Semiconductor saturable absorbers for ultrafast terahertz signals

Hoffmann, Matthias C.; Turchinovich, Dmitry

Published in:
Applied Physics Letters

Link to article, DOI:
10.1063/13386542

Publication date:
2010

Document Version
Publisher's PDF, also known as Version of record

Link back to DTU Orbit

Citation (APA):
Hoffmann, M. C., & Turchinovich, D. (2010). Semiconductor saturable absorbers for ultrafast terahertz signals. Applied Physics Letters, 96(15), 151110. https://doi.org/10.1063/13386542
Semiconductor saturable absorbers for ultrafast terahertz signals

Matthias C. Hoffmann	extsuperscript{1,a} and Dmitry Turchinovich	extsuperscript{2,b}

	extsuperscript{1}Max Planck Research Department for Structural Dynamics, University of Hamburg, CFEL, 22607 Hamburg, Germany

	extsuperscript{2}DTU Fotonik - Department of Photonics Engineering, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark

(Received 12 February 2010; accepted 19 March 2010; published online 15 April 2010)

We demonstrate saturable absorber behavior of n-type semiconductors GaAs, GaP, and Ge in the terahertz (THz) frequency range at room temperature using nonlinear THz spectroscopy. The saturation mechanism is based on a decrease in electron conductivity of semiconductors at high electron momentum states, due to conduction band nonparabolicity and scattering into satellite valleys in strong THz fields. Saturable absorber parameters, such as linear and nonsaturable transmission, and saturation fluence, are extracted by fits to a classic saturable absorber model. Further, we observe THz pulse shortening, and an increase in the group refractive index of the samples at higher THz pulse peak fields. © 2010 American Institute of Physics.

[doi:10.1063/1.3386542]

Semiconductor saturable absorbers and saturable absorber mirrors (SESAMs) are routinely used for ultrafast laser mode-locking and ultrafast signal control. Saturable absorbers operating in the visible and infrared wavelength ranges rely on bleaching of two-level electronic systems, usually realized by an interband transition in semiconductor quantum wells or quantum dots. Clearly, such quantum-confined semiconductor systems will not be suitable for applications in the far-infrared (terahertz (THz)) range, where the photon energy is much smaller than the band gap energy of most semiconductors. Also, the thermal population of such closely spaced electronic levels would dominate at room temperature. The main loss factor in doped semiconductors in the THz frequency range is free-carrier absorption. The THz signal attenuation is roughly proportional to the conductivity of the material \(\sigma = |e(\mu_{e}n_{e} + \mu_{h}n_{h})| \), where \(e \) is elementary charge, and \(\mu_{e,h} \) and \(n_{e,h} \) are the mobilities and concentrations of electrons and holes, respectively.

In this paper we demonstrate saturable absorbers for the THz frequency range, based on n-type bulk semiconductors, where the carrier mobility is modulated by nonlinear electron transport caused by the THz electric field, thus affecting the conductivity of the sample. Normally, the application of external electric fields leads to acceleration of carriers in the lowest-energy valley of the conduction band of an n-type semiconductor. At high-momentum states the valley nonparabolicity becomes pronounced, which leads to an increase in the effective mass and thus to a reduction in the mobility \(\mu_{e} \), consequently leading to a reduced dielectric loss in the THz range. At high enough electric fields, intervalley scattering is possible, leading to electron transfer into the satellite valleys with reduced curvature. This again results in a smaller electron mobility compared to that of the conduction band minimum, and consequently lower THz dielectric loss. Detailed studies of time-resolved high-THz-field transport in bulk semiconductors were recently published in Refs. 8–10.

