ABSTRACT

Objective: Our aim is to investigate causes of hospitalization of Syrian patients in an intensive care unit (ICU), development of sepsis, relevant reasons of pathogens and mortality rates.

Materials and Methods: We carried out this study between 2012 and 2016. Patient information was analyzed retrospectively from records and files in the information system.

Results: One hundred thirty-nine Syrian patients were hospitalized in an ICU during the study period. The most common ICU diagnoses were respiratory tract infection (29 patients: 20.9%) and trauma (26 patients: 18.7%). Of these patients, 35 were diagnosed with sepsis during their treatment in the ICU.

Acinetobacter baumannii and E. coli were isolated in the culture of the patients with sepsis (17, 12, respectively). Acinetobacter baumannii was most common in tracheal cultures and E. coli in urine cultures. Additionally, seven patients were diagnosed with sepsis at their first application to the hospital. H1N1 in two, S. pneumoniae in three, H. influenzae in one, S. aureus and aspergilloma in another patient were detected. While 45 of 139 patients died, 28 of 35 patients diagnosed with sepsis died. APACHE II scores, duration of mechanical ventilation, number of days spent in ICU were all higher in the deceased patients than in the surviving patients (p<0.001, p<0.001, p<0.001).

Conclusion: Respiratory diseases were the most common causes for Syrian patients’ hospitalization in the ICU and developing sepsis. For these patients, sepsis was still an important factor for mortality.

Keywords: Syrian patients, sepsis, mortality, intensive care unit

ÖZ

Amaç: Amacıımız; Suriyeli hastaların yoğun bakım (YB) yatış nedenlerini, sepsis gelişimlerini, sepsise neden olan patojenleri ve hastaların ölüm oranlarını araştırmaktır.

Gereç ve Yöntem: Çalışmamız 2012-2016 tarihleri arasında YB ünitesinde yapıldı. Hastane bilgi sistemindeki kayıt ve dosyalar geriye dönük olarak analiz edildi.

Bulgular: Çalışma süresi içinde 139 Suriyeli hasta YB’ye yatmıştır. En sık YB yatış tanıları solunum yolu enfeksiyonu ve trauma idi. Sepsis tanısı alan hastaların APACHE II skorları, mekanik ventilasyon süresi, YB yatış süresi ve séjour süresi olarak analiz edildi. Sepsis tanısı alan hastaların 45’i (20,9%) solunum yolu enfeksiyonu, 26’sı (18,7%) traumdur. Araştırdığımız dönemde 17 hastada Acinetobacter baumannii, 12 hastadaki E. coli kültürleri pozitif bulundu. Ayrıca, S. pneumoniae, H. influenzae, S. aureus ve aspergilloma saptandı.

Sonuç: Solunum yolu enfeksiyonları en sık sepsis gelişimini ve mortaliteyi neden göstermiştir.

Anahtar Kelimeler: Suriyeli hastalar, yoğun bakım, sepsis, mortalite
Introduction

More than 43.3 million people worldwide are fleeing war, and there are some political or ethnic pressures regarding taking refugees in another country (1,2). The war in Syria is tragically deadly and devastating enough to affect not only Syria’s neighbors; Lebanon, Egypt, Iraq, and Turkey, but also European nations bordering Turkey (3,4). Since March, 2016, Turkey, with 2.7 million Syrians, has been one of the countries who have hosted the most refugees (3-5). There are approximately 300,000 refugees living in camps in the vicinity of Turkish cities near the Syrian border (Şanlıurfa, Gaziantep, Kilis, Hatay, Kahramanmaraş, Adıyaman, Adana, and Osmaniye). Additionally, there are about 2,440,000 refugees living outside the camps, who have spread from the south of Turkey to her central and western cities, like Istanbul, Ankara, and İzmir (4-6).

The disease profiles of refugees, who were at first exposed to traumatic injuries as a result of violent conflicts, then made dangerous journeys to other countries. They would take refugees in different from the disease profiles of the local people, both because of regional differences in some infectious diseases and insufficient living conditions in the nations to which the refugees had migrated (7,8).

