Role of botanical plant extracts to control plant pathogens-A review

Debhani Choudhury1, Prerna Dobhal1, Seweta Srivastava*1, Soumen Saha2 and Susamoy Kundu3

School of Agriculture,
Lovely Professional University, Phagwara-144 411, Punjab, India.
Received: 07-03-2018 Accepted: 27-06-2018 DOI: 10.18805/IJARe.A-5005

ABSTRACT

Agricultural and horticultural crops are spoiled by various fungi causing economic losses, and health risk to the consumers due to mycotoxins produced by fungi. The indiscriminate use of synthetic chemicals led to development of resistance in plants which has necessitated utilization of higher concentrations, with the consequent rise in toxicity in food products. In ecosystem plants are surrounded by various enemies which defend themselves by producing secondary metabolites like terpenes, phenols and nitrogen and sulphur compounds. A new approach to control the pathogens which hampers quality food production has been implemented by the application of plant extract. Various studies have explained that plant extracts contain sundry of bioactive components that can control the fungal growth. The aim of this article is to summarize the results of in vitro experiments from the various literatures regarding the effects of plant-derived compounds for controlling growth of fungi.

Key words: Fungal diseases, Plant pathogens, Plant extract, Synthetic chemical.

There are various types of pests and diseases attack almost all types of crops throughout the world and most are fungal pathogenic diseases. Losses to the post-harvest crops have been estimated around 50% due to fungal and bacterial infections (Magro et al., 2006). Moulds are omnipresent biological agents; colonize foods due to their potentiality to synthesize a wide variety of enzymes causing economic losses (Cabral 2013). Vegetable and fruit crops are highly susceptible to fungal spoilage, due to the abiotic factors like pH, water activity (aw), solute concentration, temperature, atmosphere, time, etc. lead to numerous plant diseases and significant economic losses both in the field and prior to harvest. Significant fungal genera like Aspergillus, Fusarium, Penicillium and Alternaria sp. are also vulnerable to grain crops causing loss in yield of grains and dry matter thus reducing the quality of feed and seed produced (Magan and Aldred, 2007).

Plants produce numerous secondary plant metabolites that are insignificant for growth and developmental processes (Rosenthal et al., 1991) act against microbial pathogens on the basis of their toxic nature (Schafer et al., 2009). Exploration of plant based pesticides to control post-harvest losses is one of the feasible methods, lead to ecofriendly use of natural products, act as rich source of natural compounds exhibiting many fungicidal and other properties with least side effects. Antifungal activity of plant extracts may be more effective than some commercial synthetic fungicides natural occurring substances in plants with anti-microbic properties (Tamuli, 2014). Therefore, it has become necessary to adopt ecofriendly management practices for plant health management and better yield. In the present review different in-vitro studies are discussed to control plant pathogens.

Drawbacks of using synthetic fungicides: The foremost step to control fungi is the application of fungicides, which can be solicitation post-harvest, does not affect the quality of the produce (Amiri et al., 2008). Antimicrobial chemicals have been used since decades to control of plant diseases, causing development of resistant pathogen populations due to increased concentrations in food products as some of these chemicals are not biodegradable and accumulate in soil, plants and water, affecting living organisms. Although use of chemicals has been considered to be the cheap and most efficient way to prevent diseases. The applied concentrations of fungicides are restricted due to their lethal effects on food and human health. Because of undesirable effects, recent studies resulted in the annulment of new effective fungicides keeping in concern about living beings as an alternative to synthetic fungicides as there is an urgent need to develop alternative these chemicals.

Chemicals alternative to conventional fungicides: The continuous development of fungicide resistance to several pre-harvest and post-harvest pathogens has developed resistance to commonly used fungicides. Hence, a wide range of natural plant fungicides have been evaluated for agricultural use keeping in mind that the natural chemicals should be sensitive at very low dose, should have optimum

*Corresponding author’s e-mail: seweta.21896@lpu.co.in
1School of Agriculture, Lovely Professional University, Phagwara-144 411, Punjab, India. 2Kalyani University, Kalyani-741 235 West Bangal, India. 3Bidhan Chandra Krishi Viswavidyalaya, Nadia-741 252 West Bangal, India.
target pathogens and have potential target sites and applicable to the agrochemical industry which can be achieved with proper evaluating the dose response studies, mode of action and structure activity studies (Wedge and Smith, 2006).

