Identification of the woody biomasses in Southwest, Nigeria as potential energy feedstocks in thermal power plants for air pollution control

F. B. Elehinafe¹*, O. B. Okedere², J. A. Sonibare³ and A. O. Mamudu¹

Abstract: This study identified one hundred samples of woody biomasses in the southwest, Nigerian. The woody biomass samples identified were collected from different saw mills, farms and kitchens in Osun State, Nigeria. The identification of the woody biomass samples was done using literature materials and at a herbarium in the Botany Department, Obafemi Awolowo University, Nigeria, using the vegetative parts of their trees. The identification was carried out to know the numerical availability, the family or English names, the common names and the botanical names of the southwest Nigeria woody biomasses. From the findings, 100 samples of the woody biomasses were identified of 39 families and classes of hard woody biomasses and soft woody biomasses out of which only two are soft and rest are hard. It was discovered that Southwest, Nigeria has the capacity to embark on the massive production of these woody biomasses identified due to her land mass of 77,818 km² comprising 85 forests. In conclusion, serious investment in the propagation of these energy crops would lead to the production of woody masses to serve as feedstocks in thermal power plants for sustainability in power supply, air pollution control and employment opportunities.

Subjects: Power & Energy; Renewable Energy; Clean Tech; Renewable Energy

ABOUT THE AUTHORS

Francis B. Elehinafe holds a PhD degree in Chemical Engineering in Obafemi Awolowo University, Ile-Ife, Osun State, Nigeria. He is currently a lecturer and researcher at Covenant University, Ota, Ogun State, Nigeria. His research areas include environmental pollution (monitoring, analysis, modelling and control); waste management; and renewable energy.

Oyetunji B. Okedere’s research interest include air pollution (monitoring, analysis, modelling and control), and renewable energy.

Angela O. Mamudu’s is a researcher with interest in process optimization; health, safety and environment; plant design; petroleum refining; and petrochemicals.

Ademola J. Sonibare’s research interest include air pollution (monitoring, analysis, modelling and control)

PUBLIC INTEREST STATEMENT

Woody biomasses when utilized as fuel discharge carbon recently removed from the air, thereby, hypothetically not expanding GHG levels in the atmosphere. The GHG discharges during the burning of woody biomass are thought to be equivalent to that taken from the atmosphere through the process of photosynthesis during woody biomasses were growing. Woody biomasses as sources of energy do not fluctuate like other renewable sources of energy. For example, solar energy is not available during cloud cover and rainfall, hydro-electricity drops during the dry season. Seasons do not affect the supply of fuel-woods once trees have grown to the peak in sizes, numbers and as the ripe ones are being felled, they are replanted. So, power plants fired using woody feedstocks would never have a down time in operations. Hence, air emissions associated with the combustion of fossil fuels are controlled.
Keywords: Woody biomass; energy feedstocks; thermal conversion; power plants; air pollution control

1. Introduction

Air Pollution is a huge concern faced by the world today and impacts all human beings in so many different ways. The decisions concerning the fight against air pollution should be guided by the understanding that economic development, social development and environmental protection are interdependent and mutually reinforcing components of sustainable development (Ogbonnaya et al., 2007; Ganesan et al., 2015). The growing interest in moving energy generation away from petroleum fuels and toward alternative means is pulling together considerations for the utilization of renewable energy sources to help meet the global energy needs and sustainability of the environment. Thus, the previous decade has witnessed an increasing attention for understanding the roles the renewable energy sources can play in the energy adequacy and a quantum rise in research support into conversion technologies and obtainability as reported by a number of authors (Ganesan et al., 2013; Hoseinzadeh et al., 2020; Javadi et al., 2020; Mason et al., 2009; Siamak et al., 2020).

Nigeria is enriched with adequate renewable sources of energy assets to meet its present and future growth and development prerequisites. Nonetheless, hydropower is the main reasonable resource at present exploited and connected to the network of electricity grid (Nnaji et al., 2010). Sourcing for renewable and sustainable energy development and awareness creation in Nigeria is driven by, in addition to other things, the ongoing increment in fossil fuel prices, the inaccessibility of power supply to the greater part of the Nigerians and the significant losses associated with cost, energy during grid extension and air pollution control. The Nigerian government has put forth attempts through a lot of endeavours, policies and programmes to encourage private investments to go into renewable energy exploitation (Ogbonnaya et al., 2007). Notwithstanding, there are impediments, primarily because of technical and money-related hindrances, that should be addressed for this to be a reality. More importantly, the carbon, sulphur, nitrogen and ash contents of the woody biomasses are insignificant and mild to constitute air pollution (Boluwaji et al., 2019) and the energy contents of woody biomasses are at par with those of the fossils.

