Single-crystalline δ-Ni_2Si nanowires with excellent physical properties

Wen-Li Chiu1, Chung-Hua Chiu1, Jui-Yuan Chen1, Chun-Wei Huang1, Yu-Ting Huang1, Kuo-Chang Lu2, Cheng-Lun Hsin$^3^*$, Ping-Hung Yeh4 and Wen-Wei Wu$^1^*$

Abstract

In this article, we report the synthesis of single-crystalline nickel silicide nanowires (NWs) via chemical vapor deposition method using NiCl$_2$·6H$_2$O as a single-source precursor. Various morphologies of δ-Ni_2Si NWs were successfully acquired by controlling the growth conditions. The growth mechanism of the δ-Ni_2Si NWs was thoroughly discussed and identified with microscopy studies. Field emission measurements show a low turn-on field (4.12 V/\mu m), and magnetic property measurements show a classic ferromagnetic characteristic, which demonstrates promising potential applications for field emitters, magnetic storage, and biological cell separation.

Keywords: CVD, Ni$_2$Si nanowires, Field emission, Ferromagnetic characteristic

Background

With the miniaturization of electronic devices, one-dimensional (1-D) nanostructures have attracted much attention due to their distinct physical properties compared with thin film and bulk materials. One-dimensional materials, such as nanorods, nanotubes, nanowires (NWs), and nanobelts, are promising to be utilized in spintronics, thermoelectric and electronic devices, etc. [1-5]. Metal silicides have been widely synthesized and utilized in the contemporary metal-oxide-semiconductor field-effect transistor as source/drain contact materials, interconnection [6], and Schottky barrier contacts. One-dimensional metal silicides have shown excellent field emission [7,8] and magnetic properties [9-11]. Hence, recently, the synthesis and study of 1-D metal silicide nanostructures and silicide/silicon or silicide/silicon oxide nanoheterostructures have been extensively investigated [9,12-18]. Among various silicides, Ni silicide NWs with low resistivity, low contact resistance, and excellent field emission properties [19,20] are considered as a promising material in the critical utilization for the future nanotechnology. Thus, plenty of methods have been reported to synthesize Ni silicide NWs. Wu et al. have formed NiSi NWs by the chemical reaction between coated Ni metal layers and pre-fabricated Si NWs [13]. In addition, metal-induced growth, chemical vapor deposition (CVD), and chemical vapor transport method have been successfully applied to synthesize NiSi [21,22], Ni$_3$Si$_{12}$ [20], Ni$_5$Si [23], and Ni$_2$Si [24] NWs, and their physical properties have been investigated. For simplification of the whole processing, metal chloride compounds such as Fe(SiCl$_3$)$_2$(CO)$_4$ [9], CoCl$_2$ [11,25], or NiCl$_2$ [19] are commonly used as single-source precursors (SSPs) in synthesizing metal-silicide NWs. In this work, δ-Ni_2Si NWs were synthesized via CVD method with SSP of NiCl$_2$. The morphology and yield of δ-Ni_2Si NWs can be mastered through parameter control. The δ-Ni_2Si NWs were structurally characterized via high-resolution transmission electronic microscopy (HRTEM). The growth mechanisms of δ-Ni_2Si NWs and NiSi phases were identified through structural analysis by X-ray diffraction (XRD) and TEM. Electrical measurements showed an outstanding field emission property, and magnetic property measurements demonstrated a classic ferromagnetic behavior of the δ-Ni_2Si NWs.

Methods

The synthesis of the silicide NWs was carried out in the three-zone furnace via a chemical vapor deposition process. Commercial single-crystalline Si substrates were firstly cleaned in acetone for 10 min by ultrasonication. In order to remove the native oxide layer, substrates were dipped in dilute HF solutions for 30 s and then
dried by nitrogen gas flow. The nickel chloride (NiCl₂) precursor was placed in an aluminum boat at the upstream and flown by carrier gas Ar at 30 sccm, while Si substrates were put at the downstream. The temperatures of the precursor and substrates were controlled at 600°C and 400°C, respectively, and held for 15 to 30 min with a 10°C/min ramping rate. The vacuum pressure was controlled in the range of 6 to 15 Torr. The morphologies were investigated by field emission scanning electron microscopy. XRD and TEM were utilized in structural characterization. The noise of the atomic images was filtered by fast Fourier transform (FFT). The field emission property was measured using a Keithley power supply (Keithly Instruments Inc., Cleveland, OH, USA) with an anode probe of 180 μm in diameter. A superconductive quantum interference device (SQUID; MPMS XL, SQUID Technology, Heddington, Wiltshire, UK) was utilized for magnetic property measurements.

