An overview of the host spectrum and distribution of Calodium hepaticum (syn. Capillaria hepatica): part 2—Mammalia (excluding Muroidea)

Hans-Peter Fuehrer

Abstract Calodium hepaticum (syn. Capillaria hepatica) is a globally distributed zoonotic nematode with low host specificity and a high affinity to the liver. Although murid rodents are the main definite hosts, various other mammals can be affected with hepatic capillariasis: non-murid rodents, Insectivora, Chiroptera, Lagomorpha, Artiodactyla, Perissodactyla, Hyracoidea, Marsupialia, Carnivora, and Primates. Overall, more than 180 mammalian species (including humans) are known as suitable hosts of this pathogen. This review gives an overview of the distribution and host spectrum of C. hepaticum in non-Muroidean mammals in wildlife and zoos as well as in domesticated and laboratory animals. Furthermore, the role of spurious infections in animals and the dissemination of C. hepaticum are summarized. Information about the pathogenesis, ecology, and host spectrum in Muroidea is given elsewhere (e.g., Fuehrer et al. 2011; Fuehrer 2013; Schmidt 2001).

For data evaluation, the systematic search was based on electronic databases (Scopus, PubMed, Google Scholar) and previous summaries (e.g., Schmidt 2001). The search terms Capillaria hepatica, Calodium hepaticum, Hepaticola hepatica, Trichocephalus hepaticus, and hepatic capillariasis were used. An attempt was made to include only those studies where the scientific names of the host and parasite were given clearly. Furthermore, spurious infections (= pseudoparasitism) were differentiated as far as possible from hepatic capillariasis.

Introduction

Calodium hepaticum is a worldwide-distributed zoonotic parasite with a high affinity to the liver. It is the causative agent of hepatic capillariasis and has low host specificity. This parasite is mainly diagnosed during liver biopsies or through necroscopy because the eggs of this nematode are only released into the environment after the host's death (after predation, cannibalism, or decay). The main hosts are rodents of the subfamilies Murinae and Arvicolinae. Although murids are the most important hosts, this parasite was documented in more than 70 non-murid species. This review focuses on the mammalian (excluding Muroidea) host spectrum and its geographic distribution in those hosts. Furthermore, the role of spurious infections in animals and the dissemination of C. hepaticum are summarized. Information about the pathogenesis, ecology, and host spectrum in Muroidea is given elsewhere (e.g., Fuehrer et al. 2011; Fuehrer 2013; Schmidt 2001).

The taxonomy of the family Capillaridae is pending. All species out of the former genus Capillaria are included in the family Capillaridae. A recent study has shown that the family Capillaridae seems to be monophyletic and can be clearly separated from Trichuridae (Guardone et al. 2013). Although most species parasitize in animals, three are known to also infect humans: Paracapillaria philippinensis (syn. Capillaria philippinensis), Eucoleus aerophila (syn. Capillaria aerophila), and C. hepaticum (syn. C. hepatica).

Adult C. hepaticum are long slender-shaped nematodes with a narrow anterior body part (0.007–0.01 mm). The
posterior body part becomes gradually thicker. Sexual dimorphism is present (females 27–100 mm; males 15–50 mm) (reviewed in Schmidt 2001). The eggs resemble typical trichurid eggs but differ in size (40–67×27–35 μM). The eggs are barrel-shaped, striated, and with polar plugs. Numerous minipores are present on the outer shell. The four larval stages differ in size (reviewed in Schmidt 2001).

C. hepaticum has a high affinity to the liver and is the causative agent of hepatic capillariasis. The life cycle is a direct one. After the ingestion of embryonated eggs, L1 larvae hatch in the area of the caecum and invade the liver via the portal vein system. Adult _C. hepaticum_ nematodes live in the liver parenchyma (life span 18–60 days) where females lay unembryonated eggs into the liver parenchyma. The eggs develop in the liver parenchyma to the eight-cell stage. After the death of the host (cannibalism, predation, decay), the eggs are released into the environment and embryonate (depending on the environmental conditions) to the infective stage. The cycle closes with the ingestion of embryonated eggs by a new host (reviewed in Schmidt 2001). The ingestion of unembryonated eggs leads to spurious infections (= pseudoparasitism) where the non-infective eggs are shed into the environment with the feces.

Host spectrum

The main hosts of _C. hepaticum_ are several murid rodent species with the highest prevalences in synanthropic Murinae (e.g., Norway rat). The parasite was documented in more than 90 Muroidean rodent species of the subfamilies Murinae, Deomyinae, Arvicolinae, Neotominae, Cricetinae, Sigmodontinae, Gerbillinae, and Cricetomyinae (Führer et al. 2010; Fuehrer 2013).

However, hepatic _C. hepaticum_ infections were also found in Caviidae, Erethizontidae, Castoridae, Myocastoridae, Sciuridae, Geomyidae, Dipodidae, Nesomyidae, and Cuniculidae (Table 1). In wildlife, North American porcupines (USA; 9 % of 53), nutrias (Argentina; 3.6 % of 108), northern pocket gophers (USA; 39 % of 46), Brazilian guinea pigs (Peru; 6.9 % of 143), and lowland pacas (Brazil; 20 % of 5) were evaluated as suitable hosts of this parasite (Dittmar 2002; Hamir and Rupprecht 2000; Martino et al. 2012; Todd et al. 1971).

Furthermore, _C. hepaticum_ was documented in at least 69 species out of 25 families in non-rodent mammalian including Insectivora, Chiroptera, Lagomorpha, Artiodactyla, Perissodactyla, Hyracoidea, Marsupialia, Carnivora, and Primates (Table 2). In wildlife, hepatic capillariasis was documented in several studies: pronghorn antelopes (Canada; 4/41), red foxes (Italy; 1/75), crab-eating foxes (Brazil; 5.56 %), pampas foxes (Brazil; 13.64 %), and mountain gorillas (Rwanda; 10/19) (Barrett and Chalmers 1972; Graczyk et al. 1999; Macchioni et al. 2013; Ruas 2005). The true burden of this parasite in wildlife is not clear. Numerous documented cases of _C. hepaticum_ in non-murid mammals were reported from zoological gardens and laboratories or in domesticated animals.

Zoos

Several hepatic cases with _C. hepaticum_ had been observed in zoological gardens. Various studies documented single cases of this parasite. In some reports, more than one animal of a single species were infected: black-tailed prairie dogs (USA; 5/21; UK; 45 % of 20) and Kirk’s dik-diks (USA; 7/18) (Landolfi et al. 2003; Partington and Montali 1986; Redrobe and Patterson-Kane 2005). Most of the cases in primates were found in zoos.

