Eruptive Seborrheic Keratoses Are Associated With a Co-Occurring Malignancy in the Majority of Reported Cases: A Systematic Review

Sara Mirali1, Asfandyar Mufti2, Rafael Paolo Lansang3, Muskaan Sachdeva1, and Jensen Yeung2,4,5,6

Abstract
Background: Eruptive seborrheic keratoses (ESK) is a benign skin condition that has been associated with malignant and nonmalignant diseases. We conducted a systematic review of reported cases of ESK to identify and summarize associated comorbidities.
Methods: MEDLINE and Embase were searched from database inception (1946) to July 31, 2020 for original articles describing ESK with or without a co-occurring condition. Subject demographics, as well as details of ESK and associated diagnoses were extracted from 76 articles (70 case reports, 3 case series, 3 case control studies) representing 92 patients.
Results: In total, 76.1% (n = 70/92) of patients with ESK had a co-occurring malignancy, 4.3% (n = 4/92) presented with a nonmalignant condition, 9.8% (n = 9/92) experienced ESK as an adverse drug reaction, and 9.8% (n = 9/92) did not report any underlying medical condition. ESK preceded a cancer diagnosis in 76.1% (n = 70/92) of patients with a mean latency period of 4.0 months (range: 0.25-9 months). The most common malignancies associated with ESK were cutaneous T-cell lymphoma (n = 10/70, 14.3%) and gastrointestinal adenocarcinoma (n = 9/70, 12.9%). ESK preceded nonmalignant conditions or no disease in 14.1% (n = 13/92) of patients with a mean latency period of 3.1 months (range: 0.75-6 months). Drug-induced ESK occurred in 9.8% (n = 9/92) of patients with a mean latency period of 7.1 weeks after changing medication.
Conclusion: Although the role of ESK as a paraneoplastic cutaneous marker is debated, healthcare providers should consider screening for underlying malignancy in patients presenting with ESK. Larger studies are needed to confirm its role as a marker for disease.

Keywords
Eruptive seborrheic keratoses, ESK, lichenoid keratoses, Leser-Trelat, cancer, adenocarcinoma, systematic review

Introduction
Eruptive seborrheic keratoses (ESK) is a rare dermatological disorder characterized by the rapid appearance of several benign pigmented skin lesions. ESK presents as well-demarcated round or oval lesions with a verrucous surface. It is diagnosed clinically although in rare cases, a biopsy can be used to differentiate ESK from other benign and malignant lesions.1,2 Histopathologic examination shows proliferation of keratinocytes with keratin-filled cysts.3 Treatment is not required but can be considered if the lesions are symptomatic or for cosmetic reasons. Treatment options include cryotherapy, shave excision, electrodessication, hydrogen peroxide, and laser treatment.3-6

Although ESK is a benign condition, it has been associated with malignant and nonmalignant conditions, including gastrointestinal adenocarcinoma, viral infection, and inflammatory skin conditions.7,9 ESK has also been reported as an adverse drug reaction.10 Although there have been clinical reviews about ESK, to our knowledge there have been no systematic reviews to-date.8,11

1Faculty of Medicine, University of Toronto, Toronto, ON, Canada
2Department of Dermatology, University of Toronto, Toronto, ON, Canada
3Faculty of Health Sciences, McMaster University, Hamilton, ON, Canada
4Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada
5Women’s College Hospital, Toronto, ON, Canada
6Probity Medical Research Inc., Waterloo, ON, Canada

Corresponding Author:
Jensen Yeung, Women’s College Hospital, Division of Dermatology, 76 Greenville St, 5th floor, Toronto, ON M5S 1B2, Canada.
Email: jensen.yeung@utoronto.ca
Given its potential role as an early marker of cancer or other illnesses, it is important for healthcare workers to promptly identify ESK and to understand its associated conditions. The goal of this systematic review is to identify and summarize malignant and nonmalignant conditions in patients with ESK. The secondary objective is to report outcomes and characteristics of ESK after medication use.

