Gene Expression Profiling in Peripheral Blood Mononuclear Cells of Patients with Common Variable Immunodeficiency: Modulation of Adaptive Immune Response following Intravenous Immunoglobulin Therapy

Marzia Dolcino1, Giuseppe Patuzzo2, Alessandro Barbieri2, Elisa Tinazzi2, Monica Rizzi2, Ruggero Beri2, Giuseppe Argentino2, Andrea Ottria3, Claudio Lunardi2*, Antonio Puccetti1,3*

1Department of Immunology, Institute Giannina Gaslini, Genova, Italy, 2Department of Medicine, University of Verona, Verona, Italy, 3Department of Experimental Medicine, University of Genova, Genova, Italy

Abstract

Background: Regular intravenous immunoglobulin treatment is used to replace antibody deficiency in primary immunodeficiency diseases; however the therapeutic effect seems to be related not only to antibody replacement but also to an active role in the modulation of the immune response. Common variable immunodeficiency is the most frequent primary immunodeficiency seen in clinical practice.

Methods: We have studied the effect of intravenous immunoglobulin replacement in patients with common variable immunodeficiency by evaluating the gene-expression profiles from Affimetrix HG-U133A. Some of the gene array results were validated by real time RT-PCR and by the measurement of circulating cytokines and chemokines by ELISA. Moreover we performed FACS analysis of blood mononuclear cells from the patients enrolled in the study.

Results: A series of genes involved in innate and acquired immune responses were markedly up- or down-modulated before therapy. Such genes included CD14, CD36, LEPR, IRF-5, RGS-1, CD38, TNFRSF25, IL-4, CXCR4, CCR3, IL-8. Most of these modulated genes showed an expression similar to that of normal controls after immunoglobulin replacement. Real time RT-PCR of selected genes and serum levels of IL-4, CXCR4 before and after therapy changed accordingly to gene array results. Interestingly, serum levels of IL-8 remained unchanged, as the corresponding gene, before and after treatment. FACS analysis showed a marked decrease of CD8+T cells and an increase of CD4+T cells following treatment. Moreover we observed a marked increase of CD23-CD27-IgM-IgG+ B cells (centrocytes).

Conclusions: Our results are in accordance with previous reports and provide further support to the hypothesis that the benefits of intravenous immunoglobulin therapy are not only related to antibody replacement but also to its ability to modulate the immune response in common variable immunodeficiency.

Citation: Dolcino M, Patuzzo G, Barbieri A, Tinazzi E, Rizzi M, et al. (2014) Gene Expression Profiling in Peripheral Blood Mononuclear Cells of Patients with Common Variable Immunodeficiency: Modulation of Adaptive Immune Response following Intravenous Immunoglobulin Therapy. PLoS ONE 9(5): e97571. doi:10.1371/journal.pone.0097571

Editor: Srinivas Kaveri, Cordelier Research Center, INSERM U872-Team16, France

Received February 13, 2014; Accepted April 21, 2014; Published May 15, 2014

This is an open-access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication.

Funding: This work was supported by a grant from the Italian Ministry of education and from a grant from Ministero della Sanità (grant recipients: CL and AP). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: antonio.puccetti@unige.it
† These authors contributed equally to this work.
‡ These authors also contributed equally to this work.

Introduction

Intravenous immunoglobulin (IVIg) is a therapeutic compound obtained from the serum IgG fraction pooled from several thousands of healthy donors [1,2]. For many years IVIg has been used as a replacement therapy in a wide range of primary and secondary immunodeficiencies and now represents the first therapeutic option for antibody deficiencies [3]. IVIg is used in patients with X-linked agammaglobulinemia, X-linked hyper-IgM, severe combined immunodeficiency, Wiskott-Aldrich syndrome, selective IgG class deficiency and common variable immunodeficiency (CVID) [4]. CVID is the most common primary immunodeficiency seen in clinical practice. It represents a heterogeneous group of syndromes characterized by low serum levels of IgG, IgA and/or IgM, with decreased antibody production and impaired antibody response to both polysaccharide...
and protein antigens [5]. As a result of low antibody levels most patients have recurrent respiratory tract infections. The typical defect of CVID is the failure of B lymphocytes to differentiate into switched memory B cells and into plasma cells. Indeed reduced numbers of memory B cells have been associated with CVID, together with loss of isotype switched (CD27+ IgD- IgM+) memory B cells [6].

Several abnormalities of T cells have also been described in CVID including oligoclonal expansion of CD8+ T cells, and decreased numbers of CD4+ T cells [7]. Moreover, T lymphocytes show an impaired secretion of several soluble mediators [8].

As far as the innate immune system concerns, some reports have shown that dendritic cells present a severely altered differentiation, maturation, function and reduced levels of costimulatory molecules that are critical for T cells stimulation [9]. Moreover a peripheral decreased number of natural killer cells [10] and monocytes alterations directly correlating with T cell activation markers and with B cell imbalances have been reported in CVID [11].