Several studies tried to analyze the relationships of commensal rodents (e.g., Norway rats, house mice) to infections of animals in zoos (e.g., Juncker-Voss et al. 2000). In zoos, high prevalences of free-ranging rats, mice, and shrews were observed: Norway rats (Baltimore Zoo, USA; 75 % of 845; Lisbon Zoo, Portugal 42 % of 50), house mice (Vienna Zoo, Austria, 42.7 % of 166; Lisbon Zoo, Portugal 22 % of 50), and greater white-toothed shrews (France; 10–25 %) (Apéry 2012; Crespo 2012; Farhang-Azad 1977; Juncker-Voss et al. 2000).

Laboratory animals and pet shops

C. hepaticum was found in various pet shops and laboratories, for example, in one out of four Korean squirrels imported from China to Spain, 3 out of 155 lab groundhogs imported from the USA to Germany, 13 out of 160 New Zealand White rabbits in France from a commercial distributor, two cases in common chimpanzees which were lab animals originating from West Africa, and 0.6 % of 472 wild-caught laboratory-maintained crab-eating macaques (Abbott and Majeed 1984; Carrasco et al. 2006; Hilken et al. 2003; Mowat et al. 2009; Sadun et al. 1970). It can be hypothesized that animals ingested embryonated eggs while living wild and/or with contaminated food.

Domesticated animals

C. hepaticum was documented in domesticated mammal species like laboratory Norway rats, rabbits, cattle, pigs, horses, dogs, cats, domesticated guinea pigs, and squirrels. In Japan, hepatic capillariasis was observed in 2.25 % of 400 cattle, but the author did not classify the nematode as _C. hepaticum_ because the pathogen was not reported in cattle before (Nakamura 2005). Furthermore, Ilha and Barros (2000) found...
Classification	Species	Country/countries	References	
Caviidae	Domestic guinea pig (*Cavia porcellus*)	Pets: Hungary, Peru	Meszaros and Varga (1976)	
		Argentina, Peru	Olortegui (1961); Gonzalez (1970)	
		Brazil	Dittmar (2002)	
	Brazilian guinea pig (*Cavia aperea*)	Argentina, Peru	Morini and Boero (1958); Olortegui (1961); Gonzalez (1970)	
		Brazil	Dittmar (2002)	
		Brazil	Olortegui (1961); Gonzalez (1970)	
		Brazil	Costa and Catto (1994)	
		Brazil	Dittmar (2002)	
		Brazil	Olortegui (1961); Gonzalez (1970)	
		Brazil	Costa and Catto (1994)	
		Brazil	Dittmar (2002)	
		Brazil	Olortegui (1961); Gonzalez (1970)	
		Brazil	Costa and Catto (1994)	
		Brazil	Dittmar (2002)	
		Brazil	Olortegui (1961); Gonzalez (1970)	
		Brazil	Costa and Catto (1994)	
		Brazil	Dittmar (2002)	
		Brazil	Olortegui (1961); Gonzalez (1970)	
		Brazil	Costa and Catto (1994)	
		Brazil	Dittmar (2002)	
		Brazil	Olortegui (1961); Gonzalez (1970)	
		Brazil	Costa and Catto (1994)	
		Brazil	Dittmar (2002)	
		Brazil	Olortegui (1961); Gonzalez (1970)	
		Brazil	Costa and Catto (1994)	
		Brazil	Dittmar (2002)	
		Brazil	Olortegui (1961); Gonzalez (1970)	
		Brazil	Costa and Catto (1994)	
		Brazil	Dittmar (2002)	
		Brazil	Olortegui (1961); Gonzalez (1970)	
		Brazil	Costa and Catto (1994)	
		Brazil	Dittmar (2002)	
		Brazil	Olortegui (1961); Gonzalez (1970)	
		Brazil	Costa and Catto (1994)	
		Brazil	Dittmar (2002)	
		Brazil	Olortegui (1961); Gonzalez (1970)	
		Brazil	Costa and Catto (1994)	
		Brazil	Dittmar (2002)	
		Brazil	Olortegui (1961); Gonzalez (1970)	
		Brazil	Costa and Catto (1994)	
	Cavia sp.	Brazil	Mentioned in Dittmar (2002)	
	Capybara (*Hydrochoerus hydrochaeris*)	Brazil (Nhecolândia)	Costa and Catto (1994)	
Erethizontidae	North American porcupine (*Erethizon dorsatum*)	USA	Hamir and Rupprecht (2000)	
Castoridae	North American beaver (*Castor canadensis*)	USA (National Zoological Park)	Chitwood BG (Chitwood 1934)	
	Eurasian beaver (*Castor fiber*)	Hungary (Zoo)	Mészáros and Kemenes (1973)	
		Former UDSSR	Pavlov (1955)	
		Former UDSSR (several cases in a zoological park)	Mentioned in Mészáros and Kemenes (1973)	
		Russia	Romanov (1996)	
Myocastoridae	Nutria (*Myocastor coypus*)	Japan	Matsudate et al. (2003)	
		Germany (Saxony)	Seidel (1954)	
		Argentina	Vogelsang and Espin (1949)	
		Argentina	Martino et al. (2012)	
Sciuridae	Brazilian squirrel (*Sciurus aestivalis*)	Brazil	Freitas and Lent (1936)	
	Caucasian squirrel (*Sciurus anomalus*)	Former UDSSR	Pavlov (1955)	
	Fox squirrel (*Sciurus niger*)	USA (Louisiana)	McQuown (1954)	
	Eurasian red squirrel (*Sciurus vulgaris*)	UK (north Wales)	Stidworthy et al. (2009)	
	American red squirrel (*Tamiasciurus Hudsonicus*)	Canada (lab infection experiment)	Freeman and Wright (1960)	
	Korean squirrel (*Tanias sibericus*)	Spain (wild import)	Carrasco et al. (2006)	
	Sciurus sp.	Turkey	Merdivenci (1970)	
	Cape ground squirrel (*Xerus inauris*)	South Africa (Eastern Free State)	Erlwanger et al. (2009)	
	Richardson's ground squirrel (*Urocitellus richardsonii*)	USA (Montana)	Luttermoser (1938)	
	Domesticated squirrels	China	Brown and Roy (1943)	
	Black-tailed prairie dog (*Cynomys ludovicianus*)	USA	Mentioned in Wang et al. (2013)	
	USA (zoo)	USA	Weidman (1925)	
	USA (Pennsylvania)	USA	Landolfi et al. (2003)	
	England (zoo)	USA	Doran (1955)	
	England (zoo)	USA	Redrobe and Patterson-Kane (2005)	
	England (zoo)	USA	Brown and Roy (1943)	
	England (zoo)	USA	Mentioned in Wang et al. (2013)	
	Alpine marmot (*Marmota marmota*)	Spain	Gortazar et al. (1994)	
	Groundhog (*Marmota monax*)	USA	Reynolds and Gavutis Jr. (1975)	
	USA (Pennsylvania)	USA	Doran (1955)	
	Germany (Lab marmots imported from the USA)	USA	Hilken et al. (2003)	
	Red-checked flying squirrel (*Hylopetes abieticus*)	France	Gevrey et al. (1996)	
	Geomyidae	Malaysia	Liat et al. (1977)	
	Plains pocket gopher (*Geomys bursarius*)	USA	Ubelaker and Downhower (1965)	
	Northern pocket gopher (*Thomomys talpoides*)	Canada (Alberta)	Lubinsky (1956; 1957)	
	USA (Wyoming)	USA	Law and Kennedy (1932)	
	USA (Wyoming)	USA	Todd et al. (1971)	
	USA	USA	Rausch (1961)	
	Dipodidae	Woodland jumping mouse (*Napaeozapus insignis*)	USA	Freeman and Wright (1960)
	Nesomyidae	Malagasy giant rat (*Hypogeomys antypus*)	England (zoo)	Redrobe and Patterson-Kane (2005)
	Cuniculidae	Lowland paca (*Cuniculus paca*)	Brazil (Acre)	Almeida et al. (2012)
		Costa Rica	Matamoros et al. (1991)	
Table 2 *Calodium hepaticum* in other mammals other than rodents

