Statefinder Diagnostic for Dilaton Dark Energy

Z. G. Huang1, X. M. Song
Department of Mathematics and Physics,
Huaihai Institute of Technology, 222005, Lianyungang, China
1zghuang@hhit.edu.cn

H. Q. Lu2 and W. Fang
Department of Physics, Shanghai University, Shanghai, China
2alberthq_lu@staff.shu.edu.cn

Statefinder diagnostic is a useful method which can differ one dark energy model from the others. The Statefinder pair \(\{r, s\} \) is algebraically related to the equation of state of dark energy and its first time derivative. We apply in this paper this method to the dilaton dark energy model based on Weyl-Scaled induced gravitational theory. We investigate the effect of the coupling between matter and dilaton when the potential of dilaton field is taken as the Mexican hat form. We find that the evolving trajectory of our model in the \(r - s \) diagram is quite different from those of other dark energy models.

Keywords: Dark energy; Statefinder; Dilaton; Mexican hat potential; Attractor.

PACS numbers: 98.80.Cq, 98.80.Jk

Since the first observational data from SNe Ia1 is issued in 1998, exploring the nature of dark energy has been one of the most challenging problems in theoretical physics and modern astrophysics. All data from SNe Ia2 together with data from WMAP53 and SDSS4 strongly show us that, the Universe is spatially flat with about one third of the critical energy density being in non-relativistic matter and about two thirds of the critical energy density being in a smooth component with large negative pressure(dark energy), and is undergoing an accelerated expansion phase. Of course, with the recent data on the galaxy power spectrum from 2dF Galaxy Survey combined with CMB data5, the existence of dark energy(DE) can be proved without using the supernova data at all6.

So far, many models have been proposed to fit the observations including cosmological constant \(\Lambda 7-11 \), quintessence12-43, phantom44-53, holographic dark energy54-60, Quintom61-63, tachyon64-73 and Chaplygin gas74,75 so on. The essential characteristics of these dark energy models are contained in the parameter of its equation of state, \(p = \omega \rho \), where \(p \) and \(\rho \) denote the pressure and energy density of dark energy, respectively, and \(\omega \) is a state parameter. Among these models, cosmological constant \(\Lambda \) model may be the simplest candidate. This constant term in Einstein field equation can be regarded as an fluid with the equation of state parameter \(\omega = -1 \). However, there are two serious problems with the cosmological constant, namely the fine-tuning and the cosmic coincidence. Firstly, in the framework of quantum field theory, the vacuum expectation value is 123 order of magnitude larger than the observed value of \(10^{-47}\text{GeV}^4 \). The absence of a fundamental mechanism which sets the cosmological constant zero or very small value is the cosmological constant “fine-tuning” problem. Secondly, to explain in this way a constant vacuum energy density of \(10^{-47}\text{GeV}^4 \), which is not only small but is also just the right value that it is just beginning to dominate the energy density of the Universe now, would require an unbelievable coincidence.

Quintessence model has been widely studied, and its state parameter \(\omega \) which is time-dependent, is greater than \(-1\). In this paper, we regard dilaton in Weyl-scaled induced gravitational theory as a quintessence coupled with matter. It is well known that scalar-tensor theories are the most natural extensions of general relativity, in particular they contain local Lorentz invariance, constancy of nongravitational constants and respect the weak equivalence principle76-84. In our previous papers85, we have constructed a dilatonic dark energy model which belongs to nonminimal quintessence86-92, based on Weyl-scaled induced gravitational theory. We found that when the dilaton field was not gravitational clustered at small scales, the effect of dilaton can not change the evolutionary law of baryon density perturbation, and the density perturbation can grow from \(z \sim 10^3 \) to \(z \sim 5 \), which guarantees the structure formation. We have also investigated the property of the attractor solutions and concluded that the coupling between dilaton and matter affects the evolutive process of the Universe, but not the fate of the Universe.

