Halotolerant microbial consortia able to degrade highly recalcitrant plant biomass substrate

Larisa Cortes-Tolalpa1 • Justin Norder1 • Jan Dirk van Elsas1 • Joana Falcao Salles1

Received: 15 August 2017 / Revised: 29 November 2017 / Accepted: 11 December 2017 / Published online: 3 February 2018

Abstract

The microbial degradation of plant-derived compounds under salinity stress remains largely underexplored. The pretreatment of lignocellulose material, which is often needed to improve the production of lignocellulose monomers, leads to high salt levels, generating a saline environment that raises technical considerations that influence subsequent downstream processes. Here, we constructed halotolerant lignocellulose degrading microbial consortia by enriching a salt marsh soil microbiome on a recalcitrant carbon and energy source, i.e., wheat straw. The consortia were obtained after six cycles of growth on fresh substrate (adaptation phase), which was followed by four cycles on pre-digested (highly-recalcitrant) substrate (stabilization phase). The data indicated that typical salt-tolerant bacteria made up a large part of the selected consortia. These were trained to progressively perform better on fresh substrate, but a shift was observed when highly recalcitrant substrate was used. The most dominant bacteria in the consortia were Joostella marina, Flavobacterium beibuense, Algoriphagus ratkowskyi, Pseudomonas putida, and Halomonas meridiana. Interestingly, fungi were sparsely present and negatively affected by the change in the substrate composition. Sarocladium strictum was the single fungal strain recovered at the end of the adaptation phase, whereas it was deselected by the presence of recalcitrant substrate. Consortia selected in the latter substrate presented higher cellulose and lignin degradation than consortia selected on fresh substrate, indicating a specialization in transforming the recalcitrant regions of the substrate. Moreover, our results indicate that bacteria have a prime role in the degradation of recalcitrant lignocellulose under saline conditions, as compared to fungi. The final consortia constitute an interesting source of lignocellulolytic haloenzymes that can be used to increase the efficiency of the degradation process, while decreasing the associated costs.

Keywords Biomass degradation • Halotolerant degrader consortia • Bacterial-fungal consortia

Introduction

Lignocellulosic plant biomass is the most abundant global carbon source. Aside its availability and low cost, its utilization can attenuate the conflict between food and energy crops (Kinet et al. 2015). However, the main obstacle in its widespread application is the high cost of the pretreatments, which are necessary to open the intricate polysaccharide structure. Such pretreatments enhance the accessibility of enzymatic attack (Talebnia et al. 2010) and decrease the proportion of crystalline cellulose and lignin content, the two main causes of the recalcitrance of lignocellulose. Overcoming this recalcitrance is fundamental for getting access to the polymers that yield sugar monomers, which can be transformed in valuable compounds such as sustainable biomaterials, biofuel, and biochemicals (Khoo et al. 2016).

In the past years, three different pretreatment processes have been proposed to improve the digestibility of lignocellulose materials. These aimed to foster (1) the degradation of hemicellulose, by acid or hot water treatment, (2) that of lignin, by alkaline pretreatment to break the lignin-carbohydrate linkage bond, and (3) the generic disruption of the matrix by thermal treatment (Brethauer and Studer 2015). Such pretreatments not only increase the global cost of the bioprocess but also generate diverse
compounds that interfere with downstream processes (Jönsson and Martin 2016; Rabemanolontsoa and Saka 2016).

A promising new pretreatment method is based on the application of ionic liquids (ILs), organic salts (“green solvents”) (Sun et al. 2016) that are liquid at room temperature. Using ILs, lignocellulose biomass is exposed to highly saline conditions that disrupt the rigid lignocellulose structure, leading to a considerable reduction in crystallinity and increased accessibility to enzymatic attack. However, when using acid/base treatment or ILs, subsequent enzymatic hydrolysis of the substrate can only be performed after several washing steps aiming at salt removal, as salt often inhibits enzymatic activity. The use of haloenzymes (or enzymes tolerant to high salinity) (Gunny et al. 2014) could represent a sound alternative strategy to increase the efficiency and reduce the cost of the bioprocess.

Dilution-to-stimulation has been used as a successful method to enrich microbial consortia capable of degrading plant biomass and their respective enzymes (Brossi et al. 2015; Maruthamuthu et al. 2016). These consortia have been obtained from a variety of sources (Cortes-Tolalpa et al. 2016) and are often capable of degrading a range of lignocellulose materials (Okeke and Lu 2011; Brossi et al. 2016). For instance, we have shown that consortia obtained from different microbial sources naturally enriched in lignocellulose material quickly reach a stabilization phase (phase of relative stability of the consortium in terms of composition and activity) during the enrichment process (Cortes-Tolalpa et al. 2016). Although the various consortia did not differ in their final degradation potential, they reached this through different activities, as they differed in their enzymatic pools. Thus, the source of the inoculum used for the enrichment clearly influenced the final outcome and type of process. Despite the success of this approach, which leads to consortia capable of “attacking” or consuming the most labile part of the substrate, these consortia have been obtained under “low” salt concentrations. Given the importance of the microbial source, the development of such consortia using halotolerant microbes could provide an interesting perspective.

The aim of this study was to examine whether it is possible to obtain a halotolerant microbial consortium capable of degrading lignocellulose biomass (raw wheat straw) at high rate under high-salt conditions. For that, we used as inoculum the microbial community obtained from salt marsh soil from the island of Schiermonnikoog, the Netherlands. This was previously found to be adapted to high-salt concentrations and to harbor key genes involved in lignocellulose degradation (Dini-Andreote et al. 2014; Wang et al. 2016). In addition, to generate consortia with high degradation potential under high-salt conditions, selection on pre-digested recalcitrant substrate was applied.