Methods

Search Strategy

MEDLINE and Embase were searched from database inception (1946) to July 31, 2020 using the OVID interface in accordance with the Preferred Reporting Items for Systematic Review and Meta-Analysis guidelines. No language restrictions and no publication period restrictions were applied. Variations of the following keywords were used for the search: “Leser-Trelat”, “Stucco keratoses,” “Seborrheic keratoses,” or “Lichenoid keratosis” in combination with variations of “eruptive,” “abrupt,” explosive,” and “sudden.”

Study Eligibility Criteria

Original articles that described ESK in association with other medical conditions were included if they met the following criteria: (1) included patients diagnosed with ESK, (2) if latency period was described, only patients with an ESK latency period of less than a year were included, and (3) were observational (ie, case reports, case series, cross-sectional, or cohort studies). The following studies were excluded: (1) animal and in vitro studies, (2) systematic reviews or review articles, and (3) commentaries.

Study Selection

The literature search was conducted by 2 independent reviewers (S.M. and R.P.L.) who reviewed the list of titles, abstracts, and full texts to identify eligible studies. Discrepancies between the 2 reviewers were discussed and if a consensus was not reached, a 3rd reviewer (A.M.) was consulted and a final decision was made. Reference lists from included articles were reviewed to identify additional studies that were not found in the initial search.

Data Collection and Analysis

Data collection was independently conducted by 2 reviewers (S.M. and R.P.L.), who reviewed and extracted data from included studies. Discrepancies between the 2 reviewers were discussed and if a consensus was not reached, a 3rd reviewer (A.M.) was consulted and a final decision was made. Outcome measures are defined in Supplemental File 1. This review used a descriptive analysis of observational studies.

Quality Assessment

The level of evidence for all include articles were assessed by S.M. and R.P.L. according to the Oxford Centre for Evidence-Based Medicine. Quality appraisal was performed by S.M. and R.P.L. using Murad et al. (case reports and case series) and the Newcastle-Ottawa scale (case control studies). If a consensus was not reached, a 3rd reviewer (A.M.) was consulted and a final decision was made. (Supplemental Tables S1 and S2).

In total, 26 case reports and case series were scored as good (5 + points), 32 fair (3, 4 points), and 15 poor (1, 2 points) using the Murad et al. scale. All included case control studies scored as good (6 + points) using the Newcastle-Ottawa scale.

Results

Study Demographics and Patient Characteristics

After screening the titles and abstracts of 366 articles, the full texts of 253 studies were reviewed. In total, 76 studies met the inclusion criteria and were used for data collection and analysis (Supplementary Figure S1, Table 1, Supplemental Tables S3-S5). Overall, 92.1% (n = 70/76) of studies had a level of evidence of 5, 6.6% (n = 5/76) had a level of evidence of 4, and 1.3% (n = 1/76) had a level of evidence of 3b. Of the 92 patients that were included in the analysis, the mean age was 60.3 years (range: 13-92 years) and among patients in whom sex was reported, 47.3% (n = 35/74) were female and 52.7% (n = 39/74) were male. In total, 76.1% (n = 70/92) of patients with ESK had a co-occurring malignancy, 4.3% (n = 4/92) had a coinciding nonmalignant condition, 9.8% (n = 9/92) did not report any underlying medical condition, and 9.8% (n = 9/92) experienced ESK as an adverse drug reaction.

