Late Holocene slowdown of the Indian Ocean Walker circulation

Mahyar Mohtadi1, Matthias Prange1, Enno Schefuß1 & Tim C. Jennerjahn2

Changes in tropical zonal atmospheric (Walker) circulation induce shifts in rainfall patterns along with devastating floods and severe droughts that dramatically impact the lives of millions of people. Historical records and observations of the Walker circulation over the 20th century disagree on the sign of change and therefore, longer climate records are necessary to better project tropical circulation changes in response to global warming. Here we examine proxies for thermocline depth and rainfall in the eastern tropical Indian Ocean during the globally colder Last Glacial Maximum (19–23 thousand years ago) and for the past 3000 years. We show that increased thermocline depth and rainfall indicate a stronger-than-today Walker circulation during the Last Glacial Maximum, which is supported by an ensemble of climate simulations. Our findings underscore the sensitivity of tropical circulation to temperature change and provide evidence for a further weakening of the Walker circulation in response to greenhouse warming.
The Walker circulations are zonal atmospheric overturning cells over the tropical oceans with long-term mean surface westerlies along the equatorial Indian and easterlies over the equatorial Pacific Ocean. Their changes are closely tied to the monsoon systems, El Niño-Southern Oscillation (ENSO) and the Indian Ocean Dipole Mode (IOD)\(^1\)–\(^2\). Thus far, studies on the recent development and future projection of the Walker circulations remain contradictory and suggest either a reduced\(^3\)–\(^5\) or an enhanced\(^6\)–\(^9\) Walker circulation in response to global warming. This controversy mainly arises from the shortness of the instrumental data covering only a few decades, and necessitates records of Walker circulation changes from the geological past to better understand the sensitivity of the Walker circulation and the hydrological cycle to temperature change\(^2\)–\(^4\).

One of the most prominent periods for this purpose is the globally cooler climate of the Last Glacial Maximum (LGM). A multi-model ensemble of climate simulations suggests a drier-than-today LGM climate of the Indo-Pacific Warm Pool (IPWP)\(^10\), where the ascending branches of the Indo-Pacific Walker cells reside. A relatively dry IPWP during the LGM has been attributed to a slowdown of the Walker circulation\(^11\)–\(^13\). These studies further indicate that similar to the present-day situation\(^14\), \(^15\), records of rainfall and thermocline depth in the eastern tropical Indian Ocean are the most sensitive diagnostic tools to reconstruct past Indian Walker circulation changes. Presently, the most prominent changes in Walker circulation over the Indian Ocean occur during theIOD years, when the circulation weakens (positive IOD events) or strengthens (negative IOD events). In the eastern tropical Indian Ocean, the thermocline shoals and cools while rainfall decreases during the positive IOD events, and vice versa during the negative IOD events\(^14\)–\(^16\). In contrast, modern observations show that temperature and rainfall in Africa and the western Indian Ocean beneath the poorly-defined descending branch of the Indian Walker cell\(^1\) do not respond consistently to changes in the Walker circulation\(^17\), \(^18\). Thus, reconstructing circulation and rainfall in the eastern tropical Indian Ocean is a critical task to evaluate the model performance in simulating the LGM and future changes in the tropical hydrologic cycle.

In this study, we show that the thermocline was deeper and the amount of rainfall was higher in the eastern tropical Indian Ocean during the LGM compared to the late Holocene. In striking agreement with two climate model simulations, our results suggest that the Walker circulation over the Indian Ocean was stronger during the cooler LGM climate. We infer a further weakening of the Walker circulation with increasing global temperatures during the 21st century.

