LEFT MULTIPLIERS OF REPRODUCING KERNEL HILBERT C^*-MODULES AND THE PAPADAKIS THEOREM

MOSTAFA GHAEMI1, VLADIMIR M. MANUILOV2, and MOHAMMAD SAL MOSLEHIAN3

ABSTRACT. We give a modified definition of a reproducing kernel Hilbert C^*-module (shortly, $RKHC^*M$) without using the condition of self-duality and discuss some related aspects; in particular, an interpolation theorem is presented. We investigate the exterior tensor product of $RKHC^*Ms$ and find their reproducing kernel. In addition, we deal with left multipliers of $RKHC^*Ms$. Under some mild conditions, it is shown that one can make a new $RKHC^*M$ via a left multiplier. Moreover, we introduce the Berezin transform of an operator in the context of $RKHC^*Ms$ and construct a unital subalgebra of the unital C^*-algebra consisting of adjointable maps on an $RKHC^*M$ and show that it is closed with respect to a certain topology. Finally, the Papadakis theorem is extended to the setting of $RKHC^*M$, and in order for the multiplication of two specific functions to be in the Papadakis $RKHC^*M$, some conditions are explored.

1. Introduction

Hilbert C^*-modules are generalization of Hilbert spaces by allowing the inner product to take its values in a C^*-algebra instead of the complex numbers. At the same time, they are extensions of C^*-algebras. Indeed, a C^*-algebra \mathcal{A} is a Hilbert \mathcal{A}-module if we define $\langle a, b \rangle = a^*b$ $(a, b \in \mathcal{A})$. For Hilbert C^*-modules \mathcal{E} and \mathcal{F}, the set of all adjointable maps from \mathcal{E} to \mathcal{F} is denoted by $L(\mathcal{E}, \mathcal{F})$, and $L(\mathcal{E})$ stands for the unital C^*-algebra $L(\mathcal{E}, \mathcal{E})$. We assume that $\mathcal{A} \otimes_{alg} \mathcal{B}$ and $\mathcal{A} \otimes_\ast \mathcal{B}$ denote, respectively, the algebraic tensor product and an arbitrary fixed C^*-tensor product of the C^*-algebras \mathcal{A} and \mathcal{B} with the corresponding C^*-tensor norm $\| \cdot \|_\ast$. For more details on the general theory of C^*-algebras, the reader is referred to [15]. Let \mathcal{E}_1 and \mathcal{E}_2 be Hilbert C^*-modules over C^*-algebras \mathcal{A} and \mathcal{B}, respectively. The algebraic tensor product and the exterior tensor product of \mathcal{E}_1 and \mathcal{E}_2 are denoted by $\mathcal{E}_1 \otimes_{alg} \mathcal{E}_2$ and $\mathcal{E}_1 \otimes \mathcal{E}_2$, respectively. Indeed, $\mathcal{E}_1 \otimes \mathcal{E}_2$ is a Hilbert $\mathcal{A} \otimes_\ast \mathcal{B}$-module equipped with the following $\mathcal{A} \otimes_\ast \mathcal{B}$-valued inner product [12]:

$$\langle x \otimes y, z \otimes w \rangle = \langle x, z \rangle \otimes \langle y, w \rangle \quad (x, z \in \mathcal{E}_1, y, w \in \mathcal{E}_2).$$

Let \mathcal{E} be a Hilbert C^*-module over a C^*-algebra \mathcal{A}. The set of all bounded \mathcal{A}-linear maps from \mathcal{E} to \mathcal{A} is denoted by \mathcal{E}'. The space \mathcal{E} can be embedded in \mathcal{E}' via $\sim : \mathcal{E} \rightarrow \mathcal{E}'$ defined by $x \mapsto x$, where $\hat{x}(y) = \langle x, y \rangle$ $(y \in \mathcal{E})$. A Hilbert C^*-module \mathcal{E} is called self-dual if $\mathcal{E} = \mathcal{E}'$. We refer the reader to [12, 20] for more details on the theory of Hilbert C^*-modules.

Throughout this article, S and X stand for nonempty sets. We denote C^*-algebras by \mathcal{A} and \mathcal{B}. By $\mathcal{Z}(\mathcal{A})$ and \mathcal{A}^+ we mean the center of the C^*-algebra \mathcal{A} and the set

2020 Mathematics Subject Classification. 46E22; 47A56; 47L08; 46L05.

Key words and phrases. Reproducing kernel Hilbert C^*-module; Papadakis theorem; frame; positive definite kernel; Left multiplier.
of all positive elements of \mathfrak{A}, respectively. When \mathfrak{A} is unital, $\text{Inv}(\mathfrak{A})$ stands for the set of all invertible elements of \mathfrak{A}. The C^*-algebra of all $n \times n$ matrices with entries in \mathfrak{A} is presented by $M_n(\mathfrak{A})$.

Aronszajn [3] defined the concept of reproducing kernel Hilbert space (shortly, \textit{RKHS}), and Schwartz [17] developed the concept. This theory has many applications in integral equations, complex analysis, and so on; see [11]. Indeed, an \textit{RKHS} \mathcal{H} is a Hilbert space of \mathbb{C}-valued functions on a set S such that, for all $s \in S$, the evaluation map $\delta_s : \mathcal{H} \to \mathbb{C}$ defined by $\delta_s(f) = f(s)$ is bounded. It follows from the Riesz representation theorem that, for every $s \in S$, there exists a unique element $k_s \in \mathcal{H}$ such that

$$\delta_s(f) = f(s) = \langle f, k_s \rangle \quad (f \in \mathcal{H}).$$

Furthermore, the two-variable function $K : S \times S \to \mathbb{C}$ defined by $K(s, t) = k_t(s) \ (s, t \in S)$ is called a reproducing kernel for \mathcal{H}. A theorem due to Moore [16, Theorem 2.14] states that for a scalar-valued positive definite kernel, there is a unique \textit{RKHS} such that K is its reproducing kernel. Indeed, there is a two-sided relation between scalar-valued positive definite kernels and \textit{RKHS}s. For more information about reproducing kernel spaces we refer the interested reader to [2, 16, 4] and references therein.

The Papadakis theorem [16, Theorem 2.10] shows that $\{f_s : s \in S\}$ is a Parseval frame for an \textit{RKHS} if and only if $K(x, y) = \sum_{s \in S} f_s(x)f_s(y)$, where the series converges pointwise. In general, finding k_s for every $s \in S$, and so K, is not easy, but the Papadakis theorem provides a useful benchmark.

Although Hilbert C^*-modules generalize Hilbert spaces, some fundamental properties of Hilbert spaces are no longer valid in Hilbert C^*-modules in their full generality. For instance, not every bounded \mathfrak{A}-linear operator is adjointable. Thus in the theory of Hilbert C^*-modules, it is interesting to ask which results, similar to those for Hilbert spaces, can be proved probably under some conditions. Inspiring by some ideas in the Hilbert space setting [16], we extend some significant classical results to the setting of Hilbert C^*-modules.

