Microwave-assisted catalyst-free synthesis of tetrasubstituted pyrroles using dialkyl acetylenedicarboxylates and monophenacylaniline

Arumugam Mariappan, † Kandasamy Rajaguru, † Shanmugam Muthusubramanian, †,* and Nattamai Bhuvanesh #.

†Department of Organic Chemistry, School of Chemistry, Madurai Kamaraj University, Madurai - 625 021, India.
*X-ray Diffraction Laboratory, Department of Chemistry, Texas A & M University, College Station, TX 77842, USA.

e-mail: muthumanian2001@yahoo.com
*Corresponding author

Table of contents

Table of contents	Page No
Experimental section	3
Characterization data for compounds 3a-3r	4-13
1H & 13C NMR spectra of compound 3a	14
1H, 13C NMR & Mass spectra of compound 3b	16
1H & 13C NMR spectra of compound 3c	19
1H, 13C NMR & Mass spectra of compound 3d	21
1H & 13C NMR spectra of compound 3e	24
1H & 13C NMR spectra of compound 3f	26
1H & 13C NMR spectra of compound 3g	28
1H, 13C NMR & Mass spectra of compound 3h	30
1H & 13C NMR spectra of compound 3i	33
1H & 13C NMR spectra of compound 3j	35
1H & 13C NMR spectra of compound 3k	37
1H & 13C NMR spectra of compound 3l	39
1H & 13C NMR spectra of compound 3m	41
1H & 13C NMR spectra of compound 3n	43
1H & 13C NMR spectra of compound 3o	45
1H, 13C NMR & Mass spectra of compound 3p	47
1H, 13C NMR & Mass spectra of compound 3q	50
1H & 13C NMR spectra of compound 3r	53
1H & 13C NMR spectra of compound 3s	55
1H & 13C NMR spectra of compound 3t 57
1H & 13C NMR spectra of compound 3u 59
References 61
Experimental Section

General Remarks:

All solvents were purchased from commercial sources and used without further purification. The melting points were measured in open capillary tubes and are uncorrected. A CEM Discover microwave synthesizer (Model No: 908010) operating at 180/264 V and 50/60 Hz with microwave power maximum level of 300 W and microwave frequency of 2455 MHz was employed for the microwave-assisted experiments. Nuclear Magnetic Resonance (\(^1\)H and \(^{13}\)C NMR) spectra were recorded on a 300 MHz spectrometer in CDCl\(_3\) using TMS as an internal standard. Chemical shifts are reported in parts per million (\(\delta\)), coupling constants (\(J\) values) are reported in Hertz (Hz) and spin multiplicities are indicated by the following symbols: s (singlet), d (doublet), t (triplet), q (quatret), sept (septet), m (multiplet). \(^{13}\)C NMR spectra were routinely run with broadband decoupling. Elemental analyses were performed on a Perkin Elmer 2400Series II Elemental CHNS analyzer.

General procedure for the synthesis of Dimethyl 1,4-diphenyl-1\(H\)-pyrrole-2,3-dicarboxylate 3

A mixture of substituted monophenacylaniline 1 (1 mmol), dialkyl acetylenedicarboxylate 2 (1.1 mmol) in DMF (1 mL) was sealed and subjected to microwave irradiation programmed at 110 °C and 110 W for 10 minutes. The completion of the reaction was monitored by TLC. The reaction mixture was extracted with ethyl acetate. The organic layer was washed with water and brine, dried over anhydrous sodium sulfate and concentrated in vacuum. Crude product was purified by column chromatography using petroleum ether – ethyl acetate (5: 95) as the eluent to get 3.
Characterization data for compounds (3a-3r)

Diethyl 1,4-bis(4-chlorophenyl)-IH-pyrrole-2,3-dicarboxylate (3c)

