1-1-2020

Nanotoxicity: a challenge for future medicine

RAMAZAN AKÇAN
HALİT CANBERK AYDOGAN
MAH MUT ŞERİF YILDİRİM
BURAK TAŞTEKİN
NECDET SAĞLAM

Follow this and additional works at: https://journals.tubitak.gov.tr/medical

Part of the Medical Sciences Commons

Recommended Citation
AKÇAN, RAMAZAN; AYDOGAN, HALİT CANBERK; YILDİRİM, MAH MUT ŞERİF; TAŞTEKİN, BURAK; and SAĞLAM, NECDET (2020) "Nanotoxicity: a challenge for future medicine," Turkish Journal of Medical Sciences: Vol. 50: No. 4, Article 69. https://doi.org/10.3906/sag-1912-209
Available at: https://journals.tubitak.gov.tr/medical/vol50/iss4/69

This Article is brought to you for free and open access by TÜBİTAK Academic Journals. It has been accepted for inclusion in Turkish Journal of Medical Sciences by an authorized editor of TÜBİTAK Academic Journals. For more information, please contact academic.publications@tubitak.gov.tr.
Nanotoxicity: a challenge for future medicine

Ramazan AKÇAN1,*, Halit Canberk AYDOGAN1, Mahmut Şerif YILDIRIM2, Burak TAŞTEKİN2, Necdet SAĞLAM3

1 Department of Forensic Medicine, Faculty of Medicine, Hacettepe University, Ankara, Turkey
2 Department of Forensic Medicine, Faculty of Medicine, Afyonkarahisar Health Sciences University, Afyonkarahisar, Turkey
3 Department of Nanotechnology and Nanomedicine, Graduate School of Science and Engineering, Hacettepe University, Ankara, Turkey

Background/aim: Due to nanomaterials’ potential benefits for diagnosis and treatment, they are widely used in medical applications and personal care products. Interaction of nanomaterials, which are very small in size, with tissue, cell and microenvironment, can reveal harmful effects that cannot be created with chemically identical and larger counterparts in biological organisms. In this review, a challenge for future medicine, nanotoxicity of nanomaterials is discussed.

Materials and methods: A detailed review of related literature was performed and evaluated as per medical applications of nanomaterials and their toxicity.

Results and conclusion: Most authors state “the only valid technology will be nanotechnology in the next era”; however, there is no consensus on the impact of this technology on humankind, environment and ecological balance. Studies dealing with the toxic effect of nanomaterials on human health have also varied with developing technology. Nanotoxicology studies such as in vivo-like on 3D human organs, cells, advanced genetic studies, and -omic approaches begin to replace conventional methods. Nanotoxicity and adverse effects of nanomaterials in exposed producers, industry workers, and patients make nanomaterials a double-edged sword for future medicine. In order to control and tackle related risks, regulation and legislations should be implemented, and researchers have to conduct joint multidisciplinary studies in various fields of medical sciences, nanotechnology, nanomedicine, and biomedical engineering.

Keywords: Nanotechnology, nanotoxicity, bio-nanomaterials, future medicine

1. Introduction
As humanity stepped into the 21st century from the beginning of the 1990s, it began to encounter dozens of new invisible and unknown concepts that would lead to huge growths and developments like nanotechnology. Nanotechnology has become a worldwide billion-dollar industry by producing high-volume, commercial nanomaterials (NMs), including fullerenes, quantum dots (QDs), carbon nanotubes (CNs), and metal-oxide nanoparticles (NPs). Nanotechnology continues to take part in many applications in all areas of human activities (health, food and nutrition, water treatment, production and engineering, etc.) and in our daily life. It is becoming increasingly important due to its beneficial effects on important issues such as energy production, application to technological devices and consumer products to gain new features. Due to its potential benefits for diagnosis and treatment, it has been widely used in healthcare and personal care products. As of 2014, it was reported that 6214 organizations from 32 countries used nanomaterials in 1814 consumer products, most of which (42%) were shown to be in the field of health [1]. The “nanodatabase” is an inventory of commercially marketed products containing nanoparticles designed in the European consumer market, and includes more than 3000 products. According to the data of this inventory, the most usage area is in the health category (close to 2000), more than 900 of them are cosmetics and personal care products. The most widely used nanomaterial for these purposes is silver, followed by titanium and silicon [2]. In parallel with these intense developments in nanotechnology, the issue of whether nanomaterials have toxic effects has begun to come to the agenda. Interaction of nanomaterials, which are very small in size, with tissue, cell and microenvironment, can reveal harmful effects that cannot be created with chemically identical and larger counterparts in biological organisms. Nanotechnology is discussed in this review, as it is an important challenge and a double-edged sword that awaits future medicine.
2. Nanotechnology
Nanotechnology is a multidisciplinary field of science, where unique phenomena enable new applications, to design and synthesize products and applications based on the synthesis of nanometer (10^{-9} meters) molecules. As the particle size decreases at the nanoscale, it is known that the physical properties of the particles can be altered, and features such as resistance, conductivity, durability, lightness, reactivity, longevity and large surface sizes are gained. In this way, it can be used to create new products and applications [3].

3. Nanomaterial
3.1. Definition
Nanomaterial is a structure that is the size of a virus particle and at least one size (height, width or length) less than 100 nanometers (10^{-7} meters). They are classified according to their characteristics such as size, dimension (0, 1, 2, 3D), content (carbon-based, inorganic-based, organic-based, composite-based etc.), composition, shape (nanoparticle, nanofiber, nanostick, nanotube etc.), and source (natural, synthetic).

The most commonly used nanomaterial types are the nanoparticle, the all three dimensions of which are equal to each other and smaller than 100 nanometers, the nanofiber, the two dimensions of which are equal to each other and the other dimension is different from nanosize, and the carbon nanotubes with cylindrical molecules consisting of carbon atoms, as small as 1 nm in diameter and several micrometers in length [1]. Nanoparticles can be classified as organic-inorganic or can be classified in different ways according to different features such as size, molecular structure, and form of production. Hierarchy of terms related to nanomaterials showed in Figure 1.

3.2. Composition of nanomaterials
3.2.1. Metal-based
Metal-based NPs are an important class of NPs that are synthesized due to their functions as semiconductors, electroluminescent and thermoelectric materials [4]. These antibacterial NPs have been used in drug delivery systems to reach areas previously unavailable to access by conventional medicine in biomedicine. Recently, interest and development in nanotechnology have been increased, and so many studies have been conducted to evaluate whether the original features of these NPs such as large surface area to volume ratio, negatively affect the environment [5]. Researchers have since determined that various metal and metal-oxide NPs have many hazardous effects on the cells such as oxidation and breakage of DNA, mutations, change of morphology, decreased cell viability, stimulated apoptosis and necrosis, and reduced proliferation [4].

3.2.2. Carbon-based
Typical carbon-based nanomaterial is carbon nanotubes. Carbon nanotubes were first discovered by Iijima and Ichihashi [6] and Bethune et al [7] in 1993. Carbon

![Figure 1. Hierarchy of terms related to nanomaterials.](image-url)
nanotubes can show significant electrical conductivity [8]. Also, their tensile strength [9] and thermal conductivity [10] are outstanding due to their nanostructure and the strength of the bonds between carbon atoms. Because of these properties of CNs, they can be utilized in many areas of technology from biomedicine to nanoelectronics.

3.2.3. Metal-oxide
Metal-oxide NPs are used as industrial catalysts. TiO$_2$ nanoparticles may disrupt insulin response in Fao cells and cause pregnancy complications in some animal model studies [11, 12]. Studies have showed that other metal-oxide nanoparticles have adverse effects on reproduction and neonatal development [13, 14].

3.2.4. Quantum dots
Quantum dots are engineered nanoscale crystals that can transport electrons and they can covert a spectrum of light into different colors. Quantum dots make possible to study cell processes and may notably improve the diagnosis and treatment of diseases such as cancers [15,16]. Some studies showed that QDs have effects on reproductive dysfunction, TH signaling, estrogen receptor activation, and endocrine impairing activity [17–19]. Biological effects due to chemical composition of nanomaterials are summarized in Figure 2 [20–25].

4. Nanoparticle
The International Organization for Standardization (ISO) defines the nanoparticle as a nanoobject with all three external dimensions in the nanoscale of about 1 to 100 nm [26, 27]. They can be found naturally in nature, but they are also produced industrially.

