Towards Holographic QCD
AdS/CFT, Confinement Deformation, and DIS at Small-x

Richard Brower1, Marko Djuric2, Timothy Raben3, Chung-I Tan3

1Boston University
2Centro de Fisica do Porto
3Brown University

Rencontres de Moriond QCD and High Energy Interactions
To Appear

timothy_raben@brown.edu

March 25, 2014
Outline

• Background and Motivations

• Soft Wall Model

• Numerical Analysis

• Conclusions and Future
Physical Motivations

- QCD has been a resounding success for describing some areas of strong-force physics: Flavor, Color, Asymptotic Freedom ($\beta < 0$), etc.. But there are still physical regimes that are not well understood: n-particle scattering (amplitudes), strong coupling, confinement, etc.

- Deep Inelastic Scattering (DIS) allows us to probe hadronic processes using a relatively simple probe. In the regge limit ($s \gg |t|$) the scattering is non-perturbative. The scattering process is affected by color confinement.

- By taking a holographic approach where we have a dual description involving quantum gravity we can use perturbative string theory in 10 dimensions to describe strongly coupled four dimensional physics.
Questions To Keep in Mind

Question

Is strong coupling appropriate?

Guide

In many regimes, DIS can be treated perturbatively, but at small enough x (for fixed Q^2), particularly in the forward or near forward limits, the process becomes generically nonperturbative.

Question

Is confinement important?

Guide

Even for single pomeron exchange, we will see confinement playing a role in determining the onset of saturation.
The AdS/CFT is a holographic duality that equates a string theory (gravity) in high dimension with a conformal field theory (gauge) in 4 dimensions. Specifically, compactified 10 dimensional super string theory is conjectured to correspond to $\mathcal{N} = 4$ Super Yang Mills theory in 4 dimensions in the limit of large 't Hooft coupling: $\lambda = g_s N = g_{ym}^2 N_c = R^4 / \alpha'^2 \gg 1$.

The compactified geometry is a negatively curved space times a sphere: $AdS_5 \times S^5$

$$ds^2 = \frac{R^2}{z^2} \left[dz^2 + dx \cdot dx \right] + R^2 d\Omega_5 \rightarrow e^{2A(z)} \left[dz^2 + dx \cdot dx \right] + R^2 d\Omega_5$$

As the function $A(z)$ changes, the space is deformed away from pure AdS
The correspondence relates string modes to CFT states via the correspondence:

$$\left\langle e^{\int d^4x \phi_i(x) \mathcal{O}_i(x)} \right\rangle_{CFT} = Z_{\text{string}} [\phi_i(x, z) | z \to 0]$$

- At high energies QCD is asymptotically free and approximately conformal

- The similarity between QCD and $\mathcal{N} = 4$ SYM allows us to study the strong interaction using string theory

- The AdS/CFT conjecture has passed many (theoretical) tests (spectra of operators, wilson loops, correlation functions, etc.)

- The AdS/CFT is robust: the correspondance should allow for relevant deformations, finite temperatures, etc.

- A lot of success has been found for the AdS/CFT in heavy ion collisions, calculating entanglement entropies, and describing conformal field theories.
• Where are the single quarks? Naively, this could be explained by a quark-quark energy that grows with separation. At large distance it becomes energetically favorable to create new quarks.

• Wilson originally used wilson loops $W = \frac{1}{N} tr P \exp \left(ig \oint_C A \right)$ to try and describe confinement. In the limit of large times, a square path for a quark corresponds to the energy of two static quarks.

