Carbapenemase-producing Enterobacteriaceae among pregnant women and newborns in Algeria: Prevalence, molecular characterization, maternal-neonatal transmission, and risk factors for carriage
Assia Mairi, Abdelaziz Touati, Sylia Ait Bessai, Yasmina Boutabtoub, Fazia Khelifi, Albert Sotto, Jean-Philippe Lavigne, Alix Pantel

To cite this version:
Assia Mairi, Abdelaziz Touati, Sylia Ait Bessai, Yasmina Boutabtoub, Fazia Khelifi, et al.. Carbapenemase-producing Enterobacteriaceae among pregnant women and newborns in Algeria: Prevalence, molecular characterization, maternal-neonatal transmission, and risk factors for carriage. American Journal of Infection Control, Elsevier, 2019, 47 (1), pp.105-108. 10.1016/j.ajic.2018.07.009.
hal-02866557

HAL Id: hal-02866557
https://hal.archives-ouvertes.fr/hal-02866557
Submitted on 12 Oct 2021

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Brief Report

Carbapenemase-producing Enterobacteriaceae among pregnant women and newborns in Algeria: Prevalence, molecular characterization, maternal-neonatal transmission, and risk factors for carriage

Assia Mairi MSc\textsuperscript{a,b}, Abdelaziz Touati MD, PhD\textsuperscript{a}, Sylia Ait Bessai MSc\textsuperscript{a}, Yasmina Boutabtoub MSc\textsuperscript{a}, Fazia Khelifi MSc\textsuperscript{a}, Albert Sotto MD, PhD\textsuperscript{b,c}, Jean-Philippe Lavigne MD, PhD\textsuperscript{b,d}, Alia Pantel PharmD, PhD\textsuperscript{b,d}

\textsuperscript{a} Laboratoire d’Ecologie Microbienne, FSNV, Université de Bejaia, Bejaia, Algeria
\textsuperscript{b} Institut National de la Santé et de la Recherche Médicale, Unité A: 1048, Université de Montpellier, UFR de Médecine, Nîmes, France
\textsuperscript{c} Department of Infectious and Tropical Disease, CHU Nîmes, Nîmes, France
\textsuperscript{d} Department of Microbiology, CHU Nîmes, Nîmes, France

Key Words:
Enterobacteriaceae
OXA-48
Mother-newborn pairs
Transmission
Outbreak
Algeria

The diffusion of carbapenemase-producing Enterobacteriaceae (CPE) represents a worldwide public health problem. This study revealed that the prevalence of OXA-48–producing enterobacteria was 4.6% (19/414) and 1.6% (7/422) in mothers and newborns, respectively, from 2 maternity units in Algeria. Previous hospital admission was an independent factor associated with an increased risk of CPE carriage in the mothers ($P=0.021$). The low birth weight was significantly associated with this carriage in the newborns ($P=0.008$). The screening of these bacteria is essential to prevent the dissemination of CPE.

© 2018 Association for Professionals in Infection Control and Epidemiology, Inc. Published by Elsevier Inc. All rights reserved.

Mother-child maternity units are environments that should remain relatively free of multiresistant bacteria because these units principally admit mothers to give birth. The presence of multiresistant bacteria could represent a threat and could have an influence on the outcome of the newborn.\textsuperscript{1} The spread of carbapenemase–producing Enterobacteriaceae (CPE) leading to extremely drug-resistant bacteria is a major concern worldwide, especially in endemic countries.\textsuperscript{2,3} Data from children, especially newborns, are scarce, and failures in infection control practices can be responsible for the diffuse horizontal spread.\textsuperscript{4,5}