In studies conducted in the early stages of the migration, the most important reasons for hospitalization in the intensive care unit (ICU)’s were traumatic pathologies and high-velocity gunshot wounds (9,10). Later, an increase was reported in reasons like respiratory system, cardiac, and tumoral pathologies (11,12). As far as we know, there are no studies to date on the pathogen profiles and sepsis rates of Syrian patients in the ICU’s.

The aim of this study was to perform a general evaluation of the indications of hospitalization among Syrian patients in ICU, and to analyze these patients’ rates of sepsis development, effective pathogens, and mortality rates and causes.

Material and Methods

The study was carried out between June 1, 2012, and December 31, 2016, in two separate 14-bed Anesthesiology and Reanimation Intensive Care Units (ARICUs). Approval for the study (05.04.2017/04) was obtained from Kahramanmaraş Sütçü İmam University’s Ethics Committee.

Of the 4,912 patients hospitalized in the units, 300 (6.1%) were Syrian. A total of 139 (46.3%) patients whose records could be accessed were included in the study. Patient information was analyzed retrospectively from the records and patient files in the hospital’s information management system.

There were a plethora number of factors for the evaluation stage. Namely, the following were considered for this purpose: patients’ ages, gender, diagnoses at hospitalization, comorbid diseases, mechanical ventilation (MV) and number of days on MV, surgeries, diagnoses of sepsis, presence of sepsis originating from intensive care, areas from which cultures were obtained, microorganisms found, antibiotics used, number of days in the ICU, mortality rates, and Acute Physiologic Assessment and Chronic Health Evaluation (APACHE) II scores. For the patients who developed sepsis, the following data were recorded upon admission: the blood glucose level, the Sequential Organ Failure Assessment (SOFA) score and presence or absence of sepsis, the number of days before sepsis set in, the neutrophil-lymphocyte ratio, and the present microorganisms and the parts of the body where they were being produced.

Definitions

In the study, patients were considered septic when they had SOFA scores of 2 or more and septic pathogens were found, as defined in the international guidelines of the Surviving Sepsis Campaign.

A community acquired infection was detected within the first 48-72 hours of hospitalization or acquired in daily life without significant immune deficiency (11).

Statistical Analysis

The SPSS 24.0 program (IBM Corporation, Armonk, New York, United States) was used in analysis of the variables. The Shapiro-Wilk test was used to determine the normal distribution of the data. The Mann-Whitney U test was used with the Monte Carlo simulation technique in the comparison of two independent groups with regard to the quantitative data. For comparing categorical variables with one another, Pearson’s chi-squared test, Fisher’s exact test, and the Fisher-Freeman-Halton test were performed with the Exact and Monte Carlo Simulation techniques. Column ratios were compared to one another and expressed in accordance with the Benjamini-Hochberg adjusted p-values. An odds ratio with a 95% confidence interval was used to show the odds of an outcome occurring in the presence of an exposure as compared to the odds of the outcome occurring in the absence of the exposure.
Quantitative variables are shown in the tables as median (minimum/maximum), and categorical variables as n (%). Variables were examined at a confidence level of 95%, and a p-value was accepted as less than 0.05.

Results

General Findings

The mean age of the 139 patients who were included in the study was 46 (1-90), and 90 (64.7%) of them were male. Diagnoses at the initial hospitalization included 20 patients (14.4%) with gunshot wounds and 29 (20.9%) with respiratory tract infections. The patients were separated into two groups; survivor and deceased. A total of 45 (32.4%) of the patients died in the ARICU.

