Abstract

We conjecture that the free-fermion part of the eigenspectrum observed recently for the $SU_q(N)$ Perk-Schultz spin chain Hamiltonian in a finite lattice with $q = \exp(i\pi(N-1)/N)$ is a consequence of the existence of a special simple eigenvalue for the transfer matrix of the auxiliary inhomogeneous $SU_q(N-1)$ vertex model which appears in the nested Bethe ansatz approach. We prove that this conjecture is valid for the case of the $SU(3)$ spin chain with periodic boundary condition. In this case we obtain a formula for the components of the eigenvector of the auxiliary inhomogeneous 6-vertex model ($q = \exp(2i\pi/3)$), which permit us to find one by one all components of this eigenvector and consequently to find the eigenvectors of the free-fermion part of the eigenspectrum of the $SU(3)$ spin chain. Similarly as in the known case of the $SU_q(2)$ case at $q = \exp(i2\pi/3)$ our numerical and analytical studies induce some conjectures for special rates of correlation functions.

1. Introduction

It was found very recently that part of the eigenspectrum of some quantum spin models is given by a sum of free-fermion quasienergies [1 2].
particular, the ground state energy of the $SU_q(N)$ invariant Perk-Schultz Hamiltonian

\[H_q = \sum_{j=1}^{L-1} H_{j,j+1} \]

(1)

where

\[H_{i,j} = -\sum_{a=0}^{N-1} \sum_{b=a+1}^{N-1} (E_{i}^{ab} E_{j}^{ba} + E_{i}^{ba} E_{j}^{ab} - qE_{i}^{aa} E_{j}^{bb} - 1/qE_{i}^{bb} E_{j}^{aa}) \]

and E^{ab} are $N \times N$ matrices with elements $(E^{ab})_{cd} = \delta_{c}^{a}\delta_{d}^{b}$, is given by

\[E_0 = 1 + 2(1 - L + n) \cos\left(\frac{\pi}{N}\right) - \frac{\sin\pi(2n+1)/2L}{\sin\pi/2L} \]

(2)

for the special value of the deformation parameter

\[q = \exp\left(\frac{i\pi(N-1)}{N}\right). \]

(3)

The lattice size defining the quantum chain is L and the parameter n in (2) is given by the integer part of L/N.

Moreover an amazingly simple formula was found (conjectured) for the ground state energy of $SU_q(N-1)$ Hamiltonian for the same value of deformation parameter

\[\tilde{E}_0 = -2(L-1) \cos\left(\frac{\pi}{N}\right). \]

(4)

While for the $SU_q(N)$ model many eigenenergies can be described as the sum of free-fermion quasienergies, in the case of the $SU_q(N-1)$ there exists a single energy level in this class, namely the ground state energy given in (4). Actually this state can be considered as a special state of the $SU_q(N)$ model in the sector where only $(N-1)$ classes of particles are present (see conjecture 3 of [2]). We intend to show in this paper that the corresponding wave function possess nice combinatorial properties and its components play a very important role in the nested Bethe ansatz approach being used for the construction of all other free-fermion eigenstates. This comes from the fact that using the nested bethe ansatz (NBA) method for the $SU_q(N)$ invariant Hamiltonian ([3]) we obtain (see, for example, [3]) an
auxiliary transfer matrix of the inhomogeneous $SU_q(N-1)$ invariant vertex model. We conjecture that this matrix has an unique factorizable eigenvalue that reduces some of the NBA equations into a very simple form leading to the free-fermion-like structure. As a result we obtain the free-fermion part of the eigenspectrum of the Hamiltonian (1). All related eigenvectors can be found from the knowledge of this unique eigenvector of the transfer matrix of the inhomogeneous $SU_q(N-1)$ vertex model. In the homogeneous case the transfer matrix commutes with the $SU_q(N-1)$ invariant Hamiltonian and this special eigenvector reduces to the ground state eigenvector with energy (4).

As far as a periodic boundary case is concerned, we have found the free-fermion spectrum only for the $SU(3)$ Perk-Shultz model with $q = \exp(2i\pi/3)$ (we do not consider here the free-fermion point of the $SU(2)$ model, or equivalently the standard XY spin chain). We show below that the free-fermion part of the eigenspectrum of the $SU(3)$ model with periodic boundary condition can be explained by the existence of an unique factorizable eigenvalue for the transfer matrix of the inhomogeneous 6-vertex model with $q = \exp(2i\pi/3)$. We prove the existence of this eigenvalue using different methods described in papers [2],[4]. Comparison of these approaches sheds a new light on recently discovered combinatorial properties of the ground state wave function for the odd length XXZ spin model with ($\Delta = -1/2$) [3],[5],[6] (see also [8] for similar results for the XYZ spin chain).

2. The $SU_q(N)$ invariant model

The Hamiltonian (1) describes the dynamics of a system containing N classes of particles (0,1,..,N-1) with on-site hard-core exclusion. The number of particles of each specie is conserved. Consequently we can separate the Hilbert space into block disjoint sectors labeled by $(n_0, n_1, \ldots, n_{N-1})$, where $n_i = 0, 1, \ldots, L$ is the number of particle of specie i (i=0,1,..,N-1).

The Hamiltonian has a S_N symmetry due to its invariance under the permutation of particles species, that imply that all the energies can be obtained from the sectors $(n_0, n_1, \ldots, n_{N-1})$, where $n_0 \leq n_1 \leq \cdots \leq n_{N-1}$ and $n_0 + n_1 + \cdots + n_{N-1} = L$. Moreover the quantum $SU(N)_q$ symmetry of H implies that all energies in the sector $(n_0', n_1', \ldots, n_{N-1}')$ with $n_0' \leq n_1' \leq \cdots \leq n_{N-1}'$ are degenerated with the energies belonging to the sectors $(n_0, n_1, \ldots, n_{N-1})$ with $n_0 \leq n_1 \leq \cdots \leq n_{N-1}$, if $n_0' \leq n_0$ and $n_0' + n_1' \leq n_0 + n_1$ and so on up to $n_0' + n_1' + \cdots + n_{N-2}' \leq n_0 + n_1 + \cdots + n_{N-2}$.
The nested Bethe ansatz equations (NBAE) for the $SU_q(N)$ Perk-Schultz model ([1]) are given by (see e. g. [9, 10, 11, 3])

$$p_k \prod_{j=1, j \neq i}^{p_k} F(u^{(k)}_i, u^{(k)}_j) = \prod_{j=1}^{p_k-1} f(u^{(k)}_i, u^{(k-1)}_j) \prod_{j=1}^{p_k} f(u^{(k)}_i, u^{(k+1)}_j) \quad (5)$$

where $k = 0, 1, \ldots, N - 2$ and $i = 1, 2, \ldots, p_k$. The integer parameters p_k depend on the particle occupation numbers $\{n_i\}$:

$$p_k = \sum_{i=0}^{k} n_i, \quad k = 0, 1, \ldots, N - 2, \quad p_{-1} = 0, \quad p_{N-1} = L, \quad (6)$$

and the functions $F(x, y)$ and $f(x, y)$ are defined by

$$F(x, y) = \frac{\cos(2y) - \cos(2x - 2\eta)}{\cos(2y) - \cos(2x + 2\eta)}, \quad f(x, y) = \frac{\cos(2y) - \cos(2x - \eta)}{\cos(2y) - \cos(2x + \eta)}. \quad (7)$$

In the NBAE (5) we have variables of different classes. The number of variables $u^{(k)}_i$ of class k is equal to p_k and the variables $u^{(N-1)}_i = 0 (i = 1, \ldots, L)$. The whole system of NBAE consists of subsets of equations labelled by k and containing precisely p_k equations ($k = 0, 1, \ldots, N - 2$).

The eigenenergies of the Hamiltonian (I) in the sector $\{n_0, n_1, \ldots, n_{N-1}\}$ are given by

$$E = -\frac{p}{\sum_{j=1}^{n_p} \left(-q - \frac{1}{q} + \frac{\sin(u_j - \eta/2)}{\sin(u_j + \eta/2)} + \frac{\sin(u_j + \eta/2)}{\sin(u_j - \eta/2)} \right)} \quad (8)$$

where to simplify the notation $p \equiv p_{N-2}$ and $u_j \equiv u^{(N-2)}_j, j = 1, 2, \ldots, p$.

