Beirut Ammonium Nitrate Explosion: A Man-Made Disaster in Times of COVID19 Pandemic

Mazen J. El Sayed, MD, MPH¹,²,*

¹ Department of Emergency Medicine, American University of Beirut Medical Center, Beirut 1107 2020, Lebanon
² Emergency Medical Services and Prehospital Care Program, American University of Beirut Medical Center, Beirut 1107 2020, Lebanon

*Corresponding Author/Reprints:
Mazen J. El Sayed, MD, MPH, FACEP, FAEMS
Associate Professor of Clinical Emergency Medicine
Director of EMS & Prehospital Care
Department of Emergency Medicine
American University of Beirut Medical Center
P.O. Box - 11-0236 Riad El Solh
Beirut 1107 2020
Tel: +961-1-350000 Ext: 6631 Email: melsayed@aub.edu.lb

Source(s) of support: None

Running Head/Title: Beirut Ammonium Nitrate Explosion

Conflicts of interest: None declared

Keywords: Disaster Response, Beirut, Ammonium Nitrate, Explosion, COVID19 Pandemic
Beirut Ammonium Nitrate Explosion: A Man-Made Disaster in Times of COVID19

Pandemic

Abstract

The largest non-nuclear blast in modern history took place on August 4, 2020 at 6:07 pm in Beirut, Lebanon after an estimated 2,750 tons of unsafely stored Ammonium Nitrate exploded. The physical and social impacts of this catastrophic event coinciding with the COVID19 Pandemic were massive. This article describes the national and international emergency response to this event and highlights the impact of the explosion on the healthcare sector in Lebanon. Challenges noted during this response with recommendations for improving response to future disasters are also described.

Event:

The largest non-nuclear explosion in modern history took place on August 4, 2020 at 6:07 pm in Beirut, Lebanon. This catastrophic event started 30 minutes earlier with a fire in a large hangar where fireworks and an estimated 2,750 tons of ammonium nitrate were unsafely stored in an urban setting in capital of Lebanon. [1] Several small explosions were followed by a massive explosion that resulted in over 6,000 injured, 200 fatalities and over 100 missing casualties. It also destroyed a major part of the city with estimated over $10 billion in infrastructure damage leading to over 300,000 displaced individuals. At the time of this report, the direct cause of this incident is still being investigated and theories range from a deliberate attack on the storage site to accidental explosion of large volume of explosive chemical material stored in an unsafe
manner. The chemical cargo was present in the Hangar for over 6 years after the Lebanese Port authorities confiscated it from a ship that entered the Port to transport additional cargo but for presumed technical reasons was unable to proceed with its journey from Georgia to Mozambique.

Initial Response:

The fire in the hangar prompted Beirut Fire Department to respond to the incident site with first responders unaware of the presence of explosive material in the Hangar. The fire which was filmed by many bystanders was followed by a large explosion and a blast wave that was felt across Beirut. The explosion was heard over 200 km in the island of Cyprus and registered seismic waves equivalent to a magnitude of 3.3 earthquake.[2]

Prior to the blast there were no notifications to public or to other agencies to allow for population protection in terms of rapid evacuation or sheltering in place.[3] This event immediately overwhelmed the ability of Beirut hospitals, emergency medical services agencies, first responder agencies, and other responding agencies to mount an effective response. Casualties flooded local hospitals with the less injured arriving first by private transportation or by walking to nearby hospitals and the more injured arriving later by emergency medical services (EMS) vehicles. EMS agencies headquarters and vehicles in Beirut were also affected by the blast.

Initial communication between hospitals and between hospitals and EMS was lacking since all hospitals within 5 miles radius from the explosion site were affected at the same time. Patients presented mainly with blast injuries seen with high order explosives. These included traumatic brain injuries, penetrating and blunt injuries from glass and flying debris, globe (eye) injuries,
and musculoskeletal injuries including fractures and contusions. Very few patients presented with burns. Patients with minimal injuries visited several hospitals before being attended to.

Scaling up of response:

The Government of Lebanon realizing the massive impact of this incident declared a state of emergency and launched an immediate appeal for disaster assistance to the international community. At the same time the Lebanese Army formed an incident command structure that would oversee the disaster response activities including operations, logistics, planning and finance and administration. This response model was previously described in an article evaluating national emergency response to mass casualty incidents in Lebanon [4] and recommending adoption of principles of the US National Incident Management System [5]. Drills were also conducted in previous years in collaboration with NGOs and the UNIFIL forces stationed in Lebanon.

