Detection and Characterization of β-Adrenergic Receptors and Adenylate Cyclase in Coated Vesicles Isolated from Bovine Brain

D.-M. Chuang,* O. Dillon-Carter,* J. W. Spain,† M. B. Laskowski,† B. L. Roth,* 1 and C. J. Coscia†

*Laboratory of Preclinical Pharmacology, St. Elizabeth’s Hospital, National Institute of Mental Health, Washington, D.C. 20032, and †E. Doisy Department of Biochemistry and Department of Physiology, St. Louis University School of Medicine, St. Louis, Missouri 63104

Received Nov. 15, 1985; revised Feb. 10, 1986; accepted Mar. 24, 1986.

To assess whether internalization of β-adrenergic receptor occurs in the CNS, we have isolated clathrin-coated vesicles from bovine forebrain and examined them for the presence of β-adrenergic receptor binding and adenylate cyclase activities. A coated vesicle enriched preparation isolated by successive DODTO-FFCull density gradient centrifugations was applied to a glass bead permeation column to achieve further purification. Two major peaks of protein were eluted from the column and monitored by electron microscopy and SDS-PAGE. Peak II contained almost exclusively coated vesicles (98%), whereas peak I, which appeared in the void volume, contained larger smooth vesicles and few coated vesicles. β-Adrenergic receptor binding to peaks I and II was measured with [125I]-cyanopindolol (CYP) as ligand in Sepharose 4B column assays. [125I]-CYP was found to bind specifically and saturably to both peaks I and II with a Bmax of 28 ± 4 and 32 ± 3 pmol/mg protein, respectively. [125I]-CGP 12177, a hydrophilic β-adrenergic receptor ligand, did not label receptors present in peak II, but it specifically bound to synaptic plasma membranes (SPM) prepared from bovine hippocampus and, to a lesser extent, to peak I. These results suggest that receptors present in coated vesicles are cryptic in nature. In the displacement of [125I]-CYP binding by (−)-isoproterenol, addition of 50 μM GppNHp caused a significant “right shift” with SPM and peak I but not the peak II preparation. Adenylate cyclase activities could also be detected in both peaks I and II (specific activities, 21 ± 0.6 and 24 ± 0.5 pmol cAMP/mg protein/min, respectively). These activities were not influenced by GTP or GTP plus isoproterenol. Rechromatography of peak II on the glass bead column revealed that appreciable amounts of protein, CYP binding, and adenylate cyclase activities could be recovered in peak I; this change in chromatographic pattern was facilitated by pretreatment of coated vesicles with 0.5 M Tris, which has been shown to uncoupe these vesicles. This suggests that at least some of the protein, as well as CYP binding and cyclase activities, found in peak I originated from coated vesicles following loss of clathrin and aggregation. Our results support the concept that β-adrenergic receptor and adenylate cyclase detected in coated vesicles are molecular entities undergoing endocytotic or exocytotic intracellular transport.

Coated vesicles, originally described by Roth and Porter (1964), appear to be present in virtually all eukaryotic cells. One of the best defined functions of coated vesicles is that of receptor-mediated internalization of specific ligands; it has been shown morphologically that they are involved in the uptake of a variety of substances, including low-density lipoprotein, yolk protein, transferrin, epidermal, and NGFs, insulin, and immunoglobulins (reviewed by Fine and Ockleford, 1984; Goldstein et al., 1979). In this process, coated vesicles appear to bud from coated pits in the plasma membrane and then rapidly lose their coating to become part of the endosomes or receptosomes before they fuse with intracellular organelles such as lysosomes. It has also been suggested that coated vesicles are involved in the transport of molecules between organelles such as the endoplasmic reticulum and the Golgi apparatus and between the Golgi and the plasma membrane (Bursztan and Fischbach, 1984; Palade and Flier, 1977; Rothman and Fine, 1980; Rotundo and Fambrough, 1980). Coated vesicles were first purified to near homogeneity by Pearse (1976) and shown to contain a major protein of 180,000 Da termed clathrin. In addition, 3 prominent groups of polypeptides have been associated with purified coated vesicles isolated from brain and several other tissues. These proteins have molecular weights of approximately 110,000–100,000, 55,000–50,000, and 38,000–35,000, respectively (Garber and Wu, 1981; Mello et al., 1980; Pfeffer et al., 1983; Pilch et al., 1983; Rothman and Fine, 1980; Wood et al., 1978). Isolated coated vesicles have been shown to contain molecules such as transferrin, ferritin, and immunoglobulin (Pearse, 1982) and receptors for low-density lipoprotein (Mello et al., 1980), insulin (Pilch et al., 1983), ACh (Porter-Jordan et al., 1982), and opioids (Bennett et al., 1985).