In our experiment, we generated high-power single-cycle THz pulses by tilted pulse-front optical rectification in a lithium niobate crystal of 800 nm, 80 fs laser pulses provided by a 1 kHz repetition rate Ti:Sapphire amplifier. The THz pulses were collimated and then refocused onto a sample point using a set of off-axis paraboloidal mirrors. After propagation through the sample point, the THz pulses were guided to a 0.5-mm thick undoped (110)-oriented ZnTe crystal for detection using standard free-space electro-optic sampling (FEOS). A pair of wire-grid polarizers was introduced into the THz beam path before the sample point, which allowed us to controllably attenuate the THz signal by adjusting the angle between the polarizer axes. The maximum THz pulse energy was measured to be 1.5 \(\mu \text{J} \) using a

![FIG. 1. (Color online) (a) Time-resolved electric field of a THz pulse with a fluence of 50 \(\mu \text{J/cm}^2 \), and a peak electric field of 300 kV/cm. Corresponding amplitude spectrum with noise floor indicated. (b) Instantaneous THz intensity at the sample position calculated from the square of the measured electric field.](image-url)
GaAs with a carrier concentration of 10^{16} cm$^{-3}$ and thickness of 0.3 mm; and Ge with a carrier concentration of 10^{14} cm$^{-3}$ and thickness of 0.4 mm; GaP with a carrier concentration of 10^{15} cm$^{-3}$ and a thickness of 6 mm. All measurements were carried out at room temperature. Figure 2 shows the field and power transmission coefficients as a function of THz pump field and fluence respectively in GaAs, GaP, and Ge. The field and power transmission coefficients were obtained by integrating either the modulus or the square, respectively, of the THz fields transmitted through the sample in the beam path. In all our samples we observed increased transmission at higher pump fluences. In particular, we observed a nearly fivefold increase in power transmission coefficient for GaAs sample in the THz pulse fluence range used in our experiments. The solid lines in Figs. 3(b), 3(d), and 3(f) are fits using a saturable power transmission function, defined after Ref. 13 as

$$T(F_p) = T_{ns} \exp \left[\frac{T_{lin} T_{ns} (e^{F_p/F_{sat}} - 1)}{F_p/F_{sat}} \right],$$

where T_{lin} and T_{ns} are linear and nonsaturable power transmission coefficients, F_p is the pump fluence, and F_{sat} is the saturation fluence. Using fits with Eq. (1) we were able to extract the saturable absorber parameters T_{lin}, T_{ns}, and F_{sat} for our semiconductor samples, which are indicated in Fig. 2. In particular, the saturation fluence F_{sat} was found to be 8.2 μJ/cm2 for GaAs, 20.9 μJ/cm2 for GaP, and 3.1 μJ/cm2 for Ge. Interestingly, at the lowest pump fluences the transmission function for Ge actually decreases slightly, thus demonstrating the opposite, optical limiting behavior. This can be possibly explained by the fact that in Ge the high-mobility Γ-valley is not initially populated, and thus initial sample conductivity is lower, as discussed in Ref. 5.

In all our measurements we observed shortening of the THz pulses, as they propagated through the samples, with increase in peak electric field of the THz pulse. Such pulse-shortening behavior is also characteristic for saturable absorbers in the optical range. Different temporal parts of the pulses experience different absorption efficiencies. In the case of single-cycle THz pulses, the onset of saturable absorption caused by carrier heating occurs faster than the total duration of the pulse, thus leading to its partial reshaping.

In order to quantify the shortening of single-cycle THz pulses used in our experiment, we calculated a pulse shortening factor defined as the ratio of full width at half max-

![FIG. 2. (Color online) Symbols: Field transmission coefficient as a function of peak THz pulse field, and power transmission coefficient as a function of THz pulse fluence for GaAs [(a) and (b)], GaP [(c) and (d)], and Ge [(e) and (f)]. Solid lines—saturable transmission function fit to the measured power transmission coefficients.](image-url)
mum (FWHM) of modulus of Hilbert transforms of sample and reference pulses, as illustrated in Figs. 3(a) and 3(b). The dependency of the pulse shortening factor on the peak electric field of the incident THz pulse is shown in Fig. 3(c). For GaP and Ge the maximum relative pulse shortening (i.e., the difference between largest and smallest shortening factors) reaches approximately 5%, and its dependency on THz peak field is more or less linear. For GaAs, however, this dependency appears to have a threshold at peak fields of around 150 kV/cm, and the relative pulse shortening reaches the value of approximately 10%.

