Clinical epidemiology and mortality on patients with acute respiratory distress syndrome (ARDS) in Vietnam

Luong Quoc Chinh1, Toshie Manabe2*, Do Ngoc Son1, Nguyen Van Chi1, Yuji Fujikura3,4, Nguyen Gia Binh5, Dao Xuan Co5, Dang Quoc Tuan5,6, Mai Duy Ton1, Khuong Quoc Dai7, Pham The Thach5, Hiroyuki Nagase7, Koichiro Kudo8,9, Dat Anh Nguyen1,6

1 Bach Mai Hospital, Emergency Department, Hanoi, Vietnam, 2 Jichi Medical University, Center of Community Medicine, Tochigi, Japan, 3 National Defense Medical College, Department of Internal Medicine, Saitama, Japan, 4 National Defense Medical College Hospital, Department of Medical Risk Management and Infection Control, Saitama, Japan, 5 Bach Mai Hospital, Intensive Care Unit, Hanoi, Vietnam, 6 Hanoi Medical University, Department of Emergency and Critical Care Medicine, Hanoi, Vietnam, 7 Teikyo University School of Medicine, Department of Respiratory Medicine, Tokyo, Japan, 8 Yurin Hospital, Tokyo, Japan, 9 Waseda University Regional and Inter-Regional Studies, Tokyo, Japan

* manabe@kklabo.gr.jp

Abstract

Background

The clinical epidemiology and disease prognosis in patients with acute respiratory distress syndrome (ARDS) have not yet been fully elucidated in Vietnam.

Methods

We conducted a retrospective observational study at a national tertiary hospital in Hanoi, Vietnam. Participants were adult patients (age ≥18 years) who were admitted and diagnosed with ARDS during 2015–2017. Data on patients’ general and clinical conditions, radiographic findings, ventilator settings, gas exchange, and treatment methods were collected and compared between survivors and non-survivors. Risk factors for mortality were assessed using logistic regression analysis.

Results

Among 126 eligible patients with ARDS admitted to the central tertiary hospital in Vietnam, we observed high mortality (57.1%). Of the total patients, 91.3% were transferred from local hospitals with a diagnosis of severe pneumonia and then diagnosed with ARDS at the central hospital. At the time of admission, 53.2% of patients had severe ARDS, 37.3% had moderate ARDS, and 9.5% had mild ARDS. The mean (standard deviation) sequential organ failure assessment (SOFA) score was 9.5 (3.4) in non-survivors and 7.4 (3.4) in survivors (p = 0.002). Although there was no significant difference in PaO2/FiO2 on admission between non-survivors and survivors, that on day 3 after admission was significantly different (p = 0.002). Logistic regression revealed that PaO2/FiO2 on day 3 [odds ratio (OR), 1.010; 95% confidence
interval (CI), 1.003–1.017], length of stay in a local hospital before admission to the central hospital (OR, 1.122; 95% CI, 1.042–1.210) due to stable condition, and SOFA score on Day 1 (OR, 0.842; 95% CI, 0.708–1.002) were independent factors in patient survival.

Conclusions
Patients with ARDS admitted the central tertiary hospital had severe illness and high mortality. Most patients were transferred from local hospitals. Improvements in human, medical, and sociological resources in local will contribute to reducing the mortality of ARDS in Vietnam.

Introduction
Acute respiratory distress syndrome (ARDS) is a type of acute diffuse lung injury characterized by an inciting inflammation event followed by hypoxemic respiratory failure [1]. Despite advances in the care of critically ill patients, the mortality of ARDS remains high. A large observational study (LUNG SAFE) examined a sample of 459 intensive care units (ICUs) in 50 countries and found that hospital mortality was 34.9% for patients with mild ARDS, 40.3% for those with moderate ARDS, and 46.1% for those with severe ARDS [2]. A better understanding of the prognostic factors in ARDS is important for reducing mortality along with developing effective therapeutic strategies. As indicated in previous reports, the various risk factors for ARDS mortality include age, race and ethnicity, serious comorbidities such as HIV and malignancy, the ratio of partial pressure of arterial oxygen to fraction of inspired oxygen (PaO$_2$/FiO$_2$), and plateau pressure [3–7]. In addition, a report using the same sample as in the LUNG SAFE study found an association between per capita income and outcomes in ARDS [8]. Currently, Vietnam is one of the most dynamic emerging countries in East Asia. In 30 years, Vietnam has transformed from being one of the poorest countries in the world to becoming a lower middle-income country [9]. However, medical providers still have difficulties in caring for patients with ARDS in local settings owing to limited medical resources and a lack of advanced treatment strategies, such as extracorporeal membrane oxygenation, as well as physicians’ lower abilities to recognize ARDS in their patients. In addition, within the healthcare system in Vietnam, central tertiary hospitals are responsible for receiving patients who have difficulties being treated in local hospital settings [10, 11]. Therefore, the initiation of treatment in patients with ARDS is often delayed, including the administration of mechanical ventilation (MV) [12]. Under these conditions, the prognosis of ARDS in Vietnam might differ from that of other countries, regardless of income level. Understanding the country-specific etiologies and the disease risk and prognosis of ARDS are crucial for reducing mortality in Vietnam, as well as in other countries that face challenges in clinical practice owing to limited medical resources.

