Can proteomics lead to the discovery of real biomarkers for HCC?

Yasuhiro Kuramitsu

Yasuhiro Kuramitsu, Yamaguchi University Graduate School of Medicine, Department of Biochemistry and Functional Proteomics, 1-1-1 Minami-kogushi, Ube, Yamaguchi 755-8505, Japan

Author contributions: Kuramitsu Y solely contributed to this work.

Correspondence to: Dr. Yasuhiro Kuramitsu, MD, PhD, Yamaguchi University Graduate School of Medicine, Department of Biochemistry and Functional Proteomics 1-1-1 Minami-kogushi, Ube, Yamaguchi 755-8505, Japan. climates@yamaguchi-u.ac.jp

Telephone: +81-836-222213 Fax: +81-836-222212

Received: September 4, 2009 Revised: January 9, 2010

Accepted: January 16, 2010

Published online: February 27, 2010

Abstract

The development of proteomics technologies has lead to a great deal of effort being focused on the identification of biomarkers for cancers. Although many papers have reported candidate biomarkers for hepatocellular carcinomas (HCCs) in particular, so far none of these candidate biomarkers have been used either for diagnosis or therapy in treating patients. The question remains: Can proteomics identify real biomarkers for HCCs?

© 2010 Baishideng. All rights reserved.

Key words: Hepatocellular carcinoma; Proteomics; Mass spectrometry; Two-dimensional polyacrylamide gel electrophoresis; Biomarker

Peer reviewers: Yusuf Yilmaz, MD, Department of Gastroenterology, Marmara University School of Medicine, Topkanelioglu cad. No.13/15, Altunizade, Istanbul 34662, Turkey; Xiu-Jie Wang, Professor, Laboratory of Geriatrics, Laboratory of Experimental Oncology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, No.37 Guoxue Xiang, Chengdu 610041, Sichuan Province, China

INTRODUCTION

During the past decade, proteomic technologies, including mass spectrometry, have developed considerably, and have been extensively applied to many fields of science, including medicine and pharmacy, as well as industry and agriculture. In the field of medicine in particular, a huge number of reports on the topic have been published. Above all, much effort has gone into proteomic analyses of tissues, cells and sera from cancer patients. The purpose of these studies has been the identification of biomarkers which could provide the development and identification of diagnostic and therapeutic targets for cancers. Many research labs and large pharmaceutical companies have been actively searching for new and effective biomarkers of cancers. Most applications use expression proteomics to determine expression profiles of proteins in tissues, cells and sera during normal or diseased states.

PROTEOMIC BIOMARKERS FOR HEPATOCELLULAR CARCINOMAS

Hepatocellular carcinoma (HCC) is the third most deadly cancer, and about one million patients with HCC die each year. Despite remarkable advances in diagnostic and therapeutic techniques, the incidence of HCC continues to increase. While some papers on the proteomic analysis and discovery of molecular diagnostic markers for the diagnoses against HCC have been reported, no complete molecular diagnostic markers specific to HCC have been revealed by proteomics.
So far, many proteins have been reported as candidates for new diagnostic biomarkers, and as therapeutic targets for HCC by proteomics from HCC tissues. They are classified as (1) digestive enzymes, (2) growth factors, (3) cell adhesion molecules, (4) calcium-binding proteins, (5) proteases, (6) protease inhibitors, (7) transporter proteins, (8) structural molecules, (9) proteins related to cell growth, (10) proteins related to cell differentiation, (11) proteins related to cell transformation, (12) proteins related to tumor invasion, (13) apoptosis inhibitors, (14) proteins related to carcinogen metabolism, (15) molecular chaperone, and (16) others. However, up to now, unfortunately none of them have been able to be used for diagnostic purposes because of their sensitivity and specificity.