METHODS

All mothers and their newborns managed in 2 maternity units in northern Algeria (Bejaia [Maternity A] and Tizi Ouzou [Maternity B]) were prospectively and randomly recruited: 357 mothers and 365 newborns aged $<18$ hours in Maternity A (January 1 to April 30, 2016) and 57 mother-newborn pairs in Maternity B (January 1 to April 30, 2017). Epidemiologic data were recorded for each mother and neonate. The screening of CPE carriage was taken by rectal (mothers and newborns) and vaginal (mothers) swabs. In parallel, a total of 505 environmental surface samples were obtained by swabbing surfaces.\textsuperscript{6} Swabs were cultured in 1 mL of Trypticase Soy Broth (Fluka, St. Louis, MO) supplemented with ertapenem (0.5 mg/L) and vancomycin (32 mg/L) and incubated for 18 hours at 37°C. A 200-μL aliquot was plated onto MacConkey agar (Fluka) containing 0.5 mg/L of ertapenem and incubated for 18 hours at 37°C. Bacterial identification was performed using the Vitek MS system (BioMérieux, Marcy l’Etoile, France). Antimicrobial susceptibility was determined by the disk diffusion method according to guidelines from the European Committee on Antimicrobial Susceptibility Testing.\textsuperscript{7} Minimum inhibitory concentration of colistin was determined using microbroth dilution (Umic; Biocentric, Bandol, France). The genotypic characterization of $β$-lactams resistance was determined by polymerase chain reaction (PCR) with specific primers and confirmed by sequencing the PCR products.\textsuperscript{7} Plasmid-mediated resistance to aminoglycosides and quinolones was studied as described previously.\textsuperscript{8} Plasmid incompatibility groups were determined using PCR-based replicon typing.\textsuperscript{8} The genetic relationship between CPE strains was assessed by rep-PCR (DiversiLab; bioMérieux, Marcy l’Etoile, France). Isolates with identical strain patterns were considered indistinguishable if the similarity percentage was $\geq 95%.$

https://doi.org/10.1016/j.ajic.2018.07.009
0196-6553/© 2018 Association for Professionals in Infection Control and Epidemiology, Inc. Published by Elsevier Inc. All rights reserved.

© 2018 published by Elsevier. This manuscript is made available under the CC BY NC user license https://creativecommons.org/licenses/by-nc/4.0/
Table 1
Characteristics of OXA-48–producing Enterobacteriaceae strains isolated from mothers, newborns, and the maternity environment

