Cervical spine TB – Current concepts in management

Ajoy Prasad Shetty, Vibhu Krishnan Viswanathan and S Rajasekaran

Abstract

Objective: Cervical tubercular disease (CTB) is a rare pathology and constitutes 3–5% of all spinal TB. It includes atlantoaxial TB and sub-axial TB. As the literature evidence on this subject is scarce, majority of issues concerning CTB are still controversial. The current narrative review comprehensively discusses the various aspects related to CTB.

Literature search: An elaborate search was made using keywords cervical tuberculosis, atlantoaxial tuberculosis, sub-axial tuberculosis, and cervico-thoracic tuberculosis, on pubmed and google (scholar.google.com) databases on 2 December 2020. We identified crucial questions regarding CTB and included relevant articles pertaining to them.

Results: The initial search using keywords cervical tuberculosis, atlantoaxial tuberculosis, sub-axial tuberculosis, and cervico-thoracic tuberculosis yielded 4128, 76, 3 and 9 articles on ‘pubmed’ database, respectively. A similar search using the aforementioned keywords yielded 1,96,000, 2130, 117 and 728 articles on ‘google scholar’ database. The initial screening resulted in the identification of 178 articles. Full manuscripts were obtained for these articles and thoroughly scrutinised at the second stage. Review articles, randomised controlled trials and level I studies were given preference. Overall, 41 articles were included. Conclusion: AATB and SACTB constitute 0.3 to 1% and 3% of spinal TB, respectively. The incidence of neuro-deficit in CTB is significantly more than other spinal TB. The general principles of management of CTB are similar to spinal TB elsewhere and medical therapy remains the cornerstone. Surgery is advocated in specific scenarios involving gross neuro-deficit, later stages of disease with significant bony/ligamentous disruptions, altered sagittal balance, drug resistance, and poor response to medications. The surgical approaches for AATB include anterior-alone, posterior-alone and combined approaches, although posterior access is the most preferred. Most of the studies on SACTB have supported the role of anterior approach. Additionally, posterior stabilisation may be necessary in specific scenarios. The overall long-term outcome in CTB is favourable.

Keywords
atlantoaxial tuberculosis, cervical tuberculosis, cervico-thoracic tuberculosis, sub-axial cervical tuberculosis

Introduction

Tuberculosis is a serious infectious disease, which has inflicted major social problems in middle- and low-income nations over centuries.1–8 However, following the recent global migration phenomenon, increase in elderly population and emergence of immunosuppressive conditions, developed nations have also seen a resurgence.9–11 Additionally, a steady rise in the prevalence of drug-resistant organisms has been another major concern in the developing nations.12,13

Corresponding author:
Ajoy Prasad Shetty, Department of Spine surgery, Ganga Medical Centre and Hospital, Coimbatore, Tamil Nadu, India
Email: ajoyshetty@gmail.com
While spinal TB accounts for around 1% of total TB burden, cervical TB accounts for 3–5% of all spinal disease.1,14–16 The smaller canal dimension, proximity to vertebral artery and other vital structures, unique facet architecture, higher mobility and lordotic alignment make cervical spine vulnerable to greater neuro-deterioration, instability and progressive mal-alignment.1,15–19 In view of the paucity of literature on this pathology, controversies still exist regarding its presentation, ideal modalities for diagnosis and treatment options. The current narrative review comprehensively discusses the verdict of current literature on various aspects of diagnosis and treatment of patients with cervical TB (CTB) disease; and aims to highlight the intricacies and dilemma involved in its management.

Literature search
An elaborate search was made using keywords cervical tuberculosis, atlantoaxial tuberculosis, sub-axial tuberculosis, and cervico-thoracic tuberculosis, on pubmed and google (scholar.google.com) databases on the second of December, 2020. We identified crucial questions regarding cervical tuberculosis and included relevant articles pertaining to these topics.

Results
The initial search using the keywords cervical tuberculosis, atlantoaxial tuberculosis, sub-axial tuberculosis, and cervico-thoracic tuberculosis yielded a total of 4128, 76, 3 and 9 articles on ‘pubmed’ database, respectively. A similar search using the aforementioned keywords yielded a total of 1,96,000, 2130, 117 and 728 articles on ‘google scholar’ database. The initial screening involved exclusion of duplicate articles, articles unrelated to CTB, animal or other non-clinical studies, and articles in non-English literature based on abstracts or titles of articles. This initial screening resulted in the identification of 178 articles. Full manuscripts were obtained for these selected articles and thoroughly scrutinised at the second stage. All articles not concerning CTB, not pertaining to concerned questions, articles concerning other cervical pathologies, case reports or animal studies, articles in non-English language and duplicate articles were excluded. Review articles, randomised controlled trials and level 1 studies were given preference (Figure 1). Finally, 41 articles were included in this review. We did not perform any screening [Methodological Index for non-randomised studies (MINORS) or Preferred Reporting Items for Systematic Reviews and MetaAnalyses (PRISMA) criteria] for including articles.

Discussion
The literature broadly classifies CTB into cranio-vertebral (CVJ) and sub-axial cervical disease (SACTB).1,2,14,17,20,21 Additionally, lesions involving cervico-thoracic (CT) junctional levels need special consideration, owing to the biomechanical peculiarities of this transitional zone.16 The pathophysiology, clinical presentation, diagnostic modalities and general principles of treatment of CTB are in similar lines with spinal TB elsewhere and have been discussed vide-infra. Specific characteristic of individual cervical region (CVJ, SAC, CT) and their management guidelines have been separately discussed.

