INTRODUCTION

DNA replication in eukaryotic organisms begins with the loading of the pre-RC (pre-replication complex) at the replication origins. This process requires the ordered assembly of ORC (origin recognition complex), Cdc6 (cell division cycle 6), Cdt1 (chromatin licensing and DNA replication factor 1), MCM2–7 (minichromosome maintenance 2–7) to replication initiation sites in late M to G1 phase [1–4].

ORC, a six-subunit complex, functions as the initiator in recognizing replication start sites as well as interacting with subsequent replication factors (pre-RC components) [4]. It was first discovered in the unicellular model organism Saccharomyces cerevisiae as a multi-protein complex binding to ARS (autonomously replicating sequence) [5]. Subsequently, most ORC orthologues have been identified in other eukaryotic organisms [6]. Although functionally conserved, the mechanisms of how ORC binds to replication origins are highly diverse. In contrast with ARS in S. cerevisiae, the binding mechanism and the consensus origin sequence in higher eukaryotes remains a mystery. In search for the answers, additional factors have been reported over the past few years in order to delineate the molecular mechanism [7], including the ORC-associating protein ORCA/LRWD1 (leucine-rich repeats and WD-repeat-domain-containing 1) that stabilizes ORC binding to chromatin in human cells [8–11].

Interestingly, ORC also exhibits non-replication functions [12], including the involvements in transcription silencing and heterochromatin formation [13–18], chromosome condensation and chromatid cohesion [19–28], centrioles and centrosomes [29,30], telomere function [8,31,32], neuron development [33–36] and cytokinesis [37–41]. Remarkably, some of these functions are independent of ORC’s intrinsic replication property and are therefore genetically separable, demonstrating a much more complicated ORC network.

Cdc6 and Cdt1 are important replication licensing factors, with protein levels and cellular localizations fluctuating in a cell-cycle-dependent manner [4]. When deregulated, they can lead...
to re-replication and genomic instability, linking these factors to various types of human cancers [42]. However, ORC and its relation to human diseases are just beginning to be investigated and understood. In this review, I provide several examples of ORC-related human diseases. Of note, in some cases, ORC mutations are the primary cause; while in other cases, host ORCs are exploited by the pathogens. For each instance, I further discuss how the molecular mechanism can be generalized as the model system, applied to other human diseases and utilized for developing potent therapeutic approaches.

MEIER–GORLIN SYNDROME (MGS): A LESSON FROM ORC MUTATIONS

MGS, also known as ear-patella-short stature syndrome, was first reported by Meier et al. in 1959 [43] and Gorlin et al. in 1975 [44]. Characterized by bilateral microtia, aplasia/hypoplasia of the patellae and prenatal and postnatal growth retardation [45,46], it is considered a rare autosomal recessive disorder based on its occurrence in siblings with equal sex ratio [47].

Sequencing of the MGS patients identified mutations in ORC1, ORC4, ORC6, CDC6 and CDT1 genes [46,48,49]. In contrast with truncation and splicing mutations, site-specific missense mutations that result in amino acid residue substitutions are more dominant in MGS, including E127G and R105Q in Orc1, Y174C in Orc4, Y232S in Orc6, T323R in Cdc6 and R462Q in Cdt1 [48,50,51]. This is consistent with the essential cellular functions of DNA replication machinery, and is further suggestive of functional domains underlying these specific single mutations. Among these five genes, mutations in ORC1 as well as ORC4 have been extensively investigated [46].

Both Orc1 E127G and R105Q mutations exhibit reduced chromatin binding of Orc1, diminished pre-RC assembly and impaired activation of replication origins [50]. Consequently, these Orc1-deficient cells show a slower S-phase progression compared with normal cells [50]. Interestingly, depletion of Orc1 by injecting morpholino oligonucleotides causes dwarfish in zebrafish, similar to the phenotype of MCM5 depletion [50], indicating that these growth defects are the results from (at least partially) the pre-RC pathway. In addition, since both E127G and R105Q mutations take place in the Orc1 N-terminal BAH (bromo adjacent homology) domain, studies concentrated on this domain have unveiled more detailed insights. The Orc1 BAH domain binds to H4K20me2 (H4K20 di-methylation) with high specificity and affinity, as demonstrated from in vivo association as well as crystal structural analysis [52]. Investigation using H4K20me2-binding-pocket mutants (Y64A and W88A) reveal that Orc1–H4K20me2 interaction is essential for ORC chromatin association and cell-cycle progression [52]. The functional relevance of this Orc1–H4K20me2 interaction is further tested in zebrafish. When human Orc1 mRNA is co-injected with zebrafish Orc1 morpholino oligonucleotides, the dwarf phenotype can be partially rescued compared with Orc1 morphant alone. However, Orc1–Y64A or Orc1–W88A mRNA is not able to rescue Orc1 morphants, exaggerating the growth defect instead [52]. Together with the fact that ORC subunits associate with histone marks [9–11,53,54], these results suggest that histone modifications may play a direct role in proper DNA replication through the regulation of ORC. Interruptions of these interactions (like Orc1–H4K20me2) that lead to defective cell-cycle progression or cell proliferation may explain the distorted growth in MGS (Figure 1).

Another missense mutation in human Orc4 Y174C was also identified through sequencing, and structural analysis also predicts this mutation to be pathogenic [51]. Orc4 contains a consensus AAA+ domain, which belongs to the AAA+ family (ATPases associated with a variety of cellular activities) that is pivotal to the initiation of eukaryotic DNA replication. The amino acid residue Tyr174 is between the Walker B motif and sensor I of the AAA+ domain, which may be responsible for interacting with a conserved arginine residue on an adjacent helix structure [3,4,51,55–57]. To further test this hypothesis, an equivalent missense mutation in S. cerevisiae was generated (orc4Y173C) according to its sequence conservation with higher eukaryotes. Indeed, genetic analyses reveal that this strain undergoes significant defect in G1 to S phase progression, and hence a reduced growth rate [51,58]. Therefore the point mutation on this residue is likely to cause the pathological effect.