The paper is organized as follows. In the next section, we use some ideas of Szafraniec [19] to give a modified definition of a reproducing kernel Hilbert C^*-module (shortly, \textit{RKHC}*M) due to Heo [10] without using the condition of self-duality and discuss some related aspects. Such a lack of self-duality shows that our investigation is nontrivial and is not a straightforward generalization of the classical case of \textit{RKHS}s. In the same section, the exterior tensor product of \textit{RKHC}*Ms is investigated and an interpolation theorem is presented. Section 3 deals with left multipliers of \textit{RKHC}*Ms. Under some mild conditions, we show that one can make a new \textit{RKHC}*M by a left multiplier. In addition, we introduce the Berezin transform of an operator in the context of \textit{RKHC}*Ms and construct a unital subalgebra of the unital C^*-algebra consisting of adjointable maps on an \textit{RKHC}*M and show that it is closed with respect to a certain topology. In section 4, we extend the Papadakis theorem to the setting of \textit{RKHC}*M and find some conditions, in order for the multiplication of two specific functions to be in the Papadakis \textit{RKHC}*M.
2. A Modified Definition of RKHC^*M

We denote by $\mathcal{F}(S, \mathfrak{A})$ the set of all \mathfrak{A}-valued functions on S. It is clear that $\mathcal{F}(S, \mathfrak{A})$ is a right \mathfrak{A}-module equipped with the ordinary operations.

Definition 2.1 (see [10]). By a kernel on S we mean a map $K : S \times S \to \mathfrak{A}$. A kernel K is called positive definite whenever the matrix $(K(s_i, s_j))_{i,j=1}^n \in \mathbb{M}_n(\mathfrak{A})$ is positive or, equivalently,

$$\sum_{i,j=1}^n a_i^*K(s_i, s_j)a_j \geq 0,$$

for all $n \in \mathbb{N}$, $s_1, s_2, \ldots, s_n \in S$, and $a_1, a_2, \ldots, a_n \in \mathfrak{A}$. Then, $K(s, t) = K(t, s)^*$ for all $s, t \in S$. We say that a kernel K is strictly positive whenever $(K(s_i, s_j))_{i,j=1}^n$ is positive and invertible in $\mathbb{M}_n(\mathfrak{A})$.

The following definition of an RKHC^*M differs from that of [10] and is inspired by [19].

Definition 2.2. A right \mathfrak{A}-submodule \mathcal{E} of $\mathcal{F}(S, \mathfrak{A})$ is called a reproducing kernel Hilbert C^*-module if it satisfies the following conditions:

(i) \mathcal{E} is a Hilbert C^*-module over \mathfrak{A}.

(ii) For every $s \in S$, there exists $k_s \in \mathcal{E}$ such that the evaluation map $\delta_s : \mathcal{E} \to \mathfrak{A}$ at $s \in S$ satisfies $\delta_s(f) = f(s) = \langle k_s, f \rangle$ for all $f \in \mathcal{E}$.

(iii) The \mathfrak{A}-linear span of $\{k_s : s \in S\}$ is dense in \mathcal{E}.

The element k_s is called the reproducing kernel for the point $s \in S$.

The corresponding reproducing kernel $K : S \times S \to \mathfrak{A}$ is given by $K(s, t) = \langle k_s, k_t \rangle$ for every $s, t \in S$; see [5]. In what follows, we use the following theorems.

Theorem 2.3. [10, proposition 3.1] Let S, \mathfrak{A}, and \mathcal{E} be as above. Then

(i) the kernel K is positive definite;

(ii) $K(s, s) \in \mathfrak{A}^+$ for every $s \in S$;

(iii) $\|K(s, t)\|^2 \leq \|K(s, s)\|\|K(t, t)\|$ for all $s, t \in S$.

Now let $K : S \times S \to \mathfrak{A}$ be a positive definite kernel. For every $s \in S$, consider the function $k_s : S \to \mathfrak{A}$ by $k_s(t) = K(t, s)$. Assume that \mathcal{E}_0 is the right \mathfrak{A}-module of \mathfrak{A}-valued functions on S generated by $\{k_s : s \in S\}$. Now, setting

$$\left\langle \sum_{i=1}^m k_{a_i}a_i, \sum_{j=1}^n k_{t_j}b_j \right\rangle := \sum_{i=1}^m \sum_{j=1}^n a_i^*K(s_i, t_j)b_j,$$

where $m, n \in \mathbb{N}$, $a_1, a_2, \ldots, a_n, b_1, b_2, \ldots, b_n \in \mathfrak{A}$, and $s_1, s_2, \ldots, s_m, t_1, t_2, \ldots, t_n \in S$, we make \mathcal{E}_0 into a pre-Hilbert \mathfrak{A}-module. Suppose that \mathcal{E} denotes its completion. In addition, \mathcal{E} can be considered as a Hilbert \mathfrak{A}-module of \mathfrak{A}-valued functions on S, and evidently $\langle k_s, k_t \rangle = K(s, t)$ for all $s, t \in S$, which means that K is its reproducing kernel. The above construction is given by Heo [10] and holds true for the definition 2.2. It entails the following result.

Theorem 2.4. [10, Theorem 3.2] If $K : S \times S \to \mathfrak{A}$ is positive definite, then there exists a unique Hilbert \mathfrak{A}-module consisting of \mathfrak{A}-valued functions on S such that K is its reproducing kernel.
Heo [10] introduced the concept of an \(\text{RKHC}^*M \) and transferred some of the classical theorems to the setting of \(\text{RKHC}^*M \)s. Regretfully, the requirement of self-duality in [10] is too strong to hold in nontrivial examples. For example, it is known that finitely generated Hilbert \(C^* \)-modules and Hilbert \(C^* \)-modules over finite-dimensional \(C^* \)-algebras are self-dual; see [6] and references therein.

Here, we explain why \(\text{RKHC}^*M \)s are almost never self-dual; see [6]. For simplicity, we assume \(S = \mathbb{N} \). Then \(\xi = \sum_s k_s a_s \) can be viewed as a sequence \(\xi = (a_s)_{s \in \mathbb{N}} \), where \(a_s \in \mathfrak{A}, s \in \mathbb{N} \). The inner product on \(\mathcal{E} \) is given by

\[
\langle \xi, \eta \rangle = \sum_{s,t \in \mathbb{N}} a_s^* K(s,t) b_t.
\]

A sequence \(\xi \) lies in \(\mathcal{E} \) if and only if the series \(\sum_{s,t \in \mathbb{N}} a_s^* K(s,t) a_t \) is norm-convergent. Let \(f = (f_s) \) be a sequence such that all partial sums \(\sum_{s,t \in \mathbb{N}} f_s^* K(s,t) f_t \) are uniformly bounded. Then the formula \(f(\xi) = \sum_{s,t \in \mathbb{N}} f_s^* K(s,t) a_t \) is well-defined (i.e., the series is norm-convergent) and gives a bounded \(\mathfrak{A} \)-linear map from \(\mathcal{E} \) to \(\mathfrak{A} \), that is, \(f \in \mathcal{E}' \). It is easy to see that the two conditions, norm convergence and uniform boundedness, are different in most cases. For simplicity, assume that \(\mathfrak{A} \) is commutative, and so is of the form \(C_0(X) \) for a locally compact Hausdorff space \(X \). Then \(K(s,t) \)s are functions on \(X \). Suppose that \(\cup_{s \in \mathbb{N}} \text{supp } K(s,s) \) is infinite. Then one can find functions \(f_s \), \(s \in \mathbb{N} \), on \(X \) such that \(\|K(s,s) f_s\| = 1 \) (where \(\| \cdot \| \) is the sup-norm on \(X \)) and \(f_s f_t = 0 \) when \(s \neq t \). Then, obviously, \((f_s)_{s \in \mathbb{N}} \in \mathcal{E}' \setminus \mathcal{E} \). Note that since \(K \) is positive definite, the condition that \(\cup_{s \in \mathbb{N}} \text{supp } K(s,s) \) is finite, implies that \(\text{supp } K(s,t) \) is finite as well.

