The compositional inverse of a class of linearized permutation polynomials over \mathbb{F}_{2^n}, n odd

Baofeng Wu*

Abstract

In this paper, the compositional inverses of a class of linearized permutation polynomials of the form $P(x) = x + x^2 + \text{tr}(x^a)$ over the finite field \mathbb{F}_{2^n} for an odd positive integer n are explicitly determined.

Keywords Permutation polynomial; Linearized polynomial; Compositional inverse; Determinant.

1 Introduction

Let \mathbb{F}_q be the finite field with q elements where q is a prime or a prime power. A polynomial over \mathbb{F}_q is called a permutation polynomial (or a PP for short) if the map

$$\mathbb{F}_q \rightarrow \mathbb{F}_q$$

$c \mapsto f(c)$

is bijective [4]. It is clear that the set of all PPs over \mathbb{F}_q forms a group under the operation of composition of polynomials and subsequent reduction modulo $(x^q - x)$, which is isomorphic to S_q, the symmetric group on q letters. Hence for every PP over \mathbb{F}_q, there exists a unique polynomial $f^{-1}(x)$ over \mathbb{F}_q such that $f(f^{-1}(x)) = f^{-1}(f(x)) = x$ in the sense of reducing modulo

*Key Laboratory of Mathematics Mechanization, AMSS, Chinese Academy of Sciences, Beijing 100190, China. Email: wubaofeng@amss.ac.cn
called the compositional inverse of \(f(x) \). Generally speaking, for a given PP \(f(x) \) over \(\mathbb{F}_q \), it is easy to verify whether the other polynomial \(g(x) \) is its compositional inverse since we need only to check whether \(f(g(x)) \equiv x \mod (x^q - x) \) or \(g(f(x)) \equiv x \mod (x^q - x) \) holds. But to derive the compositional inverse of a PP explicitly is very challenging. Indeed, it was posed by G.L. Mullen as a research problem that to compute the coefficients of the compositional inverse of a PP efficiently [6, Problem 10]. Up to present, there are only a few classes of PPs over finite fields whose compositional inverses can be explicitly obtained (see, for example, [5, 3, 8]). For instance, a method to compute compositional inverses of linearized permutation polynomials was proposed by the authors in [7].

Linearized polynomials are a special type of polynomials over finite fields. A linearized polynomial over the finite field \(\mathbb{F}_{q^n} \) is of the form

\[
L(x) = \sum_{i=0}^{n-1} a_i x^{q^i}.
\]

It can induce a linear transformation of \(\mathbb{F}_{q^n} \) over \(\mathbb{F}_q \) due to the well-known relation \((x+y)^q = x^q + y^q \) for any \(x, y \in \mathbb{F}_{q^n} \) and \(0 \leq t \leq n-1 \). A criterion on linearized polynomials to be permutation ones is easy to obtain. In fact, it was found by Dickson as early as in 1897 that \(L(x) = \sum_{i=0}^{n-1} a_i x^{q^i} \in \mathbb{F}_{q^n}[x] \) is a PP if and only if the matrix

\[
D_L = \begin{pmatrix}
a_0 & a_1 & \cdots & a_{n-1} \\
a_1^q & a_0 & \cdots & a_{n-2}^q \\
\vdots & \vdots & \ddots & \vdots \\
a_{n-1}^q & a_{n-2}^q & \cdots & a_0^q
\end{pmatrix}
\]

is non-singular [4]. Obviously, when a linearized polynomial is a PP, its compositional inverse is also a linearized polynomial.

In [7], \(D_L \) is called the associate Dickson matrix of the linearized polynomial \(L(x) \), or vice versa, by the authors. We have also found more relations between the properties of a linearized polynomial and its associate Dickson matrix. For example, we have related the compositional inverse of a linearized PP to the inverse of its associate Dickson matrix, obtaining the following theorem:
Theorem 1.1. Let \(L(x) \in \mathbb{F}_{q^n}[x] \) be a linearized PP. Then \(D_{L^{-1}} = D_L^{-1} \). More precisely, if \(L(x) = \sum_{i=0}^{n-1} a_i x^{q^i} \) and \(\bar{a}_i \) is the \((i,0)\)-th cofactor of \(a_i \), \(0 \leq i \leq n-1 \), then

\[
 L^{-1}(x) = \frac{1}{\det L} \sum_{i=0}^{n-1} \bar{a}_i x^{q^i},
\]

where \(\det L = \sum_{i=0}^{n-1} a^{q^i}_{n-i} \bar{a}_i \in \mathbb{F}_q \) (subscripts reduced modulo \(n \)).

According to Theorem 1.1, the main task in computing the compositional inverse of a linearized PP over \(\mathbb{F}_{q^n} \) is to compute the determinant of \(n \) matrices over \(\mathbb{F}_{q^n} \) with size \((n-1) \times (n-1)\), which can be efficiently realized from an algorithmic perspective. However, to explicitly represent the compositional inverses of certain linearized PPs by closed form formulas seems not so direct due to the difficulties in computing determinants of computing matrices, even for some linearized PPs of simple forms. In this paper, we devote to talking about such an example.

