COMMENTS ON SAMPSON’S APPROACH TOWARD HODGE CONJECTURE ON ABELIAN VARIETIES

TUYEN TRUNG TRUONG

Abstract. Let A be an Abelian variety of dimension n. For $0 < p < 2n$ an odd integer, Sampson constructed a surjective homomorphism $\pi : J^p(A) \to A$, where $J^p(A)$ is the higher Weil Jacobian variety of A. Let ω be a fixed form in $H^{1,1}(J^p(A), \mathbb{Q})$, and $N = \dim(J^p(A))$. He observes that if the map $\pi_*(\omega^{N-p-1} \wedge \cdot) : H^{1,1}(J^p(A), \mathbb{Q}) \to H^{n-p,n-p}(A, \mathbb{Q})$ is injective (and hence surjective, by dimension considerations), then the Hodge conjecture is true for A in bidegree (p,p).

In this paper, we show that the map above is not surjective if $\dim_{\mathbb{Q}} H^{p,p}(A, \mathbb{Q}) > \dim_{\mathbb{Q}} H^{1,1}(A, \mathbb{Q})$. The proof uses that because $\pi^* H^1(A, \mathbb{R})$ is exactly

$$\{ \alpha \in H^1(J^p(A), \mathbb{R}) : \alpha(u) = 0 \forall u \in \ker(\pi) \},$$

we can write conveniently $\hat{\omega} = \omega_1 + \pi^*(\alpha)$, here $\alpha \in H^{1,1}(A, \mathbb{Q})$ and $\omega_1^{N-n+1} = 0$. Here $N = \dim(J^p(A))$.

This result is valid for any surjective homomorphism $\pi : \hat{A} \to A$ between Abelian varieties.

1. Introduction and Results

A compact complex manifold X is projective if it is a submanifold of a complex projective space \mathbb{P}^N. Hodge conjecture is the following statement

Hodge conjecture. Let X be a projective manifold. If $u \in H^{2p}(X, \mathbb{Q}) \cap H^{p,p}(X)$ then u is a linear combination with rational coefficients of the classes of algebraic cycles on X.

There have been a lot of works on the conjecture, however, it is still very largely open (see [2, 4]). The case of Abelian varieties, on which the cohomology groups are explicitly described, have been extensively studied, see Appendix 2 in [2]. In this case, also, the Hodge conjecture is still open, even though many partial results have been obtained.

Sampson [3] (see also Appendix 2 in [2]) proposed one approach toward proving the Hodge conjecture for Abelian varieties using Weil Jacobians. He suggested that the Hodge conjecture would follow if a certain map is injective (and hence surjective). In this paper we show that in general this is not the case.

We will first recall the construction of the map π, then will show that it is not surjective (and hence not injective), in general.

1.1. **Abelian varieties.** Let $A = V/L$ be an Abelian variety of dimension n. Here $V = \mathbb{R}^{2n}$ is equipped with a complex structure $J : V \to V$ with $J^2 = -1$, and L is a lattice of rank $2n$. There is one alternating bilinear form $E : V \times V \to \mathbb{R}$ such that
$E(Jx, Jy) = E(x, y)$, $E(x, Jy)$ is a symmetric and positive definite bilinear form on V, and $E(L, L) \subset \mathbb{Z}$. There associated an integral Kähler form on A, given by the following formula

$$\omega = \sum_{i,j} E(e_i, e_j) dx^i \wedge dx^j.$$

Here e_1, \ldots, e_{2n} are a basis for V, and x^i is the real coordinate corresponding to e_i. The Kähler form ω does not depend on the choice of the basis.

There also associated a Hermitian metric

$$H(x, y) = E(x, Jy) - i E(x, y).$$

For more on Abelian varieties, see [1].

1.2. Weil Jacobians

Let e_1, \ldots, e_{2n} be a basis for the lattice L. Let $0 < p < 2n$ be an odd integer. Define $\hat{V} = \bigwedge^p V$.

We define $\hat{L} \subset \hat{V}$ to be the lattice generated by the elements $e_I = \wedge_{i \in I} e_i$, where I is a multi-index of length p.

J defines a complex structure \hat{J} on \hat{V} by the formula $\hat{J}(e_I) = \wedge_{i \in I} J e_i$.

E defines a bilinear form \hat{E} on \hat{V} by the formula: $\hat{E}(e_I, e_J) = \det(E(e_i, e_j))_{i \in I, j \in J}$.

