R-parity Violating Radiative Photino Decay in Supersymmetric Models

Ambar Ghosal

Saha Institute of Nuclear Physics,
Theory Division, Block AF, Sector 1, Salt Lake,
Calcutta 700 064, India

It has been shown that unless the tri-linear R-parity violating coupling λ_{i33} ($i = 1, 2$) is small enough ($\lambda_{i33} < 10^{-2}$ for MSSM and 10^{-3} for GMSB model), the partial decay width of photino decaying into 'photon + $\nu_{e,\mu}$', both in supergravity motivated (MSSM) and gauge mediated (GMSB) supersymmetric models are larger than the partial decay width of photino decaying into 'photon + goldstino' in R-parity conserving GMSB model including one loop supersymmetric QED correction.

PACS No. 12.60.Jv, 13.10.+q, 14.80.Ly

E-mail: ambar@tnp.saha.ernet.in

(To appear in Phys. Rev. D)
Confirmation of neutrino oscillation by Superkamiokande experiment \[1\] leads to the conclusion of non-zero neutrino mass. In Minimal Supersymmetric version of Standard Model either Supergravity motivated (we refer it as MSSM) \[2\] or Gauge mediated (which we refer as GMSB) \[3\], this feature of non-zero neutrino mass is realized through R-parity violation in the theory. Supersymmetric models with R parity violation opens up a plethora of new signals or can mimic the signals of R-parity conserving models. In the present work, we have computed such loop induced photino decays \[4\] $\tilde{\gamma} \to \gamma \nu_i$, $\tilde{\gamma} \to \gamma \nu_\mu$ via R-parity violation. The qualitative nature of both these processes are same and the quantitative difference arises due to the difference in respective R-parity violating couplings. Keeping this feature in view, in the following, we represent both the decays as $\tilde{\gamma} \to \gamma \nu_i$ (where $i = e, \mu$) and the decay amplitude of both the processes will be evaluated just by replacing the respective R-parity violating coupling. Furthermore, we have neglected the decay process $\tilde{\gamma} \to \gamma \nu_\tau$ as it is much suppressed compared to the other two processes. This is precisely because $\tilde{\gamma} \to \gamma \nu_i$ decays involve heaviest τ lepton in the loop whereas $\tilde{\gamma} \to \gamma \nu_\tau$ decay involves e and μ leptons. The decay $\tilde{\gamma} \to \gamma \nu_i$ mimics the signal of $\tilde{\gamma} \to \gamma \tilde{G}$ in R-parity conserving GMSB model where $\tilde{\gamma}$ is the Next to Lightest Supersymmetric Particle (NLSP). Both these decay process, $\tilde{\gamma} \to \gamma \nu_i$ and $\tilde{\gamma} \to \gamma \tilde{G}$, give rise to the same final state $"\gamma + \not{E}\"$. We have also considered one loop supersymmetric QED correction of the decay $\tilde{\gamma} \to \gamma \tilde{G}$. There is not much enhancement in the partial decay width due to this correction and we find that the partial decay width of $\tilde{\gamma} \to \gamma \nu_i$ decay process is larger than the $\tilde{\gamma} \to \gamma \tilde{G}$ decay, unless the trilinear λ_{33} (where $i = 1, 2$) coupling is too small. Fur-
thermore, if R parity is violated, there will be possible three body photino decay ($\tilde{\gamma} \rightarrow fff$) and it has been shown\(^5\) that non-observation of such signal put a stringent constraint on the trilinear R-parity violating coupling $< 10^{-5}$, through the comparison between the partial decay width of $\tilde{\gamma} \rightarrow \gamma \tilde{G}$ with $\tilde{\gamma} \rightarrow fff$. A recent analysis\(^6\) in this path has been done through the inclusion of bi-linear R-parity violating term and it has been shown that the branching ratio of $\tilde{\chi}_1^0 \rightarrow \nu \gamma$ decay can have a maximum value of about 5-10%. In the present work, we find that the tri-linear R-parity violating λ_{i33} coupling alone give rise to a larger partial decay width of the decay process $\tilde{\gamma} \rightarrow \gamma \nu_i$ compared to the one loop supersymmetric QED corrected decay process $\tilde{\gamma} \rightarrow \gamma \tilde{G}$, unless the value of λ_{i33} is too low. Thus, if R-parity is violated, ambiguity arises to interpret the observed signal ”$\gamma + \mathcal{E}$” or ”$\gamma \gamma + \mathcal{E}$” etc.\(^7\),\(^8\) as a low energy signature of R-parity conserving GMSB model in an unambiguous way. Some other complementary signal in collider experiment should be needed which when taken into account with the ”photon + missing energy” signal could lead us to confirm any of these models. Before going into the details, we like to mention the followings: First, although, in general, lightest neutralino $\tilde{\chi}_1^0$ is an admixture of the neutral gauginos and neutral Higgsinos, however, the present state of knowledge leads to the fact that the $\tilde{\gamma}$ component is dominated over the largest region of allowed parameter space\(^9\). The relevant mixing factor arises due to general consideration of $\tilde{\chi}_1^0$ structure will modify equally all the decays discussed in the present work. Second, we discard any photino-lepton-slepton off diagonal coupling in the present work.

