Regional variations in mortality rates of pancreatic cancer in China: Results from 1990-1992 national mortality survey

Ke-Xin Chen, Peizhong Peter Wang, Si-Wei Zhang, Lian-Di Li, Feng-Zhu Lu, Xi-Shan Hao

INTRODUCTION

Pancreatic cancer is a relatively common malignant disease in the world, both its incidence and mortality rate are ranked in the first ten cancers[3-6]. Especially in recent years, a gradually increased tendency of the disease has been found[7-11]. Five-Year Plan Period, No. 85-914-01-07

As China does not have a centralized vital statistics system and cancer registration, national level information on disease specific mortality is often based on periodic national mortality surveys (NMS), the first of which was initiated in the early 1970s. Its purpose was to generate nationally representative estimates of mortality due to various health conditions, such as cancer, heart disease and stroke. The more recent one was conducted between 1990 and 1992 with the primary focus on malignant tumors, which was the data source for this study.

Briefly, the 1990-1992 NMS was a two-stage stratified probability survey. At the first stage, each of the 22 provinces, 5 autonomous regions, and 3 municipalities directly administrated cities under the Central Government (Beijing, Shanghai, and Tianjin) represented one of 30 strata. For the ease of the presentation, we referred to the 30 strata as “areas”. The second stratum was formed at county or district level according to the cancer mortality levels (2-3 levels from low to high) from the previous survey. Thus, the primary sampling unit for this survey was county or district (for Beijing, Shanghai and Tianjin). Overall, the sample size for this survey was designed to cover 10 % of all deaths or 242 million baseline person years during the study period. Detailed information can be found from the National Mortality Survey Manual. With respect to pancreatic cancer, samples from 8 of the first level strata did not have sufficient number of cases to generate meaningful estimates, thus the mortality estimates were only applicable to 22 of the first level strata. Specifically, the 22 areas were Beijing, Tianjin, Hebei, Shanxi, Neimeng, Liaoning, Jilin, Heilongjiang, Shanghai, Jiangsu, Anhui, Jiangxi, Fujian, Henan, Hunan, Hainan, Guangxi, Sichuan, Yunnan, Guizhou, Gansu, and Ningxia.

Case assessment and baseline population All death certificates were retrieved from the local death registration offices for the sampled counties or districts. Local neighborhood representatives were also interviewed to further verify each deceased person for possible misreporting and discover deaths not reflected at death registration offices. Causes of deaths obtained from death certificates were checked with clinical records. When clinical records were missing or
not available, possible diagnoses were solicited from the medical professionals who had once treated the case. Each reported cause of death was further converted into 3-digit ICD-9 codes and pancreatic cancer was determined for ICD-9 157. Age-specific population data for each surveyed county or district were derived from interpolation using the data from the two most recent censuses conducted in 1982 and 1990.

Statistical analysis

Both crude and age-sex adjusted mortality rates were calculated both at provincial and national levels. In order to make the estimates comparable to reported mortality data from other populations, two standard populations were used: the 1980 Chinese population and the world standard population. The extremal quotient (EQ) was used to quantify regional variation\(^{[15]}\). The EQ is the ratio of the mortality from area with the highest level relative to the area with the lowest level. Age standardized mortality rates from each individual area (defined by resident status) were derived and compared with the corresponding national mean and median using the 1990-1992 NMS. In addition to assessing differences in mortality rate among areas and national levels, we also juxtaposed pancreatic cancer with other leading cancers, such as lung and breast cancers in terms of their relative ranking.

RESULTS

In total, pancreatic cancer deaths were identified from the 181 primary sampling units (counties or districts), among which 54 and 127 were considered as urban and rural respectively.

Table 1 displays the crude and standardized mortality rates of pancreatic cancer. As shown in this table, the crude and Chinese population adjusted mortality rates were 1.29 and 1.08 per 100 000 person-year during the study period.

Table 2 compares the mortality of pancreatic cancer with other leading cancers in terms of standardized rates, mortality proportion, and relative ranking. Overall, the mortality of pancreatic cancer ranked the 9th and accounted for 1.38 % of total cancer deaths after colon cancer.