Results

Thermocline reconstruction. Here we present three sea surface temperature (SST) and five thermocline temperature records calculated from shell Mg/Ca of planktic foraminifera at several sites in the eastern tropical Indian Ocean since the LGM (Fig. 1a, Methods and Supplementary Table 1). We make use of the difference between surface and thermocline temperatures (\(\Delta T\)) to assess the relative depth of the thermocline, with a larger difference indicating a shallower thermocline and vice versa (Fig. 1a, Supplementary Figs. 1–2). The depth of the thermocline in this region is presently controlled by changes in the atmospheric circulation and a sensitive measure of changes in the Walker circulation\(^14\) (Supplementary Figs. 1–2). Similar to the model comparison below, in the following we compare reconstructed average values for the LGM with those of the late Holocene in order to assess changes in the relative strength of the Indian Walker circulation.

Average temperatures for the late Holocene are about 1.5°–3°C higher at surface but up to 4°C lower at the thermocline compared to the average LGM temperatures (Supplementary Data 1). The late Holocene \(\Delta T\) values show a coherent picture regardless of the selected temperature calibration or the time span considered (Fig. 2), and reflect the modern conditions with lower values indicating a relatively deeper thermocline in the non-upwelling region off western Sumatra (site 39KL, Fig. 1a, Supplementary Fig. 2).

Rainfall reconstruction. In order to reconstruct the amount of rainfall over the eastern tropical Indian Ocean, which is another characteristic feature of past changes in the Indian Walker
circulation13, 14, we analysed the stable hydrogen isotope composition (δD) of terrestrial plant waxes (Fig. 1b). In the tropics, a lower δD of precipitation indicates an increase in the amount of rainfall19, which is reflected by lower δD values of less degraded plant waxes20, 21 in our records (Fig. 3). Our results for the late Holocene corroborate this inference and depict the observed present-day spatial pattern in the amount of rainfall that is highest over central Sumatra and decreases slightly towards the northwest, and considerably towards the southeast (Fig. 1b). We corrected the LGM δD values for global ice volume and exclude any moisture source other than the Indian Ocean22 for our sites (see ‘Discussion’).

Model simulations. The dominant role of equatorial zonal wind anomalies in setting the depth of the thermocline in the eastern equatorial Indian Ocean on glacial–interglacial time scale is corroborated by climate model results. A set of LGM simulations from the Paleoclimate Modelling Intercomparison Project (PMIP) phases 2 and 310, 23 (https://pmip2.lsce.ipsl.fr/ and https://pmip3.lsce.ipsl.fr/, Supplementary Table 2) suggests an almost one-to-one relationship ($r^2 = 0.81, p < 10^{-4}$) between zonal wind anomalies and thermocline depth in the equatorial Indian Ocean (Fig. 4).

Discussion

Our LGM to late Holocene ΔT comparison in the eastern tropical Indian Ocean indicates a considerably deeper thermocline during the LGM and a stronger Walker circulation during a globally cooler climate. Notably, average ΔT values during the LGM are relatively similar at site GeoB 10038-4, regardless of the species used for thermocline temperature reconstruction (green open symbols in Fig. 1a). Modern results based on surface sediments show that the temperature signature carried by thermocline dwellers converge when the thermocline is warmer and deeper, and diverge when the thermocline is shallower and cooler24. Therefore, the similarity between the ΔT values during the LGM additionally supports our inference of a deeper thermocline and a stronger Walker circulation.
The southern part of the study area lies within the Australian-Indonesian monsoon realm with an upwelling system that is governed by the seasonally reversing monsoon winds. In this region, dry southeastward surface winds originating from the high pressure cell over Australia induce seasonal upwelling during boreal summer from June to September. On average, SST drops from mean annual values of ~28 to ~25 °C during this season, when the mixed layer is only about 20 m thick (World Ocean Atlas 2009, hereafter WOA09). During the rest of the year, the wind direction is generally reversed and moist air is transported east- and southeastward resulting in downwelling and high SST of ≥28 °C, a relatively thick mixed layer around 70 m and a deep thermocline (WOA09).

