FOCUS: NEUROSCIENCE

Environmental Enrichment: Aging and Memory

Toral Rohit Patel, MS

Medical Student at the University of Alabama at Birmingham School of Medicine, Birmingham, Alabama

A decline in learning and memory is a feature of the normal aging process and associated with neurodegenerative diseases such as dementia and Alzheimer's disease. Moreover, certain forms of dementia and memory loss are inevitable due to the normal aging process. The unavoidable effect of age on memory is an ongoing study, as the findings assist in identifying cortical functions of the brain. Histone acetylation is a mechanism in synaptic plasticity and a key function in learning and memory because changes within the process alter gene transcription and the quantity of synthesized proteins. Similar to histone acetylation, environmental enrichment has also been found to improve memory formation by stimulating synaptic plasticity. Through understanding the mechanisms by which environmental enrichment and histone acetylation interact in the brain and affect learning and memory, novel applications can be developed for therapeutic interventions to neurodegenerative diseases and aging.

INTRODUCTION

Have you ever wondered why crossword puzzles, exercising, and recreational activities are highly recommended by doctors as you get older? Or how these activities are supposed to increase your memory? Odds are that most of us would like to know. Many studies have focused on the effect of aging on the brain, particularly concerning memory. Results have identified critical questions to address our understanding of age-related memory decline. But what exactly is age-related memory decline? Who does it affect? And how can enrichment restore lost memories?

To whom all correspondence should be addressed: Toral Patel, University of Alabama at Birmingham School of Medicine, Birmingham, AL; Email: trpatel@uab.edu.

†Abbreviations: AAMI, age-associated memory impairment; EE, environmental enrichment; HA, histone acetylation; LTP, long-term potentiation; HAT, histone acetyltransferase; HDAC, histone deacetylase; BDNF, brain-derived nerve growth factor; NGF, anti-nerve growth factor; AD, Alzheimer's disease; Aβ, beta-amyloid; HD, Huntington's disease; PD, Parkinson's disease.

Keywords: environmental enrichment, learning and memory, aging, neurodegenerative diseases, histone acetylation, HDAC inhibitors
In early development, the brain is characterized by an increasing amount of connections that lead to the storage of memories. However, as aging occurs and the mean life expectancy extends, a concern for the quality of life in relation to mental health arises. This concern goes beyond diseases associated with aging, such as dementia and Alzheimer’s disease (AD†). The “normal” aging process is often associated with specific impairments in both learning and memory. The mild memory deficits commonly experienced during age-related memory decline are called age-associated memory impairment (AAMI) [1]. Even though the various cognitive deficits included in AAMI are often subtle, they are disturbing to those affected by it. Deficits range from difficulty to learn new information to the inability to recognize family members or remember past memories and stored information. Neurodegenerative disorders affect much of the population, but normal aging is inevitable. A 1998 study suggests that subject memory in AAMI subjects is not impaired pathologically, like it is in neurodegenerative diseases, and that initial intellectual level more significantly influences a patient being diagnosed with AAMI [2]. The aim of recent studies has been to identify the mechanisms of neurodegeneration and memory decline in aging and neurodegenerative diseases.

WHAT IS ENVIRONMENTAL ENRICHMENT?

Environmental enrichment (EE) is a noninvasive strategy that has been seen to improve learning and memory performance. While EE has no true definition, it usually consists of the addition or implementation of sensory, cognitive, and motor stimuli in a subject’s environment. It is assumed that increased levels of complexity and novelty will lead to increased levels of stimulation that would affect the process of learning and memory. Many findings have supported the beneficial effects of EE and its increase of behavioral performance and synaptic plasticity, specifically in the hippocampus [3,4,5,6]. However, the molecular mechanism of EE in relation to enhancement of learning and memory processes is still unknown.

Environmental enrichment is achieved in the laboratory by housing animal models, such as rodents, in large cages, providing more area for exploration [5,7,8,9]. The environmentally enriched conditions also include the presence of complex objects that vary in shapes, sizes, colors, and textures. This paradigm includes running wheels, plastic tunnels and balls, stairs, and shelters (Figure 1) [7,10]. Compared to standard housing conditions, the conditions provide increased exposure to social interaction, exploratory behavior, and physical activity.

