Hemostasis in the Surgical Field

Dr. Rohit Narendra Rathod*†
Maxillofacial And Aesthetic Surgeon, BDS, MDS, FFAS, FHNO- Fellowship in Head And Neck Oncology, Fellowship in Head & Neck oncology, Shakus Medcity Hospital Gujrat, India

Abstract: Hemostatic mechanisms are an integral part of the human physiology. Traditionally divided into intrinsic and extrinsic arms, the coagulation cascade converges, through the interactions of the many various factors, at a standard element—thrombin. As a consequence, variety of various agents is developed to supplement this common, critical step to assist surgical hemostasis. Intraoperative interventions most ordinarily include sutures and heat-generating cautery devices; however, these methods are sometimes insufficient or inappropriate for a selected procedure or anatomic location, resulting in the event of other adjunctive therapies, including topical hemostats. Topical hemostatic agents generally act as active, passive, and combinations therapies, counting on their individual composition and mode of action. We offer a quick review of the traditional coagulation cascade, including critical points, followed by a discussion of surgical strategies and adjunctive therapies want to achieve surgical hemostasis and concluding with a discussion of topical thrombins.

Keywords: Hemostasis, thrombin, topical hemostat, coagulation.

INTRODUCTION

Despite advances in surgical technique, excess bleeding remains a serious complication related to surgery and contributes to poor clinical outcomes. Risk factors for perioperative bleeding include those associated with patient variables, iatrogenic phenomena, primary complications, or the precise surgery or technique. For example, the danger of bleeding is increased in patients taking anticoagulants or antiplatelet agents, those with underlying intrinsic bleeding disorders, or those with specific comorbidities, including diabetic mellitus, hypertension, and renal insufficiency [1, 2]. Further, primary complications of surgery, such as infection, can lead to the development of disseminated intravascular coagulation and widespread diffuse bleeding [1]. Iatrogenic factors, including poor surgical technique, hypothermia, acidosis, and hemodilution (infusion of huge volumes of plasma-poor fluids) also contribute to the risk of perioperative bleeding [1].

Surgical variables are prime determinants of the danger of intraoperative and perioperative bleeding [3]. Indeed, spinal surgeries and vascular procedures require the disruption of highly vascularized areas, and arteria coronary bypass grafting requires the utilization of cardiopulmonary bypass, which, by virtue of heparinization, cannulation, and hemodilution, is related to high rates of bleeding. Anatomic and structural concerns also contribute to this specific risk of bleeding during surgery. Certain situations, such as friable tissue, reoperative adhesions, diffuse soft tissue bleeding, and bone bleeding are often not amenable to traditional surgical techniques (e.g., cautery and suture ligation) used to control bleeding [3].

Intraoperative and perioperative bleeding are associated with poor outcomes. In one study, mortality rates increased from 8% for patients who experienced a blood loss of less than 500 ml during surgery to 42.9% for those who lost more than 2000 ml [4]. In addition to its effects on clinical outcomes, perioperative bleeding results in increased direct and indirect costs. These costs include those related to lost work productivity, obtaining blood products for transfusion, extended procedure times, prolonged length of hospital and intensive care unit stays, and significant requirements in terms of clinical and staff resources related to reoperation.

We provide a brief overview of intrinsic hemostatic mechanisms and selected interventions that can be used to promote and maintain hemostasis in the intraoperative and perioperative setting.
The coagulation cascade is dependent on sequential enzymatic reactions among circulating coagulation factors [6]. These factors are produced by the liver and circulate in an inactive form until the coagulation cascade begins. The central players within the coagulation cascade include activated factors X and V and thrombin (factor II) [7]. Factor V is situated at a particularly important point within the coagulation cascade—the convergence within the intrinsic and extrinsic coagulation pathways (Figure 1) [8]. Thus, the presence of any substance that could inhibit factor V can theoretically exert a profound effect on the generation of thrombin—the final protein within the coagulation cascade responsible for the generation of fibrin. In fact, factor V inhibitors can cause inactivation or depletion of factor V; associated clinical sequelae, though rare, range from asymptomatic abnormalities in laboratory measures of coagulation to bleeding and coagulopathy [9].

Inhibitors of Factor V

- **Warfarin**: A vitamin K antagonist that competitively inhibits factor VIIa.
- **Heparin**: An anticoagulant that inhibits thrombin and factor Xa.
- **Direct Factor Xa Inhibitors**: Direct inhibitors of factor Xa such as rivaroxaban and apixaban.
- **Direct Thrombin Inhibitors**: Direct inhibitors of thrombin such as dabigatran.

