Flares after hydroxychloroquine reduction or discontinuation: results from the Systemic Lupus International Collaborating Clinics (SLICC) inception cohort

Celline C Almeida-Brasil, *McGill University*
John G Hanly, *Queen Elizabeth II Health Sciences Centre*
Murray Urowitz, *University of Toronto*
Ann Elaine Clarke, *University of Calgary*
Guillermo Ruiz-Irastorza, *Hospital Universitario Cruces*
Caroline Gordon, *University of Birmingham*
Rosalind Ramsey-Goldman, *Northwestern University*
Michelle Petri, *Johns Hopkins University*
Ellen M Ginzler, *SUNY Downstate Medical Center*
DJ Wallace, *University of California Los Angeles*

Only first 10 authors above; see publication for full author list.

Journal Title: ANNALS OF THE RHEUMATIC DISEASES
Volume: Volume 81, Number 3
Publisher: BMJ PUBLISHING GROUP | 2021-12-14, Pages 370-378
Type of Work: Article | Final Publisher PDF
Publisher DOI: 10.1136/annrheumdis-2021-221295
Permanent URL: https://pid.emory.edu/ark:/25593/vtgt8

Final published version: http://dx.doi.org/10.1136/annrheumdis-2021-221295

Copyright information:
© Author(s) (or their employer(s)) 2022. Re-use permitted under CC BY. Published by BMJ.

This is an Open Access work distributed under the terms of the Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0/rdf).
Flares after hydroxychloroquine reduction or discontinuation: results from the Systemic Lupus International Collaborating Clinics (SLICC) inception cohort

Celline C Almeida-Brasil, John G Hanly, Murray Urowitz, Ann Elaine Clarke, Guillermo Ruiz-Irastorza, Caroline Gordon, Rosalind Ramsey-Goldman, Michelle Petri, Ellen M Ginzler, D J Wallace, Sang-Cheol Bae, Juanita Romero-Diaz, Mary Anne Dooley, Christine Peschken, David Isenberg, Anisur Rahman, Susan Manzi, Søren Jacobsen, Sam Lim, Ronald F van Vollenhoven, Ola Nived, Andreas Jönsen, Diane L Kamen, Cynthia Aranow, Jorge Sanchez-Guerrero, Dafna D Gladman, Paul R Fortin, Graciela S Alarcón, Joan T Merrill, Kenneth Kalunian, Manuel Ramos-Casals, Anca Askanase, Munther A Khamashta, Murat Inanc, Michal Abrahamowicz, Sasha Bernatsky

ABSTRACT

Objectives To evaluate systemic lupus erythematosus (SLE) flares following hydroxychloroquine (HCQ) reduction or discontinuation versus HCQ maintenance.

Methods We analysed prospective data from the Systemic Lupus International Collaborating Clinics (SLICC) cohort, enrolled from 33 sites within 15 months of SLE diagnosis and followed annually (1999–2019). We evaluated person-time contributed while on the initial HCQ dose (‘maintenance’), comparing this with person-time contributed after a first dose reduction, and after a first HCQ discontinuation. We estimated time to first flare, defined as either subsequent need for therapy augmentation, increase of ≥4 points in the SLE Disease Activity Index-2000, or hospitalisation for SLE. We estimated adjusted HRs (aHRs) with 95% CIs associated with reducing/discontinuing HCQ (vs maintenance). We also conducted separate multivariable hazard regressions in each HCQ subcohort to identify factors associated with flare.

Results We studied 1460 (90% female) patients initiating HCQ, aHRs for first SLE flare were 1.20 (95% CI 1.04 to 1.38) and 1.56 (95% CI 1.31 to 1.86) for the HCQ reduction and discontinuation groups, respectively, versus HCQ maintenance. Patients with low educational level were at particular risk of flaring after HCQ discontinuation (aHR 1.43, 95% CI 1.09 to 1.87). Prednisone use at time-zero was associated with over 1.5-fold increase in flare risk in all HCQ subcohorts.

Conclusions SLE flare risk was higher after HCQ taper/discontinuation versus HCQ maintenance. Decisions to maintain, reduce or stop HCQ may affect specific subgroups differently, including those on prednisone and/or with low education. Further study of special groups (eg, seniors) may be helpful.

INTRODUCTION

Hydroxychloroquine (HCQ) is a cornerstone of systemic lupus erythematosus (SLE) treatment. However, physicians and patients often consider...
reducing or discontinuing HCQ over the decades-long course of SLE, sometimes in order to limit cumulative exposure and avoid important HCQ-induced toxicity.1,4

Over 20 years ago, a pivotal HCQ withdrawal randomised trial suggested that sustained HCQ might greatly reduce disease flares, leading to the suggestion that all patients should remain on HCQ ‘indefinitely’.1,5 However, it is hard to know if results from that trial apply to patients in whom physicians would want to taper treatment, notably those in remission or very low activity, since many of the patients in the trial did not have completely controlled disease at study entry (40% were using prednisone and the average SLE Disease Activity Index score was 8).5 For years, physicians have attempted to identify a subgroup of patients in whom it would be safe to stop or reduce HCQ, such as seniors.6

The aims of our study were to determine (1) the extent to which HCQ reduction or discontinuation is associated with increased risk of SLE flares, and (2) the predictors of a flare once HCQ is reduced or discontinued, using a longitudinal international SLE inception cohort.

METHODS
Data source
The Systemic Lupus International Collaborating Clinics (SLICC) cohort is a multinational inception cohort for SLE outcomes research.5 From 1999 to 2011, a cohort of recently diagnosed patients with SLE was recruited from 33 SLICC sites in Europe, Asia and North America.10 Briefly, patients meeting American College of Rheumatology revised classification criteria for SLE11 were enrolled within 15 months of diagnosis. Data are collected per protocol at enrolment and annually and entered into a centralised database.

