Performance of pyrosequencing versus MALDI-TOF MS in bacteria identification in chronic lung disease

Lucie Navrátilová1,2*, Petra Procházková1, Jan Bardoň1,3, Radko Novotný1, Martin Zápalka4, Petr Jakubec5 Jaromír Zatloukal5, Vítězslav Kolek5, František Kopřiva4, Pavla Flodrová7, Vladislav Raclavský1,6

1Department of Microbiology, Faculty of Medicine and Dentistry, Palacký University Olomouc, Hnevotinska 3, 779 00 Olomouc, Czech Republic
2Laboratory of Growth Regulators, Palacký University Olomouc & Institute of Experimental Botany AS CR, Slechtitelsu 27, 783 71 Olomouc, Czech Republic
3State Veterinary Institute Olomouc, Jakoubka ze Stribra 1, 779 00 Olomouc, Czech Republic
4Department of Pediatrics, University Hospital Olomouc, I. P. Pavlova 6, Olomouc, Czech Republic
5Department of Respiratory Medicine, University Hospital Olomouc, I. P. Pavlova 6, Olomouc, Czech Republic
6Institute of Molecular and Translational Medicine, Hnevotinska 5, Olomouc, Czech Republic
7Department of Clinical and Molecular Pathology, Faculty of Medicine and Dentistry, Palacký University Olomouc, Hnevotinska 3, 779 00 Olomouc, Czech Republic

*Corresponding author: L. Navrátilová, Email: lucie.navratilova@upol.cz

Competing interests: The authors have declared that no competing interests exist.

Received April 19, 2016; Revision received August 1, 2016; Accepted August 5, 2016; Published August 13, 2016

ABSTRACT

Rapid identification of the etiological agent in bacterial infection is necessary for correct diagnosis and appropriate therapy. In general, identification of pure cultures of bacteria using conventional phenotyping techniques requires 4-24 hours. Recently available new molecular technologies offer the potential of same day species identification once pure culture is available. Our aim was to evaluate the performance of rDNA V1 hypervariable region pyrosequencing, and the whole cell MALDI-TOF MS protein profiling in routine species identification. During the period from June 2012 to June 2014, 1,140 pure culture isolates were recovered from 402 samples from 126 patients suffering cystic fibrosis, chronic obstructive pulmonary disease or bronchiectasis. All the isolates were subjected to species identification by both techniques. Unfortunately, pyrosequencing was able to reach the species level in 43.2% of isolates only, whereas MALDI-TOF was clearly superior with 96.8% respectively. The overall sensitivity values also clearly underlined the superiority of MALDI-TOF MS with 96.8% compared to 85.1% achieved by pyrosequencing. Generally, MALDI-TOF MS turned out to be the best suitable technique in routine bacterial identification, whereas pyrosequencing could be recommended as the method of choice particularly in situations where MALDI-TOF MS fails to identify rare species.

Keywords: MALDI-TOF MS, pyrosequencing, 16S rDNA, Cystic fibrosis, Chronic obstructive pulmonary disease

INTRODUCTION

For clinical practice it is crucial to define the infectious agent as quickly and precisely as possible. Especially severe and rapid progressive diseases such as sepsis with high mortality rates need to be diagnosed properly and without latency. Molecular techniques based on direct detection of a particular gene using typically PCR combined with probe hybridization or sequencing may solve this extremely important medical problem [1,2,3]. However, conventional routine bacterial identification still relies on cultivation followed by identification of pure culture in most of the other samples. The rationale of this is not only the economy and high throughput of cultivation, but also frequent need of phenotypic antibiotic susceptibility testing on pure culture. Therefore, species identification techniques that are universally applicable on pure cultures of a wide spectrum of bacteria will most probably continue to prevail in routine diagnostic laboratories in the foreseeable future. In the recent years, whole cell MALDI-TOF MS profiling has been implemented in most diagnostic laboratories [2]. Next-generation sequencing that offers reduced costs compared to traditional Sanger sequencing, represents another potentially broadly applicable alternative.

