Discovery and Surveillance of Tick-Borne Pathogens

Rafal Tokarz1,2,3 and W. Ian Lipkin1

1Center for Infection and Immunity, Mailman School of Public Health, Columbia University, New York, NY, 2Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, NY, and 3Corresponding author, e-mail: rt2249@cumc.columbia.edu

Received 18 August 2020; Editorial decision 27 October 2020

Subject Editor: William Reisen

Abstract

Within the past 30 yr molecular assays have largely supplanted classical methods for detection of tick-borne agents. Enhancements provided by molecular assays, including speed, throughput, sensitivity, and specificity, have resulted in a rapid increase in the number of newly characterized tick-borne agents. The use of unbiased high throughput sequencing has enabled the prompt identification of new pathogens and the examination of tick microbiomes. These efforts have led to the identification of hundreds of new tick-borne agents in the last decade alone. However, little is currently known about the majority of these agents beyond their phylogenetic classification. Our article outlines the primary methods involved in tick-borne agent discovery and the current status of our understanding of tick-borne agent diversity.

Key words: next-generation sequencing, microbiome, pathogen discovery

Early Strategies for Tick-Borne Agent Discovery

Prior to the advent of molecular biology, tick-borne agents were historically identified through microscopy, isolation in culture or serology (Cowdry 1925, Burgdorfer et al. 1982, Benach et al. 1983, La Scola and Raoult 1997, Raoult and Roux 1997, Mars et al. 2015). Among the initial tick-borne agents identified were the apicomplexan parasites Babesia and Theileria that were visualized in blood smears from infected cattle (Mans et al. 2015, Smith and Kilborne 1893). Studies of Howard Ricketts were integral in recognizing tick transmission of the causative agent of Rocky Mountain Spotted Fever (RMSF), subsequently named Rickettsia rickettsii (Ricketts 1906, 1991; Solheim 1949; Parola et al. 2005). Serologic methods such as complement fixation and immunofluorescence assays (IFA) supplemented microscopy studies while transmission of the presumed etiologic agents between vector ticks and naïve vertebrate hosts was used to fulfill proof of causation (Solheim 1949, Raoult and Roux 1997, Mans et al. 2015). By mid 20th century, advances in tissue culture methods facilitated the isolation of many of the most common tick-borne pathogens and enabled the study of tick-borne viruses. Multiple combined approaches were often used for identification of novel agents. Large scale global programs aimed at the discovery of new viruses led to the isolation of a wide range of...
Tick-borne viruses, some of which were subsequently characterized through serology and electron microscopy (Downs 1982). *Borrelia burgdorferi* sensu stricto (s.s.) was identified as the tick-borne agent of Lyme borreliosis by visualizing spirochetes in blood from patients and vector ticks and demonstrating serologic reactivity to cultured spirochetes with sera from Lyme borreliosis patients (Burgdorfer et al. 1982, Benach et al. 1983).

Although these approaches were successful in the identification of the agents responsible for most well-known TBDs, the discovery of new tick-borne agents was often compromised by limitations inherent to non-molecular methods. For some agents, isolation in culture proved challenging (Anda et al. 1996, Hue et al. 2013, Tokarz et al. 2014b). This limitation particularly applied to the constituents of the tick virome, where very little was learned about viral diversity for even the most clinically relevant tick species. Until recently, only a single virus was isolated from *Ixodes scapularis* Say, whereas we now know this tick has a very diverse virome (Telford et al. 1997, Tokarz et al. 2014b, Tokarz et al. 2018b). In addition, tick-borne viruses that were isolated in viral surveillance studies were often not characterized further (Palacios et al. 2013, Walker et al. 2015). Cross-reactivity of serologic assays was often a problem for accurate agent identification. This was especially evident in work with *Rickettsia*, where nonpathogenic bacterial endosymbionts could be mistaken for closely related pathogenic species, and serologic cross-reactivity among spotted fever *Rickettsia* likely impeded the identification of new distinct species (Parola et al. 2005).

Although these classical methods are still in use today, by the early to mid-1990s, polymerase chain reaction (PCR) mostly supplanted them as the primary tool for detection of tick-borne agents. The advantages of PCR, including low cost, speed and high throughput, made it a more effective tool for tick-borne pathogen surveillance. Dideoxy sequencing of PCR products provided genomic sequence data that could be used to more clearly differentiate microbial species and improve taxonomic classification. Over time, the utility of PCR was further enhanced by additional improvements in assay design, experimental methods. Although initial tick-borne pathogen surveillance studies often utilized tick pools for PCR analysis, advances in nucleic acid extraction facilitated the study of individual ticks (Johnson et al. 1992, Steiner et al. 1999). Laborious manual nucleic acid extractions have been increasingly supplanted by automated extraction platforms that can rapidly provide nucleic acid template material from ≥24 individual tick samples (Exner and Lewinski 2003, Tokarz et al. 2010, Tokarz et al. 2018b, Sameroff et al. 2019). The implementation of multiplex PCR assays that utilize primer pairs targeting >1 agent further reduced the cost and speed of testing (Tokarz et al. 2010, Hoigaard et al. 2014, Tokarz et al. 2017, Roller and Dumlur 2018, Buchan et al. 2019, Sanchez-Vicente et al. 2019). As a result of these modifications, tick-borne pathogen surveillance studies now often report the testing of hundreds to thousands of tick samples (Tokarz et al. 2010, Aliota et al. 2014, Prusinski et al. 2014, Edwards et al. 2015, Hutchinson et al. 2015, Johnson et al. 2018, Sanchez-Vicente et al. 2019). Numerous surveillance studies have been reported from different countries and continents (Chalada et al. 2018, Cull et al. 2018, Guo et al. 2019). In the United States, the majority of surveillance work has focused on *I. scapularis* due to its association with *Borrelia burgdorferi* s.s. as well as other human pathogens. These studies established *B. burgdorferi* as the most prevalent tick-borne pathogen, with infection rates of 15 to 25% in nymphs and 40–70% in adult ticks (Tokarz et al. 2010, Aliota et al. 2014, Prusinski et al. 2014, Tokarz et al. 2017). Other agents transmitted by *I. scapularis*, such as *Anaplasma phagocytophilum* and *Babesia microti*, are usually detected in up to 20% of nymphs, while <5% are infected with *B. miyamotoi* and Powassan virus. Tick surveillance studies also revealed that appropriately up to 5% of nymphs and up to 15% of adult ticks simultaneously carry multiple pathogens (Tokarz et al. 2010, Aliota et al. 2014, Prusinski et al. 2014, Tokarz et al. 2017, Sanchez-Vicente et al. 2019). These findings correlate with serologic data from patients with TBDs, where probable co-infections have been documented going back several decades (Filstien et al. 1980, Benach and Habicht 1981, Burgdorfer et al. 1982, Krause et al. 1996, Hilton et al. 1999, Horowitz et al. 2013, Curcio et al. 2016, Tokarz et al. 2018a).

