Supplementary Materials:

Role of nanoscale antigen organization on B-cell activation probed using DNA origami

Rémi Veneziano1†, Tyson J. Moyer2†, Matthew B. Stone1†, Eike-Christian Wamhoff3, Benjamin J. Read2, Sayak Mukherjee3, Tyson R. Shepherd1, Jayajit Das3, William R. Schief4,5,6,7, Darrell J. Irvine1,2,3,6,7,8*, Mark Bathe1*

*Address correspondence to mark.bathe@mit.edu and djirvine@mit.edu

Supplementary Materials
Supplementary Figs. 1–26
Supplementary Tables 1–22
Supplementary Text 1
Supplementary References
Supplementary Fig. 1. All-atom model of the icosahedral scaffolded DNA origami NP. The all-atom model was generated using DAEDALUS1.
Supplementary Fig. 2. Sequence design and all-atom model of the 6 Helix Bundle scaffolded DNA origami nanoparticle. (Left) Secondary structure of the 6HB rendered using caDNAno. (Right) All-atom model of the 6HB DNA-NP rendered using CanDo^2,3.
Supplementary Fig. 3. Overhang placement on the edges of the DNA-nanoparticles. (a) Secondary structure of an edge of the DNA icosahedron with ssDNA overhangs. (b) Zoom-in of the secondary structure of the 6HB showing available sites for ssDNA overhangs.
Supplementary Table 1. Properties of the flexible linkers used for testing the role of scaffold rigidity in antigen presentation. Flory Radius was determined from Ma et al., and Radius-of-Gyration for the PEG polymer from Linegar et al. (Rg=0.0215xMw^{0.583}).

Linker material	Linker name	MW [Da]	Number of units (Bases or PEG monomers)	Contour Length [nm]	Flory Radius [nm]	Radius-of-Gyration [nm]
ssDNA	ssDNA5	8930.9	5	3.2	N/A	N/A
ssDNA	ssDNA12	11123.3	12	7.6	N/A	N/A
ssDNA	ssDNA24	14881.8	24	15	N/A	N/A
ssDNA	ssDNA35	18210.9	35	22	N/A	N/A
ssDNA	ssDNA47	21916.2	47	30	N/A	N/A
ssDNA	ssDNA83	30767.9	83	52	N/A	N/A
PEG	Bis-Mal-PEG-1	308.3	2	0.6	0.5	0.61
PEG	Bis-Mal-PEG-2	2000	45	12.6	2.8	1.8
PEG	Bis-Mal-PEG-3	7500	170	47.7	6.1	3.9
Supplementary Fig. 4. Transmission electron microscopy images of the icosahedral DNA-NP with 60 overhangs without eOD. The electron microscopy images are from 3 technical replicates [10 images were taken per replicates] with similar results.
Supplementary Fig. 5. TEM images of the 6HB DNA-NP with 5 overhangs without eOD. The electron microscopy images are from 3 technical replicates [10 images were taken per replicates] with similar results.
Supplementary Fig. 6. Agarose gel electrophoresis of the icosahedral DNA-nanoparticle with varying numbers of overhangs. (n=2 biological replicates for each gels with similar results [M. Marker]). The bands visible below 500 bp are the excess of staple strands visible before purification.
Supplementary Fig. 7. Agarose gel electrophoresis of the 6 Helix Bundle DNA-nanoparticle with varying numbers of overhangs. (n=1, M. Marker, Sc. Scaffold). The very bright bands visible below 500 bp are the excess of staple strands visible before purification.
Supplementary Fig. 8. Schematic of the peptide Nucleic Acid linker designed for antigen attachment to DNA-nanoparticles. The sequence is the following: (Maleimide)-GGK-cagtccagt-K-(CONH₂).
Supplementary Fig. 9. MALDI-TOF analysis of the synthesized PNA strand. Mass spectrometry analysis of maleimide modified PNA strand (expected: 2927.22 m/z, measured: 2957.29 m/z). Two distinct batches of PNA strand were synthesized and MALDI-TOF analysis was performed both times with similar results.
Supplementary Fig. 10. Absorption spectrum analysis of peptide nucleic acid strand conjugation to the eOD-GT8. UV-vis spectrum of the PNA strand alone (grey), eOD alone (black), the eOD-PNA conjugate (red), and the sum of absorbance from eOD alone and PNA alone (dotted pink). UV-VIS analysis was performed three times independently with similar results.
Supplementary Fig. 11. eOD-GT8 antigen conjugation to DNA-nanoparticles with single stranded DNA overhangs characterized with agarose gel electrophoresis. (a) eOD-GT8 conjugation to various 6HB constructs. (b) eOD-GT8 conjugation to various icosahedral constructs. All purified structures were run on a 1.5 % agarose gel pre-stained with EtBr and run for 2 h at 70 V. For (a) and (b) gels n=1. The bands visible below 500 bp in the bottom of the gels in (a) and (b) for 6HB-0x and Ico-0x are the excess of staple strands visible before purification.
Supplementary Fig. 12. Percentage of antigen modification of the DNA-NPs determined by fluorimetry of eOD-GT8-PNA modified with AF647.

a. Fluorescent imaging of agarose gel acquired with Typhoon FLA 7000.
b. Example of standard curve acquired with fluorescent eOD-GT8. This experiment has been repeated two times with similar results.
c. Quantification of eOD-GT8 coverage on different DNA NPs from fluorescence spectroscopy. Error represents standard deviation of the mean (n=3 biological replicates/group for lco-1x, lco-5x, lco-30x, and 6HB-5x-7nm; n=2 biological replicates/group for lco-60x; n=1 sample/group for 6HB-1x, and 6HB-2x-7nm).
Supplementary Fig. 13. Tryptophan assay to determine percentage coverage of DNA-nanoparticles with unlabeled eOD-GT8-PNA. (n=1 sample/groups)
Supplementary Fig. 14: Representative distances between eOD-GT8 immunogens on the icosahedral DNA-NP. Distances were measured from the center of the antigen using UCSF Chimera and are listed in Supplementary Table 2.
Supplementary Table 2. Distances between eOD-GT8 antigens in a 1, 2, 3, 4, and 5-mer icosahedral DNA-NP. Distance were measured using UCSF Chimera⁶ as shown in Supplementary Fig. 14 from the center of the antigens (n=1). The error is determined using the estimated linker size (~3 nm).

Antigen #	1	2	3	4	5
1	56 ± 6 nm	43.3 ± 6 nm	39.4 ± 6 nm	36.5 ± 6 nm	
2	56 ± 6 nm	40.3 ± 6 nm	40.9 ± 6 nm	44.5 ± 6 nm	
3	43.3 ± 6 nm	40.3 ± 6 nm	33.9 ± 6 nm	27.6 ± 6 nm	
4	39.4 ± 6 nm	40.9 ± 6 nm	33.9 ± 6 nm	49.2 ± 6 nm	
5	36.5 ± 6 nm	44.5 ± 6 nm	27.6 ± 6 nm	49.2 ± 6 nm	
Supplementary Fig. 15. B cell fluorescence response with high valency eOD-GT8 loading on the icosahedral DNA-nanoparticle. Icosahedral DNA-NPs modified with eOD-GT8 were added to B cells loaded with Fluo-4 DNA and normalized to baseline levels. Ico-0x with 0 copy number, Ico-10x, Ico-30x, and Ico-60x contained 10, 30, and 60 copies of eOD-GT8, respectively. eOD-GT8-60mer is the positive control protein NP containing 60 copies of eOD-GT8 per NP (representative individual calcium trace). DNA-NPs and eOD-GT8-60mer were used at a 2 nM equivalent eOD-GT8 concentration. (n=3 biological replicates with similar results).
Supplementary Fig. 16. Increasing valency of the low affinity antigen eOD-GT5 does not enhance B cell activation. (a) Raw fluorescence of cells loaded with Fluo-4 calcium probe (representative individual calcium trace). This experiment has been repeated three times independently. (b) Normalized Area Under the Curve [AUC] of calcium release from cells stimulated with the icosahedral DNA-NPs displaying different valencies of the low affinity immunogen eOD-GT5. Ico-0x and Ico-10x were used at 25 nM equivalent eOD-GT8 concentration and eOD-GT8-60mer control at 2 nM equivalent eOD-GT8 concentration. Error bars represent standard deviation of the mean (n=3 biological replicates/group).
Supplementary Fig. 17. Flow cytometry of labeled eOD-DNA-nanoparticles binding to B cells. Fluorescently labeled eOD-GT8-PNA attached to 6HB-2x-7nm, 6HB-2x-28nm, (Data as presented in Figure 3b) or the Ico-30x was incubated with gLVRC01 B cells for 30 minutes on ice at a fixed antigen concentration of 5 nM. (a) Representative flow cytometry plots of Ico-30x, 6HB-2x-7nm, and 6HB-2x-28nm binding to antigen-specific B cells. Two independent flow cytometry experiments were performed with similar results. (b) Quantitation of data from (a) (n = 3 biological replicates/group) where error bars represent standard deviations of the mean and the P-values are from a one-way ANOVA, followed by Tukey post hoc comparison test (***: p<0.01; ****: p<0.001; NS: Not statistically significant, p=0.9999. All P-values are available in the Supplementary Table 18).
Supplementary Fig. 18: Comparison of linear versus 2D clustering of five copies of antigens on Icosahedron and 6 Helix Bundle. (a) Calcium signaling of cells loaded with Fluo-4 calcium probe normalized by unstimulated levels with buffer-only control curves subtracted for 6HB structures with varying inter-antigen distances (representative individual calcium trace) at a fixed antigen concentration of 5 nM. Experiment was performed independently three times (biological replicates) with similar results. (b) Total calcium signaling from cells stimulated with 6HB 5-mer structures presenting eOD-GT8 antigen compared with Ico 5-mer structures presented in Fig. 4. Fluo-4 AUC is normalized as in Fig. 2 (n=3 biological replicates/group), where error bars represent standard deviations of the mean and P-values are from 2-way ANOVA, paired Student’s t-test (*: p<0.05; **: p<0.01; ***: p<0.001. All P-values are available in the Supplementary Table 19).
Supplementary Fig. 19: Comparison of distance between linear antigen presentation on a 6 Helix Bundle 5-mer rod (6HB-5x-11nm) and 2D presentation on an Icosahedron 5-mer (Ico-5x-22nm). Distance were determined in chimera. (n=1)
Supplementary figure 20: Comparison of B cell triggering by icosahedral versus pentagonal bipyramid geometries. (a) Ten copies of eOD-GT8 presented by the two opposing faces of an 84bp edge-length pentagonal bipyramid (PB) DNA-NP construct, with antigen attachment at the midpoints between vertices. Tryptophan fluorescence and agarose gel electrophoresis were used to characterize antigen coverage. (n=3 technical replicates/group for fluorescence/absorbance measurements with similar results and n=1 for the agarose gel experiment) (b) Comparison of inter-antigen distance distributions for the PB-10 and Ico-10 reveal only a small relative shift towards larger average and maximal distances for the Ico-10. Distances were binned in 3 nm steps corresponding to the distances between the O3’ at functionalized nick positions in the atomic model from DAEDALUS1. (n=1) (c) Raw fluorescence of Ramos cells loaded with Fluo-4 calcium probe after incubation with functionalized DNA-NPs (representative individual calcium trace). This experiment has been done 3 times (biological replicates) with similar results (d) Normalized Area Under the Curve [AUC] of calcium release from cells after stimulation with functionalized DNA-NPs. Total antigen concentration for all experiments was 2 nM. Error bars represent standard deviation of the mean (n=3 biological replicates/group).
Supplementary figure 21: Comparison of B cell triggering by model peptide antigens on DNA-NPs versus LNPs.

(a) 45 copies of two model peptide antigens, p5 or p31, were conjugated to the pentagonal bipyramid DNA-NP, with three outward facing attachment sites uniformly spaced along each edge. A ratiometric absorbance assay at 260 nm and 647 nm and two-color agarose gel electrophoresis were used to quantify coverage of the peptide antigens. (n=3 technical replicates/group for fluorescence/absorbance measurements with similar results and n=1 for the agarose gel experiment)

(b) DLS of liposomes presenting the p5 peptide antigen revealed a mean Lipo-p5 particle size of 100 nm with a PDI of 0.071. (n=1)

(c) Raw fluorescence of primary B cells loaded with Fluo-4 calcium probe after incubation with peptide-functionalized DNA-NPs versus Lipos (representative individual calcium traces). This experiment has been done 3 times (biological replicates) with similar results.

