Flavor Unification and Discrete Nonabelian Symmetries

David B. Kaplan† and Martin Schmaltz

Department of Physics 0319
University of California, San Diego
9500 Gilman Drive
La Jolla, CA 92093-0319

Abstract

Grand unified theories with fermions transforming as irreducible representations of a discrete nonabelian flavor symmetry can lead to realistic fermion masses, without requiring small fundamental parameters. We construct a specific example of a supersymmetric GUT based on the flavor symmetry $\Delta(75)$ — a subgroup of $SU(3)$ — which can explain the observed quark and lepton masses and mixing angles. The model predicts $\tan \beta \approx 2 - 5$ and gives a τ neutrino mass $m_\nu \approx M_p/G_F M_{GUT}^2 = 10$ eV, with other neutrino masses much lighter. Combined constraints of light quark masses and perturbative unification place flavor symmetry breaking near the GUT scale; it may be possible to probe these extremely high energies by continuing the search for flavor changing neutral currents.
1. Introduction

Particle physics seems to be at a stage similar to chemistry before Mendeleev, or spectroscopy before Balmer—we are confronted with apparent patterns in quark and lepton masses and mixing angles, yet have no compelling explanation for them. It is likely that the difficulty is due to several simultaneous effects contributing to the observed mass relations. These effects could include radiative corrections in scaling from short distances, Clebsch factors from gauge groups, mass matrix “textures” and Clebsch factors from flavor symmetry groups, flavor symmetry breaking vacuum alignment, and higher dimension operators induced by quantum gravity. Aside from the observed masses, the only experimental evidence we have to guide us is the absence of flavor changing neutral currents (FCNC). In order to make headway in the face of such ignorance it is necessary to have esthetic prejudices for guidance; in this letter we adopt several. The first prejudice is that the fundamental theory not contain parameters less than $O(10^{-1})$. The second is the principle of “flavor democracy” [2], namely that all fermions with identical gauge charges have the same or similar short distance interactions, with the observed diversity in masses arising from dynamics. Thirdly, we only consider theories where the gauge interactions are unifiable, in order to adopt the successes in explaining the equality of the proton and positron charges, as well as predicting $\sin^2 \theta_w$ and the relations between quark and lepton masses [3-5].

As we will show, these three prejudices naturally lead us to consider theories with nonabelian discrete flavor symmetries. Such symmetries allow us to understand many features of the quark and lepton masses, such as why the down type quarks are lighter than up quarks in all but the first generation, and why the Cabbibo angle is much larger than the other KM angles. The type of theories we consider typically require flavor symmetry breaking to be near the GUT scale and offer the tantalizing prospect of probing GUT-scale physics through searches for flavor changing neutral currents (FCNC). They also suggest that the neutrinos are massive, with the tau neutrino mass naturally in the range favored for dark matter.

The principles we adopt force us to think carefully about flavor symmetries. In order to explain in a natural way a small mass ratio such as $m_e/m_t \sim 3 \times 10^{-6}$ in terms of parameters $\epsilon \sim 10^{-1}$, we must assume that the mass ratios arise as high powers of ϵ. These powers of ϵ can arise naturally if ϵ measures mixing between ordinary fermions and massive exotic fermions through soft flavor symmetry breaking [6]. Then $\epsilon \sim g\langle X \rangle/M$,

where g is a coupling constant, $\langle X \rangle$ is a soft flavor symmetry breaking parameter, and M is the heavy fermion mass. The invariant tensors of the broken flavor symmetry group and pattern of symmetry breaking naturally impose a texture on the effective Yukawa couplings of the low energy theory 1. The goal then is to find models which lead to a phenomenologically acceptable texture. Most previous work in this direction has focused on Abelian flavor symmetries ($U(1)$ or Z_N) which allow one to “dial” the fermion mass matrices by judiciously choosing the charges for each fermion; for a recent example consistent with current phenomenology, see ref. [9]. Pouliot and Seiberg have also constructed a nonabelian example of such models, based on $O(2) \times U(1)$ [10], with the quarks in reducible representations. Since all of these models have quarks and leptons in reducible flavor representations, the different generations are distinguished by their flavor charges and have different interactions. However, this is not compatible with our goal of flavor democracy, which can only be achieved by putting all particles of like gauge charge in irreducible flavor representations. Furthermore, existing approaches do not lend themselves readily to a unification of gauge forces.

In order to unify the three families into irreducible flavor triplets we are compelled to search for a nonabelian flavor symmetry G_f with one or more three dimensional representations. For continuous symmetries, this only allows groups with at least one factor of $SO(3)$, $SU(2)$ or $SU(3)$. A further restriction is found by considering the top quark, whose mass must arise at $O(\epsilon^0)$, if it is to have perturbative interactions. Thus the operator

$$QU^cH_u$$ (1.1)

must be a G_f invariant and lead to a rank one mass matrix. If Q and U^c are to be triplets of G_f, and H_u is some irreducible representation, then we can rule out the possibilities $G_f = SU(2)$ and $G_f = SO(3)$ — for those groups the operator (1.1) yields a mass matrix that is either the unit matrix or traceless, and hence at least rank two. Similar reasoning excludes $G_f = SU(3)$ unless Q and U transform as 3’s and H_u as a $\overline{3}$ with $\langle H_u \rangle = v\delta_{33}$. A semisimple group such as $G_f = SU(3) \times SU(3)$ with $Q = (3, 1), U = (1, 3), H_u = (\overline{3}, \overline{3})$ is a possibility, as are groups with more factors.

The difficulty with the continuous flavor symmetries described above is that they contain few low dimensional representations, and therefore there are few invariant tensors

1 The has been much recent interest in investigating acceptable and predictive mass matrix textures; see, for example [7,8].
that are of use in building up the fermion mass matrix in powers of ϵ. In contrast, if one is willing to consider nonabelian discrete groups for G_f one can find groups with an arbitrarily large number of triplet representations, for example. With such a symmetry there are many invariant tensors which can arise without resorting to a multitude of exotic particles. In this paper we consider the $\Delta(3n^2)$ dihedral subgroups of $SU(3)$, which contain an arbitrary number of triplet representations. The explicit model we give is based on $\Delta(75)$, a group with eight triplet and three singlet representations.