The aim of the present study was to elucidate the clinical epidemiology and disease prognosis in patients with ARDS in Vietnam. Our results can contribute to the reduction of ARDS mortality in Vietnam as well as in other countries, regardless of income level.

Methods
Study design and population
We carried out a retrospective observational study in National Bach Mai Hospital in Hanoi, Vietnam (hereafter, the central hospital), a tertiary hospital designated as the central hospital (level I) in northern Vietnam by the Ministry of Health (MOH) of Vietnam [10, 11]. In the healthcare system of Vietnam, central hospitals are responsible for educating hospital staff and
treating patients who are unable to be adequately treated in local hospital settings, including provincial and district hospitals (levels II and III, according to the MOH Vietnam).

In this study, participants included adult patients (age ≥18 years) who were admitted to the Emergency Department or ICU of Bach Mai Hospital and diagnosed with ARDS from 2015 to 2017.

We collected data on patients’ general background, clinical condition, clinical time course, laboratory tests, radiographic findings, ventilator settings, gas exchange, and treatments. Data on laboratory tests, ventilator settings, and gas exchange were collected at two different time points: on days 1 and 3 after admission. The primary outcome of the study was hospital mortality, and a comparison was made between data of survivors and non-survivors and between data on days 1 and 3 after admission. Risk factors for mortality were assessed using logistic regression analysis.

The identification of ARDS was based on the diagnosis by the expert clinicians at the study site who treated the patients. The diagnosis and severity of ARDS were defined according to the Berlin definition of ARDS, which includes three stages of severity according to \(\text{PaO}_2/\text{FiO}_2 \) as follows: mild, 200 < \(\text{PaO}_2/\text{FiO}_2 \) ≤ 300 mmHg; moderate, 100 < \(\text{PaO}_2/\text{FiO}_2 \) ≤ 200 mmHg; and severe, \(\text{PaO}_2/\text{FiO}_2 \) < 100 mmHg, under a minimum level of 5 cmH_2O positive end-expiratory pressure (PEEP) [13, 14].

This study was approved by the Institutional Review Board of Bach Mai Hospital. Written informed consent was waived by the Board for this retrospective study, with public notification of the study made by public posting. Investigators kept the datasets in password-protected systems and presented data with the anonymity of study participants retained.

Statistical analysis

Data are reported as percentages for categorical variables and as median with interquartile range (IQR: 25%–75%) or as mean with standard deviation (SD) for continuous variables. Comparisons were made between non-survivors and survivors and among severity of ARDS for each variable, using the \(\chi^2 \) test or Fisher’s exact test for categorical variables and Mann–Whitney U test, Kruskal–Wallis test, one-way analysis of variance, paired t-test, or Wilcoxon signed-rank test for continuous variables. Survival curves for duration of survival (in days) among patients with mild, moderate, and severe ARDS on day 1 and day 3 after admission and in patients transferred and those not transferred from local hospitals were analyzed using the Kaplan–Meier method; comparisons were made using the log-rank test.

Factors associated with mortality were estimated using a logistic regression analysis that included both independent variables of general characteristics as well as the baseline variables if the \(p \) value was <0.05 by univariate analysis between non-survivors and survivors. These variables included age; sex; comorbidities; treatment; length of hospitalization and MV at the local hospital; and the sequential organ failure assessment (SOFA) score, white blood cell count, and \(\text{PaO}_2/\text{FiO}_2 \) on days 1 and 3 after admission. A step-wise selection method was used to select variables and was conducted by the forced entry method.

Data were analyzed using IBM SPSS version 25.0 (IBM Corp., Armonk, NY, USA). For all analyses, significance levels were two-tailed, and \(p < 0.05 \) was considered statistically significant.

Results

General characteristics, clinical time course, and outcomes of patients with ARDS in Vietnam according to survivability

During the observational period, a total 126 patients (male, 65.9%) were admitted and diagnosed with ARDS in the central hospital. Among them, 72 patients with ARDS died during
hospitalization, and the mortality rate was 57.1%. The characteristics of patients were compared between non-survivors and survivors, as shown in Table 1.

