ENTROPY-BASED GOODNESS OF FIT TEST FOR A COMPOSITE HYPOTHESIS

Sangyeol Lee

Abstract. In this paper, we consider the entropy-based goodness of fit test (Vasicek’s test) for a composite hypothesis. The test measures the discrepancy between the nonparametric entropy estimate and the parametric entropy estimate obtained from an assumed parametric family of distributions. It is shown that the proposed test is asymptotically normal under regularity conditions, but is affected by parameter estimates. As a remedy, a bootstrap version of Vasicek’s test is proposed. Simulation results are provided for illustration.

1. Introduction

For decades, the goodness of fit (gof) test for statistical models has been a core issue in statistical analysis. The gof test has a long history and various methodologies have been developed by many researchers. See, for instance, D’Agostino and Stephens [3]. The entropy based gof test, the entropy based gof test has been very popular among practitioners in diverse fields. In particular, the entropy test of Vasicek [11] has been studied extensively in the literature. His approach involves a nonparametric estimate (m-spacing estimate) of Shannon’s entropy. Thus far, a number of articles exist on the distributional properties of Vasicek’s test: see, for instance, Kashimov [5], van Es [10], Beirant et al. [2], Song [8], and the references therein. Among them, Song [8] rigorously verifies that Vasicek’s estimator is consistent and asymptotically normal under certain regularity conditions. This result is easily applicable to simple vs. simple gof tests. However, attention has not yet been paid to composite hypothesis tests. In the literature, it is well known that gof tests are often affected by parameter estimation, and their limiting distributions rely on the choice of parameter estimators. This phenomenon is prominent in the empirical process of the gof tests, as seen in Durbin [4], and often leads practitioners to a burdensome situation. This difficulty may be overcome by using the transformation method proposed by Khmaladze [6], Bai [1] and Lee [7], which, however, is not
easy to implement owing to a time consuming computational process. In this
study, we focus on the entropy test to measure the discrepancy between the
nonparametric entropy estimate (Vasicek’s estimate) and the parametric en-
tropy estimate obtained from the assumed parametric family of distributions.
Although simple and natural, to our knowledge, no literature has explicitly
considered this test. It may be because the proposed test is severely affected
by parameter estimation, and thus, is not as useful in actual implementation.
Conventionally, gof methods depending on asymptotic theories do not perform
well for small samples, and particularly, in the implementation of Vasicek’s test,
the choice of spacing parameter \(m \) escalates this difficulty. As a remedy, it is
natural to adopt the parametric bootstrap approach and construct a bootstrap
version of the tests. Thus, we propose a bootstrap version of Vasicek’s test
for a composite hypothesis and investigate its finite sample behavior through
a simulation study. The organization of this paper is as follows. In Sec-
tion 2, we introduce Vasicek’s test and show that a certain asymptotic exp-
ansion form holds for Vasicek’s test with plugged-in estimators and leads to a result having
asymptotic normality. Further, we introduce a bootstrap version of Vasicek’s
test and demonstrate that its usage is justifiable. In Section 3, we conduct a
simulation study to evaluate the proposed bootstrap test and compare its per-
formance with other existing tests. Concluding remarks are provided in Section
4.

2. Main result

Given an i.i.d. random sample \(X_1, \ldots, X_n \) with common distribution \(F \),
Vasicek (1992) proposed as an estimate of \(H(F) = -\int \log f(x)f(x)dx \) the
following:

\[
V_{mn} = \frac{1}{n} \sum_{i=1}^{n} \log \frac{1}{2m}(X_{(i+m)} - X_{(i-m)}),
\]

where \(f = F' \), \(X_{(i)} \) denotes the ordered r.v.s., and \(X_{(i)} = X_{(1)} \) for \(i < 1 \)
and \(X_{(i)} = X_{(n)} \) for \(i > n \). Later, Song (2000) showed that if the following
conditions are fulfilled

