Plastid Phylogenomic Data Offers Novel Insights Into the Taxonomic Status of the *Trichosanthes kirilowii* Complex (Cucurbitaceae) in South Korea

Inkyu Park¹, Jun-Ho Song¹, Sungyu Yang¹, Sungwook Chae² and Byeong Cheol Moon¹*

¹ Herbal Medicine Resources Research Center, Korea Institute of Oriental Medicine, Naju, South Korea, ² Herbal Medicine Research Division, Korea Institute of Oriental Medicine, Daejeon, South Korea

*Correspondence: Byeong Cheol Moon bcmoon@kiom.re.kr

Specialty section: This article was submitted to Plant Systematics and Evolution, a section of the journal Frontiers in Plant Science

INTRODUCTION

Trichosanthes L. is a large genus of the tribe Sicyoeae Schrad. (Cucurbitaceae Juss.) comprising 90–100 species (de Wilde and Duyfjes, 2010; de Boer and Thulin, 2012). The members of the genus are diecious, rarely monoecious, perennial climbing herbs, characterized by unlobed or palmately lobed, rarely compound leaves with branched tendrils, a usually distinct fimbriate corolla, and ovoid to

Trichosanthes is a genus in Cucurbitaceae comprising 90–100 species. *Trichosanthes* species are valuable as herbaceous medicinal ingredients. The fruits, seeds, and roots of species such as *T. kirilowii* and *T. rosthornii* are used in Korean traditional herbal medicines. *T. rosthornii* is only found in China, whereas in South Korea two varieties, *T. kirilowii* var. *kirilowii* and *T. kirilowii* var. *japonica*, are distributed. *T. kirilowii* var. *kirilowii* and *T. kirilowii* var. *japonica* have different fruit and leaf shapes but are recognized as belonging to the same species. Furthermore, although its members have herbal medicine applications, genomic information of the genus is still limited. The broad goals of this study were (i) to evaluate the taxonomy of *Trichosanthes* using plastid phylogenomic data and (ii) provide molecular markers specific for *T. kirilowii* var. *kirilowii* and *T. kirilowii* var. *japonica*, as these have differences in their pharmacological effectiveness and thus should not be confused and adulterated. Comparison of five *Trichosanthes* plastid genomes revealed locally divergent regions, mainly within intergenic spacer regions (*trnT-UGU–trnL-UAA*: marker name Tri, *rrn4.5–rrn5*: TRr, *trnE-UUC–trnT-GGU*: TRtt). Using these three markers as DNA-barcodes for important herbal medicine species in *Trichosanthes*, the identity of *Trichosanthes* material in commercial medicinal products in South Korea could be successfully determined. Phylogenetic analysis of the five *Trichosanthes* species revealed that the species are clustered within tribe Sicyoeae. *T. kirilowii* var. *kirilowii* and *T. rosthornii* formed a clade with *T. kirilowii* var. *japonica* as their sister group. As *T. kirilowii* in its current circumscription is paraphyletic and as the two varieties can be readily distinguished morphologically (e.g., in leaf shape), *T. kirilowii* var. *japonica* should be treated (again) as an independent species, *T. japonica*. Keywords: *Trichosanthes*, plastid genome, divergent region, phylogenetic relationship, indel marker, herbal medicine
globose or elongated fusiform pepos (Huang et al., 2011; de Boer and Thulin, 2012). The center of diversity for the genus is Southeast Asia, and its range is India to East Asia and southeast Australia (de Wilde and Duyvjes, 2010; Huang et al., 2011; de Boer and Thulin, 2012). *Trichosanthes* is of broader interest for several reasons, including being a model plant for sex determination in plants and for its medicinal properties (de Boer et al., 2012; Yu et al., 2018; Lu et al., 2021). South Korea hosts two varieties of a *Trichosanthes* species: *T. kirilowii* var. *kirilowii* and *T. kirilowii* var. *japonica* (Kim and Choi, 2018). *T. kirilowii* var. *japonica* is distinguished from *T. kirilowii* var. *kirilowii* based on the color of its fruits. In addition, the two *T. kirilowii* varieties are distinguished based on leaf shape as well as seed color (Obha, 1999).

Sequence data from the plastid genome has made it possible to identify medicinal plants (Park et al., 2018b, 2019a,b, 2020). *T. kirilowii* and *T. rosthornii* are important in Korean and Chinese traditional herbal medicine, as their roots and seeds are used as *Trichosanthis* Radix and *Trichosanthis* Semen (herbal medicinal names), respectively. Such medicines are used for their immunomodulatory, anti-tumor, and anti-HIV properties (Yu et al., 2018). Furthermore, *T. kirilowii* and *T. rosthornii* fruits are used in traditional Chinese medicine as *Trichosanthis Fructus* and *Trichosanthis Pericarpium*, respectively. *T. kirilowii* var. *japonica* has been reported to prevent proliferation of leukemia cell lines in vitro (Kim et al., 2003). For quality control and to ensure the safety and effectiveness of their ingredients, only the Korean Ministry of Food and Drug Safety designates and regulates *Trichosanthis* Radix and *Trichosanthis* Semen and the roots and seeds of *T. kirilowii* and *T. rosthornii* as medicine (Korea Institute of Oriental Medicine [KIOM], 2020). Since *T. kirilowii* var. *japonica* is not regulated by law, the use of *T. kirilowii* var. *japonica* as a medicine in South Korea poses a problem. There are some efficacy reports, but there are insufficient reports related to pharmacological studies, component analysis, or physicochemical composition. *Trichosanthis* Radix and *Trichosanthis* Semen are obtained in the form of slices and powders in Korean traditional markets. In general, distinguishing authentic from inauthentic herbal products is challenging for the untrained eye. Therefore, appropriate methods are required to discriminate good quality herbal products from adulterated preparations. Adulterants may cause negative side effects and quality problems. The purity of herbal medicine ingredients can be tested using species-specific molecular markers. As mentioned above, *T. kirilowii* var. *kirilowii* and *T. kirilowii* var. *japonica* are distributed in South Korea. Owing to a lack of major morphological differences in their floral characteristics and their sympatric distribution in South Korea, distinguishing them is often challenging. To protect the original herbal medicine—*T. kirilowii* var. *kirilowii* and *T. rosthornii*—from adulterants, molecular markers could be used for testing and identification.

