A VE-cadherin–PAR3–α-catenin complex regulates the Golgi localization and activity of cytosolic phospholipase A2α in endothelial cells

Adam F. Odell\(^a,b\), Monica Hollstein\(^b\), Sreenivasan Ponnambalam\(^a\), and John H. Walker\(^a\)

\(^a\)Endothelial Cell Biology Unit, Institute for Molecular and Cellular Biology, and \(^b\)Molecular Epidemiology Unit, LIGHT Laboratories, University of Leeds, Leeds LS2 9JT, United Kingdom

ABSTRACT Phospholipase A\(_{2}\) enzymes hydrolyze phospholipids to liberate arachidonic acid for the biosynthesis of prostaglandins and leukotrienes. In the vascular endothelium, group IV phospholipase A\(_{2}\alpha\) (cPLA\(_{2}\alpha\)) enzyme activity is regulated by reversible association with the Golgi apparatus. Here we provide evidence for a plasma membrane cell adhesion complex that regulates endothelial cell confluence and simultaneously controls cPLA\(_{2}\alpha\) localization and enzymatic activity. Confluent endothelial cells display pronounced accumulation of vascular endothelial cadherin (VE-cadherin) at cell–cell junctions, and mechanical wounding of the monolayer stimulates VE-cadherin complex disassembly and cPLA\(_{2}\alpha\) release from the Golgi apparatus. VE-cadherin depletion inhibits both recruitment of cPLA\(_{2}\alpha\) to the Golgi and formation of tubules by endothelial cells. Perturbing VE-cadherin and increasing the soluble cPLA\(_{2}\alpha\) fraction also stimulated arachidonic acid and prostaglandin production. Of importance, reverse genetics shows that α-catenin and δ-catenin, but not β-catenin, regulates cPLA\(_{2}\alpha\) Golgi localization linked to cell confluence. Furthermore, cPLA\(_{2}\alpha\) Golgi localization also required partitioning defective protein 3 (PAR3) and annexin A1. Disruption of F-actin internalizes VE-cadherin and releases cPLA\(_{2}\alpha\) from the adhesion complex and Golgi apparatus. Finally, depletion of either PAR3 or α-catenin promotes cPLA\(_{2}\alpha\)-dependent endothelial tubule formation. Thus a VE-cadherin–PAR3–α-catenin adhesion complex regulates cPLA\(_{2}\alpha\) recruitment to the Golgi apparatus, with functional consequences for vascular physiology.

INTRODUCTION

The phospholipase A\(_{2}\) (PLA\(_{2}\)) family of esterases hydrolyzes the sn-2 group of glycerophospholipids to generate free fatty acid and lysophospholipid products (Dennis, 1997). The PLA\(_{2}\) family can be divided into three major groups based on general structure and regulation mechanisms: group IV cytosolic PLA\(_{2}\) (cPLA\(_{2}\)), group VI Ca\(^{2+}\)-independent PLA\(_{2}\), and secretory PLA\(_{2}\) enzymes (Akiba and Sato, 2004). All PLA\(_{2}\) members consist of a catalytic domain that mediates binding and cleavage of phospholipids. The cPLA\(_{2}\) group IV consists of at least six members (cPLA\(_{2}\alpha\), β, γ, δ, ε, and ζ), of which cPLA\(_{2}\alpha\) is the most extensively characterized. This Ca\(^{2+}\)-regulated protein binds intracellular membranes upon agonist stimulation and cytosolic Ca\(^{2+}\) elevation. Unique to this group, membrane binding enables cPLA\(_{2}\alpha\) to preferentially cleave phospholipids containing arachidonic acid (AA) at the sn-2 position to liberate the fatty acid for eicosanoid production (Dennis, 1997). Thus cPLA\(_{2}\alpha\) activity is a rate-limiting step in membrane receptor-mediated AA liberation and subsequent prostaglandin synthesis (Kramer and Sharp, 1997). These lipid derivatives regulate diverse functions, including cell proliferation, apoptosis, synaptic plasticity, and Ca\(^{2+}\) signaling (Mashimo et al., 2008; Le et al., 2010; Wang and Sun, 2010). Such regulation is particularly important in the vascular endothelium to control vascular tone, angiogenesis, hemostasis, and inflammation (Hurt-Camejo et al., 2001; Herbert et al., 2009; Alberghina, 2010; Tosato et al., 2010).

The mature endothelium consists of confluent quiescent cell monolayers that are cell cycle arrested in the G\(_{0}\) phase (Chen et al.,...
2000; Noseda et al., 2004). This is largely due to contact-mediated inhibition of growth factor signaling and cell proliferation linked to adherens-based junction formation in the mature confluent endothelium (Lampugnani et al., 2003). Disruption of cell–cell contacts by soluble signals or mechanical wounding causes these cells to re-enter the cell cycle and undergo mitosis and cell migration to restore endothelial cell confluence, which, in turn, regulates vascular function. Both proliferative and migratory responses are also essential for new blood vessel sprouting, that is, angiogenesis (Carmeliet, 2000, 2005). Although angiogenesis is a complex, multifactorial process, components of phospholipase A2 signaling have been implicated in its control, including arachidonic acid (Nie et al., 2000) and prostaglandin E2 (PGE2). The latter was shown to increase vessel sprouting in an endothelial nitric oxide synthase–dependent manner (Namkoong et al., 2005). In addition, proliferating nonconfluent cells produce more AA and prostaglandins than do quiescent confluent cells (Evans et al., 1984; Whatley et al., 1994), which has been attributed to elevated endothelial cPLA2α activity (Herbert et al., 2005). Similar variation may exist in endothelial cells undergoing active vessel sprouting, where actively migrating cells (i.e., “tip cells”) may generate more AA. Uniquely, in quiescent confluent endothelial cells (i.e., those in undamaged, unrestimulated vessels), endothelial cPLA2α is inactivated upon sequestration at the Golgi apparatus; this membrane localization is annexin A1 dependent. However, in proliferating cells, cPLA2α released from Golgi membranes displays elevated enzyme activity (Herbert et al., 2005, 2007).

This reversible control of cPLA2α is important for regulating the production of eicosanoids, controlling vessel tone, and influencing angiogenic responses. Further understanding of the processes regulating this relocalization event may provide novel strategies for modulating endothelial function.

The formation of adherens junctions enriched with vascular endothelial cadherin (VE-cadherin) enables endothelial cells to perform their specialized cellular functions (Nelson and Nusse, 2004). Deletion of the VE-cadherin gene causes embryonic lethality due to severe vascular defects (Crosby et al., 2005). VE-cadherin forms homophilic complexes that recruit cytoplasmic regulators, including catenins, c-Src tyrosine kinase, partitioning defective proteins (PARDs/PARs), and several protein phosphatases (Conacci-Sorrell et al., 2002; Meng and Takeichi, 2009). The catenins contain actin-binding sites enabling cell surface integral membrane proteins to recruit the actin cytoskeleton to such multisubunit complexes (Meng and Takeichi, 2009). The assembly/disassembly of cadherin-based junctional complexes thus couples cell–cell adhesiveness to intracellular signaling and gene expression (Caveda et al., 1996; Carmeliet et al., 1999). Dissociation of these complexes is a prerequisite for endothelial reentry into the cell cycle and cell migration (Lampugnani et al., 2003; Zanetta et al., 2005). VE-cadherin is also a regulator of vascular sprouting, stabilizing cell–cell interactions during stalk-tip cell polarization and protrusion (Herbert and Stainier, 2011). Regulation by vascular endothelial growth factor (VEGF) and other cytokines, dynamic turnover, and recruitment of intracellular complexes, including catenins, actin, and Raf-1, allows VE-cadherin to actively contribute to the angiogenic process (Vestweber et al., 2008; Abraham et al., 2009; Harris and Nelson, 2010; Wimmer et al., 2012).

Recently the biosynthesis and secretion of VE-cadherin complexes into cell–cell junctions was demonstrated to require cPLA2α enzyme activity (Regan-Klapisz et al., 2009). Conversely, the establishment of cell–cell contacts has been shown to influence cPLA2α localization (Herbert et al., 2005). One question that arises is whether VE-cadherin–mediated control of endothelial cell confluence and cell cycle progression in turn regulates cPLA2α Golgi localization. Furthermore, what is the consequence of this regulation in the wider context of endothelial function? We addressed these questions by testing the requirement for VE-cadherin and associated complex components (i.e., catenins) on cPLA2α distribution, enzyme activity, and angiogenesis. This study lends support for a pathway leading from the VE-cadherin complex toward enzymatic intracellular localization, endothelial function, and vascular physiology.

