A novel biocatalyst for efficient production of 2-oxo-carboxylates using glycerol as the cost-effective carbon source

Yujiao Wang¹, Yingxin Zhang¹, Tianyi Jiang¹, Jingjing Meng¹, Binbin Sheng¹, Chunyu Yang¹, Chao Gao¹*, Ping Xu¹,² and Cuiqing Ma¹*

Abstract

Background: The surplus of glycerol has increased remarkably as a main byproduct during the biofuel's production. Exploiting an alternative route for glycerol utilization is significantly important for sustainability of biofuels.

Results: A novel biocatalyst that could be prepared from glycerol for producing 2-oxo-carboxylates was developed. First, Pseudomonas putida KT2440 was reconstructed by deleting lldR to develop a mutant expressing the NAD-independent lactate dehydrogenases (iLDHs) constitutively. Then, the Vitreoscilla hemoglobin (VHb) was heterologously expressed to further improve the biotransformation activity. The reconstructed strain, P. putida KT2440 (ΔlldR)/pBSPPC_{Cgr}-Vgb, exhibited high activities of iLDHs when cultured with glycerol as the carbon source. This cost-effective biocatalyst could efficiently produce pyruvate and 2-oxobutyrate from dl-lactate and dl-2-hydroxybutyrate with high molar conversion rates of 91.9 and 99.8%, respectively.

Conclusions: The process would not only be a promising alternative for the production of 2-oxo-carboxylates, but also be an example for preparation of efficient biocatalysts for the value-added utilization of glycerol.

Keywords: Glycerol, Pseudomonas putida KT2440, Biocatalyst, NAD-independent lactate dehydrogenase, 2-Oxo-carboxylate

Background

The increasing demand for renewable fuel has resulted in the increasing production of biofuels. As an inevitable byproduct, glycerol is generated in both bioethanol and biodiesel production processes [1]. For instance, a large amount of glycerol is produced during fermentative production of bioethanol [1]. About 10 kg of crude glycerol will be generated from every 100 kg of biodiesel production by the transesterification of fats and oils with alcohol [2]. Significant amounts of glycerol surplus, created by the increasing bioethanol and biodiesels production, have given rise to a sharp drop in glycerol price [1–3]. The painfully low glycerol price has negatively impacted the development of biofuels industry [2]. Therefore, exploiting new value-added alternate ways of glycerol utilization is positive to improve the viability of the biofuel economy.

Glycerol can be converted into various high-value products via either chemical transformations or biological conversions [4, 5]. For example, high-value fine chemicals such as dihydroxyacetone, tartaric acid, and mesoxalic acid can be obtained by selective catalytic oxidation of glycerol or glycerol derivatives [6]. Due to its advantages of higher specificity, milder reaction conditions, and lower levels of chemical contaminants, biological conversion is more desirable for environment-friendly production of those valuable chemicals from glycerol [3, 4, 7].

A wide variety of microorganisms, including the Pseudomonas putida KT2440, are able to utilize glycerol as the carbon and energy source [8, 9]. Recent studies related to biotechnological production of fuels and chemicals from...
glycerol have focused on metabolites derived from glycerol-amination process such as 1,3-propanediol, succinic acid, 2,3-butanediol, and ethanol [10–13]. There are also some studies concerning the use of glycerol for cultures of the oil-accumulating microbes such as microalgae, bacteria, yeasts and other fungi. The lipids recovered from whole cells of these oil-accumulating microbes can be transesterified into biodiesel and possess a composition similar to that of plant-based oils [14–16].

Besides the source of lipids, whole cells of microbes with different enzymes could also be used in the biocatalysis processes [17]. For example, there is a large amount of potential enzymes in genome of *P. putida* KT2440, which evolutionarily endow this strain with capacities to host a variety of biodegradation pathways and enable it to withstand exposure to diverse types of aggressive aromatic compounds, such as naphthalene, 4-chloronitrobenzene, 2,4-xylenol and phenol [18]. *P. putida* KT2440 is a microorganism officially classified as Generally Recognized as Safe. Thus, the whole cells of the strain can be used as a robust biocatalyst for biotransformation in various applications. However, these potential enzymes, such as NAD-independent lactate dehydrogenases (iLDHs, which involved in the catabolism of lactate) [19] and the enzymes involved in the catabolism of catechol (encoded by a cat cluster) [20] are generally strictly regulated, requiring expensive or toxic inducers for their expressions.

Since the release of complete sequence of *P. putida* KT2440’s genome, metabolic networks of the *P. putida* KT2440 have been reconstructed and the regulation mechanisms of various potential enzymes have been disclosed. Here, we reported a case study of production of 2-oxo-carboxylates, using glycerol as the carbon source for the biocatalyst preparation, which based on the regulation mechanism of lactate utilization [19]. The transcriptional repressor LldR of lactate utilization operon was deleted in the *P. putida* KT2440. Whole cells of the recombinant strain were confirmed to constitutively exhibit the activities of iLDHs catalyzing the oxidation of 2-hydroxy-carboxylates. Then, two important 2-oxo-carboxylates: pyruvate and 2-oxobutyrate (2-OBA) were produced with whole cells of the recombinant strain prepared from glycerol as the catalyst. The process provides a promising alternative for the value-added utilization of biotechnologically produced glycerol.

