An analysis on the controllability and stability to some fractional delay dynamical systems on time scales with impulsive effects

Bakhtawar Pervaiz¹, Akbar Zada¹*, Sina Etemad² and Shahram Rezapour²,³*

Abstract
In this article, we establish a new class of mixed integral fractional delay dynamic systems with impulsive effects on time scales. We investigate the qualitative properties of the considered systems. In fact, the article contains three segments, and the first segment is devoted to investigating the existence and uniqueness results. In the second segment, we study the stability analysis, while the third segment is devoted to investigating the controllability criterion. We use the Leray–Schauder and Banach fixed point theorems to prove our results. Moreover, the obtained results are examined with the help of an example.

MSC: 26A33; 34A08; 34B27

Keywords: Time scales; Dynamic system; Hyers–Ulam stability; Controllability; Impulsive effects

1 Introduction
The notion of fractional differential equations (FDEs) has been a field of intense research for the last few decades. In 1695, the notion of FDEs was initiated with a coincidence between Leibniz and L’Hospital. Nowadays, FDEs play an important role in establishing mathematical modeling of many problems occurring in control theory, bioengineering, mathematical networks, aerodynamics, blood flows, engineering, physics, signal processing, etc. [1, 2].

We can analyze from different experiments that FDEs have innumerable prominent status than integer-order derivatives. Consequently, fractional calculus got incredible interest and received more attention from many specialists and researchers. It also set up a better sketch over hereditary properties of processes and various materials, consequently many monographs and research papers have been reported in this field [3–22].

Recently, the theory of stability analysis, like Lyapunov, exponential, Mittag-Leffler function, and finite time stability for various kinds of functional equations, has been investigated. Ulam and Hyers introduced most important and interesting kind of stability called Hyers–Ulam stability [23] in 1940. Ulam during his talk at Wisconsin University asked a question about the stability of homomorphisms between groups. In 1941, Hyers [24]
replied to Ulam’s problem positively under the hypothesis that groups are considered as Banach spaces (BS), and such a stability was called Ulam–Hyers stability. For more information, see [25–30]. Impulsive differential equations are best tools to model a physical situation that contains abrupt changes at certain instants. These equations describe medicine, biotechnology process, population dynamics, biological systems, chemical energy, mathematical economy, pharmacokinetics, etc. [31–43].

In the past few decades, because of these applications in various fields of interest, impulsive differential equations got considerable attention. In order to unify the difference and differential calculus, Hilger [44] provided the idea of time scales at the end of the twentieth century, which is now a well-known subject. For more details, see [45–51]. Lupulescu and Zada [49] provided the basics and fundamental notions of linear impulsive systems on time scales in 2010.

In 1960, Kalman presented the notion of controllability, which is the principal notion in mathematical control theory. In general, controllability provides steering the state of a control dynamical equation to the desired terminal state from an arbitrary initial state by utilizing a suitable control function. Numerous researchers examined the controllability results of dynamical systems [52, 53]. Moreover, controllability results on time scales is a new area, and few results have been achieved [54, 55]. Especially, there are a few articles that examined the existence, controllability, and Ulam type stability regarding a mixed fractional dynamical system on time scales.

Inspired by the research conducted in [56], we study the following mixed integral fractional dynamical systems on the time scale \mathbb{T}:

\[
\begin{aligned}
&\mathcal{D}^\sigma\omega(\varsigma) = A(\varsigma)\omega(\varsigma) + \mathcal{F}(\varsigma, \omega(\varsigma)) \\
&\quad + G(\varsigma, \omega(\varsigma), \int_{\varsigma_0}^{\varsigma} \mathcal{F}_1(\varsigma, s, \omega(s))\Delta s, \int_{\varsigma_0}^{\varsigma} \mathcal{F}_2(\varsigma, s, \omega(s))\Delta s), \\
&\quad \varsigma \in \mathbb{T} = \mathbb{T}\setminus \{\varsigma_1, \varsigma_2, \ldots, \varsigma_m\}, \sigma = (0, 1), \\
&\omega(\varsigma_k^+) - \omega(\varsigma_k^-) = \Xi_k(\omega(\varsigma_k^-)) + \Phi_k(\varsigma_k^-, \omega(\varsigma_k^-)), \quad k = 1, \ldots, m, \\
&\omega(\varsigma_0) = \omega_0,
\end{aligned}
\]

and

\[
\begin{aligned}
&\mathcal{D}^\sigma\omega(\varsigma) = A(\varsigma)\omega(\varsigma) + \mathcal{F}(\varsigma, \omega(\varsigma)) \\
&\quad + G(\varsigma, \omega(\varsigma), \int_{\varsigma_0}^{\varsigma} \mathcal{F}_1(\varsigma, s, \omega(s))\Delta s, \int_{\varsigma_0}^{\varsigma} \mathcal{F}_2(\varsigma, s, \omega(s))\Delta s), \\
&\quad \varsigma \in \{s_i, \varsigma_{i+1}\} \cap \mathbb{T}, i = 1, \ldots, m, \sigma = (0, 1), \\
&\omega(\varsigma) = \frac{1}{\Gamma(\varsigma-s)} \int_{\varsigma-s}^{\varsigma} h(\varsigma-s)\omega(\varsigma)\Delta s, \quad \varsigma \in (s_i, s_{i+1}) \cap \mathbb{T}, i = 1, \ldots, m, \\
&\omega(\varsigma_0) = \omega_0.
\end{aligned}
\]

Also, we discuss the controllability of the following systems:

\[
\begin{aligned}
&\mathcal{D}^\sigma\omega(\varsigma) = A(\varsigma)\omega(\varsigma) + \mathcal{F}(\varsigma, \omega(\varsigma)) \\
&\quad + G(\varsigma, \omega(\varsigma), \int_{\varsigma_0}^{\varsigma} \mathcal{F}_1(\varsigma, s, \omega(s))\Delta s, \int_{\varsigma_0}^{\varsigma} \mathcal{F}_2(\varsigma, s, \omega(s))\Delta s) + \mathcal{H}(\varsigma), \\
&\quad \varsigma \in \mathbb{T} = \mathbb{T}\setminus \{\varsigma_1, \varsigma_2, \ldots, \varsigma_m\}, \sigma = (0, 1), \\
&\omega(\varsigma_k^+) - \omega(\varsigma_k^-) = \Xi_k(\omega(\varsigma_k^-)) + \Phi_k(\varsigma_k^-, \omega(\varsigma_k^-)), \quad k = 1, \ldots, m, \\
&\omega(\varsigma_0) = \omega_0,
\end{aligned}
\]
where $c^T\mathcal{D}^\sigma$ represents the classical Caputo derivative [1] of fractional order σ on time scales \mathbb{T}. The regressive square matrix $A(\zeta)$ is piecewise continuous, and $\mathcal{H}: \mathbb{T} \to \mathbb{T}$ is a bounded linear operator. By assuming \mathbb{R} as the real number, $\zeta \in \mathcal{L}^2(I, \mathbb{R})$ is a control map, $T^0 := [\zeta_0, \zeta_1]$, the pre-fixed numbers are $\zeta_0 = \zeta_1 < \zeta_2 < \cdots < \zeta_m < \zeta_{m+1} = \zeta_f$, and $\mathcal{F}: T^0 \times \mathbb{R}^n \to \mathbb{R}^n$, \mathcal{F}_1, $\mathcal{F}_2: T^0 \times T^0 \times \mathbb{R}^n \to \mathbb{R}^n$, $G: T^0 \times \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}^n$, $h_i: (\zeta_i, s_i) \cap T \times \mathbb{R}^n \to \mathbb{R}^n$, $i = 1, \ldots, m$, $\mathcal{F}_1: (s_i, \zeta_i, s_{i+1}) \cap T \times \mathbb{R}^n \to \mathbb{R}^n$, $i = 1, \ldots, m$, $\mathbb{E}_k: \mathbb{R}^n \to \mathbb{R}^n$, $\Phi_k: T^0 \times \mathbb{R}^n \to \mathbb{R}^n$ continuous mappings. In addition, we define the right limit and the left limit of $\omega(\zeta)$ at ζ_k as $\omega(\zeta^+_k) = \lim_{\tau \to 0^+} \omega(\zeta_k + \tau)$ and $\omega(\zeta^-_k) = \lim_{\tau \to 0^-} \omega(\zeta_k - \tau)$, respectively.

2 Auxiliary definitions and lemmas

Here, we provide definitions, basic notions, and preliminaries for this manuscript.

We define $C(I, \mathbb{R})$ as a $\mathbb{B}S$ of all continuous mappings endowed with the norm $\|\omega\|_C = \sup_{\zeta \in T} \|\omega(\zeta)\|$. $PS = C(I, \mathbb{R}) \times C(I, \mathbb{R}) \times C(I, \mathbb{R})$ is the product space which is a $\mathbb{B}S$ furnished with the norm $\|(\omega, \xi, \zeta)\|_C = \|\omega\|_C + \|\xi\|_C + \|\zeta\|_C$. Also, we define $\mathbb{B}S C^1(I, \mathbb{R}) = \{\omega \in C(I, \mathbb{R}) : \omega^\Delta \in C^1(I, \mathbb{R})\}$ with the norm $\|\omega\|_{C^1} = \max\{\|\omega\|_C, \|\omega^\Delta\|_{C^1}\}$. Moreover, $PS^1 = C^1(I, \mathbb{R}) \times C^1(I, \mathbb{R}) \times C^1(I, \mathbb{R})$ is the product space via $\|(\omega, \xi, \zeta)\|_{C^1} = \|\omega\|_{C^1} + \|\xi\|_{C^1} + \|\zeta\|_{C^1}$.

A nonempty closed subset of \mathbb{R} is known as a time scale (\mathbb{T}). We define a time scale interval as $[c, d]_\mathbb{T} = \{\zeta \in T : c \leq \zeta \leq d\}$. Similarly, we can define $(c, d]_\mathbb{T}$.

The forward and backward jump operators $\sigma: \mathbb{T} \to \mathbb{T}$, $\rho: \mathbb{T} \to \mathbb{T}$ are introduced as

$$\sigma(\zeta) = \inf\{s \in T : s > \zeta\} \quad \text{and} \quad \rho(\zeta) = \sup\{s \in T : s < \zeta\},$$

respectively. The operator $\eta: \mathbb{T} \to [0, \infty)$ formulated by $\eta(\zeta) = \sigma(\zeta) - \zeta$ is applied to obtain the existing distance between two consecutive points. Along this, the derived version T^k of \mathbb{T} is

$$T^k = \begin{cases} T \setminus (\rho(\sup T), \sup T), & \text{if } \sup T < \infty, \\ T, & \text{if } \sup T = \infty. \end{cases}$$

The regressive (respectively positively regressive) function $\delta: \mathbb{T} \to \mathbb{R}$ is defined as $1 + \eta(\zeta)\delta(\zeta) \neq 0$ (respectively $1 + \eta(\zeta)\delta(\zeta) > 0$) for all $\zeta \in T^k$.

Definition 2.1 ([57]) At a point $\zeta \in T^k$, the delta derivative $g^\Delta(\zeta)$ of a mapping $g: \mathbb{T} \to \mathbb{R}$ is a number (provided it exists) if, for $\epsilon > 0$, a neighborhood U of ζ exists provided that

$$|g(\sigma(\zeta)) - g(\tau)| - g^\Delta(\sigma(\zeta) - \tau)| \leq \epsilon|\sigma(\zeta) - \tau|, \quad \text{for all } \tau \in U.$$
Theorem 2.2 ([57]) Let \(c, d \in \mathbb{T} \) and \(f \in \mathcal{C}_{rd}(\mathbb{T}, \mathbb{R}) \), then

1. \(\mathbb{T} = \mathbb{R} \) implies
 \[
 \int_{c}^{d} f(\xi) \Delta \xi = \int_{c}^{d} f(\xi) \, d\xi.
 \]

2. If \([c, d)\) consists of only isolated points, then
 \[
 \int_{c}^{d} f(\xi) \Delta \xi = \begin{cases}
 \sum_{\xi \in [c, d)} \mu(\xi) f(\xi), & \text{if } c < d, \\
 0, & \text{if } c = d, \\
 -\sum_{\xi \in [c, d)} \mu(\xi) f(\xi), & \text{if } c > d.
 \end{cases}
 \]

3. \(\mathbb{T} = h\mathbb{Z} = \{hk : k \in \mathbb{Z}\}, h > 0 \), implies
 \[
 \int_{c}^{d} f(\xi) \Delta \xi = \begin{cases}
 \sum_{k=0}^{\frac{d-h}{h}} hf(hk), & \text{if } c < d, \\
 0, & \text{if } c = d, \\
 -\sum_{k=0}^{\frac{d-h}{h}} hf(hk), & \text{if } c > d.
 \end{cases}
 \]

Theorem 2.3 ([58]) If \(f : \mathbb{R} \to \mathbb{R} \) is nondecreasing continuous and \(c, d \in \mathbb{T} \), then

\[
\int_{c}^{d} f(\xi) \Delta \xi \leq \int_{c}^{d} f(\xi) \, d\xi. \tag{5}
\]

Definition 2.4 ([58]) Let \(\phi : [c, d) \to \mathbb{R} \) be an integrable mapping, then delta fractional integral is

\[
\Delta_{a+}^{\sigma} \phi(\xi) = \int_{a}^{\xi} \left(\frac{\xi - s}{\Gamma(\sigma)} \right)^{\sigma-1} \phi(s) \Delta s. \tag{6}
\]

Definition 2.5 ([58]) The fractional Caputo derivative of a mapping \(f : \mathbb{T} \to \mathbb{R} \) on the time scale is

\[
c_{a+}^{\sigma} D_{a+}^{\sigma} f(\xi) = \int_{a}^{\xi} \left(\frac{\xi - s}{\Gamma(n-\sigma)} \right)^{n-\sigma-1} f(\Delta^{n} \xi) \Delta s, \tag{7}
\]

where \(n = [\sigma] + 1 \) and the delta nth derivative of \(f \) is denoted by \(f^{\Delta_{a+}^{n}} \).

- When \(\mathbb{T} = \bigcup_{i=0}^{\infty} [2i, 2i+1] \). Then we get
 \[
c_{a+}^{\sigma} D_{a+}^{\sigma} f(\xi) = \int_{a}^{\xi} \left(\frac{\xi - s}{\Gamma(n-\sigma)} \right)^{n-\sigma-1} f(\Delta^{n} \xi) \Delta s
 = \frac{1}{\Gamma(n-\sigma)} \left[\sum_{k=0}^{i-1} \int_{2k}^{2k+1} \left(\xi - s \right)^{n-\sigma-1} f^\Delta s + \int_{2i}^{2i+1} \left(\xi - s \right)^{n-\sigma-1} f^\Delta s \right]
 \]
 for \(\xi \in [2i, 2i+1], i = 0, 1, \ldots \)
When $T = h\mathbb{Z}$, $h > 0$, we have
\[
\frac{c_T^\Delta f(\varsigma)}{\Gamma(\sigma - \alpha)} = \frac{1}{\Gamma(n - \sigma)} \sum_{k=0}^{\varsigma - 1} h(\varsigma - ih)^{n-\sigma-1} f^\Delta(\varsigma). \quad \varsigma \in T.
\]

When $T = \{p^n : p > 1, n \in \mathbb{Z}\} \cup \mathbb{Z}$, then
\[
\frac{c_T^\Delta f(\varsigma)}{\Gamma(\sigma - \alpha)} = \frac{1}{\Gamma(n - \sigma)} \sum_{\varsigma \in T} \mu(\varsigma)(\varsigma - s)^{n-\sigma-1} f^\Delta(\varsigma).
\]

Regard the Mittag-Leffler function as
\[
E_{\sigma, \beta}(\varsigma) = \sum_{k=0}^{\infty} \frac{\varsigma^k}{(h \sigma + \beta)} \quad \text{for} \quad \sigma, \beta > 0.
\]

For $\beta = 1$,
\[
E_{\sigma, 1}(\lambda \varsigma^{\sigma}) = E_{\sigma}(\lambda \varsigma^{\sigma}) = \sum_{k=0}^{\infty} \frac{\lambda^k \varsigma^{\sigma k}}{\Gamma(\sigma k + 1)}, \quad \lambda, \varsigma \in \mathbb{C}
\]

has the interesting property $c_T^\Delta E_{\sigma}(\lambda \varsigma^{\sigma}) = \lambda E_{\sigma}(\lambda \varsigma^{\sigma})$.