While every closed subspace of a Hilbert space is orthogonally complemented, it is well known that submodules in Hilbert \(C^* \)-modules are often not orthogonally complemented. Furthermore, it is shown in [13] that if there exists a full Hilbert \(\mathfrak{A} \)-module in which every closed submodule is orthogonally complemented, then \(\mathfrak{A} \) is \(* \)-isomorphic to a \(C^* \)-algebra of (not necessarily all) compact operators on some Hilbert spaces; see [7] and references therein. The following theorem provides a class of orthogonally complemented submodules being \(\text{RKHC}^*M \)s. To achieve the next result, we need a lemma.

Lemma 2.5. Let \(\mathcal{E} \) be an \(\text{RKHC}^*M \) on a set \(S \) with the kernel \(K \). Then every orthogonally complemented submodule \(\mathcal{E}_0 \) of \(\mathcal{E} \) can be endowed with an \(\text{RKHC}^*M \) on \(S \).

Proof. Let \(P : \mathcal{E} \rightarrow \mathcal{E}_0 \) be the orthogonal projection onto \(\mathcal{E}_0 \). If \(k_s \) is the reproducing kernel at the point \(s \) in \(\mathcal{E} \), then \(P(k_s) \) evidently is the reproducing kernel for the point \(s \) in \(\mathcal{E}_0 \) satisfying the conditions of Definition 2.1. Note that

\[
f(s) = \langle k_s, f \rangle = \langle k_s, P(f) \rangle = \langle P(k_s), f \rangle,
\]

for all \(f \in \mathcal{E}_0 \). Thus \(\mathcal{E}_0 \) is an \(\text{RKHC}^*M \) with the reproducing kernel \(K_0(s,t) = \langle P(k_s), P(k_t) \rangle \). \qed

Theorem 2.6. Suppose that \(K(s_0,s_0) \) is invertible for some \(s_0 \in S \). Then the following properties hold:

(i) The submodule \(\mathcal{E}_0 = \{ f \in \mathcal{E} : f(s_0) = 0 \} \) is orthogonally complemented in \(\mathcal{E} \).
Proof. (i) Note that k_{s_0} satisfying $\langle k_{s_0}, k_{s_0} \rangle = K(s_0, s_0)$ is invertible. Hence $P(f) = k_{s_0} \langle k_{s_0}, k_{s_0} \rangle^{-1} \langle k_{s_0}, f \rangle$ is the orthogonal projection onto the \mathcal{A}-linear span of k_{s_0}. Then $\mathcal{E} = k_{s_0} \mathcal{A} \oplus (k_{s_0} \mathcal{A})^\perp$. The condition $f \perp k_{s_0}$ can be written as $0 = \langle k_{s_0}, f \rangle = f(s_0)$. Hence $(k_{s_0} \mathcal{A})^\perp = \mathcal{E}_0$.

(ii) The reproducing kernel for \mathcal{E}_0 is given by
\[
\langle P(k_s), P(k_t) \rangle = \langle k_s, P(k_t) \rangle = \langle k_s, k_t - k_{s_0} \langle k_{s_0}, k_{s_0} \rangle^{-1} \langle k_{s_0}, k_t \rangle \rangle = K(s, t) - K(s, s_0)K(s_0, s_0)^{-1}K(s_0, t) = K_0(s, t).
\]

\[\square\]

The next result provides an interpolation theorem. We should notify that a finitely generated \mathcal{A}-submodule is not necessarily closed. For example, when $\mathcal{A} = C([0, 1]) = \mathcal{E}$, the submodule singly generated by the function $f(x) = x$ is not closed, and its closure is not finitely generated.

Theorem 2.7. Let \mathcal{E} be an RKHC \ast-M on S with the reproducing kernel K. Let $F = \{s_1, \ldots, s_n\}$ be a subset of distinct elements of S such that the \ast-submodule generated by k_{s_1}, \ldots, k_{s_n} is closed in \mathcal{E}, and let $a_1, \ldots, a_n \in \mathcal{A}$. Then there is a function $f \in \mathcal{E}$ of minimal norm such that $f(s_i) = a_i$ for all $1 \leq i \leq n$ if and only if $(a_1, \ldots, a_n)^\dagger$ is in the range of the matrix $(K(s_j, s_i)) \in M_n(\mathcal{A})$.

Proof. Assume that P_F is the orthogonal projection onto the orthogonally complemented submodule \mathcal{E}_F finitely generated by $\{k_s : s \in F\}$. So that $\mathcal{E} = \mathcal{E}_F \oplus \mathcal{E}_F^\perp$, see [14, Lemma 2.3.7]. Let $f \in \mathcal{E}$ and let $P_F(f) = \sum_{j=1}^n k_{s_j} b_j \in \mathcal{E}_F$, where b_j's are in \mathcal{A}. Then $P_F(f)(s) = f(s)$ for all $s \in F$, since $f(s) = \langle k_s, f \rangle = 0$ for all $s \in F$ if and only if $f \in \mathcal{E}_F^\perp$.

If there is a function $f \in \mathcal{E}$ such that $f(s_i) = a_i$ for all $1 \leq i \leq n$, then
\[
a_i = f(s_i) = P_F(f)(s_i) = \langle k_{s_i}, P_F(f) \rangle = \left\langle k_{s_i}, \sum_{j=1}^n k_{s_j} b_j \right\rangle = \sum_{j=1}^n K(s_i, s_j) b_j.
\]

Thus $(a_1, \ldots, a_n)^\dagger = (K(s_j, s_j)) (b_1, \ldots, b_n)^\dagger$ is in the range of the matrix $(K(s_j, s_i))$. In addition, if $g \in \mathcal{E}$ interpolates these points, then $(g - f)(s) = 0$ for all $s \in S$. Hence $g - f \in \mathcal{E}_F^\perp$, whence $g = f + h$ with $h \in \mathcal{E}_F^\perp$. Therefore,
\[
\|P_F(f)\| = \|P_F(f + h)\| \leq \|f + h\| = \|g\|.
\]

Thus, $P_F(f)$ is the unique function of minimum norm that interpolates these values.

Conversely, if $(a_1, \ldots, a_n)^\dagger$ is in the range of $(K(s_j, s_i))$ and $(a_1, \ldots, a_n)^\dagger = (K(s_i, s_j)) (b_1, \ldots, b_n)^\dagger$ for some $b_1, \ldots, b_n \in \mathcal{A}$, then
\[
a_i = \sum_{j=1}^n K(s_i, s_j) b_j = \left\langle k_{s_i}, \sum_{j=1}^n k_{s_j} b_j \right\rangle.
\]

Putting $f := \sum_{j=1}^n k_s b_j \in \mathcal{E}_F$, we get $f = P_F(f)$ and $a_i = \langle k_{s_i}, f \rangle = f(s_i)$ for $1 \leq i \leq n$. \[\square\]
Remark 2.8. If $\mathbf{a} = (a_1, \ldots, a_n)^t$ and $\mathbf{b} = (b_1, \ldots, b_n)^t$ are in the Hilbert C^*-module A^n with its natural inner product (see [14]) and $(a_1, \ldots, a_n)^t = (K(s_i, s_j))(b_1, \ldots, b_n)^t$, then we can choose f such that $\|f\| = \|\langle \mathbf{a}, \mathbf{b} \rangle\|^{1/2}$. In fact, if $f := \sum_{j=1}^n k_s b_j$, then

$$
\|f\|^2 = \left\| \sum_{i=1}^n k_s b_i, \sum_{j=1}^n k_s b_j \right\| = \left\| \sum_{1 \leq i, j \leq n} b_i^* K(s_i, s_j) b_j \right\|
$$

$$
= \left\| \left(b_i \right)_i, \left(\sum_{j=1}^n K(s_i, s_j) b_j \right)_i \right\| = \| \langle \mathbf{b}, \mathbf{a} \rangle \|.
$$

If K is strictly positive, then \mathbf{b} is uniquely defined by \mathbf{a}. Thus, from the arguments at the first part of the proof of the above theorem, there is a unique $f \in E_F$ satisfying the conditions of Theorem 2.7.

