Insertion of a Contra-\(\alpha\)-continuous Function

Majid Mirmiran\(^1\) and Binesh Naderi\(^2\)

\(^1\)Department of Mathematics, University of Isfahan, Isfahan 81746-73441, Iran
E-mail: mirmir@sci.ui.ac.ir

\(^2\)Department of General Courses, School of Management and Medical Information Sciences, Isfahan University of Medical Sciences, Isfahan, Iran; E-mail: naderi@mng.mui.ac.ir

Abstract

A necessary and sufficient condition in terms of lower cut sets is given for the insertion of a contra-\(\alpha\)-continuous function between two comparable real-valued functions.

1. Introduction

The concept of a preopen set in a topological space was introduced by Corson and Michael in 1964 [4]. A subset \(A\) of a topological space \((X, \tau)\) is called preopen or locally dense or nearly open if \(A \subseteq \text{Int}(\text{Cl}(A))\). A set \(A\) is called preclosed if its complement is preopen or equivalently if \(\text{Cl}(\text{Int}(A)) \subseteq A\). The term, preopen, was used for the first time by Mashhour et al. [20], while the concept of a locally dense set was introduced by Corson and Michael [4].

The concept of a semi-open set in a topological space was introduced by Levine in 1963 [17]. A subset \(A\) of a topological space \((X, \tau)\) is called semi-open [10] if \(A \subseteq \text{Cl}(\text{Int}(A))\). A set \(A\) is called semi-closed if its complement is semi-open or equivalently if \(\text{Int}(\text{Cl}(A)) \subseteq A\).
Recall that a subset A of a topological space (X, τ) is called α-open if A is the difference of an open and a nowhere dense subset of X. A set A is called α-closed if its complement is α-open or equivalently if A is union of a closed and a nowhere dense set.

A set is α-open if and only if it is semi-open and preopen.

A generalized class of closed sets was considered by Maki in [19]. He investigated the sets that can be represented as union of closed sets and called them V-sets. Complements of V-sets, i.e., sets that are intersection of open sets are called Λ-sets [19].

Recall that a real-valued function f defined on a topological space X is called A-continuous [25] if the preimage of every open subset of \mathbb{R} belongs to A, where A is a collection of subsets of X. Most of the definitions of function used throughout this paper are consequences of the definition of A-continuity. However, for unknown concepts the reader may refer to [5, 11]. In the recent literature many topologists had focused their research in the direction of investigating different types of generalized continuity.

Dontchev in [6] introduced a new class of mappings called contra-continuity. Jafari and Noiri in [12, 13] exhibited and studied among others a new weaker form of this class of mappings called contra-α-continuous. A good number of researchers have also initiated different types of contra-continuous like mappings in the papers [1, 3, 8, 9, 10, 24].

Hence, a real-valued function f defined on a topological space X is called contra-α-continuous (resp. contra-semi-continuous, contra-precontinuous) if the preimage of every open subset of \mathbb{R} is α-closed (resp. semi-closed, preclosed) in X [6].

Results of Katětov [14, 15] concerning binary relations and the concept of an indefinite lower cut set for a real-valued function, which is due to Brooks [2], are used in order to give a necessary and sufficient conditions for the insertion of a contra-α-continuous function between two comparable real-valued functions.

If g and f are real-valued functions defined on a space X, we write $g \leq f$ (resp. $g < f$) in case $g(x) \leq f(x)$ (resp. $g(x) < f(x)$) for all x in X.

The following definitions are modifications of conditions considered in [16].

A property P defined relative to a real-valued function on a topological space is a $c\alpha$-property provided that any constant function has property P and provided that the
Insertion of a Contra-\(\alpha\)-continuous Function

sum of a function with property \(P\) and any contra-\(\alpha\)-continuous function also has property \(P\). If \(P_1\) and \(P_2\) are \(c\alpha\)-property, the following terminology is used: (i) A space \(X\) has the weak \(c\alpha\)-insertion property for \((P_1, P_2)\) if and only if for any functions \(g\) and \(f\) on \(X\) such that \(g \leq f\), \(g\) has property \(P_1\) and \(f\) has property \(P_2\), then there exists a contra-\(\alpha\)-continuous function \(h\) such that \(g \leq h \leq f\). (ii) A space \(X\) has the \(c\alpha\)-insertion property for \((P_1, P_2)\) if and only if for any functions \(g\) and \(f\) on \(X\) such that \(g < f\), \(g\) has property \(P_1\) and \(f\) has property \(P_2\), then there exists a contra-\(\alpha\)-continuous function \(h\) such that \(g < h < f\). (iii) A space \(X\) has the weakly \(c\alpha\)-insertion property for \((P_1, P_2)\) if and only if for any functions \(g\) and \(f\) on \(X\) such that \(g < f\), \(g\) has property \(P_1\), \(f\) has property \(P_2\) and \(f - g\) has property \(P_2\), then there exists a contra-\(\alpha\)-continuous function \(h\) such that \(g < h < f\).

