Colony-stimulating factor 3 receptor (CSF3R) M696T mutation does not impact on clinical outcomes of a Ph+ acute lymphoblastic leukemia patient

Xin Chen, Bichen Wang, Aiming Pang, Weiping Yuan, Erlie Jiang*, Yajing Chu*, Sizhou Feng, Mingzhe Han

State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300020, China

Abstract

Colony-stimulating factor 3 receptor (CSF3R) mutations have been identified in a variety of myeloid disorders. Although CSF3R point mutations (eg, T618I) are emerging as key players in chronic neutrophilic leukemia/atypical chronic myelogenous leukemia, the significance of rarer CSF3R mutations is unknown. Here, we report a 32-year-old female who was diagnosed as Philadelphia chromosome-positive acute lymphoblastic leukemia (Ph+ ALL) with the CSF3R M696T mutation and was undergone unrelated donor hematopoietic stem cell transplantation. The patient achieved complete remission with chemotherapy in combination with tyrosine kinase inhibitor (TKI) and long-term survival by unrelated donor transplantation. Meanwhile, we performed a series of experiments using murine interleukin 3 (IL-3)-dependent Ba/F3 cell line to evaluate the transforming capacity of the CSF3R M696T mutation. We confirmed the presence of a CSF3R M696T germline mutation in this patient which was inherited from her mother. The in vitro experiment results showed that the CSF3R M696T mutation contributes marginally to the tumor transformation of Ba/F3 cells, indicating that CSF3R M696T mutation was neutral in tumor transformation ability. We concluded that TKI is effective in patients with the CSF3R M696T mutation in Ph+ ALL and donors with CSF3R M696T mutation might still be selected as the candidate for transplantation.

Keywords: CSF3R M696T mutation, Familial inheritance, Pathogenicity, Ph+ acute lymphoblastic leukemia

1. INTRODUCTION

The colony-stimulating factor 3 receptor (CSF3R) gene is located on chromosome band 1p34 and encodes the transmembrane receptor for colony-stimulating factor 3, which plays a prominent role in the growth and differentiation of granulocytes.1,2 CSF3R belongs to the cytokine receptor type I superfamily, which engages the canonical Janus kinase (JAK)/signal transducer and activator of transcription (STAT), RAS/RAF/MAP kinase, and PKR/AKT pathways.1 There is a number of myeloid disorders that have been related to mutations in CSF3R, including severe congenital neutropenia (SCN), chronic neutrophilic leukemia (CNL), myelodysplastic syndrome (MDS), acute myeloid leukemia (AML), and atypical chronic myelogenous leukemia (aCML).3–7 However, there is no report of Philadelphia chromosome positive acute lymphoblastic leukemia (Ph+ ALL) associated with it. We report a new case of Ph+ ALL...
with the M696T mutation in the CSF3R gene and analysis showed that the gene mutated into familial inheritance.

2. RESULTS

2.1. Identification of the CSF3R M696T mutation in patient and her family members

The patient was diagnosed as Ph+ ALL with the CSF3R M696T mutation. This patient was treated and achieved complete remission with chemotherapy in combination with tyrosine kinase inhibitor (TKI) (Figure 1).

The patient intended to undergo sibling-matched hematopoietic stem cell transplantation (HSCT). On routine bone marrow gene workup, the sibling donor (sister) was also found to have the M696T mutation in the CSF3R gene (nucleotide changes c.2087 T>C, amino acid change p.M696T, mutation frequency 50.6%).

The over 50% allele fraction of the M696T mutation prompted us to determine whether the mutation was germine or somatic. We confirmed with sequencing the presence of a heterozygous M696T mutation in the oral mucosa sample of the patient and her sibling donor. We also sequenced the blood samples of the patient’s parents. The results showed that the mutation was present in her mother (nucleotide changes c.2087 T>C, amino acid change p.M696T), but not the father. We conclude that CSF3R M696T mutation is a germine mutation in this patient, which was inherited from her mother, and BCR-ABL is the second mutation.