Study population and design
We selected all patients on HCQ therapy at baseline (cohort entry) or during the follow-up up to April 2019. At each annual follow-up visit, average HCQ daily dose since the last assessment was recorded. We evaluated outcomes in patients reducing/stopping HCQ and compared them with those remaining on therapy. Patients contributed person-time in the HCQ maintenance cohort until they either reduced the dose, discontinued treatment, had the outcome of interest or were censored (death, lost to follow-up or end of study, April 2019), whichever came first. If HCQ was reduced, patients contributed person-time in the HCQ reduction cohort until they either discontinued HCQ, had the outcome or were censored. If HCQ was discontinued, patients contributed person-time in the HCQ discontinuation cohort until they had the outcome or were censored. A given patient could contribute person-time to one or more cohorts.

Time-zero among those reducing HCQ was the first date recording HCQ reduction and time-zero in the HCQ discontinuation cohort was the first date recording discontinuation. To create the comparison HCQ maintenance groups (one for reduction, one for discontinuation), each patient reducing or discontinuing HCQ was randomly matched on prior HCQ use duration to up to two individuals remaining on HCQ treatment (figure 1). A time-zero was then assigned to the matched maintenance group on the day of matching. This approach balances the groups on the length of previous treatment at the beginning of follow-up and avoids immortal person-time.12

Patients who discontinued HCQ but started chloroquine immediately were not included in the discontinuation cohort, as they were still on an antimalarial; these were censored at the time of switching.

The reasons underlying HCQ dose change were not recorded, but dose reduction may have been due to the following scenarios: (a) physician or patient may have been concerned about cumulative use of HCQ and/or lowered dosing to reflect guidelines (particularly the 2016 American Academy of Ophthalmology (AAO) guidelines, which cautions against dosage >5 mg/kg/day); (b) low SLE activity; (c) other reasons (eg, intolerance, patient request). Reasons for stopping HCQ may include (a) retinal toxicity; (b) clinical disease remission; (c) non-adherence; (d) intolerance, pigmented skin changes or other adverse effect; (e) other reasons (eg, cost, healthcare access issues, drug insurance issues, patient choice).

We explored ways to categorise these possible reasons. Among patients who reduced HCQ dose, we identified how many had their dose reduced to 5 mg/kg/day after the 2016 AAO guidelines, and, of the remainder, how many had low disease activity state13 (SLE Disease Activity Index-2000 (SLEDAI-2K) <4 and current prednisone dose ≤7.5 mg/day). Patients not falling into one of these groups were classified into ‘other reasons’. Similarly, among those who stopped HCQ, we first identified those who had retinal damage on the SLICC Damage Index (SDI). Of those without retinal damage, we identified how many were in remission14 (SLEDAI-2K=0 and no prednisone or immunosuppressives in the last year). For the remainder, reasons were unclear but may reflect non-adherence or other unknown reasons.

Outcome
The primary composite outcome was time to the first of the following events indicating a SLE flare: (a) increase of at least four points (above the score at time-zero) in the SLEDAI-2K; (b) hospitalisation for SLE (eg, skin and joint flare, nephritis, pericarditis and pneumonia) and/or (c) augmented SLE therapy, defined as increased HCQ (or restart if discontinued) or a new start/increase in prednisone, immunosuppressive agents (azathioprine, methotrexate, mycophenolate mofetil, cyclophosphamide), biologics (rituximab or belimumab) or start of chloroquine. Quinacrine was used by only nine patients in our sample and was not considered as augmented SLE therapy. Since
Systemic lupus erythematosus

immunosuppressive agents may be given in addition to or instead of steroid therapy to lower the dose of steroids, we did not compute an event when patients increased/started an immunosuppressor (azathioprine, mycophenolate or methotrexate) but decreased their prednisone dose at the same visit. Hospitalisation data were available for 60% of patients and the composite outcome for patients without hospitalisation data was based on increase in disease activity and therapy augmentation only. Sensitivity analyses excluding hospitalisation from the composite outcome for all patients were also performed.

Covariates
Decisions to reduce, stop or maintain HCQ may be driven by patient or clinical characteristics that are also associated with the outcome. Therefore, we considered potential confounders or effect modifiers, assessed at time-zero: sociodemographic variables (sex, Caucasian vs non-Caucasian race/ethnicity, high school education or less vs college/university education), age at SLE diagnosis (continuous) and geographic location (North America, Europe or Asia). Other variables assessed at time-zero included body mass index (BMI, continuous), current smoking (yes/no), high disease activity (≥4 points on SLEDAI-2K, a validated definition of active SLE), SLE duration (continuous, years), current prednisone (yes/no), current immunosuppressive agents (azathioprine, methotrexate or mycophenolate mofetil) and current biological agents (rituximab or belimumab), and presence of renal damage, based on the SDI.

Statistical analysis
In descriptive analysis at time-zero, we described the means and SDs for continuous variables and frequency distributions for categorical variables.

For the HCQ reduction/discontinuation cohorts and their respective maintenance control cohorts, we calculated crude incidence rates (first flare) with 95% CIs. A multivariable Cox proportional hazards (PH) model was used to estimate the adjusted HRs (HRs), with 95% CIs, for time to first flare in patients who reduced or discontinued HCQ (vs the maintenance groups), while controlling for the covariates listed above. Hazard proportionality was assessed using Schoenfeld and Martingale residuals.

Separate multivariable Cox PH models were estimated in the reduction, discontinuation and maintenance cohorts to assess which characteristics were associated with increased risk for first flare.

As a secondary analysis, we aimed to assess how disease activity status influence the risk of SLE flares after HCQ reduction or discontinuation (vs HCQ maintenance). Thus, we stratified the absolute flare rates and adjusted Cox models by low disease activity state or remission.

