Morphological and molecular analyses of parasitic barnacles (Crustacea: Cirripedia: Rhizocephala) in Korea: preliminary data for the taxonomy and host ranges of Korean species

Jibom Jung¹, Ryuta Yoshida², Damin Lee¹ and Joong-Ki Park¹

¹ Division of EcoScience, Ewha Womans University, Seoul, South Korea
² Tateyama Marine Laboratory, Marine and Coastal Research Center, Ochanomizu University, Tateyama, Chiba, Japan

ABSTRACT

Morphological and molecular analyses of Korean rhizocephalan barnacle species were performed to examine their host ranges and taxonomy. Morphological examination and molecular analysis of mtDNA coxl, 16S, and nuclear 18S rRNA sequences revealed nine rhizocephalan species from three genera of the two families, Sacculinidae and Polyascidae. Phylogenetic analysis of molecular sequences revealed two new species candidates in the genus Parasacculina, and three Sacculina species (S. pilosella, S. pinnotherae, and S. imberbis) were transferred to the genus Parasacculina. Examination of host ranges revealed higher host specificity and lower infestation rates in Korean rhizocephalan species than rhizocephalans from other geographic regions. This is the first report of the taxonomy, species diversity, and host ranges of Korean parasitic rhizocephalan barnacles based on their morphological and molecular analyses. More information from extensive sampling of parasitic barnacles from a wide range of crustacean host species is necessary to fully understand their taxonomy, prevalence on decapod hosts, and phylogenetic relationships among major rhizocephalan taxa.

Subjects Biodiversity, Marine Biology, Parasitology, Taxonomy, Zoology
Keywords Morphology, Phylogenetic analysis, Taxonomy, Parasitic barnacles, Host range, Korean Rhizocephala

INTRODUCTION

The Rhizocephala comprises morphologically highly modified parasitic barnacles that use a wide range of crustaceans (mostly decapods) as their hosts, mostly parasites on decapods. Members of this group have complex life cycles, usually involving a series of pelagic larval stages followed by an endoparasitic interna stage and a reproductive externa stage where many organ systems (e.g., respiratory, digestive, sensory, and excretory systems) degenerate (Høeg, 1992; Øksnebjerg, 2000). In contrast to other crustacean species, they have a very simplified external structure (externa) and lack segmentation and appendages in the parasitic stage (Høeg & Lützen, 1995). Due to the simplified morphology of the externa, previous taxonomic studies of rhizocephalans have been based largely on larval morphology.
and the fine structure of externa observed from paraffin sectioning (Yoshida et al., 2011; Kobayashi et al., 2018), with further validation through DNA barcoding analysis (Yoshida et al., 2012; Yoshida, Hirose & Hirose, 2014; Høeg et al., 2019; Jung, Yoshida & Kim, 2019). Very recently, Høeg et al. (2019) modified the taxonomic system of Rhizocephala based on molecular phylogenetic analysis of 18S rDNA sequences, and additional molecular-based taxonomy of rhizocephalan barnacles was updated in Chan et al. (2021).

Since the first report of rhizocephalan barnacles (Krüger, 1912; Høeg & Lützen, 1985), northwestern Pacific species have been reported from southeast Russia (Korn et al., 2020), China (Li et al., 2015), Taiwan (Tu, Chan & Jeng, 2009; Yoshida et al., 2012), Japan (Shiino, 1943; Utinomi & Kikuchi, 1966; Nagasawa, Lützen & Kado, 1996), and Korea (Jung, Yoshida & Kim, 2019). Although Jung, Yoshida & Kim (2019) described 10 species of peltogastrid barnacles from 17 hermit crab species in Korea, the species diversity, distribution, taxonomy, and host range of other rhizocephalan parasitic barnacles are still largely unknown in Korea. In this study, we characterized nine rhizocephalan species, including two new cryptic species candidates, based on morphological examination and molecular analyses of mitochondrial (cytochrome c oxidase subunit I and 16S) and nuclear 18S rDNA sequences. In addition to the taxonomic accounts of the Korean species, we also investigated the prevalence of parasitic barnacles in decapod hosts and phylogenetic relationships among rhizocephalan species.

METHODS

We examined the abdomens of 3,262 individuals of 25 Korean decapod host species collected from 16 sampling sites in Korea. In addition, 12 Japanese rhizocephalans from 11 sampling sites were obtained for comparative molecular study (Tables 1, 2). Korean voucher specimens in this study were deposited in the National Institute of Biological Resources (NIBR) and Honam the National Institute of Biological Resources (HNIBR). Japanese voucher specimens in this study were deposited in the Ryukyu University Museum, Fujukan, University of the Ryukyus, Okinawa, Japan (RUMF), and Coastal Beach of Natural History Museum and Institute, Chiba, Japan (CMNH).

All rhizocephalan specimens were fixed in 95% ethanol and subjected to morphological examination and molecular analysis. For morphological analysis, the externa and mantle were examined using an MZ8 dissection microscope (Leica, Wetzlar, Germany). Photographs were taken with a D200 digital camera (Nikon, Tokyo, Japan). Carapace length (cl) of the host decapod was measured as the length from the tip of the rostrum to the midpoint of the posterior margin of the carapace using a CD6CSX digital caliper (Mitutoyo, Kawasaki, Japan) to the nearest 0.1 mm.
Table 1 Individual number and infestation rate (%) of Korean decapod species by rhizocephalan parasitic barnacles examined in this study.

Host decapod species	Total number of individuals examined	Number of individuals infested	Infestation rate
Alpheus bisincisus	16	0	0.0%
Arcotheres sinensis	4	2	50.0%
Eualus sinensis	16	0	0.0%
Gaetice depressus	1400	14	1.0%
Helicina japonica	28	0	0.0%
Hemigrapsus penicillatus	50	0	0.0%
Hemigrapsus sanguineus	114	9	7.9%
Hemigrapsus takanoi	145	1	0.7%
Ilyoplax dentimerosa	10	0	0.0%
Ilyoplax pusilla	57	0	0.0%
Laomedia astacina	15	0	0.0%
Macromedaeus distinguendus	74	8	10.8%
Macrophthalmus (Mareotis) japonicus	45	0	0.0%
Neotrypaea japonica	35	0	0.0%
Pachygrapsus crassipes	1	1	100.0%
Pagurus lanuginosus	65	0	0.0%
Pagurus minutus	811	0	0.0%
Pagurus nigrofascia	28	0	0.0%
Palaemon serrifer	17	0	0.0%
Parasesarma pictum	61	0	0.0%
Pugettia intermedia	14	1	7.1%
Scopimera globosa	25	0	0.0%
Sestrostoma balssi	16	0	0.0%
Stenalpheops anacanthus	61	0	0.0%
Upogebia major	154	2	1.3%
Total	**3262**	**38**	**1.2%**

