TRANSFER OPERATORS, INDUCED PROBABILITY SPACES, AND RANDOM WALK MODELS

PALLE JORGENSEN AND FENG TIAN

Abstract. We study a family of discrete-time random-walk models. The starting point is a fixed generalized transfer operator R subject to a set of axioms, and a given endomorphism in a compact Hausdorff space X. Our setup includes a host of models from applied dynamical systems, and it leads to general path-space probability realizations of the initial transfer operator. The analytic data in our construction is a pair (h, λ), where h is an R-harmonic function on X, and λ is a given positive measure on X subject to a certain invariance condition defined from R. With this we show that there are then discrete-time random-walk realizations in explicit path-space models; each associated to a probability measures \mathbb{P} on path-space, in such a way that the initial data allows for spectral characterization: The initial endomorphism in X lifts to an automorphism in path-space with the probability measure \mathbb{P} quasi-invariant with respect to a shift automorphism. The latter takes the form of explicit multi-resolutions in L^2 of \mathbb{P} in the sense of Lax-Phillips scattering theory.

Contents

1. Introduction 1
2. The Setting 2
3. Iterated Function Systems: The General Case 9
4. The Set $L^1(R)$ from a Quadratic Estimate 10
5. From Endomorphism to Automorphism 12
5.1. Multi-Resolutions 15
6. Harmonic Functions from Functional Measures 16
References 17

1. Introduction

We study a family of stochastic processes indexed by a discrete time index. Our results encompass the more traditional random walk models, but our study here goes beyond that. The processes considered are generated by a single positive operator, say R, defined on $C(X)$ where X is a given compact Hausdorff space. From a given positive operator R we then derive an associated system of generalized transition probabilities, and an induced probability space; the induction realized as a probability space of infinite paths having X as a base space. In order

2000 Mathematics Subject Classification. Primary 47L60, 46N30, 65R10, 58J65, 81S25.
Key words and phrases. Unbounded operator, closable operator, spectral theory, discrete analysis, distribution of point-masses, probability space, stochastic processes, discrete time, path-space measure, endomorphism, harmonic functions.
for us to pin down the probability space, i.e., the induced path-space measure \mathbb{P}, two more ingredients will be needed, one is a prescribed endomorphism σ in X, consistent with R; and, the other, is a generalized harmonic function h on X, i.e., $R(h) = h$. We further explore the interplay between the harmonic functions h and the associated path-space measures \mathbb{P}. To do this we note that the given endomorphism σ in X induces an automorphism in the path-space. We show that the path-space measure \mathbb{P} is quasi-invariant, and we compute the corresponding Radon-Nikodym derivative. Our motivation derives from the need to realize multiresolution models in a general setting of dynamical systems as they arise in a host of applications: in symbolic dynamics, e.g., [BJO04, BJKR02], in generalized multiresolution model, e.g., [DJ09]; in dynamics arising from an iteration of substitutions, e.g., [Bea91]; in geometric measure theory, and for Iterated Function Systems (IFS), e.g., [Hut81, Urb09]; or in stochastic analysis, e.g., [AJ12, Hut81, MNB16, GF16, ZXL16, TSI+15, Pes13, KLTMV12].

2. The Setting

Organization of the paper: The setup starts with a fixed and given compact Hausdorff space X, and positive operator R (a generalized transfer operator), defined on the function algebra $C(X)$, and subject to two simple axioms. Candidates for X will include compact Bratteli diagrams, see e.g., [Mat06, Mat04, Dan01, HPS92]. Given R, in principle one is then able to derive a system of generalized transition probabilities for discrete time processes starting from points in X; see details in the present section. However, in order to build path-space probability spaces this way, more considerations are required, and this will be explored in detail in Sections 4 and 5 below. Section 3 deals with a subfamily of systems where the generalized transfer operator R is associated to an Iterated Function system (IFS). In Section 6, we derive some conclusions from the main theorems in the paper.

Let X be a compact Hausdorff space, and $\mathcal{M}(X)$ be the space of all measurable functions on X. Let $R: C(X) \rightarrow \mathcal{M}(X)$ be a positive linear mapping, i.e., $f \geq 0 \Rightarrow Rf \geq 0$.

Definition 2.1. Let $\mathcal{L}(R)$ be the set of all positive Borel measures λ on X s.t.

\begin{align*}
R(C(X)) &\subset L^1(\lambda), \\
\lambda \cdot R &\ll \lambda \text{ (absolutely continuous).}
\end{align*}

Note 2.2. Let R be as above, and set

$$
\mu = \lambda \cdot R, \quad \text{and} \quad W = \frac{d\mu}{d\lambda} = \text{Radon-Nikodym derivative},
$$

then

\begin{equation}
\lambda(Rf) = \text{defn. } \int_X RF d\lambda = \int_X fW d\lambda, \quad \forall f \in C(X).
\end{equation}

W depends on both R and λ.

Definition 2.3. For all $x \in X$, let

$$
\mu_x = P(\cdot | x)
$$

be the conditional measure, where

$$
\mu_x(f) := (Rf)(x) = \int_X f(y) d\mu_x(y).
$$
Lemma 2.4. Let X, and R (positive in $C(X)$) be as before, then there is a system of measures $P(\cdot \mid x)$ such that

$$
(Rf)(x) = \int_X f(y) P(dy \mid x), \quad \forall f \in C(X).
$$

(2.6)

Proof. Immediate from Riesz’ theorem applied to the positive linear functional,

$$
C(X) \ni f \rightarrow R(f)(x), \quad \forall x \in X.
$$

\[\square \]

Corollary 2.5. $C(X) \ni f \rightarrow R(f)(x)$ extends to $F \in \mathcal{M}(X)$, measurable functions on X, s.t. the extended operator \tilde{R} is as follows:

$$
\tilde{R}(F)(x) = \int_X F(y) P(dy \mid x), \quad F \in \mathcal{M}(X).
$$

(2.7)

We will write R also for the extension \tilde{R}.

Remark 2.6. Let X, and R be as specified in Definition 2.1. Set

$$
\mathcal{L}_1(R) = \{ \lambda \in \mathcal{L}(R) \mid \lambda(X) = 1 \}.
$$

Clearly, $\mathcal{L}_1(R)$ is convex. In this generality, we address two questions:

Q1. We show that $\mathcal{L}_1(R)$ is non-empty.

Q2. What are the extreme points in $\mathcal{L}_1(R)$?

Lemma 2.7. Let $\mu_x = P(\cdot \mid x)$ be as above. Let $\lambda \in \mathcal{L}(R)$, and let W be the Radon-Nikodym derivative from (2.3). Then

$$
\int_X P(\cdot \mid x) d\lambda(x) = W(\cdot) d\lambda(\cdot).
$$

(2.8)

Proof. Immediate from the definition. Indeed, for all Borel subset $E \subset X$, the following are equivalent ($f = \chi_E$):

\[
\begin{align*}
\int Rf \, d\lambda &= \int fW \, d\lambda \\
&\upharpoonright \\
\int f(y) P(dy \mid x) \, d\lambda(x) &= \int f(x) W(x) \, d\lambda(x) \\
&\upharpoonright \\
\int P(E \mid x) \, d\lambda(x) &= \int_E W(y) \, d\lambda(y) \\
&\upharpoonright \\
\int_X P(\cdot \mid x) \, d\lambda(x) &= W(\cdot) \, d\lambda(\cdot)
\end{align*}
\]

\[\square \]
Remark 2.8. In general, \(\lambda \neq P(\cdot \mid x_0), \) \(x_0 \in X. \) Note that \(\lambda = P(\cdot \mid x_0) \in \mathcal{L}(R) \) iff

\[
\int_y P(\cdot \mid y) P(dy \mid x_0) = W(\cdot) P(\cdot \mid x_0), \quad \text{i.e.,} \\
\int_y P(dz \mid y) P(dy \mid x_0) = W(z) P(dz \mid x_0)
\] (2.9)

However, condition (2.9) is very restrictive, and it is not satisfied in many cases. See Example 2.9 below.

