Effect of **GP73** silencing on proliferation and apoptosis in hepatocellular cancer

Yu-Long Zhang, You-Cheng Zhang, Wei Han, Yu-Min Li, Geng-Nian Wang, Shao Yuan, Feng-Xian Wei, Jia-Feng Wang, Jian-Jun Jiang, Ya-Wu Zhang

Yu-Long Zhang, You-Cheng Zhang, Wei Han, Yu-Min Li, Geng-Nian Wang, Shao Yuan, Feng-Xian Wei, Jia-Feng Wang, Jian-Jun Jiang, Ya-Wu Zhang

Yu-Long Zhang, You-Cheng Zhang, Wei Han, Yu-Min Li, Geng-Nian Wang, Shao Yuan, Feng-Xian Wei, Jia-Feng Wang, Jian-Jun Jiang, Ya-Wu Zhang

Yu-Long Zhang, You-Cheng Zhang, Wei Han, Yu-Min Li, Yawu Zhang, Department of General Surgery, Lanzhou University Second Hospital, Lanzhou 730030, Gansu Province, China

Yu-Long Zhang, You-Cheng Zhang, Wei Han, Yu-Min Li, Ya-Wu Zhang, Hepato-Biliary-Pancreatic Institute, Lanzhou University Second Hospital, Lanzhou 730030, Gansu Province, China

Yu-Long Zhang, You-Cheng Zhang, Wei Han, Yu-Min Li, Ya-Wu Zhang, Gansu Provincial-Level Key Laboratory of Digestive System Tumors, Lanzhou 730030, Gansu Province, China

Author contributions: Zhang YL, Zhang YC, Han W and Li YM designed the research; Zhang YL, Wang GN, Wei FX, Wang JF and Yuan S performed the research; Jiang JJ and Zhang YW contributed new reagents or analytic tools; Zhang YL and Zhang YC analyzed the data; Zhang YL and Zhang YC wrote the paper.

Supported by: The Grant from Gansu Provincial-Level Key Laboratory of Digestive System Tumors Open projects Research Fund, No. Izubjky-2011-03

Correspondence to: You-Cheng Zhang, MD, PhD, Department of General Surgery, Lanzhou University Second Hospital, Cuiyingmen 82, Chengguan District, Lanzhou 730030, Gansu Province, China. zhangyouchengphd@163.com

Telephone: +86-931-8942287 Fax: +86-931-8942287

Received: December 25, 2013 Revised: February 28, 2014

Accepted: April 21, 2014

Published online: August 28, 2014

Abstract

AIM: To investigate the roles of Golgi protein (GP) 73 in the regulation of cell proliferation and apoptosis.

METHODS: Stealth RNAi targeting **GP73** gene sequence was used to silence its expression in Hep G2 cells and Bel7402 cells. Stealth RNAi effects were assessed by reverse transcriptase polymerase chain reaction and ELISA. Cell proliferation assay and cell cycle analysis were assessed by MTT assay and flow cytometry. Apoptosis was assessed by flow cytometry and transmission electron microscopy. Apoptosis-related proteins were assessed by western immunoblot analysis.

RESULTS: Stealth RNAi targeting **GP73** gene sequence markedly reduced the expression of **GP73** gene. The reduction of **GP73** in Hep G2 cells and Bel7402 cells inhibited cell proliferation and induced apoptosis, however, terminal apoptosis occurred in Hep G2 cells, but early apoptosis occurred in Bel7402 cells. Reduced expression of **GP73** gene might lead to a reduction in Bcl-2/Bax ratio, an increase in cytochrome c, but a reduction in caspase-3.

CONCLUSION: **GP73** might play an important role in proliferation and apoptosis in hepatocellular carcinoma cells.

World J Gastroenterol 2014 August 28; 20(32): 11287-11296 Available from: URL: http://www.wjgnet.com/1007-9327/full/v20/i32/11287.htm DOI: 10.3748/wjg.v20.i32.11287

© 2014 Baishideng Publishing Group Inc. All rights reserved.

Key words: Hepatocellular carcinoma; Golgi protein-73; Cell proliferation; Apoptosis

Core tip: Stealth RNAi targeting Golgi protein (GP)73 gene sequence markedly reduced the expression of **GP73** gene. Reduction of **GP73** in Hep G2 cells and Bel7402 cells inhibited cell proliferation and induced apoptosis, however, terminal apoptosis occurred in Hep G2 cells, but early apoptosis occurred in Bel7402 cells. Reduced expression of **GP73** gene might lead to a reduction in Bcl-2/Bax ratio, an increase in cytochrome c, but a reduction in caspase-3. **GP73** might play an important role in proliferation and apoptosis in Hep G2 and Bel7402 cells.

