A REMARK ON THE GEOGRAPHY PROBLEM IN HEEGAARD FLOER HOMOLOGY

JONATHAN HANSELMAN, ÇAĞATAY KUTLUHAN, AND TYE LIDMAN

Abstract. We give new obstructions to the module structures arising in Heegaard Floer homology. As a corollary, we characterize the possible modules arising as the Heegaard Floer homology of an integer homology sphere with one-dimensional reduced Floer homology. Up to absolute grading shifts, there are only two.

1. Introduction

Heegaard Floer homology is a collection of three-manifold invariants defined by Ozsváth and Szabó which were inspired by the Seiberg–Witten equations in gauge theory [17]. The most refined of these invariants is HF^+, which is a graded module over $\mathbb{F}[U]$, where U is an endomorphism of degree -2, and \mathbb{F} denotes the field $\mathbb{Z}/2\mathbb{Z}$. The simplest example is the Heegaard Floer homology of the 3-sphere for which $HF^+(S^3) = \mathcal{T}^+_0$, where \mathcal{T}^+_0 denotes $\mathbb{F}[U,U^{-1}]/U : \mathbb{F}[U]$ with $gr(1) = d$. More interesting examples include $HF^+ (\pm \Sigma(2,3,5)) = \mathcal{T}^+_{(\pm2)}$ and $HF^+ (\Sigma(2,3,7)) = \mathcal{T}^+_0 \oplus \mathbb{F}(0)$, while $HF^+ (\Sigma(2,3,7)) = \mathcal{T}^+_0 \oplus \mathbb{F}_{(-1)}$ where a positive orientation refers to the orientation induced on the boundary of a positive-definite plumbing. In fact, for every Spinc rational homology sphere (Y,\mathfrak{s}), we have a (non-canonical) splitting $HF^+(Y,\mathfrak{s}) = \mathcal{T}^+_d \oplus HF_{\text{red}}(Y,\mathfrak{s})$, where $HF_{\text{red}}(Y,\mathfrak{s})$ is a finitely generated torsion module and $d \in \mathbb{Q}$. If Y is an integer homology sphere, then there is a unique Spinc structure.

The d-invariant is an invariant of Spinc rational homology cobordism, and has become pervasive in applications to singularity theory, knot concordance, and unknotted numbers of knots (see for instance [1, 15, 18]). On the other hand, if $HF_{\text{red}}(Y) = \bigoplus_{\mathfrak{s}} HF_{\text{red}}(Y,\mathfrak{s}) = 0$, then Y cannot admit a co-orientable taut foliation [16]. The interplay between the d-invariants and the reduced Floer homology is also quite powerful; this was used to prove the Dehn surgery characterization of the unknot in S^3 [6] (see also [16, 5]).

In this note, we give new restrictions on the module structure of the Heegaard Floer homology of rational homology spheres.

Theorem 1. Let Y be a rational homology sphere and \mathfrak{s} a self-conjugate Spinc structure. If $HF_{\text{red}}(Y,\mathfrak{s})$ is supported only in degrees strictly greater than $d(Y,\mathfrak{s})$, then $\dim_{\mathbb{F}} HF_{\text{red}}(Y,\mathfrak{s})$
is even. The same statement holds if $HF_{\text{red}}(Y, s)$ is supported in degrees strictly less than $d(Y, s) - 1$.

Note that every three-manifold admits at least one self-conjugate Spinc structure and the unique Spinc structure on an integer homology sphere is tautologically self-conjugate. Theorem 1 immediately yields a characterization of the modules with one-dimensional reduced Floer homology.

Corollary 2. Let Y be a rational homology sphere equipped with a self-conjugate Spinc structure s. If $\dim_F HF_{\text{red}}(Y, s) = 1$ then $HF^+(Y, s) = T(d) \oplus F(d)$ or $HF^+(Y, s) = T(d) \oplus F(d-1)$.