	Non-survivor n = 72	Survivor n = 54	p value
Gender–Male, n (%)	50 (69.4)	33 (61.1)	0.348
Age–median (IQR), yr.	56 (42–67)	47 (32–60)	0.027
< 20	3 (4.2)	3 (5.6)	
20–39	11 (15.3)	16 (29.6)	
40–59	28 (38.9)	21 (38.9)	
≥ 60	30 (41.7)	14 (25.9)	
Occupation, n (%)			0.618
Farmer	31 (43.1)	19 (35.2)	
Professionals (medical doctor, lawyer, teacher, etc.)	1 (1.4)	3 (5.6)	
House wife	3 (4.2)	1 (1.9)	
Employee	9 (12.5)	9 (16.7)	
Student	4 (5.6)	5 (9.3)	
Unemployment/Retired	24 (33.3)	17 (31.5)	
Smoking, n (%) (n = 118)			0.038
Current	19 (28.8)	16 (30.8)	
Former	13 (19.7)	2 (3.8)	
Never	34 (51.5)	34 (65.4)	
Comorbidities, n (%)			
Cerebral vascular disease	6 (8.3)	0 (0.0)	0.037
COPD	11 (15.3)	5 (9.3)	0.420
Chronic pulmonary diseases	3 (4.2)	5 (9.3)	0.287
Diabetes mellitus	11 (15.3)	7 (13.0)	0.801
Immunoincompetence	2 (2.8)	3 (5.6)	0.651
Chronic heart failure	6 (8.3)	1 (1.9)	0.237
Ulcer disease	1 (1.4)	2 (3.7)	0.576
Chronic renal failure	4 (5.6)	2 (3.7)	0.700
Chronic liver failure	11 (15.3)	6 (11.1)	0.603
Active neoplasm	1 (1.4)	2 (3.7)	0.576
Hematological disease	5 (6.9)	3 (5.6)	>0.999
others	14 (19.4)	8 (14.8)	0.637
Risk factor for ARDS, n (%)			
Pneumonia	68 (94.4)	49 (90.7)	0.496
Non-pulmonary sepsis	1 (1.4)	2 (3.7)	0.576
aspiration	0 (0.0)	4 (7.4)	0.032
Major trauma	0 (0.0)	0 (0.0)	-
Pulmonary contusion	3 (4.2)	1 (1.9)	0.635
Inhalation injury	10 (13.9)	8 (14.8)	>0.999
Severe burns	1 (1.4)	1 (1.9)	>0.999
Non-cardiogenic shock	10 (13.9)	8 (14.8)	>0.999
Drug overdose or addiction	7 (9.7)	5 (9.3)	>0.999
Pneumotoxic medication before ARDS onset, n (%)	8 (11.1)	6 (11.1)	>0.999

ARDS, acute respiratory distress syndrome; IQR, interquartile range; COPD, chronic obstructive pulmonary disease

https://doi.org/10.1371/journal.pone.0221114.t001
The median age of survivors was less than that of non-survivors ($p = 0.027$), and 41.7% of non-survivors were aged ≤ 60 years. In most patients, ARDS was caused by pneumonia, with no significant difference between non-survivors (94.4%) and survivors (90.7%) ($p = 0.496$).

The clinical outcome and time course of patients with ARDS are shown in Table 2. At the time of admission, the proportion of non-survivors (57.7%) who presented with severe ARDS was higher than that of survivors (46.3%). Among the total patients, 91.3% were transferred from local hospitals to the central hospital; the median length of stay in a local hospital was 8 days for non-survivors and 17 days for survivors ($p < 0.001$). The duration of hospitalization ($p < 0.001$) and MV ($p < 0.001$) were significantly shorter in non-survivors than in survivors. A total 70.8% of non-survivors died within 7 days of admission to the central hospital, and all non-survivors died within 28 days of hospital admission, except one patient who was transferred from the Oncology Department within the Bach Mai Hospital and died 68 days after ICU admission.

Data regarding the chest radiograph images and laboratory findings among patients with ARDS according to survival are shown in Table 3. Although there was no significant difference, 89.1% of non-survivors and 92.0% of survivors presented bilateral opacities in four quadrants.

Ventilator settings, gas exchange, and treatments in patients with ARDS

At the time of admission, over 80% of both non-survivors and survivors received volume-controlled ventilation ($p = 0.797$) (Table 4).

In terms of ventilator settings, PEEP in survivors was maintained at ≥ 10 cmH$_2$O on days 1 and 3; however, PEEP in non-survivors increased from 9.3 cmH$_2$O on day 1 to 12.0 cmH$_2$O on day 3 ($p = 0.018$) (Table 4). Regarding conditions of gas exchange, the mean (±SD) PaO$_2$/FiO$_2$ between non-survivors (102.1±52.5 mmHg) and survivors (120.0±66.7 mmHg) on day 1

Table 2: Clinical outcome and time course of patients with ARDS: Comparison of survivors and non-survivors.

	Non-survivor n = 72	Survivor n = 54	p value
Severity of ARDS at admission			
Severe	42 (58.3)	25 (46.3)	0.163
Moderate	26 (36.6)	21 (38.9)	
Mild	4 (5.6)	8 (14.8)	
Outcomes			
Died within 7 days from admission, n (%)	51 (70.8)	-	
Died within 28 days from admission, n (%)	71 (98.6)	-	
Hospitalization in local prior to central			
History of hospitalization in local	68 (91.9)	47 (90.4)	0.760
Length of hospitalization in local, median (IQR), d (n = 119)	8 (4–13)	17 (9–23)	<0.001
MV in local hospital (n = 119)	66 (93.0)	47 (87.0)	0.360
Length of MV in local, median (IQR), d (n = 113)	4 (2–8)	8 (4–14)	<0.001
Clinical Time-course			
Length of hospitalization in central, median (IQR), d	5 (3–9)	16 (11–20)	<0.001
Length of MV, median (IQR), d	5 (2–7)	9 (6–14)	<0.001

ARDS, acute respiratory distress syndrome; MV, mechanical ventilation; IQR, interquartile range

*Severity of ARDS was defined using the Berlin definition at the time of admission (diagnosed with ARDS), which is classified into three stages of severity according to the ratio of partial pressure of arterial oxygen to fraction of inspired oxygen (PaO$_2$/FiO$_2$): mild, 200 $<$ PaO$_2$/FiO$_2$ $<$ 300 mmHg; moderate, 100 $<$ PaO$_2$/FiO$_2$ $<$ 200 mmHg; and severe, PaO$_2$/FiO$_2$ \leq 100 mmHg, under a minimum level of 5 cmH$_2$O positive end-expiratory pressure [11, 12].