2. Nonabelian discrete symmetries

The representations of discrete groups with $\circ G$ elements satisfy the relation $\sum_i d_i^2 = \circ G$, where d_i is the dimension of the i^{th} representation. Thus finite groups have a finite number of finite dimensional representations. Among the nonabelian discrete groups most familiar to physicists, namely the crystallographic symmetries, the ones with more than one triplet representation are the octahedral, and icosahedral groups. The octahedral group O has 24 elements and representations $\{1, 1', 2, 3, 3'\}$. We could consider constructing an $SU(5) \times O$ grand unified theory, for example, by having the Q, U and E^c fermions transform as a $(10,3)$. However one finds that

$$3 \otimes 3 = 3_a \oplus 3'_s \oplus 2_s \oplus 1_s.$$ \hfill (2.1)

Evidently the 5 of $SO(3)$ decomposes as $3'_s \oplus 2_s$ under O. This does not help to solve the problem encountered with $SO(3)$ as a flavor group, since each of these couplings leads to a rank two mass matrix again: the $3'$ and 2 decompositions of $3 \otimes 3$ consist of

$$(3 \otimes 3)|_{3'} = \begin{pmatrix} 3\lambda_63 \\ 3\lambda_43 \\ 3\lambda_13 \end{pmatrix} \quad (3 \otimes 3)|_2 = \begin{pmatrix} 3\lambda_33 \\ 3\lambda_83 \end{pmatrix},$$ \hfill (2.2)

where the λ_a are the Gell-Mann $SU(3)$ matrices and $3\lambda_a3 = 3_t(\lambda_a)_{ij}3_j$. The same conclusion holds for the icosahedral group.

What is needed to explain the top mass operator (1.1) is a group which contains a triplet $3 = \{x, y, z\}$ as well as a $3'$ representation contained in $3 \otimes 3$ with $3 \otimes 3|_{3'} = \{x^2, y^2, z^2\}$. Then the top mass arises at tree level if the Higgs transforms as $H_u = 3'^*$ with a vev only in the third family component. This is only possible if the 3 representation
is complex, since otherwise \(x^2 + y^2 + z^2\) is a singlet. It follows that \(G_f\) cannot be a subgroup of \(SO(3)\), and we turn to discrete subgroups of \(SU(3)^2\).

The discrete subgroups of \(SU(3)\) are the irregular groups \(\Sigma\) and the dihedral groups \(\Delta(3n^2)\) and \(\Delta(6n^2)\) for all integers \(n\). The \(\Delta(3n^2)\) groups are particularly interesting since their representations consist solely of triplets and singlets. These groups are of order \(3n^2\) and are generated by the matrices

\[
E_{00} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{bmatrix}
\]

and

\[
A_{pq} = \begin{bmatrix} (\eta_n)^p & 0 & 0 \\ 0 & (\eta_n)^q & 0 \\ 0 & 0 & (\eta_n)^{-p+q} \end{bmatrix},
\]

where \(\eta_n\) is the \(n^{th}\) root of unity

\[
\eta_n = e^{2\pi i/n},
\]

and \(p, q\) are integers.

The irreducible representations of the \(\Delta(3n^2)\) groups consist of (i) 9 singlets and \((n^2 - 3)/3\) triplets for \(n\) a multiple of three; (ii) 3 singlets and \((n^2 - 1)/3\) triplets otherwise. The large number of inequivalent triplet representations in these groups are invaluable for building a model of fermion masses, starting with flavor democracy at short distances. In this paper we will focus on a particular discrete symmetry in order to exhibit some of the general features of model building with nonabelian discrete symmetries. The symmetry we discuss is \(\Delta(75)\) (i.e., \(\Delta(3n^2)\) with \(n = 5\)), which is apparently the smallest of the dihedral groups with sufficient structure to be interesting.

2.1. \(\Delta(75)\)

The irreducible representations of \(\Delta(75)\) include one real singlet \(A_1\), one complex singlet \(A_2\), and four complex triplets \(T_1 \ldots , T_4\). The character table may be constructed

\footnote{All of our discussion of discrete \(SU(3)\) subgroups is based on ref. [1].}
The quantities χ and ω are defined as $\chi_{pq} = (\eta_5^p + (\eta_5)^q + (\eta_5)^{-p-q})$, and $\omega = \eta_3$, where $\eta_n = e^{2\pi i/n}$.

from the generators (2.3), (2.4) with $n = 5$ and is given in Table 1. (For an explanation of discrete symmetries and character tables see, for example, ref. [11].)

The defining representation is taken to be T_1, and we have labelled the conjugacy classes after generators contained in that class for the T_1 representation. For example, the class labelled $3A_{10}$ contains the group elements A_{10}, A_{04}, and A_{41}

\[
\begin{bmatrix}
(\eta_5)^1 & 0 & 0 \\
0 & (\eta_5)^0 & 0 \\
0 & 0 & (\eta_5)^4
\end{bmatrix},
\begin{bmatrix}
(\eta_5)^0 & 0 & 0 \\
0 & (\eta_5)^4 & 0 \\
0 & 0 & (\eta_5)^4
\end{bmatrix},
\begin{bmatrix}
(\eta_5)^4 & 0 & 0 \\
0 & (\eta_5)^1 & 0 \\
0 & 0 & (\eta_5)^0
\end{bmatrix},
\]

in the T_1 representation, while the class $25E$ contains the 25 elements

\[
E_{pq} = \begin{bmatrix}
0 & \eta_5^p & 0 \\
0 & 0 & \eta_5^q \\
\eta_5^{-(p+q)} & 0 & 0
\end{bmatrix}.
\]

The $25C$ class contains the square of the E_{pq} matrices.

From the character table it is possible to determine the decomposition of the product of any two representations. Evidently A_1 is the trivial representation, while

\[
A_2 \otimes A_2 = \overline{T}_2, \quad A_2 \otimes \overline{T}_2 = A_1, \quad A_2 \otimes T_i = \overline{T}_2 \otimes T_i = T_i,
\]

where $i = 1, \ldots, 4$. Less obvious are the products of two triplet representations, whose decompositions are given in Table 2.

Since we wish to construct explicit models of particle couplings obeying $\Delta(75)$ symmetry, we need to choose a basis for all of the representations and construct the invariant tensors. We have chosen a basis defined by

\[
T_1 \otimes T_1|_{T_2} = \begin{pmatrix} x^2 \\ y^2 \\ z^2 \end{pmatrix}, \quad T_1 \otimes \overline{T}_1|_{T_3} = \begin{pmatrix} yz \\ z\overline{z} \\ x\overline{x} \end{pmatrix}, \quad T_2 \otimes \overline{T}_2|_{T_4} = \begin{pmatrix} b\overline{c} \\ \overline{a}b \end{pmatrix},
\]

Table 1. Character table for $\Delta(75)$, computed from ref. [1].

