Dynamics in secondary metabolite gene clusters in otherwise highly syntenic and stable genomes in the fungal genus *Botrytis*

Claudio A. Valero-Jiménez

Maikel B.F. Steentjes

Jason C. Slot

Xiaoqian Shi-Kunne

Olga E. Scholten

Jan A.L. van Kan*

1Laboratory of Phytopathology, Wageningen University, 6708 PB Wageningen, the Netherlands

2Wageningen University & Research, Plant Breeding, 6708 PB Wageningen, the Netherlands

3Department of Plant Pathology, The Ohio State University, 2021 Coffey Rd., Columbus, OH, USA

* Author for correspondence: Jan van Kan, Laboratory of Phytopathology, Wageningen University, 6708 PB Wageningen, the Netherlands. Phone +31 317483126. Email: jan.vankan@wur.nl.
Abstract

Fungi of the genus *Botrytis* infect >1400 plant species and cause losses in many crops. Besides the broad host range pathogen *B. cinerea*, most other species are restricted to a single host. Long read technology was used to sequence genomes of eight *Botrytis* species, mostly pathogenic on *Allium* species, and the related onion white rot fungus, *Sclerotium cepivorum*. Most assemblies contained <100 contigs, with the *B. aclada* genome assembled in 16 gapless chromosomes. The core genome and pangenome of 16 *Botrytis* species were defined and the secretome, effector and secondary metabolite repertoires analysed. Among those genes, none are shared among all *Allium* pathogens and absent from non-*Allium* pathogens. The genome of each of the *Allium* pathogens contains 8-39 predicted effector genes that are unique for that single species, none stood out as potential determinant for host specificity. Chromosome configurations of common ancestors of the genus *Botrytis* and family Sclerotiniaceae were reconstructed. The genomes of *B. cinerea* and *B. aclada* were highly syntenic with only 19 rearrangements between them. Genomes of *Allium* pathogens were compared with 10 other *Botrytis* species (non-pathogenic on *Allium*) and with 25 Leotiomycetes for their repertoire of secondary metabolite gene clusters. The pattern was complex, with several clusters displaying patchy distribution. Two clusters involved in the synthesis of phytotoxic metabolites are at distinct genomic locations in different *Botrytis* species. We provide evidence that the clusters for botcinic acid production in *B. cinerea* and *B. sinoallii* were acquired by horizontal transfer from taxa within the same genus.

Keywords: ancestral genome, horizontal transfer, necrotroph, secondary metabolite.
Significance statement

We sequenced the genomes of nine plant pathogenic Sclerotiniaceae fungi, most of them infecting onion or related Allium species, to identify host range determinants by analysing what these species share and what distinguishes them from their non-Allium sister species. Despite being unable to identify host range determining genes, several exciting observations were made. Sclerotiniaceae have stable genomes with similar chromosome architecture. We reconstructed an ancestral genome for all Sclerotiniaceae that contained 16 core chromosomes, as do all extant species for which chromosome numbers are known. Nevertheless, two gene clusters for secondary metabolite biosynthesis were located in entirely different genomic environments in these species. Evidence is presented that one of these gene clusters has undergone horizontal transfer within the genus Botrytis.
Introduction

Fungi have great societal impact because of their utility for nutritional, industrial and medical purposes, as well as their pathogenic behaviour on humans and plants. In recent years, the sequencing of fungal genomes has progressed at tremendous pace thanks to their small genome size and decreases in sequencing costs (Spatafora et al. 2017). Many species of industrial fungi from the genera *Aspergillus*, *Penicillium* and *Trichoderma* have been sequenced (e.g. de Vries et al. 2017), while for human pathogens such as *Cryptococcus neoformans*, *Candida* spp., or *Aspergillus fumigatus*, numerous isolates were sequenced to obtain insight in population diversity (e.g. Ashton et al. 2019; Lind et al. 2017). Similarly, many dozens of plant pathogenic fungi species have been sequenced in order to gain insight into their evolution and the traits that enable the infection of plants (Moeller and Stukenbrock 2017). Studies on plant pathogenic fungi have provided evidence for evolutionary adaptations that confer dynamics and plasticity on the genome, such as the presence of repeat-rich, gene-poor genomic regions or the possession of entire “dispensable” or “lineage-specific” chromosomes that contain effector genes which confer the capacity to specifically infect certain host plant species or plant genotypes (Bertazzoni et al. 2018; Dong et al. 2015; Lo Presti and Kahmann 2017; Sipos et al. 2017).

The fungal genus *Botrytis* comprises ~35 recognized species that all are pathogenic on plants (Garfinkel et al. 2017; Hyde et al. 2014) with the exception of *B. deweyae*, which colonizes *Hemerocallis* (daylily) as an endophyte (Grant-Downton et al. 2014). *Botrytis* spp. are notorious pathogens with a necrotrophic infection behaviour, i.e. they kill host cells and invade the dead cells to acquire nutrients. Two species that have been extensively studied are *B. cinerea* and *B. pseudocinerea*, morphologically indistinguishable taxa that cause grey mould on >1400 host plant species (Elad et al. 2016). Other *Botrytis* species are considered to be restricted to a single host or a small number of taxonomically related hosts (Elad et al., 206; Staats et al., 2005). In these cases,
each host plant usually is infected by its own specialized *Botrytis* species. There are two exceptions in the pattern of specialized host-pathogen relationships within the genus: as many as eight *Botrytis* species can infect onion (*Allium cepa*) or other *Allium* species (Staats et al. 2005), and a recent study reported as many as 15 previously unknown, phylogenetically distinct *Botrytis* taxa sampled from peony in Alaska (Garfinkel et al. 2019). Phylogenetic analysis separated the genus *Botrytis* into two distinct clades, and *Botrytis* species that infect *Allium* are widely dispersed throughout the largest clade (Garfinkel et al. 2019; Hyde et al. 2014; Staats et al. 2005). Their closest relatives are often pathogenic on hosts that are phylogenetically distant from *Allium*. For example, the closest relatives of *B. squamosa* (onion leaf blight) are the lily pathogen *B. elliptica* and *Hemerocallis* endophyte *B. deweyae*. Furthermore, the closest relative of *B. aclada* (onion neck rot) is the peony pathogen *B. paeoniae*. By contrast, *B. globosa* and *B. sphaerosperma* are sister taxa and both able to infect *Allium* hosts. The fact that *Allium* pathogens are dispersed over the phylogeny of the genus *Botrytis* suggests that the capacity to infect *Allium* has either been acquired multiple times or lost multiple times, independently, during evolution in the genus.

Pathogens with a necrotrophic lifestyle such as *Botrytis* spp. actively manipulate the cell death balance in their host plant, and in the necrotrophic phase exploit the host cell death machinery by secreting cell death-inducing metabolites and effector proteins (Veloso and van Kan 2018). In the necrotrophic wheat pathogen *Parastagonospora nodorum*, several cell death-inducing effector proteins were identified that contribute to pathogenicity only on wheat genotypes carrying a cognate receptor for these effectors, following an inverse gene-for-gene interaction (Faris et al., 2010; Liu et al. 2009; Liu et al. 2012; Shi et al. 2012; Shi et al. 2015). Each effector-receptor pair contributes in a quantitative manner to disease severity. At least one of the *P. nodorum* effector genes has been horizontally transferred between distinct fungi pathogenic on wheat and barley (Friesen et al. 2006; McDonald et al. 2019).
The genome of the generalist *B. cinerea* has been extensively studied in the past decade. A gapless genome assembly was generated comprising 18 contigs, representing (near-)full-length chromosomes. Two contigs are minichromosomes (209 and 247 kbp, respectively) with few genes and neither seems relevant for plant infection (van Kan et al. 2017), indicating that the core genome of *B. cinerea* consists of 16 chromosomes. Light microscopic studies by Shirane et al. (1989) showed that five *Botrytis* species (*B. aclada, B. byssoidea, B. cinerea, B.squamosa, and B. tulipae*) all contain 16 mitotic chromosomes. The *B. cinerea* reference assembly was supported by a genetic and optical map (van Kan et al. 2017) and a manually curated community annotation (Ensembl Fungi; Pedro et al. 2019). In a follow-up study, we analysed the genomes of nine *Botrytis* species, mainly pathogens on flower bulb crops, using short read sequence technology (Valero-Jiménez et al. 2019). In the present study, we sequenced the genomes of eight additional host-specific *Botrytis* species and one *Sclerotium* species, most of which are pathogenic on *Allium*, in order to compare their predicted proteome content and possibly identify host range determinants. The comparison focussed on genes that are present in (and possibly shared among) *Allium* pathogens and absent from the non-*Allium* pathogens. The genome assemblies were of sufficiently high quality to analyse chromosome architecture and synteny, and to infer the genome organization of ancestors of the genus *Botrytis* and the family Sclerotiniaceae. Furthermore, analysis of secondary metabolite biosynthetic gene clusters in Sclerotiniaceae and 25 other fungi within the Leotiomycetes showed a patchy distribution of these clusters and provided evidence for two horizontal transfer events of a secondary metabolite biosynthetic gene cluster within the genus *Botrytis*.
Materials and Methods

Strains and culture conditions

The fungal isolates that were sequenced are listed in Table S1. For long term storage, all Botrytis species were kept as conidial suspensions in 15% glycerol at -80°C, while S. cepivorum was stored as sclerotia at room temperature. The fungi were grown on malt extract plates (MEA) at 20°C before DNA extraction.

