Localized energy associated with Bianchi-Type VI universe in $f(R)$ theory of gravity

M. Korunur†
Electric and Energy Department, Tunceli Vocational School, Tunceli University
Tunceli-62000, Turkey

Abstract. In the present work, focusing on one of the most popular problems in modern gravitation theories, we consider generalized Landau-Lifshitz energy-momentum relation to calculate energy distribution of the Bianchi-Type VI spacetime in $f(R)$ gravity. Additionally, the results are specified by using some well-known $f(R)$-gravity models.

Keywords: Bianchi; energy localization; modified gravity.

PACS Numbers: 04.20.-q; 04.50.-h; 04.90.+e.

1. Introduction

Gravitational energy-momentum localization problem is one of the most popular in gravitation theories and it still remains unsolved. Einstein is known as the first scientist who worked on energy-momentum pseudotensors[1] and different energy momentum prescriptions[2, 3, 4, 5, 6, 7, 8] were put forward after his studies. All energy-momentum formulations except for the Møller prescription[9] were restricted to make computations in cartesian coordinates. In 1990, Virbhadra and his collaborators reopened the energy-momentum localization problem[10, 11, 12, 13, 14, 15, 16] and after those pioneering papers great numbers of work have been prepared[17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29] by considering different energy momentum complexes and spacetime models.

Recently, modified gravitation theories especially $f(R)$ gravity which extends the general theory of relativity have also been taken into account by many scientists to discuss gravitational puzzles again[30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48]. The $f(R)$-gravity should be defined by modifying the Einstein-Hilbert action:

$$S = -\frac{1}{2\kappa} \int \sqrt{-g} f(R) d^4 x + S_m$$

where $\kappa = 8\pi G$, g represents the determinant of the metric tensor, $f(R)$ denotes a general function of Ricci scalar and S_m is the matter part of action[49]. It is known that

† E-mail: muratkorumur@yahoo.com
Localized energy associated with Bianchi-Type VI universe in $f(R)$ theory of gravity

the Ricci curvature scalar is given by

$$R = g^{\mu\nu} R_{\mu\nu},$$

where $R_{\mu\nu}$ is the Ricci tensor related with the Riemann tensor, i.e. $R_{\mu\nu} = R^\lambda_{\mu\lambda\nu}$, given below:

$$R^\lambda_{\mu\nu\sigma} = \partial_\nu \Gamma^\lambda_{\mu\sigma} - \partial_\sigma \Gamma^\lambda_{\mu\nu} + \Gamma^\eta_{\mu\nu} \Gamma^\lambda_{\eta\sigma} - \Gamma^\eta_{\mu\sigma} \Gamma^\lambda_{\eta\nu},$$

and $\Gamma^\lambda_{\mu\sigma}$ is known as the Christoffel symbols:

$$\Gamma^\lambda_{\mu\sigma} = \frac{1}{2} g^{\lambda\beta} \left(\partial_\alpha g_{\mu\beta} + \partial_\mu g_{\sigma\beta} - \partial_\beta g_{\mu\sigma} \right).$$

Now, varying equation (1) with respect to the metric tensor yields the following field equation

$$F(R) R_{\mu\nu} - \frac{1}{2} f(R) g_{\mu\nu} - \left[\nabla_\mu \nabla_\nu - g_{\mu\nu} \nabla_\alpha \nabla^\alpha \right] F(R) = \kappa T_{\mu\nu}.\ (5)$$

