The generalized second law of thermodynamics in generalized gravity theories

Shao-Feng Wu1,5, Bin Wang2, Guo-Hong Yang1 and Peng-Ming Zhang3,4

1 Department of Physics, Shanghai University, Shanghai 200436, People’s Republic of China
2 Department of Physics, Fudan University, Shanghai 200433, People’s Republic of China
3 Center of Theoretical Nuclear Physics, National Laboratory of Heavy Ion Accelerator, Lanzhou 730000, People’s Republic of China
4 Institute of Modern Physics, Lanzhou 730000, People’s Republic of China

E-mail: sfwu@shu.edu.cn, wangb@fudan.edu.cn, ghyang@mail.shu.edu.cn and zhpm@impcas.ac.cn

Received 21 April 2008, in final form 2 September 2008
Published 17 November 2008
Online at stacks.iop.org/CQG/25/235018

Abstract

We investigate the generalized second law of thermodynamics (GSL) in generalized theories of gravity. We examine the total entropy evolution with time including the horizon entropy, the non-equilibrium entropy production, and the entropy of all matter, field and energy components. We derive a universal condition to protect the generalized second law and study its validity in different gravity theories. In Einstein gravity (even in the phantom-dominated universe with a Schwarzschild black hole), Lovelock gravity and braneworld gravity, we show that the condition to keep the GSL can always be satisfied. In $f(R)$ gravity and scalar–tensor gravity, the condition to protect the GSL can also hold because the temperature should be positive, gravity is always attractive and the effective Newton constant should be an approximate constant satisfying the experimental bounds.

PACS numbers: 04.70.Dy, 04.50.–h, 98.80.–k

1. Introduction

Motivated by the black hole physics, it was realized that there is a profound connection between gravity and thermodynamics. In Einstein gravity, the evidence of this connection was first discovered in [1] by deriving the Einstein equation from the proportionality of entropy and horizon area together with the first law of thermodynamics in the Rindler spacetime. For a general static spherically symmetric spacetime, Padmanabhan pointed out that Einstein equations at the horizon give rise to the first law of thermodynamics [2]. Recently the study...
on the connection between gravity and thermodynamics has been extended to a cosmological context. Frolov and Kofman [3] employed the approach proposed by Jacobson [1] to a quasi-de Sitter geometry of an inflationary universe, and calculated the energy flux of a background slow-roll scalar through the quasi-de Sitter apparent horizon. By applying the first law of thermodynamics to a cosmological horizon, Danielsson obtained the Friedmann equation in the expanding universe [4]. In the quintessence-dominated accelerating universe, Bousso [5] showed that the first law of thermodynamics holds at the apparent horizon. The relation between gravity and thermodynamics has been further disclosed in extended gravity theories, including Lovelock gravity [6, 7], braneworld gravity [8, 9], nonlinear gravity [7, 10, 11] and scalar–tensor gravity [7, 11] etc. In the nonlinear gravity and scalar–tensor gravity, it was argued that the non-equilibrium thermodynamics instead of the equilibrium thermodynamics should be taken into account to build the relation to gravity [7, 10, 11]. In our previous work [12], we have presented a general procedure to build the connection between gravity and thermodynamics. From the Friedmann equations, we have constructed the first law of thermodynamics on the apparent horizon in generalized gravity theories. We found that the non-equilibrium entropy production term arising in nonlinear gravity and scalar–tensor gravity is due to the existence of other dynamic fields besides the ordinary matter dominating the cosmological evolution.

It is of great interest to extend our discussion in [12] to study the generalized second law (GSL) of thermodynamics in the generalized gravity theories. There has been a lot of interest in investigating the GSL in gravity [13–21], but all of the papers concentrate on the Einstein gravity. The modified theory of gravity was argued to be a possible candidate to explain the accelerated expansion of our universe, thus it is interesting to examine the GSL in the extended gravity theories. An attempt to study this problem was carried out in [22], where it was found that some additional conditions are needed for the validity of the GSL. Even for the Einstein gravity, it was found that the GSL breaks down in a phantom-dominated universe in the presence of a Schwarzschild black hole [18], at least in a transition epoch [19]. In our paper we will adopt the formalism proposed in [12]. We will derive the entropy of the horizon from the first law of thermodynamics constructed in [12]. We will examine the total entropy evolution with time including the horizon entropy, the non-equilibrium entropy production, and the entropy of all matter, field and energy components. We will derive a universal condition to protect the GSL in generalized gravity theories and examine its validity in the Einstein gravity (even in the presence of Schwarzschild black hole), Lovelock gravity, braneworld gravity, nonlinear gravity and scalar–tensor gravity.

The organization of this paper is as follows: in section 2, we briefly review the generalized first law of thermodynamics in extended theories of gravity. In section 3, we derive the universal condition to protect the GSL and examine its validity in some extended gravity theories. The last section is devoted to a summary.

2. The first law of thermodynamics on the apparent horizon in FRW cosmology

In this section we briefly go over the general procedure to construct the first law of thermodynamics on the apparent horizon in generalized gravity theory [12].

The homogenous and isotropic $(n + 1)$-dimensional FRW universe is described by

$$\text{d}s^2 = h_{ab} \text{d}x^a \text{d}x^b + \tilde{r}^2 \Omega_{n-1}^2,$$

where $h_{ab} = \text{diag}(-1, \frac{r^2}{\tilde{r}^2}), \Omega_{n-1}^2$ is the $(n - 1)$-dimensional sphere element, and $x^0 = t, x^1 = r, \tilde{r} = ar$ are the radius of the sphere and a is the scale factor. For simplicity, we consider the flat space $k = 0$ in this paper, however, our discussion can also be generalized.