DNA and RNA isolation

High molecular weight DNA was isolated from freeze-dried and grinded mycelium upon treatment with cell lysis solution (Qiagen), proteinase K and protein precipitation solution (Qiagen). DNA was precipitated using isopropanol, redissolved in TE buffer and treated with RNase A. The obtained DNA was cleaned using a Salt:chloroform wash (Pacific Biosciences shared protocol). RNA used for producing RNA-seq libraries were pools of RNA isolated from different sources: (1) 5-day old mycelia grown on MEA supplemented with blended onion leaves; (2) conidia; (3) sclerotia; (4) infected onion bulbs; and (5) infected onion leaves. For isolation of RNA, freeze-dried, grinded samples were incubated in Trizol (Ambion, Life Technologies) and treated with chloroform. After adding ethanol to the aqueous phase, the mixture was used as input for an RNeasy Plant Mini Kit (Qiagen) to isolate RNA.

Sequencing and assembly

All genomes were sequenced with one Pacbio SMRT cell using the Sequel instrument at Keygene N.V. (Wageningen, the Netherlands). De novo assembly was done with HGAP (Chin et al. 2013) and CANU (Koren et al. 2017) using default settings. The resulting assemblies were combined with quickmerge (Chakraborty et al. 2016), then two steps of corrections were done with Arrow, and erroneously merged contigs (based on inspection of mapped reads coverage) were manually corrected. Completeness of the genome assembly was assessed by the Benchmarking Universal
Single-Copy Orthologs (BUSCO) (Simao et al. 2015). The transcriptome of each genome was sequenced using strand-specific paired-end libraries with a read length of 2x 150 bp using an Ilumina HiSeq-X sequencer at the Beijing Genome Institute (BGI, Hongkong, China).

Genome annotation

Genome annotation was performed using the FUNGAP pipeline (Min et al. 2017), which included the annotation by MAKER (Cantarel et al. 2008), AUGUSTUS (Stanke et al. 2006) and BRAKER (Hoff et al. 2015). The gene prediction tools were supported with RNA-Seq libraries. Gene models of the manually curated genome of *B. cinerea* (van Kan et al. 2017), and all the fungal proteins available in the Swissprot database were provided as evidence for gene prediction. Furthermore, the predicted proteins were manually inspected and curated. The genome curation was done in Webapolo (Dunn et al. 2019), and each gene was inspected to confirm that prediction was supported by the evidence tracks (RNA-Seq, *B. cinerea* as reference and the Swissprot proteins); for instance, some gene models were deleted if they were overlapping a repetitive region, while other gene models where changed to have a correct Methionine start, or correct splice junctions. The manual curation was done to all the predicted proteins of *B. aclada*, *B. squamosa* and *S. cepivorum*, and to the secretome of all other genomes. The predicted proteins were functionally annotated using the funannotate pipeline (Love et al. 2019).

Phylogenetic and phylogenomic analysis

The phylogenetic relationships of the *Botrytis* genus and other related species of Sclerotiniaceae were determined between all species sequenced in this study and including the previously sequenced species *B. cinerea* B05.10 (van Kan et al. 2017), and other *Botrytis* species (Valero-Jiménez et al. 2019). The other species that were included were *Sclerotinia sclerotiorum* and *Sclerotinia borealis*, and *Marssonina brunnea* as the outgroup of the tree. The tree was constructed using 4746 single-copy orthologue genes, identified with Orthofinder (Emms and Kelly 2015). The
protein sequence for each gene was aligned and concatenated into a single matrix using MAFFT (Kato and Standley 2013), and a maximum likelihood phylogenetic tree was inferred with RAxML v.8.2.10 (Stamatakis 2014) using a generalized time reversible (GTR) plus GAMMA amino acid substitution model with 100 rapid bootstraps. A pan-genome analysis was done to calculate the number of core genes and was estimated using OrthoMCL (Li 2003) implemented in GET_HOMOLOGUES-EST (Contreras-Moreira and Vinuesa 2013) with e-value 1×10^{-5} and 75% coverage. For the pangenome analysis, only the orthogroups present in at least two species were included.

Secretome and effector prediction

Genes encoding putatively secreted proteins were identified for each genome using several prediction tools. Signal-P v4.1 (Petersen et al. 2011) was initially used to screen for a signal peptide, followed by TMHMM v.2.0 (Krogh et al. 2001) to identify putative transmembrane domains. Proteins that did not have a signal peptide, or that had a transmembrane domain (a single transmembrane domain in the first 60 amino acids was allowed) were discarded. TargetP was used to predict protein localization (Emanuelsson et al. 2007). Effectors were predicted using the EffectorP tool v1.0 and v2.0 (Sperschneider et al. 2016).

Ancestral genome reconstruction

The ancestral genome of Botrytis was constructed using the CHRONicle package that comprises SynChro, ReChro and Anchro (Vakirlis et al. 2016). In order to identify conserved synteny blocks, pairwise comparisons between the genomes was done with SynChro. Subsequently, reconstruction of the ancestral chromosome gene order was done with Anchro.

Secondary metabolite gene cluster analysis

Putative gene clusters that are predicted to be involved in biosynthesis of secondary metabolites were identified using antiSMASH using default settings (antibiotics and Secondary Metabolite
Analysis SHell) version 4.0.1 (Weber et al. 2015). The dataset used for this analysis included 45 genomes from the order Leotiomycetes that were publicly available and published (S3 Table). BiG-SCAPE version 20181005 (Navarro-Munoz et al. 2019) was used to analyse all the secondary metabolites clusters predicted by antiSMASH. In the BiG-SCAPE analysis a cutoff of 0.65 as well as the MIBiG parameter that included the MIBiG repository version 1.4 of annotated SMC was used (Medema et al. 2015). The output of BiG-SCAPE was visualized using Cytoscape version 3.7.1 (Shannon et al. 2003).

Reconstruction of BGC evolution

Presence/absence and additional fragmented homologs of BOT and BOA genes for each species was confirmed by tblastn against the genome assemblies (Supplementary Data S5 and S6). Pseudogenes were manually identified by inspection of tblastn reports for in-frame stop codons, and interrupted reading frames and truncations that could not be explained by novel intron sites (Supplementary Data S5 and S6).

Phylogenetic analyses were performed on all BGC genes, both with and without pseudogenes and outgroup taxa (Supplementary Data S7 and S8). Outgroup taxa were obtained by searching a database of 529 genome annotations (Gluck-Thaler and Slot 2018) using blastp. Protein sequence datasets for each gene were aligned using mafft v. 7.221 (Katoh and Standley 2013), and ambiguously aligned characters were removed using TrimAl v. 1.4 (Capella-Gutierrez et al. 2009). Maximum likelihood analysis was performed in RAxML v. 8.2.9 (Stamatakis 2014) with automated model selection and topological robustness was assessed by 100 bootstrap replicates. In order to evaluate alternative hypotheses versus inferred HGT events we applied minimal topological constraints to exclude putative transferred genes from the donor clade. Constrained trees (Supplementary Data S9) were built with automated model selection and their likelihoods
were compared using the Approximately Unbiased test with 10,000 multiscale bootstrap replicates (Shimodaira 2002) as implemented in IQ-TREE v. 1.6.12 (Nguyen et al. 2014).

In order to determine synteny in the BOT and BOA loci (Supplementary Data S10) each locus including up to 10 genes on either side of the BOA/BOT genes of interest (if present) were combined and assigned to a homology group using usearch cluster_agg method with a minimum linkage identity of 0.6 in usearch v. 8.0.1517 (Edgar 2010). The loci were then manually aligned according to their homology group and manual blasts were performed to confirm true orthology where ambiguous.

Ancestral state reconstructions (Supplementary Data S11) were performed using a substitution matrix weighted against gain of functional genes and pseudogenes, except where HGT was already determined by gene trees and synteny analysis for BOA clusters in Mesquite v 3.6 (Maddison and Maddison 2019).
Results

Sequencing and assembly

Eight *Botrytis* species and *Sclerotium cepivorum* (Table S1) were sequenced using long read single molecule technology at 34-120 X coverage. The genome assembly sizes ranged from 42.98 Mb to 61.28 Mb (Table 1). The genomes of six species are similar in size to the previously described genome of *B. cinerea* (43.5 Mb; van Kan et al. 2017), while genomes of *B. squamosa*, *B. sinoallii* and *S. cepivorum* exceed a size of 54 Mb. The *B. aclada* genome could be assembled into 16 distinct chromosomes, with 8 chromosomes containing telomeric repeats at both ends, and 6 containing a telomeric repeat on one end.

Table 1. Assembly and gene prediction information of *Botrytis* spp. genomes from this study.

Species	Contigs	Assembly Size	Largest Contig	N50	BUSCO complete/partial	Predicted genes	Secretome size	% of secreted proteins
B. byssoides a	59	42.98 Mb	2599 Kb	1263 Kb	98.0 (99.3)	12212	898	7.35
B. globosa a	27	45.68 Mb	4093 Kb	2511 Kb	98.0 (99.0)	12073	864	7.16
B. elliptica a	137	47.66 Mb	2119 Kb	652 Kb	99.2 (99.9)	12442	932	7.49
B. squamosa a	29	54.60 Mb	4659 Kb	2938 Kb	98.7 (99.1)	11963	897	7.5
B. deweyae a	76	44.36 Mb	2431 Kb	1076 Kb	98.0 (99.0)	12480	942	7.55
B. sinoallii a	47	61.28 Mb	6466 Kb	2252 Kb	98.3 (99.5)	12281	885	7.21
B. porri a	31	46.78 Mb	4253 Kb	2706 Kb	98.2 (98.9)	12088	888	7.35
B. aclada a	16	48.31 Mb	4155 Kb	3028 Kb	99.1 (99.3)	11870	867	7.30
S. cepivorum a	48	55.66 Mb	4533 Kb	1651 Kb	98.2 (99.5)	11107	790	7.11

a Taxa in the table are ordered as they appear in the phylogenetic tree in Figure 1.
The most fragmented assembly of the nine species is that of *B. elliptica*, despite its genome size of <48 Mb, with 137 contigs and a contig N50 of 652 Kb. BUSCO analysis indicated that all genomes had a high level of completeness (98.0-99.2%). Prediction of gene models was performed using the FunGAP pipeline and supported by RNAseq data (from *in vitro* samples and infected plant material) and by alignment to the manually curated genome of *B. cinerea* B05.10 (van Kan et al. 2017). After prediction by this pipeline, proteomes of *B. aclada*, *B. squamosa* and *S. cepivorum* were entirely manually curated, while for the other six species, only the (predicted) secreted proteins were manually curated. The curated proteomes of the nine species contain between 11,107 and 12,480 genes (Table 1).