We also conducted sensitivity analysis. Since the same patient could contribute person-time to different cohorts being compared, we accounted for potential clustering by using random effects in our Cox models. Also, to evaluate the impact of having patients without complete outcome information (ie, missing hospitalisation data), we considered only increase in disease activity and therapy augmentation in the computation of the composite outcome for all patients.

All analyses were conducted with SAS V.9.4 (SAS Institute, Cary, North Carolina, USA).

Patient and public involvement
Patients with SLE, patient advocates and organisations such as the Canadian Network of Improved Outcomes in SLE and the Canadian Rheumatology Association were engaged as partners since the early phases of our project, providing feedback on the protocol, interpretation of findings and dissemination. For instance, this study was planned and designed based on focus groups conducted in 2017 with patients with rheumatic disease, which identified that uncertainties about risks and benefits of stopping/continuing drugs were a primary concern. Our patient-partner assisted in the development of questionnaires and provided feedback regarding interpretation of findings. We also conducted interviews of individual patient with SLE to explore experiences and preferences with HCQ dose changes and defined potential reasons underlying HCQ changes, and incorporated this in our analyses, as mentioned before.

Figure 1 Example of four cohort patients (Pt1–4). A given patient could contribute person-time to one or more cohorts. Hydroxychloroquine (HCQ) maintenance person-time was matched (2:1) to the reduction or discontinuation cohorts on HCQ duration at time-zero.
Systemic lupus erythematosus

Lupus Canada and the Arthritis Society have pledged support to disseminate findings via websites, communiques and their provincial chapters. The Singer Family Fund for Lupus Research will help with knowledge dissemination through newsletters mailed twice yearly to patients with SLE.

RESULTS

Among the 1711 patients enrolled in the SLICC cohort, we included 1460 (85.3%) who initiated HCQ. We identified 592 patients who reduced HCQ (564 were matched to 778 patients maintaining HCQ) and 407 patients who discontinued HCQ (389 were matched to 577 patients remaining on HCQ). There were few differences in patient characteristics at time-zero between the matched groups: patients reducing HCQ were more likely to be from Asia and patients discontinuing HCQ were less likely to be Caucasian (table 1).

Characteristics at time-zero*	HCQ reduction n=564	HCQ maintenance n=778	HCQ discontinuation n=389	HCQ maintenance n=577
Female (%)	90.6	87.9	90.2	87.0
Race/Ethnicity (%)				
Caucasian	51.6	55.1	42.9	55.6
Asian	24.3	14.7	19.3	13.9
Black	12.4	16.1	15.4	15.9
Others	10.6	13.3	21.4	13.9
N missing	6 (1.1)	6 (0.8)	4 (1.0)	4 (0.7)
Age at SLE diagnosis (years, mean±SD)	34.1±13.4	35.6±13.3	33.6±13.4	35.9±13.6
N missing	0	0	0	0
No college/university education (%)	34.0	38.9	38.8	39.9
N missing	6 (1.1)	16 (2.0)	3 (0.8)	8 (1.4)
Geographic location (%)				
North America	56.2	63.2	59.6	62.6
Europe	26.1	27.9	26.5	29.3
Asia†	17.7	8.9	13.9	8.1
N missing	0	0	0	0
Time on HCQ (years, mean±SD)	3.4±2.6	3.2±2.5	4.2±3.2	3.9±3.1
N missing	0	0	0	0
HCQ daily dosage (mg, mean±SD)	240±73	347±83	0	349±81
N missing	0	0	0	0
SLE duration (years, mean±SD)	5.5±3.0	5.4±3.0	6.7±3.5	6.1±3.4
N missing	0	0	0	0
SLEDAI-2K ≥4 (%)	39.9	35.7	38.0	36.0
N missing	15 (2.6)	15 (1.9)	11 (2.8)	19 (3.3)
Renal damage (%)	6.4	5.7	10.7	5.4
N missing	3 (0.5)	5 (0.6)	5 (1.3)	2 (0.3)
Current smoker (%)	25.9	33.2	29.6	31.5
N missing	3 (0.5)	4 (0.5)	7 (1.8)	2 (0.3)
BMI (mean±SD)	24.1±5.1	25.6±5.9	25.1±5.7	25.7±5.9
N missing	16 (2.8)	30 (3.8)	7 (1.8)	23 (4.0)
Current prednisone (%)	58.0	55.4	51.9	52.8
N missing	0	0	0	0
Current immunosuppressors† (%)	44.1	47.0	41.6	46.8
N missing	0	0	0	0
Current biological agents§ (%)	3.0	2.6	3.6	4.0
N missing	0	0	0	0

*Time-zero of each subcohort (not inception cohort entry).
†Asia was represented by a single country, South Korea.
Immunosuppressors included mycophenolate, azathioprine and methotrexate.
§Biologics included belimumab and rituximab.
BMI, body mass index; HCQ, hydroxychloroquine; SLE, systemic lupus erythematosus; SLEDAI-2K, SLE Disease Activity Index-2000.

The HCQ reduction or discontinuation was further classified according to the possible reasons for the respective changes. Specifically, we estimated that 5.0% may have reduced HCQ therapy as result of the AAO guidelines (daily dose changed from >5 mg/kg to 5 mg/kg after July 2016, based on real body weight), 54.8% because of low disease activity state and the remainder (40.2%) presumably reduced due to other reasons (eg, intolerance, patient preference, etc). Among those who discontinued HCQ, 4.4% had retinal damage, 15.2% were in remission and 80.5% may have stopped HCQ due to other reasons, including non-adherence and intolerance.

