\(\Lambda \)CDM Halo Density Profiles: where do actual halos converge to NFW ones?

Gianfranco Gentile\(^1,2\), Chiara Tonini\(^1\) and Paolo Salucci\(^1\)

\(^1\) SISSA, via Beirut 4, 34014 Trieste, Italy
e-mail: ggentile@unm.edu
\(^2\) University of New Mexico, Department of Physics and Astronomy, 800 Yale Blvd NE, Albuquerque, NM 87131, USA

Received

ABSTRACT

Aims. We present an analysis of 37 high-quality extended rotation curves that highlights the existence of a new discrepancy (or a new aspect of an old discrepancy) between the density profiles predicted by the \(\Lambda \) Cold Dark Matter (\(\Lambda \)CDM) theory and the actual distribution of dark matter in galaxies.

Methods. We compare the predicted face-value density vs. enclosed mass relationship, at large distances, to the observational data at the last measured radii of the rotation curves and in two whole rotation curves of high quality. A further analysis is performed by studying a relation, inbuilt in \(\Lambda \)CDM, that links at radius \(R \), the enclosed halo mass \(M_{\text{vir}}(R) \) and its density \(\rho(R) \) in a way that is independent of the mass of the virialised object.

Results. We find that the predicted density vs. enclosed mass relationship has a systematic offset with respect to the observational data. In test case extended rotation curves, at their last measured point, the predicted NFW densities are up to a factor 3 lower than those derived from the kinematics. Moreover, the abovementioned relation, inbuilt in \(\Lambda \)CDM, does not hold for the objects of our sample. Such a new outer discrepancy is different and maybe complementary with respect to the core/cusp issue, for which the NFW densities turn out to be higher than those observed and it seems to imply a global mass rearrangement of a pristine NFW-\(\Lambda \)CDM halo.

Key words. Galaxies: kinematics and dynamics – (Cosmology:) dark matter – Galaxies: structure

1. Introduction

The study of disk galaxies’ rotation curves has been one of the most successful tools for investigating the dark matter phenomenon in galaxies. Recently, the attention has been focused on the distribution of dark matter in galaxies, as inferred from the rotation curves, in particular the comparison between the predictions of standard \(\Lambda \) Cold Dark Matter (\(\Lambda \)CDM) theory of structure formation and observations (e.g., Salucci & Burkert 2000, Borriello & Salucci 2001, de Blok & Bosma 2002, Weldrake et al. 2003, Swaters et al. 2003, Simon et al. 2005, Gentile et al. 2004, 2005, 2006).

More specifically, the \(\Lambda \)CDM theory predicts that dark matter halos have a specific density distribution that follows the well-known NFW (Navarro, Frenk and White, 1996) profile:

\[
\rho_{\text{NFW}}(R) = \frac{\rho_s}{(R/r_s)(1 + R/r_s)^2}
\]

(1)

where \(r_s \) and \(\rho_s \) are the characteristic radius and density of the distribution. The latter is given by:

\[
\rho_s = \frac{\Delta}{3 \ln(1 + c)} - \frac{\rho_c}{1 + c}.
\]

(2)

where \(\rho_c \) is the critical density of the Universe and \(\Delta \) is the virial overdensity (see Bryan & Norman 1998).

\(r_s \) and \(\rho_s \) are related to each other (e.g. Wechsler et al. 2002), so eq. 1 is rather a one-parameter family of profiles, where the following relations link the virial mass \(M_{\text{vir}} \) to the concentration parameter \(c = r_{\text{vir}}/r_s \), where \(r_{\text{vir}} \) is the virial radius), \(r_s \) and \(\rho_s \), at redshift \(z = 0 \) and adapting the relations (similarly to Gnedin et al. 2006 and Dutton et al. 2006) to the cosmological parameters from the WMAP third year results (Spergel et al. 2006):

\[
c \simeq 13.6 \left(\frac{M_{\text{vir}}}{10^{11}M_\odot} \right)^{-0.13}, \quad r_s \simeq 8.8 \left(\frac{M_{\text{vir}}}{10^{11}M_\odot} \right)^{0.46} \text{kpc}
\]

(3)

The virial radius \(r_{\text{vir}} \) can then be derive from \(r_{\text{vir}} = c \, r_s \). In \(\Lambda \)CDM, at least in a statistical sense, once the radius and the mass at that radius are fixed, the parameter describing the mass distribution (usually the virial mass \(M_{\text{vir}} \)) is also known. On the other hand, a quite remarkable number of observations show that NFW profiles, displaying an inner “cusp”, are inconsistent with data. In fact, the latter indicate profiles with a different characteristic, a central density “core”, i.e. a region where the dark matter density remains approximately constant. A number
of studies cast doubts on the reliability of the mass modelling procedure and the data analysis (van den Bosch et al. 2000, Swaters et al. 2003, Hayashi & Navarro 2006, Valenzuela et al. 2007) of some galaxies. The debate is still on, despite the fact that most concerns are now overcome (Gentile et al. 2004, 2005, 2006, de Blok, Bosma & McGaugh 2003, de Blok 2005).

