Aggregation and disaggregation of clusters of attractive particles under flow are studied from numerical and theoretical points of view. Two-dimensional molecular dynamics simulations of both Couette and Poiseuille flows highlight the growth of the average steady-state cluster size as a power law of the adhesion number, a dimensionless number that quantifies the ratio of attractive forces to shear stress. Such a power-law scaling results from the competition between aggregation and disaggregation processes, as already reported in the literature. Here, we rationalize this behavior through a model based on an energy function, which minimization yields the power-law exponent in terms of the cluster fractal dimension, in good agreement with the present simulations and with previous works.

I. INTRODUCTION

Colloidal suspensions composed of attractive particles, that aggregate into clusters when dispersed into a liquid medium, have raised great interest for a number of decades due to their wide range of applications, from paints and coatings to food products or construction materials [1–8]. The large variety of attractive forces driving cluster aggregation, including van der Waals interactions, depletion or capillary forces, combined with stabilizing repulsive forces, such as electrostatic or steric interactions, lead to a complex phase diagram involving equilibrium liquid or phase-separated regimes as well as out-of-equilibrium gel or glassy phases [2, 3, 9, 10]. Beyond their phase behaviour at rest, understanding how colloidal suspensions respond to deformation and flow is pivotal for their processing and their practical use. Thus, a huge amount of work has been devoted to the rheology of colloidal suspensions and their structure under external mechanical solicitations [1–3, 11, 12]. In particular, one key question concerns the evolution of particle clusters under shear.

Colloidal clusters generically show a ramified structure characterized by a fractal dimension D linking the number of particles $n(l)$ in the cluster to its size l through $n(l) \propto l^D$. Other structural parameters may be identified, such as the chemical dimension related to the number of bonds in the shortest path in a cluster [19], the connectivity or the coordination number [17]. Since the seminal work of Weitz et al. [18, 19] on diffusion-limited aggregation, a large number of experimental studies have characterized the microscopic mechanisms underpinning cluster formation at rest, either from direct visualisation [20, 21], or from scattering techniques [22]. In cases where colloidal aggregation leads to the formation of a space-spanning cluster network, i.e. to a colloidal gel, these measurements have provided key information on both the maximum cluster size ℓ and their fractal dimension D [23]. When shear is applied to a flocculated suspension, aggregates break up and form a suspension of isolated clusters. The steady-state cluster size distribution is a key observable and the dependence of ℓ and D on the shear stress applied to the suspension has been probed by combining light, x-ray, and neutron scattering and rheometry [24–27]. Typical results are that (i) ℓ decreases as a power-law of the shear stress σ, $\ell \propto \sigma^{-m}$, with an exponent m ranging from 0.2 to 0.5 [28, 29], and (ii) D increases from 1.8–2.2 depending on the specific aggregation mechanism to 2.4–2.7 under shear, a phenomenon known as “shear-induced cluster densification” [24, 25].

Furthermore, thanks to the growth of computational capabilities over the past decade, large-scale numerical simulations have been developed to model suspensions, both at rest and under shear, with up to several mil-
lions of colloidal particles \cite{31,32}, sometimes taking into account the solvent through hydrodynamic interactions \cite{33,34}. The model suspensions rely on various idealized two-body interaction potentials \cite{35}, which in some cases, include bending stiffness \cite{17,33,40}, or solid friction \cite{11–14}. One of the main advantages of numerical simulations is that they yield a complete picture of the cluster microstructure. Another modelling approach referred to as “population balance model” (PBM), relies on kinetic equations for “classes” of clusters of given sizes, which mimic the competition between aggregation and disaggregation processes through the use of various kernels \cite{44–47}. Although some ingredients of the kernels can be theoretically predicted thanks to Smoluchowski equations, in practice, PBM often require a significant amount of empirical tuning of the kernel parameters \cite{15,48}.

Strong theoretical predictions have also been derived from analytical models that relate microscopic parameters, such as the interparticle bond stiffness, to macroscopic quantities, such as the elastic modulus G' at rest, the yield strain γ_y or the dynamic viscosity η under shear \cite{12,49,50}. In particular, one popular model by Wessel & Ball \cite{11} predicts that $\ell \propto \sigma^{-1/3}$ from a force balance under the assumption that the clusters behave hydrodynamically like compact spheres. While this model provides a correct estimate of the exponent m for various experiments \cite{24}, it does not account for the range of exponents reported in the literature \cite{27,51,52}, most probably due to the stringent assumption of hydrodynamically compact clusters. More refined models have considered soft, highly deformable clusters leading to $m = 1/2$ rather than $m = 1/3$ for rigid aggregates \cite{53}. Yet, to the best of our knowledge, there is no general theoretical framework that may describe the behaviour of colloidal clusters under an external stress.

The goal of the present paper is to propose very general theoretical arguments to predict the steady-state size ℓ of colloidal aggregates submitted to an external solicitation. Starting from dimensional analysis, we show in Section II that the competition between cluster aggregation and disaggregation can be captured through the minimization of an energy function. In Section III we then provide evidence for the existence of an energy minimum in simple numerical simulations. We proceed to detail an analytical model in Section IV which yields a power-law for ℓ as a function of the adhesion number, a dimensionless number that quantifies the ratio of attractive forces to shear stress. Finally, this model is compared to the coagulation-fragmentation approach and to previous experimental and numerical findings in Section V. Conclusions and open questions are drawn in Section VI.

II. GENERAL FRAMEWORK

Before describing the general approach based on a grand-canonical free energy, we start with simple dimensional arguments to justify that the competition between cluster aggregation led by attractive forces and disaggregation driven by shear forces depends on a single dimensionless group, namely the adhesion number Ad, once the attraction range is fixed. As discussed in Refs. \cite{41,54}, attractive forces may be estimated by Ua/δ^2, with U the depth of the interaction potential between two particles, a the particle radius, and δ the range of interaction, which can be taken as the center-to-center distance between two particles at equilibrium or as the width of the potential well. Disaggregating forces, on the other hand, may be estimated by σa^2, with σ the external stress exerted on the clusters. One chooses here, as a distinction from the literature, to consider the stress rather than the shear rate because (i) whenever the shear rate is involved in similar definitions, it appears as multiplied by the solvent viscosity, therefore as a shear stress, and (ii) one is convinced that stress drives the disaggregation, like in plasticity or fracture \cite{55,58}, rather than a kinematic quantity. Following Ref. \cite{54}, the adhesion number is defined as the ratio of attractive forces to disaggregating forces:

