CURRENT
O
PINION
Molecular genotyping of adrenocortical carcinoma: a systematic analysis of published literature 2019–2021

Salvatore Grisanti, Deborah Cosentini, Sandra Sigala, and Alfredo Berruti

Purpose of review
Comprehensive molecular characterization of adrenocortical carcinoma (ACC) through next-generation sequencing and bioinformatics analyses is expanding the number of targets with potential prognostic and therapeutic value. We performed a critical review of recent published literature on genotyping of ACC.

Recent findings
423 studies were published between 2019 and 2021. After manual curation we summarized selected evidence in two thematic areas: germline deoxyribonucleic acid (DNA) variations, genomic alterations and prognosis.

Summary
The evolving genomic landscape of ACC requires target validation in terms of prognostic and predictive value within scientific consortia. Although the existing multiple driver genes are difficult targets in the perspective of precision oncology, alterations in DNA damage repair genes or in promoter hypermethylation could open new venues for repurposing of existing drugs in ACC.

Keywords
adrenocortical carcinoma, DNA damage repair, genomic landscape, immunotherapy, methylation

INTRODUCTION
Adult adrenocortical carcinoma (ACC) is a rare neoplasm with a worldwide reported incidence of 0.7–1.0 new cases per million people/year [1]. Because of the rarity of this disease, the expected trends of incidence and mortality are difficult to define and access to this information relies only on collection of data within ACC-specific registries. Prognosis of ACC is variable but more than 60% of patients are diagnosed in stage III and IV with a 5-year survival of <50% and <15%, respectively. For these patients, the proposed algorithm of treatment includes systemic treatment with mitotane, platinum-based chemotherapy (e.g., EDP-M schedule) and locoregional strategies including surgery in cases with a residual disease of approximately 10% of initial volume [2,3]. However, progression of advanced disease occurs almost invariably after less than 18 months and there are no defined second and following lines of treatment. In the past 20 years, the therapeutic scenario has not changed substantially and neither molecular target therapies nor immunotherapy with immune-checkpoint inhibitors (ICI) have gained significant results [4].

Cancer genotyping represents the foundation for precision medicine that holds the promise to illuminate the molecular pathogenesis of each cancer type and to enable clinicians to identify and treat each single patient or molecularly defined groups of patients.
The molecular pathogenesis of ACC has evolved in the last twenty years from description of single chromosomal alterations and identification of single-gene deregulations toward a more comprehensive view with simultaneous analysis of multiple alterations at levels of the deoxyribonucleic acid (DNA) (germinal, somatic, epigenetic), RNA (mRNA, miRNA) and proteins [5–7]. This step forward has been essential thanks to an availability of massive parallel sequencing (i.e. next-generation sequencing [NGS]) technology and to the advancement of bioinformatic analyses across big international scientific consortia [8].

The amount of scientific publications dealing with precision medicine in ACC has been steadily increasing in the last ten years. In this review, we describe the results of a systematic analysis of literature published in the years 2019–2021 concerning genotyping of ACC.

METHODOLOGY OF LITERATURE ANALYSIS

Analysis of literature was conducted following the 2020 Preferred Reporting Items for Systematic Reviews and Meta-analyses (PRISMA) reporting guideline [9]. The National Institutes of Health/National Center for Biotechnology Information (NCBI) PubMed database was queried to identify all original studies published in English between 2019 and 2021 (last accessed August 15, 2021) under the following search terms: ‘adrenocortical carcinoma’ [and] ‘genomic’, ‘genetic’, ‘gene’, ‘germinal’, ‘germline’, ‘epigenetic’, ‘methylation’. Results of search were curated manually. A flow diagram of systematic analysis of literature is provided in Fig. 1. This review is structured in a synthetic background of the current genomic landscape of ACC followed by results of the literature search.

SUMMARY OF CURRENT GENOMIC LANDSCAPE OF ADRENOCORTICAL CARCINOMA

The genomic landscape of ACC is complex and differentiates this neoplasm from other cancer types with only one or few predominant gene alterations. Comparative studies of pathobiology of ACC revealed that genomic alterations affect genes and molecular pathways that are involved in normal adrenal cortex physiology [10]. In 2019, two separate works reviewed and summarized these genes/pathways that are functional in normal organogenesis and homeostasis of the adrenal cortex and can be detected across processes of benign (adrenal adenoma, ACA) or malignant (ACC) transformation [11,12] of the adrenal cortex.

The current knowledge of genomic landscape of ACC is the cumulative result of both single-gene analyses and multiomic studies from cooperative consortia [5–7].

A simplified summary of the genomic landscape of ACC in essential nodes can be outlined as follows:

1. **Chromosomal copy number alterations (CNAs) (aneuploidy):** ACC is frequently hypodiploid compared with other cancer types. However, copy number gains and losses can occur in up to 60% of cases (noisy pattern in the TCGA). This unstable pattern is often associated with whole genome doubling (WGD) that is a marker of poor prognosis and is related to alteration of the telomeres length regulation machinery [7].