5. Nanotoxicity
5.1. Definition
Nanotoxicology focuses on determining the adverse effects of nanomaterials on human health and the environment. Nanotoxicology searches for establishing and identifying the harms of engineered nanomaterials.
and requires a multidisciplinary team approach including toxicology, biology, chemistry, physics, material science, geology, exposure assessment, pharmacokinetics, and medicine [28]. Engineered nanomaterials are used in many fields such as automotive and aerospace (car tires, glass, fuel cells), agriculture (food processing, production, packaging, storage), construction (cement-based material, insulation, exterior, self-cleaning glass and paint, etc.), energy (thermoelectric, solar cells, long-life batteries, fossil fuel, nuclear energy), health and medicine (diagnosis, treatment, regenerative medicine, surgery, implant), information and communication (flat TV screens, electronic devices), security and defense industry (detection, protection, localization, unmanned combat vehicles), textiles (self-cleaning or stain-free products), cosmetics (sunscreens, toothpaste, make-up products), etc. [29]

On the one hand, while it is used in the diagnosis and treatment of diseases in the field of biomedicine, doubts have begun to arise that it may cause diseases. The painful experience of human beings with carcinogenic products such as tobacco products and asbestos, which they initially thought innocent, also caused a question mark for NPs. Because some NPs have long, thin, fibrous structure asbestos-like, show fibrogenic and toxic effects “Can nanoparticles be asbestos of the future?” caused the question to be asked [30].

Factors such as exposure time, dose, aggregation and concentration, particle size and shape, surface area and charge play a key role in the toxicity assessment of nanomaterials [31].

5.2. Factors

5.2.1. Size

There are several ways that size can affect the toxicity of a nanoparticle and showed in Figure 3 [32–37]. For example, the reduction in size of the nanomaterials results an increase in the particle surface area. This causes more molecules to bind to the surface area, so results in an increase in toxic effect [38]. Particles of different sizes can

Figure 3. Biological effects due to size of nanomaterials.
deposit in various places of the lungs and are cleared from the lungs at different rates [39].

5.2.2. Particle surface, surface chemistry and charge
Extended surface area and fine surface structure of the NMs are properties that help better interaction between microenvironment and nanomaterial biologically. Nanomaterials are covered with coatings and according to their function; they can be positive or negative charged. Electron and atomic force microscopes can be utilized for topographic characterization, so surface chemistry can be evaluated. Studies have showed that these factors can affect the toxicity rate of nanoparticles [40,41]. Biological effects are showed in figure 4 [32, 42-50].

5.2.3. Dosage
Nanomaterials are known to have dose-dependent toxic effects by inhalation, and there are many publications regarding this issue. Recent studies that the evaluation of mass concentration measurement within the scope of toxicological dosing alone gives false results and does not explain the whole relationship between the nanomaterials and exposed tissue [51].

5.3. Exposure routes and ADME
Inhalation is the most common and best-known route among nanomaterial exposure ways. In addition, they can also enter the human body through the skin, digestion or injection.

Nanoparticles are thought to play a role in the development of some diseases by acting on the lungs and other systems with various pathogenic mechanisms. Particles smaller than 0.1 μm can reach distal airways with respiratory units [52]. The inhaled NPs come to the respiratory epithelium and pass through the pores in the alveoli-capillary membrane, first to the interstitium and then to the systemic circulation through blood and lymphatic circulation. In experiments in mice, it has been demonstrated experimentally that NPs applied into the trachea pass into systemic circulation in this way [53].

In studies conducted to reveal the possible toxic effects of NPs on human health, NPs of different character were applied in different ways (inhalation, intratracheal, intravenous, intraperitoneal, etc.) and in different doses, and parameters such as transition to systemic circulation in living organisms, accumulation in tissues, inflammation in tissues, other immune responses and excretion of NPs from the body have been studied. In a study conducted in five healthy volunteers, it has been observed that ultrafine carbon particles smaller than 100 nm quickly enter the systemic circulation in a short time like 10 minutes after inhalation and maintain their level in the systemic circulation for about an hour [54]. In a study in mice, the 60-day tissue distribution of magnetoelectric NPs of different sizes administered intravenously was investigated by electron microscopy, in approximately one week all NPs reached peak deposition in the lung, but the elimination of large particles of 600nm from the lung was slower than small particles [55].

Nanoparticles with short size and spiral structure entering the body are destroyed in tissues by macrophages. However, nanotubes with high aspect ratio reach to the pleura like asbestos fibers and accumulate around the pores there. These fibrous particles cannot be phagocyted, and proinflammatory, genotoxic mitogenic mediators are released by mesothelial cells. Thus, an inflammation and damage process begin [56]. This inflammation that starts in the lungs, on the one hand causes pulmonary endothelial dysfunction and stimulation of pulmonary reflexes, on the other hand activates the platelets and increases the thrombotic activity. In addition, inflammation in the vascular area can cause vascular endothelial dysfunction, causing cardiovascular disorders such as impaired heart rate and rhythm, atherosclerotic plaque formation and rupture [52]. Nanoparticles stimulate both natural and acquired immunity, and causing an inflammatory response. Stimulation of both the macrophage/monocyte, neutrophil, dendritic, natural killer cells responsible for natural immunity and the dendritic cells and lymphocyte responsible for acquired immunity, proinflammatory cytokines, lipid mediators and free radicals are released, resulting in neutrophilic or eosinophilic lung inflammation. Immunomodulatory effects of NPs may differ according to their physicochemical properties such as size, surface structure, electric charge, aggregation ratio [31].

6. Entry routes of nanoparticles into the human body
It is inevitable that the human being, who is a social entity, has contact with the nanomaterials around it. A lot of research has been conducted about nanomaterials that have damage different parts of the body. Nanomaterials most often enter the body through the respiratory tract and are in intensive contact with the lungs. The entry of nanomaterials into the body is also very common through skin contact and the gastrointestinal tract. Also, implants and injections allow nanomaterials to enter the body [57].

6.1. Inhalation exposure
The size of the nanoparticles, its resistance to gravity, and its spreading pattern determine the area in which it will settle in the respiratory tract. Nanoparticles absorbed into the body through the respiratory tract cleaned in different parts of the respiratory system by mucociliary layer and macrophages or they clustered in the lungs and spread to the body with blood circulation [58]. Sajid et al. stated that 33% of the inhaled nanoparticles can be removed from the body by the defensive system of the respiratory tract [59]. Animal studies reported that carbon nanotubes
produce fibrosis, inflammation and granuloma in the lungs, and these toxic effects in the lungs cause systemic cardiovascular disorders [60]. Besides, it was stated that the inhaled nanoparticles can reach different organs of the body including the brain, and the evaluation of the risk of association with prostate cancer was investigated [61,62].
6.2. Dermal exposure
The three effective factors in the absorption of nanoparticles from the skin are the physicochemical properties of nanoparticles, the physicochemical properties of the tool dispersing the penetrating molecule, and the location and skin conditions. Cosmetic cream, lotion and toothpaste are nanoparticle-based tools that are often used in skin exposure. Nanoparticles usually accumulate in the stratum corneum and dermis [63,64]. It is also stated that some of the nanoparticles absorbed from the skin can leak into the bloodstream.

6.3. Ingestion
Nanoparticles are effectively absorbed from the gastrointestinal tract directly or through secondary ingestion of inhaled particles. It is important to note that nanoparticles with a high probability of accidental ingestion such as metal compounds and pesticides. This can often be ignored, as it is thought to occur only deliberately or because of gross negligence. Also, poor absorption of nanoparticles from the intestines and metabolism in the liver contributes to this situation [65,66].

7. Medical use of nanoparticles
As a relatively new subdivision of medical sciences, nanomedicine takes place among rising disciplines in parallel to the nanotechnological developments. Thanks to the potential of modification of nanoparticle characteristics nanoparticles have a wide range of applications. Therefore, a number of nanoparticles are currently utilized or being studied in certain medical areas such as treatment of diseases or malignancies, surgery, medical implants, smart drug delivery systems, gene delivery, diagnosis/imaging, tissue engineering, regenerative medicine, and antimicrobial resistance and etc.

7.1. Cancer diagnosis and treatment
The use of nanoparticles in cancer diagnosis, imaging in particular, and treatment increase everyday. In order to reveal tumor sites more accurately quantum dots are utilized with magnetic resonance imaging. On the other hand, cancer biomarkers can be sensed by nanoparticle based test chips such as lab on a chip for noninterventional cancer diagnosis at the earliest stage [67].

Carbon nanotubes are used for revealing mutations in DNA and detection of biomarkers. Dendrimers and nanoparticles can be utilized as contrast agents for imaging, and in mechanisms of smart (targeted or controlled release) drug delivery [68].

Lantanide (Gd3+ and Yb3+) functionalized gold nanoparticles were used in vivo for both imaging (MRI and CT) and for therapeutic (photothermal) purposes. Additionally, ion-doped nanomaterials are used in bio-imaging medical area [69].

