BRIEF DEFINITIVE REPORT

JAK2^{V617F} myeloproliferative neoplasm eradication by a novel interferon/arsenic therapy involves PML

Tracy Dagher, Nabih Maslah, Valérie Edmond, Bruno Cassinat, William Vainchenker, Stéphane Giraudier, Florence Pasquier, Emmanuel Véregge, Michiko Niwa-Kawakita, Valérie Lallemant-Breitenbach, Isabelle Plé, Jean-Jacques Kiladjian, Jean-Luc Villeval, and Hugues de Thé

Interferon α (IFNα) is used to treat JAK2^{V617F}-driven myeloproliferative neoplasms (MPNs) but rarely clears the disease. We investigated the IFNα mechanism of action focusing on PML, an interferon target and key senescence gene whose targeting by arsenic trioxide (ATO) drives eradication of acute promyelocytic leukemia. ATO sharply potentiated IFNα-induced growth suppression of JAK2^{V617F} patient or mouse hematopoietic progenitors, which required PML and was associated with features of senescence. In a mouse MPN model, combining ATO with IFNα enhanced and accelerated responses, eradicating MPN in most mice by targeting disease-initiating cells. These results predict potent clinical efficacy of the IFNα+ATO combination in patients and identify PML as a major effector of therapy, even in malignancies with an intact PML gene.

Introduction

Myeloproliferative neoplasms (MPNs) are chronic stem cell diseases characterized by enhanced production of differentiated blood cells. Most MPN cases are characterized by mutations in JAK2 that result in the expression of the constitutive active mutant protein kinase JAK2^{V617F} and its downstream cytokine signaling pathways. The JAK2^{V617F} mutation may yield polycythemia vera (PV), essential thrombocythemia, or primary myelofibrosis (MF), the three diseases that constitute classic BCR-ABL-negative MPN. PV, essential thrombocythemia, and MF share common complications, including thrombosis, hemorrhage, and transformation to acute myeloid leukemia (Pasquier et al., 2014; Vainchenker and Kralovics, 2017). Animal models with hematopoietic cells expressing JAK2^{V617F} recapitulate many aspects of the human disease, in particular a PV-like disorder evolving into MF. These animal models have allowed exploration of the biology of JAK2^{V617F} and potential therapeutic approaches (Hasan et al., 2013; Mullally et al., 2013). Apart from phlebotomy in PV, current therapeutic approaches in MPN are based on cytoreductive therapies, JAK2 inhibitors, and IFNα (Spivak, 2019). Although the JAK inhibitor ruxolitinib provides some clinical benefits to MPN patients, it has no significant effect on disease progression and on the JAK2^{V617F} clone. IFNα can target the JAK2^{V617F} clone and yield complete molecular response in 8–20% of patients (Kiladjian et al., 2008; Verger et al., 2018). Yet the molecular mechanisms underlying IFNα therapy remain incompletely understood, precluding improvement of its efficacy (Austin et al., 2020; Hasan et al., 2013; Kiladjian et al., 2016; Mullally et al., 2013).

The PML protein is a member of the TRIM family of ubiquitin/SUMO ligases discovered through its implication in acute promyelocytic leukemia (APL). PML is potently transcriptionally activated by IFNs (Stadler et al., 1995). PML has drawn attention from cell biologists due to its ability to nucleate membrane-less organelles, PML nuclear bodies (NBs; Hsu and Kao, 2018; Lallemant-Breitenbach and de Thé, 2018). PML is a sensor for oxidative stress and is essential for induction of senescence (Niwa-Kawakita et al., 2017; Pearson et al., 2000; Vernier et al., 2011). While PML-NBs are disrupted in APL, their reformation drives the therapeutic response (Ablain et al., 2014; Lehmann-Ché et al., 2014). Arsenic trioxide (ATO), a curative targeted therapy of APL, directly binds PML to enforce NB formation by promoting PML oxidation and multimerization (Jeanne et al., 2010; Zhang et al., 2010; Zhu et al., 1997). PML-dependent growth arrest and senescence require NB formation (Ivanschitz et al., 2015) so that ATO can enhance some PML activities, notably in IFNα-primed cells (Quignon et al., 1998).

1Institut National de la Santé et de la Recherche Médicale (INSERM) U1287, Gustave Roussy, Villejuif, France; 2Université Paris-Saclay, Gustave Roussy, Villejuif, France; 3Laboratoire d’Excellence QR-Ex, Paris, France; 4Département d’Hémato-oncologie, Gustave Roussy, Villejuif, France; 5Université de Paris, INSERM UMR-S1221, Institut de Recherche en Santé et en Université (IRSL), Hôpital Saint-Louis, Paris, France; 6Service de Biologie Cellulaire, Assistance Publique Hôpitaux de Paris (APHP), Hôpital Saint-Louis, Paris, France; 7INSERM U944, Centre National de la Recherche Scientifique (CNRS) UMR7241, IRSI, Hôpital Saint-Louis, Paris, France; 8Collège de France, Paris Sciences et Lettres Research University, INSERM U1050, CNRS UMR7241, Paris, France; 9Centre d’Investigations Cliniques, APHP, Hôpital Saint-Louis, Paris, France; 10Service de Biochimie, APHP, Hôpital Saint-Louis, Paris, France.

* T. Dagher, N. Maslah, and V. Edmond contributed equally to this paper; **J.-J. Kiladjian, J.-L. Villeval, and H. de Thé contributed equally to this paper; Correspondence to Hugues de Thé: hugues.dethe@inserm.fr; Jean-Jacques Kiladjian: jean-jacques.kiladjian@aphp.fr; Jean-Luc Villeval: jean-luc.villeval@gustaveroussy.fr.

© 2020 Dagher et al. This article is available under a Creative Commons License (Attribution 4.0 International, as described at https://creativecommons.org/licenses/by/4.0/).
Here, we explored the hypothesis that PML may be a downstream effector of IFNa therapy in MPN. We found that ATO greatly enhances the ability of IFNa to eliminate JAK2V617F MPN stem cells. This elimination is PML dependent and is associated with features of senescence. Our results lay the groundwork for IFNa+ATO-based curative approaches of MPN.

Results and discussion
IFNa or ATO enhances PML-NB formation preferentially in JAK2V617F cells
We first explored the PML-NB status of cells expressing JAK2V617F. We observed significantly more and larger PML-NBs in CD34+ cells from JAK2V617F MF patients compared with control CD34+ cells (Fig. 1 a). PML-NB number and staining intensity increased significantly upon IFNa and/or ATO treatment of CD34+ cells. A further significant increase of NB staining intensity was found when these cells were treated with both drugs (Lallemand-Breitenbach et al., 2001; Quignon et al., 1998; Zhu et al., 1997; Fig. 1 a). Using human isogenic UT-7 cell lines with or without exogenous JAK2V617F, we confirmed that PML-NB formation was consistently more pronounced with JAK2V617F (Fig. S1 a). Mouse bone marrow (BM) Lin−c-Kit+ (LK) cells harvested from Jak2V617F knock-in (KI) mice exhibited similar PML-NB numbers as BM LK cells from control littermates. However, after ATO, IFNα, or IFNα+ATO treatments, Jak2V617F LK cells consistently contained more PML-NBs than did Jak2WT LK cells (Fig. 1 b). Western blot analyses performed on these LK cells demonstrated an increased PML level upon ex vivo IFNa treatment (Fig. 1 c). ATO triggered an increase in sumoylated forms of PML accompanied by some decrease in the un-sumoylated PML abundance (Lallemand-Breitenbach et al., 2001, 2008; Fig. 1 c). Importantly, both the basal and IFNα-induced PML levels were consistently higher in LK cells derived from Jak2V617F KI mice compared with their WT counterparts (Fig. 1 c). Overall, Jak2V617F expression or IFNα exposure increases PML expression, while ATO enforces its NB formation, suggestive of increased sensitivity of mutated cells for PML-controlled processes.

