Planetary nebulae with Wolf–Rayet-type central stars – II. Dissecting the compact planetary nebula M 2-31 with GTC MEGARA

J. S. Rechy-García, J. A. Toalá, S. Cazzoli, M. A. Guerrero, L. Sabin, V. M. A. Gómez-González, and G. Ramos-Larios

1Instituto de Radioastronomía y Astrofísica, UNAM Campus Morelia, Apartado Postal 3-72, 58090 Morelia, Michoacán, Mexico
2Instituto de Astrofísica de Andalucía, IAA-CSIC, Glorieta de la Astronomía s/n, E-18008, Granada, Spain
3Instituto de Astronomía, Universidad Nacional Autónoma de México, Apartado Postal 877, 22800 Ensenada, B. C., Mexico
4Instituto de Astronomía y Meteorología, CUCEI, Universidad de Guadalajara, Av. Vallarta 2602, Arcos Vallarta, 44130 Guadalajara, Mexico

Accepted 2021 August 23. Received 2021 August 18; in original form 2021 July 23

ABSTRACT
We present a comprehensive analysis of the compact planetary nebula M 2-31 investigating its spectral properties, spatio-kinematical structure, and chemical composition using Gran Telescopio Canarias (GTC) Multi-Espectrógrafo en GTC de Alta Resolución para Astronomía (MEGARA) integral field spectroscopic observations and Nordic Optical Telescope (NOT) Alhambra Faint Object Spectrograph and Camera (ALFOSC) medium-resolution spectra and narrow-band images. The GTC MEGARA high-dispersion observations have remarkable tomographic capabilities, producing an unprecedented view of the morphology and kinematics of M 2-31 that discloses a fast spectroscopic bipolar outflow along position angles 50° and 230°, an extended shell, and a toroidal structure or waist surrounding the central star perpendicularly aligned with the fast outflows. These observations also show that the C II emission is confined in the central region and enclosed by the [N II] emission. This is the first time that the spatial segregation revealed by a two-dimensional map of the C II line implies the presence of multiple plasma components. The deep NOT ALFOSC observations allowed us to detect broad Wolf–Rayet (WR) features from the central star of M 2-31, including previously undetected broad O VI lines that suggest a reclassification as a [WO4]-type star.

Key words: planetary nebulae: general – planetary nebulae: individual: M 2-31 – stars: evolution – stars: winds, outflows – stars: Wolf–Rayet.

1 INTRODUCTION
Planetary nebulae (PNe) are the descendants of low- and intermediate-mass stars ($M_{\odot} < 1000 M_{\odot}$), when they have ejected their hydrogen-rich envelopes through a dense and slow (10 km s$^{-1}$) wind in the final stages of the asymptotic giant branch (AGB) phase. As the remaining stellar nucleus evolves into the post-AGB phase, their hydrogen-rich envelopes through a dense and slow (10 km s$^{-1}$) wind in the final stages of the asymptotic giant branch (AGB) phase. As the remaining stellar nucleus evolves into the post-AGB phase, it develops a fast wind ($v_{\infty} > 1000$ km s$^{-1}$; Guerrero & De Marco 2013) that pushes and compresses the AGB material. It also develops a hard UV flux that photoionizes the material, creating the PN (Kwok 2013) that pushes and compresses the AGB material. It also develops a hard UV flux that photoionizes the material, creating the PN (Kwok 2013) that pushes and compresses the AGB material. It also develops a hard UV flux that photoionizes the material, creating the PN (Kwok 2013) that pushes and compresses the AGB material. It also develops a hard UV flux that photoionizes the material, creating the PN (Kwok 2013) that pushes and compresses the AGB material. It also develops a hard UV flux that photoionizes the material, creating the PN (Kwok 2013) that pushes and compresses the AGB material. It also develops a hard UV flux that photoionizes the material, creating the PN (Kwok 2013) that pushes and compresses the AGB material. It also develops a hard UV flux that photoionizes the material, creating the PN (Kwok 2013) that pushes and compresses the AGB material. It also develops a hard UV flux that photoionizes the material, creating the PN (Kwok 2013) that pushes and compresses the AGB material. It also develops a hard UV flux that photoionizes the material, creating the PN (Kwok 2013) that pushes and compresses the AGB material. It also develops a hard UV flux that photoionizes the material, creating the PN (Kwok 2013) that pushes and compresses the AGB material. It also develops a hard UV flux that photoionizes the material, creating the PN (Kwok 2013) that pushes and compresses the AGB material. It also develops a hard UV flux that photoionizes the material, creating the PN (Kwok 2013) that pushes and compresses the AGB material. It also develops a hard UV flux that photoionizes the material, creating the PN (Kwok 2013) that pushes and compresses the AGB material. It also develops a hard UV flux that photoionizes the material, creating the PN (Kwok 2013) that pushes and compresses the AGB material. It also develops a hard UV flux that photoionizes the material, creating the PN (Kwok 2013) that pushes and compresses the AGB material. It also develops a hard UV flux that photoionizes the material, creating the PN (Kwok 2013) that pushes and compresses the AGB material. It also develops a hard UV flux that photoionizes the material, creating the PN (Kwok 2013) that pushes and compresses the AGB material. It also develops a hard UV flux that photoionizes the material, creating the PN (Kwok 2013) that pushes and compresses the AGB material. It also develops a hard UV flux that photoionizes the material, creating the PN (Kwok 2013) that pushes and compresses the AGB material. It also develops a hard UV flux that photoionizes the material, creating the PN (Kwok 2013) that pushes and compresses the AGB material. It also develops a hard UV flux that photoionizes the material, creating the PN (Kwok 2013) that pushes and compresses the AGB material. It also develops a hard UV flux that photoionizes the material, creating the PN (Kwok 2013) that pushes and compresses the AGB material. It also develops a hard UV flux that photoionizes the material, creating the PN (Kwok 2013) that pushes and compresses the AGB material. It also develops a hard UV flux that photoionizes the material, creating the PN (Kwok 2013) that pushes and compresses the AGB material. It also develops a hard UV flux that photoionizes the material, creating the PN (Kwok 2013) that pushes and compresses the AGB material. It also develops a hard UV flux that photoionizes the material, creating the PN (Kwok 2013) that pushes and compresses the AGB material. It also develops a hard UV flux that photoionizes the material, creating the PN (Kwok 2013) that pushes and compresses the AGB material. It also develops a hard UV flux that photoionizes the material, creating the PN (Kwok 2013) that pushes and compresses the AGB material. It also develops a hard UV flux that photoionizes the material, creating the PN (Kwok 2013) that pushes and compresses the AGB material. It also develops a hard UV flux that photoionizes the material, creating the PN (Kwok 2013) that pushes and compresses the AGB material. It also develops a hard UV flux that photoionizes the material, creating the PN (Kwok 2013) that pushes and compresses the AGB material. It also develops a hard UV flux that photoionizes the material, creating the PN (Kwok 2013) that pushes and compresses the AGB material. It also develops a hard UV flux that photoionizes the material, creating the PN (Kwok 2013) that pushes and compresses the AGB material. It also develops a hard UV flux that photoionizes the material, creating the PN (Kwok 2013) that pushes and compresses the AGB material. It also develops a hard UV flux that photoionizes the material, creating the PN (Kwok 2013) that pushes and compresses the AGB material. It also develops a hard UV flux that photoionizes the material, creating the PN (Kwok 2013) that pushes and compresses the AGB material. It also develops a hard UV flux that photoionizes the material, creating the PN (Kwok 2013) that pushes and compresses the AGB material. It also develops a hard UV flux that photoionizes the material, creating the PN (Kwok 2013) that pushes and compresses the AGB material. It also develops a hard UV flux that photoionizes the material, creating the PN (Kwok 2013) that pushes and compresses the AGB material. It also develops a hard UV flux that photoionizes the material, creating the PN (Kwok 2013) that pushes and compresses the AGB material. It also develops a hard UV flux that photoionizes the material, creating the PN (Kwok 2013) that pushes and compresses the AGB material. It also develops a hard UV flux that photoionizes the material, creating the PN (Kwok 2013) that pushes and compresses the AGB material. It also develops a hard UV flux that photoionizes the material, creating the PN (Kwok 2013) that pushes and compresses the AGB material. It also develops a hard UV flux that photoionizes the material, creating the PN (Kwok 2013) that pushes and compresses the AGB material. It also develops a hard UV flux that photoionizes the material, creating the PN (Kwok 2013) that pushes and compresses the AGB material. It also develops a hard UV flux that photoionizes the material, creating the PN (Kwok 2013) that pushes and compresses the AGB material. It also develops a hard UV flux that photoionizes the material, creating the PN (Kwok 2013) that pushes and compresses the AGB material. It also develops a hard UV flux that photoionizes the material, creating the PN (Kwok 2013) that pushes and compresses the AGB materia