The matrix assisted laser desorption/ionization-time of flight mass spectrometry (MALDI-TOF MS) identification is based on individual characteristic patterns of highly abundant proteins that are found in all microorganisms. The detected pattern is being matched with an extensive database of known microbial species. MALDI-TOF MS has been used to identify bacteria in various samples such as blood, wound swabs, and sputum. This technology has been increasingly used in clinical microbiology laboratories, and has become a valuable tool for the rapid identification of bacterial pathogens [4,5].

INTRODUCTION

How to cite this article: Navrátilová Ł, Procházková P, Bardoń J, Novotný R, Zápalka M, Jakubec P, Zatloukal J, Kolek V, Kopřiva F, Flodrová P, Raclavský V. Performance of pyrosequencing versus MALDI-TOF MS in bacteria identification in chronic lung disease. J Biol Methods 2016;3(4):e52. DOI: 10.14440/jbm.2016.125
open database, which allows for reliable and accurate identification of the particular microorganism [4,5].

The pyrosequencing is a powerful sequencing and quantification platform for microbial identification, which could namely be positively influenced by proper and adequate selection of the individual examined DNA region [6,7]. For economic reasons, however, not more than 1 or 2 regions can be sequenced to keep costs competitive compared to MALDI-TOF MS. The aim of this study was to evaluate the performance of a single pyrosequencing reaction targeting the V1 hypervariable region of the 16S rRNA gene in quasi-routine settings, compared to routine MALDI-TOF MS protein profiling.

MATERIALS AND METHODS

During the period from June 2012 to June 2014, 402 respiratory pathways samples obtained from 126 patients suffering chronic lung disease (cystic fibrosis, bronchiectasis and chronic obstructive pulmonary disease) were collected. Primary cultivation was done on Columbia blood agar (Oxoid) and Haemophilus selective agar (Oxoid) at 37°C in 5% CO₂ atmosphere; on McKay agar (Oxoid) at 37°C under anaerobic condition (80% N₂, 10% H₂, 10% CO₂); and on Burkholderia cepacia agar (Oxoid) at 30°C in ambient air, yielding 1.140 clinical isolates of bacteria altogether. The obtained isolates were accompanied by 8 reference strains (Burkholderia multivorans LMG 13010, B. cenocepacia LMG 16656, Enterococcus faecalis CCM 4224, Escherichia coli CCM 3954, Pseudomonas aeruginosa CCM 3955, Staphylococcus aureus CCM 3953 and CCM 4223, Streptococcus mitis CCM 7411 and S. sanguinis CCM 4047) for functional verification of the methods.

Whole cell MALDI-TOF MS protein profiling was performed on a Microflex LT/SH system (Bruker, Germany) with HCCA matrix (α-Cyano-4-hydroxycinnamic acid, Sigma-Aldrich). A MALDI Biotype software was used for species identification in accordance with manufacturer’s instruction. Template DNA was extracted using Patho-genFree DNA PCR Kit (GeneProof, Czech Republic) according to the manufacturer’s instructions. The V1 hypervariable region of the 16S rDNA was amplified using primers bio-pBR5’-SE and pBR-V1.AS [7]. Briefly, the 25 µl reaction mixture consisted of 12.5 µl 2 × PyroMark PCR master mix (Qiagen, Germany), 1 µl of LCGreen dye 10 × (final concentration 0.4 ×, Idaho Technology, USA), 0.1 µl of forward (bio-pBR5’-SE) and reverse primers (pBR-V1.AS, 0.4 µmol/l final concentration each) and 2 µl of DNA template. PCR was performed in a LightCycler 96 instrument under the following cycling parameters: initial denaturation at 95°C for 15 min; 45 cycles of 94°C for 30 s, 56°C for 30 s and 72°C for 30 s; followed by final extension at 72°C for 10 min. Pyrosequencing was performed on a PyroMark Q96 ID instrument (Qiagen, Germany) using the PyroMark Gold Q96 Reagents (Qiagen, Germany) following manufacturer’s instructions. Briefly, 20 µl of amplified DNA products were mixed with 3 µl Streptavidin sepharose beads (GE Healthcare Life Sciences, Sweden), 40 µl of binding buffer (Qiagen, Germany) and 17 µl of deionized water, followed by shaking at 1,400 rpm for at least 10 min. Then, the immobilized complex of PCR products-Streptavidin sepharose beads was captured using a Vacuum Prep Workstation (Qiagen, Germany). Single strand purification was achieved by successive washing with 70% ethanol, denaturation buffer (Qiagen, Germany) and washing buffer (Qiagen, Germany), for 10 s each. Through this step, the non-biotinylated strand was dissociated and discarded. The sepharose beads with biotinylated strand were then released into a 96-well plate that was pre-filled with 40 µl of sequencing primer diluted in annealing buffer at 0.4 mmol/l final concentration. The plate was incubated at 80°C for 2 min, followed by slow cooling to room temperature. Then the plate was loaded into a PyroMark Q96 ID system instrument with the PyroMark Q96 application software 1.0 (Qiagen, Germany) set on 25 cycles of ATCG dispenses. The resulting sequences were compared with sequences in the Genbank database using BLAST tool provided on-line by NIH (http://blast.ncbi.nlm.nih.gov/Blast.cgi), Basic Local Alignment Search Tool.