Additional variants were also reported in Orc6, Cdc6 and Cdt1 [48,49,51]; however, the underlying molecular mechanism is not clear. One possibility, as discussed above, could be the impaired function of the pre-RC that leads to impaired DNA replication and cell-cycle progression. When rapid cell proliferation is on demand, especially at the early stages of development, insufficient growth may result in symptoms seen in MGS patients.
Notably, the most severe growth retardation was observed in individuals with \(\text{ORC}1 \) mutations [49], indicating additional dysregulation may exist. In fact, Orc1 controls cyclin E-CDK2 (cyclin-dependent kinase 2)-dependent centriole and centrosome duplication in human cells [29]. The N-terminal 1–250 region of Orc1 is necessary and sufficient to inhibit both cyclin E-CDK2 and cyclin A-CDK2 kinase activities, thus called CID (CDK inhibitory domain) [30]. The R105Q mutation, which lies within the CID, can specifically abolish the Orc1 inhibition of cyclin E-CDK2 kinase but not cyclin A-CDK2 kinase. Ectopically expressing this mutant causes reduplication of centrioles/centrosomes and slower cell proliferation [30]. These data clearly demonstrate that reduplicated centrioles and centrosomes could be another reason for the onset of MGS (Figure 1). Similarly, Orc4 associates with neuronal membranes and is required for proper dendritic growth and branching [36]; whereas Orc6 localizes to kinetochores and is involved in cytokinesis [37–41]. These findings further raise the question of whether these non-replication effects can also contribute to the emergence of MGS.

Another possibility is from the perspective of gene expression. ORC is involved in transcription silencing and heterochromatin formation [13–18], as well as chromosome condensation and chromatid cohesion [19–28]. The study of mutations within the Orc1 BAH domain also indicates the connection between ORC and chromatin modifications [52]. Therefore it is highly possible that mutations in ORC could potentially modulate a subset of gene expression via the alteration of chromatic contexts, which in turn results in the developmental defects seen in MGS. If this is the case, then the aetiology of this syndrome may, to a great extent, be comparable with the role of cohesion proteins in the CdLS (Cornelia de Lange syndrome) and RBS/SC (Roberts-SC phocomelia syndromes) [59–64]. Taking CdLS as an example, it is a dominant genetic disorder characterized by growth and mental retardations among other developmental anomalies [65,66]. Mutations in the cohesin structural components SMC1A, SMC3 and the cohesin regulator NIPBL (nipped-B-like) are the three major mutated proteins causing the CdLS, with the latter leading to the most severe defects [67–70]. Other than its canonical role is regulating sister chromatid cohesion, cohesin also regulates gene expression. For instance, gene expressions are significantly altered in \(\text{Drosophila} \) BG3 cells upon cohesin knockdown [71], and genome-wide analysis in cohesin and NIPBL-mutated human cells also revealed a large number of dysregulated gene expressions [72]. These data indicate that cohesin mutations disturb the expression of critical developmental genes, and hence is a major cause of the CdLS. Similarly, ORC-mutation-mediated alterations of chromatin structure and transcription regulation may also be underestimated trigger for MGS, and genome-wide gene-expression analysis would be a necessary approach to understanding its molecular basis.

In addition to the mutations of pre-RC components in MGS, several other diseases were linked to variations/mutations of individual ORC subunits. First, a SNP (single nucleotide polymorphism) within the \(\text{ORC}3 \) gene has been associated with schizophrenia [73]. The \(\text{Drosophila} \) Orc3 homologue latheo was first identified as a protein affecting associative learning and/or memory [33], and was demonstrated to play an important role in regulating Ca\(^{2+}\)-dependent synaptic plasticity [34,35]; whereas mouse Orc3 is required for dendritic growth [36]. Whether these Orc3-mediated functions are causative to schizophrenic symptoms need further evaluation. Second, a point mutation in \(\text{ORC}4 \) gene is correlated with B-cell lymphoproliferative disorders, though the functional relevance needs to be elucidated [74]. Third, the \(\text{ORC}5 \) gene has been linked to adult AML (acute myeloid leukaemia) and MDS (myelodysplastic syndrome), since its chromosomal location is within a region that is frequently deleted in myeloid malignancy patients. However, sequencing analyses of the remaining \(\text{ORC}5 \) allele in AML or MDS patients with chromosomal deletions did not detect any mutations [75]. Fourth, ORCA/LRWD1 is highly expressed in testis [76,77], and \(\text{ORCA/LRWD1} \) gene may be a genetic risk to the sertoli cell-only syndrome [78]. These reports clearly suggest that individual mutations in ORC subunits and related factors are involved, directly or indirectly, in many human diseases. Further functional demonstrations on these correlations will be highly desired.

EPSTEIN-BARR VIRUS (EBV): TAKING ADVANTAGE OF HOST ORC

In 1964, a herpesvirus-like particle was discovered in a cell line derived from a Burkitt’s lymphoma biopsy by Epstein et al. in Barr group, and was therefore named EBV [79]. EBV is transmitted among people via saliva; and strikingly, more than 90% of the world population is infected by EBV [80]. As one of the most common viruses, most initial infections take place in childhood with no severe symptoms; and once infected, EBV can stay at its latent state infinitely in the host [81]. In the case that EBV becomes active, especially in people with immunodeficiency, it can cause a number of diseases, including epithelial malignancies, mesenchymal malignancies, lymphomas and lymphoproliferative disorders [80].

EBV contains a double-stranded DNA and replicates as an episome in latently infected cells. The duplication process requires the EBV-encoded protein EBNA1 (Epstein–Barr nuclear antigen 1) binding to its origin of viral replication oriP [82]. Interestingly, human cells with a hypomorphic mutation in \(\text{ORC2} \) (\(\text{ORC2} \Delta l – \) cells) do not support the EBNA1-dependent replication of epimemes from oriP, but this replication is restored upon expression of wild-type Orc2 [83]. Immunoprecipitations demonstrate Orc2 associates with EBNA1, whereas ChIPs (chromatin immunoprecipitations) reveal Orc2 binds to oriP [83,84], indicating that EBV utilizes EBNA1 to recruit host ORC to its origin in order to replicate its DNA. Moreover, ectopically expressing the replication licensing factor Geminin in human HCT116 cells (with the plasmid containing oriP and EBNA1) inhibits replication from oriP, and this can be rescued by co-expressing of Cdt1 [83]. Other studies reveal that Orc1 and MCM exhibit cell-cycle-regulated associations with oriP: they bind to oriP in \(G_s \) phase and dissociate from it during S phase, while other ORC subunits remain...
American trypanosomiasis, also called Chagas’ disease, is a parasitic disease caused by the protozoan Trypanosoma cruzi [116]. T. cruzi is transmitted to humans by the insects, triatomines (also known as the ‘kissing bugs’) that feed on the blood from human faces. When triatomines bite on human skin, they pass T. cruzi parasites into their excrements that are left near the wounded skin, which allows parasites to enter and stay in the host’s circulatory system [116]. Approximately ten million people, especially in the tropical area, are suffering from Chagas’ disease [116].

