancer. Cancer Res. 2020, 80, 1084-1110. [CrossRef]
89. Liu, G.; Dopppler, H.; Neccella, B.; Kriehn, M.; Crawford, H.; Raimand, M.; Storz, P. Macrophage-secreted cytokines drive pancreatic stromal-endothelial transition through NF-kappaB and NF-κB. J. Cell Biol. 2013, 202, 653-677. [CrossRef]
90. Egberts, J.H.; Cloosters, V.; Noack, A.; Schneidewind, B.; Thon, L.; Klaeser, S.; Kattler, B.; von Forstner, C.; Krziw, C.; Tesce, J., et al. Anti-tumor necrosis factor therapy inhibits pancreatic tumor growth and metastasis. Cancer Res. 2008, 68, 1443-1450. [CrossRef]
91. Zhao, X.; Fan, W.; Xu, Z.; Chen, H.; Hu, Y.; Yang, G.; Yang, G.; He, H.; Tang, S.; Wang, P., et al. Inhibiting tumor necrosis factor-alpha diminishes desmoplasia and inflammation to overcome chemoresistance in pancreatic ductal adenocarcinoma. Oncotarget 2017, 8, 8110-8122. [CrossRef] [PubMed]
92. Wu, C.; Fernandez, A.S.; Criteswell, T.; Chidchar, C.A.; Guttridge, D.; Villasenor-Calero, M.; Bekassy-Saai, T. Disrupting cytokine signaling in pancreatic cancer. A phase II study of etanercept in combination with gemcitabine in patients with advanced disease. Oncotarget 2013, 4, 813-819. [CrossRef] [PubMed]
93. Boswell, A.C. Insights from vincristine vastus into Toll like receptor signalling proteins and their regulation by ubiquitin. Role of IRAK-2. Biochem Soc Trans 2008, 36, 449-452. [CrossRef] [PubMed]
94. Suzuki, N.; Suzuki, S.; Yeh, W.-C. IRAK-4 as the central TLR signaling mediator in innate immunity. Trends Immunol. 2002, 23, 503-508. [CrossRef]
95. Mukhopadhyay, H.; Lee, N.Y. Multifaceted role of TAK1 in signaling cancer. Onco Targets Ther. 2020, 13, 1402-1413. [CrossRef] [PubMed]
96. Pandol, S.; Edelkoven, M.; Gukovsky, I.; Lagueu, A.; Gukovsky, A. Desmoplasia of Pancreatic Ductal Adenocarcinoma. Clin. Gastroenterol. Hepatol. 2009, 7, S44. [CrossRef] [PubMed]
97. Suzuki, N.; Suzuki, S.; Ueda, G.S.; Miller, D.G.; Wada, T.; Marinos, C.; Isakda, H.; Wachsmann, A.; Ito, A.; Li, S., et al. Severe impairment of interleukin-1 and Toll-like receptor signaling in mice lacking IRAK-4. Nature 2002, 416, 750-756. [CrossRef]
98. von Bernuth, M.; Picard, C.; Puel, A.; Casanova, J.L. Experimental and natural infections in MyD88- and IRAK4-deficient mice and humans. Eur. J. Immunol. 2012, 42, 5126-5135. [CrossRef]
99. Picard, C.; von Bernuth, H.; Ghanbili, P.; Chedid, M.; Levy, O.; Arkwright, P.D.; McDonald, D.; Geva, R.; Tsakada, H.; Krasce, J., et al. Clinical features and outcome of patients with IRAK-4 and MyD88 deficiency. Medicine 2010, 89, 403-425. [CrossRef]
100. Suzuki, N.; Suzuki, S.; Millar, D.G.; Ueda, M.; Hara, H.; Cai, C.; Yamatsuki, S.; Yokosuka, T.; Chen, N.J.; Elford, A.R., et al. A critical role for the innate immune signaling molecule IRAK-4 in T cell activation. Trends Immunol. 2006, 27, 162-192. [CrossRef]
101. Kawagoe, T.; Sato, S.; Jung, A.; Yamamoto, M.; Matsui, K.; Kato, H.; Uematsu, S.; Takeuchi, O.; Akira, S. Essential role of IRAK-4 protein and its kinase activity in Toll-like receptor-mediated immune responses but not in TCR signaling. J. Exp. Med. 2007, 204, 1013-1024. [CrossRef] [PubMed]
102. Ferris, R.L.; Liu, B.; Karp, J.P. Too much of a good thing? Tim-3 and TCR signaling in T cell exhaustion. J. Immunol. 2014, 193, 1525-1530. [CrossRef] [PubMed]
103. Santoro, R.; Carbone, C.; Piro, G.; Chiò, P.; Melini, D. TAK-Ing aim at chemoresistance: The emerging role of MAP3K7 as a target for cancer therapy. Drug Resist. Updat. 2017, 33-35, M4-42. [CrossRef] [PubMed]
104. Sakurai, H. Targeting of inflammatory disorders and cancer. Trends Pharmacol. Sci. 2012, 33, 522-530. [CrossRef] [PubMed]
69. Blonska, M.; Chambardia, P.B.; Kobayashi, M.; Zhang, D.; Sakurai, H.; Su, B.; Lin, X. TAK1 is recruited to the tumor necrosis factor alpha (TNF-alpha) receptor 1 complex in a receptor interacting protein (RIP) dependent manner and cooperates with MEKK3 leading to NF-kappaB activation. J. Biol. Chem. 2005, 280, 43054-43063. [CrossRef]

