CCL7 recruits cDC1 to promote antitumor immunity and facilitate checkpoint immunotherapy to non-small cell lung cancer

Man Zhang1,2,3,10, Wei Yang1,2,3,10, Peng Wang1,2,3, Yu Deng4, Yu-Ting Dong5,6, Fang-Fang Liu7, Rui Huang8, Peng Zhang7, Ya-Qi Duan5,6, Xin-Dong Liu8, Dandan Lin9, Qian Chu7 & Bo Zhong1,2,3

The efficacy of checkpoint immunotherapy to non-small cell lung cancer (NSCLC) largely depends on the tumor microenvironment (TME). Here, we demonstrate that CCL7 facilitates anti-PD-1 therapy for the KrasLSL−G12D/+Tp53fl/fl (KP) and the KrasLSL−G12D/+Lkb1fl/fl (KL) NSCLC mouse models by recruiting conventional DC1 (cDC1) into the TME to promote T cell expansion. CCL7 exhibits high expression in NSCLC tumor tissues and is positively correlated with the infiltration of cDC1 in the TME and the overall survival of NSCLC patients. CCL7 deficiency impairs the infiltration of cDC1 in the TME and the subsequent expansion of CD8+ and CD4+ T cells in bronchial draining lymph nodes and TME, thereby promoting tumor development in the KP mouse model. Administration of CCL7 into lungs alone or in combination with anti-PD-1 significantly inhibits tumor development and prolongs the survival of KP and KL mice. These findings suggest that CCL7 potentially serves as a biomarker and adjuvant for checkpoint immunotherapy of NSCLC.
lung cancer is the most prevalent cancer and the leading cause of cancer-related death, responsible for more than 2 million new diagnosis and 1.7 million deaths worldwide each year. Approximately 85% of the diagnosed lung cancers are non-small cell lung cancer (NSCLC), with more than 50% of adenocarcinoma and 30% of squamous carcinoma. Because of the atypical symptoms, about two thirds of NSCLC patients present with advanced-stage disease at the time of diagnosis. A number of somatic mutations, oncogenic rearrangements or copy number variations in NSCLC tumors have been identified, including EGFR exon 19 deletions, L858R or T790M mutations, MET exon 14 skipping mutations, ALK or ROSI rearrangements, MET, EGFR or HER2 copy number increases. Various small molecular inhibitors and monoclonal antibodies have been developed to target these genetic alterations and significantly improve the prognosis of NSCLC patients. Despite these advances, there are so far no specific therapeutic strategies for the NSCLC patients bearing mutations (G12C, G12V, or G12D) in KRAS which is the most common oncogenic driver found in 10–20% NSCLC incidences. In addition, common co-mutational partners have been identified in KRAS-mutated NSCLC, including TP53, Lkb1, and CDKN2A. These co-mutational factors render different gene expression profiles and might determine distinct therapeutic strategies for KRAS-mutated NSCLCs. Mouse models which express the mutated KrasG12D and simultaneously inactivate Tp53 (KrasLSL−G12D/+ Txp53fl/fl, KP) or Lkb1 (KrasLSL−G12D/+ Lkb1fl/fl, KL) have been developed and provide powerful tools for the screen and evaluation of effective therapies for KRAS-mutated NSCLCs.

Recently, checkpoint immunotherapies with the immune checkpoint blockers such as anti-programmed death 1 (anti-PD-1) and anti-programmed death-ligand 1 (anti-PD-L1) antibodies have significantly improved the progression-free survival (PFS) and overall survival (OS) compared with the platinum- or docetaxel-based chemotherapies for NSCLC patients. In addition, a more favorable prognosis of anti-PD-1/PD-L1 checkpoint immunotherapies is observed in patients with higher expression of PD-L1 in the tumor microenvironment (TME) and without EGFR and ALK mutations, suggesting that PD-L1 expression in the TME is a critical predictive marker for checkpoint immunotherapies of NSCLC. Consistently with this notion, LKB1 alterations are significantly associated with PD-L1 negativity and render PD-1 inhibitor resistance in KRAS-mutated NSCLCs. However, even among the NSCLC patients with high levels of PD-L1 positivity, the objective response rate (ORR) is about 45%, which might be due to defects in the entry or proliferation of tumor-infiltrating leukocytes or due to suppression by other molecular pathways in the TME. Therefore, administration of molecules to promote the entry, activation and expansion of tumor-infiltrating lymphocytes (TILs) would enhance the efficacy of checkpoint immunotherapies for NSCLCs.

Chemokine (C-C motif) ligand 7 (CCL7, also known as MCP-3) is a chemotactic factor and potent attractant of monocytes firstly characterized from the culture supernatants of MG-63 osteosarcoma cells. CCL7 is expressed at low levels in endothelial cells, fibroblasts and mononuclear cells and upregulated by various stimuli including viruses, type I or type II interferons (IFNs)22. CCL7 receptors including CCR1, CCR2, and CCR3 are mainly expressed on the surface of antigen-presenting cells (APCs) such as monocytes, macrophages and dendritic cells (DCs). CCL7 deficient mice fail to efficiently eliminate various infected pathogens and exhibit impaired monocyte and neutrophil infiltration in infected tissues or organs, indicating essential roles of CCL7 in anti-infectious immunity by recruiting immune cells to the infected microenvironment. Various studies have shown that tumor cells and stromal cells also produce high levels of CCL7, while the specific response element and signaling pathways involved are not entirely clear. However, overexpression of CCL7 in tumor cells has been reported to promote tumorogenesis by facilitating tumor cell proliferation and metastasis or retain tumor growth by recruiting immune cells into tumors in exogenous mouse models. Whether and how CCL7 is involved in primary NSCLC development in vivo are unclear.

Here, we show that high expression of CCL7 in NSCLC tumor biopsies is positively associated with the OS of NSCLC patients. CCL7 deficiency promotes NSCLC development in the KP mouse model, whereas administration of CCL7 in the lung through Lentivirus-mediated gene transfer inhibits tumorogenesis of NSCLC in the KP or KL NSCLC mouse models. Mechanistically, CCL7 promotes the chemotaxis of CD8+ T cells into the TME which subsequently facilitates T cell expansion and antitumor immunity. Consistently, combination of CCL7 and anti-PD-1 treatment significantly inhibits tumorogenesis and prolongs the survival of KP or KL mice compared to anti-PD-1 treatment alone. These findings together suggest that CCL7 serves as an adjuvant to facilitate checkpoint immunity for NSCLC by modulating the TME.

Results

CCL7 is highly expressed in NSCLC tumor tissues. A primary function of chemokines is to attract leukocytes mobilization. We thus hypothesized that chemokines might contribute to the infiltration of immune cells into TME and thereby play critical roles in tumorigenesis and tumor development. To test this hypothesis, we initially collected 18 tumors and normal lung tissues from NSCLC patients (Cohort 1) with wedge resection or lobectomy and examined the expression of chemokines by quantitative reverse-transcription real-time PCR (qRT-PCR) assays. The results suggested that the mRNA levels of CCL7 were significantly higher in tumor tissues than in normal tissues (Fig. 1a and Supplementary Table 1), as we have observed for CCL233. We collected another cohort of tumors and normal lung tissues from NSCLC patients (Cohort 2) and confirmed that CCL7 is highly expressed in tumor tissues compared to the normal lung tissues (Fig. 1b and Supplementary Tables 2 and 3), which is consistent with the data from the Gene Expression Profiling Interactive Analysis (GEPIA) (http://geopia.cancer-pku.cn/detail.php?gene=CCL7). Results from immunohistochemistry (IHC) and integrated optical density (IOD) analysis with NSCLC tissue arrays of tumor and normal lung tissues (Cohort 3) confirmed that the protein levels of CCL7 were higher in tumor tissues than in the normal lung tissues (Fig. 1c, Supplementary Data 1 and Supplementary Table 4). In addition, high CCL7 protein levels had a significantly positive correlation with the OS of NSCLC patients (Cohort 3) (Fig. 1d). These data together suggest that CCL7 is upregulated in NSCLC tumor tissues and positively correlated with the OS of NSCLC patients.