Example 2.9 (Iterated Function System (IFS); see e.g., [Jor12, DJ09]). Let \(X = [0,1] = \mathbb{R}/\mathbb{Z}, \) and \(\lambda = \) Lebesgue measure. Fix \(v > 0, \) a positive function on \([0,1]\), and set

\[
(Rf)(x) = v\left(\frac{x}{2}\right) f\left(\frac{x}{2}\right) + v\left(\frac{x+1}{2}\right) f\left(-\frac{x+1}{2}\right)
\]

Then

\[
P(\cdot \mid x) = v\left(\frac{x}{2}\right) \delta_{\frac{x}{2}} + v\left(\frac{x+1}{2}\right) \delta_{\frac{x+1}{2}} \not\ll \lambda.
\]

Assumption (Additional axiom on \(R \)). Let \(R \) be the positive mapping in Definition 2.1. Assume there exists \(\sigma : X \rightarrow X, \) measurable and onto, such that

\[
R((f \circ \sigma) g) = fRg, \quad \forall f, g \in C(X).
\] (2.10)

\(R \) in (2.10) is a generalized conditional expectation.

Lemma 2.10. Let \(R \) satisfy (2.10) and let \(\{P(\cdot \mid x)\}_{x \in X} \) be the family of conditional measures in Definition 2.3. Then,

\[
P(E \mid x) = \int_E \frac{f(\sigma(y))}{f(x)} P(dy \mid x)
\] (2.11)

for all \(f \in C(X), \) and all \(E \in \mathcal{B}(X); \) where \(\mathcal{B}(X) \) denotes all Borel subsets of \(X. \)

Proof. We have

\[
R((f \circ \sigma) g)(x) = f(x) R(g)(x)
\]

\下乡

\[
\int f(\sigma(y)) g(y) P(dy \mid x) = f(x) \int g(y) P(dy \mid x), \quad \forall f, g \in C(X), \forall x \in X.
\]

\下乡

\[
E \int f(\sigma(y)) P(dy \mid x) = f(x) E P(E \mid x), \quad \forall f \in C(X), \forall E \in \mathcal{B}(X),
\]

and the assertion follows. \(\square \)

Lemma 2.11. Suppose (2.10) holds and \(\lambda \in \mathcal{L}(R). \) Set \(W = \) the Radon-Nikodym derivative, then the operator \(S : f \rightarrow Wf \circ \sigma \) is well-defined and linear in \(L^2(\lambda) \) with \(C(X) \) as dense domain. In general \(S \) is unbounded. Moreover,

\[
S \subset R^*, \text{ containment of unbounded operators},
\] (2.12)
where R^* denotes the adjoint operator to R, i.e.,
\[
\int_X (Wf \circ \sigma) g \, d\lambda = \int_X f R(g) \, d\lambda; \tag{2.13}
\]
holds for all $f, g \in C(X)$. That is,
\[
R^* f = Wf \circ \sigma, \quad \forall f \in C(X), \tag{2.14}
\]
as a weighted composition operator.

Further, the selfadjoint operator RR^* is the multiplication operator:
\[
RR^* f = R(W)f, \quad \forall f \in C(X); \tag{2.15}
\]
i.e., multiplication by the function $R(W)$.

Proof. For all $f, g \in C(X)$, we have
\[
\int_X f R(g) \, d\lambda = \int_X R((f \circ \sigma) g) \, d\lambda = \int_X \underbrace{(W(f \circ \sigma))g}_{= S(f)} \, d\lambda,
\]
and so (2.12)-(2.13) follow. Also,
\[
RR^* f = R(W) f = m f,
\]
where $m = R(W)$. The assertion (2.15) follows from this. \hfill \square

Corollary 2.12. S is isometric in $L^2(\lambda) \iff R(W) = 1$.

Corollary 2.13. R defines a bounded operator on $L^2(\lambda)$, i.e., $L^2(\lambda) \overset{R}{\longrightarrow} L^2(\lambda)$ is bounded $\iff R(W) \in L^{\infty}(\lambda)$.

Proof. Immediate from (2.15) since
\[
||RR^*||_{2 \rightarrow 2} = ||R||^2_{2 \rightarrow 2} = ||R^*||^2_{2 \rightarrow 2}. \tag{2.16}
\]

Remark 2.14. Let $\lambda \in \mathcal{L}(R), \mu = \lambda \cdot R$, and $W = d\mu/d\lambda$ as before. Even if $W \in L^1(\lambda)$, the following two operators are still well-defined:
\[
L^2(\lambda) \supset \left\{ \begin{array}{ccc} C(X) & \ni f & \overset{R}{\rightarrow} Rf \in L^\infty(\lambda) \subset L^2(\lambda) \\ C(X) & \ni f & \overset{S}{\rightarrow} W(f \circ \sigma) \in L^2(\lambda) \end{array} \right\},
\]
and
\[
\langle Sf, g \rangle_{L^2} = \langle f, Rg \rangle_{L^2}, \quad \forall f, g \in C(X).
\]

Corollary 2.15. Assume $\frac{d\lambda}{W}$ is well-defined. Then $\lambda \circ \sigma^{-1} \ll \lambda$, and
\[
\frac{d\lambda \circ \sigma^{-1}}{d\lambda} = R\left(\frac{1}{W}\right),
\]
where $R\left(\frac{1}{W}\right)$ is defined as in (2.7) of Corollary 2.5.
Proof. Recall the pull-back measure $\lambda \circ \sigma^{-1}$, where $\sigma^{-1}(E) = \{ z \in X \mid \sigma(z) \in E \}$, for all Borel sets $E \subset X$. One checks that
\[
\int f \, d\lambda \circ \sigma^{-1} = \int f \circ \sigma \, d\lambda = \int \frac{1}{W} W f \circ \sigma \, d\lambda = \int R \left(\frac{1}{W} \right) f \, d\lambda, \quad \forall f \in C(X);
\]
and the assertion follows. □

Corollary 2.16. Let R, λ, W be as above, and assume that $\|R(W]\|_\infty \leq 1$. Let h be a function on X solving the equation
\[
Rh = h, \quad h \in L^2(\lambda), \quad (R\text{-harmonic}) \quad (2.17)
\]
then the following implication holds:
\[
h(x) \neq 0 \implies R(W)(x) = 1. \quad (2.18)
\]
Proof. By (2.16), R is contractive, i.e., $\|R\|_{2 \rightarrow 2} = \|R^*\|_{2 \rightarrow 2} \leq 1$, $\|Rf\|_{L^2(\lambda)} \leq \|f\|_{L^2(\lambda)}$; and so $R^*h = h$; and, by (2.15),
\[
h = hR(W), \quad \text{pointwise}, \quad (2.19)
\]
i.e., $h(x) = h(x)R(W)(x)$, for all $x \in X$, and (2.18) follows. □

Corollary 2.17. Suppose $\lambda \in \mathcal{L}(R)$ with R, σ, $W = d\mu/d\lambda$ satisfying the usual axioms, then λ is σ-invariant, i.e.,
\[
\int f \circ \sigma \, d\lambda = \int f \, d\lambda, \quad \forall f \in C(X) \quad (2.20)
\]
\[
\Downarrow
\]
\[
\frac{1}{W} \exists! \text{ exists, and } R \left(\frac{1}{W} \right) = 1 \text{ on the support of } \lambda. \quad (2.21)
\]

Proof. $(2.20) \implies (2.21)$ follows from Corollary 2.15. (Also see Corollary 2.5.)

