On the algebraic set of singular elements
in a complex simple Lie algebra

BERTRAM KOSTANT and NOLAN WALLACH

Abstract. Let G be a complex simple Lie group and let $\mathfrak{g} = \text{Lie} G$. Let $S(\mathfrak{g})$ be the G-module of polynomial functions on \mathfrak{g} and let Sing \mathfrak{g} be the closed algebraic cone of singular elements in \mathfrak{g}. Let $\mathcal{L} \subset S(\mathfrak{g})$ be the (graded) ideal defining Sing \mathfrak{g} and let $2r$ be the dimension of a G-orbit of a regular element in \mathfrak{g}. Then $\mathcal{L}^k = 0$ for any $k < r$. On the other hand, there exists a remarkable G-module $M \subset \mathcal{L}^r$ which already defines Sing \mathfrak{g}. The main results of this paper are a determination of the structure of M.

0. Introduction

0.1. Let G be a complex simple Lie group and let $\mathfrak{g} = \text{Lie} G$. Let $\ell = \text{rank} \mathfrak{g}$. Then in superscript centralizer notation one has $\text{dim} \mathfrak{g}^x \geq \ell$ for any $x \in \mathfrak{g}$. An element $x \in \mathfrak{g}$ is called regular (resp. singular) if $\text{dim} \mathfrak{g}^x = \ell$ (resp. $> \ell$). Let Reg \mathfrak{g} be the set of all regular elements in \mathfrak{g} and let Sing \mathfrak{g}, its complement in \mathfrak{g}, be the set of all singular elements in \mathfrak{g}. Then one knows that Reg \mathfrak{g} is a nonempty Zariski open subset of \mathfrak{g} and hence Sing \mathfrak{g} is a closed proper algebraic subset of \mathfrak{g}.

Let $S(\mathfrak{g})$ (resp. $\wedge \mathfrak{g}$) be the symmetric (resp. exterior) algebra over \mathfrak{g}. Both algebras are graded and are G-modules by extension of the adjoint representation. Let \mathcal{B} be the natural extension of the Killing form to $S(\mathfrak{g})$ and $\wedge \mathfrak{g}$. The inner product it induces on u and v in either $S(\mathfrak{g})$ or $\wedge \mathfrak{g}$ is denoted by (u,v). The use of \mathcal{B} permits an identification of $S(\mathfrak{g})$ with the algebra of polynomial functions on \mathfrak{g}. Since Sing \mathfrak{g} is clearly a cone the ideal, \mathcal{L}, of all $f \in S(\mathfrak{g})$ which vanish on Sing \mathfrak{g} is graded. Let $n = \text{dim} \mathfrak{g}$ and let $r = (n - \ell)/2$. One knows that $n - \ell$ is even so that $r \in \mathbb{Z}_+$. It is easy to show that

$$\mathcal{L}^k = 0, \text{ for all } k < r. \quad (0.1)$$
The purpose of this paper is to define and study a rather remarkable G-submodule

\[M \subset \mathcal{L}^r \quad (0.2) \]

which in fact defines $\text{Sing}\ g$. That is, if $x \in g$, then

\[x \in \text{Sing}\ g \iff f(x) = 0, \ \forall f \in M \quad (0.3) \]

0.2. We will now give a definition of M. The use of \mathcal{B} permits an identification of $\wedge g$ with the underlying space of the cochain complex defining the cohomology of g. The coboundary operator is denoted here by d (and δ in [Kz]) is a (super) derivation of degree 1 of $\wedge g$ so that $dx \in \wedge^2 g$ for any $x \in g$. Since $\wedge^{\text{even}} g$ is a commutative algebra there exists a homomorphism

\[\gamma : S(g) \to \wedge^{\text{even}} g \]

where for $x \in g$, $\gamma(x) = -dx$. One readily has that

\[S^k(g) \subset \text{Ker} \gamma, \ \text{for all } k > r. \quad (0.4) \]

Let $\gamma_r = \gamma|S^r(g)$ so that

\[\gamma_r : S^r(g) \to \wedge^{2r} g. \quad (0.5) \]

If $x \in g$, one readily has

\[x^r \in \text{Ker} \gamma_r \iff x \in \text{Sing}\ g. \quad (0.6) \]

Let Γ be the transpose of γ_r so that one has a G-map

\[\Gamma : \wedge^{2r} \to S^r(g). \quad (0.7) \]

By definition

\[M = \text{Im} \Gamma. \quad (0.8) \]
0.3. Let \(J = S(\mathfrak{g})^G \) so that (Chevalley) \(J \) is a polynomial ring \(\mathbb{C}[p_1, \ldots, p_\ell] \) where the invariants \(p_j \) can be chosen to be homogeneous. In fact if \(m_j, j = 1, \ldots, \ell, \) are the exponents of \(\mathfrak{g} \) we can take \(\deg p_j = m_j + 1 \). For any linearly independent \(u_1, \ldots, u_\ell \in \mathfrak{g} \), let

\[
\psi(u_1, \ldots, u_\ell) = \det \partial_{u_i} p_j
\]

(0.9)

where, if \(v \in \mathfrak{g} \), \(\partial_v \) is the operator of partial derivative by \(v \) in \(S(\mathfrak{g}) \). One has

\[
\psi(u_1, \ldots, u_\ell) \in S^r(\mathfrak{g})
\]

(0.10)

since, as one knows, \(\sum_{i=1}^\ell m_i = r \).

Let \(\Sigma_{2r} \) be the permutation group of \(\{1, \ldots, 2r\} \) and let \(\Pi_r \subset \Sigma_{2r} \) be a subset (of cardinality \((2r - 1)(2r - 3) \cdots 1 \)) with the property that \(sg \nu = 1 \) for all \(\nu \in \Pi_r \) and such that, as unordered,

\[
\{(\nu(1), \nu(2)), \ldots, (\nu(2r-1), \nu(2r)) \mid \nu \in \Pi_r\}
\]

is the set of all partitions of \(\{1, \ldots, 2r\} \) into a union of \(r \) subsets each of which has two elements. The following is one of our main theorems. Even more than explicitly determining \(\psi(u_1, \ldots, u_\ell) \) one has

Theorem 0.1. Let \(u_1, \ldots, u_\ell \) be any \(\ell \) linearly independent elements in \(\mathfrak{g} \) and let \(w_1, \ldots, w_{2r} \) be a basis of the \(\mathcal{B} \)-orthogonal subspace to the span of the \(u_i \). Then there exists some fixed \(\kappa \in \mathbb{C}^\times \) such that, for all \(x \in \mathfrak{g} \),

\[
\sum_{\nu \in \Pi_r} ([w_{\nu(1)}, w_{\nu(2)}], x) \cdots ([w_{\nu(2r-1)}, w_{\nu(2r)}], x) = \kappa \psi(u_1, \ldots, u_\ell)(x). \tag{0.11}
\]

Moreover \(\psi(u_1, \ldots, u_\ell) \in M \). In fact the left side of (0.11) is just \(\Gamma(w_1 \wedge \cdots \wedge w_{2r})(x) \). In addition \(M \) is the span of \(\psi(u_1, \ldots, u_\ell) \), over all \(\{u_1, \ldots, u_\ell\} \), taken from the \(\binom{n}{\ell} \) subsets of \(\ell \)-elements in any given basis of \(\mathfrak{g} \).

