LIVER CANCER

Augmentation of tumor necrosis factor family-induced apoptosis by E3330 in human hepatocellular carcinoma cell lines via inhibition of NFκB

Yukiko Saitou, Katsuya Shiraki, Takenari Yamanaka, Kazumi Miyashita, Tomoko Inoue, Yutaka Yamanaka, Yumi Yamaguchi, Naoyuki Enokimura, Norihiko Yamamoto, Keiichi Itou, Kazushi Sugimoto, Takeshi Nakano

Yukiko Saitou, Katsuya Shiraki, Takenari Yamanaka, Kazumi Miyashita, Tomoko Inoue, Yutaka Yamanaka, Yumi Yamaguchi, Naoyuki Enokimura, Norihiko Yamamoto, Keiichi Itou, Kazushi Sugimoto, Takeshi Nakano

Abstract

AIM: To investigate the reduction of cell viability in human hepatocellular carcinoma (HCC) cell lines induced by inhibition of nuclear factor κB (NFκB).

METHODS: HLE, SKHep1, and HepG2 were incubated and E3330 was used to compare the stimulation of some chemotherapeutic drugs with that of TNF family, Fas ligand, TNFα, and TNF-related apoptosis-inducing ligand (TRAIL) at the point of the reduction of cell viability by inhibiting NFκB.

RESULTS: E3330 decreased NFκB levels in HLE cells stimulated by TNF and TRAIL. The cytotoxicity of the combination of TRAIL, TNFα, Fas ligand, and E3330 increased synergistically in a dose-dependent manner compared to either E3330 alone in all HCC cell lines by MTT assay. However, the combination of some chemotherapeutic drugs and E3330 did not decrease the cell viability.

CONCLUSION: Inhibition of NFκB sensitizes human HCC cell lines to TNF-mediated apoptosis including TRAIL, and TRAIL-based tumor therapy might be a powerful potential therapeutic tool in the treatment of human HCC.

© 2005 The WJG Press and Elsevier Inc. All rights reserved.

Key words: E3330; NFκB inhibitor; Cytotoxicity; TRAIL; TNFα; Fas ligand; Doxorubicin; Campototecin

Saitou Y, Shiraki K, Yamanaka T, Miyashita K, Inoue T, Yamanaka Y, Yamaguchi Y, Enokimura N, Yamamoto N, Itou K, Sugimoto K, Nakano T. Augmentation of tumor necrosis factor family-induced apoptosis by E3330 in human hepatocellular carcinoma cell lines via inhibition of NFκB. World J Gastroenterol 2005; 11(40): 6258-6261

http://www.wjgnet.com/1007-9327/11/6258.asp

INTRODUCTION

The process of apoptosis is fundamental in the developmental and homeostatic maintenance of complex biological systems[1,2]. Dysregulation or failure of normal apoptotic mechanisms contributes to the transformation of cells and provides a growth advantage to cancer cells[3]. TNF family members, such as TNFα and Fas ligand, play an important role in determining cell death or survival in a variety of human cells and transformed cells[3,4]. However, the potential use of systemically administered TNFα and Fas ligand is limited by their acute cytotoxic effects on normal tissues in vivo, thereby limiting their widespread use in the treatment of cancer[5,6]. In contrast, TNF-related apoptosis-inducing ligand (TRAIL) is able to kill a wide spectrum of tumor cells, and appears to be nontoxic to most normal cells[7].

Nuclear factor κB (NFκB) is an essential survival factor in many physiological conditions, such as embryonic liver development and liver regeneration[8]. In liver neoplasms, NFκB plays an important role in the resistance to TNF cytotoxicity and functional pathways including TNF receptor-associated factor 2[9].

Compound E3330 has a therapeutic effect in murine models of endotoxin-mediated hepatitis and in rats with galactosamine-induced hepatitis, presumably as a result of E3330 inhibition of TNFα generation[10,11,12]. E3330 inhibits NFκB DNA binding, most probably via an interaction with a nuclear factor that activates NFκB activity[13].

Previously we have demonstrated that incubation with TRAIL induces NFκB activation in hepatocellular carcinoma (HCC) cell lines, and the cells show strong resistance to TRAIL-induced apoptosis[15,16,17]. Therefore, we have investigated the reduction of cell viability induced by inhibition of NFκB using E3330 and some chemotherapeutic drugs or TNF family members, especially TRAIL.

MATERIALS AND METHODS

Reagents

E3330, a quinone derivative ((2E)-3-[5-(2,3-dimethoxy-6-methyl-1,4-benzoquinoyl)-2-propenoic acid), was a gift from...
Eisai Co., Ltd. E3330 could inhibit LPS-induced TNFα generation in human monocytes[28]. TNF-family members, TRAIL, TNFα, Fas ligand were obtained from MBL, Nagoya, Japan. Chemotherapeutic agents doxorubicin and camptotecin were obtained from Sigma.

