LUMINOSITY DENSITY ESTIMATION FROM REDSHIFT SURVEYS AND THE MASS DENSITY OF THE UNIVERSE

MICHAEL JOYCE 1 AND FRANCESCO SYLOS LABINI 2,3

Received 2000 August 12; accepted 2001 April 30; published 2001 May 31

ABSTRACT

In most direct estimates of the mass density (visible or dark) of the universe, a central input parameter is the luminosity density of the universe. Here we consider the measurement of this luminosity density from redshift surveys, as a function of the yet undetermined characteristic scale \(R_H \) at which the spatial distribution of visible matter tends to a well-defined homogeneity. Making the canonical assumption that the cluster mass-to-luminosity ratio \(M/L \) is the universal one, we can estimate the total mass density as a function \(\Omega_c = (M/L) \). Taking the highest estimated cluster value \(M/L \approx 300 \ h \ M_\odot/L\odot \) and a conservative lower limit \(R_H \equiv 20 \ h^{-1} \) Mpc, we obtain the upper bound \(\Omega_c \leq 0.1 \). We note that, for values of the homogeneity scale \(R_H \) in the range \(R_H \approx (90 \pm 45) \) h Mpc, the value of \(\Omega_c \) may be compatible with the nucleosynthesis inferred density in baryons.

Subject headings: galaxies: general — galaxies: statistics — large-scale structure of universe

While the density of visible matter can be directly inferred from redshift surveys, that of dark matter is necessarily only more indirectly accessible. The currently most popular methods for determining the latter make use of estimates of the total mass of clusters, which are stated as estimates for the mass-to-luminosity ratio for clusters (see Bahcall 2001 for a review and Hranecky et al. 2000 for recent determinations in groups and clusters of galaxies). Assuming that this ratio is representative of the global ratio of mass to luminosity, one can infer, given the luminosity density \(\phi_c \) of the universe, the corresponding value for the mass density \(\Omega_c \). Almost invariably in the literature this luminosity density is taken from an analysis reported in Efstathiou, Ellis, & Peterson (1988), which derives a value \(\phi_c \) primarily by fitting the normalization of number counts from the origin as a function of apparent magnitude. The intrinsic problems of inferring what is a three-dimensional property from such two-dimensional (projected) measures have been discussed in detail elsewhere (e.g., Sylos Labini, Montuori, & Pietronero 1998, hereafter SLMP98). We limit ourselves to noting here that this procedure of normalization is highly sensitive to the (a priori unknown) corrections that are applied to the data, which without such corrections do not even show a count’s slope consistent with the homogeneity assumption (i.e., \(\alpha = 0.6 \)) in any range of apparent magnitude. Furthermore, despite the quite precise value (error of 20%) derived in Efstathiou et al., the values of \(\phi_c \) found in different surveys in the paper vary by a factor of 4. The authors note that “the dispersion among the estimates is extraordinarily large” but do not provide any clear explanation of why this is so and how they arrive at such a small error in their final (averaged) estimate for \(\phi_c \). It is our view that such variations are intrinsic to the data, corresponding to the fact that each result is normalized to samples of different size and geometry. In any case, it is clear that the most reliable way of estimating this three-dimensional property of the data is directly from three-dimensional data, and it is this that we do here.

Before entering the details of data analysis, let us discuss an important methodological point that is at the center of our treatment: instead of assuming homogeneity in the data sets we analyze, we use statistical methods that do not depend on the presence or absence of such homogeneity. Here this means that, instead of assuming that \(\phi_c \) is well defined a priori, we evaluate a more general quantity that will correspond to it in the case that the distribution is homogeneous. Homogeneity at large scales in the distribution of matter is a central assumption of standard cosmological models and of the statistical tools usually used to analyze the data. While two-dimensional (angular) maps of galaxies initially provided clear support for the supposition of homogeneity at relatively small scales, three-dimensional redshift surveys revealed unsuspected structure at much larger scales. The existence of such structures (in particular voids) is incompatible with well-defined homogeneity below these scales, and observationally the actual scale characterizing homogeneity in matter, and indeed the existence of such a scale at all, has become a subject of considerable debate (e.g., SLMP98 and Wu, Lahav, & Rees 1999). Standard characterizations of the three-dimensional galaxy and cluster redshift data, which simply assume homogeneity at the largest scale probed, give rise to an ever growing range of characteristic scales (“correlation lengths” of different classes of objects), while an analysis of the same surveys with methods that do not assume such homogeneity leads to an interpretation in which these scales are sample-dependent characterizations of a distribution with an underlying simple scale invariance, a cutoff from which to homogeneity has, it is argued, not yet been detected with any statistical significance (see, e.g., Joyce, Montuori, & Sylos Labini 1999, hereafter JMSL99). Our aim in this Letter is not to address these issues, which are discussed in detail elsewhere, but to show how crucial input parameters to standard cosmological models depend on what are, at the very least, important observational uncertainties concerning the distribution of visible matter. In particular we consider here the total mass density of the universe \(\Omega_c \), but the same kind of analysis can be easily applied to other important parameters (for example, to the amplitude of the matter power spectrum). We express our results in terms of a well-defined homogeneity scale to be determined from redshift surveys and place bounds on \(\Omega_c \) corresponding to conservative current lower bounds on this scale.

