flexsurv: A Platform for Parametric Survival Modelling in R

Christopher H. Jackson
MRC Biostatistics Unit, Cambridge, UK

Abstract

`flexsurv` is an R package for fully-parametric modelling of survival data. Any parametric time-to-event distribution may be fitted if the user supplies a probability density or hazard function, and ideally also their cumulative versions. Standard survival distributions are built in, including the three and four-parameter generalized gamma and F distributions. Any parameter of any distribution can be modelled as a linear or log-linear function of covariates. The package also includes the spline model of Royston and Parmar (2002), in which both baseline survival and covariate effects can be arbitrarily flexible parametric functions of time. The main model-fitting function, `flexsurvreg`, uses the familiar syntax of `survreg` from the standard `survival` package (Therneau 2014). Censoring or left-truncation are specified in `Surv` objects. The models are fitted by maximising the full log-likelihood, and estimates and confidence intervals for any function of the model parameters can be printed or plotted. `flexsurv` also provides functions for fitting and predicting from fully-parametric multi-state models, and connects with the `mstate` package (de Wreede et al. 2011). This article explains the methods and design principles of the package, giving several worked examples of its use. [Note: A version of this vignette is published as Jackson (2016) in Journal of Statistical Software. All content there is included here. There have been no substantial changes in the survival modelling parts since then. Version 2.0 of `flexsurv` added new features for multi-state modelling, and since that version, multi-state modelling with `flexsurv` has been described in a separate vignette.]

Keywords: survival, multi-state models, multistate models.

1. **Motivation and design**

The Cox model for survival data is ubiquitous in medical research, since the effects of predictors can be estimated without needing to supply a baseline survival distribution that might be inaccurate. However, fully-parametric models have many advantages, and even the originator of the Cox model has expressed a preference for parametric modelling (see Reid 1994). Fully-specified models can be more convenient for representing complex data structures and processes (Aalen et al. 2008), e.g. hazards that vary predictably, interval censoring, frailties, multiple responses, datasets or time scales, and can help with out-of-sample prediction. For example, the mean survival \(E(T) = \int_0^\infty S(t)dt \), used in health economic evaluations (Latimer 2013), needs the survivor function \(S(t) \) to be fully-specified for all times \(t \), and parametric models that combine data from multiple time periods can facilitate this (Benaglia et al. 2014). `flexsurv` for R (R Core Team 2014) allows parametric distributions of arbitrary complexity to be fitted to survival data, gaining the convenience of parametric modelling, while avoiding
the risk of model misspecification. Built-in choices include spline-based models with any number of knots (Royston and Parmar 2002) and 3–4 parameter generalized gamma and F distribution families. Any user-defined model may be employed by supplying at minimum an R function to compute the probability density or hazard, and ideally also its cumulative form. Any parameters may be modelled in terms of covariates, and any function of the parameters may be printed or plotted in model summaries.

flexsurv is intended as a general platform for survival modelling in R. The survreg function in the R package survival (Therneau 2014) only supports two-parameter (location/scale) distributions, though users can supply their own distributions if they can be parameterised in this form. Some other contributed R packages can fit survival models, e.g., eha (Broström 2014) and VGAM (Yee and Wild 1996), though these are either limited to specific distribution families, or not specifically designed for survival analysis. Others, e.g. ActuDistns (Nadarajah and Bakar 2013), contain only the definitions of distribution functions. flexsurv enables such functions to be used in survival models. It is similar in spirit to the Stata packages stpm2 (Lambert and Royston 2009) for spline-based survival modelling, and stgenreg (Crowther and Lambert 2013) for fitting survival models with user-defined hazard functions using numerical integration. Though in flexsurv, slow numerical integration can be avoided if the analytic cumulative distribution or hazard can be supplied, and optimisation can also be speeded by supplying analytic derivatives. flexsurv also has features for multi-state modelling and interval censoring, and general output reporting. It employs functional programming to work with user-defined or existing R functions. §2 explains the general model that flexsurv is based on. §3 gives examples of its use for fitting built-in survival distributions with a fixed number of parameters, and §4 explains how users can define new distributions. §5 concentrates on classes of models where the number of parameters can be chosen arbitrarily, such as splines. §6 mentions the use of flexsurv for fitting and predicting from fully-parametric multi-state models, which is described more fully in a separate vignette. Finally §7 suggests some potential future extensions.

2. General parametric survival model

The general model that flexsurv fits has probability density for death at time t:

$$ f(t|\mu(z), \alpha(z)), \quad t \geq 0 $$

The cumulative distribution function $F(t)$, survivor function $S(t) = 1 - F(t)$, cumulative hazard $H(t) = -\log S(t)$ and hazard $h(t) = f(t)/S(t)$ are also defined (suppressing the conditioning for clarity). $\mu = \alpha_0$ is the parameter of primary interest, which usually governs the mean or location of the distribution. Other parameters $\alpha = (\alpha_1, \ldots, \alpha_R)$ are called “ancillary” and determine the shape, variance or higher moments.

Covariates All parameters may depend on a vector of covariates z through link-transformed linear models $g_0(\mu(z)) = \gamma_0 + \beta_0^\top z$ and $g_r(\alpha_r(z)) = \gamma_r + \beta_r^\top z$. $g()$ will typically be $\log()$ if the parameter is defined to be positive, or the identity function if the parameter is unrestricted. Suppose that the location parameter, but not the ancillary parameters, depends on covariates. If the hazard function factorises as $\hat{h}(t|\alpha, \mu(z)) = \mu(z)\hat{h}_0(t|\alpha)$, then this is a proportional
hazards (PH) model, so that the hazard ratio between two groups (defined by two different values of \(z \)) is constant over time \(t \).

Alternatively, if \(S(t|\mu(z), \alpha) = S_0(\mu(z)|t|\alpha) \) then it is an accelerated failure time (AFT) model, so that the effect of covariates is to speed or slow the passage of time. For example, doubling the value of a covariate with coefficient \(\beta = \log(2) \) would give half the expected survival time.

Data and likelihood Let \(t_i : i = 1, \ldots, n \) be a sample of times from individuals \(i \). Let \(c_i = 1 \) if \(t_i \) is an observed death time, or \(c_i = 0 \) if this is censored. Most commonly, \(t_i \) may be right-censored, thus the true death time is known only to be greater than \(t_i \). More generally, the survival time may be interval-censored on \((t_i^{\min}, t_i^{\max}) \).

Also let \(s_i \) be corresponding left-truncation (or delayed-entry) times, meaning that the \(i \)th survival time is only observed conditionally on the individual having survived up to \(s_i \), thus \(s_i = 0 \) if there is no left-truncation.

With at most right-censoring, the likelihood for the parameters \(\theta = \{ \gamma, \beta \} \) in Equation 1, given the corresponding data vectors, is

\[
l(\theta|t, c, s) = \left\{ \prod_{i : c_i = 1} f_i(t_i) \prod_{i : c_i = 0} S_i(t_i) \right\} / \prod_i S_i(s_i) \tag{2}\]

where \(f_i(t_i) \) is shorthand for \(f(t_i|\mu(z_i), \alpha(z_i)) \), \(S_i(t_i) \) is \(S(t_i|\mu(z_i), \alpha(z_i)) \), and \(\mu, \alpha \) are related to \(\gamma, \beta \) and \(z_i \) via the link functions defined above. The log-likelihood also has a concise form in terms of hazards and cumulative hazards, as

\[
\log l(\theta|t, c, s) = \sum_{i : c_i = 1} \{ \log(h_i(t_i)) - H_i(t_i) \} - \sum_{i : c_i = 0} H_i(t_i) + \sum_i H_i(s_i)
\]

With interval-censoring, the likelihood is

\[
l(\theta|t^{\min}, t^{\max}, c, s) = \left\{ \prod_{i : c_i = 1} f_i(t_i) \prod_{i : c_i = 0} \left(S_i(t_i^{\min}) - S_i(t_i^{\max}) \right) \right\} / \prod_i S_i(s_i) \tag{3}\]

These likelihoods assume that the times of censoring are fixed or otherwise distributed independently of the parameters \(\theta \) that govern the survival times (see, e.g. Aalen et al. (2008)). The individual survival times are also independent, so that `flexsurv` does not currently support shared frailty, clustered or random effects models (see §7).