Performance of the two identification techniques was evaluated using three parameters. Identification depth was calculated as the percentage of isolates identified to species level by a particular technique (isolates identified to species level/total number of isolates). Sensitivity was calculated as the percentage of unambiguous results of identification (either species or genus), i.e. number of unambiguous identification results (species or genus level) divided by the total number of isolates tested by particular technique. Specificity was calculated as the percentage of isolates where incorrect identification was excluded (no incorrect species or genus identification was issued by a particular technique). The correctness of the identification was indicated by the MALDI Biotyper score and e-value of pyrosequencing.

RESULTS AND DISCUSSION

Results of identification level achieved by the tested techniques are summarized in Table 1. We were not able to identify 8 clinical isolates by either of the techniques. The specificity of both methods reached 100%, i.e. if any of them issued a result, it was never incorrect. However, their performance in terms of identification depth was fairly different. Pyrosequencing was able to reach the species level in 43.2% of isolates only, whereas MALDI-TOF was clearly superior by achieving species level identification in 96.8% of the isolates tested. The overall sensitivity values also clearly underlined the superiority of MALDI-TOF MS with 96.8% compared to 85.1% achieved by pyrosequencing (some of the isolates were identified neither to species, nor genus level, just higher taxa, which was evaluated as insufficient and thus decreased the sensitivity value). Obviously, variability of the initial part of V1 region in the 16S rDNA detected by pyrosequencing is not sufficient enough for broad-range identification of several bacterial species. In our study, length of successfully sequenced portion of the V1 region varied extensively, namely between 9 and 144 nucleotides with median of 48 nucleotides. Then, insufficient depth and sensitivity of identification should be due to the shorter read length, as reported also by others [8,9,10]. According to some authors, combined pyrosequencing results from the regions V1 and V3 or V6 could be more beneficial [4-7,10]. Unfortunately, this would further increase the running costs of pyrosequencing compared to MALDI-TOF MS in routine use.

On the other hand, due to an extensive database of DNA sequences available in GenBank, pyrosequencing proved to be more suitable for the identification of rare species not yet included in the commercial MALDI-TOF MS database. For example, MALDI-TOF MS completely failed to identify Asaia bogorensis, which was successfully and unequivocally achieved by pyrosequencing. Notably, this species was recovered on Burkholderia cepacia selective agar, indicating possible initial infection by a serious pathogen in cystic fibrosis settings. When
MALDI-TOF identification fails in such case, correct identification should be achieved without unnecessary delay. Then, pyrosequencing represents a rapid and economic alternative to full Sanger sequencing. Interestingly, Asaia sp. was recently described to contaminate and decay fruit-flavoured drinks [11]. Most probably, this species just transiently colonized patients’ respiratory pathways after drinking spoiled beverages, because later, it was never recovered again. Thus, pyrosequencing resolved this puzzling culture result without the need to start a Burkholderia sp. eradication attempt. Further, Variovorax sp. that was already detected in hospital environment in CF patient samples [12] also posed an insurmountable problem for MALDI-TOF, whereas V1 pyrosequencing was able to identify the genus. MALDI-TOF also performed inferior to pyrosequencing in Granulicatella adiacens, where 6 of the 13 strains were not identified by MALDI-TOF MS to species level, whereas all of them were successfully identified by V1 pyrosequencing. Similarly, one Staphylococcus pasteuri strain, and, more importantly, one Pseudomonas aeruginosa strain were not identified to species level by MALDI-TOF MS in contrast to V1 pyrosequencing.