Since early 1970s, agriculture worldwide has struggled with the evolution of pathogen resistance to disease control agents due repeated use of chemical pesticides which brings a desire to public for safer pesticides with less environmental impact. So evaluating a natural products and extracts as a new source of strategy for the discovery of new chemicals that have not previously been created by chemists (Wedge and Smith, 2006). Under this situation new investigated method to plant disease control is an alternative way to chemical fungicide for eliminating these synthetic compounds or meanly controlling their use together with natural fungicide substances is an unique strategy plan called Integrated Pest Management (IPM).

Plants extracts as natural antifungals

Plant extracts and essential oils: To reduce the use of unnatural chemicals in food, several alternative methods such as use of plant extract which produce a wide variety of secondary metabolites in response. In the recent years, increased interest is observed because of their safe status as they can be easily decomposed, mature friendly and non-phytotoxic. It has been proved that plant extracts obtained with different solvents and essential oils are rich in bioactive and antioxidant compounds.

Hassan et al. (1992) reported that rust pustules on the wheat leaves can be reduced with leaf extracts of Datura stramoniu. According to Khan et al. (1998) of Allium cepa aqueous extract exhibited antifungal activity against Helminthosporium turcicum and Ascochyta rabiei and that of Calotropis procera against Alternaria redicina. Rai et al. (2000) found that pure extract of Adenanthera pavonina can completely inhibit the spore germination of Alternaria alternata and Fusarium oxysporum. Bajwaet al. 2001 evaluated aqueous extract of three Asteraceae allelopathic species on growth of Aspergillus niger which shows effective result. Khalil (2001) tested evaluated that extract of Eugenia aromatica to completely inhibit the spore germination of A. solani and also reported that extracts of garlic and onion bulbs, eucalyptus leaves and pepper fruits shows remarkable inhibitory effects against these Alternaria solani and Saprolegnia parasitica.

Paul (2003) carried out in vitro tests against Phytophthora cryptoga, Trichoderma virens, Aspergillus niger, Phoma sp., Fusarium oxysporum, Pythium ultimum, Cochliobolus heterostrophus, Rhizoctonia solani, Sclerotium rolfsii and Pyrenophora teresusing extract of Maesalan ceolata var goulun gensis showed effective results against all the pathogens tested.

Harish et al. (2004) working on rice brown spot (Helminthosporium oryzae) control with 15 seed extracts under laboratory condition found that 10% rhizome extract of curcuma (Curcuma longa), seed extracts of sundavathal (Solanum indicum) and vedpalai (Wrightia tinctoria) exerted maximum mycelial growth and spore germination inhibition. Choi et al., (2004) reported the extract of Rumex acetosella roots reduced development of powdery mildew of barley. Velluti et al. (2004) evaluated 37 essential oils of which lemongrass, cinnamon, clove, palmarosa and oregano showed antifungal activity against Fusarium sp. showing no interspecific difference which suggests that EOs can be safe alternative.

Rodriguez et al., (2005) reported the antifungal activity of Aloe Vera (syn: A. barbadensis) on mycellium growth of Rhizoctonia solani, Fusarium oxysporum, and C. coccodes showed an inhibitory against fungi.

Antifungal activity of volatile components extracted from flowers of Lantana camara, Malvaviscus arboreus and Hibiscus rosa-sinensis showed stronger antifungal activity against Alternaria solani, Botrytis cinerea, Pythium ultimum, Rhizoctonia solani and Verticillium dahlia than extracts from stems or leaves (Boughalleb et al., 2005).

Doltsinis et al. (2006) evaluated the efficacy of Milsanato induce resistance to powdery mildew on cucumbers, against Leveillula taurica on greenhouse tomato which demonstrate that Milsana could play an supreme role in of powdery mildew management in organic and low resource tomato production.

Kumar et al., (2007) reported Chenopodium ambrosiodes can inhibit two aflatoxigeneic strains of Aspergillus flavus along with A. fumigatus, Botryodiplodia theobromae, F. oxysporum, P. debaryanum and S. rolfsii and essential oil of Peumusboldusw as effective against A. niger, A. flavus and F. sp. (Souza et al., 2005). Magro et al., 2006 evaluated that inhibition of Aspergillus candidi, A. niger, Penicillium sp., and F. culmorum with Chamomile and malva aqueous extracts. Viuda-Martos et al. (2008) used cold-pressing the peel of lemon and orange, against Penicillium chrysogenum, Penicillium verrucosum, A. niger and A. flavus gives effective result.