We first consider the properties of the spatial distribution of visible matter and the characterization of the tendency (if any) to homogeneity. At small scales, at least up to \(\sim 20 \ h^{-1} \) Mpc,
it is widely agreed that the galaxy distribution shows fractal behavior. Deviation away from this behavior toward the expected homogeneity is most easily identified using a very simple two-point statistic, the average conditional density

\[\Gamma(r) = \left(\frac{1}{S(r)} \frac{dN(< r)}{dr} \right)_p, \]

where \(dN(< r) \) is the number of points in a shell of thickness \(dr \) at distance \(r \) from an occupied point and \(S(r)dr \) is the volume of the shell. The symbol \((\ldots)_p\) indicates that the quantity is a conditional one (for a discussion see Gabrielli & Sylos Labini 2001), the average being performed over occupied points. This statistic is simply an unnormalized form of the standard two-point correlation functions \(\xi(r) \) (Saslaw 2000; see also SLMP98). While homogeneity corresponds to the convergence of \(\Gamma \) to a fixed value as a function of distance, scale invariance is indicated by the continuation of a simple power-law behavior. Only in the former case does a real average density exist. The small-scale fractal behavior observed in redshift catalogs corresponds to the behavior \(\Gamma(r) = A_r r^{-3} \) (with \(A \) a constant); detecting homogeneity corresponds to making an estimate of the asymptotic value of the density \(\Gamma_c > 0 \); we then define \(A_r \Gamma_c r^{-3} = \Gamma_c \); i.e., \(R_p \) is defined as the scale at which the small-scale fractal behavior would match onto the asymptotic density, in the case that there were a simple crossover from fractality to homogeneity. Once \(R_p \) has been defined, one can meaningfully study correlation properties of fluctuations about the mean density \(\Gamma_c \) with the usual normalized correlation function \(\xi(r) = [\Gamma(r)/\Gamma_c] - 1 \). The relationship of the scale \(R_p \) so defined to other characteristic scales often used is simple to derive. For example, consider the “correlation length” \(r_c \) defined by \(\xi(r_c) = 1 \). If we assume that \(r_c \) lies in the range in which the distribution is well approximated as fractal—which is generally taken to be the case—one finds \(r_c = 2^{\alpha D - 3} R_h \). For any particular smooth form of the crossover scale from small-scale fractality to homogeneity, the precise relation will be slightly modified.

We now turn to the estimation of the luminosity density from three-dimensional surveys. We adapt here the approximation that is always made in this context: We assume that the spatial correlations in galaxy positions are unconnected to their morphological or luminosity properties. While such an assumption is known to be strictly false (Binggeli, Sandage, & Tammann 1988)—it is inconsistent with local morphological properties (e.g., elliptical galaxies are mostly located in the center of rich clusters [Dressler 1984], and there is a correlation between luminosity and space distributions as discussed in SLMP98)—we will check that it is quantitatively a good approximation for the estimates being made here. With this assumption we can write the factorized expression

\[\langle p(r, L) \rangle_p dL d^3r = \phi(L) \Gamma(r) dL d^3r = A_r r^{-3} L^\alpha e^{-L/L_*} d^3r dL \]