In CVID the importance of regular IVIg infusion has been initially attributed to the replacement of the missing antibodies and thereby to the prevention of recurrent infections [12]. More recently several lines of evidence suggest that the beneficial role of IVIg may not be limited to antibody replacement and that IVIg may also modulate the immune response [13,14].

Aim of this study is to further clarify the effects of IVIg on the modulation of the immune response in patients with CVID.

Table 1. Genes related to adaptive immune responses in CVID patients before and after IVIg treatment.

Gene accession	Gene description	Gene Symbol	FCa	FCb
NM_000689	aldehyde dehydrogenase 1 family, member A1	ALDH1A1	3.47	3.14
NM_001837	chemokine (C-C motif) receptor 3	CCR3	7.40	5.12
NM_001774	CD37 molecule	CD37	2.35	2.31
NM_001775	CD38 molecule	CD38	-2.37	-2.80
NM_001828	Charcot-Leyden crystal protein	CLC	25.77	20.78
AF348491	chemokine (C-X-C motif) receptor 4	CXCR4	3.15	nc
AF064741	diacylglycerol kinase, alpha 80 kDa	DGKA	3.40	3.24
NM_004116	FK506 binding protein 1B, 12.6 kDa	FKBP1B	-2.10	nc
NM_001459	fms-related tyrosine kinase 3 ligand	FLT3LG	2.02	1.88
J03189	granzyme B	GZMB	-3.33	-4.27
U66825	major histocompatibility complex, class II, DR beta 1	HLA-DRB1	9.61	nc
NM_000589	interleukin 4	IL4	2.91	nc
NM_000584	interleukin 8	IL8	26.93	32.10
NM_001557	interleukin 8 receptor, beta	IL8RB	-2.89	-4.20
NM_002200	interferon regulatory factor 5	IRF5	3.27	nc
NM_002229	jun B proto-oncogene	JUNB	5.26	5.29
U50748	leptin receptor	LEPR	-2.51	nc
NM_021622	pleckstrin homology domain containing, family A member 1	PLEKHA1	-2.21	-2.43
NM_006404	protein C receptor, endothelial (EPCR)	PROCR	-2.34	-2.34
S69182	protein tyrosine phosphatase, non-receptor type 12	PTPN12	-2.11	nc
NM_002830	protein tyrosine phosphatase, non-receptor type 4	PTPN4	-2.48	-2.54
S59049	regulator of G-protein signaling 1	RGS1	11.31	nc
NM_013351	T-box 21	T-box21	-2.17	-2.51
X91817	transketolase-like 1	TKTL1	-4.54	-4.90
NM_001192	tumor necrosis factor receptor superfamily, member 17	TNFRSF17	-13.4	-12.8
NM_003790	tumor necrosis factor receptor superfamily, member 25	TNFRSF25	2.17	nc

a: before IVIG treatment.
b: after IVIG treatment.
nc: not significantly changed.
doi:10.1371/journal.pone.0097571.t001

Methods

Patients

A written informed consent was obtained from all the participants to the study. The study was approved by local Ethical Committee of the Azienda Ospedaliera Universitaria of Verona, Verona, Italy. All clinical investigation have been conducted according to the principles expressed in the Helsinki declaration.

We studied a cohort of 30 patients (10 males and 20 females, mean age:44.8±12 years) affected by CVID, attending the Unit of Clinical Immunology at the University Hospital in Verona, Italy. All patients fulfilled the ESID/PAGID criteria for the diagnosis of CVID: marked decrease in IgG levels (at least 2 SD below the mean for patients’ age) and marked decrease in at least one of the isotypes IgM or IgA, plus (a) onset of immunodeficiency after 2 years of age, (b) poor response to vaccines and (c) exclusion of other defined causes of hypogammaglobulinemia [5].
At enrolment, none of the patients had active infections or was affected by malignancies. Moreover, none was treated with antineoplastic or immunosuppressive drugs. All the patients were treated with regular monthly infusion of Immunoglobulins (Igs) at the dose of 0.4 g/kg. Twenty age- and sex-matched healthy donors served as controls.

Preparation of cRNA and Array Analysis

Blood samples were collected in PAXgene Blood RNA tubes (PreAnalytiX, Hombrechtikon, Switzerland) and total RNA was extracted according to the protocol supplied by the manufacturer. Preparation of cRNA hybridization and scanning of probe arrays for each samples were performed according to the protocols of the manufacturer (Affymetrix, Santa Clara, CA, USA) by Cogentech Affymetrix microarray unit (Campus IFOM IEO, Milan, Italy) using the Human Genome U133A 2.0 Gene Chip (Affymetrix). The Human Genome U133A Gene Chip is a single array representing 14,500 well-characterized human genes and including more than 22,000 probe sets and 500,000 distinct oligonucleotide features.

The different gene expression patterns were analyzed using the Gene Spring software, version 12.1 (Agilent Technologies, Santa Clara, CA, USA) that calculated a robust multi-array average of background-adjusted, normalized, and log-transformed intensity values applying the Robust Multi-Array Average algorithm (RMA).