Classification	Species	Country/countries	References
Insectivora	**Erinaceidae**		
	European hedgehog (*Erinaceus europaeus*)	Switzerland	Brander et al. (1990, 1991)
	Soricidae		
	Smoky shrew (*Sorex fumeus*)	USA	Solomon and Handley (1971)
	Northern short-tailed shrew (*Blorina brevicauda*)	USA	Solomon and Handley (1971)
	Laxmann’s shrew (*Sorex caecutiens*)	??	Mentioned in Tinnin et al. (2011)
	Long-tailed shrew (*Sorex dispar*)	USA	Solomon and Handley (1971)
	Cinereus shrew (*Sorex cinereus*)	USA	Solomon and Handley (1971)
	Common shrew (*Sorex araneus*)	Austria	Frank (1977)
	Shinto shrew (*Sorex shinto*)	Japan	Iwaki et al. (1993)
	Long-clawed shrew (*Sorex unguiculatus*)	Japan	Chabaud et al. (1963)
	Asian house shrew (*Suncus murinus*)	Indonesia	Brown et al. (1975a)
	Eurasian water shrew (*Neomys fodiens*)	England	Stidworthy et al. (2009)
	Greater white-toothed shrew (*Crocidura russula*)	France—Mulhouse Zoo	Apéry (2012)
		France—Lyon Zoo	Apéry (2012)
Chiroptera	**Pteropodidae**		
	Lesser short-nosed fruit bat (*Cynopterus brachyotis*)	Indonesia	Brown et al. (1974)
Lagomorpha	**Leporidae**		
	European hare (*Lepus europaeanus*)	??	Hall (1916)
	Mountain hare (*Lepus timidus*)	Austria (zoo)	Eder 2008
	European rabbit (*Oryctolagus cuniculus*)	Switzerland	Brander et al. (1991); Höning (1974)
	Domestic rabbit (*Oryctolagus cuniculus forma domestica*)	Switzerland	Morgan (1931)
	New Zealand white rabbits	UK (rabbits from commercial distributor)	Mowat et al. (2009)
	Eastern cottontail (*Sylvilagus floridanus*)	USA	Layne (1970); Layne and Winegarner (1971)
Ochotonidae	Plateau pika (*Ochotona curzoniae*)	China (Gansu)	In Wang et al. (2013)
Artiodactyla	**Antilocapridae**		
	Pronghorn antelope (*Antilocapra americana*)	Canada (Alberta)	Barrett and Chalmers (1972)
	Collared peccary (*Pecari tajacu*)	Brazil	Mandorino and Rebouças (1991)
	White-lipped peccary (*Tayassu pecari*)	Panama	Foster and Johnson (1939)
	T. pecari or *P. tajacu*	Brazil	Soares et al. (2011)
	Bovidae		
	Kirk’s dik-dik (*Madoqua kirkii*)	USA (zoo)	Partington and Montali (1986)
	Cattle (*Bos primigenius*)	Japan (Hokkaido)	Nakamura (2005)
Suidae	Domestic pig (*Sus scrofa domesticus*)	China	Zhang (1990)
Perissodactyla	**Equidae**		
	Horse (*Equus ferus caballus*)	Canada	Nation and Dies (1978)
		England	Munroe (1984)
	Tapiridae		
	Brazilian tapir (*Tapirus terrestris*)	Brazil (Parana)	Mangini et al. (2002)
	Hyracoidea		
	Southern tree hyrax (*Dendrohyrax arborens*)	Democratic Republic of the Congo	Fain (1953)

© Springer
Table 2 (continued)

Classification	Species	Country/countries	References
Marsupialia			
Didelphidae	Big-eared opossum (*Didelphis aurita*)	Paraguay	Canese (1973)
	Common opossum (*Didelphis marsupialis*)	Columbia	CIAT (1973)
Macropodidae	Agile wallaby (*Macropus agilis*)	Australia	Canfield and Hartley (1992)
	Parma wallaby (*Macropus parma*)	Australia	Canfield and Hartley (1992)
	Red kangaroo (*Macropus rufus*)	Australia	Canfield and Hartley (1992)
Potoroidae	Rufous rat-kangaroo (*Aepyprymnus rufescens*)	Australia	Canfield and Hartley (1992)
	Woylie (*Bettongia penicillata*)	Australia	Canfield and Hartley (1992)
	Potoroideae spp.	Germany	Schmidt (1975)
Carnivora			
Mephitidae	Eastern spotted skunk (*Spilogale putorius*)	USA	Layne and Winegarner (1971)
Canidae	Domestic dog (*Canis lupus familiaris*)	New Zealand	Anon. (1982)
	West highland white terrier cross	Great Britain	Lloyd et al. (2002)
		Italy	Carta (1939)
		Switzerland	Brandre et al. (1990, 1991)
		USA (Washington)	Wright (1930)
		India	Rao et al. (1975)
		Brazil	Saliba et al. (1965); Santos and Barros (1973); Silveira et al. (1975)
		Brazil	Ilha and Barros (Ilha MR da S, Barros CSL de 2000)
		Brazil	Palma et al. (2009)
		South Africa	Smit (1960)
		Nigeria	Ajayi et al. (2011)
		Australia	Stokes (1973)
	Gray wolf (*Canis lupus*)	Russia	Ronašov (1996)
	Coyote (*Canis latrans*)	Canada	Wobeser and Rock (1973)
		USA	Crowell et al. (1978); Custer and Pence (1981)
	Red fox (*Vulpes vulpes*)	Italy	Macchioni et al. (2013)
	Crab-eating fox (*Cerdocyon thous*)	Brazil	Ruas (2005)
	Pampas fox (*Lycalopex gymnocercus*)	Brazil	Ruas (2005)
	Maned wolf (*Chrysocyon brachyurus*)	Brazil	Curiel (1954)
Felidae	Domestic cat (*Felis catus*)	Brazil	Santos and Barros (1973)
		Brazil	Ilha and Barros (2000)
		Slovakia	Mituch (1968)
		Nigeria	Okaeme (1985, 1986)
		Brazil	Quadros et al. (2009)
Primates	Cougar (*Puma concolor*)	Brazil	
Lemuridae	Ring-tailed lemur (*Lemur catta*)	Chile (zoo)	Zordan et al. (2012)
		??? Zoo	Mentioned in Redrobe and Patterson (2005)
Cercopithecidae	Vervet monkey (*Chlorocebus pygerythrus*)	South Africa	Fripp and Kaschula (1974)
	Grivet (*Chlorocebus aethiops*)	South Africa	Fripp and Kaschula (1974)
	Rhesus macaque (*Macaca mulatta*)	South Africa	Brack (1987)
	Crab-eating macaque (*Macaca fascicularis*)	UK (wild-caught laboratory-maintained primates)	Abbott and Majeed (1984)
	Celebes crested macaque (*Macaca nigra*)	England (zoo)	Pizzi et al. (2008)
		England (zoo)	Stidworthy et al. (2009)
C. hepaticum in the livers of 0.23 % of 3,927 dogs and 1.38 % of 435 cats examined in Brazil.

