Generalized fractional integral operators on Campanato spaces and their bi-preduals

Dedicated to Professor Toshio Horiuchi on his 65th birthday

SATOSHI YAMAGUCHI * and EIICHI NAKAI **

Abstract

In this paper we prove the boundedness of the generalized fractional integral operator I_ρ on generalized Campanato spaces with variable growth condition, which is a generalization and improvement of previous results, and then, we establish the boundedness of I_ρ on their bi-preduals. We also prove the boundedness of I_ρ on their preduals by the duality.

1. Introduction

Let I_α be the fractional integral operator of order $\alpha > 0$, that is,

$$I_\alpha f(x) = \int_{\mathbb{R}^n} \frac{f(y)}{|x-y|^{n-\alpha}} \, dy, \quad x \in \mathbb{R}^n.$$

It is well known as the Hardy-Littlewood-Sobolev theorem that I_α is bounded from $L^p(\mathbb{R}^n)$ to $L^q(\mathbb{R}^n)$ if $\alpha \in (0,n)$, $p,q \in (1,\infty)$ and $-n/p + \alpha = -n/q$. In this paper we consider the generalized fractional integral operator I_ρ. For a function $\rho : (0,\infty) \to (0,\infty)$, the operator I_ρ is defined by

$$I_\rho f(x) = \int_{\mathbb{R}^n} \rho(|x-y|/|x-y|^\alpha) f(y) \, dy, \quad x \in \mathbb{R}^n,$$

where we always assume that

$$\int_0^1 \frac{\rho(t)}{t} \, dt < \infty.$$

Received 18 September 2021; revised 1 October 2021.
2010 Mathematics Subject Classification. 42B35, 46E30, 44A35, 42B20.

Key Words and Phrases. Campanato space, fractional integral, variable exponent.

*Department of Mathematics, Ibaraki University, Bunkyo 2-1-1, Mito, Ibaraki 310-8512, Japan (21nm11h@vc.ibaraki.ac.jp, satoshiyamaguchi.1998@gmail.com)

**Department of Mathematics, Ibaraki University, Bunkyo 2-1-1, Mito, Ibaraki 310-8512, Japan (eiichi.nakai.math@vc.ibaraki.ac.jp) Partially supported by Grant-in-Aid for Scientific Research (C), No. 21K03304, Japan Society for the Promotion of Science.
If \(\rho(r) = r^\alpha \), \(0 < \alpha < n \), then \(I_{\rho} \) is the usual fractional integral operator \(I_{\alpha} \). The condition (1.2) is needed for the integral in (1.1) to converge for bounded functions \(f \) with compact support. In this paper we also assume that there exist positive constants \(C, K_1 \) and \(K_2 \) with \(K_1 < K_2 \) such that, for
\[
\sup_{r \leq t \leq 2r} \rho(t) \leq C \int_{K_1 r}^{K_2 r} \frac{\rho(t)}{t} \, dt. \tag{1.3}
\]
The condition (1.3) was considered in [29]. If \(\rho \) satisfies the doubling condition (2.1) below, then \(\rho \) satisfies (1.3). Let \(\rho(r) = \min(r^\alpha, e^{-r/2}) \) for \(0 < \alpha < n \), which controls the Bessel potential. Then \(\rho \) also satisfies (1.3).

The operator \(I_{\rho} \) was introduced in [15, 16, 17] (2000, 2001) to extend the Hardy-Littlewood-Sobolev theorem to Orlicz spaces. For example, let
\[
\rho(r) = \begin{cases}
1/(\log(1/r))^{\alpha+1} & \text{for small } r, \\
(\log r)^{\alpha-1} & \text{for large } r,
\end{cases} \tag{1.4}
\]
p, \(q \in (0, \infty) \), \(-1/p + \alpha = -1/q \). Then \(I_{\rho} \) is bounded from \(\exp L^p(\mathbb{R}^n) \) to \(\exp L^q(\mathbb{R}^n) \), where \(\exp L^p(\mathbb{R}^n) \) is the Orlicz space \(L^\Phi(\mathbb{R}^n) \) with
\[
\Phi(t) = \begin{cases}
1/\exp(1/t^p) & \text{for small } t, \\
\exp(t^p) & \text{for large } t.
\end{cases} \tag{1.5}
\]

Since then, the boundedness of the operator \(I_{\rho} \) was established on other function spaces also, for example, Morrey and Campanato spaces in [4, 5, 6, 10, 18, 26, 23], Orlicz-Morrey spaces in [12, 19, 21, 32], Hardy and Orlicz-Hardy spaces in [2, 24], etc. In this paper we first prove the boundedness of the operator \(I_{\rho} \) on generalized Campanato spaces with variable growth condition, which is a generalization and improvement of previous results, and then, we establish the boundedness of \(I_{\rho} \) on their bi-preduals.

It is known that the dual of \(H^1(\mathbb{R}^n) \) is \(\text{BMO}(\mathbb{R}^n) \), that is,
\[
(\text{H}^1(\mathbb{R}^n))^* = \text{BMO}(\mathbb{R}^n). \tag{1.6}
\]
It is also known that
\[
\left(C^\infty_{\text{comp}}(\mathbb{R}^n)^* \right)^{\text{BMO}(\mathbb{R}^n)} = \text{H}^1(\mathbb{R}^n), \tag{1.7}
\]
where \(C^\infty_{\text{comp}}(\mathbb{R}^n) \) is the set of all infinitely differentiable functions with compact support and \(C^\infty_{\text{comp}}(\mathbb{R}^n)^{\text{BMO}(\mathbb{R}^n)} \) is the closure of \(C^\infty_{\text{comp}}(\mathbb{R}^n) \) with respect to \(\text{BMO}(\mathbb{R}^n) \). The space \(C^\infty_{\text{comp}}(\mathbb{R}^n)^{\text{BMO}(\mathbb{R}^n)} \) is often referred to as \(\text{CMO}(\mathbb{R}^n) \) or \(\text{VMO}(\mathbb{R}^n) \). For (1.6) and (1.7), see [7, 8] and [3, 9], respectively.

These dualities were extended to generalized Campanato spaces \(L_{(\phi, \varphi)}(\mathbb{R}^n) \) and atomic Hardy spaces \(H^{(\phi, \psi)}(\mathbb{R}^n) \) with variable growth function \(\phi : \mathbb{R}^n \times (0, \infty) \to (0, \infty) \), which were introduced by [13, 27] and [22], respectively. More precisely, the second author [22] extended the duality (1.6) to
\[
(\text{H}^{(\phi, \infty)}(\mathbb{R}^n))^* = L_{1, \varphi}(\mathbb{R}^n). \tag{1.8}
\]
Recently, the first author [34] extended the duality (1.7) to
\[
\left(C^\infty_{\text{comp}}(\mathbb{R}^n) \right)^*_{L^{1,\alpha}(\mathbb{R}^n)} = H^{[\phi,\infty]}(\mathbb{R}^n),
\]
(1.9)
where \(C^\infty_{\text{comp}}(\mathbb{R}^n) \) is the closure of \(C^\infty_{\text{comp}}(\mathbb{R}^n) \) with respect to \(L_{1,\alpha}(\mathbb{R}^n) \). If \(\phi \equiv 1 \), then \(L_{1,\alpha}(\mathbb{R}^n) = \text{BMO}(\mathbb{R}^n) \) and \(H^{[\phi,\infty]}(\mathbb{R}^n) = H^1(\mathbb{R}^n) \). If \(\phi(x, r) = r^\alpha \), \(0 < \alpha < 1 \), then \(L_{1,\alpha}(\mathbb{R}^n) = \text{Lip}_\alpha(\mathbb{R}^n) \). The dualities (1.8) and (1.9) also cover the case \(\phi(x, r) = r^n(x) \).

The boundedness of the operators \(I_\omega \) and \(I_\rho \) on \(L_{1,\alpha}(\mathbb{R}^n) \) was studied in [5, 16, 18, 23]. In this paper we first generalize and improve the previous results, and then, we establish the boundedness of \(I_\rho \) on \(C^\infty_{\text{comp}}(\mathbb{R}^n) \) whose bidual is \(L_{1,\alpha}(\mathbb{R}^n) \). We also prove the boundedness of \(I_\rho \) on \(H^{[\phi,\infty]}(\mathbb{R}^n) \) by the duality.

