Characterization of the complete chloroplast genome sequence of _Blastus cochinchinensis_ (Melastomataceae)

Wenchun Zhang, Zhenying Wen, Sijin Zeng, Liang Luo and Donghui Peng

ABSTRACT

Blastus Lour. belongs to tribe Sonerileae (Melastomataceae), comprising about 18 species worldwide. Herein, we presented, assembled, and annotated the first complete chloroplast genome of _Blastus_ (_B. cochinchinensis_). The complete chloroplast genome (cp) size of _B. cochinchinensis_ was 156,005 bp in length, containing a pair of 26,812 bp inverted repeat (IR) regions, which were separated by a large single-copy region (LSC) 85,926 bp and a small single-copy (SSC) region 16,455 bp. The overall GC content of the genome was 37.0%. The whole genome contained 129 unique genes, including 81 protein-coding genes, 37 tRNA genes, and 8 rRNA genes. The phylogenetic analysis showed that _B. cochinchinensis_ was sister to _Barthea barthei_. The present study provided _B. cochinchinensis_ genomic information that may be found useful in conservation and molecular phylogenetic studies on _Blastus_.
(https://www.phylo.org/) to construct a maximum likelihood tree (Figure 1), the branch support was computed with 1000 bootstrap replicates. The phylogenetic analysis showed that \textit{B. cochinchinensis} was sister to \textit{Barthea barthei} with strong bootstrap support.

Disclosure statement

No potential conflict of interest was reported by the authors.

Funding

This study was supported by Fujian Natural Science Foundation [2019J01060681].

References

Bi G, Mao Y, Xing Q, Cao M. 2018. HomBlocks: a multiple-alignment construction pipeline for organelle phylogenomics based on locally collinear block searching. Genomics. 110:18–22.

Chen C. 1984. Melastomataceae. In: Chen C, editor. Flora reipublicae popularis sinicae. Beijing: Science Press; vol. 53, p. 135–293.

Chen C, Renner SS. 2007. Melastomataceae. In: Wu ZY, Raven PH, Hong DY, editors. Flora of China. Beijing: Science Press. vol. 13, p. 360–399.

Clausing G, Meyer K, Renner SS. 2000. Correlations among fruit traits and evolution of different fruits within Melastomataceae. Bot J Linnean Soc. 133:303–326.

Clausing G, Renner SS. 2001. Molecular phylogenetics of Melastomataceae and Memecylaceae: implications for character evolution. Am J Bot. 88:486–498.

Fritsch PW, Almeda F, Renner SS, Martins AB, Cruz BC. 2004. Phylogeny and circumscription of the near-endemic Brazilian tribe Microlicieae (Melastomataceae). Am J Bot. 91:1105–1114.

He XJ, Zhou YB, Cai YC, Chen ZD, Wu W, Zhou RC, Ng WL. 2017. The complete chloroplast genome sequence of \textit{Barthea barthei} (Melastomataceae), a shrub endemic to southern China. Mitochondrial DNA Part B. 2:810–811.

Kearse M, Moir R, Wilson A, Stones-Havas S, Cheung M, Sturrock S, Buxton S, Cooper A, Markowitz S, Duran C, et al. 2012. Geneious basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics. 28:1647–1649.

Lohse M, Drechsel O, Kahlau S, Bock R. 2013. OrganellarGenomeDRAW – a suite of tools for generating physical maps of plastid and mitochondrial genomes and visualizing expression data sets. Nucleic Acids Res. 41:575–581.

Ng WL, Cai YC, Wu W, Zhou RC. 2017. The complete chloroplast genome sequence of \textit{Melastoma candidum} (Melastomataceae). Mitochondrial DNA Part B. 2:242–243.

Reginato M, Neubig KM, Majure LC, Michelangeli FA. 2016. The first complete plastid genomes of Melastomataceae are highly structurally conserved. PeerJ. 4:e2715.

Stamatakis A. 2014. RAxML Version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics. 30:1312–1313.

Wyman JF, Bliss DZ, Dougherty MC, Gray M, Newman MKDK, Palmer MH, Wells TJ. 2004. Shaping future directions for incontinence research in aging adults: executive summary. Nurs Res. 53:1–10.

Zeng SJ, Huang GH, Liu Q, Yan XK, Zhang GQ, Tang GD. 2016. \textit{Fordiophyton zhuanagiae} (Melastomataceae), a new species from China based on morphological and molecular evidence. Phytotaxa. 282:259–266.

Zeng SJ, Zou LH, Wang P, Hong WJ, Zhang GQ, Chen LJ, Zhan YX. 2016. Preliminary phylogeny of \textit{Fordiophyton} (Melastomataceae), with the description of two new species. Phytotaxa. 247:45–61.

Zhou QJ, Zhou RC, Liu Y. 2018. Exploring the generic delimitation of \textit{Phyllagathis} and \textit{Bredia} (Melastomataceae): a combined nuclear and chloroplast DNA analysis. Jo System Evol. 9999:1–12.

Zhou QJ, Ng WL, Wu W, Zhou RC, Liu Y. 2018. Characterization of the complete chloroplast genome sequence of \textit{Tigridiopalmia magnifica} (Melastomataceae). Conserv Genet Resour. 10:571–573.

Zhou RC, Zhou QJ, Liu Y. 2018. \textit{Bredia repens} (Melastomataceae), a new species from Hunan, China. System Bot. 43:544–551.