We now deal with the \(G \)-module structure of \(M \). For any subspace \(\mathfrak{s} \) of \(\mathfrak{g} \), say of dimension \(k \), let \([\mathfrak{s}] = \mathbb{C}v_1 \wedge \cdots \wedge v_k \subset \wedge^k \mathfrak{g} \) where the \(v_i \) are a basis of \(\mathfrak{s} \). Let
Let \mathfrak{h} be a Cartan subalgebra of \mathfrak{g} and let Δ be the set of roots for the pair $(\mathfrak{h}, \mathfrak{g})$. For any $\varphi \in \Delta$ let $e_\varphi \in \mathfrak{g}$ be a corresponding root vector. Let $\Delta_+ \subset \Delta$ be a choice of a set of positive roots and let \mathfrak{b} be the Borel subalgebra spanned by \mathfrak{h} and all e_φ for $\varphi \in \Delta_+$. For any subset $\Phi \subset \Delta$ let $a_\Phi \subset \mathfrak{g}$ be the span of e_φ for $\varphi \in \Phi$. Also let $\langle \Phi \rangle = \sum_{\varphi \in \Phi} \varphi$ so that $[a_\Phi]$ is an \mathfrak{h}-weight space for the \mathfrak{h}-weight $\langle \Phi \rangle$.

A subset $\Phi \in \Delta_+$ will be said to be an ideal in Δ_+ if a_Φ is an ideal of \mathfrak{b}. In such a case, if $\text{card} \Phi = k$, then the span V_Φ of $G \cdot [a_\Phi]$ is an irreducible G-submodule of $\wedge^k \mathfrak{g}$ having $[a_\Phi]$ as highest weight space and $\langle \Phi \rangle$ as highest weight. Let \mathcal{I} be the set of all ideals Φ in Δ_+ of cardinality ℓ. It is shown in [KW] that all ideals in \mathfrak{b} of dimension ℓ are abelian and hence are of the form a_Φ for a unique $\Phi \in \mathcal{I}$. Specializing k in [K3] to ℓ one has that, by definition, $A_\ell \subset \wedge^\ell \mathfrak{g}$ is the span of $[s]$ over all abelian subalgebras $s \subset \mathfrak{g}$ of dimension ℓ. Using results in [K3] and that in [KW] above, one also has that A_ℓ is a multiplicity one G-module with the complete reduction

$$A_\ell = \bigoplus_{\Phi \in \mathcal{I}} V_\Phi$$

so that there are exactly $\text{card} \mathcal{I}$ irreducible components. In addition it has been shown in [K3] that ℓ is the maximal eigenvalue of the $(\mathcal{B}$ normalized) Casimir operator, Cas, in $\wedge^\ell \mathfrak{g}$ and A_ℓ is the corresponding eigenspace. In the present paper the G-module structure of M is given in

Theorem 0.2. As G-modules one has an equivalence

$$M \cong A_\ell$$

so that M is a multiplicity one module with $\text{card} \mathcal{I}$ irreducible components. Moreover the components can be parameterized by \mathcal{I} in such a way that the component corresponding to $\Phi \in \mathcal{I}$ has highest weight $\langle \Phi \rangle$. In addition Cas takes the value ℓ on each and every irreducible component of M.

4
1. Preliminaries

1.1. Let \(g \) be a complex semisimple Lie algebra and let \(G \) be a Lie group such that \(g = \text{Lie} \ G \). Let \(\mathfrak{h} \subset \mathfrak{g} \) be a Cartan subalgebra of \(\mathfrak{g} \) and let \(\ell \) be the rank of \(\mathfrak{g} \) so that \(\ell = \dim \mathfrak{h} \). Let \(\Delta \) be the set of roots for the pair \((\mathfrak{h}, \mathfrak{g}) \) and let \(\Delta_+ \subset \Delta \) be a choice of a set of positive roots. Let \(r = \text{card} \Delta_+ \) so that

\[
n = \ell + 2r
\]

(1.1)

where we let \(n = \dim \mathfrak{g} \). Let \(\mathcal{B} \) be Killing form \((x, y)\) on \(\mathfrak{g} \). For notational economy we identify \(\mathfrak{g} \) with its dual \(\mathfrak{g}^* \) using \(\mathcal{B} \). The bilinear form \(\mathcal{B} \) extends to an inner product \((p, q)\), still denoted by \(\mathcal{B} \), on the two graded algebras, the symmetric algebra \(S(\mathfrak{g}) \) of \(\mathfrak{g} \) and the exterior algebra \(\land \mathfrak{g} \) of \(\mathfrak{g} \). If \(x_i, y_j \in \mathfrak{g}, i = 1, \ldots, k, j = 1, \ldots, m \), then the product of \(x_i \) is orthogonal to the product of \(y_j \) in both \(S(\mathfrak{g}) \) and \(\land \mathfrak{g} \) if \(k \neq m \), whereas if \(k = m \),

\[
(x_1 \cdots x_k, y_1 \cdots y_k) = \sum_{\sigma \in \Sigma_k} (x_1, y_{\sigma(1)}) \cdots (x_k, y_{\sigma(k)}) \quad \text{in } S(\mathfrak{g})
\]

(1.2)

\[
(x_1 \land \cdots \land x_k, y_1 \land \cdots \land y_k) = \sum_{\sigma \in \Sigma_k} s_\sigma(\sigma)(x_1, y_{\sigma(1)}) \cdots (x_k, y_{\sigma(k)}) \quad \text{in } \land \mathfrak{g}.
\]

Here \(\Sigma_k \) is the permutation group on \(\{1, \ldots, k\} \) and \(s_\sigma \) abbreviates the signum character on \(\Sigma_k \).

The identification of \(\mathfrak{g} \) with its dual has the effect of identifying \(S(\mathfrak{g}) \) with the algebra of polynomial functions \(f(y) \) on \(\mathfrak{g} \). Thus if \(x, y \in \mathfrak{g} \), then \(x(y) = (x, y) \) and if \(x_i \in \mathfrak{g}, i = 1, \ldots, k \), then

\[
(x_1 \cdots x_k)(y) = \prod_{i=1}^k (x_i, y)
\]

(1.3)

\[
= (x_1 \cdots x_k, \frac{1}{k!} y^k).
\]