Figure 1. Environmental enrichment through increased social interaction, physical activity, and exploratory behavior can promote neuronal activation and synaptic plasticity.
However, it is important to determine the variables in utilizing EE, such as age at which animals are first exposed to EE, duration of EE exposure, enrichment paradigm setup, and gender of subjects, which could also contribute to the effects seen. In current studies, new techniques and strategies are constantly being explored to re-establish memory formation and learning abilities in cases where these abilities have been compromised. The use of EE as a therapeutic treatment for aging and neurodegenerative diseases is an important deviation from the standard methods of treatment.

Environmental Enrichment at a Molecular Level

Environmental enrichment increases learning and memory formation through various stimuli that are mostly directed at the hippocampus [11,12]. Furthermore, learning and memory processes take place with an increase in necessary gene transcription and protein synthesis [13]. Consequently, histone acetylation (HA) is a proposed molecular mechanism for learning and memory because it facilitates gene transcription and protein synthesis leading to learning and memory formation [9]. Therefore, the assumption can be made that there must be a decrease in the functionality of the mechanism — in this case, HA.

Epigenetics in Learning and Memory

Gene transcription and expression is essential for learning and memory processes. It is generally supported that new protein synthesis is required for long-term potentiation (LTP), or memory formation, to occur. LTP is a form of synaptic plasticity, activity-dependent changes in synaptic strength. Modifications to DNA and nuclear proteins produce lasting changes in chromatin structure and therefore produce lasting alterations in gene expression and patterns of protein synthesis. One well-established method of such modification is histone acetylation. HA is the addition of an acetyl group directly to the histone proteins, more specifically, histone 3 (H3) and histone 4 (H4). Histone acetyltransferases (HATs) are enzymes that assist in the addition of acetyl groups that decrease the affinity of the DNA molecules to histone proteins, allowing easier access to the genes for gene transcription and expression (Figure 2). HA is reversible through enzymes, known as histone deacetylases (HDACs), which catalyze the removal of the acetyl group and inhibit the process of gene transcription. Therefore, it has been postulated that HA is the mechanism in which new memories are formed.

Inhibitors of HDACs have advantageous effects on HA. Since altered transcription is known to be essential for the formation of long-term memories, HDAC inhibitors have the potential to enhance memory formation. This has been demonstrated with the use of sodium butyrate, which was seen to increase HA leading to new protein synthesis and memory formation [9,14]. Research has shown that HDAC inhibitors and EE are capable of restoring
the capacity for spatial memory. Environmental enrichment rescued the p25 transgenic mice’s ability to form new memories (spatial and fear conditioning) and allowed the mice to re-establish access to memories lost after neurodegeneration [5]. This was not only determined by the behavioral tests, but also the increase in synaptic-related proteins with the presence of new dendritic spine branching and synaptogenesis, which is correlated to learning. Fischer et al. indicate that the role of increased neurogenesis in their model remains to be addressed.

Environmental enrichment has also been found to play a role in age-dependent memory impairment. Some groups have extended these findings through accelerated aging mouse models with both learning and memory impairments, while others have explored the effect of EE on normal aging mouse models [3,5,12,15]. Altered HA was also noted in such aged mouse models [3,12]. This research is novel because it focused on the normal aging model rather than accelerated or genetically manipulated aging.

Figure 3. Possible mechanisms of EE and HDAC inhibitors on an aged or neurodegenerative model.
What about recovering memories that have been lost instead of preventing memories from being lost?

