Flux-transfer losses in helically wound superconducting power cables

John R Clem and A P Malozemoff

1 Ames Laboratory and Department of Physics and Astronomy, Iowa State University, Ames, IA 50011–3160, USA
2 AMSC, 64 Jackson Road, Devens, MA 01434, USA

E-mail: amalozemoff@amsc.com

Received 25 April 2013, in final form 1 June 2013
Published 25 June 2013
Online at stacks.iop.org/SUST/26/085008

Abstract

Minimization of ac losses is essential for economic operation of high-temperature superconductor (HTS) ac power cables. A favorable configuration for the phase conductor of such cables has two counter-wound layers of HTS tape-shaped wires lying next to each other and helically wound around a flexible cylindrical former. However, if magnetic materials such as magnetic substrates of the tapes lie between the two layers, or if the winding pitch angles are not opposite and essentially equal in magnitude to each other, current distributes unequally between the two layers. Then, if at some point in the ac cycle the current of either of the two layers exceeds its critical current, a large ac loss arises from the transfer of flux between the two layers. A detailed review of the formalism, and its application to the case of paramagnetic substrates including the calculation of this flux-transfer loss, is presented.

1. Introduction

Reducing ac losses is critical to successful design of ac power transmission cables based on helically wound high-temperature superconductor (HTS) tapes [1]. The tapes, typically of order 100 \(\mu\)m thick, are wound around a long flexible cylindrical former typically 2–3 cm in diameter. The theory of ac losses in such a configuration has been developed by many authors [2, 3, 5, 4, 6, 7], and numerous loss mechanisms have been identified. We consider here a particularly large loss mechanism, called flux-transfer loss, which arises in multilayer helically wound cables when current flow is imbalanced between the different layers.

Such imbalance is extreme in the case of nested cylinders since as current increases during an ac cycle, it always starts flowing on the outer layers initially and then transfers to the next layer once the critical current of the outer layer has been reached. The flux transfer between layers gives rise to the flux-transfer loss, a hysteretic loss mechanism which can be understood on the basis of the Bean critical-state theory [8–11]. This loss is much larger than the hysteretic loss within the superconductor cylinders if the cylinder thicknesses are small compared to the space between them.

In helically wound designs, a judicious choice of winding pitch generates mutual inductances which can balance the currents in the different layers [1, 7, 12]. Nevertheless this balancing becomes increasingly difficult to do as the number of layers increases beyond two, and if magnetic or even paramagnetic material lies between the two layers, for example in the substrate of the superconductor tape, balancing becomes impossible. Flux-transfer losses become important once the current in one of the layers reaches its critical current.

Here this flux-transfer loss is derived for the case of two helically wound layers of second-generation coated conductor tapes, as in the configuration widely used for power cables [1]. In such tapes the superconductor film is typically only 1 \(\mu\)m thick, while the spacing between the two winding layers is of order 100 \(\mu\)m or more. In this case one can neglect the hysteretic losses within the superconductor layers compared to the much larger loss arising from the flux transfer between the layers. Furthermore, as long as the edges of neighboring tapes in each winding layer are close to each other, losses arising from the finite gaps between the tapes are also small in comparison, and we ignore them as well as the ‘polygonal’ losses arising from corners between abutting flat tapes. A key result of the calculation has been reported earlier [7], but the full derivation is given here, along with a detailed review of the underlying equations and further discussion of the significance of the flux-transfer loss.
If the substrates of the superconductor tapes are magnetic, the results depend strongly on the substrate orientations relative to the superconductor films. For future reference, we define in–out to refer to the two-layer configuration in which the first or inner layer has its substrate facing inward toward the center of the cable, relative to its superconductor film, while the second or outer layer has its substrate facing outward. Similarly the out–out configuration has the substrates of both layers facing out relative to the superconductor of each layer, and so on. The out–in, in–in, and out–in configurations all have magnetic material between the two superconductor layers. Only the in–out configuration avoids magnetic material between the superconductors, and as has been pointed out earlier [7], this is the most favorable configuration for avoiding large flux-transfer losses as the cable current approaches its overall critical current.

2. N layers

2.1. Voltages

Consider figure 1; according to [13], the voltage \(V_{ab} = V_A - V_B \) across terminals A and B of a high-impedance voltmeter when low-resistance leads are connected to contacts a and b on a conductor is given by

\[
V_{ab} = \int_{aC_S}^{b} E \cdot dl - \frac{d\Phi_{MS}}{dt},
\]

where \(C_S \) is any contour through the conductor from contact a to contact b, \(E \) is the electric field in the conductor (the negative gradient of the electrochemical potential),

\[
\Phi_{MS} = \int_{SM_S} B \cdot n \, dS
\]

is the magnetic flux through the area \(S_{MS} \) bounded by the sample contour \(C_S \) and the path \(C_M \), and \(t \) is the time-dependent voltage across terminals A and B of a high-impedance voltmeter when leads are attached to the sample at contacts a and b. The surface \(S_{MS} \) is shown cross-hatched.

Figure 1. Sketch of the measuring circuit used to determine the time-dependent voltage \(V_{ab} = V_A - V_B \) across a high-impedance voltmeter when leads are attached to the sample at contacts a and b. The surface \(S_{MS} \) is shown cross-hatched.

2.2. Helically wound cable

Consider \(N \) helically wound superconducting layers of radii \(R_1 < R_2 < R_3 < \cdots < R_N \) with pitches \(P_1, P_2, \ldots, P_N \). The closely spaced superconducting tapes forming the helical layers are wound in either a right-handed or left-handed sense. The resulting cable is centered on the \(z \) axis. Figure 2 shows the geometry of the paths \(C_S \) and \(C_M \) for measuring the voltage \(V_1 \) along one pitch length \(P_1 \) of layer 1. The measuring circuit leads are brought out radially from contacts a and b, then laid along the outer surface of the cable in the \(z \) direction, brought together, twisted (twist not shown), and then connected to terminals A and B of the voltmeter. This figure shows the geometry for two layers, such that the outer surface of the cable is at radius \(R_2 \). However, for \(N \) layers, the outer surface of the cable is at radius \(R_N \).

