Multi-Point Virtual Structure Constants and Mirror Computation of CP^2-model

Masao Jinzenji (1), Masahide Shimizu (2)

(1) Department of Mathematics, Graduate School of Science
Hokkaido University
Kita-ku, Sapporo, 060-0810, Japan
e-mail address: jin@math.sci.hokudai.ac.jp

(2) Institute for the Advancement of Higher Education
Hokkaido University
Kita-ku, Sapporo, 060-0817, Japan
e-mail address: masa.shimi.2875@gmail.com

May 7, 2013

Abstract

In this paper, we propose a geometrical approach to mirror computation of genus 0 Gromov-Witten invariants of CP^2. We use multi-point virtual structure constants, which are defined as intersection numbers of a compact moduli space of quasi maps from CP^1 to CP^2 with $2+n$ marked points. We conjecture that some generating functions of them produce mirror map and the others are translated into generating functions of Gromov-Witten invariants via the mirror map. We generalize this formalism to open string case. In this case, we have to introduce infinite number of deformation parameters to obtain results that agree with some known results of open Gromov-Witten invariants of CP^2. We also apply multi-point virtual structure constants to compute closed and open Gromov-Witten invariants of a non-nef hypersurface in projective space. This application simplifies the computational process of generalized mirror transformation.

1 Introduction

Mirror computation of the genus 0 Gromov-Witten invariants of CP^n has been investigated by several authors [2, 5]. They were motivated by the Landau-Ginzburg potential proposed by Eguchi, Hori and Xiong in [3]:

$$x_1 + x_2 + \cdots + x_n + \frac{e^t}{x_1 x_2 \cdots x_n}. \quad (1.1)$$

In [2], Barannikov introduced a pair (X, f),

$$X = \{x_0 x_1 \cdots x_n = 1\} \subset C^{n+1}, \quad f : X \rightarrow C, \quad f = x_0 + x_1 + \cdots + x_n, \quad (1.2)$$

and considered a potential function,

$$\hat{F}(x; t) = f + \sum_{m=0}^n t^m (\sum_{i=0}^n x_i)^m, \quad (1.3)$$

and oscillating integrals,

$$\varphi_k(t, \hbar) = \int_{\Delta_k} \exp\left(\frac{\hat{F}(x; t)}{\hbar} \right) \frac{dx_0 dx_1 \cdots dx_n}{d(x_0 \cdots x_n)}, \quad (1.4)$$

where Δ_k is some appropriate relative n-cycle of X. He next introduced functions ψ_k satisfying the following normalization condition,

$$\psi_k(t, \hbar) = \sum_{m=0}^n u_m(t, \hbar) \frac{\partial \varphi_k}{\partial t^m}(0, \hbar), \quad (1.5)$$
and having good asymptotic behavior in \hbar. Here $u_m(t, \hbar) = \delta_{m0} + \sum_{j=1}^{\infty} \frac{1}{(\hbar t)^j} u_m^{(-j)}(t)$. The main result of \cite{2} is given as follows. If one makes a change of parameters $y^m = u_m^{(-1)}(t)$, then Picard-Fuchs equation for ψ_k's takes the form:

$$
\frac{\partial^2 \psi_k}{\partial y^i \partial y^j} = \frac{1}{\hbar} \sum_{m=0}^{n} A_{ij}^m(y) \frac{\partial \psi_k}{\partial y^m},
$$

(1.6)

and

$$
A_{ij}^{n-m}(y) = \partial_i \partial_j \partial_m F_{C^P^n}(y),
$$

(1.7)

where $F_{C^P^n}(y)$ is the generating function of genus 0 Gromov-Witten invariants of C^P^n. His method is fundamentally the same as use of Birkhoff factorization to construct connection matrices of quantum cohomology from Picard Fuchs equation including \hbar \cite{1,5}. In \cite{5}, Iritani pointed out this fact and reformulated Barannikov’s result in terms of extended I-function of C^P^n \cite{6}.

In this paper, we propose a geometric approach to mirror computation of genus 0 Gromov-Witten invariants of C^P^2 by extending our previous results in \cite{9}. In \cite{9}, we proposed a general conjecture that for a toric manifold X, we can construct a compact moduli space of quasi maps from C^P^1 to X of degree d with two marked points, which we denote by $\widetilde{M}_{0,2}(X, d)$. We also conjectured that an intersection number $w(\mathcal{O}_x \mathcal{O}_y)_{0,d}$ of $\widetilde{M}_{0,2}(X, d)$, which is defined as an analogue of the genus 0 Gromov-Witten invariant $\langle \mathcal{O}_x \mathcal{O}_y \mathcal{O}_z \mathcal{O}_w \rangle_{0, 0, 1, 2}$ of X, gives us the data of the B-model of mirror computation. Especially, $w(\mathcal{O}_x \mathcal{O}_y)_{0,d}$ gives us the information of the mirror map by the following correspondence.

$$
t^\alpha = \eta^\alpha\beta (\sum_d w(\mathcal{O}_x \mathcal{O}_y)_{0,d} e^{d x}),
$$

$$
= x^\alpha + \eta^\alpha\beta (\sum_d w(\mathcal{O}_x \mathcal{O}_y)_{0,d} e^{d x}).
$$

(1.8)

In the above formula, $\eta^\alpha\beta$ is the inverse of the classical intersection matrix $\eta_{\alpha\beta} = \int_X \alpha \wedge \beta$ and $d \cdot x = \sum_{\gamma} d_{\gamma} x^\gamma$

where γ runs through additive generators of $H^{1,1}(X)$. The subscript α in \cite{1,8} is not restricted to $H^{1,1}(X)$ and can vary at least the range of the sub-ring of $H^{1,*}(X)$ multiplicatively generated by $H^{1,1}(X)$. But the deformation parameters x^γ are restricted to $H^{1,1}(X)$. This restriction comes from the fact that the intersection number $w(\mathcal{O}_x \mathcal{O}_y)_{0,d}$ is a two point correlation function. In order to include deformation parameters that couple to cohomology elements other than $H^{1,1}(X)$, we have to define $2+n$ point correlation functions. This task forces us to construct a compact moduli space of quasi maps with $2+n$ marked points. In constructing $\widetilde{M}_{0,2}(C^P^{N-1}, d)$ in \cite{9}, the number two is special because it is based on geometric invariant theory of C^x action on C^P^1, which keeps 0 and ∞ in C^P^1 fixed. On the other hand, Alexeev and Gubin considered various compactification of the moduli space of (complex structure of) C^P^1 with marked points in \cite{1}. In their examples, there exists a compactification that corresponds to C^x geometric invariant theory. We denote this moduli space with $2+n$ marked points by $\overline{M}_{0,2+n}$, because the first two marked points 0 and ∞ are special. Main difference from the moduli space $\overline{M}_{0,2+n}$, which is compactified by $PSL(2, C)$ geometric invariant theory, is given as follows. In the open stratum of $\overline{M}_{0,2+n}$, the n marked points are distinct from 0 and ∞, but they can coincide with each other in $C^x = C^P^1 - \{0, \infty\}$. Boundaries of $\overline{M}_{0,2+n}$ consist of stable curves of chain shape, whose component C^P^1's are connected at 0 and ∞. The boundary structure of $\widetilde{M}_{0,2}(N, d)$ given in \cite{9} is the same as the one of $\overline{M}_{0,2+n}$. In this paper, we construct $\widetilde{M}_{0,2+n}(N, d)$, the compact moduli space of quasi maps from C^P^1 to C^P^{N-1} with $2+n$ marked points, by combining the construction processes of $\widetilde{M}_{0,2}(N, d)$ with the one of $\overline{M}_{0,2+n}$. We can then define a intersection number $w(\mathcal{O}_x \mathcal{O}_y)_{0,d}$, which is an analogue of the genus 0 Gromov-Witten invariant $\langle \mathcal{O}_x \mathcal{O}_y \mathcal{O}_z \mathcal{O}_w \rangle_{0,0,1,2}$, which is an analogue of the genus 0 Gromov-Witten invariant $\langle \mathcal{O}_x \mathcal{O}_y \mathcal{O}_z \mathcal{O}_w \rangle_{0,0,1,2}$, which is an analogue of the genus 0 Gromov-Witten invariant $\langle \mathcal{O}_x \mathcal{O}_y \mathcal{O}_z \mathcal{O}_w \rangle_{0,0,1,2}$. Here h is the hyperplane class in $H^{1,*}(C^P^{N-1})$. This intersection number satisfies the puncture axiom and the divisor axiom of the Gromov-Witten invariant with respect to the operator insertions that correspond to the latter n marked points. Moreover, we can derive a closed formula of $w(\mathcal{O}_x \mathcal{O}_y)_{0,d}$ by applying the same localization technique as the one used in \cite{9}. With this set-up, we can generalize \cite{1,3,8} in the C^P^{N-1} case, to include deformation parameters x^j coupled to h^j ($j = 0, 1, 2, \cdots, N - 1$).

$$
t^j(x^0, \cdots, x^{N-1}) = \eta^{ij} \left(\sum_{d=0}^{\infty} \sum_{m_0 \geq 0} w(\mathcal{O}_x \mathcal{O}_y)_{i} \prod_{l=0}^{N-1} (\mathcal{O}_h)^{m_l}_{d} \prod_{l=0}^{N-1} \frac{(x^l)^{m_l}_{d}}{m_l!} \right),
$$

2
Let \(w(O_{h_\nu}O_{h^\nu}(x^0, x^1, \ldots, x^{N-1}))_0 \) be the generating function of \(w(O_{h_\nu}O_{h^\nu}) \prod_{l=0}^{N-1} (O_{h^\nu})^{m_l} \). We conjecture that substitution of inversion of \(1 \) into \(w(O_{h_\nu}O_{h^\nu}(x^0, x^1, \ldots, x^{N-1}))_0 \) results in \((O_{h_\nu}O_{h^\nu}(x^0, t^1, \ldots, t^{N-1}))_0 \), the generating function of \((O_{h_\nu}O_{h^\nu}) \prod_{l=0}^{N-1} (O_{h^\nu})^{m_l} \). In this paper, we test numerically this conjecture in the \(CP^2 \) case. The result indeed supports our conjecture. At this stage, a natural question may occur. Does the mirror map constructed in \(19 \) coincide with the mirror map obtained from the method of Bannikov and Iritani? In this paper, we compare our mirror map for \(CP^2 \)-model with the mirror map derived from Iritani’s extended \(I \)-function. We find that they do not coincide. But, we cannot conclude only from this fact that our construction has no connection with the standard mirror computation of \(CP^2 \)-model. According to Iritani \([6]\), there are infinitely many ways to choose a polynomial that couple to the deformation parameter \(x^2 \). If we change the polynomial, the mirror map obtained from Birkhoff factorization may vary. Up to now, we have tested only one choice. Therefore, we cannot deny the possibility of appropriate choice that reproduces our mirror map.

Next, we apply the moduli space \(\tilde{M}_{D,1}[n](3, 2d - 1) \) to compute open Gromov-Witten invariants of \(CP^2 \). We define an anti-holomorphic involution of \(\tilde{M}_{D,1}[n](3, 2d - 1) \) that exchange the two special marked points. We denote by \(\tilde{M}_{P,1}[n](CP^2/\mathbb{R}P^2, 2d - 1) \) the subset of \(\tilde{M}_{D,1}[n](3, 2d - 1) \) invariant under the involution. It is nothing but the moduli space of quasi maps from disk \(|z| \leq 1 \) to \(CP^2 \). Here, boundary of the disk is mapped to \(\mathbb{R}P^2 \), the real Lagrangian submanifold of \(CP^2 \). The special marked point is \(0 \) and the remaining \(n \) marked points can lie freely on \(|0 < |z| \leq 1 \). With this set-up, we compute a intersection number \(w(O_{h_\nu}) \prod_{j=1}^{n} O_{h_{m_j}} \) of disk,2d-1, which is an analogue of the open Gromov-Witten invariant \(\langle O_{h_\nu} \prod_{j=1}^{n} O_{h^{-m_j}} \rangle_{disk,2d-1} \). This line of construction is a generalization of our previous work \([10]\) on one point open Gromov-Witten invariants to \(1 + n \) point Gromov-Witten invariants. With this construction, we can compute \(w(O_{h_\nu}(x^0, x^1, x^2)) \) of disk, the generating function of \(w(O_{h_\nu}) \prod_{l=0}^{2} (O_{h^\nu})^{m_l} \) of disk,2d-1. Then our question is the following. If we substitute inversion of the mirror map given in \(19 \) into \(w(O_{h_\nu}(x^0, x^1, x^2)) \) of disk, can we obtain the generating function \((O_{h_\nu}O_{h^\nu}(t^1, t^2)) \) of disk? The answer turns out to be “no”. The result so obtained did not reproduce \((O_{h_\nu} \prod_{l=0}^{n} (O_{h^\nu})^{m_l})_{disk,2d-1} \) with lower \(d \) that can be computed from localization theorem (naively) applied to the moduli space of stable maps for open Gromov-Witten invariants. After some try and errors, we found a way to remedy this disagreement. It is to introduce unnatural deformation parameters \(t^j \) \((j = 3, 4, \ldots) \) that couple to \(h^\nu \). Note that \(h^\nu = 0 \) \((j \geq 3) \) in \(H^* \ast(CP^2) \), but we can formally compute non-zero \(w(O_{h_\nu}) \prod_{l=0}^{N-1} (O_{h^\nu})^{m_l} \) of disk,2d-1 because the closed formula for this intersection number is represented in the form of a residue integral. In order to obtain the mirror map, we also have to compute \(w(O_{h_\nu}O_{h^\nu}) \prod_{l=0}^{n} (O_{h^\nu})^{m_l} \) of disk,2d-1 with \(a \) \(-1 \) on the closed string side. But it is possible since the closed formula for \(w(O_{h_\nu}O_{h^\nu}) \prod_{j=1}^{n} O_{h^{-m_j}} \) of disk,2d-1 is also written in the form of a residue integral. After all, what we have obtained is the following table of open Gromov-Witten invariants \(\langle (O_{h^\nu})^{3d-2} \rangle_{disk,2d-1} \).

Disk Gromov-Witten Invariants of CP^2 with Maximal h^\nu-Insertions	1	2	3	4	5	6
\(\langle (O_{h^\nu})^{3d-2} \rangle_{disk,2d-1} \)	2	-1	2	2	2	2

The first four numbers coincide with the numerical results obtained from localization computation applied to the moduli space of stable maps for open Gromov-Witten invariants.

Our construction of multi-point intersection numbers for quasi maps can be easily generalized to degree \(k \) hypersurface in \(CP^{N-1} \) (we denote it by \(M_k^N \)). In this case, we can use our new intersection numbers to simplify computational process of generalized mirror transformation \([8, 7]\). In the \(k > N \) case, generalized mirror transformation for two point Gromov-Witten invariants includes multi-point intersection numbers. But in \([8]\), the intersection numbers we have as initial data are the ones that correspond to \(w(O_{h_\nu}O_{h^\nu}) \). Therefore, in order to obtain multi-point intersection numbers, we have to use associativity equation \([12]\). This process made the computation awfully complicated. In the open string case \([10]\), this obstacle also made the mirror computation of open Gromov-Witten invariants of \(M_k^N \) \((k > N) \) incomplete. Now that we have multi-point intersection numbers on the B-model side, we can execute the generalized mirror transformation only by one process of coordinate change. In this paper, we apply this idea to compute both closed and open Gromov-Witten invariants of \(M_k^N \). It works well as we expected. Especially in the open string case, we don’t have to introduce unnatural deformation parameters in contrast to the \(CP^2 \) case.

This paper is organized as follows. In Section 2, we first construct \(\tilde{M}_{P,2}[n](N, d) \), the compact moduli space of quasi maps from \(CP^1 \) to \(CP^{N-1} \) of degree \(d \) with \(2 + n \) marked points. After giving definition of the intersection
The first two marked points are \((0 : 1)\) and \((1 : 0)\) and the remaining \(n\) model. The research of M.J. is partially supported by JSPS grant No. 25400061. Each of which is connected at 0 and \(\mathbb{P}^1\). In Section 4, we apply the formalism in Section 2 and Section 3 to compute closed and open Gromov-Witten invariants of \(\mathbb{P}^2\)-model. In the last part of this section, we compare our mirror map with the one obtained from Iritani’s extended \(I\)-function. In Section 3, we construct the moduli space \(\bar{M}_{p,1,n}(\mathbb{P}^2/\mathbb{P}^2, 2d - 1)\) and derive a closed formula for the intersection number \(w(O_h|\Pi^n_{j=1}O_{h_{-j}})_{0,d}\) along the same line as Section 2. Next, we exhibit explicit numerical results of the mirror computation of open Gromov-Witten invariants of \(\mathbb{P}^2\)-model. We also thank Prof. Hiroshi Iritani for explaining us his way of mirror computation of the \(\mathbb{P}^2\)-model. In the previous work \([9]\), we derived a closed formula for the intersection number \(\nu\) of \(\mathbb{P}^2\) and \(\mathbb{P}^2\)-model. In the last part of this section, we compare our mirror map with the one obtained from Iritani’s extended \(I\)-function.