https://doi.org/10.1371/journal.pone.0221114.t002
was not significantly different ($p = 0.079$), nor was the frequency of patients with a PaO$_2$/FiO$_2$ of <150 mmHg ($p = 0.307$). On day 3 after admission, the mean (\pmSD) PaO$_2$/FiO$_2$ between non-survivors (126.3±79.9 mmHg) and survivors (183.9±98.9 mmHg) was significantly different ($p = 0.002$), as was the frequency of patients with a PaO$_2$/FiO$_2$ of <150 mmHg ($p = 0.001$). The difference in the mean PaO$_2$/FiO$_2$ between day 1 and day 3 after admission in non-survivors was not significant ($p = 0.097$) (Fig 1A), while the mean PaO$_2$/FiO$_2$ in survivors was significantly increased ($p<0.001$) (Fig 1B).

Treatments in patients with ARDS are shown in Table 5. Among all patients, antiviral drugs were administered more frequently to survivors than non-survivors ($p = 0.003$). Recruitment maneuvers were applied more often to survivors than to non-survivors ($p = 0.032$). Although the number of patients was small, only survivors underwent tracheostomy ($p = 0.005$).
Outcome and disease prognosis of patients with ARDS as classified by ARDS severity according to the Berlin definition

The outcome and disease prognosis of patients with ARDS were compared by the severity category of ARDS according to the Berlin definition, as shown in Table 6. Overall hospital mortality was 58.7%. There was no significant difference in 7- or 28-day mortality among the ARDS severity groups. Although the number days of hospital stay was

Table 4. Ventilator settings and gas exchange in patients with ARDS: Comparison of survivors and non-survivors.

Ventilator mode	Non-survivor n = 72	Survivor n = 54	p value
1st day of admission			
VCV	52 (85.2)	40 (83.3)	0.797
others*	9 (14.8)	8 (16.7)	
3rd day of admission			
VCV	30 (68.2)	32 (74.4)	0.637
Others*	14 (31.8)	11 (25.6)	

Ventilator settings, mean (SD)

1st day of admission			
FiO₂, % (n = 123)	81.2 (23.4)	92.8 (60.6)	0.144
Set respiratory rate, 1/min (n = 116)	17.8 (4.9)	17.0 (4.4)	0.361
Tidal volume, ml/kg PBW (n = 108)	7.2 (1.3)	7.7 (1.1)	0.037
Set PEEP, cm H₂O (n = 119)	9.3 (4.1)	10.4 (8.2)	0.376

3rd day of admission			
FiO₂, % (n = 96)	76.5 (22.2)	61.1 (20.9)	0.001
Set respiratory rate, 1/min (n = 90)	22.9 (6.6)	19.6 (7.1)	0.025
Tidal volume, ml/kg PBW (n = 72)	6.5 (1.1)	6.9 (2.0)	0.324
Set PEEP, cm H₂O (n = 96)	12.0 (4.0)	10.1 (3.8)	0.018

Gas exchange, mean (SD)

1st day of admission			
PaO₂/FiO₂, mmHg	102.1 (52.5)	120.9 (66.7)	0.079
<150 mmHg—n (%)	56 (77.8)	37 (68.5)	0.307
PaO₂	74.9 (31.1)	88.8 (41.8)	0.042
PaCO₂	42.4 (15.5)	43.0 (11.2)	0.084
SpO₂	88.1 (9.7)	90.7 (9.6)	0.142
pH	7.3 (0.2)	7.4 (0.1)	0.322

3rd day of admission (n = 103)			
PaO₂/FiO₂, mmHg	126.3 (79.9)	183.9 (98.9)	0.002
<150 mmHg—n (%)	39 (76.5)	22 (42.3)	0.001
PaO₂	84.9 (36.4)	100.0 (52.5)	0.095
PaCO₂	50.8 (17.7)	41.8 (10.8)	0.002
SpO₂	92.6 (6.1)	94.6 (8.1)	0.175
pH	7.3 (0.1)	7.4 (0.1)	< 0.001

* Others includes pressure control ventilation, controlled mechanical ventilation, pressure control ventilation, volume control plus, biphasic positive airway pressure.

ARDS, acute respiratory distress syndrome; VCV, volume control ventilation; PEEP, positive end-expiratory pressure; PaO₂, partial pressure of arterial oxygen; FiO₂, fraction of inspired oxygen; PaCO₂, partial pressure of carbon dioxide; SpO₂, oxygen saturation; SD, standard deviation.

https://doi.org/10.1371/journal.pone.0221114.t004

Outcome and disease prognosis of patients with ARDS as classified by ARDS severity according to the Berlin definition

The outcome and disease prognosis of patients with ARDS were compared by the severity category of ARDS according to the Berlin definition, as shown in Table 6.

Overall hospital mortality was 58.7%. There was no significant difference in 7- or 28-day mortality among the ARDS severity groups. Although the number days of hospital stay was
not significant among the ARDS severity groups, the median length of hospital stay in non-survivors was shorter than that in survivors. Although statistical significance was not observed, the mean number of days of MV in the local hospital was the longest in patients with mild ARDS among all ARDS severities.