With this software the mean optical background level for each array was subtracted from the signal intensity for each probe. The normalized background-corrected data were transformed to the log2 scale. A signal log2 ratio of 1.0 indicates an increase of the transcript level by two-fold change (2 FC) and 2^{−1.0} indicates a decrease by two-fold change (2^{−2} FC). A signal log2 ratio of zero

Table 2. Genes related to innate immune responses in CVID patients before and after IVIg treatment.

Gene accession	Gene description	Gene Symbol	FC before IVIG	FC after IVIG
J04132	CD247 molecule	CD247	−2.23	−2.48
NM_000591	CD14 molecule	CD14	2.04	nc
Z25431	NIMA (never in mitosis gene a)-related kinase 1	NEK1	−2.01	nc
NM_014840	NUAK family, SNF1-like kinase, 1	NUAK1	−3.07	nc
D38122	Fas ligand (TNF superfamily, member 6)	FASLG	−4.81	−5.75
U26455	ataxia telangiectasia mutated	ATM	−2.21	nc
NM_002048	growth arrest-specific 1	GAS1	−4.93	nc
NM_005433	v-yes-1 Yamaguchi sarcoma viral oncogene homolog 1	YES1	−2.60	−2.54
NM_001062	transcobalamin I (vitamin B12 binding protein, R binder family)	TCN1	6.31	5.88
J04162	Fc fragment of IgG, low affinity IIa, receptor (CD16a)	FCGRI	−2.60	−3.34
NM_000139	membrane-spanning 4-domains, subfamily A, member 2	MS4A2	4.31	1.92
NM_00878	interleukin 2 receptor, beta	IL2RB	−2.23	−2.67
NM_003050	paraoxonase 2	PN2	−2.16	−2.21
NM_00417	dual specificity phosphatase 1	DUSP1	3.54	3.14
NM_001150	alanyl (membrane) aminopeptidase	ANPEP	5.62	5.61
NM_004334	bone marrow stromal cell antigen 1	BST1	2.00	2.11
NM_013252	C-type lectin domain family 5, member A	CLEC5A	2.65	nc
NM_00760	colony stimulating factor 3 receptor (granulocyte)	CSF3R	2.78	2.54
NM_024636	STEAP family member 4	STEAP4	2.02	2.17
NM_002438	mannose receptor, C type 1	MRC1	−2.46	−2.16
NM_004829	natural cytotoxicity triggering receptor 1	NCR1	−2.33	nc
NM_006291	tumor necrosis factor, alpha-induced protein 2	TNFAIP2	2.32	nc
NM_001953	thymidine phosphorylase	TYMP	2.13	1.89
NM_00860	hydroxyprostaglandin dehydrogenase 1S-(NAD)	HPGD	−2.63	−2.47
NM_003407	zinc finger protein 36, C3H type, homolog	ZFP36	4.45	nc
NM_000072	CD36 molecule (thrombospondin receptor)	CD36	2.12	nc
NM_000271	Niemann-Pick disease, type C1	NPC1	−2.32	−2.55
NM_002112	histidine decarboxylase	HDC	6.50	5.75
AF065214	phospholipase A2, group IVC (cytosolic, calcium-independent)	PLAG2	−2.81	−3.02
NM_004163	RAB27B, member RAS oncogene family	RAB27B	−2.37	−2.58
NM_001553	insulin-like growth factor binding protein 7	IGFBP7	−3.09	−3.19
NM_005764	PDZK1 interacting protein 1	PDZK1IP1	−6.60	−6.74

a: before IVIG treatment.

b: after IVIG treatment.

nc: not significantly changed.

doi:10.1371/journal.pone.0097571.t002
would indicate no change. The unpaired t-test was performed to determine which genes were modulated at a significant level ($p \leq 0.01$) and p values were corrected for multiple testing by using Bonferroni correction. Finally, statistically significant genes were selected for final consideration when their expression was at least 2.0 fold different in the test sample versus control sample. Genes that passed both the p-value and the FC restriction were submitted to a functional classification according to the Gene Ontology (GO) annotations [15–17].

Real Time RT-PCR

Total RNA was extracted from PBMC using TRIzol reagent (Invitrogen, Carlsbad, CA, USA), following manufacturer’s instructions. First-strand cDNA was generated using the Super-Script III First-Strand Synthesis System for RT-PCR Kit (Invitrogen), with random hexamers, according to the manufacturer’s protocol. RT product was aliquoted in equal volumes and stored at -20°C. PCR was performed in a total volume of 25 µl containing 1 × Taqman Universal PCR Master mix, no AmpErase UNG and 2.5 µl of cDNA; pre-designed, Gene-specific primers and probe sets for each gene (RGS1 Hs01023772-m1) (IL8 Hs00174103-m1) (CCR3 Hs00266213-m1) (TNFRSF17 Hs03045086-m1) were obtained from Assay-on-Demand Gene Expression Products (Applied Biosystems).

