Relaxation in population dynamics models with hysteresis *

Sergey A. Timoshin† and Toyohiko Aiki‡

submitted on August 6, 2019

Abstract

The present paper is concerned with a nonlinear partial differential control system subject to a state-dependent and nonconvex control constraint. This system models the dynamics of populations in the vegetation–prey–predator framework and takes account of diffusive and hysteresis effects appearing in the process. We prove the existence of solutions to our system and show that they are close in a suitable sense to solutions of the system with the convexified control constraint.

Keywords: biological diffusion models, hysteresis, evolution control systems, state-dependent constraints, relaxation.

1 Introduction

The motivation of the present paper comes from problems arising in prey–predator models when diffusive effects in the dynamics of the prey and predator populations are taken into account and the evolution of the food density for the prey exhibits a hysteretic character. Aiming at achieving a possible optimization of the population...
dynamics process by way of controlling the growth rate of the prey, we introduce
the following dynamical control problem:
\[\begin{align*}
\sigma_t - av_t + \partial I_{v,w}(\sigma) &\ni F(\sigma, v, w) \quad \text{in } Q(T), \\
v_t - \Delta v = h(\sigma, v, w) u &\quad \text{in } Q(T), \\
w_t - \Delta w = g(\sigma, v, w) &\quad \text{in } Q(T), \\
\sigma(x, 0) = \sigma_0(x), \ v(x, 0) = v_0(x), \ w(x, 0) = w_0(x) &\quad \text{in } \Omega,
\end{align*}\]
(1.1)
(1.2)
(1.3)
(1.4)
(1.5)

Here, \(Q(T) := [0, T] \times \Omega\) with \(T > 0\) being a fixed final time and \(\Omega\) a bounded
domain in \(\mathbb{R}^N\), \(N \leq 3\), with smooth boundary \(\partial \Omega\). \(I_{v,w}(\cdot)\) is the indicator function
of the interval \([f_*(v, w), f^*(v, w)]\), \(\partial I_{v,w}(\cdot)\) is its subdifferential in the sense of convex
analysis. \(f_*, f^* : \mathbb{R}^2 \to \mathbb{R}, F, h, g : \mathbb{R}^3 \to \mathbb{R}\) are prescribed functions with properties
enlisted in the next section, \(a\) is a constant, \(\sigma_0, v_0, w_0\) are given initial conditions,
and \(\partial / \partial n\) is the outward normal derivative on \(\partial \Omega\). The function \(u\) on the right-hand
side of (1.2) plays the role of control.

In our model, the unknown variables \(\sigma, v,\) and \(w\) represent the densities of
the food for the prey (vegetation), the prey and the predator, respectively. The
evolution of the food density is characterized by a hysteretic relationship with the
hysteresis region generated by the characteristic curves \(\sigma = f_*(v, w)\) and \(\sigma = f^*(v, w)\) (cf. [1]) capturing the situation in which the growth rate of the food for
the prey depends not only on the present state of preys and predators, but also on
their immediately preceding density history.

Nonlinear phenomena of hysteresis type are encountered in many branches of
natural and applied sciences ranging from the physics of materials to economics.
The biological literature has also repeatedly described the situation when the way
the state variables of a process change after the system’s parameters have been
changed is different from the way the variables change back when the parameters
regain their former values and a hysteresis loop is thus formed. Note, however, that
contributions with the rigorous mathematical treatment of biological processes with
hysteresis, let alone controlled biological systems with hysteresis, are still very few
in number (see [2–6]).

The famous spruce budworm population dynamics models can serve an example
of practical situation where our results may find potential applications. These
models describe the budworm–forest ecosystem consisting of a forest insect pest
(spruce budworm) endemic to eastern North America which defoliates balsam fir
and several other tree species in the boreal forest and is a prey for avian predators
of the forest. The modelling and the subsequent study of the budworm–forest
interactions are very important in the forest ecology as the budworm during its
outbreaks causes substantial damage to the forest destroying a large number of
trees (see [7, 8] for a particular instance of spruce budworm dynamics modelling).
System (1.1)–(1.5) is considered subject to the following state-dependent control constraint

\[ u \in U(t, x, \sigma, v, w) \quad \text{in } Q(T), \]  

(1.6)

where the control constraint multifunction \( U : Q(T) \times \mathbb{R}^3 \to \mathbb{R} \) has compact, but not necessarily convex values. We note that while the nonconvexity of values of \( U \) might be a biologically relevant assumption, it poses certain difficulties for mathematical and numerical analysis of the control problem. Hence, along with (1.6) we consider the following alternative (convexified) control constraint

\[ u \in \text{co}U(t, x, \sigma, v, w) \quad \text{in } Q(T), \]  

(1.7)

where \( \text{co}U \) denotes the convex hull of the set \( U \), which is the smallest inclusion convex set containing \( U \). The corresponding systems (1.1)–(1.6) and (1.1)–(1.6), (1.7)–(1.6) will in the sequel be referred to and denoted as the given (or original) \( (P) \) and convexified (or relaxed) \( (RP) \) problems, respectively.

The main aim of the present paper then is to establish the existence of solutions to Problems \( (P) \) and \( (RP) \) and to show that the solutions of the two problems are close in a prescribed sense. Namely, we establish the so-called relaxation property for system \( (P) \) asserting that its solutions are dense in an appropriate topology among the solutions of system \( (RP) \). The exact meaning in which solutions to Problems \( (P) \) and \( (RP) \) and the relaxation property are understood is explained in the next section.

We note that control system (1.1)–(1.6) is a modification of the following control system, coupled with the relevant initial boundary conditions and control constraint, considered recently in [6] to describe the evolution of populations in the prey-predator framework when diffusion of the vegetation is being accounted for:

\[
\begin{align*}
\sigma_t - (\lambda(v))_t - \kappa \Delta \sigma + \partial I_{v,w}(\sigma) &\ni F(\sigma, v, w) u \quad \text{in } Q(T), \\
v_t - \Delta v &\ni h(\sigma, v, w) \quad \text{in } Q(T), \\
w_t - \Delta w &\ni g(\sigma, v, w) \quad \text{in } Q(T),
\end{align*}
\]  

(1.8)

where \( \lambda : \mathbb{R} \to \mathbb{R} \) is a given function and \( \kappa > 0 \) is a diffusion parameter. In [6] we proved the existence of solutions for this control problem.

There are a number of reasons for considering our control problem in the form (1.1)–(1.3) in place of (1.8)–(1.10). First, a seemingly simplifying assumption that \( \kappa = 0 \) renders, in actual fact, the mathematical investigation of system (1.1)–(1.3) more challenging as, in this case, less spatial regularity of the state \( \sigma \) is entailed and the dependence of \( \sigma \) on \( x \) may not be necessarily smooth. On the other hand, the absence of vegetation diffusion is quite natural in many biological models, in particular, in the spruce budworm population dynamics model mentioned above when considered on the short-to-mid term timescale. Second, the inclusion of the external controller \( u \) to the second equation of the system as in (1.1)–(1.3) instead of the first one as in (1.8)–(1.10) is more justifiable from an ecological viewpoint as the typical controlling actions available usually directly affect the rate of change in
budworm population, e.g., direct spraying of insecticides, removal of infected trees and so on. The price we need to pay for the above ameliorations to the model is that we are constrained to consider only the case of a linear function $\lambda$. Note, however, that this is not a real restriction from the biological perspective as the function $\lambda$ considered in typical examples from the population dynamics is linear. Moreover, when $w$ is fixed and $F \equiv 0$, $a = 1$ Eq. \((1)\) recovers the differential representation of the generalized stop operator (cf. \([1]\)).