For molecular analysis, the lateral end of the externa tissue of each rhizocephalan specimen was excised for total genomic DNA extraction using the QIAamp DNA Micro Kit (QIAGEN, Hilden, Germany). Universal primers LCO1490 (5′-GGTCAACAAATCATAAGATATTGG-3′) and HCO2198 (5′-TAAACTTCAGGGTGACC AAAATCA-3′) were used to amplify a fragment of mitochondrial cytochrome c oxidase subunit I (cox1) (Folmer et al., 1994). To amplify the mitochondrial 16S rDNA gene, 16SH2 (5′-AGATAGAAACCAACCTGG-3′) and 16SL2 (5′-TGCTGTATTCATAAAAACAT-3′) primers (Schubart, Neigel & Felder, 2000) were used. For PCR amplification of 18S rDNA, 18S-329R (TAATGATCCTTCCGCAGGT) and 18S-AF (CAGCMGCCGCTAATATWC) primers were used (Spears, Abele & Kim, 1992). Polymerase chain reaction (PCR) was performed in reaction volumes of 50 μL that included 2 μL DNA template, 5 μL 10 x Ex Taq Buffer, 2 μL of each primer (10 μM), 0.25 μL Go Taq DNA polymerase (Promega, Madison City, WI, USA), 2.5 μL dNTP mix (10 mM), and 35.75 μL distilled H2O. PCR
amplification was performed using the following steps: 5 min denaturation at 94 °C followed by 35 cycles of 30 s at 94 °C, 1 min at 52 °C, 1 min at 72 °C, and a final extension of 7 min at 72 °C. PCR products were visualized on 1% agarose gels and sequenced with an ABI PRISM 3730xl DNA analyzer (Applied Biosystems, Foster City, CA, USA). Nucleotide sequences of the three gene fragments (mtDNA cox1, 16S, and nuclear 18S rDNA) were analyzed and edited using Geneious v. 9.1.8 (Kearse et al., 2012) and aligned using ClustalW in the MEGA10 program (Kumar et al., 2018). Nucleotide sequences were deposited in GenBank (mtDNA cox1: MZ216468–MZ216513; 16S: MZ215675–MZ215720; 18S rDNA: MZ215557–MZ215602). Forty-six additional rhizocephalan sequences of Sacculinidae and Polyascidae species available in GenBank were downloaded and included in the phylogenetic analyses (Table 2).

Phylogenetic relationships among rhizocephalan species were inferred for each of the three genes using maximum likelihood (ML) analysis and Bayesian inference (BI) implemented in RaxML version 8 (Stamatakis, 2014) and MrBayes v3.2.6 (Ronquist, Huelsenbeck & Teslenko, 2011), respectively. Phylogenetic trees were modified by MEGA 10. Maximum likelihood analyses of cox1, 16S, and 18S rDNA sequences were performed based on the Tamura-Nei (TN93) (Tamura & Nei, 1993), general time reversible (Tavaré, 1986), and Kimura 2-parameter (Kimura, 1980) models, respectively, with a gamma distribution (+G) and invariable sites (+I) rate categories based on Bayesian Information Criterion (BIC) scores model using the Model Selection option of MEGA10. The robustness of individual nodes in the ML trees was assessed by analysis of 1,000 bootstrap replications. Interspecific and intraspecific sequence divergences were estimated based on the K2P distance matrix in MEGA10.

RESULTS

Based on morphological examination (shape and number of externae and mantle aperture) and mitochondrial sequence information, we identified 38 rhizocephalan individuals belonging to nine species, three genera, and two families isolated from eight decapod hosts species collected from 16 sites (Fig. 1; Table 2). All rhizocephalans identified by this study except Parasacculina pinnotherae comb. nov. were first reported from Korea. Detailed information regarding the Korean rhizocephalan species and their externa morphology is provided in Table 3.
Table 2 GenBank accession numbers, geographic information, and host species of rhizocephalan species used for phylogenetic analysis in this study.

Species	Host species	Location	Specimen number	cox1 GenBank accession no	16S rDNA GenBank accession no	18S rDNA GenBank accession no
Boschmaella japonica*	Chthamalus challengeri	Jōgashima, Japan	ZMUC CRU-3877			
Briarosaccus regalis*	Paralithodes camtschaticus	Alaska, USA		KR812178	KR812157	
Clitosaccus paguri*		Germany		KT208500		
Heterosaccus californicus*	Loxorhynchus grandis	CA, USA				
Heterosaccus dolfusi*	Charybdis longicollis	Mediterranean		FJ41994		
Heterosaccus lunatus*	Charybdis callianassa	Moreton Bay, Australia		DQ059778	FJ41947	FJ41948
Heterosaccus papillosus*	Charybdis bimaculata	Korea				
Loxothylacus panopaei*	Rhithropanopeus harrisi	xanthoid crabs	ZMUC CRU-3876			
Loxothylacus texanus*		xanthoid crabs				
Mycetomorpha vancouverensis*		Alaska, USA			MH974513	
Parasacculina beauforti*	Scylla olivacea	Malaysia				
Parasacculina compressa*	Ozius tuberculosis	Panglao, Philippines				
Parasacculina granifera*	Portunus pelagicus	Moreton Bay, Australia				
Parasacculina imberbis comb. nov.	Pachygrapsus crassipes	Namhae, Korea	Korea 4	MZ216470	MZ215675	MZ215557
Parasacculina leptodiae*	Leptodius affinis	Labrador, Singapore		AB197804	FJ41952	
Parasacculina oblonga*	Cyclograpsus intermedius	Amakusa, Japan	G4028		FJ41953	
Parasacculina pilosella comb. nov.	Pugettia intermedia	Sacheon, Korea				
Parasacculina pinnotherae comb. nov.	Arcotheres sinensis	Imabari, Japan	CMNH-ZC-02762 (Japan 9)	MZ216499	MZ215676	MZ215558
Parasacculina sinensis*	Leptodius affinis	Busan, Korea	Korea 1	MZ216468	MZ215677	MZ215559
Parasacculina shiinoi	Upogebia major	Korea 2	MZ216469		MZ215678	MZ215560
		Korea 25	MZ216486		MZ215680	MZ215563
		Korea 26	MZ216487		MZ215684	MZ215567
		Korea 15	MZ216480			
		Korea 16	MZ216481			

(continued on next page)
Species	Host species	Location	Specimen number
Parasacculina sp. 1	*Macromedaeus distinguendus*	Sacheon, Korea	Korea 17, MZ216482; Korea 20, MZ216511; Korea 21, MZ216484; Korea 14, MZ216479; Korea 19, MZ215682; Yeosu, Korea, MZ215565
Parasacculina sp. 2	*Macromedaeus distinguendus*	Sacheon, Korea	Korea 18, MZ216483; Korea 20, MZ216511; Korea 21, MZ216484; Korea 14, MZ216479; Korea 19, MZ215682
Parasacculina sp.	*Guinisia dentipes*	Tateyama, Japan	CMNH-ZC-02756 (Japan 6), MZ216497; CMNH-ZC-02770 (Japan 13), MZ216503; CMNH-ZC-02764 (Japan 10), MZ216500
Parasacculina yatsui		Katsuura, Japan	CMNH-ZC-02758 (Japan 7), MZ216492
Pachygrapsus crassipes		Tateyama, Japan	CMNH-ZC-02760 (Japan 8), MZ216498
Pagurus filholi		Gyeongju, Korea	MADBK 160707_039, MK604152
Peltogasterella gracilis*	*Pagurus pectinatus*	Busan, Korea	MADBK 160707_039, MK604152
Peltogaster postica*	*Pagurus angustus*	Chisi, Taiwan	NMNS-6795-003, AB778096
Pagurus filholi		Jeju, Korea	MADBK 430102_002, MK604144
Peltogaster reticulata*	*Pagurus minutus*	Vostok Bay, Russia	MN193579
Polyascus gregarius*	*Eriocheir japonica*	Maruyama, Japan	ZMUC CRU-3869, AY265363

(continued on next page)
Table 2 (continued)

