Comparison of simultaneous bilateral versus unilateral total knee replacement on pain levels and functional recovery

CURRENT STATUS: UNDER REVISION

Ahmad H Alghadir
King Saud University

Zaheen A Iqbal
King Saud University

Shahnawaz Anwer
Hong Kong Polytechnic University

anwer_shahnawazphysio@rediffmail.com

Corresponding Author

ORCiD: https://orcid.org/0000-0003-3187-8062

Dilshad Anwar
Bone Joint and Trauma Clinic

DOI: 10.21203/rs.2.15669/v2

SUBJECT AREAS
Orthopedics

KEYWORDS
total knee arthroplasty; bilateral; unilateral; pain; function
Abstract

Background

Total knee replacement is a common operative procedure to improve pain, function, and quality of life in patients with end stage knee osteoarthritis. The current study aimed to compare simultaneous bilateral versus unilateral total knee replacement on pain intensity and recovery of function.

Methods

A total of 80 patients (bilateral 50, unilateral 30) aged 63.28 (9.4) years undergone total knee replacement participated in the current study. The participants were admitted for 5-7 days in the hospital. Participants in both the group received similar inpatient and outpatient physiotherapy sessions. Pain intensity and function capacity were assessed at baseline, day 7, and day 30 post-operatively using visual analogue scale and lower extremity functional scale, respectively. Repeated measures analysis of variance was used to analyze the data.

Results

Both groups showed a significant reduction of pain intensity (Day 0, mean 8.9, SD 1.0; Day 30, mean 2.2, SD 1.3 in bilateral total knee replacement; Day 0, mean 8.8, SD 1.1; Day 30, mean 2.0, SD 1.5 in unilateral total knee replacement; p<0.001) and improvement in the functional capacity (Day 0, mean 16.2, SD 10.1; Day 30, mean 55.6, SD 14.6 in bilateral total knee replacement; Day 0, mean 19.1, SD 9.1; Day 30, mean 56.7, SD 15.8 in unilateral total knee replacement; p<0.001) following total knee replacement at 30 days post-operatively. However, there was a non-significant difference noted between bilateral versus unilateral total knee replacement on the reduction of pain intensity (mean changes, 6.9 versus 6.8) and improvement in the functional capacity (mean changes, 39.4 versus 37.6) at 30 days post-operatively (p>0.05).

Conclusion

Simultaneous bilateral total knee replacement was associated with a similar reduction of pain intensity and recovery of function compared to unilateral total knee replacement, suggesting the use of simultaneous bilateral total knee replacement in patients with bilateral knee osteoarthritis since its costs and rehabilitation process could be reduced compared to staged bilateral total knee
replacement.

Background

Total knee replacement (TKR) is a common operative procedure to improve pain, function, and quality of life in patients with severe grade knee osteoarthritis (OA) [1-4]. However, in many patients, bilateral TKR is required due to involvement of bilateral OA or other arthritis [5]. After 10 years of primary TKR, the incidence of TKR for contralateral knee for end-stage OA is 37% [6]. Bilateral TKR could be performed simultaneously or in a staged. Simultaneous TKR is defined as the replacement of both knees in a single surgery. The major advantage of this surgery is that it requires only one hospital stay and rehabilitation period to recover both knees. However, previous studies have shown different perioperative risks between staged bilateral TKR and simultaneous bilateral TKR. While some studies indicate significantly higher mortality and morbidity risk with simultaneous bilateral TKR, other studies indicate reduced risk of mechanical malfunction and periprosthetic joint infection [7-10]. Additionally, an estimated cost of simultaneous TKR is almost half compared to staged bilateral TKR [11-13].

A few studies also investigated differences in pain and physical function following simultaneous bilateral or staged bilateral TKR. While one study indicates functional improvements following simultaneous bilateral TKR [14], another study reports positive outcome with respect to pain and physical function following staged bilateral TKR [15]. However, lack of control groups in these studies reduce the external validity of the results.

Many studies also compared perioperative outcomes and functional recovery between simultaneous bilateral versus unilateral TKR. For instance, Hart et al. [16] reported a reduced perioperative complication and was not correlated with more readmissions than unilateral TKR. Similarly, Borges et al. [17] reported no increase in complications or cost of simultaneous bilateral TKR surgery as compared to unilateral TKR surgery. Additionally, March et al. [18] compared the functional recovery and general health between simultaneous bilateral and unilateral TKR. They found better functional recovery and general health in simultaneous bilateral TKR group. However, participants in simultaneous bilateral TKR group were significantly younger than unilateral TKR group (70.9 versus
While a previous study reported significantly better postoperative functional outcomes in simultaneous bilateral TKR group [19], a recent study reported no differences in the functional recovery between simultaneous bilateral and unilateral TKR [20]. Therefore, the present study aimed to assess whether simultaneous bilateral TKR results comparable improvement in pain intensity and functional recovery than unilateral TKR.

