A 50/50 electronic beam splitter in graphene nanoribbons as a building block for electron optics

Leandro R F Lima¹, Alexis R Hernández², Felipe A Pinheiro² and Caio Lewenkopf¹

¹ Instituto de Física, Universidade Federal Fluminense, 24210-346 Niterói, RJ, Brazil
² Instituto de Física, Universidade Federal do Rio de Janeiro, Caixa Postal 68528, Rio de Janeiro 21941-972, RJ, Brazil

E-mail: leandrolima@if.uff.br, alexis@if.ufrj.br, fpinheiro@if.ufrj.br and caio@if.uff.br

Received 16 August 2016, revised 27 September 2016
Accepted for publication 29 September 2016
Published 21 October 2016

Abstract

Based on the investigation of the multi-terminal conductance of a system composed of two graphene nanoribbons, in which one is on top of the other and rotated by 60°, we propose a setup for a 50/50 electronic beam splitter that neither requires large magnetic fields nor ultra low temperatures. Our findings are based on an atomistic tight-binding description of the system and on the Green function method to compute the Landauer conductance. We demonstrate that this system acts as a perfect 50/50 electronic beam splitter, in which its operation can be switched on and off by varying the doping (Fermi energy). We show that this device is robust against thermal fluctuations and long range disorder, as zigzag valley chiral states of the nanoribbons are protected against backscattering. We suggest that the proposed device can be applied as the fundamental element of the Hong–Ou–Mandel interferometer, as well as a building block of many devices in electron optics.

Keywords: valleytronics, graphene, bilayer, beam splitter

(Some figures may appear in colour only in the online journal)
engineer electronic chiral states. Two-dimensional topological insulators that support symmetry protected chiral states [21, 22] have been proposed as suitable candidates, although the robust character of their edge states can be experimentally elusive [23, 24].

Among the materials exhibiting topological effects that support protected chiral states, graphene is one of the most versatile and useful for practical applications [25]. Of particular interest are graphene bilayers, which can exhibit interesting topological effects that have been proposed to give rise to a so-called valley Hall effect [26], that in monolayer graphene can be achieved by means of lattice deformations [27, 28]. Recently, two experimental groups [29, 30] succeeded in demonstrating that by changing the Berry curvature [27, 28]. Recently, two experimental groups [29, 30] succeeded in demonstrating that by changing the Berry curvature [27, 28].

We adapt these ideas in a setup of two ‘crossed’ graphene nanoribbons (GNRs), forming a four-terminal device, namely, a graphene bilayer central region coupled to four zigzag graphene leads. Those are possible to synthesize due to advances in bottom-up nanofabrication techniques, such as longitudinal unzipping of carbon nanotubes [31] and the assembling of carbon-based molecules [32, 33], that have allowed the production of GNRs with high-quality crystallographic edges. As a result, the state-of-the-art nanofabrication technology can make possible experiments involving topological states in GNRs, many of them analogous to the ones conducted in quantum Hall systems [3–11] without the application of high magnetic fields.

In this paper we put forward a proposal for a 50/50 electronic beam splitter based on two GNRs, one on top of the other forming a four-terminal device as presented in what follows, as depicted in figure 1. We investigate the electronic transport in this system by means of a microscopic model based on the tight-binding approximation and the Landauer conductance formula. We demonstrate that it can be applied as a perfect 50/50 electronic beam splitter, in which its operation can be switched on and off by varying the electron doping. We show that this device is robust against thermal fluctuations and long range disorder, since zigzag valley dependent chiral modes of the nanoribbons are protected against back-scattering [34–36]. We suggest that the proposed device can be applied as the fundamental element of the electronic analog [37] of the Hong–Ou–Mandel interferometer [38], as well as a building block of many devices in electron optics.

This paper is organized as follows. In section 2 we put forward our model system and present the theoretical tools employed in the electronic transport analysis. In section 3 we present the results for the conductance and the Hong–Ou–Mandel interferometer. We present our conclusions in section 4.

2. Model and theory

The model system we propose is composed of one zigzag GNR along the ‘horizontal’ direction placed underneath another zigzag GNR, tilted by 60°, as depicted in figure 1. The relative position and separation between the ribbon planes is such that the atoms at their intersection interact as in bilayer graphene with an AB- or AA-like stacking.

