Superluminal neutrino energy spectrum of OPERA and MINOS

Ernst Trojan

Moscow Institute of Physics and Technology
PO Box 3, Moscow, 125080, Russia

December 14, 2011

Abstract

We analyze the velocity dependence on energy of superluminal neutrino recorded by the OPERA and MINOS collaborations and manage to approximate the energy spectrum by a power law \(E = p + C p^a \) where parameters must be taken in the range \(a = 0.40 \div 1.18 \) and \(C = 1.5 \times 10^{-5} \div 4.15 \times 10^{-4} \) (momentum and energy are expressed in GeV). This rough estimation is constrained by the errors of measurements, and new experimental data are requested.

1 Introduction

Neutrino was believed to be a massless fermion with energy

\[E = pc \]

(1)

and group velocity

\[v = \frac{dE}{dp} = c \]

(2)

equal to the speed of light \(c = 1 \) (in relativistic units). The modern theory expects, however, that neutrino has finite mass [1]

\[m = m_\nu < 0.28 \text{eV} \]

(3)
that implies deviation from the energy spectrum and velocity \(v \neq c \). Recent experiments of the OPERA Collaboration [2] have revealed supraluminal motion of neutrino. The time between signals

\[
t_0 + \delta t = \frac{L}{v} \tag{4}
\]

measured at the baseline \(L = 730 \) km, was less than \(t_0 = L/c \), implying that a small delay \(\delta t \) was negative and the velocity of neutrino

\[
v - 1 = -\frac{\delta t}{L} \tag{5}
\]

was definitely above the speed of light. The velocity shift (5) revealed almost no dependence on energy, and at the average energy

\[
E = 17 \text{ GeV} \tag{6}
\]

the time delay

\[
\delta t = -57.8 \pm 7.8 \quad \text{[stat.]} \quad +8.3 \quad \text{[sys.]} \quad \text{ns} \tag{7}
\]

corresponded to

\[
v - 1 = (2.37 \pm 0.32 \quad \text{[stat.]} \quad +0.34 \quad \text{[sys.]} \quad) \times 10^{-5} \tag{8}
\]

Superluminal neutrino was also observed by the MINOS Collaboration [3] as well as in supernova explosion SN1987a [4].

This fact is a serious puzzle to the researchers. There is no lack of hypotheses to explain it [5]. However, the value of superluminal velocity (8) imposes a severe constraint on the energy spectrum. The energy dependence of \(v \) was also explored by the OPERA collaboration [2], but it was not possible to warrant solid data because it was beyond the accuracy of the measurement on account of large errors. However, the energy dependence of \((v - 1) \) on \(E \) can contain very important information that may allow to understand the nature of neutrino. In the present paper we analyze the experimental data of the OPERA [2] and MINOS [3] and try to establish the range of possible energy spectrum of superluminal neutrino.

2 Neutrino is not free tachyon

The most natural and plain idea is to treat neutrino as a massive tachyon whose energy spectrum

\[
E = \sqrt{p^2 - m^2} \tag{9}
\]
yields superluminal group velocity

\[v = \frac{dE}{dp} = \frac{p}{\sqrt{p^2 - m^2}} \] \hspace{1cm} (10)

estimated as

\[v \simeq 1 + \frac{1}{2} \frac{m^2}{p^2} \simeq 1 + \frac{1}{2} \frac{m^2}{E^2} \] \hspace{1cm} (11)

for an ultra-relativistic particle \((E \simeq p \gg m)\). It implies a tiny positive shift above the speed of light. However, according to (3) and (11), we cannot get estimation greater than

\[v - 1 \simeq 10^{-22} \] \hspace{1cm} (12)

at \(E = 17\) GeV. Otherwise, we have to expect very large tachyon mass \(m \simeq 120\) MeV that contradicts to the expected upper bound (3). It is clear that superluminal neutrino cannot be a free tachyon with the energy spectrum (8), neither a free tardyon (ordinary particle) with the energy spectrum \(E = \sqrt{p^2 + m^2}\).

