Graphs of order n and diameter $2(n - 1)/3$ minimizing the spectral radius

Jingfen Lan
Center for Combinatorics, LPMC-TJKLC
Nankai University, Tianjin 300071, China
jflan@sina.cn

and

Lingsheng Shi∗
Department of Mathematical Sciences
Tsinghua University, Beijing 100084, China
lshi@math.tsinghua.edu.cn

Abstract

The spectral radius of a graph is the largest eigenvalue of its adjacency matrix. A minimizer graph is such that minimizes the spectral radius among all connected graphs on n vertices with diameter d. The minimizer graphs are known for $d \in \{1, 2\} \cup \{n/2, 2n/3 - 1\} \cup \{n - k \mid k = 1, 2, ..., 8\}$. In this paper, we determine all minimizer graphs for $d = 2(n - 1)/3$.

AMS classification: 05C35; 05C50; 05E99; 94C15
Keywords: Diameter; Spectral radius

1 Introduction

All graphs considered in this paper are undirected and simple. Let G be a graph. The greatest distance between any two vertices in G is the diameter of G, denoted by $d(G)$, or simply by d. An internal path of a graph is a path whose internal vertices have degree 2 and the two end vertices have degree at least 3. An internal path is closed if its two end vertices coincide. The characteristic polynomial of G, simply denoted by ϕ_G, is defined by $\phi_G(\lambda) = \det(\lambda I - A(G))$, where $A(G)$ is the adjacency matrix of G and I is an identity matrix. The largest root of ϕ_G is the spectral radius of G, denoted by $\rho(G)$.

Hoffman and Smith [6, 7, 12] completely determined all connected graphs G with $\rho(G) \leq 2$. Cvetković et al. [3], Brouwer and Neumaier [11] characterized all connected graphs G with $2 < \rho(G) \leq \sqrt{2 + \sqrt{5}}$.

Figure 1: A dagger

∗Project 91338102 supported by National Natural Science Foundation of China.
A **dagger** is obtained by adding a pendent path to the center of a star of order 4, see Figure 1; an **open quipu** is a tree with maximum degree 3 such that all vertices of degree 3 lie on a path; a **closed quipu** is a unicyclic graph with maximum degree 3 such that all vertices of degree 3 lie on the cycle. An open (or closed) quipu can be written in the form of $P^{(m_0,m_1,...,m_r)}_{(k_0,k_1,...,k_r,k_{r+1})}$ (or $C^{(m_1,...,m_r)}_{(k_1,...,k_r)}$) with all $k_i, m_i \geq 0$ and $r \geq 0$ (or $r \geq 1$), where for $r \geq 1$ and $1 \leq i \leq r$, k_i measures the number of internal vertices on the ith internal path, while k_0, k_{r+1}, m_0 and m_i stand for the lengths of the indicated pendent paths respectively, see Figures 2 and 3. These terminologies were first introduced by Woo and Neumaier [14] for the following result.

![Figure 2: The open quipu $P^{(m_0,m_1,...,m_r)}_{(k_0,k_1,...,k_r,k_{r+1})}$](image)

![Figure 3: The closed quipu $C^{(m_1,...,m_r)}_{(k_1,...,k_r)}$](image)

Lemma 1.1 [14] A graph G whose spectral radius satisfies $2 < \rho(G) \leq 3/\sqrt{2}$ is either an open quipu, a closed quipu, or a dagger.

A **minimizer** graph of order n with diameter d is such a graph that has the minimal spectral radius among all simple connected graphs on n vertices with diameter d. The problem to determine the minimizer graphs was raised by van Dam and Kooij [5] concerning a model of virus propagation in networks. They solved this problem explicitly for $d \in \{1, 2, \lfloor n/2 \rfloor, n-3, n-2, n-1\}$, where the minimizer graph is a complete graph for $d = 1$, a star for $d = 2$ and n large enough, a cycle for $d = \lfloor n/2 \rfloor$ and $n > 6$, a path for $d = n-1$, $P^{(1)}_{(1,n-3)}$ for $d = n-2$, and $P^{(1,1)}_{(1,n-6,1)}$ for $d = n-3$. All the minimizer graphs on $n \leq 20$ vertices were also obtained in [5].
Lemma 2.2 Let \(G \) be a graph. Then the following statements hold.

1. If \(G_2 \) is a proper subgraph of \(G_1 \), then \(\rho(G_1) > \rho(G_2) \).
2. If \(G_1 \) is connected and \(G_2 \) is a proper spanning subgraph of \(G_1 \), then \(\rho(G_1) > \rho(G_2) \) and \(\phi_{G_2}(\lambda) > \phi_{G_1}(\lambda) \) for all \(\lambda \geq \rho(G_1) \).
3. If \(\phi_{G_2}(\lambda) > \phi_{G_1}(\lambda) \) for all \(\lambda \geq \rho(G_1) \), then \(\rho(G_2) < \rho(G_1) \).
4. If $\phi_{G_1}(\rho(G_2)) < 0$, then $\rho(G_1) > \rho(G_2)$.