Species	Host species	Location	Specimen number	cox1 GenBank accession no	16S rDNA GenBank accession no	18S rDNA GenBank accession no
				MZ216488	MZ215697	MZ215579
Hemigrapsus sanguineus				MZ216489	MZ215698	MZ215580
				MZ216491	MZ215701	MZ215583
				MZ216492	MZ215702	MZ215584
				MZ216494	MZ215705	MZ215586
				MZ216495	MZ215706	MZ215587
				MZ216496	MZ215707	MZ215588
				MZ216493	MZ215704	MZ215585
				MZ216477	MZ215709	MZ215590
				MZ216478	MZ215710	MZ215591
				MZ216471	MZ215715	MZ215597
				MZ216472	MZ215716	MZ215598

(continued on next page)
Species	Host species	Location	Specimen number	cox1 GenBank accession no	16S rDNA GenBank accession no	18S rDNA GenBank accession no
Sacculina confragosa		Korea 7	MZ216473	MZ215717	MZ215599	
Sacheon, Korea	Korea 8	MZ216474	MZ215718	MZ215600		
Korea 9	Korea 10	MZ216475	MZ215719	MZ215601		
Korea 23	Korea 24	MZ216485	MZ215712	MZ215593		
Korea 24	VSJAIV0000000016	MZ216504	MZ215713	MZ215595		
(Korea 33)	Korea 34	MZ216505	MZ215714	MZ215596		
Tongyeong, Korea	Korea 35	MZ216506				
Yeosu, Korea	Korea 13	MZ216510	MZ215711	MZ215592		
Pachygrapsus crassipes	Shirama, Japan	ZMUC CRU-3868				
Sacculina insueta		S22				
Sacculina upogebiae						
Sacculinidae sp.						
Thalamita sp.						
Sesarmaxenos gedehensis						
Sylon hippolytes						

Notes.
* sequences derived from GenBank.
Taxonomic accounts and morphological features of Korean rhizocephalan species

Sacculinidae *Lilljeborg, 1861*
Sacculina *Thompson, 1836*

Sacculina confragosa Boschma1933 (Fig. 2A)
Materials examined: on *Gaetice depressus*: 1 ind., Sacheon (34.9 N 128.1 E), Korea 5, host: ♀, cl 11.5 mm; 1 ind. (2 externa), Sacheon (34.9 N 128.1 E), Korea 6, host: ♀, cl 11.8 mm; 1 ind., Sacheon (34.9 N 128.0 E), Korea 7, host: ♀, cl 13.7 mm; 1 ind., Sacheon (34.9 N 128.0 E), Korea 8, host: ♀, cl 9.1 mm; 1 ind., Sacheon (34.9 N 128.1 E), Korea 9, host: ♀, cl 10.3 mm; 1 ind., Sacheon (34.9 N 128.1 E), Korea 10, host: ♀, cl 11.8 mm; 1 ind., Namhae (34.7 N 127.9 E), Korea 11, host: ♂, cl 11.9 mm, feminization; 1 ind. (2 externa), Namhae (34.7 N 127.9 E), VSJAIV0000000015, Korea 12, host: ♀, cl 7.7 mm; 1 ind., Yeosu (34.7 N 127.8 E), Korea 13, host: ♂, cl 11.2 mm, feminization; 1 ind., Sacheon (34.9 N 128.0 E), Korea 23, host: ♂, cl 12.0 mm; 1 ind., Sacheon (34.9 N 128.0 E), Korea 24, host: ♂, cl 13.9 mm; 1 ind., Tongyeong (34.8 N 128.4 E), VSJAIV0000000016, Korea 33, host: ♂, cl 7.1 mm; 1 ind., Tongyeong (34.8 N 128.4 E), Korea 34, host: ♂, cl 14.9 mm; 1 ind., Tongyeong (34.6 N 128.5 E), Korea 35, host: ♂, cl 13.5 mm.

Host species: *G. depressus*, *Pachygrapsus crassipes* (Grapsidae), *Cyclograpsus intermedius* (Varunidae).

Distribution: Japan, Korea.

Diagnosis of the externa: whole externa mostly single and occasionally double, wrinkled cordiform with flat half-oval-shaped left and right lobes divided by an outer mid-groove and inner mid-ridge; outermost part of the robe wrinkled. Mantle well elevated, tube-shaped, and vertically slightly wrinkled with a circular opening at the extremity.

Remarks: Morphological characteristics of the examined materials correspond with their original description (*Boschma, 1933*) except for the number of externa. Some of our specimens (Korea 6, Korea 12) had double externae (15% of total examined individuals), whereas others had a single externa. This type of variation in the number of externa has been reported in a previous study (*Shiino, 1943*). This species is found most abundantly parasitizing medium-sized individuals of host crab species. Further study is needed to determine if this species is a predominant parasitic form on medium-sized host individuals.

Parasacculina imberbis (*Shiino, 1943*) comb. nov.

Polyasciidae Høeg & Glenner in *Høeg et al., 2019*
Parasacculina Høeg & Glenner in *Høeg et al., 2019*

Materials examined: 1 ind., Namhae (34.7 N 128.0 E), Korea 4, host: ♀, cl 12.5 mm.

Host species: *Pachygrapsus crassipes* (Grapsidae).

Distribution: Japan, Korea.

Diagnosis of the externa: whole externa smooth, single, with a rounded-rectangular shape.

Remarks: The examined specimen had a single externa, but we were not able to examine morphological characteristics in more detail due to the immature stage of the specimen.
Figure 1 Map showing the collection sites of the Korean rhizocephalan species. Numbered circles indicate sampling localities where rhizocephalan species were sampled in this study (blue) and Jung, Yoshida & Kim (2019); black). 1, Sacculina confragosa; 2, Parasacculina imberbis; 3, Parasacculina pilosella; 4, Parasacculina pinmotherae; 5, Parasacculina shinoi; 6, Parasacculina sp. 1; 7, Parasacculina sp. 2; 8, Parasacculina yatsui; 9, Polyascus cf. gregarius; 10, Pellogaster lineata; 11, Pellogaster postica; 12, Pellogaster aff. ovalis; 13, Pellogaster aff. reticulatus; 14, Pellogaster sp. 1; 15, Pellogaster sp. 2; 16, Pellogaster sp. 3; 17, Pellogastrella gracilis.

Full-size DOI: 10.7717/peerj.12281/fig-1
Table 3 Morphological features of the externa of nine Korean rhizocephalans.

Species	Shape	Externa number	Projection	Opening
Sacculina confragosa	Wrinkled flat cordiform	Single or double	Elevated tube	Circular
Parasacculina imberbis comb. nov.	Smooth round-rectangular	Single		
Parasacculina pilosella comb. nov.	Smooth and slightly flat oval	Single	Flat	Circular
Parasacculina pinotherae comb. nov.	Smooth or slightly wrinkled flat oval or cordiform	Single or double	Elevated	Dot shaped
Parasacculina shiinoi	Smooth oval	Single	Elevated	Circular
Parasacculina sp. 1	Smooth or slightly wrinkled oval	Single	Elevated	Circular
Parasacculina sp. 2	Smooth oval	Single	Slightly elevated	Circular
Parasacculina yatsui	Smooth or slightly wrinkled flat oval or flat cordiform	Single	Elevated	Slit shaped
Polyascus cf. gregarius	Smooth or slightly wrinkled flat cordiform	Single	Elevated	Slit shaped

Species identification of this specimen and its taxonomic placement in the genus Parasacculina were based on molecular analyses of mtDNA cox 1, 16S, and nuclear 18S gene sequences (Figs. 3A–3C; see Discussion for more details).