In conclusion, we mention that when considering optimal control problems, necessary optimality conditions are usually obtained only for convex problems (convex cost functional and convex constraints). At the same time, numerical algorithms for optimal control problems are largely based on necessary optimality conditions. In this respect, our relaxation results provide a step towards justification of the passage from real life nonconvex problems to amenable to calculations convex problems.

### 2 Notation and assumptions

Denote by $H$ the Hilbert space $L^2(\Omega)$ with the usual scalar product $\langle \cdot, \cdot \rangle_H$ and the norm $| \cdot |_H$, and let $V$ be the Sobolev space $H^1(\Omega)$ equipped with the norm $|v|_V = \langle v, v \rangle_1^{1/2}$, where $\langle v, w \rangle_V = \langle v, w \rangle_H + \int_\Omega \langle \nabla v(x), \nabla w(x) \rangle_{\mathbb{R}^N} \, dx$, $v, w \in V$. Let $V'$ be the dual space of $V$ and $\langle \cdot, \cdot \rangle$ stand for the duality pairing between $V'$ and $V$. Define the operator $-\Delta_N : D(-\Delta_N) \subset H \to H$ as the restriction of the operator $\mathcal{R} : V \to V'$, $\langle \mathcal{R}v, w \rangle = \int_\Omega \langle \nabla v(x), \nabla w(x) \rangle_{\mathbb{R}^N} \, dx$, $v, w \in V$, to the subset $V$ consisting of the elements $v$ such that $\mathcal{R}v \in H$. Then, we have

$$D(-\Delta_N) = \left\{ v \in H^2(\Omega); \partial v/\partial n = 0 \text{ in } H^{1/2}(\partial\Omega) \right\}$$

and

$$-\Delta_N v = -\Delta v \quad \text{for all } v \in D(-\Delta_N).$$

Given a convex, lower semicontinuous function $\varphi : H \to \mathbb{R} \cup \{+\infty\}$ which is not identically $+\infty$ its subdifferential $\partial \varphi(x)$ at a point $x \in H$ is the set

$$\partial \varphi(x) = \left\{ h \in H : \langle h, y - x \rangle_H \leq \varphi(y) - \varphi(x), \forall y \in H \right\}.$$

The subdifferential mapping $\partial \varphi : H \to H$ is a monotone operator. A multivalued operator $A : H \to H$ is said to be monotone if for any $x_i \in \text{dom} A := \{ x \in H : Ax \neq 0 \}$, and any $h_i \in Ax_i$, $i = 1, 2$, the inequality $\langle x_1 - x_2, h_1 - h_2 \rangle \geq 0$ holds.

For a Banach space $X$ we denote by $\text{haus}_X(\cdot, \cdot)$ the Hausdorff metric on the space $cb(X)$ of all closed bounded subsets of $X$. A multivalued mapping $A$ from a measurable space $(\mathcal{E}, A)$ to $cb(X)$ is called measurable if $\{ \tau \in \mathcal{E}; A(\tau) \cap C \neq \emptyset \} \in A$ for any closed set $C \subset X$.

We introduce now the hypotheses on the data of our Problem \((P)\). These hypotheses are valid throughout the rest of the paper.

**Hypotheses (H).**
Relaxation for a prey-predator model with hysteresis

(H1) the functions \( f_*, f^* \in C^2(\mathbb{R}^2) \cap W^{2,\infty}(\mathbb{R}^2) \) are such that \( 0 \leq f_* \leq f^* \leq 1 \) on \( \mathbb{R}^2 \);

(H2) the functions \( F, h, g : \mathbb{R}^3 \to \mathbb{R} \) are Lipschitz continuous (with a common Lipschitz constant \( L > 1 \)) and are such that \( h(\sigma, 0, w) = 0 \) for \( \sigma \in [0, 1] \), \( w \in \mathbb{R} \), \( g(\sigma, v, 0) = 0 \) for \( \sigma \in [0, 1] \), \( v \in \mathbb{R} \);

(H3) the initial conditions \( \sigma_0, v_0, w_0 \in L^\infty(\Omega) \cap V \) are such that \( v_0 \geq 0 \), \( w_0 \geq 0 \) and \( f_*(v_0, w_0) \leq \sigma_0 \leq f^*(v_0, w_0) \) a.e. on \( \Omega \).

With respect to the bounds in the first hypothesis above we note that the fact that the vegetation \( \sigma \) is constant (= 1 after rescaling) when the prey population \( v \) is zero, and \( \sigma = 0 \) if \( v \) exceeds a certain critical value is a natural assumption from a biological viewpoint (see also Definition 2.1 (iii)(a) below).

The next hypothesis lists the assumptions we impose on the control constraint (1.6).

Hypotheses (U). The multivalued mapping \( U : [0, T] \times \Omega \times \mathbb{R} \times \mathbb{R} \times \mathbb{R} \to cb(\mathbb{R}) \) has the following properties:

(U1) the mapping \( (t, x) \to U(t, x, \sigma, v, w) \), \( \sigma, v, w \in \mathbb{R} \), is measurable;

(U2) there exists a constant \( m > 0 \) such that \( |U(t, x, \sigma, v, w)|_H \leq m \) a.e. on \( Q(T) \), \( \sigma, v, w \in \mathbb{R} \);

(U3) there exists \( k \in L^2(0, T; \mathbb{R}^+) \) such that

\[
\text{haus}(U(t, x, \sigma_1, v_1, w_1), U(t, x, \sigma_2, v_2, w_2)) \\
\leq k(t)(|\sigma_1 - \sigma_2| + |v_1 - v_2| + |w_1 - w_2|)
\]

a.e. on \( Q(T) \), \( \sigma_i, v_i, w_i \in \mathbb{R} \), \( i = 1, 2 \).

In order to define a solution to our problems (P) and (RP) we first define the multivalued mapping

\[
U(t, \sigma, v, w) = \{ u \in H; u(x) \in U(t, x, \sigma(x), v(x), w(x)) \text{ a.e. on } \Omega \}, \quad \sigma, v, w \in H,
\]

and the set

\[
\mathcal{K}(v, w) = \{ \sigma \in H; f_*(v(x), w(x)) \leq \sigma(x) \leq f^*(v(x), w(x)) \text{ a.e. on } \Omega \}, \quad v, w \in H.
\]

Then, from [9 Lemma 3.1]] we see that the following properties hold for the mapping \( \mathcal{U} : [0, T] \times H \times H \times H \to cb(H) \):

(U1) the mapping \( t \to \mathcal{U}(t, \sigma, v, w) \) is measurable, \( \sigma, v, w \in H \);

(U2) \( |\mathcal{U}(t, \sigma, v, w)|_H \leq m \) a.e. on \([0, T] \), \( \sigma, v, w \in H \), where \( m > 0 \) is as above.
\[\text{(U8)} \quad \text{haus}_H(\mathcal{U}(t, \sigma_1, v_1, w_1), \mathcal{U}(t, \sigma_2, v_2, w_2)) \leq k(t)((\sigma_1 - \sigma_2)_H + |v_1 - v_2|_H + |w_1 - w_2|_H)\]
a.e. on \([0, T], \sigma_i, v_i, w_i \in H, i = 1, 2\) for \(k \in L^2(0, T; \mathbb{R}^+)\) as above.

