Block-matching algorithm based on harmony search optimization for motion estimation

Erik Cuevas

Published online: 22 December 2012
© Springer Science+Business Media New York 2012

Abstract Motion estimation is one of the major problems in developing video coding applications. Among all motion estimation approaches, Block-matching (BM) algorithms are the most popular methods due to their effectiveness and simplicity for both software and hardware implementations. A BM approach assumes that the movement of pixels within a defined region of the current frame can be modeled as a translation of pixels contained in the previous frame. In this procedure, the motion vector is obtained by minimizing a certain matching metric that is produced for the current frame over a determined search window from the previous frame. Unfortunately, the evaluation of such matching measurement is computationally expensive and represents the most consuming operation in the BM process. Therefore, BM motion estimation can be viewed as an optimization problem whose goal is to find the best-matching block within a search space. The simplest available BM method is the Full Search Algorithm (FSA) which finds the most accurate motion vector through an exhaustive computation of all the elements of the search space. Recently, several fast BM algorithms have been proposed to reduce the search positions by calculating only a fixed subset of motion vectors despite lowering its accuracy. On the other hand, the Harmony Search (HS) algorithm is a population-based optimization method that is inspired by the music improvisation process in which a musician searches for harmony and continues to polish the pitches to obtain a better harmony. In this paper, a new BM algorithm that combines HS with a fitness approximation model is proposed. The approach uses motion vectors belonging to the search window as potential solutions. A fitness function evaluates the matching quality of each motion vector candidate. In order to save computational time, the approach incorporates a fitness calculation strategy to decide which motion vectors can be only estimated or actually evaluated. Guided by the values of such fitness calculation strategy, the set of motion vectors is evolved through HS operators until the best possible motion vector is identified. The proposed method has been compared to other BM algorithms in terms of velocity and coding quality. Experimental results demonstrate that the proposed algorithm exhibits the best balance between coding efficiency and computational complexity.

Keywords Harmony search algorithm · Block matching algorithms · Motion estimation · Fitness approximation · Video coding

1 Introduction

Motion estimation plays important roles in a number of applications such as automobile navigation, video coding, surveillance cameras and so forth. The measurement of the motion vector is a fundamental problem in image processing and computer vision, which has been faced using several approaches [1–4]. The goal is to compute an approximation to the 2-D motion field—a projection of the 3-D velocities of surface points onto the imaging surface.

Video coding is currently utilized in a vast amount of applications ranging from fixed and mobile telephony, real-time video conferencing, DVD and high-definition digital television. Motion Estimation (ME) is an important part of any video coding system, since it can achieve significant
compression by exploiting the temporal redundancy existing in a video sequence. Several ME methods have been studied aiming for a complexity reduction at video coding, such as block matching (BM) algorithms, parametric-based models [5], optical flow [6] and pel-recursive techniques [7]. Among such methods, BM seems to be the most popular technique due to its effectiveness and simplicity for both software and hardware implementations [8]. Furthermore, in order to reduce the computational complexity in ME, many BM algorithms have been proposed and used in implementations of various video compression standards such as MPEG-4 [9] and H.264 [10].

In BM algorithms, the video frames are partitioned in non-overlapping blocks of pixels. Each block is predicted from a block of equal size in the previous frame. Specifically, for each block in the current frame, we search for a best matching block within a searching window in the previous frame that minimizes a certain matching metric. The most used matching measure is the Sum of Absolute Differences (SAD) which is computationally expensive and represents the most consuming operation in the BM process. The best matching block found represents the predicted block, whose displacement from the previous block is represented by a transitional motion vector (MV). Therefore, BM is essentially an optimization problem, with the goal of finding the best matching block within a search space.

The full search algorithm (FSA) [11] is the simplest block-matching algorithm that can deliver the optimal estimation solution regarding a minimal matching error as it checks all candidates one at a time. However, such exhaustive search and full-matching error calculation at each checking point yields an extremely computationally expensive BM method that seriously constrains real-time video applications.

In order to decrease the computational complexity of the BM process, several BM algorithms have been proposed considering the following three techniques: (1) using a fixed pattern: which means that the search operation is conducted over a fixed subset of the total search window. The Three Step Search (TSS) [12], the New Three Step Search (NTSS) [13], the Simple and Efficient TSS (SES) [14], the Four Step Search (4SS) [15] and the Diamond Search (DS) [16] are some of its well-known examples. Although such approaches have been algorithmically considered as the fastest, they are not able to match the dynamic motion-content, delivering false motion vectors (image distortions). (2) Reducing the search points: in this method, the algorithm chooses as search points exclusively those locations which iteratively minimize the error-function (SAD values). This category includes: the Adaptive Rood Pattern Search (ARPS) [17], the Fast Block Matching Using Prediction (FBMAUPR) [18], the Block-based Gradient Descent Search (BBGD) [19] and the Neighborhood Elimination algorithm (NE) [20]. Such approaches assume that the error-function behaves monotonically, holding steady for slow-moving sequences; however, such properties do not hold true for other kinds of movements in video sequences [21], which results in the risk of the algorithm getting trapped in local minima. (3) Decreasing the computational overhead for every search point, which means the matching cost (SAD operation) is replaced by a partial or simplified version with less complexity. The New pixel-Decimation (ND) [22], the Efficient Block Matching Using Multilevel Intra and Inter-Sub-blocks [13] and the Successive Elimination Algorithm [23], all assume that all pixels within each block move by the same amount, and a good estimate of the motion can be obtained through only a fraction of the pixel pool. However, since only a fraction of pixels enter into the matching computation, the use of these regular sub-sampling techniques can seriously affect the accuracy of the detection of motion vectors due to noise or illumination changes.

Another popular group of BM algorithms employ spatiotemporal correlation, using the neighboring blocks in the spatial and temporal domain. The main advantage of these algorithms is that they alleviate the local minimum problem to some extent. Since the new initial or predicted search center is usually closer to the global minimum, the chance of getting trapped in a local minimum decreases. This idea has been incorporated by many fast block motion estimation algorithms such as the enhanced predictive zonal search (EPZS) [24] and the UMHexagonS [25]. However, the information delivered by the neighboring blocks is occasionally interpreted as false initial search points, producing distorted motion vectors. Such a problem is typically caused when very small objects move during the image sequence [26].

Alternatively, evolutionary approaches such as genetic algorithms (GA) [27] and particle swarm optimization (PSO) [28] are well known for locating the global optimum in complex optimization problems. Despite such facts, only a few evolutionary approaches have specifically addressed the problem of BM, such as the light-weight genetic block matching (LWG) [29], the genetic four-step search (GFSS) [30] and the PSO-BM [31]. Although these methods support an accurate identification of the motion vector, their computational times are very long in comparison to other BM techniques.

On the other hand, the Harmony Search (HS) algorithm introduced by Geem, Kim, and Loganathan [32] is one of the population-based evolutionary heuristics algorithms which are based on the metaphor of the improvisation process that occurs when a musician searches for a better state of harmony. The HS generates a new candidate solution from all existing solutions. In HS, the solution vector is analogous to the harmony in music, and the local and global
search schemes are analogous to musician’s improvisations. In comparison to other meta-heuristics in the literature, HS imposes fewer mathematical requirements as it can be easily adapted for solving several sorts of engineering optimization challenges [33, 34]. Furthermore, numerical comparisons have demonstrated that the evolution for the HS is faster than GA [33, 35, 36], attracting ever more attention. It has been successfully applied to solve a wide range of practical optimization problems such as structural optimization, parameter estimation of the nonlinear Muskingum model, design optimization of water distribution networks, vehicle routing, combined heat and power economic dispatch, design of steel frames, bandwidth-delay-constrained least-cost multicast routing, computer vision, among others [35–43].

A main difficulty when applying HS to solve real-world problems is that it usually needs a large number of fitness evaluations before an acceptable result can be obtained. In practice, however, fitness evaluations are not always straightforward because either an explicit fitness function does not exist (an experiment is needed instead) or the evaluation of the fitness function is computationally demanding. Furthermore, since random numbers are involved in the calculation of new individuals, they may encounter the same positions (repetition) that other individuals have visited in previous iterations, especially when the individuals are confined to a small area.