Table 5. Treatment of ARDS: Comparison of non-survivors and survivors.

	Non-survivor	Survivor	p value
	n = 72	n = 54	
Sedation	70 (97.2)	51 (94.4)	0.650
Neuromuscular blocker	43 (59.7)	31 (58.5)	0.518
Systemic corticosteroids	4 (5.6)	6 (11.3)	0.200
Antibiotics	72 (100.0)	54 (100.0)	-
Antifungal	5 (6.9)	5 (9.4)	0.742
Antiviral	11 (15.3)	21 (39.6)	0.003
Prone positioning	15 (20.8)	8 (15.1)	0.488
ECMO	3 (4.2)	7 (13.2)	0.095
CHDF	22 (30.6)	24 (46.2)	0.091
HFOV	6 (8.3)	5 (9.6)	>0.999
Recruitment maneuvers	8 (11.1)	14 (26.9)	0.032
Tracheostomy	0 (0.0)	6 (11.3)	0.005

ARDS: acute respiratory distress syndrome; ECMO, extracorporeal membrane oxygenation; CHDF, continuous hemodiafiltration; HFOV, high-frequency oscillation ventilation.

https://doi.org/10.1371/journal.pone.0221114.t005
The number of patients with mild, moderate, and severe ARDS on day 3 after admission was 16 (16.8%), 45 (47.4%), and 34 (35.8%), respectively. Between day 1 and day 3 after admission, the severity of ARDS improved in 41 (32.5%) patients with moderate and severe ARDS and worsened in 15 (11.9%) patients with mild or moderate ARDS (Table 6).

The Kaplan–Meier curves revealed significant differences in the probability of hospital mortality among the three ARDS severity groups on day 3 (Fig 2B); there were no significant differences among the groups on day 1 (Fig 2A). In addition, no significant differences were observed between patients who were transferred and those who were not transferred from a local hospital (Fig 2C).

Factors related to survival of patients with ARDS in Vietnam

A multivariate logistic regression analysis revealed that PaO₂/FiO₂ on day 3 after admission [odds ratio (OR), 1.010; 95% confidence interval (CI), 1.003–1.017] and length of stay in a local hospital (OR, 1.099; 95% CI, 1.028–1.176) were factors related to the survival of patients.
with ARDS in Vietnam (Table 7). The SOFA score on day 1 of admission also tended to be related to the patients’ survival (OR, 0.842; 95% CI, 0.708–1.002).

Discussion

The present study revealed that mortality in patients with ARDS in Vietnam was high at 57.1%. Among all patients, 91.3% were transferred from local hospitals with severe pneumonia and diagnosed with ARDS at the central hospital. Higher PaO\(_2\)/FiO\(_2\) on the third day after hospital admission and longer stay in a local hospital, which may have been related to mild disease severity, were related to better survival.

A unique characteristic of patients with ARDS in Vietnam is that many of these patients are diagnosed with severe pneumonia in local hospitals and are then transferred to a central hospital if their conditions become severe. This leads to delayed diagnosis and delayed initiation of treatment for ARDS, which can in turn lead to high mortality. However, transferring patients with severe ARDS is based on the framework within the management system of healthcare provision laid out by the MOH of Vietnam known as the Direction of Healthcare Activities (DOHA) [10, 11]. In this system, healthcare facilities are divided into four levels according to administrative structure: central (level I), provincial (level II), district (level III), and community (level IV) [10]. The DOHA system requires health facilities at higher administrative levels to support those at lower levels, enabling them to deliver medical services to local communities.

Table 7. Factors related to survival of patients with ARDS.

	coefficient	SE	p value	OR	95% CI
constant	-1.495	1.047			
PaO\(_2\)/FiO\(_2\) on day 3 from admission	0.010	0.004	0.007	1.010	1.003–1.017
Length of hospitalization in local	0.095	0.034	0.006	1.099	1.028–1.176
SOFA on Day 1	-0.172	0.088	0.052	0.842	0.708–1.002

ARDS, acute respiratory distress syndrome; SE, standard error; OR, odds ratio; 95% CI, 95% confidence interval; PaO\(_2\)/FiO\(_2\), ratio of partial pressure of arterial oxygen to fraction of inspired oxygen; SOFA, sequential organ failure assessment.