The parameters are estimated by maximising the full log-likelihood with respect to \(\theta \), as detailed further in §3.6.

3. Fitting standard parametric survival models

An example dataset used throughout this paper is from 686 patients with primary node positive breast cancer, available in the package as `bc`. This was originally provided with `stpm` (Royston 2001), and analysed in much more detail by Sauerbrei and Royston (1999) and Royston and Parmar (2002) \(^1\). The first two records are shown by:

\(^1\)A version of this dataset, including more covariates but excluding the prognostic group, is also provided as `GBSG2` in the package `TH.data` (Hothorn 2015).
flexsurv: A Platform for Parametric Survival Modelling in R

```r
R> library("flexsurv")
R> head(bc, 2)

censrec rectime group recyrs age agedays
1 0 1342 Good 3.676712 64.38839 23517
2 0 1578 Good 4.323288 67.31488 24586
diag sex group2 attained.age.yr attained.year
1 1986-09-15 female Good 68 1990
2 1986-08-12 female Good 71 1990
exprate
1 0.01723772
2 0.02264446
```

The main model-fitting function is called `flexsurvreg`. Its first argument is an R `formula` object. The left hand side of the formula gives the response as a survival object, using the `Surv` function from the `survival` package.

```r
R> fs1 <- flexsurvreg(Surv(recyrs, censrec) ~ group, data = bc, +  dist = "weibull")
```

Here, this indicates that the response variable is `recyrs`. This represents the time (in years) of death or cancer recurrence when `censrec` is 1, or (right-)censoring when `censrec` is 0. The covariate `group` is a factor representing a prognostic score, with three levels "Good" (the baseline), "Medium" and "Poor". All of these variables are in the data frame `bc`. If the argument `dist` is a string, this denotes a built-in survival distribution. In this case we fit a Weibull survival model.

Printing the fitted model object gives estimates and confidence intervals for the model parameters and other useful information. Note that these are the same parameters as represented by the R distribution function `dweibull`: the shape α and the scale μ of the survivor function $S(t) = \exp\left(-\left(t/\mu\right)^\alpha\right)$, and `group` has a linear effect on $\log(\mu)$.

```r
R> fs1
Call:
flexsurvreg(formula = Surv(recyrs, censrec) ~ group, data = bc, +  dist = "weibull")

Estimates:

|            | data mean est | L95% | U95% | se |
|------------|---------------|------|------|----|
| shape      | NA 1.3797     | 1.2548 | 1.5170 | 0.0668 |
| scale      | NA 11.4229    | 9.1818 | 14.2110 | 1.2728 |
| groupMedium| 0.3338 -0.6136 | -0.8623 | -0.3649 | 0.1269 |
| groupPoor  | 0.3324 -1.2122 | -1.4583 | -0.9661 | 0.1256 |