Yellow viscous liquid; IR (neat): 1728, 1698, 1590, 1453 cm$^{-1}$. 1H NMR (300 MHz, CDCl$_3$) δ 7.44 - 7.34 (m, 6H), 7.31 - 7.27 (m, 2H), 6.94 (s, 1H), 4.32 (q, $J=7.1$ Hz, 2H), 4.18 (q, $J=7.1$ Hz, 2H), 1.30 (t, $J=7.1$ Hz, 3H), 1.19 (t, $J=7.1$ Hz, 3H). 13C NMR (75 MHz, CDCl$_3$) δ 165.6, 159.7, 137.9, 134.5, 133.2, 131.6, 129.1, 129.1, 128.7, 127.5, 125.4, 124.0, 123.8, 122.1, 61.3, 61.0, 14.0, 13.9. Anal. Calcd for C$_{22}$H$_{19}$Cl$_2$NO$_4$: C, 61.13; H, 4.43; N, 3.24 %. Found: C, 61.08; H, 4.47; N, 3.30 %.

Diethyl 4-(4-chlorophenyl)-1-(p-tolyl)-IH-pyrrole-2,3-dicarboxylate (3d)

Yellow solid; mp 97 – 100 °C; IR (neat): 1730, 1700, 1588, 1454 cm$^{-1}$. 1H NMR (300 MHz, CDCl$_3$) δ 7.40 – 7.31 (m, 4H), 7.27 – 7.21 (m, 4H), 6.94 (s, 1H), 4.31 (q, $J=7.1$ Hz, 2H), 4.18 (q, $J=7.1$ Hz, 2H), 2.41 (s, 3H), 1.29 (t, $J=7.1$ Hz, 3H), 1.18 (t, $J=7.1$ Hz, 3H). 13C NMR (75 MHz, CDCl$_3$) δ 165.9, 159.9, 138.5, 136.8, 132.9, 131.8, 129.4, 129.1, 128.6, 125.8, 125.5, 123.9, 123.5,
Diethyl 4-(4-bromophenyl)-1-(p-tolyl)-1H-pyrrole-2,3-dicarboxylate (3e)

Brown viscous liquid; IR (neat): 3123, 1731, 1703, 1592, 1446 cm\(^{-1}\). \(^1\)H NMR (300 MHz, CDCl\(_3\)) \(\delta\) 7.48 (d, \(J = 8.6\) Hz, 2H), 7.32 (d, \(J = 8.6\) Hz, 2H), 7.24 – 7.21 (m, 4H), 6.94 (s, 1H), 4.31 (q, \(J = 7.1\) Hz, 2H), 4.17 (q, \(J = 7.1\) Hz, 2H), 2.41 (s, 3H), 1.29 (t, \(J = 7.2\) Hz, 3H), 1.17 (t, \(J = 7.1\) Hz, 3H). \(^13\)C NMR (75 MHz, CDCl\(_3\)) \(\delta\) 166.4, 160.2, 139.0, 137.2, 132.7, 131.9, 129.9, 129.9, 126.3, 125.9, 123.8, 121.6, 121.5, 61.7, 61.3, 21.6, 14.5, 14.3. Anal. Calcd for C\(_{23}\)H\(_{22}\)BrNO\(_4\): C, 60.54; H, 4.86; N, 3.07 %. Found: C, 60.51; H, 4.91; N, 3.05 %. *(Two carbon signals merged here)*

Diethyl 1-(4-chlorophenyl)-4-(p-tolyl)-1H-pyrrole-2,3-dicarboxylate (3f)

