Proving Unsolvability of Set Agreement Task with Epistemic μ-Calculus

Susumu Nishimura
susumu@math.kyoto-u.ac.jp
Dept. Math, Kyoto University

GETCO 2022 — May 30-Jun 3, 2022, Paris
Two methods for task unsolvability

 отметить

❖ Topological method
 * Model: Simplicial complexes.
 * Strategy: Find a breach in topological invariant.
 * Method: Tools from combinatorial topology.

❖ Logical method [Goubault-Ledent-Rajsbaum2021]
 * Model: (Simplicial) Kripke models.
 * Strategy: Find a logic formula (logical obstruction) that is inconsistent between the models.
 * Method: Epistemic logic reasoning
Unsolvability of 1-set agreement (Topology)

I

$P = IS$ (standard chromatic subdivision)

T

simplicial map μ

immediate snapshot
Unsolvability of 1-set agreement (Topology)

General case argues higher dimensional connectivity, resorting to tools from combinatorial topology (Sperner’s lemma).

* General case argues higher dimensional connectivity, resorting to tools from combinatorial topology (Sperner’s lemma).
Two methods for task unsolvability

- **Topological method**
 - Model: Simplicial complexes.
 - Strategy: Find a breach in topological invariant.
 - Method: Tools from combinatorial topology.

- **Logical method** [Goubault-Ledent-Rajsbaum2021]
 - Model: (Simplicial) Kripke models.
 - Strategy: Find a logic formula (called logical obstruction) that is inconsistent between the models.
 - Method: Epistemic logic reasoning
Task solvability in simplicial Kripke model

Every map \(f : I \rightarrow O \) over simplicial complexes induces a product update model \(I[O] \), a binary relation encoding of \(f \).

Every product update model \(I[O] \) is a simplicial complex, which induces a simplicial Kripke model for epistemic reasoning.
If there exists a positive epistemic formula φ and facet $X \in I[P]$ such that, for any δ: $I[P] \rightarrow I[T]$, $I[P], X \not\models \varphi$ but $I[T], \delta(X) \models \varphi$, then the task is not solvable (i.e., there is no δ).
Pros and cons of logical method

😊 Just find a logical obstruction φ to show unsolvability.

😊 φ accounts for the reason of unsolvability in the formal language of epistemic logic.

😢 Limited instances of logical obstructions known to date.

* 1-set agreement & approximate agreement
 [Goubault-Ledent-Rajsbaum2021]

* k-set agreement ($k>1$) [Nishida2020] (w/ distributed knowledge),
 later generalized for adversary model [Yagi-Nishimura2020]
 ✬ This works only for single-round protocol.

* General logical obstruction in an extended simplicial model
 [vanDitramsche-Goubault-Lazic-Ledent-Rajsbaum2021]
 ✬ The general formula involves no epistemic contents and
 provides no hints for the reason of unsolvability.
Goal of this talk

- Find an epistemic formula Φ such that
 - Φ is a logical obstruction to \textit{k-set agreement}.
 - Φ contains epistemic contents that \textit{account for the reason of unsolvability}.
 - Φ works for \textit{multi-round protocols} (where processes are allowed to communicate arbitrarily many times).
Our strategy

❖ To find inconsistency between simplicial Kripke models,
 ✶ Rework on “Sperner’s lemma” to rephrase it as a statement on higher dimensional connectivity.

❖ To express the inconsistency in the language of logic,
 ✶ Use **epistemic μ-calculus**, which extends epistemic logic with:
 ✶ **Distributed knowledge**, a modal operator for higher-dimensional connectivity, and
 ✶ **Propositional greatest fixpoint** for transitive closure.
Sperner’s lemma as connectivity
Sperner’s lemma. Any subdivision of a simplex with Sperner coloring has odd number of fully-colored facets (maximal simplexes).
Proof of Sperner’s lemma (induction on dim.)

dim. = 2
Proof of Sperner’s lemma (induction on dim.)

dim. = 2
Proof of Sperner’s lemma (induction on dim.)

dim. = 2
Proof of Sperner’s lemma (induction on dim.)