Let \(n \) be odd and \(a \in \mathbb{F}_{2^n} \) be a non-zero element with \(\text{tr} \left(\frac{1}{a} \right) = 1 \), where \(\text{tr} \) is the trace map over \(\mathbb{F}_{2^n} \), i.e. \(\text{tr}(x) = \sum_{i=0}^{n-1} x^{2^i} \) for any \(x \in \mathbb{F}_{2^n} \). It can be easily derived by [2, Theorem 7] that

\[
P(x) = x + x^2 + \text{tr} \left(\frac{x}{a} \right)
\]
is a linearized PP over \(\mathbb{F}_{2^n} \). Linearized PPs of this form can be related to the multiplication of the binary Knuth pre-semifield in finite geometry [1].

In the subsequent sections, we fix an odd \(n \) and \(a \in \mathbb{F}_{2^n} \) with \(\text{tr} \left(\frac{1}{a} \right) = 1 \). We propose the explicit representation of coefficients of the compositional inverse of \(P(x) \) and explain how to obtain it afterwards. It will be noted that \(P^{-1}(x) \) is of a very complicated form.

2 Explicit representation of the compositional inverse of \(P(x) \)

To simplify the presentation of coefficients of \(P^{-1}(x) \), we introduce a symbol firstly.

For any \(c \in \mathbb{F}_{2^n} \) and \(i_1, \ldots, i_t \in \mathbb{Z}/n\mathbb{Z} = \{0, 1, \ldots, n-1\} \), we denote

\[
c^{(i_1, i_2, \ldots, i_t)} = \sum_{j=1}^{t} c^{2^{ij}}.
\]
Besides, for any subset I of $\mathbb{Z}/n\mathbb{Z}$, we denote
\[
c(I) = \sum_{i \in I} c^2.
\]
It is easy to see that the symbol “$c\langle \cdot \rangle$” satisfies the following properties:

Proposition 2.1. (1) $c\langle 0, 1, \ldots, n-1 \rangle = c\langle \mathbb{Z} \rangle = \text{tr}(c)$;
(2) For any $\pi \in S_t$, $c\langle i_{\pi(1)}, i_{\pi(2)}, \ldots, i_{\pi(t)} \rangle = c(i_1, i_2, \ldots, i_t)$;
(3) For any $I, J \subseteq \mathbb{Z}/n\mathbb{Z}$, $c\langle I \rangle + c\langle J \rangle = c\langle (I \cup J) \setminus (I \cap J) \rangle$;
(4) For any $k \geq 0$, $c\langle i_1, i_2, \ldots, i_t \rangle^{2^k} = c\langle i_1 + k, i_2 + k, \ldots, i_t + k \rangle$. □

By virtue of this newly defined symbol, we can propose the compositional inverse of $P(x)$.

Theorem 2.2. $P^{-1}(x) = B_a(x) + \text{tr}(x)$, where the coefficients of $B_a(x) = \sum_{i=0}^{n-1} b_i x^{2^i} \in \mathbb{F}_{2^n}[x]$ are given by
\[
b_0 = \frac{1}{a}\langle 2, 4, 6, \ldots, n-1 \rangle, \quad b_i = \begin{cases} \frac{1}{a}\langle 1, 3, 5, \ldots, i, i + 1, i + 3, \ldots, n-1 \rangle & \text{if } i \text{ is odd}, \\ \frac{1}{a}\langle 1, 3, 5, \ldots, i-1, i + 2, i + 4, \ldots, n-1 \rangle & \text{if } i \text{ is even}, \end{cases}
\]

$1 \leq i \leq n-1$

Proof. Noting that
\[
B_a(1) = \sum_{i=0}^{n-1} b_i
\]
\[
= \frac{1}{a}\langle 2, 4, \ldots, n-1 \rangle + \sum_{1 \leq i \leq n-1 \atop i \text{ odd}} \frac{1}{a}\langle 1, 3, \ldots, i, i + 1, i + 3, \ldots, n-1 \rangle
\]
\[
+ \sum_{1 \leq i \leq n-1 \atop i \text{ even}} \frac{1}{a}\langle 1, 3, \ldots, i-1, i + 2, i + 4, \ldots, n-1 \rangle
\]
\[
= \frac{1}{a}\langle 2, 4, \ldots, n-1 \rangle + \sum_{j=1}^{n/2} \left(\frac{1}{a}\langle 1, 3, \ldots, 2j-1, 2j, 2j+2, \ldots, n-1 \rangle + \frac{1}{a}\langle 1, 3, \ldots, 2j-1, 2j+2, 2j+4, \ldots, n-1 \rangle \right)
\]

4
\[L^{-1}(L(x)) = B_a(x) + B_a(x^2) + B_a(1) \text{tr} \left(\frac{x}{a} \right) + \text{tr}(x + x^2) + \text{tr} \left(\frac{x^3}{a} \right). \]