To exclude the possibility that CSF3R M696T mutation may have an adverse effect on hematopoiesis and/or transplantation, we subsequently chose a 28 years old male HLA 10/10 point matched unrelated donor instead of her sister. This patient received unrelated donor transplantation on April 15, 2019. She received conditioning based on etoposide 20mg/kg/day and busulfan 3.2 mg/kg/day x 3days, cyclophosphamide 40mg/kg/day x 2 days, rabbit antithymocyte globulin 2mg/kg/day x 4 days. Graft versus host disease prophylaxis regimen consisted of short-course methotrexate at a dose of 15mg/m² intravenously on day 1 followed by 10mg/m² intravenously on days 3, 6, and 11, tacrolimus 0.03mg/kg/day x 2 days intra venously beginning day -5, and mycophenolate mofetil 1g/day beginning day -8. She received peripheral blood stem cell transplantation, the median numbers of MNC and CD34+ cells were 18.17 × 10⁹/kg, 1.64 × 10⁹/kg, respectively. So far, there is no discomfort, the blood routine is recovered well, and the bone marrow minimal residual disease (MRD), BCR-ABL P210, and CSF3R gene mutation have been continuously negative.

2.2. CSF3R M696T mutation was neutral in tumor transformation ability

To ascertain CSF3R M696T mutation has any effect on normal or malignant hematopoiesis, we evaluated the transforming capacity of the CSF3R M696T mutation, we performed a series of experiments using murine interleukin 3 (IL-3)-dependent Ba/F3 cell line. We detected the relative mRNA level of Csf3r in the Ba/F3 cell line and found that, in comparison with whole bone marrow cells (WBM) and granulocytes (Gran), the expression level of Csf3r was barely detected (Figure 2A), indicating that Ba/F3 is a suitable cell line to investigate mutate CSF3R. We then used lentivirus-mediated infection to establish several stable cell lines expressing CSF3R or its mutations, including wild-type CSF3R, M696T from our patients, T618I and S783fs mutations both were previously reported as transformative mutations. Empty vector was used as a negative control. The miRNA and protein levels of CSF3R in transduced cell lines were confirmed by RT-qPCR and Western blotting, respectively (Figure 2B and C). Under normal culture conditions (containing sufficient IL-3), there were no significant differences in cell proliferation among these groups (Figure 2D).

However, with IL-3 withdrawal, M696T expression cell lines showed obvious growth retardation, while T618I and S783fs mutations expression cell lines could maintain proliferate (Figure 2E).

It was reported that various mutations of CSF3R acted through different pathways to induce oncogenesis, such as the truncated mutation S783fs preferentially activated SRC family kinases, while the membrane-proximal mutation T618I could mediate ligand-independent pathway through activation of the JAK-STAT pathway. We first conducted G-CSF dependence assay and found that M696T expressing Ba/F3 cells were dose-dependent on G-CSF as well as wild-type CSF3R, which suggested that CSF3R M696T mutation did not affect the G-CSF response of G-CSF receptor (Figure 2F). We further performed immunoblot analysis for Stat and Src phosphorylation in Ba/F3 cells containing CSF3R mutations after 5-days culturing with or without IL-3. Consistent with previous studies, Ba/F3 cells harboring T618I

![Figure 1](image-url)
mutation showed an abnormally upregulated phosphorylation level of Stat3 and Src in the presence of IL-3, and when IL-3 was withdrawn, both T618I and S783fs mutant cells displayed elevated phosphorylation level of Stat3 than those of parental and CSF3R WT groups. No obvious changes of Stat3 phosphorylation were observed in Ba/F3 cells expressing CSF3R M696T with or without IL-3 (Figure 2G). Motivated by these observations, the CSF3R M696T mutation harbors marginal contribution to the tumor transformation ability of Ba/F3 cells.

3. DISCUSSION

Granulocyte colony-stimulating factor (G-CSF), also known as colony-stimulating factor 3 (CSF3), is the main growth factor that controls both the proliferation and differentiation of myeloid progenitor cells into neutrophils. It is a transmembrane protein consisting of 813 amino acids; 604 as an extracellular domain, 26 in the transmembrane domain, and 184 in the intracellular cytoplasmic domain. The extracellular domain of the receptor is composed of an immunoglobulin-like (Ig-like) domain, a
cytokine receptor homology domain (CRH domains), and three fibronectin type III (FN III) domains.14 G-CSF is the primary ligand for granulocyte colony-stimulating factor receptor (G-CSFR). G-CSFR is encoded by the CSF3R gene.14 A variety of CSF3R mutations have been identified from patient-derived samples. These various mutations may provide the key to understanding the divergence of disease phenotypes and can be divided into three groups: extracellular domain, transmembrane proximal, and intracellular truncation mutations.13