$$Ad = \frac{U}{\sigma a^2}. \quad (1)$$

The condition $Ad \ll 1$ implies that hydrodynamic forces dominate, while $Ad \gg 1$ indicates that attractive forces are predominant. It is important to note that the choice of this adhesion number contains some degree of arbitrariness. Indeed, other similar dimensionless groups may be built more generally by replacing $a \delta^2$ by $a^\alpha \delta^{3-\alpha}$, with $\alpha \in [0,3]$, in Eq. \ref{1}. The precise choice depends on whether one considers energies ($\alpha = 0$), forces ($\alpha = 1$), or stiffnesses ($\alpha = 2$), i.e., energies per unit surface, or energies per unit volume ($\alpha = 3$). Finally, according to the Vaschy-Buckingham theorem \cite{59,61}, any characteristic length that depends on U, σ, a, and δ, such as the maximum cluster size ℓ, may be expressed as $\ell/a = F(Ad, \delta/a)$. Therefore, a combination of both Ad and δ/a is expected. Also note that the adhesion number simply corresponds to the inverse of the “Mason number,” $M_n = \sigma a^2 \delta / U$, a dimensionless group popular in the rheology community that quantifies the ratio of shearing forces to attractive forces \cite{58,62,63}.

In order to describe the competition between aggregation and disaggregation, we consider a grand-canonical ensemble with a population of clusters of mass $k \in \mathbb{N}^+$ associated to a number of clusters n_k. Each cluster of mass k has an associated energy $E(k)$, which we seek to determine. The number of primary particles is not fixed and is related, for each cluster mass k, to a chemical potential α_k/β with $\beta = 1/(k_B T)$, k_B the Boltzmann constant, and T the temperature. Note that the use of a canonical ensemble may seem more appropriate for a problem with a fixed number of particles. However, the calculation of the canonical partition function leads to the use of the complete Bell polynomials, where each variable is $e^{-\beta \mathcal{E}(k)}$. Inverting the relation is not straightforward, so that computing the distribution of clusters of mass k is
very cumbersome within a canonical framework. Here, thanks to the grand-canonical formulation, $E_k(k)$, as well as the energy $n_k E_k(k)$ associated to all clusters of mass k, may be computed rather easily. The grand canonical partition function reads:

\[
\Xi = \sum_{(n_k)_{k \in N^*}} \exp \left(- \sum_{k \in N^*} (\beta n_k E_k(k) - n_k \alpha k_k) \right) = \prod_{k \in N^*} \left(1 - e^{-\beta E_k(k)+\alpha k_k} \right)^{-1} .
\]

The convergence of the series in Eq. (2) is guaranteed if $\alpha_k k < \beta E_k(k)$ for all $k \in N^*$. Moreover, it follows from Eq. (2) that the distribution of each level population n_k is a geometric distribution with a parameter $e^{-\beta E_k(k)+\alpha k_k}$. Since the average number of particles $\langle n \rangle$ is related to the average population $\langle n_k \rangle$ for all $k \in N^*$, one may compute the average cluster mass $\langle k \rangle$ and the standard deviation $\langle k^2 \rangle - \langle k \rangle^2$:

\[
\langle k \rangle = \frac{1}{k} \left(\frac{\partial \ln \Xi}{\partial \alpha_k} \right) = \left(e^{\beta E_k(k) - \alpha k_k} - 1 \right)^{-1},
\]

\[
\Delta n_k = \frac{1}{k} \left(\frac{\partial^2 \ln \Xi}{\partial \alpha_k^2} \right) = \langle n_k \rangle (1 + \langle n_k \rangle),
\]

\[
= \frac{1}{2} \text{csch} \left(\frac{\beta E_k(k) - \alpha k_k}{2} \right),
\]

which boils down to the Bose-Einstein statistics.

In practice, in an experiment or a simulation, a initial sample of $(n_k)_{k \in N^*}$ is chosen, which evolves in time according to external conditions. It is clear from the above expressions that the $(n_k)_{k \in N^*}$ should end up being centered around the averages $(\langle n_k \rangle)_{k \in N^*}$, with a dispersion $(\Delta n_k)_{k \in N^*}$. Therefore, a higher number of clusters of mass k also brings a higher dispersion around this value.

Since numerical simulations yield a probability distribution function $f(k)$ for the number of cluster of mass k, which is assumed to be equal to the average distribution $\langle n_k \rangle$, i.e., $f(k) = \langle n_k \rangle$, one can find the average potential energy of the clusters and the standard deviation respectively through:

\[
\beta E_k(k) - \alpha k_k = \ln \left(1 + \frac{1}{f(k)} \right)
\]

\[
\Delta (\beta E_k(k) - \alpha k_k) = (f(k)(1 + f(k)))^{\frac{1}{2}}
\]

\[
= 2 \sinh \left(\frac{\beta E_k(k) - \alpha k_k}{2} \right)
\]

\[
> \beta E_k(k) - \alpha k_k.
\]

III. Numerical Simulation

A. Numerical scheme and analysis

To get some insight of the competition between aggregation and disaggregation processes, we turn to simple molecular dynamics simulations of two-dimensional Couette and Poiseuille flows based on the LAMMPS library [64]. We use reduced units, where the unit size is given by the particle radius. The simulation box is of size $L \times h$ with periodic boundary conditions along the x direction and solid boundaries along the y direction located at $y = 0$ and $y = h$. The length of the box L is fixed to $L = 620$, and the width h is either 103 or 206, much larger than the particle size. Each boundary is constituted of one layer of particles of unit size which positions are fixed and that interact with bulk particles through a repulsive Yukawa potential $w_s(r) = 100 e^{-r/r}$, with r the distance between two particles and a cut-off distance $r = 5$ to save computation time. The interaction potential between two particles in the bulk is a classical 12-6 Lennard-Jones potential $w(r) = 4 (r^{12} - r^{-6})$ with a cut-off distance $r = 40$, again to save computation time.

First, the system is initialised with a particle surface fraction of $\phi = 0.12$. Using a canonical formulation, the temperature is fixed at $T = 0.01$. The time step is taken as $\Delta t = 0.01$, which is small enough to account realistically for temporal variations while keeping the computation time reasonably low. Particles are distributed over a square lattice, and their initial velocities are chosen according to a Maxwell distribution for the given temperature. The system is then let to evolve for a duration 5,000 time units in order to create the initial cluster distribution. More precisely, the equation of motion for each particle $i \in [1, N]$, with N the total number of particle, is

\[
\frac{d^2 r_i}{dt^2} = - \frac{\partial W}{\partial r_i} \left((r_j)_{j \in [1, N]} \right) + B_i
\]

\[
W \left((r_j)_{j \in [1, N]} \right) = \sum_{k=1}^{N} \sum_{j=k+1}^{N} w \left(|r_k - r_j| \right)
\]

\[
w(r) = 4 \left(r^{12} - r^{-6} \right),
\]

with r_i the position of particle i and B_i a Brownian white noise for particle i.