Furthermore, by Proposition 2.1 we have

\[B_a(x) + B_a(x^2) = \frac{1}{a} \langle 2, 4, \ldots, n-1 \rangle x + \sum_{1 \leq i \leq n-1} \frac{1}{a} \langle 1, 3, \ldots, i, i+1, i+3, \ldots, n-1 \rangle x^{2i} \]

\[+ \sum_{1 \leq i \leq n-1} \frac{1}{a} \langle 1, 3, \ldots, i-1, i+2, i+4, \ldots, n-1 \rangle x^{2i} \]

\[+ \frac{1}{a} \langle 2, 4, \ldots, n-1 \rangle x^2 + \sum_{1 \leq i \leq n-1} \frac{1}{a} \langle 1, 3, \ldots, i, i+1, i+3, \ldots, n-1 \rangle x^{2i+1} \]

\[+ \sum_{1 \leq i \leq n-1} \frac{1}{a} \langle 1, 3, \ldots, i-1, i+2, i+4, \ldots, n-1 \rangle x^{2i+1} \]

\[= \left(\frac{1}{a} \langle 2, 4, \ldots, n-1 \rangle + \frac{1}{a} \langle 1, 3, \ldots, n-2 \rangle \right) x \]

\[+ \left(\frac{1}{a} \langle 1, 2, 4, \ldots, n-1 \rangle + \frac{1}{a} \langle 2, 4, \ldots, n-1 \rangle \right) x^2 \]

\[+ \sum_{3 \leq i \leq n-1} \left(\frac{1}{a} \langle 1, 3, \ldots, i, i+1, i+3, \ldots, n-1 \rangle \right. \]

\[\quad + \frac{1}{a} \langle 1, 3, \ldots, i-2, i+1, i+3, \ldots, n-1 \rangle \right) x^{2i} \]

\[+ \sum_{2 \leq i \leq n-1} \left(\frac{1}{a} \langle 1, 3, \ldots, i-1, i+2, i+4, \ldots, n-1 \rangle \right. \]

\[\quad + \frac{1}{a} \langle 1, 3, \ldots, i-1, i, i+2, \ldots, n-1 \rangle \right) x^{2i} \]
\[
\frac{1}{a} \langle 1, 2, 3, 4, \ldots, n-1 \rangle x + \frac{1}{a} \langle 1 \rangle x^2 + \sum_{2 \leq i \leq n-1} \frac{1}{a} \langle i \rangle x^{2i}
\]

\[
= \left(\text{tr} \left(\frac{1}{a} \right) + \frac{1}{a} \right) x + \sum_{1 \leq i \leq n-1} \left(\frac{x}{a} \right)^{2i}
\]

\[
= x + \text{tr} \left(\frac{x}{a} \right).
\]

Then \(L^{-1}(L(x)) = x \). \(\square \)

Remark 2.3. Assume \(P^{-1}(x) = \sum_{i=0}^{n-1} p_i x^{2i} \). Then it is easy to derive from Theorem 2.2 and the condition \(\text{tr} \left(\frac{1}{a} \right) = 1 \) that

\[
p_0 = 1 + \frac{1}{a} \langle 2, 4, \ldots, n-1 \rangle
\]

\[
= \frac{1}{a} \langle 0, 1, 3, \ldots, n-2 \rangle,
\]

and for \(1 \leq i \leq n-1 \),

\[
p_i = 1 + \frac{1}{a} \langle 1, 3, \ldots, i, i+1, i+3, \ldots, n-1 \rangle
\]

\[
= \frac{1}{a} \langle 0, 2, 4, \ldots, i-1, i+2, i+4, \ldots, n-2 \rangle
\]

when \(i \) is odd, and

\[
p_i = 1 + \frac{1}{a} \langle 1, 3, \ldots, i-1, i+2, i+4, \ldots, n-1 \rangle
\]

\[
= \frac{1}{a} \langle 0, 2, 4, \ldots, i, i+1, i+3, \ldots, n-2 \rangle.
\]

when \(i \) is even. Therefore, we can also represent \(P^{-1}(x) \) by \(P^{-1}(x) = C_a(x) + \text{tr} \left(\frac{x}{a} \right) \), where the coefficients of \(C_a(x) = \sum_{i=0}^{n-1} c_i x^{2i} \in \mathbb{F}_2[x] \) are given by

\[
c_0 = \frac{1}{a} \langle 1, 3, 5, \ldots, n-2 \rangle,
\]

\[
c_i = \begin{cases}
1 + \frac{1}{a} \langle 1, 3, 5, \ldots, i-2, i+1, i+3, \ldots, n-1 \rangle & \text{if } i \text{ is odd}, \\
\frac{1}{a} \langle 0, 2, 4, \ldots, i-2, i+1, i+3, \ldots, n-2 \rangle & \text{if } i \text{ is even},
\end{cases}
\]

