A CLASS OF MULTIDIMENSIONAL NONLINEAR DIFFUSIONS WITH THE FELLER PROPERTY

DAVID CRIENS AND LARS NIEMANN

ABSTRACT. In this note we consider a family of nonlinear (conditional) expectations that can be understood as a multidimensional diffusion with uncertain drift and certain volatility. Here, the drift is prescribed by a set-valued function that depends on time and path in a Markovian way. We establish the Feller property for the associated sublinear Markovian semigroup and we observe a smoothing effect as our framework carries enough randomness. Furthermore, we link the corresponding value function to a semilinear Kolmogorov equation.

1. Introduction

A nonlinear multidimensional diffusion, or nonlinear multidimensional continuous Markov process, is a family of sublinear expectations \(\{E^x: x \in \mathbb{R}^d\} \) on the Wiener space \(C(\mathbb{R}_+; \mathbb{R}^d) \) with \(E^x \circ X_0^{-1} = \delta_x \) for each \(x \in \mathbb{R}^d \) such that the Markov property
\[
\mathcal{E}^x(X_t(\psi(X_s))) = \mathcal{E}^x(\psi(X_{t+s})), \quad x \in \mathbb{R}, \ s, t \in \mathbb{R}_+, \tag{1.1}
\]
holds. Here, \(\psi \) runs through a collection of suitable test functions and \(X \) denotes the canonical process on \(C(\mathbb{R}_+; \mathbb{R}^d) \). Building upon the seminal work of Peng \([14, 15]\) on the \(G \)-Brownian motion, nonlinear Markov processes have been intensively studied in recent years, both from the perspective of processes under uncertainty \([6, 9, 12]\), as well as sublinear Markov semigroups \([3, 8, 10, 11]\).

Using the techniques from \([13]\), a general framework for constructing nonlinear Markov processes was developed in \([8]\). To be more precise, for given \(x \in \mathbb{R}^d \), the sublinear expectation \(\mathcal{E}^x \) has the form \(\mathcal{E}^x = \sup_{P \in \mathcal{R}(x)} E^P \) with a collection \(\mathcal{R}(x) \) of semimartingale laws on the path space, with initial distribution \(\delta_x \), and whose absolutely continuous characteristics are prescribed by a set-valued map.

As in the theory of (linear) Markov processes, there is a strong link to semigroups. Indeed, the Markov property (1.1) ensures the semigroup property \(T_t T_s = T_{s+t}, s, t \in \mathbb{R}_+, \) where the sublinear operators \(T_t, t \in \mathbb{R}_+ \), are defined by
\[
T_t(\psi)(x) := \mathcal{E}^x(\psi(X_t)) = \sup_{P \in \mathcal{R}(x)} E^P[\psi(X_t)] \tag{1.2}
\]
for suitable functions \(\psi \). Using the general theory of \([5, 13]\), the operators \(T_t, t \in \mathbb{R}_+ \), are well-defined on the cone of upper semianalytic functions. We are interested in the \(C_b \)-Feller property of \((T_t)_{t \in \mathbb{R}_+} \) i.e., \(T_t(C_b(\mathbb{R}^d; \mathbb{R})) \subset C_b(\mathbb{R}^d; \mathbb{R}) \) for all \(t \in \mathbb{R}_+ \). In general, this property seems to be hard to verify, see \([8, \text{Remark 4.43}], [10, \text{Remark 3.4}] \) and \([11, \text{Remark 5.4}] \) for comments. In our previous paper \([2]\), we established the \(C_b \)-Feller property for a large class of one-dimensional nonlinear diffusions. To the best of our knowledge, in a multidimensional framework, there seems to be no result on the continuity of \(x \mapsto T_t(\psi)(x) \) beyond the Lévy case \([8, 12]\). As already acknowledged in the context of controlled diffusions (see, e.g., \([4, 7]\)), the difficulty stems from the (possible) lack of lower hemicontinuity of the set-valued map \(x \mapsto \mathcal{R}(x) \).

