Biochemical and Pathological Response of Prostate Cancer in a Patient with Metastatic Renal Cell Carcinoma on Sunitinib Treatment

Ik Chan Song1, Jae Sung Lim2, Hwan Jung Yun1, Samyong Kim1, Dae Young Kang3 and Hyo Jin Lee1

1Department of Internal Medicine, Daejeon Regional Cancer Center, Chungnam National University Hospital, 2Department of Urology, Daejeon Regional Cancer Center, Chungnam National University Hospital and 3Department of Pathology, Daejeon Regional Cancer Center, Chungnam National University Hospital, Daejeon, Korea

Received February 16, 2009; accepted August 2, 2009; published online September 22, 2009

Sunitinib is a small molecular inhibitor of tyrosine kinases and is used to treat advanced renal cell carcinoma and gastrointestinal stromal tumour after disease progression or intolerance to imatinib therapy. Here, we describe biochemical and pathological response of prostate cancer in a patient with metastatic renal cell carcinoma during sunitinib treatment. A 62-year-old man was referred to our hospital because of a mass in the scalp. He was diagnosed with left renal cell carcinoma with right renal and scalp metastases. In addition, synchronous prostate cancer involving less than one-half of the right lobe was found with a prostate-specific antigen (PSA) value of 23.4 ng/ml. Treatment was begun with sunitinib (50 mg daily, 4 weeks on and 2 weeks off). Regarding the prostate cancer, active monitoring was planned considering the far advanced renal cell carcinoma. Surprisingly, the PSA level was 3.4 ng/ml at week 6 and 0.2 ng/ml at week 12, and it subsequently remained normal. At the time of writing (cycle 6 of sunitinib therapy), the prostate nodule significantly decreased in size. Furthermore, a 12-core re-biopsy revealed pathological evidence of regression with sunitinib treatment, with control of his renal cell carcinoma.

Key words: prostate cancer — sunitinib — treatment outcome

INTRODUCTION

Sunitinib is an oral small molecular inhibitor of tyrosine kinases, including vascular endothelial growth factor receptor (VEGFR), platelet-derived growth factor receptor (PDGFR) and stem cell factor receptor (c-KIT), and has received approval from US FDA and European Agency for the treatment of advanced renal cell carcinoma and gastrointestinal stromal tumour after disease progression or intolerance to imatinib therapy. In addition, sunitinib has also demonstrated evidence of activity in other solid tumours (1). We describe our case of biochemical and pathological response of prostate cancer in a patient with metastatic renal cell carcinoma on sunitinib treatment, and we discuss the possible mechanism underlying the effects of sunitinib on prostate cancer.

CASE REPORT

In March 2008, a 62-year-old man was referred to our hospital because of a mass in the scalp that showed poorly differentiated carcinoma with diffuse infiltrative growth, cellular pleomorphism and abundant clear cytoplasm on biopsy (Fig. 1). The patient had been well until 3 months before admission, when he noticed the scalp mass and developed abdominal discomfort with weight loss. Examination revealed an erythematous scalp mass in the left parietal area and costovertebral angle tenderness on the left side. The laboratory results were normal, except for an increased prostate-specific antigen (PSA) of 23.4 ng/ml (reference 0–2.5 ng/ml), which had been checked for screening purposes considering his age. The digital rectal examination revealed a palpable lesion involving less than one-half of the right lobe of the prostate (cT2a). Transrectal ultrasound showed a hypo-echoic nodule in the right lobe (Fig. 2a). An adenocarcinoma was diagnosed after transrectal biopsy, with a
Gleason score of \(4 + 4 = 8\). Computed tomography (CT) of the abdomen revealed an \(8.2 \times 4.9\) cm mass in the left kidney, which had invaded beyond Gerota’s fascia. Another mass, \(1.7\) cm in diameter, was present in the left adrenal gland. There were multiple small nodular lesions in the right kidney. Considering the pathological feature of the scalp mass and the abdominal CT findings, a diagnosis of left renal cell carcinoma with left adrenal, right renal and scalp metastases was made. He was placed in the intermediate risk group using the Memorial Sloan-Kettering Cancer Center (MSKCC) risk stratification model. Treatment was begun with sunitinib (50 mg daily, 4 weeks on and 2 weeks off). Regarding the prostate cancer, active monitoring was planned considering the far advanced renal cell carcinoma. He tolerated the sunitinib with manageable adverse events. Surprisingly, the PSA level was 3.4 ng/ml at week 6 and 0.2 ng/ml at week 12, and it subsequently remained normal. At the time of writing (cycle 6 of sunitinib therapy without reduction and interruption of dose), the prostate nodule significantly decreased in size as determined by digital rectal examination and transrectal ultrasound (Fig. 2b). Furthermore, a 12-core re-biopsy revealed pathological evidence of regression (Fig. 3) with sunitinib treatment, with partial response of his renal cell carcinoma (Fig. 4).