It can then be checked that \hat{E} is alternating, $\hat{E}(Jx, Jy) = \hat{E}(x, y)$, $\hat{E}(\hat{L}, \hat{L}) \subset \mathbb{Z}$, and $\hat{E}(e_I, \hat{J} e_J)$ is symmetric and positive definite. Thus $J^p(A) = \hat{V}/\hat{L}$ is an Abelian variety.

There is an isomorphism $f : H^{1,1}(J^p(A), \mathbb{Z}) \rightarrow H^{p,p}(A, \mathbb{Q})$, see Proposition 7 in [3].

1.3. Sampson’s construction

Starting from the Kähler form ω associated with the bilinear form, Sampson defines a surjective homomorphism $\pi : \hat{V} \rightarrow V$, which is \mathbb{C}-linear and preserves the lattice \hat{L}. Thus it descends to a homomorphism $\pi : J^p(A) \rightarrow A$.

The construction of Sampson is to assign directly

$$\pi(e_I) = \sum_{j=1}^{2n} b_I^j e_j,$$

where b_I^j comes from the coefficients of the form $\omega^{(p+1)/2}$, and the inverse of the matrix $(E(e_i, e_j))$. Then he uses explicit computations to show that the map π is surjective and \mathbb{C}-linear.

If we consider what happens with the pullback map $\pi^* : H^1(A, \mathbb{R}) \rightarrow H^1(J^p(A), \mathbb{R})$, then the above construction will look more transparent. In fact, let x^i be the coordinate corresponding to e_i, and x^I the coordinate corresponding to e_I. Then we have

$$\pi(\sum_I x^I e_I) = \sum_{j=1}^{2n} (\sum_I b_I^j x^I) e_j.$$
Hence $x^j = \sum_I b^j_I x^I$. From this, we obtain
\[\pi^*(dx^j) = \sum_I b^j_I dx^I. \]

Here we recall that given a basis (v_I) for a vector space, with corresponding coordinates z^I, then the form dz^j is given by $dz^j(v_I) = \delta^I_j$.

Now we make the following identification $\psi : H^1(Jp(A), \mathbb{R}) \to H^p(\hat{A}, \mathbb{R})$. We assign $\psi(dx^I) = \wedge_{i \in I} dx^i$. Then, by using a quasi-symplectic basis e_1, \ldots, e_{2n} for L, we obtain a very simple formula
\[\psi \circ \pi^*(dx^j) = c_j dx^j \wedge \omega^{(p-1)/2}. \]

Here c_j is a non-zero constant. Thus we see that $\psi \circ \pi^*$ is, up to a multiplicative constant, the Lefschetz map.

By Lefschetz isomorphism theorem (see Lecture 11 in [2]), $\psi \circ \pi^*(dx^j)$ is injective, and hence π is surjective. The property that π is \mathbb{C}-linear can also be checked by choosing the basis Je_1, \ldots, Je_{2n} in the definition of the map $\psi \circ \pi^*$.

1.4. Non-surjectivity of the pushforward π_*. Let notations be as in the previous subsections. Let $\tilde{\omega}$ be the integral Kähler form on \tilde{V} corresponding to the bilinear form \hat{E}. Sampson observed that if the map $\pi_* (\tilde{\omega}^{N-p-1} \wedge .) : H^{1,1} (J^p(A), \mathbb{Q}) \to H^{n-p,n-p}(A, \mathbb{Q})$ is injective (and hence surjective, by dimension considerations), then the Hodge conjecture is true for A in bidegree (p, p). We will show that in general this is not the case. The result is valid in a more general setting. In the remark after the proof of the result we will discuss how the result still holds under the optimal condition $\dim \mathbb{Q} H^{p,p}(A, \mathbb{Q}) > \dim \mathbb{Q} H^{1,1}(A, \mathbb{Q})$, if a strong Poincaré duality holds for A.

Proposition 1.1. Let $\pi : \hat{A} = \tilde{V}/\tilde{\Lambda} \to A = V/L$ be a surjective homomorphism of Abelian varieties. Let $\tilde{\omega}$ be a fixed form in $H^{1,1}(\hat{A}, \mathbb{Q})$. If $\dim \mathbb{Q} H^{p,p}(A, \mathbb{Q}) > \dim \mathbb{Q} H^{1,1}(\mathbb{Q})$, then the map
\[\pi_* (\tilde{\omega}^{N-p-1} \wedge .) : H^{1,1}(\hat{A}, \mathbb{Q}) \to H^{n-p,n-p}(A, \mathbb{Q}) \]
is not surjective.