PCR as a Tool for Tick-Borne Agent Discovery

Although PCR is typically employed to target and amplify a single nucleic acid sequence, modifications in primer design have enabled the use of PCR as a discovery tool. Instead of targeting a single sequence, alignments of multiple sequences from different agents are used to identify conserved genomic loci within a larger taxonomic group such as a genus or family (Tokarz et al. 2010, Toledo et al. 2010, Tadin et al. 2016, Sanchez-Vicente et al. 2019). PCR primers are then designed within the most conserved regions with the assumption that they will recognize multiple (or all) members within the targeted taxonomic unit. Where necessary, degeneracies can be incorporated into these primer sequences to include divergent sequences. Once amplified, the PCR product is typically sequenced by standard dideoxy sequencing and the agent is classified through homology searches in GenBank (Fukunaga et al. 1995, Pancholi et al. 1995, Tokarz et al. 2010, Sanchez-Vicente et al. 2019). New agents can also be uncovered by examination of melting temperature of PCR products that would indicate the presence of novel sequences, an approach that led to the discovery of novel pathogenic species of *Ehrlichia* and *Borrelia* in patients with TBDs (Bell and Patel 2005; Pritt et al. 2011, 2016).

The introduction of PCR has had a profound impact on the identification of tick-borne agents. Many of the previously isolated but uncharacterized tick-borne viruses could now be identified, while newly emerging pathogenic viruses were rapidly characterized (Telford et al. 1997, Honig et al. 2004). Phylogenetic analyses of genomic sequences obtained with PCR led to the reclassification of many known tick-borne agents. One prominent example is the bacterial agent of granulocytic anaplasmosis that initially was identified by microscopy and assigned as a species of *Ehrlichia*. Through molecular analysis of multiple genetic loci, this agent was shown to be distinct from *Ehrlichia* and was eventually placed within another genus with a new name, *Anaplasma phagocytophilum* (Chen et al. 1994, Dumlur et al. 2001). PCR was frequently employed to examine the complex etiology of rickettsiosis and to differentiate highly similar species that could not be resolved through serology (Shapiro et al. 2010). It also was used to determine the presence of *Rickettsia* in ticks, especially *R. rickettsii*, a species historically presumed to be the primary cause of spotted fever disease in the United States. These studies occasionally failed to detect *R. rickettsii* in areas endemic for spotted fever but detected other species of *Rickettsia* that have been linked with human disease, including *R. amblyommatis* and *R. montanensis* (Apperson et al. 2008, Mcquiston et al. 2012, Wood et al. 2016, Sanchez-Vicente et al. 2019). These results led to the hypothesis that these other species of *Rickettsia* may be responsible for a portion of spotted fever cases typically attributed to *R. rickettsii* (Stromdahl et al. 2011, Gaines et al. 2014). In addition, PCR detection of pathogens in field-collected ticks has been used to identify tick species potentially serving as vectors of TBD (Pancholi et al. 1995; Savage et al. 2013, 2017).
A limitation of PCR assays is that only closely related agents can typically be identified with this approach. Historically, PCR assays aimed at agent discovery were focused on a few microbial genera or families that included known vertebrate pathogens and this precluded the discovery of agents with divergent genomes. In addition, by targeting highly conserved genetic loci, PCR can provide limited genomic information and subsequent analyses could be insufficient to determine actual taxonomic relationships (La Scola et al. 2003).

Next-Generation Sequencing

Unlike standard dideoxy sequencing, which generates a single DNA sequence, NGS generates thousands to hundreds of millions of sequences, or reads, that are present in a sample (Liu et al. 2012, Goodwin et al. 2016). As a result, NGS sequencing generates large datasets that require a bioinformatic ‘pipeline’ for quality control of sequencing reads, subtraction of host reads, contig assembly, and homology searches that assign taxonomic identification to reads and contigs (Chevreux et al. 1999, Andrews and Bittencourt 2010, Schmieder and Edwards 2011, Langmead and Salzberg 2012, Scholz et al. 2012, Li et al. 2015b). Often, microbial reads represent only a fraction of the total reads, and in the case of novel viral agents, these can have minimal homology to known sequences (Tokarz et al. 2014b, Li et al. 2015a, Tokarz et al. 2018b).