Initial Disaster Operations:

The Lebanese Army secured the blast area perimeter to allow for investigation teams and for search and rescue operations to proceed immediately after the blast. Beirut Municipality was tasked in coordination with High Relief Commission to assess damages in affected areas of Beirut. The Internal Security Forces were designated as the main agency to help with searching for missing individuals and to conduct forensic/DNA identifications of unidentified victims/body parts in coordination with the Lebanese Red Cross. They were also charged with maintaining security and safety in affected areas by preventing looting and theft from partly destroyed houses and businesses.
A liaison committee was also formed between the Lebanese Army and the Ministry of Health to prioritize medical needs and to oversee donations and coordinate timely delivery of resources.

The incident command center also asked media outlets to rely only on official communications released by designated media liaison officers. A dedicated call center was launched for all public inquiries related to the response activities. Another taskforce was assigned to work on disaster recovery activities including resuming operations in the unaffected part of the port to allow for receiving international assistance. Beirut International Airport was also designated as the main site for receiving international assistance teams and resources.

Response Priorities:

Search and Rescue Operations

Search and rescue operations for missing individuals at the blast site was the initial response priority. The initial operations were conducted by the Lebanese Civil Defense (main government agency tasked with urban search and rescue) the Lebanese Army and other responding agencies. Several international teams arrived to Lebanon the day after the explosion and were assigned specific sectors and initiated work on site with advanced equipment and rescue dogs. The blast site map identified at least 7 international teams from Russia, France, Poland, Qatar, Netherlands, Greece and Czech Republic. Other teams including the Turkish team arrived few days later and started working on the expanded blast site. An initial estimate of over 100 individuals were reported missing after the blast.
Healthcare Sector Impact Assessment

A quick assessment of the impact of the event on the healthcare system, addressing the needs of the injured and regaining the pre-incident capacity of the system were the main medical priorities.

The direct physical impact on the healthcare system consisted of damages to hospitals and to other healthcare entities: Three major hospitals (St Georges University hospital, Wardieh hospital and Karantina hospital) became completely nonfunctional resulting in total loss of approximately 500 beds. Three other hospitals sustained partial damage (Geitawi Hospital, LAU Medical Centre-Rizk Hospital and American University of Beirut Medical Center).[6] The largest national stock of medications was also partly affected and 17 containers of medical supplied located at the port were partly destroyed. Several medical providers were also among the blast victims with several deaths reported from hospitals that were close to the blast site.

According to the Lebanese syndicate of Physicians, over 2000 doctors’ offices and clinics were also affected by the explosion.

At the time of the blast, the healthcare sector in Lebanon was already experiencing tremendous challenges in terms of capacity and resources. A deepening economic and financial crisis that started in 2019, caused several healthcare organizations to reduce their operations and their workforce in order to cope with currency devaluation, price inflation and capital control measures that were implemented. [7] Most hospitals were also prioritizing preparedness for COVID19 pandemic with 4,022 cases registered in Lebanon one day before the blast. [8] Despite all these challenges, local hospitals received over 6,000 casualties and depleted most of their supplies to respond to this disaster. Hospitals that were severely hit during the blast had to
relocate their patients to other facilities which resulted in increased occupancy in most hospitals in Beirut and reduced their ability to cope with a concurrent surge in COVID19 cases requiring hospitalization. Caring for patients during this response compromised precaution practices that were implemented in most hospitals related to COVID19 pandemic such as removing COVID19 screening and testing requirements, reduced Personal Protective Equipment (PPE) standards during advanced airway management etc…

Field hospitals were part of the international assistance and mutual aid delivered by other countries.[9] By August 12, 2020 there were at least 5 international hospitals operating in greater Beirut area: Most were set up to operate independently and were run by military healthcare teams. These included the Russian, Jordanian, Moroccan and Iranian hospitals. The Qatari hospital was set up to support the functions St George Hospital which was located near the blast site. Most had general capabilities for treating injured victims and providing minor surgeries with few intensive care beds available in the Iranian and Qatari hospitals. Two hospitals also had laboratory COVID19 PCR testing (Russian and Jordanian) and pharmacies for chronic medications (Iranian, Jordanian and Qatari). Treatment of mental health emergencies was also offered at the Russian hospital. None of the hospitals was designed to care for or admit patients with COVID19.

Donations received by the Lebanese government included large stocks of medical supplies and medications and field hospitals. International health care organizations including the World Health Organizations (WHO), USAID, UNHCR also dispatched emergency response teams to
Lebanon to help assess the situation and address needs of both private and public entities in the healthcare sector.