These agents are used in the management of various bleeding disorders. They are essential in patients with inherited or acquired deficiencies of factor V, prothrombin, and factor X.

Therapeutic Hemostatic Strategies

Several sorts of interventions are often wont to promote hemostasis within the intraoperative and perioperative periods. These include preventive measures, technical considerations, transfusion of selected blood products, or administration of systemic or topical hemostatic agents (Table 1).

Preventive Measures

Preoperative strategies that reduce the risk of bleeding are associated with improved outcomes in patients undergoing surgery. For patients engaging in elective procedures, use of antiplatelet agents, anticoagulants, and nonsteroidal antiinflammatory drugs should be discontinued well before the surgical date [10]. For those receiving these drugs on an ongoing basis who have more immediate needs for surgical intervention, consideration should be given to delaying the surgical procedure for several days to allow for discontinuation of these drugs and restoration of hemostatic mechanisms—provided that patient safety can be maintained in the interim.

Other preoperative strategies may not reduce the risk of bleeding but can reduce the need for blood transfusions [10]. These strategies include minimization of blood sampling and use of erythropoiesis-stimulating agents for those with defective erythropoiesis due to renal failure or marrow suppression. Proper selection of candidates for surgical procedures is paramount; consideration of the risk-benefit ratio is required for any surgical procedure, particularly in patients with acquired or inherited bleeding diatheses [15]. For example, some patient populations may require ongoing

Hemostatic Mechanisms

- **Intrinsic Hemostatic Mechanisms**: Hemostasis is a complex process that requires coordinated activation of platelets and plasma-clotting factors, ultimately to form a stable, cross-linked, platelet-fibrin clot [6]. This process can be separated into primary and secondary hemostasis. Primary hemostasis occurs in response to release of vasoactive and platelet-activating factors from injured blood vessels or other tissues. These substances cause temporary local contraction of vascular smooth muscle, also as platelet adherence and activation at the location of injury, to make a soft aggregate plug, followed by platelet activation.

 In secondary hemostasis, activated platelets secrete serotonin, prostaglandin, and thromboxane to maintain local vasoconstriction, while activation of the coagulation cascade by tissue factor release from injured tissue ultimately results in fibrin formation, as well as cross-linking and stabilization of the platelet plug [6].

 The coagulation cascade is dependent on sequential enzymatic reactions among circulating coagulation factors [6]. These factors are produced by the liver and circulate in an inactive form until the coagulation cascade is started. The central players within the coagulation cascade include activated factors X and V and thrombin (factor II) [7]. Factor V is situated at a particularly important point within the coagulation cascade—the convergence within the intrinsic and extrinsic coagulation pathways (Figure 1) [8]. Thus, the presence of any substance that could inhibit factor V can theoretically exert a profound effect on the generation of thrombin—the final protein within the coagulation cascade responsible for the generation of fibrin. In fact, factor V inhibitors can cause inactivation or depletion of factor V; associated clinical sequelae, though rare, range from asymptomatic abnormalities in laboratory measures of coagulation to bleeding and coagulopathy [9].

Therapeutic Hemostatic Strategies

Several sorts of interventions are often wont to promote hemostasis within the intraoperative and perioperative periods. These include preventive measures, technical considerations, transfusion of selected blood products, or administration of systemic or topical hemostatic agents (Table 1).

Interventions to Minimize the Risk or Implications of Intraoperative and Perioperative Bleeding

Type	Intervention
Preoperative measures	Administration of erythropoiesis-stimulating agents Autologous blood donations Consideration of individualized risk: benefit ratio for proceeding with surgical interventions Discontinuation of anticoagulants, including herbal medicines Establishment of evidence-based institution wide guidelines regarding optimal (lower) thresholds for red blood cell transfusions Minimization of blood sampling
Surgical techniques	Application of heat by using electric current through bipolar and monopolar electrosurgical devices (e.g., LigaSure vessel-sealing system or vessel-welding systems). Application of heat by using ignition of gas (e.g., argon beam coagulator) Direct pressure. Mechanical devices such as endostaplers, hemoclips, and intracorporeal devices Suture ligation. Use of minimally invasive techniques such as endoscopic, laparoscopic, or percutaneous vascular procedures, or robotic-assisted procedures. Vessel coaptation through Harmonic frequency devices such as Harmonic shears or Harmonic scalpels. Vessel coaptation by ultrasonic cavitation with ultrasonic aspirator
Intraoperative and postoperative acidosis measures	Correction of hypothermia Correction of acidosis
and uninterrupted intensive antiplatelet therapy (e.g., patients with recent placement of drug eluting coronary artery stents) [16]. Unless the surgical indication is urgent, medical management should be elected until the procedure can be performed safely.