Results and discussion

Regulatory networks of glycerol and lactate metabolism in P. putida KT2440

Owing to its versatile metabolic activities, *P. putida* KT2440 can use various organics as carbon and energy sources, which make this strain an ideal industrial microorganism used for biotransformation and biodegradation [21]. However, most of the metabolism networks are subject to the strict regulation. Take glycerol and lactate as examples, both of these two compounds can be used as carbon and energy sources for *P. putida* KT2440 [9, 22]. During the glycerol utilization process, the specific enzymes related to the glycerol metabolism, including GlpF (a glycerol transporter encoded by glpF), GlpK (a glycerol kinase encoded by glpk), and GlpD (a glycerol-3-phosphate dehydrogenase encoded by glpD), will be generally induced [9]. The expressions of these genes are regulated by GlpR, a DeoR family transcriptional regulator, which is encoded by glpR [9, 23, 24]. The expression of glpR is not affected by glycerol [9]. The primary structure and N-terminal helix-turn-helix (HTH) DNA-binding motif of GlpR in *Escherichia coli* K12 have already been identified [25]. Moreover, previous research has shown that the GlpR of *E. coli* K12 is a tetramer under native conditions [26]. Since the GlpR from *E. coli* K12 and *P. putida* KT2440 share the high consensus positions (71.0 %) and identity positions (54.8 %), we conjectured that the GlpR from *P. putida* KT2440 might be a tetramer and possess N-terminal HTH DNA-binding motifs as well. The structure of C-terminal effector-binding domain of DeoR from *Bacillus subtilis* has been determined [27]. In view of the fact that the GlpR belongs to the DeoR family transcriptional regulator [25], the GlpR might also possess the similar C-terminal effector-binding domains. Based on these backgrounds mentioned above, the hypothetic schematics of the regulatory networks of the GlpR-depended glycerol metabolism in *P. putida* KT2440 are shown in Fig. 1. As shown in Fig. 1a, when *P. putida* KT2440 is cultured with the glycerol as a carbon source, the glycerol from the extracellular environment will be transported into cytoplasm (mediated by GlpF) [24]. The sn-glycerol-3-P (G3P) produced by the substrate phosphorylation of glycerol (mediated by GlpK, the glycerol kinase) will be generated via the effector-independent expression of glp genes, which occurs in a low-probability stochastic way [24]. And then the repression of glp genes mediated by GlpR will be derepressed by the increasing intracellular G3P [24]. As an effector for GlpR, G3P can bind to the effector-binding domains of GlpR, and then will prevent the HTH DNA-binding domains of GlpR from binding to the DNA operator sequence of glp regulon [24, 25, 27]. On the contrary, the free tetrameric assembly of GlpR will tightly bind to the DNA operator sequence and inhibit the expressions of glp genes when the strain cultured without glycerol (Fig. 1b) [24, 27].

The similar regulation network also exists in the lactate metabolism of *P. putida* KT2440. The *lldPDE* operon, which is responsible for lactate utilization in most
The hypothetic schematics of regulatory networks of glycerol and lactate metabolism in *P. putida* KT2440, and the construction of *P. putida* KT2440 (ΔlldR).

a The derepression of the *glp* genes expression is occurring when the strain cultured in MSM with glycerol as carbon source. On the other hand, the expressions of *lldPDE* genes are repressed by the LldR, without the lactate as inducer.

b The derepression of the *lldPDE* genes expression is occurring when the strain cultured in MSM with dl-lactate as carbon source. On the contrary, the free tetrameric assembly of GlpR will tightly bind to the DNA operator sequence with the DNA-binding domains, and inhibit the expressions of *glp* genes.

c If the *lldR* gene is deleted, the repression of the *lldPDE* genes expression will be damaged, owing to the absence of the functional LldR. And the *lldPDE* genes will still fully express, even without lactate as the inducer.

d Diagram illustrating the disruption of the *lldR* mediated by homologous double crossover.

e Analysis of PCR fragments to confirm *lldR* disruption. Lane *M* molecular mass standard (λDNA/HindIII); lane 1 product amplified with *P. putida* KT2440 genomic DNA as the template; lane 2 product amplified with water as the template (negative control); lane 3 product amplified with *P. putida* KT2440 (ΔlldR) genomic DNA as the template. The PCRs were performed with primers *lldRk.f* and *lldRk.r*.
Pseudomonas strains including *P. putida* KT2440, has been studied in previous reports [19, 28–31]. The *lldPDE* operon comprises 3 genes, *lldP* (encoding a lactate permease), *lldD* (encoding an l-iLDH), and *lldE* (encoding a d-iLDH) [19, 22]. The l-iLDH and d-iLDH are mainly responsible for the oxidation of l-lactate and d-lactate to pyruvate, respectively [19, 28, 31]. However, the expressions of *lldD* and *lldE* are both repressed by the regulator LldR which is encoded by upstream adjacent gene *lldR* [19]. The previous study reported that the LldR from *Corynebacterium glutamicum* is a homodimer assembled by domain swapping [32]. The N-domain of this regulator contains a typical winged HTH (WHHT) DNA-binding domain [32, 33]. And the C-terminal domain is assumed to play the ligand-binding role [32]. As the primary structure predicted by NCBI, the monomer of LldR from *P. putida* KT2440 comprises an N-terminal WHHT DNA-binding and a C-terminal ligand-binding domain, which is coincident with the typical region features of many members of the GntR family [34]. The hypothetic schematics of the regulatory networks of the LldR-mediated lactate metabolism in *P. putida* KT2440 have also been shown in Fig. 1. As shown in Fig. 1a, while the strain cultured in the medium without lactate, the free LldR homodimer can bind to the promoter region of the *lldPDE* operon with the WHHT DNA-binding domains, and will inhibit the expressions of *lldPDE* genes downstream. However, the derepression of LldR to the *lldPDE* genes is occurring when lactate exists in the growing environment of the strain. As an effector of LldR, the lactate can bind to the C-terminal ligand-binding domains. Then, the effector-bound LldR will lose the ability of binding to the DNA promoter sequence of *lldPDE* regulon (Fig. 1b).

