Synthesis of some new 1-(5-((1H-pyrazol-1-yl)methyl)-2-aryl-1,3,4-oxadiazo[2H]-yl) ethanone derivatives and study their antimicrobial activity

Mohammad Asif (✉️ aasif321@gmail.com)
Glocal School of Pharmacy, Glocal University, Mirzapur Pole, Saharanpur, Uttar Pradesh, India

Saad Alghamdi
Laboratory Medicine Department, Faculty of Applied Medical Sciences, Umm Al-Qura University, Makkah, 21955, Saudi Arabia

Mohammed M. Alshehri
Pharmacy Department, King Abdulaziz Medical City, Ministry of National Guard—Health Affairs, Saudi Arabia

Mehnaz Kamal
Department of Pharmaceutical Chemistry, College of Pharmacy, Prince Sattam bin Abdulaziz University, Al-Kharj, 11942, Kingdom of Saudi Arabia

Research Article

Keywords: Oxadiazole, pyrazole, antimicrobial activity, Schiff’s base, synthesis

DOI: https://doi.org/10.21203/rs.3.rs-358414/v1

License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License
Abstract

Ethyl 2-(1H-pyrazol-1-yl)acetate (1) was synthesized by the reaction of ethylchloroacetate with 1H-pyrazole. Then compound (1) refluxed with hydrazine hydrate to get 2-(1H-pyrazol-1-yl) acetohydrazide (2). Compound (2) was reaction with appropriate aryl aldehyde to get schiff bases N’-arylidine-2-(1H-pyrazol-1-yl)acetohydrazide derivatives (3a-3f). Schiff’s base (3a-3e) were cyclized by reflux with acetic anhydride to get new 1-(5-((1H-pyrazol-1-yl)methyl)-2-aryl-1,3,4-oxadiazol-3(2H)-yl)ethanone derivatives (4a-4e). The structures of the synthesized compounds were characterized by IR, 1H-NMR, 13C-NMR, mass spectra, and elemental analysis data. Synthesized compounds (4a-4e) were evaluated as antibacterial agents against some common pathogenic bacteria Gram-positive (Staphylococcus aureus, Streptococcus pyogenes) and Gram-negative bacteria (Escherichia coli, Psuedomonas aeruginosa). The result of antibacterial activity was compared with standard drugs (Ciprofloxacin and Tetracycline).

Introduction

Heterocyclic compounds have considerable attention from researchers because of their key role in the medicinal and pharmaceutical field. Pyrazole is a five-member ring heterocyclic compound, has some structural features with two nitrogen atoms in an adjacent position, and is also known as azole [1]. It has only one endocyclic double bond and is basic. Pyrazole is a versatile lead compound for designing potent bioactive agents. The studies of pyrazole derivatives revealed that they are very useful in pharmaceutical and agrochemical research. Pyrazoline derivatives displayed various types of pharmacological activities such as antibacterial, antifungal, antitubercular antiviral [2], antihistaminic [2], antidepressant [2], anti-inflammatory, antiarthritis [3], tranquillizing [4], anticancer [5, 6], antihypertensive [7], anti-arrhythmic [8], analeptic [9], anticonvulsant [10], antidiabetic activities [11], and antioxidant etc [1–5]. The pyrazole derivatives are quite stable and have inspired chemists to synthesize the new pyrazole derivatives. Mostly pyrazole is synthesized taking ethyl acetoacetate and substituted hydrazine as starting chemicals. Pyrazolone can be considered as an intermediate compound for the synthesis of various cyclic compounds of high biological activity.