$\Delta(75)$	E	$3A_{10}$	$3A_{20}$	$3A_{30}$	$3A_{40}$	$3A_{11}$	$3A_{22}$	$3A_{33}$	$3A_{44}$	25C	25E
A_1	1	1	1	1	1	1	1	1	1		
A_2	1	1	1	1	1	1	1	1	ω	$\overline{\omega}$	
T_1	3	χ_{10}	χ_{20}	χ_{20}	χ_{10}	χ_{11}	$\overline{\chi}_{22}$	$\overline{\chi}_{22}$	$\overline{\chi}_{11}$	0	0
T_2	3	χ_{20}	χ_{10}	χ_{20}	χ_{22}	$\overline{\chi}_{11}$	χ_{11}	$\overline{\chi}_{22}$	0	0	
T_3	3	χ_{11}	χ_{22}	$\overline{\chi}_{22}$	$\overline{\chi}_{11}$	χ_{20}	χ_{10}	χ_{20}	0	0	
T_4	3	χ_{22}	$\overline{\chi}_{11}$	χ_{11}	$\overline{\chi}_{22}$	χ_{10}	χ_{20}	χ_{20}	0	0	
Table 2. Decomposition of the product of two triplets. Triplets T_n and \overline{T}_n are represented by n and \overline{n} respectively, while $A \equiv A_1 \oplus A_2 \oplus \overline{A}_2$. For example, $T_3 \otimes \overline{T}_1 = T_1 \oplus T_2 \oplus T_4$, and $T_1 \otimes T_1 = A_1 \oplus A_2 \oplus \overline{A}_2 \oplus T_3 \oplus \overline{T}_3$.

where we have written $T_1 = \{x, y, z\}$, $T_2 = \{a, b, c\}$. This basis has the virtue that the generator E_{00} is the same matrix (2.3) in all of the triplet representations. Thus when any two triplets T_i and T_j (or their conjugates) are combined into a third triplet T_k, the elements of T_k must cyclically permute when the elements of T_i and T_j are simultaneously cyclically permuted; therefore all of the components of T_k are specified when the first component is known. The decomposition of all products of triplets in this basis are given in the appendix.

2.2. Symmetry breaking

We now turn to ways to spontaneously break the $\Delta(75)$ symmetry in a supersymmetric theory. One reason we choose to focus on supersymmetry is that the flavor breaking patterns can be more interesting: in a supersymmetric theory one can have different symmetry breaking patterns in different sectors of the theory which communicate only through higher dimension operators and not through radiative corrections. Non-generic flavor symmetry breaking can lead to interesting structure, as we will show. Here we give a couple of toy models showing different symmetry breaking patterns.

The first toy model we consider has $\Delta(75)$ breaking down to Z_3 generated by E_{00} alone (eq. (2.3)). We include the singlet fields S, ϕ, $\overline{\phi}$ transforming as the A_1, A_2 and \overline{A}_2 representations respectively, as well as Z and \overline{Z} triplets transforming as T_1 and \overline{T}_1. The (nonrenormalizable) superpotential is taken to be

$$W = \alpha S(-3\mu^2 + \overline{Z}Z) + \beta \phi \overline{Z}Z + \gamma \overline{\phi}ZZ + \frac{g}{3}Z^3 + \frac{Z^5}{5M^2}. \quad (2.10)$$
Written in terms of components, the above interactions read (see the appendix)

\[
W = \alpha S(-\mu^2 + Z_1Z_1 + Z_2Z_2 + Z_3Z_3) + \beta \phi(Z_1Z_1 + \omega Z_2Z_2 + \omega^2 Z_3Z_3) + \gamma \phi(Z_1Z_1 + \omega^2 Z_2Z_2 + \omega Z_3Z_3) + g(\bar{Z}_1\bar{Z}_2\bar{Z}_3) \\
+ (Z_1^5 + Z_2^5 + Z_3^5)/5M^2
\]

(2.11)

(where \(\omega \equiv e^{2i\pi/3}\)) with several isolated supersymmetric minima; all have \(\phi = \bar{\phi} = 0\). One of the vacua takes the values

\[
Z = \mu \delta \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}, \quad \bar{Z} = \frac{\mu}{3\delta} \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}, \quad S = -\frac{g\mu}{9\alpha \delta^3},
\]

with

\[
\delta = \left[\frac{gM^2}{27\mu^2}\right]^{1/8}.
\]

Our second example has \(\Delta(75)\) broken to \(Z_5\) by giving a triplet a vev in a single component. The toy model includes the following superfields that transform as irreducible representations under \(\Delta(75) \times U(1)\), where the \(U(1)\) is gauged:

\[
S = (A_1)_0, \quad Z = (T_1)_1, \quad \bar{Z} = (\bar{T}_1)_{-1}, \quad R = (T_1)_{-2}, \quad \bar{R} = (\bar{T}_1)_2.
\]

(2.13)

From these fields we construct the renormalizable superpotential

\[
W = \alpha S(-\mu^2 + Z\bar{Z}) - MRR\bar{R} + \beta RZZ + \gamma R\bar{Z}\bar{Z}.
\]

(2.14)

In terms of component fields,

\[
W = \alpha S(-\mu^2 + \bar{Z}_1Z_1 + c.p.) - M(R_1\bar{R}_1 + c.p.) \\
+ \beta(R_1Z_2Z_3 + c.p.) + \gamma(\bar{R}_1\bar{Z}_2\bar{Z}_3 + c.p.),
\]

(2.15)

where \(c.p.\) stands for cyclic permutation of each triplet’s indices (see appendix). Minimizing the scalar potential (including the \(D\)-term from the gauged \(U(1)\)) yields three families of supersymmetric vacua, including the isolated solution

\[
S = R = \bar{R} = 0, \quad Z = \bar{Z} = \begin{pmatrix} 0 \\ 0 \\ \mu \end{pmatrix}.
\]

(2.16)
2.3. Fermion mass texture

Flavor symmetry breaking can be communicated to the Yukawa couplings of the light fermions in two ways: either through the mixing of light and heavy fermions, or through the Higgs potential. We have seen that in flavor unification, the large top quark mass requires that the Higgs fields H_u transform under flavor at short distances and have direct (unsuppressed) flavor symmetry breaking vevs. Keeping in mind that the successful GUT prediction for $\sin^2 \theta_w$ assumes that there are only two Higgs doublets below the GUT scale, it is natural to suppose that flavor symmetry breaking occurs at the GUT scale or above, and that all but these two Higgs doublets acquire large masses.