Shirzadian et al. (2009) evaluated twenty one moss species and two leafy liverwort species obtained by ethanol, water and petroleum ether solvents against Alternaria alternata showing broadest spectrum antifungal activity by the ethanolic extracts of six moss species.

Fawzi (2009) carried out in vitro studies of different plant extracts against Fusarium oxysporum showed radial growth inhibition of the fungi. Lakhdar (2010) evaluated antifungal activity of powdered extracts and essential oils of some local medicinal plants on F. sp. lentil population in soil showed 10% and 5% powdered extracts of J. viscossa and M. pepristra and all the essential oil formulations of all the plant extract reduced the soil population densities of fungi and disease incidence in lentil.
Surender (2012) evaluated aqueous extract of 20 plants for antifungal activity against F. solani (dry rot of potato) showed differential activities of different plant extracts against the mycelial growth inhibition.

Cheng et al. (2007) investigated the antifungal activity of essential oil from Calocedrus macrolepis var. formosana and its constituents T-murolol and a-cadinol on the growth of plant pathogenic fungi which also inhibited the growth of Rhizoctonia solani and Fusarium oxysporum and mycelial growths of Colletotrichum gloeosporioides, Pestalotiopsis funerea, Ganoderma australe and F. solani.

Razzaghi-Abyaneh et al. (2008) investigated the inhibitory effect of carvacrol and thymol as aflatoxins producer obtained from essential oil of Satureja hortensis against Aspergillus alternata growth. Faria et al. (2006) reported that essential oil of aerial parts of Ocimum gratissimum obtained can inhibit growth of several fungi including Botryosphaeria rhodina, Rhizoctonia and Alternaria.

Abo El-Seoud et al. (2005) evaluated essential oils of fennel, peppermint, caraway, eucalyptus, geranium and lemongrass for their antimicrobial activities against some plant pathogens (F. oxysporum, A. alternata, P. italicum and B. cinerea) and found that essential oils of fennel, peppermint and caraway can be used as active ingredients for formulating biocides. Hassane et al. (2008) tested ethanol, ethyl acetate and water extracts leaf of Azadiracta indica and Melia azedarach against two tomato fungal pathogens at different concentrations and found that both ethanol and ethyl acetate extracts of neem leaves assayed, completely suppressed the growth of F. oxysporum and A. solani.

Hadizadeh et al. (2009) working on antifungal effect of essential oils from some medicinal plants of Iran: neettle (Urtica dioica), thyme (Thymus vulgaris), eucalyptus (Eucalyptus sp.), rute (Ruta graveolens) and common yarrow (Achillea millefolium) on A. alternata of potato as a model pathosystem, Zabka et al. (2009) reported use of EOs obtained from Carum carvi, Cymbopogon nardus, Pelargonium roseum, Pimenta dioica and Thymus vulgaris against growth F. oxysporum, Fusarium verticilloides, Penicillium expansum, Penicillium brevicompactum, A. flavus and A. fumigatus. Vilela et al. (2009) showed the EO of Eucalyptus globulus showed inhibitory effect against fungal species, A. flavus and Aspergillus parasiticus. Ravikumar et al. (2007) reported the use of crude ethanolic Thevetia peruviana extracts against 50% radial growth reduction of A. niger and Penicillium spp. Singh et al. (2007) reported 100% effect of Cinnamon leaf oil against A. niger.

A. flavus, Fusarium moniliforme, Fusarium graminearum, Penicillium citrinum and Penicillium viridicatum. Deba et al. (2008) tested the fungitoxic activities of the flower essential oils of Bidens pilosa against Fusarium spp., Fusarium solani the most suppressed species, followed by F. oxysporum. Naeini et al. (2010) showed anti-Fusarium properties of five EO of Cuminum cuminum and Zataria multiflora. A preliminary study was conducted by Matchima et al. (2009) to investigate efficacy of crude dill seed oil and its fractions against pomelo albedo on radial growth and spore germination of Colletotrichum gloeosporioides at different concentrations which showed that crude extracts did not affect radial but reduced spore germination at 25% and 100% concentration. Yasmin (2008) evaluated 55 angiospermic plants the in vitro vegetative growth of Fusarium moniliforme. Sheldon where leaf extract of Lawsonia inermis showed maximum inhibition followed by roots extract of Asparagus racemosus. Yusuf (2011) evaluated antifungal activities of Xanthium strumarium, Laurisilvobulis, Salvia officinalis and Styrax officinalis which were the most active against mycelial growth of P. infestans.