The identification of \(\mathfrak{g} \) with its dual also has the effect of identifying the (supercommutative) algebra \(\land \mathfrak{g} \) with the underlying space of the standard cochain complex
defining the cohomology of \mathfrak{g}. Let d be the (super) derivation of degree 1 of $\wedge \mathfrak{g}$, defined by putting

$$d = \frac{1}{2} \sum_{i=1}^{n} \varepsilon(w_i)\theta(z_i). \quad (1.4)$$

Here $\varepsilon(u)$, for any $u \in \wedge \mathfrak{g}$, is left exterior multiplication by u so that $\varepsilon(u) v = u \wedge v$ for any $v \in \wedge \mathfrak{g}$. Also $w_i, i = 1, \ldots, n$, is any basis of \mathfrak{g} and $z_i \in \mathfrak{g}$, $i = 1, \ldots, n$, is the \mathcal{B} dual basis. $\theta(x)$, for $x \in \mathfrak{g}$, is the derivation of $\wedge \mathfrak{g}$, of degree 0, defined so that $\theta(x)y = [x, y]$ for any $y \in \mathfrak{g}$. One readily notes that (1.4) is independent of the choice of the basis w_i. Thus if $x \in \mathfrak{g}$, then $dx \in \wedge^2 \mathfrak{g}$ is given by

$$dx = \frac{1}{2} \sum_{i=1}^{n} w_i \wedge [z_i, x]. \quad (1.5)$$

Any element $\omega \in \wedge^2 \mathfrak{g}$ defines an alternating bilinear form on \mathfrak{g}. Its value $\omega(y, z)$ on $y, z \in \mathfrak{g}$ may be given in terms of \mathcal{B} by

$$\omega(y, z) = (\omega, y \wedge z). \quad (1.6)$$

The rank of ω is necessarily even. In fact if rank $\omega = 2k$, then there exist $2k$ linearly independent elements $v_i \in \mathfrak{g}$, $i = 1, \ldots, 2k$, such that

$$\omega = v_1 \wedge v_2 + \cdots + v_{2k-1} \wedge v_{2k}. \quad (1.7)$$

The radical of ω, denoted by $\text{Rad} \omega$, is the space of all $y \in \mathfrak{g}$ such that $\omega(y, z) = 0$ for all $z \in \mathfrak{g}$. For $u \in \wedge \mathfrak{g}$, let $\iota(u)$ be the transpose of $\varepsilon(u)$ with respect to \mathcal{B} on $\wedge \mathfrak{g}$. If $u = y \in \mathfrak{g}$, then one knows that $\iota(y)$ is the (super) derivation of degree minus 1 defined so that if $z \in \mathfrak{g}$, then $\iota(y)z = (y, z)$. (See p. 8 in [Kz]). From (1.6) one has

$$\text{Rad} \omega = \{ y \in \mathfrak{g} \mid \iota(y)\omega = 0 \}. \quad (1.8)$$

If \mathfrak{s} is any subspace of \mathfrak{g}, let \mathfrak{s}^\perp be the \mathcal{B} orthogonal subspace to \mathfrak{s}. From (1.7) one then has that

$$\{ v_i \}, \ i = 1, \ldots, 2k, \text{ is a basis of } \text{Rad} \omega^\perp. \quad (1.9)$$
If \(s \subset g \) is any subspace, say of dimension \(m \), let \([s] \in \wedge^m g\) be the \(\mathbb{C} \) span of the decomposable element \(u_1 \wedge \cdots \wedge u_m \) where \(\{u_i, i = 1, \ldots, m\} \) is a basis of \(s \). One notes that if \(\omega \in \wedge^2 g \) is given as in (1.7), then

\[
\omega^k = k! \, v_1 \wedge \cdots \wedge v_{2k}
\]

so that

\[
\omega^j \neq 0 \iff j \leq k \text{ and } \omega^k \in [\text{Rad } \omega^\perp].
\]

Let \(\{w_j, j = 1, \ldots, n\} \) be a \(\mathcal{B} \) orthonormal basis of \(g \). Put \(\mu = w_1 \wedge \cdots \wedge w_n \) so that

\[
(\mu, \mu) = 1
\]

so that \(\mu \) is unique up to sign and \(\wedge^n g = \mathbb{C} \mu \). For any \(v \in \wedge g \) let \(v^* = \iota(v)\mu \). We recall the more or less well known.

Proposition 1.1. If \(s \subset g \) is any subspace and \(0 \neq u \in [s] \), then

\[
0 \neq u^* \in [s^\perp].
\]

Moreover if \(s, t \in \wedge g \), one has

\[
(s, t) = (s^*, t^*).
\]

Proof. Let \(\{y_i, i = 1, \ldots, m\} \) be a basis of \(s \) chosen so that \(u = y_1 \wedge \cdots \wedge y_m \) and let \(\{z_j, j = 1, \ldots, n - m\} \) be a basis of \(s^\perp \). Then if \(y'_k, k = 1, \ldots, m \), are chosen in \(g \) such that \((y_i, y'_k) = \delta_{ik} \), it is immediate that the \(y'_k \) together with the \(z_j \) form a basis of \(g \) so that for some \(\lambda \in \mathbb{C}^\times \) one has

\[
\lambda y'_1 \wedge \cdots \wedge y'_m \wedge z_1 \wedge \cdots \wedge z_{n-m} = \mu.
\]

But since interior product is the transpose of exterior product one has

\[
\iota(q) \iota(p) = \iota(p \wedge q)
\]
for any \(p,q \in \wedge^g \). Thus by (1.15) one has

\[u^* = \lambda z_1 \wedge \cdots \wedge z_{n-m} \]

establishing (1.13). To prove (1.14) it suffices by linearity to assume that both \(s \) and \(t \) are decomposable of some degree \(m \). Thus we can assume \(s = y_1 \wedge \cdots \wedge y_m \) and \(t = z_1 \wedge \cdots \wedge z_m \) for \(y_i, z_j \in g \). But now, as one knows, and readily establishes,

\[\varepsilon(y) \iota(z) + \iota(z)\varepsilon(y) = (y, z)\text{Id}_g \quad (1.17) \]

for \(y, z \in g \). Thus

\[(s^*, t^*) = (\iota(s)\mu, \iota(t)\mu) = (\mu, \varepsilon(s)\iota(t)\mu). \quad (1.18) \]

But then using (1.17) and the fact that \(\varepsilon(y)\mu = 0 \) for any \(y \in g \), one has

\[(\mu, \varepsilon(s)\iota(t)\mu) = \sum_{j=0}^{m-1} (-1)^j (y_m, z_{m-j})(\mu, \varepsilon(y_1) \cdots \varepsilon(y_{m-1}) \iota(z_m) \cdots \iota(z_{m-j}) \cdots \iota(z_1)\mu). \]

But then by induction and the expansion of the determinant defined by the last row one has

\[(\mu, \varepsilon(s)\iota(t)\mu) = \det(y_i, z_j)(\mu, \mu) = (s, t) \]

proving (1.14). QED

1.2. The algebra \(S(g) \) is a \(G \)-module extending the adjoint representation. Let \(J = S(g)^G \) be the subalgebra of \(g \)-invariants. Let \(H \subset S(g) \) be the graded \(g \)-submodule of harmonic elements in \(S(g) \) (See §1.4 in [K2] for definitions). Then one knows

\[S(g) = J \otimes H. \quad (1.19) \]

See (1.4.3) in [K2].

Let \(r \) be as in (1.1). For the convenience of the reader we repeat a paragraph in §1.2 of [K4]. Let \(\Sigma_{2r,2} \) be the subgroup of all \(\sigma \in \Sigma_{2r} \) such that \(\sigma \) permutes the set of
unordered pairs \{((1, 2), (3, 4), \ldots, (2r - 1, 2r))\}. It is clear that \(\Sigma_{2r, 2}\) has order \(r! 2^r\).

