Highly regioselective surface acetylation of cellulose and shaped cellulose constructs in the gas-phase

Tetyana Koso¹*, Marco Beaumont²,³, Blaise L. Tardy³, Daniel Rico del Cerro⁴, Samuel Eyley⁴, Wim Thielemans⁴, Orlando J. Rojas³,⁵, Ilkka Kilpeläinen⁴, Alistair W. T. King¹⁶*

¹ Department of Chemistry, University of Helsinki, Al Virtasen aukio 1, 00560, Helsinki
² Department of Chemistry, Institute of Chemistry for Renewable Resources, University of Natural Resources and Life Sciences Vienna (BOKU), Tulln, Austria
³ Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, Aalto, Finland
⁴ Department of Chemical Engineering, KU Leuven, Campus Kortrijk, Etienne Sabbelaan 53, 8500 Kortrijk, Belgium
⁵ Bioproducts Institute, Departments of Chemical and Biological Engineering, Chemistry and Wood Science, University of British Columbia, Vancouver, BC, Canada
⁶ VTT The Technical Research Centre of Finland Ltd, Tietotie 4e, 02150 Espoo, Finland
Table of contents

1. Materials and methods ... 3
 1.1 Preparation of the $[\text{P}_{4444}]\text{[OAc]}$:DMSO-d$_6$ Electrolyte for NMR Analysis 3
 1.2 Typical gas-solid phase acetylation of the cellulosic material ... 4
 1.3 Typical liquid-solid phase acetylation of the FD-CNCs ... 5
 1.4 Crystallinity index and periodic plane size determination ... 5

2. Crystallite Models ... 17

3. NMR supplementary data ... 17
 3.1 NMR sample preparation .. 17
 3.2 Diffusion-edited 1H experiments .. 18
 3.3 Multiplicity-Edited HSQC Experiments ... 18
 3.4 DS determination from 1H NMR spectral data ... 18
 3.5 Regioselectivity determination from 1H NMR spectral data ... 20
 3.6 The NMR data .. 23

4. AFM ... 31

5. ATR-IR ... 33

6. XPS .. 34

7. Computational Experimental .. 36

8. References ... 65
1. Materials and methods

Different celluloses were used in our reactivity studies; FD-CNCs (freeze-dried softwood CNCs, derived from sulphuric acid digestion of southern pine dissolving pulp, FPL/UMaine PDC), Enocell bleached hardwood pre-hydrolysis kraft pulp (P-H Kraft pulp, 6.8 % hemicellulose), beech bleached sulphite pulp (Sulphite pulp, 3.8 % hemicellulose), CNC aerogel as well as regenerated fibres air-gap spun from [DBNH][OAc] (Sixta et al. 2015) using the IONCELL technology (IONCELL Fibres). Tetrabutylphosphonium acetate ([P\textsubscript{4444}][OAc]) was prepared to high purity, according to the literature procedures (King et al. 2018; Koso et al., 2020). All the reagents and solvents were high purity (≥98%) and were used as obtained from the commercial suppliers, without further purification. Acetic anhydride (AA) 98% was used as acetylating agent. Products were characterized by Attenuated Total Reflection Infra-Red spectroscopy (ATR-IR) and liquid-state NMR spectroscopy on a Bruker NEO Avance (600 MHz 1H-frequency) spectrometer. Wide-angle X-ray scattering (WAXS) measurements were performed on a PANalytical X’Pert Pro MPD system, with Bragg-Brentano (reflectance) geometry. The diffracted intensity of Cu(K\textalpha) radiation (\lambda = 1.54 Å, under a condition of 45 kV and 40 mA) was measured in a 2\theta range between 5° and 50°; The samples for WAXS were prepared by pressing 50 mg of sample in a KBr-IR press, before calibrating on a glass slide. FE-SEM/STEM (Hitachi S4800) was used for crystallinity characterization of selected samples.

1.1 Preparation of the [P\textsubscript{4444}][OAc]:DMSO-d\textsubscript{6} Electrolyte for NMR Analysis

Tri-n-butylphosphine (35 ml, 28.7 g, 142 mmol) and n-butyl chloride (30 ml, 26.7 g, 288 mmol) were added sequentially and in one portion to a Teflon-lined 125 ml Parr acid digestion vessel. The vessel was sealed and its contents reacted at 120 °C for 24 h under magnetic stirring. Note: a sealed vessel is necessary as trialkylphosphines of the like rapidly oxidize in the presence of air. Moreover, tributylphosphine is pyrophoric in air. After letting the vessel cool to room temperature, the crude and still mostly liquid product mixture was transferred to a round-bottomed flask (during this stage, rapid crystallization may occur). Excess n-butyl chloride (bp 78 °C) was evaporated off using a rotary evaporator. Finally, the product was dried using a high-vacuum rotary evaporator at 80 °C for 5 h, yielding a white crystalline mass (40.3 g, 137 mmol, 98% of theory); mp = 60-65 °C (from the melt) 1H NMR (600 MHz, DMSO-d\textsubscript{6}) \delta 2.24 – 2.16 (m, 8H), 1.51 – 1.36 (m, 16H), 0.92 (t, J = 7.2 Hz, 12H).

Dry [P\textsubscript{4444}]Cl (5.00 g, 16.96 mmol) and potassium acetate (1.67 g, 17.0 mmol) were added to isopropyl alcohol (50 ml, HPLC grade). These were mixed and refluxed with stirring for 20 h. After letting the mixture cool to room temperature and then cooling at -20 °C for 18 h, precipitated potassium chloride was filtered off over Celite 545 and the filtrate evaporated in a rotary evaporator. Chloroform (50 ml) was added and the mixture was again cooled to -20 °C for 18 h, to precipitate further salts, followed by filtration through Celite 545. Finally, the solvent was evaporated and the product dried in a high vacuum rotary evaporator at 90 °C for 6 h to give a pale-yellow crystalline mass (5.20 g, 16.32 mmol, 96% of theory); mp = 46 °C (from the melt); 1H NMR (600 MHz, DMSO-d\textsubscript{6}) \delta 2.27 – 2.17 (m, 8H), 1.62 (s, 3H), 1.51 – 1.36 (m, 16H), 0.91 (t, J= 7.2 Hz, 12H). The electrolyte was prepared by weighing dry [P\textsubscript{4444}][OAc] into DMSO-d\textsubscript{6} in a 1:4 w/w proportion. This was stored in a sealed vessel to avoid water uptake. The sample was analyzed by NMR to assess purity (Fig. S1).
1.2. Typical gas-solid phase acetylation of the cellulosic material

100 mg (0.617 mmol) of cellulose was placed into an opened 4 ml vial and sealed in a 100 ml Schott bottle (Figure S2), containing 0.58 ml (0.63 g; 6.17 mmol) of acetic anhydride. The reaction chamber was left to stand at the specified temperature for a fixed time. After cooling, the vial with the cellulosic material was removed. The acetylated cellulose was then washed with EtOH (2-3 × 3.5 ml) and centrifuged, followed by freeze-drying, for analysis. The acetylated CNC aerogel sample was dried only using vacuum at RT, allowing for complete removal of acetic anhydride or acetic acid.
1.3. Typical liquid-solid phase acetylation of the FD-CNCs

100 mg (0.617 mmol) of FD-CNCs were placed in the vial and 0.58 ml (0.63 g; 6.17 mmol) of acetic anhydride was added. If required, catalyst (1.85 mmol, 3 eq. to the amount of AGU) was then added. The vessel was sealed and left to stand at ambient temperature (unless stated otherwise) for stated amount of time. The vial contents then washed with EtOH (4-6 x 3.5 ml), centrifuged and freeze-dried for analysis.