HCC cell lines

The HLE cell line was purchased from the Health Science Research Resources Bank (Osaka, Japan). HepG2 and SKHeP1 cells were purchased from American Type Culture Collection (Rockville, MD, USA). Cells were cultured in Dulbecco’s modified Eagle’s medium (Dainippon Pharmaceutical Co., Ltd., Osaka, Japan) at 37 °C. All media were supplemented with 1% penicillin/streptomycin (GIBCO BRL) and 10% heat-inactivated fetal calf serum (GIBCO BRL).

NFκB luciferase reporter gene assay

The pNFKB-Luc vector (Mercury Pathway Profiling System) and the pCMV-IκBα vector were obtained from Clontech (San Diego, CA, USA). Human HCC cells (2×10³) were grown in six-well plates in triplicate the day before transfection. Cells were transfected using FuGENE 6 (Boehringer Mannheim) and incubated for 18 h at 37 °C. The medium was removed and cells were incubated in complete media for 24 h. Cells were stimulated with 20 ng/mL TRAIL (R&D Systems, Nagoya, Japan), 100 U/mL TNFα (Genzyme-Techne, Cambridge, MA, USA) for 24 h. Luciferase activity was determined from cell extracts using a luciferase assay system (Promega) and a luminometer (Berthold Analytical Instruments, Nashua, NH, USA). The results were presented as the fold induction above the luciferase activity found in cells without stimulation.

Detection of apoptosis

To assess the viability of human HCC cell lines, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay was performed. The cells were plated at a density of 5×10³ cells/well in 96-well microtiter plates and each plate was incubated for 24 h at 37 °C in 50 mL/L CO₂. HCC cell lines were treated with E3330 for 12 h and then with TRAIL (20 ng/mL), TNFα (100 U/mL), Fas ligand (500 ng/mL), doxorubicin (0.1 μg/mL) and/or camptotecin (0.1 μg/mL) for another 12 h. The live-cell count was assayed using a cell titer 96 assay kit (Promega, Madison, WI, USA) according to the manufacturer’s instructions. The absorbance of each sample was measured at 570 nm with a microtiter plate reader (Bio-Rad Laboratories, Hercules, CA, USA).

RESULTS

NFκB activation was induced by TNFα, TRAIL and E3330 in HLE cells. Because all human HCC cell lines showed strong resistance to TNFα- and TRAIL-mediated apoptosis, we investigated NFκB levels by NFκB luciferase reporter gene assay 12 h after NFκB inhibitor (E3330) application in HLE cell line. E3330 decreased NFκB levels in a dose-dependent manner in HLE cells stimulated by TNFα and TRAIL (Figure 1).

The cell viability was decreased by the combination of TRAIL, TNFα, Fas ligand, and E3330 in HCC cell lines. The effect of E3330 on apoptosis induced by TRAIL, TNFα and Fas ligand was examined because E3330 was shown to inhibit the activity of NFκB. We incubated human HCC cell lines with E3330 for 12 h, then combined E3330 with TNFα(100 U/mL), Fas ligand (500 ng/mL), or TRAIL (20 ng/mL), and examined the cell viability after 12 h by MTT assay. The cytotoxicity of the combination of TRAIL, TNFα, Fas ligand and E3330 increased synergistically in a dose-dependent manner compared to E3330 alone in all HCC cell lines (Figure 2).

Next, we investigated the cell viability of HCC cell lines inhibited by both chemotherapeutic agents and E3330. We incubated human HCC cell lines with E3330 for 12 h, then combined E3330 with doxorubicin (0.1 mg/mL) or camptotecin (0.1 mg/mL) for an additional 12 h and examined the cell viability after 12 h by MTT assay. Interestingly, doxorubicin and camptotecin had little effect on the reduction of cell viability in all HCC cell lines though they were used in combination with E3330 (Figure 2).

