Sulfocoumarins as dual inhibitors of human carbonic anhydrase isoforms IX/XII and of human thioredoxin reductase

Mikhail Krasavin, Raivis Žalubovskis, Aiga Grandāne, Ilona Domračeva, Petr Zhmurov & Claudiu T. Supuran

To cite this article: Mikhail Krasavin, Raivis Žalubovskis, Aiga Grandāne, Ilona Domračeva, Petr Zhmurov & Claudiu T. Supuran (2020) Sulfocoumarins as dual inhibitors of human carbonic anhydrase isoforms IX/XII and of human thioredoxin reductase, Journal of Enzyme Inhibition and Medicinal Chemistry, 35:1, 506-510, DOI: 10.1080/14756366.2020.1712596

To link to this article: https://doi.org/10.1080/14756366.2020.1712596
Sulfocoumarins as dual inhibitors of human carbonic anhydrase isoforms IX/XII and of human thioredoxin reductase

Mikhail Krasavin, Raivis Žalubovskis, Aiga Grandāne, Ilona Domračeva, Petr Zhmurov and Claudiu T. Supuran

Department of Chemistry, Saint Petersburg State University, Saint Petersburg, Russian Federation; Latvian Institute of Organic Synthesis, Riga, Latvia; Faculty of Materials Science and Applied Chemistry, Institute of Technology of Organic Chemistry, Riga Technical University, Riga, Latvia; Neurofarba Department, Universita degli Studi di Firenze, Florence, Italy

ABSTRACT
The hypothesis that sulfocoumarin acting as inhibitors of human carbonic anhydrase (CA, EC 4.2.1.1) cancer-associated isoforms hCA IX and – hCA XII is being able to also inhibit thioredoxin reductase was verified and confirmed. The dual targeting of two cancer cell defence mechanisms, i.e. hypoxia and oxidative stress, may both contribute to the observed antiproliferative profile of these compounds against many cancer cell lines. This unprecedented dual anticancer mechanism may lead to a new approach for designing innovative therapeutic agents.

1. Introduction
Earlier, we reported 6-substituted sulfocoumarins 1 as potent and remarkably isomeric selective inhibitors of the metallo-enzyme carbonic anhydrase (CA, EC 4.2.1.1)7,8. The ability of sulfocoumarins to selectively inhibit membrane-bound hCA IX and XII isoforms were attributed to the unique mechanism of action of these compounds whereby they act as prodrugs activated by CA-mediated hydrolysis1-6. This makes these inhibitors fundamentally different from the classical carbonic anhydrase inhibitors (CAIs) – e.g. those of sulphonamide type which act by binding to the CA prosthetic zinc ion present in all isoforms, which makes designing isoform-selective sulphonamide CAIs particularly difficult. On the contrary, CA-mediated hydrolysis of sulfocoumarins 1 (as well as their progenitors coumarins) leads to the in situ formation of the Z-configured styril sulphonic acid (Z)-2 which is likely to isomerise to (E)-2, the active inhibitor form whose binding to CA was confirmed by X-ray crystallography7. This inhibitor activation and binding apparently occurs only in the protein environment of the two membrane-bound isoforms (hCA IX and XII) which makes these mechanistically distinct inhibitors ideal tools for targeting hypoxia survival mechanism in tumour cells providing which overexpression of precisely these two isoforms is considered responsible for9. Indeed, selective targeting of hCA IX and XII has been confirmed to lead to retardation of tumour growth and, ultimately, reduction of tumour size10.