• In a confining theory one expects the expectation of the wilson loop to have an area dependence: $\langle W \rangle \sim \exp(-\sigma \text{Area})$

• In AdS Wilson loops in $\mathcal{N} = 4$ SYM are dual to minimal surfaces that extend into the bulk AdS.[Maldacena],[Polyakov] Note, in pure AdS, distances diverge at the boundary (small z) and become small in the interior of the bulk (large z).
Soft Wall Basics

In order to confine the theory one must effectively deform the AdS geometry. This can be done via:

- Sharp cutoff – \(z = z_0 \approx \frac{1}{\Lambda_{QCD}} \) (Hard Wall Model) [Polchinski, Strassler], [Brower, Djuric, Sarcevic, Tan]

- Gradual increase in length scales / large effective potential boundary for large \(z \) leads to possible bound states: confinement

For our geometric softwall, the deformation function becomes \(A(z) \to \Lambda^2 z^2 - \log(z/R) \). This leads to a metric

\[
ds^2 \to \frac{e^{2\Lambda^2 z^2} R^2}{z^2} \left[dz^2 + dx \cdot dx \right]
\]

We wish to use this soft wall model to describe deep inelastic scattering at leading order in the regge-limit. The object of interest is the AdS-pomeron, which was identified to be the Regge trajectory of the graviton [Brower, Polchinski, Strassler, Tan]. For us, it is sufficient to consider a purely geometric confinement deformation. However, to describe mesons it will be required to consider other dynamical fields in the bulk. [Karch, Katz, Son, Stephanov], [de Teramond, Brodsky], [Batell, Gherghetta]

Brower, Djuric, TR, Tan (Brown)
Propagators and Wave functions

In this framework the pomeron propagator obeys:

\[
-\partial_z^2 + 10\Lambda^2 + 4\Lambda^4 z^2 - t + \frac{12 - \alpha^2(j)R^5}{z^2} \chi_P(j, z, z', t) = \delta(z - z')
\]

The solution to this equation can take several forms. For quantized momentum transfer \(t_n \) the solution becomes

\[
\chi_P \sim (\Lambda^2 z z')^{\alpha(j)+1} e^{-\Lambda^2(z^2+z'^2)} L_n^{\alpha}(2\Lambda^2 z^2) L_n^{\alpha}(2\Lambda^2 z'^2)
\] (1)

Where as for a continuous \(t \) spectrum the solution becomes a combination of Whittaker’s functions (generalized hyper geometric functions)

\[
\chi_P \sim \ldots M_{\kappa,\mu}(z_{<}) W_{\kappa,\mu}(z_{>})
\] (2)

for \(\kappa = \kappa(t) \) and \(\mu = \mu(j) \)
Special Limits, Behavior, and Symmetry

- Λ controls the strength of the soft wall and in the limit $\Lambda \to 0$ one recovers the conformal solution

$$\text{Im} \chi_P^{\text{conformal}}(t = 0) = \frac{g_0^2}{16} \sqrt{\frac{\rho^3}{\pi}} (zz') e^{(1 - \rho)\tau} \frac{e^{(1 - \rho)\tau}}{\tau^{1/2}} \exp \left(\frac{-(\text{Log} z - \text{Log} z')^2}{\rho \tau} \right)$$

where $\tau = \text{Log}(\rho zz' s/2)$ and $\rho = 2 - j_0$. Note: this has a similar behavior to the weak coupling BFKL solution where

$$\text{Im} \chi(p_\perp, p'_\perp, s) \sim \frac{s^{j_0}}{\sqrt{\pi D \text{Log} s}} \exp(- (\text{Log} p'_\perp - \text{Log} p_\perp)^2 / D \text{Log} s)$$

- If we look at the energy dependence of the pomeron propagator, we can see a softened behavior in the regge limit.

$$\chi^{\text{conformal}} \sim -s^{\alpha_0} \text{Log}(s) \to \chi_{HW} \sim -s^{\alpha_0} / \text{Log}(s)$$

Analytically, this corresponded to the softening of a j-plane singularity from $\sqrt{j - j_0} \to 1 / \sqrt{j - j_0}$. Again, we see this same softened behavior in the soft wall model.