Interestingly, we found that the mRNA levels of CCL7 were ~3.5 folds higher (P<0.05) in III/IV-stage tumors than in I/II-stage tumors (Supplementary Fig. 1a). However, the protein levels of CCL7 as determined by IHC and IOD analysis were comparable between early and late-stage NSCLC tumor tissues (Supplementary Fig. 1b). We next generated the NSCLC mouse model by intranasal injection of adenovirus expressing Cre-recombinase (Ad-Cre) into KrasLSL−G12D/+ Tp53fl/fl (KP) mice and analyzed CCL7 expression in early and late-stage tumors by qRT-PCR and IHC analysis. The results showed that Ccl7 mRNA and CCL7 protein levels were significantly higher in the lung...
tumors than in normal lung tissues and that Ccl7 mRNA levels were higher in advanced tumors than in early stage tumors (Supplementary Fig. 1c, d)34. However, the protein levels of CCL7 were comparable in the late and early stage tumors (Supplementary Fig. 1d, e), suggesting that the expression of CCL7 is regulated at transcriptional and posttranscriptional levels.

CCL7 is upregulated in multiple types of cells during tumorigenesis. We next generated Ccl7IRES-ZsGreen reporter mice and found that CCL7IRES-ZsGreen was undetectable in various types of cells in naive mice (Supplementary Fig. 2a–d). In contrast, CCL7IRES-ZsGreen was upregulated in mouse lung fibroblasts after HSV-1 or SeV infection or IFN\beta treatment (Supplementary Fig. 2e).
Fig. 1 CCL7 is upregulated in NSCLC tumor tissues. a Quantitative real-time PCR (qRT-PCR) analysis of CCL7 mRNA in primary tumor and adjacent normal tissues of NSCLC patients (n = 18). b qRT-PCR analysis of CCL7 mRNA in primary tumor and adjacent normal tissues of NSCLC patients (n = 44). c Immunohistochemistry (IHC) staining (left images) and integrated optical density (IOD) analysis (right graphs) of CCL7 in tissue array of tumor and adjacent normal tissues from NSCLC patients (n = 287). d Overall survival (OS) of NSCLC patients (n = 287) based on the CCL7 protein levels. e A scheme of KP and KP7ZsGreen mice intranasally injected with Ad-Cre for 10 weeks followed by flow cytometry analysis (upper scheme). Flow cytometry analysis of single-cell suspensions of lungs from KP and KP7ZsGreen mice as treated in the above scheme (lower flow charts). f Flow cytometry analysis of immune cells in the bronchial draining lymph nodes from KP and KP7ZsGreen mice treated as in e. g Flow cytometry analysis of immune cells in the lung infiltrated lymphocytes from KP and KP7ZsGreen mice treated as in e. h Tumor, tumor tissue; N, normal tissue; Stromal, stromal cell; Endo, endothelial cell; Tumor, tumor cell; CD1, conventional dendritic cell 1; AM, alveolar macrophage. Graphs show mean ± SEM (a-c). Scale bars, 100 μm (c). Data are representative of two independent experiments (e-g). Source data are provided as a source data file.

We next obtained KrasLSL–G12D/+; Tp53fl/flCd11cIRES–ZsGreen (KP7ZsGreen) mice and induced NSCLC in these mice by intranasal injection of Ad-Cre for 10 weeks (Fig. 1e). Results from flow cytometry analysis suggested that CCL7IRES–ZsGreen was expressed in CD11c+CD11b−H-2Kb−CD103− alveolar macrophages (AMs) but not in CD11c+CD11b−H-2Kb+CD103+ dendritic cells (DCs), CD11b+CD11c− cells, CD19+ B cells, CD4+ or CD8+ T cells (Fig. 1e-g). In addition, CCL7IRES–ZsGreen was found in CD45.2−CD31−CD81−CD49d−endothelial cells, CD45.2−CD31−CD81−CD49d−fibroblasts and CD45.2−CD31−CD81−CD49d−tumor cells but not in CD45.2−CD31−CD49d−stromal cells (Fig. 1e). These data together demonstrate that CCL7 is upregulated in multiple types of cells in the lung of the KP mice after tumor induction.

Consistently with previous observations that type I IFNs potently upregulate CCL7 mRNA22, we found that type I or type II IFNs treatment or transfection of ISD45 substantially upregulated the mRNA levels of CCL7 or Ccl7 in human A549 cells or in primary mouse lung epithelial cells, which was almost abolished by the JAK1 inhibitor (Supplementary Fig. 3a, b). Results from chromosome immunoprecipitation (ChIP) assays showed a direct binding of pSTAT1 on the human CCL7 or mouse Ccl7 gene promoters (Supplementary Fig. 3c, d). Importantly, treatment of JAK1 inhibitor in KP mice significantly downregulated the mRNA levels of Ccl7 in the lungs at 8 weeks after tumor induction (Supplementary Fig. 3e), suggesting that CCL7 is upregulated in the tumor-burdened lungs in KP mouse model in a JAK-STAT-dependent manner.

CCL7 deficiency promotes tumorigenesis in the KP mouse model. Since CCL7 is upregulated in NSCLC tumor tissues and positively correlated with the OS of NSCLC patients, we investigated the role of CCL7 in primary NSCLC development with the KP mouse model. The Ccl7−/− mice were crossed with KP mice to generate KrasLSL–G12D/+; Tp53fl/flCd11cIRES–/− (KP7) mice, and lung tumorigenesis was induced by intranasal injection of Ad-Cre (Fig. 2a). As shown in Fig. 2b, KP7 mice exhibited a median OS of 82 days, whereas the median OS of KP mice was significantly longer (105 days, P = 0.0007). In contrast, knockout of CCL28 has no effect on survival or tumor development of KP mice33. Histological analysis revealed that tumor numbers were comparable in the lungs of KP or KP7 mice at 6–10 weeks after tumor induction (Fig. 2c, d). In addition, the tumor sizes and areas were comparable between KP and KP7 mice at 6 weeks after induction, whereas the tumor sizes and areas were significantly larger in the lungs of KP7 mice than in those of KP mice at 8 or 10 weeks after induction (Fig. 2e, f), indicating that CCL7 deficiency does not affect the initiation of NSCLC tumors at early stage but inhibits tumor progression at late stage. However, neither ectopic expression of CCL7 in cells nor addition of CCL7 in the culture medium had any effects on cell cycle progression of A549 or HCC827 cells (Supplementary Fig. 3f). In addition, the KP and KP7 tumors displayed similar cell proliferation rate as indicated by Ki67 staining (Supplementary Fig. 3g), suggesting that CCL7 might not directly modulate tumor cell proliferation. These data collectively support a suppressive role of CCL7 in NSCLC development in KP mouse model.