The two southern records of ΔT (sites GeoB10038-4 and 10053-7) lie in the upwelling area of the eastern Indian Ocean and thus, are additionally affected by changes in the meridional Hadley circulation and the southeasterly monsoon winds. Reconstructions of marine productivity that is related to the upwelling intensity in this region indicate higher productivity during the late Holocene compared to the LGM (Fig. 3), consistent with our records from the eastern tropical Indian Ocean (CCSM3 and FGOALS-g1.0). The westerly wind anomalies along the equatorial Indian Ocean subsurface temperatures in the LGM (Supplementary Fig. 3), consistent with our proxy records, while LGM subsurface cooling in the eastern Indian Ocean is simulated by the other models (not shown). The westerly wind anomalies are associated with a strengthening of the Indian Walker circulation implying anomalous ascent of air over the eastern equatorial Indian Ocean and anomalous subsidence over the western portion, in accordance with our records from the eastern tropical Indian Ocean (Fig. 1). An anti-correlation of the zonal surface wind anomalies with upper-tropospheric zonal wind anomalies (r² = 0.55, p < 10⁻²) confirms the involvement of the zonal overturning Indian Walker circulation (Supplementary Fig. 4).

While FGOALS-g1.0 produces strongly enhanced ascent almost everywhere over the Maritime Continent (Fig. 5d), anomalous ascent in CCSM3 is restricted to the western part of the Maritime Continent and the adjacent seas, whereas anomalous subsidence is simulated over the eastern region of the Maritime Continent (Fig. 5b). This scenario agrees with our findings but is at odds with most LGM simulations of the regional tropical circulation and hydroclimate. We infer that during the LGM, convection and rainfall over the western part of the IPWP was stronger than today as a result of a stronger Walker circulation, while further to the east, anomalous subsidence...
resulted in drier conditions over the Maritime Continent, as indicated by various proxy and model studies (cf. ref. 13).

In our model analysis, we show that the depth of the tropical eastern Indian Ocean thermocline is well correlated with the equatorial zonal wind strength and hence a reliable indicator for changes in the Indian Ocean Walker circulation (Fig. 4). In an earlier study12, the strength of the LGM Indian Ocean Walker circulation was inferred from a compilation of hydroclimate proxies in the Indo-Pacific region and comparison to PMIP model output. There, model agreement with the proxies was quantified by using a Cohen’s κ statistic, which is defined as the observed fractional agreement relative to the probability of random agreement. Surprisingly, we find that there is no significant correlation ($r^2 = 0.36$, $p > 0.05$) between LGM zonal wind anomalies over the equatorial Indian Ocean and the degree of model-proxy agreement for rainfall reconstructions as quantified by the published maximum Cohen’s κ (Supplementary Fig. 5). The same holds true for sea surface salinity reconstructions compiled in the same study ($r^2 = 0.25$, $p > 0.05$).

Besides the fact that modelling the Maritime Continent rainfall is generally a challenge for climate models36, we surmise that three major factors are responsible for the absence of correlation between the synthesized hydroclimate reconstruction and the Indian Ocean Walker circulation: firstly, the proxy data set considered previously12, 13 comprises a too large region (25° S–20° N, 25° E–170° E) containing many sites that are outside the influence of the Indian Ocean Walker cell; secondly, at many sites contained in the proxy compilation rainfall is controlled by orographic effects not resolved in the relatively coarse-resolution PMIP climate models, e.g. along the mountainous areas of western Sumatra that receive moisture from the Indian Ocean22; hence, regional-scale rainfall patterns are generally simulated with low skill-level in global climate models; lastly, several proxies included in those compilations12, 13 are not straightforwardly related to local precipitation rate. For instance, surface salinity and rainfall decrease in the eastern tropical Indian Ocean during a weak Walker circulation year, and increase during a strong Walker circulation year, while salinity does not change considerably in the western Indian Ocean in both years15, thus questioning the feasibility of salinity as a reliable measure of rainfall changes.