Two methods are used for metagenomic examination by NGS: amplicon sequencing and shotgun sequencing (Goodwin et al. 2016, Greay et al. 2018). Amplicon sequencing is a highly targeted approach that uses a consensus primer pair to amplify a specific, highly conserved region of a single gene that is further characterized through NGS. Because of its high sequence conservation in bacteria, the 16S rRNA has been the optimal target gene used for amplicon sequencing. The 16S rRNA gene consists of multiple overlapping constant and hypervariable regions. Primers designed to bind to constant regions are used to amplify all 16S rRNA sequences present in a sample. The diversity in the sample is determined by aligning the 16S rRNA PCR product to datasets comprising known rRNA sequences (Wu et al. 2008, Schloss et al. 2009, Caporaso et al. 2010, Quast et al. 2013, Cole et al. 2014).

The first metagenomic NGS study of tick-borne agents was published in 2011 (Andreotti et al. 2011). Numerous studies have been performed thereafter on a wide range of tick species worldwide (Carpì et al. 2011, Ponnusamy et al. 2014, Goftron et al. 2015, Rynkiewicz et al. 2015, van Treuren et al. 2015, Trout Fryxell and DeBruyn 2016, Gurfield et al. 2017). Although the 16S rRNA gene is an effective tool for the assessment of bacterial diversity, it does not detect viral or eukaryotic agents. In addition, 16S rRNA primers can minimize the potential for amplification of closely related bacteria of genetic near-neighbors must be considered in primer design to optimize for primer design.

Molecular Assay Confounds

Accurate NGS assessment of the tick microbiome can be heavily dependent on experimental factors (Narasimhan and Fikrig 2015). The surface of ticks can harbor a broad range of transiently acquired microbes that are likely not part of their internal microbiome. Unless removed prior to nucleic acid extraction, sequences of these agents will be amplified, and can erroneously be included as a portion of the microbiome (Binetruy et al. 2019). Reports of metagenomic analyses of ticks often include bacteria that likely represent environmental contaminants. Protocols for removal of environmental contaminants may include multiple washes of ticks with alcohol, hydrogen peroxide, or bleach. Of these, bleach treatment has been reported to have the best results (Hoffmann et al. 2020). Other confounds may include the presence of sequences that originate from reagent or laboratory contaminants (Salter et al. 2014). Occasionally, entire viral genomes have been recovered by NGS from clinical specimens, only to determine that they originated from laboratory reagents (Xu et al. 2013, Asplund et al. 2019). Bacterial sequences, and in particular ribosomal sequences, often can be found in water, enzymes, and buffers used for amplification (Salter et al. 2014, Gruber 2015). Ultraviolet irradiation of plasticware and enzymatic digestion of buffers may be helpful in minimizing the presence of nucleic acid contaminants (Wayne et al. 2011).

Sub-optimal PCR assay design also may contribute to misleading results. Ribosomal genes have often been used as targets for PCR because of the availability of genetic sequences for primer design, high degree of conservation, and the presence of multiple copies in the bacterial genome. However, designing agent-specific assays can be challenging, particularly within ribosomal genes. All sequences of genetic near-neighbors must be considered in primer design to minimize the potential for amplification of closely related bacteria (Tokarz et al. 2019). One solution is to design primers within other less conserved non-ribosomal genes. Another approach is to perform a secondary assay targeting an alternative genetic locus followed by dideoxy sequencing of PCR products for confirmation (Tadin et al. 2016).

Tick-Borne Bacterial Pathogens

Bacterial species within the genera *Anaplasma*, *Borrelia*, *Coxiella*, *Ehrlichia*, *Francisella*, and *Rickettsia* are responsible for the majority of reported human TBDs worldwide (Parola and Raoult 2001, Eisen et al. 2017). *Anaplasma phagocytophilum*, the primary species of *Anaplasma* linked with human disease, is rapidly increasing in incidence in the United States (Dumler et al. 2001, Rosenberg et al. 2018). *Borrelia* species cause two distinct human diseases. Whereas species transmitted by ixodid (hard) ticks, cause Lyme borreliosis, argasid (soft) ticks transmit agents of relapsing fever (Steere et al. 2016, Talagrand-Reboul et al. 2018). The most common tick-borne disease in the Northern hemisphere is Lyme borreliosis. In North America, it is caused by *B. burgdorferi* and *B. mayonii*. *Borrelia afzelii*, *B. garinii*, and *B. burgdorferi* are the primary correlate agents of Lyme borreliosis in Eurasia. Some species of relapsing-fever *Borrelia* are also found in ixodid ticks,
including the pathogenic *B. miyamotoi* (Fukunaga et al. 1995, Armstrong et al. 1996). Despite a wide array of *Coxiella*-like bacteria identified in ticks, *Coxiella burnetii*, the agent of Q fever, is the only known tick-borne pathogen from this genus (Zhong 2012). Ehrlichiosis is a disease of human and domestic animals caused by infection with species of *Ehrlichia*, with *E. chaffeensis* the primary agent of human disease in the United States (Ismail and McBride 2017). *Francisella tularensis* is the cause of tularemia, a rare but potentially fatal disease (Telford and Goethert 2020). A wide range of *Rickettsia* species have been identified in ticks worldwide. Although the majority are presumed to be nonpathogenic, several species can cause spotted fever, a potentially severe and lethal disease (Parola et al. 2005, Eisen and Paddock 2020).