Epidemiology
The term ‘upper cervical TB’ encompasses cases which involve C1 and C2 vertebrae [atlantoaxial disease (AA)] and constitute 0.3 to 1% of all spinal TB.2,3,15,20,22 Sub-axial cervical TB (SACTB) is also a rare phenomenon and constitutes <3% of spinal TB.1,14,16,18,19 Although mortality rates following CTB have reduced from 10% to 3% with effective antibiotic regimen, high rates of deformity and paraparesis (around 15–30%) have continued to remain issues of major concern.1,23,24

Pathophysiology
TB is caused by Mycobacterium tuberculosis complex, which include fastidious, aerobic bacilli.6,8,25,26 A vast
majority of these spinal TB (including most CTB) lesions are secondary infections due to hematogenous (arterial/venous plexuses) or lymphatic spread from primary sites like pulmonary, mesenteric, genito-urinary, gastrointestinal or lymph nodal disease.\(^6,8,9,27–30\) A protracted course of retropharyngeal abscess can also tract to cervical spine, leading to localised disease.\(^1,14,18,19\)

The disease is characterised by granulomatous inflammation constituted by lymphocytic infiltration and epithelioid cells, which merge to form Langhans giant cells and finally end up in caseous necrosis of involved tissues forming cold abscesses.\(^28,31–33\) Similarly, progressive osseous destruction by disease leads to instability and deformity.\(^34,35\) While in adults, lesions are localised and less purulent; children tend to manifest with diffuse and extensive disease.\(^1,6,28,36\)

Clinical presentation

The four most common clinical presentations of spinal TB include pain (axial/radicular), constitutional symptoms, neuro-deficit and deformity.\(^6,8\) Axial neck pain (87\%), radicular pain and limited neck mobility (94\%) are the most common presenting symptoms of SACTB.\(^1,4,14\) Alternately, these patients may present with systemic complaints [fever (18\%), night sweats (24\%), cervical lymphadenopathy (17\%), anorexia and emaciation] or pressure-related morbidities due to retropharyngeal abscess [dysphagia (5\%), inspiratory stridor (7.5\%) and airway compromise].\(^4,14,19\)

In later stages of AATB, severe restriction of neck movements and torticollis are characteristic presentations.\(^22\) Clinically, AATB has rarely been reported to manifest as occipital condyle syndrome (characterised by mastoid pain, apprehension sign, torticollis and ipsilateral 12th cranial nerve palsy) or post-infectious atlantoaxial rotary instability (Grisel’s syndrome).\(^22,37–39\)

70\% of patients with spinal TB may present with cold abscesses.\(^8,29,31\) These are chronic abscesses and are devoid of signs of inflammation. These abscesses track subligamentously or along natural planes; and present in a variety of locations. Paravertebral abscesses in cervical region present in the retropharyngeal or sub-mandibular spaces, or track along brachial plexus and present in the axilla or medial side of arm.\(^40,41\)

The prevalence of neurological compromise in CTB is reported to be as high as 74\% and is higher than TB involving rest of the spine.\(^4\) The possible causes for neuro-deficit during active disease include a. mechanical compression from epidural abscess, granulation tissues, pathological fractures, retropulsed fragments, or spinal instability, b. primary cord involvement/edema, c. cord arteritis/thrombosis or ischaemia. During the healed phases, various static (cord atrophy, myelomalacia, dural fibrosis, traction or compression injury to the cord at the apex of deformity) and dynamic (pseudoarthrosis and inter-vertebral instability) factors contribute to neuro-deterioration.\(^24,42–44\) The incidence of cord compression and neuro-deficit is significantly high in adults (even reported as high as 81\%), owing to associated factors like pre-existing degenerative spinal narrowing, increased spinal rigidity and reduced elasticity of pre-vertebral fascia.\(^1\)

In general, these lesions involve anterior vertebral bodies with sparing of posterior elements.\(^45–47\) Since the line of weight transmission in cervical spine is posterior to vertebral body, kyphosis (19\%) in CTB tends to be less of a concern as compared with thoracic or thoraco-lumbar TB.

Diagnostic approach in spinal TB

The approach to diagnosing spinal TB is three-pronged and includes laboratory work-up, imaging and tissue diagnosis.\(^6–8,31,34\) In endemic regions, a high degree of suspicion based on typical clinico-radiological findings helps in clinching the diagnosis.

Blood investigations. While elevated total leukocyte counts (TLC) are reported in 30–50\% of patients, elevated erythrocyte sedimentation rate (ESR) and C-reactive protein (CRP) are seen in two-thirds of patients with spinal TB.\(^8,31,34\) The latter two parameters have significant prognostic utility, as persistently elevated ESR and CRP beyond 3 months of chemotherapy should trigger suspicion of alternate diagnosis, poor drug compliance, insufficient dosage or drug resistance. Liver function (LFT) should also be assessed in all patients, as most anti-tubercular drugs (ATT) are hepatotoxic.\(^48–50\)

Immunological tests. Immunological tests like Mantoux, interferon release assay and immunoglobulin-based tests evaluate host immune response to tubercular antigens.\(^51–53\) Interferon gamma (IFN-\(\gamma\)) release assays are enzyme-linked immunosorbent assay (ELISA) tests, which identify the amount of IFN-\(\gamma\) released against TB antigens (Quantiferon TB and QuantiFERON TB Gold; sensitivity-85\%, specificity-95\%). The utility of these immunological tests is limited in endemic regions with high prevalence of TB, as they may be positive even in the absence of active disease.

Imaging. Spinal TB is predominantly an ‘anterior vertebral disease’ and has been described to present in four different patterns, namely para-discal [most common – involvement of vertebral endplate and marrow adjacent to inter-vertebral disc (IVD)], central, posterior, and non-osseous disease.\(^6,8,28,31\) In cervical disease, the most common patterns of presentation include para-discal and central.

a. **Plain radiographs** do not demonstrate any significant findings in the initial 3–4 weeks. Disc space narrowing, lytic lesions, enhanced vertebral radiolucency and kyphotic collapse are characteristic features. Additionally, retropharyngeal abscess (observed as widened pre-vertebral space), anterior vertebral scalloping (aneurysmal phenomenon) and
Table 1. Characteristic differentiating features between pyogenic (PS) and tuberculous spondylodiscitis (TBS) on MRI.62

Feature	Tuberculous Spondylodiscitis	Pyogenic Spondylodiscitis
1. Para- or intra-spinal abscess	+	-
2. Abscess wall	Thin walled, smooth	Thick walled, irregular
3. Post-contrast paraspinal abnormal signal margin	Well-defined	Poorly defined
4. Abscess with post-contrast rim enhancement	Intra-osseous abscess	Disal abscess
5. Vertebral body enhancement	Heterogenous	Homogenous
6. Vertebral body involvement	Multiple level disease	Involves ≤ 2 vertebral bodies
7. Commonly involved level	Thoracic level disease	Lumbar level disease
8. Degree of disc preservation	Normal to mild disc destruction	Moderate to complete destruction
9. Bony destruction greater than half	Frequent and more severe	Infrequent and mild to moderate destruction