Assume (2.21), then
\[
\text{LHS}_{(2.20)} = \int \frac{1}{W} W f \circ \sigma \, d\lambda = \int R \left(\frac{1}{W} \right) f \, d\lambda = \int f \, d\lambda, \quad \forall f \in C(X).
\]
\[
\Box
\]

Corollary 2.18. Let X, R, λ, W, σ be as specified above. Recall that $f \geq 0 \implies Rf \geq 0$, and $R((f \circ \sigma)g) = fR(g)$, $\forall f, g \in C(X)$. Assume further that $W \in L^2(\lambda)$, then
\[
\int_X |W|^2 f \circ \sigma \, d\lambda = 0, \text{ for some } f \in C(X) \quad (2.22)
\]
\[
\Downarrow
\]
\[
\int_X f R(W) \, d\lambda = 0. \quad (2.23)
\]

Proof. Use that $L^2(\lambda) \ni f \xrightarrow{R^*} W f \circ \sigma \in L^2(\lambda)$, we conclude that
\[
\int_X |W|^2 f \circ \sigma \, d\lambda = \int_X W f \circ \sigma W \, d\lambda = \langle R^*f, W \rangle_{L^2(\lambda)} \quad (2.24)
\]
\[
= \langle f, R(W) \rangle_{L^2(\lambda)} = \int_X f(x) R(W)(x) \, d\lambda(x).
\]
Corollary 2.19. Let X, R, λ, W, σ be as above, and let $E \subset X$ be a Borel set; then
\[
\int_{\sigma^{-1}(E)} |W|^2 \, d\lambda = \int_E R(W) \, d\lambda,
\]
and so in particular, $R(W) \geq 0$ a.e. on X w.r.t. λ.

Proof. Approximate χ_E with $f \in C(X)$ and use (2.24), we have
\[
\int |W|^2 \circ \sigma \, d\lambda = \int R(W) \, f \, d\lambda,
\]
which is (2.25).

Example 2.20. Let $X = [0,1] = \mathbb{R}/\mathbb{Z}$, and $d\lambda = dx =$ Lebesgue measure. Fix $W > 0$, a positive function over $[0,1]$, and set
\[
(Rh)(x) = \frac{1}{2} \left(W \left(\frac{x}{2} \right) h \left(\frac{x}{2} \right) + W \left(\frac{x+1}{2} \right) h \left(\frac{x+1}{2} \right) \right).
\]
Let $\sigma(x) = 2x \mod 1$, $x \in X$, then
\[
\int_0^1 g(x) (Rh)(x) \, dx = \int_0^1 W(x) g(\sigma(x)) h(x) \, dx, \quad \forall f, g \in C(X).
\]
Proof. We introduce the mappings τ_0 and τ_1, as in Fig 2.1-2.2, so that $\sigma(\tau_i(x)) = x$, for all $x \in X$, $i = 0, 1$. One checks that
\[
R((g \circ \sigma) h)(x) = g(x) (Rh)(x).
\]
Note that $\lambda \in L'(R)$. Indeed, we have
\[
\lambda(Rh) = \int_0^1 (Rh)(x) \, dx
\]
by (2.26),
\[
= \int_0^1 \frac{1}{2} \left(Wh \left(\frac{x}{2} \right) + Wh \left(\frac{x+1}{2} \right) \right) \, dx
\]
and so $\frac{d\mu}{dx}(x) = W(x)$, where $\mu = \lambda \cdot R$.

Example 2.21. Let R be as in (2.26), and let h be an R-harmonic function, i.e.,
\[
(Rh)(x) = \frac{1}{2} \left(Wh \left(\frac{x}{2} \right) + Wh \left(\frac{x+1}{2} \right) \right) = h(x), \quad x \in X = [0,1].
\]
Setting $\widehat{h}(n) = \int_0^1 e(nx) h(x) \, dx$, with $e(nx) := e^{i2\pi nx}$, it follows from (2.29) that
\[
\widehat{h}(n) = \int_0^1 e(nx) (Rh)(x) \, dx
\]
= $\int_0^1 W(x) e(2nx) h(x) \, dx = (Wh)^\wedge(2n), \quad \forall n \in \mathbb{Z}$.
An iteration gives

\[\hat{h}(n) = \int_0^1 W(x)e^{(2nx)(Rh)(x)}\,dx \]

\[= \int_0^1 W(x)W(2x)e^{(2^{2nx})h(x)}\,dx \]

\[\cdots \]

\[= \int_0^1 W(x)W(2x)\cdots W(2^{k-1}x)e^{(2^{k}\cdot nx)}h(x)\,dx, \]

and so

\[\hat{h}(n) = (W_k h)^\wedge (2^k n), \quad \forall n \in \mathbb{Z}, \forall k = 0, 1, 2, \cdots; \]

where \(W_k(x) := W(x)W(2x)\cdots W(2^{k-1}x) \).

Figure 2.1. \(\sigma(x) = 2x \mod 1 \)

Figure 2.2. \(\tau_0(x) = x/2, \tau_1(x) = (x+1)/2 \)
3. Iterated Function Systems: The General Case

In this section we discuss a subfamily of systems where the generalized transfer operator R is associated with an Iterated Function system (IFS).

Let X be a compact Hausdorff space, $n \in \mathbb{N}$, and let

$$\tau_i : X \rightarrow X, \quad 1 \leq i \leq n$$

be a system of endomorphisms. Let

$$p_i > 0, \text{ s.t. } \sum_{i=1}^{n} p_i = 1.$$ \hfill (3.2)

Following [Hut81, Jor12, FH09, Urb09, DABJ09, DJ09], we say that (3.1)-(3.2) is an Iterated Function System (IFS) if there is a Borel probability measure λ on X such that

$$\sum_{i=1}^{n} p_i \int_X f(\tau_i(x)) \, d\lambda(x) = \int_X f(x) \, d\lambda(x)$$ \hfill (3.3)

holds for all $f \in C(X)$. Note that (3.3) may also be expressed as follows:

$$\sum_{i=1}^{n} p_i \lambda \circ \tau_i^{-1} = \lambda.$$ \hfill (3.4)

The measure λ is called an IFS measure.