Methods

Culture media and lignocellulose substrate

For the experiment, we used a the mineral medium solution MMS (7 g/L Na2HPO4·2H2O; 2 g/L K2HPO4; 1 g/L (NH4)2SO4; 0.1 g/L Ca(NO3)2·4H2O; 0.2 g/L MgCl2·6H2O g/L, pH 7.2) (Cortes-Tolalpa et al. 2016), supplemented with 25 g per liter of NaCl. The medium was further supplemented with vitamin solution (0.1 g Ca-pantothenate, 0.1 g cyanocobalamin, 0.1 g nicotinic acid, 0.1 g pyridoxal, 0.1 g riboflavin, 0.1 g thiamin, 0.01 g biotin, 0.1 g folic acid; H2O 1 L) and trace metal solution (2.5 g/L EDTA; 1.5 g/L FeSO4; 0.025 g/L CoCl2; 0.025 g/L ZnSO4; 0.015 g/L MnCl2; 0.015 g/L NaMoO4; 0.01 g/L NiCl2; 0.02 g/L H3BO3; 0.005 g/L CuCl2). “Raw wheat straw” used as lignocellulose source, was air-dried (50 °C) before cutting it into pieces of about 5 cm length and then the pieces were thoroughly ground, using a mill hammer, to pieces ≤1 mm. No pre-treatment was performed (untreated raw substrate). Sterility of the substrate was verified following plating on trypticase soy agar (TSA) plates. All chemicals and reagents used in this work were of analytic molecular biology grade (Sigma-Aldrich, Darmstadt, Germany).

Sample collection

The source of the microbial community used in this experiment was soil from Schiermonnikoog island (53°29’N 6°10’E), 10-g of surface soil (0–10 cm) representative of the 105-year old plot located at the end of the natural primary succession observed in this island (Wang et al. 2016), the soil samples were thoroughly mixed. These soils are characterized by pH varying from 7.4–7.6 and sodium concentration from 3541 ± 170 to 5188 ± 624 mg dm−3, depending on the period of the year (Dini-Andreote et al. 2014). Cell suspension was prepared by adding 10 g of the soil to 250 mL flasks containing 10 g of sterile gravel in 90 mL of MMS. The suspension was shaken for 30 min at 200 rpm (room temperature).

Enriched consortia

To start the enrichment, 250 μL of the suspension was added to each of triplicate 100-ml Erlenmeyer flasks containing 25 mL of MMS supplemented with 1% (w/v) sterilized wheat straw, 25 μL of vitamin and 25 μL of trace metal solution. Flasks were incubated at 28 °C, with shaking at 180 rpm. Cultures were monitored by counting cells in a Bürker-Türk chamber every day. Experiments started with around 5 log cells/mL. Once the systems had reached around 9 log cells/mL (and straw had visually been degraded), 25 μL of culture was transferred to 25 mL of fresh medium (dilution 10−3). During the first part of the enrichment, from transfer one to six—the adaptation
phase—we used fresh wheat straw. In the second part of the experiment, from transfer seven to ten—the stabilization phase—we used recalcitrant wheat straw. This consisted of the sterilized substrate recovered at the end of the adaptation phase (transfers five and six), partially consumed by microbial consortia, and therefore encompassing only the most recalcitrant structure of the substrate (Supplemental Fig. S1). Following each transfer (T), part of the bred consortia was stored in 20% glycerol at −80 °C. The consortia of the T1, T3, T6, T7, and T10 flasks were used for all subsequent analyses, as detailed below. As controls, we used microbial sources in MMS without substrate (CA 1, 2, 3) as well as MMS plus substrate without inoculum (CB 1, 2, 3). Before starting the enrichment Erlenmeyer flasks containing 25 mL lignocellulose, media were autoclaved at 121 °C for 27 min.

DNA extraction

One mL of selected cultures was used for community DNA extraction using the “Power Soil” DNA extraction kit (inoculum source) (MoBio® Laboratories Inc., Carlsbad, USA) and the UltraClean DNA Isolation Kit (each enriched consortium and isolates). The instructions of the manufacturer were followed, except that the resuspension of the DNA from the inoculum sources was in 60 μL resuspension fluid.

PCR followed by denaturing gradient gel electrophoresis (PCR-DGGE)

Total community DNA was used as the template for amplification of the partial 16S rRNA gene fragment by PCR with primers F968 with a GC clamp attached to the 5'-end and universal bacterial primer R1401.1b. For ITS1 amplification, primers EF4/ITS4 were used; this PCR was followed by a second amplification with primers ITS1f-GCITS2. Primer sequences, the reaction mixtures, and cycling conditions have been described (Brons and van Elsas 2008; Pereira e Silva et al. 2012). The DGGE was performed as reported by Cortes-Tolalpa et al. (2016). The DGGE patterns were then transformed to a band-matching table using GelCompar II software (Applied Maths, Sint Martens Latem, Belgium).

Quantitative PCR (q-PCR)

The 16S rRNA gene region V5-V6 (bacteria), as well as the ITS1 region (fungi), were amplified using 1 ng of community DNA as the template and primers 16SFP/16SRP and 5.8S/ITS1 (Pereira e Silva et al. 2012), respectively. Standard curves were constructed using serial dilutions of cloned 16S rRNA gene and ITS1 fragments from *Serratia plymuthica* (KF495530) and *Coniochaeta ligniaria* (KF285995), respectively. The gene target quantification was performed, in triplicate, in an ABI Prism 7300 Cycler (Applied Biosystem, Lohne, Germany).

Bacterial community sequencing and analyses

Amplicons of 250 bp were generated based on primers amplifying the V4-V5 of the 16S rRNA gene. PCR amplifications were conducted in triplicate reactions for each of the 18 samples with the 515F/806R primer set (Supplemental Table S1). PCR and sequencing were performed using a standard protocol (Caporaso et al. 2012). Illumina MiSeq sequencing was performed at GENEWIZ (South Plainfield, USA). We processed the raw data using the “quantitative insight into microbial ecology” (QIME) software, version 1.91. The sequences were de-multiplexed and quality-filtered using split_libraries_fastq.py default parameters (Bokulich et al. 2013). The derived sequences were then clustered into operational taxonomic units (OTUs) using open-reference OTU picking against the Greengenes reference OTU data base with a 97% similarity threshold (Rideout et al. 2014). Then, we performed quality-filtering to discard OTUs present at very low abundance (<0.005%) of the total number of sequences (Bokulich et al. 2013). An even sampling depth of 20,000 sequences per sample was used for assessing α- and β-diversity measures. Metrics for α-diversity were Chao1 index (estimated species richness) and Shannon index (quantitative measure of species). β-diversity analyses among the final consortia were performed using unweighted UniFrac distance matrix. Matrix similarity, PERMANOVA, and principal coordinate analyses (PCA), were performed by using phyloseq (McMurdie and Holmes 2013). Differential OTU abundance was calculated using DESeq2 with phyloseq (Supplemental Fig. S2) (Love et al. 2014; McMurdie et al. 2014). The comparison was made between sequential transfers (inocula-T1, T1-T3, T3-T6, T6-T7, T7-T10) and between the two main phases, adaption and stabilization phase, respectively.

