The Noether–Lefschetz theorem

Lena Ji

Princeton University/University of Michigan

Stanford AG Seminar
June 11, 2021
Outline

1. Introduction
2. Quartic surfaces in \mathbb{P}^3
3. Proof
The Noether–Lefschetz theorem

Theorem (Noether–Lefschetz Theorem)

For a very general surface $S_d \subset \mathbb{P}_C^3$ of degree $d \geq 4$, the restriction map $\text{Pic}(\mathbb{P}_C^3) \to \text{Pic}(S_d)$ is an isomorphism.
M. Noether (1882): The only curves on a “general” surface $F_\mu \subset \mathbb{P}^3_C$ of degree $\mu \geq 4$ are complete intersections of F_μ with another surface
M. Noether (1882): The only curves on a “general” surface $F_\mu \subset \mathbb{P}^3_C$ of degree $\mu \geq 4$ are complete intersections of F_μ with another surface.
The Noether–Lefschetz theorem

Theorem (Noether–Lefschetz Theorem)

For a very general surface \(S_d \subset \mathbb{P}^3_\mathbb{C} \) of degree \(d \geq 4 \), the restriction map \(\text{Pic}(\mathbb{P}^3_\mathbb{C}) \to \text{Pic}(S_d) \) is an isomorphism.

Very general means away from a countable union

- 1882: stated by M. Noether
- 1920s: proved by Lefschetz using topological methods for complex surfaces

Generalizations?

- Replace \(\mathbb{P}^3_\mathbb{C} \) by \(X \)
- Replace \(\mathbb{C} \) by \(k \)

S. Lefschetz. On certain numerical invariants of algebraic varieties with application to abelian varieties (1921), p. 359.
The Noether–Lefschetz theorem

$X \subset \mathbb{P}^N_k$ smooth subvariety, $H \subset \mathbb{P}^N_k$ very general hypersurface

$$\text{Pic}(X) \longrightarrow \text{Pic}(X \cap H)$$

- X smooth 3-fold + char $k = 0$:
 Moishezon 1960s, Carlson–Green–Griffiths–Harris 1983 (Hodge theory), Griffiths–Harris 1985 (degeneration + monodromy), Joshi 1995...

- $X \subset \mathbb{P}^N_k$ complete intersection + char $k \geq 0$:
 Deligne 1960s (l-adic cohomology)
The Noether–Lefschetz theorem

\(X \subset \mathbb{P}^N_k \) normal subvariety, \(H \subset \mathbb{P}^N_k \) very general hypersurface

\[\text{Cl}(X) \longrightarrow \text{Cl}(X \cap H) \]

- \(X \) smooth 3-fold + char \(k = 0 \):
 Moishezon 1960s, Carlson–Green–Griffiths–Harris 1983 (Hodge theory),
 Griffiths–Harris 1985 (degeneration + monodromy), Joshi 1995...

- \(X \subset \mathbb{P}^N_k \) complete intersection + char \(k \geq 0 \):
 Deligne 1960s (\(l \)-adic cohomology)

- \(X \) normal 3-fold + char \(k = 0 \): \(\text{Cl}(X) \rightarrow \text{Cl}(X \cap H) \)
 Ravindra–Srinivas 2008 (formal completion)

- Today: \(X \) normal 3-fold + char \(k = p \geq 0 \)
Theorem

Let \(X \subset \mathbb{P}^N_k \) be a normal 3-fold and \(H \subset \mathbb{P}^N_k \) a very general hypersurface of degree 4 or \(\geq 6 \). Then \(\text{Cl}(X) \to \text{Cl}(X \cap H) \) is an isomorphism up to torsion.