By the computations of $HF^+(\pm \Sigma(2,3,7))$ stated above, we see that the two possible relatively graded modules with $\dim_F HF_{\text{red}} = 1$ are realized.

The argument will be a result of the isomorphisms with monopole Floer homology (see Theorem 3) and its relationship, via the Gysin sequence of Lin [13], with the Pin(2)-monopole Floer homology. For the reader with a distaste for gauge theory, we point out that the arguments only use the formal properties of these theories. We briefly review these properties in Section 2, and provide a proof of Theorem 1 in Section 3. We hope that this note encourages further work utilizing the strengths of both Heegaard Floer homology and Seiberg-Witten theory in conjunction.

Acknowledgements. Jonathan Hanselman and Tye Lidman were supported in part by NSF RTG grant DMS-1148490. Çağatay Kutluhan was supported in part by NSF grant DMS-1360293.

2. **Background**

In order to prove Theorem 1, we use the Pin(2)-symmetry of solutions of the Seiberg-Witten equations to rule out certain graded module structures in Heegaard Floer homology. To be more precise, we use the Pin(2)-monopole Floer homology as defined by Lin in [13]. The latter is a Morse–Bott version of Kronheimer and Mrowka’s monopole Floer homology (see [7]). In this article, we will not need the definitions of either the monopole Floer homology or the Pin(2)-monopole Floer homology. It suffices to work with their formal properties, which we review next.

First, to make connection with the Seiberg-Witten equations, we appeal to the isomorphism between Heegaard Floer homology and monopole Floer homology as is proved in [8, 9, 10, 11, 12]. The part of the isomorphism between Heegaard Floer homology and monopole Floer homology relevant to this article also follows from work of Taubes [19, 20, 21, 22, 23] and Colin-Ghiggini-Honda [2, 3, 4].
Theorem 3 (Main Theorem in [8]). Let Y be a closed oriented three-manifold and \mathfrak{s} be a Spinc structure on Y. Then, $HF^+(Y, \mathfrak{s})$ (respectively, $HF^-(Y, \mathfrak{s})$ and $HF^\infty(Y, \mathfrak{s})$) and $\widetilde{HM}_*(Y, \mathfrak{s}, c_b)$ (respectively, $\widetilde{HM}_*(Y, \mathfrak{s}, c_b)$ and $\widetilde{HM}_*(Y, \mathfrak{s}, c_b)$) are isomorphic as relatively graded $\mathbb{F}[U]$-modules.

Here, $\widetilde{HM}(Y, \mathfrak{s}, c_b)$ denotes the monopole Floer homology of (Y, \mathfrak{s}) with a balanced perturbation. In the case of a torsion Spinc structure, this is the same as the standard monopole Floer homology (see [7, §30]). Otherwise, one would work with completions of these modules, denoted $\widetilde{HM}_*(Y, \mathfrak{s}, c_b)$, with respect to the variable U, making them modules over $\mathbb{F}[[U]]$. According to [7, Theorem 31.1.1], we have the following isomorphisms:

$$
\widetilde{HM}_*(Y, \mathfrak{s}, c_b) \cong \widetilde{HM}_*(Y, \mathfrak{s}), \quad \widetilde{HM}_*(Y, \mathfrak{s}, c_b) \cong \widetilde{HM}_*(Y, \mathfrak{s}), \quad \widetilde{HM}_*(Y, \mathfrak{s}, c_b) \cong \widetilde{HM}_*(Y, \mathfrak{s}).
$$

In any case, completion does not affect the chain complex that defines \widetilde{HM} since every element of \widetilde{HM} is annihilated by some finite power of U.