For example, suppose H_u and H_d are Higgs doublets that are both flavor triplets in the T_2 and T_1 representations of $\Delta(75)$ respectively, and that they couple to the left-chiral superfield triplets $Z = T_3$ and $\overline{Z} = \overline{T}_3$, which are gauge singlets. There are two couplings,

$$W = \lambda Z H_u H_d + \lambda' \overline{Z} H_u H_d$$

$$= \lambda (Z_1 H_{u3} H_{d1} + c.p.) + \lambda' (\overline{Z}_1 H_{u3} H_{d1} + c.p.) \ .$$ (2.17)

If Z and \overline{Z} get the vevs $\{\mu, 0, 0\}$ and $\{0, \mu, 0\}$ respectively, where μ is some very heavy scale, then only the Higgs doublets H_{u3} and H_{d3} remain light and are able to eventually develop $SU(2) \times U(1)$ breaking vevs. What has happened is that $\Delta(75) \times U(1)_{PQ}$ has been broken down to a diagonal Z_5, where $U(1)_{PQ}$ is the Peccei-Quinn symmetry in the interactions (2.17). The three components of both of the Higgs doublets carry Z_5 charges that allow two of the Higgs flavors to pair up and become heavy, while protecting the third.

We now incorporate these ideas into a toy model based on $\Delta(75) \times U(1)$ that leads to an interesting fermion mass hierarchy, ignoring gauge interactions for the moment. The “matter” fields are

$$F = (T_1)_1 \ , \ \psi = (T_4)_1 \ , \ \overline{\psi} = (T_4)_1$$

where F will play the role of three families of quarks and leptons, while ψ and $\overline{\psi}$ are three vectorlike exotic families that will become heavy when the $U(1)$ is broken. This occurs at a scale M when the singlet field S develops a vev:

$$S = (A_1)_{-2} = M \ .$$

At a somewhat lower scale $\Delta(75)$ is broken, and we assume that this is due to the fields

$$X = (T_3)_{-2} = xM \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} \ , \ Y = (T_1)_{-2} = yM \begin{pmatrix} 1 \\ 1 \end{pmatrix} \ ,$$
Fig. 1. Leading supergraph contributions to the effective Yukawa coupling of the F superfield in eq. (2.19). The internal dotted lines indicate ψ and $\bar{\psi}$ superfields with mass M. The unlabelled external lines are the light fermions \mathcal{F}.

where x and y are small numbers. The fermions F only get a mass when the “Higgs” field H gets a vev, and we assume that

$$H = (\bar{T}_2)^{-2} = \begin{pmatrix} 0 \\ 0 \\ v \end{pmatrix},$$

where $v \ll M$ is the “weak scale”, envisaging a mechanism such as described above that renders all but the third family component of H heavy at the scale M.

The most general renormalizable superpotential W_m describing the interactions of the matter fields with $S, X, Y, \text{and } H$ is given by

$$W_m = S \bar{\psi} \psi + X \bar{\psi} F + Y \bar{\psi} \psi + H(FF + F\psi) = S(\bar{\psi}_1 \psi_1) + X_1 \bar{\psi}_3 F_3 + Y_1 \bar{\psi}_3 \psi_2 + H_3(F_3 F_3 + F_2 \psi_3) + \text{c.p.} .$$

(For simplicity we have omitted coupling constants, assumed to all be $\mathcal{O}(1)$). At the scale M the ψ field gets a mass and is integrated out of the theory, giving rise to the effective theory

$$W_{\text{eff}} = Y_{ij} H_3 F_i F_j .$$

The Yukawa coupling Y_{ij} can computed by summing the diagrams in fig. 1, making use of the invariant tensors discussed in the appendix. The result is

$$Y_{ij} \sim \begin{bmatrix} 0 & xy^2 & 0 \\ xy^2 & xy & x \\ 0 & x & 1 \end{bmatrix} .$$

In addition there are wavefunction renormalization graphs which give effective D-terms which eliminate the zeros in the above matrix, but they are negligible: the $\{13\}$ and $\{31\}$ entries in Y_{ij} receive $\mathcal{O}(|x|^2 y^*)$ contributions, while the $\{11\}$ entry is $\mathcal{O}(|x|^4 y^*2)$. Y_{ij} exhibits an obvious hierarchical structure, and with $x \sim y \sim 1/20$, it could provide a reasonable description of the Yukawa coupling matrix of the up-type quarks at the GUT scale [4]. In the next section we incorporate this toy model into $SO(10)$ and $SU(5)$ grand unified theories.
3. A supersymmetric $SO(10) \times \Delta(75)$ GUT

In this section we show how to use nonabelian discrete flavor symmetries to construct a GUT in which the gauge and flavor symmetries are separately unified. In particular, we show how to incorporate the toy model (2.18) into an $SO(10)$ grand unified theory. To get realistic quark masses it is necessary that the Y_D Yukawa coupling of the down quark matrix look quite different from Y_U; we achieve this by having the Higgs fields H_u and H_d transform as different flavor representations. The representations are chosen so that (i) down-type quarks get masses at higher order in symmetry breaking, explaining the small b/t mass ratio without requiring unnaturally large tanβ; (ii) the $\{22\}$ and $\{12\}$ entries of the down mass matrix are susceptible to large corrections from higher dimension operators which arise from Planck scale physics, accounting for $m_s/m_b \gg m_c/m_t$ and the large Cabbibo angle.

3.1. Fields and interactions

The model we offer as an example is an $SO(10) \times \Delta(75)$ supersymmetric GUT, where $\Delta(75)$ is the flavor group3. This example is an extension of the toy model (2.18), containing both “matter superfields” which do not get vevs, and “Higgs superfields” which do. The matter fields consist of three ordinary chiral families

$$\mathcal{F} = (16, T_1) ,$$

as well as exotic fields:

$$\psi = (16, \bar{T}_4) , \quad \bar{\psi} = (\bar{16}, T_4) , \quad \chi = (10, \bar{T}_2) , \quad \bar{\chi} = (10, T_2) .$$

There are several fields associated with symmetry breaking. To break $SO(10)$ down to $SU(3) \times SU(2) \times U(1)$ at $M_{GUT} \simeq 10^{16}$ GeV in the most economical fashion requires both a 45 and a 16 of Higgs, and we include a conjugate partner for the latter. These fields are assumed to come in $\Delta(75)$ triplets:

$$\Sigma = (45, \bar{T}_4) , \quad \Omega = (16, T_2) , \quad \bar{\Omega} = (\bar{16}, \bar{T}_2) .$$

3 $SO(10)$ GUTS have been discussed extensively in the literature. See [12], and for recent references, [13].
There are also gauge singlets which get vevs at a similar scale, namely

\[X = (1, T_3), \quad Y = (1, T_1), \quad Z = (1, T_2). \]

(3.4)

Finally there are singlet fields \(S \) and \(S' \) which are invariant under both \(SO(10) \) and \(\Delta(75) \); their vevs are responsible for the masses of the vectorlike fermion families \(\psi \) and \(\chi \), and occur over an order of magnitude above \(M_{GUT} \).