Other NGOs and the private sector focused directly on the needs of the displaced and affected individuals. There were several donation funds established for different causes on social media outlets to support different initiatives including treating children, rebuilding houses and funding shelters. Support of government agencies by the private sector was non-existent for several reasons: 1) lack of trust between the Lebanese people and its government because of the financial crisis that was mainly attributed to corruption 2) blaming of government for negligence in addressing the unsafe storage of the ammonium nitrate.

Challenges During this Response:

Several challenges were observed during the response to this catastrophic event that coincided with the COVID19 pandemic.

At the mitigation level, government agencies failed to adequately identify the hazard risk associated with the storage of large volumes of explosive chemicals in an urban site. Ammonium nitrate is a fertilizer but is also used as blasting agent and is classified as an explosive when it mixed with more than 0.2% of combustible substances. It also known to have caused some of the most destructive accidental explosions in the past.[10] Despite the presence of command and control regulatory requirements for importation, storage and transportation of chemical products in Lebanon, awareness and decisive actions to reduce the hazard risk in this case were missing.

As a result, Beirut Fire Department, the primary responding agency in Beirut, responded to a fire
without prior knowledge of the stored material. Ten fire fighters lost their lives in the blast. Additionally, an expedient emergency assessment at the start of the fire was also not adequate since no notifications were sent to the public to protect the population in the vulnerable zone. Bystanders were filming the fire from their houses in close proximity to the blast site for 30 minutes prior to the explosion that destroyed their homes and left many of them injured or dead. Similarly, hospitals, emergency response agencies and other operating businesses did not receive any notification about a potential catastrophe. A disaster management authority in charge of risk assessment, hazard identification and disaster response is missing in Lebanon because the disaster response draft law that was submitted in 2012 to the Lebanese Parliament has not been approved to date. [11]

At the response level, previous drills helped with the immediate establishment of the incident command center and the Lebanese army assuming command of the overall response. The immediate call for assistance launched by the government helped scale up quickly the response with much needed search and rescue teams with adequate skills and equipment arriving within hours to Lebanon and launching operations as of the next morning of the explosion. The incident command structure allowed for responding agencies to integrate into a response framework with clearly delineated roles and responsibilities. A major challenge the government faced in this response was related to the role of the private sector and the community response with several NGOs asking the international community to bypass the government agencies because of concerns for corruption and the deep political crisis Lebanon was facing at the time of the event. In fact the international coalition for helping Lebanon raised over $200 million and requested...
that funds go directly to the Lebanese population while mandating reform measures from the Lebanese government. [12]

Challenging aspects of the medical response were many: 1) The blast affected most neighboring hospitals in Beirut which resulted in lack of information about functional status of hospitals and lack of initial coordination between hospitals or between EMS agencies and hospitals. Several hospitals faced difficulties with coping with the initial surge of patients immediately after the explosion and referred many patients with minor injuries to more distant hospitals. 2) Fatality management was also problematic with morgues at local hospitals filled immediately by casualties. Requests were sent from hospitals to EMS agencies to define a protocol for fatality management during the response and to identify alternate locations for storage of dead bodies. 3) Unconscious patients’ identification was another challenge with many patients arriving with severe traumatic brain injuries or with life-threatening injuries and getting intubated or going straight to the operating rooms without ability to identify them. Delays with fatalities’ identification were also present and by August 10, 2020, 20 out of a total of 152 fatalities were still unknown. Potential contributing factors related to this delay were the massive scale of the event and the presence of a large number of refugees in Lebanon.

Another challenge in the overall medical response was related to the role of the field hospitals. The existing Lebanese hospitals were able to absorb quickly the surge of patients and to address over subsequent days most of the initial needs of injured patients. Patients also followed up at the hospitals where they were initially treated for their return visits. Independently deployed hospitals started receiving general medical visits and only one hospital was paired with another existing partly destroyed hospital to support its functions. The functions and capabilities of these hospitals were not initially coordinated with existing hospitals and their locations and services
were not immediately clarified to the public. Several disaster medical assistance teams (DMATS) reached Lebanon and after a quick assessment realized that the needs were mainly in stocks, supplies and medications rather than medical personnel or sites of care. Coordination and deployment of resources was initially slightly delayed especially that the call for international assistance did not identify a list of urgent medical needs. The response priorities were later clarified by the incident command center to allow for international assistance teams to deploy resources in a more effective manner. The Ministry of Health dispersed gradually medical supplies to local hospitals.[13] Donations also reached different entities in Lebanon from multiple international sources despite existing structure of the incident command center centralize this and avoid duplication of resources.

