Radial Basis Neural Network for Availability Analysis

Deepika Garg1 and Naresh Sharma2

1School of Basic & Applied Sciences, GD Goenka University, Gurugram, 122 103 India
2Email: naresh.sharma2006@gmail.com

ARTICLE INFORMATION

Abstract

The appliance of radial basis neural network is demonstrated in this paper. The method applies failure and repair rate signals to learn the hidden relationship presented into the input pattern. Statistics of availability of several years is considered and collected from the management of concern plant. This data is considered to train and calibrate the radial basis neural network (RBNN). Subsequently validated RBNN is used to estimate the availability of concern plant. The main objective of using neural network approach is that it’s not require assumption, nor explicit coding of the problem and also not require the complete knowledge of interdependencies, only requirement is raw data of system functioning.

Keywords: Availability prediction, Radial basis neural networks (RBNN).

DOI: https://doi.org/1015415/mjis.2019.72013

NOMENCLATURE

hj Hidden unit factor
Greek Symbols
S Spread function
A Result from RBNN
T Actual result
R Regression

hj Weight vector
µj Radial basis function
σj Normalization factor
λj Failure rate of i\(^{th}\) subsystem
µj Repair rate of i\(^{th}\) subsystem

1. Introduction

ANN is an architect that changes its configuration based on available data that propagate through the network during the training period. In general ANN used to develop complex relations between inputs and outputs data. In this work, RBNN is used. (Powell, Mason and Cox 1987) used Radial basis functions to solve the real multivariate problem. Radial basis functions were firstly combined with the field of neural network (Broomhead and Lowe 1988). Input into radial basis networks are nonlinear while the output is linear. Their admirable approximation abilities are studied in (Park and Sandberg 1991), (Poggio and Girosi 1990). Various functions have been tested as activation functions for RBF networks (Chen, Cowan and Grant 1991). Researcher used RBNN to solve problems where the input data are degraded with noise (Venkatesan and Anithi 2016). (Hartman, Keeler and Kowalski 1990) showed that ANN with a layer of hidden units of gaussian kind is a global approximator for real-valued function. Various researcher used various techniques for availability analysis. (Kumar, Singh and Pandey 1990) carried out reliability analysis of refining unit in sugar plant by using supplementary variable technique (SVT) (Dyer 1989), derived the solution of system state equation which depends on the eigen values of the model transition rate matrix. (Aven 1990) presented approximation formulations for the accessibility of standby redundant units including similar units. (Singh, Tewari and Khare 1991) discussed availability of conveyor belt system by using laplace transform and the generating function technique. (Singh and Dayal 1992) developed a model of a series system composed of four subsystems having one standby sub unit with an imperfect switching. (Kumar, Mehta and Kumar 1997) presented the steady state analysis and maintenance order of the sub unit of fertilizer industry. (Arora and Kumar 1997) discussed the availability analysis of a steam generation system and derive the expression for steady state availability by using laplace transform.
technique. (Gupta, Lal, Sharma and Singh 2005) calculated reliability, long run availability and mean time before failure of the cement manufacturing plant. (Gupta, Lal, Sharma and Singh 2007) calculated reliability of serial processes of plastic pipe manufacturing plant using matrix method and runge-kutta method. (Tewari, Kumar, Kajal and Khanduja 2015) drive the expression for steady state availability of crystallization unit of a sugar plant. (Garg, Kajal, Singh and Kumar 2008, Garg and Kumar 2009) discussed the steady state availability of screw plant and cattle feed plant using markov modeling. (Garg and Kumar 2009, Garg, Singh, and Kumar 2009) evaluated the availability of rice plant and cattle feed plant, screw plant using matrix method. (Garg and Kumar 2009, Garg, Singh and Kumar 2009) applied matlab-tool to evaluate the availability of screw plant and cattle feed plant. (Bhattacharya and Singh 2011) used RBF to predict and back propagation model to compare the performance. (Mishra and Sharma 2018) applied ANN technique for analyse the rainfall time series. (Tatar, Naseri, Sirach, Moonyong and Bahadori 2015) used RBF neural networks with genetic algorithm for prediction. (Markopoulos, Georgiopoulos and Manolakos 2016) observed different kind of neural network to check performance and applicability. But ANNs approach has many advantages over these models. No prior knowledge about system configuration is required in ANN. Using failure history as input, ANN develops its own internal architects from the failure data and estimate value of availability for different values of input. In this paper, to analyze an unknown mapping, RBNN approach is used i.e. availability function of tab manufacturing plant.