AUTOANTIBODIES AS BIOMARKERS

Although detection for autoantibodies as diagnostic markers in cancer patients’ sera is useful, not many reports associating them with HCC have been published. Le Naour et al. identified autoantibodies reaction to calreticulin isoforms, cytokeratin 8, cytokeratin 18, creatine kinase B, HSP60, nucleoside diphosphate kinase A and F1-ATP synthase beta-subunit. Takashima et al. identified their reaction to HSP70, peroxiredoxin and Mn-SOD. Their sensitivity seems to be high, but their specificity is still not great enough.

METABOLOMERIC BIOMARKERS FOR HCCS

Nowadays, in order to identify dramatically increased or decreased metabolites in cancer tissues, metabolomic profiling analyses have been used. Wu et al. and Xue et al. assayed endogenous metabolome in urine and sera from HCC patients using chemical derivatization followed by gas chromatography/mass spectrometry respectively, and many metabolites were shown to be significantly different between the HCC and control groups.

CONCLUSION

To exclude false positive biomarkers for hepatocellular carcinomas (HCCs), we need high specific biomarkers which show as new biomarkers solely in HCCs, and not in hepatitis as well. Many reports have shown such high specific biomarker candidates, unfortunately they are still not enough.

Much time may still be needed for the identification of real biomarkers for HCC.

REFERENCES

1. Chambers G, Lawrie L, Cash P, Murray GI. Proteomics: a new approach to the study of disease. J Pathol 2000; 192: 280-288
2. Alaiya AA, Franzén B, Auer G, Linder S. Cancer proteomics: from identification of novel markers to creation of artificial learning models for tumor classification. Electrophoresis 2000; 21: 1210-1217
3. Xu L, Hui L, Wang S, Gong J, Jin Y, Wang Y, Ji Y, Wu X, Han Z, Hu G. Expression profiling suggested a regulatory role of liver-enriched transcription factors in human hepatocellular carcinoma. Cancer Res 2001; 61: 3176-3181
4. Hanash SM. Biomedical applications of two-dimensional electrophoresis using immobilized pH gradients: current status. Electrophoresis 2000; 21: 1202-1209
5. Beretta L. Comparative analysis of the liver and plasma proteomes as a novel and powerful strategy for hepatocellular carcinoma biomarker discovery. Cancer Lett 2009; 286: 134-139
6. Sun W, Zhong F, Zhi L, Zhou G, He F. Systematic-omics analysis of HBV-associated liver diseases. Cancer Lett 2009; 286: 89-95
7. Orimo T, Ojima H, Hiroaka N, Saito S, Kosuge T, Kakiska T, Yoko H, Nakanishi K, Kamiyama T, Todo S, Hirohashi S, Kondo T. Proteomic profiling reveals the prognostic value of adenosomatous polyposis coli-end-binding protein 1 in hepatocellular carcinoma. Hepatology 2008; 48: 1851-1863
8. Chaerladky R, Hasha HC, Nallil A, Gueck M, Vivekanandan P, Akhtar J, Cole RN, Simmers J, Schulick RD, Singh S, Torbenson M, Pandey A, Thuluvath PJ. A quantitative proteomic approach for identification of potential biomarkers in hepatocellular carcinoma. J Proteome Res 2008; 7: 4289-4298
9. Lee NP, Chen L, Lin MC, Tsang FH, Yeung C, Poon RT, Peng J, Leng X, Beretta L, Sun S, Day PJ, Luk JM. Proteomic expression signature distinguishes cancerous and non-malignant tissues in hepatocellular carcinoma. J Proteome Res 2009; 8: 1293-1303
10. Park KS, Kim H, Kim NG, Choi SY, Choi KH, Seong JK, Paik YK. Proteomic analysis and molecular characterization of tissue ferritin light chain in hepatocellular carcinoma. Hepatologia 2002; 35: 1459-1466
11. Park KS, Cho SY, Kim H, Paik YK. Proteomic alterations of the variants of human aldehyde dehydrogenase isozymes correlate with hepatocellular carcinoma. Int J Cancer 2002; 97: 261-265
12. Kim J, Kim SH, Lee SU, Ha GH, Kang DG, Na NY, Ahn JS, Cho HY, Kang SJ, Lee YJ, Hong SC, Ha WS, Bae JM, Lee CW, Kim JW. Proteome analysis of human liver tumor tissue by two-dimensional gel electrophoresis and matrix assisted laser desorption/ionization-mass spectrometry for identification of disease-related proteins. Electrophoresis 2002; 23: 4142-4156
13. Lim SO, Park SJ, Kim W, Park SG, Kim HJ, Kim YL, Sohn TS, Noh JH, Jung G. Proteomic analysis of hepatocellular carcinoma. Biochem Biophys Res Commun 2002; 291: 1031-1037
14. Li C, Tan YK, Zhou H, Ding SJ, Li SJ, Ma DJ, Man XB, Hong Y, Zhang L, Li L, Xia QC, Wu JR, Wang HY, Zeng R. Proteomic analysis of hepatitis B virus-associated hepatocellular carcinoma: Identification of potential tumor markers. Proteomics 2005; 5: 1125-1139
15. Fuji K, Kondo T, Yokoo H, Yamada T, Iwatsuki K, Hirohashi S. Proteomic study of human hepatocellular carcinoma using two-dimensional difference gel electrophoresis with saturation cysteine dye. Proteomics 2005; 5: 1411-1422
16. Zeindl-Eberhart E, Harald BD, Liebmann S, Jungblut PR, Lamer S, Mayer D, Jäger G, Chung S, Rabes HM. Detection and identification of tumor-associated protein variants in human hepatocellular carcinomas. Hepatology 2004; 39: 540-549
17. Kim W, Oe Lim S, Kim JS, Ryu YH, Byeon JY, Kim HJ, Kim YI, Heo JS, Park YM, Jung G. Comparison of proteome between hepatitis B virus- and hepatitis C virus-associated hepatocellular carcinoma. Clin Cancer Res 2003; 9: 5493-5500
18. Takashima M, Kuramitsu Y, Yokoyama Y, Izuoka N, Toda T, Sakaida I, Okita K, Oka M, Nakamura K. Proteomic profiling of heat shock protein 70 family members as biomarkers for...
hepatitis C virus-related hepatocellular carcinoma. *Proteomics* 2003; 3: 2487-2493

