Abstract—Freeway on-ramps are typical bottlenecks in the freeway network due to the frequent disturbances caused by their associated merging, weaving, and lane-changing behaviors. With real-time communication and precise motion control, Connected and Autonomous Vehicles (CAVs) provide an opportunity to substantially enhance the traffic operational performance of on-ramp bottlenecks. In this paper, we propose an upper-level control strategy to coordinate the two traffic streams at on-ramp merging through proactive gap creation and platoon formation. The coordination consists of three components: 1) mainline vehicles proactively decelerate to create large merging gaps; 2) ramp vehicles form platoons before entering the main road; 3) the gaps created on the main road and the platoons formed on the ramp are coordinated with each other in terms of size, speed, and arrival time. The coordination is formulated as a constrained optimization problem, incorporating both macroscopic and microscopic traffic flow models. The model uses traffic state parameters as inputs and determines the optimal coordination plan adaptive to real-time traffic conditions. The benefits of the proposed coordination are demonstrated through an illustrative case study. Results show that the coordination is compatible with real-world implementation and can substantially improve the overall efficiency of on-ramp merging, especially under high traffic volume conditions, where recurrent traffic congestion is prevented, and merging throughput increased.

Index Terms—Connected and autonomous vehicles, coordinative merging strategy, freeway on-ramp merging, microscopic simulation, optimization.

I. INTRODUCTION

A. Background and Objective

ON-RAMP merging areas are typical bottlenecks in the freeway network, where the lane-changing maneuvers of merging vehicles impose frequent disturbances on the traffic flow and cause reduced operational efficiency and a high risk of traffic breakdown and capacity drop [1]. Improving traffic operation at on-ramps will benefit traffic in the entire freeway network, and thus has been of utmost importance in the continuous research efforts. Prior efforts to facilitate on-ramp merging include ramp metering systems [2], [3], [4], [5], [6], variable speed limits [7], [8], [9], [10], and the combination of both [11], [12], [13], [14]. Though these approaches can improve the ramp merging operation, the improvements are somehow limited because the control only takes place at an aggregated level.

The emerging Connected and Autonomous Vehicles (CAVs) hold the potential to regulate individual vehicles, presenting an opportunity to control traffic at a disaggregated level [15]. The communication capability enables cooperative driving by allowing for detailed information exchange among road users and infrastructures [16]. Such cooperation is further facilitated by the precise and timely control of vehicle dynamics enabled by the autonomous driving systems. Based on these emerging vehicle technologies, many studies are devoted to exploring the cooperation possibilities of CAVs in various traffic bottlenecks and the potential impacts [17], [18], [19], [20], [21]. Most of these studies expect improvements in traffic operation with the presence of well-designed control and sufficient market penetration of CAVs.

The potential to promote on-ramp merging via CAVs is also discussed in the literature. We refer to [22] for a comprehensive review on this topic. A common practice is to regulate the interactive behaviors between a ramp merging vehicle and its direct neighbors for efficiency and/or safety benefits. For example, [23] maps a pair of competing mainline and ramp vehicles to each other’s lane as virtual vehicles for collision-free merging. References [24] and [25] jointly design the trajectories of a competing pair of vehicles through optimization for efficiency improvements. Later, [26] further adapts [25] for restrained negative safety impacts on the following traffic. References [27] and [28] also investigate the safety impacts of CAV merging and suggest that CAVs, especially with predictive control strategies, can reduce the frequency and severity of merging conflicts. More recently, [29] describes the merging process as a two-player dynamic game, where each vehicle makes trajectory decisions to maximize its own driving utility, while considering the potential actions of the competing vehicle. Reference [30] investigates cooperation under mixed traffic with CAVs

Manuscript received 20 July 2021; revised 18 August 2023 and 5 December 2023; accepted 21 December 2023. Date of publication 16 January 2024; date of current version 2 July 2024. This work was supported by the National Natural Science Foundation of China (NSFC) under Grant 52220105001 and Grant 52221005. The Associate Editor for this article was J. E. Naranjo.

Ivana Tasic was with the Department of Architecture and Civil Engineering, Chalmers University of Technology, 41296 Gothenburg, Sweden. She is now with Vehicle Connectivity, Volvo Technology AB, 40508 Gothenburg, Sweden (e-mail: jie.zhu@volvo.com).

Liang Wang and Xiaobo Qu are with the School of Vehicle and Mobility, Tsinghua University, Beijing 100084, China (e-mail: wangliang0117@mail.tsinghua.edu.cn; drxiaobq@gmail.com).

Corresponding author: Liang Wang.

Digital Object Identifier 10.1109/TITS.2023.3346832

1558-0016 © 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to the terms of the applicable license agreement with IEEE. Restrictions apply.
and Human-Driven Vehicles (HDVs), where the authors distinguish different combinations of CAVs and HDVs in a merging triplet (i.e., a merging vehicle and its putative leader and follower) and design for each combination a cooperative strategy that checks the desired distance and speed at a series of set-points. Although these approaches can facilitate smooth merging at on-ramps, they focus on the interaction between individual vehicles, whereas the superiority in a continuous traffic flow are not always guaranteed.

Another branch of CAV merging strategies extends the scope of control from single pair/triplet of vehicles to multiple vehicles within the communication range. By assuming the presence of an upper-level merging sequence, many studies are devoted to formulating the lower-level trajectories of relevant vehicles under an optimization framework. The established models target at different objectives favoring traffic efficiency [31], [32], [33], [34], [35], [36], energy use [37], [38], [39], [40], or passenger comfort [37], while being subject to vehicle dynamics and safety requirements. In [41], the concept of virtual platoon is utilized to transfer the merging problem into a virtual car-following problem where longitudinal control is applied. In [42], a central controller is developed to decide the combination of actions (i.e., speed up, slow down, change lanes) of a ramp vehicle and its mainline competitors by reducing the total travel time of both vehicles. Despite the differences in assumptions and methods, these studies focus on the lower-level operational control of CAVs, while the upper-level decisions are either totally ignored or considered in a very simple manner.