| Strain | Species | Resistance phenotype | Carbapenem MICs, mg/L | Sequence type | Plasmid type | β-lactamase and PMQR content | Origin |
|--------|---------|----------------------|------------------------|--------------|-------------|-----------------------------|--------|
| 60     | *Escherichia coli* | AMX, TIC, PIP, AMC, TZP, TCC | ETP (2), IPM (1), MEM (0.38) | ST833 | IncL/M | blaOXA-48 | Mother, Maternity A |
| 61     | *E coli* | AMX, TIC, PIP, AMC, TZP, TCC, ETP | ETP (0.75), IPM (0.5), MEM (0.38) | ST833 | IncL/M | blaOXA-48 | Mother, Maternity A |
| 62     | *Klebsiella pneumoniae* | AMX, TIC, PIP, AMC, TZP, TCC, FOX, ETP, IPM | ETP (3), IPM (4), MEM (2) | ST13 | IncL/M | blaOXA-48 | Newborn, Maternity A |
| 64     | *K pneumoniae* | AMX, TIC, PIP, AMC, TZP, TCC, ETP | ETP (6), IPM (6), MEM (2) | ST13 | IncL/M | blaOXA-48 | Newborn, Maternity A |
| 65     | *K pneumoniae* | AMX, TIC, PIP, AMC, TZP, TCC, ETP | ETP (24), IPM (~32), MEM (4) | ST13 | IncL/M | blaOXA-48 | Mother, Maternity A |
| 84A    | *E coli* | AMX, TIC, PIP, AMC, TZP, TCC, ETP, OFX | ETP (1), IPM (1.5), MEM (0.5) | ST638 | IncL/M, IncX2 | blaOXA-48, qnrS | Mother, Maternity A |
| 84B    | *K pneumoniae* | AMX, TIC, PIP, AMC, TZP, TCC, ETP | ETP (0.5), IPM (0.75), MEM (0.38) | ST610 | IncL/M | blaOXA-48 | Mother, Maternity A |
| 85     | *K pneumoniae* | AMX, TIC, PIP, AMC, TZP, TCC, FOX, CAZ, CTX, ETP, OFX, NA, CIP | ETP (1), IPM (2), MEM (0.5) | ST1878 | IncL/M | blaOXA-48 | Newborn, Maternity A |
| 111    | *K pneumoniae* | AMX, TIC, PIP, AMC, TZP, TCC, FOX, CAZ, CTX, ETP, OFX, NA | ETP (2), IPM (3), MEM (1.5) | ST1878 | IncL/M | blaOXA-48 | Mother, Maternity B |
| 112    | *K pneumoniae* | AMX, TIC, PIP, AMC, TZP, TCC, FOX, CAZ, CTX, ETP, OFX, NA | ETP (1), IPM (1.5), MEM (0.5) | ST1878 | IncL/M | blaOXA-48 | Mother, Maternity B |
| 114    | *K pneumoniae* | AMX, TIC, PIP, AMC, TZP, TCC, FOX, CAZ, CTX, ETP, OFX, NA | ETP (2), IPM (3), MEM (0.75) | ST1878 | IncL/M | blaOXA-48 | Mother, Maternity B |
| 116    | *K pneumoniae* | AMX, TIC, PIP, AMC, TZP, TCC, FOX, CAZ, CTX, ETP, OFX, NA | ETP (1), IPM (3), MEM (1) | ST1878 | IncL/M | blaOXA-48 | Mother, Maternity B |
| 118    | *K pneumoniae* | AMX, TIC, PIP, AMC, TZP, TCC, FOX, CAZ, CTX, ETP, OFX, NA | ETP (1.5), IPM (3), MEM (1) | ST1878 | IncL/M | blaOXA-48 | Mother, Maternity B |
| 117    | *K pneumoniae* | AMX, TIC, PIP, AMC, TZP, TCC, FOX, CAZ, CTX, ETP, OFX, NA | ETP (1), IPM (2), MEM (0.75) | ST1878 | IncL/M | blaOXA-48 | Mother, Maternity B |
| 131    | *K pneumoniae* | AMX, TIC, PIP, AMC, TZP, TCC, ETP, FOS | ETP (1.5), IPM (0.75), MEM (0.5) | ST13 | IncL/M | blaOXA-48 | Newborn, Maternity B |
| 120    | *K pneumoniae* | AMX, TIC, PIP, AMC, TZP, TCC, ETP, FOS | ETP (1.5), IPM (0.75), MEM (0.5) | ST13 | IncL/M | blaOXA-48 | Mother, Maternity B |
| 128    | *K pneumoniae* | AMX, TIC, PIP, AMC, TZP, TCC, ETP, FOS | ETP (4), IPM (0.75), MEM (0.5) | ST13 | IncL/M | blaOXA-48 | Newborn, Maternity B |
| 130    | *K pneumoniae* | AMX, TIC, PIP, AMC, TZP, TCC, ETP, FOS | ETP (0.5), IPM (0.75), MEM (0.5) | ST13 | IncL/M | blaOXA-48 | Mother, Maternity B |
| 129    | *K pneumoniae* | AMX, TIC, PIP, AMC, TZP, TCC, ETP, FOS | ETP (1.5), IPM (1), MEM (0.75) | ST13 | IncL/M | blaOXA-48 | Newborn, Maternity B |
| 113    | *K pneumoniae* | AMX, TIC, PIP, AMC, TZP, TCC, FOX, CAZ, CTX, ETP, OFX, NA, CIP | ETP (0.75), IPM (2), MEM (0.75) | ST1878 | IncL/M | blaOXA-48 | Mother, Maternity B |
| 121    | *K pneumoniae* | AMX, TIC, PIP, AMC, TZP, TCC, FOX, CAZ, CTX, ETP, OFX, NA | ETP (0.75), IPM (2), MEM (0.75) | ST1878 | IncL/M | blaOXA-48 | Newborn, Maternity B |
| 123    | *K pneumoniae* | AMX, TIC, PIP, AMC, TZP, TCC, FOX, CAZ, CTX, ETP, OFX, NA | ETP (2), IPM (3), MEM (1) | ST1878 | IncL/M | blaOXA-48 | Mother, Maternity B |
| 124    | *K pneumoniae* | AMX, TIC, PIP, AMC, TZP, TCC, FOX, CAZ, CTX, ETP, OFX, NA | ETP (0.75), IPM (2), MEM (0.75) | ST1878 | IncL/M | blaOXA-48 | Mother, Maternity B |
| 125    | *K pneumoniae* | AMX, TIC, PIP, AMC, TZP, TCC, FOX, CAZ, CTX, ETP, OFX, NA | ETP (0.75), IPM (2), MEM (0.5) | ST13 | IncL/M | blaOXA-48 | Mother, Maternity B |
| 126    | *K pneumoniae* | AMX, TIC, PIP, AMC, TZP, TCC, FOX, CAZ, CTX, ETP, OFX, NA | ETP (0.75), IPM (1), MEM (0.5) | ST13 | IncL/M | blaOXA-48 | Mother, Maternity B |
| 127    | *K pneumoniae* | AMX, TIC, PIP, AMC, TZP, TCC, ETP, FOS | ETP (2), IPM (2), MEM (0.75) | ST13 | IncL/M | blaOXA-48 | Mother, Maternity B |
| 133    | *K pneumoniae* | AMX, TIC, PIP, AMC, TZP, TCC, FOX, CAZ, CTX, ETP, OFX, NA | ETP (1.5), IPM (2), MEM (1) | ST1878 | IncL/M | blaOXA-48 | Environment, Maternity B |