1.4. Crystallinity index and periodic plane size determination

The crystallinity index (CI) was determined as described in the previous article supporting information (del Cerro et al. 2020). WAXS diffractograms were fitted with contributions representing background (glass support), amorphous component and main crystalline diffraction plane peaks. “Fityk” 1.3.1 peak-fitting software (Wojdyr 2010) was used to process the data through semi-automatic fitting; fitting of functions corresponding to the glass and amorphous backgrounds, as well as set of pseudoVoigt functions.

Fig. S3 Fitting of the WAXS diffractogram for the commercial FD-CNC (freeze-dried cellulose nanocrystals) sample in Fityk. Data & functions: raw data (green), fitted data (yellow), amorphous function (cyan), background (magenta), crystalline functions (red) and residual baseline error (green at the bottom of the figure).
Fig. S4 Fitting of the WAXS diffractogram for the beech BH-S-P (bleached hardwood sulphite pulp) sample in Fityk. Data & functions: raw data (green), fitted data (yellow), amorphous function (cyan), background (magenta), crystalline functions (red) and residual baseline error (green at the bottom of the figure).

Fig. S5 Fitting of the WAXS diffractogram for the Enocell P-H Kraft (bleached hardwood pre-hydrolysis kraft pulp) sample in Fityk. Data & functions: raw data (green), fitted data (yellow), amorphous function (cyan), background (magenta), crystalline functions (red) and residual baseline error (green at the bottom of the figure).
Fig. S6 Fitting of the WAXS diffractogram for the freeze-dried Enocell Kraft pulp (bleached hardwood pre-hydrolysis kraft pulp) sample in Fityk. Data & functions: raw data (green), fitted data (yellow), amorphous function (cyan), background (magenta), crystalline functions (red) and residual baseline error (green at the bottom of the figure).

Fig. S7 Fitting of the WAXS diffractogram for the commercial FD-CNC (freeze-dried cellulose nanocrystals) sample, acetylated in system “gas-solid” for 6 days at ambient temperature, in Fityk. Data & functions: raw data (green), fitted data (yellow), amorphous function (cyan), background (magenta), crystalline functions (red) and residual baseline error (green at the bottom of the figure).
Fig. S8 Fitting of the WAXS diffractogram for the commercial FD-CNC (freeze-dried cellulose nanocrystals) sample, acetylated in system “gas-solid” for 15 days at ambient temperature, in Fityk. Data & functions: raw data (green), fitted data (yellow), amorphous function (cyan), background (magenta), crystalline functions (red) and residual baseline error (green at the bottom of the figure).

Fig. S9 Fitting of the WAXS diffractogram for the commercial FD-CNC (freeze-dried cellulose nanocrystals) sample, acetylated in system “gas-solid” for 32 days at ambient temperature, in Fityk. Data & functions: raw data (green), fitted data (yellow), amorphous function (cyan), background (magenta), crystalline functions (red) and residual baseline error (green at the bottom of the figure).
Fig. S10 Fitting of the WAXS diffractogram for the commercial FD-CNC (freeze-dried cellulose nanocrystals) sample, acetylated in system “gas-solid” for 6 days at 80 °C, in Fityk. Data & functions: raw data (green), fitted data (yellow), amorphous function (cyan), background (magenta), crystalline functions (red) and residual baseline error (green at the bottom of the figure).

Fig. S11 Fitting of the WAXS diffractogram for the beech sulphite pulp (bleached hardwood sulphite pulp) sample, acetylated in system “gas-solid” for 6 days at ambient temperature, in Fityk. Data & functions: raw data (green), fitted data (yellow), amorphous function (cyan), background (magenta), crystalline functions (red) and residual baseline error (green at the bottom of the figure).
Fig. S12 Fitting of the WAXS diffractogram for the Enocell P-H kraft pulp (bleached hardwood pre-hydrolysis kraft pulp) sample, acetylated in system “gas-solid” for 6 days at ambient temperature, in Fityk. Data & functions: raw data (green), fitted data (yellow), amorphous function (cyan), background (magenta), crystalline functions (red) and residual baseline error (green at the bottom of the figure).

Fig. S13 Fitting of the WAXS diffractogram for the Enocell P-H kraft (bleached hardwood pre-hydrolysis kraft pulp) sample, acetylated in system “gas-solid” for 6 days at ambient temperature, in Fityk. Data & functions: raw data (green), fitted data (yellow), amorphous function (cyan), background (magenta), crystalline functions (red) and residual baseline error (green at the bottom of the figure).
Fig. S14 Fitting of the WAXS diffractogram for the commercial FD-CNC (freeze-dried cellulose nanocrystals) sample, acetylated in system “liquid-solid” for 6 days at ambient temperature, in Fityk. Data & functions: raw data (green), fitted data (yellow), amorphous function (cyan), background (magenta), crystalline functions (red) and residual baseline error (green at the bottom of the figure).

Fig. S15 Fitting of the WAXS diffractogram for the commercial FD-CNC (freeze-dried cellulose nanocrystals) sample, acetylated in system “liquid-solid” for 6 days at 80 °C, in Fityk. Data & functions: raw data (green), fitted data (yellow), amorphous function (cyan), background (magenta), crystalline functions (red) and residual baseline error (green at the bottom of the figure).
Fig. S16 Fitting of the WAXS diffractogram for the commercial FD-CNC (freeze-dried cellulose nanocrystals) sample, acetylated in system “liquid-solid” with DABCO for 6 days at ambient temperature, in Fityk. Data & functions: raw data (green), fitted data (yellow), amorphous function (cyan), background (magenta), crystalline functions (red) and residual baseline error (green at the bottom of the figure).

Fig. S17 Fitting of the WAXS diffractogram for the commercial FD-CNC (freeze-dried cellulose nanocrystals) sample, acetylated in system “liquid-solid” with DABCO for 6 days at 80 °C, in Fityk. Data & functions: raw data (green), fitted data (yellow), amorphous function (cyan), background (magenta), CTA functions (red), cellulose I\(_{\beta}\) 200 function (white) and residual baseline error (green at the bottom of the figure).
Fig. S18 Fitting of the WAXS diffractogram for the commercial FD-CNC (freeze-dried cellulose nanocrystals) sample, acetylated in system “liquid-solid” with pyridine for 6 days at ambient temperature, in Fityk. Data & functions: raw data (green), fitted data (yellow), amorphous function (cyan), background (magenta), crystalline functions (red) and residual baseline error (green at the bottom of the figure).

Fig. S19 Fitting of the WAXS diffractogram for the commercial FD-CNC (freeze-dried cellulose nanocrystals) sample, acetylated in system “liquid-solid” with pyridine for 6 days at 80 °C, in Fityk. Data & functions: raw data (green), fitted data (yellow), amorphous function (cyan), background (magenta), crystalline functions (red) and residual baseline error (green at the bottom of the figure).
Fig. S20 WAXS diffractogram for the commercial spray-dried CNCs (SD-CNC) sample.

Fig. S21 Fitting of the WAXS diffractogram for the commercial SD-CNC (spray-dried cellulose nanocrystals) sample, acetylated in system “gas-solid” for 6 days at ambient temperature, in Fityk. Data & functions: raw data (green), fitted data (yellow), amorphous function (cyan), background (magenta), crystalline functions (red) and residual baseline error (green at the bottom of the figure).
Fig. S22 WAXS diffractogram for the IONCELL fibre sample.

Fig. S23 WAXS diffractogram for the IONCELL fibre sample, acetylated in system “gas-solid” for 6 days at 80 °C.
Rough periodic plane sizes were calculated using the Scherrer equation [Eq.(1)]:

\[
L = \frac{K\lambda}{\beta \cos\theta}
\]

(1)

which is commonly used for determining the dimension (L, nm) of cellulose crystallites, where \(\beta\) is the full width half maximum (FWHM) for particular periodic plane, \(K\) (the Scherrer constant) is 0.94 for spherical crystallites with cubic symmetry. \(\lambda\) is the X-ray wavelength (1.54178 Å in our case for Cu K\(\alpha\)) and \(\theta\) is \(2\theta/2\) (in radians). The FWHM values were determined from the Gaussian functions, in Fityk. The results are given in the main text. The crystallite sizes for the (200) plane for each sample were calculated (Table S1).