The problem of considering expensive fitness evaluations has already been faced in the field of evolutionary algorithms (EA) and is better known as fitness approximation [44]. In such an approach, the idea is to estimate the fitness value of as many individuals as is possible instead of evaluating the complete set. Such estimations are based on an approximate model of the fitness landscape. Thus, the individuals to be evaluated and those to be estimated are determined following some fixed criteria which depend on the specific properties of the approximate model [45]. The models involved at the estimation can be built during the actual EA run, since EA repeatedly samples the search space at different points [46]. There are many possible approximation models and several have already been used in combination with EA (e.g., polynomials [47], the kriging model [48], the feed-forward neural networks that include multi-layer Perceptrons [49] and radial basis-function networks [50]). These models can be either global, which make use of all available data or local which make use of only a small set of data around the point where the function is to be approximated. Local models, however, have a number of advantages [46]: they are well-known and suitably established techniques with relatively fast speeds. Moreover, they consider the intuitively most important information: the closest neighbors.

In this paper, a new BM algorithm that combines HS with a fitness approximation model is proposed. Since the proposed method approaches the BM process as an optimization problem, its overall operation can be formulated as follows: first, a population of individuals is initialized where each individual represents a motion vector candidate (a search location). Then, the set of HS operators is applied at each iteration in order to generate a new population. The procedure is repeated until convergence is reached whereas the best solution is expected to represent the most accurate motion vector. In the optimization process, the quality of each individual is evaluated through a fitness function which represents the SAD value corresponding to each motion vector. In order to save computational time, the approach incorporates a fitness estimation strategy to decide which search locations can be only estimated or actually evaluated. The proposed method has been compared to other BM algorithms in terms of velocity and coding quality. Experimental results show that the proposed BM algorithm exhibits the best trade-off between coding efficiency and computational complexity.

The overall paper is organized as follows: Sect. 2 holds a brief description about the HS method. In Sect. 3, the fitness calculation strategy for solving the expensive optimization problem is presented. Section 4 provides background about the BM motion estimation issue while Sect. 5 exposes the final BM algorithm as a combination of HS and the fitness calculation strategy. Section 6 demonstrates experimental results for the proposed approach over standard test sequences and some conclusions are drawn in Sect. 7.

2 Harmony search algorithm

2.1 The harmony search algorithm

In the basic HS, each solution is called a “harmony” and is represented by an n-dimension real vector. An initial population of harmony vectors are randomly generated and stored within a Harmony Memory (HM). A new candidate harmony is thus generated from the elements in the HM by using a memory consideration operation either by a random re-initialization or a pitch adjustment operation. Finally, the HM is updated by comparing the new candidate harmony and the worst harmony vector in the HM. The worst harmony vector is replaced by the new candidate vector in case it is better than the worst harmony vector in the HM. The above process is repeated until a certain termination criterion is met. The basic HS algorithm consists of three basic phases: HM initialization, improvisation of new harmony vectors and updating of the HM. The following discussion addresses details about each stage.

2.1.1 Initializing the problem and algorithm parameters

In general, the global optimization problem can be summarized as follows: $\min f(x): x(j) \in [l(j), u(j)], \ j = \ldots$
1, 2, ..., n, where \( f(x) \) is the objective function, \( x = (x(1), x(2), \ldots, x(n)) \) is the set of design variables, \( n \) is the number of design variables, and \( l(j) \) and \( u(j) \) are the lower and upper bounds for the design variable \( x(j) \), respectively. The parameters for HS are the harmony memory size (HM), the harmony memory consideration rate (HMCR), the pitch adjusting rate (PAR), the distance bandwidth (BW) and the number of improvisations (NI) which represents the total number of iterations. It is obvious that the performance of HS is strongly influenced by parameter values which determine its behavior.

### 2.1.2 Harmony memory initialization

In this stage, initial vector components at HM, i.e., HMS vectors, are configured. Let \( x_i = \{x_i(1), x_i(2), \ldots, x_i(n)\} \) represent the \( i \)-th randomly-generated harmony vector: 
\[
x_i(j) = l(j) + (u(j) - l(j)) \cdot \text{rand}(0, 1) \quad \text{for } j = 1, 2, \ldots, n \quad \text{and } i = 1, 2, \ldots, \text{HMS},
\]
where \( \text{rand}(0, 1) \) is a uniform random number between 0 and 1. Then, the HM matrix is filled with the HMS harmony vectors as follows:

\[
\text{HM} = \begin{bmatrix}
x_1 \\
x_2 \\
\vdots \\
x_{\text{HMS}}
\end{bmatrix}
\]

### 2.1.3 Improvisation of new harmony vectors

In this phase, a new harmony vector \( x_{\text{new}} \) is built by applying the following three operators: memory consideration, random re-initialization and pitch adjustment. Generating a new harmony is known as ‘improvisation’. In the memory consideration step, the value of the first decision variable \( x_{\text{new}}(1) \) for the new vector is chosen randomly from any of the values already existing in the current HM i.e., from the set \( \{x_1(1), x_2(1), \ldots, x_{\text{HMS}}(1)\} \). For this operation, a uniform random number \( r_1 \) is generated within the range [0, 1]. If \( r_1 \) is less than \( \text{HMCR} \), the decision variable \( x_{\text{new}}(1) \) is generated through memory considerations; otherwise, \( x_{\text{new}}(1) \) is obtained from a random re-initialization between the search bounds \([l(1), u(1)]\). Values of the other decision variables \( x_{\text{new}}(2), x_{\text{new}}(3), \ldots, x_{\text{new}}(n) \) are also chosen accordingly. Therefore, both operations, memory consideration and random re-initialization, can be modeled as follows:

\[
x_{\text{new}}(j) = \begin{cases} 
  x_i(j) & \text{if } (r_1 < \text{HMCR}) \\
  x_{\text{new}}(j) & \text{with probability } \text{HMCR} \\
  l(j) + (u(j) - l(j)) \cdot \text{rand}(0, 1) & \text{with probability } 1 - \text{HMCR}
\end{cases}
\]

Every component obtained by memory consideration is further examined to determine whether it should be pitch-adjusted. For this operation, the Pitch-Adjusting Rate (PAR) is defined as to assign the frequency of the adjustment and the Bandwidth factor (BW) to control the local search around the selected elements of the HM. Hence, the pitch adjusting decision is calculated as follows:

\[
x_{\text{new}}(j) = \begin{cases} 
  x_{\text{new}}(j) & \text{with probability } \text{PAR} \\
  x_{\text{new}}(j) \pm \text{rand}(0, 1) \cdot \text{BW} & \text{with probability } (1 - \text{PAR})
\end{cases}
\]

Pitch adjusting is responsible for generating new potential harmonies by slightly modifying original variable positions. Such operations can be considered similar to the mutation process in evolutionary algorithms. Therefore, the decision variable is either perturbed by a random number between 0 and BW or left unaltered. In order to protect the pitch adjusting operation, it is important to assure that points lying outside the feasible range \([l, u]\) must be reassigned i.e., truncated to the maximum or minimum value of the interval.

### 2.1.4 Updating the harmony memory

After a new harmony vector \( x_{\text{new}} \) is generated, the harmony memory is updated by the survival of the fit competition between \( x_{\text{new}} \) and the worst harmony vector \( x_w \) in the HM. Therefore \( x_{\text{new}} \) will replace \( x_w \) and become a new member of the HM in case the fitness value of \( x_{\text{new}} \) is better than the fitness value of \( x_w \).

### 2.2 Computational procedure

The computational procedure of the basic HS can be summarized as follows [18]:

**Step 1:** Set the parameters \( \text{HMS}, \text{HMCR}, \text{PAR}, \text{BW} \) and \( \text{NI} \).

**Step 2:** Initialize the HM and calculate the objective function value of each harmony vector.

**Step 3:** Improvise a new harmony \( x_{\text{new}} \) as follows:

- for \((j = 1 \text{ to } n)\) do
  - if \((r_1 < \text{HMCR})\) then
    - \(x_{\text{new}}(j) = x_a(j)\) where \(a\) is element of \((1, 2, \ldots, \text{HMS})\) randomly selected
3 Fitness approximation method

Evolutionary algorithms that use fitness approximation aim to find the global minimum of a given function considering only a very few number of function evaluations and a large number of estimations, based on an approximate model of the function landscape. In order to apply such an approach, it is necessary that the objective function implicates a very expensive evaluation and consists of few dimensions (up to five) [51]. Recently, several fitness estimators have been reported in the literature [47–50] in which the number of estimations, based on an approximate model of the function landscape. In order to apply such an approach, it is necessary that the objective function implicates a very expensive evaluation and consists of few dimensions (up to five) [51].