In graphene, p_z orbitals of neighboring carbon atoms hybridize to allow for electronic conduction. The electronic model Hamiltonian of such a system reads

$$
H = -t \sum_{\langle i,j \rangle} \left(a_i^\dagger b_{m,j}^\dagger + \text{H.c.} \right) + \sum_{m=1,2} \left(\epsilon_m^A a_i^\dagger b_m + \epsilon_m^B b_j^\dagger a_m + V \right) - t_4 \sum_{\langle i,j \rangle} \left(a_i^\dagger b_{2,j}^\dagger + \text{H.c.} \right),
$$

where $a_{m,i}$ and $b_{m,i}$ are the creation and annihilation operators of the electrons at the ith site of the sublattice $A(B)$. The index m labels the top ($m = 1$) and the bottom ($m = 2$) nanoribbons, whereas $\langle \ldots \rangle$ restricts the summations to intra- or interplane first neighbors sites. The first term accounts for the electronic hopping between nearest neighbors sites in the same plane with an intra-plane hopping integral $t = 2.7 \text{eV}$. The second term includes the onsite energies of the j-site in the plane m on the sublattice A (ϵ_m^A) or B (ϵ_m^B). We study cases where an external electric field is applied in the central region, defined as the intersection between ribbons (see figure 1), so that the potential energy in the ribbon planes is constant, $\epsilon_m^{AB} = -\epsilon_m^B = V/2$. The interplane potential difference V can be used as a handle to control the transport properties of the central region as it will be shown in the following. Finally, the last term accounts for the interplane hopping with hopping amplitude $t_4 = 0.4 \text{eV}$ [25].

We use the Landauer approach suited for mesoscopic quantum coherent conductors to calculate the transport properties of the four-terminal system depicted in figure 1. We assume that the central region, indicated by the shaded area in...
Let us now show that by tuning the doping (Fermi energy) and the external electric field on the central region, the system introduced in section 2 can be used to generate a 50/50 electronic beam splitter. Next, we discuss its application as a Hong–Ou–Mandel electron interferometer.

Figure 2 shows the transmission coefficients of electrons injected from the left arm of our model system (see figure 1) for electronic energies close to the charge neutrality point. The panel (a) shows the values of T_{BL}, T_{RL} and T_{TL} for $V = \pm 0.1 \, eV$. Figure 2 reveals that, for a wide energy range, the transmission is almost evenly distributed between the right and bottom arms. This is a result of the valley dependent chiral nature of the modes participating in the electronic transport in the zigzag GNRs. By setting $E \approx 0.24 \, eV$, transmission in the top arm vanishes and the probability of transmission in both right and bottom arms is 0.5, as can be seen in figure 2(b). In this regime the system works as a 50/50 electronic beam splitter where the voltage V plays the role of a switch on/off external parameter. Experimentally, the voltage V can be controlled by an external electric field and the Fermi energy E or the doping is controlled by gate voltages. By tuning E and V, one can optimize the system operation parameters. Thermal fluctuations, due to temperatures up to 300 K, do not affect the transport suppression to the top arm. Indeed, they hardly affect the transmission ratio between right and bottom contacts, which may reach values lesser than 60/40, as it can be seen in figure 2(b).

In addition, we have verified that if one injects electrons into the top arm T, the transmission follows the same trend of figure 2, where electrons are injected in the left arm, provided we set the same values for the potential $V = \pm 0.1 \, eV$ and the Fermi energy $E \approx 0.24 \, eV$. In this case, transmission from the top arm to the left one is $T_{TL} = 0$; transmission from the top arm to the right one is $T_{TR} = 0.5$; and transmission from the top arm to the bottom one is $T_{BT} = 0.5$.

Figure 3 schematically shows the electronic propagation upon injection from both left and top arms. Hence, we have shown that by properly tuning the voltage V and the Fermi energy E, the system under investigation acts as a 50/50 electronic beam splitter, which is a key element in many applications in electron optics.

This behavior can be understood as follows: in our proposal the crystallographic zigzag edges guarantee that the low energy pair of valley states in each nanoribbon propagate in opposite directions [34–36]. The central region composed by an AB-stacked bilayer graphene provides interplane scattering that preserves the valley index over a wide energy range. In diffusive systems it is standard to use topological arguments: since the system geometry does not have inversion symmetry, the external perpendicular electric field gives rise to a local

![Figure 2](image-url)
For polarization components. Therefore, scattering in the central region with $V_0 = 0$. The shaded areas in gray show the energy windows where valley chirality is preserved. The yellow area corresponds to states with mixed valley chirality. See text.

