THE ZIESCHANG-McCOOL METHOD FOR
GENERATING ALGEBRAIC MAPPING-CLASS GROUPS

LLUÍS BACARDIT AND WARREN DICKS

Abstract. Let $g, p \in [0,\infty[$, the set of non-negative integers. Let $A_{g,p}$ denote the group consisting of all those automorphisms of the free group on $t_{1[1:p]} \cup x_{1[1:p]} \cup y_{1[1:p]}$ which fix the element $\prod_{j \in [p+1]} t_j \prod_{i \in [1:p]} [x_i,y_i]$ and permute the set of conjugacy classes $\{[t_j]: j \in [1:p]\}$.

Labrèvre and Paris, building on work of Artin, Magnus, Dehn, Nielsen, Lickorish, Zieschang, Birman, Humphries, and others, showed that $A_{g,p}$ is generated by what is called the ADLH set. We use methods of Zieschang and McCool to give a self-contained, algebraic proof of this result.

Labrèvre and Paris also gave defining relations for the ADLH set in $A_{g,p}$; we do not know an algebraic proof of this for $g \geq 2$.

Consider an orientable surface $S_{g,p}$ of genus $g$ with $p$ punctures, with $(g,p) \neq (0,0), (0,1)$. The algebraic mapping-class group of $S_{g,p}$, denoted $M_{g,p}$, is defined as the group of all those outer automorphisms of

$$\langle t_{1[1:p]} \cup x_{1[1:p]} \cup y_{1[1:p]} | \prod_{j \in [p+1]} t_j \prod_{i \in [1:p]} [x_i,y_i] \rangle$$

which permute the set of conjugacy classes $\{[t_j],[y_i]: j \in [1:p]\}$. It now follows from a result of Nielsen that $M_{g,p}^{alg}$ is generated by the image of the ADL set together with a reflection. This gives a new way of seeing that $M_{g,p}^{alg}$ equals the (topological) mapping-class group of $S_{g,p}$, along lines suggested by Magnus, Karrass, and Solitar in 1966.

2010 Mathematics Subject Classification. Primary: 20E05; Secondary: 20E36, 20F05, 57M60, 57M05.

Key words. Algebraic mapping-class group. Zieschang groupoid. Generating set.

1. Introduction

Notation will be explained more fully in Section 2.

1.1. Definitions. Let $g, p \in [0,\infty[$. Let $A_{g,p}$ denote the group of automorphisms of $\langle t_{1[1:p]} \cup x_{1[1:p]} \cup y_{1[1:p]} | \rangle$ that fix $\prod_{j \in [p+1]} t_j \prod_{i \in [1:p]} [x_i,y_i]$ and permute the set of conjugacy classes $\{[t_j]: j \in [1:p]\}$.

We shall usually codify an element $\varphi \in A_{g,p}$ as a two-row matrix where the first row gives all the elements of $t_{1[1:p]} \cup x_{1[1:p]} \cup y_{1[1:p]}$ that are moved by $\varphi$, and the second row equals the $\varphi$-image of the first row. We define the following elements of $A_{g,p}$:

- for each $j \in [2:p]$, $\sigma_j := (t_j)$;
- for each $i \in [1:g]$, $\alpha_i := (x_i)$ and $\beta_i := (y_i)$;
- for each $i \in [2:g]$, $\gamma_i := (x_i)$ with $w_i := y_i = x_i x_i x_i x_i x_i$;
- if $\min(1,g,p) = 1$, $\gamma_1 := (x_i)$ with $w_i := t_1 x_i y_i x_i$.

We say that $\sigma_{[2:p]} \cup \alpha_{[1:g]} \cup \beta_{[1:g]} \cup \gamma_{\max(2-p,1):g}$ is the ADL set, and that removing $\alpha_{[3:g]}$ leaves the ADLH set, $\sigma_{[2:p]} \cup \alpha_{[1:min(2,g)]} \cup \beta_{[1:g]} \cup \gamma_{\max(2-p,1):g}$, named after Artin, Dehn, Lickorish and Humphries. \hfill $\Box$

Date: January 20, 2013.
In [13] Proposition 2.10(ii) with \( r = 0 \), Labruère and Paris showed that \( A_{g,p} \) is generated by the ADLH set. As we shall recall in Section 5, the proof is built on work of Artin, Magnus, Dehn, Nielsen, Lickorish, Zieschang, Birman, Humphries, and others, and some of this work uses topological arguments.

The main purpose of this article is to give a self-contained, algebraic proof that \( A_{g,p} \) is generated by the ADL set. Such proofs were given in the case \((g, p) = (1, 0)\) by Nielsen [17], and in the case \( g = 0 \) by Artin [1], and in the case \( p = 0 \) by McCool [20]. In the case where \((g, p) = (1, 0)\) or \( g = 0 \), our proof follows Nielsen’s and Artin’s. In the case where \( p = 0 \), McCool proceeds by adding in the free generators two at a time, while, for the general case, we benefit from being able to add in the free generators one at a time.

We also give a self-contained, algebraic translation of Humphries’ proof [12] that the ADLH set then generates \( A_{g,p} \).

1.2. Remark. In [13] Theorem 3.1 with \( r = 0 \), Labruère and Paris use topological and algebraic results of various authors to present \( A_{g,p} \) as the quotient of an Artin group on the ADLH set modulo three-or-less relations, each of which is expressed in terms of centres of Artin subgroups. We would find it very satisfying to have a direct, algebraic proof of this beautiful presentation. Now that we have the ADLH generating set, it would suffice to consider the group with the desired presentation and verify that its action on \( \langle t^{[1]} \cup x^{[1]} \cup y^{[1]} \mid \prod_{j \in [p+1]} t_j \prod_{i \in [1]} [x_i, y_i] \rangle \) is faithful. This is precisely the approach carried out by Magnus [15] for both the case \( g = 0 \), see [3, Section 5], and the case \( g = 1 \), see [2, Section 6.3]. The algebraic project remains open for \( g \geq 2 \). □

In outline, the article has the following structure.

In Section 2, we fix notation and define the Zieschang groupoid, essentially as in [28, Section 5.2] (developed from [22, 24, 26]), but with modifications taken from work of McCool [8, Lemma 3.2]. We give a simplified proof of a strengthened form of (the orientable, torsion-free case of) Zieschang’s result that the Nielsen-automorphism edges and the Artin-automorphism edges together generate the groupoid. Zieschang used group-theoretical techniques of Nielsen [18] and Artin [1], while McCool used group-theoretical techniques of Whitehead [21]. We use all of these.

In Section 3, which is inspired by the proof by McCool [20] of the case \( p = 0 \), we define the canonical edges in the Zieschang groupoid and use them to find a special generating set for \( A_{g,p} \).

In Section 4, we observe that the results of the previous two sections immediately imply that the ADL set generates \( A_{g,p} \). We then present an algebraic translation of Humphries’ proof that the ADLH set also generates \( A_{g,p} \).

At this stage, we will have completed our objective. For completeness, we conclude the article with an elementary review of algebraic descriptions of certain mapping-class groups.

In Section 5, we review definitions of some mapping-class groups and mention some of the history of the original proof that the ADLH set generates \( A_{g,p} \).

In Section 6, we recall the definitions of Dehn twists and braid twists, and see that the group \( A_{g,p} \) can be viewed as the mapping-class group of the orientable surface of genus \( g \) with \( p \) punctures and one boundary component.

In Section 7, we consider an orientable surface \( S_{g,0,p} \) of genus \( g \) with \( p \) punctures, with \((g,p) \neq (0,0), (0,1)\). The algebraic mapping-class group of \( S_{g,0,p} \), denoted \( M_{g,0,p}^{\text{alg}} \), is defined as the group of all those outer automorphisms of \( \pi_1(S_{g,0,p}) = \langle t^{[1]} \cup x^{[1]} \cup y^{[1]} \mid \prod_{j \in [p+1]} t_j \prod_{i \in [1]} [x_i, y_i] \rangle \)
which permute the set of conjugacy classes \{ \ell \}, \pi : \ell \in [1^{\uparrow}p]\}. We review Zieschang’s algebraic proof [28 Theorem 5.6.1] of Nielsen’s result [19] that \( M_{g,0,p}^{alg} \) is generated by the natural image of \( \Lambda_{g,p} \) together with an outer automorphism \( \bar{\zeta} \). Hence, \( M_{g,0,p}^{alg} \) is generated by the natural image of the ADLH set together with \( \bar{\zeta} \). In 1966, Magnus, Karrass and Solitar [16 p.175] remarked that if one could find a generating set of \( M_{g,0,p}^{alg} \) and self-homeomorphisms of \( S_{g,0,p} \) that induce those generators, then one would be able to prove that \( M_{g,0,p}^{alg} \) was equal to the (topological) mapping-class group \( M_{g,0,p}^{top} \), even in the then-unknown case where \( g \geq 2 \) and \( p \geq 2 \).

Also in 1966, Zieschang [26 Satz 4] used groupoids to prove equality, and their remark does not seem to have been followed up. The generating set given above fulfills their requirement, since the image of each ADL generator is induced by a braid twist or a Dehn twist of \( S_{g,0,p} \), and \( \bar{\zeta} \) is induced by a reflection of \( S_{g,0,p} \). This gives a new way of seeing that \( M_{g,0,p}^{alg} = M_{g,0,p}^{top} \).

2. The Zieschang Groupoid and the Nielsen Subgraph

In this section, which is based on [28 Section 5.2], we define the Zieschang groupoid \( Z_{g,p} \) and the Nielsen subgraph \( N_{g,p} \), and prove that \( N_{g,p} \) generates \( Z_{g,p} \).

2.1. Notation. We will find it useful to have notation for intervals in \( Z \) that is different from the notation for intervals in \( R \). Let \( i, j \in Z \). We define the sequence

\[
[i \uparrow j] := \begin{cases} (i, i + 1, \ldots, j - 1, j) & \text{if } i \leq j, \\
(\emptyset) & \text{if } i > j.
\end{cases}
\]

The subset of \( Z \) underlying \([i \uparrow j] \) is denoted \([i \uparrow j] := \{i, i + 1, \ldots, j - 1, j\} \).

Also, \([i \uparrow \infty[ := \{i, i + 1, i + 2, \ldots\} \).

We define \([j \downarrow i] \) to be the reverse of the sequence \([i \uparrow j] \), that is, \((j, j-1, \ldots, i+1, i) \).

Suppose that we have a set \( X \) and a map \([i \uparrow j] \rightarrow X, \ell \mapsto x_{\ell} \). We define the corresponding sequence in \( X \) as

\[
x_{[i \uparrow j]} := \begin{cases} (x_i, x_{i+1}, \ldots, x_{j-1}, x_j) & \text{if } i \leq j, \\
(\emptyset) & \text{if } i > j.
\end{cases}
\]

By abuse of notation, we shall also express this sequence as \((x_\ell \mid \ell \in [i \uparrow j])\), although “\( \ell \in [i \uparrow j] \)” on its own will not be assigned a meaning. The set of terms of \( x_{[i \uparrow j]} \) is denoted \( x_{[i \uparrow j]} \). We define \( x_{[j \downarrow i]} \) to be the reverse of the sequence \( x_{[i \uparrow j]} \).

2.2. Notation. Let \( G \) be a multiplicative group.

For each \( u \in G \), we denote the inverse of \( u \) by both \( u^{-1} \) and \( \overline{u} \). For \( u, v \in G \), we let \( u^v := u^v v \) and \([u, v] := \overline{u} \overline{v} \). For \( u \in G \), let \( [u] := \{u^v \mid v \in G\} \), called the \( G \)-conjugacy class of \( u \). We let \( G/\sim := \{[u] : u \in G\} \), the set of all \( G \)-conjugacy classes.

Where \( G \) is a free group given with a distinguished basis \( B \), we think of each \( u \in G \) as a reduced word in \( B \cup B^{-1} \), and let \( |u| \) denote the length of the word. We think of \( [u] \) as a cyclically-reduced cyclic word in \( B \cup B^{-1} \).