All the solutions of NBAE (5) described in this and our previous paper ([3]) satisfy the additional "free-fermion" conditions (FFC)

$$f^L(u_i, 0) = 1, \quad i = 1, \ldots, p. \quad (9)$$

Consequently from ([3]) and ([1]) the corresponding eigenenergies of the Hamiltonian (I) are given by

$$E = -2 \sum_{j=1}^{p_{N-2}} \left(-\cos \eta + \cos \frac{\pi k_j}{L} \right), \quad 1 \leq k_j \leq L - 1 \quad (10)$$

where $\{k_j\}$ is any set of distinct integers in the range $1 \leq k_j \leq L - 1$.

4
In the derivation of the NBAE \(^5\) it is necessary to find the eigenvalues of an auxiliary matrix that corresponds to the transfer matrix of an inhomogeneous \(SU_q(N-1)\) invariant vertex model on the square lattice of width \(p\) in the horizontal direction. These eigenvalues enter into the NBAE (see equation (51) from \(3\)):

\[
\Lambda_{\text{aux}}^{(N-1)}(u_i) = f^{-L}(u_i, 0) \prod_{j=1,j\neq i}^{p} F(u_i, u_j), \quad i = 1, \ldots, p. \tag{11}
\]

We see that the FFC \(^9\) could be explained if there exists a special eigenvalue for this transfer matrix:

\[
\Lambda_{\text{aux}}^{(N-1)}(u) = F^{-1}(u, u) \prod_{j=1}^{p} F(u, u_j). \tag{12}
\]

This observation can be formulated in the following conjecture.

Conjecture: let \(q = \exp \left(\frac{i\pi}{N} \right) \) and consider the inhomogeneous \(SU_q(N-1)\) invariant vertex model on the square lattice with \(p\) columns, where \(p = (N-1)k + r\), and \(0 \leq r \leq N - 2\). The inhomogeneity of the model in the horizontal direction are fixed by the vertical rapidities \(u_j, j = 1, \ldots, p\). The row-to-row transfer matrix, depending on the spectral parameter \(u\) (horizontal rapidity), has a special factorizable eigenvalue given by formula (12). The corresponding eigenvector belongs to the sector \(S = \{n_0, n_1, \ldots, n_{N-2}\}\) where \(n_i = k, i = 0, \ldots, r - 1\) and \(n_i = k + 1\) for \(i = r, \ldots, N - 2\).

3. The \(SU(3)\) Perk-Schultz model with periodic boundary

The \(SU(3)\) Perk-Schultz model \(^{12}\) is the anisotropic version of the \(SU(3)\) Sutherland model \(^{13}\), with the Hamiltonian, in a periodic L-site chain, given by

\[
H_q = \sum_{j=1}^{L} H_{j,j+1} \quad (H_{L,L+1} \equiv H_{L,1}), \tag{13}
\]

\[
H_{i,j} = -\sum_{a=0}^{1} \sum_{b=a+1}^{2} (E_{i}^{ab} E_{j}^{ba} + E_{i}^{ba} E_{j}^{ab} - qE_{i}^{aa} E_{j}^{bb} - 1/qE_{i}^{bb} E_{j}^{aa}).
\]

\(^1\)All details related to the construction of the transfer matrix can be found in reference \(3\).
In our previous paper (see [1] for details) it was shown for the periodic model that:

The Hamiltonian (13) with \(L \) sites at \(q = \exp(2i\pi/3) \) has eigenvectors (not all of them) with energy and momentum given by

\[
E_I = -\sum_{j \in I} (1 + 2 \cos \frac{2\pi j}{L}),
\]

\[
P_I = 2\pi \sum_{j \in I} j
\]

with \(I \) being a subset of \(\mathcal{I} \) unequal elements of the set \(\{1, 2, \ldots, L\} \). The number \(\mathcal{I} \) has to be odd \(\mathcal{I} = 2k + 1 \) and the sector of appearance of the above levels is \(S_k \equiv (k, k + 1, L - 2k - 1), \quad 0 \leq k \leq (L - 1)/2 \).

The corresponding solutions of the NBAE were described in [2] and we intend now to present a procedure that allow us to calculate the related wave functions. This procedure is based on the coordinate Bethe ansatz method and we follow here reference [14].

Due to the conservation of particles the total numbers of particles \(n_0, n_1 \) and \(n_2 = L - n_0 - n_1 \) on classes 0, 1 and 2 are good quantum numbers, and consequently we can split the associated Hilbert space into block disjoint sectors labeled by the numbers \(n_0 \) and \(n_1 \). We consider the eigenvalue equation

\[
H |n_0, n_1> = E |n_0, n_1>
\]

where

\[
|n_0, n_1> = \sum_{\{Q\}} \sum_{\{x\}} f(x_1, Q_1; \ldots; x_n, Q_n)|x_1, Q_1; \ldots; x_n, Q_n>
\]

and \(n = n_0 + n_1 \). Here \(|x_1, Q_1; \ldots; x_n, Q_n> \) means the configuration where a particle of class \(Q_i \) (\(Q_i = 0, 1 \)) is at position \(x_i \) (\(x_i = 1, \ldots, L \)). The summation \(\{Q\} = \{Q_1, \ldots, Q_n\} \) extends over all \((0,1)\) sequences in which \(n_0 \) terms are 0 and \(n_1 \) terms are 1. The summation \(\{x\} = \{x_1, \ldots, x_n\} \) runs, e

n increasing positive integers with \(1 \leq x_1 < \cdots < x_n \leq L \). Before getting the results for general values of \(n \) let us consider initially the simple cases where we have 1 or 2 particles.
\(n = 1. \) For one particle on the chain (class 0 or 1), as a consequence of the translational invariance of (13) it is simple to verify directly that the eigenfunctions are the momentum-\(k \) eigenfunctions

\[
|1, 0 > = \sum_{x=1}^{L} f(x, 0)|x, 0 > \quad \text{or} \quad |0, 1 > = \sum_{x=1}^{L} f(x, 1)|x, 1 > \quad (18)
\]

with

\[
f(x, 0) = f(x, 1) = e^{ikx}, \quad k = \frac{2\pi l}{L}, \quad l = 0, 1, \ldots, L - 1 \quad (19)
\]

and energy given by

\[
E = e(k) \equiv - e^{ik} - e^{-ik} + q + 1/q. \quad (20)
\]

\(n = 2. \) For two particles of classes \(Q_1 \) and \(Q_2 \) \((Q_1, Q_2 = 0, 1)\) on the lattice, the eigenvalue equation (16) gives us two distinct relations depending on the relative location of the particles. The first relation comes from the amplitudes where a particle of class \(Q_1 \) is at position \(x_1 \) and a particle \(Q_2 \) is at position \(x_2 \), where \(x_2 > x_1 + 1 \). We obtain in this case the relation

\[
Ef(x_1, Q_1; x_2, Q_2) = - f(x_1 - 1, Q_1; x_2, Q_2) - f(x_1, Q_1; x_2 + 1, Q_2)
- f(x_1 + 1, Q_1; x_2, Q_2) - f(x_1, Q_1; x_2 - 1, Q_2)
+ 2 (q + 1/q) f(x_1, Q_1; x_2, Q_2). \quad (21)
\]

This last equation can be solved promptly by the ansatz

\[
f(x_1, Q_1; x_2, Q_2) = e^{ik_1 x_1} e^{ik_2 x_2} \quad (22)
\]

with energy

\[
E = e(k_1) + e(k_2). \quad (23)
\]