* E-mail: jrechygarcia@gmail.com
Previous works reported that M 2-31 hosts a Wolf–Rayet (WR) C-rich central star (CSPN) with a [WC4-6] spectral type (Tylenda, Acker & Stenholm 1993; Acker & Neiner 2003). The nebula itself has a dual-dust chemistry (Delgado-Inglada & Rodríguez 2014). Such objects, first discovered by Waters et al. (1998), are described as PNe with strong polycyclic aromatic hydrocarbons (PAHs) and silicate features. Although associated with [WC]-type CSPNe, this phenomenon is not only restricted to this class of CSPNe (Perea-Calderón et al. 2009). The electron density (n_e) reported for this nebula is 7250 cm$^{-3}$, which is suggestive of an early evolutionary stage. Its abundance discrepancy factor is 2.42 (García-Rojas et al. 2018), a mean value for PNe (see Wesson et al. 2018).

Here, we present high-spatial-resolution optical images, intermediate-dispersion long-slit spectroscopic data, and high-dispersion integral field spectroscopic (IFS) observations of M 2-31 to investigate its morphology, kinematics, three-dimensional (3D) physical structure, physical conditions, chemical abundances, and the properties of its CSPN. High-dispersion IFS observations of PNe provide 2D spatial information on their kinematics allowing to search for hidden spatio-kinematic components that can be missed using long-slit echelle observations. The capabilities of this tomographic techniques have been demonstrated by our group for HuBi 1, where a shell-like structure has been revealed for its born-again ejecta (Rechy-García et al. 2020), and for NGC 2392, where it has been possible to obtain an image of its jet for the first time, providing detailed information on its morphology and kinematics (Guerrero et al. 2021).

We next describe the observations in Section 2 and provide the results in Section 3. A discussion is presented in Section 4 and the main results and conclusions are summarized in Section 5.

2 Observations

2.1 Imaging

Narrow-band Hα, [N II], and [O III] images of M 2-31 were acquired on 2020 July 29 using ALFOSC\footnote{http://www.not.iac.es/instruments/alfosc/} at the 2.56-m NOT of the Observatorio de El Roque de los Muchachos (ORM, La Palma, Spain). One 300-s exposure was obtained through the Hα filter, three 300-s exposures through the [N II] filter, five 600-s exposures through the [O III] filter, and five 30-s exposures in r'-SDSS using the E2V 231-42 2k\times2k CCD with plate scale of 0.211 pix$^{-1}$. In all cases, a dithering of a few arcsecs was applied between individual exposures to improve the quality of the final image. The seeing, according to the full width at half-maximum (FWHM) of stars in the field of view (FoV), was 1.2 arcsec. The individual exposures were bias subtracted and flat fielded using twilight sky frames, and then aligned and combined to remove cosmic rays using standard IRAF routines (Tody 1993). A colour-composite picture of M 2-31 using these images is presented in the left-hand panel of Fig. 1.

For comparison with the optical images we also present a colour-composite mid-IR picture of M 2-31 in right-hand panel of Fig. 1 created using Spitzer IRAC observations (Fazio et al. 2004). The IRAC observations were obtained on 2007 October 17 for a total exposure time of 280 s as part of the Programme ID. 40115 (PI: G.Fazio). These were retrieved from the NASA/IPAC Infrared Science Archive.\footnote{https://irsa.ipac.caltech.edu/frontpage/}

2.2 Integral field spectroscopy

IFS observations were obtained on 2020 August 19 with the MEGARA (Gil de Paz et al. 2018) at the ORM. The IFU...
mode was used. It covers a FoV of 12′.5 × 11′.3 on the sky with 567 hexagonal spaxel of maximal diameter 0.62, which makes it ideal for the study of compact PNe. The observations were obtained with the high-resolution volume-phased holographic (VPH 665-HR) covering the 6405.6-6797.1-Å wavelength range with spectral resolution of R = 18 700 (i.e. ≃16 km s⁻¹). Three exposures of 300 s were obtained with a seeing of 0.7 during the observations. The white rectangle in the left-hand panel of Fig. 1 is the MEGARA IFU FoV.

The MEGARA raw data were reduced using the Data Reduction Cookbook provided by Universidad Complutense de Madrid (Pascual et al. 2019). The pipeline allows us to subtract the sky and bias contributions, apply the flat-field correction, and perform wavelength calibration, spectra tracing, and extraction. The sky subtraction is done using 56 ancillary fibres located ≃2.0′ from the IFU centre. The flux calibration was performed using observations of the spectrophotometric standard HR 7596 obtained immediately after those of M 2-31.