**Definition 2.1.** A quadruple \(\{\sigma, v, w, u\}\) is called a solution of control system \((P)\) if

1. \(\sigma \in W^{1,2}(0, T; H), v, w \in W^{1,2}(0, T; H) \cap L^\infty(0, T; V) \cap L^2(0, T; H^2(\Omega));\)
2. \(u \in L^2(0, T; H);\)
3. \(\sigma' - av' + \partial I_{K(v,w)}(\sigma) \ni F(\sigma, v, w)\ \text{in } H\ \text{a.e. on } [0, T];\)
4. \(v' - \Delta_N v = h(\sigma, v, w) u\ \text{in } H\ \text{a.e. on } [0, T];\)
5. \(w' - \Delta_N w = g(\sigma, v, w)\ \text{in } H\ \text{a.e. on } [0, T];\)
6. \(\sigma(0) = \sigma_0, v(0) = v_0, w(0) = w_0\ \text{in } H;\)
7. \(u(t) \in \mathcal{U}(t, \sigma(t), v(t), w(t))\ \text{in } H\ \text{for a.e. } t \in [0, T],\)

where the prime denotes the derivative with respect to \(t\).

A solution of control system \((RP)\) is defined similarly replacing the last inclusion with

\[u(t) \in \overline{\text{co}} \mathcal{U}(t, \sigma(t), v(t), w(t))\ \text{in } H\ \text{for a.e. } t \in [0, T].\]

When \(u\) is fixed in some appropriate set the notion of a solution for system \((U)\) naturally extends from Definition 2.1. So, in this case, a solution is a triple \(\{\sigma, v, w\}\) satisfying (i), (iii)–(vi) of Definition 2.1 (see Theorem 3.1 of the next section).

Remark that inclusion (iii) in Definition 2.1 implies the following:

(iii)\(a) \quad f_s(v, w) \leq \sigma \leq f^*(v, w)\ \text{a.e. in } Q(T);\)

(iii)\(b) \quad (\sigma'(t) - av'(t) - F(\sigma(t), v(t), w(t)), \sigma(t) - z)_H \leq 0\ \text{for all } z \in H \text{ with}\)

\[f_s(v(t), w(t)) \leq z \leq f^*(v(t), w(t))\ \text{a.e. in } \Omega\ \text{for a.e. } t \in [0, T].\]

Given Hypotheses \((H)\) and \((U)\), the main purpose of this work is to prove the following result.

**Theorem 2.1.** Control systems \((P)\) and \((RP)\) have solutions. Moreover, for any solution \(\{\sigma_s, v_s, w_s, u_s\}\) of the latter system there exists a sequence of solutions \(\{\sigma_k, v_k, w_k, u_k\}\), \(k \geq 1\), of the former one such that \(\{\sigma_k, v_k, w_k\} \to \{\sigma_s, v_s, w_s\}\) in \(C([0, T]; H \times H \times H)\) and \(u_k \to u\) weakly in \(L^2(0, T; H)\).

We note that this last property is commonly refereed to as relaxation.
3 Control-to-state solution operator

The bound from hypothesis \((U2)\) for the controls of Problem \((P)\) obviously extends to those of the convexified problem \((RP)\). In particular, all the controls of both problems belong to the set

\[ S_m = \{ u \in L^2(0, T; H); |u(t, x)| \leq m \text{ a.e. on } Q(T) \}. \tag{3.1} \]

We have the following theorem.

**Theorem 3.1.** For any fixed \( u \in S_m \) system \((1.1) - (1.5)\) has a unique solution. Moreover, for any solution \( \{ \sigma, v, w \} \) of \((1.1) - (1.5)\) with \( u \in S_m \) the following a priori estimates uniform with respect to \( u \) hold

\[ 0 \leq \sigma, v, w \leq R_0 \text{ a.e. on } Q(T), \tag{3.2} \]

\[ |\sigma'|_{L^2(0, T; H)} + |v'|_{L^2(0, T; H)} + |w'|_{L^2(0, T; H)} \]
\[ + |\nabla v|_{L^\infty(0, T; H)} + |\nabla w|_{L^\infty(0, T; H)} \leq R_0 \tag{3.3} \]

for a constant \( R_0 \) independent of \( u \).

**Proof.** The existence of a unique solution to \((1.1) - (1.5)\) for a fixed \( u \in S_m \) as well as the estimate \((3.2)\) follow from [5, Theorems 3.1, 3.2, and 3.10].

To derive the energy estimates \((3.3)\), first we multiply Eq. \((iv)\) in Definition 2.1 by \( v' \) and Eq. \((v)\) in Definition 2.1 by \( w' \), add the resulting equalities and invoke Young’s inequality to obtain

\[ \frac{d}{dt}|\nabla v|^2_{H} + \frac{d}{dt}|\nabla w|^2_{H} \leq C_1 \tag{3.4} \]

a.e. on \((0, T)\), where \( C_1 = m((2|v|_{L^\infty} + |g|_{L^\infty})|\Omega| \) and |\Omega| stands for the Lebesgue measure of \( \Omega \). Next, testing Eq. \((iv)\) in Definition 2.1 by \(-\Delta v\) and Eq. \((v)\) in Definition 2.1 by \(-\Delta w\), and summing up the resulting equalities we see that

\[ \frac{d}{dt}|\nabla v|^2_{H} + \frac{d}{dt}|\nabla w|^2_{H} + |\Delta v|^2_{H} + |\Delta w|^2_{H} \leq C_1 \tag{3.5} \]

a.e. on \((0, T)\). From Definition 2.1 \((iii)(a), (b)\) it follows that

\[ \sigma' = \begin{cases} 
F(\sigma, v, w)u + av' & \text{if } f_*(v, w) < \sigma < f^*(v, w), \\
(f'_v(v, w)v' + f'_w(v, w)w') & \text{if } \sigma = f_*(v, w), \\
f'_v(v, w)v' + f'_w(v, w)w' & \text{if } \sigma = f^*(v, w). 
\end{cases} \tag{3.6} \]

Multiplying the first line of \((3.6)\) by \( \sigma' \) with the help of Young’s inequality we deduce that

\[ |\sigma'|_{H}^2 \leq C_2 \left(1 + |v'|_{H}^2\right) \tag{3.7} \]
Moreover, $v, w \in \{ \text{the sequence } \} \text{ converges to some } u \text{ L-metrizable. Hence, it is enough to establish the sequential continuity of the operator }$

$$
|\sigma|^2_{H^2} \leq C_3 \left( 1 + |v'|^2_H + |w'|^2_H \right)
$$

(3.8) a.e. on $(0, T)$, where $C_3 = C_2 + \max\{|f'_v|_{\infty}, |f'_w|_{\infty}, |f'_v'|_{\infty}, |f'_w'|_{\infty}|.$ Calculating $(3.3) + (3.5) + (3.8)$ we obtain

$$
|v'|^2_H + |w'|^2_H + \frac{1}{C_3} |\sigma|^2_{H^2} + 2|\Delta v|^2_H + 2|\Delta w|^2_{H^2} + \frac{d}{dt} \left( |\nabla v|^2_H + |\nabla w|^2_H \right) \leq 4C_1 + 1.
$$

Integrating now this inequality from 0 to $T$ we obtain the uniform with respect to $u$ estimates (3.3).