2. **Germinal gene mutations:** ACC can arise in the context of cancer-predisposing syndromes (Li-Fraumeni [TP53], Lynch [NMR genes], Beckwith-Wiedemann [CDKN1C, H19, IGF2, KCNQ1OT1], Carney complex [PRKAR1A], Multiple Endocrine Neoplasia type 1 [MEN1] syndromes) with hereditary genetic lesions of the germinal line in approximately 10% and 50–80% of adult and pediatric cases, respectively [13–15].

 Other rarer germinal variants potentially predisposing to ACC have been described in succinate dehydrogenase (SDHx) genes [16] and in Armatillo-containing repeat protein 5 (ARMCS) gene [17]. In the majority of adult cases, however, ACC is diagnosed as a sporadic cancer with acquired genomic alterations of the somatic DNA.

KEY POINTS

- The genomic landscape of ACC is complex with multiple alterations in at least 10 driver genes.
- Multiple levels of interaction exist at germinal and somatic DNA variations, epigenetic and posttranslational modifications generating different clinical phenotypes.
- To date, however, none of the known ACC genomic alterations is clinically actionable.
- Alterations in genes of DNA damage repair (DDR) generates hypermutator phenotypes with microsatellite instability (MSI) and higher tumor mutation burden (TMB).
- Hypermethylation is a marker of more aggressive phenotypes and could represent a potential target of intervention.
- A deeper understanding of the multiomic nature of ACC may have clinical implications in fields like immunotherapy, radiomics and cancer metabolism.
(3) **Somatic gene mutations and corresponding functional pathways:** recurring mutations (frequency >10% indicated in square brackets) of candidate driver genes have been detected in genes involved in cell cycle (TP53 [21%], CDKN2A [15%], RB1, CDK4, CCNE1), WNT/beta-catenin signaling (CTNNB1 [16%], ZNRF3 [19%]), chromatin remodeling (MEN1, DAXX), telomere maintenance (TERT [14%], TERF2), protein kinase cAMP-dependent regulatory type I alpha gene (cAMP/PKA signaling) (PRKAR1A [11%]), DNA transcription (MED12) and RNA translation (RPL22) [5–7]. Alteration of the Insuline-Like Growth Factor-2/receptor-1 (IGF2/IGF1R) axis seems not to be a driver pathway in ACC as demonstrated by failure of clinical intervention with the anti-IGF2/IGF1R linsitinib [18]. Collectively, the two most frequently altered pathways in ACC pathobiology are the p53/Rb1 cell cycle pathway and the Wnt/beta-catenin pathway (33–45% and 41% of cases, respectively) [7,11].

(4) **DNA Damage Repair (DDR) genes:** in the TCGA pancancer study, >80% of ACC samples displayed at least one DDR gene alteration including genes involved in: Mismatch Repair (MMR): MLH1-3, MSH2-6, PMS2; Homologous Recombination (HR): TP5S3P1, BRCA1-2, BRIP1, RAD51, TOP3A;
Damage Sensor (DS): ATM, ATR, CHEK2; Translesion Synthesis (TS): REV3L; Base Excision Repair (BER): POLB; other minor DDR gene alterations involve Direct Repair (ALKBH3, MGMT), Fanconi Anemia (FANCA, FANCD2) and Nonhomologous End Joining (LIG4, XRC4, XRC6) [19]. Many of these gene alterations are found at level of both germinal and somatic DNA. In particular, germinal MMR gene alterations observed in familial ACC cases identify familial ACC as a Lynch syndrome (LS)-associated cancer [20].

(5) **Microsatellite instability (MSI):** defects of the MMR system cause microsatellite instability (MSI) that is both prognostic and predictive of response to therapy in many cancer types including colorectal and endometrial cancers. In a pan-cancer re-analysis of TCGA data, Bonneville et al. found a MSI-high (MSI-H) phenotype in 4.3% of ACC cases placing ACC as the fifth neoplasm with the highest MSI-H rate among 39 different cancers. The MSI-H phenotype was restricted to cases with a high somatic tumor mutation burden (1157 vs 217 mutations in MSI-H vs MSS ACC, p 0.01) [21].

(6) **Tumor mutation burden (TMB):** in the TCGA-ACC study, the median somatic mutation density was 0.9 mutation/Mb (range 0.2–14.0 mutations/Mb) [7]. In a pan-cancer analysis, ACC had a median TMB less than 5 mutations/Mb and less than 10% of cases had a TMB >10 mutaations/Mb. Therefore, despite all of the above considerations, ACC is placed among tumors with the lowest TMB [22].

(7) **Epigenetic changes:** since 2012 at least 7 studies identified DNA methylation as an important mechanism of epigenetic control of gene expression in ACC. Both hypomethylation and hypermethylation of promoter regions can occur at a higher frequency in ACC compared to ACA [23,24]. In the European Network for the Study of Adrenal Tumors (ENSAT) and TCGA-ACC studies, analysis of the hypermethylation at CpG-rich islands defined three phenotypes of methylation (CpG island methylator phenotype –CIMP- high, intermediate and low) that showed a significant prognostic value. In particular, in the CIMP-high profile cases segregated with higher proliferative index and associated with worse prognosis [5,7]. A comprehensive review by Ettaieb et al. on the role of epigenetic alterations in ACC and their potential role as prognostic factors and therapeutic targets have been recently published [25].