SLE flares

The HCQ reduction cohort was followed for an average of 2.0 years per patient (with 78.7% flaring over follow-up, table 2).
while the average follow-up in the other cohorts was about 1.7 years (with 72% flaring in the HCQ discontinuation cohort, and about 50% flaring in the maintenance cohorts). Need for therapy augmentation was frequent and hospitalisation due to lupus flares was relatively uncommon. The crude incidence rate of the first flare was considerably higher among those who reduced or stopped HCQ versus those who remained on the drug (table 2). Compared with HCQ maintenance, the adjusted HRs for SLE flare were 1.20 (95% CI 1.04 to 1.38) and 1.56 (95% CI 1.31 to 1.86) for the HCQ reduction and discontinuation cohorts, respectively. The mean doses of those reducing HCQ and flaring versus those reducing but not flaring were similar (data not shown).

Risk factors

Separate multivariable Cox PH models were fit in each of the HCQ reduction, discontinuation and maintenance cohorts to estimate HRs for potential risk factors (table 3). Use of prednisone and immunosuppressives were dichotomous variables (yes/no). Immunosuppressive drugs included azathioprine, mycophenolate and methotrexate. Biologics included belimumab, rituximab and abatacept.

Table 2 Incidence rates of the first flare in patients with SLE who maintained, reduced or discontinued HCQ

Risk factor	HCQ reduction n=564	HCQ maintenance n=778	HCQ discontinuation n=389	HCQ maintenance n=577
Number of events (%)	444 (78.7)	413 (53.1)	280 (72.0)	292 (50.6)
Therapy augmentation only	399 (70.7)	325 (41.8)	252 (64.8)	239 (41.4)
Increase in disease activity only	61 (17.0)	127 (16.3)	68 (17.5)	81 (14.0)
Hospitalisation only	1 (0.2)	1 (0.2)	0	2 (0.5)
Total person-years in follow-up	1110.2	1294.7	677.9	973.4
Crude rate/100 person-years (95% CI)	40.0 (36.4 to 43.9)	31.9 (29.0 to 35.1)	41.3 (36.7 to 46.4)	30.0 (26.7 to 33.6)

HCQ, hydroxychloroquine; SLE, systemic lupus erythematosus.

Table 3 HRs and 95% CIs for the first SLE flare, according to HCQ cohort

Characteristics at time-zero	HCQ reduction	HCQ maintenance	HCQ discontinuation	HCQ maintenance
Male sex	0.93 (0.66 to 1.32)	0.96 (0.68 to 1.34)	0.97 (0.64 to 1.46)	0.77 (0.52 to 1.15)
Non-Caucasians	1.27 (1.00 to 1.61)	1.02 (0.81 to 1.28)	0.96 (0.70 to 1.32)	0.96 (0.73 to 1.27)
Age at SLE diagnosis in years	1.00 (0.99 to 1.01)	1.00 (0.99 to 1.01)	0.99 (0.98 to 1.00)	1.01 (1.00 to 1.02)
No college/university education	1.01 (0.82 to 1.24)	1.10 (0.90 to 1.36)	1.43 (1.09 to 1.87)	0.92 (0.72 to 1.18)
Geographic location				
North America	Reference	Reference	Reference	Reference
Europe	1.24 (0.98 to 1.59)	1.16 (0.91 to 1.48)	1.02 (0.75 to 1.37)	0.99 (0.75 to 1.31)
Asia	0.70 (0.51 to 0.94)	1.00 (0.69 to 1.43)	0.73 (0.49 to 1.08)	0.87 (0.56 to 1.34)
SLE duration	1.00 (0.96 to 1.04)	1.01 (0.98 to 1.06)	1.00 (0.96 to 1.04)	1.02 (0.98 to 1.06)
Active disease (SLEDAI-2K ≥4)	1.17 (0.95 to 1.44)	1.22 (0.98 to 1.51)	1.25 (0.95 to 1.64)	1.22 (0.95 to 1.56)
Renal damage	0.88 (0.57 to 1.37)	0.94 (0.58 to 1.53)	0.88 (0.60 to 1.30)	0.88 (0.49 to 1.56)
Body mass index	1.02 (1.00 to 1.05)	0.99 (0.98 to 1.01)	0.99 (0.97 to 1.01)	1.00 (0.97 to 1.02)
Smoker	1.07 (0.85 to 1.35)	0.88 (0.70 to 1.11)	1.02 (0.78 to 1.35)	0.94 (0.71 to 1.23)
On prednisone	1.49 (1.16 to 1.91)	1.65 (1.28 to 2.13)	1.58 (1.15 to 2.17)	1.87 (1.38 to 2.54)
On immunosuppressives	1.37 (1.09 to 1.72)	1.84 (1.46 to 2.32)	1.31 (0.96 to 1.77)	1.84 (1.39 to 2.44)
On biologics	0.72 (0.39 to 1.35)	1.00 (0.51 to 1.95)	0.70 (0.35 to 1.39)	0.77 (0.33 to 1.79)

Renal damage was defined as a score ≥1 in the SLICC/ACR Damage Index renal item (low glomerular filtration rate, proteinuria or end-stage renal failure). Prednisone, immunosuppressives and biologics were dichotomous variables (yes/no). Immunosuppressive drugs included azathioprine, mycophenolate and methotrexate. Biologics included belimumab, rituximab and abatacept.

Bolded values are those whose 95% CI excludes the null value.

ACR, American College of Rheumatology; aHR, adjusted HR; HCQ, hydroxychloroquine; SLE, systemic lupus erythematosus; SLEDAI-2K, SLE Disease Activity Index-2000; SLICC, Systemic Lupus International Collaborating Clinics.
medications, geographic location and education were associated with flare risk. Age was not a clear risk factor, which is interesting given a recent paper that suggested HCQ discontinuation may be relatively safe in seniors (although the time-frame for flare risk was 1 year only).3 When stratifying our own results by age >50, power was decreased, but there remained a trend for HCQ maintenance being associated with a lower crude flare rate (25.3 events per 100 person-years, 95% CI 20.4 to 31.3) versus HCQ reduction (36.9 events per 100 person-years, 95% CI 30.0 to 45.4). The same trend was seen for HCQ discontinuation during person-time for age >50, again with imprecision (HCQ maintenance flare 31.0 events per 100 person-years, 95% CI 24.6, 39.2 and HCQ discontinuation flare rate 42.4 events per 100 person-years, 95% CI 37.2 to 48.4).