Evidence has accumulated suggesting that β-adrenergic receptor binding sites may be internalized during agonist-induced receptor down-regulation in frog erythrocytes (Chuang and Costa, 1979; Stadel et al., 1983) and several cultured cell systems (Harden et al., 1980; Mahan et al., 1985; Pittman and Molinoff, 1980; Stahl and Hertel, 1982). In the CNS, β-adrenergic receptors can be down-regulated by pharmacological manipulations. For example, chronic treatment of experimental animals with various antidepressant drugs is known to cause a loss of β-adrenergic receptors in the brain, and this receptor down-regulation is generally believed to be relevant to the therapeutic action of these drugs (reviewed by Chuang and Costa, 1984). However, little is known as to whether β-receptor internalization occurs in the CNS. We reasoned that if β-adrenergic receptors in the CNS are internalized by mechanisms involving coated pits, isolated coated vesicles should contain these binding sites. In this report we present evidence for the association of β-adrenergic receptors with purified coated vesicles and show that the characteristics of these receptors differ in some respects from those found in synaptic plasma membranes (SPM).

Materials and Methods

Isolation of coated vesicles

Coated vesicles were isolated from bovine forebrain (freshly obtained from a local slaughterhouse) using the procedures of Pfeffer and Kelly (1985). Briefly, 2 brains (about 600 gm) were dissected to remove the
meninges and homogenized in an equal volume of homogenization buffer (see below). The crude microsomal (100,000 x g) pellet obtained from 20,000 x g supernatant was subjected to 3 successive continuous D$_2$O-Ficoll gradient centrifugations (9% D$_2$O–2% Ficoll to 90% D$_2$O–20% Ficoll). The resulting coated vesicle-enriched preparation (60–80%) was applied to a controlled pore glass bead permeation column (1.5 x 11.0 cm; mean pore diameter, 205 nm) to achieve further purification. Two protein peaks were eluted from the column and were monitored by electron microscopy and SDS-PAGE (see Results). Materials present in peak II of the column are referred to as coated vesicles. Peaks I and II obtained from the column were frozen immediately at -70°C until use. The yields of protein in peaks I and II were about 300 and 700 µg/100 g of brain, respectively.

Binding of β-adrenergic receptor ligands to peaks I and II and synaptic plasma membranes

Assay mixtures in a final volume of 0.5 ml contained 25 mM Tris HCl buffer, pH 7.4, 1 mM MgCl$_2$, and indicated concentrations of membrane proteins and either 32I-dl-cyanopindolol (CYP, 2200 Ci/mmol; New England Nuclear, Boston, MA) or 3H-CGP 12177 (38 Ci/mmol; Amersham, Arlington Heights, IL). The binding reaction was terminated after incubation at 30°C for 45 min; at this time, the specific binding of both ligands had attained an equilibrium. For the binding to peak I or II, the reaction mixture was immediately applied to a Sepharose CL 4B (Pharmacia, Piscataway, NJ) column (0.6 x 13 cm) that had been equilibrated with the above Tris MgCl$_2$ buffer at 4°C. The eluate appearing at the void volume, which contained radioligand bound to sites in peak I or II, was collected for the determination of radioactivity in a γ- or β-counter for 32I and 3H, respectively. Details of these experimental procedures are as described previously (Chuang and Costa, 1979; Chuang et al., 1981). Nonspecific binding was measured in the presence of 2 µM unlabeled alprenolol and was subtracted from the total binding to obtain specific binding (70-90% of the total binding). For the measurement of β-receptor binding to sites in peaks I and II, the column assay was found to be too insensitive to produce a higher degree of specific binding than the method of filtration through glass fiber filter. Because of the size heterogeneity of membrane fragments present in the SPM preparation, binding of β-receptor ligands to SPM was measured using the conventional glass fiber filtration method.