Like in Heegaard Floer and monopole Floer homologies, the Pin(2)-monopole Floer homology comes equipped with a more interesting module structure; this is the same structure which enables the more refined invariants leading to Manolescu’s disproof of the Triangulation Conjecture in dimensions ≥ 5 [14] (see also [13]). For a closed oriented three-manifold Y equipped with a self-conjugate Spinc structure \mathfrak{s}, the invariants $\widetilde{HS}_*(Y, \mathfrak{s}), \widetilde{HS}_*(Y, \mathfrak{s}), \widetilde{HS}_*(Y, \mathfrak{s})$ take the form of \mathbb{Q}-graded modules over $\mathcal{R} = \mathbb{F}[[V]](Q)/Q^3$, where V and Q are endomorphisms of degrees -4 and -1, respectively. Note that we can also naturally equip any $\mathbb{F}[[U]]$-module with an \mathcal{R}-module structure, by having Q act by 0 and V by U^2.

The following proposition displays the clear analogy between the flavors of the monopole Floer and Pin(2)-monopole Floer homologies.

Proposition 4 (Proposition 4.6 in Chapter 4 of [13]). Let \mathfrak{s} be a self-conjugate Spinc structure on a rational homology sphere Y. Then, up to an absolute grading shift, $\overline{HS}_*(Y, \mathfrak{s}) \cong \mathbb{F}[[V, V^{-1}]](Q)/Q^3$.

This is analogous to the fact that $\overline{HM}_*(Y, \mathfrak{s}) \cong \mathbb{F}[[U, U^{-1}]]$ for any Spinc rational homology sphere. Recall that this implies, using the long exact sequence relating $\widetilde{HM}_*, \widetilde{HM}_*$, and \overline{HM}_*, that in sufficiently large gradings, the dimension of $\widetilde{HM}_*(Y, \mathfrak{s})$ alternates between one and zero. Likewise, Proposition 4 has the following consequence with regard to the rank of \widetilde{HS} of rational homology spheres in sufficiently large gradings.

Lemma 5. Let \mathfrak{s} be a self-conjugate Spinc structure on a rational homology sphere Y. Then $\dim_{\mathbb{F}} \widetilde{HS}_k(Y, \mathfrak{s}) \leq 1$ for $k \gg 0$.
Proof. This follows readily from the definition of the groups \hat{HS}_\bullet, \hat{HS}_\bullet, \overline{HS}_\bullet, the long exact sequence relating them, and Proposition 4. To be more explicit, by definition $\hat{HS}_k(Y, s)$ is zero for all sufficiently large $k \gg 0$. Then the long exact sequence,

$$ \cdots \to \hat{HS}_{k+1}(Y, s) \xrightarrow{j_*} \overline{HS}_k(Y, s) \xrightarrow{p_*} \hat{HS}_k(Y, s) \xrightarrow{i_*} \overline{HS}_k(Y, s) \xrightarrow{j_*} \hat{HS}_{k-1}(Y, s) \to \cdots, $$

implies that $\overline{HS}_k(Y, s) \cong \hat{HS}_k(Y, s)$ as vector spaces over \mathbb{F} for all sufficiently large $k \gg 0$. On the other hand, Proposition 4 implies that $\overline{HS}_k(Y, s)$ has rank at most 1 for any $k \in \mathbb{Z}$. This gives the desired result.

The key fact which allows us to transport information from \hat{HS}_\bullet to \hat{HM}_\bullet is the following Gysin sequence.

Proposition 6 (Proposition 3.10 in Chapter 4 of [13]). Let Y be a closed oriented three-manifold equipped with a self-conjugate Spin^c structure s. Then there exists a long exact sequence:

$$ \cdots \to \hat{HS}_{k+1}(Y, s) \xrightarrow{c_{k+1}} \hat{HS}_k(Y, s) \xrightarrow{\iota_*} \hat{HM}(Y, s) \xrightarrow{\pi_*} \hat{HS}_k(Y, s) \xrightarrow{c_k} \hat{HS}_{k-1}(Y, s) \to \cdots $$

Further, the maps in this long exact sequence respect the \mathcal{R}-module structures.

With the preceding understood, we are ready to prove Theorem 1.

