HD 148937: A MULTIWAVELENGTH STUDY OF THE THIRD GALACTIC MEMBER OF THE Of?p CLASS

YAËL NAZÉ1,5, NOLAN R. WALBORN2, GREGOR RAUW1,6, FABRICE MARTINS3, A. M. T. POLLOCK4, AND HOWARD E. BOND2

1 Institut d’Astrophysique et de Géophysique, Université de Liège, Allée du 6 Août 17, Bât. B5c, B-4000 Liège, Belgium; naze@astro.ulg.ac.be
2 Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218, USA
3 MPE, Postfach 1312, D-85741 Garching bei München, Germany-GRAAL/CNRS, Université Montpellier II, Place Eugène Bataillon, F-34095 Montpellier Cedex
4 European Space Agency, XMM-Newton Science Operations Centre, European Space Astronomy Centre, Apartado 50727, Villafranca del Castillo, 28080 Madrid, Spain

Received 2007 December 3; accepted 2008 March 4; published 2008 April 11

ABSTRACT

Three Galactic O-type stars belong to the rare class of Of?p objects: HD 108, HD 191612, and HD 148937. The first two stars show a wealth of phenomena, including strong X-ray emission, light variability, and dramatic periodic spectral variability. We present here the first detailed optical and X-ray study of the third Galactic Of?p star, HD 148937. Spectroscopic monitoring has revealed low-level variability in the Balmer and He II λ4686 lines, but constancy at He I and C II λ4650. The Hα line exhibits profile variations at a possible periodicity of ~7 days. Model atmosphere fits yield $T_{\text{eff}} = 41000 \pm 2000$ K, log(g) = 4.0 ± 0.1, $M_{\text{ph}} \lesssim 10^{-7} M_{\odot}$ yr$^{-1}$, and an overabundance of nitrogen by a factor of 4. At X-ray wavelengths, HD 148937 resembles HD 108 and HD 191612 in having a thermal spectrum dominated by a relatively cool component ($kT = 0.2$ keV), broad lines ($\gtrsim 1700$ km s$^{-1}$), and an order-of-magnitude overluminosity compared to normal O stars (log($L_{\text{X-ray}}/L_{\text{bol}}$) ~ -6).

Key words: stars: early-type – stars: individual (HD 148937) – X-rays: individual (HD 148937) – X-rays: stars

Online-only material: color figures

1. INTRODUCTION

The Of?p category was defined by Walborn (1972, 1973) to gather peculiar stars displaying strong C II emission lines around 4650 Å, i.e. of an intensity comparable to that of the neighboring N II lines. Three stars of our Galaxy belong to this class: HD 108, HD 191612, and HD 148937. A few others have now been identified in the Magellanic Clouds (Heydari-Malayeri & Melnick 1992; Walborn et al. 2000; Massey & Duffy 2001). In recent years, these peculiar objects have attracted quite a lot of attention. In 2001, it was discovered that HD 108 presents dramatic line-profile variations of its C II, He I, and hydrogen lines (Nazé et al. 2001). These variations seemed recurrent with a timescale of approximately 50–60 years (see also Nazé et al. 2006). The next development was the report of a similar phenomenon for the spectrum of HD 191612 (Walborn et al. 2003). However, the period was much shorter (only 538 days) and appeared correlated with photometric changes (Walborn et al. 2004). A magnetic field was subsequently identified for this star (Donati et al. 2006), with the 538 days proposed to be linked to the rotation period. In this scenario, HD 191612 would be an oblique magnetic rotator, a somewhat evolved version of an axisymmetric geometry. Due to its anomalous chemical abundances, this nebula is thought to have formed through an eruption of the star, maybe similar to that of η Carinae in the 19th century (Dufour et al. 1988), making HD 148937 a candidate Luminous Blue Variable object.

However, the analysis of a dedicated XMM-Newton observing campaign did not reveal the dominant signature of a magnetically-confined X-ray emitting plasma: apart from a clear overluminosity, both HD 108 and HD 191612 display characteristics typical of massive O-type stars (broad lines, low kT; see Nazé et al. 2004, 2007). Optical observations have further shown HD 191612 to be a binary, though with a different period (1542 days, see Howarth et al. 2007). A magnetically-confined disk therefore appears insufficient to explain the full behavior of those Of?p stars; an additional source of relatively soft X-rays is needed but its origin is still unknown (is it somehow related to binarity, like e.g. colliding wind emission, or is it a more exotic phenomenon?).

In comparison, only little is known about HD 148937, and no thorough study of the star has been undertaken until now. The most interesting information comes from its environment: the star is surrounded by a bipolar nebula, NCG 6164–6165, that displays an axisymmetrical geometry. Due to its anomalous chemical abundances, this nebula is thought to have formed through an eruption of the star, maybe similar to that of η Carinae.

The aim of our study is to assess the properties of HD 148937, in the visible and X-ray domains, and to compare it to the other two Galactic Of?p stars. This paper is organized as follows. Section 2 describes the observations while Sections 3–5 present the results of the available photometric datasets, the dedicated optical spectroscopic campaign and the XMM-Newton observations, respectively. Section 6 gives our conclusions.

2. OBSERVATIONS AND DATA REDUCTION

2.1. Visible Domain

Low-resolution spectroscopy of HD 148937 was gathered between 2003 and 2006 via Small and Moderate Aperture
Research Telescope System (SMARTS) at the CTIO 1.5 m telescope equipped with the RC spectograph. For each observation, three exposures of 1–2 min were combined, and the final signal-to-noise ratio (S/N) in the continuum was generally about 100. Three different gratings and/or settings were used: one covering the range 5650–6800 Å with a resolution of 2.8 Å, the second 4000–4900 Å with a resolution of 2.0 Å, and the last 4065–4700 Å with a resolution of 1.6 Å. All the reductions were performed using the IRAF and MIDAS software. The normalization was done by fitting polynomials through carefully chosen continuum windows. The observations were relatively evenly distributed between the months of February and October. During the four years of the observing campaign, at least one blue+red spectrsgam pair was taken each month of this visibility window. In total, we collected 53 red spectra and 56 blue ones.

Additional high-resolution spectra covering the whole optical range (3750–9200 Å) were collected using the Fiber-Fed Extended Range Optical Spectrograph (FEROS), an echelle instrument mounted at the MPG/ESO 2.2 m telescope at La Silla. The resolution of FEROS is 0.1 Å at 4800 Å (thus R = 48000); the exposure time was 15 min, leading to a S/N of minimum 300. The spectra were all taken during the month of May (2003 May 24 and 25, 2004 May 6, and 2005 May 19). These data were reduced by the observers, E. Gosset and H. Sana, using an improved version of the FEROS context (Sana et al. 2003) working under the midas environment. After correcting for the blaze using flat fields, the different orders were normalized individually using polynomials of orders 4–6.

