Measure of slope rotatability for second order response surface designs under intra-class correlation error structure using symmetrical unequal block arrangements with two unequal block sizes

Sulochana B and Victorbabu BRE

Abstract
In this paper, measure of slope rotatability for second order response surface designs using symmetrical unequal block arrangements with two unequal block sizes under intra-class correlation error structure is suggested and illustrated with examples. In this new method, we obtain designs with fewer number of design points. The implications of fewer number of design points leads to effective and reduced cost of experimentation.

Keywords: response surface design, slope-rotatability, intra-class correlation error structure, symmetrical unequal block arrangements with two unequal block sizes, weak slope rotatability region

1. Introduction
Response surface methodology is a collection of mathematical and statistical techniques useful for analysing problems where several independent variables influence a dependent variable. The independent variables are often called the input or explanatory variables and the dependent variable is often the response variable. An important step in development of response surface designs was the introduction of rotatable designs by Box and Hunter (1957) [1]. Das and Narasimham (1962) [2] constructed rotatable designs using balanced incomplete block designs (BIBD). The study of rotatable designs mainly emphasized on the estimation of absolute response. Estimation of response at two different points in the factor space will often be of great importance. If differences at two points close together, estimation of local slope (rate of change) of the response is of interest. Hader and Park (1978) [10] extended the notion of rotatability to cover the slope for the case of second order models. In view of slope rotatability of response surface methodology, a good estimation of derivatives of the response function is more important than estimation of mean response. Estimation of slopes occurs frequently in practical situations. For instance, there are cases in which we want to estimate rate of reaction in chemical experiment, rate of change in the yield of a crop to various fertilizer doses, rate of disintegration of radioactive material in animal etc. (cf. Park 1987) [11]. Victorbabu and Narasimham (1991, 93) [25, 26] studied second order slope rotatable designs (SOSRD) using BIBD and pairwise balanced designs (PBD) respectively. Victorbabu (2002, 2007) [23] suggested SOSRD using symmetrical unequal block arrangements (SUBA) with two unequal block sizes and a review on SOSRD. To access the degree of slope rotatability Park and Kim (1992) [12] introduced a measure for second order response surface designs. Park et.al (1993) [13] introduced measure of rotatability for second order response surface designs. Surekha and Victorbabu (2011, 12a, 12b, 12c) [27] studied measure of slope rotatability for second order response surface designs using central composite designs (CCD), BIBD, PBD and SUBA with two unequal block sizes respectively.

Many authors have studied rotatable designs and slope rotatable designs assuming errors to be uncorrelated and homoscedastic. However, it is not uncommon to come across practical situations when the errors are correlated, violating the usual assumptions. Das (1997, 1999, 2003a) [3] introduced and studied robust second order rotatable designs.
International Journal of Statistics and Applied Mathematics

Das (2003b) [6] introduced slope rotatability with correlated errors and gave conditions for the different variance-covariance error structures. Das and Park (2007) [8] introduced measure of robust rotatability for second order response surface designs. To access the degree of slope rotatability for correlated errors a new measure for second order response surface designs was introduced by Das and Park (2009) [9]. Rajyalakshmi and Victorbabu (2014, 15) [14, 15] studied SOSRD under intra-class correlated structure of errors using CCD, BIBD and PBD under intra-class correlated structure of errors respectively.

In this paper, following the works of Park and Kim (1992) [12], Das (2003b, 2014) [6], Das and Park (2009) [9], Surekha and Victorbabu (2012c) [30], Rajyalakshmi and Victorbabu (2014) [14], measure of slope-rotatability for second order response surface designs under intra-class correlation error structure using SUBA with two unequal block sizes for $6 \leq v \leq 16$ (v number of factors) is suggested.

2. Second order response surface designs with correlated structure of errors (cf. Das (2003b, 2014), Das and Park (2009))

The second order surface model $D = (x^T \mu)$ is

$$ y_\mu = b_0 + \sum_{i=1}^{v} b_i x_i + \sum_{i<j}^{v} b_{ij} x_i x_j + e_\mu; 1 \leq \mu \leq N $$

(2.1)

where x_{ii} denotes the level of the i^{th} ($i=1,2,...,v$) factor in the μ^{th} ($\mu=1,2,...,N$) run of the experiment, e_μ’s are correlated errors. Here b_0, b_i, b_{ii}, b_{ij} are the parameters of the model and y_μ is the observed response at the μ^{th} design point.

