Pion Interferometry of $\sqrt{s_{NN}} = 130$ GeV Au+Au Collisions at RHIC

C. Adler11, Z. Ahammed23, C. Allgower12, J. Amonett14, B.D. Anderson14, M. Anderson5, G.S. Averichev9, J. Balewski12, O. Baramnikova9,23, L.S. Barnaby14, J. Baudot13, S. Bekele20, V.V. Belaga9, R. Bellwied30, J. Berger11, B. Bielcik29, L.C. Bland12, C.O. Blyth3, B.E. Bonner24, R. Bossingham15, A. Bouchami26, A. Brandin18, R.V. Cadman18, V. Emeljanov18, J. Engelage4, G. Eppley24, B. Erazmus26, P. Fachi25, V. Faine2, E. Finch31, Y. Fisyak2, D. Flierl11, K.J. Foley2, J. Fu15, N. Gagunashvili9, J. Gans31, L. Gaudichet26, M. Germain13, F. Geurts24, V. Ghazikhanian6, J. Grabiski28, O. Grachov30, D. Greiner15, V. Grigoriev18, M. Guedon13, E. Gushin18, T.J. Hallman27, D. Hardtke15, J.W. Harris31, M. Heffner5, S. Heppelmann21, T. Herston26, B. Hippolyte13, A. Hirsch75, E. Hjort15, G.W. Hoffmann27, M. Horsley1, H.Z. Huang4, T.J. Humenic26, H. Hümmler16, G. Igo6, A. Ishihara27, Yu.I. Ivanishin10, P. Jacobs15, W.W. Jacobs12, M. Janik28, I. Johnson15, P.G. Jones3, E. Judd1, M. Kaneta15, M. Kaplan1, D. Keane14, A. Kisiel28, J. Klay5, S.R. Klein15, A. Klyachko12, A.S. Konstantinov22, L. Kotchenla18, A.D. Kovalenko9, M. Kramer19, P. Kravtsov18, K. Krueger1, C. Kuhn13, A.I. Kulikov9, G.J. Kunde31, C.L. Kunz2, R.Kh. Kuteev10, A.A. Kuznetsov9, L. Lakehal-Ayat26, J. Lamas-Valverde24, M.A.C. Lamont4, J.M. Landgraf2, S. Lange11, C.P. Lansdell27, B. Lasiuk31, F. Laue2, A. Lebedev2, T. LeCompte1, R. Lednicky9, V.M. Leontiev22, M.J. LeVine2, Q. Li30, Q. Li15, S.J. Lindemans19, M.A. Lisa20, T. Ljubicic2, G. LoCurto16, H. Long6, R.S. Longacre2, M. Lopez-Noriega20, W.A. Love2, D. Lynn2, R. Majka11, S. Margetis14, L. Martin26, J. Marx15, H.S. Matis15, Yu.A. Matuleenko22, T.S. McShane2, F. Meissner16, Yu. Melnich22, A. Meschachin2, M. Messer2, M.L. Miller31, Z. Miselevich8, N.G. Minaev22, J. Mitchell24, V.A. Moiseenko10, D. Moitz15, C.F. Moore27, V. Morozov15, M.M. de Moura30, M.G. Munhoz25, G.S. Mutchler24, J.M. Nelson2, P. Neves2, V.A. Nikitov10, L.V. Nogach22, B. Norman14, S.B. Nurushev22, G. Odyniec15, A. Ogawa21, V. Okorokov18, M. Oldenburg16, D. Olson15, G. Paic20, S.U. Pandey20, Y. Panebretsay2, S.Y. Panitkin2, A.I. Pavlov20, T. Pawlak28, V. Perevozchikov3, W. Perry28, V.A. Petrov10, W. Pingan26, E. Platner24, J. Pluta28, N. Porile23, J. Porter2, A.M. Poskanzer15, E. Potrebenikova9, D. Prindle29, C. Pruneau30, S. Radomski28, G. Rai15, O. Ravel26, R.L. Ray22, S.V. Razin9,12, D. Reichhold8, J.G. Reid29, F. Retiere15, A. Ridger18, H.G. Ritter15, J.B. Roberts24, O.V. Rogachevski15, J.L. Romero5, C. Roy26, D. Russ7, V. Rykov30, I. Sakrejda15, J. Sandweiss31, A.C. Saulys9, I. Savin19, J. Schambach27, R.P. Scharenberg31, K. Schweda45, N. Schmitz16, L.S. Schroeder15, A. Schittau16, J. Seger8, D. Seliverstov10, P. Seyboth19, E. Shahaliev9, K.E. Shestermanov22, S.S. Shimanskii9, V.S. Shvetsov10, G. Skoro9, N. Smirnov31, R. Snellings15, J. Sowinski12, H.M. Spinka1, B. Srivastava28, E.J. Stephenson12, R. Stock11, A. Stolpovsky30, M. Strikhanov18, B. Stringfellow23, H. Stroebele11, C. Struck11, A.A.P. Suáez30, E. Sugabaker20, C. Suire25, M. Sumbera9, T.J.M. Symons15, A. Szanto de Toledo25, P. Szarvas28, J. Takahashi25, A.H. Tang14, J.H. Thomas15, V. Tikhomirov18, T.A. Traino29, S. Trentalange6, M. Tokarev9, M.B. Tonjes17, V. Trofimov18, O. Tsai9, K. Turner2, T. Ullrich2, D.G. Underwood1, G. Van Buren2, A.M. VanderMolen17, A. Vanyashin15, I.M. Vasilevski10, A.N. Vasiliev22, S.E. Vigdor12, S.A. Voloshin15, F. Wang24, H. Ward15, J.W. Watson11, R. Wells29, T. Wenaus5, G.D. Westfall17, C. Whitten Jr.6, H. Wieman15, R. Willson30, S.W. Wissink12, R. Witt14, N. Xu15, Z. Xu15, A.E. Yakutin22, E. Yamamoto2, J. Yang6, P. Yepes24, A. Yokosawa1, V.I. Yurevich9, Y.V. Zanevski9, I. Zborovský9, W.M. Zhang14, R. Zoulkarneev10, A.N. Zubarev9