7.2. Gene therapy
As a widely studied area gene therapy is dedicated to prevention and treatment of genetic disorders by correction of defective genes. This can be performed through delivery or replacement of the repaired or correct gene by several methods. This approach has potential use certain types of cancers, infections, cardiovascular diseases, autoimmune diseases, and monogenic diseases such as hemophilia.

7.3. Treatment of neural degeneration
As in other treatment strategies, treatment of degenerative diseases or posttraumatic pathologies focuses on regeneration and protection of neural tissue, and guided axon growth. Therefore, nanomedical applications are promising in terms of treatment of Parkinson’s, Alzheimer’s diseases, and regeneration of axonal damage. Use of nanoparticles showing high affinity for circulating amyloid-\(\beta\) (A\(\beta\)) subtypes potentially suppress symptoms of Alzheimer’s disease [70].

7.4. Tissue engineering
This is a commonly known topic by professionals of regenerative medicine, nanomedical and biomedical engineers. It has applications regarding repair or reproduce damaged tissues by various forms and compositions of bio-compatible, biodegradable nanomaterial-based bio-scaffolds with minimum side effects.

7.5. Antimicrobial activity
A number of metallic nanoparticles are known to show antimicrobial activity, which can be used in combination of medications to reduce antibiotic resistance, as well. Gold, silver, zinc oxide, and etc. nanoparticles take place among such agents. These nanoparticles are also utilized to produce a number of surgical or implantable devices to the body [71].

7.6. Orthopedic implants
A number of implants such as bone tissue engineering materials, nanostructured implantable materials, and those produced by surface modification or coating are applied in orthopedic surgeries. Synthetic and natural polymers take place among common nanomaterials used for tissue engineering of bone/cartilage. These are collagen, hyaluronic acid, chitosan, titanium alloys, ceramic-coated metal-oxides (such as alumina, zirconia and titania), hydroxyapatites, and carbon nanomaterials such as graphene or diamond [72].

In order to achieve bioactivity, better mechanical properties and higher osteo-conductivity for faster and more efficient healing process, carbon nanocomposites containing ceramic or polymer matrix are used [73].

7.7. Dental application
Nanomaterials applied in dentistry are mostly antimicrobial, therapeutic and reinforcemental materials. They also used for polishing the enamel surface,
in dental fillings and in dental implants. Composites are carbon nanotubes, graphene, hydroxyapatite, iron oxide Zirconia, silica-based nanomaterials, titanium and silver nanoparticles [74,75].

7.8. Cardiovascular applications
Natural and synthetic nanomaterials are also used in heart tissue bioengineering. For biocompatibility, alginate and collagen are frequently used, while synthetic polyesters such as poly-L-lactic and poly (lactic-co-glycolic) acids are commonly used. In addition, carbon nanotubes are used for coating stents and coronary implants [76].

7.9. Dermal applications
Skin implants that enhance tissue repair process are frequently used in wound healing. Although this frequency varies according to the clinical need, it consists mostly of poly (lactic-co-glycolic acid)/chitin markers that mimic human keratinocytes and fibroblasts as autologous skin grafts [77].

8. Toxic effects of nanoparticles on systems
Since nanoparticles enter the body in three main ways, it is known by experimental studies that it causes toxic effects in different systems. This section describes the toxic effects of nanomaterials on systems mostly by experiments on animals.

8.1. Circulatory system
Nemmar et al. detected cardiac oxidative stress and DNA damage in a study of intravenous administration of iron oxide nanoparticles in mice [78]. Magaye et al. reported a cardiac toxicity-arrhythmia in the study of intravenous administration of Ni nanoparticles in rats and observed toxic effects in organs such as liver, spleen and lung [79]

8.2. Digestive system
Arefian et al. reported that 100 ppm zirconia oxide nanoparticles cause damage to the liver in rats [80]. Also, iron oxide nanoparticles cause liver toxicity in mice [81].

8.3. Endocrine system
Yousefi et al. reported that oral form iron oxide nanoparticles cause irregularities in thyroid hormones in rats [82].

8.4. Immune system
Xu et al. reported that TiO2 nanoparticles in mice caused a serious increase in the number of white blood cells [83]. Besides, iron oxide nanoparticles cause an increase in the number of white blood cells, and the liver and spleen are the most affected organs immunologically [84].

8.5. Respiratory system
Cai et al. reported that metal nanoparticles (Cobalt oxide, nickel oxide, titanium oxide) applied by oropharyngeal aspiration cause toxicity in the lungs [85]. Similarly, Sadeghi et al. determined that iron oxide nanoparticles cause lung toxicity in rats [86].

8.6. Urinary system
Saranya et al. stated that zinc oxide, iron oxide and copper nanoparticles cause toxic effects on kidney cells in several monkeys, pig and bovine [87]. Besides, Fartkhooni et al. reported that TiO2 nanoparticles injected intraperitoneally cause degeneration in rat kidneys [88].

8.7. Nervous system
Studies were carried out on animal ears and eyes related to vision and hearing toxicity, and minimal toxicity was detected or no toxicity was detected generally [89,90].

8.8. Reproductive system
Mozaffari et al. determined that zinc oxide nanoparticles injected intraperitoneally in mice caused a decrease and loss in seminiferous tubule cells [91]. Besides, Kong et al. stated that nickel nanoparticles cause a decrease in FSH and LH hormone levels and changes in sperm motility in rats [92].

9. Toxicity mechanisms of nanoparticles
Mechanical effects due to the physicochemical properties of nanoparticles cause toxicity. The basic mechanism of toxic effect formation is reactive oxygen species (ROS) formation, either directly or indirectly. ROS formation is toxic in vitro by multiple mechanisms in the cell [93]. ATP synthesis in mitochondria occurs as a result of the reduction of molecular oxygen to water. During this event superoxide anions and radicals containing different oxygen are formed. ROS formed are known as hydroxyl radical, single oxygen, hydrogen peroxide and superoxide anion radicals [94]. Overproduction of these radicals, which play a role in mitogenic response and cellular signaling and leads to disruption of physiological functions in cells [95,96]. The damage caused by nanomaterials to the cell is cytotoxic and genotoxic (Figure 5). Since nanomaterials have small dimensions, they cause more ROS production due to their specific surface area and high surface reactivity [97].

It is revealed in studies in living tissues such as human erythrocytes and skin fibroblasts that different types of nanomaterials cause toxicity by ROS activation [98]. Kim et al. determined that nano-Ag causes oxidative stress and genotoxicity in cultured living tissue also Mei et al. determined that nano-Ag creates mutations by increasing ROS formation in mice [99,100]. Hsin et al. reported that nano-Ag caused cytotoxicity by activating ROS in the mitochondrial pathway [101]. Akhtar et al. reported that silica nanoparticles cause cytotoxicity in the cell membrane and cause cytotoxicity in mouse embryonic fibroblasts through the production of ROS and lipid peroxidation of nano-CuO [102,103]. Girgis et al. proposed that nano-Au caused toxicity by causing an increase in oxidative stress in mice [104]. Shvedova et al. reported that single-walled CNTs cause cytotoxicity...
in keratinocytes and bronchial epithelial cells leading to ROS production and mitochondrial dysfunction [105]. Winnik and Maysinger determined that quantum dots cause cytotoxicity by increasing ROS production [106]. It is reported that cytotoxic effect of nano-ZnO in human bronchial epithelial cells by increasing ROS production [107]. Nano-FeO was reported to have a cytotoxic effect by increasing ROS formation and apoptosis, also comparing the cytotoxic effects of nano-TiO2, Co3O4, ZnO and CuO in hepatocyte cells, it was found that the most cytotoxic effect was in nano-CuO [108,109].