2. Materials and Method

A RBF network is an ANN that has an input, hidden and linear output layer. The transformation functions used in hidden layer are based on Gaussian distribution. In which output depends upon the distance from neuron’s center. Gaussian type RBF was chosen since it gives smooth result with interpolation (Markopoulos, Georgiopoulos and Manolakos 2016). Types of layers in RBF networks are:

Input layer – Input layer has one neuron for every variable. Each neuron in the hidden layer is feeded the value by input neurons.

Hidden layer – The layer includes a variable no. of neurons and the training process optimises this. The weights \(\mu_j, \sigma_j \) are determined directly from the training data. No learning is involved. Hidden unit output \(h_j \) is obtained by closeness of input \(x \) to an M dimensional parameter vector \(\mu_j \) associated with the hidden unit 4,7. When presented with the \(x \) vector of input values from the input layer, the \(j \)th hidden unit applies RBF \(\phi_j(. \) to the normalized radial distance \(\frac{x - \mu_j}{\sigma_j} \) between the input vector \(x = (x_1, x_2, ..., x_M)^T \) and the weight vector \(\mu_j = (\mu_{j1}, \mu_{j2}, ..., \mu_{jM})^T \). Normalization factor \(\sigma_j \) decides the range of influence of the \(j \)th unit around its center \(\mu_j \). The result from hidden layer is propagated to the output layer.

Output layer – The output of the \(k \)th unit in the output layer of the network is given by

\[
y_k = \sum_{j=0}^{f} w_{kj} h_j
\]

Where \(h_j = \phi_j \left(\frac{x - \mu_j}{\sigma_j} \right) \), \(j = 1, 2, ..., f \) and \(h_0 = -1 \) is the output of bias unit.

2.1 Training RBF Networks

The available data is ‘m’ labelled pair as \([X, Y]\) that represents associated multivariate functional input and output values and same is used as training data set. On given training set, an error function is minimized by considering sum of squared error criterion function. Gradient descent method (GDM) was used to train the data. The training has the following parameters:

1. No. of neurons in hidden layer.
2. The coordinates \(\mu_j \) of the center of each hidden layer RBF function.
3. The \(\sigma_j \) of individual radial basis function in each dimension.
4. The weights applied to the RBF function outputs as they are passed to the output layer.

K-means clustering is used to find cluster centers which are used as centers for radial basis functions.

![Figure 1. The architecture of a radial basis function network [29]](image)
2.2 Identification of Input and Output Parameter

As time permits, plant management apply complicated tests to reveal subtler defects. The aim of availability testing is find major problems with the different operating units timely. In Availability testing, operating system run for a planned period and investigator collect failure responses and repair periods, and compare the testing results to the planned objective.

Table 1. Variation of input parameter and corresponding variation of output parameter (Failure rates, Repair Rates) (Sample Data).

| S. No. | λ₁ | λ₂ | λ₃ | λ₄ | λ₅ | λ₆ | λ₇ | λ₈ | μ₁ | μ₂ | μ₃ | μ₄ | μ₅ | μ₆ | μ₇ | μ₈ | Availability |
|-------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|----------|
| 1 | 0.001 | 0.005 | 0.003 | 0.003 | 0.0025 | 0.007 | 0.007 | 0.004 | 0.01 | 0.05 | 0.03 | 0.03 | 0.02 | 0.07 | 0.07 | 0.04 | 0.6908 |
| 2 | 0.003 | 0.005 | 0.003 | 0.003 | 0.0025 | 0.007 | 0.007 | 0.004 | 0.01 | 0.05 | 0.03 | 0.03 | 0.02 | 0.07 | 0.07 | 0.04 | 0.6691 |
| 3 | 0.001 | 0.01 | 0.003 | 0.003 | 0.0025 | 0.007 | 0.007 | 0.004 | 0.01 | 0.05 | 0.03 | 0.03 | 0.02 | 0.07 | 0.07 | 0.04 | 0.6885 |
| 4 | 0.001 | 0.005 | 0.005 | 0.005 | 0.0025 | 0.007 | 0.007 | 0.004 | 0.01 | 0.05 | 0.03 | 0.03 | 0.02 | 0.07 | 0.07 | 0.04 | 0.6931 |

3. Result and Discussion

Considering the different value for spread, value of availability obtained from radial basis neural network is given in table 2,3,4,5