Reconstruction of *P. putida* KT2440 lldR deletion mutant

As mentioned before, the presence of lactate is necessary for the expressions of l-iLDH and d-iLDH [19, 31, 35]. As a result, the hyperosmotic medium caused by high concentration of lactate becomes a major limitation for high-density culture, and the indispensable lactate addition raises the cost of biocatalysts preparation. Considering the versatile applications of *P. putida* KT2440 in biocatalysis, it is rather desirable to prepare efficient biocatalyst from a more cost-effective substrate, such as glycerol, with the required enzymes iLDHs. To achieve this goal, the regulatory network of lactate utilization was reconstructed. After deleting the *lldR* gene, it seems likely that the regulatory network would be broken down because of the absence of the functional LldR. Therefore, when cells incubated with the glycerol as the sole carbon source, the *lldPDE* genes would still fully express, even without the induction of lactate (Fig. 1c). To explore this possibility, we disrupted the *lldR* gene which encodes negative regulator LldR in *P. putida* KT2440. The suicide plasmid pK18mobacB which mediated the homologous recombination was used for deleting the lldR gene (Fig. 1d) [36]. The disruption of the gene *lldR* was verified by PCR (Fig. 1e). The result strain is named *P. putida* KT2440 (*ΔlldR*).

Effect of inactivation of *lldR* on iLDHs expression

The wild-type *P. putida* KT2440 and *P. putida* KT2440 (*ΔlldR*) were cultured in 500-mL baffled shake flasks each containing 100 mL minimal salt medium (MSM) [31] supplied with 5 g/L dl-lactate or glycerol as the carbon source. And 1 mM octanoate, as the co-feeder, was added to the MSM with glycerol to shorten lag phase [23]. To investigate the effect of inactivation of *lldR* on iLDHs expression, the activities of l-iLDH and d-iLDH in crude cell extracts of *P. putida* KT2440 and *P. putida* KT2440 (*ΔlldR*) were assayed, with 2,6-dichloroindophenol (DCIP) as the artificial electron acceptor and 20 mM l- or d-lactate as the electron donor. As shown in Table 1, when the *P. putida* KT2440 was cultured in the medium with dl-lactate as the sole carbon source, the enzymes activities of l-iLDH and d-iLDH were 161.4 nmol/min mg protein and 332.9 nmol/min mg protein, respectively. However, neither l-iLDH nor d-iLDH activity was detectable in *P. putida* KT2440 when cultured with glycerol. Comparatively, when the *P. putida* KT2440 (*ΔlldR*) was incubated in the MSM with dl-lactate as the carbon source, the activity of l-iLDH was 220.9 nmol/min mg protein and d-iLDH was 471.5 nmol/min mg protein. While incubated in the MSM containing the glycerol as the carbon source, this *ΔlldR* mutant also exhibited high activities of iLDHs, 348.2 nmol/min mg protein and 771.0 nmol/min mg protein for l-iLDH and d-iLDH, respectively. These results revealed that the repression effects of LldR on l-iLDH and d-iLDH expressions

Growth substrate	Strain	Enzyme activity (nmol/min mg protein)
		l-iLDH
		d-iLDH
dl-Lactate	*P. putida* KT2440	161.4 ± 4.6
	P. putida KT2440 (*ΔlldR*)	220.9 ± 7.0
Glycerol	*P. putida* KT2440	ND
	P. putida KT2440 (*ΔlldR*)	348.2 ± 11.2

ND not detected

* Activities of d-iLDH and l-iLDH were examined with 20 mM d-lactate or 20 mM l-lactate. DCIP was used as the electron acceptor. Results are mean ± SD of three parallel replicates.
were removed by the disruption of lldR gene. When cultured with glycerol, the iLDHs activities of the P. putida KT2440 (ΔlldR) were not impaired, compared with that cultured with dl-lactate. Therefore, the P. putida KT2440 (ΔlldR), in which l-iLDH and d-iLDH are expressed constitutively, has the potential to efficiently produce pyruvate from lactate with glycerol as the cost-effective culture substrate.

Vitreoscilla hemoglobin (VHb) enhances the lactate oxidation

It has been revealed in a previous study that iLDHs from *P. stutzeri* SDM could not oxidize lactate with oxygen as the directly electron acceptor [37]. The lldPDE operon organization is similar in *P. putida* KT2440 and *P. stutzeri* SDM, and the lactate utilization genes between these two strains show strikingly high homology [19, 29, 38]. It is inferred that the electron produced in the lactate oxidation process might terminally transfer to the oxygen, a final electron acceptor, through the electron transport chain in *P. putida* KT2440, as well as in *P. stutzeri* SDM [37].

Vitreoscilla hemoglobin (VHb) is a soluble homodimeric globin encoded by vgb, a 438 bp gene discovered in Vitreoscilla sp. [39]. It is the first bacterial hemoglobin whose structure and function have been well characterized [39, 40]. Since the gene (vgb) encoding VHb has been cloned [41, 42], its heterologous expression has become an engineering strategy widely used to increase production of a diverse of bioproducts and facilitate the bioremediation [43]. In this study, the vgb gene was amplified with the primers vgb.f and vgb.r from the vector pET28b-RgDAO-VHb. Then, the 438 bp vgb fragment was ligated to HindIII and BamHI double-digested pBSPPcGm, a broad-host-range constitutive vector containing a _P. c_ promoter [44], to produce pBSPPcGm-vgb (Fig. 2a). As shown in Fig. 2b, the vgb gene has been successfully cloned and inserted into the pBSPPcGm with the corresponding restriction enzyme sites, obtaining the pBSPPcGm-vgb. The vector was transferred into *P. putida* KT2440 and *P. putida* KT2440 (ΔlldR) by electroporation to produce *P. putida* KT2440/pBSPPcGm-vgb and *P. putida* KT2440 (ΔlldR)/pBSPPcGm-vgb, respectively.