Malignant Conditions

Of the 83 patients who reported ESK with an associated condition, the majority (84.3%, n = 70/83) had an underlying neoplastic condition with a mean age of 62.8 (range: 20-92) years (Supplemental Table S3). Patients were diagnosed with solid malignancies (n = 48/70, 68.6%), hematological malignancies (n = 12/70, 17.1%), both (n = 2/70, 2.9%), or specificancies were not reported (n = 8/70, 11.4%). The most common hematological malignancy was cutaneous T-cell lymphoma (n = 10/70, 14.3%) and the most common solid tumor was gastrointestinal adenocarcinoma (n = 9/70, 12.9%). On average, ESK appeared 4.0 months (range: 0.25-9 months) before a cancer diagnosis. Comorbidities were reported in 32.9% (n = 23/70) of cancer patients with the most common being hypertension (n = 5/23, 21.7%), obesity (n = 5/23, 21.7%), and diabetes mellitus (n = 4/23, 17.4%). Following cancer treatment, 19 patients experienced improvement in their ESK lesions. Among these patients, complete resolution was reported in 42.1% (n = 8/19) of patients with a mean resolution period of 6.7 months and partial resolution was reported...
Study design, level of evidence	Sample size	Age, sex	Associated condition(s)	Comorbidities	Treatment for associated condition(s)	Patient self-report	Latency (weeks after starting treatment)	Associated medication stopped	Correlation between stopping medication and ESK improvement	ESK resolution period (months)	Recovery of ESK	Naranjo ADR Scale
CR, 1 5 1	1	60, NR	Immunosuppression	Heart transplant	Prednisone 5 mg daily, ciclosporin 60 mg daily	Y	3	NR	NR	NR	NR	NR
CR, 2 5 1	1	71, M	Rheumatoid arthritis	NR	Adalimumab	Y	3	Yes	12 Complete	Complete 4	3	1
CR, 3 5 1	1	22, M	Intracranial tumor	NR	Dexamethasone, radiotherapy	N	9	Yes	No	Complete 1	3	1
CS, 4 2	2	56, F	Metastatic breast adenocarcinoma	NR	Diethylstilbestrol, surgery	Unclear	4	Yes	No	None 3	3	1
CR, 5 5 1	1	65, F	Hepatitis C	Depression, basal cell carcinoma	Interferon, ribavirin, telaprevir	Y	8	Yes	NR	Complete 4	3	1
CR, 6 5 1	1	40, F	Metastatic neurofibrosarcoma	NR	Mitomycin (8 mg/m²), adriamycin (40 mg/m²), cisplatin (60 mg/m²)	Y	3	Yes	NR	Partial 4	4	1
CR, 7 5 1	1	73, M	Metastatic colorectal adenocarcinoma	NR	Panitumumab and folinic acid, fluorouracil, oxaliplatin	Unclear	16	Yes	1 Complete	2	3	1
CR, 8 5 1	1	78, M	NR	NR	Generic glucanate, ranitidine (switched from brand name)	Y	3	Yes	12 Complete	Complete 3	3	

Abbreviations: ADR, adverse drug reaction; CR, case report; CS, case series; ESK, eruptive seborrheic keratoses; F, female; M, male; NR, not reported.

References
1. Hsu C, Abraham S, Campanelli A, Saurat JH, Piguet V. Sign of leser-trelat in a heart transplant recipient. Br J Dermatol. 2005;153(4):861-862.
2. Eastman KL, Knezevich SR, Raugi GJ. Eruptive seborrheic keratoses associated with adalimumab use. J Dermatol Case Rep. 2013;7(2):60-63.
3. Westrom DR, Berger TG. The sign of leser-trelat in a young man. Arch Dermatol. 1986;122(12):1356-1357.
4. Venencie PY, Perry HO. Sign of leser-trelat: report of two cases and review of the literature. J Am Acad Dermatol. 1984;10(1):83-88.
5. Chadwick PW, Heymann WR. Eruptive seborrheic keratoses secondary to telaprevir-related dermatitis. Cutis. 2016;98(2):E20-E21.
6. Smalley SR, Rubin J, Leiferman KM. Neurofibrosarcoma and the sign of leser-trelat. CA Cancer J Clin. 1984;34(5):295-298.
7. Koumaki D, Boumpoucheropoulou S, Koumaki V, et al. Panitumumab-induced eruptive seborrheic keratosis in a patient with metastatic colorectal cancer. Eur J Case Rep Intern Med. 2020;7(2):001411.
8. Flugman SL, McClain SA, Clark RA. Transient eruptive seborrheic keratoses associated with erythrodermic psoriasis and erythrodermic drug eruption: report of two cases. J Am Acad Dermatol. 2001;45(6 Suppl):S212-S214.
in 57.9% \((n = 11/19)\) of patients with a mean resolution period of 3.4 months.