(d) Normalized Area Under the Curve [AUC] of calcium flux from cells integrated until 140 s versus 420 s after stimulation with functionalized DNA-NPs (PB-45) versus Lipos. Total antigen concentration for all experiments was 1 nM. Error bars represent standard deviation of the mean (n=3 distinct samples/group) and P-values are from 2-way ANOVA, paired Student’s t-test (left bar graph [after 140s]: for p5 vs PB-p5 p=0.0053; for p5 vs PB-p31 p=0.0166; for PB-p5 vs lipos-p5 p=0.0203; for PB-p31 vs lipos-p5 p=0.0471, and right bar graph [after 420s]: for p5 vs PB-p5 p=0.0478; for p5 vs PB-p31 p=0.0423; for p5 vs lipos-p5 p=0.0095)
Supplementary figure 22. Confocal fluorescence imaging of fixed Ramos cells with 30-mer icosahedral DNA-NP bearing fluorescent eOD-GT8. 30-mer fluorescent eOD-GT8 conjugated icosahedral DNA-NP were added to VRC01+ Ramos cells at a concentration of 5 nM and fixed in solution at various timepoints. (a) Images of Ramos cells with the Icosahedral 30-mer (Ico-30) bound, IgM (BCR) stained with an f(Ab) fragment conjugated to JF549 and also stained with phalloidin (Ph.) conjugated to Alexa Fluor 405. Heterogeneity in the surface expression of the B cell receptor between B cells is apparent from the image. The binding of the icosahedral DNA-NP with fluorescent eOD-GT8 is restricted to Ramos cells expressing VRC01 IgM. Experiment was repeated twice with similar results. The experiments in (a) were repeated twice (biological replicates) with similar results. (Scale bar: 20 μm). (b) The probability distribution of total eOD-GT8 intensity on cells illustrates that a proportion of Ramos cells bind little or no eOD-GT8 even at long times (30 minutes) following antigen addition. (c) Plots of individual cell total BCR intensity vs total eOD-GT8 intensity further illustrate the strong correlation between surface BCR expression and eOD-GT8 binding, as well as the increase in eOD-GT8 binding over time. (Number of cells per conditions; 1min: 119 cells; 5 min: 103 cells; 30 min: 30 cells, from the same sample).
Supplementary figure 23: Fluorescence quantification of confocal microscopy images. Fluorescent eOD-GT8 conjugated Ico-30x was added to VRC01+ Ramos cells at a concentration of 5 nM and fixed in solution at various timepoints. (a) Average total eOD-GT8 fluorescence per cell increases over time for all constructs. (b) The pixel-based Pearson correlation between eOD and BCR intensity also increases over time. Total fluorescence is calculated across all z-sections and average is computed across all cells. (c) The pixel-based Pearson correlation between eOD-GT8 and pTyr intensity varies between the antigen organizations tested. Total fluorescence is calculated across all z-sections and average is computed across all cells. For (a), (b), and (c) Error bars represent standard errors of the means across all cells per condition and P-values are from a two-way ANOVA, paired Student’s t-test (*: p<0.05; **: p<0.01; ***: p<0.001. All P-values are available in the Supplementary Tables 20-22). (Number of cells per conditions; Ico-30x: 1min: 14 cells, 5 min: 183 cells, 30 min: 15 cells; 6HB-2x-7nm: 1min: 26 cells, 5 min: 22 cells, 30 min: 19 cells; 6HB-2x-28nm: 1min: 15 cells, 5 min: 26 cells, 30 min: 23 cells; Control: 29 cells from the same sample)
Supplementary figure 24: Confocal microscopic imaging of DNA-NPs on Ramos B cells from Figure 5 separated by channels. (a) BCR channel, (b) eOD-GT8 channel, (c) Phalloidin channel. The experiments in (a), (b), and (c) were repeated twice (biological replicates) with similar results. (Scale bar: 5 μm).
Supplementary table 3. List of primers used for amplification of DNA-NP scaffolds.

Structure	5’-primer (forward)	3’-primer (reverse)
6-HB	CCCTTTAGGGTTCCGATTTA	GCTGAAAAAGGTGGCATCAAT
Icosahedron	TCTTTGCCTTGCTGTATGA	GCTAACGAGCGTCTTTCCA
Supplementary Text 1:
A membrane proximal BCR signaling model

We propose a membrane proximal BCR signaling model in silico to interpret the monotonically increasing BCR signaling that is observed with increasing distance between eOD-GT8 immunogens presented using DNA-NPs. The current model is adapted from a related, previously published BCR signaling model. The model is composed of membrane proximal signaling reactions that occur at early times following BCR binding and triggering, and diffusion of BCR and associated proteins. We note that this model is not designed to investigate various competing mechanisms proposed for BCR triggering, namely, breakdown of auto-inhibited BCR multimers into smaller active BCR clusters upon antigen binding, formation of BCR clusters due to conformational change in BCRs when BCRs bind to antigens, or actin-mediated restriction of BCR mobility limiting ITAM phosphorylation. Instead, the current model proposes one possible mechanism to explain the gradual increase in BCR activation observed from Calcium flux with increasing distance between eOD-GT8 immunogens displayed using rigid, DNA-NP origami scaffolds.

The model describes the following membrane proximal BCR signaling events as biochemical reactions. Upon antigen binding to BCRs, tyrosine residues in immunoreceptor tyrosine based activation motifs, or ITAMs, associated with the BCRs are initially phosphorylated by the SFKs that reside in the plasma membrane. Cytosolic Syk kinases bind to partially and fully tyrosine phosphorylated ITAMs with SH2 domains and, once they are recruited to the BCR-antigen complex, bound Syk molecules can further phosphorylate ITAMs associated with the same BCR or neighboring BCRs. These phosphorylated ITAMs in turn recruit more Syk molecules and generate a positive feedback in ITAM phosphorylation. Further details regarding these signaling reactions can be found in Mukherjee et al. The model also assumes that Syk molecules recruited by antigen-bound BCRs can phosphorylate ITAMs that come into physical contact with BCR-bound Syk molecules. These ITAMs can be associated with BCRs that are not bound to any antigen. Experiments reported in Kläser et al. support this assumption. To simplify our model, we do not model further downstream signaling reaction events (e.g., PI3K activation). In B cells, once ITAMs are fully phosphorylated, downstream signaling proteins are recruited that lead to activation events such as calcium signaling. Thus, in our model we used the total number of fully phosphorylated ITAMs as a measure of the strength of BCR signaling.

We assume that BCRs form clusters at the nanoscale when stimulated by eOD-GT8 immunogens. The assumption of the formation of such BCR clusters upon antigen stimulation has been found in many experiments, including super-resolution microscopy experiments. Our model does not describe any mechanism for the formation of these BCR clusters, but rather investigates the functional consequences of such cluster formation. BCRs in a single cluster are modeled as discrete particles, where each cluster is modeled by a circular region of radius 15 nm in the B cell plasma membrane where BCRs unbound by antigen can diffuse freely. However, unbound BCRs are restrained to remain within the cluster domain. If two BCR clusters overlap, then unbound BCRs can freely diffuse within the two overlapping cluster regions. Each BCR cluster can accommodate multiple BCRs, and we assume that the number of BCRs that can physically be accommodated (or the maximum BCR density) in a single cluster of radius 15 nm has an upper bound equal to 5 BCR molecules. Therefore, the total number of BCR molecules that can be accommodated in two overlapping BCR clusters is less than the total number of BCRs when these clusters do not
overlap, due to steric occlusion. As a result, the number of BCRs available for downstream signaling effectively increases as the region of overlap between any pair of clusters decreases. For example, increasing the distance (d) between the two antigens in an eOD-GT8 dimer decreases the overlap between two BCR clusters that would form in the vicinity of each antigen-BCR complex (Supplementary fig. 25).

Supplementary Fig. 25. Schematic diagram showing BCR molecules (red circles), BCR cluster regions (grey circle) and antigens (yellow stars) as incorporated in the model. BCR molecules not bound to antigens are allowed to freely diffuse in the BCR cluster regions. Three cases of overlaps, namely, (a) high, (b) medium, and (c) no overlap, generated by increasing values of the inter-antigen spacing d in a eOD-GT8 dimer are shown schematically. The total number of BCR molecules increase in the BCR clusters as the overlap between the clusters decreases.

We also note that the above model implicitly assumes that the formation of BCR clusters and Syk mediated signaling reactions occur in the model when antigens separated up to a distance of 80nm are presented on a rod. B cells are not appreciably stimulated by monomers of the immunogens displayed in the eOD-GT8 dimers or when these immunogens are connected by flexible linkers. Application of this model in the above scenarios have to be accompanied with modified assumptions where the immunogens do not give rise to clustering of BCRs or Syk mediated phosphorylation of ITAMs associated with unengaged BCRs. There are similar limitations in using our model to predict B cell signaling when antigens in the rod are separated beyond 80nm. The model assumptions regarding BCR clustering and signaling for antigens separated by longer distances (e.g., \geq 80nm) could pertain to “long range” molecular interactions facilitated by cytoskeletal forces between BCR molecules/clusters interacting with spatially separated antigens, and, studying these molecular mechanisms as d increases is outside the scope of the current model but could be an exciting future direction.

Numerical Simulation of the processes described in the model. We implemented a spatially-resolved in silico numerical model described in Mukherjee et al.7 to investigate early timepoint BCR signaling events triggered by eOD-GT8 immunogens. The simulation region represented the
B cell plasma membrane containing BCRs, antigens, and a thin (thickness $l_0 = 0.5$ nm) cytosolic region beneath the plasma membrane. The simulation region composed of the BCR cluster regions (Supplementary fig. 25) is discretized using N equal sized cubic chambers of dimension $l_0 \times l_0 \times l_0$. For the case of stimulation by eOD-GT8 dimers, BCR molecules in the model are distributed with a fixed density of 5 molecules/[(π 15^2)×(nm)2] within two clusters, each of radius 15 nm. We defined the fraction of overlap, f, as, $f = $ the total area of the overlapping BCR clusters/$(2 \times$ area of a single circular BCR cluster). A total number of $\text{int}[10(1-f)]$ BCR molecules are distributed uniformly in the cluster regions at the beginning of the simulation. The centers of the two BCR clusters are separated by a distance d, which is varied from 7 nm to 80 nm. This set-up is extended to 5 BCR clusters for studying stimulation by 5-mer eOD-GT8 using the same scheme as above. BCRs within a cluster do not diffuse outside of the region. In addition, Src family kinase (SFK) molecules and the kinase Syk are distributed uniformly and randomly within the simulation volume. The SFK and Syk molecules diffuse freely in 2D/3D space and phosphorylate tyrosine residues in the ITAMs following signaling reactions described in Supplementary Table 4. BCRs in each individual cluster can interact with a single antigen presented by the eOD-GT8 origami construct. For the dimer construct, as the inter-antigen distance d between the eOD-GT8 antigens is increased from 7 nm to 80 nm (Supplementary Fig. 25), and for the 5-mer eOD-GT8 the minimum distance d between the antigens is increased from 7 nm to 80 nm. Reaction and diffusion processes are explicitly simulated using the spatial Gillespie method implemented in the software package Stochastic Simulation Compiler17.

Importantly, the preceding model is coarse-grained in nature, thus does not describe the different microscopic states of BCR-antigen binding that were used in a particle-based Monte Carlo model to interpret surface plasmon resonance measurements in a recent DNA origami study that characterized the impact of inter-antigen distance on antibody binding. There, the "spatial tolerance" of single antibodies was determined, whereby a sharp decrease in binding affinity was observed when the inter-antigen distance increased beyond 17nm, the maximum inter-antigenic distance that is tolerated by an individual, flexible IgG18. Because that study was focused on the discrete nature of antibody binding to a discrete lattice of antigenic sites presented using DNA origami, such particle-based modeling was suitable. This is in contrast to the present work that sought to test the previously established positive feedback mechanism7, which was hypothesized here to explain BCR activation induced by the spatial constraints imposed on clusters that form upon antigen binding. In this cellular membrane environment, dozens to hundreds of protein components may be involved, rendering single-particle-based models extremely computationally demanding. Notwithstanding, incorporating these additional structural features of BCRs and their kinetic on/off-rates would be interesting to explore in future work.

Results

BCRs in the simulation box composed of multiple BCR clusters were stimulated by antigens displayed on a single origami dimer or pentamer of eOD-GT8, where the minimum distance d between the antigens was increased monotonically from 7 to 80nm. ITAM phosphorylation kinetics reached the steady state by approximately 200s. Immunogens were assumed to bind BCRs irreversibly due to their high affinity19, whereby once the antigen binds to a BCR it does not unbind. The ITAMs of antigen-bound BCRs were initially phosphorylated by SFKs, and the phosphorylated ITAMs recruited Syk kinase to the antigen-BCR complex. The bound Syk kinase then phosphorylated ITAMs associated with other neighboring BCRs that were not bound to any antigen, which then react with bound Syk molecules in the simulation. The variation of the total
number of fully phosphorylated ITAMs time-averaged between 300s to 5000s with \(d\) for eOD-GT8 1D dimer shows larger increase in ITAM phosphorylation up to \(d = 21\) nm, subsequently saturating to a fixed-value for larger values of \(d\) (Supplementary Fig. 26a and c). ITAM phosphorylation increased with increasing \(d\) as the total number of BCRs present in the clusters increased with increasing \(d\). This was because as \(d\) increased the overlap between the clusters decreased (Supplementary Fig. 26b and c), thereby lowering the steric interaction between the BCR molecules that made it possible for larger numbers of BCR molecules to reside within the clusters. However, experiments with eOD-GT8 1D pentamer (Supplementary Fig. 18b) show apparent saturation of calcium flux at a smaller \(d\) (~11nm) compared to that predicted by the model (~28 nm, Supplementary Fig. 26b). This disagreement could be due to the mechanisms that are not included in the model, such as limitation in BCR signaling by cytoskeletal forces\(^\text{12-14}\), which could generate a saturation on BCR signaling at a lower value than that predicted in the model.