A few recent works shed light on the upper-level decisions. For example, the merging sequence can be locally adjusted through predetermined rules [43], [44], optimization criteria [45], or generic algorithms [46], in order to improve collective benefits in efficiency, energy use, and/or passenger comfort. Alternatively, some other works determine the target gap for each ramp vehicle based on the trajectory costs of leading the vehicle into different gaps [47], [48]. These methods can improve the upper-level efficiency of ramp merging; however, they only consider one ramp vehicle at a time, so the efficiency of other ramp vehicles and the option of group merging are disregarded. In [49], a flow-level merging strategy is proposed, where the mainline traffic is periodically compacted to create large gaps, and the ramp vehicles are released into the gaps through ramp metering signals. However, this strategy stipulates that the release of ramp vehicles fully depends on the mainline conditions, so the efficiency of ramp traffic is not actively considered. Recently, [50] adopt the similar idea of periodic gap creation and combine it with a batch merging strategy to close the extra time gaps induced by the lane-changing maneuvers. The benefits of the proposed system are demonstrated in theory, but no numerical/simulation experiment is carried out. In addition, both [49] and [50] focus more on the definition and validation of the proposed systems, without discussing how to maximize the expected coordination benefits with respect to the real-time traffic conditions.

In summary, the existing CAV ramp merging strategies mainly deals with the lower, local-level control, such as

the trajectory decisions of individual vehicles, whereas the upper, flow-level control options are discussed to a very limited extent. In addition, most existing strategies tend to merge the ramp vehicles one-by-one without exploring the benefit to manipulate traffic flow and guide multiple ramp vehicles into a single gap. The very few efforts on flow-level coordination focus on the theoretical validation, rather than the practical implementation under real-time traffic operation. In this study, we seek to partially make up the above research gaps by developing a novel upper-level merging strategy that coordinates the two streams of traffic (instead of individual vehicles) for maximized efficiency gains at the traffic flow level. It is expected that, by implementing that flow-level coordination, the traffic in on-ramp bottlenecks becomes more robust, i.e., more resistant to disturbances caused by the ramp inflow, and recurrent congestions can be prevented/delayed in high demand situations.

B. Research Approach and Contributions

In this study, a CAV-enabled ramp merging strategy, called Coordinative Merging Control (CoMC), is proposed to facilitate traffic efficiency and robustness at freeway on-ramps. The strategy combines two promising ideas: (1) proactive creation of large gaps on the main road, and (2) platooning of ramp merging vehicles. Gap creation is a primary way to promote on-ramp merging. Common practices include the reservation or slot-based methods [23], [51], trajectory planning methods [25], [31], [32], [37], [38], and proactive gap creation systems [49], [50]. Previous results show that gap creation can eliminate critical merging situations by providing ramp vehicles with readily available gaps. Platoon driving is another approach that is proven to stabilize traffic flow and increase throughput in various bottlenecks [52], [53], [54], [55], [56]; however, it is rarely applied to the merging of on-ramp vehicles. In this research, we integrate the ideas of gap creation and platoon merging in a coordination framework, under which the mainline traffic is compacted to create large gaps when triggered by the formation of the ramp merging platoons, and the merging platoons are smoothly directed into the created gaps through the control of speed and arrival time. The coordination is formulated as an optimization problem to determine the optimal control plan adaptive to real-time traffic conditions. The model incorporates microscopic and macroscopic traffic flow models to account for the dynamics of individual vehicles, as well as the flow-level traffic robustness and the transition of traffic state. The benefits of the proposed CoMC strategy are demonstrated through an illustrative case study conducted on a microscopic simulation platform. Results show clear efficiency gains of the CoMC strategy, especially under high traffic demand conditions.

Table 1 compares the CoMC strategy with the state of the arts and highlights its novelty:

- This strategy controls the two streams of traffic (instead of individual vehicles) for the flow-level efficiency gains. We expect that the consolidation of gap creation and platoon merging can result in enhanced coordination benefits than applying them separately.
This strategy, for the first time to the authors’ best knowledge, explicitly considers the platooning of ramp merging vehicles and determines the optimal platoon formation with respect to traffic conditions.

This strategy incorporates the macroscopic traffic flow models, which allows for an explicit consideration on the transition of the fundamental traffic state and the risk of traffic breakdown.

It is worth noting that in this paper, we focus on introducing the basic concepts of the CoMC strategy and providing detailed elaborations on its formulations and solutions. These serve as the theoretical fundamentals for applying the strategy in various contexts. On this basis, extensions of the strategy to multilane freeways (considering free lane-changes between main road lanes) and mixed traffic conditions (considering the presence of HDVs) are addressed in our follow-up studies [57], [58].

The remaining of this paper is structured as follows. Section II introduces the CoMC strategy and presents its analytical formulation in an optimization framework. Section III provides a solution method of the optimization model. Section IV presents a case study and discusses the efficiency of CoMC under various demand scenarios. The conclusion is drawn in Section V.

II. COORDINATIVE MERGING CONTROL

A. Coordinative Merging Control (CoMC) Strategy

The CoMC strategy, combining proactive gap creation and platoon merging, consists of three control components: (1) mainline control: mainline vehicles decelerate in advance to create large gaps on the main road; (2) ramp control: merging vehicles form platoons on the on-ramp; (3) centralized coordination: the gaps created on the main road and the platoons formed on the ramp are coordinated by a control center in terms of size, speed, and arrival time. As illustrated in Fig. 1, the coordination is carried out in the following steps:

Step 1: Upon arrival, the ramp vehicles stop at a pre-specified position on the ramp and register themselves with the control center.

Step 2: The control center counts the number of ramp vehicles arriving. When a certain number of ramp vehicles has accumulated, the control center initiates coordinative merging by appointing a mainline vehicle as the facilitating vehicle and sending instructions on where and how much this vehicle should cooperatively decelerate.

Fig. 1. Coordinative merging control (comc) system.