Results and discussion

Figure 1a,b,c,d shows the SEM images of samples grown at different pressures (6, 9, 12, 15 Torr, respectively), indicating that the geometry on the surface of substrates varied with the ambient condition. With lower partial pressure of the precursor, as shown in Figure 1a, Ni silicide NWs were not formed due to insufficient supply of the Ni source; however, small nanowhiskers can be observed on the surface. As the ambient pressure was raised to the range of 9 to 12 Torr (Figure 1b,c), NWs with high aspect ratios were obtained for proper concentrations of precursors and growth conditions. The diameter of the NWs slightly increased with the increase of the ambient pressure (from 30 to 50 nm to 40 to 70 nm). This may be attributed to the fact that higher precursor concentration is more suitable for the formation of δ-Ni₂Si system. Furthermore, when the pressure was higher than 15 Torr, the concentration of the Ni source was oversaturated and the morphology of the product turned into islands instead of NWs. Those islands may result from the condition change to decrease the surface energy of the system by transforming into bulk-like structures, as shown in Figure 1d. Thus, the diameter of the NWs can be controlled under specific pressure range and the ambient pressure plays an important role in maintaining the morphology of the NWs.

Figure 2a,b shows a series of SEM images of NWs with different growth times at a constant gas flow rate (30 sccm) and ambient pressure (9 Torr). The yield and density increased prominently when the growth time was raised from 15 to 30 min. The XRD analysis of different reaction time is shown in Figure 2c. The characteristic peaks were examined and identified to be orthorhombic δ-Ni₂Si and NiSi according to the JCPDF data base. From Figures 1 and 2, SEM images indicate that there were two types of microstructures (NWs and islands) in the products. In order to identify each phase of the microstructures of the as-grown products, structural analysis of the NWs has been performed. Figure 3a
is the low-magnification TEM image of the NW with 30 nm in diameter. HRTEM image (Figure 3b) shows the NW of [010] growth direction with 2-nm-thick native oxide. FFT diffraction pattern of the lattice-resolved image is shown in the inset of Figure 3b, which represents the reciprocal lattice planes with [1] zone axis. The phase of the NW has been identified to be δ-Ni₂Si, constructed with the orthorhombic structure by lattice parameters of \(a = 0.706 \text{ nm}, b = 0.5 \text{ nm}, \) and \(c = 0.373 \text{ nm}\). Therefore, the as-deposited layer would be ascribed to NiSi.

![Figure 3](image3.png)

Figure 3 Low-magnification (a) and high-resolution TEM images (b) of δ-Ni₂Si NWs grown at 400°C, 9 Torr, and 30-sccm Ar flow. The image shows that there exists an oxide layer with 2 nm in thickness on the NW. The inset in (b) shows the corresponding FFT diffraction pattern with a [1] zone axis and [010] growth direction.

The schematic illustration of the growth mechanism is in Figure 4. In the Ni-Si binary alloy system, it has been investigated that Ni atoms are the dominant diffusion species during the growth of orthorhombic δ-Ni₂Si and NiSi [26]. The reaction and phase transformation between δ-Ni₂Si and NiSi have also been reported [25]. Based on these previous studies, the reaction of the as-deposited Ni metal film occurred to form δ-Ni₂Si with a diffusion-controlled kinetics at 300°C to 400°C [27,28]. Then, partial transformation from δ-Ni₂Si into NiSi thin-film structures could happen if the thickness of the Ni is below 40 nm because NiSi would form on Si substrates with a low Si/NiSi interface energy [26,29]. Then, the continuous supply of Ni atoms may induce further growth of δ-Ni₂Si phase NWs via surface diffusion kinetics [30] on the remnant δ-Ni₂Si phase grains or NiSi bulks. There are two plausible and reversible formation
paths of δ-Ni$_2$Si, which can be described in the following equations [11,24,31]:

\[
\text{NiSi}_\text{(s)} + \text{NiCl}_2(g) \rightleftharpoons \text{Ni}_2\text{Si}_\text{(s)} + \text{Cl}_2(g),
\]

\[
2\text{NiSi}_\text{(s)} + 2\text{Cl}_2(g) \rightleftharpoons 2\text{Ni}_2\text{Si}_\text{(s)} + \text{SiCl}_4(g).
\]