In Nigeria, the absolute value of both the woody and non-woody products of forest just as their ecological functions is tremendous however not totally quantifiable (Daniel & Babatunde Hope, 2020). Generally, the forest is underrated in its embedded value within the government economic reckoning of Nigerian woody vegetation assets comprise the thick forest, bushland, woodland, trees on farmlands and plantation. Every one of these different resources adds to production, conservation and protection functions of the national vegetation. In the nation, studies have indicated that forest reserves extend to 10 million hectares, which represents about 10% of a land region of roughly 96.2 million hectares (Adelakun & Olugbade, 2019). Nigeria is well geographically located for maximum rainfall and temperature throughout the year for plant growth thus for woody biomass production (Agboola, 1979). There are a lot of woody biomasses that could be used as feedstocks for power generation in this part of the globe.

Southwestern Nigeria has eighty-five forest reserves with a total area cover of 842,499 hectares (Adelakun & Olugbade, 2019). The climate of the region is tropical naturally and it is portrayed by dry and wet seasons. The temperature ranges somewhere in the range of 21°C and 34°C while the annual precipitation ranges from 1500 mm to 3000 mm (Adelakun & Olugbade, 2019). The wet season is related with the southwest monsoon winds from the Atlantic Ocean while the dry season is associated with the northeast trade wind from the Sahara Desert. Agboola (1979) reported that the vegetation in Southwest, Nigeria comprises mangrove forest and fresh water swamp at the belt region, the low land in primary forest zone stretching inland to Ogun State and part of Ondo State while the secondary forest is towards the northern borderline where southern savannah and derived savannah likewise exist. This forest area of the southwest is enough to meet the energy
need of Nigeria through woody biomass production for power generation if serious attention is paid to it by the government.

Consumption of petroleum fuels and other fossils releases carbon put away underneath the crust of the earth for centuries into the air, a crucial part of the environment as ozone-depleting substances called greenhouse gases (GHG). Be that as it may, these gasses are answerable for a global temperature alteration (Demirbas, 2005; Odunlami Olayemi et al., 2018; Ganesan et al., 2015). Then again, woody biomass when utilized as fuel discharge carbon recently removed from the air, thereby, hypothetically not expanding GHG levels in the atmosphere. The GHG discharges during the burning of woody biomass are thought to be equivalent to that taken from the atmosphere through the process of photosynthesis during woody biomasses were growing (Boluwaj et al., 2019; Demirbas, 2005), particularly on account of agricultural residues and forest (Biagini et al., 2006). In any case, a general life cycle investigation has demonstrated a rise in GHG emissions for woody biomass usage for biofuels (ICF, 2009). The rise in GHG emissions was the consequence of the utilization of fossils for energy production during different tasks engaged with, in supply-chain logistics (Nitschke & Innes, 2013). Then again, revealed that woody biomass gathering from sustainably managed forests really diminishes net GHG emissions, in this way, making it carbon negative.

Fossil-fired thermal plants, unlike biomass-fired thermal plants, produce large quantities of Sulphur IV oxide (SO\textsubscript{2}) and nitrogen oxides (NO\textsubscript{x}), the basic deleterious emissions in the acid rain. Acid rain increases the pH of water bodies, and damages the vegetation and seaside biological systems (Elehinafe Francis et al., 2017; Piotr, 2020; Trang et al., 2020). SO\textsubscript{2} and NO\textsubscript{x} engender particulate formation. It is reported by US EPA in 2004 that ozone (smog) and nitrates are formed with NO\textsubscript{x} as precursors. Ozone mars the functions of lungs and diminishes the yields of numerous economically significant agricultural plants. Nitrates in precipitation make water bodies over-enriched, causing algal sprouts that kill aquatic and hamper biodiversity.

