Heterocyclic and Alkyne Terpenoids by Terpene Synthase-Mediated Biotransformation of Non-Natural Prenyl Diphosphates: Access to New Fragrances and Probes

Benjamin Weigel+, Jeanette Ludwig+, Roman A. Weber+, Steve Ludwig, Claudia Lennicke, Paul Schrank, Mehdi D. Davari, Mohamed Nagia, and Ludger A. Wessjohann*
Table of Contents

Section	Page
Supporting results	2
Fragmentation of monoterpenoid-analogous products resulting from substrates 1, 2, and 3	2
Biotransformation of GPP by TEAS	3
Chiral GC-MS of the enzymatic products	4
GC-MS chromatograms and spectra from the product mixtures of successful biotransformations with non-natural and natural substrates	6
Determination of the volume of active site pocket	22
Determination of the dimensions of the access tunnel	23
Flexibility analyses of CLS and TEAS protein structures	24
Comparison between Carbocation Docking of GPP and substrate 6 in CLS	25
Simplified GPP, FPP, and substrates 5, and 6 binding in CLS and TEAS	26
Carbocations form a helical conformation inside the active pocket of TEAS	28
Docking of linalyl diphosphate and its analogues from FPP, and substrates 5 and 6	29
Docking of the carbocations of FPP and substrate 6	30
Spectral data of the enzymatic products	32
Supplementary References	45
Supporting results

Fragmentation of monoterpane-analogous products resulting from substrates 1, 2, and 3

Figure S1: α-cleavage of the aromatic products 1d, 2b, and 3b leading to the formation of the common fragment ion with $m/z = 71$.
Biotransformation of GPP by TEAS

Figure S2: Proposed mechanism for the formation of cyclic and acyclic monoterpenes by TEAS via the transoid and cisoid cations.
Chiral GC-MS of the enzymatic products

Figure S3: Chiral column GC/MS chromatograms of the identified products 1d, 2b, and 3b in comparison to the synthetic racemic standards. Shown are only segments of the TIC-chromatograms with relevant peaks of the identified main product. For 3b, the enantiomers are not well separated and just show a much-broadened peak. However, the enzymatic products show a sharp peak at the front end, clearly indicating the non-racemic product formation.
Figure S4: Chiral column GC/MS chromatograms of the identified products 4b, 5f, and 6a. Shown are only segments of the TIC-chromatograms with relevant peaks of the identified main products of substrates 4, 5, and 6. The formation of four different diastereomers of product 4b (1-4) by CLS and three diastereomers (2-4) by TEAS could be confirmed. The first depicted peak of TEAS-products of substrate 4 is not corresponding to diastereomers of product 4b due to its different EI-fragmentation pattern. Product 5f likely is only one enantiomer as only one sharp peak occurs in chiral GC/MS measurements. The peak of 6a corresponds to (-)-oxa-germacrene.
GC-MS chromatograms and spectra from the product mixtures of successful biotransformations with non-natural and natural substrates.

Table S1. GC/MS chromatogram of the single vial assays of CLS and TEAS with corresponding EI mass spectra for each product peak with substrate 1. RT, retention time; RI, retention index.

substrate 1
product a
RT: 12.872 min
RI: 1333

product b
RT: 13.849 min
RI: 1405

product c
RT: 14.055 min
RI: 1421

product d
RT: 14.163 min
RI: 1430

product e
RT: 14.397 min
RI: 1448

product f (3-methyl-4-(phenylthio)-(E)-2-buten-1-ol)
RT: 16.140 min
RI: 1598
Table S2. GC/MS chromatogram of the single vial assays of CLS and TEAS with corresponding EI mass spectra for each product peak with substrate 2. RT, retention time; RI, retention index.