Remark 2.1 ([59]) The solution of system (1) is of the form
\[
\omega(\varsigma) = \begin{cases}
E_{\sigma}(A \varsigma^{\sigma}) \omega_0 + \int_{s_0}^{\varsigma} (\varsigma - s)^{\sigma-1} E_{\sigma, \sigma}(A(\varsigma - s)^{\sigma}) \mathcal{F}(\varsigma, \omega(s)) \Delta s \\
+ \int_{s_0}^{\varsigma} (\varsigma - s)^{\sigma-1} E_{\sigma, \sigma}(A(\varsigma - s)^{\sigma}) \times G(s, \omega(s)) \int_{s_0}^{s} \mathcal{F}(s, u, \omega(u)) \Delta u, \int_{s_0}^{s} \mathcal{F}(s, u, \omega(u)) \Delta u) \Delta s, \\
\end{cases}
\]

where $E_{\sigma}(A \varsigma^{\sigma})$ is the matrix representation of the aforesaid Mittag-Leffler function given by
\[
E_{\sigma}(A \varsigma^{\sigma}) = \sum_{j=1}^{i} \frac{A_{\sigma} \varsigma^{\sigma k}}{\Gamma(1 + k \sigma)},
\]

To achieve our results, we consider the following:
(A): The mappings \(G, G : \mathbb{T}^0 \times \mathbb{R}^n \times \mathbb{R}^n \times \mathbb{R}^n \rightarrow \mathbb{R}^n \) are continuous, and there exist \(L_{h_i}, \ L_{m_i}, i = 1, 2, 3 \), as the positive constants such that \((i = 1, 2, 3)\)

\[
|G(\zeta, q_1, q_2, q_3) - G(\zeta, p_1, p_2, p_3)| \leq \sum_{i=1}^{3} L_{h_i} |q_i - p_i| \quad \text{for all } \zeta \in I, q_i, p_i \in \mathbb{R}^n,
\]

\[
|G(\zeta, q_1, q_2, q_3) - G(\zeta, p_1, p_2, p_3)| \leq \sum_{i=1}^{3} L_{m_i} |q_i - p_i| \quad \text{for all } \zeta \in I, q_i, p_i \in \mathbb{R}^n.
\]

(B): The mappings \(G, G : \mathbb{T}^0 \times \mathbb{R}^n \times \mathbb{R}^n \times \mathbb{R}^n \rightarrow \mathbb{R}^n \) are continuous, and there exist \(I_i, m_i, i = 1, 2, 3 \), positive constants such that

\[
|G(\zeta, u, v, w)| \leq l_0 + l_1 |u| + l_2 |v| + l_3 |w| \quad \text{for all } \zeta \in I, u, v, w \in \mathbb{R}^n,
\]

\[
|G(\zeta, u, v, w)| \leq m_0 + m_1 |u| + m_2 |v| + m_3 |w| \quad \text{for all } \zeta \in I, u, v, w \in \mathbb{R}^n.
\]

(W): The linear operator \((^\sigma \mathcal{W}^T_{\sigma_0}) : L^2(I, \mathbb{R}) \rightarrow \mathbb{R}^n\), defined by

\[
^\sigma \mathcal{W}^T_{\sigma_0} \xi = \int_{\sigma_0}^{\sigma} (T-s)^{\sigma-1} E_{\sigma, \sigma} (A(\zeta - s)^{\sigma}) \mathcal{H}(s) \Delta s,
\]

possesses a bounded invertible operator \((^\sigma \mathcal{W}^T_{\sigma_0})^{-1}\), and these operators admit values in \(L^2(I, \mathbb{R}) \setminus \ker(\mathcal{W}^T_{\sigma_0}) \). Also, there exists a positive constant provided that \(\|\mathcal{W}^T_{\sigma_0}\|^{-1} \leq M_{\mathcal{W}^T}. \) Also, \(\mathcal{H} : \mathbb{T} \rightarrow \mathbb{T} \) is a continuous operator, and there exists a positive constant \(M_H \) provided that \(\|\mathcal{H}\| \leq M_H \).

Using Theorem 2.2, equation (8) can be calculated for different \(\mathbb{T} \).

- When \(\mathbb{T} = h\mathbb{Z}, h > 0\):

\[
^\sigma \mathcal{W}^T_{\sigma_0} \xi = \int_{\sigma_0}^{\sigma} (T-s)^{\sigma-1} E_{\sigma, \sigma} (A(\zeta - s)^{\sigma}) \mathcal{H}(s) \Delta s = \sum_{k=0}^{\frac{\xi}{h} - 1} h(T - sh)^{\sigma - 1} \mathcal{H}(sh).
\]

- When \(\mathbb{T} = \bigcup_{i=0}^{\infty} [2i, 2i+1] \). Let \(\zeta \in [4, 5] \), then we have

\[
^\sigma \mathcal{W}^T_{\sigma_0} \xi = \int_{\sigma_0}^{\sigma} (T-s)^{\sigma-1} E_{\sigma, \sigma} (A(\zeta - s)^{\sigma}) \mathcal{H}(s) \Delta s
\]

\[
= \int_{0}^{1} (T-s)^{\sigma-1} E_{\sigma, \sigma} (A(\zeta - s)^{\sigma}) \mathcal{H}(s) \Delta s
\]

\[
+ \int_{1}^{3} (T-s)^{\sigma-1} E_{\sigma, \sigma} (A(\zeta - s)^{\sigma}) \mathcal{H}(s) \Delta s
\]

\[
+ \int_{4}^{T} (T-s)^{\sigma-1} E_{\sigma, \sigma} (A(\zeta - s)^{\sigma}) \mathcal{H}(s) \Delta s.
\]

- When \(\mathbb{T} = \{q^m : q > 1, m \in \mathbb{Z}\} \cup \mathbb{Z} \), then

\[
^\sigma \mathcal{W}^T_{\sigma_0} \xi = \int_{\sigma_0}^{\sigma} (T-s)^{\sigma-1} E_{\sigma, \sigma} (A(\zeta - s)^{\sigma}) \mathcal{H}(s) \Delta s = \sum_{\zeta \in [0,T]} \mu(T-\zeta)^{\sigma-1} \mathcal{H}(\zeta).
\]
Throughout the manuscript, we set

\[Q_1 := a_1(\delta \sigma + a_2 \sigma L_1 + a_2 \sigma L_1 \sigma_1 s \sigma_0 + a_2 \sigma L_1 \sigma_2 s \sigma_0 + M \sigma_1 \sigma_0) (\sigma_2 - \sigma_0); \]
\[Q_2 := a_3(\delta \sigma + a_2 \sigma L_1 + a_2 \sigma L_1 \sigma_1 s \sigma_0 + a_2 \sigma L_1 \sigma_2 s \sigma_0) (\sigma_2 - \sigma_0); \]
\[Q_1^* := a_3(\delta \sigma + a_2 \sigma L_1 + a_2 \sigma L_1 \sigma_1 s \sigma_0 + a_2 \sigma L_1 \sigma_2 s \sigma_0 + \hat{M} \sigma_1) (\sigma_2 - \sigma_0); \]
\[Q_2^* := a_3(\delta \sigma + a_2 \sigma L_1 + a_2 \sigma L_1 \sigma_1 s \sigma_0 + a_2 \sigma L_1 \sigma_2 s \sigma_0) (\sigma_2 - \sigma_0); \]
\[Q_3 := N_2 + Q_2; \quad Q_3^* = N_4 + Q_2^*; \]

\[N_1 := \sum_{j=1}^{i} L \sigma \delta \sum_{j=1}^{L \sigma \delta} + a_1; \quad N_2 := \sum_{j=1}^{L \sigma \delta} + a_1; \]
\[N_3 := \frac{1}{\Gamma(\sigma)} a_3 L_1 (\sigma_2 - \sigma_0) + a_1; \quad N_4 := \frac{1}{\Gamma(\sigma)} a_3 L_1 (\sigma_2 - \sigma_0); \]
\[a_1 := \sup_{\sigma \in \Omega} \| E_\sigma (A \sigma^\sigma) \sigma_0 \|; \quad a_2 := \sup_{\sigma \in \Omega} \| E_\sigma, \sigma (A \sigma^\sigma) \|; \quad a_3 := \sup_{\sigma \in \Omega} \| (\sigma - \sigma_0)^{\sigma - 1} \|. \]

3 Existence of solution

Existence criteria are investigated here.

Theorem 3.1 The mixed impulsive system (1) admits a unique solution if assertion (A) holds and

\[\max_{1 \leq i \leq 3} |Q_i| < 1. \]

(9)

Proof Let \(\Omega \subseteq \mathcal{P} \) and \(\Omega = \{ (X, Y, Z) \in \mathcal{P} : \| (X, Y, Z) \|_C \leq \delta_2 \} \) also \(\delta_2 = \max(\delta, \delta_1) \) and \(\delta, \delta_1 \in (0, 1) \) provided that

\[\delta > \max\{N_1, N_2, N_3\}, \]

and the remaining constants are introduced in the sequel. Now, we define \(\Lambda_\sigma : \Omega \rightarrow \Omega \) as

\[
\Lambda_\sigma(\omega(\sigma)) = \begin{cases}
E_\sigma(A \sigma^\sigma) \omega_0 + \int_{G_0}^{G_0} (\sigma - s)^{\sigma - 1} E_\sigma(A(\sigma - s)^\sigma) \mathcal{F}(\sigma, \omega(\sigma)) \Delta s \\
+ \int_{G_0}^{G_0} (\sigma - s)^{\sigma - 1} E_\sigma(\sigma - s)^\sigma \mathcal{F}(\sigma, \omega(\sigma)) \Delta s \\
\times G(s, \omega(s), \int_{G_0}^{G_0} \mathcal{F}_1(s, u, \omega(u)) \Delta u, \int_{G_0}^{G_0} \mathcal{F}_2(s, u, \omega(u)) \Delta u) \Delta s, \\
\end{cases}
\]

\[\sigma \in (\sigma_0, \sigma_1), \]

(10)

\[
E_\sigma(A \sigma^\sigma) \omega_0 + \int_{G_0}^{G_0} (\sigma - s)^{\sigma - 1} E_\sigma(A(\sigma - s)^\sigma) \mathcal{F}(\sigma, \omega(\sigma)) \Delta s \\
+ \int_{G_0}^{G_0} (\sigma - s)^{\sigma - 1} E_\sigma(\sigma - s)^\sigma \mathcal{F}(\sigma, \omega(\sigma)) \Delta s \\
\times G(s, \omega(s), \int_{G_0}^{G_0} \mathcal{F}_1(s, u, \omega(u)) \Delta u, \int_{G_0}^{G_0} \mathcal{F}_2(s, u, \omega(u)) \Delta u) \Delta s \\
+ \sum_{i=1}^{m} \left(\Xi_i(\omega(\sigma_i)) + \Phi_i(\sigma_i, \omega(\sigma_i)) \right), \\
\sigma \in (\sigma_i, \sigma_{i+1}) \quad i = 1, \ldots, m.
\]

Assume that

\[\| \mathcal{F}(s, \omega) \| \leq \| \mathcal{F}(s, \omega) - \mathcal{F}(s, 0) \| + \| \mathcal{F}(s, 0) \| \leq L F \| \omega \| + M F \]
and

\[\|G(\zeta, X, Y, Z)\| \leq \|G(\zeta, X, Y, Z) - G(\zeta, 0, 0, 0)\| + \|G(\zeta, 0, 0, 0)\| \]
\[\leq L_{h_1}\|X\| + L_{h_2}\|Y\| + L_{h_3}\|Z\| + M_G, \]

where \(M_F = \sup_{\beta \in \mathbb{T}} \|F(\beta, 0)\|, \) \(M_G = \sup_{\beta \in \mathbb{T}} \|G(\zeta, 0, 0, 0)\|, \) and \(\hat{M}_G = M_F + M_G. \) In addition, \(X = \omega(s), \) \(Y = \int_{s_0}^{\beta} F_1(s, u, \omega(u))\Delta u, \) and \(Z = \int_{s_0}^{\beta} F_2(s, u, \omega(u))\Delta u. \)

Now, we prove that \(\Lambda_\sigma : \Omega \to \Omega \) is a self-mapping. For \(\zeta \in (\xi_i, \xi_{i+1}], i = 1, \ldots, m, \) one has

\[\|\Lambda_\sigma(\omega(\zeta))\| \leq \sum_{j=1}^{i} \|Z_j(\omega(\zeta_j))\| + \sum_{j=1}^{i} \|\Phi_j(\omega(\zeta_j), \omega(\zeta_j))\| + \|E_\sigma(A^\zeta\omega)\| \]
\[+ \int_{s_0}^{\beta} (\zeta - s)^{\sigma - 1} \|E_{\sigma, \sigma}(A^\zeta - s)^\sigma\| \left(\int_{s_0}^{\beta} F(s, \omega(s)) + \int_{s_0}^{\beta} G(s, \omega(s), \int_{s_0}^{\beta} (F_1(s, u, \omega(u))\Delta u, \int_{s_0}^{\beta} F_2(s, u, \omega(u))\Delta u)\right)\Delta s \]
\[\leq \sum_{j=1}^{i} L_{\Xi_j}\|\omega(\zeta_j)\| + \sum_{j=1}^{i} L_{\Phi_j}\|\omega(\zeta_j)\| + \|E_\sigma(A^\zeta\omega)\| \]
\[+ \int_{s_0}^{\beta} (\zeta - s)^{\sigma - 1} \|E_{\sigma, \sigma}(A^\zeta - s)^\sigma\| \left(\int_{s_0}^{\beta} F(s, \omega(s)) \int_{s_0}^{\beta} G(s, \omega(s), \int_{s_0}^{\beta} (F_1(s, u, \omega(u))\Delta u, \int_{s_0}^{\beta} F_2(s, u, \omega(u))\Delta u)\right)\Delta s \]
\[\leq \sum_{j=1}^{i} L_{\Xi_j}\|\omega(\zeta_j)\| + \sum_{j=1}^{i} L_{\Phi_j}\|\omega(\zeta_j)\| + \|E_\sigma(A^\zeta\omega)\| \]
\[+ \int_{s_0}^{\beta} (\zeta - s)^{\sigma - 1} \|E_{\sigma, \sigma}(A^\zeta - s)^\sigma\| \left(\int_{s_0}^{\beta} F(s, \omega(s)) \int_{s_0}^{\beta} G(s, \omega(s), \int_{s_0}^{\beta} (F_1(s, u, \omega(u))\Delta u, \int_{s_0}^{\beta} F_2(s, u, \omega(u))\Delta u)\right)\Delta s \]
\[\leq \sum_{j=1}^{i} L_{\Xi_j}\|\omega(\zeta_j)\| + \sum_{j=1}^{i} L_{\Phi_j}\|\omega(\zeta_j)\| + \|E_\sigma(A^\zeta\omega)\| \]
\[+ \int_{s_0}^{\beta} (\zeta - s)^{\sigma - 1} \|E_{\sigma, \sigma}(A^\zeta - s)^\sigma\| \left(\int_{s_0}^{\beta} F(s, \omega(s)) \int_{s_0}^{\beta} G(s, \omega(s), \int_{s_0}^{\beta} (F_1(s, u, \omega(u))\Delta u, \int_{s_0}^{\beta} F_2(s, u, \omega(u))\Delta u)\right)\Delta s \]
\[= \sum_{j=1}^{i} L_{\Xi_j}\|\omega(\zeta_j)\| + \sum_{j=1}^{i} L_{\Phi_j}\|\omega(\zeta_j)\| + \|E_\sigma(A^\zeta\omega)\| \]
\[+ \int_{s_0}^{\beta} (\zeta - s)^{\sigma - 1} \|E_{\sigma, \sigma}(A^\zeta - s)^\sigma\| \left(\int_{s_0}^{\beta} F(s, \omega(s)) \int_{s_0}^{\beta} G(s, \omega(s), \int_{s_0}^{\beta} (F_1(s, u, \omega(u))\Delta u, \int_{s_0}^{\beta} F_2(s, u, \omega(u))\Delta u)\right)\Delta s \]
\[+ \int_{s_0}^{\beta} (\zeta - s)^{\sigma - 1} \|E_{\sigma, \sigma}(A^\zeta - s)^\sigma\| \left(\int_{s_0}^{\beta} F(s, \omega(s)) \int_{s_0}^{\beta} G(s, \omega(s), \int_{s_0}^{\beta} (F_1(s, u, \omega(u))\Delta u, \int_{s_0}^{\beta} F_2(s, u, \omega(u))\Delta u)\right)\Delta s \]
\[
\begin{align*}
&\leq \sum_{j=1}^{i} L_2 \sup_{\xi \in T} \| \omega (\xi_j^-) \| + \sum_{j=1}^{i} L_4 \sup_{\xi \in T} \| \omega (\xi_j^-) \| + \sup_{\xi \in T} \| E_\sigma (A^\sigma) \omega_0 \| \\
&\quad + \int_{s_0}^{s_j} \sup_{\xi \in T} \| (\xi - s)^{r-1} \| \sup_{\xi \in T} \| E_{\sigma, \sigma} (A^\sigma (\xi - s)^r) \| \left(L_{\mathcal{F}} \sup_{\xi \in T} \| \omega (s) \| \right) \\
&\quad + L_{G_1} \sup_{\xi \in T} \| \omega (s) \| + L_{G_2} L_{\mathcal{F}_1} \sup_{\xi \in T} \| \omega (u) \| (s_j - s_0) \\
&\quad + L_{G_3} L_{\mathcal{F}_2} \sup_{\xi \in T} \| \omega (u) \| (s_j - s_0) + \hat{M}_G) \Delta s
\end{align*}
\]

So

\[
\| \Lambda_\sigma (\omega (\xi)) \| \leq N_1 + \delta Q_1 \leq \delta + \delta Q_1 = \delta_1,
\]

where \(\delta_1 = \delta + \delta Q_1 \). Hence

\[
\| \Lambda_\sigma (\omega (\xi)) \| \leq \delta_2. \tag{11}
\]