Another principal mechanism of tumour survival which we have been recently tackling11,12 as a target for anticancer agent design, is that providing tumour cell defence against oxidative stress (reactive oxygen species or ROS). In particular, tumour cells have been shown to overexpress thioredoxin reductase (TrxR, EC 1.8.1.9) which contributes to their resistant phenotype characterised by higher levels of ROS13. Thus, targeting TrxR1 (the most widespread cystolic isoform of human TrxR) has been investigated as an emerging approach to selective killing of cancer cells14. This selenocysteine (Sec) enzyme, along with NADPH and thioredoxin (Trx) is part of the Trx system and responsible for maintaining Trx in its reduced bis-sulfhydryl state. Among several classes of inhibitors of varying degree of electrophilicity towards the catalytic Sec residue (recently reviewed by Bellelli15 and Fang16), we found covalent Michael acceptor inhibitors (such as Ugi-type adducts 3 which we dubbed “Ugi Michael Acceptors” or UMAs) to be particularly efficacious12. The mechanism of inhibitory action of UMAs towards TrxR1 likely involves the irreversible covalent trapping of the selenide group of the catalytic Sec residue (which exists in the ionised form at physiological pH17) by the electrophilic β-benzoylacrylamide moiety present in 3.
Considering the presence of a potential Michael acceptor moiety in sulfocoumarins 1, we hypothesised that in addition to their inhibitory activity towards hCAs, these compounds could potentially act as Michael acceptor-type TrxR inhibitors (Figure 1), thus acting as dual inhibitors which target two cancer cell defence mechanisms at a time. Herein, we present our preliminary results obtained in the course of verifying this hypothesis.

2. Materials and methods

2.1. General procedure 1: preparation of sulfocoumarins 1a–b (GP1)

To a solution of 4 (1.0 equiv.) in dry THF (1 mL per mmol of 4) N,N-diisopropylethylamine (DIPEA) (50 equiv.), the appropriate alkyne (1.1, 2.0, or 5.0 equiv.), and CuI (2 equiv.) were added. The resulting mixture was stirred at room temperature under an argon atmosphere for 20 h. Saturated NH₄Cl was added and extracted with EtOAc, washed with brine and dried over Na₂SO₄, and evaporated.

2.2. General procedure 1: preparation of sulfocoumarins 1a–b (GP1)

To a solution of 4 (1.0 equiv.) in dry THF (1 mL per mmol of 4) N,N-diisopropylethylamine (DIPEA) (50 equiv.), the appropriate alkyne (1.1, 2.0, or 5.0 equiv.), and CuI (2 equiv.) were added. The resulting mixture was stirred at room temperature under an argon atmosphere for 20 h. Saturated NH₄Cl was added and extracted with EtOAc, washed with brine and dried over Na₂SO₄, and evaporated.

2.2.1. 4-(4-Chlorophenyl)-1-(2,2-dioxido-1,2-benzoxathiin-6-yl)-1H-1,2,3-triazole (1a)

Prepared from 4 (0.15 g, 0.67 mmol), 4-chlorophenylacetylene (0.18 g, 1.34 mmol), CuI (0.26 g, 1.34 mmol), and DIPEA (5.85 mL, 33.6 mmol) according to GP1. Crystallisation from ethanol afforded 1a as yellow crystalline solid (0.19 g, 77%). Mp 236–237 °C, IR (KBr, cm⁻¹) ʋ max: 3094 (s, C=O), 1603 (s, C=C), 1369 (s–O), 1179 (s–O), and 1169 (s–O). ¹H NMR (400 MHz, DMSO-d₆) δ: 7.55–7.60 (m, 2H), 7.70 (d, J = 10.4 Hz, 1H), 7.57 (d, J = 8.9 Hz, 1H), 7.84 (d, J = 10.4 Hz, 1H), 7.92–7.97 (m, 2H), 8.12 (dd, J = 8.9, 2.7 Hz), 8.39 (d, J = 2.7 Hz, 1H), and 9.38 (s, 1H). ¹³C NMR (100 MHz, DMSO-d₆) δ: 119.9, 120.2, 121.0, 121.4, 123.7, 124.0, 126.0, 126.9, 132.9, 134.2, 135.8, 146.4, and 150.1. Anal. Calcd. for C₁₀H₇N₂O₂S: C, 53.22; H, 2.79; N, 11.32. Found: C, 53.25; H, 2.72; N, 11.32.