To explore the effect of introduction of VHb in lactate oxidation, the l-iLDH and d-iLDH activities in the crude cell extracts of *P. putida* KT2440, *P. putida* KT2440 (ΔlldR), *P. putida* KT2440/pBSPPcGm-vgb and *P. putida* KT2440 (ΔlldR)/pBSPPcGm-vgb, cultured with glycerol, were assayed. As the results shown in Fig. 2c, the introduction of VHb did not increase the activities of iLDHs in *P. putida* KT2440 cultured with the glycerol as carbon source. The enzymes activities of l-iLDH and d-iLDH in *P. putida* KT2440 (ΔlldR) were 273.0 nmol/min mg protein and 595.0 nmol/min mg protein, respectively. However, compared with *P. putida* KT2440 (ΔlldR), both the activities of l-iLDH and d-iLDH in *P. putida* KT2440 (ΔlldR)/pBSPPcGm-vgb significantly increased to 520.7 nmol/min mg protein and 1063.9 nmol/min mg protein, respectively, almost twofold higher than those in *P. putida* KT2440 (ΔlldR).

Effect of VHb introduction in whole-cell biocatalysis

It was also investigated if the introduction of VHb could affect the whole cells biocatalysis activities. The biocatalysis reactions were conducted at 30 °C in phosphate buffer (pH 7.4) for 6 h, with 10.5 g dry cell weight (DCW)/L of *P. putida* KT2440, *P. putida* KT2440/pBSPPcGm-vgb, *P. putida* KT2440 (ΔlldR) and *P. putida* KT2440 (ΔlldR)/pBSPPcGm-vgb, which cultured with glycerol, as the biocatalysts, respectively. l-Lactate, α-lactate, and racemic lactate at 100 mM were used as the substrates. The biocatalysis reactions were carried out in the presence of 30 mM ethylenediaminetetraacetic acid (EDTA), which could remove bivalent ions necessary for 2-keto-acid decarboxylase-catalyzed reactions [45, 46], and then could block the degradation of 2-oxo-carboxylates. As shown in Fig. 2d, via 6 h biotransformation, no pyruvate production was detected when either *P. putida* KT2440 or *P. putida* KT2440/pBSPPcGm-vgb was used, which was in correspondence to the result of the activities assays of iLDHs of these two strains. However, both *P. putida* KT2440 (ΔlldR) and *P. putida* KT2440 (ΔlldR)/pBSPPcGm-vgb have the ability to oxidize the two enantiomers of lactate. For *P. putida* KT2440 (ΔlldR), the oxidation rates toward l-lactate, d-lactate and dl-lactate to pyruvate were 0.38 mmol/g DCW h, 0.34 mmol/g DCW h and 0.51 mmol/g DCW h, respectively. And for *P. putida* KT2440 (ΔlldR)/pBSPPcGm-vgb, the oxidation rates toward these three kinds of lactate have remarkably increased to 0.77 mmol/g DCW h, 0.60 mmol/g DCW h and 1.00 mmol/g DCW h, respectively (Fig. 2d).

As expected, the reconstructed strain with heterologously expressed VHb exhibited about twofold higher biotransformation activities than the strain without VHb expression. These results revealed that the introduction of VHb into the recombinant *P. putida* KT2440 (ΔlldR) indeed significantly enhanced the whole cells biocatalysis activities of lactate oxidation to produce pyruvate. Furthermore, the pyruvate production rates from DL-lactate were significantly higher than which from either l-lactate or d-lactate alone (Fig. 2d). l-iLDH and d-iLDH catalyze the oxidation of l-lactate and d-lactate, respectively. The higher biotransformation activity toward DL-lactate might be due to the fact that both isomers in DL-lactate would be simultaneously oxidized by l-iLDH and d-iLDH in these recombinant strains. Compared with
optical pure lactate, the low price and large sources of racemic lactate make it become a more cost-effective substrate to produce pyruvate. Based on the results above, the *P. putida* KT2440 strains. The biotransformations were conducted with the whole cells of *P. putida* KT2440, *P. putida* KT2440/pBSPPcGm-vgb, *P. putida* KT2440 (ΔlldR) and *P. putida* KT2440 (ΔlldR)/pBSPPcGm-vgb with 100 mM L-lactate (violet bars), 100 mM D-lactate (light cyan bars) and 100 mM dl-lactate (blue bars) as the substrates. The concentrations of the pyruvate were measured by HPLC. Results are mean ± SD of three parallel replicates.

Pyruvate and 2-OBA production through whole-cell biocatalysis

The oxidation of two most important members of 2-hydroxy-carboxylates, lactate and 2-hydroxybutyrate (2-HBA) that are catalyzed by iLDHs, have been studied in previous studies [37, 47]. In this study, the biocatalytic oxidation of racemic lactate (100 mM) and 2-HBA
(100 mM) were carried out, with 10.5 g DCW/L of whole cells of \(\text{P. putida} \) KT2440, \(\text{P. putida} \) KT2440/pBSPPcGm-\(\text{vgb} \), \(\text{P. putida} \) KT2440 (\(\Delta \text{lldR} \)) and \(\text{P. putida} \) KT2440 (\(\Delta \text{lldR} \))/pBSPPcGm-\(\text{vgb} \), which were prepared from glycerol, as the biocatalysts, respectively. The biocatalysis reactions were conducted at 30 °C in phosphate buffer (pH 7.4) with the presence of 30 mM EDTA. As shown in Tables 2 and 3, the racemic lactate (100 mM) and 2-HBA (100 mM) were completely oxidized into pyruvate and 2-OBA, via 6-h bioconversion with \(\text{P. putida} \) KT2440 (\(\Delta \text{lldR} \))/pBSPPcGm-\(\text{vgb} \) as the biocatalyst. The yields of pyruvate and 2-OBA with \(\text{P. putida} \) KT2440 (\(\Delta \text{lldR} \)) were 50.9 and 74.7 %, respectively. However, the yields of these pyruvate and 2-OBA with \(\text{P. putida} \) KT2440 (\(\Delta \text{lldR} \)) were 90.9 mM and 99.3 mM, respectively.

Many researches have focused on the conversions of the inexpensive glycerol into high-value products, such as fine chemicals [6] and biodiesels [16], via the microbial fermentation. Furthermore, glycerol can also be used as a carbon source and energy source to support the growth of many industrial microorganisms [8]. The development of biotechnology of glycerol utilization processes will allow the biofuel industry to be more competitive.