Product	RT (min)	RI
a	13.954	1413
b	15.217	1512
c	16.802	1645
d	17.091	1670

![GC/MS chromatogram and EI mass spectra](image)
Table S3. GC/MS chromatogram of the single vial assays of CLS and TEAS with corresponding EI mass spectra for each product peak with substrate 3. RT, retention time; RI, retention index.

![Chemical Structure of Substrate 3](image)

Product	RT (min)	RI
a	15.507	1536
b	16.521	1621

![GC/MS Chromatogram](image)

Product a
- RT: 15.507 min
- RI: 1536

Product b
- RT: 16.521 min
- RI: 1621
Table S4. GC/MS chromatogram of the single vial assays of CLS and TEAS with corresponding EI mass spectra for each product peak with substrate 4. RT, retention time; RI, retention index.

substrate 4

Product	RT (min)	RI
a	9.895	1129
b	10.646	1178
c	10.820	1189
d	10.975	1200
product m

RT: 13.828 min
RI: 1404
Table S5. GC/MS chromatogram of the single vial assays of CLS and TEAS with corresponding EI mass spectra for each product peak with substrate 5. RT, retention time; RI, retention index.

Product	RT (min)	RI
a	11.139	1211
b	11.147	1211
c	11.563	1124
d	11.658	1247
e	11.705	1250
f	11.860	1261
Product g
- RT: 11.896 min
- RI: 1263

Product h
- RT: 11.972 min
- RI: 1269

Product i
- RT: 12.063 min
- RI: 1275

Product j
- RT: 12.181 min
- RI: 1283

Product k
- RT: 12.246 min
- RI: 1288

Product l
- RT: 12.647 min
- RI: 1316
product m

RT: 13.181 min
RI: 1356

product n

RT: 13.303 min
RI: 1365

product o

RT: 14.626 min
RI: 1466

product p

RT: 14.628 min
RI: 1466
Table S6. GC/MS chromatogram of the single vial assays of CLS and TEAS with corresponding EI mass spectra for each product peak with substrate 6. RT, retention time; RI, retention index.

![Substrate 6](image)

Table S6.

Product	RT (min)	RI
a	15.492	1535

Figure S6.

- TIC
- napthalene (standard)
- TEAS
- CLS

Figure S6.

- TIC
- napthalene (standard)
- TEAS
- CLS

Figure S6.

- TIC
- napthalene (standard)
- TEAS
- CLS

Figure S6.

- TIC
- napthalene (standard)
- TEAS
- CLS

Figure S6.

- TIC
- napthalene (standard)
- TEAS
- CLS

Figure S6.

- TIC
- napthalene (standard)
- TEAS
- CLS

Figure S6.

- TIC
- napthalene (standard)
- TEAS
- CLS

Figure S6.

- TIC
- napthalene (standard)
- TEAS
- CLS

Figure S6.

- TIC
- napthalene (standard)
- TEAS
- CLS

Figure S6.

- TIC
- napthalene (standard)
- TEAS
- CLS

Figure S6.

- TIC
- napthalene (standard)
- TEAS
- CLS

Figure S6.

- TIC
- napthalene (standard)
- TEAS
- CLS

Figure S6.

- TIC
- napthalene (standard)
- TEAS
- CLS

Figure S6.

- TIC
- napthalene (standard)
- TEAS
- CLS

Figure S6.

- TIC
- napthalene (standard)
- TEAS
- CLS

Figure S6.

- TIC
- napthalene (standard)
- TEAS
- CLS

Figure S6.

- TIC
- napthalene (standard)
- TEAS
- CLS

Figure S6.

- TIC
- napthalene (standard)
- TEAS
- CLS

Figure S6.

- TIC
- napthalene (standard)
- TEAS
- CLS

Figure S6.

- TIC
- napthalene (standard)
- TEAS
- CLS

Figure S6.

- TIC
- napthalene (standard)
- TEAS
- CLS

Figure S6.

- TIC
- napthalene (standard)
- TEAS
- CLS

Figure S6.