Phylogenetics and phylogenomics

A phylogenetic tree was constructed based on a concatenated amino acid alignment of 4,746 conserved core genes totalling 409,576 positions, using *Marssonina brunnea* (order Helotiales, family Dermataceae) as the outgroup (Fig. 1). The relationship among the *Botrytis* species is fully concordant with previous studies (Hyde et al. 2014; Staats et al. 2005), which divided the genus in two clades based on three protein-coding genes (G3PDH, HSP60 and RPB2). All *Botrytis* species newly sequenced in this study group in Clade 2, which contains taxa that mostly infect monocot host plants (only *B. paeoniae* infects dicots). A pan-genome analysis for 16 *Botrytis* species (eight species sequenced in this study, seven species previously sequenced with short read technology (Valero-Jiménez et al. 2019) and the previously sequenced *B. cinerea* B05.10 (van Kan et al. 2017), indicated that the core genome of *Botrytis* spp. consists of 7,524 orthogroups (>60% of genes within any individual species; Fig. S1a), while the pan-genome consists of 13,856 orthogroups (Fig. S1b).
Fig. 1. Phylogenetic tree based on single-copy orthologous genes of different Botrytis species and three Sclerotiniaceae, with Marssonina brunnea as the outgroup to root the tree. All branches have a high bootstrap support (ML > 90). Two clades previously reported in the genus Botrytis are highlighted. The bulb symbols next to the species names indicate species that infect monocotyledonous bulbous plants, species without symbol infect dicot hosts.

Analysis of secreted proteins

Secreted proteins are important tools of plant pathogenic fungi to either manipulate the physiology and immune responses of their host plants (effector proteins) or to decompose the plant tissue that they colonize in order to acquire carbohydrate nutrients (plant cell wall degrading enzymes, PCWDEs). Orthologous groups of all secreted proteins from 16 Botrytis species sequenced in this work, as well as previously published (van Kan et al. 2017; Valero-Jiménez et al. 2019) and S. cepivorum were determined using Orthofinder. From a total of 14,838 proteins, 14,326 were
assigned to 1,116 orthologous groups (Supplementary Data S1). From these, 376 orthologous
groups are shared among all 17 species (Fig. S2). Besides orthologous groups shared by all species,
171 groups (columns 2-18 in Fig. S2) are common to all species but one, while 454 orthologous
groups are unique to a single species (columns 19-37 in Fig. S2). The secretome of S. cepivorum
lacks 55 secreted proteins that are present in all Botrytis species, and contains 83 singletons that
are unique to S. cepivorum, as to be expected for a species from a distinct genus in the same family.

In view of the relevance of secreted effector proteins in fungus-plant interactions, an
effector prediction was performed on the set of secreted proteins discussed above. For each of the
16 Botrytis species and S. cepivorum, a total of 121-152 candidate effector genes was identified
which were assigned to 244 orthologous groups (Supplementary Data S2). Among these groups,
25 are represented in all 17 species and another 25 are shared among all but one species. On the
other hand, each of the 17 species contains between 8 and 39 predicted effector genes that remained
unassigned to orthologous groups, since they are unique for that single species. There were no
predicted effectors which are shared among Allium pathogens but absent from non-Allium
pathogens. Furthermore, pairwise comparisons between related Botrytis species with distinct hosts
did not identify any effector genes that stood out as potential determinants for host specificity.

We also analysed the secreted proteins that are related to the degradation of plant cell wall
carbohydrates (Table S2). The genomes of 16 Botrytis spp. and S. cepivorum contain between 109
and 132 plant cell wall degrading enzymes (PCWDEs). S. cepivorum has fewer PCWDE-encoding
genes than the Botrytis species. The PCWDEs were further subdivided depending on their
substrate: cellulose, hemicellulose or pectin. The numbers of secreted enzymes capable of
degrading cellulose, hemicellulose and pectin were mostly similar among Botrytis spp., with some
deviations: B. sinoallii has notably fewer genes encoding pectinases (22 vs. 27-38 for other species;
Table S2).
Secondary metabolite gene clusters

Fungi produce a wide array of secondary metabolites (SM), usually synthesized by proteins encoded by genes that are physically clustered in the genome, referred to as SM biosynthetic gene clusters (BGCs) (Keller et al. 2005). SM contribute to the adaptation and survival in different environments and in the competition with other (micro)organisms (e.g. Chatterjee et al. 2016). In a previous study on nine Botrytis genomes assembled from short sequence reads, a patchy absence/presence pattern was observed for orthologs to BGCs that were functionally annotated in B. cinerea (Valero-Jiménez et al. 2019). Because of the fragmented assemblies resulting from short read sequencing technology, the latter analysis only considered SM key biosynthetic enzymes, but not the entire gene cluster. In the present study, the analysis of SM gene clusters was extended to all 16 Botrytis species (short and long read technology-based), four related taxa from the family Sclerotiniaceae and 25 other taxa from the class Leotiomycetes, for which an annotated genome was publicly available (Table S3). The analysis was conducted by predicting BGCs in all 45 genomes using AntiSMASH, and grouping them by families using BiG-SCAPE. The 45 Leotiomycete genomes each contained between 3 and 67 BGCs (Supplementary Data S3). The 1571 BGCs were grouped over 438 BGC families (Supplementary Data S4), which were further categorized based on their phylogenetic distribution. Category 1 contains 342 families of SM BGCs that are distributed among taxa across Leotiomycetes. This category includes a few BGCs that encode enzymes involved in biosynthesis of common metabolites such as melanin and siderophores, however, the exact chemical structures of compounds produced by the vast majority of BGCs in this category remain unknown. Category 2 contains 36 families of BGCs that are present in Sclerotiniaceae (including the genus Botrytis) but not represented in the other 25 Leotiomycete taxa. This category includes the BGCs encoding enzymes involved in production of botcinic acid, and other yet unknown compounds. Category 3 contains 60 families of BGCs that
are unique to the genus *Botrytis*, such as the cluster involved in production of botrydial, however, all other SMs produced by the other 59 BGCs in this category are unknown.

BGCs are commonly annotated on the basis of the type of compound that is produced, often a polyketide (PKS), non-ribosomal peptide (NRPS) or terpene (TS). The evolutionary trajectory of BGCs can be complex, and the distribution of specific BGCs can be scattered throughout the fungal kingdom (Slot and Gluck-Thaler 2019). Several cases of horizontal gene transfer of BGCs have been documented in fungi (Campbell et al. 2012; Navarro-Munoz and Collemare 2020; Ropars et al. 2015; Reynolds et al. 2018). We examined the distribution of the predominant classes of BGCs (PKS, NRPS, TS) over the 45 Leotiomycete species analysed (Fig. 2 for PKS; Fig. S3 for NRPS; Fig. S4 for TS).

The distribution of BGCs is largely consistent with phylogenetic patterns, with related fungal taxa containing a similar distribution. A set of 20 PKS families (as identified by BiG-SCAPE) are most abundant in *Botrytis* species. Six families from this set are exclusive to *Botrytis* (highlighted red in Fig. 2), while 14 families are also present in other Sclerotiniaceae or in more distantly related Leotiomycete taxa (highlighted in ochre). Conversely, a set of nine PKS clusters that are most abundant in Leotiomycetes outside the family Sclerotiniaceae have sparse and patchy distributions within the genus *Botrytis* (highlighted in blue).
Fig. 2. Distribution of PolyKetide Synthase clusters in 45 Leotiomycetes. The 50 clusters that are most abundant among the 45 Leotiomycetes taxa are displayed. Clusters that are exclusively represented in *Botrytis* are marked red; clusters predominantly in *Botrytis* but also in some other taxa are marked ochre; clusters predominantly in other taxa but also in some *Botrytis* species are marked blue; clusters lacking in all *Botrytis* spp. are marked grey.

Botrytis species possess at least 5 (*B. convoluta*) and at most 11 (*B. cinerea*) NRPS clusters (Fig. S3). Five families of NRPS clusters are unique to the genus *Botrytis* (Fig. S3, highlighted in red), while eight other families are largely confined to the family Sclerotiniaceae, although two of them (FAM_02547 and FAM_02047) are also shared with the distant taxa *Phialophora hyalina* or *Phialocephala scopiformis* (Fig. S3, highlighted in ochre). Notably, *B. cinerea* contains two NRPS clusters that are not shared with any other *Botrytis* species, but have orthologs in several distant Leotiomycetes (Fig. S3, highlighted in blue). The families of terpene cyclase (TS) clusters are relatively simple in pattern, with each *Botrytis* species containing 3-6 TS cluster families (Fig. S4). Eight of the families are exclusively detected in *Botrytis* species (Fig. S4, highlighted in red) while four are also present in other Sclerotiniaceae, and two of the TS cluster families are even detected in distant Leotiomycetes (Fig. S4, highlighted in ochre). The family FAM_03197 is conserved in all Sclerotiniaceae, as well as in 6 other Leotiomycetes while FAM_02531 is present in nine
Sclerotiniaceae and six distant Leotiomycetes. Except for the family FAM_02168, involved in the synthesis of the phytoxic metabolite botrydial, the chemical nature of the products of these clusters is unknown.