We also carried out a simulation where antigens were displayed on a planar two-dimensional pentamer of side \(d\) in order to investigate the effect of the geometry of displayed antigens on B cell signaling. The BCR signaling increased gradually with increasing \(d\) (Supplementary Fig. 26e) and saturated at larger values of \(d\). The behavior potentially captures the gradual increase in the calcium flux observed with increasing inter-antigen distances in Ico-5mer (Supplementary Fig. 18b). This behavior in the model can be mechanistically explained by the increase in the number of BCR molecules as the overlap between the BCR clusters decreased with increasing \(d\) (Supplementary Fig. 26f).

Furthermore, we investigated the effect of lower antigen affinity by performing a simulation of the model when B cells were stimulated by lower affinity antigens (\(k_{\text{off}}=0.1\) s\(^{-1}\)) displayed on eOD-GT8 1D dimer and eOD-GT8 2D pentamer. In this case, the BCR signaling increased monotonically with increasing \(d\) (Supplementary Figs. 26g and h) which is qualitatively similar to that observed for high affinity antigens (Supplementary Figs. 26a and e), however, the total number of fully phosphorylated ITAM decreased for the lower affinity antigens compared to its higher affinity counterparts (Supplementary Figs. 26g and h). The antigen-BCR complexes have shorter lifetimes compared to that formed by the high affinity antigens. Therefore, Syk-induced phosphorylation of ITAMs is less efficient in the case of stimulation with lower affinity antigens as once the antigen unbinds from the BCR, Syk molecules quickly dissociate from the BCR complex. This results in a lower number of fully phosphorylated ITAMs when weak affinity antigens stimulate BCRs. The mechanism could potentially underlie the lower amount of calcium flux observed for B cell stimulation by low affinity eOD-GT5 compared to its high affinity eOD-GT8-60mer stimulation (Supplementary Fig. 16)
Supplementary Fig. 26. Results from our *in silico* BCR signaling model.

(a) Variation of the total number of fully phosphorylated ITAMs corresponding to antigen spacing, *d*, when BCRs were stimulated by a single eOD-GT8 1D dimer. The total number of ppITAMs was divided by its value.
A. Reactions and reaction rates

Supplementary Table 4. Parameters used in the model

Reaction	k_{on} (µM$^{-1}$s$^{-1}$)	k_{off} (s$^{-1}$)	k_{cat} (s$^{-1}$)	Notes
$R + L \rightleftharpoons R_b$	0.02	0.0	N.A.	The antigen has a very small unbinding rate ($k_{off} \sim 10^{-5}$ s$^{-1}$) (see main text), thus we set k_{off} to zero for the simulation time scale. k_{on} is estimated by requiring that the kinetics reaches the steady state in about 200s.
$R_b + Ly \rightleftharpoons R_b - Ly$
$R_b - Ly \rightarrow R'_b - Ly$
$R'_b - Ly \rightarrow R''_b - Ly$

0.04 | 6.0 | 3.5 | k_{on} for Lyn binding is estimated, and k_{off} and the catalytic rate (k_{cat}) are similar to that in Ref. (Mukherjee, 2013 #1).

$R + Ly \rightleftharpoons R - Ly$
$R - Ly \rightarrow R' - Ly$
$R' - Ly \rightarrow R'' - Ly$

0.04 | 50 | 3.5 | Fast binding (complex lifetime ~1/50 s) of Lyn to unbound BCRs is assumed to generate a basal level of ITAM phosphorylation. Increasing or decreasing the k_{off} value by 5 or 4 times, respectively, does not change the qualitative nature of the results (Supplementary Fig. 26i).

$R'_b + Sy \rightleftharpoons R'_b - Sy$

0.03 | 10 | N.A. | k_{on} for Syk binding is estimated, and k_{off} is similar to that in Ref. (Mukherjee, 2013 #1).

$R' + Sy \rightleftharpoons R' - Sy$

0.03 | 120 | N.A. | Fast binding (complex lifetime ~1/100 s) of Syk to unbound BCRs is assumed to generate a basal (tonic) level of ITAM phosphorylation.

$R'' + Sy \rightleftharpoons R'' - Sy$

0.03 | 0.01 | N.A. | k_{on} for Syk binding is estimated, and k_{off} is similar to that in Ref. (Mukherjee, 2013 #1).

$R'' + Sy \rightleftharpoons R'' - Sy$

0.03 | 10.0 | N.A. | k_{on} and k_{off} values for Syk binding are estimated.

$R'_b - Sy / R' - Sy$
$\rightarrow R''_b - Sy / R'' - Sy$

N.A. | N.A. | 0.05 | Phosphorylation rate of ITAMs by Syk is estimated.

$-Sy + R / R_b \rightarrow -Sy + R' / R'_b$

0.004 | N.A. | N.A. | Phosphorylation rate of neighboring ITAMs by ITAM bound Syk is estimated. This generates the positive feedback. Increasing or decreasing the rate by 5 or 4 times, respectively, does not change the qualitative nature of the results (Supplementary Fig. 26i).

$-Sy + R' / R'_b \rightarrow -Sy + R'' / R''_b$

0.004 | N.A. | N.A. | Phosphorylation rate of neighboring ITAMs by ITAM bound Syk is estimated. This generates the positive feedback.
Increasing or decreasing the rate by 5 or 4 times, respectively, does not change the qualitative nature of the results (Supplementary fig. 26i).

Reaction	k_1	k_2	Notes
$R_b^- / R^- + Sh \rightleftharpoons Sh - R_b^- / Sh - R^-$	0.006	1.0	N.A. Phosphatase SHP-1 binding/unbinding rates are estimated.
$R_b^{**} / R^{**} + Sh \rightleftharpoons Sh - R_b^{**} / Sh - R^{**}$	0.06	0.1	N.A. Phosphatase SHP-1 binding/unbinding rates are estimated. SHP-1 with two SH-2 domains of SHP-1 binds to fully phosphorylated ITAMs at a higher rate compared to the partially phosphorylated ITAMs (Ref. {Mukherjee, 2013 #1}).
$R_b^- - Sh / R^- - Sh \rightarrow R_b / R + Sh$	N.A.	N.A.	0.3 Value taken from Ref. {Mukherjee, 2013 #1}.
$R_b^{**} - Sh / R^{**} - Sh \rightarrow R_b^* / R^- + Sh$	N.A.	N.A.	0.3 Value taken from Ref. {Mukherjee, 2013 #1}.

R: free BCR, L: antigen, R_b: antigen-bound BCR, R^*: partially phosphorylated ITAM associated with R, R^{**}: fully phosphorylated ITAM associated with R, Ly: Lyn (SFK), Sy: Syk, Sh:SHP-1 (phosphatase), -Sy: pITAM or ppITAM bound Syk.

Diffusion constants for the plasma membrane bound and cytosolic molecules are set to 0.01 (μm)2/s and 10.0 (μm)2/s, respectively.
B. Number of molecules inside the simulation box

Species name	Number (eOD-GT8 1D dimer)	Number (eOD-GT8 1D or 2D 5-mer)	Notes
Antigen	2	5	Determined by ligands used in experiments.
BCR	10 (when there is no overlap)	25 (when there is no overlap)	The BCR numbers in the clusters are consistent with previous experiments and size of the BCRs (see [Supplementary text 1](#)).
Lyn	5	12	Estimated.
Syk	10	25	Estimated. Increasing or decreasing the value by 2 times does not change the qualitative nature of the results ([Supplementary fig. 26i](#)).
SHP-1	10	25	Estimated.
Supplementary Table 5. P-values for Fig. 2.

Fig 2c

Row	PBS	Ico-0x	Ico-1x	Ico-2x	Ico-3x	Ico-4x	Ico-5x	Ico-10x	eOD-GT8-60mer
PBS	0.493436	0.89191	1.13E-05	0.00088	0.000346	5.27E-05	0.000834	0.00051624	
Ico-0x	0.493436	0.345284	0.006204	0.008562	0.001881	0.003691	0.000346		
Ico-1x	0.89191	0.345284	0.001098	0.003013	2.37E-05	0.000771	5.24E-05	0.001885169	
Ico-2x	1.13E-05	0.006204	0.001098	0.030904	0.005501	0.000295	0.008987	0.0004083111	
Ico-3x	0.00088	0.008562	0.001098	0.003013	0.030904	0.093347	0.009024	0.001885169	
Ico-4x	0.000346	0.001881	2.37E-05	0.005501	0.000295	0.003691	5.24E-05	0.0004083111	
Ico-5x	5.27E-05	0.003691	0.001881	0.003013	0.030904	0.093347	0.009024	0.001885169	
Ico-10x	0.000834	0.001193	5.24E-05	0.008987	0.004083	0.000487	0.137352	0.141879698	
eOD-GT8-60mer	0.000516	0.005257	0.001885	0.004083	0.000487	0.137352	0.141888	0.595305897	

Fig 2d

Row	PBS	Ico-0x	Ico-1x	Ico-2x	Ico-3x	Ico-4x	Ico-5x	Ico-10x	eOD-GT8-60mer
PBS	0.08999	0.389131	0.02394	0.016294	0.003536	0.01102	0.001067	0.005889142	
Ico-0x	0.08999	0.977052	0.004753	0.008062	0.004916	0.001656	0.000369	0.00640514	
Ico-1x	0.389131	0.977052	0.010846	0.000153	0.006472	0.020584	0.015051612		
Ico-2x	0.02394	0.004753	0.010846	0.052715	0.002812	0.00911	0.001676	0.02058405	
Ico-3x	0.016294	0.008062	0.000153	0.052715	0.052538	0.013243	0.003372	0.065446961	
Ico-4x	0.003536	0.004916	0.006472	0.02812	0.052538	0.010054	0.035724	0.175582909	
Ico-5x	0.00102	0.001656	0.002778	0.00911	0.013243	0.010054	0.127902	0.624728469	
Ico-10x	0.001067	0.000369	0.000657	0.001676	0.003372	0.035724	0.127902	0.84904309	
eOD-GT8-60mer	0.005889	0.006405	0.015052	0.020584	0.065446	0.175583	0.624728	0.849043	
Supplementary Table 6. P-values for Fig. 3b.

Fig 3b	Row	6HB-2x-7nm	6HB-2x-28nm	PBS
NaN	NaN	0.9999	0.0003	
NaN	0.9999	NaN	0.0003	
NaN	0.0003	0.0003	NaN	
Supplementary Table 7. P-values for Fig. 3c.

Fig 3c	Row	PBS	ssDNA linker	ssDNA linker 7.6nm	ssDNA linker 30nm	ssDNA linker 52nm	PEG linker 0.6nm	PEG linker 1.8nm	PEG linker 3.9nm	6HB-0x	6HB-2x-28nm
	PBS	NaN	0.148663	0.037021	0.002094	0.024562	0.042811	0.034649	0.046538	0.733514	0.00185
	ssDNA linker	NaN	0.148663	0.039737	0.003992	0.028994	0.065672	0.052425	0.046739	0.308796	0.000185
	ssDNA linker 7.6nm	0.037021	0.039737	NaN	0.071463	0.026132	0.403086	0.185208	0.063565	0.027456	0.002904
	ssDNA linker 30nm	0.002094	0.003992	0.071463	NaN	0.743805	0.335171	0.808859	0.02302	0.000414	0.000436
	ssDNA linker 52nm	0.024562	0.028994	0.026132	0.743805	NaN	0.152415	0.962907	0.59734	0.017098	0.006259
	PEG linker 0.6nm	0.042811	0.065672	0.403086	0.335171	0.152415	NaN	0.040614	0.304591	0.029590	0.005721
	PEG linker 1.8nm	0.034649	0.052425	0.185208	0.808859	0.929207	0.040614	NaN	0.803306	0.025533	0.00897
	PEG linker 3.9nm	0.046538	0.046739	0.063565	0.62302	0.59734	0.304591	0.803306	NaN	0.040575	0.14995
	6HB-0x	0.733514	0.308796	0.027456	0.000414	0.017098	0.029590	0.025533	0.040575	NaN	0.000119
	6HB-2x-28nm	0	0.000185	0.002904	0.000456	0.006259	0.005721	0.00897	0.14995	NaN	
Supplementary Table 8. P-values for Fig. 4.

Fig 4b	Ico-5x-3nm	Ico-5x-11nm	Ico-5x-15nm	Ico-5x-22nm	Ico-0x
Row					
Ico-5x-3nm	0.076169193	0.0299739	0.003011634	0.001800419	
Ico-5x-11nm	0.076169193		0.008038514	0.010558122	
Ico-5x-15nm	0.0299739	0.033635109		0.007096408	
Ico-5x-22nm	0.003011634	0.008038514	0.047160949		0.001332615
Ico-0x	0.001800419	0.010558122	0.007096408	0.001332615	
Supplementary Table 9. P-values for Fig. 5.

Fig 5c

Row	Control	6HB-2x-7nm	6HB-2x-28nm	Ico-30x	eOD-GT8-60mer
Control	0.000727854	0.001599224	0.00087076	0.006121495	
6HB-2x-7nm	0.000727854	0.031436033	0.011184711	0.160429357	
6HB-2x-28nm	0.001599224	0.031436033	0.303764192	0.415272711	
Ico-30x	0.00087076	0.011184711	0.303764192	0.477876625	
eOD-GT8-60mer	0.006121495	0.160429357	0.415272711	0.477876625	

Fig 5d

Row	6HB-2x-7nm	6HB-2x-28nm	Ico-30x
6HB-2x-7nm	0.555857459	0.014166752	
6HB-2x-28nm	0.555857459	0.007375736	
Ico-30x	0.014166752	0.007375736	
Supplementary Table 10. Scaffold sequences. (Red indicate the primers binding site)

Name	Sequence
Icosahedron	**C**
6-HB	**TCCTTGCCTGCTGCTGCT**
	GTGCTTTCACTCTGTTCTCAGT
	AACCTGTTTATTTGGGAATATTGT
	ATATGGAATATTGT
	ATATGGAATATTGT

Red indicate the primers binding site
Supplementary Table 11. 6-Helix Bundle staple list.