Dispersal by animals and spurious infections

With the death of the animal host (cannibalism, predation, or decay), the eggs of *C. hepaticum* are released into the environment. The dissemination of eggs by ground beetles and rain worms had been reported, but their role in the importance of maintaining the life cycle of this parasite is unclear (Mobedi and Arfaa 1971; Schmidt 2001).

In humans, spurious infections are associated with the consumption of unembryonated eggs in soil or infected game (Fuehrer et al. 2011). The same can be considered for other carnivore and omnivore animals (Reperant and Deplazes 2005). Gonzalves et al. (2012) described the first case of a spurious infection in a dog in Brazil (Amazonas) after the dog was fed with raw game meat. In the Zoological Garden of Vienna, eggs of *C. hepaticum* were found in the feces of a Pallas's cat (*Otocolobus manul*) (Basso et al. 2005). Spurious infections have also been observed in Norway rats (6 %) and black rats (20 %), where cannibalism might be the mode of intake of unembryonated eggs (Firlotte 1948; Promkerd et al. 2008). In Madagascar, eggs from *Capillaria* sp. with the shape of *C. hepaticum* have been found in the feces of gray mouse lemurs (*Microcebus murinus*), greater hedgehog tenrecs (*Setifer setosus*), and black rats (*R. rattus*).

Furthermore, eggs of *C. hepaticum* were found in the feces of non-mammalian animals. In Malaysia, 2.83 % of large-billed crows shed eggs of this parasite with the feces (Lee et al. 2008). Eggs of *C. hepaticum* were also documented in fecal samples from reptiles fed with infected rodents (Pantchev and Tappe 2011). In an analysis of the intestinal content of two timber rattlesnakes (*Crotalus horridus*), eggs of *C. hepaticum* were documented (Solomo 1974).

Although many authors described spurious infections in animals, care should be taken to exclude mix-ups with other Capillaridae or Trichuridae shedding eggs of resembling morphology (e.g., Bork-Mimm and Rinder 2011; Di Cesare et al. 2011; Stuart et al. 2013; Traversa et al. 2011). With the absence of specific molecular diagnostic tools, the classification of *C. hepaticum* in spurious infections is based on the morphology of the eggs only. Consequently, the role of spurious infections for the maintenance of the life cycle of this nematode remains unclear.

Table 2 (continued)

Classification	Species	Country/countries	References
Tibetan macaque (*Macaca thibetana*)	China (Huangshan mountain of Anhui)	Mentioned in Wang et al. (2013)	
Northern plains gray langur (*Semnopithecus entellus*)	Belgium/Sri Lanka	Kumar et al. (1983)	
Gelada (*Theropithecus gelada*)	USA (zoo)	Jensen and Huntress (1982)	
Atelidae	Mexico (Chiapas)	Cavallero and Grocott (1952)	
Mexican spider monkey (*Ateles geoffroyi velerosus*)	Panama	Foster and Johnson (1939)	
Geoffroy's spider monkey (*Ateles geoffroyi*)	Brazil	Soares et al. (2011)	
Red-faced spider monkey (*Ateles paniscus*)	Germany	Brack (1987)	
Humboldts woolly monkey (*Lagotrix lagotricha*)	England (zoo)	Pizzi et al. (2008)	
Pitheciidae	Red bald-headed uakari (*Cacajao calvus rubicundus*)	Brack (1987)	
White-faced saki (*Pithecia pithecia*)	Worldwide	Reviewed in Fuehrer et al. (2011)	
White-faced capuchin (*Cebus capucinus*)	Panama	Foster and Johnson (1939)	
Hominidae	Mountain gorilla (*Gorilla beringei beringei*)	Rwanda (Parc National de Volcans)	Graczyk et al. (1999)
Common chimpanzee (*Pan troglodytes*)	Worldwide	Troiser et al. (1987)	
(Gorilla gorilla)	Poland (spurious infection/zoo)	Paciennik (1976)	
Free ranging	USA (lab animals originated from West Africa)	de Gasperi (1913)	
Common chimpanzee (*Pan troglodytes*)	Worldwide	Sadun et al. (1970)	
Callitrichidae	Pied tamarin (*Saguinus bicolor*)	UK (zoo)	Stidworthy et al. (2009)
Red-handed tamarin (*Saguinus midas*)	Portugal—Lisbon Zoo	Correia et al. (2011)	
Goeldis monkey (*Callimico goeldii*)	Portugal—Lisbon Zoo	Correia et al. (2011)	
White-headed marmoset (*Callithrix geoffroyi*)	Portugal—Lisbon Zoo	Correia et al. (2011)	
1 case each in 3 zoos	UK (zoo)	Stidworthy et al. (2009)	
Spain	Spain	Fernández-Bellon et al. (2001)	

Parasitol Res (2014) 113:641–651
Conclusions

C. hepaticum is a worldwide-distributed zoonotic parasite with a high affinity to the liver and low host specificity. The main definite hosts are Murinae and Arvicolinae, but it has also been found in various other mammals of different families. Eggs are released into the environment after the death of the host only (decay, cannibalism, and predation). It is unclear which method of egg dispersal is the most effective one but it can be hypothesized that:

(a) Cannibalism is the most effective method of transmission in the case of rodents with a tendency to cannibalism and egg shedding in the burrow.