In a second step, a drag force $F_i = C \left(u - \frac{dx}{dt} \right)$ is applied on each particle $i \in [1, N]$, with $C = 1$ the drag coefficient [63], $u = V y/h e_x$ for the 2D Couette flow or $u = 4V \left(1 - y/h \right) y/h e_x$ for the 2D Poiseuille flow, where V is the maximum flow velocity. Here, a micro-canonical formulation is used and the time step is set to $\Delta t = 0.001$. The simulation is run for a duration of 1,000 time units. The equation of motion for each particle i thus reads:

\[
\frac{d^2 r_i}{dt^2} = - \frac{\partial W}{\partial r_i} \left((r_j)_{j \in [1, N]} \right) + F(r_i) e_x
\]

\[
F(r_i) = C \left(- \frac{dx}{dt} \cdot e_x +
\right)
\]
FIG. 1: Simulated particle distributions for $V = 10$, $h = 206$, and $C = 1$ after the preparation step prior to shearing (a) and at after shearing in the Couette geometry (b). Rendering using Ovito [65]. (c) Cluster detection and various estimates of the cluster size as defined in the text for the top right particle distribution.

$$V \frac{r_i \cdot e_y}{h} \begin{cases} 1 & \text{2D Couette flow} \\ 4 \left(1 - \frac{r_i \cdot e_y}{h}\right) & \text{2D Poiseuille flow} \end{cases}$$

(16)

The parameters investigated in the present work are $(V, h) \in \{0.1, 0.3, 1, 3, 10, 30, 100\} \times \{103, 206\}$. The numerical scheme used here is a Velocity Verlet algorithm [67]. The computations output are (i) the position of the particles at each time step, and (ii) the clusters to which the particles belong based on a connected-component algorithm [68] with a distance threshold of 1.4, consistently with the literature [39, 69, 70]. Moreover, we checked that for thresholds ranging from 1.1 to 2.0, the distribution of neighbours does not change, so that the results are not sensitive to the specific choice of threshold. The size of cluster number I is quantified according to the following estimates:

- the radius of gyration R_g^I given by
 $$R_g^I = \frac{1}{|P(I)|} \sum_{k \in P(I)} \| r_k - \bar{r} \|^2,$$
 (17)

- the Feret radii in the x and y directions given by
 $$(\max_{k \in P(I)} r_k \cdot e) / 2 - (\min_{k \in P(I)} r_k \cdot e) / 2$$
 with e the unit vector in the x and y directions respectively.

- the half maximum chord length given by
 $$\max_{(k,l) \in P(I)^2} \| r_k - r_l \| / 2.$$

In order to infer statistical estimations, each size distribution is further weighted by the number of particles in each cluster. Such weighting is needed because the number of clusters is not constant. Therefore, because the total number of particles is constant, weighting by the mass of each cluster allows one to recover the number of particles when integrating over the whole distribution. Finally, thanks to the reduced units, $U/a\delta^2 = 1$ and the shear stress is $\sigma = CV/h = V/h$ here due to $C = 1$ so that the adhesion number simply reads $Ad = h/V$.

B. Simulation results

Figure 1 shows typical particle distributions computed after the preparation step prior to shearing (a), and after application of shear in the Couette geometry (b). It appears clearly that the system starts from a space-spanning ramified structure and evolves toward dense, isolated clusters under shear. Moreover, as shown in Fig. 1(c), the different estimates for the cluster size yield consistent values. In the following, for the sake of simplicity, we shall focus only on the weighted average of the
radius of gyration to estimate the cluster size ℓ.

Following the general framework introduced in Sect. [1] we compute the distribution of the cluster mass and the dimensionless energy $\beta E(k) - \alpha_k k$ based on Eq. [7]. Figure 2 shows this energy functional plotted against the mass k of particles within a cluster for adhesion numbers ranging from 1 to about 2,000. First, looking at the small- and large-mass limits, it appears that $\lim_{k \to 0^+} \beta E(k) - \alpha_k k = \lim_{k \to +\infty} \beta E(k) - \alpha_k k = +\infty$, which indicates that extreme masses are not accessible to the system. Second, in all cases, there exists a global minimum of the energy functional that shifts towards larger values of k as the adhesion number Ad is increased. As expected intuitively, this suggests that the average cluster mass increases with Ad. Moreover, the steeper slope $\partial_k (\beta E(k) - \alpha_k k)$ of the energy functional on the right side of the global minimum than on the left side indicates that the system reaches the energy minimum more rapidly when starting from large masses than from small masses. This confirms the intuition that disaggregation processes are much faster than aggregation processes. Third, while the value of the global minimum energy does not show any clear trend with Ad, there may exist several local minima in $\beta E(k) - \alpha_k k$. This means that several metastable states may occur. These states may disappear when increasing the simulation duration or the system size. Still, this shows that a rather polydisperse population of clusters may be found, at least transiently. This may also be related to the dispersion in the energy minimum illustrated previously.

Figure 3(a) and Fig. 3(b) respectively show the “equilibrium mass” k_{min} of the clusters corresponding to the energy minimum, i.e., $k_{\text{min}} = \arg\min_{k \in \mathbb{R}_+} (\beta E(k) - \alpha_k k)$, and the cluster size ℓ/a taken as the weighted average of their radius of gyration plotted against the adhesion number Ad. For both observables, a power-law regime is identified over almost two decades in adhesion numbers. The exponents inferred from power-law fits for $\text{Ad} \in [2, 200]$ are reported in Table I. For $\text{Ad} \gtrsim 100$, a saturation is observed in k_{min} together with large variations, for both the Couette and Poiseuille flows. This behavior is most probably linked to finite-size effects as the average cluster size becomes comparable or larger than the system width h. Consistently with Fig. 3(a), the cluster size ℓ increases as a power-law of Ad [Fig. 3(b)]. There, although the data for ℓ do not show such a strong saturation as for k_{min}, significant deviations from power-law behavior are still observed for $\text{Ad} \gtrsim 100$.