Staple name	Sequence
6HB_1	TGCTGCATTCACCACATTAAT
6HB_2-polyT	AATTCGGTGTATCTTTTGGTAATTCAGCTCATTTT
6HB_3	GCCGGCCCTGGCCCTTCATGCTC
6HB_4	AGATCAAGAATAAATGTGT
6HB_5	TGACCGGTCAATCTGAGAGA
6HB_6	CCATCAAAATTAATCGGTCA
6HB_7	TGTAACGTTAACAACGGACTG
6HB_8	GAGGCCGCCACAACTTGTAAATTCGCCAATAATTCGCTG
6HB_9	ATCAACAGAGTCTAGAGAATCGGATGAGATGGGCGCA
6HB_10	AGGTAAATTGGCTGCTTGTG
6HB_11	TTTTTAACCAATAAACGAC
6HB_12	CCAGCTGAGCTGATGGAAACC
6HB_13	TGGCCCTTTAATATTTACGAGC
6HB_14	CTGGTGGAACGGGTATAAATTT
6HB_15	TCCGTTGGTATAATTTGCGT
6HB_16	AGAAAGGACATAAAGGCTAAATCAGTATAATCAGGTGCAATCTG
6HB_17-polyT	TTTTTTTTTTTTTTCA
6HB_18	AATTCGGTGTATCTTTTGGTAATTCAGCTCATTTT
6HB_19	TTGAGGCGGTATGACCC
6HB_20	TTGCTGGTCATAATGCGGAAAATCCGTGAGCCGCAAAGCGCCA
6HB_21	TGGCAATGTTCAACGAAACCTACCACAAAAACGTGGAAGAGG
6HB_22	AATGCGCCCTATTATTATATGGTTACAGCAGAAAAAGAGG
6HB_23	CTAACTCCCAAGTGCGTCCCTCCAAGCCCTCTCTCGCCGATTC
6HB_24	CCGAAGCCAACGGGGTGGTTTTTTTTGCTGCAATCCAGTT
6HB_25	GAGTAACAAACAGGGAGTGAG
6HB_26	GTGACGAGAGATCGAGCTCG
6HB_27-polyT	TTTTTTTTTTTTTTTTCA
6HB_28	TCAATAAAAATATTGAAAGC
6HB_29	TGCGCCACGGCAAGGATATTC
6HB_30	TGCGCTTCAAGTGGAGAAG
6HB_31	CGAAACCTTGGAGCATGCC
6HB_32	GGTAACGGCGCCACGGGGA
6HB_33-polyT	GTCAAGGGCGAAAACGGTCTATTTTTTTT
6HB_34	ACCGGTTAGGCTATCTGAAATTTACCTAGCATTAATGGGTGCCA
6HB_35-polyT	TTTTTTTTTTTTTTTTTGCAAGAGAGTCCAGATTTTTTTTT
6HB_36	TCTAACAACAGTGCGCTGGCACTGTGCTTTGCTTTCAGAGATGTC
6HB_37	GAATCGGATAAAAGTGTAAATTTGAAACGCTTCTGAGTTAGTG
6HB_38-polyT	GGGCGTGGCCAAATTTTTTT
6HB_39	GCGGTAGGAGAGGCGAGAGAGGTGACGGAGAGGAGGACGGATCGT
6HB_40	TCGAGGGGACGACGACAGTA
6HB_41-polyT	TTTTTTTTTGCTTTGCATGCTGTTCAGTGAGCTTTTTTTTTTT
6HB_42	CCCCATATCTGAGTGGCAGGATAGGCTATTAATCCCAAC
6HB_43	ACGTGGCGGTAATCACGTCA
6HB_44	TTCCGGGCAAATAAGGGTG
6HB_45	TACCAACCGGAATGTTCCGAAATCGACCGTCTCTGCCCAG
6HB_46	CGCTTTTGTATTAACGAAAAAGCCCCAAAAACCCGTTATTCG
6HB_47	CGGGTCCAGCTGTTGAGACGGCAACGGAAGGGGATG
6HB_48	GTGAAATAATCATGGGAGGTCGACTCTAGTTTGTAAGGAAG
6HB_49-polyT	TTTTTTTTTTTATCACCTTATAAATTTAAA
6HB_50	GTAATACGATTCAACCTTATATAATCAACTCCAGCCAGCT
6HB_51	TGTCGTTGGCCTATTATAGATTGTATAAGCCATTTAATGTGAGC
Supplementary Table 12. 6-Helix Bundle modified staple list.

6 Helix Bundle 5 mer-7nm: Modified staples list

Staple name	Sequence
6HB_47	CTGGGTCGCCAGTGTGGAGACGGGCAACGGAAAGGGGATGTACCTGGAACTG
6HB_46	CGCGTCTATTTAGAGAGAAAGGCCCAGAAACCCGTTATTTACCTGGAACTG
6HB_39	GGCTAGGAGGCGAGAGAGATGTCAGGAAAGGGGATGTACCTGGAACTG
6HB_34	ACCGGTATTCTGTAATTTATGACGATATTCTGGTACCTGGAACTG
6HB_20	TGGCCTGTCATTGCCAGGAAAGTCTGGTCAGGAAAGGGGATGTACCTGGAACTG

6 Helix Bundle 5 mer-11nm: Modified staples list

Staple name	Sequence
6HB_37	GATCGTGATAAAGTTAATTGTGAAGCGCTGTAGTAAGTGTACCTGGAACTG
6HB_39	GCGGTAGGAGACGGGCAACGGAAAGGGGATGTACCTGGAACTG
6HB_16	AGAAAGGAACATTTAAAAGCAGCTAAATCGCGTGCATCTGGTGCTTACCTGGAACTG
6HB_51	TGCCGTTGGCCTTAATAAGATTGTATAATGCGCTATTTACCTGGAACTG
6HB_36	TCTCAACTAGCGCTGCTGTTTACCTGCCGACGATTACCTGGAACTG

6 Helix Bundle 5 mer-15nm: Modified staples list

Staple name	Sequence
6HB_37	GATCGTGATAAAGTTAATTGTGAAGCGCTGTAGTAAGTGTACCTGGAACTG
6HB_46	CGCGTCTATTTAGAGAGAAAGGCCCAGAAACCCGTTATTTACCTGGAACTG
6HB_34	ACCGGTATTCTGTAATTTATGACGATATTCTGGTACCTGGAACTG
6HB_16	AGAAAGGAACATTTAAAAGCAGCTAAATCGCGTGCATCTGGTGCTTACCTGGAACTG
6HB_21	TGCAATGTTCACACAGCCACATCACCACAAAAAGCAGGACGTTACCTGGAACTG

6 Helix Bundle 5 mer-17nm: Modified staples list

Staple name	Sequence
6HB_11	TTTTTAACCAATAAACGACTTACTGGACTG
6HB_39	GCGGTAGGAGACGGGCAACGGAAAGGGGATGTACCTGGAACTG
6HB_21	TGCAATGTTCACACAGCCACATCACCACAAAAAGCAGGACGTTACCTGGAACTG
6HB_24	CGGAGCAACGCCGCTAGTGTACCTGGAACTG
6HB_9	ATCCACCAAGAGTCTAGAGAAATGATGATGAGGTGGGCACATTACTGGAACTG

6 Helix Bundle 2 mer-7nm: Modified staples list

Staple name	Sequence
6HB_39	GCGGTAGGAGACGGGCAACGGAAAGGGGATGTACCTGGAACTG
6HB_34	ACCGGTATTCTGTAATTTATGACGATATTCTGGTACCTGGAACTG

6 Helix Bundle 2 mer-14nm: Modified staples list
Staple name	Sequence
6HB_46	CCGCTTTACATTAAAGAAGCCCTCACAACCGTTATTACGTTACTGGACTG
6HB_34	AACCCTTTACATCAGCTCGTTAAATCTAGCCATTAAATGGGTGCAGCGAATTACTGGACTG

6 Helix Bundle 2 mer-21nm: Modified staples list

Staple name	Sequence
6HB_46	CCGCTTTACATTAAAGAAGCCCTCACAACCGTTATTACGTTACTGGACTG
6HB_20	TTGCCCTGTCAATATGGCGAAAATCCTGTCAGGCAAAGCGCCATTACTGGACTG

6 Helix Bundle 2 mer-28nm: Modified staples list

Staple name	Sequence
6HB_37	GAATCGGATAAAAGTAAATGAAACGCTCTGTATAGTAAATTGTACTGGACTG
6HB_20	TTGCCCTGTCAATATGGCGAAAATCCTGTCAGGCAAAGCGCCATTACTGGACTG

6 Helix Bundle 2 mer-80nm: Modified staples list

Staple name	Sequence
6HB_11	TTTTTAACCAATAAGCTACTTACTGGACTG
6HB_42	CTTTATCCCTGAGTGGCCCAGATAGGGTTATTAACACTCCACTTACTGGACTG
Supplementary Table 13. Icosahedron staple list.

Staple name	Sequence
Ico_52_1	ACGGGAGAATTTTTTAACTGAAACATATCGAGAGTTTTTTAATACCACATCATCGGCATTTTTTTTCGGTCATA
Ico_52_2	GAAAAGTACTATCTTTACGAGGGCATCCCA
Ico_52_3	ATTCTGCCGATATACAGTTGCTTTTTAA
Ico_52_4	GCGGTTTAAAATAGGTATTAAGCCCAAATAAT
Ico_52_5	AAGAGCAATTTGCGCTATGAGCTAGAGTAGATTTTTTTAGTTGAC
Ico_52_6	GAAAACGAGTAATTTTTTCTATGAAACAGACAGGAGGTTTATGATATATTTGATATA
Ico_52_7	CCATTAGCAAGTTTTGCGCCAAAGACGATCCGATTTTTACGAGATCG
Ico_52_8	ATTGCTGAAATTTTTTAAAATGCTGATAGCGTTGCTTTTTGAGTTTCAATAAGAGATAGATTTTTTAGTTGAC
Ico_52_9	CCTTCTAGATTCTTTTTATTTTTTTCTCCTTCTTCTTTTATA
Ico_52_10	GCTAATAACATTAGATACATTCTTTGCAGTTTTAA
Ico_52_11	GAGGCTCTGAATCAAACTGACAGGAAATAG
Ico_52_12	GAGATCTTGGGCGCGAGCTGTTTAACGT
Ico_52_13	CAAAATCCAACCTCAAGGGTTCAGGATTA
Ico_52_14	CAAGGCGACCTTTTTAGACCGAGAAAGAAATAGCCAGCAGTCCTTTTTCTTTACAGAGGAGCGG
Ico_52_15	GCCACCAAGAATACATATATAAACACGGGAA
lco_52_81	GAAACGAAACATAAAGGGAGGCAACCATAAAT
-----------	---------------------------------
lco_52_82	AAGACACCACGTTTTTGAAATAAGTTTTTTACCCAGCGCTTTTTCAAAGACAAAAGGTTAAATATTGTTTTTGGGAAATT
lco_52_83	ACGGAATACCCCTTTTTAAAAGAAACTGAGCAAAAGTATTTTTTGGAAATACAT
lco_52_84	TAATCGAAAATCTTTTTACCGGAACCACCGCCACCCCTCAGTTTTTAAACGACCCACC
Supplementary Table 14. Icosahedron modified staple list.

