Case Report

Left lung agenesis discovered by a spontaneous pneumothorax in a 20-year-old girl

Abdessalem Hentati, Chawki Neifar, Walid Abid, Sameh M’saad

Departments of Thoracic Surgery, Habib Bourguiba University Hospital, Sfax, and Respiratory Medicine, Hedi Chaker University Hospital, Sfax, Tunisia

ABSTRACT

Lung agenesis is a rare condition whose prognosis widely depends on associated malformations. Clinical presentation is so variable and diagnosis is often made in childhood. Here, we present a case of a 20-year-old girl who was admitted because of a spontaneous pneumothorax. Explorations concluded at a left lung agenesis, a hyperinflated right lung crossing the midline with a corresponding pneumothorax. There was no malformation else. This congenital condition and treatment for this rare presentation are discussed in detail.

KEY WORDS: Congenital, lung, pneumothorax, surgical treatment

INTRODUCTION

Unilateral agenesis of the lung is an extremely rare condition.[1] More than half of patients have associated malformations.[2] Rarely detected in the intrauterine life, lung agenesis is often discovered in childhood after repeated pulmonary infections, frequent hemoptysis, cardiorespiratory failure, or as part of polyvalmiformative syndrome.[3-5] Here we report a case of a 20-year-old girl presenting a left lung agenesis discovered by a spontaneous pneumothorax.

CASE REPORT

A 20-year-old girl was admitted to our hospital because of a brutal chest pain. Physical examination revealed increased respiratory rate and absence of breath sounds on left of chest. A chest radiograph revealed a bilateral pneumothorax and a left basithoracic opacity [Figure 1]. The chest CT-scan revealed the absence of left main bronchus and left lung parenchyma, and the existence of a right lung hyperinflated crossing the midline with a corresponding pneumothorax [Figure 2]. An echocardiography confirmed the absence of left pulmonary artery without any malformation else. An abdominal CT-scan showed no abnormalities. A surgical pleurodesis was indicated for our patient because of a spontaneous pneumothorax occurring on a single lung. In per operative, by right thoracotomy, there was no left pleural cavity, a cardiac torsion and a herniated right lung presenting many blebs [Figure 3]. Pleurodesis consisted on a mechanical abrasion of the parietal pleura. The postoperative course was uneventful and our patient was discharged on postoperative day 4.

DISCUSSION

Lung agenesis is an extremely rare malformation whose prevalence is estimated at 34 per million live births.[3] The true incidence of this anomaly is unknown because 50% of cases are stillborn and more than 20% die at birth or during their first few months.[6] Right agenesis is rarer but more severe than the left, probably because of an excessive

How to cite this article: Hentati A, Neifar C, Abid W, M’saad S. Left lung agenesis discovered by a spontaneous pneumothorax in a 20-year-old girl. Lung India 2016;33:205-7.
Lung agenesis is associated in 50 -75% with other malformations, especially cardiovascular, urogenital, gastrointestinal and osteoarticular ones.[1,2,4] Mortality is higher and earlier in these cases, generally within the first 5 years of life.[2,5]

Schneider[7] classified this malformation into three categories that has been subsequently modified by Boyden.[6]

Type I (Agenesis): Complete absence of lung, bronchus, and blood vessels to the affected side.
Type II (Aplasia): Existence of a rudimentary bronchus with complete absence of lung tissue.
Type III (Hypoplasia): Presence of variable amounts of lung parenchyma, bronchial tree, and supporting vasculature.

Our patient has been classified as type I.

Normal development of the lung begins in 26th day of intrauterine life from the foregut, and continues postnatally.[2] A disturbance during the 4th week of gestation could cause an unequal division between the two lung buds resulting in a unilateral agenesis or hypoplasia.[5]

Many factors were suggested to be responsible for this defect, such as consanguinity, deficiency of A vitamin, intrauterine infections, and environmental agents and drugs,[3,5] but the exact etiology is still unclear.

Clinical presentation is remarkably variable. Lung agenesis is often discovered in childhood after repeated pulmonary infections, or as part of polymalformative syndrome. A pneumothorax as a discovery circumstance has, to our knowledge, never been reported.

The absence of lung parenchyma is not usually evident at the x-ray chest because of a controlateral upper lobe hypertrophy crossing the midline. The resulting image of basithoracic opacity may mimic lobar collapse, pleural effusion, or diaphragmatic hernia.

The chest CT scan or MRI is the clef of diagnosis. Bronchoscopy may be useful to demonstrate rudimentary bronchus. Other explorations are indicated to detect associated malformations. In our case, echocardiography and abdominal CT-scan were negative.