for the (conditional) average number of galaxies in the volume element \(d^3r \) at distance \(r \) from a observer located on a galaxy, and with luminosity in the range \([L, L + dL]\). In the latter form we have used the fact that the galaxy luminosity function has been observed to have the so-called Schechter shape with parameters \(L_* \) (luminosity cutoff) and \(\alpha \) (power-law index), which can be determined experimentally (Binggeli et al. 1988), and we have written the small-scale fractal behavior for the spatial distribution. Hence, \(\langle p(r, L) \rangle_p \) is a function of the measurable parameters \(L_*, \alpha \) and those characterizing the spatial distribution: \(D, A \) at small scales and, in the case of detected homogeneity, \(R_p \) at large scales. Note that for the determination of the shape of the luminosity function the effect of space inhomogeneities can be neglected if the joint distribution can be written as in equation (2) (Binggeli et al. 1988; SLMP98). There are different methods to estimate the parameters \(M_* \) and \(\alpha \), but all are based on the assumption embodied in equation (2): these so-called inhomogeneity-independent methods have been developed to determine the shape of the luminosity function, independently of its overall normalization. It is now simple to estimate the average luminosity density in a sphere of radius \(R \) and volume \(V(R) \) placed around a galaxy

\[\langle j(< R) \rangle_p = \frac{1}{V(R)} \int_0^R \int_0^\infty \langle p(r, L) \rangle_p L dL d^3r, \]

which has the \(R \) dependence that follows from that of the space density, with a corresponding asymptotic value in the case of homogeneity. In a volume-limited (VL) sample (see, e.g., JMSL99) extracted from a given redshift survey, we may compute the number of galaxies as a function of distance. Using equation (2) we have

\[\langle N(L > L_{VL}) \rangle_p = \int_0^{R_{VL}} \int_0^\infty \langle p(r, L) \rangle_p L dL d^3r = B_{VL} R^2, \]

where \(B_{VL} \) is the amplitude of the number counts in a VL sample with faint luminosity limit at \(L = L_{VL} \). From equations (2) and (4) and considering equation (3), we then obtain that

\[\langle j(< R) \rangle_p \equiv j(0) \left(\frac{R}{10 h} \right)^{D-3}. \]

in \(L_{\odot} \) Mpc\(^{-3} \), where \(j(0) = 3/(4 \pi L_\odot)^{D-3} \gamma(\alpha + 2) \Phi_{VL} \), where \(\gamma(\alpha + 2) \) is the Euler function \(\gamma(n) = (n - 1)! \) for positive integers \(n \) and we have defined \(\Phi_{VL} = B_{VL}/(\gamma_{\odot} L_{\odot} \gamma(e^{-0})) \), where \(\gamma_{\odot} = L_{\odot}/L_{\odot} \).

Employing our definition of the homogeneity scale \(R_p \), we obtain the asymptotic average luminosity density simply substituting \(R = R_p \) in equation (5). Given a value of (or lower bound on) this scale, it is thus straightforward to obtain the corresponding value of (or upper bound on) the total mass density, once one has an appropriate estimate of the global mass-to-luminosity ratio. The numerical results we quote here we obtain from the CfA2-South survey (Huchra, Vogely, & Geller 1999), which covers a solid angle of about 1 sr, with a completeness in its observing range of over 99% and a total of 4392 galaxies. We have repeated our calculations (M. Montuori et al. 2001, in preparation) in the larger joint catalog of

