Isogenous components of Jacobian surfaces

Lubjana Beshaj · Artur Elezi · Tony Shaska

Abstract
Let C be a genus 2 curve defined over a field K, $\text{char } K = p \geq 0$, and $\text{Jac}(C, \iota)$ its Jacobian, where ι is the principal polarization of $\text{Jac}(C)$ attached to C. Assume that $\text{Jac}(C)$ is (n, n)-geometrically reducible with E_1 and E_2 its elliptic components. We prove that there are only finitely many curves C (up to isomorphism) defined over K such that E_1 and E_2 are N-isogenous for $n = 2$ and $N = 2, 3, 5, 7$ with $\text{Aut}(\text{Jac}(C)) \cong V_4$ or $n = 2, N = 3, 5, 7$ with $\text{Aut}(\text{Jac}(C)) \cong D_4$. The same holds if $n = 3$ and $N = 5$. Furthermore, we determine the Kummer and Shioda–Inose surfaces for the above $\text{Jac}(C)$ and show how such results in positive characteristic $p > 2$ suggest nice applications in cryptography.

Keywords Jacobians · Isogenies · Genus 2

Mathematics Subject Classification 11G10 · 14K02 · 14H40

1 Introduction
An abelian variety A, defined over a field k, is simple if it has no proper non-zero abelian subvariety over k. A is called reducible (or decomposable) if it is isogenous to a direct product of abelian varieties. We call A geometrically simple (or absolutely
simple) if it is simple over the algebraic closure of k, analogously \mathcal{A} is geometrically reducible when it is reduced over the algebraic closure of k. A 2-dimensional Jacobian variety is geometrically reducible if and only if it is (n, n)-decomposable for some $n > 1$. Reducible Jacobian varieties have been studied extensively since the XIX-th century, most notably by Friecke, Clebch, and Bolza. In the late XX-th century they became the focus of many mathematicians through the work of Frey [7,8], Shaska and Völklein [17,24,27], Kumar [13] and many others. If \mathcal{A}/k is a 2-dimensional reducible Jacobian variety defined over a field k, then there is a degree n^2 isogeny to a product $\mathcal{A} \cong E_1 \times E_2$, where $E_i, i = 1, 2$, are 1-dimensional. The main focus of this paper is to investigate when E_1 and E_2 are isogenous to each other and how often does this occur for a fixed n?

The question has received attention lately for different reasons. In [14] the authors were able to determine the rank of the Mordell–Weil rank of elliptic fibrations $F^{(i)}$ for $i = 1, \ldots, 6$, when E_1 and E_2 were isogenous, and show that in this case both F^5 and F^6 have rank 18. In recent developments in supersingular isogeny based cryptography (SIDH) Costello [4] focuses on the $(2, 2)$-reducible Jacobians, where the addition is done via the Kummer surface. More importantly, it seems the most interesting case is exactly the case when E_1 is isogenous to E_2. In this case, since the decomposition of the abelian varieties is determined up to isogeny, the 2-dimensional Jacobian is isogenous to E^2. There are several interesting questions that arise when we consider such Jacobians over the finite field \mathbb{F}_p.

The focus of this paper is to investigate when the two elliptic components of the (n, n)-reducible 2-dimensional Jacobians are isogenous to each other. The space of genus 2 curves with (n, n)-reducible Jacobians, for $n = 2$ or n odd, is a 2-dimensional irreducible locus \mathcal{L}_n in the moduli space of curves \mathcal{M}_2. For $n = 2$ this is the well-known locus of curves with extra involutions [19,20,27], for n odd such spaces were computed for the first time in [17,22,24]. If E_1 and E_2 are N-isogenous then their j-invariants j_1 and j_2 satisfy the equation of the modular curve $X_0(N)$, say $s_N := \phi_N(j_1, j_2) = 0$. Such curve can be embedded in \mathcal{M}_2. So we want to study the intersection between \mathcal{L}_n and \mathcal{S}_N for given n and N. More precisely, for any number field K we want to determine the number of K-rational points of this intersection.

Our approach is computational. We will focus on the cases when $n = 2, 3$ and $N = 2, 3, 5, 7$. We prove that for $n = 2$ and $N = 2, 3, 5, 7$ there are only finitely many curves \mathcal{C} defined over K such that E_1 and E_2 are N-isogenous, unless $\text{Aut}(\mathcal{C})$ is isomorphic to the dihedral group D_4 (resp. D_6) in which case there is a 1-dimensional family such that E_1 and E_2 are 2-isogenous (resp. 3-isogenous), and for $n = 3$ and $N = 3, 5, 7$ there are only finitely many curves \mathcal{C} defined over K such that E_1, E_2 are N-isogenous. Our proof makes repeated use of Faltings’ theorem [6].

Our paper is organized as follows. In Sect. 2 we give a brief account of basic definitions of abelian varieties and their isogenies. In Sect. 3 we first prove that for $n = 2$ there are finitely many genus 2 curves \mathcal{C} defined over a number field K with $\text{Aut}(\mathcal{C}) \cong V_4$ whose elliptic components are N-isogenous for $N = 2, 3, 5, 7$. Also, for $n = 2$ and $N = 3, 5, 7$, there are only finitely many such \mathcal{C} (up to isomorphism) with $\text{Aut}(\mathcal{C}) = D_4$. That \mathcal{C} is defined over K follows from the important fact that the invariants u and v are in the field of moduli of the curve \mathcal{C} and that for every curve in \mathcal{L}_2, the field of moduli is a field of definition; see [19]. This is not necessarily true for
curves in \(\mathcal{L}_n \), when \(n > 2 \). However, a proof of the above result is still possible using the computational approach involving invariants \(r_1, r_2 \) of two cubics in [24]. These invariants are denoted by \(\chi \) and \(\psi \) here.

Then we study the \(n = 3 \) case. The equation of \(\mathcal{L}_3 \) was computed by the third author in his thesis [22] and summarized in [24]. A birational parametrization of \(\mathcal{L}_3 \) exists in terms of the invariants \(\chi \) and \(\psi \). We are able to compute the \(j \)-invariants of \(E_1 \) and \(E_2 \) in terms of \(\chi \) and \(\psi \) and find the conditions that \(\chi \) and \(\psi \) must satisfy. Since ordered pairs \((\chi, \psi)\) are in a one-to-one correspondence with genus 2 curves with \((3, 3)\)-split Jacobians, then we determine pairs \((\chi, \psi)\) such that the corresponding \(j \)-invariants \(j_1 \) and \(j_2 \) satisfy the equation of the modular curve \(X_0(N) \). This case is different from \(n = 2 \) in that a rational ordered pair \((\chi, \psi)\) does not necessarily correspond to a genus 2 curve defined over \(K \). However, a genus 2 curve defined over \(K \) gives rise to rational invariants \(\chi, \psi \in K \). Hence, it is enough to count the rational ordered pairs \((\chi, \psi)\) that satisfy the equation \(\phi_N(j_1, j_2) = 0 \) of the modular curve \(X_0(N) \). We are able to prove that for \(N = 5 \) there are only finitely many genus 2 curves \(\mathcal{C} \) such that they have \((3, 3)\)-split Jacobian, and \(E_1 \) and \(E_2 \) are 5-isogenous. We could not prove such result for \(N = 2, 3, 7 \) since the corresponding curve \(\phi_N(j_1, j_2) = 0 \) has genus zero components in such cases. It remains open to further investigation if there is any theoretical interpretation of such surprising phenomena.

In the last section we consider the Kummer and Shioda–Inose surfaces of \((n, n)\)-reducible Jacobians. We classify such surfaces when \(n = 2, 3 \) (cf. Proposition 4.1 and Corollary 4.3).

2 Preliminaries

An abelian variety defined over \(k \) is an absolutely irreducible projective variety defined over \(k \) which is a group scheme. We will denote an abelian variety defined over a field \(k \) by \(A_k \) or simply \(A \) when there is no confusion. A morphism from the abelian variety \(A_1 \) to the abelian variety \(A_2 \) is a homomorphism if and only if it maps the identity element of \(A_1 \) to the identity element of \(A_2 \).

An abelian variety over a field \(k \) is called simple if it has no proper non-zero abelian subvariety over \(k \), it is called absolutely simple (or geometrically simple) if it is simple over the algebraic closure of \(k \). An abelian variety of dimension 1 is called an elliptic curve.

A homomorphism \(f : A \to B \) is called an isogeny if \(\text{Img } f = B \) and \(\ker f \) is a finite group scheme. If an isogeny \(A \to B \) exists we say that \(A \) and \(B \) are isogenous. This relation is symmetric. The degree of an isogeny \(f : A \to B \) is the degree of the function field extension \(\text{deg } f := [k(A) : f^*k(B)] \). It is equal to the order of the group scheme \(\ker f \), which is, by definition, the scheme theoretical inverse image \(f^{-1}(0_A) \).

The group of \(\overline{k} \)-rational points has order \#(\ker f(\overline{k})) = [k(A) : f^*k(B)]^{\text{sep}} \), where \([k(A) : f^*k(B)]^{\text{sep}} \) is the degree of the maximally separable extension in \(k(A)/f^*k(B) \). We say that \(f \) is a separable isogeny if and only if \#(\ker f(\overline{k})) = \text{deg } f \).

For any abelian variety \(A/k \) there is a one-to-one correspondence between the finite subgroup schemes \(H \leq A \) and isogenies \(f : A \to B \), where \(B \) is determined up to
isomorphism. Moreover, $H = \ker f$ and $\mathcal{B} = \mathcal{A}/H$. f is separable if and only if K is étale, and then $\deg f = \# H(\bar{k})$. The following is often called the fundamental theorem of abelian varieties. Let \mathcal{A} be an abelian variety. Then \mathcal{A} is isogenous to

$$A_1^{n_1} \times A_2^{n_2} \times \cdots \times A_r^{n_r},$$

where (up to permutation of the factors) A_i, for $i = 1, \ldots, r$, are simple, non-isogenous, abelian varieties. Moreover, up to permutations, the factors $A_i^{n_i}$ are uniquely determined up to isogenies.

When $k = \bar{k}$, then let f be a non-zero isogeny of \mathcal{A}. Its kernel $\ker f$ is a subgroup scheme of \mathcal{A}. It contains $0_{\mathcal{A}}$ and so its connected component, which is, by definition, an abelian variety.

Let C be a curve of genus 2 defined over a perfect field k such that char $k \neq 2$ and $J = \text{Jac}(C)$ its Jacobian. Fix a prime $\ell \geq 3$ and let S be a maximal ℓ-Weil isotropic subgroup of $J[n]$, then we have $S \cong (\mathbb{Z}/\ell\mathbb{Z})^2$. Let $J' := J/S$ be the quotient variety and γ a genus 2 curve such that $\text{Jac}(\gamma) = J'$. Hence, the classical isogeny problem becomes to compute γ when given C and S.

If $\ell = 2$ this problem is done with the Richelot construction. Over finite fields this is done by Lubicz and Robert in [16] using theta-functions. In general, if $\phi : J(C) \to J(\gamma)$ is the isogeny and Θ_γ, Θ_Y the corresponding theta divisors, then $\phi(\Theta_\gamma)$ is in $|\ell\Theta_Y|$. Thus, the image of $\phi(\Theta_\gamma)$ in the Kummer surface $\mathcal{K}_\gamma = J(\gamma)/\langle \pm 1 \rangle$ is a degree 2 genus 0 curve in \mathbb{P}^3 of arithmetic genus $(\ell^2 - 1)/2$. This curve can be computed without knowing ϕ; see [5] or [9] for details.