\footnotesize
\textit{Date:} September 21, 2022.

2020 Mathematics Subject Classification. 47H20, 49L25, 60G53, 60G65, 60J60.

Key words and phrases. nonlinear diffusion; nonlinear Markov processes; sublinear semigroup; sublinear expectation; nonlinear expectation; partial differential equation; viscosity solution; semimartingale characteristics; Knightian uncertainty.

DC acknowledges financial support from the DFG project SCHM 2160/15-1 and LN acknowledges financial support from the DFG project SCHM 2160/13-1.

1
In this note, we establish the \textit{Feller property} for a class of multidimensional diffusions with \textit{uncertain} drift and \textit{certain} volatility. By means of a \textit{Feller selection principle}, we establish the C_0–Feller property of $(T_t)_{t \in \mathbb{R}_+}$, which constitutes our main contribution. This allows us to identify the value function $[0, T] \times \mathbb{R}^d \ni (t, x) \mapsto \mathcal{E}^x(\psi(X_{T-t}))$ as the unique viscosity solution to a semilinear Kolmogorov type PDE. Finally, let us highlight that we also observe a smoothing effect through $(T_t)_{t > 0}$. Namely, we show that T_t, for $t > 0$, maps bounded upper semicontinuous functions to bounded continuous functions. This extends the corresponding observation in [2] to a multidimensional setting.

2. Main Result

2.1. The Setting. Fix a dimension $d \in \mathbb{N}$ and define Ω to be the space of continuous functions $\mathbb{R}^d \rightarrow \mathbb{R}^d$ endowed with the local uniform topology. The canonical process on Ω is denoted by X, i.e., $X_t(\omega) = \omega(t)$ for $\omega \in \Omega$ and $t \in \mathbb{R}_+$. It is well-known that $\mathcal{F} := \mathcal{B}(\Omega) = \sigma(X_t, t \in \mathbb{R}_+)$. We define $\mathbf{F} := (\mathcal{F}_t)_{t \in \mathbb{R}_+}$ as the canonical filtration generated by X, i.e., $\mathcal{F}_t := \sigma(X_s, s \in [0, t])$ for $t \in \mathbb{R}_+$. Notice that we do not make the filtration \mathcal{F} right-continuous. The set of probability measures on (Ω, \mathcal{F}) is denoted by $\mathfrak{P}(\Omega)$ and endowed with the usual topology of convergence in distribution. We denote the space of symmetric positive semidefinite real-valued $d \times d$ matrices by \mathcal{S}_+^d. Let F be a metrizable space and let $b: F \times \mathbb{R}^d \rightarrow \mathbb{R}^d$ and $a: \mathbb{R}^d \rightarrow \mathcal{S}_+^d$ be two Borel functions.

Standing Assumption 2.1.

(i) F is compact.
(ii) b and a are continuous.
(iii) There exists a constant $C > 0$ such that, for all $f \in F$ and $x, \xi \in \mathbb{R}^d$,

$$||b(f, x)|| \leq C, \quad \frac{||\xi||^2}{C} \leq \langle \xi, a(x)\xi \rangle \leq C||\xi||^2.$$

Remark 2.2. While it is possible so substantially weaken part (iii) of Standing Assumption 2.1, we assume it for the sake of clarity.

We define the correspondence, i.e., the set-valued map, $\Theta: [0, \infty[, \mathbb{R}^d \rightarrow \mathcal{S}_+^d$ by

$$\Theta(t, \omega) := \{(b(f, \omega(t)), a(\omega(t))): f \in F\} \subset \mathbb{R}^d \times \mathcal{S}_+^d.$$

The correspondence Θ has \textit{Markovian structure}, i.e., for every $(t, \omega) \in [0, \infty[)$, the set $\Theta(t, \omega)$ depends on (t, ω) only through the value $\omega(t)$.