APACHE II scores, the length of time connected to MV, and the number of days hospitalized in intensive care were all found to be greater in the deceased patients than in the living patients (p<0.001, p<0.001, and p<0.001, respectively). Twenty-three (24.5%) of the survivors were trauma patients, and 16 (35.5%) of the deceased were respiratory disease patients. Surgery had been performed on 51 (54.2%) of the surviving patients and on 16 (17%) of the deceased ones (p=0.047). The distributions of the patients according to their diagnoses and socio-demographic characteristics are given in Table 1.

| Table 1. Surviving and deceased patients’ demographic and clinical characteristics |
|--|---------------------|---------------------|---------------------|---------------------|
| | Surviving (n=94) | Deceased (n=45) | Total (n=139) | p | OR (95% CI) |
| Age | Median (min/max) | 43 (1/87) | 54 (3/90) | 46 (1/90) | 0.068 |
| Apache II | Median (min/max) | 11 (6/29) | 29 (9/38) | 13 (6/38) | <0.001 |
| DMV | Median (min/max) | 0 (0/43) | 7 (0/270) | 1 (0/270) | <0.001 |
| DIC | Median (min/max) | 3 (1/46) | 9 (1/270) | 4 (1/270) | <0.001 |
| Sex | n (%) | 36 (38.3) | 12 (26.7) | 48 (34.5) | 0.189 |
| | Female n (%) | 36 (38.3) | 12 (26.7) | 48 (34.5) | 0.189 |
| | Male n (%) | 58 (61.7) | 33 (73.3) | 91 (65.5) | - |
| Province-referral from | n (%) | 7 (7.4) | 5 (11.1) | 12 (8.6) | 0.588 |
| | Patient from other province | 7 (7.4) | 5 (11.1) | 12 (8.6) | 0.588 | - |
| | Same-province patient | 78 (83.0) | 34 (75.6) | 112 (80.6) | - |
| | Hatay state hospital | 9 (9.6) | 6 (13.3) | 15 (10.8) | - |
| Diagnosis | n (%) | 11 (11.7) | 9 (20.0) | 20 (14.4) | 0.004 |
| | Gunshot wound | 11 (11.7) | 9 (20.0) | 20 (14.4) | 0.004 |
| | Respiratory disease | 13 (13.8) | 16 (35.6) | 29 (20.9) | 3.4 (1.5-8.01) |
| | Renal disease | 0 (0.0) | 2 (4.4) | 2 (1.4) | - |
| | Trauma | 23 (24.5) | 3 (6.7) | 26 (18.7) | 4.5 (1.3-16.02) |
| | Cardiac disease | 5 (5.3) | 5 (11.1) | 10 (7.2) | - |
| | Cancer | 12 (12.8) | 2 (4.4) | 14 (10.1) | - |
| | Cerebrovascular disease | 6 (6.4) | 3 (6.7) | 9 (6.5) | - |
| | Intoxication | 6 (6.4) | 1 (2.2) | 7 (5.0) | - |
| | Gastrointestinal disease | 10 (10.6) | 2 (4.4) | 12 (8.6) | - |
| | Other | 8 (8.5) | 2 (4.4) | 10 (7.2) | - |
| MV usage | n (%) | 55 (58.5) | 2 (4.4) | 57 (41.0) | <0.001 |
| | No | 55 (58.5) | 2 (4.4) | 57 (41.0) | <0.001 |
| | Yes | 39 (41.5) | 43 (95.6) | 82 (59.0) | 30.3 (6.9-132.6) |
In 43 patients (30.9%), the most common comorbid diseases after their initial diagnosis was cardiac disease (Table 2).

Antimicrobial Therapy, Infection Type and Sepsis Findings

Of the living patients, 62 (66%) received single antibiotics while 27 (60%) of the deceased patients received multiple antibiotics (p<0.001). The blood cultures were positive in 8 (8.5%) of the surviving patients and the trachea cultures were positive in 5 (5.3%). In addition, 15 (33.3%) of the deceased patients’ blood cultures were positive, as were 18 (40%) of their trachea cultures (p<0.001 and p<0.001, respectively) (Table 3).