Table S1. Crystallite sizes calculated for the samples, using the FWHM values for the (200) planes.

Sample	(200) FWHM (°)	(200) Crystallite size (nm)	Cl (%)
FD-CNC	1.88	4.50	57
FD-CNC-GS-6D RT	1.88	4.50	68
FD-CNC-GS-15D RT	1.84	4.60	73
FD-CNC-GS-32D RT	1.84	4.60	68
FD-CNC-GS-6D 80 °C	1.87	4.53	63
FD-CNC-LS-6D RT	1.82	4.65	77
FD-CNC-LS-6D 80 °C	1.86	4.55	65
FD-CNC-LS-6D DABCO, RT	1.73	4.89	72
FD-CNC-LS-6D DABCO, 80 °C	-	-	-
FD-CNC-LS-6D Py, RT	1.87	4.53	69
FD-CNC-LS-6D Py, 80 °C	2.16	3.93	42
2. Crystallite Models

For estimation of the bulk DS values for full surface coverage (6-OH acetylation only), there are 4 important elementary fibrillar cross-section models to consider, based on diffraction, molecular dynamics and NMR experiments (Figure S24) (Wang et al., 2015; Oehme et al., 2015; Paajanen et al., 2019; Fernandes et al., 2011). These are the 18-chain hexagonal (DS = 0.33), 24-chain rhomboid (DS = 0.33), 24-chain hexagonal (DS = 0.25) and 36-chain hexagonal (DS = 0.22). It is assumed that the woody microfibril consists of most probably 18 or 24 individual cellulose chains, with the softwood model the 24-chain rhomboid model (Fernandes et al., 2011). Based on these models and different chain assemblies (Figures S24 A-D) the maximum degree of substitution of the C6-OH is estimated to ranging from 0.22 to 0.33. An approximate maximum of 0.33 can is assumed.

Figure S24: Superstructure of the cellulose microfibril based on different chain models.

3. NMR supplementary data

3.1. NMR sample preparation
To prepare the samples for NMR analysis, typically 50 mg of dried sample is added to a sealable sample vial and made up to 1 g, by addition of stock [P4444][OAc]:DMSO-d6 (20:80 wt%) electrolyte solution (King et al. 2018; Koso et al. 2020). The samples were magnetically stirred at RT until they were visibly clear. This typically
takes less than 1 hr period and even a few minutes for some samples. If the samples did not go clear during that time, the temperature was increased to 65 °C. All further NMR experiments were recorded on a Bruker AVANCE NEO 600 MHz spectrometer equipped with a 5 mm SmartProbe™.

3.2. Diffusion-edited ¹H experiments
The diffusion-edited ¹H experiment used a 1D bipolar-pulse pair with stimulated echo (BPPSTE) (Wu et al. 1995) diffusion-ordered spectroscopy (DOSY) pulse sequence (Bruker pulse program ‘ledbpgp2s1d’), with 3 s relaxation delay (d1), 0.5 s acquisition time (aq), 16 dummy scans (ds) and 512 transient scans (ns), a sweep-width (sw) of 20 ppm with the transmitter offset on 6.1 ppm (o1p), a diffusion time (d20) of 200 ms, a gradient recovery delay (d16) of 0.2 ms, an eddy current delay (d21) of 5 ms, a diffusion gradient pulse duration (p30) of 2.5 ms and a z-gradient strength (gpz6) of 90% at 50 G/cm (probe z-gradient strength). These conditions are specific to the Bruker AVANCE NEO 600 MHz - SmartProbe™ system.

3.3. Multiplicity-Edited HSQC Experiments
The HSQC experiments on cellulose samples used either a multiplicity-edited phase sensitive HSQC sequence with echo/antiecho-TPPI gradient selection (Bruker pulse program ‘hsqcedetgp’) (Willker et al. 1993) or a sensitivity improved multiplicity-edited phase sensitive HSQC sequence with echo/antiecho-TPPI gradient selection and adiabatic pulses (Bruker pulse program ‘hsqcedetgpsisp2.2’), for increased sensitivity (Willker et al. 1993; Palmer III et al. 1991; Kay et al. 1992; Schleucher et al. 1994). Typical parameters are as follows: spectral widths (sw) were 13.03 and 165 ppm, with transmitter offsets (o1p) of 6.18 and 75 ppm, for ¹H and ¹³C dimensions, respectively. The time-domain size (td1) in the indirectly detected ¹³C-dimension (f1) was 512 or 1024, corresponding to 256 increments, or 512 t₁-increments for the real spectrum. There were 16 dummy scans (ds), typically 8 (or multiples of 8) scans (ns), an acquisition time (aq) of 0.065 s for f2 and a relaxation delay of 1.5 s. Window functions were typically sine squared (90°) in f1 and f2.

3.4. DS determination from ¹H NMR spectral data
As all the samples were completely solubilised in [P₄₄₄₄][OAc]:DMSO-d₆ electrolyte, it was possible to determine the bulk degree of acetylation on the cellulosic backbone directly from the ¹H NMR spectra by peak fitting and calculation according to the equation [Eq. (2)]

\[
DS = \frac{I_A/3}{I_C/7}
\]

(2)

Here, \(I_A\) is the acetate signal peak area (~1.8 – 2.2 ppm) and \(I_C\) is the cellulose backbone combined signal peak area (~2.8 – 5.5 ppm). “3” and “7” are the total number of protons for abovementioned fragments of acetate and cellulose, respectively. As we do not use the diffusion-edited ¹H NMR for DS estimations, but rather quantitative ¹H NMR, correction coefficient (del Cerro et al. 2020) is not applicable.

All the spectra were recorded with a 10 s relaxation delay (30° pulse) and 16 or 32 transients were collected. The spectra were calibrated and phased in Bruker TopSpin (4.0.5). MNova (10.0.2) was used to convert the spectral data into .xy format, for Fityk processing. An aggressive spline baseline correction was performed before peak fitting the corresponding H1-H6 and acetate peak regions. Examples of spline baseline correction and peak fitting are shown in Figures S25-27.
Fig. S25 Example of the spline baseline correction for the FD-CNCs sample, acetylated in system “gas-solid” for 6 days at ambient temperature, in *Fityk*.

Fig. S26 Example of the Gaussian deconvolution of the AGU (cellulose) peaks for the FD-CNCs sample, acetylated in system “gas-solid” for 6 days at ambient temperature, in *Fityk*.
3.5. Regioselectivity determination from 1H NMR spectral data

6 vs 2 vs 3-OH acetylation regioselectivity could be determined through peak-fitting of the acetate region (~2 ppm) from the quantitative 1H spectra. Application of spline baseline correction (see above) and then application of Gaussian guesses and automatic fitting usually gives nice defined peak volumes corresponding to the different acetate signals. Some manual fitting of the parameters may be required, e.g. to prevent the automatic fitting of too large Gaussians which may encompass the whole acetate region.

The signals for the high DS cellulose acetate (DS 2.4) are very characteristic and the 3 main peaks of cellulose triacetate (CTA) clearly visible, with a little variation in peak positioning corresponding to AGUs with mono and diacetate (Figure S27a). The regioselectivity is defined as the percentage of 6-OAc (mono acetate) vs the sums of the 2-OAc, 3-OAc and 6-OAc (CTA). This can be calculated from the sums of the Gaussian peak volumes fitted for each region; the peaks for each region are assigned by having peak centers (ppm) laying within defined regions, as illustrated for the solid-liquid acetylated samples at 80 °C (Figure S27b-c).

![Fig. S27 Example of peak-fitting using Fityk, and the appropriate peak regions, for determination of 6-OH acetylation regioselectivity and DS determination.](image-url)
Table S2. Bulk degree of acetylation for gas-phase reactions on the different substrates.