3. Proof of Theorem 1

In order to prove Theorem 1, we will simply show that an $\mathbb{F}[[U]]$-module of the form $\mathcal{T}_{(d)}^+ \oplus N$ where N is an r-dimensional torsion module supported in degrees greater than d with r an odd integer cannot fit into the Gysin sequence with an \mathcal{R}-module satisfying Lemma 5. As explained momentarily, a duality argument rules out the case where N is supported in degrees less than $d - 1$. This will imply that such an $\mathbb{F}[[U]]$-module cannot occur as the monopole Floer homology of a rational homology sphere with a self-conjugate Spin^c structure. The \mathcal{R}-module structure will be key.

Note that the isomorphisms of Theorem 3 are only relatively graded. However, from the proof, it will be clear that the absolute grading does not play a role. We therefore assume for notational simplicity that $d = 0$ throughout.

Meanwhile, by [7, Proposition 28.3.4], $\hat{HM}_\bullet(Y, s) \cong \hat{HM}^\bullet(-Y, s)$ via an isomorphism sending elements in grading k to elements in grading $-(k + 1)$. Working with coefficients in the field \mathbb{F}, we also have $\hat{HM}^\bullet(-Y, s) \cong \hat{HM}_\bullet(-Y, s)$. Hence, if $\hat{HM}_\bullet(Y, s) \cong \mathcal{T}_{(0)}^+ \oplus HM_{\text{red}}(Y, s)$ where $HM_{\text{red}}(Y, s)$ is r-dimensional and is supported in degrees less than -1 with r an odd integer, then $\hat{HM}_\bullet(-Y, s) \cong \mathcal{T}_{(0)}^+ \oplus HM_{\text{red}}(-Y, s)$ where $HM_{\text{red}}(-Y, s)$ is r-dimensional and is supported in degrees greater than 0. Therefore, it suffices to prove the
non-realizability of $T^+_{(0)} \oplus HM_{red}$ where HM_{red} is r-dimensional and is supported in degrees greater than 0 with r an odd integer.

With the preceding understood, suppose that $\widetilde{HM}_\bullet(Y, s) \cong T^+_{(0)} \oplus HM_{red}(Y, s)$ with $HM_{red}(Y, s)$ supported only in positive degree.

Lemma 7. $\widetilde{HS}_k(Y, s) = 0$ for $k < 0$ and $\widetilde{HS}_0(Y, s) = F$.

Proof. Since $\widetilde{HM}_k(Y, s) = 0$ for $k < 0$, the Gysin sequence in Proposition 6 gives isomorphisms $\widetilde{HS}_k(Y, s) \cong \widetilde{HS}_{k-1}(Y, s)$ for all $k < 0$. Thus $\widetilde{HS}_k(Y, s)$ is isomorphic for all $k < 0$. But $\widetilde{HS}_k(Y, s) = 0$ for sufficiently negative k by definition, so we must have that $\widetilde{HS}_k(Y, s) = 0$ for all $k < 0$. Finally, $\widetilde{HM}_0(Y, s) = F$ (since HM_{red} is 0 in degree 0), and the exactness of

$$\cdots \rightarrow \widetilde{HS}_0(Y, s) \xrightarrow{i} \widetilde{HM}_0(Y, s) \xrightarrow{\pi_0} \widetilde{HS}_0(Y, s) \rightarrow 0$$

(1)

implies that π_0 is an isomorphism and $\widetilde{HS}_0(Y, s) = F$. \hfill \Box

Given $k \geq 0$ even, let $\widetilde{\pi}_k$ denote the restriction of the map $\pi_k : \widetilde{HM}_k(Y, s) \rightarrow \widetilde{HS}_k(Y, s)$ in the Gysin sequence in Proposition 6 to the part of the tower $T^+_{(0)}$ with grading k.

Although the splitting of $\widetilde{HM}(Y, s) \cong T^+_{(0)} \oplus HM_{red}(Y, s)$ is non-canonical, we can identify $T^+_{(0)}$ canonically as a submodule of $\widetilde{HM}(Y, s)$ by considering the image of U^ℓ for $\ell \gg 0$. Thus, the restriction of π_k to $T^+_{(0)}$ is well-defined.