While 89 (48.9%) of all the patients did not produce microorganisms, Acinetobacter baumannii was found in 17 (9.3%) and E. Coli in 15 (8.2%). Of the patients who developed sepsis, 17 (23.6%) produced Acinetobacter baumannii and 12 (16.7%) E. Coli. Acinetobacter baumannii was detected most frequently in trachea cultures and E. Coli in urine cultures (Table 4).

The 35 patients with sepsis were divided into two groups: those who survived (n=7) and those who did not (n=28). The patients’ clinical information is given in Table 5.

Ten of the septic patients (28.6%) had diseases of the respiratory system, seven (20%) had gunshot injuries, and five (14.3%) were diagnosed with trauma (Table 6).

β-lactam / β-lactamase inhibitor-type antibiotics were used on 65 (28.6%) of the patients, while 2nd-, 3rd-, and 4th- generation cephalosporins were used on 43 (18.9%). Of the patients with sepsis, carbapenems were used on 17 (19.5%), colistin on 16 (18.4%), and tigecycline on 11 (12.6%) patients (Table 7).

A Community-acquired Infection

Seven patients were diagnosed with sepsis at the time of hospitalization. Oseltamivir treatment was begun on two patients with initial diagnoses, later confirmed, of H1N1. S. pneumonia was found in three patients, H. influenzae in one, and S. aureus and aspergilloma in one.

Discussion

In our study, we investigated the reasons for hospitalization, the sepsis development rates, the pathogens causing sepsis, and the mortality rates and causes for Syrian patients in ICU.

In the early period of the studies relating to the Syrian civil war, patients underwent surgery due to trauma (9,10). In a study evaluating arrivals of both refugees and locals at emergency service units, it was reported that refugees’ medical emergencies included high rates of many types...
of trauma, especially of the head, neck, and extremities, as compared to those rates for local residents (9). Another study showed that the most common surgical site regions were head and neck (52.7%), followed by the thorax and abdomen (27.8%), and multiple-system injuries (13.8%) (10). In another study on trauma, 24.2% of the patients had head and neck trauma, and 15.3% had chest, abdomen and back trauma (13). Duramaz et al. (14) reported that injuries were more common in lower extremities, upper extremities and axial skeleton. Blunt trauma was significantly higher in upper extremity injuries compared to other types of injuries. In a study conducted in central Europe, the most common reasons for admission among Syrian patients were surgery (43.3%), medical (36.5%) and psychiatric (15.6%). In addition,

Table 3. Evaluation of cultures taken from surviving and deceased patients
Culture taken from
None taken
Tracheal aspirate
Blood
Urine
Injury site
Two or more regions
Microorganism found
None
Single microorganism
Multiple microorganisms
Antibiotic administered
None
Single antibiotic
Multiple antibiotics
Urine culture
Negative
Positive
Blood culture
Negative
Positive
Tracheal culture
Negative
Positive
Injury site culture
Negative
Positive
Sepsis
No
Yes

Mann-Whitney U test (Monte Carlo) / Pearson’s chi-squared test (Exact/Monte Carlo) / Fisher-Freeman-Halton test (Monte Carlo) / Fisher exact test (Exact) / OddsRatio (95% Confidence Interval) / min: minimum, max: maximum
the most common acute infectious diseases (43.9%) were respiratory, gastrointestinal and urinary tract infections (15).

In our study, it was seen that the most important causes of hospitalization were pathologies of the respiratory system (20.9%) trauma (18.7 %) and gunshot wound (14.4 %). Besides, 67 (48.2%) of our patients underwent surgical intervention. 44 (65.7%- multiple injuries) of patients had thorax and abdominal injuries. It was further noted that tumoral causes, which were not mentioned in the literature, accounted for as high a rate as 10.1%. In the present study, respiratory failure was found to be the most important cause (35.6%) of mortality. In the diagnostic-based evaluation of the patients, it was observed that the most septic complications were in patients with respiratory failure, and it was thought that this had an effect on the development of mortality (28%). In the correlation analysis we performed, the most important factor affecting mortality was the development of sepsis. In all Syrian patients, the overall mortality rate was 32.37%, while the same rate in Syrian patients with sepsis was 80%.