Parasacculina pilosella (Kampen & Boschma, 1925) comb. nov. (Fig. 2B)

Material examined: 1 ind., Sacheon (34.9 N 128.1 E), VSJAIV0000000010, Korea 3, host: ♂, cl 13.7 mm.

Host species: Pugettia intermedia (Epialtidae).

Diagnosis of the externa: whole externa smooth, single, and slightly flat and oval. Mantle flat and vertically slightly wrinkled with a circular opening at the extremity.

Remarks: Four Sacculina species (S. muricata Boschma, 1931, S. pugettiae (Shiino, 1943), S. reinhardi (Boschma, 1955), and S. pilosella) were previously reported to parasitize Pugettia spp.. Morphological characteristics of the examined specimen correspond with the original description of S. pilosella (Van Kampen & Boschma, 1925). However, phylogenetic analysis of mtDNA 16S and 18S rDNA sequences showed that this species is nested within Parasacculina species (Figs. 3B and 3C), separated from Sacculina species (S. confragosa, S. upogebiae, and S. carcinii). Therefore, we consider this species a member of the genus Parasacculina (see Discussion for more details).

Parasacculina pinotherae (Shiino, 1943) comb. nov. (Fig. 2C)

Materials examined: 1 ind., Busan (35.2 N 129.2 E), Korea 1, host: ♀, cl 9.1 mm, in the mussel; 1 ind. (2 externa), Busan (35.2 N 129.2 E), Korea 2, host: ♂, cl 6.9 mm, in the mussel.

Host species: Arcotheres sinensis (Pinnotheridae).

Distribution: Japan, Korea.
Figure 2. Externae of Korean rhizocephalans. Red arrow: mantle, scale bar: two mm. (A) Sacculina confragosa. (B) Parasacculina pilosella comb. nov. (C) Parasacculina pinotherae comb. nov. (D) Parasacculina sp. 1. (E) Parasacculina sp. 2. (F) Parasacculina yatsui. (G) Polyascus cf. gregarius. Externae of some specimens (B, D–G) were incomplete, in case they were used for molecular analysis (B, D–G).

Full-size DOI: 10.7717/peerj.12281/fig-2

Diagnosis of the externa: whole externa smooth or slightly wrinkled, single or double, and flat oval or cordiform in shape; each outer-posterior margin elevated into a conical shape. Mantle slightly elevated and vertically wrinkled with a small round opening at the extremity.

Remarks: Two Sacculina species (S. pertenuis (Boschma, 1933) and S. pinotherae) have been reported to be parasitic on Pinotheres spp. Morphological characters of examined specimens correspond with the original description of S. pinotherae (Shiino, 1943).

However, phylogenetic analysis of mtDNA cox 1, 16S, and nuclear 18S rDNA sequences placed this species within the genus Parasacculina (Figs. 3A–3C), not in the genus Sacculina. Therefore, we treated this species as a member of the genus Parasacculina (see Discussion).
Figure 3 Phylogenetic tree of cox1 from rDNA from Korean rhizocephalan species using Maximum likelihood and Bayesian inference methods. Values on nodes indicate maximum likelihood bootstrap support/Bayesian posterior probability. Sequences from Korean species determined in this study are indicated in blue. *: sequences derived from GenBank, **: Japanese sequences obtained in this study.

Parasacculina shiinoi (Lützen et al., 2016)
Materials examined: 1 ind., Namhae (34.9 N 127.9 E), Korea 25, host: cl 8.8 mm; 1 ind., Namhae (34.9 N 127.8 E), Korea 26, host: cl 11.1 mm.

for more details). The host crab (Arcotheres sinensis) is known to parasitize bivalves, so P. pinnotherae comb. nov. is a secondary parasite that is rare in the ocean (McDermott, 2009).

Parasacculina shiinoi (Lützen et al., 2016)
Materials examined: 1 ind., Namhae (34.9 N 127.9 E), Korea 25, host: cl 8.8 mm; 1 ind., Namhae (34.9 N 127.8 E), Korea 26, host: cl 11.1 mm.
Host species: *Upogebia major* (Upogebiidae).
Distribution: Japan, Korea.
Diagnosis of the externa: whole externa smooth, single, oval in shape.
Figure 5. Phylogenetic tree of 18S rDNA from Korean rhizocephalan species using Maximum likelihood and Bayesian inference methods. Values on nodes indicate maximum likelihood bootstrap support/Bayesian posterior probability. Sequences from Korean species determined in this study are indicated in blue. *: sequences derived from GenBank, **: Japanese sequences obtained in this study.

Remarks: The examined specimens had a single externa, but detailed morphological characteristics could not be determined because of the immaturity of the specimens examined. Lützen et al. (2016) reported that Sacculina upogebiae parasitizes Upogebia species. Molecular analysis of mtDNA 16S rDNA sequences revealed that this species grouped with P. shiinoi (GenBank accession no: KF539761; Fig. 3B) with very high sequence identity (98.9%).
Figure 6 A vertical bar chart showing the individual number of nine Korean rhizocephalan species found from their hosts.

Parasacculina sp. 1 (Fig. 2D)
Materials examined: 1 ind., Yeosu (34.7 N 127.8 E), Korea 14, host: ♀, cl 7.6 mm; 1 ind., Sacheon (34.9 N 128.0 E), Korea 15, host: ♀, cl 8.0 mm; 1 ind., Sacheon (34.9 N 128.0 E), Korea 16, host: ♂, cl 9.7 mm; 1 ind., Sacheon (34.9 N 128.0 E), Korea 17, host: ♂, cl 9.9 mm; 1 ind., Yeosu (34.7 N 127.8 E), Korea 19, host: ♂, cl 14.6 mm; 1 ind., Sacheon (34.9 N 128.0 E), Korea 20, host: ♂, cl 14.1 mm; 1 ind., Sacheon (34.9 N 128.0 E), Korea 21, host: ♂, cl 17.7 mm.
Host species: Macromedaeus distinguendus (Xanthidae).
Distribution: Korea.
Diagnosis of the externa: whole externa single, smooth or slightly wrinkled, and oval in shape. Mantle large, elevated, and vertically wrinkled with circular opening at the extremity.
Remarks: Parasacculina leptodiae and P. sinensis have been reported to be parasites of Leptodius affinis, the most phylogenetically similar host species to M. distinguendus among the currently known hosts of Rhizocephala. However, the specimens examined in this study differ in morphology and molecular sequences from P. leptodiae and P. sinensis.
This species has a single externa, whereas P. leptodiae has multiple externae. In addition, this species has a large, elevated mantle aperture, but P. leptodiae and P. sinensis have a flat mantle (Guérin-Ganivet, 1911; Boschma, 1933). Phylogenetic analysis clearly showed that the cox 1, 16S, and 18S rDNA sequences of this species are different from those of P. leptodiae and P. sinensis and all other Parasacculina species included in the analyses (Figs.
Therefore, we considered this species to be a new species candidate of the genus *Parasacculina* (see Discussion for more details).

Parasacculina sp. 2 (Fig. 2E)

Material examined: 1 ind., Sacheon (34.9 N 128.1 E), Korea 18, host: ♂, cl 13.5 mm.

Host species: *Macromedaus distinguendus* (Xanthidae).