The analysis of the data was performed considering squared spaxels of size 0′.215 per pixel getting a final cube with dimensions of 52 × 58 × 4300 using the regularization grid task megararss2cube.³

2.3 Long-slit spectroscopy

Long-slit spectroscopic observations were obtained using also ALFOSC at the NOT of the ORM (PI: MA Guerrero). Medium-resolution spectra were obtained on 2020 July 29 using the E2V CCD 231-42 2k×2k camera with the Grism #7, which provides a resolution of R = 1000. This configuration covers the 3650-7110-Å wavelength range with a plate scale of 0′.211 pix⁻¹. The slit width was set at 0.75 with a position angle (PA) of 10°. Two exposures of 450 s were obtained through this slit during the observations.

The spectra were analysed following IRAF standard routines. The wavelength calibration was performed using HeNe lamps. In order to study the chemical abundance and the central star of M 2-31, we extracted spectra from different regions defined on the slit using the IRAF task apall. Two green rectangular regions are shown in Fig. 1 which represent the extractions carried out for the study of the chemical abundances of the nebula labelled with letter B, and one orange region labelled with letter A is the extraction region used to study the CSPN. The spectrum extracted from region A with an aperture size of 3′.2 was used to study the CSPN, whereas the spectrum extracted from region B with an aperture size of 17′.1 was used to study the PN. We first extracted the 1D spectra of the CSPN (region A) and nebula (region B) tracing the stellar continuum along the 2D spectrum. The 1D spectrum of the CSPN was then subsequently subtracted from the 1D spectrum of the aperture B to obtain a pure nebular spectrum of M 2-31 with a net aperture size of 13′.9. These 1D spectra are presented and discussed in Sections 3.4 and 3.5.

3 RESULTS

3.1 Morphology

The NOT colour-composite picture of M 2-31 in the left-hand panel of Fig. 1 shows bright [N II] emission in the central zone within a region of size 20′.0 × 17′. This region is surrounded by a fainter shell with an angular radius ≃7.3′. Several knots can be identified at different positions: two towards the north and south (hereinafter labelled as Knot N and Knot S, respectively) at PA = 10° and PA = 190° with radial distance ≃60′, and another one towards the southwest (hereinafter labelled as Knot SW) located at PA = 240° with radial distance ≃5.3′. The N and S knots seem to give the impression that M 2-31 has an elongated shape with its symmetry aligned with these knots, but we will demonstrate in this paper that this is not the case.

The right-hand panel of Fig. 1 shows a colour-composite Spitzer image that combines 4.5 μm (blue), 5.8 μm (green), and 8 μm (red) IRAC images. The morphology unveiled by this mid-IR picture is consistent with the optical image, with a bright inner structure surrounded by a fainter shell. The N and S knots of the optical images are hinted in the Spitzer IRAC 8-μm image, resulting in a somewhat bipolar shape in the mid-IR for M 2-31. No obvious mid-IR emission is detected from the SW knot.

3.2 Kinematics

The MEGARA IFS observation of M 2-31 provides 2D information of the nebular kinematics encoded in the Hα, [N II] λλ 6548,6584, [S II] λλ 6716,6731, He I λ6678, and C II λ6578 emission lines. A first step to analyse this information implies the identification of the kinematic signature of the morphological features spotted in Fig. 1. This has been done using the software QFITSVIEW⁴ to extract pseudo-sllits in the MEGARA data cube of M 2-31 and build position-velocity (PV) maps along the PAs of interest: 10° along the N and S knots, 50° and 60° along the SW knot, and 140° along an intermediate position. The resultant PV diagrams are shown in Fig. 2. According to them, the radial velocity of M 2-31 in the local standard of rest (LSR) system is VLSR ≃ 170 km s⁻¹, in agreement with that reported by Schneider et al. (1983) of 167.7 km s⁻¹.

Two bright blobs are visible in the [N II] λ6584 and [S II] λλ 6716,6731 PV maps presented in Fig. 2 at VLSR ≃ 150 km s⁻¹ and ≃190 km s⁻¹. Their peaks are located within the inner ≤2′ of radius of M 2-31, but their kinematic signature extends to distances ≤6′ from the centre, i.e. the whole MEGARA FoV.

The PV map of the [N II] emission line at PA = 10° discloses blobs of emission that can be attributed to the knots N and S marked in Fig. 1, although we note that these are just outside MEGARA’s FoV. Similarly, the [N II] PV maps extracted at PAs 50° and 60° reveal a component at a radial distance ≤5′ moving at high velocity with VLSR ≃ 90 km s⁻¹ and with an extension of ≥2′. This high-velocity component, with a velocity of 80 km s⁻¹ with respect to the systemic velocity, corresponds to the SW knot labelled in Fig. 1. In addition, these PVs unveil the presence of two faint components very close to the central region (≤0.9′) whose wings extend up to VLSR ≃ 90 km s⁻¹ and ≃260 km s⁻¹.

The emission revealed in the PV maps of the He I and C II emission lines are fainter than that of the other emission lines (see Fig. 2 bottom panels). The He I emission peaks around ≃0.5′ and extends up to ≤3′ from the CSPN of M 2-31. The velocity difference between the He I peaks is 30 km s⁻¹, which is smaller than the 40 km s⁻¹ velocity difference that can be inferred for the peaks of the [N II] and [S II] emission lines. Meanwhile, the C II emission peaks at ≤0.3′ from the centre and is present only within the innermost ∼1′.2. The emission from the C II line is thus the less extended among the different emission lines shown in Fig. 2.

³Task developed by J. Zaragoza-Cardiel available at https://github.com/javierrezaragoza/megararss2cube.
⁴https://www.mpe.mpg.de/~ott/QFitsView/
Figure 2. PV maps of the [N II] λ 6584 (left-top), [S II] λλ 6716,6731 (right-top), He I λ 6678 (left-bottom), and C II λ 6578 (right-bottom) emission lines extracted from MEGARA pseudo-slits at PAs 10°, 50°, 60°, and 140°. Contours of different colours are used to highlight both faint and bright emissions.

3.3 Multicomponent decomposition

In this section, we present a more detailed analysis of the kinematic structure of M 2-31 applying to the MEGARA data, an analysis method similar to that used to investigate the spatio-kinematic of the jets in NGC 2392 (Guerrero et al. 2021). Briefly, this method fits the [N II] λ 6584 line profile at each spaxel using multiple Gaussian components. The fitting is performed using the Levenberg–Marquardt least-squares fitting routine MP-FITEXPR (Markwardt 2009) within the interactive data language (IDL) environment (for more details see also Cazzoli et al. 2020).

The [N II] λ 6584 emission line profiles present multiple peaks with intensities and number varying across the FoV of the MEGARA IFU. Up to five distinct kinematic components with different spatial extents and locations have been considered to fit the line profiles extracted at different spatial positions of the MEGARA data cube. Examples of those fits at different positions requiring three, four, or five Gaussian components are presented in Fig. 3.

