Determination of weak phases ϕ_2 and ϕ_3 from $B \to \pi \pi, K \pi$ in the pQCD method

Yong-Yeon Keum
EKEN Lab. Department of Physics
Nagoya University, Nagoya 464-8602 Japan
Email: yykeum@eken.phys.nagoya-u.ac.jp
(November 7, 2018)

I. INTRODUCTION

One of the most exciting aspect of present high energy physics is the exploration of CP violation in B-meson decays, allowing us to overconstrain both sides and three weak phases $\phi_1 (=\beta)$, $\phi_2 (=\alpha)$ and $\phi_3 (=\gamma)$ of the unitarity triangle of the Cabibbo-Kobayashi-Maskawa (CKM) matrix [1] and to check the possibility of New Physics. The “gold-plated” mode $B_d \to J/\psi K_s$ [2], which allows us to determine ϕ_1 without any hadron uncertainty, recently measured by BaBar and Belle collaborations [3]: $\phi_2 = (25.5 \pm 4.0)^\circ$. There are many other interesting channels with which we may achieve this goal by determining ϕ_2 and ϕ_3 [4].

In this letter, we focus on the $B \to \pi^+ \pi^-$ and $K \pi$ processes, providing promising strategies for determining the weak phases of ϕ_2 and ϕ_3, by using the perturbative QCD method.

The perturbative QCD method (pQCD) has a predictive power demonstrated successfully in exclusive 2 body B-meson decays, specially in charmless B-meson decay processes [5]. By introducing parton transverse momenta k_\perp, we can generate naturally the Sudakov suppression effect due to the resummation of large double logarithms $\exp\left(-\frac{2k_\perp^2}{m^2}\right)$, which suppress the long-distance contributions in the small k_\perp region and give a sizable average $< k_\perp^2 > \sim \Lambda M_B$. This can resolve the end point singularity problem and allow the applicability of pQCD to exclusive B-meson decays. We found that almost all of the contributions to the matrix element come from the integration region where $\alpha_s/\pi < 0.3$ and the perturbative treatment can be justified.

In the pQCD approach, we can predict the contribution of non-factorizable term and annihilation diagram on the same basis as the factorizable one. A folklore for annihilation contributions is that they are negligible compared to W-emission diagrams due to helicity suppression. However the operators $O_{b,6}$ with helicity structure $(S-P)(S+P)$ are not suppressed and give dominant imaginary values, which is the main source of strong phase in the pQCD approach. Therefore we have a large direct CP violation in $B \to \pi^\pm \pi^\mp, K^\mp \pi^\mp$, since large strong phase comes from the factorized annihilation diagram, which can distinguish pQCD from other models [4].

II. EXTRACTION OF $\phi_2(=\alpha)$ FROM $B \to \pi^+ \pi^-$

Even though isospin analysis of $B \to \pi \pi$ can provide a clean way to determine ϕ_2, it might be difficult in practice because of the small branching ratio of $B^0 \to \pi^0 \pi^0$. In reality to determine ϕ_2, we can use the time-dependent rate of $B^0(t) \to \pi^+ \pi^-$ including sizable penguin contributions. The amplitude can be written by using the c-convention:

$$A(B^0 \to \pi^+ \pi^-) = V_{ub}^* V_{ud} A_u + V_{cb}^* V_{cd} A_c + V_{tb}^* V_{td} A_t,$$

$$= V_{ub}^* V_{ud} (A_u - A_t) + V_{cb}^* V_{cd} (A_c - A_t),$$

$$= -(|T_c| e^{i\delta_c} e^{-i\phi_3} + |P_c| e^{i\phi_3})$$

Penguin term carries a different weak phase than the dominant tree amplitude, which leads to generalized form of the time-dependent asymmetry:

$$A(t) = \frac{\Gamma(\bar{B}^0(t) \to \pi^+ \pi^-) - \Gamma(B^0(t) \to \pi^+ \pi^-)}{\Gamma(B^0(t) \to \pi^+ \pi^-) + \Gamma(\bar{B}^0(t) \to \pi^+ \pi^-)}$$

$$= S_{\pi\pi} \sin(\Delta m t) - C_{\pi\pi} \cos(\Delta m t)$$

where

$$C_{\pi\pi} = \frac{1 - |\lambda_{\pi\pi}|^2}{1 + |\lambda_{\pi\pi}|^2}, \quad S_{\pi\pi} = \frac{2Im(\lambda_{\pi\pi})}{1 + |\lambda_{\pi\pi}|^2}$$

satisfies the relation $C_{\pi\pi}^2 + S_{\pi\pi}^2 \leq 1$. Here

$$\lambda_{\pi\pi} = |\lambda_{\pi\pi}| e^{2i(\phi_2 + \Delta \phi_2)} = e^{2i\phi_2} \frac{1 + R e^{i\phi_3} e^{i\phi_3}}{1 + R e^{i\phi_3} e^{-i\phi_3}}$$

PACS numbers: 13.25.Hw, 13.25.Ft
with $R_c = |P_c/T_c|$ and the strong phase difference between penguin and tree amplitudes $\delta = \delta_p - \delta_T$. The time-dependent asymmetry measurement provides two equations for $C_{\pi\pi}$ and $S_{\pi\pi}$ for three unknown variables R_c, δ and ϕ_2.