CCL7 deficiency impairs infiltration of cDC1 to tumor-burdened lung. Because CCL7 is a chemotactic factor for various immune cells such as monocytes and DCs, we analyzed the percentages and numbers of the myeloid cells infiltrated in the tumor-burdened lungs of KP and KP7 mice at 10 weeks after induction. Single-cell suspensions of tumor-burdened lungs from KP and KP7 mice were prepared and stained with various monocytic markers followed by flow cytometry analysis (Fig. 3a). The total cell numbers of KP7 lungs were more than those of KP lungs, which was probably due to larger tumor sizes in KP7 mice than in KP mice (Fig. 3b), whereas the total cell numbers and the percentages of CD11c+ were comparable in lungs of KP or KP7 mice (Supplementary Fig. 4a, b). Results from flow cytometry analysis suggested that the percentages of cells and numbers of CD11c+CD11b− cells were significantly reduced in lungs of KP7 mice compared to KP mice (Fig. 3c). In contrast, the numbers of CD11c−CD11b+F4/80+ macrophages or CD11c−CD11b+Ly6G− neutrophils were comparable in lungs of KP or KP7 mice (Supplementary Fig. 4c, d). We further found that the numbers of CD11c+CD11b−H-2Kb+ DCs which expressed high levels of CD86, XCR1 and CD24 but low levels of CD64 were significantly reduced in tumor-burdened lungs of KP7 mice compared to KP mice (Fig. 3d, e). These data together suggested that CCL7 primarily attracts cDC1 in the tumor-burdened lungs in the KP mouse model. In this context, we found that CCL7 receptors CCR1, CCR2 and CCR3 were highly expressed on cDC1 compared to CD11c+ or CD11c−CD103− H-2Kb− alveolar macrophages or CD11c−CD11b+ cells (Fig. 3e and Supplementary Fig. 4e, f). Interestingly, we found that the numbers and percentages of CD11c−CD11b−Ly6c− monocytes were comparable between the tumor-burdened lungs of KP mouse and KP7 mice (Supplementary Fig. 4g, h), indicating that CCL7 is dispensable for monocytes infiltration into the lungs of KP mice after tumor induction. In this context, the CCR2 levels on monocytes were lower than those on cDC1 (Supplementary Fig. 4g). In addition, we observed that the intensities of CCL7 and CD11c+ cells were positively correlated in human NSCLC tumor biopsies (Supplementary Fig. 5a, b) and CD11chCCCL7hi patients showed significantly increased OS compared to CD11cchCCCL7lo patients (Supplementary Fig. 5c).

Interestingly, however, we found that the percentages of CD103, H-2Kb were comparable on the CD11c+CD11b− cells from the lungs of KP or KP7 mice (Fig. 3d). The cDC1 from the lungs of KP or KP7 mice also expressed comparable CD86, XCR1,
CD24 or CCL7 receptors (Fig. 3e), indicating that CCL7 deficiency does not affect activation or differentiation of cDC1 or the expression of CCL7 receptors on activated cDC1. However, the numbers of cDC1 were significantly less and the intensities of CD11c, CD103 and XCR1 were significantly lower in lung tumors from KP7 mice than KP mice at 10 weeks after tumor induction (Fig. 3d, f). These data indicate that CCL7 is required for optimal infiltration of cDC1 into the tumor-burdened lungs but not for activation of the infiltrating cDC1.

CCL7 deficiency impairs the activation of antitumor immune responses. cDC1 are professional APCs that uptake tumor antigens, migrate to lymphoid organs and activate tumor-specific naive T cells to become effector T cells35. We thus analyzed the adaptive immune responses in bronchial draining lymph nodes (dLNs). The results suggested that total cell numbers of bronchial dLNs from KP7 mice were significantly less than those from KP mice (Fig. 4a and Supplementary Fig. 5d). Although the percentages of CD4+ or CD8+ T cells in the bronchial dLNs were comparable between KP and KP7 mice at 10 weeks after tumor induction, the numbers of CD4+ or CD8+ T cells were significantly decreased in bronchial dLNs from KP7 mice compared to KP mice (Fig. 4b, c, and Supplementary Fig. 6a). In addition, the percentages of CD8+IFNγ+, CD4+IFNγ+, CD4+IL-4+, or CD4+IL-17+ T cells in the bronchial dLNs were comparable between KP and KP7 mice, whereas the numbers of CD8+IFNγ+ T cells were significantly decreased and the numbers of CD4+IFNγ+, CD4+IL-4+, or CD4+IL-17+ T cells were also decreased in bronchial dLNs from KP7 mice compared to KP mice (Fig. 4b, c, and Supplementary Fig. 6b, c), suggesting that CCL7 deficiency impairs CD8+ T cell expansion in the bronchial dLNs after tumor induction in the KP mouse model.

The APC-activated tumor-specific effector T cells from lymphoid organs migrate into peripheral blood and traffic to tumor tissues where they recognize tumor antigen and result in tumor cell lysis35. We next isolated lung infiltrated lymphocytes (LiLs) from the tumor-burdened lungs of KP and KP7 mice by Percoll-mediated gradient centrifugation and stained with various...
lymphocyte markers followed by flow cytometry analysis. The results suggested that total cell numbers of lung LILs were significantly decreased in KP7 lungs compared to KP lungs at 10 weeks after tumor induction (Fig. 4c and Supplementary Fig. 5d). The numbers of CD4+ or CD8+ T cells were decreased and the numbers of CD4+IFNγ+, CD4+IL-4+, or CD4+IL-17+ T cells were decreased in LILs of KP7 mice compared to KP mice (Fig. 4d, e and Supplementary Fig. 6d, e). Interestingly, consistently with a recent report36, the CCL7 receptors were barely expressed on CD4+ or CD8+ T cells (Supplementary Fig. 6f), indicating that decreased infiltration of CD4+ or CD8+ cells in lungs of KP7 mice is not due to a
Fig. 3 CCL7 deficiency impairs cDC1 infiltration to tumor-burdened lung. a Gating strategy of single-cell suspensions from lungs of KP mice that were intranasally injected with Ad-Cre (1 × 10^6 pfu/mouse) for 10 weeks. b Cell numbers of tumor-burdened lungs of KP (n = 15) and KP7 (n = 15) mice intranasally injected with Ad-Cre (1 × 10^6 pfu/mouse) for 10 weeks. c Flow cytometry analysis of single-cell suspensions of tumor-burdened lungs (left flow chart) and percentages and numbers of CD11c^+CD11b^+ cells in tumor-burdened lungs (left graphs) of KP and KP7 mice treated as in b. d Percentages and numbers of CD11c^+CD11b^-CD103^+H-2Kb^+ DCs in tumor-burdened lungs of KP and KP7 mice treated as in b. e Flow cytometry analysis of CD11c^+CD11b^- stained with CD103, H-2Kb, CD86, XCR1, CD24, CD64, CCR1, CCR2, and CCR3. f IHC (images) and intensity or IOD (graphs) analysis of CD11c, CD103, XCR1, and CCL7 in tumor sections of KP (n = 5) or KP7 (n = 5) mice injected with Ad-Cre (1 × 10^6) for 10 weeks. Two-tailed student's t-test (b–d, f). n.s., not significant. Graphs show mean ± SEM (b–d, f). Scale bars, 50 μm. Data are combined results of four (b–e) or two (f) independent experiments. Source data are provided as a source data file.

