Hartfalen, waarbij het hart niet in staat is om genoeg bloed rond te pompen, is wereldwijd een groot medisch probleem. Patiënten die lijden aan hartfalen ervaren veel typische, maar niet specifieke klachten, zoals kortademigheid, vermoeidheid en een verminderde inspanningstolerantie. Tevens worden patiënten met hartfalen vaak opgenomen in het ziekenhuis en hebben zij een verminderde levensverwachting in vergelijking met leeftijdsgenoten zonder hartfalen. Daarnaast is hartfalen een groot maatschappelijk probleem met hoge kosten. In 2019 waren de geraamde zorguitgaven voor hartfalen in Nederland 527 miljoen euro, wat overeenkomt met bijna 10% van de totale zorguitgaven die in dat jaar werden gemaakt voor hart- en vaatziekten.

Hartfalen wordt vaak ingedeeld naar de pompfunctie van de linker kamer (LVEF) van de patiënt. Deze kan verminderd zijn (heart failure with reduced ejection fraction, HFrEF, LVEF ≤40%); licht verminderd zijn (heart failure with mildly reduced ejection fraction, HFmrEF, LVEF 41-49%; maar ook behouden zijn (heart failure with preserved ejection fraction; HFpEF, LVEF ≥50%). Met name deze laatste groep van patiënten met HFpEF is de afgelopen jaren sterk gegroeid ten opzichte van de groep met HFrEF en HFmrEF, waarbij op dit moment ongeveer de helft van alle patiënten met hartfalen HFpEF heeft. Dit is een groot probleem, omdat vrijwel alle behandelingen die een gunstig effect hebben bij patiënten met HFrEF en HFmrEF, niet werken in patiënten met HFpEF. Als gevolg hiervan is de mogelijkheid tot behandeling van HFpEF zeer beperkt, terwijl deze patiënten veel klachten van hartfalen hebben.

De behandeling van HFpEF schiet dus ernstig tekort, en vermoed wordt dat de afwezigheid van behandelopties voor patiënten met HFpEF gedeeltelijk komt door de heterogeniteit van deze ziekte: veel patiënten met HFpEF hebben bijkomende ziekten, zoals suikerziekte, boezemfibrilleren en vernauwing van de kransslagvaten, waarvan wordt vermoed dat al deze bijkomende ziekten (ook wel co-morbiditeiten genoemd) een actieve rol hebben in het ziekteproces van HFpEF. Eén specifieke co-morbiditeit die in de afgelopen jaren veel aandacht heeft gekregen, maar waarover we nog niet zoveel weten, is obesitas. Obesitas wordt door de Wereldgezondheidsorganisatie gedefinieerd als een overmatige toename van vetweefsel, dat een risico vormt voor de gezondheid en die wordt berekend aan de hand van body mass index (BMI). Volgens deze norm heeft iemand met een BMI van 30kg/m² of hoger obesitas. In 2019 had 15% van de volwassen Nederlandse bevolking obesitas en de verwachting is dat dit in 2040 opgelopen zal zijn tot 20%. Het vóórkomen van obesitas is nog hoger in de patientengroep met HFpEF. In twee recente grote wereldwijde medicijnonderzoeken in patiënten met HFpEF, de EMPEROR-PRESERVED en de PARAGON-HF, was het gemiddelde BMI respectievelijk 29kg/m² en 30kg/m², waarbij respectievelijk 45% en 49% van alle patiënten obees was. Obesitas lijkt dus bij HFpEF een groot probleem te zijn.
Ondanks dat BMI een snelle en makkelijke inschatting geeft van de hoeveelheid vet die een patiënt heeft, zitten er ook nadelen aan deze maat. BMI geeft bijvoorbeeld geen inzicht in de plaats waar het vetweefsel is gelokaliseerd. Dit werd geïllustreerd in een case report, waarbij een individu zonder obesitas (een BMI van 25kg/m²) driemaal zoveel vet rondom de interne organen had als een individu met obesitas. Vaak wordt vet ingedeeld op basis van de locatie in het lichaam, waarbij vet rondom de organen visceraal vet wordt genoemd en vet onder de huid subcutaan vet wordt genoemd. Er zijn belangrijke verschillen tussen visceraal vet en subcutaan vet, waarbij visceraal vet over het algemeen minder gevoelig is voor insuline en meer ontstekingsfactoren bevat dan subcutaan vet. Het verschil tussen visceraal vet en subcutaan vet is ook belangrijk in de context van HFpEF. Onderzoeken laten zien dat met name een toename van visceraal vet geassocieerd is met het ontstaan van HFpEF, terwijl dit niet het geval lijkt te zijn bij subcutaan vet.