Technical Considerations

Traditional methods, such as suture ligation and electrocautery, are critical to achieve hemostasis, but may not be appropriate for all types of surgical terrains or in the presence of diffuse bleeding from soft or friable tissues [3].

Minimally invasive procedures, including endoscopic, laparoscopic, and percutaneous vascular procedures, are related too much lower rates of bleeding in comparison with open surgical procedures [11, 12]. Further, some evidence suggests that robotic-assisted surgical techniques can result in lower rates of intra-operative and perioperative bleeding [11, 12].

Patient conditions should be monitored closely during the surgical procedure and in the immediate postoperative period, as both hypothermia and acidosis can slow the enzymatic reactions of the coagulation cascade and thereby increase the risk of bleeding [1].

Blood Products

Therapies to correct intrinsic or induced coagulopathies can help prevent or stop perioperative bleeding. Transfusion of fresh frozen plasma or platelets is that the mainstay of therapy for relative deficiencies or depletion of coagulation factors or platelets, respectively; factor concentrates or cryoprecipitate are often administered to patients with specific clotting factor deficiencies [1]. Transfusion of packed red blood cells can help maintain lost oxygen-carrying capacity due to hemorrhage but does not correct the underlying deficiency in coagulation capacity.

CONCLUSION

Hemostatic capacity is dependent on multiple variables, including those related to the patient and the surgical procedure, as well as iatrogenic phenomena. Although transfusion of blood products and use of systemic hemostatic agents have been employed with some success, these measures are limited, costly, and carry the risk of various complications. By contrast, topical agents provide a strategy for directed hemostasis through mechanical means and/or manipulation of the coagulation cascade. The choice of topical hemostatic agent must take into account the risks and benefits to the individual patient. Although the utility of topical thrombin products is undeniable, questions remain regarding the risks associated with each formulation.

REFERENCES

1. Dagi, T.F. (2005). The management of postoperative bleeding. Surg Clin North Am, 85; 1191–213.
2. Spencer, F. A., Mosucci, M., Granger, C. B., Gore, J. M., Goldberg, R. J., Steg, P. G., & Fox, K. A. (2007). Does comorbidity account for the excess mortality in patients with major bleeding in acute myocardial infarction?. Circulation, 116(24), 2793-2801.
3. Samudrala, S. (2008). Topical hemostatic agents in surgery: a surgeon's perspective. AORN journal, 88(3), S2-S11.
4. Carson, J., Spence, R., Poses, R., & Bonavita, G. (1988). Severity of anaemia and operative mortality and morbidity. The Lancet, 331(8588), 727-729.
5. Shander, A. (2007). Financial and clinical outcomes associated with surgical bleeding complications. Surgery, 142(4), S20-S25.
6. Arnout, J., & Deckmyn, H. (2004). The hemostatic system. Curr Med Chem, 11(17), 2245-60.
7. Vine, A. K. (2009). Recent advances in haemostasis and thrombosis. Retina, 29(1), 1-7.
8. Sarfati, M. R., DiLorenzo, D. J., Kraiss, L. W., & Galt, S. W. (2004). Severe coagulopathy following intraoperative use of topical thrombin. Annals of vascular surgery, 18(3), 349-351.
9. Streiff, M. B., & Ness, P. M. (2002). Acquired FV inhibitors: a needless iatrogenic complication of bovine thrombin exposure. Transfusion, 42(1), 18-26.
10. Boucher, B. A., & Hannon, T. J. (2007). Blood management: a primer for clinicians. Pharmacotherapy: The Journal of Human Pharmacology and Drug Therapy, 27(10), 1394-1411.
11. Spotnitz, W. D., & Burks, S. (2008). Hemostats, sealants, and adhesives: components of the surgical toolbox. Transfusion, 48(7), 1502-1516.
12. ARI, H. A., Feder, M., & Ghavamian, R. (2007). Minimally invasive approaches to prostate cancer a review of the current literature.
13. Spotnitz, W. D. (2007). Active and mechanical hemostatic agents. Surgery, 142(4), S34-S38.
14. Saxton, M. L. (2007). Hemostasis in minimally invasive liver surgery. Surgery, 142(4), S46-S49.
15. Pernod, G., Barro, C., Blanc-Jouvan, F., & Polack, B. (2003). Routine preoperative evaluation of hemostasis. Revue de Stomatologie et de Chirurgie Maxillo-faciale, 104(2), 91-97.
16. O’Riordan, J. M., Margey, R. J., Blake, G., & O’Connell, P. R. (2009). Antiplatelet agents in the perioperative period. Archives of Surgery, 144(1), 69-76.
17. Ferraris, V. A., Ferraris, S. P., Saha, S. P., Hessel II, E. A., Haan, C. K., Royston, B. D., & Society of Thoracic Surgeons Blood Conservation Guideline Task Force. (2007). Perioperative blood transfusion and blood conservation in cardiac surgery: the Society of Thoracic Surgeons and The Society of Cardiovascular Anesthesiologists clinical practice guideline. The Annals of thoracic