To break the weak interactions we require a 10 of Higgs; we will take three families of these Higgs as well. In order to construct a model without the fine-tuning problems associated with large \(\tan \beta = \langle H_u/H_d \rangle [14] \), we have the up and down Higgs doublets reside in different 10’s:

\[H_u = (10, T_2), \quad H_d = (10, T_1). \]

(3.5)

As we will show below, the flavor quantum numbers of \(H_d \) are chosen so that the down type quarks have naturally suppressed Yukawa couplings.

\(SO(10) \times \Delta(75) \) symmetry allows us to write down the renormalizable superpotential

\[
\begin{align*}
W_m &= S \overline{\psi} \psi + S' \overline{\chi} \\
&\quad + X \overline{\psi} F + Y \overline{\psi} \psi + \chi [F F + F \psi] \\
&\quad + H_u [F F + F \psi] + H_d \chi Y.
\end{align*}
\]

(3.6)

For notational simplicity we have not indicated coupling constants for these operators, which are all assumed to be \(\mathcal{O}(1) \). Note that we have omitted a \(S \overline{\chi} H_u \) operator, which can be done by choosing suitable definitions of the \(\chi \) and \(H_u \) fields, which have the same quantum numbers. Other operators allowed by \(SO(10) \times \Delta(75) \) but absent from (3.6), such as \(M_p \overline{\psi} \psi \), operators involving \(Z \), \(\Sigma \) and \(\Omega \), etc, may be naturally excluded by imposing an additional \(U(1) \) or \(\mathbb{Z}_N \) symmetry to the theory which commutes with flavor and has no \(SO(10) \) anomalies. The choices of charges under this symmetry are not unique, and in fact the symmetry can be either an \(R \)-symmetry or ordinary. It is the spontaneous violation of this abelian symmetry by \(\langle S \rangle \) and \(\langle S' \rangle \) that determines the masses of the heavy fermions \(\psi \) and \(\chi \).

Although the fields \(\Sigma \), \(Z \) and \(\Omega \) do not have renormalizable couplings to the matter fields \(F \), \(\psi \) and \(\chi \), they will interact through operators of dimension five and higher suppressed by powers of \(M_p \). By means of the same Abelian symmetry controlling operators
in the renormalizable sector of the theory, the allowed dimension five operators can be restricted to

\[W_{\text{grav.}} = \frac{1}{M_p} \left[H_d F^c F Z + \Sigma H_d F^c F + F F^\Omega \Omega \right]. \tag{3.7} \]

As we will show below, the first two operators give important contributions to the down quark mass matrix, while the third operator is responsible for giving an interesting pattern of neutrino masses. Furthermore, in an SU(5) version of this model, the second operator can explain the ratio of down quark masses to charged lepton masses \(\text{à la Georgi-Jarlskog} \) [15].

In order to generate realistic masses for the quarks and leptons, it is necessary to make certain assumptions about the symmetry breaking pattern of the fields that get vevs. We make the following assumptions, along the lines of our discussion of symmetry breaking in the previous section:

1. The \(S \) and \(S' \) fields get vevs at a scale which is about \(20 - 50M_{\text{GUT}} \), giving large masses to the \(\psi \) and \(\chi \) fields.
2. The \(X \), \(Y \) and \(Z \) fields get vevs on the order of \(M_{\text{GUT}} \) in each component, inducing mass mixing between the heavy fermions \(\psi \), \(\chi \) and the light fermions \(F \).
3. \(SO(10) \) is broken to \(SU(3) \times SU(2) \times U(1) \) at the GUT scale by vevs of the \(\Omega \), \(\Omega \) and \(\Sigma \) fields. We assume that each flavor component of the \(\Omega \) and at least the second flavor component of \(\Sigma \) develop vevs.
4. Of the \(H_u \) and \(H_d \) triplets, only the \(Y = -1/2 \) weak doublet from \((H_u)_3 \) and the \(Y = +1/2 \) weak doublet from \((H_d)_3 \) remain lighter than \(M_{\text{GUT}} \) and develop \(SU(2) \times U(1) \) breaking vevs.

The reason we take the flavor symmetry breaking scale to be so high is dictated by the desire to keep interactions perturbative up to scales near the Planck mass. This is a generic feature of models of flavor unification where masses arise through mixing with heavy fermions: such theories will have at least an extra set of fermion families as well as their mirrors which, with the Higgs fields, render the gauge theory asymptotically unfree above the flavor unification scale. Thus the scale of flavor physics is forced to lie within a few decades of the Planck scale. Furthermore, it is interesting to note that gauge interactions are often strong very near the scale where quantum gravity is expected to be relevant.
3.2. Quark masses

The effective quark Yukawa couplings are generated in this model when the ψ and χ fields are integrated out of the theory at the scales $\langle S \rangle$ and $\langle S' \rangle$ — taken to lie above M_{GUT} — and the symmetry breaking fields X, Y, Z, and Σ acquire their vevs. The diagrams arising from the renormalizable interactions (3.6) that contribute to an effective superpotential are shown in Fig. 2.

Denoting

$$\langle X/S \rangle \equiv x, \quad \langle Y/S \rangle \equiv y, \quad \langle Y'/S' \rangle \equiv y'$$

and ignoring both the $O(1)$ coefficients in (3.6), the effective Yukawa couplings generated from these diagrams are

$$Y_u \sim \begin{pmatrix} 0 & xy^2 & 0 \\ xy^2 & xy & x \\ 0 & x & 1 \end{pmatrix}, \quad Y_d \sim y' \begin{pmatrix} 0 & xy^2 & 0 \\ xy^2 & xy & x \\ 0 & x & 1 \end{pmatrix},$$

(3.8)

where Y_u and Y_d are the coefficients of the effective operators $H_u \mathcal{F} \mathcal{F}$ and $H_d \mathcal{F} \mathcal{F}$ respectively. One sees that there is a natural hierarchical structure to the masses, and that down-type quarks are automatically a factor of y' more weakly coupled to the Higgs doublet than are up-type quarks. The two matrices are not simply proportional to each other (due to the omitted $O(1)$ coefficients of (3.6)), so that there are nonzero mixing angles, although there may be partial cancellations leading to a small θ_{23}.

Additional important contributions to Y_u and Y_d come from the dimension five operators (3.7), which enter the effective Yukawa couplings through the diagrams pictured in Fig. 3.
Fig. 3. Supergraphs involving the dimension five operators (3.7) contributing to quark and lepton Yukawa couplings.