\(1 \leq i \leq n-1 \).
Corollary 2.4. Let $P_1(x) = x + x^2 + \text{tr}(x)$. Then $P_1(x)$ is a linearized PP over \mathbb{F}_{2^n} with compositional inverse

$$P_1^{-1}(x) = \begin{cases} \sum_{i=0}^{n-1} x^{2i} & \text{if } n \equiv 1 \pmod{4}, \\ \sum_{i=0}^{n-3} x^{2i+1} & \text{if } n \equiv 3 \pmod{4}. \end{cases}$$

Proof. It is obvious that $P_1(x)$ is a linearized PP over \mathbb{F}_{2^n} since $\text{tr}(1) = 1$. By fixing $a = 1$ in Theorem 2.2, it is straightforward to obtain the coefficients of $P_1^{-1}(x)$. \Halmos

Remark 2.5. (1) It is easy to see that the compositional inverse of $P_1(x)$ in Corollary 2.4 can be written as

$$P_1^{-1}(x) = \frac{n+1}{2} \sum_{i=0}^{n-1} x^{2i} + \frac{n-1}{2} \sum_{i=0}^{n-3} x^{2i+1}.$$

(2) In fact, $P_1(x)$ is a linearized polynomial with coefficients in \mathbb{F}_2, whose conventional associate \[4\] is $p_1(x) = \sum_{i=2}^{n-1} x^i$. By \[4\], Lemma 3.59, it is easy to derive that the conventional associate of $P_1^{-1}(x)$ is just the polynomial $\bar{p}(x)$ satisfying $p(x)\bar{p}(x) \equiv 1 \pmod{(x^n+1)}$. Hence from Corollary 2.4, we obtain

$$\bar{p}(x) = \begin{cases} \sum_{i=0}^{n-1} x^{2i} & \text{if } n \equiv 1 \pmod{4}, \\ \sum_{i=0}^{n-3} x^{2i+1} & \text{if } n \equiv 3 \pmod{4}. \end{cases}$$
In this section, we describe in detail the process of deriving the compositional inverse of \(P(x) \). Note that the associate Dickson matrix of \(P(x) \) is

\[
D_P = \begin{pmatrix}
1 + \frac{1}{a} & 1 + \frac{1}{a^2} & 1 + \frac{1}{a^2} & \cdots & \frac{1}{a^{2n-2}} & \frac{1}{a^{2n-1}} \\
\frac{1}{a} & 1 + \frac{1}{a^2} & 1 + \frac{1}{a^2} & \cdots & \frac{1}{a^{2n-2}} & \frac{1}{a^{2n-1}} \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
\frac{1}{a} & \frac{1}{a^2} & \frac{1}{a^2} & \cdots & 1 + \frac{1}{a^{2n-2}} & 1 + \frac{1}{a^{2n-1}} \\
1 + \frac{1}{a} & 1 + \frac{1}{a^2} & 1 + \frac{1}{a^2} & \cdots & \frac{1}{a^{2n-2}} & 1 + \frac{1}{a^{2n-1}} \\
\end{pmatrix},
\]

which is of a relatively complicated form. To utilizing Theorem 1.1 easily, we firstly simplify the problem by a linear transformation of \(P(x) \). That is, we reduce the problem of computing compositional inverse of \(P(x) \) to that of computing compositional inverse of \(\tilde{P}(x) = ax + a^2x^2 + \text{tr}(x) \) by noting that \(\tilde{P}(x) = P(ax) \), which implies

\[
P^{-1}(x) = a\tilde{P}^{-1}(x).
\]

In this place, we should deal with the Dickson matrix

\[
D_{\tilde{P}} = \begin{pmatrix}
1 + a & 1 + a^2 & 1 & \cdots & 1 & 1 \\
1 & 1 + a^2 & 1 + a^2 & \cdots & 1 & 1 \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\
1 & 1 & 1 & \cdots & 1 + a^{2n-2} & 1 + a^{2n-1} \\
1 + a & 1 & 1 & \cdots & 1 & 1 + a^{2n-1} \\
\end{pmatrix},
\]

which seems much simpler than \(D_P \).

Assume the \((i, 0)\)-th cofactor of \(D_{\tilde{P}} \) is \(\tilde{p}_i \), \(0 \leq i \leq n - 1 \). Then

\[
\det \tilde{P} = (1 + a)\tilde{p}_0 + \sum_{i=1}^{n-2}\tilde{p}_i + (1 + a)\tilde{p}_{n-1}.
\]

