FLAVOR TAGGING AND CP-VIOLATION MEASUREMENTS
AT THE TEVATRON

S. TKACZYK
(representing the CDF Collaboration)
Fermi National Accelerator Laboratory, P. O. Box 500, Batavia, IL 60510, USA
E-mail: tka@fnal.gov

The CDF collaboration has adapted several heavy flavor tagging techniques and employed them in analyses of time-dependent flavor asymmetries using data from the Tevatron Run I. The tagging algorithms were calibrated using low-pT inclusive lepton and dilepton trigger data samples. The tagging techniques were applied to a sample of \(\sim 400 \) \(B_0^d/\overline{B}_0^d \rightarrow J/\psi K^0_s \) decays and were used to measure the CP violation parameter, \(\sin(2\beta) \). Prospects for future improved measurements of the CP violation parameters at the Tevatron are briefly discussed.

1 Introduction

CP violation was first observed in kaon decays over 30 years ago. In the Standard Model the Cabibbo-Kobayashi-Maskawa (CKM) weak and mass eigenstates mixing matrix can provide a possible mechanism for explanation of the observed CP violation effects. The unitary CKM matrix is described by four physical parameters, one of them being a complex phase.

An analysis of unitarity constraints in which all of the elements are of the same order of magnitude, e.g.: \(V_{ud}V_{us}^* + V_{cd}V_{cs}^* + V_{td}V_{ts}^* = 0 \) and \(V_{ud}V_{td}^* + V_{us}V_{ts}^* + V_{ub}V_{tb}^* = 0 \) provides a rudimentary test of the CKM description of CP violation. The magnitude of the complex elements have been determined from B-hadron lifetimes, branching fractions and - more recently - precise flavor oscillations measurements. The relative complex phases of the CKM matrix elements can be studied in measurements of the CP asymmetries in B-decays. An analysis of the asymmetry in the decay rates of \(B^0 \) and \(\overline{B}^0 \) to a common CP eigenstate \(J/\psi K^0_s \) provides a measurement of the phase \(\beta \equiv \arg(-V_{cd}V_{tb}^*) \). The asymmetry, \(A_{CP} \equiv \frac{N(B^0) - N(\overline{B}^0)}{N(B^0) + N(\overline{B}^0)} \), where \(N(B^0) \) and \(N(\overline{B}^0) \) are numbers of observed decays to \(J/\psi K^0_s \) given the known flavor of the B meson at production, arises from the interference between the direct decay path, \(\overline{B}^0 \rightarrow J/\psi K^0_s \), and the mixed decay path, \(B^0 \rightarrow B^0 \rightarrow J/\psi K^0_s \).

The CP asymmetry \(A_{CP} \) depends on the CP phase difference between the two amplitudes, \(\beta \) and the flavor oscillations term represented by \(\sin(\Delta m_d t) \), where \(\Delta m_d \) is the mass difference between the two \(B_d^0 \) mass eigenstates, and \(t \) is proper decay time. In the Standard Model \(A_{CP} \simeq \sin(2\beta)\sin(\Delta m_d t) \) since other contributions are expected to be very small. Values of \(\sin(2\beta) \)
are constrained to a range of $0.3 \leq \sin(2\beta) \leq 0.9$ from indirect electroweak measurements. Last year the OPAL collaboration at LEP reported $\sin(2\beta) = 4 \pm 2 \pm 1$, using a sample of $14 \, B^0/\bar{B}^0 \rightarrow J/\psi K^0_s$ decays.

In this talk I will describe the flavor tagging techniques adapted by CDF for application in the hadron collider environment and discuss their performance in the flavor oscillation measurements. I will also report on the CP analysis of $B^0_d \rightarrow J/\psi K^0_s$ decays reconstructed in a data sample of $110 \, \text{pb}^{-1}$ collected by the CDF detector at the Tevatron collider at Fermilab. The description of the CDF detector can be found in previous publications.