The simplest example of a cored halo profile is the pseudo-isothermal (PI, van Albada et al. 1985):

\[
\rho_{\text{PI}}(R) = \frac{\rho_0}{1 + R^2/R_C^2}
\]

(4)

where \(R_C\) is the core radius and \(\rho_0\) is the central density, that results about one order of magnitude lower than \(\Lambda\) CDM predictions (Donato et al. 2004, Gentile et al. 2004, 2005 and references therein).

However, the above works did focus on the comparison between \(\Lambda\) CDM and observations in the inner parts of the galaxies, while it is of extreme importance to investigate also the outer density distribution, where \(\Lambda\) CDM halos have an equally strong feature: the transition between a \(\rho \propto R^{-1}\) to a \(\rho \propto R^{-3}\) regime. In this paper, outer and inner regions have a baryonic perspective. The former refers to a region inside \(1 - 2\) stellar disk scale lengths \(R_D\), the latter to that extended out to \(\geq 3 - 5R_D\) and characterised by the HI disk. Both regions, however, must be considered inner regions with respect to the DM distributions. In other words, is the discrepancy between theoretical predictions and data present only in the inner parts of a galaxy, and therefore the profiles converge to the NFW one at larger radii, or is there a more global discrepancy extending beyond the NFW halo \(R^{-1}\) regime, as suggested also by McGaugh et al. (2006)?

Note that the rotation curves at large radii, i.e. for \(R \gg R_D\), provide a very good measure of densities and of enclosed dark masses. In fact, at these distances, the contribution to the gravitational potential due to gas and stars is very small and the uncertainties on the accurateness/uniquness of the dark-to-luminous mass decomposition play a very minor role: it is the rotation curve itself that essentially measures the physical quantities \(M_b(R) \approx G^{-1}V^2(R)R\) and \(\rho_b(R) \approx 1/(4\pi R^2)dM_b/dR\). Conversely, in the inner regions (\(R < R_D\)), usually, a complex dark-luminous mass modelling is needed to decompose the circular velocity into the (possibly equally important) dark and luminous contributions (see e.g. Barnes, Sellwood & Kosowsky 2004).

2. Samples and methods of investigation

In the present paper we investigate the outer dark matter distribution mostly resorting to two samples, heterogeneous in mass, covering about 3 orders of magnitude: 1) the sample of high-quality rotation curves selected by Donato et al. (2004), discarding the 4 galaxies with the smallest extension relative to the disk exponential scale length \(R_D\) and adding the galaxies: DDO 47 (Salucci, Walter and Borriello 2003, Gentile et al. 2005) and ESO 287-G13 (Gentile et al. 2004); 2) a sample with rotation curves selected from the literature fulfilling the requirements of a) reaching out to at least 30 kpc, or out to 6 disk scale lengths, or b) with the final velocity being above 250 \(\text{km s}^{-1}\). In this way, the curves were sufficiently extended to map a region of the halo density profile not affected by the central slope, nor massively affected by the presence of the disk. It results that we investigate regions of halos corresponding to galactocentric distances out to 5% up to about 35% (the case of NGC 9133) of the virial radius: these zones are beyond the influence of the cusp, and still well into the central part of the dark matter halo. We selected only rotation curves that were regular out to the last measured radius \(R_L\) (whose average value is about 24 kpc), obtaining a sample of 37 galaxies. In Table 1 the selected galaxies of sample 2 are listed, together with the corresponding references.

Galaxy	Reference
NGC 289	Walsh et al., 1997
NGC 1068	Sofue et al., 1999
NGC 1097	Sofue et al., 1999
NGC 1232	van Zee & Bryant, 1999
NGC 3198	Blais-Ouellette et al., 2001
NGC 3726	Verheijen & Sancisi, 2001
NGC 4123	Weiner et al., 2001
NGC 5055	Sofue et al., 1999
NGC 5236	Sofue et al., 1999
UGC 5253	Noordermeer et al., 2004
NGC 5985	Blais-Ouellette et al., 2004
NGC 6946	Carignan et al., 1990
NGC 7331	Bottema, 1999
UGC 9133*	Noordermeer et al., 2004

Table 1. Selected galaxies with their references. The asterisk indicates that the original work provided also the dark-luminous decomposition of the rotation curve.

For a number of galaxies the mass decomposition between the luminous and dark component of the velocity was obtained from the literature; we marked them with an asterisk in Table 1. For the others, we used the method of Persic and Salucci (1990), see Appendix A.

The rotation curves of sample 1 have been selected and successfully used (Donato et al. 2004) in order to investigate the core radius issue, i.e. an issue that needs more accurate data than the issue we want to tackle here. Since the resulting halo rotation curves of the galaxies of the sample are very well fitted by the PI profile, we will take it as representative of the dark matter haloes around galaxies.