Now let \(\Pi_r\) be a cross-section of the set of left cosets of \(\Sigma_{2r, 2}\) in \(\Sigma_{2r}\). Thus one has a disjoint

\[
\Sigma_{2r} = \bigcup_{\nu \in \Pi_r} \nu \Sigma_{2r, 2}. \tag{1.20}
\]

One notes that the cardinality of \(\Pi_r\) is \((2r - 1)(2r - 3) \cdots 1\) (the index of \(\Sigma_{2r, 2}\) in \(\Sigma_{2r}\)) and the correspondence

\[
\nu \mapsto ((\nu(1), \nu(2)), (\nu(3), \nu(4)), \ldots, (\nu(2r - 1), \nu(2r))) \tag{1.21}
\]

sets up a bijection of \(\Pi_r\) with the set of all partitions of \((1, 2, \ldots, 2r)\) into a union of subsets, each of which has two elements. Furthermore, since the signum character restricted to \(\Sigma_{2r, 2}\) is nontrivial we may choose \(\Pi_r\) so that

\[
sg(\nu) = 1
\]

for all \(\nu \in \Pi_r\).

In [K4] we defined a map \(\Gamma : \wedge^{2r} \mathfrak{g} \rightarrow S(\mathfrak{g})\); (Its significance will become apparent later). Here, using Proposition 1.2 in [K4] we will give a simpler definition of \(\Gamma\). By Proposition 1.2 in [K4] one has

Proposition 1.2. There exists a map

\[
\Gamma : \wedge^{2r} \mathfrak{g} \rightarrow S^r(\mathfrak{g}) \tag{1.21a}
\]

such that for any \(w_i \in \mathfrak{g}, i = 1, \ldots, 2r\), one has

\[
\Gamma(w_1 \wedge \cdots \wedge w_{2r}) = \sum_{\nu \in \Pi_r} [w_{\nu(1)}, w_{\nu(2)}] \cdots [w_{\nu(2r-1)}, w_{\nu(2r)}]. \tag{1.22}
\]

As a polynomial function of degree \(r\) on \(\mathfrak{g}\), one notes that

\[
\Gamma(w_1 \wedge \cdots \wedge w_{2r})(x) = \sum_{\nu \in \Pi_r} ([w_{\nu(1)}, w_{\nu(2)}], x) \cdots ([w_{\nu(2r-1)}, w_{\nu(2r)}], x). \tag{1.23}
\]
This clear from (1.1.7) in [K4] and (1.3) here.

The algebra $\land g$ is a natural G-module by extension of the adjoint representation. It is clear that Γ is a G-map. Let $M \subset S^r(g)$ be the image of Γ. The following is proved as Corollary 3.3 in [K4].

Theorem 1.3. One has $M \subset H^r$ so that M is a G-module of harmonic polynomials of degree r on g.

Giving properties of M and determining its rather striking g-module structure is the main goal of this paper.

For any $y \in g$ one has the familiar supercommutation formula $\iota(y) d + d\iota(y) = \theta(y)$. See e.g., (92) in [K5]. Now let $x, y \in g$. Since $d\iota(y)(x) = 0$ one has $\iota(y)dx = [y, x]$. Thus, by (1.8), using superscript notation for centralizers one has

$$\text{Rad } dx = g^x. \quad (1.24)$$

Clearly $[x, g]$ is the B orthogonal subspace in g to g^x so that

$$[x, g] = (\text{Rad } dx)^\perp \quad (1.25)$$

for any $x \in g$.

For any $x \in g$ one knows $\dim g^x \geq \ell$. Recall that an element $x \in g$ is called regular if $\dim g^x = \ell$. The set $\text{Reg } g$ of regular elements is nonempty and Zariski open. Its complement, $\text{Sing } g$, is the Zariski closed set of singular elements. One notes, by (1.11), that

$$\text{Sing } g = \{x \in g \mid (dx)^r = 0\}. \quad (1.26)$$

Now $\land^{\text{even}} g$ is a commutative algebra and hence there exists a homomorphism

$$\gamma : S(g) \to \land^{\text{even}} g \quad (1.27)$$
such that for $x \in \mathfrak{g}$,

$$\gamma(x) = -dx.$$

Let γ_r be the restriction of γ to $S^r(\mathfrak{g})$. The following result, established as Theorem 1.4 in [K4], asserts that Γ is the transpose of γ_r.

Theorem 1.4. Let $y_1, \ldots, y_r \in \mathfrak{g}$ and let $\zeta \in \wedge^{2r}(\mathfrak{g})$. Then

$$(y_1 \cdots y_r, \Gamma(\zeta)) = (-1)^r(dy_1 \wedge \cdots \wedge dy_r, \zeta). \quad (1.28)$$

Now one knows that $S^r(\mathfrak{g})$ is (polarization) spanned by all powers x^r for $x \in \mathfrak{g}$. Using (1.3), (1.26) and Theorem 1.4 we recover Proposition 3.2 in [K4]. The key point is that M defines the variety Sing \mathfrak{g}.

Theorem 1.5. Let $x \in \mathfrak{g}$ and $\zeta \in \wedge^{2r}(\mathfrak{g})$. Then

$$\Gamma(\zeta)(x) = \frac{(-1)^r}{r!}((dx)^r, \zeta). \quad (1.29)$$

In particular

$$f(x) = 0, \ \forall f \in M \iff x \in \text{Sing}(\mathfrak{g}). \quad (1.30)$$

If \mathfrak{a} is a Cartan subalgebra of \mathfrak{g}, then one knows that $\mathfrak{a} \cap \text{Sing} \mathfrak{g}$ is a union of the root hyperplanes in \mathfrak{a}. Hence as a corollary of Theorem 1.5 one has

Theorem 1.6. Let \mathfrak{a} be a Cartan subalgebra of \mathfrak{g}. Let $\Delta_+(\mathfrak{a})$ be a choice of positive roots for the pair $(\mathfrak{a}, \mathfrak{g})$. Then for any $f \in M$ one has

$$f|_{\mathfrak{a}} \in \mathbb{C} \prod_{\beta \in \Delta_+(\mathfrak{a})} \beta. \quad (1.31)$$

Going to the opposite extreme we recall that a nilpotent element e is called principal if it is regular. Let e be a principal nilpotent element. Then by Corollary 5.6
in [K1] there exists a unique nilpotent radical \(n \) of a Borel subalgebra such that \(e \in n \). Furthermore \(g^e \cap [n, n] \) is a linear hyperplane in \(g^e \) and \(g^e \cap [n, n] = (\text{Sing } g) \cap g^e \) by Theorem 5.3 and Theorem 6.7 in [K1]. Thus there exists a nonzero linear functional \(\xi \) on \(g^e \) such that

\[
\text{Ker } \xi = (\text{Sing } g) \cap g^e.
\] (1.32)

This establishes

Theorem 1.7. Let \(e \in g \) be principal nilpotent. Let \(f \in M \). Then using the notation of (1.32) one has

\[
f|g^e \in \mathbb{C} \xi^r.
\] (1.33)

Since \(\text{Sing } g \) is clearly a cone it follows that the ideal \(\mathcal{L} \) of \(f \in S(g) \) which vanishes on \(\text{Sing } g \) is graded. One of course has that \(M \subset \mathcal{L}^r \). We now observe that \(r \) is the minimal value of \(k \) such that \(\mathcal{L}^k \neq 0 \)

Proposition 1.8. Assume that \(0 \neq f \in \mathcal{L}^k \). Then \(k \geq r \).