Here, it has been defined that $F(R) \equiv \frac{d f(R)}{dR}$ and ∇_μ represents the covariant derivative. After construction for the vacuum case, i.e. $T = 0$, the corresponding field equation transforms to the following form

$$F(R) R - 2 f(R) + 3 \nabla_\alpha \nabla^\alpha F(R) = 0.\ (6)$$

It can be easily seen that for any constant curvature scalar equation (6) becomes

$$F(R_0) R_0 - 2 f(R_0) = 0,$$

here we have used that $R = R_0 = constant$. In non-vacuum case, the constant curvature scalar condition is described by

$$F(R_0) R_0 - 2 f(R_0) = \kappa T.\ (8)$$

Making use of the generalized Landau-Lifshitz prescription for the Schwarzschild-de Sitter universe, Multamäki et al. [50] calculated energy distribution for some well known $f(R)$ gravity models including constant curvature scalar. Later, Amir and Naheed [51] considered a spatially homogeneous rotating spacetime solution of $f(R)$ gravity to calculate Landau-Lifshitz energy density. Moreover, using some well-known $f(R)$ theory suggestions, Salti et al. [52] also discussed energy-momentum localization problem for Gödel-Type metrics. These studies motivate us to discuss energy-momentum problem for another background in $f(R)$-gravity and extend those works.

The paper is organized as follows. In the second section, we give a brief information about the Landau-Lifshitz distribution in $f(R)$ gravity for the Bianchi-VI type spacetime. Next, in the third section, we calculate energy density considering Landau-Lifshitz distribution for some specific $f(R)$ models. Finally, we devote the last section to discussions.
Localized energy associated with Bianchi-Type VI universe in f(R) theory of gravity

2. Generalized Landau-Lifshitz Prescription in Bianchi-Type VI Spacetime

The generalized Landau-Lifshitz distribution is given by

\[\tau^{\mu\nu} = F(R_0)\tau_{LL}^{\mu\nu} + \frac{1}{6\kappa}[F(R_0)R_0 - f(R_0)]\frac{\partial}{\partial x^\gamma}(g^{\mu\nu}x^\gamma - g^{\nu\gamma}x^\mu), \quad (9) \]

where \(\tau_{LL}^{\mu\nu} \) is the Landau-Lifshitz energy-momentum of general relativity and defined by

\[\tau_{LL}^{\mu\nu} = (-g)(T^{\mu\nu} + t_{LL}^{\mu\nu}) \quad (10) \]

with

\[t_{LL}^{\mu\nu} = \frac{1}{2\kappa} \left[(2\Gamma_{\alpha\beta}^\gamma \Gamma_{\gamma\delta}^\delta - \Gamma_{\alpha\gamma}^\gamma \Gamma_{\beta\gamma}^\delta - \Gamma_{\alpha\gamma}^\delta \Gamma_{\beta\gamma}^\gamma)(g^{\mu\alpha}g^{\nu\beta} - g^{\mu\beta}g^{\alpha\beta}) \right. \]
\[+ g^{\mu\alpha}g^{\nu\gamma}(\Gamma_{\alpha\delta}^\nu \Gamma_{\delta\gamma}^\beta + \Gamma_{\beta\gamma}^\nu \Gamma_{\alpha\delta}^\delta - \Gamma_{\alpha\gamma}^\nu \Gamma_{\beta\delta}^\delta - \Gamma_{\alpha\beta}^\nu \Gamma_{\gamma\delta}^\delta) \]
\[+ g^{\mu\alpha}g^{\nu\beta}(\Gamma_{\alpha\delta}^\nu \Gamma_{\gamma\delta}^\beta + \Gamma_{\beta\gamma}^\nu \Gamma_{\alpha\delta}^\delta - \Gamma_{\alpha\gamma}^\nu \Gamma_{\beta\delta}^\delta - \Gamma_{\alpha\beta}^\nu \Gamma_{\gamma\delta}^\delta) \]
\[+ g^{\mu\beta}g^{\nu\gamma}(\Gamma_{\alpha\gamma}^\mu \Gamma_{\beta\delta}^\nu + \Gamma_{\beta\gamma}^\mu \Gamma_{\alpha\delta}^\nu - \Gamma_{\alpha\gamma}^\mu \Gamma_{\beta\delta}^\delta - \Gamma_{\alpha\beta}^\nu \Gamma_{\gamma\delta}^\nu). \quad (11) \]