In this paper, we explore the use of a local approximation scheme based on the nearest-neighbor-interpolation (NNI) for reducing the function evaluation number. The model estimates the fitness values based on previously evaluated neighboring individuals which have been stored during the evolution process. At each generation, some individuals of the population are evaluated through the accurate (real) fitness function while the other remaining individuals are only estimated. The positions to be accurately evaluated are determined based on their proximity to the best individual or regarding their uncertain fitness value.

3.1 Updating the individual database

In a fitness approximation method, every evaluation of an individual produces one data point (individual position and fitness value) that is potentially taken into account for building the approximation model during the evolution process. Therefore, in our proposed approach, we keep all seen-so-far evaluated individuals and their respective fitness values within a history array $T$ which is employed to select the closest neighbor and to estimate the fitness value of a new individual. Thus, each element of $T$ consists of two parts: the individual position and its respective fitness value. The array $T$ begins with null elements in the first iteration. Then, as the optimization process evolves, new elements are added. Since the goal of a fitness approximation approach is to evaluate the least possible number of individuals, only few elements are contained in $T$.

3.2 Fitness calculation strategy

This section explains the strategy to decide which individuals are to be evaluated or estimated. The proposed fitness calculation scheme estimates most of the fitness values to reduce the computational overhead at each generation. In the model, those individuals positioned nearby the individual with the best fitness value at the array $T$ (Rule 1) are evaluated using the actual fitness function. Such individuals are important as they possess a stronger influence over the evolution process than the others. Moreover, it also evaluates those individuals placed in regions of the search space with no previous evaluations (Rule 2). Fitness values for these individuals are uncertain since there is no close reference (close points contained in $T$) to calculate their estimates.

The remaining individuals, for which there exist a close point that is previously evaluated and its fitness value is not the best contained in the array $T$, are estimated using the NNI criterion (Rule 3). Thus, the fitness value of an individual is approximated by assigning the same fitness value that the nearest individual stored in $T$.

Therefore, the fitness computation model follows three important rules to evaluate or estimate fitness values:

1. **Exploitation rule (evaluation).** If a new individual (search position) $P$ is located closer than a distance $d$ with respect to the nearest individual $L_q$ contained in $T$ ($q =$

---

Step 4: Update the HM as $x_w = x_{new}$ if $f(x_{new}) < f(x_w)$

Step 5: If $NI$ is completed, the best harmony vector $x_b$ in the HM is returned; otherwise go back to step 3.
1, 2, 3, \ldots, m; where m is the number of elements contained in \( T \), whose fitness value \( F_{L_q} \) corresponds to the best fitness value, then the fitness value of \( P \) is evaluated by using the actual fitness function. Figure 1(a) draws the rule procedure.

2. **Exploration rule (evaluation).** If a new individual \( P \) is located further away than a distance \( d \) with respect to the nearest individual \( L_q \) contained in \( T \), then its fitness value is evaluated by using the actual fitness function. Figure 1(b) outlines the rule procedure.

3. **NNI rule (estimation).** If a new individual \( P \) is located closer than a distance \( d \) with respect to the nearest individual \( L_q \) contained in \( T \), whose fitness value \( F_{L_q} \) does not correspond to the best fitness value, then its fitness value is estimated by assigning it the same fitness value as \( L_q(F_P = F_{L_q}) \). Figure 1(c) sketches the rule procedure.

The \( d \) value controls the trade-off between the evaluation and the estimation of search locations. Typical values of \( d \) range from 1 to 4. Values close to 1 improve the precision at the expense of a higher number of fitness evaluations (the number of evaluated individuals is more than the number of estimated). On the other hand, values close to 4 decrease the computational complexity at the price of poor accuracy (decreasing the number of evaluations and increasing the number of estimations). After exhaustive experimentation, it has been determined that a value of \( d = 3 \) represents the best trade-off between computational overhead and accuracy, so it is used throughout the study. The proposed method, from an optimization perspective, favors exploration and exploitation in the search process. For the exploration, the method evaluates the fitness function of new search locations which have had positions far from previously calculated positions. Additionally, it also estimates those that are closer. For the exploitation, the proposed method evaluates the fitness function of those new searching locations which are placed nearby the position that holds the minimum fitness value seen so far. Such a fact is considered strong evidence that the new location could improve the “best value” (the minimum) already found.

In order to know which rule must be applied by the fitness approximation strategy, considering a new search position \( P \), it is only necessary to identify the closest individual \( L_q \) which is contained in \( T \). Then, it is inquired if the positional relationship between them and the fitness value \( F_{L_q} \) of \( L_q \) fulfill the properties imposed by each rule (distance, if \( F_{L_q} \) is the best fitness value contained in \( T \), etc.). As the number of elements of the array \( T \) is very limited, the computational complexity resulting from such operations is negligible. Figure 1 illustrates the procedure of fitness computation for a new solution (point \( P \)). In the problem, the objective function \( f \) is minimized with respect to two parameters \((x_1, x_2)\). In all figures (Figs. 1(a), 1(b) and 1(c)), the individual database array \( T \) contains five different elements \((L_1, L_2, L_3, L_4, L_5)\) with their corresponding fitness values \((F_{L_1}, F_{L_2}, F_{L_3}, F_{L_4}, F_{L_5})\). Figures 1(a) and 1(b) show the fitness evaluation \((f(x_1, x_2))\) of the new solution \( P \), following the rule 1 and 2 respectively, whereas Fig. 1(c) presents the fitness estimation of \( P \) using the NNI approach which is laid by rule 3.

3.3 Proposed HS optimization method

The coupling of HS and the fitness approximation strategy is presented in this paper as an optimization approach. The only difference between the conventional HS and the enhanced HS method is the fitness calculation scheme. In the proposed algorithm, only some individuals are actually evaluated (Rules 1 and 2) at each generation. All other fitness values for the rest are estimated using the NNI-approach (Rule 3). The estimation is executed by using the individuals previously calculated which are contained in the array \( T \).

Figure 2 shows the difference between the conventional HS and the proposed version. It is clear that two new blocks have been added, the fitness estimation and the updating individual database. Both elements and the actual evolution block represent the fitness calculation strategy just as it has been explained at Sect. 3.2. As a result, the HS approach can substantially reduce the number of function evaluations, thus preserving the good search capabilities of HS.

4 Motion estimation and block matching

For motion estimation in a BM algorithm, the current frame of an image sequence \( I_t \) is divided into non-overlapping blocks of \( N \times N \) pixels. For each template block in the current frame, the best matched block within a search window (SW) of size \((2W + 1) \times (2W + 1)\) in the previous frame \( I_{t-1} \) is determined, where \( W \) is the maximum allowed displacement. The position difference between a template block in the current frame and the best matched block in the previous frame is called the Motion Vector (MV) (see Fig. 3). Therefore, BM can be viewed as an optimization problem, with the goal of finding the best MV within a search space.

The most well-known matching criterion for BM algorithms is the sum of absolute difference (SAD). It is defined in Eq. (5) considering a template block at position \((x, y)\) in the current frame and the candidate block at position \((x + \hat{u}, y + \hat{v})\) in the previous frame \( I_{t-1} \).

\[
\text{SAD}(\hat{u}, \hat{v}) = \sum_{j=0}^{N-1} \sum_{i=0}^{N-1} |g_t(x+i, y+j) - g_{t-1}(x+\hat{u}+i, y+\hat{v}+j)|
\] (4)
Fig. 1 The fitness calculation strategy. (a) According to rule 1, the individual (search position) \( P \) is evaluated since it is located closer than a distance \( d \) with respect to the nearest individual location \( L_3 \). Therefore, the fitness value \( F_{L_3} \) corresponds to the best fitness value (minimum). (b) According to rule 2, the search point \( P \) is evaluated and there is no close reference within its neighborhood. (c) According to rule 3, the fitness value of \( P \) is estimated by means of the NNI-estimator, assigning \( F_P = F_{L_3} \).

\[
\text{where } g_t(\cdot) \text{ is the gray value of a pixel in the current frame } I_t \text{ and } g_{t-1}(\cdot) \text{ is the gray level of a pixel in the previous frame } I_{t-1}. \text{ Therefore, the MV in } (u, v) \text{ is defined as follows:}
\]

\[
(u, v) = \arg \min_{(u, v) \in S} \text{SAD}(\hat{u}, \hat{v})
\]

\[
\text{where } S = \{(\hat{u}, \hat{v}) | -W \leq \hat{u}, \hat{v} \leq W \text{ and } (x + \hat{u}, y + \hat{v}) \text{ is a valid pixel position } I_{t-1}\}. \text{ As can be seen, the computing of such matching criterion is a time consuming operation which represents the bottle-neck in the BM process.}
In the context of BM algorithms, the FSA is the most robust and accurate method to find the MV. It tests all possible candidate blocks from $I_{i-1}$ within the search area to find the block with minimum SAD. For the maximum displacement of $W$, the FSA requires $(2W + 1)^2$ search points. For instance, if the maximum displacement $W$ is $\pm 7$, the total search points are 225. Each SAD calculation requires $2N^2$ additions and the total number of additions for the FSA to match a $16 \times 16$ block is 130,560. Such computational requirement makes the application of FSA difficult for real time applications.