White solid; mp 99 – 101 °C; IR (neat): 3130, 1730, 1701, 1511, 1418 cm\(^{-1}\). \(^1\)H NMR (300 MHz, CDCl\(_3\)) \(\delta\) 7.42 (d, \(J = 8.7\) Hz, 2H), 7.35 – 7.27 (m, 4H), 7.18 (d, \(J = 7.8\) Hz, 2H), 6.94 (s, 1H), 4.2 (q, \(J = 7.1\) Hz, 2H), 4.2 (q, \(J = 7.1\) Hz, 2H), 2.36 (s, 3H), 1.30 (t, \(J = 7.1\) Hz, 3H), 1.19 (t, \(J = 7.1\) Hz, 3H). \(^13\)C NMR (75 MHz, CDCl\(_3\)) \(\delta\) 165.8, 159.7, 138.1, 136.9, 134.3, 129.9, 129.2, 129.0,
127.6, 127.5, 125.6, 124.9, 122.7, 122.6, 61.4, 60.8, 21.1, 14.0, 13.9. Anal. Calcd for C_{23}H_{22}ClNO_4: C, 67.07; H, 5.38; N, 3.40 %. Found: C, 67.09; H, 5.41; N, 3.36 %.

Diethyl 1-(4-chlorophenyl)-4-(4-methoxyphenyl)-1H-pyrrole-2,3-dicarboxylate (3g)

Yellow viscous liquid; IR (neat): 1707, 1611, 1586, 1450 cm\(^{-1}\). \(^1\)H NMR (300 MHz, CDCl\(_3\)) \(\delta 7.44 - 7.36\) (m, 4H), \(7.30 - 7.24\) (m, 2H), \(6.91\) (m, 3H),* \(4.32\) (q, \(J = 7.1\) Hz, 2H), \(4.17\) (q, \(J = 7.1\) Hz, 2H), \(3.83\) (s, 3H), \(1.30\) (t, \(J = 7.1\) Hz, 3H), \(1.19\) (t, \(J = 7.1\) Hz, 3H). \(^{13}\)C NMR (75 MHz, CDCl\(_3\)) \(\delta 166.1, 159.6, 158.8, 138.0, 134.2, 128.9,* 128.8, 127.5, 125.3, 124.6, 122.7, 122.4, 113.9, 61.3, 60.8, 55.1, 14.0, 13.8. Anal. Calcd for C_{23}H_{22}ClNO_5: C, 64.56; H, 5.18; N, 3.27 %. Found: C, 64.60; H, 5.21; N, 3.23 %. *(Two carbon signals merged here).

Diethyl 4-(4-methoxyphenyl)-1-(p-tolyl)-1H-pyrrole-2,3-dicarboxylate (3h)

Pale brown solid; mp 62 – 64 °C; IR (neat): 1706, 1608, 1579 cm\(^{-1}\). \(^1\)H NMR (300 MHz, CDCl\(_3\)) \(\delta 7.38\) (d, \(J = 8.7\) Hz, 2H), \(7.21 - 7.24\) (m, 4H), \(6.92 - 6.89\) (m, 3H), \(4.31\) (q, \(J = 7.1\) Hz, 2H), \(4.17\) (q, \(J = 7.1\) Hz, 2H), \(3.83\) (s, 3H), \(2.41\) (s, 3H), \(1.30\) (t, \(J = 7.1\) Hz, 3H), \(1.19\) (t, \(J = 7.1\) Hz, 3H). \(^{13}\)C
NMR (75 MHz, CDCl₃) δ 166.3, 159.9, 158.7, 138.3, 137.0, 129.3, 128.9, 125.9, 125.7, 125.4, 124.3, 123.1, 121.5, 113.8, 61.2, 60.7, 55.2, 21.1, 14.0, 13.9. Anal. Calcd for C₂₄H₂₅NO₅: C, 70.75; H, 6.18; N, 3.44 %. Found: C, 70.72; H, 6.23; N, 3.47 %.