The normalized flux (top row), velocity V_{LSR} (middle row), and FWHM (bottom row) maps of the different components in the [N II] λ 6584 emission line are shown in Fig. 4. These five kinematic components shown in Fig. 4 can be ascribed to three different morpho-kinematic structures.

The leftmost and rightmost columns of this figure show components protruding from the inner core of M 2-31 with the fastest velocities. We will refer to these two components as spectroscopic outflows. These are low-ionization structures detected both in the [N II] and [S II] emission lines. The red component of this spectroscopic outflow (leftmost column) is oriented with a PA \approx 50°, whilst the blue component (rightmost column) has a PA \approx 230°. The average V_{LSR} of the red component is 228.5 km s$^{-1}$ and 100.9 km s$^{-1}$ for the blue component, for a velocity difference that implies an expansion velocity of \pm 63.8 km s$^{-1}$ with respect to the nebula systemic velocity.

The second and fourth columns in Fig. 4 are two bright structures with average V_{LSR} of 185.3 km s$^{-1}$ and 142.8 km s$^{-1}$, respectively. The expansion velocity thus corresponds to 21.3 km s$^{-1}$. They very likely correspond to a cavity or shell surrounding the inner regions of M 2-31, which is visible in the optical images presented in Fig. 1. The second and fourth panels of Fig. 4 also reveal hints of the N and S knots at the northern and southern edges of the MEGARA FoV along PA \approx 10°.

Finally, the central column of Fig. 4 discloses a pair of slowly expanding structures. This does not resemble a bipolar ejection, but rather a disc-like or toroidal structure that we will refer to as low-
velocity component from here on. The east side of the low-velocity component has an average V_{LSR} of 158.9 km s$^{-1}$ and the west side has an average V_{LSR} of 175.1 km s$^{-1}$, implying an expansion velocity ± 8.1 km s$^{-1}$. This structure, with a PA $\approx 110^\circ$, appears to be almost orthogonal to the spectroscopic outflow.

The same line-fitting procedure was also applied to the C$\text{II} \lambda 6578$-Å emission line and the results are shown in Fig. 5. The overall extent of the CII emission is more compact than that exhibited by the [NII] maps. The line-fitting procedure disclosed the presence of two structures with average V_{LSR} of 186.1 km s$^{-1}$ and 153.6 km s$^{-1}$, respectively. This implies an expansion velocity ≈ 16.3 km s$^{-1}$, which is smaller than that derived for the two brightest [NII] components. Furthermore, the FWHMs of the CII components (from 10 to 30 km s$^{-1}$) are narrower than that of [NII] in the same regions (from 30 km s$^{-1}$ to 50 km s$^{-1}$).

To assess the connection between these kinematic features and the morphological structures of M 2-31, we present in Fig. 6 grey-scale optical images overlaid with the contours shown in Figs 4 and 5. In the top panel of Fig. 6, we show the position of the fast expanding outflows (red and blue contours) and the low-velocity component (black contours) both obtained from [NII] $\lambda 6584$ normalized flux. The southwest component of the outflow is coincident with the SW knot, implying that it moves at a high velocity with respect to the nebula radial velocity. The outflow extends down to the innermost regions of M 2-31, peaking at the region in between the maxima of the low-velocity toroidal structure.
Figure 5. GTC MEGARA C II λ6578 normalized flux (top), velocity V_{LSR} (middle), and FWHM (bottom) maps of the two kinematic components in increasing velocity from left to right. Contours derived from the normalized flux images of each component are overlaid over the velocity and FWHM maps.

In Fig. 6 middle panel, we compare the low-velocity component with the contours from the shell of M 2-31, also obtained from [N II] λ6584 normalized flux. Similarly to the fast outflows, the inner shell peaks at locations with no contribution from the low-velocity component. In Fig. 6 bottom panel, we show the position of the contours from the inner shell of M 2-31 obtained from C II λ6578 normalized flux. The contours of the emission in the C II λ6578 line are approximately aligned along the same direction of the contours of the shell of M 2-31 obtained from the emission in the [N II] λ6584 line, but the C II contours are confined within those of [N II].

3.4 The CSPN of M 2-31

The high quality and wide spectral coverage of the NOT ALFOSC spectrum of the CSPN of M 2-31 can be used to assess its spectral classification. The spectrum of its CSPN presented in the top panel of Fig. 7 clearly exhibits the presence of the classic broad WR features known as the blue bump (BB) and red bump (RB) located at 4686 and 5806 Å, respectively. These broad WR features are known to be composed by the contribution of several emission lines with stellar and nebular origin. For example, the RB can be mostly attributed to the presence of C IV at 5801 and 5812 Å, while the BB contains contributions from different emission lines, including mainly He II, the C IV broad WR feature, and the Ar IV nebular lines (see Gómez-González et al. 2020, and references therein).

Other spectral features in the spectrum of the CSPN of M 2-31 can be attributed to a WR origin whenever their FWHM is larger than the typical FWHM of nebular lines, \lesssim5.6 Å. Very notably, the
Figure 7. 1D NOT ALFOSC spectra of the CSPN (top panel) and nebula (bottom panel) of M2-31, as extracted from the apertures A and B shown in the left-hand panel of Fig. 1, respectively. The violet bump (VB), BB, and RB (WR) features as well as the most prominent emission lines are labelled.

careful inspection of the emission lines in the spectrum of the CSPN has allowed us to identify the O VI line at 3822 Å. This line, which is referred as the VB, is key to classify a CSPN as part of the oxygen sequence. Other broad WR features detected in the CSPN spectrum are those of O VI λ5290, He II λ5412, C IV λ5470, and C II λ6461. All WR lines are listed in Table 1.

In order to disentangle the contribution of the multiple nebular and WR lines to the different WR features in the spectrum of the CSPN of M2-31, we used the IRAF task splot to deblend those using one Gaussian function for each of them. This procedure, illustrated in Fig. 8, has allowed us to estimate different line properties, the EWs, FWHMs, and observed wavelengths (λ_{obs}) for different contributing lines for the VB, BB, RB, and other WR features. Each panel in Fig. 8 shows the residuals of the fit after subtracting the modelled lines. The uncertainties in the line intensities and EWs were calculated following the expressions presented by Tresse et al. (1999):

\[
\sigma_F = \sigma_c D \sqrt{2N_{pix} + \frac{\text{EW}}{F}},
\]

\[
\sigma_{\text{EW}} = \frac{\text{EW}}{F} \sigma_c D \sqrt{\frac{\text{EW}^2}{D^2} + 2N_{pix} + \left(\frac{\text{EW}}{D}\right)^2/N_{pix}},
\]

respectively, where \(\sigma_c\) is the mean standard deviation per pixel of the continuum on each side of the line, \(N_{pix}\) is the number of pixels under the line, \(D = 1.7 \text{ Å pix}^{-1}\) is the spectral dispersion, and \(F\) is the line’s flux. The results of our analysis are summarized in Table 1.