Lemma 2.3 [7] Let uv be an edge of a connected graph G of order n, and denote by $G_{u,v}$ the graph of order $n+1$ obtained from G by subdividing the edge uv once, i.e., replacing the edge uv by a new vertex w and two new edges uw,vw. Then the following two properties hold.

(i) If uv does not belong to an internal path of G and $G \neq C_n$, then $\rho(G_{u,v}) > \rho(G)$.

(ii) If uv belongs to an internal path of G and $G \neq P_{(1,1)}^{(1,n-6,1)}$, then $\rho(G_{u,v}) < \rho(G)$.

The following lemma indicates the effect of edge transfers on the spectral radii of graphs. The result for $k-l \geq j$ were stated in [10] without a proof. For completeness, we include a proof here.

Lemma 2.4 [10] Let $j,k \geq 0$ and $l > 0$ be integers. Let u and v be two vertices (possibly $u = v$ for $j = 0$) of degree at least 2 and connected by an induced path of length j in a graph G. Denote by $G^{(j)}_{k,l}$ the graph obtained from G by adding two pendant paths of lengths k and l to vertices u and v respectively, see Figure 4. If $k-l \geq j-1$, then

$$
\phi_{G^{(j)}_{k,l}}(\lambda) \leq \phi_{G^{(j)}_{k+1,l-1}}(\lambda) \text{ for } \lambda \geq \rho(G^{(j)}_{k+1,l-1}), \tag{1}
$$

$$
\rho(G^{(j)}_{k,l}) \geq \rho(G^{(j)}_{k+1,l-1}), \tag{2}
$$

with each equality if and only if $j = 0$ and $k = l - 1$.

![Figure 4: The graph $G^{(j)}_{k,l}$](image)

Proof. The strict inequalities in Eqs. (1) and (2) for $j = 0$ and $k-l \geq 0$ were proven in [10, Theorem 5]. It is easy to see that the equalities hold if $j = 0$ and $k = l - 1$ since the two graphs $G^{(0)}_{l-1,l}$ and $G^{(0)}_{l,l-1}$ are isomorphic. Now we assume $j > 0$ and then $u \neq v$. Applying Lemma 2.1, we have

$$
\phi_{G^{(j)}_{k,l}} - \phi_{G^{(j)}_{k+1,l-1}} = \lambda \phi_{G^{(j)}_{k+1,l-1}} - \phi_{G^{(j)}_{k+1,l-2}} - \left(\lambda \phi_{G^{(j)}_{k+1,l-2}} - \phi_{G^{(j)}_{k+1,l-1}}\right).
$$

$$
= \phi_{G^{(j)}_{k-1,l-1}} - \phi_{G^{(j)}_{k-1,l-2}} = \ldots
$$

$$
= \phi_{G^{(j)}_{k-l+1,1}} - \phi_{G^{(j)}_{k-l+2,0}} = \phi_{G^{(j)}_{k-l,0}} - \phi_{G^{(j)}_{k-l+1,0} - v}.
$$

The graph $G^{(j)}_{k-l+1,0} - v$ has two pendant paths of lengths $k-l+1$ and $j-1$ at the vertex u. Deleting these two pendant paths results in a subgraph H and $G^{(j)}_{k-l+1,0} - v = H^{(0)}_{k-l+1,j-1}$.
Suppose that $k - l \geq j - 1$. Applying this lemma to $H_{k-l,j}^{(0)}$, we have

$$
\phi_{H_{k-l,j}^{(0)}}(\lambda) \leq \phi_{H_{k-l+1,j-1}^{(0)}}(\lambda) = \phi_{G_{k-l+1,0}^{(j)}}(\lambda) \text{ for } \lambda \geq \rho(G_{k-l+1,0}^{(j)} - v),
$$

$$
\rho(H_{k-l,j}^{(0)}) \geq \rho(G_{k-l+1,0}^{(j)} - v).
$$

Note that the graph $H_{k-l,j}^{(0)}$ is isomorphic to a proper spanning subgraph of $G_{k-l,0}^{(j)}$. By Lemma 2.5 we get

$$
\phi_{G_{k,l}^{(j)}}(\lambda) - \phi_{G_{k+1,l-1}^{(j)}}(\lambda) \leq \phi_{G_{k-l,0}^{(j)}}(\lambda) - \phi_{H_{k-l,j}^{(0)}}(\lambda) < 0,
$$

for $\lambda \geq \rho(G_{k-l,0}^{(j)})$, which implies that $\rho(G_{k+1,l-1}^{(j)}) > \rho(G_{k-l,0}^{(j)})$. □

Woo and Neumaier [14] noted that no (finite) graph has spectral radius exactly $3/\sqrt{2}$ since this is not an algebraic integer. A dagger on vertices with diameter $n-3$ and its spectral radius approaches increasingly to $3/\sqrt{2}$ as n goes to infinity. However, some quipus have spectral radii greater than $3/\sqrt{2}$. Lemma 2.1 was refined in [8] as follows.