Starting material	Conditions	Catalyst	Degree of substitution (DS)\(^1\)	Product allomorph
FD-CNCs\(^2\)	gas-solid, rt, 1 day	–	0.007	–
FD-CNCs	gas-solid, rt, 2 days	–	0.010	–
FD-CNCs	gas-solid, rt, 6 days	–	0.029	Cellulose I 68
FD-CNCs	gas-solid, rt, 15 days	–	0.116	Cellulose I 73
FD-CNCs	gas-solid, rt, 32 days	–	0.290	Cellulose I 68
FD-CNCs	gas-solid, 80 °C, 1 day	–	0.120	–
FD-CNCs	gas-solid, 80 °C, 2 days	–	0.226	–
FD-CNCs	gas-solid, 80 °C, 6 days	–	0.405	Cellulose I 63
SD-CNCs\(^3\)	gas-solid, rt, 6 days	–		Cellulose I 75
BH-S-P\(^4\)	gas-solid, rt, 6 days	–	0.020	Cellulose I 59
BH-PHK-P\(^5\)	gas-solid, rt, 6 days	–	0.007	Cellulose I 80
ND-BH-PHK-P\(^6\)	gas-solid, rt, 6 days	–	0.005	Cellulose I 60
CNC-AG\(^7\)	gas-solid, rt, 6 days	–	0.136	Cellulose I –
BC-AG\(^8\)	gas-solid, rt, 6 days	–		Cellulose I –
IONCELL-F\(^9\)	gas-solid, 80 °C, 6 days	–	0.141	Cellulose II –
Table S3. Bulk degree of acetylation for liquid-phase reactions of FD-CNCs without and with the presence of catalyst.

Starting material	Conditions	Catalyst	DS (NMR)	Product allomorph Cl, %
FD-CNCs	liq-solid, rt, 1 day	–	0.012	–
FD-CNCs	liq-solid, rt, 2 day	–	0.019	–
FD-CNCs	liq-solid, rt, 6 day	–	0.021	Cellulose I 77
FD-CNCs	liq-solid, 80 °C, 1 day	–	0.076	–
FD-CNCs	liq-solid, 80 °C, 2 days	–	0.154	–
FD-CNCs	liq-solid, 80 °C, 6 days	–	0.426	Cellulose I 65
FD-CNCs	liq-solid, rt, 1 day	DABCO	0.013	–
FD-CNCs	liq-solid, rt, 2 day	DABCO	0.021	–
FD-CNCs	liq-solid, rt, 6 day	DABCO	0.042	Cellulose I 72
FD-CNCs	liq-solid, 80 °C, 1 day	DABCO	0.470	–
FD-CNCs	liq-solid, 80 °C, 2 days	DABCO	–	–
FD-CNCs	liq-solid, 80 °C, 6 days	DABCO	–	Cellulose I 5 + CTA
FD-CNCs	liq-solid, rt, 1 day	Pyridine	0.037	–
FD-CNCs	liq-solid, rt, 2 day	Pyridine	0.043	–
FD-CNCs	liq-solid, rt, 6 day	Pyridine	0.063	Cellulose I 69
FD-CNCs	liq-solid, 80 °C, 1 day	Pyridine	0.314	–
FD-CNCs	liq-solid, 80 °C, 2 days	Pyridine	0.594	–
FD-CNCs	liq-solid, 80 °C, 6 days	Pyridine	2.025	Cellulose I 42
3.6. The NMR data

Fig. S28 Expanded diffusion-edited 1H NMR spectra for FD-CNC samples, acetylated in system “gas-solid” at ambient temperature for 1, 2, 6, 15 and 32 days.
Fig. S29 Expanded diffusion-edited 1H NMR spectra for FD-CNC samples, acetylated in system “gas-solid” at 80 °C for 1, 2 and 6 days.

Fig. S30 Expanded diffusion-edited 1H NMR spectra for FD-CNC samples, acetylated in system “liquid-solid” at ambient temperature for 1, 2 and 6 days.
Fig. S31 Expanded diffusion-edited 1H NMR spectra for FD-CNC samples, acetylated in system "liquid-solid" at 80 °C for 1, 2 and 6 days.

Fig. S32 Expanded diffusion-edited 1H NMR spectra for FD-CNC samples, acetylated in system "liquid-solid" in the presence of DABCO at ambient temperature for 1, 2 and 6 days.
Fig. S33 Expanded diffusion-edited 1H NMR spectra for FD-CNC samples, acetylated in system “liquid-solid” in the presence of DABCO at 80 °C for 1 day.

Fig. S34 Expanded diffusion-edited 1H NMR spectra for FD-CNC samples, acetylated in system “liquid-solid” in the presence of pyridine at ambient temperature for 1, 2 and 6 days.
Fig. S35 Expanded diffusion-edited 1H NMR spectra for FD-CNC samples, acetylated in system “liquid-solid” in the presence of pyridine at 80 °C for 1, 2 and 6 days.
Fig. S36 Expanded diffusion-edited \(^1\text{H}\) NMR spectra for beech BH-S-P (bleached hardwood sulphite pulp), acetylated in system “gas-solid” at ambient temperature for 6 days.

![NMR spectra for beech BH-S-P](image)

Fig. S37 Expanded diffusion-edited \(^1\text{H}\) NMR spectra for Enocell BH-PHK-P (bleached hardwood pre-hydrolysis kraft pulp), acetylated in system “gas-solid” at ambient temperature for 6 days.

![NMR spectra for Enocell BH-PHK-P](image)
Fig. S38 Expanded diffusion-edited 1H NMR spectra for never-dried Enocell ND-BH-PHK-P (bleached hardwood pre-hydrolysis kraft pulp), acetylated in system “gas-solid” at ambient temperature for 6 days.

![6 days](image1)

Fig. S39 Expanded diffusion-edited 1H NMR spectra for cellulose nanocrystal aerogel, acetylated in system “gas-solid” at ambient temperature for 6 days.

![6 days](image2)

Fig. S40 Expanded diffusion-edited 1H NMR spectra for Ioncell-F, acetylated in system “gas-solid” at 80 °C for 6 days.

![6 days](image3)
HSQC spectrum of the gem-6 AGU region for 32 d acetylated FD CNCs, showing approximate 1:1 ratio of gem-6-OH and gem-6-OAc peaks.
4. AFM

Fig. S42 AFM images of unsubstituted commercial FD-CNCs.
Fig. S43 Further AFM images of commercial FD-CNCs, acetylated in the system “gas-solid” for 32 days at ambient temperature, with determined sizes.
5. ATR-IR

Figure S44 ATR-IR spectrum of commercial SD-CNC (spray-dried cellulose nanocrystals) sample, acetylated in system “gas-solid” for 6 days at ambient temperature.
6. XPS

Spectra were recorded on a Kratos Axis Supra X-ray Photoelectron Spectrometer employing a monochromated Al Kα (hv = 1486.7 eV, 8 mA) X-ray source, hybrid (magnetic/electrostatic) optics with a slot aperture, hemispherical analyser, multichannel plate and delay line detector (DLD) with a take-off angle of 90°. The analyser was operated in fixed analyser transmission (FAT) mode with survey scans taken with a pass energy of 160 eV and high-resolution scans with a pass energy of 20 eV. The resulting spectra were processed using CasaXPS software. Binding energy was referenced to aliphatic carbon at 285.0 eV. High resolution spectra were fitted using the “LA(α,m)” lineshape for symmetric peaks corresponding to a numerical convolution of Lorentzian functions (with exponent α) with a Gaussian (width m). Details of this line shape function is available in the CasaXPS documentation online.

Empirical relative sensitivity factors supplied by Kratos Analytical (Manchester, UK) were used for quantification. Use of these relative sensitivity factors does not account for any attenuation due to overlayers or other surface contamination and assumes a uniform depth distribution of elements within the information depth of the sample. Matrix effects are also discounted. Quoted standard deviations result from averages of three measurements per sample.