2 Data Sample

The reconstruction of B^0_d mesons was done via the decay $B^0_d/\bar{B}^0_d \rightarrow J/\psi K^0_s$, with $J/\psi \rightarrow \mu^+\mu^-$ and $K^0_s \rightarrow \pi^+\pi^-$. The selection of the B candidates begins by identifying J/ψ particles that decay into two muons of opposite charge. All pairs of the oppositely charged particle tracks are considered to be candidates for the K^0_s decay products. The B candidate mass and momentum are calculated subject to the constraints that the invariant masses of the muon pair and the pion pair are equal to the world average mass of their parent particle, J/ψ and K^0_s, respectively; come from separate vertices; the reconstructed K^0_s candidate points back to the J/ψ vertex; and the $J/\psi K^0_s$ system points back to the primary interaction vertex. The silicon micro-vertex detector (SVX)
information was used for these constraints when available. For a B candidate with both muons measured in the silicon vertex detector, the typical mass resolution is $\sim 10 \text{ MeV}/c^2$, and the proper decay length resolution is $\sim 50 \text{ \mu m}$. The normalized mass distribution, $M_N = (m_{\mu\mu\pi\pi} - M_{PDG})/\sigma_{fit}$, is shown in figure 3. The total number of reconstructed B mesons is 395 ± 31, with a signal-to-noise ratio of 0.7. The sample with both muons reconstructed in SVX contains 202 ± 18 events with a signal-to-noise ratio of 0.9, and the remainder of the sample contains 193 ± 26 events with a signal-to-noise ratio of 0.5.

3 Identification of B Flavor at Production and Decay

3.1 Opposite Side Tagging with Soft Lepton and Jet Charge

The Opposite Side Flavor Tagging techniques use a triggered lepton and a reconstructed secondary vertex to identify the flavor of the B meson at the decay time. The flavor of the B meson at the production time is determined either from the charge of the jet on the side opposite the triggered lepton or by the presence of another lepton in the event. These flavor tagging methods were studied using high statistics samples of semileptonic B decays5, 6 as illustrated in figure 3. The Opposite Side Flavor tagging algorithms were calibrated using a sample of $\sim 1,000 B_s^\pm \rightarrow J/\psi K^\pm$ decays.

![Figure 2: Asymmetry as a function of the proper decay length ct. Left: Same Side tagging applied to $B \rightarrow \ell D^*$; Right: Soft lepton and Jet Charge flavor tagging. Results from an unbinned likelihood fit are superimposed on the data points.](image)

The Soft Lepton Tagging (SLT) algorithm correlates the charge of the second lepton in the event with the flavor of the B at the production time. Its
performance was checked through observation of the $B_{d}^{0} - \bar{B}_{d}^{0}$ flavor oscillation
using an inclusive lepton trigger sample as shown in fig. 2. The dilution of
the soft lepton tag, as measured using the $J/\psi K^+$ sample, is $D = 63 \pm 15 \%$.

In the Jet Charge (JTQ) method a momentum weighted charge average of
particles in a b-jet, Q_{jet}, is used to determine the charge of the b quark. The
event is considered as tagged when $|Q_{jet}| > 0.2$. The performance of the JTQ
was also checked with the analysis of the Δm and dilution D using the inclusive
lepton trigger sample (fig. 2). The dilution of the JTQ method, as measured
with the $J/\psi K^+$ sample, is $D = 24 \pm 7\%$. A summary of the performance
of tagging algorithms, described by the value of the dilution and the tagging
efficiency, is presented in table 1. The Jet Charge and Soft Lepton tagging
algorithms are described in more detail in another CDF publication.

3.2 Same Side Tagging

The Same Side Tagging (SST) technique relies on the correlation between the
flavor of the B hadron and the charge of a nearby hadron produced either in the
fragmentation process that formed a B meson from a b quark or from the
decay of B^{**} meson. The charge correlations are the same in both cases: a
B_{d}^{0} meson is associated with a positive particle. The SST algorithm selects
as a flavor tag, that particle which has the minimum momentum component
transverse to the momentum sum of the B and the particle. The particle has
to be contained in an $\eta - \phi$ cone of 0.7 around the B momentum direction,
have $P_{t} > 400 \text{ MeV/c}$, and come from the primary vertex. The performance
of this method was calibrated by tagging $B \rightarrow \ell D^{(*)}$ decays and observing the
time dependence of the $B_{d}^{0} \rightarrow \ell D^{(*)}$ oscillations as shown in fig. 2. In addition to
the usual measurement of the frequency of the oscillation Δm_{d}, the amplitude
of the oscillation, D, called dilution was also determined.

