QED Corrections to Hadronic Processes in Lattice QCD

Chris Sachrajda

School of Physics and Astronomy
University of Southampton
Southampton SO17 1BJ
UK

33rd International Symposium on Lattice Field Theory
Kobe, Japan
14 - 18 July 2015
The precision of lattice calculations is such that Isospin-breaking effects, including electromagnetic corrections to hadronic masses, are now being calculated. For a review see A.Portelli at Lattice 2014. arXiv:1505.07057

A highlight has been the *Ab initio calculation of the neutron-proton mass difference* by the BMW collaboration. S.Borsanyi et al., arXiv:1406.4088

In this talk I review our proposal to calculate electromagnetic corrections to matrix elements.

The new feature is the presence of infrared divergences.

This is necessary for further progress in phenomenology, since the results of (some) weak matrix elements obtained from lattice QCD are now being quoted with $O(1\%)$ precision or better, e.g. FLAG Collaboration, arXiv:1310.8555

\[
\begin{align*}
\frac{f_\pi}{(\text{MeV})} & = 130.2(1.4) \\
\frac{f_K}{(\text{MeV})} & = 156.3(0.8) \\
\frac{f_D}{(\text{MeV})} & = 209.2(3.3) \\
\frac{f_{D_s}}{(\text{MeV})} & = 248.6(2.7) \\
\frac{f_B}{(\text{MeV})} & = 190.5(4.2) \\
\frac{f_{B_s}}{(\text{MeV})} & = 227.7(4.5)
\end{align*}
\]

For illustration, we consider f_π but the discussion is general; we do not use ChPT. For a ChPT based discussion of f_π, see J.Gasser & G.R.S.Zarnauskas, arXiv:1008.3479
Infrared Divergences

- At $O(\alpha^0)$
 \[
 \Gamma(\pi^+ \rightarrow \ell^+ \nu_\ell) = \frac{G_F^2 |V_{ud}|^2 f_\pi^2}{8\pi} m_\pi m_\ell \left(1 - \frac{m_\ell^2}{m_\pi^2}\right)^2.
 \]

- At $O(\alpha)$ infrared divergences are present and we have to consider
 \[
 \Gamma(\pi^+ \rightarrow \ell^+ \nu_\ell(\gamma)) = \Gamma(\pi^+ \rightarrow \ell^+ \nu_\ell) + \Gamma(\pi^+ \rightarrow \ell^+ \nu_\ell\gamma)
 \equiv \Gamma_0 + \Gamma_1,
 \]
 where the suffix denotes the number of photons in the final state.

- Each of the two terms on the rhs is infrared divergent; the divergences cancel in the sum.

- The cancelation of infrared divergences between contributions with virtual and real photons is an old and well understood issue.

 F. Bloch and A. Nordsieck, PR 52 (1937) 54

- The question for our community is how best to combine this understanding with lattice calculations of non-perturbative hadronic effects.

- This is a generic problem if em corrections are to be included in the evaluation of a decay process.
Lattice computations of $\Gamma(\pi^+ \rightarrow \ell^+ \nu_\ell(\gamma))$ at $O(\alpha)$

- As techniques and resources improve in the future, it may be better to compute Γ_1 nonperturbatively over a larger range of photon energies.
- At present we do not propose to compute Γ_1 nonperturbatively. Rather we consider only photons which are sufficiently soft for the point-like (pt) approximation to be valid.
 - A cut-off ΔE of $O(10 - 20 \text{ MeV})$ appears to be appropriate both experimentally and theoretically.
 F. Ambrosino et al., KLOE collaboration, hep-ex/0509045; arXiv:0907.3594
- We now write
 \[
 \Gamma_0 + \Gamma_1(\Delta E) = \lim_{V \rightarrow \infty} (\Gamma_0 - \Gamma_{0\text{ pt}}) + \lim_{V \rightarrow \infty} (\Gamma_{0\text{ pt}} + \Gamma_1(\Delta E)) .
 \]
- The second term on the rhs can be calculated in perturbation theory. It is infrared convergent, but does contain a term proportional to $\log \Delta E$.
- The first term is also free of infrared divergences.
- Γ_0 is calculated nonperturbatively and $\Gamma_{0\text{ pt}}$ in perturbation theory.
Estimates of structure dependent contributions to $\Gamma_1(\Delta E)$

- The size of the neglected structure-dependent contributions can be estimated using ChPT.