Table 1. List of species and results of identification by MALDI-TOF MS and pyrosequencing.

Species	Number of isolates	Highest level of identification achieved
Acinetobacter baumannii, calcoaceticus, pittii, ursingii	6	species, genus
Actinomyces oris	5	species, species
Aggregatibacter aphrophilus, segnis	12	species, group 1*
Achromobacter ruhlandii, spanius, xylosoxidans	12	species, genus
Asaia bogorensis	1	none, species
Bacillus licheniformis	2	species, none
Bacillus pumilus	3	species, species
Bordetella bronchiseptica	3	species, genus
Brevibacterium casei	2	species, none
Burkholderia cepacia complex (B. cenocepacia, cepacia sensu stricto,	28	species, complex
multitovans)		
Citrobacter freundii	2	species, species
Corynebacterium amycolatum, aurimucosum, durum, matrochotii, propinquum, pseudodiphteriticum, striatum	20	species, genus
Cupriavidus metallidurans	4	species, species
Delftia acidovorans	2	species, species
Eikenella corrodens	1	species, species
Enterobacter asburiae, aerogenes, cloaceae, kobei, ludwigii	11	species, group 2**
Enterococcus faecalis	5	species, species
Erwinia persicina	1	species, genus
Escherichia coli	4	species, species
Gemella haemolysans, sanguinis	16	species, none
Granulicatella adiacens	13	species (7)/none (6), species
Haemophilus haemolyticus, influenzae	83	species, group 1*
Haemophilus parahaemolyticus	1	species, none
Haemophilus parainfluenza	127	species, species
Haemophilus pittmaniae	1	species, genus
Chryseobacterium hominis	1	species, none
Kingella denitrificans	5	species, species
Table 1 (Continued).

Species	Number of isolates	Highest level of identification achieved
	MALDI-TOF MS	pyrosequencing
Lactobacillus casei, paracasei	8	species
Lactobacillus fermentum, plantarum, rhamnosus, salivarius	16	species
Lactobacillus gasseri	1	species
Lactobacillus kimchii	1	none
Lactococcus lactis	1	species
Micrococcus luteus	1	species
Moraxella catarrhalis, liquefaciens, nonliquefaciens	15	species
Neisseria flavescens, macacae	4	species
Neisseria oralis	1	none
Ochrobactrum tritici	2	species
Pannonibacter phragmitetus	2	species
Proteus mirabilis, vulgaris	7	species
Pseudomonas aeruginosa	127	species
Pseudomonas grimontii, mendocina, veronii	16	species
Ralstonia pickettii	3	species
Rhizobium radiobacter	1	species
Rhodococcus kroppenstedtii	1	species
Rothia aeria	8	species
Rothia dentocariosa, mucilaginosa	26	species
Serratia marcescens	3	species
Staphylococcus aureus, cohnii, epidermidis, hominis	70	species
Staphylococcus pasteuri	1	none
Stenotrophomonas maltophilia	19	species
Streptococcus agalactiae, infantis, massiliensis, oligofermentans, parasanguinis	51	species
Streptococcus anginosus, constellatus, dysgalactiae, gordonii, intermedius, mitis, oralis, peroris, pneumoniae, pyogenes, salivarius, sanguinis, vestibularis	351	species
Streptococcus mutans	5	species
Streptomyces scabiei, griseus	2	species
Variovorax	2	none
Not identified	8	none