The diagnostic methods employed for detection of these agents in clinical samples vary. Although molecular assays may be useful for some, during the early acute stages, serologic assays, typically IFA or enzyme-linked immunoadsorbent assays, are most frequently used for diagnosis (Wormser et al. 2006, Biggs et al. 2016, Connally et al. 2016). For Lyme borreliosis, the exceedingly low bacterial burden in blood makes molecular assays impractical, and serology is used almost exclusively for laboratory diagnosis (Hinckley et al. 2014, Connally et al. 2016).

In addition to pathogenic bacteria, PCR and NGS studies revealed that ticks often harbor nonpathogenic endosymbiotic bacteria. These mainly belong to four genera, including *Coxiella*, *Francisella*, *Rickettsia*, and *Midichloria mitochondrii* (Ahantarig et al. 2013). All have an obligate intracellular lifestyle and are highly abundant in ticks. In NGS tick microbiome studies, sequences attributed to endosymbionts often dominate those from other bacteria. The endosymbionts are passed transovarially and from host to host, and are usually highly prevalent in their hosts (Socolovschi et al. 2009). The *Coxiella* endosymbiont of *Amblyomma americanum* (L.) has been detected in 100% of examined ticks (Jasinskas et al. 2007). For other endosymbionts, the prevalence can vary depending on the geographic region and sex of the ticks examined (Cross et al. 2018, Tokarz et al. 2019). Although the roles the endosymbionts play in the tick life cycle are still unclear, their presence may be beneficial to the tick hosts. Endosymbionts have been shown to be essential for survival and fitness of *Dermacentor andersoni* Stiles and *A. americanum* (Zhong et al. 2007, Clayton et al. 2015). Some rickettsial endosymbionts synthesize essential nutrients that can supplement the fitness of *A. americanum*, *Amblyomma americanum* (L.), and *Dermacentor andersoni* (Inwood et al. 2013). All have an obligate intracellular lifecycle and are highly abundant in ticks. In NGS tick microbiome studies, sequences attributed to endosymbionts often dominate those from other bacteria. The endosymbionts are passed transovarially and from host to host, and are usually highly prevalent in their hosts (Socolovschi et al. 2009). The *Coxiella* endosymbiont of *Amblyomma americanum* (L.) has been detected in 100% of examined ticks (Jasinskas et al. 2007). For other endosymbionts, the prevalence can vary depending on the geographic region and sex of the ticks examined (Cross et al. 2018, Tokarz et al. 2019).

Tick Virome

Historically, the identification and characterization of tick-borne viruses has lagged considerably behind the discovery of cellular agents. The lack of a highly conserved consensus gene, such as 16S rRNA in bacteria, limited the utility of consensus PCR assays for discovery of tick-borne viruses (Lwande et al. 2013, Matsuno et al. 2015). Reverse transcriptase (RT)–PCR assays aimed at viral discovery were typically designed to target the viral RNA-dependent RNA polymerase (RdRp) (Maher-Sturgess et al. 2008, Zlateva et al. 2011). Despite the ubiquitous presence of genes encoding RdRp in RNA viruses, the poor sequence conservation, even among viruses within the same genus, limited the utility of this approach for discovery. In addition, these assays were based on alignments of the relatively few available sequences of members of a given genera or family, and overall this limited success in uncovering novel viral agents. The employment of tissue culture for virus isolation, although more costly and laborious, was more successful (McLean et al. 1962, Taylor et al. 1966, Downs 1982, St. George et al. 1984, Topolovec et al. 2003, Pinto Da Silva et al. 2005). An added benefit of this approach was the isolation of viruses that were capable of replication outside the vector host, suggesting the potential for transmissibility and vertebrate infection, especially when isolated in vertebrate cell lines such as Vero cells. However, virus isolation can frequently be unsuccessful, and viruses closely associated with their arthropod hosts were refractory to isolation in vertebrate cell lines. In retrospect, only a fraction of the components of tick viromes were isolated in tissue culture. In addition, after isolation, tick-borne viruses were often insufficiently characterized or misclassified due to the lack of adequate tools for molecular characterization (Taylor et al. 1966, Takahashi et al. 1982).

Shotgun sequencing enabled the identification of a wide range of tick-borne viruses, including the highly pathogenic Heartland virus in 2012 and Bourbon virus in 2015 (Mihindukulasuriya et al. 2009, McMullan et al. 2012, Kosoy et al. 2015). NGS also provided a platform for the investigation of tick viromes. Aside from gaining insight into viral diversity, the primary aim of tick virome studies was the discovery of novel viral pathogens. These studies were abetted by improvements in NGS, including decreased costs of sequencing, increased read lengths, and enhanced sequencing depth (Reuter et al. 2015). The introduction of dual labeled barcodes enabled pooling of samples, while minimizing read mis-assignments during bioinformatic analyses (MacConaill et al. 2018). NGS protocol modifications were also introduced, such as a ‘viral enrichment’ that included filtration and nuclease treatment prior to extraction to enhance the recovery of viral particles (Hall et al. 2014).