2
to the non-flat cases. It is known that the dynamical apparent horizon, the marginally trapped surface with vanishing expansion, is defined as a sphere situated at \(r = r_A \) satisfying

\[h^{ab} \partial_a \tilde{r} \partial_b \tilde{r} = 0. \]

The sphere radius is

\[\tilde{r}_A \equiv r_A a = \frac{1}{H}. \]

(2)

The associated temperature on the apparent horizon is defined by surface gravity \(\kappa = \frac{1}{\sqrt{-h}} \partial_a (\sqrt{-h} h^{ab} \partial_b \tilde{r}) : \)

\[T = \frac{|\kappa|}{2 \pi} = \frac{1}{2 \pi \tilde{r}_A} (1 - \epsilon) \]

(3)

where \(\epsilon \equiv \frac{\dot{\tilde{r}}_A}{2 \pi \tilde{r}_A} < 1 \). \(\epsilon < 1 \) ensures that the temperature is positive. Using the definition of the horizon (2), the positive temperature condition can be written as \(\epsilon = -\frac{\dot{H}}{2 \pi H} < 1 \), i.e.

\[\dot{H} > -2H^2, \]

(4)

which is useful in our later discussion. In our previous work [12], in order to study the mass-like function, we construct the first law on the assumption \(\epsilon \ll 1 \) meaning that the apparent horizon radius is approximately fixed thereby the temperature \(T = \frac{1}{2 \pi \tilde{r}_A} \) [7, 23]. Here we will drop this assumption.

In Einstein gravity, the entropy is proportional to the horizon area

\[S_E = \frac{A}{4G}, \]

where the horizon area \(A = n \Omega_n \tilde{r}_A^{n-1} \). The thermodynamical fluid \(\delta Q \) can be written as

\[T \, dS_E = \frac{n(n-1) V \tilde{r}_A^{-3} d\tilde{r}_A}{8 \pi G} - \frac{n(n-1) V \tilde{r}_A^{-3} d\tilde{r}_A}{8 \pi G} \frac{\partial H^2}{\partial \tilde{r}_A} \frac{\partial H}{\partial \tilde{r}_A}, \]

where \(\tilde{V} = \Omega_n \tilde{r}_A^n \) is the volume in the horizon. Using the definition of the horizon (2) and the temperature (3), we can obtain

\[T \, dS_E = \frac{-n(n-1) V}{16 \pi G} \, \frac{dH^2}{dt} - \frac{n(n-1) V H^2}{16 \pi G} \, \frac{\dot{H}}{H} \, dt, \]

(5)

which is purely a geometric relation.

In all gravity theories, Friedmann equations can be expressed in the form as that in the Einstein gravity

\[H^2 = \frac{16 \pi G}{n(n-1)} \rho_{\text{eff}}, \]

(6)

\[\dot{H} = -\frac{8 \pi G}{(n-1)} (\rho_{\text{eff}} + p_{\text{eff}}). \]

(7)

Though we do not know the exact form of \(\rho_{\text{eff}} \) (and \(p_{\text{eff}} \)), we know that there must be ordinary matter density \(\rho \) in \(\rho_{\text{eff}} \) and also other variables \(\rho_p \). In some cases, \(\rho_p \) (or their combination) may describe another matter field \(\rho_f \) or effective energy component \(\rho_e \) besides the ordinary matter \(\rho \) in \(\rho_{\text{eff}} \). The first Friedmann equation can be expressed in the form

\[H^2 = H^2(\rho, \rho_1, \ldots, \rho_p, \ldots). \]

Then the relation (5) can be changed as

\[T \, dS_E = \frac{-n(n-1) V}{16 \pi G} \, dt \left(\frac{\partial H^2}{\partial \rho} \dot{\rho} + \frac{\partial H^2}{\partial p} \dot{p}_p \right) - \frac{n(n-1) V H^2}{16 \pi G} \, \frac{\dot{H}}{H} \, dt. \]

(8)
To construct the first law of thermodynamics, we need to know the energy flux dE or entropy S. In the general gravity theory, they are not specified. However, it is known that the energy flux of ordinary matter includes $V \dot{\rho} d\tau$. Multiplying $\frac{16\pi G}{n(n-1)} \frac{1}{\dot{\rho} \rho} \partial H^2}{\partial \rho}$ on both sides of (8), we can extract it clearly as

$$16\pi G \frac{1}{n(n-1)} \frac{\partial H}{\partial \rho} \frac{\dot{H}^2}{H} = -V \dot{\rho} d\tau - V d\tau \frac{1}{\dot{\rho} \rho} \frac{\partial H^2}{\partial \rho} \dot{\rho}. \quad (9)$$

In the general case, we have the conservation

$$\dot{\rho}_{\text{eff}} + nH(\rho_{\text{eff}} + p_{\text{eff}}) = 0. \quad (10)$$

We furthermore assume that ordinary matter (all matter and energy in this paper are assumed as perfect fluid) exchanges energy with other energy sources, described by

$$\dot{\rho} + nH(\rho + p) = q. \quad (11)$$

If the gravity theory has matter ρ_f and energy content ρ_e, one may also have similar semi-conserved laws

$$\dot{\rho}_f + nH(\rho_f + p_f) = q_f, \quad \dot{\rho}_e + nH(\rho_e + p_e) = q_e, \quad \dot{\rho}_t + nH(\rho_t + p_t) = q_t. \quad (12)$$

In the last equation the total density $\rho_t \equiv \rho + \rho_f + \rho_e$, total pressure $p_t \equiv p + p_f + p_e$ and total energy exchange $q_t \equiv q + q_f + q_e$ are introduced. However, it should be emphasized that one cannot impose total energy fluid $q_t = 0$, because there may be energy exchange with the horizon. Equations (10) and (11) will be used later to express the first law explicitly. Since we will consider the thermodynamical effect with the change of horizon volume, we introduce the work density. Defining T^a_b as the projection of energy–momentum tensor T^μ_ν of the perfect fluid in the FRW universe in the normal direction of the $(n-1)$-sphere, we have the density $W \equiv -\frac{1}{2}T^\rho_\rho$, which may be viewed as the work done by the change of the apparent horizon, as pointed out in [36].