We note that the bound (3.2) allows us to assume that the functions $F, g, h$ are bounded on $\mathbb{R}^3$. Indeed, it is enough to restrict our analysis to the set $\{0 \leq \sigma, v, w \leq R_0\}$.

Let $L : S_m \to C([0, T]; H \times H \times H)$ be the operator which with each $u \in S_m$ associates the unique solution

$$
\{\sigma(u), v(u), w(u)\} = T(u).
$$

(3.9) of system (1.1)-(1.5). Then, we have the following result.

**Theorem 3.2.** The solution operator $L : S_m \to C([0, T]; H \times H \times H)$ is weak-strong continuous.

**Proof.** The set $S_m$ endowed with the weak topology of the space $L^2(0, T; H)$ is metrizable. Hence, it is enough to establish the sequential continuity of the operator $L$. To this aim, take an arbitrary sequence $u_n, n \geq 1$, from $S_m$ which weakly converges to some $u \in S_m$. Let $\{\sigma(u_n), v(u_n), w(u_n)\}, n \geq 1$, be the sequences of solutions of system (1.1)-(1.3) corresponding to the controls $u_n, n \geq 1$. By the weak and weak-star compactness results, the uniform estimates (3.2), (3.3) imply that there exists a subsequence $\{\sigma(u_{n_k}) := \sigma_k, v(u_{n_k}) := v_k, w(u_{n_k}) := w_k\}, k \geq 1$, of the sequence $\{\sigma(u_n), v(u_n), w(u_n)\}, n \geq 1$, and some elements $\sigma, v \in W^{1,2}(0, T; H)$, $w \in W^{1,2}(0, T; H) \cap L^\infty(0, T; V) \cap L^2(0, T; H^2(\Omega))$ such that

$$
v_k \to v \quad \text{and} \quad w_k \to w \quad \text{weakly-star in } L^\infty(0, T; V)
$$

and weakly in $W^{1,2}(0, T; H) \cap L^2(0, T; H^2(\Omega))$

(3.10) and, thus, strongly in $C([0, T]; H)$,

$$
\sigma_k \to \sigma \quad \text{weakly in } W^{1,2}(0, T; H).
$$

(3.11)

Moreover,

$$
\Delta_N v_k \to \xi_1 \quad \text{weakly in } L^2([0, T]; H),
$$

(3.12)

$$
\Delta_N w_k \to \xi_2 \quad \text{weakly in } L^2([0, T]; H)
$$

(3.13)
for some \( \xi_1, \xi_2 \in L^2([0, T], H) \).

We show first that
\[
\xi_1(t) = \Delta_N v(t), \quad \xi_2(t) = \Delta_N w(t)
\]
for a.e. \( t \in [0, T] \).

(3.14)

To this end, we note that the function
\[
\psi(v) = \begin{cases} 
\frac{1}{2} |v|_H^2 + \frac{1}{2} |\nabla v|_H^2 & \text{if } v \in V; \\
+\infty & \text{if } v \in H \setminus V 
\end{cases}
\]
is lower semicontinuous, convex and not identically \(+\infty\) on \( H \) and
\[
\text{dom } \partial \psi = D(-\Delta_N), \quad \partial \psi(v) = v - \Delta_N v.
\]

(3.15)

Therefore [10, Proposition 0.3.3] for the function
\[
\Psi(v) = \begin{cases} 
\int_0^T \psi(v(t)) \, dt & \text{if } t \to \psi(v(t)) \text{ is integrable}, \\
+\infty & \text{otherwise},
\end{cases}
\]
v \( \in L^2([0, T], H) \), the following inclusion holds
\[
v_k - \Delta_N v_k \in \partial \Psi(v_k), \quad k \geq 1.
\]

Passing to the limit as \( k \to \infty \) in this inclusion with the help of [11, Proposition 3.59 and Theorem 3.66] in view of (3.10), (3.12) we infer that
\[
v - \xi_1 \in \partial \Psi(v).
\]

Applying again [10, Proposition 0.3.3] from the last inclusion and (3.15) we see that
\[
v(t) - \xi_1(t) \in \partial \psi(v(t)) = v(t) - \Delta_N v(t)
\]
for a.e. \( t \in [0, T] \), which proves the first equality in (3.14). The second inequality is proved similarly.

Next, in order to justify the passage to the limit in the nonlinear right-hand sides of system (1.1)–(1.3) we show that along with (3.11) we have the following convergence
\[
\sigma_k \to \sigma \quad \text{strongly in } C([0, T]; H).
\]

(3.16)

To this end, define the function
\[
M(\sigma, v, w) := \sigma - [\sigma - f^*(v, w)]^+ + [f_*(v, w) - \sigma]^+,
\]
\( \sigma, v, w \in \mathbb{R} \), where \([ \cdot ]^+\) is the positive part of a function. Take \( i, j \geq 1 \) such that \( i \not= j \). Then,
\[
f_*(v_j, w_j) \leq M(\sigma_i, v_j, w_j).
\]