Adenylate cyclase assays

Adenylate cyclase activities present in SPM and peaks I and II were assayed in 100 µl of reaction mixture containing 25 mM Tris HCl buffer, pH 7.4, 10 mM MgCl$_2$, 1 mM EDTA, 0.1 mM ATP, 2 mM phospho-creatine, 16 units/ml creatine phosphokinase, 0.5 mM isobutylmethyl-xanthine, indicated amounts of protein from SPM and peaks I or II, and, when indicated, 10 µM GTP ± 2 x 10$^{-5}$ M (-)-isoproterenol hydrochloride. After incubation at 37°C for 15 min, the reaction was terminated by addition of 40 µl of 0.33 M ZnSO$_4$ and 40 µl of 0.2 M Na$_2$CO$_3$ followed by centrifugation to remove the precipitate. An aliquot of 100 µl of the supernatant was subjected to acetylation and the acetylated cAMP content was determined by radioimmunoassay using rabbit antibodies raised against 2'-O-succinyl-cAMP as reported (Harper and Broker, 1975). The amounts of cAMP present in SPM, and peak I or II at incubation time zero were considered as the background and subtracted; these values were less than 0.4 pmol/mg protein. The reaction was linear up to 20 min when incubated at 37°C.

Procedures for the treatment of coated vesicles with 0.5 M Tris

About 5 mg protein obtained from peak II of the controlled glass bead permeation column was diluted with an equal volume of homogenization buffer (10 mM HEPES, pH 7.4, 0.1 mM MgCl$_2$, 150 mM NaCl, 1 mM EGTA) and centrifuged at 100,000 x g for 1 hr. Half of the resulting pellets were resuspended in 5 ml of homogenization buffer, and the supernatant was added to the same volume of homogenization buffer containing 0.5 M Tris HCl, pH 7.4. After incubation at room temperature for 30 min, these mixtures were centrifuged at 150,000 x g for 1 hr. The supernatants were collected for protein analysis, and the pellets were individually resuspended in a small volume of the column buffer (10 mM HEPES, pH 7.0, 200 mM sucrose, 300 mM NaCl, 10 mM EGTA) and rechromatographed on 2 glass bead permeation columns run in parallel. Peaks I and II derived after control coated vesicles were centrifuged at 200,000 x g for 4 hr and the pellets resuspended in a small volume of homogenization buffer for protein determination, adenylate cyclase assay, and β-adrenergic receptor binding activity measurement.

Electron microscopy

Samples of peaks I and II derived from the glass bead column were resuspended in a fixative solution containing 1% parafomaldehyde and 1% glutaraldehyde in 0.1 M sodium cacodylate, pH 7.4, and placed in the cold for 1 hr. The fixed material was rinsed in sodium cacodylate, postfixed in 1% OsO$_4$ for 1 hr, and dehydrated in a series of graded ethanol and propylene oxide. Final embedding was carried out in Epoxy-Resin (Fullam). Thin sections were cut with a diamond knife on a LKB III Ultramicrotome and, after staining with uranyl acetate and lead citrate, viewed with a JEOL 100CX EM.

Other methods

SPM were prepared from bovine hippocampal-dentate gyrus as described (Roth et al., 1982) and resuspended in the above column buffer before use. Protein was determined using the method of Lowry et al. (1951).

Results

Characterization of coated vesicles isolated from bovine brain

Since it had been reported that the high osmolarity of conventional sucrose gradient centrifugation results in loss of coated vesicle content (Nandi et al., 1983), D$_2$O-Ficoll equilibrium gradients (Pfeffer and Kelly, 1983) were used to isolate coated vesicles from bovine brain. The resulting coated vesicle-enriched preparation was chromatographed onto a controlled pore glass bead column (Pfeffer et al., 1983) to achieve further purification. As Figure 1 shows, 2 major A$_{254}$ nm absorbing peaks with little overlap were eluted from the column. These 2 peaks were characterized by electron microscopy and SDS-PAGE. Peak II contained almost exclusively (up to 98%) coated vesicles and some empty baskets. Coated vesicle dimensions varied from 40 to 120 nm, with a mean value of about 60 nm (Fig. 2B). In contrast, peak I, which appeared in the void volume of the column, consisted predominantly of larger smooth vesicles, although a few coated vesicles and some filamentous structures were also found (Fig. 2A). Analysis by SDS-PAGE confirmed...
that the major protein in coated vesicles (peak II) is the clathrin heavy chain of approximately 180,000 Da (Fig. 3). In addition, 3 protein doublets were detected with molecular weights of 110,000–100,000, 55,000–50,000, and 38,000–35,000. Peak I consisted mainly of a protein with 55,000 Da and a relatively small quantity of the 180,000 Da clathrin heavy chain.