Figure S45 XPS wide scan spectra of FD-CNCs and SD-CNCs.
Figure S46 Peak fitting XPS of commercial FD-CNCs.

Figure S47 Peak fitting XPS of SD-CNCs.
7. Computational Experimental

The transition states (TS) for acetylation of 2,3 and 6-OH acetylation were located through relaxed potential energy surface (rPES) scans for low energy acetate orientations (corresponding dihedral angles between AGU and acetate) in positions 6, 3 and 2 on a cellulose I\textsubscript{\beta} surface fragment. This was followed by rPES bond-length scans for the low energy acetate conformers, for the acetylation-deacetylation reaction coordinates. Transition states searches (OptTS) with final analytical frequency calculations (Freq) were then performed from the rough rPES transition states. The Gibbs energies of the transition states only were compared, against the lowest transition state energy. Full reaction profiling was not performed as there is a significant contribution from basis set superposition error (BSSE) using the current basis set (def2-SVP). Rather, the BSSE for the transition states was assumed to be approximately the same, allowing for direct comparison of the transition state energies. This is not possible with starting, intermediate and ending reaction geometries which have fully separated species, in some cases, leading to much less basis-set overlap.

The ORCA 4 package (Neese 2018) was used with the B86 GGA functional (Becke 1988; Perdew 1986), def2-SVP basis set, Grimme’s D3 dispersion correction (Grimme 2010) with Becke-Johnson dampening (Grimme 2011) and the resolution-of-identity (RI) approximation (Eichkorn et al. 1995; Eichkorn et al. 1997).

The initial cellulose Ib fibril (hexagonal 36 chain) with a polymer length of 4 glucose units was generated using the ‘Cellulose-Builder’ (Gomes et al. 2012) web interface (http://cces-sw.iqm.unicamp.br/cces/admin/cellulose/view). This was then edited in Avogadro 1.2 (Hanwell et al. 2012) to remove all polymer chains except for a (110) surface section of 3 stacked polymer chains with a length of 4 AGUs each (Figure S48).

Figure S48. Initial cellulose Ib surface fragment used for the calculations.

Hydroxyl groups were added to the reducing ends, as these are missing in the Cellulose-Builder outputs. For the rPES scans, an acetate was added to the relevant OH (2, 3 or 6) of a central AGU. A rPES scans for dihedral angles corresponding to acetate group rotation were completed at the RI-BP86/def2-SVP-D3(BJ) level throughout the full 360°; except in the case of 3-OAc where the calculations failed at certain dihedral ranges, due to steric interactions giving highly distorted geometries (Figure 3, main text); constraints were used on all atoms except the 6-OAc, all oxygens, all 1,2,3,4-hydrogens attached to OHs and the 6-CH\textsubscript{2} positions attached to 6-OH and 6-OAc (Figure S49).
This prevented movement of the AGUs away from the geometry found in the typical cellulose I\(\beta\) crystalline structure but allowed for enough freedom for formation and breakage of H-bonds, necessary for the stabilization of the conformers. The dihedral rPES scans and final TS geometries are shown in Figure 3 (main text). The final TS geometries (and expanded images) are given below:

6-OAc Transition State

Coordinates from ORCA-job orca

| C | 7.90039044001538 | -10.66124842721790 | 11.07556328989531 |
H 9.53873997677899 -10.52504000030139 21.56899000503710
C 8.20077998251938 -11.82003001442338 20.46482997151800
H 7.13354996738559 -12.07778998663908 20.4734499767095
C 8.60495004988675 -11.40791003364017 19.05466993982260
H 9.69103002389142 -11.26863002944452 18.98624007462662
C 7.86335000032003 -10.11610996404179 18.6797999536280
H 6.78663001739414 -10.32400002947797 18.63136997818432
C 8.13014999195363 -9.03503995491921 19.73850999953626
H 9.18043000909983 -8.73337005425397 19.69224999262288
C 7.23909000036556 -7.8088299921960 19.49319001184784
H 6.2249500208369 -8.1316299881809 19.23497000057534
H 7.16302999917037 -7.2195899861084 20.41329000104045
O 9.01260997614376 -12.91971999803672 20.83562999284228
O 8.2078037426305 -12.48098996035162 18.21102963851546
O 8.29851998259715 -9.58359995155728 17.44526993593621
O 7.80041999561665 -9.48611000783672 21.03708000420225
O 7.71627995740204 -6.99788995296340 18.42143000919124
H 8.78562000569233 -13.20970999224260 21.74784000076451
H 8.41467957383932 -12.24200005086210 17.28413048693296
H 8.56192998051233 -6.58096997644965 18.68055003868315
C 11.28071991760698 -6.32069998315102 18.57163999580129
H 12.33450002629571 -6.04202000301353 18.69685996934184
C 11.19260010253408 -7.50669014427604 17.60410991755325
H 10.1850796844965 -7.92877002466351 17.61190004582075
C 11.57188996315714 -7.08620991648934 16.18976996406782
H 12.65947993361299 -6.98118979224412 16.11484003524121
C 10.86413000835283 -5.78111006807822 15.7969700318059
H 9.79490992193274 -5.98382995097812 15.66605999398747
C 11.02639844726038 -4.69825429599384 16.87548942585076
H 12.10022679146881 -4.41374248199549 16.9920654307445
C 10.20489999646851 -3.45874999936606 16.5766899824293
Atom	X-Coord	Y-Coord	Z-Coord
C	11.243	-4.524	22.789
H	12.263	-4.139	22.704
C	11.397	-6.235	20.961
H	12.459	-6.046	20.717
C	11.362	-7.318	22.051
H	10.325	-7.617	22.244
C	12.190	-8.567	21.699
H	10.752	-6.751	19.796
O	10.414	-3.524	23.374
O	10.991	-3.831	20.546
H	10.950	-2.759	22.767
C	8.071	-10.005	26.610
C	8.286	-8.845	25.639
H	9.357	-8.617	25.555
C	7.756	-9.250	24.274
H	6.669	-9.387	24.312
C	8.453	-10.551	23.832
H	9.522	-10.344	23.677
C	8.294	-11.636	24.911
H	7.243	-11.952	24.968
C	9.142	-12.916	24.581
H	10.149	-12.619	24.274
H	9.233	-13.503	25.504
---	---	---	---
H	9.57407999772235	-9.79384000029849	27.85544000014093
H	15.7783299966683	-0.87643999850444	27.50703000129943
H	10.1626999940069	-6.0304999943917	23.94661000800429
O	11.8612199978555	-5.39605999854121	24.9486099930295
H	11.40628999797057	-4.62450000174380	25.34156999849899
H	7.42001004327828	-8.82184008703825	6.80452013021436
H	10.85076930797601	-5.87426390425053	3.53540664327763
H	13.2374609266498	-1.57472211776881	6.07130667473890
H	13.6554778915125	1.06663194943027	7.03696955949250
H	13.87248478467456	1.30417073974413	17.30761072354009
H	13.78832656345432	1.51111536150297	25.02743656926699
H	13.32346506104373	1.57004194253939	14.78202912512313
C	12.95249507851196	-10.65925913300467	14.32273468426927
O	14.08845891709015	-9.43398191753144	12.50668881007315
H	12.72137940385980	-9.81409026287713	15.00331560864595
H	13.8525328967729	-11.20308616674428	14.66927234493131
H	12.07944082077780	-11.3352072655847	14.31967055765638
H	11.67403828463259	-14.26999497585592	11.77435251828867
O	10.75321761309695	-11.62661809993189	12.15432552600566
H	11.05268038364970	-10.34033271115861	12.40480198522904
C	11.75087319073501	-13.47018193398041	11.00842487200555
C	11.83627452429667	-12.14190820223752	11.71624911410498
O	12.98779998814378	-11.59542840803211	11.85221140093042
H	12.64913872044643	-13.65537018897817	10.39267432131320
H	10.81697528077324	-13.49191956862691	10.41328796914033
2-OAc Transition State