There is a number of myeloid disorders that have been related to mutations in CSF3R. Extracellular domain mutations in the CSF3R gene affect the extracellular domain of G-CSFR and are commonly associated with SCN and chronic idiopathic neutropenia (CIN). The extracellular mutant P229H was the first reported extracellular CSF3R mutation. Another series of extracellular domain mutations in CSF3R cause truncations at the N-linked glycosylation site and affect ligand binding efficiency.15,16 Another extracellular domain mutation resulting in S624R causes a frameshift truncation after the fibronectin domain of the receptor and has been reported in CIN patients.15 These extracellular CSF3R mutations do not typically lead to myeloid malignancy but result in a neutropenic condition.13 Transmembrane proximal point mutations in CSF3R affect the transmembrane domain and adjacent residues of the G-CSFR. The most prevalent proximal mutation is T618I.17 In recent studies, around 83% of CNL patients have this mutation.18 This mutation has also been reported to have a predisposition to myeloid malignancies in neutropenic patient.19,20 Furthermore, T618I is observed in aCML, chronic myelomonocytic leukemia (CMML), de novo AML, and early T-cell precursor acute lymphoblastic leukemia (ETP-ALL), but with lower frequencies.11,21,22 Other less frequent mutations of this class are N630K and R631del, leading to prolonged activation of STATs similar to G-CSFR-T618I after stimulation with G-CSF.23,24 Intracellular truncation mutations consist of nonsense or frameshift somatic mutations in CSF3R that cause a truncation between 82 and 98 amino acids from the carboxyl terminus of the G-CSFR receptor.15,16,23,24 These mutations are the most common type of mutation in the AML/MDS/ML patient.25 Certain CSF3R mutations that have been found at low frequencies in hematologic malignancies or found through sequencing, such as the P706C, P733T, E808K, and M696T, and R698C mutations, have not exhibited transformative capacity in the Ba/F3 cytokine independent model.28 So far there is no report of Ph+ ALL associated with the gene mutation. Our case had a short medical history and without splenomegaly. The diagnosis of Ph+ ALL was confirmed based on bone marrow morphology, flow cytometry, and fusion gene. She was detected a mutation in the CSF3R gene (nucleotide change c.2087 T>C, amino acid change p.M696T, mutation frequency 50.6%). Kosmider et al31 found that the M696T variant observed in three CMML patients was a somatic mutation. The significance of this mutation in a normal person is not clear. However, from the in vitro and in vivo data and from the fact that somatic CSF3R mutations are frequently detected prior to morphologic evidence of transformation, we have hypothesized that they represent an important step in the progression of SCN to MDS/AML.26,27 Germeshausen et al13 presented data on a total of 218 patients with chronic neutropenia, including 148 patients with SCN (23/148 with secondary malignancies). Of 23 patients with SCN with signs of malignant transformation, 18 (78%) were shown to harbor a CSF3R mutation, indicating that these mutations, although not a necessary condition, are highly predictive for malignant transformation even if detected in a low percentage of transcripts. Their results strongly suggested that acquisition of a CSF3R mutation is an early event in leukemogenesis that has to be accompanied by cooperating molecular events, which remain to be defined. Since the over 50% allele fraction of the M696T mutation prompted us to determine whether the mutation was germline or somatic. Our sequencing confirmed the presence of a heterozygous M696T mutation in the oral mucosa sample of the patient and her sibling donor. We tested the blood samples of the patient’s parents. The results showed that the mutation was present in the mother, but not in the father. We confirmed the presence of the mutation in the patient’s parents, and the mutation was inherited from her mother. No one knows its pathogenicity. Finally, we chose a 28 years old male HLA 10/10 point matched unrelated donor. This patient received unrelated donor transplantation on April 15, 2019. So far, there is no discomfort, the blood routine is recovered well, and the bone marrow MRD, BCR-ABL P210, and CSF3R gene mutation have been continuously negative.

Meanwhile, to evaluate the transforming capacity of the CSF3R M696T mutation, we performed a series of experiments in vitro. The results were similar to Kosmider et al31 study, which showed that the CSF3R M696T mutation harbors marginal contribution to the tumor transformation ability of Ba/F3 cells. CSF3R M696T mutation was neutral in tumor transformation ability. Although in our current case, donors with CSF3R M696T mutations showed neutral effects, long-term tracing and further investigations with more cases and animal model is needed.

