Characterization of Lipschitz Functions via the Commutators of Maximal Function on Stratified Lie Groups

Jianglong Wu¹ and Wenjiao Zhao²*

¹ Department of Mathematics, Mudanjiang Normal University, Mudanjiang, 157011, China.
²* School of Mathematics, Harbin Institute of Technology, Harbin, 150001, China.

Abstract
In this paper, the main aim is to consider the boundedness of the Hardy-Littlewood maximal commutator \(M_b \) and the nonlinear commutator \([b, M]\) on the Lebesgue spaces and Morrey spaces over some stratified Lie group \(G \) when \(b \) belongs to the Lipschitz space, by which some new characterizations of the Lipschitz spaces on Lie group are given.

Keywords: stratified Lie group, maximal function, Lipschitz function, commutator, Morrey space

MSC Classification: 42B35, 43A80

1 Introduction and main results

Stratified groups appear in quantum physics and many parts of mathematics, including several complex variables, Fourier analysis, geometry, and topology [10, 28]. The geometry structure of stratified groups is so good that it inherits a lot of analysis properties from the Euclidean spaces [11, 27]. Apart from this, the difference between the geometry structures of Euclidean spaces and stratified groups makes the study of function spaces on them more complicated.

*Corresponding author
Email addresses: wenjiaozhao@163.com
However, many harmonic analysis problems on stratified Lie groups deserve a further investigation since most results of the theory of Fourier transforms and distributions in Euclidean spaces cannot yet be duplicated.

Let T be the classical singular integral operator. The commutator $[b, T]$ generated by T and a suitable function b is defined by

$$[b, T]f = bT(f) - T(bf). \quad (1.1)$$

It is known that the commutators are intimately related to the regularity properties of the solutions of certain partial differential equations (PDE), see [4, 7, 25].

The first result for the commutator $[b, T]$ was established by Coifman et al [6], and the authors proved that $b \in \text{BMO}(\mathbb{R}^n)$ (bounded mean oscillation functions) if and only if the commutator (1.1) is bounded on $L^p(\mathbb{R}^n)$ for $1 < p < \infty$. In 1978, Janson [15] generalized the results in [6] to functions belonging to a Lipschitz functional space and gave some characterizations of the Lipschitz space $\Lambda_\beta(\mathbb{R}^n)$ via commutator (1.1), and the author proved that $b \in \Lambda_\beta(\mathbb{R}^n)$ if and only if $[b, T]$ is bounded from $L^p(\mathbb{R}^n)$ to $L^q(\mathbb{R}^n)$ where $1 < p < n/\beta$ and $1/p - 1/q = \beta/n$ (see also [24]).

In addition, using real interpolation techniques, Milman and Schonbek [21] established a commutator result that applies to the Hardy-Littlewood maximal function as well as to a large class of nonlinear operators. In 2000, Bastero et al [1] proved the necessary and sufficient conditions for the boundedness of the nonlinear commutator $[b, M]$ on L^p spaces, and the similar problems for $[b, M_\alpha]$ were also studied by Zhang and Wu [31]. In 2017, Zhang [30] considered some new characterizations of the Lipschitz spaces via the boundedness of maximal commutator M_b and the (nonlinear) commutator $[b, M]$ in Lebesgue spaces and Morrey spaces on Euclidean spaces. In 2018, Zhang et al [32] gave necessary and sufficient conditions for the boundedness of the nonlinear commutator $[b, M_\alpha]$ on Orlicz spaces when the symbol b belongs to Lipschitz spaces, and obtained some new characterizations of non-negative Lipschitz functions. And Guliyev [12] recently gave necessary and sufficient conditions for the boundedness of the fractional maximal commutators in the Orlicz spaces $L^\Phi(G)$ on stratified Lie group G when b belongs to $\text{BMO}(G)$ spaces, and obtained some new characterizations for certain subclasses of $\text{BMO}(G)$ spaces.

Inspired by the above literature, the purpose of this paper is to study the boundedness of the Hardy-Littlewood maximal commutator M_b and the nonlinear commutator $[b, M]$ in the Lebesgue spaces and Morrey spaces on some stratified Lie group G when $b \in \Lambda_\beta(G)$, by which some new characterizations of the Lipschitz spaces are given.

Let $f \in L^1_{\text{loc}}(G)$, the Hardy–Littlewood maximal function M is given by

$$M(f)(x) = \sup_{B \ni x} |B|^{-1} \int_B |f(y)|dy$$
where the supremum is taken over all balls $B \subset \mathbb{G}$ containing x, and $|B|$ is the Haar measure of the \mathbb{G}-ball B. And the maximal commutator M_b generated by the operator M and a locally integrable function b is defined by

$$M_b(f)(x) = \sup_{B \ni x} |B|^{-1} \int_B |b(x) - b(y)||f(y)|dy.$$

On the other hand, similar to (1.1), we can define the (nonlinear) commutator of the Hardy-Littlewood maximal function M with a locally integrable function b is defined by

$$[b, M](f)(x) = b(x)M(f)(x) - M(bf)(x).$$

Note that operators M_b and $[b, M]$ essentially differ from each other. For example, M_b is positive and sublinear, but $[b, M]$ is neither positive nor sublinear.

The first part of this paper is to study the boundedness of M_b when the symbol b belongs to a Lipschitz space. Some characterizations of the Lipschitz space via such commutator are given.

Theorem 1.1. Let b be a locally integrable function and $0 < \beta < 1$. Then the following statements are equivalent:

1. $b \in \dot{\Lambda}_\beta(\mathbb{G})$.
2. M_b is bounded from $L^p(\mathbb{G})$ to $L^q(\mathbb{G})$ for all p, q with $1 < p < Q/\beta$ and $1/q = 1/p - \beta/Q$.
3. M_b is bounded from $L^p(\mathbb{G})$ to $L^q(\mathbb{G})$ for some p, q with $1 < p < Q/\beta$ and $1/q = 1/p - \beta/Q$.
4. M_b satisfies the weak-type $(1, Q/(Q - \beta))$ estimates, namely, there exists a positive constant C such that

$$\left|\{ x \in \mathbb{G} : M_b(f)(x) > \lambda \} \right| \leq C \left(\lambda^{-1}\|f\|_{L^1(\mathbb{G})}\right)^{Q/(Q - \beta)} \quad (1.2)$$

holds for all $\lambda > 0$.