Diethyl 4-(4-nitrophenyl)-1-(p-tolyl)-1H-pyrrole-2,3-dicarboxylate (3i)

Yellow solid; mp 109 – 112 °C; IR (neat): 1721, 1595, 1513, 1338, 1225 cm⁻¹. ¹H NMR (300 MHz, CDCl₃) δ 8.23 (d, J = 8.8 Hz, 2H), 7.61 (d, J = 8.8 Hz, 2H), 7.29 – 7.22 (m, 4H), 7.06 (s, 1H), 4.33 (q, J = 7.1 Hz, 2H), 4.19 (q, J = 7.1 Hz, 2H), 2.43 (s, 3H), 1.31 (t, J = 7.1 Hz, 3H), 1.20 (t, J = 7.1 Hz, 3H). ¹³C NMR (75 MHz, CDCl₃) δ 165.3, 159.9, 146.7, 140.3, 138.9, 136.6, 130.2, 129.6, 128.4, 125.9, 125.8, 123.7, 122.7, 120.7, 61.4, 61.1, 21.1, 14.0, 13.8. Anal. Calcd for C₂₃H₂₂N₂O₆: C, 65.40; H, 5.25; N, 6.63 %. Found: C, 65.43; H, 5.20; N, 6.69 %.

Diethyl 1-(2-isopropylphenyl)-4-phenyl-1H-pyrrole-2,3-dicarboxylate (3j)

White solid; mp 71 – 73⁰C; IR (neat): 3066, 2959, 1708, 1602, 1546 cm⁻¹. ¹H NMR (300 MHz, CDCl₃) δ 7.50 – 7.47 (m, 4H), 7.41 – 7.36 (m, 2H), 7.32 – 7.20 (m, 3H), 6.91 (s, 1H), 4.36 (q, J = 7.2 Hz, 2H), 4.10 (q, J = 7.1, 1H), 4.09 (q, J = 7.1, 1H), 2.70 (sept, J = 6 Hz, 1H), 1.32 (t, J = 7.1 Hz, 3H), 1.19 (d, J = 6.0 Hz, 3H), 1.16 (d, J = 6.0 Hz, 3H), 1.07 (t, J = 7.1 Hz, 3H). ¹³C NMR
(75 MHz, CDCl$_3$) δ 166.4, 159.4, 145.8, 137.6, 133.3, 129.3, 128.5, 127.6, 127.5, 126.9, 126.2, 125.9, 125.8, 124.4, 123.9, 121.6, 61.3, 60.5, 27.8, 24.7, 23.1, 14.0, 13.7. Anal. Calcd for C$_{25}$H$_{27}$NO$_4$: C, 74.05; H, 6.71; N, 3.45 %. Found: C, 74.01; H, 6.76; N, 3.48

Diethyl 4-(4-chlorophenyl)-1-(3-methoxyphenyl)-1H-pyrrole-2,3-dicarboxylate (3k)

![Diethyl 4-(4-chlorophenyl)-1-(3-methoxyphenyl)-1H-pyrrole-2,3-dicarboxylate (3k)](image)

Brown viscous liquid; IR (neat): 1732, 1706, 1612, 1548 cm$^{-1}$. 1H NMR (300 MHz, CDCl$_3$) δ 7.40 – 7.32 (m, 5H), 6.99 – 6.92 (m, 3H),* 6.89 (m, 1H), 4.31 (q, J = 7.1 Hz, 2H), 4.18 (q, J = 7.1 Hz, 2H), 3.82 (s, 3H), 1.29 (t, J = 7.1 Hz, 3H), 1.17 (t, J = 7.1 Hz, 3H). 13C NMR (75 MHz, CDCl$_3$) δ 165.7, 159.9, 159.8, 140.3, 133.0, 131.7, 129.6, 129.2, 128.6, 125.3, 124.2, 123.7, 121.1, 118.2, 114.2, 111.9, 61.3, 61.0, 55.4, 14.0, 13.8. Anal. Calcd for C$_{23}$H$_{22}$ClNO$_5$: C, 64.56; H, 5.18; N, 3.27%. Found: C, 64.61; H, 5.21; N, 3.23 %.