Proof. Let $N = \dim(\hat{A})$ and $n = \dim(A)$. Let \hat{J} be the complex structure on \hat{A} and J the complex structure on A. Let \hat{E} be the corresponding bilinear form of $\tilde{\omega}$. First we consider the case $\hat{E}(x, \hat{J}x) \neq 0$ for all $0 \neq x \in \hat{V}$. The general case will be dealt with at the end of the proof.

1) We define $W \subset \hat{V}$ to be the kernel of the map $\pi : \hat{V} \to V$. Because the map π is \mathbb{C}-linear, it follows that $JW = W$. Moreover, since π is surjective, $\dim(W) = 2N - 2n$.

2) We observe that if $\pi^*(du) \in \pi^* H^1(A, \mathbb{R})$ and $v \in W$, then $\pi^*(du)(v) = du(\pi(v)) = du(0) = 0$.

3) We let \hat{W}^\perp to be the orthogonal complement of W, with respect to \hat{E}. Because $\hat{E}(x, \hat{J}x) > 0$ for all $0 \neq x \in \hat{V}$, we have $W \cap W^\perp = 0$. Therefore, we have the
decomposition

\[\hat{V} = W \oplus W^\perp. \]

We note that \(\dim(W^\perp) = 2n. \)

4) We choose a basis \(e_1, \ldots, e_{2N-2n} \) for \(W \), and \(f_1, \ldots, f_{2n} \) a basis for \(W^\perp \). We let \(x^1, \ldots, x^{2N-2n} \) and \(y^1, \ldots, y^{2n} \) be the corresponding coordinates. Then we have the corresponding 1-forms \(dx^1, \ldots, dx^{2N-2n} \) and \(dy^1, \ldots, dy^{2n} \) on \(\hat{V} \).

5) By definition, we have

\[dy^j(e_i) = 0 \]

for all \(i, j \). Comparing with point 2) and taking dimensions into consideration, we conclude that \(\pi^*H^1(A, \mathbb{R}) \) is generated by \(dy^1, \ldots, dy^{2n} \).

6) By point 3), the form

\[
\hat{\omega} = \sum \hat{E}(e_i, e_j)dx^i \wedge dx^j + \sum \hat{E}(f_i, f_j)dy^i \wedge dy^j + \sum \hat{E}(e_i, f_j)dx^i \wedge dy^j
\]

has no cross term. By point 5) we see that we can write \(\hat{\omega} = \omega_1 + \omega_2 \), where \(\omega_1 \) involves only \(dx^i \), and \(\omega_2 = \pi^*(\alpha) \in \pi^*H^2(A, \mathbb{R}) \).

Moreover, we see that \(\omega_1 \) is not other than the restriction of \(\hat{\omega} \) to \(W \), and \(\pi^*(\alpha) \) is not other than the restriction of \(\hat{\omega} \) to \(W^\perp \). Since \(W \) and \(W^\perp \) are both invariant under the complex structure \(\hat{J} \), both forms \(\omega_1 \) and \(\pi^*(\alpha) \) are of type \((1, 1)\). Then \(\alpha \) is of bidegree \((1, 1)\) also.

We also have that both \(\omega_1 \) and \(\alpha \) are rational. This again follows easily from that \(\omega_1 \) and \(\pi^*(\alpha) \) are the restrictions of \(\hat{\omega} \) to \(W \) and \(W^\perp \), and both \(\hat{L} \cap W \) and \(\hat{L} \cap W^\perp \) have maximal ranks.

7) We now show that the map

\[\pi_*(\hat{\omega}^{N-p-1} \wedge \cdot) : H^{1,1}(\hat{A}, \mathbb{Q}) \to H^{n-p,n-p}(A, \mathbb{Q}) \]

is not surjective. Let \(u_0 \in H^{p,p}(X, \mathbb{Q}) \). Then, for any divisor \(D \in H^{1,1}(A, \mathbb{Q}) \)

\[\pi_*(\hat{\omega}^{N-p-1} \wedge D) \wedge u_0 = \pi_*(\hat{\omega}^{N-p-1} \wedge \pi^*(u_0) \wedge D). \]

Using \(\omega = \omega_1 + \pi^*(\alpha) \), we have

\[\hat{\omega}^{N-p-1} \wedge \pi^*(u_0) \wedge D = (\omega_1 + \pi^*(\alpha))^{N-p-1} \wedge \pi^*(u_0) \wedge D \]

\[= \sum_j c_j \omega_1^{N-p-1-j} \wedge \pi^*(\alpha)^j \wedge \pi^*(u_0) \wedge D. \]