5 BM algorithm based on HS with the estimation strategy

FSA finds the global minimum (the accurate MV), considering all locations within the search space $S$. Nevertheless, the approach has a high computational cost for practical use. In order to overcome such a problem, many fast algorithms have been developed yielding only a poorer precision than the FSA. A better BM algorithm should spend less computational time on searching and obtaining accurate motion vectors (MVs).

The BM algorithm proposed in this paper is comparable to the fastest algorithms and delivers a similar precision to the FSA approach. Since most of fast algorithms use a regular search pattern or assume a characteristic error function (uni-modal) for searching the motion vector, they may get trapped into local minima considering that for many cases (i.e., complex motion sequences) an uni-modal error is no longer valid. Figure 4 shows a typical error surface (SAD values) which has been computed around the search window for a fast-moving sequence. On the other hand, the proposed BM algorithm uses a non-uniform search pattern for locating global minimum distortion. Under the effect of the HS operators, the search locations vary from generation to generation, and avoid getting trapped into a local minimum.
Besides, since the proposed algorithm uses a fitness calculation strategy for reducing the evaluation of the SAD values, it requires fewer search positions.

In the algorithm, the search space $S$ consists of a set of 2-D motion vectors $\hat{u}$ and $\hat{v}$ representing the $x$ and $y$ components of the motion vector, respectively. The particle is defined as:

$$P_i = \{\hat{u}_i, \hat{v}_i \mid -W \leq \hat{u}_i, \hat{v}_i \leq W\}$$

(6)

where each particle $i$ represents a possible motion vector. In this paper, the search windows, considered in the simulations, are set to $\pm 8$ and $\pm 16$ pixels. Both configurations are selected in order to compare the results with other approaches presented in the literature.

5.1 Initial population

The first step in HS optimization is to generate an initial group of individuals. The standard literature of evolutionary algorithms generally suggests the use of random solutions as the initial population, considering the absence of knowledge about the problem [52]. However, several studies [53–56] have demonstrated that the use of solutions generated through some domain knowledge to set the initial population (i.e., non-random solutions) can significantly improve its performance. In order to obtain appropriate initial solutions (based on knowledge), an analysis over the motion vector distribution was conducted. After considering several sequences (see Table 1 and Fig. 9), it can be seen that 98% of the MVs are found to lie at the origin of the search window for a slow-moving sequence such as the one at Container, whereas complex motion sequences, such as the Carphone and the Foreman examples, have only 53.5% and 46.7% of their MVs in the central search region. The Stefan sequence, showing the most complex motion content, has only 36.9%. Figure 5 shows the surface of the MV distribution for the Foreman and the Stefan. On the other hand, although it is less evident, the MV distribution of several sequences shows small peaks at some locations lying away from the center as they are contained inside a rectangle that is shown in Figs. 5(b) and 5(d) by a white overlay. Real-world moving sequences concentrate most of the MVs under a limit due to the motion continuity principle [16]. Therefore, in this paper, initial solutions are selected from five fixed locations which represent points showing the higher concentration in the MV distribution, just as it is shown by Fig. 6.

Since most movements suggest displacements near to the center of the search window [12, 13], the initial solutions shown by Fig. 6 are used as initial positions for the HS algorithm. This consideration is taken regardless of the search window employed ($\pm 8$ or $\pm 16$).

5.2 Tuning of the HS algorithm

The performance of HS is strongly influenced by parameter values, which determine its behavior. HS incorporates several parameters such as the population size, the operator’s probabilities (as $HMCR$ and $PAR$) or the total number of iterations ($NI$). Determining the most appropriate parameter values for a determined problem is a complex issue, since such parameters interact with each other in a highly nonlinear manner and there are not mathematical models of such interactions. Throughout the years, two main types of methods have been proposed for setting up parameter values of an evolutionary algorithm: off-line and on-line strategies [57]. An off-line method (called tuning) searches for the best set of parameter values through experimentation. Once defined, these values remain fixed. Such methodology is appropriate when the optimization problem maintains the same properties (dimensionality, multimodality, unconstrained, etc.) each time the EA is applied. On the other hand, on-line methods focus on changing parameter values during the search process of the algorithm. Thus, the
strategy must decide when to change parameter values and determine new values. Therefore, these methods are indicated when EA faces optimization problems with dimensional variations or restriction changes, etc.

Considering that the optimization problem outlined by the BM process maintains the same properties (same dimensions and similar error landscapes), the off-line method has been used for tuning the HS algorithm. Therefore, after exhaustive experimentation, the following parameters have been found as the best parameter set, $HMCR = 0.7$, $PAR = 0.3$. Considering that the proposed approach is tested by using two different search windows ($\pm 8$ and $\pm 16$), the values of $BW$ and $NI$ have different configurations depending on the selected search window. Therefore, it is employed $BW = 8$ and $NI = 25$ in the case of a window search of $\pm 8$ whereas in the case of $\pm 16$, it uses $BW = 16$ and $NI = 45$. Once such configurations are defined, the parameter set is kept for all test sequences through all experiments.

5.3 The HS-BM algorithm

The goal of our BM-approach is to reduce the number of evaluations of the SAD values (real fitness function) avoiding any performance loss and achieving an acceptable solution. The HS-BM method is listed below:
Step 1: Set the HS parameters. \( HMCR = 0.7, \ PAR = 0.3, \ BW = 8 \) in case of a search window of \( \pm 8 \) and 16 in case of \( \pm 16 \).

Step 2: Initialize the harmony memory with five individuals \( (HMS = 5) \), where each decision variable \( u \) and \( v \) of the candidate motion vector \( MV_a \) is set according to the fixed pattern shown in Fig. 6. Considering \( a \in (1, 2, \ldots, HMS) \). Define also the individual database array \( T \), as an empty array.

Step 3: Compute the fitness values for each individual according to the fitness calculation strategy presented in Sect. 3. Since all individuals of the initial population fulfill rule 2 conditions, they are evaluated through a real fitness function (calculating the real SAD values).

Step 4: Update the new evaluations in the individual database array \( T \).

Step 5: Determine the candidate solution \( MV_w \) of \( HMS \) holding the worst fitness value.

Step 6: improvise a new harmony \( MV_{new} \) such that:

\[
\text{for } (j = 1 \text{ to } 2) \text{ do}
\]

if \( (r_1 < HMCR) \) then

\[
MV_{new}(j) = MV_a(j) \text{ where } a \text{ is element of } (1, 2, \ldots, HMS) \text{ randomly selected}
\]

if \( (r_2 < PAR) \) then

\[
MV_{new}(j) = MV_{new}(j) \pm r_3 \cdot BW \text{ where } r_1, r_2, r_3 \in (0, 1)
\]

if \( MV_{new}(j) < l(j) \)

\[
MV_{new}(j) = l(j)
\]

end if

if \( MV_{new}(j) > u(j) \)

\[
MV_{new}(j) = u(j)
\]

end if

else

\[
MV_{new}(j) = 1 + \text{round}(r \cdot E_p), \text{ where } r \in (-1, 1), E_p = 8 \text{ or } 16.
\]

end if

end for

\( E_p = 8, \) in case of a search window of \( \pm 8 \) and 16 in case of \( \pm 16 \).

Step 7: Compute the fitness value of \( MV_{new} \) by using the fitness calculation strategy presented in Sect. 3.