ATO enhances IFNα-driven growth suppression in JAK2V617F progenitors
We first investigated the proliferation of UT-7 cells expressing or not exogenous JAK2V617F when treated with increasing concentrations of ATO alone or together with a suboptimal concentration of IFNα (200 IU/ml; Fig. S1b). Growth inhibition after 3 d was consistently more pronounced in the presence of JAK2V617F (Fig. 2 a). These data were supported by a decreased proportion of cells in S phase, with an enhanced effect between ATO and IFNα (P < 0.001) in UT-7 JAK2V617F cells only (Fig. S1 c).

We then assessed the effect of these drugs on the clonogenic potential of primary cells derived from MF or PV patients, exploring the balance between normal and mutant progenitors by genotyping of individual colonies (Fig. 2, b and c). With cells from the 10 MF patients explored, a decrease in erythroid colony number was observed upon treatment with IFNα, but this effect was considerably enhanced by the IFNα+ATO combination.

Importantly, while the proportion of JAK2V617F colonies was not altered by either IFNα or ATO alone, it was significantly decreased (P < 0.01) by the combination (Fig. 2 b). Similarly, in PV patient samples (n = 7), IFNα decreased the number of colonies in a dose-dependent manner, and the addition of ATO significantly enhanced this effect (Fig. 2 c and Fig. S1 d). Importantly, the number of JAK2 mutated colonies decreased further in combination (P = 0.01), but not with IFNα alone (Fig. 2 c). Apart from clonogenic potential, the growth of burst-forming unit–erythroid progenitors was also clearly impacted, as the size of the colonies decreased with IFNα and decreased further with IFNα+ATO (Fig. 2 d). In contrast, IFNα, ATO, and their combination had only moderate effects on the growth of hematopoietic progenitors from healthy individuals or JAK2WT progenitors derived from MF and PV patients (Fig. 2, b and c; and Fig. S1, d and e).

We then explored the anti-clonogenic activity of IFNαs and ATO in mouse Jak2V617F and Jak2WT hematopoietic progenitors. BM cells from Jak2V617F KI and Jak2WT mice were seeded in methylcellulose with cytokines, IFNα, and/or ATO. The Jak2V617F colony number decreased in response to the IFNα+ATO combination at suboptimal (200 IU) or maximal (1,000 IU) IFNα concentrations, in contrast to Jak2WT cells (Fig. 2 e). Moreover, the number or proportion of Jak2 mutant colonies was synergistically decreased by IFNα and ATO, while no single agent had a significant effect. Collectively, ATO significantly enhances the growth-suppressive effects of IFNα on JAK2V617F progenitors in vivo.

IFNα+ATO clears JAK2V617F disease-initiating cells in vivo
We next explored the potency of the IFNα+ATO combination in vivo using a Jak2V617F mouse model (experimental design in Fig. S2), wherein long-term IFNα treatment (14 wk) is required to clear disease-initiating cells in some mice (Hasan et al., 2013). Using an optimized schedule of 5 mg/kg ATO every 2 d with or without IFNα for 8 wk, we found that ATO clearly improved IFNα efficacy to clear MPN (Fig. 3). Although ATO on its own had only modest effects on WBC counts and spleen size, its combination with IFNα significantly accelerated and amplified IFNα-driven hematopoietic response, as assessed by the decrease in WBCs, hematocrit, and splenomegaly (Fig. 3, a and c). Moreover, the addition of ATO significantly increased the molecular response to IFNα, as assessed on blood GFP+, Jak2V617F granulocytes (Gr-1/CD11b), platelets (CD42), and RBC (Ter119) counts (Fig. 3 b). Finally, at the time of sacrifice, combined IFNα+ATO treatment had dramatically decreased the percentage of lineage-negative (Lin−), LK, Lin−Scal−c-Kit− (LSK), and SLAM− (signaling lymphocyte activation molecule) cells from Jak2V617F KI origin, demonstrating that the combination is considerably more potent than IFNα alone for targeting Jak2V617F stem cells (Fig. 3 d).

To substantiate any decline in disease-initiating cells, we transplanted whole BM cells (3 × 106) from treated mice into secondary recipient mice and monitored disease occurrence (Fig. 3 e). Most mice transplanted with BM cells from untreated (n = 15/17) or ATO-treated (n = 12/12) mice developed the disease, while ~60% (n = 13/22; P = 0.06) of mice transplanted with BM...
Figure 1. IFNα+ATO enforces potent NB formation in JAK2V617F cells. (a) Representative immunofluorescence images (upper panel) and quantification of PML-NB numbers and intensities (lower panel) in CD34+ cells from a healthy donor (control) and a JAK2V617F MF patient, not treated (NT) or treated in vitro with ATO (1 µM) for 1 h, IFNα (1,000 IU/ml) for 24 h, or both (lower panel represents the pooled results of three patients and controls). Two-tailed unpaired
from mice treated with IFNα alone became ill (Fig. 3 e). In contrast, none of the mice transplanted with BM from mice treated with the IFNα+ATO combination (n = 0/18; P = 0.0001) developed the disease, strongly suggesting that the combined treatment may have long-term efficacy in primary recipients. We thus monitored disease recurrence in primary animals after treatment discontinuation (Fig. 3 f). All the NT mice remained ill (n = 11/11), while 73% of the mice treated with IFNα alone relapsed (n = 11/15; P = 0.2) at 9 wk after treatment discontinuation. More than half of the mice (53%) treated with the combination (n = 8/15; P = 0.007) remained disease-free 9 wk after treatment discontinuation. Collectively, these results establish that ATO accelerates and amplifies the anti-neoplastic action of IFNα, targeting Jak2V617F stem cells, with long-term clearing of the disease in a substantial number of animals.

PML drives IFNα+ATO responses

The IFNα+ATO combination maximizes PML-NB formation (Quignon et al., 1998). To explore any role of PML in the action of the IFNα+ATO combination, we first examined the role of PML knockdown in CD34+ cells from Jak2V617F MF patients. After transduction with lentiviruses expressing a shRNA efficiently targeting PML (Ivanschitz et al., 2015; Niwa-Kawakita et al., 2017), CD34+ cells were sorted for GFP expression, seeded in semisolid cultures, and treated or not with IFNα and/or ATO. Remarkably, the decrease in mutant colony formation upon IFNα+ATO treatment was severely blunted by PML downregulation (Fig. 4 a). These results strongly suggest that the ability of IFNα+ATO to target the clonogenic activity of Jak2V617F progenitors is PML dependent.

To further explore PML contributions to IFNα or/and ATO selective elimination of Jak2V617F hematopoietic stem cells (HSCs) in vivo, we generated Jak2V617F/Pml−/− mice and transplanted syngenic mice with a mixture of Jak2V617F/Pml−/− and Jak2V617F/Pml+/− BM cells (Fig. 4 b). 5 wk after transplantation, mice were treated with IFNα and/or ATO for 12 wk. In this experimental setup, if Pml was required for therapy response, its absence should yield a progressive survival advantage to Jak2V617F/Pml−/− cells. In NT animals, MNP rapidly developed (Fig. 4 c). The IFNα+ATO combination or IFNα alone elicited a rapid decrease of leukocytosis, thrombocytosis, and erythrocytosis (Fig. 4 c). A time-dependent enrichment of Jak2V617F/Pml−/− granulocytes, platelets, and RBCs occurred in response to combined IFNα+ATO therapy (Fig. 4 d), while this enrichment was observed for IFNα alone only in Jak2V617F/Pml−/− RBCs. This key observation demonstrates Pml-dependent targeting of HSCs by IFNα+ATO in vivo and a partial Pml dependency for IFN response. Collectively, these results demonstrate that PML is involved in the elimination of Jak2V617F progenitors or stem cells in response to the IFNα+ATO combination.