African trypanosomiasis, also called sleeping sickness, is another parasitic disease caused by Trypanosoma brucei [117]. The sleeping sickness can be further divided into acute and chronic types that are caused by two subspecies of T. brucei: T. b. rhodesiense and T. b. gambiense, respectively [117]. Infection by T. b. rhodesiense usually follows an animal-fly-human cycle, with the fast development (weeks) into host’s CNS (central nervous system) [118]. Infection by T. b. gambiense instead follows a human–fly–human cycle, with a long duration (months or years) of infection, and it is this chronic sleeping sickness that accounts for approximately 95% of the total African trypanosomiasis cases [118].

Notably, both American and African trypanosomiasis can also be infected via other transmission manners, including blood transfusions, vertical transmission and accidental infections [118]. Currently, benznidazole and nifurtimox are the two common medicines used to treat American trypanosomiasis, whereas pentamidine, suramin, melarsoprol and eflornithine are the four common medicines used to treat African trypanosomiasis. However, they all face the issues of side effect, high toxicity, ineffective in chronic phase and drug resistance [116]. Therefore
the search for new alternate becomes a necessity. Recent progress on the investigation of *T. cruzi* and *T. brucei* ORCs shed light on identifying novel drug targets.

Although trypanosomatids belong to eukaryotes, sequence alignment and structural analyses of *T. cruzi* and *T. brucei* protein database reveal that they both have protein sequences closer to archaeal Orc1/Cdc6 instead of the eukaryotic ORC, and are hence named TcOrc1/Cdc6 and TbOrc1/Cdc6 [119]. Orc1/Cdc6 is expressed in the nuclei of trypanosomes and is associated with chromatin throughout the cell cycle. Using thermostable yeast mutants, it is demonstrated that both TcOrc1/Cdc6 and TbOrc1/Cdc6 can complement the *cdc6* mutant, but not the *orc1* mutant [119]. Further, RNAi (RNA interference)-mediated depletion of TbOrc1/Cdc6 results in enucleated cells. Flow cytometry analyses on those cells reveal a sub-G0/G1 population (cells with no nucleus but only the kinetoplast) as well as a decreased population of G2/M cells, all indicating a hampered DNA replication [119]. Taken together, these data confirm that TcOrc1/Cdc6 and TbOrc1/Cdc6 are the components responsible for the initiation of replication in trypanosomes.

In a closer look at the protein sequences of TcOrc1/Cdc6 and TbOrc1/Cdc6, they both contain the signature sequences of Walker A and Walker B motifs as well as sensor I and II regions of the AAA+ family [119]. Recombinant TcOrc1/Cdc6 and TbOrc1/Cdc6 both exhibit ATP binding/hydrolysis activities, corroborating the in silico prediction. Moreover, in the presence of salmon sperm DNA, Orc1/Cdc6 displays enhanced ATPase activity [119], indicating that trypanosome Orc1/Cdc6 ATPase might be responsible for defining origin-binding specificity, similar to yeast Cdc6 [120]. A number of drugs targeting the bacterial type II topoisomerases DNA gyrase and topoisomerase IV are being used, based on the efficacy mainly as ATPase inhibitors [121]. Since *T. cruzi* and *T. brucei* use archaeal-like Orc1/Cdc6 as the initiation factor, screening of specific inhibitors that only target TcOrc1/Cdc6 and TbOrc1/Cdc6 activities but not that of human pre-RC would greatly benefit the treatment of American and African trypansomiasis (Figure 2).

Recently, more insights into the replication initiation have been gained from the studies in *T. brucei*, rendering it an effective new model organism and providing more opportunities for the development of drug candidates. First, the identification and characterization of the CMG complex (Cdc45–MCM2–7–GINS) in *T. brucei* have been performed, and its requirement for DNA replication has also been demonstrated [122,123]. Secondly, another Orc1-like protein (Orc1b), bigger than Orc1/Cdc6 but smaller than the yeast Orc1 homologue, was identified. Similar to Orc1/Cdc6, Orc1b interacts with MCM proteins, indicating that *T. brucei* has two forms of Orc1-like proteins, Orc1/Cdc6 and Orc1b that both could potentially recruit MCM to form the pre-RC [122]. Thirdly, in search of Orc1/Cdc6-interacting factors, an Orc4 orthologue and two novel factors (Tb7980 and Tb3120) were identified. RNAi-mediated knockdown of these factors demonstrate that they are essential for the growth of *T. brucei* cells [123]. Since most of these newly identified factors are not conserved in mammalian cells, they could serve as potential drug targets of *T. brucei*-mediated African trypanosomiasis (Figure 2).

Interestingly, direct evidence of TbOrc1/Cdc6’s function in DNA replication and telomere-linked VSG (variant surface glycoprotein) silencing and switching has been reported [124]. Each trypanosome can only express one type of VSG, and VSG is the only antigen that can be targeted by the host; consequently, trypanosomes try to escape from the host immune response by changing the expression to another VSG [125]. Therefore in addition to *T. brucei*’s own replication machinery, targeting the role of TbOrc1/Cdc6 in controlling VSG switching provides an alternative approach: restricting *T. brucei*’s VSG expression/switching and providing constant target for the host’s immune system to eliminate *T. brucei* (Figure 2).

Based on the sequence homology, other protozoa like *Giardia lamblia* (one major cause of diarrhoeal diseases [126]) and *Leishmania major* (the pathogen for cutaneous leishmaniasis [127]) also have conserved Orc1/Cdc6 and Orc4 [123]. Therefore our knowledge gained from *T. cruzi* and *T. brucei* could also be applied to the improvement of diagnoses and/or treatments of these diseases.