While pancreatic cancer could occur at any age, its mortality varied greatly among different age groups. The mortality remained low and did not increase until age 45, there was a steep increase in both males and females from age 45 to age 75 before it reached a plateau around 75. There seemed to be a mortality drop in males after age 75. Pancreatic cancer mortality rates were apparently higher in males than in females, with the ratio 1.4:1.

Regional comparisons (Table 3) suggested that a substantial variation in pancreatic cancer mortality across the 22 regions and standardized mortality rates varied from the lowest 0.47/100 000 person-year in Hunan Province to the highest 3.73/100 000 person year in Shanghai with an extremal quotient of 8.76. Using the national average level as a standard, eight provinces had a rate higher than average and they were Shanghai, Tianjin, Liaoning, Heilongjiang, Jiangsu, Jilin, Beijing, and Ningxia. However, there was little variation in terms of mortality, sex ratios varying between 1.07 and 2.3, most of the values were around 1.5.

Table 1 Selected indices derived from pancreatic cancer mortality (1/100 000) in China, 1990-1992

	Crude rate	ASMR1	ASMR2	Mortality proportion to all cancer death (%)
Total	1.48	1.30	1.74	1.38
Male	1.65	1.52	2.03	1.25
Female	1.29	1.08	1.46	1.62

ASMR: Age adjusted mortality rate, 1=the Chinese population and the world standard population.

Table 2 compares the mortality of pancreatic cancer with other leading cancers in terms of standardized rates, mortality proportion, and relative ranking. Overall, the mortality of pancreatic cancer ranked the 9th and accounted for 1.38 % of total cancer deaths after colon cancer.

While pancreatic cancer could occur at any age, its mortality varied greatly among different age groups. The mortality remained low and did not increase until age 45, there was a steep increase in both males and females from age 45 to age 75 before it reached a plateau around 75. There seemed to be a mortality drop in males after age 75. Pancreatic cancer mortality rates were apparently higher in males than in females, with the ratio 1.4:1.

Regional comparisons (Table 3) suggested that a substantial variation in pancreatic cancer mortality across the 22 regions and standardized mortality rates varied from the lowest 0.47/100 000 person-year in Hunan Province to the highest 3.73/100 000 person year in Shanghai with an extremal quotient of 8.76. Using the national average level as a standard, eight provinces had a rate higher than average and they were Shanghai, Tianjin, Liaoning, Heilongjiang, Jiangsu, Jilin, Beijing, and Ningxia. However, there was little variation in terms of mortality, sex ratios varying between 1.07 and 2.3, most of the values were around 1.5.

Table 2 Age-standardized mortality rates and proportion of major malignant cancers in China

Type of tumor	Males	Females	Total
	ASR	P (%)	Rank
	CR	ASR	
Stomach	30.78	25.10	1
Liver	25.73	21.42	2
Esophagus	20.22	16.45	4
Lung	21.68	17.73	3
Rectum	3.60	2.94	5
Leukemia	3.46	2.67	6
Breast		2.93	4.24
Brain & nervous system	2.01	1.63	7
Cervix	-	-	-
Colon	1.49	1.21	9
Pancreas	1.52	1.25	8
Total	122.35	100.00	67.61

	ASR	P (%)	Rank
	CR	ASR	
Stomach	30.78	25.10	1
Liver	25.73	21.42	2
Esophagus	20.22	16.45	4
Lung	21.68	17.73	3
Rectum	3.60	2.94	5
Leukemia	3.46	2.67	6
Breast		2.93	4.24
Brain & nervous system	2.01	1.63	7
Cervix	-	-	-
Colon	1.49	1.21	9
Pancreas	1.52	1.25	8
Total	122.35	100.00	67.61
These comparisons further indicated that urban residents had a significant higher mortality than their rural counterparts. These differences existed in both males and females (Table 4, Figure 1) across age groups.

Table 4 Comparison of pancreatic cancer mortality between urban and rural areas in China, 1990-1992

Region	Sex	CR	ASR
Total		2.83	2.27
	Rural	1.05	0.95
	U/R ratio	2.67	2.39
Male	Urban	3.16	2.68
	Rural	1.17	1.11
	U/R ratio	2.70	2.41
Female	Urban	2.47	21.89
	Rural	0.92	0.80
	U/R ratio	2.68	2.36

DISCUSSION

In this study, we described some epidemiological characteristics of pancreatic cancer using the most recent Chinese mortality survey data. Compared with other previous studies in China, the age standardized mortality rates from this study appeared to be higher than those reported previously. This may suggest that the mortality rate of pancreatic cancer is increasing.