Methods

Patients and procedure

It was a series of prospective TKR cases performed by an Orthopedic surgeon in three years. This study compared two surgical procedures (e.g., simultaneous bilateral versus unilateral TKR) on pain and physical function. Pain intensity and recovery of function was assessed at baseline, day 7, and day 30 post-operatively in patients with unilateral and simultaneous bilateral TKR. Institution ethics committee, RRC, King Saud University, Riyadh, Saudi Arabia approved the study. A written informed consent was taken from each patient. Inclusion criteria were as follow: (a) patients with end stage primary OA, (b) bilateral symptomatic knee OA, and (c) patients undergone first time for simultaneous bilateral or unilateral TKR. A total of 80 patients (bilateral, 50; unilateral, 30), undergoing TKR, were included in the current study. Patients with cardiopulmonary comorbidities for example, chronic obstructive pulmonary disease or active coronary artery disease were not considered for simultaneous bilateral or unilateral TKR [16]. All patients went through a preoperative medical evaluation to rule out high risk patients for simultaneous bilateral or unilateral TKR. The participants were admitted for 5-7 days in the hospital. Participants in both the group received similar inpatient (two sessions a day for 5 to 7 days as required) and outpatient (one session, five days a week for three weeks) physiotherapy sessions.

Operative procedures

Medial parapatellar approach was used for both unilateral and simultaneous bilateral TKR [21]. Vanguard® knee system and the Triathlon® Knee System prostheses were used. Knee joint was opened, osteophytes were removed, and resurfacing was done. Intramedullary drilling was done into femoral canal via intercondylar notch. Intramedullary distal resection guide was placed at 6 degrees
of valgus and standard 9 mm distal resection was done to match with the distal thickness of the implant. Anterior referencing guide was used to measure femoral size. A chamfer was placed, and anterior, posterior, and oblique resections were made. Proximal tibial resection was done using extramedullary referencing guide and seven degrees of posterior slope was made. Then, tibia sling and broaching was done. Trial implant was placed, and stability and patellar tracking was assessed. When it was found satisfactory, implant placed, and cementing done. Wound was cleaned using Pulsed lavage technique [22]. Finally, closure was done in layers as suggested [23].

Outcomes

Pain intensity and function capacity were assessed at baseline, day 7, and day 30 post-operatively using visual analogue scale (VAS) and lower extremity functional scale (LEFS), respectively. The VAS is a valid and reliable outcome measure to assess both acute and chronic pain [24-26]. The 20-item LEFS is a reliable and valid functional outcome to assess lower-extremity function in patients undergoing knee or hip arthroplasty [27,28].

Statistical analysis

Data was analyzed using IBM SPSS Statistics 21. The improvement in pain and functional scores during 1-month between simultaneous bilateral versus unilateral TKR were assessed using the repeated measure ANOVA. Two variables for group (simultaneous bilateral versus unilateral TKR) and three variables for time (0 day versus 7 day versus 30 day) were used. A value of p < 0.05 was considered for the statistical significance.

Results

Table 1 details the participant’s characteristics. Mean age was 61.8 (SD, 9.2) and 65.7 (SD, 9.4) years in simultaneous bilateral TKR and unilateral TKR group, respectively. Both groups showed a significant reduction of pain intensity and improvement in the functional capacity following TKR at 30 days post-operatively (p<0.001) (Table 2 and 3). However, there was a non-significant difference noted between simultaneous bilateral versus unilateral TKR on reduction of pain intensity and improvement in the functional capacity at 30 days post-operatively (p>0.05) (Figure 1 and 2).

Discussion
TKR is most common and successful surgical intervention to reduce pain and improve function in patients with end stage osteoarthritis [29,30]. There are many factors should be considered before deciding surgical intervention such as patient’s age, severity, symptom duration, pre-operative medical condition, and unilateral or bilateral involvement [31]. The commonest indications for TKR include OA, traumatic arthritis and rheumatoid arthritis [31]. In the current study, all patients had a diagnosis of primary knee OA.