CONCLUSIONS AND PERSPECTIVES

The human body is constantly being attacked by internal mutations as well as external pathogens. ORC, as one most important complex in all eukaryotes, is inevitably involved in these processes and has been linked to both aspects in various diseases.
For those ORC-related genetic diseases, advancing biotechnology seems a must. On the one hand, family-based genome/exome sequencing makes the identification of numerous SNP a highly effective approach [128]. As demonstrated from the study on Orc1 and Orc4 mutations in MGS, follow-up functional analyses based on the SNP can now be performed and the mechanistic links are beginning to be appreciated. On the other hand, with many mutations diagnosed and characterized in different ORC-associated diseases, the urge for replacing the mutated genes with functional ones through gene therapy warrants the therapeutic focus.

For those pathogen-mediated diseases, one should take advantage of the unique characteristics of pathogens. As the γ herpesvirinae subfamily members of the herpesvirus, EBV and KSHV share common mechanism for latent origin replication: utilizing host’s cellular replication machinery and being subject to licensing system regulation [115]. Therefore targeting EBV/KSHV-specific factors (like compounds targeting G-quadruplex RNA and PARP activity) illuminates an alternative route to eliminating their latency. *T. cruzi* and *T. brucei* use archaeal-like Orc1/Cdc6 in the host system, so targeting archaean Orc1/Cdc6 ATPase activity but not that of human pre-replication complex may be a feasible angle.