Now, we investigate the exterior tensor product of $RKHC^*Ms$. Let $K_1 : X \times X \to A$ and $K_2 : S \times S \to B$ be positive definite kernels on sets X and S, respectively. It follows from Theorem 2.4 that there are $RKHC^*M E_1$ and E_2 over A and B consisting of A-valued functions on X and B-valued functions on S, respectively. We define $K : (X \times S) \times (X \times S) \to A \otimes_s B$, where \otimes_s denotes a fixed C^*-tensor product with the C^*-cross-norm $\| \cdot \|_*$ by

$$
K((x, s), (y, t)) = K_1(x, y) \otimes K_2(s, t), \quad (x, s), (y, t) \in X \times S.
$$

Let $\xi_i = \sum_{k=1}^n a_i^k \otimes b_i^k \in A \otimes_{alg} B$, $i = 1, \ldots, m$. Then

$$
\sum_{i, j=1}^n \xi_i^* K((x_i, s_i), (x_j, s_j)) \xi_j
$$

$$
= \sum_{k, l=1}^n \left(\sum_{i, j=1}^n a_i^k K_1(x_i, x_j)a_j^l \right) \otimes \left(\sum_{i, j=1}^n b_i^k K_2(s_i, s_j)b_j^l \right).
$$

Set

$$
\alpha_{kl} := \sum_{i, j=1}^n (a_i^k)^* K_1(x_i, x_j)a_j^l \in A, \quad \beta_{kl} := \sum_{i, j=1}^n (b_i^k)^* K_2(s_i, s_j)b_j^l \in B.
$$

Then the matrices $(\alpha_{kl})_{k, l=1}^n$ and $(\beta_{kl})_{k, l=1}^n$ are positive elements of $M_n(A)$ and of $M_n(B)$, respectively. Then, by Lemma 4.3 of [12],

$$
\sum_{i, j=1}^n \xi_i^* K((x_i, s_i), (x_j, s_j)) \xi_j = \sum_{k, l=1}^n \alpha_{kl} \otimes \beta_{kl} \geq 0. \quad (2.1)
$$

Since the set of all positive elements in a C^*-algebra is closed, we conclude that (2.1) is also valid for every choice of elements ξ in $A \otimes_s B$. Thus K is a positive definite kernel. Again, in virtue of Theorem 2.4, there exists a Hilbert $A \otimes_s B$-module E of $A \otimes_s B$-valued functions on $X \times S$ such that K is its reproducing kernel. Now this question raises: What relations are there between E, E_1, and E_2, where E_1 and E_2 are $RKHC^*Ms$ with kernels K_1 and K_2, respectively?

Recall that the exterior tensor product $E_1 \otimes E_2$ of Hilbert C^*-modules E_1 over A and E_2 over B is defined as the Hilbert C^*-module over $A \otimes_s B$ obtained by
completion of $\mathcal{E}_1 \otimes_{\mathfrak{alg}} \mathcal{E}_2$ with respect to the norm

$$
\|u\|^2 = \left\| \sum_{i,j=1}^{n} \langle f_i, f_j \rangle \otimes \langle g_i, g_j \rangle \right\|_2,
$$

where $u = \sum_{i=1}^{n} f_i \otimes g_i \in \mathcal{E}_1 \otimes_{\mathfrak{alg}} \mathcal{E}_2$; see [12].

Set $k^1_i(x) := K_1(x, y), k^2_s(s) := K_2(s, t)$, and $k_{(y,t)}(x, s) := K((x, s), (y, t))$. Clearly, $k_{(y,t)}(x, s) = k^1_y(x) \otimes k^2_t(s)$. By the assumption, the \mathfrak{A}-linear spans of $\{k^1_x : x \in X\}$, $\{k^2_s : s \in S\}$, and $\{k_{(x,s)} : (x, s) \in X \times S\}$ are dense in \mathcal{E}_1, \mathcal{E}_2, and \mathcal{E}, respectively.

We claim that $\mathcal{E}_1 \otimes \mathcal{E}_2$ is unitarily equivalent to \mathcal{E}. Let $f_i = \sum_{x \in X} k^1_x a^i_x$ and $g_i = \sum_{s \in S} k^2_s b^i_s$, where $a^i_x \in \mathfrak{A}$, $b^i_s \in \mathfrak{B}$, and both sums have a finite number of nonzero summands. Set

$$
\Phi \left(\sum_{i=1}^{n} \sum_{x \in X,s \in S} k^1_x a^i_x \otimes k^2_s b^i_s \right) := \sum_{x \in X, s \in S} k_{(x,s)} \sum_{i=1}^{n} a^i_x \otimes b^i_s.
$$

(2.2)

For $u \in \mathcal{E}_1 \otimes_{\mathfrak{alg}} \mathcal{E}_2$, define $\hat{u} \in \mathbb{F}(X \times S, \mathfrak{A} \otimes_{\ast} \mathfrak{B})$ by

$$
\hat{u}(x, s) = \langle k^1_x \otimes k^2_s, u \rangle, \quad (x, s) \in X \times S.
$$

Let $u = \sum_{i=1}^{n} f_i \otimes g_i$, where $f_i = \sum_{x \in X} k^1_x a^i_x$, $g_i = \sum_{s \in S} k^2_s b^i_s$, where $a^i_x \in \mathfrak{A}$, $b^i_s \in \mathfrak{B}$, and both sums have a finite number of nonzero summands. Then

$$
\hat{u}(y, t) = \sum_{i=1}^{n} \sum_{x \in X,s \in S} k^1_x(y) a^i_x \otimes k^2_s(t) b^i_s
$$

$$
= \sum_{x \in X,s \in S} k_{(y,t)}(y, t) \sum_{i=1}^{n} a^i_x \otimes b^i_s = \Phi(u)(y, t),
$$

which shows that the map Φ, defined in (2.2), is well-defined and that $\hat{u} \in \mathcal{E}$.

It is clear that Φ is an isometry between dense subspaces of $\mathcal{E}_1 \otimes \mathcal{E}_2$ and of \mathcal{E}, hence it extends to a surjective isometry $\Phi : \mathcal{E}_1 \otimes \mathcal{E}_2 \to \mathcal{E}$.

Definition 2.9. Suppose that $K_1 : X \times X \to \mathfrak{A}$ and $K_2 : S \times S \to \mathfrak{B}$ are kernels. We call the map $K : (X \times S) \times (X \times S) \to \mathfrak{A} \otimes_{\ast} \mathfrak{B}$ defined by

$$
K((x, s), (y, t)) = K_1(x, s) \otimes K_2(y, t), \quad (x, s), (y, t) \in X \times S
$$

the tensor product of the kernels K_1 and K_2 and denote it by $K_1 \otimes K_2$.