Acknowledgment We would like to thank Prof. Yongbin Ruan and Prof. Satoshi Minabe for valuable discussions. We also thank Prof. Hiroshi Iritani for explaining us his way of mirror computation of the \(\mathbb{P}^2\)-model. The research of M.J. is partially supported by JSPS grant No. 25400061.

2 Closed String Case

2.1 Construction of the Moduli Space \(\bar{M}_{p,2,n}(N, d)\)

In this section, we construct \(\bar{M}_{p,2,n}(N, d)\), the moduli space of quasi maps from a certain class of semi-stable genus 0 curves to \(\mathbb{P}^{N-1}\) with \(2 + n\) marked points. The semi-stable curve we use is a chain of several \(\mathbb{P}^1\)’s, each of which is connected at 0 and \(\infty\). Let \(l\) be the number of \(\mathbb{P}^1\)’s in the semi-stable curve. We represent here the stable curve as \(\cup_{i=1}^l(CP^1)_i\). Intersection of \((CP^1)_i\) and \((CP^1)_{i+1}\) is given by \((\infty)_i = (0)_{i+1}\). \((0)_1\) and \((\infty)_l\) are the two special marked points of the semi-stable curve. A quasi map \(\varphi\) from \(CP^1\) to \(CP^{N-1}\) of degree \(d\) is defined by

\[
\varphi(s : t) = \left[\sum_{i=0}^{d} a_i s^i t^{d-i} \right],
\]

where \(s\) and \(t\) are homogeneous coordinates \((s : t)\) of \(CP^1\). \([s]\) denotes equivalence class of \(s\) under projective equivalence of \(CP^{N-1}\). Our construction is based on construction of \(\bar{M}_{p,2,n}(N, d)\), the moduli space of quasi maps from the above semi-stable curve to \(CP^{N-1}\) with two marked points. Its construction was given in our previous work \([9]\). In constructing \(\bar{M}_{p,2,n}(N, d)\), we considered a chain of quasi maps \(\cup_{i=1}^l \varphi_i\) to represent a quasi map from \(\cup_{i=1}^l(CP^1)_i\) to \(CP^{N-1}\). The chain \(\cup_{i=1}^l \varphi_i\) is classified by ordered partition \((d_1, d_2, \ldots, d_l)\) of \(d\) where \(d_i\) is degree of \(\varphi_i\) and it was used to compactify the moduli space. Then what we have to do in addition to construct \(\bar{M}_{p,2,n}(N, d)\) is to distribute \(n\) marked points on the semi-stable curve \(\cup_{i=1}^l(CP^1)_i\). But there occurs one subtlety. We have to consider the case when some of the \(n\) marked points are located at \((0)_i\) or \((\infty)_i\). To describe this situation, we need to insert \(\bar{M}_{p,2,n}\), the moduli space of complex structure of \(CP^1\) with \(2 + n\) marked points compactified by \(C^\times\) geometric invariant theory, to these points.

Now let us begin construction of \(\bar{M}_{p,2,n}(N, d)\). As the first step, we define \(M_{p,2,n}(N, d)\), which is Zariski-open subset (or bulk part) of \(\bar{M}_{p,2,n}(N, d)\). It is defined as follows:

\[
M_{p,2,n}(N, d) := \{(a_0, a_1, \ldots, a_d, (z_1, z_2, \ldots, z_n)) | a_i \in C^N, a_0, a_d \neq 0, z_j \in C^\times \}/(C^\times)^2.
\]

In this definition, the first two marked points that correspond to 2 in the subscript \(2|n\) are 0 and \(\infty\) in \(CP^1\). We note that \(z_j\)’s need not be distinct points in \(C^\times = CP^1 \setminus \{0, \infty\}\) when \(n > 1\). We define here the \((C^\times)^2\) action in (2.11). Let \((\lambda, \mu) \in (C^\times)^2\). Then it is given by,

\[
\lambda \cdot (a_0, a_1, \ldots, a_d, (z_1, z_2, \ldots, z_n)) = ((\lambda a_0, \lambda a_1, \ldots, \lambda a_d), (z_1, z_2, \ldots, z_n)),
\]

\[
\mu \cdot (a_0, a_1, \ldots, a_d, (z_1, z_2, \ldots, z_n)) = ((a_0, \mu a_1, \ldots, a_d, \mu^d a_0, (\mu^{-1} z_1, \mu^{-1} z_2, \ldots, \mu^{-1} z_n)).
\]

The first two marked points are \((0 : 1)\) and \((1 : 0)\) and the remaining \(n\) marked points are given by \(z_j = \frac{z_j}{\mu^j} (j = 1, 2, \ldots, n)\) respectively. The condition \(a_0, a_d \neq 0\) guarantees that images \(\varphi(0 : 1)\) and \(\varphi(1 : 0)\) are well-defined in \(CP^{N-1}\). The first \(C^\times\) action in (2.12) corresponds to projective equivalence of \(CP^{N-1}\) and the second one corresponds to automorphism group of \(CP^1\) that fixes the first two marked points.
When we consider the moduli space of quasi maps with marked points, it is important to consider evaluation maps. For the first two marked points, we define evaluation maps ev_i as follows:

$$ev_i\left([\{a_0, a_1, \cdots, a_d\}, (z_1, z_2, \cdots, z_n)]\right) := [a_0],$$

$$ev_i\left([\{a_0, a_1, \cdots, a_d\}, (z_1, z_2, \cdots, z_n)]\right) := [a_d],$$

where $[\ast]$'s in the l.h.s.'s denote the equivalence classes under the $(\mathbb{C}^\times)^2$ action. To define evaluation maps ev_i ($i = 1, \cdots, n$) that come from evaluation of a quasi map at z_i, we have to take care of a subtlety arising from "freckled instantons". A freckled instanton is a quasi map $\varphi(s : t)$ whose defining vector valued polynomial $\sum_{i=0}^{d} a_i s^i t^{d-i}$ is factored as follows:

$$\sum_{i=0}^{d} a_i s^i t^{d-i} = \prod_{i=1}^{m} (s - \alpha_i t) \cdot (\sum_{j=0}^{m} b_j s^j t^{d-m-j}), \quad (m \geq 1, \alpha_i \in \mathbb{C}^\times).$$

In (2.14), $\sum_{j=0}^{d-m} b_j s^j t^{d-m-j}$ is an irreducible vector valued polynomial. We cannot define image of φ at $(\alpha_1 : 1)$ because $\sum_{i=0}^{d} a_i (\alpha_1)^i = 0$. But images of the other points in $\mathbb{C}P^1$ are given by $[\sum_{j=0}^{d-m} b_j s^j t^{d-m-j}]$. Therefore, we define ev_i as follows:

$$ev_i\left([\{a_0, a_1, \cdots, a_d\}, (z_1, z_2, \cdots, z_n)]\right) := [\sum_{j=0}^{d-m} b_j (z_i)^j].$$

If $\sum_{i=0}^{d} a_i s^i t^{d-i}$ is irreducible, we define,

$$ev_i\left([\{a_0, a_1, \cdots, a_d\}, (z_1, z_2, \cdots, z_n)]\right) := [\sum_{j=0}^{d} a_j (z_i)^j].$$

As was suggested in the construction of $\overline{M}_{0,2n}(N, d)$ in [9], we can easily see that $M_{0,2n}(N, d)$ is not a compact space. Therefore, we compactify it by adding boundary strata. We start this process by taking $M_{0,2n}(N, 1)$ as an example. In this case, it is obtained by taking $(\mathbb{C}^\times)^2$ quotients of the set $\{([a_0, a_1], (z_1, z_2, \cdots, z_n)) | a_0, a_1 \neq 0, z_i \in \mathbb{C}^\times\}$. Using the $(\mathbb{C}^\times)^2$ action, we can see,

$$M_{0,2n}(N, 1) = \{([a_0], [a_1], (z_1, z_2, \cdots, z_n)) | z_i \in \mathbb{C}^\times\} = CP^{N-1} \times CP^{N-1} \times (\mathbb{C}^\times)^n.$$
For brevity, we also introduce an auxiliary space \(\overline{M}_{p,2}(N,0) := CP^{N-1} \). We then turn back to compactification of \(M_{p,2}(N,1) \). We decompose the subscript set \(\{1, 2, \ldots, n\} \) into disjoint union of three subsets:

\[
A_0 \bigsqcup B_1 \bigsqcup A_1 = \{1, 2, \ldots, n\}. \tag{2.22}
\]

In (2.22), each subset can be an empty set. Then \(\overline{M}_{p,2}(N,1) \), the compactification of \(M_{p,2}(N,1) \) is given as follows:

\[
\overline{M}_{p,2}(N,1) = \bigg(\overline{M}_{p,2}(\mathcal{A}_0)(N,0) \times_{CP^{N-1}} M_{p,2}(\mathcal{B}_1)(N,1) \times_{CP^{N-1}} \overline{M}_{p,2}(\mathcal{A}_1)(N,0) \bigg).
\] \tag{2.23}

In (2.23), the stratum labeled by \(A_0 \bigsqcup B_1 \bigsqcup A_1 \) corresponds to the configuration of marked points where \(z_j \) \((j \in A_0) \) (resp. \(z_j \) \((j \in A_1) \)) goes to 0 (resp. \(\infty \)). \(\overline{M}_{p,2}(\mathcal{A}_0)(N,0) \times_{CP^{N-1}} M_{p,2}(\mathcal{B}_1)(N,1) \) is a fiber product with respect to the projection \(\pi : \overline{M}_{p,2}(\mathcal{A}_0)(N,0) \rightarrow CP^{N-1} \) and \(ev_0 : M_{p,2}(\mathcal{B}_1)(N,1) \rightarrow CP^{N-1} \).

We now turn into construction of \(\overline{M}_{p,2}(N,d) \), i.e., the \(n = 0 \) case. In this case, we introduce ordered partition of the degree \(d \):

\[
O_d := \{(d_1, d_2, \ldots, d_l) \mid d_1 + d_2 + \ldots + d_l = d, \quad d_j \geq 1, \quad 1 \leq l \leq d \}.
\] \tag{2.24}

In (2.24), \(\overline{M}_{p,2}(N,d) \) was constructed as follows:

\[
\overline{M}_{p,2}(N,d) := \bigg(M_{p,2}(N,d_1) \times_{CP^{N-1}} M_{p,2}(N,d_2) \times_{CP^{N-1}} \cdots \times_{CP^{N-1}} M_{p,2}(N,d_l) \bigg),
\] \tag{2.25}

where \(M_{p,2}(N,d) \) is the space \(M_{p,2}(N,d) \) defined in (2.11). In (2.25), \(M_{p,2}(N,d_i) \times_{CP^{N-1}} M_{p,2}(N,d_{i+1}) \) \((1 \leq i \leq l-1) \) is a fiber product with respect to \(ev_\infty : M_{p,2}(N,d_i) \rightarrow CP^{N-1} \) and \(ev_0 : M_{p,2}(N,d_{i+1}) \rightarrow CP^{N-1} \). A point in the stratum labeled by \((d_1, \cdots, d_l) \) is a chain of quasi maps \(\varphi_i \) \((i = 1, \cdots, l) \) where degree of \(\varphi_i \) is given by \(d_i \). Fiber products are used to guarantee \(\varphi(\infty)_i = \varphi_{i+1}(0)_{i+1} \). Construction of \(\overline{M}_{p,2}(N,d) \) is done by combining (2.23) and (2.25). For an ordered partition \((d_1, d_2, \ldots, d_l) \in O_d \), we consider ordered decomposition of the subscript set \(\{1, 2, \cdots, n\} \):

\[
\bigg(\prod_{i=0}^l A_i \bigg) \bigg(\prod_{i=1}^l B_i \bigg) = \{1, 2, \ldots, n\},
\] \tag{2.26}

where \(A_i \) and \(B_j \) can be empty sets. Then \(\overline{M}_{p,2}(N,d) \) is given as follows:

\[
\overline{M}_{p,2}(N,d) := \bigg(M_{p,2}(N,d_1) \times_{CP^{N-1}} M_{p,2}(N,d_2) \times_{CP^{N-1}} \cdots \times_{CP^{N-1}} M_{p,2}(N,d_l) \bigg),
\] \tag{2.27}

In (2.27), \(M_{p,2}(\mathcal{B}_1)(N,d_i) \times_{CP^{N-1}} \overline{M}_{p,2}(\mathcal{A}_1)(N,0) \times_{CP^{N-1}} M_{p,2}(\mathcal{B}_i)(N,d_i) \) \((i = 1, \ldots, l) \) means just

\[
M_{p,2}(\mathcal{B}_1)(N,d_i) \times_{CP^{N-1}} M_{p,2}(\mathcal{B}_i+1)(N,d_i+1)
\]

if \(A_i = \emptyset \). Otherwise, it means

\[
\left(M_{p,2}(\mathcal{B}_1)(N,d_i) \times_{CP^{N-1}} M_{p,2}(\mathcal{B}_i+1)(N,d_i+1) \right) \times \overline{M}_{0,2}(A_i).
\]
the marked point z_j ($j \in A_i$) are mapped to $\varphi_i((\infty)_i) = \varphi_{i+1}((0)_{i+1})$ ($i = 1, \cdots, l-1$) (resp. $\varphi_1((0)_1)$ if $i = 0$ and $\varphi_l((\infty)_l)$ if $i = l$). With this set-up, we can easily extend the definition of the evaluation maps ev_0, ev_∞, ev_i ($i = 1, 2, \cdots, n$) to whole $\bar{M}_{0,2|n}(N, d)$.

2.2 Localization Computation

In this section, we compute an intersection number $w(\mathcal{O}_h^{*}\mathcal{O}_{h^*}|\prod_{j=1}^n \mathcal{O}_{h^*(j)})_{0,d}$ on $\bar{M}_{0,2|n}(N, d)$ by using localization technique developed in [3]. Here, h is the hyperplane class in $H^*(CP^{N-1})$. It is defined by the following formula:

$$w(\mathcal{O}_h^{*}\mathcal{O}_{h^*}|\prod_{j=1}^n \mathcal{O}_{h^*(j)})_{0,d} := \int_{\bar{M}_{0,2|n}(N, d)} ev_0^*(h^s) \cdot ev_\infty^*(h^b) \cdot \prod_{j=1}^n ev_j^*(h^{m_j}), \quad (2.28)$$

where \cdot is the product of the cohomology ring $H^*(\bar{M}_{0,2|n}(N, d))$. We introduce a C^∞ action on $\bar{M}_{0,2|n}(N, d)$ to apply localization technique. First, we define it on the bulk stratum $\bar{M}_{0,2|n}(N, d)$.

$$(e^t) \cdot [(a_0, a_1, \cdots, a_d), (z_1, \cdots, z_n)] := [(e^{\lambda_0} a_0, e^{\lambda_1} a_1, \cdots, e^{\lambda_d} a_d), (z_1, \cdots, z_n)], \quad (t, \lambda_i \in C), \quad (2.29)$$

where λ_i ($i = 0, 1, \cdots, d$) are the characters of C^∞ action. The C^∞ action acts only on parameters of quasi maps. The part of $\bar{M}_{0,2|n}(N, d)$ that describe parameters of quasi maps is the same as $\bar{M}_{0,2}(N, d)$ whose boundary structure is given by ordered partition $(d_1, \cdots, d_l) \in Op_d$. In [3], we gave toric construction of $\bar{M}_{0,2}(N, d)$ by introducing boundary divisor coordinates u_j ($j = 1, 2, \cdots, d - 1$). A point in $\bar{M}_{0,2}(N, d)$ was described by

$$[(a_0, a_1, \cdots, a_d, u_1, \cdots, u_{d-1})]$$

where $[\cdot]$ represents equivalence class under the $(C^\infty)^{d+1}$ action used in the toric construction. See [3] for details.

In [3], we used fundamentally the same C^∞ action as (2.29), that acts on $\bar{M}_{0,2}(N, d)$. It was defined by,

$$(e^t) \cdot [(a_0, a_1, \cdots, a_d, u_1, \cdots, u_{d-1})] := [(e^{\lambda_0} a_0, e^{\lambda_1} a_1, \cdots, e^{\lambda_d} a_d, u_1, \cdots, u_{d-1})]. \quad (2.30)$$

Note that (2.30) is defined on the whole strata of $\bar{M}_{0,2}(N, d)$. Since the part of $\bar{M}_{0,2}(N, d)$ describing parameters of quasi map is the same as $\bar{M}_{0,2}(N, d)$, we can extend the C^∞ action given by (2.29) to whole $\bar{M}_{0,2|n}(N, d)$.