Woody biomasses as sources of energy do not fluctuate like other renewable sources of energy. For example, solar energy is not available during cloud cover and rainfall, hydro-electricity drops during the dry season. Seasons do not affect the supply of fuelwoods once trees have grown to the peak in sizes, numbers and as the ripe ones are being felled, they are replanted (Balat et al., 2009). So, power plants fired using woody feedstocks would never have a down time in operations. Hence, air emissions associated with the combustion of fossil fuels are controlled. Considering woody biomass potentials Nigeria has and the environment, there is need to identify, as many as possible, the available woody biomasses in terms of trees in Nigeria to the knowledge of investors, government and researchers.

2. Methodology

2.1. The study area

The study area is Southwest Nigeria which comprises Oyo, Ekiti, Ondo, Osun, Ogun, and Lagos States (Figure 1). The area is between Latitudes 6° 211 and 8° 371 N and Longitudes 2° 311 and 6° 001 East. The study area has an approximate land area of about 77,818 km2 and 85 forest reserves with a forest area covering 842,499 hectares as reported by Faleyimu and Agbeja (2012). The climate of Southwest Nigeria is tropical and it is characterized by dry and wet seasons. The temperature ranges between 21°C and 34°C while the annual rainfall ranges between 1500 mm and 3000 mm (Agboola, 1979). The wet season is connected with the Southwest monsoon winds from the Atlantic Ocean and the dry season is associated with the northeast trade winds from the Sahara desert. According to the report of Oluseyi (2014), the vegetation in Southwest, Nigeria is made up of fresh water swamp and mangrove forest at the belts, the low land in forest stretches inland to Ogun and part of Ondo state while the secondary forest is towards the northern boundary where derived and southern Savannah exist.
2.2. Procedure for identification woody biomasses in Southwest, Nigeria

The woody biomass samples identified in this work were collected from different saw mills, farms and kitchens in Osun State, Nigeria. One hundred (100) samples of different common woody biomasses were gotten. Literature materials (Abdulrahman et al., 2006; Erakhumen et al., 2010; Oladunmoye & Kehinde, 2011; Wahab et al., 2013) were used to identify many of the woody biomasses in translating the vernacular name to the common, family or English and botanical names as well as the woody types—hard or soft. Flowers and fruits as well as vegetative parts of the rest whose vernacular names could not be traced to the common and botanical names in the literature, were taken to the herbarium of Botany Department, Obafemi Awolowo University, Ile-Ife for identification. The woody biomasses were classified into hard woody biomasses and soft woody biomasses.

3. Results and discussion

The results of the identification, nomenclature and classification are presented in Table 1. The identification was carried out to know the common names, the family or English names and the botanical names of the southwest Nigeria woody biomasses. The same categories of woody biomasses are processed at all the saw-mills visited. This is corroborated by the work of Olufemi et al. (2012) that the same kinds of woody biomasses are present in southwest Nigeria. One hundred samples of the woody biomasses identified were grouped into 39 families and classified into hard woody biomasses and soft woody biomasses out of which only two are soft and rest are hard.