Moreover, the exponents for the dependence of ℓ with Ad seem to depend significantly on the geometry, with values 0.35 and 0.57 for the Couette flow and 0.27 and 0.48 for the Poiseuille flow, respectively for $h = 103$ and $h = 206$ (see Table I). Similarly, the corresponding exponents for k_{min}, namely 0.4 and 0.9 for Couette flow, and 0.5 and 1.0 for Poiseuille flow, also differ for the two values of h. At this stage, the reason for such an influence of h in the simple two-dimensional simulations remains unclear, and future work should focus on more realistic interaction potentials and three-dimensional geometries.

Still, it is interesting to note that ℓ/a and k_{min} are not expected to have the same power-law behavior with the adhesion number because of their intrinsic relationship. More specifically, considering the framework of fractal clusters, the number of particles in a cluster k is related to the geometrical size l through $k = (\ell/a)^D$ with D the fractal dimension. In the two-dimensional case, D should fall into the range $[1, 2]$. Figure 4 shows that $\ell/a \propto k_{\text{min}}^{1/2}$, which is compatible with a fractal dimension $D \simeq 2$, i.e., with almost dense aggregates in two-dimensional geometries. The fact that very compact aggregates are obtained in the simulations is confirmed visually by looking at Fig. 4(b). Another confirmation comes from the ratio of the exponent for k_{min} and that for ℓ/a in Table I which is also found to be close to 2 (except for the Couette flow with $h = 103$ but the scatter of the k_{min} data in this latter case makes it difficult to conclude).

IV. PROPOSITION OF MODEL

A. Description of the disaggregation and reaggregation processes

The precise internal structure of the aggregates is really complex, and depends upon many different parameters including the volume fraction, the nature of the interparticle forces and of the solvent, temperature, and chemical environment. Hence, we shall consider the aggregates as a continuum without further internal details. We consider a suspension of particles of size a that interact through an attractive potential so that they gather into aggregates as sketched in Fig. 4. Following a statistical approach as in Refs. [18–21, 73, 74], we assume that there exists a distribution $f(t, l, a, U, \delta, \sigma)$ giving the population of aggregates of size l at time t made of particles of size a interacting through a pair potential U over a distance δ under a stress solicitation σ. Such a distribution may be computed through a coagulation-fragmentation equation as in Refs. [18, 71, 73]. Yet, this approach requires to identify coagulation kernels and fragmentation coefficients, which involves much effort for theoretical

Geometry	h	Variable	Exponent	Prefactor
Couette	103	ℓ/a	0.346 ± 0.009	6.1 ± 0.2
Couette	103	k_{min}	0.4 ± 0.4	400 ± 700
Couette	206	ℓ/a	0.57 ± 0.03	3.5 ± 0.4
Couette	206	k_{min}	0.9 ± 0.1	60 ± 30
Poiseuille	103	ℓ/a	0.271 ± 0.007	6.1 ± 0.2
Poiseuille	103	k_{min}	0.5 ± 0.1	170 ± 70
Poiseuille	206	ℓ/a	0.48 ± 0.03	3.9 ± 0.5
Poiseuille	206	k_{min}	1.0 ± 0.1	40 ± 20
FIG. 2: Energy functional $\beta E(k) - \alpha k$ computed from from Eq. (7) as a function of the number k of particles in a cluster for (left) Couette flow and (right) Poiseuille flow. Colors correspond to the adhesion number Ad as indicated in the legend. Results obtained from simulations performed with $h = 103$ or $h = 206$.

FIG. 3: (a) Mass k_{min} of the clusters corresponding to the energy minimum and (b) cluster size ℓ defined as the weighted average of the radius of gyration of the clusters, as a function of the adhesion number Ad for Couette flow (•) and Poiseuille flow (□) and for two different width $h = 103$ (blue) and $h = 206$ (orange). Solid and dotted lines correspond to the best power-law fits respectively for the Couette and the Poiseuille flow, and computed over $Ad \in [2, 200]$. (c) Cluster size ℓ as a function of the equilibrium mass k_{min}. The black solid line corresponds to $\ell \propto k_{\text{min}}^{1/2}$. Same symbols and colors as in (a) and (b).

and/or numerical validation. Without ignoring the power of such tools, we aim at a simpler approach through the present statistical approach.

We start by imposing the conservation of the total number of particles N, which reads:

$$N = \int_0^{+\infty} n \left(\frac{l}{a} \right) f(t, l, a, U, \delta, \sigma) \, dl = \text{constant}, \quad (19)$$

where $n \left(\frac{l}{a} \right)$ denotes the number of particles per cluster of relative size l/a. The average size of the aggregates is thus given by:

$$\bar{l}(t, a, U, \delta, \sigma) = \frac{a}{N} \int_0^{+\infty} n \left(\frac{l}{a} \right) \frac{l}{a} f(t, l, a, U, \delta, \sigma) \, dl.$$ \quad (20)

From a statistical point of view, and assuming that the aggregates are submitted to a uniform external stress σ far from any boundary, aggregates should evolve from one state to another as sketched in Fig. 4. If the stress is sufficiently large to break some initial aggregate (state 1), a disaggregation occurs either due to “fragile” rupture into two pieces of similar sizes (bottom part of Fig. 4).
becomes relevant, however, when the viscosity \(f \) of the suspending liquid or any other time-related quantity is considered. The aggregates are disaggregating and reaggregating according to the stress solicitation. Transition from state 1 to states 2 and 4 corresponds to a “fragile” rupture, while transition from state 1 to state 3 is an “erosion” process.

In practice, since \(t \) remains finite, we note that the longer the final time, the smaller the spread of the distribution around the steady-state size. An additional comment is that, keeping the previous set of variables \(\ell, a, U, \delta, \sigma \), theVischy-Buckingham theorem \([59–61]\) is found by replacing \(f(t, l, a, U, \delta, \sigma)\) d\(l \) with \(f(l/a, \text{Ad}, \delta/a)\) d\((l/a) \), where \(t \) can be discarded based on unit independence. Time becomes relevant, however, when the viscosity \(\eta \) of the suspending liquid or any other time-related quantity is considered.

\[\ell(a, U, \delta, \sigma) = \lim_{t \to +\infty} \int f(t, a, U, \delta, \sigma) \, dt \]