Consider 00-component of equation (9) gives energy density associated with the universe and it can be written as given below [50]:

\[\tau^{00} = F(R_0)t_{00}^{00} + \frac{1}{6\kappa}[F(R_0)R_0 - f(R_0)](\frac{\partial}{\partial x^i}g^{00}x^i + 3g^{00}). \quad (12) \]

In the canonical cartesian coordinates, the homogenous Bianchi-Type VI spacetime is defined by the following line-element [53]:

\[ds^2 = dt^2 - dx^2 - e^{2(A-1)x}dy^2 - e^{2(A+1)x}dz^2, \quad (13) \]

where \(A \) is a constant with \(0 \leq A \leq 1 \). The metric tensor \(g_{\mu\nu} \), its form \(g^{\mu\nu} \) and \(\sqrt{-g} \) for the Bianchi-Type VI model can be written, respectively, as:

\[g_{\mu\nu} = (1, -1, -e^{2(A-1)x}, -e^{2(A+1)x}), \quad (14) \]
\[g^{\mu\nu} = (1, -1, -e^{2(1-A)x}, -e^{-2(A+1)x}), \quad (15) \]
\[\sqrt{-g} = e^{2Ax}. \quad (16) \]

Next, the nonvanishing component of Christoffel symbols are calculated as

\[\Gamma^1_{22} = (A - 1)e^{2(A-1)x}, \]
\[\Gamma^1_{33} = - (A + 1)e^{2(A+1)x}, \]
\[\Gamma^2_{12} = \Gamma_2^{21} = (A - 1), \]
\[\Gamma^3_{13} = \Gamma_3^{31} = (A + 1). \quad (17) \]

Using the above results, the surviving components of Ricci tensor become

\[R_{11} = - 2(A^2 + 1), \]
\[R_{22} = 2A(1 - A)e^{2(A-1)x}, \]
\[R_{33} = - 2A(1 + A)e^{2(A+1)x}. \quad (18) \]

Additionally, the constant value of Ricci scalar is

\[R = R_0 = 6A^2 + 2. \quad (19) \]
Localized energy associated with Bianchi-Type VI universe in \(f(R) \) theory of gravity

Making use of above calculations, the non-vanishing components of \(t^\mu_\nu^{LL} \) are found as
\[
\begin{align*}
t^{00}_{LL} &= \frac{1}{\kappa} (1 - 5A^2), \\
t^{11}_{LL} &= \frac{1}{\kappa} (1 - A^2), \\
t^{22}_{LL} &= \frac{1}{\kappa} \left[\frac{(1 + A)^2}{e^{2(A-1)x}} \right], \\
t^{22}_{LL} &= \frac{1}{\kappa} \left[\frac{(A - 1)^2}{e^{2(A+1)x}} \right].
\end{align*}
\] (20)

Also, the non-zero components of \(\tau^\mu_\nu^{LL} \) are calculated as:
\[
\begin{align*}
\tau^{00}_{LL} &= -\frac{8A^2e^{4Ax}}{\kappa}, \\
\tau^{22}_{LL} &= \frac{2}{\kappa} (A + 1)^2 e^{2(A+1)x}, \\
\tau^{33}_{LL} &= \frac{2}{\kappa} (A - 1)^2 e^{2(A-1)x},
\end{align*}
\] (21)