In this paper, it is given a sufficient condition for the weak \(c\alpha\)-insertion property. Also for a space with the weak \(c\alpha\)-insertion property, we give a necessary and sufficient condition for the space to have the \(c\alpha\)-insertion property. Several insertion theorems are obtained as corollaries of these results.

2. The Main Result

Before giving a sufficient condition for insertability of a contra-\(\alpha\)-continuous function, the necessary definitions and terminology are stated.

Let \((X, \tau)\) be a topological space. Then the family of all \(\alpha\)-open, \(\alpha\)-closed, semi-open, semi-closed, preopen and preclosed will be denoted by \(\alpha O(X, \tau)\), \(\alpha C(X, \tau)\), \(sO(X, \tau)\), \(sC(X, \tau)\), \(pO(X, \tau)\) and \(pC(X, \tau)\), respectively.

Definition 2.1. Let \(A\) be a subset of a topological space \((X, \tau)\). We define the subsets \(A^\Lambda\) and \(A^V\) as follows:

\[
A^\Lambda = \bigcap \{O : O \supseteq A, O \in (X, \tau)\} \quad \text{and} \quad A^V = \bigcup \{F : F \subseteq A, F^c \in (X, \tau)\}.
\]

In [7, 18, 23], \(A^\Lambda\) is called the kernel of \(A\).

We define the subsets \(\alpha(A^\Lambda), \alpha(A^V), \rho(A^\Lambda), \rho(A^V), s(A^\Lambda)\) and \(s(A^V)\) as follows:

\[\text{Earthline J. Math. Sci. Vol. 2 No. 2 (2019), 383-393}\]
\[\alpha(A^\Lambda) = \bigcap\{O : O \supseteq A, O \in \alpha(O(X, \tau))\}, \]
\[\alpha(A^V) = \bigcup\{F : F \subseteq A, F \in \alpha(C(X, \tau))\}, \]
\[p(A^\Lambda) = \bigcap\{O : O \supseteq A, O \in p(O(X, \tau))\}, \]
\[p(A^V) = \bigcup\{F : F \subseteq A, F \in p(C(X, \tau))\}, \]
\[s(A^\Lambda) = \bigcap\{O : O \supseteq A, O \in s(O(X, \tau))\} \]
and
\[s(A^V) = \bigcup\{F : F \subseteq A, F \in s(C(X, \tau))\}. \]

\(\alpha(A^\Lambda)\) (resp. \(p(A^\Lambda), s(A^\Lambda)\)) is called the \(\alpha\)-kernel (resp. prekernel, semi-kernel) of \(A\).

The following first two definitions are modifications of conditions considered in [14, 15].

Definition 2.2. If \(\rho\) is a binary relation in a set \(S\), then \(\overline{\rho}\) is defined as follows: \(x \overline{\rho} y\) if and only if \(y \rho v \) implies \(x \rho v\) and \(u \rho x \) implies \(u \rho y\) for any \(u\) and \(v\) in \(S\).

Definition 2.3. A binary relation \(\rho\) in the power set \(P(X)\) of a topological space \(X\) is called a strong binary relation in \(P(X)\) in case \(\rho\) satisfies each of the following conditions:

1. If \(A_i \rho B_j\) for any \(i \in \{1, \ldots, m\}\) and for any \(j \in \{1, \ldots, n\}\), then there exists a set \(C\) in \(P(X)\) such that \(A_i \rho C\) and \(C \rho B_j\) for any \(i \in \{1, \ldots, m\}\) and any \(j \in \{1, \ldots, n\}\).

