Evaluating the Efficiency of Student Sports Training Based on Supervised Learning

Song Kewei, Guizhou Medical University, China*
Vicente García Díaz, University of Oviedo, Spain
Seifedine Nimer Kadry, Beirut Arab University, Lebanon

ABSTRACT

The empirical evaluation of the success of a participant is critical for a thorough assessment of sporting events. Evaluating students’ efficiency or scripting in sports is limited, even if skilled experts do it. In this paper, support vector machine-assisted sports training (SVMST) has been proposed to evaluate student sports efficiency. Sports training prototypes are based on different criteria that participate in the matches, traditional game statistics, person quality measures, and opposing data. The success of students is divided into two grades: moderate and large. The primarily supervised learning-based classification method is used to create a template for identifying student sports training efficiency. SVM implements learning methods, data collection methods, effective model assessment methods, and particular difficulties in predicting sports performance. The experimental results show SVMST to high student performance of 98.7%, a low error rate of 9.8%, enhanced assessment ratio of 97.6%, training outcome of 95.6%, and an efficiency ratio of 96.8%.

KEYWORDS

Efficiency, Sports Training, Students, Support Vector Machine (SVM)

SIGNIFICANCE OF STUDENT SPORTS TRAINING

Sports can cause be the reason for life happiness and human health. One of the efforts to increase human resources in sports development (Chesterton et al, 2020). The efforts of sports coaching aim mainly to enhance the community’s physical, mental, and spiritual health and form personality characteristics, high discipline and sport, and improve achievements that can give the community a sense of nationality (Bhalla et al, 2016). Coaching and improving sports achievements are done by empowering sports associations, coaching, and creating tiered and sustainable competitions (Yue et al, 2019). Sport can help athletes procure life skills manageable to other settings, like respect for others, teamwork, leadership, and perseverance (Sivaram et al, 2020). Achievement coaching must be met under three conditions: (a) passion that is the basis for pleasure and suffering, soul and other activities as drivers to encourage the performance of the individual, regardless of all the problems which might occur right now; (b) very emotional which can only be achieved when followed by experience and expertise in the environment (c) the conciliation among the emotional and the rules of every characteristic of the sport (Franchini et al, 2019). Through a systematic, planned, organized, and continuous coaching phase, sports’ peak achievements will be achieved (Basheer et al, 2019). Sports performance preparation must boost speed, endurance, strength, power, and versatility to...
help athletes attain top performance (Kostiukevych et al, 2019). Each of these areas is tackled with performance preparation so that it is difficult enough to improve performance (Prathik et al, 2016). Training encourages the body to increasingly develop performance and toughness, improve skills, and build confidence, ambition, and trust (Fang et al, 2020). Training helps athletes understand more about their sport and learn about the value of a balanced mind and body (Shakeel et al, 2020).

Sports Coaching and training are mostly based on visual subjective and observation input and may advantage from quantitative decision-making support (Tomporowski et al, 2019). Quantitative knowledge on the quantity, quality, and strength of the work performed in real-time can be important on many levels (Nieto et al, 2019). This could advise the coaching, conditioning planning, strength, and support the load tracking and assessment of movement quality (i.e., results attained) and motion performance (i.e., method) (Newcombe et al, 2019). It can enhance injury prevention since non-stop monitoring will allow for systematic motion activity monitoring, detect risk aspects and injury mechanism, and facilitate decision-making in pre- and post-rehabilitation programs (Nieto et al, 2019).

Artificial intelligence (AI) revolutionizes sports and uplifts them to a whole new level (Cormier et al, 2020). Machine Learning and Computer Vision have been employed to analyze the athlete’s skill level (Nieto et al, 2019). It computes the progress over time, shot accuracy, and critical performance metrics like vertical jump, speed, ball-handling, release time, and improved players (Northam et al, 2020). Machine Learning can be utilized to forecast the results of matches (Kumari et al, 2020). Supervised learning can effectively classify dynamic sequential motions like those of functional fitness workouts (Hulme et al, 2019). A neural network has to be organized such that the application of a collection of inputs produces the desired collection of outputs (Khamparia et al, 2020). Diverse approaches to set the strengths of the relations to exist (Balaanand et al, 2019). One way is to set the weights explicitly, utilizing a priori information. A different way is to train the neural network by serving its teaching pattern and changing its weights consistent with certain learning rules (Jiang et al, 2019). Categorizing the learning situations as follows: Supervised learning in which the network is trained by providing it with input and identical output pattern. Unsupervised learning means an output unit is trained to reply to groups of patterns within the input (Huifeng et al, 2020). In this machine learning paradigm for student sports training, the system should realize the input population’s statistically salient features (Huifeng et al, 2020). Contrasting the supervised learning model, there is no a priori collection of classes into which the pattern is to be categorized; rather, the system should improve its depiction of input stimuli (Su et al, 2015).