MICs, minimum inhibitory concentrations; PMQR, plasmid-mediated quinolone resistance; AMX, amoxicillin; TIC, ticarcillin; PIP, piperacillin; AMC, amoxicillin/clavulanic acid; TZP, piperacillin/tazobactam; TCC, ticarcillin/clavulanic acid; FOX, cefoxitin; OFX, OFloxacin; CAZ, ceftazidime; CTX, cefotaxime; NA, nalidixic acid; CIP, Ciprofloxacin; FOS, fosfomycin; ETP, ertapenem; IPM, imipenem; MEM, meropenem.
Multilocus sequencetyping (MLST) analysis was performed using the Pasteur Institute’s MLST scheme (bigdbs.web.pasteur.fr). Statistical analyses were performed using GraphPad Prism 6 (GraphPad Software, La Jolla, CA). P < .05 was considered statistically significant difference.

RESULTS

A total of 414 mothers and 422 newborns were included. The main mother and newborn characteristics are given in Supplemental Table S1. Overall, 836 rectal swabs and 221 vaginal swabs were collected. A total of 28 CPE isolates were obtained from mothers (n = 19), with 2 different strains (84A and 84B) isolated from the same mother, newborns (n = 7), and the environment (n = 1). The overall prevalence of CPE was 4.6% (19/414) and 1.6% (7/422) in mothers and newborns, respectively. In mothers, the prevalence of vaginal carriage and rectal carriage was 0.9% (2/221) and 4.1% (17/414), respectively. In mothers, the prevalence of vaginal carriage and rectal carriage was independent of their mother’s carrier status (P > .05). The carrier site in the mother (rectal or vaginal) did not affect the carriage of these strains among newborns (P = not significant).

Microbiologic investigations showed that the 28 CPE harbored the blloxa-48 gene localized on the Inc/M plasmid. One E coli isolate also contained the qnrS gene and harbored 2 plasmids belonging to the IncI/M and IncX2 groups (Table 1). For K pneumoniae, rep-PCR identified different profiles in the 2 maternity units corresponding to 3 clusters (Supplemental Fig S1). The strains mainly belonged to ST13 (n = 10) in the 2 maternity wards and ST1878 (n = 12) in Maternity B (Table 1). This last sequence type was isolated from mothers (n = 10), a newborn, and the table surface of the intensive care room, suggesting a local outbreak. For E coli strains, rep-PCR revealed that the 4 isolates belonged to 3 different profiles (Supplemental Fig S2) and belonged to ST638 and ST833 (Table 1).