4. CONCLUSION

Our case has a typical presentation of Ph+ ALL with the CSF3R M696T mutation. Clinical treatment process showed that the
M696T mutation of the CSF3R gene in the Ph+ ALL patient does not affect the therapeutic effect of TKI on the BCR-ABL fusion gene. We confirmed the presence of the mutation in this patient was germline, and the mutation was inherited from her mother. The in vitro experiment result showed the CSF3R M696T mutation harbors marginal contribution to the tumor transformation ability of Ba/F3 cells. CSF3R M696T mutation was neutral in tumor transformation ability. Therefore, we believe that TKI is still effective in patients with the CSF3R M696T mutation in Ph+ ALL. Donor with CSF3R M696T mutation might still be selected.

5. MATERIALS AND METHODS

5.1. Clinical specimens

All clinical samples were obtained with informed consent by the patient and her family members. Here, we report on a 32-year-old female who presented with asthenia in May 2018. Medical history was 20 days. The physical examination was pale without splenomegaly. The initial hematological workup revealed a white blood cell (WBC) count of 97 × 10^9/L (normal range 4–10 × 10^9/L), hemoglobin 54 g/L (normal 110–150 g/L), and the platelet count was 94 × 10^9/L (normal range of 100–300 × 10^9/L). There were 84% prolymphocyte in the bone marrow. The immunophenotype of the blasts as judged from flow cytometry was in accordance with a B-ALL: CD19 (87%), CD79a (43%), CD10 (23%), CD33 (34%), CD24 (24%), and CD22 (14%). The fusion gene for BCR-ABL P210 was positive. Hot mutation closely related to diseases was: (24%), and CD22 (14%). The fusion gene for BCR-ABL P210 might still be selected.

5.2. Cell culture

HEK293T (ATCC) cells were maintained in DMEM (Gibco) supplemented with 10% fetal bovine serum (FBS, Biological Industries), and penicillin/streptomycin (Invitrogen). Ba/F3 cells (National Infrastructure of Cell Line Resource) were maintained in IMDM basic media (Gibco) supplemented with 10% FBS (Biological Industries), penicillin/streptomycin (Invitrogen), nor-mocin (InvivoGen), and 10 ng/ml rmIL-3 (Peprotech). Cell viability was measured using CCK8 assay and read at 450 nm after 4 hours using a Synergy 4 plate reader (BioTek) every 1 to 2 days. All results are normalized with the absorbance value of each cell line on day 0.

5.3. Retroviral vector production and transduction

The gene sequence of wild-type CSF3R was from NCBI (NM_156039.3) and CSF3R mutations were all synthesized by YouBio Co., Ltd. The plasmid backbone of CSF3R and its mutations were all synthesized by YouBio Co., Ltd. The plasmid backbone of CSF3R and its mutations were all synthesized by YouBio Co., Ltd. The plasmid backbone of CSF3R and its mutations were all synthesized by YouBio Co., Ltd. The plasmid backbone of CSF3R and its mutations were all synthesized by YouBio Co., Ltd. The plasmid backbone of CSF3R and its mutations were all synthesized by YouBio Co., Ltd.

5.4. RT-qPCR

Total RNA from Ba/F3 cells was extracted using RNeasy Mini Kit (QiAGEN). Then a reverse transcription system (TAKARA) was used to reverse-transcribe mRNA to cDNA. The cDNA of different samples was amplified by QuanStudio 5 Real-Time PCR Instrument with FastStart Universal SYBR Green Master (Roche). The pairs of primer for detecting mRNA expression of CSF3R and CSF3R were as follows: Csfr-CAAGAAGCTTG CACCAGGATG, GGCATGTCTGGTCTGTCTCT; CSF3R-GA CCAAGGGAAGCTCATCC, GGGCTCCAGTGTACAA-

5.5. Western blotting analysis

The IL-3 withdrawal assay was performed as described8-9 with some modifications. Briefly, parental Ba/F3 cells or those stably expressing wild-type CSF3R or its mutations were washed 3 times and grown in 96-wells plates at a density of 5 × 10^5 cells per mL with cytokine-free media (IMDM with 10% FBS, penicillin/streptomycin, and normocin). Cell viability was measured using CCK8 assay and read at 450 nm after 4 hours using a Synergy 4 plate reader (BioTek) every 1 to 2 days. Statistical significance was determined using Student t tests and expressed as P value (P < .05, **P < .01, ***P < .001).