Other high-resolution observations can be found in the archives. A first one was taken with FEROS on 2005 June 26 and was kindly made available to us by the PI, J.-C. Bouret (S/N = 200). Another one, taken on 1995 April 15 with University College London Echelle Spectrograph (UCLES), was found in the Anglo-Australian Telescope (AAT) archive. It consists of three exposures of 3–5 min with S/N of about 140 that provide a spectrum covering the wavelength range from 3800 to 7400 Å with a resolving power of 36000. The reduction of this observation was done in a classical way using the IRAF and MIDAS software. Finally, the star was also observed on 2002 February 27 with the Ultraviolet and Visual Echelle Spectrograph (UVES), in the framework of the UVES POP program. The resolution was about 0.05 Å and the S/N ~ 250. The reduced and merged UVES spectrum was downloaded from the public ESO database. Only a few selected regions were extracted from the UVES spectrum. All these spectra were corrected for the blaze using flat fields and then normalized using low-order polynomials.

2.2. X-Ray Range

On 2001 February 25 (Rev. 0223, PI R. Smith), HD 148937 was observed twice consecutively with XMM-Newton, for a total exposure time of 30 ks. The star is associated with sources J163352.4–480640 and J163352.3–480641 in the IXMM catalog. We retrieved the two datasets from the XMM-Newton public archives, in order to perform a thorough analysis. For these observations, the three European Photon Imaging Cameras (EPICs) were operated in the standard, full-frame mode, except for the second pn dataset which was taken in the extended full-frame mode. A medium filter was used to reject optical light. We processed these archival data with the Science Analysis System (SAS) software, version 7.0. After the pipeline chains (tasks EMPROC, EPproc, and RGSPROC), the data were filtered as recommended by the SAS team: for the EPIC metal-oxide-semiconductor (MOS) detectors, we kept single, double, triple, and quadruple events (i.e., pattern between 0 and 12) that pass through the #XMMEA_EM filter; for the EPIC-pn detector, only single and double events (i.e. pattern between 0 and 4) with flag = 0 were considered. To check for contamination by low-energy protons, we have further examined the light curve at high energies (pulse-invariant channel number ᶜ10000, E ≥ 10 keV, and with pattern = 0). No single, individual flare was detected during the observations but the background level was rather high and quite variable during the whole exposure. Further analysis was performed using the FTOOLS tasks and the XSPEC software version 11.2.0.

3. PHOTOMETRY

HD 148937 was included in the “New Catalogue of Suspected Variable Stars,” under the entry NSV 7808. In this catalog, it presents a V magnitude between 6.71 and 6.81 mag. However, the variability status of this star is still under debate. Balona (1992) found a possible dimming of the star by about 0.01 mag over a few weeks’ time. Following van Genderen et al. (1989), the star rather presents a constant luminosity in V, although with a dispersion of 0.005 mag in 1983 April, and possible small color variations (∼0.002 mag). Comparing with older data, the same authors also noted that HD 148937 might have been bluer and brighter in the late 1980s than in 1960. Finally, van Genderen (2001) considers HD 148937 as a possible candidate S Dor variable, but with only few indications for its S Dor status.

The three Galactic O+? stars were observed by the Hipparcos satellite. We have downloaded the individual photometry measurements from the Hipparcos database, including the Tycho data in the B and V filters, and the Hipparcos broadband filter H$_p$. After discarding the measurements with non-zero flags to get rid of possibly problematic data, we analyzed the photometry of HD 148937 (=HIP 81100, see Figure 1). The star displays an H_p magnitude varying between 6.79 and 6.83 mag, but the data are relatively sparse. Nevertheless, we determined the reduced χ^2 when fitting the data by a constant luminosity, calculated the autocorrelation for each dataset, and performed a period search. No significant change or periodicity was detected: the variable/S Dor status of HD 148937 still awaits confirmation.

4. VISIBLE SPECTROSCOPY

The full visible spectrum of HD 148937 is shown in Figure 2. Compared to recent, quiescent spectra of HD 108, that of HD 148937 presents appreciably weaker absorption lines of N I $\lambda\lambda$4510–4534 and He I. The faint Si III, O II, and C II emission lines seen in HD 108 do not exist here, O II $\lambda\lambda$4705 being rather in absorption. The two Si IV $\lambda\lambda$4088, 4116 lines are however clearly in emission, whereas they were in absorption in the spectra of HD 108. We may also note the important strength of the He I $\lambda\lambda$6678 emission line, compared to H$_\alpha$, in the spectrum of HD 148937. In addition, no P Cygni profile is seen for the He I $\lambda\lambda$4471, 4713 lines nor for the Hγ or Hβ lines (all are pure absorption). However, their profiles are not symmetric, with the...
red wing being much steeper than the blue one, indicating a possible contamination by some emission, most probably coming from the wind.

The spectral type of HD 148937 appears rather early. In the high-resolution spectra, a visual comparison of the He λ 4471 with He π 4542 lines and of He τ λ 4026 with He π λ 4200 favors an O6 spectral type (see Figure 2 and Walborn & Fitzpatrick 2000). From the measurements of the equivalent widths (EWs) of the former pair (see below), the high-resolution spectra again favor O6, whereas the low-resolution SMARTS data rather give O5.5, but close to the limit between the O5.5 and O6 types (see Figure 3). The star has been previously classified as O6 (MacConnell & Bidelman 1976; Penny et al. 1996; Garrison et al. 1977), O6.5 (Walborn 1972), and O7 (Conti et al. 1977; Humphreys 1975). These variations, if real, may indicate a similar behavior as seen in HD 108 and HD 191612. However, these older spectral-type determinations were reported more or less at the same epoch, and the differences could rather be due to different interpretations of the same spectrum.

4.1. Radial Velocities and Equivalent Widths

We investigated our four years of low-dispersion spectra in order to search for large, monthly to yearly variations. The radial velocity (RV) of the main spectral lines was measured by fitting a Gaussian to the top (resp. bottom) of the emission (resp. absorption) lines. The EW was determined by integrating the profile in a window of about 8 Å centered on the rest wavelength (such a large window was necessary because of the low resolution of the SMARTS data). The mean of the RVs and EWs and dispersion around this mean are presented in Table 1. Note that the RVs of He τ λ 4471 appear systematically bluer than those of He π λ 4542 because of the contamination of the red wing of the He τ line.