RESULTS

VE-cadherin engagement regulates cPLA2α Golgi localization

VE-cadherin is a major component of adherens junctions in endothelial cells, recruiting cytoplasmic signaling molecules such as β-catenin and actin to the cytosolic face of the plasma membrane (Vestweber, 2008). The formation of adherens and tight junctions requires cPLA2α activity (Regan-Klapisz et al., 2009; Bechler et al., 2010). We thus asked whether any components of the VE-cadherin complex regulate cPLA2α recruitment to the Golgi apparatus. We first analyzed VE-cadherin and cPLA2α intracellular localization in confluent and semiconfluent primary human umbilical vein endothelial cells (HUVECs; Figure 1). Subconfluent proliferating endothelial cells displayed little VE-cadherin plasma membrane staining and residual Golgi apparatus–associated cPLA2α (Figure 1A). In contrast, confluent HUVEC monolayers exhibited uniform plasma membrane localization for VE-cadherin at sites of cell–cell contact (Figure 1A). This distribution was similar to that seen for the platelet endothelial adhesion molecule PECAM-1 (CD31) but not the transferrin receptor, which recycles between the plasma membrane and endosomes (Supplemental Figure S1A). Of interest, elevated plasma membrane VE-cadherin levels correlated with enriched cPLA2α Golgi staining (Figure 1A). However, cells at the scratched edge of a wounded endothelial monolayer showed reduced VE-cadherin plasma membrane staining and concomitantly reduced Golgi cPLA2α levels (Figure 1A). Wound-border cells displayed a 45% reduction and subconfluent cells a 65% loss in cPLA2α at the Golgi apparatus when compared with levels colocalizing with Golgi apparatus marker TGN46 in the confluent state (Figure 1B).

Immunoblotting showed that VE-cadherin and cPLA2α levels were similar under these different cellular conditions, discounting altered protein turnover for the observed phenomenon (Figure 1C). Similarly, β-catenin, a key component of VE-cadherin complexes, TGN46, VEGF receptor 2 (VEGFR2; a receptor tyrosine kinase), nor α-tubulin was altered. However, key regulators of the cell cycle—cyclin A and phosphorylated cyclin D1—were reduced in confluent HUVECs, reflecting the lowered proliferation status of such contact-inhibited cells (Figure 1C). When subconfluent, early-passage HUVECs were reseeded to confluence, VE-cadherin homophilic complexes began forming after 6 h. This correlated with the translocation of cPLA2α to the Golgi apparatus (Figure 1D). However, when confluent cells were reseeded to subconfluence, it required between 12 and 16 h or adherent cell growth for Golgi cPLA2α to redistribute within the cytoplasm (Supplemental Figure S1B). Thus a dynamic relationship exists among cell confluence, VE-cadherin engagement, and the Golgi apparatus localization of cPLA2α.

What is the requirement for VE-cadherin in Golgi cPLA2α localization? To test this, we applied a functional blocking antibody specific for VE-cadherin to confluent HUVECs for 18 h prior to analysis of cPLA2α localization (Figure 2A). This triggered a reduction in cPLA2α Golgi localization (Figure 2A, bottom), whereas the isotype control antibody had no effect (Figure 2A, top). This correlated with a 25% reduction in levels of cPLA2α codistributing with TGN46 upon VE-cadherin antibody pretreatment relative to the isotype control.
We previously showed that wounded endothelial cells displayed increased cPLA$_2$α activity with greater arachidonic acid (AA) synthesis (Herbert et al., 2009). Do VE-cadherin levels thus regulate cPLA$_2$α enzymatic activity in confluent or wounded endothelial cells? To answer this, we used siRNA to knock down VE-cadherin levels and analyzed AA release as a measure of cPLA$_2$α enzymatic activity. VE-cadherin–depleted endothelial cells produced ∼30% more [H]3AA than controls upon stimulation with the calcium ionophore A23187 (Figure 2H). This effect was further enhanced by HUVEC monolayer wounding and recovery, for which an additional ∼25% increase in [H]3AA could be detected in cells treated with siRNA against VE-cadherin (Figure 2H). Basal AA released during cell growth was also assessed, where HUVEC monolayers subjected to VE-cadherin knockdown displayed a significant increase (∼20%) in [H]3AA release compared with controls; this effect was further enhanced by endothelial cell monolayer wounding (Figure 2H). Thus VE-cadherin regulates both cPLA$_2$α localization and activity in confluent endothelial cells. Of importance, reconstitution of this pathway in nonendothelial (epithelial HeLa) cells by cotransfection of VE-cadherin and green fluorescent protein (GFP)–cPLA$_2$α demonstrated that the formation of VE-cadherin complexes is sufficient to promote the Golgi accumulation of cPLA$_2$α (Supplemental Figure S2A, arrowheads). In addition, initiation of the Golgi localization signal in HUVECs does not appear to require the growth factor receptor VEGFR2 (Wheeler-Jones et al., 1997; Neagoe et al., 2005). Signaling through this pathway following VEGF-A treatment was unaffected by VE-cadherin depletion (Supplemental Figure S2B), and pharmaceutical inhibition of VEGFR2 with SU5416 did not alter cPLA$_2$α distribution in confluent endothelial cells (Supplemental Figure S2C). These findings suggest growth factor–receptor tyrosine kinase signaling is not required for VE-cadherin–mediated regulation of Golgi cPLA$_2$α localization.

VE-cadherin regulation of cPLA$_2$α Golgi localization requires the coordinated activity of α-catenin and δ-catenin

The catenins (α, β, γ [plakoglobin], and δ [p120]) are major signaling effectors linking cadherin engagement to intracellular responses ranging from modulating actin dynamics to altering gene expression (Nelson and Nusse, 2004; Cavallaro et al., 2005). Signaling through the coordinated activity of α, β, and δ-catenins is required for VE-cadherin and β-catenin accumulation within the Golgi apparatus. Consistent with β-catenin protein down-regulation (see Figure 2C), VE-cadherin depletion in HUVECs also resulted in loss of β-catenin from the cell periphery with no evidence of increased β-catenin accumulation within the cell. Furthermore, human coronary artery endothelial cells (HCAECs; Figure 2G) also displayed Golgi cPLA$_2$α localization, correlating with cell–cell junction distribution of VE-cadherin and β-catenin. Taken together, these results suggest that VE-cadherin is required for cPLA$_2$α Golgi sequestration.

FIGURE 1: Localization of cPLA$_2$α at the Golgi apparatus coincides with VE-cadherin expression in confluent endothelial cells. (A) HUVECs grown to subconfluence (top), confluence, or confluence followed by scratch wounding and recovery for 18 h (direction indicated by line) were fixed and imaged by confocal microscopy for cPLA$_2$α (green), VE-cadherin (red), and TGN46 (a Golgi apparatus resident protein; purple). Scale bars, 20 μm. (B) Ratio of cPLA$_2$α to TGN46 staining at the Golgi apparatus was determined from >200 cells using LSM software and expressed as a percentage of ratio from confluent cells. * p < 0.05, **p < 0.01. (C) HUVEC lysates from subconfluent, confluent, or a multiple scratch-wounded monolayer recovered for 18 h were analyzed by SDS–PAGE and immunoblotted with antibodies against the indicated proteins. Blots are representative of four independent experiments. (D) Subconfluent HUVECs were reseeded to confluence and allowed to recover for the indicated times prior to fixation and analysis of cPLA$_2$α localization and VE-cadherin engagement.
Similarly, depletion of AKT over a 30-min stimulation period (Supplemental Figure S3D). Depletion of α-catenin, β-catenin, γ-catenin, and δ-catenin to systematic siRNA-mediated protein knock-down (Figure 3A). Depletion of either α-catenin or β-catenin had no significant effect on levels of VE-cadherin or downstream effectors of the VEGFR2 signaling pathway (Figure 3A). However, γ-catenin depletion resulted in significant up-regulation of both α-catenin and VE-cadherin, with β- and δ-catenin levels also elevated (Figure 3, A–C). In contrast, δ-catenin knockdown triggered a significant reduction in levels of VE-cadherin and the remaining catenins, although a substantial pool of α- and γ-catenin remained (Figure 3, A–C). This effect was also detected using microscopy (Figure 3E; and unpublished data) and was specific to the VE-cadherin adhesion complex, as neither VEGFR2 protein levels nor downstream signaling was perturbed (Figure 3A and Supplemental Figure S4).