Lemma 2.5 [8] Let G be a graph on n vertices ($n \geq 13$) with spectral radius less than $3/\sqrt{2}$. If G is an open quipu then its diameter d satisfies $d \geq (2n - 4)/3$, where the bound is tight. If G is a closed quipu then its diameter d satisfies $n/3 < d \leq 2(n - 1)/3$, where the lower bound is asymptotically tight and only the closed quipu $C_{(k)}^{(0)}$ with $d = 2k + 2$ and $n = 3k + 4$ takes the upper bound.

Let $\delta_1(x)$ be the indicator function of being 1, i.e., $\delta_1(x) = 1$ if $x = 1$ and 0 otherwise. The following lemmas from [8] give necessary conditions for open quipus with spectral radius at most $3/\sqrt{2}$.

Lemma 2.6 Suppose an open quipu $P_{(m_0, m_1, \ldots, m_r)}^{(m_0, m_1, \ldots, m_r)}$ (with $r \geq 2$) has spectral radius less than $3/\sqrt{2}$. Then the following statements hold.

1. For $2 \leq i \leq r - 1$, we have $k_i \geq m_{i-1} + m_i + 1 - \left[\frac{\delta_1(m_{i-1}) + \delta_1(m_i)}{2} \right]$.

2. We have $k_1 \geq m_0 + m_1 - \left[\frac{3\delta_1(m_0) + \delta_1(m_1)}{2} \right] - \left[\frac{\delta_1(m_0-1) + \delta_1(m_1-1)}{2} \right]$.

3. We have $k_r \geq m_r + m_{r-1} - \left[\frac{3\delta_1(m_r) + \delta_1(m_{r-1})}{2} \right] - \left[\frac{\delta_1(m_r-1) + \delta_1(m_{r-1}-1)}{2} \right]$.

Lemma 2.7 Suppose that an open quipu $P_{(m_0, m_1, \ldots, m_r)}^{(m_0, m_1, \ldots, m_r)}$ (with $r \geq 2$) satisfies

1. $k_i \leq m_{i-1} + m_i + 2 - \left[\frac{\delta_1(m_{i-1}) + \delta_1(m_i)}{2} \right]$ for $2 \leq i \leq r - 1$;

2. $k_1 \leq m_0 + m_1 - \left[\frac{3\delta_1(m_0) + \delta_1(m_1) + \delta_1(m_0-1)}{2} \right]$.

3. $k_r \leq m_r + m_{r-1} - \left[\frac{3\delta_1(m_r) + \delta_1(m_{r-1}) + \delta_1(m_r-1)}{2} \right]$.

Then we have $\rho(P_{(m_0, m_1, \ldots, m_r)}^{(m_0, m_1, \ldots, m_r)}) > 3/\sqrt{2}$.

5
Denote by ρ_k the spectral radius of $P_{(k,k)}^{(k)}$. Then $\rho_1 = \sqrt{3}$ and $\rho_2 = 2$. Note that $P_{(k,k)}^{(k+1)}$ is a proper subgraph of $P_{(k+1,k+1)}^{(k+1)}$. By Lemma 2.2 and [14, Lemma 3], we have

$$\rho_k < \rho_{k+1} < 3/\sqrt{2}.$$ \hspace{1cm} (3)

Moreover, the following lemma from [8] shows that the graphs we desire in Theorem 1.1 share the same spectral radius.

Lemma 2.8 [8] For any non-negative integers i, j satisfying $i + j \geq 2$, all open quipus $P_{(i,j)}^{(i-1,j-1)}$ and all closed quipus $C_{(i+j+1,i+j+1)}^{(i+j+1,i+j+1)}$ have the same spectral radius ρ_{i+j}.

Let v be a vertex of graph G. In [9], a rooted graph (G, v) was defined as the graph G together with the designated vertex v as a root, and we introduced two parameters $p_{(G,v)}$ and $q_{(G,v)}$ satisfying

$$\phi_G = p_{(G,v)} + q_{(G,v)},$$

$$\phi_{G-v} = x_2 p_{(G,v)} + x_1 q_{(G,v)}.$$ \hspace{1cm} (4)

Here x_1 and x_2 are the two roots of the equation $x^2 - \lambda x + 1 = 0$, namely

$$x_1 = \frac{\lambda - \sqrt{\lambda^2 - 4}}{2} \quad \text{and} \quad x_2 = \frac{\lambda + \sqrt{\lambda^2 - 4}}{2}.$$ \hspace{1cm} (5)

The fact $x_1 + x_2 = \lambda$, $x_1 x_2 = 1$ will be used deliberately. In this paper, we always assume $\lambda > 2$, then $x_1 < 1 < x_2$. Thus $p_{(G,v)}$ and $q_{(G,v)}$ are well defined, and

$$\left(\begin{array}{c} p_{(G,v)} \\ q_{(G,v)} \end{array}\right) = \frac{1}{x_2 - x_1} \left(\begin{array}{cc} -x_1 & 1 \\ x_2 & -1 \end{array}\right) \left(\begin{array}{c} \phi_G \\ \phi_{G-v} \end{array}\right).$$