(STAR Collaboration)
Two-particle intensity interferometry techniques (HBT) have been used extensively to probe the space-time structure of heavy ion collisions \[1\]. At midrapidity \(y = 0\) and low transverse momentum \(p_T\), two-pion correlation functions reflect the space-time geometry of the emitting source, while dynamical information (e.g. collective flow) is contained in the momentum dependence of the apparent source size \[3\].

In this Letter we study two-pion correlation functions in Au+Au collisions at \(\sqrt{s_{NN}} = 130\) GeV produced by the STAR (Soloidal Tracker at RHIC) detector. The source size extracted by fitting the correlations grows with event multiplicity and decreases with transverse momentum. Anomalously large sizes or emission durations, which have been suggested as signals of quark-gluon plasma formation and rehadronization, are not observed. The HBT parameters display a weak energy dependence over a broad range in \(\sqrt{s_{NN}}\).

Two-particle intensity interferometry techniques (HBT) have been used extensively to probe the space-time structure of heavy ion collisions \[1\]. At midrapidity \(y = 0\) and low transverse momentum \(p_T\), two-pion correlation functions reflect the space-time geometry of the emitting source, while dynamical information (e.g. collective flow) is contained in the momentum dependence of the apparent source size \[3\].

In this Letter we study two-pion correlation functions in Au+Au collisions at nucleon-nucleon center-of-mass energy \(\sqrt{s_{NN}} = 130\) GeV produced by the RHIC facility at Brookhaven National Laboratory, and compare our results to similar studies at lower energy. Such systematic comparisons may reveal the onset of new phenomena, as \(\sqrt{s_{NN}}\) increases. We are particularly interested in possible indications that a quark gluon plasma (QGP) has been formed in the collision. Several authors \[3\] have proposed HBT studies to probe for a significant increase in the pion emission timescale associated with QGP formation.

Experimentally, the two-particle correlation function is obtained from the ratio \(C_2 = A/B\) normalized to unity at large \(q\), where \(A\) is the measured two-pion distribution of pair momentum difference \(q = p_2 - p_1\), and \(B\) is the mixed background distribution \[2\], calculated in the same way using pairs of particles taken from different events.