To further investigate the role of catenin-related proteins in Golgi cPLA₂ localization, we subjected α-catenin, β-catenin, γ-catenin, and δ-catenin to systematic siRNA-mediated protein knock-down (Figure 3A). Depletion of either α-catenin or β-catenin did not affect the colocalization of α-, γ-, or δ-catenin with VE-cadherin at cell–cell junctions (Supplemental Figure S4). Thus neither β-catenin nor γ-catenin appears to be required for the VE-cadherin-mediated regulation of cPLA₂ Golgi localization.

Do α-catenin or δ-catenin affect cPLA₂ localization via VE-cadherin? We assessed this by depleting α- and δ-catenin and examining Golgi cPLA₂ distribution using microscopy. Surprisingly, knockdown of α-catenin decreased the incidence of cells displaying Golgi cPLA₂ staining (Figure 3D) and caused a reduction in the ratio of cPLA₂:TN46 (by 38%), indicating release of cPLA₂ into the cytoplasm or soluble fraction. This was also accompanied by an overall decrease in VE-cadherin at the cell periphery and less-defined cell–cell borders (Figure 3D). Similarly, upon δ-catenin depletion, endothelial cells displayed altered morphology and exhibited fewer cell–cell contacts, associated with an apparent decrease in VE-cadherin at intercellular junction sites (Figure 3E). However, δ-catenin–depleted cells still contained Golgi cPLA₂ despite displaying fewer adherens junctions (Figure 3E). This effect was most evident in wounded endothelial monolayers, where cells migrating into the wound area failed to redistribute cPLA₂ from the Golgi apparatus to the cytoplasm (Figure 3F). A summary of changes in the ratio of cPLA₂ to TN46 following catenin knockdown is shown in Figure 3G. Taken together, these results indicate the presence of a dynamic complex initiated by VE-cadherin engagement, where α-catenin acts to promote cPLA₂ Golgi localization, with this action opposed by δ-catenin.

nucleus (Supplemental Figure S3A). However, siRNA-mediated depletion of β-catenin did not alter cPLA₂ Golgi distribution despite a dramatic loss of β-catenin from cell–cell borders (Supplemental Figures S3B and S4). Depletion of β-catenin did not affect total levels of VEGFR2, VE-cadherin, cPLA₂, or TGN46 (Supplemental Figure S3C). The loss of β-catenin did not affect growth factor–stimulated intracellular signaling via VEGFR2, ERK1/2, and AKT over a 30-min stimulation period (Supplemental Figure S3D). Similarly, depletion of γ-catenin also failed to alter the Golgi apparatus localization of cPLA₂ in confluent HUVECs (Supplemental Figure S3E). Furthermore, depletion of β-catenin did not affect the localization of α-, γ-, or δ-catenin with VE-cadherin at cell–cell junctions (Supplemental Figure S4). Thus neither β-catenin nor γ-catenin appears to be required for the VE-cadherin-mediated regulation of cPLA₂ Golgi localization.

![FIGURE 2: VE-cadherin regulates the localization and activity of cPLA₂α.](image-url)

(A) Confluent HUVEC monolayers treated for 18 h with either anti–VE-cadherin BV9 or mouse IgG1 antibody at 5 μg/ml prior to fixation, staining, and analysis by confocal microscopy. (B) The ratio of cPLA₂α:TN46 was determined and expressed relative to isotype control levels. *p < 0.05; n = 4 independent experiments analyzing 120 random cells. (C) VE-cadherin or scrambled siRNA-treated HUVECs were analyzed by immunoblotting for the indicated proteins. (D) HUVECs were treated with siRNA against VE-cadherin or a scrambled sequence for 48 h prior to fixation and immunostaining for cPLA₂α (green), VE-cadherin (red), and TGN46 (purple). Scale bar, 20 μm. (E) VE-cadherin or scrambled siRNA-treated HUVECs were analyzed by immunoblotting for the indicated proteins. (F) HUVECs were analyzed for percentage displaying colocalization between TGN46 and cPLA₂α (E) and ratio of cPLA₂α to TGN46 expression (F) at the Golgi apparatus. **p < 0.01; results compiled from >500 cells across six independent experiments. (G) HCAECs were grown to confluence, fixed, and analyzed by immunostaining for cPLA₂α and VE-cadherin expression. Scale bar, 20 μm. (H) VE-cadherin or scrambled siRNA-treated HUVECs were grown to confluence prior to scratch wounding as indicated and [H]AA release measured following A23187 (5 μM for 15 min) stimulation (left) or basal release into the media during overnight recovery following multiple scratch wounding (right). AA release was calculated relative to total cellular radioactivity and expressed as a percentage of control scrambled siRNA levels. *p < 0.05 compared with matched scrambled siRNA-treated conditions from three compiled independent experiments performed in triplicate.
To determine whether signaling through either α-catenin or δ-catenin was dominant in regulating cPLA$_{α}$ localization, we simultaneously knocked down both components by siRNA in confluent HUVECs. Surprisingly, loss of δ-catenin was the most robust phenotype, with cells depleted of both α-catenin and δ-catenin continuing to display Golgi-associated cPLA$_{α}$ (Figure 4A). The distribution was indistinguishable from that of both scrambled and δ-catenin siRNA-treated cells. When the foregoing cells were mechanically wounded and allowed to recover, wound border cells from dual-catenin-targeted cells (α-catenin + δ-catenin) failed to redistribute from the Golgi apparatus (Figure 4B). This effect was similar to what was found in δ-catenin-knockdown cells, where there was no significant change in cPLA$_{α}$ levels at the Golgi (correlated against TGN46) compared with the nonwounded control (Figure 4C). In contrast, both scrambled and α-catenin siRNA treatment enabled cells to release cPLA$_{α}$ with Golgi levels relative to TGN46 reduced by 50 and 42%, respectively (Figure 4C). These results suggest that the presence of δ-catenin is the determining factor controlling release of cPLA$_{α}$ upon VE-cadherin disengagement.

To further define the mechanism underlying communication between VE-cadherin-catenin complexes and cPLA$_{α}$, a functional association between α-catenin and cPLA$_{α}$ was examined. Coimmunoprecipitation experiments demonstrated a functional link in which both VE-cadherin and α-catenin could be detected in immunosolated cPLA$_{α}$ protein complexes (Figure 5A). This suggests that a physical association exists between VE-cadherin complexes and cPLA$_{α}$, although the reciprocal α-catenin immunoprecipitates did not reveal associated cPLA$_{α}$, suggesting a weak, transient, or indirect interaction between the components (Figure 5A). Next we examined whether the effects of α-catenin depletion on cPLA$_{α}$ localization were due to a reduction in plasma membrane levels of VE-cadherin complexes (as evidenced by microscopic analysis; Figure 3D) and subsequent release of cPLA$_{α}$. To test this idea, we isolated biotinylated cell surface proteins and analyzed them for VE-cadherin, VEGFR2, β$_{1}$-integrin, and transferrin receptor (TfR) levels (Figure 5B). VE-cadherin knockdown significantly reduced the biotinylated cell surface pool of VE-cadherin without significantly altering surface TfR or β$_{1}$-integrin levels, although a small (∼25%) reduction in VEGFR2 was observed (Figure 5, B and C). VE-cadherin depletion also decreased the levels of