DISCUSSION

To our knowledge, this is the first published report of localized prostate cancer showing biochemical and pathological response with sunitinib treatment. Sunitinib has shown anti-angiogenic and anti-tumour activities in various solid xenograft models (1–3). In addition, sunitinib has recently been used to treat advanced renal cell carcinoma and gastrointestinal stromal tumours after disease progression or intolerance to imatinib therapy (4,5). Regarding the role of sunitinib in the treatment of prostate cancer, sunitinib alone or in combination with docetaxel inhibits the growth of
hormone-refractory prostate cancer cell xenografts (6,7). Furthermore, sunitinib in combination with docetaxel and prednisone showed promising preliminary efficacy with a response rate of 33% in patients with hormone-refractory prostate cancer and an overall PSA response rate of 55% (8), and sunitinib monotherapy showed modest clinical benefit in both chemonaive and docetaxel-resistant patients with castration-resistant prostate cancer (9). In addition, two Phase II trials of sorafenib, which is another oral multikinase inhibitor, showed the possibility of clinical benefit in patients with androgen-independent prostate cancer (10,11).

At present, there are no data in the literature on the in vivo use of sunitinib for androgen-dependent prostate cancer. Hormone-dependent prostate cancer patients are usually treated with surgery, radiation or hormonal therapy based on the extent of disease. However, the widespread use of each of these approaches has increased the short- and long-term adverse consequences with varying morbidity and mortality. The adverse effects of radical prostatectomy include immediate post-operative complications and long-term urinary and sexual complications, and radiation therapy in men with localized prostate cancer may lead to urinary, gastrointestinal and sexual complications, although improvements in surgical and radiation techniques have reduced the incidence of these complications. Hormone treatment, usually androgen-deprivation therapy, induces bone density loss and fracture, diabetes and cardiovascular disease. Therefore, various clinical trials have addressed strategies to prevent treatment-related side effects and improve the quality of life for men with prostate cancer (12,13). In view of these points, the biochemical and pathological response of localized prostate cancer with sunitinib treatment with manageable toxicity in our patient suggests a role for sunitinib in the treatment of androgen-dependent prostate cancer, although the mechanism underlying the effects of sunitinib on prostate cancers remains to be clarified. Various signalling pathways may be involved; the expression of PDGF and activation of the PDGFR are associated with the growth of prostate cancer cells, and there is strong evidence that VEGF is involved in the development of prostate cancer (14,15). In addition, VEGF levels are elevated and higher levels are associated with increased mortality in prostate cancer patients (16–18).
In vitro experiments have shown that imatinib inhibits tumour growth and angiogenesis by blocking the effects mediated by PDGF and VEGF (14,15). Furthermore, c-KIT and PDGFR are expressed in the testis and involved in testosterone production, and are inhibited by imatinib (19). Therefore, the possibility of a hormonal mechanism in the regression of prostate cancer cannot be excluded. We speculate that similar effects of sunitinib may induce the regression of prostate cancer in our patient, although further trials would be warranted to evaluate these potential benefits.

In conclusion, in our patient, sunitinib might have exerted its anti-tumour activity by inhibiting various signalling pathways and, possibly, through hormonal manipulation with favourable toxicities, suggesting its role in the treatment of androgen-dependent prostate cancer.

Conflict of interest statement
None declared.