70. Li, H.; Kobayashi, M.; Blonska, M.; Yau, Y.; Lin, X. Ubiquitination of RIP is required for tumor necrosis factor alpha-induced NF-kappaB activation. J. Biol. Chem. 2004, 279, 13636-13643. [CrossRef]

71. O’Neill, L.A.J. Glycogenic reprogramming by TRBs in dendritic cells. Nat. Immunol. 2014, 15, 314-315. [CrossRef] [PubMed]

72. Santoni, M.; Andrikou, K.; Sotie, V.; Bittito, A.; Lanese, A.; Pellici, C.; Piva, F.; Conti, A.; Nabeti, M.; Santoni, G.; et al. Toll like receptors and pancreatic disease: From a pathogenetic mechanism to a therapeutic target. Cancer Treat. Rev. 2015, 41, 569-577. [CrossRef] [PubMed]

73. Ouchi, A.; Nguyen, A.H.; Bedrostan, A.S.; Mublin, H.L.M.; Zarrabkhan, S.; Barilla, R.; Zambiris, C.P.; Fallon, N.C.; Reham, A.; Palytayeva-Gupta, Y.; et al. MyD88 inhibition amplifies dendritic cell capacity to promote pancreatic carcinogenesis via Th2 cells. J. Exp. Med. 2012, 210, 1671-1687. [CrossRef] [PubMed]

74. Seki, M.; Kitamura, Y.; Nakamura, M.; Tazaka, H.; Yamasaki, A.; Nagai, S.; Wada, J.; Yanai, K.; Koga, K.; Sato, N.; et al. Lipopolysaccharide (LPS) increases the invasive ability of pancreatic cancer cells through the TRAIL/Myl8 signaling pathway. J. Surg. Oncol. 2009, 100, 725-731. [CrossRef]

75. Ouchi, A.; Grafezz, C.S.; Zambiris, C.P.; Reham, A.; Hackem, M.; Fallon, N.; Barilla, R.M.; Herzig, J.R.; Jamal, M.; Rao, et al. Toll-like receptor 7 regulates pancreatic carcinogenesis in mice and humans. J. Clin. Investig. 2012, 122, 4114-4129. [CrossRef]

76. Grinning, T.; Mathes, N.; Houdal, K.; Tripathi, S.; Chandraker, A.; Gritson, M.; Moschen, R.; Moll, E.M.; Fries, H.; Tauss, I.; et al. TRAL and TRIR expression increases tumor cell proliferation and promotes chemoresistance in human pancreatic cancer. J. Am. Soc. Clin. Oncol. 2015, 22, 857-866. [CrossRef]

77. Schröder, S.; Rauder, C.; Heitz, A.; Kahari, N.N.; Bork, U.; Schmiol, T.; Kahler, H.; Habske, U.; Tumai, M.A.; Lipson, R.E.; et al. Radiotherapy combined with TRAIL activation induces strong immune responses against pancreatic cancer tumor. Oncotarget 2015, 6, 4463-4476. [PubMed]