With the remarkable increase in the accuracy of cosmological observational data during the last few years...
and the appearance of more general models of dark energy than a cosmological constant, advancing beyond quantities Hubble parameter \(H(t) \equiv \frac{\dot{a}}{a} \) and deceleration parameter \(q_0 \) becomes a necessity. For this reason, Salmi et al[93,94] propose a new geometrical diagnostic pair \(\{r, s\} \) for dark energy, which is called statefinder and can be expressed as follows.

\[
 r \equiv \frac{\ddot{a}}{aH^3}, \quad s \equiv \frac{r - 1}{3(q - \frac{1}{2})}
\]

where \(r \) is a natural next step beyond \(H \) and \(q \). We can easily see that this diagnostic is constructed from the \(a(t) \) and its derivatives up to the third order. So, the statefinder probes the expansion dynamics of the universe through higher derivatives of the expansion factor. By far, many models[95-100] have been differentiated by this geometrical diagnostic method. Its important property is that \(\{r, s\} = \{1, 0\} \) is a fixed point for the flat ΛCDM FRW cosmological model. Departure of a given DE model from this fixed point is a good way of establishing the “distance” of this model from flat ΛCDM. In this paper, we will investigate the evolutive trajectory of our model in the \(r - s \) diagram when the potential of dilaton field is taken as the Mexican hat potential, and show the difference between our model and the others, special ΛCDM.

The action of the Weyl-scaled induced gravitational theory is as follows:

\[
 S = \int d^4X \sqrt{-g} \left[\frac{1}{2} R(g_{\mu\nu}) - \frac{1}{2} \sigma \partial_{\mu} \partial_{\nu} \sigma - V(\sigma) + L_{\text{fluid}}(\psi) \right]
\]

where \(L_{\text{fluid}}(\psi) = \frac{1}{2} g^{\mu\nu} e^{-\alpha \sigma} \partial_{\mu} \psi \partial_{\nu} \psi - e^{-2\alpha \sigma} V(\psi) \), \(\alpha = \sqrt{\frac{1}{2}} \) with \(\omega > 3500[101] \) being an important parameter in Weyl-scaled induced gravitational theory, \(\sigma \) is dilaton field, \(g_{\mu\nu} \) is the Pauli metric which can really represent the massless spin-two graviton and should be considered to be physical metric[102], and \(V(\sigma) \) is the potential of dilaton field. The conventional Einstein gravity limit occurs as \(\sigma \rightarrow 0 \) for an arbitrary \(\omega \) or \(\omega \rightarrow \infty \) with an arbitrary \(\sigma \). When \(V(\sigma) = 0 \), it will result in the Einstein-Brans-Dicke theory.

By varying action(2) and working in FRW universe, we obtain the field equations of Weyl-scaled induced gravitational theory:

\[
 H^2 = \frac{1}{3M_p^2}(\rho_m + \rho_\sigma)
\]

\[
 \dot{H} = -\frac{1}{2M_p^2} (\rho_m + \rho_\sigma + p_\sigma)
\]

\[
 \dot{\rho}_m + 3H \rho_m = \frac{1}{2} \alpha \dot{\sigma} \rho_m
\]

\[
 \dot{\rho}_\sigma + 3H \dot{\sigma}^2 = \frac{1}{2} \alpha e^{-\alpha \sigma} \rho_m
\]

where \(\rho_m \) is dark matter energy density, \(\rho_\sigma \) is dilaton dark energy energy density and radiation is neglected. The effective energy density and pressure of dilaton dark energy can be expressed as follows

\[
 \rho_\sigma = \frac{1}{2} \dot{\sigma}^2 + V(\sigma)
\]

\[
 p_\sigma = \frac{1}{2} \dot{\sigma}^2 - V(\sigma)
\]

For matter \(p_m = 0 \), we get \(\rho_m \propto e^{\frac{\dot{\sigma}}{\alpha a}} \) from Eq.(5). Using Eq.(3) and the e-folding transformation \(N = \ln a \), we have

\[
 H = H_i \left[\frac{1}{2} \dot{\sigma}^2 + V(\sigma) \right] + \frac{\Omega_{m,i} e^{\frac{\dot{\sigma}}{\alpha a}} e^{-3N}}{\rho_{c,i}}
\]

where \(H_i^2 = \frac{\rho_{m,i}}{3M_p^2} \), \(\rho_{c,i} \) is the critical energy density of the universe at initial time \(t_i \). \(H_i, \Omega_{m,i}, \) denote the Hubble parameter, matter energy density parameter at initial time \(t_i \) respectively.