The most complex WR feature is the BB, which is composed by several broad and nebular lines. A good fit was achieved adopting three broad WR features from C II, C IV, and He II and five narrow nebular lines corresponding to He II, C II, N III, and [Ar IV]. We have relied on García-Rojas et al. (2018) and the NIST Atomic Spectra Database Lines\(^5\) to identify these emission lines. Two of the nebular lines listed in Table 1, those at λ_{obs} 4644.1 and 4652.0 Å present in the BB, correspond to blends. The former corresponds to a blend of the O II λλ4638.86, 4641.8 and N III λλ4640.6, 4641.85 emission lines, and the latter to a blend of O II nebular lines at 4649.13 and 4650.84 Å.

On the other hand, the RB is composed by a broad C IV line with almost negligible contribution from nebular He I and [N II] emission lines. The remaining broad WR features do not have any contribution from other emission lines. These include the O VI lines at 3822 and 5290 Å lines, first reported in this study, which immediately suggest that the CSPN of M2-31 belongs to the [WO] sequence. Furthermore, we also identify O VI λ5290, He II λ5412, C IV λ5470, and C II λ6461. These are indicated in the bottom panels of Fig. 8 and their details are listed in the bottom part of Table 1.

To determine the spectral classification of the CSPN of M2-31 we use the scheme defined by Acker & Neiner (2003) normalizing all the fluxes of the WR broad lines listed in Table 1 to that of the C IV λ5806 Å line. These relative intensities are listed in the last column of Table 1 labelled as I_{C IV}. The C IV λ5806 Å line has a FWHM of 41.7 Å, which is consistent with a spectral type between a [WO4] and [WO3] (see table 2 in Acker & Neiner 2003). However, the normalized flux of the O VI λ3822 Å is 12.3, which rather implies a [WO4] spectral type as also suggested by the normalized fluxes of the He II λ4686 and λ5412 Å lines. Nevertheless, the normalized fluxes of the O VI λ5290 and C IV λ5470 Å are at the lower range between [WO4] and [WO4pec].

3.5 Physical properties and chemical abundances

The nebular spectrum of M2-31 is presented in the bottom panel of Fig. 7. It exhibits multiple O, Ne, S, N, Cl, and Ar forbidden lines as well as H and He recombination lines. The complete list of emission lines detected in the nebular spectrum is reported in Table 2.
Table 1. Parameters for the emission lines obtained from the Gaussian fitting of the WR features of the central star in M 2-31.

ID	Nature	Ion	λ_{rest}	$I_{H\beta}$	FWHM	Equivalent width (EW)	λ_{obs}	I_{CIV}
VB	Neb	H10	3797.9	38.4 ± 2.6	4.8	59 ± 10	3800.3	19.6 ± 1.3
	WR	O VI	3822	24.1 ± 2.5	8.7	44 ± 8	3822.3	12.3 ± 1.3
	Neb	H9	3835.4	57.9 ± 3.2	5.2	104 ± 19	3837.7	29.6 ± 1.7
BB	WR	C II	4638.9	16.3 ± 0.9	20.1	23.9 ± 1.4	4641.4	8.3 ± 0.5
	Neb	O III	4641.6	6.0 ± 0.4	3.9	8.8 ± 0.8	4644.1	3.0 ± 0.2
	Neb	O IVa	4649.5	5.4 ± 0.5	5.4	8.0 ± 0.8	4652.0	2.7 ± 0.3
	WR	C IV	4658.5	21.1 ± 0.8	14.6	31.5 ± 1.5	4662.5	10.8 ± 0.4
	WR	He II	4685.7	28.1 ± 1.0	25.9	42.8 ± 1.8	4688.7	14.4 ± 0.5
	Neb	He II	4685.7	4.2 ± 0.4	4.7	2.6 ± 0.3	4689.3	2.1 ± 0.2
	Neb	[Ar IV]	4711.4	17.2 ± 0.6	5.6	26.8 ± 1.5	4714.7	8.8 ± 0.3
	Neb	[Ar IV]	4740.2	15.0 ± 0.5	4.8	23.7 ± 1.4	4743.4	7.6 ± 0.3
RB	Neb	[N II]	5754.6	12.1 ± 0.3	5.0	19.7 ± 0.7	5757.8	6.2 ± 0.1
	WR	C IV	5806	195.8 ± 1.0	41.7	334.2 ± 3.4	5809.2	100.0
	Neb	He I	5875.6	129.4 ± 0.7	4.9	235 ± 6	5879.1	66.1 ± 0.4
Other	WR	O VI	5290	1.2 ± 0.2	7.8	1.8 ± 0.3	5294.9	0.6 ± 0.1
	WR	He II	5412	3.1 ± 0.3	17.2	4.6 ± 0.5	5415.2	1.6 ± 0.2
	WR	C IV	5470	2.0 ± 0.2	10.8	3.0 ± 0.3	5473.7	1.1 ± 0.1
	WR	C II	6461	0.6 ± 0.2	7.3	1.1 ± 0.3	6465.9	0.3 ± 0.1

Notes. Column 1: identification number of the Gaussian components in the WR features. Column 2: nature of the contributing emission line: WR (broad) or nebular (narrow). Column 3: ion responsible for the line. Column 4: rest wavelength in Å. Column 5: reddening-corrected intensities considering $H\beta = 100$. Column 6: FWHM in units of Å. Column 7: EW in units of Å. Column 8: observed centre of the line. Column 9: intensities considering $I_{\text{CIV}} = 100$.

Other WR features in the spectrum. The blue dashed lines fit the broad (stellar) features, while the red dashed lines fit the nebular emission lines. Residuals are shown at the bottom of each panel in units of 10^{-13} erg cm$^{-2}$ s$^{-1}$ Å$^{-1}$. Details of the fits are listed in Table 1.

Figure 8. Multi-Gaussian fits to the VB (top left), BB (top centre), and RB (top right) broad spectral features of the CSPN of M 2-31. The bottom rows show other WR features in the spectrum. The blue dashed lines fit the broad (stellar) features, while the red dashed lines fit the nebular emission lines. Residuals are shown at the bottom of each panel in units of 10^{-13} erg cm$^{-2}$ s$^{-1}$ Å$^{-1}$. Details of the fits are listed in Table 1.
This table lists the correspondent ion with its rest wavelength (λ_{rest}), the observed flux (F_{obs}), and the extinction-corrected intensities (I_{corr}). F_{obs} and I_{corr} have been normalized to $\beta = 100$. A value of $c(H\beta) = 0.92 \pm 0.03$ was derived from the He/I/H\beta ratio and used to redden the line fluxes using the extinction law from Cardelli, Clayton & Mathis (1989) for $R_V = 3.1$.