Other factors contribute to the toxicity of nanomaterials, such as surface area, surface coating, molecular size, shape, oxidation status, solubility and degree of aggregation and agglomeration [110]. It is determined that increasing the toxic effect of nanoparticles is directly proportional to the decrease in size. Yoshida et al. reported that amorphous nanosilica causes toxicity in the human cell, both by increasing ROS formation and by damaging DNA [111,112]. Besides, only in the evaluation based on its size, the smaller the nanoparticles, the more toxic it is to the organs [113]. Studies were reported that wire-shaped nanomaterials cause DNA damage and toxic effects through ROS production [114]. Studies were carried out on the effect of the shape of nanomaterials on toxicity, it was reported that the difference in shape does not make a critical difference in the toxic effect of nano Au in human skin keratinocyte cells [115]. On the contrary, a study on nano-ZnO crystals, it was reported that the hexagonal crystals have a more toxic effect than the rod-shaped ones [116]. Biocompatibility and nanoparticle contact area are directly proportional. A study was carried out in zebrafish embryos by Ispas et al. observed that dendritic ones were more toxic than spherical ones [117]. One of the nanomaterials commonly used in drug delivery systems is silica. Nanosilica causes different toxic effects in different pore volumes [118]. Oh et al. reported that the toxicity of the cationic charged nanosilica-titania particles is high [119]. Studies were carried out about size, shape and the relationship of surface parts of quantum dots with nanotoxicity [106,120]. In toxicity studies on fullerenes, the groups bound to the surfaces of these nanomaterials have a determining role in the effect of toxicity. Since it was stated that fullerenes cause cytotoxicity by producing free oxygen radicals, there are also fullerenes with antioxidant activity by adding malonyl groups to their surface [110]. Studies on the effect of nanomaterial solubility on toxicity were conducted. Studer et al. reported that ZnO nanoparticles have a less toxic effect than soluble copper metal [120]. Shen et al. determined that the dissolution of nano-ZnO cells is effective in the important emergence of the cytotoxic effect [121]. Mahto et al. reported that quantum dots dissolve in water, increasing ROS production and causing cytotoxicity [122]. UV and visible light have affected the stabilization of nano-TiO2 and nano-ZnO materials. In this way, photoexcitation through electrons causes toxicity [123]. Studies were carried out on graphene and aggregation toxicity used in many biomedical fields such as drug delivery systems, biosensors and labeling [124]. Also, Kim et al. noted the importance of agglomeration and aggregation in nano-Ag induced toxicity [99].

It continues to be researched in different organisms such as rodents, humans and plants in toxicity studies.
Multiple areas differ according to the type of nanomaterial. Carbon and metallic nanomaterials are frequently used in the engineering area. Besides, the use of metal nanomaterials in cosmetics, medicine, and food is also a common area. Sun creams and lotions containing nanotitanium and nanozinc show toxic effects on the skin and the environment depending on the frequency of use. It is shown by the researchers that nanocopper oxide is effective in cytotoxicity and DNA damage, also carbon nanotubes have a toxic effect on cells.

10. Toxicity testing
In vitro experiments are performed more frequently than in vivo experiments, and questions about dosing are important in determining toxicity. One of the models used in the toxicity test is in vitro sedimentation diffusion and dosimeter. This model lies in the clear distinction between exposure (concentration in the cell environment), the dose accumulated on the cell surface and the cellular dose. Information about the time to release a given dose allows us to evaluate the dose rate as a determinant of response.

Since in vitro methods that determine cell viability and proliferation are frequently used in determining toxicity, methods such as gene expression analysis, genotoxicity detection and in vitro hemolysis are also used. Additionally, there are microscopic and spectroscopic methods for the evaluation of physicochemical structure in the cell such as scanning electron microscopy/energy dispersive X-ray spectroscopy (SEM-EDX), transmission electron microscopy (TEM), atomic force microscopy (AFM), video-enhanced differential interference contrast (VEDIC) microscopy and fluorescence spectroscopy. The combined use of all these tests makes it easier to detect nanotoxicity. A concise list to summarize previously conducted studies regarding currently used toxicity tests, the purpose of the tests, and the target nanomaterials is presented in Table.

Toxicity test	Purpose	Nanomaterials
Transmission electron microscopy	Determination of intracellular localization	TiO₂, silver, fullerene [131–133]
Light microscopy	Physicochemical properties	Singled walled carbon nanotubes, silver [132,134]
Hemoglobin estimation	Hemolysis	SiO₂ [135]
Micronucleus test	Genotoxicity	Different types of nanoparticles [136]
Commet assay test	DNA damage	Metal, metal oxide nanoparticles [137]
Lactate dehydrogenase		Carbon nanoparticles [138,139]
Tetrazolium salts		Carbon nanoparticles, fullerenes [140,141]
Alamar Blue		Quantum dots [142]
Propidium iodide	Cell viability	Carbon nanoparticles [143,144]
Neutral red assay test		Carbon nanotubes [140,145]
Caspase-3 activity	Apoptosis	Silver nanoparticles [132]
Acridine orange/ethidium bromide		Silver nanoparticles [146]
ROS production		TiO₂ [131]
Levels of glutathione peroxidase, catalase, superoxide dismutase	Oxidative stress	Polymeric nanoparticles [147]
Lipid peroxidation, vitamin E		Singled walled carbon nanotubes [105]

11. Concerns, future aspects and concluding remarks
Studies utilizing nanotechnology have been continuing rapidly in the last twenty years, which boosts related
investment, industrial activities, marketing, and economic planning. This results in an increase of number of related good and bad actors in the area. Each actor takes heed of different priorities that might be controversial to others. Medical professionals consider biocompatibility, biodegradability and effectiveness of nanomaterials as priority, while professionals interested in industrial activities, marketing, and economic issues may prioritize scaling up production of new devices or nanomaterials, and decreasing costs and timescales. This inconsistency also raises questions about nanomaterials’ potential adverse effects. Since most authors state that “the only valid technology will be nanotechnology in the next era”, there is no consensus on the impact of this technology on humankind, environment and ecological balance. Following increasing regulatory demands regarding use of nanomaterial-based medical devices and advanced therapeutic medicinal products; governments have installed certain institutional projects. Out of projects investigating nanomaterials’ safety, the National Cancer Institute in United States points out that “most engineered nanoparticles are far less toxic than household cleaning products, insecticides used on family pets, and personal care products”. Similarly, European Union installed BIORIMA (BIOMaterial Risk MAnagement) project that aims developing an integrated risk management framework for the safe handling of nano-biomaterials used in medical applications, and to assess and manage certain factors potentially arising from manufacturing and use of such materials.

Studies dealing with the toxic effect of nanomaterials on human health have also varied with developing technology. Nanotoxicology studies such as in vivo-like on 3D human organs, cells also advanced genetic studies are beginning to replace conventional in vitro analytical methods [151,152]. In vitro testing methods might require assessment of multiple challenging steps such as physicochemical properties of nanomaterials, the environment-target cell, cellular uptake and epigenetic interaction [153]. Omic approaches; next generation sequencing, transcriptomics and proteomics, have provided considerably more information regarding the toxicity of the complex cellular processes triggered by interaction of nanomaterials with the microenvironment [154,155]. Also, an important point is personalized toxicology. Possible genetic susceptibility to toxicity of nanomaterials should also be carefully studied under this topic [156]. The analysis of data obtained through novel technological developments and nanotoxicological studies is getting more and more difficult. In respect of above discussed issues, extraordinary increase of use of nanomaterial-based medical agents and devices come up with a challenge for future medicine. Nanotoxicity and adverse effects of nanomaterials in exposed producers, industry workers, and patients make nanomaterials a double-edged sword for future medicine. In order to control and tackle related risks, regulation and legislations should be implemented, and researchers have to conduct joint multidisciplinary studies in various fields of medical sciences, nanotechnology, nanomedicine, and biomedical engineering.

Acknowledgement/Disclaimers/Conflict of interest
No funds were received in support of this work. This study was presented in Taiwan-Turkey Science Summit that was held in Ankara, Turkey, on 1–4 April 2018. There is no conflict of interest between the authors concerning the materials or methods used in this study or the findings specified in this paper.

Informed consent
There is no need informed consent about this work.

This study was presented at the Taiwan-Turkey Science Summit entitled “Translation of Cells, Nanomaterials and Signaling Molecules into Regenerative Medicine” between April 1 to 3, 2018.

References

1. Vance ME, Kuiken T, Vejerano EP, McGinnis SP, Hochella MF, Jr. et al. Nanotechnology in the real world: Redeveloping the nanomaterial consumer products inventory. Beilstein Journal of Nanotechnology 2015; 6: 1769-1780. doi: 10.3762/bjnano.6.181

2. DTU environment, the Danish ecological council and Danish consumer council (2020). The Nanodatabase [online]. Website http://nanodb.dk/en/ [accessed 27 March 2020].