(R1) \(E(\log f(X_1))^2 < \infty \);
(R2) \(\sup_{\phi(F) < x < \psi(F)} F(x)(1-F(x)) \frac{f'(x)}{f(x)} < \infty \);
(R3) \(m = m_n \) satisfies \(\log n/m = o(1) \) and \(m(\log n)^{2/3}/n^{1/3} = o(1) \) as \(n \to \infty \),

where \(\phi(F) = \sup \{ x : F(x) = 0 \} \) and \(\psi(F) = \inf \{ x : F(x) = 1 \} \), then

\[
n^{1/2}(V_{mn} - H(F) + \log 2m + \gamma - R_{2m-1}) \overset{d}{\to} N(0, \sigma^2(F)),
\]

where \(R_n = \sum_{i=1}^{n} 1/i, \gamma = \lim_{n \to \infty} (R_n - \log n), \) and \(\sigma^2(F) = \text{Var}(\log f(X_1)) \).
The result in (2.2) is applicable to a goodness of fit test for a composite hypothesis such as

\[H_0 : X_i \sim F = F_{\theta_0} \quad \text{vs.} \quad H_1 : X_i \sim F \notin \{F_{\theta_0}\}, \]

where \(\{F_{\theta_0}\} \) is a parameter family indexed with \(\theta \in \Theta, \) a subset of \(\mathbb{R}^d, \) \(d \geq 1, \) and \(\theta_0 \) is an interior point of \(\Theta. \) The result in (2.2) indicates that under (R1) and (R2), with \(F \) replaced by \(F_{\theta_0}, \) and (R3),

\[
n^{1/2}(V_{mn} - H(F_{\theta_0}) + \log 2m + \gamma - R_{2m-1}) \xrightarrow{\text{d}} N(0, \sigma^2(F_{\theta_0})),
\]

where \(f_\theta \) is continuous in \(\theta, \) \(H(F_{\theta}) = - \int \log(f_\theta(x))f_\theta(x)dx \) and \(\sigma^2(F_{\theta}) = \text{Var}_\theta \log(f_\theta(X_1)) \) for all \(\theta. \) Here, \(\text{Var}_\theta \) and \(E_\theta \) denote the variance and expectation under \(F_{\theta}, \) respectively.

The argument in (2.3) suggests a test based on the difference between \(H_n \) and \(H(\hat{\theta}_n), \) where \(\hat{\theta}_n \) is a consistent estimator of \(\theta_0, \) since \(H(\theta_0) \) is unknown. As usual, we assume \(n^{1/2}(\hat{\theta}_n - \theta_0) = O_P(1) \) under \(H_0. \) In view of the proof of Theorem 1 of Song [8], it can be seen that

\[
V_{mn} = H_n - \log 2m - \gamma + R_{2m-1} + o_P(n^{-1/2}),
\]

where \(H_n = -\frac{1}{n} \sum_{i=1}^n \log f_{\theta_0}(X_i). \) Hence,

\[
V_{mn} - H(F_{\theta_0}) + \log 2m + \gamma - R_{2m-1} = H_n - H(F_{\theta_0}) + o_P(n^{-1/2}).
\]

Then, we have the result addressed below.

Theorem 1. Suppose that

(R1) \(E_{\theta_0}(\log f(X_1))^2 < \infty. \)

(R2) \(\sup_{0 < x < \psi(f_{\theta_0})} f_{\theta_0}(x)(1 - F_{\theta_0}(x)) \left| \frac{f_{\theta_0}(x)}{F_{\theta_0}(x)} \right| < \infty. \)

Further, assume (R3),

(R4) \(E_{\theta_0} \frac{\partial}{\partial \theta} \log f_{\theta_0}(X_1) = 0 \) and \(u(\theta) = \frac{\partial}{\partial \theta} H(\theta) = - \int \log f_\theta(x) \frac{\partial}{\partial \theta} f_\theta(x)dx \) is continuous in \(\theta. \)

(R5) \(\hat{\theta}_n - \theta_0 = n^{-1} \sum_{i=1}^n l_{\theta_0}(X_i) + o_P(n^{-1/2}), \) where \(l_\theta \) is a \(d \times 1 \) vector function with \(E_{\theta_0}(l_{\theta_0}(X_1) = 0 \) and \(\text{Var}_{\theta_0} \left| l_{\theta_0}(X_1) \right| < \infty, \) where \(\| \cdot \| \) is a Euclidean norm.