For C given by $y^2 = f(x)$, we have the divisor at infinity

$$D_\infty := (1 : \sqrt{f(x)} : 0) + (1 : -\sqrt{f(x)} : 0).$$

The Weierstrass points of C are the projective roots of $f(x)$, namely $w_i := (x_i, z_i)$, for $i = 1, \ldots, 6$, and the Weierstrass divisor W_C is $W_C := \sum_{i=1}^6 (x_i, 0, z_i)$. A canonical divisor on C is $\mathcal{K}_C = W_C - 2D_\infty$. Let $D \in \text{Jac}(C)$ be a divisor expressed as $D = P + Q - D_\infty$. The effective divisor $P + Q$ is determined by an ideal of the form $(a(x), b(x))$ such that $a(x) = y - b(x)$, where $b(x)$ is a cubic and $a(x)$ a monic polynomial of degree $d \leq 2$.

We can define the ℓ-tuple embedding $\rho_{2\ell} : \mathbb{P}^2 \to \mathbb{P}^{2\ell}$ by

$$(x, y, z) \mapsto (z^{2\ell}, \ldots, x^i z^{2\ell-i}, x^{2\ell})$$

and denote the image of this map by $\mathcal{R}_{2\ell}$. It is a rational normal curve of degree 2ℓ in $\mathbb{P}^{2\ell}$. Hence, any $2\ell + 1$ distinct points on $\mathcal{R}_{2\ell}$ are linearly independent. Therefore, the images under $\rho_{2\ell}$ of the Weierstrass points of C are linearly independent for $\ell \geq 3$. Thus, the subspace $W := \langle \rho_{2\ell}(W_C) \rangle \subset \mathbb{P}^{2\ell}$ is 5-dimensional. For any pair of points P, Q in C, the secant line $\mathcal{L}_{P, Q}$ is defined to be the line in $\mathbb{P}^{2\ell}$ intersecting $\mathcal{R}_{2\ell}$ in $\rho_{2\ell}(P) + \rho_{2\ell}(Q)$. In other words,

$$\mathcal{L}_{P, Q} = \begin{cases} \langle \rho_{2\ell}(P), \rho_{2\ell}(Q) \rangle & \text{if } P \neq \{Q, \tau(Q)\}, \\ T_{\rho_{2\ell}(P)}(\mathcal{R}_{2\ell}) & \text{otherwise.} \end{cases}$$
The most classical example of an isogeny is the scalar multiplication by n map $[n]: A \to A$. The kernel of $[n]$ is a group scheme of order $n^2 \dim A$. Denote by $A[n]$ the group $\ker [n](k)$. The elements in $A[n]$ are called n-torsion points of A. Let $f: A \to B$ be a degree n isogeny. Then there exists an isogeny $\widehat{f}: \hat{B} \to A$ such that
\[f \circ \widehat{f} = \widehat{f} \circ f = [n]. \]

Next we consider the case when $\text{char } k = p$. Let A/k be an abelian variety, $p = \text{char } k$, and $\dim A = g$.

(i) If $p \nmid n$, then $[n]$ is separable, $\# A[n] = n^{2g}$ and $A[n] \cong (\mathbb{Z}/n\mathbb{Z})^{2g}$.

(ii) If $p | n$, then $[n]$ is inseparable. Moreover, there is an integer $0 \leq i \leq g$ such that
\[A[p^m] \cong (\mathbb{Z}/p^m\mathbb{Z})^i, \quad \text{for all } m \geq 1. \]

If $i = g$ then A is called ordinary. If $A[p^g](\overline{k}) = \mathbb{Z}/p^{2g}\mathbb{Z}$ then the abelian variety has p-rank 1. If $\dim A = 1$ (elliptic curve) then it is called supersingular if it has p-rank 0. An abelian variety A is called supersingular if it is isogenous to a product of supersingular elliptic curves. If $\dim A \leq 2$ and A has p-rank 0 then A is supersingular. This is not true for $\dim A \geq 3$.

2.1 Jacobian varieties

Let C be a curve of positive genus and assume that there exists a k-rational point $P_0 \in C(k)$ with attached prime divisor p_0. There exists an abelian variety $\text{Jac}_k(C)$ defined over k and a uniquely determined embedding
\[\phi_{P_0}: C \to \text{Jac}_k(C) \quad \text{with } \phi_{P_0}(P_0) = 0_{\text{Jac}_k(C)} \]
such that

- for all extension fields L of k we get $\text{Jac}_L(C) = \text{Pic}^0_{C,L}(L)$ where this equality is given in a functorial way, and
- if A is an abelian variety and $\eta: C \to A$ is a morphism sending P_0 to 0_A then there exists a uniquely determined homomorphism $\psi: \text{Jac}(C) \to A$ with $\psi \circ \phi_{P_0} = \eta$.

$\text{Jac}(C)$ is uniquely determined by these conditions and is called the Jacobian variety of C. The map ϕ_{P_0} is given by sending a prime divisor p of degree 1 of C_L to the class of $p - p_0$ in $\text{Pic}^0_{C,L}(L)$.

Let L/k be a finite algebraic extension. Then the Jacobian variety $\text{Jac}_L(C)$ of C_L is the scalar extension of $\text{Jac}(C)$ with L, hence a fiber product with projection p to $\text{Jac}(C)$. The norm map is p^*, and the conorm map is p^\ast. By universality we get that if $f: (C) \to \mathcal{D}$ is a surjective morphism of curves sending P_0 to Q_0, then there is a uniquely determined surjective homomorphism $f_*: \text{Jac}(C) \to \text{Jac}(\mathcal{D})$ such that $f_* \circ \phi_{P_0} = \phi_{Q_0}$. A useful observation is that if $\text{Jac}(C)$ is a simple abelian variety, and that $\eta: C \to \mathcal{D}$ is a separable cover of degree > 1, then \mathcal{D} is the projective line. For more details on the general setup see [9] among many other authors.
2.2 Jacobian surfaces

Abelian varieties of dimension 2 are often called abelian (algebraic) surfaces. We focus on abelian surfaces which are Jacobian varieties. Let \(C \) be a genus 2 curve defined over a field \(k \). Then its gonality is \(\gamma_C = 2 \). Hence, genus 2 curves are hyperelliptic and we denote the hyperelliptic projection by \(\pi : C \to \mathbb{P}^1 \). By Hurwitz’s formula this covering has \(r = 6 \) branch points which are images of the Weierstrass points of \(C \). The moduli space has dimension \(r - 3 = 3 \).

The arithmetic of the moduli space of genus 2 curves was studied by Igusa in his seminal paper [11] expanding on the work of Clebsch, Bolza, and others. Arithmetic invariants by \(J_2, J_4, J_6, J_8, J_{10} \) determine uniquely the isomorphism class of a genus 2 curve. Two genus 2 curves \(C \) and \(C' \) are isomorphic over \(k \) if and only if there exists \(l \in k^\times \) such that \(J_{2i}(C) = l^{2i} J_{2i}(C') \), for \(i = 1, \ldots, 5 \). If \(\text{char } k \neq 2 \) then the invariant \(J_8 \) is not needed.

From now on we assume \(\text{char } k \neq 2 \). Then \(C \) has an affine Weierstrass equation

\[
y^2 = f(x) = a_6x^6 + \cdots + a_1x + a_0,
\]

over \(\overline{k} \), with discriminant \(\Delta_f = J_{10} \neq 0 \). The moduli space \(M_2 \) of genus 2 curves, via the Torelli morphism, can be identified with the moduli space of the principally polarized abelian surfaces \(A_2 \) which are not products of elliptic curves. Its compactification \(A_2^\star \) is the weighted projective space \(\mathbb{WP}^3_{(2,4,6,10)}(k) \) via the Igusa invariants \(J_2, J_4, J_6, J_{10} \). Hence,

\[
A_2 \cong \mathbb{WP}^3_{(2,4,6,10)}(k) \setminus \{J_{10} = 0\}.
\]

Given a moduli point \(p \in M_2 \), we can recover the equation of the corresponding curve over a minimal field of definition following [19].

It is well known that a map of algebraic curves \(f : X \to Y \) induces maps between their Jacobians \(f^* : \text{Jac}(Y) \to \text{Jac}(X) \) and \(f_* : \text{Jac}(X) \to \text{Jac}(Y) \). When \(f \) is maximal then \(f^* \) is injective and \(\ker f_* \) is connected, see [21] for more details.

Let \(C \) be a genus 2 curve and \(\psi_1 : C \to E_1 \) be a degree \(n \) maximal covering from \(C \) to an elliptic curve \(E_1 \). Then \(\psi_1^* : E_1 \to \text{Jac}(C) \) is injective and the kernel of \(\psi_1^* : \text{Jac}(C) \to E_1 \) is an elliptic curve which we denote by \(E_2 \). For a fixed Weierstrass point \(P \in C \), we can embed \(C \) to its Jacobian via

\[
i_P : C \to \text{Jac}(C) \quad x \mapsto [(x) - (P)].
\]

Let \(g : E_2 \to \text{Jac}(C) \) be the natural embedding of \(E_2 \) in \(\text{Jac}(C) \), then there exists \(g^* : \text{Jac}(C) \to E_2 \). Define \(\psi_2 = g^* \circ i_P : C \to E_2 \). So we have the following exact sequence:

\[
0 \to E_2 \xrightarrow{g} \text{Jac}(C) \xrightarrow{\psi_1^*} E_1 \to 0. \tag{1}
\]
The dual sequence is also exact

$$0 \to E_1 \xrightarrow{\psi_1^*} \text{Jac}(\mathcal{C}) \xrightarrow{\delta^*} E_2 \to 0.$$

If \(\deg \psi_1 = 2\) or it is an odd number then the maximal covering \(\psi_2 : \mathcal{C} \to E_2\) is unique (up to isomorphism of elliptic curves). The Hurwitz space \(\mathcal{H}_\sigma\) of such covers is embedded as a subvariety of the moduli space of genus 2 curves \(\mathcal{M}_2\); see [24] for details. It is a 2-dimensional subvariety of \(\mathcal{M}_2\) which we denote by \(\mathcal{L}_n\). An explicit equation for \(\mathcal{L}_n\), in terms of the arithmetic invariants of genus 2 curves, can be found in [27] or [19] for \(n = 2\), in [24] for \(n = 3\), and in [17] for \(n = 5\). From now on, we will say that a genus 2 curve \(\mathcal{C}\) has an \((n, n)\)-decomposable Jacobian if \(\mathcal{C}\) is as above and the elliptic curves \(E_i, i = 1, 2\), are called the components of \(\text{Jac}(\mathcal{C})\).

For every \(D := J_{10} > 0\) there is a Humbert hypersurface \(H_D\) in \(\mathcal{M}_2\) which parametrizes curves \(\mathcal{C}\) whose Jacobians admit an optimal action on \(O_D\); see [10]. Points on \(H_n\) parametrize curves whose Jacobian admits an \((n, n)\)-isogeny to a product of two elliptic curves. Such curves are the main focus of our study. We have the following result; see [15, Proposition 2.14].