Zhang YL, Zhang YC, Han W, Li YM, Wang GN, Yuan S, Wei FX, Wang JF, Jiang JJ, Zhang YW. Effect of **GP73** silencing on proliferation and apoptosis in hepatocellular cancer. *World J Gastroenterol* 2014; 20(32): 11287-11296 Available from: URL: http://www.wjgnet.com/1007-9327/full/v20/i32/11287.htm DOI:
INTRODUCTION

Hepatocellular carcinoma (HCC) is the fifth most common malignancy worldwide, and > 80% of HCC occurs in developing countries[10]. HCC remains a significant concern of cancer research because of its poor survival rate and high rates of recurrence[3,5]. Prognosis of surgical or loco-regional therapies for patients with intermediate- and advanced-stage disease remains poor[40]. Several effective gene-targeting agents are currently being tested in preclinical studies[59]. Unfortunately, no chemotherapy is effective for HCC patients.

Kladney et al[10] first isolated Golgi protein (GP)73 in a genetic screen. Expression of GP73 is increased markedly in HCC cells and its serum levels appear to be predictive of HCC[11-15], and several studies have reported the use of GP73 as a serum marker for HCC[16-22]. GP73 may be elevated even when small undetectable tumors are present[23]. The physiological and pathological roles of GP73 have attracted considerable attention in recent years[16-30]. However, the function of GP73 in hepatic carcinoma cells remains obscure. The expression of GP73 was silenced in the HCC cell line Bel7402 and Hep G2 by stealth RNAi, which serves as a powerful technology to block specifically the expression of target genes in the present study[21-30]. The effects of GP73 on cell proliferation and apoptosis were also evaluated in this study.

MATERIALS AND METHODS

Stealth RNAi

According to the siRNA design guidelines[27,28], one RNAi target sequence was selected corresponding to the nucleotides of RNAi-Stealth RNAi of the human GP73 mRNA (GenBank Accession No. NM177937.2). The synthesis of the sequenced oligonucleotide was: HSS181966: sense 5'-GGAAACGGGCGUCGCAG-3', anti-sense 5'-ACUUCAUGCUUGCUUCCGAG-3'.

Transfection

Lipofectamine RNAi Max transfection agent (Invitrogen, Carlsbad, CA, United States) was used to transfect synthesized Stealth RNAi against GP73 into Hep G2 and Bel7402 cells. BLOCK-iT Alexa Fluor Red Fluorescent (Invitrogen) was used to confirm the transfection efficiency of each duplex siRNA. Stealth RNAi, fluorescent logo or negative control duplexes were delivered into Hep G2 and Bel7402 cells through reverse transfection.

Reverse transcriptase polymerase chain reaction

To analyze quantitatively the effects of Stealth RNAi on GP73 mRNA, cells were transfected with Stealth RNAi or negative control in culture flasks. After 24 and 48 h, cells were harvested by trypsinization and rinsed twice with cold PBS. TRIzol reagent (Invitrogen) was used to extract total RNA. Two-step real-time reverse transcriptase polymerase chain reaction (RT-PCR) kits (TakaRa, Japan) was used to perform first-strand cDNA synthesis and amplification. The 7000 Sequence Detection System (Applied Biosystems, Foster City, CA, United States) was used to perform quantitative PCR amplifications. A 20-μL reaction volume containing 10 μL 2× SYBR Premix Ex TaqTM (TakaRa) was used to carry out this reaction. β-Actin was used as an internal standard. The primer sequences were: GP73 sense 5'-GTGTCG-GGTGCAGCCTTGTTA-3' and anti-sense 5'-AGTG-GCTCTAGGGCA TTGATTGATTG-3', β-actin sense 5'-GCAAGCAGAGTATGACGAGT-3' and anti-sense 5'-GCAAGCAGAGTATGACGAGT-3'. Thermal cycle conditions: 95 ℃ for 30 s, followed by 40 cycles of 94 ℃ for 5 s, and 61 ℃ for 30 s. The ΔCt of each group was calculated by the formula: ΔCt = Ct(GP73) - Ctβ-Actin. ΔΔCt was calculated by ΔCtreated - ΔCtcontrol. The fold change for GP73 expression levels of the treated groups were calculated using 2-ΔΔCt. The primers described above and the comparative threshold (Ct) method were used to calculate the relative amount of mRNA in the treated samples compared to the control samples. The real-time PCR assays were performed in triplicate.