The main contribution of the paper is

- Designing the SVMST model for evaluating students’ sports training based on supervised learning.
- Assessing the mathematical model of support vector machine for student sports data classification.
- The experimental results show that the suggested SVMST model enhances the student performance ratio, assessment ratio, efficiency ratio, training outcomes ratio, and error rate compared to other existing models.

The remainder of the article is structured as follows: Section 1 discusses the significance of students’ sports training, and section 2 discusses the related works. Section 3 presents the SVMST model, and section 4 discusses the results and discussion. Section 5 concludes the research article.

RELATED WORKS

(Uğurlu, 2020) proposed the Analysis of variance (ANOVA) model for Predicting Mental Training Levels of Student-Athletes. This research aimed to establish the standard of mental preparation in sports by the level of sports studies. The results showed that athletics career level favorably predicts student-athletes’ mental level in sports preparation. It illustrates 10% of the difference, of which
the standard of athletic career significantly predicts mental training abilities. The new research indicates that professionals’ ability to practice physically is better than that of amateur athletes. The explanation is that athletes with a high athletics level have more detailed information about mental training techniques, and some of them, therefore, use these methods.

(He et al, 2020) suggested a Kinect-based posture recognition method (KPRM) for Physical Sports Training Based on Urban Data. Kinect firstly uses the spatial coordinates of human body joints. The angle is measured using the two-point approach, and the library is specified for the body’s posture. Finally, the angle corresponding to the posture library is used to assess the recognition of posture. They use this tool to measure the impact of physical exercise automatically and to bring up sports for students. Depth sensor information determines the transverse bar’s location, and bone tracking determines the mandible position. Three main joints of the arm decide the bending grade of the arm. For measuring and counting gestures, distance from the jaw to the bar and arm length are utilized. Meanwhile, playing the action video and marking the user can change his location to achieve a better training result.

(Tang, 2020) introduced the Hybridized Hierarchical Deep Convolutional Neural Network (HHDCNN) for Sports Rehabilitation Exercises. In particular, image recognition, classification, lesion segmentation, positioning and identification of images, fusion, and microscopic image analyses, deep learning algorithms help detailed and beneficial diagnostic progressions of clinicians. Measurements to evaluate movement performance, assessment of the performance measures in arithmetical quality values, and deep neural network models produce high-quality input moves by supervised learning are key components of the system. The image segmentation algorithm increases the network’s integration in contrast with many conventional neural network Architectures, decreases training time, and increases the precision of the recovery of the sports athletics exercises, which are good practice in rehabilitating sport.

(Liu, 2020) discussed the big data analysis (BDA) for Teaching Improvement Model of College Basketball Sports. This study analyses teaching results and improves basketball sports models in the CAU of China in the context of the moment to systematically incorporate the characteristics, concepts, and innovations of big data. Research shows that 60.8 percent of CAU’s in China use big-data technologies in basketball sports, inspiring school basketball matches to grow, improve athletes’ competitive level, and boost basketball players’ participation and enjoyment. In addition, 90.6 percent of the teachers agree that BDA-based instruction will effectively aid in regular training with the team, arrange coaching training plans, and provide guidance.

Based on the survey, there are several challenges in improving student sports training. In this paper, to overcome these issues, the SVMST model has been proposed to evaluate student sports training efficiency. The following section discusses the proposed SVMST model briefly.

SUPPORT VECTOR MACHINE ASSISTED SPORTS TRAINING (SVMST)

Physical fitness is an essential physiological phenomenon that is a normal reaction and defensive self-regulation of the human body. For its practical importance in athletic fitness, performance detection has been invaluable. Hence in this paper, SVMST has been proposed to evaluate student performance. Since several factors impact sports success, selecting successful divisors is essential. A sports performance prediction model based on SVM weight is proposed for factor selection and evaluation. Initially, vector assistance is used to remove such invalid variables using the MSE minimization cross-validation principle; second, critical weight retention factor and retention factor quantitative value screening are adopted. SVM model for the estimation of sports success is finally developed and used for prediction of 1000 meters. The simulation outcome reveals that weight-SVM assessment is more exact, can reliably track and weight variables, and provide a new research concept for predictive sports results.
Evaluation of the efficiency of pupils or sports scripting, even if specialists do so, is restricted. There is therefore a proposal in this work to evaluate student sport efficiency in Support Vector Machine Assisted Sport Training (SVMST). The prototypes of sporting training are based on the many participatory criteria, traditional game statistics, measurements of personal quality and opposing data. Students are successful in both modest and big classes. A template is utilised to define and evaluate student sports training efficiency via the primary supervised learning-based categorization approach.