Proof. Since \(f \neq 0 \) there clearly exists a Cartan subalgebra \(a \) of \(g \) such that \(f|a \neq 0 \). But then using the notation of Theorem 1.6 it follows from the prime decomposition that \(\beta \) divides \(f|a \) for all \(\beta \in \Delta_+(a) \). Thus \(k \geq r \). QED

2. The structure of \(M \) in terms of minors and as a \(G \)-module

2.1. For any \(z \in g \) let \(\partial_z \) be the partial derivative of \(S(g) \) defined by \(z \). Let \(W(g) = S(g) \otimes \wedge g \) so that \(W(g) \) can be regarded as the supercommutative algebra of all differential forms on \(g \) with polynomial coefficients. To avoid confusion with the already defined \(d \), let \(d_W \) be the operator of exterior differentiation on \(W(g) \). That is, \(d_W \) is a derivation of degree 1 defined so that if \(\{z_i, w_j\}, i, j = 1, \ldots, n \), are dual \(B \)
bases of \mathfrak{g}, then
\[
d_W(f \otimes u) = \sum_i^n \partial z_i f \otimes \varepsilon(w_i) u \tag{2.1}
\]
where $f \in S(\mathfrak{g})$ and $u \in \wedge \mathfrak{g}$. Of course d_W is independent of the choice of bases. In particular $d_W f$ is a differential form of degree 1 on \mathfrak{g}.

For any $x \in \mathfrak{g}$ one has a homomorphism
\[
W(\mathfrak{g}) \rightarrow \wedge \mathfrak{g}, \quad \varphi \mapsto \varphi(x) \tag{2.2}
\]
defined so that if $\varphi = f \otimes u$, using the notation of (2.1), then $\varphi(x) = f(x)u$. Next one notes that the G-module structures on $S(\mathfrak{g})$ and $\wedge \mathfrak{g}$ define, by tensor product, a G-module structure on $W(\mathfrak{g})$. Clearly d_W is a G map. If $a \in G$ and $\varphi \in W(\mathfrak{g})$, the action of a on φ will simply be denoted by $a \cdot \varphi$. If $x \in \mathfrak{g}$ one readily has
\[
a \cdot (\varphi(x)) = a \cdot \varphi(a \cdot x). \tag{2.3}
\]

One knows (Chevalley) that J is a polynomial ring $\mathbb{C}[p_1, \ldots, p_\ell]$ where the p_j are homogeneous polynomials. If $d_j = \deg p_j$, for $j = 1, \ldots, \ell$, and $m_j = d_j - 1$, then the m_j are exponents of \mathfrak{g} so that
\[
\sum_{j=1}^{\ell} m_j = r. \tag{2.4}
\]
Moreover we can choose the p_j so that $\partial_y p_j \in H$ for any $y \in \mathfrak{g}$ (see Theorem 67 in [K5]). In fact, if H_{ad} is the primary component of H corresponding to the adjoint representation, then the multiplicity of the adjoint representation in H_{ad} is equal to ℓ and τ_j, $j = 1, \ldots, \ell$, is a basis of $\text{Hom}_G(\mathfrak{g}, H_{ad})$ where
\[
\tau_j(y) = \partial_y p_j \tag{2.5}
\]
for any $y \in \mathfrak{g}$. Again see Theorem 67 in [K5].

Remark 2.2. Using the notation of (2.1) note that
\[
\{w_{i_1} \wedge \cdots \wedge w_{i_\ell} \mid 1 \leq i_1 < \cdots < i_\ell \leq n\}
\]
is a basis of $\wedge^\ell g$. Furthermore

$$\{z_{j_1} \wedge \cdots \wedge z_{j_\ell} \mid 1 \leq j_1 < \cdots < j_\ell \leq n\}$$

is the dual basis since clearly

$$(w_{i_1} \wedge \cdots \wedge w_{i_\ell}, z_{j_1} \wedge \cdots \wedge z_{j_\ell}) = \prod_{k=1}^{n} \delta_{i_k,j_k}. \quad (2.6)$$

In addition if the w_i are a B-orthonormal basis of g, then $w_i = z_i$, $i = 1, \ldots, n$, and hence (2.6) implies that $\{w_{i_1} \wedge \cdots \wedge w_{i_\ell} \mid 1 \leq i_1 < \cdots < i_\ell \leq n\}$ is a B orthonormal basis of $\wedge^\ell g$.

Now for any $y_i \in g$, $i = 1, \ldots, \ell$, let $\psi(y_1, \ldots, y_\ell) = \det \partial_{y_i} p_j$ so that

$$\psi(y_1, \ldots, y_\ell) \in S^r(g) \quad (2.7)$$

by (2.4). But now d_WP_j is an invariant 1-form on g. If $x \in g$, then $d_WP_j(x) \in \wedge^1 g$. Explicitly, using the notation in (2.1), one has

$$d_WP_j(x) = \sum_{i=1}^{n} \partial_{z_i} p_j(x) w_i. \quad (2.8)$$

One notes that $\partial_{z_i} p_j$ is an $n \times \ell$ matrix of polynomial functions. There are $\binom{n}{\ell} \ell \times \ell$ minors for this matrix. The determinants of these minors all lie in $S^r(g)$ and appear in the following expansion.

Proposition 2.1. Let the notation be as in (2.1). Let $x \in g$. Then in $\wedge^\ell g$ one has

$$(d_WP_1(x) \wedge \cdots \wedge d_WP_\ell(x) = \sum_{1 \leq i_1 < \cdots < i_\ell \leq n} \psi(z_{i_1}, \ldots, z_{i_\ell})(x) w_{i_1} \wedge \cdots \wedge w_{i_\ell}. \quad (2.9)$$

Proof. This is just standard exterior algebra calculus using (2.8). QED
Theorem 2.2. Let $v_i, i = 1, \ldots, n$, be a B orthonormal basis of \mathfrak{g} chosen and ordered so that $v_i, i = 1, \ldots, \ell$, is a basis of \mathfrak{h}. Then there exists a scalar $\kappa \in \mathbb{C}^\times$ such that, for any $y \in \mathfrak{h}$,

$$d_W p_1(y) \wedge \cdots \wedge d_W p_\ell(y) = \kappa \left(\prod_{\varphi \in \Delta_+} \varphi(y) \right) v_1 \wedge \cdots \wedge v_\ell. \quad (2.10)$$

Proof. If $a \in G$, $x \in \mathfrak{g}$ and $j = 1, \ldots, \ell$, then since $d_W p_j$ is G-invariant one has

$$a \cdot d_W p_j(x) = d_W p_j(a \cdot x). \quad (2.11)$$

But this implies that

$$d_W p_j(x) \in \text{cent } \mathfrak{g}^x \quad (2.12)$$

since if we choose $a \in G^x$ in (2.11) it follows from (2.11) that $d_W p_j(x)$ commutes with \mathfrak{g}^x. But $x \in \mathfrak{g}^x$ so that $d_W p_j(x) \in \mathfrak{g}^x$. This establishes (2.12).

