Review

Blood Circulating Non-Coding RNAs for the Clinical Management of Triple-Negative Breast Cancer

Tomasz Powrózek 1,* and Michael Ochieng Otieno 2

1 Department of Human Physiology, Medical University of Lublin, 20-080 Lublin, Poland
2 Haematological Malignancies H12O Clinical Research Unit, Spanish National Cancer Research Centre, 28029 Madrid, Spain; michaelochieng@yahoo.com
* Correspondence: tomaszprowrozek@gmail.com

Simple Summary: Nowadays, in clinics, there is a lack of reliable biomarkers that could serve as tools allowing for early cancer detection, prediction of therapy response, tumor recurrence, and TNBC course. In this review, we summarized the most recent findings on the applicability of unique blood circulating ncRNAs for management of TNBC. This review was supplemented by bioinformatics analysis for better understanding of molecular processes in which ncRNAs are involved, to promote individual TNBC phenotype and tumor action.

Abstract: Triple negative breast cancer (TNBC) represents the most aggressive subtype of breast cancer, and is related to unfavorable prognosis and limited treatment strategies. Currently, there is a lack of reliable biomarkers allowing for the clinical management of TNBC. This is probably caused by a complex molecular background, leading to the development and establishment of a unique tumor phenotype. Recent studies have reported non-coding RNAs (ncRNAs) not only as the most promising class of molecular agents with a high applicability to manage human cancers, including TNBC, but also as robust and non-invasive biomarkers that are able to be monitored in blood circulation, with the application of liquid biopsy. There is a lack of papers discussing the role of blood-circulating ncRNAs as diagnostic, predictive, and prognostic biomarkers for TNBC. In this paper, we summarized the available literature reports on the utility of blood-circulating ncRNAs for TNBC management. Additionally, we supplemented this review by bioinformatics analysis, for better understanding of the role of ncRNAs’ machinery in the development of a unique TNBC phenotype.

Keywords: triple negative breast cancer; ncRNAs; liquid biopsy; biomarker; bioinformatics

1. Introduction

1.1. Triple-Negative Breast Cancer

Despite the advances in diagnosis and implementation of adequate treatment options, including tailored targeted therapies, breast cancer (BC) is the second most common cause of cancer-related deaths in women worldwide [1,2]. The recent efforts made toward the improvement of treatment strategies achieved a decrease in BC mortality of about 3% and progress in the 5-year survival rate up to of to 80%, depending on cancer subtype and disease stage [3,4]. Currently, more younger patients are unfortunately diagnosed with the presence of either local or metastatic disease, and in spite of applied treatment, the majority of them will eventually develop distant metastases and/or tumor recurrence [5,6]. It is probably caused by presence of more aggressive subtypes of BC in this group of patients.

Among the BC histological subtypes, the triple-negative breast cancer (TNBC) differs from others by its substantial aggressiveness, limited therapy options, and the poorest prognosis [7,8]. It is often diagnosed in women aged <40 years and in an advanced stage of the disease, with the corresponding presence of metastases into distant organs [9].
Management of TNBC is still challenging, due to its high clinical and molecular heterogeneity that significantly differs from other BC subtypes. Moreover, the development of both drug resistance and progressive disease limit the therapy perspectives for incomplete responders and recurrent patients [10]. As mentioned above, TNBC is more often associated with hereditary conditions when compared to other BC subtypes, caused by considerable genetic heterogeneity [10,11]. Indeed, several highly effective approaches including genomics, transcriptomics, and epigenetics have revealed substantial heterogeneity within TNBC, with it having sets of molecular alterations unique for this BC subtype [12–14]. It is hypothesized that this exceptional molecular pattern is a result of the coexistence of penetrating genetic alterations, contributing to both the clinical differences and enhanced aggressiveness of the TNBC phenotype [15]. Because of the molecular complexity affecting tumor behavior, TNBC remains unpredictable and adds some difficulty in the recent attempts to improve strategies for disease control [16].

Nowadays, in clinics, there is a lack of reliable biomarkers that could serve as tools allowing for early cancer detection, prediction of therapy response, tumor recurrence, and TNBC course. Recent efforts made to adapt novel techniques to reveal such biomarkers have proven futile to some extent. Hitherto, clinical decisions are made exclusively upon either histopathologic analysis or analysis of a small number of genes, including their coding proteins in the tumor tissue, which are also distinctly limited [15,17,18]. Moreover, the widespread use of high-throughput profiling techniques or using the commercially available genetic signatures is also of limited application, mainly due to their cost and reproducibility issues [19]. The recent studies have reported non-coding RNAs (ncRNAs) as the most promising class of molecular agents with a high applicability to manage human cancers, including BC, as a robust and non-invasive biomarker that can be monitored in blood circulation [20]. Moreover, a novel TNBC subtyping system, assigning TNBC patients to four distinct subtypes by integrating both mRNA and IncRNA expression profiles, was also proposed [21]. In this review, we summarized the most recent findings on the applicability of unique blood circulating ncRNAs for detection, prediction, and prognosis of TNBC. The review was supplemented by bioinformatics analysis for better understanding of molecular processes in which ncRNAs are involved, to promote individual TNBC phenotype and tumor action.

1.2. ncRNAs

The majority of transcripts in the human genome are non-coding sequences, that represent a regulatory role in the whole molecular processes of the cell. ncRNAs represent the largest family of RNAs that are not coding for proteins, and form a significant proportion of the genome. According to the recent findings, the three of the most important players in the regulation of gene expression were identified in the ncRNAs family, as followed by microRNA (miRNA), long non-coding RNA (IncRNA), and circular RNA (circRNA) [22,23]. Their expression profiles can be used to discriminate between healthy and neoplastic states, as well as between different types of cancer [22,24]. Until now, the miRNAs are the most studied group of ncRNAs, and numerous papers provide their high applicability in clinics for tumor detection, prediction, and prognosis [24]. Briefly, miRNAs can mediate gene regulation by post-transcriptionally binding to the 3’ untranslated region (3’-UTR) of their target mRNA, acting as oncogenes or tumor suppressors. In the case of miRNAs deregulation, gene expression either accelerates or undergoes silencing, affecting the protein level [25,26]. There are two reasons why miRNAs are involved in complex molecular networks. On the one hand, the sequence of one miRNA can target multiple mRNAs. On the other hand, a single mRNA can be targeted by multiple miRNAs [27]. Perhaps, this complexity and low tumor specificity are a major disadvantage for miRNAs as an ideal cancer biomarker. Nevertheless, miRNAs seem to accurately mediate the phenotype of TNBC by regulation of tumor aggressiveness, migration, proliferation, and invasiveness [17,28]. Moreover, it was also proven that miRNAs can mediate the response of TNBC to chemotherapy and is an attractive target for future anti-miRNA therapy [29].
In contrast to miRNAs, lncRNAs were found to be involved in transcriptional and post-transcriptional genome regulation, through interactions with DNA, RNA, and proteins. lncRNAs can either promote or inhibit the formation of transcription loops to regulate gene transcription. Besides, lncRNAs also regulate mRNA splicing and act as precursors to other ncRNAs, such as miRNAs. The function of lncRNA as tumor suppressors or oncogenes was noticed in different cellular signaling pathways [30,31]. Similar to miRNAs, these molecules play crucial role in carcinogenesis, and some of them were identified as crucial for TNBC progression, such as MALAT1, HOTAIR, ANRILA, or NEF [32]. The most recently discovered and still not fully recognized group of ncRNAs are circRNAs. They represent a covalently closed, continuous loop of structures, and the 3′ and 5′ ends have been joined together (create circular forms), which differs them from other known ncRNAs. In contrast to the canonical splicing of mRNAs, circRNAs originate from spliceosome-mediated, non-sequential back-splicing of pre-mRNAs. Thanks to their structure, circRNAs are protected from degradation by RNase or RNA exonucleases, which makes circRNAs more stable than other ncRNAs, and their half-life is about five times longer than that of mRNA. In contrast to other ncRNAs, the mechanism participating in circRNAs’ degradation is still not fully understood, however, it is believed that the putative role in their global degradation is played by RNase L. While most of circRNAs have not been identified yet, and their particular role of known sequences is unclear, they demonstrate a putatively important role in the regulation of genomic machinery. It is widely accepted that circRNAs are significant regulators that influence both physiological and pathological conditions by regulating splicing mechanisms, acting as sponges for different miRNAs, and regulating epigenetic alterations (DNA and histone methylation). In transcriptional regulation, circRNAs can also regulate protein functions by forming complexes with proteins and alter their function and expression, suggesting their role in carcinogenesis and the stemness of cancer. circRNAs play an important role in tumor progression by modulating the hallmarks of cancer, mainly by the regulation of sustained proliferative signaling, the eluding of growth suppressors, and the impairment of differentiation signals. circRNAs promote tumor metastasis and invasion and induce angiogenesis.[33–35]. Truly, some circRNAs were recently found in solid tumors participating in tumor progression and cell invasiveness. In TNBC, the following circRNAs were identified as tumor suppressors or oncogenes: circKIF4A, circITCH, circMT101, circAGFG1, circSEPT9, and others [36]. Currently, it is believed that understanding of simultaneous interactions between the group of discussed ncRNAs can broaden the knowledge on carcinogenesis. However, the exact function and mechanism of action of most of them is still unknown. ncRNAs create a very complex network of mutual interactions and act as oncogenes or tumor suppressors. These events are unique for cancer states and are as a result of dual interaction between biological and pathological processes in the body (host–tumor interaction). ncRNAs demonstrate a tissue-specific expression pattern, which is highly altered in cancer, and are considered to be promising diagnostic, prognostic, and therapeutic targets.