FIGURE 3: α-Catenin regulates the relocalization of cPLA$_{α}$ to the Golgi apparatus upon cell confluence. (A) HUVECs treated with siRNA against α-catenin, β-catenin, γ-catenin, δ-catenin, or scrambled control siRNA for 48 h were serum starved (4 h) and stimulated with VEGF-A (25 ng/ml, 30 min). Lysates were analyzed by immunoblotting as indicated. Shown are representative blots from four independent experiments. (B) Cells treated with siRNA as in A were analyzed for VE-cadherin protein expression, quantified, and expressed as a percentage of scrambled siRNA-treated levels. Results represent five independent experiments. (C) Cells treated with siRNA as in A were analyzed by immunoblotting for cPLA$_{α}$ expression. Results quantified from five independent experiments are expressed as a percentage of scrambled siRNA-treated levels. (D) HUVECs treated with siRNA against either α-catenin or a scrambled sequence were fixed and processed by immunostaining with anti-cPLA$_{α}$, anti-VE-cadherin, and a combination of anti-TGN46/anti-α-catenin antibodies. Scale bar, 20 μm. (E) HUVECs transfected with either scrambled siRNA or siRNA against δ-catenin were grown to confluence, fixed, and immunostained with antibodies against cPLA$_{α}$ (green), VE-cadherin (red), and a combination of TGN46 and δ-catenin (purple). Scale bar, 20 μm. (F) HUVECs treated with siRNA against δ-catenin or scrambled control were left confluent (upper) or scratch wounded and recovered for 18 h (middle, bottom) prior to fixation and analysis by immunostaining as indicated. Wound directions are indicated by white line. (G) HUVECs transfected with indicated siRNA were processed as outlined in D and E. The ratio of cPLA$_{α}$ to TGN46 fluorescence intensity at the Golgi apparatus was determined and expressed as a percentage of scrambled siRNA-treated cells. Quantified results represent >200 cells from at least four independent experiments. *p < 0.05, **p < 0.01.
plasma membrane–associated α-, β-, γ-, and δ-catenins; however, this may reflect the reduction in total catenin levels (Figure 5D). These effects were observed using either pooled siRNAs or a specific prevalidated siRNA duplex targeted against VE-cadherin (unpublished data).

In contrast, α-, β-, or γ-catenin knockdown did not significantly affect VE-cadherin, VEGFR2, β₁-integrin, or Tfr surface levels or total protein (Figure 5, B–D), although γ-catenin knockdown tended to raise plasma membrane VE-cadherin and associated catenin levels. However, δ-catenin depletion decreased plasma membrane VE-cadherin levels by ∼60% (Figure 5, B and C); consistent with the reduced VE-cadherin noted at cell–cell junctions (Figure 3). Depletion of δ-catenin also reduced α-, β-, and γ-catenin levels associated with biotinylated plasma membrane proteins without perturbing VEGFR2, β₁-integrin, or Tfr levels (Figure 5, B and C). These results suggest δ-catenin controls VE-cadherin–catenin complex stability and turnover while potentially negatively modulating cPLA₂α redistribution to the Golgi. In contrast, α-catenin regulates cPLA₂α localization without influencing VE-cadherin surface expression.

Partitioning defective protein 3 regulates annexin A1-dependent cPLA₂α Golgi localization

Are there other proteins that regulate the cellular distribution of cPLA₂α? The partitioning defective protein 3 (PAR3) is a large scaffolding protein consisting of several isoforms involved in diverse regulatory roles (Gao et al., 2002; Rivers et al., 2008). Given that partitioning-defective proteins are implicated in cadherin complex stability and function, as well as in angiogenesis (Iden et al., 2006; Zhao et al., 2010; Zovein et al., 2010; Herbert and Stainier, 2011), could PAR3 be involved in the controlling cPLA₂α Golgi localization? To test this idea, we used immunofluorescence microscopy to assess cellular protein distribution. Here PAR3 exhibited largely cytoplasmic accumulation, with enrichment at the cell periphery, showing an overlapping codistribution with CD31 (Figure 6A) and VE-cadherin (Supplemental Figure S6A); the latter was unaffected by β-catenin depletion (Supplemental Figure S6A), with wound-border cells from control cells displaying reduced PAR3 staining at the cell periphery (Supplemental Figure S6B). Next PAR3 immunoprecipitates contained VE-cadherin, which was absent in complexes from an isotype-matched control (Figure 6B). This suggests that PAR3 and VE-cadherin form a functional complex, as previously demonstrated (Lampugnani et al., 2010; Tyler et al., 2010). Immunoblotting of endothelial cell lysates showed the presence of all three PAR3 isoforms comprising 180-, 160-, and 110-kDa polypeptides (Figure 6C). An siRNA duplex specific for the PAR3 mRNA was able to effectively reduce the cellular levels of the 180- and 160-kDa species without significantly altering levels of annexin A1 (AnxA1), a known regulator of cPLA₂α Golgi localization (Figure 6, C and D; Herbert et al., 2007). However, PAR3 knockdown also caused ∼25% reduced VE-cadherin levels, although this failed to reach significance (Figure 6E). Furthermore, VEGF-A–stimulated VEGFR2 activation was not altered, although there was a modest decrease in phospho-AKT levels (Supplemental Figure S6, C–G). Of importance, PAR3 depletion caused a dramatic loss in the Golgi cPLA₂α staining (Figure 6F), resulting in a 40% reduction in the cPLA₂α: TGN46 ratio, similar to VE-cadherin depletion (Figure 6G). In contrast, the localization of control proteins such as TGN46, VE-cadherin, or catenins was not affected by PAR3 depletion (Figure 6F; unpublished data).
The effects of PAR3 knockdown were similar to that previously observed following AnxA1 depletion, where Golgi apparatus cPLA₂α staining was much reduced (Herbert et al., 2007; Supplemental Figure S7A). One question was whether VE-cadherin, PAR3, and AnxA1 are also functionally linked to regulate cPLA₂α Golgi localization. To test this, we depleted AnxA1 levels using siRNA and analyzed VE-cadherin distribution by immunofluorescence microscopy. AnxA1 knockdown did not affect VE-cadherin or PAR3 localization at cell–cell contacts despite reducing cPLA₂α Golgi localization (Supplemental Figures S7A and S8 and Figure 6G). AnxA1 depletion similarly did not affect short-term ligand-stimulated signaling through VEGFR2 (Supplemental Figure S7B). In addition, neither AnxA1 nor PAR3 depletion was affected by the loss of β-catenin (Supplemental Figure S7C), and AnxA1 depletion did not alter cPLA₂α localization at the wound border (Supplemental Figure S7D). Depletion of either PAR3 or AnxA1 did not significantly alter plasma membrane VE-cadherin, TR, or β₁-integrin levels (Supplemental Figures S8 and S9A). However, there was a ~25% reduction in cell surface biotinylated VEGFR2 upon AnxA1 depletion, similar to that observed upon VE-cadherin depletion (Supplemental Figure S9B). There was no significant change in total levels of other membrane or cytoplasmic proteins examined, including catenins, upon either PAR3 or AnxA1 knockdown (Supplemental Figure S9C). Furthermore, PAR3 depletion did not affect AnxA1 levels or vice versa (Supplemental Figures S8 and S9C), thus discounting mutual down-regulation as a mechanism regulating cPLA₂α localization.

Does PAR3 exist in a complex with either AnxA1 or VE-cadherin to provide a mechanism linking VE-cadherin to cPLA₂α? To answer this, we analyzed AnxA1 immunoprecipitates and found that both the 180-kDa (predominantly) and 160-kDa PAR3 isoforms were present together with VE-cadherin (Supplemental Figure S9D). Of importance, β-catenin immunoprecipitates contained not only VE-cadherin, but also AnxA1, PAR3, and cPLA₂α (Supplemental Figure S9E). However, δ-catenin was not detectable in any immunoprecipitates examined (unpublished data). Furthermore, immunoprecipitates of atypical PKC contained all proposed components of the VE-cadherin–cPLA₂α pathway, including PAR3, AnxA1, and cPLA₂α (Supplemental Figure S9F), strengthening arguments for formation of a functional signaling complex. Taken together, these findings suggest that both AnxA1 and PAR3 are key regulatory elements controlling the VE-cadherin–instigated localization of cPLA₂α to the Golgi apparatus in confluent endothelial cells.