Remark 2.3. Thanks to [1, Lemma 2.11], the graph of Θ is measurable.

We denote the set of laws of continuous semimartingales by $\mathfrak{P}_{\text{sem}} \subset \mathfrak{P}(\Omega)$. For $P \in \mathfrak{P}_{\text{sem}}$, we denote the semimartingale characteristics of the coordinate process X by (B^P, C^P), and we set

$$\mathfrak{P}_{\text{sem}}^{\text{ac}} := \{P \in \mathfrak{P}_{\text{sem}}: P\text{-a.s. } (B^P, C^P) \ll \lambda\},$$

where λ denotes the Lebesgue measure. For $x \in \mathbb{R}^d$, we further define

$$\mathcal{R}(x) := \{P \in \mathfrak{P}_{\text{sem}}^{\text{ac}}: P \circ X_{-1}^{-1} = \delta_x, (\lambda \otimes P)\text{-a.e. } (dB^P/d\lambda, dC^P/d\lambda) \in \Theta\}.$$

2.2. Nonlinear Diffusions and Semigroups. For each $x \in \mathbb{R}^d$, we define the sublinear operator \mathcal{E}^x on the convex cone of bounded upper semianalytic functions $\psi: \Omega \rightarrow \mathbb{R}$ by

$$\mathcal{E}^x(\psi) := \sup_{P \in \mathcal{R}(x)} E^P[\psi].$$

For every $x \in \mathbb{R}^d$, we have by construction that $\mathcal{E}^x(\psi(X_0)) = \phi(x)$ for every bounded upper semianalytic function $\psi: \mathbb{R}^d \rightarrow \mathbb{R}$.

Definition 2.4. Let \mathcal{H} be a convex cone of functions $f: \mathbb{R}^d \rightarrow \mathbb{R}$ containing all constant functions. A family of sublinear operators $T_t: \mathcal{H} \rightarrow \mathcal{H}, \ t \in \mathbb{R}_+$, is called a sublinear Markovian semigroup on \mathcal{H} if it satisfies the following properties:

(a) \textit{Feller property} for T_t.
(b) $T_tP \ll T_sP$, for all $t > s$.
(c) $\mathbf{E}^{T_t}_{\Psi}(\psi) = \mathbf{E}^{T_s}_{\Psi}(\psi) \quad \text{for all } t > s$.
(d) $\mathbf{E}^{T_t}_{\Psi}(\psi) = \mathbf{E}^{T_s}_{\Psi}(\psi)$, for all $t > s$.
(e) $T_tP \ll T_sP$, for all $t > s$.
(i) \((T_t)_{t \in \mathbb{R}_+}\) has the semigroup property, i.e., \(T_sT_t = T_{s+t}\) for all \(s, t \in \mathbb{R}_+\) and \(T_0 = \text{id}\),

(ii) \(T_t\) is monotone for each \(t \in \mathbb{R}_+\), i.e., \(f, g \in \mathcal{H}\) with \(f \leq g\) implies \(T_tf \leq T_tg\),

(iii) \(T_t\) preserves constants for each \(t \in \mathbb{R}_+\), i.e., \(T_t(c) = c\) for each \(c \in \mathbb{R}\).

The following proposition should be compared to [8, Remark 4.33] and [2, Proposition 2.9]. For brevity, we omit a detailed proof.

Proposition 2.5. The family of operators \((T_t)_{t \in \mathbb{R}_+}\) given by

\[
T_t(\psi)(x) := \mathcal{E}^x(\psi(X_t)), \quad t \in \mathbb{R}_+, \ x \in \mathbb{R}^d,
\]

defines a sublinear Markovian semigroup on the set of bounded upper semianalytic functions.