Step 8: Update the new evaluation in the individual database array \( T \).

Step 9: Update HM. In case that the fitness value (evaluated or approximated) of the new solution \( MV_{new} \), is better than the solution \( MV_w \), such position is selected as an element of HM, otherwise the solution \( MV_w \) remains.

Step 10: Determine the best individual of the current new population. If the new fitness (SAD) value is better than the old best fitness value, then update \( \hat{u}_{\text{best}}, \hat{v}_{\text{best}} \).

Step 11: If the number of iterations \( (NI) \) has been reached (25 in the case of a search window of \( \pm 8 \) and 45 for \( \pm 16 \)), then the MV is \( \hat{u}_{\text{best}}, \hat{v}_{\text{best}} \); otherwise go back to Step 5.

Thus, the proposed HS-BM algorithm considers different search locations, 30 in the case of a search window of \( \pm 8 \) and 50 for \( \pm 16 \), during the complete optimization process (which consists of 25 and 45 different iterations depending on the search window, plus the five initial positions). However, only a few search locations are evaluated using the actual fitness function \( (5–14, \) in the case of a search window of \( \pm 8 \) and 7–22, for \( \pm 16 \)) while the remaining positions are just estimated. Therefore, as the evaluated individuals and their respective fitness values are exclusively stored in the array \( T \), the resources used for the management of such data are negligible. Figure 7 shows two search-patterns examples that have been generated by the HS-BM approach. Such patterns exhibit the evaluated search-locations (rule 1 and 2) in white-cells, whereas the minimum location is marked in black. Grey-cells represent cells that have been estimated (rule 3) or not visited during the optimization process.

5.4 Discussion on the accuracy of the fitness approximation strategy

HS has been found to be capable of solving several practical optimization problems. A distinguishing feature of HS is about its operation with only a population of individuals. It uses multiple candidate solutions at each step. This requires the computation of the fitness function for each candidate
at every iteration. The ability to locate the global optimum depends on sufficient exploration of the search space which requires the use of enough individuals. Under such circumstances, this work proposes to couple the HS method with a fitness approximation model in order to replace (when it is feasible) the use of an expensive fitness function to compute the quality of several individuals.

Similar to other EA approaches, HS maintains two different phases on its operation: exploitation and exploration [58]. Exploitation (local search) refers to the action of refining the best solutions found so far whereas exploration (global search) represents the process of generating semi-random individuals in order to capture information of unexplored areas. In spite of this, the optimization process is guided by the best individuals seen-so-far [59]. They are selected more frequently and thereby modified or combined by the evolutionary operators in order to generate new promising individuals.

Therefore, the main concern in using fitness approximation models, is to accurately calculate the quality of those individuals which either hold great possibilities of grasping an excellent fitness value (individuals that are too close to one of the best individuals seen-so-far), or do not have reference about their possible fitness values (individuals located in unexplored areas) [60, 61]. Most of the fitness approximation methods proposed in the literature [48–50] use interpolation models in order to compute the fitness value of new individuals. Since the estimated fitness value is approximated considering other individuals which might be located far away from the position to be calculated, it introduces big errors that harshly affects the optimization procedure [45]. Different to such methods, in our approach, the fitness values are calculated using three different rules which promote the evaluation of individuals that require particular accuracy (Rule 1 and Rule 2). On the other hand, the strategy estimates those individuals which according to the evidence known-so-far (elements contained in the array $T$) represent unacceptable solutions (bad fitness values). Such individuals do not play an important roll in the optimization process, therefore their accuracy is not considered critical [46, 62].

It is important to emphasize that the proposed fitness approximation strategy has been designed considering some of the BM process particularities. Error landscapes in BM, due to the continuity principle [17, 20, 63] of video sequences, present the following particularity: the closer neighbors are to one global/local minimum (a motion vector with a low SAD value) decrement their SAD value as they approach to it. Such behavior is valid even in the most complex movement types. Under such circumstances, when it is necessary to calculate the fitness value of a search position which is close to one of the search positions previously visited (according to array $T$) and whose fitness value was unacceptable, its fitness value is estimated according to Rule 3. This decision is taken considering that there is strong evidence to consider such position as a bad individual from which it is not necessary to get a good accuracy level.

Figure 8 presents the optimization procedure achieved by the combination between HS and the proposed fitness approximation strategy over a complex movement case. The example illustrates the fitness strategy operation for a com-
plex movement considering a search window of ±8. Figure 8(a) shows the error landscape (SAD values) in a 3-D view, whereas Fig. 8(b) depicts the search positions calculated by the fitness approximation strategy over the SAD values that are computed for all elements of the search window as reference (for the sake of representation, both figures are normalized from 0 to 1). Yellow squares indicate evaluated search positions whereas blue squares represent the estimated ones. Since random numbers are involved by HS in the generation of new individuals, they may encounter same positions (repetition) that other individuals have visited in previous iterations. Circles represent search positions that have been selected several times during the optimization procedure. The problem of accuracy, in the estimation process, can also be appreciated through a close analysis from the red dashed square of Fig. 8(b). As the blue squares represent the estimated search positions according to the Rule 3, their fitness values are both assigned to 0.68 substituting their actual value of 0.63 and 0.67 respectively. Thus, considering that such individuals present an unacceptable solution (according to the elements stored in the array \( T \)), the differences in the fitness value are negligible for the optimization process. From Fig. 8(b), it can be seen that although the fitness function considers 30 individuals only 12 are actually evaluated by the fitness function (note that circle positions represent multiple evaluations).

![Figure 8](image)

**Fig. 8** Example of the optimization procedure: (a) Error landscape (SAD values) in a 3-D view. (b) Search positions calculated by the fitness approximation strategy over the SAD values which are computed for all elements of the search window of size ±8 (Color figure online)

### Table 1

Test sequences used in the comparison test

| Sequence   | Format       | Total frames | Motion type |
|------------|--------------|--------------|-------------|
| Container  | QCIF(176 × 144) | 299          | Low         |
| Carphone   | QCIF(176 × 144) | 381          | Medium      |
| Foreman    | QCIF(352 × 288) | 398          | Medium      |
| Akiyo      | QCIF(352 × 288) | 211          | Medium      |
| Stefan     | CIF(352 × 288)  | 89           | High        |
| Football   | SIF(352 × 240)  | 300          | High        |

### 6 Experimental results

#### 6.1 HS-BM results

This section presents the results of comparing the proposed HS-BM algorithm with other existing fast BMAs. The simulations have been performed over the luminance component of popular video sequences that are listed in Table 1. Such sequences consist of different degrees and types of motion including QCIF (176 × 144), CIF (352 × 288) and SIF (352 × 240) respectively. The first four sequences are Container, Carphone, Foreman and Akiyo in QCIF format. The next two sequences are Stefan in CIF format and Football in SIF format. Among such sequences, Container has gentle, smooth and low motion changes and consists mainly
of stationary and quasi-stationary blocks. Carphone, Foreman and Akiyo have moderately complex motion getting a “medium” category regarding its motion content. Rigorous motion which is based on camera panning with translation and complex motion content can be found in the sequences of Stefan and Football. Figure 9 shows a sample frame from each sequence.

Each picture frame is partitioned into macro-blocks with the sizes of $16 \times 16$ ($N = 16$) pixels for motion estimation, where the maximum displacement within the search range $W$ is of ±8 pixels in both horizontal and vertical directions for the sequences Container, Carphone, Foreman, Akiyo and Stefan. The sequence Football has been simulated with a window size $W$ of ±16, which requires a greater number of iterations (8 iterations) by the HS-BM method.

In order to compare the performance of the HS-BM approach, different search algorithms such as FSA, TSS [12], 4SS [15], NTSS [13], BBGD [19], DS [16], NE [20], ND [22], LWG [29], GFSS [30] and PSO-BM [31] have been all implemented in our simulations. For comparison purposes, all six video sequences in Fig. 8 have been all used. All simulations are performed on a Pentium IV 3.2 GHz PC with 1 GB of memory.

In the comparison, two relevant performance indexes have been considered: the distortion performance and the search efficiency.