Patients using immunosuppressives or prednisone at time-zero were at higher risk of flare after either HCQ maintenance, reduction or discontinuation. At least two other cohort studies have shown that patients under immunosuppressives (who generally have fairly severe SLE) have a twofold higher flare risk overall (vs patients not on immunosuppressives, who generally have less severe SLE).21,22 In addition to immunosuppressives, steroids are also markers of severe and active SLE.23–25

We observed some geographical differences in SLE treatment management and flare risks. Patients from Asia were more likely to reduce HCQ than maintain the dose (table 4). A survey showed that, compared with Europeans, Asian physicians were more likely to taper HCQ even in in patients with severe disease.26 Another study conducted in South Korea observed that polymorphisms in CYP2D6*10, an allele that is more common in Asians than in Caucasians,27,28 were associated with higher blood concentrations of HCQ’s metabolite.29 Together with recent results suggesting that Asian patients are more adherent to HCQ than Caucasians,30 this evidence may correlate with our finding that patients living in Asia had a lower risk of flaring after HCQ reduction than those living in North America and Europe. Since data from Asia came from a single tertiary centre in South Korea, these findings may reflect local practices or factors inherent to that population.

Low education was associated with increased flare risk among patients discontinuing HCQ. Low education is a well-known predictor of poor adherence to long-term therapies including in SLE.31–34 Subjects who discontinued HCQ (particularly those with low education) may have been non-adherent with other medications and physician advice, perhaps due to mistrust or not understanding physician recommendations.31–33

Our results suggest that HCQ maintenance typically results in lower flare risks, even in patients in disease remission. This finding is interesting in view of a small survey which suggested some (though not all) rheumatologists attempt to taper or discontinue HCQ in patients in remission.36 and indicates that current disease activity alone may not sufficiently predict who will flare after HCQ is tapered. Incomplete adherence may explain some of our findings.36 However, flares occur even in patients with HCQ blood levels above the therapeutic threshold,37 reinforcing the relapsing–remitting nature of SLE, with durable remission being rare.38,39

The potential benefits of tapering or discontinuing HCQ must be balanced with the subsequent risk of a flare. Need for therapy augmentation occurred in 65%, 71% and 40% of patients after HCQ discontinuation, reduction or maintenance, respectively. Of subjects needing therapy augmentation, over 65% augmented/started prednisone after HCQ reduction or discontinuation. Although the potential for antimalarial-induced toxicity (including retinopathy and cardiomyopathy) is of concern for patients and physicians,4,40 the adverse effects of glucocorticoids are severe and well established in patients with SLE41 and most physicians and patients would certainly prefer maintaining HCQ than augmenting prednisone.42,43

We studied a large international inception cohort with almost 20 years of follow-up and a well-characterised study population. However, some potential limitations should be mentioned. Patients and physicians did not explicitly provide the reason(s) for HCQ reduction or discontinuation. If decisions to reduce/discontinue HCQ are based on the patient’s current or past disease activity, long-term SLE remission may be more likely in the HCQ reduction/discontinuation cohorts, which may bias estimates towards the null. Despite this, our results still suggest that lowering/discontinuing HCQ is associated with higher flare risk versus maintaining HCQ.

Another potential limitation is that our composite outcome includes some interval-censored endpoints (those assessed only at annual clinic visits). However, simulations reported in the study by Huszti et al.,44 for example, indicate that this will induce only minor bias towards the null in the estimated HRs. Moreover, our

Table 4	Adjusted HRs with 95% CIs for SLE flares associated with HCQ reduction/discontinuation versus maintenance: main and stratified analyses					
HCQ reduction versus maintenance	HCQ discontinuation versus maintenance					
No. of patients	**Absolute flare rate/100 person-years (95% CI)**	**Adjusted HR (95% CI)***	**No. of patients**	**Absolute flare rate/100 person-years (95% CI)**	**Adjusted HR (95% CI)***	
Main analysis	1342	40.0 (36.4 to 43.9) vs 31.9 (29.0 to 35.1)	1.20 (1.04 to 1.38)	966	41.3 (36.7 to 46.4) vs 30.0 (26.7 to 33.6)	1.56 (1.31 to 1.86)
Stratified analyses:						
Low disease activity† state at time-zero						
Yes	815	37.5 (33.2 to 42.4) vs 27.8 (24.5 to 31.6)	1.32 (1.10 to 1.60)	592	35.5 (30.4 to 41.3) vs 26.6 (22.8 to 30.9)	1.62 (1.28 to 2.05)
No	527	43.9 (38.0 to 50.6) vs 39.8 (34.3 to 46.1)	1.04 (0.84 to 1.29)	374	53.6 (44.7 to 64.2) vs 36.4 (30.5 to 43.5)	1.60 (1.22 to 2.09)
Remission‡ at time-zero						
Yes	196	26.2 (20.1 to 34.1) vs 13.2 (9.5 to 18.4)	2.14 (1.34 to 3.42)	133	24.7 (17.7 to 34.6) vs 12.2 (8.0 to 18.8)	2.77 (1.46 to 5.26)
No	1146	46.3 (41.9 to 51.1) vs 41.7 (37.8 to 46.0)	1.14 (0.98 to 1.32)	833	47.9 (42.3 to 54.2) vs 39.2 (35.0 to 43.9)	1.50 (1.25 to 1.81)

*Adjusted for sex, race, age at SLE diagnosis, education, geographic residence and the following variables assessed at time-zero: SLE duration, renal damage according to SLICC Damage Index, body mass index, smoking, prednisone, immunosuppressives and biologics. The main analysis was additionally adjusted by disease activity at time-zero.
†Remission was defined as SLEDAI-2K=0 and no prednisone or immunosuppressives use during the last year.
‡Low disease activity state was defined as SLEDAI-2K <4 and current prednisone dose ≤7.5 mg/day.
HCQ, hydroxychloroquine; SLE, systemic lupus erythematosus; SLEDAI-2K, SLE Disease Activity Index-2000; SLICC, Systemic Lupus International Collaborating Clinics.