From our sample 1 we select DDO 47 and ESO 287-G13, as the best examples to show individually the outer NFW \(\Lambda\) CDM-data discrepancy. Then, we use the combined samples 1-2 to compare, at the outermost radii, the NFW \(\Lambda\) CDM predictions, obtained by a newly discovered structural \(\Lambda\) CDM relation, with the values of the mass, radius and density of the DM halos around galaxies.

3. The new dark matter density discrepancy from the extended rotation curves of ESO 287-G13 and DDO 47

We analyse in detail the density profiles of the DM halos for the two best cases in our sample: DDO 47 (Salucci, Walter and Borriello 2003, Gentile et al. 2005) and ESO 287-G13 (Gentile et al. 2004).
Fig. 1. DM density distributions; filled circles represent the DM density inferred by the rotation curves. Solid lines corresponds to the NFW solution with $M_{\text{NFW}}(R_f) = M_{\text{PI}}(R_f)$, that give, for DDO 47, $(r_s, M/L_B; R_D) = (5.5 \, \text{kpc}, 0.5; 0.5 \, \text{kpc})$, and for ESO 287-G13, $(r_s, M/L_i; R_D) = (17.4 \, \text{kpc}, 1.8; 3.3 \, \text{kpc})$. The dashed line corresponds to the “best fit” NFW solution, $(r_s, M/L_i) = (19.4 \, \text{kpc}, 0.7)$. See text for the (conservative) estimate of the uncertainties.

Borriello 2003, Gentile et al. 2005) and ESO 287-G13 (Gentile et al. 2004). Note that in the present study, differently from the original papers, the aim is to show the existence of an outer observations/theory discrepancy, rather than to investigate the inner cusp/core issue: therefore we will analyse the data in a different but proper way. For consistency with the detailed analysis made in the original papers, in this Section we used the relation between c and M_{vir} given by Bullock et al. (2001) and Wechsler et al. (2002) instead of eq. 3.

3.1. Actual dark matter halos

We follow Salucci et al. (2003) and Gentile et al. (2004), the density distribution $\rho_h(R)$ of the dark matter halo in these galaxies is given by: $\rho_h(R) = \rho_{\text{PI}}(R)$ (see eq. 4). Notice that in both objects we have also considered a Burkert halo (Burkert 1995), and found results coincident with the PI halo.

3.2. NFW halos

Let us assume that:

$$M_{\text{NFW}}(R_f) = M_{\text{PI}}(R_f)$$

where $M_{\text{PI}}(R_f)$ is the mass inside R_f we derive from the above mass model. Eq. 5 allows to derive the values of c and M_{vir}: 18.4 and $6 \times 10^{10} M_\odot$ for DDO 47, and 13.3 and $7 \times 10^{11} M_\odot$ for ESO 287-G13. Let us anticipate that this assumption is very conservative; in fact, if the mass equality expressed by eq. 5 occurs at radii smaller than R_f the result we claim here will be even more prominent; on the other hand, if the mass equality
occurs at radii larger than R_t, a discrepancy from $R = 0$ out to $R = R_t$ will be set by definition. This assumption has also the desirable by-product, in the NFW framework, of implying reasonable values for the stellar mass-to-light (M/L) ratios.

Given the importance of a careful analysis, we have also considered a different implementation of the NFW halo + disk + gas mass modelling: in ESO 287-G13 we have fitted the rotation curve with this mass model by leaving M/L and M_{vir} as free parameters; this latter procedure, shown in Fig. 1, yields very similar results with respect to those obtained by means of eq. 5.

3.3 Test for ESO 287-G13 and DDO 47

In Fig. 1 we compare the actual dark matter density $\rho_{\text{f}}(R)$ and $\rho_{\text{NFW}}(R)$ at the radii where the rotation curves were measured. A conservative estimate of the uncertainty on the density was derived from the mass modelling uncertainties. In fact 20% uncertainties in ρ_0 and R_c give an average uncertainty on the density of about 25%. A rigorous derivation goes beyond the scope of this paper. Then, it is clear that the density is not determined with the same accuracy at each radius. In fact dark matter is not the dominant kinematic term in the inner parts and therefore the density uncertainty is larger.

We see the well-known (though debated in some case) cusp-core discrepancy at $R \to 0$, but at larger radii we now realise that the difference in densities changes sign and that the “inner” discrepancy is now reversed: in both analyses, the NFW halo densities, from a certain radius onward, are lower than the dark matter halo density. Note that such a discrepancy was also present in some of the analysis made in previous investigations (e.g. Blais-Ouellette et al. 2001, Borriello & Salucci 2001, de Blok & Bosma 2002), but it was not claimed explicitly, neither it was investigated whether some combination of c and M_{vir} had made possible for ρ_{NFW} to converge to the actual density inside the region mapped by the rotation curve data. In the present paper we instead claim that the situation can be described by one of these two possibilities: 1) $\rho_{\text{NFW}}(R)$ at any radius is systematically higher than the estimated density (so it will disagree in the core region, but will be compatible with the outermost density, see Fig. 2 and the data vs. prediction discrepancy will extend to several disk scale lengths; 2) the discrepancy is “bivariate”: actual halos (in comparison to predicted halos) have a density deficit in the inner regions but an excess in the outer ones. We consider the second possibility as more likely since it implies stellar M/L ratios compatible with the predictions of stellar population synthesis models (Bell et al. 2003, Gentile et al. 2004). For instance, in the case of DDO 47, imposing $\rho_{\text{NFW}}(R) = \rho(R)$ leads to a best-fit M/L ratio of 0; on the other hand, with the second possibility one gets a B-band $M/L = 0.7$, within the range $0.5 - 0.8$ arising from the observed $B-V$ colour and the predictions of stellar population synthesis models (Bell et al. 2003).