6.2 Distortion performance

First, all algorithms are compared in terms of their distortion performance which is characterized by the Peak-Signal-to-Noise-Ratio (PSNR) value. Such a value indicates the reconstruction quality when motion vectors, which are computed through a BM approach, are used. In PSNR, the signal is the original data frames whereas the noise is the error introduced by the calculated motion vectors. The PSNR is thus defined as:

$$PSNR = 10 \cdot \log_{10} \left( \frac{255^2}{MSE} \right)$$

where $MSE$ is the mean square between the original frames and those compensated by the motion vectors. Additionally, as an alternative performance index, it is used in the PSNR degradation ratio ($D_{PSNR}$). This ratio expresses in percentage (%) the level of mismatch between the PSNR of a BM approach and the PSNR of the FSA which is considered as reference. Thus the $D_{PSNR}$ is defined as

$$D_{PSNR} = -\left( \frac{PSNR_{FSA} - PSNR_{BM}}{PSNR_{FSA}} \right) \cdot 100 \%$$

Table 2 shows the comparison of the PSNR values and the PSNR degradation ratios ($D_{PSNR}$) among the BM algorithms. The experiment considers the six image sequences presented in Fig. 8. As it can be seen, in the case of the slow-moving sequence Container, the PSNR values (the $D_{PSNR}$ ratios) of all BM algorithms are similar. For the medium motion content sequences such as Carphone, Foreman and Akiyo, the approaches consistent of fixed patterns (TSS, 4SS and NTSS) exhibit the worst PSNR value (high $D_{PSNR}$ ratio) except for the DS algorithm. On the other hand, BM methods that use evolutionary algorithms (LWG, GFSS, PSO-BM and HS-BM) present the lowest $D_{PSNR}$ ratio, only one
step under the FSA approach which is considered as reference. Finally, approaches based on the error-function minimization (BBGD and NE) and pixel-decimation (ND), show an acceptable performance. For the high motion sequence of Stefan, since the motion content of these sequences is complex, it produces error surfaces with more than one minimum, and the performance, in general, becomes the worst for most of the algorithms especially for those based on fixed patterns. In the sequence Football, which has been simulated with a window size of ±16, the algorithms based on the evolutionary algorithms present the best PSNR values. Such performance is because evolutionary methods adapt better to complex optimization problems where the search area and the number of local minima increase. As a summary of the distortion performance, the last column of Table 2 presents the average PSNR degradation ratio ($\Delta_{PSNR}$) obtained for all sequences. According to such values, the proposed HS-BM method is superior to any other approach. Due to the computation complexity, the FSA is considered just as a reference. The best entries are bold-cased in Table 2.

6.3 Search efficiency

The search efficiency is used in this section as a measurement of computational complexity. The search efficiency is calculated by counting the average number of search points (or the average number of SAD computations) for the MV estimation. In Table 3, the search efficiency is compared, where the best entries are bold-cased. Just above FSA, some evolutionary algorithms such as LWG, GFSS and PSO-BM hold the highest number of search points per block. On the contrary, the proposed HS-BM algorithm can be considered a fast approach as it maintains a similar performance to DS. From data shown in Table 3, the average number of search locations, corresponding to the HS-BM method, represents the number of SAD evaluations (the number of SAD estimations are not considered whatsoever). Additionally, the last two columns of Table 3 present the number of search locations that have been averaged (over the six sequences) and their performance rank. According to these values, the proposed HS-BM method is ranked in first. The average number of search points visited by the HS-BM algorithm ranges from 9.2 to 17.3, representing the 4% and the 7.4% respectively in comparison to the FSA method. Such results demonstrate that our approach can significantly reduce the number of search points. Hence, the HS-BM algorithm proposed in this paper is comparable to the fastest algorithms and delivers a similar precision to the FSA approach.

6.4 Results on H.264

Another set of experiments has been performed in JM-12.2 [64] of H.264/AVC reference software. In the simulations, we compare FS, DS [16], EPZS [24], TSS [12], 4SS [15], NTSS [13], BBGD [19] and the proposed HS-BM algorithm in terms of coding efficiency and computational complexity.

For encoding purposes, JM-12.2 Main Encoder Profile has been used. For each test sequence, only the first frame has been coded as I frame and the remaining frames are coded as P frames. Only one reference frame has been used. Each pixel in the image sequences is uniformly quantized to 8 bits. Sum of absolute difference (SAD) distortion function is used as the block distortion measure (BDM). Image formats used are QCIF, CIF and SIF. Sequences are tested at

| Algorithm | Container | Carphone | Foreman | Akiyo | Stefan | Football |
|-----------|-----------|----------|---------|-------|--------|----------|
|           | $W = \pm 8$ | $W = \pm 16$ |
| PSNR     | $D_{PSNR}$ | PSNR     | $D_{PSNR}$ | PSNR | $D_{PSNR}$ | PSNR |
|-----------|-----------|-----------|-----------|-------|--------|----------|
| FSA      | 43.18     | 31.51     | 31.69     | 29.07 | 25.95  | 23.07    |
| TSS      | 43.10     | -0.20     | 30.27     | 29.37 | 26.21  | 21.14    |
| 4SS      | 43.12     | -0.15     | 30.24     | 29.34 | 26.21  | 21.41    |
| NTSS     | 43.12     | -0.15     | 30.35     | 30.56 | 27.12  | 22.52    |
| BBGD     | 43.14     | -0.11     | 31.30     | 31.00 | 28.10  | 25.17    |
| DS       | 43.13     | -0.13     | 31.26     | 31.19 | 28.00  | 24.98    |
| NE       | 43.15     | -0.08     | 31.36     | 31.23 | 28.53  | 25.22    |
| ND       | 43.15     | -0.08     | 31.35     | 31.20 | 28.32  | 25.21    |
| LWG      | 43.16     | -0.06     | 31.40     | 31.31 | 28.71  | 25.41    |
| GFSS     | 43.15     | -0.06     | 31.38     | 31.29 | 28.69  | 25.34    |
| PSO-BM   | 43.15     | -0.07     | 31.39     | 31.27 | 28.65  | 25.39    |
| HS-BM    | 43.16     | -0.03     | 31.49     | 31.63 | 29.01  | 25.89    |
30 fps (frames per second). The simulation platform in our experiments is a PC with Intel Pentium IV 2.66 GHz CPU. The test sequences used for our experiments are Container, Akiyo and Football. These sequences exhibit a variety of motion that is generally encountered in real video. For the sequences Container and Akiyo, a search window of ±8 is selected; for the football sequence, a search window of ±16 is considered. The group of experiments has been performed over such sequences at four different quantization parameters (QP = 28, 32, 36, 40) in order to test the algorithms at different transmission conditions.

6.4.1 Coding efficiency

In the first experiment, the performance of the proposed algorithm is compared to other BM algorithms regarding coding efficiency. Two different performance indexes are used for evaluating the coding quality: the PSNR Gain and the rate of increase of the Bit Rate. In order to comparatively assess the results, two additional indexes, called PSNR loss and Bit Rate Incr., relate the performance of each method with the FSA performance as a reference. Such indexes are calculated as follows:

\[ \text{PSNR loss} = \text{PSNR FSA} - \text{PSNR algorithm} \quad (9) \]

\[ \text{Bit Rate Incr.} = \left( \frac{\text{Bit Rate algorithm} - \text{Bit Rate FSA}}{\text{Bit Rate FSA}} \right) \times 100 \quad (10) \]

Tables 4, 5 and 6 show a coding efficiency comparison among BM algorithms. It is observed, from experimental results, that the proposed HS-BM algorithm holds an effective coding quality because the loss in terms of PSNR and the increase of the Bit rate are low with an average of 1.6 dB and −0.04 %, respectively. Such coding performance is similar to the one produced by the EPZS method whereas it is much better than the obtained by other BM algorithms which posses the worst coding quality.

6.4.2 Computational complexity

In the second experiment, we have compared the performance of the proposed algorithm to other BM algorithms in terms of computational overhead. As the JM-12.2 platform allows us to simulate BM algorithms in real time conditions, we have used such results in order to evaluate their performances.

Three different performance indexes are used for evaluating the computational complexity; they are the Averaged Coding Time (ACT), Number of Instructions (NI) and Consumed Memory (CM). The ACT is the averaged time employed to codify a complete frame (the averaged time consumed after finding all the corresponding motion vectors for a frame). IN represents the number of instructions used to implement each algorithm in the JM-12.2 profile. CM considers the memory size used by the JM-12.2 platform in order to manage the data that are employed by each BM algorithm.