Treatment of spontaneous pneumothorax may be medical or surgical. Surgery is indicated in case of persistence despite drainage or incomplete lung re-expansion, first recurrence, or bilateral pneumothorax.[9,10] First episode of spontaneous pneumothorax is also an indication for surgery when that affects a single lung.[11]

Surgical treatment is not easy because of working on the functional lung that cannot be conventionally
excluded. Several options may be used: Low tidal volume ventilation,\(^{12}\) selective lobar isolation,\(^{13}\) a cardiopulmonary bypass\(^{14}\) or extracorporeal membrane oxygenation.\(^{15}\) In our case, we have opted for a conventional thoracotomy with low tidal volume ventilation, with a good outcome.

Prognosis depends essentially on associated malformations. Tomomi\(^{16}\) reported a series of eight patients having unilateral pulmonary agenesis or aplasia with cardiac or tracheal associated malformations. In this series, intrahospital mortality after surgical repair exceeded 30%. Isolated unilateral lung agenesis may, however, be compatible with a normal life.\(^{16}\) Successful pregnancy\(^{17}\) and survival to adult age (up to 77 years)\(^{18}\) are reported.

CONCLUSIONS

Lung agenesis is a rare but a serious condition which should be early diagnosed and followed up. Prognosis, apart from malformations, is that of a single functional lung. Pneumothorax occurrence is dangerous and should be surgically treated.

Financial support and sponsorship

Nil.

Conflicts of interest

There are no conflicts of interest.

REFERENCES

1. Shivanand G, Mukhopadhyay S, Vashishth S. An unusual cause of recurrent respiratory tract infection: Unilateral pulmonary agenesis. Eur J Rad Extra 2003;48:67-9.
2. Koseoglu N, Ucan ES, Cavdar C. Right lung agenesis and left lung bronchiectasis. Respir Med 2005;1:110-2.
3. Roy PP, Datta S, Sarkar A, Das A, Das S. Unilateral pulmonary agenesis presenting in adulthood. Respir Med Case Rep 2012;5:81-3.
4. De A. Agenesis of the lung: A rare congenital anomaly of the lung. Acta Med Iran 2013;51:66-8.
5. Barison A, Ait-Ali L, Domenici R, Vaccaro A, Ruggieri S, Lombardi M, et al. Right lung agenesis and dextrocardia in a paucisymptomatic 11-year-old child. Int J Cardiol 2012;158:51-2.
6. Nazir Z, Qazi SH, Ahmed N, Atiq M, Billoo AG. Pulmonary agenesis-vascular airway compression and gastroesophageal reflux influence outcome. J Pediatr Surg 2006;41:1165-9.
7. Schneider P, Schawatbe EE. Die Morphologie der Missbildungen Des Menschen Under Thiere. Jena: Gustav Fischar; 1912; 817-22.
8. Boyden EA. Developmental anomalies of lung. Am J Surg 1955;89:79-89.
9. Pons F, Arigon JP, Chapuis O, Renaud C, Jancovic R, Dahan M. Surgical management of spontaneous pneumothorax. EMC-Chirurgie 2005;2:266-81.
10. MacDuff A, Arnold A, Harvey J; BTS Pleural Disease Guideline Group. Management of spontaneous pneumothorax: British Thoracic Society pleural disease guideline 2010. Thorax 2010;65:Suppl 2:ii18-31.
11. Ducos C, Aubert A, Cochet E, Chaffanjon P, Blaise H, Claudel M, et al. Traitement chirurgical du pneumothorax spontané sur poumon unique (fonctionnel ou après pneumonectomie): À propos de 14 cas. J Chir Thor Card 2010;15:73-9.
12. Orki A, Tasci AE, Meydan B, Kutlu CA. Video-assisted thoracoscopy for spontaneous pneumothorax after pneumonectomy. Heart Lung Circ 2009;18:296-301.
13. Maniwa T, Saito Y, Kaneda H, Imamura H, Murao K, Shingu K. Pneumothorax after pneumonectomy: Surgery with successful double lobe ventilation. Jpn J Thorac Cardiovasc Surg 2006;54:359-61.
14. Birdas T, Beckart DH, Keenan RJ. Contralateral spontaneous pneumothorax after pneumonectomy: Thoracoscopic management with cardiopulmonary bypass. Interact Cardiovasc Thorac Surg 2005;4:27-9.
15. Ishikawa N, Sato H, Hirunuma C, Takizawa M. A surgical intervention using percutaneous cardiopulmonary support for contralateral pneumothorax following pneumonectomy. Ann Thorac Cardiovasc Surg 2001;7:235-6.
16. Hasegawa T, Oshima Y, Maruo A, Matsuhisa H, Yokoi A, Okata Y, et al. Pediatric cardiothoracic surgery in patients with unilateral pulmonary agenesis or aplasia. Ann Thorac Surg 2014;97:1652-8.
17. Sicuranza GB, Figueroa R. Pregnancy in a woman with unilateral lung agenesis. J Matern Fetal Neonatal Med 2004;15:418-20.
18. Meier M. Agenesis of the left lung in combination with a persistent left superior vena cava and al cor triatriatum sinister in a 77-year-old man. Pneumologie 2000;54:249-51.