- Each graph node other than special node is of degree 1 or 2.
- A graph node is of odd degree iff it is a fully-colored or a special node (I.H.)

\[
\text{dim.}=2 \quad \text{even}
\]

\[
\text{(\# of fully-colored nodes)} = \text{(\# of nodes of odd degree)} - (1 \text{ special node}) = \text{odd}
\]
Proof of Sperner’s lemma (all dimensions)

dim.=2

dim.=1

dim.=0
Sperner’s lemma in a single unified graph

Traversing from the initial node of dimension 0, we eventually reach a fully-colored facet.
If there were no fully-colored facet, there would be a cycle-free, ever-lasting path in the graph.
Logical obstruction in epistemic μ-calculus
Epistemic logic for DC

Epistemic logic = Propositional modal logic for knowledge higher dimensional connectivity

* $K_a \phi$ — Process a knows ϕ.
* $D_A \phi$ — The collection A of processes know ϕ.

+ $M, X \models D_A \phi$ iff $\forall Y \in W.(X \sim_A Y \Rightarrow M, Y \models \phi)$

where $X \sim_A Y$ iff $X \sim_a Y$ for every $a \in A$.

\[M, X \models D_{\{\text{●, ●}\}} p \]
Epistemic logic for DC

Epistemic logic = Propositional modal logic for knowledge
higher dimensional connectivity

* $K_a \varphi$ — Process a knows φ.

* $D_A \varphi$ — The collection A of processes know φ.

 + $M, X \models D_A \varphi$ iff $\forall Y \in W. (X \sim_A Y \Rightarrow M, Y \models \varphi)$
 where $X \sim_A Y$ iff $X \sim_a Y$ for every $a \in A$.

$p\neg p$

$M, X \models D_{\{p\}} p$
Epistemic μ-calculus for DC

\[\varphi ::= p \mid \neg p \mid \varphi \lor \varphi \mid \varphi \land \varphi \mid D_A \varphi \mid \nu Z. \varphi \]

* Distributed knowledge \(D_A \varphi \) for higher dimensional connectivity.

* Greatest fixpoint \(\nu Z. \varphi \) for transitive closure of connectivity
 * greatest solution for \(Z = \varphi \) (i.e., \(\nu Z. \varphi \Leftrightarrow \varphi[\nu Z. \varphi/Z] \))

* Formulas are positive.
Logical obstruction in extended simplicial model

- Extension with atomic propositions on output values.

\([\text{vanDitramsch-Goubault-Lazic-Ledent-Rajsbaum2021}]\)

Process \(a\) has input \(i\)
Process \(a\) decides output \(i\)

\[p ::= \text{input}^i_a \mid \text{decide}^i_a \quad (a \in \Pi, i \in \text{Value}) \]

If there exists a positive epistemic formula \(\varphi\) and a facet
\(X \in I[IS^m]\) such that, for any \(\delta: I[SA_k] \rightarrow I[IS^m]\),

\[I[SA_k], \delta(X) \models \varphi \quad \text{but} \quad I[IS^m]_\delta, X \not\models \varphi, \]

then \(k\)-set agreement task is not solvable by \(m\)-round protocol.

Logical obstruction

extended models

\(k\)-set agreement

\(m\) rounds
The logical obstruction to k-set agreement

Single output per each process

\[\Phi_k = \nu Z. \left[\text{OFUN} \land \text{VALID} \land \bigwedge_{\emptyset \subset A \subseteq \Pi} (\text{DEC}_A \Rightarrow D_A (\text{KNOW} \land \text{AGREE}_k \land Z)) \right] \]

Validity of agreement

A pair of facets agree on the output of processes that they share.