We summarize the above results in the following theorem.

Theorem 2.10. Let K_1 and K_2 be positive definite kernels and let \mathcal{E}_1 and \mathcal{E}_2 be their associated Hilbert C^\ast-modules. Then $K_1 \otimes K_2$ is a positive definite kernel, and its associated Hilbert C^\ast-module is unitarily equivalent to the exterior tensor product of \mathcal{E}_1 and \mathcal{E}_2.

3. Left multipliers of RKHC \ast-Ms

If F_1 and F_2 are submodules of $\mathbb{F}(S, \mathfrak{A})$, then a function $f \in \mathbb{F}(S, \mathfrak{A})$ for which $fF_1 \subseteq F_2$ is called a left multiplier of F_1 into F_2. Note that

$$
fF_1 = \{ fh : h \in F_1 \},
$$
where \(fh \) is the multiplication of \(f \) and \(h \). The set of all left multipliers of \(F_1 \) into \(F_2 \) is denoted by \(\mathcal{M}(F_1, F_2) \). Clearly, \(\mathcal{M}(F_1, F_2) \) is a linear space. Moreover, \(\mathcal{M}(F) \) stands for \(\mathcal{M}(F, F) \) being an algebra. For every \(f \in \mathcal{M}(F_1, F_2) \), there is a linear map \(M_f : F_1 \to F_2 \) that is defined by \(M_f(h) = fh \) for all \(h \in F_1 \).

The following lemma is a useful property of RKHC*Ms.

Lemma 3.1. Suppose that \(\mathcal{E} \) is an RKHC*M on a set \(S \) with the kernel \(K \). If a sequence \((h_n) \) in \(\mathcal{E} \) converges to \(h \), then \(\lim_n h_n(s) = h(s) \) for each \(s \in S \).

Proof. It is easily concluded from

\[
\|h_n(s) - h(s)\| = \|\langle k_s, h_n \rangle - \langle k_s, h \rangle\| \leq \|k_s\| \|h_n - h\|.
\]

\(\square \)

Let \(\mathcal{E} \) be an RKHC*M on \(S \) and let \(g : S \to \mathfrak{A} \) be a function. Put

\[
\mathcal{E}_g = \{ gh : h \in \mathcal{E} \}.
\]

In the next theorem, we endow the right \(\mathfrak{A} \)-submodule \(\mathcal{E}_g \) of \(\mathbb{F}(S, \mathfrak{A}) \) with an RKHC*M structure.

Theorem 3.2. Suppose that \(\mathcal{E} \) is an RKHC*M on a set \(S \) with the kernel \(K \) and that \(g : S \to \mathfrak{A} \) is an arbitrary function. Then the following assertions hold:

(i) \(\mathcal{E}_0 := \{ h \in \mathcal{E} : gh = 0 \} \) is closed.

(ii) If \(\mathcal{E}_0 \) is orthogonally complemented, then \(\mathcal{E}_g \) is an RKHC*M with kernel \(K'(s, t) = g(s)K(s, t)g(t)^* \).

Proof. (i) It follows from Lemma 3.1 that \(\mathcal{E}_0 \) is closed.

(ii) It follows from the assumption that \(\mathcal{E} = \mathcal{E}_0 \oplus \mathcal{E}_0^\perp \). Therefore

\[
\mathcal{E}_g = \{ gh + gh^\# : \tilde{h} \in \mathcal{E}_0, h^\# \in \mathcal{E}_0^\perp \} = \{ gh : h \in \mathcal{E}_0^\perp \}.
\]

We define an \(\mathfrak{A} \)-valued inner product on \(\mathcal{E}_g \) by

\[
\langle gh_1, gh_2 \rangle = \langle h_1, h_2 \rangle
\]

for all \(h_1, h_2 \in \mathcal{E}_0^\perp \). This is well-defined, since if \(gh = gh' \) for \(h, h' \in \mathcal{E}_0^\perp \), then \(h - h' \in \mathcal{E}_0 \cap \mathcal{E}_0^\perp = \{0\} \). From the inner product on \(\mathcal{E}_g \), it is clear that \(\varphi_g : \mathcal{E}_0^\perp \to \mathcal{E}_g \) by \(\varphi_g(h) = gh \) is a surjective linear isometry. Hence \(\mathcal{E}_g \) is a Hilbert \(C^* \)-module isomorphic with \(\mathcal{E}_0^\perp \). Thus the reproducing kernel structure of \(\mathcal{E}_0^\perp \) constructed in Lemma 2.5 can be transferred onto \(\mathcal{E}_g \). More precisely, for each \(h \in \mathcal{E}_0^\perp \), we have

\[
(gh)(s) = g(s)h(s) = g(s)\langle k_s, h \rangle = g(s)\langle k^\#_s, h \rangle = g(s)\langle gk^\#_s, gh \rangle = g(s)\langle gk_s, gh \rangle = \langle gk_s g(s)^*, gh \rangle
\]
for some \(k_s = \bar{k}_s + k_s^\# \in \mathcal{E}_0 \oplus \mathcal{E}_Q^+ \). Hence the evaluation map \(\delta_s \) can be represented by \(\langle gk_s, g(s)^*, \cdot \rangle \) with \(k_s = gk_s g(s)^* \in \mathcal{E}_g \). In addition, the corresponding reproducing kernel is
\[
K'(s,t) = \langle k'_s, k'_t \rangle = \langle gk_s g(s)^*, gk_t g(t)^* \rangle = g(s) \langle gk_s, g_k^0(t)^* \rangle + g(s) \langle k_s^\#, k_t^\# g(t)^* \rangle + 0
\]
\[
= g(s) \langle k_s^\#, k_t^\# g(t)^* + g(s) \bar{k}_t(s) g(t)^* \rangle = g(s) \langle k_s^\#, k_t g(t)^* \rangle = g(s) K(s,t) g(t)^*
\]
for every \(s, t \in S \).

In the following theorem, \(k_s^1 \) and \(k_s^2 \) are the reproducing kernels at the point \(s \in S \) for RKHC*Ms \(\mathcal{E}_1 \) and \(\mathcal{E}_2 \), respectively.

Proposition 3.3. Let \(\mathcal{E}_1 \) and \(\mathcal{E}_2 \) be RKHC*Ms on a nonempty set \(S \). If \(f \in \mathcal{M}(\mathcal{E}_1, \mathcal{E}_2) \), then \(M_f \in L(\mathcal{E}_1, \mathcal{E}_2) \) and \(M_f^* (k^2_s) = k^1_s f(s)^* \) for all \(s \in S \).

Proof. For every \(h \in \mathcal{E}_1, s_1, \ldots, s_n \in S \), and \(a_1, \ldots, a_n \in \mathfrak{A} \), we have
\[
\left\langle \sum_{i=1}^{n} k_{s_i}^2 a_i, M_f(h) \right\rangle = \sum_{i=1}^{n} a_i^* \langle k_{s_i}^2, f h \rangle = \sum_{i=1}^{n} a_i^* f(s_i) h(s_i)
\]
\[
= \sum_{i=1}^{n} a_i^* f(s_i) \langle k_{s_i}^1, h \rangle = \left\langle \sum_{i=1}^{n} k_{s_i}^1 f(s_i)^* a_i, h \right\rangle.
\]
Hence \(M_f^* (\sum_{i=1}^{n} k_{s_i}^2 a_i) = \sum_{i=1}^{n} k_{s_i}^1 f(s_i)^* a_i \). In particular, \(M_f^* (k^2_s) = k^1_s f(s)^* \) for all \(s \in S \).