β-Adrenergic receptor binding activity

To assess the presence of β-adrenergic receptor binding sites in peaks I and II, we used ^125^I-CYP as ligand and Sepharose CL 4B column chromatography to separate free CYP from CYP bound to supramacromolecular structures. As shown in Figure
Table 1. Adenylate cyclase activity in various subcellular fractions of bovine brain

Fractions	cAMP formed (pmol/mg protein/min)	+GTP	+GTP and isoproterenol
Before column (n = 5)	16.3 ± 0.4	19.7 ± 0.8	22.3 ± 1.2
Peak I (n = 6)	21.1 ± 0.6	23.5 ± 1.1	24.0 ± 0.8
Peak II (n = 6)	24.2 ± 0.5	25.7 ± 0.6	25.0 ± 0.7
SPM (n = 3)	111.2 ± 4.1	156.0 ± 6.2	199.0 ± 7.4

Conditions of adenylate assay are described in Materials and Methods. The amounts of protein used per assay were 6-18 μg for all fractions. These protein concentrations were all in the linear range of activity.

4A. 125I-CYP was specifically bound to sites in peaks I and II in a saturable manner, as it was to SPM. The Bmax values calculated by Scatchard analyses from 4 separate experiments were 28 ± 4 and 32 ± 3 fmol/mg protein for peaks I and II, respectively, and 172 ± 18 fmol/mg protein for SPM (data not shown). It is seen in Figure 4B that 3H-CGP 12177, a hydrophilic ligand for β-adrenergic receptors (Staehelin and Hertel, 1982), failed to label receptors present in peak II but was specifically bound to SPM and, to a much lesser extent, to peak I. These results suggest that β-adrenergic receptors present in coated vesicles are cryptic in nature.

The binding of 125I-CYP to peaks I as well as II and SPM was displaced effectively by (-)-alprenolol (IC50 = 5 × 10⁻⁹ M) and relatively weakly by (-)-isoproterenol (IC50 = 2 to 8 × 10⁻⁶ M) (Fig. 5). (+)-isoproterenol, the stereoisomer, failed to affect this binding at 10⁻⁶ M (data not shown). The addition of 50 μM GppNHp was without effect on the displacement by (-)-isoproterenol of 125I-CYP binding to peak II (Fig. 5B), whereas a significant "right shift" (about 4-fold increase in IC50) and an increase in the steepness of the displacement curve was found when SPM was used (Fig. 5C). A similar but smaller effect of GppNHp on the isoproterenol displacement curve was seen in the binding of 125I-CYP to peak I (Fig. 5A). In all 3 preparations, the Hill coefficients were approaching 1 (> 0.88) when isoproterenol displacements were performed in the presence of GppNHp. The presence of GppNHp did not change the displacement behavior of alprenolol in any of the 3 preparations (Fig. 5).

Activities of adenylate cyclase

Since adenylate cyclase is a component of the β-adrenergic receptor complex, we attempted to detect it in peaks I and II, the coated vesicle enriched before column preparation, and SPM. These results are summarized in Table 1. Adenylate cyclase activities were found in both peaks I and II with specific activities of 21 ± 0.6 and 24 ± 0.5 pmol cAMP/mg protein/min, respectively. These activities were unchanged by the addition of GTP (10⁻⁴ M) ± isoproterenol (2 × 10⁻⁴ M). In contrast, the cyclase activity in the SPM was significantly stimulated by GTP alone (40% increase) and in the presence of isoproterenol (80% increase). Cyclase activities present in peaks I and II were not significantly stimulated by 10 mM NaF. These activities were dependent on incubation temperature; an incubation at 4°C failed to increase cAMP content. Boiling peaks I and II preparations for 3 min completely abolished their adenylate cyclase activity.

Effect of Tris treatment on the chromatographic pattern of coated vesicles

Since specific activities of β-adrenergic receptor binding and adenylate cyclase detected in peak I were almost equal to those found in peak II, we investigated the possibility that these peak I-associated activities might be derived from coated vesicles in peak II. Keen et al. (1979) first reported that treatment of coated

![Figure 3](image-url)
In the present study, we presented evidence for the occurrence of \(\beta \)-adrenergic receptor binding sites in a coated vesicle preparation from bovine brain. The materials of peak II from both Tris-treated and control samples were reisolated by centrifugation and then assayed for protein content and activities of \(\beta \)-receptor binding and adenylate cyclase. The data in Table 2 show that 1251-CYP binding and adenylate cyclase activities were shifted in parallel with protein contents from peak II to peak I from both Tris-treated and control samples.