Consider that the entropy change should be an exact form in the first law of thermodynamics. If there is just ordinary matter ρ in the space, $\frac{\partial H^2}{\partial \rho}$ can be rewritten as a function of r_A. Then a total differential can be obtained by the integration

$$S = \int \frac{16\pi G}{n(n-1)} \frac{1}{\dot{\rho} \rho} \partial H^2}{\partial \rho} (SE), \quad (13)$$

and the relation (9) can be written as

$$T dS = \delta Q, \quad (14)$$

where the thermodynamical fluid

$$\delta Q = -V \dot{\rho} d\tau - V d\tau \frac{1}{\dot{\rho} \rho} \frac{\partial H^2}{\partial \rho} \dot{\rho}. \quad (15)$$

Since the gravity is only determined by ordinary matter, we can impose conservation $q = 0$. Using the conservation equation (11), one can prove

$$-V \frac{1}{\dot{\rho} \rho} \frac{\dot{H}^2}{H} = -\frac{1}{2}(\rho + p) \dot{V}. \quad (16)$$

Then the thermodynamical fluid can be rewritten as

$$\delta Q = -dE + W dV. \quad (16)$$
which includes just the energy flux of ordinary matter $E = \rho V$ and the work done by the change of the apparent horizon. Thus the expression (13) should be understood as the entropy to assure the first law

$$T \, dS = -dE + W \, dV.$$

If the modified gravity theory has other dynamic fields resulting that $\frac{\partial H^2}{\partial \rho}$ is a function of $\tilde{\rho}_A$ and ρ_p,

$$\frac{\partial H^2}{\partial \rho} = \frac{\partial H^2}{\partial \rho}(\tilde{\rho}_A, \rho_p),$$

we cannot integral the lhs in (9) directly. However we can express it as

$$T \frac{16\pi G}{n(n - 1)} \frac{1}{\frac{\partial H^2}{\partial \rho}} dS_E = T \frac{16\pi G}{n(n - 1)} S_E \frac{1}{\frac{\partial H^2}{\partial \rho}} (\tilde{\rho}_A, \rho_p).$$

(17)

It can be rewritten as

$$T \, dS = \delta Q,$$

(18)

where

$$S = \frac{16\pi G}{n(n - 1)} \frac{1}{\frac{\partial H^2}{\partial \rho}} S_E,$$

(19)

$$\delta Q = -V \dot{\rho} \, dt - V \frac{\partial H^2}{\partial \rho} \frac{\dot{H}^2}{H} - V \frac{\partial H^2}{\partial \rho_p} \dot{\rho}_p + T \frac{16\pi G}{n(n - 1)} S_E \frac{1}{\frac{\partial H^2}{\partial \rho}}.$$

(20)

To construct the first law, we can write

$$\delta Q = -dE + W \, dV - T \, d_p S,$$

where $E \equiv \rho V$ is the total intrinsic energy and W is the total work. $d_p S$ is defined as

$$d_p S = -\frac{1}{T} (\delta Q + dE - W \, dV),$$

(21)

where the subindex ‘p’ denotes the term resulted from other dynamical fields. In general, $d_p S$ is non-vanishing and cannot be written out exactly (we will show $d_p S$ clearly in concrete gravity theories). If the first law of generalized gravity theory can be constructed, the entropy term contains the form (19) together with the entropy production $d_p S$ (21) following the idea given in [10]. Here we do not consider whether the entropy is developed internally by the system as in [10]. The first law is expressed as

$$T \, dS + T \, d_p S = -dE + W \, dV.$$

(22)

The exact forms of entropy production $d_p S$ and entropy S depend on the concrete gravity theory.

In [27] it was argued that the entropy correction can be absorbed in the mass-like function and the entropy generation in the non-equilibrium can be reinterpreted. Whether one should interpret the thermodynamical equations as representing systems in equilibrium or out of equilibrium seems unclear. This is also under debate in recent works on $f(R)$ gravity [28, 29]. In our case, there is a work term, since the horizon is not fixed as that in [27] and the form of the mass-like function is not known. The entropy expression, inner energy and the work term in the first law equation (22) are all determined. The extra term cannot be absorbed into any other terms and it has to be interpreted as the entropy production as done...
in [10]. Since the mass-like function here is not available, we do not know how to reinterpret this entropy correction as done in [27].

One might argue that there seem to be ambiguities in entropy expressions (13) and (19) since one might add a proper quantity to the expression of entropy, which may vanish in the Einstein gravity, and this extra term could be absorbed into the redefinition of the entropy production. This worry is not necessary. As pointed out in [12], the known black hole entropy in different gravity theories will strictly restrict the form of the additional quantities in the entropy expressions. The definition of entropy in (13) and (19) can recover the exact expression of the known black hole entropy [12] such as in Lovelock gravity [24], nonlinear gravity [25] and scalar–tensor gravity [26]. Moreover, following the work in [27], the general mass-like function which can be reduced to the corresponding Misner–Sharp mass has been found. If we add other quantities in entropy expressions (13) and (19), it seems very difficult to obtain the corresponding mass-like function which can be reduced to the known Misner–Sharp mass. This serves as another restriction on adding additional terms to the entropy expressions.