Real-Time PCR reactions were carried out in a two-tube system and in singleplex. The Real-Time amplifications included 10 minutes at 95°C (AmpliTaq Gold activation), followed by 40 cycles at 95°C for 15 seconds and at 60°C for one minute. Thermocycling and signal detection were performed with 7500 Sequence Detector (Applied Biosystems). Signals were detected according to the manufacturer’s instructions. This technique allows the identification of the cycling point where PCR product is detectable by means of fluorescence emission (Threshold cycle or Ct value). As previously reported, the Ct value correlates to the starting quantity of target mRNA [18]. Relative expression levels were calculated for each sample after normalization against the housekeeping genes GAPDH, beta-actin and 18s ribosomal RNA (rRNA), using the $\Delta\Delta$Ct method for comparing relative fold expression differences [19,20]. The data are expressed as fold change. Ct values for each reaction were determined using TaqMan SDS analysis software. For each amount of RNA tested triplicate Ct values were averaged. Because Ct values vary linearly with the logarithm of the amount of RNA, this average represents a geometric mean.

Flow Cytometry Analysis

Blood samples were collected from patients before infusion of Igs and 7 days afterwards. To study T cell phenotype, a tube containing 2×10^6 PBMCs in 100 µl of PBS was prepared. The same procedure was carried out to study the B cell phenotype. T cells were stained with αCD3 PerCP, αCD4 APC-H7 and αCD8 FITC, while B cells were stained with αIgD FITC, IgM PE-Cy5, αCD23 PE, αCD27 APC, αCD15 PE-Cy7 and αCD19 APC-H7 antibodies. Staining was carried out at room temperature for 20 minutes. Cells were then washed in PBS at 1200 rpm for 5 minutes and resuspended in 400 µl of PBS. For each tube 20,000 events were acquired (CD3$^+$ for T cell and CD19$^+$ for B cell). All reagents were purchased from Becton Dickinson (San Jose, CA, USA), except for anti-IgD antibody (DAKO, Glostrup, Denmark). Samples were analysed on a FACSCanto II cytometer (Becton Dickinson) and data analysed by FlowJo 8.8.2 software (Tree Star, Ashland, OR, USA).

ELISA assays

The detection of serum Interleukin-4 (IL-4) and IL-8 was performed using commercially available kits (R&D System, Inc., Minneapolis, MN, USA).

The kit for the detection of soluble chemokine (C-X-C motif) receptor 4 (CXCR4) was purchased from Cusabio (Wuhan, Hubei, China).
Province, P.R. China). All the kits were used according to the manufacturer’s instructions.

Results

Gene array analysis

In order to evaluate the effects of IVIg, we first compared the gene expression profiles of PBMC obtained from 8 CVID patients before IVIg infusion with PBMC derived from 8 healthy donors. When both a Bonferroni-corrected P-value criterion ($p \leq 0.01$) and a fold change criterion ($FC \geq 2$) were applied to the signal variation of every single gene to detect robust and statistically significant changes between baseline and experimental arrays [20,21], 77 genes were differentially expressed in CVID patients, in particular 31 and 46 transcripts resulted, respectively, to be up- and down-regulated (Table S1).

Such transcripts were classified in functional categories according to GO annotations. Noteworthy the vast majority (75%) of modulated genes can be ascribed to gene categories related to innate (Table 1) and adaptive (Table 2) immune response.

Such genes included CD14 molecule (CD14, FC ≥ 2), leptin receptor (LEPR, FC ≥ 2.5), CD38 molecule (CD38, FC ≥ 2.4), RGS1, (FC 11.3), TNFRSF25 (FC 2.2), interleukin 4 (IL4, FC 2.9), CXCR4 (FC 3.1), CCR3, (FC 7.4), IL8 (FC 26.9).

In order to evaluate the potential effect of IVIg infusion on the immune response in CVID patients, we analysed the transcriptional profiles obtained from the same CVID patients 3 days after IVIg infusion. When we compared the gene expression levels before and after treatment we observed that 23 of the 77 genes returned to baseline expression levels showing an expression similar to that of normal controls (Figure 1).

We then analysed genes modulated only after IVIg treatment using the same criteria described above. Thirty-five genes were differentially expressed in CVID patients after IVIg infusion, in particular 9 and 26 transcripts resulted, respectively, to be up- and down-regulated (Table S2). Before treatment such genes did not return to baseline expression levels showing an expression similar to that of normal controls (Figure 1).