To compute one loop supersymmetric QED correction to the decay of
\(\tilde{\gamma} \to \gamma \tilde{G} \) in R-parity conserving GMSB model, we consider the following goldstino-lepton-slepton interaction Lagrangian \[10\]

\[L = -ie_{gL} \sqrt{2} [\bar{e}_L \tilde{e}_L \tilde{G} + \tilde{G} \bar{e}_L^* e_L] + ie_{gR} \sqrt{2} [\bar{e}_R \tilde{e}_R \tilde{G} + \tilde{G} \bar{e}_R^* e_R] \tag{1} \]

where

\[e_{gL} = \frac{m_{\tilde{e}_L}^2 - m_e^2}{d}, e_{gR} = \frac{m_{\tilde{e}_R}^2 - m_e^2}{d}, d = \sqrt{\frac{3}{4\pi}} M_{susy}^2 \tag{2} \]

In the above expressions \(m_{\tilde{e}_L}, m_{\tilde{e}_R} \) are the masses of the left-slepton and right-slepton and \(M_{susy} \) is the supersymmetry breaking scale parametrized in terms of parameter \(d \). In GMSB model, masses of left-slepton and right-slepton are wide apart primarily due to their different representation under SU(2) gauge group and since \(m_{\tilde{e}_L} >> m_{\tilde{e}_R} \) we have discarded the contribution due to \(m_{\tilde{e}_L} \). Furthermore, we ignored any non-degeneracy in right-slepton masses and \(m_{\tilde{e}_R} \) represents mass of the right-selectron. The one loop supersymmetric QED corrected diagrams of the decay \(\tilde{\gamma}(q) \to \gamma(p_2)\tilde{G}(p_1) \) is generated due to slepton-lepton particles in the loop. The squark-quark induced loop diagrams are neglected since \(m_{\tilde{q}} >> m_{\tilde{t}} \). Neglecting lepton masses as well compared to selectron mass, we obtain the following matrix element

\[-iM_{loop} = i \left(\frac{2e^2}{16d^2} \right) m_{\tilde{e}_R}^2 A \bar{u}(p_1) \gamma^\rho u(q) \epsilon_\rho^* \] \tag{3}

where

\[A = -\frac{3}{2} \ln(1 + p - 2p^2) + \frac{p}{18} + \frac{143}{60} p^2 \tag{4} \]

and \(p = \frac{m_\gamma}{m_{\tilde{e}_R}^2} \) where \(m_\gamma \) is the mass of the photino. It is to be noted that as \(p \to 0 \), still there is a non-zero contribution to the loop correction due to the presence of the second term in the right-hand side of Eqn.(4), which
shows non-decoupling effect of the above process. This is basically due to the proportionality of the coupling of the Goldstino-lepton-slepton term in the lagrangian with the slepton mass squared.