Hoewel mensen met meer visceraal vet dus een grotere kans hebben op het ontwikkelen van HFpEF is het nog steeds onduidelijk wat het precieze werkingsmechanisme hierachter is. Eén potentieel belangrijk mechanisme is via een toename van lokaal visceraal vet rondom het hart, epicardiaal vet genaamd. Epicardiaal vet heeft de unieke eigenschap dat het direct contact maakt met de onderliggende hartspier. Er is geen cellaag aanwezig die epicardiaal vet van het hart scheidt. Bovendien worden epicardiaal vet en de hartspier van bloed voorzien door hetzelfde bloedvatstelsel. Onderzoeken hebben aangetoond dat epicardiaal vet stoffen kan uitscheiden die potentieel kunnen communiceren met de onderliggende hartspier, en mogelijk zelfs het functioneren van de hartspier kunnen beïnvloeden. Andere onderzoeken hebben laten zien dat epicardiaal vet mogelijk ook druk uitoefent op de hartspier door massawerking en dat dit de ontspanningsfase van het hart kan verstoren.

Omdat veel patiënten met HFpEF obes zijn en een toegenomen hoeveelheid vetweefsel geassocieerd is met het ontstaan van HFpEF, is het goed mogelijk dat epicardiaal vet een belangrijke rol speelt in de ziekte HFpEF. In dit proefschrift zullen we ons daarom richten op de relatie tussen epicardiaal vet en HFpEF.

De doelstellingen van dit onderzoek zijn:
1. Het onderzoeken van de hoeveelheid epicardiaal vet, de verdeling van epicardiaal vet over het hart en de technieken die gebruikt kunnen worden om epicardiaal vet te kwantificeren in HFpEF.
2. Het onderzoeken van de relatie tussen epicardiaal vet en zowel de functie en structuur van het hart, als ook het inspanningsvermogen van patiënten met HFpEF.
3. Het onderzoeken van de relatie tussen epicardiaal vet en enerzijds de ernst van hartfalen en anderzijds de prognose bij patiënten met HFpEF.
In Hoofdstuk 2 hebben wij de hoeveelheid epicardiaal vet in patiënten met HFpEF onderzocht en vergeleken met de hoeveelheid epicardiaal vet van mensen zonder hartfalen met een vergelijkbaar BMI. Hiervoor werd het volume van epicardiaal vet op magnetic resonance imaging (MRI) van het hart gemeten, wat de gouden standaard is voor het kwantificeren van epicardiaal vet. Daarnaast hebben wij het epicardiaal vet volume gerelateerd aan klinische factoren, bloedwaarden en functie en structuur van het hart op MRI. Wij vonden dat patiënten met HFpEF meer epicardiaal vet hadden dan gezonde mensen zonder hartfalen. Daarnaast zagen wij dat patiënten die naast HFpEF, ook nog boezemfibrilleren, of suikerziekte hadden, meer epicardiaal vet hadden dan patiënten met HFpEF zonder deze bijkomende ziekten. Epicardiaal vet was in patiënten met HFpEF ook geassocieerd met bloedwaarden gerelateerd aan schade van het hart en een hogere suikerspiegel in het bloed.