Let P_n denote a path of order n. As an example in [8, Section 2.2], we have

$$\left(\begin{array}{c} p_{(P_{2k+1},v)} \\ q_{(P_{2k+1},v)} \end{array}\right) = \frac{x_2^{k+1} - x_1^{k+1}}{(x_2 - x_1)^3} \left(\begin{array}{cc} x_2^{k-1} - 2x_1^{k+1} + x_1^{k+3} \\ x_1^{k-1} - 2x_2^{k+1} + x_2^{k+3} \end{array}\right).$$ \hspace{1cm} (6)

where $*$ stands for the center of the odd path P_{2k+1} for $k \geq 0$.

Let $t_{(G,v)} := q_{(G,v)}/p_{(G,v)}$. It was shown in [9] that $t_{(G,v)}$ plays an important role on the spectral radii of open quipus.

Lemma 2.9 Let u and v be the roots of $P_{(1,3)}^{(1)}$ and $P_{(2,1)}^{(2)}$ respectively as shown in Figure 5. Then we have

$$t\left(\frac{P_{(1,3),u}^{(1)}}{P_{(2,1),v}^{(2)}}\right)(\lambda) < t\left(\frac{P_{(2,1),v}^{(2)}}{P_{(1,3),u}^{(1)}}\right)(\lambda) \text{ for } \lambda > 2.$$ \hspace{1cm} (7)

Figure 5: Two rooted graphs $(P_{(1,3),u}^{(1)})$ and $(P_{(2,1),v}^{(2)})$
Proof. By \(9\) Lemma 2.6] and Eq. (4), we have

\[
\frac{P_{(1,3)}(u)}{Q_{(1,3)}(u)} = \frac{1}{x_2 - x_1} \left(\frac{\lambda - x_1^3}{-x_2} + \frac{x_1^2 - \lambda}{x_2} \right) \left(x_1 \ 0 \right) \left(x_2 \ 0 \right) \left(\frac{P_{(3,i)}}{Q_{(3,i)}} \right)
\]

\[
= \frac{\lambda}{x_2 - x_1} \left(\frac{\lambda - x_1^3}{x_2} + \frac{x_2^3}{x_2} \right),
\]

and

\[
\left(\begin{array}{c}
\frac{P_{(2,1)}(u)}{Q_{(2,1)}(u)}
\end{array} \right) = \left(\begin{array}{cc}
x_1 & 0 \\
0 & x_2
\end{array} \right) \left(\frac{P_{(3,i)}}}{Q_{(3,i)}} \right) = \frac{\lambda^2 - 1}{x_2 - x_1} \left(\frac{\lambda - x_1^3}{x_2} + \frac{x_2^3}{x_2} \right).
\]

Thus we obtain

\[
t_{(1,3)}(\lambda) = \frac{(x_2^3 - \lambda)x_2^3 - x_1^2}{(\lambda - x_1^3)x_2^3 + x_2^3}
\]

\[
t_{(2,1)}(\lambda) = \frac{(x_2^3 - \lambda)x_2^3}{(\lambda - x_1^3)x_2^3}
\]

It follows that Eq. (5) is equivalent to

\[
\frac{(x_2^3 - \lambda)x_2^3 - x_1^2}{(\lambda - x_1^3)x_2^3 + x_2^3} < \frac{(x_2^3 - \lambda)x_2^3}{(\lambda - x_1^3)x_2^3},
\]

namely,

\[
(x_2^3 - \lambda)(\lambda - x_1^3) - (x_2 - x_1) < (x_2^3 - \lambda)x_2^3 + (\lambda - x_1^3)x_1^3,
\]

which holds by the following easy calculation,

\[
(x_2^3 - \lambda)(\lambda - x_1^3)(x_2 - x_1) = \left[\lambda(x_2^3 + x_1^3) - \lambda^2 - 1 \right] (x_2 - x_1)
\]

\[
< \left[(x_2^3 + x_1^3)^2 - \lambda^2 - 1 \right] (x_2 - x_1)
\]

\[
= (x_2^6 + x_1^6 - x_2^6 - x_2^6 - x_2^6 - 1)(x_2 - x_1)
\]

\[
= x_2^7 - x_2^5 + x_1^3 - x_1^5 - x_1^7
\]

\[
= (x_2^3 - \lambda)x_2^4 + (\lambda - x_1^3)x_1^4,
\]

where the inequality holds by

\[
x_1^3 + x_2^3 = (x_1 + x_2) (x_2^2 - x_1x_2 + x_2^2) = \lambda [(x_1 - x_2)^2 + 1] > \lambda > 2.
\]

The proof is complete. \(\square \)

