Data oriented job submission scheme for the PHENIX user analysis in CCJ

Tomoaki Nakamura, Hideto En’yo, Takashi Ichihara, Yasushi Watanabe and Satoshi Yokkaichi

RIKEN Nishina Center for Accelerator-Based Science

2010/10/20 Tomoaki Nakamura
CCJ history:
• Developed since 1998 as regional analysis center for PHENIX and other RIKEN related experiments.
• Construction was started at 1999.
• Operation was started from 2000.
• 23 publications and ~30 doctoral dissertations have been completed by using CCJ resources.

PHENIX:
• DST production (p+p).
• User level data analysis (p+p, A+A).
• Detector analysis, calibrations.
• MC simulations.
• Detector R&D.

Other experiments:
• KEK-PS E325, E559, Belle.
• J-PARC, E16, E26, g-2.
PHENIX experiment at RHIC

Spin physics by polarized proton beam

Cross Section and Parity Violating Spin Asymmetries of W^\pm Boson Production in Polarized $p + p$ Collisions at $\sqrt{s} = 500$ GeV

arXiv:1009.0505 (2010)

QGP physics by heavy-ion beam

Enhanced Production of Direct Photons in $Au + Au$ Collisions at $\sqrt{s_{NN}} = 200$ GeV and Implications for the Initial Temperature

Phys. Rev. Lett. 104, 132301 (2010)

http://www.bnl.gov/bnlweb/pubaf/pr/newsroom.asp
CCJ specification

For the data production:

- Network:
 - 10Gbps from BNL to RIKEN (SINET3)

- GridFTP servers:
 - 4+2 servers (directory connected with buffer box in PHENIX counting room)

- Tape storage:
 - HPSS 7.1
 - TS3500 library 2.5PB (Maxim 8PB)

For the user analysis:

- PC cluster:
 - ~252core
 - 160core (Joint operation with RIKEN Integrated Cluster of Clusters)
 - http://accc.riken.jp/ricc_e.html

- Disk storage:
 - ~320TB

- Analysis environments:
 - Offline library
 - Data bases

- Maintaining equivalent resources since the start of operation (2000).
FY2005
- Polarized $p+p$ 200GeV
- Raw data
- Total 263TB

FY2006
- Polarized $p+p$ 200GeV
- Raw data
- Total 308TB

FY2008
- Polarized $p+p$ 200GeV
- Raw data
- Total 100TB

FY2009
- Polarized $p+p$ 200/500GeV
- **RECONSTRUCTED DATA**
- Total 95TB

1.5PB of raw and reconstructed data was stored as of 2010.
Effective utilization for the user analysis

Growing data size
• Improvement of beam at RHIC
 ✓ Luminosity
 ✓ Polarization
• Detector upgrade:
 ✓ ~400Kch + Silicon VTX 4.4Mch.
• DAQ upgrade:
 ✓ 500 ~ 800MB/sec at RHIC-Run10.
 ✓ Will be upgraded factor 2 or more.

For the user data analysis
• Data distribution, storage to many nodes:
 ✓ Not easy to avoid the I/O bound problem by the conventional methods.
• NFS export:
 ✓ Too slow due to the multiple access.
• Disk cash:
 ✓ No way, when you scan all of the data set.

MINIMIZATION OF I/O
Preparing special nodes with large capacity of local disk to store the read only data in advance.

http://www.bnl.gov/cad/
http://www.rarf.riken.go.jp/lab/radiation/
Disk configuration and I/O performance

HP ProLiant DL180 G5
- Chassis: 2U, 12HDD-bay
- CPU: Quad-core × 2
 2.66GHz Xeon E5430
- Memory: 16GB (RDIM)
- HDD:
 146GB SAS × 2 for the system (RAID1)
 1TB SATA × 10 for the data storage
- NIC: 1Gbps
 Uplinked by 10Gbps switch in rack.

System
- OS: Scientific Linux 5.3 x86_64
- File system: ext3
 XFS has no gain for the read only usage.

HDD configuration
- RAID5 configuration:
 Advantage is only for 1 process.
- Good performance without RAID:
 Total ~550MB/sec at 8 parallel jobs.
PC Cluster
- Total 18 nodes
- Total 144 CPU cores
- Total 180TB for the data storage

Data sets in HDD
- Every HDD has a part of each data set segmented by run number.
- User jobs can use all of CPU cores without time loss at data distribution.
- ~40GB work area is allocated in each HDD for the non data analysis jobs e.g. simulation.
Job submission scheme

Job submission script
- Submit the user job to the appropriate node automatically, which has the required data.

Batch Job scheduler (LSF 7.0)
- Fair-share among users.
- Set the path to the data directory and work area for environmental variables in the job.

Lock file and directory ACL
- Create at the pre-process for the exclusive use of a physical disk.
- Second job, which will use the data in occupied disk by the first job, stay in queue until the end of the first job.

User got to be able to analyze all of the existing data in local HDD (150TB) within 9 hours.
Summary

• 18 calculating nodes with 180 TB local disks were introduced for effectively analyzing huge amounts of PHENIX data.

• A data-oriented batch queuing system was developed as a wrapper of the LSF system to increase the total computing throughput. Indeed, the total throughput was improved by roughly 10 times as compared to that in the existing clusters; CPU power and I/O performance are increased threefold and tenfold, respectively. Thus, users can analyze data of 150 TB within 9 hours.