Despite the temporal relationship observed between the development of ESK and a cancer diagnosis in smaller studies, larger case control studies found no relationship between ESK and the incidence of cancer (Supplemental Table S5). ESK was a rare occurrence amongst both cancer patients and controls with a prevalence rate of 0.3% to 2.3% and 0.0% to 8.0%, respectively. Given the low incidence rate, an association between ESK and malignancy could not be made.\(^{16-18}\)

Nonmalignant Conditions

ESK coincided with nonmalignant diseases or no disease in 14.1% \((n = 13/92)\) of patients with a mean age of 44.9 years (range: 13-74 years). The mean latency period between ESK onset and presentation was 3.1 months (range: 0.75-6 months). These patients presented with various diseases. Specifically, ESK co-occurred with erythrodermic pityriasis rubra pilaris \((n = 1)\), diabetes mellitus \((n = 1)\), secondary syphilis \((n = 1)\) and human immunodeficiency virus \((n = 1)\).

ESK Eruptions After Medications Use

ESK was described as an adverse effect to medication in 9.8% \((n = 9/92)\) of patients (Table 1). Of these patients, the mean age was 58.0 years (range: 22-78) and the mean latency period was 7.1 weeks after changing medication. The mean Naranjo score was 3, indicating possible association. ESK was noted after treatment with corticosteroids in 22.2% \((n = 2/9)\) of patients and after starting synthetic estrogens in 22.2% \((n = 2/9)\). A prior cancer diagnosis was made in 55.6% \((n = 5/9)\) of patients.

Discussion

ESK is a rare, benign, and underdiagnosed skin disease that may be associated with malignant or nonmalignant conditions.\(^{16}\) Our data found that 76.1% \((n = 70/92)\) of reported cases occurred in patients that were subsequently diagnosed with a malignancy. In accordance with previous literature, we found that ESK was most commonly associated with cutaneous T-cell lymphoma and gastric adenocarcinoma.\(^{8}\) To support their uncontrolled proliferation, cancer cells produce growth factors which bind to receptors on cell membranes that drive intracellular growth signalling. Activation of the epidermal growth factor receptor (EGFR) family is a hallmark of many cancers.\(^{19}\) EGFR are found in keratinocytes and can be activated by epidermal growth factor (EGF) or transforming growth factor \(\alpha\) (TGF-\(\alpha\)).\(^{20,21}\) Growth factor secretion from the tumor may drive keratinocyte growth via EGFR signaling, resulting in ESK. Supporting this hypothesis, seborrheic keratoses lesions from a melanoma patient showed increased EGF levels compared to control skin.\(^{21}\)

Although increased EGF levels were not observed in ESK patients, TGF-\(\alpha\) levels were elevated and became undetectable after treatment, suggesting that TGF-\(\alpha\) is the main driver of ESK.\(^{21,22}\) In addition, TGF-\(\alpha\) have previously been shown to be upregulated in precursor lesions of gastric carcinomas.\(^{23}\) Thus, it is plausible that ESK may be correlated with EGFR mediated proliferation of keratinocytes caused by growth factors secreted by the tumor.