One of the major pros for the analysis of ncRNAs as TNBC biomarkers is their remarkable stability in body fluids and significantly altered expression under the cancer conditions. They are both released in circulation (plasma or serum), which makes them from other known ncRNAs. In contrast to the canonical splicing of mRNAs, circRNAs originate from spliceosome-mediated, non-sequential back-splicing of pre-mRNAs. Thanks to their structure, circRNAs are protected from degradation by RNase or RNA exonucleases, which makes circRNAs more stable than other ncRNAs, and their half-life is about five times longer than that of mRNA. In contrast to other ncRNAs, the mechanism participating in circRNAs’ degradation is still not fully understood, however, it is believed that the putative role in their global degradation is played by RNase L. While most of circRNAs have not been identified yet, and their particular role of known sequences is unclear, they demonstrate a putatively important role in the regulation of genomic machinery. It is widely accepted that circRNAs are significant regulators that influence both physiological and pathological conditions by regulating splicing mechanisms, acting as sponges for different miRNAs, and regulating epigenetic alterations (DNA and histone methylation). In transcriptional regulation, circRNAs can also regulate protein functions by forming complexes with proteins and alter their function and expression, suggesting their role in carcinogenesis and the stemness of cancer. circRNAs play an important role in tumor progression by modulating the hallmarks of cancer, mainly by the regulation of sustained proliferative signaling, the eluding of growth suppressors, and the impairment of differentiation signals. circRNAs promote tumor metastasis and invasion and induce angiogenesis.[33–35]. Truly, some circRNAs were recently found in solid tumors participating in tumor progression and cell invasiveness. In TNBC, the following circRNAs were identified as tumor suppressors or oncogenes: circKIF4A, circITCH, circMT101, circAGFG1, circSEPT9, and others [36]. Currently, it is believed that understanding of simultaneous interactions between the group of discussed ncRNAs can broaden the knowledge on carcinogenesis. However, the exact function and mechanism of action of most of them is still unknown. ncRNAs create a very complex network of mutual interactions and act as oncogenes or tumor suppressors. These events are unique for cancer states and are as a result of dual interaction between biological and pathological processes in the body (host–tumor interaction). ncRNAs demonstrate a tissue-specific expression pattern, which is highly altered in cancer, and are considered to be promising diagnostic, prognostic, and therapeutic targets.

One of the major pros for the analysis of ncRNAs as TNBC biomarkers is their remarkable stability in body fluids and significantly altered expression under the cancer conditions. They are both released in circulation from cancerous tissues (directly or within the exosomes) or from host tissues affected by tumor occurrence [37]. Moreover, the monitoring of ncRNAs’ expression with the use of liquid biopsy, especially in blood circulation (plasma or serum), is more convenient, cheaper, and safer for patients than a series of tissue biopsies. It also allows to capture the entire heterogeneity of the tumor (primary/metastatic/recurrent) in a minimally invasive manner. The additional predominance of liquid biopsy over other techniques is that it may allow for the stratification and real-time monitoring of therapies. Liquid biopsy can provide identification of therapeutic targets and can be easily repeated if needed, and can be used as often as necessary to monitor the patient’s progress. It is worth noting that liquid biopsy is not free from limitations. The tissue biopsy is still a diagnostic “gold standard” for cancer, because it provides a significantly higher yield of cancer sample (cancer cells, nucleic acids) than liquid
biopsy. The accuracy and sensitivity challenges of liquid biopsy still exist, because nucleic acids are relatively rare in blood circulation. Eventually, it is still not clear if this technique provides a representative sampling of all genetic alterations of cancer cells or if there is a bias to specific sub-regions of the tumor. Liquid biopsy as a diagnostic technique still requires further clinical validation [38,39]. Nevertheless, the idea of the introduction of liquid biopsy for cancer management was already confirmed by some clinical papers, including in BC control [39]. Nevertheless, there are still limited data concerning the utility of circulating ncRNAs exclusively for TNBC management. In Figure 1, we illustrated the concept of host–tumor interactions, resulting in alteration of ncRNAs’ expression and their putative impact on TNBC course. The developing tumor forms a unique microenvironment affecting both cancer and normal cells, leading to their interaction (tumor–host interaction). Cancer cells, by changing fibroblasts’ behavior, macrophage secretion, and exosome synthesis, enhance tumor growth, proliferation, and invasiveness. Under the influence of tumor environment, healthy cells disintegrate, change their metabolism, and develop an inflammatory response. Tumor–host interaction results in the alteration of nucleic acid expression, including a series of alterations exclusive for ncRNAs (changes in miRNA synthesis and sponging by circRNAs, lncRNAs degradation, and competition of ncRNAs for targeted mRNA). Following changes of protein expression, they participate in the creation of a unique phenotype of cancer, characterized by a various capacity to progression, grade of inflammation, and therapy outcomes.
Figure 1. Interaction between the tumor and the host resulting in alteration of ncRNAs machinery for the development of the unique phenotype of TNBC and the usefulness of liquid biopsy for the tumor management—altered expression pattern of ncRNAs drives an unfavorable phenotype of cancer, therefore profiling of ncRNAs in blood sample reflects molecular and clinical picture of TNBC.

2. Circulating ncRNAs for TNBC Detection

We conducted a literature search until October, 2021 using the databases: PubMed, EMBASE, Scopus, and by manual searching with the use of keywords (Google) for papers written in the English language. The following approach of literature searching was used with the application of keywords: “triple-negative breast cancer”, “TNBC”, “breast cancer”, “blood”, “serum”, “plasma”, then supplemented by “miRNA”, “microRNA”, “miR”, “long non-coding RNA”, “lncRNA”, “circular RNA”, and “circRNA”. Also, the following search builder was used: (“triple-negative breast cancer” OR “TNBC” OR “breast cancer”) AND (“blood” OR “serum” OR “plasma”) AND (“miRNA” OR “microRNA” OR “miR”) AND (“long non-coding RNA” OR “lncRNA”) AND “circular RNA” OR “circRNA”). In Table 1, we summarized findings on circulating ncRNAs for non-invasive diagnosis of TNBC [40–77]. Additionally, examples of validated targets and for the putative role in TNBC carcinogenesis were provided for all discussed ncRNAs.
2.1. miRNAs

Notably, circulating miRNAs were widely examined as prospective diagnostic biomarkers of human malignancies, including BC. However, only a few papers focused on their diagnostic accuracy exclusively for TNBC. In Table 1, we summarized all studies on the utility of blood circulating miRNAs for TNBC diagnosis [40–65].

Sample Size (TNBC: Plasma; *-Serum)	Sample Size (HC: Plasma; #-Serum)	miRNA Expression in TNBC (Method of Detection)	Validated Targets	Biological and/or Clinical Significance of miRNA for TNBC	Diagnostic Accuracy (AUC)	Study	
67 TNBC	90 HC *	†: miRNA-16, 21, 199a-5p	miRNA-16: AKT3, PGK1	Warburg effect mediation, cyclin E regulation, endothelial cell migration	miRNA-16: 0.798	Shin [40]	
23 TNBC	85 HC #	†: miRNA-21, 221, 210	miRNA-221: p27Kip1, ERα	Cell migration, transcription inhibitors, cell proliferation	Combination of 3 miRNA: 0.970	Thakur [42]	
36 TNBC	34 HC *	†: miRNA-7: Let-7c-5p, 7-7c-5p, 15-195-5p, 489-3p	miRNA-7: Let-7c, RELA	Cancer growth, Metastasis formation, Cell migration, Apoptosis	Combination of 7 miRNA: 0.929	Qattan [43]	
74 TNBC	12 HC *	†: miRNA-93-3p, 105	miRNA-93-3p: SFRP1	Promotes stenosis, chemoresistance, and metastasis in TNBC	miRNA-93-3p: 0.657	Li [44]	
31 TNBC	34 HC	†: miRNA-126c, 126-5p, 376c-3p, 301a-3p, 101-3p	miRNA-126c: ADAM9, RGS3	Correlation with distant metastases	miRNA-105: 0.928	Panel of 2: 0.939	Li [44]
24 TNBC	28 HC *	†: miRNA-125b, 193b, 200b, 489	miRNA-200b: VEGF-A, RARA	Cell proliferation, migration, and tumor growth	Combination of 7 miRNA: 0.814	Kahraman [50]	
37 TNBC	34 HC	†: miRNA-10b, 17a, 155, 376c	miRNA-10b: HOXD4, KLF4, miRNA-17a: TIMP2, TIMP3, miRNA-155: SOCS1, Smad2, FGF, E2F	DNA repair, cell cycle progression, Metastasis formation, tumor aggressiveness, Correlation with tumor stage, size, lymph node status and metastasis	miRNA-10b: 0.773, miRNA-17a: 0.657, miRNA-155: 0.847, miRNA-376c: 0.866	Shaheen [61]	
13 TNBC	83 HC *	†: miRNA-30b-5p	miRNA-30b-5p: CDH11, ITGA5, ITGB3	Enrichment in Wnt and p53 signaling, Apoptosis, Correlation with lymph node status and distant metastases	−0.720	Adam-Arquites [65]	
25 TNBC	40 HC #	†: ANRIL, HIF1A-AS2, UCA1	UCA1-miRNA-143	Invasiveness of tumor cells, Activation of Wnt/β-catenin signaling, Tumor progression and metastasis	miRNA-ANRIL: 0.830, miRNA-HIF1A-AS2: 0.827, miRNA-UCA1: 0.849	Liu [16]	
100 TNBC	50 HC *	†: ANRIL, SOX2OT, ANRASLF1	ANRASLF1-miRNA-199a	Tumor growth and proliferation, Promotion of carcinogenesis	miRNA-ANRIL: 0.962, miRNA-SOX2OT: 0.852, miRNA-ANRASLF1: 0.740	Du [67]	
One of the first papers that has begun a series of works analyzing the utility of miRNAs for TNBC detection was the study of Shin et al. Using microarray (MA) followed by qRT-PCR validation, they selected miRNA-16,21 and 199a as promising TNBC biomarkers, and achieved quite satisfactory diagnostic accuracy for TNBC detection with the AUC ranging from 0.798 to 0.884. Interestingly, authors also found that expression of studied miRNAs differs between pre- and post-operative patients, suggesting miRNAs as non-invasive markers for TNBC monitoring [40]. Some of the circulating miRNAs summarized in Table 1 confirmed their clinical value by reflecting tumor stage, lymph node status, and metastases occurrence. For instance, miRNA-21, 199a, 210, and 221 were found to be associated with tumor stage, whereas expression of miRNA-10b, 17a, 30b, 93, 105, and 376c correlated with lymph node status and the presence of distant metastases [40,42,48,61,65]. Among the studied miRNAs, few molecules were identified as being significant for TNBC in independent studies, such as miRNA-21, miRNA-199a, and 489 [40,42,43,57]. It is still debatable whether single-circulating miRNA can serve as an objective and reliable biomarker of cancer so far. Visibly, most of the analyzed single-circulating miRNA demonstrated high diagnostic accuracy for TNBC, which is proven by high AUC values: miRNA-489 (0.994), 125b (0.973), 105 (0.928), and 193b (0.914). On the contrary, there are some miRNAs that suffer from low diagnostic accuracy: miRNA-16 (0.657), 17a (0.657), and 30b (0.720)[48,57,61,65]. According to most researchers, the high diagnostic reliability can be achieved only by a combination of some miRNAs into diagnostic signatures. Truly, higher accuracy and reliability was noted for TNBC in independent studies, such as miRNA-16, miRNA-199a, and 489 [40,42,43,57].