© East African Scholars Publisher, Kenya
18. Henry, D. A., Carless, P. A., Moxey, A. J., O’Connell, D., Stokes, B. J., Fergusson, D. A., & Ker, K. (2011). Anti-fibrinolytic use for minimising perioperative allogeneic blood transfusion. Cochrane database of systematic reviews, (1).

19. Levy, J. H. (2004). Efficacy and safety of aprotinin in cardiac surgery. Orthopedics, 27(6), S659-S662.

20. Fergusson, D. A., Hébert, P. C., Mazer, C. D., Freem, S., MacAdams, C., Murkin, J. M., ... & Pretorius, R. (2008). A comparison of aprotinin and lysine analogues in high-risk cardiac surgery. New England Journal of Medicine, 358(22), 2319-2331.

21. Seyednejad, H., Imani, M., Jamieson, T., & Seifalian, A. M. (2008). Topical haemostatic agents. Journal of British Surgery, 95(10), 1197-1225.

22. Palm, M. D., & Altman, J. S. (2008). Topical hemostatic agents: a review. Dermatologic Surgery, 34(4), 431-445.

23. Lawson, J. H. (2006, February). The clinical use and immunologic impact of thrombin in surgery. In Seminars in thrombosis and hemostasis (Vol. 32, No. S 1, pp. 098-110). Copyright© 2006 by Thieme Medical Publishers, Inc., 333 Seventh Avenue, New York, NY 10001, USA.

Appendix-I: Topical Hemostatic Agents [11, 13, 21, 22]

Class	Agents
Adhesives	Two-component polyethylene glycol (PEG) polymers Bovine albumin plus glutaraldehyde
	Cyanoacylates
Fibrin sealants	Bovine collagen, thrombin (Vitagel; Orthovita, Malvern, PA). Fibrinogen, aprotinin,
	human thrombin, bovine fibrinolysis inhibitor (Tisseel VH; Baxter Healthcare Corp., Westlake Village,
	CA) Fibrinogen, human thrombin (Evicel; Johnson & Johnson Wound Management, Somerville, NJ) Patient
	fibrinogen, thrombin (Cryoseal; Thermo Genesis Corp., Rancho Cordova, CA) [Not available in the United
	States] Thrombin and fibrinogen spray (CoSeal; Baxter Healthcare Corp., Hayward, CA)
Flowables	Gelatin granules/thrombin (Surgiflo; Johnson & Johnson Wound Management, and FloSeal; BaxterHealthcare
	Corp., Fremont, CA)
Mechanicals	Bovine collagen (multiple products) Oxidized regenerated cellulose (Surgicel; Johnson & Johnson Wound
	Management) Polysaccharide spheres (Arista AH; Medafor, Inc., Minneapolis, MN) Porcine gelatin (Gel
	foam; Pharmacia & Upjohn Company Division of Pfizer Inc., New York, NY, and Surgifoam; Johnson &
	Johnson Wound Management)
Sealants	Microfibrillar bovine collagen-fibrin (CoStasis; Cohesion Technologies, Inc., Palo Alto, CA) PEG
	hydrogel (CoSeal; Baxter Healthcare Corp., Hayward, CA, and DuraSeal; Confluent Surgical, Inc.,
	Waltham, MA)
Thrombin	Bovine (Thrombin-JMI; King Pharmaceuticals, Inc., Bristol, TN) Human pooled plasma
	(Evithrom; Johnson & Johnson Wound Management) Recombinant (Recothrom; ZymoGenetics, Inc., Seattle,
	WA)

Cite This Article: Rohit Narendra Rathod (2022). Hemostasis in the Surgical Field. East African Scholars J Med Surg, 4(10), 211-214.