ESK’s role as a paraneoplastic cutaneous marker is debated in the literature. Although case control studies found no association between ESK and malignancy, the incidence of ESK was low in both patient and control groups. Given the small sample size, no conclusions could be made on the association between ESK and malignancy.\(^{16-18}\) Another criticism of ESK’s link to malignancy is that the incidence of both seborrheic keratoses and cancer is higher in older patients.\(^{24}\) While the majority of patients were elderly in our analysis, we found that 31.4% \((n = 22/70)\) of patients who had ESK prior to a cancer diagnosis were under the age of 60. Moreover, 27.1% \((n = 19/70)\) of cancer patients reported resolution of ESK following treatment, although this did not always correlate with regression of the tumor. Of the 4 reports that noted recurrence of ESK in cancer patients, all were associated with a relapse of the primary cancer or a new malignancy.\(^{25-28}\) These data suggest that there is a temporal relationship between ESK and malignancy that may not be strictly due to increased age.\(^{29-31}\)

Our systematic review has several limitations. Firstly, the definition of ESK varied between studies and most articles were case reports or case series, with an overall mean evidence level of 4.9.\(^{13}\) In some cases, a diagnosis of ESK was made by visual appearance alone and images were not available for our assessment. In 58.7% \((n = 54/92)\) of cases, the ESK latency were based on patient self-reports, which may be unreliable. Moreover, the number of ESK patients with no associated disease may be underestimated because of reporting bias. Additionally, other reports have noted inflammation of preexisting seborrheic keratoses following treatment with chemotherapy.\(^{32-35}\) Although we excluded these reports from our analysis on drug-induced ESK, it is possible that patients noticed an inflammation of previously unrecognized seborrheic keratoses, rather than the eruption of new ones. Of the included studies describing drug induced ESK, none prove causality (mean Naranjo score: 3, indicating possible association). It is difficult to attribute a link between ESK and treatment as 55.6% \((n = 5/9)\) of patients who developed drug induced ESK were also diagnosed with cancer. Moreover, this may also have contributed to misclassification bias. Finally, data on ESK resolution was unavailable in 68.5% \((n = 63/92)\) of patients, which limits our analysis.

Despite these limitations, our study demonstrates that ESK precedes malignant and nonmalignant conditions and has also been reported as an adverse drug reaction. Results from future
studies will be important in determining if there is a causative link between ESK and disease. Further studies are required to understand the prevalence of ESK and its associated conditions.

Declaration of conflicting interests

The author(s) declared the following potential conflicts of interest with respect to the research, authorship, and/or publication of this article: Dr. Jensen Yeung has been a speaker, consultant, and investigator for AbbVie, Allergan, Amgen, Astellas, Boehringer Ingelheim, Celgene, Centocor, Coherus, Dermira, Eli Lilly, Forward, Galderma, GSK, Janssen, Leo, Medimmune, Merck, Novartis, Pfizer, Regeneron, Roche, Sanofi Genzyme, Takeda, UCB, Valeant, and Xenon. Dr. Mirali, Dr. Mufti, Mr. Lansang, and Ms. Sachdeva have nothing to declare.

Funding

The author(s) received no financial support for the research, authorship, and/or publication of this article.

ORCID iDs

Sara Mirali https://orcid.org/0000-0001-6233-9067
Asfandyar Mufti https://orcid.org/0000-0002-3514-9513
Muskaan Sachdeva https://orcid.org/0000-0002-2252-5663

Supplemental Material

Supplemental material for this article is available online.

References

1. Izikson L, Sober AJ, Mihm MC, Zembowicz A. Prevalence of melanoma clinically resembling seborrhoeic keratoses: analysis of 9204 cases. *Arch Dermatol.* 2002;138(12):1562-1566. doi: 10.1001/archderm.138.12.1562

2. Longo C, Moscarella E, Piana S, et al. Not all lesions with a verrucous surface are seborrhoeic keratoses. *J Am Acad Dermatol.* 2014;70(6):e121-123. doi:10.1016/j.jaad.2013.10.042

3. Hafner C, Vogt T. Seborrhoeic keratosis. *J Dtsch Dermatol Ges.* 2008;6(8):664-677. doi:10.1111/j.1610-0387.2008.06788.x

4. Wood LD, Stucki JK, Hollenbeak CS, Miller JJ. Effectiveness of cryosurgery vs curettage in the treatment of seborrhoeic keratoses. *JAMA Dermatol.* 2013;149(1):108-109. doi:10.1001/2013.jamadermatol.275

5. Ethington E, Mitri A, Surprenant D, et al. Patient preferences and comparative outcomes regarding cryosurgery versus Electrodesiccation in the removal of truncal seborrhoeic keratoses. *J Clin Aesthet Dermatol.* 2019;12(9):E53-E56.