miRNA Combination	miRNA Tumor Aggressiveness and Proliferation, Metastasis Formation	miRNA Correlation with Tumor Stage	miRNA Expression between TNBC and Controls	miRNA AUC for Total BC	miRNA Significant Difference in Expression between TNBC and Non-TNBC or Controls	miRNA AUC Not Assessed	miRNA Significant Difference in Expression between TNBC and Controls
XIST-miRNA-7	Tumor aggressiveness and proliferation, metastasis formation	Correlation with tumor stage	TINCR allow to distinguish TNBC from BC with AUC of 0.868	0.888	Li 2020	Yang 2021	Chen 2021
XIST-miRNA-454	Correlation with tumor stage		TINCR allow to distinguish TNBC from BC with AUC of 0.868	0.888	Li 2020	Yang 2021	Chen 2021
circ0104824	Interaction with miRNA-140, 197, 599, 677 and 1278	Correlation with tumor size, estrogen, and progesterone receptor status	Facilitates the tumorigenesis, metastasis, cell migration through miR-637/Akt1/β-catenin axis and immunosuppression	0.849	Li 2020	Yang 2021	Chen 2021
PSMA1-miRNA-637	PSMA1-miRNA-637	Correlation with tumor stage	PSMA1-miRNA-637 allow to distinguish TNBC from BC with AUC of 0.868	0.897	Chen 2021	Chen 2021	Chen 2021
circHIF1A-miRNA-149-5p	Promotion of cell proliferation and metastasis		TINCR allow to distinguish TNBC from BC with AUC of 0.868	0.897	Chen 2021	Chen 2021	Chen 2021
Using the bioinformatics tool, we analyzed all of TNBC-related, circulating miRNAs in order to predict their regulatory role in molecular pathways (WikiPathways)(Supplementary Figure S1). Most of the miRNAs are involved in the management of key cellular processes. Their alteration can initiate carcinogenesis pathways, such as apoptosis, PI3K and Wnt pathways, autophagy, DNA repair, cell differentiation, or immune responses. These findings seem to confirm the implementation of altered expression of miRNA into the development of unique molecular phenotypes of TNBC. Examples of validated targets for circulating miRNAs are presented in Table 1. Additionally, we created an miRNA–mRNA interaction model (miRNet2.0) to assess target genes for blood miRNAs and to summarize Gene Ontology (GO) and KEGG pathway enrichment analysis for the TNBC-related miRNAs (Figure 2B). The top KEGG terms for miRNAs related to TNBC were as follows: cell cycle (1.54×10^{-9}), pathways in cancer (3.94×10^{-8}), p53 signaling (4.19×10^{-7}), ErbB signaling (0.0002), and Wnt signaling (0.0013).
2.2. IncRNA

Circulating IncRNAs demonstrate similar diagnostic accuracy as blood miRNAs, and their combination into diagnostic signatures improves test sensitivity and specificity (Table 1) [66–72]. In the first reported study, Liu et al., based on MA and qRT-PCR analysis, selected the three following IncRNAs, ANRIL, HIF1A-AS2, and UCA1, as promising markers for TNBC detection (AUC range of 0.827–0.840) [66]. ANRIL was also confirmed as a TNBC biomarker in another study and its diagnostic accuracy was 0.962 [67]. In the in vitro experiments, the above-mentioned ncRNA was implicated in tumor progression, cell migration, and metastases formation [66,67]. Du et al., using three blood IncRNA signatures (ANRIL, SOX2OT, ANRASSF1) were able to distinguish healthy individuals from TNBC cases with a high diagnostic accuracy of 0.990. Authors found that the expression of plasma ANRIL, SOX2OT, and ANRASSF1 was in accordance with their tissue expression [67]. It proves the potential utility of liquid biopsy as a reliable and minimally invasive tool for IncRNA detection. Interestingly, Zhang et al., based on the serum TINCR expression, distinguished between BC histological subtypes. TINCR demonstrated a significantly higher expression in TNBC individuals and distinguished TNBC from other BC subtypes with an AUC of 0.868 [72]. Unfortunately, the above-mentioned IncRNAs were also found to be deregulated in other human cancers, suggesting their low cancer-specificity [73,74]. Using bioinformatics tools, we selected top KEGG and GO terms for the circulating IncRNAs. The top KEGG terms for circulating IncRNAs were the p53 signaling pathway (1.9 × 10⁻⁸), small cell lung cancer (1.3 × 10⁻⁸), and melanoma (7.5 × 10⁻⁷), and for the breast cancer pathway, FDR was 8e⁻⁶ (Figure 2C). The GO terms are summarized in Supplementary Figure S2. The top genes targeted by IncRNAs were TIA1, DDX3X, QKI, LARP7, CDKN1A, KLF2, and the CDK family, and the top miRNAs were 1, 7, 10a, 10b, 31, 98, 122, 222, and 335 (LncSEA, Diana tools). Regarding the role of IncRNAs in the development of individual TNBC phenotype, these were most significantly involved in cell apoptosis (2.19 × 10⁻¹⁰), migration (7.4 × 10⁻¹⁰), and proliferation (4.25 × 10⁻⁹). Disease-related predicted analysis (Lnc2Cancer2.0 and MNDR2.0 tools) suggested their key involvement in BC-related carcinogenesis (4.59 × 10⁻¹⁸ and 6.21 × 10⁻¹⁶, respectively).

2.3. circRNAs

circRNAs are the most recently discovered ncRNA, thus their role as tumor circulating biomarkers is limited. We found only three papers related to blood circRNAs and TNBC. Therefore, it is hard to assess their reliability and tissue-specificity. Li et al. found significantly lower expression of circ0104824 in the circulation of TNBC patients in contrast to those suffering from other BC histological subtypes. However, the expression of circRNA was higher in all BC subtypes in contrast to healthy controls (AUC=0.849). Authors also noticed that circ0104824 was clinically correlated with tumor size, estrogen, and progesterone receptor status [75]. Two other promising circulating biomarkers of TNBC are circPSMA1 and circHIF1A. circPSMA1 is probably involved in the development of unique BC subtypes by deregulation of the miR-637/Akt1/β-catenin axis and immunosuppression. While the diagnostic accuracy of this circRNA was not assessed, authors found significant differences in its serum expression between TNBC and healthy controls [76]. circHIF1A, interacting with miRNA-149-5p and NFIB, promotes cell proliferation and tumor migration to distant organs. This satisfactory diagnostic accuracy was achieved by distinguishing between TNBC and healthy individuals (AUC of 0.897)[76]. Using bioinformatics, we investigated the molecular function of the blood circRNAs. The top miRNAs targeted by the afore mentioned circRNAs were miRNA-34a, 34c, 151a, 325, 448, 449a, and 1179 (miRNet2.0). Creating the interaction model, circRNA–miRNA–mRNA (miRNet2.0), we selected the top KEGG terms related to TNBC: endocrine resistance (1.9 × 10⁻⁹), p53 signaling pathway (3.2 × 10⁻⁹), cell cycle (1.1 × 10⁻⁹), breast cancer (1.6 × 10⁻⁹), and mTOR signaling (9.6 × 10⁻³). The top GO terms are summarized in Supplementary Figure S3.
Diagnostic accuracy of the discussed blood-circulating ncRNAs for the non-invasive detection of TNBC is summarized in Figure 2D. Analysis of various ncRNAs allows us to compare their diagnostic accuracy for early cancer detection, and then allows the clinical selection of the most promising molecules. The above-described studies and performed bioinformatics analysis seem to confirm that combination of different classes of ncRNAs into diagnostic tests is a prospective direction for their clinical applicability, because they can represent key molecular pathways related to TNBC phenotype.