2.3. The Feller Property

In the following theorem, which is the main result of this note, we show that \((T_t)_{t \in \mathbb{R}_+}\) is a nonlinear semigroup on the space \(C_b(\mathbb{R}^d; \mathbb{R})\) of bounded continuous functions from \(\mathbb{R}^d\) into \(\mathbb{R}\). In fact, we show a bit more, namely the existence of a strong Feller selection.

Condition 2.6. The set \(\{b(f, x) : f \in F\} \subset \mathbb{R}^d\) is convex for every \(x \in \mathbb{R}^d\).

Theorem 2.7. Suppose that Condition 2.6 holds. Then, for every \(t > 0\) and any bounded upper semicontinuous function \(\psi : \mathbb{R}^d \to \mathbb{R}\), the map \(x \mapsto T_t(\psi)(x)\) is continuous. In particular, \((T_t)_{t \in \mathbb{R}_+}\) has the \(C_b\)-Feller property, i.e., it is a nonlinear semigroup on \(C_b(\mathbb{R}^d; \mathbb{R})\).

Remark 2.8. Theorem 2.7 shows that \((T_t)_{t \in \mathbb{R}_+}\) has a weak version of the strong Feller property, i.e., that regularity is gained through \(T_t\), with \(t > 0\), since bounded upper semicontinuous functions are mapped to bounded continuous functions.

For a one-dimensional continuous nonlinear framework with uncertain volatility, i.e., with \(F\)-dependent diffusion coefficient \(a\), a version of Theorem 2.7 was proved in our previous paper [2]. Theorem 2.7 seems to be the first multidimensional result beyond the Lévy case ([8, 12]).

2.4. An Application to Semilinear PDEs

We fix a finite time horizon \(T > 0\). For \((t, x, \phi) \in \mathbb{R}_+ \times \mathbb{R}^d \times C^{2,3}(\mathbb{R}_+ \times \mathbb{R}^d; \mathbb{R})\), we define

\[
G(t, x, \phi) := \sup \{ (b(f, x), \partial_x \phi(t, x)) : f \in F \} + \frac{1}{2} \text{tr} \left[a(x) \partial^2_{x} \phi(t, x) \right].
\]

Recall that a function \(u : [0, T] \times \mathbb{R}^d \to \mathbb{R}\) is said to be a weak sense viscosity subsolution to the semilinear PDE

\[
\begin{aligned}
\partial_t v(t, x) + G(t, x, v) &= 0, \quad \text{for } (t, x) \in [0, T) \times \mathbb{R}^d, \\
v(T, x) &= \psi(x), \quad \text{for } x \in \mathbb{R}^d,
\end{aligned}
\]

where \(\psi \in C_b(\mathbb{R}^d; \mathbb{R})\), if the following two properties hold:

(a) \(u(T, \cdot) \leq \psi\);

(b) \(\partial_t \phi(t, x) + G(t, x, \phi) \geq 0\) for all \(\phi \in C^{2,3}([0, T] \times \mathbb{R}^d; \mathbb{R})\) such that \(\phi \geq u\) and \(\phi(t, x) = u(t, x)\) for some \((t, x) \in [0, T) \times \mathbb{R}^d\).

A weak sense viscosity supersolution is obtained by reversing the inequalities. Further, \(u\) is called weak sense viscosity solution if it is a weak sense viscosity sub- and supersolution. Additionally, \(u\) is called viscosity subsolution if it is both, a weak sense viscosity subsolution, and upper semicontinuous. The notions of viscosity supersolution and viscosity solution are defined accordingly.

Almost verbatim as in our previous paper [1], under linear growth and local Hölder assumptions on \(b\) and \(a\), one can prove that the value function

\[
v(t, x) := \sup_{P \in \mathcal{P}(x)} E^P[\psi(X_{T-t})], \quad (t, x) \in [0, T] \times \mathbb{R}^d,
\]

is a weak-sense viscosity solution to (2.1). The strong Feller property from Theorem 2.7 yields additional regularity of \(v\) which can be used to show that \(v\) is a viscosity solution in the classical sense. Under Lipschitz conditions on \(b\) and \(a\), we can even deduce a uniqueness statement.
Condition 2.9 (Lipschitz Continuity in Space). There exists a decomposition $a = \sigma \sigma^*$ and a constant $C > 0$ such that
\[
\|b(f, x) - b(f, y)\| + \|\sigma(x) - \sigma(y)\| \leq C\|x - y\|,
\]
for all $f \in F$ and $x, y \in \mathbb{R}^d$.

