Fulminant Tracheobronchial Aspergillosis in an Apparently Healthy Adult

Hayato Moribuchi¹, Rumi Sato¹,², Shuntaro Matsushima³, Masaki Tominaga¹, Jun Sasaki¹, Masayuki Nakamura¹, Yuki Sakazaki¹, Mamoru Nishiyama¹, Tomoaki Hoshino¹ and Tomotaka Kawayama¹

Abstract:
A 56-year-old healthy man who was a current smoker died from fulminant tracheobronchial aspergillosis despite a month of treatment with a combination of intravenous anti-fungal agents that had been started immediately after the diagnosis. This case report is important for understanding and managing fulminant Aspergillus infections in healthy subjects, although the pathogenesis and underlying pathways are still unknown.

Key words: fulminant, tracheobronchial aspergillosis, healthy individual

(Intern Med 59: 1295-1298, 2020)
(DOI: 10.2169/internalmedicine.3857-19)

Introduction
Tracheobronchial aspergillosis is a well-recognized phenotype of rare invasive pulmonary aspergillosis (IPA); patients suspected of having tracheobronchial aspergillosis require admission to an intensive-care unit and prompt initiation of antifungal therapy (1-10). We encountered a fatal case of fulminant tracheobronchial aspergillosis in an apparently healthy adult, although most of the previously reported patients with tracheobronchial aspergillosis and IPA were immunocompromised (1-10).

Case Report
A 56-year-old, healthy man who was a current smoker required emergency admission at Asakura Medical Hospital with chief complaints of a fever, cough, sputum, and dyspnea for 10 days. He had no history of medications or circumstances indicative of inhaled hyphal exposure before the onset of respiratory symptoms. His respiratory rate was 30 beats per min, and his oxygen saturation was 92% (87% at room air) with 4 L/min of nasal oxygen therapy. His blood test showed values almost within the normal range: neutrophil count (4,940×10³ cells/mL), fasting glucose (10.8 mg/L), and hemoglobin A1c (6.2% of the value recommended by the National Glycohemoglobin Standardization Program). The 1-3-beta-D glucan level in blood was 488 pg/mL (cut-off value, 20 pg/mL). The serum galactomannan antigen level for Aspergillus, assessed by an enzyme-linked immunosorbent assay, was 3.8 according to the cut-off index. A complement fixation test (BML, Tokyo, Japan) indicated a less than four-fold increased level of anti-Aspergillus antibodies (negative results). Serum human immunodeficiency virus (HIV)-1 and HIV-2 antibodies and HIV-p24 antigen were not detected by a chemiluminescent enzyme immunoassay (BML). Chest computed tomography (CT) revealed multiple regions of bronchial wall thickening with peribronchial infiltrations before treatment (Fig. 1). No evidence of rhinosinusitis was found on facial CT. Fiberoptic bronchoscopy showed multiple areas of ulceration and swelling, with geographical, moss-like white coats on the tracheobronchial mucosa (Fig. 2A).

Treatment with a combination of empirical intravenous anti-fungal agents [250 mg twice daily (total 500 mg/body/day) of voriconazole and 150 mg twice daily (total 300 mg/boy/day) of micafungin] was initiated after confirming the presence of fungal hyphae in bronchial lavage samples.
(eighth day of hospitalization). Evidence of bacterial and mycobacterial infections in the sputum, bronchial lavage, and blood and tests for urinary antigens of Legionella and pneumococcus were negative; nevertheless, intravenous administration of 500 mg thrice daily (total 1,500 mg/body/day) of doripenem and 200 mg twice daily (total 400 mg/body/day) of minocycline was added to the treatment regimen for suspected mixed typical and/or atypical pneumonia with fungal infections from day 1 to 10 after hospitalization. Pneumocystis jirovecii DNA was not detected in the bronchial lavage samples by a polymerase chain reaction assay.

Transbronchial lung biopsies (TBLBs) of the right B1, B3, B5, and B8 lung segments were performed. Each TBLB specimen stained with hematoxylin and eosin showed similar findings of the presence of extensive fungal hyphae, although the presence of hyphal invasion into the lung parenchyma and surrounding blood vessels could not be verified (Fig. 2B). Grocott staining revealed multiple septate hyphae, branched at acute angles, and the hyphae were grouped in typical Aspergillus conidial heads (Fig. 2C). Chest CT 14 days after treatment initiation revealed cylindrical bronchiectatic changes with peribronchial infiltration (Fig. 3). The patient died on the 29th day of hospitalization due to multiple organ failure with disseminated intravascular coagulation despite being transferred from the intensive-care unit to the high-care unit of Kurume University Hospital (16th day of hospitalization). Aspergillus fumigatus was repeatedly isolated from the bronchial washings and sputum, and the minimum inhibitory concentration (MIC) for micafungin and

Figure 1. Chest CT findings before treatment. An examination of the carina (upper) and lower lobe (bottom) revealed bronchial wall thickening with para-bronchi infiltration in almost all large bronchi. CT: computed tomography.

Figure 2. Findings of fiberoptic bronchoscopy and histopathological examination of transbronchial lung biopsy (TBLB) specimens. A) An examination of the mucosa from the trachea to the bilateral distal bronchi showed ulceration and swelling with geographical moss-like white coats. B) A TBLB specimen stained with Hematoxylin and Eosin staining showed the presence of extensive fungal hyphae and lung parenchymal regions with inflammation. Hyphal invasion into the lung parenchyma and surrounding blood vessels from the right B4 lung segment was not observed (×200). C) Grocott-stained specimens of the lung tissues (×400).
Aspergillus strains was identified. The isolated strains were susceptible to micafungin and voriconazole. Combination therapy rather than monotherapy was initiated on the first day of hospitalization because the patient showed signs of severe infection with hypoxia, although the involvement of other comorbid fungal infections with Aspergillus could not be confirmed.