Fischer et al. allowed the memories for the fear conditioning test to decay over time through neurodegeneration and then administered an HDAC inhibitor (sodium butyrate or trichostatin A), which restored the ability of the animals to recall that memory that had been lost. The experiment demonstrated that HDAC inhibitors restore spatial memory by increasing the levels of HA in the hippocampus. The importance of this study was that the results exhibited that promoting HA, via HDAC inhibitor or EE, restored learning and access to lost memories after significant brain atrophy, synaptic loss, and neuronal loss occurred (Figure 3) [5,16]. This study suggested that ‘‘memory loss’’ was a reflection of inaccessible memories.” Additionally, Fischer and colleagues indicate that any behavioral effects of HDAC inhibitors could be due to alterations in the acetylation of non-histone proteins, meaning that it is essential for future studies to determine the consequences of the off-target effects of the drugs on non-histone proteins. Future studies also need to determine the specific HDACs that regulate distinct forms of synaptic plasticity, learning, and memory in the hippocampus [17].

The hippocampus is essential for long-term memory formation, but remembering memories involves neocortical networks [18]. EE has also been shown to enhance visual cortical plasticity and memory consolidation through increased expression of growth factors, such as the brain-derived nerve growth factor (BDNF) and enhancing HA as well as protecting against loss of neurogenesis in the dentate gyrus [15,19,20,21,22]. This means that the effects of environmental enrichment are widespread within the brain and that the associations of the many factors, as well as the locations in the brain, need to be addressed. Additionally, localizations and associations of HA in the brain need to be addressed because studies focusing on the use of HDAC inhibitors have seen an effect when injected systematically that is similar to the effect seen through direct infusion within the amygdala [20,23].

As aforementioned, during the process of HA, other proteins such as transcription factors, cytoskeletal proteins, metabolic enzymes, microtubulins, and actin are affected [24]. While many studies focus on the histones specifically affected by HA, the experimental effect on other proteins in the vicinity of chromatin may interfere or be involved in the results produced. In other words, the acetylation being invoked may be increasing the production of other proteins. Therefore, it is important to look at the protein expression of other proteins and changes in genetic expression in those proteins.

Tests to Determine Learning and Memory

Cognitive performance is often assessed by three tests: novel object recognition, fear conditioning, and the Morris water maze. A common experiment to test for learning and memory is the novel object recognition test. This test is a learning model that is dependent on the hippocampus and involves the learned association of a novel context and a familial context [6]. Novel object recognition affects the hippocampus specifically, with the effects primarily seen in the CA1 region. However, the effects of learning paradigm have not been sufficiently explored, so it may affect more than one region of hippocampus, such as CA3 region or the dentate gyrus. Contextual fear conditioning, a learning model that is dependent on the hippocampus, involves the learned association of a novel context and an adverse stimulus [25]. Acetylation of histone H3 is significantly increased after an animal has learned through this model [9,14]. The Morris water maze test focuses on spatial memory formation in the CA1 region of the hippocampus. In this test, mice are trained to locate a hidden platform in a circular tank. Mice with significant neurodegeneration and aging displayed a substantial impairment in escape latency, the time it takes to find the platform [12]. Other tests that have recently been used to demonstrate enhanced HA within the hippocampus and rhinal cortices, such as eyeblink classical condition-
ing, should also be studied to demonstrate learning and memory consolidation through EE and HDAC inhibitors [15]. Overall, these tests indicate that epigenetic changes, more specifically HA, occurs during consolidation of long-term memories within the brain.

ENVIRONMENTAL ENRICHMENT — POTENTIAL TREATMENT IN NEURODEGENERATIVE DISORDERS

EE has been indicated as beneficial in reducing cognitive deficits in several models of human neurodegeneration. Many of the factors regulated by EE have been shown to be neuroprotective, promote plasticity, and ameliorate behavioral deficits. The results implicate HDAC inhibitors as potential treatments for disorders such as Alzheimer’s disease, Huntington’s disease, Parkinson’s disease, and other human cognitive disorders that arise from neurodegeneration (Table 1). It is important to note that normal aged animal models are essential to study because limited studies depict the effects of EE and HA in normal aging; this should be considered for future studies. Furthermore, it has been crucial to investigate the therapeutic potential of environmental enrichment on HA and subsequently learning and memory.