2. If \(A \subseteq B\), then \(A \overline{\rho} B\).

3. If \(A \rho B\), then \(\alpha(A^\Lambda) \subseteq B\) and \(A \subseteq \alpha(B^\Lambda)\).

The concept of a lower indefinite cut set for a real-valued function was defined by Brooks [2] as follows:

Definition 2.4. If \(f\) is a real-valued function defined on a space \(X\) and if \(\{x \in X : f(x) < \ell\} \subseteq A(f, \ell) \subseteq \{x \in X : f(x) \leq \ell\}\) for a real number \(\ell\), then \(A(f, \ell)\) is called a lower indefinite cut set in the domain of \(f\) at the level \(\ell\).
We now give the following main result:

Theorem 2.1. Let \(g \) and \(f \) be real-valued functions on the topological space \(X \), in which \(\alpha \)-kernel sets are \(\alpha \)-open, with \(g \leq f \). If there exists a strong binary relation \(\rho \) on the power set of \(X \) and if there exist lower indefinite cut sets \(A(f, t) \) and \(A(g, t) \) in the domain of \(f \) and \(g \) at the level \(t \) for each rational number \(t \) such that if \(t_1 < t_2 \), then \(A(f, t_1) \rho A(g, t_2) \), then there exists a contra-\(\alpha \)-continuous function \(h \) defined on \(X \) such that \(g \leq h \leq f \).

Proof. Theorem 2.1 in [22].

Theorem 2.2. Let \(P_1 \) and \(P_2 \) be \(\alpha \)-property and \(X \) be a space that satisfies the weak \(\alpha \)-insertion property for \((P_1, P_2) \). Also assume that \(g \) and \(f \) are functions on \(X \) such that \(g < f \), \(g \) has property \(P_1 \) and \(f \) has property \(P_2 \). The space \(X \) has the \(\alpha \)-insertion property for \((P_1, P_2) \) if and only if there exist lower cut sets \(A(f - g, 3^{-n+1}) \) and there exists a decreasing sequence \(\{D_n\} \) of subsets of \(X \) with empty intersection and such that for each \(n \), \(X \setminus D_n \) and \(A(f - g, 3^{-n+1}) \) are completely separated by contra-\(\alpha \)-continuous functions.

Proof. Theorem 2.1 in [21].

3. Applications

The abbreviations \(c\alpha c, \quad cpc \) and \(csc \) are used for contra-\(\alpha \)-continuous, contra-precontinuous and contra-semi-continuous, respectively.

Before stating the consequences of Theorems 2.1, 2.2, we suppose that \(X \) is a topological space whose \(\alpha \)-kernel sets are \(\alpha \)-open.

Corollary 3.1. If for each pair of disjoint preopen (resp. semi-open) sets \(G_1, G_2 \) of \(X \), there exist \(\alpha \)-closed sets \(F_1 \) and \(F_2 \) of \(X \) such that \(G_1 \subseteq F_1 \), \(G_2 \subseteq F_2 \) and \(F_1 \cap F_2 = \emptyset \), then \(X \) has the weak \(\alpha \)-insertion property for \((cpc, cpc) \) (resp. \((csc, csc) \)).

Proof. Corollary 3.1 in [22].
Corollary 3.2. If for each pair of disjoint preopen (resp. semi-open) sets G_1, G_2, there exist α-closed sets F_1 and F_2 such that $G_1 \subseteq F_1, G_2 \subseteq F_2$ and $F_1 \cap F_2 = \emptyset$, then every contra-precontinuous (resp. contra-semi-continuous) function is contra-α-continuous.

Proof. Corollary 3.2 in [22].

Corollary 3.3. If for each pair of disjoint preopen (resp. semi-open) sets G_1, G_2 of X, there exist α-closed sets F_1 and F_2 of X such that $G_1 \subseteq F_1, G_2 \subseteq F_2$ and $F_1 \cap F_2 = \emptyset$, then X has the α-insertion property for (cpc, cpc) (resp. (csc, csc)).

Proof. Let g and f be real-valued functions defined on the X, such that f and g are cpc (resp. csc), and $g < f$. Set $h = (f + g)/2$, thus $g < h < f$, and by Corollary 3.2, since g and f are contra-α-continuous functions hence h is a contra-α-continuous function.

Corollary 3.4. If for each pair of disjoint subsets G_1, G_2 of X, such that G_1 is preopen and G_2 is semi-open, there exist α-closed subsets F_1 and F_2 of X such that $G_1 \subseteq F_1, G_2 \subseteq F_2$ and $F_1 \cap F_2 = \emptyset$, then X have the weak α-insertion property for (cpc, cpc) and (csc, cpc).