- (Possibly) interesting limit $t = 10\Lambda^2$. Here the EOM simplifies and takes the form of a model with 1+1 dimensional conformal symmetry [Fubini]
DIS in AdS

We are interested in deep inelastic scattering (DIS) characterized by a virtual photon off a proton ($\gamma^* p$)

To characterize this process we consider the CM energy $s \approx Q^2 / x$ for s large. In the regge limit, with Q^2 fixed, we can treat this process via the exchange of pomerons. (leading order exchange in a sommerfeld-watson decomposition). The primary route to physical relevance is via the optical theorem

$$\sigma_{total} = \frac{1}{s} \text{Im} [A(s, t = 0)] \sim \frac{1}{s} \text{Im} [\chi(s, t = 0)]$$

We can use this to calculate total cross sections and to determine the proton structure function

$$F_2(x, Q^2) = \frac{Q^2}{4\pi^2\alpha_{em}} (\sigma_{trans} + \sigma_{long})$$

Finally we must be wary of saturation where we must consider multipomeron exchange via eikonalization

$$\chi \rightarrow 1 - e^{i\chi}$$

[Cornalba, Costa, Penedones][Brower, Strassler, Tan]
We will consider the combined H1 and Zeus data set published in 2010 [Aaron, et. al.][Chekanov, et. al.], but we restrict ourselves to small-x data, $x < 0.01$. We can write a scattering amplitude as

$$\mathcal{A}(s, t) = s \int_{\text{bulk}} dzdz' P_{13}(z) P_{24}(z') \chi(s, t, z, z')$$

In the conformal limit we can model the photon with a function peaked around $z \sim 1/Q$. To simplify things and to include confining models we will make a local approximation for both the photon and proton where

$$P_{13}(z) \rightarrow \delta(z - 1/Q) \text{ and similarly } P_{24}(z) \rightarrow \delta(z' - 1/Q')$$

Note: The softwall solutions are very numerically slow to handle!
The structure function $F_2(x, Q^2)$ plotted for various values of Q^2. The data points are from the H1-Zeus collaboration and the solid lines are the soft wall fit values.
Contour plots of $\text{Im}[\chi]$ as a function of $1/x$ vs Q^2 (Gev) for conformal, hardwall, and softwall models. These plots are all in the forward limit, but the impact parameter representation can tell us about the onset of non-linear eikonal effects. The similar behavior for the softwall implies a similar conclusion about confinement vs saturation.
Comparison With Previous Work

Model	ρ	g_0^2	z_0	Q'	χ^2_{dof}
conformal	0.774*	110.13*	-	0.5575* GeV	11.7 (0.75*)
hard wall	0.7792	103.14	4.96 GeV$^{-1}$	0.4333 GeV	1.07 (0.69*)
softwall	0.7774	108.3616	8.1798 GeV$^{-1}$	0.4014 GeV	1.1035
softwall*	0.6741	154.6671	8.3271 GeV$^{-1}$	0.4467 GeV	1.1245

Comparison of the best fit (including a χ sieve) values for the conformal, hard wall, and soft wall AdS models. The final row includes the soft wall with improved intercept. [Costa, Goncalves, Penedones][Gromov, Levkovich-Maslyuk, Sizov, Valatka] The statistical errors (omitted) are all $\sim 1\%$ of fit parameters.

As expected, best fit values imply

$$
\rho \rightarrow \lambda > 1 \quad \frac{1}{z_0} \sim \Lambda_{QCD} \quad \text{and} \quad Q' \sim m_{proton}
$$
Conclusions and Future Work

Conclusions:
- DIS in small-x regge regimes can be well approximated using the AdS/CFT
- Single pomeron exchange affects a large part of x and Q^2 space
- Confinement seems to affect the onset of saturation in a variety of models

Future Directions:
- Softwall eikonal (better numerics or more clever solutions)
- AdS EOM to higher order in λ (Hard string calculation!) [Costa, Goncalves, Penedones][Gromov, Levkovich-Maslyuk, Sizov, Valatka]
- Extend to meson exchange. [Karch, Katz, Son, Stephanov] [Brodsky, de Teramond]
- Investigate anomolous dimensions via $\Delta(j)$