Strategy	CAV penetration	Freeway layout	Control strategy	Optimal merging platoon	Macroscopic traffic models
CoMC	100%	single-lane	on-demand gap creation & platoon merge	✓	✓
Cao et al. [24]	100%	single-lane	-	trajectory planning	-
Zhou et al. [25]	100%	single-lane	-	trajectory planning	-
Zhou et al. [26]	100%	single-lane	-	trajectory planning	-
Fukuyama [29]	100%	single-lane	-	trajectory planning	-
Karini et al. [30]	mixed	single-lane	-	trajectory planning	-
Lettir et al. [31]	100%	single-lane	-	trajectory planning	-
Xie et al. [32]	100%	single-lane	-	trajectory planning	-
Hu et al. [33]	100%	multi-lane	-	trajectory planning	-
Omidvar et al. [34]	mixed	single-lane	-	trajectory planning	-
Ito et al. [35]	mixed	single-lane	-	trajectory planning	-
Mu et al. [36]	100% & mixed	single-lane	-	trajectory planning	-
Ntousakis et al. [37]	100%	single-lane	-	trajectory planning	-
Rios-Torres et al. [38]	100%	single-lane	-	trajectory planning	-
Sonbahaisian et al. [39]	100%	single-lane	-	trajectory planning	-
Karbalaiasi et al. [42]	100%	multi-lane	-	alternative action	-
Ding et al. [43]	100%	single-lane	local merging sequence	trajectory planning	-
Jing et al. [45]	100%	single-lane	local merging sequence	trajectory planning	-
Xu et al. [46]	100%	single-lane	local merging sequence	trajectory planning	-
Chen et al. [47]	100%	single-lane	local merging gap	trajectory planning	-
Sun et al. [48]	mixed	single-lane	local merging gap	trajectory planning	-
Scenna et al. [49]	100%	single-lane	periodic gap creation & batch merge	✓	-
Chen et al. [50]	mixed	single-lane	-	trajectory planning	-

* a indicating whether the strategy considers platoon merging and determines the optimal platoon size.

b indicating whether the strategy incorporates macroscopic traffic flow models and controls the fundamental state of the traffic flow.
Step 3: The facilitating vehicle accepts the cooperation request (otherwise the request is passed to the next vehicle) and sends back a confirmation to the control center. Then, it executes the required deceleration and develop a gap from its original leader.

Step 4: The control center releases the vehicles waiting on the ramp as a platoon by specifying their moving trajectories.

Step 5: The ramp vehicles follow the instructions from the control center when driving towards the merging point.

In order to achieve smooth and efficient merging, the mainline cooperation and the ramp platoon formation should be coordinated in terms of three requirements: (1) the created mainline gap should be large enough for the platoon to merge into (the requirement of size); (2) the platoon should reach the same speed as the mainline facilitating vehicle when arriving at the merging point (the requirement of speed); (3) the gap should be just available at the merging point when the platoon arrives there (the requirement of arrival time).

Note that, the essence of CoMC is to collect space on the main road by compacting mainline vehicles and to make full use of the collected space by grouping merging vehicles into proper platoons. This can be explained by macroscopic traffic flow theories [59], [60]. Fig. 2 shows a generalized fundamental diagram, where each point on the density-flow curve represents a traffic state, and the slope of the line connecting the point and the origin describes the aggregated vehicle speed in this state. Assume the mainline traffic is originally in state O (Original state). When the facilitating vehicle decelerates, the vehicles following it also decelerate and accept shorter car-following distances corresponding to the reduced speed. This changes the state of the traffic behind the facilitating vehicle from state O to state C (Cooperative state). The transition in state compacts the mainline vehicles (with higher density) and increases the traffic flow rate, thus providing space for the merging of ramp vehicles. However, the transition from state O to state C also causes a shockwave on the main road, as described by the dashed line connecting state O and state C. The shockwave spreads at the speed defined by the slope of the dashed line and affects the mainline traffic negatively. If the mainline vehicles decelerate too frequently, new shockwaves will be generated before the existing ones dissipate, and the superposition of the shockwaves will cause long-lasting mainline disturbances, eventually leading to traffic breakdowns on the main road [1]. Therefore, the key to CoMC is to balance the efficiency of the mainline and ramp traffic and to ensure that the merging of ramp vehicles is facilitated without breaking mainline traffic flow.

To this end, the CoMC strategy is dedicated to finding the optimal control scheme that optimizes the overall mainline and ramp efficiency. The control scheme determines the following aspects of the coordination:

- Size of the merging platoon (n)
- Movements of the merging platoon (a)
- Position at which the facilitating vehicle decelerates (d)
- Cooperative speed of the facilitating vehicle (v_C)

Note that these aspects are not independent of each other. The optimal control scheme is actually a joint decision on these issues. Moreover, it is assumed that timely communication and precise vehicle control are attainable via the emerging vehicle communication and automation technologies. Specifically, the following assumptions are applied:

- 100% penetration rate of CAVs in the traffic flow.
- Effects of free lane-changes on the main road are ignored.
- All vehicles are highly-automated corresponding to L4 in [61].
- The vehicles are capable of timely communication with control entities.

B. Analytical Formulation

Fig. 3 shows a hypothetical freeway merging area with a one-lane on-ramp. The Merging Point (MP) is the position at which the main road and the ramp connect. The merging platoon (marked in red) is formed by stopping the ramp vehicles at the on-ramp Waiting Position (WP), and the mainline cooperation is initiated by the deceleration of the facilitating vehicle at the Speed-Change position (SC). The mainline deceleration may affect several vehicles behind the facilitating vehicle, including the facilitating vehicle itself. These vehicles are called mainline cooperative vehicles (marked in green). The End of Merging (EM) is the position at which the merge influence area ends, as defined in [62]. The entire course of such a coordination process, including one gap creation and one platoon formation, is defined as a coordinative merging cycle. CoMC functions through the recurrent implementation of merging cycles. Note that in such a system, the coordination takes place at the MP instead of a later position on the acceleration lane mainly for two reasons: (1) it allows the ramp vehicles to merge as early as possible, and (2) it increases the redundancy of the system in the way that if a single ramp vehicle fails to merge at the MP, it can still utilize the rest of the acceleration lane to merge.