The current study aimed to compare simultaneous bilateral versus unilateral TKR on pain intensity and recovery of function at 30-days postoperatively. Results of the current study indicated that both groups showed a significant pain relief and improved function after TKR at 30 days post-operatively. There was no significant difference noted between simultaneous bilateral versus unilateral TKR on pain intensity and recovery of function.

Some studies indicate that simultaneous bilateral TKR surgery reduces rehabilitation time and have no additional risk for postoperative complications compared to unilateral TKR [32-35]. Additionally, the patient satisfaction scores, and functional outcomes are comparable, or better, in patients undergoing bilateral TKR than unilateral TKR, and this achieves without any additional medical costs [18,32]. While other studies reported statistically insignificant differences in pain reduction and functional recovery between bilateral versus unilateral TKR [32, 36], many studies indicated an increased postoperative complications and higher rehabilitation costs, in patients undergoing bilateral TKR than unilateral TKR [9,37,38].

Recently, a study reported that bilateral simultaneous unicompartamental knee arthroplasty shows better functional recovery at 6 month post-operatively than unilateral TKR [39]. However, a direct comparison could not be made as many methodological differences existed between previous and current study. First, previous study compared bilateral simultaneous unicompartamental knee arthroplasty with unilateral TKR; in contrast, the current study compared bilateral simultaneous TKR with unilateral TKR. Second, previous study compared outcome at 6 months postoperatively, in contrast, the current study compared outcome at one month postoperatively.

It has been recommended that patients undergo simultaneous bilateral TKR surgery had a prolong
rehabilitation, increased length of hospital stay, higher blood transfusion, increased number of painful postoperative days, a greater number of complications, and increased financial burden [31]. Nonetheless, these parameters have been showed significantly better than in those patients undergo staged arthroplasty surgery [18,40,41]. Although several studies indicated that postoperative medical complications often seen in patients undergo simultaneous bilateral TKR surgery [42-44], other studies indicated similar complication rates [45,46].

The current study has several potential limitations. In the current study, physical function was assessed using LEFS, which is a subjective self-report functional scale. An objective outcome measure could be included to assess wide range of physical function. Additionally, the current study only assessed pain and function. Other important outcome measures such as ambulation, muscle strength, mobility, range of motion, and quality of life are warranted to consider in future study. The result of this study was restricted to simultaneous bilateral or unilateral TKR in patient with end stage OA, and therefore it might limit the generalizability of findings to other types of replacement surgeries. Furthermore, randomized controlled studies are warranted to further validate results of this study. Moreover, future study may investigate the effect of physiotherapy intervention to reduce postoperative complications and improve functional outcomes after simultaneous bilateral or unilateral TKR.

Conclusions
Simultaneous bilateral TKR was associated with similar reduction of pain intensity and recovery of function compare to unilateral TKR, suggesting the use of simultaneous bilateral TKR in patients with bilateral knee osteoarthritis since its costs and rehabilitation process could be reduced compared to staged bilateral TKR.

Abbreviations
TKR, Total knee replacement; VAS, Visual analogue scale; LEFS, Lower extremity functional scale; OA, Osteoarthritis

Declarations

Ethics and consent to participate

The present study was approved by the local ethics committee of the Rehabilitation Research Chair,
King Saud University. A written informed consent was taken from each patient.

Consent to publish

Not Applicable

Competing interests

Shahnawaz Anwer is a member of the editorial board of BMC Musculoskeletal Disorders journal. No other conflicts of interest, financial or otherwise, are declared by the author(s).

Funding

The Deanship of Scientific Research, King Saud University provides funding through Vice Deanship of Scientific Research Chairs. The funding body played no role in the study design, writing of the manuscript, or decision to submit the manuscript for publication.

Author Contributions

SA: corresponding author, participated in the study design, participated in the data collection, drafted the manuscript, and finalized the manuscript. AA: participated in the study design, helped with the ethics application and revised the manuscript critically. ZAI: participated in the study design, participated in the data collection, and revised the manuscript critically. DA: participated in the study design, participated in the data collection, and revised the manuscript critically. All authors read and approved the final manuscript.

Acknowledgments

The authors are grateful to the Deanship of Scientific Research, King Saud University for funding through Vice Deanship of Scientific Research Chairs.

Availability of data and materials

All data generated or analyzed during this study are presented in the manuscript. Please contact the corresponding author for access to data presented in this study.