From the numerical distribution of the woody biomasses based on families, the woody biomasses comprise 1 of Bombaceae, Rhizophoraceae, Pooceae, Myrtaceae, Annonaceae, Gentianaceae, Myristiceae, Boraginaceae, Lecythidaceae, Phyllanthaceae, menispermaceae, Vitaceae, Urticaceae, Pinaceae, Asteraceae, Rosaceae, Fagaceae, Olaceae and Acanthaceae; 2 of Clusiaceae, Rubiaceae, Lamiaceae, Irvingiaceae, Sapotaceae, leguminoceae, Bignoniaceae and Sapindaceae; 3 of Sterculiaceae, Apocynaceae; 4 of Arecaaceae and Combretaceae; 5 of Meliaceae and Euphorbiaceae; 6 of Moraceae; 7 of Rutaceae; 11 of Malvaceae and 14 of Fabaceae. Ninety-eight of them are hard woody biomasses while two are soft woody biomasses (Bombax buonopozense from the family of Malvaceae and Pinus ponderosa from the family of Pinaceae). From the identification and nomenclature of the woody biomasses, the Fabaceae family is most abundant, 14%, followed by the Malvaceae family, 11%. According to Richardson et al. (2011), they have many species, grow and mature faster than other families. They are also resistant to climatic and edaphic factors. Fabaceae and Malvaceae families are known for their naturalization and invasion potential for they are mostly
S/N	Botanical name	Family	Common name	Wood type
1	Adansonia digitata	Malvaceae	Baobab	Hard woody biomass
2	Afrormosia elata	Fabaceae	Shedum	Hard woody biomass
3	Albizia gummifera	Fabaceae	Ayinre Banaban	Hard woody biomass
4	Anacardium occidentale	Anacardiaceae	Cashew	Hard woody biomass
5	Anogeissus leiocarpus	Combretaceae	Orin Dudu	Hard woody biomass
6	Antiaris africana	Moraceae	Orin	Hard woody biomass
7	Anthocleista vogelii	Gentianaceae	Sapo sapo	Hard woody biomass
8	Antrocaryon microster	Anacardiaceae	Akikogbon	Hard woody biomass
9	Artocarpus altiss	Moraceae	Bread fruit	Hard woody biomass
10	Asteromyrtus symphyocarpa	Myrtaceae	Waria	Hard woody biomass
11	Alstonia boonei	Apocynaceae	Ahun funfun	Hard woody biomass
12	Azadirachta indica	Meliaceae	Dongoyaro	Hard woody biomass
13	Brachystegia leonensis	Fabaceae	Ako	Hard woody biomass
14	Bytraria marginata	Acanthaceae	Eso	Hard woody biomass
15	Cassia fistula	Fabaceae	Cassia	Hard woody biomass
16	Celtis zenkeri	Ulmaceae	Ita	Hard woody biomass
17	Chrysophyllum africunum	Menispermaceae	Ato	Hard woody biomass
18	Chrysophyllum africana	Sapotaceae	Agbalumo	Hard woody biomass
19	Cissus adenopoda	Vitaceae	Gbolagbola	Hard woody biomass
20	Citrus limon	Rutaceae	Lemon	Hard woody biomass
21	Citrus sinensis	Rutaceae	Osan pupa	Hard woody biomass
22	Citrus paradisi	Rutaceae	Osan wewe	Hard woody biomass

(Continued)
S/N	Botanical name	Family	Common name	Wood type
27	Citrus aurantiifolia	Rutaceae	Grape	Hard woody biomass
28	Citrus medica	Rutaceae	Tanjamini	Hard woody biomass
29	Cleistopholis patens	Annonaceae	Apaka	Hard woody biomass
30	Cocos nucifera	Arecaceae	Agbon	Hard woody biomass
31	Cola millenii	Sterculiaceae		Hard woody biomass
32	Cola acuminata	Sterculiaceae		Hard woody biomass
33	Cola nitida	Sterculiaceae	Obi Gbanja	Hard woody biomass
34	Cordia millenii	Boraginaceae	Omoh	Hard woody biomass
35	Crassocephalum biafra	Asteraceae	Gbalagi	Hard woody biomass
36	Cylicodiscus gabunensis	Fabaceae	Okan	Hard woody biomass
37	Daniella oliveri	Leguminaceae	Iyaa	Hard woody biomass
38	Daniella agea	Leguminaceae	Asunwole	Hard woody biomass
39	Delonix regia	Fabaceae	Panseke	Hard woody biomass
40	Diospyros crassiflora	Fabaceae	Ebony	Hard woody biomass
41	Elaeis guineensis	Arecaceae	Ope Igbo	Hard woody biomass
42	Entanda gigas	Fabaceae	Agbaa	Hard woody biomass
43	Entadophragma cylindricum	Meliaceae	Sapelle Mahogany	Hard woody biomass
44	Eucalyptus marginata.	Myrtaceae	Jarrah	Hard woody biomass
45	Ficus thionningii	Moraceae	Odanko	Hard woody biomass
46	Ficus carica	Moraceae	Opoto	Hard woody biomass
47	Ficus mucuso	Moraceae	Obobo	Hard woody biomass
48	Funtumia elastica	Apocynaceae	Ire	Hard woody biomass
49	Garcinia kola	Clusaceae	Orogbo	Hard woody biomass
50	Gliricidia sepium	Fabaceae	Agunmonoyle	Hard woody biomass
51	Gmelina arborea	Lamiaceae	Milaina	Hard woody biomass
52	Hevea brasiliensis	Euphorbiaceae	Para Rubber	Hard woody biomass