Let $W \in L^1(\lambda)$, $W \geq 0$, and set

$$(R_W f)(x) = \sum_{i=1}^{n} p_i (Wf)(\tau_i(x)), \quad x \in X, f \in C(X),$$ \hfill (3.5)

where $(Wf)(\tau_i(x)) := W(\tau_i(x)) f(\tau_i(x))$.

Lemma 3.1. If W is as above, and if λ is an IFS measure, then $\lambda \in L^1(R_W)$, see Remark 2.6.

Proof. We establish the conclusion by verifying that, under the assumptions, we have

$$\int_X (R_W f)(x) \, d\lambda(x) = \int_X W(x) f(x) \, d\lambda(x), \quad \forall f \in C(X),$$ \hfill (3.6)

i.e., W is the Radon-Nikodym derivative, $d\mu_W / d\lambda = W$, where $\mu_W = \lambda \cdot R_W$. Indeed,

$$\text{LHS}_{(3.6)} = \text{by (3.5)} \sum_{i=1}^{n} p_i \int_X (Wf)(\tau_i(x)) \, d\lambda(x)$$

$$= \text{by (3.3)} \int_X (Wf)(x) \, d\lambda(x) = \text{RHS}_{(3.6)}.$$

\[\square \]

Remark 3.2. The setting of Example 2.21, we have an IFS corresponding to the two mappings in Figure 2.2, and, in this setting, the corresponding IFS measure λ on the unit interval $X = [0,1]$ can then easily be checked to be the restriction to $[0,1]$ of the standard Lebesgue measure. It is important to mention that there is a rich literature on IFS measures, see e.g., [Hut81, Jor12, FH09, Urb09, DABJ09, DJ09], and the variety of IFS measures associated to function systems includes explicit classes measures of fractal dimension.
4. The Set $\mathcal{L}_1(R)$ from a Quadratic Estimate

In order to build a path-space probability space from a given generalized transfer operator R, a certain spectral property for R must be satisfied, and we discuss this below; see Theorem 4.1. The statement of the problem requires the introduction of a Hilbert space of sigma functions, also called square densities.

Let X be a locally compact Hausdorff space, and let $R : C(X) \rightarrow \mathcal{M}(X)$ be given, subject to the conditions in Definition 2.1 and Remark 2.6.

For every probability measure λ on X, we apply the Radon-Nikodym decomposition (see [Rud87]) to the measure λR, getting

$$\lambda R = \mu_{abs} + \mu_{sing}$$

(4.1)

where the two terms on the RHS in (4.1) are absolutely continuous w.r.t λ, respectively, with μ_{sing} and λ mutually singular. Hence there is a positive $W_{\lambda} \in L^1(\lambda)$ such that

$$\mu_{abs} = W_{\lambda} \sqrt{d\lambda}.$$

When λ is fixed, set

$$\tau = \frac{1}{2} (\mu_{abs} + \lambda R).$$

(4.2)

We have the following:

Theorem 4.1. Let (X,R) be as described above, and let $\text{Prob}(X)$ be the convex set of all probability measures on X. For $\lambda \in \text{Prob}(X)$, let τ be the corresponding measure given by (4.2). Then $\mathcal{L}_1(R) \neq 0$ if and only if

$$\inf_{\lambda \in \text{Prob}(X)} \int_X \left| \sqrt{d(\lambda R)} - W_{\lambda} \sqrt{d\lambda} \right|^2 d\tau = 0.$$

(4.3)

Proof. To carry out the proof details, we shall make use of the Hilbert space $\text{Sig}(X)$ of sigma-functions on X. While it has been used in, for example [Nel69, KM46, Hid80, Jor11], we shall introduce the basic facts which will be needed.

Elements in $\text{Sig}(X)$ are equivalence classes of pairs (f,μ), where $f \in L^2(\mu)$, and μ is a positive finite measure on X; we say that $(f,\mu) \sim (g,\nu)$ for two such pairs iff

$$f \sqrt{\frac{d\mu}{d\tau}} = g \sqrt{\frac{d\nu}{d\tau}}$$

a.e. on X w.r.t. τ. (4.4)

If $\text{class}(f_i,\mu_i)$, $i = 1, 2$, are two equivalence classes, then the operations in $\text{Sig}(X)$ are as follows: First set $\tau_s = \frac{1}{2} (\mu_1 + \mu_2)$, then the inner product in $\text{Sig}(X)$ is

$$\int_X f_1 \sqrt{\frac{d\mu_1}{d\tau_s}} f_2 \sqrt{\frac{d\mu_2}{d\tau_s}} d\tau_s,$$

and the sum is

$$\text{class} \left(f_1 \sqrt{\frac{d\mu_1}{d\tau_s}} + f_2 \sqrt{\frac{d\mu_2}{d\tau_s}}, \tau_s \right).$$

It is known that these definitions pass to equivalence classes; and that $\text{Sig}(X)$ is a Hilbert space; in particular, it is complete.

In order to complete the proof of the theorem, we shall need the following facts about the Hilbert space $\text{Sig}(X)$; see e.g., [Nel69]: First some notation; we set

$$f \sqrt{d\mu} = \text{class}(f,\mu) \in \text{Sig}(X);$$

(4.5)
and when \(\mu \) is fixed, we set \(M_2(\mu) \) to be the closed subspace in \(\text{Sig}(X) \) spanned by
\[
\left\{ f \sqrt{d\mu} \mid f \in L^2(\mu) \right\}.
\]

We then have:
\[
\left\| f \sqrt{d\mu} \right\|^2_{\text{Sig}(X)} = \left\| f \right\|^2_{L^2(\mu)} = \int_X |f|^2 d\mu; \tag{4.6}
\]
and so, in particular,
\[
L^2(\mu) \ni f \mapsto f \sqrt{d\mu} \in \text{Sig}(X) \tag{4.7}
\]
defines an isometry with range \(M_2(\mu) \). We shall abbreviate \(\sqrt{d\mu} \) as \(\sqrt{\mu} \).

For two measures \(\mu \) and \(\nu \), the following three facts holds:
\[
\begin{align*}
[\mu \ll \nu] & \iff M_2(\mu) \subseteq M_2(\nu), \\
[\mu \approx \nu] & \iff M_2(\mu) = M_2(\nu), \text{ and} \\
[\mu \text{ and } \nu \text{ are mutually singular}] & \iff M_2(\mu) \perp M_2(\nu).
\end{align*} \tag{4.8}
\]

As a result, we note that therefore, the decomposition in (4.1) is orthogonal in \(\text{Sig}(X) \), and further that a fixed \(\lambda \in \text{Prob}(X) \) is in \(L^1(\mathbb{R}) \) if and only if
\[
M_2(\lambda R) \subseteq M_2(\lambda) \tag{4.9}
\]

\[
\inf_{\lambda \in \text{Prob}(X)} \left\| \sqrt{\lambda R} - W\sqrt{\lambda} \right\|^2_{\text{Sig}(X)} = 0 \tag{4.10}
\]

Moreover, (4.9) is a restatement of (4.3).