The STAR time projection chamber (TPC) \[1\] was used to record charged particle tracks as they crossed up to 45 padrows of the detector. For P-10 gas in the 0.25 T solenoidal magnetic field, transverse and longitudinal diffusion were both about 350\,µm times the square root of the drift length. The TPC was read out with 138,000 waveform digitizer channels \[4\]; the signal shaping width was comparable to the diffusion. For a typical 1.5-meter drift, two-track resolution was limited by the resulting 6 mm signal spread, in addition to geometric spreading due to tracks traversing the padrows at finite crossing angles. This analysis used tracks with \(0.125 < p_T < 0.45\) GeV/c and \(|y| < 0.5\) for which the reconstruction and \(\pi\) identification efficiencies are high. We present results for three \(p_T\) ranges: \(0.125 - 0.225\) GeV/c, \(0.225 - 0.325\) GeV/c, and \(0.325 - 0.45\) GeV/c.

We select events with a collision position that is within 75 cm of the mid-plane of the 4-m long TPC. An important feature of two-particle correlation functions is that single-particle phase space and acceptance effects cancel to first order. To preserve this feature in the collider environment (in which the collision vertex– and hence the single-particle acceptance– varies event-to-event), we only mix events which have a primary vertex longitudinal location within 15 cm of each other; however, mixing events over the full \(\pm 75\) cm range introduces no significant distortion in the correlation fit parameters, in the present analysis.

Starting with a minimum-bias trigger \[3\], we characterize the centrality of collisions off-line according to the measured multiplicity of negatively-charged particles with pseudorapidity \(|\eta| < 0.5\). After accounting for event reconstruction inefficiency for low-multiplicity events, we estimate that the minimum-bias distribution contains \(\sim 90\%\) of the hadronic Au+Au cross section \[3\].

We analyze \(\sim 10^5\) events in each of three bins: bin 3 contains the 12% most central of the measured collisions, bin...
2 the next 20%, and bin 1 the next 40%.

Particle identification was achieved by correlating the magnetic rigidity of a track with its specific ionization \((dE/dx)\) in the gas of the TPC. In the momentum region of interest, \(\pi, K\), and \(p/p\) are well-separated; contamination of the pion sample by electrons is the primary concern. Based on simulations and on extrapolation from regions of clear \(e^-/\pi^-\) separation, we estimate that electrons comprise about 10% (4%) of the selected tracks in our lowest (highest) \(p_T\) bin. Tracks used in the correlations are required to project back to the primary interaction vertex within 3 cm, thereby selecting primarily pions emitted directly from the collision. Contamination from non-pions and pions originating from long-lived decays (e.g., \(\Lambda, \omega\)) reduces the strength of the correlation, characterized by the parameter \(\lambda\), while leaving the extracted source radii unchanged.

Although track-splitting (incorrect reconstruction of a single particle as two particles) in the STAR TPC is a small effect in general (\(\lesssim 1\%\)), it may have a strong impact on correlation studies at low \(|q|\). False pairs generated by track-splitting are removed by a topological cut which requires valid and distinct signals of both tracks on several TPC padrows. For the present analysis, residual effects of track-splitting are negligible.

To eliminate the effect of track-merging (in which two tracks with similar momenta are reconstructed as a single track), we require the tracks in a pair to be well separated (> 2.5 cm at the radius of the TPC inner field cage, 50 cm). In applying this cut also to the mixed-pair background, the effect of event-to-event variation in primary vertex position is taken into account. The anti-merging cut removes significant detector effects, but also discriminates against low-\(|q|\) pairs, which carry the correlation signal. This leads to an artificial reduction in the HBT parameters, which we estimate, based on simulations, to be 3-6% for the radii and 6-14% for \(\lambda\), depending on \(p_T\). We correct for this effect in the results presented.

We apply to each background pair a Coulomb correction corresponding to a spherical Gaussian source of 5 fm radius; this correction is identical to that used by several other groups. In principle, this procedure over-corrects the correlation function for realistic sources (e.g., in which some pions originate far from the core source). We find that the HBT radii change smoothly by \(\sim 10\%\) as the strength of the Coulomb correction is varied from the standard correction to no correction. Here, we restrict ourselves to the standard Coulomb correction, allowing for a uniform extension of existing interferometry systematics from lower energy.