Plastid genomes are useful for species classification, identification, population genetics studies, diversity and evolutionary analysis, and can infer well-resolved phylogenetic relationships, even at the species level (Jansen et al., 2007; Parks et al., 2009). Furthermore, plastid genomes are useful for DNA barcoding approaches. Insertion/deletion (indel) genetic variants from the plastid genome are useful markers for species identification and discrimination (Dong et al., 2012; Li et al., 2015; Park et al., 2019b). Several studies have developed indel markers to identify the correct herbal medicinal plants among related species. Kim et al. (2015) reported the plastid genome of an important herbal medicinal plant, *Panax ginseng*, and indel markers from sequence variants of plastid genomes that could discriminate 14 *Panax ginseng* accessions. *Aconitum* species, which have toxic components such as aconitine, are extensively used in herbal medicine (Park et al., 2017). The complete plastid genomes of *Aconitum coreanum* and *A. carmichaelii* have revealed indel sequence variation among the *Aconitum* species. An *A. coreanum* species-specific marker was developed and fully distinguished nine other *Aconitum* accesses. Furthermore, indel markers were developed to distinguish the important herbal medicine *Pharbitidis* Semen (seeds of *Ipomoea nil* and *I. purpura*) from closely related *Ipomoea* species (Park et al., 2018b). Such cases involving traditional herbal medicine attest to the value of plastid genomes. However, chloroplast capture, which refers to the introgression of one plastid genome into another species due to hybridization, has also been reported (Acosta and Premoli, 2010; Stegemann et al., 2012; Kawabe et al., 2018). Therefore, it is recommended that both nuclear and plastid DNA be used together for accurate species identification.

In this study, our aim was to explore the taxonomic identities of *T. kirilowii* var. *kirilowii* and *T. kirilowii* var. *japonica* and to facilitate their distinction. We also aimed to authenticate the use of *Trichosanthes* in herbal medicine. To this end, the plastid genomes of five *Trichosanthes* accesses were sequenced and compared based on nucleotide variation and genome structure. We used the data to test the phylogenetic relationships among five *Trichosanthes* taxa (four species, one with two varieties). Finally, to authenticate *Trichosanthes* species-based herbal medicine, we developed and tested novel molecular marker sets based on genetically variable plastid regions.

MATERIALS AND METHODS

Plant Materials and Morphological Analysis

Fresh *T. kirilowii* var. *kirilowii* and *T. kirilowii* var. *japonica* leaves were collected from five natural habitats in South Korea (Supplementary Figure 1), and one *T. rosthornii* individual was collected from its natural habitat in China (Supplementary Table 1). All specimens were registered with the Korean Herbarium of Standard Herbal Resources (Index Herbariorum Code KIOM) at the Korea Institute of Oriental Medicine (KIOM). Two accesses each of *T. kirilowii* var. *kirilowii* and *T. kirilowii* var. *japonica* and one accession of *T. rosthornii* were also used for plastid genome analysis (Supplementary Table 1).

To investigate the morphology of *T. kirilowii* var. *kirilowii* and *T. kirilowii* var. *japonica*, mature leaves, fruits, and seeds from all 25 samples of each variety (five individuals × five collection sites) were selected (Supplementary Table 1). The general shape, degree of division, and hairiness were observed...
in detail under a stereomicroscope (Olympus SZX16, Olympus, Tokyo, Japan). The Royal Horticultural Society Color Chart® (Royal Horticultural Society, 5th edition) was used to determine the color of the seeds.