Let us stress that the availability of data at large distances is a crucial point: in these galaxies we just reach the radius where the NFW density decreases in an appreciable way. Compared to the discrepancy in the inner regions of galaxies, extremely evident and as wide as an order of magnitude, the outer discrepancy is less spectacular but not less important.

4. The new density discrepancy from a new NFW halo phenomenology

A main property of the distribution of NFW-CDM haloes is that $M_{\text{NFW}}(R) = f(R, M_{\text{vir}}, c(M_{\text{vir}}))$, while $\rho_{\text{NFW}}(R) = h(R, M_{\text{vir}}, c(M_{\text{vir}}))$. From this it follows that: $M_{\text{NFW}}(R) = G(R, \rho_{\text{NFW}}(R), M_{\text{vir}})$, that is, at a fixed radius, the density and mass are related, though in principle in a different way in galaxies of different M_{vir}. The above provides us with a convenient way to present the structural properties of NFW halos, according to which observational data can be compared with the theory without knowing the virial masses of the objects. This is crucial because of the poor fitting performance of the NFW fits to rotation curves often prevents even a rough estimate of this quantity. The relation we find (hereafter called the $M - R - \rho$ relation) is valid for any M_{vir}; this can be easily seen in Fig. 3 by plotting it for 3 different virial (total) masses ($5 \times 10^{10} M_\odot$, $1 \times 10^{12} M_\odot$, and $1 \times 10^{13} M_\odot$) and concentration parameters (see eq. 2), for radii ranging from 0.001r_{vir} to r_{vir} the relation takes the form (see Fig. 3):

$$
\log M_{\text{NFW}} = \frac{3}{4}\log \rho_{\text{NFW}}(R) + \frac{11}{4}\log R + 26.17
$$

where M_{NFW} is in M_\odot, R in kpc and ρ_{NFW} in g cm$^{-3}$. The $M - R - \rho$ relation holds for more than 6 orders of magnitude in mass, and it is valid, for real cases, for any galactic halo at any radius. The scatter in c, 3 orders of magnitude in radii and a factor 200 in M_{vir} introduce a negligible ($\lesssim 0.05$ dex) scatter through the 6 orders of magnitude in $M_{\text{NFW}}(R)$.

The relation follows from the structural properties of NFW halos. It can be derived mathematically, but its physical meaning is reported to the origin of eqs. 1 and 3. Let us write the ratio between the enclosed mass $M_{\text{NFW}}(< R)$ of an NFW halo.
Fig. 3. The $M - R - \rho$ relation: the (overlapping) solid lines refer to the ΛCDM haloes, for 3 different virial masses (5×10^{10} M_\odot, 1×10^{12} M_\odot and 1×10^{13} M_\odot) and the 3 corresponding concentration parameters c according to Wechsler et al. (2002) (18.7, 12.7 and 9.4, respectively). The dashed lines correspond to the ± 1-σ uncertainty in c taken from Wechsler et al. (2002). Radii range from $0.001 r_{\text{vir}}$ to r_{vir}. $M(<R)$ is in M_\odot, $\rho(R)$ in g cm$^{-3}$ and R in kpc.

at radius r (where the density is $\rho_{\text{NFW}}(R)$) and a uniform sphere of radius r and density $\rho_{\text{NFW}}(R)$:

$$\frac{M_{\text{NFW}}(< r)}{4/3 \pi r^3 \rho_{\text{NFW}}(R)} = \frac{3(1 + cx)^2}{c^2 x^2} \left(\ln(1 + cx) - \frac{cx}{1 + cx} \right)$$ (7)

On the other hand, from eq. (6) we have: $$\frac{M_{\text{NFW}}(r)}{4/3 \pi r^3 \rho_{\text{NFW}}(r)} \propto (\rho_{\text{NFW}}(R) R)^{-1/4}$$. Then, recalling that $(\rho_{\text{NFW}}(R) R)^{-1/4} = \frac{(1 + x)^{1/2}}{\pi^{1/2} r^{3/2}}$, one finds that the $M - R - \rho$ relation is a way of expressing the approximation (valid for $0 < x < 1$):

$$(1 + cx)^{1/2} \propto A \frac{3(1 + cx)^2}{(c^2 x^2)} \left(\ln(1 + cx) - \frac{cx}{1 + cx} \right)$$ (8)