Fig. 4 CCL7 deficiency impairs CD8^+ T cell expansion. a Cell numbers and flow cytometry analysis of bronchial draining lymph nodes (dLNs) of KP (n = 6) and KP7 (n = 6) mice intranasally injected with Ad-Cre (1 × 10^6) for 10 weeks. b Percentages and numbers of CD8^+IFNγ^+T cells in bronchial dLNs from KP (n = 6) and KP7 (n = 6) mice treated as in a. c Lung infiltrated lymphocytes (LILs) of KP (n = 6) and KP7 (n = 6) mice injected with Ad-Cre (1 × 10^6) for 10 weeks were isolated and calculated (left graph). LILs were stimulated with PMA and ionomycin in the presence of Golgi-stop for 4 h followed by surface and intracellular staining with antibodies against NK1.1, CD3, CD4, CD8 and IFNγ and subject to flow cytometry analysis (right flow charts). d Percentages and numbers of CD8^+IFNγ^+ T cells in LILs from KP (n = 6) and KP7 (n = 6) mice treated as in a. e IHC staining (left images) and intensity or IOD analysis (right graph) of CD8 in tumor sections of KP (n = 6) and KP7 (n = 6) mice intranasally injected with Ad-Cre (1 × 10^6) for 10 weeks. Two-tailed student's t-test (a–e). n.s., not significant. Graphs show mean ± SEM (a–e). Scale bars, 50 μm. Data are representative of two independent experiments. Source data are provided as a source data file.
defective direct recruitment by CCL7 deficiency. We further found that the numbers and percentages of various immune cells in lungs, spleens, peripheral lymph nodes and peripheral blood were comparable between KP and KP7 mice without tumor induction (Supplementary Fig. 7). The proliferation of naive CD4+ or CD8+ T cells after plate-bound anti-CD3/CD-28 stimulation were not affected by CCL7 deficiency (Supplementary Fig. 8a). Results from bone marrow chimeric mice infected with LCMV (Armstrong) suggested that knockout of CCL7 in immune cells did not affect the activation and differentiation of CD8+ T cells after LCMV infection (Supplementary Fig. 8b, c), indicating that CCL7 deficiency does not directly inhibit CD8+ T cell activation or differentiation. In this context, the percentages of IFNγ+ or PD-1+ CD8+ T cells or IFNγ+, IL-4+, or IL-17+CD4+ T cells in the bronchial dLN and ILIs were comparable between KP and KP7 mice (Fig. 4b, d and Supplementary Fig. 6b, c, e, g). Collectively, these data suggest that CCL7 deficiency impairs T cell expansion and accumulation in bronchial dLN and tumor-burdened lungs of KP mouse model.

Depletion of CD11c+ or Zbtb46+ DCs promotes NSCLC development in KP mouse model. Since CCL7 receptors are barely expressed on CD8+ T cells, we reasoned that the decreased CD8+ T cells in ILIs were a result of CCL7 deficiency-caused insufficient cDC1 infiltration in the tumor-burdened lung of KP7 mice. To test this hypothesis, we transferred CD11c-Diphtheria Toxin Receptor (DTR) bone marrow cells into irradiated KP or KP7 mice followed by tumor induction and DT-mediated depletion of CD11c+ cells (Fig. 5a). As shown in Fig. 5b, the CD11c+ or CD11c+ CD103+H-2Kd+ DCs in the lungs of KP or KP7 mice were efficiently depleted by treatment of DT. Depletion of CD11c+ DCs substantially promoted NSCLC development in both KP and KP7 mice (Fig. 5c, d). Interestingly, the tumor burden and growth were comparable in DT-treated KP and KP7 mice (Fig. 5c, d), indicating essential roles of CCL7-mediated recruitment of CD11c+ DCs in suppression of tumorigenesis in the KP mouse model. Consistently, CD8+IFNγ+ T cells in the bronchial dLN and ILIs and the intensities of CD8, XCR1 and CD11c stainings in tumors from KP or KP7 mice were significantly decreased after DT treatment (Fig. 5e–g and Supplementary Fig. 9a).

We next transferred Zbtb46-DTR bone marrow cells into irradiated KP or KP7 mice followed by tumor induction and DT treatment for more specific depletion of DCs (Supplementary Fig. 9b). Expectedly, treatment of DT significantly promoted tumorigenesis in KP mouse (Supplementary Fig. 9c). The numbers of total cells, CD4+ or CD8+ T cells were significantly decreased in the bronchial dLN after DT treatment (Supplementary Fig. 9d). The stainings of XCR1 and CD8 were significantly reduced in KP mice after DT treatment compared to those after PBS treatment (Supplementary Fig. 9e, f). However, the tumor growth, cell numbers in bronchial dLN and the intensities of XCR1 and CD8 in tumor-burdened lungs were comparable between KP and KP7 mice after DT treatment (Supplementary Fig. 9c–f). These data collectively support the notion that CCL7 is essential for the recruitment of cDCs to promote T cell antitumor immune responses in the KP mouse model.

Administration of CCL7 in the lung inhibits NSCLC in KP mouse model. We next asked whether CCL7 could serve as a therapeutic agent for NSCLC by modulating the immune responses in the TME. We made Lentiviruses express the Cre recombinase (Lenti-Cre) or the Cre recombinase and CCL7 (Lenti-Cre-CCL7) and intranasally injected into KP mice (Supplementary Fig. 10a). Administration of CCL7 significantly prolonged the survival of KP mice and inhibited tumor development at 8 weeks after tumor induction (Supplementary Fig. 10b, c). Expectedly, CCL7 significantly promoted the infiltration of cDC1 in the tumor-burdened lungs (Supplementary Fig. 10d). In addition, the numbers of CD8+IFNγ+ T cells in bronchial dLN and ILIs were significantly increased in CCL7-injected KP mice compared to the controls (Supplementary Fig. 10e). These data suggest that CCL7 promotes cDC1 and CD8+ T cells infiltration and expansion to elicit antitumor immunity.

We next designed another model to more accurately simulate the treatment of NSCLC, as high expression of CCL7 is not associated with tumor initiation and most NSCLC patients are diagnosed at late stages. To this end, KP or KP7 mice were firstly intranasally injected with Ad-Cre and 6 weeks later these mice were further intranasally injected with Lenti-Vec or Lenti-CCL7, respectively (Fig. 6a). IHC analysis confirmed the expression of CCL7 in the lungs of Lenti-CCL7 injected KP or KP7 mice (Fig. 6b). Similarly, CCL7 injection significantly prolonged the survival and inhibited tumor development of the KP or KP7 mice compared to the respective controls (Fig. 6c–e). Consistently with these observations, the numbers of infiltrating cDC1 and the intensities of CD11c, XCR1 and CD8 staining were significantly increased in the tumor-burdened lungs of KP or KP7 mice injected with CCL7 compared to those injected with control viruses (Fig. 6f, g). In addition, the numbers of CD8+IFNγ+ T cells in the bronchial dLN and ILIs of KP or KP7 mice and the intensities of CD8 in tumors of KP mice were substantially increased after injection with CCL7 compared to the controls (Supplementary Fig. 6f, g). These data together suggest that CCL7 serves as a therapeutic agent for NSCLC in KP mouse model.

CCL7 enhances the efficacy of anti-PD-1 checkpoint immunotherapy. Anti-PD-1/PD-L1 checkpoint immunotherapies have been approved for NSCLC patients with PD-L1 positivity as first-line strategies and the efficacy is closely related to the infiltration of CD8+ T cells in the TME.37,38 Interestingly, we observed that there was PD-L1 staining in the tumors of KP mice and that CCL7 promoted CD8+IFNγ+ T cell infiltration without affecting the expression of PD-1 on CD8+ T cells (Supplementary Figs. 7g and 10h). We thus speculated that anti-PD-1 treatment might promote antitumor immunity in the KP mice which could be potentiated by CCL7. To test this hypothesis, the KP mice were intranasally injected with Ad-Cre followed by Lenti-Vec or Lenti-CCL7 injections in the presence or absence of intraperitoneal injection of anti-PD-1 twice a week for 4 weeks (Fig. 7a). As shown in Fig. 7b, anti-PD-1 treatment significantly prolonged the survival of KP mice, which was further prolonged by injection of CCL7 compared to injection of the empty vector. Consistently, anti-PD-1 treatment significantly inhibited tumor development of the KP mice, which was further inhibited by combined injection of CCL7 compared to the empty vector (Fig. 7c). Consistently, combined treatment of CCL7 and anti-PD-1 significantly increased the infiltration of CD11c+ or XCR1+ DCs and CD8+ T cells in the lungs of KP mice compared to the anti-PD-1 treatment alone (Fig. 7d, e).