Distribution: Korea.

Diagnosis of the externa: whole externa smooth, single, and oval in shape. Mantle slightly elevated with circular opening at extremity.

Remarks: Previously, *P. leptodiae* and *P. sinensis* were known to be parasites of *L. affinis*, the most phylogenetically similar host species to *M. distinguendus* among the currently known hosts of Rhizocephala. However, the examined specimen of this species differed in morphology and molecular sequence from all *Parasacculina* species including *Parasacculina* sp. 1. This species has one externa compared to the multiple externae of *P. leptodiae*. In addition, this species has a slightly elevated mantle aperture, whereas *P. leptodiae* and *P. sinensis* have a flat mantle (*Guérin-Ganivet, 1911; Boschma, 1933*), and *Parasacculina* sp. 1 has a well-elevated mantle. Furthermore, phylogenetic analysis of mtDNA cox 1, 16S, and nuclear 18S rDNA sequences distinguished this species from other *Parasacculina* species with 18.1–30.6% sequence divergence in cox1, 14.0–27.5% sequence divergence in 16S rDNA, and 1.9–4.2% sequence divergence in 18S rDNA (Figs. 3A–3C). Therefore, we treated this species as a new species candidate of the genus *Parasacculina* (see Discussion for more details).

Parasacculina yatsui (*Boschma, 1936*) (Fig. 2F)

Materials examined: on *Hemigrapsus sanguineus*: 1 ind., Yeosu (34.1 N 127.3 E), VSJAIV0000000011, Korea 36, host: ♀, cl 22.3 mm; 1 ind., Tongyeong (34.8 N 128.4 E), Korea 38, host: ♂, cl 16.9 mm, feminization; 1 ind., Tongyeong (34.6 N 128.5 E), Korea 39, host: ♂, cl 14.2 mm, feminization.

Host species: *Pachygrapsus crassipes* (Grapsidae), *H. sanguineus* (Varunidae).

Distribution: Japan, Korea.

Diagnosis of the externa: whole externa smooth or slightly wrinkled, single, and cordiform with flat half-oval-shaped left and right lobes divided by outer mid-groove and inner mid-ridge; outermost part of the robe wrinkled. Mantle tube-shaped, elevated, and slightly wrinkled with slit opening at extremity.

Polyascus cf. gregarius (*Okada & Miyashita, 1935*) (Fig. 2G)

Polyascus Glenner, Lützen & Takahashi, 2003

Materials examined: on *H. sanguineus*: 1 ind., Namhae (34.7 N 127.9 E), VSJAIV0000000013, Korea 27, host: ♀, cl 18.4 mm; 1 ind., Yeosu (34.7 N 127.8 E), VSJAIV0000000014, Korea 28, host: ♂, cl 29.8 mm, feminization; 1 ind., Sacheon (34.9 N 128.1 E), Korea 29, host: ♀, cl 9.8 mm; 1 ind., Namhae (34.9 N 127.8 E), Korea 30, host: ♂, cl 16.7 mm, feminization; 1 ind., Yeosu (34.7 N 127.8 E), Korea 31, host: ♂, cl 8.9 mm, feminization; 1 ind., Taean (36.8 N 126.1 E), Korea 37, host: ♂, cl 14.1 mm, feminization.

on *H. takanoi*: 1 ind., Namhae (34.9 N 127.9 E), Korea 32, host: ♂, cl 9.5 mm.
Host species: *Hemigrapsus sanguineus, H. takanoi, Eriocheir japonica* (Varunidae).

Distribution: Japan, Korea.

Diagnosis of the externa: whole externa smooth or slightly wrinkled, single, and flat-cordiform shaped with flat half-oval-shaped left and right lobes divided by an outer mid-groove and inner mid-ridge; outermost part of the robe smooth or slightly wrinkled. Mantle tube-shaped, elevated, and vertically wrinkled with slit-shaped opening at the extremity.

Remarks: Morphological characteristics of the examined materials correspond with their original description (*Okada & Miyashita, 1935*) except for the number of externa and the host species. All specimens examined in this study had a single externa, whereas *P. gregarius* has multiple externae. In addition, the host species (*H. sanguineus* and *H. takanoi*) differ from the host species reported for *P. gregarius*, namely *E. sinensis*. Nevertheless, this species is likely *P. gregarius* because 18S rDNA sequences of these specimens were identical to the GenBank sequences of *P. gregarius* (*Fig. 3C*). In addition, individual variation in the number of externa of rhizocephalans has also been reported previously (*Reinhard, 1942; Shiino, 1943; Høeg & Lützen, 1985*).

In phylogenetic trees (*Figs. 3A–3C*), *Polyascus cf. gregarious* was clustered with *P. planus* that is commonly found in Japan and Taiwan. These two species are similar in having a flat-cordiform shaped externa, but different in some aspects of morphology and host species: the former has an elevated mantle and single externa, while the latter has an underdeveloped mantle and multiple externae (*Boschma, 1933*). In addition, the Varunidae crabs (*H. sanguineus* and *H. takanoi*) are used as *P. cf. gregarious* hosts, whereas the Grapsidae crabs (*Grapsus albolineatus* and *Metopograpsus messor*) are known as *P. planus* host (*Tu, Chan & Jeng, 2009*). Morphological and host range variation among rhizocephalan species has been reported by previous studies (*Høeg & Lützen, 1985; Jung, Yoshida & Kim, 2019*), and thus further studies with broader taxon sampling of *P. gregarious* and *P. planus* are needed to confirm an accurate species delimitation in their morphology and host range.

Phylogenetic relationships among rhizocephalan species

Since only Sacculinidae and Polyascidae species were found in this study, we focused on phylogenetic relationships among rhizocephalan species in these two families. Totals of 34 cox1 (555 bp), 33 16S rDNA (474 bp), and 35 18S rDNA (1002 bp) sequences were used for phylogenetic analysis, and the resulting ML and Bayesian trees were consistent with each other in that Sacculinidae and Polyascidae were monophyletic (*Figs. 3A–3C*). In all phylogenetic trees, the sequences of Korean rhizocephalans species nested and/or clustered with sequences of the same species retrieved from GenBank (*Figs. 3A–3C*).

Parasacculina sp. 1 and 2 were recognized as new species candidates because they did not show sister relationships with other *Parasacculina* species (*Figs. 3A–3C*). In the 16S and 18S DNA trees, they were placed at different positions and separated from *P. leptodiae* and *P. sinensis*, which share the host family and have similar morphological characteristics (*Figs. 3B and 3C*). *Parasacculina* sp. 1 and *Parasacculina* sp. 2 formed a group with *P. shiinoi*, but their 16S pairwise sequence divergences from *P. shiinoi* were substantial, ranging from
18.2–20.9% for *Parasacculina* sp. 1 and 14.4–14.8% for *Parasacculina* sp. 2. This group (*Parasacculina* sp. 1, *Parasacculina* sp. 2, and *P. shiinoi*) was separate from *P. leptodiae* in the 16S tree, whereas it was basal to the remaining Polyasidae species, including *P. leptodiae* and *P. sinensis* in the 18S tree. In the cox1 tree, *Parasacculina* sp. 1 formed a well-defined sister group to *Polyascus* species (*P. cf. gregarious* and *P. planus*), whereas *Parasacculina* sp. 2 was grouped with the Korean isolate of *P. shiinoi* showing 18.1% sequence divergence (Fig. 3A). Interspecific sequence differences of the two new species candidates from other Polyasidae species were 18.1–32.1% for cox1, 14.0–28.8% for 16S rDNA, and 1.9–4.7% for 18S rDNA. In contrast to the high interspecific sequence divergences discovered, there were no individual variations in cox1, 16S, and 18S rDNA sequences among *Parasacculina* sp. 1 specimens.