GP73 proteins detection

To analyze quantitatively the effects of Stealth RNAi on GP73 protein levels in supernatant of Hep G2 and Bel7402 cells, cells were transfected with Stealth RNAi or negative control in culture flasks. After 24 and 48 h, the supernatant was collected, and GP73 protein levels in supernatant of Hep G2 and Bel7402 cells were detected using a commercially available human GP73 ELISA kit. The ELISAs were performed in triplicate.

Cell proliferation assay and cell cycle analysis

Cell proliferation was measured by MTT assay, according to the manufacturer’s instructions. Propidium iodide (PI) staining of the nuclei was used to monitor cell cycle analysis. Seventy-five percent cold alcohol was used overnight to fix the cells, and then the cells were resuspended in 300 μL PBS and stained with 500 μL PI (250 μg/mL) for 30 min in the dark. Flow cytometry was used to analyze cells. Cell cycle assays were performed in triplicate.

Apoptosis assessment with flow cytometry and transmission electron microscopy

To analyze quantitatively the effects of Stealth RNAi on apoptosis, cells were transfected with Stealth RNAi or negative control in culture flasks. After 48 h, cells were harvested by trypsinization and rinsed twice with cold PBS. Cells were resuspended in 200 μL binding buffer and then treated with 10 μL Annexin V-FITC and 5 μL PI (Sigma, St Louis, MO, United States) for 15 min. Flow cytometric analysis of cells was performed with an EpicsXL Coulter flow cytometer (Beckman-Coulter, United States). All assays were repeated three times.
Transmission electron microscopy (TEM) was used to detect apoptosis. Cells were harvested by trypsinization and rinsed twice with cold PBS. Glutaraldehyde (0.3%) was used to prefix the cells overnight, and 10 mL/L osmic acid was used to post-fix the cells. The cells were observed under a JEM-1230 transmission electron microscope (Jeol, Japan).

Protein extraction and western immunoblot analysis
To analyze quantitatively the mechanism of Stealth RNAi on apoptosis, Hep G2 cells were transfected with Stealth RNAi or negative control in culture flasks. After 48 h, cells were harvested by trypsinization and rinsed twice with cold PBS. Hep G2 cells (5 × 10⁵) were lysed by lysis buffer (phenylmethylsulfonyl fluoride), then drawing the protein standard curve to calculate the density of total protein. Ten percent SDS-PAGE was used to separate proteins, and proteins were transferred to nitrocellulose membranes. Anti-GP73, Bax, Bcl-2, cytochrome c and procaspase-3, β-actin primary antibody (1:1000; Abcam, Cambridge, MA, United States) were used to incubate membranes, and then, anti-rabbit secondary antibody conjugated with horseradish peroxidase was used to incubate membranes (1:5000) again. Western Blotting Substrate (Bio-Rad) was used to visualize immunoreactive proteins. All assays were repeated three times.

Statistical analysis
Mean ± SD was used to express the data. The data among the three groups were compared by one-way analysis of variance followed by Bonferroni correction. Some data were also analyzed by Student’s t test. SPSS for Windows version 19.0 was used for statistical analysis. \(P < 0.01 \) was considered significant.

RESULTS

Transfection efficiency
Twenty-four hours after transfection, Bel7402 and Hep G2 cells were observed by fluorescent microscopy. The efficiency of transfection was > 80% when using 30 nmol/L final concentrations of oligo duplex and 1 × 10⁵/mL cells (Figure 1). Therefore, 30 nmol/L siRNA and 1 × 10⁵/mL Bel7402 and Hep G2 cells were used to perform subsequent experiments.

Expression of GP73 after transfection
After Stealth siRNA targeting GP73 was transfected into Hep G2 and Bel7402 cells, mRNA levels were measured by RT-PCR. There was an obvious reduction of GP73 mRNA levels in the Stealth RNAi group. Quantification analysis revealed that GP73 mRNA was reduced by 68.7% and 90.3% of the blank control for Hep G2 cells, and 56.7% and 88.7% of the blank control for Bel7402 cells at 24 and 48 h after transfection, respectively. A significant difference was found between the blank control and Stealth RNAi groups (Figure 2A and B, \(P < 0.01 \)). ELISA of supernatant demonstrated that GP73 protein...
levels were also significantly reduced compared with the blank control. GP73 protein levels for blank control, negative control and RNAi groups at 24 and 48 h after transfection are shown in Figure 2C and D (P < 0.01). There was a significant difference between the blank control and RNAi groups (Figure 2C and D, P < 0.01). Expression of GP73 in Hep G2 cells was also significantly lower than in Bel7402 cells after transfection.