1,3,4-Oxadiazole is a heterocyclic compound containing an oxygen atom and two nitrogen atoms in a five-membered ring. Substituted 1,3,4-oxadiazole derivatives have demonstrated a broad spectrum of biological properties in both pharmaceutical and agrochemical fields. More widely studied and interest was shown by researchers because of their many important chemical and biological activities [12–15]. 1,3,4-oxadiazole derivatives have been possessed diverse biological activities such as antimicrobial, antitubercular, antimalarial, antiviral [16–18], analgesic, anti-inflammatory, CNS depressant, anticonvulsant, hypnotic, sedative, muscle relaxants [19], insecticidal, herbicidal [20], antitumor, cytotoxic [21, 22], lipid peroxidation inhibitor, diuretic, antioxidant [23], etc. Therefore, 1,3,4-oxadiazoles have attracted researchers all over the world to work in this area of new drug development. An enormous amount of research was undertaken to synthesize these classes of compounds by employing traditional
methods, introducing new innovative methods and techniques, to reach the target molecules, and study their biological applications. In this study, we considered the synthesized derivatives of oxadiazole derived from 1H-pyrazole as in the scheme (I) and study its antimicrobial effect on some and Gram-positive and Gram-negative bacteria.

Materials And Methods

Materials

All the chemicals were procured from Merck, Loba Chem, and SD Fine Chemicals. The purity of compounds was checked by thin-layer chromatography (TLC). Infrared (IR) spectra were recorded on Bruker alpha T Spectrophotometer. 1H-NMR spectra were recorded on Bruker 400 MHz instruments in CDCl3/DMSO, using tetramethylsilane (TMS) as an internal standard. Mass spectra were recorded on the Jeol JMS-D300 instrument. All the compounds have given satisfactory 1H NMR, Mass, and FT-IR spectra.

Chemistry

Synthesis of ethyl 2-(1H-pyrazol-1-yl)acetate (1):

A mixture of pyrazole (0.1 mol) with ethyl chloroacetate (0.1 mol) in 50 ml of dry acetone in presence of potassium carbonate (3.0 gm) was reflux for 6 hr with stirring sat 80°C. The solvent evaporated and the reaction mixture was filtered and separated the product [24] and recrystallized from ethanol to get the solid product, Yield 72%. Chemical Formula: C7H10N2O2; Molecular Weight: 154.17; IR (cm⁻¹): 2985 (C-H, pyrazole), 1735 (C = O), 1610.50 (C = N), 1486 (C = C), 1065.22 (C-O-C); ¹HNMR (DMSO) δ (ppm): 6.50–7.75 (m, 3H, CH pyrazine), 5.20 (s, 2H, CH₂), 4.30 (t, 2H, CH₂), 1.52 (3H, CH₃); Ms (m/z): 154.07 (M⁺).

Synthesis of 2-(1H-pyrazol-1-yl)acetohydrazide (2):

A mixture of (0.1 mol) of compound 1 with (0.1 mol) of Hydrazine hydrate (80% in 30 ml of absolute ethanol were reflux for 3 hr, concentrate the remaining reaction mixture and cooled [25]. The crude product was separated by filtration and re-crystallized from ethanol to get solid product. Yield (80%), Chemical Formula: C₅H₈N₄O; Molecular Weight: 140.14; IR (cm⁻¹): 3447.35 (NH); 2980 (Ar-C-H), 1720 (C = O), 1614.50 (C = N), 1496 (C = C); ¹HNMR (DMSO) δ (ppm): 8.30 (s,1H, NH), 6.40–7.70 (m, 3H, CH pyrazine), 5.20 (s, 2H, CH₂), 4.37(s,2H, NH₂), 4.30 (t, 2H, CH₂), 1.52 (3H, CH₃); Ms (m/z): 140.07 (M⁺).

Synthesis of N-(arylidine)-2-(1H-pyrazole-1-yl)acetamide (3a-3e):

A mixture of compound 2 (0.1 mol) and appropriate aromatic aldehyde (0.1 mol) in (50 ml) of absolute ethanol, the mixture was reflex for 4 hrs and concentrated and cooled the reaction mixture [26]. The crude product was obtained, separated by filtration, and recrystallized from ethanol.
N'-{(4-hydroxybenzylidene)-2-(1H-pyrazol-1-yl)acetohydrazide (3a):}

Yield (65 %), Chemical Formula: C_{12}H_{12}N_{4}O_{2}; Molecular Weight: 244.25; IR υ cm^{-1} (KBr): 1677 (-(OC)N), 1450, 1556 (C = C), 1210 (-CN=), 1604 (C = N), 3450 (OH); ^1HNMR δ ppm: 8.4 (s, IH, CH), 8.30 (s,1H, NH), 6.8-8.0 (m, 7H, ArH), 5.6 (s, 1H, CH), 5.3 (s, 1H, OH); ^13C-NMRδ ppm: 170.0 (CO) 143 (N = CH), 160, 130.6, 126.3, 116 (6C, Ar); Ms (m/z): 244.10 (M^+).