2.1 Conditions for slope-rotatability for second order response surface designs with correlated errors

Following Das (2003b, 2014), Das and Park (2009), the necessary and sufficient conditions for slope-rotatability for second order model with correlated errors are as follows. The estimated response at x_i is given by

$$ ^\wedge y_\mu = b_0 + \sum_{i=1}^{v} b_i x_i + \sum_{i=1}^{v} b_{ii} x_i^2 + \sum_{i<j=1}^{v} b_{ij} x_i x_j $$

(2.2)

for the second order model as in (2.1), we have

$$ \frac{\partial ^\wedge y_\mu}{\partial x_i} = b_i + 2b_{ii} x_i + \sum_{j=1, j\neq i}^{v} b_{ij} x_j $$

(2.3)

The variance of $\frac{\partial ^\wedge y_\mu}{\partial x_i}$ is given by

$$ V \left(\frac{\partial ^\wedge y_\mu}{\partial x_i} \right) = V(b_i) + 4x_i^2 V(b_{ii}) + 4x_i^2 V(b_{ij}) + 4x_i x_j V(b_{ij}) + \sum_{j=1, j\neq i}^{v} x_j^2 V(b_{jj}) + \sum_{j=1, j\neq s, j\neq i}^{v} x_j x_s \text{cov}(b_{ij}, b_{js}) + 2 \sum_{j=1, j\neq i}^{v} x_j V(b_{ij}) + 4 \sum_{j=1, j\neq i}^{v} x_i x_j \text{cov}(b_{ii}, b_{ij}) $$
\[V \left(\frac{\hat{\partial_y}}{\partial x_i} \right) = \partial_i i + 4x_i^2 \partial_i i i i + 4x_i \partial_i i j j j + \sum_{j=1}^{V} x_j^2 \partial_j j j j j + \sum_{j=1}^{V} x_j x_j \partial_j j j j j \]
\[+ 2 \sum_{j=1, j \neq i}^{V} \partial_j j j j j \]
\[+ 4 \sum_{j=1, j \neq i}^{V} x_j x_j \partial_j j j j j. \]

(2.4)

The variance of estimated first order derivative with respect to each independent variable \(x_i \) as in (2.4) will be a function of

\[s^2 = \sum_{i}^{V} x_i^2 \]

if and only if,

1) \(\partial_i i i = 0; 1 \leq j \leq v \), \(\partial_j j j = 0; 1 \leq j, j' \leq v, i \neq j \)
2) \(\partial_j j j' = 0; 1 \leq i \neq j \leq v \)
3) \(\partial_j j = \) constant; \(1 \leq i \leq v \)
4) \(\partial_i i i = \) constant; \(1 \leq i \leq v \)
5) \(\partial_j j j = \) constant; \(1 \leq i < j \leq v \), and
6) \(\partial_i i i = \frac{1}{4} \partial_j j j j; 1 \leq i < j \leq v \) (2.5)

The following are the equivalent conditions of (1) to (5) in (2.5) for slope rotatability in second order correlated errors model (2.1)

1) \(\partial_0 j, i = \partial_0 j, j = 0; 1 \leq j < l \leq v \);
2) \(\partial_i j, i = 0; 1 \leq i, j \leq v \);
3) a) \(\partial_i i = 0; 1 \leq i, j \leq v \);
 b) \(\partial_i j, j = 0; 1 \leq i, j < l \leq v \);
 c) \(\partial_i j, i = 0; 1 \leq i < l \leq v, (j, l), (i, j) \)
 d) \(\partial_i j, l = 0; 1 \leq i, 1 < j, t \leq v, (i, j) \neq (i, t) \)
2') i) \(\partial_0 j, j, = \) constant= \(a_1 \), say; \(1 \leq i \leq v \)
 ii) \(\partial_i j, i = \) constant= \(\frac{1}{g} \), say; \(1 \leq i \leq v \)
 iii) \(\partial_i i i = \) constant= \(\eta \left(\frac{2}{f} + e \right) \), say; \(1 \leq i \leq v \)
3') i) \(\partial_i i j = \) constant= \(e \), say; \(1 \leq i, j \leq v, i \neq j \)
 ii) \(\partial_i i j, = \) constant= \(\frac{1}{f} \), say; \(1 \leq i < j \leq v \) (2.6)

where \(a_1, g, f, e, \eta \) are constants.