ACKNOWLEDGMENTS

This work was supported by funds from the Ministry of Science and Technology of China (2018YFA0107801 and 2017YFA0103402) and the National Natural Science Foundation of China (82070192, 81770105, 81770155, and 81670171). The authors would like to thank all the doctors and nurses in Centre of Hematopoietic Stem Cell Transplantation and the researcher team of State Key Laboratory of Experimental Hematology for their professional assistance.

REFERENCES

[1] Beekman R, Touw IP. G-CSF and its receptor in myeloid malignancy. Blood 2010;115:5131–5136.
[2] Liu F, Wu HY, Wesselschmidt R, Kornaga T, Link DC. Impaired production and increased apoptosis of neutrophils in granulocyte colony-stimulating factor receptor-deficient mice. Immunity 1996;5:541–501.
[3] Zederl G, Schwinzer B, Welte K. Congenital neutropenias. Rev Clin Exp Hematol 2003;7:72–83.
[4] Horwitz MS, Duan Z, Korkmaz B, Lee HH, Meallife ME, Salipante SJ. Neutrophil elastase in cyclic and severe congenital neutropenia. Blood 2007;109:1817–1824.
[5] Klein C, Grudzien M, Appaswamy G, et al. HAX1 deficiency causes autosomal recessive severe congenital neutropenia (Kostmann disease). *Nat Genet* 2007;39:86–92.

[6] Dale DC, Cottle TE, Fier CJ, et al. Severe chronic neutropenia: treatment and follow-up of patients in the Severe Chronic Neutropenia International Registry. *Am J Hematol* 2003;72:82–93.

[7] Demetri GD, Griffin JD. Granulocyte colony-stimulating factor and its receptor. *Blood* 1991;78:2791–2808.

[8] Zhang H, Coblenz C, Watanabe-Smith K, et al. Gain-of-function mutations in granulocyte colony-stimulating factor receptor (CSF3R) reveal distinct mechanisms of CSF3R activation. *J Biol Chem* 2018;293:7387–7396.

[9] Zhang H, Reister Schultz A, Luty S, et al. Characterization of the leukemogenic potential of distal cytoplasmic CSF3R truncation and missense mutations. *Leukemia* 2017;31:2752–2760.

[10] Zhang H, Means S, Schultz AR, et al. Unpaired extracellular cysteine mutations of CSF3R mediate gain or loss of function. *Cancer Res* 2017;77:4258–4267.

[11] Masson JE, Gotlib J, Pollyea DA, et al. Oncogenic CSFR mutations in chronic neutrophilic leukemia and atypical CML. *N Engl J Med* 2013;368:1781–1790.

[12] Touw IP, Palande K, Beekman R. Granulocyte colony-stimulating factor receptor signaling: implications for G-CSF responses and leukemic progression in severe congenital neutropenia. *Hematol Oncol Clin North Am* 2013;27:61–73.

[13] Dwivedi P, Greis KD. Granulocyte colony-stimulating factor receptor signaling in severe congenital neutropenia, chronic neutrophilic leukemia, and related malignancies. *Exp Hematol* 2017;46:9–20.

[14] Papadaki HA, Kostreas T, Genetis C, Damanakis A, Anagnost NP, Eliopoulos GD. Acute myeloid/NK precursor cell leukemia with trisomy 4 and a novel point mutation in the extracellular domain of the G-CSF receptor in a patient with chronic idiopathic neutropenia. *Ann Hematol* 2004;83:345–348.

[15] Liongue C, Ward AC. Granulocyte colony-stimulating factor receptor mutations in myeloid malignancy. *Front Oncol* 2014;4:93.

[16] Druhan LJ, Au J, Massullo P, Kindwall-Keller T, Ranalli MA, Avalos BR. Novel mechanism of G-CSF refractoriness in patients with severe congenital neutropenia. *Blood* 2005;105:584–591.

[17] Touw IP, Beekman R. Severe congenital neutropenia and chronic neutrophilic leukemia: an intriguing molecular connection unveiled by oncogenic mutations in CSF3R. *Haematologica* 2013;98:1490–1492.