N'-{(4-(dimethylamino)benzylidene)-2-(1H-pyrazol-1-yl)acetohydrazide (3b):}

Yield (68%); Chemical Formula: C_{14}H_{17}N_{5}O; Molecular Weight: 271.32; IR υ cm-1(KBr): 1692 ((OC)N-), 1458,1560 (C = C), 1229 (CN), 1600 (C = N), 2800 – 2290 (C-H aliphatic); ^1HNMR δ ppm: 8.38 (s, IH, CH), 8.30 (s,1H, NH), 6.5-8.0 (m, 7H, ArH), 5.60 (s, 1H, CH), 2.98 (s, 6H, CH3); ^13C-NMRδ ppm: 170.10 (CO) 144 (N = CH), 154, 128.6, 123.3, 112 (6C, Ar); 140, 130, 1.06 (3C, pyrazole), 41.4 (CH3); Ms (m/z): 271.14 (M^+).

N'-{(4-nitrobenzylidene)-2-(1H-pyrazol-1-yl)acetohydrazide (3c):}

Yield (70%); Chemical Formula: C_{12}H_{11}N_{5}O_{3}; Molecular Weight: 273.25; IR υ cm-1(KBr): 1685((OC)N-), 1448, 1552(-C = C), 1200 (CN), 1635(C = N), 1248 (C-O-C), 1102, (C-O-C); ^1HNMR δ ppm: 8.0 (s, 1H, NH) 8.3 (s, 1H, N = CH), 6.3–8.2 (m, 7H, ArH), 2.55 (s, 3H,CH3); ^13C-NMRδ ppm: 168 (CO), 150, 140, 124 (6C, Ar), 144 (N = CH), 140, 130, 1.06 (3C, pyrazole), 64 (CH2); Ms (m/z): 273.09 (M^+).

N'-{(4-methoxybenzylidene)-2-(1H-pyrazol-1-yl)acetohydrazide (3d):}

Yield (65%); Chemical Formula: C_{13}H_{14}N_{4}O_{2}; Molecular Weight: 258.28; IR υ cm-1(KBr): 1690 ((OC)N-), 1456–1558 (C = C), 1230 (CN), 1602 (C = N), 2805–2905 (C-H, aliphatic); ^1HNMR δ ppm: 8.6 (s, 1H, NH), 8.1 (s, 1H, N = CH) 6.00–8.0 (m, 7H, ArH), 4.0 (s, 3H,CH3); ^13C-NMRδ ppm: 168 (CO), 145 (N = CH), 163, 130, 126, 114 (6C, ArH), 140,130,105 (3C, pyrazole); Ms (m/z): 258.11 (M^+).

N'-benzylidene-2-(1H-pyrazol-1-yl)acetohydrazide (3e):}

Yield (71%); Chemical Formula: C_{12}H_{12}N_{4}O; Molecular Weight: 228.25; IR υ cm-1(KBr): 1684 ((OC)N-), 1438–1510 (C = C), 1169(CN), 1610 (C = N); ^1HNMR δ ppm: 8.5 (s, 1H, NH), 8.2 (s, 1H, N = CH) 6.20–8.0 (m, 7H, ArH), 5.60 (s, 2H, CH2); ^13C-NMR δ ppm: 168 (CO), 145 (N = CH), 134, 131, 129.2, 128.8 (6C, ArH), 140, 130, 106 (3C, pyrazole); Ms (m/z): 228.10 (M^+).
Synthesis of 5-(1H-pyrazol-1-yl)methyl)3-N-acetyl-2-(aryl)-1,3,4-(2H)-oxadiazole (4a-4e):

A mixture of appropriate Schiff base (A3-8) (0.1mol) with acetic anhydride (50 ml) was refluxed for 6 hr, then the solvent evaporated. The residue was poured into crushed ice. The crude product was obtained, was separated by filtration, and recrystallized from ethanol.