The variances and covariances of the estimated parameters of the model (2.1) for the slope-rotatability are as follows:

\[V \left(\hat{b}_0 \right) = \partial_0 0.0 = \frac{\eta \left(\frac{2}{f} + e \right) + (v-1)e}{B}; 1 \leq i \leq v; \]

\[V \left(\hat{b}_i \right) = \partial_i i = g; 1 \leq i \leq v; \]
\[V(\hat{b}_{ij}) = \delta_{ij} j = f; 1 \leq i < j \leq v; \]
\[V(\hat{b}_{ii}) = \delta_{ii} = \frac{\delta_{00}[\eta(\frac{2}{f} + e) + (v-2)a_i^2]}{B[\eta(\frac{2}{f} + e) - e]}; 1 \leq i \leq v; \]
\[\text{Cov}(\hat{b}_{0}, \hat{b}_{ii}) = \delta_{0i} = \frac{-a_i}{B}; 1 \leq i \leq v; \]
\[\text{Cov}(\hat{b}_{ii}, \hat{b}_{ij}) = \delta_{ij} = \frac{a_i^2 e - \delta_{00}}{B[\eta(\frac{2}{f} + e) - e]}; 1 \leq i \neq j \leq v; \]

(2.7)

where \(B = \left[\delta_{00} \left[\eta\left(\frac{2}{f} + e\right) + (v-1)e\right] - va_i^2 \right] \) and the other covariances are zero.

An inspection of \(V(\hat{b}_0) \) shows that a necessary and sufficient condition for the existence of a non-singular second order designs \(B > 0 \).

\[4) \quad B = \left[\delta_{00} \left[\eta\left(\frac{2}{f} + e\right) + (v-1)e\right] - va_i^2 \right] > 0. \quad (2.8) \]

For the second order slope rotatability with correlated errors, \(V(\hat{b}_{ii}) = \frac{1}{4} V(\hat{b}_0) \) i.e., \(\delta_{ij} = \frac{1}{4} \delta_{jj} \). (2.9)

On simplification of (2.9) using (2.7), we get,
\[\eta \left(\frac{2}{f} + e\right) \left[4 \delta_{00} - f \delta_{00} \left(\frac{2}{f} + e\right) - f \delta_{00} g(v-1) + fva_i^2 + \delta_{00} gf \right] + \delta_{00} \{4(v-2) + (v-1)fg\} - a_i^2 \{4(v-1) + vfg\} = 0. \]

(2.10)

From (2.4), using slope rotatability conditions as in (2.6) and (2.7), we derive
\[V \left(\frac{\partial y}{\partial x_i} \right) = g + 4x_i^2 \left(\frac{f}{4} \right) + \sum_{j=1, i \neq j}^v x_j^2 f \]
\[= g + f \sum_{i=1}^v x_i^2 \]
\[= g + f s^2 \]

(2.11)

where \(s^2 = \sum_{i=1}^v x_i^2 \) and \(g, f \) are as in (2.7).

(cf. Das (2003b, 2014), Das and Park (2009))

3. Intra-class correlated structure of errors (cf. Das (1997, 2003b, 2014))

Intra-class structure is the simplest variance-covariance structure which arises when errors of any two observations have the same correlation and each has the same variance. It is also known as uniform correlation structure. Let \(\rho \) is the correlation between
errors of any two observations, each having the same variance σ^2. Then intra-class variance covariance structure of errors given by the class:

$$W_0 = [W_{N\times N}(\rho) = D(e) = \sigma^2 [(1-\rho)I_N + \rho E_{N\times N}]; \sigma > 0, -(N-1)^{-1} < \rho < 1].$$

Here I_N denotes an identity matrix of order N and $E_{N\times N}$ is a $N\times N$ matrix of all elements 1.