Different line intensity ratios have been used to determine the physical conditions of the gas in M 2-31 using the extensively tested code PYNEB (Luridiana, Morisset & Shaw 2015). Electron temperatures determined from the [N\text{II}] lines and [O\text{III}] auroral to nebular line intensity ratios were estimated to be $T_e([\text{N\text{II}}]) = 12500 \pm 1300 \text{K}$ and $T_e([\text{O\text{III}}]) = 10300 \pm 1000 \text{K}$, respectively. Values of the electron densities n_e were obtained from the [S\text{II}] doublet line intensity ratio adopting the two different values of T_e given above, resulting in $5600 \pm 2000 \text{cm}^{-3}$ and $5200 \pm 1900 \text{cm}^{-3}$ for the $T_e([\text{N\text{II}}])$ and $T_e([\text{O\text{III}}])$, respectively. A summary of these values is presented in the top rows of Table 3.

We also used PYNEB to calculate ionic abundances taking into account the aforementioned physical conditions. These are listed in Table 3 middle rows. The total chemical abundances of M 2-31, listed in the bottom part of Table 3, were derived adopting the ionization correction factor (ICFs) provided by Delgado-Inglada, Morisset & Stasińska (2014), but for the N abundances, computed using the ICF derived by Kingsburgh & Barlow (1994). We discuss these results in the next section. The error propagation on the emission lines and other parameters (such as temperature, density, and abundances) was obtained using a Monte Carlo procedure implemented within PYNEB. Details will be presented in a forthcoming paper (Sabin et al. in preparation).

4 DISCUSSION

In this paper, we present a study of M 2-31 using information obtained from optical images and medium-resolution long-slit and high-dispersion IFS observations. Combining all this information, we have been able to unravel the main morpho-kinematic components of this PN. M 2-31 is found to have a complex morphology, showing multiple components with some of them more evident in direct images, but other revealed only by the unprecedented tomographic capabilities of the MEGARA IFU observations. In the following, we discuss different aspects of M 2-31 regarding the nebula and its CSPN.

4.1 Morphology and kinematics of M 2-31

The line-fitting procedure of the MEGARA observations presented in Section 3.3 disclosed the presence of a number of morphological components with specific kinematic signatures. These can be interpreted as following five main components:

(i) A pair of fast spectroscopic outflows expanding along PA $\approx 50^\circ$ and PA $\approx 240^\circ$ (first and last columns of Fig. 4). These outflows seem to present a homologous expansion, i.e. their velocity increases with the distance to the CSPN, as shown in Fig. 4 where their tips have velocity values higher by $\approx 33 \text{ km s}^{-1}$ than those of the regions close to the centre of M 2-31. The averaged expansion velocity of these outflows with respect to the CSPN is 63.8 km s$^{-1}$. The SW knot is found to be associated with the tip of the blue fast outflow expanding towards that direction. These spectroscopic outflows, which are only revealed thanks to MEGARA’s tomographic capabilities, make M 2-31 a member of the spectroscopic bipolar nebulae group.
(ii) An inner cavity that accounts for the brightest optical emission from the inner regions and most of the extended IR emission (second and fourth columns of Fig. 4). This shell has an expansion velocity of $21.3 \, \text{km s}^{-1}$ with respect to the CSPN, with a subtle velocity gradient more or less oriented with that of the fast outflow.

(iii) A faint outer shell with similar expansion velocity than the inner shell.

(iv) A pair of knots along PA $= 10^\circ$ that are associated with the N and S knots disclosed in the optical and IR images of M 2-31 (Fig. 1). These features do not exhibit strong kinematic signatures and seem to be embedded within the outer shell. One might think of them as the low-ionization dense clumps commonly find in the outer shells of multiple shell PNe (see e.g. Gonçalves et al. 2009; García-Díaz et al. 2012).

(v) A low-velocity component orthogonally oriented to the fast spectroscopic outflows (central column of Fig. 4). This is a slowly expanding structure with a velocity $\sim 8 \, \text{km s}^{-1}$ with respect to the CSPN. Its velocity structure is suggestive of a toroidal structure surrounding the CSPN. The lack of emission coming from the central regions might be attributed to the line-fitting procedure, as the emission from this component is overcome by the much brighter emission from the extended shell. Alternatively, this slowly expanding structure could be attributed to bipolar lobes or an outflow along this direction that would have a small inclination angle with respect to the plane of the sky.

Our interpretation of the MEGARA data of M 2-31 suggests that its symmetry axis is aligned with the fast outflows at PA $\approx 50^\circ$ rather than along PA $\approx 10^\circ$ with the N and S knots. Some of the structures unveiled by our MEGARA data were first described by Akras & López (2012). These authors presented the analysis of high-dispersion long-slit San Pedro Martir (SPM), Manchester Echelle Spectrometer (MES) observations positioned at PA $= 0^\circ$ and 35° and showed the presence of the inner cavity in M 2-31 associated to the waist-like structure surrounding the CSPN. Although none of their slits were oriented with the symmetry axis of M 2-31 (PA $\approx 50^\circ$), they suggested it had to be close to 35°.

The kinematical information of M 2-31 gathered so far allows us to envisage its true physical structure. We propose that M 2-31 has a very similar physical structure as that proposed by Akras & López (2012) for a different PN, namely M 1-32 (see the leftmost column of their Fig. 3). From inside-out: i) an inner elongated cavity surrounded by a low-velocity pinched waist, ii) a bipolar structure aligned with the symmetry axis, which for M 2-31 corresponds to the fast outflows along PA 50°, and iii) an extended slow outer shell.

4.2 Reclassification of the spectral type of the CSPN of M 2-31

A wealth of WR spectral features is detected in the NOT ALFOSC spectrum of the CSPN of M 2-31, including some previously undetected such as the O VI at 3822 Å (the VB) and O VI 5290 Å broad lines. The detection of these features immediately hints at this CSPN belonging to the [WO] sequence. A multi-Gaussian fitting procedure has provided as with comprehensive quantitative information of the different WR features in the spectrum of the CSPN of M 2-31, including the complex BB around ~ 4650 Å that includes contributions of O II and N III nebular lines at 4640 and 4665 Å as shown in the higher resolution spectra presented by García-Rojas et al. (2018) in the bottom right panel of their Fig. 4.

The identification of the O VI lines and the normalized intensities of the [WR] features with respect to C IV $\lambda 5806$ line indicate that the CSPN of M 2-31 spectrum seems consistent with a [WO4] spectral type in the Acker & Neiner (2003) scheme. This classification differs from previous [WC4-6] classifications (Tylenda et al. 1993; Acker & Neiner 2003), most likely due to the low quality of their spectroscopic observations caused by the weakness of the CSPN of M 2-31.