Figure 1: Sport Performance

Figure 1 shows the Sports Performance. There are numerous success models in sports. Generalized models of individual achievement play an essential role in the curriculum of training in particular. The goal of this discipline is to impact athletic success reliably and sustainably by preparation. In Figure 1, there are six fundamental building blocks for performance: coordination/competencies, cognitive-tactical capabilities, condition, psychological ability, Disposition, Social ability. Sensorimotor synchronization mostly concerns data processing features when carrying out gestures. This definition includes two main sub-components: necessary sensor motor abilities and skill-independent skills such as coordination, alignment in space, sensory discrimination, precision, and speed, common for particular sports. In terms of sensorimotor skills, various styles are differentiated by their situational specifications in terms of performance. Three styles may be defined for the scenarios: static and situations that shift in a planned or unpredictable manner. The respective implementation must be kept consistent or adapted when handling those various scenarios. In general, coordinative abilities, different skills affect muscle function, tolerance, and learning: motor memory, motor imagery, equilibrium, alignment in space, talent, anticipation/response, pacing, control of the open and closed belt, endurance, the eye-foot, and eye-hand coordination are suggested. Another approach to sensory-motor synchronization differentiates between sensory and motor processing information needs and pressure factors that affect movement control. Four energy components for human movements are
conditions: speed, strength, endurance, and flexibility. Endurance refers to performing such sporting activities without performance loss and recovering quickly from physical pain: metabolism disparity, mass muscle activation, muscle movements form, and length of the different stamina forms. Power is defined as the ability to produce maximum strength to overcome resistance, sustain a shared position, or allow for the super maximum load. Full force is differentiated by strength and stamina above and beyond muscle function. Speed refers to the sensing engine system’s ability to respond to real events and travel as rapidly as possible. Cyclic and covert behavior and responses can be differentiated between speed capabilities. Speed can be particular or straightforward. Flexibility is characterized as the sensor-engine system’s ability to move within the necessary range of motion.

Cognitive-tactical competencies are essential in many sports. For starters, in sports games, to make and execute reasonable decisions, it is necessary to interpret and judge the current situation at the earliest and earliest opportunity. Tactical capabilities are differentiated into human strategies, squad, and unit. Tactical skills rely heavily on perception, decision making, imagination, and executive functions, including workplace memory, concentration, and multitasking. As far as psychic potential is concerned, other variables outside the cognitive influences in the previous segment of training science are considered in motivation, emotion, desire, and personality. For example, the reason for performance, mental health, and control significantly impacts performance, i.e., cause to reach rigorous expectations.

As far as sensory-motor abilities are concerned, distinct styles are distinguished by their situational performance criteria. For the scenarios three types may be defined: static and circumstances that change in a planned or impermissible manner. When managing these different cases, the corresponding implementation must be kept constant or altered. The coordinating capabilities generally impact muscular function, tolerance, and learning. The following are recommended: motor memory, motor imaging, balance, alignment in space, talent, anticipation/response, pacing, open and closed belt management, stamina, eye-foot, and eye-hand coordination.

Furthermore, personality traits may be related to positive results. Substantial empirical research suggests that “personality characteristics contribute before, after and after contests to long-term sporting performance, interpersonal interactions and psychic circumstances of athletes: extraversion, acceptability, responsiveness, neuroticism, and knowledge. Perception, endurance, neuroticism, anxiety, and extraversion lead to long-lasting outcomes. Social skills such as coordination, teamwork, and coordination affect success when competing in teams and against teams. Many social skills affect individuals. The sixth group of factors indirectly determines the success of sport: organization, the shape of the body, age, genes. Since teaching cannot affect these factors directly, these factors are not discussed in the present report.

Figure 2: Student Sports Training Achievement
Figure 2 shows the Student Sports Training Achievement. The actual reality is that all athletic and pleasure practices, including games, offer a creative experience and a unique body movement, leading the participants in different sports and recreational activities to develop various personal and social attributes, physical and physiological functions. Sports have competitive conditions, like certain leisure events, in which the players want to win and be recognized. Therefore, to prevent the loss, dissatisfaction, and, gradually, the disintegration of identity and personal habits and disruption of physiological functioning, it involves a transformed mode of behavior that can result in any need or wish being fulfilled. Educators and psychologists point out that most people learn and develop through imitation and observation of interaction. However, the eco-factors of adequate facilities and coaching have an immense role in influencing personality, individual or group degree of achievement by engagement. Parents’ support scale consisted of parental support based on education and parental consent based on the sport. Parental Participation the parental involvement measure has measured students’ and their parents’ understanding of the parents’ values and behavior regarding academic achievement relevance. Parents’ expectations in the academic initiative a subscale of the parental involvement measure. Parents play an essential part in their children’s sports experience. In reality, compared with parents, educators, and coaches, parents have been found to have the most significant effect. They will express their impacts by encouraging and inspiring themselves for the participation of their children. Experts described parental support as open attitudes and parents’ activities to encourage children in their chosen activity and enable children to feel good about their efforts. The importance and competence assign to us is determined by personality. The student will improve our respect by getting a positive view of our bodies and athletic ability through sport.

Figure 3 shows the proposed SVM-ST. It is being used to track accident rates in new games on various surfaces and control the law’s impact in different sports. Both multiple kinds of data, including continuous and categorical data, can be stored with the databases. At the start of a training session, the student performance prediction system is developed to allow management to adopt an informed decision on high sports performance potential. Data preprocessing in machine learning pipelines is a very crucial and underestimated phase. It provides clean data sets, which can then be used in other steps, such as classification or regression. It would define a case for research data.
fed into the SVM classification to predict whether a particular picture segment is in the foreground or context. SVM instruction requires a hyperplane commitment to distinguish training data from two classes. Its position is defined by a (normally small) subset of training vectors. SVM is based on the mathematical theory of learning and classical theory of approximation of the function. The classification aims to create an unknown classifier with minor classification errors, based on separate and identically distributed samples.