Ancestral genome reconstruction of the genus *Botrytis* and the family Sclerotiniaceae

The high quality of the long read assemblies and the previously published *B. cinerea* genome, as well as the extensive manual curation effort of gene models, enabled us to perform a synteny analysis and a reconstruction of the ancestral chromosome configuration of the genus *Botrytis*, in order to understand the extent and nature of chromosomal rearrangements over the course of evolution of the extant species. *B. elliptica* was excluded from the ancestor reconstruction for two reasons: firstly, the assembly was the most fragmented of all (137 contigs) and secondly, the phylogenetic relation of *B. elliptica* to its sister taxa *B. squamosa* and *B. deweyae* could not be resolved (Fig. 1), which hampered the analysis. The inferred ancestral genome of the entire genus *Botrytis* (AB0) consists of 17 syntenic blocks (Fig. 3). 13 of the 16 *B. cinerea* core chromosomes are entirely syntenic to the AB0 ancestor, and 17 balanced rearrangements (mostly inversions) are inferred between the ancestor AB0 and the extant *B. cinerea* (Table 2; Table S4).

	AB0-BCIN^a	AB0-A1	A1-BACL^b	A1-A2	A2-A3	A3-A4	A3-A6	A4-A5	A4-BSIN^c	A5-BSQU^d	A5-BDEW^e	A6-BBYS^f
Inversions	15	0	3	0	2	3	6	1	6	2	1	3
Translocations	1	0	1	0	0	0	1	0	2	2	0	4
Transpositions	1	0	1	0	0	0	0	0	1	0	0	0
Fusions	0	0	0	1	2	1	0	1	2	1	2	0
Fissions	0	0	5	1	1	6	2	1	19	3	40	27
Sum	17	0	10	2	5	10	9	3	30	8	43	34

^aBCIN: *B. cinerea*; ^bBACL: *B. aclada*; ^cBSIN: *B. sinoallii*; ^dBSQU: *B. squamosa*; ^eBDEW: *B. deweyae*; ^fBBYS: *B. byssoidea*
Fig. 3. The most parsimonious evolutionary trajectory from the ancestral (A0) configuration towards extant *Botrytis* species. Coloured boxes represent syntenic blocks. A1-A6 represent intermediate ancestors. Numbers above the branches represent the total number of balanced rearrangements (interchromosomal translocations and fusions/fissions; intrachromosomal inversions) accumulated between two genomes.

The A1 genome is the inferred ancestor of members of clade 2 in the genus *Botrytis*, while *B. cinerea* is the single representative of clade 1 in the analysis (Fig. 1). The inferred A1 genome is identical to AB0 (Fig. 3). The extant *B. aclada* genome contains 10 rearrangements as compared to A1. The A2 intermediate ancestor was inferred to be derived from A1 upon fusion of A1 contigs 13 and 17, and fission of A1 contig 3 (resulting in A2 contigs 5 and 17). Downstream of the A3 intermediate ancestor, the interpretation becomes complex as numbers of contigs increase due to the more fragmented assemblies of some species, e.g. *B. deweyae, B. byssoida* and *B. sinoallii*. Nonetheless, the number of contigs of intermediate ancestors remains 25 or lower and the number of rearrangements between nodes in the tree ranges from 3 to 43 (Table 2).
Reconstruction of ancestral genomes was extended to the family Sclerotiniaceae using the genomes of *Sclerotium cepivorum* (this study) and *Sclerotinia sclerotiorum* (Derbyshire et al. 2017) (Fig. S5). Due to the more fragmented assembly of the *S. cepivorum* genome, the inferred common ancestor AS1 comprised 21 syntenic blocks, five of which were quite small and probably represent only parts of chromosomes. However, the common ancestor ABS0 of the family Sclerotiniaceae contains 16 syntenic blocks, and the configuration of ABS0 differs from the ancestral *Botrytis* genome AB0 by just a single rearrangement (Fig. S5).

Synteny between *B. aclada* and *B. cinerea*

In order to explore genome rearrangements between individual species in more detail, we further examined the synteny between the genomes of *B. aclada* and *B. cinerea* (the most complete and best annotated) by pairwise alignments. *B. cinerea* minichromosome 18 (BCIN18) was excluded from this analysis because it contains only 13 genes, none of which is orthologous to genes in *B. aclada*. The second minichromosome of *B. cinerea*, BCIN17, did show some homology to the tip of BACL10 and was therefore included in the analysis. Graphical representation of the alignment (Fig. 4) reveals that four chromosomes represent fully syntenic blocks, though some of these blocks contain segmental inversions of ancestral regions on the same chromosome (not visible in the colour display). In the remaining 12 chromosomes, the alternation of coloured boxes reflects the occurrence of six interchromosomal rearrangements, as well as 13 small translocations or transpositions, of which seven occurred at or close to the telomeres (Fig. 4).
Fig. 4. Synteny analysis between *B. aclada* and *B. cinerea*. The 17 chromosomes of *B. cinerea* are colour-coded uniformly, the corresponding syntenic regions in *B. aclada* have identical colours. White regions reflect repetitive regions or lack of homology. Arrowheads indicate large reciprocal interchromosomal rearrangements. Asterisks indicate small interchromosomal transpositions. Plus symbols indicate interchromosomal telomeric translocations. Intrachromosomal inversions are not indicated.

Strikingly, we noted that SM BGCs were present in some of these translocated segments. Specifically, BACL05 is almost perfectly syntenic to BCIN07, with the exception of an insertion of a cluster of seven genes (Fig. 4, green box marked by an asterisk) representing the BGC for the sesquiterpene metabolite botrydial (Pinedo et al., 2008; Porquier et al. 2016; Siewers et al. 2005), which in *B. cinerea* is located in BCIN12. Conversely, the only difference between BACL12 and BCIN12 is the insertion (in BCIN12) of a segment that exactly contains the BGC for botrydial. Furthermore, BACL9 is entirely syntenic to BCIN11, however, it contains an insertion of the BGC for the phytotoxic metabolite botcinic acid (Dalmais et al. 2011; Porquier et al. 2019) close to the 3’-telomeric region, which in *B. cinerea* is located at the start of BCIN01 (van Kan et al. 2017).
Genomic locations of botrydial and botcinic acid biosynthetic gene clusters

The synteny analyses described above provided indications that SM BGCs occur in regions that possibly underwent translocation at some moment in the evolution of Botrytis species. The distribution of botrydial (BOT) and botcinic acid (BOA) BGCs over the Sclerotiniaceae and the genus Botrytis appeared to be patchy. Specifically, the BOT cluster is present in 8 Botrytis species and absent in other Sclerotiniaceae. We compared the BOT clusters and their flanking sequences in 7 species: B. aclada, B. cinerea, B. elliptica, B. deweyae, B. porri, B. sinoallii, B. squamosa. The B. peaoniae genome, though containing a BOT cluster, was sequenced by Illumina technology (Valero-Jiménez et al. 2019) and its assembly was too fragmented for synteny analysis. The order of the genes BcBOT1-7 within the cluster was identical in all species, however, the most upstream gene (BcBOT4), was in inverted orientation in B. aclada and B. porri as compared to the other five species (Fig. 5). The BOT clusters were in all cases flanked by gypsy/copia repeats, with lengths up to 160 kb, either on one side (B. cinerea, B. deweyae, B.elliptica, B. squamosa), or on both sides (B. porri, B. aclada, B. sinoallii) and some species even contained internal transposon repeats within the BOT cluster (B. aclada, B. cinerea, and B. sinoallii; Fig. 5). Based on the RNAseq reads used for structural annotation, it was observed that all species that do contain intact BOT clusters express all of the seven genes. As these expression data were based on pooled RNAs, representing multiple fungal tissue types and infection stages, it was not possible to compare the expression levels between species or to determine under which conditions the genes were expressed.

The BOA cluster was detected, in whole or in part, in all but one Botrytis species (B. paeoniae), and in Sclerotinia sclerotiorum as well as Sclerotium cepivorum. In many cases, the BOA cluster in Botrytis species is located close to the end of a contig. It was previously reported that in B. cinerea, the BOA cluster is at the very start of BCIN01, only 5 kb away from the telomere (van Kan et al. 2017). Alike for the BOT clusters mentioned above, all species that contain intact BOA
clusters express all of the 13 genes, however, the use of pooled RNAs prevented us from comparing expression levels between species or determine under which conditions the genes were expressed.

Fig. 5. Organization of BOT clusters in seven Botrytis species. BCIN: B. cinerea; BACL: B. aclada; BPOR: B. porri; BSIN: B. sinoallii; BSQU: B. squamosa; BDEW: B. deweyae; BELL: B. elliptica. The number of the contig is given behind the species name tag. The seven BOT gene orthologs (not drawn to scale) are colour-coded uniformly, the arrow indicates direction of transcription. Repeats are indicated with a grey box. Repeats are not drawn to scale and range in length from 1-160 kbp.

In view of the high synteny between Botrytis species, we examined whether the BOT and BOA clusters in the different species are in syntenic locations as compared to B. cinerea. Surprisingly, analysis of flanking genes revealed that BOT clusters are in four distinct genomic regions in the seven Botrytis species analysed. None of the species other than B. cinerea contained the BOT cluster in a region syntenic to BCIN12 (Fig. 6). The genes directly flanking the BOT cluster in B. cinerea (Bcin12g06360 and Bcin12g06440) in all but one of the six species have orthologs that are directly adjacent to one another in these genomes, with intergenic regions ranging from 2-5 kbp.
Fig. 6. Distinct genomic locations of BOT clusters in seven *Botrytis* species. Four different loci are provided in the columns. Species name tags are in the left hand margin: *B. cinerea*; BACL: *B. aclada*; BPOR: *B. porri*; BSIN: *B. sinoallii*; BSQU: *B. squamosa*; BDEW: *B. deweyae*; BELL: *B. elliptica*. Contig numbers in the seven species are provided underneath the locus. In each column, orthologous genes are indicated by identical colours. Gene numbers in the contig are provided above the gene, the arrow indicates direction of transcription. The red triangular blocks represent the location of a BOT cluster. Synteny breaks are shown by interrupted lines with dots marking the break.