Genome Sequencing and Assembly

DNA was extracted using a DNaseasy Plant Maxi Kit (Qiagen, Valencia, CA, United States) according to the manufacturer's instructions. Illumina short-insert paired-end sequencing libraries (TruSeq DNA Nano kit) were constructed and sequenced using the NextSeq500 platform (Illumina, San Diego, CA, United States). De novo assembly was used to construct plastid genomes from the resulting whole-genome shotgun sequencing reads. CLC quality trim v 4.2.1 (CLC Inc., Aarhus, Denmark) was used to trim and check the quality of the reads. Trimmed paired-end reads (Phred score ≥ 20) were assembled using the CLC genome assembler v 4.2.1 (CLC Inc.) using default parameters. Principal contigs representing the plastid genome were retrieved from the total contigs using Nucmer (Delcher et al., 2003), and aligned contigs were ordered using the plastid genome sequence of *Hodgsonia macrocarpa* (NC_039628) as a reference (Zeng et al., 2018). The representative plastid contigs were arranged in order based on a previously reported plastid genome sequence and connected into a single draft sequence by joining the overlapping terminal sequences. Assembly errors were identified in the initial assembly contigs and manually corrected by the mapping of raw reads to assembled sequences. SOAP de novo gap closer v 0.99 was used to fill gaps based on the alignments of paired-end reads (Luo et al., 2012). LSC/IR, IR/SSC, SSC/IR, and IR/LSC regions of completed plastid genomes were validated using PCR-based sequencing. IR boundaries were amplified using 20 ng of genomic DNA in a 20-µL PCR mixture (SolgelTM 2X Taq PCR smart mix 1, Solgent, Daejeon, South Korea) with 10 pmol of each primer (Bioneer, Daejeon, South Korea). Amplification was performed using a Pro Flex PCR system (Applied Biosystems, Waltham, MA, United States) according to the following program: initial denaturation at 95°C for 2 min; 35 cycles at 95°C for 1 min, 60°C for 1 min, 72°C for 1.5 min; and final extension at 72°C for 5 min. PCR products were separated on 2% agarose gels at 150 V for 40 min. To validate IR boundary sequences, each PCR product was rescued from the agarose gel, subcloned into the pGEM-T Easy vector (Promega, Madison, WI, United States), and sequenced using a DNA sequence analyzer (ABI 3730, Applied Biosystems Inc., Foster City, CA, United States) to determine sizes and verify the sequences of amplicons. Primer information and sequence alignment results are listed in Supplementary Tables 2, 3.

Indel Marker Development and Trichosanthes Validation

To detect species-specific variants, we aligned the five *Trichosanthes* plastid genomes using MISA-web1 (Beier et al., 2017). The following criteria were used for detecting SSRs: SSR motif length between one and six nucleotides with the minimum number of repeat parameters set to 10, 5, 4, 3, 3, and 3 for mono-, di-, tri-, tetra-, penta-, and hexa-nucleotides, respectively. Tandem repeats (>20 bp) were identified using the Tandem Repeats Finder v. 4.07 (Benson, 1999) using a minimum alignment score and maximum period size of 50 and 500, respectively, and the identity of repeats was set to ≥90%.

To detect species-specific variants, we aligned the five *Trichosanthes* plastid genomes using MISA-web1 (Beier et al., 2017). The following criteria were used for detecting SSRs: SSR motif length between one and six nucleotides with the minimum number of repeat parameters set to 10, 5, 4, 3, 3, and 3 for mono-, di-, tri-, tetra-, penta-, and hexa-nucleotides, respectively. Tandem repeats (>20 bp) were identified using the Tandem Repeats Finder v. 4.07 (Benson, 1999) using a minimum alignment score and maximum period size of 50 and 500, respectively, and the identity of repeats was set to ≥90%.

Indel Marker Development and Trichosanthes Validation

To detect species-specific variants, we aligned the five *Trichosanthes* plastid genomes using MISA-web1 (Beier et al., 2017). The following criteria were used for detecting SSRs: SSR motif length between one and six nucleotides with the minimum number of repeat parameters set to 10, 5, 4, 3, 3, and 3 for mono-, di-, tri-, tetra-, penta-, and hexa-nucleotides, respectively. Tandem repeats (>20 bp) were identified using the Tandem Repeats Finder v. 4.07 (Benson, 1999) using a minimum alignment score and maximum period size of 50 and 500, respectively, and the identity of repeats was set to ≥90%.

Indel Marker Development and Trichosanthes Validation

To detect species-specific variants, we aligned the five *Trichosanthes* plastid genomes using MISA-web1 (Beier et al., 2017). The following criteria were used for detecting SSRs: SSR motif length between one and six nucleotides with the minimum number of repeat parameters set to 10, 5, 4, 3, 3, and 3 for mono-, di-, tri-, tetra-, penta-, and hexa-nucleotides, respectively. Tandem repeats (>20 bp) were identified using the Tandem Repeats Finder v. 4.07 (Benson, 1999) using a minimum alignment score and maximum period size of 50 and 500, respectively, and the identity of repeats was set to ≥90%.

Indel Marker Development and Trichosanthes Validation

To detect species-specific variants, we aligned the five *Trichosanthes* plastid genomes using MISA-web1 (Beier et al., 2017). The following criteria were used for detecting SSRs: SSR motif length between one and six nucleotides with the minimum number of repeat parameters set to 10, 5, 4, 3, 3, and 3 for mono-, di-, tri-, tetra-, penta-, and hexa-nucleotides, respectively. Tandem repeats (>20 bp) were identified using the Tandem Repeats Finder v. 4.07 (Benson, 1999) using a minimum alignment score and maximum period size of 50 and 500, respectively, and the identity of repeats was set to ≥90%.

1. http://misasweb.ipk-gatersleben.de/
2. https://blast.ncbi.nlm.nih.gov/Blast.cgi
for 50 s, and a final extension at 72°C for 5 min. PCR products were separated on 2% agarose gel for 40 min at 150 V. Each PCR product was isolated using a gel extraction kit (Qiagen), subcloned into a pGEM-T Easy vector (Promega, Madison, WI, United States), and sequenced using a DNA sequence analyzer (ABI 3730, Applied Biosystems Inc., Foster City, CA, United States). The Trichosanthes accessions used are listed in Supplementary Table 4. The commercial products are listed in Supplementary Table 5. Tri, TRr, and TRtt primer sequences are listed in Supplementary Table 6.