Then, under \(H_0, \)

\[
T_n := n^{1/2}(V_{mn} - H(F_{\theta_0}) + \log 2m + \gamma - R_{2m-1}) \xrightarrow{\text{d}} N(0, \tau^2)
\]

with \(\tau^2 = \text{Var}_{\theta_0}(\log f_{\theta_0}(X_1) + H(F_{\theta_0}) + l_{\theta_0}(X_1)^T u(\theta_0)). \)

Proof. By the mean value theorem, \(H(F_{\theta_0}) - H(F_{\theta_0}) = (\hat{\theta}_n - \theta_0)^T u(\theta_0) + \rho_n, \) where \(\| \rho_n \| \leq \eta_n \sup_{0 < \theta - \theta_0 \leq \eta_n} \| u(\theta) - u(\theta_0) \| \) with \(\eta_n = \| \hat{\theta}_n - \theta_0 \| \) owing to (R4) and (R5). Combining this and (2.5), the theorem is validated. \(\square \)
Theorem 1 indicates that the parameter estimation affects the null limiting distribution, and further, there is a serious difficulty in estimating τ^2 when the explicit form of l_θ is unknown.

Remark. One may consider another test based on $H_n = \frac{1}{n} \sum_{i=1}^n \log f_{\hat{\theta}_n}(X_i)$. Put $\Delta_n = n^{1/2}(\hat{H}_n - H_n)$ and suppose that the following holds:

(R6) $\frac{\partial f_\theta}{\partial \theta}$ is continuous in θ and for some $\epsilon > 0$,

$$\frac{1}{n} \sum_{i=1}^d \sup_{|\theta_i - \theta_{0,i}| \leq \epsilon} \left| \frac{\partial f_\theta(x)}{\partial \theta} \right| \leq g(x), \quad E_{\theta_0} g(X_1) < \infty,$$

where θ_i denotes the i-th entry of θ. By the mean value theorem, we can express

$$\Delta_n = \sqrt{n}(\theta_0 - \hat{\theta}_n)^T \frac{1}{n} \sum_{i=1}^d \frac{\partial f_{\theta_i'}}{\partial f_{\theta_n}},$$

where θ_i' is between θ_0 and $\hat{\theta}_n$. Then, using (R6), we can easily see that for all $i = 1, \ldots, d$,

$$\frac{1}{n} \sum_{i=1}^d \frac{\partial f_{\theta_i'}}{\partial f_{\theta_n}} - \frac{1}{n} \sum_{i=1}^d \frac{\partial f_{\theta_0}}{\partial f_{\theta_n}} = o_P(1).$$

Together with (R4), this entails (2.3), and thus, $\Delta_n = o_p(1)$. Then, in view of (2.4), (2.5), and Theorem 1, we have that under (R1)'', (R2)'', and (R3)–(R6),

$$T_n' := n^{1/2}(\hat{H}_n - H(F_{\hat{\theta}_n})) \overset{d}{\to} N(0, \tau^2).$$

Meanwhile, Song’s approach can be also extended to a rowwise independent double array of random variables, say, X_{n1}, \ldots, X_{nn}. Suppose that $X_{ni}, i = 1, \ldots, n$ follows from F_{θ_n} where $\{\theta_n\}$ is a sequence in Θ that converges to an interior point $\theta_0 \in \Theta$ as n tends to ∞. In this case, we can consider the estimator

$$DV_{mn} = \frac{1}{n} \sum_{i=1}^n \log \frac{n}{2m}(X_{n,(i+m)} - X_{n,(i-m)}),$$

where $X_{n,(i)}$ are analogously defined as $X_{(i)}$.

In what follows, we assume

(R1)'' For some $\epsilon > 0$,

$$\int_{||\theta - \theta_0|| \leq \epsilon} (1 + (\log f_\theta(x))^2) f_\theta(x) dx < \infty,$$

(R2)'' $\phi(F_0) = \phi$ and $\psi(F_\theta) = \psi$ for all θ. Further, for some $\epsilon > 0$,

$$\sup_{\phi < x < \psi} \sup_{||\theta - \theta_0|| \leq \epsilon} F_\theta(x)(1 - F_\theta(x)) \frac{|f_\theta'(x)|}{f_\theta^2(x)} < \infty.$$
Then, if we put

\[DH_n = -\frac{1}{n} \sum_{i=1}^{n} \log f_{\theta_n}(X_{ni}), \]

following essentially the same lines as in the proof of Theorem 1 of Song [8], one can check that provided (R3) holds,

\[DV_{mn} + \log 2m + \gamma - R_{2m-1} = DH_n + o_P(n^{-1/2}). \]