1) **Objective:** In order to facilitate the overall merging efficiency, the objective is to minimize the total delay to all vehicles passing through the merging area (D), as in (1).

$$\text{min} \: D = \left(\sum_{i=1}^{m} D_{\text{main}}^i + \sum_{j=1}^{n} D_{\text{ramp}}^j \right) \times r$$

where w_m and w_r are the weights of the mainline and ramp traffic (this paper uses $w_m = w_r = 1$ for a general case).
A mainline cooperative vehicle, \(i \), will initially travel at the speed \(v_O \) and decelerate to the speed \(v_C \) when encountering the shockwave. Thus, the actual travel time of vehicle \(i \) consists of two parts: the travel time in state O (\(t'^0_O \)) and the travel time in state C (\(t'^1_C \)). In state O, we assume that mainline vehicles follow each other at a steady headway of \(h_O \) corresponding to the flow rate \(q_O \), and set the origin of the time axis to the time point at which the facilitating vehicle passes SC. Then, the \(i^{th} \) cooperative vehicle will cross SC at the time \((i-1)h_O \) and encounter the shockwave at the time \((i-1)h_O + t'^0_O \), meaning that the distance that vehicle \(i \) travels in \(t'^0_O \) seconds equals the distance that the shockwave travels in \((i-1)h_O + t'^0_O \) seconds, i.e., \(v_O \cdot t'^0_O = \omega \cdot [(i-1)h_O + t'^0_O] \). This gives \(t'^0_O \) as

\[
t'^0_O = \frac{(i-1)\omega h_O}{v_O - \omega} \tag{5}
\]

The distance between SC and EM is \(d + d' \), which is the sum of the travel distance in state O and the travel distance in state C, i.e., \(v_O \cdot t'^0_O + v_C \cdot t'^1_C = d + d' \). Thus, \(t'^1_C \) is given as

\[
t'^1_C = \frac{d + d' - v_O t'^0_O}{v_C} \tag{6}
\]

Then, the delay to the \(i^{th} \) cooperative vehicle is

\[
D^i_{main} = t'^0_O + t'^1_C - t'^0_{main} \tag{7}
\]

The number of cooperative vehicles in a merging cycle, \(m \), depends on the dissipation time of the shockwave \(T_{sw} \):

\[
T_{sw} = \frac{d + d'}{\omega} \tag{8}
\]

For a mainline vehicle \(i \) which passes SC at the time \((i-1)h_O \), if it maintains the original speed \(v_O \), it will arrive at EM at the time \(T_i \), with

\[
T_i = (i-1)h_O + \frac{d + d'}{v_O} \tag{9}
\]

If \(T_i < T_{sw} \), vehicle \(i \) is a cooperative vehicle because it will encounter the shockwave somewhere between SC and EM; otherwise (i.e., \(T_i \geq T_{sw} \)), the vehicle will not be affected by the shockwave. When there are exactly \(m \) cooperative vehicles in a merging cycle, the \(m^{th} \) vehicle should encounter the shockwave (\(T_m < T_{sw} \)) and the \(m + 1^{th} \) vehicle should not (\(T_{m+1} \geq T_{sw} \)), determining \(m \) as

\[
m = \left\lceil \frac{d + d'}{h_O} \times \left(\frac{1}{\omega} - \frac{1}{v_O} \right) \right\rceil \tag{10}
\]

where \(\lceil \cdot \rceil \) represents the nearest upper integer.

The delay to a ramp vehicle \(j \) is the difference between its actual travel time (\(t'^j_{ramp} \)) and the original travel time it would take if the main road were empty (\(t'^0_{ramp} \))

\[
D^j_{ramp} = t'^j_{ramp} - t'^0_{ramp} \tag{11}
\]

The actual travel time \(t'^j_{ramp} \) consists of four parts: the time the vehicle spends braking before stopping at WP (\(t_{BR} \)), the time the vehicle waits at WP (\(t_{WT} \)), the time the vehicle spends accelerating from WP to MP (\(t_{ACC} \)), and the time the vehicle spends cruising from MP to EM (\(t_{CR} \)). Note that, we only
distinguish a vehicle’s position in the platoon for the waiting time at WP, because for the other parts of the trip, vehicles in a platoon behave in exactly the same way.

Assuming that the ramp vehicles arrive at the speed v_r and brake to a stop at a constant braking rate b, the braking time (t_{BR}) and braking distances (S_{BR}) are

$$t_{BR} = \frac{v_r}{b}, \quad S_{BR} = \frac{v_r^2}{2b}$$

Assuming that ramp vehicles arrive in a Poisson distribution $P(\lambda)$ with the arrival rate λ, the time needed for x ramp vehicles to arrive follows the Gamma distribution $t \sim \Gamma(x, \lambda)$ with the expectation x/λ. In a merging platoon consisting of n vehicles, the j^{th} vehicle should wait for $n-j$ vehicles to arrive, so the expected waiting time of the j^{th} vehicle is

$$t_{WT}^j = \frac{n-j}{\lambda}$$

According to the requirement of speed, vehicles in the merging platoon should reach the speed v_C and follow each other at an interval equaling the mainline headway in state C (h_C) when arriving at MP. Then, the leader of a merging platoon of n vehicles should arrive at MP in $n-h_C$ seconds earlier than the mainline facilitating vehicle, so as to satisfy the requirement of arrival time. As CoMC releases the merging platoon at the same time as the facilitating vehicle decelerates at SC, t_{ACC} should be $n-h_C$ seconds less than the facilitating vehicle’s travel time from SC to MP (i.e., d/v_C), as in (15). During the time t_{ACC}, the merging platoon should accelerate from stop to the speed v_C, resulting in the required acceleration rate (a) and WP position (S) as in (16) and (17).

$$t_{ACC} = \frac{d}{v_C} - nh_C$$

$$a = \frac{v_C^2}{t_{ACC}} = \frac{v_C^2}{d - nh_C v_C}$$

$$S = \frac{v_C t_{ACC}}{2} = \frac{d - nh_C v_C}{2}$$

Here, we adopt the simple assumption of constant ramp acceleration rate. Clearly, more sophisticated trajectory design may benefit energy use and passenger comfort, however, it can be formulated as the task of a lower-level controller and is not the focus of this paper.