We next examined whether CCL7 could promote antitumor immunity in the KrasLSL-G12D/+;Lkb1fl/fl (KL) NSCLC mouse model. KL mice were intranasally infected with Ad-Cre and 5 weeks later the mice were infected with Lenti-Vec or Lenti-CCL7 followed by analysis or survival observation (Fig. 8a). The results showed that administration of CCL7 significantly prolonged the survival of KL mice and inhibited NSCLC development in KL mice (Fig. 8a, b). Consistently with these
observations, administration of CCL7 increased the staining of CD11c, XCR1 and CD8 in tumors of KL mice (Fig. 8c). It has been reported that NSCLC patients with KRAS and LKB1 mutations have poorer response to anti-PD-1 or anti-PD-L1 than those with Kras and TP53 mutations. In this context, we found poor but detectable expression of PD-L1 in KL tumor model (Supplementary Fig. 10h). Consistently, anti-PD-1 treatment had no obvious improvement of the survival of KL mice, whereas combination of CCL7 and anti-PD-1 significantly prolonged the survival of KL mice compared to anti-PD-1 treatment alone (Fig. 8d). Together, these data collectively suggest that CCL7 promotes cDC1-CD8+ T cell axis to facilitate anti-PD-1
checkpoint immunotherapy in the KP and KL NSCLC mouse models. We next retrospectively reviewed the levels of CCL7 in CT-guided needle biopsies and the efficacy of anti-PD-1 immunotherapy in patients with advanced NSCLC (Cohort 4) who have received pembrolizumab or sintilimab treatment (Supplementary Table 5). The results suggested that the staining of CCL7, CD11c and CD8 in biopsies from patients with partial response (PR) or stable disease (SD) was significantly higher than in those from patients with progressive disease (PD) (Fig. 8e, f), indicating that CCL7 could serve as a prognostic or diagnostic marker of checkpoint immunotherapy for NSCLC.

Discussion

The anti-PD-1/PD-L1 checkpoint immunotherapies have been approved for a broad range of cancers including NSCLC35. However, only a limited proportion of NSCLC patients (~20%) exhibited a durable antitumor response. The response rate to anti-PD-1/PD-L1 checkpoint immunotherapies is closely correlated to the expression of PD-L1 and the infiltrating CD8+ T cells in the TME35,37,38. Here, we show that CCL7 recruits cDC1 to promote antitumor responses and enhance the efficacy of anti-PD-1 therapy in KP and KL NSCLC mouse models, suggesting that CCL7 serve as an adjuvant for anti-PD-1 checkpoint immunotherapies. In addition, we found that the levels of CCL7 were significantly higher in patients who exhibited PR or SD to anti-PD-1 therapies than those who exhibited PD, indicating that CCL7 in addition to PD-L1 in the TME as a potential predictive marker for anti-PD-1/PD-L1 checkpoint immunotherapies of NSCLC patients.

CCL7 is originally identified in the culture supernatants of MG-63 osteosarcoma cells as an attractant for monocytes but not for neutrophils21. CCL7 deficiency impairs the recruitment of various immune cells such as monocytes, DCs, neutrophils, CD4+ and CD8+ T cells into the proinflammatory organs or tissues after infections24,25,39. We found that the infiltrated cDC1, CD4+, and CD8+ T cells in the tumor-burdened lungs were significantly decreased by CCL7 deficiency. While the CD1c expressed high levels of CCR1/2/3, the CD4+ or CD8+ T cells barely expressed CCR1/2/3, indicating that CD1c and CD4+ or CD8+ T cells are directly and indirectly recruited to the TME, respectively. Actually, the numbers of CD8+ T cells in the bronchial dLNs were significantly decreased by CCL7 deficiency, which might be due to impaired infiltration of cDC1 in the tumor-burdened lungs of KP7 mice40. In support of this notion, we found that depletion of CD11c+ or Zbtb46+ DCs significantly reduced CD8+ T cells in the bronchial dLNs. In addition, we found that the percentages of CD103, CD86, H-2Kb, CD103, XCR1 or CD86 positivity were not affected by CCL7 deficiency, and CCL7 deficiency affected neither the homeostasis of immune cells in the lymph organs and lungs nor the activation or differentiation of CD4+ or CD8+ T cells in vitro or in vivo. These data imply that CCL7 is not involved in activation or differentiation of various immune cells, which is consistent with the observations that CD4+ or CD8+ T cells express undetectable CCR1/2/3. It should be noted that the infiltrated cDC1 in the lungs of KP7 mice was about one half of that in the lungs of KP mice, which indicates CCL7-independent alternative pathways existing for the recruitment of cDC1 to the TME. In contrast, we observed that CCL7 deficiency had no effect on the infiltration of CD11b+CD11c−F4/80+ macrophages or CD11b+CD11c−Ly6G+ neutrophils into the tumor-burdened lungs, although the CD11b+CD11c− macrophages or neutrophils in the TME expressed certain levels of CCR1/2/336. In this context, a recent report has demonstrated that NF-kB-mediated upregulation CCL2 (an agonist for CCR1/2/3) promotes tumor-associated macrophage infiltration and tumorigenesis in lung cancer41. Monocytes also express CCR2 and migrates into tissue by CCL2. Currently, how CCL7−CCR2 and CCL2−CCR2 signally differentially regulates the chemotaxis of monocytes and DCs in the tumor-burdened lungs of KP model are unclear. One possible explanation for this is that monocytes express other chemokine receptors that are distinct from DCs for optimal chemotaxis in this model, which requires further investigations.

It has been shown that overexpressing CCL7 enhances the expression of CCR3 in HCT116 and HT29 cells to promote metastasis and high CCL7 expression is associated with bone metastasis of NSCLC27,42. However, we found that CCR1/2/3 were barely expressed on non-CD11b+ or non-CD11c+ cells in the tumor-burdened lungs of KP or KP7 mice, which is consistent with an earlier report showing that mRNAs encoding CCR1/2/3 are mostly detected in mononcytic cells or neutrophils in the tumors from NSCLC patients or mice36. We and others have observed that advanced or late-stage NSCLC tumors expressed higher levels of CCL7 mRNA than did the early stage NSCLC tumors34, which might be due to enhanced genome instability or cell death in late-stage tumors that induces a CCL7-expressing proinflammatory condition in the TME in a JAK-STAT manner33-37. It is thus conceivable that high CCL7 mRNA levels are associated with poor prognosis42. However, results from our IHC and IOD quantification analysis suggested that CCL7 protein levels were comparable between early and late-stage tumors from NSCLC patients and KP mouse model, suggesting a post-transcriptional regulation of CCL7 protein production. In this context, the mRNA of CD247 (encoding PD-L1) is upregulated by IFNγ and stabilized by oncogenic RAS signaling, while its translation is potentiated by MYC48-50. Further investigations are required to fully elucidate the mechanisms for posttranscriptional regulation of CCL7 expression in NSCLC tumors.