Our results from two robust proxies for wind strength and precipitation changes from sites beneath the ascending branch of the Indian Ocean Walker cell are at odds with most of the IPWP climate simulations for the LGM10, 23. However, our model-data approach provides a scenario that reconciles the discrepancy in the data and model results of the present and past hydroclimate in this region. Moreover, the inferred scenario of a weaker Walker circulation during the late Holocene from our proxy records, as also simulated by CCSM3 and FGOALS-g1.0, is similar to the projected changes of the Walker circulation over the Indian Ocean during the 21st century greenhouse warming1, 37. We note that several forcings besides temperature were different during the LGM compared to the late Holocene, such as ice sheet and insolation, and require further numerical experiments studying the impact of each of these forcings on Walker circulation
changes. Despite different forcing factors, our results provide evidence for the theoretically projected changes in the strength of the tropical circulation during the 21st century27,3 and suggest that the zonal circulation will further slow down with continued warming. Finally, a weaker Indian Walker circulation as recorded in our data resembles a positive Indian Ocean Dipole state and supports the projected increase in the frequency of extreme positive IOD events in the 21st century, implying severe impacts on hydroclimate around the Indian Ocean and beyond27.

Methods

Sampling and chronology. Piston cores SO189-119KL (3° 31’ N, 96° 19’ E; 780 cm core length, 808 m water depth) and SO189-39KL (0° 47’ S, 99° 15’ E; 1350 cm core length, 517 m water depth) were collected from offshore Sumatra during the R/V SONNE cruise 189 in 2006. Gravity cores GeoB 10038-4 (5° 56’ S, 103° 15’ E; 901 cm core length, 1819 m water depth) and GeoB 10053-7 (8° 41’ S, 112° 52’ E; 750 cm core length, 1375 m water depth) were collected from the southern Mentawai Basin offshore southwest Sumatra (10038-4) and off southeast Java (10053-7) during the R/V SONNE cruise 184 in 2005. Piston core SO189-39KL was sampled at 2 cm steps; piston core SO189-119KL and gravity cores GeoB 10038-4 and GeoB 10053-7 at 5 cm steps. Core GeoB 10053-7 was additionally sampled at 2 cm steps between 400 cm and 750 cm core depth corresponding to 22–8 kyr BP. For this study, we used the LGM (19–23 kyr) and the late Holocene (0–33 kyr) sections of these cores are considered. Age models of the cores were published previously27–29.

The LGM (late Holocene) sections contain 2 (2) radiocarbon datings in SO189-119KL (73–19 kyr) and 3 (1) in GeoB 10038-4 and 3 (3) in GeoB 10053-728. Sedimentation rates during the LGM and the late Holocene are similar in SO189-39KL (~20 cm kyr−1), in SO189-39KL (~40 cm kyr−1) and in GeoB 10038-4 (~10 cm kyr−1). Sedimentation rates during the LGM (late Holocene) are around 40 (60) cm kyr−1 in GeoB 10053-7.

Planktic foraminifera and thermocline reconstruction. All cores used in this study lie above the calcite lysocline and contain well-preserved aragonitic pteropods that suggest a negligible effect of dissolution on planktic foraminifera shell geochemistry. Previous studies on surface sediments28 and sediment trap time-series from the eastern tropical Indian Ocean suggest that mean calcification depth for the mixed-layer dwelling species Globigerinoides ruber is about 20 m. Mean calcification depths of the thermocline species have been estimated in the same studies at about 75 m for Pullenia sinistral and at 75–95 m for Neo-globocassidina dutertrei and at about 110 m for Globorotalia tumida. Three intervals with eight temperature records have been published previously27–29. For Mg/Ca analyses, a minimum of 30 G. ruber specimens from the 250 to 355 μm size-fraction and a minimum of 20 specimens of the remaining species from the 355 to 500 μm size-fraction have been selected, crushed and cleaned following a slightly modified protocol of Barker et al.28 with five water and two methanol washes, two oxidation steps with 1% NaOH-buffered H2O2 and a weak acid leach with 0.001 M quartz (aq) at 5 cm steps. Core GeoB 10053-7 was additionally sampled at 2 cm steps between 400 cm and 750 cm core depth corresponding to 22–8 kyr BP. For this study, we used the LGM (19–23 kyr) and the late Holocene (0–33 kyr) sections of these cores are considered. Age models of the cores were published previously27–29.