The three *Sacculina* species (*S. imberbis*, *S. pilosella*, and *S. pinnotherae*) clustered with *Parasacculina* species (Figs. 3A–3C): *S. imberbis* grouped with *S. pinnotherae*, that is sister to other *Parasacculina* species based on analysis of cox1 (*P. yatsui*, *P. granifera*) and 18S rDNA (*P. yatsui*, *P. sinensis*, *P. leptodiae*) sequences (Figs. 3A, 3C). *S. pilosella* formed a sister group to *P. compressa*, *P. oblonga*, and *P. yatsui* in the 16S and 18S rDNA trees (Figs. 3B and 3C). Interspecific sequence differences between *Sacculina* species and *Parasacculina* species were remarkably large, ranging from 27.3–33.4% for cox1, 27.5–34.9% for 16S rDNA, and 9.2–10.1% for 18S rDNA. In contrast, intraspecific sequence divergences were very low with a maximum sequence difference of 1.0% for cox1 and 0.2% sequence difference for 16S rDNA sequences among *S. confragosa* individuals. All *S. pinnotherae* individuals had identical cox1, 16S, and 18S rDNA sequences (Figs. 3A–3C).

DISCUSSION

In this study, we identified nine species of Korean rhizocephalans from eight host decapod species using morphological and molecular analyses. Close examination of host ranges revealed that Korean rhizocephalan species have a different host prevalence than reported for rhizocephalan species from other geographic regions. In Korea, rhizocephalans were firstly found from three decapod hosts, *i.e.*, *Hemigrapsus takanoi*, *Macromedaeus distinguendus*, and *Pugettia intermedia*. We also found that most Korean rhizocephalans showed high host specificity, parasitizing only one host, except *Polyascus cf. gregarious* that was found on two crab species (Fig. 4). The notable differences in host range between geographic isolates (*i.e.*, rhizocephalans from Korea and other geographic regions) might be due to geographical variation in host species diversity and abundance or insufficient information about the geographic origins of host crab species as proposed by *Jung, Yoshida & Kim* (2019). In addition, unlike Korean *S. confragosa* individuals that were all found on only one grapsid crab species, *Gaetice depressus*, the Japanese form is known to parasitize three crab species, *G. depressus*, *Pachygrapsus crassipes*, and *Cyclograpsus intermedius*. Furthermore, Japanese *P. yatsui* parasitizes not only *G. depressus*, but also *P. crassipes* (*Tsuchida, Lützen & Nishida, 2006; Kobayashi et al., 2018*), whereas the Korean form of *P. yatsui* was found only on *Hemigrapsus sanguineus*. We could not determine if other crab species including *P. crassipes* and *C. intermedius* are potential hosts of Korean *S.
confragosa and P. yatsui because of the limited pool of crab host species examined in this study. Extensive taxon sampling of decapod hosts and their parasitic barnacles is needed to obtain a complete understanding of the host ranges of rhizocephalan barnacles and the distribution and prevalence of host-parasite associations.

The decapod host infestation rate of Korean rhizocephalan barnacles was much lower than that reported for Japanese species. In Japan, 35 individuals representing three rhizocephalan species were found in 354 individuals of three crab species, corresponding to an infestation rate of 9.9% (Tsuchida, Lützen & Nishida, 2006). By contrast, the infestation rate of Korean rhizocephalans was substantially lower at 1.2% on average (Table 1). Species richness and extent of host usage by parasitic barnacles are tightly correlated to the availability of host species (species diversity and abundance; Kamiya et al., 2014). Differences in the extent of host usage by rhizocephalan barnacles between the two geographic regions are likely due to differences in host species diversity and abundance, as well as the sample size of examined materials (e.g., total numbers of individuals and host species). Since we examined the prevalence of rhizocephalans on all decapod hosts (a total of 3,262 host individuals inspected), our result is likely an accurate estimate of the infestation rate. On the other hand, this prevalence difference between Korea and Japan may be originated from salinity, season, host sex and size (Mouritsen et al., 2018) or biogeographical differences (Kim et al., 2020). In a previous study, the infestation rate of Korean hermit crabs by rhizocephalans was reported to be 0.9% (Jung, Yoshida & Kim, 2019), which is similar to the infestation rate observed in this study. The unexpectedly high infestation rates (>50%) of Pachygrapsus crassipes and Arcotheres sinensis are due to strong bias from the very small sample size (one to four individuals) examined. The marine ecosystems in different geographic regions display different assemblages of barnacles (Kim et al., 2020) and thus extensive sampling of parasitic barnacles from a wide range of decapod host species is necessary to better understand their prevalence, infection intensity, and host range specificity (Mouritsen et al., 2018).

In addition to their host ranges, morphological and molecular analyses in this study provided insights into the taxonomy of Korean rhizocephalan barnacle species. Phylogenetic trees recognized four monophyletic rhizocephalan families, i.e., Polyascidae, Sacculinidae, Peltogastridae, and Peltogasterellidae, consistent with previous molecular analysis (Høeg et al., 2019) and morphology-based classification. Polyascidae is characterized by multiple externa and reproduces asexually (Glenner, Lützen & Takahashi, 2003), whereas Sacculinidae is characterized by single externa and sexual reproduction. Peltogastridae and Peltogasterellidae species mainly parasitize hermit crabs, and Peltogasteridae is distinguished from Peltogasterellidae by the presence of the chitinous shield on its middle part of externae (Høeg et al., 2019). Two new species candidates in the genus Parasacculina (Parasacculina sp. 1 and Parasacculina sp. 2) were recognized based on molecular phylogenetic analyses. These species were distinct from their congeneric species, P. leptodiae and P. sinensis, based on phylogenetic analyses of mtDNA (16S rDNA) and nuclear (18S rDNA) sequences (Figs. 3B–3C) even though they are morphologically indistinguishable and were found in the same host species. These two species are genetically distinct cryptic species. Furthermore, we transferred three Korean Sacculina species (i.e.,
Sacculina imberbis, S. pilosella, and S. pinnotherae) to the genus Parasacculina because they grouped with Parasacculina species in mtDNA cox1, 16S, and 18S rDNA phylogenetic trees (Figs. 3A–3C). This new taxonomic replacement is consistent with previous studies that transferred several Japanese and Chinese Sacculina species to Parasacculina based on molecular evidence (Tsuchida, Lützen & Nishida, 2006; Glenner et al., 2010; Høeg et al., 2019).

Comparison of the external cuticles of Korean species with previously published morphological data provided new insight into the taxonomic status of the families Sacculinidae and Polyascidae. Although Høeg et al. (2019) showed that Sacculinidae and Polyascidae are phylogenetically distinct, the original descriptions of Polyascidae (Høeg et al., 2019) did not specify morphological characters differentiating this family from Sacculinidae. For example, Høeg et al. (2019) noted that polyascids have a smooth or almost smooth external cuticle, but some polyascid species (P. pinnotherae comb. nov. and P. yatsui) in the present study had wrinkled cuticles (Figs. 2C, 2F). In addition, Høeg et al. (2019) mentioned that Polyascus species have multiple externae, but Polyascus cf. gregarius in this study had only a single externa (Fig. 2G). These results indicate that the morphological characteristics of external cuticles, previously considered to be taxonomically valid features, are highly variable and cannot be used as diagnostic characters. Future comparative analyses of morphological characters along with molecular sequences are necessary to confirm the taxonomic status of Sacculinidae and Polyascidae and the taxonomic replacement of the three Korean Sacculina species in the genus Parasacculina.