The organization of this paper is as follows: In the next section we state definitions of \(L_{p,\phi}(\mathbb{R}^n) \) and \(H^{[\phi,\infty]}(\mathbb{R}^n) \) with variable growth function \(\phi : \mathbb{R}^n \times (0, \infty) \to (0, \infty) \). We also state the results on the duality. Then we give the main results in Section 3 and prove them in Section 4.

At the end of this section, we make some conventions. Throughout this paper, we always use \(C \) to denote a positive constant that is independent of the main parameters involved but whose value may differ from line to line. Constants with subscripts, such as \(C_p \), are dependent on the subscripts. If \(f \leq C g \), we then write \(f \lesssim g \) or \(g \gtrsim f \); and if \(f \lesssim g \lesssim f \), we then write \(f \sim g \).

2. Definitions

We denote by \(B(a, r) \) the open ball centered at \(a \in \mathbb{R}^n \) and of radius \(r \). For a function \(f \in L^1_{\text{loc}}(\mathbb{R}^n) \) and a ball \(B \), let
\[
f_B = \int_B f = \int_B f(y) \, dy = \frac{1}{|B|} \int_B f(y) \, dy,
\]
where \(|B| \) is the Lebesgue measure of the ball \(B \).

First we recall the definition of generalized Campanato spaces \(L_{p,\phi}(\mathbb{R}^n) \) for \(p \in [1, \infty) \) and variable growth function \(\phi : \mathbb{R}^n \times (0, \infty) \to (0, \infty) \). For a ball \(B = B(x, r) \) we write \(\phi(B) = \phi(x, r) \).

Definition 2.1. For \(p \in [1, \infty) \) and \(\phi : \mathbb{R}^n \times (0, \infty) \to (0, \infty) \), let \(L_{p,\phi}(\mathbb{R}^n) \) be the set of all functions \(f \) such that the following functional is finite:
\[
\|f\|_{L_{p,\phi}} = \sup_B \frac{1}{\phi(B)} \left(\int_B |f(y) - f_B|^p \, dy \right)^{1/p},
\]
where the supremum is taken over all balls \(B \) in \(\mathbb{R}^n \).

Then \(\|f\|_{L_{p,\phi}} \) is a norm modulo constant functions and thereby \(L_{p,\phi}(\mathbb{R}^n) \) is a Banach space. Generalized Campanato spaces \(L_{p,\phi}(\mathbb{R}^n) \) with variable growth condition were introduced in [27] to characterize pointwise multipliers on \(\text{BMO}(\mathbb{R}^n) \) and studied
in [13, 20, 23], etc. Moreover, it has been proved that $L_{p,\phi}(\mathbb{R}^n)$ is the dual space of the Hardy space $H^{p,\ominus}(\mathbb{R}^n)$ with variable exponent in [25]. That is, $H^{p,\ominus}(\mathbb{R}^n)$ is another predual of $L_{p,\phi}(\mathbb{R}^n)$.

We say that a function $\theta : \mathbb{R}^n \times (0, \infty) \to (0, \infty)$ satisfies the doubling condition if there exists a positive constant C such that, for all $x \in \mathbb{R}^n$ and $r, s \in (0, \infty)$,

$$\frac{1}{C} \leq \frac{\theta(x, r)}{\theta(x, s)} \leq C, \quad \text{if } \frac{1}{2} \leq \frac{r}{s} \leq 2.$$

We say that θ is almost increasing (resp. almost decreasing) if there exists a positive constant C such that, for all $x \in \mathbb{R}^n$ and $r, s \in (0, \infty)$,

$$\theta(x, r) \leq C \theta(x, s) \quad \text{(resp. } \theta(x, s) \leq C \theta(x, r)\text{)}, \quad \text{if } r < s.$$

We also consider the following nearness condition; there exists a positive constant C such that, for all $x, y \in \mathbb{R}^n$ and $r \in (0, \infty)$,

$$\frac{1}{C} \leq \frac{\theta(x, r)}{\theta(y, r)} \leq C, \quad \text{if } |x - y| \leq r.$$

For two functions $\theta, \kappa : \mathbb{R}^n \times (0, \infty) \to (0, \infty)$, we write $\theta \sim \kappa$ if there exists a positive constant C such that, for all $x \in \mathbb{R}^n$ and $r \in (0, \infty)$,

$$\frac{1}{C} \leq \frac{\theta(x, r)}{\kappa(x, r)} \leq C.$$

Let $1 \leq p < \infty$ and $\phi, \tilde{\phi} : \mathbb{R}^n \times (0, \infty) \to (0, \infty)$. If $\phi \sim \tilde{\phi}$, then $L_{p,\phi}(\mathbb{R}^n) = L_{p,\tilde{\phi}}(\mathbb{R}^n)$ with equivalent norms.

In this paper we consider the following class of ϕ:

Definition 2.2.

(i) Let \mathcal{G} be the set of all functions $\phi : \mathbb{R}^n \times (0, \infty) \to (0, \infty)$ such that $r \mapsto \phi(x, r)r^n$ is almost increasing and that $r \mapsto \phi(x, r)/r$ is almost decreasing. That is, there exists a positive constant C such that, for all $x \in \mathbb{R}^n$ and $r, s \in (0, \infty)$,

$$\phi(x, r)r^n \leq C \phi(x, s)s^n, \quad C \phi(x, r)/r \geq \phi(x, s)/s, \quad \text{if } r < s.$$

(ii) Let \mathcal{G}^{inc} be the set of all functions $\phi \in \mathcal{G}$ such that ϕ is almost increasing. That is, there exists a positive constant C such that, for all $x \in \mathbb{R}^n$ and $r, s \in (0, \infty)$,

$$\phi(x, r) \leq C \phi(x, s), \quad C \phi(x, r)/r \geq \phi(x, s)/s, \quad \text{if } r < s.$$

If $\phi \in \mathcal{G}$, then ϕ satisfies the doubling condition (2.1).

Remark 2.1. It is known that, if $\phi \in \mathcal{G}^{\text{inc}}$ and ϕ satisfies (2.3), then $L_{p,\phi}(\mathbb{R}^n) = L_{1,\phi}(\mathbb{R}^n)$ with equivalent norms for each $p \in [1, \infty)$, see [22, Theorem 3.1]. In particular, for each $p \in [1, \infty)$, $L_{p,\phi}(\mathbb{R}^n) = \text{BMO}(\mathbb{R}^n)$ if $\phi \equiv 1$, $L_{p,\phi}(\mathbb{R}^n) = \text{Lip}_a(\mathbb{R}^n)$ if $\phi(x, r) = r^a, \; 0 < a \leq 1$, and $L_{p,\phi}(\mathbb{R}^n)$ coincides with $L_{p,\lambda}(\mathbb{R}^n)$ modulo constant functions if $\phi(x, r) = r^\lambda, -n \leq \lambda < 0$. For the relation between generalized Campanato spaces $L_{p,\phi}(\mathbb{R}^n)$, generalized Morrey spaces $L_{p,\phi}(\mathbb{R}^n)$ and Hölder (Lipschitz) spaces $\Lambda_\phi(\mathbb{R}^n)$ with variable growth condition, see [20, Theorem 2.4].
We also consider the following condition: There exists a positive constant C such that, for all $x \in \mathbb{R}^n$ and $r \in (0, \infty)$,

$$
\int_r^\infty \frac{\phi(x,t)}{t^2} \, dt \leq C \frac{\phi(x,r)}{r},
$$

(2.5)

Remark 2.2. Let ϕ be almost increasing or satisfy the doubling condition. If ϕ satisfies (2.5), then $t \mapsto \phi(x,t)/t$ is almost decreasing and $\phi(x,t)/t \to 0$ as $t \to \infty$, see [11, Lemma 6]. Indeed, we have

$$
\frac{\phi(x,r)}{r} \lesssim \int_r^{2r} \frac{\phi(x,t)}{t^2} \, dt \leq \int_r^\infty \frac{\phi(x,t)}{t^2} \, dt \lesssim \frac{\phi(x,r)}{r}.
$$

The condition (2.5) used by [14, 23, 28], etc.