The relevant part of the Lagrangian required to calculate tree level $\tilde{\gamma}(q) \rightarrow \gamma(p_2)\tilde{G}(p_1)$ is given by [11]

$$L = \frac{1}{2d} \partial_\mu \tilde{\gamma} \gamma^{\mu}[\gamma^\nu, \gamma^\rho] \tilde{G} \partial_\nu A_\rho + h.c. \quad (5)$$

and the tree level matrix element comes out as

$$-iM_{Tree} = \frac{3m_{\tilde{\gamma}}^2}{2d} \bar{u}(p_1)\gamma^\rho u(q)\epsilon^*_{\rho}(p_2) \quad (6)$$

The total matrix element $M_{total}(= \text{tree level} + \text{one loop})$ of the decay process $\tilde{\gamma} \rightarrow \gamma\tilde{G}$ can be written as

$$M_{total} = M_{tree}(1 + \Delta) = \frac{3m_{\tilde{\gamma}}^2}{2d} (1 + \frac{e^2}{12\pi^2} \frac{m_{\tilde{e}_R}^2}{m_{\tilde{\gamma}}^2} A) \bar{u}(p_1)\gamma^\rho u(q)\epsilon^*_{\rho}(p_2) \quad (7)$$

where $\Delta = \frac{M_{\text{loop}}}{M_{\text{tree}}}$ is the enhancement factor. For a typical mass value of $m_{\tilde{\gamma}} = 80 \text{ GeV}$ and $m_{\tilde{e}_R} = 100 \text{ GeV}$ which are allowed in GMSB model, we found the enhancement in M_{total} due to one loop correction is $\Delta \sim 6 \times 10^{-3}$ for three generations of leptons. For higher values of photino and right-selectron masses the correction becomes more and more insignificant. Thus, we find that the enhancement due to the one loop supersymmetric QED correction of the decay $\tilde{\gamma} \rightarrow \gamma\tilde{G}$ is insignificant compared to its tree level decay mode.

Next, we consider the one loop decay of $\tilde{\gamma} \rightarrow \gamma\nu_i$ in MSSM induced by the tri-linear R-parity violating λ_{i33} coupling. The relevant diagrams are obtained by replacing goldstino field of the previous process by the ν_i field with R parity violating λ_{i33} coupling, however, unlike the previous case, there
is a chirality flip in the internal lepton(s) line(s) due to Yukawa type nature of the R-parity violating interactions, and therefore, we cannot neglect lepton mass in this case. We have considered heaviest \(\tau \) lepton contribution only and as we have considered photino-lepton-slepton flavour diagonal coupling, the other particle circulating in the loop is \(\tilde{\tau}_R \). Furthermore, we have ignored any non-degeneracy between \(m_{\tilde{\tau}_L} \) and \(m_{\tilde{\tau}_R} \) and we have also ignored \(\lambda' \) coupling induced \(d - \bar{d} \) interactions by considering \(m_{\tilde{d}} >> m_{\tilde{\tau}_R} \).

We consider the following R-parity violating trilinear interaction,

\[
L_{R_p} = \frac{\lambda_{333}}{2}[\tilde{\tau}_L \nu_i L \tilde{\tau}_R + (\tilde{\tau}_R)^* (\nu_i L)^c \tau_L] + h.c. \quad (8)
\]

The squared matrix element of the process \(\tilde{\gamma} \to \gamma \nu_i \) comes out as

\[
|M|^2_{\text{MSSM}} = 16Q^2[2A^2 - B_1^2(A_1 + C)(B + C) - 2AB_1(B + C)] \quad (9)
\]

where

\[
Q = \frac{(\lambda_{333} \alpha)}{4\sqrt{2\pi}} \left(\frac{m_{\tau}}{m_{\tilde{\tau}}^2} \right) m_{\tilde{\gamma}}^2 \quad (10)
\]

\[
A = \frac{t}{t - 1} \ln t - \ln t - 1 \quad (11)
\]

\[
A_1 = \frac{2}{1 - t} (t \ln t + 1 - t) - 1 + \frac{2}{(1 - t)^2} \left(\frac{t^2}{4} - \frac{1}{4} - \frac{t^2}{2} \ln t \right) \quad (12)
\]

\[
B = \frac{t}{1 - t} \ln t + 1 \quad (13)
\]

\[
B_1 = \frac{3}{t - 1} \quad (14)
\]

\[
C = \frac{1}{(1 - t)^2} \left[t(1 - \frac{t}{2}) \ln t + (t - \frac{1}{4}) - \frac{3t^2}{4} \right] \quad (15)
\]

6
and \(t = \frac{m_\tau^2}{m_{\tilde{\tau}}^2} \). Neglecting higher powers of \(t \), we obtain a simpler expression for \(|M|_{MSSM}^2 \) as

\[
|M|_{MSSM}^2 = 16Q^2[2(1 + \ln t)^2 + \frac{9}{2} \ln t + \frac{45}{16}]
\]