References
1. Chow LQ, Eckhardt SG. Sunitinib: from rational design to clinical efficacy. J Clin Oncol 2007;25:884–96.
2. Kim DW, Jo YS, Jung HS, Chung HK, Song JH, Park KC, et al. An orally administered multitarget tyrosine kinase inhibitor, SU11248, is a novel potent inhibitor of thyroid oncogenic RET/papillary thyroid cancer kinases. J Clin Endocrinol Metab 2006;19:4070–6.
3. Abrams TJ, Lee LB, Murray LJ, Pryer NK, Cherrington JM. SU11248 inhibits KIT and platelet-derived growth factor receptor beta in preclinical models of human small cell lung cancer. Mol Cancer Ther 2003;2:471–8.
4. Motzer RJ, Hutson TE, Tomezak P, Michaelson MD, Bukowski RM, Rixe O, et al. Sunitinib versus interferon alfa in metastatic renal-cell carcinoma. N Engl J Med 2007;356:115–24.
5. George S. Sunitinib, a multitargeted tyrosine kinase inhibitor, in the management of gastrointestinal stromal tumor. Curr Oncol Rep 2007;9:323–7.
6. Guérin O, Formento P, Lo Negro C, Hofman P, Fischel JL, Etienne-Grimaldi MC, et al. Supra-additive antitumor effect of sunitinib malate (SU11248, Sutent®) combined with docetaxel. A new therapeutic perspective in hormone refractory prostate cancer. J Cancer Res Clin Oncol 2008;134:51–7.
7. Cifrasinski A, Tinari N, Rossi C, Lattanzio R, Natoli C, Piantelli M, et al. Sunitinib malate (SU-11248) alone or in combination with low-dose docetaxel inhibits the growth of DU-145 prostate cancer xenografts. Cancer Lett 2008;270:229–33.
8. George DJ, Liu G, Wilding G, Hutson TE, Chen I, Chow Maneval E, et al. Sunitinib in combination with docetaxel and prednisone in patients with metastatic hormone-refractory prostate cancer (mHRPC)—preliminary results. J Clin Oncol 2008;26(20 May Suppl); abstr 5131.
9. Dorr Michaelson M, Regan MM, Oh WK, Kaufman DS, Olivier K, Michaelson SZ, et al. Phase II study of sunitinib in men with advanced prostate cancer. Ann Oncol 2009;20:913–20.
10. Dahut WL, Scripture C, Posadas E, Jain L, Gulley JL, Arlen PM, et al. A phase II clinical trial of sorafenib in androgen-independent prostate cancer. Clin Cancer Res 2008;14:209–14.
11. Chi KW, Ellard SL, Hotte SJ, Czyzykowski P, Moore M, Ruether JD, et al. A phase II study of sorafenib in patients with chemo-naive castration-resistant prostate cancer. Ann Oncol 2008;19:746–51.
12. Damber JE, Aus G. Prostate cancer. Lancet 2008;371:1710–21.
13. Michaelson MD, Cotter SE, Gargollo PC, Zietman AL, Dahl DM, Smith MR. Management of complications of prostate cancer treatment. CA Cancer J Clin 2008;58:196–213.
14. Uehara H, Kim SJ, Karashima T, Shepherd DL, Fan D, Tsan R, et al. Effects of blocking platelet-derived growth factor-receptor signaling in a mouse model of experimental prostate cancer bone metastases. J Natl Cancer Inst 2003;95:458–70.
15. George DJ. Receptor tyrosine kinases as rational targets for prostate cancer treatment: platelet-derived growth factor receptor and imatinib mesylate. Urology 2002;60(Suppl 1):115–21.
16. George DJ, Regan MM, Oh WK, Tay MH, Manola J, Decalo N, et al. Radical prostatectomy lowers blood vessel endothelial growth factor levels in patients with prostate cancer. Urology 2004;63:327–32.
17. Kohli M, Kaushal V, Spencer HJ, Mehta P. Prospective study of circulating angiogenic markers in prostate-specific antigen (PSA)-stable and PSA-progressive hormone-sensitive advanced prostate cancer. Urology 2003;61:765–9.
18. Shariat SF, Anwuri VA, Lamb DJ, Shah NV, Wheeler TM, Slawin KM. Association of preoperative plasma levels of vascular endothelial growth factor and soluble vascular cell adhesion molecule-1 with lymph node status and biochemical progression after radical prostatectomy. J Clin Oncol 2004;22:1655–63.
19. Gambacorti-Passerini C, Tornaghi L, Cavagnini F, Rossi P, Pecori-Giraldi F, Mariani L, et al. Gynaecomastia in men with chronic myeloid leukaemia after imatinib. Lancet 2003;361:1954–6.