However, we can deduce \(\det \tilde{P} = 1 \) before computing \(\tilde{p}_i \), \(0 \leq i \leq n - 1 \), since \(\det \tilde{P} \) is a non-zero element of \(\mathbb{F}_2 \) according to Theorem 2.2. To explicitly represent \(\tilde{p}_i \), \(0 \leq i \leq n - 1 \), we give the following lemma on determinants of matrices of a special form firstly.
Lemma 3.1. Let a_1, \ldots, a_m, $b_1, \ldots, b_{m-1} \in R$ where R is a commutative ring with identity and $m \geq 2$ is a positive integer. Then
\[
\det \begin{pmatrix}
a_1 & b_1 \\
a_2 & b_2 \\
\vdots & \vdots \\
a_{m-1} & b_{m-1}
\end{pmatrix} = (-1)^{m+1} \prod_{j=1}^{m-1} b_j + \sum_{i=1}^{m-2} (-1)^{m+i+1} \prod_{j=1}^{m-1} a_j b_k + \prod_{j=1}^{m} a_j.
\]

Proof. The determinant can be directly computed using Laplace expansion along the last row of the matrix. \hfill \Box

To simplify the computations of \tilde{p}_i, $0 \leq i \leq n - 1$, we introduce another symbol and propose several obvious properties of it.

For any $c \in \mathbb{F}_{2^n}^*$, $i_1, \ldots, i_t \in \mathbb{Z}/n\mathbb{Z} = \{0, 1, \ldots, n-1\}$ and $I \subseteq \mathbb{Z}/n\mathbb{Z}$, we denote
\[
c[i_1, i_2, \ldots, i_t] = \prod_{j=1}^{t} c^{2^{i_j}} = c^{2^{i_1 + \cdots + i_t}}
\]
and
\[
c[I] = \prod_{i \in I} c^{2^i}.
\]

Proposition 3.2. (1) $c[0, 1, \ldots, n-1] = N(c) = 1$, where “$N$” is the norm map over \mathbb{F}_{2^n};
(2) For any $\pi \in S_t$, $c[i_{\pi(1)}, i_{\pi(2)}, \ldots, i_{\pi(t)}] = c[i_1, i_2, \ldots, i_t]$;
(3) For any $I, J \subseteq \mathbb{Z}/n\mathbb{Z}$, $c[I]c[J] = c[I \cup J]c[I \cap J] = c[(I \cup J) \setminus (I \cap J)]c[I \cap J]$;
(4) For any $k \geq 0$, $c[i_1, i_2, \ldots, i_t]^{2^k} = c[i_1 + k, i_2 + k, \ldots, i_t + k]$;
(5) For any $i \subseteq \mathbb{Z}/n\mathbb{Z}$, $c[i] = c(\{i\})$. \hfill \Box

Based on these preparations, \tilde{p}_i are computed in the following lemmas for $0 \leq i \leq n - 1$.

Lemma 3.3.
\[
\tilde{p}_0 = \frac{1}{a} \left(1 + \frac{1}{a} \langle 2, 4, \ldots, n-1 \rangle \right).
\]
Proof.

\[\tilde{p}_0 = \det \begin{pmatrix} 1 + a[1] & 1 + a[2] & 1 & \cdots & 1 & 1 \\ 1 & 1 + a[2] & 1 + a[3] & \cdots & 1 & 1 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 1 & 1 & 1 & \cdots & 1 + a[n-2] & 1 + a[n-1] \\ 1 & 1 & 1 & \cdots & 1 & 1 + a[n-1] \end{pmatrix} \]

By Laplace expansion we get

\[\tilde{p}_0 = a[1]a[3] \cdots a[n-4]a[n-2] \cdot \det \begin{pmatrix} a[2] & a[4] & a[6] \\ a[4] & a[6] & a[8] \\ \vdots & \vdots & \vdots \\ a[n-3] & a[n-1] & a[n] \\ 1 & 1 & \cdots & 1 & 1 + a[n-1] \end{pmatrix} \]

Then from Lemma 3.1 and Proposition 3.2 we obtain

\[\tilde{p}_0 = a[1]a[3] \cdots a[n-3] \left[a[4, 6, \ldots, n-1] + \sum_{j=1}^{\frac{n-5}{2}} a[2, 4, \ldots, 2j]a[2j + 4, 2j + 6, \ldots, n-1] \\ + a[2, 4, \ldots, n-3](1 + a[n-1]) \right] \]

\[= \frac{N(a)}{a[0, 2]} + \sum_{j=1}^{\frac{n-5}{2}} \frac{N(a)}{a[0, 2j + 2]} + \frac{N(a)}{a[0, n-1]}(1 + a[n-1]) \]

\[= \frac{1}{a} \left(1 + \sum_{j=1}^{\frac{n-5}{2}} \frac{1}{a[2j + 2]} + \frac{1}{a[n-1]} + 1 \right) \]

\[= \frac{1}{a} \left(1 + \frac{1}{a(2, 4, \ldots, n-1)} \right) \].
Lemma 3.4.

\[\tilde{p}_1 = \frac{1}{a} \left(1 + \frac{1}{a} (1, 2, 4, \ldots, n-1) \right), \]

Proof.

