Recurrent Spinal Meningioma: A Case Report

Hoi Jung Choi, Sung Hwa Paeng, Sung Tae Kim, Yong Tae Jung

Department of Neurosurgery, Busan Paik Hospital, Inje University College of Medicine, Busan, Korea

INTRODUCTION

Meningiomas are the second most common intradural spinal tumors, accounting for 25% of all spinal tumors. Being a slow growing and invariably benign tumor, it responds favorably to surgical excision. In addition, spinal meningioma has low recurrence rates. However, we experienced a case of intradural extramedullary spinal meningioma which recurred 16 years after the initial surgery on a 64-year-old woman. She presented with progressive neurological symptoms and had a surgical history of removal of thoracic spinal meningioma 16 years ago due to bilateral low leg weakness. She underwent a second operation at the same site and a pale yellowish tumor was excised, which was histopathologically confirmed as meningothelial meningioma, compared with previously transitional type. She showed neurological recovery after the operation. We, therefore, report the good results of this recurrent intradural spinal meningioma case developed after 16 years with literature review.

Key Words: Spinal meningioma • Recurrence

CASE REPORT

A 64-year-old woman presented with weakness in both lower limbs, which had gradually progressed over the previous 4 months, and difficulty in walking on admission. She had no sensory dysfunctions or visceral involvements, but had a surgical history (the removal of thoracic spinal tumor) for a similar episode of bilateral lower leg weakness 16 years ago (Fig. 1).

Clinical examination revealed a tender linear scar extending from the C7 to T9 spinous process. Neurological assessment revealed bilaterally increased muscle tone, associated with symmetrical paraparesis (3/5). No sensory loss or bladder/bowel involvement was evident. Magnetic resonance images revealed at T1 and T2; Gadolinium enhanced image showed a well-enhanced tumor mass on the left side in the spinal canal and marked the compression of the spinal cord combined with compressive myelopathy (Fig. 2).

She underwent a second surgery at the same site and a pale yellowish tumor was excised. The pathological examination
confirmed that it was psammomatous meningioma (Fig. 3),
compared with previously transitional type (microscopic examination showed nests or concentric whorls of menigothelial cells revealing polygonal or oval cells with eosinophilic and indistinct bordered cytoplasm and round nuclei, also showing of frequent psammoma bodies in the center of the tumor whorls). The patient showed neurological recovery after the operation. Postoperatively, the patient’s sensory parameters and bladder control improved. After 2 weeks, she showed a slight improvement of motor power and was discharged.

DISCUSSION

Meningioma is a common type of tumor that accounts for 25-46% of spinal neoplasms. The progress of spinal meningioma appeared to be more benign than its intracranial counterpart. Its prognosis is known to be favorable and the disease recurrence is also rare if the tumor is totally removed. In general, the reported rates of recurrence are ranged from 4% to 10%. Most patients included in these recurrence results were older than 50 years. Furthermore, most results have been reported good functional outcomes in 74% to 85% of operated cases.

However, Cohen-Gadol et al. reported that a recurrence rate was as high as 22% in younger patients with age less than 50 years old. This study result showed that younger patients with the disease recurrence had aggressive histology, more extradural extension and longer follow-up periods. Therefore, younger age at the time of the first surgery could be a risk factor for recurrence in spinal meningioma.

Mirimanoff et al. reported that the recurrence免费 survival rates after total removal of meningioma during the follow-up periods of 5, 10 and 15 years were 93%, 80% and 68%, respectively. After subtotal removal of meningioma, the progression free rates were reported to be 63%, 45% and 99%, respectively, for the same follow-up periods. The most common histological features of spinal meningioma include meningotheliomatous, fibroblastic, transitional and psammomatous. Meningotheliomatous and psammomatous types are reported to be histopathologically predominant.

The other risk factors for the tumor recurrence are calcified meningioma and residual tumor remnants. In a previous study, it was reported that histologically classified psammomatous meningioma had a low risk of aggressive growth and recurrence. Doita et al. reported a case of psammomatous type of spinal meningioma which recurred 33 years after the surgery. In this case, a calcified recurrent spinal tumor was detected on a plain radiograph at the same site after an initial operation and preoperative paraplegia improved after the surgery.