Dehjani et al. (2017) observed three plant extracts Ginger, Polyalthia and Clerodendrum show good inhibitory effect on Rhizoctonia solani under in vivo condition and also observed dose response effect against growth of Colletotrichum capsici at three different concentrations. Rupert et al. (2016) observed the methanol extracts of Polyalthia longifolia and Terminalia chebula and chloroform extract of Zingiber officinale were found to be most effective against the Xanthomonas campestris pv. campestris in vitro condition. Zingiber officinale, Polyalthia longifolia and Clerodendrum inerme leaf extracts exhibited more than 80 per cent inhibition of against mycelial growth of Colletotrichum musae (Bhutia et al. 2015). Jantasorn et al. (2016) investigated the efficacy of Hydrocarpus, Caesalpinia and Carallia against five plant pathogenic fungi in in vitro conditions at various concentrations among which Hydrocarpus fruit extracts exhibited potential to growth inhibition, and recorded 100 % growth inhibition against P. oryzae, P. palmivora and R. solani followed by S. rolfsii (96.33 %). Monika (2016) evaluated antifungal activity of dill seed oil and its fractions against Alternaria triticina, Bipolaris sorokiniana and Ustilago segetum var. tritici and it was observed that Carvone, camphor and polar fraction showed effective against A. triticina, B. sorokiniana and U. segetum.

Combined application of plant extracts: In the foregoing section bioactivity of plant extracts against different plant pathogens and diseases caused by them were presented. Majority of the researches on bio-active plant extract emphasized on effect of sole plant extract against plant pathogens or diseases. Though few in number some research group tried to formulate and test different combined or mixture of plant extracts. Supraptad and Khalimi (2009) evaluated methanol extract of Eugenia aromatica.
betel, Alpinia galanga, Sphaeranthus indicus as sole and also in combination against stem rot disease of Vanila caused by Fusarium oxysporum f.sp. vanillae. A formulation containing mixture of aromauc flower bud extract and Piper betle leaf extract significantly inhibited the fungal growth in vitro by more than 90% and stem rot disease incidence by more than 92% over control. This combination was reported to be significantly better than the sole extract formulation to suppress the population growth of Fusarium oxysporum f.sp. vanillae in soil.

Similarly Bhardwaj (2012), tested aqueous extract of twenty plants of fusarium solani causal agent of dry root rot of potato. The mixtures of Lawsonia alba leaf extracts and Acacia catechu stem extracts showed an enhancement in activities over the individual extracts by 54.69 % and 62.07 % respectively. Nguefack et. al. (2012) observed synergistic effect against Penicillium expansum by mixing fractions of essential oil from Cymbopogon citrates, T. vulgaris and O. gratissimum.

Another strategy to improve bio activity of plant extracts to combine with bio control agents as demonstrated by Bowers and Locke, (2000). Similarly in India, Akila et. al., (2011) clearly found that combined application of botanical extracts and biocontrol agents effectively reduced Fusarium wilt of banana.

Botanicals are also been tried in the field of food borne microorganisms. The combined extracts of Corni fructus, cinnamon and Chinese chive were used to evaluate its antimicrobial activity on common foodborne microorganisms by Hsieh et al. (2001). The combined extract was not only found very stable under heat treatment and also showed an outstanding inhibitory effect against entire antimicrobial spectrum. They concluded that combined extract is suitable application where a naturally antimicrobial additive is desired. Burtram et al. (2015) observed both synergistic and antagonistic interactions between the plant extracts and the kresoxim-methyl fungicide which showed both Synergistic and additive effects against one strain of B. cinerea

Some researchers also reported enhanced antifungal activity of cassia oil, essential oils when applied in combination with salt like KCl or NaCl (Feng and Zheng, 2006), polysaccharide like chitosan (dos Santos et al., 2012). Most of researches related to combination have been done against human pathogens where synergistic effect of two plant extracts (Tahany et al., 2010), plants extracts and antibiotics (Adwan, 2008; Rakholiya and Chanda, 2012) were studied in different ways.

CONCLUSION

The search of alternative chemicals now a days is of great concern for food industry, mainly due to fungal contamination in post-harvest crops. There are many nature protection agencies, who express concern about the widespread use of unnatural chemicals that contaminate soil and water, and leave toxic residues that might affect the environment. The mycotoxins produced by fungi can be controlled by plant extracts and has been extensively studied as reviewed in this article. These botanicals can be used as antifungals in combinations to human and animals and have greater number of opportunities to explore. So a systematic research has to be done to broaden the knowledge in this area. For future studies the plant species which are tested has to be described thoroughly including their location and season where they grow.