IFNα+ATO drives PML-dependent senescence ex vivo

In the syngenic UT-7 model, IFNα and/or ATO induced SA-β-galactosidase activity and expression of senescence-associated genes, which were significantly enhanced in Jak2V617F-expressing cells (Fig. S3, a and b). We then compared the behavior of CD34+ hematopoietic progenitors from healthy individuals and MNP patients in a condition of megakaryocytic differentiation. Normal cells exhibited massive spontaneous senescence, while those derived from MF patients did not (Besancenot et al., 2010). Yet IFNα+ATO treatment restored senescence in MF patient cells, as assessed by SA-β-galactosidase activity and expression of senescence-associated genes (Fig. 5, a and b; and Fig. S3 c). Induction of senescence by the IFNα+ATO combination in primary cultures of progenitors from Jak2V617F MF patients was abrogated upon lentiviral-introduced shRNA targeting PML (Fig. 5, c–e).

We similarly explored ex vivo IFNα and ATO treatments of primary BM progenitor cells derived from Jak2V617F KI or littermate Jak2WT mice, deficient or not for Pml. The expression of senescence-associated genes (Cdkn2a, Pail, and Gdf15) was significantly more induced by the IFNα+ATO combination in Jak2V617F Lin− cells than in Jak2WT Lin− cells, and the absence of Pml blunted their induction (Fig. 5 f). Collectively, the IFNα+ATO combination preferentially induces senescence markers in Jak2V617F primary cells, at least in part through PML. Although IFNα targets Jak2V617F hematopoietic progenitors, in patient or mouse models its long-term efficacy remains modest (Austin et al., 2020; Gisslinger et al., 2020; Hasan et al., 2013; Kiladjian et al., 2006; Mullally et al., 2012). Several clinical and preclinical studies have attempted to improve IFNα efficacy, for example, through combinations with MDM2 or JAK2 inhibitors (Austin et al., 2020; Gisslinger et al., 2020; Hasan et al., 2013; Kiladjian et al., 2006; Mullally et al., 2012). Yet IFNα+ATO treatment restored senescence in MF patient cells, as assessed by SA-β-galactosidase activity and expression of senescence-associated genes (Fig. 5, a and b; and Fig. S3 c).

In our setting, IFNα+ATO combination maximizes Jak2V617F disease-initiating cells in vivo, with a much higher potency than IFNα alone. These cooperative effects were observed in a wide variety of Jak2V617F-expressing models, including primary hematopoietic progenitors, suggestive of therapeutic relevance. In our setting, IFNα has cell-autonomous activity, clearly independent from its action on anti-tumor immunity (Zitvogel et al., 2015). We demonstrate that improvement of IFNα efficacy by ATO primarily relies on PML and provide some evidence for a contribution of senescence. PML-NBs promote p53 activation and E2F shutoff (Vernier and Ferbeyre, 2014), opposing tumor development in multiple settings (Salomon and Pandolfi, 2002). PML-NBs may also control apoptosis (Giorgi et al., 2010; Takahashi et al., 2004). Mechanistically, these growth-suppressive effects could rely on promotion of post-translational modifications—notably...
Figure 2. Arsenic enhances IFNα-driven growth suppression in JAK2V617F cells in vitro. (a) Relative proliferation of JAK2WT (WT) UT-7 cells or UT-7 cells expressing ectopic JAK2V617F (VF) treated with ATO (0.25 µM), IFNα (1,000 IU/ml), or both for 3 d (n = 3). (b) Numbers of JAK2WT (WT, light shade) and JAK2V617F-positive (VF, dark shade) erythroid colonies from CD34+ patient cells cultured for 14 d. Triplicate cultures from 10 JAK2V617F MF patients untreated (NT) or treated with ATO (0.1 µM), IFNα (200 IU/ml), or both. (c) Numbers of JAK2WT/WT (WT; light shade), JAK2WT/V617F (WT/VF; patterned), and JAK2V617F/V617F (VF; dark shade) erythroid and myeloid colonies counted from CD34+ patient cells cultured for 14 d. Results represent duplicate cultures from seven PV patients untreated or treated with ATO (0.1 µM), IFNα (1,000 IU/ml), or both. (d) Erythroid colonies formed from CD34+ cells isolated from a PV patient taken after 14 d of culture: untreated or treated with ATO (0.1 µM), IFNα (200 or 1,000 IU/ml), or both. Scale bars = 50 µm. (e) Numbers of erythroid and myeloid colonies after 7 d of culture of 5 × 10^4 BM cells collected from Jak2V617F;UbiGFP KI mice (left), from Jak2WT littermate mice (right), or a 1:1 mixture from both, mimicking the situation found in patients (bottom). Cultures were untreated or treated with ATO (0.1 µM), IFNα (200 or 1,000 IU/ml), or both. Three independent experiments (except for ATO n = 1) treated with ATO (0.2 µM), IFNα (200 or 1,000 IU/ml as indicated) with or without ATO. Two-way ANOVA. Error bars represent the mean ± SEM. *P < 0.05, **P < 0.01, ***P < 0.001, and ****P < 0.0001. ns, not significant; CFC, colony-forming cell.
sumoylation—by PML-NBs (Sahin et al., 2014; Seeler and Dejean, 2017). That Jak2V617F HSCs exhibit high basal levels of PML and reactive oxygen species (Marty et al., 2013) may explain their higher sensitivity to NB biogenesis enforced by the IFN\textalpha+ATO combination. Our findings highlight an unexpected parallel with APL, where PML-NB reformation is required for eradication of the disease (Ablain et al., 2014; de Thé et al., 2017; Lehmann-Che et al., 2014). PML may thus represent a common

Figure 3. The IFN\textalpha+ATO combination efficiently targets Jak2V617F disease in vivo. (a) Hematological parameters of mice bearing Jak2V617F disease were obtained from four independent experiments (untreated, \(n = 25\); ATO, \(n = 19\); IFN\textalpha, \(n = 28\); and IFN\textalpha+ATO, \(n = 29\); Fig. S2 for protocol details). One-way ANOVA with multiple comparisons. (b) Percentage of GFP-positive Jak2V617F Gr-1+/CD11b+ cells (granulocytes), CD42+ cells (platelets), and Ter119+ cells (RBCs) in chimeric recipients during treatment. (c) Spleen weight after treatment discontinuation obtained from four independent experiments (untreated [NT], \(n = 12\); ATO, \(n = 8\); IFN\textalpha, \(n = 11\); and IFN\textalpha+ATO, \(n = 19\)). Unpaired two-sided Student’s t test. (d) Percentage of Jak2V617F cells (untreated, \(n = 5\); ATO, \(n = 4\); IFN\textalpha, \(n = 4\); and IFN\textalpha+ATO, \(n = 9\)). Unpaired two-sided Student’s t test. (e) Percentage of healthy secondary recipients evaluated at 8–15 wk after BM transplantation (four independent experiments: untreated, \(n = 17\); ATO, \(n = 12\); IFN\textalpha, \(n = 22\); and IFN\textalpha+ATO, \(n = 18\)). Mice were considered healthy based on the hematocrit (<50%) and the absence of Jak2V617F cells (GFP labeled) in granulocytes (Gr-1+/CD11b+) and platelets (CD42+). One-way ANOVA with multiple comparisons. (f) Percentage of relapses 9 wk after treatment completion in primary recipients. Results from four independent experiments (untreated, \(n = 11\); ATO, \(n = 10\); IFN\textalpha, \(n = 15\); and IFN\textalpha+ATO, \(n = 15\)). One-way ANOVA with multiple comparisons. The values shown are mean ± SEM. *\(P < 0.05\); **\(P < 0.01\); ***\(P < 0.001\).