Alzheimer’s Disease

Recently, environmental enrichment has been used as a potential strategy to influence the progression of human neurodegenerative diseases that are characterized by memory loss and cognitive decline. One such devastating disorder is Alzheimer’s disease. Hallmarks of AD include a decrease in the size and weight of the hippocampus and cortex and the loss of functioning neurons and synapses. Environmental enrichment tested on AD11 mouse model, which expresses anti-nerve growth factor (NGF) to induce neurodegeneration in the hippocampus, showed a reduction in AD-like neurodegenerative characteristics [7]. Another
animal model mimicking AD through beta-amyloid (Aβ) peptides (APP and PS1 variants) showed a pronounced reduction in amyloid deposits after the application of an enriched environment [8,26]. But other studies demonstrated an increased level of Aβ [27] or a stable level of Aβ [28]. Like EE, sodium butyrate was also found to improve memory function in an AD model [29,30]. It was also observed that the AD mouse models showed impaired HA upon exposure to a learning stimulus [31,32].

Huntington’s Disease

Huntington’s disease (HD) is characterized by degeneration of the cerebral cortex, producing a movement disorder and dementia. Mouse models such as R61/HD develop adult-onset motor and cognitive deficits that have been delayed by EE [33,34]. Subsequent studies with two other HD transgenic mice models confirmed the beneficial effects of EE [35,36]. EE was also shown to ameliorate reduced adult neurogenesis in the dentate gyrus and hippocampus in R61/HD mice [37]. HD mouse models showed decreased HA and treatment with HDAC inhibitors was shown to attenuate neuronal loss, increase motor function, and extend survival [38,39,40].

Parkinson’s Disease

Parkinson’s disease (PD) is clinically identified by motor symptoms, but cognitive impairments with dementia accompany PD in the late stages. Toxin-induced lesions are used to mimic PD-like symptoms in animal models. Such animal models exposed to EE exhibited resistance to the toxins’ insult and showed improvement in motor function [4,41,42]. HDAC inhibitors have been shown to rescue the toxin toxicity and reverse the decreased histone acetylation seen in PD animal models [43].

EPIGENETICS IN HUMAN COGNITION

There is a considerable body of evidence from aged and neurodegenerative mouse models implicating the disruption of histone acetylation as the causal basis of cognitive dysfunction. Also, there are numerous studies demonstrating the beneficial effects of environmental enrichment and HDAC inhibitors on aged and neurodegenerative animal models. However, the question arises of how these studies translate to humans. Clinical trials and human studies in psychology have begun to develop the importance of EE integration into the daily lives of the elderly and neurodegenerative patients; unfortunately, much of the EE work done in humans is through psychiatry and does not use the same criteria as used in animal models, making the two types of studies difficult to compare. These differences in variables between animal models and clinical trials are also comparable to the use of HDACs in learning and memory in humans, making it difficult to completely translate the research into humans [44-52]. Data from the previous studies on humans have confirmed the beneficial use of EE in the aging and neurodegenerative disorders, as well as the potential therapeutic use of HDAC inhibitors in neurodegenerative disorders.

CONCLUSIONS AND OUTLOOK

Recent findings implicate that the regulation of chromatin in LTP and brain plasticity involves molecular and cellular mechanisms that have yet to be fully identified. These findings indicate that the functional disruption of HA can impair long-term memory formation and restoration; however, these studies do not directly address whether promoting HA via HDAC inhibitors or EE or both is beneficial in human neurodegenerative pathologies and aging. The focus for future research should be to provide insight into a candidate mechanism in which EE functions to improve learning, memory, and the regulation of HA in an aging brain. EE simultaneously used with HDAC inhibitors could be a promising therapeutic intervention in aging and neurodegenerative related disorders, but in the meantime, the use of environmental enrichment as a treatment for age-associated memory impairments could be the answer to the questions always on our mind.
Acknowledgments: I would like to thank Woods Hippensteal for his artistic contributions toward the figures in the article as well as Jarrod A. Collins for editing the manuscript and providing critical advice.