No indication was found for the occurrence of truncated remnants of BOT genes at this position in the six genomes. Also in all but one of the other species lacking a BOT cluster, orthologs to Bcin12g06360 and Bcin12g06440 are directly adjacent to one another in these genomes. Through similar analyses and reasoning, the BOT cluster in *B. aclada* is present in a unique position that is syntenic to BCIN07, while the BOT cluster in *B. porri* is present in a unique position that is syntenic to positions in five other species (all except in *B. cinerea*, where a synteny break has occurred); lastly, the BOT clusters in *B. squamosa*, *B. deweyae*, *B. elliptica* and *B. sinoallii* are all located in a syntenic genomic region, which is equivalent to a location between Bcin08g05830 and Bcin08g05810 (Fig. 6).
In *S. sclerotiorum* the BOA cluster is dispersed over two chromosomal locations on SSCL05 (genes BOA1 and BOA2) and SSCL15 (genes BOA3-13). A recent study by Graham-Taylor et al. (2020) reported that SSCL can express the 13 BOA genes in a co-regulated manner despite their spatial separation. For the largest cluster on SSCL15, its flanking genes on both sides are orthologous to syntenic regions in eight *Botrytis* species (BACL006, BBYS014, BCIN06, BDEW005, BELL059, BGLO010, BSIN006, BSQU018) that do not contain any trace of BOA gene remnants. For the smaller cluster on SSCL05, its flanking genes on both sides are orthologous to genes located on BCIN05 (Bcin05g05060 and Bcin05g07100), however the region is not syntenic, since the genes are far separated in *B. cinerea*.

Inheritance and structural evolution of BOT and BOA clusters

BOT and BOA gene loci were carefully examined for evidence of pseudogenization to infer which of the clusters are fully functional (Supplementary Data S5, S6). BOT clusters in *B. sinoallii* and *B. paeoniae* contain one and two pseudogenes, respectively, while six species (*B. aclada, B. cinerea, B. elliptica, B. deweyae, B. porri,* and *B. squamosa*) have clusters with seven apparently functional genes (Supplementary Data S5). 17 of the 19 Sclerotiniaceae analysed contained (parts of) BOA clusters, however only seven species (*B. aclada, B. byssoidea, B. cinerea, B. globosa, B. porri, B. sinoallii and S. sclerotiorum*) appeared to contain a fully functional BGC (Supplementary Data S6). The majority of species contain two or more pseudogenes of catalytic enzymes. The most extreme cases of gene loss were in *B. squamosa, B. deweyae, B. elliptica* and *B. tulipae*, which lost all but one of the BOA cluster genes. By contrast, *B. calthae, B. convoluta,* and *B. narcissicola* contained 2-3 pseudogenes, either in genes encoding accessory enzymes or in the BOA13 gene, which is the transcriptional regulator for the cluster (Porquier et al. 2019). Of the two species outside the genus *Botrytis, S. sclerotiorum* contains a functional BOA cluster (Graham-Taylor et
al., 2020), whereas *S. cepivorum* lacks four genes, including polyketide synthase gene BOA9, and in addition contains two pseudogenes.

Ancestral state reconstructions of genes and pseudogenes (considering horizontal gene transfer [HGT] events, see below) on the *Botrytis* species tree (Fig. 7) suggest that the BOT cluster was gained in the common ancestor of *Botrytis* and has been lost five times; three times leaving no gene remnants (in *B. calthae, B. convoluta* and in the subclade containing *B. galanthina*), and twice leaving a mix of functional genes and pseudogenes (in *B. paeoniae* and *B. sinoallii*). The BOT gene trees (Supplementary Data S7) are in agreement with the species tree and the clusters are thus inferred to be derived from strictly vertical inheritance. Reconstructions of the BOA clusters (Fig. 7) revealed a more dynamic process involving twelve losses of cluster function after being gained in the common ancestor of *Botrytis* and *Sclerotinia*, and two recent gains by HGT in *B. cinerea* and *B. sinoallii*. HGT of the two clusters is supported by maximum likelihood gene trees (Supplementary Data S8), which suggest that both clusters were acquired from a relative of *B. porri* or *B. aclada.*
Fig. 7. Ancestral state reconstructions of genes and pseudogenes of the BOT cluster (panel A) and the BOA cluster (panel B) on the phylogenetic tree of 20 Sclerotiniaceae species. The status of the cluster is indicated with coloured boxes: blue = functional cluster, vertically transmitted; black = functional cluster, horizontally transmitted; green = all cluster genes non-functional or absent; green/blue = some genes non-functional or absent; grey = total absence of cluster. The ancestral gene states of 7 BOT genes and 13 BOA genes are indicated with coloured lines in similar way.

Most gene trees became significantly worse than the maximum likelihood trees, according to Approximately Unbiased tests (Shimodaira 2002), when potential HGT homologs were excluded from the putative donor clade (Supplementary Data S9). Strong support for a HGT origin of the functional BOA cluster in *B. sinoallii* comes from two additional observations. First, the inferred HGT cluster is adjoined by a putative amino acid transporter (Bsin003g06700) and alcohol acetyltransferase (Bsin003g06560), which are either adjacent or a few genes removed from the
BOA cluster in \textit{B. aclada}; only the homolog of Bsin003g06700 is adjacent to the BOA cluster in \textit{B. porri} (Supplementary Data S10). Secondly, \textit{B. sinoalli} contains an additional, heavily pseudogenized BOA cluster on contig BSIN027, which more closely tracks the species phylogeny (S8 Data) and retains flanking genes that are consistent with the species phylogeny (Supplementary Data S10). The remnants of the ancestral \textit{B. sinoalli} BOA cluster comprise only three pseudogenes that are embedded in a 330 kb genomic region saturated with transposons.

The HGT of the BOA cluster to \textit{B. cinerea} is supported by the phylogenetic proximity to \textit{B. aclada} and \textit{B. porri} (Fig.7; Supplementary Data S8), however, it cannot be corroborated by synteny information, as the \textit{B. cinerea} BOA cluster is located at the start of chromosome 1, and the 25 kbp region immediately downstream of the cluster is not syntenic with any \textit{Botrytis} species.
Discussion

Following the efforts to sequence *Botrytis cinerea* isolate B05.10 and nine other *Botrytis* species mainly infecting flower bulb crops (Valero-Jiménez et al. 2019), the present study, focussing on 8 species from clade 2 of the genus, brings the number of *Botrytis* genome sequences to 16. This represents about half of the currently recognized species in the genus, though a recent study (Garfinkel et al. 2019) identified at least 15 phylogenetically distinct, new taxa sampled from *Paeonia* in Alaska, which remain to be described and named. There is thus far one single fungal genus, i.e. *Verticillium*, for which the genomes of all recognized species have been sequenced (Shi-Kunne et al. 2018). It will take more effort to complete the sequencing of the entire genus *Botrytis*.

The present study aimed to identify genes potentially involved in determining host specificity, by comparing genomes of *Botrytis* species pathogenic on *Allium* with each other and with the genomes of their closest relatives pathogenic on other host plants. Specifically, we compared the genomes of the onion (*Allium cepa*) pathogens *B. squamosa* and *B. sinoallii*, with those of their sister taxa *B. elliptica* and *B. deweyae*, which infect lily and *Hemerocallis*, respectively, and we compared the genomes of *B. aclada* (infecting onion) and *B. porri* (infecting *Allium porri*, leek) with that of *B. paeoniae* (infecting the dicot peony). In order to make a meaningful comparison, the effort was made of manually curating all (>11,000) gene models in the genomes of three species (*B. squamosa, B. aclada* and *S. cepivorum*), and manually curating the gene models of all proteins with a (predicted) signal peptide in the other six species. Comparison of the effector repertoires did not reveal candidate effectors that were shared among all *Allium* pathogens but absent in non-*Allium* pathogens. Each of the species analysed contained 8-39 predicted effector genes that were unique to the species, however most had no homologs in other fungi and these genes often had little RNA-seq support (even in RNA samples from infected onion tissue), questioning the importance of these predicted genes for pathogenicity on onion.
repertoire of cell wall degrading enzymes was also similar between all 16 *Botrytis* species studied, despite the fact that only three species infect dicot hosts while the vast majority infect monocot hosts. Dicots and monocots are considered to have different compositions of cell wall polysaccharides (Jarvis et al. 1988). Thirteen *Botrytis* species in this study infect monocot hosts from the families *Alliaceae, Amaryllidaceae, Iridiaceae* and *Liliaceae*. Plants from these families contain high levels of pectin in their cell walls as compared to the *Poaceae* (Jarvis et al. 1988), which are more intensively studied as they comprise major staple crops of global relevance: rice, wheat, maize. In view of the high pectin content in the monocot hosts of *Botrytis* species in this study, the large repertoire of pectin degrading enzymes in their genomes appears logical. Altogether, we did not identify (sets of) genes that are shared among the *Allium* pathogens and distinguish them from related species with different hosts. The lack of shared genomic features may reflect the pathology of the *Allium* pathogens, some of which infect the leaves (*B. squamosa*), while others infect the bulb (*B. aclada*) or the roots and scale bases (*S. cepivorum*).