Since this relation is symmetric under the interchange of \(k_1 \) and \(k_2 \), we can write a more general solution of (21) as

\[
f(x_1, Q_1; x_2, Q_2) = \sum_{P} A_{P_1 P_2}^{Q_1 Q_2} e^{i(k_{P_1} x_1 + k_{P_2} x_2)}
\]

\[
= A_{12}^{Q_1 Q_2} e^{i(k_1 x_1 + k_2 x_2)} + A_{21}^{Q_1 Q_2} e^{i(k_2 x_1 + k_1 x_2)} \quad (24)
\]
with the same energy as in (23). In the last equation the summation is over
the permutations $P = P_1, P_2$ of (1,2). The second relation comes from the
amplitude where $x_2 = x_1 + 1$ (matching condition). In this case instead of
(21) we have

$$E f(x_1, Q_1; x_1 + 1, Q_2) = -f(x_1 - 1, Q_1; x_1 + 1, Q_2) - f(x_1, Q_1; x_1 + 2, Q_2)$$

$$-f(x_1, Q_2; x_1 + 1, Q_1) + (2q + 1/q)f(x_1, Q_1; x_1 + 1, Q_2) \quad Q_1 < Q_2$$

$$E f(x_1, Q_1; x_1 + 1, Q_2) = -f(x_1 - 1, Q_1; x_1 + 1, Q_2) - f(x_1, Q_1; x_1 + 2, Q_2)$$

$$+(q + 1/q)f(x_1, Q_1; x_1 + 1, Q_2) \quad Q_1 = Q_2$$

(25)

$$E f(x_1, Q_1; x_1 + 1, Q_2) = -f(x_1 - 1, Q_1; x_1 + 1, Q_2) - f(x_1, Q_1; x_1 + 2, Q_2)$$

$$-f(x_1, Q_2; x_1 + 1, Q_1) + (q + 2/q)f(x_1, Q_1; x_1 + 1, Q_2) \quad Q_1 > Q_2.$$

Since the ansatz (24) with (23) is also a solution of (21) with $x_2 = x_1 + 1,$
we obtain from (23)

$$f(x_1, Q_1; x_1, Q_2) + f(x_1 + 1, Q_1; x_1 + 1, Q_2) =$$

$$1/q f(x_1, Q_1; x_1 + 1, Q_2) + f(x_1, Q_2; x_1 + 1, Q_1) \quad Q_1 < Q_2$$

$$f(x_1, Q_1; x_1, Q_2) + f(x_1 + 1, Q_1; x_1 + 1, Q_2) =$$

$$(q + 1/q)f(x_1, Q_1; x_1 + 1, Q_2) \quad Q_1 = Q_2$$

$$f(x_1, Q_1; x_1, Q_2) + f(x_1 + 1, Q_1; x_1 + 1, Q_2) =$$

$q f(x_1, Q_1; x_1 + 1, Q_2) + f(x_1, Q_2; x_1 + 1, Q_1) \quad Q_1 > Q_2.$

(26)

If we now substitute the ansatz (24) into these equations the constants $A^{Q_1, Q_2}_{1,2}$
and $A^{Q_1, Q_2}_{2,1}$, initially arbitrary, should now satisfy

$$\sum_P \{(\sigma_{P_1, P_2} + qe^{ik_{P_2}}) A^{0,1}_{P_1, P_2} - e^{ik_{P_2}} A^{1,0}_{P_1, P_2}\} = 0$$

$$\sum_P \sigma_{P_1, P_2} A^{Q, Q}_{P_1, P_2} = 0 \quad Q = 1, 2$$

(27)

$$\sum_P \{(\sigma_{P_1, P_2} + q^{-1}e^{ik_{P_2}}) A^{1,0}_{P_1, P_2} - e^{ik_{P_2}} A^{0,1}_{P_1, P_2}\} = 0$$

where

$$\sigma_{P_1, P_2} = 1 + e^{ik_{P_1} + ik_{P_2}} - (q + q^{-1}) e^{ik_{P_2}}.$$

(28)
The system (27) consists of 3 equations. The second equation can be easily rewritten as

\[A_{Q_1, Q_2}^{P_1, P_2} = -\frac{\sigma_{P_2, P_1}}{\sigma_{P_1, P_2}} A_{P_2, P_1}^{Q_1, Q_2} \] (29)

and combining the first and the third equations we obtain

\[A_{P_1, P_2}^{0,1} = -\frac{(1 - q e^{ik_2})(1 - q^{-1} e^{ik_1})}{\sigma_{P_1, P_2}} A_{P_2, P_1}^{0,1} \]
\[+ \frac{(e^{ik_1} - e^{ik_2})}{\sigma_{P_1, P_2}} A_{P_2, P_1}^{1,0} \] (30)
\[A_{P_1, P_2}^{1,0} = +\frac{(e^{ik_1} - e^{ik_2})}{\sigma_{P_1, P_2}} A_{P_2, P_1}^{0,1} \]
\[-\frac{(1 - q e^{ik_1})(1 - q^{-1} e^{ik_2})}{\sigma_{P_1, P_2}} A_{P_2, P_1}^{1,0}. \] (31)

The equations (29-31) can be written in a compact form

\[A_{P_1, P_2}^{Q_1, Q_2} = -\sum_{Q_1', Q_2'=0}^{1} S_{Q_1', Q_2'}^{Q_1, Q_2}(k_{P_1}, k_{P_2}) A_{P_2, P_1}^{Q_1', Q_2'} \] (Q_1, Q_2 = 0, 1) (32)

where we have introduced the S-matrix

\[S_{0,0}^{1,0}(k_1, k_2) = S_{1,1}^{1,1}(k_1, k_2) = \frac{\sigma_{2,1}}{\sigma_{1,2}} \]
\[S_{1,0}^{0,1}(k_1, k_2) = \frac{(1 - q e^{ik_2})(1 - q^{-1} e^{ik_1})}{\sigma_{1,2}} \] (33)
\[S_{0,1}^{1,0}(k_1, k_2) = \frac{(1 - q e^{ik_1})(1 - q^{-1} e^{ik_2})}{\sigma_{1,2}} \]
\[S_{0,1}^{0,1}(k_1, k_2) = S_{1,0}^{1,0}(k_1, k_2) = \frac{(e^{ik_2} - e^{ik_1})}{\sigma_{1,2}}. \]

The equations (29-31) or (32) do not fix the "wave numbers" \(k_1, k_2 \). In general, these numbers are fixed due to the cyclic boundary conditions:

\[f(x_1, Q_1; x_2, Q_2) = f(x_2, Q_2; x_1 + L, Q_1) \] (34)

9
which from (24) give us the relations
\[
A^{Q_1,Q_2}_{P_1,P_2} = A^{Q_2,Q_1}_{P_2,P_1} e^{ik_{P_1}L}. \tag{35}
\]
This last equation, when solved by exploiting (32) and (33), gives us the possible values of \(k_1\) and \(k_2\), and from (23) the eigenenergies in the sectors containing 2 particles. Instead of solving these equations for the particular case \(n = 2\) let us now consider the case of general \(n\).

General \(n\). The above calculation can be generalized for arbitrary values of \(n_0\) and \(n_1\) of particles of classes 0 and 1, respectively \((n_0 + n_1 = n)\). The ansatz for the wave function (17) becomes
\[
f(x_1, Q_1; \ldots; x_n, Q_n) = \sum_P A^{Q_1,\ldots,Q_n}_{P_1,\ldots,P_n} e^{i(k_{P_1}x_1 + \ldots + k_{P_n}x_n)} \tag{36}
\]
where the sum extends over all permutations \(P\) of the integers 1, 2, \ldots, \(n\). It is simple to see that the relations coming from the eigenvalue equation (16) for the components \(|x_1, Q_1; \ldots; x_n, Q_n>\) where \(x_{i+1} - x_i > 1\) for \(i = 1, 2, \ldots, n\) are satisfied by the ansatz (36) with energy
\[
E = \sum_{j=1}^n e(k_j). \tag{37}
\]
On the other hand if a pair of particles belonging to classes \(Q_i, Q_{i+1}\) is located at positions \(x_i, x_{i+1}\), where \(x_{i+1} = x_i + 1\), equation (16) with the ansatz (36) and the relation (37) give us the generalization of relation (32), namely
\[
A^{\ldots,Q_i,Q_{i+1},\ldots} = - \sum_{Q'_1,Q'_2=0}^1 S^{Q'_1,Q_i+1}_{Q'_2,Q_1}(k_{P_1}, k_{P_{i+1}}) A^{\ldots,Q_{i+1},Q_1}_{P_{i+1},P_{i+1},\ldots} A^{\ldots,Q_2,Q'_i,\ldots}_{Q_1,Q_{i+1}} = 0, 1 \tag{38}
\]
with \(S\) given by (33). Inserting the ansatz (36) in the boundary condition
\[
f(x_1, Q_1; \ldots; x_n, Q_n) = f(x_2, Q_2; \ldots; x_n, Q_n; x_1 + L, Q_1) \tag{39}
\]
we obtain the additional relation
\[
A^{Q_1,\ldots,Q_n}_{P_1,\ldots,P_n} e^{ik_{P_1}L} A^{Q_2,\ldots,Q_n}_{P_2,\ldots,P_n,P_1} = e^{ik_{P_1}L} A^{Q_1,\ldots,Q_n}_{P_1,\ldots,P_n} A^{Q_2,\ldots,Q_n}_{P_2,\ldots,P_n,P_1} \tag{40}
\]
which together with (38) should give us the eigenenergies.