The RV and EW of the diffuse interstellar bands (DIBs) near Hn and C iv λ 5812 were also measured. To get rid of possible remaining calibration problems, the observed RVs of these strong and rather narrow features were used to correct the RVs of the main lines, assuming the rest wavelengths from Herbig (1995) and that the average DIB RVs of the FEROS data were the actual ones (-13.6 km s$^{-1}$ for the DIB at 5780 Å, -3.4 km s$^{-1}$ for the DIB at 6614 Å). However, only a slight improvement is seen in the dispersion of the RVs after this correction.

The dispersion of the RVs appears rather constant among the measured lines (about 10 km s$^{-1}$). The mean RVs from the high-resolution data (FEROS, UVES, and UCLES) are compatible with the SMARTS values within the error bars (see Table 1—note there is no dispersion for UVES and UCLES data since there is only one exposure). It is however worth noting that He λ 4471 and Hn, two lines affected by wind emission, present a higher dispersion of the RVs in the high-quality FEROS datasets. Our measurements are also in agreement with the RVs found in the literature (Conti et al. 1977; Augensen 1985). In addition, Conti et al. (1977) mentioned the compatibility of their results with those of Abt & Biggs (1972) and their average value of the velocity is also similar, within the errors, to those of Westerlund (1961) and Buscombe & Morris (1960).

Table 1

Line	EW interval (Å)	RV$_{\text{SMARTS}}$ (km s$^{-1}$)	EW$_{\text{SMARTS}}$ (Å)	RV$_{\text{FEROS}}$ (km s$^{-1}$)	RV$_{\text{UCLES}}$ (km s$^{-1}$)	RV$_{\text{UVES}}$ (km s$^{-1}$)
He π λ 4199.83	4193.83–4205.83	-46.0 ± 12.2	0.495 \pm 0.054	-38.0 ± 1.4	-40.3 ± 41.3	
He π λ 4471.512	4465.512–4475.0	-59.3 ± 10.4	0.325 \pm 0.034	-41.0 ± 8.1	-30.7 ± 51.3	
He π λ 4541.59	4535–4548.18	-38.7 ± 7.5	0.683 \pm 0.035	-32.2 ± 2.0	-32.0 ± 33.1	
N iii λ 4634.25	4631–4644.25	-24.4 ± 7.3	-0.963 ± 0.067	-29.7 ± 4.6	-31.3 ± 26.7	
N iii λ 4641.02	4644.25–4653.40	-37.4 ± 6.7	-43.6 ± 0.3	-50.2 ± 44.3		
C iv λ 4650						
He π λ 4685.682	4679.682–4691.682	-8.8 ± 7.5	-0.761 ± 0.079	-18.3 ± 4.7	-22.8 ± 19.4	
Hβ λ 4861.33	4845.33–4877.33	-191.2 ± 11.9	1.218 \pm 0.120	-182.0 ± 4.6	-185.9 ± 187.7	
C iv λ 5695.92	5689.92–5701.92	-34.7 ± 11.9	-0.205 ± 0.041	-22.1 ± 0.4	-28.9 ± 23.2	
DIB λ 5780.45	5774.45–5786.45	-19.8 ± 11.0	0.515 \pm 0.045	-13.6 ± 0.5	-15.1 Gap	
C iv λ 5811.98	5805.98–5817.98	-49.3 ± 13.6	0.196 \pm 0.035	-33.3 ± 3.6	-29.6 Gap	
C iv λ 5812 (cor.)	42.7 ± 8.6					
Hn λ 6562.85	6550.85–6574.85	3.0 ± 12.6	-1.176 ± 0.237	-7.1 ± 7.6	-2.3 ± 12.4	
Hn(cor.)	2.2 ± 12.9					

Figure 1. Hipparcos photometry of HD 148937.
the long-term (a few years) and short-term (a few days) ranges probed by the observations. This result agrees with the conclusion reached by Conti et al. (1977) and Garmany et al. (1980) on the constancy of the RVs.\(^\text{10}\)

However, it should be noted that the implications of the lack of significant RV variations in terms of the multiplicity of the star depend strongly on what assumptions we make about the orbital parameters of a putative binary. Indeed, unfavorable values of the orbital inclination, the mass ratio, and the orbital period or a combination of several of these parameters could lead to rather small RV variations. In this context, it is worth noting that RV variations similar to those found for HD 191612 (Nazé et al. 2007; Howarth et al. 2007) would be below our detection threshold. The simple approach of Garmany et al. (1980) enables us to evaluate the probability that we have missed a spectroscopic binary as a result of a low orbital inclination and for a given period and mass ratio. Taking the rather conservative assumption that the semi-amplitude of the RV curve should be smaller than \(2 \times \sigma_{\text{RV}}\), and assuming a circular orbit and a mass of \(55 \, M_\odot\) for the Of?p star, we find that there is a less than 1.7% probability that HD 148937 is a binary with a period of 100 days or less and a mass ratio of 1. If we allow a mass ratio of 5 (i.e. a companion of spectral type \(\sim B2\), the probability increases to 6 and 24% for periods shorter than 15 and 100 days, respectively. Of course, the probabilities of missing a binary increase drastically if the orbit is no longer assumed to be circular and this would be especially relevant for a long-period binary system.

Looking at the EWs, three lines, He\(\pi \lambda 4686\), H\(\beta\), and H\(\alpha\), present clearly deviant dispersions, suggesting intrinsic variability. Figure 4 compares the RVs and EWs of H\(\alpha\) and the neighboring DIB, presented with similar scales: the larger dispersion of the H\(\alpha\) EWs is obvious. We might note that these lines are the most sensitive ones to the wind.

\(^{10}\) Using the same data as these authors, Hutchings (1976) had suggested the star to be a binary of period 9 days, but this was never later confirmed. However, a problem was identified with some of the photographic plates (Conti et al. 1977).
4.2. Line Profiles

To investigate further the variability found previously, we performed another test using the temporal variance spectrum (TVS; Fullerton et al. 1996). No large, significant variation was found, except for the aforementioned variable lines and He I λ6678. Values close to the significance threshold are however also found for N III $\lambda\lambda$4634, 4641 (see Figure 5).
Figure 5. TVS and mean low-resolution spectrum of HD 148937.

Figure 6. Left: long-term variability of the Hα line in the 2006 low-resolution spectra (from month to month). Similar figures can be drawn for the other years of the campaign. Right: variability of the Hβ line in our FEROS spectra (2003: dotted line and black solid line for observations taken on 24 and 25 May, respectively; 2004: thin dashed line, 2005: thin solid line).