Isolation and identification of bacterial and fungi

From transfers 6 and 10, we isolated bacterial and fungal strains, using R2A (BD Difco®, Detroit, USA) and potato dextrose agar (PDA) (Duchefa Biochemie BV, Haarlem, The Netherlands), respectively. The isolation part can be found in Electronic supplemental material 1 (ESM1). The primer pair U1406F and B8F was used for amplification of the 16S rRNA gene of bacterial strains, in the following PCR: initial denaturation at 95 °C for 5 min; 35 cycles of 95 °C for 1 min, 52 °C for 30 s, 72 °C for 2 min and final extension at 72 °C for 7 min. For identification of fungal strains the primers EF4 and ITS4 were used for amplification of the ITS1 region of the 18S rRNA gene, according to the following PCR: initial denaturation at 95 °C for 5 min; 34 cycles of 94 °C for 30 s, 55 °C for 30 s 72 °C for 1 min 30 s and final extension at 72 °C for 5 min. The amplicons were sequenced by Sanger technology (LGC Genomics, Lückenwalde, Germany) and the sequence of the PCR product was further used for bacterial and fungal
identification. Taxonomic assignments of the sequences were done using BLAST-N (http://blast.ncbi.nlm.nih.gov/Blast.cgi). We used the best BLAST hit affiliation for taxonomic assignment with a cutoff of 97 and 95% of identity of bacteria and fungi, respectively, and 95% of coverage. Sequences are publicly available in the GenBank database under accession numbers MF619963 to MF620009 (Tables 3 and 4). The recovered strains have been deposited in the German Collection of Microorganisms and Cell Cultures (DSMZ, Braunschweig, Germany).

Matching bacterial strains with abundant OTUs

The recovered bacterial strains were linked to the OTUs based on sequence similarity. The almost-full-length 16S rRNA gene sequences from the strains were compared—in the specific V4-V5 region—to the sequences of the abundant OTUs using ClustalW. Phylogenetic analyses (pairwise distance) were conducted with MEGA v6 (Tamura et al. 2013) using Maximum Likelihood evolutionary distances that were computed using the Kimura-2 parameter method. The branch node strengths were tested with bootstrap analyses (1000 replications).

Screening of lignocellulolytic enzyme production in recovered bacterial strains

Cellulases and hemicellulases in bacterial strains were detected by model substrate coupled to chromogenic compounds. The compounds 5-bromo-4-chloro-3-indolyl α-D-glucopyranoside (X-glu), 5-bromo-4-chloro-3-indolyl β-D-cellobioside (X-cell), 5-bromo-4-chloro-3-indolyl α-D-mannopyranoside (X-man), 5-bromo-4-chloro-3-indolyl β-D-galactopyranoside (X-gal), 5-bromo-4-chloro-3-indolyl β-D-xylopyranoside (X-xyl), and 5-bromo-4-chloro-3-indolyl β-D-fucopyranoside (X-fuc) (Sigma-Aldrich, Darmstadt, Germany) were used to detect the production of hemicellulase (proxy beechwood xylan, ≥90%, Sigma-Aldrich, Steinheim, Germany), cellulose (powder, D-516, Macherey-Nagel, Düren, Germany) and lignin (alkaline, Sigma-Aldrich, Steinheim, Germany) in the proportion described in Supplemental Table S2 (Adapa et al. 2011). The model displayed R^2 values of 0.9876, 0.9889, and 0.9763 and a slope of 0.9788, 1.000, and 0.9987 for hemicellulose, cellulose, and lignin, respectively. These models were then used to infer the proportion of each component in the samples (FitzPatrick et al. 2012; Krasznai et al. 2012). Finally, the degradation rate of hemicellulose, cellulose, and lignin was estimated by subtracting the percentage of the residual substrate from the total percentage of each hemicellulose component before degradation. Degradation rate was calculated using the following equation:

$$ \frac{C_i - C_f}{C_i} \times 100 $$

where C_i is the total amount of compound before degradation and C_f is the residual component after degradation (Wang et al. 2011).

Statistical analyses

One-way analysis of variance (ANOVA) followed by Tukey HSD pairwise group comparisons was performed in IBM SPSS Statistics version 24 (SPSS Inc., Chicago, USA).

Results

Halotolerant lignocellulolytic consortia are capable of degrading lignocellulose biomass under high-salt conditions

The microbial community from the salt marsh soil, used as the inoculum, was able to adapt to, and grow on, wheat straw as the single carbon and energy source and under saline conditions. Using microscopic counts, we found that, during the adaptation phase, from transfer one to six, the
cultures exhibited a progressively increasing fitness, as indicated by an increasing specific growth rate over time. The average specific growth rate μ (h$^{-1}$; ± standard deviation; see Fig. 1a) increased from 0.22 h$^{-1}$ (± 0.01) to 0.70 h$^{-1}$ (±0.03), from T1 to T6. In the stabilization phase, we observed an almost twofold reduction in the growth rate immediately after substrate change, which dropped from 0.70 h$^{-1}$ (±0.03) to 0.38 h$^{-1}$ (±0.02) (Fig. 1a, see T6 and T7), after which it remained constant until the end of the experiment (T10). The reduced apparent fitness of the consortia was thus related to the increased recalcitrance of the substrate.

The microscopic cell counts were corroborated by the 16S rRNA gene and ITS1 copy numbers determined by qPCR, which were used as proxies for bacterial (Fig. 1b) and fungal community density (Fig. 1c), respectively. At the end of each transfer in the adaptation phase, the consortia reached maximal bacterial levels of (log scale): 7.5 ± 1.3 (T1), 9.1 ± 0.002 (T3), and 9.2 ± 0.034 (T6) (average log 16S rRNA gene copies per mL ± standard deviation). In the stabilization phase, these values were similar: 9.2 ± 0.034 (T7) and 9.1± 0.02 (T10). The fungal abundances (measured by numbers of ITS1 gene copies) at the end of transfers 1, 3, 6, and 7 reached around (log scale) 6 per mL. However, we observed a significant reduction of ITS1 copies in the stabilization phase, from T7 to T10 (T test, $P<0.05$), indicating that under saline conditions, fungi were strongly deselected by the increase of substrate recalcitrance.

Shifts in bacterial and fungal community composition

The microbial consortia were first analyzed by bacterial- as well as fungal-specific PCR-DGGE to examine the overall changes in community composition in selected transfers. Multidimensional scaling (MDS) of the bacterial community composition indicated a clear separation between the inoculum and the enriched communities and revealed the existence of two different clusters, separated on the basis of growth on fresh (adaptation phase) versus recalcitrant substrate (stabilization phase) (PERMANOVA, $P<0.05$, Supplemental Fig. S3; Supplemental Fig. S4).