*Group 1 included genera Aggregatibacter, Haemophilus (haemolyticus and influenzae) and Proteus. **Group 2 included genera Enterobacter and Klebsiella.
CONCLUSIONS

Generally, MALDI-TOF MS turned out to be the best suitable technique in routine bacterial identification for its easy and economic performance and low labour costs. In contrast, V1 region pyrosequencing failed as general routine technique, although it offered an economic opportunity for rare species identification not yet included in the database of protein profiles. With time, on the other hand, extended length reading at lower costs can be expected due to technical improvements in future, which may improve the performance and application potential of pyrosequencing. For the moment, however, pyrosequencing could be recommended as the method of choice only in situations where MALDI-TOF MS goes wrong.

Acknowledgment

This work was supported by IGA MZ CR (NT/13560), by RVO (61989592), by IGA LF UP (LF_2015_035), and by Ministry of Education, Youth and Sports (LO1304).

References

1. Bourbeau PP, Ledeboer NA (2013) Automation in clinical microbiology. J Clin Microbiol 51: 1658-1665. doi: 10.1128/JCM.00301-13. PMID: 23515547
2. Santos AF, Cayô R, Schandert L, Gales AC (2013) Evaluation of MALDI-TOF MS in the microbiology laboratory. J Bras Patol Med Lab 49:191-197. doi: 10.1590/S1676-24442013000300006
3. Danai P, Martin GS (2005) Epidemiology of sepsis: recent advances. Curr Infect Dis Rep 7: 329-334. PMID: 16107228
4. Seng P, Drancourt M, Gouriet F, La Scola B, Fournier P, et al. (2009) Ongoing revolution in bacteriology: routine identification of bacteria by matrix-assisted laser desorption ionization time-of-flight mass spectrometry. Clin Infect Dis 49: 543-551. doi: 10.1086/600885. PMID: 19583519
5. Marvin LF, Roberts MA, Fay LB (2003) Matrix-assisted laser desorption/ ionization time-of-flight mass spectrometry in clinical chemistry. Clin Chim Acta 337: 11-21. PMID: 14568176
6. Luna RA, Fasciano LR, Jones SC, Boyanton Jr BL, Ton TT, et al. (2007) DNA pyrosequencing-based bacterial pathogen identification in a pediatric hospital setting. J Clin Microbiol 45: 2985-2992. doi: 10.1128/JCM.00630-07. PMID: 17652476
7. Jonasson J, Olofsson M, Monstein H (2002) Classification, identification and subtyping of bacteria based on pyrosequencing and signature matching of 16S rDNA fragments. APMIS 110: 263-272. PMID: 12076280
8. Motoshima M, Yanagihara K, Morinaga Y, Matsuda J, Hasegawa H, et al. (2012) Identification of bacteria directly from positive blood culture samples by DNA pyrosequencing of the 16S rRNA gene. J Med Microbiol 61: 1556-1562. doi: 10.1099/jmm.0.049163-0. PMID: 22899780
9. Gadsby NJ, Onen A, Phillips S-A, Tysall L, Breusch SJ, et al. (2011) Evaluation of Real-Time 16S rDNA PCR and Pyrosequencing for Routine Identification of Bacteria in Joint Fluid and Tissue Specimens. OJMM 1:1-6. doi:10.4236/ ojmm.2011.111001
10. Tewari D, Cieply S, Livengood J (2011) Identification of bacteria recovered from animals using the 16S ribosomal RNA gene with pyrosequencing and Sanger sequencing. J Vet Diagn Invest 23: 1104-1108. doi: 10.1177/1040638711425583. PMID: 22362789
11. Horsakova I, Voldrich M, Cerovsky M, Sedlackova P, Sicnerova P, et al. (2009) Asaia sp. as a bacterium decaying the packaged stil fruit beverages. Czech J Food Sci 27: 362-36.
12. Voronina OL, Kunda MS, Ryzhova NN, Aksenova EI, Semenov AN, et al. (2015) The Variability of the Order Burkholderiales Representatives in the Healthcare Units. Biomed Res Int 2015: 680210. doi: 10.1155/2015/680210. PMID: 26114111