2.2.2. 1-(2,2-Dioxid1,2-benzoxathiin-6-yl)-4-(4-fluorophenyl)-1H-1,2,3-triazole (1b)

Prepared from 4 (0.15 g, 0.67 mmol), 4-fluorophenylacetylene (0.16 g, 1.34 mmol), CuI (0.26 g, 1.34 mmol), and DIPEA (5.85 mL, 33.6 mmol) according to GP1. Yellow crystalline solid (0.19 g, 77%). Mp 236–237 °C, IR (KBr, cm⁻¹) ʋ max: 3094 (s, C=O), 1603 (s, C=C), 1369 (s–O), 1179 (s–O), and 1169 (s–O). ¹H NMR (400 MHz, DMSO-d₆) δ: 7.32–7.39 (m, 2H), 7.71 (d, J = 10.4 Hz, 1H), 7.75 (d, J = 8.9 Hz, 1H), 7.84 (d, J = 10.4 Hz, 1H), 7.94–8.00 (m, 2H), 8.12 (dd, J = 8.9, 2.6 Hz, 1H), 8.39 (d, J = 2.6 Hz, 1H), 9.33 (s, 1H). ¹³C NMR (100 MHz, DMSO-d₆) δ: 119.9, 120.2, 121.0, 121.4, 123.7, 124.0, 126.0, 126.9, 132.9, 134.2, 135.8, 146.4, and 150.1. Anal. Calcd. for C₁₀H₇N₂O₂S: C, 53.22; H, 2.79; N, 11.32.

2.2.3. 5-(2,2-Dioxido-1,2-benzoxathiin-6-yl)-1-phenyl-1H-tetrazole (1c)

Prepared from 4 (0.15 g, 0.67 mmol), 1,2,3-triazole (1b) (0.190 g, 1.30 mmol), Cs₂CO₃ (0.233 g, 0.714 mmol), CuI (0.124 g, 0.672 mmol), and DIPEA (5.85 mL, 33.6 mmol) according to GP1. Yellow crystalline solid (0.18 g, 1.34 mmol), CuI (0.26 g, 1.34 mmol), and DIPEA (5.85 mL, 33.6 mmol) according to GP1. Crystallisation from ethanol afforded 1b as yellow crystalline solid (0.19 g, 77%). Mp 236–237 °C, IR (KBr, cm⁻¹) ʋ max: 3094 (s, C=O), 1603 (s, C=C), 1369 (s–O), 1179 (s–O), and 1169 (s–O). ¹H NMR (400 MHz, DMSO-d₆) δ: 7.97 (m, 2H), 7.78 (d, 1H, J = 10.4 Hz), 119.8, 119.9, 120.2, 121.4, 123.7, 124.0, 126.0, 126.9, 132.9, 134.2, 135.8, 146.4, and 150.1. Anal. Calcd. for C₁₀H₇N₂O₂S: C, 53.22; H, 2.79; N, 11.32.

2.2.4. 5-(2,2-Dioxid1,2-benzoxathiin-6-yl)-1-phenyl-1H-tetrazole (1d)

Prepared from 4 (0.15 g, 0.67 mmol), 1,2,3-triazole (1d) (0.15 g, 0.67 mmol), and CuI (0.124 g, 0.67 mmol), and DIPEA (5.85 mL, 33.6 mmol) according to GP1. Yellow crystalline solid (0.18 g, 1.34 mmol), CuI (0.26 g, 1.34 mmol), and DIPEA (5.85 mL, 33.6 mmol) according to GP1. Crystallisation from ethanol afforded 1d as yellow crystalline solid (0.19 g, 77%). Mp 236–237 °C, IR (KBr, cm⁻¹) ʋ max: 3094 (s, C=O), 1603 (s, C=C), 1369 (s–O), 1179 (s–O), and 1169 (s–O). ¹H NMR (400 MHz, DMSO-d₆) δ: 7.97 (m, 2H), 7.78 (d, 1H, J = 10.4 Hz), 119.8, 119.9, 120.2, 121.4, 123.7, 124.0, 126.0, 126.9, 132.9, 134.2, 135.8, 146.4, and 150.1. Anal. Calcd. for C₁₀H₇N₂O₂S: C, 53.22; H, 2.79; N, 11.32.
2.2. Carbonic anhydrase inhibition assay