4 Flavor Asymmetry in $B_{d}^{0} \rightarrow J/\psi K_{s}^{0}$ Sample

Following the conclusion of the Workshop, the CDF collaboration updated the
previously published analysis of the $B_{d}^{0} \rightarrow J/\psi K_{s}^{0}$ decays by employing a combination of three tagging methods to the full sample of ~ 400 events. The
SST and SLT algorithms were essentially the same as in those used in the
$\ell D^{(*)}$ and inclusive lepton analyses. The JTQ algorithm was modified from
that in ref. 5 to increase the efficiency of identifying low-P_{t} jets. Each event

\[a \] The tagging efficiency, ϵ, is the fraction of events that are tagged.

\[b \] The tagging dilution is defined as $D = \frac{N_{R} - N_{W}}{N_{R} + N_{W}}$, where $N_{W}(N_{R})$ are numbers of wrong (right) tagging decisions. The observed asymmetry $A_{\text{obs}}^{CP} = D A_{CP}$. 4
can be tagged by one algorithm on the opposite side and one on the same side. When both SLT and JTQ tags are available, the tagger with higher dilution was selected to avoid introduction of correlations. In addition, the dilution and efficiencies for the opposite side tagging algorithms were determined using a sample of $B \to J/\psi K^+$ decays, to match the kinematic properties of the two samples.

When both SLT and JTQ tags are available, the tagger with higher dilution was selected to avoid introduction of correlations. In addition, the dilution and efficiencies for the opposite side tagging algorithms were determined using a sample of $B \to J/\psi K^+$ decays, to match the kinematic properties of the two samples.

![CDF: B_d^0 decay](image)

Figure 3: Results of CP asymmetry studies. Left: Time dependent Same Side Tag applied to a sample of $B_d^0 \to J/\psi K_S^0$, where two muons are reconstructed in the SVX detector. Right: Multiple tagging analysis results. In addition to the time dependent information the plot displays time-integrated asymmetry for non-SVX events. For comparison the dashed line present results of the fit with Δm_d left floating in the fit.

Tagged events are simultaneously fitted for a combination of the three tagging methods, using an unbinned likelihood fit with the value of Δm_d fixed to the world value. The fitting also takes into account the remaining tag correlations. The asymmetry values for the three tagging methods are shown in fig. Those events without proper time determination are presented separately as a single point. We measure $\sin(2 \beta) = 0.79^{+0.41}_{-0.44}$. The curves shown in fig. present the results of the fit.

5 Conclusion

Multiple tagging methods have been validated in the hadron collider environment of the Tevatron. The statistical power of the taggers, measured by the quantity ϵD^2, was determined using data sets accumulated by the CDF collaboration. Using a sample of over ~ 400 events of fully reconstructed $B_d^0/\bar{B}^0_d \to$
Table 1: Summary of the statistical power of the taggers, measured by ϵD^2.

Tagger	Effective Dilution	Dilution	Efficiency
	ϵD^2	D	ϵ
SST	2.1 ± 0.5 %	17 ± 4%	38 ± 4%
JTQ	2.2 ± 1.3 %	24 ± 7%	40 ± 4%
SLT	2.2 ± 1.0 %	63 ± 15%	6 ± 2%
Multiple Tags	6.3 ± 1.7 %		

$J/\psi K^0_s$ decays and multiple tags, we measured $\sin(2\beta) = 0.79^{+0.41}_{-0.44}$. This result can be translated into the frequentist confidence interval of $0 < \sin(2\beta) < 1$ at 93% confidence level. Next year, the Tevatron will begin a new collider run, delivering an expected twenty-fold increase in data over the following two years. With detector and trigger improvements, we expect to accumulate a sample of $\sim 10,000 \bar{B}^0_d/B^0_d \rightarrow J/\psi K^0_s$ events, allowing the uncertainty on $\sin(2\beta)$ to be reduced to 0.08. All three tagging methods will be important tools in the study of CP violation effects in the next run of the Tevatron.

Acknowledgments

We thank the Fermilab staff and the technical staffs of the participating institutions for their vital contributions. This work was supported by the U.S. Department of Energy and National Science Foundation; the Italian Istituto Nazionale di Fisica Nucleare; the Ministry of Education, Science and Culture of Japan; the Natural Sciences and Engineering Research Council of Canada; the National Science Council of the Republic of China; the Swiss National Science Foundation; the A. P. Sloan Foundation; and the Bundesministerium fuer Bildung und Forschung, Germany.

References

1. S. Mele, CERN-EP/98-133.
2. OPAL Collaboration, K. Ackerstaff et al, Eur. Phys. J. C5, 379 (1998).
3. F. Abe et al, Nucl. Instrum. Methods A 271, 387 (1988).
4. D. Amidei et al, Nucl. Instrum. Methods A 350, 73 (1994).
5. CDF Collaboration, F. Abe et al, Fermilab-Pub-99/019-E.
6. CDF Collaboration, F. Abe et al, Phys. Rev. Lett. 80, 2057 (1998).
7. CDF Collaboration, F. Abe et al, Phys. Rev. Lett. 81, 5513 (1998).