We compared the predicted $M - R - \rho$ relation with the measurements of 37 galaxies. The result (Fig. 3) is that the observational points at R_1 are systematically offset compared to the $M - R - \rho$ relation. The mean offset of ~ 0.1 dex is solid (but note that larger offsets are also observed); in fact, the error propagation analysis shows that a 3% uncertainty on the measure of the circular velocity and a 0.05 uncertainty on the logarithmic gradient $\frac{\log V(R)}{\log R}$ yield uncertainties of the order of 0.025 dex in M and 0.06 dex in ρ. The uncertainties on the objects distances are not included since they only induce random errors. At R_1, for a given enclosed mass $M(< R_1)$, the observed density $\rho_{\text{pp}}(R_1)$ is higher than that of NFW haloes that match $M(< R_1)$. The density discrepancy runs up to a factor ~ 3 and it is significant in that the adopted procedure of matching the CDM mass to the observed one is a conservative one. The predicted halo profiles are based on a larger number of halos than the present sample of 37 galaxies, so selection or systematic effects cannot be completely excluded, even if the 37 galaxies span a large range of maximum velocities, Hubble types and environments.

We tested whether the environment has an effect on our results: we distinguished between galaxies in “isolated” halos and galaxies in “subhalos”. A straightforward definition does not exist, so we defined as “subhalos” those galaxies which either belong to a known group of galaxies or that have a larger companion within 30 R_{25} and 400 km s$^{-1}$. The other galaxies were labelled as “isolated”. A more detailed investigation of the effect of environment goes beyond the scope of our paper, especially because of the heterogeneity of the data we consider here. Qualitatively there are no obvious differences between the different subsamples, even though the predicted difference between the concentrations of halos and subhalos (Bullock et al. 2001) cannot be excluded.

Edge-on galaxies may represent a potential problem, as the Hα rotation curves could be affected by extinction (Bosma et al. 1992) and the HI rotation curves might suffer from projection effects unaccounted for and from the possible lack of gas on the line of nodes. In Fig. 3 we have plotted the three edge-on galaxies (i.e., with an inclination larger than 85°) of our sample with a triangle; we realise that these galaxies do not lie in any peculiar region of the plane and they are not more discrepant than the other galaxies. The same holds for the galaxies from sample 2 for which the mass model was obtained as described in the previous Section.

Baryons are expected to affect the density distribution of dark matter, but the effects are far from being clear: the best studied process is adiabatic contraction (Blumenthal et al. 1986, Gnedin et al. 2004, Sellwood & McGaugh 2005), which would make the halos more centrally concentrated, but mechanisms with opposite effects have also been studied, such as
adiabatic expansion (Dutton et al. 2006) or dynamical friction (Tonini, Lapi & Salucci 2006). Hence, in the ΛCDM halos considered here we did not take the effect of baryons into account, since their effect on the distribution of dark matter is still poorly understood. Also, baryons, when gas cools, are also expected to make dark matter halos more spherical (Kazantzidis et al. 2004). In Fig. 6 we plotted the baryonic mass of the galaxies of our sample with mass decompositions vs. their distance from the relation in eq. 6 no clear correlation is observed, meaning that the discrepancy we report in the present paper is not straightforwardly related to the amount of baryons present in the galaxy, or that effects such as uncertainties in the mass distribution create a large scatter in Fig. 6. We also note that in the galaxies studied here $R_t \gg R_h$, i.e. R_t probes a region outside that most affected by adiabatic contraction.

Warp motions and non-circular motions are also a potential concern for the present analysis, since in a ΛCDM Universe dark matter halos are expected to be triaxial, which would induce non-circular motions in the gas (Hayashi & Navarro 2006), and gas moving through filaments (Dekel & Birnboim 2006) will interact with galaxies, triggering structures on disks like those warps. Nearly all the rotation curves collected in the present paper were derived using the tilted-ring fitting of the velocity field, which can account for warps but not for non-circular motions. The exception is DDO 47, which was studied in detail by Gentile et al. (2005), using the harmonic decomposition of the velocity field, which can account for warps but not for non-circular motions. So we exclude that warps might have an effect on the paper conclusions, while we cannot exclude the possibility of non-circular motions; however, one can expect them to increase the observational scatter but not to have a systematic effect.

The outer density discrepancy arises in a clear way by setting the NFW halo mass within the last point equal to the observed one at R_t; what happens if this is valid at a different radius? If the radius is smaller, the density inversion happens at even smaller radii, and the discrepancy at R_t is worse. If the radius is larger, there might be no density inversion, but the cusp/core discrepancy (see however Section 1) between ΛCDM predictions and observations would be increased and would be present at any radius where baryons are present. The latter case is shown in Fig. 2c where at the last point we imposed $\rho_0(R_t) = \rho_{NFW}(R_t)$ instead of $M_h(R_t) = M_{NFW}(R_t)$: the inner discrepancy becomes worse. Even though the method of analysis is different, this effect might be related to the results of Seigar et al. (2006), whose NFW profiles (including possible adiabatic contraction) match the observed rotation curves of two galaxies in their outer parts (~ 10 kpc), but overestimated the inner rotation curves. One of the two cases shown by Seigar et al. is a barred galaxy and its fitted concentration parameter is small compared to the averaged predicted value; the authors discuss possible evidence for the absence of adiabatic contraction or alternatively of some dynamical effects that compensates for adiabatic contraction.