An Applied Photophysics stopped-flow instrument has been used for assaying the CA catalysed CO₂ hydration activity. Phenol red (at a concentration of 0.2 mM) has been used as indicator, working at the absorbance maxima of 557 nm, with 20 mM Tris (pH 8.3) as buffer, and 20 mM Na₂SO₄ (for maintaining constant the ionic strength), following the initial rates of the CA-catalysed CO₂ hydration reaction for a period of 10–100 s. The CO₂ concentrations ranged from 1.7 to 17 mM for the determination of the kinetic parameters and inhibition constants. For each inhibitor, at least six traces of the initial 5–10% of the reaction have been used for determining the initial velocity. The uncatalysed rates were determined in the same manner and subtracted from the total observed rates. Stock solutions of inhibitor (0.1 mM) were prepared in distilled-deionised water and dilutions up to 0.005 mM were done thereafter with the assay buffer. Inhibitor and enzyme solutions were pre-incubated together for 15 min at room temperature prior to assay, in order to allow for the formation of the E-1 complex. The inhibition constants were obtained by non-linear least-squares methods using PRISM 3 and the Cheng-Prusoff equation, as reported earlier, and represent the mean from at least three different determinations. All CA isoforms were recombinant ones obtained in-house.

2.4. TrxR activity by DTNB reduction assay

Determination of TrxR activity in SHSY5Y cell lysate. TrxR activity in cell lysate was measured in 96-well plates using previously described methods. For TrxR activity measurement, compounds of different concentrations were incubated with 50 μg of cell lysate and 200 μM NADPH in a volume of 100 μL of 50 mM Tris–HCl and 1 mM EDTA, pH 7.5 (TE buffer), for different time points in 96-well plates at room temperature. Then, 100 μL of TE buffer containing DTNB and NADPH was added (final concentration: 2.5 mM and 200 μM, respectively), and the linear increase in absorbance at 412 nm during the initial 2 min was measured with a Tecan Infinite M1000 multifunctional microplate reader. TrxR activity was calculated as a percentage of enzyme activity of that of DMSO vehicle treated sample.

2.5. Cytotoxicity assay

Thus, monolayer tumour cell lines HT-1080 (human fibrosarcoma), SHSY5Y (human neuroblastoma), and MCF-7 (breast adenocarcinoma) were cultured in standard medium DMEM (Dulbecco’s modified Eagle’s medium) supplemented with 10% foetal bovine serum. About 2000–4000 cells per well (depending on line nature) were placed in 96-well plates and after 24 h compounds were added to the wells. Untreated cells were used as a control. The plates were incubated for 48 h, 37 °C, and 5% CO₂. The number of surviving cells was determined using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyldiazotetrazolium bromide (MTT). MTT-test: after incubating culture medium was removed and 200 μL fresh medium with 20 μL MTT (2 mg/mL in HBSS) was added in each well of the plate. After incubation (3 h, 37 °C, 5% CO₂), the medium with MTT was removed and 200 μL DMSO were added at once to each sample. The samples were tested at 540 nm on Thermo Scientific Multiskan EX microplate photometer. The half-maximal inhibition concentration (IC₅₀) of each compound was calculated using Graph Pad Prism 3.0 (GraphPad Software, La Jolla, CA).

3. Results and discussion

3.1. Chemistry

Compounds 1a and 1b were synthesised from azide 4 as described previously. Cul-catalysed Huisgen azide-alkyne cycloaddition gave 1,4-disubstituted 1,2,3-triazole 1a while employing Ru³-catalysed protocol gave 1,5-disubstituted 1,2,3-triazole 1b. For the synthesis of 1,5-disubstituted tetrazoles 1c–d, the previously described Pd-catalysed arylation of 1-aryl tetrazoles with aryl iodide 5 was employed (Scheme 1).