Therapies with the PD-1/PD-L1 blockades have significantly improved the PFS and OS compared with the chemotherapies for NSCLC patients13,16. Recent progresses of several phase III trials have shown that combination of anti-PD-1/PD-L1 immune checkpoint blockades plus chemotheragents is superior to chemotherapy alone as first-line treatment for advanced NSCLC patients in regard of the OS and PFS31. A retrospective study shows that combination of chemotherapy and immune
checkpoint inhibitors improves the treatment efficacy over immune checkpoint inhibitors alone, indicating that combinational approaches would be the future standard treatment in NSCLC. Our results suggested that administration of CCL7 through the intranasal pathway promoted the recruitment of cDC1 into the tumor-burdened lungs and subsequent expansion of CD8+ and CD4+ T cells in the bronchial LNs and tumor-burdened lungs. Consistently, administration of CCL7 significantly prolonged the survival of KP or KL mice and inhibited tumorigenesis in the lungs of KP or KL mice after tumor induction. In addition, combinational treatment of CCL7 and anti-PD-1 was superior to anti-PD-1 alone in regard to the...
survival and tumor development in lungs of KP or KL mice. Considering that CCL7 promotes antitumor immunity in KL mouse model and patients with LKB1 mutations have poor response to anti-PD-1/PD-L1 therapies\(^1\), our results indicate supplementation of CCL7 serves as a new strategy to boost or enhance the efficacy of checkpoint immunotherapies in these patients. Taken together, these findings provide evidence that CCL7 as a potential “chemo-reagent” to enhance the efficacy of immune checkpoint blockades for NSCLC patients.

Methods

Human NSCLC samples

Four cohorts of human NSCLC samples were collected and analyzed in this study. Cohort 1 contained 18 paired normal and tumor tissues from NSCLC patients who underwent surgery from June to August of 2013 at the Department of Thoracic Surgery, Tongji Hospital. Cohort 2 contained 44 paired tumor and normal tissues from NSCLC patients who underwent surgery from November of 2013 to March of 2014 at the Department of Thoracic Surgery, Tongji Hospital. The tumor and normal tissues (\(\sim 0.2\) g) were washed with PBS, immersed in TRIzol and frozen in liquid nitrogen immediately after surgery. Cohort 3 contained 287 paraffin-embedded tumor tissues collected from January of 2012 through April of 2014 at the Department of Oncology and the Department of Pathology, Tongji Hospital. Patients of cohort 3 were followed up for survival or NSCLC-related death every three months for five successive years. Cohort 4 contained 35 paraffin-embedded tumor tissues that were obtained with CT-guided needle puncture and stained as PD-L1 positive samples. Patients of cohort 4 were diagnosed with advanced NSCLC without EGFR or ALK mutations and progressed after at least one line of chemotherapy. Patients of cohort 4 were subject to pembrolizumab or sintilimab plus platinum-based chemo-reagents treatment and followed up by CT imaging to evaluate the efficacy of treatment. Patients whose tumor sizes were shrunken by more than 30% of the initial sizes were recognized as PR to the therapies. Patients whose tumor sizes were enlarged by more than 20% of the initial sizes were recognized as PD in response to the therapies. Patients whose tumor sizes were neither shrunken nor enlarged than the initial sizes were recognized as SD in response to the therapies. The clinical information of patients from the four Cohorts was included or summarized in Supplementary Tables 1–4 and Supplementary Data 1. All cases were reviewed by the pathologists from the Department of Pathology of Tongji Hospital for the confirmation of tumor histology and tumor content. Written informed consent was obtained from all patients. This study was approved by the Institutional Research Ethic Committee of Tongji Hospital, Huazhong University of Science and Technology, and the Medical Ethic Committee of the School of Medicine, Wuhan University.

Tissue microarray preparation

Tissue microarray was prepared as previously described\(^{1,4,5}\). Total RNA was extracted from tumor or normal tissues or cells using TRIzol reagent (Invitrogen), and the first-strand cDNA was reverse-transcribed with All-in-One cDNA Synthesis SuperMix (Biotool). Gene expression was examined with a Bio-Rad CFX Connect system (Bio-Rad CFX Manager 3.1) by a fast two-step amplification program with 2 \(\times\) SYBR Green Fast qPCR Master Mix (Biotool). The value obtained for each gene was normalized to that of the gene encoding GAPDH or \(\beta\)-actin. Gene-specific primers are listed in Supplementary Table 6.

IHC assays

The sections were deparaffinized with xylene, rehydrated in 100, 85, and 70% ethanol for 10 min, quenched for endogenous peroxidase activity in 3% hydrogen peroxide, and processed for antigen retrieval in 0.5 mM EDTA (pH 8.0) buffer by heating in a microwave oven for 20 min. The sections were cooled naturally to room temperature and stained with various antibodies diluted in PBS containing 1% BSA and incubated at room temperature for over 6 h. Immunostaining was performed using the Maixin Bio- Detection Kit peroxidase/diaminobenzidine (DAB) rabbit/mouse (kit-9710, DAB-0031; Maixin Bio, Fuzhou), which resulted in a brown-colored precipitate at the antigen site. Subsequently, sections were counterstained with hematoxylin (Zymed Laboratories) for 5 min and covered-slipped. The information and dilution of antibodies have been listed in Table S5. Images were acquired with the Leica Aperio VERSA 8 (Aperio imagescope v12.3.2.8013) multifunctional scanner. The intensities of DAB staining were measured and quantified with IOD or cell intensity by Image Pro Plus 6 (Media Cybernetics).

Induction of tumorigenesis in KP or KL mouse model

Eight-to-ten-week-old KP or KL mice were anesthetized by intraperitoneal injection of 1% sodium pentobarbital (20 mg/kg). They were then intranasally injected with Ad-Cre viruses (Obio Technology, Shanghai) (1 \(\times\) 10\(^6\) pfu in 60 l\(\mu\)L PBS per mouse) or Lentiviruses expressing empty vector, CCL7, Cre or Cre and CCL7 (2 \(\times\) 10\(^6\) pfu in 60 l\(\mu\)L PBS per mouse). The survival of mice was recorded until the end of the study. Alternatively, at the indicated time points after infection, mice were euthanized and the BALF, lungs or dLNs were removed for subsequent analysis.

Preparation, concentration, and titration of lentivirus

The phase-6tag vector was modified to generate Lentiv-Vec, Lenti-Cre, Lentiv-CCL7, or Lenti-Cre-CCL7 constructs. In brief, the gene encoding Puroycin downstream the PGK promoter
Fig. 7 CCL7 enhances the efficacy of anti-PD-1 checkpoint immunotherapy in KP mice.

a A scheme of combinational therapy of CCL7 and anti-PD-1. KP mice were intranasally injected with Ad-Cre (2 × 10^6 pfu/mouse) for 5 weeks, followed by intranasal injection of Lenti-Vec or Lenti-CCL7 and intraperitoneal injection of control isotype IgG or anti-PD-1 antibody twice a week for 4 weeks.

b Survival of KP (n = 15, 14, or 15 for Vec + IgG, Vec + anti-PD-1 or CCL7 + anti-PD-1, respectively) mice treated as in a.

c IHC staining of sections (upper images) and tumor area (lower left graph) and size (lower right graph) analysis of tumor-burdened lungs of KP mice (n = 8, 10, or 11 for Vec + IgG, Vec + anti-PD-1 or CCL7 + anti-PD-1, respectively) treated as in a.