Silencing of GP73 gene decreased viability and proliferation in Bel7402 and Hep G2 cells

As illustrated in Figure 3A, the viability of Hep G2 and Bel7402 cells was reduced significantly after transfection. The inhibition rate in the RNAi group was 27.09% and 50.53% at 24 and 48 h after transfection for Hep G2 cells, respectively, and 21.3% and 46.4% at 24 and 48 h after transfection for Bel7402 cells (Figure 3A, P < 0.01). As illustrated in Figure 3B and C, an apoptotic peak was seen in the RNAi group of Hep G2 cells, and cell cycle analysis showed that proliferation of Hep G2 cells yielded 78.22% ± 0.35% cells in G0/G1 phase, 20.72% ± 1.19% cells in S phase, and 1.07% ± 1.09% cells in G2/M phase 48 h after transfection. The percentage of cells in G0/G1 phase increased significantly, however, the percentage of cells in G2/M phase decreased significantly (P < 0.01). Proliferation control Bel7402 cells yielded 88.81% ± 1.13% cells in G0/G1 phase, 12.1% ± 1.12% cells in S phase, and 0.98% ± 1.08% cells in G2/M phase 48 h after transfection in the RNAi group. The percentage of cells in G0/G1 phase increased significantly, however, the percentage of cells in G2/M phase decreased significantly in both cells.

Silencing of GP73 gene induces apoptosis

After transfection for 48 h, the apoptotic cells were markedly increased in the RNAi group compared to those in the negative and blank control groups in Hep G2 and Bel7402 cells. Their values are shown in Figure 4 (P < 0.01). The results showed that terminal- and early-stage apoptotic cells were markedly increased in the RNAi group compared to the blank control group in both cells, and terminal-stage apoptosis mainly occurred in Hep G2 cells after transfection, however, early-stage apoptosis mainly occurred in Bel7402 cells.

Changes in ultrastructural morphology of cells

Normal control Hep G2 cells were observed by TEM (Figure 5A). Some typical manifestations of apoptosis such as vacuoles, nuclear fragmentation and apoptotic bodies were observed in the RNAi group of Hep G2 cells (Figure 5B). Normal control Bel7402 cells were observed (Figure 5C). Dense chromatin and some vacuoles could...
Figure 3 Silencing of GP73 gene decreased cell proliferation. A: MTT analysis at 24 and 48 h (% blank control) for Hep G2 and Bel7402 cells; B: Cell cycle assay was analyzed by flow cytometry; C: Flow cytometric analysis of the cell cycle distribution of Hep G2 and Bel7402 cells at 24 h after transfection. Cells were washed, fixed, and stained with propidium iodide, and analyzed using Beckman-Coulter Epics flow cytometer. \(^P < 0.01\) vs blank group.
be seen in the RNAi group of Bel7402 cells (Figure 5D).

Effects of silencing GP73 gene on apoptosis-related molecules in Hep G2 cells

Western blotting was performed to analyze the expression of GP73, Bax/Bcl-2, cytochrome c and procaspase-3 in Hep G2 cells. The protein levels of GP73 decreased significantly compared with those in negative and blank control groups at 48 h after transfection in Hep G2 cells. Compared with negative and blank control groups, the protein levels of Bcl-2 were reduced significantly, however, the protein levels of Bax were markedly elevated. Compared to the negative and blank control groups at 48 h after transfection, the protein level of cytochrome c in the cytoplasm was markedly elevated in the RNAi group, and the protein level of procaspase-3 was reduced markedly (Figure 6).

DISCUSSION

There is a growing body of evidence that GP73 serum levels correlate with the presence of HCC. However, although GP73 levels in the circulation do not appear to be elevated in healthy subjects, these and other reports suggest elevation of the marker in people with inflammatory liver diseases, in the absence of cancer. Thus, its usefulness in distinguishing cancer from cirrhosis or other liver conditions associated with inflammation is still being evaluated. Work by others has found that GP73 levels are affected by tumor necrosis factor-α and interferon-γ in tissue culture systems, and there is an association between levels of GP73 and osmoles in serum from people with liver cirrhosis, but there is no significant correlation in HCC. We do not know the molecular basis for the high expression of GP73 in these cells, and the effect...
of GP73 in hepatic carcinoma cells is also unclear. We investigated the effect of GP73 in hepatic carcinoma by silencing expression of GP73 through siRNA. In this study, after Stealth RNAi against GP73 was transfected into Hep G2 and Bel7402 cells, the expression of GP73 and mRNA of GP73 decreased significantly in both cells. The decreasing expression of GP73 inhibited cell proliferation and led to apoptosis. Besides, decreasing expression of GP73 also leads to reduction of Bel-2/Bax ratio, an increase in protein level of cytochrome c in the cytoplasm, and decreasing procaspase-3.