Collection \(A \) of processes decide outputs from the values \(\{0, \ldots, |A|-1\} \).

k-set agreement

\text{OFUN} = \bigwedge_{a \in \Pi} \left(\bigwedge_{d,e \in \Pi, d \neq e} \neg (\text{decide}_a^d \land \text{decide}_a^e) \land \bigvee_{d \in \Pi} \text{decide}_a^d \right)

\text{VALID} = \bigwedge_{a \in \Pi} \bigwedge_{d \in \Pi} (\text{decide}_a^d \Rightarrow \bigvee_{b \in \Pi} \text{input}_b^d)

\text{AGREE}_k = \bigvee_{A \subseteq \Pi, 0 < |A| \leq k} \bigwedge_{a \in \Pi} \bigvee_{d \in A} \text{decide}_a^d

\text{KNOW} = \bigwedge_{A \subseteq \Pi} \bigwedge_{a \in A} \bigwedge_{d \in \Pi} (\text{decide}_a^d \Rightarrow D_A \text{decide}_a^d)

\text{DEC}_A = \bigwedge_{d=0}^{|A|-1} \bigvee_{a \in A} \text{decide}_a^d
The logical obstruction to k-set agreement

- $I[SA_k], \delta(X) \models \Phi_k$
 - Obviously holds because OFUN, VALID, etc. are all valid.

- $I[IS^m], X \not\models \Phi_k$
 - $I[IS^m], X \models \Phi_k$ implies a cycle-free ever-lasting path such as:
Combinatorial presentation of facets

- Facet in $I[IS]$ (1st round) = ordered set partition
 [Kozlov2012]

- Facet in $I[IS^m]$ (m-th round) = sequence of m ordered set partitions

1st round

2nd round

\[
\begin{align*}
\langle 2,0,1 \rangle & : (2,0,1) \\
\langle 2,1,0 \rangle & : (2,1,0) \\
\langle 0,2,1 \rangle & : (0,2,1) \\
\langle 0,1,2 \rangle & : (0,1,2) \\
\langle 1,2,0 \rangle & : (1,2,0) \\
\langle 1,1,2 \rangle & : (1,1,2) \\
\langle 0,1,2 \rangle & : (0,1,2) \\
\langle 0,0,2 \rangle & : (0,0,2) \\
\langle 1,0,2 \rangle & : (1,0,2) \\
\langle 1,1,2 \rangle & : (1,1,2)
\end{align*}
\]
Unsolvability for k-concurrency submodel
A 2-round immediate snapshot (IS^2) where simultaneous execution is restricted up to k processes.

- 2-concurrency in 3-process system

Theorem [Gafni-He-Kuznetsov-Rieutord2016] ℓ-set agreement task is solvable by k-concurrency model iff $\ell \geq k$.

White facets are excluded because of high congestion.
Take Φ_ℓ as the logical obstruction for ℓ-set agreement.

E.g., in 2-concurrency model, Φ_1 is a logical obstruction to 1-set agreement, because the model includes all the facets relevant to the proof.
Summary and Future Topics
Summary

Unsolvability of k-set agreement task in logical method:

- Formula of epistemic μ-calculus as an account for the reason of unsolvability.

- Sperner’s lemma as a statement for higher-dimensional connectivity.

- Greatest fixpoint for expressing long-range, higher-dimensional connectivity.
Future topics

◉ More instances!

◉ From topology to logic
 * Sperner’s lemma
 → higher-dimensional connectivity as a greatest fixpoint in epistemic μ-calculus

 * Others?? (Index lemma, Nerve lemma, ...)

Thank you for listening.

Manuscript on arXiv:
http://arxiv.org/abs/2205.06452
É. Goubault, J. Ledent and S. Rajsbaum, “A simplicial complex model for dynamic epistemic logic to study distributed task computability”, Inf. Cmpt. 278, 2021. (An earlier version appeared in GandALF 2018).