3.2. Biological evaluation

To our utmost delight, when the previously established potent and selective inhibitory profile of compounds 1a–d towards cancer-related hCA IX and hCA XII isoforms was confirmed in reference to known CAI acetazolamide (AAZ), we have also found these compounds to display dose-dependent inhibition of TrxR activity in SHSY5Y cell lysate with IC₅₀ values confidently residing in the 10⁻⁵...10⁻⁴ M range. Adding to the satisfaction over having our initial hypothesis regarding the dual CA/TrxR inhibitory effects of compounds 1, rather potent antiproliferative activity was established as evaluated against cultures of cancer cells such as HT-1080 (human fibrosarcoma), SHSY5Y (human neuroblastoma), and MCF-7 (breast adenocarcinoma). These findings are summarised in Table 1.

4. Conclusions

The previously described sulfocoumarins that were shown to potently and selectively inhibit cancer-related hCA IX and hCA XII isoforms (whose overexpression is a well-established mechanism of tumour cell defence against hypoxia) also display noticeable, dose-dependent inhibition of TrxR activity in cancer cell lysates. As overexpression of TrxR in cancer cells is a defence mechanism against oxidative stress, the established dual inhibition pattern constitutes a significant starting point for the design and discovery of new anticancer agents based on the dual targeting of the...
two defence mechanisms crucial for cancer cell survival. This communication opens a new line of research in our laboratories aimed at investigating the practical aspects of the new dual inhibitor design and establishing a well-understood link between inhibition of these two enzyme groups and the dual inhibitors’ antitumor activity. The results of this research will be reported in due course.

Disclosure statement
No potential conflict of interest was reported by the authors.

Funding
This work was supported by the Russian Foundation for Basic Research (project grant 18-515-76001) as well as by ERA.Net RUS plus Joint Programme grant RUS_ST2017-309 and State Education Development Agency of Republic of Latvia (“THIOREDIN”). AG is grateful to European Regional Development Fund (ERDF, project no. 1.1.1.2/VIAA/1/16/235). PZ is indebted to Saint Petersburg State University for providing his postdoctoral fellowship.