Thus, if \(f \in \mathcal{M}(\mathcal{E}) \) and \(\mathfrak{A} \) is a unital C*-algebra, then
\[
f(s) = \langle k_s, f k_s \rangle K(s,s)^{-1} = \langle k_s, M_f(k_s) \rangle K(s,s)^{-1},
\]
for every point \(s \in S \) for which \(K(s,s) \in \text{Inv}(\mathfrak{A}) \). Thus, we can present the following definition in the same manner as in the classical case [16] and transfer some known facts in the theory of RKHSs to context of RKHC*M.

Definition 3.4. Let \(\mathcal{E} \) be an RKHC*M on \(S \) over a unital C*-algebra \(\mathfrak{A} \). Let \(K \) be its associated kernel and let \(T \in L(\mathcal{E}) \) be arbitrary. Then the function
\[
B_T : \{ s \in S : K(s,s) \text{ is invertible} \} \rightarrow \mathfrak{A}
\]
defined by \(B_T(s) = \langle k_s, T(k_s) \rangle K(s,s)^{-1} \) is called the Berezin transform of \(T \) associated by \(\mathfrak{A} \).

Theorem 3.5. Let \(\mathcal{E} \) be an RKHC*M on \(S \) with the reproducing kernel \(K \) over a unital C*-algebra \(\mathfrak{A} \). Let
\[
L = \{ M_f : f \in \mathcal{M}(\mathcal{E}) \text{ and } f(s) = 0 \text{ whenever } K(s,s) \text{ is not invertible} \}.
\]
Then \(L \) is a unital subalgebra of \(L(\mathcal{E}) \).

Furthermore, if \(\{ M_{f_\alpha} \}_{\alpha \in I} \) is a net in \(L \) such that \(\langle M_{f_\alpha} h_1, h_2 \rangle \rightarrow \langle Th_1, h_2 \rangle \) \((h_1, h_2 \in \mathcal{E}) \) for some \(T \in L(\mathcal{E}) \), then \(T = M_f \) for some \(f \in \mathcal{F}(S, \mathfrak{A}) \).
Proof. Since
\[\lambda M_f + M_g = M_{\alpha f + g}, \quad M_f \circ M_g = M_{fg} \quad (f, g \in \mathcal{M}(\mathcal{E}), \lambda \in \mathbb{C}), \]
\(L\) is an algebra. Moreover, \(M_1\) is the unit of \(L\), where \(1 \in \mathcal{M}(\mathcal{E})\) is the constant function onto the unit of \(\mathfrak{A}\).

Next, we show that \(T = M_f\) for some \(f \in \mathcal{M}(\mathcal{E})\). We have
\[\lim_{a} f_{a}(s) = \lim_{a} \langle k_{s}, M_{f_a}(k_{s}) \rangle K(s, s)^{-1} = \langle k_{s}, T(k_{s}) \rangle K(s, s)^{-1} = B_T(s), \]
for every \(s \in S\) for which \(K(s, s)\) is invertible. Set \(f(s) := B_T(s)\) whenever \(K(s, s)\) is invertible and \(f(s) := 0\) otherwise. To complete the proof, we shall show that \(T = M_f\). We have
\[
\left\langle \sum_{i=1}^{n} k_{s_i}a_i, Th \right\rangle = \lim_{a} \left\langle \sum_{i=1}^{n} k_{s_i}a_i, M_{f_a}h \right\rangle = \lim_{a} \left\langle \sum_{i=1}^{n} k_{s_i}a_i, f_{a}h \right\rangle \\
= \lim_{a} \sum_{i=1}^{n} a_{i}^{*}f_{a}(s_{i})h(s_{i}) = \sum_{i=1}^{n} a_{i}^{*}f(s_{i})h(s_{i}) \\
= \sum_{i=1}^{n} a_{i}^{*}\langle k_{s_i}, fh \rangle = \left\langle \sum_{i=1}^{n} k_{s_i}a_i, M_fh \right\rangle ,
\]
for every \(h \in \mathcal{E}, s_1, \ldots, s_n \in S\), and \(a_1, \ldots, a_n \in \mathfrak{A}\). Thus \(T = M_f\). \(\square\)

4. Papadakis theorem for RKHC*-Ms

We recall the following definitions from [8].

Definition 4.1. Let \(J\) be an arbitrary subset of \(\mathbb{N}\) and let \(\mathcal{E}\) be a Hilbert \(C^*\)-module over a unital \(C^*\)-algebra \(\mathfrak{A}\). A sequence \((x_j)_{j \in J}\) in \(\mathcal{E}\) is said to be a (standard) frame if there are real numbers \(C, D > 0\) such that
\[C\langle x, x \rangle \leq \sum_{j \in J} \langle x, x_j \rangle \langle x_j, x \rangle \leq D\langle x, x \rangle \quad (4.1) \]
for every \(x \in \mathcal{E}\) in which the sum in the middle of inequality (4.1) converges in norm.

The sharp numbers (i.e., maximal for \(C\) and minimal for \(D\)) are called frame bounds. A frame \(\{x_j : j \in J\}\) is said to be a tight frame if \(C = D\), and normalized if \(C = D = 1\). Therefore, a set \(\{x_j : j \in J\}\) is a normalized tight frame whenever the equality
\[\langle x, x \rangle = \sum_{j \in J} \langle x, x_j \rangle \langle x_j, x \rangle \quad (4.2) \]
is valid for every \(x \in \mathcal{E}\).

Now, we extend the Papadakis theorem to RKHC*-Ms.

Theorem 4.2. Let \(\mathcal{E}\) be an RKHC*-\(M\) on a set \(S\) over a unital \(C^*\)-algebra \(\mathfrak{A}\) and let \(K\) be its corresponding reproducing kernel. Then \(\{f_j : j \in J\} \subseteq \mathcal{E}\) is a normalized tight frame for \(\mathcal{E}\) if and only if
\[K(s, t) = \sum_{j \in J} f_j(s)^{*}f_j(t) \quad (s, t \in S), \quad (4.3) \]
where the sum is convergent in norm.
Proof. Suppose that \(\{f_j : j \in J\} \) is a normalized tight frame for \(\mathcal{E} \). It follows from (4.2) that
\[
\langle f, f \rangle = \sum_{j \in J} \langle f, f_j \rangle \langle f_j, f \rangle,
\]
for every \(f \in \mathcal{E} \). Therefore, by the polarization identity, we can write
\[
K(s, t) = \langle k_s, k_t \rangle = \frac{1}{4} \sum_{k=0}^{3} i^k \langle k_t + i^k k_s, k_t + i^k k_s \rangle
\]
\[
= \frac{1}{4} \sum_{k=0}^{3} i^k \sum_{j \in J} (f_j(t) + i^k f_j(s))^* (f_j(t) + i^k f_j(s))
\]
\[
= \sum_{j \in J} \frac{1}{4} \sum_{k=0}^{3} i^k (f_j(t) + i^k f_j(s), f_j(t) + i^k f_j(s))
\]
\[
= \sum_{j \in J} \langle f_j(s), f_j(t) \rangle = \sum_{j \in J} f_j(s)^* f_j(t)
\]
for all \(s, t \in S \).