Despite the failure to identify host specificity determinants, many interesting features were unravelled by the extensive genome analyses that were performed. The genome of *B. aclada* was assembled into 16 gapless chromosomes, eight of which were full-length (telomere-to-telomere) and six contained telomeric repeats on one end. The *B. aclada* assembly was based on sufficiently high coverage to avoid the requirement for short read-based correction, nor did it require an optical map or genetic map for assembly verification, as was done for *B. cinerea* (van Kan et al. 2017). Cytogenetic studies on four *Botrytis* species (*B. byssoidea, B. cinerea, B. squamosa, B. tulipae*) revealed that they each contain 16 mitotic chromosomes, whereas the same study reported 16 or 32 mitotic chromosomes in different isolates of *B. allii* (Shirane et al. 1989). Subsequent studies (Nielsen et al. 2001; Yohalem et al. 2003) revealed that the species earlier named *B. allii* in fact comprised isolates of *B. aclada* (having 16 chromosomes) as well as isolates representing a hybrid
of *B. byssoidea* and *B. aclada* (having 32 chromosomes), which is presently still named as *B. allii* (Staats et al. 2005). Strikingly, *Sclerotinia sclerotiorum* also contains 16 chromosomes (Amselem et al. 2011; Derbyshire et al. 2017). These observations suggest a bias for the possession of 16 chromosomes in the genus *Botrytis* and possibly even in related genera. Conservation of chromosome numbers is not commonly observed in fungal genera, especially Ascomycota. As an example, the core chromosome numbers in the genus *Fusarium* vary from four (*F. graminearum*) to 12 (*F. fujikuroi*) (Waalwijk et al. 2018). Could this conservation of chromosome numbers in distant species of the same genus be related to functional constraints for sexual reproduction during the evolution of *Botrytis* species? As sexual reproduction requires chromosome pairing during meiosis, any fusion or fission event that affects core chromosome numbers would have serious repercussion on sexual compatibility and the fertility of offspring. We further explored the conservation of chromosome numbers and architecture by examining synteny and reconstructing ancestral genomes of the genus *Botrytis* and the family Sclerotinaceae.

The ancestral genome reconstruction inferred as few as 17 syntenic blocks for the common ancestor (AB0) of all *Botrytis* species. The inferred ancestral genome of the Sclerotinaceae (ABS0) consisted of 16 syntenic blocks, and it differed from the AB0 genome by a single rearrangement. 13 of the 16 core chromosomes of *B. cinerea* were represented in these blocks, and only three interchromosomal rearrangements were proposed between the ancestor AB0 and the extant *B. cinerea* genome. Moreover, the common ancestor of the entire genus (AB0) was identical to the common ancestor of extant *Botrytis* species in clade 2. Only six interchromosomal rearrangements were proposed between the genome of ancestor A1 and the extant *B. aclada* genome. The genomes of *B. cinerea* and *B. aclada* were thus remarkably syntenic, considering the phylogenetic distance between the two species. Representatives of the two clades within the genus *Botrytis* (Staats et al., 2005) were recently included in molecular clock-based estimates of divergence times for
Ascomycota, and these species were estimated to have diverged 5.9 Million years ago (Shen et al., 2020). The maintenance of 16 chromosomes and the stability of their overall configuration would facilitate chromosome pairing during meiosis. This observation thus suggests the occurrence of a strong selection pressure on sexual reproduction within the genus *Botrytis* over time. The suggestion is further supported by the fact that *S. sclerotiorum* also possesses 16 chromosomes (Derbyshire et al. 2017) and that the ancestral genome of the Sclerotiniaceae differs from the ancestral *Botrytis* genome only by a single rearrangement, despite the divergence between the genera *Sclerotinia* and *Botrytis* being estimated to have occurred around 21.5 Million years ago (Shen et al., 2020). The extent of syntenic among *Botrytis* species from distinct clades could only have been retained if sexual reproduction in this genus has been prominent over the course of evolution. Of the 22 *Botrytis* species used in the initial phylogeny of the genus (Staats et al. 2005), 14 were reported to have a sexual stage while eight were not, including *B. aclada*. Population studies may shed more light on the modes of reproduction of *Botrytis* species. Thus far only *B. cinerea*, *B. pseudocinerea*, *B. tulipae* and *B. elliptica* have been subject of population analyses (Fournier et al. 2005; Giraud et al. 1999; Mercier et al. 2019; Soltis et al. 2019; Staats et al. 2007; Walker et al. 2015) while other species have received less attention.

While syntenic analyses indicated a strong overall conservation of chromosome architecture between *Botrytis* species, it was striking to detect a substantial number of small translocations between *B. cinerea* and *B. aclada*, both in telomeric and internal chromosomal regions. Telomeric translocations are relatively “safe” rearrangements, as they have limited impact on genome architecture and chromatin organization, minimizing the risk of causing major genome stress. However, such rearrangements have the potential risk of (partial or complete) loss of the telomeric region during the translocation. The BOA clusters that were detected in multiple *Botrytis* species were, with two exceptions, located at the end of contigs, presumably because they were flanked by
repetitive sequences. In *S. sclerotiorum*, however, the BOA cluster is located internally in chromosome SSCLE15, and it is not flanked by repetitive sequences. Although it seems logical to propose a role of repetitive sequences in the translocation of chromosomal segments (whether telomeric or internal), further studies need to establish such a role. Sequencing multiple isolates of some of the species by long read technology might reveal the frequency of translocation events within a species.

It was remarkable to note that the BOT clusters appears to be located in 4 distinct genomic locations in the 7 *Botrytis* species in which it was analysed, and each of the loci was flanked by transposons, and in three cases even interrupted by transposons. It is tempting to speculate that these transposons have played a role in the mobility of the BOT cluster within the genome. The phylogeny of the BOT gene clusters was in full agreement with the species phylogeny, arguing against a horizontal transfer event. Thus the data suggest that there have been independent translocations of the BOT gene cluster to distinct chromosomes, culminating in the four distinct genomic locations presently observed in extant fungal isolates. Only within *B. squamosa*, *B. deweyae* and *B. elliptica*, was the BOT cluster in the equivalent genomic location, as could be expected from their phylogenetic proximity within a subclade of clade 2. This suggests a unique transposition event in the lineage towards the common ancestor of species in this subclade (A5 in Fig. 4). It is not currently possible to estimate the timing of these translocations, nor could the position of the BOT cluster in the ancestral genome be inferred in the Anchro analysis.

Polymorphism in genomic locations of SM BGCs was recently described within a collection of *Aspergillus fumigatus* isolates, suggesting that mobility of BGCs may occur even within a single species. In this study, there was even one case of two isolates carrying idiomorph BGCs, i.e. two distinct clusters residing in the same genomic locations (Lind et al. 2017). It will be interesting to analyse multiple isolates of the different *Botrytis* species and explore whether
mobility of BGCs occurs within a single species as well. Long read sequence technology will be essential for such purpose, to obtain flanking sequence information that permits to infer the correct genomic locations of the various BGCs.

The evolution and dynamics of BOT and BOA clusters

The BGCs involved in the production of phytotoxic secondary metabolites BOT and BOA were specifically interesting because they trigger (programmed) cell death in dicots (Rossi et al. 2011) and in monocots (our unpublished results) and contribute to the virulence of *B. cinerea* (Dalmais et al. 2011). The unusual observation of the distinct genomic locations of BOT and BOA clusters encouraged us to explore two distinct evolutionary scenarios: that either clusters were vertically transmitted but were able to excise from their location and reinsert at distinct locations; or that clusters were lost and then regained through HGT. We carefully evaluated the functionality, synteny and phylogeny of BOT and BOA genes and avoided assuming that vertical gene duplication is the source of multiple paralogs within a lineage. Indeed half the BOA clusters inferred to be functional in *Botrytis* appear to have been acquired by HGT from other *Botrytis* species, and the functional BOA cluster in *B. sinoallii* is inferred to be a xenolog (horizontally acquired paralog) of the pseudogenized cluster in the same species. The fact that the inferred donor of the BOA cluster in *B. sinoallii* (a taxon closely related to *B. aclada* and *B. porri*), which also is a pathogen of *Allium*, is consistent with host-specific functions selecting for cluster HGT. BGC birth and death processes appear to involve the horizontal replacement of commonly lost clusters; however the trajectories of BOT and BOA contrast in their evolutionary dynamics. While BOT is less frequently lost/non-functionalized and has not been gained by HGT in this dataset, BOA is frequently lost or non-functionalized and also replaced by HGT. It is possible that BOT is more readily retained by natural selection due to its role in microbial competition (Vignatti et al. 2020).
This genome comparison has not revealed any host range determinants that enable so many *Botrytis* species (and *S. cepivorum*) to infect *Allium* hosts, likely because fungus-plant interactions may depend on a multitude of factors. Especially the fact that some of these species infect leaf tissue, while others infect the bulb or the root, and some species induce blight symptoms while others cause maceration and rot, adds another layer of complexity when comparing species pathogenic on the same host. The high synteny and conservation of chromosome architecture between such distant species across the genus *Botrytis* is remarkable and contrasts with the dynamics of genome evolution in many other plant pathogens.
Acknowledgements
The authors acknowledge dr. Jeff Rollins (University of Florida, Gainesville, USA), dr. Jürgen Köhl (Wageningen Plant Research, The Netherlands), and dr. Jing Zhang and prof. Guoqing Li (Huazhong Agricultural University, Wuhan, China) for providing fungal isolates, as well as Alexander Wittenberg and Harrie Schneiders of Keygene NV (Wageningen, The Netherlands) for advice and support in preparing high quality DNA samples for the sequencing. Furthermore, the authors are grateful to Laura Vilanova Torren for her contribution in annotation of the genomes.