However, it is not a problem of the theory because there are many sophisticated arguments explaining the superluminal velocity of neutrino (9). Nevertheless, it is highly desirable to know the energy dependence of quantity

\[f[E] = v - 1 \] \hspace{1cm} (13)

that is equivalent to dependence on the momentum \(f[p]\) for an ultra-relativistic particle. The knowledge of this dependence allows to restore the energy spectrum of neutrino

\[E = p + \int f[p] dp \] \hspace{1cm} (14)

and test hypotheses of its nature.

3 Dependence on energy

The OPERA collaboration [2] has also obtained the following data at various energy

\[E = 13.8\) GeV \hspace{1cm} \delta t = -54.7 \pm 18.4 [\text{stat.}]^{+7.3}_{-6.9} [\text{sys.}] \, \text{ns} \] \hspace{1cm} (15)

\[E = 28.2\) GeV \hspace{1cm} \delta t = -61.1 \pm 13 [\text{stat.}]^{+7.3}_{-6.9} [\text{sys.}] \, \text{ns} \] \hspace{1cm} (16)
\[E = 40.7 \text{ GeV} \quad \delta t = -68.1 \pm 19.1 \text{ [stat.]} \pm 7.3 \text{ [sys.]} \text{ ns} \quad (17) \]

that together with (6)-(7) can be described by proportionality [6]

\[\delta t \sim E^{a-1} \quad (18) \]

and, according to (5) and (18), we get [7, 8]

\[f(E) = v - 1 = AE^{a-1} \quad (19) \]

that is equivalent to

\[f(p) = v - 1 = Ap^{a-1} \quad (20) \]

for an ultra-relativistic particle. Let us develop this interpretation in detail.

According to (7) and (15)-(17), parameter \(a \) must lay within the range

\[a = 0.40 \div 2.08 \quad (21) \]

Then, approximation (19) yields the observed velocity (8) within the accuracy of measurement when

\[A = (0.09 \div 16.6) \times 10^{-5} \quad (22) \]

where \(E \) in (19) is expressed in GeV.

The MINOS Collaboration [3] has recorded superluminal velocity

\[v - 1 = (5.1 \pm 2.9\text{[stat. + sys.]}) \times 10^{-5} \quad (23) \]

for the low energy neutrino with energy spectrum peaked at approximately \(E = 3 \text{ GeV} \) with a long high-energy tail extending to \(E = 120 \text{ GeV} \) and baseline \(L = 734 \text{ km} \). The energy spectrum taken in the form (28) can yield velocity (23) within the accuracy of measurement when parameter \(a \) is chosen in the range

\[a = 0.14 \div 1.18 \quad (24) \]

and

\[A = 1.81 \div 20.6 \quad (25) \]

Velocity (23) is not achieved at \(E = 3 \text{ GeV} \) according to (28) if \(a \) and \(A \) are beyond (24) and (25).

Combining (21), (22), (24) and (25) we have more strict estimation

\[a = 0.40 \div 1.18 \quad (26) \]
\[A = (1.81 \div 16.6) \times 10^{-5} \] \hspace{1cm} (27)

Substituting (20) in (14) we get the energy spectrum of ultra-relativistic neutrino

\[E = p + C p^a \quad C = \frac{A}{a} = 1.5 \times 10^{-5} \div 4.15 \times 10^{-4} \] \hspace{1cm} (28)

that satisfies both the OPERA and MINOS experiment. For example, choosing \(a = 1 \) in (28), we obtain velocity (8) and (23) within the accuracy of measurements when \(A = (2.2 \div 3.03) \times 10^{-5} \).

4 Conclusion

Superluminal neutrino observed in experiments [2, 3] cannot be a free tachyon because it mass (3) is not enough to correspond the observed velocity (8).