One-dimensional correlation functions constructed in the invariant quantity \(Q_{\text{inv}} = \sqrt{(P_1 - P_2)^2 - (E_1 - E_2)^2}\) are fit to the functional form

\[
C(Q_{\text{inv}}) = 1 + \lambda \exp(-Q_{\text{inv}}^2 R_{\text{inv}}^2),
\]

The 1-D correlation function (and fit) corresponding to our highest multiplicity class is shown in Fig. 1a for low-\(p_T\) \(\pi^-\). The 1-dimensional fit fails in lowest \(Q_{\text{inv}}\) bins, as has been observed in previous measurements. Hence, the extracted radius \(R_{\text{inv}} \approx 6.3\) fm is only a rough indication of the space-time extent of the source.

A more detailed characterization of the emitting source is obtained through multidimensional correlation functions. We decompose the momentum difference \(q\) according to the Pratt-Bertsch “out-side-long” (indicated by \(o, s, l\) subscripts) parameterization. Here, \(q_s\) is parallel to the beam, \(q_o\) is perpendicular to the beam and to the total momentum of the pair, and \(q_l\) is perpendicular to \(q_s\) and \(q_o\). Data are analyzed in the longitudinally co-moving system (LCMS) frame, in which the longitudinal component of the pair momentum vanishes. Figs. 1b-d show one-dimensional projections of the correlation function \(C(q_o, q_s, q_l)\) onto the \(q_o, q_s,\) and \(q_l\) axes, for \(\pi^-\) from the most central collisions.

The 3-dimensional correlation functions are fit with the standard Gaussian form

\[
C(q_o, q_s, q_l) = 1 + \lambda \exp(-R^2 q_o^2 - R^2 q_s^2 - R^2 q_l^2),
\]

where \(R_i\) is the homogeneity length in the \(i\) direction. Projections of the fit to the central collisions, weighted according to the mixed-pair background, are shown as curves in Fig. 1.

Systematic errors on the HBT fit parameters have two sources of roughly equal magnitude: (1) the uncertainty on the correction for the anti-merging cut, estimated equal to the correction itself, and (2) the uncertainty associated with the Coulomb correction, \(\sim 0.1-0.2\) fm in the radii, determined by varying the Coulomb radius by \(\pm 1\) fm.

The effect of the single-particle momentum resolution \((\delta p/p \sim 2\%)\) in the TPC for the particles under study) is known to induce systematic underestimates of HBT parameters. For our lowest \(p_T\) bin, \(\delta q_o \approx 4.5\) MeV/c, and \(\delta q_s \approx \delta q_l \approx 3\) MeV/c. While \(\delta q_o\) and \(\delta q_l\) change little, in our highest \(p_T\) bin, \(\delta q_o \approx 11\) MeV/c. Using an iterative procedure similar to that used at lower energies, we have corrected our correlation functions for finite resolution effects. The correction had no effect on the HBT parameters for our lowest \(p_T\) cut; for the highest \(p_T\) cut, it resulted in a 5% increase in \(\lambda\) and a 8% increase in \(R_o\), while \(R_s\) and \(R_l\) were unaffected.

The multiplicity dependence of the source parameters is presented in the left panels of Fig. 2 for low-\(p_T\), midrapidity \(\pi^-\pi^-\) and \(\pi^+\pi^-\) correlations. The parameters for positive and negative pions are similar; the \(\lambda\) parameter is constant, and all three radii increase monotonically with multiplicity. The increase of the transverse radii \(R_o\) and \(R_s\) with multiplicity is interpreted as a geometrical effect, and is also observed in lower energy measurements. The multiplicity dependence of \(R_l\)
differs from observations at lower energies; E895 [14] and NA49 [23] observe no dependence of R_0 over a wide range of multiplicity at the AGS and SPS, while NA44 [26] reports a sharp increase for the very highest multiplicity collisions at the SPS.