Proposition 2.1 \(\text{Jac}(\mathcal{C})\) is a geometrically simple abelian variety if and only if it is not \((n, n)\)-decomposable for some \(n > 1\).

A point lying on the intersection of two Humbert surfaces \(\mathcal{H}_m \cap \mathcal{H}_n\) with \(n \neq m\) corresponds either to a simple abelian surface with quaternionic multiplication by an (automatically indefinite) quaternion algebra over \(\mathbb{Q}\), or to the square of an elliptic curve. This is in particular true for points lying on Shimura curves.

We study pairs \((E_1, E_2)\) of elliptic components and try to determine their number (up to isomorphism over \(\overline{k}\)) when they are isogenous of degree \(N\), for an integer \(N \geq 2\). We denote by \(\phi_N(x, y)\) the \(N\)-th modular polynomial. Two elliptic curves with \(j\)-invariants \(j_1\) and \(j_2\) are \(N\)-isogenous if and only if \(\phi_N(j_1, j_2) = 0\). The equation \(\phi_N(x, y) = 0\) is the canonical equation of the modular curve \(X_0(N)\). The equations of \(X_0(N)\) are well known.

2.3 Kummer surface and Shioda–Inose surface

To the Jacobian variety \(\text{Jac}(\mathcal{C})\) one can naturally attach two K3 surfaces, the Kummer surface and a double cover of it called the Shioda–Inose surface. Let \(i\) be the involution automorphism on the Jacobian given by \(i : p \to -p\). The quotient \(\text{Jac}(\mathcal{C})/[i, i]\), is a singular surface with sixteen ordinary double points. Its minimal resolution is called the **Kummer surface** and denoted by \(\text{Kum}(\text{Jac}(\mathcal{C}))\). We refer to [18,19] for further details.

The Inose surface, denoted by \(\mathcal{I} := \text{SI}(\text{Jac}(\mathcal{C}))\), was originally constructed as a double cover of the Kummer surface. Shioda and Inose then showed that the following diagram of rational maps, called a Shioda–Inose structure, induces an isomorphism of integral Hodge structures on the transcendental lattices of \(\text{Jac}(\mathcal{C})\) and \(\mathcal{I}\); see [28] for more details:

© Springer
A K3 surface \mathcal{Y} has Shioda–Inose structure if it admits an involution fixing the holomorphic 2-form, such that the quotient is the Kummer surface $\text{Kum}(\mathcal{A})$ of a principally polarized abelian surface, and the rational quotient map $p : \mathcal{Y} \to \text{Kum}(\mathcal{A})$ of degree 2 induces a Hodge isometry between the transcendental latices $T(\mathcal{Y})(2)^3$ and $T(\text{Kum}(\mathcal{A}))$, see [19] for more details.

An elliptic surface $\mathcal{E}(k(t))$ fibered over \mathbb{P}^1 with section can be described by a Weierstrass equation of the form

$$y^2 + a_1(t)xy + a_3(t)y = x^2 + a_2(t)x^2 + a_4(t)x + a_6(t)$$

and $a_i(t)$ rational functions. If we assume that the elliptic fibration has at least one singular fiber then the following question is fundamental in arithmetic geometry. Find generators for the Mordell–Weil group of this elliptic surface fibered over \mathbb{P}^1.

A theorem of Shioda and Tate connects the Mordel–Weil group $\mathcal{E}(k(t))$ with the Picard group of the Néron–Severi group of \mathcal{E}. Therefore, determining the Mordell–Weil group is equivalent to finding the Picard group of the Néron–Severi lattice of K3 surface.

A surface is called an elliptic fibration if it is a minimal elliptic surface over \mathbb{P}^1 with a distinguished section S_0. The complete list of possible singular fibers has been given by Kodaira [12]. To each elliptic fibration $\pi : \mathcal{C} \to \mathbb{P}^1$ there is associated a Weierstrass model $\pi : \mathcal{C} \to \mathbb{P}^1$ with a corresponding distinguished section S_0 obtained by contracting all fibers not meeting S_0. The fibers of \mathcal{C} are all irreducible whose singularities are all rational double points, and \mathcal{C} is the minimal desingularization. If we choose some $t \in \mathbb{C}$ as a local affine coordinate on \mathbb{P}^1, we can present \mathcal{C} in the Weierstrass normal form

$$Y^2 = 4X^3 - g_2(t)X - g_3(t),$$

where $g_2(t)$ and $g_3(t)$ are polynomials of degree, respectively, 4 and 6 in t.

3 (n, n)-Reducible Jacobians surfaces

Genus 2 curves with (n, n)-decomposable Jacobians are the most studied type of genus 2 curves due to work of Jacobi, Hermite, et al. They provide examples of genus 2 curves with large Mordell–Weil rank of the Jacobian, many rational points, nice examples of descent [23], etc. Such curves have received new attention lately due to interest on their use on cryptographic applications and their suggested use on post-quantum crypto-systems and random self-reducibility of discrete logarithm problem; see [4]. A detailed account of applications of such curves in cryptography is provided in [9].
Let C be a genus 2 curve defined over an algebraically closed field k, char $k = 0$, K the function field of C, and $\psi_1 : C \rightarrow E_1$ a degree n covering from C to an elliptic curve E; see [21] for the basic definitions. The covering $\psi_1 : C \rightarrow E$ is called a maximal covering if it does not factor through a non-trivial isogeny. We call E a degree n elliptic subcover of C. Degree n elliptic subcovers occur in pairs, say (E_1, E_2). It is well known that there is an isogeny of degree n^2 between the Jacobian $\text{Jac}(C)$ and the product $E_1 \times E_2$. Such curve C is said to have (n, n)-decomposable or (n, n)-split Jacobian. The focus of this paper is on isogenies among the elliptic curves E_1 and E_2.

The locus of genus 2 curves C with (n, n)-decomposable Jacobian is denoted by L_n. When $n = 2$ or n is an odd integer, L_n is a 2-dimensional algebraic subvariety of the moduli space M_2 of genus 2 curves; see [21] for details. Hence, we can get an explicit equation of L_n in terms of the Igusa invariants J_2, J_4, J_6, J_{10}; see [27] for L_2, [24] for L_3, and [17] for L_5. There is a more recent paper on the subject [13] where results of [17,24] are confirmed and equations for $n > 5$ are studied.

3.1 $(2, 2)$-Reducible Jacobians surfaces

Let C/k be as above and $\mathbb{F} = k(C)$ its function field. We assume that k is algebraically closed and char $k \neq 2$. Since degree 2 coverings correspond to Galois extensions of function fields, the elliptic subcover is fixed by an involution in $\text{Aut}(\mathbb{F}/k)$. There is a group theoretic aspect of the $n = 2$ case which was discussed in detail in [27]. The number of elliptic subcovers in this case correspond to the number of non-hyperelliptic involutions in $\text{Aut}(\mathbb{F}/k)$, which are called elliptic involutions. The equation of C is given by

$$Y^2 = X^6 - s_1 X^4 + s_2 X^2 - 1$$

and in [1,2] it was shown that when defined over \mathbb{F} this equation is minimal. Hence, for $(s_1, s_2) \in k^2$, such that the corresponding discriminant is non-zero, we have a genus 2 curve $C_{(s_1, s_2)}$ and two corresponding elliptic subcovers. Two such curves $(C_{(s_1, s_2)}, \sigma_{s_1, s_2})$ and $(C_{(s_1', s_2')}, \sigma_{s_1', s_2'})$ are isomorphic if and only if their dihedral invariants u and v are the same; [27]. Thus, the points $(s_1, s_2) \in k^2$ correspond to elliptic involutions of $\text{Aut}(C)$ while the points $(u, v) \in k^2$ correspond to elliptic involutions of the reduced automorphism group $\overline{\text{Aut}}(C)$.

Let C be a genus 2 curve, $\text{Aut}(C)$ its automorphism group, σ_0 the hyperelliptic involution, and $\overline{\text{Aut}}(C) := \text{Aut}(C)/\langle \sigma_0 \rangle$ the reduced automorphism group. If $\text{Aut}(C)$ has another involution σ_1, then the quotient space $C/\langle \sigma_1 \rangle$ has genus 1. We call such involution an elliptic involution. There is another elliptic involution $\sigma_2 := \sigma_0 \sigma_1$. So the elliptic involutions come naturally in pairs. The corresponding coverings $\psi_i : C \rightarrow C/\langle \sigma_i \rangle, i = 1, 2$, are the maximal covers as above and $E_i := C/\langle \sigma_i \rangle$ the elliptic subcovers of C of degree 2. Also the corresponding Hurwitz space of such coverings is an irreducible algebraic variety which is embedded into M_2. We denote its image in M_2 by L_2. The following was proved in [27].

Lemma 3.1 Let C be a genus 2 curve and σ_0 its hyperelliptic involution. If σ_1 is an elliptic involution of C, then so is $\sigma_2 = \sigma_1 \sigma_0$. Moreover, C is isomorphic to a curve
with affine equation

\[Y^2 = X^6 - s_1 X^4 + s_2 X^2 - 1 \]

(2)

for some \(s_1, s_2 \in k \) and \(\Delta := 27 - 18s_1s_2 - s_1^2s_2^2 + 4s_1^3 + 4s_2^3 \neq 0 \). The equations for the elliptic subcovers \(E_i = \mathbb{C}/\langle \sigma_i \rangle \), for \(i = 1, 2 \), are given by

\[E_1: \ y^2 = x^3 - s_1 x^2 + s_2 x - 1, \quad \text{and} \quad E_2: \ y^2 = x(x^3 - s_1 x^2 + s_2 x - 1). \]

In [27] it was shown that \(\mathbb{C} \) is determined up to a coordinate change by the subgroup \(H \cong D_3 \) of SL\(_2(k)\) generated by \(\tau_1: X \to \epsilon_6 X \) and \(\tau_2: X \to \frac{1}{X} \), where \(\epsilon_6 \) is a primitive 6-th root of unity. Let \(\epsilon_3 := \epsilon_6^2 \). The coordinate change by \(\tau_1 \) replaces \(s_1 \) by \(\epsilon_3 s_2 \) and \(s_2 \) by \(\epsilon_3^3 s_2 \). The coordinate change by \(\tau_2 \) switches \(s_1 \) and \(s_2 \). Invariants of this \(H \)-action are

\[u := s_1 s_2, \quad v := s_1^3 + s_2^3 \]

(3)

which are known in the literature as dihedral invariants. The map

\[(s_1, s_2) \mapsto (u, v), \]

is a branched Galois covering with group \(S_3 \) of the set \(\{(u, v) \in k^2 : \Delta(u, v) \neq 0\} \) by the corresponding open subset of \((s_1, s_2)\)-space if \(\text{char} \ k \neq 3 \). In any case, it is true that if \(s_1, s_2 \) and \(s'_1, s'_2 \) have the same \(u, v \)-invariants then they are conjugate under \(\langle \tau_1, \tau_2 \rangle \).

If \(\text{char} \ k = 3 \) then \(u = u' \) and \(v = v' \) implies \(s_1^3 s_2^3 = s_1'^3 s_2'^3 \) and \(s_1^3 + s_2^3 = s_1'^3 + s_2'^3 \), hence \((s_1^3, s_2^3) = (s_1'^3, s_2'^3) \) or \((s_1^3, s_2^3) = (s_1'^3, s_2'^3) \). But this implies \((s_1, s_2) = (s'_1, s'_2) \) or \((s_1, s_2) = (s'_1, s'_2) \).