Using equation (1) and figures like that of figure 2 for layers with left-handed pitch and figures with right-handed paths \(C_S \) for the other layers, we obtain the following equations determining the voltage per unit length \(V_n' \) for all \(N \) layers when the current carried in the \(z \) direction by layer \(n \) is \(I_n(t) \):

\[
V_n' = E_n + \frac{t_n}{2\pi R_n} \int_{\rho<\rho_n} \frac{dB_z}{dt} \, dS + \int_{\rho_n}^{R_n} \frac{dB_\phi}{dr} \, d\rho,
\]

where

\[
t_n = \tan \theta_n = \pm \frac{2\pi R_n}{P_n}
\]
is the tangent of the pitch angle of layer \(n \), with the positive (negative) sign for a right-handed (left-handed) helix, and where \(E_n \) is the electric field along the length of a tape in layer \(n \). The first integral is over a surface of radius \(R_n \) perpendicular to the \(z \) axis, and the second integral is a line integral over the radial coordinate from \(R_n \) to \(R_N \). Equation (3) does not include the hysteretic critical-state penetration of magnetic flux into the superconducting layers. When the thickness \(d_n \) of a superconducting layer is much smaller than the spacing between layers, the effect of such flux penetration has a negligible effect upon the distribution of currents among the \(N \) layers. The ac losses associated with hysteresis within the superconducting layers therefore must be calculated separately.

If the current \(I_n(t) \) in layer \(n \) never exceeds the critical current \(I_{cn} \) for that layer, the electric field \(E_n \) can be neglected when determining how the total time-dependent current

\[
I_n(t) = \sum_{m=1}^{n} I_m(t) / 2\pi \rho_m
\]

is distributed between the layers. In this case the equations for \(n \)th layer are linear first-order differential equations and all the nonlinearities can be calculated as the time integral over one cycle of the product of the current and the voltage per unit length.

To calculate the terms in equation (3) involving time derivatives of integrals of the magnetic induction components \(B_z \) and \(B_\phi \), we first need to determine the magnetic field components \(H_z \) and \(H_\phi \), to which the magnetic induction responds. These are obtained from Ampère’s law as follows:

\[
H_\phi (\rho) = 0, \quad \rho < R_1, \quad (12) \\
\sum_{m=1}^{n} I_m / 2\pi \rho_m, \quad R_n < \rho < R_{n+1}, \quad (13) \\
R_N < \rho, \quad (14)
\]

where in equation (15) we define \(R_0 = 0 \).

2.3. Nonmagnetic substrates

If all the components of the superconducting tapes are nonmagnetic, then the magnetic induction between tapes obeys \(\mathbf{B} = \mu_0 \mathbf{H} \). Evaluating the integrals in equation (3) then yields the measured voltage per unit length of cable,

\[
V_n = E_n + \sum_{m=1}^{N} \frac{L_m}{R_m} d I_m / d t, \quad (17)
\]

with the inductances per unit length

\[
L_{nm} = \frac{\mu_0}{4\pi} \ln \left(\frac{R_N^2}{R_{nm}} + \frac{R_{nm} - R_m}{R_m} \right), \quad (18)
\]

where \(R_{nm} (R_{nm}) \) is the larger (smaller) of \(R_n \) and \(R_m \) [2, 10].\(^3\)

Equations (17) and (18) are useful in calculating the impedance of this kind of superconducting cable in the grid.

For long cables, inductive effects dominate over the electrical resistance at the ends, and we must have

\[
V_1 = V_2 = V_3 = \cdots = V_N, \quad (19)
\]

which yields \(N - 1 \) equations relating the currents \(I_n \). If \(|I_n| < I_{cn} \) for all layers, all the voltages \(V_n \) are sinusoidal.

\(^3\) References [2] and [10] presented equations consistent with equations (3)-(18). However, the expressions for the self-inductances and mutual inductances in [10] contained a logarithmic dependence upon \(D \), the distance from the center of the cable to a cylindrical return lead. This apparent dependence upon \(D \) cancels when differences between inductances are calculated. The equations in [10] correspond to evaluating the voltage with a measuring circuit in which the voltmeter leads run along the inside of the return lead, rather than on the outside of the cable of radius \(R_N \), as assumed here. However, as noted in [2], the distribution of currents within the cable cannot depend upon the azimuthal field outside \(R_N \), which depends only upon the total current \(I_1 + I_2 \), and because of equation (19) the dependence upon \(D \) cancels out. The inductances in [10] reduce to those in equation (18) if \(D \) is set equal to \(R_N \).
Subtracting the equation for \(V'_1 \) from that for \(V'_n \) and noting that \(I_n(t) = I_{nm} \sin \omega t \), we obtain

\[
\sum_{m=1}^{N} (U'_{nm} - U'_{Nm})I_{m0} = 0, \quad n = 1, 2, \ldots, N - 1.
\]

(20)

We can put this into dimensionless form by dividing the inductances by \(\mu_0/4\pi \) and by dividing the \(I_{m0} \) by \(I \), the peak value of the total current, which yields

\[
\sum_{m=1}^{N} \alpha_{nm}i_m = 0, \quad n = 1, 2, \ldots, N - 1,
\]

(21)

where

\[
\alpha_{nm} = \ln \left(\frac{R_{N}^{2}}{R_{m}^{2}} \right) + \frac{R_{N}^{2}}{R_{m}}R_{N} - \frac{R_{m}}{R_{N}}R_{N}t_{m}t_{m}
\]

(22)

and

\[
i_m = I_{m0}/I.
\]

(23)

Since the sum of the \(i_m \) is 1 by definition and \(\alpha_{Nm} = 1 \), we now have \(N \) equations and \(N \) unknowns:

\[
\sum_{m=1}^{N} \alpha_{nm}i_m = \delta_{Nm}, \quad n = 1, 2, \ldots, N.
\]