Theorem 1.2. Let b be a locally integrable function and $0 < \beta < 1$. Suppose that $1 < p < Q/\beta$, $0 < \lambda < Q - \beta p$.

1. If $1/q = 1/p - \beta/(Q - \lambda)$. Then $b \in \dot{\Lambda}_\beta(\mathbb{G})$ if and only if M_b is bounded from $L^{p,\lambda}(\mathbb{G})$ to $L^{q,\lambda}(\mathbb{G})$.
2. If $1/q = 1/p - \beta/Q$ and $\lambda/p = \mu/q$. Then $b \in \dot{\Lambda}_\beta(\mathbb{G})$ if and only if M_b is bounded from $L^{p,\lambda}(\mathbb{G})$ to $L^{q,\mu}(\mathbb{G})$.

The second part of this paper aims to study the mapping properties of the (nonlinear) commutator $[b, M]$ when b belongs to some Lipschitz space. To state our results, we recall the definition of the maximal operator with respect to a ball. For a fixed ball B_0, the Hardy-Littlewood maximal function with
respect to B_0 of a function f is given by

$$M_{B_0}(f)(x) = \sup_{B_0 \supseteq B \ni x} |B|^{-1} \int_B |f(y)|dy,$$

where the supremum is taken over all the balls B with $B \subseteq B_0$ and $x \in B$.

Theorem 1.3. Let b be a locally integrable function and $0 < \beta < 1$. Suppose that $1 < p < Q/\beta$ and $1/q = 1/p - \beta/Q$. Then the following statements are equivalent:

1. $b \in \dot{\Lambda}_\beta(G)$ and $b \geq 0$.
2. $[b, M]$ is bounded from $L^p(G)$ to $L^q(G)$.
3. There exists a constant $C > 0$ such that

$$\sup_{B \ni x} |B|^{-\beta/Q} \left(|B|^{-1} \int_B |b(x) - M_B(b)(x)|^q dx\right)^{1/q} \leq C.$$(1.3)

Theorem 1.4. Let b be a locally integrable function and $0 < \beta < 1$. Suppose that $1 < p < Q/\beta$, $0 < \lambda < Q - \beta p$ and $1/q = 1/p - \beta/(Q - \lambda)$. Then the following statements are equivalent:

1. $b \in \Lambda_\beta(G)$ and $b \geq 0$.
2. $[b, M]$ is bounded from $L^{p, \lambda}(G)$ to $L^{q, \lambda}(G)$.

Theorem 1.5. Let b be a locally integrable function and $0 < \beta < 1$. Suppose that $1 < p < Q/\beta$, $0 < \lambda < Q - \beta p$, $1/q = 1/p - \beta/Q$ and $\lambda/p = \mu/q$. Then the following statements are equivalent:

1. $b \in \dot{\Lambda}_\beta(G)$ and $b \geq 0$.
2. $[b, M]$ is bounded from $L^{p, \lambda}(G)$ to $L^{q, \mu}(G)$.

This paper is organized as follows. In the next section, we recall some basic definitions and known results. In Section 3, we will prove Theorems 1.1 and 1.2. Section 4 is devoted to proving Theorems 1.3 to 1.5.

Throughout this paper, the letter C always stands for a constant independent of the main parameters involved and whose value may differ from line to line.

2 Preliminaries and lemmas

2.1 Lie group G

To prove the main results of this paper, we first recall some necessary notions and remarks. Firstly, we recall some preliminaries concerning stratified Lie groups (or so-called Carnot groups). We refer the reader to [3, 10, 27].
Definition 2.1. We say that a Lie algebra G is stratified if there is a direct sum vector space decomposition
\[G = \bigoplus_{j=1}^{m} V_j = V_1 \oplus \cdots \oplus V_m \] (2.1)
such that G is nilpotent of step m if m is the smallest integer for which all Lie brackets (or iterated commutators) of order $m + 1$ are zero, that is,
\[
[V_1, V_j] = \begin{cases} V_{j+1}, & 1 \leq j \leq m - 1 \\ 0, & j \geq m \end{cases}
\]
holds.

It is not difficult to find that the above V_1 generates the whole of the Lie algebra G by taking Lie brackets.

Remark 1. [33] Let $G = G_1 \supset G_2 \supset \cdots \supset G_{m+1} = \{0\}$ denote the lower central series of G, and $\{X_1, \ldots, X_N\}$ be a basis for V_1 of G.

(i) The direct sum decomposition (2.1) can be constructed by identifying each G_j as a vector subspace of G and setting $V_m = G_m$ and $V_j = G_j \setminus G_{j+1}$ for $j = 1, \ldots, m - 1$.

(ii) The dimension of G at infinity as the integer Q is given by
\[Q = \sum_{j=1}^{m} j \dim(V_j) = \sum_{j=1}^{m} \dim(G_j). \]

Definition 2.2. A Lie group G is said to be stratified when it is a connected simply-connected Lie group and its Lie algebra G is stratified.

If G is stratified, then its Lie algebra G admits a canonical family of dilations $\{\delta_r\}$, namely, for $r > 0$, $X_k \in V_k$ ($k = 1, \ldots, m$),
\[
\delta_r \left(\sum_{k=1}^{m} X_k \right) = \sum_{k=1}^{m} r^k X_k,
\]
which are Lie algebra automorphisms.

By the Baker-Campbell-Hausdorff formula for sufficiently small elements X and Y of G one has
\[
\exp X \exp Y = \exp H(X, Y) = X + Y + \frac{1}{2} [X, Y] + \cdots
\]
where $\exp : G \to G$ is the exponential map, $H(X, Y)$ is an infinite linear combination of X and Y and their Lie brackets, and the dots denote terms of order higher than two.
The following properties can be found in [26](see Proposition 1.1.1, or Proposition 2.1 in [29] or Proposition 1.2 in [10]).