For a vertex \(v \) of graph \(G \), denote by \((G, v, i) \) \((i \geq 0) \) the graph obtained from \(G \) by adding a pendent path of length \(i \) to \(v \). It is clear that \((G, v) \) can be regarded as \((G, v, 0) \). Let \(u \) be the other end of the pendent path in \((G, v, i) \), then by \(9\) Lemma 2.6 (1)],

\[
\phi_{(G, v, i)} = (1, 1) \left(\frac{P_{(G, v, i), u}}{Q_{(G, v, i), u}} \right) = (1, 1) \left(\begin{array}{cc}
x_1 & 0 \\
0 & x_2
\end{array} \right)^i \left(\frac{P_{(G, v)}}{Q_{(G, v)}} \right) = x_1^i P_{(G, v)} + x_2^i Q_{(G, v)}.
\]

Let \(\alpha_{(G, v, i)} := \phi_{(G, v, i+1)} / \phi_{(G, v, i)} \), then the following equality holds accordingly,

\[
\alpha_{(G, v, i)} = \frac{\phi_{(G, v, i+1)}}{\phi_{(G, v, i)}} = \frac{x_1^{i+1} P_{(G, v)} + x_2^{i+1} Q_{(G, v)}}{x_1^i P_{(G, v)} + x_2^i Q_{(G, v)}} = \frac{x_1^{i+1} + x_2^{i+1}}{x_1^i + x_2^i} t_{(G, v)}.
\]
For convenience, we write $\alpha_{(G,v)}$ for $\alpha_{(G,v,0)}$. Let (G_i, v_i) be a (possibly empty) rooted graph for $i = 1, 2, 3$, and let $T_{G_1, G_3}^{G_2}$ be the graph shown in Figure 6. We have the following lemma, which indicates that the spectral radius of $T_{G_1, G_3}^{G_2}$ decreases as $\alpha_{(G_i,v_i)}$ (also $t_{(G_i,v_i)}$) increases for $i = 1, 2, 3$.

Lemma 2.10 The spectral radius $\rho\left(T_{G_1, G_3}^{G_2}\right)$ is the largest root of the equation

$$\alpha_{(G_2,v_2)} = \frac{1}{\alpha_{(G_1,v_1)}} + \frac{1}{\alpha_{(G_3,v_3)}}. \quad (7)$$

Moreover, let (G'_i, v'_i) be a rooted graph for $i = 1, 2$, then the following holds.

- If $\alpha_{(G_1,v_1)} \left(p\left(T_{G_1, G_3}^{G_2}\right)\right) > \alpha_{(G_i', v'_i)} \left(p\left(T_{G_1, G_3}^{G_2}\right)\right)$, then $p\left(T_{G_1, G_3}^{G_2}\right) < p\left(T_{G_1, G_3}^{G_2}\right)$.
- If $\alpha_{(G_2,v_2)} \left(p\left(T_{G_1, G_3}^{G_2}\right)\right) > \alpha_{(G_2', v'_2)} \left(p\left(T_{G_1, G_3}^{G_2}\right)\right)$, then $p\left(T_{G_1, G_3}^{G_2}\right) < p\left(T_{G_1, G_3}^{G_2}\right)$.

Lemma 2.10 readily implies the following result.

Corollary 2.1 For any pair of graphs G_1 and G_2, $\rho\left(T_{G_1, G_1}^{G_2}\right) = \rho\left(T_{G_2, G_2}^{G_2}\right)$.

Proof of Lemma 2.10 By Lemma 2.1, we have

$$\phi_{T_{G_1, G_3}^{G_2}} = \phi_{(G_1,v_1,1)}\phi_{(G_2,v_2,1)}\phi_{(G_3,v_3,1)} - \phi_{(G_1,v_1,1)}\phi_{(G_2,v_2,1)}\phi_{(G_3,v_3,1)} - \phi_{(G_1,v_1,1)}\phi_{(G_2,v_2,1)}\phi_{(G_3,v_3,1)} - \phi_{(G_2,v_2,1)}\phi_{(G_3,v_3,1)}\left(\alpha_{(G_2,v_2)} - \frac{1}{\alpha_{(G_1,v_1)}} - \frac{1}{\alpha_{(G_3,v_3)}}\right).$$

The graphs G_2, $(G_1,v_1,1)$, and $(G_3,v_3,1)$ have spectral radius all less than $\rho\left(T_{G_1, G_3}^{G_2}\right)$ since they are proper subgraphs of $T_{G_1, G_3}^{G_2}$. Thus, $\rho\left(T_{G_1, G_3}^{G_2}\right)$ must be the largest root of Eq. (7). The rest of the lemma follows easily from Lemma 2.2.

3 Proof of main theorem

Proof of Theorem 1.1 The theorem holds for $n := 3k + 1 \leq 20$ as checked in [5]. So we can assume that $n > 20$ and $k > 6$. Lemma 2.8 together with Eq. (8) implies that all graphs stated in the theorem have the same spectral radius $\rho_k \in (2, 3/\sqrt{2})$.