19. **Yokoyama Y**, Kuramitsu Y, Takashima M, Iizuka N, Toda T, Terai S, Sakaida I, Oka M, Nakamura K, Okita K. Proteomic profiling of proteins decreased in hepatocellular carcinoma from patients infected with hepatitis C virus. *Proteomics* 2004; 4: 2111-2116

20. **Takashima M**, Kuramitsu Y, Yokoyama Y, Iizuka N, Fuji moto M, Nishisaka T, Okita K, Oka M, Nakamura K. Over expression of alpha enolase in hepatitis C virus-related hepatocellular carcinoma: association with tumor progression as determined by proteomic analysis. *Proteomics* 2005; 5: 1686-1692

21. **Le Naour F**, Brichory F, Misek DE, Bréchot C, Hanash SM, Beretta L. A distinct repertoire of autoantibodies in hepatitis C virus-related hepatocellular carcinoma identified by proteomic analysis. *Mol Cell Proteomics* 2002; 1: 197-203

22. **Takashima M**, Kuramitsu Y, Yokoyama Y, Iizuka N, Harada T, Fujimoto M, Sakaida I, Okita K, Oka M, Nakamura K. Proteomic analysis of autoantibodies in patients with hepatocellular carcinoma. *Proteomics* 2006; 6: 3894-3900

23. **Wu H**, Xue R, Dong L, Liu T, Deng C, Zeng H, Shen X. Metabolomic profiling of human urine in hepatocellular carcinoma patients using gas chromatography/mass spectrometry. *Anal Chim Acta* 2009; 648: 98-104

24. **Xue R**, Lin Z, Deng C, Dong L, Liu T, Wang J, Shen X. A serum metabolomic investigation on hepatocellular carcinoma patients by chemical derivatization followed by gas chromatography/mass spectrometry. *Rapid Commun Mass Spectrom* 2008; 22: 3061-3068