Figure 6 displays the line-profile variations of Hα in the SMARTS data. Note that the changes occur on relatively short timescales, as underlined by our high-resolution data. In fact, two FEROS spectra taken on two consecutive nights do show the small-scale variations in the He II λ4686 and hydrogen Balmer lines (see the right side of the same figure for Hβ). Similar changes of the same lines are also found when comparing with the other high-resolution data. The variability is confirmed by looking at published tracings of the spectrum of HD 148937: in a spectrum taken in 1991 and reported in Nota et al. (1996), the Hβ and Hγ lines seemed to consist of two absorption components of equal strength in 1991, whereas the blue one is much stronger in our 2002–2003 high-resolution spectra.11

11 We might also note that from objective prism data, MacConnell & Bidelman (1976) reported that the Hβ line of HD 148937 was “filled in” but without a tracing, we cannot compare their result with ours in detail.
A period search was made on the RV and EW measurements using the techniques of Heck et al. (1985, see remarks of Gosset et al. 2001) and Lafler & Kinman (1965). No significant period was detected, except maybe for Hα, where a peak at about 7 days seems to slightly stand out above the noise. We also performed a 2D Fourier test on the SMARTS spectra themselves, in regions centered on the Hα, Hβ, and He II λ 4686 lines. The periodogram was then averaged on the wavelength interval (see the result in Figure 7). This time, without ambiguity, a period of 7.031 ± 0.003 is clearly detected for Hα. When folded with this period, the RVs and EWs of Hα actually follow a regular pattern (Figure 8). This frequency is also present in the periodograms of Hβ and He II λ 4686, though with a reduced intensity. A short-term monitoring, preferentially done with a high-resolution spectrograph, should better constrain the properties of this periodic phenomenon.

In contrast, other lines, among which He I and C III λ 4650, appear remarkably constant for an O6?p star. Even older observations, taken by J.-M. Vreux in 1974 June and B. Westerlund in 1974 July and August, show similar features, without any striking differences. The only reference to a possible change of these lines can be found in Westerlund (1961): “Practically all spectra have He II λ 4686 in emission, most of them also N II λ 4641 and a few also C III (?) λ 4651”—without having access to the actual plates, it is difficult to judge what happened, but maybe the low resolution and low S/N photographic plates are to blame. Without further information, it is difficult to judge the significance of this report; all we can say is that such a behavior is not seen in intensive, higher-quality, subsequent data.

4.3. Physical Parameters

The visible spectrum can also be used to derive the physical parameters of HD 148937. For example, the line width reflects the projected rotation velocity of the star. Avoiding the variable Balmer hydrogen and He II lines and the contaminated He I lines, we applied the Fourier method (see Simón-Díaz & Herrero 2007, and references therein) on the metal lines of C IV λ 5812 and O III λ 5592. This results in $v \sin(i)$ of 58 km s$^{-1}$ for the former and 45 km s$^{-1}$ for the latter, and we therefore conclude that $v \sin(i) \geq 45$ km s$^{-1}$. This value is much lower than those found in the literature (200 km s$^{-1}$, Conti & Ebbets 1977; 92 km s$^{-1}$, Penny 1996; and 76 km s$^{-1}$, Howarth et al. 1997), but this is not surprising since the other methods do not permit one to disentangle the rotational broadening from other broadening mechanisms (i.e. macroturbulence, Simón-Díaz & Herrero 2007).

An average of our FEROS spectra was fitted using CMFGEN (Hillier & Miller 1998, for a description of the models and
of the method, see also Martins et al. 2005b; Bouret et al. 2005), as shown in Figure 9. Note that, if the central part of the Balmer lines is contaminated by emission, the wings remain sufficiently clean to be used for gravity estimates. The best fit gives $T_{\text{eff}} = 41000 \pm 2000$ K, $\log(g) = 4.0 \pm 0.1$, $R/R_\odot = 15.0 \pm 2.5$ and $\log(L/L_\odot) = 5.75 \pm 0.1$ (assuming He/H of 0.08 and a distance of 1.38 kpc, see below). Such values are comparable to those of O5–6 V/III stars (Martins et al. 2005a).

The abundance of nitrogen appears to be $N/H = 3 \times 10^{-4}$ (with an uncertainty of 40%), which for a solar reference value of 7×10^{-5} (Asplund 2005) corresponds to an overabundance of a factor of 4 compared to the Sun. This overabundance indicates that the star is already chemically evolved, showing products of the CNO cycle at its surface. This result is compatible with abundance estimates in the surrounding nebula, thought to consist at least partly of material ejected by the star (0.7 dex enrichment in N, see Dufour et al. 1988).

In addition, we estimated the mass-loss rate from the P Cygni profiles of an archival IUE spectrum. A rather high clumping factor of $f \approx 1$ was required to prevent $N\text{iv} \lambda 1720$ (and to a lesser extent $O\text{v} \lambda 1371$) from being too strong. This value was also found by Bouret et al. (2005) in their study of two O4 stars. With this clumping factor, $N\text{iv} \lambda 1720$ and $Si\text{iv} \lambda 1393$, 1403 are reasonably reproduced for a mass-loss rate lower than $1-2 \times 10^{-7} M_\odot$ yr$^{-1}$. However, $N\text{v} \lambda \lambda 1238, 1242$ and $C\text{iv} \lambda \lambda 1548, 1550$ remain too strong as long as M is larger than $\sim 10^{-8} M_\odot$ yr$^{-1}$. Given the evidence for non-spherical emission in the star (see below), we refrained from going into too much detail in this analysis. One can simply conclude that a mass-loss rate of $10^{-7} M_\odot$ yr$^{-1}$ (corresponding to $M_{\text{incl}} = 10^{-5} M_\odot$ yr$^{-1}$) is a conservative upper limit on the mass-loss rate of HD 148937. Note that the preferred value for the terminal velocity amounts to 2600 km s$^{-1}$.

The fit appears rather good (see Figure 9), except for two caveats. First, we note that all the observed He I and He II lines appear to be stronger than in a model with He/H = 0.1, but reducing this ratio to 0.06 does not completely solve the problem. A similar difficulty was uncovered when fitting the spectrum of HD 191612 (Walborn et al. 2003) and the origin of this discrepancy remains unclear at the moment (dilution by a hidden companion? contamination by emission?). Increasing the slope of the velocity field (the classical β parameter) does not help to weaken systematically all He lines. Second, it is impossible to reproduce the visible emission lines with the mass-loss rate and terminal velocity estimated from the UV P Cygni profiles. The Balmer and He II emissions are narrow and cannot be explained (only) by a spherical wind emission as derived in the UV. Therefore, the wind should consist of two components: a spherical one (the only one CMFGEN is able to reproduce) and a non-spherical one where the narrow Balmer emissions arise (e.g., a disk).

4.4. Summary

Contrary to HD 108 and HD 191612, HD 148937 does not display spectacular line changes for H, He I and C II $\lambda 4650$. However, it does show small-scale variations of the He II $\lambda 4686$ and hydrogen Balmer lines. Looking closely at the He I line, a period of 7.031 days is detected on our low-resolution observations, but requires confirmation as the temporal sampling was not optimized for such short timescales.