The effects of Stealth RNAi on both GP73 mRNA and protein levels were measured. The results demonstrated that the Stealth RNAi against GP73 (RNAi) can reduce the expression of GP73 effectively at both mRNA and protein levels in Hep G2 and Bel7402 cells after transfection. Western blotting showed that GP73 protein decreased significantly in the RNAi group compared with the other groups. In addition, cell cycle assay confirmed that the proliferation of Bel7402 and Hep G2 cells was reduced significantly after expression of GP73 gene was silenced by RNAi. In Bel7402 and Hep G2 cells, the percentage of cells in G0/G1 phase increased significantly, however, the percentage of cells in G2/M phase decreased significantly. The percentage of cells in S phase decreased in Bel7402 cells after transfection, although the percentage of Hep G2 cells in S phase did not change significantly. However, an apoptotic peak was seen in Hep G2 cells, which indicates that terminal apoptosis had occurred. The proliferation of hepatic cancer cells is related to the expression of GP73. Decreasing expression of GP73 inhibited hepatic cancer cells in G0/G1 phase, and sometimes it also affected hepatic cancer cells in S phase.

Furthermore, fluorescence activated cell sorting methods suggested that Stealth RNAi against GP73 (RNAi) caused accumulation of early-stage apoptotic Bel7402 cells and accumulation of terminal-stage apoptotic Hep G2 cells at 48 h after transfection (GP73 was silenced). The apoptotic peak was also seen in proliferation of Hep G2 cells. The different stage of apoptosis may be related to the different expression of GP73 in Bel7402 and Hep G2 cells. TEM observation agreed with the former results. Dense chromatin appeared near the nuclear membrane, many foaming phenomenon happened in Bel7402 cells, which also indicated that Stealth RNAi against GP73 (RNAi) mainly caused accumulation of terminal-stage apoptotic Bel7402 cells, however, many vacuoles, nuclear fragmentation and apoptotic bodies appeared in Hep G2 cells, which can also explain why there was an apoptotic peak in the RNAi group. These results also confirmed that Stealth RNAi against GP73 (RNAi) mainly caused accumulation of terminal-stage apoptotic Hep G2 cells. And the difference of its expression in different cells might play different function. Several studies have found that the ratio of Bax/Bcl-2 is important in apoptosis of cancer cells. Bel-2 is considered as an upstream effector molecule in the apoptotic pathway, but Bax is considered as a downstream effector molecule[36,37]. The protein levels of Bax and Bcl-2 were measured, and similar results
were also found in this study. We demonstrated that the reduction of GP73 led to a decrease in expression of Bcl-2 but an increase in Bax, and the Bcl-2/Bax ratio in Hep G2 cells was reduced, this result was also similar to the other one on the cell apoptotic mechanism [38]. Besides, in some apoptotic mechanism studies, it was found that Bcl-2 inhibits cytochrome c release from mitochondria, whereas Bax triggers it [39], and release of cytochrome c activated caspases to induce apoptosis. The expression of cytochrome c and procaspase-3 was also detected by Western blotting to determine their distribution in apoptosis. The level of cytochrome c in the cytoplasm was markedly elevated in the RNAi group; however, the level of procaspase-3 was reduced significantly. These results proved that GP73 may play a major role in anti-apoptosis in HCC cells, and there is a correlation between it and other apoptosis-related proteins such as Bax, Bcl-2, cytochrome c and procaspase-3.

In conclusion, Stealth RNAi targeting GP73 gene sequence reduced the expression of GP73 markedly. The reduction of GP73 in Hep G2 and Bel7402 cells inhibited cell proliferation and induced apoptosis, however, terminal apoptosis occurred in Hep G2 cells, but early apoptosis occurred in Bel7402 cells. Reduced expression
of GP73 gene might lead to a reduction in Bcl-2/Bax ratio, an increase in cytochrome c, but a reduction in caspase-3, and the reduction of GP73 induces apoptosis in Hep G2 cells may through this apoptosis signaling pathway. However, further studies are needed to confirm this conclusion. Consequently, the results imply that GP73 plays an important role in HCC cells, but unfortunately, expression of GP73 was not reduced to a low level in this study, therefore, more effective molecular tools are needed to explore the exact function of GP73 in more HCC cells.