\[\tilde{p}_1 = \det \begin{pmatrix} 1 + a[1] & 1 & 1 & \cdots & 1 & 1 \\ 1 & 1 + a[2] & 1 + a[3] & \cdots & 1 & 1 \\ \vdots & \vdots & \vdots & \ddots & \vdots & \vdots \\ 1 & 1 & 1 & \cdots & 1 + a[n-2] & 1 + a[n-1] \\ 1 & 1 & 1 & \cdots & 1 & 1 + a[n-1] \end{pmatrix} \]

\[= \det \begin{pmatrix} a[1] & a[2] & a[3] \\ a[2] & a[4] \\ a[3] & a[5] \end{pmatrix} \begin{pmatrix} \ddots & \ddots \\ \vdots & a[n-3] & a[n-1] \\ 1 & 1 & \cdots & 1 & 1 + a[n-1] \end{pmatrix} \]

By Laplace expansion we get

\[\tilde{p}_1 = a[3]a[5]\cdots a[n-2] \cdot \det \begin{pmatrix} a[1] & a[2] \\ a[2] & a[4] \end{pmatrix} \begin{pmatrix} \ddots & \ddots \\ \vdots & a[n-3] & a[n-1] \\ 1 & 1 & \cdots & 1 & 1 + a[n-1] \end{pmatrix} \]

Then from Lemma 3.1 and Proposition 3.2 we obtain

\[\tilde{p}_1 = a[3, 5, \ldots, n-2] \cdot \left[a[2, 4, \ldots, n-1] + a[1, 4, 6, \ldots, n-1] \right. \]

\[+ \sum_{j=2}^{n-3} a[1, 2, 4, \ldots, 2j-2]a[2j+2, 2j+4, \ldots, n-1] \]

\[+ a[1, 2, 4, \ldots, n-3](1 + a[n-1]) \]

\[]
\[\begin{align*}
N(a) & = \frac{N(a)}{a[0, 1]} + \frac{N(a)}{a[0, 2]} + \sum_{j=2}^{n-3} \frac{N(a)}{a[0, 2j]} + \frac{N(a)}{a[0, n-1]}(1 + a[n - 1]) \\
& = \frac{1}{a} \left(\frac{1}{a[1]} + \frac{1}{a[2]} + \sum_{j=2}^{n-3} \frac{1}{a[2j]} + \frac{1}{a[n - 1]} + 1 \right) \\
& = \frac{1}{a} \left(1 + \frac{1}{a} \langle 1, 2, 4, \ldots, n - 1 \rangle \right).
\end{align*} \]

\[\square \]

Lemma 3.5. For \(2 \leq i \leq n - 3\),
\[\tilde{p}_i = \frac{1}{a} \left(1 + \frac{1}{a} \langle 1, 3, \ldots, i - 1, i + 1, i + 3, \ldots, n - 1 \rangle \right) \]
when \(i\) is even, and
\[\tilde{p}_i = \frac{1}{a} \left(1 + \frac{1}{a} \langle 1, 3, \ldots, i, i + 1, i + 3, \ldots, n - 1 \rangle \right) \]
when \(i\) is odd.

Proof.

\[\tilde{p}_i = \det \begin{pmatrix}
1 + a[1] & 1 & \cdots & 1 & 1 & 1 & 1 & \cdots & 1 & 1 \\
1 + a[1] & 1 + a[2] & \cdots & 1 & 1 & 1 & 1 & \cdots & 1 & 1 \\
& \vdots & \ddots & \vdots & \ddots & \vdots & \ddots & \ddots & \vdots & \vdots \\
& & & 1 & 1 & \cdots & 1 + a[i - 1] & 1 + a[i] & 1 & 1 \\
& & & 1 & 1 & \cdots & 1 + a[i - 1] & 1 + a[i] & 1 & 1 \\
& & & & \vdots & \ddots & \vdots & \ddots & \vdots & \ddots & \ddots \\
& & & & & \vdots & \ddots & \vdots & \ddots & \vdots & \ddots \\
& & & & & & \vdots & \ddots & \vdots & \ddots & \ddots \\
& & & & & & & \vdots & \ddots & \vdots & \ddots \\
& & & & & & & & \vdots & \ddots & \ddots \\
& & & & & & & & & \vdots & \ddots \\
& & & & & & & & & & \vdots \\
& & & & & & & & & & 1 + a[n - 2] & 1 + a[n - 1] \\
& & & & & & & & & & 1 + a[n - 2] & 1 + a[n - 1] \\
\end{pmatrix} \]