 J.Bijnens, G.Ecker and J.Gasser, hep-ph/9209261, V. Cirigliano and I. Rosell, arXiv:0707.3439

For the B-meson, for which we cannot use ChPT, we have another small scale $< \Lambda_{QCD}$, $m_{B^*} - m_B \simeq 45$ MeV so that we may expect that we will have to go to smaller ΔE in order to be able to neglect SD effects.

$$R_1^A(\Delta E) = \frac{\Gamma_1^A(\Delta E)}{\Gamma_0^{\alpha,pt} + \Gamma_1^{pt}(\Delta E)} , \quad A = \{\text{SD,INT}\}$$
\[\Gamma_0 + \Gamma_1(\Delta E) = \lim_{V \to \infty} (\Gamma_0 - \Gamma_0^{pt}) + \lim_{V \to \infty} (\Gamma_0^{pt} + \Gamma_1(\Delta E)). \]

1. Introduction
2. What is G_F at $O(\alpha)$?
3. Proposed (and ongoing) calculation of $\Gamma_0 - \Gamma_0^{pt}$
4. Calculation of $\Gamma_0^{pt} + \Gamma_1(\Delta E)$
5. Summary and Conclusions
2. What is G_F at $O(\alpha)$?

The results for the widths are expressed in terms of G_F, the Fermi constant ($G_F = 1.16632(2) \times 10^{-5}$ GeV$^{-2}$). This is obtained from the muon lifetime:

$$\frac{1}{\tau_\mu} = \frac{G_F^2 m_\mu^5}{192 \pi^3} \left[1 - \frac{8m_e^2}{m_\mu^2} \right] \left[1 + \frac{\alpha}{2\pi} \left(\frac{25}{4} - \pi^2 \right) \right].$$

S.M.Berman, PR 112 (1958) 267; T.Kinoshita and A.Sirlin, PR 113 (1959) 1652

- This expression can be viewed as the definition of G_F. Many EW corrections are absorbed into the definition of G_F; the explicit $O(\alpha)$ corrections come from the following diagrams in the effective theory:

 \[\mu \rightarrow e, \quad \nu_\mu \rightarrow \nu_e \]

 \[\mu \rightarrow e, \quad \nu_\mu \rightarrow \nu_e \]

 \[\mu \rightarrow e, \quad \nu_\mu \rightarrow \nu_e \]

 together with the diagrams with a real photon.

- These diagrams are evaluated in the W-regularisation in which the photon propagator is modified by:

 $$\frac{1}{k^2} \rightarrow \frac{M_W^2}{M_W^2 - k^2} \frac{1}{k^2}.$$

 \[\left(\frac{1}{k^2} = \frac{1}{k^2 - M_W^2} + \frac{M_W^2}{M_W^2 - k^2} \frac{1}{k^2} \right) \]

 A.Sirlin, PRD 22 (1980) 971
The $\gamma - W$ box diagram:

As an example providing some evidence & intuition that the W-regularization is useful consider the $\gamma - W$ box diagram.

In the standard model (left-hand diagram) it contains both the γ and W propagators.