Theorem 2.10. Suppose that the Conditions 2.6 and 2.9 hold. Then, the value function v is the unique bounded viscosity solution to the semilinear PDE (2.1).

Proof. We already mentioned that v is a weak sense viscosity solution to (2.1). Furthermore, thanks to Theorem 2.7, it follows verbatim as in the proof of [2, Theorem 2.34] that v is continuous (in both arguments). Finally, the comparison principle [8, Corollary 2.34], in combination with [8, Lemmata 2.4, 2.6] and [8, Remark 2.5], implies uniqueness. \hfill \Box

3. PROOF OF THEOREM 2.7

We call an \mathbb{R}^d-valued continuous process $Y = (Y_t)_{t \geq 0}$ a (continuous) semimartingale after a time $t^* \in \mathbb{R}_+$ if the process $Y_{t^*} = (Y_t)_{t \geq 0}$ is a semimartingale for its natural right-continuous filtration. The law of a semimartingale after t^* is said to be a semimartingale law after t^* and the set of them is denoted by $\mathcal{P}_{\text{sem}}(t^*)$. For $P \in \mathcal{P}_{\text{sem}}(t^*)$ we denote the semimartingale characteristics of the shifted coordinate process X_{t^*} by $(B_{t^*}^P, C_{t^*}^P)$, and we set
\[
\mathcal{P}_{\text{sem}}^{ac}(t^*) := \{ P \in \mathcal{P}_{\text{sem}}(t^*) : P\text{-a.s. } (B_{t^*}^P, C_{t^*}^P) \ll \lambda \}.
\]

For $P \in \mathcal{P}_{\text{sem}}^{ac}(t^*)$, we define $\mathcal{K}(t, x) := \{ P \in \mathcal{P}_{\text{sem}}^{ac}(t) : P(X_s = x \text{ for all } s \in [0, t]) = 1, (\lambda \otimes P)\text{-a.e. } (dB_{t^*}^P/d\lambda, dC_{t^*}^P/d\lambda) \in \Theta(\{+, t, X_{t^*}\}) \}$. For a probability measure P on (Ω, \mathcal{F}), a kernel $\Omega \ni \omega \mapsto Q_\omega \in \mathcal{P}(\Omega)$, and a finite stopping time τ, we define the pasting measure
\[
(P \otimes_{\Omega} Q)(A) \triangleq \int \int \mathbf{1}_A(\omega \otimes_{\tau(\omega)} \omega')Q_\omega(d\omega')P(d\omega), \quad A \in \mathcal{F},
\]
where
\[
\omega \otimes_{\tau(\omega)} \omega' := \omega|_{[0, t]} + (\omega(t) + \omega' - \omega'(t))\mathbf{1}_{(t, \infty]}.
\]

A family $\{P_{(s, x)} : (s, x) \in \mathbb{R}_+ \times \mathbb{R}^d\} \subset \mathcal{P}(\Omega)$ is said to be a (time inhomogeneous) strong Markov family if $(t, x) \mapsto P_{(t, x)}$ is Borel and the strong Markov property holds, i.e., for every $(s, x) \in \mathbb{R}_+ \times \mathbb{R}^d$ and every finite stopping time $\tau \geq s$, for $P_{(s, x)}$-a.a. $\omega \in \Omega$
\[
P_{(s, x)}(\cdot | \mathcal{F}_\tau)(\omega) = \omega \otimes_{\tau(\omega)} P_{(\tau(\omega), \omega(\tau(\omega)))}.
\]

The following general strong Markov selection principle can be proved as in Section 5 of [2]. We omit a detailed proof.