Consequently, in the \(f(R) \)-gravity, one can easily write down the generalized form of Landau-Lifshitz energy distribution as given below
\[
\tau^{00} = -\frac{1}{2\kappa} \left\{ [R_0 F(R_0) - f(R_0)] - 16A^2 e^{4Ax} F(R_0) \right\},
\] (22)
and we also have
\[
\begin{align*}
\tau^{0i} &= \frac{1}{6\kappa} [f(R_0) - R_0 F(R_0)], \quad (i = 1, 2, 3), \\
\tau^{11} &= \frac{2}{3\kappa} [f(R_0) - R_0 F(R_0)], \\
\tau^{22} &= \frac{e^{2(1-A)x}}{3\kappa} \left\{ [2 + (1 - A)x] f(R_0) \\
&\quad + \left[6(A + 1)^2 e^{4Ax} + (Ax - x - 2)R_0 \right] F(R_0) \right\}, \\
\tau^{33} &= \frac{e^{-2(1+A)x}}{3\kappa} \left\{ [2 - (1 + A)x] f(R_0) \\
&\quad + \left[6(A - 1)^2 e^{4Ax} + (Ax + x - 2)R_0 \right] F(R_0) \right\}.
\end{align*}
\] (23)

3. Energy in specific \(f(R) \) Models

There are many suggested models in the \(f(R) \) theory of gravity\[54\]. In this section of the study, we mainly consider five different well-known models to calculate energy momentum distribution associated with Bianchi-Type VI spacetime exactly.

- The first model\[55, 56\] is described in a polynomial form:
\[
f_{1st}(R) = R + \xi R^2,
\] (24)

where \(\xi \) denotes a positive real number.
- The second model\[57\] is given by
Localized energy associated with Bianchi-Type VI universe in $f(R)$ theory of gravity

$$f_{2nd}(R) = R - \frac{\epsilon^4}{R}, \quad (25)$$
where ϵ is a constant parameter. This model is known also as the dark energy model of $f(R)$-gravity.

- The next model58 is defined as
 $$f_{3th}(R) = R - pR^{-1} - qR^2, \quad (26)$$
with p, q are constant.

- Another one is given by the following definition59:
 $$f_{4th}(R) = R - p \ln \left(\frac{|R|}{\sigma} \right) + (-1)^{n-1}qR^n. \quad (27)$$
Here n represents an integer and p, q, σ are constant parameters.

- The final model is known as the chameleon model and it is given by57
 $$f_{5th}(R) = R - (1 - m)\lambda^2 \left(\frac{R}{\lambda^2} \right)^m - 2\Lambda, \quad (28)$$
where Λ denotes the cosmological constant, m shows an integer and λ is a constant parameter.

For suitable choices of above constants, all of the $f(R)$ models mentioned above can define the general relativity exactly. Now, considering the above $f(R)$ gravity models and equation (22), one can obtain the following energy densities:

$$\tau_{00}^{1st} = \frac{1}{\kappa} \left\{ 2(3A^2 + 1)^2 \xi - 8A^2 e^{4Ax} \left[4\xi(3A^2 + 1) + 1 \right] \right\}, \quad (29)$$

$$\tau_{00}^{2nd} = \frac{1}{2\kappa(3A^2 + 1)^2} \left\{ \epsilon^4 + A^2 \left[3\epsilon^4 - 16e^{4Ax}(3A^2 + 1)^2 + 4\epsilon^4 e^{4Ax} \right] \right\}, \quad (30)$$

$$\tau_{00}^{3th} = \frac{1}{2\kappa(3A^2 + 1)^2} \left\{ p(1 + 3A^2 - 4A^2 e^{4Ax}) \right. \r
4. Concluding Remarks

Considering Bianchi-Type VI spacetime representation and some popular models of $f(R)$ gravity with constant Ricci curvature scalar, we have mainly evaluated the Landau-Lifshitz energy distribution. All of the calculations have been performed in cartesian coordinates. We have found that the energy distribution of Bianchi-Type VI model in $f(R)$ gravity as below:

$$\tau^{00} = -\frac{1}{2\kappa} \left\{ [R_0 F(R_0) - f(R_0)] - 16A^2 e^{4Ax} F(R_0) \right\}. \quad (34)$$