Staple name	Sequence
Ico_52_VM_1	ACGGGAGAAATTTTTTAATGACACATATCAAGAGTTTTTAACCCACACATCATCGGCCATTTTTTTTTTTCGGTGATA
Ico_52_VM_2	GAAAGATCACTATCTCTCCAGAAGCCATCCCA
Ico_52_VM_3	ATTCTGCTCCATATAACAGTTGCTTTTTAA
Ico_52_VM_4	GCCGGTTGAAGATGTTAAAGCCCAATACGAATTCGCCCATCAGAATTTT
Ico_52_VM_5	AGAGCAATTTGCCCTTTAGGCTCAGACTCTGA
Ico_52_VM_6	CAGAACCAAGAAGAACATAAGG
Ico_52_VM_7	ATAGCAATAGGACAGATACC
Ico_52_VM_8	TTTGCTGAAATATTTTTTAACAGCTGTATACGGGTCTGCTTGAAGTTCTAATCAGAGTAGATTTTTTTTTTTTTTTGA
Ico_52_VM_9	CCTGTTAGCCTTTTTATATTTTTCACTTTTTAATTGCTTTTTCTTTTTTTGATA
Ico_52_VM_10	GTCATAAAGTATTAGATCAGATTTCGGGTAAATT
Ico_52_VM_11	GAGGCCTACCTGCAAACAGTCAGACAATATTG
Ico_52_VM_12	GAGATCTTGGGCAGCGCTGCTTTAAGCTGAAGGYES
Ico_52_VM_13	CAAAATGGCAATCTCAGACCGCTGACAGTTA
Ico_52_VM_14	CAAAGGCCAACTTTTTTAGCAGGGAAGAAAAATAGCAGCTTTTTCTTTTACAGAGGAACACACCCCACTTTTTAGAGGCGGA
Ico_52_VM_15	GCCACCAAGAATACACATAAACACACGAGGAGG
Ico_52_VM_16	CGCATTAGCCAGAAGCCACCACCCACCTACAGGACC
Ico_52_VM_17	AATCAGGCTAATTTTTTCAAGACGTCTACTACATATATTTTTACCTCAGTTT
Ico_52_VM_18	ATTACCCACCAGCATGAGACAGTGGGTTAGGG
Ico_52_VM_19	CAGTCGACATTTGAGAAGACGGGATATTC
Ico_52_VM_20	GGCCTGACCTTCTTCTTTATCAAGAGTAACGATGCTTGCCTTTTTGTATTCAC
Ico_52_VM_21	GSAAXGCGCAATTTCTTCTCTGAATAAAGGCACTCAGCTTTTTTTTGGAGGGAACAGGGCAACTTTTTTGAGGGCGAAGGAGG
Ico_52_VM_22	GCCGAATAAACAATATATATATCTCAGCTCC
Ico_52_VM_23	TCAAGACCGAGCCACCCAGACCTTCAGTTAAAA
Ico_52_VM_24	AGCAGCGATACCTTACGCAGTAAAGCTCATAC
Ico_52_VM_25	ATGCGCTTTCTCTTGGCGGTAGCCTCACCCTTC
Ico_52_VM_26	GCTTGCAAGGGATTTTTTGTAAAGGCTGATGATACGTCAACTGATGACTGAGATGCTGACCTTTTTTGTATACAG
Ico_52_VM_27	GGTGGTGAATATAAGGGTTTTAAACCGGTTGACA
Ico_52_VM_28	TCTTTTCACCCCCCTATTAGGCGGGTGCTAGT
Ico_52_VM_29	TATTTCTGAAATCTATTTTATAGAAAGTATACGACATAATGACATATTTTTTACACATTCC
Ico_52_VM_30	GAACCTATTTAAGGCCCTTGCCCGATAGGCA
Ico_52_VM_31	GCACGCTATACCAATGAAACACATTATTTCG
Ico_52_VM_32	AGTGGCGCTAAGGCTGAGACTCTCAAGA
Ico_52_VM_33	GAAGGATTTCTTTAAACAGCTGTTAGACCCGT
Ico_52_VM_34	TCAGGTGCGCCACACGAAAGGTGTAATAAGG
Ico_52_VM_35	TTAAGCCCATCCATAAGCGGTTAAATTTGCG
Ico_52_VM_36	CAGACGTAAGCAGACCGCTACAGAGGCCTTTG
Ico_52_VM_37	AGGACTAACAGACGGCTCATATAAGGGAAC
lco_52_VM_38	CATAGGCTTGAACGGTGTACAGATTAATTTC
---------------------	---------------------------------
lco_52_VM_39	AACTTTAATGGGCTTGAATGTTGCGGCG
lco_52_VM_40	TAAGAGCAACATTCAATTTGAGTCTGTGCC
lco_52_VM_41	TGACGAGACCAAAAGGAAATTAGGAGGCTAG
lco_52_VM_42	TCGAGCTTTACAGACGACGCTAATAAACCAAA
lco_52_VM_43	ATAGGAGACTTCAAATATCGCGTTTTAAT
lco_52_VM_44	AGAGCTTTAAGAGCTTACATTGCGGATTT
lco_52_VM_45	CATCAAAATAGTCAGAAGCAAAGGATGCTT
lco_52_VM_46	AAATAGGGCTCAACATGTTTTATATTATCG
lco_52_VM_47	CGTAGATGCTCAGATAGAAGTACCTCAATAGC
lco_52_VM_48	GAACAAAGTTACTTGAGCCCAT
lco_52_VM_49	TTGGGAATATTCATTTAGCAAG
lco_52_VM_50	CGTCACCAGCCAGAAGAAGAACCAGAAGACG
lco_52_VM_51	CATATAAATGCTTAAAGGTAATATACAC
lco_52_VM_52	CACCATTAGCGACAGAAAAATCAGTGCCGTC
lco_52_VM_53	GAGAGGGTAGTACGTACGCCTGATAACAGTAG
lco_52_VM_54	TGATATAAGTATTTTTTTAGCCCGGAACCGCCACCTCTCTTTTAAAGCACTCCTCTATTTTTTATAGGAGGAAATTTGTGAGACG
lco_52_VM_55	CAGCTGTGCTTTTTTTTCGAGTGATAGATTAGCGGTCTTGGTTTTGTCCTG
lco_52_VM_56	GTTTAGTATAGGTGTACATTACCGTGATTTG
lco_52_VM_57	GGGAGGAAAGGGGACATTCGACATTCCAGAG
lco_52_VM_58	TTCAGGTCTCCCTCAAGACCGCCACCTCCAGA
lco_52_VM_59	GCCACCACAGGAGATGGGAATATATATTTTT
lco_52_VM_60	TGAATTTTCTGTGTTTTTTATGGGATTTTGAAGAAATTGTGTTTGGGAACCCCACTACCTCTATTGTGTTTGGGAAAAATCATTATTAGGTTTT
lco_52_VM_61	GAGTTTCTGCTATTTTTCCAGATATTAGTAGGCTTGGTTTTGTAACGATCT
lco_52_VM_62	GAAAACGTACGTTAATAAAAACGTCACAGGCG
lco_52_VM_63	TCAAACGCTTACACGCTGGTACATCAATAAT
lco_52_VM_64	GACAGCCCTTACACGCTGGTACATCAATAAT
lco_52_VM_65	AACCCCCGAATGATCTTAAATAATTCACACA
lco_52_VM_66	TTAGTTAAAAAGTGTGTCGTTGCTTTAAGTAAAC
lco_52_VM_67	GGAAACACTAGTTAATAAAGCAGCAGGAGCAG
lco_52_VM_68	AGCGGAGTGCTTAAACAAAATTTCTGAAAAACAG
lco_52_VM_69	TACAACGTTTACAAAGCGGCAAGAGTTTCC
lco_52_VM_70	CGTTTATTCCTCTAAAGGGCCTCTTTGGAATAACA
lco_52_VM_71	CTAAACACGGAAGAGGCAAAAAATTGTAT
lco_52_VM_72	CTAGGAGGACTTTTTTTCCAAAGTACCTCTTTGCTTATTTTTCCACCAGCCA
lco_52_VM_73	AGTTTATTGTATTTTTTATGGGCTGTTATACGTAGGCTGTTTTGGAACGAGGCCAGACCTTATTCTTTTCAGGTAGGTT
lco_52_VM_74	GCTCCATGAAATTGTGCTGGAATCCTCATTATA
lco_52_VM_75	TACCACTGCTATTATAAGAAGCTGCCGACCT
lco_52_VM_76	CATCTGGATTATTTTTTATGCTTACGTAGGCTGTTTTGGAACGAGGCCAGACCTTATTCTTTTCAGGTAGGTT
lco_52_VM_77	AAATAGGGCTTAAAAACGAGACGAACTCTTTTGGAGTAAAAAAATCACTATTACAGGGTTT
lco_52_VM_78	CCACATTCCATCTAGTGGAGATTTAGTAAAT
Staple modified name	Sequence
----------------------	----------
Ico_52_VM_79	GTTTAGACTGCCAGGAGGGTAATAGGAAATA
Ico_52_VM_80	TGGATAGCGTCTTTTTCAATACTGCGTCAAATGCTTTTTTTAAACAGTTCAAGGTCTTTACCTTTT
Ico_52_VM_81	TCTGACTATTA
Ico_52_VM_82	AGATTAAGAGGTTTTTAAGCCCGAAAATGACATATAAAA
Ico_52_VM_83	CAACCCCAACCTAAAGGCTTTGCTTTTTAAACAGTTCAAGGTCTTTACCTTTT
Ico_52_VM_84	TGGATAGCGTCTTTTTCAATACTGCGTCAAATGCTTTTTTTAAACAGTTCAAGGTCTTTACCTTTT
Ico_52_VM_85	ACGGAATACCCCTTTTTAAAAAGACTGTAGCAACGTATTTTTGAAATACAT
Ico_52_VM_86	GCCGGAAGGCTAGTGCGA
Ico_52_VM_87	TAATCCAAATCTTTTTACCAGAAACCCCAACCTCAGTTTTTTAACGCCACC
Icosahedron 60 mer eOD-GT8: modified staples list	