78. Shankara Narayanasamy, J.S.; Ray, P.; Hayashi, T.; Whisenant, T.C.; Vincente, D.; Basson, T.; Miller, A.M.; Schwenberger, S.P.; White, R.R. Irreversible electropermeabilization combined with checkpoint blockade and TRAIL stimulation induces antitumor immunity in a murine pancreatic cancer model. Cancer Immunol. Res. 2019, 7, 1714-1726. [CrossRef]

79. Michaelis, K.A.; Nergard, M.A.; Zhu, X.; Levasseur, P.R.; Shivagnanam, S.; Liu, Z.; Burford, K.G.; Olson, B.; Peitz, K.R.; Angeles Amores, D.M.; et al. The TRAIL agonist R840 mediates tumor and host responses to promote survival in pancreatic cancer. Nat. Commun. 2019, 10, 1-15. [CrossRef]

80. Zambiris, C.P.; Lavie, E.; Ngay, S.; Avanzini, A.; Barilla, R.; Xu, Y.; Seiler, L.; Daley, D.; Goeke, S.H.; Dexpert, M.; et al. TRIR ligating in pancreatic stellate cells promotes tumorigenesis. J. Exp. Med. 2015, 217, 2077-2094. [CrossRef]

81. Dodhiauwa, P.B.; Khurana, N.; Zhang, D.; Cheng, Y.; Li, L.; Wei, Q.; Sehra, K.; Jiang, H.; Grierson, P.M.; Wang-Gillam, A.; et al. TLR2 enhances RAS-induced inflammatory signaling and is activated by point mutations. J. Clin. Investig. 2020, 137, 6771-6780. [CrossRef] [PubMed]

82. Grinning, T.; Moschen, R.; Kockel, L.; Habske, U.; Rieder, C.; Reham, A.; Tripathi, S.; Ribas, C.; Chandraker, A.; Germer, C.T.; et al. Toll Like Receptor 4, 6, and 9 Signaling Promotes Autocrine Tumor Growth and VEGF/PDGFB Expression in Human Pancreatic Cancer. Int. J. Mol. Sci. 2016, 17, 2600. [CrossRef] [PubMed]

83. Rosa, R.; Mallo, D.; Damiano, V.; Bianco, R.; Garofalo, S.; Gelardi, T.; Agrawal, S.; Dh Nicolaiantonio, F.; Scorpa, A.; Bardelli, A.; et al. Toll-like receptor 9 agonist IMQ represses ectotumors in Kras mutant colorectal and pancreatic cancers. Clin. Cancer Res. 2011, 17, 6531-6541. [CrossRef] [PubMed]

84. Krieg, A.M. Therapeutic potential of Toll-like receptor 9 activation. Nat. Rev. Drug Discov. 2006, 5, 471-484. [CrossRef] [PubMed]

85. Prater, G.; Pettengill, G.; Tarttereto, M.; Addis, A.; Belasco, S.; Zoiini, A.; Selleri, S.; Rumino, C.; Menard, S.; Balzarri, A. Therapeutic synergism of gemcitabine and CpG-dsDNAoligos in an orthotopic human pancreatic carcinoma xenograft. Cancer Res. 2005, 65, 6388-6393. [CrossRef]

86. Pathway [120]. Whether similar signaling exists in PDAC to suppresses both MAPK and NF-kappaB activation. When exposed to genotoxic stress,
TLR9 is upregulated, which engages IRAK1 and TPL2 to amplify both MAPK and NF-κB pathways. This study clearly establishes TPL2 as a novel therapeutic target for PDAC. In other cancer types, such as melanoma and ovarian cancer, TPL2 becomes oncogenic by overexpression, or acquires gain-of-function truncations, fusions, and point mutations, leading to hyperactive MAPK, NF-κB, JNK, and p38 cascades. To date, clinical-grade TPL2 inhibitors remain unavailable and should be developed.