REFERENCES

1. Dutta, A. and Bell, S. P. (1997) Initiation of DNA replication in eukaryotic cells. Annu. Rev. Cell Dev. Biol. **13**, 293–332
2. Kelly, T. J. and Brown, G. W. (2000) Regulation of chromosome replication. Annu. Rev. Biochem. **69**, 829–880
3. Bell, S. P. (2002) The origin recognition complex: from simple origins to complex functions. Genes Dev. **16**, 659–672
4. Bell, S. P. and Dutta, A. (2002) DNA replication in eukaryotic cells. Annu. Rev. Biochem. **71**, 333–374
5. Bell, S. P. and Stillman, B. (1992) ATP-dependent recognition of eukaryotic origins of DNA replication by a multiprotein complex. Nature **357**, 128–134
6. Gavin, K. A., Hidaka, M. and Stillman, B. (1995) Conserved initiator proteins in eukaryotes. Science **270**, 1667–1671
7. Shen, Z. and Prasanth, S. G. (2012) Emerging players in the initiation of eukaryotic DNA replication. Cell Div. **7**, 22
8. Shen, Z., Sathyam, K. M., Geng, Y., Zheng, R., Chakraborty, A., Freeman, B., Wang, F., Prasanth, K. V. and Prasanth, S. G. (2010) A WD-repeat protein stabilizes ORC binding to chromatin. Mol. Cell **40**, 99–111
9. Bartke, T., Vermeulen, M., Xhemalce, B., Robson, S. C., Mann, M. and Kouzarides, T. (2010) Nucleosome-interacting proteins regulated by DNA and histone methylation. Cell **143**, 470–484
10. Vermeulen, M., Eberl, H. C., Matarese, F., Marks, H., Denissenov, S., Butter, F., Lee, K., Olsen, J. V., Hyman, A. A., Stunnenberg, H. G. and Mann, M. (2010) Quantitative interaction proteomics and genome-wide profiling of epigenetic histone marks and their readers. Cell **142**, 967–980
11. Chan, K. M. and Zhang, Z. (2012) Leucine-rich repeat and WD repeat-containing protein 1 is recruited to pericentric heterochromatin by trimethylated lysine 9 of histone H3 and maintains heterochromatin silencing. J. Biol. Chem. **287**, 15024–15033
12. Sasaki, T. and Gilbert, D. M. (2007) The many faces of the origin recognition complex. Curr. Opin. Cell Biol. **19**, 337–343
13. Bell, S. P., Kobayashi, R. and Stillman, B. (1993) Yeast origin recognition complex functions in transcription silencing and DNA replication. Science **262**, 1844–1849
14. Foss, M., McNally, F. J., Laurerson, P and Rine, J. (1993) Origin recognition complex (ORC) in transcriptional silencing and DNA replication in *S. cerevisiae*. Science **262**, 1838–1844
15. Micklem, G., Rowley, A., Harwood, J., Nasmyth, K. and Diffley, J. F. (1993) Yeast origin recognition complex is involved in DNA replication and transcriptional silencing. Nature **366**, 87–89
16. Huang, D. W., Fanti, L., Pak, D. T., Botchan, M. R., Pimpinelli, S. and Kellum, R. (1998) Distinct cytoplasmic and nuclear fractions of *Drosophila* heterochromatin protein 1: their phosphorylation levels and associations with origin recognition complex proteins. J. Cell Biol. **142**, 307–318
17. Pak, D. T., Pflumm, M., Chesnokov, I., Huang, D. W., Kellum, R., Marr, J., Romanowski, P and Botchan, M. R. (1997) Association of the origin recognition complex with heterochromatin and HP1 in higher eukaryotes. Cell **91**, 311–323
18. Prasanth, S. G., Shen, Z., Prasanth, K. V. and Stillman, B. (2010) Human origin recognition complex is essential for HP1 binding to chromatin and heterochromatin organization. Proc. Natl. Acad. Sci. U.S.A. **107**, 15093–15098
19. Dillin, A. and Rine, J. (1998) Roles for ORC in M phase and S phase. Science **279**, 1733–1737
20. Gibson, D. G., Bell, S. P. and Aparicio, O. M. (2006) Cell cycle execution point analysis of ORC function and characterization of the checkpoint response to ORC inactivation in *Saccharomyces cerevisiae*. Genes Cells **11**, 557–573
21. Suter, B., Tong, A., Chang, M., Yu, L., Brown, G. W., Boone, C. and Rine, J. (2004) The origin recognition complex links replication, sister chromatin cohesion and transcriptional silencing in *Saccharomyces cerevisiae*. Genetics **167**, 579–591
22. Shimada, K. and Gasser, S. M. (2007) The origin recognition complex functions in sister-chromatid cohesion in *Saccharomyces cerevisiae*. Cell **128**, 85–99
23. Loupart, M. L., Krause, S. A. and Heck, M. S. (2000) Aberrant replication timing induces defective chromosome condensation in *Drosophila* ORC2 mutants. Curr. Biol. **10**, 1547–1556
24. Cuvier, O., Lutzmann, M. and Methall, M. (2006) ORC is necessary at the interphase-to-mitosis transition to recruit cdc2 kinase and disassemble RPA foci. Curr. Biol. **16**, 516–523
25. Pflumm, M. F. and Botchan, M. R. (2001) Orc mutants arrest in metaphase with abnormally condensed chromosomes. Development **128**, 1697–1707
26. Gillespie, P. J. and Hirano, T. (2004) Scc2 coupled replication licensing to sister chromatid cohesion in Xenopus egg extracts. Curr. Biol. **14**, 1598–1603
27. Takahashi, T. S., Yiu, P., Chou, M. F., Gygi, S. and Walter, J. C. (2004) Recruitment of Xenopus Scc2 and cohesin to chromatin requires the pre-replication complex. Nat. Cell Biol. **6**, 991–996
28. Prasanth, S. G., Prasanth, K. V., Siddiqui, K., Spector, D. L. and Stillman, B. (2004) Human Orc2 localizes to centrosomes, centromeres and heterochromatin during chromosome inheritance. EMBO J. **23**, 2651–2663
29. Hemery, A. S., Prasanth, S. G., Siddiqui, K. and Stillman, B. (2009) Orc1 controls centriole and centrosome copy number in human cells. Science **323**, 789–792
30. Hossain, M. and Stillman, B. (2012) *T. cruzi* Meier–Gorlin syndrome mutations disrupt an Orc1 CDK inhibitory domain and cause centrosome reduplication. Genes Dev. **26**, 1797–1810
31. Deng, Z., Dheekollu, J., Broccoli, D., Dutta, A. and Lieberman, P. M. (2007) The origin recognition complex localizes to telomere repeats and prevents telomere-circle formation. Curr. Biol. **17**, 1989–1995
32 Tatsumi, Y., Ezura, K., Yoshida, K., Yugawa, T., Narisawa-Saito, M., Kyono, T., Ohta, S., Obuse, C. and Fujita, M. (2008) Involvement of human ORC and TRF2 in pre-replication complex formation and chromosome segregation. Genes Cells 13, 1045–1059
33 Boynton, S. and Tully, T. (1992) Latheo, a new gene involved in associative learning and memory in Drosophila melanogaster, identified from P element mutagenesis. Genetics 131, 655–672
34 Pinto, S., Quintana, D. G., Smith, R, Mihalek, R. M., Hou, Z. H., Boynton, S., Jones, C. J., Hendrickcs, M., Velinzon, K., Wohlschlegel, J. A. et al. (1999) Latheo encodes a subunit of the origin recognition complex and disrupts neuronal proliferation and adult olfactory memory when mutant. Neuron 23, 45–54
35 Rohrbough, J., Pinto, S., Mihalek, R. M., Tully, T. and Broadie, K. (1999) latheo, a Drosophila gene involved in learning, regulates functional synaptic plasticity. Neuron 23, 55–70
36 Huang, Z., Zang, K. and Reichardt, L. F. (2005) The origin recognition core complex regulates dendrite and spine development in postmitotic neurons. J. Cell Biol. 170, 527–535
37 Prasanth, S. G., Prasanth, K. V. and Stillman, B. (2002) Orc6 involved in DNA replication, chromosome segregation, and cytokinesis. Science 297, 1026–1031
38 Dorsett, D. (2007) Roles of the sister chromatid cohesion apparatus in gene expression, development, and human diseases. Chromosoma 116, 1–13
39 Prasanth, S. G., Affimos, S., Al-Aama, J. Y., van Bokhoven, H. et al. (2001) Meier–Gorlin syndrome: report of eight additional cases and review. Am. J. Med. Genet. 102, 115–124
40 Dorsett, D. (2011) Cohesin, gene transcription and development. Curr. Opin. Genet. Dev. 21, 185–200
41 Dorsett, D. and Merkenschlager, M. (2013) Cohesin: genomic insights into controlling sister chromatid cohesion proteins on cut gene expression during wing development in Drosophila. Development 140, 4743–4753
42 Dorsett, D. (2009) On the molecular etiology of Cornelia de Lange syndrome. Ann. N.Y. Acad. Sci. 1151, 22–37
43 Dorsett, D. and Krantz, I. D. (2009) Cofhesin, gene expression and development: lessons from Drosophila. Chromosome Res. 17, 185–200
44 Affimos, S., Al-Aama, J. Y., van Bever, Y., Bober, M. B., Borm, G. F., Clayton-Smith, J. et al. (2012) Meier–Gorlin syndrome: growth and secondary sexual development of a microcephalic primordial dwarfism disorder. Am. J. Med. Genet. A 158, 2733–2742
45 Dorsett, D. and Merkenschlager, M. (2013) Cofhesin at active gene loci: a unifying theme for cohesin and gene expression from model organisms to humans. Curr. Opin. Cell Biol. 25, 209–220
46 de Munck, S. A., Otten, B. J., Schoots, J., Bicknell, L. S., Affimos, S., Al-Aama, J. Y., van Bever, Y., Bober, M. B., Borm, G. F., Clayton-Smith, J. et al. (2012) Meier–Gorlin syndrome genotype-phenotype studies: 35 individuals with pre-replication complex mutations and 10 without molecular diagnosis. Eur. J. Hum. Genet. 20, 598–606
47 Bicknell, L. S., Walker, S., Klingeisen, A., Stiff, T., Leitch, A., Kerzendorfer, C., Martin, C. A., Yeyati, P., Al Sanna, N., Bober, M. et al. (2011) Mutations in ORC1, encoding the largest subunit of the origin recognition complex, cause microcephalic primordial dwarfism resembling Meier–Gorlin syndrome. Nat. Genet. 43, 350–355
48 Guerney, D. L., Matsuoka, M., Jiang, H., Evans, S., Macgilivray, C., Nightingale, M., Perry, S., Ferguson, M., LeBlanc, M., Paquette, J. et al. (2011) Mutations in origin recognition complex gene ORC4 cause Meier–Gorlin syndrome. Nat. Genet. 43, 360–364
49 Bicknell, L. S., Walker, S., Klingeisen, A., Stiff, T., Leitch, A., Kerzendorfer, C., Martin, C. A., Yeyati, P., Al Sanna, N., Bober, M. et al. (2011) Mutations in ORC1, encoding the largest subunit of the origin recognition complex, cause microcephalic primordial dwarfism resembling Meier–Gorlin syndrome. Nat. Genet. 43, 350–355
50 Beck, D. B., Burton, A., Oda, H., Ziegler-Birling, C., Torres-Padilla, M. E. and Reipert, D. (2012) The role of PR-Set7 in replication licensing depends on Suvar4-20h. Genes Dev. 26, 2580–2589
51 Iyer, L. M., Leipe, D. D., Koonin, E. V. and Aravind, L. (2004) Evolutionary history and higher order classification of AAA+ ATPases. J. Struct. Biol. 146, 11–31
52 Dodson, D., Eissenberg, J. C., Misulovin, Z., Martens, A., Redding, B. and McMik, K. (2005) Effects of sister chromatid cohesion proteins on cut gene expression during wing development in Drosophila. Development 132, 4743–4753
53 Dodson, D. (2007) Roles of the sister chromatid cohesion apparatus in gene expression, development, and human diseases. Chromosoma 116, 1–13
54 Dodson, D. and Krantz, I. D. (2009) On the molecular etiology of Cornelia de Lange syndrome. Ann. N.Y. Acad. Sci. 1151, 22–37
55 Dodson, D. (2009) Cofhesin, gene expression and development: lessons from Drosophila. Chromosome Res. 17, 185–200
56 Bos, R. G., Toff, D. S., Schwartz, D. and Harper, J. F. (1994) Further delineation of the ear, patella, short stature syndrome (Meier–Gorlin syndrome). Clin. Dysmorphol. 3, 207–214
57 Bicknell, L. S., Bongers, E. M., Leitch, A., Brown, S., Schoots, J., Harley, M. E., Affimos, S., Al-Aama, J. Y., Bober, M. B., Brown, P. A. et al. (2011) Mutations in the pre-replication complex cause Meier–Gorlin syndrome. Nat. Genet. 43, 356–359
58 de Munck, S. A., Bicknell, L. S., Affimos, S., Al-Aama, J. Y., van Bever, Y., Bober, M. B., Clayton-Smith, J., Edreess, A. Y., Feingold, M., Fryer, A. et al. (2012) Meier–Gorlin syndrome genotype-phenotype studies: 35 individuals with pre-replication complex mutations and 10 without molecular diagnosis. Eur. J. Hum. Genet. 20, 598–606
69 Deardorff, M. A., Kaur, M., Yaeger, D., Rampuria, A., Korolev, S., Pie, J., Gil-Rodriguez, C., Arnedo, M.,.Loehs., K., B., Kline, A. D. et al. (2007) Mutations in cohesin complex members SMC3 and SMC1A cause a mild variant of Cornelia de Lange syndrome with predominant mental retardation. Am. J. Hum. Genet. 80, 485–494