We now turn to the conclusions in the theorem: One implication is clear. If now the infimum in (4.10) is zero, then there is a sequence \(\{\lambda_n\} \subset \text{Prob}(X) \) such that
\[
\lim_{n} \left\| \sqrt{\lambda_n R} - W_{\lambda_n} \sqrt{\lambda_n} \right\|^2_{\text{Sig}(X)} = 0. \tag{4.11}
\]
Combining (4.10) and (4.11), and possibly passing to a subsequence, we conclude that there is a sequence \(W_{\lambda_n} \sqrt{\lambda_n} \) which is convergent in \(\text{Sig}(X) \). Let the limit be \(W_{\lambda_0} \sqrt{\lambda_0} \), and it follows that \(\lambda_0 \in \mathcal{L}_1(\mathbb{R}) \).

\[\square \]

Remark 4.2. Since \(\text{Sig}(X) \) is a Hilbert space, we conclude that the sequence \(\{W_{\lambda_n} \sqrt{\lambda_n}\}_n \) in \(\text{Sig}(X) \) satisfies
\[
\lim_n \left\| \sqrt{\lambda_0 R} - W_{\lambda_n} \sqrt{\lambda_n} \right\|^2_{\text{Sig}(X)} = 0;
\]
where the desired measure \(\lambda_0 \in \mathcal{L}_1(\mathbb{R}) \) may be taken to be
\[
d\lambda_0(\cdot) = \sum_{n=1}^{\infty} \frac{1}{2^n} d\lambda_n(\cdot). \]
5. From Endomorphism to Automorphism

In this section (Theorem 5.2), we build a path-space probability space from a given generalized transfer operator \(R \) assumed to satisfy the spectral property from above.

There is a generalized family of multi-resolution measures on solenoids, and we shall need the following facts (see e.g., [Hut81, Jor12, FH09, Urb09, DABJ09, DJ09]):

Let \(X \) be a compact Hausdorff space, and let \(\sigma : X \to X \) be a continuous endomorphism onto \(X \). Let

\[
\Omega := \prod_{0}^{\infty} X = X \times X \times \cdots
\]

be the infinite Cartesian product with coordinate mappings \(Z_n : \Omega \to X \),

\[
Z_n (x_0, x_1, x_2, \cdots) = x_n \in X, \quad n \in 0, 1, 2, \cdots.
\]

The associated solenoid \(\text{Sol}_{\sigma} (X) \) is defined as follows:

\[
\text{Sol}_{\sigma} (X) = \{ (x_n)_{n=0}^{\infty} \in \Omega \mid \sigma (x_{n+1}) = x_n, \quad n = 0, 1, 2, \cdots \};
\]

and set

\[
\tilde{\sigma} (x_0, x_1, x_2, \cdots) := (\sigma (x_0), x_0, x_1, x_2, \cdots).
\]

We give \(\text{Sol}_{\sigma} (X) \) its relative projective topology, and note that the restricted random variable \((Z_n)_{n=0}^{\infty}\) from (5.2) are then continuous. Moreover \(\tilde{\sigma}, \) in (5.4), is invertible with

\[
\tilde{\sigma}^{-1} (x_0, x_1, x_2, x_3, \cdots) = (x_1, x_2, x_3, \cdots),
\]

\[
\tilde{\sigma}\tilde{\sigma}^{-1} = \tilde{\sigma}^{-1} \tilde{\sigma} = \text{Id}_{\text{Sol}_{\sigma} (X)}.
\]

Let \((X, R, \lambda, W)\) be as specified in Section 2. In particular, \(R \) is positive, i.e., \(f \in C (X), \ f \geq 0 \implies R (f) \geq 0 \), and

\[
R ((f \circ \sigma) g) = fR (g), \quad \forall f, g \in C (X).
\]

Moreover, \(W \) is the Radon-Nikodym derivative of the measure \(f \mapsto \lambda (R (f)) \) w.r.t. \(\lambda \), i.e.,

\[
\int_{X} R (f) d\lambda = \int_{X} fW d\lambda, \quad \forall f \in C (X).
\]

Let \(h \in L^{\infty} (\lambda), \ h \geq 0, \) satisfying

\[
Rh = h, \quad \text{and} \quad \int_{X} h d\lambda = 1.
\]

Remark 5.1. In view of equations (2.8) and (5.9), it is natural to think of these conditions as a generalized Perron-Frobenius property for \(R \).

Theorem 5.2. With the assumptions (5.7)-(5.9), we have the following conclusions:

1. For every \(x \in X \), there is a unique Borel probability measure \(\mathbb{P}_x \) on \(\text{Sol}_{\sigma} (X) \) such that for all \(n \) and all \(f_0, f_1, \cdots, f_n \in C (X), \)

\[
\int_{Z_n^{-1}(x)} (f_0 \circ Z_0) \cdots (f_n \circ Z_n) d\mathbb{P}_x
\]

\[
= f_0 (x) R (f_1 R (f_2 R (\cdots R (f_n h) \cdots))) (x). \tag{5.10}
\]
Moreover, setting
\[P = \int_X P_x \, d\lambda (x), \]
we get that \(P \) is a probability measure on \(\text{Sol}_\sigma (X) \) such that
\[E_P (\cdots | Z_0 = x) = P_x \]
where the LHS in (5.12) is the conditional measure, and the RHS is the measure from (5.10).

We have the following Radon-Nikodym derivative:
\[\frac{dP \circ \tilde{\sigma}}{dP} = W \circ Z_0, \]
as an identity of the two functions specified in (5.13). Equivalently, setting
\[U \psi = \left(\sqrt{W \circ Z_0} \right) \psi \circ \tilde{\sigma}, \quad \psi \in L^2 (\text{Sol}_\sigma (X), P), \]
then \(U \) is a unitary operator in \(L^2 (\text{Sol}_\sigma (X), P) \).

Proof. This is the basic Kolmogorov inductive limit construction. We note that, by Stone-Weierstrass, the space of cylinder-functions
\[(f_0 \circ Z_0) (f_1 \circ Z_1) \cdots (f_n \circ Z_n) \]
is dense in \(C (\text{Sol}_\sigma (X)) \). Fix \(x \in X \), and start with \(Z_0^{-1} (x) \), set
\[L^x_n (f_1, f_2, \cdots, f_n) = R (f_1 R (f_2 \cdots R (f_n h) \cdots)) (x). \]
We get the desired consistency:
\[L^x_{n+1} (f_1, f_2, \cdots, f_n, \mathbb{1}) = L^x_n (f_1, f_2, \cdots, f_n) \]
where \(\mathbb{1} \) denotes the constant function 1 on \(X \). Indeed,
\[R (f_{n-1} R (f_n R (\mathbb{1} h))) (x) = R (f_{n-1} R (f_n R (h))) (x) = R (f_{n-1} R (f_n h)) (x), \]
(by 5.9)
as claimed in (5.16).

Lemma 5.3. Let \(R, X, P (\cdot | x) \) be as above. Assume \(h \geq 0 \) on \(X \), and \(Rh = h \). Then
\[|R (f h) (x)| \leq \|f\|_\infty h (x) \]
where \(\|f\|_\infty \) is the \(P (\cdot | x) \) \(L^\infty \)-norm on functions on \(X \).