COMMENTS
Background
The physiological and pathological roles of Golgi protein (GP73) have attracted considerable attention in recent years. However, the function of GP73 in hepatic carcinoma cells remains obscure.

Research frontiers
This study was performed to explore the function of GP73 in hepatic carcinoma cells; Stealth RNAi targeting GP73 gene sequence was used to silence its expression; and cell proliferation and apoptosis were assessed. This study implied that GP73 plays an important role in hepatic carcinoma (HCC) cells.

Innovations and breakthroughs
The results of this study suggested that silencing GP73 gene in HCC cells inhibits cell proliferation and induces apoptosis.

Applications
The results imply that GP73 plays an important role in HCC cells, but further research is needed to explore the exact function of GP73 in more HCC cells.

Peer review
These results are very interesting and may provide important evidence about the mechanism of apoptosis in HCC.

REFERENCES
1 Yang JD, Roberts LR. Hepatocellular carcinoma: A global view. Nat Rev Gastroenterol Hepatol 2010; 7: 448-458 [PMID: 20628345 DOI: 10.1038/nrgastro.2010.100]
2 Chan AC, Chan SC, Chok KS, Cheung TT, Chiu DW, Poon RT, Fan ST, Lo CM. Treatment strategy for recurrent hepatocellular carcinoma: salvage transplantation, repeated resection, or radiofrequency ablation? Liver Transpl 2013; 19: 411-419 [PMID: 23447460 DOI: 10.1002/lt.23605]
3 Shindoh J, Hasegawa K, Inoue Y, Ishizawa T, Nagata R, Aoki T, Sakamoto Y, Sugawara Y, Makucchi M, Kokudo N. Risk factors of post-operative recurrence and adequate surgical approach to improve long-term outcomes of hepatocellular carcinoma. HPB (Oxford) 2013; 15: 51-59 [PMID: 23216777 DOI: 10.1111/j.1477-2558.2012.00552.x]
4 Yau T, Chan P, Epstein R, Poon RT. Management of advanced hepatocellular carcinoma in the era of targeted therapy. Liver Int 2009; 29: 10-17 [PMID: 19120940 DOI: 10.1111/j.1478-3231.2008.01916.x]
5 Greten TF, Korangy F, Manns MP, Malek NP. Molecular therapy for the treatment of hepatocellular carcinoma. Br J Cancer 2009; 100: 19-23 [PMID: 19010262 DOI: 10.1038/sj.bjc.6604784]
6 Hagymasi K, Tulassay Z. [New possibilities of targeted therapy in the treatment of hepatocellular carcinoma with the help of molecular biology]. Oro Hetil 2010; 151: 1763-1768 [PMID: 20940115 DOI: 10.1556/OH.2010.28984]
7 Pang RW, Poon RT. From molecular biology to targeted therapies for hepatocellular carcinoma: the future is now. Oncology 2007; 72 Suppl 1: 30-44 [PMID: 18087180 DOI: 10.1159/000117105]
8 Llovet JM, Bruix J. Novel advancements in the management of hepatocellular carcinoma in 2008. J Hepatol 2008; 48 Suppl 1: S20-S37 [PMID: 18304676 DOI: 10.1016/j.jhep.2008.01.022]
9 Voiculescu M, Winkler RE, Moscovici M, Neuman MG. Chemotherapies and targeted therapies in advanced hepatocellular carcinoma: from laboratory to clinic. J Gastroenterol Hepatol 2008; 23: 315-322 [PMID: 18836626]
10 Kladney RD, Bulla GA, Guo L, Mason AL, Tollesf AE, Simon DJ, Koutoubi Z, Fimmel CJ. GP73, a novel Golgi-localized protein upregulated by viral infection. Gene 2000; 249: 53-65 [PMID: 10831838 DOI: 10.1016/S0378-1119(00)00136-0]
11 Kladney RD, Tollesf AE, Wold WS, Fimmel CJ. Upregulation of the Golgi protein GP73 by adenovirus infection requires the E1A 85/70K interaction domain. Virology 2002; 301: 236-246 [PMID: 12359426 DOI: 10.1006/viro.2002.1523]