Atom	X-Coordinate	Y-Coordinate	Z-Coordinate
C	19.23	3.72	3.17
H	20.31	3.78	3.37
C	18.93	2.58	2.18
H	17.85	2.39	2.16
C	19.35	2.94	0.76
H	20.41	2.96	0.64
C	18.82	4.31	0.36
H	17.74	4.21	0.22
C	19.13	5.36	1.44
H	20.20	5.58	1.44
C	18.35	6.66	1.16
H	17.33	6.41	0.84
O	19.64	1.41	2.08
O	18.80	1.98	-0.14
O	19.47	4.69	-0.85
O	18.70	4.94	2.73

Coordinates from ORCA-job orca
C 18.72707999694824 4.43236999751861 8.35973000031514
H 17.64540999980255 4.36083000195087 8.53470000137554
C 19.02503000740728 5.56449999635816 7.37387999506191
H 20.10250999707601 5.73760999735576 7.32359000198034
C 18.52409000435665 5.19349002531805 5.98447999394776
H 17.42866000332275 5.13586999460389 5.97016000160700
C 19.14031994284214 3.84880010390598 5.56906999605307
H 20.22678000144774 3.97462996850737 5.45950001027509
C 18.84933999320663 2.78410000833628 6.64008999019006
H 17.77499000546702 2.5523899939172 6.64634000127766
C 19.60649999658118 1.43949999596668 6.34167999830383
H 20.65787000150615 1.6553100020965 6.13630000381765
H 19.56469000370823 0.81881000223237 7.24640000225898
O 18.33934000114392 6.73253000084783 7.79544999896849
O 18.96650000198886 6.2309799957003 5.1154099828668
O 18.57596010196386 3.36819978181448 4.3615499415563
O 19.27623000091118 3.19836999645962 7.92136000266177
O 19.0823899979153 0.75078000286888 5.21244000062556
H 18.6142999757627 6.96159000182124 8.712899988726
H 18.6780199969126 6.01368000248915 4.2043399796131
H 18.1591899802505 0.48762000098382 5.3850699918689
C 25.58818000231038 12.58769000065524 8.36217000251989
H 24.50991000151104 12.5216299985992 8.54426000157725
C 25.89373000227245 13.7019900015561 7.36127000114707
H 26.9779000088958 13.86237000154719 7.3179099857166
C 25.37533000116727 13.32638000180804 5.98205000039395
H 24.27991000195995 13.26883000130182 5.9736500007550
C 26.00359000094805 11.99295000049817 5.565899999059
H 27.08825000146300 12.12484999748554 5.4634599813067
C 25.71243999803584 10.93284000225080 6.6414899875826
H 24.64188999862366 10.70944000244450 6.6481399914224
C 26.45407999678581 9.58024999728507 6.33103000225404
H 27.49154000060270 9.78959999793947 6.05461999826757
H 26.47020000001119 8.98360000169475 7.25158000116216
O 25.24459999793444 14.87008000026835 7.84695000181365
O 25.77692998827242 14.40288000014607 5.14120000014941
O 25.46753000118271 11.49851000010557 4.35828999737571
O 26.14330000177752 11.35855000076064 7.92054999838996
O 25.85472998610259 8.86964003194416 5.25518000120277
H 25.57142000239413 14.17742000233958 4.20780000194680
H 25.03370002147988 8.43017996728127 5.55296999848412
C 19.25738999758513 3.71559000197169 13.54451000111131
H 20.33536999904882 3.78280000039601 6.73081000158451
C 18.96504000062412 4.29336999866608 12.5603999870863
H 17.76004000062412 4.1695399976053 10.65474000103906
C 19.13531999748787 5.36256000183708 11.82841000027351
H 20.05800000170484 5.58671000015128 11.83615000002963
C 18.34930000148927 6.64921000167701 11.53609000178887
H 17.32957000088092 6.39987999973014 11.22616999832162
H 18.26985000119621 7.24687000100108 12.45040000117517
O 19.67430000133778 1.42928000065597 12.97380998813049
H 19.03980999901474 1.91275999994611 10.31068999913673
H 19.380950000251916 4.7921099879705 9.54753000241619
O 18.707190000262538 4.94298999981083 13.10871000053278
O 18.93953000195953 7.41805000180710 10.4895399992650
H 19.3801199869281 1.16101000068799 13.87340000194244
H 19.3109199780897 2.13156000111162 9.39544999736345
H 19.79890000004483 7.77352000040327 10.79156000034788
C 22.53143001534444 7.834560999850154 10.82295000970384
Atom	X-coordinate	Y-coordinate	Z-coordinate
H	23.5949	8.0363	11.0021
C	22.4068	6.6534	9.8534
H	21.3722	6.3059	9.8096
C	22.8881	7.0384	8.4601
H	23.9829	7.0635	8.4414
C	22.9863	8.3962	8.0298
H	21.2256	8.2647	7.8441
C	24.7559	9.4450	9.1293
H	23.5419	9.6543	9.2801
C	21.7714	10.7575	8.7720
H	20.7322	10.5592	8.4893
H	21.7555	11.4085	9.6515
O	23.1139	5.5484	10.4328
O	22.4459	6.0127	7.5591
O	22.9217	8.8804	6.8570
O	21.8807	9.0000	10.3387
O	22.4600	11.4396	7.7163
H	22.7852	6.2607	6.6663
H	22.1438	12.3640	7.6909
C	26.1206	11.8615	13.5448
H	27.2022	11.9331	13.7213
C	25.8228	10.7308	12.5596
H	24.7452	10.5577	12.5112
C	26.3239	11.1034	11.1715
H	27.4191	11.1632	11.1593
C	25.7031	12.4785	10.7598
H	24.6172	12.3205	10.6520
C	25.9971	13.5107	11.8328
H	27.0720	13.7406	11.8383
C	25.2117	14.7946	11.5313
H	24.1911	14.5540	11.2100
Element	X-Coordinate	Y-Coordinate	Z-Coordinate
---------	--------------	--------------	--------------
C	18.51430000229648	5.19685000049180	16.3389999886826
H	17.41944000197142	5.13961999871724	16.3217199759615
C	19.13619000176511	3.8467999995291	15.93549000008599
H	20.2236799996443	3.97440999792679	15.83557999904928
C	18.84339999876769	2.78068999823363	17.00614000258270
H	17.77027000220299	2.54287999924667	17.00843000107501
C	19.6115799815429	1.44123000212192	16.72077000090681
H	20.65160000143518	1.66207000243070	16.46630000053552
H	19.61201999841990	0.85412999853639	17.64823000081861
O	18.34277000131977	6.75532000158708	18.1493299779806
O	18.96212000078157	6.22998000011571	15.46888000080201
O	18.59356999903284	3.3585999825483	14.7286899918992
O	19.25943000241982	3.21812000266687	18.28401000006450
O	19.0552099769413	0.71098999790616	15.63415000177536
H	18.53363000136143	6.88083999929573	19.10059000195006
H	18.6922999836101	6.0040999964146	14.55373000156957
H	18.14190000053659	0.44334999922005	15.84717000122091
C	25.5085899868857	12.58265000054037	18.7009999975039
C	25.86082000072240	13.7100499874743	17.7295599739442
H	26.94982000080736	13.84960999914413	17.70298999918230
C	25.36857000042682	13.33357000134361	16.34137999982458
H	24.2734599857566	13.27450999894247	16.325280000022124
C	26.00181000196853	11.99580000143312	15.93517000134394
H	27.08733000044955	12.12649000225240	15.83735999770524
C	25.70805000145083	10.936380000181662	17.00640999957996
H	24.63535999968209	10.71759000227352	17.00907999987015
C	26.42991999931780	9.57505000086416	16.69945000145157
H	27.44933000014816	9.76745000178430	16.35453000046922
H	26.49432999905926	9.01855000258082	17.64276999800790
O	25.22639999748568	14.90145000088868	18.1704499994215
O	25.77983000050419	14.40858000069101	15.50287000011446
3-OAc Transition State