Then, if the following condition is satisfied:

\[(R4) \quad E_{\theta_0} \int f_{\theta_0}(x) \, dx = 0 \quad \text{for all } \theta \quad \text{and } \, \alpha(\theta) \quad \text{in } (R4) \quad \text{is continuous in } \theta, \]

and if the estimator \(\hat{\theta}_n \) of \(\theta_n \) based on \(X_{ni}, i = 1, \ldots, n \) satisfies:

\[(R5) \quad \hat{\theta}_n - \theta_n = n^{-1} \sum_{i=1}^{n} l_{\theta_n}(X_{ni}) + o_P(n^{-1/2}), \]

where \(l_{\theta_n} \) is continuous in \(\theta \), \(E_{\theta_0} \alpha(x) = 0 \) for all \(\theta \), and \(\int \sup_{||\theta - \theta_0||_2 \leq \epsilon} ||\alpha(x)||_2 f_{\theta}(x) \, dx < \infty \) for some \(\epsilon > 0 \),

using the dominated convergence theorem and Lindeberg’s central limit theorem, we can have

\[\sqrt{n}(DH_n - H(F_{\hat{\theta}_n})) \overset{d}{\to} N(0, \tau^2), \]

and subsequently, we have the following.

Theorem 2. Under (R1)”, (R2)”,” (R3), (R4)” and (R5)”

\[(2.6) \quad \sqrt{n}(DV_{mn} - H(F_{\hat{\theta}_n}) + \log 2m + \gamma - R_{2m-1}) \overset{d}{\to} N(0, \tau^2). \]

The argument in (2.6) suggests that a bootstrap test can be designed for the composite hypothesis test in Theorem 1. Here, we use the parametric bootstrap method as in Stute et al. [9]. Given sample \(X_1, \ldots, X_n \), we estimate \(\theta_0 \) by \(\hat{\theta}_n \) and generate the bootstrap sample from \(F_{\hat{\theta}_n} \), say, \(X_1^*, \ldots, X_n^* \), and put

\[V_{mn}^* = \frac{1}{n} \sum_{i=1}^{n} \log \frac{n}{2m}(X_{i+m}^* - X_{i-m}^*). \]

Then, if \(\hat{\theta}_n \to \theta_0 \) a.s., \(\hat{\theta}_n \) is the estimator based on the bootstrap sample, and

\[(R5)” \quad \hat{\theta}_n - \theta_n = n^{-1} \sum_{i=1}^{n} l_{\theta_n}(X_{ni}^*) + o_P(n^{-1/2}), \]

we can conclude that under (R1)”,” (R2)”,” (R3) and (R4)”

\[(2.7) \quad T_{mn}^* := \sqrt{n}(DV_{mn}^* - H(F_{\hat{\theta}_n}^*) + \log 2m + \gamma - R_{2m-1}) \overset{d}{\to} N(0, \tau^2) \quad \text{a.s.} \]

By obtaining \(|T_{mn}^*| \) for the bootstrapped sample \(B \) times, say, \(|T_{mn}^b|, b = 1, \ldots, B \), we can calculate sample quantiles, say \(c = c(n, \alpha) \), given any significance level \(\alpha \).

Then, we reject \(H_0 \) if \(|T_{mn}| \geq c \). This bootstrap method provides a more stable test, unaffected by the choice of spacing parameter \(m \), especially in handling
small samples, as seen in the simulation study below, where we focus on the finite sample behavior of T^*_n and investigate its empirical sizes and powers.

3. Simulation

In this simulation study, we evaluate the bootstrap Vasicek’s test T^*_n (T) and compare its performance with the Kolmogorov-Smirnov (KS), Cramer-von Mises (CV), and Anderson-Darling (AD) tests. To be fair, we also employ the bootstrap versions of KS, CV, and AD tests.

For this, we consider

Group 1: Laplace(0, 1), Normal(0, 1), and Student’s t(3) distributions

and

Group 2: Gamma, Inverse-Gaussian (IG), and Weibull distributions with skewness equal to 1.414. The shape parameter of the Gamma, IG, and Weibull are 2, 4.5, and 1.259, respectively, and the scale parameter of the distribution is equal to 1 in all cases.