Now by Theorem 9, p. 382 in [K2] one has that if $x \in \mathfrak{g}$, then

$$\{d_W p_1(x), \ldots, d_W p_\ell(x)\} \text{ are linearly independent } \iff \ x \in \text{Reg } \mathfrak{g}. \quad (2.12a)$$

Thus the left side of (2.10) vanishes if and only if $y \in \text{Sing } \mathfrak{g} \cap \mathfrak{h}$. In particular, choosing the z_i in (2.9) so that $v_j = z_j$ for $j = 1, \ldots, \ell$, one has $\psi(v_1, \ldots, v_\ell)(y) = 0$ if y is singular by the expansion (2.9). One the other hand, if $y \in \mathfrak{h}$ is regular then, by (2.12), one must have that

$$\{d_W p_j(y), j = 1, \ldots, \ell\} \text{ is a basis of } \mathfrak{h}. \quad (2.13)$$

Thus if y is regular, the left side of (2.10) equals $\nu v_1 \wedge \cdots \wedge v_\ell$ for some $\nu \in \mathbb{C}^\times$. Comparing with the expansion (2.9) one must have $\nu = \psi(v_1, \ldots, v_\ell)(y)$. But then $\psi(v_1, \ldots, v_\ell)|\mathfrak{h}$ is a polynomial of of degree r which vanishes on $y \in \mathfrak{h}$ if and only if $y \in \mathfrak{h}$ is singular. Thus

$$\psi(v_1, \ldots, v_\ell)|\mathfrak{h} = \kappa \prod_{\varphi \in \Delta_+} \varphi$$
for some nonzero constant \(\kappa \). This proves (2.10). QED

2.2. For any root \(\varphi \in \Delta \) let \(e_\varphi \in \mathfrak{g} \) be a corresponding root vector. We will make choices so that

\[
(e_\varphi, e_{-\varphi}) = 1. \tag{2.14}
\]

For any \(x \in \mathfrak{h} \), one then has

\[
dx = \sum_{\varphi \in \Delta_+} \varphi(x) e_\varphi \wedge e_{-\varphi}. \tag{2.15}
\]

See Proposition 37, p. 311 in [K5], noting (106), p. 302 and (142), p. 309 in [K5]. But then recalling (1.27) one has

\[
\gamma_r(x^r) = r! (-1)^r \prod_{\varphi \in \Delta_+} \varphi(x) e_\varphi \wedge e_{-\varphi}. \tag{2.16}
\]

But since \((e_\varphi \wedge e_{-\varphi}, e_\varphi \wedge e_{-\varphi}) = -1\), by (2.14), for any \(\varphi \in \Delta_+ \) one has that

\[
(\prod_{\varphi \in \Delta_+} e_\varphi \wedge e_{-\varphi}, \prod_{\varphi \in \Delta_+} e_\varphi \wedge e_{-\varphi}) = (-1)^r. \tag{2.17}
\]

But then if \(\{v_i \mid i = 1, \ldots, \ell\} \) is an orthonormal basis of \(\mathfrak{h} \), one has

\[
(v_1 \wedge \cdots \wedge v_\ell \wedge \prod_{\varphi \in \Delta_+} e_\varphi \wedge e_{-\varphi}, v_1 \wedge \cdots \wedge v_\ell \wedge \prod_{\varphi \in \Delta_+} e_\varphi \wedge e_{-\varphi}) = (-1)^r. \tag{2.18}
\]

But then we may choose an ordering of the \(v_i \) such that

\[
\mu = i^r v_1 \wedge \cdots \wedge v_\ell \wedge \prod_{\varphi \in \Delta_+} e_\varphi \wedge e_{-\varphi} \tag{2.19}
\]

so that

\[
(v_1 \wedge \cdots \wedge v_\ell)^* = i^r \prod_{\varphi \in \Delta_+} e_\varphi \wedge e_{-\varphi}. \tag{2.20}
\]

But then one has

Theorem 2.3 There exists \(\kappa_o \in \mathbb{C}^\times \) such that for any \(x \in \mathfrak{g} \),

\[
(d_W p_1(x) \wedge \cdots \wedge d_W p_\ell(x))^* = \kappa_o \frac{(-dx)^r}{r!} \tag{2.21}
\]

\[= \kappa_o \gamma_r \left(\frac{x^r}{r!} \right). \]
Proof. If \(y \in \mathfrak{h} \) is regular, then (2.21), for \(y = x \), follows from (2.16),(2.20) and Theorem 2.2. That is
\[
(dW p_1(y) \wedge \cdots \wedge dW p_\ell(y))^* = \kappa_o \frac{(-dy)^r}{r!} = \kappa_o \gamma_r \frac{y^r}{r!}.
\] (2.22)

But now if \(x \in \mathfrak{g} \) regular and semisimple there exist \(a \in G \) and a regular \(y \in \mathfrak{h} \) such that \(a \cdot y = x \). But now since \(* \) and \(\gamma_r \) are clearly \(G \)-maps one has (2.21) by applying the action of \(a \) to both sides of (2.22). However the set of regular semisimple elements in \(\mathfrak{g} \) is dense (this nonempty set is Zariski open) one has (2.21) for all \(x \in \mathfrak{g} \) by continuity. QED

Returning to our module \(M \) of harmonic polynomials on \(\mathfrak{g} \) of degree \(r \) it is obvious, by definition, that \(M \) is spanned by all \(f \in S^r \) of the form \(f = \Gamma(w_1 \wedge \cdots \wedge w_{2r}) \) where the \(w_i \in \mathfrak{g} \) are linearly independent. Explicitly \(\Gamma(w_1 \wedge \cdots \wedge w_{2r}) \) is given by (1.22). We now show that \(\Gamma(w_1 \wedge \cdots \wedge w_{2r}) \) may also be given as the determinant of one of the \(\ell \times \ell \) minors in the expansion (2.9).

Theorem 2.4. Let \(w_k \in \mathfrak{g}, k = 1, \ldots, 2r, \) be linearly independent and let \(\mathfrak{s} \subset \mathfrak{g} \) be the span of the \(w_k \) and let \(u_i \in \mathfrak{g}, = 1, \ldots, \ell, \) be a basis of \(\mathfrak{s}^\perp \). Then there exists a constant \(\kappa_1 \in \mathbb{C}^\times \) such that
\[
\Gamma(w_1 \wedge \cdots \wedge w_{2r}) = \kappa_1 \psi(u_1, \ldots, u_\ell)
\]
(2.23)

\[
= \kappa_1 \det \partial_{u_i} p_j.
\]

Furthermore \(M \) is the span of all \(\ell \times \ell \) determinant minors \(\psi(v_1, \ldots, v_\ell) \) where \(v_i \in \mathfrak{g}, i = 1, \ldots, \ell, \) are linearly independent.