(b) Dispersal of unembryonated eggs by egg-shedding in feces (after cannibalism, predation by omnivores and carnivores, scavengers, dissemination by insects and earth worms) leads to the most infections in other mammals after the embryonation of the eggs.

Diagnosis is now based on liver biopsy and necropsy, and it can be suggested that the true burden of this parasite is underrepresented. Novel molecular diagnostic tools are needed to allow species determination in cases of hepatic capillariasis and spurious infections.

Acknowledgments I wish to thank all authors who provided personal copies of their manuscripts.

Conflict of interest The author declares that he has no conflict of interest.

Open Access This article is distributed under the terms of the Creative Commons Attribution License which permits any use, distribution, and reproduction in any medium, provided the original author(s) and the source are credited.

References

Abbott DP, Majeed SK (1984) A survey of parasitic lesions in wild-caught, laboratory maintained primates: (Rhesus, Cynomolgus, and Baboon). Vet Pathol 21:198–207

Ajayi OL, Omotainse SO, Antia RE, Antia FA, Akande FA, Olaniyi MO, Kehinde OO (2011) Hepatic histopathological changes in a dog with natural *Capillaria hepatica* infection in Nigeria. Niger J Parasitol. 31(1)

Almeida F, Caldas R, Corrêa C, Rodrigues-Silva R, Siqueira N, Machado-Silva JR (2012) Co-infections of the cestode *Echinococcus vogeli* and the nematode *Calodium hepaticum* in the hystricomorph rodent *Agouti paca* from a forest reserve in Acre, Brazil. J Helminthol: 1–5.

Anon(1982) Unusual parasite kills pup. Surveillance. 9:15–16. In: McKenna PB (1997) Checklist of helminth parasites of terrestrial mammals in New Zealand. New Zool. 24: 277–90.

Apéry S (2012) La capillariose hépatique dans quatre parcs zoologiques en France. Thèse. Doctorat Vétérinaire. La Faculté de Médecine de Crétail. École Nationale Vétérinaire D’Alfort. pp. 104

Barrett MW, Chalmers GA (1972) Capillaria hepatica (Nematoda: Trichiuridae) in pronghorn antelope (Antilocapra americana ord) in Alberta. J Wildl Dis 8(4):332–334

Basso W, Edelhofer R, Zenker W, Möstl K, Kübbner-Heiss A, Prosl H (2005) Toxoplasmosis in Pallas’ cats (Otocolobus manul) raised in captivity. Parasitology 130(Pr 3):293–299

Bork-Mimm S, Rinder H (2011) High prevalence of Capillaria plica infections in red foxes (Vulpes vulpes) in Southern Germany. Parasitol Res 108(4):1063–1067. doi:10.1007/s00436-010-2196-0

Brack M (1987) Nematodes. In: Agents transmissible from simians to man. Springer. pp. 387–390. In: Stidworthy MF, Lewis IC, Masters NJ, Boardman SL, Hopper JS, de Linan FJ, Redrobe SP, Sayers G (2009) *Capillaria hepatica* in primates in zoological collections in the British Isles. Vet Rec. 164(2):66

Brander P, Denzler T, Henzi M (1990) Capillaria hepatica in a dog and a hedgehog. Schweiz Arch Tierheilkd 132(7):365–370

Brander P, Frischknecht R, Denzler T, Henzi M (1991) Weitere Fälle von *Capillaria hepatica* in der Schweiz. Schweizer Archiv Tierh. 133, 269–271. In: Schmidt S (2001) Untersuchungen zum Vorkommen von Capillaria hepatica und Metazestoden der Cyclophyllida bei Wildmäusen in Deutschland. PhD Thesis, Universität., Veterinärmedizinische Fakultät, Leipzig:145 pp.

Brown JH, Roy GD (1943) The Richardson ground squirrel, *Citellus richardsoni* Sabine, in southern Alberta: its importance and control. Scient Agric Rev. Agron Canada. 24: 176–197. In: Lubinsky G (1956) On the probable presence of parasitic liver cirrhoses in Canada. Can J Comp Med Vet Sci. 20: 457–465

Brown RJ, Cross JH, van Peenen PFD, Carney WP, Saroso JS (1974) *Capillaria* eggs in livers of bats from Indonesia. Southeast Asian J. Trop. Med. Pub. Hlth. 5: 599–600. In: Brown R J, Joseph L (1978) Role of the veterinary pathologist on the tropical medicine research team; Observations in Indonesia. Special Report 78–5; Naval Aerospace Medical Research Laboratory, Naval Air Station, Pensacola, Florida: 1–6.

Brown RJ, Carney WP, Cross JH, Saroso JS (1975) *Capillaria hepatica* in the Indonesian house shrew, *Suncus murinus*. Southeast Asian J Trop Med Pub Hlth 6:599–601

Caballero CE, Grocott RG (1952) Nota sobre la presencia de *Capillaria hepatica* en un mono araña (Ateles geoffroyi vellerosus) de México. An Inst Biol 23:211–215

Canese A (1973) *Capillaria hepatica* (BANCROFT, 1893) TRAVASSOS, 1915 en *Didelphis azarae*. Revista paraguaya de microbiologia 8, 18. In: Schmidt S (2001) Untersuchungen zum Vorkommen von *Capillaria hepatica* und Metazestoden der Cyclophyllida bei Wildmäusen in Deutschland. PhD Thesis, Universität., Veterinärmedizinische Fakultät, Leipzig:145pp.

Canfield PJ, Hartley WJ (1992) A survey and review of hepatobiliary infections in Australian macropods. J Comp Pathol. 107: 147–167. In: Schmidt S (2001) Untersuchungen zum Vorkommen von *Capillaria hepatica* und Metazestoden der Cyclophyllida bei Wildmäusen in Deutschland. PhD Thesis, Universität., Veterinärmedizinische Fakultät, Leipzig:145pp.

Carta A (1939) Particolari alterazioni epatiche del cane da uova di parasiti del genere *Capillaria*. Il Nuovo Ercolani 44: 363–373. In: Schmidt S (2001) Untersuchungen zum Vorkommen von *Capillaria hepatica* und Metazestoden der Cyclophyllida bei Wildmäusen in Deutschland. PhD Thesis, Universität., Veterinärmedizinische Fakultät, Leipzig:145 pp.

Chabaud AG, Rausch RL, Desset MC (1963) Nematodes parasites de rongeurs et insectivores Japonais. B Soc Zool Fr. 88: 489–512. In:
Kutzer E, FREY H (1976) Die Parasiten der Feldhasen (Lepus).