(Continued)
S/N	Botanical name	Family	Common name	Wood type
53	Hildegardia barteri	Malvaceae	Okurugbedu	Hard woody biomass
54	Hymenocardia acida	Phyllanthaceae	Kampalaga	Hard woody biomass
55	Irvingia grandifolia	Irvingaceae	Karakoro	Hard woody biomass
56	Irvingia excelsa	Irvingiaceae	Oro (wild Mango)	Hard woody biomass
57	Isoberlina doka	Fabaceae	Babo	Hard woody biomass
58	Khaya ivorensis	Meliaceae	Ogano	Hard woody biomass
59	Lecaniodiscus cupanioides	Sapindaceae	Tsin	Hard woody biomass
60	Lophira lanceolata	Ochnaceae	Pahan	Hard woody biomass
61	Lova trichioiodes	Meliaceae	Tiger wood	Hard woody biomass
62	Macaranga barteri	Euphorbiaceae	Asasa	Hard woody biomass
63	Mangifera indica	Anacardiaceae	Mango	Hard woody biomass
64	Mansonia altissima	Malvaceae	Mansonia	Hard woody biomass
65	Milicia excelsa	Moraceae	Iroko	Hard woody biomass
66	Mitragyna ciliata	Rubiaceae	Abora	Hard woody biomass
67	Musanga cecropioides	Urticaeae	Soft woody biomass	Hard woody biomass
68	Napoleona vogelii	Lecythidaceae	Ito	Hard woody biomass
69	Nauclea diderrichii	Rubiaceae	Opepe	Hard woody biomass
70	Nesogordonia paparivera	Malvaceae	Oro	Hard woody biomass
71	Newbouldia laevis	Bignoniceae	Akoko	Hard woody biomass
72	Parkia biglobosa	Fabaceae	Trugba	Hard woody biomass
73	Perciguaria daemia	Apocynaceae	Koleagbe	Hard woody biomass
74	Phoenix dactylifera	Arecaceae	Date Palm	Hard woody biomass
75	Pinus ponderosa	Pinaceae	Pine	Hard woody biomass
76	Piptadeniosperm africanum	Rosaceae	Agboin	Hard woody biomass
77	Poga oleosa	Rhizophoraceae	Eku- Ijebu	Hard woody biomass
78	Prunus dulcis	Rutaceae	Fruit	Hard woody biomass

(Continued)
leguminous plants (Richardson et al., 2011). They have noodles in their roots that house nitrogen-fixing bacteria. So, the soil on which they grow is always fertile. By these, in the absence of deforestation, southwest, Nigeria would never run out of supply of feedstocks to power plants if their utilization as energy carriers, is given attention by the governments and private investors.

Most of the woody biomasses identified are hard, 98%, for they are much more abundant than soft ones in the region. Woody biomasses contain varying amounts of cellulose, hemicellulose, lignin, proteins, simple sugars, starches and small amounts of lipids. They additionally contain

S/N	Botanical name	Family	Common name	Wood type
79	Pterygota macaropa	Malvaceae	Poroporo	Hard woody biomass
80	Pterocarpus erinaceus	Fabaceae	Gbigbigbi	Hard woody biomass
81	Pterocarpus osun	Leguminaceae	Osun Pupa	Hard woody biomass
82	Pycnanthus angolensis	Myristicaceae	Akamu	Hard woody biomass
83	Quercus robur	Fagaceae	Ayan Iroko	Hard woody biomass
84	Raphia africana	Areaceae	Ayan Oguro	Hard woody biomass
85	Ricnodendron heudelotti	Euphorbiaceae	Orunmodo	Hard woody biomass
86	Spondias mombin	Anacardiaceae	Iyeye	Hard woody biomass
87	Sterculia rhinopetala	Malvaceae	Aye	Hard woody biomass
88	Strombasia pustulata	Olacaceae	Itako	Hard woody biomass
89	Strychnos spinosa	Loganiaceae	Atako	Hard woody biomass
90	Swietenia macrophylla	Meliaceae	Mahogany	Hard woody biomass
91	Symphonia globulifera	Clusaceae	Okilolo	Hard woody biomass
92	Tectona grandis	Lamiaceae	Teak	Hard woody biomass
93	Terminalia glaucescens	Combretaceae	Idi	Hard woody biomass
94	Terminalia ivorensis	Combretaceae	Idigbo	Hard woody biomass
95	Terminalia superba	Combretaceae	Afara	Hard woody biomass
96	Theobroma cacao	Malvaceae	Cocoa	Hard woody biomass
97	Triplochiton scleroxylon	Malvaceae	Obeche	Hard woody biomass
98	Uapaca heudelotii	Euphorbiaceae	Akun	Hard woody biomass
99	Vitellaria paradoxa	Sapotaceae	Emi	Hard woody biomass
100	Zanthoxylum leprieuli	Rutaceae	Ata	Hard woody biomass
inorganic components and a small amount of water. Among these constituents, hemicellulose, lignin, and cellulose are the three significant constituents with respect to energy or heating value of any woody biomass (Zhang et al., 2010). Lignocellulose is the blend of hemicelluloses, lignin, and cellulose, which involves around half of the plant matter manufactured during photosynthesis and make up the most bountiful renewable natural asset on earth. Cellulose, lignin and hemicelluloses are sturdily interlinked in lignocelluloses and are bonded chemically, by covalent cross-linkages. The biggest part of any lingo-cellulosic material is cellulose, trailed by hemicellulose and then lignin (Zhang et al., 2010). Though hemicellulose and cellulose are macromolecules built from various sugars; lignin is a polymer aromatic in nature produced from phenylpropanoid forerunners.