The dependence (13) of the neutrino velocity \(v \) on the energy \(E \) may give much information about its energy spectrum (14). It can be taken as a power law (28) with parameters (26) and (27). It should be emphasized that parameter \(a \) in (28) must be positive, and the real energy spectrum lays somewhere between \(E = p + 1.5 \times 10^{-5} p^{1.18} \) and \(E = p + 4.15 \times 10^{-4} p^{0.4} \). There is no possibility to establish \(a \) and \(A \) at high accuracy because of errors of experimental data. It is impossible even to clarify whether \(a > 1 \) or \(a < 1 \) and whether function \(v[E] \) is monotonically increasing. Of course, new measurements will reveal the exact energy spectrum of neutrino and clarify its physical nature. Now we can only state that superluminal neutrino is not a free tachyon and that the second term in the right side of (28) may give a hint to nonlinear self-interaction or external field acting on neutrino. It is the subject of further theoretical work.

The author is grateful to Erwin Schmidt for discussions.

References

[1] S. A. Thomas, F. B. Abdalla, and O. Lahav, Phys. Rev. Lett. 105, 031301 (2010). arXiv:0911.5291v2 [astro-ph.CO]

[2] T. Adam et al. [OPERA Collaboration], Measurement of the neutrino velocity with the OPERA detector in the CNGS beam, arXiv:1109.4897 [hep-ex].
[3] P. Adamson et al. [MINOS Collaboration], Phys. Rev. D 76 (2007) 072005. arXiv:0706.0437 [hep-ex]

[4] K. Hirata et al [Kamiokande-II Collaboration], Phys. Rev. Lett. 58 (1987) 1490.

[5] G. Dvali and A. Vikman, *Price for Environmental Neutrino-Superluminality*, arXiv:1109.5685 [hep-ph]. L. Iorio, Environmental fifth-force hypothesis for the OPERA superluminal neutrino phenomenology: constraints from orbital motions around the Earth, arXiv:1109.6249 [gr-qc]. A. Kehagias, *Relativistic Superluminal Neutrinos*, arXiv:1109.6312 [hep-ph]. F.R. Klinkhamer, *Superluminal muon-neutrino velocity from a Fermi-point-splitting model of Lorentz violation*, arXiv:1109.5671 [hep-ph]. R. A Konoplya, *Superluminal neutrinos and the tachyon’s stability in the rotating Universe*, arXiv:1109.6215 [hep-th]. M. Matone, *Superluminal Neutrinos and a Curious Phenomenon in the Relativistic Quantum Hamilton-Jacobi Equation*, arXiv:1109.6631 [hep-ph]. J. W. Moffat, *Bimetric Relativity and the Opera Neutrino Experiment*, arXiv:1110.1330v3 [hep-ph]. A. Nicolaidis, *Neutrino Shortcuts in Spacetime*, arXiv:1109.6354 [hep-ph]. E. N. Saridakis, *Superluminal neutrinos in Horava-Lifshitz gravity*, arXIV:1110.0697v1 [GR-QC]. F. Tamburini and M. Laveder, *Apparent Lorentz violation with superluminal Majorana neutrinos at OPERA?* arXiv:1109.5445 [HEP-PH]. P. Wang, H. Wu and H. Yang, *Superluminal neutrinos and domain walls*, arXiv:1109.6930 [hep-ph].

[6] N. D. Hari Dass, *OPERA, SN1987a and energy dependence of superluminal neutrino velocity*, arXiv:1110.0351 [hep-ph]

[7] G. Amelino-Camelia, G. Gubitosi, N. Loret, F. Mercati, G. Rosati, and P. Lipari, *OPERA-reassessing data on the energy dependence of the speed of neutrinos*, arXiv:1109.5172 [hep-ph]

[8] G. Cacciapaglia, A. Deandrea, and L. Panizzi, JHEP 11, 137, (2011). arXiv:1109.4980v1 [hep-ph]