In contrast, the fungal consortia did not reveal a strong clustering between adaptation and stabilization phases, although they were significantly different from each other (PERMANOVA, $P<0.05$) (Supplemental Fig. S4). The change in fungal community composition in the stabilization phase was associated with a substantial reduction of the number of bands, confirming the previously described qPCR results, which indicated that, under the applied conditions, fungi are deselected and outcompeted by bacteria.

Degradation of wheat straw by the microbial consortia

All consortia were found to preferably consume the hemicellulose part of the substrate, which was up to 80% degraded (Fig. 2). None of the selected consortia presented significant differences in hemicellulose degradation (ANOVA, $P>0.05$). Interestingly, the cellulose part of the wheat straw was degraded to a lower extent, i.e., slightly
above 40% (Fig. 2). Comparisons between the consortia across time indicated there was no significant difference in the degradation of hemicellulose, cellulose, and lignin (ANOVA, \(P > 0.05 \)), except at T7 and T10, at which time points significant differences in the degradation of cellulose and lignin were found. The consortia at T10 degraded significantly more cellulose (64.2% ± 6.6) and lignin (61.4% ± 5.7) than those at T7 (cellulose 47% ± 10.8 and lignin 47.8% ± 6.6; ANOVA, \(P < 0.05 \)) (Fig. 2). Comparing the two phases, the consortia from the stabilization phase were able to degrade significantly more lignin than those from the adaptation phase (\(T \) test, \(P < 0.05 \)).

Communities structure of the degrading consortia, as determined by 16S rRNA gene-based sequencing

Direct amplicon sequencing performed on a selected number of transfers revealed grossly decreasing bacterial richness values along the transfers. Specifically, for the inocula and the T1, T3, T6, T7, and T10 consortia, the values were 4.84 ± 0.34, 3.49 ± 0.40, 3.40 ± 0.72, 3.14 ± 0.25, 3.41 ± 0.38, and 2.90 ± 0.27, respectively (log OTU number ± standard deviation). Moreover, significant differences in richness were found between the consortia in the adaptation and the stabilization phases, T1, T3 and T6 versus T7 and T10, respectively (ANOVA, \(P < 0.05 \)).

Regarding the bacterial community structures (\(\beta \)-diversities), PCoA of the unweighted UniFrac community distances confirmed the previously described PCR-DGGE results. The data showed that the consortia selected on fresh substrate (adaptation phase, T1, T3, and T6) were markedly different from those selected on recalcitrant substrate (T7 and T10) (Fig. 3). PERMANOVA showed that, indeed, bacterial consortia were significantly different between the adaptation and stabilization phases, as driven by the change in the substrate (\(P < 0.005 \)). This indicated that a clear shift had occurred as a result of the transition from raw to recalcitrant substrate.

The comparison of the bacterial consortia between the transfers showed that, in the adaptation phase, a large amount of OTUs was significantly affected by the enrichment, leading to a large turnover in community composition and positive selection of OTUs. In contrast, the turnover was lower in the stabilization phase, with relatively few OTUs being negatively affected by the confrontation with the recalcitrant substrate (T7) (Fig. 4). Comparison of the consortia at T7 and T10 (stabilization phase) revealed an increase of abundance of particular OTUs (Fig. 4). Thus, 19 OTUs were differentially selected in the adaptation phase (Table 1) and only five OTUs were positively affected by the change in the substrate during stabilization phase (Table 2). Four OTUs were present in both phases: OTU57506 (affiliated with *Halomonas alkaliphila*), OTU415 (affiliated with *Algoriphagus winogradskyi* or *ratkowskyi*), OTU358 (*Joostella marina*), and OTU667 (*Flavobacterium beibuense*).

Degradation of wheat straw by selected strains

In total, 47 bacterial strains were recovered from the consortia at T6 and T10. Most of the strains were isolated from both transfers, except for *Photobacterium halotolerans* A34, *Albirhodobacter marinus* C13, and *Paracoccus seriniphilus* C14, which were recovered only from the adaptation phase (T6) (Table 3). All were identified on the basis of 16S rRNA gene sequencing (Tables 3 and 4). Subsequently, bacterial strains were screened for the production of enzymes able to degrade X-glu, X-cell, X-gal, X-xyI, X-man, and X-fuc (Tables 3 and 4). The data showed that such degradation potential was widespread across the strains. Of the 47 strains
Fig. 3 Shifts in bacterial community structure during the adaptation and stabilization phases of the experiment as derived from the 16S rRNA gene sequencing data (V4-V5 region). Principal coordinates analysis (PCoA) of unweighted UniFrac distances for 16S rRNA gene sequencing data of selected enrichment consortia (T1, T3, T6, T7, T10). Fresh substrate (blue circles), used substrate (red diamonds), inoculum (green asterisks). PERMANOVA indicated significant differences between the communities \((P = 0.007, \text{Pseudo-F} = 2.90)\)

Fig. 4 Number of OTUs (log2 fold change) that were positively and negatively influenced in the adaptation and stabilization phases of the experiment. DESeq2 function for phyloseq was used to obtain the statistically significant OTUs affected by the enrichment process and the change in substrate composition. Comparisons between selected transfers for adaptation phase included inoculum vs T1, T1 vs T3, and T3 vs T6 (blue squares). In the stabilization phase, the comparison was made between T3 vs T6 and T7 vs T10 (red squares). The adaptation phase shows an important reduction of numbers of OTUs, as indicated by a larger number of bars with negative values especially in the early and late transfers, whereas in the stabilization phase, we observed an increase in the number of OTUs selected—mostly OTUs with positive values were significantly different from one transfer to another.
tested, only three did not show any enzymatic activity against the selected substrates. These were *Staphylococcus capitis* P1, *Bacillus oleronius* G13, and *Erythrobacter gaetbuli* G57.