3. Warheit DB, Sayes CM, Reed KL, Swain KA. Health effects related to nanoparticle exposures: environmental, health and safety considerations for assessing hazards and risks. Pharmacology & Therapeutics 2008; 120 (1): 35-42. doi: 10.1016/j.pharmthera.2008.07.001

4. Seabra A, Durán N. Nanotoxicology of metal oxide nanoparticles. Metals 2015; 5 (2): 934-975. doi: 10.3390/met5020934

5. Schrand AM, Rahman MF, Hussain SM, Schlager JJ, Smith DA et al. Metal-based nanoparticles and their toxicity assessment. Wiley Interdisciplinary Reviews Nanomedicine and Nanobiotechnology 2010; 2 (5): 544-568. doi: 10.1002/wnan.103

6. Iijima S, Ichihashi T. Single-shell carbon nanotubes of 1-nm diameter. Nature 1993; 363 (6430): 603-605. doi: 10.1038/363603a0
7. Bethune D, Kiang CH, De Vries M, Gorman G, Savoy R et al. Cobalt-catalysed growth of carbon nanotubes with single-atomic-layer walls. Nature 1993; 363 (6430): 605-607. doi: 10.1038/363605a0

8. Tans SJ, Devoret MH, Dai H, Thess A, Smalley RE et al. Individual single-wall carbon nanotubes as quantum wires. Nature 1997; 386 (6624): 474-477. doi: 10.1038/386474a0

9. Yu MF, Lourie O, Dyer MJ, Moloni K, Kelly TF et al. Strength and breaking mechanism of multivalved carbon nanotubes under tensile load. Science 2000; 287 (5453): 637-640. doi: 10.1126/science.287.5453.637

10. Berber S, Kwon YK, Tomanek D. Unusually high thermal conductivity of carbon nanotubes. Physical Review Letters 2000; 84 (20): 4613-4616. doi: 10.1103/PhysRevLett.84.4613

11. Gurevitch D, Shuster-Meiseles T, Nov O, Zick Y, Rudich A et al. TiO2 nanoparticles induce insulin resistance in liver-derived cells both directly and via macrophage activation. Nanotoxicology 2012; 6: 804-812. doi: 10.3109/17435390.2011.625128

12. Mohammadipour A, Fazel A, Haghir H, Motejaded F, Rafatpanah H et al. Maternal exposure to titanium dioxide nanoparticles during pregnancy: impaired memory and decreased hippocampal cell proliferation in rat offspring. Environmental Toxicology and Pharmacology 2014; 37 (2): 617-625. doi: 10.1016/j.etap.2014.01.014

13. Willhite CC, Karyakina NA, Yokel RA, Yenugadhati N, Wisniewski TM et al. Systematic review of potential health risks posed by pharmaceutical, occupational and consumer exposures to metallic and nanoscale aluminum, aluminum oxides, aluminum hydroxide and its soluble salts. Critical Reviews in Toxicology 2014; 44 Suppl 4: 1-80. doi: 10.3109/10408444.2014.934439

14. Blum JL, Xiong JQ, Hoffman C, Zelikoff JT. Cadmium associated with inhaled cadmium oxide nanoparticles impacts fetal and neonatal development and growth. Toxicological Sciences 2012; 126 (2): 478-486. doi: 10.1093/toxsci/ks2008

15. Tripathi SK, Kaur G, Khurana RK, Kapoor S, Singh B. Quantum Dots and Their Potential Role in Cancer Theranostics. Critical Reviews in Therapeutic Drug Carrier Systems 2015; 32 (6): 461-502. doi: 10.1615/CritRevTherDrugCarrierSyst.2015012360

16. Luo GP, Long J, Zhang B, Liu C, Ji SR et al. Quantum dots in cancer therapy. Expert Opinion on Drug Delivery. 2012; 9 (1): 47-58. doi: 10.1517/17425247.2012.638624

17. Jain MP, Vaisheva F, Maysinger D. Metalloestrogenic effects of quantum dots. Nanomedicine (London) 2012; 7 (1): 23-37. doi: 10.2217/nmm.11.102

18. Li M, Tian X, Liang W, Yuan R, Chai Y. Ultrasensitive photoelectrochemical assay with PTB7-Th/CdTe quantum dots sensitized structure as signal tag and benzo-4-chlorohexadienone precipitate as efficient quencher. Analytical Chemistry 2018; 90 (24): 14521-14526. doi: 10.1021/acs.analchem.8b04370

19. Qu M, Qiu Y, Lv R, Yue Y, Liu R et al. Exposure to MPA-capped CdTe quantum dots causes reproductive toxicity effects by affecting oogenesis in nematode caenorhabditis elegans. Ecotoxicology and Environmental Safety 2019; 173: 54-62. doi: 10.1016/j.ecoenv.2019.02.018

20. Jia G, Wang H, Yan L, Wang X, Pei R et al. Cyotoxicity of carbon nanomaterials: single-wall nanotube, multi-wall nanotube, and fullerene. Environmental Science & Technology 2005; 39 (5): 1378-1383. doi: 10.1021/es048729j

21. Kale SN, Arora S, Bhayani KR, Paknikar KM, Jani M et al. Cerium doping and stoichiometry control for biomedical use of La0.7Sr0.3MnO3 nanoparticles: microwave absorption and cytotoxicity study. Nanomedicine 2006; 2 (4): 217-221. doi: 10.1016/j.nano.2006.10.001

22. Hussain SM, Hess KL, Gearhart JM, Geiss KT, Schlager J. In vitro toxicity of nanoparticles in BRL 3A rat liver cells. Toxicology in Vitro 2005; 19 (7): 975-983. doi: 10.1016/j.tiv.2005.06.034

23. Hardman R. A toxicologic review of quantum dots: toxicity depends on physicochemical and environmental factors. Environmental Health Perspectives 2006; 114 (2): 165-172. doi: 10.1289/ehp.8284

24. Wakefield G, Lipscomb S, Holland E, Knowland J. The effects of manganese doping on UVA absorption and free radical generation of micronised titanium dioxide and its consequences for the photostability of UVA absorbing organic sunscreen components. Photochemical and Photobiological Sciences 2004; 3 (7): 648-652. doi: 10.1039/b403697b

25. Pulskamp K, Diabate S, Krug HF. Carbon nanoparticles show no sign of acute toxicity but induce intracellular reactive oxygen species in dependence on contaminants. Toxicology Letters 2007; 168 (1): 58-74. doi: 10.1016/j.toxlet.2006.11.001

26. Boverhof DR, Bramante CM, Butala JH, Clancy SF, Lafranconi N, Wisniewski TM et al. Systematic review of potential health risks posed by pharmaceutical, occupational and consumer exposures to metallic and nanoscale aluminum, aluminum oxides, aluminum hydroxide and its soluble salts. Critical Reviews in Toxicology 2014; 44 Suppl 4: 1-80. doi: 10.3109/10408444.2014.934439

27. International Organization for Standardization (ISO). Nanotechnologies–Vocabulary–Part 2: Nano-objects. ISO/TS 80004-2: 2015.

28. Tripathi SK, Kaur G, Khurana RK, Kapoor S, Singh B. Quantum Dots and Their Potential Role in Cancer Theranostics. Critical Reviews in Therapeutic Drug Carrier Systems 2015; 32 (6): 461-502. doi: 10.1615/CritRevTherDrugCarrierSyst.2015012360

29. Nowack B, Brouwer C, Geertsma RE, Heugens EH, Ross BL et al. Analysis of the occupational, consumer and environmental sectors. Nanotoxicology 2013; 7 (6): 1152-1156. doi: 10.1080/17435390.2012.711863

30. Berk S, Akkurt I. Nanoparticle: a nightmare for the future. Tuberkuloz ve Toraks 2012; 60 (2): 180-184. doi: 10.5578/nt.3557

31. Inoue K, Takano H. Aggravating impact of nanoparticles on immune-mediated pulmonary inflammation. The Scientific World Journal 2011; 11: 382-390. doi: 10.1100/tsw.2011.44
32. Chithrani BD, Ghazani AA, Chan WC. Determining the size and shape dependence of gold nanoparticle uptake into mammalian cells. Nano Letters 2006; 6 (4): 662-668. doi: 10.1021/nl052396o

33. Osaki F, Kanamori T, Sando S, Sera T, Aoyama Y. A quantum dot conjugated sugar ball and its cellular uptake. On the size effects of endocytosis in the subviral region. Journal of the American Chemical Society 2004; 126 (21): 6520-6521. doi: 10.1021/ja048792a

34. Jiang W, Kim BY, Rutka JT, Chan WC. Nanoparticle-mediated cellular response is size-dependent. Nature Nanotechnology 2008; 3 (3): 145-150. doi: 10.1038/nnano.2008.30

35. Sonavane G, Tomoda K, Makino K. Biodistribution of colloidal gold nanoparticles after intravenous administration: effect of particle size. Colloids and Surfaces B: Biointerfaces 2008; 66 (2): 274-280. doi: 10.1016/j.colsurfb.2008.07.004

36. Elechiguerra JL, Burt JL, Morones JR, Camacho-Bragado A, Gao X et al. Interaction of silver nanoparticles with HIV-1. Journal of Nanobiotechnology. 2005; 3: 6. doi: 10.1186/1747-3155-3-6

37. Morones JR, Elechiguerra JL, Camacho A, Holt K, Kouri JB et al. The bactericidal effect of silver nanoparticles. Nanotechnology 2005; 16 (10): 2346-2353. doi: 10.1088/0957-4484/16/10/059