One of the aims of our study was the evaluation of the mortality and of the pathogens that cause sepsis development in Syrian patients. In a multicenter international study, the hospital mortality rate of sepsis patients was found to be 47.2 % in Africa and 13.1% in North America (16). Another study showed that mortality rate of severe sepsis was 36.7 % in South/Central America and 44% Eastern Europe (17). In Uganda, hospital mortality associated with sepsis was 43% (18), in Thailand 50% (19). In a study conducted in an ICU in Turkey, the sepsis mortality rate was reported as 87.3%. The most commonly isolated agent in the development of sepsis, according to that study, was Gr (-) bacteria, at 65.9% (20). In our study, it was seen that the sepsis mortality rates of the Syrian patients were similar to those of the local population (80%).

The most common pathogen among sepsis patients was Acinetobacter baumannii; the second most common was E. Coli. While death from sepsis in high-income countries has been 30%-40% in the last decade and is steadily falling (21,22), the mortality rate in low-income regions of the world has risen as high as 80% (23-26). In a multicenter study conducted in Turkey, the mortality was

Table 4. Distribution of microorganisms detected, by culture type

Microorganism	All patients n=139	Sepsis patients n=35	Blood culture	Tracheal culture	Urine culture	Injury site culture
None detected	89 (48.9)	-	-	-	-	-
Acinetobacter baumannii	17 (9.3)	17 (23.6)	5 (17.8)	9 (34.7)	3 (21.4)	3 (42.8)
Streptococcus pneumonia	3 (1.6)	3 (4.2)	2 (7.1)	0 (0.0)	1 (7.1)	0 (0.0)
Candida fungus	9 (4.9)	8 (11.1)	4 (14.3)	2 (7.7)	2 (14.4)	0 (0.0)
MSSA	6 (3.3)	4 (5.6)	2 (7.1)	1 (3.8)	1 (7.1)	0 (0.0)
E. Coli	12 (6.5)	5 (6.9)	4 (14.3)	0 (0.0)	1 (7.1)	0 (0.0)
Klebsiella pneumoniae	8 (4.4)	7 (9.7)	0 (0.0)	6 (23.2)	0 (0.0)	1 (14.3)
VRE	1 (0.6)	1 (1.4)	1 (3.6)	0 (0.0)	0 (0.0)	0 (0.0)
Stenotrophomonas maltophilia	4 (2.2)	4 (5.5)	3 (10.7)	1 (3.8)	0 (0.0)	0 (0.0)
Pseudomonas aeruginosa	7 (3.9)	4 (5.5)	1 (3.6)	2 (7.7)	0 (0.0)	1 (14.3)
Enterococcus	4 (2.2)	3 (4.1)	2 (7.1)	1 (3.8)	0 (0.0)	0 (0.0)
H. influenzae	1 (0.6)	1 (1.4)	0 (0.0)	1 (3.8)	0 (0.0)	0 (0.0)
Aspergillus fumigatus	1 (0.6)	0 (0.0)	0 (0.0)	0 (0.0)	0 (0.0)	0 (0.0)
Enterobacteriaceae	2 (1.1)	1 (1.4)	1 (3.6)	0 (0.0)	0 (0.0)	0 (0.0)
MRSA	1 (0.6)	1 (1.4)	1 (3.6)	0 (0.0)	0 (0.0)	0 (0.0)
Viruses (H1N1)	2 (1.1)	1 (1.4)	1 (3.6)	0 (0.0)	0 (0.0)	0 (0.0)
Toplam	182/100	72/100	28/100	26/100	14/100	7/100

MSSA, CNS, VRE, MRSA
found to be very high among patients with sepsis and septic shock in the ICU (55.7% and 70.4, respectively). The most isolated microorganism was Acinetobacter spp (33.7%) and approximately 74.8% of Acinetobacters were resistant to carbapenems (27). In our study, the rate of Acinetobacter spp in all Syrian patients was 9.3% and 23.6% in patients with sepsis. Carbapenem use rates were 11.9% in all Syrian patients and 19.5% in sepsis patients.