REFERENCES

Abo-El- Seoud, M.A., Sarhan, M.M., Omar, A.E. and Helal, M.M. 2005. Bioside formulation of essential oils having antimicrobial activity. Archiv. Phytopathol. Plant Protection 38: 175-184.

Adwan GM, Abu-Shanab B.A and Adwan K.M. (2008): In vitro activity of certain drugs in Combination with plant extracts against Staphylococcus aureus infections. Pak J Med Sci. 24(4): 541-4.

Akila R, Rajendran L, Harish S, Saveetha K, Raguchander T and Samiyanpan R. (2011): Combined application of botanical formulations and biocontrol agents for the management of Fusariumoxysporum f. sp. cubense (Foc) causing Fusarium wilt in banana. Biological Control. 57: 175–183.

Amiri, A., Dugas, R., Pichot, A.L., Bompeix, G., (2008). In vitro and in vitro activity of eugenol oil (Eugenia caryophyllata) against four important postharvest apple pathogens. International Journal of Food Microbiology 126, 13–19.

Bajwa, R., Riaz, S. and Javaid, A. (2002). Antifungal activity of allelopathic plant extracts. II: In vitro control of Fusariummoniliforme and Foxyisorum by aqueous extracts of four allelopathic grasses. In: Proceedings of 3rd Nat. Conf. Pl. Path., October 1–3, 2001, Islamabad. 59-69.

Bhardwaj S.K. (2012): Evaluation of Plant Extracts as Antifungal Agents against Fusariumsolani (Mart.) Sacc. World Journal of Agricultural Sciences. 8(4): 385-388.

Bhutia D.D, Zhimo. Y, Kole. R and Saha J (2015). Antifungal activity of plant extracts against Colletotrichum musae, the post-harvest anthracnose of banana cv. Martaman. Nutrition and Food Science 46(1):2-15.

Boughalleb, N., Armengol, J. and El Mahjoub, M. (2005). Detection of races 1 and 2 of Fusariumsolani.sp. Cucurbitae and their distribution in watermelon fields in Tunisia. J. Phytopat., 153: 162-168.

Bowers J.H and Locke J.C. (2000): Effect of botanical extracts in combination with biocontrol organisms on control of Fusarium wilt of muskmelon. Phytopathology. 90: 88.

Bowers J.H and Locke J.C. (2000): Effect of botanical extracts on the population density of Fusariumoxysporum soil and control of Fusarium wilt in the greenhouse. Pl. Dis. 84: 300-305.
Burtram C. F, Cindy L.K, Filicity A.V and Jeremy A.K (2015) Testing of Eight Medicinal Plant Extracts in Combination with Kresoxim-Methyl for Integrated Control of Botrytis cinerea in Apples 5,400-411.

Cheng S.S, Liu J.Y, Chang E.H and Chang S.T. (2008): Antifungal activity of cinnamaldehyde and eugenol congeners against wood-rot fungi. *Bioresource Technol.*, 99: 5145-5149.

Choi, J.H, Brummer, E., Stevens, D.A. (2004) Combined action of micafungin, a new echinocandin, and human phagocytes for antifungal activity against Aspergillusfumigatus. *Microbes Infect.* 6:383–389.

Cabral L. C., Pinto V. F, Patriarca A. Application of plant derived compounds to control fungal spoilage and mycotoxin production in foods. *International Journal of Food Microbiology* 166(2013), 1-14.

Deba, F., Xuan, T.D., Yasuda, M., Tawata, S., 2008. Chemical composition and antioxidant, antibacterial and antifungal activities of the essential oils from Bisdensipila Linn. var. Radiata. *Food Control* 19: 346–352.

Debjan C, Yumlembam R.A, Susamoy K, Ranjan N, Ramen K. K and Jayanta S.(2017) Effect of plant extracts against sheath blight of rice caused by Rhizoctonia solani; *Journal of Pharmacognosy and Phytochemistry.* 6(4): 399-404.

Debjan C, Soumen S, Ranjan N, Ramen. K.K and Jayanta S (2017), Management of chilli anthracnose by botanicals fungicide. As. different plant extract on brown rust and yield of wheat. *J. Agric. Res.* S1466-S1470. 2009, S138-S142.

Rakholiya K and Chanda S. (2012): In vitro interaction of certain antimicrobial agents in combination with plant extracts against some pathogenic bacterial strains. *Asian Pacific Journal of Tropical Biomedicine.* S1466-S1470.