CONCLUSIONS

In conclusion, this is the first report of the taxonomy, species diversity, and host ranges of Korean parasitic rhizocephalan barnacles based on morphological and molecular analyses. We identified nine parasitic barnacle species, including two new species candidates in the genus Parasacculina, in Korea. In addition, we found higher host specificity and lower infestation rates for Korean rhizocephalan species than reported for rhizocephalan species from other geographic regions. Nevertheless, the results of this study are based on preliminary data derived from limited taxon sampling in a narrow geographic range in Korea. Additional data from extensive samplings of parasitic barnacles from a wide range of crustacean host species are necessary to better understand the taxonomy, prevalence, host usage, and phylogenetic relationships of rhizocephalan species.

ACKNOWLEDGEMENTS

Jongwoo Jung, Hee-seung Hwang (Ewha Womans University), Hyun Kyong Kim (Honam National Institute of Biological Resources), Jin-Hyeop Jeong (Soonchunhyang University), and Heesoo Kim (Korea Polar Research Institute) helped sample the materials analyzed in this study. Sang-Hui Lee helped identification of P. intermedia, the host of P. pilosella. We thank Iriomote Station, Tropical Biosphere Research Center, University of the Ryukyus and Marine and Coastal Research Center, Ochanomizu University for providing laboratory facilities, and Mr. Yuki Miyaoka and his friends for generous help in sampling.
ADDITIONAL INFORMATION AND DECLARATIONS

Funding
This work was supported by a grant from the National Institute of Biological Resources (NIBR), funded by the Ministry of Environment (MOE) of the Republic of Korea (NIBR202102203; NIBR202102108), the RP-Grant 2021 of Ewha Womans University, and the Hallyeohaesang National Park survey project supported by the Korea National Park Service. This study was also supported by a Showa Seitoku Memorial Foundation. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Grant Disclosures
The following grant information was disclosed by the authors:
The National Institute of Biological Resources (NIBR).
The Ministry of Environment (MOE) of the Republic of Korea: NIBR202102203, NIBR202102108.
Ewha Womans University: RP-Grant 2021.
The Hallyeohaesang National Park survey project supported by the Korea National Park Service.

Competing Interests
The authors declare there are no competing interests.

Author Contributions
• Jibom Jung and Joong-Ki Park conceived and designed the experiments, performed the experiments, analyzed the data, prepared figures and/or tables, authored or reviewed drafts of the paper, and approved the final draft.
• Ryuta Yoshida and Damin Lee performed the experiments, authored or reviewed drafts of the paper, performed field work, and approved the final draft.

Data Availability
The following information was supplied regarding data availability:
Nucleotide sequences are available in GenBank (mtDNA cox1: MZ216468–MZ216513; 16S: MZ215675–MZ215720; 18S rDNA: MZ215557–MZ215602).

REFERENCES
Boschma H. 1933. The Rhizocephala in the collection of the British Museum. Journal of the Linnean Society of London 38:473–552, 1 pl DOI 10.1111/j.1096-3642.1933.tb00955.x.
Boschma H. 1936. The specific characters of Sacculina rotundata Miers and Sacculina yatsui nov. spec. Zoologische Mededelingen 19:1–22.
Boschma H. 1955. Rhizocephalan parasites of the crab Pugettia brevirostris, with notes on Sacculina gracilis. Zoologische Mededelingen 33:237–249.
Chan BKK, Dreyer N, Gale AS, Glenner H, Ewers-Saucedo C, Pérez-Losada M, Kolbasov GA, Crandall KA, Høeg JT. 2021. The evolutionary diversity of barnacles, with an updated classification of fossil and living forms. Zoological Journal of the Linnean Society Epub ahead of print Feb 25 2021 DOI 10.1093/zoolinnean/zlaa160.

Folmer O, Black M, Hoeh W, Lutz R, Vrijenhoek R. 1994. DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Molecular Marine Biology and Biotechnology 3(5):294–299.

Glenner H, Høeg JT, Stenderup J, Rybakov AV. 2010. The monophyletic origin of a remarkable sexual system in akentrogonid rhizocephalan parasites is confirmed by molecular and larval structural data. Experimental Parasitology 125:3–12 DOI 10.1016/j.exppara.2009.09.019.

Glenner H, Lützen J, Takahashi T. 2003. Molecular and morphological evidence for a monophyletic clade of asexually reproducing Rhizocephala: Polyascus, new genus (Crustacea). Journal of Crustacean Biology 23:548–557 DOI 10.1651/C-2361.

Guérin-Ganivet J. 1911. Contribution a l’étude systématique et biologique des rhizo-céphales. Travaux Scientifique Du Laboratoire DeZoologie Et DePhysiologie Maritimes DeConcarneau 3:1–97, pl. 1.

Høeg JT. 1992. Rhizocephala. In: Harrison FW, Humes AG, eds. Microscopic anatomy of invertebrates, vol. 9, Crustacea. New York: Wiley, 313–345.

Høeg JT, Lützen J. 1985. Crustacea Rhizocephala. Marine invertebrates of Scandinavia 6. Oslo: Norwegian Univ Press.

Høeg JT, Lützen J. 1995. Life cycle and reproduction in the Cirripedia Rhizocephala. Oceanography and Marine Biology: An Annual Review 33:427–485.

Høeg JT, Noever C, Rees DA, Crandall KA, Glenner H. 2019. A new molecular phylogeny-based taxonomy of parasitic barnacles (Crustacea: Cirripedia: Rhizocephala). Zoological Journal of the Linnean Society 190(2):632–653.

Jung J, Yoshida R, Kim W. 2019. Diversity of parasitic peltogastrid barnacles (Crustacea: Cirripedia: Rhizocephala) on hermit crabs in Korea. Zoological Studies 58:33 DOI 10.6620/ZS.2019.58-33.

Kamiya T, O’Dwyer K, Nakagawa S, Poulin R. 2014. Host diversity drives parasite diversity: meta-analytical insights into patterns and causal mechanisms. Ecography 37:689–697 DOI 10.1111/j.1600-0587.2013.00571.x.

Kampen PNVan, Boschma H. 1925. Die Rhizocephala der Siboga-Expedition. Siboga-Expeditie 31bis:1–62, pls. 1-3.

Kearse M, Moir R, Wilson A, Stones-Havas S, Cheung M, Sturrock S, Buxton S, Cooper A, Markowitz S, Duran C, Thierer T, Ashton B, Meintjes P, Drummond A. 2012. Geneious Basic: an integrated and extendable desktop software platform for the organization and analyses of sequence data. Bioinformatics 28:1647–1649 DOI 10.1093/bioinformatics/bts199.

Kim HK, Chan BKK, Lee S-K, Kim W. 2020. Biogeography of intertidal and subtidal native and invasive barnacles in Korea in relation to oceanographic current ecoregions and global climatic changes. Journal of the Marine Biological Association of the United Kingdom 100:1079–1091 DOI 10.1017/S0025315420001009.
Kimura M. 1980. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. *Journal of Molecular Evolution* **16**(2):111–120 DOI 10.1007/BF01731581.