It was observe that,

$$W_{N\times N}^{-1}(\rho) = \sigma^2 [(\delta_0 - \gamma_0)I_N + \gamma_0 E_{N\times N}]$$

where

$$\delta_0 = \frac{1+(N-1)\rho}{(1-\rho)[1+(N-1)\rho]}, \quad \gamma_0 = \frac{\rho}{(1-\rho)[1-(N-1)\rho]} \quad \text{and} \quad \rho > (N-1)^{-1}.$$ (cf. Das (1997, 2003b and 2014))

3.1 Conditions of slope rotatability for second order response surface designs under intra-class correlated structure of errors (cf. Das (2003b, 2014))

From (2.6), the necessary and sufficient conditions for the second order slope rotatability under the intra-class structure after some simplifications turn out to be

I \quad \sum_{\mu=1}^{N} \sum_{\mu\mu_{i}}^\nu x^{\alpha_{i}}_{\mu} = 0; \quad \text{for any } \alpha_{i} \text{ odd and } \sum_{i=1}^{N} \alpha_{i} \leq 4.

II (i) \quad \sum_{\mu=1}^{N} x^{2}_{\mu} = \text{constant}; \quad 1 \leq i \leq \nu; \quad \text{and,}

(ii) \quad \sum_{\mu=1}^{N} x^{4}_{\mu} = \text{constant}; \quad 1 \leq i \leq \nu,

III \quad \sum_{\mu=1}^{N} x^{2}_{\mu i} x^{2}_{\mu j} = \text{constant}; \quad 1 \leq i, j \leq \nu, i \neq v, \quad (3.1)

using \quad \sum_{\mu=1}^{N} x^{2}_{\mu i} = N\gamma_2; \quad 1 \leq i \leq \nu; \quad \text{and} \quad \sum_{\mu=1}^{N} x^{2}_{\mu i} x^{2}_{\mu j} = N\gamma_4; \quad 1 \leq i, j \leq \nu, i \neq v.

The parameters of the second order slope rotatable design under intra-class structure are as follows

$$a_{1} = \frac{N\gamma_2}{\sigma^2 [1+(N-1)\rho]},$$

$$e = \frac{[1+(N-1)\rho]N\gamma_4 - N\gamma_2^2}{\sigma^2 (1-\rho)[1-(N-1)\rho]}$$

$$\frac{1}{g} = \frac{N\gamma_2}{\sigma^2 (1-\rho)}$$

$$\frac{1}{f} = \frac{N\gamma_4}{\sigma^2 (1-\rho)}$$

"192"
\[
\vartheta_{00} = \frac{N}{\sigma^2 [1 + (N - 1) \rho]},
\]
(3.2)

\[
\eta \left(\frac{2}{f} + e \right) = \frac{\eta [1 + (N - 1) \rho] 3N \gamma_4 - \rho N^2 \gamma_2^2}{\sigma^2 (1 - \rho) [1 + (N - 1) \rho]},
\]

where \(c = 3\eta, \gamma_2, \gamma_4 \) and \(\eta \) are constants.

Note that if \(\rho = 0 \) (i.e., when errors are uncorrelated and homoscedastic) the conditions (3.1) and (3.2) reduce to

\[
I^*:\quad N \sum_{i=1}^{N} \alpha_i x^{\mu_i} = 0; \quad \text{for any odd and} \quad \sum_{i=1}^{N} \alpha_i \leq 4
\]

\[
II^*:\quad i) \quad N \sum_{i=1}^{N} x^{2 \mu_i} = \text{constant} = N \gamma_2; \quad 1 \leq i \leq v; \quad \text{and}
\]

\[
ii) \quad N \sum_{i=1}^{N} x^{4 \mu_i} = \text{constant} = cN \gamma_4; \quad 1 \leq i \leq v
\]

\[
III^*:\quad N \sum_{i=1}^{N} x^{2 \mu_i} x^{2 \mu_j} = \text{constant} = N \gamma_4; \quad 1 \leq i, j \leq v, \quad i \neq v.
\]

Note that (I), (II) and (III) as in (3.3) are second order slope rotatable conditions when errors are uncorrelated and homoscedastic.