REFERENCES

1. Crook T, Bahar H, Sudilovsky A. Age-associated memory impairment: diagnostic criteria and treatment strategies. Int J Neurol. 1987;21:22-73-82.

2. Nielsen H, Lolk A, Kragh-Sørensen P. Age-associated memory impairment—pathological memory decline or normal aging? Scand J Psychol. 1998;39(1):33-7.

3. Bennett JC, McRae PA, Levy LJ, Frick KM. Long-term continuous, but not daily, environmental enrichment reduces spatial memory decline in aged male mice. Neurobiol Learn Mem. 2006;85(2):139-52.

4. Eckert MJ, Abraham WC. Effects of Environmental Enrichment Exposure on Synaptic Transmission and Plasticity in the Hippocampus. Curr Top Behav Neurosci. 2012 Jul 15. Epub ahead of print.

5. Fischer A, Sananbenesi F, Wang X, Dobbin M, Tsai LH. Recovery of learning and memory is associated with chromatin remodelling. Nature. 2007;447(7141):178-82.

6. Leal-Galicia P, Castaneda-Bueno M, Quiroz-Jarrod A. Collins for editing the manuscript and providing critical advice.

7. Berardi N, Braschi C, Capsoni S, Cattaneo A, Maffei L. Environmental enrichment delays the onset of memory deficits and reduces neuropathological hallmarks in a mouse model of Alzheimer-like neurodegeneration. J Alzheimers Dis. 2007;11(3):359-70.

8. Leal-Galicia P, Castaneda-Bueno M, Quiroz-Jarrod A. Collins for editing the manuscript and providing critical advice.

9. Lazarov O, Robinson J, Tang YP, Hairston J Alzheimers Dis. 2007;11(3):359-70.

10. Will BE, Rosenzweig MR, Bennett EL, Hebert M, Morimoto H. Relatively brief environmental enrichment aids recovery of learning capacity and alters brain measures after postweaning brain lesions in rats. J Comp Physiol Psychol. 1977;91(1):33-50.

11. Bourgeois V, Vasconcelos AP, Neidl R, Cosquer B, Herbeaux K, Pantaleeva I, et al. Spatial memory consolidation is associated with induction of several lysine-acetyltransferase (histone acetyltransferase) expression levels and H2B/H4 acetylation-dependent transcriptional events in the rat hippocampus. Neuropsychopharmacology. 2010;35(13):2521-37.

12. Peleg S, Sananbenesi F, Zovoilis A, Burkhardt S, Bahari-Javan S, Agis-Balboa RC, et al. Altered histone acetylation is associated with age-dependent memory impairment in mice. Science. 2010;328(5979):753-6.

13. Strahl BD, Allis CD. The language of covalent histone modifications. Nature. 2000;403(6765):41-5.

14. Lubin FD, Sweatt JD. The IkappaB kinase regulates chromatin structure during reconsolidation of conditioned fear memories. Neuron. 2007;55(6):942-57.

15. Fontán-Lozano A, Romero-Granados R, Troncoso J, Múnera A, Delgado-García JM, Carrión AM. Histone deacetylase inhibitors improve learning consolidation in young and in KA-induced-neurodegeneration and SAMP-8-mutant mice. Mol Cell Neurosci. 2008;39(2):193-201.

16. Fischer A, Sananbenesi F, Pang PT, Lu B, Tsai LH. Opposing roles of transient and prolonged expression of p25 in synaptic plasticity and hippocampus-dependent memory. Neuron. 2005;48(5):825-38.

17. Bahari-Javan S, Maddalena A, Kerimoglu C, Wittnam J, Held T, Bähr M, et al. HDAC1 regulates fear extinction in mice. J Neurosci. 2012;32(15):5062-73.

18. Kim JJ, Fanselow MS. Modality-specific retrograde amnesia of fear. Science. 1992;256(5057):675-7.

19. Gomez-Pinilla F, Ying Z, Agoncillo T, Frostig R. The influence of naturalistic experience on plasticity markers in somatosensory cortex and hippocampus: effects of whisker use. Brain Res. 2011;1388:39-47.