Assuming $A_{\text{min}} = 0$, one can see that the energy momentum distributions transform into the following forms:

$$\tau^{00}_{\text{1st}(A=0)} = \frac{2\xi}{\kappa}, \quad (35)$$

$$\tau^{00}_{\text{2nd}(A=0)} = \frac{\epsilon^4}{2\kappa}, \quad (36)$$

$$\tau^{00}_{\text{3rd}(A=0)} = \frac{p - 4q}{2\kappa}, \quad (37)$$

$$\tau^{00}_{\text{4th}(A=0)} = \frac{1}{2\kappa} \left[(-2)^n q(1 - n) - p + p \ln \left(\frac{2}{\sigma} \right) \right], \quad (38)$$

$$\tau^{00}_{\text{5th}(A=0)} = \frac{1}{2\kappa} \left[2\Lambda + 2^m (1 - m)^2 \lambda^2 (1 - m) \right]. \quad (39)$$

It is seen that all energy distributions are constant. Therefore, it can be generalized that

$$\tau^{00}_{\text{All}(A=0)} = \text{constant} \quad (40)$$

On the other hand, in case of $A = A_{\text{max}} = 1$, the energy momentum distributions for all models do not have constant values as expected. Moreover, when we take $f(R) = R_0$ in equation (22) it can be concluded that

$$\tau^{00}_{GR} = -\frac{8}{\kappa} A^2 e^{4Ax}. \quad (41)$$

References

[1] A. Einstein, Preuss. Akad. Wiss. Berlin 47, (1915) 778.
[2] R. C. Tolman Relativity, Thermodynamics and Cosmology, (Oxford University Press, London), (1934) 227.
[3] A. Papapetrou, Proc. R. Ir. Acad. A52 (1948) 11.
[4] L. D. Landau and E. M. Lifshitz, The Classical Theory of Fields, (Addison-Wesley Press, Reading, MA), (1951) 317.
[5] P. G. Bergmann and R. Thompson, Phys. Rev. 89 (1953) 400.
[6] J. N. Goldberg, Phys. Rev. 111 (1958) 315.
[7] S. Weinberg Gravitation and Cosmology: Principles and Applications of General Theory of Relativity, (Wiley, New York), (1972) 165.
[8] H. Abedi and M. Salti, Gen. Rel. Gravit. 47 (2015) 93.
Localized energy associated with Bianchi-Type VI universe in $f(R)$ theory of gravity