70 Musio, A., Selcioni, A., Focarelli, M. L., Gervasoni, C., Milani, D., Russo, S., Vezzoni, P. and Lazzaro, L. (2006) X-linked Cornelia de Lange syndrome owing to SMC1L1 mutations. Nat. Genet. 38, 528–530

71 Schaal, C. A., Misulovin, Z., Sahota, G., Siddiqui, A. M., Schwartz, Y. B., Kahn, T. G., Pirrotta, V., Gause, M. and Dorsett, D. (2009) Regulation of the Drosha enhancer of split and inverted-gene complex genes by sister chromatid cohesion proteins. PLoS ONE 4, e6202

72 Liu, J., Zhang, Z., Bande, M., Itoh, T., Deardorff, M. A., Clark, D., Kaur, M., Tandy, S., Kondoh, T., Rappaport, E., et al. (2009) Transcriptional dysregulation in NIPBL and cohesion mutant human cells. PLoS Biol. 7, e1000119

73 DeRousse, P., Lenz, T., Burdick, K. E., Siris, S. G., Kane, J. M. and Malhotra, A. K. (2008) The genetics of symptom-based phenotypes: toward a molecular classification of schizophrenia. Schizophr. Bull. 34, 1047–1053

74 Radojkovic, M., Ristic, S., Divac, A., Nestorovic, A. and Radojkovic, D. (2009) Novel ORC4L gene mutation in B-cell lymphoproliferative disorders. Am. J. Med. Sci. 338, 527–529

75 Frohling, S., Nakabayashi, K., Scherer, S. W., Dohner, H. and Dohner, K. (2001) Mutation analysis of the origin recognition complex subunit 5 (ORC5L) gene in adult patients with myeloid leukemias exhibiting deletions of chromosome band 7q22. Hum. Genet. 108, 304–309

76 Teng, Y. N., Liao, M. H., Lin, Y. B., Kuo, P. L. and Kuo, T. Y. (2010) Expression of Iwr1 in mouse testis and its centrosomal localization. Int. J. Androl. 33, 832–840

77 Teng, Y. N., Huang, P. J. and Liu, Y. W. (2012) Nuclear factor-κB (NF-κB) regulates the expression of human testis-enriched leucine-rich repeats and WD repeat domain containing 1 (LRWD1) Gene. Int. J. Mol. Sci. 14, 625–639

78 Miyamoto, T., Koh, E., Tsujimura, A., Miyagawa, Y., Saijo, Y., Namiki, M. and Sengoku, K. (2013) Single-nucleotide polymorphisms in the LRWD1 gene may be a genetic risk factor for Japanese patients with Sertoli cell-only syndrome. Andrologia 29, 12077

79 Epstein, M. A., Achong, B. G. and Barr, Y. M. (1964) Virus particles in cultured lymphoblasts from Burkitt’s lymphoma. Lancet 1, 702–703

80 Maeda, E., Akahane, M., Kiryu, S., Kato, N., Yoshikawa, T., Hayashi, N., Aoki, S., Minami, M., Uozaki, H., Fukayama, M. and Ohtomo, K. (2009) Spectrum of Epstein–Barr virus-related diseases: a pictorial review. Jpn. J. Radiol. 27, 4–19