The two other Galactic Of?p stars actually also display some small-scale changes, in addition to the main, large variations. For HD 108, it can be easily spotted when comparing observations taken during one observing run (see, e.g., Figure 10, reproduced from Nazé 2004). For HD 191612, Howarth et al. (2007) found “small-amplitude variability . . . on timescales longer than a few days.” It is not yet known if these changes are stochastic or periodic, as the observations were not optimized to detect such short-term variations.

Although of small amplitude, the phenomenon observed for HD 148937 could still be related to those observed in the other Of?p stars. On the one hand, the variations of HD 148937 could represent a scaled-down version of those observed for HD 108.
and HD 191612, since these changes are similar in character. As the H and He II λ4686 variations were clearly the largest for these objects, it is possible that the He i and C iii changes would then remain undetected for HD 148937. The lower amplitude of the variability for HD 148937 might be linked to a relaxation of the system following the eruption that gave rise to the bipolar nebula NGC6164–5, or could be related to a lower angle between the rotation and magnetic axes (in the case of the magnetic oblique rotator model, as proposed for HD 191612).12)

On the other hand, it is equally possible that these small-scale changes are similar to the short-term variations seen in HD 108 and HD 191612. It would then remain to explain their periodicity. As the H and He ii line profile in the spectrum of HD 108 appeared particularly variable during our observing run of 2001: the thin solid line shows the spectrum taken on September 10, the thick solid line the spectrum taken on September 11, the dotted lines the spectra taken on September 13 and 15, and the dashed lines the spectra taken on September 18.

Figure 10. Hβ line profile in the spectrum of HD 108 appeared particularly variable during our observing run of 2001: the thin solid line shows the spectrum taken on September 10, the thick solid line the spectrum taken on September 11, the dotted lines the spectra taken on September 13 and 15, and the dashed lines the spectra taken on September 18.

The X-ray emission of HD 148937 was first discovered with the Einstein satellite. The star appears as source 2E1630.1−4800 in the Einstein 2E catalog (Harris et al. 1994). It has an IPC count rate of 0.100 ± 0.004 cts s⁻¹ (Harris et al. 1994) or 0.114 ± 0.004 cts s⁻¹ (Chlebowski et al. 1989). More recently, it was observed by the ROSAT satellite, notably during the All-Sky Survey, where it appears as source 1RXS J163522.2−480643 (also known as 1RXJ J163352.9−480635), with a ROSAT PSPC count rate of 0.23 ± 0.03 cts s⁻¹. ROSAT has also observed HD 148937 during three pointed observations (collected under the id RP900379). The first observation was made in 1992 September during 3.35 ks. After downloading these data from the archives, we estimated PSPC count rates for these observations to be 0.197 ± 0.008 cts s⁻¹, 0.189 ± 0.004 cts s⁻¹, and 0.203 ± 0.006 cts s⁻¹, respectively.

More recently, the star was observed by XMM-Newton, whose high sensitivity permits a deeper analysis of its high-energy emission. The EPIC-MOS spectra of HD 148937 were extracted over a circular region with radius 50" centered on the star; the background was extracted in the surrounding annular area of outer radius 75". For EPIC-pn, the radius of the source region was limited to 37.5" in order to avoid a nearby gap; we then use as background a nearby circle devoid of sources. The EPIC spectrum, binned to get a minimum of 10 cts per bin (i.e. $S/N \geq 3$ in each bin), are shown in Figure 11 where pn data are presented in green, MOS1 in black, and MOS2 in red.

Figure 11. EPIC X-ray spectrum of HD 148937 with the best-fit 3T model. The EPIC-pn data (drawn in green) appear at higher ordinates that those of the two EPIC-MOS (shown in black and red for MOS1 and 2, respectively). (A color version of this figure is available in the online journal)

To test for the presence of colliding winds in a binary or to shocks in a magnetically-confined wind, we allow them to be absorbed by independent column densities (N^H),

12 In this case, the seven-day period would reflect the rotation period of the star. The magnetic field should therefore be weaker than for HD 191612 since, although the star is old enough to have undergone eruptions, the field has not slowed the rotation to very long timescales as found for HD 191612.

13 Since these two thermal components could arise in different regions of the wind, we allow them to be absorbed by independent column densities (N^H),

The spectrum appears thermal, and the Fe xxv line at 6.7 keV is present. We have adopted a distance of 1.38 kpc (based on the membership in the Ara OB1a association, see Humphreys 1978) and an interstellar column density N_H of 4×10^{21} cm⁻² (Diplas & Savage 1994). In the spectral modeling, we do not allow the absorption to go below this threshold. In addition, since both datasets gave consistent results, within the errors, we finally fit all data simultaneously. The results are very similar to those of HD 108 and HD 191612; fits using only one thermal component were unacceptable ($\chi^2 > 2$) whereas the sum of two absorbed,13 optically thin equilibrium plasma models (mekal, Kaastra 1992) is much better. In the latter case, two solutions with similar residuals are found: one with temperatures kT around 0.6 and 2 keV and negligible absorbing columns; the other with lower temperatures (0.2 and 1 keV) and larger columns ($N^H \sim 0.5$ and 1×10^{22} cm⁻²). The second is slightly better and also favored by the results of a fit by a differential emission-measure model (DEM, c6pmekl, Lemen et al. 1989; Singh et al. 1996). The low-temperature peak is generally explained by intrinsic wind–wind shocks, whereas the high-temperature feature could be related to colliding winds in a binary or to shocks in a magnetically-confined wind (Zhekov & Palla 2007). If we assume the latter...
origin, it is important to note that the importance of this second peak is much lower than for well-known magnetic system such as θ Ori C or τ Sco (Zhekov & Palla 2007).

As HD 148937 is brighter and closer than the two other Galactic Of?p stars, the noise on its X-ray spectrum is reduced. This helps to spot a small deficiency of the aforementioned model at low energies. The fit can be improved by the addition of a third mekal component. Two solutions are again found, each corresponding to the two solutions mentioned above plus a third cooler component. Although the “hot” solution (kT of 0.2, 0.6, and 2 keV) presents a better χ^2 than the “cool” one (kT of 0.1, 0.2, and 1 keV), it appears worse at low energies.

The results of these fits are reported in Table 2, where the unabsorbed fluxes f_{X}^{\text{abs}} (in the 0.4–10.0 keV range) are corrected only for the interstellar absorbing column. For each parameter, the lower and upper limits of the 90% confidence interval (derived from the ERROR command under XSPEC) are noted as indices and exponents, respectively. The normalization factors are defined as \frac{10^{14}}{4\pi} \int n_e n_H dV, where D, n_e, and n_H are respectively the distance to the source, the electron, and proton density of the emitting plasma.