Staple modified name	Sequence
lco_52_60-mer-eOD-GT8-DS_2	GAAAAGTACTATCTTACCGAAGCCATTCCCATTACTGGACTG
lco_52_60-mer-eOD-GT8-DS_3	ATCTTGGCTCATATACAGTTGTTTTTAATATTCTGGACTG
lco_52_60-mer-eOD-GT8-DS_4	GCGGGTGTAGTAATGGAACCTGATTACATTTCTGGTAAATTCTGGACTG
lco_52_60-mer-eOD-GT8-DS_5	TTACTGGACTGAAGAGCAATTTGCCTTTAGCGTCAGACTGTA
lco_52_60-mer-eOD-GT8-DS_10	GCCAAGAGATGCTATATTTCTGGACTG
lco_52_60-mer-eOD-GT8-DS_11	AGGGGCTTACGCGGAAAGATCTGACATTTCTGGACTG
lco_52_60-mer-eOD-GT8-DS_12	GAGGGTACTGCGGACGTCGCAATTTACTGGACTG
lco_52_60-mer-eOD-GT8-DS_13	AAAAATGAGATGCTATATTTCTGGACTG
lco_52_60-mer-eOD-GT8-DS_15	GCCCAAAGAATAACATACAAACAGGGGAGTTACTGGACTG
lco_52_60-mer-eOD-GT8-DS_16	GCCGGAATACCCCTTTTTAAAAAGACTGTAGCAACGTATTTTTGAAATACAT
lco_52_60-mer-eOD-GT8-DS_18	GAAAAGTACTATCTTACCGAAGCCATTCCCATTACTGGACTG
lco_52_60-mer-eOD-GT8-DS_19	CAGGTAGATTATTTTGAATAGAGGCTTTATCTGGACTG
lco_52_60-mer-eOD-GT8-DS_22	GCCAGAAAATAACAAATAATTTCTGGCCTTTTATTCTGGACTG
lco_52_60-mer-eOD-GT8-DS_23	GCGGGTGTAGTAATGGAACCTGATTACATTTCTGGTAAATTCTGGACTG
lco_52_60-mer-eOD-GT8-DS_24	AGGGGCTTACGCGGAAAGATCTGACATTTCTGGACTG
lco_52_60-mer-eOD-GT8-DS_25	TTACTGGACTGAAGAGCAATTTGCCTTTAGCGTCAGACTGTA
lco_52_60-mer-eOD-GT8-DS_27	GCCGGAATACCCCTTTTTAAAAAGACTGTAGCAACGTATTTTTGAAATACAT
lco_52_60-mer-eOD-GT8-DS_28	GCCGGAATACCCCTTTTTAAAAAGACTGTAGCAACGTATTTTTGAAATACAT
lco_52_60-mer-eOD-GT8-DS_30	GCCGGAATACCCCTTTTTAAAAAGACTGTAGCAACGTATTTTTGAAATACAT
lco_52_60-mer-eOD-GT8-DS_31	GCCGGAATACCCCTTTTTAAAAAGACTGTAGCAACGTATTTTTGAAATACAT
lco_52_60-mer-eOD-GT8-DS_32	GCCGGAATACCCCTTTTTAAAAAGACTGTAGCAACGTATTTTTGAAATACAT
lco_52_60-mer-eOD-GT8-DS_33	GCCGGAATACCCCTTTTTAAAAAGACTGTAGCAACGTATTTTTGAAATACAT
lco_52_60-mer-eOD-GT8-DS_34	GCCGGAATACCCCTTTTTAAAAAGACTGTAGCAACGTATTTTTGAAATACAT
lco_52_60-mer-eOD-GT8-DS_35	GCCGGAATACCCCTTTTTAAAAAGACTGTAGCAACGTATTTTTGAAATACAT
lco_52_60-mer-eOD-GT8-DS_36	GCCGGAATACCCCTTTTTAAAAAGACTGTAGCAACGTATTTTTGAAATACAT
lco_52_60-mer-eOD-GT8-DS_37	GCCGGAATACCCCTTTTTAAAAAGACTGTAGCAACGTATTTTTGAAATACAT
lco_52_60-mer-eOD-GT8-DS_38	GCCGGAATACCCCTTTTTAAAAAGACTGTAGCAACGTATTTTTGAAATACAT
lco_52_60-mer-eOD-GT8-DS_39	GCCGGAATACCCCTTTTTAAAAAGACTGTAGCAACGTATTTTTGAAATACAT
lco_52_60-mer-eOD-GT8-DS_40	GCCGGAATACCCCTTTTTAAAAAGACTGTAGCAACGTATTTTTGAAATACAT
Staple modified name	Sequence
----------------------	------------------------
Ico_52_60-mer-eoD-GT8-DS_41	TGACGAGACCAAAAGGAATTACGAGGCAATAGGTTACTGGACTG
Ico_52_60-mer-eoD-GT8-DS_42	TCGAGCTTACCAAGAGCAGATAAAACCAATTACTGGACTG
Ico_52_60-mer-eoD-GT8-DS_43	ATACGGAGAATCTCAATCTGCTTATATATGGACTG
Ico_52_60-mer-eoD-GT8-DS_44	AGAGCTTAAAGGCTATTTTTTGCGGAGATTGTACTGGACTG
Ico_52_60-mer-eoD-GT8-DS_45	CATCAAATATCGAGAGCAGATAAAACCAATTACTGGACTG
Ico_52_60-mer-eoD-GT8-DS_46	AAATAAGGTCATCAATGTTTTTATTATAGTATTGGACTG
Ico_52_60-mer-eoD-GT8-DS_47	CAGTATGTGGATATAGAAGCTTCCAAATATGCTTTACTGGACTG
Ico_52_60-mer-eoD-GT8-DS_48	GTATCAGGAGAATCTCAATCTGCTTATATATGGACTG
Ico_52_60-mer-eoD-GT8-DS_49	CAATAATATCATTAAGGATTATTACACTTACTGGACTG
Ico_52_60-mer-eoD-GT8-DS_50	CACCATAGGACAGAATCTCAATCTGCTTATATATGGACTG
Ico_52_60-mer-eoD-GT8-DS_51	GAGAGGTTAGTACCAAGAGGCTAACCAGTTACTGGACTG
Ico_52_60-mer-eoD-GT8-DS_52	GTATCAGGAGAATCTCAATCTGCTTATATATGGACTG
Ico_52_60-mer-eoD-GT8-DS_53	GAGAGGTTAGTACCAAGAGGCTAACCAGTTACTGGACTG
Ico_52_60-mer-eoD-GT8-DS_54	TACCCCTGATGGTTGATTAAAGCAGAATCTCAATCTGCTTATATATGGACTG
Ico_52_60-mer-eoD-GT8-DS_55	GGGGAGGAAAGCGCAGATCTCAATCTGCTTATATATGGACTG
Ico_52_60-mer-eoD-GT8-DS_56	TACCCCTGATGGTTGATTAAAGCAGAATCTCAATCTGCTTATATATGGACTG
Ico_52_60-mer-eoD-GT8-DS_57	GCCACCAAGAATCTCAATCTGCTTATATATGGACTG
Ico_52_60-mer-eoD-GT8-DS_58	GTATCAGGAGAATCTCAATCTGCTTATATATGGACTG
Ico_52_60-mer-eoD-GT8-DS_59	AATCTCAATCTGCTTATATATGGACTG
Ico_52_60-mer-eoD-GT8-DS_60	TTACCTCAATCTGCTTATATATGGACTG
Ico_52_60-mer-eoD-GT8-DS_61	GCCACCAAGAATCTCAATCTGCTTATATATGGACTG
Ico_52_60-mer-eoD-GT8-DS_62	GCCACCAAGAATCTCAATCTGCTTATATATGGACTG
Ico_52_60-mer-eoD-GT8-DS_63	GCCACCAAGAATCTCAATCTGCTTATATATGGACTG
Ico_52_60-mer-eoD-GT8-DS_64	GCCACCAAGAATCTCAATCTGCTTATATATGGACTG
Ico_52_60-mer-eoD-GT8-DS_65	GCCACCAAGAATCTCAATCTGCTTATATATGGACTG
Ico_52_60-mer-eoD-GT8-DS_66	GCCACCAAGAATCTCAATCTGCTTATATATGGACTG
Ico_52_60-mer-eoD-GT8-DS_67	GCCACCAAGAATCTCAATCTGCTTATATATGGACTG
Ico_52_60-mer-eoD-GT8-DS_68	GCCACCAAGAATCTCAATCTGCTTATATATGGACTG
Ico_52_60-mer-eoD-GT8-DS_69	GCCACCAAGAATCTCAATCTGCTTATATATGGACTG
Ico_52_60-mer-eoD-GT8-DS_70	GCCACCAAGAATCTCAATCTGCTTATATATGGACTG
Ico_52_60-mer-eoD-GT8-DS_71	GCCACCAAGAATCTCAATCTGCTTATATATGGACTG
Ico_52_60-mer-eoD-GT8-DS_72	GCCACCAAGAATCTCAATCTGCTTATATATGGACTG
Ico_52_60-mer-eoD-GT8-DS_73	GCCACCAAGAATCTCAATCTGCTTATATATGGACTG
Ico_52_60-mer-eoD-GT8-DS_74	GCCACCAAGAATCTCAATCTGCTTATATATGGACTG
Ico_52_60-mer-eoD-GT8-DS_75	GCCACCAAGAATCTCAATCTGCTTATATATGGACTG
Ico_52_60-mer-eoD-GT8-DS_76	GCCACCAAGAATCTCAATCTGCTTATATATGGACTG
Ico_52_60-mer-eoD-GT8-DS_77	GCCACCAAGAATCTCAATCTGCTTATATATGGACTG
Ico_52_60-mer-eoD-GT8-DS_78	GCCACCAAGAATCTCAATCTGCTTATATATGGACTG
Ico_52_60-mer-eoD-GT8-DS_79	GCCACCAAGAATCTCAATCTGCTTATATATGGACTG
Ico_52_60-mer-eoD-GT8-DS_80	GCCACCAAGAATCTCAATCTGCTTATATATGGACTG
Ico_52_60-mer-eoD-GT8-DS_81	GCCACCAAGAATCTCAATCTGCTTATATATGGACTG

Icosahedron 30 mer eOD-GT8: modified staples list
Icosahedron 10 mer eOD-GT8: modified staples list

Staple modified name	Sequence
lco_52_10-mer-eOD-GT8_DS_3	AGCTCTGGGTCATATACGATTTTGTTAAGTTGTTAGGACTTG
lco_52_10-mer-eOD-GT8_DS_12	GAGAGTGTTTTGAGGACTTTGTTAGGTTGTTAGGACTTG
lco_52_10-mer-eOD-GT8_DS_24	AGCTCTGGGTCATATACGATTTTGTTAAGTTGTTAGGACTTG
lco_52_10-mer-eOD-GT8_DS_30	GAGAGTGTTTTGAGGACTTTGTTAGGTTGTTAGGACTTG
lco_52_10-mer-eOD-GT8_DS_36	AGCTCTGGGTCATATACGATTTTGTTAAGTTGTTAGGACTTG
lco_52_10-mer-eOD-GT8_DS_40	GAGAGTGTTTTGAGGACTTTGTTAGGTTGTTAGGACTTG
lco_52_10-mer-eOD-GT8_DS_42	AGCTCTGGGTCATATACGATTTTGTTAAGTTGTTAGGACTTG
lco_52_10-mer-eOD-GT8_DS_44	AGCTCTGGGTCATATACGATTTTGTTAAGTTGTTAGGACTTG
lco_52_10-mer-eOD-GT8_DS_46	AGCTCTGGGTCATATACGATTTTGTTAAGTTGTTAGGACTTG
lco_52_10-mer-eOD-GT8_DS_48	AGCTCTGGGTCATATACGATTTTGTTAAGTTGTTAGGACTTG
lco_52_10-mer-eOD-GT8_DS_50	AGCTCTGGGTCATATACGATTTTGTTAAGTTGTTAGGACTTG
lco_52_10-mer-eOD-GT8_DS_54	AGCTCTGGGTCATATACGATTTTGTTAAGTTGTTAGGACTTG
lco_52_10-mer-eOD-GT8_DS_56	AGCTCTGGGTCATATACGATTTTGTTAAGTTGTTAGGACTTG
lco_52_10-mer-eOD-GT8_DS_60	AGCTCTGGGTCATATACGATTTTGTTAAGTTGTTAGGACTTG
lco_52_10-mer-eOD-GT8_DS_62	AGCTCTGGGTCATATACGATTTTGTTAAGTTGTTAGGACTTG
lco_52_10-mer-eOD-GT8_DS_64	AGCTCTGGGTCATATACGATTTTGTTAAGTTGTTAGGACTTG
lco_52_10-mer-eOD-GT8_DS_66	AGCTCTGGGTCATATACGATTTTGTTAAGTTGTTAGGACTTG

Icosahedron 5 mer eOD-GT8: modified staples list

Staple modified name	Sequence
lco_52_5-mer-eOD-GT8_DS_12	AGCTCTGGGTCATATACGATTTTGTTAAGTTGTTAGGACTTG
lco_52_5-mer-eOD-GT8_DS_24	AGCTCTGGGTCATATACGATTTTGTTAAGTTGTTAGGACTTG
Staple modified name	Sequence
----------------------	----------
Ico_52_5-mer-eOD-GT8-DS_40	TAAGAGCGACATCTGAGGATATGCTTATGGCTTACTGGGACTG
Ico_52_5-mer-eOD-GT8-DS_66	AGCGGAGTTGCTAAACAACTTTCAAACACATTGACTGGGACTG
Ico_52_5-mer-eOD-GT8-DS_80	CAAAATCGAAAACGAGAATGACATATAAAATTACTGGGACTG

Icosahedron 4 mer eOD-GT8: modified staples list

Staple modified name	Sequence
Ico_52_4-mer-eOD-GT8-DS_24	AGCAGCGATACCGTCCAGTAAGGCTTATGGCTTACTGGGACTG
Ico_52_4-mer-eOD-GT8-DS_40	TAAGAGCGACATCTGAGGATATGCTTATGGCTTACTGGGACTG
Ico_52_4-mer-eOD-GT8-DS_66	AGCGGAGTTGCTAAACAACTTTCAAACACATTGACTGGGACTG
Ico_52_4-mer-eOD-GT8-DS_80	CAAAATCGAAAACGAGAATGACATATAAAATTACTGGGACTG

Icosahedron 3 mer eOD-GT8: modified staples list

Staple modified name	Sequence
Ico_52_3-mer-eOD-GT8-DS_24	AGCAGCGATACCGTCCAGTAAGGCTTATGGCTTACTGGGACTG
Ico_52_3-mer-eOD-GT8-DS_40	TAAGAGCGACATCTGAGGATATGCTTATGGCTTACTGGGACTG
Ico_52_3-mer-eOD-GT8-DS_80	CAAAATCGAAAACGAGAATGACATATAAAATTACTGGGACTG

Icosahedron 2 mer eOD-GT8: modified staples list

Staple modified name	Sequence
Ico_52_2-mer-eOD-GT8-DS_24	AGCAGCGATACCGTCCAGTAAGGCTTATGGCTTACTGGGACTG
Ico_52_2-mer-eOD-GT8-DS_80	CAAAATCGAAAACGAGAATGACATATAAAATTACTGGGACTG

Icosahedron 1 mer eOD-GT8: modified staples list

Staple modified name	Sequence
Ico_52_1-mer-eOD-GT8-DS_80	CAAAATCGAAAACGAGAATGACATATAAAATTACTGGGACTG

Icosahedron 5 mer-3nm eOD-GT8 vertex modified: modified staples list

Staple name	Sequence
Ico_52_VM_6	CAGAATCAAGGAAACAATGAATTACTGGGACTG
Ico_52_VM_7	ATAGCAATAGAGCAGATAGCCTTACTGGGACTG
Ico_52_VM_48	GAACAAAGTTACTGGGACTG
Ico_52_VM_49	TTGGGAATTACCTAGCAAGTTACTGGGACTG
Ico_52_VM_86	GCCGGAACGATCGATCGGACTG