In this section, we discuss the theoretical approach and numerical results in light of the literature. We start

\[W(d) = 2\pi g^2 \int_0^{+\infty} \int_0^{+\infty} rw \left(\sqrt{r^2 + z^2} \right) \, drdz \, dy, \]

where \(g \) is the molecular density inside a particle. Defining \(\delta \) as the distance that satisfies \(W'(\delta) = 0 \), or equivalently \(\delta = \arg \min_{\delta \in R_+} W(d) \), and the energy \(U = \delta^2 W(\delta) \), \(E(l) = U \delta^{-2} \) indeed corresponds to the energy per unit surface liberated due to broken bonds. This energy is independent of the size of the aggregate because one may assume that, on the boundary of the aggregate, the number of particles per unit surface does not depend on \(l \) and is only related to the structure, which is assumed to be fixed in steady state. Finally, the steady-state size \(\ell \) corresponds to the size for which the mechanical energy balances that due to broken bonds, i.e., \(M(\ell) = E(\ell) \), which leads to:

\[\frac{\ell}{a} = \left(\frac{U}{\sigma a^2 \delta} \right)^{1/\tau} = \text{Ad}^{1/\tau \rho}. \]

\[\sigma \]

One aims at estimating the steady-state size of stable aggregates \(\ell \) as a function of \(a, U, \delta, \) and \(\sigma \). Following Eggersdorfer et al. \([42]\), for a dense aggregate of size \(l \), the applied mechanical energy per unit area is \(\sigma l \). However, aggregates are not completely dense and one should more generally account for their fractal nature. As already introduced above in Sect. \([42]\), the number of particles in an aggregate of size \(l \) is proportional to \((l/a)^D\) with \(D \) the fractal dimension of the clusters. Hence, on the one hand, the mechanical energy per unit of effective surface of the aggregate \(M(l) \) is proportional to \(\sigma a (l/a)^{D+1} \). On the other hand, if one isolates an aggregate of size \(l \), the energy per unit surface liberated due to broken bonds \(E(l) = U \delta^{-2} \), which is independent of the size \(l \) \([54]\). Indeed, considering an intermolecular potential \(w(d) \), with \(d \) the intermolecular distance, one can compute the interparticle potential per unit area through:

\[W(d) = 2\pi g^2 \int_0^{+\infty} \int_0^{+\infty} rw \left(\sqrt{r^2 + z^2} \right) \, drdz \, dy, \]

where \(g \) is the molecular density inside a particle. Defining \(\delta \) as the distance that satisfies \(W'(\delta) = 0 \), or equivalently \(\delta = \arg \min_{\delta \in R_+} W(d) \), and the energy \(U = \delta^2 W(\delta) \), \(E(l) = U \delta^{-2} \) indeed corresponds to the energy per unit surface liberated due to broken bonds. This energy is independent of the size of the aggregate because one may assume that, on the boundary of the aggregate, the number of particles per unit surface does not depend on \(l \) and is only related to the structure, which is assumed to be fixed in steady state. Finally, the steady-state size \(\ell \) corresponds to the size for which the mechanical energy balances that due to broken bonds, i.e., \(M(\ell) = E(\ell) \), which leads to:

\[\frac{\ell}{a} = \left(\frac{U}{\sigma a^2 \delta} \right)^{1/\tau} = \text{Ad}^{1/\tau \rho}. \]

The same result can be obtained by minimizing the total energy \(E(l) = l^2 (M(l) - E(l)) \). Equation (23) also agrees with Eq. (21) through the Vaschy-Buckingham theorem \([59–61] \). Indeed, Eq. (21) may be rewritten as:

\[\frac{\ell}{a} = G \left(\text{Ad}, \frac{\delta}{a} \right). \]

Adding that \(U/\delta^2 \) provides all the information about the interaction potential, one has \(\partial \delta/a G = 0 \) and thus

\[\frac{\ell}{a} = G \left(\text{Ad} \right), \]

consistently with Eq. (23).

\[\ell \]
by comparing the model with the classical coagulation-fragmentation approach. Then, the power-law scaling predicted for the cluster size, \(\ell \propto A_1 / (1 + D) \), is confronted to the present simulations and to previous experimental results.

A. Comparison with a coagulation-fragmentation model

The model proposed above in Sect. IV may be compared to the coagulation-fragmentation approach introduced in the literature more than thirty years ago \([70]\) and subsequently enriched over the years, e.g., through the population balance models \([46, 48, 71]\). In such an approach, the probability density function \(f \) of clusters of size \(x \) at time \(t \) obeys the following dynamical equation:

\[
\frac{\partial f}{\partial t} (t, x, \bullet) = \frac{1}{2} \int_0^x K(y, x - y, \bullet) f(t, y, \bullet) f(t, x - y, \bullet) \, dy - \frac{1}{2} \int_0^x F(y, x - y, \bullet) f(t, y, \bullet) f(t, x - y, \bullet) \, dy \\
- \int_0^{+\infty} K(x, y, \bullet) f(t, x, \bullet) f(t, y, \bullet) \, dy + \int_0^{+\infty} F(x, y, \bullet) f(t, x + y, \bullet) \, dy ,
\]

with \(\bullet = (a, U, \delta, \sigma) \), \(K \) the aggregation kernel, and \(F \) the fragmentation kernel. Considering the long-term behaviour, it can be shown that \(f \) takes the general form \([48, 71]\):

\[
f(t, x, \bullet) = \frac{1}{s^{t}(t, \bullet)} \varphi \left(\frac{x}{s(t, \bullet) \bullet} \right) ,
\]

where \(s \) and \(\varphi \) are two functions that depend only on time and size respectively, and such that \(\int_{\mathbb{R}^+} x \varphi(x, \bullet) \, dx = N \), the fixed total number of particles. The function \(s \) corresponds to the average mass of the clusters according to the distribution \(f \). It can be related to a size through the cluster fractal dimension \(D \) by \(s \propto t^D \). Then, integrating the previous expression over the size as in Eq. \(\ref{eq:10} \) one computes the steady-state average size as:

\[
\bar{I}(t, \bullet) = as^{\frac{D}{2}}(t, \bullet) ,
\]

with

\[
\lim_{t \to +\infty} s(t, \bullet) = \left(\frac{N}{B(\bullet)} \right)^{\frac{1}{1+D}}
\]

\[
A(\bullet) = \int_{\mathbb{R}^+} xy \varphi(x, \bullet) \varphi(y, \bullet) K(x, y, \bullet) \, dx \, dy ,
\]

\[
B(\bullet) = \int_{\mathbb{R}^+} xy \varphi(x + y, \bullet) F(x, y, \bullet) \, dx \, dy ,
\]

where \(\lambda \) and \(\alpha \) are the respective homogeneity coefficients of \(K \) and \(F \) \([77]\), assuming \(\alpha + 2 > \lambda \). It follows from Eq. \(\ref{eq:21} \) that

\[
\frac{\ell}{a} = \left(\frac{N A(\bullet)}{B(\bullet)} \right)^{\frac{1}{1+D}} .
\]