Data availability statement
The project has been deposited in GenBank under the Bioproject number PRJNA494516. The Biosamples related to this project have accession numbers SAMN10219759-SAMN10219767. The raw PacBio genomic read data are deposited under accession numbers SRR8062108-SRR8062116.
Assembled genomes are deposited with accession numbers

Accession Code	Description	
RCSV00000000	SAMN10219759	BOTACL
RCSW00000000	SAMN10219760	BOTBYS
RCSX00000000	SAMN10219761	BOTDEW
RCSY00000000	SAMN10219762	BOTELL
RCSZ00000000	SAMN10219763	BOTGLO
RCTA00000000	SAMN10219764	BOTPOR
RCTB00000000	SAMN10219765	BOTSIN
RCTC00000000	SAMN10219766	BOTSQU
RCTD00000000	SAMN10219767	SCLCEP

The 12 RNAseq data used for gene prediction are deposited in Genbank under Bioproject number PRJNA494516, with sequence accession numbers SRR8053381-SRR8053392.

Funding
This work was supported by the Dutch Technology Foundation STW, which is part of the Netherlands Organisation for Scientific Research (NWO), and which is partly funded by the Ministry of Economic Affairs (project 15003).
References

Amselem J, Cuomo CA, van Kan JAL, Viaud M, Benito EP, et al. 2011. Genomic analysis of the necrotrophic fungal pathogens *Sclerotinia sclerotiorum* and *Botrytis cinerea*. PLOS Genet 7: e1002230.

Ashton PM, Thanh LT, Trieu PN, Van Anh D, Trinh NM, et al. 2019. Three phylogenetic groups have driven the recent population expansion of *Cryptococcus neoformans*. Nature Comm. 10: 2035.

Bertazzoni S, Williams AH, Jones DA, Syme RA, Tan KC, Hane JK. 2018. Accessories make the outfit: accessory chromosomes and other dispensable DNA regions in plant-pathogenic fungi. Mol Plant-Microbe Interact 31: 779-788

Campbell MA, Rokas A, Slot JC. 2012. Horizontal transfer and death of a fungal secondary metabolic gene cluster. Genome Biol Evol 4: 289-293

Cantarel BL, Korf I, Robb SMC, Parra G, Ross E, et al. 2008. MAKER: An easy-to-use annotation pipeline designed for emerging model organism genomes. Genome Res 18: 188-196.

Capella-Gutiérrez S, Silla-Martínez JM, Gabaldón T. 2009. trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics 25: 1972-1973.

Chakraborty M, Baldwin-Brown JG, Long AD, Emerson JJ. 2016. Contiguous and accurate de novo assembly of metazoan genomes with modest long read coverage. Nucl Acids Res 44: e147.

Chatterjee S, Kuang Y, Splivallo R, Chatterjee P, Karlovsky P. 2016. Interactions among filamentous fungi *Aspergillus niger*, *Fusarium verticillioides* and *Clonostachys rosea*: fungal biomass, diversity of secreted metabolites and fumonisin production. BMC Microbiol 16: 83.

Chin CS, Alexander DH, Marks P, Klammer AA, Drake J, et al. 2013. Nonhybrid finished microbial genome assemblies from long-read SMRT sequencing data. Nat Methods 10:563-569.

Contreras-Moreira B, Vinuesa P. 2013. GET_HOMOLOGUES, a versatile software package for scalable and robust microbial pangenome analysis. Appl Environ Microbiol 79: 7696–7701.

Dalmais B, Schumacher J, Moraga J, Le Pecheur P, Tudzynski B, et al. 2011. The *Botrytis cinerea* phytotoxin botcinic acid requires two polyketide syntheses for production and has a redundant role in virulence with botrydial. Mol Plant Pathol 12: 564-579.

de Vries RP, Riley R, Wiebenga A, Aguilar-Osorio G, Amillis S, et al. 2017. Comparative genomics reveals high biological diversity and specific adaptations in the industrially and medically important fungal genus *Aspergillus*. Genome Biol 18:28.

Derbyshire M, Denton-Giles M, Hegedus D, Seifbarghy S, Rollins JA, et al. 2017. The finished genome of the plant-infecting fungus *Sclerotinia sclerotiorum*: re-visiting the 'two-speed-genome' hypothesis in the context of broad host-range plant pathogenesis. Genome Biol Evol 9: 593-618.

Dong S, Raffaele S, Kamoun S. 2015. The two-speed genomes of filamentous pathogens: waltz with plants. Curr Opin Genet Dev. 35:57–65.
Dunn NA, Unni DR, Diesh C, Munoz-Torres M, Harris NL, Yao E, Rasche H, Holmes IH, Elsik CG, Lewis SE. 2019. Apollo: Democratizing genome annotation. PLoS Comput. Biol. 15, e1006790

Edgar RC. 2010. Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26: 2460-2461.

Elad Y, Pertot I, Cotes Prado AM, Stewart A. 2016. Plant hosts of Botrytis spp. In: Fillinger S, Elad Y, editors. Botrytis: the fungus, the pathogen and its management in agricultural systems. Springer International Publishing pp. 413–86.

Emanuelsson O, Brunak S, von Heijne G, Nielsen H. 2007. Locating proteins in the cell using TargetP, SignalP and related tools. Nat Protoc 2: 953-971.

Emms DM, Kelly S. 2015. OrthoFinder: solving fundamental biases in whole genome comparisons dramatically improves orthogroup inference accuracy. Genome Biol 16: 157.

Faris JD, Zhang ZC, Lu HJ, Lu SW, Reddy L, et al. 2010. A unique wheat disease resistance-like gene governs effector-triggered susceptibility to necrotrophic pathogens. Proc Natl Acad Sci USA 107: 13544-13549.

Fournier E, Giraud T, Albertini C, Brygoo Y. 2005. Partition of the Botrytis cinerea complex in France using multiple gene genealogies. Mycologia 97: 1251-1267.

Friesen TL, Stukenbrock EH, Liu ZH, Meinhardt S, Ling H, et al. 2006. Emergence of a new disease as a result of interspecific virulence gene transfer. Nature Genet 38: 953-956.

Garfinkel AR, Lorenzini M, Zapparoli G, Chastagner GA. 2017. Botrytis euroamericana, a new species from peony and grape in North America and Europe. Mycologia. 109: 495–507.

Garfinkel AR, Coats KP, Sherry DL, Chastagner GA. 2019. Genetic analysis reveals unprecedented diversity of a globally-important plant pathogenic genus. Sci Rep 9: 6671.

Giraud T, Fortini D, Levis C, Lamarque C, Leroux P, et al. 1999. Two sibling species of the Botrytis cinerea complex, transposa and vacuma, are found in sympatry on numerous host plants. Phytopathol 89: 967-973.

Gluck-Thaler E, Slot JC. 2018. Specialized plant biochemistry drives gene clustering in fungi. ISME Journal 12: 1694.

Graham-Taylor C, Kamphuis LG, Derbyshire MC (2020) A detailed in silico analysis of secondary metabolite biosynthesis clusters in the genome of the broad host range plant pathogenic fungus Sclerotinia sclerotiorum. BMC Genomics 21: 7.

Grant-Downton RT, Terhem RB, Kapralov M, Mehdi S, Rodriguez-Enriquez MJ, et al. 2014. A novel Botrytis species is associated with a newly emergent foliar disease in cultivated Hemerocallis, PLOS One 9: e0089272.
Hoff KJ, Lange S, Lomsadze A, Borodovsky M, Stanke M. 2015. BRAKER1: Unsupervised RNA-Seq-based
genome annotation with Genemark-ET and Augustus. Bioinformatics 32: 767-769.
Hyde KD, Nilsson RH, Alias SA, Ariyawansa HA, Blair JE et al. 2014. One stop shop: backbones trees for
important phytopathogenic genera. Fungal Diversity 67: 21-125.
Jarvis MC, Forsyth W, Duncan HJ. 1988. A survey of the pectic content of nonlignified monocot cell walls.
Plant Physiol 88: 309-314.
Katoh K, Standley DM. 2013. MAFFT multiple sequence alignment software version 7: improvements in
performance and usability. Mol Biol Evol 30: 772-780.
Keller NP, Turner G, Bennett JW 2005. Fungal secondary metabolism - from biochemistry to genomics. Nat
Rev Microbiol 3: 937–947.
Koren S, Walenz BP, Berlin K, Miller JR, Phillippy AM. 2017. Canu: Scalable and accurate long-read
assembly via adaptive k-mer weighting and repeat separation. Genome Res 27: 1-15.
Krogh A, Larsson B, von Heijne G, Sonnhammer EL. 2001. Predicting transmembrane protein topology with
a hidden markov model: application to complete genomes. J Mol Biol 305: 567-580.
Li L 2003. OrthoMCL: Identification of Ortholog Groups for Eukaryotic Genomes. Genome Res 13: 2178-
2189.
Lind A, Wisecaver J, Lameiras C, Wiemann P, Palmer J, et al. 2017. Drivers of genetic diversity in secondary
metabolic gene clusters within a fungal species. PLOS Biology. 15.e2003583.
Liu ZH, Faris JD, Oliver RP, Tan KC, Solomon PS, et al. 2009. SnTox3 acts in effector triggered
susceptibility to induce disease on wheat carrying the Snn3 gene. PLOS Path 5: e1000581.
Liu ZH, Zhang ZC, Faris JD, Oliver RP, Syme R, et al. 2012. The Cysteine rich necrotrophic effector SnTox1
produced by Stagonospora nodorum triggers susceptibility of wheat lines harboring Snn1. PLOS Path 8:
e1002467.
Lo Presti L, Kahmann R. 2017. How filamentous plant pathogen effectors are translocated to host cells. Curr
Opinion Plant Biol 38: 19-24.
Love J, Palmer J, Stajich J, Esser T, Kastman E, Winter D. 2019, March 24. nextgenusfs/funannotate:
funannotate v1.5.3 Version 1.5.3.
Maddison WP, Maddison DR. 2019. Mesquite: a modular system for evolutionary analysis. Version 3.61
http://www.mesquiteproject.org.
McDonald MC, Taranto AP, Hill E, Schwessinger B, Liu ZH, et al. 2019. Transposon-mediated horizontal
transfer of the host-specific virulence protein ToxA between three fungal wheat pathogens. mBIO 10:
e01515-19.
Medema MH, Kottmann R, Yilmaz P, Cummings M, Biggins JB, et al. 2015. Minimum Information about a
Biosynthetic Gene cluster. Nat Chem Biol 2015, 11, 625-631.
Mercier A, Carpentier F, Du plaix C, Auger A, Pradier JM, et al. 2019. The polyphagous plant pathogenic fungus *Botrytis cinerea* encompasses host-specialized and generalist populations. Env Microbiol 21: 4808-4821.