The LGM (late Holocene) sections contain 2 (2) radiocarbon datings in SO189-119KL (73–19 kyr) and 3 (1) in GeoB 10038-4 and 3 (3) in GeoB 10053-728. Sedimentation rates during the LGM and the late Holocene are similar in SO189-39KL (~20 cm kyr−1), in SO189-39KL (~40 cm kyr−1) and in GeoB 10038-4 (~10 cm kyr−1). Sedimentation rates during the LGM (late Holocene) are around 40 (60) cm kyr−1 in GeoB 10053-7.

Plant wax analyses. We measured three sediment samples per core and period to average internal variability within each time slice (Supplementary Data 1). About 10 g of dried and ground sediments were extracted with a Dionex Accelerated Solvent Extractor (ASE-200) at 100°C and 1000 psi with a mixture of dichloromethane:methanol (9:1) for 1 h. The methanol was later removed before extraction as internal standard. Asphaltenes were removed from the total lipid extracts (TLEs) with elution by hexane over Na2SO4. TLEs were saponified by 6% KOH in methanol and acid fractions removed. Neutral fractions were separated into aliphatic (apolar), ketonic and polar fractions on a silica gel column. Afterwards the aliphatic fraction was separated on an AgNO3-impregnated silica column into saturated and unsaturated fractions, of which the first fraction contains the n-alkanes. Quantification of n-alkanes was performed by gas chromatography–flame ionization detection (GC–FID) on a ThermoScientific Focus gas chromatograph. Alkanes were identified and quantified using a comparison of retention times and peak areas with an external standard mixture. Repeated analyses of the external standard mixture yield a quantification uncertainty of <5%. The n-C31 alkane was the most abundant homologue in all samples. Concentrations varied from 90 to 640 ng g−1 dry sed. and were consistently higher in LGM than Holocene samples (ED 5–6). The carbon preference index (CPI) was calculated to:

\[
\text{CPI} = 0.5 \times \left(\sum \frac{n_{\text{odd}}}{n_{\text{even}}} \times 10^{-3} + \sum \frac{n_{\text{even}}}{n_{\text{odd}}} \times 10^{-3} \right)
\]

with \(C_i\) the amount of each homologue. The CPI values of individual samples varied between 2.6 and 6.8 (Supplementary Data 1). On average, the CPI values for the LGM time-slices were higher than for the Holocene samples at each site (Fig. 3). In conjunction, sedimentary concentrations and CPI values indicate a higher contribution of undegraded, i.e. directly plant-derived, long-chain n-alkanes to the LGM sediments compared to the Holocene.

Hydrogen isotope compositions were analysed on a Thermofisher Scientific Trace gas chromatograph connected to a ThermoScientific MAT 253 mass spectrometer via a pyrolysis reactor operated at 1420°C. Isotope values were measured against calibrated H2 reference gas. δD values are reported in ‰ relative to VSMOW. The H factor was determined daily and varied around 6.23 ± 0.04 ‰ during analyses. An alkane standard of 16 externally calibrated alkane was measured after every 6th measurement. Long-term precision and accuracy of the external alkane standard were 3 and <1%, respectively. All samples were run at least in duplicate. δD values of the n-C31 alkane varied from −150 to −174 ‰ (Supplementary Data 1). Reproducibility for the n-C31 alkane was on average 1% (±10–14%). Precision and accuracy of the alkenone internal standard were 6 and 4%, respectively (n = 34). Mean values and average standard deviation of 6D values were calculated for each time slice and are reported within 0.95% confidence intervals. We correct 6D values for global seawater isotopic changes during the LGM. The ice volume correction was converted to 6D values using the global meteoric water line. The ice-volume correction shifts the 6D values during the LGM by −9.1‰.