Given that a principal binding partner for VE-cadherin–catenin complexes is F-actin, the actin cytoskeleton may also be involved in regulating cPLA₂α distribution. To address this, we added the actin polymerization inhibitor cytochalasin D (CytD) to confluent endothelial cells and examined cPLA₂α distribution over a 30-min period. CytD (1 μM) rapidly disrupted VE-cadherin-rich contacts and reduced cPLA₂α Golgi localization after 30 min (Figure 7A). This was accompanied by a dramatic alteration in actin distribution and cell morphology. To discount effects of the latter on cPLA₂α localization, we applied a sustained (4 h) low dose (200 nM) of CytD to the cells and reexamined the cPLA₂α distribution (Figure 7B). CytD treatment again altered cPLA₂α distribution, resulting in a 50% reduction in cells exhibiting Golgi-localized cPLA₂α (Figure 7C). Cell surface levels of VE-cadherin and TR, but not VEGFR2, were down-regulated by CytD treatment (30 min, 400 nM; Figure 7, D and E), consistent with the microscopy data (Figure 7, A and B). Of importance, pretreatment of confluent endothelial cells with CytD increased the association of VE-cadherin, β-catenin, and AnxA1 with PAR3 immuno precipitates but decoupled cPLA₂α from this complex (Figure 7F). This suggests that the F-actin cytoskeleton may physically link cell membrane–localized VE-cadherin–catenin–PAR3 complexes (with or without AnxA1) with cPLA₂α, to tether the latter to the Golgi apparatus.

Depletion of either α-catenin or PAR3 stimulates cPLA₂α-dependent angiogenesis
VE-cadherin not only regulates cell–cell adhesion, but also modulates endothelial proliferation and differentiation during angiogenesis (Vestweber, 2008; Abraham et al., 2009). Given that VE-cadherin depletion liberates active cPLA₂α from the Golgi apparatus and active cPLA₂α is associated with increased endothelial proliferation and angiogenesis (Herbert et al., 2005, 2009), we sought to examine the influence of VE-cadherin depletion on these key endothelial properties. The Matrigel-based assay promotes the formation of interlinked “tubule-like” endothelial networks independent of cell proliferation and requires formation and maintenance of strong cell–cell contacts. HUVECs, when grown under such conditions and subjected to microscopy analysis, showed formation of VE-cadherin contacts; in addition, these endothelial tubules exhibited strong cPLA₂α Golgi staining (Figure 8A). Such staining likely indicates the proliferation-inhibited state of these cells.

Loss of VE-cadherin contacts has been reported to promote the formation of angiogenic tubules (Abraham et al., 2009). Given that increased cPLA₂α activity can enhance the angiogenic response to
this increase in endothelial branching was blocked upon cPLA₂α-target knockdown of either β- or δ-catenin had no significant effect on tubule formation in the coculture assay (Supplemental Figure S10, C and D). Codepletion of δ-catenin with α-catenin also significantly reduced the latter’s enhancement of tubule length (Supplemental Figure S10D). Finally, depletion of α-catenin, PAR3, or VE-cadherin all resulted in a trend toward increased cPLA₂α-dependent PGE₂ release following ionophore stimulation (Figure 8F). When taken together, these findings reinforce the functional link between the status of VE-cadherin complexes and cPLA₂α activity in regulating endothelial function.

DISCUSSION

Specific endothelial proteins can form a circuit or pathway leading to the production of prostaglandins and leukotrienes that regulate varied phenomena, including blood clotting, vessel tone, and angiogenesis (Haeggstrom et al., 2010). In this study, we present a mechanism by which endothelial cell confluence, cell cycle progression, and vascular physiology are regulated by a pathway involving communication from a cell adhesion complex to the intracellular enzyme cPLA₂α. The intact endothelium displays a unique mode of cPLA₂α control by which sequestration to the Golgi apparatus reduces enzyme activity (Herbert et al., 2005, 2007). This may limit the access of cPLA₂α to the perinuclear membrane and its preferred phospholipid substrates. Here we show that the localization and inactivation of the cPLA₂α enzyme to the Golgi apparatus depends on the formation of VE-cadherin–based junctional complexes.

Down-regulation of VE-cadherin levels is sufficient to release cPLA₂α from the Golgi apparatus of a confluent endothelial monolayer. Of importance, this soluble released cPLA₂α is now able to respond to elevated cytosolic Ca²⁺ and liberate AA from membrane-bound phospholipids. VE-cadherin depletion by siRNA may mimic the physiological response that occurs during cell migration, proliferation, and sprouting, in which uncoupling and turnover of VE-cadherin cell–cell contacts leads to cPLA₂α release and enzyme activation. The liberated cPLA₂α then cleaves membrane phospholipids to generate AA and its metabolites (such as prostaglandin E₂ and thromboxane A₂) to regulate remodeling of the endothelium and broader blood vessel function (Antoniotti et al., 2003; Bogatcheva et al., 2005; Fiorio Pla et al., 2008; Linkous et al., 2010). Indeed, the growing importance of cPLA₂α as a controller of angiogenesis, and in particular tumor vascularization, was recently highlighted (Nie and Honn, 2002; Fiorio Pla et al., 2008). Identifying the molecular components regulating cPLA₂α activity will enable exploitation of this pathway as a novel therapeutic target (Linkous et al., 2009).
There is interdependence between VE-cadherin and its classic binding partner β-catenin in regulating their stability and turnover within endothelial cells (Lampugnani et al., 1995), suggesting that depletion of such factors may induce cPLA2α release from the Golgi apparatus. In agreement, there was a dramatic loss of β-catenin from both the cytoplasm and cell periphery upon VE-cadherin depletion. Numerous studies demonstrated an increase in cytoplasmic and nuclear β-catenin following tyrosine phosphorylation by various kinases, including Src, Fgr, and EGF receptor (Kim and Lee, 2001; Cadigan and Liu, 2006). This translocation coincides with reduced cadherin adhesiveness, down-regulation of cadherin complexes, and increased endothelial permeability (Lilian and Balsamo, 2005). In contrast, nonphosphorylated β-catenin is known to bind tightly to VE-cadherin complexes and increase anchorage to the actin cytoskeleton (Dejana et al., 2008). Surprisingly, depletion of β-catenin failed to disrupt cPLA2α Golgi localization in confluent endothelial cells, despite the presence of both proteins in PAR3, AnxA1, and β-catenin immunoprecipitates. This appears to discount a critical role for β-catenin in transmitting the Golgi apparatus localization signal from VE-cadherin to cPLA2α.

However, in contrast to β-catenin, α-catenin was required for efficient cPLA2α Golgi localization upon establishment of cell confluence; cells lacking α-catenin displayed reduced Golgi cPLA2α distribution. How does α-catenin regulate cPLA2α localization? It was proposed that α-catenin is recruited to β-catenin-containing VE-cadherin adherens junctions, where it not only assists to stabilize the junction, but also competes with the Arp2/3 complex for binding to polymerizing actin (Pokutta et al., 2008). This competition prevents further actin filament growth and stabilizes the protruding plasma membrane (Drees et al., 2005). It is conceivable that formation of cell–cell contacts initiates the interaction of α-catenin with the cortical actin cytoskeleton. This in turn may link with the Golgi apparatus and tether cPLA2α to the organelle. Thus, when α-catenin is depleted, a scaffold for actin recruitment is lost and cPLA2α is subsequently liberated from the Golgi. An absence of α-catenin could also promote excess actin polymerization and disruption of normal cytoskeletal linkages, thereby leading to loss of cPLA2α sequestration. This is a concept under investigation.

In contrast, γ-catenin (plakoglobin) and δ-catenin (p120-catenin) are not essential for cPLA2α Golgi localization, although δ-catenin is uniquely needed for cell adhesion complex stability. Its loss caused a reduction in levels of VE-cadherin and associated α-, β-, and γ-catenin. Down-regulation of VE-cadherin itself does not appear responsible for this phenotype. Reduced VE-cadherin would be expected to recapitulate the VE-cadherin siRNA distribution, but the opposite effect is observed. In epithelial cells, δ-catenin is known to control rates of E-cadherin internalization, with depletion weakening cell–cell contacts (Sato et al., 2011). A similar role was demonstrated in endothelial cells, where δ-catenin depletion reduced both surface VE-cadherin and transendothelial resistance (Chiasson et al., 2009; Herron et al., 2011). Analogously, δ-catenin may stabilize VE-cadherin complexes at the plasma membrane, enabling formation of an α-catenin-mediated signal, which culminates in cPLA2α translocation to the Golgi apparatus. This is supported by the double-knockout experiments in which the absence of δ-catenin prevents α-catenin depletion from inducing cPLA2α release. Given that δ-catenin depletion failed to liberate cPLA2α from the Golgi apparatus despite disruption of VE-cadherin adhesions (Hatanaka et al., 2011; Herron et al., 2011), this suggests an involvement of this catenin in the negative regulation of cPLA2α Golgi localization. This concept was supported by the lack of cPLA2α Golgi release following monolayer wounding when δ-catenin was absent. In addition, without δ-catenin, depletion of α-catenin failed to...
liberate cPLA₂α. Thus α-catenin must control the localization of cPLA₂α by a mechanism downstream of VE-cadherin homophilic engagement with δ-catenin, providing a higher level of control, perhaps independent of a direct complex formation with cPLA₂α.