The figures in Tables 1-6 (Tables 1-3 for Group 1 and Tables 4-6 for Group 2) exhibit the proportion of the number of rejections of the null hypothesis out of 500 repetitions with $B = 500$. Here, we use $(n = 20, m = 4, 5, 6, 7)$, $(n = 50, m = 6, 7, 8, 9)$, $(n = 100, m = 8, 9, 10, 11)$, nominal level 0.05, and repetition number 1,000. In all the cases, the sizes turn out to be close to the nominal level regardless of the choice of n, m and the power tends to increase as the sample size increases. In particular, it is shown that none of the tests outperform the others perfectly: our test significantly outperforms other tests in the cases of Student’s t vs. Normal and Weibull vs. Inverse-Gaussian. As seen in the tables, the choice of m can affect the performance of the test in power. Thus, it may be an important issue to choose an optimal m that produces the best powers, but it is difficult to set up a rule theoretically to obtain such m. Our past experience suggests that one may choose $m = c_1 + c_2 n^{1/3}$ for some suitable $c_1, c_2 > 0$, but this cannot be directly applied to all situations. In practice, for a given gof test, one could obtain an optimal m empirically through a simulation. Overall, our findings show that the bootstrap Vasicek’s test performs adequately and is compatible with other existing tests.

4. Concluding remarks

To perform a gof test for a composite hypothesis, we suggested to use of a bootstrap Vasicek’s test. A simulation study indicates that the bootstrap test performs adequately in terms of size and power. The comparison study with other tests such as the KS, CV, and AD tests indicates that none of these tests outperform the others completely. Vasicek’s test appears to outperform the others in some situations and is proven to be a useful tool to perform a gof test. Manifestly, it would be of great interest to extend our method to dependent data sets, especially the residuals from time series models such as
autoregressive and GARCH models. Thus, we leave this as a task of our future study.

Table 1. Laplace null model: sizes and powers

	distribution	n	m	T	KS	CV	AD
Size	Laplace(0,1)	20	4	0.064	0.052	0.052	0.048
		20	5	0.050	0.052	0.056	0.054
		20	6	0.058	0.050	0.052	0.050
		20	7	0.064	0.056	0.058	0.054
		50	6	0.048	0.048	0.072	0.062
		50	7	0.046	0.048	0.046	0.044
		50	8	0.036	0.056	0.068	0.064
		50	9	0.058	0.036	0.038	0.042
		100	8	0.046	0.058	0.054	0.046
		100	9	0.056	0.056	0.038	0.046
		100	10	0.050	0.060	0.040	0.048
		100	11	0.042	0.052	0.050	0.052
Power	Normal(0,1)	20	4	0.195	0.076	0.084	0.078
		20	5	0.222	0.096	0.076	0.068
		20	6	0.252	0.096	0.094	0.082
		20	7	0.240	0.088	0.094	0.082
		50	6	0.442	0.180	0.170	0.164
		50	7	0.482	0.168	0.152	0.138
		50	8	0.492	0.180	0.158	0.142
		50	9	0.508	0.212	0.192	0.152
		100	8	0.690	0.364	0.404	0.342
		100	9	0.692	0.386	0.420	0.370
		100	10	0.696	0.420	0.420	0.378
		100	11	0.718	0.406	0.396	0.348
Power	$t(3)$	20	4	0.070	0.058	0.058	0.072
		20	5	0.080	0.064	0.072	0.092
		20	6	0.048	0.060	0.058	0.066
		20	7	0.072	0.078	0.062	0.066
		50	6	0.078	0.068	0.064	0.076
		50	7	0.060	0.074	0.058	0.068
		50	8	0.082	0.098	0.100	0.011
		50	9	0.056	0.086	0.076	0.009
		100	8	0.046	0.104	0.092	0.110
		100	9	0.064	0.098	0.088	0.100
		100	10	0.054	0.078	0.070	0.074
		100	11	0.088	0.078	0.074	0.088
Table 2. Normal null model: sizes and powers