Coordinates from ORCA-job orca

\[
\begin{align*}
\text{C} & : 19.233430, 3.715518, 3.166919 \\
\text{H} & : 20.306100, 3.778842, 3.366231 \\
\text{C} & : 18.929280, 2.581030, 2.180440 \\
\text{H} & : 17.852290, 2.390400, 2.163560 \\
\text{C} & : 19.351890, 2.942800, 0.762940 \\
\text{H} & : 20.409240, 2.964650, 0.639660 \\
\text{C} & : 18.815750, 4.309810, 0.362780
\end{align*}
\]
Atom	X-Cartesian Coordinate	Y-Cartesian Coordinate	Z-Cartesian Coordinate
O	22.484640	11.486930	-2.618750
H	22.932421	5.341312	0.752083
H	22.695736	5.243014	-2.565779
H	22.716940	10.857070	-3.332130
C	26.119950	11.865130	3.168930
H	27.201660	11.934190	3.344840
C	25.822140	10.734840	2.181630
H	24.745030	10.558820	2.131960
C	26.326640	11.108740	0.791570
H	27.422200	11.160700	0.780850
C	25.717900	12.455030	0.375450
H	24.635570	12.325990	0.238790
C	26.001060	13.518130	1.449920
H	25.209070	14.797840	1.150200
H	24.188160	14.549630	0.837470
H	25.116270	15.397630	2.061260
O	26.495670	9.545300	2.569270
O	25.904350	10.131790	-0.161260
O	26.292770	12.953340	-0.827800
O	25.579820	13.095540	2.738000
O	25.865370	15.589120	0.165860
H	26.239770	9.301830	3.489500
H	26.268280	9.271850	0.125910
C	22.306880	8.499910	5.658490
H	21.245520	8.282720	5.828691
C	22.437020	9.662200	4.669950
H	23.475260	9.997970	4.622460
C	21.958010	9.274320	3.271080
H	20.863530	9.240170	3.251260
C	22.549110	7.926250	2.846190
H 23.622810 8.039920 2.658230			
C 22.353370 6.917920 3.995820			
H 21.287510 6.698190 4.130950			
C 23.101134 5.606065 3.645474			
O 21.605660 10.717060 5.128580			
O 22.407330 10.305890 2.395910			
O 21.926670 7.439260 1.655580			
O 22.968841 7.349650 5.179280			
H 21.941510 10.997530 6.007440			
H 22.019190 10.160170 1.508520			
C 18.727080 4.432370 8.359730			
H 17.645410 4.360830 8.534700			
C 19.025030 5.564500 7.373880			
H 20.102510 5.737610 7.323590			
C 18.524090 5.193490 5.984480			
H 17.428660 5.135870 5.970160			
C 19.140320 3.848803 5.569071			
H 20.226781 3.974629 5.459500			
C 18.849340 2.784100 6.640090			
H 17.774990 2.552390 6.646340			
C 19.606500 1.439500 6.341680			
H 20.657870 1.655310 6.136300			
H 19.564690 0.818810 7.246400			
O 18.339340 6.732530 7.795450			
O 18.966500 6.230980 5.115410			
O 18.575960 3.368200 4.361550			
O 19.276230 3.198370 7.921360			
O 19.082390 0.750780 5.212440			
H 18.614300 6.961590 8.712900			
H 18.678020 6.013680 4.204340			
H 18.159190 0.487620 5.385070			
C 25.588180 12.587689 8.362170			
H 24.509910 12.521631 8.544260			
C 25.893730 13.701990 7.361270			
H 26.977900 13.862370 7.317910			
C 25.375330 13.326380 5.982050			
H 24.279910 13.268830 5.973650			
C 26.003590 11.992950 5.566590			
H 27.088250 12.124850 5.463460			
C 25.712440 10.932840 6.641490			
H 24.641890 10.709440 6.648140			
C 26.454080 9.580250 6.331029			
H 27.491540 9.789600 6.054620			
H 26.470200 8.983600 7.251580			
O 25.244600 14.870080 7.846950			
O 25.776930 14.402880 5.141200			
O 25.467530 11.498510 4.358290			
O 26.143300 11.358550 7.920550			
O 25.854732 8.869640 5.255186			
H 25.571420 14.177420 4.207800			
H 25.033697 8.430180 5.552964			
C 19.257390 3.715590 13.544510			
H 20.335370 3.782800 13.730810			
C 18.965040 2.583370 12.560400			
C 19.470220 2.958130 11.172560			
H 20.565650 3.017610 11.160180			
C 18.845150 4.298690 10.758500			
H 17.760050 4.169540 10.654740			
C 19.135320 5.362560 11.828420			
H 20.205800 5.586710 11.836150			
C 18.349930 6.649210 11.536090			
H 17.329570 6.399880 11.226170			
Element	X	Y	Z
---------	---------	---------	---------
H	24.745200	10.557750	12.511200
C	26.323990	11.103420	11.171530
H	27.419130	11.163260	11.159370
C	25.703150	12.447860	10.759820
H	24.617270	12.320510	10.652010
C	25.997120	13.510760	11.832900
H	27.072060	13.740620	11.838370
C	25.211740	14.794650	11.531350
H	24.191160	15.554080	11.210030
H	25.114860	15.390660	12.444260
O	26.497620	9.558410	12.989330
O	25.881280	10.063400	10.303350
O	26.243110	12.947380	9.550020
O	25.572170	13.090170	13.116090
O	25.869340	15.624360	10.584650
H	26.183640	9.316500	13.891510
H	26.178210	10.273820	9.393980
C	22.223840	8.459100	15.975860
C	22.408060	9.648940	15.030870
H	23.456690	9.958280	14.999130
C	21.946700	9.265950	13.631610
H	20.852940	9.239650	13.606410
C	22.539980	7.910980	13.204230
H	23.615520	8.032860	13.026230
C	22.360870	6.850090	14.302770
H	21.296510	6.628700	14.442700
C	23.092688	5.535839	13.997929
H	24.137682	5.754153	13.679722
H	23.135212	4.965562	14.951727
O	21.641114	10.721016	15.578327
O	22.378390	10.314060	12.763560
C 26.001810 11.995800 15.935170			
H 27.087330 12.126490 15.837360			
C 25.708050 10.936380 17.006410			
H 24.635360 10.717590 17.009080			
C 26.429920 9.575050 16.699450			
H 27.449330 9.767450 16.354530			
H 26.494330 9.018550 17.642770			
O 25.226400 14.901450 18.170450			
O 25.779830 14.408580 15.502870			
O 25.467450 11.495190 14.728860			
O 26.131420 11.375480 18.277540			
O 25.764650 8.829230 15.686660			
H 25.586430 14.182220 14.568210			
H 24.937010 8.446040 16.043010			
H 24.422920 12.476150 18.832290			
O 25.982660 12.846630 20.005370			
H 17.567310 4.325620 18.826830			
O 19.144630 4.739330 19.985590			
H 20.100550 4.539880 20.009910			
H 26.948770 12.979930 19.972920			
H 21.162560 8.231400 16.132680			
O 22.849060 8.745290 17.220400			
H 22.432040 9.549830 17.588520			
H 19.108930 5.564360 -1.125210			
H 22.980580 8.237230 -4.216660			
H 26.145790 12.298890 -1.537680			
H 26.061170 15.008940 -0.598630			
H 25.761690 15.259160 9.680350			
H 25.294110 15.547100 17.438510			
H 25.323450 15.564000 7.162200			
O 22.613644 4.874209 2.525769			
Atom	X	Y	Z
------	-----	-----	-----
H	23.111131	4.974890	4.551202
H	24.155711	5.861773	3.418652
H	21.755638	4.471505	2.758554
H	17.859641	2.437548	12.514046
H	22.850389	5.317054	11.263951
C	22.732016	4.207671	7.952921
O	22.137254	3.860711	8.910966
C	22.810803	3.623671	6.590817
H	22.961682	2.533212	6.704688
H	23.627890	4.045131	5.988641
H	21.847833	3.799690	6.078483
O	24.900141	5.849891	6.703924
H	27.385709	5.306534	6.881983
H	23.629773	5.947853	6.909769
H	27.106927	5.731697	8.603834
C	26.856679	5.003490	7.803904
C	25.361975	5.037149	7.588420
H	27.181790	4.003397	8.143503
O	24.635012	4.286886	8.311933