Ecological studies[25-29] found as shown in Figures 2-3 that the mortality of pancreatic cancer seemed to be correlated with the level of economic development. Developed countries, such as Japan and the United States[30-33] had a higher pancreatic cancer mortality than that of less developed countries, such as some African countries[30-33]. China is a big country with unbalanced economic development and diverse lifestyles. The economic developmental gaps between urban and rural areas seen in China are greater than those in the developed countries. Findings from this study suggest substantial regional variations in the mortality rates of pancreatic cancer and in general, economically more developed regions have higher mortality rates than that of less developed regions. For example, Beijing, Shanghai, and Tianjin shared the 3 highest mortality rates. Thus, results from this study are in accord with previous observations.

The use of a population based national representative sample in the present study was unique in its reliability. Also, in this study most death certificates were crossly validated and consequently the reported causes of death were more believable. Furthermore, as all studied areas used uniform standards, the mortality rate estimates across areas had a good comparability. However, there were also limitations associated with this study. First, all information used in this study was derived from the survey, thus the case assessment method could not be compared with clinical diagnosis. Second, since this survey did not collect life style information (such as smoking and diet) for the deceased subjects, we were restricted from further exploring the impact of potential risk factors on this condition. Lastly, only aggregated data were available to the authors, we were unable to calculate the variances for the estimated mortality rates. As a result, we could only provide point estimates without 95% confidence intervals.

Figure 1 Comparison of age-specific mortality of pancreatic cancer between urban and rural areas, 1990-1992

![Figure 1](image1.png)

Table 4 Comparison of pancreatic cancer mortality between urban and rural areas in China, 1990-1992

Figure 2 World pancreatic cancer mortality in different countries (male).

![Figure 2](image2.png)

Figure 3 World pancreatic cancer mortality in different countries (female).

![Figure 3](image3.png)

In conclusion, we have demonstrated a substantial variation in pancreatic cancer mortality rates across the Mainland China. The results reported in this study beg for answers to the observed differences. As pancreatic cancer is a fast growing disease associated with high fatality, more in-depth epidemiological studies on identifying modifiable risk factors are warranted.

ACKNOWLEDGEMENTS

We are grateful to all medical workers from 22 provinces (cities, districts) in China for our data collection and preparation. We want to thank Tianjin Cancer Institute and Hospital for its financial support.

REFERENCES

1. Levi F, Lucchini F, Negri E, Boyle P, La Vecchia C. Mortality from major cancer sites in the European Union, 1955-1998. Ann Oncol 2003; 14: 490-495

2. Remontet L, Esteve J, Bouvier AM, Grosclaude P, Launoy G, Menegoz F, Exbrayat C, Tretare B, Carl PM, Guizard AV, Troussard X, Berzeli P, Colonna M, Halnaj JM, Hedsdin G, MacLees H, J.Jeng P, Bueini A, Velten M, Jouglia E, Arveux P, Le Bodic L, Michel E, Sauvage M, Schwartz C, Faivre J. Cancer incidence and mortality in France over the period 1978-2000. Rev Epidemiol Sante Publique 2003; 51(1Pt 1): 3-30
Yang CY, Bakkevold KE. Trends in pancreatic cancer mortality in Europe, 1955-1989. Int J Cancer 1994; 57: 786-792.

Fernandez E, La Vecchia C, Porta M, Negri E, Lucchini F, Levi F. Trends in pancreatic cancer mortality in Europe, 1955-1989. Int J Cancer 1994; 57: 786-792.

Vutuc C, Waldothoe H, Haidinger G. Impact of non-invasive imaging techniques on the trend of pancreatic cancer mortality in Austria. Wien Med Wochenschr 1996; 146: 256-260.

Lee WC. Mortality trends of pancreatic cancer: an affluent type of cancer in Taiwan. J Formos Med Assoc 1992; 91: 1148-1153.