footnote{Note that for the values relevant here, \(\alpha \approx -1 \), the integral in the denominator of \(\Phi_{VL} \) is a cutoff divergent gamma function \((n < 0) \) and depends sensitively on the lower cutoff \(\gamma_{\odot} \). On the other hand, the gamma function is convergent, so the total luminosity is dominated by galaxies with luminosity \(\sim -L_\odot \), and is essentially insensitive to the lower cutoff in the luminosity function \(L_{\odot} \). If there are very many additional very low surface brightness galaxies that are not sampled in redshift surveys, sufficient to make the exponent \(\alpha < -2 \), this integral would be strongly dependent on \(L_{\odot} \) (and the total luminosity dominated by these faint galaxies).}
CfA2 and Southern Sky Redshift Survey 2 (SSRS2), including both the Southern and Northern galactic caps, and find results that are in good agreement with those given here. For the luminosity parameters we take \(M^\odot = -18.8 \pm 0.3 \) and \(\alpha = -1.0 \pm 0.2 \) (Marzke, Huchra, & Geller 1994). Note that we compute all the relevant quantities in the Zwicky magnitude system used in these surveys. The \(M/L \) results from clusters refer to luminosity in the \(B \) magnitude system, to which the transformation from the Zwicky system is not exactly known (Marzke et al. 1994). In practice, up to a small residual effect due to galaxy type, the transformation should be well modeled as a simple zero-point offset \(M^B = M^\odot + \Delta \) with \(\Delta \leq 0.3 \) (Paturel, Bottinelli, & Gouguenheim 1994). In our estimated luminosity density, this induces the correction \(j(10)^B = j(10) \times 10^{-0.3\Delta} \), which is small, and we will simply neglect it in what follows. For the spatial properties the results we quote are for the analysis of the CfA2 survey described in JMSL99, using exactly the methods used there to estimate the appropriate parameters. In Table 1 are given the values of \(B_{\odot} \) determined in different VL samples, defined by the corresponding absolute magnitude limit \(M_{\odot} \). The results depend on the cosmological parameters assumed in the reconstruction of distances and absolute magnitudes from redshifts and apparent magnitude. The values quoted correspond to the Mattig relation with \(q_0 = 0.5 \), but the results do not sensibly change for any other reasonable choice of \(q_0 \) as the redshifts involved are very small \((z \leq 0.05)\).

From \(B_{\odot} \) we have computed the quoted values of the quantity \(\Phi_{\odot} \) in the different VL samples, and we infer the average value \(\langle \Phi_{\odot} \rangle \approx 1.4 \pm 0.4 \). Using this we obtain the numerical value \(j(10) \approx (2 \pm 0.6) \times 10^h hL_\odot Mpc^{-1} \). The fractal dimension \(D \) is given by the slope of \(\langle N(<r) \rangle \) as a function of \(r \) in a VL sample. As mentioned above, our analysis of the CfA2 + SSRS2 joint catalog gives values very consistent with these. Hereafter, we adopt for simplicity the value \(D = 2.0 \).

For a given \(R_H \), we now find the mass density parameter in units of the critical density, \(\rho_c = 2.78 \times 10^{-11} h^2 M_\odot Mpc^{-3} \), where \(M_\odot \) is the solar mass, and as a function of a specified global mass-to-luminosity ratio \((\text{in solar and h units)})\) to be

\[
\Omega_m(R_H, M/L) = [(6 \pm 2) \times 10^{-4}] \frac{M}{L} h^{-1} \left(\frac{10 h^{-1}}{R_H} \right).
\]

(6)

Note that, because estimates of \(M/L \) are linearly dependent on \(h \), and \(R_H \) is measured in units of \(h^{-1} \text{Mpc} \), equation (6) is in fact independent of the Hubble constant.

Before proceeding to discuss this estimate of \(\Omega_m \) in more detail, we comment on the variation in \(\Phi_{\odot} \) seen in Table 1. These fluctuations can be due to one or more of the following factors: (1) Errors (statistical and/or systematic) in the measurement of \(B_{\odot} \); this effect can be very important for the samples with \(M_{\odot} < M_\odot \), because in this range of magnitudes the statistics of the VL samples is much weaker because of the exponential break in the luminosity function. Furthermore, as discussed in various papers (i.e., Bothun & Cornell 1990), the magnitudes in the General Catalog of Galaxies and Clusters (from which the photometry of CfA2 comes) are based on the Zwicky system, with an estimated error of 0.3 mag up to 15.0 mag increasing up to \(\approx 0.5 \) mag for the faint end of the catalog (i.e., for \(15.0 \leq M \approx 15.7 \)). The effect of this systematic error is not crucial in the estimation of \(\Gamma(r) \) if the statistics is robust (SLMP98), and in the VL considered there is a good spread of absolute magnitudes (i.e., \(M_{\odot} \approx -19.5 \)). Clearly, in the deepest and more luminous VL samples \((M_{\odot} \approx -20.0)\) the effect of the photometry error is more important in the determination of the amplitude of the conditional average density, in view of Malmquist bias (e.g., Teerikorpi 1997). (2) Use of nonoptimal parameters \(\alpha \) and \(M_\odot \) in the computation of \(\Phi_{\odot} \); in order to check the dependence on these two parameters, we have let them vary in the range \(-1.2 \leq \alpha \leq -0.9 \) and \(-18.7 \leq M_\odot \leq -19.1 \). In the VL samples with \(M_{\odot} > M_\odot \), we do not see a large fluctuation of \(\Phi_{\odot} \), while for the brighter samples it indeed can cause a change by a substantial factor \(10\%-30\%\). The values we have used here correspond to \(M_\odot = -19.1 \), which gives the stables result for \(\Phi_{\odot} \). (3) The breakdown of the assumption of luminosity/space independence embodied in equation (1): The independence of the determined parameters of the luminosity sample is our consistency test of this assumption, and to the extent that the fluctuations are relatively small it is good. Furthermore, given the first two points, which may explain much of the observed spread, the error caused by this is certainly at most of the order of the \(20\% \) we have given.