Y. Nishida, “Impossibility of k-set agreement via dynamic epistemic logic”, RIMS Kôkyûroku 2188, 2020, pp. 96–105.

H. van Ditmarsch, É. Goubault, M. Lazic, J. Ledent, and S. Rajsbaum, “A dynamic epistemic logic analysis of equality negation and other epistemic covering tasks”, J. of Logical and Algebraic Methods in Programming 121 (2021)

E. Gafni, Y. He, P. Kuznetsov and T. Rieutord, “Read-write memory and k-set consensus as an affine task”, OPODIS 2016.

D. Kozlov, “Chromatic subdivision of a simplicial complex”, Homology, Homotopy and Applications 14 (2012).
Epistemic logic

Epistemic logic = Propositional logic with modality $K_a \varphi$

* $K_a \varphi$ Process a knows φ.

Kripke model semantics $M = (W, \sim, L)$

* W is the set of epistemic states (possible worlds).
* $L(X)$ gives the set of true propositions in $X \in W$.
* \sim_a (for each $a \in \Pi$) is an equivalence relation over W.

\[M, X \models K_a \varphi \iff \forall Y \in W. (X \sim_a Y \Rightarrow M, Y \models \varphi) \]

Every complex C gives rise to a simplicial Kripke model:

* W is the set of facets in C.
* $X \sim_a Y$ iff $X \sim_a Y$ share a common vertex of color a.
Simplicial Kripke model semantics

- Simplicial Kripke model $M = (W, \sim, L)$
 - W is the set of facets (maximal simplexes) in a chromatic simplicial complex.
 - $L(X)$ gives the set of true props. in $X \in W$.
 - $\sim_a (a \in \Pi)$ is an equivalence relation over W defined by:
 \[X \sim_a Y \iff X \text{ and } Y \text{ are simplexes sharing a common vertex of color } a. \]

- Semantics of knowledge modality $K_a \varphi$
 - $M, X \models K_a \varphi$ iff $\forall Y \in W. (X \sim_a Y \Rightarrow M, Y \models \varphi)$
There exists no δ that makes the following diagram commute (hence the task is not solvable),

If there exists a *positive* epistemic formula φ and facet $X \in C$ such that $I[T], \delta(X) \Vdash \varphi$ but $I[P], X \nvdash \varphi.z$

Knowledge gain theorem. Suppose $C \xrightarrow{\delta} D$, $X \in C$, and φ is a *positive* epistemic formula. Then, $D, \delta(X) \Vdash \varphi$ implies $C, X \vdash \varphi$.

 logical obstruction
If there exists a positive epistemic formula φ and facet $X \in I[IS^m]$ such that $I[SA_k], \delta(X) \models \varphi$ but $I[IS^m]_\delta, X \not\models \varphi$, then k-set agreement task is not solvable by m-round protocol.
k-set agreement task

Input Each of \((n+1)\) processes has its private input value.

Output Each process decides an output value satisfying:

* **Validity.** Each process decides a value out of \((n+1)\) inputs.
* **Agreement.** Processes decide at most \(k\) different values.

A 2-set agreement:
k-set agreement task

Input Each of \((n+1)\) processes has its private input value.

Output Each process decides an output value satisfying:

- **Validity.** Each process decides a value out of \((n+1)\) inputs.
- **Agreement.** Processes decide at most \(k\) different values.

A 2-set agreement:

Fact. k-set agreement task is *not solvable* by a (wait-free, asynchronous) system of \(n+1\) processes, unless \(k \geq n+1\).
Topological model for DC

- Chromatic simplex of dimension n = system state of $(n+1)$ processes
- Chromatic simplicial complex = nondeterministic set of states
- Task solvability (topological)

Vertex = color×value

$\exists \mu \in T$ for every simplex $X \in P$.

Color-preserving vertex-to-vertex mapping.
Common knowledge as fixpoint

\[C_A P \]

\[\iff \nu Z. \left(P \land \bigwedge_{a \in A} K_a Z \right) \]

\[\iff P \land \bigwedge_{a \in A} K_a \left(\nu X. \left(P \land \bigwedge_{a \in A} K_a X \right) \right) \]

\[\iff P \land \bigwedge_{a \in A} K_a \left(P \land \bigwedge_{a \in A} K_a \left(P \land \bigwedge_{a \in A} K_a \cdots \right) \right) \]