3. Circulating ncRNAs for TNBC Prediction and Prognosis

The disease course can be monitored unrestrictedly and in a minimally invasive manner, thanks to the application of liquid biopsy. On the one hand, it is believed that the level of expression of circulating ncRNAs reflects the tumor aggressiveness affecting patients’ survival. On the other hand, changes in ncRNA expression after the therapy can be a valuable precursor of tumor recurrence. In the Table 2 we summarized the recent studies analyzing the utility of circulating ncRNAs for TNBC prediction and prognosis [57, 70, 78–84].

Table 2. Summary of the prognostic and predictive role of blood circulating ncRNAs for TNBC (AUC—area under the ROC, CR—complete response, HR—hazard ratio, OR—odds ratio, OS—overall survival, PD—progressive disease, PR—partial response, RFS—relapse-free survival, SD—stable disease) (↑, †—low or high expression).

ncRNA	Role	Study Findings	Study
Unfavorable: ↑ miRNA-18b, ↑ miRNA-103, ↑ miRNA-205, ↑ miRNA-375, ↓ miRNA-29c, ↓ miRNA-382, ↓ miRNA-411	Prognosis/OS	- TNBC patients with high risk score (high expression of 4 miRNA) had approximately 4 fold higher risk of OS reduction (HR = 3.60)	Sahlberg 2015 [78]
Unfavorable: ↓ miRNA-194, ↑ miRNA-205, ↑ miRNA-375, ↓ miRNA-382, ↓ miRNA-411	Tumor relapse/RFS	- TNBC patients with high risk score had over 3 fold higher risk of RFS reduction (HR = 3.49)	Zeng 2017 [80]
Unfavorable: ↓ miRNA-34a, 34c	Prognosis/OS	- miRNA signature showed the strongest predictive value to discriminate tumors from patients with early relapse from those without recurrence (AUC = 0.810)	Braicu 2018 [57]
Unfavorable: ↓ miRNA-29c	Prognosis/OS	- Signature of 7 serum miRNA allows to distinguish recurrent TNBC patients from non-recurrent TN individuals with diagnostic accuracy of AUC = 0.943	Wang 2020 [83]
Unfavorable: ↑ miRNA-200a, ↑ miRNA-210	Chemo- resistance	- Low expression of miRNA-34a and miRNA-34c is associated with a higher risk of early death incidence in TNBC patients (HR = 2.06 and HR = 2.47, respectively)	Shao 2019 [81]
Unfavorable: ↓ miRNA-4448, miRNA-2392, miRNA-2467, miRNA-4800	Response to chemotherapy	- The expression of miRNA-200a and miRNA-210 is significantly higher in the plasma of docetaxel-resistant cases (PD) than in the sensitive individuals (PR or SD) miRNA-200a (OR=0.041) and miRNA-210 (OR=0.062) were identified as independent factors for chemotherapeutic response; plasma miRNA-200a and miRNA-210 allow distinguishing between responders and non-responders with AUC of 0.866 and 0.812, respectively	Sueta 2021 [82]
Unfavorable: ↑ lncRNA-TINCR	Tumor relapse/RFS	- High expression of serum TINCR is related to higher rate of the disease relapse Patients in the high serum TINCR group had poorer RFS than those in the low serum TINCR group	Wang 2020 [83]
Unfavorable: ↑ miRNA-4448, miRNA-2392, miRNA-2467, miRNA-4800	Prognosis/OS	- High serum expression of TINCR is associated with 2.5 fold higher risk of OS reduction in TNBC patients (HR=2.54)	Wang 2020 [83]
Unfavorable: ↑ miRNA-21
Prognosis/OS - Patients with low plasma expression of BRE-AS1 and high expression levels of miRNA-21 showed significantly lower OS rates [84]

Unfavorable: ↑ lncRNA-BRE-AS1
Tumor relapse - Expression of XIST in serum exosomes is higher in serum of recurrent TNBC patients than in non-recurrent individuals [70]

Unfavorable: ↑ lncRNA-XIST
Prognosis/OS - High expression of XIST in serum exosomes is associated with reduced survival in TNBC patients (HR=3.54) [85]

Unfavorable: ↑ lncRNA-SUMO1P3
Response to chemotherapy - High serum SUMO1P3 expression is independent and unfavorable prognostic factor related to poor OS in TNBC (HR=1.97) [85]

3.1. miRNAs

Prognostic and predictive value of miRNAs for TNBC has been proven by numerous studies analyzing tissue expression of the molecules [86–88]. These promising findings encouraged the investigation of miRNAs as possible tumor-circulating biomarkers. Similar to the diagnostic approach, the diagnostic signatures involving a few miRNAs represent more reliable results. Constructing the four miRNAs’ blood signature, Sahlberg et al. were able to select TNBC patients at a higher risk of early death incidence (HR = 3.60). Interestingly, the same prognostic signature demonstrated the utility for both the risk of disease relapse (HR = 3.79) and discrimination between patients who relapsed and non-recurrent individuals (AUC = 0.810) [78]. In the other study, the higher diagnostic accuracy for the discrimination between TNBC patients with recurrent disease and non-recurrent cases was achieved by the application of a seven miRNA signature (AUC = 0.943) [79]. However, miRNAs can mediate the response to chemotherapy in TNBC [89,90]. Until now, only one study investigated blood miRNAs as a predictive factor for chemotherapy response. Shao et al. noticed that the two plasma miRNAs, 200a and 210, can serve as predictors for docetaxel-treated TNBC patients. First, they correlated clinical response to chemotherapy with miRNA expression. Both miRNA-200a and 210 were upregulated in non-responders (progressive disease, PD) when compared to responders group (stable disease or partial remission, SD and PR). The diagnostic accuracy measured by AUC for patients’ distinction was 0.866 and 0.812 respectively. miRNA-200a (OR = 0.041) and miRNA-210 (OR = 0.062) were considered as independent factors for docetaxel-based therapy in TNBC [81]. Some of the described miRNAs were also previously selected as TNBC diagnostic biomarkers (miRNA-21, 210, and 376c). We introduced all of these blood-circulating miRNAs to bioinformatics analysis to assess their role in the development of TNBC phenotype (mirPath v3.0). Interestingly, most of the miRNAs were revealed to be involved in molecular pathways crucial for BC development, including the Hippo signaling pathway, proteoglycans in cancer, and fatty acid metabolism and synthesis (Supplementary Figure S4).

3.2. IncRNAs

Data regarding the utility of lncRNAs for prediction and prognosis is still limited and only few papers have focused on this idea [70,83–85]. Among the lncRNAs, the TINCR seems to be the most promising TNBC-related lncRNA, serving as a diagnostic and prognostic biomarker. Thorough analysis of cellular pathways mediated by TINCR seems to confirm its key function in the development of unique BC subtype (Figure 3A) [91,92].

First, TINCR enhances EGFR expression and downstream signaling via regulation of the STAT3–TINCR–EGFR pathway, and acts as a competing endogenous RNA to upregulate EGFR expression by sponging miRNA-503, resulting in tumor growth, proliferation, and migration. In vitro and in vivo experiments confirmed that TINCR knockdown suppresses BC aggressiveness [93]. TINCR targets STAU1, leading to its silencing and
resulting in reduced OAS1 stability, which enhances uncontrolled cell proliferation and migration. A similar unfavorable phenotype of BC is observed under the sponging of miRNA-7 by TINCR. Downregulation of miRNA-7 leads to overexpression of KLF4, causing tumor progression and an enhanced inflammatory response in the tumor environment [94,95]. The aggressive phenotype of TNBC could be also related to the silencing of miRNA-589 and 125b. While sponging of miRNA-125b leads to overexpression of HER2 and under-expression of SNAIL1, leading to resistance to trastuzumab-based therapy and reduced survival in cancer patients, whereas silencing of miRNA-589 accelerates expression of IGF1R, reducing cell apoptosis and stimulating proliferation and invasiveness [95–97]. Above-discussed data found their confirmation in the clinical study considering serum TINCR as an unfavorable biomarker related to the poor course of TNBC. Wang et al. recorded that a high expression of circulating TINCR in TNBC patients is an independent prognostic factor, resulting in a higher risk of overall survival reduction (HR = 2.54). Moreover, a higher level of TINCR was found in TNBC-relapsed patients when compared with non-recurrent individuals [83]. The other promising circulating IncRNAs that could serve as survival indicators are XIST, SUMO1P3, and BRE-AS1 [70,84,85]. The circulating IncRNAs were bioinformatically tested in order to assess their role in development of aggressive phenotype of TNBC. First, the genes regulated by TINCR were selected (DIANA, LncSEA) and transferred to a protein–protein interaction network (STRING) to build a protein–protein interaction model. Interestingly, this lncRNA regulates genes involved in the BRCA1 machinery, tightly related to BC carcinogenesis (Figure 3B). Then, the target miRNAs presumptively sponged by IncRNAs (TINCR, XIST, SUMO1P3, and BRE-AS1) were selected with the use of the LncSEA tool. Figure 3C illustrates the list of miRNAs selected for the algorithm, which represent the highest binding scores with the analyzed IncRNAs. Among selected miRNAs, the miRNA-7, 31, 181b, 335, and 544a demonstrated the highest probability scores for this action, and were considered as top miRNAs for this interaction network. Regarding the tumor phenotype, the circulating IncRNAs (TINCR, XIST, SUMO1P3, and BRE-AS1) are especially important for regulation of cell apoptosis, invasion, and migration (terms achieving the highest log p values) (Figure 3D). Analysis of circulating IncRNAs, such as TINCR, can improve clinical management of TNBC, because this molecule participates in the regulation of pathways involved in the development of an aggressive phenotype of TNBC. In the future, TINCR can be an attractive therapeutic target for developing treatment strategies and in the selection of patients who can eventually benefit from personalized therapy. Moreover, analysis of the set of IncRNAs (TINCR, XIST, SUMO1P3, and BRE-AS1) and their targets can improve knowledge on TNBC phenotypes for the development of selective blockades or restoration of the molecular pathways, resulting in better therapy outcomes and prolonged patients’ survival. However, further clinical validation is required to confirm the above-mentioned suppositions.
Figure 3. TINCR regulatory network predisposing development of unique TNBC phenotype (A), and bioinformatics analysis of studied ncRNAs: (B)— protein–protein interaction network regulated by examined IncRNAs, (C)—miRNA targets for the IncRNAs, (D)—role of the IncRNAs for establishment of aggressive phenotype of TNBC, (E)—ncRNAs’ interaction network among all discussed miRNAs, IncRNAs, and circRNAs.
4. Conclusions and Perspectives