For \((s_1, s_2) \in k^2 \) with \(\Delta \neq 0 \), equation (2) defines a genus 2 field \(\mathbb{F}_{s_1, s_2} = k(X, Y) \). Its reduced automorphism group contains the elliptic involution \(\epsilon_{s_1, s_2}: X \mapsto -X \). Two such pairs \((\mathbb{F}_{s_1, s_2}, \epsilon_{s_1, s_2}) \) and \((\mathbb{F}_{s'_1, s'_2}, \epsilon_{s'_1, s'_2}) \) are isomorphic if and only if \(u = u' \) and \(v = v' \) (where \(u, v \) and \(u', v' \) are associated with \(s_1, s_2 \) and \(s'_1, s'_2 \), respectively, by (3)). However, the ordered pairs \((u, v)\) classify the isomorphism classes of such elliptic subfields as it can be seen from the following theorem proved in [27].

Proposition 3.2

(i) The \((u, v) \in k^2 \) with \(\Delta \neq 0 \) bijectively parameterize the isomorphism classes of pairs \((\mathbb{F}, \epsilon)\) where \(\mathbb{F} \) is a genus 2 field and \(\epsilon \) an elliptic involution of \(\text{Aut}(\mathbb{F}) \).

(ii) The \((u, v)\) satisfying additionally

\[(v^2 - 4u^3)(4v - u^2 + 110u - 1125) \neq 0 \]

(4)

bijectively parameterize the isomorphism classes of genus 2 fields with \(\text{Aut}(\mathbb{F}) \cong V_4 \); equivalently, genus 2 fields having exactly two elliptic subfields of degree 2.
Our goal is to investigate when the pairs of elliptic subfields F_{s_1}, s_2 (respectively isomorphism classes (F, ε)) are isogenous. We want to find if that happens when C is defined over a number field K. Hence, the following result is crucial.

Proposition 3.3 Let K be a number field, C/K be a genus 2 curve with $(2, 2)$-geometrically reducible Jacobian and E_i, $i = 1, 2$, its elliptic components. Then its dihedral invariants $u, v \in K$ and C is isomorphic (over K) to a twist whose polynomials are given as polynomials in u and v. Moreover, E_i, $i = 1, 2$, are defined over K if and only if

$$S_2(u, v) := v^4 - 18(u + 9)v^3 - (4u^3 - 297u^2 - 1458u - 729)v^2$$

$$- 216u^2(7u + 27)v + 4u^3(2u^3 - 27u^2 + 972u + 729)$$

is a complete square in K.

Proof Let j_1 and j_2 denote the j-invariants of the elliptic components E_1 and E_2 from Lemma 3.1. The j-invariants j_1 and j_2 of the elliptic components are given in terms of the coefficients s_1, s_2 by the following:

$$j_1 = -256 \left(\frac{s_1^2 - 3s_2}{s_1^2s_2^2 + 4s_1^3 + 4s_2^3 - 18s_1s_2 + 27} \right)$$

$$j_2 = 256 \left(\frac{-s_2^2 + 3s_1}{s_1^2s_2^2 + 4s_1^3 + 4s_2^3 - 18s_1s_2 + 27} \right)$$

It is shown in [27] that they satisfy the quadratic

$$j^2 - \left(256 \frac{v^2 - 2u^3 + 54u^2 - 9uv - 27v}{\Delta} \right) j + 65536 \frac{u^2 + 9u - 3v}{\Delta^2} = 0$$

where $\Delta = \Delta(u, v) = u^2 - 4v + 18u - 27$. The discriminant of this quadratic is $S(u, v)$ as claimed. When $S(u, v)$ is a complete square in K, then j_1 and j_2 have values in K. Since for elliptic curves the field of moduli is a field of definition, elliptic curves E_1 and E_2 are defined over K. \qed

See [25] for details, where an explicit equation of C is provided with coefficients as rational functions in u and v, or [19] for a more general setup. Hence, we have the following.

Lemma 3.4 Let C be a genus 2 curve with $(2, 2)$-geometrically reducible Jacobian and E_i, $i = 1, 2$, its elliptic components, and K its field of moduli. Then $\text{Jac}(C)$ is $(2, 2)$-reducible over K if and only if $S_2(u, v)$ is a complete square in K.

Proof The elliptic components E_1 and E_2 are defined over K when their j-invariants are in K. This happens when the discriminant of the above quadratic is a complete square. The discriminant of the quadratic is exactly $S(u, v)$ as above. \qed
We define the following surface:

\[S_2: \ y^2 = S_2(u, v), \]

where \(S_2(u, v) \) is as (5). Coefficients of (6) can be expressed in terms of the Siegel modular forms or equivalently in terms of the Igusa arithmetic invariants; see [22] or [27]. They were discovered independently in [3], where they are called modular invariants. There is a degree 2 covering \(\Phi: S_2 \to L_2 \), where \((u, v, \pm y) \mapsto (u, v)\).

Then we have the following.

Proposition 3.5 Let \(K \) be a number field. There is a two-to-one correspondence between the set of \(K \)-rational points on the elliptic surface \(E \) and the set of Jacobians \(\text{Jac}(\mathcal{C}) \) which are \((2, 2)\)-reducible over \(K \).

Proof Every pair of \(K \)-rational points \((u, v, \pm y)\) in \(E \) gives the dihedral invariants \((u, v) \in K^2\) which determine the field of moduli of the genus 2 curve \(\mathcal{C} \). Since \(\mathcal{C} \) has extra involutions then \(\mathcal{C} \) is defined over the field of moduli. Hence, \(\mathcal{C} \) is defined over \(K \). The fact that \((u, v, \pm y)\) is \(K \)-rational means that the \(j \)-invariants \(j_1 \) and \(j_2 \) of elliptic components take values \(\pm y \). Hence, \(j_1, j_2 \in K \), and \(E_1 \) and \(E_2 \) are defined over \(K \).

The \((2, 2)\)-isogeny

\[\text{Jac}(\mathcal{C}) \to E_1 \times E_2 \]

is defined by \(D \to (\psi_1, \ast(D), \psi_2, \ast(D)) \) where \(\psi_i: \mathcal{C} \to E_i, i = 1, 2, \) are as in (1). Since \(\psi_i \) are defined over \(K \), then the \((2, 2)\)-isogeny is defined over \(K \). \(\square \)

Next we turn our attention to isogenies between \(E_1 \) and \(E_2 \).

Proposition 3.6 Let \(\mathcal{C} \) be a genus 2 curve with \((2, 2)\)-decomposable Jacobian and \(E_i, i = 1, 2 \), its elliptic components. There is a one-to-one correspondence between genus 2 curves \(\mathcal{C} \) defined over \(K \) such that there is a degree \(N \) isogeny \(E_1 \to E_2 \) and \(K \)-rational points on the modular curve \(X_0(N) \) given in terms of \(u \) and \(v \).

Proof If \(\mathcal{C} \) is defined over \(K \) then the corresponding \((u, v) \in K^2\) since they are in the field of moduli of \(\mathcal{C} \), which is contained in \(K \). Conversely, if \(u \) and \(v \) satisfy the equation of \(X_0(N) \) then we can determine the equation of \(\mathcal{C} \) in terms of \(u \) and \(v \) as in [25]. \(\square \)

Let us now explicitly check whether elliptic components of \(A \) are isogenous to each other. First we focus on the \(d \)-dimensional loci, for \(d \geq 1 \).

Proposition 3.7 For \(N = 2, 3, 5, 7 \), there are only finitely many curves \(\mathcal{C} \) defined over \(K \) with \((2, 2)\)-decomposable Jacobian and \(\text{Aut}(\mathcal{C}) \cong V_4 \) such that \(E_1 \) is \(N \)-isogenous to \(E_2 \).

Proof Let us now check if elliptic components are isogenous for \(N = 2, 3, 5, 7 \). By replacing \(j_1, j_2 \) in the modular curve we get a curve \(F(s_1, s_2) = 0 \). This curve is symmetric in \(s_1 \) and \(s_2 \) and fixed by the \(H \)-action described in the preliminaries.
Therefore, such curve can be written in terms of u and v, $G_N(u, v) = 0$. We display all the computations below.

Let $N = 2$. $G_2(u, v)$ is

$$G_2(u, v) = f_1(u, v) \cdot f_2(u, v)$$

where f_1 and f_2 are

$$f_1 = -16v^3 - 81216v^2 - 892296v - 2460375$$
$$+ 3312uv^2 + 707616vu + 3805380u + 18360vu^2$$
$$- 1296162u^2 - 1744u^3v - 140076u^3 + 801u^4 + 256u^5,$$

$$f_2 = 4096u^7 + 256016u^6 - 45824u^5v + 4736016u^5$$
$$- 2126736vu^4 + 23158143u^4 - 25451712u^3v$$
$$- 119745540u^3 + 5291136v^2u^2 - 48166488vu^2$$
$$- 2390500350u^2 - 179712uv^3 + 35831808uv^2$$
$$+ 1113270480vu + 9300217500u - 4036608v^3$$
$$- 1791153000v - 8303765625 - 1024v^4$$
$$+ 163840u^3v^2 - 122250384v^2 + 256u^2v^3.$$

Notice that each one of these components has genus $g \geq 2$. From Faltings’ theorem [6] there are only finitely many K-rational points.

Let $N = 3$. Then, from equation (4) and $\phi_3(j_1, j_2) = 0$ we have

$$(4v - u^2 + 110u - 1125) \cdot g_1(u, v) \cdot g_2(u, v) = 0$$

where g_1 and g_2 are

$$g_1 = -27008u^6 + 256u^7 - 2432u^5v + v^4$$
$$+ 7296u^3v^2 - 6692v^3u - 1755067500u$$
$$+ 2419308v^3 - 34553439u^4 + 127753092vu^2$$
$$+ 16274844vu^3 - 1720730u^2v^2 - 1941120u^5$$
$$+ 381631500v + 1018668150u^2 - 116158860u^3$$
$$+ 52621974v^2 + 387712u^4v - 483963660vu$$
$$- 33416676v^2u + 922640625,$$

$$g_2 = 291350448u^6 - v^4u^2 - 998848u^6v - 3456u^7v$$
$$+ 4749840u^4v^2 + 17032u^5v^2 + 4v^5$$
$$+ 80368u^8 + 256u^9 + 6848224u^7$$
$$- 10535040v^3u^2 - 35872v^3u^3 + 26478v^4u$$
$$- 77908736u^5v + 9516699v^4 + 307234984u^3v^2$$

© Springer
Thus, there is an isogeny of degree 3 between E_1 and E_2 if and only if u and v satisfy equation (7). The vanishing of the first factor is equivalent to $G \cong D_6$. So, if $\text{Aut}(\mathcal{C}) \cong D_6$ then E_1 and E_2 are isogenous of degree 3. The other factors are curves of genus $g \geq 2$ and from [6] have only finitely many K-rational points.

For cases $N = 5, 7$ we only get one irreducible component, which in both cases is a curve of genus $g \geq 2$. We do not display those equations here. Using [6] we conclude the proof.