- No cohomology, Hodge theory, or monodromy
- Works for algebraically closed \(k \) of infinite transcendence degree and in any characteristic
 - e.g. \(\mathbb{C}, \mathbb{Q}(t_1, t_2, t_3, \ldots), \mathbb{F}_p(t_1, t_2, t_3, \ldots) \)
Quartic surfaces in \mathbb{P}^3

Set-up

- $C \subset \mathbb{P}^3_K$ degree 4 elliptic curve of rank ≥ 18
- $q_1, q_2, p_1, \ldots, p_{15} \in C(K)$ independent in $\text{Pic}(C)/\langle H \rangle$ where $H = \mathcal{O}_{\mathbb{P}^3}(1)|_C$

- $\exists!$ quadric $Q_j = (f_j = 0)$ such that
 $$\text{Im}(\text{Pic}(Q_j) \to \text{Pic}(C)) = \langle 2q_j, H - 2q_j \rangle$$

- $\exists!$ p_{16} such that
 $$p_1 + \cdots + p_{15} + p_{16} = C \cap T$$
 where $T = (g = 0) \subset \mathbb{P}^3$ is a quartic surface

Claim

$$\rho(f_1f_2 + \lambda g = 0) = 1$$ for any $\lambda \notin \overline{K}$
Claim: \(\rho(T_\lambda := (f_1 f_2 + \lambda g = 0)) = 1 \) for any \(\lambda \notin \overline{K} \)

\(Q_j = (f_j = 0) \) degree 2, \(T = (g = 0) \) degree 4

Proof of claim:
- \(\tilde{X} \to \mathbb{P}^1 \) pencil spanned by \(Q_1 + Q_2 \) and \(T \)
- \(D_\lambda \) curve on \(T_\lambda \)
- Can find \(\Gamma \to \mathbb{P}^1 \) and divisor \(\mathcal{D} \) on \(\tilde{X} \times \mathbb{P}^1 \Gamma \) that restricts to \(D_\lambda \)
- \(\text{Pic}(Q_1) \times_{\text{Pic}(C)} \text{Pic}(Q_2) \cong \mathbb{Z} \), so want to restrict \(\mathcal{D} \) to \(Q_1 + Q_2 \)
- But \(\mathcal{D} \) need not be \(\mathbb{Q} \)-Cartier along \(C = Q_1 \cap Q_2 \)
- \((\mathcal{D}|_{Q_1})|_C - (\mathcal{D}|_{Q_2})|_C \) is supported over \(\{p_1, \ldots, p_{16}\} = C \cap T \)

\[
(\mathcal{D}|_{Q_1})|_C - (\mathcal{D}|_{Q_2})|_C = a_1 p_1 + \cdots + a_{16} p_{16} \in \langle H, 2q_1, 2q_2 \rangle
\]

- \(q_1, q_2, p_1, \ldots, p_{15} \in C(K) \) were chosen independent in \(\text{Pic}(C)/\langle H \rangle \)
- \(a_i \)'s are all the same \(a \)
Claim: \(\rho(T_\lambda := (f_1 f_2 + \lambda g = 0)) = 1 \) for any \(\lambda \notin \overline{K} \)

Proof of claim (continued):

1. \((D|_{Q_1})|_C - (D|_{Q_2})|_C = a(p_1 + \cdots + p_{16})\)
2. Local class group over \(p_i \) is \(\mathbb{Z} = \langle Q_{1p_i} \rangle = \langle -Q_{2p_i} \rangle \)
3. \(D - aQ_1 \) is \(\mathbb{Q} \)-Cartier along \(C \)
4. \(\text{Pic}(Q_1) \times \text{Pic}(C) \text{Pic}(Q_2) \cong \mathbb{Z} \) is generated by restriction of \(\mathcal{O}_{\mathbb{P}^3}(1) \)
5. \((D - aQ_1)|_{Q_1+Q_2} \) comes from a divisor \(D \) on \(\mathbb{P}^3 \)
6. \(D|_{T_\lambda} \sim D_\lambda \)
Set-up

For simplicity: Assume X smooth 3-fold

Set-up

L very ample line bundle such that for a general net in $|L|$

\[X \longrightarrow \mathbb{P}^2 \]

- all but finitely many fibers are irreducible curves, and
- generic fiber C_η has genus $> \dim \text{Alb}(X)$.