Dagher et al. Journal of Experimental Medicine 6 of 12

MPN eradication by an IFN/arsenic combination

https://doi.org/10.1084/jem.20201268

Downloaded from http://rupress.org/jem/article-pdf/218/2/e20201268/1404538/jem_20201268.pdf by guest on 24 October 2020
effector pathway in cancer types where its gene is not rearranged. Clinically, our studies predict that ATO administration should greatly increase IFNξ-driven responses in MPN patients. The IFNξ+ATO combination had a favorable safety profile in another hematologic malignancy (Kchour et al., 2009), and availability of oral forms of ATO (Zhu et al., 2018) may allow outpatient therapy, paving the way toward eradication of JAK2V617F MPN cells.

Methods and materials
Animal experiments
The conditional flexed Jαk2V617F KI mice were described (Hasan et al., 2013). To express the mutant Jαk2, KI mice were crossed with VavCre transgenic (TG) mice (Croker et al., 2004). To easily evaluate the allele burden, we crossed Jαk2V617F KI/VavCre mice with UbiGFP TG mice (Schaefer et al., 2001). To explore the PML
contribution to IFN response, we first generated C57BL/6 mice with a germinal deletion of Pml exon 3 by crossing Pmlf/f mice (Amodeo et al., 2017) with CMV-Cre TG mice. Excision was confirmed by PCR and Western blot. These were crossed with C57BL/6 Jak2V617F KI/VavCre or UbiGFP TG mice. For primary or secondary BM transplantation, 3 × 10⁶ BM cells were engrafted into lethally irradiated (9.5 Gy) congenic recipient mice. To reproduce patient features, where normal hematopoiesis persists with the neoplastic clone (s), the preclinical mouse models were generated from normal recipient mice transplanted with a mixture of 40% BM cells collected from Jak2V617F KI/VavCre/UbGFP mice, and 60% BM cells were collected from WT C57BL/6 mice. Murine IFNα (Miltenyi Biotech; 5 × 10⁷ IU/ml) was subcutaneously injected every day at doses of 3 × 10⁴ IU in 0.1 ml PBS/mouse (1.5 × 10⁶ IU/kg). ATO (As2O3, product number A1010; Sigma-Aldrich) was injected intraperitoneally at 5 mg/kg every 2 d.

Hemoglobin, mean corpuscular volume, hematocrit, RBC counts, platelet, and WBC counts were determined using an automated counter (MS9; Melet Schloesing Laboratoires) on blood collected from the retro-orbital plexus in EDTA tubes. BM cells were collected by flushing both femurs and tibias. Spleens were weighed, and single-cell suspensions were prepared. Relapse after therapy was evaluated based on the hematocrit (<50%), the allele burden (GFP+ in granulocytes (Gr-1+/CD11b+) or RBCs (Ter119+), and the spleen weight (<150 mg).

Figure 5. IFNα+ATO drives PML-dependent senescence. (a) Percentages of SA-β-Gal+ cells after CD34+ cells from three healthy donors (control) and three Jak2V617F MF patients' samples (patient) were treated with ATO (0.25 µM), IFNα (1,000 IU/ml), or both for 10 d. Unpaired two-sided Student’s t test. (b) Relative expression to untreated control of senescence-associated genes PML, PAI1, CDKN1A, and GDF15 of patient samples described in panel a. Color code as in panel a. Unpaired two-sided Student’s t test. (c) SA-β-Gal staining of shSCR-treated (PML expressing) or shPML-treated (PML down-regulated) CD34+ derived cells from two MF patients after 10 d of megakaryocytic differentiation and untreated (NT) or treated with the combination IFNα (1,000 IU/ml) and ATO (0.25 µM). (d) Percentages of SA-β-Gal+ cells of shSCR-treated (PML-expressing) or shPML-treated (PML down-regulated) CD34+ derived cells from three MF patient samples after 10 d of megakaryocytic differentiation untreated or treated with the combination IFNα (1,000 IU/ml) and ATO (0.25 µM). (e) Relative expression of PML, PAI1, CDKN1A, and GDF15 of samples described in panel d. Unpaired two-sided Student’s t test. (f) Expression of Cdkn2a, Pa1, and Gdf15 in mouse Lin– BM cells derived from Jak2V617F KI (VF) or littermate Jak2WT (WT) mice deficient (hatched bars) or not (not hatched bars) in Pml treated in vitro with IFNα (1,000 IU/ml)+ATO (0.3 µM) for 24 h. The values shown are mean ± SEM. *P < 0.05; **P < 0.01; ***P < 0.001; ****P < 0.0001.
Flow cytometry
Flow cytometry of mouse blood, BM, and spleen was used to determine the Jak2V617F allele burden as the percentage of GFP-positive cells in tissues (CANTO X, DIVA6 analyzer; Becton Dickinson). A small sample of blood was labeled with APC anti-TER-119 antibody (Ab; clone TERR-119; BioLegend). The rest of the blood sample, after RBC lysis, was incubated with purified anti–CD116/52 Ab (clone 93; BioLegend) for 10 min at room temperature and then divided into two samples. The first one was labeled with APC-conjugated anti–CD42d Ab (clone IC2; BioLegend) for platelets. The second one was labeled with PE/Cy7-conjugated anti–Ly-6G/Ly-6C (Gr-1) Ab (clone RB6-8C5; BioLegend) and PerCP/Cyanine5.5-conjugated anti–CD11b Ab (clone M1/70; BioLegend) for granulocytes, PE-conjugated anti–CD45R/B220 Ab (clone RA3–6B2; BioLegend) for lymphocytes B, and APC-conjugated anti–CD3 Ab (clone 17A2; BioLegend) for lymphocytes T. For the BM sample, Lin− cells were enriched by immunomagnetic negative selection (IMag; BD Biosciences) and then sorted or assessed by flow cytometry using APC-conjugated lineage panel Abs (anti–TER-119 [clone TER-119], anti–Ly-6G/Ly-6C [Gr-1] Ab [clone RB6–8C5], anti–CD11b Ab [clone M1/70], anti–CD45R/B220 Ab [clone RA3–6B2], and anti–CD3 Ab [clone 17A2]). LK cells were analyzed from Lin− cells labeled with PerCP/Cyanine5.5-conjugated or PE-conjugated anti–CD117 Ab (c–Kit; clone 2B8; BioLegend). LSK cells were analyzed from Lin− cells labeled with PerCP/Cyanine5.5-conjugated or PE-conjugated anti–CD117 Ab (c–Kit; clone 2B8) and PE/Cy7-conjugated anti–Ly-6A/E Ab (Sca-1; clone D7; BioLegend). SLAM marker fractionated cells were analyzed from LSK cells labeled with APC/Cyanine7-conjugated anti–CD48 Ab (clone HM48–1; BioLegend) and Brilliant Violet 421–conjugated anti–CD150 Ab (clone TC15–12F12.2; BioLegend). After in vitro culture, viable cells were sorted after staining with SYTOX Blue Dead Cell Stain (S34857; Invitrogen) by Thermo Fisher Scientific. In human cell lines, the cell cycle distribution was measured via incorporation of BrdU (Phase-Flow; 370706; BioLegend) and DAPI (Thermo Fisher Scientific) labeling by flow cytometry on a FACS Canto II (Becton Dickinson) following the manufacturer’s recommendations at day 1 after treatment with ATO, IFN, or both.