We propose that δ-catenin normally stabilizes and strengthens VE-cadherin plasma membrane complexes. However, upon depletion of δ-catenin, VE-cadherin–catenin–cPLA₂α complexes are shuttled to an intracellular compartment, where interactions are maintained. Here complexes are unable to be disrupted and release Golgi cPLA₂α upon generation of an appropriate signal (i.e., wounding or growth factor exposure). An additional role may be to limit formation of this signaling complex and ensure that it is rapidly disrupted when active cPLA₂α is required. Alternatively, the loss of δ-catenin may expose additional binding sites for the recruitment of PAR3 (as suggested by Sato et al., 2011) and the continued localization of cPLA₂α to the Golgi. Given that VE-cadherin contains separate binding motifs for δ-catenin and α/β-catenin complexes, it is conceivable that both are bound simultaneously, along with additional adapters, including PAR3, to coordinate cPLA₂α localization. However, elucidation of the exact mechanisms requires further investigation.

The partitioning-defective PAR3 regulator collaborates with the calcium-sensitive protein annexin A1 to regulate Golgi cPLA₂α localization. It has been shown that PAR3 is needed for VE-cadherin stability, endothelial cell polarity, and lumen formation; the last requires interactions with the actinomyosin machinery via Rac1, cdc42, and RhoE GTPases (Iden et al., 2006; Koh et al., 2008; Tyler et al., 2010; Zovein et al., 2010). In Drosophila melanogaster, clusters of the PAR3 orthologue (Bazooka) were shown to reposition cadherin–catenin complexes, enabling the formation of functional adherens junctions (McGill et al., 2009). We found that loss of PAR3 dramatically reduces cPLA₂α Golgi localization in confluent endothelial cells without significantly altering VE-cadherin surface levels or β-catenin/VE-cadherin localization to cell–cell junctions. Biochemical analysis demonstrated the formation of a large protein complex that incorporates elements of the VE-cadherin complex with PAR3 and AnxA1 in endothelial cells. AnxA1 appears to participate in controlling cPLA₂α localization by acting at both the Golgi apparatus and the plasma membrane.

Coimmunoprecipitation experiments suggest that levels of AnxA1 and β-catenin bound with VE-cadherin-PAR3 complexes are diametrically opposed, that is, if high levels of AnxA1 are bound, low levels of β-catenin are present and vice versa. This may enable the functional output of the complex to be precisely controlled. Alternatively, AnxA1 may promiscuously translocate between the two compartments. Of importance, PAR3–VE-cadherin complexes are internalized following F-actin disruption. This specifically liberates cPLA₂α from the complex, leaving AnxA1 associated with PAR3. The “free” cPLA₂α is then able to dissociate from the Golgi apparatus. This suggests that recruitment of the actin cytoskeleton to the VE-cadherin complex, potentially through binding to α-catenin, is required for tether cPLA₂α to the Golgi apparatus following VE-cadherin engagement. Thus AnxA1 and PAR3, together with F-actin, are critically important in controlling the localization of cPLA₂α to the Golgi apparatus in confluent endothelial cells. These results can be extrapolated to in vivo blood vessel formation. Here leading “tip” cells migrate away from the main vessel wall while maintaining attachments to the base “stalk” cells partially via VE-cadherin engagements. By reorganizing their cytoskeleton following PAR3-mediated polarization, tip cells can respond to chemical cues and begin to form new vessels (Herbert et al., 2007). It is possible that
enhanced activation of cPLA₂α in tip cells may accompany this process due to disengagement of VE-cadherin–PAR3 complexes and liberation of cPLA₂α from the Golgi. This is an exciting and intriguing possibility that warrants further investigation.

It is known that VE-cadherin is important for endothelial function and angiogenesis (Harris and Nelson, 2010). We established that VE-cadherin was needed for endothelial tubule formation and angiogenesis in vitro. However, VE-cadherin inhibition was recently reported to promote branching from preformed tubules via enhanced activation of Rho kinase (Abraham et al., 2009). One explanation for these differing conclusions may be the need for VE-cadherin in the initial endothelial differentiation stage for tubule formation or opposed to promoting branches from preformed tubules. This suggests that VE-cadherin is required for efficient endothelial cell proliferation, and its absence overrides the ability of cPLA₂α to influence proliferation. In addition, VE-cadherin may not influence cPLA₂α activity in subconfluent endothelial cells, which lack cell–cell adhesions and already contain a substantial cPLA₂α cytosolic pool.

Further discrepancies arise in the role of PAR3 in tubule formation. Previously, PAR3 was found to promote endothelial lumen formation in a three-dimensional collagen assay by controlling cell polarity (Koh et al., 2008; Herbert and Stainier, 2011). However, by using a coculture assay, we demonstrated that depletion of PAR3 or α-catenin (but not δ-catenin or β-catenin) increases angiogenic tubule formation, consistent with increased liberation of active cPLA₂α. This enhanced angiogenesis was prevented by cPLA₂α ablation using either chemical inhibitors or specific siRNA. This suggests increased cPLA₂α activity induced by PAR3/α-catenin down-regulation may promote endothelial tubule formation. Our novel findings may reflect differences in assay design or PAR3 isoforms targeted during inhibition. The coculture assay relies on a mixture of proliferation, migration, and differentiation. We propose that the enhanced proliferation that accompanies cPLA₂α cytoplasmic redistribution (Herbert et al., 2007) is responsible for enhanced tubule generation. However, it is unclear whether there is disrupted lumen formation under these circumstances.

Another important aspect of our study is the apparent distinction between growth factor (e.g., VEGF-A)-stimulated signaling pathways and the cPLA₂α localization phenomenon. VEGFR2 activation and downstream intracellular signaling does not contribute to the signal for cPLA₂α localization to the Golgi apparatus. In addition, the depletion of VE-cadherin does not appear to significantly affect short-term (0–1 h) signaling through this key receptor–ligand complex, which regulates endothelial cell migration, proliferation, and tubulogenesis. These conclusions argue for a hitherto unknown and novel mechanism to control long-range signaling between different compartments, for example, plasma membrane and Golgi apparatus. This mechanism enables a soluble enzyme (cPLA₂α) to be mobilized between membrane-bound (inactive) and soluble (active) states. This determines its ability to hydrolyze phospholipids and provide key metabolites (AA) that are substrates for essential bioactive compounds that regulate vascular and animal function (prostaglandins and leukotrienes).

In summary, VE-cadherin attachments are important for regulating many aspects of endothelial function, including cell migration, proliferation, and tumor neovascularization. The formation of VE-cadherin homophilic complexes are required for transmitting an inhibitory signal independent of β- or γ-catenin to cPLA₂α, thus resulting in its sequestration to the Golgi apparatus and subsequent inhibition of enzyme activity (presumably by preventing access to sites of substrate enrichment). This signal depends on the presence of α-catenin, PAR3, and AnxA1 and is modulated by the activity of δ-catenin on VE-cadherin complex formation. The attachment of α- and β-catenin to the cytoplasmic tail of VE-cadherin following cell–cell interactions provides the platform for recruiting PAR3 and AnxA1 to the complex. AnxA1 may play a dual role in binding to both cPLA₂α at the Golgi and VE-cadherin complexes in the plasma membrane. Formation of the VE-cadherin–α-catenin–PAR3 complex allows F-actin to bind, possibly through α-catenin, which subsequently stabilizes or drives cPLA₂α to the Golgi. Disruption of this complex liberates cPLA₂α, thereby increasing AA and PGE2 production and enhancing angiogenic tubule formation. Thus activation of this pathway upon formation of cell–cell contacts provides an effective means of controlling the activity of cPLA₂α and, through this, regulating AA release, eicosanoid production, phospholipid turnover, cell proliferation, and ultimately angiogenesis. These findings demonstrate the importance of VE-cadherin contacts in regulating angiogenesis and that cPLA₂α is a potential therapeutic target for antiangiogenic strategies in disease such as cancer and macular degeneration.