Next, we determine fixed point sets of $\bar{M}_{0,2|n}(N, d)$ under the above C^∞ action. We consider first the stratum $\bar{M}_{0,2|n}(N, d)$. Since $[\cdot]$ in (2.29) represents equivalence class under $(C^\infty)^2$ action, we can trivialize this action on a_0 and a_d by regarding them as $[a_0], [a_d] \in CP^{N-1}$. After this trivialization, the C^∞ action in (2.29) is rewritten as follows:

$$(e^t) \cdot ([a_0], [a_1, \cdots, [a_d]], (z_1, \cdots, z_n)) = ([a_0], e((\lambda_1-\lambda_0) \frac{\lambda_d - \lambda_0}{\lambda_d - \lambda_0}) [a_1], \cdots, e((\lambda_{d-1}-\lambda_0) \frac{\lambda_d - \lambda_0}{\lambda_d - \lambda_0}) [a_{d-1}], [a_d]), (e^{\frac{\lambda_d - \lambda_0}{\lambda_d - \lambda_0} t} z_1, \cdots, e^{\frac{\lambda_d - \lambda_0}{\lambda_d - \lambda_0} t} z_n). \quad (2.31)$$

Therefore, fixed points appear only if $n = 0$ and they are given by,

$$([a_0], 0, \cdots, 0, [a_d]). \quad (2.32)$$

Even after the trivialization, we still have remaining Z_d action:

$$\zeta \cdot ([a_0], [a_1, \cdots, a_{d-1}, [a_d]], (z_1, \cdots, z_n)) = ([a_0], \zeta a_1, \cdots, \zeta^{d-1} a_{d-1}, [a_d]), (\zeta^{-1} z_1, \cdots, \zeta^{-1} z_n), \quad (\zeta = \exp(\frac{2\pi \sqrt{-1}}{d})). \quad (2.33)$$

Hence, the fixed points in (2.32) are Z_d orbifold singularities in $\bar{M}_{0,2|0}(N, d)$. (2.32) also tells us that the fixed point set of $\bar{M}_{0,2|0}(N, d)$ is given by $CP^{N-1} \times CP^{N-1}$. Now, we can determine the fixed point set in the stratum labeled by (d_1, \cdots, d_l) and $(\prod_{i=1}^l A_i) \prod_{i=1}^l B_i = \{1, 2, \cdots, n\}$. We have non-empty fixed point set only if $B_i = \emptyset$ ($i = 1, 2, \cdots, l$). If this condition is satisfied, the fixed point set of the stratum is given by
\[\prod_{i=0}^{l}(CP^{N-1})_i \times \prod_{i=0}^{l} M_{0,2,|A_i|} \] (if \(A_i = \emptyset \), we don’t include \(M_{0,2,|A_i|} \) in the product). Here the first factor represents a chain of quasi maps:

\[\bigcup_{i=1}^{l} \{ a_{\sum_{j=1}^{i-1} d_j} (s_i)^{d_i} + a_{\sum_{j=1}^{i} d_j} (t_i)^{d_i} \}, \]

and the second factor describes degrees of freedom of marked points that are mapped to \(\{ a_{\sum_{j=1}^{i} d_j} \} (i = 0, 1, \cdots, l) \).

This fixed point set is also a set of orbifold singularities on which \(\prod_{j=1}^{l} Z_{d_j} \) acts.

We have determined the fixed point sets of \(\overline{M}_{0,2,n}(N, d) \) under the \(C^\times \) action of \(\mathbb{C}^\times \). To proceed the localization technique, we analyze contributions from normal bundle of the fixed point set labeled by \((d_1, \cdots, d_l) \) and \(\prod_{i=0}^{l} A_i = \{ 1, 2, \cdots, n \} \), to localized integrand. For brevity, we introduce another notation of an ordered partition \((d_1, \cdots, d_l) \):

\[0 = f_0 < f_1 < f_2 < \cdots < f_{l-1} < f_l = d, \quad f_j - f_{j-1} = d_j, \quad (j = 1, 2, \cdots, l). \]

In the following, we denote by \(h_{f_j} \) the hyperplane class of \((CP^{N-1})_j \) in \(\prod_{i=0}^{l}(CP^{N-1})_i \times \prod_{i=0}^{l} M_{0,2,|A_i|} \).

We first compute contribution from \(M_{0,2,|A|}(N, f_j - f_{j-1}) \) in \((2.37) \). By fixing the ambiguity coming from \((C^\times)^2 \) action, we can represent \(M_{0,2,|A|}(N, f_j - f_{j-1}) \) in the following form:

\[M_{p,0,2,|A|}(N, f_j - f_{j-1}) = \{ (a_{f_j-1}, y_{f_j-1+1}, y_{f_j-1+2}, \cdots, y_{f_j-1}, [a_{f_j}]) \mid [a_{f_j}], [a_{f_j}] \in CP^{N-1}, y_j \in C^N / Z_{f_j - f_{j-1}} \} \]

Therefore, normal bundle is given by \(f_j - f_{j-1} - i \) \(N \oplus \sum_{i=1}^{l} \frac{\partial}{\partial y_{f_j-1+i}} \). As we have discussed in \([9] \), \(\frac{\partial}{\partial y_{f_j-1+i}} \) is isomorphic to \(O_{CP^{N-1}}(\frac{f_j - f_{j-1} - i}{f_j - f_{j-1}}) \) as an orbibility on \(M_{0,2,|A|}(N, f_j - f_{j-1}) \). Hence its first Chern class is given by,

\[(\frac{f_j - f_{j-1} - i}{f_j - f_{j-1}}) h_{f_{j-1}} + (\frac{i}{f_j - f_{j-1}}) h_{f_j} \]

According to \([9] \), its character of the \(C^\times \) action is,

\[(\frac{f_j - f_{j-1} - i}{f_j - f_{j-1}}) \lambda_{f_{j-1}} + (\frac{i}{f_j - f_{j-1}}) \lambda_{f_j} - \lambda_{f_{j-1}+i} \]

These results lead us to the following contribution to the localized integrand:

\[\frac{1}{(f_j - f_{j-1} - 1) \prod_{i=1}^{l} (\frac{f_j - f_{j-1} - i}{f_j - f_{j-1}} h_{j-1} + \lambda_{j-1}) + (\frac{i}{f_j - f_{j-1}}) h_{j} - \lambda_{j-1}} \]

Next, we compute contribution from \(\overline{M}_{0,2,|A_i|} \), \(i = 1, 2, \cdots, l - 1 \). If \(A_i = \emptyset \), the contribution comes from smoothing nodal singularity \([a_{f_i}] \). This factor in the normal bundle is identified with \(\frac{d}{d(t_i - 1)} \) and its equivariant first Chern class is \(\frac{h_{f_i} + \lambda_{f_i} - h_{f_{i+1}} - \lambda_{f_{i+1}}}{f_i - f_{i-1}} + \frac{h_{f_i} + \lambda_{f_i} - h_{f_{i+1}} - \lambda_{f_{i+1}}}{f_{i+1} - f_i} \). Therefore, the contribution to the localized integrand is given as follows:

\[\frac{1}{f_i - f_{i-1}} \quad \frac{h_{f_i} + \lambda_{f_i} - h_{f_{i+1}} - \lambda_{f_{i+1}}}{f_i - f_{i-1}} + \frac{h_{f_i} + \lambda_{f_i} - h_{f_{i+1}} - \lambda_{f_{i+1}}}{f_{i+1} - f_i} \]

If \(A_i \neq \emptyset \), we have a nontrivial stable curve that corresponds to a point in \(\overline{M}_{0,2,|A_i|} \). The factors in the normal bundle coming from these components are degrees of freedom of smoothing nodal singularities that connect the stable curve with \([a_{f_{i-1}}, s_i] f_{i-1} - f_i + a_{f_i}(t_i_f_{i-1})f_{i-1} \) and \([a_{f_i}, s_{i+1}] f_{i+1} - f_i + a_{f_i}(t_{i+1}) f_{i+1} - f_i \). Let \(C_i \) be the stable curve mentioned above. Then these two factors are identified with \(\frac{d}{d(t_i)} \otimes T^\prime_0 C_i \) and \(T^\infty C_i \otimes \frac{d}{d(t_{i+1})} \). Hence we obtain the following contribution:

\[\frac{1}{f_i - f_{i-1}} \left(\frac{h_{f_i} + \lambda_{f_i} - h_{f_{i+1}} - \lambda_{f_{i+1}}}{f_i - f_{i-1}} + c_1(T^\prime_0 C_i) \right) \left(\frac{h_{f_i} + \lambda_{f_i} - h_{f_{i+1}} - \lambda_{f_{i+1}}}{f_{i+1} - f_i} + c_1(T^\infty C_i) \right) \]
At this stage, we temporarily set \(\Lambda_0 := \frac{h_f + \lambda_{f_0} - h_{f_{1-1}} - \lambda_{f_{1-1}}}{f_{1-1} - f_{1}} \), \(\Lambda_{\infty} = \frac{h_f + \lambda_f - h_{f_{1+1}} - \lambda_{f_{1+1}}}{f_{1+1} - f_{1}} \) and rewrite (2.31) as follows:

\[
1 \left(\Lambda_0 - c_1(T_0^\infty C_1)(\Lambda_{\infty} - c_1(T_{\infty}^\infty C_1)) \right)
\]

(2.42)

To proceed the localization technique, we integrate out the above equivariant class on \(\overline{M}_{0,2}[\Lambda_i] \):

\[
\int_{\overline{M}_{0,2}[\Lambda_i]} \frac{1}{(\Lambda_0 - c_1(T_0^\infty C_1)(\Lambda_{\infty} - c_1(T_{\infty}^\infty C_1))} = \frac{1}{\Lambda_0 \Lambda_{\infty} \Lambda_{\infty}} \sum_{n,m=0}^{\infty} \frac{1}{(\Lambda_0)^n (\Lambda_{\infty})^m} \int_{\overline{M}_{0,2}[\Lambda_i]} (c_1(T_0^\infty C_1))^n (c_1(T_{\infty}^\infty C_1))^m.
\]

(2.43)

The intersection number that appear at the right end of (2.43) has been already computed in [1], [13] and it is given as follows:

\[
\int_{\overline{M}_{0,2}[\Lambda_i]} (c_1(T_0^\infty C_1))^n (c_1(T_{\infty}^\infty C_1))^m = \delta_{|\Lambda_i|-1,n+m} \binom{n + m}{n}
\]

(2.44)

Combining (2.43) with (2.44), we obtain the following contribution to the localized integrand:

\[
\frac{1}{\Lambda_0 \Lambda_{\infty} \Lambda_{\infty}} \left(\frac{1}{\Lambda_0} + \frac{1}{\Lambda_{\infty}} \right)^{|\Lambda_i| - 1} = \frac{1}{\Lambda_0 \Lambda_{\infty} \Lambda_{\infty}} \left(\frac{h_f + \lambda_f - h_{f_{1-1}} - \lambda_{f_{1-1}}}{f_{1-1} - f{1}} + \frac{h_f + \lambda_f - h_{f_{1+1}} - \lambda_{f_{1+1}}}{f_{1+1} - f_{1}} \right)^{|\Lambda_i|} \times
\]

(2.45)

If we compare (2.45) with (2.40), we can easily see that (2.45) is applicable to the case of \(A_i = \emptyset \). We also have to determine contributions from \(\overline{M}_{0,2}[\Lambda_0] \) and \(\overline{M}_{0,2}[\Lambda_1] \). It is sufficient to consider the case of \(\overline{M}_{0,2}[\Lambda_0] \). If \(A_0 = \emptyset \), we have no contribution from the normal bundle to the localized integrand. If \(A_0 \neq \emptyset \), contribution comes from smoothing the nodal singularity that connects the stable curve described by \(\overline{M}_{0,2}[\Lambda_0] \) with \([a_{f_0}(s_1)^{f_{i-1}} - a_{f_i}(s_i)^{1/f_{i-1}}] \). As discussed in the previous case, we have to compute the following integral:

\[
\int_{\overline{M}_{0,2}[\Lambda_0]} \frac{1}{h_f + \lambda_f - h_{f_{1}} - \lambda_{f_{1}}} c_1(T_{\infty}^\infty C_1)
\]

(2.46)

Application of (2.44) leads us to the following contribution to the localized integrand:

\[
\left(\frac{f_{1} - f_{0}}{h_f + \lambda_f - h_{f_{1}} - \lambda_{f_{1}}} \right)^{|A_0|}.
\]

(2.47)

In the same way as above, we obtain the contribution from \(\overline{M}_{0,2}[\Lambda_1] \):

\[
\left(\frac{f_{1} - f_{i-1}}{h_f + \lambda_f - h_{f_{i}} - \lambda_{f_{i}}} \right)^{|A_1|}.
\]

(2.48)

Finally, the contributions to localized integrand coming from \(ev_0(h^n) \), \(ev_\infty(h^b) \) and \(ev_i(h^m) \), \(i = 1, 2, \cdots, n \) are given by the following correspondence:

\[
ev_0(h^n) \mapsto (h_f + \lambda_f)^n,
\]

\[
ev_\infty(h^b) \mapsto (h_f + \lambda_f)^b,
\]

\[
ev_i(h^m) \mapsto (h_f + \lambda_f)^m,
\]

(2.49)

where we assume that the marked point \(z_i \) is mapped to \([a_{f_i}] \in CP^{N-1} \).

What remains to complete localization computation is to combine the factors given in (2.39), (2.40), (2.47) and (2.49) into the localized integrand labeled by \((d_1, \cdots, d_l) \) and \(\prod_{j=0}^{l} A_j = \{1, 2, \cdots, n\} \), to integrate it out on \(\prod_{j=1}^{l}(CP^{N-1})^j \) and to sum up the results of integration by labels. We now discuss the label \(\prod_{j=0}^{l} A_j = \{1, 2, \cdots, n\} \). Since \(A_j \) can be an empty set, this label is equivalent to determining the point \([a_{f_j}] \) to which the marked point \(z_i \) is mapped, for each \(i \in \{1, 2, \cdots, n\} \). Therefore, we can replace the label \(\prod_{j=0}^{l} A_j = \{1, 2, \cdots, n\} \) by a sequence \((j_1, j_2, \cdots, j_n) \), \((j_i \in \{0, 1, \cdots, l\}) \). From this point of view, \(|A_j| \) is just the number of \(i \)'s that
satisfy the condition $j_i = j$. Hence the localized integrand labeled by (d_1, \ldots, d_l) and (j_1, j_2, \ldots, j_n) is written down as follows:

$$
\prod_{j=1}^l \frac{1}{\prod_{i=1}^{d_{j-1}} \left(\frac{d_j - i}{d_j} (h_{f_{j-1}} + \lambda_{f_{j-1}}) + \left(\frac{i}{d_j} \right) (h_f + \lambda_f) - \lambda_{f_{j-1+i}} \right) \lambda_{f_{j-1+i}}} \times \\
\prod_{j=1}^{l-1} \frac{1}{d_j} \frac{h_f + \lambda_f - h_{f_{j-1}} - \lambda_{f_{j-1}}} {h_f + \lambda_f - h_{f_{j+1}} - \lambda_{f_{j+1}}} \times \\
\prod_{i=1}^n \frac{d_{j_i}} {h_{f_{j_i}} + \lambda_{f_{j_i}} - h_{f_{j_{i-1}}} - \lambda_{f_{j_{i-1}}}} + \frac{d_{j_{i+1}}}{d_{j_{i+1}}} (h_{f_{j_i}} + \lambda_{f_{j_i}}) \times (h_0 + \lambda_0)^a (h_d + \lambda_d)^b.
$$

(2.50)

In (2.50), we used both (d_1, \ldots, d_l) and $0 = f_0 < \cdots < f_l = d$ to denote an ordered partition. We also formally set $d_0 = d_{l+1} = 0$ for brevity. Before integrate out (2.50), we sum up the integrand by the label (j_1, j_2, \ldots, j_n). If we pay attention to the third line of (2.50), the factor that comes from i sums up to the following factor by varying j_i from 0 to l:

$$
\prod_{j=0}^l \frac{d_j}{h_{f_{j}} + \lambda_{f_{j}} - h_{f_{j-1}} - \lambda_{f_{j-1}}} + \frac{d_{j+1}} {h_{f_{j}} + \lambda_{f_{j}} - h_{f_{j+1}} - \lambda_{f_{j+1}}} (h_{f_{j}} + \lambda_{f_{j}})^{m_i}.
$$