References

1. Rodríguez JA, Bhende H, Ranawat CS. Total condylar knee replacement: a 20-year followup study. Clin Orthop 2001;388:10-7.

2. Gill GS, Joshi AB, Mills DM. Total condylar knee arthroplasty. 16- to 21-year results.
Clin Orthop 1999;367:210-5.

3. Thadani PJ, Vince KG, Ortaaslan SG, Blackburn DC, Cudiamat CV. Ten- to 12-year followup of the Insall-Burstein I total knee prosthesis. Clin Orthop 2000;380:17-29.

4. Worland RL, Johnson GV, Alemparte J, Jessup DE, Keenan J, Norambuena N. Ten to fourteen-year survival and functional analysis of the AGC total knee replacement system. Knee 2002;9:133-7.

5. Yoon HS, Han CD, Yang IH. Comparison of simultaneous bilateral and staged bilateral total knee arthroplasty in terms of perioperative complications. J Arthroplasty. 2010;25(2):179-85.

6. McMahon M, Block JA. The risk of contralateral total knee arthroplasty after knee replacement for osteoarthritis. J Rheumatol 2003;30(8):1822-4.

7. Memtsoudis SG, Hargett M, Russell LA, Parvizi J, Cats-Baril WL, Stundner O, et al. Consensus statement from the consensus conference on bilateral total knee arthroplasty group. Clin Orthop Relat Res 2013;471:2649-57.

8. Meehan JP, Danielsen B, Tancredi DJ, Kim S, Jamali AA, White RH. A population-based comparison of the incidence of adverse outcomes after simultaneous-bilateral and staged-bilateral total knee arthroplasty. J Bone Joint Surg Am 2011;93:2203-13.

9. Restrepo C, Parvizi J, Dietrich T, Einhorn TA. Safety of simultaneous bilateral total knee arthroplasty. A meta-analysis. J Bone Joint Surg Am 2007;89:1220-6.

10. Fu D, Li G, Chen K, Zeng H, Zhang X, Cai Z. Comparison of clinical outcome between simultaneous-bilateral and staged-bilateral total knee arthroplasty: a systematic review of retrospective studies. J Arthroplasty 2013;28:1141-7.

11. Odum SM, Troyer JL, Kelly MP, Dedini RD, Bozic KJ. A cost-utility analysis comparing the cost-effectiveness of simultaneous and staged bilateral total knee arthroplasty. JBJS. 2013 Aug 21;95(16):1441-9.
12. Reuben JD, Meyers SJ, Cox DD, Elliott M, Watson M, Shim SD. Cost comparison between bilateral simultaneous, staged, and unilateral total joint arthroplasty. J Arthroplasty. 1998 Feb 1;13(2):172-9.

13. Macario A, Schilling P, Rubio R, Goodman S. Economics of one-stage versus two-stage bilateral total knee arthroplasties. Clin Orthop Relat Res. 2003 Sep 1;414:149-56.

14. Jain S, Wasnik S, Mittal A, Sohoni S, Kasture S. Simultaneous bilateral total knee replacement: a prospective study of 150 patients. J Orthop Surg (Hong Kong). 2013;21(1):19.

15. Gabr A, Withers D, Pope J, Santini A. Functional outcome of staged bilateral knee replacements. Ann R Coll Surg Engl. 2011;93(7):537.

16. Hart A, Antoniou J, Brin YS, Huk OL, Zukor DJ, Bergeron SG. Simultaneous bilateral versus unilateral total knee arthroplasty: a comparison of 30-day readmission rates and major complications. J Arthroplasty. 2016 Jan 1;31(1):31-5.

17. Borges JH, Lobo Júnior P, Dias DM, Silva MF, Freitas A, Araújo T. Cost and Safety Evaluation of Simultaneous Bilateral Total Knee Arthroplasty versus Unilateral Knee. Rev Bras Ortop (Sao Paulo). 2019 Dec;54(6):709-13.

18. March LM, Cross M, Tribe KL, Lapsley HM, Courtenay BG, Cross MJ, et al. Two knees or not two knees? Patient costs and outcomes following bilateral and unilateral total knee joint replacement surgery for OA. Osteoarthr Cartil. 2004;12(5):400.

19. Bagsby D, Pierson JL. Functional outcomes of simultaneous bilateral versus unilateral total knee arthroplasty. Orthopedics. 2015 Jan 1;38(1):e43-7.