Tissue sampling. The most important step in confirming the diagnosis is the analysis of tissue samples obtained from infected foci. Tissues may be procured either surgically or percutaneously under image (fluoroscopic/CT) guidance. All procured tissues must be sent for molecular [polymerase chain reaction (PCR)], pyogenic bacterial culture, tubercular culture and histopathological examinations.28,31,34

a. Polymerase chain reaction (Xpert MTB/RIF) analysis is a molecular test which allows rapid (90 minutes) and accurate (88% sensitive, 98% specific) detection of TB DNA sequences. It also detects the genetic mutations associated with rifampicin resistance.29,31,68,69

b. Bacterial culture All procured tissue samples are subjected to standard aerobic culture for pyogenic bacteria as well as sensitivity to routine antibiotics.

c. Tubercular culture The gold standard confirmatory test in diagnosing spinal TB is magnetic resonance imaging (MRI), with a reported sensitivity and specificity of 93% and 96%, respectively. MRI [T1WI, T2WI, short tau inversion and recovery (STIR) and contrast-enhanced sequences] has a major role in differentiating tubercular lesions from pyogenic infections or neoplasia.31,60,61

Differential diagnosis

In non-endemic regions, diagnosis can be challenging and requires a high degree of suspicion. Pyogenic or fungal osteomyelitis, inflammatory conditions, and neoplastic conditions (myeloma and lymphoma) need to be considered.34,75,76

Principles of medical management

In accordance with the age-old adage, ‘Uncomplicated tuberculosis is primarily a medical disease’, chemotherapy remains the cornerstone in the management of spinal TB.28,77,78 The first-line ATT include isoniazid(INH), calcifications within soft tissue shadows can also be evident.28,29,31,36,54-56
rifampicin (RMP), ethambutol (EMB), pyrazinamide (PYZ) and streptomycin (S). The general recommendations for medical therapy in TBS are administration of multiple-drug regimen over long duration. Based on recent WHO guidelines, typical regimen includes two phases: intensive phase of 2 months involving 4 drugs, and continuation phase of 7–9 months involving two or three drugs. In drug-resistant infections, appropriate changes are made to incorporate effective first- and second-line drugs. The main factor determining the success of conservative management is the sensitivity of organism to ATT. 53,79

All conservatively managed CTB patients must also be considered for appropriate external spinal immobilisation, so as to prevent long-term deformity. The options for external immobilisation include hard, Philadelphia, Minerva, Aspen, Miami and four-post collars; and halo-vest orthosis.38,80–82 Grady et al.82 supported the use of Philadelphia collar for immobilisation and concluded that outcome following collar depended on three factors, namely compliance, age and neck mobility while wearing collar. The general recommendation is to ensure strict adherence to a rigid orthosis (Halo-vest, Minerva/four-post collar etc.) and avoidance of all activities involving neck movements and weight-bearing for ≥3 months or until there is definitive radiological evidence of healing.22,80

Monitoring response to ATT

Patients on ATT are monitored regularly for their response to medications. The evaluation includes clinical assessment (subjective sense of well-being, improvement in symptomatology, increased appetite, weight gain and neurological recovery), laboratory evaluation (ESR, CRP, LFT), and radiological evidence of healing (bony sclerosis, resolution of lytic lesions and re-ossification on plain X-rays/CT).

MRI is a very useful modality29,31,83,84 to assess treatment response (Figure 1). The follow-up T1WI may be used to prognosticate the response to ATT. In a patient responsive to ATT, T1WI shows a progressive increase in signal intensity within vertebral marrow indicating gradual fatty marrow replacement. The corresponding T2WI shows complete resolution of granulation tissue and pus collection. Alternately, nuclear imaging (PET/CT) may also be utilised to assess response to therapy.10,66,67

Indications for surgical intervention in CTB

The four main objectives of surgical indications in spinal TB include obtaining tissue samples, spinal decompression, debridement and stabilisation.29,31,85 The usual indications for surgical intervention have been shown in Table 2.

As previously mentioned, CTB is considered as three separate entities based on region of involvement, namely AATB (CVJ TB), SACTB and CTTB. Specific considerations with regard to each region have been discussed below.

Table 2. Indications for surgery in spinal TB.28
Absolute Indications
1. Severe neuro-deficit (including bladder/bowel incontinence).
2. Persistent or worsening neurological deficit, despite 3 or 4 weeks of medical therapy.
Stabilisation
1. Positive spine at risk signs (in paediatric patients).
2. Multi-level or pan-vertebral disease.
Open biopsy
1. Failed or inadequate tissue samples from percutaneous biopsy.
2. Doubtful diagnosis.
Debridement
1. Large or un-resolving abscess.
2. Failure of resolution or progression of symptoms despite 4–6 weeks of medical management.
3. Possible drug-resistant disease.
Relative Indications
1. Kyphosis ≥30°.
2. Significant vertebral loss
3. Significant spinal canal compromise with normal neurology.
Extended Indications
1. Elderly patients for earlier ambulation.
2. All patients with neuro-deficit.

AATB

Imaging principles. Plain radiographs of cervical spine [open-mouth antero-posterior (AP) and lateral views] are the initial investigations. Increased atlanto-dens interval (>3 mm in adults and >5 mm in children) can help in identifying AA instability.2,5,86,87 As in other cases of spinal TB, computed tomography (CT) and magnetic resonance imaging (MRI) can help precisely delineate bony, soft tissue, articular and spinal canal morphology. CT provides the best information regarding AA articular status and BI.88

Classification systems. The classification systems described in AATB may be grouped into clinical- and radiological-based systems. The classic classification by Lifeso3 includes three stages, namely stage 1 where ligamentous/bony architecture are well-preserved, stage 2 where ligamentous architecture is compromised; and stage 3 where significant osseous destruction is observed. Goel22 classified AATB into three stages based on extent of disease. Stage 1 includes lesions with unilateral involvement of cancellous portions of atlas, axis and odontoid. Stage 2 is characterised by extension of disease onto unilateral AA joint. In stage 3, disease involves bilateral AA joints. Stage 3 lesions have high prevalence of associated neuro-deficit. Behari and Arora5,89 classified AATB into four grades (Di-Lorenzo grading), based on clinical presentation: grade 1 includes patients with neck pain alone, grade 2 includes independent patients with minor disabilities, grade 3 and 4 include patients who are partially and totally dependent on others for activities of daily living. A similar classification
system incorporating both clinical and radiological parameters has been put forth by Teegala.90,91

Surgical indications. A majority of studies have shown that as with tubercular disease of the rest of skeletal system, management of AATB is essentially medical.2,3,23 In general, literature is divided between two antithetical algorithms: a. algorithm relying on conservative measures23,89,92 and b. algorithm including surgical options depending on clinical condition and radiological findings.2,5,93 While the former approach advocates long-term rigid orthosis application, the latter approach advocates surgical fixation (+ decompression).