Figure 3. Schematic electronic propagation in the 50/50 beam splitter regime and low energy bandstructures of the zigzag GNR and bilayer graphene. Electrons injected from the left L (a) or from the top arm T (b) can only propagate to bottom B and right R arms. No propagation between left L and top T arms is allowed. (c) Sketch of the band structures of the injection zigzag GNR and the bilayer central region with AB stacking for $V = 0$. The shaded areas in gray show the energy windows where valley chirality is preserved. The yellow area corresponds to states with mixed valley chirality. See text.

(massive) Dirac band structure with two valleys characterized by a non-zero Berry curvature with opposite signs (we note that in experiments [29, 30], inversion symmetry is broken by the substrate [42]). Hence, by applying a bias, the electrons at different valleys drift in opposite directions [26]. Since we address the transport properties using the Landauer formula, there is no explicit in-plane electric field and the reasoning above does not apply [43].

In the system we propose, the electrons are injected in the central region through the zigzag leads. As a consequence, for a small doping (E_F) such that only the single open mode operation is enabled, the injected electrons through one ribbon, figure 3(a), are always valley polarized [36] and, thus, have a preferential deflection direction when scattered by the bilayer region to the other ribbon.

By tuning E and the electric field, one can find the optimal operation parameters for a 50/50 beam splitter, see figure 3(a). In such configuration, the incoming electron from one plane can only be scattered to a single state in the other plane with a given propagation direction. The system shows a chiral symmetry: for electrons injected at the top GNR, one obtains an identical effect as above, illustrated by figure 3(b). In our case, for instance, the propagation directions T to B and L to R have the same ‘valley chirality’, as verified by our numerical calculations.

Let us discuss the simple case of $V = 0$ with the help of figure 3(c). First we identify that the system in figure 1 is symmetric under rotation around a diagonal axis that takes the arm L (R) into the arm T (B), interchanging top and bottom nanoribbons. The low energy electronic transport of each zigzag GNR is characterized by forward and backward moving states having opposite valley chirality [34–36]. Thus, assuming that the electrons injected in the system from the L-arm are K-polarized, the forward propagation to R and the scattering to B must be K-polarized, while due to symmetry backscattering to L and scattering to T must be K'-polarized. For $E > 0$, away from the charge neutrality point as depicted in the upper gray area of figure 3(c), the electronic states in the bilayer region are fully K-polarized and neither backscattering to L nor propagation to T is allowed. The same arguments apply to the negative energy region $E < 0$ corresponding to the lower gray area. This explains the energy windows with no backscattering and zero transmission between L and T in figure 2. On the other hand, for energies $|E| \geq 0$ near the charge neutrality point, the states in the bilayer region lie around $k = 0$ having both K and K' polarization components. Therefore, scattering to any of the four arms is allowed for, enabling backscattering to L and propagation to T, as seen in figure 2. For $V \neq 0$ and/or for AA stacking, the picture is more complicated but the same line of arguments still holds.

As an example of application, let us discuss the employment of the electronic beam splitter in an alternative implementation of the Hong–Ou–Mandel effect for electrons [2, 11, 44]. For bosons, when two indistinguishable particles are incident on two separate input sides of a 50/50 beam splitter (BS), Bose–Einstein quantum statistics implies that the outgoing bosons must leave together in one of the two outputs. The coincidence counter placed at the outputs, that detects a signal when two particles strike both outputs at the same time, records zero coincidences. This effect, first observed for photons [45], leads to a vanishing coincidence for simultaneous photon injection, and it is characterized by a dip in the correlation function [38]. For electrons, in contrast, Fermi–Dirac statistics implies particle antibunching, so that two identical fermions simultaneously injected at two different terminals
are always detected in different outputs, leading to a peak in the coincidence count [44].

The Hong–Ou–Mandel effect for single fermions was first observed in the one-dimensional edge states of quantum Hall systems [2], although previous measurements using continuous electronic beams have been reported [11, 46]. Proposals for the observation of the fermionic Hong–Ou–Mandel effect in graphene also exist [44].