DISCUSSION

TRAIL can induce apoptosis by interaction with two receptors, TRAIL-R1 (DR4) and TRAIL-R2 (DR5)[19-24]. These receptors have a death domain that mediates cellular apoptosis. Two other receptors, known as TRAIL-R3 and TRAIL-R4, inhibit apoptosis by acting as decoy receptors because they do not contain the cytoplasmic death domain. These decoy receptors are highly expressed in normal tissues, but have a substantially lower expression in malignant cells[21-26]. However, it is of interest to determine at which level HCC cells inhibit TRAIL-induced death signaling in HCC cells. NFκB is a key mediator in the inhibition of apoptotic responses and NFκB activation has been shown to increase the antiapoptotic threshold of cells and tissues exposed to cytotoxic cytokines such as TNF by suppressing the initiation of caspase-8 activation[27]. On the other hand, NFκB has many wide-ranging effects that are controlled by a complex regulatory network of inhibitors and coactivators[28-30]. Given the intimate connection between host defense reactions and NFκB, this transcription factor and its associated regulators...
factor that activates NFkB binding, most probably via an interaction with a nuclear factor that activates NFkB activity [12]. We studied E3330-inhibited NFkB activity in HCC cell line and found that E3330 decreased NFkB levels in a dose-dependent manner at HLE cells stimulated by TNFα and TRAIL.

NFkB may inhibit the apoptosis induced by TNF family members such as TRAIL, TNFα, Fas ligand. Our results indicate that the inhibition of NFkB could increase cytotoxicity in combination with TNF family members such as TRAIL, TNFα and Fas ligand in HCC cell lines, while E3330 could inhibit NFkB in a dose-dependent manner. Thus, we believe that inhibition of NFkB could augment the cellular apoptosis induced by TNF family members.

Within the TNF family members, the receptor/ligand pair Fas/Fas ligand has been noted to play an important role in the apoptosis of hepatocytes. In contrast to Fas/Fas ligand, TRAIL is able to kill a broad spectrum of tumor cells, but appears to be nontoxic to most normal cells [7]. We demonstrated that inhibition of NFkB sensitized human HCC cell lines to TNF-mediated apoptosis, suggesting that TRAIL-based tumor therapy in combination with anti-NFkB agents might be a powerful potential therapeutic tool in the treatment of human HCC.

REFERENCES

1. Steller H. Mechanisms and genes of cellular suicide. *Science* 1995; 267: 1445-1449
2. Nagata S. Apoptosis by death factor. *Cell* 1997; 88: 355-365
3. Thompson CB. Apoptosis in the pathogenesis and treatment of disease. *Science* 1995; 267: 1456-1462
4. Schulze-Osthoff K, Ferrari D, Los M, Wesselborg S, Peter ME. Apoptosis signaling by death receptors. *Eur J Biochem* 1998; 254: 439-459
5. Havell EA, Fiers W, North RJ. The antitumor function of tumor necrosis factor (TNF). I. Therapeutic action of TNF against an established murine sarcoma is indirect, immunologically dependent, and limited by severe toxicity. *J Exp Med* 1998; 167: 1067-1085
6. Ogawara J, Watanabe-Fukunaga R, Adachi M, Matsuzawa A, Kasugai T, Kitamura Y, Itoh N, Suda T, Nagata S. Lethal effect of the anti-Fas antibody in mice. *Nature* 1993; 364: 806-809
7. Mundt B, Kuhnel F, Zender L, Paul Y, Tillmann H, Trautwein C, Manns MP, Kubicka S. Involvement of TRAIL and its receptors in viral hepatitis. *FASEB J* 2003; 17: 94-96
8. Kuhnel F, Zender L, Paul Y, Tietze MK, Trautwein C, Manns M, Kubicka S. NFκB mediates apoptosis through transcriptional activation of Fas (CD95) in adenoviral hepatitis. *J Biol Chem* 2000; 275: 6421-6427
9. Natoli G, Costanzo A, Guido F, Moretti F, Bernardino A, Burgio VL, Agresti C, Levreto M. Nuclear factor kβ-independent cytoprotective pathways originating at tumor necrosis factor receptor-associated factor 2. *J Biol Chem* 1998; 273: 31262-31272
10. Nagakawa J, Hirota K, Hishinuma I, Miyamoto K, Sonoda J, Yamanaka T, Katayama K, Yamatsu I. Protective effect of E3330, a novel quinone derivative, in galactosamine-induced...
11 Hiramoto M, Hishinuma I, Miyamoto K, Hirota K, Abe S, Yamanaka T, Katayama K, Yamatsu I. Protective effects of (2E)-3-[2,3-dimethoxy-6-methyl-1,4- benzoquinoyl]-2-nonyl-2-propenoic acid on endotoxin-mediated hepatitis in mice. J Pharmacol Exp Ther 1992; 262: 145-150

12 Hiramoto M, Shimizu N, Sugimoto K, Tang J, Kawakami Y, Ito M, Aizawa S, Tanaka H, Makino I, Handa H. Nuclear targeted suppression of NF-kappa B activity by the novel quinine derivative E3330. J Immunol 1996; 160: 810-819