Almeida-Brasil CC, et al. Ann Rheum Dis 2022;81:370–378. doi:10.1136/annrheumdis-2021-221295
composite outcome is a practical approach similar to that used in clinical trials and, in addition to the accepted minimal clinically significant SLEDAI-2K change (important but not always sensitive), we included SLE-related hospitalisations (detecting the most serious SLE flares), as well as drug changes (a potentially more enduring marker of flares). Unfortunately, our definition of flare cannot clearly separate mild from moderate or severe flares.

It is interesting that the HCQ reduction and discontinuation cohorts had similar flares rates. Among those who reduced HCQ, the mean doses of those flaring versus not flaring were similar. This may reflect individual differences in drug metabolism or even in the amount of HCQ stored in body tissues. It has been suggested that doses under the maximum 400 mg/day (eg, 200 and 300 mg/day) still are potentially associated with less activity, thrombosis and survival.45 46 We did not evaluate HCQ levels (which are not part of usual care at most of our centres) or self-reported adherence. Nevertheless, in adjusting for sex, age, race/ethnicity, education and multiple medications, we accounted for factors that are themselves strong predictors of adherence.

The implications of our study findings are complex, with the decision to maintain or taper HCQ still being up to the patients and their physicians, through discussion of the trade-offs between the risk of disease flare, with the potential benefits of tapering HCQ. Our results should help facilitate this, by providing information about risks of flare associated with maintaining, reducing or stopping HCQ, and how and demographic factors (eg, disease activity, medications, education) may influence outcomes. These carefully quantified risks could be translated to improve patient education materials and discussions between healthcare providers and patients. Last but not least, the fact that there are over 30 flares per 100 person-years, even while remaining on HCQ, emphasises the ongoing need to optimise therapeutic options in SLE.

Author affiliations
Division of Clinical Epidemiology, Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
Division of Rheumatology, Department of Medicine and Department of Pathology, Queen Elizabeth II Health Sciences Centre, Halifax, Nova Scotia, Canada
Center for Prognosis Studies in the Rheumatic Diseases, Toronto Western Hospital, University of Toronto, Toronto, Ontario, Canada
Divisions of Clinical Immunology/Allergy and Clinical Epidemiology, University of Calgary, Calgary, Alberta, Canada
Autoimmune Diseases Unit, Hospital Universitario Cruces, Barakaldo, Pays Vasco, Spain
Rheumatology Research Group, University of Birmingham, Birmingham, UK
Medicine/Rheumatology, Northwestern University, Evanston, Illinois, USA
Rheumatology, Johns Hopkins University, Baltimore, Maryland, USA
Medicine/Rheumatology, SUNY Downstate Medical Center, New York City, New York, USA
Cedars-Sinai/David Geffen School of Medicine at UCLA, Cedars-Sinai Medical Center, Los Angeles, California, USA
Rheumatology, Hanyang University, Seongdong-gu, Seoul, The Republic of Korea
Immunology and Rheumatology, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubiran, Ciudad de México, Mexico
Medicine, University of North Carolina, Chapel Hill, North Carolina, USA
Division of Rheumatology, University of Manitoba, Winnipeg, Manitoba, Canada
Division of Medicine, University College London, London, UK
Rheumatology, University College London, London, UK
Allegheny Singer Research Institute, Allegheny Health Network, Pittsburgh, Pennsylvania, USA
Copenhagen Lupus and Vasculitis Clinic, Center for Rheumatology and Spine Diseases, Rigshospitalet, Copenhagen, Denmark
School of Medicine, Emory University, Atlanta, Georgia, USA
Department of Rheumatology, Amsterdam Rheumatology and Immunology Center, Amsterdam, The Netherlands
Rheumatology, Lund University, Lund, Sweden
Faculty of Medicine, Department of Clinical Sciences Lund, Section of Rheumatology, Lund University, Lund, Sweden

Contributors All authors contributed to data collection, interpretation of results and finalising manuscript. Sasha Bernatsky is the guarantor.

Funding Core funding for this investigator-initiated study was provided to Dr SB by a Canadian Institutes of Health Research (CIHR) project grant (Fall 2017 competition). Dr CCA-B received postdoctoral salary awards from the Fonds de Recherche du Québec Santé (FRQS), the Research Institute of the McGill University Health Centre (RI-MUHC) and the CIHR Drug Safety and Effectiveness Cross-Sectoral Research and Practice Program (DSCERP). Dr MAD's work was supported by the Novo Nordisk Foundation (grant NFR-20173MA984050335) and the Novo Nordisk Foundation (grant AR43727 and AR69572). Dr IB is a National Institute for Health Research (NIHR) Senior Investigator and is supported by Arthritis Research UK, the NIHR Manchester Biomedical Centre and the NIHR/Wellcome Trust Manchester Clinical Research Facility. Dr SJ is supported by the Danish Rheumatism Association (A38653) and the Novo Nordisk Foundation (A05990). Dr RR-G's work was supported by the NIHR (grant U011TR001422-02 (formerly U11TR000150), UL-1R-025741, K24-AR-02318 and P60AR064464 (formerly P60-AR-48098)). Dr MAD's work was supported by the NIH grant R000464. Dr GR-I is supported by the Department of Education, Universities and Research of the Basque Government. Dr SJ's work was supported, in part, by the Centers for Disease Control and Prevention grant U01DP005119. Dr DAI and Dr AR are supported by the National Institute for Health Research University College London Hospitals Biomedical Research Centre. Preliminary results of this study were presented at the 2020 Meeting of the American College of Rheumatology (ACR Convergence 2020). Reference: Almeida-Brasil C, Hanly J, Urowitz M, et al. Outcomes After Hydroxychloroquine Reduction or Discontinuation in a Multinational Inception Cohort of Systemic Lupus Erythematosus. 2020; 2020; 72 (suppl 10). https://acarabstract.org/abstract/outcomes-after-hydroxychloroquine-reduction-or-discontinuation-in-a-multinational-inception-cohort-of-systemic-lupus/

Disclaimer The views expressed in this publication are those of the author(s) and not necessarily those of the NHS, the National Institute for Health Research or the Department of Health.