Next we consider the case when $|\text{Aut}(\mathcal{C})| > 4$. First notice that the invariants j_1 and j_2 are roots of the quadratic (6). If $G \cong D_4$, then σ_1 and σ_2 are in the same conjugacy class. There are again two conjugacy classes of elliptic involutions in G. Thus, there are two degree 2 elliptic subfields (up to isomorphism) of K. One of them is determined by double root j of (6), for $v^2 - 4u^3 = 0$. Next, we determine the j-invariant j' of the other degree 2 elliptic subfield and see how it is related to j. If $v^2 - 4u^3 = 0$ then $G \cong V_4$ and the set of Weierstrass points

$$\mathcal{W} = \{ \pm 1, \pm \sqrt{a}, \pm \sqrt{b} \}.$$

Then, $s_1 = a + 1/a + 1 = s_2$. Involutions of \mathcal{C} are $\tau_1: X \rightarrow -X$, $\tau_2: X \rightarrow \frac{1}{X}$, $\tau_3: X \rightarrow -\frac{1}{X}$. Since τ_1 and τ_3 fix no points of \mathcal{W}, they lift to involutions in G. They each determine a pair of isomorphic elliptic subfields. The j-invariant of elliptic subfield fixed by τ_1 is the double root of (6), namely

$$j = 256 \frac{v^3}{v + 1}.$$

To find the j-invariant of the elliptic subfields fixed by τ_3 we look at the degree 2 covering $\phi: \mathbb{P}^1 \rightarrow \mathbb{P}^1$, such that $\phi(\pm 1) = 0$, $\phi(a) = \phi(-1/a) = 1$, $\phi(-a) = \phi(1/a) = -1$, and $\phi(0) = \phi(\infty) = \infty$. This covering is, $\phi(X) = \frac{\sqrt{a}}{a-1} X^2 -1$. The branch points of ϕ are $q_i = \pm \frac{2i \sqrt{a}}{\sqrt{a-1}}$. From Lemma 3.1 the elliptic subfields E'_1 and E'_2 have 2-torsion points $\{0, 1, -1, q_i\}$. The j-invariants of E'_1 and E'_2 are

$$j' = -16 \frac{(v - 15)^3}{(v + 1)^2}.$$

Then, we have the following result.
Proposition 3.8 Let E be a genus 2 curve with $\text{Aut}(E) \cong D_4$ and $E_i, E'_i, i = 1, 2,$ as above. Then E_i is 2-isogenous with E'_i and there are only finitely many genus 2 curves \mathcal{E} defined over K such that E_i is N-isogenous to E'_i for $N = 3, 5, 7$.

Proof By substituting j and j' into the $\phi_N(x, y) = 0$ we get that

$$\phi_2(j, j') = 0,$$
$$\phi_3(j, j') = (v^2 + 138v + 153)(v + 5)^2(v^2 - 70v - 55)^2$$
$$\quad \cdot (256v^4 + 240v^3 + 191745v^2 + 371250v + 245025)$$
$$\quad \cdot (4096v^6 - 17920v^5 + 55909200v^4 - 188595375v^3$$
$$\quad \quad - 4518125v^2 + 769621875v + 546390625).$$

We do not display $\phi_5(j, j')$ and $\phi_7(j, j')$, but they are high genus curves. \qed

3.2 (3, 3)-Reducible Jacobian surfaces

In this section we focus on genus 2 curves with $(3, 3)$-split Jacobians. This case was studied in detail in [24], where it was proved that if F is a genus 2 field over k and $e_3(F)$ the number of $\text{Aut}(F/k)$-classes of elliptic subfields of F of degree 3, then

- $e_3(F) = 0, 1, 2,$ or 4,
- $e_3(F) \geq 1$ if and only if the classical invariants of F satisfy the irreducible equation $f(J_2, J_4, J_6, J_{10}) = 0$ displayed in [24, Appendix A].

There are exactly two genus 2 curves (up to isomorphism) with $e_3(F) = 4$. The case $e_3(F) = 1$ (resp., 2) occurs for a 1-dimensional (resp., 2-dimensional) family of genus 2 curves. We are interested in the 2-dimensional family, since the case $e_3(F) = 1$ is the singular locus of the case $e_3(F) = 2$.

We let \mathcal{E} be a genus 2 curve defined over $k = \overline{k}$, char $k \neq 2, 3$, and $F := k(\mathcal{E})$ its function field.

Definition 3.9 A non-degenerate pair (resp., degenerate pair) is a pair $(\mathcal{E}, \mathcal{E})$ such that \mathcal{E} is a genus 2 curve with a degree 3 elliptic subcover \mathcal{E} where $\psi : \mathcal{E} \to \mathcal{E}$ is ramified in two (resp., one) places. Two such pairs $(\mathcal{E}, \mathcal{E})$ and $(\mathcal{E}', \mathcal{E}')$ are called isomorphic if there is a k-isomorphism $\mathcal{E} \to \mathcal{E}'$ mapping $\mathcal{E} \to \mathcal{E}'$.

If $(\mathcal{E}, \mathcal{E})$ is a non-degenerate pair, then \mathcal{E} can be parameterized as follows:

$$Y^2 = (v^2X^3 + uvX^2 + vX + 1)(4v^2X^3 + v^2X^2 + 2vX + 1),$$

where $u, v \in k$ and the discriminant

$$\Delta = -16v^{17}(v - 27)(27v + 4v^2 - u^2v + 4u^3 - 18uv)^3$$

of the sextic is non-zero. We let $R := 27v + 4v^2 - u^2v + 4u^3 - 18uv \neq 0$. For $4u - v - 9 \neq 0$ the degree 3 coverings are given by $\phi_1(X, Y) \to (U_1, V_1)$ and $\phi_2(X, Y) \to (U_2, V_2)$ where
Isogenous components of Jacobian surfaces

\[U_1 = \frac{vX^2}{v^2X^3 + uvX^2 + vX + 1}, \]
\[U_2 = \frac{(vX + 3)^2(v(4u - v)X + 3u - v)}{v(4u - v - 9)(4v^2X^3 + v^2X^2 + 2vX + 1)}, \]
\[V_1 = Y \frac{v^2X^3 - vX - 2}{v^2X^3 + uvX^2 + vX + 1}, \]
\[V_2 = (27 - v)^{3/2} Y \frac{v^2(v - 4u + 8)X^3 + v(v - 4u)X^2 - vX + 1}{(4v^2X^3 + v^2X^2 + 2vX + 1)^2}, \]

and the elliptic curves have equations

\[\mathcal{E}_1: \quad V_1^2 = RU_1^3 - (12u^2 - 2uv - 18v)U_1^2 + (12u - v)U_1 - 4, \]
\[\mathcal{E}_2: \quad V_2^2 = c_3U_2^3 + c_2U_2^2 + c_1U_2 + c_0, \]

where

\[c_0 = -(9u - 2v - 27)^3, \]
\[c_1 = (4u - v - 9)(729u^2 + 54uv^2 - 972uv^2 - 18uv^2 + 189v^2 + 729v + v^3), \]
\[c_2 = -v(4u - v - 9)^2(54u + uv - 27v), \]
\[c_3 = v^2(4u - v - 9)^3. \]

The mapping \(k^2 \setminus \{ \Delta = 0 \} \to \mathcal{L}_3, \) such that \((u, v) \to (i_1, i_2, i_3),\) has degree 2.

We define the following invariants of two cubic polynomials. For \(F(X) = a_3X^3 + a_2X^2 + a_1X + a_0 \) and \(G(X) = b_3X^3 + b_2X^2 + b_1X + b_0 \) define

\[H(F, G) := a_3b_0 - \frac{1}{3} a_2b_1 + \frac{1}{3} a_1b_2 - a_0b_3. \]

We denote by \(R(F, G) \) the resultant of \(F \) and \(G \) and by \(D(F) \) the discriminant of \(F \). Also,

\[r_1(F, G) = \frac{H(F, G)^3}{R(F, G)}, \quad r_2(F, G) = \frac{H(F, G)^4}{D(F) D(G)}, \quad r_3 = \frac{H(F, G)^2}{J_2(F G)}. \]

Invariants \(r_1, r_2, \) and \(r_3 \) form a complete system of invariants for unordered pairs of cubics. For \(F = v^2X^3 + uvX^2 + vX + 1 \) and \(G = 4v^2X^3 + v^2X^2 + 2vX + 1 \) as in (8) we have

\[\chi := r_1 = 3^3 \cdot \frac{v(v - 9 - 2u)^3}{4v^2 - 18uv + 27v - u^2v + 4u^3}, \]
\[\psi := r_2 = -2^4 \cdot 3^4 \frac{v(v - 9 - 2u)^4}{(v - 27)(4v^2 - 18uv + 27v - u^2v + 4u^3)}. \]
It was shown in [24] that the function field of the locus \mathcal{L}_3, genus 2 curves with $(3, 3)$-reducible Jacobians, is exactly $k(\chi, \psi)$.

Lemma 3.10 $k(\mathcal{L}_3) = k(\chi, \psi)$.

By eliminating u and v we have rational expressions of absolute invariants i_1, i_2, i_3 in terms of χ and ψ as in [24, Equation (19)]. We can take

$$[J_2 : J_4 : J_6 : J_{10}] = \left[1 : \frac{1}{144} i_1 : \frac{1}{5184} i_2 : \frac{1}{432} i_1 : \frac{1}{486} i_3 \right].$$

Hence, we have

$$J_2 = \chi (\chi^2 + 96 \chi \psi - 1152 \psi^2),$$
$$J_4 = \frac{\chi}{26} \left(\chi^5 + 192 \chi^4 \psi + 13824 \chi^3 \psi^2 + 442368 \chi^2 \psi^3 + 5308416 \chi \psi^4 + 786432 \chi^3 \psi^3 + 9437184 \psi^4 \right),$$
$$J_6 = \frac{\chi}{29} \left(3 \chi^8 + 864 \chi^7 \psi + 94464 \chi^6 \psi^2 + 4866048 \chi^5 \psi^3 + 111476736 \chi^4 \psi^4 + 509607936 \chi^3 \psi^5 - 12230590464 \chi^2 \psi^6 + 1310720 \chi \psi^7 + 155713536 \chi^3 \psi^4 - 1358954496 \chi^2 \psi^5 - 1811939328 \chi^6 \psi^3 + 4831838208 \psi^6 \right),$$
$$J_{10} = -230 \chi^3 \psi^9.$$

It would be an interesting problem to determine for what values of χ and ψ the curve \mathcal{C} is defined over the field of moduli.

3.2.1 Elliptic components

We express the j-invariants j_i of the elliptic components \mathcal{E}_i of \mathcal{A}, from (9), in terms of u and v as follows:

$$j_1 = 16v \frac{(vu^2 + 216u^2 - 126uv - 972u + 12v^2 + 405v)^3}{(v - 27)^3(4v^2 + 27v + 4u^3 - 18uv - 2v^2)^2},$$
$$j_2 = -256 \frac{(u^2 - 3v)^3}{v(4v^2 + 27v + 4u^3 - 18uv - 2v^2)},$$

where $v \neq 0, 27$. Moreover, we can express $s = j_1 + j_2$ and $t = j_1 j_2$ in terms of the χ and ψ invariants as follows.