By aligning the 16S rRNA gene sequences recovered from the isolated bacteria with those of the OTUs obtained by direct sequencing (Fig. 5), we were able to pinpoint the strains that were highly abundant in the consortia (Tables 3 and 4). In the adaptation phase, nine strains were closely related to four enriched OTUs (Table 3): *Halomonas meridiana* M10 and M11, *Photobacterium halotolerans* A34, M14, M15, and M20, *Paracoccus seriniphilus* (C14 and M48), and *Altererythrobacter indicus* (P4, G10, and G19). In the stabilization phase, seven strains were closely related to four enriched OTUs (Table 4): *Halomonas meridiana* M11, *Algoriphagus locisalis* (G34, M46, and ME32), and *Flavobacterium beibuense* (M35 and M44). Finally, we recovered two strains affiliated with *Pseudomonas sabulinigri* G20 and M7; however, these did not match the OTU665 (affiliated with *Pseudomonas putida*) (Fig. 5).

Tables 3 and 4 show details of enzyme production by the strains. On the one hand, strains isolated from the adaptation phase yielded not only most of the tested hydrolytic activities, but also showed the highest activities. Remarkably, the strains affiliated with *Microbacterium oleivorans* (G37, G46) and *Devosia psychrophila* (G33-G35) revealed the production of five or even six hydrolytic enzymes (Table 3). On the other hand, strains isolated from the recalcitrant substrate were less versatile than those isolated from fresh substrate, as evidenced by the lower number of enzymatic activities (three out of six tested). Only the strains affiliated with *J. marina* (ME32, G54, and G65) presented the capacity to produce at least four hydrolytic enzymes with high activity.

Table 1 Abundant OTUs that were significantly enriched in the adaptation phase (fresh substrate), as determined by 16S rRNA gene sequencing

OTU	Taxonomic affiliation	Identity (%)	Accession number reference
OTU5706	*Halomonas meridiana*	99	DQ768627.1
OTU358	*Joostella marina*	99	KP706828.1
OTU667	*Flavobacterium beibuense*	99	KY819115.1
OTU496	*Flavobacterium suzhouense*	98	KM089833.1
OTU665	*Pseudomonas putida*	99	KM091714.1
OTU421	*Stenotrophomonas rhizophila*	99	MF381036.1
OTU176	*Paracoccus seriniphilus*	99	KX453219.1
OTU806	*Nitrosotalea sp.*	99	KJ540205.1
OTU659	*Altererythrobacter sp.*	99	KT325206.1
OTU850	*Halomonas alkaliphila*	99	MF923833.1
OTU49	*Proteinimicrobium ibitica*	90	AM746627.1
OTU859	*Photobacterium halotolerans*	99	KT354559.1
OTU114263	*Devosia ginsengioli*	99	KF013197.1
OTU93687	*Bacillus flexus*	99	MF319797.1
OTU253	*Halomonas taeanensis*	95	FJ444986.1
OTU71211	*Rhizococcibium palustre*	97	NR_112186.1
OTU77552	*Halomonas variabilis*	99	KX351792.1
OTU158296	*Algoriphagus locisalis*	99	NR_115326.1
OTU66912	*Halomonas meridiana*	94	DQ768627.1

*Similarity between the OTU sequence and that of the NCBI entry

Table 2 Abundant OTUs that were significantly enriched in the stabilization phase (pre-digested substrate), as determined by 16S rRNA gene sequencing

OTU	Taxonomic affiliation	Identity (%)	Accession number reference
OTU358	*Joostella marina*	99	KP706828.1
OTU667	*Flavobacterium beibuense*	99	KY819115.1
OTU415	*Algoriphagus ratkowskyi*	98	KM091714.1
OTU665	*Pseudomonas putida*	99	KM091714.1
OTU5706	*Halomonas meridiana*	99	DQ768627.1

*Similarity between the OTU sequence and that of the NCBI entry
Table 3 Enzymatic activity of the halotolerant lignocellulose degrading strains recovered from the adaptation phase and their associated OTUs, determined by comparing the complete 16S rRNA gene sequences from the strains with the partial sequences of the same gene obtained by amplicon sequencing. Enzymatic activities were determined by chromogenic essays using the substrates 5-bromo-4-chloro-3-indolyl α-D-glucopyranoside (X-glu), 5-bromo-4-chloro-3-indolyl β-D-cellobioside (X-cell), 5-bromo-4-chloro-3-indolyl α-D-mannopyranoside (X-man), 5-bromo-4-chloro-3-indolyl β-D-galactopyranoside (X-gal), 5-bromo-4-chloro-3-indolyl β-D-xylopyranoside (X-xyl), and 5-bromo-4-chloro-3-indolyl β-D-fucopyranoside (X-fuc)

Taxonomic affiliation	Enzymatic activity	Code	Cover (%)	Identity (%)	X-glu	X-cell	X-gal	X-xyl	X-man	X-fuc	Associated OTU	Accession number
Alibirhodobacter marinus		C13	100	99	+++	−	−	++	++	−	−	MF619963
Altererythrobacter indicus		P4	100	99	+	−	+	−	−	−	OTU659	MF619965
Altererythrobacter indicus		G10	99	99	−	−	+++	+	−	−	−	MF619966
Altererythrobacter indicus		G19	99	99	−	−	+++	+++	−	−	−	MF619967
Arthrobacter nicotianae		C6	100	99	+++	−	−	+++	+++	−	−	MF619969
Arthrobacter nicotianae		M16	100	99	−	−	+	−	−	−	−	MF619968
Bacillus oleronius		G13	99	99	+	−	−	−	−	−	−	MF619970
Demequina aestuarii		G48	99	99	+++	+	−	−	−	−	−	MF619971
Demequina psychrophila		G33	99	98	+	+++	+++	+	−	−	−	MF619972
Demequina psychrophila		G34	99	98	+++	+++	+++	+	−	−	−	MF619973
Demequina psychrophila		G35	99	98	+++	+++	+++	−	−	−	−	MF619974
Demequina psychrophila		G55	99	98	+++	+++	−	−	−	−	−	MF619975
Demequina psychrophila		G3	99	98	+++	+++	+++	−	−	−	−	MF619976
Erythrobacter gaethii		G57	96	−	−	−	−	−	−	−	−	MF619977
Halomonas alkaliphila		M10	99	99	+++	−	−	−	−	−	−	MF619978
Halomonas alkaliphila		M11	99	99	+++	−	−	−	−	−	−	MF619979
Microbacterium oleivorans		G37	99	99	+	+	+++	+++	−	−	−	MF619980
Microbacterium oleivorans		G56	99	98	+	+	+	+	−	−	−	MF619981
Microbacterium oleivorans		G46	99	99	+++	+++	+++	+	−	−	−	MF619982
Micrococcus yunnanensis		G68	99	99	−	−	+	−	−	−	−	MF619983
Oceanicola antarctica		M45	97	97	−	+	−	−	−	−	−	MF619984
Paracoccus seriniphilus		C14	99	99	++	−	++	++	−	−	−	MF619985
Paracoccus seriniphilus		M48	100	99	+++	−	+++	+++	−	−	−	MF619986
Paracoccus seriniphilus		G23	99	99	+++	−	+++	−	−	−	−	MF619987
Photobacterium halotolerans		A34	99	99	−	−	+++	−	−	−	−	MF619988
Photobacterium halotolerans		M14	99	99	−	−	+++	−	−	−	−	MF619989
Photobacterium halotolerans		M15	99	98	−	−	+++	−	−	−	−	MF619990
Photobacterium halotolerans		M20	99	99	−	−	+++	−	−	−	−	MF619991
Pseudorhodobacter incheonensis		G11	99	99	+++	−	−	−	−	−	−	MF619992
Sanguibacter inulinus		G36	99	99	−	−	−	−	−	−	−	MF619993
Staphylococcus capitis		P1	99	99	−	−	−	−	−	−	−	MF619994
Staphylococcus epidermidis		EG46	99	99	+++	−	−	−	−	−	−	MF619995
Sarocladium strictum		HF1	84	96	+++	−	−	−	−	−	−	MF619996