https://doi.org/10.1371/journal.pone.0221114.t007
as well as to improve the quality of medical services in Vietnam [10, 11]. Bach Mai Hospital, the site of this study, is the central hospital (level I) in northern Vietnam and is responsible for treating patients with severe conditions from lower level hospitals as well as educating and training medical providers at local hospitals. This is one of the main reasons for the present study; namely, to examine the outcome of patients transferred from local hospitals. This situation is related to the high number of patients with severe ARDS at the time of admission. Although early transfer to a central hospital and early initiation of treatment for ARDS are crucial for patient survival, the present study findings indicated that a longer stay in a local hospital is related to better survival. This means that if the condition of a patient is less severe, clinicians in local hospitals keep patients in their hospital and provide medical care to these patients without transferring them to a higher-level facility. Therefore, we found greater severity of illness with shorter length of stay in a local hospital. As a result, the duration of MV in patients with mild ARDS at local hospitals was longer than that in patients with moderate and severe ARDS. The clinicians in local hospitals continue providing care for patients in their hospitals if the patients’ conditions remain stable. However, if the length of MV becomes long or the patients’ condition worsens, the clinicians send the patients to the central hospital. This can also explain the low incidence of mild ARDS at the time of admission. A longer stay in a local hospital may also be related to clinicians’ lack of knowledge and low recognition of ARDS at these hospitals, as well as the lower quality of treatment and management of MV in lower-level facilities. Our previous survey in Vietnam indicated that clinicians in local hospitals would like to consult with an expert in a central hospital regarding patients with ARDS [15]. Thus, strengthening education for medical providers in local hospitals and providing a system for clinicians in lower-level facilities to consult with experts at a central hospital could lead to more timely transfer of critically ill patients from a local to a central hospital.

The poor recognition of ARDS may also be related to a lack of medical resources in local settings. For instance, even at provincial level, medical equipment such as portable chest radiograph and computed tomography devices are not available in all hospitals. In addition, transferring patients with severe pneumonia from a local to a central hospital may result in worsening of their critical condition. There is a high possibility that patients could be transferred without intubation, ventilation, PEEP, and so on. There are limited data in terms of the conditions during transfer of patients in Vietnam; however, a previous survey indicated that there are many risk factors for higher numbers of patient transfers and poor-quality pre-hospital care [16]. The local hospitals under the umbrella of Bach Mai Hospital are distributed across northern Vietnam. The conditions for transport by car over long distances and many hours are critical for patients with severe pneumonia and may affect the severity and progression of their disease. Moreover, the SOFA score at the time of admission was a predictive factor for the survivability of patients, while the SOFA score on day 3 did not predict patients’ survival. A study in Cambodia reported that patients with avian influenza H5N1 virus infection traveled up to 476 km prior to hospital admission [17]. Thus, along with socioeconomic conditions [18], the condition of patient transport could be a major risk factor related to disease severity and prognosis in low- and middle-income countries. Although we found no statistically significant differences between patients who were transferred from local hospitals and those who were not, Kaplan–Meier curves revealed that transferred patients tended to have shorter survival times than non-transferred patients. Detailed examination is necessary to confirm this result using a larger sample size.

After being admitted to the central hospital, PaO\textsubscript{2}/FiO\textsubscript{2} on day 3 after admission was also considered to be a factor influencing patient survival. Although oxygenation in survivors tended to be lower than that in non-survivors, the mean PaO\textsubscript{2}/FiO\textsubscript{2} on day 1 after admission was not significantly different between non-survivors and survivors. However, the mean
PaO₂/FiO₂ on day 3 after admission differed significantly between non-survivors and survivors. These results suggest that improvement of oxygenation within 3 days of hospitalization had a substantial influence on the survival of patients with ARDS, even those with severe ARDS, at the time of admission. This result is compatible with that of a previous study, in which the multivariate analysis showed that PaO₂/FiO₂ on the third day after ARDS diagnosis is strongly associated with ARDS-associated mortality [19]. Diffuse alveolar damage (DAD) has been described as the pathological hallmark of ARDS [20, 21]. An autopsy study evaluating the accuracy of the Berlin definition indicated a correlation of DAD with ARDS severity [21]. That report also described that the presence of DAD was markedly higher in patients who met these clinical criteria for ARDS for more than 72 hours than in those who met the criteria for less than 72 hours; the incidence of DAD showed a difference after 72 hours [21]. Another study indicated that PaO₂/FiO₂ on the third day after diagnosis was a predictive factor for ARDS mortality [22]. Moreover, in our study, the PEEP level on day 3 of hospitalization was different between non-survivors and survivors; PEEP levels on day 1 showed no difference. A previous study indicated that the pulmonary and extrapulmonary origin of ARDS may influence the response to PEEP [23, 24]. However, other studies showed that the origin of ARDS has no impact on the alveolar damage induced by PEEP or on mortality [22–24]. Under these controversial findings, the results of our multivariate analysis did not identify PEEP as an influencing factor for mortality.

The etiology of ARDS varies, and some types of ARDS have rapid progression depending on their cause [12, 25]. Detailed examination of the Vietnamese-specific etiology of ARDS, such as avian influenza virus infection, is required for further consideration of the clinical management of ARDS in Vietnam.

The limitations of the present study were associated with its retrospective design. The causality between risk factors and death was not able to be proven. Because there are various levels of medical facilities in Vietnam, the study was conducted in a single hospital. This hospital is the highest-level medical facility owned by the MOH of Vietnam, which helped to unify the quality of care and diagnosis of patients with ARDS in the present study. However, it resulted in a small sample size for a clinical epidemiological study. Most patients in this study were transferred from the local hospital with severe pneumonia, and we relied on the clinical diagnosis for the identification of ARDS at the study site. Therefore, some of the patients might have already developed ARDS in the local hospital but received a diagnosis of ARDS after admission to the central hospital. This may have also caused the low incidence of mild ARDS and non-pulmonary ARDS in the present study. Moreover, were unable to evaluate treatments in relation to mortality among our patients with ARDS. However, to the best of our knowledge, this is the first study to evaluate the clinical epidemiology and mortality risk in adult patients with ARDS in Vietnam. These results will provide important information to physicians and can help to reduce mortality among patients with ARDS in Vietnam and other low- and middle-income countries.