Side lemma: If \mathcal{M} is very ample, then $L = \mathcal{M}^{\geq 2}$ has these properties

Want to show

\[\text{Pic}(X) \xrightarrow{\cong} \text{Pic}(T) \text{ (up to torsion)} \text{ for very general divisor } T \]

Recover statement for $\text{Pic}(X) \to \text{Pic}(X \cap H)$ by embedding X
Outline of proof

5 main steps

Want to show

\[\text{Pic}(X) \xrightarrow{\sim} \text{Pic}(T) \text{ up to torsion} \]

Injectivity: Fiber \(X \) by curves to study \(\text{Pic}(X) \)

1. \(\text{Pic}(X) \rightarrow \text{Jac}(\text{generic fiber}) \)
2. \(\text{Jac}(\text{generic fiber}) \rightarrow \text{Jac}(\text{very general fiber}) \)

Surjectivity: Degeneration argument

3. Surjectivity mod torsion for \(X \) to reducible member \(S_0 + S_1 \in |L^2| \)
4. Specialize from very general \(T \in |L^2| \) to \(S_0 + S_1 \)
5. Go back from \(S_0 + S_1 \) to \(T \)

(\(+\epsilon \)) Degeneration argument for odd degrees
Step 1: \(\text{Pic}(X) \hookrightarrow \text{Jac}(C_\eta)(K) \)

- \(X \) smooth 3-fold, \(\phi: X \rightarrow \mathbb{P}^2 \) general net

\[
\begin{array}{c}
X' \xrightarrow{\text{bir}} X \\
\phi' \downarrow \downarrow \\
\phi' & \phi \\
\downarrow & \downarrow \\
\mathbb{P}^2 & \mathbb{P}^2
\end{array}
\]

- \(C_\eta \) = generic fiber of \(\phi' \) is a curve over \(K = k(\mathbb{P}^2) \)

Fix a base point of the net, \(E \subset X' \) corresponding exceptional divisor. Define

\[
\begin{array}{c}
\text{Pic}(X') \xrightarrow{\text{Pic}(X)} \text{Jac}(C_\eta)(K) \\
D' \xrightarrow{} (D' - \deg(D'|_{C_\eta})E)|_{C_\eta}
\end{array}
\]

- Restriction to \(\text{Pic}(X) \subset \text{Pic}(X') \) is injective
- Can show using assumptions on \(|\mathcal{L}|\)
Step 2: $\text{Jac}(C_\eta)(K) \hookrightarrow \text{Jac}(C_s)(k)$ for very general $s \in \mathbb{P}^2$

- $\text{Jac}(C_\eta)$ is an abelian variety over $K = k(\mathbb{P}^2)$
- Spreads out to family of abelian varieties $\mathcal{J} \to U \subset \mathbb{P}^2$ (relative Jacobian)

Fact: $\mathcal{J} \xrightarrow{\text{isogeny}} (\text{constant family } A \times U) \times (Q \text{ with no constant subfamilies})$
- $A \times U \to U$ has only constant sections (no nontrivial map $\mathbb{P}^2 \to A$)
- $Q \to U$ has only countably many sections (Lang–Néron theorem)
- Specialization of sections for $Q \to U$ to very general fiber is injective

Steps 1+2 \implies injectivity
If C_s is very general, then $\text{Pic}(X) \hookrightarrow \text{Pic}(Y)$ for $Y \supset C_s$
Constant part of $\mathcal{J} \to U$

- $L \subset \mathbb{P}^2$ line corresponds to $S \in |\mathcal{L}|$

Turns out that $A = \text{Pic}^0(X)$

- $\text{Pic}^0(X) \subset \text{Pic}(X)$ subgroup of algebraically trivial divisors
- $\text{Pic}(X)/\text{Pic}^0(X)$ is a finitely-generated group

By Chow's theory of the K/k-trace (whose definition is recalled below), one knows that (A, t_A) is a $k(u)/k$-trace of $\mathcal{J} = J$ ([2], Ch. 8, Th. 12). Consequently, to prove the theorem of the base, it will suffice to prove the following result.