38. Suh WH, Suslick KS, Stucky GD, Suh YH. Nanotechnology, nanotoxicology, and neuroscience. Progress in Neurobiology 2009; 87 (3): 133-170. doi: 10.1016/j.pneurobio.2008.09.009

39. Powers KW, Palazuelos M, Moudgil BM, Roberts SM. Characterization of the size, shape, and state of dispersion of nanoparticles for toxicological studies. Nanotoxicology 2009; 1 (1): 42-51. doi: 10.1080/17435390701314902

40. Huang H, Shen L, Ford J, Wang YH, Xu YR. Computational issues in biomedical nanometrics and nanomaterials. Journal of Nano Research 2008; 1: 50-58. doi: 10.4028/www.scientific.net/JNANO.1.50

41. Ismail FS, Rohanizadeh R, Atwa S, Mason RS, Ruys AJ et al. The influence of surface chemistry and topography on the contact guidance of MG63 osteoblast cells. Journal of Materials Science: Materials in Medicine 2007; 18 (5): 705-714. doi: 10.1007/s10856-006-0012-2

42. Ngavekar SS, Sung LY, Lannes M, El-Jawahri A, Lawrence TS et al. 3H dendrimer nanoparticle organ/tumor distribution. Pharmaceutical Research 2004; 21 (3): 476-483. doi: 10.1023/B:PHAM.0000019302.26097.cc

43. Driscoll KE, Carter JM, Howard BW, Hassenbein DG, Pepelko W et al. Pulmonary inflammatory, chemokine, and mutagenic responses in rats after subchronic inhalation of carbon black. Toxicology and Applied Pharmacology 1996; 136 (2): 372-380. doi: 10.1006/taap.1996.0045

44. Nikula K, Snipes M, Barr E, Griffith W, Henderson R et al. Comparative pulmonary toxicities and carcinogenicities of chronically inhaled diesel exhaust and carbon black in F344 rats. Toxicological Sciences 1995; 25 (1): 80-94. doi: 10.1006/faat.1995.1042

45. Schins RP, Duffin R, Hohr D, Knaapen AM, Shi T et al. Surface modification of quartz inhibits toxicity, particle uptake, and oxidative DNA damage in human lung epithelial cells. Chemical Research in Toxicology 2002; 15 (9): 1166-1173. doi: 10.1021/tr025558u

46. Park KH, Chhowalla M, Iqbal Z, Sesti F. Single-walled carbon nanotubes are a new class of ion channel blockers. Journal of Biological Chemistry 2003; 278 (50): 50212-50216. doi: 10.1074/jbc.M310216200

47. Radomski A, Jurasz P, Alonso-Escolano D, Drews M, Morandi M et al. Nanoparticle-induced platelet aggregation and vascular thrombosis. British Journal of Pharmacology 2005; 146 (6): 882-893. doi: 10.1038/sj.bjp.0706386

48. Geng Y, Dalhaimer P, Cai S, Tsiar I, Tewari M et al. Shape effects of filaments versus spherical particles in flow and drug delivery. Nature Nanotechnology 2007; 2 (4): 249-255. doi: 10.1038/nnano.2007.70

49. Tran CL, Buchanan D, Cullen RT, Searl A, Jones AD et al. Inhalation of poorly soluble particles. II. Influence of particle surface area on inflammation and clearance. Inhalation Toxicology 2000; 12 (12): 1113-1126. doi: 10.1080/08958370050166796

50. Lockman PR, Koziaja JM, Mumper RJ, Allen DD. Nanoparticle surface charges alter blood-brain barrier integrity and permeability. Journal of Drug Targeting 2004; 12 (9-10): 635-641. doi: 10.1080/10611860400015936

51. Maynard AD, Attken RJ, Butz T, Colvin V, Donaldson K et al. Safe handling of nanotechnology. Nature 2006; 444 (7117): 267-269. doi: 10.1038/444267a

52. BeruBe K, Balharry D, Sexton K, Koshy L, Jones T. Combustion-derived nanoparticles: mechanisms of pulmonary toxicity. Clinical and Experimental Pharmacology and Physiology 2007; 34 (10): 1044-1050. doi: 10.1111/j.1440-1681.2007.04733.x

53. Shimada A, Kawamura N, Okajima M, Kaewamatawong T, Inoue H et al. Translocation pathway of the intratracheally instilled ultrafine particles from the lung into the blood circulation in the mouse. Toxicologic Pathology 2006; 34 (7): 949-957. doi: 10.1080/01926306010805052

54. Nemmar A, Hoet PM, Vanquickenborne B, Dinsdale D, Thomeer M et al. Passage of inhaled particles into the blood circulation in humans. Circulation 2002; 105 (4): 411-414. doi: 10.1161/hc0402.104118

55. Hadjikhani A, Rodzinski A, Wang P, Nagesetti A, Guduru R et al. Biodistribution and clearance of magnetoelectric nanoparticles for nanomedical applications using energy dispersive spectroscopy. Nanomedicine 2017; 12 (15): 1801-1822. doi: 10.2217/nnm-2017-0080

56. Donaldson K, Murphy FA, Duffin R, Poland CA. Asbestos, carbon nanotubes and the pleural mesothelioma: a review of the hypothesis regarding the role of long fibre retention in the parietal pleura, inflammation and mesothelioma. Particle and Fibre Toxicology 2010; 7. doi: 10.1186/1743-8977-7-5
57. De Matteis V. Exposure to inorganic nanoparticles: Routes of entry, immune response, biodistribution and in vitro/in vivo toxicity evaluation. Toxics 2017; 5 (4). doi: 10.3390/toxics5040029

58. Sharif S, Behzadi S, Laurent S, Laird Forrest M, Stroeve P et al. Toxicity of nanomaterials. Chemical Society Reviews 2012; 41 (6): 2323-2243. doi: 10.1039/c1cs15188f

59. Sajid M, Ilyas M, Basheer C, Tariq M, Daud M et al. Impact of nanoparticles on human and environment: review of toxicity factors, exposures, control strategies, and future prospects. Environmental Science and Pollution Research 2015; 22 (6): 4122-4143. doi: 10.1007/s11356-014-3994-1

60. Department of human and health services, U.S. Occupational exposure to carbon nanotubes and nanofibers. Carbon NanotubNanofibersOccupy Expo Risks Minimization Strategies. 2014; 1-161.

61. Mar NY. Approaches to safe nanotechnology; managing the health and safety concerns associated with engineered nanomaterials. Prospects 2005; 35 (3): 331-342. doi: 10.1007/s11125-005-4273-1

62. Weichenthal S, Lavigne E, Valois MF, Hatzopoulou M, Van Ryswyk Ket al. Spatial variations in ambient ultrafine particle concentrations and the risk of incident prostate cancer: a case-control study. Environmental Research 2017; 156 (March): 374-380. doi: 10.1016/j.envres.2017.03.035

63. Senzui M, Tamura T, Miura K, Ikarashi Y, Watanabe Y et al. Study on penetration of titanium dioxide (TiO2) nanoparticles into intact and damaged skin in vitro. Journal of Toxicological Sciences 2010; 35 (1): 107-113. doi: 10.2131/jts.35.107

64. Desai P, Patlolla RR, Singh M. Interaction of nanoparticles and cell-penetrating peptides with skin for transdermal drug delivery. Molecular Membrane Biology 2010; 27 (7): 247-259. doi: 10.3109/09687688.2010.522203

65. Bouwmeester H, Van der Zande M, Jepson MA. Effects of food-borne nanomaterials on gastrointestinal tissues and microbiota. Wiley Interdisciplinary Reviews Nanomedicine and Nanobiotechnology 2018; 10 (1). doi: 10.1002/wnan.1481

66. Cherrie JW, Semple S, Christopher Y, Saleem A, Hughson GW et al. How important is inadvertent ingestion of hazardous substances at work? The Annals of Occupational Hygiene 2006; 50 (7): 693-704. doi: 10.1093/annhyg/mei035

67. Zheng G, Patolsky F, Cui Y, Wang WU, Lieber CM. Multiplexed electrical detection of cancer markers with nanowire sensor arrays. Nature Biotechnology 2005; 23 (10): 1294-301. doi: 10.1038/nbt1138

68. Nahar M, Dutta T, Murugesan S, Asthana A, Mishra D et al. Functional polymeric nanoparticles: an efficient and promising tool for active delivery of bioactives. Critical Reviews Therapeutic Drug Carrier Systems 2006; 23 (4): 259-318. doi: 10.1615/critrevthnderdrugcarrieryst.v23.i4.10