Using the definition of Eq.(1) and Eqs.(3-6), one can find that

\[
 r = 1 + 3 \frac{\dot{H}}{H^2} + \frac{\ddot{H}}{H^3} = 1 - \frac{3}{2} \Omega_\sigma \omega_\sigma + \frac{9}{2} \omega_\sigma \Omega_{\sigma}(1 + \Omega_\sigma) - \frac{3}{4} \alpha \sigma'(1 - \Omega_\sigma) - \frac{3}{4} \frac{\alpha e^{-\alpha \sigma}}{H}(1 - \Omega_\sigma)(1 + \omega_\sigma)
\]

\[
 q = -1 - \frac{\dot{H}}{H^2} = \frac{1}{2} (1 + 3\omega_\sigma \Omega_\sigma)
\]

\[
 s \equiv \frac{r - 1}{3(q - \frac{1}{2})} = 1 + \omega_\sigma - \frac{\omega_\sigma'}{3 \omega_\sigma} - \frac{\alpha \sigma'}{6 \omega_\sigma} \Omega_\sigma - \frac{\alpha e^{-\alpha \sigma}}{6} \frac{1 - \Omega_\sigma}{H} \frac{1 + \Omega_\sigma}{\omega_\sigma}
\]
where a prime denotes the derivative with respect to the *e-folding* time $N = \ln a$ and $\Omega_i \equiv \frac{\rho_i}{3M_H^2}$ for $i = m$ and σ.

Now, let us consider the Mexican hat potential $V(\sigma) = \frac{\mu}{4}(\sigma^2 - \varepsilon^2)^2 + V_0$ where μ, ε and V_0 are all constant. For this type of Mexican hat potential, it has two extremum points in the range $\sigma \geq 0$: a minimum at $\sigma = \varepsilon$ and a maximum at $\sigma = 0$. The non-conventional parameter V_0 in this potential moves the potential up and down, which is equivalent to adding a cosmological constant to the usual Mexican hat potential. We show the features of the Mexican hat potential mathematically in Fig.1.

![Fig.1 The Mexican hat potential $V(\sigma) = \frac{\mu}{4}(\sigma^2 - \varepsilon^2)^2 + V_0$. We set $V_0 = 0$(real line), 100(dot line), 200(dot-dashed line).](image1)

![Fig.2 The $r - s$ diagram of Mexican hat potential $V(\sigma) = \frac{\mu}{4}(\sigma^2 - \varepsilon^2)^2 + V_0$. Curves $r(s)$ evolves in the e-fold time interval $N \in [0, 0.878]$. The black dot corresponds the fixed point of ΛCDM, $\{r = 1, s = 0\}$. α denoting the intensity of coupling between dilaton and matter, is set for $\alpha = 0.00000001$(real line), $\alpha = 0.8$(dot-dashed line) and $\alpha = 5$(dot line) respectively.](image2)
The diagram $r-q$ of Mexican hat potential $V(\sigma) = \frac{\mu}{4}(\sigma^2 - \varepsilon^2)^2 + V_0$ when we set $\alpha = 0.00000001$ (real line), $\alpha = 0.8$ (dot-dashed line) and $\alpha = 5$ (dot line) respectively.

In Fig.2, the $\{r, s\}$ phase portrait is shown numerically. When the coupling parameter α is set 5 (dot line), 0.8 (dot-dashed line) and 0.00000001 (real line), the evolutive trajectories of $r(s)$ are very similar. This means that the intensity of coupling between dilaton and matter changes the evolutive trajectory of $r(s)$ weakly. This result is consistent with a conclusion obtained from our previous paper [14]: the coupling between dilaton and matter affects the evolutive process of the Universe, but not the fate of the Universe. We can easily see that the trajectory of $r(s)$ will pass the fixed point $\{r = 1, s = 0\}$ of ΛCDM in the future and is different from the other dark energy models. Fig.3 shows the evolutive behavior of parameter r with respect to deceleration parameter in the range of e-folding time $N \in [0, 0.92]$. The evolutive behavior for different coupling parameter α will tend to the same one. Fig.4 shows that the shape of the evolutive trajectory of $\sigma' - \sigma$ is a stable spiral corresponding to the equation of state $\omega = -1$ and the dilaton dark energy density parameter $\Omega = 1$, which are important features for a dark energy model that can meet the current observations.