Using (3.2), the expression

\[
\vartheta_{00} \left[\{\eta \left(\frac{2}{f} + e \right) + (v - 1)e\} - v \gamma_1^2 \right]
\]

simplifies to

\[
\frac{N}{\sigma^2 [1 + (N - 1) \rho]} \left[\{c + (v - 1)\} N \gamma_4 [1 + (N - 1) \rho] - \{\eta + (v - 1)\} \rho N^2 \gamma_2^2 - vN \gamma_2^2 \right].
\]

The non-singularity condition (2.8) for the intra-class structure leads to

\[
\left[\{c + (v - 1)\} N \gamma_4 [1 + (N - 1) \rho] - \{\eta + (v - 1)\} \rho N^2 \gamma_2^2 - vN \gamma_2^2 \right] > 0
\]

where \(c = 3\eta \).

Using (3.2), the equation (2.9) becomes
\[\frac{\eta[1+(N-1)\rho]3N\gamma_4 - \rho N^2\gamma_2^2}{(1-\rho)} = 4N - \frac{\eta[1+(N-1)\rho]3N\gamma_4 - \rho N^2\gamma_2^2}{\gamma_4[1+(N-1)\rho]} + v \frac{N\gamma_2^2(1-\rho)}{\gamma_4[1+(N-1)\rho]} \]

\[+ N\left[\frac{[1+(N-1)\rho]N\gamma_4^2 - \rho N^2\gamma_2^2}{(1-\rho)} \right] \left[4(v-2) + \frac{[1+(N-1)\rho]N\gamma_4^2 - \rho N^2\gamma_2^2}{N\gamma_4[1+(N-1)\rho]} \right] \]

\[- N^2\gamma_2^2 \left[\frac{4(v-1) + [1+(N-1)\rho]N\gamma_4^2 - \rho N^2\gamma_2^2}{\gamma_4^2[1+(N-1)\rho]} \right] = 0. \]

(3.5)

For \(\rho=0 \), (i.e., when errors are uncorrelated and homoscedastic) (3.5) becomes

\[\gamma_4^2[v(5-c)-(c-3)^2] + \gamma_2^2[v(c-5)+4] = 0 \]

(3.6)

Above equation (3.6) is equal to slope rotatability for second order response surface designs with errors are uncorrelated and homoscedastic. (cf. Victorbabu and Narasimham (1991))

3.2 Slope rotatability for second order response surface designs under intra-class correlation error structure using SUBA with two unequal block sizes (cf. Rajyalakshmi and Victorbabu (2014))

Following the works of Hader and Park (1978), Victorbabu and Narasimham (1991), Das (2003b, 2014), Rajyalakshmi and Victorbabu (2014), the method of slope rotatability for second order response surface designs under intra-class correlation error structure using SUBA with two unequal block sizes is given below. Let \(\rho \left(\frac{-1}{N-1} < \rho < 1 \right) \) be correlation between errors of any two observations, each having the same variance \(\sigma^2 \).

SUBA with two unequal block sizes: The arrangement of \(v \) treatments in \(b \) blocks where \(b_1 \) blocks of size \(k_1 \), and \(b_2 \) blocks of size \(k_2 \) is said to be a SUBA with two unequal block sizes, if

(i) Every treatment occurs \(\frac{b_1k_1}{v} \) blocks of size \(k_1(1,2) \), and

(ii) Every pair of first associate treatments occurs together in \(u \) blocks of size \(k_1 \) and in \((\lambda-u)\) blocks of size \(k_2 \) while every pair of second associate treatments occurs together in \(\lambda \) blocks of size \(k_2 \).

From (i) each treatment occurs in \(\left(\frac{b_1k_1}{v} \right) + \left(\frac{b_2k_2}{v} \right) = r \) blocks in the whole design. \((v, b, r, k_1, k_2, b_1, b_2, \lambda) \) are known as the parameters of the SUBA with two unequal block sizes.

Let \((v, b, r, k_1, k_2, b_1, b_2, \lambda) \), \(k = \text{Sup}(k_1, k_2) \) and \(b_1 + b_2 = b \) be a SUBA with two unequal block sizes. \(2^t(k) \) denotes a resolution V fractional factorial of \(2^k \) with +1 or -1 levels, such that no interaction with less than five factors is confounded. \([1-(v, b, r, k_1, k_2, b_1, b_2, \lambda)] \) denote the design points generated from the transpose of incidence matrix of SUBA with two unequal block sizes, \([1-(v, b, r, k_1, k_2, b_1, b_2, \lambda)]2^t(k) \) are the \(b_2^t(k) \) design points generated from SUBA with two unequal block sizes by ‘multiplication’ (cf. Raghavarao, 1971). Let \((a,0,0,...,0)2^i \) denote the design points generated from \((a,0,0,...,0) \) point set. \(n_0 \) denotes the number of central points in the design.