distribution	n	m	T	KS	CV	AD
Size						
Normal(0,1)	20	4	0.044	0.062	0.060	0.058
	20	5	0.054	0.064	0.050	0.044
	20	6	0.068	0.048	0.060	0.060
	20	7	0.050	0.070	0.052	0.056
	50	6	0.050	0.068	0.058	0.064
	50	7	0.052	0.050	0.046	0.044
	50	8	0.058	0.056	0.044	0.044
	50	9	0.056	0.042	0.054	0.062
	100	8	0.032	0.066	0.058	0.050
	100	9	0.052	0.058	0.054	0.056
	100	10	0.066	0.036	0.046	0.042
	100	11	0.034	0.046	0.050	0.040
Power						
$t(3)$	20	4	0.136	0.226	0.290	0.320
	20	5	0.104	0.252	0.302	0.324
	20	6	0.116	0.304	0.326	0.366
	20	7	0.092	0.246	0.302	0.332
	50	6	0.276	0.470	0.550	0.570
	50	7	0.248	0.524	0.612	0.626
	50	8	0.158	0.444	0.514	0.548
	50	9	0.120	0.474	0.586	0.622
	100	8	0.528	0.704	0.786	0.824
	100	9	0.514	0.748	0.844	0.864
	100	10	0.404	0.722	0.808	0.844
	100	11	0.348	0.712	0.832	0.850
Power						
Laplace(0,1)	20	4	0.062	0.232	0.268	0.274
	20	5	0.048	0.230	0.248	0.274
	20	6	0.048	0.244	0.296	0.292
	20	7	0.034	0.208	0.230	0.236
	50	6	0.210	0.458	0.580	0.576
	50	7	0.128	0.456	0.558	0.556
	50	8	0.110	0.434	0.536	0.548
	50	9	0.068	0.400	0.522	0.528
	100	8	0.428	0.690	0.812	0.806
	100	9	0.380	0.716	0.824	0.840
	100	10	0.318	0.742	0.836	0.836
	100	11	0.258	0.704	0.814	0.816
Table 3. Student’s t null model: sizes and powers

	distribution	n	m	T	KS	CV	AD
Size	$t(3)$						
	20	4	0.066	0.060	0.050	0.056	
	20	5	0.060	0.072	0.054	0.050	
	20	6	0.056	0.058	0.052	0.056	
	20	7	0.054	0.048	0.048	0.053	
	50	6	0.048	0.048	0.040	0.040	
	50	7	0.042	0.028	0.042	0.046	
	50	8	0.048	0.036	0.042	0.042	
	50	9	0.044	0.052	0.046	0.054	
	100	8	0.028	0.060	0.056	0.050	
	100	9	0.052	0.044	0.042	0.040	
	100	10	0.058	0.058	0.052	0.050	
	100	11	0.074	0.044	0.050	0.054	
Power	Laplace(0,1)	20	4	0.068	0.044	0.038	0.036
	20	5	0.086	0.044	0.046	0.042	
	20	6	0.066	0.052	0.054	0.056	
	20	7	0.072	0.058	0.060	0.056	
	50	6	0.080	0.058	0.048	0.046	
	50	7	0.072	0.052	0.056	0.058	
	50	8	0.082	0.058	0.044	0.028	
	50	9	0.074	0.042	0.052	0.042	
	100	8	0.104	0.056	0.048	0.044	
	100	9	0.116	0.078	0.060	0.052	
	100	10	0.070	0.064	0.048	0.052	
	100	11	0.068	0.058	0.038	0.040	
Power	Normal(0,1)	20	4	0.312	0.060	0.054	0.048
	20	5	0.358	0.060	0.052	0.040	
	20	6	0.356	0.052	0.042	0.030	
	20	7	0.328	0.044	0.030	0.026	
	50	6	0.804	0.052	0.048	0.050	
	50	7	0.854	0.044	0.048	0.046	
	50	8	0.816	0.048	0.050	0.050	
	50	9	0.810	0.030	0.042	0.013	
	100	8	0.990	0.044	0.060	0.130	
	100	9	0.996	0.062	0.096	0.158	
	100	10	0.992	0.064	0.084	0.144	
	100	11	0.984	0.068	0.088	0.136	
Table 4. Gamma null model: sizes and powers