Icosahedron 5 mer-11nm eOD-GT8: modified staples list

Staple modified name	Sequence
Ico_52_5-mer-11nm-eOD-GT8-DS_3	ATTCTGCGTCCATATAACAGTTACTGGGACTG
Ico_52_5-mer-11nm-eOD-GT8-DS_4	GCCGTTTTAGAATGGTTAAGCCCAATAATTACTGGGACTG
Ico_52_5-mer-11nm-eOD-GT8-DS_30	GAACCTATTGAGGCGCGTTACTGGGACTG
Ico_52_5-mer-11nm-eOD-GT8-DS_49	CAATAATCAATATTGAGGCGCGTTACTGGGACTG
Staple modified name	Sequence
----------------------	---------------------------------
Ico_52_5-mer-11nm-eOD-GT8-DS_51	GAGAGGTTAGTACCCAGGGATAACCATGTTACTGGACTG
Icosahedron 5 mer-15nm eOD-GT8: modified staples list	
Staple modified name	**Sequence**
Ico_52_5-mer-11nm-eOD-GT8-DS_2	GAAAAGTACTATCTTACCGAAGCCATTCATCCATTTACTGGACTG
Ico_52_5-mer-11nm-eOD-GT8-DS_5	TTACTGGACTGAAGCAAATTTGCTTACTGGACTG
Ico_52_5-mer-11nm-eOD-GT8-DS_31	GCACCGTATCCCAATGAAACCATTATTTCGTTACTGGACTG
Ico_52_5-mer-11nm-eOD-GT8-DS_48	GCACCGTATCCCAATGAAACCATTATTTCGTTACTGGACTG
Ico_52_5-mer-11nm-eOD-GT8-DS_50	CACCATTAGACCGAGCAATGCTGCTTACTGGACTG
Icosahedron 5 mer-22nm eOD-GT8: modified staples list	
Staple modified name	**Sequence**
Ico_52_5-mer-11nm-eOD-GT8-DS_10	GTCAATAACATTAGATACATTTCGGGTAATTCTACTGGACTG
Ico_52_5-mer-11nm-eOD-GT8-DS_28	TCTTTTCAGCCCCCTTATTTAGCGGGTCTGTTACTGGACTG
Ico_52_5-mer-11nm-eOD-GT8-DS_32	AGTTGCGCTAAAGGCTGAGACTCCTCAAGATTACTGGACTG
Ico_52_5-mer-11nm-eOD-GT8-DS_47	CAGTAGATTAGGTGATCACCAGTGATTACTGGACTG
Ico_52_5-mer-11nm-eOD-GT8-DS_54	GTTTAGTTAGGTATACCCAGTGATTACTGGACTG
Staple name	Sequence
------------	----------
PB-84-2	ATAAAGTTTTTGCCTTTCCTGCAGCATGAGATGGAGGCGG
PB-84-3	TGGCGTCGCCGCTACAGGGCGCACTTAACGAGCAACCTTT
PB-84-4	GCTGTGTTACCCGCGCCGCTAAATGCGGCCTTCCGGCTG
PB-84-5	GTCAAGCTGCGTTTTTTCGTAACCCACCATTGCTGATAATTATAATCTGGAGCCACGAACGGGGATTTTTGTCAGGCAAC
PB-84-6	GTGTAGCGAGCCGGCGAACGTGGCGAGAAAGGGCGCTGGCAA
PB-84-7	CGGGCGCTAGGAAGGGAAGAAAGCAGCTATAT
PB-84-8	CTCTGTAAATCGCCATGTTGTCAGGCAACCTAAACGCTATTTAAAAAC
PB-84-9	TCTAGTCTAGCTCTACATTTTACCTATTTAAAAAGGAAGGACCCG
PB-84-10	GTGTAGCGAGCCGGCGAACGTGGCGAGAAAGGGCGCTGGCAA
PB-84-11	CGGGCGCTAGGAAGGGAAGAAAGCAGCTATAT
PB-84-12	TCTAGTCTAGCTCTACATTTTACCTATTTAAAAAGGAAGGACCCG
PB-84-13	GTGTAGCGAGCCGGCGAACGTGGCGAGAAAGGGCGCTGGCAA
PB-84-14	CGGTAGCGAGCCGGCGAACGTGGCGAGAAAGGGCGCTGGCAA
PB-84-15	GCGAAAAAGAACGTGGACTCCAACAATCAGTA
PB-84-16	CTCTGTAAATCGCCATGTTGTCAGGCAACCTAAACGCTATTTAAAAAC
PB-84-17	TCTAGTCTAGCTCTACATTTTACCTATTTAAAAAGGAAGGACCCG
PB-84-18	GTGTAGCGAGCCGGCGAACGTGGCGAGAAAGGGCGCTGGCAA
PB-84-19	AAAAGTCATAGGAAGCAGCTATTTAAAAAGGAAGGACCCG
PB-84-20	ATAAAGTTTTTGCCTTTCCTGCAGCATGAGATGGAGGCGG
PB-84-21	GGGTGCAAAGATTTTTCTTAACGTGATAATTATAATCTGGAGCCACGAACGGGGATTTTTGTCAGGCAAC
PB-84-22	GGGTGCAAAGATTTTTCTTAACGTGATAATTATAATCTGGAGCCACGAACGGGGATTTTTGTCAGGCAAC
PB-84-23	GGGTGCAAAGATTTTTCTTAACGTGATAATTATAATCTGGAGCCACGAACGGGGATTTTTGTCAGGCAAC
PB-84-24	ACTGATTTAAGTATGGATGAA
PB-84-25	AATGTGCGGGCGAACTACTTACTCTCACTTTTACGGAAGGGAGGGGAGG
PB-84-26	TCTGTGTTACCCGCGCCGCTAAATGCGGCCTTCCGGCTG
PB-84-27	GGGTGCAAAGATTTTTCTTAACGTGATAATTATAATCTGGAGCCACGAACGGGGATTTTTGTCAGGCAAC
PB-84-28	GGGTGCAAAGATTTTTCTTAACGTGATAATTATAATCTGGAGCCACGAACGGGGATTTTTGTCAGGCAAC
PB-84-29	GGGTGCAAAGATTTTTCTTAACGTGATAATTATAATCTGGAGCCACGAACGGGGATTTTTGTCAGGCAAC
PB-84-30	GGGTGCAAAGATTTTTCTTAACGTGATAATTATAATCTGGAGCCACGAACGGGGATTTTTGTCAGGCAAC
PB-84-31	GGGTGCAAAGATTTTTCTTAACGTGATAATTATAATCTGGAGCCACGAACGGGGATTTTTGTCAGGCAAC
PB-84-32	GGGTGCAAAGATTTTTCTTAACGTGATAATTATAATCTGGAGCCACGAACGGGGATTTTTGTCAGGCAAC
PB-84-33	GGGTGCAAAGATTTTTCTTAACGTGATAATTATAATCTGGAGCCACGAACGGGGATTTTTGTCAGGCAAC
PB-84-34	GGGTGCAAAGATTTTTCTTAACGTGATAATTATAATCTGGAGCCACGAACGGGGATTTTTGTCAGGCAAC
PB-84-35	GGGTGCAAAGATTTTTCTTAACGTGATAATTATAATCTGGAGCCACGAACGGGGATTTTTGTCAGGCAAC
PB-84-36	GGGTGCAAAGATTTTTCTTAACGTGATAATTATAATCTGGAGCCACGAACGGGGATTTTTGTCAGGCAAC
PB-84-37	GGGTGCAAAGATTTTTCTTAACGTGATAATTATAATCTGGAGCCACGAACGGGGATTTTTGTCAGGCAAC
PB-84-38	GGGTGCAAAGATTTTTCTTAACGTGATAATTATAATCTGGAGCCACGAACGGGGATTTTTGTCAGGCAAC
PB-84-39	GGGTGCAAAGATTTTTCTTAACGTGATAATTATAATCTGGAGCCACGAACGGGGATTTTTGTCAGGCAAC
CTCGGTCGCCGTTTTTCATACACTATATGCAGTGCTGTTTTTCCATAACCAT
AGAGAATTTCAGAATGACTTGTTGAGTAGCATGAGCAGTA
GATGCTGAAGATTTTTTCAATGATGATTGTTGCACTTTTAA
GAACGTGGGACAGTTGGTTACATCGAATTTTTCCCGGAA
CTTGAGAGCTGGATCTCAACAGCAGCTGAATCTG
TCTATACAACGAAACCTTGCACTCGTAAGATC
GAGTATTCAAACCCTGATAA
AAGAGTATATGCTTCAATAATATTACATGCGA
TGTGACCTAGAGAATAAGTAAATTGAAAAAGG
TTATCGGACCATTTTTTCGTGATTACGTTTTCTTAGATTTTCGTCAGGTGG
CTTCCACCGGCGCCGGTGGCTCAACAATCAAACGAAATGCC
AACTAAGAGAGTACAGCGA
TGCGCAGCAAGCTTTGCTAGGACAGGATTTTGGGACGACCTAGCA
GCTAACGCAACTCCCGGGTTGGTTCCAAGATGAGAAGTG
GATCGAAGGATTTTTTATGTGACGTAAGCAAGATATTTTTTTAATACCGT
TTCACGACGACAGTCTGGCAATACTAGTACAAGTAATATC
CTGGTTACTAGTTTTTGTACATGTTAATAGTTATGTGTTTTTTTGCAAGGTAG
TAACCTCAGGGAAGTTAGAA
AATTATTGAGTAGTACATAATT
Pentagonal Bipyramid 45 mer eOD-GT8: modified staples list

Staple name	Sequence
PB-84-2-Over	ATAAAGTGGTTGGGCCTCTGGACATGGAGGTGGGCTTCAGGACTTG
PB-84-3-Over	TGGGCTGGGTCCTACAGGGAGAATTTGAAATGCGCCGGTACCTGGACTG
PB-84-4-Over	GCCGGCTGGGTCCTACAGGGAGAATTTGAAATGCGCCGGTACCTGGACTG
PB-84-6-Over	GTTGGTGGGTCCTACAGGGAGAATTTGAAATGCGCCGGTACCTGGACTG
PB-84-7-Over	CCGGGCTGGGTCCTACAGGGAGAATTTGAAATGCGCCGGTACCTGGACTG
PB-84-8-Over	TCTGACATATGGAGGCTGGGTCCTACAGGGAGAATTTGAAATGCGCCGGTACCTGGACTG
PB-84-10-Over	TACCTTGAAGGAACACACGAGGCCGGTACCTGGACTG
PB-84-11-Over	TTCAATTGATGGAGGCTGGGTCCTACAGGGAGAATTTGAAATGCGCCGGTACCTGGACTG
PB-84-12-Over	TCGGGCTGGGTCCTACAGGGAGAATTTGAAATGCGCCGGTACCTGGACTG
PB-84-13-Over	CGATGGGTCCTACAGGGAGAATTTGAAATGCGCCGGTACCTGGACTG
PB-84-14-Over	GCGAAAAAGAACGTGGACTCCAACAATCAGTATTACTGGACTG
PB-84-15-Over	CTTTCTTATATGGAGGCTGGGTCCTACAGGGAGAATTTGAAATGCGCCGGTACCTGGACTG
PB-84-16-Over	ECBCTTATATGGAGGCTGGGTCCTACAGGGAGAATTTGAAATGCGCCGGTACCTGGACTG
PB-84-17-Over	GAGATAGGATCAGCTCATTTTTTAACCAAAAAAGAATAGACCTTACTGGACTG
PB-84-18-Over	TATAAATCTAGGCCGAAATCGGCATGTTGTAGTTACTGGACTG
PB-84-19-Over	AAAGTCAATAGGAAGCCGATAAGAAATCCCTTTACTGGACTG
PB-84-20-Over	GGTTGTAAATGACCAAAATCCCTTAACGTTCATATGTACCCCTTACTGGACTG
PB-84-21-Over	GACCCCAAGAGTTTTCGTTCCACTCCCGTATTTTACTGGACTG
PB-84-22-Over	GACCGGGGTGTGGCGCGGTATTATGAGCGTCATTACTGGACTG
PB-84-23-Over	GGTGCCTCCGAAATAGACAGATCGAAAAGCATTTACTGGACTG
PB-84-24-Over	CTTACGGATACTACCACTCACGAGCTGAGATTTACTGGACTG
PB-84-25-Over	GTGCGCTTCCGAAATAGACAGATCGAAAAGCATTTACTGGACTG
PB-84-26-Over	CTATATGCTTCCGAAATAGACAGATCGAAAAGCATTTACTGGACTG
PB-84-27-Over	GGGTGTCCTTCCGAAATAGACAGATCGAAAAGCATTTACTGGACTG
PB-84-28-Over	GGTTGTAAATGACCAAAATCCCTTAACGTTCATATGTACCCCTTACTGGACTG
PB-84-29-Over	GACCCCAAGAGTTTTCGTTCCACTCCCGTATTTTACTGGACTG
PB-84-30-Over	GACCGGGGTGTGGCGCGGTATTATGAGCGTCATTACTGGACTG
PB-84-31-Over	GGTGCCTCCGAAATAGACAGATCGAAAAGCATTTACTGGACTG
PB-84-32-Over	CTTACGGATACTACCACTCACGAGCTGAGATTTACTGGACTG
PB-84-33-Over	GGTTGTAAATGACCAAAATCCCTTAACGTTCATATGTACCCCTTACTGGACTG
PB-84-34-Over	GGTTGTAAATGACCAAAATCCCTTAACGTTCATATGTACCCCTTACTGGACTG
PB-84-35-Over	GACCGGGGTGTGGCGCGGTATTATGAGCGTCATTACTGGACTG
PB-84-36-Over	GACCGGGGTGTGGCGCGGTATTATGAGCGTCATTACTGGACTG
PB-84-37-Over	GACCGGGGTGTGGCGCGGTATTATGAGCGTCATTACTGGACTG
PB-84-38-Over	GACCGGGGTGTGGCGCGGTATTATGAGCGTCATTACTGGACTG
PB-84-39-Over	GACCGGGGTGTGGCGCGGTATTATGAGCGTCATTACTGGACTG
PB-84-40-Over	GACCGGGGTGTGGCGCGGTATTATGAGCGTCATTACTGGACTG
PB-84-41-Over	GACCGGGGTGTGGCGCGGTATTATGAGCGTCATTACTGGACTG
PB-84-42-Over	GACCGGGGTGTGGCGCGGTATTATGAGCGTCATTACTGGACTG
PB-84-43-Over	GACCGGGGTGTGGCGCGGTATTATGAGCGTCATTACTGGACTG
{ suppressed }
Pentagonal Bipyramid 10 mer eOD-GT8: modified staples list

Staple name	Sequence
PB-84-3-Over	TGCGCTCGCGCTACAGGGGCACATTAAGCAGGACCACTTATTACTGGACTG
PB-84-8-Over	TCTGACATGTCCGGTCCCAGGAAAGGAGTTACTGGACTG
PB-84-12-Over	TCTAGGTGAATCAAGTTTTTTGGGGTCGATAATTTAAAAGGATTACTGGACTG
PB-84-19-Over	AAAGTCAATAGGAAGCCGCATAAGAAATCCCTTTACTGGACTG
PB-84-25-Over	GGTGCCCTCCGAATAGACAGATCAGAAAAACATTTACTGGACTG
PB-84-29-Over	CTGATGACCGCCCTTTGCGATGTGGGGGGCCAGATTTACTGGACTG
PB-84-46-Over	TCTATACACGGAAACCTTGCACCTCAGATCCTTACTGGACTG
PB-84-48-Over	AAGAGATATGCTGGTGTAATAATATAGATGCCGATTACTGGACTG
PB-84-52-Over	TTGGTCGTCTGATACCCCTATTTTTTATAAAAAGAAAAAGGGTTACTGGACTG
PB-84-60-Over	CTATGCTCATAGAAGGCGTGTATTACCCCTTTACTGGACTG
Supplementary Table 17. ssDNA linker scaffold sequences.