20. Huang YH, Lin C, Yang JH, Lin LC, Mou CY, Chiang KT, et al. No difference in the functional improvements between unilateral and bilateral total knee replacements. BMC Musculoskelet Disord. 2018 Dec;19(1):87.

21. Frueh W, Sharkey P. The Standard Anterior Medial Parapatellar Approach to TKA. In
22. Luedtke-Hoffmann KA, Schafer DS. Pulsed lavage in wound cleansing. Phys Ther. 2000 Mar 1;80(3):292-300.

23. Kharat K. Closure in knee replacement surgery. J Orthop Case Rep. 2012 Jul;2(3):31.

24. Gallasch CH, Alexandre NM. The measurement of musculoskeletal pain intensity: a comparison of four methods. Rev Gaucha Enferm 2007;28(2):260-5.

25. Jensen MP, Karoly P. Self-report scales and procedures for assessing pain in adults, in Turk DC, Melzack R (eds): Handbook of Pain Assessment. New York, NY, Guilford Press, 2011, pp 19-44.

26. Hjermstad MJ, Fayers PM, Haugen DF, Caraceni A, Hanks GW, Loge JH, et al. Studies comparing numerical rating scales, verbal rating scales, and visual analogue scales for assessment of pain intensity in adults: A systematic literature review. J Pain Symptom Manage 2011;41:1073-1093.

27. Watson CJ, Propps M, Ratner J, Zeigler DL, Horton P, Smith SS. Reliability and responsiveness of the lower extremity functional scale and the anterior knee pain scale in patients with anterior knee pain. J Orthop Sports Phys Ther 2005;35(3):136-46.

28. Pua YH, Cowan SM, Wrigley TV, Bennell KL. The Lower Extremity Functional Scale could be an alternative to the Western Ontario and McMaster Universities Osteoarthritis Index physical function scale. J Clin Epidemiol 2009;62(10):1103-11.

29. Varacallo M, Luo TD, Johanson NA. Total Knee Arthroplasty (TKA) Techniques. [Updated 2019 Dec 17]. In: StatPearls [Internet]. Treasure Island (FL): StatPearls Publishing; 2020 Jan-. Available from: https://www.ncbi.nlm.nih.gov/books/NBK499896/
30. Feng JE, Novikov D, Anoushiravani AA, Schwarzkopf R. Total knee arthroplasty: improving outcomes with a multidisciplinary approach. J Multidiscip Healthc. 2018;11:63.

31. Ekinci Y, Oner M, Karaman I, Kafadar IH, Mutlu M, Argün M. Comparison of simultaneous bilateral with unilateral total knee arthroplasty. Acta Orthop Traumatol Turc. 2014;48(2):127-35.

32. Zeni Jr JA, Snyder-Mackler L. Clinical outcomes after simultaneous bilateral total knee arthroplasty: comparison to unilateral total knee arthroplasty and healthy controls. J Arthroplasty. 2010 Jun 1;25(4):541-6.

33. Horne G, Devane P, Adams K. Complications and outcomes of single-stage bilateral total knee arthroplasty. ANZ J Surg 2005;75(9):734-8.

34. Ritter MA, Harty LD. Debate: simultaneous bilateral knee replacements: the outcomes justify its use. Clin Orthop Relat Res 2004;428:84-6.

35. Jenny JY, Trojani C, Prudhon JL, Vielpeau C, Saragaglia D, Houillon C, et al. Simultaneous bilateral total knee arthroplasty. A multicenter feasibility study. Orthop Traumatol Surg Res. 2013 Apr 1;99(2):191-5.

36. Powell RS, Pulido P, Tuason MS, Colwell CW Jr, Ezzet KA. Bilateral vs unilateral total knee arthroplasty: a patient-based comparison of pain levels and recovery of ambulatory skills. J Arthroplasty. 2006;21(5):642-9.

37. Ritter MA, Harty LD, Davis KE, Meding JB, Berend M. Simultaneous bilateral, staged bilateral, and unilateral total knee arthroplasty. A survival analysis. J Bone Joint Surg Am 2003;85-A(8):1532-7.

38. Luscombe JC, Theivendran K, Abudu A, Carter SR. The relative safety of one-stage bilateral total knee arthroplasty. Int Orthop. 2009 Feb 1;33(1):101-4.

39. Ahn JH, Kang DM, Choi KJ. Bilateral simultaneous unicompartmental knee arthroplasty
versus unilateral total knee arthroplasty: A comparison of the amount of blood loss and transfusion, perioperative complications, hospital stay, and functional recovery. Orthop Traumatol Surg Res. 2017;103(7):1041-1045.