Hamir AN, Rupprecht CE (2000) Hepatic capillariasis (Capillaria hepatica) in porcupines (Erethizon dorsatum) in Pennsylvania. J Vet Diagn Invest 12(5):463–465

Haupt W, Stubbie I (1990) Beitrag zum Endoparasitenbefall des Feldhasen (Lepus europaeus PALLAS) in zwei unterschiedlichen Jagdgebieten der DDR. Beiträge zur Jagd- und Wildforschung 17: 136–140. In: Schmidt S (2001) Untersuchungen zum Vorkommen von Capillaria hepatica und Metazestoden der Cyclophyllida bei Wildmäusen in Deutschland. PhD Thesis, Universität., Veterinärmedizinische Fakultät, Leipzig:145pp.

Hilken G, Büttrner D, Mitler K (2003) Three important endoparasites of laboratory woodchucks (Marmota monax) caught in the wild: Capillaria hepatica, Ackertia marmotae and Taenia crassiceps. Scand J Lab Anim Sci 30(3):151–156

Hörming B (1974) Zur Kenntnis der Parasitenfauna des Wildkaninchens der St. Petersinsel. Schweiz Arch Tierh. 116: 99–101. In: Schmidt S (2001) Untersuchungen zum Vorkommen von Capillaria hepatica und Metazestoden der Cyclophyllida bei Wildmäusen in Deutschland. PhD Thesis, Universität., Veterinärmedizinische Fakultät, Leipzig: 145pp.

Ilha MR da S, Barros CSL de (2000) Hepatic capillariosis in dogs and cats: 15 cases. Ciencia Rural, Santa Maria 30(4): 665–669.

Iwaki T, Hatakeyama S, Nonaka N, Miyata Y, Okamoto M, Ooi HK, Oku Y, Kamiya M (1993) Survey on larval Calodium hepaticum (Nematoda) infection in a British dog. Vet Rec 151(14):419–420

Jensen JM, Huntress SL (1982) Nematode parasites of mammals of the orders Rodentia, Lagomorpha and Hyracoidea. Proc US Natl Mus 50:1–258

Juncker-Voss M, Prosl H, Lussy H, Enzenberg U, Auer H, Kumar V, de Meurichy W, Delahaye AM, Mortelmans J (1983) Tissue infestation in a gelada baboon (Theropithecus gelada) troop. Amer Assoc Zoo Vet Ann Proc: 48–49

Juncker-Voss M, Prosl H, Lussy H, Enzenberg U, Auer H, Nowotny N (2000) Serological detection of Capillaria hepatica by indirect immunofluorescence assay. J Clin Microbiol 38(1):431–433

Kankova VL, Rodonajaia TE, Enakidze GP (1971) (Pathological changes to the hepatitis in case of hepaticollosis.) Parazitologiceskij Ann Proc: 77:87–95

Kutzer E, FREY H (1976) Die Parasiten der Feldhasen (Lepus europaeus) in Österreich. Berl Munch Tierarztl. 89: 480–483. In: Schmidt S (2001) Untersuchungen zum Vorkommen von Capillaria hepatica und Metazestoden der Cyclophyllida bei Wildmäusen in Deutschland. PhD Thesis, Universität., Veterinärmedizinische Fakultät, Leipzig:145pp.

Landolfi JA, Karim BO, Poynton SL, Mankowski JL (2003) Hepatic Capillidium hepaticum (Nematoda) infection in a zoo colony of black-tailed prairie dogs (Cynomys ludovicianus). J Zoo Wildl Med 34(4): 371–374

Law RG, Kennedy AH (1932) Parasites of fur-bearing animals. Bull. (4) Ontario. Dept. Game and Fish, 30pp. In: Lubinsky G (1956) On the probable presence of parasitic liver cirrhoses in Canada. Can J Comp Med Vet Sci. 20: 457–465

Layne JN (1970) New host records of Capillaria hepatica in Florida. Fla Sci. 33: 18–22. In: Schmidt S (2001) Untersuchungen zum Vorkommen von Capillaria hepatica und Metazestoden der Cyclophyllida bei Wildmäusen in Deutschland. PhD Thesis, Universität., Veterinärmedizinische Fakultät, Leipzig:145pp.

Layne JN, Winegarner CE (1971) Occurrence of Capillaria hepatica (Nematoda: Trichuridae) in the spotted skunk in Florida. J Wildl Dis 7(4):256–257

Lee HY, Stephen A, Suzhela D, Mala M (2008) Detection of protozoan and bacterial pathogens of public health importance in faeces of Corvus spp. (large-billed crow). Trop Biomed 25(2):134–139

Laut IA, Fong YL, Krishnasamy M (1977) Capillaria hepatica infection of wild rodents in Peninsular Malaysia. Southeast Asian J Trop Med Public Health. 8: 354–358. In: Schmidt S (2001) Untersuchungen zum Vorkommen von Capillaria hepatica und Metazestoden der Cyclophyllida bei Wildmäusen in Deutschland. PhD Thesis, Universität., Veterinärmedizinische Fakultät, Leipzig:145 pp.

Lloyd S, Elwood CM, Smith KC (2002) Capillaria hepatica (Calodium hepaticum) infection in a British dog. Vet Rec 151(14):419–420

Lubinsky G (1956) On the probable presence of parasitic liver cirrhoses in Canada. Can J Comp Med Vet Sci 20:457–465

Lubinsky G (1957) List of helminths from Alberta rodents. Can J Zool. 35: 623–627. In: Schmidt S (2001) Untersuchungen zum Vorkommen von Capillaria hepatica und Metazestoden der Cyclophyllida bei Wildmäusen in Deutschland. PhD Thesis, Universität., Veterinärmedizinische Fakultät, Leipzig:145pp.