Previous exposure to antimicrobial treatment during the preceding 3 months before admission (55.5% vs 34.6%; P < .01), previous hospital admission (55.5% vs 26%; P < .01), and no previous hospital admission (55.5% vs 27.2%; P < .01) were significantly associated with women’s CPE carriage (Table 2). The multivariate analysis identified previous hospital admission as an independent factor associated with an increased risk of CPE carriage in the mothers (odds ratio, 5.2; 95% confidence interval, 1.18–27.62; P = .021). Among the newborn CPE carriers, low birth weight was significantly associated with this carriage (P < .01) (Table 2). The carriage of the CPE isolates among newborns was independent of their mothers’ carrier status (P = not significant). The carrier site in the mother (rectal or vaginal) did not affect the carriage of these strains among newborns (P = not significant).

DISCUSSION

In this study, we report the asymptomatic carriage of OXA-48–producing E coli and K pneumoniae isolates in mother-newborn pairs. No mother-to-newborn transmission of these isolates was observed as recently reported at birth in Italy with K pneumoniae carbapenemase–producing K pneumoniae.8 We identified that previous hospital admission was the risk factor for CPE acquisition in the multivariate analysis. Prolonged hospital exposure and the use of antibiotics have been noted previously as risk factors for EPC acquisition.10,11

Finally, in our study, low birth weight was significantly associated with CPE carriage in the newborn. This risk factor has not been described previously. We observed that no carriers were premature, suggesting that CPE had no direct role on a premature delivery and could not represent a high risk for infections encountered frequently in preterm newborns but could influence birth weight.

Multilocus sequence typing showed that the K pneumoniae ST1878 was isolated only in Maternity B from mothers, newborns, and surfaces of the hospital environment. Importantly, these isolates showed the same rep-PCR profile, suggesting a local outbreak. In addition, we noticed that all mothers carrying this clone were admitted in the same room and gave birth by cesarean section. Given the fact that our data do not support mother-newborn transmission and only 1 sample in 505 was positive for CPE, we suggest that the possible sources of this outbreak may be the hands of health care personnel. In addition, cross-transmission via health care workers’ hands seems to be important in the spread of K pneumoniae strains.12

CONCLUSION

The findings of CPE as neonate-gut colonizers may have implications to prevent cross-transmission by these strains. When the evolution of antibiotic resistance is moving faster than the synthesis of new antimicrobials, focused interventions to reduce this cross-transmission in settings of high endemicity are required; these must absolutely include all wards.

Acknowledgments

We thank the hygienist nurses and the mother-child maternity unit staff for their assistance and cooperation. We thank Sarah Kabani for her assistance in preparing and editing the manuscript.

SUPPLEMENTARY MATERIALS

Supplementary material associated with this article can be found, in the online version, at doi:10.1016/j.ajic.2018.07.009.

Table 2

|                          | CPE+  | CPE−  | P value |
|--------------------------|-------|-------|---------|
| **Mothers**              |       |       |         |
| Mean age (y) ± SD        | 31.6 ± 4.7 | 31.7 ± 5.3 | .821 |
| Mean number of ± SD      | 1.61 ± 1.09 | 2.33 ± 2.02 | .087 |
| Antibiotic treatment for the past 3 mo |       |       |         |
| Yes                      | 10 (2.4%) | 137 (33%)  |       |
| No                       | 8 (1.9%) | 259 (62.5%) | .08 |
| Previous hospital admission |       |       |         |
| Yes                      | 10 (2.4%) | 103 (24.8%) |       |
| No                       | 8 (1.9%) | 293 (70.7%) | .012 |
| Chronic disease          |       |       |         |
| Yes                      | 1 (0.2%) | 108 (26%)  |       |
| No                       | 17 (4.1%) | 288 (69.5%) | .052 |
| Surgical intervention    |       |       |         |
| Yes                      | 8 (1.9%) | 128 (30.9%) |       |
| No                       | 10 (2.4%) | 268 (64.7%) | .309 |
| **Newborns**             |       |       |         |
| Sex                      |       |       |         |
| Male                     | 3 (42.9%) | 226 (53.5%) |       |
| Female                   | 4 (57.1%) | 189 (44.7%) | .707 |
| Mode of delivery         |       |       |         |
| Natural                  | 3 (42.9%) | 219 (51.8%) |       |
| Cesarean                 | 4 (57.1%) | 196 (46.4%) | .712 |
| Mean birth weight (kg) ± SD | 3.03 ± 0.62 | 4.37 ± 0.56 | .012 |
| Low birth weight, <2,500 g | 3 (42.9%) | 26 (6.3%)  | .008 |