69. Qiao Y, Li S, Liu W, Ran M, Lu H, Yang Y. Recent advances of Rare-Earth ion doped luminescent nanomaterials in perovskite solar cells. Nanomaterials 2018; 8 (1). doi: 10.3390/nano8010043

70. Davide B, Benjamin LD, Nicolas J, Hossein S, Lin-Ping Wu et al. Nanotechnologies for Alzheimer's disease: diagnosis, therapy and safety issues. Nanomedicine: Nanotechnology, Biology and Medicine 2011; 7 (5): 521-540. doi: 10.1016/j.nano.2011.03.008

71. Banoce M, Seif S, Nazari ZE, Jafari-Fesharaki P, Shahverdi HR et al. ZnO nanoparticles enhanced antibacterial activity of ciprofloxacin against Staphylococcus aureus and Escherichia coli. Journal of Biomedical Materials Research-Part B Applied Biomaterials 2010; 93 (2): 557-61. doi: 10.1002/jbm.b.31615

72. Zhou C, Deng C, Chen X, Zhao X, Chen Y et al. Mechanical and biological properties of the micro-/nano-grain functionally graded hydroxyapatite bioceramics for bone tissue engineering. Journal of Mechanical Behavior of Biomaterials [online] 2015; 48: 1-11. doi: 10.1016/j.jmbbm.2015.04.002

73. Tamjid E, Bagheri R, Vossoughi M, Simchi A. Effect of TiO2 morphology on in vitro bioactivity of polycaprolactone/TiO2 nanocomposites. Materials Letters 2011; 65 (15-16): 2530-2533. doi: 10.1016/j.matlet.2011.05.037

74. Priyadarsini S, Mukherjee S, Mishra M. Nanoparticles used in dentistry: a review. Journal of Oral Biology and Craniofacial Research [online] 2018; 8 (1): 58-67. doi: 10.1016/j.jobcr.2017.12.004

75. García-Contreras R, Argüeta-Figueroa L, Mejía-Rubalcava C, Jiménez-Martínez R, Cuevas-Guajardo S et al. Perspectives for the use of silver nanoparticles in dental practice. International Dental Journal 2011; 61 (6): 297-301. doi: 10.1111/j.1875-595X.2011.00072.x

76. Reis LA, Chiu LLY, Feric N, Fu L, Radisic M. Biomaterials in myocardial tissue engineering. Journal of Tissue Engineerin and Regenerative Medicine [online] 2016; 10 (1): 11-28. doi: 10.1002/term.1944

77. V. Singh A, A.S A, N. Gade W, Vats T, Lenardi C et al. Nanomaterials: new generation therapeutics in wound healing and tissue repair. Current Nanoscience 2010; 6 (6): 577-86. doi: 10.2174/157341310793348632

78. Nemmar A, Beegam S, Yuvaraju P, Yasin J, Tariq S et al. Ultrasmall superparamagnetic iron oxide nanoparticles acutely promote thrombosis and cardiac oxidative stress and DNA damage in mice. Particle and Fibre Toxicology [online] 2016; 13 (1): 1-11. doi: 10.1186/s12989-016-0132-X

79. Magaye RR, Yue X, Zou B, Shi H, Yu H et al. Acute toxicity of nickel nanoparticles in rats after intravenous injection. Internal Journal of Nanomedicine 2014; 9 (1): 1393-1402. doi: 10.2147/IJNN.S56212

80. Arefian Z, Pishbin F, Negahdary M, Ajdary M. Potential toxic effects of zirconia oxide nanoparticles on liver and kidney factors. Biomedical Research 2015; 26 (1): 89-97.

81. Bellusci M, La Barbera A, Padella F, Mancuso M, Pasquo A et al. Nanocup substantially affects the expression of manganese iron oxide nanoparticles produced by a mecanochemical process. International Journal of Nanomedicine 2014; 9 (1): 1919-1929. doi: 10.2147/IJNN.S56394
82. Babadi VY, Najafi L, Najafi A, Gholami H, Zarjii MEB et al. Evaluation of iron oxide nanoparticles effects on tissue and enzymes of thyroid in rats. International Research Journal of Biological Sciences 2013; 2 (7): 67-69.

83. Xu J, Shi H, Ruth M, Yu H, Lazar L et al. Acute toxicity of intravenously administered titanium dioxide nanoparticles in mice. PLoS One 2013; 8 (8): 1-6. doi: 10.1371/journal.pone.0070618

84. Awaad A. Histopathological and immunological changes induced by magnetite nanoparticles in the spleen, liver and genitai tract of mice following intravaginal instillation. The Journal of Basic & Applied Zoology [online] 2015; 71: 32-47. doi: 10.1016/j.taz.2015.03.003

85. Cai X, Lee A, Ji Z, Huang C, Chang CH et al. Reduction of pulmonary toxicity of metal oxide nanoparticles by phosphate-based surface passivation. Particle and Fibre Toxicology 2017; 14 (1): 1-11. doi: 10.1186/s12989-017-0193-5

86. Sadeghi L, Babadi VY, Espanani HR. Toxic effects of the Fe2O3 nanoparticles on the liver and lung tissue. Bratislava Medical Journal [online]. 2015; 116 (06): 373-378. doi: 10.4149/BLJ_2015_071

87. Saranya S, Vijayaranai K, Pavithra S, Raihana N, Kumanan K. In vitro cytotoxicity of zinc oxide, iron oxide and copper nanopowders prepared by green synthesis. Toxicology Reports [online] 2017; 4: 427-430. doi: 10.1016/j.toxrep.2017.07.005

88. Farthkhooni FM, Noori A, Mohammadi A. Effects of titanium dioxide nanoparticles toxicity on the kidney of male rats. International Journal of Life Sciences 2016; 10 (1): 65-69. doi: 10.3126/ijlsl.v10i1.14513

89. Raju HB, Hu Y, Vedula A, Dubovy SR, Goldberg JL. Evaluation of magnetic micro- and nanoparticle toxicity to ocular tissues. PLoS One 2011; 6 (5). doi: 10.1371/journal.pone.0017452

90. Kim DK. Nanomedicine for Inner Ear Diseases: A review of recent in vivo studies. Biomed Research International 2017; 2017: doi: 10.1155/2017/3098230

91. Ibrahim Al, Amira FA, Manal MM. Effect of zinc oxide nanoparticles on the structure of testis of adult albino rats and the possible protective role of naringenin. Medical Journal of Cairo University 2019; 87 (September): 3469-3483. doi: 10.21608/mjcu.2019.65644

92. Kong L, Tang M, Zhang T, Wang D, Hu K et al. Nickel nanoparticles exposure and reproductive toxicity in healthy adult rats. International Journal of Molecular Sciences 2014; 15 (11): 21253-21269. doi: 10.3390/ijms15112125

93. Gonzalez L, Lison D, Kirsch-Volders M. Genotoxicity of engineered nanomaterials: A critical review. Nanotoxicology 2008; 2 (4): 252-273. doi: 10.1080/17435390802464986

94. Yin J, Liu J, Ehrenshaft M, Roberts JE, Fu PP et al. Phototoxicity of nano titanium dioxides in HaCaT keratinocytes-Generation of reactive oxygen species and cell damage. Toxicology and Applied Pharmacology [online] 2012; 263 (1): 81-88. doi: 10.1016/j.taap.2012.06.001

95. Valko M, Leibfritz D, Moncol J, Cronin MTD, Mazur M et al. Free radicals and antioxidants in normal physiological functions and human disease. The International Journal of Biochemistry & Cell Biology 2007; 39 (1): 44-84. doi: 10.1016/j.biocel.2006.07.001

96. Meng H, Xia T, George S, Nel AE. A predictive toxicological paradigm for the safety assessment of nanomaterials. American Chemical Society Nano 2009; 3 (7): 1620-1627. doi: 10.1021/nn9005973

97. Oberdörster G, Oberdörster E, Oberdörster J. Nanotoxicology: An emerging discipline evolving from studies of ultrafine particles. Environmental Health Perspectives 2005; 113 (7): 823-839. doi: 10.1289/ehp.7339

98. Li Y, Yu S, Wu Q, Tang M, Pu Y et al. Chronic Al2O 3-nanoparticle exposure causes neurotoxic effects on locomotion behaviors by inducing severe ROS production and disruption of ROS defense mechanisms in nematode Caenorhabditis elegans. Journal of Hazardous Materials [online]. 2012; 219-220: 221-230. doi: 10.1016/j.jhazmat.2012.03.083

99. Kim S, Ryu DY. Silver nanoparticle-induced oxidative stress, genotoxicity and apoptosis in cultured cells and animal tissues. Journal of Applied Toxicology 2013; 33 (2): 78-89. doi: 10.1002/jat.2792