Targeted treatment strategies for TNBC, including immunotherapy, will obviously require clinically useful biomarkers for therapy enrollment, monitoring, and prediction. ncRNAs are a promising group of biomarkers that can deal with the above-mentioned expectations, which seem to confirm recent in vitro studies made on pembrolizumab—a monoclonal antibody targeting PD-1 that was approved for immunotherapy of locally recurrent unresectable/metastatic TNBC [97]. ncRNAs regulating the PD-1/PD-L1 axis are able to change the sensitivity of cells toward pembrolizumab. For instance, miRNA-34a, 138, 200c, 424, and 570, let-7a, and lncRNAs CCAT1 and GATA3-AS1 can regulate tumor growth and proliferation through PD-L1 modulation, and thus response to immunotherapy [98–100]. In a clinical trial (KEYNOTE-086), Loi et al., using RNA-seq-based data, confirmed that inflammatory state signatures obtained by measuring the tissue-resident memory are associated with the response to pembrolizumab in TNBC patients [101]. Prospective analysis of the blood-circulating ncRNAs can improve the selection of patients who can benefit from immunotherapy and can be a useful tool for its monitoring.

Nevertheless, a regulatory network of miRNA–lncRNA–circRNA–mRNA interactions demonstrates complex molecular machinery, in which each independent participant seems to be crucial for proper regulation of cell cycle and biological pathways. Even in the case of deregulation of single mode in this highly expanded machinery, it can lead to the failure of the entire anti-oncogenic and tumor suppressing mechanisms. To underline the complexity of ncRNA machinery, and thus the difficulty in their analysis as TNBC biomarkers, we introduced all of the discussed ncRNAs to bioinformatics interaction analysis to create a regulatory network, as well as KEGG and GO enrichment analysis (Figure 3E and Supplementary Figure S5). Noticeably, only a few introduced ncRNA can create a complex web of connections between various molecules. In the Figure 3E, the pink cluster represents genes regulated by miRNAs enrolled to the model (the miRNAs reviewed in this paper were marked by big blue squares), the blue cluster represents lncRNAs participating in the network (red dots represent lncRNAs described in this review), and the yellow dots represent reviewed circRNAs. Summarizing, the TNBC phenotype probably results from an overlap of molecular alterations, including expression of different types of ncRNA. Despite the limitations, ncRNAs can serve as prospective, minimally invasive TNBC biomarkers detectable with the application of liquid biopsy. However, the clinical trials enrolling a considerable number of patients should be designed in order to confirm their clinical utility.

Supplementary Materials: The following supporting information can be downloaded at: www.mdpi.com/article/10.3390/cancers14030803/s1, Figure S1: Heatmap of circulating miRNAs demonstrating their importance for the particular molecular pathways; Figure S2: GO enrichment analysis for circulating lncRNAs; Figure S3: GO enrichment analysis for circulating circRNAs; Figure S4: Clustering analysis of the expression of circulating miRNAs for the molecular processes related to the development of TNBC; Figure S5: GO and KEGG enrichment analysis for the regulatory network of studied ncRNAs; Table S1: The studied blood circulating miRNAs as diagnostic biomarkers of TNBC and their utility for the management of the different human cancers.

Author Contributions: Study design and idea: T.P., bioinformatics: T.P., writing and review: T.P. and M.O.O. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Momenimovahed, Z.; Salehiniya, H. Epidemiological characteristics of and risk factors for breast cancer in the world. Breast Cancer: Targets Ther. 2019, 11, 151–164, https://doi.org/10.2147/bcct.s176070.
2. Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA Cancer J. Clin. 2021, 71, 209–249.
Cancers 2022, 14, 803

3. Levi, F.; Bosetti, C.; Lucchini, F.; Negri, E.; La Vecchia, C. Monitoring the decrease in breast cancer mortality in Europe. *Eur. J. Cancer Prev.* 2005, 14, 497–502, https://doi.org/10.1097/00008469-200512000-00002.

4. American Cancer Society. *Cancer Facts & Figures 2021*; American Cancer Society: Atlanta, GA, USA, 2021.

5. Serpico, D.; Molino, L.; Di Cosimo, S. microRNAs in breast cancer development and treatment. *Cancer Treat. Rev.* 2014, 40, 595–604, https://doi.org/10.1016/j.ctrv.2013.11.002.

6. Howlader, N.; Noone, A.M.; Krapcho, M.; Miller, D.; Brest, A.; Yu, M.; Ruhl, J.; Tatalovich, Z.; Mariotto, A.; Lewis, D.R.; et al. *SEER Cancer Statistics Review, 1975–2018*; National Cancer Institute: Bethesda, MD, USA.

7. Griffiths, C.L.; Olin, J.L. Triple Negative Breast Cancer: A Brief Review of its Characteristics and Treatment Options. *J. Pharm. Pr.* 2012, 25, 319–322, https://doi.org/10.1087/190012442062.

8. Kumar, P.; Aggarwal, R. An overview of triple-negative breast cancer. *Arch. Gynecol. Obstet.* 2015, 293, 247–269, https://doi.org/10.1007/s00404-015-3859-0.

9. Gupta, G.K.; Collier, A.L.; Lee, D.; Hoefer, R.A.; Zheleva, V.; Van Reesema, L.L.S.; Tang-Tan, A.M.; Guye, M.L.; Chang, D.Z.; Winston, J.S.; et al. Perspectives on Triple-Negative Breast Cancer: Current Treatment Strategies, Unmet Needs, and Potential Targets for Future Therapies. *Cancers* 2020, 12, 2392, https://doi.org/10.3390/cancers12092392.

10. Mehanna, J.; Haddad, F.; Eid, R.; Lambertini, M.; Kourie, H.R. Triple-negative breast cancer: Current perspective on the evolving therapeutic landscape. *Int. J. Womens Health* 2019, 11, 431–437.

11. Shimelis, H.; LaDuca, H.; Hu, C.; Hart, S.N.; Na, J.; Thomas, A.; Akinhanmi, M.; Moore, R.M.; Brauch, H.; Cox, A.; et al. Triple-Negative Breast Cancer Risk Genes Identified by Multigene Hereditary Cancer Panel Testing. *JNCI J. Natl. Cancer Inst.* 2018, 110, 855–862, https://doi.org/10.1093/jnci/djy106.

12. Curtis, C.; Shah, S.P.; Chin, S.F.; Turashvili, G.; Rueda, O.M.; Dunning, M.J.; Speed, D.; Lynch, A.G.; Samarajiwa, S.; Yuan, Y.; et al. The genomic and transcriptional architecture of 2,000 breast tumours reveals novel subgroups. *Nature* 2012, 486, 346–352.

13. Banerji, S.; Cibulskis, K.; Rangel-Escareno, C.; Brown, K.K.; Carter, S.L.; Frederick, A.M.; Lawrence, M.S.; Sivachenko, A.Y.; Seoungze, C.; Zou, L.; et al. Sequence analysis of mutations and translocations across breast cancer subtypes. *Nat. Cell Biol.* 2012, 486, 405–409, doi:10.1038/nature11154.

14. Heyn, H.; Carmona, F.J.; Gomez, A.; Ferreira, H.; Bell, J.; Sayols, S.; Ward, K.; Stefansson, O.A.; Moran, S.; Sandoval, J.; et al. DNA methylation profiling in breast cancer discordant identical twins identifies DOK7 as novel epigenetic biomarker. *Carcinogenesis* 2012, 34, 102–108, https://doi.org/10.1038/carcin/bjc3231.