By Lemma 2.9, the only closed quipu with diameter $2(n - 1)/3$ and spectral radius less than $3/\sqrt{2}$ is $C_{(2k+1)}^{(k-1)}$. By Lemmas 2.3 and 2.2 and Corollary 2.1, we get

$$\rho\left(C_{(2k+1)}^{(k-1)}\right) > \rho\left(C_{(2k+2)}^{(k-1)}\right) > \rho\left(P_{(k+1,k+1)}^{(k-1)}\right) = \rho\left(P_{(k,k)}^{(k)}\right) = \rho_k.$$
This shows that $C_{(2k+1)}^{(k-1)}$ cannot be a minimizer graph. Note that a dagger of order n has diameter $n - 3 > 2(n - 1)/3$ for $n > 11$. Then by Lemma 1.1 any minimizer graph must be an open quipu with spectral radius less than $3/\sqrt{2}$, which can be written as $P_{(m_0,m_1,\ldots,m_r)}$. Counting the number of vertices and the diameter, we have

$$3k = n - 1 = m_0 + m_r + \sum_{j=0}^{r} m_j + \sum_{i=1}^{r} k_i + r, \quad (8)$$

$$2k = m_0 + m_r + \sum_{i=1}^{r} k_i + r. \quad (9)$$

By Lemma 2.6 we also have

$$l_1 := k_1 + 2 - m_0 - m_1 \geq 0, \quad (10)$$

$$l_r := k_r + 2 - m_{r-1} - m_r \geq 0, \quad \text{and} \quad (11)$$

$$l_i := k_i - m_{i-1} - m_i \geq 0 \text{ for } 2 \leq i \leq r - 1. \quad (12)$$

Summing up these equalities and applying Eqs. (8) and (9), we obtain

$$\sum_{j=1}^{r} l_j = \sum_{i=1}^{r} k_i - m_0 - m_r - 2 \sum_{l=1}^{r-1} m_l + 4$$

$$= 3 \left(m_0 + m_r + \sum_{i=1}^{r} k_i + r \right) - 2 \left(m_0 + m_r + \sum_{j=0}^{r} m_j + \sum_{i=1}^{r} k_i + r \right) + 4 - r$$

$$= 4 - r.$$

This implies that $r \leq 4$. We will show that all open quipus with $r > 1$ internal paths must have spectral radius greater than ρ_k, which implies the right minimizer graphs as desired in the theorem. For this purpose, those open quipus with spectral radius at most $3/\sqrt{2}$ need only to be considered. One can check that Lemmas 2.6 and 2.7 exclude most open quipus for minimizer graphs except those shown in Figure 7 whose spectral radii, however, are indeed greater than ρ_k, as proven in the following.

Case 1 $r = 2$. In this case, $l_1 + l_2 = 2$. By symmetry, we have the following two subcases.

Subcase 1.1 $l_1 = 0$ and $l_2 = 2$.

Eqs. (10) and (11) imply that

$$k_1 = m_0 + m_1 - 2,$$

$$k_2 = m_1 + m_2.$$

Then by Lemma 2.6 (2), we have

$$\left\lceil \frac{3\delta_1(m_0) + \delta_1(m_1)}{2} \right\rceil + \left\lceil \frac{\delta_1(m_0 - 1) + \delta_1(m_1 - 1)}{2} \right\rceil \geq 2.$$

It follows that $m_0 = 1$. Also by Lemma 2.7

$$\left\lceil \frac{3\delta_1(m_2) + \delta_1(m_1) + \delta_1(m_2 - 1)}{2} \right\rceil > 0,$$
Then by Lemma 2.6, it follows that all open quipus $P_{(m_0, k_1, k_2, m_2)}^{(m_0, m_1, m_2)}$, except $P_{(1, k-3, k-1, 1)}^{(1, k-2, 1)}$, $P_{(1, k-4, k-1, 2)}^{(1, k-3, 2)}$, and $P_{(1, 1, k-2)}^{(1, 1, k-2)}$ shown in Figure 7(a), have spectral radius greater than $3/\sqrt{2}$. By Lemmas 2.4 and 2.8, however, we have
\[
\rho\left(P_{(1, k-2, 1)}^{(1, k-3, k-1, 1)}\right) > \rho\left(P_{(1, k-1)}^{(1, k-1, k-1)}\right) = \rho_k,
\]
\[
\rho\left(P_{(1, k-3, 2)}^{(1, k-4, k-1, 2)}\right) > \rho\left(P_{(2, k-2)}^{(2, k-1, k-2)}\right) = \rho_k,
\]
\[
\rho\left(P_{(1, 1, k-2)}^{(1, 1, k-2)}\right) > \rho\left(P_{(2, k-2)}^{(2, k-1, k-2)}\right) = \rho_k.
\]

Subcase 1.2 $l_1 = 1$ and $l_2 = 1$.