[18] Elliott MA, Telfer A. Chronic neutrophilic leukemia 2014: update on diagnosis, molecular genetics, and management. *Am J Hematol* 2014;89:652–658.

[19] Mehta HM, Glaubach T, Long A, et al. Granulocyte colony-stimulating factor receptor T595I (T618I) mutation confers ligand in dependence and enhanced signaling. *Leukemia* 2013;27:2407–2410.

[20] Beekman R, Valkhof M, van Strien P, Valk PJ, Touw IP. Prevalence of a new auto-activating colony stimulating factor 3 receptor mutation (CSF3R-T595I) in acute myeloid leukemia and severe congenital neutropenia. *Haematologica* 2013;98:62–63.

[21] Forbes LV, Gale RE, Pizey A, Pouwels K, Nathwani A, Linch DC. An activating mutation in the transmembrane domain of the granulocyte colony-stimulating factor receptor in patients with acute myeloid leukemia. *Oncogene* 2002;21:5981–5989.

[22] Aywas N, Uchida H, Miyakawa Y, et al. Novel variation isoform of G-CSF receptor involved in induction of proliferation of FDCP-2 cells: relevance to the pathogenesis of myelodysplastic syndrome. *J Cell Physiol* 2002;191:327–335.

[23] Dong F, Brynes RK, Tidow N, Welte K, Lowenberg B, Touw IP. Mutations in the gene for the granulocyte colony-stimulating-factor receptor in patients with acute myeloid leukemia preceded by severe congenital neutropenia. *N Engl J Med* 1995;333:487–493.

[24] Dong F, Dale DC, Bonilla MA, et al. Mutations in the granulocyte colony-stimulating-factor receptor gene in patients with severe congenital neutropenia. *Leukemia* 1997;11:120–125.

[25] Dong F, van Buuren C, Pouwels K, Hoefsloot LH, Lowenberg B, Touw IP. Distinct cytoplasmic regions of the human granulocyte colony-stimulating factor receptor involved in induction of proliferation and maturation. *Mol Cell Biol* 1993;13:7774–7781.

[26] Germeshausen M, Ballmaier M, Welte K. Implications of mutations in hematopoietic growth factor genes in congenital cytopenias. *Am N Y Acad Sci* 2001;938:305–320.

[27] Freedman MH, Alter BP. Risk of myelodysplastic syndrome and acute myeloid leukemia in congenital neutropenias. *Semis Hematol* 2002;39:128–133.

[28] Masson JE, Luty SB, MacManiman JD, et al. The colony-stimulating factor 3 receptor T640N mutation is oncogenic, sensitive to JAK inhibition, and mimics T618I. *Clin Cancer Res* 2016;22 (3):757–764.

[29] Gerlach MM, Lundberg P, Halter J, et al. Clonogenic versus morphogenic mutations in myeloid neoplasms: chronologic observations in a U2AF1, TET2, CSF3R and JAK2 ‘co-mutated’ myeloproliferative neoplasm suggest a hierarchical order of mutations and potential predictive value for kinase inhibitor treatment response. *Leuk Lymphoma* 2018;59 (8):1994–1997.

[30] Wu Y, Tan M, Chen ML, Chen YZ. Expression and role of granulocyte macrophage colony-stimulating factor receptor (GM-CSFR) and granulocyte colony-stimulating factor receptor (G-CSFR) on Ph-positive acute B lymphoblastic leukemia. *Hematologica* 2018;23 (8):439–447.

[31] Kosmider O, Izyrykson R, Chenevas V, et al. Mutation of the colony-stimulating factor-3 receptor gene is a rare event with poor prognosis in chronic myelomonocytic leukemia. *Leukemia* 2013;27 (9):1946–1949.

[32] Tscham CA, Pilz C, Zeidler C, Welte K, Germeshausen M. Time course of increasing numbers of mutations in the granulocyte colony-stimulating factor receptor gene in a patient with congenital neutropenia who developed leukemia. *Blood* 2001;97:1882–1884.

[33] Germeshausen M, Ballmaier M, Welte K. Incidence of CSF3R mutations in severe congenital neutropenia and relevance for leukemogenesis: results of a long-term survey. *Blood* 2007;109:93–99.