d IHC staining (d) and intensity analysis (e) of CD11c, XCR1, CD8, and CCL7 in tumor sections of KP (n = 8, 10, or 11 for Vec + IgG, Vec + anti-PD-1 or CCL7 + anti-PD-1, respectively) mice treated as in a. Scale bars represent 500 μm. Log-rank analysis (b) or two-tailed student’s t-test (c, e). Scale bars, 5 mm (c), 50 μm (d), respectively. Graphs show mean ± SEM (c, e). Data are combined results of three independent experiments. Source data are provided as a source data file.
was removed and the DNA encoding Cre recombinase or GFP was inserted by Pst I and Sph I. Such vectors were designated as Lenti-Cre or Lenti-Vec. The DNA encoding mouse CCL7 was inserted into the multiple clone site of the Lenti-Cre or Lenti-Vec vector with Not I and Xho I and the resulted constructs were named Lenti-Cre-CCL7 or Lenti-CCL7. The Lenti vectors were cotransfected with the package plasmids pSPAX2 and pMD2G into HEK293T cells. The medium was changed with fresh full medium (10% FBS, 1% streptomycin-penicillin and 10 μM β-mercaptoethanol) after 8 h. Forty hours later, the supernatants were harvested and filtered with a 0.45 μm filter and mixed with a Virus Precipitation Solution (5×) at 4 °C for 12 h (Cat# EMB810A-1, Excell Bio). The viruses were harvested by centrifugation at 3000 × g for 30 min. The supernatants were discarded and the precipitants containing Lentiviruses were re-suspended with PBS and stored at

Figure Legends

Figure a

KL Ad-Cre Lenti-Vec/Lenti-CCL7

Percent survival

Days	0	30	60	90	120	150	180
KL 100	75	50	25	0			
Ad-Cre	100	75	50	25	0		
Lenti-Vec/Lenti-CCL7	100	75	50	25	0		

p = 0.0018

Figure b

Tumor area (% lung area)

Tumor area (%)	10	20	30	40
Lenti-Cre	10	20	30	40
Lenti-Cre-CCL7	10	20	30	40

p = 0.0173

Figure c

CD11c	XCR1
Lenti-Cre	100
Lenti-Cre-CCL7	90
CCL7	80

Figure d

IgG/Anti-PD-1 twice a week

Percent survival

Days	0	30	60	90	120	150	180
KL 100	75	50	25	0			
Ad-Cre	100	75	50	25	0		
Lenti-Vec/Lenti-CCL7	100	75	50	25	0		

p = 0.02

Figure e

CD8

CD8	CCL7
Lenti-Cre	100
Lenti-Cre-CCL7	90
CCL7	80

Figure f

CCL7 intensity	CD11c	CD8
PR	100	
SD	90	
PD	80	

p = 0.0010
Fig. 8 CCL7 facilitates anti-PD-1 checkpoint immunotherapy in KL mice. a A scheme (upper) of administration of CCL7 in tumor-burdened KL mice. KL mice were intranasally injected with Ad-Cre (1 × 107 pfu/mouse) for 5 weeks, followed by intranasal injection of Lenti-Vec (n = 13) or Lenti-CCL7 (n = 14) for 5 weeks for analysis or for survival observation. Survival graph (lower) of KL mice treated as described above. b HE staining (left images) and tumor area and size analysis (right graphs) of KL (n = 6 for Vec or CCL7) mice treated as in a. c iHC staining (left images) and intensity analysis (right graphs) of KL (n = 6 for Vec or CCL7) mice treated as in a and d A scheme (upper) and survival analysis (lower graph) of combinatorial therapy of CCL7 and anti-PD-1 in KL (n = 10, 11, or 11 for Vec + IgG, Vec + anti-PD-1 or CCL7 + anti-PD-1, respectively) mice. KL mice were intranasally injected with Ad-Cre (2 × 107 pfu/mouse) for 5 weeks, followed by intranasal injection of Lenti-Vec or Lenti-CCL7 and intraperitoneal injection of control isotype IgG or anti-PD-1 antibody twice a week for 4 weeks. e, f HIC staining and intensity analysis (f) of CCL7, CD8 and CD11c in CT-guided needle biopsies from patients with advanced NSCLC received anti-PD-1 treatment. PR (n = 16), partial response; PD (n = 6), progressive disease; SD (n = 13), stable disease. Log-rank analysis (a, d), two-tailed student’s t-test (b, c, f). Scale bars, 5 mm (b) or 50 μm (c, e, f). Graphs show mean ± SEM (b, c, f). Data are combined results of two (b–d) or three (a) independent experiments. Source data are provided as a source data file.

Isolation of mouse lung epithelial cells. Mouse primary lung epithelial cells were isolated as described previously. Lungs from C57Bl/6 mice were perfused through cardiac lavage with PBS. Dispose solution (2 ml at 3.6 unit/ml; Gibco) was instilled into the lungs through a tracheal catheter. Lungs were removed from mice and incubated in the dispose solution for 1 h at room temperature. The lungs were microdissected and cell suspensions were filtered through nylon monofilament. The recovered cells were centrifuged at 1500 x g for 5 min and resuspended in PBS containing 1.5% FBS. The cells were incubated with anti-CD45 microbeads for 30 min at 4 °C and the CD45+ cells were depleted by flow-through a magnetic column (Miltenyi Biotec). The resulted cells were resuspended in DMEM containing 10% FBS, 1% streptomycin-penicillin and 10 μM β-mercaptoethanol and were seeded into 48-well plates at a density of 1 x 105 cells per well for overnight culture, followed by various treatments.

Chromatin immunoprecipitation (ChIP) assays. These experiments were performed as previously described. Cells with various stimuli were fixed with 1% formaldehyde for 15 min and washed with PBS for three times. The cells were lysed in ChIP lysis buffer (50 mM Tris·HCl pH 8.0, 1% SDS, 5 mM EDTA) followed by sonication to generate DNA fragments of 300–500 bp. The lysates were centrifuged at 4 °C for 15 min and ChIP dilution buffer (20 mM Tris·HCl, pH 8.0, 150 mM NaCl, 2 mM EDTA, 1% Triton X-100) was added to the supernatant (4:1 volume). The resulting lysates were then incubated with protein G beads and anti-pS1ATA (Cat#16757, CST) or control IgG at 4 °C for 4 h. DNA was eluted by ChIP dilution buffer (0.1 M NaHCO3, 1% SDS, 30 μg/ml proteinase K) followed by incubation at 65 °C for overnight. The DNA was purified with a DNA purification kit (TIANGEN) and was assayed by quantitative PCR using the SFC connect system with the 2 x SYBR Green fast qPCR master mix kit (Bioteo). The qPCR primer sequences of CCL7 or Cell promoter were listed in Supplementary Table 6.

JAK1 inhibitor treatment. KP mice intranasally injected with Ad-Cre (2 × 107 pfu in 60 μl PBS per mouse) for six weeks were prepared for JAK1 inhibitor treatment. Ruxolitinib phosphate (T3043, TargetMol) was dissolved in DMSO (100 mg/ml) and diluted with PBS containing 5% (v/v) PEG300/dextrose (PEGdex, 1:3, v/v) buffer until use. The mice were administered orally twice daily in an application dosage of 60 mg/kg bodyweight. After 2 weeks treatment of ruxolitinib, the lungs of the KP mice were separated and analyzed by qRT-PCR assay.