```

exp(est) L95% U95%
shape NA NA NA
scale NA NA NA

```
groupMedium  0.5414  0.4222  0.6943  
groupPoor    0.2975  0.2326  0.3806

N = 686,  Events: 299,  Censored: 387
Total time at risk: 2113.425
Log-likelihood = -811.9419,  df = 4
AIC = 1631.884

For the Weibull (and exponential, log-normal and log-logistic) distribution, \texttt{flexsurvreg}
simply acts as a wrapper for \texttt{survreg}: the maximum likelihood estimates are obtained by
\texttt{survreg}, checked by \texttt{flexsurvreg} for optimisation convergence, and converted to \texttt{flexsurvreg}'s
preferred parameterisation. Therefore the same model can be fitted more directly as

\begin{verbatim}
R> survreg(Surv(recyrs, censrec) ~ group, data = bc, dist = "weibull")
\end{verbatim}

Call:
survreg(formula = Surv(recyrs, censrec) ~ group, data = bc, dist = "weibull")

Coefficients:
       (Intercept) groupMedium groupPoor
  2.4356168 -0.6135892 -1.2122137
Scale= 0.7248206
Loglik(model)= -811.9  Loglik(intercept only)= -873.2
  Chisq= 122.53 on 2 degrees of freedom, p= <2e-16
n= 686

The maximised log-likelihoods are the same, however the parameterisation is different: the
first coefficient (\texttt{(Intercept)}) reported by \texttt{survreg} is \(\log(\mu)\), and \texttt{survreg}'s "scale" is
d\texttt{dweibull}'s (thus \texttt{flexsurvreg})'s \(1 / \text{shape}\). The covariate effects \(\beta\), however, have the
same “accelerated failure time” interpretation, as linear effects on \(\log(\mu)\). The multiplicative
effects \(\exp(\beta)\) are printed in the output as \texttt{exp(est)}.

The same model can be fitted in \texttt{eha}, also by maximum likelihood, as

\begin{verbatim}
R> library(eha)
R> aftreg(Surv(recyrs, censrec) ~ group, data = bc, dist = "weibull")
\end{verbatim}

The results are presented in the same parameterisation as \texttt{flexsurvreg}, except that the
shape and scale parameters are log-transformed, and (unless the argument \texttt{param="lifeExp"}
is supplied) the covariate effects have the opposite sign.

3.1. Additional modelling features

\textit{Truncation and time-dependent covariates}

If we also had left-truncation times in a variable called \texttt{start}, the response would be
\texttt{Surv(start, recyrs, censrec)}. Or if all responses were interval-censored between
lower and upper bounds \texttt{tmin} and \texttt{tmax}, then we would write \texttt{Surv(tmin, tmax, type = "interval2").}

Time-dependent covariates are not supported in \texttt{flexsurv}. In other packages, they are represented in “counting process” form — as a series of left-truncated survival times, which may also be right-censored. For each individual there would be multiple records, each corresponding to an interval where the covariate is assumed to be constant. The response would be of the form \texttt{Surv(start, stop, censrec)}, where \texttt{start} and \texttt{stop} are the limits of each interval, and \texttt{censrec} indicates whether a death was observed at \texttt{stop}. However, using this approach would require the probability of survival up to the left-truncation time to be represented by a term of the form \( S_i(s_i) = \exp(-H_i(s_i)) \) in the likelihood (equation 2). The cumulative hazard \( H \) over the interval from time 0 to time \( s_i \) depends on how the covariates change for an individual on this time interval, and \texttt{flexsurv} cannot keep track of different observations for an individual. Furthermore, prediction from models with time-dependent covariates is a difficult problem, as it requires knowledge of when the covariates are expected to change. Joint models for longitudinal and survival data are a more flexible approach for modelling the association of a survival time with a time-dependent predictor.

In versions of \texttt{flexsurv} since April 2020, models with individual-specific right-truncation times are also supported. These are used for situations with “retrospective ascertainment”, where cases are only included in the data if they have died by a specific time. These models are specified through an argument \texttt{rtrunc} to \texttt{flexsurvreg} that names the variable with the truncation times. See the Supplementary Examples vignette for a worked example.

\textbf{Relative survival}

In relative survival models (Nelson et al. 2007), the survivor function is expressed as \( S(t) = S^*(t)R(t) \), where \( S^*(t) \) is the “expected” or “baseline” survival, and \( R(t) \) is the relative survival. Equivalently, the hazard is defined as \( h(t) = h^*(t) + \lambda(t) \), where \( h^*(t) \) is the baseline hazard function, and \( \lambda(t) \) is the excess mortality rate associated with the disease of interest. The baseline represents a reference population, and is typically obtained from national routinely-collected mortality statistics, adjusted (e.g. by age/sex) to represent the population under study. The parametric model is defined and estimated for \( R(t) \).

These models are implemented in \texttt{flexsurv} by supplying the variable in the data that represents the expected mortality rate \( h^*(t) \) in the \texttt{bhazard} argument to \texttt{flexsurvreg}. This is only used for the individuals in the data who die, and \texttt{bhazard} describes the expected hazard at the death time. The values of \texttt{bhazard} for censored individuals are ignored.

Note that the parameters returned in the model fitted by \texttt{flexsurvreg} refer to the relative survival \( R(t) \), rather than the absolute survival. The likelihood returned by \texttt{flexsurvreg} here is a partial likelihood defined (as in Nelson et al. 2007, equations 4–5) by omitting the term \( \sum_i \log(S^*(t_i)) \) (summed over all individuals \( i \) in the data, including both censored and uncensored times \( t_i \)) from the full likelihood. This term is equivalent to minus the sum of the cumulative hazards. It can be omitted from the likelihood for the purpose of estimating the parameters of the relative survival model, since it does not depend on these parameters. Hence if a full likelihood is required, (e.g. for model comparison) then this term should be added to the partial likelihood.

Similarly, the predicted survival or hazard (e.g. as returned by \texttt{summary.flexsurvreg}, see Section 3.4) from a relative survival model refers to \( R(t) \) or \( h(t) \). Hence if the overall survival
or hazard is required, the predictions of relative survival should be converted to the “absolute” scale by combining with the baseline, though no specific tools for doing this are provided by flexsurv.

Weighting and subsetting

Case weights and data subsets can also be specified, as in standard R modelling functions, using weights or subset arguments.

3.2. Built-in models

flexsurvreg’s currently built-in distributions are listed in Table 1. In each case, the probability density $f()$ and parameters of the fitted model are taken from an existing R function of the same name but beginning with the letter d. For the Weibull, exponential (dexp), gamma (dgamma) and log-normal (dlnorm), the density functions are provided with standard installations of R. These density functions, and the corresponding cumulative distribution functions (with first letter p instead of d) are used internally in flexsurvreg to compute the likelihood.

flexsurv provides some additional survival distributions, including a Gompertz distribution with unrestricted shape parameter, Weibull with proportional hazards parameterisation, log-logistic, and the three- and four-parameter families described below. For all built-in distributions, flexsurv also defines functions beginning with h giving the hazard, and H for the cumulative hazard.

A package vignette “Distributions reference” lists the survivor function and parameterisation of covariate effects used by each built-in distribution.

Generalized gamma  This three-parameter distribution includes the Weibull, gamma and log-normal as special cases. The original parameterisation from Stacy (1962) is available as dist = "gengamma.orig", however the newer parameterisation (Prentice 1974) is preferred: dist = "gengamma". This has parameters ($\mu,\sigma,q$), and survivor function

$$
1 - I(\gamma,u) \quad (q > 0) \\
1 - \Phi(z) \quad (q = 0)
$$

where $I(\gamma,u) = \int_0^u x^{\gamma-1} \exp(-x)/\Gamma(\gamma)$ is the incomplete gamma function (the cumulative gamma distribution with shape $\gamma$ and scale 1), $\Phi$ is the standard normal cumulative distribution, $u = \gamma \exp(|q|z)$, $z = (\log(t) - \mu)/\sigma$, and $\gamma = q^{-2}$. The Prentice (1974) parameterisation extends the original one to include a further class of models with negative $q$, and survivor function $I(\gamma,u)$, where $z$ is replaced by $-z$. This stabilises estimation when the distribution is close to log-normal, since $q = 0$ is no longer near the boundary of the parameter space. In R notation, $^2$ the parameter values corresponding to the three special cases are

$$
dgengamma(x, mu, sigma, Q=0) == dlnorm(x, mu, sigma) \\
dgengamma(x, mu, sigma, Q=1) == dweibull(x, shape = 1 / sigma, scale = exp(mu)) \\
dgengamma(x, mu, sigma, Q=\text{sigma}) == dgamma(x, shape = 1 / \text{sigma}^2, rate = \exp(-mu) / \text{sigma}^2)
$$

$^2$The parameter called $q$ here and in previous literature is called $Q$ in dgengamma and related functions, since the first argument of a cumulative distribution function is conventionally named $q$, for quantile, in R.
Generalized F  This four-parameter distribution includes the generalized gamma, and also the log-logistic, as special cases. The variety of hazard shapes that can be represented is discussed by Cox (2008). It is provided here in alternative “original” \( (\text{dist} = "\text{genf.orig}\)" and “stable” parameterisations \( (\text{dist} = "\text{genf}\)) as presented by Prentice (1975). See help(GenF) and help(GenF.orig) in the package documentation for the exact definitions.

### 3.3. Covariates on ancillary parameters

The generalized gamma model is fitted to the breast cancer survival data. \( \text{fs2} \) is an AFT model, where only the parameter \( \mu \) depends on the prognostic covariate \( \text{group} \). In a second model \( \text{fs3} \), the first ancillary parameter \( \sigma (\alpha_1) \) also depends on this covariate, giving a model with a time-dependent effect that is neither PH nor AFT. The second ancillary parameter \( \Omega \) is still common between prognostic groups.

```r
R> fs2 <- flexsurvreg(Surv(recyrs, censrec) ~ group, data = bc,
+ dist = "gengamma")
R> fs3 <- flexsurvreg(Surv(recyrs, censrec) ~ group + sigma(group), data = bc,
+ dist = "gengamma")
```

Ancillary covariates can alternatively be supplied using the \texttt{anc} argument to \texttt{flexsurvreg}. This syntax is required if any parameter names clash with the names of functions used in model formulae (e.g., \texttt{factor()} or \texttt{I()}).