The right panels of Fig. 2 show, for the events in multiplicity bin 3, the dependence of the HBT parameters on $m_T = \sqrt{p_T^2 + m^2}$, which increases with m_T, consistent with studies at lower energy [14,23,24], in which the increase was attributed to decreased contributions of pions from long-lived resonances at higher p_T.

The radius parameters decrease significantly with m_T. This m_T-dependence, weak at $\sqrt{s_{NN}} \sim 2$ GeV [14] and growing stronger with collision energy [23,24,27], reflects pion emission from a radially expanding source. The m_T-dependence at RHIC is similar, but not identical, to that observed in central Pb+Pb collisions at the CERN SPS [23,24,27]. The significant decrease of R_0 with m_T contrasts with the m_T-independence of R_0 measured at midrapidity in collisions at SPS energy [23,24]. For our highest m_T data, $R_0 < R_s$, possibly indicating significant source opacity resulting from the high particle densities generated in RHIC collisions [23,24].

To place our results in context, Fig. 3 shows the world’s dataset of correlation parameters for midrapidity, low-p_T pions, does not show a significant rise due to QGP formation [5].

In hydrodynamic models [3,4], the radius parameter R_s correlates most directly with source geometry [4]. After an initial decrease at AGS energies, attributed to increasing space-momentum correlations [4], R_s appears to rise slightly with collision energy, reflecting a larger freeze-out volume with increasing pion multiplicity. Similarly, R_l does not exhibit a large increase with collision energy, after the initial increase between AGS and SPS energies.

The parameter R_o encodes both geometry and timescale information; in the absence of flow and opacity effects, the emission timescale (duration of freeze-out) is given by $\tau = \sqrt{R_o^2 - R_s^2}/\beta_T$, where β_T is the average transverse velocity of a pion pair. Both R_o and $\sqrt{R_o^2 - R_s^2}$ are relatively independent of energy; we see no evidence for a large increase in emission timescale (e.g. due to QGP formation [4]).

In hydrodynamic models [3,4], the ratio R_o/R_s is a sensitive probe of the Equation of State (EOS). In a purely hadronic (non-QGP) scenario, $R_o/R_s \approx 1.0 - 1.2$, while formation of QGP is predicted to produce $R_o/R_s \approx 1.5 - 10$. This ratio, plotted in the bottom panel of Fig. 3 for low-p_T pions, does not show a significant rise at RHIC. Furthermore, at RHIC R_o/R_s is observed to decrease (from 1.07 to 0.89) with p_T, in contrast to recent transport calculations [31] which include effects of hadronic rescattering after a hydrodynamic stage with a QGP phase. We note, however, that the long emission duration QGP signature is expected [4] to vanish again at energies higher than its onset, due to rapid expansion of the system. Because of the large energy difference between SPS and RHIC, without intervening measurements, we cannot rule out an increase in the emission timescale at lower energy.

In conclusion, STAR has measured two-pion correlation functions in Au+Au collisions at $\sqrt{s_{NN}} = 130$ GeV. Transverse HBT radii grow with event multiplicity, reflecting the evolution of source geometry with centrality. In contrast to studies at lower energies, R_l also increases steadily over a large range of multiplicities; more study is required to understand the origin of this effect. The m_T-dependence of the HBT radii is stronger than at lower energies, suggesting emission from a more rapidly expanding source at RHIC, and in particular the much stronger decrease in R_o at high m_T may indicate the onset of opaqueness in the dense system. The pion interferometry excitation function for the heaviest ions now spans nearly two decades in $\sqrt{s_{NN}}$. No sudden jumps in HBT radii are observed, but lower energy RHIC measurements are needed to complete the search for a predicted increase in emission timescale related to the possible onset of QGP formation.