(2.51)

We introduce here a rational function:

$$
w_a^d(z, w) := d \cdot \frac{z^a - w^a}{z - w}.
$$

(2.52)

Then we can rewrite (2.51) into the form,

$$
\sum_{j=1}^l w_{m_i}^d(h_{f_{j-1}} + \lambda_{f_{j-1}}, h_{f_{j}} + \lambda_{f_{j}}).
$$

(2.53)

These consideration leads us to the following formula for the localized integrand summed up by the label (j_1, j_2, \ldots, j_n).

$$
(h_0 + \lambda_0)^a (h_d + \lambda_d)^b \prod_{j=1}^l \frac{1}{\prod_{i=1}^{d_{j-1}} \left(\frac{d_j - i}{d_j} (h_{f_{j-1}} + \lambda_{f_{j-1}}) + \left(\frac{i}{d_j} \right) (h_f + \lambda_f) - \lambda_{f_{j-1+i}} \right) \lambda_{f_{j-1+i}}} \times \\
\prod_{j=1}^{l-1} \frac{1}{d_j} \frac{h_f + \lambda_f - h_{f_{j-1}} - \lambda_{f_{j-1}}} {h_f + \lambda_f - h_{f_{j+1}} - \lambda_{f_{j+1}}} \times \\
\prod_{i=1}^n \left(\sum_{j=1}^l w_{m_i}^d(h_{f_{j-1}} + \lambda_{f_{j-1}}, h_{f_{j}} + \lambda_{f_{j}}) \right).
$$

(2.54)

Final step of localization computation is to integrate the equivariant form (2.54) and to sum up the results by the label (d_1, \ldots, d_l). We have one subtle remark here. As we have pointed out in determining fixed point sets, the fixed point set labeled by (d_1, d_2, \ldots, d_l) is the set of orbifold singularities on which \mathbb{Z}_{d_1} acts. Therefore, we have to divide the integral that comes from (d_1, d_2, \ldots, d_l), by the factor $\prod_{j=1}^l \frac{1}{d_j}$ and we obtain,

$$
w(\mathcal{O}_{h^a} \mathcal{O}_{h^b}) \prod_{i=1}^n \mathcal{O}_{h^m} |_{d=0, d} = \sum_{(d_1, \ldots, d_l) \in \mathbb{Z}_{d}} \left(\prod_{j=1}^l \frac{1}{d_j} \right) \int_{(CP^{N-1})^0} \int_{(CP^{N-1})^1} \cdots \int_{(CP^{N-1})^l} \times \\
(h_0 + \lambda_0)^a (h_d + \lambda_d)^b \prod_{j=1}^l \frac{1}{\prod_{i=1}^{d_{j-1}} \left(\frac{d_j - i}{d_j} (h_{f_{j-1}} + \lambda_{f_{j-1}}) + \left(\frac{i}{d_j} \right) (h_f + \lambda_f) - \lambda_{f_{j-1+i}} \right) \lambda_{f_{j-1+i}}} \times
$$

(2.55)
where the hyperplane class of \((CP^{N-1})_j, (j = 0, 1, \cdots, l)\) is given by \(h_f\).

But this is not the end of the story. If we pay attention to the equality: \(\int_{CP^{N-1}} h^j = \delta_{j,N-1}\), we can apply replacements,

\[
\int_{(CP^{N-1})_j} \rightarrow \frac{1}{2\pi \sqrt{-1}} \oint_{C(\lambda)} \frac{dz_f}{(z_f - \lambda)^N},
\]

where \(z_f\) is a complex variable and \(\frac{1}{2\pi \sqrt{-1}} \oint_{C(\lambda)} dz\) is the operation of taking a residue at \(z = 0\). We then apply shift of variables \(z_f \rightarrow z_f - \lambda f_j, (j = 0, 1, \cdots, l)\) and obtain the following equality:

\[
w(\mathcal{O}_h^\times \mathcal{O}_h^\times | \prod_{i=1}^n \mathcal{O}_{h,m_i})_{0,d} = \sum_{0 = f_0 < f_1 < \cdots < f_l = d} \left(\prod_{j=1}^l \left(\frac{1}{f_j - f_{j-1}} \right) \right) \frac{1}{2\pi \sqrt{-1}} \oint_{E(\lambda_f)} \frac{dz_f}{(z_f - \lambda_f)^N} \cdot \prod_{i=1}^n \left(\sum_{j=1}^{l-1} u_{m_i}^{d_j} (h_{f_{j-1}} + h_{f_j}, h_f) \right),
\]

(2.55)

where \(\frac{1}{2\pi \sqrt{-1}} \oint_{E(\lambda)} dz\) means the operation of taking a residue at \(z = \lambda\). Let us consider here the following residue integral:

\[
\frac{1}{(2\pi \sqrt{-1})^{d+1}} \oint_{E(\lambda_{f_0})} \frac{dz_0}{(z_0 - \lambda_0)^N} \cdot \frac{dz_1}{(z_1 - \lambda_1)^N} \cdots \frac{dz_d}{(z_d - \lambda_d)^N} \cdot \prod_{j=1}^d \left(\frac{1}{(2z_j - z_{j-1} - z_{j+1})} \right) \cdot (z_0)^a \cdot (z_0)^b \cdot \prod_{i=1}^n \left(\sum_{j=1}^{d} u_{m_i}^{i} (z_{j-1}, z_{j}) \right),
\]

(2.56)

where \(\frac{1}{2\pi \sqrt{-1}} \oint_{E(\lambda)} dz\) means the operation of taking residues at \(z_j = \lambda_j\) and \(z_j = \frac{z_{j-1} + z_{j+1}}{2}\) for \(j = 1, 2, \cdots, l-1\) (resp. \(z_j = \lambda_j\) for \(j = 0, d\)). As we demonstrated in (2.57), we can observe by elementary computation that the summand labeled by \(0 = f_0 < f_1 < \cdots < f_l = d\) in (2.56) is obtained by taking residues of (2.55) at \(z_j = \frac{z_{j-1} + z_{j+1}}{2}\) \((j \in \{0, 1, \cdots, d\} \setminus \{ f_0, f_1, \cdots, f_l \})\) and at \(z_j = \lambda_j\) \((j \in \{ f_0, f_1, \cdots, f_l \})\) respectively. Hence (2.55) equals \(w(\mathcal{O}_h^\times \mathcal{O}_h^\times | \prod_{i=1}^n \mathcal{O}_{h,m_i})_{0,d}\). Finally, we take the non-equivariant limit \(\lambda_j \rightarrow 0 (j = 0, 1, \cdots, d)\) of (2.56) and obtain the following theorem:

Theorem 1

\[
w(\mathcal{O}_h^\times \mathcal{O}_h^\times | \prod_{i=1}^n \mathcal{O}_{h,m_i})_{0,d} = \frac{1}{(2\pi \sqrt{-1})^{d+1}} \oint_{E(\lambda_0)} \frac{dz_0}{(z_0 - \lambda_0)^N} \cdot \frac{dz_1}{(z_1 - \lambda_1)^N} \cdots \frac{dz_d}{(z_d - \lambda_d)^N} \cdot \prod_{j=1}^{d-1} \left(\frac{1}{(2z_j - z_{j-1} - z_{j+1})} \right) \cdot (z_0)^a \cdot (z_0)^b \cdot \prod_{i=1}^n \left(\sum_{j=1}^{d} u_{m_i}^{i} (z_{j-1}, z_{j}) \right),
\]

\((d > 0) \).

(2.59)
2.3 Numerical Computation in the \(CP^2 \) case

In this section, we discuss how to compute the genus 0 Gromov-Witten invariants of \(CP^2 \) by using the multi-point virtual structure constants, i.e., the intersection numbers computed in the previous section. \(H^{*,*}(CP^2) \) is spanned by \(h^j \) \((j = 0, 1, 2)\). Therefore it is convenient to write the intersection number as \(w(O_{h^a}O_{h^b}|\prod_{j=0}^{2}(O_{h^j})^{m_j})_{0,d} \).

The formula (2.60) restricted to \(CP^2 \) is given as follows.

\[
w(O_{h^a}O_{h^b}|\prod_{j=0}^{2}(O_{h^j})^{m_j})_{0,d} = \frac{1}{(2\pi\sqrt{-1})^{d+1}} \int_{E^{(0)}} \frac{dz_0}{(z_0)^3} \int_{E^{(1)}} \frac{dz_1}{(z_1)^3} \cdots \int_{E^{(d)}} \frac{dz_d}{(z_d)^3} \times (z_0)^a \cdot \left(\prod_{j=1}^{d-1} \frac{1}{(2z_j - z_{j-1} - z_{j+1})} \right) \cdot (z_d)^b \cdot (\prod_{j=0}^{d} w_j^1(z_{i-1}, z_i))^{m_j}, \quad (d > 0).
\]

(2.60)

We show below important characteristics of the intersection number that follows from (2.60).

Proposition 1 The multi-point virtual structure constants satisfy the following equalities:

(i) \[
w(O_{h^a}O_{h^b}|O_1 \prod_{j=0}^{2}(O_{h^j})^{m_j})_{0,d} = 0.
\]

(2.61)

(ii) \[
w(O_{h^a}O_{h^b}|O_1 \prod_{j=0}^{2}(O_{h^j})^{m_j})_{0,d} = d \cdot w(O_{h^a}O_{h^b}|\prod_{j=0}^{2}(O_{h^j})^{m_j})_{0,d}.
\]

(2.62)

proof (i) follows from the equality \(w_0^1(z, w) = \frac{1-1}{z-w} = 0\). As for (ii), it is enough to note,

\[
\sum_{i=1}^{d} w_j^1(z_{i-1}, z_i) = \sum_{j=1}^{d} \frac{z_{i-1} - z_i}{z_{i-1} - z_i} = d.
\]

This proposition says that for operator insertions at the right hand side of "\(\)", both the divisor axiom and the puncture axiom for Gromov-Witten invariants hold. Motivated by this fact, we introduce the generating function of the multi-point virtual structure constants with respect to operator insertions at the right hand side of "\(\)".

Definition 1

\[
w(O_{h^a}O_{h^b}|(x^0, x^1, x^2))_0 := x^c \cdot \int_{CP^2} h^{a+b+c} + \sum_{d>0,\{m_j\}} w(O_{h^a}O_{h^b}| \prod_{j=0}^{2}(O_{h^j})^{m_j})_{0,d} \cdot \prod_{j=0}^{2} \frac{(x^j)^{m_j}}{m_j!},
\]

(2.63)

where \(x^j \) \((j = 0, 1, 2)\) is the variable associated with insertion of \(O_{h^j} \).

In (2.63), we only consider three operator insertions for degree 0 virtual structure constants and identify them with classical intersection numbers, just as we do in the case of Gromov-Witten invariants. The assertion of Proposition 1 simplifies the generating function in the same way as the Gromov-Witten case.

Proposition 2

\[
w(O_{h^a}O_{h^b}|(x^0, x^1, x^2))_0 = x^c \cdot \int_{CP^2} h^{a+b+c} + \sum_{d>0, m_2} w(O_{h^a}O_{h^b}|(O_{h^2})^{m_2})_{0,d} \cdot e^{dx^1} \cdot \frac{(x^2)^m}{m!}.
\]

(2.64)

Therefore, we only have to compute \(w(O_{h^a}O_{h^b}|(O_{h^2})^{m_2})_{0,d} \). From degree counting of the residue integral formula, we can easily see that the non-zero virtual structure constants appear only when \(a+b+m-2 = 3d-1 \) for \(d \geq 1 \).

We also introduce here the corresponding generating functions of genus 0 Gromov-Witten invariant of \(CP^2 \).
\textbf{Definition 2} Let \(\prod_{j=0}^{2}(\mathcal{O}_{h^{j}})^{m_j}_{0,d} \) be the rational Gromov-Witten invariant of degree \(d \) of \(CP^2 \).

\[
\langle \mathcal{O}_{h^{0}}\mathcal{O}_{h^{b}}(t^{0},t^{1},t^{2}) \rangle_{0} := t^{c} \cdot \int_{CP^{2}} h^{a+b+c} + \sum_{\text{deg} > 0, \{m_j\}} \langle \mathcal{O}_{h^{0}}\mathcal{O}_{h^{b}} \prod_{j=0}^{2}(\mathcal{O}_{h^{j}})^{m_j}_{0,d} \prod_{j=0}^{2}(\mathcal{O}_{h^{j}})^{m_j}_{0,d} \rangle \frac{t^{2m}}{m!},
\]

\[
\text{where } t^{j} (j = 0, 1, 2) \text{ is the variable associated with insertion of } \mathcal{O}_{h^{j}}.
\]

If we use the usual generating function of genus Gromov-Witten invariants of \(CP^2 : F_{CP^2}(t^{0},t^{1},t^{2}) \), the above generating function \(\langle \mathcal{O}_{h^{0}}\mathcal{O}_{h^{b}}(t^{0},t^{1},t^{2}) \rangle_{0} \) is nothing but \(\frac{\partial^{2}F_{CP^2}}{\partial t^{a}\partial t^{b}} \). Therefore, we obtain integrable condition:

\[
\frac{\partial}{\partial t^{a}} \langle \mathcal{O}_{h^{b}}\mathcal{O}_{h^{c}}(t^{0},t^{1},t^{2}) \rangle_{0} = \frac{\partial}{\partial t^{b}} \langle \mathcal{O}_{h^{a}}\mathcal{O}_{h^{c}}(t^{0},t^{1},t^{2}) \rangle_{0}.
\]

Our question in this section is whether we can compute \(\mathcal{O}_{h^{0}}\mathcal{O}_{h^{b}}(t^{0},t^{1},t^{2}) \rangle_{0} \) by using \(w(\mathcal{O}_{h^{0}}\mathcal{O}_{h^{b}}(x^{0},x^{1},x^{2}))_{0} \) as the starting point. Our key idea is to introduce the multi-point virtual structure constants. If we pay attention to the fact that the intersection intersection matrix \(\eta_{ab} = \int_{CP^{2}} 5h^{a+b+1} = 5\delta_{a+b,3} \) and its inverse \(\eta^{ab} = \frac{1}{5}\delta_{a+b,3} \). By identifying \(t \) (resp. \(x \)) with \(t^{1} \) (resp. \(x^{1} \)), we conjectured generally that

\[
t^{a} = \sum_{b} \eta^{ab} w(\mathcal{O}_{h^{b}}\mathcal{O}_{1})_{0}(x^{1})
\]

gives the mirror map for the Gromov-Witten computation. Since \(CP^2 \) is a Fano manifold with \(c_{1}(CP^{2}) = 3h \), \(w(\mathcal{O}_{h^{0}}\mathcal{O}_{1})_{0,d} = 0 \) for \(d \geq 1 \). Therefore, we have trivial mirror map if we only consider the two point virtual structure constants. That’s why we introduce the multi-point virtual structure constants. If we pay attention to the fact that the classical intersection matrix of \(CP^2 \) is given by \(\eta^{ab} = \delta_{a+b,2} \), we are naturally led to propose the following conjecture.