Conversely, let (4.3) hold for some family \(\{f_j : j \in J\} \) and let the sum in (4.3) converge in the norm topology. Then
\[
\langle k_s, k_s \rangle = K(s, s) = \sum_{j \in J} f_j(s)^* f_j(s) = \sum_{j \in J} \langle k_s, f_j \rangle \langle f_j, k_s \rangle
\]
for every \(s \in S \). Hence, by the density of \(\mathcal{A} \)-linear span of \(\{k_s : s \in S\} \) in \(\mathcal{E} \) and the joint continuity of inner product, we derive
\[
\langle f, f \rangle = \sum_{j \in J} \langle f, f_j \rangle \langle f_j, f \rangle
\]
for all \(f \in \mathcal{E} \). It follows from (4.2) that \(\{f_j : j \in J\} \) is a normalized tight frame. \(\square \)

As we already mentioned in the introduction, \(RKHC^*M \)s are rarely self-dual. Recall that \(\mathcal{E}' \) denotes the dual module of \(\mathcal{E} \).

Lemma 4.3. Elements of \(\mathcal{E}' \) can be thought of as functions on \(S \), that is, there is an inclusion \(\mathcal{E}' \subset C(S, \mathcal{A}) \) that extends the inclusion \(\mathcal{E} \subset C(S, \mathcal{A}) \).

Proof. Suppose that \(F \in \mathcal{E}' \). Set \(F(s) := F(k_s) \). This gives us a map \(\mathcal{E}' \to C(S, \mathcal{A}) \). To show that this map is faithful, suppose that \(F(s) = 0 \) for any \(s \in S \). Then \(F \) vanishes on a dense subset of \(\mathcal{E} \), and hence is zero. \(\square \)

It is clear that if \(K \) is a kernel of the form (4.3), then it is a positive definite kernel; see [9] for the Kolmogorov decomposition at the setting of Hilbert \(C^* \)-modules. Hence, employing Theorem 2.4, there exists a Hilbert \(\mathcal{A} \)-module consisting of \(\mathcal{A} \)-valued functions on \(S \) such that \(K \) is its reproducing kernel. This is a motivation for the following definition.
Definition 4.4. Let \(K : S \times S \to \mathcal{A} \) be the positive definite kernel defined by
\[
K(s, t) = \sum_{\alpha \in I} e_{\alpha}(s)^* e_{\alpha}(t) \quad (s, t \in S),
\]
where \(\{e_{\alpha}\}_{\alpha \in I} \) is a family in \(\mathbb{F}(S, \mathcal{A}) \) with the property that \(\sum_{\alpha \in I} e_{\alpha}(s)^* e_{\alpha}(s) \) converges in \(\mathcal{A} \). Then \(K \) is called the Papadakis kernel, and the Hilbert \(\mathcal{A} \)-module consisting of \(\mathcal{A} \)-valued functions on \(S \), given by Theorem 2.4, is called the Papadakis Hilbert \(\mathcal{A} \)-module.

Let \(K \) be a Papadakis kernel on \(S \) for some family \(\{e_{\alpha}\}_{\alpha \in I} \subseteq \mathbb{F}(S, \mathcal{A}) \) and let \(\mathcal{E} \) be the associated Papadakis Hilbert \(C^* \)-module. The following theorem shows that the multiplication of an element of \(\mathbb{F}(S, \mathcal{A}) \) satisfying suitable conditions and that \(e_{\alpha} (\alpha \in I) \) is an element of \(\mathcal{E} \). Note that \(e_{\alpha}^* : S \to \mathcal{A} \) is defined by \(e_{\alpha}^*(s) = e_{\alpha}(s)^* \) for all \(\alpha \in I \) and \(s \in S \). To achieve our next result, we mimic some ideas of [18].

Definition 4.5. A subset \(P \) of \(S \) is said to be a set of uniqueness of \(\mathcal{E} \subseteq \mathbb{F}(S, \mathcal{A}) \) if the \(\mathcal{A} \)-linear span of \(k_p, p \in P \), is dense in \(\mathcal{E} \). In this case, we write \(P \in \mathbb{U}(\mathcal{E}) \).

Note that if \(f, g \in \mathcal{E} \) with \(f(p) = g(p) \) for any \(p \in P \), then \(f = \sum_{p \in P} k_p a_p \) and \(g = \sum_{p \in P} k_p b_p \), where \(a_p, b_p \in \mathcal{A} \). Then \(f = g \).

Theorem 4.6. Let \(K \) be the Papadakis kernel for some family \(\{e_{\alpha}\}_{\alpha \in I} \subseteq \mathbb{F}(S, \mathcal{A}) \) and let \(\mathcal{E} \) be the associated Papadakis Hilbert \(C^* \)-module. Let \(e_{\alpha} \in \mathcal{M}(\mathcal{E}', \mathcal{E}) \) and let \(X \in \mathbb{U}(\mathcal{E}) \). Assume that \(\psi : X \to \mathcal{Z}(\mathcal{A}) \) is a function and that \(c > 0 \) is such that
\[
\sum_{i,j=1}^{n} a_i^* K(x_i, x_j) (c^2 - \psi(x_i)^* \psi(x_j)) a_j \geq 0, \tag{4.4}
\]
for all \(n \in \mathbb{N}, x_1, x_2, \ldots, x_n \in X \), and \(a_1, a_2, \ldots, a_n \in \mathcal{A} \). Then for every \(\alpha \in I \), there is a unique function \(\varphi_{\alpha} \in \mathcal{E} \) such that
\[
\varphi_{\alpha}(x) = e_{\alpha}(x) \psi(x), \quad x \in X
\]
or, equivalently,
\[
\varphi_{\alpha} = e_{\alpha} \psi
\]
and
\[
e_{\alpha} \varphi_{\beta} = e_{\beta} \varphi_{\alpha},
\]
for all \(\alpha, \beta \in I \). Furthermore, if \(\text{ran}(e_{\alpha}) \subseteq \mathcal{Z}(\mathcal{A}) \) and \(K(s, s) \) is invertible for every \(s \in S \), then
\[
|\varphi_{\alpha}(s)| \leq c |e_{\alpha}(s)|, (s \in S).
\]

Proof. Inequality (4.4) can be restated as follows:
\[
c^2 \left(\sum_{i=1}^{n} k_i a_i, \sum_{j=1}^{n} k_j a_j \right) \geq \sum_{\alpha \in I} \left(\sum_{i=1}^{n} e_{\alpha}(x_i) a_i \psi(x_i) \right)^* \left(\sum_{j=1}^{n} e_{\alpha}(x_j) a_j \psi(x_j) \right)
\]
\[
= \sum_{\alpha \in I} \left| \sum_{i=1}^{n} e_{\alpha}(x_i) a_i \psi(x_i) \right|^2 \tag{4.5}
\]
for every \(n \in \mathbb{N}, x_1, x_2, \ldots, x_n \in X \) and \(a_1, a_2, \ldots, a_n \in \mathfrak{A} \). Put
\[
D = \left\{ \sum_{i=1}^{n} k_{x_i} a_i : n \in \mathbb{N}, x_1, x_2, \ldots, x_n \in X, a_1, a_2, \ldots, a_n \in \mathfrak{A} \right\}.
\]