Suppose that we have \( i, j \in Z \) and a map \([i \uparrow j] \rightarrow G, \ell \mapsto u_\ell \). We write

\[
\prod_{\ell \in [i \uparrow j]} u_\ell := [u_{[i \uparrow j]}] := \begin{cases} u_i u_{i+1} \cdots u_{j-1} u_j & \text{if } i \leq j, \\
1 & \text{if } i > j.
\end{cases}
\]

\[
\prod_{\ell \in [j \downarrow i]} u_\ell := [u_{[j \downarrow i]}] := \begin{cases} u_j u_{j-1} \cdots u_{i+1} u_i & \text{if } j \geq i, \\
1 & \text{if } j < i.
\end{cases}
\]
When we have $G$ acting on a set $X$, then, for each $x \in X$, we let $\text{Stab}(x; G)$ denote the set of elements of $G$ which stabilize, or fix, $x$.

We let $\text{Aut} G$ denote the group of all automorphisms of $G$, acting on the right, as exponents, $u \mapsto u^g$. In a natural way, $\text{Aut} G$ acts on $G/\sim$ and on the set of subsets of $G \cup \{G/\sim\}$.

We let $\text{Out} G$ denote the quotient of $\text{Aut} G$ modulo the group of inner automorphisms, we call the elements of $\text{Out} G$ outer automorphisms, and we denote the quotient map $\text{Aut} G \to \text{Out} G$ by $\varphi \mapsto \bar{\varphi}$. In a natural way, $\text{Out} G$ acts on $G/\sim$ and on the set of subsets of $G/\sim$.

\section{2.3. Notation.} The following will be fixed throughout.

Let $g, p \in [0, \infty[$. Let $F_{g,p} := \langle t_{\{1\}p}, x_{\{1\}p}, y_{\{1\}p} \mid \rangle$, a free group of rank $2g+p$ with a distinguished basis. We shall find it convenient to use abbreviations as $\{t_j\}_{j \in [1\}p\} = \{t_j, j \in [1\}p\}$, $\Pi_{i \in [1\}g\} [x_i, y_i]$. The elements of $\{t_j\}_{j \in [1\}p\} \cup \{x_j\}_{j \in [1\}p\} \cup \{y_j\}_{j \in [1\}p\}$ will be called letters. The elements of $\{t\}_{\{1\}p\}$ will be called t-letters. The elements of $\{t\}_{\{1\}p\}$ will be called inverse t-letters. The elements of $\{x_j\}_{j \in [1\}p\} \cup \{y_j\}_{j \in [1\}p\}$ will be called x-letters.

We shall usually codify an element $\varphi \in \text{Aut} F_{g,p}$ as a two-row matrix where the first row gives, for some basis consisting of letters, all those elements which are moved by $\varphi$, and the second row equals the $\varphi$-image of the first row.

We shall be working throughout the group $\text{Stab}(\{t\}_{\{1\}p\}; \text{Aut} F_{g,p})$ (which permutes the set of cyclic words $\{t\}_{\{1\}p\}$) and its subgroup

$A_{g,p} := \text{Stab}(\{t\}_{\{1\}p\} \cup \{\Pi t_{\{1\}p} \Pi [x, y]_{\{1\}t\} \}; \text{Aut} F_{g,p})$.

\section{2.4. Definitions.} Let $g, p \in [0, \infty[$ and let $F_{g,p} := \langle t_{\{1\}p}, x_{\{1\}p}, y_{\{1\}p} \mid \rangle$. Let $\{1\}p\} = \{t_{\{1\}p}, x_{\{1\}p}, y_{\{1\}p}\}$, $k \mapsto v_k$, be a bijective map, let $V := \Pi v_{\{1\}p}^{\{1\}p} + 1$, and let $\Gamma$ denote the graph with

- vertex set $\{t_{\{1\}p}, x_{\{1\}p}, y_{\{1\}p}\}$, and
- edge set $\{\{t_j \mapsto t_j\}_{j \in [1\}p\} \cup \{(v_k \mapsto v_{k+1}) \mid k \in [1\}p+1\}\}$.

If $\Gamma$ has no cycles (that is, $\Gamma$ is a forest), then we say that $V$ is a Zieschang element of $F_{g,p}$ and that $\Gamma$ is the extended Whitehead graph of $V$; we note that the condition that $\Gamma$ has no cycles implies that $\Pi v_{\{1\}p}^{\{1\}p} + 1$ is the reduced expression for $V$, and, hence, $\Gamma$ is the usual Whitehead graph of $\{t\}_{\{1\}p}\} \cup \{V\}$, as in [21]. If $(g, p) \neq (0, 0)$ and $V$ is a Zieschang element of $F_{g,p}$, then $\Gamma$ has the form of an oriented line segment with $4g+2p$ vertices and $4g+2p-1$ edges; here, we define $V_0 := v_{4g+p+1} := 1$, and book-end $\Gamma$ with the ghost edges $(v_0 \mapsto v_1)$ and $(v_{4g+p} \mapsto v_{4g+p+1})$.

For example, $V_0 := \Pi t_{\{1\}p} \Pi [x, y]_{\{1\}t\}$ is a Zieschang element of $F_{g,p}$, and its extended Whitehead graph is

$\bar{t}_p \mapsto t_p \mapsto t_{p-1} \mapsto \cdots \mapsto \bar{t}_1 \mapsto t_1 \mapsto x_1 \mapsto \bar{y}_1 \mapsto y_1 \mapsto x_2 \mapsto \cdots \mapsto x_g \mapsto \bar{y}_g \mapsto y_g$.

The Zieschang groupoid for $F_{g,p}$, denoted $\mathcal{Z}_{g,p}$, is defined as follows.

- The set $V \mathcal{Z}_{g,p}$ of vertices/objects of $\mathcal{Z}_{g,p}$ equals the set of Zieschang elements of $F_{g,p}$.
- The edges/elements/morphisms of $\mathcal{Z}_{g,p}$ are the triples $(V, W, \varphi)$ such that $V, W \in V \mathcal{Z}_{g,p}$, and $\varphi \in \text{Stab}(\{t\}_{\{1\}p}\} \cup \text{Aut} F_{g,p})$, and $V^\varphi = W$. Here, we say that $(V \xrightarrow{\varphi} W)$, or $V^\varphi \xrightarrow{\varphi} W$, is an edge of $\mathcal{Z}_{g,p}$ from $V$ to $W$, and denote the set of such edges by $\mathcal{Z}_{g,p}(V, W)$.
- The partial multiplication in $\mathcal{Z}_{g,p}$ is defined using the multiplication in $\text{Stab}(\{t\}_{\{1\}p}\} \cup \text{Aut} F_{g,p})$ in the natural way.
If \( V \in V\mathbb{Z}_{g,p} \), then, as a group, \( \mathbb{Z}_{g,p}(V, V) = \text{Stab}(\{t\}_{1:p} \cup \{V\}; \text{Aut } F_{g,p}) \). Thus \( \mathbb{Z}_{g,p}(V_0, V_0) = A_{g,p} \). Throughout, we shall view the elements of \( A_{g,p} \) as edges of \( \mathbb{Z}_{g,p} \) from \( V_0 \) to \( V_0 \). We shall be using \( V_0 \) as a basepoint of \( \mathbb{Z}_{g,p} \) in Definitions 2.3 where we will verify that \( \mathbb{Z}_{g,p} \) is connected. 

2.5. Definitions. Let \( g, p \in [0; \infty] \), let \( F_{g,p} := \langle t_{1:p} \cup x_{1:q} \cup y_{1:q} \mid \rangle \), let \( V, W \in F_{g,p} \), and let \( \varphi \in \text{Aut } F_{g,p} \). Suppose that \( V \in V\mathbb{Z}_{g,p} \), and that \( V^\varphi = W \).

If \( \varphi \) permutes the \( t \)-letters and permutes the \( x \)-letters, then we say that \( V \xrightarrow{\varphi} W \) is a Nielsen\(_1\) edge in \( \mathbb{Z}_{g,p} \). To see that \( (V \xrightarrow{\varphi} W) \in \mathbb{Z}_{g,p} \), notice that \( \varphi \in \text{Stab}(\{t\}_{1:p}; \text{Aut } F_{g,p}) \) and \( W \in V\mathbb{Z}_{g,p} \).

If there exists some \( k \in [1; (4g+p-1)] \) such that the letter \( v_k \) is an \( x \)-letter and \( \varphi = (v_k^v) \), then we say that \( V \xrightarrow{\varphi} W \) is a right Nielsen\(_2\) edge in \( \mathbb{Z}_{g,p} \). To see that \( (V \xrightarrow{\varphi} W) \in \mathbb{Z}_{g,p} \), we note the following. In passing from \( V \) to \( W \), we remove the boxed part in \( v_{k-1} \cdots v_k \) and add the boxed part in \( v_{k+1} \cdots v_j \), where \( v_j = \overline{v_k} \). In passing from the extended Whitehead graph of \( V \) to the extended Whitehead graph of \( W \), we remove the boxed part in \( v_{k+1} \cdots v_j \) and add the boxed part in \( v_{k-1} \cdots v_j \), where we have indicated a ghost edge if \( j = 1 \) or \( k = 4g+p-1 \). Hence, \( (V \xrightarrow{\varphi} W) \in \mathbb{Z}_{g,p} \).

If there exists some \( k \in [2; (4g+p)] \) such that \( v_k \) is an \( x \)-letter and \( \varphi = (v_k^v v_{k+1}) \), then we say that \( V \xrightarrow{\varphi} W \) is a left Nielsen\(_2\) edge in \( \mathbb{Z}_{g,p} \). This is an inverse of an edge of the previous type.

By a Nielsen\(_2\) edge in \( \mathbb{Z}_{g,p} \), we mean a left or right Nielsen\(_2\) edge in \( \mathbb{Z}_{g,p} \).

If there exists some \( k \in [1; (4g+p-1)] \) such that the letter \( v_k \) is a \( t \)-letter and \( \varphi = (v_k^v v_{k+1} v_{k-1}) \), then we say that \( V \xrightarrow{\varphi} W \) is a right Nielsen\(_3\) edge in \( \mathbb{Z}_{g,p} \). To see that \( (V \xrightarrow{\varphi} W) \in \mathbb{Z}_{g,p} \), we note the following. In passing from \( V \) to \( W \), we change \( v_{k-1} v_k v_{k+1} \) to \( v_{k+1} v_k v_{k-1} \). In passing from the extended Whitehead graph of \( V \) to the extended Whitehead graph of \( W \), we remove the boxed part in \( v_{k+1} \cdots v_j \) and add the boxed part in \( v_{k-1} \cdots v_j \), where we have indicated a ghost edge if \( k = 1 \) or \( k = 4g+p-1 \). Hence, \( (V \xrightarrow{\varphi} W) \in \mathbb{Z}_{g,p} \).

If there exists some \( k \in [2; (4g+p)] \) such that the letter \( v_k \) is a \( t \)-letter and \( \varphi = (v_k^v v_{k+1}) \), then we say that \( V \xrightarrow{\varphi} W \) is a left Nielsen\(_3\) edge in \( \mathbb{Z}_{g,p} \). This is an inverse of an edge of the previous type.

By a Nielsen\(_3\) edge in \( \mathbb{Z}_{g,p} \), we mean a left or right Nielsen\(_3\) edge in \( \mathbb{Z}_{g,p} \).

By a Nielsen edge in \( \mathbb{Z}_{g,p} \), we mean a Nielsen edge in \( \mathbb{Z}_{g,p} \), for some \( i \in \{1, 2, 3\} \).

We define the Nielsen subgraph of \( \mathbb{Z}_{g,p} \), denoted \( \mathcal{N}_{g,p} \), to be the graph with vertex set \( V\mathbb{Z}_{g,p} \) and edges, or elements, the Nielsen edges in \( \mathbb{Z}_{g,p} \).

We now give a simplified proof of a result due to Zieschang and McCool. 