Phylogenetic Analysis

A total of 19 plastid genomes were used for phylogenetic analyses: 17 from Trichosanthes species and one each from Cucumis melo var. makuwa (MF536700) and Cucumis melo var. momordica (MF536701) as the outgroup. Of these, 12 plastid genome sequences were downloaded from NCBI GenBank (Supplementary Table 7). MAFFT (Katoh et al., 2002) was used to align the plastid genomes, and alignments were manually adjusted using Bioedit (Hall, 1999). Subsequently, each aligned gene (CDS) was extracted using Geneious prime v. 2021.1, yielding 58 single CDS alignments. The alignment files were filtered to remove ambiguously aligned regions using GBLOCKS v. 0.91b (Castresana, 2000), and concatenated using Geneious. The best-fitting model of nucleotide substitutions was determined based on Akaiake Information Criterion in JModeltest v. 2.1.10 (Darriba et al., 2012). Maximum likelihood (ML) analysis was performed using RaxML v. 8.0.5 (Stamatakis, 2014) with 1,000 bootstrap replicates based on the GTR + I + G model. Bayesian Inference (BI) analysis was carried out using MrBayes v. 3.2.2 (Ronquist et al., 2012), with two independent runs and four chains run simultaneously for 5,000,000 generations. Trees were sampled every 100,000 generations, with the first 25% discarded as burn-in. The 50% majority-rule consensus tree was visualized using Figtree v. 1.4.2 (Rambaut, 2014), with posterior probabilities (PP) estimated from the sampled trees after the burn-in fraction was discarded. Nuclear ITS sequences were obtained using the above method (Indel marker development and Trichosanthes validation) using KIOM specimens (Supplementary Table 1). The ITS region was amplified using ITS1 (TCC GTA GGT GAA CCT GCG G) and ITS4 (TCC GCT TAT TGA TAT GC) primers, as described previously (White et al., 1990). Phylogenetic analysis was carried out using the method applied for the plastid genomes.

RESULTS

Morphological Characteristics of Trichosanthes kirilowii var. kirilowii and japonica

The floral parts (female and male flowers) were remarkably similar (Figures 1A, B). However, leaf lobation patterns were clearly distinct. The leaves of T. kirilowii var. kirilowii were deeply

<https://www.geneious.com>
were used more frequently than expected. In Supplementary Figure 6, the colors green and red indicate strong (RSCU value > 1) and weak (RSCU value < 1) codon usage bias, respectively. The codons with an A or T in the third position had a strong codon bias. Most RSCU values had similar patterns in Cucurbitaceae. AGA (arginine) usually had high RSCU values. However, Gynostemma had genus-specific patterns—e.g., AGG (arginine) yielded particularly low RSCU values.

SSR and Tandem Repeat Analysis in *Trichosanthes* Plastid Genomes

The five *Trichosanthes* accessions had 64–75 SSRs in total (Figure 3A). Most SSRs were in the LSC and SSC regions within intergenic spacers (Figures 3A,B). The mononucleotide motif was the most abundant in all the accessions (Figure 3C). No hexanucleotide motif repeats were found. Most tandem repeats were located in the LSC (Figure 3D). *T. kirilowii* var. *kirilowii* and *T. kirilowii* var. *japonica* had tandem repeats in different genomic regions (Figure 3E). *T. rosthornii* had fewer tandem repeats than other *Trichosanthes* taxa. There were 7–16 tandem repeats of >20 bp identified in the five *Trichosanthes* accessions, and most were 21–40 bp long (Figure 3F).

Comparative Analysis of *Trichosanthes* Plastid Genomes

To identify divergent regions, we analyzed the plastid genomes of all five *Trichosanthes* accessions using the mVISTA program with *T. kirilowii* var. *kirilowii* as a reference (Figure 4). Overall, the alignment revealed that IR regions were better conserved than the single-copy regions, and intergenic regions were more divergent than genic regions, except for *ycf1*, *ycf2*, *rps3*, and *rpl22*. The major regions of divergence (including less than 50% similarity) were identified in the intergenic regions (IGS) *trnT-UGU–trnL-UAA*, *trnE-UUC–trnT-GGU*, *rrn4.5–rrn5*. The differences observed between *T. kirilowii* var. *kirilowii* and *T. kirilowii* var. *japonica* in the regions could indicate that they are two different species. To determine sequence divergence in the five *Trichosanthes* accessions, we calculated the nucleotide diversity as a Pi value (Figure 5). The IGS region in *atpF-atpH* exhibited high divergence, with a Pi of 0.0198. In the genic region, the value of Pi...
for ndhC was 0.00496, indicating that the genic region was more highly conserved than the IGS region, as expected. In the present study, although the plastid genomes of Trichosanthes exhibited a highly conserved structure, highly local sequence variability was detected in IGS.