Therefore, from (11), \(\Lambda (\Omega) \subseteq \Omega \). Also, for \(\xi \in (\xi_i, \xi_{i+1}] \), \(i = 1, \ldots, m \), with \(\omega_0 = \tilde{\omega}_0 \), one has

\[
\| \Lambda_\sigma (\omega (\xi)) - \Lambda_\sigma (\tilde{\omega} (\xi)) \|
\]

\[
\leq \sum_{j=1}^{i} \| \Xi_j (\omega (\xi_j^-)) - \Xi_j (\tilde{\omega} (\xi_j^-)) \| \\
&\quad + \sum_{j=1}^{i} \| \Phi_j (\xi_j^-, \omega (\xi_j^-)) - \Phi_j (\xi_j^-, \tilde{\omega} (\xi_j^-)) \| \\
&\quad + \int_{s_0}^{s_j} \| (\xi - s)^{r-1} \| \sup_{\xi \in T} \| E_{\sigma, \sigma} (A^\sigma (\xi - s)^r) \| \left(F (s, \omega (s)) \\
&\quad + G (s, \omega (s), \int_{s_0}^{s_j} F_1 (s, u, \omega (u)) \Delta u, \int_{s_0}^{s_j} F_2 (s, u, \omega (u)) \Delta u) \right) \\
&\quad - (F (s, \tilde{\omega} (s))
\]
\[+ G \left(s, \tilde{\omega} (s), \int_{s_0}^{s_f} F_1(s, u, \tilde{\omega}(u)) \Delta u, \int_{s_0}^{s_f} F_2(s, u, \tilde{\omega}(u)) \Delta u \right) \Delta s \]

\[\leq \sum_{j=1}^{i} L_2 \| \omega(\xi_j^+) - \tilde{\omega}(\xi_j^+) \| + \sum_{j=1}^{i} L_\Phi \| \omega(\xi_j^-) - \tilde{\omega}(\xi_j^-) \| \]

\[+ \int_{s_0}^{s_f} \| (\xi - s)^{\rho-1} \| \| E_\sigma \rho (A(\xi - s)^\rho) \| \left(\| F_1(s, \omega(s)) - \tilde{F}_1(s, \omega(s)) \| \right) \Delta s \]

\[+ \left(L_1 \| \omega(s) - \tilde{\omega}(s) \| + L_2 \int_{s_0}^{s_f} \| F_1(s, u, \omega(u)) - \tilde{F}_1(s, u, \omega(u)) \| \Delta u \right) \Delta s \]

\[\leq \sum_{j=1}^{i} L_2 \| \omega(\xi_j^-) - \tilde{\omega}(\xi_j^-) \| + \sum_{j=1}^{i} L_\Phi \| \omega(\xi_j^-) - \tilde{\omega}(\xi_j^-) \| \]

\[+ \int_{s_0}^{s_f} \| (\xi - s)^{\rho-1} \| \| E_\sigma \rho (A(\xi - s)^\rho) \| \left(\| F_1(s, \omega(s)) - \tilde{F}_1(s, \omega(s)) \| \right) \Delta s \]

\[+ L_1 \| \omega(s) - \tilde{\omega}(s) \| + L_2 \int_{s_0}^{s_f} \| \omega(u) - \tilde{\omega}(u) \| \Delta u \]

\[+ L_3 \int_{s_0}^{s_f} \| \omega(u) - \tilde{\omega}(u) \| \Delta u \Delta s \]

\[\leq \sum_{j=1}^{i} L_2 \sup_{\xi \in \mathbb{T}} \| \omega(\xi_j^+) - \tilde{\omega}(\xi_j^+) \| + \sum_{j=1}^{i} L_\Phi \sup_{\xi \in \mathbb{T}} \| \omega(\xi_j^-) - \tilde{\omega}(\xi_j^-) \| \]

\[+ \int_{s_0}^{s_f} \sup_{\xi \in \mathbb{T}} \| (\xi - s)^{\rho-1} \| \sup_{\xi \in \mathbb{T}} \| E_\sigma \rho (A(\xi - s)^\rho) \| \left(\| F_1(s, \omega(s)) - \tilde{F}_1(s, \omega(s)) \| \right) \Delta s \]

\[+ L_1 \sup_{\xi \in \mathbb{T}} \| \omega(s) - \tilde{\omega}(s) \| + L_2 \sup_{\xi \in \mathbb{T}} \| \omega(u) - \tilde{\omega}(u) \| |(s_f - s)\Delta s \]

\[+ L_3 \sup_{\xi \in \mathbb{T}} \| \omega(u) - \tilde{\omega}(u) \| |(s_f - s)\Delta s \]

\[= \sum_{j=1}^{i} L_2 \| \omega - \tilde{\omega} \|_\infty + \sum_{j=1}^{i} L_\Phi \| \omega - \tilde{\omega} \|_\infty \]

\[+ a_3 a_2 (L_\infty \| \omega - \tilde{\omega} \|_\infty + L_1 \| \omega - \tilde{\omega} \|_\infty + L_2 \| \omega - \tilde{\omega} \|_\infty |(s_f - s_0)\Delta s \]

\[+ L_3 \| \omega - \tilde{\omega} \|_\infty |(s_f - s_0)\Delta s \]
Let \(\Psi \) and \(\Phi \) be defined as
\[
\Psi(s) = \int_{s_i}^{s} \Phi(s) \, ds,
\]
and \(\Phi \) is a continuous function for all \(s \in [0, T] \). The mixed impulsive system (2) has a unique solution if assertion (A) holds and
\[
\max_{1 \leq i \leq 3} \{ Q_i \} < 1. \tag{13}
\]

Proof: Let \(\Omega \subseteq \mathcal{P}S \) and \(\Omega = \{(X, Y, Z) \in \mathcal{P}S : \|X, Y, Z\| \leq \delta_2 \} \), also \(\delta_2 = \max\{\delta, \delta_1\} \) and \(\delta, \delta_1 \in (0, 1) \) provided that
\[
\delta > \max\{N_1, N_2, N_3\}. \tag{14}
\]

Now, regarding the mixed impulsive system (2), we have the following result.

Theorem 3.2 The mixed impulsive system (2) involves a unique solution if assertion (A) holds and
\[
\max_{1 \leq i \leq 3} \{ Q_i \} < 1. \tag{13}
\]
and

\[
\|G(\zeta, X, Y, Z)\| \leq \|G(\zeta, X, Y, Z) - G(\zeta, 0, 0, 0)\| + \|G(\zeta, 0, 0, 0)\|
\]

\[
\leq L_{G_1}\|X\| + L_{G_2}\|Y\| + L_{G_3}\|Z\| + M_G,
\]

where \(M_F = \sup_{\zeta \in \mathbb{T}}\|F(s, 0)\|, M_G = \sup_{\zeta \in \mathbb{T}}\|G(\zeta, 0, 0, 0)\|,\) and \(\hat{M}_G = M_F + M_G.\) In addition, \(X = \omega(s), Y = \int_{s_0}^{s_f} F_1(s, u, \omega(u))\Delta u,\) and \(Z = \int_{s_0}^{s_f} F_2(s, u, \omega(u))\Delta u.\)

Now, we prove that \(\Psi_\sigma : \Omega \to \Omega\) is a self-mapping.

For \(\zeta \in (s_i, s_{i+1}] \cap \mathbb{T}, i = 1, \ldots, m,\) one has

\[
\|\Psi_\sigma(\omega(\zeta))\| \leq \frac{1}{\Gamma(\sigma)} \int_{s_i}^{s_f} \|h_i(s, \omega(s))\|\Delta s + \|E_\sigma(A\zeta^\sigma)\omega_0\|
\]

\[
+ \int_{s_0}^{s_f} \|E_{\sigma, \sigma}(A(\zeta - s)^\sigma)\|\|F(s, \omega(s))\|\Delta s
\]

\[
+ \|G(s, \omega(s), \int_{s_0}^{s_f} F_1(s, u, \omega(u))\Delta u, \int_{s_0}^{s_f} F_2(s, u, \omega(u))\Delta u)\|\Delta s
\]

\[
\leq \frac{1}{\Gamma(\sigma)} \int_{s_i}^{s_f} \|(\zeta - s)^{\sigma - 1}\|\|h_i(s, \omega(s))\|\Delta s + \|E_\sigma(A\zeta^\sigma)\omega_0\|
\]

\[
+ \int_{s_0}^{s_f} \|(\zeta - s)^{\sigma - 1}\|\|E_{\sigma, \sigma}(A(\zeta - s)^\sigma)\|\|F(s, \omega(s))\|\Delta s
\]

\[
+ \|G(s, \omega(s), \int_{s_0}^{s_f} F_1(s, u, \omega(u))\Delta u, \int_{s_0}^{s_f} F_2(s, u, \omega(u))\Delta u)\|\Delta s + \|\hat{M}_G\|\Delta s
\]

\[
\leq \frac{1}{\Gamma(\sigma)} \int_{s_i}^{s_f} \|(\zeta - s)^{\sigma - 1}\|\|L_2\|\|\omega(s)\|\|\Delta s + \|E_\sigma(A\zeta^\sigma)\omega_0\|
\]

\[
+ \int_{s_0}^{s_f} \|(\zeta - s)^{\sigma - 1}\|\|E_{\sigma, \sigma}(A(\zeta - s)^\sigma)\|\|L_2\|\|\omega(s)\|\|\Delta s
\]

\[
+ \|L_{G_2}\int_{s_0}^{s_f} \|F_1(s, u, \omega(u))\|\Delta u + L_{G_3}\int_{s_0}^{s_f} \|F_2(s, u, \omega(u))\|\Delta u + \|\hat{M}_G\|\Delta s
\]

\[
= \frac{1}{\Gamma(\sigma)} \|(\zeta - s)^{\sigma - 1}\|\|L_2\|\|\omega(s)\|\|\Delta s + \|E_\sigma(A\zeta^\sigma)\omega_0\|
\]

\[
+ \int_{s_0}^{s_f} \|(\zeta - s)^{\sigma - 1}\|\|E_{\sigma, \sigma}(A(\zeta - s)^\sigma)\|\|L_2\|\|\omega(s)\|\|\Delta s
\]

\[
+ \|L_{G_2}\|\|\omega(\zeta)\|(s_f - s_0) + L_{G_3}\|\|\omega(u)\|(s_f - s_0) + \|\hat{M}_G\|\Delta s
\]

\[
\leq \frac{1}{\Gamma(\sigma)} \sup_{\zeta \in \mathbb{T}} \|(\zeta - s)^{\sigma - 1}\|\|L_2\|\sup_{\zeta \in \mathbb{T}}\|\omega(\zeta)\|\|\Delta s + \sup_{\zeta \in \mathbb{T}} \|E_\sigma(A\zeta^\sigma)\omega_0\|
\]

\[
+ \int_{s_0}^{s_f} \sup_{\zeta \in \mathbb{T}} \|(\zeta - s)^{\sigma - 1}\|\sup_{\zeta \in \mathbb{T}} \|E_{\sigma, \sigma}(A(\zeta - s)^\sigma)\|\|L_2\|\sup_{\zeta \in \mathbb{T}}\|\omega(\zeta)\|\|\Delta s
\]
Therefore, from (15),

\[+ L_{G_1} \sup_{s \in \mathbb{T}} \| \omega(s) \| + L_{G_2} L_{F_1} \sup_{s \in \mathbb{T}} \| \omega(u) \| (s_f - s_0) \]

\[+ L_{G_2} L_{F_2} \sup_{s \in \mathbb{T}} \| \omega(u) \| (s_f - s_0) + \hat{M}_G \Delta s \]

\[\leq \frac{1}{\Gamma(\sigma)} a_3 L_G \| \omega \|_\infty (s_i - \varsigma_i) + a_1 + \int_{s_0}^{s_f} a_3 a_2 (L_F \| \omega \|_\infty + L_{G_1} \| \omega \|_\infty

\[+ L_{G_1} L_{F_1} \| \omega \|_\infty (s_f - s_0) + L_{G_2} L_{F_2} \| \omega \|_\infty (s_f - s_0) + \hat{M}_G \Delta s \]

\[\leq \frac{1}{\Gamma(\sigma)} a_3 L_G \delta (s_i - \varsigma_i) + a_1 + a_3 (\delta a_2 L_F + \delta a_2 L_G + \delta a_2 L_{G_1} (s_f - s_0)

\[+ \delta a_2 L_G L_{F_2} (s_f - s_0) + \hat{M}_G) \times \int_{s_0}^{s_f} \Delta s \]

\[\leq \frac{1}{\Gamma(\sigma)} a_3 L_G \delta (s_i - \varsigma_i) + a_1 + \delta a_3 (a_2 L_F + a_2 L_G + a_2 L_{G_1} (s_f - s_0)

\[+ a_2 L_G L_{F_2} (s_f - s_0) + \hat{M}_G) (\varsigma - \varsigma_f). \]

Thus

\[\| \Lambda (\omega(\varsigma)) \| \leq N_3 + \delta Q^* \leq \delta + \delta Q^*_1 = \delta_1, \]

where \(\delta_1 = \delta + \delta Q^*_1 \). Hence

\[\| \Lambda (\omega(\varsigma)) \| \leq \delta_2. \quad (15) \]

Therefore, from (15), \(\Psi_\sigma(\Omega) \subseteq \Omega \). Also, for \(\varsigma \in (s_i, \varsigma_{i+1}] \cap \mathbb{T}, i = 1, \ldots, m \), with \(\omega_0 = \tilde{\omega}_0 \), we have

\[\| \Psi_\sigma(\omega(\varsigma)) - \Psi_\sigma(\tilde{\omega}(\varsigma)) \|

\[\leq \| \frac{1}{\Gamma(\sigma)} \int_{s_0}^{s_i} (\varsigma - s)^{\sigma - 1} (h_i(s, \omega(s)) - h_i(s, \tilde{\omega}(s))) \| \Delta s \|

\[+ \int_{s_0}^{s_f} \| (\varsigma - s)^{\sigma - 1} \| E_{\sigma, \rho} (A(\varsigma - s)) \| \left(F(s, \omega(s))

\[+ 3\left(F(s, \omega(s), \int_{s_0}^{s_f} F_1(s, u, \omega(u)) \Delta u, \int_{s_0}^{s_f} F_2(s, u, \omega(u)) \Delta u) \right) \right)

\[- \left(F(s, \tilde{\omega}(s))

\[+ G(s, \omega(s), \int_{s_0}^{s_f} F_1(s, u, \omega(u)) \Delta u, \int_{s_0}^{s_f} F_2(s, u, \omega(u)) \Delta u) \right) \| \Delta s \|

\[\leq \frac{1}{\Gamma(\sigma)} \int_{s_0}^{s_i} \| (\varsigma - s)^{\sigma - 1} \| h_i(s, \omega(s)) - h_i(s, \tilde{\omega}(s)) \| \Delta s \|

\[+ \int_{s_0}^{s_f} \| (\varsigma - s)^{\sigma - 1} \| E_{\sigma, \rho} (A(\varsigma - s)) \| \left(F(s, \omega(s)) - F(s, \tilde{\omega}(s)) \right)

\[+ G(s, \omega(s), \int_{s_0}^{s_f} F_1(s, u, \omega(u)) \Delta u, \int_{s_0}^{s_f} F_2(s, u, \omega(u)) \Delta u) \right) \| \Delta s \]
\[-G\left(s, \tilde{\omega}(s), \int_{s_0}^{s} F_1(s, u, \omega(u)) \Delta u, \int_{s_0}^{s} F_2(s, u, \tilde{\omega}(u)) \Delta u\right)\]
\[\leq \frac{1}{\Gamma(\sigma)} \int_{s_0}^{s} \frac{1}{(s - \xi)^{\sigma - 1}} \left\| L_F \|\omega(s) - \tilde{\omega}(s)\| \Delta s\right.
\[+ \int_{s_0}^{s} \frac{1}{(s - \xi)^{\sigma - 1}} \left\| E_{\alpha, \rho}(A(\xi - s)^\sigma) \right\| \left(L_F \|\omega(s) - \tilde{\omega}(s)\| \right.\]
\[+ L_{\tilde{\omega}_1} \|\omega(s) - \tilde{\omega}(s)\| + L_{\tilde{\omega}_2} \int_{s_0}^{s} \| F_1(s, u, \omega(u)) - F_1(s, u, \tilde{\omega}(u)) \| \Delta u\]
\[+ L_{\tilde{\omega}_3} \int_{s_0}^{s} \| F_2(s, u, \omega(u)) - F_2(s, u, \tilde{\omega}(u)) \| \Delta u\right)\Delta s\]
\[\leq \frac{1}{\Gamma(\sigma)} \int_{s_0}^{s} \sup_{\xi \in T} \frac{1}{(s - \xi)^{\sigma - 1}} \left\| L_F \|\omega(s) - \tilde{\omega}(s)\| \Delta s\right.
\[+ \int_{s_0}^{s} \sup_{\xi \in T} \frac{1}{(s - \xi)^{\sigma - 1}} \sup_{\xi \in T} \left\| E_{\alpha, \rho}(A(\xi - s)^\sigma) \right\| \left(L_F \sup_{\xi \in T} \|\omega(s) - \tilde{\omega}(s)\| \right.\]
\[+ L_{\tilde{\omega}_1} \sup_{\xi \in T} \|\omega(s) - \tilde{\omega}(s)\| + L_{\tilde{\omega}_2} L_{F_1} \sup_{\xi \in T} \|\omega(u) - \tilde{\omega}(u)\| (s_f - s_0)\]
\[+ L_{\tilde{\omega}_3} L_{F_2} \sup_{\xi \in T} \|\omega(u) - \tilde{\omega}(u)\| (s_f - s_0)\)\Delta s\]
\[= \frac{1}{\Gamma(\sigma)} a_3 L_F \|\omega - \tilde{\omega}\| \int_{s_0}^{s_f} \Delta s\]
\[+ a_3 a_2 (L_F \|\omega - \tilde{\omega}\| + L_{\tilde{\omega}_1} \|\omega - \tilde{\omega}\| + L_{\tilde{\omega}_2} L_{F_1} \|\omega - \tilde{\omega}\| (s_f - s_0)\]
\[+ L_{\tilde{\omega}_3} L_{F_2} \|\omega - \tilde{\omega}\| (s_f - s_0)\) \int_{s_0}^{s_f} \Delta s\]
\[\leq \left[\frac{1}{\Gamma(\sigma)} a_3 L_F (s_f - s_0) + a_3 (a_2 L_{F_1} + a_2 L_{\tilde{\omega}_1} + a_2 L_{\tilde{\omega}_2} L_{F_1} (s_f - s_0)\]
\[+ a_2 L_{\tilde{\omega}_3} L_{F_2} (s_f - s_0))(s_f - s_f) \right] \|\omega - \tilde{\omega}\| \infty.\]

It implies

\[\| \Psi_\sigma (\omega(s)) - \Psi_\sigma (\tilde{\omega}(s)) \| \leq (N_4 + Q_2) \|\omega - \tilde{\omega}\| \infty \leq Q_5 \|\omega - \tilde{\omega}\| \infty.\]

Hence

\[\| \Psi_\sigma (\omega(s)) - \Psi_\sigma (\tilde{\omega}(s)) \| \leq Q_5 \|\omega - \tilde{\omega}\| \infty.\] (16)
Therefore, from (16) and (13), the operator Ψ_o is strictly contractive. Consequently, the second impulsive system (2) admits a unique solution via the Banach principle.

Next, for both mixed impulsive systems (1) and (2), we investigate the existence of at least one solution via the weaker condition (B) and the Leray–Schauder alternative fixed point method.