Discussion

In the present study, we presented evidence for the occurrence of \(\beta \)-adrenergic receptor binding sites in a coated vesicle preparation obtained from bovine brain. Coated vesicles were isolated by D$_2$O-Ficoll gradient centrifugation to preserve the integrity of structures and by glass bead column chromatography to remove uncoated materials. The purity of coated vesicles was verified by electron microscopy and SDS-PAGE (Figs. 2, 3). 125I-CYP binding to \(\beta \)-adrenergic receptors in the purified coated vesicle preparation was displaced potently by (-)-alprenolol and relatively weakly by isoproterenol in a stereospecific manner, as was binding to SPM (Fig. 5). However, the characteristics of \(\beta \)-adrenergic receptor binding associated with the peak II preparation differ from those of SPM in 2 regards: (1) The displacement of CYP binding by (-)-isoproterenol was unaffected by the addition of guanine nucleotides and contrasted with the "right shift" observed with SPM (Fig. 5); and (2) 3H-CGP 12177, a hydrophilic ligand that labels only cell-surface receptors because of its inability to traverse membranes, bound to receptors in SPM but not with those in the coated vesicle preparation (Fig. 4), suggesting the presence of "latent" receptors in coated vesicles. Latency of receptors for low-density lipoprotein and insulin has also been shown in isolated coated vesicles (Mello et al., 1980; Pilch et al., 1983). In these studies, latent receptors were unmasked by pretreatment of coated vesicles with octyl-glucoside. Since we found that octyl-glucoside severely damages \(\beta \)-adrenergic receptors present in coated vesicles and other preparations, we were unable to use this detergent to unmask receptors in our study. It is interesting to note that the binding characteristics of the coated vesicle preparation—i.e., the potency of (-)-isoproterenol for binding displacement, the slope of the displacement curve, and the lack of effect of guanine nucleotide on the isoproterenol binding—are similar to those found in "internalized" \(\beta \)-adrenergic receptors present in vascular structures derived from frog erythrocytes desensitized with \(\beta \)-adrenergic agonists (Chuang et al., 1981; Stadel et al., 1983). It should, however, be noted that a 6-fold lower density of 125I-CYP binding sites was found in coated vesicles than in the plasma membranes (Fig. 4), suggesting that only a small fraction of coated vesicles are involved in \(\beta \)-receptor transport. These results are not surprising because this purified population of coated vesicles is extremely heterogenous; they may arise from various types of neurons and several classes of glial cells.

Adenylate cyclase activity was also detected in the coated vesicle preparation. Furthermore, this cyclase activity was unchanged by the addition of GTP or GTP plus isoproterenol, whereas these agents elicited a significant activation of the ac-
The properties of β-receptor binding site and adenylate cyclase present in the peak I preparation are reminiscent of those found in the peak II; however, their precise origin requires further investigation. Electron micrographs show that the peak I preparation was heterogeneous, containing mainly smooth vesicles, some filamentous structures and a few coated vesicles (Fig. 2). It is generally agreed that the clathrin coats are lost very rapidly from coated vesicles in vivo, probably within a minute after coated vesicle formation (Pearse and Bretscher, 1981). Moreover, an ATP-dependent uncoating enzyme that has been purified appears to form a stoichiometric complex with the clathrin trimer (Schmid et al., 1984). Thus, one may speculate that the molecular entities of cyclase and receptor detected in peak I may be located in smooth vesicles that are derived from coated vesicles by removal of clathrin and aggregation. The results of experiments presented in Figure 6 and Table 2 may support this view. When peak II material was rechromatographed onto a glass bead column, considerable amounts of protein, β-receptor binding, and cyclase activities were recovered in peak I. Pretreatment of peak II with 0.5 M Tris, which facilitated the removal of clathrin from coated vesicles, resulted in a pronounced shift in the absorbance profile and the transfer of binding and cyclase activities from peak II to I.