We propose that the Hong–Ou–Mandel effect can be verified in our system, depicted in figure 1, by using the terminals L and T as inputs and the terminals R and B as outputs. By tuning our system to work as a beam splitter in the regime shown in figure 2(b), the electrons injected from terminal L (T) can be either transmitted to terminal R (B) with transmission $T_{bs} = T_{RL} = T_{BT}$ or ‘reflected’ to terminal B (R) with reflection $R_{bs} = 1 − T_{RL} = 1 − T_{BT}$. Note that a fine tuning can optimize the system to work as a 50/50 beam splitter where $T_{bs} = R_{bs} = 0.5$. If we introduce a delay time $\delta \tau$ in the injection of one of the electrons and place a coincidence counter at the terminals R and B, the normalized coincidence count N_c for our symmetric setup reduces to [44]

$$N_c = T_{bs}^2 + R_{bs}^2 + 2R_{bs}T_{bs}e^{-\gamma \delta \tau},$$ \quad (4)

where γ^{-1} is the characteristic time scale of the single electron transistor. In figure 4 the coincidence count N_c is shown as a function of the delay time $\delta \tau$. It is clear from figure 4 that there is a peak at $\delta \tau = 0$ and for large $\delta \tau$, N_c tends to a flat background, which corresponds to uncorrelated transport processes. From equation (4) one can verify that the maximum difference between the peak and the background occurs for $T_{bs} = R_{bs} = 0.5$, i.e. for a 50/50 beam splitter, as it is shown in figure 3.

This enhancement is precisely what can be achieved by the system proposed here with realistic parameters. In addition, the proposed system, based on the AB stacking of two GNRs, preserves the chirality of the states. As a result, electrons going from left arm to the right terminal have exactly the same chirality of an electron going from the top to the bottom arm. For this reason the AB stacking guarantees that incoming electrons in the left lead will only exit the system through the right and bottom arms. The same happens for incoming electrons in the top arm (see figure 3(b)).

4. Conclusions

We have demonstrated that a system composed of zigzag GNRs, one rotated by 60° on top of another, can function as an ideal 50/50 electronic beam splitter. We show that the operation of the beam splitter can be switched on and off by varying the value of the Fermi energy, which can be achieved by electrostatic gating. We also show that the operation of the proposed device is robust against thermal fluctuations. By making the nanoribbons wider one would change the energy scales of the system trivially. We speculate that our main findings still hold. Both AA and AB stackings of two GNRs preserve the valley polarization of the states. We argue that the valley polarization plays a central role in the beam splitter operation. We only presented results for AB stacking, but we have verified that the same conclusions also apply for the AA stacking.

We emphasize that the transmission for the first modes in zigzag GNRs is protected against backscattering due to long range disorder [34–36]. However, short range disorder, either due to edge roughness [47] or resonant scattering due to impurity adsorption at the surface [48], is expected to be detrimental for an experimental realization of the proposed beam splitter. We also note that the presence of short ranged impurities in the central region give rise to intervalley scattering, which destroys the valley polarization. Recent experiments report an exponential decay of valley currents on the scale of microns [29, 30, 49]. In such a scenario, finding the conditions of E and V for a proper operation can be challenging.

We suggest that the proposed device can be applied as the fundamental element of the Hong–Ou–Mandel interferometer, as well as a building block of many devices in electron optics.

Acknowledgments

We thank Stephen Power for helpful criticisms. This work is supported by Brazilian funding agencies CAPES, CNPq and FAPERJ. FAP acknowledges the financial support of the Royal Society (UK) through a Newton Advanced Fellowship (ref: NA150208) and the Brazilian agencies CAPES (BEX 1497/14-6) and CNPq (303286/2013-0).