In Hoofdstuk 3 hebben wij de verdeling en locatie van epicardiaal vet bij patiënten met HFpEF onderzocht, waarbij wij wederom epicardiaal vet hebben gemeten door middel van MRI van het hart. Hierbij hebben wij het volume van epicardiaal vet dat tegen de rechter kamer, de linker kamer of de boezems aanlag gemeten. Tevens wilden wij kijken of de locatie van epicardiaal vet geassocieerd zou zijn met verdikking of slechtere functie van de aanliggende hartspier. We ontdekten allereerst dat epicardiaal vet ongelijk over het hart verdeeld was bij patiënten met HFpEF, waarbij het meeste epicardiaal vet rondom de rechter kamer zat, gevolgd door de linker kamer en respectievelijk de boezems. Daarnaast ontdekten we dat de locatie van epicardiaal vet gerelateerd was aan veranderingen van lokale functie en structuur van de hartspier. Epicardiaal vet dat bijvoorbeeld op de rechter kamer zat was geassocieerd met verkouding van de rechter kamer, terwijl epicardiaal vet op de linker kamer was geassocieerd met een slechtere pompfunctie van de linker kamer.

De gouden standaard voor het meten van epicardiaal vet is middels MRI van het hart. Een MRI van het hart is echter duur, belastend voor de patiënt en een MRI scanner is niet in elk ziekenhuis aanwezig. Anderzijds is echografie van het hart relatief goedkoop is, weinig belastend voor de patiënt en in vrijwel alle ziekenhuizen aanwezig. Het meten van epicardiaal vet met echo zou daarom veel voordeel bieden ten opzichte van MRI. In Hoofdstuk 4 hebben wij daarom onderzocht of epicardiaal vet ook betrouwbaar gemeten kon worden met behulp van echo. We zagen dat er slechts een matige relatie was tussen epicardiaal vet gemeten met echo en met MRI. Er bleek veel variatie te zijn in de echometingen van epicardiaal vet in vergelijking met MRI en de metingen van de onervaren onderzoeker en de ervaren onderzoeker kwamen niet goed overeen. Echografie lijkt daarom niet een erg betrouwbare manier om epicardiaal vet te meten.

Een typisch kenmerk van HFpEF zijn de verhoogde vullingsdrukken van het hart, die onder andere ontstaan als het hart stijf is en niet meer goed kan ontspannen. Hierdoor kan het hart zich niet goed vullen met bloed en wordt er minder bloed het lichaam
rondgepompt. Omdat epicardiaal vet direct op de hartspier zit en wordt omgeven door een stijf hartzakje, bestaat er de mogelijkheid, dat een toename van epicardiaal vet leidt tot verdrukking van de hartspier waardoor deze niet goed meer kan ontspannen. Om dit te onderzoeken hebben we in Hoofdstuk 5 gekeken naar de relatie tussen epicardiaal vet en invasief gemeten vullingsdrukken van het hart in patiënten met HFP EF. Daarnaast hebben we onderzocht of er een relatie bestond tussen epicardiaal vet en een verminderde inspanningsvermogen. We zagen dat een toename van epicardiaal vet was geassocieerd met hogere vullingsdrukken van de rechter kamer, maar niet met hogere vullingsdrukken van de linker kamer bij patiënten met HFP EF. Ook zagen we dat een toegenomen hoeveelheid epicardiaal vet was geassocieerd met een slechter inspanningsvermogen van deze patiënten.

In Hoofdstuk 3 hadden we al laten zien dat epicardiaal vet was geassocieerd met een verdikte hartspier en een verminderde pompfunctie van het hart, echter of epicardiaal vet de prognose van patiënten met HFP EF ook beïnvloedt was onduidelijk. Om dit te onderzoeken hebben wij in Hoofdstuk 6 een onderzoek opgezet, waarbij werd onderzocht of een grotere hoeveelheid epicardiaal vet op MRI voorspellend was voor opnames voor hartfalen en overlijden in patiënten met HFP EF. In dit onderzoek vonden wij dat een groter volume van epicardiaal vet geassocieerd was met het optreden van toekomstige opnames voor hartfalen en overlijden.