![Figure 2. Real time RT-PCR of some modulated genes confirms the results of gene array analysis.](image-url)

Figure 2. Real time RT-PCR of some modulated genes confirms the results of gene array analysis. Genes selected for validation in PBMC of CVID patients before IVIg treatment. IL8, RGS1 and CCR3 transcripts were increased, whereas TNFRSF17 transcript was decreased in CVID patients when compared to healthy donors. Relative expression levels were calculated for each sample after normalization against the housekeeping genes 18s rRNA, beta-actin and GAPDH. Experiments have been conducted in triplicates. Housekeeping genes: blue bar = 18s rRNA; magenta bar: beta-actin; yellow bar: GAPDH. doi:10.1371/journal.pone.0097571.g002
IVIG in Common Variable Immunodeficiency

A T CELLS

B CELLS

CD19+ CD5- CD23+ CD27- IgM+ IgD+

C

D

CD19+ CD5- CD23- CD27- IgM- IgD

E

F

CD19+ CD5- CD23- CD27+ IgD- IgM-

G

H
show any significant variation in their FC when compared to healthy subjects.

Noteworthy most of the modulated genes (27 out of 35, 77%) belong to functional categories related to adaptive immune response, including chemokine (C-X-C motif) ligand 2 (CXCL2; FC 12.6), C-type lectin domain family 4 member E (CLEC4E; FC 2.1), CD226 (FC −3.1), Interleukin 16 (IL16; FC −2.3).

Some of the genes modulated at the gene array analysis were validated by real time RT-PCR (Figure 2).

All together the results so far obtained suggest that IV Ig infusion has a profound impact on transcriptional profiles of PBMC of CVID patients, indicating a possible immunomodulatory effect of IV Ig therapy.

FACS Analysis

We next wanted to verify whether the transcriptional profiles modulated by IV Ig were paralleled by phenotypic modifications of the T and B cell subsets in CVID patients. To this aim we performed a FACS analysis of PBMC collected from the patients immediately before and a week after IV Ig infusion.

When we studied the T cell subsets, we found that the percentage of CD4+ T cells increased following IV Ig infusion in all 30 patients enrolled in the study. The difference observed before and after the treatment ranged between 11% and 17.2%. The mean values varied from 3.02 ± 0.19 to 17.71 ± 9.83.

When we studied the T cell subsets, we found that the percentage of CD8+ T cells decreased with a range between 0.4% and 1.4%. The mean values varied from 2.6 ± 0.07 to 29.3%. The mean values varied from 11% and 17.2%. The mean values varied from 2.6 ± 0.07 to 29.3%.

Some of the genes modulated at the gene array analysis were validated by real time RT-PCR (Figure 2).

All together the results so far obtained suggest that IV Ig infusion has a profound impact on transcriptional profiles of PBMC of CVID patients, indicating a possible immunomodulatory effect of IV Ig therapy.

Detection of soluble mediators in CVID sera

The analysis of gene expression profiles were paralleled by the detection of some of the corresponding soluble mediators in the sera of patients with CVID before and after Ig replacement therapy. We decided to analyse the levels of IL-4, CXCR4 and IL-8 (Figure 4). IL-4 is a pleiotropic cytokine produced by Th2 cells. CXCR4 is an alpha-chemokine receptor with a potent chemotactic activity for lymphocytes [22]. IL-8 is a chemokine produced by macrophages which induces chemotaxis and phagocytosis. Figure 4 shows the concentration of these molecules in the sera of CVID patients before and 72 hours after IV Ig therapy. Both IL-4 and CXCR4 decreased after Ig infusion in agreement with the gene array analysis [23,24]. On the contrary IL-8 level was not significantly modified after Ig treatment as it happened for the expression of the coding gene [25]. These data suggest that gene expression is paralleled by secretion of the corresponding molecules in the sera of CVID patients.

Figure 4. Serum levels of selected soluble mediators in CVID patients before and after IV Ig infusion. The histogram represents the mean of the results obtained in 30 patients. Results are expressed in pg/ml. p values calculated using the Student’s t-test for paired samples.

doi:10.1371/journal.pone.0097571.g004
Discussion

The results we report here on the ability of IIVg therapy to modulate the immune response in CVID patients are in agreement with previous findings and support the hypothesis the IIVg treatment has many effects, also at gene expression level, apart from the antibody replacement.

Indeed IIVg is worldwide used as replacement therapy in primary immunodeficiency because of its ability to reduce the frequency and severity of infections and therefore to increase life expectancy in immune compromised patients. Despite the evident efficacy of IIVg therapy, little is known on its effects apart from antibody replacement.

In the last few years much effort has been made in order to better understand the underlying mechanisms of the beneficial effects of IIVg therapy, hypothesizing a possible role of IIVg in the modulation of the immune response. Indeed the group of Kaveri has reported that IIVg induces proliferation of B lymphocytes and immunoglobulin synthesis in CVID patients, apparently rectifying the defective signalling of B cells, normally provided by T cells [26]. Moreover Paquin-Proulx et al observed that in patients with CVID there was a partial restore of CD4+/CD8+T cell ratio together with the reduction of CD8+T cells activation after IVIg infusion [27].

Our work aimed at clarifying some of these aspects, in particular we focused our attention on the potential effects of IIVg on cells of the adaptive immune response. For this purpose we used, for the first time, a gene array approach, which provides a global vision of the effects of IIVg therapy on gene transcription.