*Closest related species, according to the 16S ribosomal RNA gene sequence. Enzymatic activity: X-glu: glucosidases; X-cell: cellobiohydrolases; X-gal: galactosidases; X-xyl: xylosidases; X-man: mannosidases; X-fuc: fucosidases. Qualitative enzymatic activity detection: (−) no activity; (+) low activity-light blue; (++) medium activity-medium blue; (+++) high activity-dark intense blue
Table 4 Halotolerant lignocellulose degrader strains recovered from the stabilization phase. Potential degradation and matches to closest 16S rRNA gene sequences and associated OTUs. Enzymatic activities were determined by chromogenic essays using the substrates 5-bromo-4-chloro-3-indolyl α-D-glucopyranoside (X-glu), 5-bromo-4-chloro-3-indolyl β-D-celllobioside (X-cell), 5-bromo-4-chloro-3-indolyl β-D-galactopyranoside (X-gal), 5-bromo-4-chloro-3-indolyl β-D-xylopyranoside (X-xyl) and 5-bromo-4-chloro-3-indolyl β-D-fucopyranoside (X-fuc).

Taxonomic affiliation	Closest related species, according to 16S ribosomal RNA gene sequence. Enzymatic activity: X-glu: glucosidases, X-cell: cellubiohydrolases, X-gal: galactosidases, X-xyl: xyladosidases, X-man: mannosidases, X-fuc: fucosidases. Qualitative enzymatic activity detection: (−) no activity, (+) low activity—light blue, (+++) medium activity—medium blue, (++++) high activity—dark intense blue
Code	Accession number
MF619964	MF619980
MF619981	MF619985
MF619986	MF619987
MF619989	MF619990
MF619991	MF619992
MF619993	MF619994
MF619995	MF619996
MF619997	MF619998
MF619999	MF620000
MF620001	MF620002
MF620003	MF620004
MF620005	MF620006

Fungal strains from the stabilization phase

As mentioned before, the change in the substrate had an important effect on the fungal community. Only one fungal strain was obtained from the adaptation phase (Table 3). It was affiliated with Sarocladium strictum HF1 and was obtained from all triplicate plates. It was, however, not possible to recover any fungal strain from the stabilization phase. Despite the bands observed in DGGE (based on the ITS1 region) in the stabilization phase, we observed a sharp decline in fungal abundance—as determined by qPCR targeting the same region (Fig. 1b)—at the end of the experiment (T10), which probably hindered isolation.

Discussion

In this study, we produced and characterized microbial consortia—potential sources of lignocellulose degraders and their enzymes—that were capable of degrading wheat straw under high-salt concentrations, a condition often established by particular lignocellulose pretreatment steps. Thus, our selected halotolerant microbial consortia represent a clear prospect of lignocellulose degradation under saline conditions, as they may either be used to directly unlock lignocellulose biomass or to produce halotolerant lignocellulolytic enzymes. The latter application may eliminate the expensive washing steps, reducing costs.

Saline conditions favor bacterial over fungal degraders

Changes in wheat straw content can considerably affect the composition of microbial communities growing on it. Here, in particular, fungal densities decreased significantly in the stabilization phase (when recalcitrant substrate was used), hindering our ability to isolate fungal strains. It is generally believed that fungi are ubiquitous and capable of occupying virtually every ecological niche as a result of their ability to degrade a suite of organic compounds such as complex biological polymers. They may also play roles in degrading lignocellulose in marine environments (Richards et al. 2012), where the major factors affecting their diversities are salt concentration and temperature (Fuentes et al. 2015). For instance, it has been shown that several fungal strains recovered from mangrove systems are capable of growing on wood under high-salt conditions (Arfi et al. 2013). In our study, the only isolated fungal strain—Sarocladium strictum, previously known as Acremonium strictum (Summerbell et al. 2011)—is likely well adapted to saline environments, as it was previously isolated from a marine ecosystem (Fuentes et al. 2015). Here it originated from a salt-marsh soil inoculum. It was,
Substrate quality greatly impacts community composition

The findings in this study clearly indicate that substrate quality and composition direct the structure of microbial consortia (Simmons et al. 2014; Brossi et al. 2015), which developed to degrade either fresh (adaptation phase) or previously-degraded (recalcitrant) lignocellulose substrate, consistent with the findings by Meidute et al. (2008). Thus, the impossibility to isolate fungal strains from the specialized consortia could be related to a very strong nutritional demand under the prevailing conditions, leading to a decline in density that hindered isolation. Additionally, pH could be an important factor affecting the viability of the fungi in our system. During the cultivation, the pH decreased slightly from 7.2 to 6.8, which is higher than the optimal pH for fungal growth (between pH 2.2 and 6.5; Matthies et al. 1997). Moreover, the maintenance of the almost neutral pH along the incubation suggested a low production of organic acids (which indicates that massive fermentation did not occur). The maintenance of prevailing aerobic conditions in the culture probably incited mostly oxidative phosphorylation processes. Thus, in the system (an agitated saline environment with a recalcitrant source of carbon and energy), bacteria probably had a main role in the degradation process.