There are significant differences between hard woody biomasses and soft woody biomasses according to their compositions. Hard woody biomasses are on average about 10% denser than softwoods due to higher lignin and less moisture contents (Braaten & Sellers, 2013). These make hardwoods more useful for energy generation. Southwest, Nigeria is highly favoured naturally with hard woody biomasses to run her thermal plants on renewable feedstocks for air pollution control.

4. Conclusion
Considering the harmful effects of fossil fuels; the advantages of renewable energy sources and the challenges the world faces to have sustainable energy production and environment while reviewing the literature, and the results obtained in this study, i.e., the numerous woody biomasses of families of Bombaceae, Rhizophoraceae, Poaceae, Myrtaceae, Annonaceae, Gentianaceae, Myristiceae, Boraginaceae, Lecythidaceae, Phyllanthaceae, menispermaceae, Vitaceae, Urticaceae, Pinaceae, Asteraceae, Rosaceae, Fagaceae, Olacaceae and Acanthaceae; Clusiaceae, Rubiaceae, Lamiaceae, Irvingiaceae, Sapotaceae, leguminosae, Bignoniaceae and Sapindaceae; Sterculiaceae, Apocynaceae; Arecaeae and Combretaceae; Meliaceae and Euphorbiaceae; Moraceae; Rutaceae; Malvaceae and Fabaceae are available in southwest, Nigeria. Hence, the following conclusions were arrived at: the woody biomasses identified are many enough to be termed energy crops in the southwest, Nigeria for them to receive attention from investors and governments; the nation has the land mass that can support massive production of these woody biomasses identified. Employment opportunities would also be created through investment in the propagation of these energy crops in the region. It is expedient that the stakeholders look into these for the attendant benefits.

Acknowledgements
The authors would like to thank Covenant University Centre for Research Innovation and Discovery (CURCID), Ota, Nigeria for its support in making the publication of this research possible.

Funding
The authors received no direct funding for this research.

Author details
F. B. Elehinafe
E-mail: francis.elehinafe@covenantuniversity.edu.ng
O. B. Okedere
J. A. Sonibare
A. O. Mamudu
ORCID ID: http://orcid.org/0000-0001-9680-0886
1 Department of Chemical Engineering, Covenant University, Ota, Ogun State, Nigeria.
2 Faculty of Engineering, Osun State University, Osogbo, Nigeria.
3 Department of Chemical Engineering, Obafemi Awolowo University, Ile-Ife, Nigeria.

Citation information
Cite this article as: Identification of the woody biomasses in Southwest, Nigeria as potential energy feedstocks in thermal power plants for air pollution control, F. B. Elehinafe, O. B. Okedere, J. A. Sonibare & A. O. Mamudu, Cogent Engineering (2021), 8: 1868146.