Theorem 1. Let K be a finitely generated regular extension of a field k. Let A be an abelian variety defined over K, and let (B, τ) be its K/k-trace. Then $A_K/\tau B_K$ is of finite type.

S. Lang and A. Néron. Rational points of abelian varieties over function fields (1959), p. 97

- $\text{Pic}^0(X) \overset{\sim}{\to} \text{Pic}^0(S)$ for general $S \in |\mathcal{L}|$
Step 3: $\text{Jac}(C_\eta)(K) \cong \{\text{sections over very general line pair in } U\}$

First step toward surjectivity

Theorem (Graber–Starr 2013)

If $\mathcal{J} \to B$ is a family of abelian varieties, then sections extend from a very general pair of incident lines in B.

- Split \mathcal{J} into (constant family) \times (family with no constant subfamilies)
- Simpler proof when the base is $U \subset \mathbb{P}^2$
 - Over very general line L have \{sections of $\mathcal{J}|_L \to L$\} $\hookrightarrow \mathcal{J}_s(k)$

\implies Surjectivity for reducible $S_0 + S_1 \in |\mathcal{L}^2|$: for $S_0, S_1 \in |\mathcal{L}|$ very general

$$\text{Pic}(X) \twoheadrightarrow \text{Pic}(S_0) \times_{\text{Pic}(S_0 \cap S_1)} \text{Pic}(S_1)$$
Step 4: From very general \(T \in |L^2| \) to reducible \(S_0 + S_1 \)

Let \(T \in |L^2| \) be very general, \(D^T \in \text{Pic}(T) \)

- \(\tilde{X} = \text{Bl}_{B_s|\Lambda|}(X) \to |\Lambda| = \mathbb{P}^1 \) pencil containing \(S_0 + S_1 \) and \(T \)
- Chow variety argument: after a base change \(\Gamma \to |\Lambda| \) can find a divisor \(D \) on \(\tilde{X} \times |\Lambda| \Gamma \) that restricts to \(D^T \) on \(T \)

- Look at restriction of \(D \) to \(S_0 + S_1 \), want to apply Step 3
- Problem: Singularities of \(\tilde{X} \times |\Lambda| \Gamma \) (blew up singular curve \(B_s|\Lambda| \))
- \(D \) may not be \(\mathbb{Q} \)-Cartier over \(S_0 \cap S_1 \cap T = \{ p_1, \ldots, p_m \} \)
- Singularities of \(\tilde{X} \times |\Lambda| \Gamma \) over \(\{ p_i \} \) locally look like

\[
\hat{O}_{\tilde{X} \times |\Lambda| \Gamma} \cong k[[y_1, y_2, y_3, t]]/(y_1 y_2 - t^r y_3)
\]
Step 4 cont.: From very general $T \in |L^2|$ to reducible $S_0 + S_1$

- If \mathcal{D} not \mathbb{Q}-Cartier along $S_0 \cap S_1$ then $(\mathcal{D}|_{S_0})|_{S_0 \cap S_1}$ and $(\mathcal{D}|_{S_1})|_{S_0 \cap S_1}$ may differ
- $(\mathcal{D}|_{S_0})|_{S_0 \cap S_1} - (\mathcal{D}|_{S_1})|_{S_0 \cap S_1}$ is supported on $\{p_1, \ldots, p_m\}$
- Conjecture of Kollár (proved by Voisin when k uncountable):
 If T is very general, then p_1, \ldots, p_m are linearly independent in $\text{Pic}(S_0 \cap S_1)$.