Compared with lactate, glycerol is a more cost-effectively green substrate suitable for preparation of the biocatalyst containing the iLDHs. In 2006 and 2007, the spot price of the heat-stable lactic acid, as posted in the Chemical Marketing Reporter, was about $0.70 per pound [48]. In contrast, the prices of refined glycerol and crude glycerol were approximately $0.30 and $0.050 per pound, respectively, obviously cheaper than the lactic acid [49]. Furthermore, as a byproduct of biofuels, large amounts of glycerol have become a waste stream. Making good use of this waste stream would not only lower the production costs, but also contribute to the sustainable development of the biofuels industry. After reconstructing the lactate utilization regulatory network by deleting the Ldr regulator in \(\text{P. putida} \) KT2440, the \(\Delta \text{lldR} \) mutant exhibited the outstanding constitutive iLDHs activities when cultured with glycerol as the carbon source (Fig. 3). On the other hand, a constitutive vector with high expression strengths and broad host ranges was used for the introduction of VHb, which can enhance the lactate oxidation activities and the yields of the 2-oxo-carboxylates significantly (Fig. 3). This beneficial effect of VHb heterologous expression may be the result of binding more oxygen and delivering to the respiratory chain [43]. It is also feasible to apply this VHb introduction technology in other aerobic biotransformations to increase production efficiency.

Table 2 Comparison of pyruvate productions by whole cells of \(\text{P. putida} \) KT2440, \(\text{P. putida} \)/pBSPPcGm-\(\text{vgb} \), \(\text{P. putida} \) KT2440 (\(\Delta \text{lldR} \)), and \(\text{P. putida} \) KT2440 (\(\Delta \text{lldR} \))/pBSPPcGm-\(\text{vgb} \)

Strain	Pyruvate (mM)	Yield (%)	Productivity (mmol/g DCW h)
KT2440	0	0	0
KT2440/pBSPPcGm-\(\text{vgb} \)	0	0	0
KT2440 (\(\Delta \text{lldR} \))	50.60 ± 0.38	50.9	0.81 ± 0.005
KT2440 (\(\Delta \text{lldR} \))/pBSPPcGm-\(\text{vgb} \)	90.85 ± 0.75	91.9	1.43 ± 0.002

The initial α-lactate concentration was 100 mM. The biocatalysis reactions were conducted at 30 °C in phosphate buffer (pH 7.4) for 6 h with 10.5 g DCW/L of biocatalysts prepared from glycerol. Results are mean ± SD of three parallel replicates

* The yields of pyruvate were calculated based on the actual initial concentrations of α-lactate measured by HPLC

Table 3 Comparison of 2-OBA productions by whole cells of \(\text{P. putida} \) KT2440, \(\text{P. putida} \) KT2440/pBSPPcGm-\(\text{vgb} \), \(\text{P. putida} \) KT2440 (\(\Delta \text{lldR} \)), and \(\text{P. putida} \) KT2440 (\(\Delta \text{lldR} \))/pBSPPcGm-\(\text{vgb} \)

Strain	2-OBA (mM)	Yield (%)	Productivity (mmol/g DCW h)
KT2440	0	0	0
KT2440/pBSPPcGm-\(\text{vgb} \)	0	0	0
KT2440 (\(\Delta \text{lldR} \))	75.52 ± 1.59	74.7	1.20 ± 0.03
KT2440 (\(\Delta \text{lldR} \))/pBSPPcGm-\(\text{vgb} \)	99.31 ± 1.45	99.8	1.58 ± 0.02

The initial α-2-HBA concentration was 100 mM. The biocatalysis reactions were conducted at 30 °C in phosphate buffer (pH 7.4) for 6 h with 10.5 g DCW/L of biocatalysts prepared from glycerol. Results are mean ± SD of three parallel replicates

* The yields of 2-OBA were calculated based on the actual initial concentrations of α-2-HBA measured by HPLC
Pyruvate and 2-OBA are two important platform compounds which have been widely applied in the chemical, drug, and food industries [47, 50]. Pyruvate has been used as a weight-control dietary supplement, a supplemental nutrient, and an antioxidant which can protect the brain and other tissues from the oxidative stress [50–53]. 2-OBA is an important intermediate widely used in biosynthesis of L-isoleucine, D-2-hydroxybutyrate and 1-propanol [54–56]. Furthermore, 2-OBA could be bioconverted into a non-natural amino acid L-homoalanine, which is a key chiral precursor for production of levitiracetam, brivaracetam, and ethambutol [57, 58]. Owing to the mild reaction conditions, high substrate conversion efficiency and simple compositions of the reaction mixture which is contributed to the convenience of recovery, whole cell catalysis becomes the preferred method for pyruvate and 2-OBA production [47, 50]. For example, Pseudomonas stutzeri SDM, which contains inducible iLDHs, has been reported to have good ability to produce pyruvate and 2-OBA from lactate and 2-HBA as the substrates, respectively [37, 47]. Whole cells of P. stutzeri SDM with iLDHs must be prepared with lactate as the carbon source. Although the concentrations of pyruvate and 2-OBA reported here were lower than these previous reports, this work disclosed a novel biocatalyst which could be prepared with glycerol as a more cost-effective substrate.

Conclusions
Taking the 2-oxo-carboxylates production as an example, we developed a process of using biofuel’s byproduct glycerol for biocatalyst preparation. After deleting the LldR and heterologously expressing Vhb in P. putida KT2440, the recombinant P. putida KT2440 (ΔlldR)/pBSPPC_{Gm^-}vgb with high iLDHs activities was cost-effectively prepared from glycerol. Using the whole cells as biocatalyst, 90.9 mM pyruvate and 99.3 mM 2-OBA were produced in 6 h from 100 mM dL-lactate and dL-2-HBA, respectively. The process demonstrated an option for effective utilization of the low-cost and renewable substrates through recombining the metabolic networks, based on the regulation mechanism, with the goal of producing the high-value chemicals.