The dominance of bacteria over fungi in our halotolerant lignocellulose grown consortium is interesting, as previous studies, performed under non-saline conditions, suggested that fungal communities have a relevant participation in lignocellulose degradation, even working in liquid and agitated systems. For example, Brossi et al. (2015) found that C. ligniaria (strains WS1, WS2, SG8) had a significant role in the degradation of diverse lignocellulose feedstocks, while Jiménez et al. (2013) found the same organism (strain 2w1F) played a crucial role in the decomposition of wheat straw in presence of 5-hydroxymethylfurfural. In both cases, the dilution-to-stimulation approach was used for the selection of the degrader communities.

Wheat straw degradation and potential involvement of identified strains

On the basis of all our data, we depict the degradation of wheat straw under saline conditions to proceed in a sequential manner, with different microbes being dominant in a spatiotemporally explicit form. The wheat straw, being recalcitrant, poses clear obstacles to degradation. The main hurdles are the presence of crystalline cellulose and the bonding between lignin and hemicellulose (shielding the latter component from access by key enzymes). We briefly discuss these issues in the paragraphs below.

Crystalline cellulose is highly recalcitrant to chemical and biological hydrolysis due to the strongly linked chains of cellooligomers. The decomposition of crystalline cellulose, for example filter paper, requires the production of specific cellulases. In our consortia, Joostella marina (OTU358) and Flavobacterium beibuense (OTU667) may have had a main role in cellulose degradation, as we observed increases in their abundances in the stabilization phase. Also, the consortia from this phase displayed higher cellulose degradation capacities than consortia from the adaptation phase. Both J. marina (OTU358) and F. beibuense (OTU667) belong to the Flavobacteriaceae (Bernardet et al. 2002). Members of this family have been isolated from soil, sediment and marine/saline environments, and they have been typically associated with decomposition of complex polysaccharides (Lambiese 2014). Some species in the family degrade soluble cellulose derivatives such as carboxymethyl-cellulose. However, since enzymes other than cellulases can degrade this compound, this does not demonstrate that these species are cellulolytic. J. marina probably has an important role in the degradation of recalcitrant regions of lignocellulose substrate, as it is capable to grow on complex hydrocarburic substrate (Rizzo et al. 2015). The organism is strictly aerobic and can grow in up to 15% NaCl, with glucose, arabinose, mannose, and cellobiose as single carbon and energy sources. Additionally, it has been reported to be positive for α-glucosidase, β-glucosidase, β-galactosidase, and α-mannosidase production (Stackebrandt et al. 2013). In our final consortia, J. marina could be associated with the degradation of the crystalline cellulose in the
wheat straw. However, more studies are needed to demonstrate such cellulolytic capability. Currently, this characteristic is restricted to members of the Cytophagaceae family (Bernardet et al. 2002). Additionally, the Flavobacterium species found in this study (F. beibuense OTU667 and Flavobacterium succinogenes OTU496) may be only associated with the degradation of amorphous cellulose, which is readily digestible. These organisms can degrade soluble cellulose such as hydroxymethylcellulose and cellodextrin (Lambiase 2014).

Regarding lignin degradation or bond hydrolysis, the increasing abundance of Pseudomonas species (F. putida OTU665 and P. saulinigri G20, M38, and M7) in the stabilization phase suggest a role for these organisms in the relevant transformation steps, such as the degradation of recalcitrant regions of the substrate like residual hemicellulose linked to lignin structures. Pseudomonas species stand out as having a great potential capacity for lignin degradation (Beckham et al. 2016). For instance, in a recent study, P. monteilii and P. plecoglossicida were enriched from mature vegetal compost. These organisms were found to degrade a large amount of lignin-related compounds (Ravi et al. 2017). In another study, Salvachúa et al. (2015) isolated P. putida, Rhodococcus jostii, and Acinetobacter sp. ADP1, all of which were able to depolymerize and catabolize high-molecular-weight lignin (Salvachúa et al. 2015).

The most labile part of the substrate, hemicellulose, was probably mainly attacked by H. meridiana (OTU 57506) and related species. Their decreased abundance in the stabilization phase could indicate that the hemicellulose part of the substrate was largely depleted. H. meridiana belongs to the class Gammaproteobacteria. It is a facultatively halotolerant organism capable of growth in NaCl concentrations between 0.1 and 32.5% (w/v). It is mostly found in marine environments (Octavia and Lan 2014). A recent study suggested that H. meridiana has great potential for biotechnology applications, as a producer of extracellular enzymes adapted to salinity (Yin et al. 2015).

Finally, Algoriphagus winogradskyi/ratkowskyi G63, belonging to the Cytophagaceae, could be involved in the degradation of both the hemicellulose and cellulose regions of the substrate. A genetic analysis of Algoriphagus sp. PR1 demonstrated its high capacity of polysaccharide degradation, as large numbers of genes encoding glycoside hydrolases, polysaccharide lyases, carbohydrate esterases, and glycosyltransferases were found (Alegado et al. 2011). Previous reports indicated that related strains cannot degrade filter paper (Lambiase 2014), however our strains were not yet tested for such activity.

Although the contribution of fungi to the degradation process seems to be restricted to the adaptation phase, previous reports have demonstrated the biotechnological application of Sarocladium strictum. Interestingly, this was our only isolated fungal strain, and one may envision a role for it in the production of cellulases direct from infested lignocellulose feedstock (Goldbeck et al. 2013). Also, a gene for gluco-oligosaccharide oxidase from this species has been engineered (high catalytic activity and low substrate inhibition) for application in industrial plant polysaccharide degradation (Domon et al. 2013). Definitely, more studies are necessary on S. strictum to examine all its degradation capacities, although it might be restricted to conditions with high nutrient supply.