Proposition 2.1. Let G be a nilpotent Lie algebra, and let G be the corresponding connected and simply-connected nilpotent Lie group. Then we have

1. The exponential map $\exp : G \to G$ is a diffeomorphism. Furthermore, the group law $(x, y) \mapsto xy$ is a polynomial map if G is identified with G via \exp.

2. If λ is a Lebesgue measure on G, then $\exp \lambda$ is a bi-invariant Haar measure on G (or a bi-invariant Haar measure dx on G is just the lift of Lebesgue measure on G via \exp).

Notations:

- y^{-1} represents the inverse of $y \in G$,
- $y^{-1}x$ stands for the group multiplication of y^{-1} by x,
- Let the group identity element of G be referred to as the origin denotes by e,
- χ_E denotes a characteristic function of a measurable set E of G,
- $L^p (1 \leq p \leq \infty)$ denotes the standard L^p-space with respect to the Haar measure dx, with the L^p-norm $\| \cdot \|_p$.

A homogenous norm on G is a continuous function $x \mapsto \rho(x)$ from G to $[0, \infty)$, which is C^∞ on $G \setminus \{0\}$ and satisfies

$$
\begin{cases}
\rho(x^{-1}) = \rho(x), \\
\rho(\delta t x) = t \rho(x) \text{ for all } x \in G \text{ and } t > 0, \\
\rho(e) = 0.
\end{cases}
$$

Moreover, there exists a constant $c_0 \geq 1$ such that $\rho(xy) \leq c_0 (\rho(x) + \rho(y))$ for all $x, y \in G$.

With the norm above, we define the G ball centered at x with radius r by $B(x, r) = \{ y \in G : \rho(y^{-1}x) < r \}$, and by λB denote the ball $B(x, \lambda r)$ with $\lambda > 0$, let $B_r = B(e, r) = \{ y \in G : \rho(y) < r \}$ be the open ball centered at e with radius r, which is the image under δ_r of $B(e, 1)$. And by $^c B(x, r) = G \setminus B(x, r) = \{ y \in G : \rho(y^{-1}x) \geq r \}$ denote the complement of $B(x, r)$. Let $|B(x, r)|$ be the Haar measure of the ball $B(x, r) \subset G$, and there exists $c_1 = c_1(G)$ such that

$$
|B(x, r)| = c_1 r^Q, \quad x \in G, r > 0.
$$

The most basic partial differential operator in a stratified Lie group is the sub-Laplacian associated with X is the second-order partial differential operator
on \mathbb{G} given by

$$\mathcal{L} = \sum_{i=1}^{n} X_i^2.$$

2.2 Maximal function

Let $0 \leq \alpha < Q$ and $f : \mathbb{G} \to \mathbb{R}$ is a locally integrable function. The fractional maximal function is defined by

$$M_{\alpha}(f)(x) = \sup_{B \ni x} \frac{1}{|B|^{1-\alpha/Q}} \int_B |f(y)| dy,$$

where the supremum is taken over all balls $B \subset \mathbb{G}$ containing x.

The fractional maximal function $M_{\alpha}(f)$ coincides for $\alpha = 0$ with the Hardy-Littlewood maximal function $M(f)(x) \equiv M_0(f)(x)$.

The following propositions can be found in [16].

Proposition 2.2. Let $0 \leq \alpha < Q$ and $1 < p < \gamma^{-1} = \frac{Q}{\alpha}$ with $\frac{1}{q} = \frac{1}{p} - \frac{\alpha}{Q}$. Then the following two conditions are equivalent:

1. There is a constant $C > 0$ such that for any $f \in L^p_\omega(\mathbb{G})$ the inequality

$$\left(\int_{\mathbb{G}} \left(M_{\gamma}(f \omega^{\gamma})(x) \right)^q \omega(x) dx \right)^{1/q} \leq C \left(\int_{\mathbb{G}} |f(x)|^p \omega(x) dx \right)^{1/p}$$

holds.

2. $\omega \in A_{1+q/p'}(\mathbb{G})$, $p' = \frac{p}{p-q}$.

Proposition 2.3. Let $0 < \alpha < Q$, $\gamma = \alpha/Q$, $q = (1 - \gamma)^{-1}$, and $f \in L^q(\mathbb{G})$. Then the following two conditions are equivalent:

1. $\omega \{x \in \mathbb{G} : M_{\gamma}(f \omega^{\gamma})(x) > \lambda \} \leq C \lambda^{-q} \left(\int_{\mathbb{G}} |f(x)| dx \right)^q$

with a constant $C > 0$ independent of f and $\lambda > 0$.

2. $\omega \in A_1(\mathbb{G})$.

The following strong and weak-type boundedness of M_{α} can be obtained from Propositions 2.2 and 2.3 when the weight $\omega = 1$, see Kokilashvili and Kufner [16] for more details. And the first part can also be obtained from Bernardis and Salinas [2].

Lemma 2.1. Let $0 < \alpha < Q$, $1 \leq p \leq Q/\alpha$ with $1/q = 1/p - \alpha/Q$, and $f \in L^p(\mathbb{G})$.

(1) If $1 < p < \frac{Q}{\alpha}$, then there exists a positive constant C such that
\[
\|M_\alpha(f)\|_{L^q(G)} \leq C\|f\|_{L^p(G)}
\]
(2) If $p = 1$, then there exists a positive constant C such that
\[
|\{x \in G : M_\alpha(f)(x) > \lambda\}| \leq C(\lambda^{-1}\|f\|_{L^1(G)})^{Q/(Q-\alpha)}
\]
holds for all $\lambda > 0$.

2.3 Lipschitz spaces on G

Next we give the definition of the Lipschitz spaces on G, and state some basic properties and useful lemmas.

Definition 2.3 (Lipschitz-type spaces on G).