5. Intricate Crosstalk between the KRAS and NF-κB Pathways

Oncogenic KRAS mutations occur in >90% of PDAC [143] and KRAS itself is a major driver of NF-κB activity. Downstream of the KRAS oncoprotein, the PI3K-AKT-mTOR effector promotes phosphorylation of IKK, leading to increased nuclear translocation of RELA [144-146]. The RaCDS-RALB axis binds to Socs to activate TBK1, leading to activation of noncanonical IKK [147]. Furthermore, the KRAS oncoprotein was shown to transcriptionally upregulate GSK-3α and GSK-3β, which stabilizes the TAK1-TAB1 complex, resulting in the constitutive activation of the canonical NF-κB signaling cascade [148].

Contribution of the RAF-MEK-ERK cascade to the NF-κB cascade is indirect and mediated through autocrine IL-1β production. Through the RAF-MEK-ERK cascade, the KRAS oncoprotein markedly upregulates production of IL-1β, which, in an autocrine manner, engages the IL-1R-IRA4-TRAF cascade to activate the canonical NF-κB pathway and further reinforce MEK-ERK activity [81]. Importantly, ablation of IRAK4 completely blocks KRAS-induced transformation and tumorigenesis [87]. In PDAC GEMM, oncogenic KRAS-driven progression to PDAC absolutely requires the autocrine IL-1α-IRAK-RAF-MEK-ERK-NF-κB axis [87], as deletion of IRAK4 completely abrogates PDAC development in these mice. In support, ablation of IRAK4 completely abrogates RA-induced transformation. Furthermore, NF-κB activation enhanced the activated level of KRAS mutant proteins as assayed by RAS-GTP, leading to increased PDAC development [149]. These studies widen the spectrum of oncogenic RAS signaling beyond the direct effectors and include inflammation as an equally crucial component (Figure 2).

Because targeting KRAS and its direct effectors, including the RAF-MEK-ERK and PI3K-AKT-mTOR cascades, remains largely unsuccessful, we propose that targeting key signaling nodes in the canonical NF-κB cascades could represent another promising anti-RAS strategy.

Figure 2: Signaling crosstalk between the KRAS and NF-κB pathways. The crosstalk of oncogenic KRAS with NF-κB pathway to promote cellular proliferation, survival, and secretion of cytokines.