81 Tao, Q., Young, L. S., Woodman, C. B. and Murray, P. G. (2006) Epstein–Barr virus (EBV) and its associated human cancers – genetics, epigenetics, pathobiology and novel therapeutics. Front. Biosci. 11, 2672–2713

82 Young, L. S. and Murray, P. G. (2003) Epstein–Barr virus and oncogenesis: from latent genes to tumours. Oncogene 22, 5106–5121

83 Dhar, S. K., Yoshida, K., Machida, Y., Khaira, P., Chaudhuri, B., Wohlschlegel, J. A., Lefkak, M., Yates, J. and Dutta, A. (2001) Replication from oriP of Epstein–Barr virus requires human ORC and is inhibited by geminin. Cell 106, 287–296

84 Chaudhuri, B., Xu, H., Todorov, I., Dutta, A. and Yates, J. L. (2001) Human DNA replication initiation factors, ORC and MCM, associate with oriP of Epstein–Barr virus. Proc. Natl. Acad. Sci. U.S.A. 98, 10085–10089

85 Ritzi, M., Tillack, K., Gerhardt, J., Ott, E., Humme, S., Kremmer, E., Hammerschmidt, W. and Schepers, A. (2003) Complex protein–DNA dynamics at the latent origin of DNA replication of Epstein–Barr virus. J. Cell Sci. 116, 3971–3984

86 Ott, E., Norio, P., Ritzi, M., Schildkraut, C. and Schepers, A. (2011) The dyad symmetry element of Epstein–Barr virus is a dominant but dispensable replication origin. PLoS ONE 6, e18609

87 Jankelevich, S., Kolman, J. L., Bodnar, J. W. and Miller, G. (1992) A nuclear matrix attachment region organizes the Epstein–Barr viral plasmid in Raji cells into a single DNA domain. EMBO J. 11, 1165–1176

88 Gahn, T. A. and Schildkraut, C. L. (1989) The Epstein–Barr virus origin of plasmid replication, oriP contains both the initiation and termination sites of DNA replication. Cell 58, 527–535

89 Little, R. D. and Schildkraut, C. L. (1995) Initiation of latent DNA replication in the Epstein–Barr virus genome can occur at sites other than the genetically defined origin. Mol. Cell Biol. 15, 2893–2903

90 Julien, M. D., Polonskaya, Z. and Hearing, J. (2004) Protein and sequence requirements for the recruitment of the human origin recognition complex to the latent cycle origin of DNA replication of Epstein–Barr virus oriP. Virology 326, 317–326

91 Deng, Z., Linza, L., Chen, C. J., Shitivelband, S., So, W. and Lieberman, P. M. (2002) Telomeric proteins regulate epimodal maintenance of Epstein–Barr virus origin of plasmid replication. Mol. Cell 9, 493–503

92 Deng, Z., Atanasiu, C., Zhao, K., Marmorstein, R., Sbodio, J. I., Chi, N. W. and Lieberman, P. M. (2005) Inhibition of Epstein–Barr virus OriP function by tankyrase, a telomere-associated poly-ADP ribose polymerase that binds and modifies EBNA1. J. Virol. 79, 4840–4850

93 Atanasiu, C., Deng, Z., Wiedmer, A., Norseen, J. and Lieberman, P. M. (2006) ORC binding to TRF2 stimulates oriP replication. EMBO Rep. 7, 716–721

94 Tempera, I., Deng, Z., Atanasiu, C., Chen, C. J., D’Erme, M. and Lieberman, P. M. (2010) Regulation of Epstein–Barr virus OriP replication by poly(ADP-ribose) polymerase 1. J. Virol. 84, 4988–4997

95 Zhou, J., Deng, Z., Norseen, J. and Lieberman, P. M. (2010) Regulation of Epstein–Barr virus origin of plasmid replication (OrIP) by the S-phase checkpoint kinase Chk2. J. Virol. 84, 4979–4987

96 Norseen, J., Thomae, A., Sridharan, V., Aiyar, A., Schepers, A. and Lieberman, P. M. (2008) RNA-dependent recruitment of the origin recognition complex. EMBO J. 27, 3024–3036

97 Snudden, D. K., Hearing, J., Smith, P. R., Grasser, F. A. and Griffin, B. E. (1994) EBNA1, the major nucleic antigen of Epstein–Barr virus, resembles ‘RGG’ RNA binding proteins. EMBO J. 13, 4840–4847

98 Lu, C. C., Wu, C. W., Chang, S. C., Chen, Y. H., Hu, C. R., Yeh, M. Y., Chen, J. Y. and Chen, M. R. (2004) Epstein–Barr virus nucleic antigen 1 is a DNA-binding protein with strong RNA-binding activity. J. Gen. Virol. 85, 2755–2765

99 Burd, C. G. and Dreyfuss, G. (1994) Conserved structures and diversity of functions of RNA-binding proteins. Science 265, 615–621

100 Norseen, J., Johnson, F. B. and Lieberman, P. M. (2009) Role for G-quadruplex RNA binding by Epstein–Barr virus nuclear antigen 1 in DNA replication and metaphase chromosome attachment. J. Virol. 83, 10336–10346

101 Gerhardt, J., Jafar, S., Spindler, M. R., Ott, E. and Schepers, A. (2006) Identification of new human origins of DNA replication by an origin-trapping assay. Mol. Cell Biol. 26, 7731–7746
Origin recognition complex in human diseases

102 Noguchi, K., Vassilev, A., Ghosh, S., Yates, J. L. and DePamphilis, M. L. (2006) The BAH domain facilitates the ability of human Orc1 protein to activate replication origins in vivo. EMBO J. 25, 5372–5382

103 Thomae, A. W., Pich, D., Brocher, J., Spindler, M. P., Berens, C., Hock, R., Hammerschmidt, W. and Schepers, A. (2008) Interaction between HMGA1a and the origin recognition complex creates site-specific replication origins. Proc. Natl. Acad. Sci. U.S.A. 105, 1692–1697