References

[1] Feve G, Mahé A, Berroir J-M, Kontos T, Plaçais B, Gliattli D C, Cavanna A, Étienne B and Jin Y 2007 An on-demand coherent single-electron source Science 316 1169–72
[2] Bocquillon E, Freulon V, Berroir J-M, Degiovanni P, Plaçais B, Cavanna A, Jin Y and Feve G 2013 Coherence and indistinguishability of single electrons emitted by independent sources Science 339 1054–7
[3] Ji Y, Chung Y, Sprinzak D, Heiblum M, Mahalu D and Shtrikman H 2003 An electronic Mach–Zehnder interferometer Nature 422 415–8
[4] Neder I, Heiblum M, Levinson Y, Mahalu D and Umansky V 2006 Unexpected behavior in a two-path electron interferometer Phys. Rev. Lett. 96 016804
[5] Rouleau P, Portier F, Gliattli D C, Roche P, Cavanna A, Faini G, Gennser U and Mailly D 2007 Finite bias visibility of the electronic Mach–Zehnder interferometer Phys. Rev. B 76 161309
[6] Litvin L V, Tranitz H-P, Wegscheider W and Strunk C 2007 Decoherence and single electron charging in an electronic Mach–Zehnder interferometer Phys. Rev. B 75 033315
[7] Litvin L V, Helzel A, Tranitz H-P, Wegscheider W and Strunk C 2008 Edge-channel interference controlled by landau level filling Phys. Rev. B 78 075303
[8] McClure D T, Zhang Y, Rosenow B, Levenson-Falk E M, Marcus C M, Pfeiffer L N and West K W 2009 Edge-state velocity and coherence in a quantum Hall Fabry–Perot interferometer Phys. Rev. Lett. 103 206806
[9] Zhang Y, McClure D T, Levenson-Falk E M, Marcus C M, Pfeiffer L N and West K W 2009 Distinct signatures for coulomb blockade and aharonov-bohm interference in electronic Fabry–Perot interferometers Phys. Rev. B 79 241304
[10] Henny M, Oberholzer S, Strunk C, Heinzel T, Ensslin K, Holland M and Schönberger C 1990 The fermionic Hanbury Brown and Twiss experiment Science 284 296–8
[11] Neder I, Otke N, Chung Y, Heiblum M, Mahalu D and Umansky V 2007 Interference between two indistinguishable electrons from independent sources Nature 443 333–7
[12] Jullien T, Roulleau P, Roche B, Cavanna A, Jin Y and Glattli D C 2014 Quantum tomography of an electron Nature 514 603–7
[13] Dubois J, Jullien T, Portier F, Roche P, Cavanna A, Jin Y, Wegscheider W, Roulleau P and Glattli D C 2013 Minimal-excitation states for electron quantum optics using levitons Nature 502 659–63
[14] Klitzing K V, Dorda G and Pepper M 1980 New method for high-accuracy determination of the fine-structure constant based on quantized hall resistance Phys. Rev. Lett. 45 494–7
[15] Thouless D J, Kohmoto M, Nightingale M P and den Nijs M 1982 Quantized Hall conductance in a two-dimensional periodic potential Phys. Rev. Lett. 49 405–8
[16] Sarkar A, Bhattacharyya T K and Patwardhan A 2006 Quantum logic processor: implementation with electronic Mach–Zehnder interferometer Appl. Phys. Lett. 88 213113
[17] Petta J R, Lu H and Gossard A C 2010 A coherent beam splitter for electronic spin states Science 327 669–72
[18] Oliver W D, Kim J, Liu R C and Yamamoto Y 1999 Hanbury Brown and Twiss-type experiment with electrons Science 284 299–301
[19] Sun G, Wen X, Mao B, Chen J, Yu Y, Wu P and Han S 2010 Tunable quantum beam splitters for coherent manipulation of a solid-state tripartite qubit system Nat. Commun. 1 51
[20] Hofstetter L, Csonka S, Nagy J and Schönberger C 2009 Cooper pair splitter realized in a two-quantum-dot Y-junction Nature 461 963–3
[21] Bernevig B A, Hughes T L and Zhang S-C 2006 Quantum spin Hall effect and topological phase transition in HgTe quantum wells Science 314 1757–61
[22] König M, Wiedmann S, Brüne C, Roth A, Buhmann H, Molenkamp L W, Qi X-L and Zhang S-C 2007 Quantum spin Hall insulator state in HgTe quantum wells Science 318 766–70
[23] Klaus L, Retter C T, Yang S-H, Parkin S S P, Du L, Du R-R and Sullivan G 2014 Observation of edge transport in the disordered regime of topologically insulating InAs/GaSb quantum wells Phys. Rev. Lett. 112 026602
