The widespread use of insecticides in agriculture leads to the contamination of environment (Yonar and Sakin, 2011). These insecticides contaminate the aquatic bodies either via direct spraying on target species or surface runoff. When these insecticides reached to water bodies caused detrimental effects on non-target organisms especially to aquatic animals including fish which have high economic value for humans (Yonar et al., 2012; Saravanan et al., 2011).

Corresponding author: Huma Naz
dr.humanaz98@yahoo.com, humanaz@cuvas.edu.pk

Organophosphate pesticide such as chlorpyrifos (CPF) is widely used to kill the various agricultural pests and domestic species (Shittu et al., 2012). Toxicity associated with chlorpyrifos is an alarming threat not only to aquatic animals but also to human health (Xing et al., 2012). Chlorpyrifos induces toxicity by changing the physiological and antioxidant activities of fish (Tripathi and Shasmal, 2010). It also directly affects the nervous system by inhibiting the acetylcholine esterase (AChE) activity and can also amass in tissues of aquatic individuals (Oruc, 2010).

Pesticides cause oxidative stress by stimulating the production of reactive oxygen species (ROS) which contain oxygen like OH−, H2O2, and O−2 radicals which...
inhibit the activities of antioxidants in fish (Kumar et al., 2011). To minimize the ROS toxicity, organisms have antioxidant defense mechanisms which contain superoxide dismutase, glutathione peroxidase, catalase and glutathione S-transferase (Monteiro et al., 2006).

Glutathione S-transferase (GST) belongs to a phase II family responsible for detoxification of toxicants such as pesticides and polyaromatic hydrocarbons by the conjugation of glutathione (Strange et al., 2000; Richardson et al., 2009). By keeping in view above mentioned toxicity of chlorpyrifos, this research was carried out to check the total protein contents and glutathione S-transferase of Labeo rohita under sub-lethal effects of chlorpyrifos.

Materials and Methods

Labeo rohita was chosen for this experiment. Fish were obtained from Fish Seed Hatchery, Faisalabad and shifted into cemented tank at Fisheries Research Farm, UAF for acclimatization. The tests were carried out in glass aquaria (70-L) each having a group of fish (n=10). The technical grade insecticide chlorpyrifos was used as a test chemical. The LC50 (96 h) value as 16.53 μgL⁻¹ of chlorpyrifos for *L. rohita* was estimated by Illyas (2015). On the base of this LC50 value fish were kept under sub-lethal dose (4.13μgL⁻¹) of chlorpyrifos for two months (Figure 1). The tests were conducted with triplet at stable pH (7.25), total hardness (245 mgL⁻¹) and temperature (27 °C). Fish was sampled on weekly basis and sacrificed to get the tissues viz. brain, gills, kidney, heart, muscle and liver.

Tissue homogenate

To prepare tissues homogenate, each organ viz. brain, gills, kidney, heart, muscle and liver were isolated. Each organ was homogenate for 12 minutes in phosphate buffer of pH 6.5 mixed in the ratio of 1:4 (w/v). The homogenate was filtered and obtained filtrate was centrifuged in refrigerated centrifugal machine at 4 °C and 10,000 rpm for 10 minutes. Supernatant was separated for GST estimation.

![Figure 1: Effect of chlorpyrifos on GST activity of *L. rohita.*](image-url)
Glutathione S-transferase (GST)

Activity of GST was measured by spectrophotometer at A_{340nm} by adopting the procedure of Mannervik (1985).

Total protein contents (TPCs)

According to Gornall et al. (1949) protocol the Biuret method was applied to check the total protein contents of samples.

Analyses of data

Data was analyzed by appropriate methods of Statistics (Steel et al., 1997). Analysis of variance was applied to compare difference between treatments by using Statistix version 8.1.

Results and Discussion

Estimation of GST

It was noted that the GST level in all observed tissues of chlorpyrifos stressed fish was significantly increased in first 28-day after that it was dropped off up to 56-day in comparison to control. The trend of GST activity in tissues of fish was observed as muscle<heart<brain<kidney<gills< liver. Similarly, Naz et al. (2019) noted the increased GST level in all tissues of L. robita under endosulfan+chlorpyrifos mixture. Abdullah et al. (2018) also studied the higher level of GST in gills, liver, muscle and kidney of Channa striata under endosulfan+deltamethrin exposure. Batool et al. (2018) also reported the increased GST activity in hepatic tissues of Wallago attu under sub-lethal dose of toxicants. Sub-lethal dose of malathione stimulated the GST level in liver, kidney and gills of rohu (Karmakar et al., 2016). Nile tilapia showed increase in liver GST activity under sub-lethal stress of chlorpyrifos (Hamed, 2015). Cypermethrin and chlorpyrifos treated African catfish showed increased GST activity in liver, muscle and gills (Adeyemi et al., 2014). Huculeci et al. (2009) documented the malathion caused modulation GST level in kidney and gills of Carassius auratus gibelio. Alterations in gills, muscle and liver GST of rainbow trout due to diazinon and methyl parathion was noted by Isik and Celik (2008).