Our data show that Igs treatment has a profound impact on gene expression with a selective modulation of gene clusters involved in innate and adaptive immunity. We then evaluated some features of adaptive immunity since the CVID is known to affect mainly this branch of the immune system [4–6]. The changes observed in gene transcription were paralleled by important phenotypic modifications in T and B cell subsets percentage in all the patients enrolled in the study. Such modifications include the expansion of CD4+ helper T cells and the reduction of CD8+ cytotoxic T cells. This effect on CD8+ T cells is in accordance with recent findings in animal models [28,29]: indeed IIVg treatment has been reported to decrease in vivo response of antigen specific CD8+ T cells, suggesting a similar mechanism in vivo in patients with inflammatory and autoimmune diseases, characterized by self-reactive cytotoxicity [30].

These phenotypic modifications are in agreement with the gene expression data. For example the expression of the TNFRSF25 gene, known to promote CD8+T cells survival [31], is up-regulated before IIVg replacement and returns to baseline levels after the infusion, in accordance with the reduction of CD8+T cells. On the other hand the LEPR gene which plays an important role in the proliferation of CD4+ helper T cells and the reduction of CD8+ cytotoxic T cells. This effect on CD8+ T cells is in accordance with recent findings in animal models [28,29]: indeed IIVg treatment has been reported to decrease in vivo response of antigen specific CD8+ T cells, suggesting a similar mechanism in vivo in patients with inflammatory and autoimmune diseases, characterized by self-reactive cytotoxicity [30].

These phenotypic modifications are in agreement with the gene expression data. For example the expression of the TNFRSF25 gene, known to promote CD8+T cells survival [31], is up-regulated before IIVg replacement and returns to baseline levels after the infusion, in accordance with the reduction of CD8+ T cells. On the other hand the LEPR gene which plays an important role in the proliferation of CD4+ helper T cells and the reduction of CD8+ cytotoxic T cells. This effect on CD8+ T cells is in accordance with recent findings in animal models [28,29]: indeed IIVg treatment has been reported to decrease in vivo response of antigen specific CD8+ T cells, suggesting a similar mechanism in vivo in patients with inflammatory and autoimmune diseases, characterized by self-reactive cytotoxicity [30].

Similarly, transcriptional changes of genes involved in B cell maturation may lead to the modifications of the B cell phenotype induced by IIVg. In this regard it is important to point out the role of CD38 and RGS1 gene in the progression of B cells from the early stages to switched memory B cells [34–36].

Even more interestingly, IVIg induced an increase in centrocytes and switched memory B cells with a reduction of naïve B cells. We have recently proposed that the defective B cells maturation in CVID patients may lay in the passage between centroblasts and centrocytes. Therefore the increase in centrocytes is a surprising and unexpected effect of IIVg [37].

Some of the gene array data were also confirmed by detecting serum levels of soluble mediators such as IL4, IL6 and CXCR4. The increased expression of genes encoding for IL-4 and CXCR4 before IVIg infusion and the normalization of gene expression together with the decrease in the circulant cytokine and chemokine may indicate that there is a dysregulation also of T helper subsets and of neutrophils in patients affected by CVID. Moreover it has been shown that increased expression of CXCR4 modulates the expression of pro- and anti-apoptotic molecules such as Bad, Bax and Bcl-2. Finally in mice knocked out for CXCR4 a defective B cell maturation has been observed. Therefore the increased expression of CXCR4 in patients with CVID may represent a possible attempt to induce B cell maturation [38,39].

Our results further support the suggested immunomodulatory properties of IIVg therapy; indeed we consider particularly interesting the ability of this therapy to induce gene modulation, as shown by the results of the gene array analysis. A precise evaluation of the mechanisms underlying these phenomena is beyond the scope of the present work. However several hypotheses have been proposed to explain the mechanisms of action of Igs and both Fc dependent and Fab dependent mechanisms have been implicated in the potential immunomodulatory action of IVIg [13,14]. In the last few years the use of IVIg has been extended to a selected group of autoimmune and inflammatory diseases such as Kawasaki disease, steroid-resistant or aggressive dermatomyositis, chronic inflammatory demyelinating polyneuropathy. Our observations on the immunomodulatory properties of IIVg may partially explain the beneficial effects of this therapy in autoimmune and inflammatory diseases where Igs replacement is not required.

In conclusion our work is in accordance with previous reports and provide further demonstration of the immunomodulatory action of IIVg therapy in CVID. The next steps of the research need to clarify both the detailed mechanisms of this immunomodulation and whether similar or some other immunomodulatory effects are present following IVIg infusion used in autoimmune and inflammatory diseases.

The results of our research may also have an important role in clinical practice, suggesting a different timing in Igs infusion: this is a fundamental aspect, considering the problems related to the shortage of Igs supply.