1-(5-((1H-pyrazol-1-yl)methyl)-2-(4-hydroxyphenyl)-1,3,4-oxadiazol-3(2H)-yl)ethanone (4a):

Yield (70%); Chemical Formula: C_{14}H_{14}N_{4}O_{3}; Molecular Weight: 286.29; IR ν cm\(^{-1}\) (KBr): 1710 ((OC)-N-), 1450, 1558 (C = C), 1210 (CN), 1610 (C = N), 3460 (OH); \(^1\)HNMR δ ppm: 6.20–7.80 (m, 7H, ArH), 6.8 (s, 1H, CH), 5.30 (s, 1H, OH), 4.90 (s, 2H, CH\(_2\)), 2.4 (s, 3H, CH\(_3\)); \(^{13}\)C-NMR δ ppm: 168 (CO), 156.5, 133, 128.3, 115.7 (6C, ArH), 139.6, 129.6, 105.9 (3C, pyrazole), 158.4, 83.5 (2C, oxadiazole), 58.9 (2C, CH\(_2\)), 23.4 (3C, CH\(_3\)); Ms (m/z): 286.11 (M\(^+\)).

1-(5-((1H-pyrazol-1-yl)methyl)-2-(4-(dimethylamino)phenyl)-1,3,4-oxadiazol-3(2H)-yl)ethanone (4b):

Yield (68%); Chemical Formula: C_{16}H_{19}N_{5}O_{2}; Molecular Weight: 313.35; IR ν cm\(^{-1}\) (KBr): 1710 (-(OC)-N-), 1456, 1558 (C = C), 1229(CN), 1598 (C = N), 1125 (COC), 2800–2900 (C-H aliphatic); \(^1\)HNMR δ ppm: 6.20–7.5 (m, 7H, ArH), 6.62 (s, 1H, oxadiazole), 4.90 (s, 2H, CH\(_2\)), 2.50 (s, 3H, CH\(_3\)) 2.4 (s, 3H, CH\(_3\)); \(^{13}\)C-NMR δ ppm: 169 (CO), 150.2, 130, 127.3, 112.7 (6C, ArH), 139.6, 129.6, 105.9 (3C, pyrazole), 158.4, 83.5 (2C, oxadiazole), 58.9 (2C, CH\(_2\)), 23.4 (3C, CH\(_3\)), 41.3 (6C, CH\(_3\)); Ms (m/z): 313.15 (M\(^+\)).

1-(5-((1H-pyrazol-1-yl)methyl)-2-(4-nitrophenyl)-1,3,4-oxadiazol-3(2H)-yl)ethanone (4c):

Yield (62%); Chemical Formula: C_{14}H_{13}N_{5}O_{4}; Molecular Weight: 315.28; IR ν cm\(^{-1}\) (KBr): 1700 ((OC)-N-), 1452,1558 (C = C), 1205 (CN), 1640 (C = N), 1120 (COC), 1250 (C-O-C), 1100 (C-O-C); \(^1\)HNMR δ ppm: 6.20–8.5 (m, 7H, ArH), 6.61 (s, 1H, oxadiazole), 4.92 (s, 2H, CH\(_2\)), 2.6 (s, 3H, CH\(_3\)) 2.4 (s, 3H, CH\(_3\)); \(^{13}\)C-NMR δ ppm: 168.9 (CO), 146.2, 145.8, 128.4, 125 (6C, ArH), 139.6, 129.6, 105.9 (3C, pyrazole), 158.2, 83.6 (2C, oxadiazole), 58.9 (2C, CH\(_2\)), 23.4 (3C, CH\(_3\)); Ms (m/z): 315.10 (M\(^+\)).