4.3 M 2-31 from chemical point of view

The physical conditions and the chemical abundances of M 2-31 were calculated from the NOT ALFOSC long-slit spectroscopic observations obtained along a PA $= 10^\circ$ (see Table 3). The He/H ratio is $\gtrsim 0.11$, consistent with those of Type II PNe, but the N/O abundances ratio ≈ 0.7 is rather suggestive of a Type I origin (Peimbert 1978).\(^6\) We note that the N/O increases up to $\gtrsim 4$ if the ICF for N provided by Delgado-Inglada et al. (2014) were to be used, but those authors already noticed that such ICF does not apply properly to the case of M 2-31.

Comparing our abundance determinations with those of the most recent study of García-Rojas et al. (2018), the He and Cl abundances agree relatively good, within $0.2 \, \text{dex}$, whereas those of N, O, and S differ by more than $0.4 \, \text{dex}$. The N abundances and N/O abundances ratio show the most notable differences, with much higher values in our study. Indeed, the N/O ratio reported by García-Rojas et al. (2018), N/O $= 0.38$, suggests a Type II PN, whereas the value of this ratio reported by Delgado-Inglada et al. (2015), N/O $= 0.68$, is consistent with ours. The lower N/O ratio proposed by García-Rojas et al. (2018) could be partially attributed to the different location of the apertures on to the nebula used for spectral extraction, but it is certainly governed by the lower value of the extinction correction used by those authors compared to ours, which reduces their electronic temperature more and importantly their extinction correction to the blue [OII] $\lambda 3727$ emission line used to determine the O/H$^+$ abundances and O/N abundances ratio.

4.4 On the spatio-kinematics of the C II emission line

The MEGARA observations of M 2-31 have been used to produce a 2D map of the spatial distribution of the C II $\lambda 6587$ emission line for the first time in a PN. The emission of this C II line is associated with two kinematical components that are confined within the innermost regions of M 2-31 with a radius of ~ 2 arcsec. The expansion velocity implied for these two components is $16.3 \, \text{km s}^{-1}$.

This emission can be compared with the brightest emission in the [NII] $\lambda 6584$ emission line, with a radius of 5 arcsec and an expansion velocity of $21.3 \, \text{km s}^{-1}$. The structure traced by the C II emission line is thus enclosed by that traced by the [NII] emission and expands slower. These results are consistent to those presented by Richer et al. (2017) using long-slit, high-resolution spectroscopic observations obtained with the SPM MES for a sample of 76 PNe. Such behaviour is in sharp contrast with the expectations for a chemically homogeneous nebular plasma in ionization equilibrium. Therefore, these differences are more likely produced by spatially segregated multiple plasma components (e.g. as in NGC 6778; García-Rojas et al. 2016), which are important when calculating chemical abundances from permitted and collisionally excited emission lines. Although it was suggested in the past that the C II emission line might be excited indirectly by fluorescence (see Grandi 1976), Richer et al. (2017) showed that such physical process never dominates the total surface brightness of this emission line.

\(^6\) The limits between Type I and II are He/H$=0.125$ and N/O$=0.5$.

Downloaded from https://academic.oup.com/mnras/article/508/2/2254/6368851 by 81263599 user on 14 February 2022
M 2-31 has been classified as a mixed-chemistry dust (MCD) PN, which are objects with spectral features revealing both C-rich (such as PAHs) and O-rich dust (e.g. silicates) (see Delgado-Inglada & Rodríguez 2014; Delgado-Inglada et al. 2015). Such objects have been proven difficult to explain, with a few mechanisms able to produce (or deplete) C or O in PNe during their formation and evolution which are also metallicity dependent (see e.g. Perea-Calderón et al. 2009). To peer into this problem, García-Rojas et al. (2018) investigated the chemical abundances and specifically the C/O ratios of a sample of MCD PNe using high-resolution spectroscopic observations targeting optical recombination lines from C II and O II. According to them, most MCD PNe, including M 2-31, are O rich and have C/O < 1, suggesting that they might be the result of the evolution of intermediate-mass stars in the low- \(M_{\text{ZAMS}} < 1.5 \, M_\odot \) or high-mass regimes \((M_{\text{ZAMS}} > 3 \, M_\odot) \). If this were the case, PAHs would form as the result of the evaporation of a CO torus (e.g. Guzman-Ramírez et al. 2014).

Our GTC MEGARA observations presented here are indeed suggestive of the presence of a toroidal inner structure in M 2-31. Future IFS observations of M 2-31 targeting the O II 4650 Å optical recombination line with the medium-resolution volume-phased holographic VPH481-MR (\(R \sim 12 \, 000 \)) can help derive more accurate C/O abundance ratios for different kinematic structures in this PN. Spatially resolved studies at high spectral resolution confirm GTC MEGARA as a key instrument to peer into the abundance discrepancy problem in ionized nebulae and the MCD phenomenon in PNe (García-Rojas et al. 2016).

5 SUMMARY

We presented a comprehensive study of the morphology and kinematics of M 2-31 using NOT ALFOSC narrow-band images and intermediate-dispersion long-slit spectra and GTC MEGARA high-dispersion IFS observations. The following is a summary of our findings:

(i) The kinematics of PNe is classically investigated using PV maps obtained from long-slit high-dispersion spectra. Keeping this technique, a deep analysis of the morpho-kinematic structure of M 2-31 was carried out extracting PV maps along pseudo-slits at different PAs from the MEGARA data cube. In addition, a sophisticated analysis was made using 2D flux, expansion velocity, and FWHM maps of the [N II] emission line in combination with NOT ALFOSC image. It can be concluded that M 2-31 has five principal kinematic components: (i) a pair of fast (expansion velocity \(\pm 63.8 \, km \, s^{-1} \)) spectroscopic outflows, which makes M 2-31 a member of the spectroscopic bipolar nebulae; (ii and iii) receding and approaching components of a bright inner and a faint outer shells with an expansion velocity of 21.3 km s\(^{-1}\); (iv) a low-velocity component, almost orthogonal to the spectroscopic outflows, with an expansion velocity \(\pm 8.1 \, km \, s^{-1} \); and (v) two knots at North and South. (ii) This is the first time that flux, velocity, and FWHM 2D maps of the C II \(\lambda 6578 \) emission line are presented for a PN. We found that this permitted line is more concentrated in the central region, with smaller diameter and expansion velocity than the emission of [N II]. (iii) The spectral properties of the CSPN of M 2-31 were studied using multi-Gaussian fits to determine the real contribution of the WR spectral lines and the spectral subtype of the CSPN. Considering the WR lines detected in the NOT ALFOSC spectrum and their FWHM and \(I_{\text{CIV}} \), the CSPN of M 2-31 is reassigned a spectral type [WO4]. (iv) The physical properties and the chemical abundances of M 2-31 have been computed. According to the He abundances, M 2-31 is a Type II PN, but according to the N abundances and N/O ratio it is rather a Type I PN.