• We have experienced just 2 times disk failure out of 180 disks in 1.5 years operation. Therefore, we could conclude that this method is highly effective for the I/O bound data analysis.
High availability:
- Reducing down time by the redundant data.
- Balance of job distribution with respect to any kind of jobs.

Easy to expand for the growing data size:
- Without any other special software.
- No special servers.

By low cost:
- 144CPU core, 2GB memory/core, 180TB disk for the local data storage.
- ~$150K as of 2009.
- The capacity of a HDD is growing and its price is going down steadily.
Backup
CCJ specification

RIKEN CCJ System

last updated on 24-March-2010

CCJ DISK
140 TB RAID
+ 216 TB Local data Disk

Data transfer from/to BNL

Grid FTP server

(RIKEN RICC node)

Gigabit Switch

WAN 10Gbps

WAN Router

Gigabit Switch

Riken Integrated Cluster of Clusters: http://accc.riken.jp/ricc_e.html
CCJ history

RIKEN Wako
- CC-J construction
- CC-J operation at 1/3 scale (June 2000)
- Tape robot addition
- Tape drive upgrade
- HPSS cache updated
- Cooperation with new RIKEN super computer (Mar. 2004)
- Tape drive upgrade
- RIKEN new super computer (RSCC)
- RSCC/HPSS Replacement (July 2009)

RIKEN WAN
- 6Mbps (1997)
- 12Mbps (2000)
- 50Mbps (Jan 2001)
- 1Gbps to Sinet (Aug 2003)
- 1Gbps to Sinet 4 (Jan 2007)

RBRC (BNL)
- R&D for CC-J
- CC-J frontend at BNL
- Prototype of CPU farms Data Duplication facility

TISN (1987 64 kbps) → STAnet/IMnet (1994)
STAnet → IMNET/APAN (June 1998)
IMNET/APAN → SINET (Aug. 2003)
SINET → SINET3 (Jan. 2007)

2010/10/20
Tomoaki Nakamura
HPSS data amount
RIKEN Integrated Cluster of Clusters

Configuration Diagram

- Large Memory Capacity Server
- Massively Parallel Cluster (1039 Nodes; 15 nodes added in April 2010)
- Multi-purpose Parallel Cluster (9.4 + 93.3 TFLOPS (SP))
- Massively Parallel PC Cluster (97.4 TFLOPS)
- MDGRAPE-3 Cluster (3.1 + 64 TFLOPS)
- Tape Storage System (4 PB)
- Disk Storage System (560 TB)
- External Network
- InfiniBand DDR, 10 Gbit Ethernet

Specifications

System	Model	Specifications
Massively Parallel PC Cluster	Fujitsu PRIMERGY RX200S5 (1024 nodes)	CPU: Intel Xeon 5570 (2.93 GHz) x 2, Memory: 12 GB, HDD: 500 GB (RAID0, SAS)
Multi-purpose Parallel Cluster (9.4 + 93.3 TFLOPS (SP))	NEC Express 5800/56Xg (100 nodes)	CPU: Intel Xeon 5570 (2.93 GHz) x 2, Memory: 24 GB, HDD: 250 GB, Accelerator: NVIDIA Tesla C1060
MDGRAPE-3 Cluster (3.1 + 64 TFLOPS)	SGI Altix XE250 (32 nodes)	CPU: Intel 5472 (3.0 GHz) x 2, Memory: 32 GB, HDD: 750 GB, Accelerator: MDGRAPE-3
Large Memory Capacity Server (239 GFLOPS)	SGI Altix 450 (1 node)	CPU: Intel Itanium 9140M (1.66 GHz) x 18, Memory: 512 GB, HDD: 12 TB, I/O: PCI-X (MDGRAPE-3 available)
Disk Storage System (550 TB)	Files: OFS+SRFS, File Server: SPARC Enterprise M9000, RAID: Eternas 2000 Model 200 x 24	
Tape Storage System (4 PB)	HSM: High Performance Storage System, Core Server: System p570 X 1, Mover: System p570 X 6, Cache: DS4800 X 6 (20 TB), Tape: TS1040 X 12 (LTO Ultrium4), Library: TS3500 (L35+D53+S54)	
Network	InfiniBand: X4 DDR	Switch: QLogic SilverStorm 9024 X 60 and 9120 X 2, Topology: Fat-tree (bisection bandwidth: 240 GB/s)
	Ethernet: 10 GbE, GbE	Switch: Cisco 6509-E X 2

http://accc.riken.jp/ricc_e.html
Luminosity evolution of hadron colliders

- proton-proton (p-p) and proton-antiproton (p-\(\bar{p}\)) collisions
- ion-ion collisions (A-A)
- lepton-proton (e-p) and lepton-ion (e-A) collisions (e\(^-\) and e\(^+\))
- spin polarized beams

Last update: 30 July 2010
http://www.bnl.gov/cad/
Integrated luminosity A+A at RHIC

RHIC ion nucleon-pair luminosity L_{NN} delivered to PHENIX

Nucleon-pair luminosity L_{NN} [pb$^{-1}$] vs. Weeks in physics

- 2010 Au-Au
- 2007 Au-Au
- 2008 d-Au
- 2005 Cu-Cu
- 2000 Au-Au
- 2003 d-Au
- 2001 Au-Au

http://www.bnl.gov/cad/
PHENIX DAQ upgrade

James Nagle: Next Decade Plans for the PHENIX Experiment
Workshop on Saturation, the Color Glass Condensate and Glasma

SuperDAQ (i.e. sDAQ)

DAQ2010