Proof. Corollary 3.4 in [22].

Before stating consequences of Theorem 2.2, we state and prove the necessary lemmas.

Lemma 3.1. The following conditions on the space X are equivalent:

(i) For each pair of disjoint subsets G_1, G_2 of X, such that G_1 is preopen and G_2 is semi-open, there exist α-closed subsets F_1, F_2 of X such that $G_1 \subseteq F_1, G_2 \subseteq F_2$ and $F_1 \cap F_2 = \emptyset$.

(ii) If G is a semi-open (resp. preopen) subset of X which is contained in a preclosed (resp. semi-closed) subset F of X, then there exists an α-closed subset H of X such that $G \subseteq H \subseteq \alpha(H^\lambda) \subseteq F$.

Proof. Lemma 3.1 in [22].
Lemma 3.2. Suppose that X is a topological space. If each pair of disjoint subsets G_1, G_2 of X, where G_1 is preopen and G_2 is semi-open, can be separated by α-closed subsets of X, then there exists a contra-α-continuous function $h : X \to [0, 1]$ such that $h(G_2) = \{0\}$ and $h(G_1) = \{1\}$.

Proof. Lemma 3.2 in [22].

Lemma 3.3. Suppose that X is a topological space such that every two disjoint semi-open and preopen subsets of X can be separated by α-closed subsets of X. The following conditions are equivalent:

(i) Every countable covering of semi-closed (resp. preclosed) subsets of X has a refinement consisting of preclosed (resp. semi-closed) subsets of X such that for every $x \in X$, there exists an α-closed subset of X containing x such that it intersects only finitely many members of the refinement.

(ii) Corresponding to every decreasing sequence $\{G_n\}$ of semi-open (resp. preopen) subsets of X with empty intersection there exists a decreasing sequence $\{F_n\}$ of preclosed (resp. semi-closed) subsets of X such that $\bigcap_{n=1}^{\infty} F_n = \emptyset$ and for every $n \in \mathbb{N}$, $G_n \subseteq F_n$.

Proof. (i) \Rightarrow (ii) Suppose that $\{G_n\}$ is a decreasing sequence of semi-open (resp. preopen) subsets of X with empty intersection. Then $\{G_n^c : n \in \mathbb{N}\}$ is a countable covering of semi-closed (resp. preclosed) subsets of X. By hypothesis (i) and Lemma 3.1, this covering has a refinement $\{V_n : n \in \mathbb{N}\}$ such that every V_n is an α-closed subset of X and $\alpha(V_n^c) \subseteq G_n^c$. By setting $F_n = \alpha((V_n^c)^c)$, we obtain a decreasing sequence of α-closed subsets of X with the required properties.

(ii) \Rightarrow (i) Now if $\{H_n : n \in \mathbb{N}\}$ is a countable covering of semi-closed (resp. preclosed) subsets of X, we set for $n \in \mathbb{N}$, $G_n = \left(\bigcup_{i=1}^{n} H_i\right)^c$. Then $\{G_n\}$ is a decreasing sequence of semi-open (resp. preopen) subsets of X with empty intersection. By (ii) there exists a decreasing sequence $\{F_n\}$ consisting of preclosed (resp. semi-closed) subsets of X such that $\bigcap_{n=1}^{\infty} F_n = \emptyset$ and for every $n \in \mathbb{N}$, $G_n \subseteq F_n$. Now we define the subsets
W_n of X in the following manner:

W_1 is an α-closed subset of X such that $F_1^c \subseteq W_1$ and $\alpha(W_1^\alpha) \cap G_1 = \emptyset$.

W_2 is an α-closed subset of X such that $\alpha(W_1^\alpha) \cup F_2^c \subseteq W_2$ and $\alpha(W_2^\alpha) \cap G_2 = \emptyset$, and so on. (By Lemma 3.1, W_n exists).

Then since $\{F_n^c : n \in \mathbb{N}\}$ is a covering for X, hence $\{W_n : n \in \mathbb{N}\}$ is a covering for X consisting of α-closed sets. Moreover, we have

(i) $\alpha(W_n^\alpha) \subseteq W_{n+1}$.

(ii) $F_n^c \subseteq W_n$.

(iii) $W_n \subseteq \bigcup_{i=1}^{n} H_i$.

Now setting $S_1 = W_1$ and for $n \geq 2$, we set $S_n = W_{n+1} \setminus \alpha(W_{n-1}^\alpha)$.