(1) Let $0 < \beta < 1$, we say a function b belongs to the Lipschitz space $\dot{\Lambda}_\beta(G)$ if there exists a constant $C > 0$ such that for all $x, y \in G$,
\[
|b(x) - b(y)| \leq C(\rho(y^{-1}x))^{\beta},
\]
where ρ is the homogenous norm. The smallest such constant C is called the $\dot{\Lambda}_\beta$ norm of b and is denoted by $\|b\|_{\dot{\Lambda}_\beta(G)}$.

(2) (see Macías and Segovia [19]) Let $0 < \beta < 1$ and $1 \leq p < \infty$. The space $\text{Lip}_{\beta,p}(G)$ is defined to be the set of all locally integrable functions b, i.e., there exists a positive constant C, such that
\[
\sup_{B \ni x} \frac{1}{|B|^\beta/Q} \left(\frac{1}{|B|} \int_B |b(x) - b_B|^p dx\right)^{1/p} \leq C,
\]
where the supremum is taken over every ball $B \subset G$ containing x and $b_B = \frac{1}{|B|} \int_B b(x) dx$. The least constant C satisfying the conditions above shall be denoted by $\|b\|_{\text{Lip}_{\beta,p}(G)}$.

(3) (see Macías and Segovia [19]) Let $0 < \beta < 1$. When $p = \infty$, we shall say that a locally integrable functions b belongs to $\text{Lip}_{\beta,\infty}(G)$ if there exists a constant C such that
\[
\text{ess sup}_{x \in B} \frac{|b(x) - b_B|}{|B|^\beta/Q} \leq C
\]
holds for every ball $B \subset G$ with $b_B = \frac{1}{|B|} \int_B b(x) dx$. And $\|b\|_{\text{Lip}_{\beta,\infty}(G)}$ stand for the least constant C satisfying the conditions above.

Remark 2. (i) Similar to the definition of Lipschitz space $\dot{\Lambda}_\beta(G)$ in (1), we also have the definition form as following (see Chen and Liu [5], Fan and
Xu [9], Krantz [17] et al.)

\[\|b\|_{\hat{\Lambda}_\beta(G)} = \sup_{x, y \in G, \, y \neq e} \frac{|b(xy) - b(x)|}{(\rho(y))^{\beta}} = \sup_{x, y \in G, \, x \neq y} \frac{|b(x) - b(y)|}{(\rho(y^{-1}x))^{\beta}}. \]

And \(\|b\|_{\hat{\Lambda}_\beta(G)} = 0 \) if and only if \(b \) is constant.

(ii) In (2), when \(p = 1 \), we have

\[\|b\|_{\text{Lip}_{\beta, 1}(G)} = \sup_{B \ni x} \frac{1}{|B|^{\beta/Q}} \left(\frac{1}{|B|} \int_B |b(x) - b_B| \, dx \right) := \|b\|_{\text{Lip}_\beta(G)}. \]

(iii) There are two basically different approaches to Lipschitz classes on the n-dimensional Euclidean space. Lipschitz classes can be defined via Poisson (or Weierstrass) integrals of \(L^p \)-functions, or, equivalently, by means of higher order difference operators (see Meda and Pini [20]).

Lemma 2.2. (see [5, 18, 19]) Let \(0 < \beta < 1 \) and the function \(b(x) \) integrable on bounded subsets of \(G \).

1. When \(1 \leq p < \infty \), then

\[\|b\|_{\hat{\Lambda}_\beta(G)} = \|b\|_{\text{Lip}_\beta(G)} \approx \|b\|_{\text{Lip}_{\beta, p}(G)}. \]

2. Let balls \(B_1 \subset B_2 \subset G \) and \(b \in \text{Lip}_{\beta, p}(G) \) with \(p \in [1, \infty] \). Then there exists a constant \(C \) depends on \(B_1 \) and \(B_2 \) only, such that

\[|b_{B_1} - b_{B_2}| \leq C\|b\|_{\text{Lip}_{\beta, p}(G)} |B_2|^{\beta/Q}. \]

3. When \(1 \leq p < \infty \), then there exists a constant \(C \) depends on \(\beta \) and \(p \) only, such that

\[|b(x) - b(y)| \leq C\|b\|_{\text{Lip}_{\beta, p}(G)} |B|^{\beta/Q} \]

holds for any ball \(B \) containing \(x \) and \(y \).

2.4 Morrey spaces on \(G \)

Morrey spaces were originally introduced by Morrey in [22] to study the local behavior of solutions to second-order elliptic partial differential equations.

Definition 2.4 (Morrey-type spaces on \(G[8] \)).

1. Let \(1 \leq p < \infty \) and \(0 \leq \lambda \leq Q \). The Morrey-type spaces \(L^{p, \lambda}(G) \) is defined by

\[L^{p, \lambda}(G) = \{ f \in L^p_{\text{loc}}(G) : \|f\|_{L^{p, \lambda}(G)} < \infty \}. \]
\[\|f\|_{L^p,\lambda(G)} = \sup_{B \ni x, B \subset G} \left(\frac{1}{|B|^{\lambda/Q}} \int_B |f(y)|^p \, dy \right)^{1/p}, \]

where the supremum is taken over every ball \(B \subset G \) containing \(x \).

(2) Let \(1 \leq p < \infty \) and \(\varphi(x, r) \) be a positive measurable function on \(G \times (0, \infty) \). The generalized Morrey space \(L^{p,\varphi}(G) \) is defined for all functions \(f \in L^p_{\text{loc}}(G) \) by the finite norm
\[\|f\|_{L^{p,\varphi}(G)} = \sup_{B \ni x, B \subset G} \frac{1}{\varphi(x, r)} \left(\frac{1}{|B|^{\lambda/Q}} \int_B |f(y)|^p \, dy \right)^{1/p}, \]

where the supremum is taken over every ball \(B \subset G \) containing \(x \).

Remark 3 (Guliyev [14]). (i) It is well known that if \(1 \leq p < \infty \) then
\[L^{p,\lambda}(G) = \begin{cases} L^p(G) & \text{if } \lambda = 0, \\ L^\infty(G) & \text{if } \lambda = Q, \\ \Theta & \text{if } \lambda < 0 \text{ or } \lambda > Q, \end{cases} \]

where \(\Theta \) is the set of all functions equivalent to 0 on \(G \).