Next we state the definition of the atomic Hardy space $H^{\phi,q}(\mathbb{R}^n)$.

Definition 2.3 ([\phi,q]-atom). Let $\phi : \mathbb{R}^n \times (0, \infty) \to (0, \infty)$ and $1 < q \leq \infty$. A function a on \mathbb{R}^n is called a $[\phi,q]$-atom if there exists a ball B such that

1. $\text{supp } a \subset B$,
2. $\|a\|_q \leq \frac{1}{|B|^{1/q'} \phi(B)}$,
3. $\int_{\mathbb{R}^n} a(x) \, dx = 0$,

where $\|a\|_q$ is the L^q norm of a and $1/q + 1/q' = 1$. We denote by $A[\phi,q]$ the set of all $[\phi,q]$-atoms.

If a is a $[\phi,q]$-atom and a ball B satisfies (i)–(iii), then

$$
\left| \int_{\mathbb{R}^n} a(x)g(x) \, dx \right| = \left| \int_B a(x)(g(x) - g_B) \, dx \right|
\leq \|a\|_q \left(\int_B |g(x) - g_B|^q' \, dx \right)^{1/q'}
\leq \frac{1}{\phi(B)} \left(\frac{1}{|B|} \int_B |g(x) - g_B|^q' \, dx \right)^{1/q'}
\leq \|g\|_{L_{q',\phi}}.
$$

That is, the mapping $g \mapsto \int a \, dg$ is a bounded linear functional on $L_{q',\phi}(\mathbb{R}^n)$ with norm not exceeding 1.

Definition 2.4 ($H^{\phi,q}(\mathbb{R}^n)$). Let $\phi : \mathbb{R}^n \times (0, \infty) \to (0, \infty)$, $1 < q \leq \infty$ and $1/q + 1/q' = 1$. Assume that $L_{q',\phi}(\mathbb{R}^n) \neq \{0\}$. We define the space $H^{\phi,q}(\mathbb{R}^n) \subset (L_{q',\phi}(\mathbb{R}^n))^*$ as follows:
\[f \in H^{[\phi, q]}(\mathbb{R}^n) \text{ if and only if there exist sequences } \{a_j\} \subset A[\phi, q] \text{ and positive numbers } \{\lambda_j\} \text{ such that } \]
\[f = \sum_j \lambda_j a_j \in \mathcal{L}_{q', \phi}(\mathbb{R}^n)^* \text{ and } \sum_j \lambda_j < \infty. \quad (2.6) \]

In general, the expression (2.6) is not unique. We define
\[k_f H^{[\phi, q]} = \inf \left\{ \sum_j \lambda_j : X_j \lambda_j a_j \in (L^{q'}, \phi(\mathbb{R}^n))^* \text{ and } X_j \lambda_j < 1 \right\}. \]

where the infimum is taken over all expressions as in (2.6). Then \(k_f H^{[\phi, q]} \) is a norm and \(H^{[\phi, q]}(\mathbb{R}^n) \) is a Banach space. For sufficient conditions of \(C^\infty_{\text{comp}}(\mathbb{R}^n) \subset L_{p, \phi}(\mathbb{R}^n) \), see Proposition 4.6.

Theorem 2.1 ([22]). Let \(\phi \) be in \(G^{\infty} \) and satisfy (2.3). Then
\[\mathcal{L}_{q', \phi}(\mathbb{R}^n) = \mathcal{L}_{1, \phi}(\mathbb{R}^n), \quad \text{for } 1 \leq q' < \infty, \]
\[H^{[\phi, q]}(\mathbb{R}^n) = H^{[\phi, \infty]}(\mathbb{R}^n), \quad \text{for } 1 < q \leq \infty, \]
with equivalent norms, respectively.

Definition 2.5. Denote by \(H^{[\phi, q]}_0(\mathbb{R}^n) \) the space of all finite linear combinations of \([\phi, q]\)-atoms and fix \(b \in \mathcal{L}_{q', \phi}(\mathbb{R}^n) \). We define a linear functional
\[L_b(g) = \int_{\mathbb{R}^n} g(x)b(x) \, dx, \quad g \in H^{[\phi, q]}_0(\mathbb{R}^n) \quad (2.7) \]
as an absolutely convergent integral.

Since \(H^{[\phi, q]}_0(\mathbb{R}^n) \) is dense in \(H^{[\phi, q]}(\mathbb{R}^n) \), the linear functional \(L_b \) can be extended on the entire \(H^{[\phi, q]}(\mathbb{R}^n) \) in the usual way. Moreover, we have the following theorem.

Theorem 2.2 ([22]). Assume that \(\phi, q \) satisfy the conditions of Definition 2.4. Then
\[\left(H^{[\phi, q]}(\mathbb{R}^n) \right)^* = \mathcal{L}_{q', \phi}(\mathbb{R}^n). \]
More precisely, given \(b \in \mathcal{L}_{q', \phi}(\mathbb{R}^n) \), the linear functional \(L_b \) defined by Definition 2.5 can be extended on the entire \(H^{[\phi, q]}(\mathbb{R}^n) \). Conversely, for every bounded linear functional \(L \) on \(H^{[\phi, q]}(\mathbb{R}^n) \) there exists \(b \in \mathcal{L}_{q', \phi}(\mathbb{R}^n) \) such that for all \(f \in H^{[\phi, q]}_0(\mathbb{R}^n) \) we have \(L(f) = L_b(f) \). The norm \(\|L_b\|_{\left(H^{[\phi, q]} \right)^*} \) is equivalent to \(\|b\|_{\mathcal{L}_{q', \phi}} \).

Theorem 2.3 ([34]). Let \(\phi \) be in \(G^{\infty} \) and satisfy (2.3). Assume that, for each \(M > 0 \),
\[\lim_{r \to 0} \inf_{x \in B(0, M)} \frac{\phi(x, r)}{r} = \infty, \quad (2.8) \]
\[\lim_{r \to \infty} \inf_{x \in \mathbb{R}^n} r^n \phi(x, r) = \infty. \quad (2.9) \]
Then
\[
\left(C^\infty_{\text{comp}}(\mathbb{R}^n)^{\mathcal{L}_1,\rho}(\mathbb{R}^n) \right)^* = H^{[\rho,\infty]}(\mathbb{R}^n).
\]

More precisely, for \(f \in H^{[\rho,\infty]}(\mathbb{R}^n) \), the linear functional
\[
\langle f, \psi \rangle = \int_{\mathbb{R}^n} f(x)\psi(x) \, dx, \quad \psi \in C^\infty_{\text{comp}}(\mathbb{R}^n)
\]
(2.10)
can be extended on \(C^\infty_{\text{comp}}(\mathbb{R}^n)^{\mathcal{L}_1,\rho}(\mathbb{R}^n) \). Conversely, each bounded linear functional on \(C^\infty_{\text{comp}}(\mathbb{R}^n)^{\mathcal{L}_1,\rho}(\mathbb{R}^n) \) has the form (2.10), for some \(f \in H^{[\rho,\infty]}(\mathbb{R}^n) \). The linear functional norm is equivalent to \(\| f \|_{H^{[\rho,\infty]}} \).

3. Main results

To define the generalized fractional integral operator \(I_\rho \) on the Campanato space \(\mathcal{L}_{p,\rho}(\mathbb{R}^n) \), we define the modified version of \(I_\rho \) by
\[
\tilde{I}_\rho f(x) = \int_{\mathbb{R}^n} f(y) \left(\frac{\rho(|x-y|)}{|x-y|^n} = \frac{\rho(|y|)(1 - \chi_{B_0}(y))}{|y|^n} \right) \, dy,
\]
where \(B_0 = B(0,1) \) and \(\chi_{B_0} \) is the characteristic function of \(B_0 \). Then the integral above converges for each \(f \in \mathcal{L}_{p,\rho}(\mathbb{R}^n) \). Moreover, if \(f \) is the constant function 1, then \(\tilde{I}_\rho \) is a constant function. Therefore, \(\tilde{I}_\rho \) is well defined on \(\mathcal{L}_{p,\rho}(\mathbb{R}^n) \) which is a space modulo constant functions. Further, if both \(I_\rho f \) and \(\tilde{I}_\rho f \) are well defined, then \(I_\rho f - \tilde{I}_\rho f \) is a constant function. Then it is enough to consider only \(I_\rho f \) instead of \(\tilde{I}_\rho f \) for \(f \in C^\infty_{\text{comp}}(\mathbb{R}^n) \).