Diethyl 4-(4-chlorophenyl)-1-(naphthalen-1-yl)-1H-pyrrole-2,3-dicarboxylate (3l)

![Diethyl 4-(4-chlorophenyl)-1-(naphthalen-1-yl)-1H-pyrrole-2,3-dicarboxylate (3l)](image)

Brown viscous liquid; IR (neat): 1730, 1709, 1593, 1450 cm$^{-1}$. 1H NMR (300 MHz, CDCl$_3$) δ 7.95 (m, 2H), 7.56 – 7.47 (m, 5H), 7.45 – 7.40 (m, 2H), 7.35 (d, J = 8.5 Hz, 2H), 7.05 (s, 1H), 4.37 (q, J = 7.1 Hz, 2H), 3.95 (q, J = 6Hz, 1H), 3.94 (q, J = 6Hz, 1H), 1.34 (d, J = 7.1 Hz,
3H), 0.85 (t, J = 7.1 Hz, 3H). 13C NMR (75 MHz, CDCl$_3$) δ 166.1, 159.3, 136.5, 133.6, 133.2, 131.8, 130.6, 129.3, 129.0, 128.7, 128.1, 127.5, 126.7, 126.4, 125.1, 124.9, 124.6, 123.6, 122.5, 121.8, 61.4, 60.3, 14.1, 13.2. Anal. Calcd for C$_{26}$H$_{22}$ClNO$_4$: C, 69.72; H, 4.95; N, 3.13%. Found: C, 69.76; H, 4.90; N, 3.10%.

Diethyl 4-(naphthalen-2-yl)-1-(p-tolyl)-1H-pyrrole-2,3-dicarboxylate (3m)

![Chemical Structure](image)

Pale yellow solid; mp 89 – 92 °C; IR (neat): 1728, 1704, 1625, 1514 cm$^{-1}$. 1H NMR (300 MHz, CDCl$_3$) δ 7.92 (s, 1H), 7.85 – 7.81 (m, 3H), 7.59 (d, J = 8.5 Hz, 1H), 7.50 – 7.43 (m, 2H), 7.27 (s, 4H), 7.09 (s, 1H), 4.34 (q, J = 7.1 Hz, 2H), 4.19 (q, J = 7.1 Hz, 2H), 2.42 (s, 3H), 1.29 (d, J = 7.1 Hz, 3H), 1.18 (d, J = 7.1 Hz, 3H). 13C NMR (75 MHz, CDCl$_3$) δ 166.2, 159.8, 138.3, 136.9, 133.4, 132.3, 130.7, 129.3, 127.9, 127.8, 127.5, 126.2, 126.1, 126.0, 125.8, 125.6, 124.4, 121.8, 61.2, 60.7, 21.1, 14.0, 13.8. Anal. Calcd for C$_{27}$H$_{25}$NO$_4$ C, 75.86; H, 5.89; N, 3.28%. Found: C, 75.82; H, 5.86; N, 3.31%.

Diethyl 1-(4-chlorophenyl)-4-(naphthalen-2-yl)-1H-pyrrole-2,3-dicarboxylate (3n)

![Chemical Structure](image)
White solid; mp 118 – 121 °C; IR (neat): 1724, 1707, 1626, 1516 cm\(^{-1}\). \(^1\)H NMR (300 MHz, CDCl\(_3\) \(\delta\) 7.91 (s, 1H), 7.86 – 7.80 (m, 4H), 7.60 – 7.56 (m, 1H), 7.49 – 7.47 (m, 1H), 7.46 – 7.42 (m, 2H), 7.35 – 7.33 (m, 1H), 7.32 – 7.30 (m, 1H), 7.08 (s, 1H), 4.34 (q, \(J = 7.1\) Hz, 2H), 4.20 (q, \(J = 7.1\) Hz, 2H), 1.29 (t, \(J = 7.1\) Hz, 3H), 1.21 (t, \(J = 7.1\) Hz, 3H). \(^{13}\)C NMR (75 MHz, CDCl\(_3\) \(\delta\) 166.1, 159.7, 138.1, 134.5, 133.5, 132.6, 130.5, 129.1, 128.1, 127.9, 127.6, *126.25, 126.22, 126.20, 125.90, 125.86, 125.0, 123.4, 122.8, 61.4, 61.0, 14.1, 13.9. Anal. Calcd for C\(_{26}\)H\(_{22}\)ClNO\(_4\) : C, 69.72; H, 4.95; N, 3.13 %. Found: C, 69.65; H, 4.90; N, 3.17 %. *(Two carbon signals merged here)