(ii) In (2), when \(1 \leq p < \infty \) and \(0 \leq \lambda \leq Q \), we have \(L^{p,\varphi}(G) = L^{p,\lambda}(G) \) if \(\varphi(x, r) = |B|^{(\lambda/Q-1)/p} \) and \(B \subset G \) denotes the ball with radius \(r \) and containing \(x \).

We now recall the result on the boundedness of the fractional maximal operator in the generalised Morrey spaces, which can be found in [13] (theorem 3.2 and 3.3, see also [23]).

Proposition 2.4 (Spanne-type). Let \(1 \leq p < \infty \), \(0 \leq \alpha < \frac{Q}{p} \), \(\frac{1}{q} = \frac{1}{p} - \frac{\alpha}{Q} \) and \((\varphi_1, \varphi_2) \) satisfy the condition
\[\sup_{r < t < \infty} t^{\alpha-Q/p} \inf_{t < s < \infty} \varphi_1(x, s)s^{Q/p} \leq C \varphi_2(x, r), \]

where \(C > 0 \) does not depend on \(r \) and \(x \in G \).

(1) Then, for \(1 < p < \infty \) and any \(f \in L^{p,\varphi_1}(G) \), there exists some positive constant \(C \) such that
\[\|M_\alpha f\|_{L^{q,\varphi_2}(G)} \leq C\|f\|_{L^{p,\varphi_1}(G)}. \]

(2) Then, for \(p = 1 \) and any \(f \in L^{1,\varphi_1}(G) \), there exists some positive constant \(C \) such that
\[\|M_\alpha f\|_{W^{q,\varphi_2}(G)} \leq C\|f\|_{L^{1,\varphi_1}(G)}. \]
In the case \(\alpha = 0 \) and \(p = q \), the conclusions of Proposition 2.4 are also valid.

Proposition 2.5 (Adams-type). Let \(1 \leq p < q < \infty \), \(0 < \alpha < \frac{Q}{p} \), and let \(\varphi(x, \tau) \) satisfy the condition

\[
\sup_{r < t < \infty} t^{-Q} \inf_{t < s < \infty} \varphi(x, s)s^Q \leq C \varphi(x, r)
\]

and

\[
\sup_{r < t < \infty} t^\alpha \varphi(x, \tau)^{1/p} \leq C r^{-\alpha p/(q-p)},
\]

where \(C > 0 \) does not depend on \(r \) and \(x \in G \).

1. Then, for \(1 < p < \infty \) and any \(f \in \mathcal{L}^{p, \varphi^{1/p}}(G) \), there exists some positive constant \(C \) such that

\[
\|M_\alpha f\|_{\mathcal{L}^{q, \varphi^{1/q}}(G)} \leq C\|f\|_{\mathcal{L}^{p, \varphi^{1/p}}(G)}.
\]

2. Then, for \(p = 1 \) and any \(f \in \mathcal{L}^{1, \varphi^{1/p}}(G) \), there exists some positive constant \(C \) such that

\[
\|M_\alpha f\|_{W^{1, q}_{\mathcal{L}^{q, \varphi^{1/q}}}(G)} \leq C\|f\|_{\mathcal{L}^{1, \varphi}(G)}
\]

When \(\varphi_1(x, r) = |B|^{(\lambda/Q-1)/p} = c_1 r^{Q(\lambda/Q-1)/p} \) and \(\varphi_2(x, r) = |B|^{(\mu/Q-1)/q} = c_2 r^{Q(\mu/Q-1)/q} \), we can summarize the results as follows from Propositions 2.4 and 2.5 (see also Corollary 3.3 in [13]).

Lemma 2.3. Let \(0 < \alpha < Q \), \(1 < p < Q/\alpha \) and \(0 < \lambda < Q - \alpha p \).

1. If \(1/q = 1/p - \alpha/(Q - \lambda) \), then there exists a positive constant \(C \) such that

\[
\|M_\alpha f\|_{L^{q, \lambda}(G)} \leq C\|f\|_{L^{p, \lambda}(G)}
\]

for every \(f \in L^{p, \lambda}(G) \).

2. If \(1/q = 1/p - \alpha/Q \) and \(\lambda/p = \mu/q \). Then there exists a positive constant \(C \) such that

\[
\|M_\alpha f\|_{L^{q, \mu}(G)} \leq C\|f\|_{L^{p, \lambda}(G)}
\]

for every \(f \in L^{p, \lambda}(G) \).

3 Proofs of Theorems 1.1 and 1.2

We now give the proof of the main results. First, we prove Theorem 1.1.
Proof of Theorem 1.1 If $b \in \mathring{\Lambda}_\beta(G)$, then, using (1) in Definition 2.3, we have

$$M_b(f)(x) = \sup_{B \ni x} \left| B \right|^{-1} \int_B |b(x) - b(y)||f(y)|dy$$

$$\leq C\|b\|_{\mathring{\Lambda}_\beta(G)} \sup_{B \ni x} \left| B \right|^{-1} \int_B |\rho(y^{-1}x)|^\beta\|f(y)\|dy$$

$$\leq C\|b\|_{\mathring{\Lambda}_\beta(G)} \sup_{B \ni x} \frac{1}{\left| B \right|^{1-\beta/Q}} \int_B |f(y)|dy$$

$$\leq C\|b\|_{\mathring{\Lambda}_\beta(G)} M_b(f)(x).$$

(3) follows from Lemma 2.1 and above estimate.