```r
R> fs3 <- flexsurvreg(Surv(recyrs, censrec) ~ group, data = bc,
+ anc = list(sigma = ~ group), dist = "gengamma")
```

Table 3 compares all the models fitted to the breast cancer data, showing absolute fit to the data as measured by the maximised \(-2\times\log\) likelihood \(-2LL\), number of parameters \( p \), and Akaike’s information criterion \(-2LL + 2p \) (AIC). The model \( \text{fs2} \) has the lowest AIC, indicating the best estimated predictive ability.

### 3.4. Plotting outputs

The \texttt{plot()} method for \texttt{flexsurvreg} objects is used as a quick check of model fit. By default, this draws a Kaplan-Meier estimate of the survivor function \( S(t) \), one for each combination of categorical covariates, or just a single “population average” curve if there are no categorical covariates (Figure 1). The corresponding estimates from the fitted model are overlaid. Fitted values from further models can be added with the \texttt{lines()} method.

The argument \texttt{type = "hazard"} can be set to plot hazards from parametric models against kernel density estimates obtained from \texttt{muhaz} (Hess 2010; Mueller and Wang 1994). Figure 2 shows more clearly that the Weibull model is inadequate for the breast cancer data: the hazard must be increasing or decreasing — while the generalized gamma can represent the increase and subsequent decline in hazard seen in the data. Similarly, \texttt{type = "cumhaz"} plots cumulative hazards.

The numbers plotted are available from the \texttt{summary.flexsurvreg()} method. Confidence intervals are produced by simulating a large sample from the asymptotic normal distribution of the maximum likelihood estimates of \( \{\beta_r : r = 0, \ldots, R\} \) (Mandel 2013), via the function
Table 1: Built-in parametric survival distributions in flexsurv.

Distribution	Parameters	Density R function	dist
Exponential	rate	dexp	"exp"
Weibull (accelerated failure time)	shape, scale	dweibull	"weibull"
Weibull (proportional hazards)	shape, scale	dweibullPH	"weibullPH"
Gamma	shape, rate	dgamma	"gamma"
Log-normal	meanlog, sdlog	dlnorm	"lnorm"
Gompertz	shape, rate	dgompertz	"gompertz"
Log-logistic	shape, scale	dllogis	"ilogis"
Generalized gamma (Prentice 1975)	mu, sigma, Q	dgengamma	"gengamma"
Generalized gamma (Stacy 1962)	shape, scale, k	dgengamma.orig	"gengamma.orig"
Generalized F (stable)	mu, sigma, Q, P	dgenf	"genf"
Generalized F (original)	mu, sigma, s1, s2	dgenf.orig	"genf.orig"

normboot.flexsurvreg. This very general method allows confidence intervals to be obtained for arbitrary functions of the parameters, as described in the next section.

In this example, there is only a single categorical covariate, and the plot and summary methods return one observed and fitted trajectory for each level of that covariate. For more complicated models, users should specify what covariate values they want summaries for, rather than relying on the default 3. This is done by supplying the newdata argument, a data frame or list containing covariate values, just as in standard R functions like predict.lm. Time-dependent covariates are not understood by these functions.

This plot() method is only for casual exploratory use. For publication-standard figures, it is preferable to set up the axes beforehand (plot(..., type = "n")), and use the lines() methods for flexsurvreg objects, or construct plots by hand using the data available from summary.flexsurvreg().

3.5. Custom model summaries

Any function of the parameters of a fitted model can be summarised or plotted by supplying the argument fn to summary.flexsurvreg or plot.flexsurvreg. This should be an R function, with optional first two arguments t representing time, and start representing a left-truncation point (if the result is conditional on survival up to that time). Any remaining arguments must be the parameters of the survival distribution. For example, median survival under the Weibull model fs1 can be summarised as follows

```r
R> median.weibull <- function(shape, scale) {
 ...
}
```
Figure 1: Survival by prognostic group from the breast cancer data: fitted from alternative parametric models and Kaplan-Meier estimates.

\[ \text{median weibull}(0.5, \text{shape} = \text{shape}, \text{scale} = \text{scale}) \]

R> summary(fs1, fn = median.weibull, t = 1, B = 10000)

group=Good	time	est	lcl	ucl
1	1	8.75794	7.124893	10.77381

group=Medium	time	est	lcl	ucl
1	1	4.741585	4.125667	5.444501

group=Poor	time	est	lcl	ucl
1	1	2.605819	2.309161	2.940374

Although the median of the Weibull has an analytic form as \( \mu \log(2)^{1/\alpha} \), the form of the code
Figure 2: Hazards by prognostic group from the breast cancer data: fitted from alternative parametric models and kernel density estimates.

given here generalises to other distributions. The argument t (or start) can be omitted from median.weibull, because the median is a time-constant function of the parameters, unlike the survival or hazard.

10000 random samples are drawn to produce a slightly more precise confidence interval than the default — users should adjust this until the desired level of precision is obtained. A useful future extension of the package would be to employ user-supplied (or built-in) derivatives of summary functions if possible, so that the delta method can be used to obtain approximate confidence intervals without simulation.

3.6. Computation

The likelihood is maximised in flexsurvreg using the optimisation methods available through the standard R optim function. By default, this is the "BFGS" method (Nash 1990) using the analytic derivatives of the likelihood with respect to the model parameters, if these are available, to improve the speed of convergence to the maximum. These derivatives are built-in for the exponential, Weibull, Gompertz, log-logistic, and hazard- and odds-based spline models.
(see §5.1). For custom distributions (see §4), the user can optionally supply functions with names beginning "DLd" and "DLS" respectively (e.g., DLdweibull, DLSweibull) to calculate the derivatives of the log density and log survivor functions with respect to the transformed baseline parameters $\gamma$ (then the derivatives with respect to $\beta$ are obtained automatically). Arguments to optim can be passed to flexsurvreg — in particular, control options, such as convergence tolerance, iteration limit or function or parameter scaling, may need to be adjusted to achieve convergence.

4. Custom survival distributions

flexsurv is not limited to its built-in distributions. Any survival model of the form (1–3) can be fitted if the user can provide either the density function $f()$ or the hazard $h()$. Many contributed R packages provide probability density and cumulative distribution functions for positive distributions. Though survival models may be more naturally characterised by their hazard function, representing the changing risk of death through time. For example, for survival following major surgery we may want a “U-shaped” hazard curve, representing a high risk soon after the operation, which then decreases, but increases naturally as survivors grow older.

To supply a custom distribution, the dist argument to flexsurvreg is defined to be an R list object, rather than a character string. The list has the following elements.

name Name of the distribution. In the first example below, we use a log-logistic distribution, and the name is "llogis". Then there is assumed to be at least either

- a function to compute the probability density, which would be called dllogis here, or
- a function to compute the hazard, called hllogis.

There should also be a function called pllogis for the cumulative distribution (if d is given), or H for the cumulative hazard (to complement h), if analytic forms for these are available. If not, then flexsurv can compute them internally by numerical integration, as in stgenreg (Crowther and Lambert 2013). The default options of the built-in R routine integrate for adaptive quadrature are used, though these may be changed using the integ.opts argument to flexsurvreg. Models specified this way will take an order of magnitude more time to fit, and the fitting procedure may be unstable. An example is given in §5.2.

These functions must be vectorised, and the density function must also accept an argument log, which when TRUE, returns the log density. See the examples below.

In some cases, R’s scoping rules may not find the functions in the working environment. They may then be supplied through the dfns argument to flexsurvreg.

pars Character vector naming the parameters of the distribution $\mu, \alpha_1, \ldots, \alpha_R$. These must match the arguments of the R distribution function or functions, in the same order.

4 though since version 0.5.1, this distribution is built into flexsurv as dist="llogis"
location Character: quoted name of the location parameter \( \mu \). The location parameter will not necessarily be the first one, e.g., in \texttt{dweibull} the \texttt{scale} comes after the \texttt{shape}.

transforms A list of functions \( g() \) which transform the parameters from their natural ranges to the real line, for example, \texttt{c(log, identity)} if the first is positive and the second unrestricted.\(^5\)

inv.transforms List of corresponding inverse functions.

\texttt{inits} A function which provides plausible initial values of the parameters for maximum likelihood estimation. This is optional, but if not provided, then each call to \texttt{flexsurvreg} must have an \texttt{inits} argument containing a vector of initial values, which is inconvenient. Implausible initial values may produce a likelihood of zero, and a fatal error message (\texttt{initial value in ‘vmmin’ is not finite}) from the optimiser.

Each distribution will ideally have a heuristic for initialising parameters from summaries of the data. For example, since the median of the Weibull is \( \mu \log(2)^{1/\alpha} \), a sensible estimate of \( \mu \) might be the median log survival time divided by \( \log(2) \), with \( \alpha = 1 \), assuming that in practice the true value of \( \alpha \) is not far from 1. Then we would define the function, of one argument \( t \) giving the survival or censoring times, returning the initial values for the Weibull \texttt{shape} and \texttt{scale} respectively.\(^6\)

\begin{verbatim}
inits = function(t) c(1, median(t[t > 0]) / log(2))
\end{verbatim}

More complicated initial value functions may use other data such as the covariate values and censoring indicators: for an example, see the function \texttt{flexsurv.splineinits} in the package source that computes initial values for spline models (§5.1).\(^5\)

Example: Using functions from a contributed package The following custom model uses the log-logistic distribution functions (\texttt{dllogis} and \texttt{pllogis}) available in the package \texttt{eha}. The survivor function is \( S(t|\mu, \alpha) = 1/(1 + (t/\mu)^\alpha) \), so that the log odds \( \log((1 - S(t))/S(t)) \) of having died are a linear function of log time.

\begin{verbatim}
R> custom.llogis <- list(name = "llogis", pars = c("shape", "scale"), +     location = "scale", +     transforms = c(log, log), +     inv.transforms = c(exp, exp), +     inits = function(t){ c(1, median(t)) })
R> fs4 <- flexsurvreg(Surv(recyrs, censrec) ~ group, data = bc, +                      dist = custom.llogis)
\end{verbatim}

This fits the breast cancer data better than the Weibull, since it can represent a peaked hazard, but less well than the generalized gamma (Table 3).

\(^5\)This is a \texttt{list}, not an \texttt{atomic vector} of functions, so if the distribution only has one parameter, we should write \texttt{transforms = c(log)} or \texttt{transforms = list(log)}, not \texttt{transforms = log}.

\(^6\)though Weibull models in \texttt{flexsurvreg} are “initialised” by fitting the model with \texttt{survreg}, unless there is left-truncation.
**Example: Wrapping functions from a contributed package**

Sometimes there may be probability density and similar functions in a contributed package, but in a different format. For example, *eha* also provides a three-parameter Gompertz-Makeham distribution with hazard \( h(t|\mu, \alpha_1, \alpha_2) = \alpha_2 + \alpha_1 \exp(t/\mu) \). The shape parameters \( \alpha_1, \alpha_2 \) are provided to `dmakeham` as a vector argument of length two. However, `flexsurvreg` expects distribution functions to have one argument for each parameter. Therefore we write our own functions that wrap around the third-party functions.