In the effective theory this is preserved with the W-regularization where the photon propagator is proportional to

$$\frac{1}{k^2} \frac{1}{k^2 - M_W^2}$$

and the two diagrams are equal up to terms of $O(q^2/M_W^2)$, where q is the momentum of the e and ν_e.
3. Proposed calculation of $\Gamma_0 - \Gamma_0^{pt}$

- Most (but not all) of the EW corrections which are absorbed in G_F are common to other processes (including pion decay) \Rightarrow factor in the amplitude of

\[(1 + 3\alpha/4\pi)(1 + 2\overline{Q}) \log M_Z/M_W), \text{ where } \overline{Q} = \frac{1}{2}(Q_u + Q_d) = 1/6. \]

A. Sirlin, NP B196 (1982) 83; E. Braaten & C.S. Li, PRD 42 (1990) 3888

- We therefore need to calculate the pion-decay diagrams in the effective theory with

\[H_{\text{eff}} = \frac{G_F}{\sqrt{2}} V_{ud}^* \left(1 + \frac{\alpha}{\pi} \log \frac{M_Z}{M_W} \right) (\bar{d}_L \gamma^\mu u_L)(\bar{\nu}_L \gamma \mu \ell_L) \]

in the W-regularization.

- Thus for example, with the Wilson action for both the gluons and fermions:

\[O_1^{W-\text{reg}} = \left(1 + \frac{\alpha}{4\pi} \left(2 \log a^2 M_W^2 - 15.539 \right) \right) O_1^{\text{bare}} + \frac{\alpha}{4\pi} \left(0.536 O_2^{\text{bare}} + 1.607 O_3^{\text{bare}} - 3.214 O_4^{\text{bare}} - 0.804 O_5^{\text{bare}} \right), \]

where

\[O_1 = (\bar{d}_\gamma^\mu (1 - \gamma^5)u) (\bar{\nu}_\ell \gamma^\mu (1 - \gamma^5)\ell) \quad O_2 = (\bar{d}_\gamma^\mu (1 + \gamma^5)u) (\bar{\nu}_\ell \gamma^\mu (1 - \gamma^5)\ell) \]

\[O_3 = (\bar{d}(1 - \gamma^5)u) (\bar{\nu}_\ell (1 + \gamma^5)\ell) \quad O_4 = (\bar{d}(1 + \gamma^5)u) (\bar{\nu}_\ell (1 + \gamma^5)\ell) \]

\[O_5 = (\bar{d}_\sigma^{\mu\nu} (1 + \gamma^5)u) (\bar{\nu}_\ell \sigma_{\mu\nu} (1 + \gamma^5)\ell). \]
Proposed calculation of $\Gamma_0 - \Gamma_0^{pt}$ (Cont)

Consider now the evaluation of Γ_0.

![Diagram of Feynman diagrams involving π^+, ℓ^+, u, d, ν_ℓ, with the correlation function for this set of diagrams given by:]

- The correlation function for this set of diagrams is of the form:

$$C_1(t) = -\frac{1}{2} \int d^3 \vec{x} \, d^4 x_1 \, d^4 x_2 \, \langle 0 | T \{ J_W^\nu(0) j_\mu(x_1) j_\mu(x_2) \phi^\dagger(\vec{x}, -t) \} | 0 \rangle \Delta(x_1, x_2),$$

where $j_\mu(x) = \sum_f Q_f \bar{f}(x) \gamma_\mu f(x)$, J_W is the weak current, ϕ is an interpolating operator for the pion and Δ is the photon propagator.

- Combining C_1 with the lowest order correlator:

$$C_0(t) + C_1(t) \simeq \frac{e^{-m_\pi t}}{2m_\pi} Z^\phi \langle 0 | J_W^\nu(0) | \pi^+ \rangle,$$

where now $O(\alpha)$ terms are included.