20. Kuzumaki N, Ikegami D, Tamura R, Hareyama N, Imai S, Narita M, et al. Hippocampal epigenetic modification at the brain-derived neurotrophic factor gene induced by an enriched environment. Hippocampus. 2011;21(2):127-32.

21. Pizzorusso T, Medini P, Berardi N, Chierzi S, Fawcett JW, Maffei L. Reactivation of ocular dominance plasticity in the adult visual cortex. Science. 2002;298(5596):1248-51.

22. Segovia G, Yagüe AG, García-Verdugo JM, IS, Korade-Mirnics Z, Lee VM, et al. Environmental enrichment reduces Abeta levels and amyloid deposition in transgenic mice. Cell. 2005;120(5):701-13.

23. Yeh SH, Lin CH, Gean PW. Acetylation of nuclear factor-kappaB in rat amygdala improves learning consolidation of conditioned fear memories. Science. 2011;333(6042):1853-8.

24. Spange S, Wagner T, Heinzel T, Krämer OH. Acetylation of non-histone proteins modulates cellular signalling at multiple levels. Int J Biochem Cell Biol. 2009;41(1):185-98.

25. Levenson JM, Sweatt JD. Epigenetic mechanisms in memory formation. Nat Rev Neurosci. 2005;6(2):108-18.
26. Valero J, España J, Parra-Damas A, Martin E, Rodríguez-Álvarez J, Saura CA. Short-Term Environmental Enrichment Rescues Adult Neurogenesis and Memory Deficits in APP (Sw.Ind) Transgenic Mice. PLoS ONE. 2011;6(2):e16832.

27. Jankowsky JL, Melnikova T, Fadale DJ, Xu GM, Slunt HH, Gonzales V, et al. Environmental enrichment mitigates cognitive deficits in a mouse model of Alzheimer’s disease. J Neurosci. 2005;25(21):5217-24.

28. Arendash GW, Garcia MF, Costa DA, Cracchio JR, Meng MY, Potter H. Environmental enrichment improves cognition in aged Alzheimer’s transgenic mice despite stable beta-amyloid deposition. Neuroreport. 2004;15(11):1751-4.

29. Govindarajan N, Agis-Balboa RC, Walter J, Sananbenesi F, Fischer A. Sodium butyrate improves memory function in an Alzheimer’s disease mouse model when administered at an advanced stage of disease progression. J Alzheimers Dis. 2011;26(1):187-97.

30. Kilgore M, Miller CA, Fass DM, Hennig KM, Haggarty SJ, Sweatt JD, et al. Inhibitors of class I histone deacetylases reverse contextual memory deficits in a mouse model of Alzheimer’s disease. Neuropsychopharmacology. 2010;35(4):870-80.

31. Francis YI, Fai M, Ashraf H, Zhang H, Staniszewski A, Latchman DS, et al. Dysregulation of histone acetylation in the APP/PS1 mouse model of Alzheimer’s disease. J Alzheimers Dis. 2009;18(1):131-9.

32. Stilling RM, Fischer A. The role of histone acetylation in age-associated memory impairment and Alzheimer’s disease. Neurobiol Learn Mem. 2011;96(1):19-26.

33. Spires TL, Grote HE, Varshney NK, Cordery PM, van Dellen A, Blakemore C, et al. Environmental enrichment rescues protein deficits in a mouse model of Huntington’s disease, indicating a possible disease mechanism. J Neurosci. 2004;24(9):2270-6.

34. van Dellen A, Blakemore C, Deacon R, York D, Hannan AJ. Delaying the onset of Huntington’s in mice. Nature. 2000;404(6779):721-2.

35. Hockly E, Corder PM, Woodman B, Mahal A, van Dellen A, Blakemore C, et al. Environmental enrichment slows disease progression in R6/2 Huntington’s disease mice. Ann Neurol. 2002;51(2):323-42.

36. Schilling G, Savonenko AV, Coonfield ML, Morton JL, Vorovich E, Gale A, et al. Environmental, pharmacological, and genetic modulation of the HD phenotype in transgenic mice. Exp Neurol. 2004;187(1):137-49.