After entering the main road, the ramp vehicles should continue travelling at the speed v_C until leaving the merging area, which gives the mainline cruise time t_{CR} as

$$t_{CR} = \frac{d'}{v_C}$$

The original travel time of a ramp vehicle, t_{ramp}^0, is defined as the travel time when the ramp vehicle always travels at the desired speed, namely v_r on the ramp and v_O on the main road:

$$t_{ramp}^0 = \frac{S_{BR} + S}{v_r} + \frac{d'}{v_O}$$

Then, the delay to the j^{th} ramp vehicle is determined as

$$D_{ramp} = t_{BR} + t_{WT}^j + t_{ACC} + t_{CR} - t_{main}^0$$

The frequency of co-ordinated merging cycles, r, is related to the merging platoon size n. Since a merging cycle is initiated whenever a platoon of n vehicles has formed on the ramp, the expected duration of a cycle (I) is equal to the time needed for n ramp vehicles to arrive, as in (21), and the frequency of merging cycles (hourly rate) is the inverse of I, as in (22).

$$I = \frac{n}{\lambda}$$

$$r = \frac{3600}{I} = \frac{3600\lambda}{n}$$

2) Constraints: The search for objective must be subject to requirements on safety, robustness of traffic, and vehicle dynamics. Specifically, the followings should apply:

a. The created mainline gap should be no smaller than the space required by the merging platoon, i.e.,

$$G_{create} \geq G_{require}$$

b. The created mainline gap should be no smaller than the space required by the merging platoon, i.e., $G_{create} = h_O + d/v_C - d/v_O$.

c. The created mainline gap should be no smaller than the space required by the merging platoon, i.e., $G_{require} = (n + 1) \cdot h_C$.

d. The required acceleration of the merging platoon should not exceed the maximum allowable ramp acceleration, i.e., $a \leq a_{max}$.

e. Constraints describing the decision variables by definition

$$n \in \mathbb{N}^+$$

$$v_C < v_O$$

$$d > 0$$

III. MODEL SOLUTION

In Section II, the CoMC strategy is formulated as a constrained optimal control problem with three decision variables: (1) the merging platoon size (n), (2) the position of SC, described by the distance between SC and MP (d), and (3) the cooperative state (state C), described by the speed v_C. Table II summarizes the notation and roles of the variables.

Note that, in the model, we use speed v as the decision variable representing a traffic state, and the other traffic state parameters (flow q, density k, and headway h) are expressed as functions of v according to the fundamental diagram. Theoretically, any form of fundamental diagram would be compatible with CoMC, as the model sets no limits on the macroscopic traffic relationship. In practice, the fundamental
In practice, a heuristic solution to a certain degree of accuracy is in order to analytically obtain a closely approximated solution. For a linear non-convex optimization problem. Here, we present an example: we use the fundamental diagram derived from the Wiedemann calibrated car-following model. Without loss of generality, we use the particular car-following model as an example:

$$s = CC0 + L + CC1 \cdot v$$

where s is the desired spacing distance; L is the vehicle length; $CC0$ and $CC1$ are parameters of the Wiedemann 99 car-following model, representing the standstill distance and the speed-dependent part of s, respectively [63].

It is usually difficult to solve such a constrained nonlinear non-convex optimization problem. Here, we present an idea to analytically obtain a closely approximated solution. In practice, a heuristic solution to a certain degree of accuracy should be robust enough.

Based on Section II, the final form of the objective function (with $w_m = w_r = 1$) can be derived as

$$\text{min} D = \left(\sum_{i=1}^{m} D_{i_{\text{main}}} + \sum_{j=1}^{n} D_{j_{\text{ramp}}} \right) \times r$$

with

$$\sum_{i=1}^{m} D_{i_{\text{main}}} = m \cdot \frac{(vO - vC) \cdot (d + d')}{vC} - \frac{(m - 1) \cdot o \cdot h \cdot o}{2 \cdot (vO - \omega)}$$

$$\sum_{j=1}^{n} D_{j_{\text{ramp}}} = n \times \left(\frac{v_r}{2b} + \frac{d + d'}{vC} - nhC - \frac{d - nhC \cdot vC}{2r} \right)$$

Then, the optimal value of d is

$$d \geq d_{lb} | n, vC) = \max \left(\frac{\omega \cdot vC}{vO - vC} \cdot \left((n + 1) \cdot hC - h \cdot o \right) \right) \times \frac{v^2}{\omega} + nhC \cdot vC$$

$$(29)$$

Then, the optimal value of d under a given pair of n and vC can be obtained by comparing the position of the symmetrical axis to the upper and lower bounds of d, namely

$$d_{opt} | n, vC) = \begin{cases} d_{lb} | n, vC) & \text{if } - \frac{B}{2A} \leq d_{lb} | n, vC) \\ - \frac{B}{2A} & \text{if } d_{lb} | n, vC) < - \frac{B}{2A} < d_{ab} | n, vC) \\ d_{ab} | n, vC) & \text{if } - \frac{B}{2A} \geq d_{ab} | n, vC) \end{cases} \quad (30)$$

The optimal objective value under a given pair of n and vC, $D_{opt} | n, vC)$, is obtained by substituting $d_{opt} | n, vC)$ into the objective function, i.e., $D_{opt} | n, vC) = D(d_{opt} | n, vC) \) $.