49. Zhang, D.; Li, L.; Jiang, H.; Li, Q.; Wang-Gilliam, A.; Yu, J.; Head, R.; Liu, J.; Ruzinova, M.B.; Lim, K.I.I. Tumor Stroma (IL1β-IRA4) Feedforward Circuit Drives Tumor Fibrosis, Chemoresistance, and Poor Prognosis in Pancreatic Cancer. Cancer Res. 2018, 78, 1706-1712. [CrossRef]
50. Garg, B.; Giri, B.; Modi, S.; Sethi, V.; Castro, I.; Umland, O.; Ban, Y.; Lavania, S.; Davara, R.; Banerjee, S.; et al. NF-κB Pathway in Pancreatic Stellate Cells Reduces Infiltration of Tumors by Cytotoxic T Cells and Killing of Cancer Cells via Up-regulation of CXCCL12. Gastroenterology. 2019, 155, 650-661. [CrossRef]
51. Thyagarajan, A.; Abolhassani, M.S.; Miller, K.R.; Shearin, C.M.; Travers, J.B.; Saha, R.P. Myeloid-Derived Suppressor Cells and Pancreatic Cancer: Implications in Novel Therapeutic Approaches. Cancers 2019, 11, 1627. [CrossRef][PubMed]
52. Martinez-Bosch, N.; Vinaixa, J.; Navarro, P. Immune Evasion in Pancreatic Cancer: From Mechanisms to Therapeutics. Cancers 2019, 11, 6. [CrossRef][PubMed]
53. Steim, S.J.; Baiden, A.S. Deletion of the NF-κB subunit p65/RelA in the hematopoietic compartment leads to defects in hematopoietic stem cell function. Blood 2013, 121, 5015-5024. [CrossRef][PubMed]
54. Zhao, C.; Xia, Y.; Ashian, J.; Xing, L.; Morita, Y.; Jordan, C.T.; Boyce, B.F. Noncanonical NF-κB signaling regulates hematopoietic stem cell self-renewal and microenvironment interactions. Stem Cells 2013, 31, 709-718. [CrossRef]
55. Greten, F.R.; Arkan, M.C.; Bollhauß, J.; Heu, L.; Good, J.; Miethe, C.; Gekhtina, S.I.; Neuenhahn, M.; Fierer, J.; Pasian, S.; et al. NF-κB as a negative regulator of IL-1β/P38 secretion as revealed by genetic and pharmacological inhibition of IKKβ. Cell 2007, 130, 916-931. [CrossRef]
56. Sentilhes, U.; Li, Z.W.; Baud, V.; Karin, M. IKKβ is essential for protecting T cells from TNFα-induced apoptosis. Immunity 2007, 14, 235-245. [CrossRef]
57. Juma, E.; Strickland, I.; Voll, R.E.; Lang, M.; Ghash, S. Differential role of the transcription factor NF-κB in selection and survival of CD4+ and CD8+ thymocytes. Immunology 2006, 118, 525-37. [CrossRef]
58. Messina, N.; Fullford, T.; O’Reilly, L.; Lab, W.X.; Motyer, J.M.; Ellis, D.; McLean, C.; Naseem, H.; Lin, A.; Gugger, P.; et al. The NF-κB transcription factor RelA is required for the tolerogenic function of Foxp3+ regulatory T cells. J. Autoimmun. 2016, 70, 56-62. [CrossRef]
59. Mancino, A.; Lawrence, T. Nuclear factor κB and tumor-associated macrophages. Clin. Cancer Res. 2010, 16, 784-789. [CrossRef]
60. Li, Z.W.; Omori, S.A.; Libuda, T.; Karin, M.; Rieckert, R.C. IKKβ is required for peripheral T cell survival and proliferation. J. Immunol. 2003, 170, 4636-4647. [CrossRef]
61. Ren, H.; Schmalzing, A.; Yuan, D.; Gaynor, R.B. IκB kinase α is critical for B cell proliferation and antibody responses. J. Immunol. 2002, 168, 577-587. [CrossRef][PubMed]
62. Pasparakis, M.; Schmidt-Supprian, M.; Rajewsky, K. Iκκα kinase signaling is essential for maintenance of mature B cells. J. Exp. Med. 2002, 195, 743-752. [CrossRef][PubMed]
63. Agnelli, P.; Walmsley, P.; Rabe, M.; Cavallotti, J.; Keranen U.; Dovossi, A. Impaired NFAT nuclear translocation results in split exhaustion of virus-specific CD8+ T cells through chronic viral infection. Proc. Natl. Acad. Sci. USA 2007, 104, 4555-4570. [CrossRef][PubMed]
64. Martinez, C.J.; Perera, R.M.; Aljo, T.; Kim, E.Y.; Marangoni, F.; Pipkin, M.E.; Engber, S.; Heissmeyer, V.; Zhang, Y.C.; Crettaz, S.; et al. The transcription factor NFκB promotes exhaustion of activated CD8+ T cells. Immunity 2015, 42, 265-279. [CrossRef][PubMed]
65. Man, K.; Gabriel, S.S.; Liao, Y.; Clauray, R.; Preston, S.; Henstridge, D.C.; Pellegrini, M.; Zeha, D.; Berberich-Stiebel, F.; Febbraio, M.A.; et al. Transcription Factor IRF4 Promotes CD8+ T Cell Exhaustion and Limits the Development of Memory-like T Cells during Chronic Infection. Immunity 2017, 47, 1179-1191. [CrossRef][PubMed]
66. Demingueza-Villaz, M.; Cartron, A.S.; de Marcken, M.; Keller, M.J.; Haeber, D.A. TLR7 induces energy in human CD4+ T cells. Nat. Immunol. 2015, 16, 116-128. [CrossRef][PubMed]
67. O’Neill, L.A.; Bowie, A.G. The family of five TLR-domain-containing adapters in Toll-like receptor signaling. Nat. Rev. Immunol. 2007, 7, 353-364. [CrossRef][PubMed]
68. Liu, K.H.; Staudt, L.M. Toll-like receptor signaling. Cold Spring Harb. Perspect. Biol. 2013, 5, a012417. [CrossRef][PubMed]
6. Therapeutic Targeting of the NF-κB Pathway in PDAC