Four energy components are: speed, strength, endurance, and flexibility for human motions. Endurance refers to such sport without loss of performance and to a speedy recovery from physical pain: the differential in metabolism, mass activation of muscles, the pattern of muscular movements, and duration in various kinds of stamina. Power is described as the capacity to provide maximal resistance to overcome, maintain a common posture or ensure super-maximum load. Full force differentiates over and above the muscular function through strength and endurance. Speed refers to the capacity of the sensor engine system to respond and travel as quickly as possible to genuine occurrences.

SVM classification techniques are used to estimate the success of students during sports preparation. Predictability is demonstrated by an SVM boosting algorithm. To refine the model to get more reliable results than possible with one classifier, the machine learning (ML) algorithms improve the method mentioned. The literature review found that the choice of technologies primarily depends on device parameters. When analyzing the results, game psychiatric predictions about sports success for student learning and education using the Support Vectors machine will be used to gain a useful model for this study. This analysis is part of the data. There will be an initial stage in the case study of sports theoretical feelings for the program before a successful model is established. In a research system model, the steps to be taken in this analysis will be outlined to track and re-test the studies carried out. The phases in this structure model will be used throughout the testing process as a guide. Machine learning helps remove static, fixed, and strict well-structured programming approaches that ensure that memory and time factors are used inadequately or inefficiently. Two stages are used for machine learning: learning and a forecast process, as seen in Figure 3. The learning phase includes: 1) preprocessing (normalization, reductions, data purification), 2) learning (supervised, unregulated, and strengthened), 3) error analysis (précise/recall, overfitting, validation of test/cross-checking, etc.), and 4) model creation. The phase of prediction produces the learning phase, which is the model for predicting new data sets. The forecast data allows management or decision-makers to assess informedly and create an information discovery database.

For factor selection and assessment, a sports performance prediction model based on the weight of the SVM is provided. Vector assistance is initially utilized to delete such faulty variables using the cross-validation concept of MSE minimization; second, quantitative value screening is employed for a key weight retention factor and retention factor. The SVM model is eventually created and applied for 1000 meter prediction in order to estimate the sports success. The findings of the simulation show that weight and SVM evaluation is more accurate, can consistently track and monitor weight factors and deliver the prediction sport outcomes with the new study idea.

SVM is a machine learning system focused on mathematical intelligence theory. It resolves the extreme local conditions that cannot be avoided in a pattern recognition method and avoids them. Only small support vectors and the number of support vectors are responsible for the approximate SVM function. It is not connected to a sample space dimension, so the Dimensionality Curse is avoided.

\[
\{x_j, y_j\}, j = 1, 2, ..., M, \text{ where } y_j \text{ is sample data, } x_j \text{ is assumed to be the model’s output. In the following equations, SVM defines the evaluation function in equation (1):}
\]

\[
E(y) = Z.\varphi(y) + a
\] (1)
As shown in equation (1) evaluation function has been derived. Where z is a vector of weight and a is a vector of offset. Use the optimization function to optimize the target value in equation (2):

$$
\min I = \frac{1}{2} z^2 + D \sum_{j=1}^{m} (\xi_j^* + \xi_j)
$$

$$
\begin{align*}
x_j - z \varphi(y) - a & \leq \varepsilon + \xi_j \\
z \varphi(y) + a - x_j & \leq \varepsilon + \xi_j^* \\
\xi_j^*, \xi_j & \geq 0, j = 1, 2, \ldots, m
\end{align*}
$$

As described in equation (2) target value has been obtained. Where ξ_j, ξ_j^* The factors that relieve and D the penalty factor are. Presenting the Lagrangian multiplier and the above problem of optimization becomes a standard convex quadratic optimization in equation (3):

$$
K \left(Z, a, \xi, \xi^*, \beta, \beta^*, \alpha, \alpha^* \right) = \frac{1}{2} z D \sum_{j=1}^{m} (\xi_j^* + \xi_j) - \sum_{j=1}^{m} \beta_j (\xi_j + \varepsilon - x_j + \varepsilon (x_j) - \\
\sum_{j=1}^{m} \beta_j^* (\xi_j^* + \varepsilon - x_j + \varepsilon (x_j)) - \sum_{j=1}^{m} (\xi_j \alpha_j - \xi_j^* \alpha_j^*)
$$