\textbf{Conjecture 1} If we define the mirror map,

\[
t^{j}(x^{0},x^{1},x^{2}) := w(\mathcal{O}_{h^{2-j}}\mathcal{O}_{1})(x^{0},x^{1},x^{2})_{0},
\]

we have the following equality:

\[
\langle \mathcal{O}_{h^{0}}\mathcal{O}_{h^{b}}(t^{0}(x^{0},x^{2}),t^{1}(x^{0},x^{1},x^{2}),t^{2}(x^{0},x^{1},x^{2})) \rangle_{0} = w(\mathcal{O}_{h^{0}}\mathcal{O}_{h^{b}}(x^{0},x^{1},x^{2}))_{0}.
\]

Conversely, if we invert the mirror map,

\[
x^{j} = t^{j}(t^{0},t^{1},t^{2}),
\]

we obtain the mirror formula to compute the rational Gromov-Witten invariants of \(CP^2 \) from the multi-point virtual structure constants:

\[
\langle \mathcal{O}_{h^{0}}\mathcal{O}_{h^{b}}(t^{0},t^{1},t^{2}) \rangle_{0} = w(\mathcal{O}_{h^{0}}\mathcal{O}_{h^{b}}(x^{0}(t^{0},t^{1},t^{2}),x^{1}(t^{0},t^{1},t^{2}),x^{2}(t^{0},t^{1},t^{2}))_{0}.
\]

(2.71)
By using the formula (2.60), we obtain the mirror maps explicitly.

\[
\begin{align*}
t^2 &= x^2 + \frac{1}{4} q(x^2)^4 + \frac{33}{70} q^2(x^2)^7 + \frac{16589}{12600} q^3(x^2)^{10} + \frac{143698921}{32432400} q^4(x^2)^{13} + \frac{15633916691}{4540536000} q^5(x^2)^{16} + \cdots, \\
t^1 &= x^1 + \frac{1}{2} (x^2)^3 q + \frac{7}{10} (x^2)^6 q^2 + \frac{2593}{3570} (x^2)^9 q^3 + \frac{2668063}{498960} (x^2)^{12} q^4 + \frac{120501923}{6306300} (x^2)^{15} q^5 + \cdots, \\
t^0 &= x^0 + \frac{1}{15} (x^2)^2 q + \frac{1}{5} (x^2)^5 q^2 + \frac{983}{840} (x^2)^8 q^3 + \frac{4283071}{1247400} (x^2)^{11} q^4 + \frac{4019248213}{340540200} (x^2)^{14} q^5 + \cdots,
\end{align*}
\]

\[(q := e^x). \quad (2.72)\]

Of course, we can also compute one of the generating function,

\[
w(\mathcal{O}_h^3)(x^0, x^1, x^2) = x^0 + (x^2)^2 q + \frac{16}{15} (x^2)^5 q^2 + \frac{961}{420} q^3(x^2) + \frac{4105537}{623700} q^4(x^2)^9 + \frac{291788599}{13097700} q^5(x^2)^{14} + \cdots. \quad (2.73)
\]

If we invert the mirror maps and substitute them to (2.73),

\[
\begin{align*}
w(\mathcal{O}_h^3, \mathcal{O}_h^2)(x^0(t^0, t^1, t^2), x^1(t^0, t^1, t^2), x^2(t^0, t^1, t^2)) &= t^0 + \frac{1}{2} (t^2)^3 Q + \frac{1}{30} (t^2)^5 Q^2 + \frac{3}{1120} (t^2)^8 Q^3 + \frac{31}{124740} (t^2)^{11} Q^4 + \frac{1559}{62270208} (t^2)^{14} Q^5 + \cdots \\
&= t^0 + \frac{1}{2!} (t^2)^2 Q + \frac{2^2}{3!} (t^2)^5 Q^2 + \frac{3^2 \cdot 12}{8!} (t^2)^8 Q^3 + \frac{4^2 \cdot 620}{11!} (t^2)^{11} Q^4 + \frac{5^2 \cdot 87304}{14!} (t^2)^{14} Q^5 + \cdots
\end{align*}
\]

the result coincides with \(\langle \mathcal{O}_h^3, \mathcal{O}_h^2 \rangle (t^0, t^1, t^2)\) computed from the associativity equation [12]. If we compute,

\[
w(\mathcal{O}_h^3, \mathcal{O}_h^2)(x^0, x^1, x^2) = q + \frac{2}{3} (x^2)^3 q^2 + \frac{17}{15} q^3(x^2)^6 + \frac{6455}{2268} q^4(x^2)^9 + \frac{4124497}{467775} q^5(x^2)^{12} + \cdots, \quad (2.75)
\]

we obtain \(\langle \mathcal{O}_h^3, \mathcal{O}_h^2 \rangle (t^0, t^1, t^2)\).

\[
\begin{align*}
w(\mathcal{O}_h^3, \mathcal{O}_h^2)(x^0(t^0, t^1, t^2), x^1(t^0, t^1, t^2), x^2(t^0, t^1, t^2)) &= Q + \frac{1}{6} (t^2)^3 Q^2 + \frac{1}{60} Q^3(t^2)^6 + \frac{31}{18144} Q^4(t^2)^9 + \frac{185330}{855360} Q^5(t^2)^{12} + \cdots \\
&= Q + \frac{1}{3!} (t^2)^3 Q^2 + \frac{12}{6!} (t^2)^6 Q^3 + \frac{620}{9!} (t^2)^9 Q^4 + \frac{87304}{12!} (t^2)^{12} Q^5 + \cdots. \quad (2.76)
\end{align*}
\]

2.4 Comparison with the Result of Iritani’s I-function

In this section, we demonstrate standard type of mirror computation of the \(CP^2\)-model following Iritani’s work [5]. We think that his method is fundamentally the same as the mirror computation by Baramnikov [2]. According to Iritani [6], this method starts from the following extended I-function.

\[
I_{CP^2}(z, h, y^1, y^2) := \sum_{n,m \geq 0} \exp\left(\frac{y^1 h}{z}\right) \cdot \prod_{j=-\infty}^{0} (h+jz)^3 \cdot \prod_{j=-\infty}^{0} (jz) \cdot \prod_{j=-\infty}^{m} (h+jz)^{2n} \cdot \prod_{j=-\infty}^{m} (jz)^n \cdot e^{ny^1(y^2)^m}. \quad (2.77)
\]

Here, \(h\) is the hyperplane class of \(CP^2\) and \(h^3 = 0\). In this I-function, the parameter \(z\) plays the role of \(h\) in Baramnikov’s formalism. For a function \(f(z, h, y_1, y_2)\) that includes only positive power of \(h\), we denote by \((f)_h^i\) \((i = 0, 1, 2)\) the coefficient of \(h^i\). We define here the following \(3 \times 3\) matrix.

\[
S(z, y^1, y^2) := \begin{pmatrix}
(\frac{\partial}{\partial y_1} I_{CP^2})_{h^0} & (z \frac{\partial}{\partial y_1} I_{CP^2})_{h^0} & (z^2 \frac{\partial^2}{\partial y_1^2} I_{CP^2})_{h^0} \\
(\frac{\partial}{\partial y_1} I_{CP^2})_{h^1} & (z \frac{\partial}{\partial y_1} I_{CP^2})_{h^1} & (z^2 \frac{\partial^2}{\partial y_1^2} I_{CP^2})_{h^1} \\
(\frac{\partial}{\partial y_1} I_{CP^2})_{h^2} & (z \frac{\partial}{\partial y_1} I_{CP^2})_{h^2} & (z^2 \frac{\partial^2}{\partial y_1^2} I_{CP^2})_{h^2}
\end{pmatrix}. \quad (2.78)
\]
This matrix has the following structure:

\[S(z, y^1, y^2) := \begin{pmatrix} 1 & \frac{y^1}{z} & 0 \\ \frac{y^1}{y^2 z} & 1 & 0 \\ \frac{y^2}{z^2} & \frac{y^1}{z} & 1 \end{pmatrix} \cdot M(z, y^1, y^2), \]

\[M(z, y^1, y^2) = \sum_{n,m \geq 0} M_{nm}(z) \cdot e^{nq^1(y^2)^m}, \]

\[M_{00}(z) = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}. \] (2.79)

where \(M(z, y^1, y^2) \) and \(M_{nm}(z) \) are 3 \times 3 matrices. By computing \(M(z, y^1, y^2) \) explicitly, we can observe that it includes both positive and negative powers of \(z \). Following Iritani, we factorize \(M(z, y^1, y^2) \) into the form \(M(z, y^1, y^2) = M_-(z, y^1, y^2)M_+(z, y^1, y^2) \) where \(M_-(z, y^1, y^2) \) (resp. \(M_+(z, y^1, y^2) \)) includes only negative (resp. non-negative) powers of \(z \). Since \(M(z, y^1, y^2) \) has the structure of power series in \(e^{q^1} \) and \(y^2 \) with top term an identity matrix, we can execute this operation systemically. We then introduce the matrix:

\[S_-(z, y^1, y^2) := \begin{pmatrix} 1 & \frac{y^1}{z} & 0 \\ \frac{y^1}{y^2 z} & 1 & 0 \\ \frac{y^2}{z^2} & \frac{y^1}{z} & 1 \end{pmatrix} \cdot M_-(z, y^1, y^2). \] (2.80)

The B-model connection matrix \(C_1(y^1, y^2) \) of this setting is given by,

\[C_1(y^1, y^2) = \left(S_-(z, y^1, y^2) \right)^{-1} \cdot z \frac{\partial}{\partial y^1} S_-(z, y^1, y^2). \] (2.81)

From the general theory of Iritani's method, \(C_1(y^1, y^2) \) is free of \(z \)-dependence. Let \((A)_{ij} (i, j = 1, 2, 3)\) be the \((i, j)\)-element of 3 \times 3 matrix \(A \). Partial derivatives of the flat coordinates \(t^i \) (\(i = 0, 1, 2 \)) associated with \(h^i \) by the B-model coordinate \(y^i \) are read off from \((C_1(y^1, y^2))_{i+1,1} \).

\[
\frac{\partial t^0}{\partial y^1} = (C_1(y^1, y^2))_{11} = \\
-\frac{1}{2} \tilde{q} (y^2)^2 + \frac{13}{15} \tilde{q}^2 (y_2)^5 - \frac{3167}{840} \tilde{q}^3 (y^2)^8 + \frac{44552}{2079} \tilde{q}^4 (y^2)^{11} - \frac{450037373}{3243240} \tilde{q}^5 (y^2)^{14} + \ldots,
\]

\[
\frac{\partial t^1}{\partial y^1} = (C_1(y^1, y^2))_{21} = \\
1 + \frac{1}{6} \tilde{q} (y^2)^3 - \frac{11}{15} \tilde{q}^2 (y^2)^6 + \frac{229}{56} \tilde{q}^3 (y^2)^9 - \frac{775267}{29700} \tilde{q}^4 (y^2)^{12} + \frac{233170937}{1289925} \tilde{q}^5 (y^2)^{15} + \ldots,
\]

\[
\frac{\partial t^2}{\partial y^1} = (C_1(y^1, y^2))_{31} = \\
-\frac{5}{12} \tilde{q} (y^2)^4 + \frac{1241}{630} \tilde{q}^2 (y^2)^7 - \frac{47977}{4200} \tilde{q}^3 (y^2)^{10} + \frac{201402797}{2702700} \tilde{q}^4 (y^2)^{13} - \frac{475054027589}{908107200} \tilde{q}^5 (y^2)^{16} + \ldots,
\] (2.82)

where \(\tilde{q} = e^{q^1} \). By integrating the above equations in \(y^1 \), we obtain the mirror map,

\[
t^0 = y^0 - \frac{1}{2} \tilde{q} (y^2)^2 + \frac{13}{30} \tilde{q}^2 (y^2)^5 - \frac{3167}{2520} \tilde{q}^3 (y^2)^8 + \frac{11138}{2079} \tilde{q}^4 (y^2)^{11} - \frac{450037373}{16216200} \tilde{q}^5 (y^2)^{14} + \ldots,
\]

\[
t^1 = y^1 + \frac{1}{6} \tilde{q} (y^2)^3 - \frac{11}{30} \tilde{q}^2 (y^2)^6 + \frac{229}{168} \tilde{q}^3 (y^2)^9 - \frac{775267}{118800} \tilde{q}^4 (y^2)^{12} + \frac{233170937}{649625} \tilde{q}^5 (y^2)^{15} + \ldots,
\]

\[
t^2 = y^2 - \frac{5}{12} \tilde{q} (y^2)^4 + \frac{1241}{1260} \tilde{q}^2 (y^2)^7 - \frac{47977}{12600} \tilde{q}^3 (y^2)^{10} + \frac{201402797}{10810800} \tilde{q}^4 (y^2)^{13} - \frac{475054027589}{4540536000} \tilde{q}^5 (y^2)^{16} + \ldots.
\] (2.83)

On the other hand, the matrix elements \((C_1(y^1, y^2))_{12} = (C_1(y^1, y^2))_{23}, (C_1(y^1, y^2))_{13}, (C_1(y^1, y^2))_{22}\) give us information of the Gromov-Witten invariants. By integrating these matrix elements in \(y^1 \), we obtain the following
functions.
\[
f_1 = qy^2 - \frac{1}{6}q^2(y^2)^4 + \frac{289}{630}q^3(y^2)^7 - \frac{35873}{18900}q^4(y^2)^{10} + \frac{156650191}{16216200}q^5(y^2)^{13} + \cdots,
\]
\[
f_2 = \tilde{q} + \frac{1}{3}q^2(y^2)^3 - \frac{22}{45}q^3(y^2)^6 + \frac{1261}{756}q^4(y^2)^9 - \frac{2405639}{311850}q^5(y^2)^{12} + \cdots,
\]
\[
f_3 = y^0 + \frac{2}{15}q^2(y^2)^5 - \frac{613}{1260}q^3(y^2)^8 + \frac{4751}{2079}q^4(y^2)^{11} - \frac{101313427}{8108100}q^5(y^2)^{14} + \cdots.
\]
(2.84)

If we expand these functions in \(t^0, t^2\) and \(Q = e^{t^1}\) by substituting the inversion of the mirror map, the result turns out to be,
\[
f_1 = Qt^2 + \frac{1}{12}Q^2(t^2)^4 + \frac{1}{140}Q^3(t^2)^7 + \frac{31}{45360}Q^4(t^2)^{10} + \frac{1559}{22239360}Q^5(t^2)^{13} + \cdots,
\]
\[
f_2 = Q + \frac{1}{6}Q^2(t^2)^3 + \frac{1}{60}Q^3(t^2)^6 + \frac{31}{18144}Q^4(t^2)^9 + \frac{1559}{8553600}Q^5(t^2)^{12} + \cdots,
\]
\[
f_3 = t^0 + \frac{1}{2}Q(t^2)^2 + \frac{1}{30}Q^3(t^2)^5 + \frac{3}{124740}Q^4(t^2)^8 + \frac{31}{62270208}Q^5(t^2)^{11} + \frac{1559}{62270208}Q^5(t^2)^{14} + \cdots.
\]
(2.85)

Hence they reproduce \(\langle \mathcal{O}_s \mathcal{O}_z (t^0, t^1, t^2) \rangle\), \(\langle \mathcal{O}_x \mathcal{O}_y (t^0, t^1, t^2) \rangle\) and \(\langle \mathcal{O}_y \mathcal{O}_z (t^0, t^1, t^2) \rangle\) respectively. The final results coincide with our computation, but we can see from (2.72) and (2.83) that the mirror map in this case is different from our mirror map. As we have mentioned in Section 1, there exists infinitely many ways to include the parameter \(y^2\) into the \(I\)-function \([\beta]\). Since we have tested only one possibility here, we cannot conclude that our formalism and Iritani’s formalism have no connection.

3 Open String Case

In this section, we discuss generalization of the multi-point virtual structure constants to the open string case. First, we consider anti-holomorphic involution \(\varphi : CP^2 \rightarrow CP^2\) defined by \(\varphi(X_1 : X_2 : X_3) = (X_1 : X_2 : \bar{X}_3)\). The subset invariant under \(\varphi\) is \(RP^2\), which is a Lagrangian submanifold of \(CP^2\). Next, we pick up a quasi map from \(CP^1\) to \(CP^2\) of degree \(2d - 1\),
\[
q_{2d-1}(s : t) := \sum_{j=0}^{2d-1} a_j s^j t^{2d-1-j}, \quad (a_j \in \mathbb{C}^2).
\]
(3.86)

We also introduce an involution \(u : CP^1 \rightarrow CP^1\) defined by \(u(s : t) = (\bar{t} : \bar{s})\). With this set-up, we define a \(\mathbb{Z}_2\)-action on the quasi map given by \(q \mapsto \varphi \circ q_{2d-1} \circ u\). Since \(\varphi(q_{2d-1}(u(s : t))) = \sum_{j=0}^{2d-1} a_j q^{2d-1-j}\), this action induces an involution on the parameter space of quasi maps,
\[
(a_0, a_1, \cdots, a_{2d-1}) \rightarrow (\bar{a}_{2d-1}, \bar{a}_{2d-2}, \cdots, \bar{a}_0).
\]
(3.87)

Let us consider a quasi map invariant under the above involution,
\[
q_{2d-1}(s : t) = \sum_{j=0}^{d-1} (a_j s^j t^{2d-1-j} + \bar{a}_j s^{d-1-j} t^j).
\]
(3.88)

It maps the equator of \(CP^1\) \(\{e^{i\theta} : 1\} \mid \theta \in [0, 2\pi)\}\), which is invariant under \(u\), to \(RP^2\) because,
\[
q_{2d-1}(1 : e^{i\theta}) = \sum_{j=0}^{d-1} (a_j e^{j\theta} + \bar{a}_j e^{-j(2d-1-j)\theta}) = \sum_{j=0}^{d-1} (a_j e^{-j(2d-1-j)\theta} + \bar{a}_j e^{-j(2d-1-j)\theta}).
\]
(3.89)

Therefore, a quasi map invariant under the involution (3.87) can be regarded as a quasi map from upper half disk of \(CP^1\) to \(CP^2\), which maps boundary of the disk to the Lagrangian submanifold \(RP^2\).