Let us now consider further our estimate of \(\Omega_m \). Taking first the estimate \(\langle M/L \rangle \approx 10 h \) in the \(B \) band as derived by Faber & Gallagher (1979), which corresponds to a global mass-to-luminosity ratio typical of spiral galaxies, we obtain \(\Omega_m(R_H) \approx 6 \times 10^{-4}(10 h^{-1}/R_H) \). With \(R_H \approx 10 h^{-1} \text{Mpc} (r_H \approx 5 h^{-1} \text{Mpc}) \) we obtain the value \(\Omega_m \approx 6 \times 10^{-4} \) of the standard treatment of Peebles (1993). On the other hand, we can determine the mass-to-luminosity ratio that would give a critical mass density universe. For a given \(R_H \) we find \(\langle M/L \rangle_{\text{crit}} \approx 1600 h[R_H/(10 h^{-1})] \), so that again the canonically quoted value \(\langle M/L \rangle_{\text{crit}} \approx 1600 h \) corresponds to the homogeneity scale \(R_H \approx 10 h^{-1} \text{Mpc} \).

Galaxy clusters have been much studied in recent years, and they are believed to probe well the global mass-to-luminosity ratio, for which the observed value is \((M/L) \approx 300 h \) in the \(B \) band (Carlberg, Yee, & Ellington 1997; Bahcall 2001; Hracketa et al. 2000). Taking this value, we obtain \(\Omega_m(R_H) \approx (0.18 \pm 0.06)(10 h^{-1}/R_H) \). The value that results using the same standard value \(R_H \approx 10 h^{-1} \text{Mpc} \) is \(\Omega_m \approx 0.2 \) (Bahcall 2001), which simply means that the former is the homogeneity scale built into the estimate of the luminosity density from Efstathiou et al. (1988) used as the basis for these estimates. The point of the present Letter has been to make the dependence on this scale explicit and to use its value as estimated from three-dimensional surveys. In JMSL99 we placed a lower bound of \(R_H \approx 20 h^{-1} \text{Mpc} \) on the homogeneity scale and found no clear statistical evidence for the existence of a cutoff to homogeneity at larger scales. Using this as a conservative lower bound on

\(M_{\odot}^\odot \)	\(B_{\odot} \)	\(\Phi_{\odot} \)	\(N_{\odot} \)
$-$17.0	1.5 ± 0.1	1.0 ± 0.1	1641
$-$18.0	0.7 ± 0.1	0.9 ± 0.1	2518
$-$19.0	0.4 ± 0.05	1.6 ± 0.2	4134
$-$19.5	0.17 ± 0.02	1.5 ± 0.2	3868
$-$20.0	0.06 ± 0.01	1.8 ± 0.3	2524

Note.—The absolute magnitude cut is at \(M_{\odot}^\odot \).

The third column is the determined value of the parameter \(\Phi_{\odot} \), where we have used \(M_\odot = -19.1 \) and \(\alpha = -1.0 \) as parameters of the luminosity function. \(N_{\odot} \) is the number of points in the volume-limited sample.
that scale, we now obtain the upper bound $\Omega_m \leq 0.1$ on the total mass density. In SLMP98 a strong case has been made for a much larger lower bound of $100-150\ h^{-1}\ Mpc$, based on a combination of cluster catalogs and the Lyon-Meudon Extragalactic Database. While these results remain controversial and need confirmation from forthcoming larger redshift surveys (Two-degree Field [2dF] and Sloan Digital Sky Survey [SDSS]), it is interesting to consider the implications of such a finding for the determination of Ω_m.