References
Abdulrahman, A. A., Fajemiroye, O. J., & Oladele, F. A. (2006). Ethnobotanical study of economic trees: Uses of trees as timbers and fuelwoods in Ilorin emirate of Kwara State, Nigeria. Ethnobotanical Leaflets, 1(1), Article 13. https://opensliuc.lib.siu.edu/ebll/val2006/iss1/13
Adelokun, G. I., & Olugbade, A. N. (2019). Analysis of pattern and extent of deforestation In Akure Forest Reserve, Ondo State, Nigeria. Journal of Environmental.
Agboola, S. A. (1979). An agricultural atlas of Nigeria. Oxford University Press. https://global.oup.com/academic/product/agricultural-atlas-of-nigeria-9780195754087?lang=ençse
Balat, M., Balat, M., Kirtay, E., & Balat, H. (2009). Main routes for the thermo-conversion of biomass into fuels and chemicals. Part 1: Pyrolysis systems. Energy Conversion and Management, 50(12), 3147–3157. https://doi.org/10.1016/j.enconman.2009.08.014
Biagini, E., Barontini, F., & Tognotti, L. (2006). Devolatilization of biomass fuels and biomass components studied by TG/FTIR technique. Industrial & Engineering Chemistry Research, 45(13), 4486–4493. https://doi.org/10.1021/ie051404
Boluwoji, E. F., Babatunde, O. O., Olayeni, O., Elizabeth, A. O. T., Onose, M. A., & Ademola, S. J. (2019). Comparative study of non-metallic contents of sawdust of different wood species nd cool species in
Nigeria. Petroleum and Coal, 61(5), 1183–1189. https://www.vuruopk/wp-content/uploads/2019/10/PC-X-2019_Elehinofe-99_rev1.pdf

Braaten, R. W., & Sellers, T. G. (2013). Prince Edward Island wood chip-fired boiler performance. Division report ERL 92–43 (TR). Energy Research Laboratories, Energy, Mines and Resources Canada.

Daniel, A. A., & Babatunde Hope, O. J. O. (2020). Species Diversity, volume determination and structure of protected forests for in-situ biodiversity conservation. International Journal of Conservation Science, 11(1), 133–144. http://ijcs.org/public/UI/JCS-20-13_Agbolade.pdf

Demirbas, A. (2005). Potential applications of renewable energy sources, biomass combustion problems in boiler power systems and combustion related environmental issues. Progress in Energy and Combustion Science, 31(2), 171–192. https://doi.org/10.1016/j.pecs.2005.02.002

Elehinofe, Francis, B., Odedere Oyetunji, B., Fokinle Barnidele, S., & Sonibare Jacob, A. (2017). Assessment of sawdust of different wood species in Southwestern Nigeria as source of energy. Energy Sources, Port A: Recovery, Utilization, and Environmental Effects, 39(18). https://doi.org/10.1080/15567036.2017.1384869.

Energy Information Administration. 2007b. Renewables and alternate fuels, wood and wood waste. Retrieved April 20, 2015, from http://www.eia.doe.gov/cneaf/solar_renewables/page/wood/wood.html.

Erahkumen, A. A., Ogunsanwo, O. V., & Ajewole, O. I. (2010). Assessment of some other traditional uses of accepted agroforestry fuelwood species in okinyele and idi local Government Areas, Oyo State, Nigeria. International Journal of Social Forestry, 3(1), 49–65. http://ir.library.ui.edu/handle/123456789/3409

Faleyimu, O. I., & Agbeje, B. O. (2012). Constraints to forest policy implementation in the Southwest Nigeria: Causes, Consequences and Cure. Resources and Environment, 2(2), 37–44. https://doi.org/10.5923/j.re.20120202.06.

Ganesan, P., Rajakarunakaran, S., Thirugnanasambandam, M., & Devaraj, D. (2015). The influence of floor tile colour on lighting and energy saving. In C. Kamalakannan, L. Suresh, S. Dash, & B. Panigrahi (Eds.), Power electronics and renewable energy systems. lecture notes in electrical engineering (Vol. 326). Springer. https://doi.org/10.1007/978-81-322-2119-7_18.

Ganesan, P., Rajakarunakaran, S., Thirugnanasambandam, M., & Devaraj, D. (2013). Estimation of energy and carbon saving potential in industrial lighting system. Advanced Materials Research, 2013(768), 272–279. https://doi.org/10.4028/www.scientific.net/AMR.768.272.

Hoseinzadeh, S., Roya Yargholi Hamed Karimian, P., & Heyns, S. (2020). Exergo-economic analysis and optimization of reverse osmosis desalination integrated with geothermal energy, 39(5). https://doi.org/10.1002/ep.13405.