In de literatuuronderzoeken Hoofdstukken 7 en 8 zijn we dieper op de onderliggende pathofysiologische mechanismen van epicardiaal vet ingegaan. Gedacht wordt, op basis van onderzoek uitgevoerd door andere onderzoekers, dat epicardiaal vet onder invloed van onder andere chronische ziekten, zoals suikerziekte, gaat groeien en in toenemende mate ontstoken raakt. De vetcellen worden zo groot, dat de zuurstofaanvoer naar de vetcellen bemoeilijkt wordt. Hierdoor gaan de vetcellen ontstekingsfactoren uitscheiden die witte bloedcellen aantrekken naar het vetweefsel. Ook worden de vetcellen minder gevoelig voor insuline en nemen daardoor minder energie op. Dit heeft als gevolg dat een energieoverschot niet opgenomen kan worden door de vetcellen en daardoor elders in het lichaam terechtkomt op plekken die niet zijn bestemd voor energieopslag en daar potentieel schadelijk kunnen zijn. Al deze associaties suggereren dat vetweefsel, waaronder epicardiaal vet, kan transformeren van een gezond en functioneel weefsel, naar vetweefsel met een ontstoken karakter met mogelijk negatieve gevolgen voor de onderliggende hartspier.

Momenteel zijn er twee gangbare en complementaire hypothesen over hoe epicardiaal vet de onderliggende hartspier beïnvloedt. Aan de ene kant wordt gedacht dat epicardiaal vet tijdens de ontwikkeling van HFP EF de onderliggende hartspier gaat infiltreren en dat epicardiaal vet schadelijke stoffen uitscheidt die een negatief effect kunnen hebben op de hartspier. Hierbij raakt de structuur van de hartspier aangedaan en wordt deze verdikt en verstijft. Als gevolg van dit mechanisme wordt de hartspier
Anderzijds wordt gedacht dat een toename van epicardiaal vet can leiden tot verdrukking van de hartspier in het hartzakje. Door een toegenomen hoeveelheid epicardiaal vet kan het hart mogelijk niet meer goed ontspannen, omdat het epicardiaal vet in de weg zit.

In dit proefschrift hebben wij laten zien dat patiënten met HFpEF meer epicardiaal vet hebben in vergelijking met mensen zonder hartfalen en dat epicardiaal vet in patiënten met HFpEF geassocieerd is met een dikkere hartspier, een slechtere pompfunctie van het hart en een slechtere prognose. Het lijkt er daarom op dat epicardiaal vet een belangrijke rol speelt in HFpEF. Er is echter nog meer onderzoek nodig om dit te bevestigen. Met name zal moeten blijken of er een causaal verband bestaat tussen epicardiaal vet en het ontstaan van HFpEF. Vervolgonderzoek zal tevens moeten uitwijzen of epicardiaal vet behandeld kan worden om de prognose in deze patiënten met HFpEF te verbeteren.
Acknowledgments – Dankwoord

Een proefschrift schrijven doe je natuurlijk niet alleen en komt tot stand door de hulp en steun van vele mensen. De volgende personen wil ik daarom in het bijzonder bedanken, omdat zij in meer of mindere mate belangrijk waren voor de realisering van dit proefschrift.

Allereerst mijn promotores prof. dr. D.J. van Veldhuisen en prof. dr. M. Rienstra. Beste Dirk Jan, ik wil je ontzettend bedanken voor de mogelijkheid die je mij hebt geboden voor het doen van promotieonderzoek. Ik heb je leren kennen tijdens mijn laatste klinische stage van de master geneeskunde en werd meteen aangestoken door jouw enthousiasme voor onderzoek. Ondanks dat ik toen geen ervaring had met onderzoek, werd ik door je geïnspireerd om onderzoek te gaan doen in de vorm van een promotietraject. Als promotor hield je feilloos de rode draad van mijn traject in de gaten, maar keek je ook kritisch naar mijn manuscripten om ervoor te zorgen dat de kwaliteit ervan gewaarborgd werd. Ik wil je enorm bedanken voor de ruimte die je mij gaf om me te ontwikkelen op wetenschappelijk gebied, maar ook zeker op persoonlijk vlak.