Table 2. Result from RBNN for spread = 0.75

λ₁	λ₂	λ₃	λ₄	λ₅	λ₆	λ₇	λ₈	μ₁	μ₂	μ₃	μ₄	μ₅	μ₆	μ₇	μ₈	A	T
0.003	0.005	0.003	0.003	0.025	0.007	0.007	0.004	0.01	0.05	0.03	0.03	0.02	0.07	0.07	0.04	0.6074	0.6069
0.003	0.005	0.003	0.003	0.025	0.007	0.007	0.004	0.02	0.05	0.03	0.03	0.02	0.07	0.07	0.04	0.6698	0.6677
0.003	0.005	0.003	0.003	0.025	0.007	0.007	0.004	0.03	0.05	0.03	0.03	0.02	0.07	0.07	0.04	0.7005	0.6908
0.001	0.005	0.003	0.003	0.025	0.007	0.007	0.004	0.01	0.05	0.03	0.03	0.02	0.07	0.07	0.04	0.6816	0.6908
Management of pharmaceutical provided availability testing results comprises of different values of failures and repair parameters of eight subsystem and corresponding value of availability of tab manufacturing plant. All this data is used for training and validation of the ANNs. Some of sample figures are given below in table 1. Sample data comprises of 16 input parameter (failure and repair rates of various eight subsystems) and one output parameter (availability).

Table 3. Result from RBNN for spread=1

λ_1	λ_2	λ_3	λ_4	λ_5	λ_6	λ_7	μ_1	μ_2	μ_3	μ_4	μ_5	μ_6	μ_7	μ_8	A	T	
0.001	0.005	0.003	0.003	0.025	0.007	0.007	0.004	0.01	0.05	0.03	0.03	0.02	0.07	0.07	0.04	0.7314	0.7155
0.001	0.005	0.003	0.003	0.025	0.007	0.007	0.004	0.03	0.05	0.03	0.02	0.07	0.07	0.04	0.7493	0.7241	
0.001	0.005	0.003	0.003	0.025	0.007	0.007	0.004	0.04	0.05	0.03	0.02	0.07	0.07	0.04	0.7354	0.7285	

Figure 2. Regression between actual result (A) and target result (T) for spread= 0.75

Figure 3. Regression model for actual result (A) and target result (T) for spread=1
Table 4. Result from RBNN for spread=1.50

λ_1	λ_2	λ_3	λ_4	λ_5	λ_6	μ_1	μ_2	μ_3	μ_4	μ_5	μ_6	μ_7	μ_8	A	T	
0.003	0.005	0.003	0.003	0.025	0.007	0.007	0.004	0.01	0.05	0.03	0.03	0.02	0.07	0.07	0.04	0.6203 0.6069
0.003	0.005	0.003	0.003	0.025	0.007	0.007	0.004	0.02	0.05	0.03	0.03	0.02	0.07	0.07	0.04	0.6861 0.6677
0.003	0.005	0.003	0.003	0.025	0.007	0.007	0.004	0.03	0.05	0.03	0.03	0.02	0.07	0.07	0.04	0.7226 0.6908
0.001	0.005	0.003	0.003	0.025	0.007	0.007	0.004	0.01	0.05	0.03	0.03	0.02	0.07	0.07	0.04	0.6731 0.6908
0.001	0.005	0.003	0.003	0.025	0.007	0.007	0.004	0.02	0.05	0.03	0.03	0.02	0.07	0.07	0.04	0.7389 0.7155
0.001	0.005	0.003	0.003	0.025	0.007	0.007	0.004	0.03	0.05	0.03	0.03	0.02	0.07	0.07	0.04	0.7754 0.7241
0.001	0.005	0.003	0.003	0.025	0.007	0.007	0.004	0.04	0.05	0.03	0.03	0.02	0.07	0.07	0.04	0.7825 0.7285