3. GSL of extended gravity theories

Now we start to discuss the GSL in generalized gravity theories. Most discussions on the GSL focus on the Einstein gravity. In generalized gravity theories, from the first law of thermodynamics (22) one can see that an entropy production term appears, which characterizes the non-equilibrium thermodynamical process about the horizon. In describing the GSL one should include this non-equilibrium entropy production term. Besides, in addition to the matter and fields, one should also include the entropy for the effective energy in describing the GSL, since the change of energy is relative to the change of entropy.

Now we are going to use the first law of thermodynamics (22) to find the general condition needed to hold the GSL in any gravity theories. From (22), we have the expression of the horizon entropy

\[
T \, dS_h = - T \, d_p S - dE + W_t \, dV. \tag{23}
\]

On the other hand, if there is only ordinary matter inside the cosmological horizon of a comoving observer, the entropy of the ordinary matter is relative to the energy \(\rho\) and the pressure \(p\) via the Gibbs equation

\[
T_p \, dS_\rho = d(\rho V) + p \, dV = V \, d\rho + (\rho + p) \, dV. \tag{24}
\]

As pointed out in [30], the ordinary matter should be understood as a phenomenological representation of a mixture of fields, each of which may or may not be in a pure state, and therefore entitled to an entropy. \(T_p\) refers to the temperature of matter inside the horizon. If there are other matter field and energy components, one can similarly have the Gibbs equation (including all matter, field and energy contents)

\[
T_i \, dS_i = d(\rho_i V) + p_i \, dV = V \, d\rho_i + (\rho_i + p_i) \, dV. \tag{25}
\]

Here the temperature of total energy inside the horizon is denoted as \(T_i\). It should be noted that the temperature \(T_i\) is not equal to \(T\) in general because there may be energy flow \(q_i\) (thereby thermodynamical fluid) between the horizon and energy inside the horizon. Since the only temperature scale we have at our disposal is the temperature of the apparent horizon \(T\), we assume

\[
T_i = bT,
\]

where the temperature parameter satisfying \(0 < b < 1\) assures the temperature being positive and smaller than the horizon temperature. This ansatz is similar to the disposal when the
The horizon is taken as the event horizon [17, 30], where the only temperature scale is the de Sitter temperature [16].

Now, we propose that the GSL should be expressed as
\[\dot{S}_h + d_{\mu} \dot{S} + \dot{S}_t \geq 0 \]
(26)

where \(d_{\mu} \dot{S} \equiv \partial_t (d_{\mu} S) \). Summing up equations (23) and (25), the GSL reads
\[-b \dot{E} + b W \dot{V} + V \rho_t + (\rho_t + p_t) \dot{V} = (1 - b) \dot{\rho}_V + \rho_t \dot{V} + \left(1 - \frac{b}{2} \right) (\rho_t + p_t) \dot{V} \geq 0. \]
(27)

It should be noted that if there is no energy flow \((q_t = 0) \) between the horizon and energy therein, the horizon and the energy inside it are in thermal equilibrium \(b = 1 \).

One can immediately find that the GSL holds for Einstein gravity. Two Friedmann equations (6) and (7) make the energy flow \(q \) in the continuity equation (11) vanish, thereby the thermal flow vanishes. Employing two Friedmann equations (6) and (7) in condition (27) by replacing \(\rho_t (p_t) \) as \(\rho (p) \), we have
\[-\dot{E} + W \dot{V} + V \rho + (\rho + p) \dot{V} = \frac{1}{2} (\rho + p) \dot{V} = \frac{n(n-1)}{16\pi G} \Omega_n H^{-n-1} \dot{H}^2 \geq 0. \]
(28)

In the derivation of the above equation we have used the second Friedmann equation \(\dot{H} = -\frac{8\pi G}{(\pi - n)} (\rho + p) \) and \(\dot{V} = \partial_t (\Omega_n \rho^{n-1}_A) = \partial_t (\Omega_n H^{-n}) = -n \Omega_n H^{-n-1} \dot{H} \). In [21], the condition (28) without the term \(W \dot{V} \) was obtained, which corresponds to the approximation \(T \approx \frac{1}{2\pi H_{\dot{\rho}}} \).

Now we consider a Schwarzschild black hole inside the apparent horizon in \((3 + 1)\)-dimensional spacetime, whose mass is assumed to be small enough \(M \ll \rho V \) so that the FRW metric remains unchanged (thereby \(b = 1 \)). Using the first Friedmann equation (6) in \((3 + 1)\)-dimensional spacetime, this condition reduces to
\[MH \ll \frac{\rho_A^3 H^3}{2} = \frac{1}{2}, \]
(29)

where we set \(G = 1 \). In a fluid with the energy density \(\rho \) and the pressure \(p \), the change rate of the black hole mass was obtained in [13]
\[\dot{M} = 4\pi r_h^2 (\rho + p) \dot{M} = -4\alpha M^2 \dot{H}, \]
where \(r_h \) is the radius of the black hole horizon and \(\alpha \sim O(1) \) is a positive numerical constant.