(24)

For the simplest case of \(N = 2 \) we have, for example,

\[
\alpha_{11} = \ln(R_2^2/R_1^2) + t_1^2 - (R_1/R_2)t_1t_2,
\]

(25)

\[
\alpha_{12} = (R_1/R_2)t_1t_2 - t_2^2,
\]

(26)

\[
\alpha_{21} = 1,
\]

(27)

\[
\alpha_{22} = 1,
\]

(28)

from which we obtain

\[
i_1 = - \frac{\alpha_{12}}{\alpha_{11} - \alpha_{12}},
\]

(29)

\[
i_2 = \frac{\alpha_{11}}{\alpha_{11} - \alpha_{12}}.
\]

(30)

Thus the ratio of the current amplitudes is

\[
\frac{i_1}{i_2} = \frac{t_2^2 - (R_1/R_2)t_1t_2}{\ln(R_2^2/R_1^2) + t_1^2 - (R_1/R_2)t_1t_2}.
\]

(31)

If we wish to have \(i_1 = i_2 \), there are four solutions, with \(t_1 = \tan \theta_1 \) positive or negative and \(t_2 = \tan \theta_2 \) positive or negative, as long as

\[
\tan^2 \theta_2 = \tan^2 \theta_1 + \ln(R_2^2/R_1^2).
\]

(32)

3. Two superconducting layers

3.1. Basic equations for magnetic substrates

Consider next the influence of substrate layers separating the superconducting layers and the possibility that some of these substrate layers are magnetic. Let substrate layer \(n \) denote a substrate (or spacing layer) that separates superconducting layers of radii \(R_{n-1} \) and \(R_n \), where \(R_0 = 0 \). Let us denote the components of the magnetic field \(H \) between superconducting layers of radii \(R_{n-1} \) and \(R_n \) as \(H_{np} \) and \(H_{wc} \), such that from equations (12)–(15)

\[
H_{1\phi} = 0,
\]

(33)

\[
H_{np} = \sum_{m=1}^{n-1} \frac{I_m}{2\pi R_m}, \quad n \geq 2,
\]

(34)

\[
H_{wc} = \sum_{m=n}^{N} \frac{I_m}{2\pi R_m}.
\]

(35)

Although it would not be difficult to generalize our results to an arbitrary number of superconducting layers and substrate layers, our main interest here is the case of two superconducting layers, for which the components of the magnetic field \(H \) are, from equations (33)–(35),

\[
H_{1\phi} = 0,
\]

(36)

\[
H_{2\phi} = \frac{I_1}{2\pi R_1},
\]

(37)

\[
H_{1z} = \frac{I_1 I_2}{2\pi R_1^2} + \frac{I_2 t_2}{2\pi R_2},
\]

(38)

\[
H_{2z} = \frac{I_2 t_2}{2\pi R_2}.
\]

(39)

The voltage equations, from equation (3), become

\[
V'_1 = E_1 + \frac{I_1}{2\pi R_1} \Phi_{1z} + \Phi_{2\phi},
\]

(40)

\[
V'_2 = E_2 + \frac{I_2}{2\pi R_2} (\Phi_{1z} + \Phi_{2z}).
\]

(41)

where the dots represent time derivatives of the magnetic flux contributions,

\[
\Phi_{1z} = \int_{R_1}^{R_2} 2\pi \rho B_{1z}(\rho) \, d\rho,
\]

(42)

\[
\Phi_{2z} = \int_{R_1}^{R_2} 2\pi \rho B_{2z}(\rho) \, d\rho,
\]

(43)

\[
\Phi'_{2\phi} = \int_{R_1}^{R_2} B_{2\phi}(\rho) \, d\rho.
\]

(44)

We assume that, other than in the superconducting layers, the magnetic flux density can always be written as \(B(\rho) = \mu_0[H(\rho) + M(\rho)] \), where \(M(\rho) = 0 \) in empty space or in a nonmagnetic substrate, \(M(\rho) = \chi \rho \) in a substrate that is paramagnetic with relative permeability \(\mu = 1 + \chi \), and \(M(\rho) = M_{FM}(H) \) in a ferromagnetic substrate, where its magnetization is given by a hysteresis function \(M_{FM}(H) \) that depends upon whether \(H \) is increasing or decreasing, and \(\dot{H} = H/H \). Accordingly, each of the magnetic flux contributions given in equations (42)–(44) can be separated into two terms, one due to \(H \) alone and the other due to \(M \):

\[
\Phi_{1z} = \Phi_{11z} + \Phi_{11z},
\]

(45)

\[
\Phi_{2z} = \Phi_{21z} + \Phi_{21z},
\]

(46)

\[
\Phi'_{2\phi} = \Phi'_{21\phi} + \Phi'_{21\phi}.
\]

(47)
where
\[
\Phi_{1Hc} = \mu_0 \int_0^{R_1} 2\pi \rho H_{1z} \, d\rho, \\
\Phi_{2Hc} = \mu_0 \int_{R_1}^{R_2} 2\pi \rho H_{2z} \, d\rho, \\
\Phi_{2H\phi} = \mu_0 \int_{R_1}^{R_2} H_{2\phi}(\rho) \, d\rho, \\
\Phi_{1M\phi} = \mu_0 \int_{R_1}^{R_1} 2\pi \rho M_{1z}(\rho) \, d\rho, \\
\Phi_{2M\phi} = \mu_0 \int_{R_1}^{R_2} 2\pi \rho M_{2z}(\rho) \, d\rho, \\
\Phi'_{1M\phi} = \mu_0 \int_{R_1}^{R_1} 2\pi \rho M_{1z}(\rho) \, d\rho, \\
\Phi'_{2M\phi} = \mu_0 \int_{R_1}^{R_2} 2\pi \rho M_{2z}(\rho) \, d\rho.
\]