Kobayashi M, Wong YH, Oguro-Okano M, Dreyer N, Höeg JT, Yoshida R, Okano K. 2018. Identification, characterization, and larval biology of a rhizocephalan barnacle, *Sacculina yatsui* Boschma, 1936, from northwestern Japan (Cirripedia: Sacculinidae). *Journal of Crustacean Biology* **38**(3):329–340 DOI 10.1093/jcbiol/ruy020.

Korn OM, Golubinskaya DD, Rees DJ, Glenner H, Höeg JT. 2020. Phylogenetic position, complete larval development and larval sexual dimorphism in a rhizocephalan barnacle, *Lernaeodiscus rybakovi* sp. nov. (Cirripedia: Rhizocephala: Peltogastridae), parasitizing the crab *Pachycheles stevensii* Stimpson, 1858 (Decapoda: Anomura: Porcellanidae). *Zoologischer Anzeiger* **287**:178–197 DOI 10.1016/j.jcz.2020.06.005.

Krüger P. 1912. Über ostasiatische Rhizocephalen, Anhang: Über einige Vertreter der Cirripedia Thoracica. *Abhandlungen Der Mathematisch-Physikalischen Klasse Der Königlich Bayerischen Akademie Der Wissenschaften* **2**:1–8.

Kumar S, Stecher G, Li M, Knyaz C, Tamura K. 2018. MEGA X: molecular evolutionary genetics analysis across computing platforms. *Molecular Biology and Evolution* **35**(6):1547–1549 DOI 10.1093/molbev/msy096.

Li H-X, Ma L-S, Yu X-J, Li L, Yang C-P, Yan Y. 2015. Colonization of *Octolasmis* (Cirripedia) on the Crab *Portunus sanguinolentus* (Brachyura: Portunidae): Impacts of the Parasitism of *Diplothylacus sinensis* (Cirripedia: Rhizocephala). *Journal of Crustacean Biology* **35**(2):159–165 DOI 10.1163/1937240X-00002311.

Lilljeborg W. 1861. Supplément au mémoire sur les genres Liriope et *Peltogaster*, H. Rathke. *Nova Acta Regiae Societatis Scientiarum Upsaliensis* **3**:74–102, pl. 6.

Lützen J, Itani G, Jespersen Å, Hong JS, Rees D, Glenner H. 2016. On a new species of parasitic barnacle (Crustacea: Rhizocephala), *Sacculina shiinoi* sp. nov. parasitizing Japanese mud shrimps *Upogebia* spp. (Decapoda: Thalassinidea: Upogebiidae), including a description of a novel morphological structure in the Rhizocephala. *Zoological Science* **33**(2):204–212 DOI 10.2108/zs150112.

McDermott JJ. 2009. Hypersymbioses in the pinnotherid crabs (Decapoda: Brachyura: Pinnothereidinae): a review. *Journal of Natural History* **43**(13–14):785–805 DOI 10.1080/00222930802702480.

Mouritsen K, Geyti S, Lützen J, Höeg JT, Glenner H. 2018. Population dynamics and development of the rhizocephalan, *Sacculina carcini*, parasitic on the shore crab *Carcinus maenas*. *Diseases of Aquatic Organisms* **131**:199–211 DOI 10.3354/dao03290.

Nagasawa K, Lützen J, Kado R. 1996. Parasitic Cirripedia (Rhizocephala) and Isopoda from brachyuran and anomuran crabs of the Pacific coast of northern Honshu, Japan. *Bulletin of the Biogeographical Society of Japan* **51**:1–6.

Okada YK, Miyashita Y. 1935. Sacculinization in *Eriocheir japonicus* deHaan, with remarks on the occurrence of complete sex-reversal in parasitized male crabs. *Memoirs of the College of Science, Kyoto Imperial University. Ser. B* **10**(3):169–208.
Øksnebjerg B. 2000. The Rhizocephala (Crustacea: Cirripedia) of the Mediterranean and Black Seas: taxonomy, biogeography, and ecology. Israel Journal of Zoology 46(2):1–102 DOI 10.1560/RCLC-NM2U-HV5L-6Q52.

Reinhard EG. 1942. Studies on the life history and host-parasite relationship of Peltogaster paguri. Biology Bulletin 83(3):401–415 DOI 10.2307/1538238.

Ronquist F, Huelsenbeck J, Teslenko M. 2011. MrBayes version 3.2 manual: tutorials and model summaries. Available at mrbayessourceforge.net/mb32_manual.pdf.

Schubart CD, Neigel JE, Felder DL. 2000. Use of the mitochondrial 16S rRNA gene for phylogenetic and population studies of Crustacea. Crustacean Issues 12(1):817–830.

Shiino SM. 1943. Rhizocephala of Japan. Journal of Sigenkagaku Kenkyusyo 1:1–36.

Spears T, Abele LG, Kim W. 1992. The monophyly of brachyuran crabs: a phylogenetic study based on 18S rRNA. Systematic Biology 41(4):446e461 DOI 10.1093/sysbio/41.4.446.

Stamatakis A. 2014. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30(9):1312–1313 DOI 10.1093/bioinformatics/btu033.

Tamura K, Nei M. 1993. Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Molecular Biology and Evolution 10(3):512–526.

Tavaré S. 1986. Some probabilistic and statistical problems in the analysis of DNA sequences. Lectures on Mathematics in the Life Sciences 17(2):57–86.

Thompson JV. 1836. Natural history and metamorphosis of an anomalous crustaceous parasite of Carcinus maenas, the Sacculina carcini. The Entomologist’S Monthly Magazine 3:452–456.

Tsuchida K, Lützen J, Nishida M. 2006. Sympatric three-species infection by Sacculina parasites (Cirripedia: Rhizocephala: Sacculinidae) of an intertidal grapsoid crab. Journal of Crustacean Biology 26(4):474–479 DOI 10.1651/S-2682.1.

Tu TH, Chan BK, Jeng MS. 2009. Larval development and sex ratio variation of Polyascus plana (Cirripedia: Rhizocephala), a parasite of the crab Grapsus albolineatus, in Taiwan. Bulletin of Marine Science 84(3):331–349.

Utinomi H, Kikuchi T. 1966. Fauna and flora of the sea around the Amakusa Marine Biological Laboratory, Part VI, Cirriped Crustacea. Amakusa Marine Biological Laboratory 195:1–11 (in Japanese).

Yoshida R, Hirose M, Hirose E. 2014. Hermit crab host prevalence by species of Peltogastridae (Cirripedia: Rhizocephala): hosts vary with locations on the Pacific coast in mainland Japan. Journal of Crustacean Biology 34(4):467–480 DOI 10.1163/1937240X-00002246.

Yoshida R, Hirose M, Mok HK, Hirose E. 2012. The first records of peltogastrid rhizocephalans (Crustacea: Cirripedia: Rhizocephala) on hermit crabs (Paguroidea) in Taiwan and differences in prevalences among collection sites. Zoological Studies 51(7):1027–1039.

Yoshida R, Osawa M, Hirose M, Hirose E. 2011. A new genus and two new species of Peltogastridae (Crustacea: Cirripedia: Rhizocephala) parasitizing hermit crabs from...
Okinawa Island (Ryukyu Archipelago, Japan), and their DNA-barcodes. *Zoological Science* **28**:853–862 DOI 10.2108/zsj.28.853.