Conclusions

Patients with severe ARDS were admitted to the central tertiary hospital in northern Vietnam with high mortality. Improvements in human, medical, and sociological resources in local will contribute to reducing the mortality of ARDS in Vietnam.

Supporting information

S1 Table.
(XLSX)
Acknowledgments

We thank the staff of the Department of Emergency Medicine in Bach Mai Hospital for their general assistance in conducting this study.

Author Contributions

Conceptualization: Luong Quoc Chinh, Toshie Manabe, Nguyen Gia Binh, Koichiro Kudo.

Data curation: Luong Quoc Chinh, Yuji Fujikura, Pham The Thach.

Formal analysis: Toshie Manabe.

Funding acquisition: Koichiro Kudo.

Investigation: Luong Quoc Chinh, Toshie Manabe, Do Ngoc Son, Nguyen Van Chi, Yuji Fujikura, Nguyen Gia Binh, Dao Xuan Co, Dang Quoc Tuan, Mai Duy Ton, Khuong Quoc Dai, Pham The Thach, Hiroyuki Nagase, Koichiro Kudo.

Methodology: Toshie Manabe.

Project administration: Dat Anh Nguyen.

Writing – original draft: Toshie Manabe.

Writing – review & editing: Luong Quoc Chinh, Toshie Manabe, Do Ngoc Son, Nguyen Van Chi, Yuji Fujikura, Nguyen Gia Binh, Dao Xuan Co, Dang Quoc Tuan, Mai Duy Ton, Khuong Quoc Dai, Pham The Thach, Hiroyuki Nagase, Koichiro Kudo, Dat Anh Nguyen.

References

1. Peter JV, John P, Graham PL, Moran JL, Gerge IA, Bersten A. Corticosteroids in the prevention and treatment of acute respiratory distress syndrome (ARDS) in adults: meta-analysis. BMJ 2008; 336:1006–9. https://doi.org/10.1136/bmj.39537.939039.BE PMID: 18434379

2. Bellani G, Laffey JG, Pham T, Fan E, Brochard L, Esteban A, et al.; LUNG SAFE Investigators; ESICM Trials Group. Epidemiology, Patterns of Care, and Mortality for Patients With Acute Respiratory Distress Syndrome in Intensive Care Units in 50 Countries. JAMA 2016; 315:788–800. https://doi.org/10.1001/jama.2016.0291 PMID: 26903337

3. Villar J, Pérez-Méndez L, Basaldúa S, Blanco J, Aguilar G, Toral D, et al.; Hospitales Españoles Para el Estudio de la Lesión Pulmonar (HELP) Network. A risk tertiles model for predicting mortality in patients with acute respiratory distress syndrome: age, plateau pressure, and P(aO(2))/F(IO(2)) at ARDS onset can predict mortality. Respir Care. 2011; 56:420–8. https://doi.org/10.4187/respcare.00811 PMID: 21255500

4. Baek MS, Chung CR, Kim HJ, Cho WH, Cho YJ, Park S, et al. Age is major factor for predicting survival in patients with acute respiratory failure on extracorporeal membrane oxygenation: a Korean multicenter study. J Thorac Dis. 2018; 10:1406–1417. https://doi.org/10.21037/jtd.2018.03.71 PMID: 29707290

5. Erickson SE, Shlipak MG, Martin GS, Wheeler AP, Ancukiewicz M, Matthay MA, et al.; National Institutes of Health National Heart, Lung, and Blood Institute Acute Respiratory Distress Syndrome Network. Racial and ethnic disparities in mortality from acute lung injury. Crit Care Med. 2009; 37:1–6. https://doi.org/10.1097/CCM.0b013e3181929292 PMID: 19050621

6. Wang CY, Califfee CS, Paul DW, Janz DR, May AK, Zhuo H, et al. One-year mortality and predictors of death among hospital survivors of acute respiratory distress syndrome. Intensive Care Med. 2014; 40:389–396. https://doi.org/10.1007/s00134-013-3186-3 PMID: 24435201

7. Menk M, Giebelhäuser L, Vorderwülbecke G, Gassner M, Graw JA, Weiss B, et al. Nucleated red blood cells as predictors of mortality in patients with acute respiratory distress syndrome (ARDS): an observational study. Ann Intensive Care. 2018; 8:42. https://doi.org/10.1186/s13613-018-0367-5 PMID: 29609209

8. Laffey JG, Madotto F, Bellani G, Pham T, Fan E, Brochard L, et al; LUNG SAFE Investigators; ESICM Trials Group. Geo-economic variations in epidemiology, patterns of care, and outcomes in patients with ARDS in Vietnam.
acute respiratory distress syndrome: insights from the LUNG SAFE prospective cohort study. Lancet Respir Med. 2017; 5(8):627–638. https://doi.org/10.1016/S2213-2600(17)30213-8 PMID: 28624388

9. THE WORLD BANK. The World Bank in Vietnam. Available at https://www.worldbank.org/en/country/vietnam/overview. (Accessed May 31, 2019)

10. Takashima K, Wada K, Tra TT, Smith DR. A review of Vietnam’s healthcare reform through the Direction of Healthcare Activities (DOHA). Environ Health Prev Med. 2017; 22:74. https://doi.org/10.1186/s12199-017-0682-z PMID: 29165160

11. Le D-C, Kubo T, Fujino Y, Pham T-M, Matsuda S. Health care system in Vietnam: current situation and challenges. Asian Pacific J Dis Manag. 2010; 4:23–30.