The first report that demonstrated the utility of NGS for tick virome discovery was published in 2014 (Tokarz et al. 2014b). It revealed the existence of a wide range of highly diverse viral sequences present in ticks within the United States. Subsequently, virome characterization analyses of a wide range of tick species from across the globe confirmed that ticks possess a very rich and diverse virome that includes representatives of *Chuviridae*, *Phenuiviridae*, *Flaviviridae*, *Orthomyxoviridae*, *Reoviridae*, *Rhabdoviridae*, *Nairoviridae*, *Nyamuviridae*, *Peribunyaviridae*, *Nairoviridae*, and *Asfarviridae*. (Tokarz et al. 2014b, Xia et al. 2015, Moutailler et al. 2016, Shi et al. 2016a, Pettersson et al. 2017, Harvey et al. 2018, Tokarz et al. 2018b, Meng et al. 2019, Samaroff et al. 2019, Gómez et al. 2020, Zhao et al. 2020, Wang et al. 2020). In *I. scapularis* alone, 18 distinct viral sequences have been identified by NGS (Tokarz et al. 2014b, Tokarz et al. 2018b, Tokarz et al. 2019).
The majority components of tick viromes are presumed to be arthropod-specific viruses and tick endosymbionts (Li et al. 2015a, Bouquet et al. 2017, Tokarz et al. 2018b, Sameroff et al. 2019). Both include viruses classified within viral orders Bunyavirales and Jingchuvirales, which are among the most frequent and abundant tick-borne viruses identified by NGS (Tokarz et al. 2014b, Li et al. 2015a, Pettersson et al. 2017, Tokarz et al. 2018b). A wide range of distinct Bunyavirales-like sequences have been found in individual tick species (Pettersson et al. 2017, Tokarz et al. 2018b). The majority of the tick-associated bunyaviruses identified by NGS consist of vertically transmitted viruses found in several Ixodidae tick species that lack a genomic segment encoding the glycoprotein required for receptor binding (Spiegel et al. 2016, Tokarz et al. 2018b, Vandegrift and Kapoor 2019). The Jingchuvirales order currently contains only the family Chuviridae and genus Mivirus (Li et al. 2015a). After their discovery through NGS studies of ticks, viruses were identified in a wide range of arthropods (Tokarz et al. 2014a, Tokarz et al. 2014b, Li et al. 2015a, Pettersson et al. 2017, Harvey et al. 2018, Souza et al. 2018, Tokarz et al. 2018b, Meng et al. 2019, Sameroff et al. 2019, Temmam et al. 2019). Other, less frequently detected presumed arthropod-specific viruses and viral endosymbionts include rhabdovirus-like viruses, tetraviruses, tymoviruses, picorna/sobermo-like viruses, and pestiviruses-like viruses (Tokarz et al. 2014b, Li et al. 2015a, Shi et al. 2016a, Pettersson et al. 2017, Tokarz et al. 2018b, Sameroff et al. 2019).

Outside the Americas, the primary causes of viral TBDs are Crimean Congo hemorrhagic fever virus, severe fever with thrombocytopenia syndrome virus, and tick-borne encephalitis virus (Ergonil 2006, Lindquist and Vapalahti 2008, Lei et al. 2015). In the United States, five tick-borne viruses have been implicated with human disease, including Heartland virus, Bourbon virus, Colorado tick fever virus and two distinct genotypes of Powassan virus (McLEAN and DONOHUE 1959, Telford et al. 1997, Pesko et al. 2010, McMullan et al. 2012, Kosoy et al. 2015, Yendell et al. 2015). Reports of symptomatic disease with these viruses are rare, which correlates with their infrequent detection in vector ticks. Infection rates of adult I. scapularis with Powassan virus are typically <5% and <2% of A. americanum ticks are usually infected with Heartland or Bourbon virus (Tokarz et al. 2010, 2017; Savage et al. 2013, 2016, 2017; Sanchez-Vicente et al. 2019).

Recent NGS virome studies have also identified several viruses that may require further exploration. Two virome studies identified divergent quaranvirus (Cholleti et al. 2018, Wille et al. 2020) classified within the family Orthomyxoviridae. These viruses have been isolated from the blood of children with febrile illness, with a follow-up study reporting neutralizing antibodies in about 8% of the endemic population (Mohammed et al. 1970). Another group, Jingmen tick viruses (JTVs), are genetically related to viruses belonging to the genus Flavivirus (Qin et al. 2014, Shi et al. 2016b). Originally identified within Rhhipicephalus microplus (Canestrini) ticks, these viruses have since been identified in arthropods and mammals on five continents (Qin et al. 2014, Ladner et al. 2016, Emmerich et al. 2018, Souza et al. 2018, Meng et al. 2019, Pascoal et al. 2019, Sameroff et al. 2019, Vandegrift et al. 2020). Recent evidence suggests that these viruses are associated with febrile illness within China (Jia et al. 2019, Wang et al. 2019).

Beyond the Microbiome

One of the primary questions that arose from the tick microbiome studies is the transmissibility of the discovered agents. This question is especially relevant to viruses, because they comprise the majority of the newly discovered and taxonomically classified tick-borne microbes. Many represent previously unknown, genetically diverse viral lineages, and therefore, no parallels can be drawn regarding their life cycle. Another challenge is that the majority appear to be refractory to common methods of tissue culture isolation, precluding studies beyond phylogenetic classification. Serologic methods could be helpful in examining the transmissibility of these agents. However, the rate of discovery of new microbes far outpaces the current capacity for such studies. NGS studies aimed at demonstrating the presence of tick-borne agents in vertebrate hosts may be beneficial (Vandegrift et al. 2020). It has been presumed that aside from the known pathogens, the primary viral and bacterial components of the tick microbiome are non-transmissible or nonpathogenic endosymbionts. For some of these agents, studies
have begun to question this assumption (Apperson et al. 2008, Bonnet et al. 2017, Vandegrift et al. 2020). It is also plausible that endosymbionts and pathogens can directly or indirectly interact within the tick, and as a result influence pathogen transmission (Bonnet et al. 2017). Therefore, in addition to agent discovery, future studies will need to focus on the interactions between the viral, bacterial and eukaryotic components of the tick microbiome and identify new approaches to examine their role in pathogen transmission.