Using typical colors and bolometric corrections from Martins & Plez (2006) and the optical properties of HD 148937 (V = 6.728, B − V = 0.343, Maíz-Apellániz et al. 2004), the bolometric luminosity amounts to L_{\text{bol}} \sim 2 \times 10^{39} \text{ erg s}^{-1}, a value in agreement with the results of model atmosphere fits. The X-ray luminosity L_{\text{X}}^{\text{abs}}, evaluated from the EPIC data in the 0.5–10.0 keV range and corrected for interstellar absorption, is \sim 2 \times 10^{33} \text{ erg s}^{-1}, resulting in \log \left(L_{\text{X}}^{\text{abs}} / L_{\text{bol}} \right) \sim −6. Again, as for HD 108 and HD 191612, the value of this ratio is much larger (about eight times here) than that of the “canonical” relation (Sana et al. 2006). In this context, it is interesting to note that for the 2T fit, only 30% of the unabsorbed flux comes from the high-temperature component (in comparison, it is 25% for HD 108 and 27–35% for HD 191612): this means that the presence of a high-temperature component is not the only reason for the overluminosity.

Finally, we also analyze the X-ray light curves. First, one ought to note that the ROSAT data and Einstein count rates of HD 148937 agree well with the spectral properties derived from the XMM-Newton observations (Figure 12). Second, light curves were derived from the XMM-Newton datasets for a large range of energy domains and time bins. They were subsequently analyzed by χ^2 and pov tests (Sana et al. 2004) but no significant variation was found. It therefore appears that the flux of HD 148937 at X-ray energies is constant, within the error bars, on short-term ranges (over the duration of an observation) as well as on timescales of decades.

5.1. High Resolution (RGS)

The high-resolution (RGS) X-ray spectrum of HD 148937 is presented in Figure 13. Although the S/N is limited and in no way comparable to that obtained for RGS spectra of closer objects, it is nevertheless possible to get some information from it. First, a global fit was undertaken: the lines were fitted by triangular profiles, which are particularly suited to get an idea of their width and their decrementing (if any), while the residual continuum was fitted by a bremsstrahlung model. Only the amplitude of the triangles was allowed to vary from line to line, the overall shape being uniform. The best fit results in a line center position of −195 ± 707 km s\(^{-1}\), a red edge at 1163 ± 512 km s\(^{-1}\), and a blue edge at −2327 ± 657 km s\(^{-1}\), resulting in a FWHM of 1745 ± 416 km s\(^{-1}\). The X-ray lines are thus quite large and do not present significant blue/redshift, but their profiles are slightly skewed. In this context, it might also be interesting to note that the Ne IX/Ne X ratio for this O6 star fits nicely in the sequence found by Walborn (2007).

Table 2

Type	N\(_{\text{H}}\) (10\(^{22}\) cm\(^{-2}\))	k\(_{1}\) (keV)	norm\(_{1}\)	N\(_{\text{H}}\) (10\(^{22}\) cm\(^{-2}\))	k\(_{2}\) (keV)	norm\(_{2}\)	N\(_{\text{H}}\) (10\(^{22}\) cm\(^{-2}\))	k\(_{3}\) (keV)	norm\(_{3}\)	χ\(^2\)/ dof	f\(_{X}\) (in 10\(^{-12}\) erg cm\(^{-2}\) s\(^{-1}\))	
2T	0.490\(^{+1.11}_{-0.46}\)	0.230\(^{+0.13}_{-0.23}\)	44.2\(^{-0.4}_{-0.4}\)	1.03\(^{+1.11}_{-0.97}\)	1.36\(^{+0.07}_{-0.07}\)	1.34\(^{-1.0}_{-1.0}\)	1.34\(^{+1.0}_{-1.0}\)	4.24\(^{+0.46}_{-0.46}\)	1.34\(^{+0.07}_{-0.07}\)	1.34\(^{+0.07}_{-0.07}\)	1.34\(^{+0.07}_{-0.07}\)	1.34\(^{+0.07}_{-0.07}\)
3T cool	0.06\(^{+0.05}_{-0.08}\)	0.08\(^{+0.05}_{-0.08}\)	19\(^{+6.5}_{-6.5}\)	0.55\(^{+0.57}_{-0.57}\)	0.23\(^{+0.24}_{-0.23}\)	38.4\(^{+0.4}_{-0.4}\)	1.25\(^{+3.3}_{-3.3}\)	1.37\(^{+4.0}_{-4.0}\)	4.52\(^{+2.3}_{-2.3}\)	1.23\(^{+0.03}_{-0.03}\)	3.1	8.6
3T hot	0.01\(^{+0.01}_{-0.01}\)	0.24\(^{+0.26}_{-0.24}\)	1.57\(^{+2.7}_{-1.9}\)	0.35\(^{+0.39}_{-0.31}\)	0.63\(^{+0.64}_{-0.62}\)	3.48\(^{+0.74}_{-0.74}\)	0.53\(^{+0.44}_{-0.44}\)	2.00\(^{+0.06}_{-0.06}\)	2.25\(^{+0.11}_{-0.11}\)	1.13\(^{+0.01}_{-0.01}\)	3.2	7.8
To get more precise information, we decided to focus on the O\textsc{viii} $\lambda 18.97$ Lyα line, the strongest feature in the spectrum that is rather free from blends with other lines. The line is broadened and has a FWHM around 2500 km s$^{-1}$. A binned version of the data suggests that the line might display some structure (which could actually also be present on the Lyβ line, see below). We have attempted to fit the O\textsc{viii} Lyα line with an exospheric line-profile model following the formalism of Kramer et al. (2003). The main assumptions are that the X-ray emission originates from material distributed throughout a spherical wind, above a radius $r \geq R_0 > R_*$, and that the hot plasma follows the bulk motion of the cool wind. Doppler broadening due to macroscopic motion hence provides the main source of line broadening. The line emissivity is assumed to scale as $\epsilon \propto \rho^2 r^{-3}$ where the r^{-3} term accounts for a radial dependence of the filling factor of the X-ray plasma. The free parameters of this model are thus R_0, q (that we take equal to zero here), and $\tau_{\lambda_0} = \frac{M_\infty}{4\pi R_0^2}$, the characteristic optical depth at wavelength λ. For the terminal wind velocity, we have first adopted $v_\infty = 2285$ km s$^{-1}$ as derived by Howarth et al. (1997). The best fit to the unbinned line profile is obtained for $R_0 \approx 2.25 R_\odot$ and $\tau_{\lambda_0} = 0$. However, larger values of τ_{λ_0} are also possible for larger R_0. The fits to the binned profiles roughly confirm this picture, but bring up another (actually deeper) minimum in the χ^2 contours around $R_0 \approx 1.65 R_\odot$ and $\tau_{\lambda_0} \approx 0.4$. While the unbinned data hence favor a flat-topped profile, the binned spectra rather suggest a skewed profile. In any case, we note that the fits suggest a rather broad line.