Tables 4–6 show the computational complexity comparison among the BM algorithms. It is observed from the experimental results that the proposed HS-BM algorithm possesses a competitive ACT value (from 3.8 to 4.1 milliseconds) in comparison to other BM algorithms. This fact reflects the fact that although the cost of applying the fitness approximation strategy represents an overhead that is not required in most fast BM methods, such overhead is negligible in comparison to the cost of the number of fitness evaluations which have been saved. The ACT values, presented
Table 4  Coding efficiency results for the container sequence, considering a window size W of ±8

| BM   | Coding efficiency | Computational complexity |
|------|-------------------|-------------------------|
|      | PSNR              | Bit-rate (kbits/s)      | PNSR loss (dB) | Bit-rate increase (%) | ACT (ms) | IN | CM (Bytes) |
| FSA  | 36.06             | 41.4                    | —              | —                     | 133.2     | 122 | 3072 |
| DS   | 36.04             | 43.4                    | 0.02           | 4.83                  | 6.33      | 138 | 420  |
| EPZS | 36.04             | 41.3                    | 0.02           | −0.20                 | 19.5      | 621 | 8972 |
| TSS  | 34.01             | 45.2                    | 2.05           | 9.17                  | 2.1       | 100 | 180  |
| 4SS  | 35.22             | 44.7                    | 0.84           | 7.97                  | 2.8       | 100 | 204  |
| NTSS | 35.76             | 44.3                    | 0.30           | 7.00                  | 3.7       | 110 | 256  |
| BBGD | 35.98             | 42.1                    | 0.08           | 1.70                  | 9.1       | 256 | 1024 |
| HS-BM| 36.04             | 41.5                    | 0.02           | 0.20                  | 3.8       | 189 | 784  |

Table 5  Simulation results for the Akiyo sequence, considering a window size W of ±8

| BM   | Coding efficiency | Computational complexity |
|------|-------------------|-------------------------|
|      | PSNR              | Bit-rate (kbits/s)      | PNSR loss (dB) | Bit-rate increase (%) | ACT (ms) | IN | CM (Bytes) |
| FSA  | 38.19             | 25.6                    | —              | —                     | 133.2     | 122 | 3072 |
| DS   | 38.11             | 25.9                    | 0.08           | 1.20                  | 7.45      | 138 | 420  |
| EPZS | 38.19             | 25.3                    | —              | −1.20                 | 22.1      | 621 | 8972 |
| TSS  | 30.32             | 29.3                    | 7.87           | 14.45                 | 2.1       | 100 | 180  |
| 4SS  | 32.42             | 28.4                    | 5.77           | 10.93                 | 2.8       | 100 | 204  |
| NTSS | 33.57             | 27.2                    | 4.62           | 6.25                  | 3.7       | 110 | 256  |
| BBGD | 35.21             | 26.8                    | 2.98           | 4.68                  | 10.1      | 256 | 1024 |
| HS-BM| 38.17             | 25.5                    | 0.02           | −0.40                 | 3.9       | 189 | 784  |

Table 6  Simulation results for the Football sequence, considering a window size W of ±16

| BM   | Coding efficiency | Computational complexity |
|------|-------------------|-------------------------|
|      | PSNR              | Bit-rate (kbits/s)      | PNSR loss (dB) | Bit-rate increase (%) | ACT (ms) | IN | CM (Bytes) |
| FSA  | 34.74             | 98.85                   | —              | —                     | 245.7     | 122 | 12288 |
| DS   | 32.22             | 99.89                   | 2.52           | 1.02                  | 10.36     | 144 | 600  |
| EPZS | 34.72             | 98.81                   | 0.02           | −0.04                 | 26.8      | 678 | 20256 |
| TSS  | 27.12             | 106.42                  | 7.62           | 7.65                  | 2.9       | 113 | 180  |
| 4SS  | 27.91             | 105.29                  | 6.83           | 6.51                  | 3.1       | 113 | 204  |
| NTSS | 29.11             | 104.87                  | 5.63           | 6.09                  | 4.2       | 113 | 256  |
| BBGD | 29.76             | 103.96                  | 4.98           | 5.19                  | 16.41     | 268 | 2048 |
| HS-BM| 34.73             | 98.91                   | 0.01           | 0.06                  | 4.1       | 201 | 1024 |

by the HS-BM, are slightly superior to those produced by the fast BM methods (TSS, 4SS and NTSS) whereas it is much better than those generated by the EPZS algorithm which possesses the worst computational performance. On the other hand, the resources (in terms of number of instructions IN and required memory CM) needed by the proposed approach are considered standard in software and hardware architectures.

7 Conclusions

In this paper, a new BM algorithm that combines HS with a fitness approximation model is proposed. The approach uses the motion vectors belonging to the search window as potential solutions. A fitness function evaluates the matching quality of each motion vector candidate. To save computational time, the approach incorporates a fitness calculation
strategy to decide which motion vectors can be estimated or actually evaluated. Guided by the values given by such a fitness calculation strategy, the set of motion vectors are evolved using the HS operators so the best possible motion vector can be identified.

Since the proposed algorithm does not consider any fixed search pattern during the BM process or any other movement assumption, a high probability for finding the true minimum (accurate motion vector) is expected regardless of the movement complexity contained in the sequence. Therefore, the chance of being trapped into a local minimum is reduced in comparison to other BM algorithms.

The performance of HS-BM has been compared to other existing BM algorithms by considering different sequences which present a great variety of formats and movement types. Experimental results demonstrate that the proposed algorithm maintains the best balance between coding efficiency and computational complexity.

Although the experimental results indicate that the HS-BM method can yield better results on complicated sequences, it should be noticed that the aim of our paper is not intended to beat all the BM methods which have been proposed earlier, but to show that the fitness approximation can effectively serve as an attractive alternative to evolutionary algorithms for solving complex optimization problems, yet demanding fewer function evaluations.

References

1. Cirrincione G, Cirrincione M (2003) A novel self-organizing neural network for motion segmentation. Appl Intell 18(1):27–35
2. Risinger L, Kaikhah K (2008) Motion detection and object tracking with discrete leaky integrate-and-fire neurons. Appl Intell 29(3):248–262
3. Bohlooli A, Jamshidi K (2012) A GPS-free method for vehicle future movement directions prediction using SOM for VANET. Appl Intell 36(3):685–697
4. Kang J-G, Kim S, An S-Y, Oh S-Y (2012) A new approach to simultaneous localization and map building with implicit model learning using neuro evolutionary optimization. Appl Intell 36(1):242–269
5. Tzovaras D, Kompatiaisirs I, Strintzis MG (1999) 3D object articulation and motion estimation in model-based stereoscopic videoconference image sequence analysis and coding. Signal Process Image Commun 14(10):817–840
6. Barron JL, Fleet DJ, Beauchemin SS (1994) Performance of optical flow techniques. Int J Comput Vis 12(1):43–77
7. Skowronski J (1999) Pel recursive motion estimation and compensation in subbands. Signal Process Image Commun 14:389–396
8. Huang T, Chen C, Tsai C, Shen C, Chen L (2006) Survey on block matching motion estimation algorithms and architectures with new results. J VLSI Signal Process 42:297–320
9. MPEG4 (2000) Information technology coding of audiovisual objects part 2: visual, JVT/C1/SC29/WG11, ISO/IEC14469-2 (MPEG-4Visual)
10. H.264 (2003) Joint video team (JVT) of ITU-T and ISO/IEC JTC1, Geneva, JVT of ISO/IEC MPEG and ITU-T VCEG, JVTg050r1, draft ITU-T Rec. and final draft international standard of joint video specification (ITU-T Rec.H.264-ISO/IEC14496-10AVC)
11. Jain JR, Jain AK (1981) Displacement measurement and its application in interframe image coding. IEEE Trans Commun COM-29:1799–1808
12. Jong H-M, Chen L-G, Chiueh T-D (1994) Accuracy improvement and cost reduction of 3-step search block matching algorithm for video coding. IEEE Trans Circuits Syst Video Technol 4:88–90
13. Li R, Zeng B, Liou ML (1994) A new three-step search algorithm for block motion estimation. IEEE Trans Circuits Syst Video Technol 4(4):438–442
14. Lu J, Liou ML (1997) A simple and efficient search algorithm for block-matching motion estimation. IEEE Trans Circuits Syst Video Technol 7(2):429–433
15. Po L-M, Ma W-C (1996) A novel four-step search algorithm for fast block motion estimation. IEEE Trans Circuits Syst Video Technol 6(3):313–317
16. Zhu S, Ma K-K (2000) A new diamond search algorithm for fast block-matching motion estimation. IEEE Trans Image Process 9(2):287–290
17. Nie Y, Ma K-K (2002) Adaptive root pattern search for fast block-matching motion estimation. IEEE Trans Image Process 11(12):1442–1448
18. Liaw Y, Lai JZC, Hong Z (2009) Fast block matching using prediction and rejection criteria. Signal Process 89:1115–1120
19. Liu L, Feig E (1996) A block-based gradient descent search algorithm for block motion estimation in video coding. IEEE Trans Circuits Syst Video Technol 6(4):419–422
20. Saha A, Mukherjee J, Sural S (2011) A neighborhood elimination approach for block matching in motion estimation. Signal Process Image Comm 26(8–9):438–454
21. Chow KH, Liou ML (1993) Generic motion search algorithm for video compression. IEEE Trans Circuits Syst Video Technol 3:440–445
22. Saha A, Mukherjee J, Sural S (2008) New pixel-decimation patterns for block matching in motion estimation. Signal Process Image Comm 23:725–738
23. Song Y, Ikenaga T, Goto S (2007) Lossy strict multilevel successive elimination algorithm for fast motion estimation. IEICE Trans Fundam E90(4):764–770
24. Tourapis AM (2002) Enhanced predictive zonal search for single and multiple frame motion estimation. In: Proceedings of visual communications and image processing, California, USA, January 2002, pp 1069–1079
25. Chen Z, Zhou P, He Y, Chen Y (2002) Fast integer Pel and fractional Pel motion estimation for JVT, December, 2002. ITU-T. Doc. #JVT-E017
26. Nisar H, Malik AS, Choi T-S (2012) Content adaptive fast motion estimation based on spatio-temporal homogeneity analysis and motion classification. Pattern Recognit Lett 33:52–61
27. Holland JH (1975) Adaptation in natural and artificial systems. University of Michigan Press, Ann Arbor
28. Kennedy J, Eberhart RC (1995) Particle swarm optimization. In: International conference on embedded software and systems (ICES2008), Sichuan, China
29. Geem ZW, Kim JH, Loganathan GV (2001) A new heuristic optimization algorithm: harmony search. Simulations 76:60–68