Min B, Grigoriev IV, Choi IG 2017. FunGAP: Fungal Genome Annotation Pipeline using evidence-based gene model evaluation. Bioinformatics 33: 2936–2937.

Moeller M, Stukenbrock EH. 2017. Evolution and genome architecture in fungal plant pathogens. Nature Rev Microbiol 15: 756-771.

Navarro-Munoz JC, Collemare JM. 2020. Evolutionary histories of Type III Polyketide Synthases in fungi. Front Microbiol 10: 3018.

Navarro-Muñoz JC, Selem-Mojica N, Mullowney, MW, Kautsar, S, Tryon JH, et al 2019. A computational framework for systematic exploration of biosynthetic diversity from large-scale genomic data. Nat Chem Biol 16: 60-68.

Nguyen LT, Schmidt HA, von Haeseler A, Minh BQ. 2014. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Mol Biol Evol 32: 268-274.

Nielsen K, Yohalem DS. 2001. Origin of a polyploid *Botrytis* pathogen through interspecific hybridization between *Botrytis aclada* and *B. byssoidea*. Mycologia 93: 1064-1071.

Pedro H, Yates AD, Kersey PJ, De Silva NH. 2019. Collaborative annotation redefines gene sets for crucial phytopathogens. Front Microbiol 10: 2477.

Petersen TN, Brunak S, von Heijne G, Nielsen H. 2011. SignalP 4.0: discriminating signal peptides from transmembrane regions. Nat Methods. 8: 785-786.

Pinedo C, Wang CM, Pradier JM, Dalmais B, Choquer M, et al. 2008. Sesquiterpene synthase from the botrydial biosynthetic gene cluster of the phytopathogen *Botrytis cinerea*. ACS Chem Biol. 3:791-801.

Porquier A, Moraga J, Morgant G, Dalmais B, Simon A, et al. 2019. Botcinic acid biosynthesis in *Botrytis cinerea* relies on a subtelomeric gene cluster surrounded by relics of transposons and is regulated by the Zn(2)Cys(6) transcription factor BcBoa13. Curr Genet 65: 965-980.

Porquier A, Morgant G, Moraga J, Dalmais B, Luyten I, et al. 2016. The botrydial biosynthetic gene cluster of *Botrytis cinerea* displays a bipartite genomic structure and is positively regulated by the putative Zn(II)(2)Cys(6) transcription factor BcBot6. Fung Genet Biol 96: 33-46.

Reynolds HT, Vijayakumar V, Gluck-Thaler E, Korotkin HB, Matheny PB, Slot JC. 2018. Horizontal gene cluster transfer increased hallucinogenic mushroom diversity. Evol Lett 2: 88-101.

Ropars J, de la Vega RCR, Lopez-Villavicencio M, Gouzy J, Sallet E, et al. 2015. Adaptive horizontal gene transfers between multiple cheese-associated fungi. Curr Biol 25: 2562-2569.
Rossi FR, Gárriz A, Marina M, Romero FM, Gonzalez ME, et al. 2011. The sesquiterpene botrydial produced by *Botrytis cinerea* induces the hypersensitive response on plant tissues and its action is modulated by salicylic acid and jasmonic acid signaling. Mol Plant-Microbe Interact 24: 888-96.

Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, et al. 2003. Cytoscape: A software environment for integrated models of biomolecular interaction networks. Genome Res 13: 2498–2504.

Shen XX, Steenwyk JL, LaBella AL, Opulente DA, Zhou X, Kominek J, Li Y, Groenewald M, Todd Hittinger C, Rokas A 2020. Genome-scale phylogeny and contrasting modes of genome evolution in the fungal phylum Ascomycota. BioRxiv https://doi.org/10.1101/2020.05.11.088658

Shi GJ, Friesen TL, Saini J, Xu SS, Rasmussen JB, Faris JD 2015. The wheat Snn7 gene confers susceptibility on recognition of the *Parastagonospora nodorum* necrotrophic effector SnTox7. Plant Genome 8: DOI 10.3835/plantgenome2015.02.0007.

Shi GJ, Zhang ZC, Friesen TL, Bansal U, Cloutier S, et al. 2016. Marker development, saturation mapping, and high-resolution mapping of the Septoria nodorum blotch susceptibility gene Snn3-B1 in wheat. Mol Genet Genom 291: 107-119.

Shi-Kunne X, Faino L, van den Berg GCM, Thomma BPHJ, Seidl MF. 2018. Evolution within the fungal genus *Verticillium* is characterized by chromosomal rearrangement and gene loss. Env Microbiol 20: 1362-1373.

Shimodaira H (2002. An approximately unbiased test of phylogenetic tree selection. Systematic Biol 51: 492-508.

Shirane N, Masuko M, Hayashi Y. 1989. Light microscopic observation of nuclei and mitotic chromosomes of *Botrytis* species. Phytopathology 79: 728-730.

Siewers V, Viaud M, Jimenez-Teja D, Collado IG, Gronover CS, et al. 2005. Functional analysis of the cytochrome P450 monoxygenase gene bebot1 of *Botrytis cinerea* indicates that botrydial is a strain-specific virulence factor. Mol Plant-Microbe Interact 18: 602-612.

Simão FA, Waterhouse RM, Ioannidis P, Kriventseva EV, Zdobnov EM. 2015. BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics 31: 3210-3212.

Sipos G, Prasanna AN, Walter MC, O’Connor E, Balint B, et al. 2017. Genome expansion and lineage-specific genetic innovations in the forest pathogenic fungi Armillaria. Nature Ecol Evol 1: 1931-1941.

Slot J, Gluck-Thaler E. 2019. Metabolic gene clusters, fungal diversity, and the generation of accessory functions. Curr Opinion Genet Dev 58: 17-24.

Soltis NE, Atwell S, Shi GJ, Fordyce R, Gwinner R, et al. 2019. Interactions of tomato and *Botrytis cinerea* genetic diversity: parsing the contributions of host differentiation, domestication, and pathogen variation. Plant Cell 31: 502-519.
Spatafora JW, Aime MC, Grigoriev IV, Martin F, Stajich JE, Blackwell M. 2017. The Fungal Tree of Life: from molecular systematics to genome-scale phylogenies. Microbiol Spectrum 5.

Sperschneider J, Gardiner DM, Dodds PN, Tini F, Covarelli L, Singh KB, et al. 2016. EffectorP: Predicting fungal effector proteins from secretomes using machine learning. New Phytol 210: 743-761.

Staats M, van Baarlen P, van Kan JAL. 2005. Molecular phylogeny of the plant pathogenic genus Botrytis and the evolution of host specificity. Mol Biol Evol 22: 333–346.

Staats M, van Baarlen P, van Kan JAL. 2007. AFLP analysis of genetic diversity in populations of Botrytis elliptica and Botrytis tulipae from the Netherlands. Eur J Plant Pathol 117: 219-235.

Stamatakis A. 2014. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30: 1312-1313.

Stanke M, Schöffmann O, Morgenstern B, Waack S. 2006. Gene prediction in eukaryotes with a generalized hidden Markov model that uses hints from external sources. BMC Bioinformatics 7: 62.

Vakirlis N, Sarilar V, Drillon G, Fleiss A, Agier N, Meyniel JP, et al. 2016. Reconstruction of ancestral chromosome architecture and gene repertoire reveals principles of genome evolution in a model yeast genus. Genome Res 26: 918–932.

Valero Jiménez C, Veloso J, Staats M, van Kan JAL. 2019. Comparative genomics of Botrytis spp. BMC Genomics 20: 203.

van Kan JAL, Stassen JHM, Mosbach A, van Der Lee TAJ, Faino L, et al. 2017. A gapless genome sequence of the fungus Botrytis cinerea. Mol Plant Pathol 18: 75–89.

Veloso J, van Kan JAL. 2018. Many shades of grey in Botrytis-host plant interactions. Trends Plant Sci 23: 613-622.

Vignatti P, Gonzalez ME, Jofré EC, Bolívar-Anillo HJ, Moraga J, et al. 2020. Botrydial confers Botrytis cinerea the ability to antagonize soil and phyllospheric bacteria. Fung Biol 124: 54-64.

Waalwijk C, Taga M, Zheng SL, Proctor RH, Vaughan MM, O’Donnell K. 2018. Karyotype evolution in Fusarium. IMA Fungus 9:13-26.

Walker AS, Gladieux P, Decognet V, Fermaud M, Confaïs J, et al. 2015. Population structure and temporal maintenance of the multihost fungal pathogen Botrytis cinerea: causes and implications for disease management. Environ Microbiol 17: 1261-1274.

Weber T, Blin K, Duddela S, Krug D, Kim HU, Bruccoleri R, et al. 2015. antiSMASH 3.0—a comprehensive resource for the genome mining of biosynthetic gene clusters. Nucleic Acids Res 43: W237-243.

Yohalem DS, Nielsen K, Nicolaisen M. 2003. Taxonomic and nomenclatural clarification of the onion neck rotting Botrytis species. Mycotaxon 85: 175-182.