We wish to thank the RHIC Operations Group at Brookhaven National Laboratory for their tremendous support and for providing collisions for the experiment. This work was supported by the Division of Nuclear Physics and the Division of High Energy Physics of the Office of Science of the U.S. Department of Energy, the United States National Science Foundation, the Bundesministerium fuer Bildung und Forschung of Germany, the Institut National de la Physique Nucleaire et de la Physique des Particules of France, the United Kingdom Engineering and Physical Sciences Research Council, Fundacao de Amparo a Pesquisa do Estado de Sao Paulo, Brazil, and the Russian Ministry of Science and Technology.
FIG. 1. Coulomb-corrected (full dots) and uncorrected (circles) correlation functions for low-\(p_T \) \(\pi^- \) emitted at midrapidity from central collisions. Shown in panel (a) is the \(Q_{inv} \) correlation function, and in panels (b-d) projections of the 3-dimensional correlation function onto the \(q_o \), \(q_s \), and \(q_l \) axes. To project onto one \(q \)-component, the others are integrated over the range 0-35 MeV/c. Fits to Coulomb-corrected correlations are shown by curves.

FIG. 2. The multiplicity dependence of the HBT parameters is shown for low-\(p_T \) pions on the left; bin 3 contains the high-multiplicity events. For high-multiplicity collisions, the \(m_T \)-dependences are shown on the right. Error bars indicate statistical uncertainties; systematic uncertainties are represented by the height of the shaded regions below.

FIG. 3. The energy dependence of \(\pi^- \) HBT parameters for central Au+Au (Pb+Pb) collisions at midrapidity and \(p_T \approx 0.17 \) GeV/c [14,22,23,27]. The SPS data are offset slightly in \(\sqrt{s_{NN}} \) for clarity. Error bars on NA44, NA49, and STAR results include systematic uncertainties; error bars on other results are statistical.

[1] W. Bauer, C.K. Gelbke, and S. Pratt, Ann. Rev. Nucl. Part. Sci. 42, 77 (1992); U. Heinz and B. Jacak, Ann. Rev. Nucl. Part. Sci. 49, 529 (1999); U.A. Wiedemann and U. Heinz, Phys. Rep. 319, 145 (1999).
[2] S. Pratt, Phys. Rev. Lett. 53, 1219 (1984).
[3] A.N. Makhlin and Y.M. Sinyukov, Z. Phys. C39 69 (1988).
[4] S. Pratt, T. Csörgő and J. Zimanyi, Phys. Rev. C42, 2646 (1990).
[5] D.H. Rischke, Nucl. Phys. A610, 88c (1996).
[6] D.H. Rischke and M. Gyulassy, Nucl. Phys. A608, 479 (1996).
We note that in order to faithfully reproduce the effect of the anti-merging cut on the parameters from a Gaussian fit to the experimental correlation function, we needed to assume a slightly non-Gaussian source distribution in our simulations; assuming a purely Gaussian distribution leads to a much weaker effect than is observed. In realistic transport calculations such non-Gaussian distributions are generated by dynamic expansion and “halo” emission from long-lived resonances.

We note that in order to faithfully reproduce the effect of the anti-merging cut on the parameters from a Gaussian fit to the experimental correlation function, we needed to assume a slightly non-Gaussian source distribution in our simulations; assuming a purely Gaussian distribution leads to a much weaker effect than is observed. In realistic transport calculations such non-Gaussian distributions are generated by dynamic expansion and “halo” emission from long-lived resonances.

We note that in order to faithfully reproduce the effect of the anti-merging cut on the parameters from a Gaussian fit to the experimental correlation function, we needed to assume a slightly non-Gaussian source distribution in our simulations; assuming a purely Gaussian distribution leads to a much weaker effect than is observed. In realistic transport calculations such non-Gaussian distributions are generated by dynamic expansion and “halo” emission from long-lived resonances.

We note that in order to faithfully reproduce the effect of the anti-merging cut on the parameters from a Gaussian fit to the experimental correlation function, we needed to assume a slightly non-Gaussian source distribution in our simulations; assuming a purely Gaussian distribution leads to a much weaker effect than is observed. In realistic transport calculations such non-Gaussian distributions are generated by dynamic expansion and “halo” emission from long-lived resonances.

We note that in order to faithfully reproduce the effect of the anti-merging cut on the parameters from a Gaussian fit to the experimental correlation function, we needed to assume a slightly non-Gaussian source distribution in our simulations; assuming a purely Gaussian distribution leads to a much weaker effect than is observed. In realistic transport calculations such non-Gaussian distributions are generated by dynamic expansion and “halo” emission from long-lived resonances.