40. Macario A, Schilling P, Rubio R, Goodman S. Economics of one-stage versus two-stage bilateral total knee arthroplasties. Clin Orthop Relat Res 2003;414:149-56.

41. Bullock DP, Sporer SM, Shirreffs TG Jr. Comparison of simultaneous bilateral with unilateral total knee arthroplasty in terms of perioperative complications. J Bone Joint Surg Am 2003;85-A:1981-6.

42. Noble J, Goodall JR, Noble DJ. Simultaneous bilateral total knee replacement: a persistent controversy. Knee 2009;16:420-6.

43. Barrett J, Baron JA, Losina E, Wright J, Mahomed NN, Katz JN. Bilateral total knee replacement: staging and pulmonary embolism. J Bone Joint Surg Am 2006;88:2146-51.

44. Oakes DA, Hanssen AD. Bilateral total knee replacement using the same anesthetic is not justified by assessment of the risks. Clin Orthop Relat Res 2004;428:87-91.

45. Choi YJ, Lee HI, Ra HJ, Hwang DY, Kim TK, Shim SJ. Perioperative risk assessment in patients aged 75 years or older: comparison between bilateral and unilateral total knee arthroplasty. Knee Surg Relat Res. 2014 Dec;26(4):222.

46. Hersekli MA, Akpinar S, Ozalay M, Ozkoç G, Uysal M, Cesur N, et al. A comparison between single- and two-staged bilateral total knee arthroplasty operations in terms of the amount of blood loss and transfusion, perioperative complications, hospital stay, and cost-effectiveness. [Article in Turkish] Acta Orthop Traumatol Turc 2004;38:241-6.

Tables
Table 1: Participant’s characteristics
Demographic and clinical variables

Demographic and clinical variables	Simultaneous bilateral TKR (n=50)	Unilateral TKR (n=30)	p-value
Age, years	61.8 (9.2)	65.7 (9.4)	0.075
Mean (SD)	48 - 80	49 - 80	
Range			
Sex, number (%)	18/32 (36/64)	11/19 (37/63)	0.5
Male/Female			
Weight, kg	93.5 (8.2)	96.1 (5.5)	0.0
Mean (SD)	76 - 105	87 - 105	
Range			
VAS, 0 – 10 cm, Mean (SD)			
Day 0	8.9 (1.0)	8.8 (1.1)	0.6
Day 7	4.3 (1.5)	4.6 (1.5)	0.5
Day 30	2.2 (1.3)	2.0 (1.5)	0.5
LEFS, 0 – 80, Mean (SD)			
Day 0	16.2 (10.1)	19.1 (9.1)	0.1
Day 7	28.6 (11.5)	30.2 (12.8)	0.5
Day 30	55.6 (14.6)	56.7 (15.8)	0.1

TKR: Total knee replacement; VAS: Visual analog scale; LEFS: Lower extremity functional scale; SD: Standard deviation

Table 2: Comparison of visual analogue scale score using Repeated measures ANOVA

Source of variation	Sum of Squares	DF	Mean Square	F	P
Groups (Simultaneous bilateral TKR vs Unilateral TKR)	0.0400	1	0.0400	0.032	
Residual	98.027	78	1.257		

Source of variation	Sum of Squares	DF	Mean Square	F	P
Factor (Day 0 vs Day 7 vs Day 30)	1763.087	2	881.543	462.80	<
Group x Factor interaction	2.487	2	1.243	0.65	
Residual	297.147	156	1.905		

TKR: Total knee replacement
Table 3: Comparison of lower extremity functional scale score using Repeated measures ANOVA

Source of variation	Sum of Squares	DF	Mean Square	F	P
Test of Between-Subjects Effects					
Groups (Simultaneous bilateral TKR vs Unilateral TKR)	195.534	1	195.534	0.59	0.447
Residual	26053.029	78	334.013		
Test of Within-Subjects Effects					
Factor (Day 0 vs Day 7 vs Day 30)	58372.629	2	29186.314	450.65	<
Group x Factor interaction	34.696	2	17.348	0.27	
Residual	10103.404	156	64.765		

TKR: Total knee replacement

Figures
Figure 1

Comparison of visual analogue scale score between bilateral and unilateral total knee replacement (TKR)
Figure 2

Comparison of lower extremity functional scale score between bilateral and unilateral total knee replacement (TKR)