Luttermoser GW (1938) An experimental study of Capillaria hepatica in the rat and the mouse. The Am J Hyg 27:321–340

Mandorino L, Rebouças MM (1991) Hepatic capillariasis in caititu monkeys (Theropithecus gelada) troop. Amer Assoc Zoo Vet Ann Proc: 48–49

Mangini PR, Morais W, Santos LC (2002) Diseases in captive Tapirus terrestris (Brazilian tapir) in Foz do Iguaçu, Paraná. Arq Ciên Vet Zool 5: 93–102. In: Carvalho-Costa FA, Silva AG, de Souza AH, Moreira CJ, de Souza DL, Valverde JG, Jaeger LH, Martins PP, de Meneses VF, Araújo A, Bôia MN (2009) Pseudoparasitism by Calodium hepaticum (syn. Capillaria hepatica; Hepaticola hepatica) in the Negro River, Brazilian Amazon. Trans R Soc Trop Med Hyg. 103(10):1071–3. doi: 10.1016/j.trstmh.2009.04.015

Martino PE, Radman N, Parrado E, Bautista E, Cisterna C, Silvestrini MP, Corba S (2012) Note on the occurrence of parasites of the wild nutria (Myocastor coypus, Molinia, 1782). Helminthologia 49(3): 164–168

Matamoros Y, Velazquez J, Pashov B (1991) Intestinal parasites of Agouti pacu (Rodentia: Dasyproctidae) in Costa Rica. Rev Biol Trop 39: 173–176. In: Carvalho-Costa FA, Silva AG, de Souza AH, Moreira CJ, de Souza DL, Valverde JG, Jaeger LH, Martins PP, de Meneses VF, Araújo A, Bôia MN (2009) Pseudoparasitism by Calodium hepaticum (syn. Capillaria hepatica; Hepaticola hepatica) in the Negro River, Brazilian Amazon. Trans R Soc Trop Med Hyg. 103(10):1071–3. doi: 10.1016/j.trstmh.2009.04.015

Matsudate H, Miyoshi Y, Tanimura N, Murata K, Maruyama S, Kimura J, Nogami S, Maeda K, Fukushima Y, Akasako R, Asakawa M (2003) A survey of the parasitic helminths of alien rodents (bally-banded squirrel Callosciurus erythraeus and nutria Myocastor coypus) in Japan. Jap J Zoo Wildlife Med 8(1):63–67

McQuown AL (1954) Capillaria hepatica. Am J Clin Pathol 24:448–452

Merdvenici A (1970) Türkiye'de Hepaticola hepatica infeksyonları ve parazitlin genelimi üzerine bazı deneyler. Istanbul Üniversitesi Tip Fakültesi mezuniyeti 32: 423–436. In: Schmidt S (2001) Untersuchungen zum Vorkommen von Capillaria hepatica und
Metazestoden der Cyclophyllida bei Wildmäusen in Deutschland.
PhD Thesis, Universität., Veterinärmedizinische Fakultät, Leipzig: 145pp.

Mészáros J, Kemenes F (1973) Capillaria hepatica verursachte Hepatitis bei einem Biber (Castor fiber). Parasitol Hung 6:33–40

Mészáros J, Varga I (1976) Abortive Capillaria hepatica infection in the guinea pig. Acta Vet Acad Sci Hung 26(3):377–383

Mituch J (1968) Die Helmintenfauna der Haukszatte (Felix domestica L.) in der Slowakai (CSSR). Folia Veterinaria 12: 165. In: Schmidt S (2001) Untersuchungen zum Vorkommen von Capillaria hepatica und Metazestoden der Cyclophyllida bei Wildmäusen in Deutschland. PhD Thesis, Universität., Veterinärmedizinische Fakultät, Leipzig: 145pp.

Mobedi I, Artia F (1971) Probable role of ground beetles in the transmission of Capillaria hepatica. J Parasitol 57(5):1144–1145

Moravec F (1982) Proposal of a new systematic arrangement of nematodes of the family Capillarididae. Folia Parasitol (Praha) 29(2):119–132

Morgan DO (1931) On the occurrence of Hepaticola hepatica as a natural infection of the Wild Rabbit in England. J Helmintol. 9: 38–45. In: Schmidt S (2001) Untersuchungen zum Vorkommen von Capillaria hepatica und Metazestoden der Cyclophyllida bei Wildmäusen in Deutschland. PhD Thesis, Universität., Veterinärmedizinische Fakultät, Leipzig:145pp.

Morini EC, Boero JJ (1958) Capillariosis hepatica en el conejillo de Indias. Revista de medicina veterinaria 39:143–146. In: Schmidt S (2001) Untersuchungen zum Vorkommen von Capillaria hepatica und Metazestoden der Cyclophyllida bei Wildmäusen in Deutschland. PhD Thesis, Universität., Veterinärmedizinische Fakultät, Leipzig:145pp.

Mowat V, Turton J, Stewart J, Lui KC, Pilling AM (2009) Histopathological features of Capillaria hepatica infection in laboratory rats. Toxicol Pathol 37(5):661–666. doi: 10.1177/019262330939501

Munroe GA (1984) Pyloric stenosis in a yearling with an incidental finding of Capillaria hepatica in the liver. Equine Vet J 16:221–222

Nakamura N (2005) Parasitic lesions of bovine liver attributed to capillaria species. J Comp Pathol 132(2):222–228

Nation PN, Dies KH (1978) Case report: Capillaria hepatica in a horse. Can Vet J 19(11):315–316

Nicoll W (1911) On a unique pathological condition in a hare. Proc Zool Soc Lond. 674–676. In: Schmidt S (2001) Untersuchungen zum Vorkommen von Capillaria hepatica und Metazestoden der Cyclophyllida bei Wildmäusen in Deutschland. PhD Thesis, Universität., Veterinärmedizinische Fakultät, Leipzig:145pp.

Okaeke AN (1985) Zoonotic helminths of dogs and cats at New Bussa, Kainji Lake area, Nigeria. Int J Zoonoses 12:238–240

Okaeke AN (1986) Intestinal helminths of cats in the Kainji Lake area, Nigeria. Vet Res Commun. 10, 237–240. In: Schmidt S (2001) Untersuchungen zum Vorkommen von Capillaria hepatica und Metazestoden der Cyclophyllida bei Wildmäusen in Deutschland. PhD Thesis, Universität., Veterinärmedizinische Fakultät, Leipzig: 145pp.

Oltregui MR (1961) Contribucion al estudio de los parasitos gastrointestinales de Cavia cobaya en la provincia de Lima. M.S. Thesis. Universidad Nacional Mayor de San Marcos, Lima, Peru: pp. 35. In: Dittmar K (2002) Anthropod and helminth parasites of the wild guinea pig, Cavita aperea, from the Andes and the cordillera in Peru, South America. J Parasitol. 88(2):409–11

Quadros RM, Pilati C, Marques SMT, Mazzolli M, Benedet RC (2009) Capillaria hepatica in Puma concolor: first report in Brazil. J Zoo Wildl Med 40:586–587

Pacieńnik O (1976) Parazyty jelitowe malp z ogrodu zoologicznego we Wroclawiu. Acta Parasitologica Polonica 22: 289–296. In: Schmidt S (2001) Untersuchungen zum Vorkommen von Capillaria hepatica und Metazestoden der Cyclophyllida bei Wildmäusen in Deutschland. PhD Thesis, Universität., Veterinärmedizinische Fakultät, Leipzig:145pp.