For every \(\alpha \in I \), we define \(\varphi_{\alpha} : D \to \mathfrak{A} \) by
\[
\varphi_{\alpha} \left(\sum_{i=1}^{n} k_{x_i} a_i \right) = \sum_{i=1}^{n} e_{\alpha}(x_i) a_i \psi(x_i),
\] (4.6)
where \(n \in \mathbb{N}, x_1, x_2, \ldots, x_n \in X, \) and \(a_1, a_2, \ldots, a_n \in \mathfrak{A} \). Set \(b := \sum_{i=1}^{n} k_{x_i} a_i \). From (4.5), we conclude that
\[
c^2 \langle b, b \rangle \geq \varphi_{\alpha}^*(b^*) \varphi_{\alpha}(b)
\]
for every \(\alpha \in I \). Hence \(\varphi_{\alpha} \) is a well-defined bounded \(\mathfrak{A} \)-linear map. Since \(X \in \cup(\mathcal{E}) \), the set \(D \) is dense in \(\mathcal{E} \). Hence, we can extend \(\varphi_{\alpha} \) to \(\mathcal{E} \). For simplicity, we denote it by the same \(\varphi_{\alpha} \), so that \(\varphi_{\alpha} \in \mathcal{E}' \). From (4.5), we reach
\[
c^2|g|^2 \geq \sum_{\alpha \in I} |\varphi_{\alpha}(g)|^2 \quad (g \in \mathcal{E}).
\] (4.7)
Utilizing Lemma 4.3 and (4.6), we arrive at
\[
\varphi_{\alpha}(x) = \varphi_{\alpha}(k_x) = e_{\alpha}(x) \psi(x) \quad (x \in X, \alpha \in I).
\]
Then
\[
e_{\alpha}(x) \varphi_{\beta}(x) = \varphi_{\beta}(x) e_{\alpha}(x) \quad (x \in X, \alpha, \beta \in I).
\] (4.8)
Since \(e_{\alpha} \in \mathcal{M}(\mathcal{E}) \) and \(X \in \cup(\mathcal{E}) \), from (4.8), we infer that
\[
e_{\alpha}(s) \varphi_{\beta}(s) = \varphi_{\beta}(s) e_{\alpha}(s), \quad (s \in S).
\]
Now, fix \(\alpha \in I \) and \(s \in S \). Putting \(g = k_s \) in (4.7), we arrive at
\[
c^2 K(s,s) \geq \sum_{\beta \in I} \varphi_{\beta}(s)^* \varphi_{\beta}(s).
\]
Since \(\text{ran}(e_{\alpha}) \subseteq \mathcal{Z}(\mathfrak{A}) \), we have
\[
c^2 K(s,s) e_{\alpha}(s)^* e_{\alpha}(s) \geq \sum_{\beta \in I} (e_{\alpha}(s) \varphi_{\beta}(s))^* e_{\alpha}(s) \varphi_{\beta}(s)
= \sum_{\beta \in I} e_{\beta}(s)^* \varphi_{\alpha}(s)^* e_{\beta}(s) \varphi_{\alpha}(s)
= |\varphi_{\alpha}(s)|^2 K(s,s).
\]
Now, the invertibility of \(K(s,s) \) entails that \(|\varphi_{\alpha}(s)| \leq c |e_{\alpha}(s)| \). \(\square \)

Conflict of Interest Statement. On behalf of all authors, the corresponding author states that there is no conflict of interest.

Data Availability Statement. Data sharing not applicable to this article as no datasets were generated or analysed during the current study.
References

[1] M. Amyari, M. Chakoshi and M. S. Moslehian, Quasi-representations of Finsler modules over C^*-algebras, J. Operator Theory 70 (2013), no. 1, 181–190.
[2] D. Alpay (ed.), Reproducing kernel spaces and applications, Operator Theory: Advances and Applications. 143. Basel: Birkhäuser. xv, 2003.
[3] N. Aronszajn, Theory of reproducing kernels, Trans. Amer. Math. Soc. 68 (1950), 337–404.
[4] R. Cheng, J. Mashreghi, W. T. Ross, Inner functions in reproducing kernel spaces. Analysis of operators on function spaces, 167–211, Trends Math., Birkhäuser/Springer, Cham, 2019.
[5] R. E. Curto, J.-P. Gazeau, A. Horzela, M. S. Moslehian, M. Putinar, K. Schmüdgen, H. de Snoo, and J. Stochel, Mathematical work of Franciszek Hugon Szafraniec and its impacts, Adv. Oper. Theory 5 (2020), no. 3, 1297–1313.
[6] M. Frank, Self-duality and C^*-reflexivity of Hilbert C^*-modules, Z. Anal. Anwendungen 9 (1990), no. 2, 165–176.
[7] M. Frank, Characterizing C^*-algebras of compact operators by generic categorical properties of Hilbert C^*-modules, J. K-Theory 2 (2008), no. 3, 453–462.
[8] M. Frank and D. R. Larson, Frames in Hilbert C^*-modules and C^*-algebras, J. Operator Theory 48 (2002) 273–314.
[9] M. Ghaemi, M. S. Moslehian, and Q. Xu, Kolmogorov decomposition of conditionally completely positive definite kernels, Positivity 25 (2021), 515–530.
[10] J. Heo, Reproducing kernel Hilbert C^*-module and kernels associated with cocycles, J. Math. Phys. 49(2008), no. 10, 103507, 12 pp.
[11] P. Jorgensen and F. Tian, Metric duality between positive definite kernels and boundary processes, Int. J. Appl. Comput. Math. 4 (2018), no. 1, Paper No. 3, 13 pp.
[12] E. C. Lance, Hilbert C^*-Modules, London Math. Soc. Lecture Note Series, vol. 210, Cambridge Univ. Press, 1995.
[13] B. Magajna, Hilbert C^*-modules in which all closed submodules are complemented, Proc. Amer. Math. Soc. 125 (1997), no. 3, 849–852.
[14] V. M. Manuilov and E. V. Troitsky, Hilbert C^*-modules, Trans. Math. Monog. 226. AMS, Providence, RI, 2005.
[15] G. J. Murphy, C^*-algebras and operator theory. Academic Press, INC, Cambridge, 1990.
[16] V. I. Paulsen and M. Raghupathi, An Introduction to the Theory of Reproducing Kernel Hilbert Spaces. Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge (2016)
[17] L. Schwartz, Sous-espaces hilbertiens d’espaces vectoriels topologiques noyaux associ’es (noyaux reproduisants). J.Anal. Math. 13 (1964), 115–256 .
[18] F. H. Szafraniec, On bounded Holomorphic interpolation in several variables. Monatsh. Math. 101 (1986), no. 1, 59–66.
[19] F. H. Szafraniec, Murphy’s Positive definite kernels and Hilbert C^*-modules reorganized, Non-commutative harmonic analysis with applications to probability II, 275–295, Banach Center Publ., 89, Polish Acad. Sci. Inst. Math., Warsaw, 2010.
[20] N. E. Wegge-Olsen, K-theory and C^*-algebras. A friendly approach. Oxford Science Publications. The Clarenden Press, Oxford University Press, New York, 1993.

1Department of Pure Mathematics, Ferdowsi University of Mashhad, P. O. Box 1159, Mashhad 91775, Iran.
Email address: mofigh072@gmail.com

3Moscow Center for Fundamental and Applied Mathematics, and Department of Mechanics and Mathematics, Moscow State University, Moscow, 119991, Russia.
Email address: manuilov@mech.math.msu.su
Department of Pure Mathematics, Center of Excellence in Analysis on Algebraic Structures (CEAAS), Ferdowsi University of Mashhad, P. O. Box 1159, Mashhad 91775, Iran.

Email address: moslehian@um.ac.ir; moslehian@yahoo.com