Supporting Information

Table S1 Gene expression in CVID before and after IVIG treatment. (DOC)

Table S2 Annotated genes differentially expressed in CVID only after IVIG treatment. (DOC)

Author Contributions

Conceived and designed the experiments: CL AP. Performed the experiments: MD AB RB GA. Analyzed the data: ET GP AO MR. Contributed reagents/materials/analysis tools: GP ET. Wrote the paper: AP CL GP.
References

1. Sokos DR, Berger M, Lazarus HM (2002) Intravenous immunoglobulin: appropriate indications and uses in hematopoietic stem cell transplantation. Biol Blood Marrow Transplant 8: 117–130.

2. Bayry J, Lacroix-Desmazes S, Delignat S, Mouhot L, Welll B, et al. (2003) Intravenous immunoglobulin abrogates dendritic cell differentiation induced by interferon-alpha present in serum from patients with systemic lupus erythematosus. Arthritis Rheum 48: 856–864.

3. Kaveti SV, Madhur MS, Hegde P, Lacroix-Desmazes S, Bayry J (2011) Intravenous immunoglobulins in immunodeficiencies: more than mere replacement therapy. Clin Exp Immunol 164 Suppl 2: 2–3.

4. Notarangelo LD (2010) Primary immunodeficiencies. J Allergy Clin Immunol 125: S182–194.

5. Salzer U, Unger S, Warnatz K (2012) Common variable immunodeficiency (CVID): exploring the multiple dimensions of a heterogeneous disease. Ann N Y Acad Sci 1250: 41–49.

6. Resnick ES, Cunningham-Rundles C (2012) The many faces of the clinical picture of common variable immune deficiency. Curr Opin Allergy Clin Immunol 12: 595–601.

7. Bateman EA, Ayers L, Sadler R, Lucas M, Roberts C, et al. (2012) T cell phenotypes in patients with common variable immunodeficiency disorders: associations with clinical phenotypes in comparison with other groups with recurrent infections. Clin Immunol 170: 202–211.

8. Ferrer JM, Iglesias J, Hernandez M, Matamoros N (1995) Alterations in interleukin secretion (IL-2 and IL-4) by CD4 and CD8 CD3+RO cells from common variable immunodeficiency (CVID) patients. Clin Exp Immunol 102: 286–289.

9. Bayry J, Lacroix-Desmazes S, Kazatchkine MD (2004) Common variable immunodeficiency is associated with defective functions of dendritic cells. Blood 103: 2441–2443.

10. Carvalho KI, Melo KM, Bruno FR (2010) Skewed distribution of circulating activated natural killer T (NKT) cells in patients with common variable immunodeficiency disorders (CVID). PLoS One 5(9): e12652.

11. Barbosa RR, Silva SP, Silva SL (2012) Monocyte activation is a feature of common variable immunodeficiency irrespective of plasma lipopolysaccharide levels. Clin Exp Immunol 169(3):263–72.

12. Maarschalk-Ellerbrock LJ, Hoepelman IM, Ellerbrock PM (2011) Immune globulin treatment in primary antibody deficiency. Int J Antimicrob Agents 37: 396–404.

13. Schwab I, Nimmerjahn F (2013) Intravenous immunoglobulin therapy: how does IgG modulate the immune system? Nat Rev Immunol 13: 176–189.

14. Gelland EW (2013) Intravenous immune globulin in autoimmune and inflammatory diseases. N Engl J Med 368: 777.

15. Lunardi C, Dolcino M, Peterlana D, Bason C, Navone R, et al. (2006) Antibodies against human cytomegalovirus in the pathogenesis of systemic sclerosis: a gene array approach. PLoS Med 3: e2.

16. Lunardi C, Dolcino M, Peterlana D, Bason C, Navone R, et al. (2007) Endothelial cells’ activation and apoptosis induced by a subset of antibodies against human cytomegalovirus: relevance to the pathogenesis of atherosclerosis. PLoS One 2(5): e173.

17. Tinazzi E, Dolcino M, Baggia A, Rigo A, Beri R, et al. (2013) A subset of anti-rotavirus antibodies directed against the viral protein VP7 predicts the onset of celiac diseases and induces typical features of the disease in the intestinal epithelial cell line T84. Immunol Res 56: 465–476.

18. Malvoisin E, Livrozet JM, Makloufi D, Vincent N (2011) Soluble chemokine receptor CXCR4 is present in human sera. Anal Biochem 414: 202–207.

19. Rezaei N, Aghamohammadi A, Kardar GA, Nourizadeh M, Pourpak Z (2008) T helper 1 and 2 cytokine assay in patients with common variable immunodeficiency. J Invest Allergol Clin Immunol 18: 449–453.

20. Rezaei N, Aghamohammadi A, Mahmoudi M, Shakiba Y, Kardar GA, et al. (2010) Association of IL-4 and IL-10 gene promoter polymorphisms with common variable immunodeficiency. Immunobiology 215: 81–87.

21. Scott-Taylor TH, Green MR, Erren E, Webster AD (2004) Monocyte derived dendritic cell responses in common variable immunodeficiency. Clin Exp Immunol 138: 484–490.