Competing interests All the following relationships are outside the submitted work. Dr AEC: consulting fees from AstraZeneca, Bristol Myers Squibb, Exagen Diagnostics and GlaxoSmithKline. Dr CG: consulting fees from the Centers for Disease Control (CDC), Morton Grove Pharmaceutical (MGP), Sanofi and UCB. Dr DAI: consulting fees from Amgen, Merck Serono, AstraZeneca and Eli Lilly (the honorary are passed onto a local arthritis charity). Dr AR: consulting fees from Lilly. Dr PRF: participation on advisory boards from AbbVie, AstraZeneca and Lilly. Dr MAK: consulting fees from GSK. Dr MI: consulting fees from AbbVie, UCB, Novartis, Janssen and Lilly.
Patient and public involvement Patients and/or the public were involved in the design, or conduct, or reporting, or dissemination plans of this research. Refer to the 'Methods' section for further details.

Patient consent for publication Not applicable.

Ethics approval This study involves human participants and was approved by McGill University Health Centre Research Ethics Board (MP 37-2019-4340 and 00-010 REC) and the institutional review boards of all SLUCI participating sites. This study complies with the Declaration of Helsinki. Participants gave informed consent to participate in the study before taking part.

Provenance and peer review Not commissioned; externally peer reviewed.

Data availability statement All data relevant to the study are included in the article. n/a.

Open access This is an open access article distributed in accordance with the Creative Commons Attribution 4.0 Unported (CC BY 4.0) license, which permits others to copy, redistribute, remix, transform and build upon this work for any purpose, provided the original work is properly cited, a link to the licence is given, and indication of whether changes were made. See: https://creativecommons.org/licenses/by/4.0/.

ORCID iDs
John G Hanly http://orcid.org/0000-0003-1029-9483
Murray Urowitz http://orcid.org/0000-0001-7506-9166
Guillermo Ruiz-Irastorza http://orcid.org/0000-0001-7788-1043
Michelle Petri http://orcid.org/0000-0003-1441-5373
Sang-Cheol Bae http://orcid.org/0000-0003-4658-1093
David Isenberg http://orcid.org/0000-0001-9514-2455
Anisur Rahman http://orcid.org/0000-0003-2346-4484
Søren Jacobsen http://orcid.org/0000-0002-5654-4993
Ronald F van Vollenhoven http://orcid.org/0000-0001-6348-8663
Cynthia Ananow http://orcid.org/0000-0001-9299-0053
Dafna D Gladman http://orcid.org/0000-0002-9074-0592
Paul R Fortin http://orcid.org/0000-0002-7278-2596
Graciela S Alarcon http://orcid.org/0000-0001-5910-9175
Manuel Ramos-Casals http://orcid.org/0000-0001-5709-6734
Murat Inanc http://orcid.org/0000-0002-6376-5583
Sasha Bernatsky http://orcid.org/0000-0002-9515-2802

REFERENCES

1. Keeling SO, Bissonauth S, Bernatsky S, et al. Practice variations in the diagnosis, monitoring, and treatment of systemic lupus erythematosus in Canada. J Rheumatol 2018;45:1440–7.

2. Akhavan PS, Su J, Lou W, et al. The early protective effect of hydroxychloroquine on the risk of cumulative damage in patients with systemic lupus erythematosus. J Rheumatol 2013;40:831–41.

3. Ruiz-Irastorza G, Ramos-Casals M, Brito-Zeron P, et al. Clinical efficacy and side effects of antimalarials in systemic lupus erythematosus: a systematic review. Ann Rheum Dis 2010;69:20–8.

4. Mellers RB, Marmor MF. The risk of toxic retinopathy in patients on long-term hydroxychloroquine therapy. JAMA Ophthalmol 2014;132:1453–60.

5. Marmor MF, Kellner U, Lai TYY, et al. Treating systemic lupus erythematosus in the 21st century: new drugs and new perspectives on old drugs. Rheumatology 2020;59:v69–81.

6. van Vollenhoven R, Voskuyl A, Bertiasis G, et al. A framework for remission in SLE: consensus findings from a large international Task force on definitions of remission in SLE (DORIS). Ann Rheum Dis 2017;76:554–61.

7. Gladman DD, Ibañez D, Urowitz MB. Systemic lupus erythematosus disease activity index 2000. J Rheumatol 2002;29:888–91.

8. Ruiz-Irastorza G, Bertiasis G. Treating systemic lupus erythematosus in the 21st century: new drugs and new perspectives on old drugs. Rheumatology 2020;59:v69–81.

9. Yee C-S, Farewell VT, Isenberg DA, et al. The use of systemic lupus erythematosus disease activity index-2000 to define active disease and minimal clinically meaningful change based on data from a large cohort of systemic lupus erythematosus patients. Rheumatology 2011;50:852–8.

10. Gladman D, Ginzler E, Goldsmith C, et al. The development and initial validation of the systemic lupus international collaborating Clinics/American College of rheumatology damage index for systemic lupus erythematosus. Arthritis Rheum 1996;39:363–9.