In summary, we apply the statefinder diagnostic to the dilaton dark energy model based on the Weyl-scaled induced gravitational theory with Mexican hat potential $V(\sigma) = \frac{\mu}{4}(\sigma^2 - \varepsilon^2)^2 + V_0$. The effect of coupling between dilaton and matter on the evolutive trajectory of $r(s)$ with respect to the e-folding time $N = lna$, is investigated in this paper. First, we get the attractor solution is a stable spiral. Second, according to the numerical results, we get the coupling between dilaton and matter changes the evolutive behavior of $r(s)$ very weakly and the trajectories of $r(s)$ for different coupling parameter α will always pass the fixed point $\{r = 1, s = 0\}$ corresponding to ΛCDM model. At last, we find that the evolutive trajectory of $r(s)$ forms a swirl before reaches attractor and is quite different from those of other dark energy models [93-100].
Acknowledgements

This work is partially supported by National Nature Science Foundation of China under Grant No.10573012, National Nature Science Foundation of HHIT under Grant No.Z2007022 and National Nature Science Foundation of Jiangsu Province under Grant No.07KJD140011.

References

1. A. G. Riess, *Astron. J.* **116**, 1009(1998).
2. A. G. Riess et al., *Astrophys. J.* **607**, 665(2004);
 S. Perlmutter et al., *Astrophys. J.* **517**, 565(1999);
 N. A. Bahcall et al., *Science* **284**, 1481(1999).
3. G. Hinshaw et al., arXiv: 0803.0732;
 M. R. Nolta, et al., arXiv: 0803.0593.
4. M. Tegmark, et al., *Phys. Rev. D* **69**, 103510(2004);
5. D. N. Spergel et al., *Astrophys. J. Suppl* **148**, 175(2003).
6. W.J. Percival et al., *Mon. Not. Roy. Astron. Soc* **337**, 1068(2002).
7. S. Weinberg *Rev. Mod. Phys.* **61**, 1(1989).
8. V. Sahni and A. Starobinsky, *Int. J. Mod. Phys. D* **9**, 373(2000).
9. S. M. Carroll, *Living Rev. Rel.* **4**, 1(2001).
10. P. J. E. Peebles and B. Ratra, *Rev. Mod. Phys.* **75**, 559(2003).
11. T. Padmanabhan, *Phys. Rept.* **380**, 235(2003).
12. L. Amendola, M. Quartin, S. Tsujikawa and I. Waga, *Phys.Rev.D* **74**, 023525(2006).
13. E. Elizalde, S. Nojiri and S. D. Odintsov, arXiv: hep-th/0405034.
14. S. Nojiri, S. D. Odintsov and M. Sasaki, *Phys.Rev. D* **70** 043539(2004).
15. S. Nojiri and S. D. Odintsov *Phys. Lett. B* **639**, 144(2006).
16. B. Boisseau et al., *Phys. Rev. Lett* **85**, 2236(2000), arXiv:gr-qc/0001066
17. G. Esposito-Farese and D. Polarski, *Phys. Rev. D* **63**, 063504(2001), arXiv:gr-qc/0009034.
18. X. Zhang, *Phys. Lett. B* **611**, 1(2005), arXiv:astro-ph/0503075
19. M. R. Setare, *Phys. Lett. B* **642**, 1(2006), arXiv:hep-th/0609069.
20. V. Faraoni and M. N. Jensen, gr-qc/0602097.
21. C. Wetterich *Nucl. Phys. B* **302**, 668(1988).
22. E. J. Copeland, M. Sami and S. Tsujikawa, arXiv:hep-th/0603057