6. Kim YK, Kim D-Y, Lee SJ, Chung WS, Cho SB. Therapeutic efficacy of long-pulsed 755-nm alexandrite laser for seborrhoeic keratoses. *J Eur Acad Dermatol Venereol.* 2014;28(8):1007-1011. doi:10.1111/jdv.12231

7. Lynam K, Fahs F, Daveluy S. Sudden onset psoriasis causing eruptive seborrhoeic keratoses. *Int J Dermatol.* 2020;59(7):e257-e259. doi:10.1111/ijd.14822

8. Schwartz RA. Sign of Leser-Trelat. [Review] [129 refs]. 1996;1(1):88-95.

9. Inamadar AC, Palit A. Eruptive seborrhoeic keratosis in human immunodeficiency virus infection: a coincidence or the sign of leser-trétel? *Br J Dermatol.* 2003;149(2):435-436. doi:10.1046/j.1365-2133.2003.05463.x

10. Williams JV, Helm KF, Long D. Chemotherapy-induced inflammation in seborrhoeic keratoses mimicking disseminated herpes zoster. *J Am Acad Dermatol.* 1999;40(4):643-644. doi:10.1016/s0190-9622(99)70455-x

11. Yamamoto T. Leser-trelat sign: current observations. *Expert Rev Dermatol.* 2013;8(5):541-546. doi:10.1586/17469872.2013.835926

12. Moher D, Liberati A, Tetzlaff J, Altman DG, Group P. PRISMA Group. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. *BMJ.* 2009;339:b2535. doi:10.1136/bmj.b2535

13. Oxford Centre for Evidence-based Medicine – Levels of Evidence. 2020. https://www.cebm.net/2009/06/oxford-centre-evidence-based-medicine-levels-evidence-march-2009

14. Murad MH, Sultan S, Haffar S, Bazerbachi F. Methodological quality and synthesis of case series and case reports. *BMJ Evid Based Med.* 2018;23(2):60-63. doi:10.1136/bmjebm-2017-110853

15. Wells G, Shea B, O’Connell D, et al. The Newcastle-Ottawa Scale (NOS) for assessing the quality of nonrandomised studies in meta-analyses. http://www.ohri.ca/programs/clinical_epidemiology/oxford.asp

16. Lindelöf B, Sigurgeirsson B, Melander S. Seborrhoeic keratoses and cancer. *J Am Acad Dermatol.* 1992;26(6):947-950. doi:10.1016/0190-9622(92)70139-7

17. Fink AM, Filz D, Krajnik G, Jurecka W, Ludwig H, Steiner A. Seborrhoeic keratoses in patients with internal malignancies: a case-control study with prospective accrual of patients. *J Eur Acad Dermatol Venereol.* 2009;23(11):1316-1319. doi:10.1111/j.1468-3083.2009.03163.x

18. Insuausty J, Diaz L, Berbee M, Ballesteros Z, Mantilla A. RM-043 eruptive seborrhoeic keratosis (ESK) and its association with gastrointestinal cancer (GIC): a case-control study and meta-analysis. *Annals of Oncology.* 2016;27(Supplement 2):ii95-ii96. doi:10.1093/annonc/mdw201.40

19. Ciardiello F, Tortora G. EGFRantagonists in cancer treatment. *Annals of Oncology.* 2018;29(11):983-987. doi:10.1093/annonc/mdy245

20. Nanney LB, Magid M, Stoscheck CM, King LE. Comparison of epidermal growth factor binding and receptor distribution in normal human epidermis and epidermal appendages. *J Invest Dermatol.* 1984;83(5):385-393. doi:10.1111/1523-1747.ep1264708