Eqs. (10) and (11) imply that
\[
k_1 = m_0 + m_1 - 1,
\]
\[
k_2 = m_1 + m_2 - 1.
\]

Then by Lemma 2.6
\[
\left[\frac{3\delta_1(m_0) + \delta_1(m_1)}{2}\right] + \left[\frac{\delta_1(m_0 - 1) + \delta_1(m_1 - 1)}{2}\right] \geq 1,
\]
\[
\left[\frac{3\delta_1(m_2) + \delta_1(m_1)}{2}\right] + \left[\frac{\delta_1(m_2 - 1) + \delta_1(m_1 - 1)}{2}\right] \geq 1.
\]

It follows that $m_0 = m_2 = 1$ or $m_1 = 1$ since $n > 20$. Also by Lemma 2.7
\[
\left[\left[3\delta_1(m_0) + \delta_1(m_1) + \delta_1(m_0 - 1)\right]/2\right] > 1, \text{ or}
\]
\[
\left[\left[3\delta_1(m_2) + \delta_1(m_1) + \delta_1(m_2 - 1)\right]/2\right] > 1.
\]

It follows that $m_0 = 1$ or $m_2 = 1$. Therefore, combining with Eqs. (8) and (9), we obtain that all open quipus $P_{(m_0, k_1, k_2, m_2)}^{(m_0, m_1, m_2)}$, except $P_{(1, k-2, 1)}^{(1, k-2, k-2, 1)}$ and $P_{(1, 1, k-2)}^{(1, 1, k-2, k-2)}$ shown in Figure 7(a), have spectral radius greater than $3/\sqrt{2}$.

$k-3$	$k-2$	$k-1$

$k-2$	$k-1$	$k-3$

$k-2$	$k-1$	$k-3$

(a)

$k-3$	$k-2$	$k-4$

$k-2$	$k-1$	$k-3$

(b)

Figure 7: Open quipus with diameter $2k$
By Lemmas 2.3 and 2.8 and Corollary 2.1 we get
\[\rho \left(P(1,k-2,1)_{(1,k-2,2,1)} \right) > \rho \left(P(1,k-2,1)_{(1,k,k,1)} \right) = \rho \left(P(1,k-1)_{(1,k-1,k-1)} \right) = \rho_k. \]

Let \(G := P(1,1)_{(1,1,k-3)} \) and \(H := P(2,2)_{(2,k-2)} \), and let \(x \) and \(y \) be the right most endvertices of \(G \) and \(H \) respectively. Note that
\[G \cong \left(P(1,3), u, k - 3 \right), \]
\[H \cong \left(P(2,1), v, k - 3 \right). \]

By Lemma 2.9 and Eq. (6), we have \(\alpha_{(G,x)}(\lambda) < \alpha_{(H,y)}(\lambda) \) for \(\lambda > 2 \). Then by Lemmas 2.10 and 2.8 we have
\[\rho \left(P(1,1,k-2)_{(1,1,k-2,2,2)} \right) > \rho \left(P(2,k-2)_{(2,k-1,k-2)} \right) = \rho_k, \]
noting that
\[P(1,1,k-2)_{(1,1,k-2,2,2)} \cong T_{G,P_{k-3}}, \]
\[P(2,k-2)_{(2,k-1,k-2)} \cong T_{H,P_{k-3}}. \]

Case 2 \(r = 3 \). We have \(l_1 + l_2 + l_3 = 1 \), which implies that only one of \(l_1 \), \(l_2 \), and \(l_3 \) equals one. By symmetry, we have the following two subcases.

Subcase 2.1 \(l_1 = l_3 = 0 \) and \(l_2 = 1 \).

Eqs. (10), (11) and (12) imply that
\[k_1 = m_0 + m_1 - 2, \]
\[k_2 = m_1 + m_2 + 1, \]
\[k_3 = m_2 + m_3 - 2. \]

Then by Lemma 2.6 we have
\[\left[\frac{3\delta_1(m_0) + \delta_1(m_1)}{2} \right] + \left[\frac{\delta_1(m_0 - 1) + \delta_1(m_1 - 1)}{2} \right] \geq 2; \]
\[\left[\frac{3\delta_1(m_3) + \delta_1(m_2)}{2} \right] + \left[\frac{\delta_1(m_3 - 1) + \delta_1(m_2 - 1)}{2} \right] \geq 2. \]

It follows that \(m_0 = m_3 = 1 \). Lemma 2.7 however, implies that all open quipus \(P(1,m_1,m_2,1)_{(1,k_1,k_2,k_3,1)} \) have spectral radius greater than \(3/\sqrt{2} \).

Subcase 2.2 \(l_1 = 1 \) and \(l_2 = l_3 = 0 \).

Eqs. (10), (11) and (12) imply that
\[k_1 = m_0 + m_1 - 1, \]
\[k_2 = m_1 + m_2, \]
\[k_3 = m_2 + m_3 - 2. \]

Then by Lemma 2.6 we have
\[\left[\frac{3\delta_1(m_3) + \delta_1(m_2)}{2} \right] + \left[\frac{\delta_1(m_3 - 1) + \delta_1(m_2 - 1)}{2} \right] \geq 2. \]
It follows that \(m_1 = 1 \) or \(m_2 = 1 \), and \(m_3 = 1 \). Also by Lemma 2.7
\[
\left\lceil \left(3\delta_1(m_0) + \delta_1(m_1) + \delta_1(m_0 - 1) \right)/2 \right\rceil > 1,
\]
which implies that \(m_0 = 1 \). Therefore, combining with Eqs. (8) and (9), we obtain that all open quipus \(P_{(m_0,m_1,m_2,m_3)}^{(m_0,m_1,m_2,m_3)} \), except \(P_{(1,1,k-2,k-4,1)}^{(1,k-3,1,1)} \) and \(P_{(k-3,2,0,1)}^{(1,k-3,1,1)} \) shown in Figure 7 (b), have spectral radius greater than \(3/\sqrt{2} \).