The size of coated vesicles used in this study varied from about 40 to 120 nm. In certain tissues, e.g., liver and adrenal cortex, large coated vesicles (90–120 nm) are derived from plas-
Hadjiivanova, N., N. Flint, and W. H. Evans (1984) Endocytosis of
Harden, T. K., C. U. Cotton, G. L. Waldo, J. K. Lutton, and J. P.
Fine, R. E., and C. D. Ockleford (1984) Supramolecular cytology of
buffers with (A) or without (B) 0.5 M Tris HCl, pH 7.4. After incubation
at room temperature for 30 min, the 2 preparations were centrifuged
and pellets were resuspended and rechromatographed onto 2 glass col-
umns run in parallel. The 280 nm absorbance of the column eluant was
recorded. Details of the experimental procedures are as described in
Materials and Methods.

ma membranes and involved in receptor-mediated endocytosis,
whereas small coated vesicles (50-80 nm) are probably of Golgi
origin and participate in intracellular transport and receptor
recycling (Goldstein et al., 1979; Pearse and Bretscher, 1981).
At present, it is unclear whether we can associate the size of
coated vesicles in the brain with their origin in plasma mem-
brane or Golgi apparatus. Nor do we know whether large or
small coated vesicles contain β-receptor and/or adenylate cy-
clase. Further studies using a morphological approach will be
essential to identify the origin of these molecular entities and
to aid our understanding of whether these entities are involved
in endocytosis or exocytotic intracellular transport.