Here \(c_j \in \mathbb{N} \) are constants. From points 5) and 6), we have that the \(j \)-th summand in the above sum is zero, unless \(j + p \leq n \) and \(N - p - 1 - j \leq N - n \). Hence there are only two terms left

\[\hat{\omega}^{N-p-1} \wedge \pi^*(u_0) \wedge D = c_1 \omega_1^{N-n-1} \wedge D \wedge \pi^*(\alpha^{n-p} \wedge u_0) + c_2 \omega_1^{N-n} \wedge D \wedge \pi^*(\alpha^{n-p-1} \wedge u_0). \]

This shows that

\[\pi_*(\hat{\omega}^{N-p-1} \wedge D) = \alpha^{n-p-1} \wedge [\pi_*(c_1 \omega_1^{N-n-1} \wedge D) \wedge \alpha + c_2 \omega_1^{N-n} \wedge D]. \]
We note that
\[\pi_*(c_1 \omega_1^{N-n-1} \wedge D) \wedge \alpha + c_2 \omega_1^{N-n} \wedge D \in H^{1,1}(A, \mathbb{Q}). \]

From this it follows that \(\pi_*(\hat{\omega}^{N-p-1} \wedge H^{1,1}(\hat{A}, \mathbb{Q})) \) is contained in the image of the linear map
\[\alpha^{n-p-1} \wedge : H^{1,1}(A, \mathbb{Q}) \to H^{n-p,n-p}(A, \mathbb{Q}). \]

Therefore
\[\dim_Q \pi_*(\hat{\omega}^{N-p-1} \wedge H^{1,1}(\hat{A}, \mathbb{Q})) \leq \dim_Q H^{1,1}(A, \mathbb{Q}). \]

Hence, by the assumption of the proposition, \(\pi_*(\hat{\omega}^{N-p-1} \wedge H^{1,1}(\hat{A}, \mathbb{Q})) \) can not be the whole \(H^{n-p,n-p}(A, \mathbb{Q}) \).

8) Now we consider a general form \(\hat{\omega} \in H^{1,1}(\hat{A}, \mathbb{Q}) \). We can write
\[\hat{\omega} = \lim_{t \to 0} \hat{\omega}(t). \]

Here for \(t \neq 0 \), then the bilinear form \(\hat{E}(t)(\hat{\omega}(t)) \) satisfies the condition \(\hat{E}(t)(x, \hat{J}x) \neq 0 \) for \(0 \neq x \in \hat{V} \). We can write for each \(t \neq 0 \):
\[\hat{\omega}(t) = \omega_1(t) + \pi^*(\alpha(t)). \]

Since \(\omega_1(t) = \omega(t)|_W \), by point 6), the following limit exists
\[\lim_{t \to 0} \omega_1(t) = \omega_1. \]

Moreover, \(\omega_1 \) is also of bidegree \((1, 1)\). Since \(\omega_1(t)^{N-n+1} = 0 \) for all \(t \neq 0 \), it follows that \(\omega_1^{N-n+1} = 0 \). We deduce that \(\lim_{t \to 0} \alpha(t) = \alpha \) also exists, and of bidegree \((1, 1)\).

We need to check that both \(\omega_1 \) and \(\alpha \) are rational. To see this, we can first check that \(\omega_1 \) is rational, which is clear using \(\alpha|_W = 0 \), and \(W \cap \hat{L} \) has maximal rank. Then it also follows that \(\alpha \) is also rational. Then we can proceed as before.

Remark 1.2. The following modification of the approach, requiring that
\[\pi_*(\wedge^{N-p} H^{1,1}(J^p(A), \mathbb{Q})) = H^{n-p,n-p}(A, \mathbb{Q}) \]

may be working.

References

[1] H. Lange and C. Birkenhake, *Complex Abelian varieties*, Grund. der math. Wiss., volume 302, Springer-Verlag, 1992.
[2] J. D. Lewis, *A survey of the Hodge conjecture*, 2nd edition, CRM monograph series, volume 10, American Mathematical Society, 1999.
[3] J. H. Sampson, *Higher Jacobians and cycles on Abelian varieties*, Compositio Mathematica, tome 47, no 2, (1982), 133–147.
[4] The Wikipedia page on Hodge conjecture.

School of Mathematics, Korea Institute for Advanced Study, Seoul 130-722, Republic of Korea
E-mail address: truong@kias.re.kr