(3) \implies (1): Suppose M_b is bounded from $L^p(G)$ to $L^q(G)$ for some p, q with $1 < p < Q/\beta$ and $1/q = 1/p - \beta/Q$. For any ball $B \subset G$ containing x, using the Hölder’s inequality and noting that $1/p + 1/q' = 1 + \beta/Q$, one obtains

$$\frac{1}{\left| B \right|^{1+\beta/Q}} \int_B |b(x) - b_B|dx \leq \frac{1}{\left| B \right|^{1+\beta/Q}} \int_B \left(\frac{1}{\left| B \right|} \int_B |b(x) - b(y)|dy \right)dx$$

$$= \frac{1}{\left| B \right|^{1+\beta/Q}} \int_B \left(\frac{1}{\left| B \right|} \int_B |b(x) - b(y)|\chi_B(y)dy \right)dx$$

$$\leq \frac{1}{\left| B \right|^{1+\beta/Q}} \int_B M_b(\chi_B)(x)dx$$

$$\leq \frac{1}{\left| B \right|^{1+\beta/Q}} \left(\int_B (M_b(\chi_B)(x))^q dx \right)^{1/q} \left(\int_B \chi_B(x)dx \right)^{1/q'}$$

$$\leq C \|\chi_B\|_{L^p(G)} \|\chi_B\|_{L^q(G)}$$

$$\leq C.$$

This together with Lemma 2.2 gives $b \in \mathring{\Lambda}_\beta(G)$.

(4) \implies (1): Assume M_b satisfies the weak-type $(1, Q/(Q - \beta))$ estimates and (1.2) is true. In order to verify $b \in \Lambda_\beta(G)$, for any fixed ball $B_0 \subset G$, since for any $x \in B_0$,

$$|b(x) - b_{B_0}| \leq \frac{1}{|B_0|} \int_{B_0} |b(x) - b(y)|dy,$$

then, for all $x \in B_0$,

$$M_b(\chi_{B_0})(x) = \sup_{B \ni x} \frac{1}{|B|} \int_B |b(x) - b(y)|\chi_{B_0}(y)dy$$

$$\geq \frac{1}{|B_0|} \int_{B_0} |b(x) - b(y)|\chi_{B_0}(y)dy$$

$$= \frac{1}{|B_0|} \int_{B_0} |b(x) - b(y)|dy$$

$$\geq |b(x) - b_{B_0}|.$$

Thus, combined with (1.2), we have

$$\left| \{x \in B_0 : |b(x) - b_{B_0}| > \lambda \} \right| \leq \left| \{x \in B_0 : M_b(\chi_{B_0})(x) > \lambda \} \right|$$

$$\leq C \left(\lambda^{-(1/\|\chi_{B_0}\|_{L^1(G)})} \right)^{Q/(Q - \beta)}$$
\[
\leq C \left(\lambda^{-1} |B_0| \right)^{Q/(Q-\beta)}.
\]

Set \(t > 0 \) be a constant to be determined later, then applying Fubini’s theorem, one get
\[
\int_{B_0} |b(x) - b_{B_0}| \, dx = \int_0^\infty |\{ x \in B_0 : |b(x) - b_{B_0}| > \lambda \}| \, d\lambda \\
= \int_0^t |\{ x \in B_0 : |b(x) - b_{B_0}| > \lambda \}| \, d\lambda \\
+ \int_t^\infty |\{ x \in B_0 : |b(x) - b_{B_0}| > \lambda \}| \, d\lambda \\
\leq t|B_0| + C \int_t^\infty (\lambda^{-1} |B_0|)^{Q/(Q-\beta)} \, d\lambda \\
\leq t|B_0| + C|B_0|^{Q/(Q-\beta)} \int_t^\infty \lambda^{-Q/(Q-\beta)} \, d\lambda \\
\leq C \left(t|B_0| + |B_0|^{Q/(Q-\beta)} t^{1-Q/(Q-\beta)} \right).
\]

Let \(t = |B_0|^{\beta/Q} \) in the above estimate, we get
\[
\int_{B_0} |b(x) - b_{B_0}| \, dx \leq C|B_0|^{1+\beta/Q}.
\]

It follows from Lemma 2.2 that \(b \in \dot{\Lambda}_\beta(G) \) since \(B_0 \) is an arbitrary ball in \(G \).

The proof of Theorem 1.1 is completed since \((2) \implies (1)\) follows from \((3) \implies (1)\). \(\square \)

Proof of Theorem 1.2 (1): We first prove that the necessary condition. Assume \(b \in \dot{\Lambda}_\beta(G) \), using (3.1) and Lemma 2.3, we obtain
\[
\| M_b(f) \|_{L^{q,\lambda}(G)} \leq C\| b \|_{\dot{\Lambda}_\beta(G)} \| M_{\beta f} \|_{L^{q,\lambda}(G)} \leq C\| b \|_{\dot{\Lambda}_\beta(G)} \| f \|_{L^{p,\lambda}(G)}.
\]

We now prove that the sufficient condition. If \(M_b \) is bounded from \(L^{p,\lambda}(G) \) to \(L^{q,\lambda}(G) \), then for any ball \(B \subset G \),
\[
|B|^{-\beta/Q} \left(|B|^{-1} \int_B |b(x) - b_B|^q \, dx \right)^{1/q} \leq |B|^{-\beta/Q} \left(|B|^{-1} \int_B (M_b(\chi_B)(x))^q \, dx \right)^{1/q} \\
\leq |B|^{-\beta/Q-1/q+\lambda/(Qq)} \| M_b(\chi_B) \|_{L^{q,\lambda}(G)} \\
\leq C |B|^{-\beta/Q-1/q+\lambda/(Qq)} \| \chi_B \|_{L^{p,\lambda}(G)} \\
\leq C,
\]
where in the last step we have used \(1/q = 1/p - \beta/(Q-\lambda) \) and the fact
\[
\| \chi_B \|_{L^{p,\lambda}(G)} \leq |B|^{(1-\lambda/Q)/p}.
\] (3.2)

It follows from Lemma 2.2 that \(b \in \dot{\Lambda}_\beta(G) \). This completes the proof.

(2): By a similar proof to (1) in Theorem 1.2, we can obtain the desired result. \(\square \)
4 Proofs of Theorems 1.3 to 1.5

Now, we prove Theorem 1.3.