We have applied the same procedure to the O\textsc{viii} $\lambda 16.01$ Lyβ line. The best fit is obtained for $R_0 \approx 1.85 R_\odot$ and $\tau_{\lambda_0} = 0$, in reasonable agreement with the results obtained for the Lyα line. Note that the strong Ne \textsc{x} $\lambda 12.13$ Lyα line is probably blended with another line on its red side\(^{14}\) and can thus not be fitted easily with our model.

We have repeated the fits of the O\textsc{viii} $\lambda 18.97$ Lyα and $\lambda 16.01$ Lyβ lines with the same exospheric model and the same parameters as before, except for the terminal velocity where we adopted $v_\infty = 2600$ km s$^{-1}$ instead (see Section 4.3). The shape of the χ^2 contours is essentially the same as found before with $v_\infty = 2285$ km s$^{-1}$, but, as can be expected from the increase of the wind velocity, the minimum is shifted to somewhat lower values of R_0. In fact, the best fit to the unbinned Lyβ line profile is now obtained for $R_0 \approx 2.05 R_\odot$ and $\tau_{\lambda_0} = 0$. The fits to the binned profiles now yield the lowest χ^2 around $R_0 \approx 1.45 R_\odot$ and $\tau_{\lambda_0} = 0$. For the Lyβ line, the best fit remains at $R_0 \approx 1.85 R_\odot$ and $\tau_{\lambda_0} = 0$.

Over recent years, the He-like triplets, consisting of a forbidden (f), an intercombination (i), and a resonance (r) lines, of various ions have been used as plasma diagnostics for a number of O-type stars (see e.g. Leutenegger et al. 2006; Oskinova et al. 2006). In fact, the $\chi^2 = f/j/i$ ratio has been shown to be a sensitive diagnostic of the dilution of the UV radiation field in the line emission region (e.g. Porquet et al. 2001). In the case of HD 148937, the only He-like triplet with a reasonable level of exposure is the Ne\textsc{ix} triplet at $\lambda \lambda \lambda 13.447$ (r), $13.548 + 13.551$ (i), and 13.697 (f). However, even for this complex the data do not allow us to perform a quantitative fit of the line strengths. Still, the data show that the $\chi^2 \sim 1$ (see Figure 14). Hence, this ratio must be below its collision equilibrium low-density limit of $R_0 = 3.1$ (Leutenegger et al. 2006). Note also that the f component could be blended with unresolved Fe\textsc{xix} lines at $\lambda \lambda \lambda 13.73 – 13.74$. These features could lead to an overestimate of the actual strength of the f line. The reduced strength of the f component of the Ne\textsc{ix} triplet is quite typical for O stars (see e.g. Oskinova et al. 2006).

6. CONCLUSIONS

With its strong C\textsc{iii} $\lambda 4650$ lines, HD 148937 is a true O$^+$ star. However, it is unclear if it constitutes a perfect “sibling” of HD 108 or HD 191612. This paper reports a first thorough, multiwavelength variability study of HD 148937.

In the visible domain, its photometry does not change much, and its S Dor status cannot be confirmed. The visible spectrum does vary, but the changes are limited to the main lines formed in the stellar wind, i.e. the hydrogen Balmer lines and He\textsc{ii} $\lambda 4686$. This variability occurs with very small amplitudes and an analysis of the changes in the Hα line reveals a periodicity of 7.031 ± 0.003 days. However, the Hα and C\textsc{iii} lines seem constant. In addition, no large (> 10 km s$^{-1}$) variations of the RVs could be identified and no other typical signature of binarity (e.g. blended spectrum) was detected. Finally, model atmosphere fits yield parameters typical of an O5–O6V/III star; they also suggest the presence of a non-spherical component to the stellar wind.

In the X-rays, the spectrum appears thermal in nature, with a dominant cool component (0.2 keV), broad unshifted X-ray lines, and an order-of-magnitude over-luminosity compared to normal O-type stars. It looks nearly identical to those of HD 108 and HD 191612, though with a larger flux (because of the smaller distance) and thus a better S/N. No significant short-term or long-term variation of the X-ray flux could be brought to light.

Three stars in our Galaxy share a very peculiar spectral characteristic, the presence of strong C\textsc{iii} lines. Is HD 148937 completely similar to the other two? Using only the X-ray results, the answer would be clearly yes. From the visible spectroscopy, however, the answer is unclear. The variability of HD 148937 could either be related to the small-scale changes or to the large variations seen in HD 108 and HD 191612. Considering the former, additional data are needed to find if these small-scale changes are truly periodic for the other Galactic objects, and therefore determine the origin of this short-term, small-scale variability. In this case, it also remains to be seen if HD 148937 presents large variations of its H, Heα, and C\textsc{iii} lines—from our dataset, this can only happen on very long timescales (likely even larger than the 55 yr of HD 108). On the other hand, the small-scale changes of HD 148937 could represent a scaled version of the phenomenon observed

\[^{14}\text{There are a number of lines from various iron ions (e.g. Fe\textsc{xiii} $\lambda 12.193$, Fe\textsc{xiv} $\lambda 12.264$, and Fe\textsc{xxi} $\lambda 12.286$) that could possibly be responsible for this blend. Given the presence of other strong lines of this ion, Fe\textsc{xvi} is probably the best candidate.}\]
in HD 108 and HD 191912, thereby explaining the lack of variations of the He\textsc{i} and C\textsc{iii} lines. In this case, the 538 days period of HD 191912 and the 55 yr timescale of HD 108 would here be replaced by a much shorter, \textasciitilde 7 day period.

To ascertain the origin of this variability and constrain more its properties, additional data are clearly needed: short-term monitoring of HD 108 and HD 191912, long-term observations at high resolution, and spectropolarimetry of HD 148937.

We wish to thank Hugues Sana and Eric Gosset for taking FEROS spectra for us, Jean-Marie Vreux and Bengt Westerlund for providing scans of 1970s photographic plates. Y.N. and G.R. acknowledge support from the Fonds National de la Recherche Scientifique (Belgium), the PRODEX XMM and Integral contracts, and the visitor’s program of the STScI (DDRF funding). STScI participation in the Small and Moderate Aperture Telescope System Telescope (SMARTS) Consortium at CTIO is funded by the Director’s Discretionary Research Fund. F.M. thanks John Hillier for constant help with his code CMFGEN.

Facilities: XMM-Newton (EPIC), XMM-Newton (RGS).