\[= \det \begin{pmatrix}
a[1] & a[2] & \cdots & a[i - 2] & a[i - 1] & a[i] & a[i + 1] & a[i + 2] & a[i + 3] & \cdots & a[n - 3] & a[n - 2] & a[n - 1] \\
& \vdots & \ddots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \ddots & \ddots \\
& & \ddots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \ddots & \ddots \\
& & & \ddots & \vdots & \vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \ddots & \ddots \\
& & & & \ddots & \vdots & \vdots & \vdots & \vdots & \ddots & \vdots & \ddots & \ddots \\
& & & & & \ddots & \vdots & \vdots & \vdots & \ddots & \vdots & \ddots & \ddots \\
& & & & & & \ddots & \vdots & \vdots & \vdots & \ddots & \vdots & \ddots \\
& & & & & & & \ddots & \vdots & \vdots & \ddots & \ddots & \ddots \\
& & & & & & & & \ddots & \vdots & \ddots & \ddots & \ddots \\
& & & & & & & & & \ddots & \vdots & \ddots & \ddots \\
& & & & & & & & & & \ddots & \vdots & \ddots \\
& & & & & & & & & & & \ddots & \vdots \\
& & & & & & & & & & & & \ddots \\
1 & \cdots & 1 & 1 & 1 & 1 & \cdots & 1 & 1 & 1 + a[n - 2] & 1 + a[n - 1] \\
1 & \cdots & 1 & 1 & 1 & 1 & \cdots & 1 & 1 & 1 + a[n - 2] & 1 + a[n - 1] \\
\end{pmatrix}. \]
(1) When \(i \) is even, we can get by Laplace expansion that

\[
\tilde{p}_i = a[2, 4, \ldots, i, i+1, i+3, \ldots, n-2] \cdot \\
\det \begin{pmatrix}
 a[1] & a[3] & a[5] \\
 a[3] & a[5] & \\n & \ddots & \ddots \\
 & & a[i-3] & a[i-1] & a[i+2] & a[i+4] \\
 & & & \ddots & \ddots & \\
 & & & & a[i-1] & a[i+2] \\
 1 & 1 & \cdots & 1 & 1 & 1 + a[n-1]
\end{pmatrix}.
\]

Then from Lemma 3.1 and Proposition 3.2 we obtain

\[
\tilde{p}_i = a[2, 4, \ldots, i, i+1, i+3, \ldots, n-2] \cdot \\
\left[a[3, 5, \ldots, i-1, i+2, i+4, \ldots, n-1] + \sum_{j=2}^{n-i-3} a[1, 3, \ldots, 2j-1, 2j+3, \ldots, i-1, i+2, i+4, \ldots, n-1] + a[1, 3, \ldots, n-3](1 + a[n-1]) \right]
\]

\[
= a[2, 4, \ldots, n-2] \cdot \left[a[3, 5, \ldots, n-1] + \sum_{j=2}^{n-i-3} \frac{N(a)}{a[0, 2j]} + \frac{N(a)}{a[0, n-1]}(1 + a[n-1]) \right]
\]

(2) When \(i \) is odd, we can get by Laplace expansion that

\[
\tilde{p}_i = a[2, 4, \ldots, i-1, i+2, i+4, \ldots, n-2] \cdot \\
Then from Lemma 3.1 and Proposition 3.2 we obtain

\[
\tilde{p}_i = a[2, 4, \ldots, i-1, i+2, i+4, \ldots, n-2] \cdot \left[a[3, 5, \ldots, i, i+1, i+3, \ldots, n-1] \right.
\]
\[
+ \sum_{j=2}^{\frac{n-3}{2}} a[1, 3, \ldots, 2j-1, 2j+3, \ldots, i, i+1, i+3, \ldots, n-1]
\]
\[
+ a[1, 3, \ldots, i-2, i+1, i+3, \ldots, n-1] + a[1, 3, \ldots, i, i+3, i+5, \ldots, n-1]
\]
\[
+ \sum_{j=2}^{\frac{n-i-2}{2}} a[1, 3, \ldots, i, i+1, i+3, \ldots, i+2j-3, i+2j+1 \ldots, n-1]
\]
\[
+ a[1, 3, \ldots, i, i+1, i+3, \ldots, n-3][1 + a[n-1]]
\]
\[
= \frac{N(a)}{a[0, 1]} + \sum_{j=2}^{\frac{n-3}{2}} \frac{N(a)}{a[0, 2j+1]} + \frac{N(a)}{a[0, i]} + \frac{N(a)}{a[0, i+1]}
\]
\[
+ \sum_{j=2}^{\frac{n-i-2}{2}} \frac{N(a)}{a[0, i+2j-1]} + \frac{N(a)}{a[0, n-1]}[1 + a[n-1]]
\]
\[
= \frac{1}{a} \left(1 + \frac{1}{a} \langle 1, 3, \ldots, i, i+1, i+3, \ldots, n-1 \rangle \right).
\]

\[\square\]

Lemma 3.6.

\[
\tilde{p}_{n-2} = \frac{1}{a} \left(1 + \frac{1}{a} \langle 1, 3, \ldots, n-2, n-1 \rangle \right).
\]
Proof.

\[\tilde{p}_{n-2} = \det \begin{pmatrix}
1 + a[1] & 1 & \cdots & 1 & 1 & 1 \\
1 + a[1] & 1 + a[2] & \cdots & 1 & 1 & 1 \\
\vdots & \vdots & \ddots & \vdots & \ddots & \vdots \\
1 & 1 & \cdots & 1 + a[n-3] & 1 + a[n-2] & 1 \\
1 & 1 & \cdots & 1 & 1 & 1 + a[n-1]
\end{pmatrix} \]