Lemma 8. For each $i \geq 0$, $\widetilde{\pi}_{4i}$ is nontrivial and $\widetilde{\pi}_{4i+2}$ is trivial.

Proof. Suppose that $\widetilde{\pi}_i$ is nontrivial for some even i. We deduce that $\widetilde{\pi}_{i+4}$ is also nontrivial from the fact that the Gysin sequence respects the module structures on \widetilde{HM}_\bullet and \widetilde{HS}_\bullet. In particular $\widetilde{\pi}_i \circ U^2 = V \circ \widetilde{\pi}_{i+4}$. Since U^2 gives a nontrivial map between (the restrictions to $T^+_{(0)}$ of) $\widetilde{HM}_{i+4}(Y, s)$ and $\widetilde{HM}_i(Y, s)$ and $\widetilde{\pi}_i$ is nontrivial, we must have that $\widetilde{\pi}_{i+4}$ is nontrivial. That $\widetilde{\pi}_0$ is nontrivial follows from Equation (1) (note that since HM_{red} is trivial in degree 0, we have $\widetilde{\pi}_0 = \pi_0$). By induction, it follows that $\widetilde{\pi}_{4i}$ is nontrivial for all $i \geq 0$.

Now suppose that $\widetilde{\pi}_{4i+2}$ is also nontrivial for some $i \geq 0$. Then by the argument above $\widetilde{\pi}_{4j+2}$ is nontrivial for all $j \geq i$, and so $\widetilde{\pi}_{2k}$ is nontrivial for all $k \geq 2i$. For sufficiently high degrees (in particular, higher than the support of HM_{red}), the Gysin sequence breaks into pieces of the form

$$0 \rightarrow \widetilde{HS}_{2k+1}(Y, s) \rightarrow \widetilde{HS}_{2k}(Y, s) \rightarrow \widetilde{HM}_{2k}(Y, s) \rightarrow \widetilde{HS}_{2k-1}(Y, s) \rightarrow 0.$$

Thus we have isomorphisms $\widetilde{HS}_{2k+1}(Y, s) \cong \widetilde{HS}_{2k}(Y, s)$ and $\dim \widetilde{HS}_{2k}(Y, s)$ is strictly larger than $\dim \widetilde{HS}_{2k-1}(Y, s)$. It follows that $\dim \widetilde{HS}_{k}(Y, s)$ grows without bound for sufficiently large k, violating Lemma 5. Thus $\widetilde{\pi}_{4i+2}$ must be trivial for all $i \geq 0$. \hfill \Box
With these lemmas, we are ready to complete the proof of Theorem 1. For sufficiently large k, $\widehat{HM}_{4k+1}(Y, \mathfrak{s})$ and $\widehat{HM}_{4k+3}(Y, \mathfrak{s})$ are zero. Consider the portions of the Gysin sequence centered around $\widehat{HM}_{4k+2}(Y, \mathfrak{s})$ and $\widehat{HM}_{4k}(Y, \mathfrak{s})$:

$$
0 \to \widehat{HS}_{4k+3}(Y, \mathfrak{s}) \to \widehat{HS}_{4k+2}(Y, \mathfrak{s}) \to \mathbb{F} \xrightarrow{0} \widehat{HS}_{4k+1}(Y, \mathfrak{s}) \to \widehat{HS}_{4k}(Y, \mathfrak{s}) \to 0,
$$

$$
0 \to \widehat{HS}_{4k+1}(Y, \mathfrak{s}) \to \widehat{HS}_{4k}(Y, \mathfrak{s}) \xrightarrow{0} \mathbb{F} \xrightarrow{\text{id}} \widehat{HS}_{4k-1}(Y, \mathfrak{s}) \to 0.
$$