Equations (40) and (41) become
\[
V_1' = E_1 + \frac{I_1}{2\pi R_1} (\Phi_{1Hc} + \Phi_{1M\phi}) + (\Phi'_{1H\phi} + \Phi'_{1M\phi}), \\
V_2' = E_2 + \frac{I_2}{2\pi R_2} (\Phi_{1Hc} + \Phi_{1M\phi} + \Phi_{2H\phi} + \Phi_{2M\phi}).
\]

where the dots again represent time derivatives of the magnetic flux contributions. For long cables, inductive effects dominate over the electrical resistance at the ends, and we must have
\[
V_1' = V_2'.
\]

3.2. Paramagnetic substrates

The complex behavior when the substrate layers are ferromagnetic is beyond the scope of the present paper. Here we focus on the case where one or two of the substrate layers are paramagnetic. Let \(p_n \) be a factor that tells whether substrate layer \(n \) is paramagnetic or not. That is, if \(p_n = 1 \), this will indicate that substrate layer \(n \) is paramagnetic with relative permeability \(\mu = 1 + \chi \), where \(\chi \) is independent of the magnetic field. Of primary interest is the case for which \(\chi \gg 1 \), but we will assume arbitrary values of \(\chi \). If \(p_n = 0 \), this will indicate that substrate layer \(n \) is nonmagnetic, in which case its relative permeability is \(\mu = 1 \) and its magnetic susceptibility is \(\chi = 0 \). We denote the thickness of a substrate layer \(n \) as \(d_n \), where \(d_n \ll R_n \). Substrate layer 1 is the layer on which superconducting layer 1 rests and thus has a radius very nearly equal to \(R_1 \).

Carrying out the integrations in equations (48)–(53), we obtain
\[
\Phi_{1Hc} = \mu_0 \pi R_1^2 H_{1z}, \\
\Phi_{2Hc} = \mu_0 \pi (R_2^2 - R_1^2) H_{2z}, \\
\Phi'_{2H\phi} = \frac{\mu_0 I_1}{2\pi} \ln(R_2/R_1), \\
\Phi_{1M\phi} = p_1 \mu_0 2\pi R_1 d_1 H_{1z} \chi, \\
\Phi_{2M\phi} = p_2 \mu_0 2\pi R_2 d_2 H_{2z} \chi, \\
\Phi'_{2M\phi} = p_2 \mu_0 I_1 d_2 \chi.
\]

Substituting these expressions into equations (54) and (55), making use of equations (38) and (39), we obtain
\[
V_1' = E_1 + L'_1 I_1 + L'_2 I_2, \\
V_2' = E_2 + L'_{12} I_1 + L'_{22} I_2,
\]

where
\[
L'_1 = \frac{\mu_0}{4\pi} \left[R_1^2 (1 + 2p_1 d_1 \chi / R_1) \right], \\
L'_{12} = \frac{\mu_0}{4\pi} \left[(R_1/R_2)^2 (1 + 2p_2 d_2 \chi / R_2) \right], \\
L'_{22} = \frac{\mu_0}{4\pi} (1 + 2p_1 R_1 d_1 \chi / R_2^2 + 2p_2 d_2 \chi / R_2).
\]

Recall that \(V_1' = V_2' \). If neither the magnitude of \(I_1 \) nor that of \(I_2 \) exceeds its critical current, then \(E_1 = E_2 = 0 \), and we find from equations (63) and (64) that \(I_1 \) and \(I_2 \) obey
\[
\dot{I}_1 = r_{12} I_2, \\
\dot{I}_2 = r_{12} \frac{L'_{22} - L'_{12}}{L'_{11} - L'_{21}}.
\]

Note that this equation reduces to equation (31) when \(\chi = 0 \).

For the general in–out case \(p_1 = 1 \) and \(p_2 = 0 \) case with paramagnetic substrates, when \(\chi \gg 1 \), the inductances are dominated by the large terms in equations (65)–(67) proportional to \(\chi \), and \(r_{12} \) in equation (69) then can be expanded to first order in \(1/\chi \) as
\[
r_{12} = -\frac{R_1 t_2}{R_2 t_1} + \frac{R_2 t_1 \ln(R_2^2/R_1^2) + (R_2^2 - R_1^2) t_1 t_2}{2d_1 R_1^2 (R_2 t_1 - R_1 t_2) \chi}.
\]

Using \(I_1(t) + I_2(t) = I_0(t) = I \sin t \omega t \) and equation (38), we then obtain, to first order in \(1/\chi \),
\[
H_{1z} = \frac{t_2 [R_1 R_2 \ln(R_2^2/R_1^2) + (R_2^2 - R_1^2) t_1 t_2]}{4\pi d_1 (R_2 t_1 - R_1 t_2)^2}.
\]

Thus, because of the magnetic field in the inner paramagnetic substrate, the currents induced in the two superconducting layers drive the axial magnetic field to very small values, and even to zero in the limit as \(\chi \rightarrow \infty \). Although the magnetization obeys \(M_{1z} = H_{1z} \chi \), \(H_{1z} \) is proportional to \(1/\chi \), such that
\[
M_{1z} = \frac{t_2 [R_1 R_2 \ln(R_2^2/R_1^2) + (R_2^2 - R_1^2) t_1 t_2]}{4\pi d_1 (R_2 t_1 - R_1 t_2)^2} I_t
\]

remains finite.
For the general out–in (\(p_1 = 0\) and \(p_2 = 1\)) case with paramagnetic substrates, when \(\chi \gg 1\), the inductances again are dominated by the large terms in equations (65)–(67) proportional to \(\chi\), and \(r_{12}\) in equation (69) again can be expanded to first order in \(1/\chi\) as

\[
r_{12} = \frac{t_2}{t_1} + \frac{t_2[R_{23}t_2(1 - t_1^2) - \ln(R_{23}^2/R_{21}^2)] - R_1 t_1(1 - t_2^2)}{2d_2}\]

(74)

In contrast to the in–out case, the leading terms in the expansion of the magnetic field \(H_2 = \sqrt{H_{20}^2 + H_{2z}^2}\) do not cancel, and using equations (36), (38), and (61) again can be expanded, and we then obtain

\[
H_2 \approx \frac{t_2}{2\pi R_2}\sqrt{1 + t_2^2}I_1
\]

(75)

in the limit of large \(\chi\). Since the magnetization of the total substrate thickness \(d_2\) between the two superconducting layers obeys \(M_2 = H_2X\), we have

\[
M_2 \approx \frac{t_2X}{2\pi R_2}(1 + t_2^2)I_1
\]

(76)

in the limit of large \(\chi\).