Theorem 3.3 The mixed impulsive system (1) has at least one solution provided assumption (B) holds and $K > 0$ exists so that

$$a_1 + Q_3 K < K.$$ \hspace{1cm} (17)

Proof Firstly, we prove that Λ_o defined by (10) is a completely continuous operator. We see that the continuity of the mappings Ξ, Φ, F, and G provides that Λ_o is a continuous operator. Also, assume that $\Omega_1 \subseteq PS$ along with the fact that the operators Ξ, Φ, F, and G are bounded. Then there exist L_1, L_2, M_1, and M_2 (positive constants) such that $\sum_{j=1}^{i} \Xi_j(\omega) \leq L_1$, $\sum_{j=1}^{i} \Phi_j(\omega) \leq L_2$, $F(\zeta, \omega(\zeta)) \leq M_1$, and $G(\zeta, X, Y, Z) \leq M_2$, where $p = \omega(s)$,

$$q = \int_{\varsigma_0}^{\varsigma} F_1(s, u, \omega(u)) \Delta u,$$

and

$$r = \int_{\varsigma_0}^{\varsigma} F_2(s, u, \omega(u)) \Delta u.$$

Note that we take $\mathcal{L} = L_4 + L_5 + a_1$, $M = M_1 + M_2$, $||\zeta - s|| \leq L_1$, and $\mathcal{L} + \mathcal{L}_1 a_2 M(\zeta_i - \varsigma_0) = \emptyset$.

Then, for any $\omega \in \Omega_1$ and $\zeta \in (\varsigma_i, \varsigma_{i+1})$, $i = 1, \ldots, m$, we have

\[\| \Lambda_o (\omega(\zeta)) \| \leq \sum_{j=1}^{i} \| \Xi_j (\omega(\zeta_i)) \| + \sum_{j=1}^{i} \| \Phi_j (\zeta_j, \omega(\zeta_j)) \| + \| E_o (A \zeta \sigma) \omega_0 \| \]
\[+ \int_{\varsigma_0}^{\zeta} \| \zeta - s \| \| E_o (A (\zeta - s) \sigma) \| \left(F(s, \omega(s)) + G(s, \omega(s), \int_{\varsigma_0}^{\varsigma} F_1(s, u, \omega(u)) \Delta u, \int_{\varsigma_0}^{\varsigma} F_2(s, u, \omega(u)) \Delta u) \right) \Delta s \]
\[\leq L_4 + L_5 + a_1 + \mathcal{L}_1 a_2 (M_1 + M_2) \int_{\varsigma_0}^{\zeta} \Delta s \]
\[= \mathcal{L} + \mathcal{L}_1 a_2 M(\zeta_i - \varsigma_0). \]

It implies

$$\| \Lambda_o (\omega(\zeta)) \| \leq \emptyset.$$ \hspace{1cm} (18)

Thus, from (18), we conclude that Λ is uniformly bounded.
Now, we prove that Λ_σ is completely continuous. For this, we discuss the following possibilities.

Case 1: Assume that all points on \mathbb{T} are isolated, i.e., time scales consist of discrete points. Using Theorem 2.2, Λ_σ becomes

$$
\begin{align*}
\Lambda_\sigma(\omega(\xi)) &= \\
&= \left\{ \begin{array}{ll}
E_\sigma(A^{\sigma}\omega_0 + \sum_{s \in T}(\xi - s)^{\sigma-1}E_{\sigma,s}(A^{\sigma} - s)^{\sigma})F(\xi, \omega(\xi))\Delta s \\
&+ \sum_{s \in T}(\xi - s)^{\sigma-1}E_{\sigma,s}(A^{\sigma} - s)^{\sigma}) \\
&\times G(s, \omega(s), \int_{\sigma_0}^{s+r}F_1(s, u, \omega(u))\Delta u, \int_{\sigma_0}^{s+r}F_2(s, u, \omega(u))\Delta u), \\
&\xi \in [\xi_0, \xi_1], \\
&\sum_{s \in T}(\xi - s)^{\sigma-1}E_{\sigma,s}(A^{\sigma} - s)^{\sigma}) \\
&\times G(s, \omega(s), \int_{\sigma_0}^{s+r}F_1(s, u, \omega(u))\Delta u, \int_{\sigma_0}^{s+r}F_2(s, u, \omega(u))\Delta u)\Delta s \\
&\sum_{j=1}^{i}([E_{j}(\omega(\xi_j))) + \Phi_{j}(\xi_j, \omega(\xi_j))), \quad \xi \in [\xi_i, \xi_{i+1}], i = 1, \ldots, m.
\end{array} \right. \\
(19)
\end{align*}
$$

Clearly, on a discrete finite set, (19) is a collection of summation operators. Further, the continuity of Ξ_i, Φ_i, F, and G implies that Λ_σ is completely continuous.

Case 2: Assume that all the points of \mathbb{T} are dense, i.e., \mathbb{T} is continuous. Now, let $\xi_{f_1}, \xi_{f_i} \in [\xi_i, \xi_{i+1}], i = 1, \ldots, m$, such that $\xi_{f_1} < \xi_{f_i}$, then

$$
\| \Lambda_\sigma(\omega(\xi_{f_1})) - \Lambda_\sigma(\omega(\xi_{f_i})) \|
$$

$$
\begin{align*}
&\leq \sum_{j=1}^{i} \left[\Xi_j(\omega(\xi_{f_1})) - \Xi_j(\omega(\xi_{f_i})) \right] \\
&\quad + \sum_{j=1}^{i} \left[\Phi_j(\xi_{f_1}, \omega(\xi_{f_1})) - \Phi_j(\xi_{f_i}, \omega(\xi_{f_i})) \right] \\
&\quad + \left\{ \left(\int_{\sigma_0}^{\xi_{f_1}}(\xi - s)^{\sigma-1}E_{\sigma,s}(A^{\sigma} - s)^{\sigma})F(s, \omega(s)) \\
&\quad \times G(s, \omega(s), \int_{\sigma_0}^{s+r}F_1(s, u, \omega(u))\Delta u, \int_{\sigma_0}^{s+r}F_2(s, u, \omega(u))\Delta u) \right) \Delta s \right. \\
&\left. - \left(\int_{\sigma_0}^{\xi_{f_1}}(\xi - s)^{\sigma-1}E_{\sigma,s}(A^{\sigma} - s)^{\sigma})F(s, \omega(s)) \\
&\quad \times G(s, \omega(s), \int_{\sigma_0}^{s+r}F_1(s, u, \omega(u))\Delta u, \int_{\sigma_0}^{s+r}F_2(s, u, \omega(u))\Delta u) \right) \right\} \Delta s \right\} \\
&\leq \sum_{j=1}^{i} \left[\Xi_j(\omega(\xi_{f_1})) - \Xi_j(\omega(\xi_{f_i})) \right] \\
&\quad + \sum_{j=1}^{i} \left[\Phi_j(\xi_{f_1}, \omega(\xi_{f_1})) - \Phi_j(\xi_{f_i}, \omega(\xi_{f_i})) \right] \\
&\quad + \int_{\sigma_0}^{\xi_{f_1}} \left[(\xi - s)^{\sigma-1}E_{\sigma,s}(A^{\sigma} - s)^{\sigma}) - (\xi - s)^{\sigma-1}E_{\sigma,s}(A^{\sigma} - s)^{\sigma}) \right] \\
&\quad \times F(s, \omega(s)) \Delta s \\
\end{align*}
$$
points, one can prove that summation operator which is completely continuous (discussed in case 1). For the dense \(/Lambda_1 /sigma \) \(/Lambda_1 /sigma \) is a completely continuous operator. Consequently, the operator \(/Lambda_1 /sigma \) is also completely continuous. Thus, the operator can be written as a sum of one operator for isolated and dense points. Finally, let \(/beta /in [0,1] \), and there exists \(/omega \) provided that \(/omega (/zeta) = /beta (/Lambda_1 /omega (/zeta)) \). Then, for \(/zeta /in (/zeta_1, /zeta_{i+1}) \), one obtains

\[
\|/omega (/zeta)\| = \|/beta (/Lambda_1 /omega (/zeta_i))\|
\]

\[
\leq \|/beta\| \left[\sum_{j=1}^i \mathbb{E}_j (/omega (/zeta_{j-1})) + \sum_{j=1}^i \Phi_j (/omega (/zeta_{j-1})) \right]
\]

\[
+ \int_{/zeta_0}^{/zeta_1} (/zeta_2 - /s)^{/sigma} E_{/sigma, /omega} (A (/zeta_2 - /s)^{/sigma}) (/F (s, /omega (s)))
\]

\[
+ G (s, /omega (s), \int_{/zeta_0}^y /F_1 (s, /omega (u)) Du, \int_{/zeta_0}^y /F_2 (s, /omega (u)) Du) \Delta s
\]

\[
\leq \sum_{j=1}^i L_2 \|/omega\|_\infty + \sum_{j=1}^i L_1 \|/omega\|_\infty + a_1 + \|(zeta - s)^{/sigma}-1\| a_2
\]

\[
\times (L_2 \|/omega\|_\infty + L_1 \|/omega\|_\infty + L_1 L_2 \|/omega\|_\infty (s_j - s_0)
\]

\[
+ L_1 L_2 \|/omega\|_\infty (s_j - s_0) + \widehat{M}_j (zeta_j - s_0)
\]

\[
\leq \sum_{j=1}^i L_2 + \sum_{j=1}^i L_1 + \|(zeta - s)^{/sigma}-1\| a_2
\]

\[
\times (L_2 + L_1 + L_1 L_2 (s_j - s_0) + L_1 L_2 (s_j - s_0)) (zeta_j - s_0) \|/omega\|_\infty
\]
\[
\leq a_1 + [N_2 + Q_2] \| \omega \|_\infty
\leq a_1 + Q_3 \| \omega \|_\infty.
\]

Hence
\[
\frac{\| \omega \|_\infty}{a_1 + Q_3 \| \omega \|_\infty} \leq 1.
\]

Now, from (17), we get \(K > 0 \) such that \(\| \omega \|_\infty \neq K \). Let us assume that
\[
N = \{ \omega \in \mathbb{T}, \| \omega \|_\infty < K \}.
\]

Then the operator \(\Lambda_\sigma : N \to \mathbb{T} \) is continuous as well as completely continuous. Thus, from the choice of \(N \), there is no \(\omega \in \chi(N) \) provided that \(\omega = \beta(\Lambda_\sigma(\omega)) \), \(\beta \in [0, 1] \).

Therefore in the light of fixed point criterion due to nonlinear alternative of Leray–Schauder, \(\Lambda_\sigma \) admits a fixed point which is the solution of the mixed impulsive system (1). \(\square \)

We have a similar conclusion for the mixed impulsive system (2).

Theorem 3.4 The mixed impulsive system (2) admits at least one solution if assumption (B) is satisfied and \(K^*>0 \) exists such that
\[
a_1 + Q_3^* K^* < K^*.
\]

Proof It is similar to the previous argument for \(\Psi_\sigma \) in Theorem 3.3. \(\square \)

4 Stability analysis

Now, to start this section, we first consider the following inequalities:

\[
\begin{aligned}
\left\| T^\sigma D^\alpha a(\xi) - A(\xi) \omega(\xi) - F(\xi, \omega(\xi)) \right\| \leq \epsilon; \\
\left\| \omega(\xi^*_k) - \omega(\xi^*_{k-1}) \right\| \leq \epsilon, \\
\left\| \omega(\xi^*_k) - \omega(\xi^*_{k-1}) \right\| & \leq \epsilon, \quad k = 1, \ldots, m,
\end{aligned}
\]

and

\[
\begin{aligned}
\left\| T^\sigma D^\alpha a(\xi) - A(\xi) \omega(\xi) - F(\xi, \omega(\xi)) \right\| \leq \epsilon, \\
\left\| \omega(\xi^*_k) - \omega(\xi^*_{k-1}) \right\| & \leq \epsilon, \\
\left\| \omega(\xi^*_k) - \omega(\xi^*_{k-1}) \right\| & \leq \epsilon, \quad \xi \in (s, \xi_{i+1}] \cap \mathbb{T}, i = 1, \ldots, m,
\end{aligned}
\]

for each \(\epsilon > 0 \).

Definition 4.1 The mixed impulsive system (1) is said to be UH stable on \(\mathbb{T} \) if, for any \(\omega \in PC^1(\mathbb{T}, \mathbb{R}^n) \) fulfilling (21), there exists \(\hat{\omega} \in PC^1(\mathbb{T}, \mathbb{R}^n) \) as a solution of (1) such that \(\| \hat{\omega}(s) - \omega(s) \| \leq C \epsilon \) for \(C > 0, s \in \mathbb{T} \).
Definition 4.2 The mixed impulsive system (2) is termed as UH stable if, for any \(\epsilon > 0 \) and \(\omega \in PC^1(D, \mathbb{R}^n) \) that fulfills (22), there exists, \(\tilde{\omega} \in PC^1(D, \mathbb{R}^n) \) as a solution of (2) provided \(\| \tilde{\omega}(\zeta) - \omega(\zeta) \| \leq \varrho \epsilon \) for all \(\zeta \in D \). Here, \(\varrho > 0 \), and its value depends upon \(\epsilon \).

Remark 4.1 The solution \(\omega \in PC^1(T, \mathbb{R}^n) \) satisfies (21) iff \(\exists f \in PC(T, \mathbb{R}^n) \) together with the sequence \(f_k \) provided \(\| f_k \| \leq \epsilon \) so that

\[
\begin{align*}
\hat{c}_T D^\sigma \omega(\zeta) &= A(\zeta)\omega(\zeta) + F(\zeta, \omega(\zeta)) \\
&\quad + G(\zeta, \omega(\zeta), \int_{\zeta_0}^\zeta F_1(s, \omega(s))\Delta s, \int_{\zeta_0}^\zeta F_2(s, \omega(s))\Delta s) + f(\zeta), \\
\omega(\zeta_0) &= \omega_0, \quad \zeta \in T', \\
\omega(\zeta_k) - \omega(\zeta_{k+1}) &= \Xi_k(\omega(\zeta_k)) + \Phi_k(\omega(\zeta_k)) + f_k.
\end{align*}
\]

Lemma 4.3 Each function \(\omega \in PC^1(T, \mathbb{R}^n) \) that fulfills (21) also satisfies the following inequality:

\[
\begin{align*}
\| \omega(\zeta) - E_\sigma(A\zeta^\sigma)\omega_0 - \sum_{k=1}^m \left(\Xi_k(\omega(\zeta_k^-)) + \Phi_k(\omega(\zeta_k^-)) \right) \\
- \int_{\zeta_0}^\zeta (\zeta-s)^{\sigma-1} E_\sigma(A(\zeta-s)^\sigma)F(s, \omega(s))\Delta s \\
- \int_{\zeta_0}^\zeta (\zeta-s)^{\sigma-1} E_\sigma(A(\zeta-s)^\sigma) \\
\times G(s, \omega(s), \int_{\zeta_0}^s F_1(s, \omega(s))\Delta u, \int_{\zeta_0}^s F_2(s, \omega(s))\Delta u)\Delta s \| &\leq \delta \epsilon
\end{align*}
\]

for \(\zeta \in (\zeta_k, \zeta_{k+1}) \subset T, \) where \(\| E_\sigma(A(\zeta-s)^\sigma) \| \leq a_2 \) and \(\delta = (m + a_2 a_2)(\zeta_f - \zeta_0) \).

Proof If \(\omega \in PC^1(T, \mathbb{R}^n) \) satisfies (21), then via Remark 4.1

\[
\begin{align*}
\hat{c}_T D^\sigma \omega(\zeta) &= A(\zeta)\omega(\zeta) + F(\zeta, \omega(\zeta)) \\
&\quad + G(\zeta, \omega(\zeta), \int_{\zeta_0}^\zeta F_1(s, \omega(s))\Delta s, \int_{\zeta_0}^\zeta F_2(s, \omega(s))\Delta s) + f(\zeta), \\
\omega(\zeta_0) &= \omega_0, \quad \zeta \in T', \\
\omega(\zeta_k) - \omega(\zeta_{k+1}) &= \Xi_k(\omega(\zeta_k^-)) + \Phi_k(\omega(\zeta_k^-)) + f_k, \quad k = 1, \ldots, m,
\end{align*}
\]

implies

\[
\begin{align*}
\omega(\zeta) &= E_\sigma(A\zeta^\sigma)\omega_0 + \sum_{j=1}^m \left(\Xi(\omega(\zeta_j^-)) + \Phi(\omega(\zeta_j^-)) \right) + \sum_{i=1}^m f_i \\
+ \int_{\zeta_0}^\zeta (\zeta-s)^{\sigma-1} E_\sigma(A(\zeta-s)^\sigma)F(s, \omega(s))\Delta s \\
+ \int_{\zeta_0}^\zeta (\zeta-s)^{\sigma-1} E_\sigma(A(\zeta-s)^\sigma) \\
\times G(s, \omega(s), \int_{\zeta_0}^s F_1(s, \omega(s))\Delta u, \int_{\zeta_0}^s F_2(s, \omega(s))\Delta u)\Delta s \\
+ \int_{\zeta_0}^\zeta (\zeta-s)^{\sigma-1} E_\sigma(A(\zeta-s)^\sigma) f(s)\Delta s.
\end{align*}
\]
So,

\[
\left\| \omega(\varsigma) - E_{\sigma} (A^{\varsigma^{\sigma}}) \omega_0 - \sum_{j=1}^{m} \left(\Xi(\omega(\varsigma_j^-)) + \Phi(\varsigma_j^-, \omega(\varsigma_j^-)) \right) \right\| \\
- \int_{\varsigma}^{\varsigma_0} (\varsigma - s)^{\sigma-1} E_{\sigma, \sigma} (A(\varsigma - s)^{\sigma}) F(s, \omega(s)) \Delta s \\
- \int_{\varsigma_0}^{\varsigma} (\varsigma - s)^{\sigma-1} E_{\sigma, \sigma} (A(\varsigma - s)^{\sigma}) \\
\times G\left(s, \omega(s), \int_{\varsigma}^{\varsigma_0} F_1(s, u, \omega(u)) \Delta u, \int_{\varsigma_0}^{\varsigma} F_2(s, u, \omega(u)) \Delta u\right) \Delta \omega \\
\leq \int_{\varsigma_0}^{\varsigma} \left\| (\varsigma - s)^{\sigma-1} \right\| \left\| E_{\sigma, \sigma} (A(\varsigma - s)^{\sigma}) \right\| \| f(s) \| \Delta s + \sum_{i=1}^{m} \| f_i \| \\
\leq \delta \epsilon,
\]

and the argument is finished. \(\square\)