Immunofluorescence microscopy
Human cell lines, patient-derived cells, or mouse Lin− or LK cells were treated with ATO alone, IFN alone, or both and then washed with PBS, cytopsinized, fixed using 4% paraformaldehyde (Thermo Fisher Scientific) for 10 min, and permeabilized with 0.5% (human) or 0.2% (mouse) Triton X-100. Human cells were labeled with a murine monoclonal Ab detecting human PML and a secondary anti-mouse Ab conjugated to Alexa Fluor 488 (Thermo Fisher Scientific; Lallemand-Breitenbach et al., 2001). Mouse monoclonal anti-mouse PML, clone 36.1–104 (MAB3738; Merck Millipore) was directly coupled to FITC Fluorochrome or Alexa Fluor AS94 for immunostaining. Slides were washed and then incubated in DAPI 1 μg/mL. After several washes, the slides were mounted in Vectashield H-1000 Mounting medium (Vector Laboratories, Inc.). For human samples, slides were kept at +4°C and analyzed under confocal microscope (LSM 800; Zeiss) under a 63× objective oil immersion. Z-stack images were processed with the image software ZEN (Zen 2 blue edition, 2011; Carl Zeiss Microscopy GmbH), and dots were counted and intensity measured on at least 20 cells spread over five to six fields with the image analysis software ImageJ (ImageJ2, Dec 2009). Mouse samples were imaged with a reversed confocal point-scanning microscope (SP8-Leica Microsystems) equipped with four lasers, 405, 488, 561, and 638 nm. An oil immersion, high numerical aperture (1.40) 63× objective was used for imaging. The scan protocol was preserved throughout all experiments. Two sequences were used to spectrally separate the two wavelengths, one for DAPI and the other for Alexa Fluor 594. The emission signal was collected on two HyD detectors for higher sensitivity. For the 594-nm signal, the “photon-counting” mode was used to remove any false numerical gain of signal. At least 20 cells per condition were analyzed using an ImageJ plug-in developed by Collège de France microscopy core facilities.

Cell lines and primary cells
The human megakaryoblastic UT-7 110c1 cell line was a kind gift of Dr. Komatsu (Juntendo University Graduate School of Medicine, Tokyo, Japan). These cells were lentivirally transduced either by JAK2WT, or JAK2V617F-expressing vectors as previously described (Besancenot et al., 2010). They were grown in DMEM–10% FBS–1% penicillin-streptomycin in the presence of erythropoietin (1 IU/ml). Human erythroleukemia cells (obtained from the American Type Culture Collection) were grown in RPMI 1640 medium supplemented with 10% FBS and antibiotics (100 mg/ml penicillin-streptomycin mix; Thermo Fisher Scientific). Human CD34+ cells were purified from peripheral blood mononuclear cells of PV/MF patients using the human CD34 MicroBead Kit from Miltenyi Biotec. Peripheral blood mononuclear cells from healthy donors were obtained at the French National Blood Service (French transfusion institution).

Human CD34+ cells were cultured in StemSpan medium (StemCell Technologies, Inc.) in the presence of recombinant human cytokines (PeproTech France): thrombopoietin (20 ng/ml), stem cell factor (SCF; 100 ng/ml), and IL-3 (50 ng/ml) for 10 d for megakaryocytic differentiation. Cultured cells were maintained in a humidified atmosphere at 37°C with 5% CO2. Cells line were determined to be mycoplasma free. For human studies, we used IFNα-2a (Roferon-A; Roche or Merck Millipore) and ATO (As2O3, 01969, or Al010).

Mouse BM-derived Lin− cells were cultured in serum-free MSS medium (Iscove modified Dulbecco’s medium with penicillin/streptomycin/glutamine, α-thioglycoler, bovine serum albumin, sonicated lipids, and insulin-transferrin; Amgen) supplemented with cytokines: murine SCF (50 ng/ml), murine IL-11 (100 ng/ml), and human FLT3 (50 ng/ml; Lui et al., 2014). Cultured cells were maintained in a humidified atmosphere at 37°C with 5% CO2.

CFU assays
Human clonogenic assays were performed by seeding in duplicates or triplicates 1,500–5,000 CD34+ cells in MethoCult H4434 with cytokines (StemCell Technologies, Inc.) or MethoCult H4230...
(StemCell Technologies, Inc.) with the following mixtures of cytokines: 25 ng/ml SCF (Bivitrum AB), 10 ng/ml IL-3 (Miltenyi Biotech), and 1 U/ml erythropoietin. Cultures were treated with ATO (0.1 μM), or IFNα (200–1,000 IU/ml), or both drugs. After 14 d of incubation, Burst-forming unit-erythroid, CFU-granulocyte, CFU-macrophage, and CFU-granulocyte-macrophage colonies were enumerated. Then, at least 40 colonies per condition were genotyped for JAK2V617F with a TaqMan single-nucleotide polymorphism genotyping assay using the 7500 Real Time PCR System (Applied Biosystems). We used forward (5’-AAGCTTCTCTGCAAGCATTGGTTT-3’) and reverse (5’-AGCATTAGAAGGCTTGATTTTACCTT-3’) primers and allele-specific probes (WT: 5’-HEX-TGTGTCTGTTGGAG-TAMRA-3’; V617F: 5’-FAM-TGGTCTGTTGGAG-TAMRA-3’).

Mouse BM cells from Jak2V617F Ki or Jak2WT littermate mice were used pure or mixed at 50% ratio and treated or not with IFNα 200 and 1,000 IU/ml (Miltenyi Biotech) with or without ATO 0.2 μM (As2O3, A1010). Cells were seeded at a density of 5 × 10^4/ml in semi-solid cultures (Methocult, M3434; Stem Cell Technologies) supplemented with thrombopoietin (10 ng/ml). Triplicate experiments were performed, twice with BM cells from Jak2WT and Jak2V617F GFP+ and once with Jak2WT GFP+ and Jak2V617F.

Viral transductions
CD34+ cells derived from MPN patients were transduced by a pLVTHM-eGFP-shPML lentiviral vector (Ivanschitz et al., 2015; Niwa-Wakaita et al., 2017). Briefly, lentiviral vectors were packaged in 293T cells by transfecting pCMV-8.91 and pMD.G with a shPML lentiviral vector (Ivanschitz et al., 2015; Niwa-Kawakita et al., 2017). Briefly, lentiviral vectors were packaged in 293T cells by transfecting pCMV-8.91 and pMD.G (Addgene) for 2 d. The supernatants containing the lentiviruses were used pure or mixed at 50% ratio and treated or not with IFNα 0.2 µM (As2O3, A1010). Cells were seeded at a density of 5 × 10^4/ml in semi-solid cultures (Methocult, M3434; Stem Cell Technologies) supplemented with thrombopoietin (10 ng/ml). Triplicate experiments were performed, twice with BM cells from Jak2WT and Jak2V617F GFP+ and once with Jak2WT GFP+ and Jak2V617F.

Western blot
Cell pellets were lysed in 2× Laemmli buffer, sonicated on ice for 15 min, and denatured for 7 min at 95°C. Samples were separated by a 4–12% polyacrylamide gel. Proteins were transferred on a nitrocellulose membrane for 2 h. The membrane was blocked with 10% milk-Tris-buffered saline–Tween 0.1% and then incubated overnight at 4°C with mouse monoclonal anti-mouse PML, clone 36.1–104 (MAB3738). After several washes, the membrane was incubated with anti-mouse secondary Ab (Jackson ImmunoResearch) for 1 h at room temperature and washed, and protein expression was revealed using a luminescence Image Analyzer (ImageQuant LAS 4000; GE Healthcare Bio-Sciences).

Cell analysis
For proliferation assays, cells were seeded in triplicates at 3 × 10^5/ml in a 96-well plate in the presence of IFN, ATO, or both. Cells were counted at indicated time points with a TC20 counting apparatus (Bio-Rad), and cell viability was measured using trypan blue. Senescence-associated β-galactosidase (SA-β-Gal) staining was performed in vitro on cells at 10 d of treatment with a Senescence β-Galactosidase Staining Kit (9860; Cell Signaling) following the manufacturer’s recommendations. The percentages of stained cells were counted in 20 fields in each condition using an optical microscope in >4,000 cells.