23. P. G. Ferreira and M. Joyce *Phys. Rev. D* **58**, 023503(1998).
24. J. Frieman, C. T. Hill, A. Stebbinsand and I.Waga, *Phys. Rev. Lett* **75**, 2077(1995).
25. P. Brax and J. Martin, *Phys. Rev. D* **61**, 103502(2000).
26. T. Barreiro, E. J. Copeland and N. J. Nunes, *Phys. Rev. D* **61**, 127301(2000).
27. I. Zlatev, L. Wang and P. J. Steinhardt *Phys. Rev. Lett* **82**, 896(1999).
28. T. Padmanabhan, and T. R. Choudhury, *Phys. Rev. D* **66**, 081301(2002).
29. A. Sen, *JHEP* **0204**, 048(2002).
30. C. Armendariz-Picon, T. Damour and V. Mukhanov, *Phys. Lett. B* **458**, 209(1999).
31. A. Feinstein, *Phys. Rev. D* **66**, 063511(2002).
32. M. Fairbairn and M. H. Tytgat, *Phys. Lett. B* **546**, 1(2002).
33. A. Frolov, L. Kofman and A. Starobinsky, *Phys.Lett.B* **545**, 8(2002).
34. L. Kofman and A. Linde, *JHEP* **0207**, 004(2004).
35. C. Acatrinei and C. Sochichiu, *Mod. Phys. Lett. A* **18**, 31(2003).
36. S. H. Alexander, *Phys. Rev. D* **65**, 0203507(2002).
37. T. Padmanabhan, *Phys. Rev. D* **66**, 021301(2002).
38. A. Mazumdar, S. Panda and A. Perez-Lorenzana, *Nucl. Phys. B* **614**, 101(2001).
39. S. Sarangi and S. H. Tye, *Phys. Lett. B* **536**, 185(2002).
40. Z. G. Huang and H. Q. Lu, *Int. J. Mod. Phys. D* **15**, 1501(2006).
41. Z. G. Huang, H. Q. Lu and W. Fang, *Int. J. Mod. Phys. D* **16**, 1109(2007), arXiv:hep-th/0610018.
42. Z. G. Huang, X. H. Li and Q. Q. Sun, *Astrophys. Space Sci.* **310**, 53 (2007), arXiv:hep-th/0610019.
43. W. Fang, H. Q. Lu and Z.G. Huang, *Class. Quant. Grav.* **24**, 3799 (2007).
44. L. Amendola, S. Tsujikawa, and M. Sami, *Phys. Lett. B* **632**, 155 (2006).
45. L. Amendola, *Phys. Rev. Lett.* **93**, 181102 (2004).
46. R. Gannouji, D. Polarski, A. Ranquet and A. A. Starobinsky, arXiv:astro-ph/060628.
47. W. Fang, H. Q. Lu and Z.G. Huang, *Class. Quant. Grav.* **24**, 3799 (2007).
48. L. Amendola, S. Tsujikawa, and M. Sami, *Phys. Lett. B* **632**, 155 (2006).
49. L. Amendola, *Phys. Rev. Lett.* **93**, 181102 (2004).
50. R. Gannouji, D. Polarski, A. Ranquet and A. A. Starobinsky, arXiv:astro-ph/060628.
51. H. Q. Lu, *Int. J. Mod. Phys. D* **14**, 355 (2005), arXiv:hep-th/0312082.
52. H. Q. Lu, Z. G. Huang, W. Fang and P. Y. Ji, arXiv:hep-th/0504038.
53. W. Fang et al., *Int. J. Mod. Phys. D* **15**, 199 (2006), arXiv:hep-th/0409080.
54. H. Q. Lu, Z. G. Huang, W. Fang and P. Y. Ji, arXiv:hep-th/0504038.
55. H. Q. Lu, *Int. J. Mod. Phys. D* **14**, 355 (2005), arXiv:hep-th/0312082.
56. H. Q. Lu, Z. G. Huang, W. Fang and P. Y. Ji, arXiv:hep-th/0504038.
57. H. Q. Lu, Z. G. Huang, W. Fang and P. Y. Ji, arXiv:hep-th/0504038.
58. H. Q. Lu, Z. G. Huang, W. Fang and P. Y. Ji, arXiv:hep-th/0504038.
59. H. Q. Lu, Z. G. Huang, W. Fang and P. Y. Ji, arXiv:hep-th/0504038.
60. H. Q. Lu, Z. G. Huang, W. Fang and P. Y. Ji, arXiv:hep-th/0504038.