Successive applications of (38) give us in general distinct relations between the amplitudes. They are consistent because as we will see below
the S matrix (33) coincides with the famous 6-vertex R matrix and satisfies the Yang-Baxter equation. Hence we may use these relations to obtain the eigenenergies of the Hamiltonian (13). Applying the relation (38) n times we obtain from (40) a relation connecting the amplitudes with the same momenta, namely,

$$A_{P_1,\ldots,P_n}^{Q_1,\ldots,Q_n} = e^{ik_{P_1}L} A_{P_2,\ldots,P_n,P_1}^{Q_2,\ldots,Q_n,Q_1} = (-1)^{n-1} e^{ik_{P_1}L} \sum_{Q'_1,\ldots,Q'_n, Q''_1,\ldots,Q''_n} S_{Q'_1,Q''_1}(k_{P_1},k_{P_1}) S_{Q'_2,Q''_2}(k_{P_2},k_{P_1}) \cdots \tag{41}$$

where we have introduced the harmless extra sum

$$1 = \sum_{Q'_1,Q''_1=0}^{1} \delta_{Q'_1,Q''_1} \delta_{Q''_1,Q_1} = \sum_{Q'_1,Q''_1=0}^{1} S_{Q'_1,Q''_1}(k_{P_1},k_{P_1}). \tag{42}$$

In order to fix the values of $\{k_j\}$ we should solve (11), i.e., we should find the eigenvalues $\Lambda(k)$ of the matrix

$$\mathcal{T}(k)_{\{Q\}}^{\{Q'\}} = \sum_{Q''_1,\ldots,Q''_n=0}^{1} \left\{ \prod_{l=1}^{n-1} S_{Q'_l,Q''_l+1}(k_{P_l},k) \right\} S_{Q''_n,Q''_1}(k_{P_n},k) \right\} \tag{43}$$

and the Bethe-ansatz equations which fix the set $\{k_l\}$ will be given from (11) by

$$e^{-ik_{j}L} = (-1)^{n-1} \Lambda(k_j) \quad j = 1, \ldots, n. \tag{44}$$

We identify $\mathcal{T}(k)$ as the transfer matrix of an inhomogeneous 6-vertex model, on a periodic lattice, with Boltzmann weights $S_{Q'_1,Q'_2}(k_{P_1},k)$ ($l = 1, \ldots, n$). Consequently, in order to obtain the eigenenergies of the quantum chain (13) we should diagonalize the above transfer matrix $\mathcal{T}(k)$.

It is convenient to introduce the variables $\{u_j\}$ as in the NBAE of §2:

$$e^{-ik} = \frac{\sin(u - \pi/3)}{\sin(u + \pi/3)}. \tag{45}$$

In terms of these variables the S-matrix (33) have a difference form

$$S_{0,0}^{0,0}(u_1 - u_2) = S_{1,1}^{1,1}(u_1 - u_2) = \frac{\sin(u_1 - u_2 + \pi/3)}{\sin(u_2 - u_1 + \pi/3)},$$

11
\[S_{1,0}^{0,1}(u_1 - u_2) = \frac{\sqrt{3} e^{i(u_1 - u_2)}}{2 \sin(u_2 - u_1 + \pi/3)} \]

\[S_{0,1}^{1,0}(u_1 - u_2) = \frac{\sqrt{3} e^{i(u_2 - u_1)}}{2 \sin(u_2 - u_1 + \pi/3)} \]

\[S_{0,1}^{0,1}(u_1 - u_2) = S_{1,0}^{1,0}(u_1 - u_2) = \frac{\sin(u_2 - u_1)}{\sin(u_2 - u_1 + \pi/3)}. \]

where we should remind that we are considering \(q = \exp(2i\pi/3) \).

Introducing for convenience the new amplitudes

\[A_{Q_1,\ldots,Q_n}^{Q_1,\ldots,Q_n} = \exp(i \sum_{j=1}^{n} \delta_{Q_j,0} u_{F_j}) \tilde{A}_{Q_1,\ldots,Q_n}^{Q_1,\ldots,Q_n} \]

we obtain instead of (38) a similar relation with \(\tilde{A} \) instead of \(A \) and with the \(\tilde{S} \)-matrix of the symmetric 6-vertex model, whose non-zero components are given by

\[\tilde{S}_{0,0}^{0,0}(u) = \tilde{S}_{1,1}^{1,1}(u) = \rho \sin(\pi/3 - u) \]

\[\tilde{S}_{0,1}^{0,1}(u) = \tilde{S}_{1,0}^{1,0}(u) = \rho \sin u \]

\[\tilde{S}_{0,1}^{0,1}(u) = \tilde{S}_{1,0}^{1,0}(u) = \rho \sin \pi/3 \]

where \(\rho = 1/\sin(\pi/3 + u) \).

The matrix (43) is the transfer matrix of an inhomogeneous 6-vertex model on the square lattice of width \(n = n_0 + n_1 \). In the next section we show that for the case where \(n_0 = k \) and \(n_1 = k + 1 \) (sector \((k,k+1) \) of the 6-vertex model on the lattice of width \(2k + 1 \)) this transfer matrix has the special eigenvalue \(\Lambda = 1 \) independently on the values of the parameters \(u \) and \(u_j \) \((j = 1, \ldots, 2n + 1) \). Consequently, since \(n = 2k + 1 \), (44) reduces to

\[e^{-ik_j L} = 1, \quad j = 1, \ldots, n, \]

and the associated energies of the quantum chain (13) are free-fermion-like.

4. The special eigenvalue

Applying the Bethe ansatz method to the auxiliary transfer matrix \(\mathcal{T}(k) = \mathcal{T}(u) \) introduced in (13) one obtain the well known NBAE \(\mathcal{E}_1 \mathcal{E}_0 \), which were
considered in our paper [2]. We have shown there that these NBAE are consistent with the FFC [19] for the sectors \((n_0, n_1, n_2) = (k, k + 1, L - 2k - 1)\). However it is more convenient here to follow an early paper of Baxter [15] who considered the most general integrable inhomogeneous 6-vertex model.

Any eigenvalue \(T(u)\) of the inhomogeneous model with \(\rho = 1\) in (48) satisfy the equation

\[
T(u) Q(u) = \left(\prod_{j=1}^{n} \sin(\pi/3 - u + u_j) \right) Q(u - 2\pi/3)
\]

\[
+ \left(\prod_{j=1}^{n} \sin(u - u_j) \right) Q(u + 2\pi/3)
\]

(50)

where \(Q(u)\) is an auxiliary trigonometric polynomial of degree \(n_0\), namely,

\[
Q(u) = \prod_{j=1}^{n_0} \sin(u - \alpha_j).
\]

(51)

It is clear from (50) that \(T(u)\) is a trigonometric polynomial of degree \(n\) and from [18] the eigenvalues of (43) (where now \(\rho \neq 1\)) are given by

\[
\Lambda(u) = T(u) / \prod_{j=1}^{n} \sin(\pi/3 + u - u_j).
\]

(52)

This last expression implies that we have an eigenvalue \(\Lambda(u) = 1\) if

\[
T(u) = \prod_{j=1}^{n} \sin(\pi/3 + u - u_j).
\]

(53)

The existence of this special eigenvalue was argued by Baxter for the more general case of the 8-vertex model with special values of the crossing parameters [19]. We can prove the existence of this eigenvalue for lattices with odd values of its width \(n\). In this case we can rewrite Baxter’s T-Q equation (50) as

\[
f(u) + f(u + 2\pi/3) + f(u - 2\pi/3) = 0
\]

(54)

where

\[
f(u) \equiv Q(u + 2\pi/3) \prod_{j=1}^{n} \sin(u - u_j).
\]

(55)
It is now clear that $f(u)$ is a trigonometric polynomial of the degree $n + n_0$. Equation (55) coincides with (6) in [4], where $f(u)$ is also a trigonometric polynomial.