Proof. We may apply Cauchy-Schwarz to \(P (\cdot | x) \) in a sequence of steps as follows:
\[|R (f h) (x)| = \left| R (fh^{\frac{1}{2}} h^{\frac{1}{2}}) (x) \right| \]
\[\leq \left(R (|f|^2 h) (x) \right)^{\frac{1}{2}} \left(R (h) (x) \right)^{\frac{1}{2}} \]
by Schwarz
\[= \left(R (|f|^2 h) (x) \right)^{\frac{1}{2}} h (x)^{\frac{1}{2}} \]
since \(Rh = h \)
\[\leq \left[R (|f|^p h) (x) \right]^{\frac{1}{p}} h (x)^{\frac{1}{2} + \frac{1}{2p} + \cdots + \frac{1}{2p}} \]
by induction, and let \(p \to \infty \)
An elementary result in measure theory (see [Rud87]) shows that
\[\lim_{p \to \infty} R(|f|^p) (x) \frac{1}{p} = \|f\|_\infty; \]
(5.19)
and so the desired estimate (5.17) holds.

Corollary 5.4. Let \(R, h, \sigma, W, \lambda, h \in \mathcal{L}(R) \) be as above, where \(\mu = \lambda \cdot R \), and \(W = \frac{d\mu}{dx} \). Assume \(h > 0 \) on \(X \), and \(Rh = h \). Let \(\mathbb{P} \) and \(\mathbb{P}_x \) be the measures on \(\text{Sol}_\sigma(X) \) as in Theorem 5.2, where \(\mathbb{P}_x \) is determined by
\[\int_{Z_0^{-1}(x)} (f_1 \circ Z_1) \cdots (f_n \circ Z_n) \, d\mathbb{P}_x = L^\lambda_n(f_1, \ldots, f_n) \]
and so the desired estimate (5.25) holds. □

Corollary 5.5. Let \(X, R, \sigma, \lambda, h \) be as described above; in particular, \(Rh = h \) is assumed. Let \(\{\mathbb{P}_x\}_{x \in X} \) be the corresponding measures from Corollary 5.4. Then
\[h(x) = \mathbb{P}_x(Z_0^{-1}(x)) \text{ for all } x \in X. \]

Corollary 5.6. Let \(R, h, \sigma, W, \lambda \) be as above, and let \(\mathbb{P} \) and \(\mathbb{P}_x \) be the measures on \(\text{Sol}_\sigma(X) \), then \(\mathbb{V}_0 \) is isometric, where
\[\mathbb{V}_0 : L^2(X, h \, d\lambda) \to L^2(\text{Sol}_\sigma(X), \mathbb{P}) \]
is given by
\[\mathbb{V}_0 g = g \circ Z_0, \quad g \in L^2(X, h d\lambda), \]
(5.23)
and
\[(V^* \psi)(x) = \frac{\mathbb{E}(\psi \mid x)}{h(x)}, \quad \forall x \in X, \forall \psi \in L^2(\text{Sol}_\sigma(X), \mathbb{P}). \]
(5.24)

Proof. Since \(\mathbb{P} = \int_X \mathbb{P}_x d\lambda(x) \), it follows that \(\mathbb{V}_0 \) in (5.23) is isometric, i.e.,
\[\|\mathbb{V}_0 g\|_{L^2(\mathbb{P})}^2 = \int_X |g|^2 h \, d\lambda = \|g\|_{L^2(h \, d\lambda)}^2, \quad \forall g \in C(X). \]

To prove (5.24), we must establish
\[\int_{\text{Sol}_\sigma(X)} (g \circ Z_0) \psi \, d\mathbb{P} = \int_X g(x) \mathbb{E}(\psi \mid x) \, d\lambda(x). \]
(5.25)
Since the space of the cylinder functions \(\psi = (f_0 \circ Z_0)(f_1 \circ Z_1) \cdots (f_n \circ Z_n) \) is dense in \(C(\text{Sol}_\sigma(X)) \), it suffices to prove (5.25) for \(\psi \). But then
\[(g \circ Z_0) \psi = (g f_0) \circ Z_0 (f_1 \circ Z_1) \cdots (f_n \circ Z_n), \]
and so (5.25) follows from (5.20). □
Corollary 5.7. Fix $x \in X$, and set
\[
\mathbb{E}(\psi \mid x) = \int_{Z_0^{-1}(x)} \psi \, d\mathbb{P}_x, \quad \psi \in L^2(\mathbb{P}).
\] (5.26)
For all $n \in \mathbb{N}$, if $A_i \subset X$, $i = 1, \cdots, n$, are Borel sets, then
\[
\mathbb{P}_x(Z_1 \in A_1, Z_2 \in A_2, \cdots, Z_n \in A_n) = \int_{A_1} \int_{A_2} \cdots \int_{A_n} h(y_n) P(dy_n \mid y_{n-1}) \cdots P(dy_2 \mid y_1) P(dy_1 \mid x).
\] (5.27)

Proof. Recall that $\chi_A \circ Z_i = \chi_{Z_i^{-1}(A)}$, if $A \subset X$ is a Borel set; and
\[
Z_i^{-1}(A) = \{x \in \text{Sol}_\sigma(X) \mid Z_i(x) \in A\},
\] (5.28)
where $Z_i(x_0, x_1, x_2, \cdots) = x_i$ is the coordinate mapping. Also, $P(\cdot \mid x)$ satisfies
\[
R(f)(x) = \int_X f(y) P(dy \mid x), \quad \forall x \in X.
\] (5.29)

Now set $f_i = \chi_{A_i}$, with $A_i \subset X$ Borel sets, and apply the mapping
\[
f_i \mapsto R(f_1 R(f_2 \cdots R(f_n h) \cdots))(x).
\]
If we specialize (5.27) to individual transition probabilities, we get, $x \in X$, $A \subset X$ a Borel set, and
\[
\mathbb{P}(Z_1 \in A \mid Z_0 = x) = \int_A h(y) P(dy \mid x),
\]
\[
\mathbb{P}(Z_2 \in B, Z_1 \in A \mid Z_0 = x) = \int_A \int_B h(y_2) P(dy_2 \mid y_1) P(dy_1 \mid x), \quad y_1 \in A, y_2 \in B.
\]
Note that, fix $n > 1$, then
\[
\mathbb{P}(Z_n \in A \mid Z_0 = x) = \mathbb{P}_x(Z_n \in A) = R^n(\chi_A h)(x), \quad \text{and}
\]
\[
\mathbb{P}_x(Z_{n+1} \in B, Z_n \in A) = R^n(\chi_A R(\chi_B h))(x) \neq \mathbb{P}_x(Z_2 \in B, Z_1 \in A),
\]
so it is not Markov. \hfill \Box

Hence the transition from n to $n+1$ gets more “flat” as n increases, the transition probability even out with time.

5.1. Multi-Resolutions. Let $X, \sigma, R, h, \text{and } \lambda$ be as in the setting of Theorem 5.2 above. In particular, we are assuming that:

(i) $R((f \circ \sigma) g) = f R(g), \forall f, g \in C(X),$

(ii) $Rh = h$, $h \geq 0$,

(iii) $\int_X R(f) d\lambda = \int_X f W d\lambda, \forall f \in C(X)$, and

(iv) $\int_X h(x) d\lambda(x) = 1$.

We pass to the probability space $(\text{Sol}_\sigma(X), \mathbb{P}_x, \mathbb{P})$ from the conclusion in Theorem 5.2.