Finally, identifying with Eq. \(\ref{eq:23} \), one gets

\[
\frac{U}{\sigma a^D} = \left(\frac{N A(\bullet)}{B(\bullet)} \right)^{\frac{1+D}{1+D}} .
\]

Most of the physical quantities appear as multiplicative factors, in the sense that, for example, the coagulation kernel \(K \) is usually built with a factor \(U/\eta \) with \(\eta \) the viscosity of the fluid and no other dependence on physical quantities besides the variables \(x \) and \(y \). Therefore, the ratio \(NA(\bullet)/B(\bullet) \) can be considered as the product of a dimensionless number built in a similar manner as the adhesion number and another factor that depends only on the shape of respective kernels without involving any additional physical parameter. Therefore, in order to keep Eq. \(\ref{eq:33} \) true in general, one should impose that the exponent is 1, which leads to

\[
1 = D(\alpha + 1 - \lambda) .
\]

This is an important result which, to our knowledge, has not been reported in the literature before. Indeed, Eq. \(\ref{eq:34} \) allows one to relate the first mechanical approach to population balance models, where the homogeneity coefficients may seem disconnected from physical and measurable quantities. This result also emphasizes the fact that the adhesion number is a correct measure of the relative importance of aggregation versus disaggregation.

We note that aggregation kernels are pretty well covered, either in terms of theoretical solutions \([48, 71, 78, 79]\) with simple sums or products, or in terms of a physical construction, e.g., based on collisions, thermal fluctuations, and diffusion \([80, 81]\). Fragmentation kernels, however, are more poorly controlled, in the sense that some theoretical solutions impose some strong conditions on these kernels without much physical justification \([46, 48, 71]\), so that the expressions of the fragmentation kernels remain mostly empirical or semi-empirical \([82, 83]\). Therefore, although the use of coagulation-fragmentation equations is well established, relating some of the main terms to physical phenomena, such as the interaction potential and the flow stresses, is an important step yet to be fully achieved.
B. Comparison with simulations and experiments

Relating the model proposed in Sect. \(\text{IV} \) to the simulations of Sect. \(\text{III} \), we expect the exponents in Table \(\text{I} \) to be linked to the fractal dimension respectively by \(1/(1+D) \) for the steady-state size \(\ell \), and \(D/(1+D) \) for the equilibrium mass \(k_{\text{eq}} \). The broad variability of the exponents does not allow to properly extract a fractal dimension from the simulations. Nevertheless, as discussed above in Sect. \(\text{III B} \), the shear-induced clusters are almost dense, so that we may assume a fractal dimension \(D \) close to 2. Such a compactness most probably results from the specific interaction potential, i.e. a 12-6 Lennard-Jones potential, which is a central-force potential and is likely to lead to clusters with droplet-like shapes. We note that \(D = 2 \) would be consistent with the exponent \(\beta = (1+D)^{-1} = 1/3 \) expected for \(\ell \) as a function of \(\text{Ad} \), at least in the smaller geometry, since Table \(\text{I} \) reports exponents of 0.35 and 0.27 for \(h = 103 \).

Moreover, the results may be compared to the recent three-dimensional simulations under simple shear flow by Ruan et al. \[43\], which also report dense shear-induced clusters at steady state. Focusing both on the cluster size and on the average number of particles in a cluster as in the present work, the authors extract the fractal dimension \(D \) and show that \(\ell/a \) scales as a power-law of the shear stress. The exponents \(\beta \) for \(\ell \) reported in Ref. \[43\] are replotted as a function of \(D \) as blue circles in Fig. 5 and show good agreement with the prediction \(\beta = (1+D)^{-1} \). Note that this is also consistent with the empirical expression proposed in Ref. \[39\], namely \(\beta = S/(S + \langle D \rangle) \), where \(\langle D \rangle \) denotes the average cluster fractal dimension, and the fitting parameter \(S \) is found to be close to 1.

On the experimental side, a number of works have reported results assessing the size of aggregates under the application of a mechanical stress. However, only a handful of papers explicitly state the values of the various parameters \(a, U, \sigma, \delta, \) and \(D \). Table \(\text{I} \) and Fig. 5 gather a selection of such previous works. First, Table \(\text{I} \) shows that Eq. (23) predicts a typical cluster size \(\ell_{\text{th}} \) which is of the same order as the experimental size \(\ell_{\text{exp}} \). All the parameters fall into commonly known ranges and justify that the previous approach may be a good proxy to evaluate the most stable cluster size. Second, Fig. 5 probes the sensitivity of \(\ell/a \) with the adhesion number \(\text{Ad} \) by plotting the power-law exponent \(\beta \) in \(\ell/a = \text{Ad}^\beta \) as a function of \(D \). Except for a few points that lie far from the average estimation, most exponents are gathered along the prediction of Eq. (23), consistently with the numerical results of Ref. \[39\], which provides strong support for the approach described in Sect. \(\text{IV} \).

Finally, Fig. 5 provides a sensitivity study of the value of \(\ell \) upon the different parameters of Eq. (23) based on Table \(\text{I} \). It is clear that the most critical parameters are \(D \) and \(\delta \) as expected from Eq. (23). Therefore, particular attention must be considered to assess accurately these parameters. Yet, when one of these two parameters are unknown, the model can be used to estimate \(D \) or \(\delta \) with good accuracy based on measurements of \(\ell \).

VI. CONCLUSION

We have investigated simple two-dimensional numerical simulations and proposed a theoretical description of aggregation and disaggregation processes in colloidal dispersions under shear. We have shown that the classically reported power-law increase of the average cluster size with the adhesion number can be rationalized through a dynamical balance of energy between aggregation and disaggregation. In particular, the algebraic dependence of the power-law exponent with the cluster fractal dimension predicted by the approach appears to be in good agreement with simulations and previous experiments. Still, one should remain careful about a direct inference of one simple general formula as provided here, since many additional parameters may be involved in the size selection, including time through aging phenomena, spatial confinement, and individual cluster dynamics.
FIG. 6: Sensitivity study of ℓ predicted by Eq. (23) upon relative variations of the different control parameters around the values listed in the first line of Table II except for the fractal dimension, which is varied from 1 to 3.

ACKNOWLEDGMENTS

The authors wish to thank Emanuela Del Gado, Thibaut Divoux, and Thomas Gibaud for fruitful discussions.