By Laplace expansion we get

\[\tilde{p}_{n-2} = a[2, 4, \ldots, n-3] \cdot \det \begin{pmatrix}
a[2] \\
a[1] & a[3] \\
a[2] & a[3] & a[4] \\
\vdots & \vdots & \ddots & \ddots & \ddots \\
a[n-4] & a[n-2] & a[n-3] & a[n-2] & a[n-1] \\
1 & 1 & \cdots & 1 & 1 & 1 + a[n-1]
\end{pmatrix}. \]

Then from Lemma 3.1 and Proposition 3.2 we obtain

\[\tilde{p}_{n-2} = a[2, 4, \ldots, n-3] \cdot \left(a[3, 5, \ldots, n-2, n-1] \right. \\
+ \sum_{j=1}^{n-5} a[1, 3, \ldots, 2j-1, 2j+3, \ldots, n-2, n-1] \\
+ a[1, 3, \ldots, n-4, n-1] + a[1, 3, \ldots, n-2](1 + a[n-1]) \right) \\
= \frac{N(a)}{a[0, 1]} + \sum_{j=1}^{n-5} \frac{N(a)}{a[0, 2j+1]} + \frac{N(a)}{a[0, n-2]} + \frac{N(a)}{a[0, n-1]}(1 + a[n-1]) \]
\[
\tilde{p}_{n-1} = \frac{1}{a} \left(1 + \frac{1}{a} (1, 3, \ldots, n-2, n-1) \right).
\]

Lemma 3.7.
\[
\tilde{p}_{n-1} = \frac{1}{a} \left(1 + \frac{1}{a} (1, 3, \ldots, n-2) \right).
\]

Proof.
\[
\tilde{p}_{n-1} = \det \begin{pmatrix}
 1 + a[1] & 1 & \cdots & 1 & 1 \\
 1 + a[1] & 1 + a[2] & \cdots & 1 & 1 \\
 \vdots & \vdots & \ddots & \vdots & \vdots \\
 1 & 1 & \cdots & 1 + a[n-2] & 1 + a[n-1]
\end{pmatrix}
\]

By Laplace expansion we get
\[
\tilde{p}_{n-1} = a[2, 4, \ldots, n-1] \cdot \det \begin{pmatrix}
 a[1] & a[3] \\
 a[3] & a[5]
\end{pmatrix}
\]

Then from Lemma 3.1 and Proposition 3.2 we obtain
\[
\tilde{p}_{n-1} = a[2, 4, \ldots, n-1] \cdot \left[a[3, 5, \ldots, n-2] + \sum_{j=1}^{n-5} a[1, 3, \ldots, 2j-1, 2j+3, \ldots, n-2] \\
+ a[1, 3, \ldots, n-4](1 + a[n-2]) \right]
\]

16
\[
\begin{align*}
= & \frac{N(a)}{a[0, 1]} + \sum_{j=1}^{a+1} \frac{N(a)}{a[0, 2j + 1]} + \frac{N(a)}{a[0, n - 2]}(1 + a[n - 2]) \\
= & \frac{1}{a} \left(1 + \frac{1}{a} (1, 3, \ldots, n - 2) \right).
\end{align*}
\]

\[\square\]

From Lemma 3.3–3.7, we can get the explicit representation of \(\tilde{P}^{-1}(x) \). Finally, Theorem 2.2 follows from [1].

\section*{References}

[1] M. Biliotti, V. Jha, N. Johnson, Foundations of translation planes, Pure and Applied Mathematics, vol. 253, Marcel Dekker, New York, 2001.

[2] P. Charpin, G. Kyureghyan, When does \(G(x) + \gamma \text{Tr}(H(x)) \) permutate \(\mathbb{F}_{p^n}^* \), Finite Fields Appl. 15 (2009) 615–632.

[3] R.S. Coulter, M. Henderson, The compositional inverse of a class of permutation polynomials over a finite field, Bull. Austral. Math. Soc. 65 (2002) 521–526.

[4] R. Lidl, H. Niederreiter, Finite fields, second edn., Encyclopedia Math. Appl., vol. 20, Cambridge University Press, Cambridge, 1997.

[5] R. Lidl, G.L. Mullen, G. Turnwald, Dickson polynomials, Pitman monographs and surveys in pure and applied mathematics, vol. 65, Longman Scientific & Technical, Essex, 1993.

[6] G.L. Mullen, Permutation polynomials over finite fields, in: Finite Fields, Coding Theory, and Advances in Communication and Computing, Las Vegas, NY, 1991, pp. 131–151.

[7] B. Wu, Z. Liu, Linearized polynomials over finite fields revisited, Finite Fields Appl. 22 (2013) 79–100.

[8] B. Wu, Z. Liu, The compositional inverse of a class of bilinear permutation polynomials over finite fields of characteristic 2, Finite Fields Appl. (2013), doi: 10.1016/j.ffa.2013.05.003