We need the following condition on \(\rho \) for the well definedness of \(\tilde{I}_\rho \): There exist positive constants \(C_1 \) and \(C_2 \) such that, for all \(r, s \in (0, \infty) \),
\[
\int_r^\infty \frac{\rho(t)}{t^2} \, dt \leq C_1 \frac{\rho(r)}{r}, \quad (3.1)
\]
\[
\left| \frac{\rho(r)}{r^n} - \frac{\rho(s)}{s^n} \right| \leq C_2 |r - s| \frac{\rho(r)}{r^{n+1}}, \quad \text{if } \frac{1}{2} \leq \frac{s}{r} \leq 2. \quad (3.2)
\]

Then the main result is the following.

Theorem 3.1. Let \(\phi, \psi \in \mathcal{G} \) and \(p \in [1, \infty) \). Assume that \(\rho \) satisfies (1.2), (1.3), (1.1) and (3.2).

(i) If there exists a positive constant \(A \) such that, for all \(x \in \mathbb{R}^n \) and \(r \in (0, \infty) \),
\[
\int_r^\infty \frac{\rho(t)}{t} \, dt \phi(x, r) + r \int_r^\infty \frac{\rho(t)\phi(x, t)}{t^2} \, dt \leq A\phi(x, r), \quad (3.3)
\]
then \(\tilde{I}_\rho \) is bounded from \(\mathcal{L}_{p,\psi}(\mathbb{R}^n) \) to \(\mathcal{L}_{p,\phi}(\mathbb{R}^n) \).

(ii) Moreover, if both \(\phi \) and \(\psi \) are in \(\mathcal{G}^{\text{inc}} \) and satisfy (2.3) and (2.5), then \(I_\rho \) is bounded from \(C^\infty_{\text{comp}}(\mathbb{R}^n)^{\mathcal{L}_1,\rho}(\mathbb{R}^n) \) to \(C^\infty_{\text{comp}}(\mathbb{R}^n)^{\mathcal{L}_1,\psi}(\mathbb{R}^n) \).
From Theorem 3.1 we have the following corollary immediately.

Corollary 3.2. Let $0 < \alpha < 1$. Then I_α is bounded from $C_\infty^\comp(\mathbb{R}^n)^{BMO(\mathbb{R}^n)}$ to $C_\infty^\comp(\mathbb{R}^n)^{\Lip_\alpha(\mathbb{R}^n)}$. Moreover, if $0 < \beta < \alpha + \beta < 1$, then I_α is bounded from $C_\infty^\comp(\mathbb{R}^n)^{\Lip_\beta(\mathbb{R}^n)}$ to $C_\infty^\comp(\mathbb{R}^n)^{\Lip_{\alpha+\beta}(\mathbb{R}^n)}$.

As another corollary, we consider the Lipschitz (Hölder) space with variable exponent. For $\alpha(\cdot) : \mathbb{R}^n \to [0, \infty)$ and $\alpha_* \in [0, \infty)$, let $\Lip_{\alpha(\cdot)}^\ast(\mathbb{R}^n)$ be the set of all functions f such that the following functional is finite:

$$
\|f\|_{\Lip_{\alpha(\cdot)}^\ast} = \max \left\{ \sup_{0 < |x-y| < 1} \frac{2|f(x) - f(y)|}{|x-y|^{\alpha(x)} + |x-y|^{\alpha(y)}}, \sup_{|x-y| \geq 1} \frac{|f(x) - f(y)|}{|x-y|^{\alpha_*}} \right\},
$$

see [23, Definition 2.1 and Remark 2.2]. For these $\alpha(\cdot)$ and α_*, let

$$
\phi(x, r) = \begin{cases}
 r^{\alpha(x)}, & 0 < r < 1, \\
 r^{\alpha_*}, & 1 \leq r < \infty.
\end{cases}
$$

If

$$
0 \leq \inf_{x \in \mathbb{R}^n} \alpha(x) \leq \sup_{x \in \mathbb{R}^n} \alpha(x) < 1, \quad 0 \leq \alpha_* < 1,
$$

then ϕ is in G^{inc} and satisfies (2.8) and (2.9). If $\alpha(\cdot)$ is log-Hölder continuous also, that is, there exists a positive constant C such that, for all $x, y \in \mathbb{R}^n$,

$$
|\alpha(x) - \alpha(y)| \leq \frac{C}{\log(e/|x-y|)} \quad \text{if} \quad 0 < |x-y| < 1,
$$

then ϕ satisfies (2.3), see [23, Proposition 3.3]. Moreover, if $\inf_{x \in \mathbb{R}^n} \alpha(x) > 0$ and $\alpha_* > 0$, then $L_1,\phi(\mathbb{R}^n) = \Lip_{\alpha(\cdot)}^\ast(\mathbb{R}^n)$ with equivalent norms, see [23, Corollary 3.5]. Hence we have the following corollary.

Corollary 3.3. Let $0 < \alpha < 1$. Let $\beta(\cdot), \gamma(\cdot) : \mathbb{R}^n \to (0, 1)$ be log-Hölder continuous and $\beta_* \gamma_* \in (0, 1)$. If $\gamma(x) = \alpha + \beta(x)$, $0 < \beta_- < \gamma_+ < 1$ and $\gamma_* = \alpha + \beta_*$, then I_α is bounded from $C_\infty^\comp(\mathbb{R}^n)^{\Lip_{\beta(\cdot)}^\ast(\mathbb{R}^n)}$ to $C_\infty^\comp(\mathbb{R}^n)^{\Lip_{\gamma(\cdot)}^\ast(\mathbb{R}^n)}$.

In a similar way to [34] we can apply Theorem 3.1 to the dual and bidual operators of I_ρ. In general, if a linear operator T is bounded from a normed linear space X to a normed linear space Y, then the dual operator T^* is bounded from Y^* to X^*, where X^* and Y^* are the dual spaces of X and Y, respectively, see [35, Theorem 2’ (p. 195)]. Hence, by the duality $(C_\infty^\comp(\mathbb{R}^n)^{C_1,\phi(\mathbb{R}^n)})^* = H^{[\rho, \infty]}(\mathbb{R}^n)$ and $(H^{[\rho, \infty]}(\mathbb{R}^n))^* = L_1,\phi(\mathbb{R}^n)$, we can consider the dual and bidual operators $(I_\rho)^*$ and $(I_\rho)^{**}$, which are bounded linear operators. This idea was used by [30, 31] for Morrey spaces.

Theorem 3.4. Let ρ satisfy (1.2), (1.3), (3.1) and (3.2). Assume that both ϕ and ψ are in G^{inc} and satisfy (2.3), (2.5), (2.8) and (2.9). Assume also that ϕ, ψ and ρ satisfy (3.3).
(i) The dual operator \((I_\rho)^*\) coincide with \(I_\rho\) from \(H^{[0, \infty]}(\mathbb{R}^n)\) to \(H^{[\rho, \infty]}(\mathbb{R}^n)\). Consequently, \(I_\rho\) is a bounded linear operator from \(H^{[0, \infty]}(\mathbb{R}^n)\) to \(H^{[\rho, \infty]}(\mathbb{R}^n)\).

(ii) The bidual operators \((I_\rho)^{**}\) coincide with \(I_\rho\) from \(L_{1, \psi}(\mathbb{R}^n)\) to \(L_{1, \psi}(\mathbb{R}^n)\). Consequently, \(I_\rho\) is a bounded linear operator from \(L_{1, \psi}(\mathbb{R}^n)\) to \(L_{1, \psi}(\mathbb{R}^n)\).

For the boundedness and continuity of \(I_\alpha\) on preduals of \(L_{1, \psi}(\mathbb{R}^n)\), see [24].