ORCID
Claudiu T. Supuran http://orcid.org/0000-0003-4262-0323

References
1. Tars K, Vullo D, Kazaks A, et al. Sulfocoumarins (1, 2-benzoxathiine-2, 2-dioxides): a class of potent and isoform-selective inhibitors of tumor-associated carbonic anhydrases. J Med Chem 2013;56:293–300.
2. Maresca A, Temperini C, Vu H, et al. Non-zinc mediated inhibition of carbonic anhydrases: coumarins are a new class of suicide inhibitors. J Am Chem Soc 2009;131:3057–62.
3. Toussi N, Maresca A, McDonald PC, et al. Glycosyl coumarin carbonic anhydrase IX and XII inhibitors strongly attenuate the growth of primary breast tumors. J Med Chem 2011;54:8271–7.
4. Carta F, Maresca A, Scozzafava A, Supuran CT. 5- and 6-Membered (thio)lactones are prodrug type carbonic anhydrase inhibitors. Bioorg Med Chem Lett 2012;22:267–70.
5. Maresca A, Temperini C, Pochet L, et al. Deciphering the mechanism of carbonic anhydrase inhibition with coumarins and thiocoumarins. J Med Chem 2010;53:335–44.
6. Davis RA, Vullo D, Maresca A, et al. Natural product coumarins that inhibit human carbonic anhydrases. Bioorg Med Chem Lett 2013;23:539–43.
7. Alterio V, Di Fiore A, D’Ambrosio K, et al. Multiple binding modes of inhibitors to carbonic anhydrases: how to design specific drugs targeting 15 different isoforms? Chem Rev 2012;112:4421–68.
8. Supuran CT. Carbonic anhydrases: novel therapeutic applications for inhibitors and activators. Nat Rev Drug Discov 2008;7:168–81.
9. Schwartz L, Supuran CT, Alfarouk KO. The Warburg effect and the hallmarks of cancer. Anti-Cancer Agents Med Chem 2017;17:164–70.
10. Supuran CT. Carbonic anhydrase inhibition and the management of hypoxic tumors. Metabolites 2017;7:48.
11. Bakulina O, Bannykh A, Jovanović M, et al. Design, synthesis, and biological evaluation of novel derivatives of dithiodiglycolic acid prepared via oxidative coupling of thiols. J Enzyme Inhib Med Chem 2019;34:665–71.
12. Jovanović M, Zhukovsky D, Podolski-Renić A, et al. Novel electrophilic amides amenable by the Ugi reaction perturb thioredoxin system via thioredoxin reductase 1 (TrxR1) inhibition: identification of DVD-445 as a new lead compound for anticancer therapy. Eur J Med Chem 2019;181:111580.
13. Zhang J, Li X, Han X, et al. Targeting the thioredoxin system for cancer therapy. Trends Pharmacol Sci 2017;38:794–808.
14. Arner ES, Holmgren A. The thioredoxin system in cancer. Semin Cancer Biol 2006;16:420–6.
15. Saccoccia F, Angelucci F, Boumis G, et al. Thioredoxin reductase and its inhibitors. Curr Protein Pept Sci 2014;15:621–46.
16. Zhang B, Zhang J, Peng S, et al. Thioredoxin reductase inhibitors: a patent review. Exp Opin Ther Pat 2017;27:547–56.
17. Copeland PR. Making sense of nonsense: the evolution of selenocysteine usage in proteins. Genome Biol 2005;6:221.
18. Grandane A, Tanc M, Zalubovskis R, Supuran CT. 6-Triazolyl-substituted sulfocoumarins are potent, selective inhibitors of the tumor-associated carbonic anhydrases IX and XII. Bioorg Med Chem Lett 2014;24:1256–60.
19. Grandane A, Tanc M, Zalubovskis R, Supuran CT. Synthesis of 6-tetrazolyl-substituted sulfocoumarins acting as highly potent and selective inhibitors of the tumor-associated carbonic anhydrase isoforms IX and XII. Bioorg Med Chem Lett 2014;24:1522–8.
20. Potewar TM, Siddiqui SA, Lahoti RJ, Srinivasan KV. Efficient and rapid synthesis of 1-substituted-1H-1,2,3,4-tetrazoles in the acidic ionic liquid 1-n-butylimidazolium tetrafluoroborate. Tetrahedron Lett 2007;48:1721–4.
21. Voitekhovich SV, Vorob’ev AN, Gaponik PN, Ivashkevich OA. Synthesis of new functionally substituted 1-R-tetrazoles and their 5-amino derivatives. Chem Heterocycl Compd 2005;41:999–1004.
22. Khalifah RG. The carbon dioxide hydration activity of carbonic anhydrase. I. Stop-flow kinetic studies on the native human isoenzymes B and C. J Biol Chem 1971;246:2561–73.
23. Maresca A, Carta F, Vullo D, Supuran CT. Dithiocarbamates strongly inhibit the β-class carbonic anhydrases from Mycobacterium tuberculosis. J Enzyme Inhib Med Chem 2013;28:407–11.
24. Ekinici D, Kurbanoglu NI, Salamci E, et al. Carbonic anhydrase inhibitors: inhibition of human and bovine isoenzymes by benzenesulfonamides, cyclitols and phenolic compounds. J Enzyme Inhib Med Chem 2012;27:845–8.
25. Ekinici D, Karagoz L, Ekinici D, et al. Carbonic anhydrase inhibitors: in vitro inhibition of α isoforms (hCA I, hCA II, hCA III, hCA IV) by flavonoids. J Enzyme Inhib Med Chem 2013;28:283–8.
26. Alp C, Maresca A, Alp NA, et al. Secondary/tertiary benzenesulfonamides with inhibitory action against the cytosolic human carbonic anhydrase isoforms I and II. J Enzyme Inhib Med Chem 2013;28:294–8.
27. Luthman M, Holmgren A. Rat liver thioredoxin and thioredoxin reductase: purification and characterization. Biochemistry 1982;21:6628–33.
28. Arner ES, Zhong L, Holmgren A. Preparation and assay of mammalian thioredoxin and thioredoxin reductase. Meth Enzymol 1999;300:226–39.