Result (3.1): For the design points, \([1-(v, b, r, k_1, k_2, b_1, b_2, \lambda)] F U (a,0,0,...,0)2^1 U (n_0) \)
will give a v-dimensional SOSRD under intra-class correlation error structure using SUBA with two unequal block sizes in

\[N = bF + 2v + n_0 \]
(Here $F = 2^l(k)$) design points, where a^2 is positive real root of the fourth degree polynomial equation,

\[
\left[(8v - 4N)(1 + (N - 1)\rho) \right] (1 + (N - 1)\rho) a^8 + \left[8vr(1 + (N - 1)\rho) \right] (1 + (N - 1)\rho) a^6 + \left[2vr^2F^2 + \left((12 - 2v)\lambda - 4r \right) N + (16\lambda - 20vr + 4vr) \right] F(1 + (N - 1)\rho) (1 + (N - 1)\rho) a^4 + \left[(4vr + (16 - 20v)\lambda)(1 + (N - 1)\rho) \right] F^2 (1 + (N - 1)\rho) a^2 + \left[(5v - 9)\lambda^2 + (6v - r)(\lambda - r^2) \right](1 + (N - 1)\rho) NF^2 + \left[(vr + 4\lambda - 5v\lambda)(1 + (N - 1)\rho) \right](1 + (N - 1)\rho) r^2 F^3 = 0
\]

Note: Values of SOSRD under intra-class correlation error structure using SUBA with two unequal block sizes can be obtained by solving the above equation.

4. Measure of second order slope rotatability for correlated structure of errors (cf. Das and Park (2009))

Following Das and Park (2009), equations (2.5), (2.6) and (2.7) give necessary and sufficient conditions for a measure for any general second order response surface designs with correlated errors. Further we have

\[g_{ii} \text{ eual for all } i, \]

\[g_{iii} \text{ eual for all } i, \]

\[g_{ij} \text{ eual for all } i, j, \text{ where } i \neq j \quad g_{ii} = g_{ij} = g_{jj} = g_{il} = 0 \text{ for all } i \neq j \neq l, \text{ and for all } \rho \]

(4.1)

Das and Park (2009) proposed that, if the conditions in (2.5) together (2.6), (2.7) and (4.1) are met, $M_v(D)$ is the proposed measure of slope rotatability for second order response surface designs for any general correlated error structure.

\[M_v(D) = \frac{1}{1 + Q_v(D)} \]

where \[Q_v(D) = \frac{1}{2(v-1)\sigma^4} \left((v+2)(v+4) \sum_{i=1}^{v} \left(g_{ii} - \bar{g} \right) + \bar{a} \right)^2 \]

\[+ \frac{4}{v(v+2)} \sum_{i=1}^{v} (a_i - \bar{a})^2 + 2v \sum_{i=1}^{v} \left(4g_{iii} - \frac{a_i}{v} \right)^2 + \sum_{i=1}^{v} \sum_{j \neq i} \left(g_{ij} - \frac{a_i}{v} \right)^2 \]

\[+ 4(v+4) \left(4(g_{ii})^2 + \sum_{j \neq i} (g_{ij})^2 \right) \]

\[+ 4 \sum_{i=1}^{v} \left(4 \sum_{j=1; j \neq i}^{v} (g_{ij})^2 \right) + \sum_{j=1; j \neq i}^{v} \sum_{l \neq i}^{v} (g_{ij})^2 \right) \]

(4.2)

\[\bar{g} = \frac{1}{v} \sum_{i=1}^{v} g_{ii}, \quad \bar{a} = 4g_{ii} + \sum_{j \neq i}^{v} (g_{ij})^2 \quad (1 \leq i \leq v) \text{ and } \]

It can be easily shown that $Q_v(D)$ in equation (4.2) becomes zero for all values ρ, if and only if the conditions in equations (4.1) hold.
Further, it is simplified to
\[Q_v(D) = \frac{1}{\sigma^4} \left[4V(b_{ii}) - V(b_{ij}) \right]^2. \]
(4.3)

Note that \(0 \leq M_v(D) \leq 1 \), and it can be easily shown that \(M_v(D) \) is one if and only if the design is slope rotatable with any correlated error structure for all values of \(\rho \), and \(M_v(D) \) approaches to zero as the design ‘\(D \)’ deviates from the slope-rotatability under specified correlated error structure.