ACKNOWLEDGEMENTS

The authors would like to thank the referee for a critical reading of the manuscript which helped clarify important aspects. JSRG and VMAGG acknowledge support from the Programas de Beca Postdoctorales funded by Dirección General de Asuntos del Personal Académico of the Universidad Nacional Autónoma of México (DGAPA, UNAM). JAT acknowledges funding by DGAPA, UNAM PAPIIT project IA100720 and the Marcos Moshinsky Foundation (Mexico). SC and MAG acknowledge financial support from State Agency for Research of the Spanish MICIU through the ‘Center of Excellence Severo Ochoa’ award to the Instituto de Astrofísica de Andalucía (SEV-2017-0709). MAG acknowledges support of the Spanish Ministerio de Ciencia, Innovación y Universidades (MICIU) grant PGC2018-102184-B-I00. LS acknowledges support from PAPIIT-UNAM grant IN101819. GR-L acknowledges support from CONACYT (grant 263373) and PRODEP (Mexico). The GTC Science Operations group is recognized for scheduling the GTC MEGARA observations beneath the exacting conditions requested by this program.

DATA AVAILABILITY

The data underlying this article will be shared on reasonable request to the corresponding author.

REFERENCES

Acker A., Neiner C., 2003, A&A, 403, 659

Akras S., López J. A., 2012, MNRAS, 425, 2197

Balick B., 1987, AJ, 94, 671

Balick B., Frank A., Liu B., 2020, ApJ, 889, 13

Cardelli J. A., Clayton G. C., Mathis J. S., 1989, ApJ, 345, 245

Cazzoli S. et al., 2020, MNRAS, 493, 3656

De Marco O., 2009, PASP, 121, 316

Delgado-Inglada G., Morisset C., Staïnska G., 2014, MNRAS, 440, 536

Delgado-Inglada G., Rodríguez M., 2014, ApJ, 784, 173

Delgado-Inglada G., Rodríguez M., Peimbert M., Staïnska G., Morisset C., 2015, MNRAS, 449, 1797

Fazio G. G. et al., 2004, ApJ, 154, 10

Frew D. J., Parker Q. A., Bojičić I. S., 2016, MNRAS, 455, 1459

García-Díaz M. T., López J. A., Steffen W., Richer M. G., 2012, ApJ, 761, 172

García-Rojas J., Corradi R. L. M., Monteiro H., Jones D., Rodríguez-Gil P., Cabrera-Lavers A., 2016, ApJ, 824, L27

García-Rojas J., Delgado-Inglada G., García-Hernández D. A., Dell’Agli F., Lugano M., Karaka A. I., Rodríguez M., 2018, MNRAS, 473, 4476

García-Segura G., Taam R. E., Ricker P. M., 2021, ApJ, 914, 111

Gathier R., Pottasch S. R., Goss W. M., van Gorkom J. H., 1983, A&A, 128, 325

Gil de Paz A. et al., 2018, in Evans C. J., Simard L., Takami H., eds, Proc. SPIE Conf. Ser. Vol. 10702, Ground-based and Airborne Instrumentation for Astronomy VII. SPIE, Bellingham, p. 1070217

Gómez-González V. M. A., Toalá J. A., Guerrero M. A., Todt H., Sabin L., Ramos-Larios G., Mayya Y. D., 2020, MNRAS, 496, 959

Gonçalves D. R., Corradi R. L. M., Mampaso A., Queiroz C., 2009, in Magris G., Bruzual G., Carigi L., eds, Rev. Mex. Astron. Astrofis. Conf. Ser. Vol. 35, XII Latin American IAU Regional Meeting, p. 64

Grandi S. A., 1976, ApJ, 206, 658

Guerrero M. A., Cazzoli S., Rechy-García J. S., Ramos-Larios G., Montoromolina B., Gómez-González V. M. A., Toalá J. A., Fang X., 2021, ApJ, 909, 44
Guerrero M. A., De Marco O., 2013, A&A, 553, A126
Guzman-Ramirez L., Lagadec E., Jones D., Zijlstra A. A., Gesicki K., 2014, MNRAS, 441, 364
Kingsburgh R. L., Barlow M. J., 1994, MNRAS, 271, 257
Kwok S., 2000, The Origin and Evolution of Planetary Nebulae. Cambridge Univ. Press, Cambridge
Livio M., Soker N., 1988, ApJ, 329, 764
Luridiana V., Morisset C., Shaw R. A., 2015, A&A, 573, A42
Markwardt C. B., 2009, in Bohlender D. A., Durand D., Dowler P., eds, ASP Conf. Ser. Vol. 411, Astronomical Data Analysis Software and Systems XVIII. Astron. Soc. Pac., San Francisco, p. 251
Nordhaus J., Blackman E. G., 2006, MNRAS, 370, 2004
Pascual S., Cardiel N., Gil de Paz A., Carasco E., Gallego J., Iglesias-Páramo J., Cedazo R., 2019, in Montesinos B., Asensio Ramos A., Buitrago F., Schödel R., Villaver E., Pérez-Hoyos S., Ordóñez-Etxeberria I., eds, Proc. 13th Sci. Meet. Spain. Astron. Soc., Highlights on Spanish Astrophysics X. Salamanca, Spain, p. 227
Peimbert M., 1978, in Terzian Y., ed., Proc. IAU Symp. 76, Planetary Nebulae. Cornell University, Ithaca, New York, p. 215
Perea-Calderón J. V., García-Hernández D. A., García-Lario P., Szczerba R., Bobrowsky M., 2009, A&A, 495, L5
Rechy-García J. S. et al., 2020, ApJ, 903, L4
Rechy-García J. S., Velázquez P. F., Peña M., Raga A. C., 2017, MNRAS, 464, 2318
Richer M. G., Suárez G., López J. A., García Díaz M. T., 2017, AJ, 153, 140
Sahai R., Trauger J. T., 1998, AJ, 116, 1357
Schneider S. E., Terzian Y., Purgathofer A., Perinotto M., 1983, ApJS, 52, 399
Soker N., 2001, ApJ, 558, 157
Tody D., 1993, in Hanisch R. J., Brissenden R. J. V., Barnes J., eds, ASP Conf. Ser. Vol. 52, Astronomical Data Analysis Software and Systems II. Astron. Soc. Pac., San Francisco, p. 173
Tresse L., Maddox S., Loveday J., Singleton C., 1999, MNRAS, 310, 262
Tylenza R., Acker A., Stenholm B., 1993, A&AS, 102, 595
Watters L. B. F. M. et al., 1998, A&A, 331, L61
Wesson R., Jones D., García-Rojas J., Boffin H. M. J., Corradi R. L. M., 2018, MNRAS, 480, 4589
Zou Y. et al., 2020, MNRAS, 497, 2855

This paper has been typeset from a TeX/LaTeX file prepared by the author.