Diethyl 1-(4-bromophenyl)-4-(naphthalen-1-yl)-1H-pyrrole-2,3-dicarboxylate (3o)

![Chemical Structure](image)

White viscous solid; IR (neat): 1726, 1701, 1593, 1442 cm\(^{-1}\). \(^1\)H NMR (300 MHz, CDCl\(_3\) \(\delta\) 7.96 – 7.93 (m, 1H), 7.89 – 7.83 (m, 2H), 7.61 (d, \(J = 8.7\) Hz, 2H), 7.48 – 7.44 (m, 4H), 7.31 (d, \(J = 8.7\) Hz, 2H), 6.95 (s, 1H), 4.23 (q, \(J = 7.1\) Hz, 2H), 3.97 (q, \(J = 7.1\) Hz, 2H), 1.22 (d, \(J = 7.1\) Hz, 3H), 0.82 (d, \(J = 7.1\) Hz, 3H). \(^{13}\)C NMR (75 MHz, CDCl\(_3\) \(\delta\) 164.8, 160.3, 138.3, 133.5, 132.6, 132.1, 131.1, 128.1, 127.9, 127.7, 127.5, 126.2, 125.9, 125.7, *125.1, 124.3, 123.8, 123.1, 122.3, 61.3, 60.7, 13.9, 13.5. Anal. Calcd for : C\(_{26}\)H\(_{22}\)BrNO\(_4\) C, 63.43; H, 4.50; N, 2.84 %. Found: C, 63.37; H, 4.46; N, 2.87 % *(Two carbon signals merged here).*

Diethyl 1-(naphthalen-1-yl)-4-(naphthalen-2-yl)-1H-pyrrole-2,3-dicarboxylate (3p)
Pale brown solid; mp 216-218 °C; IR (neat): 1731, 1706, 1625, 1514 cm⁻¹. ¹H NMR (300 MHz, CDCl₃) δ 7.98 – 7.92 (m, 3H), 7.87 – 7.81 (m, 3H), 7.63 (dd, J = 8.5, 1.7 Hz, 1H), 7.56 – 7.45 (m, 7H), 7.19 (s, 1H), 4.40 (q, J = 7.1 Hz, 2H), 3.97 (q, J = 6Hz, 1H), 3.98 (q, J = 6Hz, 1H), 1.33 (t, J = 7.1 Hz, 3H), 0.87 (t, J = 7.1 Hz, 3H). ¹³C NMR (75 MHz, CDCl₃) δ 166.5, 159.3, 136.6, 133.7, 133.5, 132.4, 130.8, 130.7, 129.2, 128.1, 128.0, 127.9, 127.6, 127.4, 126.9, 126.7, 126.2, 126.1, 126.0, 125.7, 124.9, 124.6, 124.5, 124.5, 122.5, 122.3, 61.5, 60.5, 14.1, 13.5. Anal. Calcd for C₃₀H₂₅NO₄: C, 77.74; H, 5.44; N, 3.02 %. Found: C, 77.79; H, 5.41; N, 3.08 %. ESI-MS m/z calcd 463.18, found 463.39.