Nadkarni et al. reported a similar case as ours, which described a recurrence 18 years after the initial surgery. It was revealed that the tumor was recurrent psammomatous meningioma. Surgical removal of the tumor resulted in complete neurological recovery. It may suggest that psammomatous histological type associated with calcification is a risk factor for recurrent spinal meningioma. Our case was a histopathologically confirmed psammomatous meningioma which was
a pathological variant most likely to be associated with calcification. However, no calcification was seen in preoperative radiography. Moreover, the first operation revealed that the tumor was a histologically transitional type with frequent psammomatous type when it recurred over the time. This suggests that the disease recurrence rate increases if histological calcification of meningioma is postoperatively manifested and if there are residual tumor remnants. This leads us to emphasize the importance postoperative histological re-examination to establish more active additional therapeutic strategies.

Spinal meningiomas were located laterally to the spinal cord or had a component that extended laterally. A posterior location was more frequent than an anterior one. Unlike intracranial meningiomas, there was no correlation between recurrence and the resection of dural attachment and locations. Although extradural attachment of spinal meningioma has not yet been determined as a cause of recurrence, a variety of spinal meningioma is shown to increase the rates of recurrence.

CONCLUSION

Surgery is a preferred method in the treatment of spinal meningiomas owing to excellent functional improvements and low recurrence rates following surgery. Our patient has not shown any worsening of neurological symptoms during the follow-up period. A marked neurological improvement after the second surgery in this case implies that it is possible to achieve favorable surgical outcomes in the treatment of recurrent meningiomas. We intend to highlight that the factors leading to the recurrence of meningiomas after surgery include young age, subtotal resection of the lesion, calcification and extradural attachment.

REFERENCES

1. Cohen-Gadol AA, Zikel OM, Koch CA, Scheithauer BW, Krauss WE: Spinal meningiomas in patients younger than 50 years of age: a 21-year experience. J Neurosurg 98:258-263, 2003
2. Doita M, Harada T, Nishida K, Marui T, Kurosaka M, Yoshiya S: Recurrent calcified spinal meningioma detected by plain radiograph. Spine (Phila Pa 1976) 26:E249-252, 2001.
3. Feirring EH, Barron K: Late recurrence of spinal-cord meningioma. J Neurosurg 19:652-656, 1962
4. Gezen F, Kahraman S, Canakci Z, Bedak A: Review of 36 cases of spinal meningioma. Spine (Phila Pa 1976) 25:727-731, 2000
5. King AT, Sharr MM, Gullan RW, Bartlett JR: Spinal meningiomas: a 20-year review. Br J Neurosurg 12:521-526, 1998
6. Klekamp J, Sarni M: Surgical results for spinal meningiomas. Surg Neurol 52:552-562, 1999
7. Levy WJ Jr, Bay J, Dohn D: Spinal cord meningioma. J Neurosurg 57:804-812, 1982
8. Mirimanoff RO, Dosoretz DE, Linggood RM, Ojemann RG, Martuza RL: Meningiomas: analysis of recurrence and progression following neurosurgical resection. J Neurosurg 62:18-24, 1985
9. Nadkarni B, Arora A, Kumar S, Bhatia A: Recurrent spinal meningioma: a case report with review of the literature. J Orthop Surg 13(3):326-329, 2005
10. Gottfried ON, Gluf W, Quinones-Hinojosa A, Kan P, Schmidt MH: Spinal meningiomas: surgical management and outcome. Neurosurg Focus 14(6):e2, 2003
11. Philippon J, Cormu PB, Grob R, Rivierez M: Les meningiomes recidivantes. Neurochirurgie 32:54-62, 1986
12. Roux FX, Nataf F, Piraudadeau M, Borne G, Devaux B, Meder JF: Intraspinal meningiomas: review of 54 cases with discussion of poor prognosis factors and modern therapeutic management. Surg Neurol 46:458-463, 1996
13. Scott M, Ferrara VI, Peale AR: Multiple melanotic meningiomas of the cervical cord. Case report. J Neurosurg 34:555-559, 1971
14. Solero CL, Formani M, Giombini S, Lasio G, Oliveri G, Ciminò C, et al: Spinal meningiomas: review of 174 operated cases. Neurosurgery 25:153-160, 1989