Table 5. Result from RBNN for spread=1.25

λ_1	λ_2	λ_3	λ_4	λ_5	λ_6	μ_1	μ_2	μ_3	μ_4	μ_5	μ_6	μ_7	μ_8	A	T	
0.003	0.005	0.003	0.003	0.025	0.007	0.007	0.004	0.01	0.05	0.03	0.03	0.02	0.07	0.07	0.04	0.6158 0.6069
0.003	0.005	0.003	0.003	0.025	0.007	0.007	0.004	0.02	0.05	0.03	0.03	0.02	0.07	0.07	0.04	0.6814 0.6677
0.003	0.005	0.003	0.003	0.025	0.007	0.007	0.004	0.03	0.05	0.03	0.03	0.02	0.07	0.07	0.04	0.7182 0.6908
0.001	0.005	0.003	0.003	0.025	0.007	0.007	0.004	0.01	0.05	0.03	0.03	0.02	0.07	0.07	0.04	0.6687 0.6908
0.001	0.005	0.003	0.003	0.025	0.007	0.007	0.004	0.02	0.05	0.03	0.03	0.02	0.07	0.07	0.04	0.7333 0.7155
0.001	0.005	0.003	0.003	0.025	0.007	0.007	0.004	0.03	0.05	0.03	0.03	0.02	0.07	0.07	0.04	0.7690 0.7241
0.001	0.005	0.003	0.003	0.025	0.007	0.007	0.004	0.04	0.05	0.03	0.03	0.02	0.07	0.07	0.04	0.7758 0.7285

Figure 4. Regression model for actual result (A) and target result (T) for spread=1.5

Table 6. Regression coefficient for different spreads

Spread	0.75	1	1.5	1.25
Regression coefficient	0.981	0.931	0.932	0.931
Maximum value of regression (R) = 0.981, which is corresponding to spread function (S) = 0.75. So above experiment give better result for spread function (S) = 0.75.

Conclusion

Radial basis neural network has been used to approximate an unknown mapping. Historical data on the operation and failure of the system is collected over a sufficiently long period of time. With the help of this data, radial basis neural network is trained and validated. Failure and repair rates of eight subsystems are considered as the input of neural network. System availability is chosen as output parameter. With the help of validated neural network value of availability corresponding to different values of repair and failure rates of different subsystems are calculated. The procedural steps for the construction of an ANN have been delineated. Furthermore by using proposed network, effect of variation in failure and repair rates on the value of availability is also studied; so that value of failure and repair rates of various subsystems can be maintained at required level to achieve higher availability so as to avoid loss of production, loss of man power, complete breakdown of concern system.

Application of radial basis neural network approach in various research areas is extremely useful as no explicit coding of the problem is required. Only raw data about failure, repair rates of various subsystems and corresponding value of availability is required. Furthermore if system configuration is known then also neural network approach is significant as systems are rarely simple, combination of series and parallel relationship and interdependencies between subsystems complicate the problem of determining overall system availability.

Acknowledgement

We would also like to show our gratitude to Plant management of Jaquar and Co. Limited, Bhiwadi for providing information and their pearls of wisdom with us during the course of this research. Plant management found the result highly beneficial for the plant.

References

Arora, N. and Kumar, D. (1997). "Availability analysis of steam and power generation systems in the thermal power plant", *Microelectron Reliability, 37*, 5, 795–799.

Aven, T. (1990). “Availability Formulae for Standby systems of Similar Units that are Preventively Maintained”, *IEEE Transaction on Reliability, 39*, 5, 603–606. https://doi.org/10.1109/24.61319

Bhattacharya, S. and Singh S. S. (2011). “Location Prediction using Efficient Radial Basis Neural...
Network”, International conference on Information and Network Technology, IACSIT Press, Singapore, 4, 68–72.

Broomhead, D. S. and Lowe, D. (1988). “Multivariate functional interpolation and adaptive networks”, Complex Systems, 2, 321–355.

Chen, S., Cowan, C. F. N. and Grant, P. M. (1991). “Orthogonal least square learning algorithm for radial basis function network”, IEEE Trans. On neural networks, 2, 302–309. https://doi.org/10.1109/72.80341

Dyer, D. (1989). “Unification of reliability, availability, and reparability models for Markov systems”, IEEE Transactions on Reliability, 38 2, 246–252. https://doi.org/10.1109/24.31116

Garg, D., Kajal, S., Singh, J. and Kumar, K. (2008). “Performance Analysis of a Screw Plant”, Journal of Mathematics and Systems Science, 4, 85–94.

Garg, D. and Kumar, K. (2009). “Performance Analysis of a Cattle Feed Plant”, ICFAI Journal of Science & Technology, 5 2, 83–94.

Garg, D. and Kumar, K. (2009). “Matrix Based System Reliability Method and its application to Rice Plant”, ICFAI Journal of Computational Mathematics, 2 4, 17–30.

Garg, D. and Kumar, K. (2009). “Availability Analysis of a Cattle Feed Plant using Matlab Tool”, International Journal of Applied Engineering Research, 4 6, 913–920.

Garg, D., Kajal, S., Singh, J. and Kumar, K. (2009). “Reliability Analysis of a Screw Plant Using Matrix Method”, Ganita Sandesh, 23 1, 71–78.