5. Measure of slope rotatability for second order response surface designs under intra-class correlation error structure using SUBA with two unequal block sizes

In this paper, the degree of slope rotatability for second order response surface designs under intra-class correlation error structure \(\left\{ \rho \left(0 \leq \rho \leq 0.9 \right) \right\} \) using symmetrical unequal block arrangements with two unequal block sizes for \(6 \leq v \leq 16 \) (\(v \) number of factors) is suggested.

Following Park and Kim (1992), Das and Park (2009), Surekha and Victorbabu (2012c), the proposed measure of slope-rotatability for second order response surface designs under intra-class correlation error structure using SUBA with two unequal block sizes is given below.

Let \((v, b, r, k_1, k_2, b_1, b_2, \lambda)\) denote a SUBA with two unequal block sizes. For the design points,
\[[1 - (v, b, r, k_1, k_2, b_1, b_2, \lambda)]F \text{ U} (a, 0, 0, ..., 0)2^1 U (n_0) \] will give slope rotatability for second order response surface designs under intra-class correlation error structure using SUBA with two unequal block sizes in \(N = bF + 2v + n_0 \) design points. For the design points generated from SUBA with two unequal block sizes, equations in (3.1) are true. Further we have,

(I) \[\sum_{\mu=1}^{N} x_{\mu i}^2 = rF + 2a^2 = N\gamma_2 \]

(II) \[\sum_{\mu=1}^{N} x_{\mu i}^4 = rF + 2a^4 = cN\gamma_4 \]

(III) \[\sum_{\mu=1}^{N} x_{\mu i}^2 x_{\mu j}^2 = \lambda F = N\gamma_4 \]

(5.1)

Measure of slope rotatability of second order response surface designs under intra-class correlated structure of \(\rho \) using SUBA with two unequal block sizes can be obtained by

\[M_v(D) = \frac{1}{1+Q_v(D)} \]

\[Q_v(D) = \frac{1}{\sigma^4} \left[4V(b_{ii}) - V(b_{ij}) \right]^2 \]

\[= \frac{1}{\sigma^4} \left[4g_{ii i i} - g_{ij ij} \right]^2 \]

\[= \frac{1}{\sigma^4} \left[4G - (1-\rho)\lambda \right]^2 \]
(5.2)

where \(G = V(b_{ii}) = g_{ii i i} \)

\[= \frac{(1-\rho)\sigma^2}{(F-r+2a^4)} \left[N \left((r-\lambda)F + 2a^4 \right) + (v-1) \left(N\lambda F - r^2\lambda^2 - 4rF\sigma^2 - 4a^4 \right) \right] \]

\[+ (v) \left(N\lambda F - r^2\lambda^2 - 4rF\sigma^2 - 4a^4 \right) \]

\[= \frac{1}{\sigma^4} \left[4G - (1-\rho)\lambda \right]^2 \]
By substituting (3.2) and (5.1) in $V(b_u)$ of (2.7) we get above G value.

If $M_v(D)$ is one if and only if the design ‘D’ is slope rotatable under intra-class correlated structure of errors using SUBA with two unequal block sizes for all values of ρ, and $M_v(D)$ approaches to zero as the design ‘D’ deviates from the slope-rotatability under intra-class correlated structure of errors using SUBA with two unequal block sizes.

Example: We illustrate the method of measure of slope-rotatability for second order response surface designs under intra-class correlated structure of errors with the help of SUBA with two unequal block sizes ($v=8$, $b=12$, $r=4$, $k_1=2$, $k_2=3$, $h_1=4$, $b_2=8$, $\lambda=1$).