Public information and communication remained a major challenge during this disaster response. Issues ranged from missing pre-explosion notifications to absence of official status reports on response activities such as daily updates on rescue operations, fatalities’ identification, damage assessment, international assistance and on other disaster recovery related activities. Multiple NGOs worked on filling this gap by launching public databases for missing individuals, unidentified victims, lists of available resources (food and shelter) etc…

Table 1 lists recommendations for improving response, recovery and resilience to future disasters in Lebanon.

This catastrophic explosion occurred during the COVID19 Pandemic. The number of COVID19 cases was starting to rise quickly in July after the reopening of different sectors including Beirut International Airport. The healthcare system capacity was however being challenged by the
financial crisis, the reduction in workforce and closure of COVID19 dedicated wards and intensive care units in private hospitals because of difficulties in securing resources such as PPE, ventilators, dialysis equipment etc. The main Challenge of the healthcare system after the explosion was the reduction in capacity to cope with the surge of COVID19 cases especially that two large affected hospitals were also treating COVID19 patients. In fact, the number of COVID19 cases rose to reach 10,347 total cases by August 19, 2020 with post explosion cases accounting for around 61% of total cases. Several factors may explain this surge: 1) Injured patients were treated at different hospitals and precaution standards were compromised during the response, 2) mass gatherings were frequent to help with urban search and rescue operations and riots started immediately after the explosion holding the government accountable for negligence 3) The natural progression of the pandemic since the weekly COVID19 reproduction rate average exceeded 1.5 in the pre-explosion phase. This surge in COVID19 cases required that the priorities of the response be shifted back to COVID19 response with the decision to reimplement a partial lockdown while allowing recovery operations to continue. Requests for help and for resources are also prioritizing COVID19 response in terms of building ICU capabilities in different Lebanese hospitals and modifying field hospitals to be able to accommodate COVID19 patients. An official assessment of the status of the healthcare sector in Lebanon post the Beirut explosion is still pending.

In summary, the emergency response to the ammonium nitrate explosion in Beirut on August 4, 2020 was the first reported international response to a man-made disaster during the COVID19 pandemic. Its physical impacts (casualties and damage) and social impacts (psychological, economic and political) are massive. The government responded with a clear incident command
structure and gaps were filled by the private sector and the community. Man-made disasters are unfortunately very frequent in Lebanon and the time for preparedness and mitigation seems to not be enough. Lebanon needs all the help from the international community to be able to recover fast from this disaster and to mount an effective response against the most imminent threat which is COVID19 pandemic.
References

[1] Azhari, T., 2020. Beirut Blast: Tracing The Explosives That Tore The Capital Apart. [online] Aljazeera.com. Available at: <https://www.aljazeera.com/news/2020/08/officials-knew-danger-beirut-port-years-200805032416684.html> [Accessed 20 August 2020].

[2] Bressan, D., 2020. Beirut Explosion Generates Seismic Waves Equivalent Of A Magnitude 3.3 Earthquake. [online] Forbes. Available at: <https://www.forbes.com/sites/davidbressan/2020/08/06/beirut-port-explosion-triggers-magnitude-3-earthquake/> [Accessed 20 August 2020].

[3] National Research Council 2006. Terrorism and the Chemical Infrastructure: Protecting People and Reducing Vulnerabilities. Washington, DC: The National Academies Press. https://doi.org/10.17226/11597.

[4] El Sayed MJ. Emergency response to mass casualty incidents in Lebanon. Disaster Med Public Health Prep. 2013;7(4):433-438. doi:10.1017/dmp.2013.48

[5] US Department of Homeland Security, Federal Emergency Management Agency. National Incident Management System. December 18, 2008. http://www.fema.gov/pdf/emergency/nims/NIMS_core.pdf. Accessed 14, August 2020.
[6] Who.int. 2020. World Health Organization, Lebanon Explosion. [online] Available at:
<https://www.who.int/docs/default-source/documents/emergencies/2020-aug-6-lebanon-donor-alert.pdf?sfvrsn=753093f8_2> [Accessed 20 August 2020].

[7] Bloomberg.com. 2020. [online] Available at:
<https://www.bloomberg.com/news/articles/2020-08-05/how-the-beirut-explosion-will-worsen-lebanon-s-crises-quicktake> [Accessed 20 August 2020].