- $e^{-m_\pi t} \simeq e^{-m_\pi^0 t} (1 - \delta m_\pi t)$ and Z^ϕ is obtained from the two-point function.
Proposed calculation of $\Gamma_0 - \Gamma_0^{pt}$ (Cont)

\[
\bar{C}_1(t)_{\alpha\beta} = -\int d^3\vec{x} d^4x_1 d^4x_2 \langle 0|T\{J_\nu^\nu(0)j_\mu(x_1)\phi^\dagger(\vec{x},-t)\}|0\rangle \Delta(x_1,x_2) \\
\times \left(\gamma_\nu\left(1 - \gamma^5\right)S(0,x_2)\gamma_\mu\right)_{\alpha\beta} e^{E_\ell t_2} e^{-i\vec{p}_\ell \cdot \vec{x}_2} \\
\simeq Z_\phi^0 \frac{e^{-m_\pi^0 t}}{2m_\pi^0} (\bar{M}_1)_{\alpha\beta}
\]

- Corresponding contribution to the amplitude is $\bar{u}_\alpha(p_{\nu_\ell})(\bar{M}_1)_{\alpha\beta}v_\beta(p_\ell)$.
- Diagrams (e) and (f) are not simply generalisations of the evaluation of f_π.
- The lepton’s wave function renormalisation cancels in the difference $\Gamma_0 - \Gamma_0^{pt}$.
- We have to be able to isolate the finite-volume ground state (pion).
- The Minkowski ↔ Euclidean continuation can be performed (the time integrations are convergent).
Preliminary Results for “Crossed” Diagrams

Twisted-mass study, $24^3 \times 48$ lattice with $a = 0.086$ fm, $m_\pi \simeq 500$ MeV, 240 configs with 3 stochastic sources per configuration.

together with F. Sanfilippo and S. Simula
There are also disconnected diagrams to be evaluated.
4. Calculation of $\Gamma_{\text{pt}} = \Gamma_{\text{pt}}^0 + \Gamma_{\text{pt}}^1$

- The total width, Γ_{pt} was calculated in 1958/9 using a Pauli-Villars regulator for the UV divergences and m_γ for the infrared divergences.
 S.Berman, PR 112 (1958) 267, T.Kinoshita, PRL 2 (1959) 477

- This is a useful check on our perturbative calculation.

In the perturbative calculation we use the following Lagrangian for the interaction of a point-like pion with the leptons:

$$\mathcal{L}_{\pi-\ell-\nu_\ell} = i G_F f_\pi V_{ud}^* \left\{ (\partial_\mu - i e A_\mu) \pi \right\} \left\{ \bar{\psi}_{\nu_\ell} \frac{1 + \gamma^5}{2} \gamma^\mu \psi_\ell \right\} + \text{H.C.}$$

The corresponding Feynman rules are:

- $\pi^+ \rightarrow \ell^+ \nu_\ell = -i G_F f_\pi V_{ud}^* p_\pi \frac{1 + \gamma^5}{2} \gamma_\mu$

- $\pi^+ \rightarrow \ell^+ \gamma^* \rightarrow \ell^+ \nu_\ell = i e G_F f_\pi V_{ud}^* g^{\mu\nu} \frac{1 + \gamma^5}{2} \gamma_\mu$
Diagrams to be evaluated

(a)

(b)

(c)

(d)

(e)

(f)
4. Calculation of $\Gamma_{0}^{pt} + \Gamma_{1}^{pt}$ (cont)