In fact, if \( \sigma_i < f_*(v_j, w_j) \) (\( \sigma_i > f^*(v_j, w_j) \)), then \( M(\sigma_i, v_j, w_j) = f_*(v_j, w_j) (f^*(v_j, w_j)) \geq f_*(v_j, w_j) \). When \( f_*(v_j, w_j) \leq \sigma_i \leq f^*(v_j, w_j) \), then \( M(\sigma_i, v_j, w_j) = \sigma_i \geq f_*(v_j, w_j) \) by the assumption. Similarly, we have
\[
M(\sigma_i, v_j, w_j) \leq f^*(v_j, w_j),
\]
so that $M(\sigma_i, v_j, w_j) \in K(v_j, w_j)$. Hence, $I_{K(v_j, w_j)}(M(\sigma_i, v_j, w_j)) = 0$ and from
the definition of the subdifferential $\partial I_{K(v,w)}$ we deduce that the zero element of the space $H$
\[
\Theta_H \in \partial I_{K(v_j, w_j)}(M(\sigma_i, v_j, w_j)).
\]  
(3.18)
The monotonicity of the operator $\partial I_{K(v,w)}$, Eq. (iii) of Definition 2.1, and
then imply that
\[
\langle \sigma_j - M(\sigma_i, v_j, w_j), F(\sigma_j, v_j, w_j) - \sigma_j' + \alpha v_j' - \Theta_H \rangle_H \geq 0
\]  
(3.19)
a.e. on $[0,T]$. Furthermore, from (3.17), Definition 2.1 (iii)(a), and the Lipschitz
continuity of the functions $f_*$ and $f^*$ it follows that
\[
|\sigma_i - M(\sigma_i, v_j, w_j)| = |\alpha f_*(v_j, w_j) - \sigma_i|^+ - |\sigma_i - f^*(v_j, w_j)|^+
\]  
(3.20)
a.e. on $Q(T)$, where $L_0$ is a common Lipschitz constant of $f_*$ and $f^*$. From (3.19)
and (3.20) we conclude that
\[
\langle \sigma_j - \sigma_i, \sigma_j' - F(\sigma_j, v_j, w_j) - \alpha v_j' \rangle_H
\]
\[
\leq L_0(|v_j - v_i| + |w_j - w_i|, |\sigma_j' - F(\sigma_j, v_j, w_j) - \alpha v_j'|) \]
a.e. on $[0,T]$. Interchanging the roles of the indices $i$ and $j$ we also have
\[
\langle \sigma_i - \sigma_j, \sigma_i' - F(\sigma_i, v_i, w_i) - \alpha v_i' \rangle_H
\]
\[
\leq L_0(|v_j - v_i| + |w_j - w_i|, |\sigma_i' - F(\sigma_i, v_i, w_i) - \alpha v_i'|) \]
a.e. on $[0,T]$. Summing the last two inequalities up from Hölder’s inequality we obtain
\[
\langle \sigma_j - \sigma_i, \sigma_j' - \sigma_i' \rangle_H \leq \langle \sigma_j - \sigma_i, F(\sigma_j, v_j, w_j) - F(\sigma_i, v_i, w_i) \rangle_H
\]
\[+ a \langle \sigma_j - \sigma_i, v_j' - v_i' \rangle_H
\]
\[+ 6L_0 \left( |\sigma_j'|_H + |\sigma_i'|_H + |a| \left( |v_j'|_H + |v_i'|_H \right) + R_1 \right) \left( |v_j - v_i|_H + |w_j - w_i|_H \right),
\]
a.e. on $[0,T]$, where $R_1 = 2|F|_{\infty} |\Omega|^{\frac{1}{p}}$. The application of Young’s inequality further
gives
\[
\frac{d}{dt} |\sigma_j - \sigma_i|^2 \leq R_2 \left( |\sigma_j - \sigma_i|^2_H + |v_j - v_i|^2_H + |w_j - w_i|^2_H \right)
\]
\[+ 2a \langle \sigma_j - \sigma_i, v_j' - v_i' \rangle_H
\]
\[+ 12L_0 \left( |\sigma_j'|_H + |\sigma_i'|_H + |a| \left( |v_j'|_H + |v_i'|_H \right) + R_1 \right) \left( |v_j - v_i|_H + |w_j - w_i|_H \right),
\]
a.e. on $[0,T]$, where $R_2 = 3 + L_0$. Integrating this inequality from 0 to $t \in [0,T]$
we infer that
\[
|\sigma_j - \sigma_i|_{H}^2(t) \leq R_2 \int_0^t |\sigma_j - \sigma_i|_{H}^2(\tau) \, d\tau \\
+ R_2 T \left( |v_j - v_i|_{C([0,T];H)}^2 + |w_j - w_i|_{C([0,T];H)}^2 \right) \\
+ 2|a| \int_0^t \int_{\Omega} (\sigma_j - \sigma_i)(\tau)(\sigma'_j - \sigma'_i)(\tau) \, dx \, d\tau \\
+ R_3 \left( |v_j - v_i|_{C([0,T];H)} + |w_j - w_i|_{C([0,T];H)} \right), \quad (3.21)
\]
t \in [0, T], where \( R_3 = 12L_0(2R_0^2(1 + |a|) + R_1 T). \) By applying Fubini's theorem and then integrating by parts, the second integral on the right-hand side of (3.21) can be rewritten and evaluated as follows
\[
2|a| \int_{\Omega} (v_j - v_i)(t)(\sigma_j - \sigma_i)(t) \, dx \leq 2|a| \int_0^t \int_{\Omega} (v_j - v_i)(\tau)(\sigma'_j - \sigma'_i)(\tau) \, d\tau \, dx \\
\leq 2|a| |v_j - v_i|_{H} \| \sigma_j - \sigma_i \|_{H} + 2|a| \int_0^t |v_j - v_i|_{H} \| \sigma'_j - \sigma'_i \|_{H} \, d\tau \\
\leq R_4 |v_j - v_i|_{C([0,T];H)}, \quad (3.22)
\]
where \( R_4 = 4|a|L_0(|\Omega|^\frac{1}{2} + 1). \) Therefore, applying Gronwall’s inequality to (3.21) in view of (3.22) and the convergences (3.10), we conclude that \( \sigma_k, k \geq 1, \) is a Cauchy sequence in the space \( C([0,T]; H). \) Hence, according to (3.11) we obtain the convergence (3.10).

Now, the Lipschitz continuity of \( F, g, h \) and the convergences (3.10), (3.16) allow us to conclude that
\[
F(\sigma_k, v_k, w_k) \to F(\sigma, v, w), \quad h(\sigma_k, v_k, w_k) \to h(\sigma, v, w), \\
g(\sigma_k, v_k, w_k) \to g(\sigma, v, w) \quad \text{in} \quad C([0,T]; H) \quad (3.23)
\]
We thus also have
\[
h(\sigma_k, v_k, w_k)u_k \to h(\sigma, v, w)u \quad \text{weakly in} \quad L^2([0,T]; H) \quad (3.24)
\]
and
\[
F(\sigma_k, v_k, w_k)u_k + av'_k - \sigma'_k \to F(\sigma, v, w)u + av' - \sigma' \quad \text{weakly in} \quad L^2([0,T]; H). \quad (3.25)
\]
Given the convergences (3.10)–(3.14) and (3.24)–(3.25) to finish the proof and show that the triple \( \{ \sigma, v, w \} \) is a solution to (1.1)–(1.5) with \( u \in S_m, \) i.e.
\[
\{ \sigma, v, w \} \equiv \mathcal{L}(u) = \{ \sigma(u), v(u), w(u) \},
\]
it remains to show that
\[
F(\sigma, v, w)u + av' - \sigma' \in \partial I_{\mathcal{K}(v, w)}(\sigma) \quad (3.26)
\]
a.e. on \([0, T]\). To this end, take an arbitrary \(z \in L^2([0, T]; H)\) such that \(z \in \mathcal{K}(v, w)\) a.e. on \([0, T]\) and for every \(k \geq 1\) define the function

\[
z_k := z - [z - f^*(v_k, w_k)]^+ + [f_*(v_k, w_k) - z]^+.
\]

Then, as above we see that \(z_k \in \mathcal{K}(v_k, w_k)\) a.e. on \([0, T]\) and from the definition of \(\mathcal{K}(v, w)\) and \((3.10)\) it also follows that

\[
z_k \to z \text{ in } L^2([0, T]; H).
\]

Consequently, the definition and monotonicity of the operator \(\partial I_{\mathcal{K}(v_k, w_k)}\) imply in view of Eq. (iii) of Definition 2.1 that

\[
\langle F(\sigma_k, v_k, w_k)u_k + av'_k - \sigma'_k, z_k - \sigma_k \rangle_H \leq 0, \quad k \geq 1,
\]

a.e. on \([0, T]\). Passing in this inequality to the limit as \(k \to \infty\) we see from \((3.10), (3.25), (3.27)\) that

\[
\langle F(\sigma, v, w)u + av' - \sigma', z - \sigma \rangle_H \leq 0
\]

a.e. on \([0, T]\) for any \(z \in L^2(0, T; H)\), \(z \in \mathcal{K}(v, w)\), and thus \((3.26)\) follows.