The entropy of the black hole is \(S_{bl} = 4\pi M^2 \) [31], therefore
\[\dot{S}_{bl} = -32\pi \alpha M^2 \dot{H}. \]
(30)

To protect the GSL, we require that the sum of the apparent horizon entropy, the ordinary matter entropy and the black hole entropy cannot decrease with time:
\[\dot{S}_h + \dot{S}_m + \dot{S}_{bl} \geq 0. \]

Employing equations (23), (24) and (30), together with the Friedmann equation (6) and \(b = 1 \), the condition to protect the GSL reads
\[2\pi H \left(-16\alpha M^3 + \frac{\dot{H}}{2H^2} \frac{1}{1 - \epsilon} \right) \geq 0. \]

If the fluid surrounding the black hole is quintessence \(\dot{H} < 0 \), the GSL always holds. If the fluid is of the phantom type, \(\dot{H} > 0 \), the GSL can also hold, because
\[\frac{\dot{H}}{H^2} \frac{1}{1 - \epsilon} \geq 32\alpha M^3 H^3 \sim 0, \]
where the condition (29) and the positive temperature have been considered.
In the following, we are going to extend the discussion on the condition (27) to protect the GSL to generalized gravity theories.

3.1. Lovelock gravity

The Lagrangian of the Lovelock gravity consists of the dimensionally extended Euler densities [32]

\[L = \sum_{i=1}^{[n/2]} c_i L_i, \]

where \(c_i \) is an arbitrary positive constant and \(L_i \) is the Euler density of a \((2i)\)-dimensional manifold

\[L_i = 2^{-i} \delta_{\alpha_1 \beta_1 \cdots \alpha_i \beta_i}^{\mu_1 \nu_1 \cdots \mu_i \nu_i} R^\alpha_1 \beta_1 \cdots \alpha_i \beta_i_{\mu_1 \nu_1 \cdots \mu_i \nu_i}. \]

\(L_1 \) is just the Einstein–Hilbert term, and \(L_2 \) corresponds to the so-called Gauss–Bonnet term. Using the FRW metric, we obtain Friedmann equations in \((n+1)\)-dimensional spacetime

\[\frac{[n/2]}{\sum_{i=1}^{[n/2]} \hat{c}_i (H^2)^i} = \frac{16\pi G}{n(n-1)} \rho, \]

and

\[\frac{[n/2]}{\sum_{i=1}^{[n/2]} \hat{c}_i (H^2)^i (\dot{H})} = -\frac{8\pi G}{(n-1)} (\rho + p), \]

where

\[\hat{c}_i = \frac{(n-2)!}{(n-2i)!} c_i. \]

Since there is only one dynamic field \(\rho \) in the first Friedmann equation (31), the first law on the horizon is described by the equilibrium thermodynamics \(d_p S = 0 \). Two Friedmann equations (31) and (32) make the energy flow \(q = 0 \), so the horizon and energy are in thermodynamical equilibrium \(b = 1 \). From two Friedmann equations (31) and (32), one can find that the condition (27) always holds

\[\frac{1}{2} (\rho + p) \dot{V} = \frac{n(n-1)}{16\pi G} \Omega_n H^{-1} \sum_{i=1}^{[n/2]} \hat{c}_i (H^2)^i \dot{H}^i \geq 0. \]

The condition to protect the GSL in the Einstein gravity (28) can be recovered when \(\hat{c}_1 = 1, \hat{c}_i = 0 \ (i > 1) \).

3.2. Randall–Sundrum braneworld gravity

We consider an \(n \)-dimensional brane embedded in a \((n+2)\)-dimensional spacetime. Using the junction condition on the brane, we can obtain the Friedmann equations

\[H^2 = \frac{1}{4n^2} \rho^2 + \frac{1}{2n^2} \lambda \rho \]

and

\[\dot{H} = -\frac{1}{4n} (\rho + p)(\rho + \lambda) \]

where the Randall–Sundrum fine-tuning condition

\[\frac{1}{4n^2} \lambda^2 + \frac{2\Lambda_{n+2}}{n(n+1)} = 0 \]

8
has been used. Using the junction condition into the (5) component of the field equation we can obtain the conserved equation
\[\dot{\rho} + nH(\rho + p) = q = 0, \] (36)
which results in the horizon and energy inside the horizon being in thermodynamical equilibrium \(b = 1 \).

We see that \(\rho \) is the only freedom in the first Friedmann equation (34), so we only need to consider the equilibrium thermodynamics about the horizon. From (34) and (35), one can find that the condition (27) to protect the GSL always holds
\[\frac{1}{2}(\rho + p)\dot{V} = \frac{2n^2\Omega_n}{\sqrt{\lambda^2 + 4n^2H^2}}H^{-n-1}H^2 \geq 0. \] (37)
The condition (37) can be reduced to the condition in Einstein gravity (28) at low energy \(\rho \ll \lambda \).

3.3. Nonlinear gravity

For the nonlinear gravity \(f(R) \), the Lagrangian is
\[L = \frac{1}{16\pi G} f(R). \]
The variational principle gives equations of motion. Using the FRW metric, one can obtain Friedmann equations in \((n + 1)\)-dimensional spacetime
\[H^2 = \frac{16\pi G}{n(n-1)} \frac{1}{f'} (\rho + \rho_c f') \] (38)
\[\dot{H} = -\frac{8\pi G}{(n-1)} \frac{1}{f'} (\rho + \rho_c f' + p + p_c f'), \] (39)
where
\[\rho_c = \frac{1}{8\pi G f'} \left[\frac{f - Rf'}{2} - nHf'' \dot{R} \right] \]
\[p_c = \frac{1}{8\pi G f'} [(f - Rf') - f'' \dot{R} + f''' \ddot{R}^2 + n(n-1) f'' \ddot{R}]. \]
The prime denotes the derivative with respect to \(R \). Since \(\frac{\partial H^2}{\partial p} \) is determined by dynamic field \(f' \) while not the horizon radius uniquely, one should consider the horizon described by non-equilibrium thermodynamics. One can select \(\rho_p \) arbitrarily. For example, we select \(\rho_p = (f', \rho_c) \). There is not the real matter field besides the ordinary matter \(\rho \). It is important to observe that from the Friedmann equations, \(\rho_e = \rho_c f' \) \((p_e = p_c f') \) acts as the density (pressure) of an effective energy component in \(f(R) \) gravity.