11. Dollinger J, Neville C, Pineau CA, et al. Challenges to optimal rheumatology care: a patient-centered focus group study. Clin Rheumatol 2020;39:8038–40.

12. Patient preferences for hydroxychloroquine in systemic lupus (SLE): Preliminary analyses. CSA & AHPA Annual Scientific Meeting, 2021.

13. Inés L, Duarte C, Silva R, et al. Identification of clinical predictors of flare in systemic lupus erythematosus patients: a 24-month prospective cohort study. Rheumatology 2014;53:85–9.

14. Ugarte-Gill MF, Woydija D, Pastor-Arusca CA, et al. Predictive factors of flares in systemic lupus erythematosus patients: data from a multicentric Latin American cohort. Lupus 2018;27:536–44.

15. Ad-Hoc Working Group on Steroid-Sparing Criteria in Lupus. Criteria for steroid-sparing ability of interventions in systemic lupus erythematosus: report of a consensus meeting. Arthritis Rheum 2004;50:3427–31.

16. Hernández-Cruz B, Tapia N, Villa-Romero AR, et al. Risk factors associated with mortality in systemic lupus erythematosus. A case-control study in a tertiary care center in Mexico City. Clin Exp Rheumatol 2001;19:395–401.

17. Hoes JN, Jacobs JWG, Boers M, et al. EULAR evidence-based recommendations on the management of systemic glucocorticoid therapy in rheumatic diseases. Ann Rheum Dis 2007;66:1560–7.

18. Ngamjanyaporn P, McCarthy EM, Sergeant JC, et al. Clinicians approaches to management of background treatment in patients with SLE in clinical remission: results of an international observational survey. Lupus Sci Med 2017;4:e000173.

19. Lee S-J, Lee SS, Jung H-J, et al. Discovery of novel functional variants and extensive evaluation of CYP2D6 genetic polymorphisms in Koreans. Drug Metab Dispos 2009;37:1464–70.

20. Del Tredici AL, Malhotra A, Dedek M, et al. Frequency of CYP2D6 Alleles Including Structural Variants in the United States. Front Pharmacol 2018;9:305.

21. Lee YJ, Vinayagamoorthy N, Han K, et al. Association of polymorphisms of cytochrome P450 2D6 with blood hydroxychloroquine levels in patients with systemic lupus erythematosus. Arthritis Rheumatol 2016;68:184–90.

22. Liu LH, Fevrier HB, Goldfrin R, et al. Understanding nonadherence with hydroxychloroquine therapy in systemic lupus erythematosus. J Rheumatol 2019;46:1309–15.

23. WHO. Adherence to long-term therapies: evidence for action. 198. Geneva: Wol Health Organization, 2003.

24. Koners S, Kocharia L, Higgins GC, et al. Adherence to medications in systemic lupus erythematosus. J Clin Rheumatol 2008;14:195–201.

25. García-González A, Richardson M, Garcia-Pap Lisneau M, et al. Treatment adherence in patients with rheumatoid arthritis and systemic lupus erythematosus. Clin Rheumatol 2008;27:883–9.

26. Oliveira-Santos M, Verani JRS, Klumb EM, et al. Evaluation of adherence to drug treatment in patients with systemic lupus erythematosus in Brazil. Lupus 2011;20:320–9.

27. Peek ME, Lopez FY, Williams HS, et al. Development of a conceptual framework for understanding shared decision making among African-American LGBT patients and their clinicians. J Gen Intern Med 2016;31:677–87.

28. Garg S, Unnithan R, Hansen KE, et al. Clinical Significance of Monitoring Hydroxychloroquine Levels in Patients With Systemic Lupus Erythematosus: A Systematic Review and Meta-Analysis. Arthritis Care Res 2021;73:707–16.

29. Mok CC, Penn HJ, Chan KL, et al. Hydroxychloroquine serum concentrations and flares of systemic lupus erythematosus: a longitudinal cohort analysis. Arthritis Care Res 2016;68:1295–302.

30. Wilhelms TR, Magder LS, Petri M. Remission in systemic lupus erythematosus: durable remission is rare. Ann Rheum Dis 2017;76:547–53.

31. Urowitz MB, Feleter M, Bruce IN, et al. Prolonged remission in systemic lupus erythematosus. J Rheumatol 2005;32:1467–72.

32. Tsokias K, Deeb M, Gladman DD, et al. Antimalarial-induced cardiomyopathy: a systematic review of the literature. Lupus 2018;27:591–9.

33. Stojan G, Petri M. The risk benefit ratio of glucocorticoids in SLE: have things changed over the past 40 years? Curr Treat Opt Rheumatol 2017;3:164–72.

34. Fanouriakis A, Kostopoulou M, Alummo A, et al. 2019 update of the EULAR recommendations for the management of systemic lupus erythematosus. Ann Rheum Dis 2019;78:736–45.

Almeida-Brasil CC, et al. Ann Rheum Dis 2022;81:370–378. doi:10.1136/annrheumdis-2021-221295

Systemic lupus erythematosus

377
Systemic lupus erythematosus

43 Winebrake J, Khalili L, Weiner J, et al. Rheumatologists’ perspective on hydroxychloroquine guidelines. *Lupus Sci Med* 2020;7:e000427.

44 Huszti E, Abrahamowicz M, Alioum A, et al. Comparison of selected methods for modeling of multi-state disease progression processes: a simulation study. *Commun Stat Simul Comput* 2011;40:1402–21.

45 Martín-Iglesias D, Artaraz J, Fonollosa A, et al. Evolution of retinal changes measured by optical coherence tomography in the assessment of hydroxychloroquine ocular safety in patients with systemic lupus erythematosus. *Lupus* 2019;28:555–9.

46 Ruiz-Irastorza G, Egurbide M-V, Pijoan J-I, et al. Effect of antimalarials on thrombosis and survival in patients with systemic lupus erythematosus. *Lupus* 2006;15:577–83.