Theorem 3.1 (Strong Markov Selection Principle). For every $\psi \in \text{USC}_b(\mathbb{R}; \mathbb{R}^d)$ and every $t > 0$, there exists a strong Markov family $\{P_{(s, x)} : (s, x) \in \mathbb{R}_+ \times \mathbb{R}^d\}$ such that, for all $(s, x) \in \mathbb{R}_+ \times \mathbb{R}^d$, $P_{(s, x)} \in \mathcal{K}(s, x)$ and
\[
E^{P_{(s, x)}}[\phi(X_t)] = \sup_{P \in \mathcal{K}(s, x)} E^P[\phi(X_t)].
\]
In particular, for all $x \in \mathbb{R}^d$,
\[
T_t(\psi)(x) = E^{P_{(0, x)}}[\psi(X_t)].
\]

We say that a strong Markov family $\{P_{(t, x)} : (t, x) \in \mathbb{R}_+ \times \mathbb{R}^d\}$ has the strong Feller property if, for every $T > 0$ and every bounded Borel function $\phi : \mathbb{R} \to \mathbb{R}$, the map $[0, T) \times \mathbb{R}^d \ni (s, x) \mapsto E^{P_{(s, x)}}[\phi(X_T)]$ is continuous. The next result is the key observation for the proof of Theorem 2.7.
Theorem 3.2. Let \(\{P_{(s,x)}: (s,x) \in \mathbb{R}_+ \times \mathbb{R}^d\} \) be a strong Markov family such that, for all \((s,x) \in \mathbb{R}_+ \times \mathbb{R}^d\), \(P_{(s,x)} \in \mathcal{K}(s,x)\). Then, it is also a strong Feller family.

Proof. We adapt the argument from [16, Theorem 7.1.9]. Recall from [16] that a probability measure \(Q\) on \((\Omega, \mathcal{F})\) is said to be a solution to the martingale problem for \((0,a)\) starting from \((s,x) \in \mathbb{R}_+ \times \mathbb{R}^d\) if \(Q(X_t = x) \) for all \(t \in [0, s] \) = 1 and the processes

\[
f(X_t) - \int_s^t \frac{1}{2} \text{tr} \left[a(X_r) \nabla^2 f(X_r) \right] dr: \quad t \geq s, \quad f \in C_{c}^{\infty}(\mathbb{R}^d; \mathbb{R}),
\]

are \(Q\)-martingales. Thanks to [16, Theorem 7.2.1], for every \((s,x) \in \mathbb{R}_+ \times \mathbb{R}^d\), there exists a unique solution \(Q_{(s,x)}\) to the martingale problem for \((0,a)\) starting from \((s,x)\).

By definition of the correspondence \(\mathcal{K}\), we have \(P_{(s,x)} \in \mathcal{Q}_{\text{sem}}^{\text{ac}}(s)\) and we denote the Lebesgue densities of the \(P_{(s,x)}\)-characteristics of the shifted coordinate process \(X_{t+s}\) by \((b_{t+s}^{(s,x)}, a_{t+s}^{(s,x)})\). Notice that \((\mathcal{L} \otimes P_{(s,x)})\text{-a.e.} a_{t+s}^{(s,x)} = a(X_{t+s})\) by the definition of \(\Theta\) and \(\mathcal{K}(s,x)\). We define

\[
Z_t^{(s,x)} := \exp \left(-\int_s^{t \vee s} \langle a^{-1}(X_r)b_r^{(s,x)}, dX_r^{(s,x)} \rangle - \frac{1}{2} \int_s^{t \vee s} (b_r^{(s,x)}, a^{-1}(X_r)b_r^{(s,x)}) dr \right), \quad t \in \mathbb{R}_+,
\]

where

\[
X^{(s,x)} := X - \int_s^{t \vee s} b_r^{(s,x)} dr.
\]