22. Bayry J, Fourrier EM, Madhur MS (2011) Intravenous immunoglobulin induces proliferation and immunoglobulin synthesis from B cells of patients with common variable immunodeficiency: A mechanism underlying the beneficial effect of IVIg in primary immunodeficiencies. J Autoimmun 39: 9–15.

23. Paquito-Pous P, Santos BAN, Carvalho KI (2013) IVIg immune reconstruction treatment alleviates the state of persistent immune activation and suppressed CD4 T cell count in CVID. PLoS One 10(3): e75199.

24. Trepanier P, Bazin R (2012) Intravenous immunoglobulin (IVIg) inhibits CD8+ cytotoxic T-cell activation. Blood 120: 2769–2779.

25. Trepanier P, Chabot D, Bazin R (2013) Intravenous immunoglobulin modulates the expansion and cytotoxicity of CD8+ T cells. Immunology.

26. Walter U, Sanatamaria P (2005) CD8+ T cells in autoimmunity. Curr Opin Immunol 17: 624–637.

27. Shiboduka T, Rowley TF, Ferdinand JR, Willoughby JE, Bachan SL, et al. (2011) Triggering of TNFRSF25 promotes CD8+ T-cell responses and anti-tumor immunity. Eur J Immunol 41: 2606–2611.

28. Kim SY, Lin JH, Choi SW, Kim M, Kim ST, et al. (2010) Preferential effects of leptin on CD8 T cells in central and peripheral immune system are critically linked to the expression of leptin receptor. Biochem Biophys Res Commun 394: 562–568.

29. Goldberg AC, Goldberg-Eliaschewitz F, Sogayar MC, Geurin J, Rizzo LV (2009) Leptin and the immune response: an active player or an innocent bystander? Ann N Y Acad Sci 1133: 184–192.

30. Hun JJ, Huang NN, Kim DU, Relah BH (2006) RGS8 and RGS13 mRNA silencing in a human B lymphoma line enhances responsiveness to chemokine receptors and impairs desenitization. J Leukoc Biol 79: 1357–1368.

31. Suhbinsky G, Schlesinger M (1997) The CD31 lymphocyte differentiation marker: new insight into its ectoenzymatic activity and its role as a signal transducer. Immunity 7: 315–324.

32. Vences-Catalan F, Santos-Anguredo L (2011) CD31 through the life of a lymphocyte. Blood Marrow Transplant 8: 1176–1189.

33. Vences-Catalan F, Santos-Anguredo L (2011) CD31 through the life of a lymphocyte. Blood Marrow Transplant 8: 1176–1189.

34. Vences-Catalan F, Santos-Anguredo L (2011) CD31 through the life of a lymphocyte. Blood Marrow Transplant 8: 1176–1189.

35. Vences-Catalan F, Santos-Anguredo L (2011) CD31 through the life of a lymphocyte. Blood Marrow Transplant 8: 1176–1189.

36. Vences-Catalan F, Santos-Anguredo L (2011) CD31 through the life of a lymphocyte. Blood Marrow Transplant 8: 1176–1189.

37. Patuzzo G, Mazzi F, Vella A, Ortolani R, Barbieri A, et al. (2013) Leptin and the immune response: an active player or an innocent bystander? Ann N Y Acad Sci 1250: 41–49.

38. Patuzzo G, Mazzi F, Vella A, Ortolani R, Barbieri A, et al. (2013) Leptin and the immune response: an active player or an innocent bystander? Ann N Y Acad Sci 1250: 41–49.

39. Patuzzo G, Mazzi F, Vella A, Ortolani R, Barbieri A, et al. (2013) Leptin and the immune response: an active player or an innocent bystander? Ann N Y Acad Sci 1250: 41–49.

40. Patuzzo G, Mazzi F, Vella A, Ortolani R, Barbieri A, et al. (2013) Leptin and the immune response: an active player or an innocent bystander? Ann N Y Acad Sci 1250: 41–49.

41. Patuzzo G, Mazzi F, Vella A, Ortolani R, Barbieri A, et al. (2013) Leptin and the immune response: an active player or an innocent bystander? Ann N Y Acad Sci 1250: 41–49.

42. Patuzzo G, Mazzi F, Vella A, Ortolani R, Barbieri A, et al. (2013) Leptin and the immune response: an active player or an innocent bystander? Ann N Y Acad Sci 1250: 41–49.

43. Patuzzo G, Mazzi F, Vella A, Ortolani R, Barbieri A, et al. (2013) Leptin and the immune response: an active player or an innocent bystander? Ann N Y Acad Sci 1250: 41–49.

44. Patuzzo G, Mazzi F, Vella A, Ortolani R, Barbieri A, et al. (2013) Leptin and the immune response: an active player or an innocent bystander? Ann N Y Acad Sci 1250: 41–49.

45. Patuzzo G, Mazzi F, Vella A, Ortolani R, Barbieri A, et al. (2013) Leptin and the immune response: an active player or an innocent bystander? Ann N Y Acad Sci 1250: 41–49.