Methods
Chemicals and biochemicals
Racemic lactate, L-lactate, octanoate, phenylmethanesulfonyl fluoride (PMSF), and DCIP were all purchased from Sigma. d-Lactate and racemic 2-HBA were obtained from Fluka and TCI, respectively. Restriction enzymes and T4 DNA ligase were purchased from Thermo Fisher Scientific Inc. FastPfu DNA polymerase was purchased from TransGen Biotech. All other chemicals were of reagent grade.
Bacterial strains and culture conditions

Bacterial strains, plasmids, and oligonucleotide primers used in this study are listed in Table 4. For DNA manipulations and for pre-cultures, E. coli and P. putida strains were grown in Luria–Bertani (LB) medium [59, 60] at 37 and 30 °C, respectively. Antibiotics at the following concentrations: kanamycin at 50 μg/mL, ampicillin at 100 μg/mL, and gentamicin at 30 μg/mL were added when necessary. For determination of iLDHs activity, the second crossover cells were singled out by culture on LB plates containing 10 % (w/v) sucrose [22]. The resulting deletion mutant was designated as P. putida KT2440 (ΔlldR). All the constructed strains were validated by PCR and DNA sequencing.

Gene knockout procedure

Genomic DNA of P. putida KT2440 was extracted through the Wizard Genomic DNA Purification Kit (Promega, Madison, WI, USA). The lldR gene encoding the regulator LldR was amplified by PCR using primers with the genomic DNA of P. putida k.r as the primers with the genomic DNA of P. putida k.f and lldR regulator LldR was amplified by PCR using primers, vgbf.f and vgbr.r with plasmid pET28b-RgDAAO-Vgb as a template. The PCR product was first ligated to the pEASY-Blunt vector, and the resulting plasmid was named pEASY-Blunt-vgb and sequenced. And then, after digested with HindIII and BamHI, the gel-purified

\[\text{Plasmids} \]

Name	Relevant characteristic	Reference
pKLR	A fragment from KT2440 genome containing whole length of lldR was inserted in pk18mobsacB, Km'	This study
pKSR	pKLR was completely digested by PstI, and then the large fragment was self-ligated; as a result, only partial length of lldR was inserted into pk18mobsacB, Km'	This study
pBSPPcm_vgb	A constitutive vector with high expression strengths, Gm'	(44)
pET28b-RgDAAO-Vgb	pET28b containing Rg-diao gene and vgb gene,T7 promoter, Km'	Professor Sheng Yang*
pBSPPcm_vgb	pBSPPcm containing gene vgb, Gm'	This study
Primers	Sequences (5' → 3') and properties	
lldR_f	GAATTCATGTTTTTGTAGCATGGACCC (EcoRI)	This study
lldR_r	AAGCTTCCAGGCGCCGCTGGCCTCT (HindIII)	This study
vgbf	CCCAAGGTTTGGAGACAGAATGTTAGACCCACGAAACCATTA (HindIII)	This study
vgbr	CGGGGATCCTTCAACCCGTTGACCGTA (BamHI)	This study

Name	Relevant characteristic	Reference
P. putida KT2440	Wild-type; capable of dl-lactate utilizing	ATCC
P. putida KT2440 (ΔlldR)	lldR deletion strain of P. putida KT2440	This study
P. putida KT2440/pBSPPcm_vgb	P. putida KT2440 harboring pBSPPcm_vgb, Gm'	This study
P. putida KT2440 (ΔlldR)/pBSPPcm_vgb	P. putida KT2440 (ΔlldR) harboring pBSPPcm_vgb, Gm'	This study
E. coli DH5α	λ− d80lacZΔM15 (Δ(lacZΔM15-argF-U169)) recA1 endA1 hsdR17 (rK-, mK+) supE44 thi-1 gyrA relA1; used for gene clone	Invitrogen
E. coli BL21 (pET28b-RgDAAO-VHb)	E. coli BL21 harboring pET28b-RgDAAO-VHb, Km'	Professor Sheng Yang*

ATCC American Type Culture Collection

* Form Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences
vgb fragment was cloned into pBSPPc_{Gm}, a constitutive vector with high expression strengths [44], at the corresponding sites, to result the plasmid pBSPPc_{Gm}-vgb. Plasmid pBSPPc_{Gm}-vgb was transferred into <i>P. putida</i> KT2440 and its derivatives by electroporation. The <i>P. putida</i> KT2440 and its derivatives, which harboring the recombinant vector pBSPPc_{Gm}-vgb were selected on LB plate supplemented with 30 μg/mL gentamicin.

Biocatalyst preparation
Whole cells of <i>P. putida</i> strains cultured in MSM containing 5 g/L glycerol and 1 mM octanoate were harvested by centrifugation at a speed of 6000 rpm for 10 min. After washing twice with phosphate buffer (pH 7.4), whole cells were suspended in phosphate buffer and ready for the following study. Optical densities of whole cells were assayed and converted to DCW according to the previous report [22].

Enzymatic activity assays
Whole cells of the <i>P. putida</i> strains grown in MSM containing 5 g/L glycerol and 1 mM octanoate were disrupted by sonication (Sonic 500 W/20 kHz, USA) on ice bath. The disrupted cells were centrifuged for 20 min at 12,000 rpm, and the supernatants were used as crude cell extracts [37]. The activities of iLDHs were assayed by monitoring the change in absorbance at 600 nm corresponding to the reduction of DCIP at 30 °C with a UV/visible spectrophotometer (Ultrospec 2100 pro, Amersham Biosciences, USA) [61]. The reaction was carried out in 0.8 mL of 50 mM Tris–HCl, pH 7.5, containing 20 mM L- or D-lactate, 0.0625 mM DCIP, and 50 μL of crude cell extracts [22].