[1] C. W. Macosko, *Rheology : Principles, Measurements and Applications*, edited by C. W. Macosko (John Wiley and Sons, 1994).
[2] J. Mewis and N. J. Wagner, *Colloidal Suspension Rheology*, edited by J. Mewis and N. J. Wagner (Cambridge University Press, 2012).
[3] N. J. Wagner and J. Mewis, *Theory and Applications of Colloidal Suspension Rheology*, edited by N. J. Wagner and J. Mewis (Cambridge University Press, 2021).
[4] N. Hengl, Y. Jin, F. Pignon, S. Baup, R. Mollard, N. Gondrexon, A. Magnin, L. Michot, and E. Paineau, A new way to apply ultrasound in cross-flow ultrafiltration: Application to colloidal suspensions, Ultrasonics Sonochemistry 21, 1018 (2014).
[5] K. Ioannidou, K. J. Krakowiak, M. Bauchy, C. G. Hoover, E. Masoero, S. Yip, F.-J. Ulm, P. Levitz, R. J.-M. Pelenc, and E. Del Gado, Mesoscale texture of cement hydrates, Proceedings of the National Academy of Sciences of the United States of America 113, 2029 (2016).
[6] T. S. Awad, H. A. Moharram, O. E. Shaltout, and M. M. Youssef, Applications of ultrasound in analysis, processing and quality control of food: A review, Food Research International 48, 410 (2012).
[7] D. Knorr, M. Zenker, V. Heinz, and D.-U. Lee, Applications and potential of ultrasones in food processing, Trends in Food Science & Technology 15, 261 (2004).
[8] J. Chandrapal, C. Oliver, S. Kentish, and M. Ashokkumar, Ultrasonics in food processing, Ultrasonics Sonochemistry 19, 975 (2012).
[9] D. Bonn, M. M. Denn, L. Berthier, T. Divoux, and S. Manneville, Yield stress materials in soft condensed matter, Reviews of Modern Physics 89, 1 (2017) 035005.
[10] N. D. Vassileva, D. van den Ende, F. Mugele, and J. Mellema, Capillary Forces between spherical Particles Floating at a Liquid-Liquid Interface, Langmuir 21, 11190 (2005).
[11] R. Wessel and R. C. Ball, Fractal aggregates and gels in shear flow, Physical Review A 46, R3008 (1992).
[12] W.-H. Shih, W. Y. Shih, S.-I. Kim, J. Liu, and I. A. Aksay, Scaling behavior of the elastic properties of colloidal gels, Physical Review A 42, 4772 (1990).
[13] C. M. Sorensen, Light Scattering by Fractal Aggregates: A Review, Aerosol Science Technology 35, 648 (2001).
[14] M. Y. Lin, R. Klein, H. M. Lindsay, D. A. Weitz, R. C. Ball, and P. Meakin, The Structure of Fractal Colloidal Aggregates of Finite Extent, Journal of Colloid and Interface Science 137, 263 (1990).
[15] S. Lazzari, L. Nicoul, B. Jaquet, M. Lattuada, and M. Morbidelli, Fractal-like structures in colloid science, Advances in Colloid and Interface Science 235, 1 (2016).
[16] P. Grassberger, On the spreading of two-dimensional percolation, Journal of Physics A: Mathematical and General 18, L215 (1985).
[17] M. Bantawa, W. A. Fontaine-Seiler, P. D. Olmsted, and E. Del Gado, Microscopic interactions and emerging elasticity in model soft particulate gels, Journal of Physics: Condensed Matter 33, 1 (2021).
[18] D. A. Weitz and M. Oliveria, Fractal Structures Formed by Kinetic Aggregation of Aqueous Gold Colloids, Physical Review Letters 52, 1433 (1984).
[19] D. A. Weitz, J. S. Huang, M. Y. Lin, and J. Sung, Limits of the Fractal Dimension for Irreversible Kinetic Aggregation of Gold Colloids, Physical Review Letters 54, 1416 (1985).
[20] H. Hoekstra, J. Vermant, J. Mewis, and G. Fuller, Flow-induced anisotropy and reversible aggregation in two-dimensional suspensions, Langmuir 19, 9134 (2003).
[21] V. S. Nguyen, D. Rouxel, R. Hadjii, B. Vincent, and Y. Fort, Effect of ultrasonication and dispersion stability on the cluster size of alumina nanoscale particles in aqueous solutions, Ultrasonics Sonochemistry 18, 382 (2011).
[22] J. J. Richards, J. B. Hipp, J. K. Riley, N. J. Wagner, and P. D. Butler, Clustering and Percelation in Suspensions of Carbon Black, Langmuir 33, 12260 (2017).
[23] K. Masschaele, J. Fransaer, and J. Vermant, Direct visualization of yielding in model two-dimensional colloidal gels subjected to shear flow, Journal of Rheology 53, 1437 (2009).
[24] H. Hoekstra, J. Mewis, T. Narayanan, and J. Vermant, Multi length scale analysis of the microstructure in sticky
sphere dispersions during shear flow, Langmuir 21, 11017 (2005).

[25] A. Zaccone, M. Soos, M. Lattuada, H. Wu, M. U. BÄBLER, and M. Morbidelli, Breakup of dense colloidal aggregates under hydrodynamic stresses, Physical Review E 79, 061401 (2009).

[26] F. E. Torres, W. B. Russel, and W. R. Schowalter, Floc Structure and Growth Kinetics for Rapid Shear Coagulation of Polystyrene Colloids, Journal of Colloid and Interface Science 142, 554 (1991).

[27] R. J. Hunter and J. Frayne, Flow Behavior of Coagulated Colloidal Sol, Journal of Colloid and Interface Science 76, 107 (1980).

[28] K. Higashitani and K. Iimura, Two-Dimensional Simulation of the Breakup Process of Aggregates in Shear and Elongational Flows, Journal of Colloid and Interface Science 204, 320 (1998).

[29] K. Higashitani, K. Iimura, and H. Sanda, Simulation of deformation and breakup of large aggregates in Flows of viscous Fluids, Chemical Engineering Science 56, 2927 (2001).

[30] R. Massaro, G. Colombo, P. Van Puyvelde, and J. Vermant, Viscoelastic cluster densification in sheared colloidal gels, Soft Matter 16, 2437 (2020).

[31] J. F. Brady and G. Bossis, The rheology of concentrated suspensions of spheres in simple shear flow by numerical simulation, Journal of Fluid Mechanics 155, 105 (1985).

[32] J. F. Morris, A review of microstructure in concentrated suspensions and its implications for rheology and bulk flow, Rheologica Acta 48, 909 (2009).