61. H. Q. Lu, Z. G. Huang, W. Fang and P. Y. Ji, arXiv:hep-th/0504038.
62. H. Q. Lu, Z. G. Huang, W. Fang and P. Y. Ji, arXiv:hep-th/0504038.
63. H. Q. Lu, Z. G. Huang, W. Fang and P. Y. Ji, arXiv:hep-th/0504038.
64. H. Q. Lu, Z. G. Huang, W. Fang and P. Y. Ji, arXiv:hep-th/0504038.
65. H. Q. Lu, Z. G. Huang, W. Fang and P. Y. Ji, arXiv:hep-th/0504038.
66. H. Q. Lu, Z. G. Huang, W. Fang and P. Y. Ji, arXiv:hep-th/0504038.
67. H. Q. Lu, Z. G. Huang, W. Fang and P. Y. Ji, arXiv:hep-th/0504038.
68. H. Q. Lu, Z. G. Huang, W. Fang and P. Y. Ji, arXiv:hep-th/0504038.
69. H. Q. Lu, Z. G. Huang, W. Fang and P. Y. Ji, arXiv:hep-th/0504038.
70. H. Q. Lu, Z. G. Huang, W. Fang and P. Y. Ji, arXiv:hep-th/0504038.
71. H. Q. Lu, Z. G. Huang, W. Fang and P. Y. Ji, arXiv:hep-th/0504038.
72. H. Q. Lu, Z. G. Huang, W. Fang and P. Y. Ji, arXiv:hep-th/0504038.
73. H. Q. Lu, Z. G. Huang, W. Fang and P. Y. Ji, arXiv:hep-th/0504038.
74. H. Q. Lu, Z. G. Huang, W. Fang and P. Y. Ji, arXiv:hep-th/0504038.
75. H. Q. Lu, Z. G. Huang, W. Fang and P. Y. Ji, arXiv:hep-th/0504038.
76. H. Q. Lu, Z. G. Huang, W. Fang and P. Y. Ji, arXiv:hep-th/0504038.
77. H. Q. Lu, Z. G. Huang, W. Fang and P. Y. Ji, arXiv:hep-th/0504038.
78. H. Q. Lu, Z. G. Huang, W. Fang and P. Y. Ji, arXiv:hep-th/0504038.
79. H. Q. Lu, Z. G. Huang, W. Fang and P. Y. Ji, arXiv:hep-th/0504038.
80. H. Q. Lu, Z. G. Huang, W. Fang and P. Y. Ji, arXiv:hep-th/0504038.
81. H. Q. Lu, Z. G. Huang, W. Fang and P. Y. Ji, arXiv:hep-th/0504038.
82. H. Q. Lu, Z. G. Huang, W. Fang and P. Y. Ji, arXiv:hep-th/0504038.
83. H. Q. Lu, Z. G. Huang, W. Fang and P. Y. Ji, arXiv:hep-th/0504038.
84. H. Q. Lu, Z. G. Huang, W. Fang and P. Y. Ji, arXiv:hep-th/0504038.
85. H. Q. Lu, Z. G. Huang, W. Fang and P. Y. Ji, arXiv:hep-th/0504038.
86. H. Q. Lu, Z. G. Huang, W. Fang and P. Y. Ji, arXiv:hep-th/0504038.
87. H. Q. Lu, Z. G. Huang, W. Fang and P. Y. Ji, arXiv:hep-th/0504038.
88. H. Q. Lu, Z. G. Huang, W. Fang and P. Y. Ji, arXiv:hep-th/0504038.
91. R. de Ritis, A.A. Marino, C. Rubano, and P. Scudellaro, Phys. Rev. D 62, 043506(2000), arXiv:hep-th/9907198.
92. O. Bertolami and P.J. Martins, Phys. Rev. D 61, 064007(2000), arXiv:gr-qc/9910056.
93. V. Sahni, T. D. Saini, A. A. Starobinsky and U. Alam, JETP Lett 77, 201(2003);
94. U. Alam, V. Sahni, T. D. Saini and A. A. Starobinsky, Mon. Not. Roy. Ast. Soc 344, 1057(2003).
95. B. R. Chang, H. Y. Liu, L. X. Xu, C. W. Zhang and Y. L. Ping, JCAP 0701, 016(2007).
96. Gorini, A. Kamenshchik and U. Moschella, Phys. Rev. D 67, 063509(2003).
97. X. Zhang, Phys. Lett. B 611, 1(2005).
98. X. Zhang, Int. J. Mod. Phys. D 14, 1597(2005).
99. P. X. Wu and H. W. Yu, Int. J. Mod. Phys. D 14, 1873(2005).
100. X. Zhang, F. Q. Wu, J. F. Zhang, JCAP 0601, 003(2006).
101. C. M. Will, Living Rev. Rel. 4, 4(2001).
102. Y. M. Cho, Phys. Rev. Lett 68, 3133(1992).