In the study of Turkatan at al, 37 patients in an ICU were hospitalized because of infection. The most common community infection was pneumonia (49%) and urinary infection (16.3%). In eight of them, the infection developed as a result of community-acquired microorganisms, the most important of which was M. tuberculosis (11). This situation was thought to have been caused by the difficulty of the refugees’ living conditions, and high population density of their living quarters. E. Coli was the second most common pathogen reported in that study (11). In our study, although M. tuberculosis was not observed as a causative pathogen, it was noted that at the time of admission, seven patients had

Table 5. Evaluation of sepsis patients’ data
Age
Mean ± SD
41.29±19.11
49.93±22.24
48.20±21.67
0.290
Day sepsis developed (+)
Median (min/max)
7 (2/18)
5 (1/75)
5 (1/75)
0.774
N/L Ratio
Median (min/max)
9.63 (5.75/150)
11.50 (0.67/110.34)
11.34 (0.67/150)
1
N/L Ratio %
Median (min/max)
9.65 (6.58/15.68)
11.19 (2.10/47.25)
11.01 (2.10/47.25)
0.749
Blood glucose value at admission
Median (min/max)
145 (83/229)
194 (73/475)
175 (73/475)
0.177
SOFAscore
Median (min/max)
5 (2/5)
5 (2/10)
5 (2/10)
0.214
DIC
Median (min/max)
31 (11/46)
17 (2/270)
17 (2/270)
0.121
Sex
Female n (%)
2 (28.6)
8 (28.6)
10 (28.6)
1
Male n (%)
5 (71.4)
20 (71.4)
25 (71.4)
ARF
No n (%)
5 (71.4)
14 (50.0)
19 (54.3)
0.415
Yes n (%)
2 (28.6)
14 (50.0)
16 (45.7)
1
Blood culture
Negative n (%)
3 (42.9)
11 (39.3)
14 (40.0)
1
Positive n (%)
4 (57.1)
17 (60.7)
21 (60.0)
Tracheal culture
Negative n (%)
3 (42.9)
11 (39.3)
14 (40.0)
1
Positive n (%)
4 (57.1)
17 (60.7)
21 (60.0)
Urinary culture
Negative n (%)
5 (71.4)
20 (71.4)
25 (71.4)
Positive n (%)
2 (28.6)
8 (28.6)
10 (28.6)
Injury site culture
Negative n (%)
5 (71.4)
25 (89.3)
30 (85.7)
0.256
Positive n (%)
2 (28.6)
3 (10.7)
5 (14.3)

Mann-Whitney U test (Monte Carlo)/ independentsamples t test/ Pearson’s chi-squared test (Exact/Monte Carlo)/ Fisher-Freeman-Halton test (Monte Carlo)/ Fisher exact test (Exact)/ Odds Ratio (95% Confidence Interval)/, min: minimum, max: maximum, SD: Standard deviation, ARF: Acute renal failure, N/L ratio: Neutrophil/Lymphocyte ratio, DIC: Days in intensive care, SOFA: Sequential organ failure assessment.
developed sepsis as a result of other community-acquired factors. Two of those patients were initially diagnosed with H1N1, and Oseltamivir treatment was begun; the diagnosis was later confirmed. S. pneumoniae was detected in three of the remaining patients, H. influenzae in one, and S. aureus and aspergilloma in the last one.

It has been reported that ICU admission rates are high in migrant populations because such factors as a lack of prevention and protection in healthcare services, the withdrawal of vaccination programs, low environmental hygiene standards, outdoor living conditions, overcrowding, and exposure to low temperatures have raised the sensitivity to infection (28-33).