In [4] it is shown that for any set of complex numbers $u_j, j = 1, \ldots, 2k+1$, there exists a trigonometric polynomial $Z(u)$ of degree n on the variable u such that

$$f(u) \equiv Z(u) \prod_{j=1}^{2k+1} \sin(u - u_j) \quad (56)$$

satisfies (54). The degree of f is equal to $n + n_0 = 3k + 1$ and the degree of Z is equal to the degree of Q, so that $k = n_0$. We obtain consequently that the construction of paper [4] correspond to $n_0 = k$ and $n = n_0 + n_1 = 2k + 1$, i.e. $n_1 = k + 1$, that complete the proof of existence of the special eigenvalue (53) for odd values of n.

5. The special wave function of the inhomogeneous 6-vertex model at $q^{2i\pi/3}$

We consider several families of transfer matrices (43) corresponding to each distinct permutation $P = \{P_1, \ldots, P_n\}$. It follows from (41) that A_{P_1,\ldots,P_n} are the 2^n components $(Q_1,\ldots,Q_n = 0,1)$ of an eigenvector of the transfer matrix (43). Now we are going to investigate these components for our special eigenvalue $\Lambda = 1$ using the generalization arbitrary number of particles n, i.e.,

$$\sum_{P = \{P_1, P_{i+1}\}} \{ (\sigma_{P_1,P_{i+1}} + q e^{i k P_{i+1}}) A_{\ldots , P_1,P_{i+1},\ldots} - e^{i k P_{i+1}} A_{\ldots , P_1,P_{i+1},\ldots} \} = 0$$

$$\sum_{P = \{P_1, P_{i+1}\}} \sigma_{P_1,P_{i+1}} A_{\ldots , P_1,P_{i+1},\ldots} = 0 \quad Q = 1, 2 \quad (57)$$

$$\sum_{P = \{P_1, P_{i+1}\}} \{ (\sigma_{P_1,P_{i+1}} + q^{-1} e^{i k P_{i+1}}) A_{\ldots , P_1,P_{i+1},\ldots} - e^{i k P_{i+1}} A_{\ldots , P_1,P_{i+1},\ldots} \} = 0$$

where all indices shown by dots are fixed. When we constructed the S-matrix in (33) we expressed A_{Q_1,Q_2} as a linear combination of A_{Q_1,Q_2} and A_{Q_2,Q_1}.

2$Z(u)$ is the partition function of the inhomogeneous 6-vertex model with domain wall boundary conditions and with rapidities $\{u, u_j\}, \quad j = 1, \ldots, 2k+1$.
Now, on the other hand, we intend to express $A_{P_1,P_2}^{Q_1,Q_2}$ as a linear combination of $A_{P_1,P_2}^{Q_2,Q_1}$ and $A_{P_1,P_2}^{Q_1,Q_1}$ ($Q_1 \neq Q_2$). Combining the first and the third equation of the set (27) we obtain

\begin{align*}
A_{P_1,P_2}^{1,0}(e^{ik_{P_2}} - e^{ik_{P_1}}) &= (1 - q e^{ik_{P_1}})(1 - q^{-1} e^{ik_{P_2}})A_{P_1,P_2}^{0,1} \\
&+ \sigma_{P_2,P_1} A_{P_2,P_1}^{1,0} \tag{58}
\end{align*}

Changing the variables as in (45) these equations are replaced by

\begin{align*}
A_{P_1,P_2}^{1,0}(u_{P_2} - u_{P_1}) &= \frac{\sqrt{3}}{2} e^{i(u_{P_2} - u_{P_1})} A_{P_1,P_2}^{0,1} \\
&+ \sin(u_{P_1} - u_{P_2} + \pi/3) A_{P_2,P_1}^{0,1} \tag{59}
\end{align*}

\begin{align*}
A_{P_1,P_2}^{0,1}(u_{P_2} - u_{P_1}) &= \frac{\sqrt{3}}{2} e^{i(u_{P_1} - u_{P_2})} A_{P_1,P_2}^{1,0} \\
&+ \sin(u_{P_1} - u_{P_2} + \pi/3) A_{P_2,P_1}^{1,0}.
\end{align*}

Generalizing these equations for arbitrary n and considering \tilde{A} instead of A (as in (57)) we obtain

\begin{align*}
\tilde{A}_{...,P_{i+1},...}^{1,0,...} \sin(u_{P_{i+1}} - u_{P_i}) &= \frac{\sqrt{3}}{2} \tilde{A}_{...,P_{i+1},...}^{0,1,...} \\
&+ \sin(u_{P_i} - u_{P_{i+1}} + \pi/3) \tilde{A}_{...,P_{i+1},...}^{0,1,...} = 0 \tag{60}
\end{align*}

\begin{align*}
\tilde{A}_{...,P_{i+1},...}^{0,1,...} \sin(u_{P_{i+1}} - u_{P_i}) &= \frac{\sqrt{3}}{2} \tilde{A}_{...,P_{i+1},...}^{1,0,...} \\
&+ \sin(u_{P_i} - u_{P_{i+1}} + \pi/3) \tilde{A}_{...,P_{i+1},...}^{1,0,...} = 0.
\end{align*}

We have also a generalization of the second equation in (27)

\begin{align*}
\sin(u_{P_{i+1}} - u_{P_i} + \pi/3) \tilde{A}_{...,P_{i+1},...}^{0,Q,...} &= \\
- \sin(u_{P_i} - u_{P_{i+1}} + \pi/3) \tilde{A}_{...,P_{i+1},...}^{0,Q,...} (Q = 0, 1). \tag{61}
\end{align*}

Moreover due to FFC (49) equation (10) leads to the cyclic symmetry

$$
A_{P_1,...,P_n}^{Q_1,...,Q_n} = A_{P_2,...,P_n,P_1}^{Q_2,...,Q_n,Q_1} \tag{62}
$$
which is also valid for \tilde{A}.

Let us begin with the simplest nontrivial case $k = 1$, where the sector of appearance of free-fermion levels is $(1, 2, L - 3)$. Equation (17) for the eigenvectors can be written as follows

$$
|n_0, n_1 > = |1, 2 > =
\sum_{\{Q\} \, 1 \leq x_1, x_2, x_3 \leq L} f(x_1, Q_1; x_2, Q_2; x_3, Q_3) |x_1, Q_1; x_2, Q_2; x_3, Q_3 >
$$

(63)

where we sum over the three sequences of $\{Q\}$: $\{0, 1, 1\}$, $\{1, 0, 1\}$ and $\{1, 1, 0\}$ that correspond to the configurations where $n_0 = 1$, $n_1 = 2$ ($n = n_0 + n_1 = 3$).

The amplitudes are given by the ansatz (36)

$$
f(x_1, Q_1; x_2, Q_2; x_3, Q_3) = \sum_{P} A_{P_1, P_2, P_3}^{Q_1, Q_2, Q_3} e^{i(k_{P_1} x_1 + k_{P_2} x_2 + k_{P_3} x_3)}.
$$

(64)

In the above expression there are 3 types of parameters $\{A\}$ which are related among themselves by the cyclic symmetry:

$$
\tilde{A}_{P_1, P_2, P_3}^{0, 1, 1} = \tilde{A}_{P_2, P_3, P_1}^{1, 1, 0} = \tilde{A}_{P_3, P_1, P_2}^{1, 0, 1}.
$$

(65)

Before proceeding let us introduce the simplified notations

$$
s_{P_1, P_2} = \frac{\sin(u_{P_1} - u_{P_2} + \pi/3)}{\sin(\pi/3)},
$$

$$
d_{P_1, P_2} = \frac{\sin(u_{P_1} - u_{P_2})}{\sin(\pi/3)}.
$$

(66)

The relation (61) can be reduced to the equation

$$
s_{P_3, P_2} \tilde{A}_{P_1, P_2, P_3}^{0, 1, 1} = -s_{P_2, P_3} \tilde{A}_{P_1, P_3, P_2}^{0, 1, 1}
$$

(67)

so that due to (63)

$$
\tilde{A}_{P_1, P_2, P_3}^{0, 1, 1} = \pm C\{P_1\} s_{P_2, P_3}
$$

(68)

where the sign depends on the parity of the permutation $P = \{P_1, P_2, P_3\}$ and $C\{i\}, i = 1, 2, 3$ are unknown coefficients.