8. References

Becke A D (1988) Density-functional exchange-energy approximation with correct asymptotic behaviour. *Phys. Rev. A, General Physics*, 38: 3098. DOI: 10.1103/physreva.38.3098

Rico del Cerro D, Koso T V, Kakko T, King A W T, Kilpeläinen I. (2020) Crystallinity reduction and enhancement in the chemical reactivity of cellulose by non-dissolving pre-treatment with tetrabutylphosphonium acetate. *Cellulose*, 27, 5545–5562. DOI: 10.1007/s10570-020-03044-6

Eichkorn K, Treutler O, Öhm H, Häser M, Ahrlichs R (1995) Auxiliary basis sets to approximate Coulomb potentials. *Chem. Phys. Lett.* 242: 652. DOI: 10.1016/0009-2614(95)00838-U
Eichkorn K, Weigend F, Treutler O, Ahlrichs R (1997), Auxiliary basis sets for main row atoms and transition metals and their use to approximate Coulomb potentials. Theo. Chem. Acc. 97: 119. DOI: 10.1007/s002140050244

Fernandes AN, Thomas LH, Altaner CM, Callow P, Forsythe V T, Apperley D C, Kennedy C J, Jarvis M C. (2011) Nanostructure of cellulose microfibrils in spruce wood. Proc Natl Acad Sci 108:E1195–E1203. DOI: 10.1073/pnas.1108942108

Gomes T C F, Munir S S (2012) Cellulose-Builder: A toolkit for building crystalline structures of cellulose. J. Comput. Chem., 33: 1338–1346. DOI: 10.1002/jcc.22959; Web Interface: http://cces-sw.iqm.unicamp.br/cces/admin/cellulose/view

Grimme S, Antony J, Ehrlich S, Krieg H (2010) A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu J. Chem. Phys. 132: 154104. DOI:10.1063/1.3382344

Grimme S, Ehrlich S Goerigk L (2011) Effect of the damping function in dispersion corrected density functional theory. J. Comput. Chem. 32: 1456. DOI:10.1002/jcc.21759

Hanwell M D, Curtis D E, Lonie D C, Vandermeersch T, Zurek E, Hutchison G R (2012) Avogadro: An Advanced Semantic Chemical Editor, Visualization, and Analysis Platform. J. Cheminformatics 4: 17. DOI: 10.1186/1758-2946-4-17

Halgren T A (1996) Merck molecular force field. I. Basis, form, scope, parameterization, and performance of MMFF94. J. Comput. Chem. 17: 490. DOI: 10.1002/(SICI)1096-987X(199604)17:5<490::AID-JCC1>3.0.CO;2-P

Kay LE, Keifer P, Saarinen T (1992) Pure Absorption Gradient Enhanced Heteronuclear Single Quantum Correlation Spectroscopy with Improved Sensitivity J. Am. Chem. Soc. 114: 10663-10665. DOI: 10.1021/ja00052a088

King AWT, Mäkelä V, Kedzior SA, Laaksonen T, Partl GJ, Heikkinen S, Koskela H, Heikkinen HA, Holding AJ, Cranston ED, Kilpeläinen I (2018) Liquid-state NMR analysis of nanocelluloses. Biomacromolecules 19: 2708-2720 doi: 10.1021/acs.biomac.8b00295
Koso T, Rico del Cerro D, Heikkinen S, et al (2020) 2D Assignment and quantitative analysis of cellulose and oxidized celluloses using solution-state NMR spectroscopy. Cellulose 27:7929–7953. doi: 10.1007/s10570-020-03317-0

Neese F (2018) Software update: the ORCA program system, version 4.0. WIREs Comput. Mol. Sci. 8:e1327. DOI: 10.1002/wcms.1327

Oehme D P, Downton M T, Doblin M S, Wagner J, Gidley M J, Bacic A (2015) Unique Aspects of the Structure and Dynamics of Elementary β Cellulose Microfibrils Revealed by Computational Simulations. Plant Phys. 168, 1, 3-17. DOI: 10.1104/pp.114.254664

Paajanen A, Ceccherini S, Maloney T, Ketoja J A (2019) Chirality and bound water in the hierarchical cellulose structure. Cellulose, 26, 5877–5892. DOI: 10.1007/s10570-019-02525-7

Palmer III AG, Cavanagh J, Wright PE, Rance M (1991) Sensitivity improvement in proton-detected two-dimensional heteronuclear correlation NMR spectroscopy J. Magn. Reson. 93: 151-170. DOI: 10.1016/0022-2364(91)90036-S

Perdew J P (1986) Density-functional Approximation for the Correlation Energy of the Inhomogeneous Electron Gas. Phys. Rev. B, Condensed Matter, 33: 8822. DOI: 10.1103/physrevb.33.8822

Schäfer A, Horn H, Ahlrichs R (1992) Fully optimized contracted Gaussian-basis sets for atoms Li to Kr. J. Chem. Phys. 97: 2571. DOI: 10.1063/1.463096

Schleucher J, Schwendinger M, Sattler M, Schmidt P, Schedletzky O, Glaser SJ, Sorensen OW, Griesinger C (1994) A general enhancement scheme in heteronuclear multidimensional NMR employing pulsed field gradients J. Biomol. NMR 4: 301-306. DOI: 10.1007/BF00175254

Sixta H, Michud A, Hauru L, et al (2015) Ioncell-F: A High-strength regenerated cellulose fibre. Nord Pulp Pap Res J 30:043–057. doi: 10.3183/NPPRJ-2015-30-01-p043-057

Tao J, Perdew J P, Staroverov V N, Scuseria G E (2003) Climbing the Density Functional Ladder: Nonempirical Meta-Generalized Gradient Approximation Designed for Molecules and Solids. Phys. Rev. Lett., 91: 146401. DOI: 10.1103/PhysRevLett.91.146401
Wang T, Hong M (2015) Solid-state NMR investigations of cellulose structure and interactions with matrix polysaccharides in plant primary cell walls. J. Exp. Botany 67, 2, 503–514. DOI: 10.1093/jxb/erv416

Weigend F, Ahlrichs R (2005) Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: Design and assessment of accuracy. Phys. Chem. Chem. Phys. 7: 3297. DOI: 10.1039/B508541A

Willker W, Leibfritz D, Kerssebaum R, Bermel W (1993) Gradient selection in inverse heteronuclear correlation spectroscopy. Magn. Reson. Chem. 31: 287–292

Wojdyr M (2010) Fityk: a general-purpose peak fitting program. J. Appl. Cryst. 43: 1126-1128 https://doi.org/10.1107/S0021889810030499

Wu DH, Chen AD, Johnson CS (1995) An improved diffusion-ordered spectroscopy experiment incorporating bipolar-gradient pulses. J. Magn. Reson. A 115: 260–264 https://doi.org/10.1006/jmra.1995.1176

Zheng J, Xu X, Truhlar D G (2010) Minimally augmented Karlsruhe basis sets. Theor. Chem. Acc. 128: 295. DOI: 10.1007/s00214-010-0846-z