2.6. Theorem. Let \( g, p \in [0; \infty] \), let \( F_{g,p} := \langle t_{1:p} \cup x_{1:q} \cup y_{1:q} \mid \rangle \), let \( V, W \in F_{g,p} \), let \( H \) be a free group, let \( \varphi \) be an endomorphism of \( H\ast F_{g,p} \), and suppose that the following hold.

(a) \( V \in V\mathbb{Z}_{g,p} \).
(b) \( |W| \leq 4g + p \).
(c) \( V^\varphi = W \).
(d) There exists some permutation \( \pi \) of \( [1:p] \) such that, for each \( j \in [1:p] \), \( t_j^\pi \) is \( (H\ast F_{g,p})\)-conjugate to \( t_j \).
(e) \( \varphi \mid_{F_{g,p}} \cong \varphi \mid_{F_{g,p}} \).

Then \( W \in V\mathbb{Z}_{g,p} \) and there exists an edge \( V \xrightarrow{\varphi} W \) in the subgroupoid of \( \mathbb{Z}_{g,p} \) generated by the Nielsen subgraph \( \mathcal{N}_{g,p} \) such that \( \varphi \) acts as \( \varphi' \) on the free factor \( F_{g,p} \).
We can arrange each element of $A$ again denoted $\preceq$ in sequence with respect to $\prec$. Hence, from (e) that $A \prec B \preceq C$ and $C \preceq A$. It follows from (e) that there are 4 distinct elements in the set $\{1\ldots 4\}$. To show that $\prec$ permutes the $t$-letters and permutes the $x$-letters.

We let $\{0,1\}$-letter to the length-lexicographic total order, also denoted $\preceq$, on $\{0,1\}$. Consider the reduced expression $V = \Pi_{i \in [1\ldots 4]} \{0,1\}$. Let $v_0 := v_{4g+p+1} = 1$.

For each $k \in [0\ldots (4g+p)]$, let $A_k$ denote the largest common initial subword of $\overline{v}_k$ and $v_{k+1}$ with respect to $\{0,1\}$. Since $v_0 = v_{4g+p+1} = 1$, we have $A_0 = A_{4g+p} = 1$. For each $k \in [1\ldots (4g+p)]$, let $w_k := A_{k-1}v_k^2 A_k \in F_{g,p}H$. Then $v_k^2 = A_{k-1}w_kA_k$, where this expression need not be reduced.

We shall show in Claim 1 that we may assume that $A_k < A_{k-1}w_k$ and that $A_k < A_{k+1}w_{k+1}$, and then show in Claim 2 that this ensures that $\prec$ permutes the $t$-letters and permutes the $x$-letters.

We let $\{(F_{g,p}H)_k\}$ denote the set of $(4g+p)$-element subsets of $F_{g,p}H$, and define a pre-order $\preceq$ on $\{(F_{g,p}H)_k\}$ as follows. For each $A \in F_{g,p}H$, there is a unique reduced expression $A = A^L A^R$ with the property that $|A^L| - |A^R| \in \{0,1\}$. For $A, B \in F_{g,p}H$, we write $A \preceq B$ if either $|A| < |B|$ or $|A| = |B|$ and $A^R \preceq B^L$. We can arrange each element of $\{(F_{g,p}H)_k\}$ as a (not necessarily unique) ascending sequence with respect to $\preceq$, and assign $\{(F_{g,p}H)_k\}$ the (unique) lexicographic pre-order, again denoted $\preceq$. Here, $A \prec B$ will mean $A \preceq B$ and $B \npreceq A$.

Without assigning any meaning to $V^2 \to W$, let us write

$$\mu(V^2 \to W) := h^v_{1,1} \cup (h^v_{1,1} \cdot v^1 \cup (y^v_{1,1} \cup (y^v_{1,1})^2 \in \{(F_{g,p}H)_k\}, \preceq).$$

It follows from (e) that there are 4 distinct elements in the set $\mu(V^2 \to W)$.

**Claim 1.** Let $k \in [1\ldots (4g+p-1)]$. If $A_k \not\preceq A_{k-1}w_k$ or $A_k \not\preceq A_{k+1}w_{k+1}$, then there exists some $(V^2 \to U) \in N_{g,p}$ such that $\mu(U^2 \to W) \prec \mu(V^2 \to W)$.

**Proof of Claim 1.** We have specified reduced expressions $v_k^2 = A^L$ and $v_{k+1}^2 = A^R$, and $v_k^2 v_{k+1}^2 = B^C$, where $A := A_k, B := A_{k-1}w_k, C := A_{k+1}w_{k+1}$. It follows from (e) that $A, B, C$ are all different.

By hypothesis, $A \npreceq \min(\{A, B, C\}, \preceq)$. We shall consider only the case where $B = \min(\{A, B, C\}, \preceq)$; the argument where $C = \min(\{A, B, C\}, \preceq)$ is similar. Thus we have $A > B < C$.

The letter $v_{k+1}$ is either a $t$-letter or an $x$-letter.

**Case 1.** $v_{k+1}$ is an $x$-letter.

On taking $\alpha := (v^x_{k+1})$, we have a Nielsen edge $(V^2 \to U) \in N_{g,p}$. Here $\overline{\alpha} := (v^x_{k+1})$ and $\overline{\alpha}^2 v_{k+1}^2 = v_{k+1}^2 v_{k+1}^2 = B^C$. In this case, the change from $\mu(V^2 \to W)$ to $\mu(U^2 \to W)$ consists of replacing $v_{k+1}^2, \overline{\alpha}^2$ with $v_{k+1}^2, \overline{\alpha}^2$, $\{B^C, C^B\}$. To show that $\mu(U^2 \to W) \prec \mu(V^2 \to W)$, it now suffices to show that $B^C < A^C \prec C^B \prec A^C$. If $A > B$, then, since $A > B < C$, we have $A > B < C$. Hence $B^C < A^C \prec C^B \prec A^C$. If $|A| = |B|$, then, since $A > B < C$, we have $|A| = |B| \leq |C|$ and $B < A$. Hence $B^C < A^C \prec C^B \prec A^C$.

**Case 2.** $v_{k+1}$ is a $t$-letter.

On taking $\alpha := (v^t_{k+1})$, we have a Nielsen edge $(V^2 \to U) \in N_{g,p}$. Here $\overline{\alpha} := (v^t_{k+1})$. In this case, the change from $\mu(V^2 \to W)$ to $\mu(U^2 \to W)$, consists of replacing $v_{k+1}^2 = A^C$ with $v_{k+1}^2 = v_{k+1}^2 v_{k+1}^2 = (B^C)(A^C)(A^B) = B^C A^B$. To show that $\mu(U^2 \to W) \prec \mu(V^2 \to W)$, it suffices to show that $B^C A^B < A^C$. 

**Proof of Claim 2.**
Let $D := \min\{A, C\}$, $s$. Since $v_{k+1}$ is a $t$-letter, there exists some $j \in [1^p]$ such that $v^w_{k+1}$ is a conjugate of $t_j$, that is, $AC$ is a conjugate of $t_j$. Thus, both $AC$ and $CA$ begin with $D$, and we can write $AC = DEt_jED$ with no cancellation. Now $Et_jED = DA(CD) = CA$. Hence $BCAB = BEt_jED$ where this expression may have cancellation. Recall that $B < D$. Thus $BEt_jED < DEt_jED$, that is, $BCAB < AC$.

This completes the proof of Claim 1. □

Claim 1 gives a procedure for reducing $\mu(V \triangleleft W)$. Once $\varphi$ is specified, only a finite subset of $B\cup B^{-1}$ is ever involved, and, moreover, there is an upper bound for the lengths of the elements of $F_{p, p}H$ which will appear. It follows that we can repeat the procedure only a finite number of times. Hence, we may now assume that, for each $k \in [1^p(4g+p-1)]$, $A_k < A_{k-1}w_k$ and $A_k < A_{k+1}\overline{A}_{k+1}$.

**Claim 2.** Under the latter assumption, $\varphi$ permutes the $t$-letters and permutes the $x$-letters, and the desired conclusion holds.

**Proof of Claim 2.** For each $k \in [1^p(4g+p)]$, $A_k < A_{k-1}w_k$ and $A_k < A_{k+1}\overline{A}_k$ (even for $k = 1$ and $k = 4g+p$). It follows that $w_k \neq 1$ and also that the expression $v^w_k = A_{k-1}w_k\overline{A}_k$ is reduced. It then follows that, for each $k \in [1^p(4g+p-1)]$, $A_{k-1}w_kw_{k+1}\overline{A}_{k+1}$ is a reduced expression for $v^w_k v^w_{k+1}$. Now

$$W = V^\varphi = (\Pi w_{1^p(4g+p)})^\varphi = \prod_{k \in [1^p(4g+p)]} \Pi (A_{k-1}w_k\overline{A}_k) = \Pi w_{1^p(4g+p)},$$

and we have just seen that the expression $\Pi w_{1^p(4g+p)}$ is reduced. By (b),

$$4g+p \geq |W| = |\Pi w_{1^p(4g+p)}| = \sum_{k=1}^{4g+p} \frac{w_k}{|w_k|} \geq 4g+p.$$ 

Hence, equality holds throughout, and, for each $k \in [1^p(4g+p)], |w_k| = 1$ and $w_k$ is a letter.

Let $s_{1^p(4g+p)}$ be the vertex sequence in the extended Whitehead graph of $V$, that is, $s_{1^p(4g+p)} = t_{1^p(4g+p)} \cup x_{1^p(4g+p)} \cup y_{1^p(4g+p)}$ and $\{(s_{\ell} \mapsto s_{\ell+1}) \mid \ell \in [1^p(4g+2p-1)]\}$ equals $\{(t_{\ell} \mapsto t_{\ell+1}) \mid \ell \in [1^p(4g+p-1)]\}$.

We assume that there exists some $\ell \in [1^p(4g+2p)]$ such that $|s_{\ell}^w| > 1$, and we shall obtain a contradiction. Let $s_{\ell}^w$ end in $b \in B \cup B^{-1}$. Assume further that $\ell$ has been chosen to minimize $|b|$ in $(B \cup B^{-1}, \leq)$. Assume further that $\ell$ has been chosen maximal. In particular, if $|s_{\ell+1}^w| > 1$, then $s_{\ell+1}^w$, does not end in $b$.

Recall that $(s_{\ell} \mapsto s_{\ell+1})$ can be expressed either as $(t_{\ell} \mapsto t_{\ell+1})$ or $(v_k \mapsto \overline{v}_{k+1})$, possibly a ghost edge. If $(s_{\ell} \mapsto s_{\ell+1}) = (t_{\ell} \mapsto t_{\ell+1})$, then $|s_{\ell+1}^w| = |s_{\ell}^w| > 1$, and, also, $s_{\ell+1}^w$ ends in $b$. This is a contradiction. Thus, we may assume that $(s_{\ell} \mapsto s_{\ell+1}) = (v_k \mapsto \overline{v}_{k+1})$, possibly with $k = 4g+p$. Then $s_{\ell+1}^w = v_{\ell+1}^w = A_{k-1}w_k\overline{A}_k$ and $A_{k-1} < A_k\overline{A}_k$.

We claim that $A_k = 1$. Suppose not. Then $k < 4g+p$ and, also, $\overline{A}_k$ ends in $b$. Now $v_{\ell+1}^w = A_{k-1}w_k\overline{A}_{k+1} = A_kw_k\overline{A}_{k+1}$. Thus $|s_{\ell+1}^w| > 1$ and $s_{\ell+1}^w$ ends in $b$. This is a contradiction. Hence $A_k = 1$.

Now, $s_{\ell}^w = A_{k-1}w_k\overline{A}_k = A_{k-1}w_k$. Here, $w_k = b$ and, also, $A_{k-1} \neq 1$. Now, $A_{k-1} < A_k\overline{A}_k = \overline{A}_k$. Thus, $A_k = 1 \in B \cup B^{-1}$. Write $a := A_k \in B \cup B^{-1}$. Then $s_{\ell}^w = b\overline{a}$ and $\overline{a} < b$. There exists some $\ell' \in [1^p(4g+2p)]$ such that $s_{\ell'} = \overline{a}\overline{c}$.