However, the current recommendation is that patients with more extensive radiological destruction and those with significant neuro-deficit would benefit from surgery.2,5,88 Goel22 recommended conservative treatment for stage 1 and 2 disease; and surgery for stage 3. Similar algorithms have been put forth by Teegala et al., Molliqaj et al.88 and Behari et al.2,5 for surgically managing patients with AATB.

Surgical approaches. The surgical approaches in AATB include anterior-alone, posterior-alone and combined approaches.2,3,5,21,23,37,39,88,90–93 In general, while anterior approach gives direct access to lesion and enables better decompression and tissue sampling; posterior approach provides biomechanically robust options for stabilisation. Currently, posterior approach is the most preferred globally.5,88 The options for stabilisation through posterior approach include AA fusion and occipito-cervical fusion (OCF)22 (Figures 2 and 3). In patients with atlantoaxial disease alone, AA fusion may suffice. The importance of pre-operatively assessing reducibility of AA dislocation (AAD) in these patients cannot be understated. While patients with reducible AAD benefit

Figure 2. (a) and (b) Antero-posterior and lateral plain radiographs showing significant destruction and dislocation of C1–C2 vertebrae secondary to AATB; (c) and (d) Coronal and sagittal images showing significant C2 vertebral destruction; (e) Axial section of T2WI-MRI showing a large abscess and C2 vertebral destruction; (f) and (g) Right para-sagittal and mid-sagittal sections of T2WI-MRI showing large pre-vertebral and right paravertebral abscesses and C2 vertebral destruction; (h) and (i) Antero-posterior and lateral plain radiographs showing C1 to C4 instrumented stabilisation and complete healing.
from posterior fusion alone, those with irreducible or rotatory AAD require posterior distraction (and reduction) with stabilisation or combined antero-posterior approaches. Additionally, in patients with irreducible AAD, pre- or intra-operative halo traction may be considered for achieving reduction. However, if the disease has already progressed to the occipito-atlantal joints leading to BI or those with significant bilateral AA joint destruction, OCF offers the best stability.

SACTB

Imaging principles. Among radiological investigations, plain standing radiographs yield the most useful information regarding cervical alignment [C2–C7 lordosis and C2–C7 sagittal vertical axis (SVA)]. Additional whole spine radiographs can be helpful in determining compensatory changes in the rest of spine and pelvis in patients with major cervical deformities. In the series by Hsu and Leong, two-segment involvement was the commonest pattern, followed by single- or multi-segment involvement. C5 was the most common level, followed by C6.

Classification systems. Wang et al. described a clinico-radiological grading which includes three separate components, namely restriction of neck movements, motor power and radiological features (including paravertebral abscess, bone destruction and cord compression). A score of 3–4 was classified as grade 1, 5–6 as grade 2 and 7–8 as grade 3.

Surgical indications. The indications for surgical intervention in patients with SACTB are similar to the general recommendations for TB involving other regions of the spine. Recently, the significance of cervical sagittal balance in deciding upon need for surgical stabilisation has been highlighted. It has been recommended that patients with C2–C7 lordosis >0° or C2–C7 SVA >4 cm have poorer neck disability index (NDI) as well higher chance of kyphosis progression; and would benefit from anterior cervical debridement and reconstruction.

Surgical approaches. Anterior approach to cervical spine gives the most direct access to diseased vertebrae, enables better disease clearance, spinal decompression, and offers robust stabilisation, ameliorated reconstruction, fusion, as well as better lordosis restoration. Most of the current studies on SACTB have supported the role of anterior approach.
In the classic series by Hsu and Leong, all patients recovered after radical debridement followed by reconstruction (Hong Kong procedure) through Southwick-Robinson approach. Wu et al. reported excellent outcome (significantly improved kyphosis angle) following anterior debridement, decompression and instrumented fusion with titanium mesh cage. Similar reports by He et al. also demonstrated 100% fusion and neurological stabilisation in 25 patients who underwent anterior debridement and reconstruction with bone graft. Koptan et al. performed a non-randomised trial comparing roles of titanium mesh cage and iliac crest bone graft; and concluded that cage-reconstruction enabled better restoration of kyphosis. Recent systematic reviews have also demonstrated the superiority of anterior approaches for debridement in CTB.

Additionally, posterior approach (Figure 4) may be necessary in patients with pan-vertebral or posterior-only involvement, significant kyphosis/sagittal imbalance, long-segment disease necessitating corpectomies >2 levels, junctional level (cervico-thoracic junction) and those with additional canal compromise due to compression from vertebral elements lying posterior to the cord (thickened ligamentum flavum, congenitally narrow canal etc.). Based on their clinicoradiological grading, Wang et al. proposed a treatment protocol for SACTB: conservative treatment for grade 1, anterior debridement and fusion for grade 2; and combined anterior-posterior approach for grade 3 lesions.

Yin et al. concluded that anterior and combined antero-posterior approaches were viable options in SACTB; and all patients, irrespective of the approach demonstrated good neurological recovery, pain improvement and restoration of alignment. The therapeutic strategies need to be individualised, depending upon patient’s general condition, disease characteristics and surgeon’s expertise.

CTTB

CT lesions (C7 to T2) carry certain peculiarities, as compared with rest of SAC lesions. Being a junctional level, it
represents a transitional zone between kyphotic and lordotic, as well as rigid and mobile spinal segments.98 These factors predispose it to enhanced biomechanical stresses, which augment its propensity to develop progressive kyphosis and instability. Therefore, it is recommended that the surgeon understands inherent characteristics of this region and has a lower threshold to stabilise these lesions, as compared to elsewhere in SAC spine.16

CT spine can be accessed through traditional anterior cervical or posterior approaches.16,99–101 The literature has been in favour of anterior approach (alone or in combination with posterior approach) as a safe and direct approach to the diseased vertebra.98,100,102–106 Anatomically, deep location of CT vertebrae with the presence of sternum, clavicles and mediastinum anteriorly as well as scapulae posteriorly, kyphotic collapse of the diseased vertebrae; and anatomical proximity to complex vital structures make the surgical access to this region challenging.105