New Molecular Markers for Distinguishing Trichosanthes Species

We compared the nuclear ITS sequences of T. kirilowii var. kirilowii, T. kirilowii var. japonica, T. rosthornii, and T. rubriflos. We did not find any variation among T. kirilowii and T. rosthornii (Supplementary Figure 7). Only T. kirilowii var. japonica and T. rubriflos had a few differences compared to the other species, showing the limitation of this universal DNA barcode in distinguishing Trichosanthes at the species level and below. To address the problem, we developed a marker set to distinguish T. kirilowii var. kirilowii, T. kirilowii var. japonica, and T. rosthornii using indels. Three intergenic regions (trnT-UGU-trnL-UAA, rns4.5-rns5, and trnE-UUG-trnT-GGU) were revealed to be considerably helpful by containing species-specific indels (Supplementary Figure 8).

Tri, TRr, and Trtt markers were successfully amplified for all samples (Figure 6). The Tri marker (located in the trnT-UGU–trnL-UAA region) differentiated T. kirilowii var. kirilowii from T. kirilowii var. japonica, T. rosthornii, and T. rubriflos. The Tri marker was 640, 512, and 502 bp long in T. kirilowii var. kirilowii, T. kirilowii var. japonica, and T. rosthornii, respectively.
The TRr marker (located in the rrn4.5–rrn5 region) contained a 32-bp deletion in *T. rosthornii*, discriminating this species from the others. The Trtt marker (located in the *rrnE-UUG–trnT-GGU* region) contained an 88-bp deletion in *T. kirilowii* var. *japonica* compared to the other *Trichosanthes* (Figure 6 and Supplementary Figure 8). Therefore, the four *Trichosanthes* taxa could be unambiguously discriminated using the three markers developed in the present study (Figure 6). Furthermore, we surveyed 15 commercial drugs made of crude *Trichosanthes* tissues from South Korea (Supplementary Table 5). Only four products were identified as *T. kirilowii* var. *kirilowii* using the Tri marker; no products were identified as *T. rosthornii* using the TRr marker. Nine products were identified as *T. kirilowii* var. *japonica* using Trtt. The two products without marked asterisks on Figure 6 were inferred to be *T. rubriflos* through the simultaneous use of all three markers (Tri, TRr, and Trtt). All fruit products were identified to be *T. kirilowii* var. *japonica*, while root and seed products were identified to be *T. kirilowii* var. *japonica* (four root and two seed products), *T. rubriflos* (one root and one seed product) or *T. kirilowii* var. *kirilowii* (one root and three seed products).

Phylogenetic Relationships Among Trichosanthes Species Within Cucurbitaceae

To verify the phylogenetic relationships among *Trichosanthes*, we identified 73 protein-coding sequences (60,681 bp in total) shared by our five *Trichosanthes* accessions and 14 other *Trichosanthes* accessions, with *Cucumis melo* subsp. *melo* and *Cucumis melo* var. *momordica* as the outgroup (Figure 7 and Supplementary Figure 9). Phylogenetic relationships inferred from BI and ML were essentially identical (Figure 7 and Supplementary Figure 9). All phylogenetic relationships were strongly supported (BI PP = 1.0). *Trichosanthes* formed a monophyletic group with the exception of, *T. nervifolia* that is grouped with *T.* sect. *Involucraria* instead of with the other included species of sect. *Trichosanthes*. *T. kirilowii* var. *kirilowii* and *T. kirilowii* var.
japonica were clustered with T. rosthornii and T. homophylla into T. sect. Foliobracteola. Whereas T. kirilowii var. kirilowii and T. kirilowii var. japonica were monophyletic, T. kirilowii as a whole was paraphyletic due to the nested positions of T. rosthornii and T. homophylla.

DISCUSSION

Features of Trichosanthes Plastid Genomes

In the present study, we newly determined the complete plastid genomes of five Trichosanthes accessions. Of those, T. kirilowii var. japonica and T. rosthornii were sequenced for the first time. Plastid genomes in Trichosanthes have 113 unique genes and their gene order, GC contents, genomic structure, and overall length (156,790–157,155 bp) are within the ranges described previously for angiosperm plastid genomes (Millen et al., 2001). *Trichosanthes* plastid genomes have one pseudogene, infA, which is the result of an early stop codon. The gene infA frequently contains deletions and early stop codons in angiosperm plastid genomes (Wicke et al., 2011). It has been transferred from plastid genomes to the nucleus in many plants. The infA encoded translation initiation factor was independently lost during land plant evolution (Wicke et al., 2011; Menezes et al., 2018). Codon usage is an essential factor for the expression of genetic information correctly, and it plays an important role in shaping plastid genome evolution (Wang et al., 2016; Yi et al., 2018). High relative synonymous codon usage (RSCU) values correspond to more highly conserved plastid genes (Wang et al., 2016; Ivanova et al., 2017; Zuo et al., 2017). The five *Trichosanthes* accessions have nearly the same codons, which are similar to...
Comparison of Trichosanthes plastid genomes using mVISTA. Complete plastid genomes of five Trichosanthes species were compared, with T. kirilowii var. kirilowii 1 as the reference. The gray arrows indicate genes. Different colors represent different regions (coding and non-coding). The horizontal axis indicates the coordinates within the chloroplast genome. The vertical scale represents the percentage of identity, ranging from 50 to 100%.