Quantitative PCR of gene transcripts
Total RNA was isolated from cell lines or cells derived from human primary CD34+ cells after 10 d of culture. RNA was extracted using Trizol (Thermo Fisher Scientific). First-strand cDNA was synthesized using SuperScript III reverse transcription (Thermo Fisher Scientific). Quantitative RT-PCR was performed using TaqMan Fast Universal PCR Master Mix on a 7500 Fast Real-Time PCR System (Applied Biosystems). Predesigned TaqMan assays for PML, CDKNA1, PAI1, and GDF15 genes were purchased from Applied Biosystems. TBP was used as an endogenous control to calibrate the amount of target mRNA. Mouse Lin- cells were cultured during 24 h, and then total RNA was extracted using Direct-zol RNA MicroPrep (Zymo Research) and cDNA was synthesized using SuperScript IV VILO Master Mix with the ezDnase Enzyme kit (Thermo Fisher Scientific). Quantitative RT-PCR was performed in an Applied Biosystems 7500 Fast Real-Time PCR System thermocycler using the TB Green Premix Ex Taq (Takara Bio Europe). mRNA was normalized by measuring HPRT mRNA levels. The following primers were used: Cdkn2a forward 5’-GCTTGCTTTTGTAAGACAT-3’ and Cdkn2a reverse 5’-TAGCTGGAACGTGCTGCTCA-3’; Pa1 forward 5’-TGGTGAAGGACATACAAA-3’ and Pa1 reverse 5’-AAGTAGAGGCAATCCAG-3’; Gdf5 forward 5’-GAGCTACGG GTGCGCTC-3’ and Gdf5 reverse 5’-GGACCCCCAATCTCACC-3’; and Hprt forward 5’-AGACCTTGCTGAGATGTCATGAA-3’ and Hprt reverse 5’-ATCCAGCGGCTCCGTGAACCT-3’.

Study approval
Blood samples were obtained from Gustave Roussy (Villejuif, France) and Saint Louis Hospital (Paris, France), with agreement from the Comité de Protection des Personnes Ile de France IV institutional review board (agreement from US Department of Health and Human Services: #IRB 0003835-Protocol 2015/59-NICB) and Commission Nationale de l’Informatique et des Libertés (authorization #915663). Written informed consent forms were obtained in accordance with the Declaration of Helsinki.

Animal experiments were conducted in the Gustave Roussy animal facility and approved by the Gustave Roussy review board, authorization for the use of animals for scientific purposes protocol 2016–104 and project titled “Treatment and evolution of MPN.”

Statistical analysis
In vivo data are presented as mean ± SEM and were analyzed with the Dunnett method as part of one-way ANOVA with multiple comparison tests (GraphPad Prism) or with the two-tailed Student’s t test. In vitro data were analyzed using the Student’s t test and two-way ANOVA for clonogenic assays. Error bars represent the mean ± SEM. In all figures, *P < 0.05, **P < 0.01, ***P < 0.001, and ****P < 0.0001.
Acknowledgments
We thank Maxime Annereau and Antoine Pinon from the Institut Gustave Roussy (IGR) Pharmacy Department for ATO preparation; Philippe Mailly from Collège de France for ImageJ plug-in development; Pr. Warren Alexander (Walter Elisa Hall Institute, Melbourne, Australia) for the VavCre mice; Paolo Salomoni and Pierluigi Nicotera (German Center for Neurodegenerative Diseases, Bonn, Germany) for providing C57BL/6 mice with a floxed Pml exon 3; Véronique Montcuquet (IRSL) for CMV-Cre mice; the staff of the animal facilities of Gustave Roussy directed by Patrick Gonin and the staff of the Platform of Imaging and Flow Cytometry Philippe Rameau, Cyril Catelain, and Tudor Manoloiu; Yohan Courtin for technical assistance, Nicolas Setterblad and the IRSL technological platforms for excellent technical help; and Christine Chomienne and the French Intergroup for Myeloproliferative Neoplasms for fruitful discussions. This manuscript was edited by Life Science Editors.

This work was supported by grants from the MPN Research Foundation on IFN initiative (to I. Plo and J.-L. Villeval), INCA (Institut National du Cancer) Plbio 2014 (to J.-L. Villeval and J.-J. Kiladjian), INCA Plbio 2018 (to I. Plo, J.-J. Kiladjian, and H. de Thé), and the European Research Council (PML-Therapy advanced grant to J.-L. Villeval). Labex GR-Ex (to I. Plo and J.-J. Kiladjian) is funded by the program “Investissements d’avenir.” T. Dagher was supported by PhD grants from Université Paris Sud Saclay–MESR (Ministère Enseignement Supérieur et de la Recherche). N. Maslah was supported by INSERM grant “poste d’accueil.”

Author contributions: T. Dagher, N. Maslah, V. Edmond, B. Cassinat, M. Niwa-Kawakita, I. Plo, and J.-L. Villeval performed the experiments; W. Vainchenker, S. Giraudier, F. Pasquier, E. Verger, and J.-J. Kiladjian provided patient specimens; T. Dagher, N. Maslah, V. Edmond, B. Cassinat, W. Vainchenker, V. Lallemann-Breitenbach, I. Plo, J.-J. Kiladjian, J.-L. Villeval, and H. de Thé designed the experiments, interpreted data, and contributed to the writing of the manuscript. All authors reviewed the manuscript.

Disclosures: B. Cassinat reported a pending patent to WO2018134260. W. Vainchenker reported a patent to JAK2V617F licensed “Quiaigen.” V. Lallemann-Breitenbach reported a pending patent to WO2018134260. J. Kiladjian reported personal fees from AOP Orphan during the conduct of the study and personal fees from Novartis outside the submitted work. In addition, J. Kiladjian had a pending patent to WO2018134260 naming Hugues de Thé, Bruno Cassinat, Valérie Lallemann-Breitenbach, Isabelle Plo, Jean-Luc Villeval, and Jean-Jacques Kiladjian as inventors. H. de Thé reported personal fees from Vectorlab outside the submitted work; in addition, H. de Thé had a pending patent to WO2018134260. No other disclosures were reported.