12 Block TM, Comunale MA, Lowman M, Steel LF, Romano PR, Fimmel C, Tennant BC, London WT, Evans AA, Blumberg BS, Dwek RA, Mattu TS, Mehta AS. Use of targeted glycoproteomics to identify serum glycoproteins that correlate with liver cancer in woodchucks and humans. Proc Natl Acad Sci USA 2005; 102: 779-784 [PMID: 15642945 DOI: 10.1073/pnas.0408928102]
13 Norton PA, Comunale MA, Krakover J, Rodemich L, Pirog N, D’Amelio A, Philip R, Mehta AS, Block TM. N-linked glycosylation of the liver cancer biomarker GP73. J Cell Biochem 2008; 104: 136-149 [PMID: 18004786 DOI: 10.1002/jcb.21610]
14 Kladney RD, Cui X, Bulla GA, Brunt EM, Fimmel CJ. Expression of GP73, a resident Golgi membrane protein, in viral and nonviral liver disease. Hepatology 2002; 35: 1431-1440 [PMID: 12029628 DOI: 10.1053/jhep.2002.32525]
15 Malaguarnera M, Giordano M, Paladin L, Berretta M, Cappellani A, Malaguarnera M. Serum markers of hepatocellular carcinoma. Dig Dis Sci 2010; 55: 2744-2755 [PMID: 20399916 DOI: 10.1007/s10620-010-1184-z]
16 Shi Y, Chen J, Li L, Sun Z, Zen L, Xu S, Zhang Y, Zhang L. A study of diagnostic value of golgi protein GP73 and its genetic assay in primary hepatic carcinoma. Technol Cancer Res Treat 2011; 10: 297-294 [PMID: 21517136]
17 Hu JS, Wu DW, Liang S, Miao XY. GP73, a resident Golgi glycoprotein, is sensibility and specificity for hepatocellular carcinoma of diagnosis in a hepatitis B-endemic Asian population. Med Oncol 2010; 27: 339-345 [PMID: 19399652 DOI: 10.1007/s12032-009-9215-y]
18 Puri S, Bachert C, Fimmel CJ, Linstedt AD. Cycling of early Golgi proteins via the cell surface and endosomes upon luminal pH1 disruption. Traffic 2002; 3: 641-653 [PMID: 12191016]
19 Mao Y, Yang H, Xu H, Lu X, Sang X, Du S, Zhao H, Chen W, Xu Y, Chi T, Yang Z, Cai J, Li H, Chen J, Zhong S, Mohanty SR, Lopez-Soler R, Millis JM, Huang J, Zhang H. Golgi protein 73 (GOLPH2) is a valuable serum marker for hepatocellular carcinoma. Gut 2010; 59: 1687-1693 [PMID: 20876776 DOI: 10.1136/gut.2010.214916]
20 Marrero JA, Romano PR, Nikolaeva O, Steel L, Mehta A, Fimmel CJ, Comunale MA, D’Amelio A, Lok AS, Block TM, GP73, a resident Golgi glycoprotein, is a novel serum marker for hepatocellular carcinoma. J Hepatol 2005; 43: 1007-1012 [PMID: 16137783 DOI: 10.1016/j.jhep.2005.05.028]
21 Tian L, Wang Y, Xu D, Gui J, Jia X, Tong H, Wen X, Dong Z, Tian Y. Serological AFP/Golgi protein 73 could be a new diagnostic parameter of hepatic diseases. J Gastroenterol Hepatol 2009; 24: 287-294 [PMID: 19010262 DOI: 10.1038/sj.bjc.6604784]
22 Wang M, Long RE, Comunale MA, Junaidi O, Marrero J, Di Bisceglie AM, Block TM, Mehta AS. Novel fucosylated biomarkers for the early detection of hepatocellular carcinoma. Cancer Epidemiol Biomarkers Prev 2009; 18: 1914-1921 [PMID: 19454616 DOI: 10.1158/1055-9965.EPI-08-0980]
23 Hann HW, Wang M, Hafer J, Long RE, Kim SH, Ahn M, Park S, Comunale MA, Block TM, Mehta A. Analysis of GP73 in patients with HCC as a function of anti-cancer.
Zhang YL et al. Effect of silencing GP73 gene

treatment. Cancer Biomark 2010; 7: 269-273 [PMID: 21694465]

24 Zhu K, Dai Z, Zhou J. Biomarkers for hepatocellular carcinoma: progression in early diagnosis, prognosis, and personalized therapy. Biomark Res 2013; 1: 10 [PMID: 24252133 DOI: 10.1186/2050-7771-1-10]