Thanks to [16, Lemma 6.4.1], each \(Z^{(s,x)}\) is a \(P_{(s,x)}\)-martingale and

\[
dQ_{(s,x)} = Z_T^{(s,x)} dP_{(s,x)} \text{ on } \mathcal{F}_T \text{ for all } T \in \mathbb{R}_+.
\]

Let \(\psi: \mathbb{R}^d \to \mathbb{R}\) be a bounded Borel function such that \(|\psi| \leq 1\) and fix a finite time horizon \(T > 0\). Furthermore, take a sequence \((s^n, x^n)_{n=0}^{\infty} \subset [0, T) \times \mathbb{R}^d\) such that \((s^n, x^n) \to (s^0, x^0)\). Choose \(N \in \mathbb{N}\) large enough such that \(t_N := \max(s^0, \sup_{n \geq N} s^n) + \frac{T}{N} < T\) and set

\[
\Psi(s,x) := E^{P_{(s,x)}} [\psi(X_T)], \quad (s,x) \in \mathbb{R}_+ \times \mathbb{R}^d.
\]

For all \(n \geq N\), using the (strong) Markov property of \(\{P_{(s,x)}: (s,x) \in \mathbb{R}_+ \times \mathbb{R}^d\}\), we obtain

\[
|E^{P_{(s^n,x^n)}}[\psi(X_T)] - E^{P_{(s^0,x^0)}}[\psi(X_T)]| \leq |E^{P_{(s^n,x^n)}}[\Psi(t_N, X_{t_N})] - E^{P_{(s^0,x^0)}}[\Psi(t_N, X_{t_N})]| \leq |E^{P_{(s^n,x^n)}}[Z^{(s^n,x^n)}_{t_N}] - E^{P_{(s^0,x^0)}}[Z^{(s^0,x^0)}_{t_N}]| + E^{P_{(s^n,x^n)}}[[1 - Z^{(s^n,x^n)}_{t_N}]] + E^{P_{(s^0,x^0)}}[[1 - Z^{(s^0,x^0)}_{t_N}]] \quad \text{(3.1)}
\]

For every \(n \in \{0, N, N + 1, \ldots\}\), we obtain that

\[
(E^{P_{(s^n,x^n)}}[[1 - Z^{(s^n,x^n)}_{t_N}]])^2 \leq E^{P_{(s^n,x^n)}}[[1 - Z^{(s^n,x^n)}_{t_N}]^2] = E^{P_{(s^n,x^n)}}[(Z^{(s^n,x^n)}_{t_N})^2] - 1 \leq C(TN^{-s^n}) - 1,
\]

where \(C > 0\) only depends on the constant from part (iii) of Standing Assumption 2.1. Fix \(\varepsilon > 0\) and choose \(N\) large enough such that

\[
t_N - s_n \leq \frac{\log(1 + \varepsilon^2/9)}{C}
\]

for all \(n \in \{0, N, N + 1, \ldots\}\). In this case, we have

\[
E^{P_{(s^n,x^n)}}[[1 - Z^{(s^n,x^n)}_{t_N}]] \leq \frac{\varepsilon}{3}
\]

(3.2)
for all $n \in \{0, N, N+1, \ldots \}$. Due to [16, Theorem 7.2.4], there exists an $M \in \mathbb{N}$, which in particular depends on ε and N, such that, for all $n \geq M$,

$$(3.3) \quad \left| E^{Q^{(n^n,n_n^n)}} \left[\Psi(t_N, X^{t_N}) \right] - E^{Q^{(n_0^n,n_0^n)}} \left[\Psi(t_N, X^{t_N}) \right] \right| \leq \varepsilon.$$

Notice that we used here that $s_n < t_N$ for all $n \in \mathbb{Z}_+$. Thanks to (3.1), (3.2) and (3.3), for all $n \geq N \vee M$, we conclude that

$$\left| E^{P^{(s^n,x_n^n)}} \left[\psi(X^T) \right] - E^{P^{(s_0^n,x_0^n)}} \left[\psi(X^T) \right] \right| \leq \varepsilon.$$

This proves the strong Feller property of $\{P^{(s,x)} : (s,x) \in \mathbb{R}_+ \times \mathbb{R}^d\}$ and therefore, the proof is complete. \hfill \Box

Finally, we are in the position to prove our main result, Theorem 2.7.