Lemma 3.11 The j-invariants of the elliptic components satisfy the following quadratic equations over $k(\chi, \psi)$:

$$j^2 - sj + t = 0$$

© Springer
where

\[
s = \frac{1}{16777216} \psi^3 \chi \left(1712282664960 \psi^3 \chi^6 + 1528823808 \psi^4 \chi^6 \\
+ 49941577728 \psi^4 \chi^5 - 38928384 \psi^5 \chi^5 \\
- 258048 \psi^6 \chi^4 + 12386304 \psi^6 \chi^3 \\
+ 901736729792 \psi \chi^{10} + 966131712 \psi^5 \chi^4 \\
+ 16231265527136256 \chi^{10} + 480 \psi^8 \chi + 101376 \psi^7 \chi^2 \\
+ 479047767293952 \psi \chi^8 + 7827577896960 \psi^2 \chi^9 \\
+ 2705210921189376 \chi^9 + 21641687369515008 \chi^{12} \\
+ 32462531054272512 \chi^{11} + \psi^9 + 619683250176 \psi^3 \chi^7 \\
+ 1408964021452800 \psi \chi^9 + 45595641249792 \psi^2 \chi^8 \\
+ 7247757312 \psi^3 \chi^8 + 3757237905408 \psi^2 \chi^7 \right),
\]

(12)

\[
t = - \frac{1}{68719476736} \chi^{12} \psi^3 \left(84934656 \psi^5 \chi^4 \psi - 5308416 \chi^4 \\
- 442368 \psi^3 \chi - 13824 \psi^2 \psi^2 - 192 \chi \psi^3 - \psi^4 \right)^3.
\]

Proof Substitute \(j_1 \) and \(j_2 \) as in (10) in equation (11).

Remark 3.12 The computation of the above equation is rather involved; see [24] or [26] for details. Notice that if \(\mathcal{C} \) is defined over a field \(K \) then \(\chi, \psi \in K \). The converse is not necessarily true.

Invariants \(s \) and \(t \) are modular invariants similar to the \(n = 2 \) case and can be expressed in terms of the Siegel modular forms or equivalently in terms of the Igusa arithmetic invariants.

Let \(K \) be the field of moduli of \(\mathcal{C} \). The discriminant of the quadratic in (11) is given by

\[
\Delta(\chi, \psi) = \frac{1}{2^{48} \chi^{16} \psi^6} \left(48922361856 \chi^8 + 48922361856 \chi^7 \\
+ 2293235712 \psi \chi^6 + 31850496 \psi^2 \chi^5 + 110592 \psi^3 \chi^4 \\
+ 12230590464 \chi^6 + 1528823808 \psi \chi^5 + 79626240 \psi^2 \chi^4 \\
+ 2211840 \psi^3 \chi^3 + 34560 \psi^4 \chi^2 + 288 \psi^5 \chi^2 + \psi^4 \right)^2 \\
\cdot \left(195689447424 \chi^8 + 195689447424 \chi^7 \\
- 2038431744 \psi \chi^6 + 48922361856 \chi^6 \\
- 113246208 \psi^2 \chi^5 + 5096079360 \psi \chi^5 - 753664 \psi^3 \chi^4 \\
+ 217645056 \psi^2 \chi^4 + 4866048 \psi^3 \chi^3 \\
+ 59904 \psi^4 \chi^2 + 384 \psi^5 \chi + \psi^6 \right).
\]

\(\odot \) Springer
Notice that this is a perfect square if and only if the second factor is a perfect square in K. Similarly with the case $n = 2$ we define the following:

$$S_3 : y^2 = S_3(\chi, \psi),$$

where

$$S_3(\chi, \psi) = 2^{28} \cdot 3^6 \chi^8 + 2^{28} \cdot 3^6 \chi^7 - 2^{23} \cdot 3^5 (\psi - 24) \chi^6 - 2^{22} \cdot 3^3 \psi (\psi - 45) \chi^5 - 2^{15} \psi^2 (23 \psi - 6642) \chi^4 + 2^{14} \cdot 3^3 \cdot 11 \psi^3 \chi^3 + 2^9 \cdot 3^2 \cdot 13 \psi^4 \chi^2 + 2^7 \cdot 3 \psi^5 \chi + \psi^6$$

is the second factor in the discriminant $\Delta(\chi, \psi)$. Even in this case there is a degree 2 covering

$$\Phi : S_3 \to L_3$$

$$((\chi, \psi, \pm y) \mapsto (\chi, \psi))$$

from S_3 to the space of genus 2 curves with $(3, 3)$-reducible Jacobians.

Lemma 3.13 Let C be a genus 2 curve with $(3, 3)$-reducible Jacobian. The elliptic components of $\text{Jac}(C)$ are defined over the field of moduli K of C only when $S_3(\chi, \psi)$ is a complete square in K or equivalently when the surface $y^2 = S_3(\chi, \psi)$ has a K-rational point.

Proof The proof is similar to that of the case $n = 2$. Invariants χ, ψ are in the field of moduli K of C; see [24]. When the surface $y^2 = S_3(\chi, \psi)$ has a K-rational point that means that $j_1, j_2 \in K$ and therefore E_1 and E_2 are defined over K. ☐

Notice that in this case the curve C is not necessarily defined over its field of moduli K. In [19] we provide exact conditions when this happens.

3.2.2 Isogenies between the elliptic components

Now let us consider the case $n = 3$. In an analogous way to the case $n = 2$ we will study the locus $\phi_N(x, y) = 0$ which represents the modular curve $X_0(N)$. For N prime, two elliptic curves E_1, E_2 are N-isogenous if and only if $\phi_N(j(E_1), j(E_2)) = 0$. We will consider the case $N = 2, 3, 5,$ and 7. We will omit a part of formulas since they are big to display.

Proposition 3.14 Let C be a genus 2 curve with $(3, 3)$-split Jacobian and E_1, E_2 its elliptic subcovers. There are only finitely many genus 2 curves C defined over K such that E_1 is 5-isogenous to E_2.

Proof Let $\phi_5(x, y)$ be the modular polynomial of level 5. As in the previous section, we let $s = x + y, t = xy$. Then, $\phi_5(x, y)$ can be written in terms of s, t. We replace
Isogenous components of Jacobian surfaces

s and t by expressions in (12). We get a curve in χ, ψ of genus 169. From Faltings’ theorem there are only finitely many K-rational points (χ, ψ). Since, $K(\chi, \psi)$ is the field of moduli of C, C cannot be defined over K if χ, ψ are not in K.

Let us now consider the other cases. If $N = 2$, then the curve $\phi_2(s, t)$ can be expressed in terms of the invariants χ, ψ and computations show that the locus $\phi_2(\chi, \psi)$ becomes

$$g_1(\chi, \psi) \cdot g_2(\chi, \psi) = 0,$$

where $g_1(\chi, \psi) = 0$ is a genus 0 component given by

$$\psi^9 + 10820843684757504 \chi^{12} + 16231265527136256 \chi^{11}$$
$$+ 4057816381784064 \chi^{10} \psi + 2348273369088 \chi^8 \psi^3$$
$$+ 8115632763568128 \chi^{10} + 253613523861504 \chi^9 \psi$$
$$- 1834588569600 \chi^7 \psi^3 - 45864714240 \chi^6 \psi^4$$
$$- 525533184 \chi^5 \psi^5 - 2322432 \chi^4 \psi^6$$
$$+ 1352605460594688 \chi^9 + 253613523861504 \chi^8 \psi$$
$$+ 21134460321792 \chi^7 \psi^2 + 32105299968 \chi^5 \psi^4$$
$$+ 668860416 \chi^4 \psi^5 + 9289728 \chi^3 \psi^6 + 82944 \chi^2 \psi^7$$
$$+ 432 \chi \psi^8 + 190210142896128 \chi^9 \psi^2$$
$$- 26418075402240 \chi^8 \psi^2 + 1027369598976 \chi^6 \psi^3 = 0,$$

while the other component has genus $g = 29$. To conclude about the number of 2-isogenies between E_1 and E_2 we have to check for rational points in the conic $g_1(\chi, \psi) = 0$.

The computations for the case $N = 3$ show similar results. The locus $\phi_3(\chi, \psi)$ becomes

$$g_1(\chi, \psi) \cdot g_2(\chi, \psi) = 0,$$

where $g_1(\chi, \psi) = 0$ is a genus 0 component and $g_2(\chi, \psi) = 0$ is a curve with singularities.

Also the case $N = 7$ shows that the curve $\phi_7(\chi, \psi)$ becomes

$$g_1(\chi, \psi) \cdot g_2(\chi, \psi) = 0,$$

where $g_1(\chi, \psi) = 0$ is a genus 0 component and $g_2(\chi, \psi) = 0$ is a genus 1 curve. Summarizing we arrive to the following observation.

Proposition 3.15 Let C be a genus 2 curve with (3, 3)-split Jacobian and E_1, E_2 its elliptic subcovers. There are possibly infinite families of genus 2 curves C defined over K such that E_1 is N-isogenous to E_2, when $N = 2, 3, 7$.
As a final remark we would like to mention that we can perform similar computations for \(n = 5 \) by using the equation of \(\mathcal{L}_5 \) as computed in [17]. One can possibly even investigate cases for \(n > 5 \) by using results of [13]. However, the computations will be much more complicated.

We summarize our results in the following theorem.

Theorem 3.16 Let \(\mathcal{C} \) be a genus 2 curve, defined over a number field \(K \), and \(\mathcal{A} := \text{Jac}(\mathcal{C}) \) with canonical principal polarization \(\iota \) such that \(\mathcal{A} \) is \((n, n)\)-geometrically reducible to \(E_1 \times E_2 \). Then the following hold:

(i) If \(n = 2 \) and \(\text{Aut}(\mathcal{A}, \iota) \cong V_4 \) then there are finitely many elliptic components \(E_1, E_2 \) defined over \(K \) and \(N = 2, 3, 5, 7 \)-isogenous to each other.

(ii) If \(n = 2 \) and \(\text{Aut}(\mathcal{A}, \iota) \cong D_4 \) then:

(a) There are infinitely many elliptic components \(E_1, E_2 \) defined over \(K \) and \(N = 2 \)-isogenous to each other;

(b) There are finitely many elliptic components \(E_1, E_2 \) defined over \(K \) and \(N = 3, 5, 7 \)-isogenous to each other.

(iii) If \(n = 3 \) then:

(a) There are finitely many elliptic components \(E_1, E_2 \) defined over \(K \) and \(N = 5 \)-isogenous to each other;

(b) There are possible infinitely many elliptic components \(E_1, E_2 \) defined over \(K \) and \(N = 2, 3, 7 \)-isogenous to each other.

Proof From [9, Theorem 32] or [29] we have that \(\text{Aut}(\mathcal{C}) \cong \text{Aut}(\mathcal{A}, \iota) \). Consider now the case when \(n = 2 \) and \(\text{Aut}(\mathcal{C}) \cong V_4 \). From Proposition 3.7 we have the result. If \(\text{Aut}(\mathcal{A}, \iota) \cong D_4 \) then from Proposition 3.8 we have (ii). Part (iii-a) follows from Proposition 3.14 and part (iii-b) from Proposition 3.15. \(\square \)

Corollary 3.17 Let \(\mathcal{A} \) be a 2-dimensional Jacobian variety defined over a number field \(K \) and \((3, 3)\)-isogenous to the product of elliptic curves \(E_1 \times E_2 \). Then there are infinitely many curves \(E_1, E_2 \) defined over \(K \) and \(N = 2, 3, 7 \)-isogenous to each other.