For the purposes of the present review, we do not enter in greater detail of the ACC genomic landscape but for further reading we recommend three excellent reviews published in the last 3 years [11, 26, 27].

SYSTEMATIC ANALYSIS OF LITERATURE 2019–2021 OF MOLECULAR GENOTYPING OF ADRENOCORTICAL CARCINOMA

Our literature search retrieved a total of 423 publications. After manual curation, duplicate records and works not dealing with adrenal tumors were excluded. Selected reviews were included if, in the opinion of authors, they added significant insight in the field.

We organized published works in two wide thematic areas of interest.

Germline DNA alterations in adrenocortical carcinoma

The interest for germline alterations in ACC is rising and the burden of new variants are expanding not only in familial syndromic cases but also in sporadic ACC patients. This renewed interest is linked to the potential therapeutic implications of germline mutations and to their clonal nature that renders them ideal candidate as predictive factors [28]. Excluding reviews, 21 original studies were retrieved within the predefined time frame. A summary is provided in Table 1. Nine studies were retrospective analyses of known germline variants such as TP53 [29,30] and MEN1 [31] in pediatric and adult patients. In one study variants of Epidermal Growth Factor Receptor (EGFR) were identified at higher incidence in children and young adults ACC [32]. Polymorphisms of selected genes could have influence on ACC incidence (retinoic acid pathway genes) [33], ACC tumorigenesis (phosphodiesterases genes) [34] or response to mitotane treatment (P450 cytochrome genes) [35]. Twelve single case reports expanded the catalog of single or multiple variants described in ACC. For example, a CHEK2 germline variant has been identified for the first time in ACC [36] and the presence of a double alteration (MSH2 and RET) has been identified in an adult patient without MEN2 syndrome [37]. Landwehr et al. identified a MUTYH variant in an ACC patient with high TMB from whom a new cell line has been derived. Germline MUTYH mutations occur in the context of DDR gene alterations. MUTYH mutations identify MUTYH-associated poliposis (MAP) of the colon and have been described also in ACC. Therefore, the importance of this finding resides in the availability of a preclinical model with a known alteration of the DNA repair machinery and a high TMB [38]. Nine reviews (not cited) were published focusing specifically on germline alterations in...
Table 1. Summary of 2019–2021 published original studies of germline DNA alterations in adrenocortical tumors in chronological order

Year/Author [Reference]	Germinal Mutation	Type of publication	Significance
2018/ Xie [36]	CHEK2	Case report	First description of a CHEK2 germinal variant in ACC
2019/ Wang [31]	MEN1	Retrospective monocentric series	Report of MEN1 in 1/68 family (2/121 individuals). In this family 2 cases of ACC were diagnosed (prevalence 1.5%)
2019/ Nicolson [39]	WES of somatic and germinal DNA	Case report	Different mutational profile of syndromic (case report) vs sporadic ACC (control series)
2019/ McCabe [40]	WES of somatic and germinal DNA	Case report	Alteration of MSH2, TP53, RB1, PTEN resulting in a signature of MRP and MSI: implication for immunotherapy.
2019/ Ferreira [30]	TP53-R337H	Retrospective trial	Description of the clinical spectrum of Li-Fraumeni syndrome in Brazilian carriers of TP53-H337H mutations
2019/ Kaur [41]	MSH6	Case report	Patient with oncocytic ACC as unique manifestation of a familial Lynch syndrome
2019/ Tong [42]	TP53	Case report	Patient with neuroblastoma and ACC
2020/ Altieri [35]	CYP2W1+6 & CYP2B6+6 polymorphisms	Retrospective multicenter ENSAT trial	Effect of germinal polymorphisms of CYP2 enzymes on Mitotane treatment in ACC: CYP2W1+6 polymorphism is associated with lower probability to achieve therapeutic range compared to CYP2B6+6
2020/ Gagnon [43]	APC	Case report	Demonstration of an APC VUS in the transition adenoma-ACC in an adult patient
2020/ Bondy [44]	TP53	Case report	Case of adult onset of Li-Fraumeni syndrome with 3 different neoplasms: breast cancer, ACC, pleomorphic sarcoma.
2020/ Surakhy [33]	Retinoic Acid (RA) polymorphisms	Retrospective trial	Polymorphism in the RA pathway has influence on incidence of ACC
2020/ Raygada [37]	MSH2 & RET	Case report	Description of double germinal mutations of MSH2 and RET in an adult patient with ACC without MEN2
2020/ Suda [45]	Fumarate Hydratase	Case report	Association of fumarate hydratase-dependent cardiac myxoma and ACA
2020/ Pinto [34]	Phosphodiesterases genes (PDEs)	Retrospective trial	Inactivating variants of PDEs are found in 24% of pediatric adrenocortical tumors. Possible role of PDEs in the cAMP-signaling pathway and adrenal tumorigenesis
2020/ Feitosa [46]	TP53-R337H	Retrospective trial	Prevalence of TP53-R337H within South Brazilian pediatric patients: high prevalence of ACC (3/3)
2021/ Takeoka [47]	TP53	Case report	Description of an ACC pediatric case in a Li-Fraumeni syndrome that led to screening of another younger brother with diagnosis of sarcoma
2021/ Domenech [48]	MSH2, MSH6	Retrospective trial	Prevalence of 3/634 (0.47%) patients with ACC within context of Lynch syndrome
2021/ Landwehr [38]	MUTYH	Cell line report	Description of a new MUTYH germinal variant in an ACC-derived cell line
2021/ Brenna [29]	TP53	Retrospective trial	Pediatric ACC patients carrying germline TP53 mutations have a more favourable outcome than wild-type counterpart
2021/ Torres [49]	Ataxia Teleangectasia Mutated (ATM)	Case report	Identification of a pathogenetic variant of ATM in an adult patient with ACC
2021/ Akhavanfard [32]	EGFR	Retrospective trial	High incidence of germline EGFR variants in children [4.8%] and young adults [6.2%] with ACC