Figure 2: Effect of chlorpyrifos on total protein contents of L. robita.
Conclusion

In conclusion GST activity and TPCs are good biomarkers for evaluation of pesticides toxicity in aquatic animals. Fish is a suitable indicator for bio-monitoring the aquatic pollution.

Conflict of interest

No conflicts of interest.

References

Abdullah, S., Mateen, A., Abbas, K., Naz, H., Hassan, W. and Anum, S., 2018. Changes in glutathione s-transferase activity in fish Channa striata exposed to different aquatic pollutants (heavy metals and pesticides mixture). Pakistan J. Zool. Suppl. Ser., No.13: 42-47.

Adeyemi, J.A., Atere, T.G. and Deaton, L.E., 2014. Oxidative damage and changes in glutathione S-transferase activity in juvenile African catfish, Clariasgariepinus exposed to cypermethrin and chlorpyrifos. Biokemistri., 25: 113-117.

Agrahari, S., Gopal, K. and Pandey K.C., 2006. Biomarkers of monocrotophos in behaviour of freshwater fish Channapunctatus(Bloch). J. Environ. Biol., 27: 453-457.

Batoool, Y., Abdullah, S., Naz, H. and Abbas, K., 2018. Sub-lethal effect of waterborne cadmium exposure on glutathione s-transferase and total protein contents in liver of carnivorous fish, Wallago attu. Proc. Pak. Acad. Sci. B. Life Environ. Sci., 55: 21–25.

Chezhian, A., Kabilan, N., Kumar, S.T., Senthilvelan, D. and Sivakumari, K., 2010. Impact of common mixed effluent of spicot industrial estate on histopathological and biochemical changes in estuarine fish Lates calcarifer. Curr. Res. J. Boil. Sci., 2: 201-209.

Gornall, A.G., Bardwill, C.S. and David, M.M., 1949. Determination of serum proteins by means of biuret reaction. J. Biol. Chem., 177: 751-766.

Hamed, H.S., 2015. Impact of a short-term malathion exposure of Nile tilapia, (Oreochromis niloticus): The Protective Role of Selenium. Int. J. Environ. Monit. Anal., 3: 30-37.

Huculeci, R., Dinu, D., Staicu, A.C., Munteanu, M.C., Costache, M. and Dinischiotu, A., 2009. Malathion induced alteration of the antioxidant defence system in kidney, gill, and intestine of Carassiusauratusgibelio. Environ. Toxicol., 24: 523-530. https://doi.org/10.1002/tox.20454

Illyas, R., 2015. Effect of selected pesticides on growth and DNA damage in peripheral blood erythrocytes of fish. Ph.D. Thesis. Department of Zoology and Fisheries, University of Agriculture, Faisalabad, Pakistan. pp. 1-329.

Isik, I. and Celik, I., 2008. Acute effects of methyl parathion and diazinon as inducers for oxidative stress on certain biomarkers in various tissues of rainbow trout (Oncorhynchusmykiss). Pesti. Biochem. Physiol., 92: 38-42. https://doi.org/10.1016/j.pestbp.2008.06.001

Karmakar, S., Patra, K., Jana, S., Mandal, D.P. and Bhattacharjee, S., 2016. Exposure to environmentally relevant concentrations of malathion induces significant cellular, biochemical and histological alterations in Labeorohita. Pestic. Biochem. Physiol., 126: 49-57. https://doi.org/10.1016/j.pestbp.2015.07.006

Kumar, N., Prabhu, P.A.J., Pal, A.K., Remya, S., Akalukr, M., Rana, R.S., Gupta, S., Raman, R.P. and Jadhao, S.B., 2011. Anti-oxidative and immuno-hematological status of Tilapia (Oreochromismossambicus) during acute toxicity test of endosulfan. Pestic. Biochem. Physiol., 99: 45-52. https://doi.org/10.1016/j.pestbp.2010.10.003

Kumari, M., 2007. Biochemical changes induced by the pesticides abate in the liver of cat fish Heteropneutesfossilis(Bloch). Environ. Eco., 225: 1164-1166.

Mannervik, B., 1985. The isozymes of glutathione S-transferase. Adv. Enzymol. Relat. Areas Mol. Biol., 57: 357-417. https://doi.org/10.1002/9780470123034.ch5

Monteiro, D.A., De-Almeida, J.A., Rantin, F.T. and Kalinin, A.L., 2006. Oxidative stress biomarkers in the freshwater characid fish, Brycon cephalus, exposed to organophosphorus insecticide Folisuper 600 (methyl parathion). Comp. Biochem. Physiol., 143: 21-25.
Muley, D., Karanjkar, D. and Maske, S., 2007. Impact of industrial effluents on the biochemical composition of fresh water fish Labeorohita. J. Environ. Biol., 28: 245-249.