As evaluated in equation (3), standard convex quadratic optimization has been calculated. Where β_j and β_j^* Are multipliers from Lagrangian. Transferring formula (3) to antithetical one to accelerate resolution speeds in equation (4):

$$
Z(\beta, \beta^*) = -\frac{1}{2} \sum_{j=1}^{m} (\beta_j - \beta_j^*) (\beta_j - \beta_j^*) \varphi(y_j, \varphi(y_j)) + \sum_{j=1}^{m} (\beta_j - \beta_j^*) x_j - \sum_{j=1}^{m} (\beta_j - \beta_j^*) \varepsilon
$$

$$
\begin{align*}
z = \sum_{j=1}^{m} (\beta_j - \beta_j^*) x_j \\
\sum_{j=1}^{m} (\beta_j - \beta_j^*) & = 0 \\
0 \leq \beta_j, \beta_j^* & \leq D
\end{align*}
$$

As inferred in equation (4), accelerate speed has been derived. SVM regression function is: For linear regression in equation (5):

$$
e(y) = \sum_{j=1}^{m} (\beta_j - \beta_j^*) \varphi(y_j, \varphi(y_j)) + a
$$
As discussed in equation (5), the linear regression SVM regression function has been calculated. RBF Kernel feature \(L(y_j, y) \) operatively operates instead of \((\varphi(y_j), \varphi(y_j)) \). To prevent dimensional cursing for non-linear prediction, the regression function of the SVM is finally in equation (6):

\[
e(y) = \sum_{j=1}^{m} \left(\beta_j - \beta_j^* \right) L(y_j, y) + a
\]

As deliberated in equation (6) SVM regression function has been obtained. The initial collection of factors: 1000m running success is the focus of the study. Given viability in action, the model preliminary 1000m of running performance estimation has been developed. Several variables have been chosen, first: height, vital power, cavity weight, chest circumference, heat rate, length of leg, long jump, monthly average time exercise, performance, and 1000 m of running version \((x) \) is output.

Factor screening the above nine variables are chosen based on subjective consciousness and experience during the performance prediction model’s design to be unnecessary or inefficient. Therefore, the detrimental influence of unusual and redundant variables on the predicted effects is removed before modeling. In analysis to pick influence factors to exclude factors with a harmful impact on the predictive outcome, the 10-fold cross-validation MSE minimizing concept is applied. Mean square error (MSE) describes the following in equation (7):

\[
MSE = \frac{1}{m} \sum_{j=1}^{m} (x_j - \hat{x}_j)^2
\]

As described in equation (7), Mean square error has been evaluated. Where \(\hat{x}_j \) is the predicted value, and \(m \) is the number of predicted samples, \(x_j \) is the real performance value. First, normalize data-setting variables to train variable and then function as the vector of SVM input in equation (8):

\[
Y = \frac{\left(Y - \frac{B + A}{2} \right)}{\left(\frac{B - A}{2} \right)}
\]

As shown in equation (8) normalization function has been found. Where \(Y \) is the normalized value, \(Y \) is the initial value of the vector, and \(B \) and \(A \) are the minimum and maximum for each track. The input of multiple variables varies to a degree such that linear regression can be used for the dominant expression for each retention element. Since the linear method does not accurately reflect dynamic non-linear variables between sport and aspect and since the weight value is not constant, all retention factors should be weighed by SVM non-linear mandatory testing. SVM input is \(n \) retentions variables are using ten times cross-validation to preference the best RBF kernel function parameter, then \(MSE_n \) accuracy training is achieved as a context model accuracy. Delete the retention factor by force and then measure the \(MSE - I \) accuracy of the residual retention factor 10-fold cross-validation training after the one is replaced. Bigger \(MSE_{i-1} \) means that the model’s prediction accuracy gets weaker after extracting the retention factor, which means that the prediction outcome is more significant. Standardize each retention factor to obtain the weight of the factors after the background is deduced in equation (9):
As found in equation (9) retention factor has been calculated. When a mom-linear factor is evaluated and assessed above, the most efficient weight and prediction factors are obtained. Calculate the retention sample based on SVM modeling to generate sport output samples.

![SVM Decision Boundary](image)

Figure 4 shows the SVM Decision Boundary. An SVM is a deep learning algorithm that provides managed classification or data group regression learning. An SVM constructs an analysis model that assigns various groups of new samples. SVMs are regarded as a binary linear classifier without probability. An SVM is a supervised machine learning model that utilizes two-group classification algorithms. They can categorize new data after they have provided an SVM model collection of classified education data for and group. SVM is therefore working on a problem of classification tasks. SVM reasoning is valid; the hyperplane can be officially specified. A hyper-plane is a flat, $n - 1$ dimensional subcomponent of the space, splitting space into two different parts. The proposed need to optimize the width of the boundary to determine an optimal hyperplane (Z). In this scenario, SVM considers the hyperplane that maximizes the margin and reduces the errors. The algorithm attempts, while optimizing margin, to preserve the sagging vector to 0. Automatic qualification is the established status of the length of the period of immunity for students from specific related to the workplace, particularly the period of termination required. For both linear and nonlinear classification, the SVM is an efficient classifier by modifying the RBF kernel functions. The data can be mapped into a higher dimensional space in SVM using the RBF kernel functions, where a hyperplane separates the groups.
The objective of this discipline is to influence athletic achievement consistently and sustainably via preparation. There are six key performance building components in figure 1: coordination/competences, cognitive-tactical skills, condition, psychological ability, disposition, social capacity. The synchronization of sensor motors mainly involves the data processing functionality in actions. This description covers two major substrates: the motor capabilities and competence-independent skills required for sensors and athletics such as coordination, alignment of space, sensory discrimination, accuracy, and speed.