The first two graphs in fig. 3 contribute to the d and s quark masses, as well as the Cabbibo angle. Denoting

$$\delta_z \equiv \langle Z/\Lambda \rangle, \quad \delta_\Sigma \equiv \langle \Sigma/M_p \rangle,$$

eq. (3.8) is modified to read

$$Y_u \sim \begin{pmatrix} 0 & xy^2 & 0 \\ xy^2 & xy & x \\ 0 & x & 1 \end{pmatrix}, \quad Y_d \sim \begin{pmatrix} 0 & \delta_z & 0 \\ \delta_z & \delta_\Sigma & xy' \\ 0 & xy' & y' \end{pmatrix} \quad (3.9)$$

for the Yukawa couplings at the GUT scale. We have only given the leading contributions to each entry, and ignore the negligible contributions from wavefunction renormalization to the $\{13\}, \{31\}$ and $\{11\}$ entries. Taking scaling effects into account, these matrices can lead to realistic quark masses for the values

$$x \sim y \sim \frac{1}{20}, \quad y' \sim \frac{1}{50}$$

and imply

$$\tan \beta \simeq 3,$$

for a top quark mass $m_t \simeq 160$ GeV. This fit assumes that the couplings in W_m (3.6) are all $\mathcal{O}(1)$ and works best if the couplings in $W_{\text{grav.}}$ (3.7) are actually $\simeq 0.5$ (i.e., so that the characteristic scale of nonrenormalizable gravitational interactions is $2M_p$).

3.3. Lepton masses

The third diagram in fig. 3 gives the right-handed neutrino a Majorana mass

$$M_\nu \sim \frac{\langle \Omega \rangle^2}{M_p} \times \begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix}, \quad (3.10)$$

where the entries denoted as “1” are to be understood as $\mathcal{O}(1)$. By identifying the $B - L$ breaking scale with the GUT scale, the fact that \mathcal{F} couples to $\bar{\Omega}$ only through a dimension
five operator naturally predicts a Majorana mass of M_{GUT}^2/M_p. The seesaw mechanism \cite{16} then leads to a tau neutrino mass of roughly $M_p/(G_F M_{GUT}^2)$ — where G_F is the Fermi constant — which gives rise to a mass hierarchy for neutrinos that is of interest both for dark matter and neutrino oscillations.

The charged lepton masses do not work in the $SO(10)$ model described above, but do in a similar $SU(5)$ version, where $\mathcal{F} \to \overline{5} + 10 + 1$, $H_d \to \overline{5}$, $H_u \to 5$, $\Sigma \to 24$ and so forth. In this model the $\{22\}$ entry in Y_d in eq. (3.9) involves $SU(5)$ breaking through the coupling to the $\overline{5} \oplus 45$ in $H_d \Sigma = \overline{5} \times 24$. If the coupling is primarily in the $\overline{45}$ channel, then the mass matrices are similar to the Georgi-Jarlskog form and yield the successful GUT-scale mass relations \cite{15}:

$$\frac{m_b}{m_\tau} \simeq 1, \quad \frac{m_\mu}{m_\tau} \simeq \frac{1}{3}, \quad \frac{m_d}{m_e} \simeq 3.$$ \hspace{1cm} (3.11)

We do not bother writing down the $SU(5)$ model, since it is in almost every respect identical to the $SO(10)$ version described above. The reason why the Georgi-Jarlskog mechanism doesn’t work in the $SO(10)$ version of the model is that $H_d \Sigma = 10 \times 45$ can only couple to $\mathcal{F} \mathcal{F}$ as a 10, which does not split down quark from lepton masses.

4. Flavor changing neutral currents

In the standard model flavor changing neutral currents (FCNC) must proceed through dimension six operators, and so experiments are insensitive to physics above ~ 1000 TeV. In contrast, FCNC enter supersymmetry through dimension two squark mass matrices, and are sensitive to physics at very short distances \cite{17}. Limits on FCNC from the neutral K and B mesons require that the squarks must be mass eigenstates in very nearly the same flavor basis as are the quarks \cite{18}, \cite{19}. To discuss these constraints we use the notation and analysis from \cite{19}.

The 6×6 squark mass-squared matrix may be written as

$$\tilde{M}^q = \begin{pmatrix} M_{LL}^q & \tilde{M}_{LR}^q \\ \tilde{M}_{LR}^q & M_{RR}^q \end{pmatrix}$$ \hspace{1cm} (4.1)

where L and R refer to the chirality of the associated quarks. Assuming that the $SU(2) \times U(1)$ violating LR components of \tilde{M}^q are smaller than the diagonal components, then FCNC experiments limit the quantities

$$\delta_{AB}^q = \frac{V_{A}^{\dagger} \tilde{M}_{AB}^q V_{B}^{\dagger}}{\tilde{m}_2},$$ \hspace{1cm} (4.2)
where $V_u^{L,R}$ and $V_d^{L,R}$ are the unitary matrices which diagonalize the u and d quark mass matrices. The $[\delta^d_{AB}]_{12}$’s are constrained to be less than $few \times 10^{-3}$, while the $[\delta^u_{AB}]_{13}$’s and $[\delta^u_{AB}]_{12}$’s are constrained to be smaller than $few \times 10^{-2}$. Various explanations of how these small numbers arise naturally have been proposed, such as squark universality and horizontal flavor symmetries. Universality, as invoked in minimal supergravity [20] is quite unnatural, since there is no reason why the physics that gives diverse Yukawa couplings to the different families wouldn’t also give diverse squark masses, but models have been proposed where squark universality is a natural consequence of their identical gauge interactions [21]. Explanations for small FCNC based on horizontal symmetries [19,22] simply ensure that the inevitable breaking of flavor symmetry in the squark sector is small enough for symmetry reasons to not have been observed. The model we are describing here falls into this second category.

Our $\Delta(75)$ model has small FCNC effects due to the nonabelian flavor symmetry, so long as the order parameter for SUSY breaking is flavor neutral. First consider the LR sector of the squark mass matrix. One contribution is proportional to the Yukawa coupling and is diagonal in the quark mass eigenstate basis. The other contribution arises through the soft SUSY violating trilinear couplings of the squarks to the Higgs doublets. These couplings are assumed to arise from a dimension five superpotential $W' \sim W \times \phi / M_p$, where ϕ is a chiral superfield whose F component breaks supersymmetry at an intermediate scale, and “\sim” means that there is a one-to-one correspondence between operators, although the $O(1)$ coupling constants are not assumed to be the same. This implies that at low energy the effective trilinear couplings are

$$
\bar{m} \left[\tilde{Y}_u \bar{Q} H_u \bar{u}^c + \tilde{Y}_d \bar{Q} H_d \bar{d}^c \right]
\tag{4.3}
$$

where the \tilde{Y} matrices have the same texture as the Yukawa coupling matrices. Thus in the flavor basis where the quark masses are diagonal, the $\{ij\}$ component of \bar{M}^{q2}_{LR} is at most of order $\bar{m} \sqrt{m_i m_j}$, where m_i are the corresponding quark masses, and so their contributions to the constrained parameters $\delta^q_{L,R}$ are very small.