13 Okano H, Shiraki K, Inoue H, Kawakita T, Yamanaka T, Deguchi M, Sugimoto K, Sakai T, Ohmori S, Fujikawa K, Murata K, Nakano T. Cellular FLICE/caspase-8-inhibitory protein as a principal regulator of cell death and survival in human hepatocellular carcinoma. Lab Invest 2003; 83: 1033-1043

14 Ito T, Shiraki K, Sugimoto K, Yamanaka T, Fujikawa K, Ito M, Takase K, Moriyama M, Kawano H, Hayashida M, Nakano T, Suzuki A. Survivin promotes cell proliferation in human hepatocellular carcinoma. Hepatology 2000; 31: 1080-1085

15 Suzuki A, Hayashida M, Kawano H, Sugimoto K, Nakano T, Shiraki K. Hepatocyte growth factor promotes cell survival from fas-mediated cell death in hepatocellular carcinoma cells via Akt activation and Fas-death-inducing signaling complex suppression. Hepatology 2000; 32: 796-802

16 Shiraki K, Tsuji N, Shioda T, Isselbacher KJ, Takahashi H. Expression of Fas ligand in liver metastases of human colonic adenocarcinomas. Proc Natl Acad Sci USA 1997; 94: 6420-6425

17 Yamanaka T, Shiraki K, Sugimoto K, Ito T, Fujikawa K, Ito M, Takase K, Moriyama M, Nakano T, Suzuki A. Chemotherapeutic agents augment TRAIL-induced apoptosis in human hepatocellular carcinoma cell lines. Hepatology 2000; 32: 482-490

18 Miyamoto K, Nagakawa J, Hishinuma I, Hirota K, Yasuda M, Yamanaka T, Katayama K, Yamatsu I. Suppressive effects of E3330, a novel quinone derivative, on tumor necrosis factor-alpha generation from monocytes and macrophages. Agents Actions 1992; 37: 297-304

19 Pan G, O'Rourke K, Chinnaiyan AM, Gentz R, Ebner R, Ni J, Dixit VM. The receptor for the cytotoxic ligand TRAIL. Science 1997; 276: 111-113

20 Schneider P, Thome M, Burns K, Bodmer JL, Hofmann K, Katooka T, Holler N, Tschopp J. TRAIL receptors 1 (DR4) and 2 (DR5) signal FADD-dependent apoptosis and activate NF-kappaB. Immunity 1997; 7: 831-836

21 Schneider P, Bodmer JL, Thome M, Hofmann K, Holler N, Tschopp J. Characterization of two receptors for TRAIL. FEBS Lett 1997; 416: 329-334

22 MacFarlane M, Ahmad M, Srinivasula SM, Fernandes-Alnemri T, Cohen GM, Alnemri ES. Identification and molecular cloning of two novel receptors for the cytotoxic ligand TRAIL. J Biol Chem 1997; 272: 25417-25420

23 Pan G, Ni J, Wei YF, Yu G, Gentz R, Dixit VM. An antagonist decoy receptor and a death domain-containing receptor for TRAIL. Science 1997; 275: 815-818

24 Sheridan JP, Marsters SA, Pitti RM, Gurney A, Skubatch M, Baldwin D, Ramakrishnan L, Gray CL, Baker K, Wood WI, Goddard AD, Godowski P, Ashkenazi A. Control of TRAIL-induced apoptosis by a family of signaling and decoy receptors. Science 1997; 277: 818-821

25 Pan G, Ni J, Yu G, Wei YF, Dixit VM. TRUNDD, a new member of the TRAIL receptor family that antagonizes TRAIL signalling. FEBS Lett 1998; 424: 41-45

26 Degli-Esposti MA, Dougall WC, Smolak PJ, Waugh JY, Smith CA, Goodwin RG. The novel receptor TRAIL-R4 induces NF-kappaB and protects against TRAIL-mediated apoptosis, yet retains an incomplete death domain. Immunity 1997; 7: 813-820

27 Wang CY, Mayo MW, Korneluk RG, Goeddel DV, Baldwin AS. NF-kappaB antiapoptosis: induction of TRAF1 and TRAF2 and c-IAP1 and c-IAP2 to suppress caspase-8 activation. Science 1998; 281: 1680-1683

28 Grilli M, Chiu JJ, Lenardo MJ. NF-kappaB and Rel: participants in a multiflorm transcriptional regulatory system. Int Rev Cytol 1993; 143: 1-62

29 Baueerle PA, Henkel T. Function and activation of NF-kappa B in the immune system. Annu Rev Immunol 1994; 12: 141-179

30 Siebenlist U, Franzoso G, Brown K. Structure, regulation and function of NF-kappa B. Annu Rev Cell Biol 1994; 10: 405-455

Science Editor Wang XL and Guo SY Language Editor Elsevier HK