When we define $R_{\pi\pi} = \frac{\overline{Br}(B^0 \rightarrow \pi^+\pi^-)}{Br(B^0 \rightarrow \pi^+\pi^-)}|_{\text{tree}}$, where \overline{Br} stands for a branching ratio averaged over B^0 and B^0, the explicit expression for $S_{\pi\pi}$ and $C_{\pi\pi}$ are given by:

$$R_{\pi\pi} = 1 - 2R_c \cos \phi_1 \cos \phi_2 + R_c^2,$$

(6)

$$R_{\pi\pi} S_{\pi\pi} = \sin 2\phi_2 + 2R_c \sin(\phi_1 - \phi_2) \cos \delta - R_c^2 \sin 2\phi_1,$$

(7)

$$R_{\pi\pi} C_{\pi\pi} = 2R_c \sin(\phi_1 + \phi_2) \sin \delta.$$

(8)

If we know R_c and δ, then ϕ_2 can be determined from the experimental data on $C_{\pi\pi}$ versus $S_{\pi\pi}$.

Since pQCD provides $R_c = \frac{0.23 \pm 0.07}{0.05}$ and $-41^\circ < \delta < -32^\circ$, the allowed range of ϕ_2 at present stage is determined as $55^\circ < \phi_2 < 100^\circ$ as shown in Fig. 1. Since we have a relatively large strong phase in pQCD, in contrast to the QCD-factorization ($\delta \sim 0^\circ$), we predict large direct CP violation effect of $A_{cp}(B^0 \rightarrow \pi^+\pi^-) = (23 \pm 7)\%$ which will be tested by more precise experimental measurement in near future. In numerical analysis, since the data by Belle collaboration [8] is located outside allowed physical regions, we considered only the recent BaBar measurement [9] with 90% C.L. interval taking into account the systematical errors:

- $S_{\pi\pi} = 0.02 \pm 0.34 \pm 0.05$ [-0.54, +0.58]
- $C_{\pi\pi} = -0.30 \pm 0.25 \pm 0.04$ [-0.72, +0.12].

The central point of BaBar data corresponds to $\phi_2 = 78^\circ$ in the pQCD method.

![Fig. 1. Plot of $C_{\pi\pi}$ versus $S_{\pi\pi}$ for various values of ϕ_2 with $\phi_1 = 25.5^\circ$, $0.18 < R_c < 0.30$ and $-41^\circ < \delta < -32^\circ$ in the pQCD method. Here we consider the allowed experimental ranges of BaBar measurement within 90% C.L. Dark areas are allowed regions by pQCD for different ϕ_2 values.](image1)

![Fig. 2. Plot of $\Delta \phi_2$ versus ϕ_2 with $\phi_1 = 25.5^\circ$, $0.18 < R_c < 0.30$ and $-41^\circ < \delta < -32^\circ$ in the pQCD method.](image2)

III. EXTRACTION OF $\phi_3(=\gamma)$ FROM $B^0 \rightarrow K^+\pi^-$ AND $B^+ \rightarrow K^0\pi^+$ PROCESSES

By using tree-penguin interference in $B^0 \rightarrow K^+\pi^-(\sim T' + P')$ versus $B^+ \rightarrow K^0\pi^+(\sim P')$, CP-averaged $B \rightarrow K\pi$ branching fraction may lead to non-trivial constraints on the ϕ_3 angle [10]. In order to determine ϕ_3, we need one more useful information on CP-violating rate differences [11]. Let’s introduce the following observables:

$$R_K = \frac{\overline{Br}(B^0 \rightarrow K^+\pi^-) \tau_+}{Br(B^+ \rightarrow K^0\pi^+) \tau_0} = 1 - 2r_K \cos \delta \cos \phi_3 + r_K^2 \sin^2 \phi_3,$$

(9)

$$A_0 = \frac{\Gamma(B^0 \rightarrow K^-\pi^+) - \Gamma(B^0 \rightarrow K^+\pi^-)}{\Gamma(B^- \rightarrow K^0\pi^-) + \Gamma(B^+ \rightarrow K^0\pi^+)} = A_{cp}(B^0 \rightarrow K^+\pi^-) R_K = -2r_K \sin \phi_3 \sin \delta.$$

(10)

where $r_K = |T'/T|$ is the ratio of tree to penguin amplitudes in $B \rightarrow K\pi$ decay and $\delta = (\delta_T' - \delta_T)$ is the strong phase difference between tree and penguin amplitudes. After eliminate $\sin \delta$ in Eq.(8)-(9), we have

$$R_K = 1 + r_K^2 \pm \sqrt{(4r_K^2 \cos^2 \phi_3 - A_{cp}^2 \cot^2 \phi_3)}.$$

(11)

Here we obtain $r_K = 0.201 \pm 0.037$ from the pQCD analysis [11] and $A_0 = -0.110 \pm 0.065$ by combining recent
BaBar measurement on CP asymmetry of $B^0 \to K^+\pi^-$: $A_{cp}(B^0 \to K^+\pi^-) = -10.2 \pm 5.0 \pm 1.6\%$ [9] with present world averaged value of $R_K = 1.10 \pm 0.15$ [12].