- TIC
- napthalene (standard)
- TEAS
- CLS

Figure S6.

- TIC
- napthalene (standard)
- TEAS
- CLS
Table S7. GC/MS chromatogram of the single vial assays of CLS and TEAS with corresponding EI mass spectra for each product peak with substrate GPP. RT, retention time; RI, retention index.

substrate GPP

(product a) \((\beta\text{-}\text{pinene})\)

- RT: 6.529 min
- RI: 921

(product b) \((\beta\text{-}\text{myrcene})\)

- RT: 6.655 min
- RI: 929

(product c) \((-\text{limonene})\)

- RT: 7.294 min
- RI: 967

(product d)

- RT: 7.357 min
- RI: 970
product e (β-ocimene)
RT: 7.527 min
RI: 981

product f (γ-terpinene)
RT: 7.740 min
RI: 993

product g ((+)-4-carene)
RT: 8.207 min
RI: 1022

product h (linalool)
RT: 8.321 min
RI: 1029

product i (fenchol)
RT: 8.627 min
RI: 1049

product j ((E)-2-pinanol)
RT: 8.770 min
RI: 1058

product k (4-terpineol)
RT: 9.590 min
RI: 1109

product l (α-terpineol)
RT: 9.783 min
RI: 1122
product m (geraniol)

RT: 10.622 min
RI: 1176
Table S8. GC/MS chromatogram of the single vial assays of CLS and TEAS with corresponding EI mass spectra for each product peak with substrate FPP. RT, retention time; RI, retention index.

substrate FPP

- **product a**
 - RT: 12.642 min
 - RI: 1316

- **product b** (farnesene)
 - RT: 13.380 min
 - RI: 1370

- **product c** (β-selinene)
 - RT: 13.444 min
 - RI: 1375

- **product d** (5-epi-aristolochene)
 - RT: 13.909 min
 - RI: 1410
product e
RT: 13.983 min
RI: 1416

product f
RT: 14.138 min
RI: 1428

product g ((E)-farnesol)
RT: 14.728 min
RI: 1474
Determination of the volume of active site pocket

Figure S5: Active site pocket in CLS (A) and TEAS (B); Fpocket tool of HotSpot Wizard 3.0\[1\] was used for the calculation of the volume of the active site pocket. Calculated binding pocket (in yellow) in CLS (1076 Å³) is smaller than TEAS (1940 Å³).
Determination of the dimensions of the access tunnel

Figure S6: Substrate access tunnel in CLS (A) and TEAS (B); MoleOnline\(^2\) was used to identify and visualize the substrate access tunnels (in blue). Comparison shows that CLS has a longer but narrower substrate-binding pocket (bottleneck radius = 1.3 Å, length = 33.5 Å) compared with TEAS (bottleneck radius = 3.2 Å, length = 18.8 Å)
Flexibility analyses of CLS and TEAS protein structures

Figure S7: Substrate-binding loops (1-5) and the residue fluctuation profile for amino acid residues (RMSF) in CLS (A) and TEAS (B). Flexibility analysis of protein structures was performed by CABS-flex 2.0[3] web server. Loops (1-5) forming the substrate entrance tunnels are marked with the same color in the RMSF plot as in the protein structure.
Comparison between Carbocation Docking of GPP and substrate 6 in CLS

Figure S8: Representation of docking positions of geranyl cation and carbocation of substrate 6 in the active site pocket of limonene synthase from Cannabis sativa (CLS). The active site pocket was visualized as a surface in orange, complexed Mg$^{2+}$ ions as magenta spheres. Residues involved in the migration and stabilization of the carbocation intermediate are highlighted as grey stick representations and labeled accordingly. Docked conformations of the geranyl cation and the carbocation of substrate 6 are shown as stick and ball in cyan and yellow, respectively (with the oxygen of substrate 6 bound to Mg$^{2+}$ complex highlighted in red).
Simplified GPP, FPP, and substrates 5, and 6 binding in CLS and TEAS