Note that the non-triviality (respectively triviality) of the map $\widehat{\pi}_{4k} : \mathbb{F} \to \widehat{HS}_{4k}(Y, \mathfrak{s})$ (respectively $\widehat{\pi}_{4k+2} : \mathbb{F} \to \widehat{HS}_{4k+2}(Y, \mathfrak{s})$) is determined by Lemma 8. For $k \gg 0$, this gives the following isomorphisms:

$$
\widehat{HS}_{4k+1}(Y, \mathfrak{s}) \cong \widehat{HS}_{4k}(Y, \mathfrak{s}),
$$

$$
\widehat{HS}_{4k+2}(Y, \mathfrak{s}) \cong \widehat{HS}_{4k+1}(Y, \mathfrak{s}),
$$

$$
\widehat{HS}_{4k+3}(Y, \mathfrak{s}) \oplus \mathbb{F} \cong \widehat{HS}_{4k+2}(Y, \mathfrak{s}),
$$

$$
\widehat{HS}_{4k+4}(Y, \mathfrak{s}) \cong \widehat{HS}_{4k+3}(Y, \mathfrak{s}) \oplus \mathbb{F}.
$$

In particular, since $\widehat{HS}_{4k+i}(Y, \mathfrak{s}) \cong \widehat{HS}_{4k+3}(Y, \mathfrak{s}) \oplus \mathbb{F}$ and by Lemma 5 we have that $\dim_{\mathbb{F}} \widehat{HS}_{4k+4}(Y, \mathfrak{s}) \leq 1$, it follows that $\widehat{HS}_{4k+3}(Y, \mathfrak{s}) = 0$ for all sufficiently large k.

Fix some large k such that $4k + 3$ is larger than the maximum degree in the support of $HM_{\text{red}}(Y, \mathfrak{s})$ and $\widehat{HS}_{4k+3}(Y, \mathfrak{s}) = 0$. Consider the Gysin sequence between $\widehat{HM}_{4k+3}(Y, \mathfrak{s}) = 0$ and $\widehat{HM}_{-1}(Y, \mathfrak{s}) = 0$. By exactness, the sum of dimensions of each group in this sequence must be even. The groups that appear in this sequence are $\widehat{HM}_i(Y, \mathfrak{s})$ for each $0 \leq i \leq 4k+2$, $\widehat{HS}_{4k+3}(Y, \mathfrak{s}) = 0$, $\widehat{HS}_{-1}(Y, \mathfrak{s}) = 0$, and two copies of $\widehat{HS}_i(Y, \mathfrak{s})$ for each $0 \leq i \leq 4k + 2$. It follows that

$$
\sum_{i=0}^{4k+2} \dim_{\mathbb{F}} \widehat{HM}_i(Y, \mathfrak{s}) = 2(k + 1) + \sum_{i=0}^{4k+2} \dim_{\mathbb{F}} HM_{\text{red},i}(Y, \mathfrak{s})
$$

is even, where the first term on the right is the contribution to the tower from degrees zero to $4k+2$, and the second term is simply $\dim_{\mathbb{F}} HM_{\text{red}}(Y, \mathfrak{s})$ since by assumption $HM_{\text{red}}(Y, \mathfrak{s})$ is supported in positive degrees at most $4k + 2$. Therefore, $\dim_{\mathbb{F}} HM_{\text{red}}(Y, \mathfrak{s})$ must be even. This completes the proof of Theorem 1.