Despite the estimated synergistic or additive effects of micafungin and voriconazole based on previous studies (13, 14), the patient ultimately died; however, there is little clinical evidence supporting combination therapy (15). The minimal effective concentration (MEC) for the strain could not be obtained, although a previous study reported that the MEC, but not the MIC, of micafungin was more critical for treating infections caused by Aspergillus strains (16). An endobronchial approach with anti-fungal treatments may be combined with intravenous infusions for targeting tracheobronchial aspergillosis (17), or amphotericin B may be added to the regimen (2). However, the endobronchial approach and triple therapy including amphotericin B administration were not selected in the present patient, as those therapies have insufficient evidence supporting their efficacy and safety for Aspergillus infections in Japan.

Surprisingly, the structure of the large and small bronchi underwent a pathological transformation to cylindrical bronchiectasis several days after Aspergillus infection. Some strains of A. fumigatus are known to produce putative virulence factors, such as proteases and toxins (18), although our laboratory tests did not provide any evidence suggesting the presence of these factors. These factors may have led to the structural changes in the bronchi.

We believe that the present case report provides clinical information important to the understanding and management of fulminant Aspergillus infections in healthy subjects.

The authors state that they have no Conflict of Interest (COI).

Acknowledgement

The authors express their sincere gratitude to the bereaved spouse and family of the deceased patient for providing their consent and approval for the publication of this case report.

References

1. Bassetti M, Bouza E. Invasive mould infections in the ICU setting: complexities and solutions. J Antimicrob Chemother 72 (Suppl): i39-i47, 2017.
2. Patterson TF, Thompson GR 3rd, Denning DW, et al. Practice guidelines for the diagnosis and management of aspergillosis: 2016 Update by the Infectious Diseases Society of America. Clin Infect Dis 63: e1-e60, 2016.
3. Karam GH, Griffin FM Jr. Invasive pulmonary aspergillosis in nonimmunocompromised, nonneutropenic hosts. Rev Infect Dis 8: 357-363, 1986.
4. Majima S, Okachi S, Asano M, et al. Pseudomembranous invasive tracheobronchial aspergillosis with fulminant hepatitis and hemophagocytic syndrome. Intern Med 57: 2371-2375, 2018.
5. Thakur LK, Jha KK, Jha S, Jha A. Fulminant tracheobronchial aspergillosis. BMJ Case Rep 2017: bcr2016219127, 2017.
6. Tao T, Zhang YH, Xue SL, Wu DP, Chen F. Fulminant laryngeal-tracheobronchial-pulmonary aspergillosis: a rare and fatal complication in allogeneic hematopoietic stem cell transplantation recipients. Intern Med 56: 347-351, 2017.

7. Temime J, Mallat J, Van Grunderbeeck N, Gimenez S, Lemyze M. Fulminant invasive tracheobronchial aspergillosis. Am J Respir Crit Care Med 191: 848-849, 2015.

8. Ruhnke M, Eichenauer E, Searle J, Lippek F. Fulminant tracheobronchial and pulmonary aspergillosis complicating imported *Plasmodium falciparum* malaria in an apparently immunocompetent woman. Clin Infect Dis 30: 938-940, 2000.

9. Moreno-González G, Ricart de Mesones A, Tazi-Mezalek R, et al. Invasive pulmonary aspergillosis with disseminated infection in immunocompetent patient. Can Respir J 2016: 7984032, 2016.

10. Vukicevic TA, Dudvarski-Ilic A, Zugic V, et al. Subacute invasive pulmonary aspergillosis as a rare cause of pneumothorax in immunocompetent patient: brief report. Infection 45: 377-380, 2017.

11. Pfaller MA, Boyken L, Hollis RJ, et al. In vitro susceptibility of clinical isolates of *Aspergillus* spp. to anidulafungin, caspofungin, and micafungin: a head-to-head comparison using the CLSI M38-A2 broth microdilution method. J Clin Microbiol 47: 3323-3325, 2009.

12. Pfaller M, Boyken L, Hollis R, et al. Comparison of the broth microdilution methods of the European Committee on Antimicrobial Susceptibility Testing and the Clinical and Laboratory Standards Institute for testing itraconazole, posaconazole, and voriconazole against *Aspergillus* isolates. J Clin Microbiol 49: 1110-1112, 2011.

13. Campitelli M, Zeineddine N, Samaha G, Maslak S. Combination antifungal therapy: a review of current data. J Clin Med Res 9: 451-456, 2017.

14. Garbati MA, Alasmari FA, Al-Tannir MA, Tleyjeh IM. The role of combination antifungal therapy in the treatment of invasive aspergillosis: a systematic review. Int J Infect Dis 16: e76-e81, 2012.

15. Martín-Peña A, Aguilar-Guisado M, Espigado I, Cisneros JM. Antifungal combination therapy for invasive aspergillosis. Clin Infect Dis 59: 1437-1445, 2014.

16. Shalit I, Shadkchan Y, Samra Z, Osherov N. In vitro synergy of caspofungin and itraconazole against *Aspergillus* spp.: MIC versus minimal effective concentration end points. Antimicrob Agents Chemother 47: 1416-1418, 2003.

17. Solé A. Invasive fungal infections in lung transplantation: role of aerosolised amphotericin B. Int J Antimicrob Agents 32 (Suppl): S161-S165, 2008.

18. Tomee JF, Kauffman HF. Putative virulence factors of *Aspergillus fumigatus*. Clin Exp Allergy 30: 476-484, 2000.