3.2.1. Cable with a single-layer winding using a double-layer wire. Consider a single-layer helical cable consisting of 20 tapes of width 4.4 mm with each tape having two ‘inserts’ of superconductor and substrate solder-bonded together at their superconductor faces. This configuration is sometimes called ‘face-to-face’. Such tape has double the critical current of a nonmagnetic superconductor. This configuration is sometimes called ‘face-to-face’. Such tape has double the critical current of a single-layer winding using a double-layer wire.

For the in–in configuration, assume that \(p_1 = 1\) and \(d_1 = 75 \mu m\) just inside the radius \(R_1\). Also assume that \(p_2 = 1\) and there is a paramagnetic layer of thickness \(d_2 = 75 \mu m\) just inside the radius \(R_2\).

For the out–in configuration, assume that \(p_2 = 1\) and there is a paramagnetic layer of thickness \(d_1 = 75 \mu m\) just inside the radius \(R_1\). Assume that \(p_2 = 0\) and there is no paramagnetic layer just inside the radius \(R_2\).

For the out–out configuration, assume that \(p_1 = 0\) and there is no paramagnetic layer just inside the radius \(R_1\). For simplicity, assume that \(p_2 = 1\) and there is a single paramagnetic layer of thickness \(d_2 = 150 \mu m\) just inside the radius \(R_2\).

3.2.2. Two-layer counter-wound cable. Consider what happens when we have a double-layer helical ac cable consisting of \(N = 20\) tapes of width \(w = 4.4\) mm. Let us assume that the inner superconducting layer has a radius of 15.0 mm and is wound as a left-handed helix with a pitch angle of \(\theta_1 = -20.97^\circ\), such that \(2\pi R_1 \cos \theta_1 = NW = 88\) mm. The outer superconducting layer has a radius of 15.5 mm and is wound as a right-handed helix with a pitch angle of \(\theta_2 = 25.37^\circ\), such that \(2\pi R_2 \cos \theta_2 = NW = 88\) mm. For \(\chi = 0\), equation (70) yields \(i_1/i_2 = 1.031\). Now we consider the effect of the orientations of paramagnetic substrates, as an indication of what one might expect from the actual ferromagnetic substrates used in some wires [15].
Magnetic layers outside the radius R_2 cannot affect how the total current distributes between the two layers.

As previously shown in [7], figure 3 shows numerical results for i_1/i_2 versus χ obtained from equation (70), showing how the current ratio is affected by paramagnetism in the substrates for the four cases. Although these results do not apply to hysteretic ferromagnetic substrates, they provide some hints as to what we might expect. The most dramatic effects upon the current ratio i_1/i_2 occur when there is a magnetic substrate confined between the two superconducting layers. This suggests that, with ferromagnetic substrates, switching effects might be most severe when at least one of these substrates lies between the two superconducting layers. For the in–out configuration, there is no paramagnetic material between the two superconducting layers, and the current ratio changes only from 1.03 to 1.19 as χ increases from 0 to 2000. This suggests that ferromagnetic switching effects might be minimized using this configuration.

4. Ac flux-transfer losses

We now consider the case of helically wound cables consisting of two thin superconducting layers with zero, one, or two paramagnetic substrates as in section 3. Since the formalism of section 3 neglects the hysteretic penetration of magnetic flux into the thin superconducting layers, one cannot calculate the ac losses due to the superconducting hysteresis by doing a time integration over one period of the voltage times the current. In other words, the small superconducting hysteretic ac losses in the superconducting layers must be calculated separately. If we deal with paramagnetic substrates, these do not contribute, assuming that we can neglect eddy-current losses. What we wish to address here are the ac flux-transfer losses that occur when the amplitude I of the total current applied to the cable is large enough that the current in one of the two superconducting layers is driven up to its critical current. We denote the total current amplitude at which this occurs as I_{th}, where the subscripts remind us that flux transfer occurs when $I > I_{th}$. If we use the Norris symbol [16] $F = I/I_c$, then $F_{th} = I_{th}/I_c$. We wish to calculate the large excess losses that occur when $F_{th} < F < 1$.

First we note that when $I < I_{th}$, we have $I_{th} < I_{c1}$ and $I_{th} < I_{c2}$. For this range of total current amplitudes, we have, from equation (70),

$$\frac{I_{th}}{I_{c2}} = \frac{r_{12}}{1 + r_{12}},$$

such that

$$I_{th} = \frac{r_{12}}{1 + r_{12}}I_c.$$ (78)

Let us introduce a quantity similar to r_{12} but instead giving the ratio of the critical currents of layers 1 and 2:

$$r_c = \frac{I_{c1}}{I_{c2}}.$$ (80)

The details of what happens when $I > I_{th}$ depend upon the ratio r_{12}/r_c. Consider first the case for which $r_{12} < r_c$. In this case, we see that as the current amplitude I increases, layer 2 reaches its critical current first. This occurs when $I = I_{th}$, which for $r_{12} < r_c$ is determined by the equation

$$I_{th} = \frac{1}{1 + r_{12}}I_c = I_{c2},$$ (81)

such that

$$F_{th} = \frac{I_{th}}{I_c} = \frac{(1 + r_{12})I_{c2}}{I_c}.$$ (82)

Note that when $I = I_{th}$,

$$I_{th} = \frac{r_{12}}{1 + r_{12}}I_c = \frac{r_{12}}{r_c}I_{c1} < I_{c1}.$$ (83)