Then $s_{\ell}^w = b\overline{a}$ and $\overline{a} < b$. This contradicts the minimality of $b$.

We have now shown that $\varphi$ permutes the $t$-letters and maps the $x$-letters to letters. It follows from (e) that $\varphi$ permutes the $x$-letters. Hence, $\varphi$ gives a Nielsen-I edge in $N_{g,p}$.

This completes the proof of Claim 2 and the proof of the theorem. □ □
Theorem 2.6 combines Zieschang’s approach [28, Section 5.2] and McCool’s approach [8, Lemma 3.2]. Zieschang does not use Whitehead graphs explicitly and McCool does not use Nielsen3 edges explicitly. For Claim 1, the ingenious pre-order and the proof of Case 1 go back to Nielsen [15], and the proof of Case 2 goes back to Artin [11]. The proof of Claim 2 goes back to Whitehead [21]. Zieschang refers to Nielsen [15] for the proof of his version of Claim 1 and gives a long proof of his version of Claim 2. McCool uses results of Whitehead [21] for the proof of his version of Theorem 2.6.

We shall be interested in five special cases.

In Theorem 2.6, we can take $H = 1$ and take $(V \not\in W) \in Z_{g,p}$ to see the following.

2.7. Consequence. $Z_{g,p}$ is generated by $N_{g,p}$.

In Theorem 2.6, we can take $H = 1$ and take $\varphi$ to be an automorphism to obtain the following weak form of results of Whitehead.

2.8. Consequence. For $V \in V Z_{g,p}$ and $\varphi \in \text{Stab}(\{1\} \text{ and } V^{\varphi}) \leq 4g+p$, then $V^{\varphi} \in V Z_{g,p}$.

It is a classic result of Nielsen [15] that every surjective endomorphism of a finite-rank free group is an automorphism, and his proof is the basis of the above proof of Claim 1. A special case of this classic result will be used later in reviewing a proof of another result of Nielsen, Theorem 7.2, and to make our exposition self-contained, we now note that we have proved the desired special case. We have also proved one of Zieschang’s results concerning injective endomorphisms being automorphisms.

In Theorem 2.6, we can take $H = 1$ to obtain the following.

2.9. Consequence. Suppose that $\varphi$ is an endomorphism of $F_{g,p}$ such that $\varphi$ is surjective or injective, and such that $\varphi$ fixes $\Pi\{x, y\}[1, 17, 1]$, and such that there exists some permutation $\pi$ of $[17]$ such that, for each $j \in [17]$, $t_j^{\pi}$ is $F_{g,p}$-conjugate to $t_j^{\varphi}$. Then $\varphi$ is an automorphism.

2.10. Consequence. Suppose that $p > 1$.

Let us identify $F_{g,p} = H + F_{g,p-1}$ where $H := \langle t_p \rangle$.

Let $V := \Pi\{x, y\}[1, 17, 1] F_{g,p-1}$ and $\varphi \in \text{Stab}(V; A_{g,p}) = \text{Stab}(t_p; A_{g,p})$.

By Theorem 2.6, $\varphi$ acts as an automorphism $\varphi'$ on $F_{g,p-1}$ and $\varphi'$ lies in $A_{g,p-1}$.

Thus, we have a natural isomorphism $\text{Stab}(t_p; A_{g,p}) \cong A_{g,p-1}$, $\varphi \mapsto \varphi'$.

2.11. Consequence. Suppose that $p = 0$ and $g > 1$.

Let us identify $F_{g,0} = H + K$ where $H := \langle x_1 \rangle$ and $K := \langle y_1 \rangle$.

We can have an isomorphism $K \cong F_{g-1,1}$ with $y_1 \mapsto t_1$, and, for each $i \in [2, g]$, $x_i \mapsto x_{i-1}$, $y_i \mapsto y_{i-1}$.

Let $V := \Pi\{x, y\}[1, 17, 1]$ and $\varphi \in \text{Stab}(V; A_{g,0}) = \text{Stab}(x_1; A_{g,0})$. Then $\varphi$ stabilizes the $F_{g,0}$-conjugacy class $[y_1]$. By Theorem 2.6, $\varphi$ acts as an automorphism on $K$ such that the induced action on $F_{g-1,1}$ is an element $\varphi'$ of $A_{g-1,1}$.

Then we have a homomorphism $\text{Stab}(x_1; A_{g,0}) \rightarrow A_{g-1,1}$, $\varphi \mapsto \varphi'$. It is easily seen that this map is surjective, and that the kernel is generated by $\alpha_1 := (x_1 \mapsto x_{1,1}) x_{1,1}$. Thus, we have an isomorphism $\text{Stab}(x_1; A_{g,0}) \cong (\alpha_1 \mid x_{1,1}) A_{g-1,1}$.

3. The canonical edges in the Zieschang groupoid

In this section, we develop methods introduced by McCool in [20]. We define the canonical edges in $Z_{g,p}$ and use them to find a special generating set for $A_{g,p}$.

Throughout this section, all products $AB$ are understood to be without cancellation; any product where cancellation might be possible will be written as $A \circ B$. Upper-case letters will be used to denote elements of $F_{g,p}$, and lower-case letters will be used to denote $t$-letters and $x$-letters.
3.1. Definitions. Let $g, p \in [0, \infty]$, let $F_{g,p} := \langle t_{[1:p]} \cup x_{[1:g]} \cup y_{[1:g]} \mid \rangle$, and let $V \in \mathbb{Z}_{g,p}$. We shall now recursively construct a path in $\mathbb{Z}_{g,p}$ from $V$ to $\Pi_{[p+1]} \Pi[x, y]_{[1:g]}$. In particular, $\mathbb{Z}_{g,p}$ is connected. At each step, we specify an automorphism and tacitly apply Consequence 2.8 to see that we have an edge in $\mathbb{Z}_{g,p}$.

(i). If $p \geq 1$ and $V = Pt_jQ$ where $t_j$ is the first $t$-letter which occurs in $V$ and $P \neq 1$, then we travel along the edge

$$Pt_jQ \xrightarrow{\left( \frac{t_j}{t_j} \right)} t_jPQ.$$  

(ii). If $p \geq 1$ and $V = t_jP$ and $j \neq p$, then we travel along the edge

$$t_jP \xrightarrow{\left( \frac{t_j}{t_j} \right)} t_pP.$$  

(iii). If $j \in [2p]$ and $V$ begins with $\Pi_{[p]}$ but not with $\Pi_{[p+1]}$, then we proceed analogously to steps (i) and (ii).

(iv). If $g \geq 1$ and $V = \Pi_{[p+1]} x\Pi yQ$ where $a$ is an $x$-letter and $a \neq x_1$, then we travel along the edge

$$\Pi_{[p+1]} x\Pi yQ \xrightarrow{\left( \frac{a}{x_1} \frac{x_1}{y} \right)} \Pi_{[p+1]} y\Pi P.$$  

(v). Suppose that $g \geq 1$ and $V = \Pi_{[p+1]} y\Pi P xQ$ and $|P| \geq 2$. If the set of letters which occur in $P$ were closed under taking inverses, then the extended Whitehead graph of $V$ would have a cycle $T_{\text{first}} \sim \cdots \sim P_{\text{last}} \sim T_{\text{first}}$, which is a contradiction. Let $b$ denote the first letter that occurs in $P$ such that $b$ occurs in $Q$. We write $P = P_1bP_2$ and $Q = Q_1P_1Q_2$, and we travel along the edge

$$\Pi_{[p+1]} y\Pi P_1bP_2xQ_1P_1Q_2 \xrightarrow{\left( \frac{b}{x} \frac{x_1}{b} \right)} \Pi_{[p+1]} y\Pi bP_1xQ_1P_1Q_2.$$  

(vi). Suppose that $g \geq 1$ and $V = \Pi_{[p+1]} x\Pi y\Pi P Q$ where $b$ is an $x$-letter and $b \neq x_1$, then we travel along the edge

$$\Pi_{[p+1]} x\Pi y\Pi P Q \xrightarrow{\left( \frac{b}{x} \frac{x_1}{b} \right)} \Pi_{[p+1]} y\Pi x_1P_{\text{last}}Q_{\text{last}}.$$  

(vii). Suppose that $g \geq 1$ and $V = \Pi_{[p+1]} x\Pi y\Pi P Q$ and $P \neq 1$. Here the extended Whitehead graph of $V$ has the form $T_{\text{first}} \sim P_1 \sim \cdots \sim P_{\text{last}} \sim y_1 \sim x_1 \sim P_{\text{last}} \sim y_1 \sim T_{\text{first}} \sim \cdots \sim P_{\text{last}}$. Let $\varphi$ denote the (Whitehead) automorphism of $F_{g,p}$ such that, for each letter $u$,

$$w_\varphi := y_1 \text{Truth}(\Pi) \in P_{\text{first}} \sim \cdots \sim P_{\text{last}} \cup y_1 \text{Truth}(u) \in P_{\text{first}} \sim \cdots \sim P_{\text{last}}$$

where Truth($-$) assigns the value 1 to true statements and the value 0 to false statements. Then $\varphi$ stabilizes each $t$-letter and $x_1$ and $y_1$. For all but two edges $(x_k \sim x_{k+1})$, the right multiplier for $x_k$ equals the right multiplier for $x_{k+1}$, that is, the inverse of the left multiplier for $x_{k+1}$. The two exceptional edges are $x_1 \sim P_{\text{first}}$ and $P_{\text{last}} \sim y_1$. It follows that $Q_{\varphi} = Q$ and $P_{\varphi} = y_1P_{\text{first}}$.

We travel along the edge

$$\Pi_{[p+1]} x\Pi y\Pi P Q \xrightarrow{\varphi} \Pi_{[p+1]} x_1P_{\text{last}}Q \sim \Pi_{[p+1]} x_1P_{\text{last}}Q.$$  

(viii). If $i \in [2p]$ and $V$ begins with $\Pi_{[p+1]} y\Pi x_{[1:i]}$ but $V$ does not begin with $\Pi_{[p+1]} y\Pi x_{[1:i]}$, then we proceed analogously to steps (iv)–(vii).

The foregoing procedure specifies a path in $\mathbb{Z}_{g,p}$ from $V$ to $\Pi_{[p+1]} y\Pi x_{[1:i]}$, and, hence, a canonical edge in $\mathbb{Z}_{g,p}$, denoted

$$V \xrightarrow{\Phi} \Pi_{[p+1]} y\Pi x_{[1:i]}.$$
We understand that $\Phi_{\Pi[x,y][1\to g]}$ is the identity map. The only information about $\Phi_V$ that we shall need is that the following hold; all of these assertions can be seen from the construction.

1) If $p = 0$ and $g \geq 1$ and $V = aP\overline{a}Q$, then $\Phi_V$ sends $a$ to $t_1$, and $P$ to $\overline{t}_1$.

2) If $p = 1$ and $V = Pt_1Q = (t_1\overline{t}_1) \circ (PQ)$, then $\Phi_V$ sends $t_1$ to $t_1$.

3) If $p = 1$ and $g \geq 1$ and $V = t_1aP\overline{a}Q$, then $\Phi_V$ sends $t_1$ to $t_1$, $a$ to $t_1$, and $P$ to $\overline{t}_1$.

4) If $p \geq 2$ and $V = Pt_1Qt_2R = (t_1\overline{t}_1) \circ (t_2\overline{t}_2) \circ (PQR)$, and no $t$-letters occur in $P$ or $Q$, then $\Phi_V$ sends $t_1$ to $t_p$, and $t_2$ to $t_{p-1}$.

\[ \square \]

3.2. Remark. We shall be given a special subset $A'$ of $A_{g,p}$ that we wish to show generates $A_{g,p}$. We view $A_{g,p}$ as the set of edges of $G_{g,p}$ from $\Pi[x,y][1\to g]$ to itself, and we let $G_{g,p}'$ denote the subgroupoid of $G_{g,p}$ generated by the edges in $A'$ together with all the canonical edges of $G_{g,p}$. Using methods introduced by McCool [20], we shall prove that $G_{g,p}'$ contains the Nielsen subgraph $N_{g,p}$ of $G_{g,p}$.