Note that for any given pair of n and vC, the optimal problem has solutions only when $d_{lb} | n, vC) \leq d_{ab} | n, vC)$. This defines the feasible range of n under a given vC. Considering that n must be a positive integer, we can check all possible values of n and find the optimal n that produces the minimal value of D for that vC, i.e.,

$$D_{opt} | vC) = \min_{n=k, k+1, k+2, \ldots} \left(D_{opt} | n, vC) \right)$$

$$n_{opt} | vC) = \arg \min_{n=k, k+1, k+2, \ldots} \left(D_{opt} | n, vC) \right) \quad (31)$$

where $k, k+1, k+2, \ldots$ stand for the feasible range of n under a given vC, and $n_{opt} | vC) and $D_{opt} | vC) are the optimal values of n and objective D under that vC, respectively.

So far, we have presented a way to determine the optimal values of d and n given the value of vC, so the relationship between vC and the optimal D value that is achieved under the particular $vC (D_{opt} | vC)$ can be established, see Fig. 5 as an example. The optimal solution locates at the point where $D_{opt} | vC)$ is minimal.
As shown in Fig. 5, $D_{\text{opt}}|_{v_C}$ monotonically decreases as v_C increases, but when v_C reaches certain levels (i.e., breakpoints of the curve in Fig. 5), the value of $D_{\text{opt}}|_{v_C}$ will suddenly increase. This is because, as v_C increases to the breakpoints, the constraint $d_{hl}|(n, v_C) \leq d_{ub}|(n, v_C)$ fails with the current value of $n_{\text{opt}}|_{v_C}$, so $n_{\text{opt}}|_{v_C}$ must increase by 1. Therefore, the optimal solution must appear at one of the breakpoints. By comparing the values of D at the breakpoints, the optimal solution (marked as d^*, n^*, and v_C^*) can be obtained as

$$
v_C^* = \arg\min_{v_C} D_{\text{opt}}|_{v_C}
$$

$$
n^* = n_{\text{opt}}|_{v_C^*}
$$

$$
d^* = d_{\text{opt}}| (n^*, v_C^*)
$$

(32)

IV. Performance Analysis

The analytical formulation in Section II is derived from the theoretical traffic flow models. In this section, we conduct an illustrative case study to verify the efficiency of CoMC in the more complicated simulation environment.

A. Simulation Setting

The simulation platform is composed of the microsimulation tool VISSIM version 11 and scripts coded in Python version 3.6 and C++ version 2017. VISSIM provides the basic simulation environment, including the road network, traffic demand generation, vehicle dynamics, and raw data record. The CoMC coordination strategy is compiled in Python and integrated into VISSIM through the COM interface. The cooperative behaviors of the mainline facilitating vehicle and the merging platoon leader are controlled by external driving models written in C++ and called via the DLL interface of VISSIM.

The simulated freeway extends 2000 meters upstream and 500 meters downstream from the merging area, covering the merge influence area defined in HCM rategy. A 700-meter-long one-lane on-ramp connects to the main road via a 240-meter-long acceleration lane. For each study scenario, 10 simulation runs with different random seeds are carried out. Each run lasts 7200 simulation seconds. The reported results are aggregated over the 10 replications of each study scenario.

Table III

Parameter	Value	Unit	Source
v_o	120	km/h	[62]
v_p	60	km/h	[62]
d'	457.2	m	[62]
v_{exit}	75	km/h	[64]
b	2.75	m/s²	[65]
d_{max}	2.75	m/s²	[65]
CC0	1.5	m	[66]
CC1	0.9	s	[66]
L	4.37	m	[66]

Table IV

Demand Scenario and Control Plan
1A
q_{\text{main}}
q_{\text{ramp}}
v_C
d
n

Fig. 6 shows the maximum on-ramp flow that can be accommodated by CoMC with respect to the mainline flow rate for the input parameters in Table III. The maximum values are determined in a heuristic approach that fixes the mainline flow and gradually increases the on-ramp flow until the optimization problem no longer has a feasible solution. The range of flow covers the most prevailing demand range in field-observation, indicating the ability of CoMC to address real-world traffic.

As the traffic is usually self-sustained under low traffic demand, the main purpose of CoMC is to promote merging and prevent congestions under high traffic volume conditions. In this case study, we focus on the high demand scenarios and consider two levels of mainline flow (1600 and 1800 veh/h) and three levels of on-ramp flow (300, 400, and 500 veh/h), resulting in a total of six demand scenarios, as shown in Table IV. Note that, the parameters and demand values in Table III and Table IV serve as reference values of the macroscopic model. In the microscopic simulation, vehicles are generated with distributions around these reference values, resulting in fluctuating flow rate and varying driving behaviors. For each demand scenario, a CoMC-controlled case is developed and compared to a base case where no centralized
coordination is applied. The base case model is validated on the benchmark predictions of Highway Capacity Manual [62] in terms of average speed and density of vehicles within the ramp influence area. The base and CoMC cases use exactly the same assumptions and models with the only difference as the presence/absence of CoMC. According to the CoMC control plan in Table IV, the required values of v_C, n, and d are reasonable in all scenarios, showing that CoMC is compatible with real-world implementation.

B. Results and Discussion

In order to visualize the simulated traffic conditions, we record the speed and position of each vehicle in the road segment between 1500 meter upstream and 500 meters downstream of the merging point at the start of each simulation second and plot vehicle trajectories, as shown in Fig. 7, where black lines indicating the mainline vehicles, and the red lines the merging vehicles. As it shows, the expected coordination phenomena, such as the formation of merging platoons, the cooperative deceleration of mainline traffic, and the propagation and dissipation of disturbances are observed in the simulation experiments. Under relatively low traffic volumes (e.g., 1A and 1B), the disturbances induced by the merging vehicles are usually quickly eliminated in both base and CoMC cases. Under high traffic volumes (e.g., 1C, 2A, 2B, and 2C), the disturbances induced by the merging traffic may accumulate and eventually trigger traffic breakdowns in the base cases, whereas the periodic coordination of CoMC can well collect and accommodate the disturbances on the main road.