© Springer
Block-matching algorithm based on harmony search optimization for motion estimation

33. Mahdavi M, Fesanghary M, Damangir E (2007) An improved harmony search algorithm for solving optimization problems. Appl Math Comput 188:1567–1579
34. Omran MGH, Mahdavi M (2008) Global-best harmony search. Appl Math Comput 198:643–656
35. Lee KS, Geem ZW (2005) A new meta-heuristic algorithm for continuous engineering optimization, harmony search theory and practice. Comput Methods Appl Mech Eng 194:3902–3933
36. Lee KS, Geem ZW, Lee SH, Bae K-W (2005) The harmony search heuristic algorithm for discrete structural optimization. Eng Optim 37:663–684
37. Kim JH, Geem ZW, Kim ES (2001) Parameter estimation of the nonlinear Muskingum model using harmony search. J Am Water Resour Assoc 37:1131–1138
38. Geem ZW (2006) Optimal cost design of water distribution networks using harmony search. Eng Optim 38:259–280
39. Lee KS, Geem ZW (2004) A new structural optimization method based on the harmony search algorithm. Comput Struct 82:781–798
40. Ayvaz TM (2007) Simultaneous determination of aquifer parameters and zone structures with fuzzy c-means clustering and meta-heuristic harmony search algorithm. Adv Water Resour 30:2326–2338
41. Geem ZW, Lee KS, Park YJ (2005) Application of harmony search to vehicle routing. J Appl Sci 2:1552–1557
42. Geem ZW (2008) Novel derivative of harmony search algorithm for discrete design variables. Appl Math Comput 199(1):223–230
43. Cuevas E, Ortega-Sánchez N, Zaldívar D, Pérez-Cisneros M (2012) Circle detection by harmony search optimization. J Intell Robot Syst 66(3):359–376
44. Jin Y (2005) Comprehensive survey of fitness approximation in evolutionary computation. Soft Comput 9:3–12
45. Jin Y (2011) Surrogate-assisted evolutionary computation: recent advances and future challenges. Swarm Evol Comput 1:61–70
46. Branke J, Schmidt C (2005) Faster convergence by means of fitness estimation. Soft Comput 9:13–20
47. Zhou Z, Ong Y, Nguyen M, Lim D (2005) A study on polynomial regression and Gaussian process global surrogate model in hierarchical surrogate-assisted evolutionary algorithm. In: IEEE congress on evolutionary computation (ECigDE’05), Edinburgh, United Kingdom, September 2–5, 2005, pp 2–5
48. Ratle A (2001) Kriging as a surrogate fitness landscape in evolutionary optimization. Artif Intell Eng Des Anal Manuf 15:37–49
49. Lim D, Jin Y, Ong Y, Sendhoff B (2010) Generalizing surrogate-assisted evolutionary computation. IEEE Trans Evol Comput 14(3):329–355
50. Ong Y, Lum K, Nair P (2008) Evolutionary algorithm with Hermite radial basis function interpolants for computationally expensive adjoint solvers. Comput Optim Appl 39(1):97–119
51. Luoa C, Shao-Liang Z, Wanga C, Jiang Z (2011) A metamodel-assisted evolutionary algorithm for expensive optimization. J Comput Appl Math. doi:10.1016/j.cam.2011.05.047
52. Goldberg DE (1989) Genetic algorithms in search, optimization and machine learning. Addison-Wesley, Menlo Park
53. Li X, Xiao N, Claramunt C, Lin H (2011) Initialization strategies to enhancing the performance of genetic algorithms for the p-median problem. Comput Ind Eng. doi:10.1016/j.cie.2011.06.015
54. Xiao N (2008) A unified conceptual framework for geographical optimization using evolutionary algorithms. Ann Assoc Am Geogr 98:795–817
55. Soak S-M, Lee S-W (2012) A memetic algorithm for the quadratic multiple container packing problem. Appl Intell 36(1):119–135
56. Luque C, Valls JM, Isasi P (2011) Time series prediction evolving Voronoi regions. Appl Intell 34(1):116–126
57. Montero E, Riff M-C (2011) On-the-fly calibrating strategies for evolutionary algorithms. Inf Sci 181:552–566
58. Tan KC, Chiam SC, Mamun AA, Goh CK (2009) Balancing exploration and exploitation with adaptive variation for evolutionary multi-objective optimization. Eur J Oper Res 197(2):701–713
59. Wang P, Zhang J, Xub L, Wang H, Feng S, Zhu H (2011) How to measure adaptation complexity in evolvable systems—a new synthetic approach of constructing fitness functions. Expert Syst Appl 38:10414–10419
60. Tenne Y (2012) A computational intelligence algorithm for expensive engineering optimization problems. Eng Appl Artif Intell 25(5):1009–1021
61. Büche D, Schraudolph NN, Koumoutsakos P (2005) Accelerating evolutionary algorithms with Gaussian process fitness function models. IEEE Trans Syst Man Cybern, Part C, Appl Rev 35(2):183–194
62. Giannakoglou KC, Papadimitriou DI, Kampolis IC (2006) Aerodynamic shape design using evolutionary algorithms and new gradient-assisted metamodels. Comput Methods Appl Mech Eng 195:6312–6329
63. Tai S-C, Chen Y-R, Chen Y-H (2007) Small-diamond-based evolutionary computation. IEEE Trans Evol Comput 11(5):521–534
64. Joint Video Team Reference Software (2007). Version 12.2 (JM12.2). http://iphome.hhi.de/suehring/tml/download/

Erik Cuevas received the B.S. degree with distinction in Electronics and Communications Engineering from the University of Guadalajara, Mexico in 1995, the M.Sc. degree in Industrial Electronics from ITESO, Mexico in 2000, and the Ph.D. degree from Freie Universität Berlin, Germany in 2005. From 2001 he was awarded a scholarship from the German Service for Academic Interchange (DAAD) as full-time researcher. Since 2007 he has been with University of Guadalajara, where he is currently a fulltime Professor in the Department of Electronics. From 2008, he is a member of the Mexican National Research System (SNI). His current research interest includes computer vision and artificial intelligence.