Then since $\alpha(W_{n-1}^\alpha) \subseteq W_n$ and $S_n \supseteq W_{n+1} \setminus W_n$, it follows that $\{S_n : n \in \mathbb{N}\}$ consists of α-closed sets and covers X. Furthermore, $S_i \cap S_j \neq \emptyset$ if and only if $|i - j| \leq 1$. Finally, consider the following sets:

$$
\begin{align*}
S_1 \cap H_1, & \quad S_1 \cap H_2, \\
S_2 \cap H_1, & \quad S_2 \cap H_2, \quad S_2 \cap H_3, \\
S_3 \cap H_1, & \quad S_3 \cap H_2, \quad S_3 \cap H_3, \quad S_3 \cap H_4, \\
& \vdots \\
S_i \cap H_1, & \quad S_i \cap H_2, \quad S_i \cap H_3, \quad S_i \cap H_4, \quad \ldots, \quad S_i \cap H_{i+1} \\
& \vdots
\end{align*}
$$

These sets are α-closed sets, cover X and refine $\{H_n : n \in \mathbb{N}\}$. In addition, $S_i \cap H_j$ can intersect at most the sets in its row, immediately above, or immediately below row.

Hence if $x \in X$ and $x \in S_n \cap H_m$, then $S_n \cap H_m$ is an α-closed set containing x that intersects at most finitely many of sets $S_i \cap H_j$. Consequently, $\{S_i \cap H_j : i \in \mathbb{N}\}$
Corollary 3.5. If every two disjoint semi-open and preopen subsets of \(X \) can be separated by \(\alpha \)-closed subsets of \(X \), and in addition, every countable covering of semi-closed (resp. preclosed) subsets of \(X \) has a refinement that consists of preclosed (resp. semi-closed) subsets of \(X \) such that for every point of \(X \) we can find an \(\alpha \)-closed subset containing that point such that it intersects only a finite number of refining members, then \(X \) has the weakly \(c\alpha \)-insertion property for (cpc, csc) (resp. (csc, cpc)).

Proof. Since every two disjoint semi-open and preopen sets can be separated by \(\alpha \)-closed subsets of \(X \), therefore by Corollary 3.4, \(X \) has the weak \(c\alpha \)-insertion property for (cpc, csc) and (csc, cpc). Now suppose that \(f \) and \(g \) are real-valued functions on \(X \) with \(g < f \), such that \(g \) is cpc (resp. csc), \(f \) is csc (resp. cpc) and \(f - g \) is csc (resp. cpc). For every \(n \in \mathbb{N} \), set

\[
A(f - g, 3^{-n+1}) = \{ x \in X : (f - g)(x) \leq 3^{-n+1} \}.
\]

Since \(f - g \) is csc (resp. cpc), hence \(A(f - g, 3^{-n+1}) \) is a semi-open (resp. preopen) subset of \(X \). Consequently, \(\{ A(f - g, 3^{-n+1}) \} \) is a decreasing sequence of semi-open (resp. preopen) subsets of \(X \) and furthermore since \(0 < f - g \), it follows that

\[
\bigcap_{n=1}^{\infty} A(f - g, 3^{-n+1}) = \emptyset.
\]

Now by Lemma 3.3, there exists a decreasing sequence \(\{ D_n \} \) of preclosed (resp. semi-closed) subsets of \(X \) such that \(A(f - g, 3^{-n+1}) \subseteq D_n \) and

\[
\bigcap_{n=1}^{\infty} D_n = \emptyset.
\]

But by Lemma 3.2, the pair \(A(f - g, 3^{-n+1}) \) and \(X \setminus D_n \) of semi-open (resp. preopen) and preopen (resp. semi-open) subsets of \(X \) can be completely separated by contra-\(\alpha \)-continuous functions. Hence by Theorem 2.2, there exists a contra-\(\alpha \)-continuous function \(h \) defined on \(X \) such that \(g < h < f \), i.e., \(X \) has the weakly \(c\alpha \)-insertion property for (cpc, csc) (resp. (csc, cpc)).

References

[1] A. Al-Omari and M. S. Md Noorani, Some properties of contra-b-continuous and almost contra-b-continuous functions, *Eur. J. Pure. Appl. Math.* 2(2) (2009), 213-230.