REFERENCES

Abt, H. A., & Biggs, E. S. 1972, Bibliography of Stellar Radial Velocities (New York: Latham Process Corp.)

Asplund, M. 2005, ARA&A, 43, 481

Augensen, H. J. 1985, MNRAS, 213, 399

Balona, L. A. 1992, MNRAS, 254, 404

Bouret, J.-C., Lanz, T., & Hillier, D. J. 2005, A&A, 438, 301

Buscombe, W., & Morris, P. M. 1960, MNRAS, 121, 263

Chlebowski, T., Harnden, F. R. Jr., & Sciortino, S. 1989, ApJ, 341, 427

Conti, P. S., & Alschuler, W. R. 1971, ApJ, 170, 325

Conti, P. S., & Ebbets, D. 1977, ApJ, 213, 438

Conti, P. S., & Frost, S. A. 1977, ApJ, 212, 728

Conti, P. S., Garmany, C. D., & Hutchings, J. B. 1977, ApJ, 215, 561

Diplas, A., & Savage, B. D. 1994, ApJS, 93, 211

Donati, J.-F., Howarth, I. D., Bouret, J.-C., Petit, P., Catala, C., & Landstreet, J. 2006, MNRAS, 365, L6

Dufour, R. J., Parker, R. A. R., & Henize, K. G. 1988, ApJ, 327, 859

Fullerton, A. W., Gies, D. R., & Bolton, C. T. 1996, ApJS, 103, 475

Garmany, C. D., Conti, P. S., & Massey, P. 1980, ApJ, 242, 1063

Garrison, R. F., Hiltner, W. A., & Schild, R. E. 1977, ApJ, 210, 351

Gosset, E., Royer, P., Rauw, G., Manfroid, J., & Vreux, J.-M. 2001, MNRAS, 327, 435

Harris, D. E., et al. 1994, EINSTEIN Observatory catalog of IPC X-ray sources (2E catalog), SAO HEAD CD-ROM Series I (Einstein), Nos 18–36

Heck, A., Manfroid, J., & Meshch, G. 1985, A&AS, 59, 63

Herbig, G. H. 1995, ARA&A, 33, 19

Heydari-Malayeri, M., & Melnick, J. 1992, A&A, 258, L13

Hillier, D. J., & Miller, D. L. 1998, ApJ, 496, 407

Howarth, I. D., Siebert, K. W., & Hussain, G. A. J. 1997, MNRAS, 284, 265

Howarth, I. D., et al. 2007, MNRAS, 381, 433

Humphreys, R. M. 1975, A&AS, 19, 243

Humphreys, R. M. 1978, ApJS, 38, 309

Hutchings, J. B. 1976, ApJ, 203, 438

Kaastra, J. S. 1992, An X-Ray Spectral Code for Optically Thin Plasmas (Internal SRON-Leiden Rep., Version 2.0)

Kramer, R. H., Cohen, D. H., & Owocki, S. P. 2003, ApJ, 592, 532

Lafler, J., & Kimman, T. D. 1965, ApJS, 11, 216

Leenen, J. R., Mewe, R., Schrijver, C. J., & Fludra, A. 1989, ApJ, 341, 474

Leutenegger, M. A., Paerels, F. B. S., Kahn, S. M., & Cohen, D. H. 2006, ApJ, 650, 1096

MacConnell, D. J., & Bidelman, W. P. 1976, AI, 81, 225

Mats-Apellániz, J., Walborn, R., Galué, H. A., & Wei, L. H. 2004, ApJS, 151, 103

Martins, F., & Plez, B. 2006, A&A, 457, 637

Martins, F., Schaerer, D., & Hillier, D. J. 2005a, A&A, 436, 1049

Martins, F., Schaerer, D., Hillier, D. J., Meynadier, F., Heydari-Malayeri, M., & Walborn, N. R. 2005b, A&A, 441, 735

Massey, P., & Dufy, A. S. 2001, ApJ, 550, 713

Naze, Y. 2004, PhD Thesis, Univ. de Liège

Naze, Y., Barbieri, C., Segafredo, A., Rauw, G., & De Becker, M. 2006, IBVS, 5693

Naze, Y., Rauw, G., Pollock, A. M. T., Walborn, N. R., & Howarth, I. D. 2007, MNRAS, 375, 145

Naze, Y., Rauw, G., Vreux, J.-M., & De Becker, M. 2004, A&A, 417, 667

Naze, Y., Vreux, J.-M., & Rauw, G. 2001, A&A, 372, 195

Nota, A., Pasquali, A., Drissen, L., Leitherer, C., Robert, C., Moffat, A. F. J., & Schmutz, W. 1996, ApJS, 102, 383

Oskinova, L. M., Feldmeier, A., & Hamann, W.-R. 2006, MNRAS, 372, 313

Penny, L. R. 1996, ApJ, 463, 737

Penny, L. R., Gies, D. R., & Baguolo, W. G. Jr. 1996, ApJ, 460, 906

Porquet, D., Mewe, R., Dubau, J., Raassen, A. J. J., & Kaastra, J. S. 2001, A&A, 376, 1113

Sana, H., Hensberge, H., Rauw, G., & Gosset, E. 2003, A&A, 405, 1063

Sana, H., Rauw, G., Naze, Y., Gosset, E., & Vreux, J.-M. 2006, MNRAS, 372, 664

Sana, H., Stevens, I. R., Gosset, E., Rauw, G., & Vreux, J.-M. 2004, MNRAS, 350, 809

Simón-Díaz, S., & Herrero, A. 2007, A&A, 468, 1063

Singh, K. P., White, N. E., & Drake, S. A. 1996, ApJ, 456, 766

van Genderen, A. M., et al. 1989, A&AS, 79, 263

Walborn, N. R. 1972, AI, 77, 312

Walborn, N. R. 1973, AI, 78, 1067

Walborn, N. R. 2007, Multiwavelength Systematics of OB Spectra, in UV Astronomy: Stars from Birth to Death, ed. A. I. Gómez de Castro, & M. Barstow (Universidad Complutense de Madrid), p 45

Walborn, N. R., & Fitzpatrick, E. L. 1990, PASP, 102, 379

Walborn, N. R., Howarth, I. D., Herrero, A., & Lennon, D. J. 2003, ApJ, 600, 1025

Walborn, N. R., Lennon, D. J., Heap, S. R., Lindler, D. J., Smith, L. J., Evans, C. J., & Parker, J. Wm. 2000, PASP, 112, 1243

Walborn, N. R., et al. 2004, ApJ, 617, L61

Westerlund, B. 1961, Ark. Astron., 2, 467

Zhekov, S. A., & Palla, F. 2007, MNRAS, 382, 1124