The relations (60) give us in particular the equation

$$
\tilde{A}_{P_1, P_2, P_3}^{1, 0, 1} d_{P_2, P_3} = \tilde{A}_{P_1, P_2, P_3}^{0, 1, 1} + s_{P_3, P_2} \tilde{A}_{P_1, P_3, P_2}^{0, 1, 1}.
$$

(69)
Using the cyclic symmetry (65) and (68) we obtain
\[C\{P_2\} s_{P_3,P_4} d_{P_2,P_1} = C\{P_1\} s_{P_2,P_3} - C\{P_2\} s_{P_1,P_2} s_{P_3,P_4} \] (70)
that together with the identity
\[s_{P_3,P_4} d_{P_2,P_1} + s_{P_1,P_2} s_{P_3,P_4} = s_{P_2,P_3} \] (71)
give us \(C\{P_2\} = C\{P_2\} = C \), i.e., up to a normalization factor we have
\[\tilde{A}_{P_1,P_2,P_3}^{0,1,1} = \pm s_{P_2,P_3} \] (72)
where the sign depends on the parity of the permutation \(P \).
Consider further the next sector \((2,3,L-5)\), i.e., \(n_0 = 2, n_1 = 3 \) and \(n = n_0 + n_1 = 5 \). In this case we have two sets of \(\{ A \} \), which are related due to the cyclic symmetry, namely,
\[\tilde{A}_{P_1,P_2,P_3}^{0,0,1,1,1} = \tilde{A}_{P_2,P_3,P_4}^{0,1,1,1,0} = \tilde{A}_{P_3,P_4,P_5}^{0,1,1,1,1} \] (73)
Let us begin with the first set. The relation (64) is solved by the ansatz
\[\tilde{A}_{P_1,P_2,P_3}^{0,0,1,1,1} = \pm C\{P_1, P_2\} s_{P_1,P_2} s_{P_3,P_4} s_{P_4,P_5} s_{P_5,P_6} \] (74)
where the sign depends on the parity of the permutation \(P = \{P_1, P_2, P_3, P_4, P_5\} \) and \(C\{i,j\}, i,j = 1, 2, 3, 4, 5 \) are symmetric unknown coefficients \(C\{i,j\} = C\{j,i\} \). The system (64) contains in particular the three following equations:
\[\tilde{A}_{P_1,P_2,P_3}^{0,1,0,1,1} s_{P_3,P_4} d_{P_2,P_1} = \tilde{A}_{P_1,P_2,P_3}^{0,0,1,1,1} s_{P_3,P_4} d_{P_2,P_1} + s_{P_2,P_3} \tilde{A}_{P_1,P_2,P_3}^{0,0,1,1,1} \] (75)
\[\tilde{A}_{P_1,P_2,P_3}^{0,1,0,1,1} s_{P_3,P_4} d_{P_2,P_1} = \tilde{A}_{P_1,P_2,P_3}^{0,0,1,1,1} s_{P_3,P_4} d_{P_2,P_1} + s_{P_2,P_3} \tilde{A}_{P_1,P_2,P_3}^{0,0,1,1,1} \] (75)
\[\tilde{A}_{P_1,P_2,P_3}^{0,1,0,1,1} s_{P_3,P_4} d_{P_2,P_1} = \tilde{A}_{P_1,P_2,P_3}^{0,0,1,1,1} s_{P_3,P_4} d_{P_2,P_1} + s_{P_2,P_3} \tilde{A}_{P_1,P_2,P_3}^{0,0,1,1,1} \] (75)
Excluding from this system \(\tilde{A}_{\cdots}^{0,1,0,1,1} \), using the cyclic symmetry
\[\tilde{A}_{P_1,P_2,P_3}^{1,0,0,1,1} = \tilde{A}_{P_2,P_3,P_4}^{0,0,1,1,1} \] (76)
and limiting ourselves with the unit permutation we get
\[\tilde{A}_{2,3,4,5}^{0,0,1,1,1} d_{2,1} d_{3,2} d_{3,1} = (\tilde{A}_{1,2,3,4,5}^{0,0,1,1,1} + s_{2,3} \tilde{A}_{1,2,3,4,5}^{0,0,1,1,1}) d_{3,1} + (\tilde{A}_{1,2,3,4,5}^{0,0,1,1,1} + s_{1,3} \tilde{A}_{1,2,3,4,5}^{0,0,1,1,1}) d_{3,2} s_{1,2}. \] (76)
Inserting here the ansatz (74) and using the antisymmetry of \(d_{i,j} \) we obtain
\[
C\{1, 2\} s_{1,2} s_{3,4} s_{3,5} (d_{2,3} s_{2,1} - d_{1,3}) + C\{1, 3\} d_{1,3} s_{3,4} s_{2,3} s_{2,4} s_{2,5} + \\
C\{2, 3\} d_{2,3} s_{2,3} (d_{1,2} d_{1,3} s_{4,1} s_{5,1} - s_{1,2} s_{1,3} s_{1,4} s_{1,5}) = 0.
\] (77)

Using the identity
\[
d_{2,3} s_{2,1} - d_{1,3} = -d_{1,2} s_{2,3}
\] (78)
and removing a common multiplier \(s_{2,3} \) from (77) we obtain the more simple equation
\[
-C\{1, 2\} d_{1,2} s_{1,2} s_{3,4} s_{3,5} + C\{1, 3\} d_{1,3} s_{1,3} s_{2,4} s_{2,5} + \\
C\{2, 3\} d_{2,3} (d_{1,2} d_{1,3} s_{4,1} s_{5,1} - s_{1,2} s_{1,3} s_{1,4} s_{1,5}) = 0.
\] (79)

By interchanging indices 1 and 2 we obtain a distinct equation. If we now exclude \(C\{1, 2\} \) from these two equations we get a relation between \(C\{2, 3\} \) and \(C\{1, 3\} \), namely,
\[
C\{2, 3\} d_{2,3} (d_{1,2} d_{1,3} s_{1,2} s_{4,1} s_{5,1} + s_{1,2} s_{1,4} s_{1,5} (s_{2,3} - s_{2,1} s_{1,3})) = \\
C\{1, 3\} d_{1,3} (d_{1,2} d_{2,3} s_{1,2} s_{4,2} s_{5,2} + s_{2,1} s_{2,4} s_{2,5} (s_{1,2} s_{2,3} - s_{1,3})).
\] (80)

This last relation takes a nice form if we use the identities
\[
s_{2,3} - s_{2,1} s_{1,3} = d_{1,2} d_{1,3} \quad s_{1,2} s_{2,3} - s_{1,3} = d_{1,2} d_{2,3}
\] (81)
and remove the common factors \(d_{1,2}, d_{1,3} \) and \(d_{2,3} \), i.e.,
\[
C\{2, 3\} (s_{2,1} s_{4,1} s_{5,1} + s_{1,2} s_{1,4} s_{1,5}) = \\
C\{1, 3\} (s_{1,2} s_{4,2} s_{5,2} + s_{2,1} s_{2,4} s_{2,5}).
\] (82)

Using standard trigonometric identities one can show that the left side combination
\[
s_{2,1} s_{4,1} s_{5,1} + s_{1,2} s_{1,4} s_{1,5} = \frac{2}{3} \{ \cos(u_1 + u_2 - u_4 - u_5) + \\
\cos(u_1 - u_2 + u_4 - u_5) + \cos(u_1 - u_2 - u_4 + u_5) \}
\] (83)
has a \(S_4 \) symmetry, and consequently (82) reduces to
\[
C\{2, 3\} = C\{1, 3\}.
\] (84)
This means that C does not depend on its indices and we have up to a normalization factor

$$A_{P_1,P_2,P_3,P_4,P_5}^{0,0,1,1,1} = \pm s_{P_1} s_{P_2} s_{P_3} s_{P_4} s_{P_5}. \quad (85)$$

The second set of amplitudes can be found from the first relation in (75). For example

$$A_{1,2,3,4,5}^{0,1,0,1,1} = d_{2,3}^{-1} s_{4,5} (s_{1,3} s_{2,3} - s_{2,3} s_{1,5}) \equiv d_{2,3}^{-1} s_{4,5} (s_{1,3} s_{2,4} - s_{1,2} s_{3,4}) + s_{1,2} s_{3,4} (s_{2,3} s_{2,5} - s_{3,5}) \quad (86)$$
and using the identities

$$s_{1,3} s_{2,4} - s_{1,2} s_{3,4} = d_{2,3} s_{4,1} \quad s_{2,3} s_{2,5} - s_{3,5} = d_{2,3} s_{5,2} \quad (87)$$

we obtain

$$A_{1,2,3,4,5}^{0,1,0,1,1} = s_{4,5} (s_{2,3} s_{2,5} s_{4,1} + s_{1,2} s_{3,4} s_{5,2}), \quad (88)$$
or equivalently by using some additional identities we get

$$A_{1,2,3,4,5}^{0,1,0,1,1} = s_{4,5} (s_{2,3} s_{2,4} s_{5,1} + s_{1,2} s_{3,5} s_{4,2}). \quad (89)$$