FIGURE 4

those of other plastid genomes (Wang et al., 2016; Raman et al., 2019). We also surveyed the RSCU values of 28 other Cucurbitaceae plastid genomes. Half of the codons had a high codon bias (Supplementary Figure 6) and are denoted in green in the figure (RSCU > 1). This result is similar to those of other plastid genomes, and most codons with high RSCU values had an A or T in the third position of their amino acid. The plastid genomes of Gynostemma species have codon bias patterns that are slightly different from those of other Cucurbitaceae. In particular, AGG (arginine) codons had relatively low RSCU values. The RSCU values of the Trichosanthes species and other Cucurbitaceae plastid genomes were similar to those of other higher plants.

Repeat Sequences in Trichosanthes Plastid Genomes

Simple sequence repeats or microsatellites of 1–6 nucleotides are widely distributed throughout genomes (Curci et al., 2015). They are useful in population genetics studies and for discriminating species, and facilitate phylogenetic studies due to their high polymorphism at the intra- and interspecific levels (Powell et al., 1995; Zalapa et al., 2012). In the present study, mononucleotide SSRs comprised approximately 83% of all SSRs (55–62 SSRs), which were mostly detected in IGS regions (Figure 3). The finding is similar to those of previous reports, in which most of the mononucleotide repeats were A and T repeats due to an abundance of polyamines and polythymines in the plastid genome (Qian et al., 2013; Yang et al., 2016; Wang et al., 2018). SSRs identified in the Trichosanthes plastid genome could provide useful genetic resources for Trichosanthes species identification and population genetics studies. Repeat sequences facilitate phylogenetic research and species identification (Asaf et al., 2016). Tandem repeats, 7–16 nucleotides long, were detected in the five Trichosanthes plastid genomes. Among the five Trichosanthes taxa, T. rosthornii had the fewest tandem repeat sequences. T. kirilowii var. kirilowii and T. kirilowii var. japonica exhibited differences in SSRs and tandem repeats. In general, repeats are very similar between individuals of a similar species (Park et al., 2018b), but the two T. kirilowii varieties are completely different in terms of repeats. Furthermore, we did not observe a clear difference in the tandem repeat copy
number, as was seen in previous studies for distinguishing species (Hong et al., 2017; Park et al., 2018b); however, a general repeat sequence variation was observed (Park et al., 2017). Such repeat sequences serve as molecular markers in population genetics and phylogenetic studies of Cucurbitaceae, including Trichosanthes.
Genetic Variation in the *Trichosanthes* Accessions

According to the mVISTA results, the plastid genome of *Trichosanthes* has low diversity, and its genic regions are more conserved than its IGS regions, the latter of which are consistent with angiosperm plastid genomes in general (Shaw et al., 2007; Huo et al., 2019; Song et al., 2019). The *trnT–trnL*, *rrn4.5–rrn5*, and *trnE–trnT* regions were observed to be hotspot regions for genetic variation (Figure 4). The hotspot regions in plant species are caused by mutation events (Morton and Clegg, 1993; Maier et al., 1995; Liu et al., 2018, 2019), and can be used as DNA barcodes to distinguish species or genera, depending on the variability of the regions. Such regions have been successfully used for the development of molecular markers to efficiently distinguish species (Cho et al., 2015; Hong et al., 2017; Park et al., 2018a, b). In terms of nucleotide diversity (Pi), most divergent regions were non-coding, and this is consistent with other plastid genomes, which have been reported to have highly variable non-coding regions at *trnG–trnR*, *trnR–atpA*, *atpF–atpH*, *trnS–psbZ*, *trnL–trnF*, *ndhC–trnV*, *psbE–petL*, *ndhF–rpl32*, and *rpl32–trnL* (Wang et al., 2010; Schroeder et al., 2016; Zhitao et al., 2017; Liu et al., 2019; Smidt et al., 2020).

Inverted repeat (IR) contraction and expansion in angiosperm plastid genomes cause plastid genome size to vary (Raubeson et al., 2007). Previous studies have identified extremely short IRs, or the loss of IR regions and genes (Wang et al., 2008; Zhu et al., 2016). Compared to *H. macrocarpa*, *Trichosanthes* exhibits a highly conserved IR length and gene positions. However, the IR region length ranged from 26,257 to 26,303, meaning that there was some contraction/expansion in the IR region (Supplementary Figure 4). This phenomenon has also been observed in other Cucurbitaceae plastid genomes (Zhang et al., 2018; Bellot et al., 2020).

Molecular Marker Development and Commercial Products Screening in Korean Herbal Markets

Authentication of herbal materials is essential for quality control, safety, and herbal medicine efficacy. Medicinal plants are extensively used for disease prevention, side effects management, and for their pharmacological effects (Yu et al., 2018). Adulterants in herbal medicine could have similar morphology, uncertain origins, and often bear names that are similar to those of the original ingredient (Han et al., 2016; Ichim, 2019). Their use may bring about negative side effects and quality problems. In Korean herbal medicine, the roots and seeds of *T. kirilowii* and *T. rosthornii* are considered authentic Trichosanthis Radix and Trichosanthis Semen, respectively (Korea Institute of Oriental Medicine [KIO], 2020). However, *T. kirilowii* var. *kirilowii* and *T. kirilowii* var. *japonica*, distributed in South Korea, appear highly morphologically similar to the naked eye, and therefore, are often misused or used interchangeably.
In the present study, we developed an indel marker set to facilitate the distinction of authentic and adulterated Trichosanthes materials. Three novel markers—Tri, TRr, and Trt—can completely discriminate T. kirilowii var. kirilowii from T. kirilowii var. japonica, T. rosthornii, and T. rubriflos (Figure 6). We also tested commercial products in South Korea. Among the 15 product samples tested, only four were composed of T. kirilowii, and no T. rosthornii was found, indicating that only the four were authentic. Most commercial products are prepared from T. kirilowii var. japonica, the adulterant. In the present study, we encountered problems in the context of quality control for authentic herbal medicines. The novel indel markers developed in the present study will facilitate rapid and accurate authentication of Trichosanthes herbal medicines, as well as the determination of whether they have been adulterated. Consequently, further studies are required to test the quality of the numerous commercial products available in markets.