Proof of Theorem 1.3 (1) \Rightarrow (2): For any fixed $x \in \mathcal{G}$ such that $M(f)(x) < \infty$, since $b \geq 0$ then

$$||b, M||_1 = |b(x) M(f)(x) - M(bf)(x)|$$

$$\leq \sup_{B \ni x} |B|^{-1} \int_B |b(x) - b(y)||f(y)|dy$$

$$= M_b(f)(x).$$

(3) \Rightarrow (2): For any fixed ball $B \subset \mathcal{G}$ and all $x \in B$, one have

$$M(\chi_B)(x) = \chi_B(x) \quad \text{and} \quad M(b \chi_B)(x) = M_B(b)(x).$$

Then

$$|B|^{-\beta/Q} \left(|B|^{-1} \int_B |b(x) - M_B(b)(x)|^q dx \right)^{1/q}$$

$$= |B|^{-\beta/Q} \left(|B|^{-1} \int_B ||b, M(\chi_B)(x)||^q dx \right)^{1/q}$$

$$\leq |B|^{-\beta/Q - 1/q} ||b, M(\chi_B)||_{L^q(\mathcal{G})}$$

$$\leq C |B|^{-\beta/Q - 1/q} ||\chi_B||_{L^p(\mathcal{G})} \leq C,$$

which implies (3) since the ball $B \subset \mathcal{G}$ is arbitrary.

(3) \Rightarrow (1): To prove $b \in \dot{A}_\beta(\mathcal{G})$, by Lemma 2.2, it suffices to verify that there is a constant $C > 0$ such that for all balls $B \subset \mathcal{G}$, one get

$$|B|^{-1 - \beta/Q} \int_B |b(x) - b_B| dx \leq C. \quad (4.3)$$

For any fixed ball $B \subset \mathcal{G}$, let $E = \{x \in B : b(x) \leq b_B\}$ and $F = \{x \in B : b(x) > b_B\}$. The following equality is trivially true (modifying the argument in [1], page 3331):

$$\int_E |b(x) - b_B| dx = \int_F |b(x) - b_B| dx.$$

Since for any $x \in E$ we have $b(x) \leq b_B \leq M_B(b)(x)$, then for any $x \in E$,

$$|b(x) - b_B| \leq |b(x) - M_B(b)(x)|.$$

Therefore

$$\frac{1}{|B|^{1 + \beta/Q}} \int_B |b(x) - b_B| dx = \frac{1}{|B|^{1 + \beta/Q}} \int_{E \cup F} |b(x) - b_B| dx$$

$$= \frac{2}{|B|^{1 + \beta/Q}} \int_E |b(x) - b_B| dx$$

$$\leq \frac{2}{|B|^{1 + \beta/Q}} \int_E |b(x) - M_B(b)(x)| dx$$

$$\leq \frac{2}{|B|^{1 + \beta/Q}} \int_B |b(x) - M_B(b)(x)| dx. \quad (4.4)$$
On the other hand, it follows from Hölder’s inequality and (1.3) that
\[
\frac{1}{|B|^{1+\beta/Q}} \int_B |b(x) - M_B(b)(x)|\,dx
\leq \frac{1}{|B|^{1+\beta/Q}} \left(\int_B |b(x) - M_B(b)(x)|^q\,dx \right)^{1/q} |B|^{1/q'}
\leq \frac{1}{|B|^\beta/Q} \left(|B|^{-1} \int_B |b(x) - M_B(b)(x)|^q\,dx \right)^{1/q}
\leq C.
\]
This together with (4.4) gives (4.3), and so we achieve \(b \in \dot{A}_\beta(G) \).

In order to prove \(b \geq 0 \), it suffices to show \(b^- = 0 \), where \(b^- = -\min\{b, 0\} \). Let \(b^+ = |b| - b^- \), then \(b = b^+ - b^- \). For any fixed ball \(B \subset G \), observe that
\[
0 \leq b^+(x) \leq |b(x)| \leq M_B(b)(x)
\]
for \(x \in B \) and thus we have that, for \(x \in B \),
\[
0 \leq b^-(x) \leq M_B(b)(x) - b^+(x) \leq M_B(b)(x) - b^+(x) + b^-(x) = M_B(b)(x) - b(x).
\]
Then, it follows from (1.3) that, for any ball \(B \subset G \),
\[
\frac{1}{|B|} \int_B b^-(x)\,dx \leq \frac{1}{|B|} \int_B |M_B(b)(x) - b(x)|\,dx
\leq \left(\frac{1}{|B|} \int_B |b(x) - M_B(b)(x)|^q\,dx \right)^{1/q}
= |B|^{\beta/Q} \left(\frac{1}{|B|^{\beta/Q}} \left(\frac{1}{|B|} \int_B |b(x) - M_B(b)(x)|^q\,dx \right)^{1/q} \right)
\leq C|B|^\beta/Q.
\]
Thus, \(b^- = 0 \) follows from Lebesgue’s differentiation theorem.

The proof of Theorem 1.3 is completed. \(\Box \)

Proof of Theorem 1.4 (1) \(\implies \) (2): We first prove that the necessary condition. Assume \(b \in \dot{A}_\beta(G) \) and \(b \geq 0 \). Using (4.1) and (1) in Theorem 1.2, it is not difficult to find that \([b, M]\) is bounded from \(L^{p,\lambda}(G) \) to \(L^{q,\lambda}(G) \).

(2) \(\implies \) (1): We now prove that the sufficient condition. Assume that \([b, M]\) is bounded from \(L^{p,\lambda}(G) \) to \(L^{q,\lambda}(G) \). Similarly to (4.2), for any ball \(B \subset G \), we obtain
\[
|B|^{-\beta/Q} \left(|B|^{-1} \int_B |b(x) - M_B(b)(x)|^q\,dx \right)^{1/q}
= |B|^{-\beta/Q} \left(|B|^{-1} \int_B ||[b, M](\chi_B)(x)||^q\,dx \right)^{1/q}
\leq |B|^{\lambda/(Qq) - \beta/Q - 1/q} \|[b, M](\chi_B)||_{L^{q,\lambda}(G)}
\leq C|B|^{\lambda/(Qq) - \beta/Q - 1/q} \|\chi_B||_{L^{q,\lambda}(G)} \leq C,
\]
where in the last step we have used \(1/q = 1/p - \beta/(Q - \lambda) \) and (3.2).