Now consider what happens as the total applied current $I_c(t) = I \sin \omega t$ goes through one cycle. According to critical-state concepts, if $I_c(t)$ increases with time and goes above I_{th}, such that I_2 is driven slightly above I_{c2}, we still have $E_2 = 0$ in equation (63), but the electric field term E_2 in equation (64) becomes greater than zero. The current $I_2(t)$ then stabilizes at the value I_{c2} and the current in layer 1 becomes $I_1(t) = I(t) - I_{c2}$. At $\omega t = \pi/2$, $I_1(t)$ reaches its maximum value I, and we have $I_1 = I - I_{c2}$. As $I_1(t)$ then decreases, we again have $E_1 = E_2 = 0$, such that equation (68) yields $I_1 = r_{12}I_2$, whose solution is

$$I_1(t) = (I - I_{c2}) - \frac{r_{12}I_2(1 - \sin \omega t)}{1 + r_{12}},$$ (84)

$$I_2(t) = I_{c2} - \frac{I(1 - \sin \omega t)}{1 + r_{12}}.$$ (85)

These equations hold for times obeying $\pi/2 \leq \omega t \leq \omega t_{min}$, where t_{min} is the time that I_2 plateaus at its minimum value,

$$I_2(t_{min}) = I_{c2} - \frac{I(1 - \sin \omega t_{min})}{1 + r_{12}} = -I_{c2},$$ (86)

such that

$$\sin \omega t_{min} = 1 - 2F_{th}/F,$$ (87)
where $F_{\text{th}} < F < 1$. For times such that $\omega t_{\text{max}} \leq \omega t \leq 3\pi/2$, we have $I_2(t) = -I_{c2}$ and $I_1(t) = I_1(t) + I_{c2}$. When $\omega t = 3\pi/2$, we have $I_1 = -(I - I_{c2})$ and $I_2 = -I_{c2}$.

During the next half-cycle, for times obeying $3\pi/2 < \omega t < 5\pi/2$, or since the behavior is periodic with period $T = 2\pi/\omega$, for times obeying $-\pi/2 < \omega t < \pi/2$, we have the following behavior. At time $\omega t = -\pi/2$ we have $I_1 = -(I - I_{c2})$ and $I_2 = -I_{c2}$. As $I_2(t)$ increases, we again have $E_1 = E_2 = 0$, such that equation (68) yields $I_1 = r_{12}I_2$, whose solution is now

$$I_1(t) = -(I - I_{c2}) + \frac{r_{12}I(1 + \sin \omega t)}{1 + r_{12}}, \quad (88)$$

$$I_2(t) = -I_{c2} + \frac{I(1 + \sin \omega t)}{1 + r_{12}}. \quad (89)$$

These equations hold for times obeying $-\pi/2 \leq \omega t \leq \omega t_{\text{max}}$, where t_{max} is the time that I_2 plateaus at its maximum value,

$$I_2(t_{\text{max}}) = -I_{c2} + \frac{I(1 + \sin \omega t_{\text{max}})}{1 + r_{12}} = I_{c2}, \quad (90)$$

such that

$$\sin \omega t_{\text{max}} = 2F_{\text{th}}/F - 1, \quad (91)$$

where $F_{\text{th}} < F < 1$. For times such that $\omega t_{\text{max}} \leq \omega t \leq \pi/2$, we have $I_2(t) = I_{c2}$ and $I_1(t) = I_1(t) - I_{c2}$.

Shown in figure 4(a) are plots of $I_1(t)$, $I_2(t)$, and $I_1(t) = I_1(t) + I_2(t) = I_1 \sin \omega t$ calculated from equations (82)-(91). Figure 4(b) shows plots of dI_1/dt for various values of $F = I/I_c \geq F_{\text{th}}$.

The ac flux-transfer loss per cycle per unit length of cable is given by

$$Q_{\text{th}}' = \int_0^T V_1'(t)I_1(t) \, dt, \quad (92)$$

where $T = 2\pi/\omega$ is the period of one cycle. Since $E_1 = 0$ at all times and $I_2 = I_i - I_1$, we have

$$V_1' = (L_1' - L_{12}') I_{d1}/dt + L_{12}' I_{d1}/dt. \quad (93)$$

However, since the second term on the right-hand side is a purely inductive contribution, it does not contribute to the ac losses. Thus Q_{th}' is proportional to the time integral over one period of the product of dI_1/dt and $I_1(t) = I \sin \omega t$. The result for $r_{12} < r_c$ can be expressed as

$$Q_{\text{th}}' = 4(L_1' - L_{12}')I_{c2}(F - F_{\text{th}}), \quad (94)$$

where F_{th} is given by equation (82). Equation (94) also can be obtained by noting that energy is dissipated only over those portions of the cycle for which $E_2 \neq 0$, $|E_2| \approx k_{\text{th}}$, and $E_2 = (L_1' - L_{21}')H_1$ (see equations (63) and (64)). The coefficient of I_{c2} on the right-hand side of equation (94) is twice the magnitude of the magnetic flux per unit length that passes through the superconducting layer 2 during the resistive portion of a half-cycle.