Phylogenetic Relationships Among Trichosanthes and Taxonomic Identity of the T. kirilowii Complex

Our reconstructed phylogeny of the genus Trichosanthes is generally consistent with a recent infrageneric classification by de Boer and Thulin (2012). However, T. nervifolia, which currently is placed in sect. Trichosanthes together with T. cucumerina (de Boer et al., 2012), was instead closely related to taxa in sect. Involucratia. This topological conflict between plastome and nrDNA phylogenies may be due to chloroplast capture but additional morphological, micromorphological, anatomical, and palynological characteristics are needed to specify the exact sectional position of T. nervifolia. Considering the results of previous studies and those of the present study, the two infra-specific taxa of T. kirilowii have clear genetic differences that are large enough to distinguish them as separate species based on the phylogenetic species concept, as also concluded by de Boer et al. (2012) and Liu et al. (2021). Moreover, their habitats are different. T. kirilowii var. kirilowii is widely distributed across the temperate and subtropical regions of East Asia in inland habitats, such as forests, shrublands, and grasslands (Huang et al., 2011), whereas T. kirilowii var. japonica is rather narrowly distributed in Korea and Japan in islands and coastal regions (Ohba, 1999; Kim and Choi, 2018; Supplementary Figure 7). Finally, the two infra-specific taxa were clearly identified based on combined morphological characters such as leaf and fruit shape, and seed color according to the taxonomic concept of Regel (1868). We therefore propose that T. kirilowii var. japonica (=T. kirilowii subsp. japonica) be recognized again as a separate species considering its distinct genetics, morphology, and geographical distribution (Huang et al., 2009; de Boer et al., 2012; Liu et al., 2021). Further molecular identification and in-depth phylogenetic studies, as well as morphological studies, using various and abundant samples of Trichosanthes are required to identify the unique traits among the species to facilitate their identification and classification.

From an herbal medicine perspective, T. kirilowii and T. rosthornii form a monophyletic clade, and T. japonica was separated from them. Therefore, the use of T. japonica as a medicinal herb is not recommended because its effects are unknown. The results of the present study offer data on the authenticity of Korean herbal medicine resources, particularly Trichosanthes, which could enhance the quality and safety of Trichosanthes herbal medicines.

CONCLUSION

The present study identified the distinct morphological traits between T. kirilowii s. str (=T. kirilowii var. kirilowii) and T. japonica (=T. kirilowii var. japonica). The plastid genomes of the five Trichosanthes accessions studied were highly conserved with respect to gene content, gene orientation, GC content, and local variations. Most divergences were detected in non-coding regions (trnT–UGU–trnL–UAA, rrn4.5–rrn5, trnE–UUC–trnT–GGU). Such hotspot regions were used to create a novel marker set that successfully discriminated T. kirilowii from T. japonica and T. rosthornii in commercial herbal medicine products. Overall, our results distinguish T. kirilowii and T. japonica based on complete plastid genomes, novel marker sets, and phylogenetic relationships. Furthermore, our results could facilitate herbal medicine quality control by enabling the authentication of herbal medicines containing T. kirilowii and T. rosthornii.

DATA AVAILABILITY STATEMENT

The datasets presented in this study can be found in online repositories. The names of the repository/repositories and accession number(s) can be found in the article/Supplementary Material.

AUTHOR CONTRIBUTIONS

IP designed the experimental framework, drafted and revised the manuscript, performed experiments, and carried out genome analysis. J-HS, SY, SC, and BM collected and identified plant materials. IP and BM revised the manuscript. All authors contributed to the experiments and approved the final manuscript.

FUNDING

This research was funded by a grant from the Development of Sustainable Application for Standard Herbal Resources (KSN2012320) from the Korea Institute of Oriental Medicine (KIOM), South Korea.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found online at: https://www.frontiersin.org/articles/10.3389/fpls.2021.559511/full#supplementary-material
REFERENCES

Acosta, M. C., and Premoli, A. C. (2010). Evidence of chloroplast capture in South American Nothofagus (subgenus Nothofagus, Nothofagaceae). Mol. Phylogenet. Evol. 54, 235–242. doi: 10.1016/j.ympev.2009.08.008.

Asif, S., Khan, A. L., Khan, A. R., Waqas, M., Kang, S. M., Khan, M. A., et al. (2016). Complete chloroplast genome of Nicotiana oblonga and its comparison with related species. Front. Plant Sci. 7:843. doi: 10.3389/fpls.2016.00843.

Babicki, S., Arndt, D., Marcu, A., Liang, Y., Grant, J. R., Maciejewski, A., et al. (2016). Heatmapper: web-enabled heat mapping for all. Nucleic Acids Res. 44, W147–W153.