Proof of Theorem 2.7. Let $\psi : \mathbb{R}^d \to \mathbb{R}$ be bounded and upper semicontinuous and take $t > 0$. By the Theorems 3.1 and 3.2, there exists a strong Feller family $\{P^{(s,x)} : (s,x) \in \mathbb{R}_+ \times \mathbb{R}^d\}$ such that

$$T_t(\psi)(x) = E^{P^{(0,x)}}[\psi(X_t)].$$

The strong Feller property yields the continuity of $x \mapsto T_t(\psi)(x)$. This completes the proof. \hfill \Box

References

[1] D. Criens and L. Niemann. Nonlinear continuous semimartingales. arXiv:2204.07823v2, 2022.
[2] D. Criens and L. Niemann. Markov selections and Feller properties of nonlinear diffusions. arXiv:2205.15200v4, 2022.
[3] R. Denk, M. Kupper, and M. Nendel. A semigroup approach to nonlinear Lévy processes. Stochastic Processes and their Applications, 130:1616–1642, 2020.
[4] N. El Karoui, D. Nguyen and M. Jeanblanc-Picqué. Compactification methods in the control of degenerate diffusions: existence of an optimal control. Stochastics, 20(3):169–219, 1987.
[5] N. El Karoui and X. Tan. Capacities, measurable selection and dynamic programming part II: application in stochastic control problems. arXiv:1310.3364v2, 2015.
[6] T. Fadina, A. Neufeld, and T. Schmidt. Affine processes under parameter uncertainty. Probability, Uncertainty and Quantitative Risk, 4(5), 2019.
[7] U. G. Haussmann and J. P. Lepeltier. On the existence of optimal controls. SIAM Journal on Control and Optimization, 28(4):851–902, 1990.
[8] J. Hollender. Lévy-Type Processes under Uncertainty and Related Nonlocal Equations. PhD thesis, TU Dresden, 2016.
[9] M. Hu and S. Peng. G-Lévy processes under sublinear expectations. Probability, Uncertainty and Quantitative Risk, 6(1), 2021.
[10] F. Kühn. Viscosity solutions to Hamilton–Jacobi–Bellman equations associated with sublinear Lévy(-type) processes. ALEA, 16:531–559, 2019.
[11] F. Kühn. On infinitesimal generators of sublinear Markov semigroups. Osaka Journal of Mathematics, 58(3):487–508, 2021.
[12] A. Neufeld and M. Nutz. Nonlinear Lévy processes and their characteristics. Transactions of the American Mathematical Society, 369:69–95, 2017.
[13] M. Nutz and R. van Handel. Constructing sublinear expectations on path space. Stochastic Processes and their Applications, 123(8):3100–3121, 2013.
[14] S. Peng. G-expectation, G-Brownian motion and related stochastic calculus of Itô type. In F. E. Benth et. al., editors, Stochastic Analysis and Applications: The Abel Symposium 2005, pages 541–567, Springer Berlin Heidelberg, 2007.
[15] S. Peng. Multi-dimensional G-Brownian motion and related stochastic calculus under G-expectation. Stochastic Processes and their Applications, 118:2223–2253, 2008.
[16] D. W. Stroock and S.R.S. Varadhan. Multidimensional Diffusion Processes. Springer Berlin Heidelberg, reprint of 1997 ed., 2006.