4. Proof

To prove Theorem 3.1 we need several lemmas. The first lemma is the same as [16, Lemma 4.2]. However, we can get the conclusion without the doubling condition of \(\rho\), while [16, Lemma 4.2] needed the doubling condition. Then we give the precise proof.

Lemma 4.1. If \(\rho\) satisfies (1.2), (3.1) and (3.2), then

\[
\rho(\frac{|x_1 - y|}{|x_1 - y|^n} - \frac{|x_2 - y|}{|x_2 - y|^n})
\]

is integrable on \(\mathbb{R}^n\) as a function of \(y\) and, for every choice of \(x_1\) and \(x_2\),

\[
\int_{\mathbb{R}^n} \left(\frac{\rho(|x_1 - y|)}{|x_1 - y|^n} - \frac{\rho(|x_2 - y|)}{|x_2 - y|^n} \right) dy = 0.
\]

Proof. Let \(r = |x_1 - x_2|\). For large \(R > 0\), let

\[
J_1 = \int_{B(x_1, R)} \frac{\rho(|x_1 - y|)}{|x_1 - y|^n} dy - \int_{B(x_2, R)} \frac{\rho(|x_2 - y|)}{|x_2 - y|^n} dy,
\]

\[
J_2 = \int_{B(x_1, R+r) \setminus B(x_1, R)} \frac{\rho(|x_1 - y|)}{|x_1 - y|^n} dy - \int_{B(x_1, R+r) \setminus B(x_2, R)} \frac{\rho(|x_2 - y|)}{|x_2 - y|^n} dy,
\]

\[
J_3 = \int_{B(x_1, R+r)^c} \left(\frac{\rho(|x_1 - y|)}{|x_1 - y|^n} - \frac{\rho(|x_2 - y|)}{|x_2 - y|^n} \right) dy.
\]

Then

\[
J_1 + J_2 + J_3 = \int_{\mathbb{R}^n} \left(\frac{\rho(|x_1 - y|)}{|x_1 - y|^n} - \frac{\rho(|x_2 - y|)}{|x_2 - y|^n} \right) dy.
\]

For the parts \(J_1\) and \(J_3\), we use the same way as in [16, Proof of Lemma 4.2]. That is, (1.2) implies that \(\rho(|x_i - y|)/|x_i - y|^n\) \((i = 1, 2)\) are locally integrable and \(J_1 = 0\). Using (3.2) and (3.1) we see that (4.1) is integrable on \(B(x_1, R+r)^c\) and \(J_3 \to 0\) as \(R \to \infty\). Then we also see that (4.1) is integrable on \(\mathbb{R}^n\). Finally, for \(R > 2r\), we have

\[
|J_2| \leq \int_{B(x_1, R+r) \setminus B(x_1, R-r)} \frac{\rho(|x_1 - y|)}{|x_1 - y|^n} dy \sim \int_{R-r}^{R+r} \frac{\rho(t)}{t} dt \leq 2r \sup_{R/2 \leq t \leq 2R} \frac{\rho(t)}{t}.
\]

Since (3.1) implies \(\int_1^\infty \rho(t)/t^2 dt < \infty\), we see that \(\rho(t)/t \to 0\) as \(t \to \infty\). Then \(J_2 \to 0\) as \(R \to \infty\).
Let
\[
\text{MO}(f, B) = \int_B |f(x) - f_B| \, dx.
\]

Lemma 4.2 (see [13, Corollary 2.4]). There exists a positive constant \(c_n\) dependent only on \(n\) such that, for all \(x \in \mathbb{R}^n\) and \(r, s \in (0, \infty)\),
\[
|f_{B(x,r)} - f_{B(x,s)}| \leq c_n \int_r^{\max(2r, s)} \frac{\text{MO}(f, B(x, t))}{t} \, dt, \quad \text{if } r < s.
\]

Lemma 4.3. Let \(\ell \geq 2\). If \(\phi\) satisfies (1.3) and (3.1), then there exists a positive constant \(C\) such that, for \(r \in (0, \infty)\),
\[
\sup_{r \leq t \leq \ell r} \rho(t) \leq C \frac{\ell K_2}{K_1} \rho(K_1 r),
\]
where \(K_1\) and \(K_2\) are the constants in (1.3).

Proof. Take the integer \(k\) such that \(2^{k-1} \leq \ell < 2^k\). Using (1.3) and (3.1), we have
\[
\sup_{r \leq t \leq \ell r} \rho(t) = \sup_{j=1,2,\ldots,k} \left(\sup_{2^{j-1}r \leq t \leq \max(2^j r, \ell r)} \rho(t) \right)
\lesssim \sup_{j=1,2,\ldots,k} \int_{2^{j-1}r}^{\max(2^j r, \ell r)} \frac{\rho(t)}{t} \, dt \leq \int_{K_1 r}^{\ell K_2 r} \frac{\rho(t)}{t} \, dt
\lesssim \ell K_2 r \int_{K_1 r}^{\ell K_2 r} \frac{\rho(t)}{t^2} \, dt \lesssim \ell K_2 r \rho(K_1 r).
\]
This is the conclusion. \(\square\)

The next lemma is the same as [16, Lemma 4.3]. However, we use Lemma 4.3 instead of the doubling condition of \(\rho\), while [16, Lemma 4.3] needed the doubling condition. Then we give the precise proof.

Lemma 4.4. Under the assumption in Theorem 3.1, there exists a positive constant \(C\) such that, for all \(a \in \mathbb{R}^n\) and \(r \in (0, \infty)\),
\[
\int_{B(a, r)^c} \frac{\rho(|a - y|)}{|a - y|^{n+1}} |f(y) - f_{B(a, r)}| \, dy \leq C \frac{\rho(r) \phi(a, r)}{r} \|f\|_{C_{p, \phi}}.
\]

Proof. We may assume that \(\|f\|_{C_{p, \phi}} = 1\). By Lemma 4.2 and the inequality \(\text{MO}(f, B) \leq \phi(B)\|f\|_{C_{p, \phi}} \leq \phi(B)\) we have
\[
\int_{B(a, 2^j r)} |f(y) - f_{B(a, r)}| \, dy \leq \int_{B(a, 2^j r)} |f(y) - f_{B(a, 2^j r)}| \, dy + |f_{B(a, r)} - f_{B(a, 2^j r)}|
\lesssim \left(\phi(a, 2^j r) + \int_{2^j r}^{2^{j+1} r} \frac{\phi(a, s)}{s} \, ds \right)
\lesssim \int_{2^j r}^{2^{j+1} r} \frac{\phi(a, s)}{s} \, ds, \quad j = 1, 2, \ldots.
\]
If $2^jr \leq u \leq 2^{j+1}r$, then by Lemma 4.3 we have
\[
\int_{2^{j-1}r \leq |a-y| \leq 2^jr} \frac{\rho(|a-y|)}{|a-y|^{n+1}} |f(y) - f_{B(a,r)}| \, dy
\leq \sup_{2^{j-1}r \leq t \leq 2^jr} \frac{\rho(t)}{(2^jr)^{n+1}} \int_{B(a,2^jr)} |f(y) - f_{B(a,r)}| \, dy
\]
\[
\leq \sup_{u/4 \leq t \leq u} \frac{\rho(t)}{2^jr} \int_r^u \frac{\phi(a,s)}{s} \, ds
\leq \frac{\rho(K_1u/A)}{u} \int_r^u \frac{\phi(a,s)}{s} \, ds,
\]
which shows
\[
\int_{2^{j-1}r \leq |a-y| \leq 2^jr} \frac{\rho(|a-y|)}{|a-y|^{n+1}} |f(y) - f_{B(a,r)}| \, dy
\leq \int_{2^{j+1}r} \left(\frac{\rho(K_1u/A)}{u} \int_r^u \frac{\phi(a,s)}{s} \, ds \right) \frac{du}{u}.
\]
Hence, we have
\[
\int_{B(a,r)} \frac{\rho(|a-y|)}{|a-y|^{n+1}} |f(y) - f_{B(a,r)}| \, dy
= \sum_{j=1}^{\infty} \int_{2^{j-1}r \leq |a-y| \leq 2^jr} \frac{\rho(|a-y|)}{|a-y|^{n+1}} |f(y) - f_{B(a,r)}| \, dy
\leq \int_r^\infty \left(\frac{\rho(K_1u/A)}{u} \int_r^u \frac{\phi(a,s)}{s} \, ds \right) \frac{du}{u}
= \int_r^\infty \left(\int_s^\infty \frac{\rho(K_1s/4)}{s} \, ds \right) \frac{\phi(a,s)}{s} \, ds.
\]
Since (3.1) implies
\[
\int_s^\infty \frac{\rho(K_1s/4)}{u} \, du \sim \int_{K_1s/4}^\infty \frac{\rho(u)}{u} \, du \leq \frac{\rho(K_1s/4)}{s},
\]
we have
\[
\int_{B(a,r)} \frac{\rho(|a-y|)}{|a-y|^{n+1}} |f(y) - f_{B(a,r)}| \, dy
\leq \int_r^\infty \frac{\rho(K_1s/8)}{s^2} \phi(a,s) \, ds \sim \int_{K_1r/8}^\infty \frac{\rho(s)\phi(a,s)}{s^2} \, ds \leq \frac{\psi(a,r)}{r}.
\]
In the above we use (3.3) and the doubling condition of ϕ and ψ. The proof is complete. \qed