Proof We computationally check that the corresponding conic has a \(K \)-rational point. \(\square \)

As a final remark we would like to add that we are not aware of any other methods, other than computational ones, to determine for which pairs \((n, N)\) we have many \(K \)-rational elliptic components.

4 Kummer and Shioda–Inose surfaces of reducible Jacobians

Consider \(\mathcal{C} \) a genus 2 curve with \((n, n)\)-decomposable Jacobian and \(E_1, E_2 \) its elliptic components. We continue our discussion of Kummer \(\text{Kum}(\text{Jac}(\mathcal{C})) \) and Shioda–Inose \(\text{SI}(\text{Jac}(\mathcal{C})) \) surfaces of \(\text{Jac}(\mathcal{C}) \) started in Sect. 2.3.

Malmendier and Shaska in [18] proved that as a genus 2 curve \(\mathcal{C} \) varies the Shioda–Inose K3 surface \(\text{SI}(\text{Jac}(\mathcal{C})) \) fits into the following four parameter family in \(\mathbb{P}^3 \) given in terms of the variables \([W : X : Y : Z] \in \mathbb{P}^3\) by the equation:

\[3 Springer \]
\[Y^2ZW - 4X^3Z + 3\alpha XZW^2 + \beta ZW^3 + \gamma XZ^2W - \frac{1}{2}(\delta Z^2W^2 + W^4) = 0, \quad (13) \]

where the parameters \((\alpha, \beta, \gamma, \delta)\) can be given in terms of the Igusa–Clebsch invariants by

\[
(\alpha, \beta, \gamma, \delta) = \left(\frac{1}{4} I_4, \frac{1}{8} I_2 I_4 - \frac{3}{8} I_6, -\frac{243}{4} I_{10}, \frac{243}{32} I_2 I_{10} \right). \quad (14)
\]

Denote by \(S\) the moduli space of the Shioda–Inose surfaces given in (14) and by \(L_n\) the locus in \(M_2\) of \((n, n)\)-reducible genus 2 curves. Then there is a map

\[\phi_n : L_n \to S \]

such that every curve \([C] \in L_n\) goes to the corresponding SI(Jac\((C))\). Then we have the following result.

Proposition 4.1 For \(n = 2, 3\), the map \(\phi_n\) is given as follows:

(i) If \(n = 2\) then the Shioda–Inose surface is given by \((13)\) for

\[
\alpha = u^2 - 126u + 12v + 405, \\
\beta = -u^3 - 729u^2 + 36uv - 4131u + 1404v + 3645, \\
\gamma = -3888(u^2 + 18u - 4v - 27)^2, \\
\delta = 7776(15 + u)(u^2 + 18u - 4v - 27)^2.
\]

(ii) If \(n = 3\) then the Shioda–Inose surface is given by \((13)\) for

\[
\alpha = \frac{1}{256} \chi \cdot \left(\chi^5 + 192 \chi^4 \psi + 13824 \chi^3 \psi^2 + 442368 \chi^2 \psi^3 \\ + 5308416 \chi \psi^4 + 786432 \chi \psi^3 + 9437184 \psi^4 \right), \\
\beta = \frac{1}{512} \chi^2 \cdot \left(\chi^2 + 96 \chi \psi - 1152 \psi^2 \right) \\ \cdot \left(\chi^5 + 192 \chi^4 \psi + 13824 \chi^3 \psi^2 + 442368 \chi^2 \psi^3 \\ + 5308416 \chi \psi^4 + 786432 \chi \psi^3 + 9437184 \psi^4 \right), \\
\gamma = -\frac{3}{4096} \chi \cdot \left(3 \chi^8 + 864 \chi^7 \psi + 94464 \chi^6 \psi^2 + 4866048 \chi^5 \psi^3 \\ + 111476736 \chi^4 \psi^4 + 509607936 \chi^3 \psi^5 \\ - 12230590464 \chi^2 \psi^6 + 1310720 \chi^4 \psi^3 \\ + 155713536 \chi^3 \psi^4 - 1358954946 \chi^2 \psi^5 \\ - 18119393280 \chi \psi^6 + 4831838208 \psi^6 \right), \\
\delta = -2^{25} 3^5 \chi^4 \left(\chi^2 + 96 \chi \psi - 1152 \psi^2 \right) \psi^9.
\]
Proof Case (i) is a direct substitution of J_2, \ldots, J_{10}, given in terms of u and v in [27], in (14). To prove case (ii) we first express the Igusa invariants J_2, \ldots, J_{10} in terms of χ and ψ. Then using (14) we have the desired result. □

Remark 4.2 It was shown in [27] (resp. [24]) that invariants u and v (resp. χ and ψ) are modular invariants given explicitly in terms of the genus 2 Siegel modular forms.

Corollary 4.3 Let \mathcal{C} be a genus 2 curve defined over a number field K, with canonical principal polarization i, such that $\text{Jac}(\mathcal{C})$ is (n, n)-geometrically reducible to $E_1 \times E_2$ and E_1 is N-isogenous to E_2. There are only finitely many $S_1(\text{Jac}(\mathcal{C}))$ surfaces defined over K such that

(i) $n = 2$, $\text{Aut}(\text{Jac}(\mathcal{C}), i) \cong V_4$, and $N = 2, 3, 5, 7$.
(ii) $n = 2$, $\text{Aut}(\text{Jac}(\mathcal{C}), i) \cong D_4$, and $N = 3, 5, 7$.
(iii) $n = 3$ and $N = 5$.

Proof The equation (13) of the surface $S_1(\text{Jac}(\mathcal{C}))$ is defined over k when u and v (resp. χ and ψ) are defined over k. From Theorem 3.16 we know that there are only finitely many k-rational ordered pairs (u, v) (resp. (χ, ψ)).

If the elliptic curves are defined by the equations

$$E_1: \ y^2 = x^3 + ax + b, \quad E_2: \ y^2 = x^3 + cx + d,$$

then an affine singular model of the Kummer $\text{Jac}(\mathcal{C})$ is given as follows:

$$x_2^3 + cx_2 + d = t_2^2(x_1^3 + ax_1 + b). \quad (15)$$

The map $\text{Kum}(\text{Jac}(\mathcal{C})) \rightarrow \mathbb{P}^1$, such that $(x_1, x_2, t_2) \mapsto t_2$, is an elliptic fibration, which in the literature is known as the Kummer pencil. This elliptic fibration has geometric sections that are defined only over the extension $k(E_1[2], E_2[2])/k$.

Take a parameter t_6 such that $t_2 = t_6^3$ and consider (15) as a family of cubic curves in \mathbb{P}^2 over the field $k(t_6)$. This family has a rational point $(1 : t_6^2 : 0)$ and using this rational point we can get the Weierstrass form of (15) as follows:

$$Y^2 = X^3 - 3acX + \frac{1}{64} \left(\Delta_{E_1} t_6^6 + 864bd + \frac{\Delta_{E_2}}{t_6^6} \right)$$

where Δ_{E_1} and Δ_{E_2} are, respectively, the discriminant of the elliptic curves E_1 and E_2. Note that if we choose other equations of E_1 and E_2 then we get an isomorphic equation for the Kummer surface. Setting $t_1 = t_6^6$ in the above equation we get an elliptic curve which will be denoted with $F_{E_1, E_2}^{(1)}$ and the Néron–Severi model of this elliptic curve over $k(t_1)$ is called the Inose surface associated with E_1 and E_2, see [14] for more details.

Definition 4.4 For $s = 1, \ldots, 6$, let t_s be a parameter satisfying $t_s^6 = t_1$. Define the elliptic curve $F_{E_1, E_2}^{(s)}$ over $k(t_s)$ by

$$F_{E_1, E_2}^{(s)}: \ Y^2 = X^3 - 3acX + \frac{1}{64} \left(\Delta_{E_1} t_s^6 + 864bd + \frac{\Delta_{E_2}}{t_s^6} \right).$$

Springer
Note that the Kodaira–Néron model of \(F_{E_1,E_2}^{(s)} \) is a K3 surface for \(s = 1, \ldots, 6 \) but not for \(s \geq 7 \). The following proposition is a direct consequence of [14, Proposition 2.9] and Theorem 3.16.

Lemma 4.5 Let \(A := \text{Jac}(\mathcal{C}) \) be an \((n,n)\)-decomposable Jacobian and \(E_1, E_2 \) its elliptic components. For \(n = 2, 3 \), there are infinitely many values for \(t_5 \) and \(t_6 \) such that the Mordell–Weil groups \(F_{E_1,E_2}^{(5)}(\kappa(t_5)) \) and \(F_{E_1,E_2}^{(6)}(\kappa(t_6)) \) have rank 18.

Proof From Theorem 3.16 we know that for \(n = 2, 3 \) there are infinitely many curves \(E_1 \) that are isogenous to \(E_2 \). From [14, Proposition 2.9] we have that if \(E_1 \) is isogenous to \(E_2 \) and they have complex multiplication, then the rank of \(F^{(5)} \) and \(F^{(6)} \) is 18. ⊓⊔

Corollary 4.6 The field of definition of the Mordell–Weil group of \(F_{E_1,E_2}^{s}(\kappa(t)) \) is contained in \(k(E_1[s] \times E_2[s]) \), for almost all \(t \).

Proof From Theorem 3.16 we know that for almost all \((n,n)\)-Jacobians, \(n = 2, 3 \), \(E_1 \) is not isogenous to \(E_2 \). The result follows as a consequence of [14, Theorem 2.10(i)]. ⊓⊔

4.1 Kummer surfaces in positive characteristic and applications to cryptography

Supersingular isogeny based cryptography currently uses elliptic curves that are defined over a quadratic extension field \(L \) of a non-binary field \(K \) and such that its entire 2-torsion is \(L \)-rational. More specifically implementations of supersingular isogeny Diffie Hellman (SIDH) fix a large prime field \(K = \mathbb{F}_p \) with \(p = 2^i 3^j - 1 \) for \(i > j > 100 \), construct \(L = \mathbb{F}_{p^2} \) and work with supersingular isogeny elliptic curves over \(\mathbb{F}_{p^2} \) whose group structures are all isomorphic to \(\mathbb{Z}_{p^2+1} \times \mathbb{Z}_{p^2+1} \). Hence, all such elliptic curves have full rational 2-torsion and can be written in Montgomery form.

What is the relation between the abelian surfaces \(\text{Jac}(\mathcal{C}) \) defined over \(\mathbb{F}_p \) when the elliptic components are supersingular Montgomery curves defined over \(\mathbb{F}_{p^2} \)? This is relevant in supersingular isogeny based cryptography since computing isogenies in the Kummer surface associated to supersingular Jacobians is much more efficient than computing isogenies in the full Jacobian group.