Beste Michiel, jouw talent om verschillende taken te combineren en daarbij een strakke time management te hanteren is bewonderenswaardig. Ondanks de drukte nam je altijd de tijd om gericht en met focus naar mijn stukken te kijken. Door jouw kritische blik heb ik niet alleen geleerd om goed te kijken of een stuk een logische opbouw heeft, maar ook of de cadans van het stuk ‘goed loopt.’ Hiervoor ben ik je zeer erkentelijk. Ook ben ik je erg dankbaar voor de kans en het vertrouwen dat je mij gaf om de VIP-HF zelf als late-breaker op het ESC-HF congres te mogen presenteren, wat als een kers op de taart voelde tijdens dit promotieonderzoek.

Mijn co-promotores, dr. B.D. Westenbrink en dr. T.M. Gorter. Beste Daan, jij bent pas later bij mijn promotietraject betrokken geraakt, maar toch heb je een belangrijke rol gespeeld in de realisatie hiervan. De wekelijkse progress meetings waren erg fijn om de voortgang van specifieke artikelen, maar ook zeker het proefschrift als geheel te bespreken, vaak onder het genot van goede koffie en gelach. Jouw expertise op gebied van experimentele studies en de translatie hiervan naar de kliniek is een gouden combinatie. Ondanks dat het geen onderdeel is geworden van dit proefschrift, wil ik je graag bedanken voor de mogelijkheid die je me gaf om me te verdiepen in experimenteel onderzoek en voor de inzet die je toonde ten aanzien van mijn proefschrift. Ik heb hier veel van geleerd. Beste Thomas, jou leerde ik kennen toen jij in het laatste gedeelte zat van je eigen promotietraject en ik, nog groen als gras, op zaal zat als semi-arts. Ondanks dat je officieel pas als allerlaatste bent toegevoegd aan mijn promotie team, was je als een van de eersten betrokken bij mijn onderzoek. Ik wil je graag bedanken voor je prettige manier van samenwerken en je oprechte enthousiasme voor onderzoek.
Ik vond onze brainstormsessies over een eventueel nieuw artikel altijd erg motiverend, en heb er veel plezier aan gehad. Daarnaast vind ik het erg leuk om te zien dat de lijn over epicardiaal vet, die we samen hebben opgezet, door jou wordt doorgezet. Ik hoop hier in de toekomst nog getuige van te mogen zijn.

Graag wil ik de leden van de leescommissie hartelijk danken voor het lezen en beoordelen van dit proefschrift; prof. dr. P. van der Meer, prof. dr. R. Nijveldt en prof. dr. F. Kuipers.

Daarnaast wil ik graag mijn paranimfen, Eva en Bram bedanken. Beste Eva, wat een topmens ben jij. Stiekem kenden wij elkaar al van de bachelor, of beter gezegd, kende jij mij als die wedstrijdroeier die tijdens tutorbesprekingen aan kwam zetten met een bak kwark. Ik heb je leren kennen als een harde werker en een betrouwbare collega, maar ook als enorme gangmaker op diverse feestjes. Onze samenwerking in het kader van DECISION vond ik altijd prettig en erg gezellig. Hoe je het voor elkaar hebt gekregen om in korte tijd als clinicus ‘pur sang’ je om te scholen naar wetenschapper met internationale contacten en zelfs binnen 3 jaar je eigen proefschrift af te ronden weet ik niet, maar het onderstreept hoe gedreven en gericht je bent. Dank dat je mijn paranimf wilt zijn. Dear Bram. We both knew, of course, that this paragraph was going to be in English. We have known each other since high school and I cannot stress enough how happy I am that, although we have been living in different cities for the past 8 years, we are still close friends. The fact that we have completely different jobs, and completely different lives, but are nonetheless always interested in what the other is up to, is something that I really cherish. I admire the dedication and focus that you put into your work as a creative, for which, needless to say, you have a massive talent. I want to thank you for being my paranymph and for all the times you have given me advice on how to write, on how to make figures, and put interest in general into my PhD. However, I want to thank you most of all for always making me laugh out loud with tears in my eyes during times when I needed it most.