By assuming the Burkert halo instead of the NFW halo leads to the results shown in Fig. 5. Here we consider the one-parameter family of halos defined by the Burkert halo and the empirical relation between the central density ρ_0 and the core radius r_0 found by Salucci & Burkert (2000): $\rho_0 = 3 \times 10^{-24}(r_0/\text{kpc})^{-2/3} \text{g cm}^{-3}$. The virial masses were computed by integrating the density profile until the mean density was Δ times ρ_c, where Δ was derived following Bryan & Norman (1998). In this case (see Fig. 5) we find that halos with different masses do not overlap (because for the chosen axes there is no such an approximation as eq. 8), the agreement with the observations is much better than in the case of the NFW halos. This means that the Burkert halo, known to fit the inner parts rotation curves better, is also a better representation of the observations at the last radii probed by rotation curves ($\sim 5 - 35\%$ of the virial radius).

Let us point out that while the present work shows that a theory vs observations discrepancy extends well beyond the very inner regions of spirals, it leaves open the possibility that, for radii $r \gtrsim 2 - 0.3r_{200}$, the density of the DM around galaxies converges to a NFW profile. This was hinted at by Prada et al. (2003) who have investigated the outer dark matter profile by means of the kinematics of satellites around isolated galaxies. However, they probe an outer region with respect to those considered here and in a very low resolution mode: their projected radii range from 20 to 350 kpc, in 100 kpc bins. Brainerd (2004a,b), using weak galaxy lensing in addition to the dynamics of satellite galaxies, reach similar conclusions for scales $\gtrsim 50$ h$^{-1}$ kpc. The results showed in the present paper hold for galaxies but the situation on the scales of galaxy clusters might be different: indeed, Vikhlinin et al. (2006) and Zappacosta et al. (2006) show agreement between X-ray data and ΛCDM mass profiles.

5. Conclusions

An accurate mass modelling of the external regions in the case of a couple of test-case spirals and a careful determination of the densities and enclosed masses of the dark matter haloes at the farthest radii at which 37 high quality rotation curves have been measured, has brought to the discovery of a new problem/discrepancy for the ΛCDM/NFW haloes.

In fact, in addition to the well-known evidence for which in the inner regions of galaxies ($R < 2R_h$) the DM haloes show a flattish density profile, with amplitudes up to one order of magnitude lower than the ΛCDM predictions, at outer radii ($R > 4R_D$) the measured DM halo densities are found higher than the corresponding ΛCDM ones. This implies either that the shallow-steep disagreement extends all over 1-2 times the galaxy optical radius (which would be the case if $\rho_{NFW}(R_t) = \rho(R_t)$) or that there is a complex data vs. theory disagreement.

While the statistical significance and the level of the discrepancy must be investigated with more and outer data, there is already an evidence for this discrepancy in most galaxies with high quality data. The DM halo density, known to have a core in the internal regions, does not seem to converge to the NFW profile at 4-6 R_h. This implies an issue for ΛCDM that should be investigated in future, when, due to improved observational techniques, the kinematic information will be extended to the ~ 100 kpc scale (Gentile et al., in prep.).

This new discrepancy provides additional information on the nature of the cusp/core issue: self-interacting or annihilating Dark Matter particles would make halos more spherical, which is indeed more convincing for the ΛCDM models. This may help in investigating the nature of the cusp/core discrepancy for other DM models as well.
Fig. 4. The same as Fig 3, zoomed to the radial range from 1% to 20% of the virial radius. Filled circles are the observational data of samples 1 and 2 at R_f. The three edge-on galaxies are denoted by empty circles. Empty triangles denote the objects of sample 2 without published mass modelling. Red symbols are isolated halos and black symbols are subhalos, according to our definition in the text.

Fig. 5. The same as Fig 4 but showing that Burkert halos (Salucci & Burkert 2000) predict a mass dependent $M_{\text{vir}}(\rho^{3/4} R)$ relation in good agreement with observations. Symbols are the same as Fig 4 and the 3 lines correspond to 3 different virial masses ($5 \times 10^{10} M_\odot$, $1 \times 10^{12} M_\odot$ and $1 \times 10^{13} M_\odot$, see text).