In a similar way we can derive the general answer

$$A_{P_1,P_2,P_3,P_4,P_5}^{0,1,0,1,1}/s_{P_4,P_5} = s_{P_2} s_{P_3} s_{P_4} s_{P_5} + s_{P_1} s_{P_2} s_{P_3} s_{P_4} s_{P_5}, \quad (90)$$

Equations (72) and (85) induce us to conjecture that for an arbitrary n the amplitudes \{A\} of the special wave function of the inhomogeneous 6-vertex model are given by the ansatz

$$A_{P_1,...,P_{k+1},P_{2k+1}}^{0,...,0,1,...,1} = \prod_{1 \leq i < j \leq k} s_{P_i,P_j} \prod_{k+1 \leq i < j \leq 2k+1} s_{P_i,P_j} \quad (91)$$

where k and $k+1$ are the numbers of particles of species 0 and 1, respectively. We checked this formula for $n = 7$ analytically and for $n = 9$ using a brute-force diagonalization. It is a challenge to prove the validity of this formula for an arbitrary odd number n. The remaining amplitudes can be found by using this ansatz and successive application of the "recursion" relation (60). This completes our discussion of the $SU(2)$ periodic case.
6. Summary and Conclusions

In previous papers [1, 2] it was shown the existence of free-fermion-like energies for the anisotropic $SU(N)$ Perk-Schultz model with anisotropy parameter $q = \exp i\pi(N - 1)/N$. These solutions were found for general values of N in the case of free boundary condition, where the model is $SU_q(N)$ invariant and for the $SU(3)$ case in the periodic case.

In §2 of this paper we show that the above observations, for the case of free boundaries, could be explained by a conjecture stating the existence of a special factorizable eigenvalue of the auxiliary inhomogeneous transfer matrix of a $SU_q(N - 1)$ vertex model with the same value of the anisotropy. Although we believe that a general derivation of such factorizable eigenvalue would be possible we restricted our analytical work in the simplest case of the periodic $SU(3)$ Perk-Schultz model at $q = \exp i\frac{2\pi}{3}$. In this case the associated transfer matrix is that of the inhomogeneous 6-vertex model and the existence of the factorizable eigenvalue, as shown in §4, follows from the T-Q Baxter equation (50).

In §3 we review the coordinate Bethe ansatz and show how to relate the wave function components of the eigenvectors of the $SU(3)$ quantum chain with periodic boundaries in terms of the components of the eigenvectors of the inhomogeneous 6-vertex model. In particular all the free-fermion-like energies are related to a single factorizable eigenvalue of the inhomogeneous 6-vertex model.

In §5 exploring the existence of the free-fermion-like solutions of the $SU(3)$ chain at $q = \exp i\frac{2\pi}{3}$ we show how to produce the recurrence relations that allows the computation of the wave vector amplitudes related to the special factorizable eigenvector of the 6-vertex model. These relations, although not simple, give us a systematic way to derive all the eigenfunctions of the free-fermion part of the eigenspectrum of the periodic $SU(3)$ Perk-Schultz model at $q = \exp i\frac{2\pi}{3}$.

As an application let us consider the free-fermion branch of this last model in the sector $S_k = (k, k + 1, L - 2k - 1)$. From (14) the corresponding eigenenergies are given by

$$E_I = -\sum_{j \in I}(1 + 2\cos(2\pi j/L)),$$

where I is any subset of $(1, 2, \ldots, L)$ with $n = 2k + 1$ distinct elements. Enumerating these elements by the index $\alpha = 1, 2, \ldots, n$, the wave function
is given by

\[f(x_1, Q_1; \ldots x_n, Q_n) = \sum_P A_{P_1, \ldots P_n}^{Q_1, \ldots Q_n} e^{i(k_{P_1}x_1 + \ldots + k_{P_n}x_n)}, \]

where \(k_{\alpha} = 2\pi j_{\alpha}/L, \quad \alpha = (1, 2, \ldots, n) \) are the momenta of the elementary free-fermion excitations.

Let us limit ourselves to the subsets \(I \) with elements \(j_{\alpha} \), satisfying the constraint \(j < m \) or \(L - m < j \), where \(m \) is a positive integer. Due to conjecture 2 of [2] the lowest eigenenergy in the sector \(S_k = (k, k+1, L - 2k - 1) \) belongs to this part of spectrum if we choose \(m > k \).

Now we fix \(k \) and \(m \) with \(m > k \) and consider the bulk limit \(L \to \infty \). Due to above mentioned constrains for the values of \(k \) we have two possibilities: \(k_{\alpha} \to 0 \) or \(k_{\alpha} \to 2\pi \). Consequently from (46) all the parameters \(u_{\alpha} \) that fix the auxiliary 6-vertex model become equal to \(\pi/2 \) and we obtain the homogeneous model with the special eigenvector \(A_{Q_1, \ldots Q_n} \) which (up to a sign factor) does not depend on the particular permutation \(P \)!

The wave function can then be written as

\[f(y_1, Q_1; \ldots y_n, Q_n) = A_{Q_1, \ldots Q_n} \sum_P (-1)^P e^{2\pi i(j_{P_1}y_1 + \ldots + j_{P_n}y_n)}, \quad (92) \]

where we introduced the new coordinates \(y_i = x_i/L \) \((i = 1, \ldots, n)\). In particular this result shows that in the sectors \((k, k+1, \infty)\) there exist a lot of eigenstates (including the one with lowest eigenenergy in the sector) whose wave functions components are given by the product of Slater determinants and the components of the ground state wave function of the XXZ model with \(2k + 1 \) sites. Let us consider for example the sector \(S_2 = (2, 3, L - 5) \). In order to obtain the lowest eigenenergy in this sector we chose \(I = 1; 2; 3; \ldots 5 \). The Slater determinant in (92) reduces to the Vandermonde determinant and we obtain (up to a normalization)

\[f(y_1, Q_1; \ldots y_5, Q_5) = \prod_{1 \leq j < k \leq 5} \sin \pi(y_j - y_k) A_{Q_1, \ldots Q_5}, \quad (93) \]

where we have

\[
\begin{align*}
A_{00111} &= A_{01110} = A_{11100} = A_{11001} = A_{10011} = 1 \\
A_{01011} &= A_{10110} = A_{01101} = A_{11010} = A_{10101} = 2.
\end{align*}
\]

From these components we see, for example, that the probability to find 0-particles, separated by 1-particles is equal to \(2 \times 2/(1 \times 1 + 2 \times 2) = 4/5 \).
Moreover, it is important mention that when the inhomogeneity of the auxiliary 6-vertex model disappears, and the wave function that corresponds to the special factorizable eigenvalue is the same as that of the ground state of the XXZ spin chain with $\Delta = -1/2$, which possess for $L = 2n + 1$ quite interesting combinatorial properties.