NOTE: Statistical analyses were performed using the χ² test or Fisher exact test to verify the significance between CPE+ and CPE− among mothers and newborns. CPE+, carrier of carbapenemase-producing enterobacteria; CPE−, noncarrier of carbapenemase-producing enterobacteria; SD, standard deviation.
References

1. Smith A, Saiman L, Zhou J, Della-Latta P, Jia H, Graham PL. Concordance of gastrointestinal tract colonization and subsequent bloodstream infections with gram-negative bacilli in very low birth weight infants in the neonatal intensive care unit. Pediatr Infect Dis J 2010;29:831-5.

2. Mairi A, Pantel A, Sotto A, Lavigne J-P, Touati A. OXA-48-like carbapenemases producing Enterobacteriaceae in different niches. Eur J Clin Microbiol Infect Dis 2018;37:587-604.

3. Tzouvelekis LS, Markogiannakis A, Psichogiou M, Tassios PT, Daikos GL. Carbapenemases in Klebsiella pneumoniae and other Enterobacteriaceae: an evolving crisis of global dimensions. Clin Microbiol Rev 2012;25:682-707.

4. Karaaslan A, Soysal A, Altinkanat Gelmez G, Kepenekli Kadayifci E, Soyletir G, Bakir M. Molecular characterization and risk factors for carbapenem-resistant Gram-negative bacilli colonization in children: emergence of NDM-producing Acinetobacter baumannii in a newborn intensive care unit in Turkey. J Hosp Infect 2016;92:67-72.

5. Elkersh T, Marie MA, Al-Sheikh YA, Albloushy A, Al-Agamy MH. Prevalence of fecal carriage of extended-spectrum- and metallo-β-lactamase-producing gram-negative bacteria among neonates born in a hospital setting in central Saudi Arabia. Ann Saudi Med 2015;35:240-7.

6. Zenati K, Sahli F, Garcia V, Bakour S, Belhadi D, Rolain JM, et al. Occurrence and clonal diversity of multidrug-resistant Klebsiella pneumoniae recovered from inanimate surfaces in Algerian hospital environment: first report of armA, qnrB and aac(6′)-Ib-cr genes. J Glob Antimicrob Resist 2017;10:148-53.

7. The European Committee on Antimicrobial Susceptibility Testing. Available from: http://www.sfm-microbiologie.org. Accessed August 24, 2018.

8. Abderrahim A, Djahmi N, Pujol C, Nedjai S, Bentakouk MC, Kirane-Gacemi D, et al. First case of NDM-1-producing Klebsiella pneumonia in Annaba University Hospital, Algeria. Microb Drug Res 2017;23:895-900.

9. Bondanti P, Bellu R, Principe L, Caramma I, Condo M, Giani T, et al. Mother-to-child transmission of KPC carbapenemase-producing Klebsiella pneumonia at birth. Pediatr Infect Dis J 2017;36:228-9.

10. Cronin KM, Poy Lorenzo YS, Olenski ME, Bloch AE, Visvanathan K, Waters MJ, et al. Risk factors for KPC-producing Enterobacteriaceae acquisition and infection in a healthcare setting with possible local transmission: a case-control study. J Hosp Infect 2017;96:111-5.

11. Hilliquin D, Le Guern R Thepot Seegers V, Neulier C, Lomont A, Marie V, et al. Risk factors for acquisition of OXA-48-producing Klebsiella pneumonia among contact patients: a multicentre study. J Hosp Infect 2018;98:253-9.

12. Pelat C, Kardai-Stoma L, Birgand G, Ruppe E, Schwarzerger M, Andremont A, et al. Hand hygiene, cohorting, or antibiotic restriction to control outbreaks of multidrug-resistant Enterobacteriaceae. Infect Control Hosp Epidemiol 2016;37:272-80.