One of the most immediate cosmological implications of the measurement of the mass density comes from the comparison of its value with the standard big bang nucleosynthesis (SBBN) limits on the baryon density of the universe, which give (Olive, Steigman, & Walker 2000; Tytler et al. 2000) $\Omega_{b\text{BBN}} h^2 \approx 0.019 \pm 0.004$. While this comparison results in the inference of the existence of nonbaryonic dark matter in the standard case, one can now view it as providing a possible “window of consistency” for the two values. Using the estimate obtained above (eq. [6]), we find that for the homogeneity scale $R_H = (0.3 \pm 0.15) Mpc$ the dark matter in the universe can be purely baryonic with its global density satisfying the constraints of SBBN. Conversely, a homogeneity scale larger than this value would cause a serious problem for the theory of SBBN. Adopting the value $(M/L) \approx 300\, h^{-1}$, we find that that gives $R_H = (90 \pm 45)\, h^{-1}\ Mpc$, which, for $h = 0.65$, corresponds to $R_H = (60 \pm 30)\, Mpc$, which allows potential compatibility even for values of R_H as small as our conservative estimation $R_H = 20\, h^{-1}\ Mpc$.2.

Various other methods are commonly used to estimate the mass density of the universe. One based on clusters is that obtained by observations that constrain the fraction of hot baryonic X-ray–emitting gas in the total mass in clusters (see Bahcall 2001). Given that the rest of the mass may be nonbaryonic, this gives, when one uses the nucleosynthesis upper bound on Ω_m, an upper bound on the total mass $\Omega_m \leq 0.3$. Furthermore, taking most of this mass to be nonbaryonic, one infers a value of Ω_m consistent with the value from the direct estimate. In the present context we note simply that, if the scale R_H is indeed larger than usually implicitly assumed, the total mass density may be much lower and the dark mass in clusters quite consistently may be baryonic.

Another source of estimates for the total mass density comes from peculiar velocity flows (see Strauss & Willick 1995). These make use of linear perturbation theory, in which regime one can correlate the peculiar motions in a simple way with the total mass fluctuations, with the overall amplitude depending on the total Ω_m, which is then in principle determinable. In practice the problem is that one does not know how the fluctuations in the dominating dark component are related to those in the visible matter, and only by making some extremely simplistic assumptions (e.g., “linear bias”) can one extract a result. A much greater problem is one of principle related to the scale R_H, as it is in fact precisely also the scale that characterizes the validity of a linear regime. If, as we have discussed here, R_H is much larger than the standard assumed value, the estimates that have been made to date are meaningless. To correlate peculiar velocities reliably with the mass distribution, much tighter constraints are first needed on the latter, and completely different methods to the standard ones must be used if the regime of nonlinearity extends much deeper than usually assumed (Joyce et al. 2000).

In this Letter we have described, taking the example of the matter density Ω_m, how crucial parameters in standard-type cosmologies are dependent on a scale that has yet to be determined. The requisite statistically robust detection and characterization of the crossover to homogeneity and a reliable determination of this scale will be possible with the forthcoming 2dF and SDSS surveys. On the basis of current data, we have placed constraints on Ω_m by using the most suitable publicly available three-dimensional data available for this purpose, the combined CfA2 and SSRS2 surveys. We note that we have assumed, as is usually done, that clusters do indeed give a reliable measure of the global mass-to-luminosity ratio, and that if this assumption is not correct our results for the estimated parameters will of course not hold.

We warmly thank Y. V. Baryshev, F. Combes, R. Durrer, P. Ferreira, A. Gabrielli, M. Montuori, D. Pfenniger, and L. Pietronero for very useful comments and discussions. F. S. L. acknowledges the support of the EC TMR Network “Fractal Structures and Self-Organization” ERBFMRXCT980183 and of the Swiss NSF.