MATERIALS AND METHODS

Cell culture and materials

Human umbilical vein endothelial cells were isolated from human umbilical cords as previously described (Jaffe, 1984; Howell et al., 2004). Cells were cultured in endothelial cell basal medium supplemented with Endothelial Cell Growth Factor Kit 2 (Promocell, Heidelberg, Germany). All cells were grown on 0.1% (wt/vol) gelatin-coated cultureware and were not used in excess of four passages. HeLa cells were cultured as previously described and transfected using Lipofectamine 2000 according to manufacturer’s instructions (Invitrogen, Amsterdam, Netherlands). The following antibodies were purchased: anti-cPLA₂α (C20; Santa Cruz Biotechnology, Santa Cruz, CA); mouse anti–VE-cadherin BV9 (Santa Cruz Biotechnology); goat anti-VEGFR2 extracellular domain (R&D Systems, Minneapolis, MN); rabbit anti-VEGFR2, anti-c-AKT, anti-phospho-Ser473-c-AKT, anti-p44/42 ERK1/2, anti-phospho-Thr202/Tyr204-p44/42 ERK, and all catenin antibodies (Cell Signaling Technology, Beverly, MA); and rabbit anti-PAR3 (Upstate Biotechnology, Milton Keynes, United Kingdom). Horseradish peroxidase (HRP)–conjugated secondary antibodies were from ThermoFisher Scientific (Leicester, United Kingdom), and Alexa Fluor–conjugated secondary antibodies were from Invitrogen. Pyrroline was a kind gift from M. H. Gelb (University of Washington, Seattle, WA). All other reagents were obtained from Sigma-Aldrich (Poole, United Kingdom) or Invitrogen unless otherwise stated.

Biochemistry

Lysate preparation and Western analysis were performed as described previously (Herbert et al., 2005). Immunoprecipitation were performed overnight at 4°C using protein G Sepharose (Upstate Biotechnology), 2 μg of antibody, and 500–1000 μg of total protein in either 1% (vol/vol) NP40 lysis buffer (50 mM Tris/HCl, 150 mM NaCl, 0.5 mM EDTA, 0.5 mM ethylene glycol tetraacetic acid, 1% [vol/vol] NP40, pH 7.4) or 0.5% CHAPS lysis buffer (0.5% [wt/vol] 3-[3-cholamidopropyl]dimethylammonio)-1-propanesulfonate [CHAPS], 10 mM Tris/HCl, 150 mM NaCl, 0.5 mM CaCl₂ and 0.5 mM MgCl₂, pH 7.5). Samples (20–50 μg of protein or total bead volume) were resolved by SDS–PAGE on 7–14% gradient gels. Protein was transferred onto nitrocellulose membranes, which were blocked in 5% (wt/vol) nonfat milk and then incubated overnight with primary antibody at room temperature or 4°C. After incubation with HRP-conjugated anti–goat immunoglobulin G (IgG; 1:3000) for
1 h, immunoreactive bands were visualized by a Western blotting method using the Odyssey infrared imaging system (Li-Cor, Lincoln, NE). Band intensities were determined using ImageJ software. A repeated measures one-way analysis of variance and Tukey’s posttest analysis with Prism software (GraphPad, La Jolla, CA) was performed to determine statistical significance.

Endothelial cell differentiation, tubulogenesis, and migration assays

To assess HUVEC differentiation, 10⁶ cells were seeded in 24-well dishes coated with 100 μl of Matrigel (BD Biosciences, San Diego, CA) for 16 h prior to imaging. Tubule length was quantified using ImageJ software. Coculture assays were performed by culturing siRNA-treated HUVECs onto a confluent monolayer of primary human foreskin fibroblasts for 7–10 d in the presence or absence of VEGF-A. Tubules were fixed and either stained for immunofluorescence microscopy or outlined by digital image processing. Immunofluorescence microscopy was performed as previously described (Herbert et al., 2005). Briefly, cells grown on coverslips were fixed in 10% (vol/vol) formalin in neutral buffered saline (HT50-1-128; Sigma-Aldrich) for 5 min at 37°C. After permeabilization with 0.1% (vol/vol) Triton X-100 for 5 min, cells were fixed (5 min) and washed with phosphate-buffered saline, and nonspecific binding sites were blocked with 5% (vol/vol) donkey/5% (vol/vol) horse serum. Cells were incubated overnight with primary antibody, followed by the appropriate secondary antibodies. Coverslips were mounted on microscope slides in Fluoromount-G mounting medium (Southern Biotech, Birmingham, AL). For functional-blocking antibody experiments, HUVECs were incubated for 18 h with either anti-cadherin BV9 antibody (5 μg/ml) or isotype-matched control IgG1 antibody prior to fixation and analysis as described. The ratio of cPLA² to the Golgi-resident protein TGN46 (cPLA²: TGN46) was determined using either ImageJ (National Institutes of Health, Bethesda, MD) or LSM 5 (Carl Zeiss, Jena, Germany) software to determine the relative intensity of protein staining at the Golgi apparatus. Three random fields of view from 10 and 30 cells were routinely analyzed per coverslip performed in triplicate. Data were compiled from at least four independent experiments.

ACKNOWLEDGMENTS

This work was supported by grants from Yorkshire Cancer Research (M.H.) and the Wellcome Trust (J.H.W. and S.P.). We thank Michael Gelb for PL2 inhibitors and Elisabetta Dejana (IFOM-IEO Campus, Milan, Italy) for the VE-cadherin construct, as well as members of our laboratories for help and advice.

REFERENCES

Abraham S, Yeo M, Montero-Balaquera M, Paterson H, Dejana E, Marshall CJ, Navia G (2009). VE-cadherin-mediated cell-cell interaction suppresses sprouting via signaling to MLIC2 phosphorylation. Curr Biol 19, 668–674.

Akbik S, Sato T (2004). Cellular function of calcium-independent phospholipase A2. Biol Pharm Bull 27, 1174–1178.

Alberghina M (2010). Phospholipase A2: new lessons from endothelial cells. Microvasc Res 80, 280–285.

Antoniotti S, Fiorio Pia A, Pregnolato S, Mottola A, Lovisolo D, Munaron L (2003). Control of endothelial cell proliferation by calcium influx and arachidonic acid metabolism: a pharmacological approach. J Cell Physiol 197, 370–378.

Becchler ME, Doody AM, Racoosin E, Lin L, Lee KH, Brown WJ (2010). The phospholipase complex: PAFAH Iib regulates the functional organization of the Golgi complex. J Cell Biol 190, 45–53.

Bogatcheva NV, Sergeeva MG, Dudek SM, Verin AD (2005). Arachidonic acid cascade in endothelial cell pathobiology. Microvasc Res 69, 107–127.

Cadijan KM, Liu YI (2006). Wnt signaling: complexity at the surface. J Cell Sci 119, 395–402.

Carmeliet P (2000). Mechanisms of angiogenesis and arteriogenesis. Nat Med 6, 389–395.

Carmeliet P (2005). Angiogenesis in life, disease and medicine. Nature 438, 932–936.