15. Yin, L.; Duan, J.-J.; Bian, X.-W.; Yu, S.-C. Triple-negative breast cancer molecular subtyping and treatment progress. *Breast Cancer Res.* 2020, 22, 1–13, https://doi.org/10.1186/s13058-020-01296-5.

16. Bianchini, G.; De Angelis, C.; Licata, L.; Gianni, L. Treatment landscape of triple-negative breast cancer — expanded options, evolving needs. *Nat. Rev. Clin. Oncol.* 2021, 19, 91–113, https://doi.org/10.1038/s41571-021-00565-2.

17. Davey, M.; Davies, M.; Lowery, A.; Miller, N.; Kerin, M. The Role of MicroRNA as Clinical Biomarkers for Breast Cancer Surgery and Treatment. *Int. J. Mol. Sci.* 2021, 22, 8290, https://doi.org/10.3390/ijms22188290.

18. Györffy, B.; Hatzis, C.; Sanft, T.; Hofstatter, E.; Aktaş, B.; PusztaI, L. Multigene prognostic tests in breast cancer: past, present, future. *Breast Cancer Res.* 2015, 17, 1–17, https://doi.org/10.1186/s13058-015-0514-2.

19. Cheang, M.; van de Rijn, M.; Nielsen, T. Gene expression profiling of breast cancer. *Annu. Rev. Pathol.* 2008, 3, 67–97.

20. Anastasiadou, E.; Jacob, L.S.; Slack, F.J. Non-coding RNA networks in cancer. *Nat. Rev. Cancer* 2018, 18, 5–18, doi:10.1038/nrc.2017.99.

21. Liu, Y.-R.; Jiang, Y.-Z.; Xu, X.-E.; Yu, K.-D.; Jin, X.; Hu, X.; Zuo, W.-J.; Hao, S.; Wu, J.; Liu, G.-Y.; et al. Comprehensive transcriptome analysis identifies novel molecular subtypes and subtype-specific RNAs of triple-negative breast cancer. *Breast Cancer Res.* 2016, 18, 33, https://doi.org/10.1186/s13058-016-0690-8.

22. Esteller, M. Non-coding RNAs in human disease. *Nat. Rev. Genet.* 2011, 12, 861–874, https://doi.org/10.1038/nrg3074.

23. Zhang, P.; Wu, W.; Chen, Q.; Chen, M. Non-Coding RNAs and their Integrated Networks. *J. Integr. Bioinform.* 2019, 16, https://doi.org/10.1515/jib-2019-0027.

24. Wang, W.-T.; Han, C.; Sun, Y.-M.; Chen, T.-Q.; Chen, Y.-Q. Noncoding RNAs in cancer therapy resistance and targeted drug development. *J. Hematol. Oncol.* 2019, 12, 1–15, https://doi.org/10.1186/s13045-019-0748-z.

25. Lou, S.; Sun, T.; Li, H.; Hu, Z. Mechanisms of microRNA-mediated gene regulation in unicellular model alga Chlamydomonas reinhardtii. *Biotechnol. Biofuels* 2018, 11, 244.

26. Filipowicz, W.; Bhattacharyya, S.N.; Sonenberg, N. Mechanisms of post-transcriptional regulation by microRNAs: Are the answers in sight? *Nat. Rev. Genet.* 2009, 10, 92–114.

27. O’Brien, J.; Hayden, H.; Zayed, Y.; Peng, C. Overview of MicroRNA Biogenesis, Mechanisms of Actions, and Circulation. *Front. Endocrinol.* 2018, 9, 402.

28. Piasecka, J.; Braun, M.; Kordek, R.; Sadej, R.; Romanska, H. MicroRNAs in regulation of triple-negative breast cancer progresion. *J. Cancer Res. Clin. Oncol.* 2018, 144, 1401–1411.

29. Zubor, P.; Kubatka, P.; Dankova, A.; Kajo, K.; Hatok, J.; Samec, M.; Jagelkova, M.; Krivus, S.; Holubekova, V.; et al. miRNA in a multiomic context for diagnosis, treatment personalization and managed optimization of metastatic breast cancer. *Futur. Oncol.* 2018, 14, 1847–1867, https://doi.org/10.2217/fon-2018-0061.

30. Huarte, M. The emerging role of IncRNAs in cancer. *Nat. Med.* 2015, 21, 1253–1261, https://doi.org/10.1038/nm.3981.

31. Jiang, M.-C.; Ni, J.-J.; Cui, W.-Y.; Wang, B.-Y.; Zhuo, W. Emerging roles of IncRNA in cancer and therapeutic opportunities. *Am. J. Cancer Res.* 2019, 9, 1354–1366.
32. Volovat, S.R.; Volovat, C.; Hordila, I.; Hordila, D.-A.; Mirestean, C.C.; Miron, O.T.; Lungulescu, C.; Scripcariu, D.V.; Stolnieceanu, C.R.; Konsoulova-Kirova, A.A.; et al. MiRNA and LncRNA as Potential Biomarkers in Triple-Negative Breast Cancer: A Review. Front. Oncol. 2020, 10, https://doi.org/10.3389/fonc.2020.526850.

33. Zhao, X.; Cai, Y.; Xu, J. Circular RNAs: Biogenesis, Mechanism, and Function in Human Cancers. Int. J. Mol. Sci. 2019, 20, 3926.

34. Yu, C.-Y.; Kuo, H.-C. The emerging roles and functions of circular RNAs and their generation. J. Biomed. Sci. 2019, 26, 1–12, https://doi.org/10.1186/s12929-019-0523-z.

35. Su, M.; Xiao, Y.; Ma, J.; Tang, Y.; Tian, B.; Zhang, Y.; Li, X.; Wu, Z.; Yang, D.; Zhou, Y.; et al. Circular RNAs in Cancer: emerging functions in hallmarks, stemness, resistance and roles as potential biomarkers. Mol. Cancer 2019, 18, 1–17, https://doi.org/10.1186/s12943-019-1002-6.

36. Lyu, L.; Zhang, S.; Deng, Y.; Wang, M.; Deng, X.; Yang, S.; Wu, Y.; Dai, Z. Regulatory mechanisms, functions, and clinical significance of CircRNAs in triple-negative breast cancer. J. Hematol. Oncol. 2021, 14, 1–18, https://doi.org/10.1186/s13054-021-01052-y.

37. Qiu, Y.; Li, P.; Zhang, Z.; Wu, M. Insights Into Exosomal Non-Coding RNAs Sorting Mechanism and Clinical Application. Front. Oncol. 2021, 11, 664904.

38. Li, G.; Sun, Y. Liquid Biopsy: Advancements, Limitations and Clinical Applications. JSM Biotechnol. Bioeng. 2017, 4, 1078.

39. Tay, T.K.Y.; Tan, P.H. Liquid Biopsy in Breast Cancer: A Focused Review. Arch. Pathol. Lab. Med. 2020, 145, 678–686, https://doi.org/10.5858/arpa.2019-0599-ra.

40. Shin, V.Y.; Siu, J.M.; Cheuk, W.; Ng, E.K.O.; Kwong, A. Circulating cell-free miRNAs as biomarker for triple-negative breast cancer. Br. J. Cancer 2015, 112, 1751–1759, doi.org/10.1038/bjc.2015.143.

41. Ye, T.; Liang, Y.; Zang, D.; Zhang, X. MicroRNA-16-1-3p Represses Breast Tumor Growth and Metastasis by Inhibiting PGK1-Mediated Warburg Effect. Front. Cell Dev. Biol. 2020, 8, https://doi.org/10.3389/fccl.2020.615154.

42. Thakur, S.; Grover, R.K.; Gupta, S.; Yadav, A.K.; Das, B.C. Identification of Specific miRNA Signature in Paired Sera and Tissue Samples of Indian Women with Triple Negative Breast Cancer. PLoS ONE 2016, 11, e0158946, https://doi.org/10.1371/journal.pone.0158946.

43. Qattan, A.; Intabi, H.; Alkhayal, W.; Eltabache, C.; Tzewiiggeri, T.; Bin Amer, S. Robust expression of tumor suppressor miRNA’s let-7 and miR-195 detected in plasma of Saudi female breast cancer patients. BMC Cancer 2017, 17, 1–10, https://doi.org/10.1186/s12885-017-3776-5.

44. Li, M.; Pan, M.; You, C.; Zhao, F.; Wu, D.; Guo, M.; Xu, H.; Shi, F.; Zheng, D.; Dou, J. MiR-7 reduces the BCSC subset by inhibiting XIST to modulate the miR-92b/Slug/ESA axis and inhibit tumor growth. Breast Cancer Res. 2020, 22, 26–14, https://doi.org/10.1186/s12885-020-02164-z.

45. Li, M.; Pan, M.; Wang, J.; You, C.; Zhao, F.; Zheng, D.; Guo, M.; Xu, H.; Wu, D.; Wang, L.; et al. miR-7 Reduces Breast Cancer Stem Cell Metastasis via Inhibiting RELA to Decrease ISAM Expression. Mol. Ther. Oncolytics 2020, 18, 70–82, https://doi.org/10.1016/j.omto.2020.06.002.

46. Luo, Q.; Li, X.; Li, J.; Kong, X.; Zhang, J.; Chen, L.; Huang, Y.; Fang, L. MiR-15a is underexpressed and inhibits the cell cycle by targeting CCNE1 in breast cancer. Int. J. Oncol. 2013, 43, 1212–1218, https://doi.org/10.3892/ijoi.2013.2034.