Due to the conjecture announced at the end of section 2, we have a generalization of this special wave function to the $SU(N - 1)$ - invariant case ($q = e^{i(N-1)\pi/N}$). So we suspect that the ground state function of the $SU(N - 1)$ - invariant spin chain can also exhibit interesting combinatorial properties for the special value $q = e^{i(N-1)\pi/N}$. Indeed, using a bruteforce diagonalization of these quantum invariant chains we have found that the ratio defined by

$$R_L = \frac{(\sum_i v_i)^2}{\sum_i v_i^2}$$

(94)

where $\{v_i\}$ are the wave function components of the ground state, has a simple form depending on the boundary condition and on the parity of the lattice size. For the L-sites XXZ spin chain at $\Delta = -1/2$ we have $R_L = \sqrt{3}$, where $\alpha = L - 1$ or $\alpha = L$ depending if the length L of the chain is odd or even, respectively. In the case where L is odd the chain has the boundary condition periodic or $SU_q(2)$ invariant, and for even values of L the chain has boundary condition of twisted type or a $SU_q(2)$ invariant one. We can present these results in a compact form:

$$R_{L+2}/R_L = 3, \quad R_1 = 1, \quad R_2 = 3.$$

(95)

The numerical results coming from bruteforce numerical diagonalizations of chains with $SU_q(N)$ symmetry (free boundary condition) followed by a fitting with special irrational numbers give us the values of R_L for the next cases:

• $SU_q(3)$ with $q = -e^{i\pi/4}$, $2 \leq L \leq 9$

$$R_{L+3}/R_L = (1 + \sqrt{2})^3$$

$$R_1 = 1 \quad R_2 = 1 + \sqrt{2} \quad R_3 = (1 + \sqrt{2})^3.$$

(96)
• $SU_q(4)$ with $q = -e^{i\pi/5}$ \hspace{1cm} 2 \leq L \leq 8
\begin{equation}
R_{L+4}/R_L = (5 + 2\sqrt{5})^2
R_1 = 1 \hspace{0.5cm} R_2 = \sqrt{5} \hspace{0.5cm} R_3 = 5 + 2\sqrt{5} \hspace{0.5cm} R_4 = (5 + 2\sqrt{5})^2.
\end{equation}

• $SU_q(5)$ and $q = -e^{i\pi/6}$ \hspace{1cm} 2 \leq L \leq 7
\begin{equation}
R_{L+5}/R_L = (2 + \sqrt{3})^5
R_1 = 1 \hspace{0.5cm} R_2 = (2 + \sqrt{3})/\sqrt{3} \hspace{0.5cm} R_3 = (2 + \sqrt{3})^2/\sqrt{3} \hspace{0.5cm} R_4 = (2 + \sqrt{3})^3 \hspace{0.5cm} R_5 = (2 + \sqrt{3})^5.
\end{equation}

The numbers R_L, $L < N$ which are necessary for the use of the recursion relations can be found from the corresponding wave function. Using an approach, described in Appendix B of paper [2] one can show that for $L < N$:
\begin{equation}
R_L = \left(\frac{1 + x}{1 - x}\right)^{L-1} \prod_{k=2}^{L} \frac{1 - x^k}{1 + x^k} \hspace{0.5cm} x = -q = e^{i\pi/N}.
\end{equation}

For the cases where $L \geq N$ although we cannot prove, our numerical results indicate the nice recursion relation
\begin{equation}
R_{L+N-1} = R_{N-1} R_L.
\end{equation}

Acknowledgments
This work was supported in part by the brazilian agencies FAPESP and CNPQ (Brazil), by the Grant # 01–01–00201 (Russia) and INTAS 00-00561.

References
[1] F. C. Alcaraz and Yu. G. Stroganov The finite size $SU(3)$ Perk-Schultz model with deformation parameter $q = \exp\left(\frac{2\pi}{3}\right)$, J. Phys. A 34 (2002) 3805–3819, arXiv:cond-mat/0201354
[2] F. C. Alcaraz and Yu. G. Stroganov Free-Fermion Branches in some Quantum Spin Models, J. Phys. A 35 (2002) 6767-6787, arXiv:cond-mat/0205567
[3] H. J. de Vega, A. González-Ruiz, *Exact solution of the SU_q(n) invariant quantum spin*, Nucl. Phys. B 417 (1994) 553-578

[4] Yu. G. Stroganov *A new way to deal with Izergin-Korepin determinant at root of unity*, arXiv:math-ph/0204042

[5] F. C. Alcaraz, M. N. Barber and M. T. Batchelor, *Conformal invariance, the XXZ chain and the operator content of two-dimensional critical systems*, Ann. Phys. (N. Y.) 182 (1988) 280-343

F. C. Alcaraz, M. N. Barber and M. T. Batchelor, R. J. Baxter and G. R. W. Quispel, *Surface exponents of the quantum XXZ, Ashkin-Teller and Potts models*, J. Phys. A 20 (1987) 6397-6409

[6] V. Fridkin, Yu.G. Stroganov and D. Zagier, *Ground state of the quantum symmetric XXZ spin chain with anisotropy parameter ∆ = 1/2*, J. Phys. A: 33 (2000) L121-L125

V. Fridkin, Yu.G. Stroganov and D. Zagier, *Finite size XXZ spin chain with anisotropy parameter ∆ = 1/2*, J. Stat. Phys. 102 (2001) 781-794, arXiv:nlin.SI/0010021

Yu.G. Stroganov, *The importance of being odd*, J. Phys. A 34 (2001) L179-L185, arXiv:cond-mat/0012035

[7] A.V. Razumov and Yu.G. Stroganov, *Spin chain and combinatorics*, J. Phys. A 34 (2001) 3185-3190, arXiv:cond-mat/0012141

M.T. Batchelor, J. de Gier and B. Nienhuis, *The quantum symmetric XXZ spin chain at ∆ = −1/2, alternating sign matrices and plain partitions*, J. Phys. A 34 (2001) L265-L270, arXiv:cond-mat/0101383

A.V. Razumov and Yu.G. Stroganov, *Spin chain and combinatorics, twisted boundary condition*, J. Phys. A 34 (2001) 5335-5340, arXiv:cond-mat/0102247

A.V. Razumov and Yu.G. Stroganov, *Combinatorial nature of ground state vector of O(1) loop model*, arXiv:math-co/0104216

P.A. Pearce, V. Rittenberg and J. de Gier, *Critical Q = 1 Potts model and Temperly-Lieb stochastic processes*, arXiv:cond-mat/0108051

A.V. Razumov and Yu.G. Stroganov, *O(1) loop model with different boundary conditions and symmetry classes of alternating-sign matrices*, arXiv:cond-mat/0108103
J. de Gier, M.T. Batchelor, B. Nienhuis and S. Mitra, *The XXZ spin chain at $\Delta = -1/2$: Bethe roots, symmetric functions and determinants*, arXiv:math-ph/0110011

Yu.G. Stroganov, *XXZ spin chain with the asymmetry parameter $\Delta = -1/2$: evaluation of the simplest correlators*, Teor. Math. Phys 129 (2001) 1596-1608

N. Kitanine, J.M. Maillet, N.A. Slavnov and V. Terras, *Emptiness formation probability of the XXZ spin 1/2 Heisenberg chain at Delta = 1/2*, J. Phys. A 35 (2002) L385-L391, arXiv:hep-th/0201134

M.T. Batchelor, J. de Gier and B. Nienhuis, *The rotor model and combinatorics*, Int. J. Mod. Phys. B 16 (2002) 1883-1890, arXiv:math-ph/0204002

J. de Gier, B. Nienhuis, P.A. Pearce and V. Rittenberg, *A new universality class for dynamic processes*, arXiv:cond-mat/0205467

[8] Yu.G. Stroganov, *The 8-vertex model with a special value of the crossing parameter and the related XYZ spin chain*, NATO Advanced Research Workshop ‘Dynamical Symmetries in Integrable Two-dimensional QFT and Lattice Models’, 25-30 September 2000, Kyiv, Ukrain

[9] N. Y. Reshetikhin and P. B. Wiegmann, *Towards the classification of completely integrable quantum-field theories (the Bethe-ansatz associated with Dynkin diagrams and their automorphisms)*, Phys. Lett. B 189 (1987) 125-131

[10] H. J. de Vega, *Yang-Baxter algebras, integrable theories and quantum groups*, Int.J. Mod. Phys. A 4 (1989) 2371-2463

[11] L. Mezincescu, R. I. Nepomechie, P. K. Towsend and A. M. Tsvelick, *Low temperature of A2(2) and SU(3)-invariant integrable spin chains*, Nucl. Phys. B 406 (1993) 681-707

[12] J. H. H. Perk and C. L. Schultz, *New families of commuting transfer-matrices in Q-state vertex models* Phys. Lett . A 84 (1981) 407-410

C. L. Schultz, *Eigenvectors of the multi-component generalization of the 6-vertex model*, Physica A 122 (1983) 71-88
[13] B. Sutherland, *A general model for multicomponent quantum systems*, Phys. Rev. B 12 (1975) 3795-3805

[14] F.C. Alcaraz, R.Z. Bariev, *Exact solution of asymmetric diffusion with second-class particles of arbitrary size*, Braz. J. Phys. 30 (2000) 13-26

[15] R. J. Baxter, Stud. Appl. Math. L (1971) 51-69

[16] R. J. Baxter, Adv. Stud. Pure. Math. 19 (1989) 95