The LL and RR parts of the squark mass matrix also get two contributions. The first is proportional to $Y^\dagger Y$ and is diagonal in the quark mass eigenstate basis. The second arises from the dimension six D-terms,

$$
\frac{\phi^* \phi}{M_p^2} \left[c_1 F^* F + c_2 \psi^* \psi + c_3 \bar{\psi} \bar{\psi} + \ldots \right]_D.
\tag{4.4}
$$
where the $\Delta(75)$ symmetry dictates that there is universality in the coupling of the three families. These terms alone give contributions to the LL and RR components of \hat{M}_q^2 which are proportional to the unit matrix and hence diagonal in any basis. FCNC effects can exist in dimension eight operators arising directly from the Planck scale

$$\left. \frac{\phi^* \phi S^* (F^* X F)}{M_p^4} \right|_D \tag{4.5}$$

inducing off-diagonal contributions to $\delta_{LL,RR}^q$ of order $\langle S \rangle M_{GUT}/M_p^2 \simeq 2 \times 10^{-5}$. Larger contributions arise from dimension eight operators generated by integrating out the heavy ψ field as in Fig. 4, leading to the operator

$$\left. \frac{\phi^* \phi (F^* X X^* F)}{M_p^2 \langle S \rangle^2} \right|_D \tag{4.6}.$$

Since $\langle X/S \rangle \equiv x \simeq 1/20$, this operator would appear to contribute to FCNC at the 3×10^{-3} level. However, $\langle X^* X \rangle$ in the above operator is flavor diagonal in the $\Delta(75)$ basis we have been using, and therefore gives rise to off-diagonal contributions in $\delta_{LL,RR}^q$ of order $x^2 \times \theta$, where θ is the relevant mixing angle. In the kaon system, for example, this gives $\delta^d \simeq \theta_c/400 = 5 \times 10^{-4}$. Thus FCNC in a model such as this one are below current limits, but only by about an order of magnitude, even though flavor physics occurs up at the GUT scale.

It is interesting to note that FCNC effects increase in supersymmetric models as the flavor symmetry breaking scale gets closer to the Planck scale. Thus it is conceivable that improved searches for FCNC could in fact probe physics in the region between the GUT and Planck scales. This is peculiar to models such as supersymmetry in which GIM violation can proceed through soft operators.
5. Conclusions

In this paper we are advocating using nonabelian discrete flavor symmetries for unifying flavor at short distances. The example we have given — a supersymmetric GUT with a $\Delta(75)$ flavor symmetry — can account for the diversity of quark and lepton masses and mixings without small fundamental parameters, other than the hierarchy of the mass scales M_p, M_{GUT} and an intermediate scale associated with the masses of vectorlike families. This particular model predicts mixing angles to be approximately equal to their observed values, as well as $\tan\beta \simeq 3$. The model also predicts a seesaw mechanism for neutrino masses, with the τ neutrino mass given approximately by $M_p/G_F M_{GUT}^2 \simeq 10$ eV. The two lighter neutrino masses scale like the up-type quark masses squared (at the GUT scale) and are much lighter.

We believe that our $\Delta(75)$ model exhibits a number of features that will be generic in flavor unification models that do away with an explicit fermion mass hierarchy put in by hand. These include:

(i) Due to the extra families added in such schemes, the gauge group β function changes sign at short distances. This requires that flavor symmetry breaking occur near the GUT scale or higher, or that there are larger gauge groups at low energies than usually envisioned. Typically, gauge interactions are strong near M_p in these models. It is intriguing that a model of flavor physics favors strongly interacting physics at the Planck scale.

(ii) With flavor symmetry breaking occurring at a high scale, the light quark masses and mixings are sensitive to operators suppressed by powers of M_p. In the model described here, the relatively large Cabibbo angle is due to a dimension five operator.

(iii) Flavor changing neutral currents are typically suppressed enough to be acceptable in such models, due to the nonabelian flavor symmetry. However, the proximity of the flavor symmetry breaking scale to M_p means that FCNC effects from these ultrashort distance scales could be detectable.

(iv) Due to supersymmetry, the most generic operators consistent with flavor symmetry are not generated when heavy particles are integrated out of the theory. This suggests that an effective Lagrangian approach is no substitute for a model of short distance flavor physics.

In models with the short distance flavor democracy we are advocating, Higgs fields typically carry family quantum numbers, and understanding symmetry breaking becomes
a more pressing issue. An important problem sidestepped in this paper has been the
doublet-triplet splitting of the Higgs, which now becomes entangled with the problem of
flavor. Other issues that remain to be addressed in detail are neutrino masses and CP
violation.

Acknowledgements

We wish to thank A. Cohen, A. Manohar, A. Nelson and N. Seiberg for useful con-
versations. This work is supported in part by funds provided by the DOE under contract
#DOE-FG03-90ER40546, by the NSF under contract PHY-9057135, by the Texas Na-
tional Research Laboratory Commission under contract #RGFY93-206, and by the Alfred
Sloan Foundation.
Appendix A. Triplet decomposition in $\Delta(75)$

Here we give the decomposition of the products of triplet representations shown in table 2, consistent with the basis defined in eq. (2.9). As discussed in §2, the generator \hat{E}_{00} has the same representation matrix $D_R(E_{00})$ for all of the triplet representations R:

$$D_R(E_{00}) = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0 \end{bmatrix}, \quad R = \{T_1, \ldots, T_4\}.$$ \hfill (A.1)

The representation matrices corresponding to the generator \hat{A}_{10} are given by

$$D_1(\hat{A}_{10}) = A_{10}, \quad D_2(\hat{A}_{10}) = A_{13}, \quad D_3(\hat{A}_{10}) = A_{21}, \quad D_4(\hat{A}_{10}) = A_{20},$$ \hfill (A.2)

where D_n is the representation matrix for the triplet T_n and the A_{pq} matrices are defined in eq. (2.4). The above representations follow from the conventions (2.9). This is enough information to determine all of the invariant tensors of the group.

From table 2 one sees that $T_n \otimes T_n$ always contains all three singlet representations, for $n = 1, \ldots, 4$. Writing T_n as $\{x, y, z\}$, one finds these singlets to be

$$T_n \otimes T_n|_{A_1} = x\overline{x} + y\overline{y} + z\overline{z}$$
$$T_n \otimes T_n|_{A_2} = x\overline{x} + \omega y\overline{y} + \omega^2 z\overline{z}$$
$$T_n \otimes T_n|_{A_3} = x\overline{x} + \omega^2 y\overline{y} + \omega z\overline{z}$$ \hfill (A.3)

where $\omega \equiv e^{2i\pi/3}$.