Conclusion

Improvements of molecular and serologic assays for detection of TBD agents have largely replaced microscopy and cultivation. PCR assays have become the mainstay for molecular detection of tick-borne agents. However, advances in sequencing technologies hold extraordinary promise. Capture sequencing, for example, uses agent-specific probes to selectively capture the template of interest before sequencing. Employment of capture probes results in an increase in yield of relevant reads compared to unbiased sequencing, and achieves a sensitivity to equivalent to real-time PCR (Briere et al. 2015, Alliecock et al. 2018). Serology also has improved with the introduction of multiplex assays that employ short linear immunodominant peptides (Dessau et al. 2015, Lahey et al. 2015, Embers et al. 2016, Arumugam et al. 2019). The TBD-Serochip, for example, incorporates a wide range of specific immunodominant peptides from multiple agents. This allows simultaneous serologic detection and discrimination of antibodies to multiple TBD in a single assay (Tokarz et al. 2018a). Metabolomic analyses have identified metabolic signatures unique to early Lyme borreliosis (Molins et al. 2015, Fitzgerald et al. 2020). These studies have been extended to Southern Tick Associated Rash Illness, an illness of unknown etiology (Molins et al. 2017). Further development and refinement of these platforms will likely enable even more robust methods of diagnosis of TBD and facilitate the discovery of new agents.

Acknowledgments

We would like to thank Stephen Sameroff, Center for Infection and Immunity, Columbia University, for assistance with the manuscript and Dr. Jorge Benach, Stony Brook University, for helpful suggestions. We are grateful to Dr. William Reisen for his thorough review and helpful comments. This work was facilitated by grants from the Steven & Alexandra Cohen Foundation and Global Lyme Alliance.

References Cited

Ahantarig, A., W. Trinachartvanit, V. Baimai, and L. Grubhoffer. 2013. Hard ticks and their bacterial endosymbionts (or would be pathogens). Folia Microbiol. (Praha). 58: 419–428.

Aliota, M. T., A. P. Dupuis, 2nd, M. P. Wilczek, R. J. Peters, R. S. Ostfeld, and L. D. Kramer. 2014. The prevalence of zoonotic tick-borne pathogens in Ixodes scapularis collected in the Hudson Valley, New York State. Vector Borne Zoonotic Dis. 14: 245–250.

Allan, B. F., L. S. Goessling, G. A. Storch, and R. E. Thach. 2010. Blood meal analysis to identify reservoir hosts for Amblyomma americanum ticks. Emerg. Infect. Dis. 16: 433–440.

Allen, K. E., E. M. Johnson, and S. E. Little. 2011. Hepatozoon spp infections in the United States. Vet. Clin. North Am. Small Anim. Pract. 41: 1221–1238.

Alliecock, O. M., C. Guo, A. C. Uhlemann, S. Whittier, L. V. Chauhan, J. Garcia, A. Price, S. S. Morse, N. Mishra, T. Briese, and W. I. Lipkin. 2018. BacCapSeq: a platform for diagnosis and characterization of bacterial infections. MBio, 9: e02007–02018.

Anda, P., W. Sanchez-Yebra, M. del Mar Vitutia, E. Perez Pastrana, I. Rodriguez, N. S. Miller, P. B. Backenson, and J. L. Benach. 1996. A new Borrelia species isolated from patients with relapsing fever in Spain. Lancet. 348: 162–165.

Androut, R., A. A. P. De Leon, S. E. Dowd, F. D. Guererro, K. G. Bendele, and G. A. Scoles. 2011. Assessment of bacterial diversity in the cattle tick Rhipicephalus (Boophilus) microplus through tag-encoded pyrosequencing. BMC Microbiol. 11: 6.

Andrews, S., and S. Bittencourt a. 2010. FastQC: a quality control tool for high throughput sequence data – ScienceOpen. Babraham Inst.

Apperson, C. S., B. Engber, W. L. Nicholson, D. G. Mead, J. Engel, M. J. Yabsley, K. Dall, J. Johnson, and D. W. Watson. 2008. Tick-borne diseases in North Carolina: is “Rickettsia amblyommatis” a possible cause of rickettsiosis reported as Rocky Mountain spotted fever? Vector Borne Zoonotic Dis. 8: 597–606.

Armstrong, P. M., S. M. Rich, R. D. Smith, D. L. Hartl, A. Spielman, and S. R. Telford, 3rd. 1996. A new Borrelia infecting Lone Star ticks. Lancet. 347: 67–68.

Arumugam, S., N. Nayak, T. Williams, F. S. D. S. Maria, M. S. Guedes, R. C. Chaves, V. Linder, A. R. Marques, E. J. Horn, S. J. Wong, S. K. Sia, and M. Gomes-Solecki. 2019. A multiplexed serologic test for diagnosis of Lyme disease for point-of-care use. J. Clin. Microbiol. 57: e01142–19.