```r
R> dmakeham3 <- function(x, shape1, shape2, scale, ...) {
+ dmakeham(x, shape = c(shape1, shape2), scale = scale, ...)
+ }
R> pmakeham3 <- function(q, shape1, shape2, scale, ...) {
+ pmakeham(q, shape = c(shape1, shape2), scale = scale, ...)
+ }
```

`flexsurvreg` also requires these functions to be *vectorized*, as the standard distribution functions in R are. That is, we can supply a vector of alternative values for one or more arguments, and expect a vector of the same length to be returned. The R base function `Vectorize` can be used to do this here.

```r
R> dmakeham3 <- Vectorize(dmakeham3)
R> pmakeham3 <- Vectorize(pmakeham3)
```

and this allows us to write, for example,

```r
R> pmakeham3(c(0, 1, 1, Inf), 1, c(1, 1, 2, 1), 1)
```

We could then use `dist = list(name = "makeham3", pars = c("shape1", "shape2", "scale"), ...) in a `flexsurvreg` model, though in the breast cancer example, the second shape parameter is poorly identifiable.

**Example: Changing the parameterisation of a distribution**

We may want to fit a Weibull model like `fs1`, but with the proportional hazards (PH) parameterisation \( S(t) = \exp(-\mu t^\alpha) \), so that the covariate effects reported in the printed `flexsurvreg` object can be interpreted as hazard ratios or log hazard ratios without any further transformation. Here instead of the density and cumulative distribution functions, we provide the hazard and cumulative hazard. (Note that since version 0.7, the "weibullPH" distribution is built in to `flexsurvreg` — but this example has been kept here for illustrative purposes.)

```r
R> hweibullPH <- function(x, shape, scale = 1, log = FALSE){
+ hweibull(x, shape = shape, scale = scale ^ {-1 / shape}, log = log)
+ }
R> HweibullPH <- function(x, shape, scale = 1, log = FALSE){
+ Hweibull(x, shape = shape, scale = scale ^ {-1 / shape}, log = log)
+ }
```

7The *eha* package may need to be detached first so that `flexsurv`’s built-in `hweibull` is used, which returns `NaN` if the parameter values are zero, rather than failing as `eha`’s currently does.
The fitted model is the same as `fs1`, therefore the maximised likelihood is the same. The parameter estimates of `fs6` can be transformed to those of `fs1` as shown. The shape $\alpha$ is common to both models, the scale $\mu'$ in the AFT model is related to the PH scale $\mu$ as $\mu' = \mu^{-1/\alpha}$. The effects $\beta'$ on life expectancy in the AFT model are related to the log hazard ratios $\beta$ as $\beta' = -\beta/\alpha$.

A slightly more complicated example is given in the package vignette `flexsurv-examples` of constructing a proportional hazards generalized gamma model. Note that `phreg` in `eha` also fits the Weibull and other proportional hazards models, though again the parameterisation is slightly different.

### 5. Arbitrary-dimension models

`flexsurv` also supports models where the number of parameters is arbitrary. In the models discussed previously, the number of parameters in the model family is fixed (e.g., three for the generalized gamma). In this section, the model complexity can be chosen by the user, given the model family. We may want to represent more irregular hazard curves by more flexible functions, or use bigger models if a bigger sample size makes it feasible to estimate more parameters.

#### 5.1. Royston and Parmar spline model

In the spline-based survival model of Royston and Parmar (2002), a transformation $g(S(t, z))$ of the survival function is modelled as a natural cubic spline function of log time: $g(S(t, z)) = s(x, \gamma)$ where $x = \log(t)$. This model can be fitted in `flexsurv` using the function
Model	\(g(S(t, z))\)	In flexsurvSpline	With \(m = 0\)
Proportional hazards | \(\log(-\log(S(t, z)))\) | scale = "hazard" | Weibull shape \(\gamma_1\), scale \(\exp(-\gamma_0/\gamma_1)\) 
Proportional odds | \(\log(S(t, z))^{-1} - 1\) | scale = "odds" | Log-logistic shape \(\gamma_1\), scale \(\exp(-\gamma_0/\gamma_1)\) 
Normal / probit | \(\Phi^{-1}(S(t, z))\) | scale = "normal" | Log-normal meanlog \(-\gamma_0/\gamma_1, \text{sdlog} 1/\gamma_1\) 

Table 2: Alternative modelling scales for flexsurvSpline, and equivalent distributions for \(m = 0\) (with parameter definitions as in the R d functions referred to elsewhere in the paper).

flexsurvSpline, and is also available in the Stata package stpm2 (Lambert and Royston 2009) (historically stpm, Royston (2001, 2004)). Typically we use \(g(S(t, z)) = \log(-\log(S(t, z))) = \log(H(t, z))\), the log cumulative hazard, giving a proportional hazards model.

### Spline parameterisation

The complexity of the model, thus the dimension of \(\gamma\), is governed by the number of knots in the spline function \(s()\). Natural cubic splines are piecewise cubic polynomials defined to be continuous, with continuous first and second derivatives at the knots, and also constrained to be linear beyond boundary knots \(k_{\min}, k_{\max}\). As well as the boundary knots there may be up to \(m \geq 0\) internal knots \(k_1, \ldots, k_m\). Various spline parameterisations exist — the one used here is from Royston and Parmar (2002).

\[
s(x, \gamma) = \gamma_0 + \gamma_1 x + \gamma_2 v_1(x) + \ldots + \gamma_{m+1} v_m(x) = \gamma_0 + \gamma_1 x + \sum_{j=1}^{m+1} \gamma_j v_j(x) \tag{4}
\]

where \(v_j(x)\) is the \(j\)th basis function

\[
v_j(x) = (x - k_j)_+^3 - \lambda_j (x - k_{\min})_+^3 - (1 - \lambda_j) (x - k_{\max})_+^3, \quad \lambda_j = \frac{k_{\max} - k_j}{k_{\max} - k_{\min}}
\]

and \((x - a)_+ = \max(0, x - a)\). If \(m = 0\) then there are only two parameters \(\gamma_0, \gamma_1\), and this is a Weibull model if \(g()\) is the log cumulative hazard. Table 2 explains two further choices of \(g()\), and the parameter values and distributions they simplify to for \(m = 0\). The probability density and cumulative distribution functions for all these models are available as dsurvspline and psurvspline. A model with an absolute time scale \((x = t)\) is also available through timescale="identity".

### Covariates on spline parameters

Covariates can be placed on any parameter \(\gamma\) through a linear model (with identity link function). Most straightforwardly, we can let the intercept \(\gamma_0\) vary with covariates \(z\), giving a proportional hazards or odds model (depending on \(g()\)).

\[
g(S(t, z)) = s(\log(t), \gamma) + \beta^\top z
\]

The spline coefficients \(\gamma_j : j = 1, 2, \ldots\), the “ancillary” parameters, may also be modelled as linear functions of covariates \(z\), as
\[ \gamma_j(z) = \gamma_{j0} + \gamma_{j1}z_1 + \gamma_{j2}z_2 + \ldots \]
giving a model where the effects of covariates are arbitrarily flexible functions of time: a non-proportional hazards or odds model.

**Spline models in flexsurv**  The argument \( k \) to `flexsurvspline` defines the number of internal knots \( m \). Knot locations are chosen by default from quantiles of the log uncensored death times, or users can supply their own locations in the `knots` argument. Initial values for numerical likelihood maximisation are chosen using the method described by Royston and Parmar (2002) of Cox regression combined with transforming an empirical survival estimate.

For example, the best-fitting model for the breast cancer dataset identified in Royston and Parmar (2002), a proportional odds model with one internal spline knot, is