Diethyl 1-(4-methoxyphenyl)-4-(naphthalen-2-yl)-IH-pyrrole-2,3-dicarboxylate (3q)

White solid; mp 85 – 88 °C; IR (neat): 1708, 1628, 1598, 1458 cm⁻¹. ¹H NMR (300 MHz, CDCl₃) δ 7.92 (s, 1H), 7.83 (t, J = 7.2 Hz, 3H), 7.59 (dd, J = 8.5, 1.6 Hz, 1H), 7.49 – 7.45 (m, 2H), 7.31 (d, J = 8.8 Hz, 2H), 7.07 (s, 1H), 6.97 (d, J = 8.9 Hz, 2H), 4.34 (q, J = 7.1 Hz, 2H), 4.19 (q, J = 7.1 Hz, 2H), 3.86 (s, 3H), 1.29 (t, J = 7.2 Hz, 3H), 1.20 (t, J = 7.1 Hz, 3H). ¹³C NMR (75 MHz, CDCl₃) δ 166.2, 159.7, 159.3, 133.3, 132.2, 132.2, 130.6, 127.8, 127.7, 127.4, 127.2, 126.1, 126.1,
126.0, 125.9, 125.6, 124.1, 123.4, 121.7, 113.7, 61.1, 60.6, 55.3, 13.9, 13.8. Anal. Calcd for C_{27}H_{25}NO_{5}: C, 73.12; H, 5.68; N, 3.16 %. Found: C, 73.07; H, 5.71; N, 3.18 %. ESI-MS m/z calcd [M+H]^+ 444.17, found 444.07.

Dimethyl 1-((4-chlorophenyl)-4-phenyl-1H-pyrrole-2,3-dicarboxylate (3r)

![Chemical Structure](image)

Yellow solid; 1H NMR (300 MHz, CDCl$_3$) δ 7.44 – 7.41 (m, 4H), 7.40 – 7.35 (m, 2H), 7.32 – 7.25 (m, 3H), 6.97 (s, 1H), 3.85 (s, 3H), 3.72 (s, 3H). 13C NMR (75 MHz, CDCl$_3$) δ 166.5, 160.0, 137.8, 134.3, 132.7, 129.0, 128.5, 127.4, 127.2, 125.8, 124.9, 122.7, 122.2, 52.4, 51.9.

Dimethyl 1-((4-bromophenyl)-4-phenyl-1H-pyrrole-2,3-dicarboxylate (3s)

![Chemical Structure](image)

Colourless viscous liquid; IR (neat):1707, 1600, 1436 cm$^{-1}$. 1H NMR (300 MHz, CDCl$_3$) δ 7.59 (d, $J = 8.7$ Hz, 2H), 7.45 – 7.40 (m, 3H), 7.37 – 7.30 (m, 2H), 7.24 (d, $J = 8.7$ Hz, 2H), 6.98 (s, 1H), 3.85 (s, 3H), 3.73 (s, 3H). 13C NMR (75 MHz, CDCl$_3$) δ 166.5, 160.2, 138.5, 132.9, 132.1, 128.6, 127.8, 127.7, 127.3, 125.8, 125.2, 123.0, 122.5, 122.4, 52.3, 51.9. Anal. Calcd for C_{20}H_{16}BrNO_{4}: C, 57.99; H, 3.89; N, 3.38 %. Found: C, 57.94; H, 3.92; N, 3.32 %.

Dimethyl 1-((4-chlorophenyl)-4-(p-tolyl)-1H-pyrrole-2,3-dicarboxylate (3t)

12
White solid; mp 101 – 121 °C; IR (neat): 1727, 1699, 1555, 1434 cm⁻¹. ¹H NMR (300 MHz, CDCl₃) δ 7.42 (d, J = 8.7 Hz, 2H), 7.34 – 7.30 (m, 4H), 7.18 (d, J = 8.0 Hz, 2H), 6.95 (s, 1H), 3.85 (s, 3H), 3.72 (s, 3H), 2.36 (s, 3H). ¹³C NMR (75 MHz, CDCl₃) δ 166.6, 160.1, 137.9, 137.0, 134.4, 129.8, 129.3,* 129.0, 127.5, 127.4, 125.7, 125.0, 122.3, 52.4, 51.9, 21.1. Anal. Calcd for C₂₁H₁₈ClNO₄: C, 65.71; H, 4.73; N, 3.65 %. Found: C, 65.66; H, 4.77; N, 3.62 %. *(Two carbon signals merged here)