Table V, Table VI, and Fig. 8 present the travel time and delay results. The travel time results are measured for the entire vehicle trips, excluding the first and last 100 meters to switch off border effects. Delay is defined as the difference between the measured travel time and the theoretical ideal travel time, with the ideal travel time referring to the minimum driving time determined by the length and design speed of each road link. In addition, we collect the average cross-section speed at every 100 meters from 500 meters to 2500 meters along the mainline freeway at a time frequency of five simulation minutes and report the aggregated speed results in Fig. 9 to reflect the prevailing traffic conditions and the onset of congestions.

![Fig. 7. Five-minutes trajectory plot.](image-url)
TABLE VI

Scenario	Mainline delay (s)	Ramp delay (s)	Overall delay (s)	
1A (1600,300)	1.02	15.73	3.34	
1B (1600,400)	base	2.52	30.40	8.09
1C (1600,500)	base	27.56	49.58	32.83
2A (1800,300)	base	4.11	56.60	11.53
2B (1800,400)	base	2.61	36.88	8.83
2C (1800,500)	base	233.72	72.81	198.29

As revealed in the case study, the benefits of CoMC are more remarkable under higher traffic volume. In the cases where the traffic volume is relatively low, CoMC may cause extra delays to the ramp traffic. Therefore, we recommend introducing a threshold in terms of traffic volumes, at which the CoMC strategy would be activated as a temporary traffic management measure against the high traffic demand. As traffic conditions may vary across different sites, the activation threshold should be determined on a ‘case by case’ basis in the light of the specific conditions of the merging bottleneck area.
Further, as the real-world traffic state may vary over time, the CoMC strategy should be implemented in a dynamic manner in practice. Specifically, the traffic state parameters (i.e., aggregated flow rate and speed) should be monitored carefully, and the decisions of CoMC (i.e., activate or not, if activate, values of the coordination parameters n, v_C, and d) should be updated recurrently according to the latest traffic state. The update interval can vary at different sites or times of day. For example, when the traffic condition is relatively stable (e.g., during night-time), the coordination can be updated at a longer interval, whereas in the situations with dramatic changes in the traffic state (e.g., transition periods between the non-peak and peak hours), the traffic condition should be actively monitored, and the CoMC decisions should be updated at a higher frequency. The dynamic implementation method can enhance the adaptivity of the coordination and ensure that the real-time variations in traffic conditions are accommodated in a timely manner.

V. CONCLUSION AND FUTURE WORK

In this paper, we present a novel CAV merging strategy, called CoMC, to coordinate traffic flows in freeway on-ramp bottlenecks and facilitate ramp merging operation. The strategy proactively creates on-demand gaps on the mainline freeway and guides the ramp vehicles into the created gaps in the form of platoons. The strategy can be combined with traffic state prediction methods [67] and trajectory planning methods [25], [37] for enhanced traffic improvement. The proposed strategy is formulated as an optimization problem that minimizes total vehicle delay based on the macroscopic and microscopic traffic flow models. The analytical model determines the optimal control plan with respect to the traffic conditions, including the cooperative merging speed, the merging platoon size, and the speed-change position of the mainline facilitating vehicle. The efficiency of CoMC under various demand scenarios is demonstrated in a case study conducted on a microscopic simulation platform. The results show that the proposed CoMC coordination is successfully achieved in the simulation environment and can substantially improve the overall traffic efficiency at on-ramp merging, especially under high traffic volume conditions. In the most critical conditions, recurrent traffic congestions are prevented, and merging throughput is increased. In comparison with the existing CAV merging strategies, the novelty of CoMC resides mainly on the following aspects: (1) it focuses on the upper-level coordination of two streams of traffic (instead of individual vehicles) for the flow-level efficiency gains; (2) it presents an innovative idea combining gap-creation and platoon-merging, especially the detailed discussion on platoon merging is unique; (3) macroscopic traffic flow models are integrated, allowing for an explicit consideration on traffic state transitions and robustness of traffic flow.

The current work has some limitations. First, this paper focuses on the theoretical aspects of the coordination strategy, and the concept and benefits are verified in a single-lane freeway simulation setup which is less common in real-world. In our follow-up studies [57], [58], we will explore the possibilities to extend the strategy to more practical contexts, such as multilane freeways where free lane-changes between freeway lanes are considered, and mixed traffic conditions where HDVs are present in the traffic. Further, some practical aspects of the strategy are not sorted out within the scope of this paper, such as a method to determine the activation threshold according to the specific conditions of a merging area. This will be followed up by future research. In addition, it is worth noting that this coordination strategy is not applicable to congested conditions where the traffic has already broken to a much lower speed, with often stop-and-go in traffic.