Whole-cell biocatalysis for production of pyruvate and 2-OBA
The reactions were carried out at 30 °C and 120 rpm in phosphate buffer (pH 7.4) containing 10.5 g DCW/L of biocatalysts, 30 mM EDTA, and 100 mM racemic 2-hydroxy-carboxylates. The concentrations of pyruvate and 2-OBA in the reaction mixtures were quantitatively analyzed by high-performance liquid chromatography (HPLC) using an Aminex HPX-87H column (Bio-Rad) and the mobile phase (10 mM H₂SO₄) at 0.4 mL/min flow rate at 55 °C [37].

Abbreviations

- iLDHs: NAD-independent lactate dehydrogenases; 2-OBA: 2-Oxobutyrate; HTH: Helix-turn-helix; WHHT: Winged HTH; G3P: sn-glycerol-3-P; Vhb: Vitreoscilla hemoglobin; MSM: Minimal salt medium; DCW: Dry cell weight; EDTA: Ethylenediaminetetraacetic acid; 2HBA: 2-Hydroxybutyrate; PMSF: Phenylmethanesulfonyl fluoride; DCIP: 2,6-Dichloroindophenol; LB: Luria-Bertani; HPLC: High-performance liquid chromatography.

Authors’ contributions
YW carried out the ldr gene knockout and Vhb cloning and expression, participated in the enzymatic activity assays and drafted the manuscript. YZ carried out the enzymatic activity assays and helped to revise the manuscript. TJ performed the data analysis and helped to draft the manuscript. JM executed the whole-cell biocatalysis experiments and helped to revise the manuscript. BS performed the HPLC analysis and helped to revise the manuscript. CG conceived of the study, and participated in its design and drafted the manuscript. CY participated in the interpretation of data for the work and helped to revise the manuscript. CM participated in the design of the study and coordination and revised the manuscript. PX conceived of the study and coordination, contributed reagents and materials, and helped to revise the manuscript. All authors read and approved the final manuscript.

Author details
1 State Key Laboratory of Microbial Technology, Shandong University, Jinan 250100, People’s Republic of China. 2 Present Address: State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, People’s Republic of China.

Acknowledgements
We would like to sincerely and genuinely thank Prof. Sheng Yang (Key Laboratory of Synthetic Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences) for providing the vector pET28b-RgDAAO-Vhb. The study was supported by National Natural Science Foundation of China (31270080, 31170052, 31270856), Chinese National Program for High Technology Research and Development (2014AA021206, 2011AA02A207), and Young Scholars Program of Shandong University (2015WLJH25).

Competing interests
The authors declare that they have no competing interests.

Received 9 September 2015 **Accepted** 28 October 2015

Published online: 25 November 2015
by an isolated indigenous Klebsiella sp. Ana-WSS. Biosourc Technol. 2014;153:374–8.

12. Huang Y, Li Z, Shimizu K, Ye Q. Simultaneous production of 3-hydroxypro- pionic acid and 1,3-propanediol from glycerol by a recombinant strain of Klebsiella pneumoniae. Bioreourc Technol. 2012;103:351–9.

13. Almeida JR, Fariu JC, Quirino BF. Biodiesel bioconversion: opportunities and challenges for microbial production of fuels and chemicals from glycerol waste. Biotechnol Futures. 2012;5:48.

14. Liang MH, Jiang JG. Advancing oleaginous microorganisms to produce lipid via metabolic engineering technology. Prog Lipid Res. 2013;52:395–408.

15. Munch G, Sestrin R, Sparling R, Levin DB, Ciechanover A. Lipid production in the under-characterized oleaginous yeasts, Rhodospindon batycaeae and Rhodospindon diobovatum, from biodiesel-derived waste glycerol. Bioreourc Technol. 2015;185:49–55.

16. Yang L, Zhu Z, Wang WH, Lu XF. Microbial recycling of glycerol to bio- diesel. Bioreourc Technol. 2013;150:1–8.

17. Bornscheuer UT, Huisman GW, Kazlauskas RJ, Lutz S, Moore JC, Robins K. Engineering the third wave of biocatalysis. Nature. 2012;485:185–94.

18. Nikel PI, Martínez-García E, de Lorenzo V. Biotechnological domestication of pseudomonads using synthetic biology. Nat Rev Microbiol. 2014;12:368–79.

19. Gao C, Hu C, Zheng Z, Ma C, Jiang T, Dou P et al. Lactate utilization is regulated by the FadR-type regulator LldR in Pseudomonas aeruginosa. J Bacteriol. 2013;195:667–92.

20. Jiménez JI, Miraembres B, Garcia JL, Diaz E. Genomic analysis of the aminocatalytic pathways from Pseudomonas putida KT2440. Environ Microbiol. 2002;4:824–41.

21. Park SJ, Choi JS, Kim BC, Jho SW, Ryu JW, Park D, et al. Purified NET: interac- tive database service and network analysis of Pseudomonas putida KT2440. BMC Genom. 2009;10(Suppl 1):518.

22. Wang Y, Lv M, Zhang Y, Xiao X, Jiang T, Zhang W, et al. Reconstruction of lactate utilization system in Pseudomonas putida KT2440: a novel biocata- lyst for 2,3-dihydroxy-carboxylate production. Sci Rep. 2014;4:6939.

23. Escapa IF, del Cerro C, García JL, Prieto MA. The role of GlpR repressor in the glycerol-dependent metabolic persistence of Pseudomonas stutzeri KT2440 growth and PHA production from glycerol. Environ Microbiol. 2013;15:93–110.

24. Jiménez JI, Miraembres B, García JL, Díaz E. Genomic analysis of the aminocatalytic pathways from Pseudomonas putida KT2440 regulates the regulatory logic of the GlpR repressor. mBio. 2015;6:e00345–10.

25. Zeng G, Te Y, Larson TJ. Repressor for the sn-glycerol 3-phosphate regulon of Escherichia coli K12: primary structure and identification of the DNA-binding domain. J Bacteriol. 1996;178:7080–9.