Next, we consider \(M_{p_{0,2d-2}}(3, 2d - 1)\). It was defined by dividing the set,
\[
U_{p_{0,2d-2}}(3, 2d - 1) := \{(a_0, \cdots, a_{2d-1}) \mid (z_1, \cdots, z_{2n}) \mid a_i \in \mathbb{C}^3, \quad z_i \in \mathbb{C}^x, \quad a_0, a_{2d-1} \neq 0\},
\]
(3.90)
by the two \mathbb{C}^\times actions given in (2.12). Motivated by the previous discussion, we introduce an involution $v : U_{p_0,2|2n}(3, 2d - 1) \to U_{p_0,2|2n}(3, 2d - 1)$ as follows.

$$v((a_1, \ldots, a_{2d-1}),(z_1, \ldots, z_{2n})) = ((\bar{a}_{2d-1}, \bar{a}_{2d-2}, \ldots, \bar{a}_0), (\frac{1}{z_2}, \frac{1}{z_{2n-2}}, \ldots, \frac{1}{z_1})).$$

(3.91)

It is easy to check that v is compatible with equivalence relation by the two \mathbb{C}^\times actions. Hence it induces an involution $\overline{v} : \overline{M}_{p_0,2|2n}(3, 2d - 1) \to \overline{M}_{p_0,2|2n}(3, 2d - 1).$ We can easily extend \overline{v} to whole $\overline{M}_{p_0,2|2n}(3, 2d - 1)$ by looking back at the construction in Section 2.1. Let us denote the extended involution by \overline{v}. With this set-up, we define the moduli space $\overline{M}_{p_1,2|1n}(CP^2/RP^2, 2d - 1)$ as the invariant subset of $\overline{M}_{p_0,2|2n}(3, 2d - 1)$ under \overline{v}. Roughly speaking, the degrees of freedom of this moduli space are described by,

$$\{(a_0, \ldots, a_{d-1}), (z_1, \ldots, z_n) : |a_i| < |z_i| \leq 1, a_i \neq 0\}/(R_{>0} \times U(1)),$$

$$\text{rev}^\theta : ((a_0, \ldots, a_{d-1}), (z_1, \ldots, z_n)) \to ((\text{rev}^\theta a_0, \ldots, \text{rev}^\theta a_{d-1}), (\text{rev}^\theta z_1, \ldots, \text{rev}^\theta z_n)),$$

$$\text{rev}^\theta \in R_{>0} \times U(1)),$$

(3.92)

and they are half of the ones of $\overline{M}_{p_0,2|2n}(3, 2d - 1)$. Evaluation map $e_{v_i} : \overline{M}_{p_1,2|1n}(CP^2/RP^2, 2d - 1) \to CP^2$ at the i-th marked point z_i is defined in the same way as the closed string case. Note here that our construction allows the marked points to lie on the boundary of the disk.

At this stage, we can define open version of the multi-point virtual structure constant.

$$w(O_{h^n}) \prod_{\text{disk}, 2d-1} \rightarrow \int_{\overline{M}_{p_1,2|1n}(CP^2/RP^2, 2d - 1)} e_{v_i}^\ast(h^2) \cdot \prod_{i=1}^n e_{v_i}^\ast(h^{m_i}).$$

(3.93)

Now, we compute the above intersection number by localization technique. First, we introduce $U(1)$ action flow on $\overline{M}_{p_1,2|1n}(CP^2/RP^2, 2d - 1)$ which is induced from the following $U(1)$ action flow on the bulk part,

$$\text{rev}^\theta : [(a_0, \ldots, a_{d-1}), (z_1, \ldots, z_n)] \to [(\text{rev}^\theta a_0, \ldots, \text{rev}^\theta a_{d-1}), (\text{rev}^\theta z_1, \ldots, \text{rev}^\theta z_n)], \quad t \in R.$$

(3.94)

We can fix the ambiguity coming from $R_{>0} \times U(1)$ by regarding a_0 as a point $[a_0]$ in CP^2. Then we obtain,

$$\{(\text{rev}^\theta a_0, \ldots, \text{rev}^\theta a_{d-1}), (z_1, \ldots, z_n)) =$$

$$\{(a_0, e^{-t(\theta_1 - \frac{\theta_1}{z_1} - \theta_0 z_1)} a_1, \ldots, e^{-t(\theta_i - \frac{\theta_i}{z_i} - \theta_0 z_i)} a_i - 1, a_i - 1), (e^{-t(\theta_1 - \frac{\theta_1}{z_1} - \theta_0 z_1)} z_1, \ldots, e^{-t(\theta_1 - \frac{\theta_1}{z_1} - \theta_0 z_1)} z_n).$$

(3.95)

Therefore, a point in the bulk part is fixed under the $U(1)$ action only if $a_1 = a_2 = \cdots = a_{d-1} = 0$ and $n = 0$. The strata of $\overline{M}_{p_1,2|1n}(CP^2/RP^2, 2d - 1)$ are labeled by ordered partitions $(a_1, a_2, \ldots, a_i) \in O_{d_1}$ and ordered decompositions $\prod_{i=0}^{d_1} A_i(\prod_{i=1}^{d_i} B_i) = \prod_{i=1}^{\{1,2,\ldots,n\}}$. The stratum labeled by (a_1, a_2, \ldots, a_i) and $\prod_{i=0}^{d_1} A_i(\prod_{i=1}^{d_i} B_i) = \prod_{i=1}^{\{1,2,\ldots,n\}}$ is given as follows.

$$\overline{M}_{p_0,2|A_i}(3, 0) \times_{CP^2} \overline{M}_{p_0,2|B_1}(3, 3d_1) \times_{CP^2} \overline{M}_{p_0,2|A_i}(3, 0) \times_{CP^2} \overline{M}_{p_0,2|B_2}(3, d_2) \times_{CP^2} \cdots$$

$$\cdots \times \overline{M}_{p_0,2|A_i-1}(3, 0) \times_{CP^2} \overline{M}_{p_0,2|B_i-1}(3, d_i-1) \times_{CP^2} \overline{M}_{p_0,2|A_i-1}(3, 0) \times_{CP^2} \overline{M}_{p_1,2|B_i-1}(3, 2d_i - 1).$$

(3.96)

From the observation above and the discussion in Section 2.2, we can see that non empty fixed point set comes from the stratum that satisfy $B_i = \emptyset (i = 1, 2, \ldots, l)$. The fixed point set coming from the stratum labeled by (d_1, d_2, \cdots, d_l) and $\prod_{i=0}^{d_i} A_i(\prod_{i=1}^{d_i} B_i)$ is given by $\prod_{i=0}^{d_i-1} CP^2_i \times \prod_{i=0}^{d_i-1} \overline{M}_{p_0,2|A_i}$ in the same way as the closed string case. Now, we pay attention to the fixed point set of $\overline{M}_{p_1,2|2n}(CP^2/RP^2, 2d - 1)$ under the $U(1)$ action. It is given by $\{(a_0, 0, \ldots, 0) \} = CP^2$, but we have residual $U(1)$ action coming from $R_{>0} \times U(1)$, which is generated by ζ satisfying $\zeta^{2d-1} = 1$. We formally interpret this action as the one caused by Z_{2d-1}, a quasi cyclic group of order $\frac{2d-1}{2}$. We proceed computation by assuming this quasi group. Then we can regard the above CP^2 as the set of orbifold singularities on which Z_{2d-1} acts. With this consideration, we can also regard the fixed point set $\prod_{i=0}^{d_i} CP^2_i \times \prod_{i=0}^{d_i-1} \overline{M}_{p_0,2|A_i}$ as the set of orbifold singularities on which $(\prod_{i=1}^{d_i-1} Z_{di}) \times Z_{2d_i-1}$ acts.
We turn into determination of the localized integrand to compute \(w(\mathcal{O}_{h^n}|\prod_{i=1}^{n}(\mathcal{O}_{h^m_i}))_{disk,2d-1}\), that comes from the fixed point set labeled by \((d_1,d_2,\cdots,d_l)\) and \(\prod_{i=1}^{l-1}A_i = \{1,2,\ldots,n\}\). But there are many overlaps with the discussion in the closed string case. Hence we determine the localized integrand only from the fixed point set labeled by \((d)\) and \(A_0 = \{1,2,\ldots,n\}\). In this case, the fixed point set is given by \((CP^2)_{0} \times \overline{\mathcal{M}}_{0,2|n}\).

The normal bundle for this set comes from the following contributions.

(i) deforming \(a_i\) \((i=1,2,\cdots,d-1)\) from 0.

(ii) resolving the nodal singularity.

From the \(U(1)\) action given in (3.92), the part coming from (i) is identified with \(\oplus_{j=1}^{d-1}(\mathcal{O}_{CP^2}(\frac{2d-1-2j}{2d-1}))^{\otimes 3}\). The \(U(1)\) character for \(\mathcal{O}_{CP^2}(\frac{2d-1-2j}{2d-1})\) can be read off from (3.95) and it is given by,

\[
\frac{2d-1-2j}{2d-1} \sqrt{-1} \theta_0 - \sqrt{-1} \theta_j.
\]

Therefore, the contribution coming from (i) is given as follows.

\[
\prod_{j=1}^{d-1}(\frac{2d-1-2j}{2d-1}(h_0 + \sqrt{-1} \theta_0) - \sqrt{-1} \theta_j)^3
\]

where \(h_0\) is the hyperplane class of \((CP^2)_{0}\). The part coming from (ii) is identified with \(\frac{d}{d(x)} \otimes T_\infty^* C_0\). Here, \(C_0\) is the genus 0 stable curve described by \(\overline{\mathcal{M}}_{0,2|n}\). \(\frac{d}{d(x)}\) is identified with \(\mathcal{O}_{CP^2}(\frac{x}{d(x)})\) and its \(U(1)\) character is given by \(\frac{2}{2d-1} \sqrt{-1} \theta_0\). The contribution coming from this part turns out to be,

\[
\frac{1}{2d-1}(h_0 + \sqrt{-1} \theta_0) + c_1(T_\infty^* C_0).
\]

As in the closed string case, we integrate the above equivariant form on \(\overline{\mathcal{M}}_{0,2|n}\). The result is,

\[
\left(\frac{2d-1}{2(h_0 + \sqrt{-1} \theta_0)}\right)^n.
\]

The contribution from \(ev_0^*(h^m)\) (resp. \(ev_0^*(h^a)\)) is given by \((h_0 + \sqrt{-1} \theta_0)^{m_1}\) (resp. \((h_0 + \sqrt{-1} \theta_0)^{a}\)). With this set-up, we can write down the localized integrand to compute \(w(\mathcal{O}_{h^n}|\prod_{i=1}^{n}(\mathcal{O}_{h^m_i}))_{disk,2d-1}\), that comes from the fixed point set labeled by \((2d-1)\) and \(A_0 = \{1,2,\cdots,n\}\).

\[
\frac{2}{2d-1} \prod_{j=1}^{d-1}(\frac{2d-1-2j}{2d-1}(h_0 + \sqrt{-1} \theta_0) - \sqrt{-1} \theta_j)^3 \cdot \left(\frac{2d-1}{2}(h_0 + \sqrt{-1} \theta_0)^a \prod_{i=1}^{n} \left(\frac{2d-1}{2}(h_0 + \sqrt{-1} \theta_0)^{m_i-1}\right)\right),
\]

where the factor \(\frac{2}{2d-1}\) at the left end comes from the \(\mathbb{Z}_{2d-1}\) action. Remaining computation goes in the same way as the closed string case. The result of localization computation is given as follows.

\[
w(\mathcal{O}_{h^n}|\prod_{i=1}^{n}(\mathcal{O}_{h^m_i}))_{disk,2d-1} = \sum_{(d_1,\cdots,d_l) \in Op_d} \frac{2}{2d_l-1} \prod_{j=1}^{d_l-1} \left(\frac{1}{d_j} \int_{(CP^{N-1})_{0}} \int_{(CP^{N-1})_{1}} \cdots \int_{(CP^{N-1})_{l-1}} \right) \times
\]

\[
\left(\frac{h_0 + \sqrt{-1} \theta_0)^a \prod_{i=1}^{n} \left(\frac{2d-1}{2}(h_0 + \sqrt{-1} \theta_0)^{m_i-1}\right)\right).
\]

\[
\prod_{j=1}^{l-2} \left(\frac{h_j + \sqrt{-1} \theta_j - h_{j-1} - \sqrt{-1} \theta_{j-1}}{d_j} + \frac{h_{j+1} + \sqrt{-1} \theta_{j+1} - h_{j-1} - \sqrt{-1} \theta_{j-1}}{d_{j+1}}\right) \times
\]

\[
\prod_{i=1}^{d_l-1} \left(\frac{2d_l-1-2i}{2d_l-1}(h_{l_i-1} + \sqrt{-1} \theta_{l_i-1}) - \sqrt{-1} \theta_{l_i-1+i}\right)^3.
\]
where we formally set $\langle z \rangle = 1$. We then use the trick of residue integral and non-equivariant limit $\theta_j \to 0$ ($j = 0, 1, \cdots, d-1$) and obtain the following theorem.

Theorem 2

\[
\begin{align*}
\frac{1}{d_{l-1}} \prod_{i=1}^{n} \sum_{j=1}^{l-1} \left(\frac{\langle z \rangle_{residues at 1} \langle z \rangle_{residues at 1}^2}{\langle z \rangle_{residues at 1}} + \frac{2(h_{f_{i-1}} + \sqrt{-1} \theta_{f_{i-1}})}{2d_{l-1}} \right) \\
\prod_{i=1}^{n} \left(\sum_{j=1}^{d_{l-1}} w_{m_i}^{d_{l-1}}(h_{f_{i-1}} + \sqrt{-1} \theta_{f_{i-1}}, h_{f_i} + \sqrt{-1} \theta_{f_i}) + \frac{2d_{l-1} - 1}{2} (h_{l-1} + \sqrt{-1} \theta_{l-1})^{m_i-1}, \right)
\end{align*}
\]

(3.103)

where we also used the alternate notation $0 = f_0 < f_1 < \cdots < f_{l-1} < f_l = d$ for the ordered partition (d_1, d_2, \cdots, d_l). Theorem 2

\[
\begin{align*}
w(\langle h_i \rangle) \prod_{i=1}^{n} \mathcal{O}_{h_{m_i}} \text{disk,2d-1} = \frac{1}{(2\pi)^d} \left(\prod_{E_{(0)}} \frac{dz_0}{(z_0)^3} \right) \prod_{E_{(0)}} \frac{dz_1}{(z_1)^3} \cdots \prod_{E_{(0)}} \frac{dz_{d-1}}{(z_{d-1})^3} \times \prod_{i=1}^{n} \sum_{j=1}^{d_{l-1}} w_{m_i}^{d_{l-1}}(z_{j-1}, z_j) + \frac{1}{2} (z_{d-1})^{m_i-1}.
\end{align*}
\]

(3.104)

Now, we compute the open multi-point virtual structure constant $w(\langle h_i \rangle) \prod_{i=1}^{n} \mathcal{O}_{h_{m_i}} \text{disk,2d-1}$ by using the above formula. Next step is to answer the question whether or not we can compute open Gromov-Witten invariant $\prod_{i=1}^{n} \mathcal{O}_{h_{m_i}} \text{disk,2d-1}$ of CP^2 from the virtual structure constants. For this purpose, we prepare some numerical data of open Gromov-Witten invariants of CP^2. In [10], we proposed formulas to compute open Gromov-Witten invariants of degree k hypersurface of CP^{N-1} $(k: odd)$. Here, we write down the formulas again.

Proposition 3 [10] The A-model amplitude $\langle \prod_{i=1}^{n} \mathcal{O}_{h_{m_i}} \text{disk,2d-1} \rangle$ up to the $d = 3$ case is given by sum of the following residue integrals.

\[
\begin{align*}
\prod_{i=1}^{n} \mathcal{O}_{h_{m_i}} \text{disk,1} = \frac{1}{(2\pi)^d} \left(\prod_{E_{(0)}} \frac{dz_0}{(z_0)^3} \right) \times \prod_{i=1}^{n} \sum_{j=1}^{d_{l-1}} w_{m_i}^{d_{l-1}}(z_0, z_1),
\end{align*}
\]

\[
\prod_{i=1}^{n} \mathcal{O}_{h_{m_i}} \text{disk,3} = \frac{1}{(2\pi)^d} \left(\prod_{E_{(0)}} \frac{dz_0}{(z_0)^3} \right) \times \prod_{i=1}^{n} \sum_{j=1}^{d_{l-1}} w_{m_i}^{d_{l-1}}(z_0, z_1),
\]

\[
\prod_{i=1}^{n} \mathcal{O}_{h_{m_i}} \text{disk,5} = \frac{1}{(2\pi)^d} \left(\prod_{E_{(0)}} \frac{dz_0}{(z_0)^3} \right) \times \prod_{i=1}^{n} \sum_{j=1}^{d_{l-1}} w_{m_i}^{d_{l-1}}(z_0, z_1),
\]

(3.105)
where
\[e^k(z, w) := \prod_{j=0}^{k} (jz + (k - j)w), \]
(3.106)

and,
\[f_{2d-1}^{N,k}(z) := \frac{2}{2d-1} \cdot \prod_{j=0}^{kd-1} \frac{(j(z) + (k(2d - 1) - j)z)}{2d - 1}. \]
(3.107)

In the above formulas, we take the residue integrals in ascending order of the subscript \(m_i \) of \(z_i \). \(\frac{1}{2\sqrt{-1}} \int_{C_i} dz_i \) means that we take the residues at \(z_i = 0, \frac{2z_i - 1}{2z_i + 1} \) (resp. \(z_i = 0 \)) if the integrand contains the factor \(\frac{1}{2z_i - 1} \) (resp. otherwise).