distribution	n	m	T	KS	CV	AD
Size Gamma \(k=2 \)	20	4	0.060	0.062	0.058	0.050
	20	5	0.048	0.054	0.052	0.046
	20	6	0.044	0.056	0.048	0.048
	20	7	0.046	0.072	0.078	0.074
	50	6	0.040	0.046	0.050	0.056
	50	7	0.034	0.034	0.038	0.038
	50	8	0.044	0.048	0.046	0.050
	50	9	0.046	0.036	0.038	0.034
	100	8	0.056	0.050	0.05	0.056
	100	9	0.058	0.058	0.052	0.054
	100	10	0.048	0.048	0.056	0.054
	100	11	0.056	0.056	0.054	0.060
Power Inverse Gaussian \(\lambda=4.5 \)	20	4	0.068	0.078	0.080	0.084
	20	5	0.072	0.078	0.096	0.098
	20	6	0.044	0.110	0.100	0.100
	20	7	0.034	0.082	0.080	0.082
	50	6	0.110	0.124	0.132	0.152
	50	7	0.084	0.114	0.152	0.168
	50	8	0.098	0.128	0.152	0.174
	50	9	0.084	0.148	0.158	0.166
	100	8	0.164	0.198	0.240	0.278
	100	9	0.150	0.224	0.268	0.298
	100	10	0.126	0.248	0.272	0.308
	100	11	0.128	0.208	0.248	0.264
Power Weibull \(k=1.259 \)	20	4	0.078	0.054	0.064	0.064
	20	5	0.066	0.070	0.072	0.070
	20	6	0.034	0.066	0.050	0.048
	20	7	0.054	0.062	0.082	0.084
	50	6	0.056	0.078	0.076	0.072
	50	7	0.072	0.064	0.062	0.066
	50	8	0.060	0.062	0.056	0.062
	50	9	0.070	0.058	0.066	0.068
	100	8	0.074	0.080	0.090	0.088
	100	9	0.066	0.070	0.072	0.070
	100	10	0.088	0.096	0.094	0.084
	100	11	0.086	0.074	0.092	0.088
Table 5. Inverse Gaussian null model: sizes and powers

distribution	n	m	T	KS	CV	AD
Size						
Inverse Gaussian $\lambda=4.5$						
20	4	0.086	0.060	0.074	0.076	
20	5	0.040	0.052	0.048	0.054	
20	6	0.042	0.050	0.050	0.044	
20	7	0.062	0.040	0.044	0.040	
50	6	0.062	0.064	0.056	0.048	
50	7	0.050	0.066	0.074	0.068	
50	8	0.056	0.048	0.052	0.052	
50	9	0.056	0.038	0.044	0.042	
100	8	0.054	0.052	0.066	0.054	
100	9	0.052	0.062	0.048	0.050	
100	10	0.048	0.052	0.048	0.058	
100	11	0.058	0.052	0.052	0.046	
Power						
Gamma $k=2$						
20	4	0.162	0.266	0.324	0.322	
20	5	0.150	0.270	0.314	0.324	
20	6	0.106	0.306	0.324	0.328	
20	7	0.076	0.280	0.336	0.348	
50	6	0.416	0.562	0.644	0.654	
50	7	0.346	0.562	0.632	0.638	
50	8	0.306	0.518	0.600	0.618	
50	9	0.296	0.586	0.660	0.678	
100	8	0.680	0.814	0.868	0.874	
100	9	0.628	0.824	0.884	0.898	
100	10	0.608	0.840	0.880	0.888	
100	11	0.574	0.832	0.864	0.870	
Weibull $k=1.259$						
20	4	0.342	0.476	0.516	0.524	
20	5	0.286	0.468	0.514	0.532	
20	6	0.256	0.504	0.540	0.560	
20	7	0.220	0.522	0.550	0.552	
50	6	0.730	0.834	0.880	0.890	
50	7	0.700	0.826	0.872	0.876	
50	8	0.632	0.818	0.854	0.870	
50	9	0.616	0.816	0.872	0.870	
100	8	0.978	0.994	0.998	0.998	
100	9	0.944	0.984	0.994	0.994	
100	10	0.938	0.984	0.998	0.998	
100	11	0.924	0.968	0.994	0.994	
Table 6. Weibull null model: sizes and powers