(16)

The partial decay width comes out as

\[
\Gamma_{R_p}^{MSSM} = \frac{1}{16\pi} |M|_{MSSM}^2 \frac{1}{m_{\tilde{\gamma}}}
\]

(17)

The partial decay width \(\Gamma(\tilde{\gamma} \rightarrow \gamma \tilde{G}) \) in R-parity conserving GMSB model at the tree level is given by [12]

\[
\Gamma(\tilde{\gamma} \rightarrow \gamma \tilde{G})^{GMSB} = \frac{m_{\tilde{\gamma}}^5}{6M_{\text{Susy}}^4}
\]

(18)

and for the previous choice of photino mass and \(M = 150 \text{ TeV} \), the partial decay width comes out as \(\Gamma(\tilde{\gamma} \rightarrow \gamma \tilde{G})^{GMSB} \sim 0.10 \times 10^{-11} \) whereas \(\Gamma_{R_p}^{MSSM} \sim 0.17 \times 10^{-7} \times \lambda_{33}^2 \) for \(m_{\tilde{\tau}} = 200 \text{ GeV} \), \(m_{\tilde{\gamma}} = 100 \text{ GeV} \). Thus, unless \(\lambda_{33} \) is very small \((< 10^{-2}) \), \(\Gamma(\tilde{\gamma} \rightarrow \gamma \nu_i)^{MSSM} \rangle > \Gamma(\tilde{\gamma} \rightarrow \gamma \tilde{G})^{GMSB} \). Such a value of \(\lambda_{33} \) is well within the present upper bounds: \(\lambda_{233} < 0.09 \left(\frac{m_{\tilde{\tau}}}{100 \text{ GeV}} \right) \), \(\lambda_{133} < 0.24 \left(\frac{m_{\tilde{\tau}}}{100 \text{ GeV}} \right) \) [13].

Similar result is also obtained in case of GMSB model including R-parity violation. The squared matrix element in this case is given by

\[
|M|_{GMSB}^2 = 4 \left(\frac{\lambda_{33} a}{4\sqrt{2}\pi} \right)^2 t_1[2(1 + \ln t_1)^2 + \frac{9}{2} \ln t_1 + \frac{45}{16} \frac{m_{\tilde{\gamma}}^2}{m_{\tilde{\tau}}^2}]
\]

(19)

\[+ \text{terms containing } m_{\tilde{\ell}_L} \]

(20)

where \(t_1 = \frac{m_\tau^2}{m_{\tilde{\tau}}^2} \) and as before we have neglected higher powers of \(t_1 \). We can also neglect left-slepton contribution in the above expression since \(m_{\tilde{\ell}_L} >> m_{\tilde{\tau}} \) in GMSB model. The partial decay width comes out as

\[
\Gamma_{R_p}^{GMSB} = \frac{1}{16\pi} |M|_{GMSB}^2 \frac{1}{m_{\tilde{\gamma}}}
\]

(21)
For a typical choice of model parameters, $m_{\tilde{\gamma}} = 80 \text{ GeV}$, $m_{\tilde{\tau}_R} = 100 \text{ GeV}$ we obtain, $\Gamma_{R_{\text{p}}}^{\text{GMSB}} = 0.21 \times 10^{-7} \times \lambda_{i33}^2$. Hence, as before, unless $\lambda_{i33} < 10^{-3}$, the partial decay width of R-parity violating photino decay ($\tilde{\gamma} \rightarrow \gamma \nu_i$) in GMSB model is larger than the R-parity conserving photino decay ($\tilde{\gamma} \rightarrow \gamma \tilde{G}$) mode.