Figure S9: A 2D view of GPP and FPP substrate binding in the CLS (A) and TEAS (B) active site pockets. Molecular docking of substrates was used to identify productive binding poses. LigPlot+[^4] was used for the visualization of 2D enzyme-substrate interactions. Key interactions between substrates and Mg^{2+} and amino acids in the binding pocket are shown.
Figure S10: A 2D view of substrates 5 and 6 binding in the active site pocket of CLS and TEAS, respectively. Molecular docking of the substrate was used to identify productive binding poses. LigPlot+[4] was used for the visualization of 2D enzyme-substrate interactions. Key interactions between substrates and Mg2+ and amino acids in the binding pocket are shown.
Carbocations form a helical conformation inside the active pocket of TEAS

Figure S11: Resulting conformations of carbocations of GPP (A, green), FPP (B, cyan), substrate 5 (C, magenta), and substrate 6 (D, yellow) after docking in TEAS. C1 and C10 (if existing in the molecules) are highlighted in deep blue. Substrates FPP (B) and 6 (D) show a helical conformation but GPP (A) and substrate 5 (C) were (more) linear.
Docking of linalyl diphosphate and its analogues from FPP, and substrates 5 and 6

Figure S12: Resulting conformations of linalyl diphosphate or its analogs of GPP (A, green), FPP (B, cyan), substrate 5 (C, magenta), and substrate 6 (D, yellow) after docking in CLS.
Docking of the carbocations of FPP and substrate 6 in TEAS

Figure S13: Comparison of the dockings of carbocations of FPP and substrate 6 in TEAS. The distance between C1 and C10 of resulting helical conformations of the carbocations from FPP (A; cyan) and substrate 6 (B; yellow) after docking in TEAS. The representative distance between C1 and C10 (carbons are highlighted in deep blue) is shown as a red arrow.
Figure S14: Docking pose of α-terpinyl cations of GPP (A; green) and compound 5 (B; magenta) into the active site of CLS. The distances between C9 of terpinyl cation of GPP and πN of His601 and τN of His601 are marked in red and orange, respectively. The distances between diphosphate and τN are shown in red.
Spectral data of the enzymatic products

1H NMR spectrum of product 1d

13C NMR spectrum of product 1d
13C NMR Dept spectrum of product 1d
1H NMR of the synthetic product 2b

13C NMR of the product 2b
13C NMR Dept spectrum of product 2b
1H NMR of product 3b

13C NMR of the product 3b
13C NMR Dept spectrum of product 3b
EI-MS of enzymatic product 4b

1H NMR of the enzymatic product 4b
1H NMR of the enzymatic product 5f

13C NMR of the enzymatic product 5f
COSY spectrum of the enzymatic product 5f
HSQC spectrum of the enzymatic product 5f
HMBC spectrum of the enzymatic product 5f
\(^1\)H NMR of the enzymatic product 6a

\(^13\)C NMR of the enzymatic product 6a
HMBC spectrum of the enzymatic product 6a
Supplementary References

[1] L. Sumbalova, J. Stourac, T. Martinek, D. Bednar, J. Damborsky, *Nucleic Acids Research* **2018**, *46*, W356-W362.

[2] K. Berka, O. Hanák, D. Sehnal, P. Banáš, V. Navratilova, D. Jaiswal, C.-M. Ionescu, R. Svobodová Vařeková, J. Koča, M. Otyepka, *Nucleic Acids Research* **2012**, *40*, W222-W227.

[3] A. Kuriata, A. M. Gierut, T. Oleniecki, M. P. Ciemny, A. Kolinski, M. Kurcinski, S. Kmiecik, *Nucleic acids research* **2018**, *46*, W338-W343.

[4] R. A. Laskowski, M. B. Swindells, *J. Chem. Inf. Model.* **2011**, *51*, 2778-2786.