[33] Z. Varga, G. Wang, and J. Swan, The hydrodynamics of colloidal gelation, Soft Matter 11, 9009 (2015).

[34] Z. Varga and J. W. Swan, Linear viscoelasticity of attractive colloidal dispersions, Journal of Rheology 59, 1271 (2015) https://doi.org/10.1122/1.4928951.

[35] Z. Varga and J. W. Swan, Large scale anisotropies in sheared colloidal gels, Journal of Rheology 62, 405 (2018) https://doi.org/10.1122/1.5003364.

[36] Z. Varga, V. Grenard, S. Pecorario, N. Taberlet, V. Dolique, S. Manneville, T. Divoux, G. H. McKinley, and J. W. Swan, Hydrodynamics control shear-induced pattern formation in attractive suspensions, Proceedings of the National Academy of Sciences 116, 12193 (2019).

[37] T. Lorenzo and L. Marco, Brownian Dynamics simulations of shear-induced aggregation of charged colloidal particles in the presence of hydrodynamic interactions, Journal of Colloid and Interface Science 10.1016/j.jcis.2022.05.047 (2022).

[38] S. Jungblut, J.-O. Joswig, and A. Eychmüller, Diffusion and reaction-limited cluster aggregation revisited, Physical Chemistry Chemical Physics 21, 5723 (2019).

[39] J. Colombo and E. Del Gado, Stress localization, stiffening, and yielding in a model colloidal gel, Journal of Rheology 58, 1089 (2014).

[40] M. Bouzid, B. Keshavarz, M. Geri, T. Divoux, E. Del Gado, and G. H. McKinley, Computing the linear viscoelastic properties of soft gels using an optimally windowed chirp protocol, Journal of Rheology 62, 1037 (2018).

[41] A. Kimbonguila Manounou and S. Rémond, Discrete element modeling of the microstructure of fine particle agglomerates in sheared dilute suspension, Physica A 412, 66 (2014).

[42] M. L. Eggersdorfer, D. Kadau, H. J. Herrmann, and S. E. Pratsinis, Fragmentation and restructuring of soft-agglomerates under shear, Journal of Colloid and Interface Science 342, 261 (2010).

[43] X. Ruan, S. Chen, and S. Li, Structural evolution and breakage of dense agglomerates in shear flow and Taylor-Green vortex, Chemical Engineering Science 211, 115261 (2020).

[44] M. Soos, J. Sefcik, and M. Morbidelli, Investigation of aggregation, breakage and restructuring kinetics of colloidal dispersions in turbulent flows by population balance modeling and static light scattering, Chemical Engineering Science 61, 2349 (2006).

[45] M. Soos, L. Wang, R. O. Fox, J. Sefcik, and M. Morbidelli, Population balance modeling of aggregation and breakage in turbulent Taylor-Couette flow, Journal of Colloid and Interface Science 307, 433 (2007).

[46] A. Puisto, X. Illa, M. Mohtaschemi, and M. J. Alava, Modeling the viscosity and aggregation of suspensions of highly anisotropic nanoparticles, The European Physical Journal E 35, 1 (2012).

[47] M. Lattuada, A. Zaccone, H. Wu, and M. Morbidelli, Population-balance description of shear-induced clustering, gelation and suspension viscosity in sheared DLVO colloids, Soft Matter 12, 5313 (2016).

[48] J. Banasiak, W. Lamb, and P. Laurençot, Analytic Methods for Coagulation-Fragmentation Models, Volume I, edited by J. Banasiak, W. Lamb, and P. Laurençot, Monographs and Research Notes in Mathematics, Vol. 1 (CRC Press, CRC Press/Taylor & Francis Group600 Broken Sound Parkway NW, Suite 300 Boca Raton, FL 33487-2742, 2020).

[49] Y. Kantor and T. A. Witten, Mechanical stability of tenuous objects, Journal of Physique Lettres 45, 675 (1984).

[50] M. Mellaena, J. H. J. van Opheusden, and T. van Vliet, Categorization of rheological scaling models for particlecleges applied to casein gels, Journal of Rheology 46, 11 (2002).

[51] L. B. Brakalov, Connection between the orthokinetic coagulation capture efficiency of aggregates and their maximum size, Chemical Engineering Science 42, 2373 (1987).

[52] F. E. Torres, W. B. Russel, and W. R. Schowalter, Simulation of Coagulation in Viscous Flows, Journal of Colloid and Interface Science 145, 51 (1991).

[53] P. Sabre and P. Mills, I. Rheology of Weakly Flocculated Suspensions of Rigid Particles, Journal of Physique III 6, 1811 (1996).

[54] J. S. Marshall and S. Li, Adhesive Particle Flow: A Discrete-Element Approach 1st ed., edited by J. S. Marshall and S. Li (Cambridge University Press, 32 Avenue of the Americas, NY 10013-2473, USA, 2014).

[55] R. von Mises, Mechanik der festen Körper im plastisch-deformablen Zustand, Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen 1, 582 (1913).

[56] A. A. Griffith, VI. The phenomena of rupture and flow in solids, Philosophical Transactions of the Royal Society A 221, 582 (1921).

[57] G. R. Irwin, Analysis of Stresses and Strains Near the End of a Crack Traversing a Plate, Journal of Applied Mechanics 24, 361 (1957).

[58] C. Creton and M. Cicotti, Fracture and adhesion of soft materials: a review, Reports on Progress in Physics 79, 046601 (2016).
[92] T. Gibaud, T. Divoux, and S. Manneville, Encyclopaedia of Complexity and Systems Science (Springer, 2020) Chap. Nonlinear mechanics of colloidal gels: creep, fatigue and shear-induced yielding, pp. 1–24.

[93] N. Dagès, P. Lidon, G. Jung, F. Pignon, S. Manneville, and T. Gibaud, Mechanics and structure of carbon black gels under high-power ultrasound, Journal of Rheology 65, 477 (2021).

[94] G. L. Klimchitskaya, U. Mohideen, and V. M. Mostepanenko, Casimir and Van der Waals force between two plates or a sphere (lens) above a plate made of real metals, Physical Review A 61, 062107 (2000).

[95] J. Visser, On Hamaker constants: A comparison between Hamaker constants and Lifshitz-Van der Waals constants, Advances in Colloid and Interface Science 3, 331 (1972).

[96] T. D. Waite, J. K. Cleaver, and J. K. Beattie, Aggregation Kinetics and Fractal Structure of γ-Alumina Assemblages, Journal of Colloid and Interface Science 241, 333 (2001).