In summary, we have calculated partial decay width of one loop radiative photino decay ($\tilde{\gamma} \rightarrow \gamma \nu_i$) (where $i = e, \mu$) both in MSSM as well as GMSB models due to tri-linear R-parity violating interactions. We have also computed one loop supersymmetric QED corrected amplitude of the decay process $\tilde{\gamma} \rightarrow \gamma \tilde{G}$ in R-parity conserving GMSB model. We found that for a typical choice of model parameters the enhancement due to this correction, $\Delta(=\frac{M_{\text{loop}}}{M_{\text{tree}}})$ is of the order of 6×10^{-3} for three generations of leptons. We have compared the one loop QED corrected partial decay width of the decay $\tilde{\gamma} \rightarrow \gamma \tilde{G}$ with the R-parity violating $\tilde{\gamma} \rightarrow \gamma \nu_i$ decay for both MSSM and GMSB models and we found that unless the tri-linear R-parity violating λ_{i33} (where $i = 1, 2$) coupling is small enough ($\lambda_{i33} < 10^{-2}$ for MSSM and 10^{-3} for GMSB model), the partial decay width of this loop induced process is larger than the photino decay $\tilde{\gamma} \rightarrow \gamma \tilde{G}$ in R-parity conserving GMSB model. The upshot of this analysis leads to a crucial position to interpret the collider signal ”photon + missing energy” as a signature of R-parity conserving GMSB model in an unambiguous way.

Author acknowledges Biswarup Mukhopadhyaya, Uma Mahanta, Debajyoti Choudhuri, Gautam Bhattacharya, Anirban Kundu and Sourov Roy for many helpful comments and discussions.
References

[1] Superkamiokande Collaboration, Y. Fukuda et. al., hep-ex/9807003, hep-ex/9812014; T.Kajita, talk delivered at Neutrino ’98, Takayama, Japan, June, 1998.

[2] For reviews, see e.g., H.E.Haber and G.L.Kane, Phys.Rep. 117, 75(1985); G. Kane (ed.), Perspectives on Supersymmetry (World Scientific); I. Simonsen, hep-ph/9506369.

[3] M. Dine, W. Fischler and M. Srednicki, Nucl.Phys. B189, 575(1981); S.Dimopoulos and S. Raby, ibid. B192, 353(1981); G. Dvali and M. Shifman, Phys. Lett. B399, 60 (1997); L. Randall, Nucl. Phys. B495, 37(1997).

[4] L. J. Hall and M. Suzuki, Nucl. Phys. B231, 419 (1984), S. Dawson, ibid B261, 297 (1985), R. Hempfling, hep-ph/9702412.

[5] M. Carena, S. Pokorski and C. E. M. Wagner, Phys. Lett. B430, 281, 1998.

[6] B. Mukhopadhyaya and S. Roy, hep-ph/9903418.

[7] See for example, CDF Collaboration, F. Abe et al., Phys. Rev. Lett. 81, 1791(1998); Phys. Rev. D59, 092002 (1999); DO Collaboration, S. Abachi et. al., Phys. Rev. Lett. 78, 2070(1997); DO Collaboration, B. Abbott et. al., Phys. Rev. Lett. 80, 442 (1998); L3 Collaboration, M. Acciarri et al., Phys. Lett. B444, 503(1998); OPAL Collaboration, G. Abbiendi, et al, hep-ex/9810021.
[8] K. Grassie and P. N. Pandita, Phys. Rev. D30, 22(1984); D. Stump, M. Wiest and C.-P. Yuan, Phys. Rev. D54, 1936 (1996), S. Dimopoulos, M. Dine, S. Raby and S. Thomas, Phys. Rev. Lett. 76, 3493 (1996), S. Dimopoulos, S. Thomas and J. D. Wells, Phys. Rev. D54, 3283(1996), S. Ambrosanio, G. L. Kane, G. D. Kribs, S. P. Martin and S. Mrenna, Phys. Rev. Lett. 76, 3498 (1996), Phys. Rev. D54, 5395 (1996), A. Ghosal, A. Kundu and B. Mukhopadhyaya, Phys. Rev. D56, 504(1997); A. Datta, A. Datta and S. Raychaudhuri, Eur. Phys. J. C1, 375 (1998).

[9] R. G. Roberts and L. Roszkowski, Phys. Lett. B309, 329, (1993), G. L. Kane, C. Kolda, L. Roszkowski and J. D. Wells, Phys. Rev. D49, 6173 (1994).

[10] P. Fayet, Phys. Lett. B175, 471 (1986).

[11] T. Gherghetta, Nucl. Phys. B485, 25 (1997).

[12] J. Ellis and J. S. Hagelin, Phys. Lett. 122B, 303 (1983), M. K. Gaillard, L.Hall and I. Hinchliffe, Phys. Lett. B116, 179(1982).

[13] V. Barger, G. F. Guidice and T. Han, Phys. Rev. D40, 2987 (1989), R. Barbier et al. hep-ph/9810232