Asplund, M., R. K. Kjartansdottir, S. Mollerup, L. Vinner, H. Fridholm, J. A. R. Herrera, J. Friis-Nielsen, T. A. Hansen, R. H. Jensen, I. B. Nielsen, et al. 2019. Contaminating viral sequences in high-throughput sequencing viromics: a linkage study of 700 sequencing libraries. Clin. Microbiol. Infect. 25: 1277–1285.

Austen, J. M., U. M. Ryan, J. A. Friend, W. G. Ditcham, and S. A. Reid. 2011. Vector of Trypanosoma congolense identified as Ixodes sp. Parasitology. 138: 866–872.

Beaver, P. C., and W. Burgdorfer. 1984. A microflora of exceptional size from the ixodid tick, Ixodes dammini, from Shelter Island, New York. J. Parasitol. 70: 963–966.

Bell, C. A., and R. Patel. 2005. A real-time combined polymerase chain reaction assay for the rapid detection and differentiation of Anaplasma phagocytophilum, Ehrlichia chaffeensis, and Ehrlichia ewingii. Diagn. Microbiol. Infect. Dis. 53: 301–306.

Benach, J. L., and G. S. Habicht. 1981. Clinical characteristics of human babsiosis. J. Infect. Dis. 144: 481.

Benach, J. L., E. M. Bowler, J. P. Hanrahan, J. L. Coleman, G. S. Habicht, T. F. Bast, D. J. Cameron, J. L. Ziegler, A. G. Barbour, W. Burgdorfer, et al. 1983. Spirochetes isolated from the blood of two patients with Lyme disease. N. Engl. J. Med. 308: 740–742.

Biggs, H. M., C. B. Behravesh, K. V. Bradley, F. S. Dahlgren, N. A. Drexler, J. S. Dumler, S. M. Folk, C. Y. Kato, R. R. Lash, M. L. Levin, R. F. Massung, R. B. Nadelman, W. L. Nicholson, C. D. Paddock, B. S. Pritt, and M. S. Fraeger. 2016. Diagnosis and management of tickborne rickettsial diseases: Rocky Mountain spotted fever and other spotted fever group rickettsioses, ehrlichioses, and anaplasmosis - United States a practical guide for health care and public health professionals. MMWR Recomm. Reports. 65: 1–44.

Binetruy, F., M. Dupraz, M. Buysse, and O. Duron. 2019. Surface sterilization methods impact measures of internal microbial diversity in ticks. Parasites and Vectors 12: 268.

Bodnar, J. L., S. Fitch, A. Rosati, and J. Zhong. 2018. The folA gene from the Rickettsia endosymbiont of Ixodes pacificus encodes a functional dihydrofolate reductase enzyme. Ticks Tick. Borne. Dis. 9: 443–449.

Bodnar, J. L., S. Fitch, J. Sanchez, M. Lesser, D. S. Baxton, and J. Zhong. 2020. GTP cyclohydrolase 1 activity from Rickettsia monacensis strain Humboldt, a rickettsial endosymbiont of Ixodes pacificus. Ticks Tick. Borne. Dis. 11: 101434.

Bonk, F., D. Popp, H. Harms, and F. Centfier. 2018. PCR-based quantification of taxa-specific abundances in microbial communities: Quantifying and avoiding common pitfalls. J. Microbiol. Methods 138: 139–147.

Bonnet, S. L., F. Binetruy, A. M. Hernández-Jauregui, and O. Duron. 2017. The tick microbiome: Why non-pathogenic microorganisms matter in tick biology and pathogen transmission. Front. Cell. Infect. Microbiol. 7: 236.

Bouquet, J., M. Melgar, A. Swei, E. Dewbart, R. S. Lane, and C. Y. Chiou. 2017. Metagenomic-based Surveillance of Pacific Coast tick Dermacentor
occidentalis identifies two novel bunyaviruses and an emerging human rickettsial pathogen. Sci. Rep. 7: 12234.

Briese, T., A. Kapoor, N. Mishra, K. Jain, A. Kumar, O. J. Jabado, and W. Ian Lipkin. 2015. Virome capture sequencing enables sensitive viral detection and comprehensive virome analysis. MBio. 6: e01491–15.

Buchan, B. W., D. A. Jobe, M. Mashock, D. Gerstbrein, M. L. Faron, N. A. Ledeboer, and S. M. Callister. 2019. Evaluation of a novel multiplex high-definition PCR assay for detection of tick-borne pathogens in whole-blood specimens. J. Clin. Microbiol. 57: e00513–00519.

Burgdorfer, W., A. G. Barbour, S. F. Hayes, J. L. Benach, E. Grunwaldt, and J. P. Davis. 1982. Lyme disease-tick borne spirochetosis? Science. 196: 1317–1319.

Caporaso, J. G., J. Kuczynski, J. Stombaugh, K. Bittinger, E. D. Bushman, E. K. Costello, N. Fierer, A. G. Peña, J. K. Goodrich, J. I. Gordon, et al. 2010. QIIME allows analysis of high-throughput community sequencing data. Nat. Methods. 7: 335–336.

Carpi, G., F. Cagnacci, N. E. Wittekindt, F. Zhao, J. Qi, L. P. Tomsho, D. I. Drautz, A. Rizzoli, and S. C. Schuster. 2011. Metagenomic profile of the bacterial communities associated with Ixodes ricinus ticks. PLoS One 6: e25604.

Carpi, G., K. S. Walter, S. J. Bent, A. G. Hoen, D. Munk-Wasser, and A. Caccione. 2015. Whole genome capture of vector-borne pathogens from mixed DNA samples: A case study of Borrelia burgdorferi. BMC Genomics 16: 434.