IV. CONCLUSION

We discussed two methods to determine the weak phases ϕ_2 and ϕ_3 within the pQCD approach through
1) Time-dependent asymmetries in $B^0 \to \pi^+\pi^-$, 2) $B \to K\pi$ processes via penguin-tree interference. We can already obtain interesting bounds on ϕ_2 and ϕ_3 from present experimental measurements. Our predictions within the pQCD method is in good agreement with present experimental measurements in charmless B-decays. Specially our pQCD method predicted a large direct CP asymmetry in $B^0 \to \pi^+\pi^-(23 \pm 7\%)$ decay, which will be a crucial touch stone in order to distinguish our approach from others in future precise measurements. More detail works on other methods in $B \to \pi\pi, K\pi$ [14] and $D^{(*)}\pi$ processes [15] will appear elsewhere.

ACKNOWLEDGMENTS

It is a great pleasure to thank A.I. Sanda, E. Paschos, H.-n. Li and other members of PQCD working group for fruitful collaborations and joyful discussions. I would like to thank S.J. Brodsky, H.Y. Cheng and M. Kobayashi for their hospitality and encouragement. This work was supported in part by Science Council of R.O.C. under Grant No. NSC-90-2811-M-002 and in part by Grant-in Aid for Scientific Research from Ministry of Education, Science and Culture of Japan.

[1] N. Cabibbo, Phys. Rev. Lett. 10, 531 (1963); M. Kobayashi and T. Maskawa, Prog. Theor. Phys. 49, 652 (1973).
[2] A.B. Carter and A.I. Sanda, Phys. Rev. Lett. 45 (1980) 952; Phys. Rev. D23, 1567 (1981); I.I. Bigi and A.I. Sanda, Nucl. Phys. B193, 85 (1981); I.I. Bigi and A.I. Sanda, CP Violation, Cambridge University Press, Cambridge, 2000.
[3] BaBar Collaboration (B. Aubert et al.), Phys. Rev. Lett. 87 (2001) 091801. Belle Collaboration (K. Abe et al.), Phys. Rev. Lett. 87 (2001) 091802.
[4] Recent works: R. Fleischer and J. Matias, hep-ph/0204101; M. Gronau and J.L. Rosner, Phys.Rev.D65 (2002) 013004, Erratum-ibid.D65 (2002) 079901; Phys. Rev. D65 (2002) 093012 hep-ph/020532; C.D. Lu and Z. Xiao, hep-ph/0205134.
[5] Y.Y. Keum, H.n. Li and A.I. Sanda, Phys. Lett. B504 (2001) 6; Phys. Rev. D63 (2001) 054008; hep-ph/0201103; Y.Y. Keum and H.n. Li, Phys. Rev. D63 (2001) 074006; C.D. Lu, K. Ukai and M.Z. Yang, Phys. Rev. D63 (2001) 074009; C.-H. Chen, Y.Y. Keum and H.-n.
[6] M. Beneke, G. Buchalla, M. Neubert and C.T. Sachrajda, Phys. Rev. Lett. 83 (1999) 1914; Nucl. Phys. B591, (2000) 313.
[7] M. Ciuchini et al., Nucl. Phys. B512 (1998) 3; Phys. Lett. B515 (2001) 33.
[8] Belle Collaboration (K. Abe et al.), Belle-preprint 2002-8 hep-ex/0204002.
[9] BaBar Collaboration (B. Aubert et al.), BaBar-Pub-02/09 hep-ex/0207055.
[10] R. Fleischer and T. Mannel, Phys. Rev. D57, (1998) 2752; M. Neubert and J.L. Rosner, Phys. Lett. B441 (1998) 403; Phys. Rev. Lett. 81, (1998) 5076.
[11] M. Gronau and J.L. Rosner, Phys.Rev.D65 (2002) 013004, Erratum-ibid.D65 (2002) 079901.
[12] R. Bartoldus, talk on Review of rare two-body B decays at FPCP workshop, May 17, 2002.
[13] Y.Y. Keum, Proceeding at the 3rd workshop on Higher Luminosity B Factory, Aug. 6-7, 2002; hep-ph/0209002.
[14] Y.Y. Keum, in preparation.
[15] Y.Y. Keum et al, in preparation.