[8] Ministry of Public Health Lebanon. 2020. COVID19 surveillance reports. [online] Available at: <https://www.moph.gov.lb/en/Pages/2/24870/novel-coronavirus-2019-> [Accessed 20 August 2020].

[9] Ministry of Public Health Lebanon. 2020. List Of Field Hospitals That Treat Patients For Free. [online] Available at: <https://www.moph.gov.lb/en/Media/view/37408/1/field-hospitals-patients-free-> [Accessed 20 August 2020].

[10] United States Environmental Protection Agency EPA. Explosion hazard from Ammonium nitrate. Office of Solid Waste and Emergency Response (5104). December 1997 EPA 550-F-97-002d. www.epa.gov

[11] United Nations Development Programme. Strengthening Disaster Risk Management Capacities in Lebanon. New York, NY: United Nations Development Programme. http://www.undp.org/content/dam/rbas/doc/Crisis
[12] BBC News. 2020. Donors Pledge Lebanon Aid But Call For Reforms. [online] Available at: <https://www.bbc.com/news/world-middle-east-53710556> [Accessed 20 August 2020].

[13] Ministry of Public Health Lebanon. 2020. Distribution Of Aid And Medical Assistance To The Hospitals Following Beirut Blast On 4/8/2020. [online] Available at:
<https://www.moph.gov.lb/en/Media/view/37847/distribution-of-aid-and-medical-assistance-to-the-hospitals-following-beirut-blast-on-4-8-2020> [Accessed 20 August 2020].
Prevention & **Protection**	Establish a system for intelligence and information sharing between agencies and hospitals
	Formalize a mechanism for public information and warning in routine events and disasters
	Search for and detect storage sites of hazardous materials
	Identify vulnerable areas in the community and enforce protective measures against disasters
	Define critical infrastructure in the healthcare sector and introduce protective measures against blasts and other types of disasters

Mitigation	Develop & implement a hazard specific mitigation plan at the national level
	Test communication with public through early notifications for evacuation and or sheltering
	Improve information sharing system with responding agencies and hospitals
	Continue multiagency drills for disaster response and involve stakeholders from private sectors and communities
	Hazard risk assessment to identify storage sites of hazardous material & enforcing regulations
	Risk stratification of zones for future events
	Develop a plan and practice tools for a rapid assessment post disaster
	Pre-define life-saving and life sustaining activities at the community level

Response	Continue to improve the different branches of the incident command structure
	Identify immediate response priorities and gaps and communicate these clearly to local and international response agencies
	Establish a critical information network and improve efficiency of information sharing across different levels of government and to responding agencies
	Introduce disaster notifications to public, hospitals and to other stakeholders
	Initiate and organize government and community search and rescue operations
	Quick assessment of scale of event the event and determine need for scaling up the response
	Quick assessment of the status of critical infrastructure and prioritize re-establishing this infrastructure
	Assess status of critical transportation channels, continuing threats and ensure access to disaster zone for responding agencies
	Clarify mechanism for integrating international agencies into overall response framework (responding agencies and field hospitals)
	Ensure ability to deliver acute care for a large number of victims, and prioritize activities to increase surge capabilities
	Clearly define roles and responsibilities and involve public sector and NGOs in a formal way
Mobilize resources after a quick assessment to acute care facilities and to disaster victims	
Ensure ability to continue to deliver life-saving and life sustaining activities at all levels	
Establish a system for fatality management	
Establish as mechanism for identifying unconscious victims who are hospitalized	
Establish an effective system for mobilizing resources to responding agencies, facilities and to disaster victims	
Establish information centers for the public and for disaster victims	
Define owners of different response activities including establishing emergency shelters, reporting of and locating missing individuals…	
Ensure protection to site and safety (person, property & environment including assessment for residual threats related to CBRNE* Incidents)	
Clarify a transparent mechanism for receiving aid and donations and for distributing donations	
Creating a formal vetting mechanism for old and new NGOs involved in the response	

| Recovery |
| Define a recovery plan that covers all sectors |
| Establish integrated leadership for all recovery activities with clear goals and timelines |
| Prioritize recovery of health care sector and other health/social services |
| Improve communication and information dissemination about recovery status of affected services |
| Clarify access to information related all types of recovery activities |
| Create a feedback mechanism about overall status of recovery operations for involved stakeholders |
| Define mechanisms for ensuring sustainability in recovery activities in terms of balancing needs and availability of resources |

*CBRNE Chemical, Biological, Radiological, Nuclear, and high yield Explosives