100. De Moura MB, Dos Santos LS, Van Houten B. Mitochondrial dysfunction in neurodegenerative diseases and cancer. Environmental and Molecular Mutagenesis [online] 2010; 51 (5): 391-405. doi: 10.1002/em.20575

101. Hsin Y-HH, Chen C-FF, Huang S, Shih T-SS, Lai P-SS et al. The apoptotic effect of nanosilser is mediated by a ROS- and NKG-dependent mechanism involving the mitochondrial pathway in NIH3T3 cells. Toxicology Letters [online] 2008 ; 179 (3): 130-139. doi: 10.1016/j.toxlet.2008.04.015

102. Akhtar MJ, Ahamed M, Kumar S, Siddiqui H, Patil G et al. Nanotoxicity of pure silica mediated through oxidative generation rather than glutathione depletion in human lung epithelial cells. Toxicology [online] 2010; 276 (2): 95-102. doi: 10.1016/j.tox.2010.07.010

103. Akhtar MJ, Ahamed M, Fareed M, Alrokayan SA, Kumar S. Protective effect of sulphoraphane against oxidative stress mediated toxicity induced by CuO nanoparticles in mouse embryonic fibroblasts BALB 3T3. The Journal of Toxicological Sciences 2012; 37 (1): 139-148. doi: 10.2131/jts.37.139

104. Fu PP, Xia Q, Hwang H-M, Ray PC, Yu H. Mechanisms of nanotoxicity: generation of reactive oxygen species. Journal of Food and Drug Analysis [online] 2014 ; 22 (1): 64-75. doi: 10.1016/j.jfda.2014.01.005

105. Shvedova A, Castranova V, Kisin E, Murray A, Gandelsman V et al. Exposure to carbon nanotube material: assessment of nanotube cytotoxicity using human keratinocytes. Journal of Toxicology Environmental Health Part A 2011; 66 (June 2012): 1909-1926. doi: 10.1080/713853956

106. Winnik FM, Maysinger D. Quantum dot cytotoxicity and ways to reduce it. Accounts of Chemical Research [online] 2013; 46 (3): 672-680. doi: 10.1021/ar3000585
AKÇAN et al. / Turk J Med Sci

132. Jain J, Arora S, Rajwade JM, Omray P, Khandelwal S et al. Silver nanoparticles in therapeutics: development of an antimicrobial gel formulation for topical use. Molecular Pharmaceutics [online] 2009; 6 (5): 1388-1401. doi: 10.1021/mp900056g

133. Foley S, Crowley C, Smaïhi M, Bonfils C, Erlanger BF et al. Cellular localisation of a water-soluble fullerene derivative. Biochemical and Biophysical Research Communications 2002; 294 (1): 116-119. doi: 10.1016/S0006-291X(02)00445-X

134. Fiorito S, Serafino A, Andreola F, Bernier P. Effects of fullerenes and single-wall carbon nanotubes on murine and human macrophages. Carbon 2006; 44 (6): 1100-1105. doi: 10.1016/j.carbon.2005.11.009

135. Yu T, Malugin A, Ghandehari H. Impact of silica nanoparticle design on cellular toxicity and hemolytic activity. American Chemical Society Nano 2011; 5 (7): 5717-5728. doi: 10.1021/nn2013904

136. Gonzalez L, Sanderson BJS, Kirsch-Volders M. Adaptations of the in vitro MN assay for the genotoxicity assessment of nanomaterials. Mutagenesis 2011; 26 (1): 185-191. doi: 10.1093/mutage/geq088

137. Karlsson HL. The comet assay in nanotoxicology research. Analytical and Bioanalytical Chemistry 2010; 398 (2): 651-666. doi: 10.1007/s00216-010-3977-0

138. Uo M, Tamura K, Sato Y, Yokoyama A, Watari F et al. The cytotoxicity of metal-encapsulating carbon nanocapsules. Small 2005; 1 (8-9): 816-819. doi: 10.1002/smll.200400143

139. Muller J, Huaux F, Moreau N, Misson P, Heillier JF et al. Respiratory toxicity of multi-wall carbon nanotubes. Toxicology and Applied Pharmacology 2005; 207 (3): 221-231. doi: 10.1016/j.taap.2005.01.008

140. Flahaut E, Durrieu MC, Remy-Zolghadri M, Bareille R, Baquery C. Investigation of the cytotoxicity of CCVD carbon nanotubes towards human umbilical vein endothelial cells. Carbon 2006; 44 (6): 1093-1099. doi: 10.1016/j.carbon.2005.11.007

141. Sayes CM, Fortner JD, Guo W, Lyon D, Boyd AM et al. The differential cytotoxicity of water-soluble fullerenes. Nano Letters [online] 2004; 4 (10): 1881-1887. doi: 10.1021/nl0489586

142. Seleverstov O, Zabirnyk O, Zscharnack M, Bulavina L, Nowicki M et al. Quantum dots for human mesenchymal stem cells labeling. a size-dependent autophagy activation. Nano Letters [online] 2006; 6 (12): 2826-2832. doi: 10.1021/nl0619711

143. Pantarottolo D, Briand J-P, Prato M, Bianco A. Translocation of bioactive peptides across cell membranes by carbon nanotubes. Chemical Communications [online] 2004; 10 (1): 16. doi: 10.1039/b311254c

144. Kostarelos K, Lacerda L, Pastorin G, Wu W, Wieckowski S et al. Cellular uptake of functionalized carbon nanotubes is independent of functional group and cell type. Nature Nanotechnology 2007; 2 (2): 108-113. doi: 10.1038/nnano.2006.209

145. Monteiro-Riviere NA, Inman AO. Challenges for assessing carbon nanomaterial toxicity to the skin. Carbon 2006; 44 (6): 1070-1078. doi: 10.1016/j.carbon.2005.11.004

146. Gopinath P, Gogoi SK, Chattopadhyay A, Ghosh SS. Implications of silver nanoparticle induced cell apoptosis for in vitro gene therapy. Nanotechnology 2008; 19 (7). doi: 10.1088/0957-4484/19/7/075104

147. Fernández-Urrusuno R, Fattal E, Féger J, Couvreur P, Théondon P. Evaluation of hepatic antioxidant systems after intravenous administration of polymeric nanoparticles. Biomaterials 1997; 18 (6): 511-517. doi: 10.1016/S0142-9612(96)00178-0

148. Zhang M, Xu C, Jiang L, Qin J. A 3D human lung-on-a-chip model for nanotoxicity testing. Toxicology Research (Cambridge) 2018; 7 (6): 1048-1060. doi: 10.1039/c8tx00156a

149. Yin F, Zhu Y, Zhang M, Yu H, Chen W et al. A 3D human placenta-on-a-chip model to probe nanoparticle exposure at the placental barrier. Toxicology in Vitro [online] 2019; 54: 105-113. doi: 10.1016/j.tiv.2018.08.014

150. Shah P, Kaushik A, Zhu X, Zhang C, Li CZ. Chip based single cell analysis for nanotoxicity assessment. Analyst 2014; 139 (9): 2088-2098. doi: 10.1039/c3an02280c

151. Dusinska M, Boland S, Saunders M, Juillerat-Jenneret L, Tran L et al. Towards an alternative testing strategy for nanomaterials used in nanomedicine: lessons from NanoTEST. Nanotoxicology 2015; 9 (S1): 118-132. doi: 10.3109/17435390.2014.991431

152. Lan J, Gou N, Gao C, He M, Gu AZ. Comparative and mechanistic genotoxicity assessment of nanomaterials via a quantitative toxicogenomics approach across multiple species. Environmental Science & Technology 2014; 48 (21): 12937-12945. doi: 10.1021/es503065q

153. Smolko B, Dusinska M, Gabelova A. Nanomedicine and epigenome. possible health risks [online]. Food and Chemical Toxicology 2017; 109: 780-796. doi: 10.1016/j.fct.2017.07.020

154. Paunovska K, Loughrey D, Sago CD, Langer R, Dahlman J.E. Using large datasets to understand nanotechnology. Advanced Materials 2019; 31 (43): 1-16. doi: 10.1002/adma.201902798

155. Gallud A, Klöditz K, Ytterberg J, Östberg N, Katayama S et al. Cationic gold nanoparticles elicit mitochondrial dysfunction: a multi-omics study. Scientific Reports 2019; 9 (1): 1-19. doi: 10.1038/s41598-019-40579-6

156. Scoville DK, Botta D, Galdanes K, Schmuck SC, White CC et al. Genetic determinants of susceptibility to silver nanoparticle-induced acute lung inflammation in mice. The Journal of the Federation of American Societies for Experimental Biology 2017; 31 (10): 4600-4611. doi: 10.1096/fj.201700187R

1196