1-(5-((1H-pyrazol-1-yl)methyl)-2-(4-methoxyphenyl)-1,3,4-oxadiazol-3(2H)-yl)ethanone (4d):

Yield (58%); Chemical Formula: C_{15}H_{16}N_{4}O_{3}; Molecular Weight: 300.31; IR ν cm\(^{-1}\) (KBr): 1705 ((OC)-N-), 1457–1559 (C = C), 1228 (CN), 1604 (C = N), 1120 (COC), 2810–2905 (C-H aliphatic); \(^1\)HNMR δ ppm: 6.25–7.8 (m, 7H, ArH), 6.6 (s, 1H, oxadiazole), 4.93 (s, 2H, CH\(_2\)), 3.9 (s,3H, OCH\(_3\)) 2.62 (s, 3H, CH\(_3\)) 2.4 (s,
3H, CH₃); ¹³C-NMR δ ppm: 168.9 (CO), 158.2, 132.8, 127.9, 114.2 (6C, ArH), 139.6, 129.6, 105.9 (3C, pyrazole), 158.2, 83.6 (2C, oxadiazole), 58.9 (2C, CH₂), 23.4 (3C, CH₃); Ms (m/z): 300.12 (M⁺).

1-(5-((1H-pyrazol-1-yl)methyl)-2-phenyl-1,3,4-oxadiazol-3(2H)-yl)ethanone (4e):

Yield (64%); Chemical Formula: C₁₄H₁₄N₄O₂; Molecular Weight: 270.29; IR ν cm⁻¹ (KBr): 1710 ((OC)-N-), 1438, 1515 (C = C), 1169 (CN), 1606(C = N), 1105 (COC); ¹HNMR δ ppm: 6.25–7.9 (m, 7H, ArH), 6.61 (s, 1H, oxadiazole), 4.91 (s, 2H, CH₂), 2.7 (s, 3H, CH₃); ¹³C-NMR δ ppm: 168.9 (CO), 140.2, 128.5, 126.9, 126.7 (6C, ArH), 139.6, 129.6, 105.9 (3C, pyrazole), 158.2, 83.6 (2C, oxadiazole), 58.9 (2C, CH₂), 23.4 (3C, CH₃); Ms (m/z): 270.11 (M⁺).

Antibacterial activity [27]

The antibacterial activity of the synthesized compounds was determined by the cup plate method. In this method, the sample solution diffuses from a vertical-cavity through the solid agar layer of a petri dish in a manner that growth of the added microbe is prevented entirely in a circular area or a zone around the cavity containing a solution of the sample if the added sample possesses antibacterial activity. For determining antibacterial activity, freshly prepared liquid agar medium (35 mL/Petri dish) was transferred into the petri dishes and allowed the medium to solidify. Then, the 200 µL standardized culture (99 mL Nutrient broth media + 1mL culture) of microorganism was spread on each Petri dish by L-shaped spreader. With the help of the borer (5 mm), three bores were made on each plate. The synthetic compounds diluted with dimethyl sulfoxide (DMSO) at three concentrations (50, 100, and 200µg/mL) were added to each well separately. The Petri dishes were kept aseptically for approximately 4 to 5 h for the diffusion of the sample. Following diffusion, all the Petri dishes were incubated for 24 h at a temperature of 37º C. After the stipulated period of 24 h, the activity of compounds in terms of zone of inhibition was observed against two Gram-positive bacteria (Staphylococcus aureus, Streptococcus pyogenes) and two Gram-negative bacteria (Escherichia coli, Pseudomonas aeruginosa). The antibacterial activity of the synthesized compounds is reported in Table 1.

[Diagram of the general structure of 1-(5-((1H-pyrazol-1-yl)methyl)-2-aryl-1,3,4-oxadiazol-3(2H)-yl)ethanone (4a-4e)]
Table 1
Antibacterial activity of the title compounds (4a-4e).