12. Kudo K, Binh NG, Manabe T, Co DX, Tuan ND, Izumi S, et al. Clinical preparedness for severe pneumonia with highly pathogenic avian influenza A (H5N1): experiences with cases in Vietnam. Respir Investig. 2012; 50:140–50. https://doi.org/10.1016/j.resinv.2012.08.005 PMID: 23199978

13. ARDS Definition Task Force, Ranieri VM, Rubenfeld GD, Thompson BT, Ferguson ND, Caldwell E, et al. Acute respiratory distress syndrome: the Berlin Definition. JAMA. 2012; 307:2526–33. https://doi.org/10.1001/jama.2012.5669 PMID: 22797452

14. Ferguson ND, Fan E, Camporota L, Antonelli M, Anzueto A, Beale R, et al. Berlin definition of ARDS: an expanded rationale, justification, and supplementary material. Intensive Care Med. 2012; 38:1573–82. https://doi.org/10.1007/s00134-012-2682-1 PMID: 22926653

15. Manabe T, Pham TP, Kudo K, Vu TT, Takasaki J, Nguyen DT, et al. Impact of education and network for avian influenza H5N1 in human: knowledge, clinical practice, and motivation on medical providers in Vietnam. PLoS One. 2012; 7:e30384. https://doi.org/10.1371/journal.pone.0030384 PMID: 22291946

16. Nielsen K, Mock C, Joshipura M, Rubiano AM, Zakariah A, Rivara F. Assessment of the status of prehospital care in 13 low- and middle-income countries. Prehosp Emerg Care. 2012; 16(3):381–9. https://doi.org/10.3109/10903127.2012.664245 PMID: 22490009

17. Humphries-Waa K, Drake T, Huszar A, Liverani M, Borin K, Touch S, et al. Human H5N1 influenza infections in Cambodia 2005–2011: case series and cost-of-illness. BMC Public Health. 2013; 13:549. https://doi.org/10.1186/1471-2458-13-549 PMID: 23738818

18. Manabe T, Higuera Iglesias AL, Vazquez Manriquez ME, Martinez Valadez EL, Ramos LA, Izumi S, et al. Socioeconomic factors influencing hospitalized patients with pneumonia due to influenza A(H1N1)pdm09 in Mexico. PLoS One. 2012; 7(7):e40529. https://doi.org/10.1371/journal.pone.0040529 PMID: 22808184

19. Navarrete-Navarro P, Ruiz-Bailén M, Rivero-Fernández R, Guerrero-López F, Pola-Gallego-de-Guzmán MD, Vázquez-Mata G, et al. Acute respiratory distress syndrome in trauma patients: ICU mortality and prediction factors. Intensive Care Med. 2000; 26:1624–9. PMID: 11193268

20. Katzenstein AL, Bloor CM, Leibow AA. Diffuse alveolar damage—the role of oxygen, shock, and related factors. A review. Am J Pathol. 1976; 85:209–228. PMID: 788524

21. Thille AW, Esteban A, Fernández-Segoviano P, Rodríguez JM, Aramburu JA, Peñuelas O, et al. Comparison of the Berlin definition for acute respiratory distress syndrome with autopsy. Am J Respir Crit Care Med. 2013; 187:761–7. https://doi.org/10.1164/rccm.201211-1981OC PMID: 23370917

22. Thille AW, Richard JC, Maggiore SM, Ranieri VM, Brochard L. Alveolar recruitment in pulmonary and extrapulmonary acute respiratory distress syndrome: comparison using pressure-volume curve or static compliance. Anesthesiology. 2007; 106:212–7. https://doi.org/10.1097/00000542-200702000-00007 PMID: 17264713

23.Gattinoni L, Pelosi P, Suter PM, Pedoto A, Vercesi P, Lissoni A. Acute respiratory distress syndrome caused by pulmonary and extrapulmonary disease. Different syndromes? Am J Respir Crit Care Med. 1998; 158:3–11. https://doi.org/10.1164/ajrccm.158.1.9708031 PMID: 9655699

24. Esteban A, Fernández-Segoviano P, Frutos-Vivar F, Aramburu JA, Nájera L, Ferguson ND, et al. Comparison of clinical criteria for the acute respiratory distress syndrome with autopsy findings. Ann Intern Med. 2004; 141:440–5. https://doi.org/10.7326/0003-4819-141-6-200409210-00009 PMID: 15381517

25. Higuera Iglesias AL, Kudo K, Manabe T, Corcho Berdugo AE, Corrales Baëza A, Alfaro Ramos L, et al. Reducing occurrence and severity of pneumonia due to pandemic H1N1 2009 by early oseltamivir administration: a retrospective study in Mexico. PLoS ONE. 2011; 6:e21838. https://doi.org/10.1371/journal.pone.0021838 PMID: 21760915