Naz, H., Abdullah, S., Abbas, K., Hassan, W., Batool, M., Perveen, S., Maalik, S. and Mushtaq, S., 2019. Toxic Effect of Insecticides Mixtures on Antioxidant Enzymes in Different Organs of Fish, Labeoro hobita. Pakistan J. Zool., 51: 1355-1361. https://doi.org/10.17582/journal.pjz/2019.51.4.1355.1361

Oruc, E.O., 2010. Oxidative stress, steroid hormone concentrations and acetylcholine esterase activity in Oreochromisniloticus exposed to chlorpyrifos. Pestic. Biochem. Physiol., 96: 160-166. https://doi.org/10.1016/j.pbi.2009.11.005

Richardson, K.L., Gold-Bouchot, G. and Schlenk, 2009. The characterization of cytosolic glutathione S-transferase from four species of sea turtles: Loggerhead (Caretta caretta), green (Cheloniamydas), olive ridley (Lepidochelysolivacea), and hawksbill (Eretmo chelysimbricata). Comp. Biochem. Physiol. Toxicol. Pharmacol., 150: 279-284. https://doi.org/10.1016/j.cbpc.2009.05.005

Saravanan, M., Kumar, K.P . and Ramesh, M., 2011. Haematological and biochemical responses of freshwater teleost fish Cyprinuscarpio (Actinopterygi: Cypriniformes) during acute and sub-lethal exposure to lindane. Pestic. Biochem. Physiol., 100: 206-211. https://doi.org/10.1016/j.pestbp.2011.04.002

Shittu, M., Ayo, J.O., Ambali, S.F., Fatihu, M.Y., Onyeanusi, B.I. and Kawu, M.U., 2012. Chronic chlorpyrifos induced oxidative changes in the testes and pituitary gland of wistar rats: ameliorative effects of vitamin C. Pestic. Biochem. Physiol., 102: 79-85. https://doi.org/10.1016/j.pestbp.2011.10.014

Somaiah, K., Sunita, K. and Nagaraj, U., 2014. Effect of phenthoate on protein levels of freshwater fish Labeorobita(hamilton). Int. Q. J. Biol. Life Sci., 2: 475-479.

Steel, R.G.D., Torrie, J.H. and Dickey, D., 1997. Principles and procedure of statistics: A biometrical approach, 3rd Ed. McGraw Hill Book Co. Inc., New York, pp. 352-358.

Strange, R.C., Jones, P.W. and Fryer, A.A., 2000. Glutathione S-transferase: genetics and role in toxicology. Toxicol. Lett., 112: 357-363. https://doi.org/10.1016/S0378-4274(99)00230-1

Tilak, K.S. and Rao, D.K., 2003. Chlorpyrifos toxicity of freshwater fish. J. Aquat. Biol., 8: 161-166.

Tripathi, G. and Shasmal, J., 2010. Reparation of chlorpyrifos induced impairment by thyroxine and vitamin C in fish. Ecotoxicol. Environ. Safe., 73: 1397-1401.

Venktramana, G.V., Sadihya-Rani, P.N. and Murthy, P.S., 2006. Impact of malathion on the biochemical parameters of goboid fish, Glossogobiusgiurus(Ham). J. Environ. Biol., 27: 119-122.

Vutukuru, S.S., 2005. Acute effects of hexavalent chromium on survival, oxygen consumption, hematological parameters and some biochemicals profiles of Indian major carp, Labeorobita. Int. J. Environ. Res. Publ. Hlth., 2: 456-462. https://doi.org/10.3390/ijerph2005030010

Xing, H., Wang, X., Sun, G., Gao, X., Xu, S. and Wang, X., 2012. Effects of atrazine and chlorpyrifos on activity and transcription of glutathione S-transferase in common carp (Cyprinuscarpio L.). Environ. Toxicol. Pharmacol., 33: 233-244. https://doi.org/10.1016/j.etap.2011.12.014

Yonar, M.E. and Sakin, F., 2011. Ameliorative effect of lycopene on antioxidant status in Cyprinuscarpio during pyrethroiddeltamethrin exposure. Pestic. Biochem. Physiol., 99: 226-231. https://doi.org/10.1016/j.pestbp.2010.12.008

Yonar, M.E., Yonar, S.M., Ural, M.S., Silici, S. and Dusukcan, M., 2012. Protective role of propolis in chlorpyrifos-induced changes in the haematological parameters and the oxidative/antioxidative status of Cyprinuscarpiovarse. Food Chem. Toxicol. 50: 2703-2708. https://doi.org/10.1016/j.fct.2012.05.032