For the decomposition of a product of two triplets into a third triplet, it suffices to give the structure of all of the three-triplet invariants. Due to eq. (A.1), all invariants of three triplets (ABC) can be specified by three numbers $\{ijk\}$ signifying that $(ABC) = A_iB_jC_k + c.p.$, where c.p. stands for cyclic permutation of each representation’s index. For example, $(ABC) = \{112\}$ denotes that $(A_1B_1C_2 + A_2B_2C_3 + A_3B_3C_1)$ is a $\Delta(75)$ singlet. Table 2 reveals that the product of three triplets of a given representation always contains two invariants. These are given by

$$(T_nT_nT_n) = \{123\} + \{213\}.$$ \hfill (A.4)

Thus, for example, if one wants to find the \overline{T}_1’s contained in $T_1 \otimes T_1$, one finds them to be

$$T_1 \otimes T_1'|_{\overline{T}_1} = \begin{pmatrix} yz' \\ zx' \\ xy' \end{pmatrix}, \quad \begin{pmatrix} zy' \\ xz' \\ yx' \end{pmatrix},$$ \hfill (A.5)
or any linear combination of the two. There remain sixteen independent invariants with three triplets, and their structure is found to be

\{'111\} : \{(11\overline{2}) (122), (334), (344)\}
\{'112\} : \{(1\overline{3}2), (14\overline{3}), (234), (24\overline{1})\}
\{'113\} : \{(132), (1\overline{3}3), (234), (24\overline{1})\}
\{'123\} : \{(3\overline{1}1), (\overline{4}14), (\overline{4}22), (2\overline{3}3)\}.

Thus for example, if one wanted to find the invariant formed from \(\mathcal{T}_2 \otimes \mathcal{T}_4 \otimes \mathcal{T}_1\) one notes that \((\mathcal{T}_2 \mathcal{T}_4 \mathcal{T}_1)\) is an invariant of the \{'112\} type, so that

\[\mathcal{T}_2 \otimes \mathcal{T}_4 \otimes \mathcal{T}_1|_{\mathcal{A}_1} = a\alpha y + b\beta z + c\gamma x,\]

where we have taken \(\mathcal{T}_1 = \{x, y, z\}, \mathcal{T}_2 = \{\overline{a}, \overline{b}, \overline{c}\}\) and \(\mathcal{T}_4 = \{\alpha, \beta, \gamma\}\). Similarly, if one wanted to find the \(\mathcal{T}_4\) contained in \(\mathcal{T}_1 \otimes \mathcal{T}_2\), the same \{'112\} invariant yields

\[\mathcal{T}_1 \otimes \mathcal{T}_2|_{\mathcal{T}_4} = \begin{pmatrix} \overline{y}a \\ \overline{z}b \\ \overline{x}c \end{pmatrix}.\]
References

[1] W.M. Fairbairn, T. Fulton and W.H. Klink, Jour. Math. Phys. 5 (1964) 1038
[2] H. Georgi, A.V. Manohar and A.E. Nelson, Phys. Lett. B126B (1983) 169
[3] H. Georgi and S. Glashow, Phys. Rev. Lett. 32 (1974) 438; H. Georgi, H.R. Quinn and S. Weinberg, Phys. Rev. Lett. 33 (1974) 451; A.J. Buras et al., Nucl. Phys. B135 (1978) 66; S. Dimopoulos, S. Raby and F. Wilczek, Phys. Rev. D24 (1981) 1681; S. Dimopoulos and H. Georgi, Nucl. Phys. B193 (1981) 150
[4] V. Barger, M.S. Berger, P. Ohmann, Phys. Rev. D47 (1993) 109
[5] H. Arason, D.J. Castaño, E. J. Piard, and P. Ramond, Phys. Rev. D47 (1993) 232; D.J. Castaño, E.J. Piard, P. Ramond, UFIT-HEP-93-18 (1993) hep-ph-9308335
[6] C.D. Frogatt and H.B. Nielsen, Nucl. Phys. B147 (1979) 277
[7] S. Dimopoulos, L.J. Hall and Stuart Raby, Phys. Rev. Lett. 68 (1992) 1984; G. W. Anderson et al., Phys. Rev. D47 (1993) 3702; L.J. Hall and A. Rasin, Phys. Lett. 315B (1993) 164
[8] P. Ramond, R.G. Roberts and G.G. Ross, Nucl. Phys. B406 (1993) 19
[9] M. Leurer, Y. Nir and N. Seiberg, Nucl. Phys. B398 (1993) 319; RU-93-43 (1993), hep-ph-9310320
[10] P. Pouliot and N. Seiberg, Rutgers preprint RU-93-39, hep-ph-9308363
[11] D.B. Chesnut, Finite Groups and Quantum Theory, Robert E. Kreiger Co., Malabar Florida, 1982; M. Hamermesh, Group Theory and its Application to Physical Problems, Dover Pub. Inc., New York, 1989
[12] J.A. Harvey, D.B. Reiss and P. Ramond, Nucl. Phys. B199 (1982) 223
[13] G. Anderson et al., preprint LBL-33531, hep-ph-9308333; R.N. Mohapatra, preprint hep-ph/9310265
[14] T. Banks, Nucl. Phys. B303 (1988) 172; L.J. Hall, R. Rattazzi and U. Sarid, LBL-33997 (1993), hep-ph-9306300; A.E. Nelson and L. Randall, UCSD-PTH-93-24/MIT-CTP-2230 (1993), hep-ph-9308277.
[15] H. Georgi and C. Jarlskog, Phys. Lett. 86B (1979) 297
[16] M. Gell-Mann, P. Ramond, R. Slansky in Supergravity (ed. D.Z. Freedman and P. van Nieuwenhuizen) North Holland, Amsterdam
[17] L.J. Hall, V.A.Kostelecky and S. Raby, Nucl. Phys. B267 (1986) 415; H. Georgi, Phys. Lett. 169B (1986) 231
[18] F. Gabbiani and A. Masiero, Nucl. Phys. B322 (1989) 235
[19] Y. Nir and N. Seiberg, Phys. Lett. 309B (1993) 337
[20] L. Hall, J. Lykken and S. Weinberg, Phys. Rev. D27 (1983) 2359
[21] M. Dine and A.E. Nelson, Phys. Rev. D48 (1993) 1277
[22] M. Dine, A. Kagan and R. Leigh, SLAC-PUB-6147, hep-ph-9304299 (submitted to Phys. Lett. B)