Beste Tineke, door jou ben ik voor het eerst in aanmerking gekomen met MRI beelden van het hart en heb ik geleerd hoe deze geanalyseerd moesten worden. Je enthousiasme voor onderzoek is aanstekelijk en ik wil je graag bedanken voor het mij in staat stellen voor het doen van de MRI analyses van de VIP-HF.

Graag wil ik iedereen die hartelijk bedanken die betrokken was bij de VIP-HF, in het bijzonder alle medewerkers van de cardioresearch, de pacemakerkamer, de poli cardiologie en de hartkatheterisatie. De VIP-HF is een essentieel onderdeel geworden van dit proefschrift.

Verder wil ik alle co-auteurs bedanken voor hun belangrijke bijdrage aan de hoofdstukken in dit proefschrift.

Daniëlle, Alma, Minke en Audrey, jullie wil ik graag bedanken voor alle ondersteuning de afgelopen jaren. Zonder jullie was het niet gelukt dit proefschrift op tijd af te krijgen!
Daarnaast wil ik natuurlijk alle collega’s op de 4e verdieping bedanken voor een onvergetelijke tijd, zowel binnen de muren van het ziekenhuis, als daar buiten. In willekeurige volgorde: Anne S, Lisa, Victor, Sebastiaan, Remco, Haye, Freek, Bao-Oanh, Ruben, Anne H, Colinda, Martijn, Mariëlle, Bernadet, Koen, Jan, Rebecca, Bastiaan, Iziah, Meelad, Joost, Niels, Hilde, Marie-Sophie, Yldau, Paulien, Tom, Daan, Valentina, Agustina, Yordi, Abdullah, Luis, Suzanne, Kirsten, Lawien, Eline, Bart van E, Olivier, Bob, Alwin, Vicente, Neda, Iris, Jan-Walter, Yoran, Geert, Kees, Fatema, Belend, Lukas, Marlene, Irene, Martijn, Nils, Ali, Martin, Marloes, Tim, Elles, Sanne, Mathilde, Nienke, Pablo, Mario, Salva, Navin, Huitzi, Annet, Frits, Arnold, Karla, Joseph, Laura, Wouter, Vivian, Herman, en alle andere collega’s van de (experimentele) cardiologie wil ik graag bedanken! Special shout-out naar Aad: Aad, dank voor de gezellige en leuke samenwerking het laatste anderhalve jaar. Ondanks dat er geen experimenteel hoofdstuk in het proefschrift is gekomen, heb ik veel geleerd van jou over het doen hiervan.

Graag wil ik Jacco, Peter, Gwenny, Janneke en Frans bedanken voor de mogelijkheid om mijn eerste stapjes onderzoek te zetten op de afdeling reumatologie bij het isoleren van PBMC’s in het bloed van patiënten met hartfalen. Ondanks dat uiteindelijk een andere weg ben ingeslagen qua onderzoek, wil ik jullie graag bedanken voor het leuke contact en de fijne begeleiding.

Reinier, Frank, Erik, Arne, Jasper, Tobias, Bart K, Bram R, Sebastiaan, Gerhard, Tom R, Niek, Anne F, Heete Heeren Huisch en Zwaar ‘12: bedankt voor jullie steun en toeverlaat tijdens deze reis. Het was voor mij altijd erg plezierig om de leuke en minder leuke momenten van onderzoek met jullie te delen en hierover te sparren. Het feit dat sommigen van jullie, vaak zonder medische achtergrond, probeerden mijn onderzoek te begrijpen en hierover met mij in gesprek wilden gaan uit oprechte interesse, heeft mij altijd een enorm rijk gevoel gegeven. Dank daarvoor.

Yvette, ook aan jou en je familie, wil ik graag mijn dank uiten voor de steun tijdens mijn promotietraject.