By Consequence 2.7, $G_{g,p}' = G_{g,p}$. Now when any edge in $G_{g,p}$ is expressed as a product of canonical edges and their inverses, then the nontrivial canonical edges and their inverses must pair off and cancel out, and we are left with an expression that involves no nontrivial canonical edges. Here, $G_{g,p}$ is generated by $A'$.

\[ \square \]

3.3. Theorem. Let $g \in [1\to \infty]$, $p = 0$. Then the group $G_{g,0}$ is generated by $G_{g,0} = \{\alpha \to (a_1 \to a_2, a_2 \to a_1)\}$, where $\alpha := (x_1 \to y_1)$.

Proof. Let $G_{g,0}'$ denote the subgroupoid of $G_{g,0}$ generated by the given set together with all the canonical edges. By Remark 3.2, it suffices to show that $G_{g,0}' \subseteq G_{g,0}$.

Recall that $\alpha_1 := (x_1 \to y_1) \in \text{Stab}(\overline{x}_1, y_1; A_{g,0}) \subseteq G_{g,0}'$. In $F_{g,0}$, $(x_1 \to y_1) \beta_1 \alpha_1 = (x_1 \to y_1)^{\beta_1} = \overline{x}_1$. Hence $\text{Stab}(\overline{x}_1; A_{g,0}) \subseteq G_{g,0}'$. Thus $G_{g,0}$ contains all the edges of the forms

\[(1.1) : V \in G_{g,0} \xrightarrow{\Phi_V} \Pi[x,y][1\to g],
\]

\[(1.2) : \Pi[x,y][1\to g] \xrightarrow{\text{map in } G_{g,0} \text{ that stabilizes } \overline{x}_1 \text{ or } \overline{y}_1 \text{ or } x_1} \Pi[x,y][1\to g].
\]

We next describe two more families of edges in $G_{g,0}'$, expressed as products of edges of types (1.1) and (1.2) and their inverses.

\[(1.3) : a_1P_1 \in G_{g,0} \xrightarrow{\text{map in } \text{Aut} F_{g,0} \text{ with } a_1 \to a_2, P_1 \to P_2} a_2P_2 \in G_{g,0},
\]

\[(1.4) : abP\overline{a}Q \in G_{g,0} \xrightarrow{(a \to bP)} aPb\overline{a}Q \in G_{g,0}
\]

We then have the family

\[(\alpha).\]
3.4. **Theorem.** Let $g \in [1]_{\infty} \cup \{1\}$, $p = 1$. Then the group $\mathcal{A}_{g,1}$ is generated by $\text{Stab}(t_1; \mathcal{A}_{g,1}) \cup \{w_1\}$ where $\gamma_1 := (t_1^{x_1}, x_1, w_1)$ with $w_1 := t_1^{y_1} \gamma_1$.

**Proof.** Let $\mathcal{Z}'_{g,1}$ denote the subgroupoid of $\mathcal{Z}_{g,1}$ generated by the given set together with all the canonical edges. By Remark 3.2, it suffices to show that $\mathcal{N}_{g,0} \subseteq \mathcal{Z}'_{g,0}$, as desired.

Now $\mathcal{Z}'_{g,1}$ contains $\text{Stab}(t_1; \mathcal{A}_{g,1}) \gamma_1$, which consists of the maps in $\mathcal{A}_{g,1}$ with $t_1 \mapsto t_1 \gamma_1 = t_1^{x_1} = t_1^{y_1} \gamma_1$. Thus, $\mathcal{Z}'_{g,1}$ contains all the edges of the forms

\[(\Pi): V \in \mathcal{Z}_{g,1}, V \frac{t_1}{\Phi_V} t_1 \Pi[x, y]_{[1]_g}.
\]

\[(\Pi'): t_1 \Pi[x, y]_{[1]_g} \text{ map in } \mathcal{A}_{g,1} \text{ with } t_1 \mapsto t_1, t_1 \mapsto t_1 \gamma_1 \Longrightarrow t_1 \Pi[x, y]_{[1]_g}.
\]

We next describe another family of edges in $\mathcal{Z}'_{g,1}$.

\[(\Pi') : P_1 t_1 Q_1 \in \mathcal{Z}_{g,1}, (\Pi') : P_2 t_1 Q_2 \in \mathcal{Z}_{g,1}, P_1 t_1 Q_1 \frac{t_1}{\text{map in } \text{Aut}_{\mathcal{A}_{g,1}}} P_2 t_1 Q_2 \frac{t_1}{\text{map makes the square commute}} t_1 \Pi[x, y]_{[1]_g}.
\]

Edges of type (\Pi') include all the Nielsen\textsubscript{1} edges, and all the Nielsen\textsubscript{2} edges which do not involve $t_1$, and all the Nielsen\textsubscript{3} edges, since these have the form $P a Q \frac{t_1}{\text{or its inverse}} P a Q$, or its inverse.

It remains to consider the Nielsen\textsubscript{2} edges which involve $t_1$; these are of the forms

\[(\Pi') : P a Q \frac{t_1}{a Q} \frac{t_1}{\text{map}} R, P a Q \frac{t_1}{a Q} \frac{t_1}{\text{map}} R, \text{ and their inverses. To construct a commuting hexagon, we define the following edges.}
\]

\[
(\Pi'): P a Q \frac{t_1}{\text{map}}, \frac{t_1}{\text{map}} R \frac{t_1}{\text{map}} P a Q \frac{t_1}{\text{map}} R, \frac{t_1}{\text{map}} P a Q \frac{t_1}{\text{map}} R, \text{ and their inverses.}
\]

To construct a commuting hexagon, we define the following edges.

\[(\Pi'): P a Q \frac{t_1}{\text{map}}, \frac{t_1}{\text{map}} R \frac{t_1}{\text{map}} P a Q \frac{t_1}{\text{map}} R, \frac{t_1}{\text{map}} P a Q \frac{t_1}{\text{map}} R, \text{ and their inverses. To construct a commuting hexagon, we define the following edges.}
\]

\[
(\Pi'): P a Q \frac{t_1}{\text{map}}, \frac{t_1}{\text{map}} R \frac{t_1}{\text{map}} P a Q \frac{t_1}{\text{map}} R, \frac{t_1}{\text{map}} P a Q \frac{t_1}{\text{map}} R, \text{ and their inverses.}
\]

Then we have the factorization
Proof. Let \( N_3 \subseteq Z' \). We also have the factorization

\[
\begin{aligned}
(\tau_{1,\alpha}) &\Rightarrow t_1^{[x,y][1 t_0]} \\
\tau_1 &\Rightarrow t_1^{[x,y][1 t_0]}
\end{aligned}
\]

We now describe some more families of edges in \( Z' \).

(i) We have shown that \( N_{3,1} \subseteq Z' \), as desired. \( \square \)

3.5. Theorem. Let \( g \in [0 \infty] \), \( p \in [2 \infty] \). Then the group \( \Lambda_{g,p} \) is generated by \( \text{Stab}(t_p; A_{g,p}) \cup \{ \sigma_p : t_p \mapsto t_{p-1} \} \).

Proof. Let \( Z'_{g,p} \) denote the subgroupoid of \( Z_{g,p} \) generated by the given set together with all the canonical edges. By Remark 3.2, it suffices to show that \( N_{g,p} \subseteq Z'_{g,p} \).

Now \( Z'_{g,p} \) contains \( \text{Stab}(t_p; A_{g,p}) \sigma_p \), which consists of the maps in \( A_{g,p} \) with \( t_p \mapsto t_{p-1} \). Thus \( Z'_{g,p} \) contains all the edges of the forms

(i) \( V \in Z_{g,p} \xrightarrow{\Phi_v} \Pi_{[p+1]} \Pi[x,y][1 t_0] \),

(ii) \( \Pi_{[p+1]} \Pi[x,y][1 t_0] \xrightarrow{\text{map in } A_{g,p} \text{ with } t_p \mapsto t_{p-1} \text{ or } t_p \mapsto t_{p-1}^{-1}} \Pi_{[p+1]} \Pi[x,y][1 t_0] \).

In the following, we assume that no \( t \)-letters occur in \( P_1 \) or \( P_2 \).

(iii) \( P_1 t_{i_1} Q_1 \in Z_{g,p} \xrightarrow{\text{in } \text{Stab}(t_1; F_{g,p}) \cup \{ \sigma_{t_1} \}} P_2 t_{j_1} Q_1 \in Z_{g,p} \)

\( \Pi_{[p+1]} \Pi[x,y][1 t_0] \xrightarrow{\text{map makes square commute}} \Pi_{[p+1]} \Pi[x,y][1 t_0] \).

The edges of type (iii) include all the Nielsen edges.

In the following, we assume that no \( t \)-letters occur in \( P \) or \( Q \).

(iv) \( P Q t_{j_1} t_{j_2} R \in Z_{g,p} \xrightarrow{\text{in } \text{Stab}(t_2; F_{g,p}) \cup \{ \sigma_{t_2} \}} P t_{j_2} Q t_{j_1} R \in Z_{g,p} \)

\( \Pi_{[p+1]} \Pi[x,y][1 t_0] \xrightarrow{\text{square commutes}} \Pi_{[p+1]} \Pi[x,y][1 t_0] \).

In the following, we assume that no \( t \)-letters occur in \( P \).

(v) \( P t_{j_1} Q t_{j_2} R \in Z_{g,p} \xrightarrow{\text{in } \text{Stab}(t_2; F_{g,p}) \cup \{ \sigma_{t_2} \}} t_{j_2} P t_{j_1} Q R \in Z_{g,p} \)
has the factorization

\[ P t_{j_1} Q t_{j_2} R \mapsto (\text{III.3}) P t_{j_1} t_{j_2} Q R \mapsto (\text{III.4}) t_{j_2} P t_{j_1} Q R. \]

In the following, we do allow \( t \)-letters to occur in \( P \), and rewrite (III.5)’ as

(III.5'): \[ P t_j Q \in VZ_{g,p} \mapsto t_j P Q \in VZ_{g,p}. \]

In the following, we do allow \( t \)-letters to occur in \( P_1, P_2 \).

(III.6): \[ P t_j Q_1 \in VZ_{g,p} \overset{\in \text{Stab}(\mathbb{H}(t_{j_{1}\uparrow}t_{j_{2}\uparrow}t_{j_{1}})); P_{t_j}t_{j_1}t_{j_2}Q_1)}{\mapsto} P t_{j_1}t_{j_2}Q_2 \in VZ_{g,p} \]

Since \( p \geq 2 \), any Nielsen edge of \( Z_{g,p} \) will be of type (III.6) for some \( j \), as will any Nielsen edge except where \( p = 2 \) and we have an edge of the form

\[ P t_{j_1} t_{j_2} Q \in VZ_{g,p} \mapsto P t_{j_1} t_{j_2} Q \in VZ_{g,p}, \]

and its inverse, and, since \( p = 2 \), these are of type (III.4).

We have now shown that \( N_{g,p} \subseteq Z'_{g,p} \), as desired.

\[ \square \]

4. The ADLH generating set

The results of the preceding two sections combine to give an algebraic proof of the algebraic form of \([13\text{, Proposition 2.10(ii)] with } r = 0\). We start with the ADL set.