Compd	R	Conc. (µg/mL)	Zone of inhibition (in mm)	Gram-positive	Gram-negative
				S. aureus	S. pyogenes
				E. coli	P. aeruginosa
4a	4-OH	50	-	-	-
		100	10	11	10
		200	11	12	14
4b	4-N(CH$_3$)$_2$	50	-	-	-
		100	12	10	12
		200	14	15	15
4c	4-NO$_2$	50	-	-	-
		100	10	9	14
		200	12	14	17
4d	4-OCH$_3$	50	-	-	-
		100	12	9	14
		200	17	15	14
4e	H	50	-	-	-
		100	-	-	12
		200	12	14	15
Ampicillin	-	50	25	23	27

- shows no antibacterial activity

Results And Discussion

Chemistry

All the title compounds were synthesized according to Scheme 1. The structures of the synthesized compounds were confirmed by their melting point and IR, 1H-NMR, 13C-NMR & mass spectroscopy. Ethyl 2-(1H-pyrazol-1-yl)acetate (1) was synthesized from the reaction between ethyl chloroacetate and pyrazole. The IR spectrum of this compound (1) was showed a band at (1735 cm$^{-1}$) which was assigned to the carbonyl (CO) group of ester. Moreover, this compound was exhibited a significant band in the region at (2985) belong to C-H Aromatic and the band at (1065 cm$^{-1}$) due to the C-O-C for the ester. The
1HNMR spectrum of compound (1) was also showed a signal at the frequency (1.52 δ ppm) to (3H, CH\textsubscript{3}), (4.30 δ ppm) to (2H, CH\textsubscript{2}) for the ethyl group, and (5.20 δ ppm) due to (2H, CH\textsubscript{2}) of the methyl group, as well as a signal at the range (6.50–7.75 δ ppm) to (3H pyazole). The 2-(1H-pyrazol-1-yl) acid hydrazide (2) was synthesized from Ethyl 2-(1H-pyrazol-1-yl)acetate (1) and hydrazine hydrate. The IR spectra (KBr cm−1) of compound (2) was showed bands at (3447.35) cm−1 of (NH\textsubscript{2}) group and band at 1720 cm−1 of the carbonyl group (CO) for acid hydrazide and 1614.50 cm−1 of (C = N) group. Various N-(arylidine)-2-(1H-pyrazol-1-yl)acetamide derivatives (3a-3e) were synthesized by the reaction of compound 2 with an appropriate aromatic aldehyde in presence of ethanol. The characteristic spectral data characterized the structures of synthesized compounds. IR absorption bands (KBr cm−1), for example, compound 3a, a band at (1677 cm−1) which was assigned to the (-OCN) group. Moreover, this compound was exhibited a significant band in the region at (1604) belong to (C = N) and the band at (3450 cm−1) due to the (OH) group. The 13C-NMR spectrum of compound (3a) was also showed a signal at the frequency 170.0 δ ppm to (CO), 143 δ ppm to (N = CH), 150.3, 139.4, 128.3, 116 δ ppm (6C, Ar); 140, 130, 1.06 δ ppm to (3C, pyrazole), and 64 δ ppm to (CH\textsubscript{2}) group. Various 5-(1H-pyrazol-1-yl)methyl)3-N-acetyl-2-(aryl)-1,3,4-(2H)-oxadiazole derivatives (4a-4e) were synthesized by the reaction of compounds 3 and acetic anhydride. The characteristic spectral data characterized the structures of synthesized compounds. Mass spectra were showed a base peak in (m/z) value, 286.11 (M+). It was important to state here that the synthesized compounds will be studied soon to demonstrate their anticipated biological activity.

Antimicrobial Activity

The examination of antibacterial screening data revealed that 5-(1H-pyrazol-1-yl)methyl)3-N-acetyl-2-(aryl)-1,3,4-(2H)-oxadiazole derivatives (4a-4e) were exhibited good antibacterial activity towards both Gram-positive (Staphylococcus aureus, Streptococcus pyogenes) and Gram-negative bacteria (Escherichia coli, Psuedomonas aeruginosa) and compare antimicrobial activity with standard drugs Ampicillin. The result showed that title compounds were shown antibacterial activity in dose dependant manner and compound 4c is most active antibacterial compounds than other remaining compounds (4a, 4b, 4d, and 4e). All the title compounds (4a-4e) were more effective against Gram-negative bacteria than Gram-positive bacteria.
Conclusions