Therefore, \(\{\sigma, v, w\} = \mathcal{L}(u)\) and from the uniqueness of a solution to \((1.1)\) coupled with the convergences \((3.10), (3.16)\) it follows that \(\mathcal{L}(u_n) \to \mathcal{L}(u)\) in \(C([0, T], H \times H \times H)\) hence proving the assertion of the theorem. \(\square\)

The next theorem provides further continuity properties of the operator \(\mathcal{T}\) which are instrumental for the proof of both existence and relaxation for our control problem in the next section. To prove this theorem we will require the following lemma.

**Lemma 3.1.** ([5 Lemma 3.8]) Let \(\mu_0 > 0\) and \(\theta\) be a solution of the initial boundary value problem

\[
\begin{align*}
\theta' - \mu_0 \Delta \theta &= f \quad \text{in } Q, \\
\frac{\partial \theta}{\partial n} &= 0 \quad \text{on } (0, T) \times \partial \Omega, \\
\theta(0) &= \theta_0,
\end{align*}
\]

where \(f\) and \(\theta_0\) are given functions. If \(f \in L^r(0, T; L^q(\Omega))\) with \(\frac{1}{r} + \frac{N}{2q} < 1\) for \(q, r \geq 1\) and \(\theta_0 \in L^\infty(\Omega)\), then there exists a positive constant \(C_\ast\) depending on \(\Omega, \mu_0, q, r, \text{ and } N\) only such that

\[
|\theta|_{L^\infty(0, T; L^q(\Omega))} \leq C_\ast \left(|f|_{L^r(0, T; L^q(\Omega))} + |\theta_0|_{L^\infty(\Omega)}\right) \quad \text{for } 0 \leq t \leq T.
\]

**Theorem 3.3.** Let \(u_i \in S_m\) and \(\{\sigma_i, v_i, w_i\} = \mathcal{T}(u_i), i = 1, 2\). Then,

\[
\begin{align*}
|\sigma_1(t) - \sigma_2(t)|^2_H + |v_1(t) - v_2(t)|^2_H + |w_1(t) - w_2(t)|^2_H \\
\leq C_m \int_0^t |u_1(\tau) - u_2(\tau)|^2_H d\tau,
\end{align*}
\]

\(t \in [0, T]\), for a constant \(C_m > 0\) which depends on \(m\) only.
Proof. Denote $\sigma := \sigma_1 - \sigma_2$, $v := v_1 - v_2$, $w := w_1 - w_2$, and $u := u_1 - u_2$. Taking the difference of Eqs. (iv) in Definition 2.1 corresponding to $u_1$ and $u_2$, and testing the result by $v$ we obtain

$$\frac{1}{2} \frac{d}{dt} |v|^2_H + |\nabla v|^2_H \leq |h(\sigma_1, v_1, w_1)u_1 + h(\sigma_1, v_1, w_1)u_2 - h(\sigma_2, v_2, w_2)u_2|_H |v|_H.$$

Since the second term on the left-hand side of this inequality is always nonnegative, invoking Young’s inequality and the Lipschitz continuity of $h$ we have

$$\frac{d}{dt} |v|^2_H \leq |h|^2_H |u|^2_H + 2 |v|^2_H + m^2 L^2 (|\sigma|^2_H + |v|^2_H + |w|^2_H).$$

The integration from 0 to $t$ further yields

$$|v(t)|^2_H \leq C_0 \int_0^t (|\sigma(\tau)|^2_H + |v(\tau)|^2_H + |w(\tau)|^2_H + |u(\tau)|^2_H) \, d\tau,$$

$t \in [0, T]$, where $C_0 = |h|^2_H + m^2 L^2 + 2$. Making use of Eq. (v) in Definition 2.1 a similar inequality can be obtained for $|w(t)|^2_H$, so that we have

$$|v(t)|^2_H + |w(t)|^2_H \leq C_1 \int_0^t (|\sigma(\tau)|^2_H + |v(\tau)|^2_H + |w(\tau)|^2_H + |u(\tau)|^2_H) \, d\tau, \quad (3.29)$$

$t \in [0, T]$, where $C_1 = 2C_0$.

Multiplying now the result of the substraction of Eq. (iv) in Definition 2.1 corresponding to $u_2$ from that for $u_1$ by $v'$ we see that

$$|v'|^2_H + \frac{d}{dt} |\nabla v|^2_H \leq |h|_\infty |u|_{H^1} |v'|_H + m|h(\sigma_1, v_1, w_1) - h(\sigma_2, v_2, w_2)|_H |v'|_H.$$

Applying Young’s inequality to the last inequality, using the Lipschitz continuity of $h$, and integrating over $(0, t)$, $t \in [0, T]$, we obtain

$$\int_0^t |v'(\tau)|^2_H d\tau \leq C_2 \int_0^t (|\sigma(\tau)|^2_H + |v(\tau)|^2_H + |w(\tau)|^2_H + |u(\tau)|^2_H) \, d\tau, \quad (3.30)$$

$t \in [0, T]$, where $C_2 = 2(|h|_{L^\infty}^2 + m^2 L^2)$.

The application of Gronwall’s inequality to (3.29) leads to

$$|v(t)|^2_H + |w(t)|^2_H \leq C_3 \int_0^t (|\sigma(\tau)|^2_H + |u(\tau)|^2_H) \, d\tau, \quad (3.31)$$

$t \in [0, T]$, for $C_3 = \exp\{C_1 T\}$, and hence from (3.30) we infer that

$$\int_0^t |v'(\tau)|^2_H d\tau \leq C_4 \int_0^t (|\sigma(\tau)|^2_H + |u(\tau)|^2_H) \, d\tau, \quad (3.32)$$

$t \in [0, T]$, where $C_4 = C_2(1 + C_3 T)$. From (3.31) we also deduce that

$$|v|_{L^\infty(0,t;H)}^2 + |w|_{L^\infty(0,t;H)}^2 \leq C_3 \int_0^t (|\sigma(\tau)|^2_H + |u(\tau)|^2_H) \, d\tau, \quad (3.33)$$
\[ t \in [0, T]. \]