The proposed SVM-ST improves fitness level and enhance student training outcomes to achieve a high student performance, low error rate, enhanced assessment ratio, training outcome, and efficiency ratio.

RESULTS AND DISCUSSION

The proposed SVM-ST predicts the student performance to improve student training level. Results have been performed based on high student performance, low error rate, enhanced assessment ratio, training outcome, and efficiency ratio.

Student Performance Ratio

The accomplishments of athletes have been brought to researchers’ attention through a steady increase of competition standards. Sports success in the area is closely connected to different factors such as the standard of preparation, athletes’ health, and sports equipment. Athletes need to monitor improvements in success correctly and thoroughly to ensure that they produce improved outcomes. A useful prediction model based on machine learning algorithms is proposed to accurately forecast athletes’ progress and notable sports efficiency developments. The current state of research in the simulation and forecasting of sports athletes’ success is analyzed, and the prediction model of performance is identified. Finally, athletes should use the machine learning algorithm to help a vector machine follow a performance prediction paradigm. The supervised algorithm accelerates and optimizes the model preparation. The test results indicate that athletes’ performance forecasts are more reliable than the built model’s existing performance predictions model. The athlete’s predictive precision can be improved to be used for creating a sports training schedule. Figure 5 shows the Student Performance Ratio.

![Figure 5: Student Performance Ratio](image-url)
Error Rate

Support Vector Machine (SVM) proved an important classification and prediction learning algorithm. Nevertheless, SVM prediction and classification have been often applied in many sports for the quantification/discrimination of low and high-performance athletes. In this paper, fitness and motor skill variables have been graded and forecasted and learned on different SVM algorithms. Standard fitness and power measures were registered, namely handgrip, vertical jump, broad-spring standing, static balance, core muscle strength, and the upper muscle’s strength. The SVMST indicated that the performance variables were tested. The SVM models were trained based on measured output constraints with quadratic, linear, and coarse RBF kernel functions. The quadratic, linear, cubic, and medium radial basis function functions showed fairly excellent grading precision and low error rates for student success predictions. Figure 6 shows the Error Rate.

Assessment Ratio

Examining the possibility of shared variables in student behavior that predict results, computer classifiers that function well in various course model models that can be used based on prediction based on student data, investigated student performance prediction. To date, the data on the teaching of students in sports training institutions remains one of the most relevant tools. One way to attain a qualitative level of education for sport training institutions is to assess, forecast, and recommend new students’ success based on their sporting training data. This study’s findings may allow sports guides to recognize athletes with high potential by combining selected few calculated variants of fitness and engine capabilities, which reduce the talent recognition program’s risk, energy, and resources. Figure 7 shows the Assessment Ratio.
Efficiency Ratio

Active training blends fitness routines, cardiovascular conditions, weightlifting, interval training, balance, gym, and functional fitness with high-intensity workouts (i.e., movements that simulate daily operations needs, such as elevating weights). Cardiovascular ability, muscle, and central nervous system efficiency have been shown to improve functional fitness. Support Vector Machine (SVM) is a supervised machine learning algorithm proficient in performing regression, classification, and even outlier detection. The linear SVM classifier works by illustrating a straight line among two classes. The non-linear relationship between psychological and cognitive variables that impact student sports performance is analyzed by a neural network, which efficiently grouped students into diverse groups according to their level of expected efficiency and performance. Figure 8 demonstrates the efficiency ratio.
Training Outcome Ratio

Efficiency is referred to as the ability to achieve a certain performance. In a selected sports discipline restricted by rules, sports training aims to attain optimum individual or team efficiency. Maximum efficiency is not feasible for one day in any activity. Workout or physical fitness increases an athlete’s performance, strength, stamina, speed, versatility, the psychology of performance, and rehabilitation, making it a star in the sport. There has been an error. Every sport needs these four components to be combined: skills, stamina, durability, and recovery. The proposed support vector machine-based classification method is utilized to create a template for determining and evaluating student sports training efficiency. Figure 9 shows the training outcome ratio.

Figure 9. Training outcome ratio

The suggested SVMST model enhances the student’s performance ratio, assessment ratio, efficiency ratio, training outcome, and error rate when compared to other existing Analysis of variance (ANOVA) model, Kinect-based posture recognition method (KPRM), Hybridized Hierarchical Deep Convolutional Neural Network (HHDCNN), big data analysis (BDA) methods.