REFERENCES

[1] Y. Han and S. Ahn, “Stochastic modeling of breakdown at freeway merge bottleneck and traffic control method using connected automated vehicle,” Transp. Res. B, Methodol., vol. 107, pp. 146–166, Jan. 2018.
[2] M. Papageorgiou, H. Hadj-Salem, and J.-M. Blosseville, “ALINEA: A local feedback control law for on-ramp metering,” Transp. Res. Rec., vol. 1320, no. 1, pp. 58–67, 1991.
[3] M. Papageorgiou and A. Kotsialos, “Freeway ramp metering: An overview,” IEEE Trans. Intell. Transp. Syst., vol. 3, no. 4, pp. 271–281, Dec. 2002.
[4] G. Gomes and R. Horowitz, “Optimal freeway ramp metering using the asymmetric cell transmission model,” Transp. Res. C, Emerg. Technol., vol. 14, no. 4, pp. 244–262, Aug. 2006.
[5] E. Smaragdis, M. Papageorgiou, and E. Kosmatopoulos, “A flow-maximizing adaptive local ramp metering strategy,” Transp. Res. B, Methodol., vol. 38, no. 3, pp. 251–270, Mar. 2004.
[6] I. Papamichail, A. Kotsialos, I. Margonis, and M. Papageorgiou, “Coordinated ramp metering for freeway networks—A model-predictive hierarchical control approach,” Transp. Res. C, Emerg. Technol., vol. 18, no. 3, pp. 311–331, Jun. 2010.
[7] S. Acharya and M. Mekker, “The verbiage in variable message signs and traffic diversion during crash incidents,” J. Intell. Connected Vehicles, vol. 5, no. 3, pp. 333–344, 2022.
[8] D. Chen, S. Ahn, and A. Hegyi, “Variable speed limit control for steady and oscillatory queues at fixed freeway bottlenecks,” Transp. Res. B, Methodol., vol. 70, pp. 340–358, Dec. 2014.
[9] H. Zhang, Z. Li, P. Liu, C. Xu, and H. Yu, “Control strategy of variable speed limits for improving traffic efficiency at merge bottleneck on freeway,” Proc. Social Behav. Sci., vol. 96, pp. 2011–2023, Nov. 2013.
[10] L. Zhang, L. Zhang, D. K. Hale, J. Hu, and Z. Huang, “Cycle-based variable speed limit methodology for improved freeway merging,” IET Intell. Transp. Syst., vol. 11, no. 10, pp. 632–640, Dec. 2017.
[11] R. C. Carlson, I. Papamichail, M. Papageorgiou, and A. Messmer, “Optimal motorway traffic flow control involving variable speed limits and ramp metering,” Transp. Sci., vol. 44, no. 2, pp. 238–253, May 2010.
[12] A. Hegyi, B. De Schutter, and H. Hellendoorn, “Model predictive control for optimal coordination of ramp metering and variable speed limits,” Transp. Res. C, Emerg. Technol., vol. 13, no. 3, pp. 185–209, Jun. 2005.
[13] X.-Y. Lu, P. Varaiya, R. Horowitz, D. Su, and S. E. Shladover, “Novel freeway traffic control with variable speed limit and coordinated ramp metering,” Transp. Res. Rec., J. Transp. Res. Board, vol. 2229, no. 1, pp. 55–65, Jun. 2011.
[14] I. Papamichail, K. Kampitaki, M. Papageorgiou, and A. Messmer, “Integrated ramp metering and variable speed limit control of motorway traffic flow,” IFAC Proc. Volumes, vol. 41, no. 2, pp. 14084–14089, 2008.
[15] W. Wang et al., “GOPS: A general optimal control problem solver for autonomous driving and industrial control applications,” Commun. Transp. Res., vol. 3, Dec. 2023, Art. no. 100096.
[16] Y. Liu et al., “Reliability of electric vehicle charging infrastructure: A cross-lingual deep learning approach,” Commun. Transp. Res., vol. 3, Dec. 2023, Art. no. 100095.
[17] H. Lin, Y. Liu, S. Li, and X. Qu, “How generative adversarial networks promote the development of intelligent transportation systems: A survey,” IEEE/CIC J. Autom. Sinica, vol. 10, no. 9, pp. 1781–1796, Sep. 2023.
[18] Y. Qu, H. Lin, and Y. Liu, Evisoning Future Transportation: Inspiration ChatGPT Large Models, vol. 3, Amsterdam, The Netherlands: Elsevier, 2023, Art. no. 100103.
[63] R. Wiedemann, “Modelling of RTI-elements on multi-lane roads,” in Proc. Drive Conf., vol. 2, Brussels, Belgium, 1991, pp. 1001–1010.
[64] J. Geistefeldt et al., “HBS-Konforme Simulation des Verkehrsaufblaufs auf Autobahnen,” Berichte der Bundesanstalt für Strassenwesen. Unterreihе Verkehrs technik, vol. 64, no. 8, pp. 507–512, 2020.
[65] AASHTO, A Policy on Geometric Design of Highways and Streets, 7th ed., American Association of State Highway and Transportation Officials, Washington, DC, USA, 2018.
[66] PTV VISSIM 11 User Manual, Karlsruhe, Germany: PTV AG, 2018.
[67] Y. Liu, C. Lyu, Y. Zhang, Z. Liu, W. Yu, and X. Qu, “DeepTSP: Deep traffic state prediction model based on large-scale empirical data,” Commun. Transp. Res., vol. 1, Dec. 2021, Art. no. 100012.

Jie Zhu received the B.Sc. degree in transportation engineering from Tongji University, Shanghai, China, the M.Eng. degree from the Technical University of Munich, Germany, and the Ph.D. degree from the Chalmers University of Technology, Gothenburg, Sweden. She is currently a Research Engineer with Volvo Technology AB, Sweden. Her research interests include emerging technologies of cooperative, connected, and automated vehicles.

Liang Wang received the B.Eng. and M.Eng. degrees from Tsinghua University, Beijing, China, and the Ph.D. degree from Columbia University, New York, NY, USA. He is currently an Assistant Research Professor with the School of Vehicle and Mobility, Tsinghua University. His research interests include transportation digital-twin technology, building information modeling, ground-air cooperation, and UAV applications. Additionally, he serves as an Associate Editor for the Journal of Intelligent and Connected Vehicles.

Ivana Tasic received the B.Sc. degree in transportation engineering from the University of Belgrade, Serbia, and the Ph.D. degree in civil engineering/transportation from The University of Utah. She was an Assistant Professor with the Chalmers University of Technology. She is trained as a multidisciplinary Researcher in transportation infrastructure and urban planning and has been supporting multiple professional engineering organizations through active membership and service. Her main research interests include urban multimodal transportation systems, innovative transportation technologies, and multidisciplinary education.

Xiaobo Qu (Senior Member, IEEE) received the B.Eng. degree from Jilin University, Changchun, China, the M.Eng. degree from Tsinghua University, Beijing, China, and the Ph.D. degree from the National University of Singapore, Singapore. He is currently a Changjiang Chair Professor with the School of Vehicle and Mobility, Tsinghua University. His research interests include intelligent transportation systems, ground-air cooperation and vertical transportation systems, and emerging transport mode informed mobility services. He serves as the Editor-in-Chief for two journals, such as Communications in Transportation Research and Journal of Intelligent and Connected Vehicles.