Several hundreds of agents have been proposed to have anti-NF-κB activities [150]. On the one hand, this scenario highlights the importance of this pathway in cancer therapy. On the other hand, it accentuates the lack of specific inhibitors that can effectively and safely curb this pathway in the clinic. Small peptides or peptidomimetics that directly interfere with NF-κB dimerization or binding with DNA have been published in preclinical settings [151-153], but these have not been advanced into clinical trials. Therefore, much attention is paid towards targeting the signaling nodes, especially kinases, that activate NF-κB. In solid malignancies, including PDAC, the predominant mechanism that drives NF-κB is triggered by inflammatory cytokines [51]. In this regard, the putative kinase that drives NF-κB in preclinical studies employing various “NF-κB targeting” agents, only a few of these candidates have actually entered and completed early phase clinical trials. Although the COX2 inhibitor celecoxib was shown to abrogate NF-κB activity and cooperate with gemcitabine in preclinical studies [149,154], the addition of 400 mg celecoxib twice daily and 81 mg aspirin once daily did not improve the therapeutic efficacy of gemcitabine in a phase II clinical trial [155]. In phase II studies, curcumin given at 8 g/day alone or in combination with gemcitabine showed promising biological activity in a few selected PDAC patients [156,157], but it is unclear whether larger clinical trials are being planned. Blocking the degradation of IκB with the proteasome inhibitor bortezomib, which also affects numerous other substrates, did not potentiate gemcitabine in a phase II clinical trial [158]. Despite these setbacks, the recent better understanding of the signaling mechanisms that drive NF-κB activity in PDAC has opened up more opportunities. Targeting IL-1R and IRAK4 is more promising, as active agents are now available or being tested in clinical trials. Recently, dendritic cell vaccination has emerged as a novel strategy to prime host anti-tumor immunity [159]. Specifically, the combination of a dendritic cell vaccine with gemcitabine led to eradication of orthotopic tumors and provided durable protection against PDAC in mouse models [160]. However, whether the NF-κB cascade is involved in antigen presentation by dendritic cells and priming of T cells remains unclear and warrants further investigation. At present, no IKK, TPL2, or TAK1 inhibitors are available for further testing in clinical trials for PDAC.

6.1. IL-1R Blockade

Because autocrine IL-1R signaling is a critical component that drives the canonical NF-κB cascade in PDAC, the combination of the IL-1R antagonist Anakinra with nab-paclitaxel, gemcitabine, and ciplatin has been opened in a pilot clinical trial for patients with resectable or potentially resectable PDAC (NCT03550327). In addition panakinumab (a humanized neutralizing IL-1R monoclonal) and rilonacept (an IL-1 TRAP) are available for further testing. Canakinumab is currently FDA-approved for treatment of adult onset Still’s disease.

6.2. IRAK4

CA-4948 is an orally available, specific IRAK4 inhibitor that is now being tested as a single agent for patients with relapsed/refractory hematologic malignancies. Interim results showed CA-4948 at 200 mg twice daily to be generally well tolerated and showing preliminary efficacy [161] (NCT03328079). The combination of IRAK4 inhibitors with chemotherapy is supported by preclinical studies [49,81,162] and should be advanced into clinical trials.

7. Conclusions and Perspectives

Chronic inflammation, driven by the NF-κB pathway, has a major role in every aspect of PDAC pathobiology, ranging from initiation, progression, and metastasis to treatment resistance. In addition, due to the essential role of this pathway in KRAS-induced PDAC progression, the NF-κB pathway has been and will undoubtedly remain, an attractive therapeutic target. However, targeting the NF-κB factors and the immediate upstream IKK has been challenging due to the lack of specific and
clinically safe therapeutic agents, likely due to the essential role of these targets in normal physiology. With recent understanding of the upstream mechanisms that drive NF-κB in PDAC, novel therapeutic targets have begun to surface. Aside from combination with chemotherapy, targeting the NF-κB pathway as a strategy to potentiating immunotherapy has begun to draw attention. As immunotherapy is not without side effects, it is imperative to gain a deeper and more comprehensive understanding of the role of NF-κB pathway in each cellular compartment, and even in different immune subsets, prior to advancing any therapeutic combinations into clinical trials. In particular, these studies should be conducted in clinically relevant settings, such as in GIMMs of humoralized mouse models, in which the net impact of systemic NF-κB targeting agents can be assessed. In summary, targeting inflammation through the NF-κB pathway remains a valid direction and warrants more intensive and concerted investigation from the research community.