REFERENCES

Bahcall, N. A. 2001, in Proc. Nobel Symp. 109, Particle Physics and the Universe, ed. L. Bergström, C. Fransson, & P. Carlson (Singapore: World Scientific)

Binggeli, B., Sandage, A., & Tammann, G. A. 1988, ARA&A, 26, 509

Bothun, G. D., & Cornell, M. E. 1990, AJ, 99, 1004

Carlberg, R. G., Yee, H. K., & Ellingson, E. 1997, ApJ, 478, 462

Dressler, A. 1984, ARA&A, 31, 42

Einasto, E., Ellis, R. S., & Peterson, B. 1988, MNRAS, 232, 431

Faber, S. M., & Gallagher, J. S. 1979, ARA&A, 17, 135

Gabrielli, A., & Sylos Labini, F. 2001, Europhys. Lett., 54, 1

Hradecky, V., Jones, C., Donnelly, R. H., Djorgovski, S. G., Gal, R. R., & Odewahn, S. C. 2000, ApJ, 543, 521

Huchra, J. P., Vogeley, M. S., & Geller, M. J. 1999, ApJS, 121, 287

Joyce, M., Anderson, P. W., Montuori, M., Pietronero, L., & Sylos Labini, F. 2000, Europhys. Lett., 50, 416

Joyce, M., Montuori, M., & Sylos Labini, F. 1999, ApJ, 514, L5 (JML99)

Marzke, R. O., Huchra, J. P., & Geller, M. J. 1994, ApJ, 428, 43

Olive, K., Steigman, G., & Walker, T. 2000, Phys. Rep., 333, 389

Paturel, G., Bottinelli, L., & Gouguenheim, L. 1994, A&A, 286, 768

Peebles, P. E. J. 1993, Principles of Physical Cosmology (Princeton: Princeton Univ. Press)

Peebles, W. C. 2000, The Distribution of the Galaxies (Cambridge: Cambridge Univ. Press)

Saslaw, W. C. 2000, The Distribution of the Galaxies (Cambridge: Cambridge Univ. Press)

Saslaw, W. C. 2000, The Distribution of the Galaxies (Cambridge: Cambridge Univ. Press)

Saslaw, W. C. 2000, The Distribution of the Galaxies (Cambridge: Cambridge Univ. Press)

Saslaw, W. C. 2000, The Distribution of the Galaxies (Cambridge: Cambridge Univ. Press)

Teerikorpi, P. 1997, ARA&A, 35, 101

Tytler, D., O’Meara, J. M., Suzuki, N., & Lubi, D. 2000, Phys. Scr., 85, 12

Wu, K. K., Lahav, O., & Rees, M. 1999, Nature, 225, 230

Another source of estimates for the total mass density comes from peculiar velocity flows (see Strauss & Willick 1995). These make use of linear perturbation theory, in which regime one can correlate the peculiar motions in a simple way with the total mass fluctuations, with the overall amplitude depending on the total Ω_m, which is then in principle determinable. In practice the problem is that one does not know how the fluctuations in the dominating dark component are related to those in the visible matter, and only by making some extremely simplistic assumptions (e.g., “linear bias”) can one extract a result. A much greater problem is one of principle related to the scale R_H, as it is in fact precisely also the scale that characterizes the validity of a linear regime. If, as we have discussed here, R_H is much larger than the standard assumed value, the estimates that have been made to date are meaningless. To correlate peculiar velocities reliably with the mass distribution, much tighter constraints are first needed on the latter, and completely different methods to the standard ones must be used if the regime of nonlinearity extends much deeper than usually assumed (Joyce et al. 2000).

In this Letter we have described, taking the example of the matter density Ω_m, how crucial parameters in standard-type cosmologies are dependent on a scale that has yet to be determined. The requisite statistically robust detection and characterization of the crossover to homogeneity and a reliable determination of this scale will be possible with the forthcoming 2dF and SDSS surveys. On the basis of current data, we have placed constraints on Ω_m by using the most suitable publicly available three-dimensional data available for this purpose, the combined CfA2 and SSRS2 surveys. We note that we have assumed, as is usually done, that clusters do indeed give a reliable measure of the global mass-to-luminosity ratio, and that if this assumption is not correct our results for the estimated parameters will of course not hold.

We warmly thank Y. V. Baryshev, F. Combes, R. Durrer, P. Ferreira, A. Gabrielli, M. Montuori, D. Pfenniger, and L. Pietronero for very useful comments and discussions. F. S. L. acknowledges the support of the EC TMR Network “Fractal Structures and Self-Organization” ERBFMRXCT980183 and of the Swiss NSF.