ACC, adrenocortical carcinoma; ENSAT, european network for the study of adrenal tumors.
Table 2. Summary of 2019–2021 published original studies of somatic genomic alterations with potential prognostic impact in adrenocortical tumors in chronological order

Year/Author	Description of study	Significance
2019/ Assi [51*]	ENSAT multicenter comparative study of clinical vs molecular stratification on 364 ACC patients evaluated with multitarget molecular profiling.	Combination of clinical and molecular classifiers better discriminated prognostic groups in stage III ACC. Molecular classifiers had a limited value in stage IV ACC.
2019/ Mohan [52*]	Analysis of prognostic value of the methylation status of the G0/S2 gene.	Hypermethylation of G0/S2 gene is a surrogate marker of the CpG-rich islands methylation phenotype (CIMP)- high and identifies ACC patients with very poor prognosis. Potentially useful marker in clinical practice.
2019/ Xia [53]	Bioinformatic re-analysis of TCGA data to isolate differently expressed genes in ACC progression.	Analysis identified 4 genes associated with ACC progression: TOP2A, TTK, CHEK1, CENPA.
2019/ Liang [54]	Analysis of expression of genes involved in epithelial mesenchymal transition (EMT) in ACC.	Two EMT genes (FSCN1 and FOXM1) are overexpressed in ACC and are associated with poor prognosis.
2019/ Xiao [55]	Analysis of differently expressed and methylated genes (DEGs and DMGs) in 92 patients with ACC.	Seven genes with different expression and methylation profiles were identified.
2019/ Subramanian [56]	TCGA and cBioPortal databases mining analysis to find new biomarkers.	Overexpression of genes involved in cell-cycle and DNA damage was observed in 82% of cases.
2019/ Gao [57]	Gene microarray datasets comparing the gene expression profiles between ACC (47 cases) and adrenal adenoma (46 cases)	20 downregulated genes and 51 upregulated genes, which were highly associated with the cell cycle, organelle fission, chromosome segregation, cell division and spindle stability were found in ACC cases. In particular, cyclin B2, cyclin A2 and topoisomerase 2-a were found to be associated with ACC development and overall survival.
2019/ Bulzico [58]	Assessment of the association among Twist1, fibronectin, vimentin and E-cadherin gene expression in adrenocortical tumor samples.	Significant correlation between mRNA levels of Twist1, fibronectin and vimentin. No association between Twist1 and E-cadherin expression.
2019/ Zhu [59]	Analysis of 36 iron metabolism-related (IMR) genes on 77 ACC cases (TCGA) and 128 normal adrenal tissues.	Among 12 IMR differentially expressed genes, ferroportin 1 and ceruloplasmin correlated with poor survival and are potentially implicated in modulating immune responses in ACC.
2020/ Li [60]	Molecular alterations and clinical relevance of heterogeneous nuclear ribonucleoproteins (hnRNPs) genes were systematically analysed in 33 cancer types based on next-generation sequence data.	Most hnRNPs were associated with worse survival of ACC patients
2020/ Li [61]	ENSAT multicenter validation study of the IGF2 methylation score.	In univariate but not in multivariate analysis, the IGF2 methylation score significantly predicted development of metastases after surgery for ACC.
2020/ Jouinot [62]	ENSAT multicenter, pan-genomic evaluation of intratumor heterogeneity between primary and metastatic ACC.	Driver gene alterations show a higher level of heterogeneity while methylation and chromosomal alterations profiles are more stable and they may serve as prognostic markers.
2020/ Knott [63]	Analysis of (TCGA) the expression of 30 genes encoding the γ-amino butyric acid (GABA) system in TGCA ACC dataset.	Identification of a subset of ACC patients whose tumors expressed a distinct GABA system transcriptome. This correlated with several favorable clinical outcomes.
2020/ Xu [64]	Prognostic evaluation of alternative splicing (AS) events analyzed in 92 ACC patients from TCGA database.	Univariate analysis identified 3919 AS events significantly associated with overall survival.
benign (eg, primary aldosteronism, ACAs) or malignant adrenal tumors and in pediatric and adult patients with or without familial genetic syndromes [39–49].

Somatic genomic alterations in adrenocortical carcinoma

A major goal of precision medicine in oncology is to integrate molecular characteristics with known clinical prognostic factors and, thus, to refine risk stratification of patients. In the last three years, the ACC scientific community invested big efforts in translating the bulk of multiomic data in new prognostic classifications or clinical applications.