Extended versions of anterior approach have been described to access this segment. Sundaresan et al.16,99,100 described an extended approach involving medial claviclectomy and manubriectomy. Ramani et al.16 published good outcome in a series of patients who underwent anterior, extended (involving medial claviclectomy) approach for debridement of CT lesions. Other similar studies have reported good outcome with extensile anterior approach involving manubriectomy or sternotomy.16,98–100,106 Sharan et al.107 reported that while T1–2 disc could be fully visualised above sternal notch in 45.3\% of patients, T2–3 disc could only be exposed in 14.15\%. In order to expose T3, conventional anterior approach with manubriectomy may be necessary in 80–85\% of patients.104,107,108

Although, being a transitional zone, reinforcement with posterior stabilisation may be a biomechanically sounder option; a majority of reports in the existing literature seem to suggest a good outcome with anterior debridement and stabilisation alone99,100,108 (Figure 5). Zhu et al.105 purported the role of pre-operative CT to assess the relationship of sternal notch with the diseased vertebra. They recommended additional posterior stabilisation whenever the diseased level or the level of distal stabilisation was distal to the notch. Wang et al.24 reported excellent outcome following combined antero-posterior approach in paediatric CTTB patients. Rajasekaran et al.35,36,109,110 described the ‘spine-at-risk’ signs for paediatric spinal TB, which include facet subluxation, retropulsion, lateral subluxation and toppling. It has been shown that the presence of these radiological findings can place the spine at a high risk for deformity.

\textbf{Figure 5.} (a) and (b) Antero-posterior and lateral plain radiographs showing significant destruction and involvement of C7 vertebra with collapse; (c) and (d) Mid-sagittal and axial CT images showing significant destruction and collapse of C7 vertebra; (e) and (f) Mid-sagittal T2WI-MRI, and axial T2WI-MRI showing significant collapse and large epidural and paraspinal abscess at C7 level; (g) and (h) Antero-posterior and lateral plain radiographs showing C7 corpectomy and C5–T1 fusion and good healing of CTTB.
progression. In cervical or CTB with positive ‘spine-at-risk’ signs, combined antero-posterior approach may offer better biomechanical advantage.

Clinical outcome of CTB. Typically, the effectiveness of ATT is evident by 3 weeks and further symptoms continue to improve over time. Eventually, all lesions heal by fibrous union, which further leads onto ossification and stabilisation. Overall, based on the available evidence, the outcome in both conservatively and surgically managed CTB (AATB, SACTB, CCTB) patients has been reported to be largely favourable.

Conclusion

AATB and SACTB constitute 0.3 to 1% and 3% of spinal TB, respectively. The incidence of neuro-deficit in CTB is significantly more than other spinal TB. The general principles of management of CTB are similar to spinal TB elsewhere and medical therapy remains the cornerstone. Surgery is advocated in specific scenarios involving gross neuro-deficit, later stages of disease with significant bony/ligamentous disruptions, altered sagittal balance, drug resistance, and poor response to medications. The surgical approaches for AATB include anterior-alone, posterior-alone and combined approaches, although posterior access is the most preferred. Most of the studies on SACTB have supported the role of anterior approach. Additionally, posterior stabilisation may be necessary in pan-vertebral disease, significant kyphosis, long-segment disease and junctional levels. The overall long-term outcome in CTB is favourable.

Declaration of conflicting interests

The author(s) declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

Funding

The author(s) received no financial support for the research, authorship, and/or publication of this article.