4.1. Theorem. Let \( g, p \in [0,\infty[ \). Let \( A_{g,p} \) denote the group of automorphisms of \( \langle t_{[1\uparrow]} \cup x_{[1\uparrow]} \cup y_{[1\uparrow]} | \rangle \) that fix \( \Pi t_{[p+1]} \Pi [x,y]_{[1\uparrow]} \) and permute the set of conjugacy classes \( [t]_{[1\uparrow]} \). Then \( A_{g,p} \) is generated by

\[ \sigma_{[2\uparrow]} \cup \alpha_{[1\uparrow]} \cup \beta_{[1\uparrow]} \cup \gamma_{\max(2-p,1)} \]

where, for \( j \in [2\uparrow] \), \( \sigma_j := (t_{j-1} t_{j-1}) \), for \( i \in [1\uparrow] \), \( \alpha_i := \left(y_{x_i}^{-1}\right) \) and \( \beta_i := \left(x_{y_i}^{-1}\right) \).

For \( i \in [2\uparrow] \), \( \gamma_i := \left(y_{x_i}^{-1} y_{x_i}^{-1} x_{w_i} \right) \) with \( w_i := y_{x_i}^{-1} x_{w_i} \), and if \( \min(1, g, p) = 1 \), \( \gamma_1 := \left(x_{w_1}^{-1} x_{w_1} \right) \).

Proof. We use induction on \( 2g+p \). If \( 2g+p \leq 1 \), then \( A_{g,p} \) is trivial and the proposed generating set is empty. Thus we may assume that \( 2g+p \geq 2 \), and that the conclusion holds for smaller pairs \((g,p)\).

**Case 1.** \( p = 0 \)

Here \( g \geq 1 \).

By Consequence 2.11 we have a homomorphism \( \text{Stab}(\bar{T}, \bar{y}, \bar{x}_1; A_{g,0}) \to A_{g-1,1} \) such that the kernel is \( \langle \alpha_1 \rangle \), and such that \( \alpha_{[2\uparrow]} \cup \beta_{[2\uparrow]} \cup \gamma_{[2\uparrow]} \) is mapped bijectively to \( \alpha_{[1\uparrow]} \cup \beta_{[1\uparrow]} \cup \gamma_{[1\uparrow]} \). The latter is a generating set of \( A_{g-1,1} \) by the induction hypothesis. It follows that \( \text{Stab}(\bar{T}, \bar{y}, \bar{x}_1; A_{g,0}) \) is generated by \( \alpha_{[1\uparrow]} \cup \beta_{[1\uparrow]} \cup \gamma_{[1\uparrow]} \).

By Theorem 3.3 \( A_{g,0} \) is generated by \( \text{Stab}(\bar{T}, \bar{y}, \bar{x}_1; A_{g,0}) \cup \{ \beta_1 \} \).

Hence \( A_{g,0} \) is generated by \( \alpha_{[1\uparrow]} \cup \beta_{[1\uparrow]} \cup \gamma_{[1\uparrow]} \) as desired.

**Case 2.** \( p \geq 1 \).
It follows from Consequence 2.11 that we can identify \( \text{Stab}(t_p; A_{g,p}) \) with \( A_{g,p-1} \) in a natural way. By the induction hypothesis, \( \text{Stab}(t_p; A_{g,p}) \) is generated by \( \sigma_{[2(\ell - 1)]} \cup \alpha_{[1\ell]} \cup \beta_{[1\ell]} \cup \gamma_{[\max(3,\ell - 1)]} \). We consider two cases.

**Case 2.1.** \( p = 1 \).

Here \( g \geq 1 \). By Theorem 5.3, \( A_{g,1} \) is generated by \( \{ \gamma_1 \} \).

Hence, \( A_{g,1} \) is generated by \( \alpha_{[1\ell]} \cup \beta_{[1\ell]} \cup \gamma_{[1\ell]} \), as desired.

**Case 2.2.** \( p \geq 2 \).

By Theorem 5.3, \( A_{g,p} \) is generated by \( \text{Stab}(t_p; A_{g,p}) \cup \{ \sigma_p \} \).

Hence, \( A_{g,p} \) is generated by \( \sigma_{[2\ell]} \cup \alpha_{[1\ell]} \cup \beta_{[1\ell]} \cup \gamma_{[\max(3,\ell - 1)]} \), as desired. \( \square \)

We next recall Humphries' result \cite{12} that the \( \alpha_{[3\ell]} \) part is not needed, and hence, the ADHL set suffices.

4.2. **Corollary.** \( A_{g,p} \) is generated by \( \sigma_{[2\ell]} \cup \alpha_{[1\ell \min(2,\ell)]} \cup \beta_{[1\ell]} \cup \gamma_{[\max(2,\ell - 1)]} \).

**Proof.** It is not difficult to check that there exists an element of \( A_{3,0} \) given by

\[
\eta = \left( x_1 y_1 x_2 y_2 x_3 y_3 \right),
\]

and that \((\mathcal{P}_1, y_1)^\eta = y_3\), and that both \( \alpha_1 \eta \) and \( \eta \alpha_3 \) equal

\[
\left( x_1 y_1 x_2 y_2 x_3 \right).
\]

By Consequence 2.11 each element of \( \text{Stab}(\mathcal{P}_1, y_1); A_{3,0} \) centralizes \( \alpha_1 \), and hence, each element of \( \text{Stab}(\mathcal{P}_1, y_1); A_{3,0} \) conjugates \( \alpha_1 \) into \( \alpha_3 \). Notice that \( \text{Stab}(\mathcal{P}_1, y_1); A_{3,0} \eta \) is the set of elements of \( A_{3,0} \) with \( \mathcal{P}_1 \in A_{3,0} \).

One can compute

\[
\begin{align*}
\mathcal{P}_1 \mathcal{P}_1 y_1 & \mapsto \mathcal{P}_1 y_1 \\
\mathcal{P}_1 \mathcal{P}_2 & \mapsto \mathcal{P}_1 \mathcal{P}_2 y_2 \\
\mathcal{P}_1 \mathcal{P}_3 & \mapsto \mathcal{P}_1 \mathcal{P}_3 y_3 \\
\text{this is the algebraic translation of \cite{12} Figure 2.} \quad \text{We then see that, as in \cite{12},}
\end{align*}
\]

\[\alpha_1 \beta_1 \beta_2 \beta_3 \gamma_1 \gamma_2 \beta_1 \gamma_2 \beta_2 \beta_3 \gamma_1 \beta_3 = \alpha_3.\] By shifting the indices upward, we see that \( \alpha_{[3\ell]} \) can be removed from the ADL set and still leave a generating set. \( \square \)

We have now completed our objective. For completeness, we conclude the article with an elementary review of some classic results.

5. **Some background on mapping-class groups**

5.1. **Notation.** Let us define \( F_{g,p-1} = \langle \{ t_{[1\ell]} \} \cup \{ x_{[1\ell]} \} \cup \{ y_{[1\ell]} \} \mid \Pi_{t_{[p-1]}} \Pi_{x_{[1\ell]}} \Pi_{y_{[1\ell]}} \rangle \).

Then \( F_{g,p} = \langle \{ t_{[1\ell + p-1]} \} \cup \{ x_{[1\ell]} \} \cup \{ y_{[1\ell]} \} \mid \Pi_{t_{[p+1]}} \Pi_{x_{[1\ell]}} \Pi_{y_{[1\ell]}} \rangle \), and still have \( F_{g,p} = \langle \{ t_{[1\ell]} \} \cup \{ x_{[1\ell]} \} \cup \{ y_{[1\ell]} \} \mid \Pi_{t_{[p+1]}} \Pi_{x_{[1\ell]}} \Pi_{y_{[1\ell]}} \rangle \) and here \( F_{p+1} = \Pi_{t_{[p+1]}} \Pi_{x_{[1\ell]}} \Pi_{y_{[1\ell]}} \). \( \square \)

5.2. **Definitions.** We construct an orientable surface \( S_{g,1,p} \), of genus \( g \) with \( p \) punctures and one boundary component, as follows. We start with a vertex which will be the basepoint. We attach a set of \( 2g + p + 1 \) oriented edges \( t_{[1\ell+p+1]} \cup \{ x_{[1\ell]} \} \cup \{ y_{[1\ell]} \} \). We attach a \((4g+p+1)\)-gon with counter-clockwise boundary label \( \Pi_{t_{[p+1]}} \Pi_{x_{[1\ell]}} \Pi_{y_{[1\ell]}} \in \{ t_{[1\ell+p+1]} \} \cup \{ x_{[1\ell]} \} \cup \{ y_{[1\ell]} \} \rangle \). For each \( j \in [1\ell] \), we attach a punctured disk with counterclockwise boundary label \( T_j \). This completes the definition of \( S_{g,1,p} \). Notice that the boundary of \( S_{g,1,p} \) is the edge labelled \( t_{p+1} \).
We may identify $\pi_1(S_{g,1,p}) = F_{g,p}$. We call $\text{Stab}([\tilde{F}]_{1}\cup \{\tilde{T}_p+1\}; \text{Aut} F_{g,p})$ the algebraic mapping-class group of $S_{g,1,p}$. This is our group $A_{g,p}$. (In [9], $A_{g,p}$ is denoted $\text{Aut}_{g,p,\perp}^+$, and, in [9] Proposition 7.1(v)], the latter group is shown to be isomorphic to what is there called the orientation-preserving algebraic mapping-class group of $S_{g,1,p}$, denoted $\text{Out}_{g,1,p}$.)

Let $\text{Aut} S_{g,1,p}$ denote the group of self-homeomorphisms of $S_{g,1,p}$ which stabilize each point on the boundary. The quotient of $\text{Aut} S_{g,1,p}$ modulo the group of elements of $\text{Aut} S_{g,1,p}$ which are isotopic to the identity map through a boundary-fixing isotopy is called the (topological) mapping-class group of $S_{g,1,p}$, denoted $M_{g,1,p}^{\text{top}}$.

Then $\text{Aut} S_{g,1,p}$ acts on $F_{g,p}$ stabilizing $[\tilde{T}]_{1\cup \{\tilde{T}_p+1\}}$, and we have a homomorphism $M_{g,1,p}^{\text{top}} \rightarrow A_{g,p}$. □

5.3. Definitions. Let $S_{g,0,p}$ denote the quotient space obtained from $S_{g,1,p}$ by collapsing the boundary to a point. Then $S_{g,0,p}$ is an orientable surface of genus $g$ with $p$ punctures.

We may identify $\pi_1(S_{g,0,p}) = F_{g,p-1}$. We define the algebraic mapping-class group of $S_{g,0,p}$ as $M_{g,0,p}^{\text{alg}} := \text{Stab}([\tilde{F}]_{1\cup \{\tilde{T}_p\}}; \text{Out} F_{g,p-1})$. (In [9], if $(g, p) \neq (0,0), (0,1)$, then $M_{g,0,p}^{\text{alg}}$ is denoted $\text{Out}_{g,0,p}$.)

Let $\text{Aut} S_{g,0,p}$ denote the group of self-homeomorphisms of $S_{g,0,p}$. The quotient of $\text{Aut} S_{g,0,p}$ modulo the group of elements which are isotopic to the identity map is called the (topological) mapping-class group of $S_{g,0,p}$, denoted $M_{g,0,p}^{\text{top}}$.

Then $\text{Aut} S_{g,0,p}$ acts on $F_{g,p-1}/\sim$ stabilizing $[\tilde{F}]_{1\cup \{\tilde{T}_p\}}$. This action factors through a natural homomorphism $\text{Aut} S_{g,0,p} \rightarrow \text{Out} F_{g,p-1}$, and we have a homomorphism $M_{g,0,p}^{\text{top}} \rightarrow M_{g,0,p}^{\text{alg}}$.

Consider the simply-connected case, that is, $F_{g,p-1} = 1$. Then, $(g,p)$ is either $(0,0)$ or $(0,1)$, corresponding to the sphere $S_{0,0,0}$ and the open disk $S_{0,0,1}$. Here, $M_{g,0,p}^{\text{alg}}$ is trivial, while $M_{g,0,p}^{\text{top}}$ has order two, with one mapping class consisting of the reflections. □

It has been the work of many years to show that $M_{g,1,p}^{\text{top}} = A_{g,p}$ and to show that both are generated by the ADLH set. Also, if $(g, p) \neq (0,0), (0,1)$, then $M_{g,0,p}^{\text{top}} = M_{g,0,p}^{\text{alg}}$, and their orientation-preserving subgroups are generated by the ADLH set. The proofs developed in stages, roughly as follows, although we are omitting many important results.