Now we prove Theorem 3.1 (i). We use the almost same method as in the proof of [16, Theorem 3.4]. Then we give only a sketch of the proof.
Proof of Theorem 3.1 (i). For any ball $B = B(a, r)$, let $\hat{B} = B(a, 2r)$ and

$$E_B(x) = \int_{\mathbb{R}^n} (f(y) - f_{\hat{B}}) \left(\frac{\rho(|x-y|)}{|x-y|^n} - \frac{\rho(|a-y|)(1 - \chi_{\hat{B}}(y))}{|a-y|^n} \right) dy,$$

$$C_B^1 = \int_{\mathbb{R}^n} (f(y) - f_{\hat{B}}) \left(\frac{\rho(|a-y|)(1 - \chi_{\hat{B}}(y))}{|a-y|^n} - \frac{\rho(|y|)(1 - \chi_{B_0}(y))}{|y|^n} \right) dy,$$

$$C_B^2 = \int_{\mathbb{R}^n} f_{\hat{B}} \left(\frac{\rho(|x-y|)}{|x-y|^n} - \frac{\rho(|a-y|)(1 - \chi_{B_0}(y))}{|a-y|^n} \right) dy,$$

$$E_B^{-1}(x) = \int_{\hat{B}^c} (f(y) - f_{\hat{B}}) \left(\frac{\rho(|x-y|)}{|x-y|^n} - \frac{\rho(|a-y|)}{|a-y|^n} \right) dy.$$

Then

$$I_p f(x) - (C_B^1 + C_B^2) = E_B(x) = E_B^{-1}(x) + E_B^2(x) \quad \text{for } x \in B.$$

By (3.2) and Lemma 4.4 we see that C_B^1 is a constant. By Lemma 4.1 and (1.2) we also see that C_B^2 is a constant. For E_B^{-1} we use Minkowski’s integral inequality. Then

$$\left(\int_B |E_B^{-1}(x)|^p \, dx \right)^{1/p} \geq \left(\int_B \left| \int_{\hat{B}} (f(y) - f_{\hat{B}}) \frac{\rho(|x-y|)}{|x-y|^n} \, dy \right|^p \, dx \right)^{1/p}.$$

By (3.3) and the doubling condition of ϕ and ψ. For E_B^2 we use (3.2) and Lemma 4.4. Then we have

$$|E_2^2(x)| \preceq \psi(B) \| f \|_{L_\phi} \quad \text{for } x \in B.$$

Therefore, we have the conclusion. \qed

To prove Theorem 3.1 (ii) we need the following known results.

Theorem 4.5 ([1]). Let ϕ be in G^{inc} and satisfy (2.3), (2.8) and (2.9). Let $f \in L_{1, \phi}({\mathbb{R}^n})$. Then $f \in C_{com}^{inc} L_{1, \phi}({\mathbb{R}^n})$ if and only if f satisfies the following three conditions:

(i) \(\lim_{r \to +0} \sup_{x \in \mathbb{R}^n} \frac{\text{MO}(f, B(x, r))}{\phi(x, r)} = 0. \)

(ii) \(\lim_{r \to +\infty} \sup_{x \in \mathbb{R}^n} \frac{\text{MO}(f, B(x, r))}{\phi(x, r)} = 0. \)

(iii) \(\lim_{|x| \to \infty} \frac{\text{MO}(f, B(x, r))}{\phi(x, r)} = 0 \) for each \(r > 0. \)

In [1], the hypothesis \(\lim_{r \to +0} \inf_{x \in \mathbb{R}^n} \phi(x, r)/r = \infty \) was used instead of (2.8). However, we can relax the hypothesis to (2.8). Moreover, we do not need (2.8) and (2.9) to prove that, if \(f \) satisfies (i)–(iii), then \(f \in C^\infty_{\text{comp}}(\mathbb{R}^n)^{C_{1,\phi}(\mathbb{R}^n)}. \) We do not need (2.3) to prove that, if \(f \in C^\infty_{\text{comp}}(\mathbb{R}^n)^{C_{1,\phi}(\mathbb{R}^n)}, \) then \(f \) satisfies (i)–(iii). Theorem 4.5 is a generalization of [33, Lemma].

Proposition 4.6 ([34, Proposition 6.4]). Let \(1 \leq p < \infty \) and \(\phi \in \mathcal{G}. \) Assume that \(\phi \) satisfies (2.3).

(i) If \(r \mapsto r^{n/p}\phi(x, r) \) is almost increasing, then \(C^\infty_{\text{comp}}(\mathbb{R}^n) \subset \mathcal{L}_{p,\phi}(\mathbb{R}^n). \)

(ii) If \(\phi \) is almost increasing and \(\psi(x, r) = \phi(x, r) \min\{1, \frac{1}{|x|^{n/p}}\} \) for all \(x \in \mathbb{R}^n \) and \(r \in (0, \infty), \) then \(C^\infty_{\text{comp}}(\mathbb{R}^n) \subset \mathcal{L}_{p,\psi}(\mathbb{R}^n). \)

Lemma 4.7 ([14, Lemma 2], [22, Lemma 7.1]). Let \(\phi : \mathbb{R}^n \times (0, \infty) \to (0, \infty). \) If \(\phi \) satisfies (2.5) for some constant \(C \) and for all \(r \in (0, \infty), \) then, for \(\epsilon \in (0, 1/C), \) the function \(\phi(x, r)^{r^\epsilon} \) satisfies (2.5) for the constant \(C/(1 - \epsilon C) \) and for all \(r \in (0, \infty). \)

Now we prove Theorem 3.1 (ii).

Proof of Theorem 3.1 (ii). For \(f \in C^\infty_{\text{comp}}(\mathbb{R}^n), \) both \(\hat{I}_p f \) and \(I_p f \) are well defined, and then \(\hat{I}_p f - I_p f \) is a constant. Then, by Theorem 3.1 (i) we have \(\|I_p f\|_{L_{1,\phi}} \lesssim \|f\|_{L_{1,\phi}} \) for \(f \in C^\infty_{\text{comp}}(\mathbb{R}^n). \) We prove that \(I_p f \in C^\infty_{\text{comp}}(\mathbb{R}^n)^{C_{1,\phi}(\mathbb{R}^n)} \) by using Theorem 4.5. By the assumption and Lemma 4.7 we see that \(\phi(x, r)^{r^\epsilon} \) and \(\psi(x, r)^{r^\epsilon} \) also satisfy (2.5) for a small \(\epsilon > 0. \) Let

\[
\begin{align*}
\phi_1(x, r) &= \phi(x, r)^{r^\epsilon}, & \psi_1(x, r) &= \psi(x, r)^{r^\epsilon}, \\
\phi_2(x, r) &= \phi(x, r)^{r^{-\epsilon}}, & \psi_2(x, r) &= \psi(x, r)^{r^{-\epsilon}}, \\
\phi_3(x, r) &= \phi(x, r) \min\{1, |x|^{-n}\}, & \psi_3(x, r) &= \psi(x, r) \min\{1, |x|^{-n}\}
\end{align*}
\]