Model simulations. To test the relation between glacial anomalies in zonal equatorial winds and thermocline depth in the Indian Ocean we use LGM and pre-industrial coupled climate model simulations from PMIP2 and PMIP3/ CMIP510, 23. LGM boundary conditions include reduced greenhouse gases, changed astronomical parameters, continental ice sheets and a changed land–sea mask in accordance with a −120 m lower global sea level compared to today (see https://pmip2.lsce.ipsl.fr and https://pmip3.lsce.ipsl.fr for details). See Supplementary Table 2 for model setups used in PMIP2 and PMIP3/CMIP5. All model analyses are based on climatological annual means.
Data availability. The authors declare that the data supporting the findings of this study are available within the paper and its supplementary information files. Data can also be downloaded at https://doi.pangaea.de/10.1594/PANGAEA.877994

Received: 14 April 2017 Accepted: 31 July 2017
Published online: 18 October 2017

References

1. Cai, W. et al. Projected response of the Indian ocean dipole to greenhouse warming. Nat. Geosci. 6, 999–1007 (2013).
2. Vecchi, G. A. & Soden, B. J. Global warming and the weakening of the tropical central Pacific ocean–atmosphere system. J. Climate, 20, 4316–4340 (2007).
3. Held, I. M. & Soden, B. J. Robust responses of the hydrological cycle to global warming. J. Clim. 19, 5686–5699 (2006).
4. Vecchi, G. A. et al. Weakening of tropical Pacific atmospheric circulation due to anthropogenic forcing. Nature 441, 73–76 (2006).
5. Tokinaga, H., Xie, S.-P., Deser, C., Kosaka, Y. & Okumura, Y. M. Slowdown of the Walker circulation driven by tropical Indo-Pacific warming. Nature 491, 439–443 (2012).
6. Luo, J.-J., Sasaki, W. & Masumoto, Y. Indian Ocean warming modulates Pacific climate change. Proc. Natl Acad. Sci. 109, 18701–18706 (2012).
7. Wang, B. et al. Northern Hemisphere summer monsoon intensified by mega-El Niño/southern oscillation and Atlantic multidecadal oscillation. Proc. Natl Acad. Sci. 110, 5347–5352 (2013).
8. L’Heureux, M. L., Lee, S. & Lyon, B. Recent multidecadal strengthening of the Walker circulation across the tropical Pacific. Nat. Clim. Change 3, 571–576 (2013).
9. England, M. H. et al. Increased frequency of extreme Indian ocean dipole events due to greenhouse warming. Nature 510, 254–258 (2014).
10. Mohtadi, M. et al. Results of PMIP2 coupled simulations of the Mid-Holocene and Last Glacial Maximum—part 1: experiments and large-scale features. Clim. Past 3, 261–277 (2007).
11. DiNezio, P. N. et al. The response of the Walker circulation to Last Glacial Maximum forcing: Implications for detection in proxies. Paleoceanography 26, PA3217 (2011).
12. DiNezio, P. N. & Tierney, J. E. The effect of sea level on glacial Indo-Pacific climate. Nat. Geosci. 6, 485–491 (2013).
13. DiNezio, P. N. et al. The climate response of the Indo-Pacific warm pool to glacial sea level. Paleoceanography 31, 866–894 (2016).
14. Webster, P. J., More, A. M., Loesch, J. P. & Leban, R. C. Coupled ocean–atmospheric dynamics in the Indian Ocean during 1997-1998. Nature 401, 356–360 (1999).
15. Qiu, Y., Cai, W., Li, L. & Guo, X. Argo profiling of the meridional overturning circulation in the Southern Ocean. J. Geophys. Res. 116, C11005 (2011).

Author contributions

We acknowledge our grateful colleagues: M. S. K. for the original research and for the early stage of the study. M. S. K. and J. C. H. provided the initial ideas and data analysis. M. S. K. and J. C. H. prepared the first draft of the manuscript. All authors contributed to the final version of the manuscript. All authors approved the final version of the manuscript.
Additional information
Supplementary Information accompanies this paper at 10.1038/s41467-017-00855-3.

Competing interests: The authors declare no competing financial interests.

Reprints and permission information is available online at http://npg.nature.com/reprintsandpermissions/

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2017