[9] C. Møller, Ann. Phys. (N.Y.) 4 (1958) 315.
[10] K.S. Virbhadra, Phys. Rev. D41 (1990) 1086.
[11] K.S. Virbhadra, Phys. Rev. D42 (1990) 1066.
[12] K.S. Virbhadra, Phys. Rev. D42 (1990) 2919.
[13] K.S. Virbhadra, Pramana-J. Phys. 38 (1992) 31.
[14] N. Rosen and K.S. Virbhadra, Gen. Rel. Grav. 25 429 (1993).
[15] K.S. Virbhadra and J.C. Parikh, Phys. Lett. B317 (1993) 312.
[16] J. M. Aguirregabiria, A. Chamorro, and K.S Virbhadra, Gen. Rel. Grav. 28 (1996) 1393.
[17] E.C. Vagenas, Int. J. Mod. Phys. A18 (2003) 5781.
[18] E.C. Vagenas, Mod. Phys. Lett. A19 (2004) 213.
[19] E.C. Vagenas, Int. J. Mod. Phys. D14 (2005) 573.
[20] I. Radinschi, Chin. J. Phys. 42 (2004) 40; Mod. Phys. Lett. A17 (2002) 1159.
[21] I-Ching Yang and I. Radinschi, Chin. J. Phys. 41 (2003) 326.
[22] S.S. Xulu, Mod. Phys. Lett. A15 1511 (2000); Int. J. Mod. Phys. A15 (2000) 4849; Int. J. Theor. Phys. 39 (2000) 1153.
[23] M. Sharif, Int. J. Mod. Phys. A18 (2003) 4361.
[24] M. Salti and I. Acikgoz, Phys. Scr. 87 (2013) 045006.
[25] M. Salti and O. Aydogdu, Found. Phys. Lett. 19 (2006) 269.
[26] O. Aydogdu and M. Salti, Prog. Theor. Phys. 115 (2006) 63.
[27] O. Aydogdu, Fortsch. Phys. 54 (2006) 248; Int. J. Mod. Phys. D15 (2006) 2459.
[28] S. Agyun, M. Agyin and I. Tarhan, Acta Phys. Pol. B37 (2006) 2781.
[29] M. Agyin, I. Yilmaz and S. Agyin, Acta Phys. Pol. B37 (2006) 2795.
[30] A. S. The Mathematical Theory of Relativity, (Cambridge University Press), Cambridge (1923).
[31] H. A. Buchdahl, Mon. Not. Roy. Astr. Soc. 150 (1970) 1.
[32] S.M. Carroll, V. Duvvuri, M. Trodden and M.S. Turner, Phys. Rev. D70 (2004) 043528.
[33] S. Capozziello, Int. J. Mod. Phys. D11 (2002) 483.
[34] S. Nojiri and S. D. Odinstov, Phys. Rev. D68 (2003) 123512.
[35] S. Nojiri and S. D. Odinstov, Phys. Lett. B576 (2003) 5.
[36] G. Allemandi, A. Browiec and M. Francaviglia, Phys. Rev. D70 (2004) 103503.
[37] X. Meng and P. Wang, Class. Quant. Grav. 21 (2004) 951.
[38] T. Multamäki and I. Vilja, Phys. Rev. D74 (2006) 064022.
[39] A. A. Starobinski, JETP Lett. 86 (2007) 157.
[40] L. Hollenstein and F.S.N. Lobo, Phys. Rev. D78 (2008) 124007.
[41] M. Sharif and M. Farasat, Class. Quant. Grav. 26 (2009) 235020.
[42] M. Sharif and M. Farasat, Mod. Phys. Lett. A25 (2010) 1281.
[43] M. Sharif and M. Farasat, Gen. Rel. Grav. 42 (2010) 2643.
[44] M. Jamil, F. M. Mahomed and D. Momeni, Phys. Lett. B702 (2011) 315.
[45] M. Farasat, A. Jhangeer and A. A. Bhatti, Chin. Phys. Lett. 29 (2012) 080402.
[46] M. Askin, H. Abedi and M. Salti, Rom. J. Phys. 60 (2015) 44.
[47] H. Abedi ve M. Salti, Pramana-J. Phys. 84 (2015) 503.
[48] M. Salti, Eur. Phys. J. Plus 129 (2014) 42.
[49] S.M. Carroll, V. Duvvuri, M. Trodden and M.S. Turner, Phys. Rev. D70 (2004) 043528.
[50] T. Multamäki, A. Putaja, E.C. Vagenas and Iiro Vilja, Class. Quant. Grav. 25 (2008) 075017.
[51] M. J. Amir and S. Naheed, Int J Theor Phys 52 (2013) 1688.
[52] M. Salti, M. Korunur, I. Acikgoz, Cent. Eur. J. Phys. 11 (2013) 961.
[53] H. V. Fagundes, Gen. Rel. Grav. 24 (1992) 199.
[54] S. Capozziello, M. De Laurentis, Phys. Rept. 509 (2011) 167.
[55] A. A. Starobinsky, Phys. Lett. B91 (1980) 99.
[56] D.R. Noakes, J. Math. Phys. 24 (1983) 1840.
[57] T. Faulkner, M. Tegmark, E.F. Bunn and Y. Mao, Phys. Rev. D76 (2007) 063505.
[58] S. Nojiri and S.D. Odintsov, Int. J. Geom. Meth. Mod. Phys. 4 (2007) 115.
Localized energy associated with Bianchi-Type VI universe in $f(R)$ theory of gravity

[59] S. Nojiri and S.D. Odintsov, Gen. Rel. Grav. 36 (2004) 1765.