for \(x \in \mathbb{R}^n \) and \(r \in (0, \infty). \) From Proposition 4.6 it follows that \(C^\infty_{\text{comp}}(\mathbb{R}^n) \subset \mathcal{L}_{1,\phi_i}(\mathbb{R}^n) \) (\(i = 1, 2, 3 \)). Moreover, \(\phi_i, \psi_i \in \mathcal{G} \) (\(i = 1, 2, 3 \)) and (3.3) holds for each pair of \((\phi_i, \psi_i) \), since, for \(i = 1, \)

\[
\rho(r) \phi(a, r)^{r^\epsilon} \lesssim \int_0^{K^r} \frac{\rho(t)}{t} \, dt \phi(a, r)^{r^\epsilon} \lesssim \psi(a, r)^{r^\epsilon},
\]

and

\[
\int_r^{\infty} \frac{\rho(t) \phi(x, t)^{r^\epsilon}}{t^2} \, dt \lesssim \int_r^{\infty} \frac{\psi(x, t)^{r^\epsilon}}{t^2} \, dt \lesssim \frac{\psi(x, r)^{r^\epsilon}}{r},
\]
and the other cases are clear. Then by Theorem 3.1 (i) we have the norm inequalities \(\|I_\rho f\|_{L^1,\psi_i} \lesssim \| f\|_{L^1,\psi_i} \) (i = 1, 2, 3). Hence, we get

\[
\frac{1}{\psi(a,r)} \int_{B(a,r)} |I_\rho f(x) - (I_\rho f)_{B(a,r)}| \, dx \leq \frac{\psi_1(a,r)}{\psi(a,r)} \|I_\rho f\|_{L^1,\psi_1} \lesssim r^\nu \| f\|_{L^1,\psi_1} \to 0 \quad \text{as} \quad r \to 0.
\]

Similarly,

\[
\frac{1}{\psi(a,r)} \int_{B(a,r)} |I_\rho f(x) - (I_\rho f)_{B(a,r)}| \, dx \lesssim r^\nu \| f\|_{L^1,\psi_2} \to 0 \quad \text{as} \quad r \to \infty,
\]

and

\[
\frac{1}{\psi(a,r)} \int_{B(a,r)} |I_\rho f(x) - (I_\rho f)_{B(a,r)}| \, dx \lesssim |a|^{-\omega} \| f\|_{L^1,\psi_3} \to 0 \quad \text{as} \quad |a| \to \infty.
\]

Thus, \(I_\rho f \) satisfies (i)–(iii) in Theorem 4.5. Hence, \(I_\rho f \in C_{\text{comp}}^{\infty} (\mathbb{R}^n) \). We get the conclusion.

To prove Theorem 3.4 we give a lemma.

Lemma 4.8. Assume that \(\rho \) satisfies (1.2), (3.1) and (3.2). If \(g \in L^1_{\text{comp}} (\mathbb{R}^n) \) and \(\int_{\mathbb{R}^n} g(x) \, dx = 0 \), then \(I_\rho g \in L^1 (\mathbb{R}^n) \) and \(\int_{\mathbb{R}^n} I_\rho g(x) \, dx = 0 \).

Proof. Let \(\text{supp} \ g \subset B(a,r) \) and \(B(0,1) \cup B(a,2r) \subset B(a,R) \), and let

\[
I_1 = \int_{B(a,R)} \left| \int_{\mathbb{R}^n} g(y) \frac{\rho(|x-y|)}{|x-y|^n} \, dy \right| \, dx,
\]

\[
I_2 = \int_{B(a,R)} \left(\int_{\mathbb{R}^n} g(y) \left(\frac{\rho(|x-y|)}{|x-y|^n} - \frac{\rho(|x|)}{|x|^n} \right) \, dy \right) \, dx.
\]

Then

\[
I_1 \leq \int_{B(a,r)} |g(y)| \left(\int_{B(a,R)} \frac{\rho(|x-y|)}{|x-y|^n} \, dx \right) \, dy \lesssim \| g \|_{L^1} \int_0^{R+r} \frac{\rho(t)}{t} \, dt < \infty,
\]

and

\[
I_2 \leq \int_{B(a,r)} |g(y)| \left(\int_{B(a,R)} \frac{\rho(|x-y|)}{|x-y|^n} \, dx \right) \, dy,
\]

\[
\lesssim \int_{B(a,r)} |g(y)| \left(\int_{B(a,R)} \frac{\rho(|x-y|)}{|x-y|^{n+1}} \, dx \right) \, dy,
\]

\[
\lesssim (|a| + r) \| g \|_{L^1} \int_{R-r}^{\infty} \frac{\rho(t)}{t^2} \, dt < \infty.
\]
This shows the conclusion. □

Now we prove Theorem 3.4.

Proof of Theorem 3.4. First, we prove (i). Let \(f \in C_{\text{comp}}^{\infty}(\mathbb{R}^n) \subset L_{1,\phi}(\mathbb{R}^n) \) and \(g \in H_0^{[\psi,\infty]}(\mathbb{R}^n) \subset L_{\text{comp}}^{\infty}(\mathbb{R}^n) \). From Lemma 4.8 it follows that \(\int_{\mathbb{R}^n} I_{\rho} g(x) \, dx = 0 \). Then, even if \(f \) is modulo constant functions, the integral \(\int_{\mathbb{R}^n} I_{\rho} g(x) f(x) \, dx \) is well defined, that is, the integral is determined independently of the choice of the representative element \(f \). Moreover, we have

\[
\langle f, (I_{\rho})^* g \rangle = \langle I_{\rho} f, g \rangle = \int_{\mathbb{R}^n} I_{\rho} f(x) g(x) \, dx = \int_{\mathbb{R}^n} f(x) I_{\rho} g(x) \, dx,
\]

that is, \((I_{\rho})^* = I_{\rho} \). Hence, \(I_{\rho} \) is bounded from \(H^{[\psi,\infty]}(\mathbb{R}^n) \) to \(H^{[\psi,\infty]}(\mathbb{R}^n) \), since \((I_{\rho})^* \) is bounded.

Next, we prove (ii). Let \(g \in H_0^{[\psi,\infty]}(\mathbb{R}^n) \), \(\text{supp} \, g \subset B \) and \(f \in L_{1,\phi}(\mathbb{R}^n) \). We write \(f = f_1 + f_2 \), where \(f_1 = f \chi_{2B} \), \(f_2 = f(1 - \chi_{2B}) \). Then

\[
\langle g, (I_{\rho})^{**} f_1 \rangle = \langle (I_{\rho})^* g, f_1 \rangle = \langle I_{\rho} g, f_1 \rangle = \int_{\mathbb{R}^n} I_{\rho} g(x) f_1(x) \, dx
\]

\[
= \int_{\mathbb{R}^n} g(x) I_{\rho} f_1(x) \, dx = \int_{\mathbb{R}^n} g(x) \tilde{I}_{\rho} f_1(x) \, dx,
\]

and

\[
\langle g, (I_{\rho})^{**} f_2 \rangle = \langle (I_{\rho})^* g, f_2 \rangle = \langle I_{\rho} g, f_2 \rangle
\]

\[
= \int_{(2B)^c} \left(\int_B \frac{\rho(|x - y|)}{|x - y|^n} g(y) \, dy \right) f(x) \, dx
\]

\[
= \int_{(2B)^c} \left(\int_B \frac{\rho(|x - y|)}{|x - y|^n} \frac{\rho(|x|)}{|x|^n} (1 - \chi_{B(0,1)}(x)) \, g(y) \, dy \right) f(x) \, dx
\]

\[
= \int_B \left(\int_{(2B)^c} \frac{\rho(|x - y|)}{|x - y|^n} \frac{\rho(|x|)}{|x|^n} (1 - \chi_{B(0,1)}(x)) \, f(x) \, dx \right) g(y) \, dy
\]

\[
= \int_B \tilde{I}_{\rho} f_2(y) g(y) \, dy.
\]
Hence $\langle g, (I_\rho)^{**} f \rangle = \int_{\mathbb{R}^n} g(x) \tilde{I}_\rho f(x) \, dx$, that is, $(I_\rho)^{**} = \tilde{I}_\rho$ on $L_{1,\phi}(\mathbb{R}^n)$. Therefore, \tilde{I}_ρ is bounded from $L_{1,\phi}(\mathbb{R}^n)$ to $L_{1,\psi}(\mathbb{R}^n)$, since $(I_\rho)^{**}$ is bounded.