In conclusion, the construction of microbial consortia able to grow on wheat straw as a carbon and energy source under saline conditions offers access to salt-adapted or salt-tolerant enzymes (haloenzymes) that enable the development of processes under saline conditions. It is assumed that the selected organisms harbor the potential to naturally produce such salt-adapted enzymes, which are applicable in a bioprocess with raised NaCl levels. We propose that the key members of our consortia yield very interesting salt-tolerant enzymes for bioengineering, as follows: (1) J. marina (G54, G65, ME32): production of carbohydrate esterases, (2) F. beibuense (M35, M44): production of cellulases, (3) P. saulinigri (G20, M38, M7): production of liginases, and (4) H. meridiana (G21): production of hemicellulases. A key issue here is the precise combination of enzymes that is required to establish an efficient “saline bioprocess”. Potentially, such an enzyme mixture is made on the basis of the organisms as described here.
Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

References

Adapa PK, Schonenau LG, Canam T, Dumonceaux T (2011) Quantitative analysis of lignocellulosic components of non-treated and steam exploded barley, canola, oat and wheat straw using Fourier transform infrared spectroscopy. J Agric Sci Technol 1: 177–188

Alegado RA, Ferriera S, Nusbaum C, Young SK, Zeng Q, Imamovic A, Cortes-Tolalpa L, Jiménez DJ, Brossi MJ de L, Salles JF, van Elsas JD (2015) Soil-lignocellulosic biomass to fuels and chemicals—a review. Chirn Int J Chem 69(10):572–581. https://doi.org/10.2533/chimia.2015.572

Brons JK, van Elsas JD (2008) Analysis of bacterial communities in soil by use of denaturing gradient gel electrophoresis and clone libraries, as influenced by different reverse primers. App Environ Microbiol 74:2717–2727

Caporaso JG, Lauber CL, Walters WA, Berg-Lyons D, Huntley J, Fierer N, Owens SM, Betley J, Fraser L, Bauer M, Gormley N, Gilbert JA, Smith G, Knight R (2012) Ultra-high-throughput microbial community analysis on the Illumina HiSeq and MiSeq platforms. ISME J 6(8):1621–1624. https://doi.org/10.1038/ismej.2012.8

Cortes-Tolalpa L, Jiménez DJ, Brossi MJ de L, Salles JF, van Elsas JD (2016) Different inocula produce distinctive microbial consortia with similar lignocellulose degradation capacity. Appl Microbiol Biotechnol 100(17):7713–7725. https://doi.org/10.1007/s00253-016-7516-6

Brossi MJ de L, Jiménez DJ, Cortes-Tolalpa L, van Elsas JD (2015) Soil-derived microbial consortia enriched with different plant biomass reveal distinct players acting in lignocellulose degradation. Microb Ecol 71(3):616–627. https://doi.org/10.1007/s00248-015-0683-7

Dini-Andreote F, Pereira e Silva MC, Triado-Margarit X, Casamayor EO, van Elsas JD, Salles JF (2014) Dynamics of bacterial community succession in a salt marsh chronosequence: evidences for temporal niche partitioning. ISME J 8(10):1989–2001. https://doi.org/10.1038/ismej.2014.54

Domon B, Costello CE, Foumani M, Juvenon M, Seppälä J, Tenkanen M, Master ER, Tuomainen P, Saulnier L, Tenkanen M (2013) A systematic nomenclature for carbohydrate fragmentations in FAB-MS/MS spectra of glycoconjugates. Glycoconjug J 30(4):397–409. https://doi.org/10.1007/BF01049915

FitzPatrick M, Champagne P, Cunningham MF (2012) Quantitative determination of cellulose dissolved in 1-ethyl-3-methylimidazolium acetate using partial least squares regression on FTIR spectra. Carbohydr Polym 87(2):1124–1130. https://doi.org/10.1016/j.carbpol.2011.08.086

Fuentes ME, Quiñones RA, Gutiérrez MH, Pantoja S (2015) Effects of temperature and glucose concentration on the growth and respiration of fungal species isolated from a highly productive coastal upwelling ecosystem. Fungal Ecol 13:135–149. https://doi.org/10.1016/j.funeco.2014.09.006

Goldbeck R, Ramos MM, Pereira GAG, Maugeri-Filho F (2013) Cellulase production from a new strain Acremonium strictum isolated from the Brazilian biome using different substrates. Bioresour Technol 128:797–803. https://doi.org/10.1016/j.biortech.2012.10.034

Gunny AAN, Arbain D, Edwin Gumba R, Jong BC, Jamal P (2014) Potential halophilic cellulases for in situ enzymatic saccharification of liquidic lignocelluloses. Bioresour Technol 155: 177–181. https://doi.org/10.1016/j.biortech.2013.12.101

Jiménez DJ, Korenblum E, van Elsas JD (2013) Novel multispecies microbial consortia involved in lignocellulose and 5-hydroxymethylfurfural biocconversion. Appl Microbiol Biotechnol 98(6):2789–2803. https://doi.org/10.1007/s00253-013-5253-7

Jönsson LJ, Martin C (2016) Pretreatment of lignocellulose: formation of inhibitory by-products and strategies for minimizing their effects. Bioresour Technol 199:103–112. https://doi.org/10.1016/j.biortech.2015.10.009

Khoo HH, Ez WL, Isoni V (2016) Bio-chemicals from lignocellulose feedstock: sustainability, LCA and the green conundrum. Green Chem 18(7):1912–1922. https://doi.org/10.1039/C5GC02065D

Kinet R, Destain J, Hiligsmann S, Thonart P, Delhalle L, Taminiau B, Daube G, Delvigne F (2015) Thermophilic and cellulolytic consortia isolated from composting plants improves anaerobic digestion of cellulosic biomass: toward a microbial resource management approach. Biore sourc Technol 189:138–144. https://doi.org/10.1016/j.biortech.2015.04.010

Krasznai DJ, Champagne P, Cunningham MF (2012) Quantitative characterization of lignocellulosic biomass using surrogate mixtures and multivariate techniques. Bioresour Technol 110:652–661. https://doi.org/10.1016/j.biortech.2012.01.089

Lambiasi A (2014) The family Spingobacteriaceae. In: Rosenberg E, DeLong EF, Lory S, Stackebrandt E, Thompson F (eds) The prokaryotes other major lines of bacteria and the archaea, 4th edn. Springer Berlin Heidelberg, Berlin, pp 907–914

Love MI, Huber W, Anders S (2014) Moderate estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol 15(12):550–571. https://doi.org/10.1186/s13059-014-0550-8

Maruthamuthu M, Jiménez DJ, Stevens P, van Elsas JD (2016) A multi-substrate approach for functional metagenomics-based screening for (hem)cellulases in two wheat straw-degrading microbial consortia unveils novel thermoalkaliphilic enzymes. BMC Genomes 17(1):86. https://doi.org/10.1186/s12864-016-2404-0

Matthies C, Erhard H-P, Drake HL (1997) Effects of pH on the comparative culturability of fungi and bacteria from acidic and less acidic forest soils. J Basic Microbiol 37(5):335–343. https://doi.org/10.1002/jobm.3620370806

McMurdie PJ, Holmes S (2013) Phylsoeq: an R package for reproducible interactive analysis and graphics of microbiome census data. PLoS One 8(4):e61217. https://doi.org/10.1371/journal.pone.0061217