Title compounds, 5-(1H-pyrazol-1-yl)methyl)-N-acetyl-2-(aryl)-1,3,4-(2H)-oxadiazole derivatives (4a-4e) were synthesized, characterized and evaluated as antimicrobial agents against some pathogenic bacteria. This work was described new derivatives for pyrazole and oxadiazole. The antimicrobial activity of these compounds was screened against Gram-positive (S. aureus, S. pyogenes), Gram-negative (E. coli, P. aeruginosa) bacteria. All the compounds were showed antimicrobial activity in a dose-dependent manner. These compounds were effective against Gram-negative bacteria.

declarations

Acknowledgment

The authors are thankful to the Glocal School of Pharmacy, Glocal University, Mirzapur Pole, Saharanpur, Uttar Pradesh, India for providing technical support and facilities to carry out this work.

Conflict of interest

No

Consent for publication

Yes

Funding

This study was not financially supported.

Ethics approval and consent to participate

Not applicable

Competing interests

The authors declare that they have no competing interests

References

1. Eicher T, Hauptmann S. The Chemistry of Heterocycles: Structure, Reactions, Syntheses, and Applications, Wiley-VCH, Edition IIInd, 2003, ISBN 3527307206.

2. Parajuli RR, Pokhrel P, Tiwari AK, Banerjee J. Pharmacological activities of pyrazolone derivatives. J Appl Pharm Res. 2013; X(I): 5–13.

3. Amir M, Kumar H, Khan SA. Synthesis and pharmacological evaluation of pyrazoline derivatives as new anti-inflammatory and analgesic agents. Bioorg Med Chem Lett. 2008; 18: 918–922.
4. Palaska E, Aytemir M, Uzbay IT, Erol D. Synthesis and antidepressant activities of some 3,5-diphenyl-2-pyrazolines. Eur J Med Chem. 2001; 36: 539–543.
5. Nassar E. Synthesis, in vitro antitumor and antimicrobial activity of some pyrazoline, pyridine and pyrimidine derivatives linked to indolesmoiety. J Am Sci. 2010; 6: 463–471.
6. Azarifar D, Shaebanzadeh M. Synthesis and characterization of new 3,5-dinaphthyl substituted 2-pyrazolines an study of their antimicrobial activity. Molecules 2002; 7: 885–895.
7. Dmytro H, Borys Z, Olexandr V, Lucjusz Z, Andrzej G, Roman L. Synthesis of novel thiazolone based compound containing pyrazoline moiety and evaluation of their anticancer activity. Eur J Med Chem. 2009; 44: 1396–1404.
8. Mui MS, Siew BN, Buss AD, Crasta SC, Kah LG, Sue KL. Synthesis of N-1 acidic functionality affording analogues with enhanced antiviral activity against HIV. Bioorg Med Chem Lett. 2002; 12: 679–699.
9. Parmar SS, Pandey BR, Dwivedi C, Harbison RD. Anticonvulsant activity and monoamine oxidase inhibitory properties of 1,3,5-trisubstituted pyrazolines. J Pharm Sci. 1974; 63: 1152–1155.
10. Siddiqui AA, Rahman MA, Shaharyar M, R. Mishra R. Synthesis and anticonvulsant activity of some 3,5-diphenyl-2-pyrazoline-1-carboxamide derivatives. Chem. Sci. J. 2010; 8: 1–10.
11. Soni N, Pande K, Kalsi R, Gupta TK, Parmar SS, Barthwal JB. Inhibition of rat brain mono amine oxidase and suc-cinic dehydrogenase by anticonvulsant pyrazolines. Res Commun. Pathol Pharmacol. 1987; 56: 129–132.
12. Kumar KA, Jayaroopa P, Kumar GV. Comprehensive review on the chemistry of 1,3,4-oxadiazoles and their applications. Inter J Chem Tech Res. 2012; 4(4): 1782–1791.
13. Yadav S, Vashist N, Gahlot V, Rajput A, Maratha S. Oxadiazole and their synthetic analogues: An updated review. Int. J. Pharm. & Biol. Arch., 2017; 9(3):01–05.
14. Palit R, Saraswat N, Sahoo J. Review on substituted 1,3,4-oxadiazole and its biological activities. Int Res J Pharm. 2016; 7(2): 1–7.
15. Murthy MS, Sudhakar M, Rajareddy A, Rao VU. Different Pharmacological Activities of 2,5-Disubstituted 1,3,4-Oxadiazoles. Sch Acad J Pharm., 2013; 2(4): 333–339.
16. Kumar B, Kumar A, Behera and AK, Raj V (2016) Latest Update on Pharmacological Activities of 1,3,4-Oxadiazole Derivatives. J Cell Sci Ther. 2016; 7: 233. doi:10.4172/2157-7013.1000233.
17. Majed N, Majid R, Majed R. Synthesis of some new heterocyclic compounds derived from β-Lactam derivatives and Their Biological Activity Study. J Pharm Sci & Res. 2018; 10(11): 2964–2968.
18. Al-Badrany KA, Mohammed AS, Alasadi YK. Synthesis of some new 1,3,4-oxadiazole compounds derived from 1H-imidazole and study their biological activity. Eurasia J Biosci, 2019; 13: 501–507.
19. Khatoon Y, Shaquiquzzaman M, Singh V, Sarafroz M. Synthesis, anticonvulsant and neurotoxicity screening of some novel 2,5-Disubstituted-1,3,4-oxadiazole derivatives. Inter J Pharm Sci & Drug Res. 2017; 9(1): 22–9.
20. Srinivas K, Kumar KP. Synthesis, Antimicrobial and Anthelmintic Activity of 1-[(5-Sustituted-1,3,4-oxadiazol-2-yl) methyl]-4-propylpiperazines. Int J Biopharm. 2010; 1(1): 14–9.