Proof. Clearly we may choose the two dual bases in (2.1) so that the given \(w_k \) are the first \(2r \)-elements of the \(w \) basis and the \(u_i \) are the last \(\ell \) elements of the \(z \) basis. Thus there exists \(\kappa_2 \in \mathbb{C}^\times \) such that
\[
(u_1 \wedge \cdots \wedge u_\ell)^* = \kappa_2 w_1 \wedge \cdots \wedge w_{2r}.
\] (2.24)
Now let \(x \in \mathfrak{g} \). Then by the expansion (2.9) one has

\[
(dW p_1(x) \wedge \cdots \wedge dW p_\ell(x), u_1 \wedge \cdots \wedge u_\ell) = \psi(u_1, \ldots, u_\ell)(x).
\] (2.25)

But then by (1.3), (1.14), (1.29) and (2.21) one has

\[
\psi(u_1, \ldots, u_\ell)(x) = ((dW p_1(x) \wedge \cdots \wedge dW p_\ell(x))^*, (u_1 \wedge \cdots \wedge u_\ell)^*)
\]

\[
= \kappa_0 \kappa_2 \left(\gamma_r \left(\frac{x^r}{r!} \right), w_1 \wedge \cdots \wedge w_{2r} \right)
\]

\[
= \kappa_1^{-1} \Gamma(w_1 \wedge \cdots \wedge w_{2r})(x)
\] (2.26)

where \(\kappa_1^{-1} = \kappa_0 \kappa_2 \). The last statement in the theorem is obvious since clearly \(u_i, i = 1, \ldots, \ell \), is an arbitrary set of \(\ell \)-independent elements in \(\mathfrak{g} \). QED

2.3. Let \(\{z_i, w_j\} \) be the arbitrary dual bases of \(\mathfrak{g} \) as in (1.4). Then, independent of the choice of bases, the Casimir operator \(\text{Cas} \) on \(\wedge \mathfrak{g} \) is given by

\[
\text{Cas} = \sum_{i=1}^{n} \theta(z_i)\theta(w_i).
\]

We recall special cases of some results in [K3]. Let \(A_\ell \subset \wedge^\ell \mathfrak{g} \) be the span in \(\wedge^\ell \mathfrak{g} \) of all \([c] \) where \(c \in \mathfrak{g} \) is a commutative Lie subalgebra of dimension \(\ell \). Since the set of such subalgebras includes, for example, Cartan subalgebras it is obvious that \(A_\ell \neq 0 \). In fact note that

\[
[\mathfrak{g}^y] \subset A_\ell
\] (2.27)

for any \(y \in \text{Reg} \mathfrak{g} \) since, as one knows, \(\mathfrak{g}^y \) is abelian if \(y \) is regular. Clearly \(A_\ell \) is a \(G \) submodule of \(\wedge^{\ell} \mathfrak{g} \). On the other hand, let \(m_\ell \) be the maximal value of \(\text{Cas} \) on \(\wedge^\ell \mathfrak{g} \) and let \(M_\ell \) be the corresponding Cas eigenspace. Again, clearly \(M_\ell \) is a \(G \)-submodule of \(\wedge^\ell \mathfrak{g} \). From the definition of \(M_\ell \) it is obvious that \(\text{Hom}_G(M_\ell, \wedge^\ell \mathfrak{g}/M_\ell) = 0 \). Since \(B| \wedge^\ell \mathfrak{g} \) is nonsingular it follows that

\[
\mathcal{B}|M_\ell \text{ is nonsingular}
\] (2.28)
and hence M_ℓ is self-contragredient. Noting the $1/2$ in (2.1.7) of [K3] the following result is a special case of Theorem (5), p. 156 in [K3].

Theorem 2.5. One has

$$A_\ell = M_\ell$$

and in addition

$$m_\ell = \ell.$$ \hspace{1cm} (2.30)

For any ordered subset $\Phi \subset \Delta$, $\Phi = \{\varphi_1, \ldots, \varphi_k\}$, let $e_\Phi = e_{\varphi_1} \wedge \cdots \wedge e_{\varphi_k}$ and put $\langle \Phi \rangle = \sum_{\varphi \in \Phi} \varphi$ so that with respect to h,

$$e_\Phi \in \land^k g$$

is a weight vector of weight $\langle \Phi \rangle$. \hspace{1cm} (2.31)

Let $b \subset g$ be the Borel subalgebra of g spanned by h and $\{e_\varphi\}$, for $\varphi \in \Delta_+$, and put $n = [b, b]$. Any ideal a of b where $a \subset n$ is necessarily spanned by root vectors. We will say that Φ, as above, is an ideal of Δ_+ if $\Phi \subset \Delta_+$ and $a_\Phi = \sum_{i=1}^k C e_{\varphi_i}$ is an ideal in b.

Remark 2.6. One notes that if Φ is an ideal of Δ_+ and $V_\Phi \subset \land^k g$ is the G-module spanned by $G \cdot e_\Phi$, then V_Φ is irreducible having e_Φ as highest weight vector and $\langle \Phi \rangle$ as highest weight.

As already noted in [K3] (see bottom of p. 158) it is immediate that if a is any abelian ideal in b, then $a \subset n$ so that $a = a_\Phi$ for an ideal $\Phi \subset \Delta_+$. Much more subtly it has been established in [KW] (see Lemma 12, p. 113 in [KW]) that any ideal a of b having dimension ℓ is in fact abelian. Let \mathcal{I} be the (obviously finite) set of all ideals Φ in Δ_+ which have cardinality ℓ. If $\Phi_1, \Phi_2 \in \mathcal{I}$ are distinct, then $\langle \Phi_1 \rangle \neq \langle \Phi_2 \rangle$ by Theorem (7), p. 158 in [K3] so that V_{Φ_1} are inequivalent g and G modules. Then Theorem (8), p. 159 in [K3] implies
Theorem 2.7. M_ℓ is a multiplicity one G-module. In fact

$$M_\ell = \bigoplus_{\Phi \in \mathcal{I}} V_\Phi$$ \hspace{1cm} (2.32)

so the number of irreducible components in M_ℓ is the cardinality of \mathcal{I}.

Remark 2.8. In the general case we do not have a formula for $\text{card} \, \mathcal{I}$ although computing this number in any given case does not seem to be too difficult. In the special case where $g \cong \text{Lie} \, \text{Sl}(n, \mathbb{C})$ one easily has a bijective correspondence of \mathcal{I} with the set of all Young tableaux of size $n-1$ so that in this case

$$\text{card} \, \mathcal{I} = p(n - 1)$$ \hspace{1cm} (2.33)

where p here is the classical partition function.

Let

$$\tau : \wedge^\ell g \to \wedge^{2r} g$$ \hspace{1cm} (2.34)

be the G-ismorphism defined by putting $\tau(u) = u^*$ recalling that $u^* = \iota(u) \mu$. Let $M_{2r} = \tau(M_\ell)$.