Name	Sequence
Linker 5	TTACTGGACTGTA AAAA ATTACTGGACTG
Linker 12	TTACTGGACTGTTAAAAAAAAAAAA ATTACTGGACTG
Linker 24	TTACTGGACTGTTAAAAAAAAAAAAA ATTACTGGACTG
Linker 35	TTACTGGACTGTTAAAAAAAAAAAAA CCTGCAGGCATGCAAGCTTG GCAAAAAA ATTACTGGACTG
Linker 47	TTACTGGACTGTTAAAAAAAAACCTGCAGGCATGCAAGCTTG GCACTGGCCGTCGTTAAAA ATTACTGG
Linker 83	TTACTGGACTGTTAAAAAAACCTGCAGGCATGCAAGCTTG GCACTGGCCGTCGTTTTTACAACCTGCGT
	ACTCCCTGGCGTTACCCAAAAAATTACTGGACTG
Supplementary Table 18. P-values for Supplementary Fig. 17.

Supplementary Fig 17b	6HB-2x-7nm	6HB-2x-28nm	Ico-30x	PBS
Row				
6HB-2x-7nm	NaN	0.9999	0.0062	0.0003
6HB-2x-28nm	0.9999	NaN	0.0067	0.0003
Ico-30x	0.0062	0.0067	NaN	<0.0001
PBS	0.0003	0.0003	<0.0001	NaN
Supplementary Table 19. P-values for Supplementary Fig. 18.

Supplementary Fig. 18b	Row	Ico-5x-3nm	Ico-5x-11nm	Ico-5x-15nm	Ico-5x-22nm	6HB-5x-7nm	6HB-5x-11nm	6HB-5x-14nm	6HB-5x-17nm
Ico-5x-3nm	0.076169193	0.031459828	0.003011634	0.0060934	0.001818299	0.00699654	0.003652631	0.039674562	0.19798803
Ico-5x-11nm	0.03365109	0.0086987514	0.22702024	0.464351908	0.48692314	0.014636992	0.014636992	0.049869231	0.032400632
Ico-5x-15nm	0.029739739	0.0080018514	0.471609449	0.047160949	0.03965109	0.030624621	0.030624621	0.008038514	0.02869176
Ico-5x-22nm	0.00311634	0.0080018514	0.047160949	0.03965109	0.48692314	0.030624621	0.030624621	0.008038514	0.02869176
6HB-5x-7nm	0.031459828	0.22702024	0.464351908	0.047160949	0.03965109	0.030624621	0.030624621	0.008038514	0.02869176
6HB-5x-11nm	0.00311634	0.0080018514	0.22702024	0.464351908	0.48692314	0.030624621	0.030624621	0.008038514	0.02869176
6HB-5x-14nm	0.000181289	0.0086987514	0.030624621	0.19798803	0.030624621	0.030624621	0.030624621	0.030624621	0.030624621
6HB-5x-17nm	0.000181289	0.0086987514	0.030624621	0.19798803	0.030624621	0.030624621	0.030624621	0.030624621	0.030624621
Ico-0x	0.001800419	0.000181289	0.010591222	0.007096498	0.00133615	0.000510378	0.000510378	0.000510378	0.000510378
Supplementary Table 20. P-values for Supplementary Fig. 23a.

Row	6HB-2x-7nm control	6HB-2x-28nm control	ico-30x control	6HB-2x-7nm 1min	6HB-2x-28nm 1min	ico-30x 1min	6HB-2x-7nm 5min	6HB-2x-28nm 5min	ico-30x 5min	6HB-2x-7nm 30min	6HB-2x-28nm 30min	ico-30x 30min
1	1	1	0.713198	0.713198	0.713198	0.713198	0.713198	0.713198	0.713198	0.713198	0.713198	0.713198
2	0.002158	0.002158	0.000011	0.000002	0.000011	0.000011	0.000002	0.000011	0.000011	0.000002	0.000002	0.000002
3	0.187171	0.187171	0.240858	0.240858	0.240858	0.240858	0.240858	0.240858	0.240858	0.240858	0.240858	0.240858
4	0.063638	0.063638	0.140313	0.140313	0.140313	0.140313	0.140313	0.140313	0.140313	0.140313	0.140313	0.140313
5	0.010611	0.010611	0.082365	0.082365	0.082365	0.082365	0.082365	0.082365	0.082365	0.082365	0.082365	0.082365
6	0.007832	0.007832	0.06433	0.06433	0.06433	0.06433	0.06433	0.06433	0.06433	0.06433	0.06433	0.06433
7	0.004596	0.004596	0.002741	0.002741	0.002741	0.002741	0.002741	0.002741	0.002741	0.002741	0.002741	0.002741
8	0.000006	0.000006	0.000006	0.000006	0.000006	0.000006	0.000006	0.000006	0.000006	0.000006	0.000006	0.000006
Supplementary Table 21. P-values for Supplementary Fig. 23b.

Row	6HB-2x-7nm control	6HB-2x-28nm control	co-30x control	6HB-2x-7nm 1min	6HB-2x-28nm 1min	co-30x 1min	6HB-2x-7nm 5min	6HB-2x-28nm 5min	co-30x 5min	6HB-2x-7nm 30min	6HB-2x-28nm 30min	co-30x 30min
6HB-2x-7nm control	1	1	0.003383	0.000204	0.000006	0	0	0	0	0	0	0
6HB-2x-28nm control	0.003383	0.003383	1	0.003383	0.00295	0.00009	0	0	0	0	0	0
co-30x control	0.003383	0.003383	0.00204	0.000006	1	0.00011	0	0	0	0	0	0
6HB-2x-7nm 1min	0.000204	0.000204	0.001941	0.265912	0.069615	0.001196	0	0.000006	0	0	0	0
6HB-2x-28nm 1min	0.000006	0.000006	0.000011	0.000006	0.617796	0.886269	0	0.14963	0.01779	0	0	0
co-30x 1min	0.089615	0.089615	0.141963	0.866596	0.141963	0.352378	0	0.01779	0.000011	0	0	0
6HB-2x-7nm 5min	0.000118	0.000118	0.000003	0.000003	0.000003	0.000003	0	0.000003	0	0	0	0
6HB-2x-28nm 5min	0.000118	0.000118	0.000003	0.000003	0.000003	0.000003	0	0.000003	0	0	0	0
co-30x 5min	0.000118	0.000118	0.000003	0.000003	0.000003	0.000003	0	0.000003	0	0	0	0
6HB-2x-7nm 30min	0.000118	0.000118	0.000003	0.000003	0.000003	0.000003	0	0.000003	0	0	0	0
6HB-2x-28nm 30min	0.000118	0.000118	0.000003	0.000003	0.000003	0.000003	0	0.000003	0	0	0	0
co-30x 30min	0.000118	0.000118	0.000003	0.000003	0.000003	0.000003	0	0.000003	0	0	0	0
Supplementary Table 22. P-values for Supplementary Fig. 23c.

Row	6HB-2x-7nm control	6HB-2x-28nm control	ico-30x control	6HB-2x-7nm 1min	6HB-2x-28nm 1min	ico-30x 1min	6HB-2x-7nm 5min	6HB-2x-28nm 5min	ico-30x 5min	6HB-2x-7nm 30min	6HB-2x-28nm 30min	ico-30x 30min
6HB-2x-7nm control	1	1	0.005992	0.761281	0.042868	0.007829	0.12123	0.036727	0.002334	0.107816	0.287676	0.289732
6HB-2x-28nm control	1	1	0.005992	0.761281	0.042868	0.007829	0.12123	0.036727	0.002334	0.107816	0.287676	0.289732
ico-30x control	0.005992	0.005992	1	0.11614	0.644966	0.657305	0.264006	0.321065	0.70714	0.361906	0.076631	0.000305
6HB-2x-7nm 1min	0.761281	0.761281	0.011614	1	0.065448	0.012398	0.194184	0.067892	0.003777	0.168454	0.432416	0.157563
6HB-2x-28nm 1min	0.042868	0.042868	0.644966	0.005448	1	0.429847	0.563496	0.690172	0.423666	0.677585	0.244891	0.001632
ico-30x 1min	0.007829	0.007829	0.657305	0.012398	0.429847	1	0.185128	0.191114	0.812695	0.255171	0.058407	0.000567
6HB-2x-7nm 5min	0.12123	0.12123	0.264006	0.104184	0.563496	0.185128	1	0.763754	0.152046	0.888485	0.574041	0.074056
6HB-2x-28nm 5min	0.036727	0.036727	0.321065	0.067892	0.690172	0.191114	0.763754	1	0.83684	0.903574	0.327207	0.001158
ico-30x 5min	0.002334	0.002334	0.770714	0.003777	0.429847	0.812695	0.152046	0.163664	1	0.224367	0.003465	0.000007
6HB-2x-7nm 30min	0.107816	0.107816	0.361906	0.186454	0.677585	0.255171	0.888485	0.903574	0.24367	1	0.495438	0.013154
6HB-2x-28nm 30min	0.287679	0.287679	0.076631	0.432416	0.244891	0.058407	0.574041	0.327207	0.00465	0.465438	0.010365	0.000007
ico-30x 30min	0.289732	0.289732	0.903039	0.157605	0.001632	0.000567	0.014056	0.001158	0.000007	0.013154	0.000007	1
Supplementary References

1. Veneziano, R. et al. Designer nanoscale DNA assemblies programmed from the top down. *Science* **352**, 1534–1534 (2016).
2. Castro, C. E. et al. A primer to scaffolded DNA origami. *Nature Methods* **8**, 221–229 (2011).
3. Kim, D.-N., Kilchherr, F., Dietz, H. & Bathe, M. Quantitative prediction of 3D solution shape and flexibility of nucleic acid nanostructures. *Nucleic Acids Res* **40**, 2862–2868 (2012).
4. Ma, Z. et al. TCR Triggering by pMHC Ligands Tethered on Surfaces via Poly(Ethylene Glycol) Depends on Polymer Length. *PLoS One* **9**, (2014).
5. Linegar, K. L., Adeniran, A. E., Kostko, A. F. & Anisimov, M. A. Hydrodynamic radius of polyethylene glycol in solution obtained by dynamic light scattering. *Colloid J* **72**, 279–281 (2010).
6. Pettersen, E. F. et al. UCSF Chimera—A visualization system for exploratory research and analysis. *Journal of Computational Chemistry* **25**, 1605–1612 (2004).
7. Mukherjee, S. et al. Monovalent and Multivalent Ligation of the B Cell Receptor Exhibit Differential Dependence upon Syk and Src Family Kinases. *Sci Signal* **6**, ra1 (2013).
8. Kläsvener, K., Maity, P. C., Hobeika, E., Yang, J. & Reth, M. B cell activation involves nanoscale receptor reorganizations and inside-out signaling by Syk. *Elife* **3**, e02069 (2014).
9. Yang, J. & Reth, M. The dissociation activation model of B cell antigen receptor triggering. *FEBS Lett.* **584**, 4872–4877 (2010).
10. Tolar, P., Hanna, J., Krueger, P. D. & Pierce, S. K. The constant region of the membrane immunoglobulin mediates B cell-receptor clustering and signaling in response to membrane antigens. *Immunity* **30**, 44–55 (2009).
11. Tolar, P. & Pierce, S. K. A Conformation-Induced Oligomerization Model for B cell Receptor Microclustering and Signaling. in *Immunological Synapse* (eds. Saito, T. & Batista, F. D.) vol. 340 155–169 (Springer Berlin Heidelberg, 2010).
12. Harwood, N. E. & Batista, F. D. Early events in B cell activation. *Annu. Rev. Immunol.* **28**, 185–210 (2010).
13. Tolar, P. Cytoskeletal control of B cell responses to antigens. *Nature Reviews Immunology* **17**, 621–634 (2017).
14. Gold, M. R. & Reth, M. G. Antigen Receptor Function in the Context of the Nanoscale Organization of the B Cell Membrane. *Annu. Rev. Immunol.* **37**, 97–123 (2019).
15. Lee, J., Sengupta, P., Brzostowski, J., Lippincott-Schwartz, J. & Pierce, S. K. The nanoscale spatial organization of B-cell receptors on immunoglobulin M- and G-expressing human B-cells. *Mol. Biol. Cell* **28**, 511–523 (2017).
16. Reth, M. Matching cellular dimensions with molecular sizes. *Nat Immunol* **14**, 765–767 (2013).
17. Lis, M., Artyomov, M. N., Devadas, S. & Chakraborty, A. K. Efficient stochastic simulation of reaction–diffusion processes via direct compilation. *Bioinformatics* **25**, 2289–2291 (2009).
18. Shaw, A. et al. Binding to nanopatterned antigens is dominated by the spatial tolerance of antibodies. *Nature Nanotechnology* **14**, 184 (2019).
19. Jardine, J. G. et al. HIV-1 broadly neutralizing antibody precursor B cells revealed by germline-targeting immunogen. *Science* **351**, 1458–1463 (2016).