21. Ellis DL, Kafka SP, Chow JC, et al. Melanoma, growth factors, acanthosis nigricans, the sign of leser-trelat, and multiple acrochordons. A possible role for alpha-transforming growth factor in cutaneous paraneoplastic syndromes. *N Engl J Med.* 1987;317(25):1582-1587. doi:10.1056/NEJM198712173172506
22. Curry SS, King LE. The sign of Leser-Trelat. Report of a case with adenocarcinoma of the duodenum. *Arch Dermatol.* 1980;116(9):1059-1060. doi:10.1001/archderm.116.9.1059

23. Filipe MI, Osborn M, Linehan J, Sanidas E, Brito MJ, Jankowski J. Expression of transforming growth factor alpha, epidermal growth factor receptor and epidermal growth factor in precursor lesions to gastric carcinoma. *Br J Cancer.* 1995;71(1):30-36. doi:10.1038/bjc.1995.7

24. Brauer J, Happle R, Gieler U, Effendy I. The sign of leser-trelat: fact or myth? *J Eur Acad Dermatol Venereol.* 1992;1(1):77-80. doi:10.1111/j.1468-3083.1992.tb00703.x

25. Ohashi N, Hidaka N. Pancreatic carcinoma associated with the leser-trelat sign. *Int J Pancreatol.* 1997;22(2):155-160. doi:10.1007/BF02787475

26. Fetil E, Ozkan S, Gürler N, Kuşku E, Arda F, Güneş AT. Recurrent leser-trelat sign associated with two malignancies. *Dermatology.* 2002;204(3):254-255. doi:10.1159/000057894

27. Ikari Y, Ohkura M, Morita M, Seki K, Kubota Y, Mizoguchi M. Leser-trelat sign associated with Sezary syndrome. *J Dermatol.* 1995;22(1):62-67. doi:10.1111/j.1346-8138.1995.tb03343.x

28. Liddell K, White JE, Caldwell IW. Seborrhoeic keratoses and carcinoma of the large bowel. Three cases exhibiting the sign of Lester-trélat. *Br J Dermatol.* 1975;92(4):449-452. doi:10.1111/j.1365-2133.1975.tb03107.x

29. Al Ghazal P, Körber A, Klode J, Dissemong J. Leser-trelat sign and breast cancer. *Lancet.* 2013;381(9878):1653. doi:10.1016/S0140-6736(12)61257-4

30. Flugman SL, McClain SA, Clark RA. Transient eruptive seborrhoeic keratoses associated with erythrodermic psoriasis and erythrodermic drug eruption: report of two cases. *J Am Acad Dermatol.* 2001;45(6 Suppl):S212-S214. doi:10.1067/mjd.2001.103641

31. Chadwick PW, Heymann WR. Eruptive seborrhoeic keratoses secondary to telaprevir-related dermatitis. *Cutis.* 2016;98(2):E20-21.

32. Kechjian P, Sadick NS, Mariglio J, Schulman P. Cytarabine-induced inflammation in the seborrhoeic keratoses of lesertrelat. *Ann Intern Med.* 1979;91(6):868-869. doi:10.7326/0003-4819-91-6-868

33. Patton T, Zirwas M, Nieland-Fisher N, Jukic D. Inflammation of seborrhoeic keratoses caused by cytarabine: a pseudo sign of leser-trelat. *J Drugs Dermatol.* 2004;3(5):565-566.

34. Aamir S, Ullah Z, Iqbal Z, Khan AA, Yaqub F, Malik K. Cutaneous manifestations of interferon alfa and ribavirin for hepatitis C. *J Pak Assoc Dermatol.* 2008;18:14-20.

35. Kowalzick L, Truhm B, Theilig M, Eickenscheidt L, Neuser H. Pseudo-sign of leser-trelat: acute inflammation of seborrhoeic keratoses during chemotherapy with docetaxel. [German]. *J Dermatol*. 2013;10:397-399.