```r
R> sp1 <- flexsurvspline(Surv(recyrs, censrec) ~ group, data = bc, k = 1, + scale = "odds")
```

A further model where the first ancillary parameter also depends on the prognostic group, giving a time-varying odds ratio, is fitted as

```r
R> sp2 <- flexsurvspline(Surv(recyrs, censrec) ~ group + gamma1(group), + data = bc, k = 1, scale = "odds")
```

These models give qualitatively similar results to the generalized gamma in this dataset (Figure 3), and have similar predictive ability as measured by AIC (Table 3). Though in general, an advantage of spline models is that extra flexibility is available where necessary.

In this example, proportional odds models (scale = "odds") are better-fitting than proportional hazards models (scale = "hazard") (Table 3). Note also that under a proportional hazards spline model with one internal knot (sp3), the log hazard ratios, and their standard errors, are substantively the same as under a standard Cox model (cox3). This illustrates that this class of flexible fully-parametric models may be a reasonable alternative to the (semi-parametric) Cox model. See Royston and Parmar (2002) for more discussion of these issues.

```r
R> sp3 <- flexsurvspline(Surv(recyrs, censrec) ~ group, data = bc, k = 1, + scale = "hazard")
R> sp3$res[c("groupMedium", "groupPoor"), c("est", "se")]
```

```
 est se
groupMedium 0.8345026 0.1712764
groupPoor 1.6120990 0.1641750
```

```r
R> cox3 <- coxph(Surv(recyrs, censrec) ~ group, data = bc)
R> coef(summary(cox3))[, c("coef", "se(coef)")]
```
Figure 3: Comparison of spline and generalized gamma fitted hazards for the breast cancer survival data by prognostic group.

	coef	se(coef)
groupMedium	0.8401002	0.1713926
groupPoor	1.6180720	0.1645443

An equivalent of a “stratified” Cox model may be obtained by allowing all the spline parameters to vary with the categorical covariate that defines the strata. In this case, this covariate might be group. With $k=m$ internal knots, the formula should then include group, representing $\gamma_0$, and $m+1$ further terms representing the parameters $\gamma_1, \ldots, \gamma_{m+1}$, named as follows.

```r
R> sp4 <- flexsurvspline(Surv(recyrs, censrec) ~ group + gamma1(group) +
+ gamma2(group), data = bc, k = 1, scale = "hazard")
```

Other covariates might be added to this formula — if placed on the intercept, these will be modelled through proportional hazards, as in sp1. If placed on higher-order parameters, these will represent time-varying hazard ratios. For example, if there were a covariate treat representing treatment, then
would represent a model stratified by group, where the hazard ratio for treatment is time-varying, but the model is not fully stratified by treatment.

```
R> res <- t(sapply(list(fs1, fs2, fs3, sp1, sp2, sp3, sp4),
+ function(x)rbind(-2 * round(x$loglik,1), x$npars,
+ round(x$AIC,1))))
```

```
R> rownames(res) <- c("Weibull (fs1)", "Generalized gamma (fs2)",
+ "Generalized gamma (fs3)",
+ "Spline (sp1)", "Spline (sp2)", "Spline (sp3)",
+ "Spline (sp4)")
```