- In 1917, Nielsen [17] proved that if $(g, p) = (1, 0)$ then the ADL set generates $A_{g,p}$.
- In 1925, Artin [1] introduced braid twists, and proved that if $g = 0$ then the ADL set generates $A_{g,p}$ and $M_{g,1,p}^{\text{top}} = A_{g,p}$.
- In 1927, Nielsen [19] presented unpublished results of Dehn and proved that if $p = 0$ then $M_{g,1,p}^{\text{top}}$ maps onto $A_{g,p}$, and that if $p < 1$ then $M_{g,0,p}^{\text{top}}$ maps onto $M_{g,0,p}^{\text{alg}}$.
- In 1928, Baer [4] proved that if $p = 0$ then $M_{g,0,p}^{\text{top}}$ embeds in $M_{g,0,p}^{\text{alg}}$ for all $g \geq 2$.
- In 1934, Magnus [15] proved that if $g = 1$ then $M_{g,1,p}^{\text{top}} = A_{g,p}$ and $M_{g,0,p}^{\text{top}} = M_{g,0,p}^{\text{alg}}$.
- In 1939, Dehn [6] introduced what are now called Dehn twists, and proved, among other results, that a finite number of Dehn twists generate the orientation-preserving subgroup of $M_{g,0,p}^{\text{top}}$; see [6] Section 10.3.c.
- In 1964, Lickorish [14] rediscovered and refined Dehn’s 1939 methods and proved that if $p = 0$ then the ADL set generates the orientation-preserving subgroup of $M_{g,0,p}^{\text{top}}$. 

THE ZIESCHANG-MCCOOL METHOD

15
In 1966, Epstein [11] refined Baer’s 1928 methods and proved that $M_{g,1,p}^{\text{top}}$ embeds in $A_{g,p}$ and that, if $(g,p) \neq (0,0), (0,1)$, then $M_{g,0,p}^{\text{top}}$ embeds in $M_{g,0,p}^{\text{alg}}$.

In 1966, Zieschang [26 Satz 4], [28 Theorem 5.7.1] proved that $M_{g,1,p}^{\text{top}} = A_{g,p}$ and that, for $(g,p) \neq (0,0), (0,1)$, $M_{g,0,p}^{\text{top}} = M_{g,0,p}^{\text{alg}}$, and called these results the Baer-Dehn-Nielsen Theorem.

In 1979, Humphries [12] showed that the ADL set generates the same group as the ADL set.

In 2001, Labruère and Paris [13, Proposition 2.10(ii) with $r = 0$] used some of the foregoing results and a theorem of Birman [5] to prove that the ADL set generates $M_{g,1,p}^{\text{top}}$.

6. The Topological Source of the ADL Set

In this section, we shall recall the definitions of Dehn twists and braid twists and see that the ADL set lies in $M_{g,1,p}^{\text{top}}$. The diagram [13 Figure 12] illustrates the elements of the ADL set acting on $S_{g,1,p}$.

6.1. Definitions. Let $A := [0,1] \times (\mathbb{R}/\mathbb{Z})$, a closed annulus. Let $z$ denote the oriented boundary component $\{1\} \times (\mathbb{R}/\mathbb{Z})$ with basepoint $(1,2)$. Let $\mathfrak{z}'$ denote the oriented boundary component $\{0\} \times (\mathbb{R}/\mathbb{Z})$ with basepoint $(0,1)$. Let $e$ denote the edge $[0,1] \times \{2\}$ oriented from $(1,2)$ to $(0,1)$.

The *model Dehn twist* is the self-homeomorphism $\tau$ of $A = [0,1] \times (\mathbb{R}/\mathbb{Z})$ given by $(x, y + z) \mapsto (x, -x + y + z)$. Notice that $\tau$ fixes every point of $\mathfrak{z}' \cup z$, and $\tau$ acts on $e$ as $(x, z) \mapsto (x, 1 - x + z)$. Thus $e^\tau z$ bounds a triangle; hence $e^\tau$ is homotopic to $ze$.

Suppose now that we have an embedding of $A$ in a surface $S$. Then the image of $z$ is an oriented simple closed curve $c$, and $\tau$ induces a self-homeomorphism of $S$ which is the identity outside the copy of $A$. We call the resulting map of $S$ a (left) *Dehn twist about $c$*; see [6].

Recall the construction of $S_{g,1,p}$ in Definitions 5.2.

6.2. Examples. Let $i \in [1,g]$. Recall that $\mathfrak{t}_i, x_i$, is a subword of the boundary label of the $(4g+p+1)$-gon used in the construction of $S_{g,1,p}$. We place the annulus $A$ on $S_{g,1,p}$ with the image of $z$ along the boundary edge labelled $\mathfrak{t}_i$. The image of $\mathfrak{z}'$ enters the $(4g+p+1)$-gon near the end of the boundary edge labelled $\mathfrak{t}_i$, travels near $z = \mathfrak{t}_i$, and exits near the beginning of $x_i$, completing the cycle. The only oriented edge of the one-skeleton of $S_{g,1,p}$ that crosses $A$ from right to left is $x_i$, near its beginning. Incident to the basepoint of $z$ are, in clockwise order, the end of $z$, the beginning of $x_i$, and the beginning of $z$. The Dehn twist about $\mathfrak{t}_i$ induces $(\mathfrak{t}_i, x_i)$ on $\pi_1(S_{g,1,p}) = F_{g,p}$. Hence $\alpha_i \in M_{g,1,p}^{\text{top}}$.

Recall that $\mathfrak{t}_i, x_i, y_i$, is a subword of the boundary label of the $(4g+p+1)$-gon used in the construction of $S_{g,1,p}$. We place the annulus $A$ on $S_{g,1,p}$ with the image of $z$ along the boundary edge labelled $x_i$. The image of $\mathfrak{z}'$ enters the $(4g+p+1)$-gon near the end of the boundary edge labelled $\mathfrak{t}_i$, travels near $z = x_i$, and exits near the beginning of $y_i$, completing the cycle. The only oriented edge of the one-skeleton of $S_{g,1,p}$ that crosses $A$ from right to left is $y_i$, near its beginning. Incident to the basepoint of $z$ are, in clockwise order, the end of $z$, the beginning of $y_i$, and the beginning of $z$. The Dehn twist about $x_i$ induces $(y_i, x_i)$ on $\pi_1(S_{g,1,p}) = F_{g,p}$. Hence $\beta_i \in M_{g,1,p}^{\text{top}}$.

6.3. Example. Let $i \in [2,g]$. Recall that $\mathfrak{t}_i, \mathfrak{t}_{i-1}, x_{i-1}, \mathfrak{t}_i, y_{i-1}, \mathfrak{t}_i, x_i$, is a subword of the boundary label of the $(4g+p+1)$-gon used in the construction of $S_{g,1,p}$. We place
the annulus $A$ on $S_{g,1,p}$ with the image of $z$ marking out, in the $(4g+p+1)$-gon, a pentagon with boundary label $y_1 \cdots y_g x_i z$. The image of $z'$

- enters (the $(4g+p+1)$-gon) near the end of (the boundary edge labelled) $\gamma_{i-1}$, travels counter-clockwise near the basepoint, exits near the beginning of $x_{i-1}$,
- enters near the end of $\gamma_{i-1}$, travels counter-clockwise near the basepoint, exits near the beginning of $\gamma_{i-1}$,
- enters near the end of $y_1$-1, travels counter-clockwise near the basepoint, exits near the beginning of $\gamma_{i-1}$,
- enters near the end of $x_i$, travels near $z$, passing $\gamma_i$, $\tau_i$, exits near the beginning of $y_{i-1}$,

completing the cycle. The entrances correspond to $\gamma_{i-1} \cdots \gamma_{i-2} \gamma_{i-1} \cdots x_i$ in the extended Whitehead graph. The oriented edges of the one-skeleton of $S_{g,1,p}$ that cross $A$ from right to left are the exits: $x_{i-1}$ near its beginning, $\gamma_{i-1}$ near its beginning, $\gamma_{i-1}$ near its beginning, and $y_{i-1}$ near its beginning. Incident to the basepoint of $z$ are, in clockwise order, the end of $z$, and the beginnings of $y_1$, $x_{i-1}$, $\gamma_{i-1}$, $\gamma_{i-1}$, and $z$. Let $w_1 := y_1 \gamma_{i-1} x_i$. The Dehn twist about $\gamma_i$ induces $x_{i-1}$, $y_{i-1}$, $x_i$ $(\gamma_i := y_1 \gamma_{i-1} x_i)$ on $\pi_1(S_{g,1,p}) = F_{g,p}$. Hence $\gamma_i \in \mathcal{M}_{g,1,p}^{top}$.

6.4. Example. Suppose that min$(g,p,1) = 1$. Recall that $t_1 \gamma_1 g x_1$ is a subword of the boundary label of the $(4g+p+1)$-gon used in the construction of $S_{g,1,p}$ and that $\gamma_1$ is the boundary label of the $\gamma_1$-disk. We place the annulus $A$ on $S_{g,1,p}$ with $z$ marking out, in the $(4g+p+1)$-gon, a pentagon with boundary label $t_1 \gamma_1 g x_1 z$. The image of $z'$

- enters the $\gamma_1$-disk near the end of $\gamma_1$, travels counter-clockwise near the basepoint, exits near the beginning of $\gamma_1$,
- enters the $(4g+p+1)$-gon near the end of $t_1$, travels counter-clockwise near the basepoint, exits near the beginning of $\gamma_1$,
- enters the $(4g+p+1)$-gon near the end of $x_1$, travels near $z$ passing $\gamma_1$, $\gamma_1$, exits near the beginning of $t_1$,

completing the cycle. The entrances correspond to $\gamma_1 \cdots \gamma_1 \cdots x_1$ in the extended Whitehead graph. The oriented edges of the one-skeleton of $S_{g,1,p}$ that cross $A$ from right to left are the exits: $\gamma_1$ near its beginning, $\gamma_1$ near its beginning, and $t_1$ near its beginning. Incident to the basepoint of $z$ are, in clockwise order, the end of $z$, and the beginnings of $t_1$, $\gamma_1$, $\gamma_1$, and $z$. Let $w_1 := t_1 \gamma_1 g x_1 z$. The Dehn twist about $\gamma_1$ induces $(\gamma_1 := y_1 \gamma_{i-1} x_i)$ on $\pi_1(S_{g,1,p}) = F_{g,p}$. Hence $\gamma_1 \in \mathcal{M}_{g,1,p}^{top}$.

6.5. Definitions. Recall the annulus $A := [0,1] \times (\mathbb{R}/\mathbb{Z})$ of Definitions 6.1. Let $D$ denote the space that is obtained from $A$ by deleting the two points $p_2 := (\frac{1}{2}, Z)$ and $p_1 := (\frac{1}{2}, \frac{1}{2} + Z)$ and collapsing to a point the boundary component $z' = \{0\} \times (\mathbb{R}/\mathbb{Z})$. We take $p_0 := (1, \mathbb{Z})$ as the basepoint of $D$.

Thus $D$ is a closed disk with two punctures, and the model Dehn twist $\tau$ has an induced action on $D$, called the model braid twist. We now determine the induced action on $\pi_1(D)$.