Remark 4.2 The map \(\omega \in PC^1(D, \mathbb{R}^n)\) fulfills inequality (22) iff there are \(f \in PC^1(D, \mathbb{R}^n)\) as a map and bounded sequences \(\{f_i : i = 1, \ldots, m\} \subset \mathbb{R}^n\) (depending upon \(\omega\)) provided that \(\|f(s)\| \leq \epsilon\) for each \(\varsigma \in D\) and \(\|f_i\| \leq \epsilon\ \forall i = 1, \ldots, m\) such that

\[
\begin{align*}
&c^TD^\sigma \omega(\varsigma) = A(\varsigma) \omega(\varsigma) + F(\varsigma, \omega(\varsigma)) \\
&\quad + \mathcal{G}(\varsigma, \omega(s), \int_{\varsigma_0}^{\varsigma} F_1(s, \varsigma, \omega(s)) \Delta s, \int_{\varsigma_0}^{\varsigma} F_2(s, \varsigma, \omega(s)) \Delta s) + f(\varsigma), \\
&\omega(\varsigma_0) = \omega_0, \quad \varsigma \in (s_i, s_{i+1}] \cap \mathbb{T}, \ i = 1, \ldots, m, \\
&\omega(\varsigma) = \frac{1}{\Gamma(\sigma)} \int_{\varsigma_0}^{\varsigma} (\varsigma - s)^{\sigma-1} h_i(s, \omega(s)) \Delta s + f_i, \quad i = 1, \ldots, m.
\end{align*}
\]

Lemma 4.4 Each map \(\omega \in PC^1(D, \mathbb{R}^n)\) that fulfills (22) also satisfies the inequalities given below:

\[
\begin{align*}
\left\| \omega(\varsigma) - E_{\sigma} (A^{\varsigma^{\sigma}}) \omega_0 - \int_{\varsigma}^{\varsigma_0} E_{\sigma, \sigma} (A(\varsigma - s)^{\sigma}) F(s, \omega(s)) \Delta s \\
- \int_{\varsigma}^{\varsigma_0} E_{\sigma, \sigma} (A(\varsigma - s)^{\sigma}) \mathcal{G}(s, \omega(s), \int_{\varsigma_0}^{\varsigma} F_1(s, u, \omega(u)) \Delta u, \int_{\varsigma_0}^{\varsigma} F_2(s, u, \omega(u)) \Delta u) \Delta s \\
- \frac{1}{\Gamma(\sigma)} \int_{\varsigma_0}^{\varsigma} (\varsigma - s)^{\sigma-1} h_i(s, \omega(s)) \Delta s \right\| \leq (a_2 \varsigma - a_2 s_i + m) \epsilon, \\
\varsigma \in (s_i, s_{i+1}] \cap \mathbb{T}, \ i = 1, \ldots, m,
\end{align*}
\]

and

\[
\begin{align*}
\left\| \omega(\varsigma) - \frac{1}{\Gamma(\sigma)} \int_{\varsigma_0}^{\varsigma} (\varsigma - s)^{\sigma-1} h_i(s, \omega(s)) \Delta s \right\| \leq m \epsilon \quad \text{(respectively} \ m \epsilon), \\
\varsigma \in (s_i, s_{i+1}] \cap \mathbb{T}, \ i = 1, \ldots, m,
\end{align*}
\]

in which \(\|E_{\sigma, \sigma} (A(\varsigma - s)^{\sigma})\| \leq a_2\).
Proof. If $\omega \in PC^1(D, \mathbb{R}^n)$ satisfies (22), in this case, by virtue of Remark 4.2,

$$
\begin{aligned}
\omega(\xi) &= A(\xi)\omega(\xi) + F(\xi, \omega(\xi)) \\
&+ \mathcal{G}(\xi, \omega(\xi), \int_{s_i}^{\xi} F_1(s, \omega(s)) \Delta s, \int_{s_i}^{\xi} F_2(s, \omega(s)) \Delta s) \\
&+ f(\xi), \omega(\xi_0) = \omega_0, \quad \xi \in (s_i, \xi_{i+1}] \cap \mathbb{T}, i = 1, \ldots, m, \\
&\omega(\xi) = \frac{1}{\Gamma(\sigma)} \int_{s_i}^{\xi} (\xi - s)^{\sigma - 1} h_i(s, \omega(s)) \Delta s + f_i, \\
&\quad \xi \in (\xi_i, s_i] \cap \mathbb{T}, i = 1, \ldots, m.
\end{aligned}
$$

(23)

Clearly, equation (23) implies that

$$
\omega(\xi) = \begin{cases}
E_\sigma (A\xi^\sigma) \omega_0 + \int_{s_i}^{\xi} E_{\sigma, \sigma} (A(\xi - s)^\sigma) F(s, \omega(s)) \Delta s \\
+ \frac{1}{\Gamma(\sigma)} \int_{s_i}^{\xi} (\xi - s)^{\sigma - 1} h_i(s, \omega(s)) \Delta s, \\
\xi \in (s_i, \xi_{i+1}] \cap \mathbb{T}, i = 1, \ldots, m,
\end{cases}
$$

For $\xi \in (s_i, \xi_{i+1}] \cap \mathbb{T}, i = 1, \ldots, m$, one has

$$
\begin{aligned}
&\left\| \omega(\xi) - E_\sigma (A\xi^\sigma) \omega_0 - \int_{s_i}^{\xi} (\xi - s)^{\sigma - 1} E_{\sigma, \sigma} (A(\xi - s)^\sigma) F(s, \omega(s)) \right. \\
&\left. - \int_{s_i}^{\xi} (\xi - s)^{\sigma - 1} E_{\sigma, \sigma} (A(\xi - s)^\sigma) \mathcal{G}(s, \omega(s), \int_{s_i}^{\xi} F_1(s, u, \omega(u)) \Delta u, \int_{s_i}^{\xi} F_2(s, u, \omega(u)) \Delta u) \Delta s \\
&\left. - \frac{1}{\Gamma(\sigma)} \int_{s_i}^{\xi} (\xi - s)^{\sigma - 1} h_i(s, \omega(s)) \Delta s \right\| \\
&\leq \int_{s_i}^{\xi} \left\| (\xi - s)^{\sigma - 1} \right\| \left\| E_{\sigma, \sigma} (A(\xi - s)^\sigma) \right\| \left\| f(s) \Delta s + \sum_{i=1}^{m} \| f_i \| \\
&\leq (a_3a_2(\xi - s_i) + m)\varepsilon.
\end{aligned}
$$

Using a similar method, we get

$$
\begin{aligned}
&\left\| \omega(\xi) - \frac{1}{\Gamma(\sigma)} \int_{s_i}^{\xi} (\xi - s)^{\sigma - 1} h_i(s, \omega(s)) \Delta s \right\| \leq m\varepsilon, \\
&\quad \xi \in (\xi_i, s_i] \cap \mathbb{T}, i = 1, \ldots, m,
\end{aligned}
$$

and this ends the argument.

Now, we provide a sufficient condition for the UH stability of mixed impulsive systems (1) and (2).

Theorem 4.5 The mixed impulsive system (1) is UH stable provided assumption (A) and inequality (9) are satisfied.
Proof Let \(\omega \) be the solution of the mixed impulsive system (1) and \(\tilde{\omega} \) be the solution of inequality (21). Therefore, from Theorem 3.1, we have

\[
\omega(\zeta) = \begin{cases}
E_{\sigma}(A^{\zeta})\omega_0 + \int_{\zeta_0}^{\zeta} (\zeta - s)^{\sigma - 1} E_{\sigma,\sigma}(A(\zeta - s)^{\sigma}) \mathcal{F}(\zeta, \omega(\zeta)) \Delta s \\
+ \int_{\zeta_0}^{\zeta} (\zeta - s)^{\sigma - 1} E_{\sigma,\sigma}(A(\zeta - s)^{\sigma}) \\
x G(s, \omega(s), \int_{s}^{\zeta} \mathcal{F}_1(s, u, \omega(u)) \Delta u, \int_{s}^{\zeta} \mathcal{F}_2(s, u, \omega(u)) \Delta u) \Delta s, \\
\zeta \in (\zeta_0, \zeta_1], \\
E_{\sigma}(A^{\zeta})\omega_0 + \int_{\zeta_0}^{\zeta} (\zeta - s)^{\sigma - 1} E_{\sigma,\sigma}(A(\zeta - s)^{\sigma}) \mathcal{F}(\zeta, \omega(\zeta)) \Delta s \\
+ \int_{\zeta_0}^{\zeta} (\zeta - s)^{\sigma - 1} E_{\sigma,\sigma}(A(\zeta - s)^{\sigma}) \\
x G(s, \omega(s), \int_{s}^{\zeta} \mathcal{F}_1(s, u, \omega(u)) \Delta u, \int_{s}^{\zeta} \mathcal{F}_2(s, u, \omega(u)) \Delta u) \Delta s \\
+ \sum_{j=1}^{l} (\Xi_j(\omega(\zeta_j^-)) + \Phi_j(\zeta_j^-, \omega(\zeta_j^-))), \\
\zeta \in (\zeta_0, \zeta_{i+1}], i = 1, \ldots, m,
\end{cases}
\]

where \(E_{\sigma}(A^{\zeta}) \) stands for the matrix representation of the Mittag-Leffler function. Using a similar approach as that in Theorem 3.1, we get

\[
\|\tilde{\omega}(\zeta) - \omega(\zeta)\| \leq \sum_{j=1}^{i} \|\Xi_j(\tilde{\omega}(\zeta_j^-)) - \Xi_j(\omega(\zeta_j^-))\| \\
+ \sum_{j=1}^{i} \|\Phi_j(\zeta_j^-, \tilde{\omega}(\zeta_j^-)) - \Phi_j(\zeta_j^-, \omega(\zeta_j^-))\| \\
+ \int_{\zeta_0}^{\zeta} \| (\zeta - s)^{\sigma - 1} \| \| E_{\sigma,\sigma}(A(\zeta - s)^{\sigma}) \| \| \mathcal{F}(s, \tilde{\omega}(s)) \| \\
+ G\left(s, \tilde{\omega}(s), \int_{s}^{\zeta} \mathcal{F}_1(s, u, \tilde{\omega}(u)) \Delta u, \int_{s}^{\zeta} \mathcal{F}_2(s, u, \tilde{\omega}(u)) \Delta u \right) \\
- \left(\mathcal{F}(s, \omega(s)) \\
+ G\left(s, \omega(s), \int_{s}^{\zeta} \mathcal{F}_1(s, u, \omega(u)) \Delta u, \int_{s}^{\zeta} \mathcal{F}_2(s, u, \omega(u)) \Delta u \right) \right) \| \Delta s \\
\leq a_3 a_2 (\zeta_j^- - \zeta_j) \epsilon + Q_3 \|\tilde{\omega} - \omega\|_\infty,
\]

which implies that

\[
\|\tilde{\omega} - \omega\|_\infty \leq a_3 a_2 (\zeta_j^- - \zeta_j) \epsilon + Q_3 \|\tilde{\omega} - \omega\|_\infty.
\]

Hence

\[
\|\tilde{\omega} - \omega\|_\infty \leq \frac{a_3 a_2 (\zeta_j^- - \zeta_j)}{1 - Q_3} \epsilon \\
\leq \mathcal{H}(a_3, a_2, L_\mathcal{F}, L_{\mathcal{G}_1}, L_{\mathcal{G}_2}, L_{\mathcal{F}_1}, L_{\mathcal{F}_2}, L_{\Xi}, L_{\Phi}) \epsilon,
\]
Theorem 4.6 The mixed impulsive system (2) is UH stable provided that assumption (A) and inequality (13) are satisfied.

Proof Let \(\omega \) be the solution of the mixed impulsive system (2) and \(\tilde{\omega} \) be the solution of inequality (22). Therefore, from Theorem 3.2, we have

\[
\omega(\xi) = \begin{cases}
E_\sigma(A\xi^\sigma)w_0 + \int_{s_0}^{\xi} (\xi - s)^{\sigma - 1}E_{\sigma,\sigma}(A(\xi - s)^\sigma)F(\xi, \omega(\xi))\Delta s \\
+ \int_{s_0}^{\xi} (\xi - s)^{\sigma - 1}E_{\sigma,\sigma}(A(\xi - s)^\sigma) \times \varphi(s, \omega(s), \int_{s_0}^{\xi} F_1(s, u, \omega(u))\Delta u, \int_{s_0}^{\xi} F_2(s, u, \omega(u))\Delta u)\Delta s
\end{cases}
\]

where \(E_\sigma(A\xi^\sigma) \) stands for the matrix representation of the Mittag-Leffler function. Using the similar approach as in Theorem 3.2, we get

\[
\|\tilde{\omega}(\xi) - \omega(\xi)\| \leq \frac{1}{\Gamma(\sigma)} \int_{s_0}^{\xi} \|\xi - s\|^{\sigma - 1} \|\left(h_i(s, \tilde{\omega}(s)) - h_i(s, \omega(s))\right)\|\Delta s
\]

\[
+ \int_{s_0}^{\xi} \|\xi - s\|^{\sigma - 1} \left\|E_{\sigma,\sigma}(A(\xi - s)^\sigma)\right\| \left\|F(s, \tilde{\omega}(s)) + \varphi(s, \tilde{\omega}(s), \int_{s_0}^{\xi} F_1(s, u, \tilde{\omega}(u))\Delta u, \int_{s_0}^{\xi} F_2(s, u, \tilde{\omega}(u))\Delta u)\right\|\Delta s
\]

\[
\leq a_3a_2(\xi - \xi_0)\epsilon + Q_3\|\tilde{\omega} - \omega\|,
\]

which implies

\[
\|\tilde{\omega} - \omega\| \leq a_3a_2(\xi - \xi_0)\epsilon + Q_3\|\tilde{\omega} - \omega\|.
\]
Hence
\[\|\tilde{\omega} - \omega\|_{\infty} \leq \left(a_3 a_2 (\xi_1 - \xi_0) \right) \frac{\varepsilon}{1 - Q_3^4} \]
\[\leq H_{\{a_3 a_2, L_2, L_{Q_1}, L_{Q_2}, L_{f_1}, L_{f_2}, L_2\}}(\varepsilon), \]
where \(H_{\{a_3 a_2, L_2, L_{Q_1}, L_{Q_2}, L_{f_1}, L_{f_2}, L_2\}} = \frac{a_3 a_2 (\xi_1 - \xi_0)}{1 - Q_3^4} \). Hence, the mixed impulsive system (2) is UH stable. Furthermore, if we take
\[\bar{\mathcal{F}}_{\{a_3 a_2, L_2, L_{Q_1}, L_{Q_2}, L_{f_1}, L_{f_2}, L_2\}}(\varepsilon) = \mathcal{F}_{\{a_3 a_2, L_2, L_{Q_1}, L_{Q_2}, L_{f_1}, L_{f_2}, L_2\}}(0) = 0, \]
then the mentioned system (2) is generalized UH stable. \(\square \)

5 Controllability analysis

In the sequel, controllability analysis of given impulsive systems is conducted. At first, we have some definitions in this direction.

Definition 5.1 The function \(\omega \in \mathbb{T} \) is said to be the solution of (3) if \(\omega \) satisfies \(\omega(0) = \omega_0 \) and \(\omega \) is the solution of the following integral equations:

\[
\omega(\xi) = \begin{cases}
E_{\sigma}(A_{\sigma}^o)\omega_0 + \int_{\xi_0}^{\xi} (\xi - s)^{\sigma-1}E_{\sigma,\sigma}(A(\xi - s)^{\sigma}) \mathcal{F}(\xi, \omega(\xi)) \Delta s \\
+ \int_{\xi_0}^{\xi} (\xi - s)^{\sigma-1}E_{\sigma,\sigma}(A(\xi - s)^{\sigma}) \\
\times G(s, \omega(s), \int_{\xi_0}^{s} \mathcal{F}_1(s, u, \omega(u)) \Delta u, \int_{\xi_0}^{s} \mathcal{F}_2(s, u, \omega(u)) \Delta u) \Delta s \\
+ \int_{\xi_0}^{\xi} (\xi - s)^{\sigma-1}E_{\sigma,\sigma}(A(\xi - s)^{\sigma}) \mathcal{H}(\xi) \Delta s, \\
\xi \in (\xi_0, \xi_1), \\
E_{\sigma}(A_{\sigma}^o)\omega_0 + \int_{\xi_0}^{\xi} (\xi - s)^{\sigma-1}E_{\sigma,\sigma}(A(\xi - s)^{\sigma}) \mathcal{F}(\xi, \omega(\xi)) \Delta s \\
+ \int_{\xi_0}^{\xi} (\xi - s)^{\sigma-1}E_{\sigma,\sigma}(A(\xi - s)^{\sigma}) \\
\times G(s, \omega(s), \int_{\xi_0}^{s} \mathcal{F}_1(s, u, \omega(u)) \Delta u, \int_{\xi_0}^{s} \mathcal{F}_2(s, u, \omega(u)) \Delta u) \Delta s \\
+ \int_{\xi_0}^{\xi} (\xi - s)^{\sigma-1}E_{\sigma,\sigma}(A(\xi - s)^{\sigma}) \mathcal{H}(\xi) \Delta s \\
\left. + \sum_{i=1}^{m} (\mathcal{E}_i(\omega(\xi_i^{-})) + \Phi_i(\xi_i^{-}, \omega(\xi_i^{-}))), \right\} \\
\xi \in (\xi_i, \xi_{i+1}], i = 1, \ldots, m,
\end{cases}
\]

where \(E_{\sigma}(A_{\sigma}^o) \) stands for the matrix representation of the Mittag-Leffler function.