Acknowledgement

The authors would like to thank the referee for her/his careful reading and useful comments.

References

[1] R. Arai and E. Nakai, An extension of the characterization of CMO and its application to compact commutators on Morrey spaces. J. Math. Soc. Japan 72 (2020), No. 2, 507–539. doi:10.2969/jmsj/81458145
[2] R. Arai, E. Nakai and Y. Sawano, Generalized fractional integral operators on Orlicz-Hardy spaces, Math. Nachr. 294 (2021), No. 2, 224–235. doi:10.1002/mana.201900052
[3] R. R. Coifman and G. Weiss, Extensions of Hardy spaces and their use in analysis, Bull. Amer, Math. Soc. 83(1977), 569–645. doi:10.1090/S0002-9904-1977-14325-5
[4] Eridani, On the boundedness of a generalized fractional integral on generalized Morrey spaces, Tamkang J. Math. 33 (2002), No. 4, 335–340. doi:10.5556/j.tkjm.33.2002.281
[5] Eridani, H. Gunawan and E. Nakai, On generalized fractional integral operators, Sci. Math. Jpn. 60 (2004), No. 3, 539–550. Sci. Math. Jpn. Online, 10 (2004), 307–318. https://www.jams.jp/scm/contents/Vol-10-4/10-31.pdf
[6] Eridani, H. Gunawan, E. Nakai and Y. Sawano, Characterizations for the generalized fractional integral operators on Morrey spaces, Math. Inequal. Appl. 17 (2014), no. 2, 761–777. doi:10.7153/mia-17-56
[7] C. Fefferman, Characterizations of bounded mean oscillation, Bull. Amer. Math. Soc. 77 (1971), 587–588. doi:10.1090/S0002-9904-1971-12763-5
[8] C. Fefferman and E. M. Stein, H^p spaces of several variables, Acta Math. 129 (1972), No. 3–4, 137–193. doi:10.1007/BF02392215
[9] J. García-Cuerva and J. L. Rubio de Francia, Weighted Norm Inequalities and Related Topics, North-Holland Math. Stud. 116, North-Holland, Amsterdam, 1985.
[10] H. Gunawan, A note on the generalized fractional integral operators, J. Indones. Math. Soc. 9 (2003), No. 1, 39–43.
[11] S. Janson, On functions with conditions on the mean oscillation, Ark. Mat. 14 (1976), No. 2, 189–196. doi:10.1007/BF02385834
[12] R. Kawasumi, E. Nakai and M. Shi, Characterization of the boundedness of generalized fractional integral and maximal operators on Orlicz-Morrey and weak Orlicz-Morrey spaces, to appear in Math. Nachr. https://arxiv.org/abs/2108.07080

[13] E. Nakai, Pointwise multipliers for functions of weighted bounded mean oscillation, Studia Math. 105 (1993), No. 2, 105–119. doi:10.4064/sm-105-2-105-119

[14] E. Nakai, Hardy-Littlewood maximal operator, singular integral operators and the Riesz potentials on generalized Morrey spaces, Math. Nachr. 166 (1994), 95–103. doi:10.1002/mana.19941660108

[15] E. Nakai, On generalized fractional integrals in the Orlicz spaces. Proceedings of the Second ISAAC Congress, Vol. 1 (Fukuoka, 1999), 75–81, Int. Soc. Anal. Appl. Comput., 7, Kluwer Acad. Publ., Dordrecht, 2000. doi:10.1007/978-1-4613-0269-8_10

[16] E. Nakai, On generalized fractional integrals, Taiwanese J. Math. 5 (2001), 587–602. doi:10.11650/twjm/1500574952

[17] E. Nakai, On generalized fractional integrals in the Orlicz spaces on spaces of homogeneous type, Sci. Math. Jpn. 54 (2001), 473–487. Sci. Math. Jpn. Online, 4 (2001), 901–915. https://www.jams.jp/scm/contents/Vol-4-10/4-99.pdf

[18] E. Nakai, On generalized fractional integrals on the weak Orlicz spaces, BMOϕ, the Morrey spaces and the Campanato spaces, Function spaces, interpolation theory and related topics (Lund, 2000), de Gruyter, Berlin, 2002, 389–401. doi:10.1515/9783110198058.389

[19] E. Nakai, Generalized fractional integrals on Orlicz-Morrey spaces, Banach and Function Spaces (Kitakyushu, 2003), Yokohama Publishers, Yokohama, 2004, 323–333.

[20] E. Nakai, The Campanato, Morrey and Hölder spaces on spaces of homogeneous type, Studia Math. 176 (2006), No. 1, 1–19. doi:10.4064/sm176-1-1

[21] E. Nakai, Orlicz-Morrey spaces and the Hardy-Littlewood maximal function, Studia Math. 188 (2008), No. 3, 193–221. doi:10.4064/sm188-3-1

[22] E. Nakai, A generalization of Hardy spaces H^p by using atoms, Acta Math. Sin. (Engl. Ser.) 24 (2008), no. 8, 1243–1268. doi:10.1007/s10114-008-7625-x

[23] E. Nakai, Singular and fractional integral operators on Campanato spaces with variable growth conditions, Rev. Mat. Complut. 23 (2010), No. 2, 355–381. doi:10.1007/s13163-009-0022-y

[24] E. Nakai, Singular and fractional integral operators on preduals of Campanato spaces with variable growth condition, Sci. China Math. 60 (2017), No. 11, 2219–2240. doi:10.1007/s11425-017-9154-y
[25] E. Nakai and Y. Sawano, Hardy spaces with variable exponents and generalized Campanato spaces, J. Funct. Anal. 262 (2012), No. 9, 3665–3748. doi:10.1016/j.jfa.2012.01.004

[26] E. Nakai and H. Sumitomo, On generalized Riesz potentials and spaces of some smooth functions, Sci. Math. Jpn. 54 (2001), No. 3, 463–472. Sci. Math. Jpn. Online, 4 (2001), 891–900. https://www.jams.jp/scm/contents/Vol-4-10/4-98.pdf

[27] E. Nakai and K. Yabuta, Pointwise multipliers for functions of bounded mean oscillation, J. Math. Soc. Japan 37 (1985), No. 2, 207–218. doi:10.2969/jmsj/03720207

[28] S. Nakamura, T. Noi and Y. Sawano, Generalized Morrey spaces and trace operator, Sci. China Math., 59 (2016), No. 2, 281–336. doi:10.1007/s11425-015-5096-z

[29] C. Pérez, Two weighted inequalities for potential and fractional type maximal operators, Indiana Univ. Math. J. 43 (1994), 663–683. doi:10.1512/iumj.1994.43.43028

[30] M. Rosenthal and H. J. Schmeisser, The boundedness of operators in Muckenhoupt weighted Morrey spaces via extrapolation techniques and duality. Rev. Mat. Complut. 29 (2016), No. 3, 623–657. doi:10.1007/s13163-016-0208-z

[31] Y. Sawano and S. R. El-Shabrawy, Weak Morrey spaces with applications. Math. Nachr. 291 (2018), No. 1, 178–186. doi:10.1002/mana.201700001

[32] Y. Sawano, S. Sugano and H. Tanaka, Orlicz-Morrey spaces and fractional operators. Potential Anal. 36 (2012), no. 4, 517–556. doi:10.1007/s11118-011-9239-8

[33] A. Uchiyama, On the compactness of operators of Hankel type, Tôhoku Math. J. (2) 30 (1978), No. 1, 163–171. doi:10.2748/tmj/1178230105

[34] S. Yamaguchi, An extension of the VMO-\(H^1\) duality, J. Math. Soc. Japan, to appear.

[35] K. Yosida, Functional analysis. Sixth edition. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], 123. Springer-Verlag, Berlin-New York, 1980. doi:10.1007/978-3-642-61859-8