CONCLUSION

Sport allows students to organize and show them how to look after their bodies through accurate stretching and practical mechanics development. Participating in early athletics leads to physical activity to maturity and tends to prevent health conditions. Sport shows students the essential lesson of team spirit, which gives them the experience of interacting with all groups of people in various scenarios. Sport increases self-appreciation, emotional resilience and decreases tension and anxiety. In this paper, SVMST has been proposed to improve student performance in sports training and evaluating the learning outcome in physical activity. For complex and non-linear sports results, weight-SVM-based prediction mode is built. Non-linear SVM- and non-linear-weighting factors are chosen strongly associated with the prediction outcome, and each element is calculated in a non-linear way. The outcome of a simulation experiment shows that weight-SVM increases estimation of sports success and gives a new concept for non-linear prediction. Thus, the experimental results show SVMST to high student performance of 98.7%, a low error rate of 9.8%, enhanced assessment ratio of 97.6%, training outcome of 95.6%, an efficiency ratio of 96.8% compared to other methods.
ETHICS DECLARATIONS

Conflict of Interest
The authors declare that they have no conflict of interest.

Ethical approval
This article does not contain any studies with human participants or animals performed by any of the authors.

Author Statement
Analysis and/or interpretation of data: Wenwei Su,
Conception and design of study: Yan Shi
Acquisition of data: Yan Shi

FUNDING
This research received no specific grant from any funding agency in the public, commercial, or not-for-profit sectors. Funding for this research was covered by the author(s) of the article.
REFERENCES

Balaanand, M., Karthikeyan, N., Karthik, S., Varatharajan, R., Manogaran, G., & Sivaparthipan, C. B. (2019). An enhanced graph-based semi-supervised learning algorithm to detect fake users on Twitter. *The Journal of Supercomputing, 75*(9), 6085–6105. doi:10.1007/s11227-019-02948-w

Basheer, S., Gandhi, U. D., Priyan, M. K., & Parthasarathy, P. (2019). Network support data analysis for fault identification using machine learning. *International Journal of Software Innovation, 7*(2), 41–49. doi:10.4018/IJSI.2019040104

Bhalla, V. K., & Kumar, N. (2016). An efficient scheme for automatic web pages categorization using the support vector machine. *New Review of Hypermedia and Multimedia, 22*(3), 223–242. doi:10.1080/13614568.2016.1152316

Chesterton, P., Alexanders, J., & Rutter, L. K. (2020). A call for more psychological skills training: Examining the views of qualified and student sports therapists in the United Kingdom. *Journal of Bodywork and Movement Therapies, 24*(4), 13–19. doi:10.1016/j.jbmt.2020.06.010 PMID:33218500

Cormier, P., Freitas, T. T., Rubio-Arias, J. Á., & Alcaraz, P. E. (2020). Complex and Contrast Training: Does Strength and Power Training Sequence Affect Performance-Based Adaptations in Team Sports? A Systematic Review and Meta-analysis. *Journal of Strength and Conditioning Research, 34*(5), 1461–1479. doi:10.1519/JSC.0000000000003493 PMID:32084104

Fang, W., & Cao, Y. (2020). Sports training effect simulation of embedded system based on FPGA. *Microprocessors and Microsystems, 103389*. doi:10.1016/j.micpro.2020.103389

Franchini, E., Cormack, S., & Takito, M. Y. (2019). Effects of high-intensity interval training on olympic combat sports athletes’ performance and physiological adaptation: A systematic review. *Journal of Strength and Conditioning Research, 33*(1), 242–252. doi:10.1519/JSC.0000000000002957 PMID:30431531

He, D., & Li, L. (2020). A New Kinect-Based Posture Recognition Method in Physical Sports Training Based on Urban Data. *Wireless Communications and Mobile Computing, 2020*, 2020. doi:10.1155/2020/8817419

Huifeng, W., Kadry, S. N., & Raj, E. D. (2020). Continuous health monitoring of sportsperson using IoT devices based wearable technology. *Computer Communications, 160*, 588–595. doi:10.1016/j.comcom.2020.04.025

Huifeng, W., Shankar, A., & Vivekananda, G. N. (2020). Modelling and simulation of sprinters’ health promotion strategy based on sports biomechanics. *Connection Science*, 1–19.

Hulme, A., Thompson, J., Nielsen, R. O., Read, G. J., & Salmon, P. M. (2019). Towards a complex systems approach in sports injury research: Simulating running-related injury development with agent-based modelling. *British Journal of Sports Medicine, 53*(9), 560–569. doi:10.1136/bjsports-2017-098871 PMID:29915127

Jiang, M., Jiang, L., Jiang, D., Xiong, J., Shen, J., Ahmed, S. H., Luo, J., & Song, H. (2017). Dynamic measurement errors prediction for sensors based on firefly algorithm optimize support vector machine. *Sustainable Cities and Society, 35*, 250–256. doi:10.1016/j.scs.2017.08.004

Khamparia, A., Singh, A., Luhach, A. K., Pandey, B., & Pandey, D. K. (2020). Classification and identification of primitive Kharif crops using supervised deep convolutional networks. *Sustainable Computing: Informatics and Systems, 28*, 100340. doi:10.1016/j.suscom.2019.07.003

Kostiukevych, V., Lazarenko, N., Shchebotina, N., Kulchynska, I., Svirshchuk, N., Vozniuk, T., & Romanenko, V. et al. (2019). Management of athletic form in athletes practicing game sports over the course of training macrocycle. *Journal of Physical Education and Sport, 19*, 28–34.