$\Gamma_{0}^{pt}(\Delta E) = \Gamma_{0}^{\text{tree}} \times \left(1 + \frac{\alpha}{4\pi} \left\{ 3 \log \left(\frac{m_{\pi}^{2}}{M_{W}^{2}} \right) + \log (r_{\ell}^{2}) - 4 \log (r_{E}^{2}) + \frac{2 - 10r_{\ell}^{2}}{1 - r_{\ell}^{2}} \log (r_{\ell}^{2}) \\ - 2 \frac{1 + r_{\ell}^{2}}{1 - r_{\ell}^{2}} \log (r_{E}^{2}) \log (r_{\ell}^{2}) - 4 \frac{1 + r_{\ell}^{2}}{1 - r_{\ell}^{2}} \text{Li}_{2}(1 - r_{\ell}^{2}) - 3 \\ + \left[\frac{3 + r_{E}^{2} - 6r_{\ell}^{2} + 4r_{E}(-1 + r_{\ell}^{2})}{(1 - r_{\ell}^{2})^{2}} \log (1 - r_{E}) + \frac{r_{E}(4 - r_{E} - 4r_{\ell}^{2})}{(1 - r_{\ell}^{2})^{2}} \log (r_{\ell}^{2}) \\ - \frac{r_{E}(-22 + 3r_{E} + 28r_{\ell}^{2})}{2(1 - r_{\ell}^{2})^{2}} - 4 \frac{1 + r_{\ell}^{2}}{1 - r_{\ell}^{2}} \text{Li}_{2}(r_{E}) \right] \right) \right)$

where $r_{E} = 2\Delta E/m_{\pi}$ and $r_{\ell} = m_{\ell}/m_{\pi}$.

We believe that this is a new result.
The total rate is readily computed by setting r_E to its maximum value, namely $r_E = 1 - r^2_{\ell}$, giving

$$\Gamma_{pt} = \Gamma_{tree}^0 \times \left\{ 1 + \frac{\alpha}{4\pi} \left(3 \log \left(\frac{m^2_\pi}{M^2_W} \right) - 8 \log(1 - r^2_{\ell}) - \frac{3r^4_{\ell}}{(1 - r^2_{\ell})^2} \log(r^2_{\ell}) - 8 \frac{3 + 4}{1 - r^2_{\ell}} \text{Li}_2(1 - r^2_{\ell}) + \frac{13 - 19r^2_{\ell}}{2(1 - r^2_{\ell})} + \frac{6 - 14r^2_{\ell} - 4(1 + r^2_{\ell}) \log(1 - r^2_{\ell})}{1 - r^2_{\ell}} \log(r^2_{\ell}) \right) \right\}.$$

This result agrees with the well known results in literature providing an important check of our calculation.

Summary: The perturbative calculation of $\Gamma_{pt}^0 + \Gamma_1(\Delta E)$ is done.
Lattice calculations of some physical quantities are approaching $O(1\%)$ precision ⇒ we need to include isospin-breaking effects, including electromagnetic effects, to make the tests of the SM even more stringent.

For decay widths and scattering cross sections including em effects introduces infrared divergences.

We propose a method for dealing with these divergences, illustrating the procedure by a detailed study of the leptonic (and semileptonic) decays of pseudoscalar mesons.

Although challenging, the method is within reach of present simulations and we are now implementing the procedure in an actual numerical computation.

- Power-like FV corrections, $O(1/(\Lambda_{QCD})^n)$, to be evaluated.
- $O(\alpha_s\bar{\alpha})$ matching factors to be studied.
One can certainly envisage relaxing the condition $\Delta E \ll \Lambda_{QCD}$, including the emission of real photons with energies which do resolve the structure of the initial hadron. Such calculations can be performed in Euclidean space under the same conditions as above, i.e. providing that there is a mass gap.

In that case we generalise the master formula to

$$\Gamma_0 + \Gamma_1(\Delta E) = \lim_{V \to \infty} (\Gamma_0 - \Gamma_{pt}^0) + \lim_{V \to \infty} (\Gamma_1(\Delta E) - \Gamma_{pt}^1(\Delta E)) + \lim_{V \to \infty} (\Gamma_{pt}^0 + \Gamma_{pt}^1(\Delta E)).$$

The important point is to organise the calculation into terms, each of which is infrared convergent.

- $\Gamma_{pt}^0 + \Gamma_{pt}^1(\Delta E)$ (in infinite volume) is done.
- At present we are exploring how best to calculate

$$\lim_{V \to \infty} (\Gamma_0 - \Gamma_{pt}^0)$$

and exploratory numerical calculations are underway.