Regarding the limitations of our study, it was not possible to evaluate the ICU hospitalization among the local population in the same period, and the number of cases was low. However, its most important advantage is the fact that it is the first study evaluating sepsis among the Syrian patients in an ICU in our country; as such, it can shed light on wider studies to be conducted.

Conclusion

Syrian patients were admitted to the ICU mostly due to respiratory system disease. Comorbid disease was the most common heart disease. Acinetobacter baumanii and E. Coli were isolated most frequently in Syrian patients and 2nd, 3rd- and 4th-generation cephalosporins were used most frequently in septic patients, and carbapenems also were used in these patients. APACHE II scores, the duration of MV, and the number of days hospitalized in ICU were all found to be higher for deceased patients than for the survivors.

Ethics

Ethics Committee Approval: Approval for the study (05.04.2017/04) was obtained from Kahramanmaraş Sütçü İmam University’s Ethics Committee.

Informed Consent: Patient information was analyzed retrospectively from the records and patient files in the hospital’s information management system.

Peer-review: Externally peer-reviewed.

Authorship Contributions

Concept: Y.O., Ş.P.T, H.T.G., S.C., FO., FM.Y, Ö.FB., A.D.
Design: Y.O., Ş.P.T, H.T.G., S.C., FO., FM.Y, Ö.FB., A.D.
Data Collection or Processing: Y.O., Ş.P.T, H.T.G., S.C., FO., FM.Y, Ö.FB., A.D.
Analysis or Interpretation: Y.O., Ş.P.T, H.T.G., S.C., FO., FM.Y, Ö.FB., A.D.
Writing: Y.O., FO., FM.Y, A.D.

Conflict of Interest: No conflict of interest was declared by the authors.

Financial Disclosure: The authors declared that this study received no financial support.
References

1. Maier T, Schmidt M, Mueller J. Mental health and care utilization in adult asylum seekers. Swiss Medical Weekly 2010;140:w13110.

2. Pfortmueller CA, Graf F, Tabarra M, Lindner G, Zimmermann H, Exadaktylos AK. Acute health problems in African refugees: ten years’ experience in a Swiss emergency department. Wiener Klinische Wochen Schrift 2012;124:647-52.

3. United Nations High Commissioner for Refugees. UNHCR Global Appeal 2015. Available from: s URL: http://www.unhcr.org/5461e60716.htm. Accessed June 16, 2016.

4. 3RP. Regional Refugee & Resilience Plan 2016-2017 in response to the Syria crisis. 2016. Available from: s URL: http://www.3rp syria.crisis.org/wp/wp content/uploads/2016/02/ turkey-2016-Regional-Refugee Resilience-Plan.pdf. Accessed June 16, 2016.

5. AFAD. Republic of Turkey Prime Ministry Disaster and Emergency Management Presidency. Syrian Refugees in Turkey, 2013. Field Survey Results. Available from: s URL: https://www.afad.gov.tr/Dokuman/TR/61-2013123015505-syrian-refugees-in-turkey2013_print.pdf. Accessed June 16, 2016.

6. AFAD. Republic of Turkey Prime Ministry Disaster and Emergency Management Presidency. Current Status in AFAD Temporary Protection Centres. 2016. Available from: s URL: http://www. afad.gov.tr/en/Icerik Yazdir.aspx?ID=1&IcerikID=848. Accessed June 16, 2016.

7. Bischoff A, Denhaerynck K, Schneider M, Battegay E. The cost of warand the cost of health care-an epidemiological study of asylum seekers. Swiss Medical Weekly 2011;141:w13252.

8. Pfortmueller CA, Stotz M, Lindner G, Muller T, Rodondi N, Exadaktylos AK. Multi morbidity in adult asylum seekers: a first overview. PLoSOne 2013;8:e82671.

9. DuzkoYU L Basceken SI, Kesilmez EC. Physical Trauma among Refugees: Comparison between Refugees and Local Population Who Were Admitted to Emergency Department-Experience of a State Hospital in Syrian Border District. J Environ Public Health 2017;2017:8626275.