ORCID iD

Ajoy Prasad Shetty https://orcid.org/0000-0001-5885-7152

References

1. Hassan MG. Anterior plating for lower cervical spine tuberculosis. *Int Orthop* 2003; 27: 73–77.
2. Behari S, Nayak SR, Bhargava V, et al. Cranio-cervical tuberculosis: protocol of surgical management. *Neurosurgery* 2003; 52: 72–80; discussion 80-81.
3. Lifeso R. Atlanto-axial tuberculosis in adults. *J Bone Joint Surg Br* 1987; 69: 183–187.
4. Qu J, Jiang Y, Xu G, et al. Clinical characteristics and neurologic recovery of patients with cervical spinal tuberculosis: should conservative treatment be preferred? A retrospective follow-up study of 115 cases. *World Neurosurg* 2015; 83: 700–707.
5. Behari S, Nayak SR, Bhargava V, Banerji D, Chhabra DK and Jain VK. Cranio-cervical tuberculosis: protocol of surgical management. *Neurosurgery* 2003; 52(1): 72–80.
6. Viswanathan VK and Subramanian S. *Pott disease*. Treasure Island, FL: StatPearls Publishing, https://www.ncbi.nlm.nih.gov/books/NBK538331/ (2020, accessed 27 December 2020).
7. 9789240013131-eng.pdf. https://apps.who.int/iris/bitstream/10665/336069/9789240013131-eng.pdf (2020, accessed 27 December 2020).
8. Garg RK and Somvanshi DS. Spinal tuberculosis: a review. *J Spinal Cord Med* 2011; 34: 440–454.
9. Shetty AP, Viswanathan VK, Kanna RM, et al. Tubercular spondylodiscitis in elderly is a more severe disease: a report of 66 consecutive patients. *Eur Spine J* 2017; 26: 3178–3186.
10. Davies PDO. The world-wide increase in tuberculosis: how demographic changes, HIV infection and increasing numbers in poverty are increasing tuberculosis. *Ann Med* 2003; 35: 235–243.
11. CDC – TB 101 – A Global Perspective on TB – Web Courses – TB. https://www.cdc.gov/tb/webcourses/tb101/page2632.html (2020, accessed 27 December 2020).
12. Medicine (US) I of. *Drug-Resistant TB in India*. National Academies Press (US). https://www.ncbi.nlm.nih.gov/books/NBK100386/ (2012, accessed 27 December 2020).
13. Kurz SG, Furin JJ and Bark CM. Drug resistant tuberculosis: challenges and progress. *Infect Dis Clin North Am* 2016; 30: 509–522.
14. Hsu LC and Leong JC. Tuberculosis of the lower cervical spine (C2 to C7). A report on 40 cases. *J Bone Joint Surg Br* 1984; 66: 1–5.
15. Wang X-Y, Luo C-K, Li W-W, et al. A practical therapeutic protocol for cervical tuberculosis. *Eur J Trauma Emerg Surg* 2013; 39: 93–99.
16. Ramani PS, Sharma A, Jituri S, et al. Anterior instrumentation for cervical spine tuberculosis: an analysis of surgical experience with 61 cases. *Neurul India* 2005; 53: 83–89; discussion 89.
17. Yin XH, He BR, Liu ZK, et al. The clinical outcomes and surgical strategy for cervical spine tuberculosis: a retrospective study in 78 cases. *Medicine (Baltimore)* 2018; 97: e11401.
18. Wu W, Li Z, Lin R, et al. Anterior debridement, decompression, fusion and instrumentation for lower cervical spine tuberculosis. *J Orthop Sci* 2020; 25: 400–404.
19. Deepii BS, Munireddy M, Kamath S, et al. Cervical spine tuberculosis and airway compromise. *Can J Anaesth* 2016; 63: 768–769.
20. Sridharan S and Arumugam T. Atlantoaxial tuberculosis: outcome analysis. *Int J Mycobacteriol* 2017; 6: 127–131.
21. Panigrahi MK. Cranio-cervical tuberculosis: protocol of surgical management. *Neurosurgery* 2003; 53: 1009–1010; author reply 1010.
22. Goel A. Tuberculosis of craniovertebral junction: role of facets in pathogenesis and treatment. *J Craniovertebr Junction Spine* 2016; 7: 129–130.
23. Chadha M, Agarwal A and Singh AP. Craniovertebral tuberculosis: a retrospective review of 13 cases managed conservatively. *Spine (Phila Pa 1976)* 2007; 32: 1629–1634.
24. Wang B, Shang R, Yang T, et al. Evaluation of clinical outcomes of one-stage anterior and posterior surgical treatment for atlantoaxial tuberculosis complicated with neurological damage. *BMC Musculoskelet Disord* 2019; 20: 148.
25. Sinha P, Gupta A, Prakash P, et al. Differentiation of Mycobacterium tuberculosis complex from non-tubercular mycobacteria by nested multiplex PCR targeting IS6110, MTP40 and 32kD alpha antigen encoding gene fragments. *BMC Infect Dis.* 16. Epub ahead of print 12 March 2016. DOI: 10.1186/s12879-016-1450-1.
26. Mycobacterium Tuberculosis Complex – An overview | ScienceDirect Topics. https://www.sciencedirect.com/topics/medicine-and-dentistry/mycobacterium-tuberculosis-complex (2017, accessed 27 December 2020).
27. Jain AK. Tuberculosis of the skeletal system (bones, joints, spine and bursal sheaths). *Indian J Orthop* 2010; 44: 356.
28. Rajasekaran S, Kanna RM and Shetty AP. Pathophysiology and treatment of spinal tuberculosis. *JBJS* Rev 2014; 2: e4.
29. Shetty A, Kanna RM and Rajasekaran S. TB spine – current aspects on clinical presentation, diagnosis, and management options. *Semi Spine Surg* 2016; 28: 150–162.
30. Rasouli MR, Mirkoochi M, Vaccaro AR, et al. Spinal tuberculosis: diagnosis and management. *Asian Spine J* 2012; 6: 294–308.
31. Rajasekaran S, Soundararajan DCR, Shetty AP, et al. Spinal tuberculosis: current concepts. *Global Spine J* 2018; 8: 96S–108 S.
32. Pagán AJ and Ramakrishnan L. Immunity and immunopathology in the tuberculous granuloma. *Cold Spring Harb Perspect Med*; 5. Epub ahead of print September 2015. DOI: 10.1101/cshperspect.a018499.
33. Silva Miranda M, Breiman A, Allain S, et al. The tuberculous granuloma: An unsuccessful host defence mechanism providing a safety shelter for the bacteria? *Clin Develop Immun* 2012; 2012: e139127.
34. Jain AK and Dhamni IK. Tuberculosis of the spine: a review. *Clin Orthop Relat Res* 2007; 460: 39–49.
35. Rajasekaran S and Shanmugasundaram TK. Prediction of the angle of gibbus deformity in tuberculosis of the spine. *J Bone Joint Surg Am* 1987; 69: 503–509.
36. Rajasekaran S.The natural history of post-tubercular kyphosis in children. Radiological signs which predict late increase in deformity. *J Bone Joint Surg Br* 2001; 83: 954–962.
37. Dhaon BK, Jaiswal A, Nigam V, et al. Atlantoaxial rotatory fixation secondary to tuberculosis of occiput: a case report. *Spine (Phila Pa 1976)* 2003; 28: E203–E205.
38. Kumar A, Singh S, Dikshit P, et al. Occipital condyle syndrome in a case of rotary atlantoaxial subluxation (type II) with craniovertebral junction tuberculosis: should we operate on ‘active tuberculosis?’ *J Craniovertebr Junction Spine* 2020; 11: 143–147.
39. Iaccarino C, Francesca O, Piero S, et al. Grisel’s syndrome: non-traumatic atlantoaxial rotatory subluxation-report of five cases and review of the literature. *Acta Neurochir Suppl* 2019; 125: 279–288.
40. Adiego ML, Vallès H, Castellote MA, et al. [Cold retropharyngeal abscess associated with cervical vertebral tuberculosis]. *Acta Otorrinolaringol Esp* 1993; 44: 471–473.
41. Ansari S, Amanullah MF, Ahmad K, et al. Pott’s spine: diagnostic imaging modalities and technology advancements. *N Am J Med Sci* 2013; 5: 404–411.
42. Jain AK and Kumar J. Tuberculosis of spine: neurological deficit. *Eur Spine J* 2013; 22: 624–633.
43. Sae-Jung S, Wongha N and Leurmpraseret K. Predictive factors for neurological deficit in patients with spinal tuberculosis. *J Orthop Surg (Hong Kong)* 2019; 27: 2309499019868813.
44. Jia C-G, Gao J-G, Liu F-S, et al. Efficacy, safety and prognosis of treating neurological deficits caused by spinal tuberculosis within 4 weeks’ standard anti-tuberculosis treatment: a single medical center’s experience. *Exp Ther Med* 2020; 19: 519–526.
45. Fedou MA, Msakni A, Chebbi W, et al. Unusual circumstances to diagnose cervical Pott’s disease. *Skeletal Radiol* 2018; 47: 723–727.
46. Sardar ZM. CORR Insights®: débridement and reconstruction improve postoperative sagittal alignment in kyphotic cervical spinal tuberculosis. *Clin Orthop Relat Res* 2017; 475: 2092–2094.
47. Pan F, Huang Y, Zhao W, et al. One-stage anterior radical debridement and reconstruction with titanium mesh combined with anti-tuberculosis for cervical spinal tuberculosis: 5-13 years follow up. *Int J Clin Exp Med* 2016; 9(3): 6368–6372.
48. Patwardhan SA and Joshi S. Laboratory diagnosis of spinal tuberculosis: past and present. *ArqSpine News J* 2011; 23: 120–124.
49. Wang P, Liao W, Cao G, et al. Characteristics and management of spinal tuberculosis in tuberculosis endemic area of Guizhou province: a retrospective study of 597 patients in a teaching hospital. *BioMed Res Int* 2020; 2020: e1468457.
50. Zou D, Zhou J and Jiang X. Diagnosis and management of spinal tuberculosis combined with brucellosis: a case report and literature review. *Exp Ther Med* 2018; 15: 3455–3458.
51. Esen M, Mordmüller B and Kremsner PG. Immunological tests to diagnose active tuberculosis. *J Int Med* 2009; 265: 159–162.
52. Lagrange PH, Simonney N and Herrmann JL. [New immunological tests in the diagnosis of tuberculosis]. *Rev Mal Respir* 2007; 24: 453–472.
53. WHO 2018 guidelines on TB testing. *QuantiferON*, https://www.quantiferon.com/products/quantiferon-tb-gold-plus-qft-plus/who-guidelines/ (2018, accessed 27 December 2020).
54. Rivas-Garcia A, Sarria-Estrada S, Torrents-Odin C, et al. Imaging findings of Pott’s disease. *Eur Spine J* 2013; 22: 567–578.
55. Bae KM, Lim S-C, Kim HH, et al. The relevance of biopsy in tuberculosis: imaging features. *Am J Roentgenol* 1995; 164: 659–664.