This proposition followed from the localization computation applied to the open Gromov-Witten invariants \(\text{GW} \) and to compute the \(\text{GW} \) of \(CP^2 \).

Our first approach to the question is to consider the generating function,
\[w(\mathcal{O}_{h^*}|(x^0, x^1, x^2))_{\text{disk}} := \sum_{d \geq 1} w(\mathcal{O}_{h^*})^{\prod_{j=0}^{d} (\mathcal{O}_{h^*})^{m_j}}_{\text{disk}, 2d-1} \cdot \prod_{j=0}^{\infty} \frac{(x_j)^{m_j}}{m_j!}, \]
(3.109)

and to compute \(w(\mathcal{O}_{h^*}|(x^0(t^0, t^1, t^2), x^1(t^0, t^1, t^2), x^2(t^0, t^1, t^2)))_{\text{disk}} \) by using the mirror map \(\text{MM} \). But this naive approach did not reproduce the above data. With some trials and errors, we found that the r.h.s. of (3.104) produces non-zero rational numbers only when we formally insert \(\mathcal{O}_m \) with \(m_i \geq 3 \). This fact led us to a new approach to consider insertions of \(\mathcal{O}_{h^*} \) (\(j = 0, 1, 2, 3, 4, \cdots \)) even though \(H^{*,*}(CP^2) \) is spanned by \(1, h, h^2 \).

Explicitly, we consider the generating function,
\[w(\mathcal{O}_{h^*}|(x^0, x^1, x^2, x^3, \cdots))_{\text{disk}} := \sum_{d \geq 1, m_j \geq 0} w(\mathcal{O}_{h^*})^{\prod_{j=0}^{\infty} (\mathcal{O}_{h^*})^{m_j}}_{\text{disk}, 2d-1} \cdot \prod_{j=0}^{\infty} \frac{(x_j)^{m_j}}{m_j!}, \]
(3.110)

where \(w(\mathcal{O}_{h^*})^{\prod_{j=0}^{\infty} (\mathcal{O}_{h^*})^{m_j}}_{\text{disk}, 2d-1} \) is defined by,
\[w(\mathcal{O}_{h^*})^{\prod_{j=0}^{\infty} (\mathcal{O}_{h^*})^{m_j}}_{\text{disk}, 2d-1} = \frac{1}{(2\sqrt{-1})^d} \int_{\mathcal{C}_{(0)}} dz_0 \int_{\mathcal{C}_{(1)}} dz_1 \cdots \int_{\mathcal{C}_{(d-1)}} dz_{d-1} \times \]
\[2(z_0)^{\frac{1}{(2z_j - z_{j-1} - z_{j+1})}} \cdot \prod_{j=0}^{d-1} \left(\sum_{l=1}^{d-1} w_1(z_{l-1}, z_l) + \frac{1}{2}(z_{d-1})^{j-1} \right)^{m_j}. \]
(3.111)

At this stage, we have to define the mirror map for the variables \(x^j \) (\(j = 0, 1, 2, 3, \cdots \)). We pay attention to the fact that the mirror map in the closed string case was given by,
\[t^j(x_0, x_1, x_2) = w(\mathcal{O}_{h^2-j}\mathcal{O}_1|(x^0, x^1, x^2))_0, \]
(3.112)

we are naturally led to the following definition,
\[t^j(x^*) = t^j(x^0, x^1, x^2, \cdots) := w(\mathcal{O}_{h^2-j}\mathcal{O}_1|(x^0, x^1, x^2, \cdots))_0 := \]
\[x^j + \sum_{d \geq 1} w(\mathcal{O}_{h^2-j}\mathcal{O}_1)^{\prod_{j=0}^{\infty} (\mathcal{O}_{h^*})^{m_j}}_{0,d} \cdot \prod_{j=0}^{\infty} \frac{(x_j)^{m_j}}{m_j!}. \]
(3.113)
Here, \(w(\mathcal{O}_{h^2},\mathcal{O}_1|\prod_{j=0}^{\infty}(\mathcal{O}_{h^j})^{m_j})_{0,d} \) is defined by,

\[
 w(\mathcal{O}_{h^2},\mathcal{O}_1|\prod_{j=0}^{\infty}(\mathcal{O}_{h^j})^{m_j})_{0,d} = \frac{1}{(2\pi i)^{d+1}} \int_{E_{(0)}^d} \frac{dz_0}{(z_0)^3} \int_{E_{(0)}^1} \frac{dz_1}{(z_1)^2} \cdots \int_{E_{(0)}^d} \frac{dz_d}{(z_d)^3} \times (z_0)^{2-d} \cdot \left(\prod_{j=1}^{d-1} \frac{1}{(2z_j - z_{j-1} - z_{j+1})} \right) \cdot \left(\sum_{i=1}^{d} w_i^j(z_{i-1},z_i) \right)^{m_j}, \quad (d > 0).
\]

(3.114)

This formula produces non-trivial rational number even when \(2 - j < 0! \) With this set-up’s, we conjecture that generating function of the open Gromov-Witten invariants of \(CP^2 \):

\[
 \langle \mathcal{O}_{h^a}(t^0, t^1, t^2, \cdots) \rangle_{disk} := \sum_{d \geq 1, (m_j)} \langle \mathcal{O}_{h^a} \prod_{j=0}^{\infty}(\mathcal{O}_{h^j})^{m_j} \rangle_{disk,2d-1} \cdot \prod_{j=0}^{\infty} \frac{(t^j)^{m_j}}{m_j!},
\]

(3.115)

can be computed by the equality:

\[
 w(\mathcal{O}_{h^a}|(x^0, x^1, x^2, \cdots))_{disk} = \langle \mathcal{O}_{h^a}(t^0(x^*), t^1(x^*), t^2(x^*)) \rangle_{disk},
\]

(3.116)
or, conversely,

\[
 \langle \mathcal{O}_{h^a}(t^0, t^1, t^2, \cdots) \rangle_{disk} = w(\mathcal{O}_{h^a}|(x^0(t^*), x^1(t^*), x^2(t^*))_{disk}.
\]

(3.117)

We have one subtle remark here. Even when we fix \(d \), the sum \(\sum_{m_j \geq 0} w(\mathcal{O}_{h^a}|\prod_{j=0}^{\infty}(\mathcal{O}_{h^j})^{m_j})_{disk,2d-1} \cdot \prod_{j=0}^{\infty} \frac{(x^j)^{m_j}}{m_j!} \)

contains infinite terms because we have \(\mathcal{O}_1 \) and \(\mathcal{O}_h \) insertions. As for \(\mathcal{O}_h \) insertion, we have the equality,

\[
 w(\mathcal{O}_{h^a}|\mathcal{O}_h \prod_{j=0}^{\infty}(\mathcal{O}_{h^j})^{m_j})_{disk,2d-1} = (d - \frac{1}{2}) w(\mathcal{O}_{h^a}|\prod_{j=0}^{\infty}(\mathcal{O}_{h^j})^{m_j})_{disk,2d-1}.
\]

(3.118)

Therefore, we can simplify the above sum to,

\[
 \sum_{m_j \geq 0, j \neq 1} w(\mathcal{O}_{h^a}|\prod_{j=0, j \neq 1}^{\infty}(\mathcal{O}_{h^j})^{m_j})_{disk,2d-1} = \prod_{j=0}^{\infty} \frac{(x^j)^{m_j}}{m_j!}.
\]

(3.119)

But unlike the closed string case, \(\mathcal{O}_1 \) insertion does not kill the open virtual structure constants. We have infinite summations in the sum \(\sum_{m_j \geq 0, j \neq 1} \). Hence our conjecture includes infinite procedures of computation even when we compute the generating function \(\mathcal{O}_{h^a} \) up to some finite \(d \). So we limit our intention to compute \(\langle (\mathcal{O}_{h^a})^{3d-2} \rangle_{disk,2d-1} \), which are only non-trivial open Gromov-Witten invariants for \(CP^2 \) in usual sense. To obtain \(\langle (\mathcal{O}_{h^a})^{3d-2} \rangle_{disk,2d-1} \) up to fixed \(d \), we found that we can truncate the parameters to \(x^0, x^1, \cdots, x^d \) and the number of \(\mathcal{O}_1 \) insertions \(m_0 \) in \(\sum_{m_j \geq 0, j \neq 1} \) \(w(\mathcal{O}_{h^a}|\prod_{j=0, j \neq 1}^{\infty}(\mathcal{O}_{h^j})^{m_j})_{disk,2d-1} \cdot \prod_{j=0, j \neq 1}^{\infty} \frac{(x^j)^{m_j}}{m_j!} \)

to \(0, 1, \cdots, d - f \). We observed that these truncations do not affect the result of computation given in \(\langle (\mathcal{O}_{h^a})^{3d-2} \rangle_{disk,2d-1} \) up to degree \(2d - 1 \) and \(t_0, t^1, \cdots, t^d \). Of course, even after this truncation, the size of computation is huge. So, we only demonstrate the computation up to \(d = 3 \). The mirror map for \(t_0, t^1, t^2, t^3 \) is given as follows.

\[
 t_3 := (x^3) + q \frac{1}{12} (x^2)^5 + \frac{7}{6} (x^3)^3 x^3 + \frac{5}{2} (x^3)^2 x^2 + q^2 \left(\frac{73}{336} (x^2)^8 + \frac{13}{15} x^3 (x^2)^6 + \frac{181}{8} (x^3)^2 (x^2)^4 + \right.
 \left. + \frac{97}{3} (x^2)^3 (x^3)^3 + \frac{35}{6} (x^4)^3 \right) + \cdots,
\]

\[
 t_2 := (x^2) + q \frac{1}{4} (x^2)^4 + \frac{3}{2} (x^3)^2 + 2 (x^2)^2 x^3 + q^2 \left(\frac{33}{70} (x^2)^7 + \frac{203}{30} x^3 (x^2)^5 + \frac{47}{2} (x^2)^3 (x^3)^2 + 17 x^3 (x^2)^3 \right) + \cdots,
\]

\[
 t_1 := x_1 + \frac{1}{2} (x^2)^3 + 2 x^2 x^3 + q \left(\frac{7}{10} x_6 + \frac{22}{3} x^4 (x^2)^3 + \frac{61}{4} (x^2)^2 (x^3)^2 + \right.
 \left. \frac{7}{2} (x^3)^3 q^2 \right) + \cdots,
\]

\[
 t_0 := (x^0) + \frac{1}{2} (x^2)^3 + x^3 + q \left(\frac{8}{15} (x^2)^5 + \frac{13}{3} (x^3)^3 + \frac{11}{2} (x^3)^2 x^2 \right) + \cdots.
\]

(3.120)
To obtain \(\langle (\mathcal{O}_{h^2})^{3d-2} \rangle_{disk,2d-1} \), it is enough to compute,

\[
\begin{align*}
 w(\mathcal{O}_h | (x^0, x^1, x^2, x^3))_{disk} &= \langle (x^2 + \frac{1}{2} x^0 x^3 + \frac{1}{8} x^0 (x^2)^2 + \frac{1}{16} x^0 x^2 x^3 + \frac{1}{192} (x^0)^2 (x^2)^3 + \frac{1}{192} (x^0)^3 (x^3)^2 + \frac{1}{384} (x^0)^3 (x^2)^2 x^3 + \\
 &\quad + \frac{1}{9216} (x^0)^3 (x^2)^4 q^{(1/2)} + \frac{5}{3} (x^3)^2 + \frac{21}{32} (x^2)^2 x^3 + \frac{27}{64} (x^3)^2 x^3) + \frac{99}{1280} x^0 (x^2)^5 + \frac{27}{32} (x^2)^3 x^3 x^9 + \\
 &\quad + \frac{21}{16} x^2 (x^3)^2 q^{(3/2)} + \frac{117}{20480} x^0 (x^2)^3 q^{(3/2)} + \frac{246023}{322560} (x^3)^7 + \frac{7489}{768} x^2 x^3 x^9 + \frac{1889}{64} (x^3)^3 (x^2)^2 + \\
 &\quad + \frac{833}{48} x^2 (x^3)^3 q^{(5/2)} + \cdots, \quad (q = q^1),
\end{align*}
\]

but we also computed,

\[
\begin{align*}
 w(\mathcal{O}_h | (x^0, x^1, x^2, x^3))_{disk} &= \langle (2 + \frac{1}{2} x^0 x^2 + \frac{1}{8} x^0 (x^2)^2 + \frac{1}{32} (x^0)^2 (x^2)^3 + \frac{1}{1152} (x^0)^3 (x^2)^3 q^{(1/2)} + \\
 &\quad + \frac{3}{2} x^2 x^3 + \frac{3}{8} (x^2)^3 + \frac{1}{128} (x^2)^4 x^3 + \frac{1}{16} (x^2)^2 x^3 x^0 + \frac{3}{8} (x^2)^3 x^3 + \frac{9}{32} x^0 (x^2)^5 + \frac{27}{5120} (x^2)^5 (x^0)^2 q^{(3/2)} + \\
 &\quad + \frac{12823}{23040} (x^3)^6 + \frac{2219}{384} (x^2)^4 x^3 + \frac{391}{32} (x^2)^3 (x^3)^2 + \frac{67}{24} (x^3)^3 q^{(5/2)} + \cdots, \quad (Q = q^1),
\end{align*}
\]

to check integrable condition. By inverting the mirror map \((3.120)\) and substituting the result to \((3.121)\) and \((3.122)\), we obtain the generating function of open Gromov-Witten invariants,

\[
\langle (\mathcal{O}_h | (t^0, t^1, t^2, t^3))_{disk} | v = 0 \rangle = w(\mathcal{O}_h | (x^0 (t^*), x^1 (t^*), x^2 (t^*), \cdots))_{disk} = \langle \frac{Q^{(1/2)}}{(t^2)} + (\frac{3}{4} (t^3)^2 - \frac{3}{4} (t^2)^3 - \frac{9}{64} (t^2)^4 Q^{(3/2)} + (\frac{3361}{64512} (t^2)^7 + \frac{33}{64} (t^2)^5 t^3 + + \frac{145}{96} (t^3)^2 (t^3)^3 + \frac{65}{48} (t^3)^3 t^2) Q^{(5/2)} + \cdots, \quad (Q = q^1),
\]

and,

\[
\langle (\mathcal{O}_h | (t^0, t^1, t^2, t^3))_{disk} | v = 0 \rangle = w(\mathcal{O}_h | (x^0 (t^*), x^1 (t^*), x^2 (t^*), \cdots))_{disk} = 2Q^{(1/2)} + (\frac{3}{8} (t^2)^3 - t^2 t^3) Q^{(3/2)} + (\frac{13}{24} (t^3)^3 + \frac{3361}{23040} (t^2)^6 + \frac{33}{32} (t^3)^4 t^3 + \frac{29}{16} (t^3)^2 (t^2)^2) Q^{(5/2)} + \cdots.
\]

Here we set the variable \(t^0 \) to 0 to simplify the formulas. Note that the integrable condition,

\[
\frac{\partial}{\partial t^2} (\mathcal{O}_h | (t^0, t^1, t^2, t^3))_{disk} = \frac{\partial}{\partial t^2} (\mathcal{O}_h | (t^0, t^1, t^2, t^3))_{disk},
\]

is satisfied. The numerical data \((3.108)\) are also reproduced. We extended the computation up to \(d = 6 \) and obtained the Table in Section 1.