Lieve mama en Dan, dank voor jullie onvoorwaardelijke liefde en steun die hebben gemaakt tot wie ik ben en waar ik nu sta. Jullie dachten en leefden altijd actief mee met mijn onderzoek en gaven daar ook graag, desnoods ongevraagd, advies over en daar ben ik jullie zeer erkentelijk voor. Lieve Koen, ik ben ontzettend blij met jou als grote broer. Hoe jij bent uitgegroeid tot heuse globetrotter en daarbij je connecties met het thuisfront onderhoudt is bewonderenswaardig. Dank voor je onuitputtelijke steun en toeverlaat, maar natuurlijk ook voor de flauwe humor waar wij beiden zo hard om kunnen lachen.

Lieve Ilse, wat ben ik blij dat ik jou heb leren kennen. Al vanaf het begin leefde je mee met de pieken en dalen van mijn onderzoek en heb je mij de steun en ruimte gegeven om met onderzoek bezig te zijn, ook als dat roet gooide in de plannen die we samen hadden gemaakt. Ik kijk uit naar het nieuwe hoofdstuk samen in Utrecht!
Appendices

Bibliography

1. **Van Woerden G**, Gorter TM, Westenbrink BD, Willems TP, Van Veldhuisen DJ, Rienstra M. Epicardial fat in heart failure patients with mid-range and preserved ejection fraction. *Eur J Heart Fail* 2018;20(11):1559-1566

2. **Van Woerden G**, Van Veldhuisen DJ, Gorter TM, Van Empel VPM, Hemels MEW, Hazebroek EJ, Van Veldhuisen SL, Willems TP, Rienstra M, Westenbrink BD. Importance of epicardial adipose tissue localization using cardiac magnetic resonance imaging heart failure patients with mid-range and preserved ejection fraction. *Clin Cardiol* 2021;44(7):987-993

3. **Van Woerden G**, Van Veldhuisen DJ, Gorter TM, Ophuis B, Saucedo-Orozco H, Van Empel VPM, Willems TP, Geelhoed B, Rienstra M, Westenbrink BD. The value of echocardiographic measurement of epicardial adipose tissue in heart failure patients. *ESC Heart Fail* 2022;9(2):953-957

4. **Van Woerden G**, Van Veldhuisen DJ, Manintveld OC, Van Empel VPM, Willems TP, De Boer RA, Rienstra M, Westenbrink BD, Gorter TM. Epicardial adipose tissue and outcome in heart failure with mid-range and preserved ejection fraction. *Circ Heart Fail* 2022;15(3):e009238

5. **Van Woerden G**, Van Veldhuisen DJ, Rienstra M, Westenbrink BD. Myocardial adiposity in heart failure with preserved ejection fraction: the plot thickens. *Eur J Heart Fail* 2019;22(3):455-457

6. **Van Woerden G**, Van Veldhuisen SL, Rienstra M. Incident heart failure risk after bariatric surgery: the role of epicardial fat. *Eur Heart J* 2020;41(18):1775

7. **Van Woerden G**, Van Veldhuisen DJ, Gorter TM, Willems TP, Van Empel VPM, Op den Akker JW, Rienstra M, Westenbrink BD. The clinical and prognostic value of late gadolinium enhancement imaging in heart failure with mid-range and preserved ejection fraction. *Heart Vessels* 2022;37(2):273-281

8. Gorter TM, **Van Woerden G**, Rienstra M, Dickinson MG, Hummel YM, Voors AA, Hoendermis ES, Van Veldhuisen DJ. Epicardial adipose tissue and invasive hemodynamics in heart failure with preserved ejection fraction. *JACC Heart Fail* 2020;8(8):667-676