Dimethyl 1,4-bis(4-methoxyphenyl)-IH-pyrrole-2,3-dicarboxylate (3u)

Pale yellow solid; mp 91 – 93 °C; IR (neat): 1723, 1697, 1497 cm⁻¹. ¹H NMR (300 MHz, CDCl₃) δ 7.37 (d, J = 8.8 Hz, 2H), 7.28 – 7.25 (m, 2H), 6.96 (s, 1H), 6.93 – 6.90 (m, 4H), 3.85 (s, 3H), 3.84 (s, 3H), 3.82 (s, 3H), 3.71 (s, 3H). ¹³C NMR (75 MHz, CDCl₃) δ 166.7, 160.5, 159.5, 158.9, 132.4, 128.9, 127.3, 125.8, 125.7, 124.4, 123.3, 121.3, 114.0, 113.7, 55.5, 55.3, 52.2, 51.8. Anal. Calcd for C₂₂H₂₁NO₆: C, 66.83; H, 5.35; N, 3.54 %. Found: C, 66.87; H, 5.31; N, 3.57 %.
Fig. 1. 1H NMR spectrum of 3a
Fig. 2. 13C NMR spectrum 3a
Fig.3. 1H NMR spectrum of 3b
Fig. 4. 13C NMR spectrum 3b
Fig. 5. Mass spectrum of 3b
Fig. 6. 1H NMR spectrum of 3c
Fig. 7. 13C NMR spectrum 3c
Fig. 8. 1H NMR spectrum of 3d
Fig. 9. 13C NMR spectrum 3d
Fig. 10. Mass spectrum of 3d
Fig. 11. 1H NMR spectrum of 3e
Fig. 12. 13C NMR spectrum 3e
Fig. 13. 1H NMR spectrum of 3f
Fig. 14. 13C NMR spectrum 3f
Fig. 15. 1H NMR spectrum of 3g
Fig. 16. 13C NMR spectrum 3g
Fig. 17. 1H NMR spectrum 3h
Fig. 18. 13C NMR spectrum 3h
Fig. 19. Mass spectrum of 3h
Fig. 20. 1H NMR spectrum 3i
Fig. 21. 13C NMR spectrum $3i$
Fig. 22. 1H NMR spectrum 3j
Fig. 23. 13C NMR spectrum 3j
Fig. 24. 1H NMR spectrum 3k
Fig. 25. 13C NMR spectrum 3k
Fig. 26. 1H NMR spectrum 3l
Fig. 27. 13C NMR spectrum 31
Fig. 28. 1H NMR spectrum 3m
Fig. 29. 13C NMR spectrum 3m
Fig. 30. 1H NMR spectrum 3n
Fig. 31. 13C NMR spectrum 3n
Fig. 32. 1H NMR spectrum 3o
Fig. 33. 13C NMR spectrum 3o
Fig. 34. 1H NMR spectrum 3p
Fig. 35. 13C NMR spectrum 3p
Fig. 36. Mass spectrum of 3p
Fig. 37. 1H NMR spectrum 3q
Fig. 38. 13C NMR spectrum 3q
Fig. 39. Mass spectrum of 3q
Fig. 40. 1H NMR spectrum 3r
Fig. 41. 13C NMR spectrum 3r
Fig. 42. 1H NMR spectrum 3s
Fig. 43. 13C NMR spectrum 3s
Fig. 44. 1H NMR spectrum 3t
Fig. 45. 13C NMR spectrum 3t
Fig. 46. 1H NMR spectrum 3u
Fig. 47. 13C NMR spectrum 3u
REFERENCES

1. Khetan, S.K.; Hiriyakkanavar, J.G.; George, M.V. *Tetrahedron* **1968**, *24*, 1567.