Earthline J. Math. Sci. Vol. 2 No. 2 (2019), 383-393
[2] F. Brooks, Indefinite cut sets for real functions, *Amer. Math. Monthly* 78 (1971), 1007-1010. https://doi.org/10.1080/00029890.1971.11992929

[3] M. Caldas and S. Jafari, Some properties of contra-β-continuous functions, *Mem. Fac. Sci. Kochi Univ.* 22 (2001), 19-28.

[4] H. H. Corson and E. Michael, Metrizability of certain countable unions, *Illinois J. Math.* 8 (1964), 351-360. https://doi.org/10.1215/ijm/1256059678

[5] J. Dontchev, Characterization of some peculiar topological space via A- and B-sets, *Acta Math. Hungar.* 69(1-2) (1995), 67-71. https://doi.org/10.1007/BF01874608

[6] J. Dontchev, Contra-continuous functions and strongly S-closed spaces, *Internat. J. Math. Math. Sci.* 19(2) (1996), 303-310. https://doi.org/10.1155/S0161171196000427

[7] J. Dontchev and H. Maki, On sg-closed sets and semi-λ-closed sets, *Questions Answers Gen. Topology* 15(2) (1997), 259-266.

[8] E. Ekici, On contra-continuity, *Ann. Univ. Sci. Budapest* 47 (2004), 127-137.

[9] E. Ekici, New forms of contra-continuity, *Carpathian J. Math.* 24(1) (2008), 37-45.

[10] A. I. El-Magbrabi, Some properties of contra-continuous mappings, *Int. J. General Topol.* 3(1-2) (2010), 55-64.

[11] M. Ganster and I. Reilly, A decomposition of continuity, *Acta Math. Hungar.* 56(3-4) (1990), 299-301. https://doi.org/10.1007/BF01903846

[12] S. Jafari and T. Noiri, Contra-α-continuous functions between topological spaces, *Iran. Int. J. Sci.* 2 (2001), 153-167.

[13] S. Jafari and T. Noiri, On contra-precontinuous functions, *Bull. Malays. Math. Sci. Soc.* 25 (2002), 115-128.

[14] M. Katětov, On real-valued functions in topological spaces, *Fund. Math.* 38 (1951), 85-91. https://doi.org/10.4064/fm-38-1-85-91

[15] M. Katětov, Correction to “On real-valued functions in topological spaces” (Fund. Math. 38 (1951), pp. 85-91), *Fund. Math.* 40 (1953), 203-205. https://doi.org/10.4064/fm-40-1-203-205

[16] E. Lane, Insertion of a continuous function, *Pacific J. Math.* 66 (1976), 181-190. https://doi.org/10.2140/pjm.1976.66.181

[17] N. Levine, Semi-open sets and semi-continuity in topological space, *Amer. Math. Monthly* 70 (1963), 36-41. https://doi.org/10.1080/00029890.1963.11990039
[18] S. N. Maheshwari and R. Prasad, On \((R_0)_x\)-spaces, *Portugal. Math.* 34 (1975), 213-217.

[19] H. Maki, Generalized \(\Lambda\)-sets and the associated closure operator, *The Special Issue in Commemoration of Prof. Kazusada IKEDA’s Retirement* (1986), 139-146.

[20] A. S. Mashhour, M. E. Abd El-Monsef and S. N. El-Deeb, On precontinuous and weak precontinuous mappings, *Proc. Math. Phys. Soc. Egypt* 53 (1982), 47-53.

[21] M. Mirmiran, Insertion of a function belonging to a certain subclass of \(R^x\), *Bull. Iranian Math. Soc.* 28(2) (2002), 19-27.

[22] M. Mirmiran and B. Naderi, Strong insertion of a contra-\(\alpha\)-continuous function between two comparable real-valued functions, *Earthline J. Math. Sci.* 2(1) (2019), 223-239. https://doi.org/10.34198/ejms.2119.223239

[23] M. Mršević, On pairwise \(R_0\) and pairwise \(R_1\) bitopological spaces, *Bull. Math. Soc. Sci. Math. R. S. Roumanie* 30 (1986), 141-148.

[24] A. A. Nasef, Some properties of contra-\(\gamma\)-continuous functions, *Chaos Solitons Fractals* 24 (2005), 471-477. https://doi.org/10.1016/j.chaos.2003.10.033

[25] M. Przemska, A decomposition of continuity and \(\alpha\)-continuity, *Acta Math. Hungar.* 61(1-2) (1993), 93-98. https://doi.org/10.1007/BF01872101