47. Singh, R.; Yadav, V.; Kumar, S.; Saini, N. MicroRNA-195 inhibits proliferation, invasion and metastasis in breast cancer cells by targeting FASN, HMGCR, ACACA and CYP27B1. Sci. Rep. 2015, 5, 17454, https://doi.org/10.1038/srep17454.

48. Li, H.Y.; Liang, J.L.; Kuo, H.L.; Lee, H.-H.; Calkins, M.J.; Chang, H.-T.; Lin, F.-C.; Chen, Y.-C.; Hsu, T.-I.; Hsiao, M.; et al. miR-105/93-3p promotes chemoresistance and circulating miR-105/93-3p acts as a diagnostic biomarker for triple negative breast cancer. Breast Cancer Res. 2017, 19, 133.

49. Lin, B.; Liu, C.; Shi, E.; Jin, Q.; Zhao, W.; Wang, J.; Ji, R. MiR-105-3p acts as an oncogene to promote the proliferation and metastasis of breast cancer cells by targeting GOLIM4. BMC Cancer 2021, 21, 1–10, https://doi.org/10.1186/s12885-021-07999-2.

50. Karhman, M.; Röske, A.; Laufner, T.; Fehlmann, T.; Backes, C.; Kern, F.; Kohlhass, J.; Schrörs, H.; Saiz, A.; Zabler, C.; et al. MicroRNA in diagnosis and therapy monitoring of early-stage triple-negative breast cancer. Sci. Rep. 2018, 8, 1–11, doi:10.1038/s41598-018-29917-2.

51. Hong, Z.; Hong, C.; Ma, B.; Wang, Q.; Zhang, X.; Li, L.; Wang, C.; Chen, D. MicroRNA-126-3p inhibits the proliferation, migration, invasion, and angiogenesis of triple-negative breast cancer cells by targeting RGS3. Technol. Cancer Res. Treat. 2020, 19, 153033820965574.

52. Wang, C.-Z.; Yuan, P.; Li, Y. MiR-126 regulated breast cancer cell invasion by targeting ADAM9. Int. J. Clin. Exp. Pathol. 2015, 8, 6547–53.

53. Kia, V.; Beigli, M.S.; Hosseini, V.; Koochaki, A.; Paryan, M.; Mohammad-Yeganeh, S. Is miR-144 an effective inhibitor of PTEN mRNA: a controversy in breast cancer. Vitro Cell. Dev. Biol. Anim. 2018, 54, 621–628, https://doi.org/10.1007/s11626-018-0282-2.

54. Li, J.-T.; Jia, L.-T.; Liu, N.-N.; Zhu, X.-S.; Liu, Q.-Q.; Wang, X.-L.; Yu, F.; Liu, Y.-L.; Yang, A.-G.; Gao, C.-F. MiRNA-101 inhibits breast cancer growth and metastasis by targeting CX chemokine receptor 7. Oncotarget 2015, 6, 30818–30830, https://doi.org/10.18632/oncotarget.5067.

55. Mitobe, Y.; Ikeda, K.; Suzuki, T.; Takagi, K.; Kawabata, H.; Horie-Inoue, K.; Inoue, S. MiR-301a-3p Suppresses Estrogen Signaling by Directly Inhibiting ESR1 in ERα Positive Breast Cancer. Mol. Cell Biol. 2019, 39, e02611–19.

56. Milevskiy, M.J.; Sandhu, G.K.; Wronski, A.; Korbie, D.; Brewster, B.L.; Shewan, E.; Edwards, S.L.; French, J.D.; Brown, M.A. MiR-29b-1-5p is altered in BRCA1 mutant tumours and is a biomarker in basal-like breast cancer. Oncotarget 2018, 9, 33577–33588, https://doi.org/10.18632/oncotarget.26094.
Cancers 2022, 14, 803

57. Braicu, C.; Raduly, L.; Morar-Bolba, G.; Cojocneanu, R.; Jurj, A.; Pop, L.-A.; Pileczki, V.; Ciocan, C.; Moldovan, A.; Irimie, A.; et al. Aberrant miRNAs expressed in HER-2 negative breast cancers patient. J. Exp. Clin. Cancer Res. 2018, 37, 257, https://doi.org/10.1186/s13046-018-0920-2.

58. Akhavantabasi, S.; Sapmaz, A.; Tuna, S.; Erson-Bensan, A.E. miR-125b Targets ARID3B in Breast Cancer Cells. Cell Struct. Func. 2012, 37, 27–38, https://doi.org/10.1247/csf.11025.

59. Hulin, J.-A.; Tommasi, S.; Elliott, D.; Hu, D.G.; Lewis, B.C.; Mangoni, A.A. MiR-193b regulates breast cancer cell migration and vasculogenic mimicry by targeting dimethylarginine dimethylaminohydrolase 1. Sci. Rep. 2017, 7, 13996, https://doi.org/10.1038/s41598-017-14454-1.

60. Patel, Y.; Shah, N.; Lee, J.S.; Markoutsa, E.; Jie, C.; Liu, S.; Botbyl, R.; Reisman; D.; Xu, P.; Chen, H. A novel double-negative feedback loop between miR-489 and the HER2-SHP2-MAKP sig-naling axis regulates breast cancer growth and tumor cell proliferation. Oncotarget 2016, 7, 18295–18308.

61. Shaheen, J.; Shahid, S.; Shahzadi, S.; Akhtar, M.W.; Sadaf, S. Identification of Circulating miRNAs as Non-Invasive Biomarkers of Triple Negative Breast Cancer in the Population of Pakistan. Pak. J. Zool. 2019, 51, https://doi.org/10.17582/journal.pje.2019.51.3.1113.1121.

62. Ma, L. Role of miR-10b in breast cancer metastasis. Breast Cancer Res. Treat. 2010, 12, 210–210, https://doi.org/10.1186/bcr2720.

63. Mattiske, S.; Suetani, R.J.; Neilsen, P.; Callen, D. The Oncogenic Role of miR-155 in Breast Cancer. Cancer Epidemiol. Biomark. Prev. 2012, 21, 1236–1243, https://doi.org/10.1158/1055-9966.epi-12-0173.

64. Zhao, F.; Zhong, M.; Pei, W.; Tian, B.; Cai, Y. miR-376c-3p modulates the properties of breast cancer stem cells by targeting RAB2A. Exp. Ther. Med. 2020, 20, 1–1, https://doi.org/10.3892/etm.2020.9196.

65. Adam-Artigues, A.; Garrido-Cano, I.; Simón, S.; Ortega, B.; Moragón, S.; Lameiriñas, A.; Constáncio, V.; Salta, S.; Burgués, O.; Bermejo, B.; et al. Circulating miR-30b-5p levels in plasma as a novel potential biomarker for early detection of breast cancer. ESMO Open 2021, 6, 100039, https://doi.org/10.1016/j.esmoop.2020.100039.

66. Liu, M.; Xing, L.-Q.; Liu, Y.-J. A three-long noncoding RNA signature as a diagnostic biomarker for differentiating between triple-negative and non-triple-negative breast cancers. Medicine 2017, 96, e6222, https://doi.org/10.1097/md.0000000000006222.

67. Du, Q.; Yang, Y.; Kong, X.; Lan, F.; Sun, J.; Zhu, H.; Ni, Y, Pan, A. Circulating IncRNAs acting as diagnosis fingerprints for predicting triple negative breast cancer progression by modulating axis regulates breast cancer cell proliferation. PLoS Genet. 2013, 9, e1003705, https://doi.org/10.1371/journal.pgen.1003705.

68. Lan, F.; Zhang, X.; Li, H.; Yue, X.; Sun, Q. Serum exosomal IncRNA XIST is a potential non-invasive biomarker to diagnose recurrence of triple-negative breast cancer. J. Cell. Mol. Med. 2021, 25, 7602–7607, https://doi.org/10.1111/jcem.16009.

69. Li, X.; Hou, L.; Yin, L.; Zhao, S. LncRNA XIST interacts with miR-454 to inhibit cells proliferation, epithelial mesenchymal transition and induces apoptosis in triple-negative breast cancer. J. Biosci. 2020, 45, 1–11, https://doi.org/10.1007/s12028-020-09999-7.

70. Zhang, M.L.; Liu, W.W.; Li, W.D. Imbalance of Molecular Module of TINCR-miR-761 Promotes the Metastatic Potential of Early Triple Negative Breast Cancer and Partially Offsets the Anti-Tumor Activity of Luteolin. Cancer Manag. Res. 2021, 13, 1877–1886.

71. Lou, N.; Liu, G.; Pan, Y. Long noncoding RNA ANRIL as a novel biomarker in human cancer. Futur. Oncol. 2020, 16, 2981–2995, https://doi.org/10.2217/fon-2020-0470.

72. Bolha, L.; Ravnik-Glavač, M.; Glavač, D. Long Noncoding RNAs as Biomarkers in Cancer. Dis. Markers 2017, 2017, 1–14, https://doi.org/10.1155/2017/243684.

73. Li, X.; Ma, F.; Wu, L.; Zhang, X.; Tian, J.; Li, J.; Cao, J.; Ma, Y.; Zhang, L.; Wang, L. Identification of Hsa_circ_014824 as a Potential Biomarkers for Breast Cancer. Int. J. Cancer Exp. Res. Treat. 2020, 19, https://doi.org/10.17572/ijcet2015-1753033820960745.