Palma HE, Basso PC, do Amaral AS, Silva AP, Silva CF (2009) Calodium hepaticum parasitism in two dogs. Ciência Rural, Santa Maria 39(9):2642–2645

Panchev N, Tappe D (2011) Pentastomiasis and other parasitic zoonoses from reptiles and amphibians. Berl Munch Tierarzt Wochenschr 124(11–12):528–535

Partington C, Montali RJ (1986) Capillaria hepatica in Kirk’s Dik Dik. Madoqua kirkii J Zoo An Med 17:123–129

Pavlov AV (1955) Biologija nematody Hepaticola hepatica i osobennosti epizootologii vyzyvaemogo eju zabolebanija pujnych zverej. Moskau, Avtorref. dis. kand. biol. nauk. 27. In: Schmidt S (2001) Untersuchungen zum Vorkommen von Capillaria hepatica und Metazestoden der Cyclophyllida bei Wildmäusen in Deutschland. PhD Thesis, Universität., Veterinärmedizinische Fakultät, Leipzig: 145pp.

Pizzi R, Gordon JC, Flach EJ, Routh AD, Clark B (2008) Boardman WS (2008) Capillaria hepatica (syn Calodium hepaticum) in primates in a zoological collection in the UK. Vet Rec 163(23):690–691

Promkerd P, Khoprasert Y, Thurnimabouth M, Sirisak O, Jäkel T (2008) Factors explaining the abundance of rodents in the city of Luang Prabang, Laos PDR, as revealed by field and household surveys. Integr Zool 3(1):11–20. doi: 10.1111/j.1749-4877.2008.00069.x

Rao RR, Marathe MR, Nair TB, Gangoli SD (1975) Capillaria hepatica in a mongrel dog. Indian Vet J. 52: 393–394. In: Schmidt S (2001) Untersuchungen zum Vorkommen von Capillaria hepatica und Metazestoden der Cyclophyllida bei Wildmäusen in Deutschland. PhD Thesis, Universität., Veterinärmedizinische Fakultät, Leipzig:145pp.

Rausch R (1961) Notes on the occurrence of Capillaria hepatica (BANCROFT, 1893). P Helm Soc Wash. 28: 17–18. In: Schmidt S (2001) Untersuchungen zum Vorkommen von Capillaria hepatica und Metazestoden der Cyclophyllida bei Wildmäusen in Deutschland. PhD Thesis, Universität., Veterinärmedizinische Fakultät, Leipzig:145pp.

Redrobe SP, Patterson-Kane JC (2005) Calodium hepaticum (syn. Capillaria hepatica) in captive rodents in a zoological garden. J Comp Pathol 133(1):73–76

Reperant LA, Deplazes P (2005) Cluster of Capillaria hepatica infections in non-commensal rodents from the canton of Geneva, Switzerland. Parasitol Res 96(5):340–342

Reynolds WA, Gavutis G Jr (1975) Capillaria hepatica in a groundhog (Marmota monax). J Wildl Dis 11:13

Romašov BV (1996) Ecological connections in life cycle Capillaria hepatica (BANCROFT, 1893) (Nematoda: Trichocephalida). Abstracts VII European Multicolloquium of Parasitology (EMOP VII) 1996. Parassitologia 38: 20. In: Schmidt S (2001) Untersuchungen zum Vorkommen von Capillaria hepatica und Metazestoden der Cyclophyllida bei Wildmäusen in Deutschland. PhD Thesis, Universität., Veterinärmedizinische Fakultät, Leipzig:145 pp.

Ruas JL (2005) Caracterizacao da fauna parasitaria do Pseudalopex gymnoceurus (Graxaim-Do-Campo) e do Cerdoycon thous (Graxaim-do-Mato) na regiao sul do Rio Grande do Sol. Ministerio da Educacao. Universidade federal do Rio Grande do Sol, Brasil

Sadun EH, von Lichtenberg F, Cheever AW, Erickson DG (1970) Schistosomiasis mansoni in the chimpanzee. The natural history of chronic infections after single and multiple exposures. Am J Trop Med Hyg 19(2):258–277

Saliba AM, Grecchi R, Mariano M (1965) Sóbne um caso de capilariasis hepática em cão. Revista da Faculdade de Medicina Veterinaria 7:
409–412. In: Schmidt S (2001) Untersuchungen zum Vorkommen von Capillaria hepatica und Metazestoden der Cyclophyllida bei Wildmäusen in Deutschland. PhD Thesis, Universität., Veterinärmedizinische Fakultät, Leipzig:145pp.
Santos NM, Barros CSL (1973) Capillaria hepatica: parasitismo do cão e gato no Estado do Rio Grande do Sul. Arq Med Vet São Paulo 9(2):133–140
Schmidt S (2001) Untersuchungen zum Vorkommen von Capillaria hepatica und Metazestoden der Cyclophyllida bei Wildmäusen in Deutschland. PhD Thesis, Universität., Veterinärmedizinische Fakultät, Leipzig:145pp.
Schüppel KF (1980)
Stidworthy MF, Lewis JC, Masters NJ, Boardman SI, Hopper JS, de A. Silva JML, Nogueira RHG, Nascimento EF, Lúcio WF (1975) Sobre um caso de capilariose hepática em cão. Arq Esc Vet Univ Fed Minas Gerais 27(2):231–234
Smit JD (1960) Capillaria hepatica infestation in a dog. Onderstepoort J Vet 28:473–475
Soares M, Nunes H, Silveira F, Alves M, Souza A (2011) Capillaria hepatica (Bancroft, 1893) (Nematoda) entre populações indígenas e mamíferos silvestres no noroeste do Estado do Mato Grosso, Brasil. 2000. Rev Pan-Amaz-Saúde 2: 35–40. In: Gonçalves AQ, Ascaso C, Santos I, Serra PT, Julião GR, Orlandi PP (2012) Calodium hepaticum: household clustering transmission and the finding of a source of human spurious infection in a community of the Amazon region. PLoS Negl Trop Dis. 2012;6(12):e1943. doi: 10.1371/journal.pntd.0001943.
Solomon GB, Handley CO (1971) Capillaria hepatica (Bancroft, 1893) in Appalachian mammals. J Parasitol 57(5):1124–1144
Solomo GB, Handley CO (1971) Probable role of the timber rattlesnake, Crotalus horridus, in the release of Capillaria hepatica (Nematoda) eggs from small mammals. J Wildl Dis 9(3):225–226
Wright KA (1930) Hepaticola sp. in the liver of dogs. J Parasitol 17:54–55
Zajícěk D (1958) K otázce hepatikolyse u nášich zajíců. Sbornik Československé Akademie Zemedělských Ved / Veterinární medicína 31: 211–216.
Zhang HX (1990) A pig infected with Capillaria hepatica. Chin Zoon J. 6: 26
Zordan M, Tirado M, Lópeze (2012) Hepatic capillariasis in captive ring-tailed lemurs (Lemur catta). J Zoo Wildl Med 43(2):430–433