The two equations correspond well with the experiment results: higher ambient pressure will enhance the reaction to form Ni$_2$Si according to LeChatelier’s principle, contributing to the formation and agglomeration of larger amount of δ-Ni$_2$Si NWs and islands at the surface.

Due to the metallic property and special 1-D geometry, investigation of field emission properties has been conducted. Figure 5 shows the plot of the current density (J) as a function of the applied field (E) and the inset is the ln(J/E^2)–1/E plot. The sample of δ-Ni$_2$Si NWs was measured at 10$^{-6}$ Torr with a separation of 250 μm. According to the Fowler-Nordheim relationship, the field emission behavior can be described by the following equation:

\[
J = \frac{(A\beta^2E^2/\psi)}{\exp(-B\psi^{1/2}/\beta E)}.
\]

The turn-on field was defined as the applied field attained to a current density of 10 μA/cm2 and was found to be 4.12 V/μm for our Ni$_2$Si NWs. The field enhancement factor was calculated to be about 1,132 from the slope of the ln(J/E^2)–1/E plot with the work function of 4.8 eV [32] for Ni$_2$Si NWs. Based on the measurements, Ni$_2$Si NWs exhibited remarkable potential applications as a field emitter like other silicide NWs [20,25,33].

The saturated magnetization (M_S) and coercivity (H_C) of δ-Ni$_2$Si NWs were measured using SQUID at 2 and 300 K, respectively. Figure 6 shows the hysteresis loop of the as-grown NWs of 30 nm in diameter with the applied magnetic field perpendicular to the substrates. The inset highlighted the hysteresis loop, which demonstrates a classic ferromagnetic characteristic. The H_C was measured to be 490 and 240 Oe at 2 and 300 K, respectively, and M_S was about 0.64 and 0.46 menu, correspondingly. For the magnetization per unit volume (emu/cm3), normalization has been introduced through cross-sectional and plane-view SEM images (not shown here) to estimate the density of NWs and the average volume of δ-Ni$_2$Si NWs. The estimated values are 2.28 emu/cm3 for 2 K and 1.211 emu/cm3 for 300 K, respectively. With the normalized value, we may build up a database of the magnetic property of Ni$_2$Si NWs, which may be utilized in applications such as cell separation in biology [34].

Conclusions

δ-Ni$_2$Si phase NWs have been successfully synthesized through CVD using a single precursor, NiCl$_2$-6H$_2$O. The influence of the chamber pressure on the product morphology has been discussed. SEM, TEM, and XRD studies were conducted to analyze the growth mechanism and reaction paths. Electrical measurements show that the field emission property of the δ-Ni$_2$Si NWs makes them attractive choices for emitting materials. Magnetic measurements via SQUID at different temperatures show the ferromagnetic property of the δ-Ni$_2$Si NWs, and normalization has been applied to calculate the value of magnetization per unit volume. This work has demonstrated future applications of Ni$_2$Si NWs on biologic cell separation, field emitters, and magnetic storage.

Abbreviations

CVD: Chemical vapor deposition; FFT: Fast Fourier transform; H_C: Coercivity; HRTEM: High-resolution transmission electronic microscopy; M_S: Saturated magnetization; NWs: Nanowires; Oe: Oersted; SQUID: Superconductive quantum interference device; SSPI: Single-source precursors.

Competing interests

The authors declare that they have no competing interests.

Authors’ contributions

WLC synthesized the Ni$_2$Si nanowires. WLC and YTH performed the field emission and magnetization experiments. JYC and CWH analyzed the diffraction data and atomic structure via TEM. CHC analyzed the structure through XRD spectra and demonstrated the illustration of growth mechanism. WLC and WWW conceived the study and designed the research. PH supported the field emission experiments. WLC, KCL, CLH, and WWW wrote the paper. All authors read and approved the final manuscript.