56. Kukreja R, Mital M and Gupta PK. Evaluation of spinal tuberculosis by plain X-rays. https://www.ijcmr.com/uploads/7/7/4/6/77464738/ijcmr_1880_v1.pdf (2018, accessed 27 December 2020).

57. Sinan T, Al-Khawari H, Ismail M, et al. Efficacy of BACTEC TB 96 inoculation chain reaction. *Mycobacterium tuberculosis* in BACTEC cultures by ligase chain reaction. *J Clin Microbiol* 1998; 36: 2791–2792.

58. Mechal Y, Benaisa E, El miramar N, et al. Evaluation of GenXpert MTB/RIF system performance in the diagnosis of extrapulmonary tuberculosis. *BMC Infect Dis* 2019; 19: 1069.

59. Mechal Y, Benaisa E, El miramar N, et al. Evaluation of GenXpert MTB/RIF system performance in the diagnosis of extrapulmonary tuberculosis. *BMC Infect Dis* 2019; 19: 1069.

60. Sahoo MM, Mahapatra SK, Sethi GC, et al. Role of percutaneous transpedicular biopsy in diagnosis of spinal tuberculosis and its correlation with the clinico-radiological features. *Indian J Tuberc* 2019; 66: 388–393.

61. Watt JP and Davis JH. Percutaneous core needle biopsies: the yield in spinal tuberculosis. *S Afr Med J* 2013; 104: 29–32.

62. Pott Disease (Tuberculous [TB] Spondylitis) Differential Diagnoses, https://emedicine.medscape.com/article/226141-differential (2020, accessed 27 December 2020).

63. Peretsmanas EO and Afonin AV. [Differential diagnosis of tuberculosis spondylitis under the conditions of a specialized sanatorium]. *Probl Tuberk* 2002; 7: 30–31.

64. Potta IS and Reddy KM. Antitubercular medications. *Trends in Tuberculosis Reporting*. Island, FL: StatPearls Publishing, https://www.ncbi.nlm.nih.gov/books/NBK557666/ (2020, accessed 27 December 2020).

65. Lee KY. Comparison of pyogenic spondylitis and tuberculous spondylitis. *Acta Neurochir* 2002; 144: 125: 337–344.

66. Lee KY. Comparison of pyogenic spondylitis and tuberculous spondylitis. *Acta Neurochir* 2002; 144: 125: 337–344.

67. Lee KY. Comparison of pyogenic spondylitis and tuberculous spondylitis. *Acta Neurochir* 2002; 144: 125: 337–344.

68. Sahoo MM, Mahapatra SK, Sethi GC, et al. Role of percutaneous transpedicular biopsy in diagnosis of spinal tuberculosis and its correlation with the clinico-radiological features. *Indian J Tuberc* 2019; 66: 388–393.

69. Watt JP and Davis JH. Percutaneous core needle biopsies: the yield in spinal tuberculosis. *S Afr Med J* 2013; 104: 29–32.

70. Pott Disease (Tuberculous [TB] Spondylitis) Differential Diagnoses, https://emedicine.medscape.com/article/226141-differential (2020, accessed 27 December 2020).

71. Lee KY. Comparison of pyogenic spondylitis and tuberculous spondylitis. *Acta Neurochir* 2002; 144: 125: 337–344.

72. Lee KY. Comparison of pyogenic spondylitis and tuberculous spondylitis. *Acta Neurochir* 2002; 144: 125: 337–344.

73. Sahoo MM, Mahapatra SK, Sethi GC, et al. Role of percutaneous transpedicular biopsy in diagnosis of spinal tuberculosis and its correlation with the clinico-radiological features. *Indian J Tuberc* 2019; 66: 388–393.

74. Watt JP and Davis JH. Percutaneous core needle biopsies: the yield in spinal tuberculosis. *S Afr Med J* 2013; 104: 29–32.

75. Pott Disease (Tuberculous [TB] Spondylitis) Differential Diagnoses, https://emedicine.medscape.com/article/226141-differential (2020, accessed 27 December 2020).

76. Peretsmanas EO and Afonin AV. [Differential diagnosis of tuberculosis spondylitis under the conditions of a specialized sanatorium]. *Probl Tuberk* 2002; 7: 30–31.

77. Potta IS and Reddy KM. Antitubercular medications. *Trends in Tuberculosis Reporting*. Island, FL: StatPearls Publishing, https://www.ncbi.nlm.nih.gov/books/NBK557666/ (2020, accessed 27 December 2020).

78. Tiberi S, Scarigli A, Centis R, et al. Classifying new anti-tuberculosis drugs: rationale and future perspectives. *Int J Infect Dis* 2017; 56: 181–184.

79. Global tuberculosis report 2020, https://www.who.int/publications/i/item/9789240013131 (2020, accessed 27 December 2020).