Now for \( s \in (0, T] \) define
\[
l(s) := \max \{|f_s(v_1, w_1) - f_s(v_2, w_2)|_{L^\infty(0, s; L^\infty(\Omega))}, |f^*(v_1, w_1) - f^*(v_2, w_2)|_{L^\infty(0, s; L^\infty(\Omega))}\}
\] 

and
\[
\tilde{\sigma}_1 := \sigma_1 - [\sigma - l(s)]^+, \quad \tilde{\sigma}_2 := \sigma_2 + [\sigma - l(s)]^+
\]
a.e. on \((0, s) \times \Omega\). Then, it is easily verified that the functions \( \tilde{\sigma}_1 \) and \( \tilde{\sigma}_2 \) can be taken as \( z \) in Definition 2.1 (iii)(b) and thus we have
\[
(\sigma_1'(t), [\sigma(t) - l(s)]^+)_{H^2} \leq (F(\sigma_1(t), v_1(t), w_1(t)) + av_1', [\sigma(t) - l(s)]^+)_{H^2}
\]
and
\[
-(\sigma_2'(t), [\sigma(t) - l(s)]^+)_{H^2} \leq -(F(\sigma_2(t), v_2(t), w_2(t)) + av_2', [\sigma(t) - l(s)]^+)_{H^2}
\]
for a.e. \( t \in [0, s] \). Adding the last two inequalities we get
\[
(\sigma'(t), [\sigma(t) - l(s)]^+)_{H^2} \leq (F(\sigma_1(t), v_1(t), w_1(t)) - F(\sigma_2(t), v_2(t), w_2(t)), [\sigma(t) - l(s)]^+)_{H^2} + a(v'(t), [\sigma(t) - l(s)]^+)_{H^2}
\]
for a.e. \( t \in [0, s] \). The Lipschitz continuity of \( F \) and Young's inequality further imply that
\[
\frac{d}{dt}|[\sigma(t) - l(s)]^+|_{H^2}^2 \leq L^2 \left(|\sigma(t)|^2_{H^2} + |v(t)|^2_{H^2} + |w(t)|^2_{H^2} + 2|\sigma(t) - l(s)|^2 \right)
\]
for a.e. \( t \in [0, s] \). From Gronwall's inequality it then follows that
\[
|[\sigma(t) - l(s)]^+|_{H^2}^2 \leq C_5 \int_0^t \left(|\sigma(\tau)|^2_{H^2} + |v(\tau)|^2_{H^2} + |w(\tau)|^2_{H^2} + |v'(\tau)|^2_{H^2} \right) d\tau, \tag{3.35}
\]
t \in [0, s], where \( C_5 = (L^2 + a^2) \exp \{2T\} \). To estimate the right-hand side of (3.35) we use (3.31), (3.32) and obtain
\[
|[\sigma(t) - l(s)]^+|_{H^2}^2 \leq C_6 \int_0^t \left(|\sigma(\tau)|^2_{H^2} + |u(\tau)|^2_{H^2} \right) d\tau
\]
t \in [0, s], where \( C_6 = C_5[(1 + C_3T) + C_4] \). We can obtain a similar estimate for \([\sigma(t) - l(s)]^+\), and thus we have
\[
|[\sigma(t) - l(s)]^2_{H^2} + |[-\sigma(t) - l(s)]^+|_{H^2}^2 \leq C_7 \int_0^t \left(|\sigma(\tau)|^2_{H^2} + |u(\tau)|^2_{H^2} \right) d\tau, \tag{3.36}
\]
Relaxation for a prey-predator model with hysteresis

\( t \in [0, s] \), for some constant \( C_7 > 0 \).

From Lemma 3.1 and the Lipschitz continuity of \( h \) we infer that

\[
|v|_{L^\infty(0,t;L^\infty(\Omega))} \leq C_s |h(\sigma_1, v_1, w_1) - h(\sigma_2, v_2, w_2)|_{L^s(0,t;H)}
\]

\[
\leq C_s \left( |\sigma|_{L^s(0,t;H)} + |v|_{L^s(0,t;H)} + |w|_{L^s(0,t;H)} \right),
\]

\( t \in [0, T] \). Similarly, we see that

\[
|w|_{L^\infty(0,t;L^\infty(\Omega))} \leq C_s \left( |\sigma|_{L^s(0,t;H)} + |v|_{L^s(0,t;H)} + |w|_{L^s(0,t;H)} \right),
\]

From these two inequalities, (3.34) and (3.33) we deduce that

\[
\tilde{l}^2(s) \leq 4L^2 \left( |v|_{L^\infty(0,s;L^\infty(\Omega))}^2 + |w|_{L^\infty(0,s;L^\infty(\Omega))}^2 \right)
\]

\[
\leq C_8 \int_0^s (|\sigma(\tau)|_{H}^2 + |u(\tau)|_{H}^2) \, d\tau + C_9 |\sigma|_{L^s(0,s;H)}^2, \tag{3.37}
\]

\( s \in [0, T] \), where \( C_8 = C_3T^{\frac{7}{4}}, C_9 = 24L^4C_s^2 \). It is easy to see that

\[
|\sigma| \leq \left| |\sigma - l(s)|^+ - |\sigma - l(s)|^+ \right| = \left| |\sigma - l(s)|^+ + |\sigma - l(s)|^+ \right|
\]

\[
\leq l(s) + \left| |\sigma - l(s)|^+ + |\sigma - l(s)|^+ \right| \tag{3.38}
\]
a.e. on \((0, s) \times \Omega\). Therefore, from (3.39) we conclude that

\[
|\sigma|_{L^\infty(0,t;H)} \leq C_1 |\sigma|_{L^s(0,t;H)}^2 + C_10 |u(\tau)|_{H}^2 \, d\tau, \quad t \in [0, T]
\]

for \( C_12 = C_10 T^{\frac{7}{4}} + C_{11} \). From this inequality we see that

\[
|\sigma(t)|_{H}^2 \leq 6C_12^4 \int_0^t |\sigma(\tau)|_{H}^2 \, d\tau + 6C_10^4 \left( \int_0^t |u(\tau)|_{H}^2 \, d\tau \right) \tag{3.40}, \quad t \in [0, T].
\]

Gronwall’s inequality then implies that

\[
|\sigma(t)|_{H}^2 \leq C_{13} \int_0^t |u(\tau)|_{H}^2 \, d\tau, \tag{3.39}
\]

t \in [0, T], where \( C_{13} = 2C_{10} \exp\{2C_12T\} \). Finally, from (3.31) and (3.39) we conclude that

\[
|\sigma(t)|_{H}^2 + |v(t)|_{H}^2 + |w(t)|_{H}^2 \leq C_m \int_0^t |u(\tau)|_{H}^2 \, d\tau,
\]

t \in [0, T], where \( C_m = C_3 + C_{13} + C_3C_{13}T \).
4 Existence and relaxation for the control problem

(P)

In this section, we prove Theorem 2.1. To this end, first on the space $L^2(0, T; H)$
define the following functions

$$P(u) = \left( \int_0^T \exp \left( -4C_m^2 \int_0^t k^2(\tau) \, d\tau \right) \|u(t)\|_H^2 \, dt \right)^{1/2}, \quad u \in L^2(0, T; H),$$

and

$$\Phi(u) = \{ \varphi \in L^2(0, T; H); \varphi(t) \in \mathcal{U}(t, \mathcal{L}(u)(t)) \text{ for a.e. } t \in [0, T] \}, \quad u \in S_m.$$