37. Pang TY, Stam NC, Nithianantharajah J, Howard ML, Hannan AJ. Differential effects of voluntary physical exercise on behavioral and brain-derived neurotrophic factor expression deficits in Huntington’s disease transgenic mice. Neuroscience. 2006;141(2):569-84.

38. Gardian G, Browne SE, Choi DK, Klivenyi P, Gregorio J, Kubilus JK, et al. Neuroprotective effects of phenylbutyrate in the N171-82Q transgenic mouse model of Huntington’s disease. J Biol Chem. 2005;280(1):5565-63.

39. Hockly E, Richon VM, Woodman B, Smith DL, Zhou X, Rosa E, et al. Suberoylanilide hydroxamic acid, a histone deacetylase inhibitor, ameliorates motor deficits in a mouse model of Huntington’s disease. Proc Natl Acad Sci USA. 2003;100(4):2041-6.

40. Sadri-Vakili G, Bouzou B, Benn CL, Kim MO, Chawla P, Overland RP, et al. Histones associated with downregulated genes are hypo-acetylated in Huntington’s disease models. Hum Mol Genet. 2007;16(11):1293-306.

41. Bezd F, Dovero S, Belin D, Ducq J, Jackson-Lewis V, Przedborski S, et al. Enriched environment confers resistance to 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine and cocaine: involvement of dopamine transporter and trophic factors. J Neurosci. 2003;23(35):10999-1007.

42. Jadavji NM, Kolb B, Metz GA. Enriched environment improves motor function in intact and unilateral dopamine-depleted rats. Neuroscience. 2006;140(4):1127-38.

43. Kontopoulos E, Parvin JD, Feany MB. Alpha-synuclein acts in the nucleus to inhibit histone acetylation and promote neurotoxicity. Hum Mol Genet. 2006;15(20):3012-23.

44. Gräff J, Rei D, Guan JS, Wang WY, Seo J, Hennig KM, et al. An epigenetic blockade of cognitive functions in the neurodegenerating brain. Nature. 2012;483(7388):222-6.

45. Hertzog C, Kramer AF, Wilson RS, Lindenberger U. Enrichment effects on adult cognitive development can the functional capacity of older adults be preserved and enhanced. Psychological Science in the Public Interest. 2009;9(1):1-65.

46. Kramer AF, Erickson KI, Colcombe SJ. Exercise, cognition, and the aging brain. J Appl Physiol. 2006;101(4):1237-42.

47. Lopez-Atalaya JP, Ciccarelli A, Viosca J, Valor LM, Jimenez-Minchan M, Canals S, et al. CBP is required for environmental enrichment-induced neurogenesis and cognitive enhancement. EMBO J. 2011;30(20):4287-98.

48. Lopez-Atalaya JP, Gervasini C, Mottadelli F, Lopez-Atalaya JP, Perego A, van Dellen A, Blakemore C, et al. Environmental enrichment rescues adult cognitive impairments. Neuropsychopharmacology. 2012 Jun 6. Epub ahead of print.
51. Valenzuela M, Sachdev P. Can cognitive exercise prevent the onset of dementia? Systematic review of randomized clinical trials with longitudinal follow-up. Am J Geriatr Psychiatry. 2009;17(3):179-87.
52. Williams KN, Kemper S. Interventions to reduce cognitive decline in aging. J Psychosoc Nurs Ment Health Serv. 2010;48(5):42-51.
53. Faherty CJ, Ravie Shepherd K, Herasimtschuk A, Smeyne RJ. Environmental enrichment in adulthood eliminates neuronal death in experimental Parkinsonism. Brain Res Mol Brain Res. 2005;134(1):170-9.
54. McKinley P, Jacobson A, Leroux A, Bednarczyk V, Rossignol M, Fung J. Effect of a community-based Argentine tango dance program on functional balance and confidence in older adults. J Aging Phys Act. 2008;16(4):435-53.