Carmeliet P et al. (1999). Targeted deficiency or cytosolic truncation of the VE-cadherin gene in mice impairs VEGF-mediated endothelial survival and angiogenesis. Cell 98, 147–157.
Cavallaro U, Liebner S, Dejana E (2006). Endothelial caderhins and tumor angiogenesis. Exp Cell Res 312, 659–667.
Caveda L, Martin-Padura I, Navarro P, Breviario F, Corada M, Gulino D, Lampugnani MG, Dejana E (1996). Inhibition of cultured cell growth by vascular endothelial cadherin (cadherin-5/VE-cadherin). J Clin Invest 98, 886–893.
Chen D, Walsh K, Wang J (2000). Regulation of cdk2 activity in endothelial cells that are inhibited from growth by cell contact. Arterioscler Thromb Vasc Biol 20, 629–635.
Chiasson CM, Wittch KB, Vincent PA, Faundez V, Kowalczyk AP (2009). p120-catenin inhibits VE-cadherin internalization through a Rho-independent mechanism. Mol Biol Cell 20, 1970–1980.
Conacci-Sorrell M, Zhirinsky J, Ben-Ze’ev A (2002). The cadherin-catenin adhesion system in signaling and cancer. J Clin Invest 109, 987–991.
Crosby CV, Fleming PA, Argraves WS, Corada M, Zanetta L, Dejana E, Drake CJ (2005). VE-cadherin is not required for the formation of nascent blood vessels but acts to prevent their disassembly. Blood 105, 2771–2776.
Dejana E, Orsenigo F, Lampugnani MG (2008). The role of adherens junctions and VE-cadherin in the control of vascular permeability. J Cell Sci 121, 2115–2122.
Dennis EA (1997). The growing phospholipase A2 superfamily of signal transduction enzymes. Trends Biochem Sci 22, 1–2.
Drees F, Pokutta S, Yamada S, Nelson WJ, Weis WI (2005). Alpha-catenin is a molecular switch that binds E-cadherin-beta-catenin and regulates actin-filament assembly. Cell 123, 903–915.
Evans CE, Billington D, McEvoy FA (1984). Prostacyclin production by confluent and non-confluent human endothelial cells in culture. Prostaglandins Leukot Med 14, 255–266.
Pla A, Grange C, Antoniotti S, Tomatis C, Merlino A, Bussolati B, Munaron L (2008). Arachidonic acid-induced Ca2+ entry is involved in early steps of tumor angiogenesis. Mol Cancer Res 6, 535–545.
Gao L, Macara IG, Joberty G (2002). Multiple splice variants of Par3 and of a novel related gene, Par3L, produce proteins with different binding properties. Gene 294, 99–107.
Gavert N, Ben-Ze’ev A (2007). beta-Catenin signaling in biological control of cell polarity. J Cell Biol 175, 459–465.
Linkous A, Geng L, Lyshchik A, Hallahan DE, Yazlovitskaya EM (2009). Cytosolic phospholipase A2: targeting cancer through the tumor vasculature. Clin Cancer Res 15, 1635–1644.
Linkous AY, Yazlovitskaya EM, Hallahan DE (2010). Cytosolic phospholipase A2 and lypoxygenols in tumor angiogenesis. J Natl Cancer Inst 102, 1398–1412.
Martin TA, Harding K, Jiang WG (2001). Matrix-bound fibroblasts regulate angiogenesis by modulation of VE-cadherin. Eur J Clin Invest 31, 931–938.
Mashimo M, Hirabayashi T, Murayama T, Shimizu T (2008). Cytosolic phospholipase A2(alpha) activation in Purkinje neurons and its role in AMPA-receptor trafficking. J Cell Sci 121, 3015–3024.
McCoy MA, McKinley RF, Harris TJ (2009). Independent cadherin-catenin and Bazooka clusters interact to assemble adherens junctions. J Cell Biol 185, 785–796.
Meng W, Takeichi M (2009). Adherens junction: molecular architecture and regulation. Cold Spring Harb Perspect Biol 1, a002899.
Namkoong S, Lee SJ, Kim CK, Kim YM, Chung HT, Lee H, Han JA, Ha KS, Kwon YG (2005). Prostaglandin E2 stimulates angiogenesis by activating the nitric oxide/cGMP pathway in human umbilical vein endothelial cells. Exp Mol Med 37, 588–600.
Namkoong S, Lee SJ, Kim CK, Kim YM, Chung HT, Lee H, Han JA, Ha KS, Kwon YG (2005). Prostaglandin E2 stimulates angiogenesis by activating the nitric oxide/cGMP pathway in human umbilical vein endothelial cells. Exp Mol Med 37, 588–600.
Nie D, Hoon KV (2000). Cyclooxygenase, lipooxygenase and tumor angiogenesis. Cell Mol Life Sci 59, 799–807.
Nie D, Tang K, Diglio C, Hoon KV (2000). Eicosanoid regulation of angiogenesis: role of endothelial arachidonate 12-lipoxygenase. Blood 95, 2304–2311.
Noseda M, Chang L, McLean G, Grim JE, Clurman BE, Smith LL, Karsan A (2004). Notch activation induces endothelial cell cycle arrest and participates in contact inhibition: role of p21cip1 repression. Mol Cell Biol 24, 551–564.
Pokutta S, Drees F, Yamada S, Nelson WJ, Weis WI (2008). Biochemical and structural analysis of alpha-catenin in cell-cell contacts. Biochem Soc Trans 36, 141–147.
Regan-Klapiisz E, Krouwer V, Langelaar-Makkinen M, Nallan L, Gelb M, Gerritsen H, Verkleij AJ, Post JA (2009). Golgi-associated cPLA2alpha regulates endothelial cell-cell junction integrity by controlling the trafficking of transmembrane junction proteins. Mol Biol Cell 20, 4225–4234.
Rivers DM, Moreno S, Abraham M, Ahringer J (2008). PAR proteins direct asymmetric of the cell cycle regulators Polo-like kinase and Cdc25. J Cell Biol 129, 203–217.
Sato K et al. (2011). Numb controls E-cadherin endocytosis through p120-catenin with aPKC. Mol Biol Cell 22, 3103–3119.
Strilic B, Kucera T, Egeljner J, Hughes MR, McNagny KM, Tsukita S, Dejana E, Ferrara N, Lammer E (2009). The molecular basis of vascular lumen formation in the developing mouse aorta. Dev Cell 17, 505–515.
Tosato G, Segarra M, Salvucci O (2010). Cytosolic phospholipase A2α and cancer: a role in tumor angiogenesis. J Natl Cancer Inst 102, 1377–1379.

Tyler RC, Peterson FC, Volkman BF (2010). Distal interactions within the par3-VE-cadherin complex. Biochemistry 49, 951–957.

Vestweber D (2008). VE-cadherin: the major endothelial adhesion molecule controlling cellular junctions and blood vessel formation. Arterioscler Thromb Vasc Biol 28, 223–232.

Vestweber D, Winderlich M, Cagna G, Nottebaum AF (2008). Cell adhesion dynamics at endothelial junctions: VE-cadherin as a major player. Trends Cell Biol.

Wang Z, Sun Y (2010). Targeting p53 for novel anticancer therapy. Transl Oncol 3, 1–12.

Whatley RE, Satoh K, Zimmerman GA, McIntyre TM, Prescott SM (1994). Proliferation-dependent changes in release of arachidonic acid from endothelial cells. J Clin Invest 94, 1889–1900.

Wheeler-Jones C, Abu-Ghazaleh R, Cospedal R, Houliston RA, Martin J, Zachary I (1997). Vascular endothelial growth factor stimulates prostacyclin production and activation of cytosolic phospholipase A2 in endothelial cells via p42/p44 mitogen-activated protein kinase. FEBS Lett 420, 28–32.

Wimmer R, Cseh B, Maier B, Scherrer K, Baccarini M (2012). Angiogenic sprouting requires the fine tuning of endothelial cell cohesion by the Raf-1/Rok-alpha complex. Dev Cell 22, 158–171.

Zanetta L, Corada M, Grazia Lampugnani M, Zanetti A, Brevisario F, Moons L, Carmeliet P, Pepper MS, Dejana E (2005). Downregulation of vascular endothelial-cadherin expression is associated with an increase in vascular tumor growth and hemorrhagic complications. Thromb Haemost 93, 1041–1046.

Zhao Z, Zhang X, Zhao C, Choi J, Shi J, Song K, Turk J, Ma ZA (2010). Protection of pancreatic beta-cells by group VIA phospholipase A(2)-mediated repair of mitochondrial membrane peroxidation. Endocrinology 151, 3038–3048.

Zovein AC, Luque A, Turlo KA, Hofmann JJ, Yee KM, Becker MS, Fassler R, Sellman I, Lane TF, Iruela-Arispe ML (2010). Beta1 integrin establishes endothelial cell polarity and arteriolar lumen formation via a Par3-dependent mechanism. Dev Cell 18, 39–51.