Definition 5.2 The mixed impulsive system (3) is controllable on \(\mathbb{T} \) if, for every \(\omega_0, \omega_T \in \mathbb{T} \) where \(\xi_{i+1} = T \), there exists an rd-continuous function \(\xi \in L^1(I, \mathbb{R}) \) such that the corresponding solution of (3) satisfies \(\omega(0) = \omega_0 \) and \(\xi(T) = \xi_T \).

We set the following for simplicity:

\[Q_5 := a_3 (a_2 L_{f_1} + a_2 L_{G_1} + a_2 L_{G_2} L_{f_1} (s_f - s_0) + a_2 L_{G_3} L_{f_2} (s_f - s_0) + M_G) \times (\xi_f - \xi_0)(1 + M_G M_{\tau_0}(\xi_f - \xi_0)); \]
\[Q_6 := a_3 (a_2 L_{f_1} + a_2 L_{G_2} L_{f_1} (s_f - s_0) + a_2 L_{G_3} L_{f_2} (s_f - s_0)) \times (\xi_f - \xi_0); \]
\[Q_7 := (1 + M_{\mathcal{H}} M_{\mathcal{W}}^\sigma (\zeta_f - \zeta_0)) \left[\sum_{j=1}^i L_{\omega} + \sum_{j=1}^i L_{\phi} \right] + (a_2 L_{\mathcal{F}} + a_2 L_{G_1} + a_2 L_{G_2} L_{\mathcal{F}_1} (s_f - s_0) + a_2 L_{G_2} L_{\mathcal{F}_2}) (\zeta_f - \zeta_0) \]

\[Q_8 := (1 + M_{\mathcal{H}} M_{\mathcal{W}}^\sigma (\zeta - \zeta_f)) \left[\frac{1}{\Gamma(\sigma)} a_2 L_{\omega} (s_i - \zeta_i) \right. \]

\[+ a_3 (a_2 L_{\mathcal{F}} + a_2 L_{G_1} + a_2 L_{G_2} L_{\mathcal{F}_1} (s_f - s_0) + a_2 L_{G_2} L_{\mathcal{F}_2}) (s_f - s_0) \times (\zeta_f - \zeta_0) \right] ; \]

\[N_5 := (1 + M_{\mathcal{H}} M_{\mathcal{W}}^\sigma) \left[\sum_{j=1}^i L_{\omega} \delta + \sum_{j=1}^i L_{\phi} \delta + a_1 \right] + M_{\mathcal{H}} M_{\mathcal{H}}^\sigma \| \omega_T \| ; \]

\[N_6 := (1 + M_{\mathcal{H}} M_{\mathcal{W}}^\sigma) \left[\left(\frac{1}{\Gamma(\sigma)} \right) a_3 L_{\omega} \delta' (s_i - \zeta_i) + a_1 + \tilde{M}_G \right] + M_{\mathcal{H}} M_{\mathcal{H}}^\sigma \| \omega_T \| . \]

Lemma 5.3 If assertions (A) and (W) hold and \(\omega_T \in T \), where \(\zeta_{i+1} = T \) is any arbitrary point, then \(\omega \) is a solution of \((3) \) on \(\mathbb{T} \) defined by (24) along with the control function

\[
\xi = \left(\mathcal{W}^{(\sigma)} \right)_{\mathcal{W}}^{T-1} \left[\omega_T - E_\sigma (A \xi^\sigma) \omega_0 - \int_{S_0}^{S_f} (\zeta - s)^{\sigma - 1} E_{\sigma, \sigma} (A (\zeta - s)^\sigma) \mathcal{F}(\zeta, \omega(s)) \Delta s \right. \\
- \int_{S_0}^{S_f} (\zeta - s)^{\sigma - 1} E_{\sigma, \sigma} (A (\zeta - s)^\sigma) \\
\times G(s, \omega(s), \int_{S_0}^{S_f} \mathcal{F}_1(s, u, \omega(u)) \Delta u, \int_{S_0}^{S_f} \mathcal{F}_2(s, u, \omega(u)) \Delta u) \Delta s \\
\left. - \sum_{i=1}^{m} (\zeta_i, \omega(\zeta_i)), i = 1, \ldots, m \right] , \quad \zeta \in (\zeta_0, \zeta_{i+1}], i = 1, \ldots, m, \]

where \(E_\sigma (A \xi^\sigma) \) stands for the matrix representation of the Mittag-Leffler function, and \(\omega(T) = \omega_T \) holds in which \(\zeta_{i+1} = T \). Also, the control function \(\xi(\zeta) \) has the estimate \(\| \xi(\zeta) \| \leq \mathcal{N}_\xi \), where for \(\zeta \in (\zeta_0, \zeta_{i+1}], i = 1, \ldots, m \), we define

\[\mathcal{N}_\xi = \mathcal{W}_{\mathcal{W}}^{T} \left[\left\| \omega_T \right\| + \left\| E_\sigma (A \xi^\sigma) \omega_0 \right\| + \sum_{j=1}^i L_{\omega} \left\| \omega \right\|_\infty + \sum_{j=1}^i L_{\phi} \left\| \omega \right\|_\infty \\
+ (a_3 a_2 L_{\mathcal{F}} \left\| \omega \right\|_\infty + L_{G_1} \left\| \omega \right\|_\infty + L_{G_2} L_{\mathcal{F}_1} \left\| \omega \right\|_\infty (s_f - s_0) \\
+ L_{G_2} L_{\mathcal{F}_2} \left\| \omega \right\|_\infty (s_f - s_0) + \tilde{M}_G) (\zeta_f - \zeta_0)) \right] . \]

Proof Let \(\omega \) be the solution of \((3) \) on \(\zeta \in (\zeta_0, \zeta_{i+1}], i = 1, \ldots, m \), defined by (24). Then, for \(\zeta = T \), we have

\[
\omega(T) = E_\sigma (A T^\sigma) \omega_0 + \int_{S_0}^{S_f} (T - s)^{\sigma - 1} E_{\sigma, \sigma} (A (T - s)^\sigma) \mathcal{F}(s, \omega(s)) \Delta s \\
+ \int_{S_0}^{S_f} (T - s)^{\sigma - 1} E_{\sigma, \sigma} (A (T - s)^\sigma)
\]
\[
\times G(s, \omega(s), \int_{\tau_0}^{\tau} F_1(s, u, \omega(u)) \Delta u, \int_{\tau_0}^{\tau} F_2(s, u, \omega(u)) \Delta u) \Delta s
\]
\[+
\sum_{j=1}^{i} \left(\Xi_j(\omega(T_j^-)) + \Phi_j(T_j^-, \omega(T_j^-)) \right) \]
\[+ \int_{\tau_0}^{\tau} (T-s)^{-1} E_{\sigma, \sigma}(A(T-s)^\sigma) \mathcal{H}(\xi(\zeta)) \Delta s
\]
\[= E_{\sigma}(A \Gamma) \omega_0 + \int_{\tau_0}^{\tau} (T-s)^{-1} E_{\sigma, \sigma}(A(T-s)^\sigma) F(s, \omega(s)) \Delta s
\]
\[+ \int_{\tau_0}^{\tau} (T-s)^{-1} E_{\sigma, \sigma}(A(T-s)^\sigma)
\]
\[\times G(s, \omega(s), \int_{\tau_0}^{\tau} F_1(s, u, \omega(u)) \Delta u, \int_{\tau_0}^{\tau} F_2(s, u, \omega(u)) \Delta u) \Delta s
\]
\[+
\sum_{j=1}^{i} \left(\Xi_j(\omega(T_j^-)) + \Phi_j(T_j^-, \omega(T_j^-)) \right) \]
\[+ \int_{\tau_0}^{\tau} (T-s)^{-1} E_{\sigma, \sigma}(A(T-s)^\sigma) \mathcal{H}
\]
\[\times (\sigma \mathcal{W}_{\tau_0}^T)^{-1} \left[\omega_T - E_{\sigma}(A \Gamma) \omega_0
\]
\[- \int_{\tau_0}^{\tau} (T-s)^{-1} E_{\sigma, \sigma}(A(T-s)^\sigma) F(s, \omega(s)) \Delta s
\]
\[- \int_{\tau_0}^{\tau} (T-s)^{-1} E_{\sigma, \sigma}(A(T-s)^\sigma)
\]
\[\times G(s, \omega(s), \int_{\tau_0}^{\tau} F_1(s, u, \omega(u)) \Delta u, \int_{\tau_0}^{\tau} F_2(s, u, \omega(u)) \Delta u) \Delta s
\]
\[+ \sum_{i=1}^{i} \left(\Xi_i(\omega(T_i^-)) + \Phi_i(T_i^-, \omega(T_i^-)) \right) \]
\[\times (\sigma \mathcal{W}_{\tau_0}^T)(\sigma \mathcal{W}_{\tau_0}^T)^{-1} \left[\omega_T - E_{\sigma}(A \Gamma) \omega_0
\]
\[- \int_{\tau_0}^{\tau} (T-s)^{-1} E_{\sigma, \sigma}(A(T-s)^\sigma) F(s, \omega(s)) \Delta s
\]
\[- \int_{\tau_0}^{\tau} (T-s)^{-1} E_{\sigma, \sigma}(A(T-s)^\sigma)
\]
\begin{align*}
&\times G(s,\omega(s),\int_{s_0}^{s} F_1(s,u,\omega(u))\Delta u, \int_{s_0}^{s} F_2(s,u,\omega(u))\Delta u)\Delta s \\
&- \sum_{j=1}^{i} \left(\mathcal{E}_i(\omega(T_j^-)) - \Phi_i(T_j^-,\omega(T_j^-)) \right) \\
&= \omega_T.
\end{align*}

Also, for $\zeta \in (\zeta_i, \zeta_{i+1}])$, $i = 1, \ldots, m$, the estimation

$$
\| \xi(\zeta) \| = N_{\xi}^\infty \left[\| \omega_T \| + \| E_\sigma (A_x \zeta) \omega_0 \| \\
- \int_{s_0}^{\zeta} \| (\zeta - s)^{\sigma-1} \| E_{\sigma,\sigma}(A(\zeta - s)^\sigma) \| \mathcal{F}(\zeta,\omega(\zeta)) \| \Delta s \\
- \int_{s_0}^{\zeta} \| (\zeta - s)^{\sigma-1} \| E_{\sigma,\sigma}(A(\zeta - s)^\sigma) \| \\
\times \| G(s,\omega(s),\int_{s_0}^{s} F_1(s,u,\omega(u))\Delta u, \int_{s_0}^{s} F_2(s,u,\omega(u))\Delta u) \| \Delta s \\
- \sum_{j=1}^{i} (\| \mathcal{E}_i(\omega(\zeta_j^-)) \| + \| \Phi_i(\zeta_j^-,\omega(\zeta_j^-)) \|) \right]
$$

implies that

$$
\| \xi(\zeta) \| = N_{\xi}^\infty \left[\| \omega_T \| + \| E_\sigma (A_x \zeta) \omega_0 \| + \sum_{j=1}^{i} L_{\mathcal{E}}\| \omega_\infty \| + \sum_{j=1}^{i} L_{\Phi}\| \omega_\infty \|
ight. \\
+ (a_3 a_2 (L_\mathcal{F}\| \omega_\infty \| + L_{G_1}\| \omega_\infty \| + L_{G_2}L_\mathcal{F}_1\| \omega_\infty \| (\zeta_j - s_0) \\
+ L_{G_2}L_\mathcal{F}_2\| \omega_\infty (s_j - s_0) + \tilde{M}_G(\zeta_j - s_0)) \right]
$$

$$
= N_{\xi},
$$

and the argument is completed.

Definition 5.4 The function $\omega \in T$ is said to be the solution of the mixed impulsive system (4) if ω satisfies $\omega(0) = \omega_0$ and ω is the solution of the following integral equations:

$$
\omega(\zeta) = \begin{cases} \\
E_\sigma (A_x \zeta) \omega_0 + \int_{s_0}^{\zeta} (\zeta - s)^{\sigma-1} E_{\sigma,\sigma}(A(\zeta - s)^\sigma) F(\zeta,\omega(\zeta)) \Delta s \\
+ \int_{s_0}^{\zeta} (\zeta - s)^{\sigma-1} E_{\sigma,\sigma}(A(\zeta - s)^\sigma) \times G(s,\omega(s),\int_{s_0}^{s} F_1(s,u,\omega(u))\Delta u, \int_{s_0}^{s} F_2(s,u,\omega(u))\Delta u) \Delta s \\
+ \int_{s_0}^{\zeta} (\zeta - s)^{\sigma-1} E_{\sigma,\sigma}(A(\zeta - s)^\sigma) \times \mathcal{H}(\zeta(\zeta)) \Delta s, \\
\zeta \in (\zeta_i, \zeta_{i+1}] \cap T, i = 1, \ldots, m, \\
E_\sigma (A_x \zeta) \omega_0 + \int_{s_0}^{\zeta} (\zeta - s)^{\sigma-1} E_{\sigma,\sigma}(A(\zeta - s)^\sigma) F(\zeta,\omega(\zeta)) \Delta s \\
+ \int_{s_0}^{\zeta} (\zeta - s)^{\sigma-1} E_{\sigma,\sigma}(A(\zeta - s)^\sigma) \times G(s,\omega(s),\int_{s_0}^{s} F_1(s,u,\omega(u))\Delta u, \int_{s_0}^{s} F_2(s,u,\omega(u))\Delta u) \Delta s \\
+ \int_{s_0}^{\zeta} (\zeta - s)^{\sigma-1} E_{\sigma,\sigma}(A(\zeta - s)^\sigma) \times \mathcal{H}(\zeta(\zeta)) \Delta s \\
+ \frac{1}{\Gamma(\sigma)} \int_{s_i}^{\zeta} (\zeta - s)^{\sigma-1} h_0(s,\omega(s)) \Delta s, \quad \zeta \in (s_i, \zeta_{i+1}] \cap T, i = 1, \ldots, m,
\end{cases}
$$

(26)
where $E_{\sigma}(A_{\sigma}^\alpha)$ stands for the matrix representation of the Mittag-Leffler function.

Definition 5.5 The mixed impulsive system (4) is named as a controllable system on \mathbb{T} if, for every $\omega_0, \omega_T \in \mathbb{T}$, there exists an rd-continuous function $\xi \in \mathcal{L}^2(I, \mathbb{R})$ such that the corresponding solution of (4) satisfies $\omega(0) = \omega_0$ and $\omega(T) = \omega_T$.

Lemma 5.6 If assertions (A) and (W) hold and $\omega_T \in \mathbb{T}$, where $\xi_{i+1} = T$ is any arbitrary point, then ω is the solution of (4) on $\xi \in (s_i, \xi_{i+1}] \cap \mathbb{T}$, defined by (26) along with the control function

$$
\xi(\xi) = \begin{cases}
(T \mathcal{W}_{s_0}^T)^{-1}[\omega_T - E_{\sigma}(A_{\sigma}^\alpha)\omega_0 - \int_{s_0}^{\xi} (\xi - s)^{\alpha - 1}E_{\sigma,\sigma}(A(\xi - s)\sigma)F(\xi, \omega(\xi))\Delta s] \\
\times \mathcal{G}(\xi, \omega(\xi)), \int_{s_0}^{\xi} F_1(s, u, \omega(u))\Delta u, \int_{s_0}^{\xi} F_2(s, u, \omega(u))\Delta u)\Delta s] \\
\xi \in (s_i, s_{i+1}] \cap \mathbb{T}, i = 1, \ldots, m,
\end{cases}
$$

$$
\sigma \in \mathcal{L}^2(I, \mathbb{R}) \text{ such that the corresponding solution of (4) satisfies } \omega(0) = \omega_0 \text{ and } \omega(T) = \omega_T.
$$

where $E_{\sigma}(A_{\sigma}^\alpha)$ stands for the matrix representation of the Mittag-Leffler function and $\omega(T) = \omega_T$ holds, where $\xi_{i+1} = T$. Also, the control function $\xi(\xi)$ has the estimate $\|\xi(\xi)\| \leq \mathcal{N}_{\xi}$, where for $\xi \in (s_i, \xi_{i+1}] \cap \mathbb{T}$, $i = 1, \ldots, m$, we define

$$
\mathcal{N}_{\xi} = \mathcal{N}_{\xi} \left[||\omega_T|| + ||E_{\sigma}(A_{\sigma}^\alpha)\omega_0|| + \frac{1}{1(\alpha)}(s_i - \xi_{i+1})a_1\lambda \omega_0 \Delta s \\
+ a_3 a_2 (L_{G2} \omega_\infty + L_{G1} \omega_\infty) + \frac{1}{1(\sigma)}a_1\lambda \omega_0 \Delta s \\
+ L_{G1} L_{F2} \omega_\infty (s_f - s_0) + \tilde{M}_G(\xi_f - \xi_0) \right].
$$

Proof The proof is similar to that of Lemma 5.3.

Theorem 5.7 The mixed impulsive system (3) is controllable on \mathbb{T} such that hypotheses (A) and (W) are satisfied and the following inequality holds:

$$
\max_{s_i \leq s \leq s_{i+1}} \{Q_i\} < 1.
$$
Proof Let $\Omega'' \subseteq \mathcal{P}$, provided that $\Omega'' = \{(X, Y, Z) \in \mathcal{P} : \|(X, Y, Z)\|_{C} \leq \delta''\}$, where $\delta'' = \max\{\delta', \delta''\}$ such that $\delta'', \delta'' \in (0, 1)$, and also $\delta'' > \delta$. Now, we define $\Lambda'' : \Omega'' \to \Omega''$ as

$$
\Lambda''(\omega(\zeta)) = \begin{cases}
E_{\sigma}(A\zeta)\omega_{0} + \int_{\sigma}^{\Omega} (\zeta - s)^{\sigma-1} E_{\sigma,\sigma}(A(\zeta - s)^{\sigma}) \mathcal{F}(\zeta, \omega(\zeta)) \Delta s \\
+ \int_{\sigma}^{\Omega} E_{\sigma,\sigma}(A(\zeta - s)^{\sigma}) \mathcal{G}(s, \omega(s), \int_{\sigma}^{\Omega} \mathcal{F}_{1}(s, u, \omega(u)) \Delta u, \int_{\sigma}^{\Omega} \mathcal{F}_{2}(s, u, \omega(u)) \Delta u) \Delta s \\
+ \int_{\sigma}^{\Omega} (\zeta - s)^{\sigma-1} E_{\sigma,\sigma}(A(\zeta - s)^{\sigma}) \mathcal{H}(\zeta) \Delta s, \quad \zeta \in (\zeta_{0}, \zeta_{1}],
\end{cases}
$$

(29)

Now, we prove $\Lambda'' : \Omega'' \to \Omega''$ is a self-mapping.