26. Larson TJ, Ye Z, Weissenborn DL, Hoffmann HH, Schweizer H. Purification and characterization of the repressor for the sn-glycerol 3-phosphate regulon of Escherichia coli K12. J Biol Chem. 1987;262:15869–74.

27. Skerlov J, Fábry M, Hulábeck M, Chwionowski Z, Rezácová P. Structure of the effector-binding domain of deoxyriboflavin repressor DeoR from Bacillus stearothermophilus. FEBS J. 2014;281:2880–29.

28. Gao C, Jiang T, Dou P, Ma C, Li L, Kong J, et al. NAD-independent l-lactate dehydrogenase is required for l-lactate utilization in Pseudomonas stutzeri strain SDM. PLoS One. 2012;7:e36519.

29. Jiang T, Gao C, Su F, Zhang W, Hu C, Dou P, et al. Genome sequence of Escherichia coli strain. J Biol Chem. 1987;262:15869–74.

30. Kemp MB. α- and ε-lactate dehydrogenases of Pseudomonas aeruginosa Biochem J. 1972;130:307–9.

31. Ma C, Gao C, Qiu J, Hao J, Liu W, Wang A, et al. Membrane-bound α- and ε-lactate dehydrogenase activities of a newly isolated Pseudomonas stutzeri strain. Appl Microbiol Biotechnol. 2007;77:91–8.

32. Gao YG, Suzuki H, Itou H, Zhou Y, Tanaka Y, Wachi M, et al. Structural and functional characterization of the LldR from Corynebacterium glutamicum: a transcriptional repressor involved in α- and ε-lactate sugar utilization. Nucleic Acids Res. 2008;36:7110–23.

33. Huffman JL, Brennan RG. Prokaryotic transcription regulators: more than just the helix-turn-helix motif. Curr Opin Struct Biol. 2002;12:98–106.

34. Jain D. Allosteric control of transcription in GntR family of transcription regulators: a structural overview. IUBMB Life. 2015;67:556–63.

35. Gao C, Xu X, Hu C, Zhang W, Yang Z, Ma C, et al. Pyruvate producing biocatalyst with constitutive NAD-independent lactate dehydrogenases. Process Biochem. 2010;45:1912–5.

36. Schafer A, Tauch A, Jager W, Kalinowski J, Thierbach G, Pühler A. Small mobilizable multi-purpose cloning vectors derived from the Escherichia coli plasmids pK18 and pK19: selection of defined deletions in the chromoso- me of Corynebacterium glutamicum. Gene. 1994;145:69–73.

37. Gao C, Qiu J, Ma C, Xu P. Efficient production of pyruvate from α-lactate by the lactate-utilizing strain Pseudomonas stutzeri SDM. PLoS One. 2012;7:e40755.

38. Nelson KE, Weinel C, Paulsen IT, Dodson RJ, Hilbert H, Martinis DOS VA, et al. Complete genome sequence and comparative analysis of the metabolically versatile Pseudomonas putida KT2440. Environ Microbiol. 2002;4:799–808.

39. Wang X, Perez E, Liu R, Yan LJ, Mallet RT, Yang SH. Pyruvate protects mito- chondria from oxidative stress in human neuroblastoma SK-N-SH cells. Brain Res. 2007;1132:1–9.

40. Ellgelings L, Morbach S, Sahm H. The fruits of molecular physiology: engineering the α-isoleucine biosynthesis pathway in Corynebacterium glutamicum. J Biotechnol. 1997;56:167–82.

41. Kri K, Fierer KF, Berezneff P, Nelson BD, Cowden PG, Cohn PA, et al. Effects of calcium pyruvate supplementation during training on body composition, exercise capacity, and metabolic responses to exercise. Nutrition. 2005;21:312–9.

42. Stark BC, Pagilla KR, Dikshit KL. Recent applications of Pseudomonas hemo- globin technology in bioprocess synthesis and bioremediation. Appl Microbiol Biotechnol. 2015;99:1627–36.

43. Wang X, Perez E, Liu R, Yan LJ, Mallet RT, Yang SH. Pyruvate protects mito- chondria from oxidative stress in human neuroblastoma SK-N-SH cells. Brain Res. 2007;1132:1–9.

44. Wang X, Perez E, Liu R, Yan LJ, Mallet RT, Yang SH. Pyruvate protects mito- chondria from oxidative stress in human neuroblastoma SK-N-SH cells. Brain Res. 2007;1132:1–9.

45. Wang X, Perez E, Liu R, Yan LJ, Mallet RT, Yang SH. Pyruvate protects mito- chondria from oxidative stress in human neuroblastoma SK-N-SH cells. Brain Res. 2007;1132:1–9.

46. Wang X, Perez E, Liu R, Yan LJ, Mallet RT, Yang SH. Pyruvate protects mito- chondria from oxidative stress in human neuroblastoma SK-N-SH cells. Brain Res. 2007;1132:1–9.

47. Wang X, Perez E, Liu R, Yan LJ, Mallet RT, Yang SH. Pyruvate protects mito- chondria from oxidative stress in human neuroblastoma SK-N-SH cells. Brain Res. 2007;1132:1–9.

48. Wang X, Perez E, Liu R, Yan LJ, Mallet RT, Yang SH. Pyruvate protects mito- chondria from oxidative stress in human neuroblastoma SK-N-SH cells. Brain Res. 2007;1132:1–9.

49. Wang X, Perez E, Liu R, Yan LJ, Mallet RT, Yang SH. Pyruvate protects mito- chondria from oxidative stress in human neuroblastoma SK-N-SH cells. Brain Res. 2007;1132:1–9.

50. Wang X, Perez E, Liu R, Yan LJ, Mallet RT, Yang SH. Pyruvate protects mito- chondria from oxidative stress in human neuroblastoma SK-N-SH cells. Brain Res. 2007;1132:1–9.