Preparation of single-cell suspensions from tumor-burdened lungs. Tumor-burdened lungs from KP or KP7 mice were perfused through alveolar lavage and cardiac lavage with PBS. The lungs from one mouse were cut into small pieces (2–4 mm in diameter) and transferred into a gentleMACS C Tube with the enzyme mix containing 2.35 ml of DMEM, 100 μl of Enzyme D, 50 μl of Enzyme G, 12.5 μl of Enzyme A from a Tumor Dissociation Kit (Miltenyi Biotec). The C Tube was tightly closed and attached onto the sleeve of the gentleMACSTM Octo Dissociator (Miltenyi Biotec) with the tumor isolation program. After termination of the program, C tube was detached from the Dissociator and incubated at 37 °C for 40 min. When the tumor isolation program twice and perform a short spin up to 1500 x g to collect the sample at the bottom of the tube. After dissociation, the sample re-suspended was applied to MACS SmartStrainers (70 μm) to prepare single-cell suspension.

Preparation of lung LLNs. The obtained single-cell suspensions were centrifuged at 1500 x g for 5 min at room temperature, and the precipitants were re-suspended with 40% Percoll (Cat#0891-09, GE Healthcare) in PBS (v/v). The suspension was centrifuged at 1500 x g for 20 min at room temperature and the supernatant was discarded. The precipitants containing LILs were re-suspended in 10% FBS DMEM containing PMA (50 ng/ml, PB1399, Sigma), Ionomycin (500 ng/ml, 10634, Sigma), Golgi-stop (1:1000, Cat# 554724, BD Biosciences) and cultured for 4 h at 37 °C, followed by staining and flow cytometry analysis.

Flow cytometry analysis. Flow cytometry protocol has previously described. The single-cell suspensions of tumor-burdened lungs, bronchial dLN or the obtained LILs were re-suspended in FACS buffer (PBS, 1%BSA) and blocked with anti-mouse CD16/32 antibodies for 10 min prior to staining with the antibodies of interest. For intracellular cytokines staining, cells were fixed and permeabilized with a fixation and permeabilization solution kit (Cat# 424401, Biolegend) followed by staining with the specific antibodies against intracellular cytokines. Antibodies used for flow cytometry analysis were listed in Table S5. Flow cytometry data were acquired on a FACSVerse flow cytometer (BD Biosciences, BD FACSDiva Software v8.2.1.1) and analyzed with Flowjo 10.6.2 software (TreeStar). The staining antibodies were listed in Supplementary Table 7.

Bone marrow transfer and LCMV infection. C57Bl/6 mice (8- week old) were irradiated (8 Gy, 4 Gy for twice) followed by injection of mixed bone marrow cells from C541+/- (wild-type) mice (1 × 107) and C541.2+/- (Cdl1.1−/-) mice (1 × 106) through tail vein. Eight weeks later, the mice were intraperitoneally injected with LCMV (2 × 106 pfu per mouse) (Armstrong) which was kindly provided by Dr. Xin-Yuan Zhou (Third Military Medical University). The mice were sacrificed one week after infection and the spleenocytes were left unstimulated or stimulated with PMA and ionomycin plus Golgi stop followed by surface and intracellular staining with GP31-41 tetramer, C4D1, C4D2, and IFNγ and flow cytometry analysis.

Diphtheria toxin-mediated depletion of CD11c+ or Zbtb46+ DCs. Bone marrow cells were isolated from the femur of CD11c-DTR or Zbtb46-DTR donor mice. Ten-week-old recipient KP or KP7 mice were irradiated with 8 Gy (4 Gy for twice) by small animal X-ray irradiator (RS2000Pro, Rad Source) and immediately intravenously injected the isolated CD11c-DTR or Zbtb46-DTR bone marrow cells through the tail vein (106 cells per mouse). Eight weeks later, the recipient KP or KP7 mice were intranasally infected with Ad-Cre (2 × 106 pfu per mouse). At the fifth week after tumor induction, the recipient KP or KP7 mice were injected intraperitoneally with DT (4 ng/g body weight, D0564, Sigma) or PBS every three days for 4 weeks. DC depletion efficiency in the recipient KP or KP7 mice were examined by flow cytometry and IHC analysis.

Combinational treatment of CCL7 and anti-PD-1. Eight-week-old KP mice were intranasally injected with Ad-Cre (2 × 106 pfu in 60 μl PBS per mouse). At fifth week after tumor induction, mice were intranasally injected with Lenti-GFP or Lenti-GFP-CCL7 (2 × 106 pfu in 60 μl PBS per mouse). These mice were either intraperitoneally injected with control IgG (BE9091, BioXcell) or anti-PD-1 (J43BE9033-2, BioXcell) (0.2 mg in 200 μl PBS per mouse) twice each week until death or for 4 weeks for histological analysis.

Hematoxylin-eosin staining analysis. Lungs from mice were fixed in 4% paraformaldehyde and embedded into paraffin blocks as previously described. Tumors blocks from mice were cut into 5 μm sections and stained with hematoxylin and eosin (H&E staining) for hematoxylin-eosin staining analysis. The stained sections were analyzed with a multifunctional scanner.

Statistical analysis. Differences between experimental and control groups were tested using Student’s t-test. The number of repeats for each experiment is also indicated in the respective figure legends. N in the figure legends indicates the number of mice or replicates in the experiments. P values < 0.05 were considered statistically significant. For animal survival analysis, the Kaplan–Meier method was adopted to generate graphs, and the survival curves were analyzed with log-rank analysis. Prism 6 was used to generate graphs and perform statistical analysis.
Acknowledgements

We thank Drs. Haojian Zhang (Wuhan University) for the B6.SIL mice, Xin-Yuan Zhou and Ying Wan (Third Military Medical University) for the CD11c-DTR mice and LCMV, Drs. Cliff Yang (Sun Yat-sen University) and Xiao Shen (Zhejiang University) for Zbtb46-DTR mice, Dr. Hong-Bin Ji (Shanghai Institute of Biological Sciences) for LCMV, Drs. Cliff Yang (Sun Yat-sen University) and Xiao Shen (Zhejiang University) for the CD11c-DTR mice and Ying Wan (Third Military Medical University) for the CD11c-DTR mice and help. This study was supported by grants from National Key Research and Development Program of China (2018YFC0904500, 2018YFC0904700, and 2018YFC1004601), Natural Science Foundation of China (82027025, 82070090, 81974833, 31271040, and 81672984), Fundamental Research Funds for the Central Universities (204202001207, 20420201f0042, and 20420201f059), Natural Science Foundation of Hubei Province (2018CFA016), and Medical Science Advancement Program (Basic Medical Sciences) of Wuhan University (TFIC2018004).

Author contributions

B.Z. and D.L. designed and supervised the study; Q.C. analyzed human NSCLC samples and followed up the prognosis of NSCLC patients; M.Z. and W.Y. designed and performed the major experiments; M.Z. performed flow cytometry analysis and treatment of KP and KL mice; W.Y. performed HE and IHC staining, helped with lung cancer modelling; P.W. helped with mouse breeding and genotyping; Y.D. collected human NSCLC samples of Cohort 1 and 2 and followed up the prognosis of these patients; F.-F. L., Y.-T.D., Y.-Q.D., P.Z., and D.L. made tissue arrays and clinicopathologic analysis and prepared the documents for ethical approval; R.H. and X.L. generated the bone marrow chimeric mice and performed LCMV infection and analysis; B.Z., Q.C., D.L., and M.Z. wrote the paper; all the authors analyzed data.

Competing interests

The authors declare no competing interests.

Additional information

Supplementary information is available for this paper at https://doi.org/10.1038/s41467-020-19973-6.

Correspondence and requests for materials should be addressed to D.L., Q.C. or B.Z.

Peer review information Nature Communications thanks David Barbie and the other, anonymous reviewer(s) for their contribution to the peer review of this work.

Reprints and permission information is available at http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.