Theorem 2.9. τ is a B-isomorphism so that $B|_{M_{2r}}$ is nonsingular. Furthermore ℓ is the maximal eigenvalue of $\text{Cas}_{\text{on}} \wedge^{2r} g$ and M_{2r} is the corresponding eigenspace. As G modules one has

$$M_\ell \cong M_{2r}$$ \hspace{1cm} (2.35)

so that M_{2r} is a multiplicity 1 module where in fact

$$M_{2r} \cong \bigoplus_{\Phi \in \mathcal{I}} V_\Phi.$$ \hspace{1cm} (2.36)

We recall the V_Φ is an irreducible G-module with highest weight $\langle \Phi \rangle$. See (2.31).

Proof. The first statement follows from Proposition 1.1. The remaining statements are immediate from Theorem 2.7 since τ is a G-isomorphism. QED
In light of equality $M_\ell = A_\ell$ (see (2.9)) Ranee Brylinski in her thesis (see [RB]) proved that M_ℓ is the span of $G \cdot [h]$. The thesis however has not been published. A stronger theorem (motivated by her result) appears in [KW]. The following result is just Corollary 2, p. 105 in [KW].

Theorem 2.10. M_ℓ is the span of $G \cdot [g^x]$ for any $x \in \text{Reg } g$.

Now by (2.12) and (2.12a) one has

$$\mathbb{C} dW p_1(x) \wedge \cdots \wedge dW p_\ell(x) = [g^x]$$

(2.37)

for any $x \in \text{Reg } g$. Using Theorem 2.3 we can now transfer Theorem 2.10 to M_{2r} where it will have consequences for the structure of the space of functions $M \subset H^r$.

Theorem 2.11. M_{2r} is the span of $G \cdot (\gamma_r(\frac{x^r}{r!}))$ for any $x \in \text{Reg } g$.

Proof. This is immediate from Theorem 2.3, Theorem 2.10, (2.37) and the fact that τ is a G-isomorphism. QED.

Let N_{2r} be the \mathcal{B} orthogonal subspace to M_{2r} in $\wedge^{2r} g$. By the first statement in Theorem 2.9 one has a \mathcal{B} orthogonal G-module decomposition $\wedge^{2r} g$,

$$\wedge^{2r} g = N_{2r} \oplus M_{2r}.$$

(2.38)

Remark 2.12. Note that by Theorem 2.9 any eigenvalue of Cas in N_{2r} is less than ℓ.

We return now to our G-space M of homogeneous harmonic polynomials on g of degree r which define $\text{Sing } g$. We recapitulate some of the properties of $M = \Gamma(\wedge^{2r} g)$ already established in this paper. Let $w_k \in g$, $k = 1, \ldots, 2r$, be linearly independent and let $z_i \in g$, $i = 1, \ldots, \ell$, be linearly independent and \mathcal{B} orthogonal to the w_k. Then
for suitable generators $p_j, j = 1, \ldots, \ell$, of $J = S(g)^G$, we have

(1) $\Gamma(w_i \wedge \cdots \wedge w_{2r})$ is explicitly given by (1.23)

(2) $\Gamma(w_i \wedge \cdots \wedge w_{2r})$ is given as (up to scalar multiplication) $det \partial_{z_i} p_j$. See Theorem 2.4.

(3) If $f \in M$, then $f|_a$, where a is any Cartan subalgebra or

$$a = g^e$$

for e principal nilpotent, is given in Theorems 1.6 and 1.7.

We now determine the G-module structure of M,

Theorem 2.13. $N_{2r} = \text{Ker} \Gamma$ and

$$\Gamma : M_{2r} \to M$$

(2.39)

is a G-isomorphism so that as G-modules

$$M \cong M_{2r} \cong M_\ell = A_\ell$$

(2.40)

where we recall $A_\ell \subset \wedge^\ell g$ has been defined in [K3] as the span of $[s]$ over all abelian subalgebras $s \subset g$ of dimension ℓ.

Furthermore we have defined \mathcal{I} as the set of all ideals Φ in Δ_+ of cardinality ℓ, parameterizing with the notation a_Φ, the set of all ideals a of b having dimension ℓ. See Remark 2.6.

Moreover M is a multiplicity one G-module with $\text{card}\mathcal{I}$ irreducible components. In addition \mathcal{I} parameterizes these components in the sense that the component corresponding to $\Phi \in \mathcal{I}$ is equivalent to V_Φ, using the notation of Remark 2.6, and hence has highest weight $\langle \Phi \rangle$. Finally Cas takes the value ℓ on each and every irreducible component of M.

Proof. By (1.27) and (1.29) one has

$$\Gamma(\zeta)(x) = (\zeta, \gamma_r(x^r) \frac{x^r}{r!})$$

(2.41)
for any $x \in \mathfrak{g}$ and any $\zeta \in \wedge^{2r}\mathfrak{g}$. Of course $\gamma_r(\frac{x^r}{r!}) = 0$ for any $x \in \text{Sing} \mathfrak{g}$ (see (2.12a) and Theorem 2.3). However M_{2r} is the span of $G \cdot \gamma_r(\frac{x^r}{r!})$ for any $x \in \text{Reg} \mathfrak{g}$ by Theorem 2.11. Thus not only does (2.41) imply that $N_{2r} \subset \text{Ker} \Gamma$ but $N_{2r} = \text{Ker} \Gamma$ since if $\zeta \in M_{2r}$ and $x \in \text{Reg} \mathfrak{g}$ there exists $a \in G$ such that if $y = a \cdot x$, then $\Gamma(\zeta)(y) \neq 0$ by Theorem 2.11 and the nonsingularity of $\mathcal{B}|M_{2r}$, as asserted in Theorem 2.9. Since Γ is a G-map one has the isomorphism (2.39). The remaining statements follow from Theorem 2.5 and Theorem 2.9. QED

References

[K1] B. Kostant, The Three Dimensional Sub-Group and the Betti Numbers of a Complex Simple Lie Group, *Amer. Jour. of Math.*, **81**(1959), 973–1032.

[K2] B. Kostant, Lie Group Representations on Polynomial Rings, *Amer. J. Math.*, **85**(1963), 327–404.

[K3] B. Kostant, Eigenvalues of a Laplacian and Commutative Lie Subalgebras, *Topology*, **13**(1965) 147–159.

[K4] B. Kostant, A Lie Algebra Generalization of the Amitsur-Levitski Theorem, *Adv. in Math.*, **40**(1981), No. 2, 155–175.

[K5] B. Kostant, Clifford Algebra Analogue of the Hopf-Koszul-Samelson Theorem, the ρ-Decomposition, $C(\mathfrak{g}) = \text{End} V_\rho \otimes C(P)$, and the \mathfrak{g}-Module Structure of $\wedge \mathfrak{g}$, *Adv. in Math.*, **125**(1997), 275–350.

[KW] B. Kostant and N. Wallach, On a theorem of Ranee Brylinski, *Contemporary Mathematics*, **490**(2009), 105–142.

[Kz] J. L. Koszul, Homologie et cohomologie des algèbres de Lie, *Bull. Soc. Math. Fr.*, **78**(1950), 65–127.

[RB] R. Brylinski, *Abelian algebras and adjoint orbits*, Thesis MIT, 1981.