Using Theorem 1.3, we can obtain that \(b \in \dot{A}_\beta(G) \) and \(b \geq 0 \). \(\Box \)
Proof of Theorem 1.5 By the same way of the proof of Theorem 1.4, Theorem 1.5 can be proven. We omit the details.

Declarations

Acknowledgments. This work is supported partly by the National Natural Science Foundation of China (Grant No.11571160), Scientific Project-HLJ (No.2019-KYYWF-0909) and Youth Project-HLJ (No.2020YQ07).

Competing interests. The authors declare that they have no competing interests.

Data Availability Statement. My manuscript has no associate data.

Authors’ contributions. The first draft of the manuscript was written by Jianglong Wu and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

References

[1] Bastero J, Milman M, Ruiz F (2000) Commutators for the maximal and sharp functions. Proceedings of the American Mathematical Society 128(11):3329–3334

[2] Bernardis A, Salinas O (1994) Two-weight norm inequalities for the fractional maximal operator on spaces of homogeneous type. Studia Mathematica 108(3):201–207

[3] Bonfiglioli A, Lanconelli E, Uguzzoni F (2007) Stratified Lie groups and potential theory for their sub-Laplacians. Springer, Heidelberg

[4] Bramanti M, Cerutti MC (1995) Commutators of singular integrals and fractional integrals on homogeneous spaces. Contemporary Mathematics 189:81–81

[5] Chen Y, Liu L (2010) Lipschitz estimates for multilinear commutator of singular integral operators on spaces of homogeneous type. Miskolc Mathematical Notes 11(2):201–220

[6] Coifman RR, Rochberg R, Weiss G (1976) Factorization theorems for Hardy spaces in several variables. Annals of Mathematics 103(3):611–635

[7] Di Fazio G, Ragusa MA (1993) Interior estimates in Morrey spaces for strong solutions to nondivergence form equations with discontinuous coefficients. Journal of Functional Analysis 112(2):241–256
[8] Eroglu A, Guliyev VS, Azizov J (2017) Characterizations for the fractional integral operators in generalized Morrey spaces on Carnot groups. Mathematical Notes 102(5-6):722–734

[9] Fan D, Xu Z (1995) Characterization of Lipschitz spaces on compact Lie groups. Journal of the Australian Mathematical Society 58(2):200–209

[10] Folland GB, Stein EM (1982) Hardy spaces on homogeneous groups. (MN-28), Volume 28. Princeton University Press, Princeton

[11] Grafakos L (2009) Modern Fourier Analysis, Graduate Texts in Mathematics, vol 250, 2nd edn. Springer, 233 Spring Street, New York

[12] Guliyev V (2022) Some characterizations of BMO spaces via commutators in Orlicz spaces on stratified Lie groups. Results in Mathematics 77(1):1–18

[13] Guliyev V, Akbulut A, Mammadov Y (2013) Boundedness of fractional maximal operator and their higher order commutators in generalized Morrey spaces on Carnot groups. Acta Mathematica Scientia 33(5):1329–1346

[14] Guliyev VS (2020) Characterizations for the fractional maximal operator and its commutators in generalized weighted Morrey spaces on Carnot groups. Analysis and Mathematical Physics 10(2):1–20

[15] Janson S (1978) Mean oscillation and commutators of singular integral operators. Arkiv för Matematik 16(1):263–270

[16] Kokilashvili VM, Kufner A (1989) Fractional integrals on spaces of homogeneous type. Commentationes Mathematicae Universitatis Carolinae 30(3):511–523

[17] Krantz SG (1982) Lipschitz spaces on stratified groups. Transactions of the American Mathematical Society 269(1):39–66

[18] Li W, Xu C (2003) Lipschitz function spaces on spaces of homogeneous type. Acta Analysis Functionalis Applicata 5(4):369–373

[19] Macías R, Segovia C (1979) Lipschitz functions on spaces of homogeneous type. Advances in Mathematics 33(3):257–270

[20] Meda S, Pini R (1988) Lipschitz spaces on compact Lie groups. Monatshefte für Mathematik 105(3):177–191

[21] Milman M, Schonbek T (1990) Second order estimates in interpolation theory and applications. Proceedings of the American Mathematical Society 110(4):961–969
[22] Morrey CB (1938) On the solutions of quasi-linear elliptic partial differential equations. Transactions of the American Mathematical Society 43(1):126–166

[23] Nakai E (2006) The Campanato, Morrey and Hölder spaces on spaces of homogeneous type. Studia Mathematica 1(176):1–19

[24] Paluszyński M (1995) Characterization of the Besov spaces via the commutator operator of Coifman, Rochberg and Weiss. Indiana University Mathematics Journal 44(1):1–17

[25] Rios C (2003) The L^p Dirichlet problem and nondivergence harmonic measure. Transactions of the American Mathematical Society 355(2):665–687

[26] Ruzhansky M, Suragan D (2019) Hardy inequalities on homogeneous groups: 100 years of Hardy inequalities. Springer Nature

[27] Stein EM (1993) Harmonic Analysis: Real-variable Methods, Orthogonality, and Oscillatory Integrals. Monographs in harmonic analysis, Princeton University Press, Princeton

[28] Varopoulos NT, Saloff-Coste L, Coulhon T (2008) Analysis and geometry on groups. 100, Cambridge university press

[29] Yessirkegenov N (2019) Function spaces on Lie groups and applications. PhD thesis, Imperial College London, London

[30] Zhang P (2017) Characterization of Lipschitz spaces via commutators of the Hardy–Littlewood maximal function. Comptes Rendus Mathematique 355(3):336–344

[31] Zhang P, Wu J (2009) Commutators of the fractional maximal functions. Acta Mathematica Sinica 52(6):1235–1238

[32] Zhang P, Wu J, Sun J (2018) Commutators of some maximal functions with Lipschitz function on Orlicz spaces. Mediterranean Journal of Mathematics 15(6):216

[33] Zhu Yp, Li Df (2003) Herz spaces on nilpotent Lie groups and its applications. Chinese Quarterly Journal of Mathematics 18(1):74–81