Yang CY, Chiu HF, Cheng MF, Tsai SS, Huang CF, Tseng YT. Pancreatic cancer mortality and total hardness levels in Taiwan’s drinking water. J Toxicol Environ Health A 1999; 56: 361-369.

Bakkevold KE. Morbidity and mortality after radical and palliative pancreatic surgery. Risk factors influencing the short-term results. Ann Surg 1993; 217: 356-368.

Riggs JE. Longitudinal Gompertzian analysis of pancreatic cancer mortality in the U.S., 1962-1987: distinguishing between competitive and environmental influences upon evolving mortality patterns. M e d A g e i n g De v 1991; 61: 197-208.

Binstock M, Krakow D, Stamler J, Persky V, Liu K, Moss D. Coffee and pancreatic cancer: an analysis of international mortality data. A m J Epidemiol 1983; 118: 630-640.

Calle EE, Murphy TK, Rodriguez C, Thun MJ, Heath CW Jr. Diabetes mellitus and pancreatic cancer mortality in a prospective cohort of United States adults. Cancer Causes Control 1998; 9: 403-410.

Pickle LW, Gottlieb MS. Pancreatic cancer mortality in Louisiana. A m J Public Health 1980; 70: 256-259.

Boffetta P, Burstrøm I, Partanen T, Kromhout H, Swane O, Langard S, Jarvholm B, Frentzel-Beyme R, Kauppinen T, Stucker I, Shaham J, Hederik D, Arens W, Bergdahl IA, Cenee S, Ferro G, Hekkila P, Hoolveld M, Johansen C, Randem BG, Schill W. Cancer mortality among European asphalt workers: an international epidemiological study. II. Exposure to bitumen fume and other agents. A m J Epidemiol 2003; 157: 255-259.

Konner J, O’Reilly E. Pancreatic cancer: epidemiology, genetics, and approaches to screening. O n c o l o g y (H u n t i n g t o n) 2002; 16: 1615-1622, 1631-1632.

Lee WC, Lin RS. Age-period-cohort analysis of pancreatic cancer mortality in Taiwan, 1971-1998. Int J Epidemiol 1999; 18: 839-847.

Mulder I, Hoogenveen RT, van Genugten ML, Lankisch PG, Lowenfels AB, de Hollander AE, Bueno-de-Mesquita HB. Smoking cessation would substantially reduce the future incidence of pancreatic cancer in the European Union. E u r J Gastroenterol Hepatol 2002; 14: 1343-1353.

Newnham A, Quinn MJ, Babb P, Kang JY, Majed A. Trends in oesophageal and gastric cancer incidence, mortality and survival in England and Wales 1971-1998/1999. A lliment Pharmacol Ther 2003; 17: 655-664.

Lee IM, Sesso HD, Oguma Y, Paffenbarger RS Jr. Physical activity, body weight, and pancreatic cancer mortality. B r J Cancer 2003; 88: 679-683.

Zervos EE, Norman JG, Gower WR, Franz MG, Rosemurgy AS. Matrix metalloproteinase inhibition attenuates human pancreatic cancer growth in vitro and decreases mortality and tumorigenesis in vivo. J Surg Res 1997; 69: 667-671.

Muirhead CR, Bingham D, Haylock RG, O’Hagan JA, Goodill AA, Berridge GL, English MA, Hunter N, Kendall GM. Follow up of mortality and incidence of cancer 1952-98 in men from the UK who participated in the UK’s atmospheric nuclear weapon tests and experimental programmes. O ccup Environ M ed 2003; 60: 165-172.

Corella Piquer D, Cortina Greus P, Colltini S o n O. Nutritional factors and geographic differences in pancreatic cancer mortality in Spain. R e v S a n i d H ig P u b l 1994; 68: 363-376.

Olson GW, Lacy SE, Bodner KM, Chau M, Arceneaux TG, Carstib JI, Ramlow JM, Boswell J M. Mortality from pancreatic and lymphoplastic cancer among workers in ethylene and propylene chlorohydrin production. O ccup Environ M ed 1997; 54: 592-598.

Pascual C, Spreti C, Filipponi C, Pedrazzoli S. Epidemiology of pancreatic cancer in Northern Italy: incidence, resectability rate, hospital stay, costs and survival (1990-1992). D i g L i v e r D i s 2002; 34: 723-731.