In the predefined time frame, 29 original works were published and a summary is provided in Table 2 [50,51,52,54–67,68,69–75].

We concentrate here on a few of them of special interest and potential clinical applications.

Year/Author [Reference]	Description of study	Significance
2020/ Dos Santos Passaia [65]	Evaluation of the prognostic significance of STMN1 and its therapeutic potential	STMN1 mRNA levels were significantly higher in ACC patients, especially in an advanced stage, and correlated with BUB1B and PINK1 expression.
2020/ Pennanen [66]	Evaluate the role of IDH1 and its mutations in adrenocortical tumors	IDH1 R132H immunohistochemical staining correlated with a better prognosis among ACC patients, but did not distinguish between local and metastasized tumors. Paclitaxel reduces the activation of STMN1 and significantly decreases cell migration and invasion in ACC cell lines.
2020/ Li [67]	Bioinformatic re-analysis of transcriptome and clinical TCGA data to isolate and characterize hub-genes of the ACC tumor microenvironment (TME)	A list of 18 hub TME-related genes was identified with poor prognostic value.
2020/ Fojo [68*]	Pan-genomic analysis of 42 primary and corresponding 42 metastatic ACCs to search for genes that predispose to disease progression.	Mutational and expression profiles are similar in primary and metastatic ACCs and cannot account for different clinical behaviours.
2021/ Yan [70]	Construction of a bioinformatic and machine-learning-based weighted gene co-expression network (WGCNA) model to identify genemodels with potential prognostic value in ACC.	Identification of a multigene model and 6 biomarkers with prognostic value in ACC.
2021/ Yang [71]	Two independent datasets derived from ACC samples (TCGA-ACC dataset, GEO-GSE76021 dataset) were analysed in order to find prognostic genes.	NDRG4 and CKS2 gene expression has a prognostic impact and may help in risk stratification of ACC.
2021/ Deng [72]	Multidimensional bioinformatics analysis to examine the relationship between NRP genes and prognostic and pathological features, tumour mutational burden, microsatellite instability, and immunological features based on public databases and find the potential prognostic value of neuropilins (NRPs).	Low NRP1 expression in ACC was associated with poor prognosis. NRP1 and NRP2 were associated with TMB and MSI.
2021/ Shen [73]	Identify the significance of m6A RNA methylation regulators in ACC and construct a m6A based signature to predict the prognosis of ACC patients.	The m6A based signature was an independent prognostic factor for ACC patients.
2021/ Fu [74]	Assess the relationships between N6-methyladenosine (m6A)-related genes and ACC through TCGA and GTEx databases.	The expression of m6A-related genes could be used as an independent prognostic factor in ACC.
2021/ Xu [75]	Analysis of prognostic value of genes implicated in N6-methyladenosine (m6A) RNA methylation in 77 ACC cases from TCGA.	A gene signature built on 3 DEGs genes and on 5 m6A genes identified TNM stage differences in ACC cases and was prognostic of overall survival.

ACC, adrenocortical carcinoma; ENSAT, european network for the study of adrenal tumors.
In 2018, Lippert et al. published results of a genomic analysis of 107 ACC patients. This study demonstrated that genomic-based prognostic stratification improved clinical prognostic models like the mGRAS score and ENSAT stage and that this analytical result could be obtained from standard formalin-fixed, paraffin-embedded tumor tissue [50]. A larger study was published by the ENSAT cooperative group in 2019 [51] with the experimental hypothesis that molecular stratification could be superior to known clinical prognostic factors. In this retrospective study, TCGA-derived targeted molecular classifiers were used to stratify 364 ACC patients. Results showed that molecular classification was an independent marker of recurrence in stage I-III ACC but had a limited value in stage IV ACC. Again combination of molecular and clinical factors provided the best prognostic model.

Epigenetic alterations, methylation in particular, have an important role in the genomic landscape of ACC as cited above. Researchers from the Michigan University investigated the methylation status of the G0/S2 gene. They found that hypermethylation of the G0/S2 gene is a marker of overall hypermethylation phenotype in ACC (CIMP-high) and, when combined with the validated marker BUB1B-PINK1, identifies a subgroup of patients with rapidly fatal disease. Furthermore, analysis of methylation of single G0/S2 gene is affordable and it could become an useful marker of hypermethylation in clinical practice [52]. Another study dealing with prognostic impact of methylation has been published by Creemers et al. [63]. In this ENSAT study, the methylation status of IGF2 promoter regions was validated along with other clinico-pathological factors. The IGF2 methylation score predicted development of metastases after surgery in univariate analysis but was inferior to the Weiss score in multivariate analysis.

Two studies focused on molecular heterogeneity between primary and recurrent/metastatic ACC. In one study, Jouinot et al. found a higher level of intratumor heterogeneity in driver genes that are considered founder core alterations of the tumor while relatively more stable profiles of methylation and chromosomal alterations [62]. In line with this result, Fojo et al. did not find significant differences in driver genes mutation and expression profiles between primary and metastatic ACCs [68]. This result is in partial contrast with a previous report by Gara et al. who found a higher mutation rate in metastatic vs primary ACCs and an overlap of 37–57% in mutated genes among different sites from the same patient [69].