```
R> colnames(res) <- c("-2 log likelihood", "Parameters", "AIC")
```

```
R> res

| Model Description | -2 log likelihood | Parameters | AIC |
|------------------|------------------|------------|------|
| Weibull (fs1) | 1623.8 | 4 | 1631.9 |
| Generalized gamma (fs2) | 1575.2 | 5 | 1585.1 |
| Generalized gamma (fs3) | 1572.4 | 7 | 1586.4 |
| Spline (sp1) | 1578.0 | 5 | 1588.0 |
| Spline (sp2) | 1574.8 | 7 | 1588.8 |
| Spline (sp3) | 1585.8 | 5 | 1595.7 |
| Spline (sp4) | 1571.4 | 9 | 1589.3 |
```

Table 3: Comparison of parametric survival models fitted to the breast cancer data.

5.2. Implementing new general-dimension models

The spline model above is an example of the general parametric form (Equation 1), but the number of parameters, \(R + 1\) in Equation 1, \(m + 2\) in Equation 4, is arbitrary. `flexsurv` has the tools to deal with any model of this form. `flexsurvspline` works internally by building a custom distribution and then calling `flexsurvreg`. Similar models may in principle be built by users using the same method. This relies on a functional programming trick.

Creating distribution functions dynamically The R distribution functions supplied to custom models are expected to have a fixed number of arguments, including one for each scalar parameter. However, the distribution functions for the spline model (e.g., `dsurvsspline`) have an argument `gamma` representing the vector of parameters \(\gamma\), whose length is determined by choosing the number of knots. Just as the scalar parameters of conventional distribution functions can be supplied as vector arguments (as explained in §4), similarly, the vector parameters of spline-like distribution functions can be supplied as matrix arguments, representing alternative parameter values.
To convert a spline-like distribution function into the correct form, \texttt{flexsurv} provides the utility \texttt{unroll.function}. This converts a function with one (or more) vector parameters (matrix arguments) to a function with an arbitrary number of scalar parameters (vector arguments). For example, the 5-year survival probability for the baseline group under the model \texttt{sp1} is

\begin{verbatim}
R> gamma <- sp1$res[c("gamma0", "gamma1", "gamma2"), "est"]
R> 1 - psurvspline(5, gamma = gamma, knots = sp1$knots)
[1] 0.6897025
\end{verbatim}

An alternative function to compute this can be built by \texttt{unroll.function}. We tell it that the vector parameter \texttt{gamma} should be provided instead as three scalar parameters named \texttt{gamma0}, \texttt{gamma1}, \texttt{gamma2}. The resulting function \texttt{pfn} is in the correct form for a custom \texttt{flexsurvreg} distribution.

\begin{verbatim}
R> pfn <- unroll.function(psurvspline, gamma = 0:2)
R> 1 - pfn(5, gamma0 = gamma[1], gamma1 = gamma[2], gamma2 = gamma[3],
  + knots = sp1$knots)
[1] 0.6897025
\end{verbatim}

Users wishing to fit a new spline-like model with a known number of parameters could just as easily write distribution functions specific to that number of parameters, and use the methods in §4. However the \texttt{unroll.function} method is intended to simplify the process of extending the \texttt{flexsurv} package to implement new model families, through wrappers similar to \texttt{flexsurvspline}.

**Example: splines on alternative scales** An alternative to the Royston-Parmar spline model is to model the log hazard as a spline function of (log) time instead of the log cumulative hazard. Crowther and Lambert (2013) demonstrate this model using the \texttt{Stata stgenreg} package. An advantage explained by Royston and Lambert (2011) is that when there are multiple time-dependent effects, time-dependent hazard ratios can be interpreted independently of the values of other covariates.

This can also be implemented in \texttt{flexsurvreg} using \texttt{unroll.function}. A disadvantage of this model is that the cumulative hazard (hence the survivor function) has no analytic form, therefore to compute the likelihood, the hazard function needs to be integrated numerically. This is done automatically in \texttt{flexsurvreg} (just as in \texttt{stgenreg}) if the cumulative hazard is not supplied.

Firstly, a function must be written to compute the hazard as a function of time \texttt{x}, the vector of parameters \texttt{gamma} (which can be supplied as a matrix argument so the function can give a vector of results), and a vector of knot locations. This uses \texttt{flexsurv}'s function \texttt{basis} to compute the natural cubic spline basis (Equation 4), and replicates \texttt{x} and \texttt{gamma} to the length of the longest one.

\begin{verbatim}
R> hsurvspline.lh <- function(x, gamma, knots){
  +   if(!is.matrix(gamma)) gamma <- matrix(gamma, nrow = 1)
  +   ...}
\end{verbatim}
The equivalent function is then created for a three-knot example of this model (one internal and two boundary knots) that has arguments \( \text{gamma0} \), \( \text{gamma1} \) and \( \text{gamma2} \) corresponding to the three columns of \( \text{gamma} \).

R> hsurvspline.lh3 <- unroll.function(hsurvspline.lh, gamma = 0:2)

To complete the model, the custom distribution list is formed, the internal knot is placed at the median uncensored log survival time, and the boundary knots are placed at the minimum and maximum. These are passed to \text{hsurvspline.lh} through the aux argument of \text{flexsurvreg}.

R> custom.hsurvspline.lh3 <- list(
+ name = "survspline.lh3",
+ pars = c("gamma0", "gamma1", "gamma2"),
+ location = c("gamma0"),
+ transforms = rep(c(identity), 3), inv.transforms = rep(c(identity), 3)
+ )
R> dtime <- log(bc$recyrs)[bc$censrec == 1]
R> ak <- list(knots = quantile(dtime, c(0, 0.5, 1)))

Initial values must be provided in the call to \text{flexsurvreg}, since the custom distribution list did not include an inits component. For this example, “default” initial values of zero suffice, but the permitted values of \( \gamma_2 \) are fairly tightly constrained (from -0.5 to 0.5 here) using the "L-BFGS-B" bounded optimiser from R's \text{optim} (Nash 1990). Without the constraint, extreme values of \( \gamma_2 \), visited by the optimiser, cause the numerical integration of the hazard function to fail.

R> sp5 <- flexsurvreg(Surv(recyrs, censrec) ~ group, data = bc, aux = ak,
+ inits = c(0, 0, 0, 0, 0),
+ dist = custom.hsurvspline.lh3,
+ method = "L-BFGS-B", lower = c(-Inf, -Inf, -0.5),
+ upper = c(Inf, Inf, 0.5),
+ control = list(trace = 1, REPORT = 1))

This takes around ten minutes to converge, so is not presented here, though the fit is poorer than the equivalent spline model for the cumulative hazard. The 95% confidence interval for \( \gamma_2 \) of (0.16, 0.37) is firmly within the constraint. Crowther and Lambert (2014) present a combined analytic / numerical integration method for this model that may make fitting it more stable.
Other arbitrary-dimension models  Another potential application is to fractional polynomials (Royston and Altman 1994). These are of the form $\sum_{m=1}^{M} \alpha_m x^{p_m} \log(x)^n$ where the power $p_m$ is in the standard set $\{2, -1, -0.5, 0, 0.5, 1, 2, 3\}$ (except that $\log(x)$ is used instead of $x^0$), and $n$ is a non-negative integer. They are similar to splines in that they can give arbitrarily close approximations to a nonlinear function, such as a hazard curve, and are particularly useful for expressing the effects of continuous predictors in regression models. See e.g., Sauerbrei et al. (2007), and several other publications by the same authors, for applications and discussion of their advantages over splines. The R package gamlss (Rigby and Stasinopoulos 2005) has a function to construct a fractional polynomial basis that might be employed in flexsurv models.

Polyhazard models (Louzada-Neto 1999) are another potential use of this technique. These express an overall hazard as a sum of latent cause-specific hazards, each one typically from the same class of distribution, e.g., a poly-Weibull model if they are all Weibull. For example, a U-shaped hazard curve following surgery may be the sum of early hazards from surgical mortality and later deaths from natural causes. However, such models may not always be identifiable without external information to fix or constrain the parameters of particular hazards (Demiris et al. 2011).

6. Multi-state models

A multi-state model represents how an individual moves between multiple states in continuous time. Survival analysis is a special case with two states, “alive” and “dead”. Competing risks are a further special case, where there are multiple causes of death, that is, one starting state and multiple possible destination states.