Let us next examine what happens when $I > I_0$ in the case for which $r_{12} > r_c$. We see that in this case as the current amplitude I increases, layer 1 will reach its critical current first. This occurs when $I = I_1$, which is now determined from the equation

$$I_{10} = \frac{r_{12}}{1 + r_{12}}I_{\text{th}} = I_{c1}, \quad (95)$$

such that

$$F_{\text{th}} = \frac{I_{\text{th}}}{I_c} = \frac{(1 + r_{12})I_{c1}}{r_{12}I_c}. \quad (96)$$

Note that when $I = I_1$, we have

$$I_2 = \frac{1}{1 + r_{12}}I_{\text{th}} = \frac{I_{c1}}{r_{12}I_c} = \frac{r_c}{r_{12}}I_{c2} < I_{c2}. \quad (97)$$

Now consider what happens as the total applied current $I_1(t) = I \sin \omega t$ goes through one cycle. According to critical-state concepts, if $I_1(t)$ increases with time and goes above I_{th}, such that I_1 is driven slightly above I_{c1}, we still have $E_2 = 0$ in equation (64), but the electric field term E_1 in equation (63) becomes greater than zero. The current $I_1(t)$ then stabilizes at the value I_{c1} and the current in layer 2 becomes $I_2(t) = I_1(t) - I_{c1}$. At $\omega t = \pi/2$, $I_1(t)$ reaches its maximum value I, and we have $I_2 = I - I_{c3}$. As $I_1(t)$ then
where

\[I_1(t) = I_c - \frac{r_{12} I I_1(1 - \sin \omega t)}{1 + r_{12}^2}, \]

\[I_2(t) = (I - I_c) - \frac{I I_1(1 - \sin \omega t)}{1 + r_{12}^2}. \]

These equations hold for times obeying \(\pi/2 \leq \omega t \leq \omega t_{\text{max}}, \)

where \(t_{\text{min}} \) is the time that \(I_1 \) plateaus at, at its minimum value,

\[I_1(t_{\text{min}}) = I_c - \frac{r_{12} I I_1(1 - \sin \omega t_{\text{min}})}{1 + r_{12}^2} = -I_c, \]

such that

\[\sin \omega t_{\text{min}} = 1 - 2F_{\text{lt}}/F, \]

where \(F_{\text{lt}} < F < 1. \) For times such that \(\omega t_{\text{min}} \leq \omega t \leq 3\pi/2, \)

we have \(I_1(t) = -I_c \) and \(I_2(t) = I(t) + I_c. \) When \(\omega t = 3\pi/2, \)

we have \(I_1 = -I_c \) and \(I_2 = -(I - I_c). \)

During the next half-cycle, for times obeying \(3\pi/2 < \omega t < 5\pi/2, \) or since the behavior is periodic with period \(T = 2\pi/\omega, \) for times obeying \(\pi/2 < \omega t < \pi/2, \) we have the following behavior. At time \(\omega t = \pi/2 \) we have \(I_1 = -I_c \) and \(I_2 = -(I - I_c). \) As \(I_1(t) \) increases, we again have

\(E_1 = E_2 = 0, \) such that equation (68) yields \(I_1 = r_{12} I_2, \) whose solution is now

\[I_1(t) = -I_c + \frac{r_{12} I I_1(1 + \sin \omega t)}{1 + r_{12}^2}, \]

\[I_2(t) = (I - I_c) + \frac{I I_1(1 + \sin \omega t)}{1 + r_{12}^2}. \]

These equations hold for times obeying \(-\pi/2 \leq \omega t \leq \omega t_{\text{max}}, \)

where \(t_{\text{max}} \) is the time that \(I_1 \) plateaus at, at its maximum value,

\[I_1(t_{\text{max}}) = -I_c + \frac{r_{12} I I_1(1 + \sin \omega t_{\text{max}})}{1 + r_{12}^2} = I_c, \]

such that

\[\sin \omega t_{\text{max}} = 2F_{\text{lt}}/F - 1, \]

where \(F_{\text{lt}} < F < 1. \) For times such that \(\omega t_{\text{max}} \leq \omega t \leq \pi/2, \)

we have \(I_1(t) = I_c \) and \(I_2(t) = I(t) - I_c. \)

Plots of \(I_1(t), I_2(t), \) and \(I(t) = I_1(t) + I_2(t) = I \sin \omega t \)

calculated from equations (96)–(105) would look very similar to the plots shown in figure 4(a), except that the roles of \(I_1 \) and \(I_2 \) would be interchanged. Similarly, plots of \(dI_2/dt \) would look very similar to the plots of \(dI_1/dt \) in figure 4(b).

The ac flux-transfer loss per cycle per unit length of cable is given by

\[Q_{\text{lt}}' = \int_0^T V_2(t) I_1(t) \, dt, \]

where \(T = 2\pi/\omega \) is the period of one cycle. Since \(E_2 = 0 \) at all times and \(I_1 = I_1 - I_2, \) we have

\[V_2' = (U_{22} - U_{21}) \frac{dI_2}{dt} + L_{21} \frac{dI_1}{dt}. \]

However, since the second term on the right-hand side is a purely inductive contribution, it does not contribute to the ac losses. Thus \(Q_{\text{lt}}' \) is proportional to the time integral over one period of the product of \(dI_2/dt \) and \(I(t) = I \sin \omega t. \) The result for \(r_{12} > r_c \) can be expressed as

\[Q_{\text{lt}} = 4U_{22}U_{21}L_{21}F_{\text{lt}}(F - F_{\text{lt}}). \]

where \(F_{\text{lt}} \) is given by equation (96). Equation (108) also can be obtained by noting that energy is dissipated only over those portions of the cycle for which \(E_1 \neq 0, I_1 \approx I_c, \) and \(E_1 = U_{22} - L_{12} I_2 \) (equations (63) and (64)). The coefficient of \(I_c \) on the right-hand side of equation (108) is twice the magnitude of the magnetic flux per unit length that passes through the superconducting layer 1 during the resistive portion of a half-cycle.