ICF. (2009). Lifecycle greenhouse gas emissions due to increased biofuel production. Fairfax. Retrieved June 2013, from http://epa.gov/lrens/renewablefuels/erfs2-peer-reviewmodel.

Izuchukwu, E. N., Chukw, A. P., & Peter, I. K. (2020). Sustainable development through green-themed environmental impact assessment: Lessons for developing countries. Journal of Environment and Earth Science, 10(5), 2020.

Javadi, M. A., Hoseinzadeh, S., Ghasemiasl, R., Heyns, P. S., & Chamkha, A. J. (2020). Sensitivity analysis of combined cycle parameters on exergy, economic, and environmental of a power plant. Journal of Thermal Analysis and Calorimetry, 139(1), 519–525. https://doi.org/10.1007/s10973-019-08399-y

Mason, C. L., Lipke, B. R., & Zobrist, K. W. (2009). Wood to energy in Washington: Imperatives, opportunities, and obstacles to progress. Report to the Washington State Legislature. https://www.ruraltech.org/pubs/reports/2009/wood_to_energy_pdf/Wood_to_Energy_full_report.pdf.

Nitschke, C. R., & Innes, J. L. (2013). Integrating climate change into forest management in south-central British Columbia: An assessment of landscape vulnerability and development of a climate-smart framework. Forest Ecology and Management, 256(3), 313–327. https://doi.org/10.1016/j.foreco.2007.07.026.

Nnoji, C. E., Uzoma, C. C., & Chukwu, J. O. (2010). The role of renewable energy resources in poverty alleviation and sustainable development in Nigeria. Continental Journal Social Sciences, 3, 31–37. file:///C:/Users/user/Downloads/ren.Engyrole.pdf.

Ogunnaya, I. O., Chikuni, E., & Govender, P. (2007). Prospect of wind energy in Nigeria. Accessed October 2020, from http://active.cput.ac.za/energy/web/due/papers/2007/0230_Okoro.pdf.

Oladunmoye, M. K., & Rehinde, F. Y. (2011). Ethno-botanical survey of medicinal plants used in treating viral infections among yoruba tribe of South Western Nigeria. African Journal of Microbiology Research, 5(19), 2991–3004. https://doi.org/10.5897/AJMR10.004.

Olufemi, B., Akindeni, J. O., & Olaniran, S. O. (2012). Lumber recovery efficiency among selected sawmills in Akure, Nigeria. Druna Industria, 63(1), 15–18. https://doi.org/10.5552/drind2012.1111.

Oluseyi, A. O. (2014). The potential for wind energy in Nigeria. Wind Engineering, 34(3), 303–311. https://doi.org/10.1260/0309-524X.34.3.303.

Piotr, B. F. (2020). New technologies and innovative solutions in the development strategies of energy enterprises. HighTech and Innovation Journal, 1(2). https://doi.org/10.28991/HIJ-2020-01-02-01.

Richardson, D. M., Carruthers, J., Hui, C., Impson, F. A. C., Miller, J. T., Robertson, M. P., Rouget, M., Le Roux, J. J., & Widmark, U. (2011). Human-mediated introduction of Australian Acacia species—a global experiment in biogeography. Diversity and Distributions, 17(5), 771–787. https://doi.org/10.1111/j.1472-4642.2011.00824.x.

Siamak, H., Hadii, G. M., & Stephan, H. (2020). Application of hybrid systems in solution of low power generation at hot seasons for micro hydro systems. Renewable Energy, 160, 323–332. https://doi.org/10.1016/j.renene.2020.06.149.

Trang, G. T. T., Linh, N. H., Linh, N. T. T., & Kien, P. H. (2020). The study of dynamics heterogeneity in SiO2 liquid. HighTech and Innovation Journal, 1(1), 1–7. https://doi.org/10.28991/HIJ-2020-01-01-01.

Wahob, M. A., Okaleke, K. K., & Arope, A. A. (2013). Human activities relating to some economic trees in two local government councils, Osun State, Nigeria. International Journal of Agric Science, 3(4), 316–322. file:///C:/Users/user/Downloads/Human_activities relatin_to_some_econ.pdf.

Zhang, L., Xu, C., & Champagne, P. (2010). Overview of recent advances in thermo-chemical conversion of biomass. Energy Conversion and Management, 51(5), 969–982. https://doi.org/10.1016/j.enconman.2009.11.038.