Garg, D., Singh, J. and Kumar, K. (2009). “Availability Analysis of a Cattle Feed Plant Using Matrix Method”, International Journal of Engineering, 3, 201–219.

Garg, D., Singh, J. and Kumar, K. (2009). “Performance Analysis of Screw Plant Using Matlab Tool”, International Journal of Industrial Engineering Practice, 1, 2, 155–159.

Gupta, P., Lal, A. K., Sharma, R. K. and Singh, J. (2005). “Behavioral Study of the Cement sciences”, Journal of Mathematics and Systems Sciences, 1, 1, 50–70.

Gupta, P., Lal, A. K., Sharma, R. and Singh, J. (2007). “Analysis of reliability and availability of the serial processes of plastic –pipe manufacturing plant: A case study”, International Journal of Quality & Reliability Management, 24 4, 404–419. https://doi.org/10.1080/02656710710740563

Hartman, E. J., Keeler, J. D. and Kowalski, J. M. (1990). “Layered neural networks with Gaussian hidden units as universal approximators”, Neural Comput., 2, 210–215. https://doi.org/10.1162/neco.1990.2.2.210

Kaushik, S. and Singh, I. P. (1994). “Reliability analysis of the naphtha fuel oil system in a thermal power plant”, Microelectronics Reliability, 34, 2, 369–372. https://doi.org/10.1016/0026-2714(94)00119-8

Kumar, D., Singh, J. and Pandey, P. C. (1990). “Design and cost analysis of a refining system in the sugar industry”, Microelectronics Reliability, 30, No 6, 1025–1028. https://doi.org/10.1016/0026-2714(90)90274-Q

Kumar, S., Mehta, N. P. and Kumar, D. (1997). “Steady State behavior and maintenance planning of a desulphurization system in a urea fertilizer plant”, Microelectronics Reliability, 37, 6, 949–953. https://doi.org/10.1016/0026-2714(95)00115-8

Markopoulos, A. P., Georgiopoulos, S. and Manolakos, D. E. (2016). “On the use of back propagation and radial basis function neural networks in surface roughness prediction”, Journal of Industrial Engineering International, 12, 3, 389–400. https://doi.org/10.1007/s40092-016-0146-x

Mishra, S. K. and Sharma, N. (2018). “Rainfall Forecasting using Back Propagation Neural Network”, Innovations in Computational Intelligence. Studies in Computational Intelligence, Chapter 19, 713, 277–288.

Park, J. and Sandberg, J. W. (1991). “Universal approximation using radial basis function networks”, Neural computation, 13, 246–251. https://doi.org/10.1162/neco.1991.3.2.246

Poggio, T. and Girosi, F. (1990). “Networks for approximation and learning”, Proc. IEEE, 78, 9, 1481–1497. https://doi.org/10.1109/5.58326

Powell, M., Mason, J. C. and Cox, M. G. (1987). “Radial basis functions for multivariable interpolation: A review, In Algorithms For Approximation”, Clarendon Press Institute Of Mathematics And Its Applications Conference Series. Clarendon Press, New York, NY, 143–167.

Singh, I. P., Tewari, P. C. and Khare, M. K. (1991). “Reliability analysis of a conveyor belt system, with only one server, subject to failures and idleness after repair”, Microelectronics Reliability, 31, 5, 823–826. https://doi.org/10.1016/0026-2714(91)90018-3

Singh, J. and Dayal, B. (1992). “Reliability Analysis of a System In a Fluctuating Environment”, Microelectronics Reliability, 32, 5, 601–603. https://doi.org/10.1016/0026-2714(92)90612-O

Singh, J. and Goel, P. (1995). “Availability analysis of a standby complex system having imperfect switch -over device”, Microelectronics Reliability, 35, 2, 285–288. https://doi.org/10.1016/0026-2714(94)00041-L
Tatar, A., Naseri, S., Sirach, N. (2015). Moonyong, L. and Bahadori, A., "Prediction of reservoir brine properties using radial basis function (RBF) neural network", *Petroleum, 1*, 349–357.
https://doi.org/10.1016/j.petlm.2015.10.011

Tewari, P.C., Kumar, D., Kajal, S. and Khanduja, R. (2015). "Decision support system for the crystallization unit of a sugar plant", *Icfai J. of Science and Technology, 4*, 7–16.

Venkatesan, P. and Anithe, S. (2016). “Application of a radial basis function neural network for diagnosis of diabetics mellitum”, *Current Science, 91*, 9, 1195–1199.