Here, recall that $C_m$ is the constant from $\text{(3.28)}$, $k(\cdot)$ is the function from Hypothesis $(\mathcal{U}3)$, and $\mathcal{L}$ is the solution operator $(3.9)$. Along with $\Phi$ consider the function

$$\Phi_m(u) := \Phi(u), \quad u \in S_m.$$

Then (cf. [12 Theorem 1.5]) we have

$$\Phi_m(u) = \{ \varphi(t) \in L^2(0, T; H); \varphi(t) \in \mathcal{U}(t, \mathcal{L}(u)(t)) \text{ for a.e. } t \in [0, T] \}, \quad u \in S_m.$$

It is easily verified that both $\Phi(u)$ and $\Phi_m(u)$ are nonempty bounded and
decomposable subsets of the space $L^2(0, T; H)$. Recall that a subset of $L^2(0, T; H)$
is called decomposable if along with any two functions $\varphi_1, \varphi_2 \in L^2(0, T; H)$ it
contains the function $\varphi_1 \chi_E + \varphi_2 \chi_{[0,1] \setminus E}$ for any measurable set $E \subset [0, T]$, where
$\chi_A$ is the characteristic function of a set $A$. Furthermore, $P$ is a norm on the space
$L^2(0, T; H)$ equivalent to the standard norm.

Next, from [13 Proposition 4.2], Hypothesis $(\mathcal{U}3)$ and $\text{(3.28)}$ we derive

\[
\text{haus}_P(\Phi(u_1), \Phi(u_2)) \leq \left( \int_0^T \exp \left( -4C_m^2 \int_0^t k^2(\tau) \, d\tau \right) \text{haus}_H^2 (\mathcal{U}(t, \mathcal{L}(u_1)(t)), \mathcal{U}(t, \mathcal{L}(u_2)(t))) \, dt \right)^{1/2} \\
\leq \left( \int_0^T \exp \left( -4C_m^2 \int_0^t k^2(\tau) \, d\tau \right) C_m^2 k^2(t) \left( \int_0^t |u_1(\tau) - u_2(\tau)|_H^2 \, d\tau \right) \, dt \right)^{1/2} \\
\leq \frac{1}{2} P(u_1 - u_2)
\]

$u_1, u_2 \in S_m$, where $\text{haus}_P$ is the Hausdorff metric on the space $cb(L^2(0, T; H))$
generated by the norm $P$, and in the derivation of the last inequality the integration
by parts is used. Since $\text{haus}_P(\Phi_m(u_1), \Phi_m(u_2)) \leq \text{haus}_P(\Phi(u_1), \Phi(u_2))$, we also have

$$\text{haus}_P(\Phi_m(u_1), \Phi_m(u_2)) \leq \frac{1}{2} P(u_1 - u_2).$$

Hence, [14 Theorem 3.1] implies that there exist $u, u_* \in L^2(0, T; H)$ such that

$$u(t) \in \mathcal{U}(t, \mathcal{T}(L)(t))$$
Relaxation for a prey-predator model with hysteresis

\[ u_*(t) \in \overline{\mathcal{U}(t, T(L)(t))} \]

for a.e. \( t \in [0, T] \). Setting \( \{\sigma, v, w\} := \mathcal{L}(u) \) and \( \{\sigma_*, v_*, w_*\} := \mathcal{L}(u_*) \) we see that \( \{\sigma, v, w, u\} \) and \( \{\sigma_*, v_*, w_*, u_*\} \) are solutions of Problems (P) and (RP), respectively.

Now, [15, Theorem 5.1] combined with [16, Proposition 6.1] implies that for any solution \( \sigma_*, v_*, w_*, u_* \) of the convexified problem (RP) there exists a sequence of solutions \( \{\sigma_k, v_k, w_k, u_k\} \), \( k \geq 1 \), of the original problem (P) such that \( u_k \to u_* \) weakly in \( L^2(0, T; H) \). Finally, from the continuity of the solution operator \( \mathcal{L} \) provided by Theorem 3.2 we conclude that \( \{\sigma_k, v_k, w_k\} \to \{\sigma_*, v_*, w_*\} \) in \( C(0, T; H) \).

References

[1] A. Visintin, Differential Models of Hysteresis. Appl. Math. Sci. 111, Springer-Verlag, Berlin, 1994.

[2] A. Visintin, Evolution problems with hysteresis in the source term, SIAM J. Math. Anal. 17 (1986), 1113–1138.

[3] T. Aiki and J. Kopfová, A mathematical model for bacterial growth described by a hysteresis operator, Recent advances in nonlinear analysis. World Sci. Publ., Hackensack, NJ (2008), 1–10.

[4] P. Gurevich, R. Shamin, and S. Tikhomirov Reaction-diffusion equations with spatially distributed hysteresis, SIAM J. Math. Anal. 45 (2013), no. 3, 1328–1355.

[5] T. Aiki and E. Minchev, A prey-predator model with hysteresis effect, SIAM J. Math. Anal. 36 (2005), no. 6, 2020–2032.

[6] S.A. Timoshin and T. Aiki, Control of biological models with hysteresis, Systems Control Lett. 128 (2019), 41-45.

[7] J.D. Murray, Mathematical Biology. I. An introduction. 3rd ed., Springer, 2002.

[8] D. Ludwig, D. Jones, and C.S. Holling, Qualitative analysis of insect outbreak systems: the spruce budworm and the forest, J. Anim. Ecol. 47 (1978), 315-332.

[9] P. Krejčí, S.A. Timoshin, and A.A. Tolstonogov, Relaxation and optimisation of a phase-field control system with hysteresis, Int. J. Control 91 (2018), no. 1, 85–100.

[10] N. Kenmochi, Solvability of nonlinear evolution equations with time-dependent constraints and applications, Bull. Fac. Educ., Chiba Univ., Part 2, 30 (1981) 1–87.

[11] H. Attouch, Variational Convergence for Functions and Operators. Pitman Advanced Publishing Program, Boston-London-Melbourne, 1984.

[12] F. Hiai and H. Umegaki, Integrals, conditional expectations, and martingales of multivalued functions, J. Multivariate Anal. 7 (1977), 149–182.
[13] A.A. Tolstonogov and D.A. Tolstonogov, $L_p$-continuous extreme selectors of multifunctions with decomposable values: Existence theorems. Set-Valued Anal. 4 (1996), 173–203.

[14] A.A. Tolstonogov, $L_p$-continuous selections of fixed points of multifunctions with decomposable values. I: Existence theorems. Sib. Math. J. 40 (1999), No. 3, 595–607.

[15] A.A. Tolstonogov, $L_p$-continuous selections of fixed points of multifunctions with decomposable values. II: Relaxation theorems. Sib. Math. J. 40 (1999), No. 5, 991–1003.

[16] A.A. Tolstonogov, Relaxation in nonconvex optimal control problems described by first-order evolution equations. Sb. Math. 190 (1999), No. 11–12, 1689-1714.