Definition 5.8. Let \mathcal{H} be a Hilbert space, and $\{\mathcal{H}_n\}_{n \in \mathbb{N}_0}$ a given system of closed subspaces such that $\mathcal{H}_n \subset \mathcal{H}_{n+1}$, for all n.

We further assume that $\cup_n \mathcal{H}_n$ is dense in \mathcal{H}, and that a unitary operator U in \mathcal{H} satisfying $U(\mathcal{H}_n) \subset \mathcal{H}_{n-1}$, for all $n \in \mathbb{N}$. Then we say that $((\mathcal{H}_n)_{n \in \mathbb{N}_0}, U)$ is a multi-resolution for the Hilbert space \mathcal{H}.
Theorem 5.9. Let $\mathcal{H} = L^2(Sol_\sigma(X), \mathbb{P})$ be the Hilbert space from the construction in Theorem 5.2, and let \mathcal{H}_n be the closed subspaces defined from the random walk process $(Z_n)_{n \in \mathbb{N}}$. Finally, let U be the operator in part (3) of Theorem 5.2. Then this constitutes a multi-resolution.

Proof. As indicated above, the setting is specified in Theorem 5.2, and we set

$$\mathcal{H} := L^2(Sol_\sigma(X), \mathbb{P});$$

and, for each $n \in \mathbb{N}$, let $\mathcal{H}_n \subset \mathcal{H}$, be the closed subspace spanned by

$$\{ f \circ Z_n \mid f \in C(X) \}. \quad (5.30)$$

Since

$$f \circ Z_n = (f \circ \sigma) \circ Z_{n+1} \quad (5.31)$$

it follows that $\mathcal{H}_n \subseteq \mathcal{H}_{n+1}$. It further follows from Theorem 5.2 that $\bigcup_{n \in \mathbb{N}} \mathcal{H}_n$ is dense in \mathcal{H}. And, finally, the unitary operator U from part (3) of Theorem 5.2 satisfies

$$U(\mathcal{H}_n) \subset \mathcal{H}_{n-1}, \quad \forall n \in \mathbb{N}. \quad (5.32)$$

\square

Corollary 5.10. Let $X, \sigma, R, h, \lambda, \mathbb{P}$ be as stated above; and let $((\mathcal{H}_n), U)$ be the corresponding multi-resolution from Theorem 5.9.

Then $\mathcal{H}_0 \simeq L^2(X, h \, d\lambda)$, and $\cap_{n \geq 0} U^n \mathcal{H}_m = \mathcal{H}_0$ holds for all $m \in \mathbb{N}$. Finally, U restricts to a unitary operator in $\mathcal{H} \ominus \mathcal{H}_0$; and the spectrum of this restriction is pure Lebesgue spectrum, i.e., there is a Hilbert space \mathcal{K} (the multiplicity space) such that $U \mid_{\mathcal{H} \ominus \mathcal{H}_0}$ is unitarily equivalent to a subshift of the bilateral shift S in $L^2(T, \text{Leb}; \mathcal{K})$, where T is the circle group $\{ z \in \mathbb{C} \mid |z| = 1 \}$, and the bilateral shift is then given on functions $\psi \in L^2(T, \text{Leb}; \mathcal{K})$ by

$$(S\psi)(z) = z\psi(z), \quad \psi : T \rightarrow \mathcal{K}, \quad z \in T, \quad \text{multiplication by } z.$$

Proof. The conclusion follows from an application of the Stone-von Neumann uniqueness theorem [Sum01] combined with the present theorems in Sections 4 and 5 above. (For more details on the spectral representation for operators with multi-resolution, see also [LP67].) \square

6. Harmonic Functions from Functional Measures

Let $R : C(X) \rightarrow \mathcal{M}(X)$ be as specified in (2.1); and let the measure system $\{ P(\cdot \mid x) \}_{x \in X}$ be as specified in (2.3).

Let (Ω, \mathcal{F}) be a measure space; i.e., \mathcal{F} is a specified sigma-algebra of events in a given sample space Ω, and let Z_0 be an X-valued random variable, i.e., it is assumed that $Z_0^{-1}(A) \in \mathcal{F}$ for every Borel set $A \subset X$. For recent applications, we refer to [AJ12, JP12, JKS12, JPT15, CJ15].

Theorem 6.1. Let $R, X, \Omega, \mathcal{F}$, and Z_0 be as specified above. Suppose $\{ P_x \}_{x \in X}$ is a system of positive measures on Ω indexed by X, and set

$$h(x) = P_x(Z_0^{-1}(x)), \quad x \in X. \quad (6.1)$$

Assume that

$$\int_X P_y(\cdot) P(dy \mid x) = P_x(\cdot), \quad (6.2)$$

then h in (6.1) is harmonic for R, i.e., we have

$$R(h) = h, \quad \text{pointwise on } X. \quad (6.3)$$
Proof. Using (2.5) in Definition 2.3, we get the following:

\[
(Rh)(x) = \int_X h(y) P(dy | x)
\]
\[
= \int_X \mathbb{P}_y (Z_0^{-1}(y)) P(dy | x)
\]
\[
= \mathbb{P}_x (Z_0^{-1}(x)) = h(x), \quad x \in X.
\]

Corollary 6.2. Let \(R \) be a transfer operator. Then if \(\lambda \in \mathcal{L}_1(R) \), then there is a solution \(h \geq 0 \), on \(X \), to \(Rh = h \), and \(\int_X h(x) d\lambda(x) = 1 \).

Proof. This is a conclusion of Corollary 5.5 and Theorem 6.1. Indeed, given \(\lambda \in \mathcal{L}_1(X) \), let \(\{\mathbb{P}_x\}_{x \in X} \) be the system from Theorem 5.2, then \(h(x) = \mathbb{P}_x (Z_0^{-1}(x)) \) is the desired solution.

Acknowledgement. The co-authors thank the following colleagues for helpful and enlightening discussions: Professors Sergii Bezuglyi, Ilwoo Cho, Paul Muhly, Myung-Sin Song, Wayne Polyzou, and members in the Math Physics seminar at The University of Iowa.

References

[AJ12] Daniel Alpay and Palle E. T. Jorgensen, Stochastic processes induced by singular operators, Numer. Funct. Anal. Optim. 33 (2012), no. 7-9, 708–735. MR 2966130

[Bea91] Alan F. Beardon, Iteration of rational functions, Graduate Texts in Mathematics, vol. 132, Springer-Verlag, New York, 1991, Complex analytic dynamical systems. MR 1128089 (92j:30026)

[BJKR02] Ola Bratteli, Palle E. T. Jorgensen, Ki Hang Kim, and Fred Roush, Corrigendum to the paper: “Decidability of the isomorphism problem for stationary AF-algebras and the associated ordered simple dimension groups” [Ergodic Theory Dynam. Systems 21 (2001), no. 6, 1625–1655; MR1869063 (2002h:46088)], Ergodic Theory Dynam. Systems 22 (2002), no. 2, 633. MR 1898899

[BJO04] Ola Bratteli, Palle E. T. Jorgensen, and Vasyl Ostrovskyi, Representation theory and numerical AF-invariants. The representations and centralizers of certain states on \(\mathcal{O}_d \), Mem. Amer. Math. Soc. 168 (2004), no. 797, xviii+178. MR 2030387 (2005i:46069)