The condition (27) reads
\[(1 - b)\rho_t V + \left(1 - \frac{b}{2} \right) (\rho_t + p_t)\dot{V} \geq 0, \]
where the total density (pressure) is \(\rho_t = \rho + \rho_c \) \((p_t = p + p_c) \). Solving \(\rho_t \) and \(p_t \) from two Friedmann equations (38) and (39), and substituting them into the above inequality, we find
\[\frac{n(n-1)\Omega_n}{16\pi G} H^{-n-1} [(1 - b)H^3 \dot{f'} + 2(1 - b) f' H^2 \dot{H} + (2 - b) f' \dot{H}^2] \geq 0. \] (40)
Taking G/f' as the effective Newton gravitational constant, we can impose $f' > 0$ which means the gravity is always attractive. Remembering the positive temperature condition (4) and the temperature parameter $b < 1$, we finally read the inequality (40) as

$$\frac{n(n-1)\Omega_0}{16\pi G} H^{-n+2}[4f'H + (1 - b)\dot{f}'] \geq 0.$$ (41)

This inequality is the condition to protect the GSL in the $f(R)$ gravity. If one requires that the GSL holds even for infinitely small horizon temperature ($\dot{H} \simeq -2H^2$), this condition is sufficient and necessary. When the effective Newton constant is indeed constant $\dot{f}' = 0$, the GSL always holds, recovering the results of Einstein gravity. Rigorously, for dynamical Newton constant, we see that the GSL can be protected provided that $\dot{f}' > 0$. If $\dot{f}' < 0$, the GSL can hold only if $|\dot{f}'/f'| \leq \frac{4H}{1-b}$. Although this rigorous result is simpler than the condition to protect the GSL obtained in [22]; however, we further like to point out that the GSL may always hold in the present situation. From two Friedmann equations (38) and (39), we find that the dynamical Newton constant is related to the total energy flow

$$q_t = \frac{n(n-1)}{16\pi G} H^2 \dot{f}'$$ (42)

In general, the temperature of total energy bT cannot be equal to that of horizon T. However, it is known that the experimental bounds acquiring the Newton constant should be an approximate constant [37]. From equation (42), one can find that the big energy fluid is prohibited to protect the effective Newton constant as an approximate constant. Then the temperature of the horizon is very close to that of the energy source therein $b \sim 1$. This is more reasonable if two systems undergo some length of time. Thus the second term in the bracket of equation (41) should be smaller than the first term, and the condition for the GSL (41) can always be held.

It is interesting to show the entropy production $d\rho S$ clearly. Recalling the conserved equation (10)

$$\dot{\rho}_{\text{eff}} = -nH(\rho_{\text{eff}} + p_{\text{eff}})$$ (43)

and using the first Friedmann equation (38), one can find that the lhs in equation (43) reads

$$\dot{\rho}_{\text{eff}} = \frac{n(n-1)}{16\pi G} \left(\frac{\partial H^2}{\partial \rho} \dot{\rho} + \frac{\partial H^2}{\partial p} \dot{p} \right)$$

$$= \frac{n(n-1)}{16\pi G} \left(\frac{16\pi G}{n(n-1)} \frac{1}{f'} \dot{\rho} + \frac{\partial H^2}{\partial p} \dot{p} \right)$$

$$= \frac{1}{f'} \dot{\rho} + \frac{n(n-1)}{16\pi G} \frac{\partial H^2}{\partial p} \dot{p}$$ (44)

while by using the second Friedmann equation (39) the rhs in equation (43) reads

$$-nH(\rho_{\text{eff}} + p_{\text{eff}}) = -nH \left[\frac{1}{f'}(\rho_t + p_t) \right].$$ (45)

Employing the continuous equation (11) to equations (44) and (45), one can find

$$\frac{\partial H^2}{\partial p} \dot{p} = -\frac{16\pi G}{n(n-1)} \frac{1}{f'} [nH(\rho_t + p_t - \rho - p) + q].$$ (46)
Using the continuous equation (12) and substituting equation (46) into equation (20), we have

$$
\delta Q = nV H(\rho + p) dt - V q dt - V \frac{dH}{\partial \rho} \rho dt - V \frac{dH}{\partial \rho} \rho^2 dt + T \frac{16\pi G}{n(n-1)} S_E \frac{d}{dt} \left(\frac{1}{\rho} \frac{\partial H}{\partial \rho} \right)
$$

$$
= nV H(\rho_t + p_t) dt - V \frac{dH}{\partial \rho} \rho dt + T S_E d f'
$$

$$
= -dE + Wt V + Vq dt + T S_E d f'.
$$

(47)