For $\zeta \in (\zeta_{i}, \zeta_{i+1}]$, $i = 1, \ldots, m$, we get

$$
\|\Lambda''(\omega(\zeta))\| \leq \sum_{j=1}^{i} \|\mathcal{E}_{j}(\omega(\zeta_{j}^-))\| + \sum_{j=1}^{i} \|\Phi_{j}(\zeta_{j}^-, \omega(\zeta_{j}^-))\| + \|E_{\sigma}(A\zeta)\omega_{0}\|
$$

$$
+ \int_{\sigma}^{\Omega} \|E_{\sigma,\sigma}(A(\zeta - s)^{\sigma})\| \mathcal{F}(s, \omega(s)) \mathcal{G}(s, \omega(s), \int_{\sigma}^{\Omega} \mathcal{F}_{1}(s, u, \omega(u)) \Delta u, \int_{\sigma}^{\Omega} \mathcal{F}_{2}(s, u, \omega(u)) \Delta u) \Delta s
$$

$$
+ \int_{\sigma}^{\Omega} (\zeta - s)^{\sigma-1} \|E_{\sigma,\sigma}(A(\zeta - s)^{\sigma})\| \mathcal{H}(\zeta) \Delta s
$$

$$
\leq \sum_{j=1}^{i} L_{\omega} \delta'' + \sum_{j=1}^{i} L_{\omega} \delta'' + a_{1} + \delta'' a_{3}(a_{2} L_{\mathcal{F}} + a_{2} L_{\mathcal{G}_{1}} + a_{2} L_{\mathcal{G}_{2}} L_{\mathcal{F}_{1}}(s_{j} - s_{0}) + a_{2} L_{\mathcal{G}_{3}} L_{\mathcal{F}_{2}}(s_{j} - s_{0})) (\zeta_{j} - \zeta_{0})
$$

$$
+ M_{\mathcal{H}} M_{\mathcal{W}} \left[\sum_{j=1}^{i} L_{\omega} \delta'' + \sum_{j=1}^{i} L_{\omega} \delta'' + \|\omega\|_{T} + a_{1}
$$

$$
+ \delta'' a_{3}(a_{2} L_{\mathcal{F}} + a_{2} L_{\mathcal{G}_{1}} + a_{2} L_{\mathcal{G}_{2}} L_{\mathcal{F}_{1}}(s_{j} - s_{0}) + a_{2} L_{\mathcal{G}_{3}} L_{\mathcal{F}_{2}}(s_{j} - s_{0})) (\zeta_{j} - \zeta_{0})
$$

$$
\leq N_{5} + \delta'' Q_{5}
$$

$$
\leq \delta'' + \delta'' Q_{5} = \delta''.
$$

Hence,

$$
\|\Lambda''(\omega(\zeta))\| \leq \delta''.
$$

(30)
Therefore, from (30), $\Lambda''_{\omega}(\Omega'') \subseteq \Omega''$, also when $\xi \in (\xi_i, \xi_{i+1}]$, $i = 1, \ldots, m$, with $\omega_0 = \hat{\omega}_0$, we have

$$\|\Lambda''_\omega(\omega(\xi)) - \Lambda''_\omega(\hat{\omega}(\xi))\|$$

$$\leq \sum_{j=1}^{i} \|\Xi_j(\omega(\xi_j^\prime)) - \Xi_j(\hat{\omega}(\xi_j^\prime))\|$$

$$+ \sum_{j=1}^{i} \|\Phi_j(\xi_j^\prime, \omega(\xi_j^\prime)) - \Phi_j(\xi_j^\prime, \hat{\omega}(\xi_j^\prime))\|$$

$$+ \int_{s_0}^{\xi} \|(\xi - s)^{r-1}\| \|E_{s, \sigma}(A(\xi - s)^r)\| \left\|F(s, \omega(s))\right\|$$

$$+ G\left(s, \omega(s), \int_{s_0}^{\xi} F_1(s, u, \omega(u)) \Delta u, \int_{s_0}^{\xi} F_2(s, u, \omega(u)) \Delta u\right)$$

$$- \left(F(s, \hat{\omega}(s))\right)$$

$$+ G\left(s, \hat{\omega}(s), \int_{s_0}^{\xi} F_1(s, u, \hat{\omega}(u)) \Delta u, \int_{s_0}^{\xi} F_2(s, u, \hat{\omega}(u)) \Delta u\right)$$

$$\Delta s$$

$$+ \int_{s_0}^{\xi} \|(\xi - s)^{r-1}\| \|E_{s, \sigma}(A(\xi - s)^r)\| \|\mathcal{H}\| \left\|\left(\nu \mathcal{W}^{-1}\right)^{-1}\right\| (\xi - s)$$

$$\times \left[\sum_{j=1}^{i} \|\Xi_j(\omega(\xi_j^\prime)) - \Xi_j(\hat{\omega}(\xi_j^\prime))\|$$

$$+ \sum_{j=1}^{i} \|\Phi_j(\xi_j^\prime, \omega(\xi_j^\prime)) - \Phi_j(\xi_j^\prime, \hat{\omega}(\xi_j^\prime))\|$$

$$+ \int_{s_0}^{\xi} \|(\xi - s)^{r-1}\| \|E_{s, \sigma}(A(\xi - s)^r)\| \left\|F(s, \omega(s))\right\|$$

$$+ G\left(s, \omega(s), \int_{s_0}^{\xi} F_1(s, u, \omega(u)) \Delta u, \int_{s_0}^{\xi} F_2(s, u, \omega(u)) \Delta u\right)$$

$$- \left(F(s, \hat{\omega}(s))\right)$$

$$+ G\left(s, \hat{\omega}(s), \int_{s_0}^{\xi} F_1(s, u, \hat{\omega}(u)) \Delta u, \int_{s_0}^{\xi} F_2(s, u, \hat{\omega}(u)) \Delta u\right)$$

$$\Delta s \right\} \Delta \tau$$

$$\leq \sum_{j=1}^{i} L_{\Xi} + \sum_{j=1}^{i} L_{\Phi} + (a_2 L_{\mathcal{F}} + a_2 L_{G_1} + a_2 L_{G_2} L_{F_1}(\xi_f - s_0))$$

$$+ a_2 L_{G_2} L_{F_2}(s_f - s_0)(\xi_f - \xi_0) \times \|\hat{\omega} - \omega\|_\infty$$

$$+ M_{\mathcal{H}} M_{\mathcal{W}}(\xi_f - \xi_0) \left[\sum_{j=1}^{i} L_{\Xi} + \sum_{j=1}^{i} L_{\Phi}\right]$$

$$+ (a_2 L_{\mathcal{F}} + a_2 L_{G_1} + a_2 L_{G_2} L_{F_1}(s_f - s_0))$$

$$+ a_2 L_{G_2} L_{F_2}(s_f - s_0)(\xi_f - \xi_0) \times \|\hat{\omega} - \omega\|_\infty$$
\[\leq (1 + M_1 M_{W}(\xi_j - \xi_0)) \left[\sum_{j=1}^{i} L_\Xi + \sum_{j=1}^{i} L_\Phi \right] \\
+ (a_2 L_F + a_2 L_{G_1} + a_2 L_{G_2} L_{F_1}(s_j - s_0)) \\
+ a_2 L_{G_1} L_{F_2}(s_j - s_0))(\xi_j - \xi_0) \times \|\tilde{\omega} - \omega\|_{\infty}. \]

Hence

\[\|\Lambda^\omega_o(\omega(\xi)) - \Lambda^\omega_o(\tilde{\omega}(\xi))\| \leq QT\|\tilde{\omega} - \omega\|_{\infty}. \] (31)

Therefore, the operator \(\Lambda^\omega_o\) is strictly contractive. Therefore, by using the Banach fixed point theorem method, \(\Lambda^\omega_o\) has only one fixed point, i.e., the mixed impulsive system (3) has a unique solution. Also, using Lemma 5.3, we conclude that \(\omega(\xi)\) fulfills \(\omega(T) = \omega_T\). Consequently, we conclude that the mixed impulsive system (3) is controllable. \(\square\)

One can indicate a similar theorem for the mixed impulsive system (4).

Theorem 5.8 The mixed impulsive system (4) is controllable on \(\mathbb{T}\) such that hypotheses (A) and (W) are satisfied and the following inequality holds:

\[\max\{|Q_i| < 1 \} \text{ where } i = 6, 8. \] (32)

Proof Let \(\Omega'' \subseteq PS\), provided that \(\Omega'' = \{\chi, \Upsilon, \Xi, \Theta, \Omega\} \in PS: \|\chi, \Upsilon, \Xi, \Theta, \Omega\|_{\text{C}} \leq \delta_2\}, \) where \(\delta_2 = \max\{\delta', \delta''\} \) such that \(\delta', \delta'' \in (0, 1)\), and also \(\delta'' > \{N_6\}. \) Now, we define \(\Lambda^\ast_{\sigma^*}: \Omega'' \rightarrow \Omega''\) as

\[
\Lambda^\ast_{\sigma^*}(\omega(\xi)) = \begin{cases}
E_\sigma(A(\xi)^\sigma)\omega_0 + \int_{s_0}^{\xi} (\xi - s)^{\sigma-1} E_{\sigma, \sigma}(A(\xi - s)^\sigma) F(\xi, \omega(\xi)) \Delta s \\
+ \int_{s_0}^{\xi} (\xi - s)^{\sigma-1} E_{\sigma, \sigma}(A(\xi - s)^\sigma) \times G(s, \omega(s), \int_{s_0}^{s} F_1(s, u, \omega(u)) \Delta u, \int_{s_0}^{s} F_2(s, u, \omega(u)) \Delta u) \Delta s, \\
+ \int_{s_0}^{\xi} (\xi - s)^{\sigma-1} E_{\sigma, \sigma}(A(\xi - s)^\sigma) \mathcal{H}(\zeta(s)) \Delta s, \\
\xi \in (s_i, s_{i+1}] \cap \mathbb{T}, i = 1, \ldots, m, \\
E_\sigma(A(\xi)^\sigma)\omega_0 + \int_{s_0}^{\xi} (\xi - s)^{\sigma-1} E_{\sigma, \sigma}(A(\xi - s)^\sigma) F(\xi, \omega(\xi)) \Delta s \\
+ \int_{s_0}^{\xi} (\xi - s)^{\sigma-1} E_{\sigma, \sigma}(A(\xi - s)^\sigma) \times G(s, \omega(s), \int_{s_0}^{s} F_1(s, u, \omega(u)) \Delta u, \int_{s_0}^{s} F_2(s, u, \omega(u)) \Delta u) \Delta s, \\
+ \int_{s_0}^{\xi} (\xi - s)^{\sigma-1} E_{\sigma, \sigma}(A(\xi - s)^\sigma) \mathcal{H}(\zeta(s)) \Delta s, \\
\xi \in (s_i, s_{i+1}] \cap \mathbb{T}, i = 1, \ldots, m,
\end{cases}
\] (33)

where \(E_\sigma(A(\xi)^\sigma)\) stands for the matrix representation of the Mittag-Leffler function. Now, we prove \(\Lambda^\ast_{\sigma^*}: \Omega'' \rightarrow \Omega''\) is a self-mapping.

For \(\xi \in (s_i, s_{i+1}] \cap \mathbb{T}, i = 1, \ldots, m\), we have

\[
\|\Lambda^\ast_{\sigma^*}(\omega(\xi))\| \leq \frac{1}{\Gamma(\sigma)} \int_{s_i}^{s} \|\xi - s\|^{\sigma-1}\|h_\epsilon(s, \omega(s))\| \Delta s + \|E_\sigma(A(\xi)^\sigma)\omega_0\| \\
+ \int_{s_0}^{\xi} \|\xi - s\|^{\sigma-1}\|E_{\sigma, \sigma}(A(\xi - s)^\sigma)\| \|F(s, \omega(s))\|
\]
Pervaiz et al. Advances in Difference Equations (2021) 2021:491
Page 32 of 36

\[
+ \mathcal{G}\left(s, \omega(s), \int_{\sigma_0}^{\sigma} F_1(s, u, \omega(u)) \Delta u, \int_{\sigma_0}^{\sigma} F_2(s, u, \omega(u)) \Delta u\right) \Biggr) \parallel \Delta s \\
+ \int_{\sigma_0}^{\sigma} \parallel (\xi - s)^{\sigma-1} || E_{\sigma, \tau}(A(\xi - s)^{\sigma}) \parallel \mathcal{H} \parallel \xi(s) \parallel \Delta s
\]

\[
\leq \frac{1}{\Gamma(\sigma)} a_3 L_{x}\delta(s_i - \xi_i) + a_1 \\
+ a_3 (\delta'' a_2 L_{F_1} + \delta'' a_2 L_{G} + \delta'' a_2 L_{G} L_{F_1}(s_f - s_0)) \\
+ \delta'' a_2 L_{G} L_{F_2}(s_f - s_0) \times (\xi_f - \xi_0) \\
+ M_{H} M_{W}^\sigma \left[\frac{1}{\Gamma(\sigma)} a_3 L_{x}\delta''(s_i - \xi_i) + a_1 + \parallel \omega \parallel_{\infty} \right] \\
+ \delta'' a_3 (a_2 L_{F_1} + a_2 L_{G} + a_2 L_{G} L_{F_1}(s_f - s_0)) \\
+ a_2 L_{G} L_{F_2}(s_f - s_0) \times (\xi_f - \xi_0) \right]
\]

\[
\leq N_6 + \delta'' Q_6 \leq \delta'' + \delta'' Q_6 = \delta''_1.
\]

Hence,

\[
\parallel \Lambda_{\sigma}^{**}(\omega(\xi)) \parallel \leq \delta''_2.
\]

Therefore, from (34), \(\Lambda_{\sigma}^{**}(\Omega^{**}) \subseteq \Omega^{**} \). Also, for \(\xi \in (s_i, s_{i+1}] \cap T, i = 1, \ldots, m \), with \(\omega_0 = \tilde{\omega}_0 \), we have

\[
\parallel \Lambda_{\sigma}^{**}(\omega(\xi)) - \Lambda_{\sigma}^{**}(\tilde{\omega}(\xi)) \parallel
\]

\[
\leq \left[\frac{1}{\Gamma(\sigma)} a_3 L_{x}\delta(s_i - \xi_i) + a_3 (a_2 L_{F_1} + a_2 L_{G} \\
+ a_2 L_{G} L_{F_1}(s_f - s_0) + a_2 L_{G} L_{F_2}(s_f - s_0)) \times (\xi_f - \xi_0) \right] \parallel \tilde{\omega} - \omega \parallel_{\infty} \\
+ M_{H} M_{W}^\sigma(\xi - \xi_0) \left[\frac{1}{\Gamma(\sigma)} a_3 L_{x}\delta(s_i - \xi_i) + a_3 (a_2 L_{F_1} + a_2 L_{G} \\
+ a_2 L_{G} L_{F_1}(s_f - s_0) + a_2 L_{G} L_{F_2}(s_f - s_0)) \times (\xi_f - \xi_0) \right] \parallel \tilde{\omega} - \omega \parallel_{\infty} \\
\leq (1 + M_{H} M_{W}^\sigma(\xi - \xi_0)) \left[\frac{1}{\Gamma(\sigma)} a_3 L_{x}\delta(s_i - \xi_i) + a_3 (a_2 L_{F_1} + a_2 L_{G} \\
+ a_2 L_{G} L_{F_1}(s_f - s_0) + a_2 L_{G} L_{F_2}(s_f - s_0)) \times (\xi_f - \xi_0) \right] \parallel \tilde{\omega} - \omega \parallel_{\infty}.
\]

Hence

\[
\parallel \Lambda_{\sigma}^{**}(\omega(\xi)) - \Lambda_{\sigma}^{**}(\tilde{\omega}(\xi)) \parallel \leq Q_8 \parallel \tilde{\omega} - \omega \parallel_{\infty}.
\]

Therefore, the operator \(\Lambda_{\sigma}^{**} \) is strictly contractive. Thus, using the Banach fixed point theorem method, \(\Lambda_{\sigma}^{**} \) has a unique fixed point, which is the unique solution of the mixed impulsive system (4). Also, using Lemma 5.6, we conclude that \(\omega(\xi) \) fulfills \(\omega(T) = \omega_T \). Consequently, the mixed impulsive system (4) is controllable.

\[\square\]
6 Illustrative example

The last part of the manuscript is devoted to examining our results established in the previous steps.