Other studies published between 2019 and 2021 are summarized in Table 2. Many of these studies are bioinformatic re-analyses of existing datasets (e.g. TCGA), whereas others concentrate on novel genes/pathways analysis but lack validation. It is beyond the scopes of this review to discuss in detail each single study.

At the time of writing the present manuscript, a single center study from the University of Colorado has been published. In this work, the authors obtained from Foundation Medicine Inc. (FMI) genomic and partial demographic data of 364 ACC patients, whereas clinical data were not provided. This work represents to date the largest analysis of somatic genomic alterations in ACC by a FDA-approved, commercially available test. The analysis expanded further the catalog of somatic gene alterations and highlighted that patients with a high tumor mutation rate have an unprecedentedly reported high incidence of alterations in the MMR genes (>13% vs median 3% in previous series) [76]. Despite the quantitative relevance of the dataset, this study is unlikely to have a clinical impact as correlations with clinico-pathological data are not reported (we were not able to retrieve demographic information from on-line supplementary material of the study).

Twenty-five studies have been published between 2019 and 2021 dealing with genomic alterations and potential therapeutic applications. These studies included analyses of prediction to chemotherapy agents, target therapies and currently available and future immunotherapies.

CONCLUSION

The rising number of publications concerning the multifaceted molecular alterations of ACC underlines the strong scientific interest in this complex and difficult orphan disease. New emerging evolutions of the current landscape of ACC are linking classical genomics with other fields such as immunology [77,78], pharmacology [79] and cancer metabolism [80].

From the clinical point of view, all together the above cited data can be relevant for prognostic stratification, prediction of sensitivity to chemotherapy and/or immunotherapy with ICIs and can be useful for designing future trials in ACC [81,82]. On the other hand, as noted by Fojo et al., despite the large evidence of genomic data accumulated on approximately 200 ACC patients, to date none of the molecular alterations in ACC is therapeutically actionable [68].

Acknowledgements

The authors have no conflicts of interest to disclose. The authors would like to acknowledge the work of all researchers involved in ACC that is not directly cited in this review for space limitations.
Molecular genotyping of adrenocortical carcinoma Grisanti et al.

Financial support and sponsorship
None.

Conflicts of interest
There are no conflicts of interest.

REFERENCES AND RECOMMENDED READING

Papers of particular interest, published within the annual period of review, have been highlighted as:

• of special interest
•• of outstanding interest

1. Terzolo M, Dalfara F, Ardito A, et al. Management of adrenal cancer: a 2013 update. J Endocrinol Invest 2014; 37:207–217.
2. Fassnacht M, Dekkers OM, Else T, et al. European Society of Endocrinology Clinical Practice Guidelines on the management of adrenocortical carcinoma in adults, in collaboration with the European Network for the Study of Adrenal Tumors. Eur J Endocrinol 2018; 179:G1–G46.
3. Lagana M, Grisanti S, Cosentini D, et al. Efficacy of the EDP-M scheme plus adjunctive surgery in the management of patients with advanced adrenocortical carcinoma: the Brescia experience. Cancers 2020; 12:941.
4. Grisanti S, Cosentini D, Lagana M, et al. Are we failing in treatment of adrenocortical carcinoma? Lights and shadows of molecular signatures. Curr Opin Endocrinol Metab Res 2019; 8:80–87.
5. Assie G, Leoutou E, Fassnacht M, et al. Integrated genomic characterization of adrenocortical adenoma. Nat Genet 2014; 46:607–611.
6. Juhlin CC, Geh G, Healy JM, et al. Whole-exome sequencing characterizes the landscape of somatic mutations and copy number alterations in adrenocortical carcinoma. J Clin Endocrinol Metab 2015; 100:E493–502.
7. Zheng S, Chemnack AD, Dewal N, et al. Comprehensive Pan-Genomic characterization of adrenocortical carcinoma. Cancer Cell 2016; 29:723–736.
8. Berger MF, Mardis ER. The emerging clinical relevance of genomics in cancer medicine. Nat Rev Clin Oncol 2018; 15:353–365.
9. Page MJ, McKenzie JE, Bossuyt PM, et al. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. British Med J 2021; 372: n71.
10. Penny MK, Finco I, Hammer DG. Cell signaling pathways in the adrenal cortex: links to stem/progenitor biology and neoplasia. Mol Cell Endocrinol 2017; 445:42–54.
11. Pittaway JFH, Guasti L. Pathobiology and genetics of adrenocortical cancer. Clin J Endocrinol Metab 2015; 100:450–452.
12. Ronchi CL. cAMP/protein kinase A signaling pathway and adrenocortical carcinoma: a kindred report and review of literature. Endocr Conn 2019; 8:230–238.
13. Akhavanfar S, Yehia L, Padmanabhan R, et al. Germline EGFR variants are over-expressed in adolescents and young adults (AYA) with adrenocortical carcinoma. Hum Mol Genet 2021; 29:3679–3690.
14. Surahly M, Wallace M, Bond E, et al. A common polymorphism in the retinoid acid pathway modifies adrenocortical cancer age-dependent incidence. Br J Cancer 2020; 122:1231–1241.
15. Pinto EM, Fauz PR, Faza L, et al. Germline variants in phosphodiesterase genes and genetic predisposition to pediatric adrenocortical tumors. Cancers 2020; 12:506.
16. Altiere B, Sibera S, Hertech S, et al. Effect of gene CYP2W1-6 and CYP2B6-8 single nucleotide polymorphisms on mitotane treatment in adrenocortical carcinoma: a multicenter ENSAT study. Cancers (Basel) 2020; 12:359.
17. Xie C, Tanakchi S, Raygada M, et al. Case report of an adrenocortical carcinoma associated with germline CHEK2 mutation. J Endocr Soc 2018; 3:284–290.
18. Raygada M, Raffeld M, Bernstein A, et al. Case report of adrenocortical carcinoma associated with double germline mutations in MSH2 and RET. Am J Med Genet A 2021; 185:1282–1287.
19. Landwehr LS, Schreiner J, Appenzeller S, et al. A novel patient-derived cell line of adrenocortical carcinoma shows a pathogenetic role of germline MUTYH mutation and high tumour mutational burden. Eur J Endocrinol 2021; 184:823–835.
20. Nicolson NG, Healy JM, Korah R, et al. Whole-exome sequencing of syn-dromic adrenocortical carcinoma reveals distinct mutational profile from sporadic ACC. J Endocr Soc 2019; 3:1819–1824.
21. McCabe MJ, Finsee M, Chan CL. Genomic stratification and liquid biopsy in sarcomatoid adrenocortical carcinoma (ACC) case, with dual lung metastases. Cold Spring Harb Mol Case Stud 2019; 5:a003764.
22. Kaur RJ, Pichuran PN, Hines JM, et al. Adrenal cortical carcinoma associated with Lynch syndrome: a case report and review of literature. J Endocr Soc 2019; 3:784–790.
23. Tang YJ, Yu TT, Ma J, et al. Composite adrenocortical carcinoma and neuroblastoma in an infant with a TP53 germline mutation: a case report and a literature review. J Pediatr Hematol Oncol 2019; 41:369–401.
24. Gagnon N, Boly P, Algure C, et al. Small adrenal incidentaloma becoming an aggressive adrenocortical carcinoma in a patient carrying a germline APC variant. Endocrine 2020; 60:203–209.
25. Bondy S, Tapijer C, Hotte SJ, et al. Genomic and clinical correlates of adrenocortical carcinoma in an adult patient with Li-Fraumeni syndrome: a case report. Curr Oncol 2020; 28:226–232.
26. Sudia K, Fukuhoku Y, Yamazaki Y, et al. Cardiac myxoma caused by fumarase-hydration gene deletion in patients with cortisol-secreting adrenocortical adenoma. J Clin Endocrinol Metab 2020; 105:dga1163.
27. Feltsos JADS, das Chagas PF, de Souza GR, et al. Frequency of the TP53 p.R397H mutation in a Brazilian cohort of pediatric patients with solid tumors. Mol Biol Rep 2020; 47:6439–6443.
28. Takeoka M, Toyoda H, Hayama Y, et al. Report of 2 pediatric cases with Li-Fraumeni syndrome related malignancy in a family. J Pediatr Hematol Oncol 2021; 43:e567–e570.
29. Domemrich M, Grau E, Solanes A, et al. Characteristics of adrenocortical carcinoma associated with Lynch Syndrome. J Clin Endocrinol Metab 2021; 106:318–329.
30. Torres MB, Diggs LP, Wei JS, et al. Atlases teleangectasia mutated germline pathogenetic variant in adrenocortical carcinoma. Cancer Genet 2021; 256:257–251.25.
31. Lippert J, Appenzeller S, Liang R, et al. Targeted molecular analysis in adrenocortical carcinomas: a strategy toward improved personalized prognostication. J Clin Endocrinol Metab 2018; 103:4511–4523.
32. Assie G, Joutin A, Fassnacht M, et al. Value of molecular classification for prognostic assessment of adrenocortical carcinoma. JAMA Oncol 2019; 5:1440–1447. Multicenter ENSAT evaluation of genomic stratification of 368 ACC patients.
Endocrine tumors

52. Mohan DR, Lerario AM, Else T, et al. Targeted assessment of G0S2 methylation identifies a rapidly recurrent, routinely fatal molecular subtype of adrenocortical carcinoma. Clin Cancer Res 2019; 25:3276–3288.

53. Xia WX, Yu G, Li GH, et al. Identification of four hub genes associated with adrenocortical carcinoma progression by WGCNA. PeerJ 2019; 7:e6555.

54. Liang J, Liu Z, Wei X, et al. Expression of FSCN1 and FOXM1 are associated with poor prognosis of adrenocortical carcinoma patients. BMC Cancer 2019; 19:1165.

55. Xiao H, He W, Chen P, et al. Identification of seven aberrantly methylated and expressed genes in adrenocortical carcinoma. Front Endocrinol 2019; 10:472.

56. Subramanian C, Cohen MS. Over expression of DNA damage and cell cycle dependent proteins are associated with poor survival in patients with adrenocortical carcinoma. Surgery 2019; 165:202–210.

57. Gao Z, Man X, Li Z, et al. Expression profiles analysis identifies the values of carcinoembryonic antigen and the prognostic prediction of three genes in adrenocortical carcinoma. Oncol Rep 2019; 41:2440–2452.