References
Barnes, E.I., Sellwood, J.A., Kosowsky, A., 2004, AJ, 128, 2724
Bell, E.F., McIntosh, D.H., Katz, N., Weinberg, M.D., 2003, ApJS, 149, 289
Blais-Ouellette, S., Amram, P., Carignan, C., 2001, AJ, 1952, 1964
Blais-Ouellette, S., Amram, P., Carignan, C., Swaters, R., 2004, A&A, 420, 147
Brainerd, T. G., 2004a, preprint (astro-ph/0409381)
Brainerd, T. G., 2004b, AIP Conf. Proc. 743: The New Cosmology: Conference on Strings and Cosmology, 743, 129

ing dark matter proposed as the cause for the inner discrepancy may be in difficulties in that it will cause a rapid convergence to the NFW profile in the luminous parts of galaxies and beyond once a critical density value is reached. The discrepancy points to a scenario of modified CDM profiles, to a global mass or angular momentum rearrangement (e.g. Dutton et al. 2006, Tonini et al. 2006) that would remove dark matter from the innermost parts to the radii probed by the outermost regions of rotation curves.
Fig. 6. Distance from eq. [2] vs. baryonic mass of the galaxies with mass decompositions: there is no clear correlation between the two quantities. Units are the same as Fig. [3].

Blumenthal, G. R., Faber, S. M., Flores, R., & Primack, J. R., 1986, ApJ, 301, 27

Borriello, A., Salucci, P., 2001, MNRAS, 323, 285

Bosma, A., Byun, Y., Freeman, K. C., Athanassoula, E., 1992, ApJ, 400, L21

Bottema, R., 1999, A&A, 348, 77

Bryan, G.-L., Norman, M.-L., 1998, ApJ, 495, 80

Burkert, A., 1995, ApJ, 447, L25

Carignan, C., Charbonneau, P., Boulanger, F., Viallefond, F., 1990, A&A, 234, 43

de Blok, W. J. G., Bosma, A., 2002, A&A, 385, 816

de Blok, W. J. G., Bosma, A., McGaugh, S. 2003, MNRAS, 340, 657

de Blok, W. J. G. 2005, ApJ, 634, 227

Dekel, A., Birnboim, Y., 2006, MNRAS, 368, 2

Donato, F., Gentile, G., Salucci, P., 2004, MNRAS, 353, L17

Dutton, A. A., Courteau, S., 2002, ApJ, 568, 52

Dutton, A. A., van den Bosch, F. C., Dekel, A., Courteau, S., 2006, preprint (astro-ph/0604553)

Gentile, G., Salucci, P., Klein, U., Vergani, D., Kalberla, P., 2004, MNRAS, 351, 903

Gentile, G., Burkert, A., Salucci, P., Klein, U., Walter, F., 2005, ApJ, 634, L145

Gentile, G., Salucci, P., Klein, U., Granato, G. L., 2006, MNRAS in press. (astro-ph/0611355)

Giraud, E., 1998, AJ, 116, 2177

Gnedin, O. Y., Kravtsov, A. V., Klypin, A. A., & Nagai, D., 2004, ApJ, 616, 16

Gnedin, O. Y., Weinberg, D. H., Pizagno, J., Prada, F., Rix, H.-W., 2006, preprint (astro-ph/0607394)

Hayashi, E., Navarro, J. F., 2006, MNRAS, in press. (astro-ph/0608376)

Kazantzidis, S., Kravtsov, A. V., Zentner, A. R., Allgood, B., Nagai, D., Moore, B., 2004, ApJ, 611, L73

McGaugh, S. S., de Blok, W. J. G., Schombert, J. M., Kuzio de Naray, R., & Kim, J. H. 2006, ApJ, in press. (astro-ph/0612410)

Navarro, J.F., Frenk, C.S., White, S.D.M., 1996, ApJ, 462, 563

Noordermeer, E., van der Hulst, T., Swaters, R., 2004, Proceedings of "Baryons in Dark Matter Halos", Novigrad, Croatia, 5-9 Oct 2004. Eds: R. Dettmar, U. Klein, P. Salucci. Published by SISSA, Proceedings of Science, http://pos.sissa.it, p. 68.

Persic, M., Salucci, P., 1990, MNRAS, 247, 349

Prada, F., Vitiutska, M., Klypin, A., Holtzman, J. A., Schlegel, D. J., Grebel, E. K., Rix, H.-W., Brinkmann, J., McKay, T. A., Csabai, I., 2003, ApJ, 598, 260

Salucci, P., Burkert, A., 2000, ApJ, 537, L9

Salucci, P., Walter, F., Borriello, A., 2003, A&A, 409, 53

Seigar, M. S., Bullock, J. S., Barth, A. J., & Ho, L. C. 2006, ApJ, 645, 1012

Sellwood, J. A., McGaugh, S. S. 2005, ApJ, 634, 70

Simon, J.D., Bolatto, A.D., Leroy, A., Blitz, L., Gates, E.L., 2005, ApJ, 621, 757

Sofue, Y., Tutui, Y., Homma, M., Tomita, A., Takamiya, T., Koda, J., Takeda, Y., 1999, ApJ, 523, 136

Spergel, D. N., et al., 2006, preprint (astro-ph/0603449)