Author Contributions: N.K. and K.H.L. contributed to the concepts, performed literature review, drafted the manuscript, and approved the submitted version. P.B.D. assisted with writing and editing the manuscript. A.B. drew the figures and assisted with editing the manuscript. All authors contributed to the published version of the manuscript.

Funding: K.H.L. was supported by NIH/NCI R35CA219679 01, WUSTL SPORE Cancer Enhancement Award Grant (1P50CA163510-01A1), the American Cancer Society (RSG-17-2034-01-BQG), and the Alvin J. Slamanos Cancer Center Slamanos Investment Program (supported by Barnes Trust and The Foundation for Barnes-Jewish Hospitals).

Acknowledgments: We apologize to the researchers whose related works were not cited in this review. The content is solely the responsibility of the authors and does not necessarily represent the official view of the NII.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Rahib, L.; Smith, B.D.; Aizenberg, R.; Rosenzweig, A.B.; Fleshman, J.M.; Matrisian, L.M. Projecting cancer incidence and death to 2030: The unexpected burden of thyroid, liver, and pancreatic cancers in the United States. Cancer Res. 2014, 74, 2913-2921. [CrossRef] [PubMed]

2. Vivaldi, C.; Formenti, L.; Vassil, E. FOLFIRINOX Adjuvant Therapy for Pancreatic Cancer. N. Engl. J. Med. 2019, 380, 1187-1188. [CrossRef] [PubMed]

3. Neoptolemos, J.P.; Palme, D.H.; Gheza, P.; Esler, E.V.; Viale, J.; Halloulot, C.M.; Paskowski, O.; O'Reilly, D.A.; Cummins, T.J. Comparison of adjuvant gemcitabine and epirubicin with gemcitabine monotherapy in patients with resected pancreatic cancer (STAPAC-4): A multicentre, open-label, randomised, phase 3 trial. Lancet 2017, 389, 1011-1024. [CrossRef]

4. Oettle, H.; Neubauer, P.; Hochhaus, A.; Hartmann, T.; Geller, K.; Ridwalski, K.; Niedergerm, M.; Zulo, C.; Falko, J.; Arming, M.B., et al. Adjuvant chemotherapy with gemcitabine and long-term outcomes among patients with resected pancreatic cancer. The CONKO-001 randomized trial. JAMA 2013, 310, 1473-1481. [CrossRef]

5. Consy, T.; Deseigne, F.; Veyou, H.; Bouchet, O.; Cuimbias, R.; Baroum, Y.; Deniau, A.; Roux, J.L.; Germaine-Baugarde, S.; de la Freurechasse, C., et al. FOLFIRINOX versus gemcitabine for metastatic pancreatic cancer. N. Engl. J. Med. 2011, 364, 1817-1825. [CrossRef]

6. Von Hoff, D.D.; Livir, T.; Arena, F.P.; Chiorean, E.G.; Infante, J.; Moore, M.; Sosy, T.; Tjulandin, S.A.; Ma, W.W.; Salel, M.N., et al. Increased survival in pancreatic cancer with nab-paclitaxel plus gemcitabine. N. Engl. J. Med. 2013, 369, 1691-1703. [CrossRef]

7. Stegel, R.L.; Miller, K.D.; Jemal. A. Cancer statistics, 2020. CA Cancer J. Clin. 2020, 70, 7-30. [CrossRef]

8. Maksimovic-Mosel, A.; Zabrodznie-Denas, C.A. Pancreatic cancer biology and genesis from an evolutionary perspective. Nat. Rev. Cancer 2016, 16, 553-565. [CrossRef]

9. Nesseo, A.; Algul, H.; Livison, E.A.; Ciss, T.M. Stromal biology and therapy in pancreatic cancer: A changing paradigm. Gut 2015, 64, 1474-1480. [CrossRef]

10. Gudmundsen, P.; Minchen, J.B.; Parmakian, M.R.; Tan, M.C.; Belt, B.A.; Wang, C.L.; Gills, A.; Gillarders, W.J.; Hawkins, W.G.; Linehan, D.C. Myeloid-derived suppressor cells: General characteristics and relevance to clinical management of pancreatic cancer. Curr. Cancer Drug Targets 2011, 11, 734-751. [CrossRef]