Acknowledgments

WWW, CLH, and KCL acknowledge the support by National Science Council through grants 100-2628-E-009-023-MY3, 101-2218-E-008-014-MY2, and 100-2628-E-006-025-MY2.

Author details

1. Department of Materials Science and Engineering, National Chiao Tung University, Hsinchu 300, Taiwan.
2. Department of Materials Science and Engineering, National Cheng Kung University, Tainan 701, Taiwan.
3. Department of Electrical Engineering, National Central University, Tao Yuan 320, Taiwan.
4. Department of Physics, Tamkang University, New Taipei City 25137, Taiwan.

Received: 10 May 2013 Accepted: 7 June 2013

Published: 19 June 2013

References

1. Wu XC, Song WH, Huang WD, Pu MH, Zhao B, Sun YP, Du JJ: Simultaneous growth of alpha-Si$_4$N$_4$ and beta-SiC nanorods. Mater Res Bull 2001, 36:847-852.
2. Morales AM, Lieber CM: A laser ablation method for the synthesis of crystalline semiconductor nanowires. Science 1998, 279:209-211.
3. Sun Y, Nidifor-Angwofor NG, Riley DJ, Ashfold MNR: Synthesis and photoluminescence of ultra-thin ZnO nanowire/nanotube arrays formed by hydrothermal growth. Chem Phys Lett 2006, 431:352-357.
4. Dai ZR, Pan ZW, Wang ZL: Novel nanostructures of functional oxides synthesized by thermal evaporation. Adv Funct Mater 2003, 13:9-24.
5. Zhang HL, Li F, Liu C, Cheng HM: The facile synthesis of nickel silicide nanobelts and nanosheets and their application in electrochemical energy storage. Nanotechnology 2008, 19:165506.
6. Maszara WP: Fully silicided metal gates for high-performance CMOS technology: a review. J Electrochem Soc 2005, 152:G550-G555.
7. Xiang B, Wang QX, Wang Z, Zhang XZ, Liu LQ, Xu J, Yu DP: Synthesis and field emission properties of TiSi$_2$ nanowires. Appl Phys Lett 2005, 86:243103.
8. Lin HK, Tseng YF, Wang CH, Tai NH, Lin IN, Lee CY, Chiu HT, \(\text{NiSi}_x \) nanowire and its field emission property. Chem Mater 2008, 20:2429–2431.

9. Schmitt AL, Bierman MJ, Schmeisser D, Himpsel FJ, Jin S. Synthesis and properties of single-crystal FeSi nanowires. Nano Lett 2006, 6:1617–1621.

10. Schmitt AL, Higgins JM, Jin S. Chemical synthesis and magnetotransport of magnetic semiconducting Fe\(_x\)Co\(_{1-x}\)Si alloy nanowires. Nano Lett 2008, 8:810–815.

11. Seo K, Varadraj KSK, Mohanty P, Lee S, Jo Y, Jung MH, Kim J, Kim B. Magnetic properties of single-crystalline CoSi nanowires. Nano Lett 2007, 7:1240–1245.

12. Ham MH, Lee JW, Moon KJ, Choi JH, Myoung JM. Single-crystalline ferromagnetic Mn\(_x\)Si\(_{1-x}\) nanowires. J Phys Chem C 2009, 113:8143–8146.

13. Wu Y, Xiang J, Yang C, Lu W, Lieber CM. Si nanowires with low resistivity. J Appl Phys 2007, 101:193703.

14. Weber WM, Geelhaar L, Graham AP, Unger E, Duesberg GS, Liebau M, Pamler W, Cheze C, Rechert H, Lugli P, Kreupl F. Silicon-nanowire transistors with intruded nickel-silicide contacts. Nano Lett 2006, 6:2660–2666.

15. Lu KC, Wu WW, Wu HW, Tanner CM, Chang JP, Chen LJ, Tu KN. In situ control of atomic-scale Si layer with huge strain in the nanoheterostructure NiSi/ NiSi through point contact reaction. Nano Lett 2007, 7:389–394.

16. Wu WW, Lu KC, Wang CW, Hsieh HY, Chen SY, Chou YC, Yu SY, Chen LJ, Tu KN. Growth of multiple metal/semiconductor nanoheterostructures through point and line contact reactions. Nano Lett 2010, 10:3984–3989.