Saturable absorption and pulse shortening are accompanied by an increase in group refractive index in all three samples, as shown in Fig. 3(d). The group index n_g at various pump intensities was calculated using the difference of arrival times Δt between sample and reference pulses and taking into account the sample thickness d by using the relation $n_g=\Delta t c/ d +1$. The arrival times were obtained from mean-weighted maxima of the modulus of THz pulse Hilbert transforms. We observe a clear saturating growth trend in the group refractive indices of all our samples with increasing THz forms. We observe a clear saturating growth trend in the weighted maxima of the modulus of THz pulse Hilbert transforms. We note here, that for n-GaAs we observe a decrease in the sample thickness due to the sample absorption leading to the strong THz excitation, resulting in the saturating transmission through the samples. Although the origin of the absorption mechanism in the THz and in the optical frequency ranges is completely different, we note that the saturation fluences observed here are within the same order of magnitude (i.e., few to tens of microjoules per square centimeter), as the values reported for SESAMs in the optical range, such as e.g., quantum dot SESAMs. For practical applications, the doping concentration and the sample thickness needs to be chosen in a way to maximize the saturable absorption effect, which may otherwise be dominated by the strong linear absorption in bulk samples. Optimized THz SESAMs could potentially be used with the THz sources like quantum cascade or p-Ge lasers, leading to examples for external-cavity mode-locked lasers delivering high-energy ultrashort THz pulses.

We are grateful to Danish Advanced Technology Foundation (HTF) and Max Planck Society for financial support; and to A. Cavalleri (Univ. Hamburg), K. Yvind, J. Mørk, and J. M. Hvam (DTU Fotonik) for valuable assistance and discussions.

1U. Keller, K. J. Weingarten, F. X. Kättner, D. Kopf, B. Braun, I. D. Jung, R. Fluck, C. Höninger, N. Matuschek, and J. A. der Au, IEEE J. Quantum Electron. 2, 435 (1996).
2A. A. Lagatsky, F. M. Bain, C. T. A. Brown, W. Sibbett, D. A. Livshits, G. Erbert, and E. U. Rafailov, Appl. Phys. Lett. 91, 231111 (2007).
3M. Schall and P. U. Jepsen, Opt. Lett. 25, 13 (2000).
4K. P. H. Lui and F. A. Hegmann, Appl. Phys. Lett. 78, 3478 (2001).
5J. Hebling, M. C. Hoffmann, H. Y. Hwang, K.-L. Yeh, and K. A. Nelson, Phys. Rev. B 81, 035201 (2010).
6E. M. Conwell, High Field Transport in Semiconductors (Academic, New York, 1967).
7E. Constant, in Hot Electron Transport in Semiconductors, edited by L. Regel (Springer, Berlin, 1985).
8M. C. Hoffmann, J. Hebling, H. Y. Hwang, K.-L. Yeh, and K. A. Nelson, Phys. Rev. B 79, 161201(R) (2009).
9M. C. Hoffmann, J. Hebling, H. Y. Hwang, K.-L. Yeh, and K. A. Nelson, J. Opt. Soc. Am. B 26, A29 (2009).
10L. Razzari, F. H. Su, G. Sharma, F. Blanchard, A. Ayesheshim, H.-C. Bandulet, R. Morandotti, J.-C. Kieffer, T. Ozaki, M. Reid, and F. A. Hegmann, Phys. Rev. B 79, 193204 (2009).
11K.-L. Yeh, M. C. Hoffmann, J. Hebling, and K. A. Nelson, Appl. Phys. Lett. 90, 171121 (2007).
12Q. Yu and X.-C. Zhang, Appl. Phys. Lett. 67, 3523 (1995).
13M. Haimel, R. Grange, and U. Keller, Appl. Phys. B: Lasers Opt. 79, 331 (2004).
14M. van der Poel, J. Mørk, and J. M. Hvam, Opt. Express 13, 8032 (2005).
15D. Turchinovich and J. I. Dijkhuis, Opt. Commun. 270, 96 (2007).
16H. P. Porte, P. U. Jepsen, N. Daghestani, E. U. Rafailov, and D. Turchinovich, Appl. Phys. Lett. 94, 262104 (2009).