In [4] there are studied \((2,2)\)-reducible Jacobians and it is pointed out that most of the literature on the topic studies the splitting of \(\text{Jac}(\mathcal{C}) \) over the algebraic closure \(\overline{K} \). However, form our Lemma 3.4 we get necessary and sufficient conditions when \(\text{Jac}(\mathcal{C}) \) splits over \(K \). From [27] we know that for a curve \(\mathcal{C} \in \mathcal{L}_2 \), we can choose the curve to have the equation

\[
y^2 = (x^2 - \lambda_1)(x^2 - \lambda_2)
\]

and its elliptic subcovers have equations \(y^2 = (x - \lambda_1)(x - \lambda_2)(x^2 - 1/\lambda_1 \lambda_2) \) and \(y^2 = x(x - \lambda_1)(x - \lambda_2)(x^2 - 1/\lambda_1 \lambda_2) \).
We can reverse the above construction as follows. Let \(p \equiv 3 \mod 4 \) and \(\mathbb{F}_{p^2} = \mathbb{F}_p(i) \) for \(i^2 = -1 \). Consider the following supersingular Montgomery curve:

\[
E_\alpha : \ y^2 = x(x - \alpha)\left(x - \frac{1}{\alpha}\right),
\]

for \(\alpha \notin \mathbb{F}_p \) and \(\alpha \in \mathbb{F}_{p^2} \) such that \(\alpha = \alpha_0 + \alpha_1 i \), for some \(\alpha_0, \alpha_1 \in \mathbb{F}_p \). Then by lifting to a genus 2 curve we get a genus 2 curve \(\mathcal{C} \) given as follows:

\[
\mathcal{C} : \ y^2 = f_1(x) f_2(x) f_3(x),
\]

where

\[
\begin{align*}
 f_1(x) &= x^2 + \frac{2\alpha_0}{\alpha_1} x - 1, \\
 f_2(x) &= x^2 - \frac{2\alpha_0}{\alpha_1} x - 1, \\
 f_3(x) &= x^2 - \frac{2\alpha_0(\alpha_0^2 + \alpha_1^2 - 1)}{\alpha_1(\alpha_0^2 + \alpha_1^2 + 1)} x - 1.
\end{align*}
\]

Thus, \(\text{Jac}(\mathcal{C}) \) is \((2,2)\)-reducible with elliptic components the above curves.

The Weil restriction of the 1-dimensional variety \(E_\alpha(\mathbb{F}_{p^2}) \) is the the variety

\[
W_\alpha := \text{Res}_{\mathbb{F}_p}^{\mathbb{F}_{p^2}}(E_\alpha) = V(W_0(x_0, x_1, y_0, y_1), W_1(x_0, x_1, y_0, y_1))
\]

where

\[
\begin{align*}
 W_0 &= (\alpha_0^2 + \alpha_1^2) (\alpha_0(x_0^2 - x_1^2) - 2\alpha_1 x_0 x_1 + \delta_0 y_0^2 - y_1^2) - 2\delta_1 y_0 y_1 \\
 & \quad - x_0(x_0^2 - 3x_1^2 + 1) + \alpha_0(x_0^2 - x_1^2) + 2\alpha_1 x_0 x_1, \\
 W_1 &= (\alpha_0^2 + \alpha_1^2) (\alpha_1(x_0^2 - x_1^2) - 2\alpha_0 x_0 x_1 + \delta_1 y_0^2 - y_1^2) - 2\delta_0 y_0 y_1 \\
 & \quad - x_0(x_0^2 - 3x_1^2 + 1) + \alpha_1(x_0^2 - x_1^2) + 2\alpha_0 x_0 x_1
\end{align*}
\]

are obtained by putting \(x = x_0 + x_1 i, y = y_0 + y_1 i, \delta = \delta_0 + \delta_1 i, \) and \(x_i, y_i, \alpha_i, \delta_i \in \mathbb{F}_p \) for \(i = 0, 1 \). In [4] it was proved the following:

Lemma 4.7 Let \(E_\alpha \) and \(\mathcal{C} \) be as defined above. Then, the Weil restriction of \(E_\alpha(\mathbb{F}_{p^2}) \) is \((2,2)\)-isogenous to the Jacobian \(\text{Jac}_{\mathbb{F}_p}(\mathcal{C}) \), i.e.,

\[
\text{Jac}_{\mathbb{F}_p}(\mathcal{C}) \cong \text{Res}_{\mathbb{F}_p}^{\mathbb{F}_{p^2}}(E_\alpha).
\]

Moreover, since \(E_\alpha \) is supersingular then \(\text{Jac}(\mathcal{C}) \) is supersingular.

From our results in the previous section we have that
Corollary 4.8 Let C be defined over \mathbb{F}_p. Then, $\text{Jac}(C)$ is $(2, 2)$-reducible over \mathbb{F}_p if and only if $S_2(u, v)$ is a complete square in \mathbb{F}_p or equivalently S_2 has \mathbb{F}_p-points.

Proof Since the equation of both elliptic components is defined over their field of moduli that means that their minimal field of definition is determined by their j-invariants. Such invariants are defined over \mathbb{F}_p if and only if $S_2(u, v)$ in (5) is a complete square in \mathbb{F}_p.

What about $(3, 3)$-reducible Jacobians? The situation is slightly different. The main reason is that a curve $C \in L_3$ is not necessarily defined over its field of moduli. However, if we start with a curve $C \in L_3$ defined over \mathbb{F}_p, then from Lemma 3.13 we can determine precisely when $\text{Jac}(C)$ splits over \mathbb{F}_p. The above construction via the Weils restriction is a bit more complicated for curves in L_3.

The case for the Kummer approach in supersingular isogeny-based cryptography would be much stronger if it were applicable efficiently for both parties. There has been some explicit work done in the case of $(3, 3)$-[24] and $(5, 5)$-isogenies [17], but those situations are much more complicated than the case of Richelot isogenies.

As pointed out by Costello in the last paragraph of [4]: One hope in this direction is the possibility of pushing odd degree l-isogeny maps from the elliptic curve setting to the Kummer setting. This was difficult in the case of 2-isogenies because the maps themselves are $(2, 2)$-isogenies, but in the case of odd degree isogenies there is nothing obvious preventing this approach.

References

1. Beshaj, L.: Minimal integral Weierstrass equations for genus 2 curves. In: Malmendier, A., Shaska, T. (eds.) Higher Genus Curves in Mathematical Physics and Arithmetic Geometry. Contemporary Mathematics, vol. 703, pp. 63–82. American Mathematical Society, Providence (2018)
2. Beshaj, L.: Absolute reduction of binary forms. Albanian J. Math. 12(1), 36–77 (2018)
3. Clingher, A., Doran, C.F.: Modular invariants for lattice polarized $K3$ surfaces. Mich. Math. J. 55(2), 355–393 (2007)
4. Costello, C.: Computing supersingular isogenies on Kummer surfaces. In: Peyrin, T., Galbraith, S. (eds.) Advances in Cryptology—ASIACRYPT 2018. Part III. Lecture Notes in Computer Science, vol. 11274, pp. 428–456. Springer, Cham (2018)
5. Dolgachev, I., Lehavi, D.: On isogenous principally polarized abelian surfaces. In: Alexeev, V., et al. (eds.) Curves and Abelian Varieties. Contemporary Mathematics, vol. 465, pp. 51–69. American Mathematical Society, Providence (2008)
6. Faltings, G.: Endlichkeitssätze für abelsche Varietäten über Zahlkörpern. Invent. Math. 73(3), 349–366 (1983)
7. Frey, G.: On elliptic curves with isomorphic torsion structures and corresponding curves of genus 2. In: Coates, J., Yau, S.-T. (eds.) Elliptic Curves, Modular Forms, & Fermat’s Last Theorem. Series in Number Theory, vol. I, pp. 79–98. International Press, Cambridge (1995)
8. Frey, G., Kani, E.: Curves of genus 2 with elliptic differentials and associated Hurwitz spaces. In: Lachaud, G., Ritzenhalter, C., Tsfasman, M.A. (eds.) Arithmetic, Geometry, Cryptography and Coding Theory. Contemporary Mathematics, vol. 487, pp. 33–81. American Mathematical Society, Providence (2009)
9. Frey, G., Shaska, T.: Curves, Jacobians, and cryptography. In: Beshaj, L., Shaska, T. (eds.) Algebraic Curves and Their Applications. Contemporary Mathematics, vol. 724, pp. 279–344. American Mathematical Society, Providence (2019)
10. Hashimoto, K., Murabayashi, N.: Shimura curves as intersections of Humbert surfaces and defining equations of QM-curves of genus two. Tohoku Math. J. 47(2), 271–296 (1995)
11. Igusa, J.: Arithmetic variety of moduli for genus two. Ann. Math. 72, 612–649 (1960)
12. Kodaira, K.: On compact analytic surfaces. II, III. Ann. Math. 77, 563–626, 1–40 (1963)
13. Kumar, A.: Hilbert modular surfaces for square discriminants and elliptic subfields of genus 2 function fields. Res. Math. Sci. 2, # 24 (2015)
14. Kumar, A., Kuwata, M.: Elliptic K3 surfaces associated with the product of two elliptic curves: Mordell–Weil lattices and their fields of definition. Nagoya Math. J. 228, 124–185 (2017)
15. Lombardo, D.: Computing the geometric endomorphism ring of a genus-2 Jacobian. Math. Comput. 88(316), 889–929 (2019)
16. Lubich, D., Robert, D.: Computing separable isogenies in quasi-optimal time. LMS J. Comput. Math. 18(1), 198–216 (2015)
17. Magaard, K., Shaska, T., Völklein, H.: Genus 2 curves that admit a degree 5 map to an elliptic curve. Forum Math. 21(3), 547–566 (2009)
18. Malmendier, A., Shaska, T.: The Satake sextic in F-theory. J. Geom. Phys. 120, 290–305 (2017)
19. Malmendier, A., Shaska, T.: A universal genus-two curve from Siegel modular forms. SIGMA Symmetry Integrability Geom. Methods Appl. 13, 089 (2017)
20. Malmendier, A., Shaska, T.: From hyperelliptic to superelliptic curves. Albanian J. Math. 13(1), 107–200 (2019)
21. Shaska, T.: Curves of genus 2 with \((N, N)\)-decomposable Jacobians. J. Symbolic Comput. 31(5), 603–617 (2001)
22. Shaska, T.: Curves of Genus Two Covering Elliptic Curves. Ph.D. Thesis, University of Florida (2001)
23. Shaska, T.: Genus 2 curves with \((3, 3)\)-split Jacobian and large automorphism group. In: Fieker, C., Kohel, D.R. (eds.) Algorithmic Number Theory. Lecture Notes in Computer Science, vol. 2369, pp. 205–218. Springer, Berlin (2002)
24. Shaska, T.: Genus 2 fields with degree 3 elliptic subfields. Forum Math. 16(2), 263–280 (2004)
25. Shaska, T.: Genus two curves covering elliptic curves: a computational approach. In: Shaska, T. (ed.) Computational Aspects of Algebraic Curves. Lecture Notes Series on Computing, vol. 13, pp. 206–231. World Scientific, Hackensack (2005)
26. Shaska, T.: Genus two curves with many elliptic subcovers. Commun. Algebra 44(10), 4450–4466 (2016)
27. Shaska, T., Völklein, H.: Elliptic subfields and automorphisms of genus 2 function fields. In: Christensen, C., Sathaye, A., Bajaj, C. (eds.) Algebra, Arithmetic and Geometry with Applications, pp. 703–723. Springer, Berlin (2004)
28. Shiota, T., Inose, H.: On singular K3 surfaces. In: Baily Jr., W.L., Shiota, T. (eds.) Complex Analysis and Algebraic Geometry, pp. 119–136. Iwanami Shoten, Tokyo (1977)
29. Zarhin, Yu G.: Families of absolutely simple hyperelliptic Jacobians. Proc. London Math. Soc. 100(1), 24–54 (2010)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.