Swaters, R.A., Madore, B.F., van den Bosch, F.C., Balcells, M., 2003, ApJ, 583, 732

Tonini, C., Lapi, A., Salucci, P., 2006, ApJ, 649, 591

Valenzuela, O., 1999, A&A, 348, 77

van Albada, T.S., Bahcall, J.N., Begeman, K., Sancisi, R., 1985, ApJ, 295, 305

van den Bosch, F.C., Robertson, B.E., Dalcanton, J., de Blok, W.J.G., 2000, AJ, 119, 1579

van Zee, L., Bryant, J., 1999, AJ, 118, 2172

Verheijen, M. A. W., Sancisi, R., 2001, A&A, 370, 765

Walsh, W., Staveley-Smith, L., Oosterloo, T., 1997, AJ, 113, 1591

Wechsler, R.H., Bullock, J.S., Primack, J.R., Kravtsov, A.V., Dekel, A., 2002, ApJ, 568, 52

Weiner, Benjamin J., Williams, T. B., van Gorkom, J. H., Sellwood, J. A., 2001, ApJ, 546, 916

Weldrake, D.T.F., de Blok, W.J.G., Walter, F., 2003, MNRAS, 340, 12

Wong, T., Blitz, L., Bosma, A., 2004, ApJ, 605, 183

Appendix A: Persic & Salucci (1990) method to derive the disk mass

The total velocity profile is given by assuming the total centrifugal equilibrium between the two components, the baryons (only the disk is taken into account, as the bulge just affects the centre of the rotation curve (RC), and the stellar halo mass and the HI disk are negligible for our purposes) and the Dark Matter:

\[
V^2(R) = V^2_D(R) + V^2_H(R) \tag{A.1}
\]

The halo and disk mass inside a given radius \(R \) is \(M_{H}(R) = G^{-1} V^2_H(R) R \) and the disk contribution to the circular velocity is: \(V^2_D(R) = G M_{disk}/R \) respectively, where \(f = 1/2 \left(R/R_D \right)^2 \left(I_0 - I_1 \right) \) is defined in terms of the modified Bessel functions \(I_0 \) and \(K_0 \). Let us now consider the moments of equation (A.1), and let us define the logarithmic slopes of the total, disk and halo velocity respectively:

\[
\nabla \equiv \frac{d \log V(R)}{d \log R} \Bigg|_{R_{opt}} \quad \nabla_H \equiv \frac{d \log V_H(R)}{d \log R} \Bigg|_{R_{opt}} = -0.27,
\]

where \(R_{opt} = 3.2 R_D \). While \(\nabla \) is observed, \(\nabla_H \) is unknown and it is related to the Dark Matter distribution by: \(d \log M_{H}(R)/d \log R \big|_{R_{opt}} = 2 \nabla_H + 1 \). Since \(M_D \approx 1.1 V^2_H(R)/G \), we can now write the disc-to-total mass ratio at the optical radius \(R_{opt} \):

\[
\frac{M_D}{M_{total}(R_{opt})} = \frac{\nabla_H - \nabla}{\nabla_H + 0.11 V + 0.30} \tag{A.2}
\]
It is reasonable to assume that at the optical radius the halo RC is not decreasing, and the DM density is not increasing, therefore $0 \leq \nabla_H \leq 1$; in the maximum disk hypothesis, we can find the value of ∇_H in the interval $[0, 1]$ that maximises the ratio of equation (A.2):

$$
\frac{d}{d\nabla_H} \left(\frac{d(M_d(R_{opt})/M_{total}(R_{opt}))}{d\nabla_H} \right) = 0
$$

and in this case it is easy to see that $\nabla_H = 1$. From equation (A.2) we then obtain:

$$M_D \approx 1.32 V_{opt}^2 (0.77 - 0.83 \nabla) \quad (A.3)$$

which allows us to obtain the halo velocity profile at any given point in its luminous and dark contributions, by means of M_D, f and eq. (A.1).

Notice that this minimum halo assumption used to derive the disk mass might not be completely correct and it might enhance the evidence for an inner core, but it is perfectly legitimate in the present procedure in that in any case it just (slightly) under-estimates the DM density at large radii, bringing even more support to our claim.

In any case the disk mass, obtained by means of eq. (A.3), plays a very minor role in the results of this work, in fact at large distances the mass and density of the dark matter at any outermost radius (denoted as R_f) do not depend significantly on this quantity. We have, supposing to deal with a system in virial equilibrium:

$$\rho(R_f) = \frac{V^2(R_f)}{4\pi G R_f^2} \left(1 + 2 \left. \frac{d\log V(R)}{d\log R} \right|_{R_f} \right) + \frac{M_D}{R_D^3} f(R_f/R_D) \quad (A.4)$$

(see Fall & Efstathiou 1980). We realise that, at most, the second term is a correction of 30%. So errors (even quite large) in the estimate of M_D little propagate in the estimate of $\rho(R_f)$.