5. Estimates and conclusions

Let us now estimate the size of the flux-transfer loss from equation (94). Let us first consider a two-layer counter-wound cable with \(I_1 = -I_2, R_1 \approx R_2, L_{21} = I_2/2, \) in the limit of large \(\chi. \) As already pointed out in our earlier publication [7], with an in–out configuration, both \(I_1/I_2 \) (equation (77)) and \(F_{\text{lt}} \) (equation (96)) are readily shown to be close to 1, which means that there is no flux-transfer loss over nearly the full range of applied current. However, for an out–in configuration (note that we by mistake called this in–out just before equation (15) of our earlier article [7]) and the same parameters, \(I_1/I_2 = I_{22}; \) so, for example, at \(\theta = 20^\circ, F_{\text{lt}} = 0.566, L_{\text{max}}/I_c = 0.40. \) So for \(F > F_{\text{lt}}, \) the flux-transfer loss from equation (94) is

\[Q_{\text{lt}} = (\mu_0/\pi R_2) \chi I_{22} I_{22} (F - F_{\text{lt}}). \]

This loss, induced by the magnetic layers between the superconductor layers, diverges with \(\chi. \) For a frequency \(f = 60 \text{ Hz}, I_c = 5000 \text{ A}, d_2 = 150 \mu\text{m} \) (assuming an out–in configuration with two 75 \(\mu\text{m} \) thick substrates), and even a modest \(\chi = 10, \) one finds a very substantial loss of \(Q_{\text{lt}} = 60(F - F_{\text{lt}}) \text{ W m}^{-1}. \)

Consider even a relatively small excess in current above the flux-transfer threshold: \(F - F_{\text{lt}} = 0.1. \) Equation (109) then gives 6 W m\(^{-1}\); so even over only a kilometer, one phase would generate a 77 K loss of 6 kW and three phases 18 kW. Additional superconductor losses would also arise in the screening layer in a typical design [1], and to these losses must be added the thermal losses arising from heat leaking in through the cryostat from the environment, dielectric losses and eddy-current losses in other metallic components of the cable. Given that these low-temperature (77 K) losses must be ejected from the system by refrigeration with a typical coefficient of performance (COP) of no better than 0.1, the actual power load on the system is \(> 180 \text{ kW.} \) Thus the flux-transfer losses in this case would constitute a net loss of \(> 180/48000 \text{ or } > 0.4\% \) in a three-phase cable carrying 2000 A at, say, 13.8 kV rms (power = \(\sqrt{3} I_{\text{rms}} V_{\text{rms}} = 48 \text{ MVA.} \) For a single short link in the grid, such a loss is completely unacceptable, being higher than that of a typical conventional copper cable, even without accounting for all the other losses in the system. And the cost of installing such a large
refrigeration system to handle so much cooling for such a short link is also prohibitive. Thus it is evident that the large flux-transfer losses must be avoided at all costs. These considerations highlight the importance of using the in–out configuration to avoid the large imbalance between the two winding layers and the consequent large flux-transfer losses at intermediate current levels.

Of course, in the absence of magnetic substrates ($\chi = 0$ in equations (65)–(67)), and with two counter-wound layers ($t_1 = -t_2$) with $R_1 \approx R_2$, both I_1/I_2 equation (77) and F_{ft} equation (96) are close to 1; so, as in the magnetic in–out case, the two winding layers are inductively balanced, and there are no flux-transfer losses until the current total amplitude nears the total critical current of the cable.

The simplicity of the two-layer counter-wound configuration and its minimized losses when magnetic substrates are avoided has created a significant incentive for wire manufacturers to develop wires without magnetic substrates and with sufficiently high critical currents to meet required cable ratings with only two layers. In fact, recent progress is rapidly attaining these objectives. Many manufacturers already use a process based on nonmagnetic Hastelloy substrates [17]. A nonmagnetic Ni-9W substrate has also been developed to replace the magnetic Ni-5W [15]. And critical currents have been significantly enhanced by optimization of pinning and increased film thickness in 2G HTS wires [15, 17]. Putting together all the progress in wire capability and enhanced understanding of the origin of ac losses, a single-phase cable with a two-layer winding has recently been demonstrated with superconductor ac loss as low as 0.12 W m$^{-1}$ at 3000 A$_{rms}$ [18].

Acknowledgments

JRC’s work on this paper was supported primarily by AMSC but also in part at Ames Laboratory with support by the Department of Energy—Basic Energy Sciences under Contract No. DE-AC027CH11358 and by the Center for Emergent Superconductivity, an Energy Frontier Research Center funded by the US Department of Energy, Office of Science, Office of Basic Energy Sciences under Award Number DE-AC0298CH1088; his work in establishing the framework for this theory was done as part of a research project funded by Pirelli Cable Corporation (now Prysmian Power Cables and Systems USA LLC). The authors thank G Snitchler, S Fleshler and W Carter for helpful conversations.

References

[1] Kalsi S S 2011 Applications of High Temperature Superconductors to Electric Power Equipment (Hoboken NJ: Wiley) chapter 9, pp 219–60
[2] Garber M, Bussiere J F and Morgan G H 1976 AIP Conf. Proc. 34 84–7
[3] Campbell A M 1999 IEEE Trans. Appl. Supercond. 9 2137
[4] Amemiya N et al 2007 IEEE Trans. Appl. Supercond. 17 1712
[5] Mawatari Y and Kajikawa K 2008 Appl. Phys. Lett. 92 012504
[6] Malozemoff A P, Snitchler G and Mawatari Y 2009 IEEE Trans. Appl. Supercond. 19 3115
[7] Clem J R and Malozemoff A P 2010 Supercond. Sci. Technol. 23 034014
[8] Bean C P 1962 Phys. Rev. Lett. 8 250
[9] Campbell A M and Evetts J E 1972 Adv. Phys. 21 199
[10] Daeumling M 1999 Cryogenics 39 759
[11] Daeumling M 2004 Physica C 403 57–9
[12] Mukoyama S et al 1997 IEEE Trans. Appl. Supercond. 7 1069
[13] Clem J R 1970 Phys. Rev. B 1 2140
[14] Rupich M W et al 2004 Physica C 412–414 877
[15] Rupich M W et al 2013 IEEE Trans. Appl. Supercond. 23 6601205
[16] Norris W T 1970 J. Phys. D: Appl. Phys. 3 489
[17] Selvamanickam V et al 2011 IEEE Trans. Appl. Supercond. 21 3049
[18] Yagi M et al 2012 Demonstration of a 275 kV–3 kA YBCO Superconducting Cable, paper SA-27-INV, ISS2012 in preparation