Paul O. Okemob, Harsh P. B, Jorge M. Vivancoa (2003), In vitro activities of Maesalanceolata extrac ts against fungal plant pathogens.
Patil Ravikumar, H.S., Makari, H.K., Gurumurthy, H., (2007). In vitro antimicrobial activity of ethanol extract of Thevetia peruviana. Electronic Journal of Environmental, Agricultural and Food Chemistry 6 (9), 2318–2322.

Razzaghi-Abayneh, Shams-Ghahfarokhi, Toshinari T, Rezaee, Jaimand K, Nagasawa H, Sakuda S. (2008) Inhibitory effects of Satureja hortensis L. essential oil on growth and aflatoxin production by Aspergillus parasiticus. Int J Food Microbiol 123(3):228-33.

Rodríguez, D. Jasso de, Hernández-Castillo D, Rodríguez-García R, Angulo-Sanchez J L. (2005). Antifungal activity in vitro of Aloe vera pulp and liquid fraction against plant pathogenic fungi. Industrial Crops and Products, 21:81-87.

Rosenthal GA, 1991. The biochemical basis for the deleterious effects of L-canavanine. Phytochemistry, 30: 1055-1058.

Schafer H, Wink M, (2009). Medicinally important secondary metabolites in recombinant microorganisms or plants: progress in alkaloid biosynthesis. Biotechnology Journal, 4(12): 1684-1703.

Shirzadian, S., Azad, H.A., and Khalghani, J. (2009). Introductional study of antifungal activities of bryophyte extracts. Iran. J. Pl. Pest Dis., 77:1-22.

Singh, G., Maurya, S., Lampasona M.P., Catalanb A.N., (2007). A comparison of chemical, antioxidant and antimicrobial studies of cinnamon leaf and bark volatile oils, oleoresins and their constituents. Food and Chemical Toxicology, 45(9): 1650-1661.

Souza, E.L.d, Lima, E.d.O., Freire, K.R.d.L, Sousa, C.P.d. (2005). Inhibitory action of some essential oils and phytochemicals on the growth of various moulds isolated from foods. Brazilian Archives of Biology and Technology 48, 245–250.

Suprapta, D.N. and Kalimi, K. (2009). Efficacy of plant extracts formulations to suppress stem rot disease on Vanilla seedlings. J. ISSAAS, 15:34-41.

Surender K.B (2012). Evaluation of plant extracts as Antifungal Agents against Fusarium solani. World journal of Agricultural Sciences 8: 385-388.

Tahany MA, Hegazy AK, Sayed AM, Kabeli HF, El-Alfy T and El-Komy SM. (2010); Study on combined antimicrobial activity of some biologically active constituents from wild Moringa oleifera Forssk. J. Yeast Fungal Res. 1: 15–24.

Tamuli P, Das J, Boruah P (2014). Antifungal Activity of Polygonum Hydropiper and Solanum Melongena against Plant Pathogenic Fungi. Plant Archives; 14:15-17.

Viuda M M., Ruiz N. Y., Fernández L., Pérez-Á. J., (2008). Antifungal activity of lemon (Citrus lemon L.), mandarin (Citrus reticulata L.), grapefruit (Citrus paradisi L.) and orange (Citrus sinensis L.) essential oils. Food Control 19:1130–1138.

Wedge, D.E. and Smith, B.J. (2006). Discovery and evaluation of natural product-based fungicides for disease control of small fruits. Biological Control of Plant Pathogens and Diseases, 1-14.

Yasmin, M., Hossain, K.S. and Bashar M.A. (2008). Effects of some angiospermic plant extracts on in vitro vegetative growth of fusarium onliforme. Bangladesh J. Bot. 37(1): 85-88.

Yusuf, Y., Izzet, K., Ayhan, G., Ibrahim, D., Nezhun, G., Halil, C. and Mark, W. 2011. In vitro antifungal activities of 26 plant extracts on mycelial growth of Phytophthora infestans (Mont.) deBary. African Journal of Biotechnology 10(14), 2625-2629.

Yumlembam R. A., Debnath C, Salma B, Saha J., and Nath P. S., (2016). Exploration of botanicals extracts against blackrot of cabbage caused by xanthomonascampestrispv.campestris. The Bioscan 11(2): 821-825.

Zabka, M., Pavela, R., Slezaková, L., (2009). Antifungal effect of Pimenta dioica essential oil against dangerous pathogenic and toxigenic fungi. Industrial Crops and Products 30, 250–253.