4 Application to General Type Projective Hypersurface

In this section, we discuss application of the multi-point virtual structure constants to Gromov-Witten invariants of degree \(k \) hypersurface in \(CP^{N-1} \). Let \(w^N,k(\mathcal{O}_{h^k} | \prod_{i=1}^{n} \mathcal{O}_{h_{m_i}})_{0,d} \) and \(w^N,k(\mathcal{O}_{h^k} | \prod_{i=1}^{n} \mathcal{O}_{h_{m_i}})_{disk,2d-1} \) be closed and open multi-point virtual structure constants for \(M_N^k \). They are defined as follows.

\[
\begin{align*}
 w^N,k(\mathcal{O}_{h^k} | \prod_{i=1}^{n} \mathcal{O}_{h_{m_i}})_{0,d} &= \int_{\mathcal{M}_{P_0,2n}(N,d)} ev^a_0(h^a) \cdot ev^b_\infty(h^b) \cdot \left(\prod_{i=1}^{n} ev^i_0(h_{m_i}) \right) \cdot e_{cl}(E^N,k), \\
 w^N,k(\mathcal{O}_{h^k} | \prod_{i=1}^{n} \mathcal{O}_{h_{m_i}})_{disk,2d-1} &= \int_{\mathcal{M}_{P_{D,1,n}}(CP^2/\mathbb{R}^2,2d-1)} ev^a_0(h^a) \cdot \left(\prod_{i=1}^{n} ev^i_0(h_{m_i}) \right) \cdot e_{cl}(E^N,k, \mathcal{O}_{disk}).
\end{align*}
\]
\(\mathcal{E}^{N,k} \) and \(\mathcal{E}^{N,k}_{\text{disk}} \) are orbi-bundles. The zero locus of sections of these bundles correspond to quasi maps whose images lie inside \(M_N^k \). Our discussions in Section 2 and Section 3 are also applicable to these intersection numbers. By combining them with the results in \([9]\) and \([10]\), we obtain the following closed formulas.

\[
\begin{align*}
\text{in} & = \left. \frac{1}{(2\pi i)^{d+1}} \right\} \int_{E_\alpha(0)} \frac{dz_0}{(z_0)^N} \int_{E_\beta(1)} \frac{dz_1}{(z_1)^N} \cdots \int_{E_{d-1}(0)} \frac{dz_d}{(z_d)^N} \times \\
(z_0)^n \cdot \left(\prod_{j=1}^{d-1} \frac{1}{kz_j (2z_j - z_{j-1} - z_{j+1})} \right) \cdot \left(\prod_{j=1}^{d} e^k (z_{j-1}, z_{j}) \right) \cdot (zd)^b \\
\prod_{i=1}^{n} \left(\sum_{j=1}^{d} w^1_{m_i} (z_{j-1}, z_{j}) \right), \quad (d > 0).
\end{align*}
\]

In these formulas, \(e^k(z, w) \) is the polynomial in \(z \) and \(w \) given in \([3,10]\). These intersection numbers are useful especially in the case of general type hypersurface \(M_N^k \) with \(k > N \). In our previous works, we used the virtual structure constants with two marked points. When the hypersurface is general type, we have to operate generalized mirror transformation to translate the virtual structure constants into Gromov-Witten invariants. According to \([8]\) and \([10]\), it is given as follows.

\[
\begin{align*}
\text{in} & = \left. \frac{1}{(2\pi i)^{d}} \right\} \int_{E_\alpha(0)} \frac{dz_0}{(z_0)^N} \int_{E_\beta(1)} \frac{dz_1}{(z_1)^N} \cdots \int_{E_{d-1}(0)} \frac{dz_d}{(z_d)^N} 2(z_0)^a (k!) (zd-1)^\frac{d}{2} \times \\
\prod_{j=1}^{d-1} \frac{1}{(2z_j - z_{j-1} - z_{j+1})} \cdot \prod_{i=1}^{n} \left(\sum_{j=1}^{d-1} w^1_{m_i} (z_{j-1}, z_{j}) + 1 \right)^{m_i-1}, \quad (k: \text{odd}, \quad d \geq 1, \quad zd := -zd-1).
\end{align*}
\]

In these formulas, \(P_d \) is a set of usual partition of a positive integer \(d \),

\[
P_d := \{ \sigma_d = (d_1, d_2, \cdots, d_t) \mid d = d_1 + d_2 + \cdots + d_t, \quad 1 \leq d_1 \leq d_2 \leq d_3 \leq \cdots \leq d_t \},
\]

and \(S(\sigma_d) \) is the symmetric factor:

\[
S(\sigma_d) := \prod_{i=1}^{d} \frac{1}{\text{mul}(i, \sigma_d)!},
\]

where \(\text{mul}(i, \sigma_d) \) is multiplicity of \(i \) in \(\sigma_d \). Therefore, if we intend to compute \(\langle O_{h^a} O_{h^b} \rangle_{d,0} \) and \(\langle O_{h^a} \rangle_{\text{disk},d-1} \) by using \([4,129]\) and \([4,130]\), we have to know the information of the multi point Gromov-Witten invariants \(\langle O_{h^a} O_{h^b} \prod_{j=1}^{l(\sigma)} O_{h^{k_i}(k-Nj)} \rangle_{d,0} \) and \(\langle O_{h^a} \prod_{j=1}^{l(\sigma)} O_{h^{k_i}(k-Nj)} \rangle_{\text{disk},2d-2} \) in advance. In the closed string case, we used the associativity equation to compute them. But this process made the computation very complicated \([8]\). In the open string case, we did not know the open version of the associativity equation and we could not compute the open Gromov-Witten invariants genuinely from the open virtual structure constants in the \(k > N \) case \([10]\). In contrast, our multi point virtual structure constants should include all the informations of the multi...
point Gromov-Witten invariants. Therefore, we can apply the formalism of Section 2 and Section 3 to execute the generalized mirror transformation for general type hypersurface M_N^k. Let us illustrate our idea from the closed string case. For the hypersurface M_N^k, $k > N$, we introduce variables x^j ($j = 0, 1, \cdots, N-2$) associated with insertions of O_h and generating functions,

$$w^{N,k}(O_h, O_K)(x^0, \cdots, x^{N-2})_0 := x^c \cdot \int_{CP^{N-1}} k \cdot h^{a+b+c+1} + \sum_{d>0, m_j \geq 0} w^{N,k}(O_h, O_K) \prod_{j=0}^{N-2} (O_{h_j})^{(m_j)}_0, d \cdot \prod_{j=0}^{N-2} \frac{(x^j)^{m_j}}{m_j!}. \tag{4.133}$$

Since (2.61) and (2.62) also hold in this case, these generating functions turn out to be polynomials in e^{x^1} and x^j ($j = 2, 3, \cdots, N-2$). Next, we introduce the generalized mirror transformation,

$$t^j(x^0, \cdots, x^{N-2}) := \frac{1}{k} w^{N,k}(O_h, O_K)(x^0, \cdots, x^{N-2})_0. \tag{4.134}$$

If we invert the above equality, our conjecture predicts the following equality.

$$\langle O_h, O_K(t^0, \cdots, t^{N-2}) \rangle_0 := t^c \cdot \int_{CP^{N-1}} k \cdot h^{a+b+c+1} + \sum_{d>0, m_j \geq 0} \langle O_h, O_K \rangle \prod_{j=0}^{N-2} (O_{h_j})^{(m_j)}_0, d \cdot \prod_{j=0}^{N-2} \frac{(t^j)^{m_j}}{m_j!} = w^{N,k}(O_h, O_K)(x^0(t^0, \cdots, t^{N-2}), \cdots, x^{N-2}(t^0, \cdots, t^{N-2}))_0. \tag{4.135}$$

Let us demonstrate this procedure by taking M_8^3 as an example. In this case, the mirror map is explicitly given up to $d = 3$ as follows.

$$t^0 = x^0,$$

$$t^1 = x^1,$$

$$t^2 = x^2 + 34138908q,$$

$$t^3 = x^3 + 124995960x^2q + 8404934443598718q^2,$$

$$t^4 = x^4 + 249752241x^3q + \frac{340609293}{2} (x^2)^2 q + \frac{12364475520332114}{2} x^2 q^2 + 3815933053700462506215462q^3 + \cdots,$$

$$t^5 = x^5 + 340609293x^4q + 556222626x^3q + \frac{257278653}{2} (x^2)^3 q + \frac{321886193235880779}{2} (x^2)^2 q^2 + 3325883860198730031171653xq^3 + \cdots,$$

$$t^6 = x^6 + 374748201x^5q + 681218586x^4q^2 + \frac{805974867}{2} (x^3)^2 q + 556222626x^3(x^2)^2 q + \frac{257278653}{4} (x^2)^4 q + 139268745219642741x^4q^2 + 472782967773195564x^3x^2q^2 + 223674801935251734x^3q^3 + 48918351923402413916303613x^3q^3 + 106098778427559977884727547(x^2)^3q^3 + \cdots, \quad (q = e^{x^1}). \tag{4.136}$$

We can omit the $d \geq 4$ part because Gromov-Witten invariants of M_8^3 is trivial if $d \geq 4$. We then compute,

$$1 \frac{1}{9} w^{8,9}(O_h, O_K)(x^0, \cdots, x^{N-2})_0 = x^4 + 306470385x^3q + 215613333(x^2)^2 + 89761934928094677x^2q^2 + 62974884997971651914951q^3 + \cdots. \tag{4.137}$$

If we substitute the inversion of the mirror map to (4.137), we obtain,

$$1 \frac{1}{9} (O_h, O_K(t^0, \cdots, t^{N-2}))_0 = t^4 + \frac{90617373}{2} (t^2)^2 + 56718144t^2 + 35512880615374365 \frac{1}{2} t^2 e^{2t^1} + 134585199184412898174851e^{3t^1}. \tag{4.138}$$

This generating function includes all the non-trivial genus 0 Gromov-Witten invariants of M_8^3 and reproduce the results in [27].
In the open string case, we introduce
\[
\begin{align*}
 w^{N,k}(\mathcal{O}_{h^*}|(x^0, \ldots, x^{N-2}))_{\text{disk}} := \\
 \sum_{d>0,m_j \geq 0} w^{N,k}(\mathcal{O}_{h^*}| \prod_{j=0}^{N-2} (\mathcal{O}_{h^*})^{m_j})_{\text{disk},2d-1} \cdot \prod_{j=0}^{N-2} \frac{(x^j)^{m_j}}{m_j!} = \\
 \sum_{d>0,m_j \geq 0, (j \neq 1)} w^{N,k}(\mathcal{O}_{h^*}| \prod_{j \neq 1} (\mathcal{O}_{h^*})^{m_j})_{\text{disk},2d-1} e^{(d-\frac{1}{2})x^1} \cdot \prod_{j \neq 1} \frac{(x^j)^{m_j}}{m_j!}.
\end{align*}
\]

Unlike the \(CP^2\) case, substitution of inversion of the mirror map to \(w^{8,9}(\mathcal{O}_{h^*}|(x^0, \ldots, x^{N-2}))_{\text{disk}}\) results in \(\langle \mathcal{O}_{h^*}(x^0, \ldots, t^{N-2}) \rangle_{\text{disk}}\). For example, we compute,
\[
\begin{align*}
 w^{8,9}(\mathcal{O}_{h^*}|(x^0, \ldots, x^{N-2}))_{\text{disk}} &= (945x^2 + \frac{945}{2}x^0x^3 + \frac{945}{8}(x^2)^2x^0 + \cdots)q^{(1/2)} + \\
 (90642729450 + \frac{236172454245}{2}x^0x^2 + \cdots)q^{(3/2)} + \\
 \frac{5010947061228637817}{5}x^0 + \cdots)q^{(5/2)} + \cdots,
\end{align*}
\]
and
\[
\begin{align*}
 w^{8,9}(\mathcal{O}_{1}|(x^0, \ldots, x^{N-2}))_{\text{disk}} &= (945x^3 + \frac{945}{4}(x^2)^2 + \cdots)q^{(1/2)} + (168225362235x^2 + \cdots)q^{(3/2)} + \\
 \frac{27617717503277606364}{25} + \cdots)q^{(5/2)} + \cdots.
\end{align*}
\]

In this case, we also have the subtlety of infinite insertions of \(\mathcal{O}_1\). In the above formula, we truncated the number of \(\mathcal{O}_1\) insertions so that the non-trivial open Gromov-Witten invariants of \(M^9\) computed in [10] are not affected. Substitution of inversion of the mirror map results in,
\[
\begin{align*}
 \langle \mathcal{O}_h(t^0, \ldots, t^{N-2}) \rangle_{\text{disk}} &= (945t^2 + \frac{945}{8}(t^2)^2t^0 + \frac{945}{2}t^0t^3 + \cdots)e^{(1/2)t^1} + \\
 (\frac{101920638015}{2}t^0t^2 + 58381461390 + \cdots)e^{(3/2)t^1} + \\
 (\frac{20865788438073398442}{5}t^0 + \cdots)e^{(5/2)t^1},
\end{align*}
\]
and
\[
\begin{align*}
 \langle \mathcal{O}_1(t^0, \ldots, t^{N-2}) \rangle_{\text{disk}} &= (945t^3 + \frac{945}{4}(t^2)^2 + \cdots)e^{(1/2)t^1} + (33973546005t^2 + \cdots)e^{(3/2)t^1} + \\
 \frac{41731576876146796884}{25} + \cdots)e^{(5/2)t^1}.
\end{align*}
\]

The integrable condition \(\frac{\partial}{\partial t^1}\langle \mathcal{O}_h(t^0, \ldots, t^{N-2}) \rangle_{\text{disk}} = \frac{\partial}{\partial t^1}\langle \mathcal{O}_1(t^0, \ldots, t^{N-2}) \rangle_{\text{disk}}\) is satisfied. The open Gromov-Witten invariants in these generating functions agree with the results computed from \([3,105]\).

\[
\begin{align*}
 \langle \mathcal{O}_h\mathcal{O}_h \rangle_{\text{disk},1} &= 945, \quad \langle \mathcal{O}_1\mathcal{O}_h \rangle_{\text{disk},1} = 945, \quad \langle \mathcal{O}_1(\mathcal{O}_h)^2 \rangle_{\text{disk},1} = 945/2, \quad \langle \mathcal{O}_1\mathcal{O}_h \rangle_{\text{disk},3} = 33973546005, \quad \langle \mathcal{O}_h \rangle_{\text{disk},3} = 58381461390, \quad \langle \mathcal{O}_1 \rangle_{\text{disk},5} = 41731576876146796884/25.
\end{align*}
\]

Therefore, we can compute the open Gromov-Witten invariants of \(M^9\) genuinely from the open multi-point virtual structure constants. Comparing these results with the ones of \(CP^2\), the reason why we had to introduce the variables \(x^j (j \geq 3)\) in the \(CP^2\) case is still unclear. We end this paper, leaving pursuit of this subject to future works.
References

[1] Valery Alexeev, G. Michael Guy. *Moduli of weighted stable maps and their gravitational descendants*. J. Inst. Math. Jussieu 7 (2008), no. 3, 425-456.

[2] S. Barannikov. *Semi-infinite Hodge structures and mirror symmetry for projective spaces*. arXiv:math/0010157

[3] T. Eguchi, K. Hori, C.-S. Xiong. *Gravitational Quantum Cohomology*. Internat. J. Modern Phys. A12 (1997) 1743-1782.

[4] M.A.Guest. *From Quantum Cohomology to Integrable Systems (Oxford Graduate Texts in Mathematics)*. Oxford University Press, (2008).

[5] H. Iritani. *Quantum D-modules and generalized mirror transformations*. Topology 47 (2008), no. 4, 225-276.

[6] H. Iritani. *Private Communication*.

[7] M.Jinzenji. *On the Quantum Cohomology Rings of General Type Projective Hypersurfaces and Generalized Mirror Transformation*. Internat. J. Modern Phys. A15 (2000) 1557-1596.

[8] M.Jinzenji. *Coordinate change of Gauss-Manin system and generalized mirror transformation*. Internat. J. Modern Phys. A 20 (2005), no. 10, 2131-2156.

[9] M.Jinzenji. *Mirror Map as Generating Function of Intersection Numbers: Toric Manifolds with Two Kähler Forms*. Preprint, arXiv:1006.0607, to appear in Comm. Math. Phys..

[10] M.Jinzenji, M.Shimizu. *Open Virtual Structure Constants and Mirror Computation of Open Gromov-Witten Invariants of Projective Hypersurfaces*. Preprint, arXiv:1108.4766

[11] M.Kontsevich. *Enumeration of Rational Curves via Torus Actions*. The moduli space of curves, R.Dijkgraaf, C.Faber, G.van der Geer (Eds.), Progress in Math., v.129, Birkhäuser, 1995, 335-368.

[12] M. Kontsevich, Yu. Manin. *Gromov-Witten classes, quantum cohomology, and enumerative geometry*. Comm. Math. Phys. 164 (1994), no. 3, 525-562.

[13] A. Marian, D. Oprea, R. Pandharipande. *The moduli space of stable quotients*. Geom. Topol. 15 (2011), no. 3, 1651-1706.

[14] J.Walcher. *Opening Mirror Symmetry on the Quintic*. Comm. Math. Phys. 276 (2007), no. 3, 671-689.