104 Moriyama, K., Yoshizawa-Sugata, N., Obuse, C., Tsurimoto, T. and Ohsaki, E., Ueda, K., Sakakibara, S., Do, E., Yada, K. and Ballestas, M. E. and Kaye, K. M. (2001) Kaposi's sarcoma-associated herpesvirus (KSHV) terminal repeat (TR) sequence and specifically binds TR DNA. J. Virol. 78, 3250–3258

105 Papior, P., Arteaga-Salas, J. M., Gunther, T., Grundhoff, A. and Schepers, A. (2012) Open chromatin structures regulate the efficiencies of pre-RC formation and replication initiation in Epstein–Barr virus. J. Cell. Biol. 198, 509–528

106 Verma, S. C., Lan, K. and Robertson, E. (2007) Structure and function of latency-associated nuclear antigen. Curr. Top. Microbiol. Immunol. 312, 101–136

107 Ballestas, M. E., Chatis, P. A. and Kaye, K. M. (1999) Efficient persistence of extrachromosomal KSHV DNA mediated by latency-associated nuclear antigen. Science 284, 641–644

108 Ballestas, M. E. and Kaye, K. M. (2001) Kaposi's sarcoma-associated herpesvirus latency-associated nuclear antigen 1 mediates episome persistence through cis-acting terminal repeat (TR) sequence and specifically binds TR DNA. J. Virol. 75, 3250–3258

109 Hu, J., Garber, A. C. and Renne, R. (2002) The latency-associated nuclear antigen of Kaposi's sarcoma-associated herpesvirus supports latent DNA replication in dividing cells. J. Virol. 76, 11677–11687

110 Ohsaki, E., Ueda, K., Sakakibara, S., Do, E., Yada, K. and Yamanishi, K. (2004) Poly(ADP-ribose) polymerase 1 binds to Kaposi’s sarcoma-associated herpesvirus (KSHV) terminal repeat sequence and modulates KSHV replication in latency. J. Virol. 78, 9936–9946

111 Stedman, W., Deng, Z., Lu, F. and Lieberman, P. M. (2004) ORC, MCM, and histone hyperacetylation at the Kaposi’s sarcoma-associated herpesvirus latent replication origin. J. Virol. 78, 12566–12575

112 Verma, S. C., Choudhuri, T., Kaul, R. and Robertson, E. S. (2006) Latency-associated nuclear antigen (LANA) of Kaposi’s sarcoma-associated herpesvirus interacts with origin recognition complexes at the LANA binding sequence within the terminal repeats. J. Virol. 80, 2243–2256

113 Verma, S. C., Choudhuri, T. and Robertson, E. S. (2007) The minimal replicator element of the Kaposi’s sarcoma-associated herpesvirus terminal repeat supports replication in a semiconservative and cell-cycle-dependent manner. J. Virol. 81, 3402–3413

114 Verma, S. C., Lu, J., Cai, Q., Kosiyatnskul, S., McDowell, M. E., Schildkraut, C. L. and Robertson, E. S. (2011) Single molecule analysis of replicated DNA reveals the usage of multiple KSHV genome regions for latent replication. PLoS Pathog. 7, e1002365

115 Verma, S. C., Lan, K., Choudhuri, T., Cotter, M. A. and Robertson, E. S. (2007) An autonomous replicating element within the KSHV genome. Cell Host Microbe. 2, 106–118

116 Calderano, S. G., de Melo Godoy, P. D., da Cunha, J. P. and Elias, M. C. (2011) Trypanosome prereplication machinery: a potential new target for an old problem. Enzyme Res. 2011, 518258

117 Pepin, J. (2007) Combination therapy for sleeping sickness: a wake-up call. J. Infect. Dis. 195, 311–313

118 Pepin, J. and Meda, H. A. (2001) The epidemiology and control of human African trypanosomiasis. Adv. Parasitol. 49, 71–132

119 Godoy, P. D., Nogueira-Junior, L. A., Paes, L. S., Cornejo, A., Martins, R. M., Silber, A. M., Schenkenman, S. and Elias, M. C. (2009) Trypanosome prereplication machinery contains a single functional orci/cdc6 protein, which is typical of archaea. Eukaryot. Cell 8, 1592–1603

120 Mizushima, T., Takahashi, N. and Stillman, B. (2000) Cdc6p modulates the structure and DNA binding activity of the origin recognition complex in vitro. Genes Dev. 14, 1631–1641

121 Ostrov, D. A., Hernandez Prada, J. A., Corsino, P. E., Finton, K. A., Le, N. and Rowe, T. C. (2007) Discovery of novel DNA gyrase inhibitors by high-throughput virtual screening. Antimicrob. Agents Chemother. 51, 3688–3698

122 Dang, H. Q. and Li, Z. (2011) The Cdc45-Mcm2-7-GINS protein complex in trypanosomes regulates DNA replication and interacts with two Orc1-like proteins in the origin recognition complex. J. Biol. Chem. 286, 32424–32435

123 Tiengwe, C., Marcello, L., Farr, H., Gadelia, C., Burchmore, R., Barry, J. D., Bell, S. D. and McCulloch, R. (2012) Identification of ORC1/CDC6-interacting factors in Trypanosoma brucei reveals critical features of origin recognition complex architecture. PLoS ONE 7, e32674

124 Benmerzouga, I., Concepcion-Acedovo, J., Kim, H. S., Vandoros, A. V., Cross, G. A., Klingbeil, M. M. and Li, B. (2013) Trypanosoma brucei Oct1 is essential for nuclear DNA replication and affects both VSG silencing and VSG switching. Mol. Microbiol. 87, 196–210

125 Barry, J. D. and McCulloch, R. (2001) Antigenic variation in trypanosomes: enhanced phenotypic variation in a eukaryotic parasite. Adv. Parasitol. 49, 1–70

126 Huang, D. B. and White, A. C. (2006) An updated review on cryptosporidium and giardia. Gastroenterol. Clin. North Am. 35, 291–314, viii

127 Alrajhi, A. A., Ibrahim, E. A., De Vol, E. B., Khairat, M., Faris, R. M. and Maguire, J. H. (2002) Fluconazole for the treatment of cutaneous leishmaniasis caused by Leishmania major. N. Engl. J. Med. 346, 891–895

128 Veltman, J. A. and Brunner, H. G. (2012) De novo mutations in human genetic disease. Nat. Rev. Genet. 13, 565–575