References
Ablain, J., K. Rice, H. Sollihi, A. de Reyries, S. Minucci, and H. de Thé. 2014. Activation of a promyelocytic leukemia-tumor protein 53 axis underlies acute promyelocytic leukemia cure. Nat. Med. 20:167–174. https://doi.org/10.1038/nm.3441
Amodeo, V., D. A. J. Betts, S. Bartesaghi, Y. Zhang, A. Richard-Londt, M. Ellis, R. Roshani, M. Vouyi, S. Galavotti, et al. 2017. A PML/Slt Axis Controls Physiological Cell Migration and Cancer Invasion in the CNS. Cell Rep. 20:411–426. https://doi.org/10.1016/j.celrep.2017.06.047
Austin, R. J., J. Straube, C. Brudigam, G. Fali, S. Jacquelin, T. Vu, J. Green, J. Grisel, I. Lansink, L. Cooper, et al. 2020. Distinct effects of ruxolitinib and interferon-alpha on murine JAK2V617F myeloproliferative neoplasm hematopoietic stem cell populations. Leukemia. 34:1075–1089. https://doi.org/10.1038/s41375-019-0638-y
Besanconnet, R., R. Chaligné, C. Tonetti, F. Pasquier, C. Marty, Y. Léchue, W. Vainchenker, S.N. Constantinescu, and S. Giraudier. 2010. A senescence-like cell-cycle arrest occurs during megakaryocytic maturation: implications for biological and clinical megakaryocytic proliferation. PLoS Biol. 8:e1000476. https://doi.org/10.1371/journal.pbio.1000476
Croker, B.A., D. Metcalf, L. Robb, W. Wei, S. Milfoud, L. DiRago, L.A. Cluse, K.D. Sutherlan, L. Hartley, E. Williams, et al. 2004. SOCS3 is a critical physiological negative regulator of G-CSF signaling and emergency granulopoiesis. Immunity. 20:155–165. https://doi.org/10.1016/S1074-7633(04)00022-6
de Thé, H., P.P. Pandolfi, and Z. Chen. 2017. Acute Promyelocytic Leukemia: A Paradigm for Oncoprotein-Targeted Cure. Cancer Cell. 32:552–560. https://doi.org/10.1016/j.ccell.2017.10.002
Giorgi, C., K. Ito, H.K. Lin, C. Santangelo, M.R. Wieckowski, M. Lebiedzinska, A. Bononi, M. Bonora, J. Duszynski, R. Bernardi, et al. 2010. PML regulates apoptosis at endoplasmic reticulum by modulating calcium release. Science. 330:1247–1251. https://doi.org/10.1126/science.1189157
Gisslinger, H., K. Clade, P. Georgiev, D. Krochmalczyk, L. Gercheva-Kychukova, M. Egyed, V. Rossiev, P. Dulincek, A. Illes, H. Pylypenko, et al. PROID-PV Study Group. 2020. Ropiginterferon alfa-2b versus standard therapy for polycythemia vera (PROUD-PV and CONTINUA-PV): a randomised, non-inferiority, phase 3 trial and its extension study. Lancet Haematol. 7:e196–E208. https://doi.org/10.1016/S2352-3026(19)30236-4
Hasan, S., C. Lacout, C. Marty, M. Cuininger, E. Solary, W. Vainchenker, and J.L. Villeval. 2013. JAK2V617F expression in mice amplifies early hematopoietic cells and gives them a competitive advantage that is hampered by IFNa. Blood. 122:1464–1477. https://doi.org/10.1182/blood-2013-04-498956
Hsu, K.S., and H.Y. Kao. 2018. PML: Regulation and multifaceted function beyond tumor suppression. Cell Biosci. 8: https://doi.org/10.1186/s12017-018-0204-8
Ivanischits, L., Y. Takahashi, J. Follivet, O. Ayraud, M. Le Bras, and H. de Thé. 2015. PML IV/ARF interaction enhances p53 SUMO-1 conjugation, activation, and senescence. Proc. Natl. Acad. Sci. USA. 112:14278–14283. https://doi.org/10.1073/pnas.1507540112
Jeanne, M., V. Lallemann-Breitenbach, O. Ferhi, M. Koken, M. Le Bras, S. Dufort, L. Peres, C. Berthier, H. Sollihi, B. Raught, et al. 2010. PML/RARA oxidation and arsenic binding initiate the antileukemia response of As2O3. Cancer Cell. 18:88–98. https://doi.org/10.1016/j.ccell.2010.03.003
Kchour, G., M. Tarhini, M.M. Kooshyar, H. El Haji, E. Wattel, M. Mahmoudi, H. Hatoum, H. Rahimi, M. Maleki, H. Rafatpanah, et al. 2009. Phase 2 study of the efficacy and safety of the combination of arsenic trioxide, interferon alpha, and zidovudine in newly diagnosed chronic adult T-cell leukemia/lymphoma (ATL). Blood. 113:6528–6532. https://doi.org/10.1182/blood-2009-03-218231
Kiladjian, J.J., B. Cassinat, P. Turlure, N. Cambier, M. Roussel, S. Bellucci, M.L. Menot, G. Massonnet, J.L. Duteil, K. Ghomari, et al. 2006. Phase 2 study of domiptericyl nevastatin patients treated with pegylated interferon alpha-2a. Blood. 108:2037–2040. https://doi.org/10.1182/blood-2006-03-009860
Kiladjian, J.J., B. Cassinat, S. Chevrat, P. Turlure, N. Cambier, M. Roussel, S. Bellucci, B. Grandchamp, C. Chomienne, and P. Fenaux. 2008. Pegylated
interferon-alfa-2a induces complete hematologic and molecular responses with low toxicity in polycythemia vera. Blood. 112:3065–3072. https://doi.org/10.1182/blood-2008-03-143537

Kiladjian, J.J., S. Giraudier, and B. Cassinat. 2016. Interferon-alpha for the therapy of myeloproliferative neoplasms: targeting the malignant clone. Leukemia. 30:776–781. https://doi.org/10.1038/leu.2015.326

Lallemand-Breitenbach, V., and H. de Thé. 2016. Interferon-alpha for the MPN eradication by an IFN/arsenic combination. https://doi.org/10.1083/jem.20201268

Niwa-Kawakita, M., O. Ferhi, H. Soilihi, M. Le Bras, V. Lallemand-Breitenbach, J.J., S. Giraudier, and B. Cassinat. 2016. Interferon-alpha for the MPN eradication by an IFN/arsenic combination. https://doi.org/10.1083/jem.20201268

Lehmann-Che, J., C. Bally, and H. de Thé. 2014. Resistance to therapy in acute promyelocytic leukemia. N. Engl. J. Med. 371:1371–1372.

Marty, C., C. Lacout, N. Droin, J.P. Le Couedic, V. Ribrag, E. Solary, W. Petersen, N. Farnoud, V. Najfeld, et al. 2019. Oral idasanutlin in patients with polycythemia vera. Blood. 134:2187–2197. https://doi.org/10.1182/blood-2013-11-536854

Doubeikovsky, E. Duprez, P.P. Pandolfi, E. Puvion, P. Freemont, and H. de Thé. 2017. PML is a ROS sensor activating p53 upon oxidative stress.

Mascarenhas, J., M. Lu, H. Kosior, E. Virtgym, L. Xia, L. Sandy, R. Mesa, B. Petersen, N. Farnoud, V. Najfeld, et al. 2019. Oral lidasanatin in patients with polycythemia vera. Blood. 134:525–533. https://doi.org/10.1182/blood.2018939545

Mullally, A., L. Verovery, R.K. Schneider, A. Al-Shahrour, S.W. Lane, and B.L. Ebert. 2012. Distinct roles for long-term hematopoietic stem cells and erythroid precursor cells in a murine model of Jak2V617F-mediated polycythaemia vera. Blood. 120:166–172. https://doi.org/10.1182/blood-2012-01-402396

Mullally, A., C. Bruegdam, L. Verovery, F.H. Heidel, A. Purdon, T. Vu, R. Austin, D. Heckl, L. Breyfogle, C.P. Kuhn, et al. 2013. Depletion of Jak2V617F myeloproliferative neoplasm-propagating stem cells by interferon-α in a murine model of polycythaemia vera. Blood. 121:3692–3702. https://doi.org/10.1182/blood-2012-05-432989

Niwa-Kawakita, M., O. Ferhi, H. Sollibhi, M. Le Bras, V. Lallemand-Breitenbach, and H. de Thé. 2017. PML is a ROS sensor activating p53 upon oxidative stress. J. Exp. Med. 214:3197–3206. https://doi.org/10.1182/jem.20160301

Pasquier, F., X. Cabagnols, L. Secardin, I. Flo, and W. Vainchenker. 2014. Myeloproliferative neoplasms: JAK2 signaling pathway as a central target for therapy. Clin. Lymphoma Myeloma Leuk. 14(Suppl):S23–S35. https://doi.org/10.1016/j.clml.2014.06.014

Pearson, M., R. Carbone, C. Sebastiani, M. Ciocco, M. Fagioli, S. Saito, Y. Higashimoto, E. Appella, S. Minucci, P.P. Pandolfi, and P.G. Pelicci. 2000. PML regulates p53 acetylation and premature senescence induced by oncogenic Ras. Nature. 406:207–210. https://doi.org/10.1038/35018127

Quignon, F., F. De Bela, M. Koken, J. Feunteun, J.C. Ameisen, and H. de Thé. 1998. PML induces a novel caspase-independent death process. Nat. Genet. 20:259–265. https://doi.org/10.1038/6068

Sahin, U., O. Ferhi, M. Jeanne, S. Benhenda, C. Berthier, F. Jollivet, M. Niwa-Kawakita, O. Farklais, N. Setterblad, H. de Thé, and V. Lallemand-Breitenbach. 2014. Oxidative stress-induced assembly of PML nuclear bodies controls sumoylation of partner proteins. J. Cell Biol. 204:931–945. https://doi.org/10.1083/jcb.2013105148