References

1. Maciej Borodzik and Charles Livingston, *Heegaard Floer homology and rational cuspidal curves*, preprint (2013), available at arXiv:1304.1062.
2. Vincent Colin, Paolo Ghiggini, and Ko Honda, *The equivalence of Heegaard Floer homology and embedded contact homology via open book decompositions I*, preprint (2012), available at arXiv:1208.1074.
3. Vincent Colin, Paolo Ghiggini, and Ko Honda, *The equivalence of Heegaard Floer homology and embedded contact homology via open book decompositions II*, preprint (2012), available at arXiv:1208.1077.
4. Vincent Colin, Paolo Ghiggini, and Ko Honda, The equivalence of Heegaard Floer homology and embedded contact homology III: from hat to plus, preprint (2012), available at arXiv:1208.1526.
5. Fyodor Gainullin, Heegaard Floer homology and knots determined by their complements, preprint (2015), available at arXiv:1504.06180.
6. Peter Kronheimer, Tomasz Mrowka, Peter Ozsváth, and Zoltán Szabó, Monopoles and lens space surgeries, Ann. of Math. (2) 165 (2007), no. 2, 457–546.
7. Peter B. Kronheimer and Tomasz S. Mrowka, Monopoles and three-manifolds, New Mathematical Monographs, vol. 10, Cambridge University Press, Cambridge, 2007.
8. Çağatay Kutluhan, Yi-Jen Lee, and Clifford H. Taubes, $HF = HM$ I : Heegaard Floer homology and Seiberg–Witten Floer homology, preprint (2010), available at arXiv:1007.1979.
9. Çağatay Kutluhan, Yi-Jen Lee, and Clifford H. Taubes, $HF = HM$ II : Reeb orbits and holomorphic curves for the ech/Heegaard Floer homology correspondence, preprint (2010), available at arXiv:1008.1595.
10. Çağatay Kutluhan, Yi-Jen Lee, and Clifford H. Taubes, $HF = HM$ III : Holomorphic curves and the differential for the ech/Heegaard Floer homology correspondence, preprint (2010), available at arXiv:1010.3456.
11. Çağatay Kutluhan, Yi-Jen Lee, and Clifford H. Taubes, $HF = HM$ IV : The Seiberg–Witten Floer homology/ech correspondence, preprint (2011), available at arXiv:1107.2297.
12. Çağatay Kutluhan, Yi-Jen Lee, and Clifford H. Taubes, $HF = HM$ V : Seiberg–Witten Floer homology and handle addition, preprint (2012), available at arXiv:1204.0115.
13. Francesco Lin, A Morse–Bott approach to monopole Floer homology and the Triangulation conjecture, preprint (2014), available at arXiv:1404.4561.
14. Ciprian Manolescu, Pin(2)-equivariant Seiberg–Witten Floer homology and the Triangulation Conjecture, preprint (2013), available at arXiv:1303.2354.
15. Ciprian Manolescu and Brendan Owens, A concordance invariant from the Floer homology of double branched covers, Int. Math. Res. Not. IMRN (2007), no. 20, 21.
16. Peter Ozsváth and Zoltán Szabó, Holomorphic disks and genus bounds, Geom. Topol. 8 (2004), 311–334.
17. Peter Ozsváth and Zoltán Szabó, Holomorphic disks and topological invariants for closed three-manifolds, Ann. of Math. (2) 159 (2004), no. 3, 1027–1158.
18. Peter Ozsváth and Zoltán Szabó, Knots with unknotting number one and Heegaard Floer homology, Topology 44 (2005), no. 4, 705–745.
19. Clifford Henry Taubes, Embedded contact homology and Seiberg-Witten Floer cohomology I, Geom. Topol. 14 (2010), no. 5, 2497–2581.
20. Clifford Henry Taubes, Embedded contact homology and Seiberg-Witten Floer cohomology II, Geom. Topol. 14 (2010), no. 5, 2583–2720.
21. Clifford Henry Taubes, Embedded contact homology and Seiberg-Witten Floer cohomology III, Geom. Topol. 14 (2010), no. 5, 2721–2817.
22. Clifford Henry Taubes, Embedded contact homology and Seiberg-Witten Floer cohomology IV, Geom. Topol. 14 (2010), no. 5, 2819–2960.
23. Clifford Henry Taubes, Embedded contact homology and Seiberg-Witten Floer cohomology V, Geom. Topol. 14 (2010), no. 5, 2961–3000.