Beier, S., Thiel, T., Munch, T., Scholz, U., and Mascher, M. (2017). MISA-web: a web server for microsatellite prediction. Bioinformatics 33, 2583–2585. doi: 10.1093/bioinformatics/btx198.

Bellot, S., Mitchell, T. C., and Schaefer, H. (2020). Phylogenetic informativeness analyses to clarify past diversification processes in Cucurbitaceae. Sci. Rep. 10:488.

Benson, G. (1999). Tandem repeats finder: a program to analyze DNA sequences. Nucleic Acids Res. 27, 537–580. doi: 10.1093/nar/27.2.573.

Carver, T., Berriman, M., Tivey, A., Patel, C., Bohme, U., Barrett, B. G., et al. (2008). Artemis and ACT: viewing, annotating and comparing sequences stored in a relational database. Bioinformatics 24, 2672–2676. doi: 10.1093/bioinformatics/btn529.

Castresana, J. (2000). Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Mol. Biol. Evol. 17, 540–552. doi: 10.1093/molbev/1062334.

Cho, K. S., Yun, B. K., Yoon, Y. H., Hong, S. Y., Mekapou, M., Kim, K. H., et al. (2015). Complete chloroplast genome sequence of a holy herb Buchu (Fagopyrum tataricum) and comparative analysis with common buckwheat (F. esculentum). PLoS One 10:e0125332. doi: 10.1371/journal.pone.0125332.

Curci, P. L., De Paola, D., Danzi, D., Vendramin, G. G., and Sonnante, G. (2015). Complete chloroplast genome of the multifunctional crop globe artichoke and comparison with other Asteraceae. PLoS One 10:e0120589. doi: 10.1371/journal.pone.0120589.

Darriba, D., Taboada, G. L., Doallo, R., and Posada, D. (2012). ModelTest 2: more models, new heuristics and parallel computing. Nat. Methods 9:772. doi: 10.1038/nmeth.2109.

de Boer, H. J., Schaafer, H., Thulin, M., and Renner, S. S. (2012). Evolution and loss of long-fringed petals: a case study using a dated phylogeny of the snake gourds, Trichosanthes (Cucurbitaceae). BMC Evol. Biol. 12:108. doi: 10.1186/1471-2148-12-108.

de Boer, H. J., and Thulin, M. (2012). Synopsis of Trichosanthes (Cucurbitaceae) based on recent molecular phylogenetic data. Phytorev 12, 23–33. doi: 10.3977/phyto.122952.

de Wilde, W. J., and Dufyès, B. E. (2010). “Cucurbitaceae,” in Flora Malesiana, Series I, Seed Plants, ed. H. P. Nootboemt (Leiden: Netherlands Centre for Biodiversity Naturalis), 1–333.

Delcher, A. L., Salzberg, S. L., and Phillippy, A. M. (2003). Using MUMmer to identify similar regions in large sequence sets. Curr. Protoc. Bioinform. 10:10.3.

Dong, W., Liu, J., Ju, Y., Wang, L., and Zhou, S. (2012). Highly variable chloroplast markers for evaluating plant phylogeny at low taxonomic levels and for DNA barcoding. PLoS One 7:e35071. doi: 10.1371/journal.pone.0035071.

Greiner, S., Lehwark, P., and Bock, R. (2019). OrganellarGenomeDRAW (OGDRAW) version 1.3.1: expanded toolkit for the graphical visualization of organellar genomes. Nucleic Acids Res. 47, W59–W64.

Hall, T. A. (1999). BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp. Ser. 41, 95–98.

Han, J., Pang, X., Liao, B., Yao, H., Song, J., and Chen, S. (2016). An authenticity analysis of herbal medicines from markets in China using DNA barcoding. Front. Plant Sci. 7:1696. doi: 10.3389/fpls.2016.01696.

Huang, L. Q., Le, C. X., Cheng, J. R., and Lou, Z. C. (2009). Taxonomic Study of Medicinal Plants of Trichosanthes L. Volume 2. Shanghai: Shanghai Science and Technology Press, 27–33.
Zhang, X., Zhou, T., Yang, J., Sun, J., Ju, M., Zhao, Y., et al. (2018). Comparative analyses of chloroplast genomes of cucurbitaceae species: lights into selective pressures and phylogenetic relationships. *Molecules* 23:2165. doi: 10.3390/molecules23092165

Zhitao, N., Shuying, Z., Jiajia, P., Ludan, L., Jing, S., and Xiaoyu, D. (2017). Comparative analysis of *Dendrobium* plastomes and utility of plastomic mutational hotspots. *Sci. Rep.* 7:2073.

Zhu, A., Guo, W., Gupta, S., Fan, W., and Mower, J. P. (2016). Evolutionary dynamics of the plastid inverted repeat: the effects of expansion, contraction, and loss on substitution rates. *New Phytol.* 209, 1747–1756. doi: 10.1111/nph.13743

Zuo, L. H., Shang, A. Q., Zhang, S., Yu, X. Y., Ren, Y. C., Yang, M. S., et al. (2017). The first complete chloroplast genome sequences of *Ulmus* species by de novo sequencing: genome comparative and taxonomic position analysis. *PLoS One* 12:e0171264. doi: 10.1371/journal.pone.0171264

Conflict of Interest: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Publisher's Note: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

Copyright © 2021 Park, Song, Yang, Chae and Moon. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.