Kumari, A., Behera, R. K., Sahoo, K. S., Nayyar, A., Kumar Luhach, A., & Prakash Sahoo, S. (2020). Supervised link prediction using structured-based feature extraction in social network. *Concurrency and Computation, e5839.*

Liu, Y. (2020, April). Teaching Effect and Improvement Model of College Basketball Sports Based on Big Data Analysis. *Journal of Physics: Conference Series, 1533*(4), 042056. doi:10.1088/1742-6596/1533/4/042056

Newcombe, D. J., Roberts, W. M., Renshaw, I., & Davids, K. (2019). The effectiveness of constraint-led training on skill development in interceptive sports: A systematic review (Clark, McEwan and Christie)–A Commentary. *International Journal of Sports Science & Coaching, 14*(2), 241–254. doi:10.1177/1747954119829918
Nieto, Y., García-Díaz, V., Montenegro, C., González, C. C., & Crespo, R. G. (2019). Usage of machine learning for strategic decision making at higher educational institutions. IEEE Access: Practical Innovations, Open Solutions, 7, 75007–75017. doi:10.1109/ACCESS.2019.2919343

Nieto, Y., García-Díaz, V., Montenegro, C., & Crespo, R. G. (2019). Supporting academic decision making at higher educational institutions using machine learning-based algorithms. Soft Computing, 23(12), 4145–4153. doi:10.1007/s00500-018-3064-6

Nieto, Y. V., García-Díaz, V., & Montenegro, C. E. (2019). Decision-making Model at Higher Educational Institutions based on Machine Learning. J. UCS, 25(10), 1301–1322.

Northam, W. T., Cools, M. J., Chandran, A., Alexander, A., Mihalik, J. P., Guskiewicz, K. M., & Carneiro, K. A. (2020). Sports medicine fellowship training improves sport-related concussion evaluation. Current Sports Medicine Reports, 19(7), 272–276. doi:10.1249/JSR.0000000000000730 PMID:32692063

Prathik, A., Uma, K., & Anuradha, J. (2016). Particulate Matter on Human Health and their Feasibility Study Using Machine Learning Algorithms. Journal of Chemical and Pharmaceutical Research, 8(9), 260–264.

Shakeel, P. M., Baskar, S., Fouad, H., Manogaran, G., Saravanan, V., & Montenegro-Marin, C. E. (2021, February). Internet of things forensic data analysis using machine learning to identify roots of data scavenging. Future Generation Computer Systems, 115, 756–768. doi:10.1016/j.future.2020.10.001

Sivaram, M., Lydia, E. L., Pustokhina, I. V., Pustokhin, D. A., Elhoseny, M., Joshi, G. P., & Shankar, K. (2020). An optimal least square support vector machine-based earnings prediction of blockchain financial products. IEEE Access: Practical Innovations, Open Solutions, 8, 120321–120330. doi:10.1109/ACCESS.2020.3005808

Su, H., Chang, Y. K., Lin, Y. J., & Chu, I. H. (2015). Effects of training using an active video game on agility and balance. The Journal of Sports Medicine and Physical Fitness, 55(9), 914–921. PMID:26470635

Tang, D. (2020). Hybridized Hierarchical Deep Convolutional Neural Network for Sports Rehabilitation Exercises. IEEE Access: Practical Innovations, Open Solutions, 8, 118969–118977. doi:10.1109/ACCESS.2020.3005189

Tomporowski, P. D., & Pesce, C. (2019). Exercise, sports, and performance arts benefit cognition via a common process. Psychological Bulletin, 145(9), 929–951. doi:10.1037/bul0000200 PMID:31192623

Uğurlu, A. (2020). The Level of Sports Career Predicts Mental Training Levels of Student Athletes. International Journal of Applied Exercise Physiology, 9(6), 252–255.

Yue, T., & Zou, Y. (2019). Online Teaching System of Sports Training Based on Mobile Multimedia Communication Platform. International Journal of Mobile Computing and Multimedia Communications, 10(1), 32–48. doi:10.4018/IJMCMC.2019010103

Song Kewei is with the School of Sports and Health, Guizhou Medical University, Guiyang, Guizhou, China

Vicente García Díaz is Associate Professor, University of Oviedo, Oviedo, Asturias, Spain.

Seifedine Kadry has a Bachelor’s degree in 1999 from Lebanese University, MS degree in 2002 from Reims University (France) and EPFL (Lausanne), PhD in 2007 from Blaise Pascal University (France), HDR degree in 2017 from Rouen University. At present his research focuses on Data Science, education using technology, system prognostics, stochastic systems, and applied mathematics. He is an ABET program evaluator for computing, and ABET program evaluator for Engineering Tech.