Center for Disease Control and Prevention Diseases, National Center for Emerging and Zoonotic Infectious Diseases, and Division of Vector-Borne Diseases. 2019. https://www.cdc.gov/ticks/data/supplementary/index.html.

Chalada, M. J., J. Stenos, G. Vincent, D. Barker, and R. S. Bradbury. 2018. A molecular survey of tick-borne pathogens from ticks collected in central queensland, Australia. Vector Borne Zoonotic Dis. 18: 151–163.

Chen, S. M., J. S. Dumler, J. S. Bakken, and D. H. Walker. 1994. Genetic and evolutionary characteristics of Crimean-Congo hemorrhagic fever orthonairovirus in humans, Kosovo. Infect. Genet. Evol. 63: 1–11.

Chevreux, B., T. Wetter, and S. Suhai. 1999. Genome sequence assembly using trace signals and additional sequence information. Comput. Sci. Biol. Proc. 1999, GCBI, Hann. Ger. 45–56.

Cholleti, H., J. Hayer, E. C. Mulandale, K. Falk, J. Fatfene, M. Berg, and A. L. Blomström. 2018. Viral metagenomics reveals the presence of highly divergent rhabdoviruses in Rhipicephalus ticks from Mozambique. Infect. Ecol. Epidemiol. 8: 1478585.

Clayton, K. A., C. A. Gall, K. L. Mason, G. A. Scoles, and K. A. Brayton. 2015. The characterization and manipulation of the bacterial microbiome of the Rocky Mountain wood tick, Dermacentor andersoni. Parasites and Vectors 8: 632.

Cole, J. R., Q. Wang, J. A. Fish, B. Chai, D. M. McGarrrell, Y. Sun, C. T. Brown, A. Porras-Alfaro, C. R. Kuske, and J. M. Tiedje. 2014. Five-antigen fluorescent bead-based assay for diagnosis of Lyme disease. Clin. Vaccine Immunol. 21: 294–303.

Emmerich, P., X. Jakupi, R. von Possel, L. Berisha, B. Halili, S. Günther, D. Cadar, S. Ahmeti, and J. Schmidt-Chanasit. 2018. Viral metagenomics, genetic and evolutionary characteristics of Crimean-Congo hemorrhagic fever orthonairovirus in humans. Vector Borne Zoonotic Dis. 18: 151–163.

Estrada-Peña, A., and J. De La Fuente. 2014. The ecology of ticks and epidemiology of tick-borne viral diseases. Antiviral Res. 108: 104–128.

Exner, M. M., and M. A. Lewinski. 2003. Isolation and detection of Borrelia burgdorferi DNA from cerebral spinal fluid, synovial fluid, blood, urine, and ticks using the Roche MagNA Pure system and real-time PCR. Diagn. Microbiol. Infect. Dis. 46: 235–240.

Filstine, M. R., J. L. Benach, D. J. White, B. A. Brody, W. D. Goldman, C. W. Bakal, and R. S. Schwartz. 1980. Serosurvey for human babesiosis in New York. J. Infect. Dis. 141: 518–521.

Fitzgerald, B. L., C. R. Molins, M. N. Islam, B. Graham, P. R. Hove, P. P. Wormser, L. Hu, L. V. Ashton, and J. T. Belisle. 2020. Host metabolic response in early Lyme disease. J. Proteome Res. 19: 610–623.

Fukunaga, M., Y. Takahashi, Y. Tsuruta, O. Matsushita, D. Ralph, M. McClelland, and M. Nakao. 1995. Genetic and phenotypic analysis of Borrelia miyamotoi sp. nov., isolated from the ixodid tick Ixodes persulcatus, the vector for Lyme disease in Japan. Int. J. Syst. Bacteriol. 45: 804–810.

Gaines, D. N., D. J. Operario, S. Stroup, E. Stromdahl, C. Wright, H. Gaff, J. Broyhill, J. Smith, D. E. Norris, T. Henning, et al. 2014. Ehrlichia and spotted fever group Rickettsia sequence in Amblyomma americanum in Virginia through use of a novel six-plex real-time PCR assay. Vector Borne Zoonotic Dis. 14: 307–316.

Gofton, A. W., C. L. Oskam, N. Lo, T. Beninati, H. Wei, V. McCarl, D. Murray, A. Paparini, T. L. Gray, A. J. Holmes, M. Bunce, U. Ryan, and P. Irwin. 2015. Inhibition of the endosymbiont “Candidatus Midichloria mitochondrii” during I6S rRNA gene profiling reveals potential pathogens in Ixodes ticks from Australia. Parasites and Vectors 8: 345.

Gómez, G. F., J. L. Benach, D. J. White, B. A. Brody, W. D. Goldman, C. W. Bakal, and R. S. Schwartz. 1980. Serosurvey for human babesiosis in New York. J. Infect. Dis. 141: 518–521.

Goodwin, S., J. D. McPherson, and W. R. McBride. 2016. Coming of age: ten years of next-generation sequencing technologies. Nat. Rev. Genet. 17: 333–351.

Gray, E. B., and B. L. Herwaldt. 2019. Babesiosis surveillance - United States, 2011–2015. MMWR Surveill. Summ. 68: 1–16.

Greay, T. L., A. W. Gofton, A. Paparini, U. M. Ryan, C. L. Oskam, and P. J. Irwin. 2018. Recent insights into the tick microbiome gained through next-generation sequencing. Parasites and Vectors 11: 12.