10. Kocamer ŞB, Dokur M, Uysal E, Çalıkner K, Gökçe ON, Deniz IK, et al. Characteristics of the injuries of Syrian refugees sustained during the civil war. Ulus Travma Acil Cerrahi Derg 2017;23:199-206.

11. Turkman T, Ak O, Erdem H, Ozcegiz D. Hargeavess S, Kaya S, et al. Community acquired infections among refugees leading to Intensive Care Unitad missions in Turkey. Int J Infect Dis 2017;58:111-4.

12. van Berlaer G, Bohle Carbonell F, Mananssa S, de Béthune X, Buyl R, Debacker M, et al. A refugee camp in the centre of Europe: clinical characteristics of asylum seekers arriving in Brussels. BMJ Open 2016;24:6:e013963.

13. Çelikel A, Karamalan B, Demirkiran DS, Zeren C, Arslan MM. A series of civilian fatalities during the war in Syria. Ulus Travma Acil Cerrahi Derg 2014;20:338-42.

14. Duramaz A, Bilgili MG, Bayram B, Ziroglu N, Bayrak A, Avkan MC. Orthopedic trauma surgery and hospital cost analysis in refugees; the effect of the Syrian civil War. International Orthopaedics 2017;41:877-84.

15. Pfortmueller CA, Schwetlick M, Mueller T, Lehmann B, Exadaktylos AK. Adult Asylum Seekers from the Middle East Including Syria in Central Europe: What Are Their Health Care Problems? PLoS One 2016;11:e0148196.

16. Vincent J-L, Marshall JC, Namendys-Sepúlveda D, Villegas D, Méndez D, Giorgi G editors. Principles of medicine disasters. In: Parry E, Godfrey R, Mabet JA, at al. Differences in critical care practice between an industrialized and a developing country. Wien Klin Wochenschr 2008;120:600-7.

17. Baykara N, Akalin H, Arslantaş MK, Hanci V, Çağlayan Ç, Kahveci F, et al. Epidemiology of sepsis in intensive care units in Turkey: a multicenter, point-prevalence study. Critical Care 2018;22:93.

18. Healing TD, Pelly MD. Refugees and disasters. In: Pary E, Godfrey R, Mabert D, Gill G editors. Principles of medicine in Africa. Cambridge University Press: Singapore; 2004. p. 77-86.

19. McCreary R, Ashley EA, Wuthiekanun V, Tan SO, Pimpanaranak M, Vladaei-Nguyen SJ, et al. Arthrodop bone disease: the leading cause of fever in pregnancy on the Thai-Burmese border. PLoS Negl Trop Dis 2010;4:e888.

20. Esteban-Vasallo MD, Dominguez-Berjon MF, Aery-Perreten N, Astray-Mochales J, Martin-Martinez F, Genova-Maleras R. Pandemic influenza A (H1N1) 2009 in Madrid, Spain: incidence
and characteristics in immigrant and native population. Eur J Public Health 2012;22:792-6.

31. Pourkarim MR, Zandi K, Davani NA, Pourkarim HR, Amini-Bavil-Olyaee S. An aberrant high prevalence of hepatitis B infection among Afghans residing in one of the Bushehr refugee camps (Dalakcamp) in the south west of Iran. Int J Infect Dis 2008;12:101-2.

32. Fan CK, Liao CW, Wu MS, Hu NY, Su KE. Prevalence of Pediculus capitis infestation among school children of Chinese refugees residing in mountainous areas of northern Thailand. Kaohsiung J Med Sci 2004;20:183-7.

33. Mateen FJ, Carone M, Al-Saedy H, Nyce S, Ghosn J, Mutuerandu T, et al. Medical conditions among Iraq refugees in Jordan: data from the United Nations Refugee Assistance Information System. Bull World Health Organ 2012;90:444-51.