Example 6.1 Consider the following mixed impulsive system:

\[
\begin{cases}
\hat{c}^\hat{D}^\tau \omega(\varsigma) = \frac{2}{\varsigma - 1} \omega(\varsigma) + \frac{2}{\varsigma + 1} U(\varsigma) + \epsilon_\sigma(\varsigma, \chi(\omega(\varsigma))) + \int_0^\tau E_{\sigma, \beta}(\omega) \Delta s + \Upsilon(\varsigma), \\
\omega(0) = 1, \quad \varsigma \in [0, 3] \setminus [1, 1.2], \\
\omega(\varsigma_k) = \Xi(\omega(\varsigma_k)) + \Gamma_k(\varsigma_k, \omega(\varsigma_k), U(\varsigma_k)), \quad k = 1, 2,
\end{cases}
\]

(36)

and its relevant inequality

\[
\begin{cases}
\hat{c}^\hat{D}^\tau \tilde{\omega}(\varsigma) = \frac{2}{\varsigma - 1} \tilde{\omega}(\varsigma) - \frac{2}{\varsigma + 1} U(\varsigma) \\
- \epsilon_\sigma(\varsigma, \chi(\tilde{\omega}(\varsigma))) - \int_0^\tau E_{\sigma, \beta}(\tilde{\omega}) \Delta s - \Upsilon(\varsigma) \leq 1, \\
\varsigma \in [0, 3] \setminus [1, 1.2], \\
|\Delta \tilde{\omega}(\varsigma_k) - \Xi(\tilde{\omega}(\varsigma_k)) - \Gamma_k(\varsigma_k, \tilde{\omega}(\varsigma_k))| \leq 1, \quad k = 1, 2.
\end{cases}
\]

(37)

We set \(T^k = [0, 3] \setminus [1, 1.2], \varsigma_1 = 1, \varsigma_2 = 1.2, \Xi(\varsigma) = \frac{2}{\varsigma - 1}, \) and \(\Upsilon(\varsigma) = \frac{2}{\varsigma + 1}, E_{\sigma, \beta}(\omega) = \sum_{k=0}^\infty \sigma^k \) for \(\sigma, \beta > 0. \) In addition, we set

\[
F(\varsigma, \omega(\varsigma), I_\omega(\varsigma), U(\varsigma)) = \epsilon_\sigma(\varsigma, \chi(\omega(\varsigma))) + \int_0^\tau E_{\sigma, \beta}(\omega) \Delta s + \Upsilon(\varsigma),
\]

where \(I_\omega(\varsigma) = \int_0^\tau E_{\sigma, \beta}(\omega) \Delta s \) and \(\Upsilon(\varsigma) \) is a control map for \(\varsigma \in T^k \) and substitute \(\epsilon = 1. \) Let \(\tilde{\omega} \in PC^1([0, 2]_T, \mathbb{R}) \) fulfill (37), then there exists \(h \in PC^1([0, 2]_T, \mathbb{R}) \) with \(h_0 \in \mathbb{R} \) such that \(|h(\varsigma)| \leq 1 \forall \varsigma \in T^k \) and \(|h_0| \leq 1, \) and so (37) implies that

\[
\begin{cases}
\hat{c}^\hat{D}^\tau \tilde{\omega}(\varsigma) = \frac{2}{\varsigma - 1} \tilde{\omega}(\varsigma) + \frac{2}{\varsigma + 1} U(\varsigma) + \epsilon_\sigma(\varsigma, \chi(\tilde{\omega}(\varsigma))) \\
+ \int_0^\tau E_{\sigma, \beta}(\tilde{\omega}) \Delta s + \Upsilon(\varsigma) + h(\varsigma), \quad \varsigma \in T^k, \\
\tilde{\omega}(\varsigma_k) = \Xi(\tilde{\omega}(\varsigma_k)) - \Gamma_k(\varsigma_k, \tilde{\omega}(\varsigma_k), U(\varsigma_k)) + h_0, \quad k = 1, 2.
\end{cases}
\]

So the solution of (36) is

\[
\omega(\varsigma) = \Xi(\omega(\varsigma_1)) + \Xi(\omega(\varsigma_2)) + \Gamma_1(\varsigma_1, \omega(\varsigma_1), U(\varsigma_1)) + \Gamma_2(\varsigma_2, \omega(\varsigma_2), U(\varsigma_2)) + \int_0^\tau \epsilon_\sigma(s, \chi(s))(\epsilon_\sigma(s, \chi(s))) + \int_0^\tau E_{\sigma, \beta}(\omega) \Delta u + \Upsilon(s) \Delta s.
\]

By our obtained results, the mixed impulsive system (36) has only one solution in \(PC^1([0, 2]_T, \mathbb{R}) \) and is UH stable on \(T^k. \)

7 Conclusion

In this article, we conducted our research on some mixed integral dynamic systems with impulsive effects on times scales in the fractional settings. We studied the existence and uniqueness successfully using a fixed point method for the considered systems. We established our results by using the Leray–Schauder and Banach fixed point theorems in this
regard. In the next step, Ulam–Hyers stability and a generalized version of it were proved for the mentioned mixed impulsive systems. After that, we investigated the controllability property for the aforesaid systems. Lastly, an illustrative example was proposed to examine the results established in the previous sections. For future projects, the main aim of the authors is that these qualitative specifications can be checked and established on some real-world impulsive systems arising in mathematical models of brain.

Acknowledgements
The third and fourth authors were supported by Azarbaijan Shahid Madani University. We would like to thank the dear reviewers for giving constructive and useful comments to improve the final version of this paper.

Funding
Not applicable.

Availability of data and materials
Data sharing not applicable to this article as no datasets were generated or analyzed during the current study.

Declarations

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
The authors declare that the study was realized in collaboration with equal responsibility. All authors read and approved the final manuscript.

Author details
1 Department of Mathematics, University of Peshawar, Peshawar 25000, Pakistan. 2 Department of Mathematics, Azarbaijan Shahid Madani University, Tabriz, Iran. 3 Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Received: 29 August 2021 Accepted: 27 October 2021 Published online: 13 November 2021

References
1. Baleanu, D., Machado, J.A.T., Luo, A.C.J.: Fractional Dynamics and Control. Springer, New York (2012). https://doi.org/10.1007/978-1-4614-0457-6
2. Podlubny, I.: Fractional Differential Equations. Academic Press, New York (1999)
3. Rizwan, R., Zada, A.: Nonlinear impulsive Langevin equation with mixed derivatives. Math. Methods Appl. Sci. 43(1), 427–442 (2020). https://doi.org/10.1002/mma.5902
4. Karapinar, E., Fulga, A., Rashid, M., Shahid, L., Aydi, H.: Large contractions on quasi-metric spaces with an application to nonlinear fractional differential equations. Mathematics 7(5), 444 (2019). https://doi.org/10.3390/math705444
5. Hamani, S., Benhamid, W., Henderson, J.: Boundary value problems for Caputo–Hadamard fractional differential equations. Adv. Theory Nonlinear Anal. Appl. 2(3), 138–145 (2018). https://doi.org/10.31197/atnaa.419517
6. Matar, M.M., Abbas, M.I., Alzabut, J., Kaabar, M.K.A., Etemad, S., Rezapour, S.: Investigation of the p-Laplacian nonperiodic nonlinear boundary value problem via generalized Caputo fractional derivatives. Adv. Differ. Equ. 2021, 68 (2021). https://doi.org/10.1186/s13662-021-05228-9
7. Thabet, S.T.M., Etemad, S., Rezapour, S.: On a coupled Caputo conformable system of pantograph problems. Turk. J. Math. 45, 496–519 (2021). https://doi.org/10.3906/mat-2010-70
8. Rezapour, S., Imran, A., Hussain, A., Martinez, F., Etemad, S., Kaabar, M.K.A.: Condensing functions and approximate endpoint criterion for the existence analysis of quantum integro-difference FBVPs. Symmetry 13(3), 469 (2021). https://doi.org/10.3390/sym13030469
9. Rezapour, S., Mohammadi, H., Jajarmi, A.: A new mathematical model for Zika virus transmission. Adv. Differ. Equ. 2020, 589 (2020). https://doi.org/10.1186/s13662-020-03044-7
10. Baleanu, D., Rezapour, S., Saberpour, Z.: On fractional integro-differential inclusions via the extended fractional Caputo–Fabrizio derivation. Bound. Value Probl. 2019, 79 (2019). https://doi.org/10.1186/s13661-019-1194-0
11. Rezapour, S., Ahmad, B., Etemad, S.: On the new fractional configurations of integro-differential Langevin boundary value problems. Alex. Eng. J. 60, 4865–4873 (2021). https://doi.org/10.1016/j.aej.2021.03.070
41. Bota, M.F., Karapinar, E., Mlesnite, O.: Ulam-Hyers stability results for fixed point problems via α-metricspace. Adv. Difference Equations 2017, 145 (2017). https://doi.org/10.1186/s13662-017-0867-9

40. Hassan, A.M., Karapinar, E., Alsulami, H.H.: Ulam–Hyers stability for MKC mappings via fixed point theory. J. Funct. Spaces 2020, 38 (2020). https://doi.org/10.1155/2020/04053

39. Alsulami, H.H., Gulyaz, S., Karapinar, E., Erhan, I.M.: An Ulam stability result on quasi-ψ-contractive mapping in $(0,\infty)$-metric space. Abstr. Appl. Anal. 2013, 825293 (2013). https://doi.org/10.1155/2013/825293

38. Adiguzel, R.S., Aksoy, U., Karapinar, E., Erhan, I.M.: On the solutions of fractional differential equations via Geraghty type hybrid contractions. Appl. Comput. Math. Int. J. 20(2), 313–333 (2021)

37. Adiguzel, R.S., Aksoy, U., Karapinar, E., Erhan, I.M.: On the solutions of fractional differential equations via Geraghty type hybrid contractions. Appl. Comput. Math. Int. J. 20(2), 313–333 (2021)

36. Shojaat, H., Afshari, H., Asgari, M.S.: A new class of mixed monotone operators with concavity and applications to fractional differential equation. TWMS J. Appl. Eng. Math. 11, 122–133 (2021)

35. Afshari, H., Kalantari, S., Karapinar, E.: Solution of fractional differential equations via coupled fixed point. Electron. J. Differ. Equ. 2015, 286 (2015)

34. Afshari, H., Shojaat, H., Moradi, M.S.: Existence of the positive solutions for a tripled system of fractional differential equations via integral boundary conditions. Results Nonlinear Anal. 4, 186–199 (2021). https://doi.org/10.1016/j.rna.2019.01.014

33. Nenov, S.I.: Impulsive controllability and optimization problems in population dynamics. Nonlinear Anal., Theory Methods Appl. 36(7), 881–890 (1999). https://doi.org/10.1016/S0362-546X(99)00276-6

32. Bainov, D.D., Simenov, P.S.: System with impulse effect. Stability, Theory and Applications. Ellis Horwood, Chichester (1989)

31. Ulam, S.M.: A Collection of Mathematical Problems. Interscience, New York (1968)

30. Zada, A., Shaleena, S., Li, T.: Stability analysis of higher order nonlinear differential equations in b-metric space. Adv. Difference Equ. 2020, 64 (2020). https://doi.org/10.1186/s13662-020-02544-w

29. Ali, Z., Kumam, P., Shah, K., Zada, A.: Investigation of Ulam stability results of a coupled system of nonlinear implicit fractional differential equations. Mathematics 7(4), 341 (2019). https://doi.org/10.3390/math7040341

28. Wang, J., Shah, K., Ali, A.: Existence and Hyers–Ulam stability of fractional non-linear impulsive switched coupled evolution equations. Math. Methods Appl. Sci. 41(6), 2392–2402 (2018). https://doi.org/10.1002/mma.4748

27. Wang, J., Shah, K., Ali, A.: Existence and Hyers–Ulam stability via β-metricspace. Abstr. Appl. Anal. 2013, 9623597 (2016). https://doi.org/10.1155/2016/9623597

26. Rizwan, R.: Existence theory and stability analysis of fractional Langevin equation. Int. J. Nonlinear Sci. Numer. Simul. 20(7–8), 833–848 (2019). https://doi.org/10.1515/ijnsns-2019-0053

25. Rota, M.F., Karapinar, E., Mlesnite, O.: Ulam-Hyers stability results for fixed point problems via ϕ-ψ-contractive mapping in $(0,\infty)$-metric space. Abstr. Appl. Anal. 2013, 825293 (2013). https://doi.org/10.1155/2013/825293

24. Hyers, D.H.: On the stability of the linear functional equation. Proc. Natl. Acad. Sci. USA 27(4), 222–224 (1941). https://doi.org/10.1073/pnas.27.4.222

23. Ulam, S.M.: A Collection of Mathematical Problems. Interscience, New York (1968)

22. Baleanu, D., Jajarmi, A., Mohammadi, H., Rezapour, S.: A new study on the mathematical modelling of human liver with Caputo–Fabrizio fractional derivative. Chaos Solitons Fractals 134, 109705 (2020). https://doi.org/10.1016/j.chaos.2020.109705

21. Baleanu, D., Jajarmi, A., Mohammadi, H., Rezapour, S.: A new study on the mathematical modelling of human liver with Caputo–Fabrizio fractional derivative. Chaos Solitons Fractals 134, 109705 (2020). https://doi.org/10.1016/j.chaos.2020.109705

20. Baleanu, D., Jajarmi, A., Mohammadi, H., Rezapour, S.: A new study on the mathematical modelling of human liver with Caputo–Fabrizio fractional derivative. Chaos Solitons Fractals 134, 109705 (2020). https://doi.org/10.1016/j.chaos.2020.109705

19. Baleanu, D., Mohammadi, H., Rezapour, S.: Analysis of the model of HIV-1 infection of CD4+ T-cell with a new approach of fractional derivative. Adv. Differ. Equ. 2020, 71 (2020). https://doi.org/10.1186/s13662-020-02544-w

18. Abdeljawad, T., Agarwal, R.P., Karapinar, E., Kumari, P.S.: Solutions of the nonlinear integral equation and fractional differential equation using the technique of a fixed point with a numerical experiment in extended b-metric space. Symmetry 11(5), 686 (2019). https://doi.org/10.3390/sym11050686

17. Afshari, H., Kalantari, S., Karapinar, E.: Solution of fractional differential equations via coupled fixed point. Electron. J. Differ. Equ. 2015, 286 (2015)

16. Rezapour, S., Samei, M.E.: On the existence of solutions for some infinite co-efficient-symmetric fractional differential equation. TWMS J. Appl. Eng. Math. 2015, 9623597(2016). https://doi.org/10.1155/2016/9623597

15. Afshari, H., Kalantari, S., Karapinar, E.: Solution of fractional differential equations via coupled fixed point. Electron. J. Differ. Equ. 2015, 286 (2015)

14. Baleanu, D., Mousalou, A., Rezapour, S.: On the existence of solutions for some infinite coefficient-symmetric Caputo–Fabrizio fractional integro-differential equations. Bound. Value Probl. 2018, 90 (2018). https://doi.org/10.1186/s13661-018-1008-9

13. Aydogan, M.S., Baleanu, D., Mousalou, A., Rezapour, S.: On high order fractional integro-differential equations including the Caputo–Fabrizio derivative. Bound. Value Probl. 2018, 90 (2018). https://doi.org/10.1186/s13661-018-1008-9

12. Adiguzel, R.S., Aksoy, U., Karapinar, E., Erhan, I.M.: Uniqueness of solution for higher-order nonlinear fractional differential equations with multi-point and integral boundary conditions. Rev. R. Acad. Cien. Exactas Fis. Nat., Ser. A Mat. 115, 155 (2021). https://doi.org/10.1007/s13398-021-01095-3
44. Hilger, S.: Analysis on measure chains: a unified approach to continuous and discrete calculus. Results Math. 18, 18–56 (1990). https://doi.org/10.1007/BF03323153
45. Andras, S., Meszaros, A.R.: Ulam–Hyers stability of dynamic equations on time scales via Picard operators. Appl. Math. Comput. 219(9), 4853–4864 (2013). https://doi.org/10.1016/j.amc.2012.10.115
46. Dachunha, J.J.: Stability for time varying linear dynamic systems on time scales. J. Comput. Appl. Math. 176(2), 381–410 (2005). https://doi.org/10.1016/j.cam.2004.07.026
47. Shah, S.O., Zada, A.: Stability analysis of the first order non-linear impulsive time varying delay dynamic system on time scales. Qual. Theory Dyn. Syst. 18, 825–840 (2019). https://doi.org/10.1007/s12346-019-00315-x
48. Shah, S.O., Zada, A.: Existence, uniqueness and stability of solution to mixed integral dynamic systems with instantaneous and noninstantaneous impulses on time scales. Appl. Math. Comput. 359, 202–213 (2019). https://doi.org/10.1016/j.amc.2019.04.044
49. Lupulescu, V., Zada, A.: Linear impulsive dynamic systems on time scales. Electron. J. Qual. Theory Differ. Equ. 2010, 11 (2010). https://doi.org/10.14232/ejqtde.2010.1.11
50. Younus, A., O’Regan, D., Yasmin, N., Mirza, S.: Stability criteria for nonlinear Volterra integro-dynamic systems. Appl. Math. Inf. Sci. 11(S), 1509–1517 (2017). https://doi.org/10.18576/amis/110530
51. Zada, A., Shah, S.O., Li, Y.: Hyers–Ulam stability of nonlinear impulsive Volterra integro-delay dynamic system on time scales. J. Nonlinear Sci. Appl. 10(11), 5701–5711 (2017). https://doi.org/10.22436/jnsa.010.11.08
52. Kumar, A., Muslim, M., Sakthivel, R.: Controllability of second-order nonlinear differential equations with non-instantaneous impulses. J. Dyn. Control Syst. 24, 325–342 (2018). https://doi.org/10.1007/s10883-017-9376-5
53. Muslim, M., Kumar, A., Sakthivel, R.: Exact and trajectory controllability of second-order evolution systems with impulses and deviated arguments. Math. Methods Appl. Sci. 41(11), 4259–4272 (2018). https://doi.org/10.1002/mma.4888
54. Bohner, M., Wintz, N.: Controllability and observability of time-invariant linear dynamic systems. Math. Bohem. 137(2), 149–163 (2012). https://doi.org/10.21136/MB.2012.142861
55. Davis, J.M., Gravagne, I.A., Jackson, B.J., Marks II, R.J.: Controllability, observability, realizability, and stability of dynamic linear systems. Electron. J. Differ. Equ. 2009, 37 (2009)
56. Zada, A., Pervaiz, B., Shah, S.O., Xu, J.: Stability analysis of first-order impulsive nonautonomous system on timescales. Math. Methods Appl. Sci. 43(8), 5097–5113 (2020). https://doi.org/10.1002/mma.6253
57. Bohner, M., Peterson, A.: Dynamic Equations on Time Scales: An Introduction with Applications. Birkhäuser, Boston (2001)
58. Ahmadkhani, A., Jahanshahi, M.: On the existence and uniqueness of solution of initial value problem for fractional order differential equations on time scales. Bull. Iran. Math. Soc. 38(1), 241–252 (2012)
59. Balachandran, K., Park, J.Y., Trujillo, J.J.: Controllability of nonlinear fractional dynamical systems. Nonlinear Anal., Theory Methods Appl. 75(4), 1919–1926 (2012). https://doi.org/10.1016/j.na.2011.09.042