21. Rasool I, Ahmad M, Khan ZA, Mansha A, Maqbool T, Zahoor AF, Aslam S. Recent advancements in oxadiazole-based anticancer agents. Trop J Pharm Res. 2017; 16 (3): 723–733.

22. Amer HH, Ali OM, Salama AA, El-gendy MS, Houssin OK. Synthesis of some new 1,3,4-oxadiazole derivatives bearing sugars and α-aminophosphonate derived from 4-nitrophenol as anticancer agents. Nat J. Physiol, Pharm & Pharmacol. 2018; 8(9): 1275–86.

23. Alp AS, Kilcigil G, Ozdamar ED, Coban T, Eke B. Synthesis and evaluation of antioxidant activities of novel 1,3,4-oxadiazole and imine containing 1H-benzimidazoles, Turk. J. Chem. 2015; 39: 42–53. https://doi.org/10.3906/kim-1403-44.

24. Kharb R, Sharma PC, Bhandari A, Yar MS. Synthesis, spectral characterization and anthelmintic evaluation of some novel imidazole bearing triazole derivatives. Der Pharm Lett. 2012; 4(2): 652–7.

25. Frank PV, Girish KS, Kalluraya B. Solvent-free microwave-assisted synthesis of oxadiazoles containing imidazole moiety. J Chem Sci. 2007; 119(1): 41–6.

26. de Oliveira CS, Lira BF, Barbosa-Filho JM, Lorenzo JGF, de Menezes CP, dos Santos JMCG, et al. Synthesis and Testing of 3-Acetyl-2,5-Disubstituted-2,3-Dihydro-1,3,4-oxadiazole Derivatives for Antifungal Activity Against Selected Candida Species. J Braz Chem Soc. 2013; 24(1): 115–20.

27. Greenwood D, Slack RCB, Peutherer JF, Microbiology, 14th Edition, Churchill and Livingstone, Spencerswood, 1991; 01–25.

Figures

![Scheme 1. Synthesis of 1-(5-((1H-pyrazol-1-yl)methyl)-2-aryl-1,3,4-oxadiazol-3(2H)-yl) ethanone derivatives](image)

R= 4-OH, 4-N(CH₃)₂, 4-NO₂, 4-OCH₃, H
Supplementary Files

This is a list of supplementary files associated with this preprint. Click to download.

- GraphicalAbstract.png