One can find clearly that the energy fluid $Vq_t dt$ accounts for some part of the thermodynamical fluid. From equations (21) and (47), the entropy production can be obtained:

$$
d_p S = \left(-\frac{1}{T} Vq_t dt - S_E df'\right)
$$

$$
= -\frac{n \Omega^2 H^{-n+1} d f'[(n+1)H^2 + \dot{H}]}{4G(2H^2 + \dot{H})}
$$

The second equation has used the two Friedmann equations and equation (42). One can find that $d_p S$ is not an exact form as desired and it is vanishing when the effective Newton gravitational constant f' is indeed constant. This is a reasonable result since the Einstein gravity is recovered in this situation. It should be noted that this entropy production is different with that given in [7, 10], where they have not considered the energy flux of effective energy ρ_e. If we really omit the energy flux of effective energy, the condition to protect the GSL (26) is (for simplicity, we consider the $(3+1)$-dimensional spacetime)

$$
\dot{S}_n + d_p \dot{S}_n + \dot{S}_t = -b[\partial_t (\rho V) + W \dot{V}] + V \rho_k + (\rho_t + p_t) \dot{V}
$$

$$
= \frac{\Omega^3}{32\pi G H^2} \left[12(1+b)H^3 \dot{f'} - 3bf \dot{H} + 6(4+b)f' \ddot{H} + 12H^2 [(2+5b)f' \dot{H} - b\dot{f'} - 2bH(\dot{f'} + 9f' \dot{H} - 6f' \ddot{H})] \right]
$$

$$
\geq 0.
$$

Obviously, the GSL cannot always be held in this situation, which is a strong point to favor the present entropy production (21).

3.4. Scalar–tensor gravity

The general scalar–tensor theory of gravity is described by the Lagrangian

$$
L = F(\phi) R - \frac{1}{2} g^{\mu\nu} \partial_\mu \phi \partial_\nu \phi - V(\phi),
$$

where $F(\phi)$ is a positive continuous function of the scalar field ϕ and $V(\phi)$ is its potential. Using the FRW metric, we obtain Friedmann equations in $(n+1)$-dimensional spacetime

$$
H^2 = \frac{16\pi G}{n(n-1)} \frac{1}{F} (\rho + \rho_f + \rho_c F)
$$

(48)

$$
\dot{H} = \frac{8\pi G}{(n-1)} \frac{1}{F} (\rho + p + \rho_f + p_f + \rho_c F + p_c F)
$$

(49)

where the density and pressure of the scalar field ϕ are

$$
\rho_f = \frac{1}{2} \dot{\phi}^2 + V(\phi)
$$

$$
p_f = \frac{1}{2} \dot{\phi}^2 - V(\phi),
$$
and \(\rho_e \equiv \rho_c F \) (\(\rho_c \equiv p_c F \)) can be understood as effective density (pressure) of the energy component in scalar–tensor theory:

\[
\rho_c = -\frac{n}{8\pi GF} H \dot{F} \quad \quad \rho_e = \frac{1}{8\pi GF} [F + (n-1)H \dot{F}].
\]

Obviously, we need to consider the non-equilibrium thermodynamics of horizon. We select \(\rho_p = (\rho_f, F, \rho_e) \).

Consider the condition (27) for the GSL

\[
(1-b) \dot{\rho}_t V + \left(1 - \frac{b}{2} \right) (\rho_t + p_t) \dot{V} \geq 0,
\]

where the total density (pressure) is \(\rho_t \equiv \rho + \rho_f + \rho_e \) (\(p_t \equiv p + p_f + p_e \)). Solving \(\rho_t \) and \(p_t \) from two Friedmann equations (48) and (49), and substituting them into the above inequality, we find that the inequality can be reduced to,

\[
\frac{n(n-1)\Omega_n}{16\pi G} H^{-(\alpha+1)} [(1-b)H^3 \dot{F} + 2(1-b)FH^2 \dot{H} + (2-b)F \dot{H}^2].
\]

Taking the effective Newton gravitational constant in the scalar–tensor theory as \(G/F \), we can impose \(F > 0 \) which means the gravity is always attractive. Remembering the positive temperature condition (4) and the temperature parameter \(b \leq 1 \), the inequality (50) can be simplified as

\[
\frac{n(n-1)\Omega_n}{16\pi G} H^{-\alpha+2} [4FH + (1-b) \dot{F}] \geq 0.
\]

From two Friedmann equations (48) and (49), the dynamical Newton constant is related to the energy flow

\[
q_t = \frac{n(n-1)\Omega_n}{16\pi G} H^2 \dot{F}.
\]

The condition (51) is the same as that in the \(f(R) \) gravity. As observed in the \(f(R) \) gravity, we can think that the GSL for scalar–tensor theory always holds since the big energy fluid is prohibited from protecting the effective Newton constant as an approximate constant under experimental bounds. Then the temperature of the horizon is very close to that of the energy source therein \(b \sim 1 \). Moreover, it should be noted that actually \(f(R) \) gravity is a special scalar–tensor theory by introducing the scalar field \(\phi = R \) and potential \(V = \phi f' - f \) and choosing the Brans–Dicke parameter \(\omega = 0 \) ([33, 34]; see [35] for a review).

Now we will evaluate the entropy production. The process is similar to that of nonlinear gravity. Recalling the continuous equation (10) and using the first Friedmann equation (48), one can find that the lhs in equation (43) reads

\[
\dot{\rho}_{\text{eff}} = \frac{1}{F} \dot{\rho} + \frac{n(n-1)}{16\pi G} \frac{\partial H^2}{\partial \rho_p} \dot{\rho}_p.
\]

Using the second Friedmann equation (49) the rhs in equation (43) reads

\[
-nH(\rho_{\text{eff}} + p_{\text{eff}}) = \frac{1}{F}(\dot{\rho}_t + p_t).
\]

Employing the continuous equation (11) to equations (53) and (54), one can find

\[
\frac{\partial H^2}{\partial \rho_p} \dot{\rho}_p = -\frac{16\pi G}{n(n-1)} \frac{1}{F} [nH(\rho_t + p_t - \rho - p) + q].
\]
By substituting equation (55) into equation (20), one can obtain
\[\delta Q = -dE + W_t dV + V q_t dt + T S_E dF. \]
Thus the entropy production can be obtained from equations (21) and (52)
\[d_p S = -n \Omega_e H^{n+1} dF \left((n+1)H^2 + H \right) / 4G(2H^2 + H). \]
One can find that \(d_p S \) is not an exact form and it is vanishing when the effective Newton gravitational constant \(F \) is indeed constant.