9. Van Veldhuisen DJ, **Van Woerden G**, Gorter TM, Van Empel VPM, Manintveld OC, Tieleman RG, Maass AH, Vernooy K, Westenbrink BD, Van Gelder IC, Rienstra M. Ventricular tachyarrhythmia detection by implantable loop recording in patients with heart failure and preserved ejection fraction: the VIP-HF study. *Eur J Heart Fail* 2020;22(10):1923-1929
10. Van Veldhuisen SL, Van Woerden G, MEW Hemels, America YGCJ, De Boer RA, Rienstra M, Van Veldhuisen DJ, Hazebroek E. Preoperative cardiac screening using NT-proBNP in obese patients 50 years and older undergoing bariatric surgery: a study of 310 consecutive patients. *Surg Obes Relat Dis* 2021;17(1):64-71

11. Tromp J, Bryant JA, Jin X, van Woerden G, Asali S, Yiying H, Liew OW, Ching JCP, Jaufeerally F, Loh SY, Sim D, Lee S, Soon D, Tay WT, Packer M, Van Veldhuisen DJ, Chin C, Richard AM, Lam CSP. Epicardial fat in heart failure with reduced versus preserved ejection fraction. *Eur J Heart Fail* 2021;23(5):835-838

12. Van Veldhuisen SL, Gorter TM, Van Woerden G, De Boer RA, Rienstra M, Hazebroek EJ, Van Veldhuisen DJ. Bariatric surgery and cardiovascular disease: a systematic review and meta-analysis. *Eur J Heart Fail* 2022;43(20):1955-1969

13. Van Meijeren AR, Ties D, De Koning MLY, Van Dijk R, Van Blokland I, Veloz BL, Van Woerden G, Vliegenthart R, Pundziute G, Westenbrink BD, Van der Harst P. Association of epicardial adipose tissue with different stages of coronary artery disease: A cross-sectional UK Biobank cardiovascular magnetic resonance imaging substudy. *Int J Cardiol Heart Vasc* 2022;40:101006

14. Hoorntje E, Burns C, ..., Van Woerden G, ..., Ingles J. Variant location is a novel risk factor for individuals with arrhythmogenic cardiomyopathy due to a desmoplakin (DSP) truncating variant. *Submitted*

15. Van Woerden G, Van Veldhuisen DJ, Westenbrink BD, De Boer RA, Rienstra M, Gorter TM. Connecting epicardial adipose tissue and heart failure with preserved ejection fraction: mechanisms, management and modern perspectives. *Submitted*
Appendices

Curriculum vitae

Gijsbert van Woerden werd als jongste van twee geboren op 3 december 1991 te Groningen. Hij groeide op in Groningen en deed zijn middelbare school aan het Zernike College in Haren, waar hij in 2010 zijn VWO diploma haalde. Na de middelbare school werd hij via de decentrale selectie geplaatst voor de studie geneeskunde, ook in Groningen. Naast zijn studie geneeskunde was hij actief bij roeivereniging A.G.S.R. Gyas, waar hij twee jaar wedstrijdroeier was en nadien een bestuursjaar deed met als functie materiaalcommissaris. De bachelor geneeskunde ronde hij in 2013 af en nadien deed hij zijn senior-coschappen in ZGT Almelo en Hengelo. Zijn semi-arts stage en masteronderzoek, die tevens als opmaat voor zijn promotieonderzoek fungeerde, ronde hij af bij de afdeling cardiology in het UMCG. Direct na het behalen van zijn artsenbul in 2017 startte hij met zijn promotieonderzoek onder leiding van prof. dr. D.J. van Veldhuisen en prof. dr. M. Rienstra. Gedurende deze periode was hij onder andere studie coördinator voor de VIP-HF, DECISION, PARAGON-HF, PARALLAX en PARADISE-MI. Hij presenteerde zijn onderzoek op internationale congressen, onder andere in Athene en online gedurende de COVID-19 pandemie. In februari 2022 begon hij als ANIOS op de afdeling cardiologie van het UMCG. Echter, na een halfjaar besloot hij toch te stoppen met de cardiologie en zijn blik te verbreden. Sinds juli 2022 is hij werkzaam als ANIOS op de afdeling spoedeisende hulp in het St. Jansdal te Harderwijk.