58. Bulsico D, Pires BRB, De Faria PAS, et al. Twist1 correlates with epithelial mesenchymal transition markers fibronectin and vimentin in adrenocortical tumors. Anticancer Res 2019; 39:173–175.

59. Zhu B, Zhi Q, Xie Q, et al. Reduced expression of ferroportin1 and ceruloplasmin predicts poor prognosis in adrenocortical carcinoma. J Trace Elem Med Biol 2019; 56:52–59.

60. Li H, Liu J, Shen S, et al. Pan-cancer analysis of alternative splicing regulator heterogeneous nuclear ribonucleoproteins (hnRNPs) family and their prognostic potential. J Cell Mol Med 2020; 24:11111–11119.

61. Creemers SG, Feelders RA, Valdes N, et al. The IGF2 methylation score for adrenocortical cancer: an ENSAT validation study. Endocr Relat Cancer 2020; 27:541–550.

62. Jouniout A, Lippert J, Fassnacht M, et al. Intratumor heterogeneity of prognostic DNA-based molecular markers in adrenocortical carcinoma. Endocr Connect 2020; 9:705–714.

63. Knott EL, Leidenheimer NJ. A targeted bioinformatics assessment of adrenocortical carcinoma reveals prognostic implications of GABA system gene expression. J Mol Sci 2020; 21:8485.

64. Xu N, Ke ZB, Lin XD, et al. Identification of survival-associated alternative splicing events and signatures in adrenocortical carcinoma based on TCGA SpliceSeq data. Aging 2020; 12:4986–5009.

65. Dos Santos Passaia B, Lima K, Kremer JL, et al. Stathmin 1 is highly expressed and associated with survival outcome in malignant adrenocortical tumours. Invest New Drugs 2020; 38:899–908.

66. Pennanen M, Tyninnin O, Kvistola S, et al. IDH1 Expression via the R132H mutation-specific antibody in adrenocortical neoplasias-prognostic impact in carcinomas. J Endocr Soc 2020; 4:tvaa018.

67. Bi Li X, Gao Y, Zu Z, et al. Identification of prognostic genes in adrenocortical carcinoma microenvironment based on bioinformatic methods. Cancer Med 2020; 9:1161–1172.

68. Fojo T, Hui L, Litman T, et al. Metastatic and recurrent adrenocortical cancer is not defined by its genomic landscape. BMC Med Genomics 2020; 13:165.

69. Yan X, Guo ZX, Yu DH, et al. Identification and validation of a novel prognosis prediction model in adrenocortical carcinoma by integrative bioinformatics analysis, statistics, and machine learning. Front Cell Dev Biol 2021; 9:671359.

70. Gara SK, Lack J, Zhang L, et al. Metastatic adrenocortical carcinoma displays higher mutation and tumor heterogeneity than primary tumors. Nat Commun 2018; 9:4172.

71. Yang Z, Cheng H, Zhang Y, et al. Identification of NDRG family member 4 (NDRG4) and CDC28 protein kinase regulatory subunit 2 (CKS2) as key prognostic genes in adrenocortical carcinoma by transcriptomic analysis. Med Sci Monit 2021; 27:e928523.

72. Deng G, Guo H, Yan D, et al. Pancancer analysis of neurovascular-related NR4 family genes as potential prognostic biomarkers of bladder Urothelial Carcinoma. Biomed Res Int 2021; 2021:5546612.

73. Shen C, Lu J, Yang X, et al. Development and validation of an m6A RNA methylation regulators-based signature for predicting the prognosis of adrenocortical carcinoma. Front Endocrinol 2021; 12:568397.

74. Fu Y, Sun S, Bi J, et al. Expression patterns and prognostic value of m6A RNA methylation regulators in adrenocortical carcinoma. Medicine 2021; 100:e25031.

75. Xu F, Guan Y, Ma Y, et al. Bioinformatic analyses and experimental validation of the role of m6A RNA methylation regulators in progression and prognosis of adrenocortical carcinoma. Aging 2021; 13:11919–11941.

76. Pozdeyev N, Fishbein L, Gay LM, et al. Targeted genomic analysis of 364 adrenocortical carcinomas. Endocr Relat Cancer 2021; 28:671–681.

77. Thorsson V, Gibbs DL, Brown SD, et al. The immune landscape of cancer. Immunity 2018; 48:812–830.

78. Sayaman RS, Saad M, Thorsson V, et al. Germline genetic contribution to the immune landscape of cancer. Immunity 2021; 54:367–386.

79. Boran ADW, Byengar R. Systems approaches to polypharmacology and drug discovery. Curr Opin Drug Discov Dev 2010; 13:297–309.

80. Peng X, Chen Z, Farshidfar F, et al. Molecular characterization and clinical relevance of metabolic expression subtypes in human cancers. Cell Rep 2018; 23:255–269.

81. Mohan DR, Lerario AM, Finco I, et al. New strategies for applying targeted therapies to adrenocortical carcinoma. Curr Opin Endocr Metab Res 2019: 8:72–79.

82. Alyaeteem G, Nlubol N. Current status and future target therapy in adrenocortical carcinoma. Front Endocrinol 2021; 12:613248.