Salomoni, P., and P.P. Pandolfi. 2002. The role of PML in tumor suppression. Cell. 108:165–170. https://doi.org/10.1016/S0092-8674(02)00662-8

Schaeffer, B.C., M.L. Schaeffer, J.W. Kappler, P. Marrack, and R.M. Kedl. 2001. Observation of antigen-dependent CD8+ T-cell dendritic cell interactions in vivo. Cell. Immunol. 214:110–122. https://doi.org/10.1006/cimm.2001.1895

Seeler, J.S., and A. Dejean. 2017. SUMO and the robustness of cancer. Nat. Rev. Cancer. 17:184–197. https://doi.org/10.1038/nrc.2016.143

Spivak, J.L. 2019. How I treat polycythemia vera. Blood. 134:341–352. https://doi.org/10.1182/blood.2018834044

Stadler, M., M.K. Chelbi-Alix, M.H.M. Koken, L. Venturini, C. Lee, A. Sah, F. Quignon, L. Pellicano, M.-C. Guillemin, C. Schindler, and H. de Thé. 1995. Transcriptional induction of the PML growth suppressor gene by interferons is mediated through an ISRE and a GAS element. Oncogene. 11:2565–2573.

Takahashi, Y., V. Lallemand-Breitenbach, J. Zhu, and H. de Thé. 2004. PML nuclear bodies and apoptosis. Oncogene. 23:2819–2824. https://doi.org/10.1038/sj.onc.1207533

Vainchenker, W., and R. Kralovics. 2017. Genetic basis and molecular pathophysiology of classical myeloproliferative neoplasms. Blood. 129:667–679. https://doi.org/10.1182/blood-2016-10-695940

Verger, E., J. Soret-Duply, N. Maslah, L. Roy, J. Rey, Z. Ghrieb, R. Kralovics, H. Gisslinger, B. Grohmann-Izay, C. Klade, et al. 2018. Ropiegelinterferon alpha-2b targets JAK2V617F-positive polycythemia vera cells in vitro and in vivo. Blood Cancer J. 8:94. https://doi.org/10.1038/s41408-018-0133-0

Vernier, M., and G. Ferbeyre. 2014. Complete senescence: RB and PML share the task. Cell Cycle. 13:696. https://doi.org/10.4161/cc.28090

Vernier, M., V. Bourdeau, M.F. Gaumont-Leclerc, O. Moiseeva, V. Bégin, F. Saad, A.M. Mes-Masson, and G. Ferbeyre. 2011. Regulation of E2Fs and senescence by PML nuclear bodies. Genes Dev. 25:41–50. https://doi.org/10.1101/gad.1975111

Zhang, X.W., X.J. Yan, Z.R. Zhou, F.F. Yang, Z.Y. Wu, H.B. Sun, W.X. Liang, A.X. Song, V. Lallemand-Breitenbach, M. Jeanne, et al. 2010. Arsenic trioxide controls the fate of the PML-RARα oncoprotein by directly binding PML. Science. 328:240–243. https://doi.org/10.1126/science.1170342

Zhu, J., M.H.M. Koken, F. Quignon, M.K. Chelbi-Alix, L. Degos, Z.Y. Wang, Z. Chen, and H. de Thé. 1997. Arsenic-induced PML targeting onto nuclear bodies: implications for the treatment of acute promyelocytic leukemia. Proc. Natl. Acad. Sci. USA. 94:3978–3983. https://doi.org/10.1073/pnas.94.8.3978

Zhu, H.H., Y.R. Liu, J.S. Jia, Y.Z. Qin, X.S. Zhao, and Y.Y. Lai. 2018. Oral arsenic and all-trons retinoic acid for high-risk acute promyelocytic leukemia. Blood. 131:297–2989. https://doi.org/10.1182/blood-2018-02-834051

Zitvogel, L., G. Galluzzi, O. Kepp, M.J. Smyth, and G. Kroemer. 2015. Type I interferons in anticancer immunity. Nat. Rev. Immunol. 15:405–414. https://doi.org/10.1038/nri3845
Figure S1. Arsenic potently enhances NB formation and IFN-driven growth suppression in JAK2V617F-expressing cells. (a) Representative immunofluorescence images (upper panel) and quantification of PML-NB numbers and intensities per cell (lower panel) in JAK2WT (WT) and JAK2V617F (VF) UT-7 cells untreated (NT) or treated with ATO (0.5 µM) for 2 h, IFNa (1,000 IU/ml) for 24 h, or the combination of both drugs in these conditions. Three independent experiments with at least 20 cells analyzed per condition. Two-tailed unpaired Student’s t test. Scale bars = 5 µm. (b) Proliferation of JAK2WT (WT) or JAK2V617F (VF) UT-7 cells after 72 h of treatment with increasing doses of ATO alone or combined with IFNa 200 IU/ml. Three independent experiments. (c) Top panels: example of cell cycle analysis (BrdU/DAPI staining) of either JAK2WT (WT) or JAK2V617F (VF) UT-7 cells 1 d after being untreated or treated with ATO (0.25 µM), IFNa (1,000 IU/ml), or the combination of both. Bottom plot: summary and statistical analysis of three independent experiments. (d) Absolute numbers of JAK2WT/WT (WT), JAK2WT/V617F (WT/VF), or JAK2V617F/V617F (VF) colonies counted after 14 d of culture of CD34+ cells from seven PV patients. The effect of increasing doses of IFNa (0 IU/ml, 200 IU/ml, 500 IU/ml, and 1,000 IU/ml) is shown on the upper panel, and the effect of increasing doses of IFNa (200 IU/ml, 500 IU/ml, 1,000 IU/ml) in combination with a constant dose of ATO (0.1 µM) is shown on the lower panel. Seven patient samples in duplicate cultures. Two-tailed unpaired Student’s t test. (e) Percentages of erythroid colonies relative to untreated controls after 14 d of culture of CD34+ cells from five healthy donors untreated or treated with ATO (0.1 µM), IFNa (200 IU/ml), or both drugs in triplicate cultures. Two-tailed unpaired Student’s t test. The values shown are mean ± SEM. *P < 0.05; **P < 0.01; ***P < 0.001; ****P < 0.0001; ns, not significant; CFC, colony-forming cell.

Figure S2. Experimental design of the preclinical MPN mouse model. Recipient mice were lethally irradiated and transplanted with 3 × 10⁶ 40:60 mix of Jak2V617F/UbIGFP and Jak2WT BM cells. 4 wk after BM transplantation (BMT), mice were treated with ATO (5 mg/kg/2 d), IFNa (3 × 10⁴ IU/d), or both for 8 wk. At completion of treatment, some mice were sacrificed, and their BM cells were used to assess disease-initiating cells in secondary transplantations, also with 3 × 10⁶ BM cells; the remaining mice were kept alive to assess disease relapse around 9 wk without further treatment.
Figure S3. **IFN/ATO drives senescence more efficiently in the JAK2V617F context.** (a) Percentages of JAK2WT (WT) or JAK2V617F (VF) UT-7 cells untreated (NT) or treated with ATO (0.25 µM), IFNa (1,000 IU/ml), or both drugs for 7 d stained positively for SA-β-Gal. (b) Relative expression to untreated control of the senescence-associated genes PML, PAI1, and CDKN1A in UT-7 cells. Color code as in panel a. Error bars represent mean ± SEM of three independent experiments; unpaired two-sided Student’s t test. (c) SA-β-Gal staining assay of CD34+-derived cells from three MF patients or three healthy controls after 10 d of megakaryocytic differentiation and untreated or treated with the combination of IFNa (1,000 IU/ml) and ATO (0.25 µM). The values shown are mean ± SEM. *P < 0.05; **P < 0.01; ***P < 0.001.