Let $z_2$ denote an infinitesimal clockwise circle around $p_2$, and let $z_1 := z_2^2$, an infinitesimal clockwise circle around $p_1$. Then $\tau$ interchanges $z_2$ and $z_1$. Let $e_2$ denote the oriented subedge of $\gamma$ from $z_2$ to $p_0$ starting at a point $p_0$ on $z_2$. Let $e_1 := e_2^\tau$, an oriented subedge of $\gamma$ from $z_1$ to $p_0$ starting at $p_0^\tau$ on $z_1$. Then $\tau$ interchanges $p_0$ and $p_0^\tau$ and acts on $e_1$ as $(x, 1 - x + Z) \mapsto (x, 2 - 2x + Z)$. Here, $e_2^\tau$ is an oriented edge from $p_2$ to $p_0$ such that $e_2^\tau \gamma z_2$ bounds a triangle; hence, $e_1^\tau$ is homotopic to $e_2^\tau$. 

We view $z_1^2$ and $z_1^1$ as closed paths, and then $z_1^2z_1^1z$ bounds a disk in $D$. Now $\pi_1(D) = \langle z_1^2, z_1^1, z \rangle$, and the induced action of $\tau$ on $\pi_1(D)$ is given by $z_1^2 \mapsto z_1^1$ and $z_1^1 \mapsto z_1^2z_1^1 = (z_1^2)^2z_1^1$.

Suppose that we have an embedding of $D$ in a surface $S$ which carries punctures to punctures. Then $\tau$ induces a self-homeomorphism of $S$ which is the identity outside the copy of $D$. The resulting map of $S$ is called a braid twist; see [1].

6.6. Example. Let $j \in [2|p]$. We place the twice-punctured disk $D$ on $S_{g,1,p}$ with the image of $z$ marking out, in the $(4g+p+1)$-gon, a triangle with boundary label $t_jt_{j-1}z$. This is possible since $z$ now bounds a twice-punctured disk in $S_{g,1,p}$. Here $t_j$ is homotopic to $z_1^e$ and $t_{j-1}$ is homotopic to $z_1^i$. The resulting braid twist of $S_{g,1,p}$ induces $(\tau_j, \tau_{j-1})$. Hence $\sigma_j \in M_{g,1,p}^{\top}$. □

We now see that the ADL set lies in $M_{g,1,p}^{\top}$. By Theorem 4.1, the homomorphism $\tilde{M}_{g,1,p}^{\top} \to A_{g,p}$ is surjective; that is, by using Zieschang’s proof, we have recovered Zieschang’s result [26, Satz 4], [28, Theorem 5.7.1]. Assuming Epstein’s result [11], we now have $\tilde{M}_{g,1,p}^{\top} = A_{g,p}$, and both are generated by the ADLH set.

7. Collapsing the boundary

In this section we review Zieschang’s algebraic proof of a result of Nielsen. We then describe a generating set for $M_{g,0,p}^{\alg}$ which lies in the image of $\tilde{M}_{g,0,p}^{\top}$.

7.1. Definitions. Recall $F_{g,p-1} = \langle t_i \{1|p\} \cup x_i \{1|g\} \cup y_i \{1|g\} | \Pi_i \{p+1\} \Pi(x,y) \{1|g\} \rangle$.

Let $\zeta \in \text{Aut} F_{g,p-1}$ be defined by

$$\forall i \in [1|g] \quad x_i^\zeta := y_{g+i-1}, \quad y_i^\zeta := x_{g+i-1}, \quad \forall j \in [1|p] \quad t_j^\zeta := \tilde{t}_{j+1-1} - j.$$ 

We then have the outer automorphism $\tilde{\zeta} \in M_{g,0,p}^{\alg}$. □

7.2. Theorem. For $g, p \in [0|\infty]$, $M_{g,0,p}^{\alg}$ is generated by the natural image of $A_{g,p}$ together with $\tilde{\zeta}$. Hence, $M_{g,0,p}^{\alg}$ is generated by the image of the ADLH set together with $\tilde{\zeta}$.

Sketched proof. For $p \geq 1$, this is a straightforward exercise which we leave to the reader. Thus we may assume that $p = 0$. We may further assume that $g \geq 1$. The remaining case is now a result of Nielsen [10] for which Zieschang has given an algebraic proof [28, Theorem 5.6.1] developed from [23, 24, 25] along the following lines.

Let $\varphi \in \text{Aut} F_{g,-1}$. We wish to show that the element $\tilde{\varphi} \in \text{Out} F_{g,-1} = M_{g,0,0}^{\alg}$ lies in the subgroup generated by the image of $A_{g,0} = \text{Stab}(t_1, \text{Aut} F_{g,0})$ together with $\tilde{\zeta}$. It is clear that $\varphi$ lifts back to an endomorphism $\tilde{\varphi}$ of $F_{g,0}$ such that $t_1^\varphi$ lies in the normal closure of $t_1$.

Now $H^2(F_{g,-1}, \mathbb{Z}) \simeq \mathbb{Z}$; see, for example, [27, Theorem V.4.9]. The image of $\varphi$ under the natural map $\text{Aut} F_{g,-1} \to \text{Aut} H^2(F_{g,-1}, \mathbb{Z}) \simeq \{1, -1\}$ is denoted $\text{deg}(\varphi)$. By a cohomology calculation, if we express $t_1^\varphi$ as a product of $n_+$ conjugates of $t_1$ and $n_-$ conjugates of $\tilde{t}_1$, then $n_+ - n_- = \text{deg}(\varphi) = \pm 1$. By using van Kampen diagrams on a surface, one can alter $\tilde{\varphi}$ and arrange that $n_- = 0$ or $n_+ = 0$; this was also done in [10, Theorem 4.9]. Thus $t_1^\varphi$ is now a conjugate of $t_1$ or $\tilde{t}_1$. By composing $\tilde{\varphi}$ with an inner automorphism of $F_{g,0}$, we may assume that $t_1^\varphi$ is $t_1$ or $\tilde{t}_1$.

Notice that $\zeta$ lifts back to $\tilde{\zeta} \in \text{Aut} F_{g,0}$ where, for each $i \in [1|g]$, $x_i^\tilde{\zeta} := y_{g+i-1}$ and $y_i^\tilde{\zeta} := x_{g+i-1}$. Then $\tilde{t}_1^\tilde{\zeta} = (\Pi(x,y)|1|g) \tilde{z} = \Pi(y,x)|g|1 = t_1$. By replacing $\varphi$ with $\varphi \zeta$ if necessary, we may now assume that $t_1^\varphi = t_1$. 

We next prove a result, due to Nielsen [17] for $g = 1$, and Zieschang [22] for $g \geq 1$, that $\tilde{t}_i^2 = t_i$ implies that $\tilde{\varphi}$ is an automorphism of $F_{g,0}$.

We shall show first that $\tilde{\varphi}$ is surjective, by an argument of Formanek [4, Theorem V.4.11]. Let $w$ be an element of the basis $x_{[1]} \cup y_{[1]}$ of $F_{g,0}$. The map of sets $x_{[1]} \cup y_{[1]} \to \text{GL}_2(\mathbb{Z}F_{g,0})$, $v \mapsto (\delta_{v,w} 0 1)$ (where $\delta_{v,w}$ equals 1 if $v = w$ and equals 0 if $v \neq w$) extends uniquely to a group homomorphism

$$F_{g,0} \to \text{GL}_2(\mathbb{Z}F_{g,0}), \quad v \mapsto \left( \begin{smallmatrix} \delta_{v,w} & 0 \\ 0 & 1 \end{smallmatrix} \right).$$

The map $\partial_w : F_{g,0} \to \mathbb{Z}F_{g,0}$, called the Fox derivative with respect to $w$, satisfies, for all $u$, $v \in F_{g,0}$, $(uv)^{\partial_w} = (u^{\partial_w})v + v^{\partial_w}$. On applying $\partial_w$ to $u = 1$, we see that $\partial_w = -u^{\partial_w}$. For each $i \in [1g]$, let $X_i := x_i^p$ and $Y_i := y_i^p$. Since $\tilde{\varphi}$ fixes $\overline{t}_i = \Pi[x, y]_{[1]}$, we have $\Pi[x, y]_{[1]} = \Pi[x, y]_{[1]}$. On applying $\partial_w$, we obtain

$$\sum_{i=1}^g \left( X_i^{\partial_w} \cdot y_i \cdot (1 - X_i^{Y_i}) + Y_i^{\partial_w} \cdot (1 - X_i^{Y_i}) \right) \cdot \Pi[x, y]_{[1]}$$

$$\sum_{i=1}^g \left( X_i^{\partial_w} \cdot y_i \cdot (1 - Y_i^{y_i}) + Y_i^{\partial_w} \cdot (1 - x_i^{y_i}) \right) \cdot \Pi[x, y]_{[1]}.$$

On applying the natural left $\mathbb{Z}F_{g,0}$-linear map $\mathbb{Z}F_{g,0} \to \mathbb{Z}[F_{g,0}/F_{g,0}^p]$, denoted $f \mapsto F_{g,0}p^\circ$, we obtain

$$(1) \quad 0 = \sum_{i=1}^g \left( x_i^{\partial_w} \cdot y_i \cdot (1 - X_i^{Y_i}) + y_i^{\partial_w} \cdot (1 - x_i^{y_i}) \right) \cdot \Pi[x, y]_{[1]}.$$

Consider any $i \in [1g]$ such that $x_{[i]} \cup y_{[i]} \subseteq F_{g,0}^p$. By taking $w = y_i$ in (1), we obtain

$$0 = (1 - x_i^{y_i}) \cdot \Pi[x, y]_{[1]} \cdot F_{g,0}^p = (1 - x_i^{y_i})F_{g,0}^p.$$

Hence $x_i^{y_i} \in F_{g,0}^p$, that is, $x_i^{y_i} \subseteq F_{g,0}^p$. By taking $w = X_i$ in (1) and left multiplying by $\overline{y}_i$, we obtain

$$0 = (1 - X_i^{y_i}) \cdot \Pi[x, y]_{[1]} \cdot F_{g,0}^p = (1 - X_i^{y_i})F_{g,0}^p.$$

Hence, $X_i^{y_i} \subseteq F_{g,0}^p$. It follows that $x_i, y_i \subseteq F_{g,0}^p$.

By induction, $x_{[1]} \cup y_{[1]} \subseteq F_{g,0}^p$. Thus $\tilde{\varphi}$ is surjective.

By Consequence 2.9 $\tilde{\varphi}$ is an automorphism, as desired. \hfill \Box

Recall that $S_{g,0,p}$ was constructed in Definitions 5.3 as the quotient space obtained from $S_{g,1,p}$ by collapsing the boundary component to a point. We then have a natural embedding of $\text{Aut} S_{g,1,p}$ in $\text{Aut} S_{g,0,p}$. Thus the Dehn twists and braid twists of $S_{g,1,p}$ constructed in Section 3 induce Dehn twists and braid twists of $S_{g,0,p}$. It follows that the image of the ADL set in $M_{g,0,p}$ lies in $M_{g,0,p}^\text{top}$. Also, $\tilde{\zeta}$ lies in $M_{g,0,p}^\text{top}$, since $\zeta$ is easily seen to arise from a reflection of $S_{g,0,p}$. We now see, in the manner proposed by Magnus, Karrass and Solitar [16, p.175], that the homomorphism $M_{g,0,p}^\text{top} \to \mathbb{Z}M_{g,0,p}$ is surjective, by Theorem 7.2. Assuming Epstein’s result [11], if $(g, p) \neq (0, 0), (0, 1)$, then $M_{g,0,p}^\text{top}$ equals $M_{g,0,p}$, and both are generated by the image of the ADLH set together with $\tilde{\zeta}$; see [13, Corollary 2.11(ii)].

Acknowledgments

The research of both authors was jointly funded by the MEC (Spain) and the EFRD (EU) through Projects MTM2006-13544 and MTM2008-01550.

We are greatly indebted to Gilbert Levitt, Jim McCool, and Luis Paris for very useful remarks in correspondence and conversations.
THE ZIESCHANG-MCCOOL METHOD

WARREN DICKS, DEPARTAMENT DE MATEMÀTIQUES, UNIVERSITAT AUTÒNOMA DE BARCELONA, E-08193 BELLATERRA (BARCELONA), SPAIN

E-mail address: dicks@mat.uab.cat
URL: http://mat.uab.cat/~dicks/