[CJ15] Ilwoo Cho and Palle E. T. Jorgensen, Matrices induced by arithmetic functions, primes and groupoid actions of directed graphs, Spec. Matrices 3 (2015), 123–154. MR 3370362

[DABJ09] Geoffrey Decrouez, Pierre-Olivier Amblard, Jean-Marc Brossier, and Owen Jones, Galtson-Watson iterated function systems, J. Phys. A 42 (2009), no. 9, 095101, 17. MR 2525528 (2010i:28009)

[Dan01] Alexandre I. Danilenko, Strong orbit equivalence of locally compact Cantor minimal systems, Internat. J. Math. 12 (2001), no. 1, 113–123. MR 1812067 (2002j:37016)

[DJ09] Dorin Ervin Dutkay and Palle E. T. Jorgensen, Probability and Fourier duality for affine iterated function systems, Acta Appl. Math. 107 (2009), no. 1-3, 293–311. MR 2520021 (2010g:37011)

[FH09] De-Jun Feng and Huyi Hu, Dimension theory of iterated function systems, Comm. Pure Appl. Math. 62 (2009), no. 11, 1435–1500. MR 2560042 (2010i:37049)

[GF16] Pablo Guarino and Edison de Faria, Real bounds and Lyapunov exponents, Discrete Contin. Dyn. Syst. 36 (2016), no. 4, 1957–1982. MR 3411549

[Hid80] Takeyuki Hida, Brownian motion, Applications of Mathematics, vol. 11, Springer-Verlag, New York-Berlin, 1980, Translated from the Japanese by the author and T. P. Speed. MR 562914 (81a:60089)

[HPS92] Richard H. Herman, Ian F. Putnam, and Christian F. Skau, Ordered Bratteli diagrams, dimension groups and topological dynamics, Internat. J. Math. 3 (1992), no. 6, 827–864. MR 1194074 (94f:46096)
[Hut81] John E. Hutchinson, Fractals and self-similarity, Indiana Univ. Math. J. 30 (1981), no. 5, 713–747. MR 625600 (82h:49026)

[JKS12] Palle E. T. Jorgensen, Keri A. Kornelson, and Karen L. Shuman, An operator-fractal, Numer. Funct. Anal. Optim. 33 (2012), no. 7-9, 1063–1069. MR 2966144

[Jor11] Palle E. T. Jorgensen, Representations of Lie algebras built over Hilbert space, Infin. Dimens. Anal. Quantum Probab. Relat. Top. 14 (2011), no. 3, 419–442. MR 2847247

[Jor12] , Ergodic scales in fractal measures, Math. Comp. 81 (2012), no. 278, 941–955. MR 2869044

[JP12] P. E. T. Jorgensen and A. M. Paolucci, q-frames and Bessel functions, Numer. Funct. Anal. Optim. 33 (2012), no. 7-9, 1070–1094. MR 2966145

[JPT15] Palle Jorgensen, Steen Pedersen, and Feng Tian, Spectral theory of multiple intervals, Trans. Amer. Math. Soc. 367 (2015), no. 3, 1671–1735. MR 3286496

[KLTMV12] Herb Kunze, Davide La Torre, Franklin Mendivil, and Edward R. Vrscay, Fractal-based methods in analysis, Springer, New York, 2012. MR 3014680

[KM46] Shizuo Kakutani and George W. Mackey, Ring and lattice characterization of complex Hilbert space, Bull. Amer. Math. Soc. 52 (1946), 727–733. MR 0016534 (8,31e)

[LP67] P. D. Lax and R. S. Phillips, Scattering theory for transport phenomena, Functional Analysis (Proc. Conf., Irvine, Calif., 1966), Academic Press, London; Thompson Book Co., Washington, D.C., 1967, pp. 119–130. MR 0220099 (36 #3166)

[Math04] Kengo Matsumoto, Strong shift equivalence of symbolic dynamical systems and Morita equivalence of C*-algebras, Ergodic Theory Dynam. Systems 24 (2004), no. 1, 199–215. MR 2041268 (2004j:37016)

[Math06] Hiroki Matui, Some remarks on topological full groups of Cantor minimal systems, Internat. J. Math. 17 (2006), no. 2, 231–251. MR 2205435 (2007f:37011)

[MNB16] Anotida Madzvamuse, Hussaini Ndakwo, and Raquel Barreira, Stability analysis of reaction-diffusion models on evolving domains: The effects of cross-diffusion, Discrete Contin. Dyn. Syst. 36 (2016), no. 4, 2133–2170. MR 3411557

[Nel69] Edward Nelson, Topics in dynamics. I: Flows, Mathematical Notes, Princeton University Press, Princeton, N.J.; University of Tokyo Press, Tokyo, 1969. MR 0282379 (43 #8091)

[Pes13] Isaac Z. Pesenson, Multiresolution analysis on compact Riemannian manifolds, Multiscale analysis and nonlinear dynamics, Rev. Nonlinear Dyn. Complex., Wiley-VCH, Weinheim, 2013, pp. 65–82. MR 3221687

[Rud87] Walter Rudin, Real and complex analysis, third ed., McGraw-Hill Book Co., New York, 1987. MR 924157 (88k:00002)

[Sum01] Stephen J. Summers, On the Stone-von Neumann uniqueness theorem and its ramifications, John von Neumann and the foundations of quantum physics (Budapest, 1999), Vienna Circ. Inst. Yearb., vol. 8, Kluwer Acad. Publ., Dordrecht, 2001, pp. 135–152. MR 2042745

[Tan05] Satoyuki Tanaka, Shogo Sannomaru, Michiya Imachi, Seiya Hagihara, Shigenobu Okazawa, and Hiroshi Okada, Analysis of dynamic stress concentration problems employing spline-based wavelet Galerkin method, Eng. Anal. Bound. Elem. 38 (2014), 129–139. MR 3360371

[Urb09] Mariusz Urbański, Geometric rigidity for class S of transcendental meromorphic functions whose Julia sets are Jordan curves, Proc. Amer. Math. Soc. 137 (2009), no. 11, 3733–3739. MR 2529881 (2010h:37014)

[YPL16] Jing Yang, Shuangjie Peng, and Wei Long, Infinitely many positive and sign-changing solutions for nonlinear fractional scalar field equations, Discrete Contin. Dyn. Syst. 36 (2016), no. 2, 917–939. MR 3392911

[ZXL16] Peng Zhou, Dongmei Xiao, and Yuan Lou, Qualitative analysis for a Lotka-Volterra competition system in advective homogeneous environment, Discrete Contin. Dyn. Syst. 36 (2016), no. 2, 953–969. MR 3392913

(PALLE E.T. JORGENSEN) DEPARTMENT OF MATHEMATICS, THE UNIVERSITY OF IOWA, IOWA CITY, IA 52242-1419, U.S.A.

E-mail address: palle-jorgensen@uiowa.edu

URL: http://www.math.uiowa.edu/~jorgen/
(Feng Tian) Department of Mathematics, Hampton University, Hampton, VA 23668, U.S.A.
E-mail address: feng.tian@hamptonu.edu