4. Summary

In this paper, we have examined the GSL in generalized theories of gravity. We have adopted the procedure developed in [12] to obtain the entropy on the horizon. In studying the GSL, we have examined the evolution of the entropy contributed by all matter, field and energy contents. We have derived a universal condition to protect the GSL and examined its validity. In Einstein gravity (even in the phantom-dominated universe with a Schwarzschild black hole), Lovelock gravity and braneworld gravity, we show that the condition to keep the GSL can always be satisfied. In \(f(R) \) gravity and scalar–tensor gravity, the condition to protect the GSL can also hold under the consideration that the temperature should be positive, gravity is always attractive, and the energy fluid between the horizon and total energy source therein is very small to protect the effective Newton constant as the approximate constant satisfying the experimental bounds. The same requirement for the \(f(R) \) gravity to hold the GSL as that of the scalar–tensor gravity shows again that \(f(R) \) gravity is a special scalar–tensor theory.

Acknowledgments

This work was partially supported by the NSFC, Shanghai Education Commission, Science and Technology Commission. This work was also supported by the NSFC under grant nos. 10575068 and 10604024, the Shanghai Research Foundation No 07dz22020, the CAS Knowledge Innovation Project Nos. KJcx.syw.N2, the Shanghai Education Development Foundation, and the Innovation Foundation of Shanghai University.

References

[1] Jacobson T 1995 Phys. Rev. Lett. 75 1260
[2] Padmanabhan T 2002 Class. Quantum Grav. 19 5387
[3] Frolov A V and Kofman L 2003 J. Cosmol. Astropart. Phys. JCAP05(2003)009
[4] Danielsson U H 2005 Phys. Rev. D 71 023516
[5] Bouso R 2005 Phys. Rev. D 71 064024
[6] Akbar M and Cai R G 2007 Phys. Rev. D 75 084003
[7] Cai R G and Cao L M 2007 Phys. Rev. D 75 064008
[8] Cai R G and Cao L M 2007 Nucl. Phys. B 785 135
[9] Sheykhi A, Wang B and Cai R G 2007 Nucl. Phys. B 779 1
[10] Wu S F, Yang G H and Zhang P M 2007 arXiv:0710.5394
[11] Akbar M and Cai R G 2006 Phys. Lett. B 635 7
[12] Wu S F, Wang B and Yang G H 2007 arXiv:0711.1209 (Nucl. Phys. B at press)
[13] Babichev E, Dokuchaev V and Eroshenko Yu 2004 Phys. Rev. Lett. 93 021102
Babichev E, Dokuchaev V and Eroshenko Yu 2005 J. Exp. Theor. Phys. 100 528
[14] Setare M R and Shafei S 2006 J. Cosmol. Astropart. Phys. JCAP09(2006)011
Setare M R 2006 Phys. Lett. B 641 130
Buchmuller W and Jaeckel J 2006 arXiv:astro-ph/0610835
[15] Pollock M D and Singh T P 1989 Class. Quantum Grav. 6 901
[16] Davies P C W 1987 Class. Quantum Grav. 4 L225
[17] Mohseni Sadjadi H 2006 Phys. Rev. D 73 063525
[18] Izquierdo G and Pavon D 2006 Phys. Lett. B 639 1
[19] Mohseni Sadjadi H 2007 Phys. Lett. B 645 108
[20] Wang B, Gong Y and Abdalla E 2006 Phys. Rev. D 74 083520
[21] Zhou J, Wang B, Gong Y and Abdalla E 2007 Phys. Lett. B 66 652
[22] Mohseni Sadjadi H 2007 Phys. Rev. D 76 104024
[23] Cai R G and Kim S P 2005 J. High Energy Phys. JHEP02(2005)050
[24] Cai R G 2004 Phys. Lett. B 582 237
[25] Wald R M 1993 Phys. Rev. D 48 R3427
Cognola G, Elizalde E, Nojiri S, Odintsov S D and Zerbini S 2005 J. Cosmol. Astropart. Phys. JCAP02(2005)010
Brevik I, Nojiri S, Odintsov S D and Vanzo L 2004 Phys. Rev. D 70 043520
[26] Cai R G and Myung Y S 1997 Phys. Rev. D 56 3466
[27] Gong Y and Wang A 2007 Phys. Rev. Lett. 99 211301
[28] Eling C 2008 arXiv:0806.3165
[29] Eicalde E and Silva P J 2008 arXiv:0804.3721
[30] Izquierdo G and Pavon D 2006 Phys. Lett. B 633 420
[31] Bekenstein J D 1975 Phys. Rev. D 12 3077
[32] Lovelock D 1971 J. Math. Phys. 12 498
[33] Brans C H and Dicke R H 1961 Phys. Rev. 124 925
[34] Bergmann P G 1968 Int. J. Theor. Phys. 1 25
Wagoner R V 1970 Phys. Rev. D 1 3209
Nordvedt K 1970 Astrophys. J. 161 1059
[35] Faraoni V 2004 Cosmology in Scalar–Tensor Gravity (Dordrecht: Kluwer)
[36] Hayward S A 1995 Class. Quantum Grav. 15 3147
Hayward S A, Mukohyama S and Ashworth M C 1999 Phys. Lett. A 256 347
[37] Ozan J P 2003 Rev. Mod. Phys. 75 403