80. Karimi MT, Kamali M and Fatoye F. Evaluation of the efficiency of cervical orthoses on cervical fracture: a review of literature. *J Craniovertebr Junction Spine* 2016; 7: 13–19.

81. Mohindra S, Gupta SK, Mohindra S, et al. Unusual presentations of craniovertebral junction tuberculosis: a report of 2 cases and literature review. *Surg Neurol* 2006; 66: 94–99; discussion 99.

82. Grady MS, Howard MA, Jane JA, et al. Use of the Philadelphia collar as an alternative to the halo vest in patients with C-2, C-3 fractures. *Neurosurgery* 1986; 18: 151–156.

83. Rockwood N, du Bruyn E, Morris T, et al. Assessment of treatment response in tuberculosis. *Expert Rev Respir Med* 2016; 10: 643–654.

84. Monitoring during treatment. World Health Organization, https://www.ncbi.nlm.nih.gov/books/NBK138749/ (2010, accessed 27 December 2020).

85. Kothari A, Khurjekar KS, Hadgaonkar S, et al. Ultrasound-guided aspiration of Psoas abscess in a 28-year-old male: a case report, literature review and the relevance of this technique in the developing world. *Asian Pac J Health Sci* 2014; 1: 307–311.

86. Saha S, Singh AK, Gupta V, et al. Surgical management and outcome of tuberculous atlantoaxial dislocation: a 15-year experience. *Neurosurgery* 2003; 52: 331–338; discussion 338-339.

87. Arunkumar MJ and Rajshekhar V. Outcome in neurologically impaired patients with craniovertebral junction tuberculosis: results of combined anteroposterior surgery. *J Neurosurg* 2002; 97: 166–171.

88. Molliqaj G, Dammann P, Schaller K, et al. Management of craniovertebral junction tuberculosis presenting with atlantoaxial dislocation. *Acta Neurochir Suppl* 2019; 125: 337–344.
89. Arora S, Sabat D, Maini L, et al. The results of nonoperative treatment of craniovertebral junction tuberculosis: a review of twenty-six cases. *J Bone Joint Surg Am* 2011; 93: 540–547.

90. Teegala R, Kumar P, Kale SS, et al. Craniovertebral junction tuberculosis: a new comprehensive therapeutic strategy. *Neurosurgery* 2008; 63: 946–955; discussion 955.

91. Hoshino C and Narita M. Craniovertebral junction tuberculosis: a case report and review of the literature. *J Infect Chemother* 2010; 16: 288–291.

92. Gupta SK, Mohindra S, Sharma BS, et al. Tuberculosis of the craniovertebral junction: is surgery necessary? *Neurosurgery* 2006; 58: 1144–1150; discussion 1144-1150.

93. Shukla D, Mongia S, Devi BI, et al. Management of craniovertebral junction tuberculosis. *Surg Neurol* 2005; 63: 101–106; discussion 106.

94. He M, Xu H, Zhao J, et al. Anterior debridement, decompression, bone grafting, and instrumentation for lower cervical spine tuberculosis. *Spine J* 2014; 14: 619–627.

95. Koptan W, Elmiligui Y and Elsharkawi M. Single stage anterior reconstruction using titanium mesh cages in neglected kyphotic tuberculous spondylodiscitis of the cervical spine. *Eur Spine J* 2011; 20: 308–313.

96. Narayan V, Mohammed N, Savardekar AR, et al. Tuberculous spondylolisthesis: a reappraisal of the clinicoradiologic spectrum and surgical treatment paradigm. *World Neurosurg* 2018; 114: 361–367.

97. Macke JJ, Engel AJ, Sawin PD, et al. Tuberculosis of the cervical spine. *Orthopedics* 2015; 38: 280, 332–335.

98. Wang VY and Chou D. The cervicothoracic junction. *Neurosurg Clin N Am* 2007; 18: 365–371.

99. Sundaresan N, Shah J, Foley KM, et al. An anterior surgical approach to the upper thoracic vertebrae. *J Neurosurg* 1984; 61: 686–690.

100. Sar C, Hamzaoglu A, Talu U, et al. An anterior approach to the cervicothoracic junction of the spine (modified osteotomy of manubrium sterni and clavicle). *J Spinal Disord* 1999; 12: 102–106.

101. Chatterjee S and Basu S. Trans-sternal decompression of postlaminectomy caries of the upper dorsal spine. *Br J Neurosurg* 2003; 17: 270–271.

102. Lan X, Xu J, Liu X, et al. [Debridement and bone grafting with internal fixation via the anterior approach for treatment of cervicothoracic tuberculosis]. *Zhongguo Ga Shang* 2012; 25: 291–294.

103. Mihir M, Vinod L, Umesh M and Chaudhary K. Anterior instrumentation of the cervicothoracic vertebrae: approach based on clinical and radiologic criteria. *Spine (Phila Pa 1976)* 2006; 31(9): E244–E249.

104. Kurz LT, Pursel SE and Herkowitz HN. Modified anterior approach to the cervicothoracic junction. *Spine (Phila Pa 1976)* 1991; 16: S542–S547.

105. Zhu Z, Hao D, Wang B, et al. Selection of surgical treatment approaches for cervicothoracic spinal tuberculosis: a 10-year case review. *PLoS One* 2018; 13: e0192581.

106. Wang X, Zhou C, Xi C, et al. Surgical treatment of cervicothoracic junction spinal tuberculosis via combined anterior and posterior approaches in children. *Chin Med J (Engl)* 2012; 125: 1443–1447.

107. Sharan AD, Przybylski GJ and Tartaglino L. Approaching the upper thoracic vertebrae without sternotomy or thoracotomy: a radiographic analysis with clinical application. *Spine (Phila Pa 1976)* 2000; 25: 910–916.

108. Mihir B, Vinod L, Umesh M, et al. Anterior instrumentation of the cervicothoracic vertebrae: approach based on clinical and radiologic criteria. *Spine (Phila Pa 1976)* 2006; 31: E244–E249.

109. Rajasekaran S. Kyphotic deformity in spinal tuberculosis and its management. *Int Orthop* 2012; 36: 359–365.

110. Rajasekaran S. Natural history of Pott’s kyphosis. *Eur Spine J* 2013; 22(4): 634–640.

111. Bhandari A, Garg RK, Malhotra HS, et al. Outcome assessment in conservatively managed patients with cervical spine tuberculosis. *Spinal Cord* 2014; 52: 489–493.