[24] Oshanashty E B, Kvon Z D, Gusev G M, Levin A D, Raichev O E, Mikhailov N N and Dvoretsky S A 2015 Persistence of a two-dimensional topological insulator state in wide HgTe quantum wells Phys. Rev. Lett. 114 126802
[25] Neto A H C, Guinea F, Peres N M R, Novoselov K S and Geim A K 2009 The electronic properties of graphene Rev. Mod. Phys. 81 109
[26] Xiao D, Yao W and Niu Q 2007 Valley-contrasting physics in graphene: magnetic moment and topological transport Phys. Rev. Lett. 99 236809
[27] Settnes M, Power S R, Brandbyge M and Jauho A-P 2016 Graphene nanobubbles as valley filters and beamsplitters (arXiv:1608.05691v1)
[28] Carrillo-Bastos R, León C, Faria D, Latgé A, Andrei E Y and Sandler N 2016 Strained fold-assisted transport in graphene systems Phys. Rev B 94 125422
[29] Sui M et al 2015 Gate-tunable topological valley transport in bilayer graphene Nat. Phys. 11 1027–31
[30] Shimazaki Y, Yamamoto M, Borzenets I V, Watanabe K, Taniguchi T and Tarucha S 2015 Generation and detection of pure valley current by electrically induced berry curvature in bilayer graphene Nat. Phys. 11 1032–6
[31] Kosykin D V, Higginbotham A L, Sinitskii A, Lomeda J R, Dimiev A, Price B K and Tour J M 2009 Longitudinal unzipping of carbon nanotubes to form graphene nanoribbons Nature 458 872–6
[32] Cai J et al 2010 Atomically precise bottom-up fabrication of graphene nanoribbons Nature 466 470–3
[33] Jacobberger R M et al 2015 Direct oriented growth of armchair graphene nanoribbons on germanium Nat. Commun. 6 8006
[34] Wakabayashi K, Takane Y and Sigrist M 2007 Perfectly conducting channel and universality crossover in disordered graphene nanoribbons Phys. Rev. Lett. 99 036601
[35] Wakabayashi K, Takane Y, Yamamoto M and Sigrist M 2009 Electronic transport properties of graphene nanoribbons New J. Phys. 11 095016
[36] Lima L R F, Pinheiro F A, Capaz R B, Lewenkopf C H and Mucciolo E R 2012 Effects of disorder range and electronic energy on the perfect transmission in graphene nanoribbons Phys. Rev. B 86 205111
[37] Freelon V, Marguerite A, Berroir J-M, Placais B, Cavanna A, Jin Y and Feve G 2015 Hong–Ou–Mandel experiment for temporal investigation of single-electron fractionalization Nat. Commun. 6 6854
[38] Jachura M and Chrakpiewicz R 2015 Shot-by-shot imaging of Hong–Ou–Mandel interference with an intensified scmos camera Opt. Lett. 40 1540–3
[39] Datta S 1996 Electronic Transport in Mesoscopic Systems (Cambridge: Cambridge University Press)
[40] Caroli C, Combescot R, Nozieres P and Saint-James D 1971 Direct calculation of the tunneling current J. Phys. C: Solid State Phys. 4 916
[41] Lewenkopf C H and Mucciolo E R 2013 The recursive green’s function method for graphene J. Comput. Electron. 12 203–31
[42] Song J C W, Samutphaphoot P and Levitov L S 2015 Topological Bloch bands in graphene superlattices Proc. Natl Acad. Sci. USA 112 10879–83
[43] Kirchenow G 2015 Valley currents and nonlocal resistances of graphene nanostructures with broken inversion symmetry from the perspective of scattering theory Phys. Rev. B 92 125425
[44] Khan M A and Leuenberger M N 2014 Two-dimensional fermionic hong-ou-mandel interference with massless Dirac fermions Phys. Rev. B 90 075439
[45] Hong C K, Ou Z Y and Mandel L 1987 Measurement of subpicosecond time intervals between two photons by interference Phys. Rev. Lett. 59 2044–6
[46] Liu R C, Odom B, Yamamoto Y and Tarucha S 1998 Quantum interference in electron collision Nature 391 263–5
[47] Mucciolo E R, Neto A H C and Lewenkopf C H 2009 Conductance quantization and transport gaps in disordered graphene nanoribbons Phys. Rev. B 79 075407
[48] Duffy J, Lawlor J, Lewenkopf C and Ferreira M S 2016 Impurity invisibility in graphene: symmetry guidelines for the design of efficient sensors Phys. Rev. B 94 045417
[49] Gorbachev R V et al 2014 Detecting topological currents in graphene superlattices Science 346 448–51