Size	Weibull $k=1.259$	n	m	T	KS	CV	AD
		20	4	0.058	0.044	0.032	0.042
		20	5	0.034	0.060	0.052	0.046
		20	6	0.046	0.050	0.062	0.066
		20	7	0.036	0.054	0.050	0.056
		50	6	0.040	0.044	0.040	0.058
		50	7	0.058	0.048	0.052	0.062
		50	8	0.044	0.054	0.044	0.056
		50	9	0.042	0.050	0.052	0.052
		100	8	0.060	0.050	0.046	0.050
		100	9	0.054	0.074	0.058	0.062
		100	10	0.050	0.078	0.074	0.080
		100	11	0.072	0.048	0.044	0.052
Power	Inverse Gaussian $\lambda=4.5$	20	4	0.228	0.158	0.190	0.190
		20	5	0.248	0.168	0.210	0.214
		20	6	0.248	0.144	0.192	0.198
		20	7	0.222	0.174	0.212	0.208
		50	6	0.668	0.378	0.524	0.582
		50	7	0.660	0.412	0.518	0.564
		50	8	0.638	0.330	0.486	0.560
		50	9	0.602	0.372	0.470	0.534
		100	8	0.942	0.688	0.840	0.890
		100	9	0.938	0.664	0.834	0.904
		100	10	0.920	0.692	0.828	0.898
		100	11	0.940	0.704	0.852	0.914
Power	Gamma $k=2$	20	4	0.068	0.070	0.068	0.066
		20	5	0.060	0.064	0.058	0.070
		20	6	0.056	0.058	0.076	0.084
		20	7	0.044	0.080	0.074	0.072
		50	6	0.092	0.074	0.092	0.084
		50	7	0.086	0.082	0.086	0.078
		50	8	0.090	0.082	0.086	0.094
		50	9	0.084	0.082	0.088	0.092
		100	8	0.140	0.094	0.124	0.132
		100	9	0.118	0.108	0.136	0.130
		100	10	0.114	0.084	0.108	0.128
		100	11	0.150	0.110	0.146	0.156

Acknowledgements. I thank the referee for his/her careful reading and helpful comments and Mr. Minjo Kim for his help in the simulation study. This work was supported by the National Research Foundation of Korea(NRF) grant funded by the Korea government(MEST) (No. 2012R1A2A2A01046092).
References

[1] J. Bai, *Testing parametric conditional distributions of dynamic models*, Rev. Econ. Stat. 85 (2003), 531–549.
[2] J. Beirlant, E. J. Dudewica, L. Györfi, and E. C. van der Meulina, *Nonparametric entropy: an overview*, Inter. Int. J. Math. Stat. Sci. 6 (1997), no. 1, 17–39.
[3] R. B. D’Agostino and M. A. Stephens, *Goodness-of-Fit Techniques*, Marcel Dekker, New York, 1986.
[4] J. Durbin, *Weak convergence of the sample distribution function when parameters are estimated*, Ann. Statist. 1 (1973), 279–290.
[5] S. A. Khashimov, *Asymptotic properties of functions of spacings*, Theory Probab. Appl. 34 (1989), no. 2, 298–306.
[6] E. A. Khmaladze, *Martingale approach in the theory of goodness-of-fit tests*, Teor. Veroyatnost. i Primen. 26 (1981), no. 2, 246–265.
[7] S. Lee, *A maximum entropy type test of fit: composite hypothesis case*, Comput. Statist. Data Anal. 57 (2013), 59–67.
[8] K. S. Song, *Limit theorems for nonparametric sample entropy estimators*, Statist. Probab. Lett. 49 (2000), no. 1, 9–18.
[9] W. Stute, W. Manteiga, and M. Quindimil, *Bootstrap based goodness-of-fit tests*, Metrika 40 (1993), no. 3-4, 243–256.
[10] B. van Es, *Estimating functionals related to a density by a class of statistics based on spacings*, Scand. J. Statist. 19 (1992), no. 1, 61–72.
[11] O. Vasicek, *A test for normality based on sample entropy*, J. Roy. Statist. Soc. Ser. B 38 (1976), no. 1, 54–59.

Department of Statistics
Seoul National University
Seoul 151-742, Korea
E-mail address: sylee@stats.snu.ac.kr