References
Bennett, D. B., J. W. Spain, M. B. Laskowski, B. L. Roth, and C. J.
Coscia (1985) Stereospecific opiater binding sites occur in coated
vesicles. J. Neurosci. 5: 3010-3015.
Burstan, S., and G. D. Fischbach (1984) Evidence that coated vesicles
transport acetylcholine receptors to the surface membrane of chick
myotubes. I. Cell Biol. 98: 498-506.
Chuang, D.-M., and E. Costa (1979) Evidence for internalization of
the recognition site of β-adrenergic receptors during receptor subgen-
sitivity induced by (−)-isoproterenol. Proc. Natl. Acad. Sci. USA 76:
3024-3028.
Chuang, D.-M., and E. Costa (1984) Recognition sites of antidepres-
sant drugs. In Handbook of Neurochemistry, Vol. 6, Abel Lajtha, ed.,
pp. 307-330, Plenum, New York.
Chuang, D.-M., W. J. Kinner, L. Farber, and E. Costa (1981) A bio-
chemical study of receptor internalization during β-adrenergic recep-
tor desensitization in frog erythrocytes. Mol. Pharmacol. 18: 348-
355.
Fine, R. E., and C. D. Ockleford (1984) Supramolecular cytology of
coated vesicles. Int. Rev. Cytol. 91: 1-43.
Garberry, J. Y., and Y.-Y. Wu (1981) Puriﬁcation and characterization of
clothrin from bovine brain. J. Neurochem. 36: 602-612.
Goldstein, J. L., R. G. W. Anderson, and M. S. Brown (1979) Coated
pits, coated vesicles and receptor-mediated endocytosis. Nature 279:
679-685.
Hadjiivanova, N., N. Flint, and W. H. Evans (1984) Endocytosis of
β-adrenergic ligands by rat liver: Comparison of β-adrenergic receptor
and adenylate cyclase distribution in endosome and plasma-mem-
brane fractions. Biochem. J. 222: 749-754.
Harrold, J. K., C. U. Cotton, G. L. Waldo, J. K. Lutton, and J. P.
Perrins (1980) Catecholamine-induced alteration in the sedimen-
tation behavior of membrane-bound β-adrenergic receptors. Science
210: 441-443.
Harper, J. F., and G. Brooker (1975) Femtomole sensitive radioim-
munosay for cyclic AMP and cyclic GMP after 2′ O acetylation by
acetic anhydride in aqueous solution. J. Cyclic Nucleotide Res. 1:
207-218.
Kean, J. H., M. C. Willingham, and J. H. Postan (1979) Clathrin-
coated vesicles: isolation, characterization, and factor-dependent reas-
sociation of clathrin baskets. Cell 16: 303-312.
Laemmli, U. K. (1970) Cleavage of structural proteins during assembly
of the head of bacteriophage T. Nature 227: 680-685.
Lowry, O. H., N. J. Rosebrough, A. L. Farr, and J. R. Randall (1951)
Protein determination with the Folin phenol reagent. J. Biol. Chem.
193: 265-275.
Mahan, L. C., A. M. Koachman, and P. A. Insel (1985) Genetic
analysis of β-adrenergic receptor internalization and down-regula-
Proc. Natl. Acad. Sci. USA 82: 129-133.
Mello, R. J., M. S. Brown, J. I. Goldstein, and R. G. W. Anderson
(1980) LDL receptors in coated vesicles isolated from bovine adrenal
cortex: Binding sites unmasked by detergent treatment. Cell 20: 829-
837.
Nandi, P. K., G. Irace, P. V. Van Jaarsveld, R. E. Lippoldt, and H.
Edelhach (1983) Instability of coated vesicles in concentrated su-
crase solutions. Proc. Natl Acad. Sci. USA 79: 5881-5885.
Palade, G. E., and M. Fletcher (1977) Reversible alterations in the
morphology of the Golgi complex induced by the arrest of secretory
transport. J. Cell Biol. 75: 371a.
Pearse, B. M. F. (1976) Clathrin: A unique protein associated with
intracellular transfer of membrane by coated vesicles. Proc. Natl.
Acad. Sci. USA 73: 1233-1239.
Pearse, B. M. F. (1982) Coated vesicles from human placenta carry
ferritin, transferrin and immunoglobulin G. Proc. Natl. Acad. Sci.
USA 79: 451-455.
Pearse, B. M. F., and M. S. Bretscher (1981) Membrane recycling by
coated vesicles. Annu. Rev. Biochem. 50: 85-101.
Pfeffer, S. R., and R. B. Kelly (1985) The subpopulation of brain coated
vesicles that carries synaptic vesicle proteins contains two unique polypep-
dides. Cell 40: 949-957.
Pfeffer, S. R., D. G. Drubin, and R. B. Kelly (1983) Identification of three
covered vesicle components as α- and β-tubulin linked to a phos-
phorylated 50,000 dalton polypeptide. J. Cell Biol. 97: 40.-47.
Pilch, P. F., M. A. Shia, R. J. J. Benson, and R. E. Fine (1983) Coated
vesicles participate in the receptor-mediated endocytosis of insulin.
J. Cell Biol. 92: 133-138.
Pittman, R. N., and P. B. Molinoff (1980) Interactions of agonists and
antagonists with β-adrenergic receptors on intact L muscle cells. J.
Cyclic Nucleotide Res. 6: 421-433.
Porter-Jordan, K., R. J. J. Benson, and R. E. Fine (1982) Localization of
the acetylcholine receptor and acetylcholinesterase in coated ves-
icles. J. Cell Biol. 95: 460-466.
Roth, B. L., M. B. Laskowski, and C. J. Coscia (1982) Microsomal opiate
receptors differ from synaptic vesicle receptors in proteolytic
sensitivity. Brain Res. 250: 101-109.
Roth, T. F., and K. R. Porter (1964) Yolk protein uptake in the oocyte of
mosquito Aedes aegypti. J. Cell Biol. 20: 313-322.
Rothman, J. E., and R. E. Fine (1980) Coated vesicles transport newly
synthesized membrane glycoproteins from endoplasmic reticulum to
plasma membrane in two successive stages. Proc. Natl. Acad. Sci.
USA 77: 780-784.
Rotundo, R., and D. M. Fambrough (1980) Secretion of acetylcho-
linesterase: Relation to acetylcholine receptor metabolism. Cell 22:
595-602.
Schmid, S. L., T. N. Lavin, M. M. Briggs, M. G. Caron, and R. J.
Lefkowitz (1983) Desensitization of the β-adrenergic receptors of frog
erthrocytes: recovery and characterization of the down-regulated receptor in sequestered vesicles. J. Biol. Chem. 258: 3032-3038.
Stachelin, M., and C. Hertel (1982) [3H]-CGP-12177: A β-adrenergic
ligand suitable for measuring cell surface receptors. J. Recept Res.
3: 35-43.
Wood, J. W., M. P. Woodward, and T. F. Roth (1978) Common
features of coated vesicles from dissimilar tissues: Composition and
structure. J. Cell Sci. 30: 87-97.

Figure 6. Rechromatography of coated vesicles from controlled pore
glass bead columns. Coated vesicles from a peak II preparation were
pelleted by centrifugation and then resuspended in the homogenization
buffer with (A) or without (B) 0.5 M Tris HCl, pH 7.4. After incubation
in vitro, the 2 preparations were centrifuged and pellets were resuspended and rechromatographed onto 2 glass col-
umns run in parallel. The 280 nm absorbance of the column eluant was
recorded. Details of the experimental procedures are as described in
Materials and Methods.