By Lemma 2.4, however, we get
\[
\rho \left(P_{(1,1,k-2,k-4,1)}^{(1,1,k-3,1,1)} \right) > \rho \left(P_{(1,1,k-2,k-2)}^{(1,1,k-2,k-2)} \right) > \rho_k,
\]
where the last inequality was proved in Subcase 1.2, and
\[
\rho \left(P_{(1,1,k-3,1,1)}^{(1,k-3,2,0,1)} \right) > \rho \left(P_{(1,k-3,2,0,1)}^{(1,k-3,2,2)} \right) > 3/\sqrt{2},
\]
where the last inequality holds since \(k - 2 < k - 3 + 2 \) and \(\delta_1(k - 3) = \delta_1(k - 4) = 0 \) for \(k > 6 \) which fails to satisfy Lemma 2.6 (3).

Case 3 \(r = 4 \). We have \(l_1 + l_2 + l_3 + l_4 = 0 \), which implies that \(l_1 = l_2 = l_3 = l_4 = 0 \). Eqs. (10), (11) and (12) imply that
\[
\begin{align*}
k_1 &= m_0 + m_1 - 2, \\
k_2 &= m_1 + m_2, \\
k_3 &= m_2 + m_3, \\
k_4 &= m_3 + m_4 - 2.
\end{align*}
\]
As above, Lemma 2.6 implies that \(m_0 = m_4 = 1 \). Lemma 2.7 however, implies that all open quipus \(P_{(1,k_1,k_2,k_3,k_4,1)}^{(1,m_1,m_2,m_3)} \) have spectral radius greater than \(3/\sqrt{2} \). This completes the proof. \(\square \)

References

[1] A. E. Brouwer and A. Neumaier, The graphs with spectral radius between 2 and \(\sqrt{2 + \sqrt{5}} \), Linear Algebra Appl. 115 (1989) 273-276.
[2] S. M. Cioabă, E. R. van Dam, J. H. Koolen and J. Lee, Asymptotic results on the spectral radius and the diameter of graphs, Linear Algebra Appl. 432 (2010) 722-737.
[3] D. M. Cvetković, M. Doob and I. Gutman, On graphs whose spectral radius does not exceed \((2 + \sqrt{5})^{1/2} \), Ars Combin. 14 (1982) 225-239.
[4] D. M. Cvetković, M. Doob and H. Sachs, Spectra of Graphs, Theory and Application, 15th ed, NewYork: Academic Press, 1980.
[5] E. R. van Dam and R. E. Kooij, The minimal spectral radius of graphs with a given diameter, Linear Algebra Appl. 423 (2007) 408-419.
[6] A. Hoffman, On limit points of spectral radii of non-negative symmetrical integral matrices, pp. 165-172 in: Lecture Notes in Math. 303, Springer, Berlin 1972.
[7] A. J. Hoffman and J. H. Smith, On the spectral radii of topologically equivalent graphs, in: Fiedler (Ed.), Recent Advances in Graph Theory, Academia Praha, New York. (1975) 273-281.
[8] J. Lan and L. Lu, Diameters of Graphs with Spectral Radius at most $\frac{3}{2}\sqrt{2}$, Linear Algebra Appl. 438 (2013) 4382-4407.

[9] J. Lan, L. Lu and L. Shi, Graphs with diameter $n - e$ minimizing the spectral radius, Linear Algebra Appl. 437 (2012) 2823-2850.

[10] Q. Li and K. Feng, On the largest eigenvalue of graphs, Acta Math. Appl. Sinica 2 (1979) 167-175 (in Chinese).

[11] A. J. Schwenk, Computing the characteristic polynomial of a graph, in: Graphs and Combinatorics, Lect. Notes in Math. 406 (1974) 153-172.

[12] J. H. Smith, Some properties of the spectrum of a graph, Combinatorial Structures and their Applications, pp. 403-406, Gordan and Breach, New York 1970.

[13] X. Sun, Sorting graphs with given diameter by spectral radius, Master Thesis, Tsinghua University, 2008 (in Chinese).

[14] R. Woo and A. Neumaier, On graphs whose spectral radius is bounded by $\frac{3}{2}\sqrt{2}$, Graphs Combin. 23 (2007) 713-726.

[15] X. Yuan, J. Shao and Y. Liu, The minimal spectral radius of graphs of order n with diameter $n - 4$, Linear Algebra Appl. 428 (2008) 2840-2851.