17. Chiu CH, Huang OW, Chen JY, Huang YT, Hu JC, Chen LT, Hsin CL, Wu WW. Copper silicide/silicon nanowire heterostructures: in situ TEM observation of growth behaviors and electron transport properties. Nanotechnology 2013, 5:5086–5092.

18. Hsin CL, Yu SY, Wu WW. Cobalt silicide nanocables grown on Co films: synthesis and physical properties. Nanotechnology 2010, 21:485602.

19. Lee CY, Lu MP, Liao KF, Lee WF, Huang CT, Chen SY, Chen LJ. Free-standing single-crystal NiSi\(_2\) nanowires with excellent electrical transport and field emission properties. J Phys Chem C 2009, 113:2286–2289.

20. Lee CY, Lu MP, Liao KF, Wu WW, Chen LJ. Vertically well-aligned epitaxial Ni\(_x\)Si\(_{1-x}\) nanowire arrays with excellent field emission properties. Appl Phys Lett 2008, 93:113104.

21. Decker CA, Solanki R, Freeouf JL, Carruthers JR, Evans DR. Directed growth of nickel silicide nanowires. Appl Phys Lett 2004, 84:1389–1391.

22. Dong LF, Bush J, Chirayos V, Solanki R, Jiao J, Onda Y, Conley JF, Ulrich BD. Dielectrophoretically controlled fabrication of single-crystal nickel silicide nanowire interconnects. Nano Lett 2005, 5:2112–2115.

23. Song YP, Jin S. Synthesis and properties of single-crystal \(\beta_\text{Ni-Si} \) nanowires. Appl Phys Lett 2007, 90:173122.

24. Song YP, Schmitt AL, Jin S. Ultralong single-crystal metallic Ni\(_x\)Si nanowires with low resistivity. Nano Lett 2007, 7:965–969.

25. Tsai C, Yeh PH, Wang CY, Wu HW, Chen US, Lu MY, Wu WW, Chen LJ, Wang ZL. Cobalt silicide nanostuctures: synthesis, electron transport, and field emission properties. Crys Growth Des 2009, 9:6514–6518.

26. Fall H, Ho PS, Tu KN. Transmission electron microscopy of the formation of Nickel silicides. Philos Mag A 1982, 45:31–47.

27. Dheurle F, Petersson CS, Baglin JEE, Laplaca SJ, Wong CY. In situ magnetic field and electron transport property. Nano Lett 2006, 6:2429–2431.

28. Gualarts EA, Anderson WA, Guo LP, Gualarts W. Transmission electron microscopy study of Ni silicides formed during metal-induced silicon growth. Thin Solid Films 2001, 385:74–80.

29. Toman K. The structure of NiSi. Acta Cryst 1951, 4:462–464.

30. Maex K. Properties of metal silicides. London: IEE; 1995.

31. Lian CY, Thrall ES, Deshmukh MM, Park IH. V-Grown: V-phase synthesis and characterization of epsilon-FeSi nanowires. Adv Mater 2006, 18:1437–1440.

32. Kittl JA, Pawlak MA, Lauwers A, Demeurisse C, Opsomer K, A-nil KG, Wan-cen C, van Dal M, Ve-loso A, Kubiec S, Ab-sil P, Maex K, Biersemans S: Work function of Ni silicide phases on HSiON and SiO\(_2\): NiSi, Ni\(_x\)Si\(_{1-x}\), Ni\(_y\)Si\(_{1-y}\), and Ni\(_z\)Si\(_{1-z}\) fully silicided gat-es. Phys Rev Lett 2006, 96:1450–1452.

33. Liang YH, Yu SY, Huang OW, Chuang CW, Wu WW. Growth of single-crystalline cobalt silicide nanowires: high-concentration cobalt nanowires. J Appl Phys 2011, 110:074332.

34. Kim DU, Seol JK, Lee MR, Hwang HY, Kim GS, Ohgai T, Lee SK. Ferromagnetic nickel silicide nanowires for isolating primary CD4+ T lymphocytes. Appl Phys Lett 2012, 100:163703.

Cite this article as: Chiu et al. Single-crystalline \(\text{Si-Ni-Si} \) nanowires with excellent physical properties. Nanoscale Research Letters 2013 8:290.