 \[
 (\mathcal{D}|_{S_0})|_{S_0 \cap S_1} - (\mathcal{D}|_{S_1})|_{S_0 \cap S_1} = a(p_1 + \cdots + p_m)
 \]
- Replace \mathcal{D} by $\mathcal{D} - aS_0$: this is \mathbb{Q}-Cartier along $S_0 \cap S_1$

\[
\begin{array}{cccc}
\tilde{X} \times |\Lambda| \Gamma & \rightarrow & \tilde{X} & \rightarrow \ X \\
\downarrow & & \downarrow & \nearrow \\
\Gamma & \rightarrow & \text{Bs}|\Lambda| & \rightarrow \ X
\end{array}
\]

- Step 3 \implies can find $D^X \in \text{Pic}(X)$ such that $D^X|_{S_0 + S_1} \sim (\mathcal{D} - aS_0)|_{S_0 + S_1}$
Step 5: Surjectivity: from reducible to back to v general

Have $D^X \in \text{Pic}(X)$ such that $D^X|_{S_0+S_1} \sim (D - aS_0)|_{S_0+S_1}$

On $\tilde{X} \times |\Lambda| \Gamma$: Want $D - aS_0 \sim \psi^* D^X$, so that $D^X|_T \sim D^T$

$\psi^* D^X - (D - aS_0)$ is a divisor on $\tilde{X} \times |\Lambda| \Gamma$ that is trivial on $S_0 + S_1$

- For smooth families, specialization of Néron–Severi groups is injective up to torsion. Argument only needs divisors to be \mathbb{Q}-Cartier
- A multiple of $D^X|_T - D^T$ is in $\text{Pic}^0(T)$
- $\text{Pic}^0(X) \cong \text{Pic}^0(T)$
- $\text{Pic}(X) \rightarrow \text{Pic}(T)$ is surjective up to torsion
Other degrees?

- Step 5 works for even multiples of \mathcal{L}
 - Specialized from $T \in |\mathcal{L}^2|$ to (member of $|\mathcal{L}|$)+(member of $|\mathcal{L}|$)
 - Recall set-up: $\mathcal{L} = M^m$ for $m \geq 2$
- Can specialize to (member of $|M^4|$)+(member of $|M^{\geq 2}|$)
- Get result for very general members of $|M^{\geq 6}|$

Conclusion

$\text{Pic}(X) \xrightarrow{\text{/torsion}} \text{Pic}(T)$ for very general $T \in |M^4|$ or $|M^{\geq 6}|$
Generalizations

Singular varieties?

- Steps 1–4 work if X is normal, replacing
 - Pic with Cl
 - Pic^0 with Cl^0 = subgroup of algebraically trivial Weil divisors
- Step 5 in char 0: OK after base changing to a resolution of singularities of X
- Step 5 in char $p > 0$: OK after base changing to a purely inseparable alteration (purely inseparable morphism + partial resolution)

Torsion?

- Expect no prime-to-p-torsion
- Examples with p-torsion?? (Please let me know!)
If $\dim X = n \geq 4$

- Steps 1–2 show $\text{Cl}(X) \to \text{Pic}(C)$ is injective for a very general complete intersection curve in $|\mathcal{L}|$
- Steps 3–5 show $\text{Cl}(X) \to \text{Cl}(T)$ is surjective up to torsion for a very general complete intersection surface in $|\mathcal{L}^2| \cap |\mathcal{L}| \cap \cdots \cap |\mathcal{L}|$

By factoring $\text{Cl}(X) \to \text{Cl}(T)$ through a divisor in $|\mathcal{L}| = |\mathcal{M}_{\geq 2}|$, get

Theorem

Let $X \subset \mathbb{P}_k^N$ be a normal variety of dimension ≥ 4 and $H \subset \mathbb{P}_k^N$ a very general hypersurface of degree ≥ 2. Then $\text{Cl}(X) \to \text{Cl}(X \cap H)$ is an isomorphism up to torsion.
Thank you!