74. Yang, S.J.; Wang, D.D.; Zhong, S.L.; Chen, W.Q.; Wang, F.L.; Zhang, J.; Xu, W.X.; Xu, D.; Zhang, Q.; Li, J.; et al. Tumor-derived exosomal circPSMA1 facilitates the tumorigenesis, metastasis, and migration in triple-negative breast cancer (TNBC) through miR-637/Akt1/Ji-catenin (cylcin D1) axis. Cell Death Dis. 2021, 12, 420.

75. Chen, T.; Wang, X.; Li, C.; Zhang, H.; Liu, Y.; Han, D.; Li, Y.; Li, Z.; Luo, D.; Zhang, N.; et al. CircHIF1A regulated by FUS accelerates triple-negative breast cancer progression by modulating NFIB expression and transllocation. Oncogene 2021, 40, 2756–2771.

76. Sahlberg, K.K.; Bottai, G.; Naume, B.; Burwinkel, B.; Calin, G.; Berresen-Dale, A.-L.; Santarpia, L. A Serum MicroRNA Signature Predicts Tumor Relapse and Survival in Triple-Negative Breast Cancer Patients. Clinic. Cancer Res. 2014, 21, 1207–1214, https://doi.org/10.1158/1078-0432.ccr-14-2111.

77. Huo, D.; Clayton, W.M.; Yoshimatsu, T.; Chen, J.; Olopade, O.I. Identification of a circulating MicroRNA signature to distinguish recurrence in breast cancer patients. Oncotarget 2016, 7, 55231–55248, https://doi.org/10.18632/oncotarget.10485.

78. Zeng, Z.; Chen, X.; Zhu, D.; Luo, Z.; Yang, Z. Low Expression of Circulating MicroRNA-34c is Associated with Poor Prognosis in Tri-ple-Negative Breast Cancer. Yonsei Med. J. 2017, 58, 697–702.

79. Shao, B.; Wang, X.; Zhang, L.; Li, D.; Liu, X.; Song, G.; Cao, H.; Zhu, J.; Li, H. Plasma microRNAs Predict Chemoresistance in Patients With Metastatic Breast Cancer. Technol. Cancer Res. Treat. 2019, 18, https://doi.org/10.11751/133033819828709.
82. Sueta, A.; Fujiki, Y.; Goto-Yamaguchi, L.; Tomiguchi, M.; Yamamoto-Ibusuki, M.; Iwase, H.; Yamamoto, Y. Exosomal miRNA profiles of triple-negative breast cancer in neoadjuvant treatment. *Oncol. Lett.* 2021, 22, 1–10, https://doi.org/10.3892/ol.2021.13080.

83. Wang, X.; Li, S.; Xiao, H.; Deng, X. Serum IncRNA TINCR Serve as a Novel Biomarker for Predicting the Prognosis in Triple-Negative Breast Cancer. *Technol. Cancer Res. Treat.* 2020, 19, 153303820965574.

84. Gao, J.; Wang, S.; Zhang, Z.; Li, J. Long non-coding RNA BRE-AS1 inhibits the proliferation, migration, and invasion of cancer cells in triple-negative breast cancer and predicts patients’ survival by downregulating miR-21. *BMC Cancer* 2021, 21, 745.

85. Na-Er, A.; Xu, Y.-Y.; Liu, Y.-H.; Gan, Y.-J. Upregulation of serum exosomal SUMO1P3 predicts unfavorable prognosis in triple negative breast cancer. *Vitro Cell. Dev. Biol. Anim.* 2021, 25, 154–160.

86. Liu, Y.; Cai, Q.; Bao, P.-P.; Su, Y.; Cai, H.; Wu, J.; Ye, F.; Guo, X.; Zheng, W.; Zheng, Y.; et al. Tumor tissue microRNA expression in association with triple-negative breast cancer outcomes. *Breast Cancer Res. Treat.* 2015, 152, 183–191, https://doi.org/10.1007/s10549-015-3460-x.

87. Andrade, F.; Nakata, A.; Gotoh, N.; Fujita, A. Large miRNA survival analysis reveals a prognostic four-biomarker signature for triple negative breast cancer. *Genet. Mol. Biol.* 2020, 43, https://doi.org/10.1590/1678-4685-gmb-2018-0269.

88. Wu, X.; Ding, M.; Lin, J. Three-microRNA expression signature predicts survival in triple-negative breast cancer. *Oncol. Lett.* 2020, 19, 301–308.

89. Hu, W.; Tan, C.; He, Y.; Zhang, G.; Xu, Y.; Tang, J. Functional miRNAs in breast cancer drug resistance. *OncoTargets Ther.* 2018, 11, 1529–1541, https://doi.org/10.2147/ott.s152462.

90. Ouyang, M.; Li, Y.; Ye, S.; Ma, J.; Lu, L.; Lv, W.; Chang, G.; Li, X.; Li, Q.; Wang, S.; et al. Long IncRNA GATA3 Myc underlies the PD-1/PD-L1/CTLA-4 feedback loop by recruiting DNMT1 and acting as a competing endogenous RNA in human breast cancer. *Cell Death Discov.* 2021, 12, 1–16, https://doi.org/10.1038/s41419-020-03188-0.

91. Liu, Y.; Du, Y.; Hu, X.; Zhao, L.; Xia, W. Up-regulation of ceRNA TINCR by SP1 contributes to tumorigenesis in breast cancer. *BMC Cancer* 2018, 18, 367, https://doi.org/10.1186/s12885-018-4255-3.

92. Xu, S.; Kong, D.; Chen, Q.; Ping, Y.; Pang, D. Oncogenic long noncoding RNA landscape in breast cancer. *Mol. Cancer* 2017, 16, 1–15, https://doi.org/10.1186/s12943-017-0696-6.

93. Wang, Q.; Liu, J.; You, Z.; Yin, Y.; Liu, L.; Kang, Y.; Li, S.; Ning, S.; Li, H.; Gong, Y.; et al. LncRNA TINCR favors tumorigenesis via STAT3-TINCR-EGFR feedback loop by recruiting DNMT1 and acting as a competing endogenous RNA in human breast cancer. *Cell Death Dis.* 2021, 12, 1–16, https://doi.org/10.1038/s41419-020-03346-0.

94. Liu, Y.; Du, Y.; Hu, X.; Zhao, L.; Xia, W. Up-regulation of ceRNA TINCR by SP1 contributes to tumorigenesis in breast cancer. *BMC Cancer* 2018, 18, 367, https://doi.org/10.1186/s12885-018-4255-3.

95. Lu, D.; Di, S.; Zhuo, S.; Zhou, L.; Bai, R.; Ma, T.; Zou, Z.; Chen, C.; Sun, M.; Tang, J.; et al. The long noncoding RNA TINCR promotes breast cancer cell proliferation and migration by regulating OAS1. *Cell Death Discov.* 2021, 7, 1–16, https://doi.org/10.1038/s41420-021-00419-x.

96. Dong, H.; Hu, J.; Zou, K.; Ye, M.; Chen, Y.; Wu, C.; Chen, X.; Han, M. Activation of LncRNA TINCR by H3K27 acetylation promotes Trastuzumab resistance and epithelial-mesenchymal transition by targeting MicroRNA-125b in breast cancer. *Mol. Cancer* 2019, 18, 1–18, https://doi.org/10.1186/s12943-018-0931-9.

97. Guo, F.; Zhu, X.; Zhao, Q.; Huang, Q. miR-589-3p sponged by the IncRNA TINCR inhibits the proliferation, migration and invasion and promotes the apoptosis of breast cancer cells by suppressing the Akt pathway via IGF1R. *Int. J. Mol. Med.* 2020, 46, 989–1002, https://doi.org/10.3892/ijmm.2020.4666.

98. Shadbad, M.A.; Safaei, S.; Brunetti, O.; Derakhshani, A.; Lotfinejad, P.; Mokhtarzadeh, A.; et al. A Systematic Review on the Therapeutic Potentiality of PD-L1-Inhibiting MicroRNAs for Triple-Negative Breast Cancer: Toward Single-Cell Sequen-cing-Guided Biomimetic Delivery. *Genes* 2021, 12, 1206.

99. Selem, N.; Nafae, H.; Youness, R.A.; Gad, M.Z. Immuno-regulatory loop between let-7a and CCAT1 IncRNA coordinated by c-Myc underlies the PD-1/PD-L1 immune-depression in triple negative breast cancer patients. *Ann. Oncol.* 2021, 32 (Suppl. 6), S1355.

100. Zhang, M.; Wang, N.; Song, P.; Fu, Y.; Ren, Y.; Li, Z.; Wang, J. LncRNA GATA3-AS1 facilitates tumour progression and immune escape in triple-negative breast cancer through destabilization of GATA3 but stabilization of PD-L1. *Cell Prolif.* 2020, 53, https://doi.org/10.1111/cpr.12855.

101. Loi, S.; Schmid, P.; Cortes, J.; Cescon, D.W.; Winer, E.P.; Toppmeyer, D.; Rugo, H.S.; De Laurentiis, M.; Nanda, R.; Iwata, H.; et al. RNA molecular signatures as predictive bio-markers of response to monotherapy pembrolizumab in patients with metastatic triple-negative breast cancer: KEYNOTE-086. *Cancer Res.* 2019, 79 (Suppl. 1), https://doi.org/10.1158/1538-7445.AM2019-LB-225.