25 Wang Y, Yang H, Xu H, Lu X, Sang X, Zhong S, Huang J, Mao Y. Golgi protein 73, not Glypican-3, may be a tumor marker complementary to α-Fetoprotein for hepatocellular carcinoma diagnosis. J Gastroenterol Hepatol 2014; 29: 597-602 [PMID: 24351813 DOI: 10.1111/jghe.124230]

26 Liu Y, Zou Z, Zhu B, Hu Z, Zeng P. CXCL10 decreases GP73 expression in hepatoma cells at the early stage of hepatitis C virus (HCV) infection. Int J Mol Sci 2013; 14: 24230-24241 [PMID: 24351813 DOI: 10.3390/ijms141224230]

27 Ibrahim GH, Mahmoud MA, Aly NM. Evaluation of circulating growth factor-beta1, Glypican-3 and Golgi protein-73 mRNAs expression as predictive markers for hepatocellular carcinoma in Egyptian patients. Mol Biol Rep 2013; 40: 7069-7075 [PMID: 24186850 DOI: 10.1007/s11033-013-2829-3]

28 Hu B, Tian X, Sun J, Meng X. Evaluation of individual and combined applications of serum biomarkers for diagnosis of hepatocellular carcinoma: a meta-analysis. Int J Mol Sci 2013; 14: 23559-23580 [PMID: 24317431 DOI: 10.3390/ijms14122359]

29 Chen JG, Lu WZ, Zhu YR, Zhang YH, Lu JH, Chen TY. [Retrospective observation of dynamic levels of serum Golgi protein 73 in patients prior to the onset of liver cancer]. Zhonghua Yu Fang Yi Xue Zazhi 2013; 47: 731-735 [PMID: 24246080]

30 Bao YX, Yang Y, Zhao HR, Mao R, Xiao L, Zhang YF, Aisik er T, Wen H. [Clinical significance and diagnostic value of Golgi-protein 73 in patients with early-stage primary hepatocellular carcinoma]. Zhonghua Zhong Liu Zazhi 2013; 35: 505-508 [PMID: 24257301]

31 Grishok A, Tabara H, Mello CC. Genetic requirements for inheritance of RNAi in C. elegans. Science 2000; 287: 2494-2497 [PMID: 10741970 DOI: 10.1126/science.287.5462.2494]

32 Harborth J, Elbashir SM, Bechert K, Tuschtl T, Weber K. Identification of essential genes in cultured mammalian cells using small interfering RNAs. J Cell Sci 2001; 114: 4557-4565 [PMID: 11792820]

33 Yu JY, DeRuiter SL, Turner DL. RNA interference by expression of short-interfering RNAs and hairpin RNAs in mammalian cells. Proc Natl Acad Sci USA 2002; 99: 6047-6052 [PMID: 11972060 DOI: 10.1073/pnas.092143499]

34 Reynolds A, Leake D, Boese Q, Scaringe S, Marshall WS, Khvorova A. Rational siRNA design for RNA interference. Nat Biotechnol 2004; 22: 326-330 [PMID: 1475866 DOI: 10.1038/nbt936]

35 Schwarz DS, Hutvágner G, Du T, Xu Z, Aronin N, Zamore PD. Asymmetry in the assembly of the RNAi enzyme complex. Cell 2003; 115: 199-208 [PMID: 14567917 DOI: 10.1016/S0092-8674(03)00759-1]

36 Reed JC. Bcl-2 and the regulation of programmed cell death. J Cell Biol 1994; 124: 1-6 [PMID: 8294493 DOI: 10.1083/jcb.124.1.1]

37 Mazel S, Burtrum D, Petrie HT. Regulation of cell division cycle progression by bcl-2 expression: a potential mechanism for inhibition of programmed cell death. J Exp Med 1996; 183: 2219-2226 [PMID: 8642331 DOI: 10.1084/jem.183.5.2219]

38 Yasuhara N, Sahara S, Kamada S, Eguchi Y, Tsujimoto Y. Evidence against a functional site for Bcl-2 downstream of caspase cascade in preventing apoptosis. Oncogene 1997; 15: 1921-1928 [PMID: 9362238 DOI: 10.1038/sj.onc.1201370]

39 Kuwana T, Mackey MR, Perkins G, Elliman MH, Latterich M, Schneider R, Green DR, Newmeyer DD. Bid, Bax, and lipids cooperate to form supramolecular openings in the outer mitochondrial membrane. Cell 2002; 111: 331-342 [PMID: 12419244 DOI: 10.1016/S0092-8674(02)01036-X]

P- Reviewer: Chuma M, Smith RC
S- Editor: Gou SX
L- Editor: Kerr C
E- Editor: Ma S