Multi-state modelling with flexsurv was previously described in this section of the current vignette. Version 2.0 of flexsurv added several new features for multi-state modelling, including multi-state modelling using mixtures, and transition-specific distribution families in cause-specific hazards models. These models are now fully described in a separate flexsurv vignette, “Flexible parametric multi-state modelling with the flexsurv package”.

7. Potential extensions

Multi-state modelling is still an area of ongoing work, and while version 2.0 extended flexsurv in this area, more tools and documentation in this area would still be useful. The msm package arguably has a more accessible interface for fitting and summarising multi-state models, but it was designed mainly for panel data rather than event time data, and therefore the event time distributions it fits are relatively inflexible.

Models where multiple survival times are assumed to be correlated within groups, sometimes called (shared) frailty models (Hougaard 1995), would also be a useful development. See, e.g., Crowther et al. (2014) for a recent application based on parametric models. These might be implemented by exploiting tractability for specific distributions, such as gamma frailties, or by adjusting standard errors to account for clustering, as implemented in survreg. More complex random effects models would require numerical integration, for example, Crowther et al. (2014) provide Stata software based on Gauss-Hermite quadrature. Alternatively, a probabilistic modelling language such as Stan (Stan Development Team 2014) or BUGS (Lunn et al. 2012) would be naturally suited to complex extensions such as random effects on multiple
parameters or multiple hierarchical levels.

`flexsurv` is intended as a platform for parametric survival modelling. Extensions of the software to deal with different models may be written by users themselves, through the facilities described in §4 and §5.2. These might then be included in the package as built-in distributions, or at least demonstrated in the package’s other vignette `flexsurv-examples`. Each new class of models would ideally come with

- guidance on what situations the model is useful for, e.g., what shape of hazards it can represent
- some intuitive interpretation of the model parameters, their plausible values in typical situations, and potential identifiability problems. This would also help with choosing initial values for numerical maximum likelihood estimation, ideally through an `inits` function in the custom distribution list (§4).

`flexsurv` is available from [http://CRAN.R-project.org/package=flexsurv](http://CRAN.R-project.org/package=flexsurv). Development versions are available on [https://github.com/chjackson/flexsurv-dev](https://github.com/chjackson/flexsurv-dev), and contributions are welcome.

**Acknowledgements**

Thanks to Milan Bouchet-Valat for help with implementing covariates on ancillary parameters, Andrea Manca for motivating the development of the package, the reviewers of the paper, and all users who have reported bugs and given suggestions.

**References**

Aalen O, Borgan O, Gjessing H (2008). *Survival and Event History Analysis: A Process Point of View*. Springer-Verlag.

Benaglia T, Jackson CH, Sharples LD (2014). “Survival Extrapolation in the Presence of Cause Specific Hazards.” *Statistics in Medicine*. In press.

Broström G (2014). `eha`: Event History Analysis. R package version 2.4-1, URL [http://CRAN.R-project.org/package=eha](http://CRAN.R-project.org/package=eha).

Cox C (2008). “The Generalized F Distribution: An Umbrella for Parametric Survival Analysis.” *Statistics in Medicine*, 27(21), 4301–4312.

Crowther MJ, Lambert PC (2013). “`stgenreg`: A Stata Package for General Parametric Survival Analysis.” *Journal of Statistical Software*, 53, 1–17.

Crowther MJ, Lambert PC (2014). “A General Framework for Parametric Survival Analysis.” *Statistics in Medicine*. Early view, DOI: 10.1002/sim.6300.

Crowther MJ, Look MP, Riley RD (2014). “Multilevel Mixed Effects Parametric Survival Models Using Adaptive Gauss–Hermite Quadrature With Application to Recurrent Events and Individual Participant Data Meta-Analysis.” *Statistics In Medicine*, 33(22), 3844–3858.
de Wreede LC, Fiocco M, Putter H (2011). “mstate: An R Package for the Analysis of Competing Risks and Multi-State Models.” Journal of Statistical Software, 38, 1–30.

Demiris N, Lunn D, Sharples L (2011). “Survival Extrapolation Using the Poly-Weibull Model.” Statistical Methods in Medical Research. Early view, DOI: 10.1177/0962280211419645.

Hess K (2010). muhaz: Hazard Function Estimation in Survival Analysis. R package version 1.2.5, S original by K. Hess and R port by R. Gentleman, URL http://CRAN.R-project.org/package=muhaz.

Hothorn T (2015). TH.data: TH’s Data Archive. R package version 1.0-6, URL http://CRAN.R-project.org/package=TH.data.

Hougaard P (1995). “Frailty Models for Survival Data.” Lifetime Data Analysis, 1(3), 255–273.

Jackson C (2016). “flexsurv: A Platform for Parametric Survival Modeling in R.” Journal of Statistical Software, 70(8), 1–33. doi:10.18637/jss.v070.i08.

Lambert PC, Royston P (2009). “Further Development of Flexible Parametric Models for Survival Analysis.” Stata Journal, 9(2), 265.

Latimer NR (2013). “Survival Analysis for Economic Evaluations Alongside Clinical Trials — Extrapolation with Patient-Level Data, Inconsistencies, Limitations, and a Practical Guide.” Medical Decision Making, 33(6), 743–754.

Louzada-Neto F (1999). “Polyhazard Models for Lifetime Data.” Biometrics, 55, 1281–1285.

Lunn D, Jackson C, Best N, Thomas A, Spiegelhalter D (2012). The BUGS Book: A Practical Introduction to Bayesian Analysis. CRC Press.

Mandel M (2013). “Simulation-Based Confidence Intervals for Functions with Complicated Derivatives.” The American Statistician, 67(2), 76–81.

Mueller HG, Wang JL (1994). “Hazard Rates Estimation Under Random Censoring with Varying Kernels and Bandwidths.” Biometrics, 50, 61–76.

Nadarajah S, Bakar SAA (2013). “A New R Package for Actuarial Survival Models.” Computational Statistics, 28(5), 2139–2160.

Nash JC (1990). Compact Numerical Methods for Computers: Linear Algebra and Function Minimisation. CRC Press.

Nelson CP, Lambert PC, Squire IB, Jones DR (2007). “Flexible Parametric Models for Relative Survival, With Application in Coronary Heart Disease.” Statistics in Medicine, 26(30), 5486–5498.

Prentice RL (1974). “A Log Gamma Model and its Maximum Likelihood Estimation.” Biometrika, 61(3), 539–544.

Prentice RL (1975). “Discrimination Among Some Parametric Models.” Biometrika, 62(3), 607–614.
Stan Development Team (2014). Stan Modeling Language Users Guide and Reference Manual, Version 2.4. URL http://mc-stan.org/.

R Core Team (2014). R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, Vienna, Austria. URL http://www.R-project.org/.

Reid N (1994). “A Conversation with Sir David Cox.” Statistical Science, 9(3), 439–455.

Rigby RA, Stasinopoulos DM (2005). “Generalized Additive Models for Location, Scale and Shape (with discussion).” Journal of the Royal Statistical Society C, 54(3), 507–554.

Royston P (2001). “Flexible Parametric Alternatives to the Cox Model, and More.” Stata Journal, 1(1), 1–28.

Royston P (2004). “Flexible Parametric Alternatives to the Cox Model: Update.” The Stata Journal, 4(1), 98–101.

Royston P, Altman DG (1994). “Regression Using Fractional Polynomials of Continuous Covariates: Parsimonious Parametric Modelling.” Journal of the Royal Statistical Society C, 43(3), 429–467.

Royston P, Lambert PC (2011). “Flexible Parametric Survival Analysis Using Stata: Beyond the Cox Model.” Stata Press books.

Royston P, Parmar M (2002). “Flexible Parametric Proportional-Hazards and Proportional-Odds Models for Censored Survival Data, with Application to Prognostic Modelling and Estimation of Treatment Effects.” Statistics in Medicine, 21(1), 2175–2197.

Sauerbrei W, Royston P (1999). “Building Multivariable Prognostic and Diagnostic Models: Transformation of the Predictors by Using Fractional Polynomials.” Journal of the Royal Statistical Society A, 162(1), 71–94.

Sauerbrei W, Royston P, Binder H (2007). “Selection of Important Variables and Determination of Functional Form for Continuous Predictors in Multivariable Model Building.” Statistics in Medicine, 26(30), 5512–5528.

Stacy EW (1962). “A Generalization of the Gamma Distribution.” The Annals of Mathematical Statistics, 33(3), 1187–92.

Therneau T (2014). “A Package for Survival Analysis in S.” R package version 2.37-7. http://CRAN.R-project.org/package=survival.

Yee TW, Wild CJ (1996). “Vector Generalized Additive Models.” Journal of the Royal Statistical Society B, 58(3), 481–493.