The design points, $(-1,-(8,12,4,2,3,4,8,1))^2 U(a,0,0,...,0)^2 U(n_0=1)$ will give a slope rotatability for second order response surface designs under intra-class correlated structure of errors using SUBA with two unequal block sizes in $N=113$ design points for 6 factors. From equations (5.1), we have,

(I) $\sum_{\mu=1}^{N} x_{\mu}^2 = 32 + 2a^2 = N\gamma_2$

(II) $\sum_{\mu=1}^{N} x_{\mu}^4 = 32 + 2a^4 = cN\gamma_4$

(III) $\sum_{\mu=1}^{N} x_{\mu}^2 x_{\mu}^2 = 8 = N\gamma_4$

From (I), (II) and (III) of (5.3), we get $\gamma_2 = \frac{32 + 2a^2}{113}$, $\gamma_4 = \frac{8}{113}$ and $c = \frac{32 + 2a^4}{8}$. Substituting γ_2, γ_4 and c in (3.5) and on simplification, we get the following biquadratic equation in a^2.

$$[64(1 + 68\rho) - 452(1 + 112\rho)^2][1 + 112\rho]a^8 + 2048(1 + 112\rho)^2a^6$$

$$+ [16384(1 + 68\rho) - 18208(1 + 112\rho)][1 + 112\rho]a^4 - 4096(1 + 112\rho)^2a^2 = 0$$

Equation (5.4) has only one positive real root for all values of $a^2 = 4.1796$. This can be alternatively written directly from result (3.1). Solving (5.4), we get $a = 2.0444$. From (5.2) we get $Q_v(D) = 0$, $M_v(D) = 1$ for all values of $\rho(-\frac{1}{N-1} \leq \rho \leq 0.9)$.

Suppose if we take $a = 1.6$ instead of taking $a = 2.0444$ for the above SUBA with two unequal block sizes we get $Q_v(D) = 0.0098$, then $M_v(D) = 0.9903(taking \rho = 0.1)$. Here $M_v(D)$ deviates from slope rotatability for second order response surface designs under intra-class correlated structure of errors using SUBA with two unequal block sizes. Here, we may point out this measure of slope rotatability for second order response designs under intra-class correlated structure of errors using SUBA with two unequal block sizes has only 113 design points for $v = 8$ ($v=8$, $b=12$, $r=4$, $k_1=2$, $k_2=3$, $h_1=4$, $b_2=8$, $\lambda=1$) factors, whereas the corresponding measure of slope rotatability for second order response designs under intra-class correlated structure of errors obtained by Sulochana and Victorbabu (2020c, 20d, 20e) using CCD ($v=8$), BIBD ($v=8$, $b=28$, $r=7$, $k=2$, $\lambda=1$) and PBD ($v=8$, $b=15$, $r=6$, $k_1=4$, $k_2=3$, $k_3=2$, $\lambda=2$) need 81, 129 and 257 design points respectively.

Table 1, gives the values of $M_v(D)$ for second order slope rotatable designs under intra-class correlated structure of errors using SUBA with two unequal block sizes for $\rho(0 \leq \rho \leq 0.9)$ and $6 \leq v \leq 16$ (v number of factors).

5.1 Weak slope rotatability region for correlated errors (cf. Das and Park (2009))

Following Das and Park (2009), we also find weak slope rotatability region (WSRR) for second order response surface designs under intra-class correlated structure of errors using SUBA with two unequal block sizes.

$$M_v(D) \geq d$$

$M_v(D)$ involves the correlation parameter $\rho \in \mathbb{W}$ and as such, $M_v(D) \geq d$ for all ρ is too strong to be met. On the other hand, for a given d, we can find range of values of ρ for which $M_v(D) \geq d$. Das and Park (2009) call this range as the weak slope rotatability region (WSRR).
rotatability region \((WSSR(R_{Dd}(\rho)))\) of the design ‘D’. Naturally, the desirability of using ‘D’ will rest on the wide nature of \((WSSR(R_{Dd}(\rho)))\) along with its strength \(d\). Generally, we would require ‘\(d\)’ to be very high say, around 0.95 (cf. Das and Park (2009)) [9].

Table 2, gives the values of weak slope rotatability region \((WSSR(R_{Dd}(\rho)))\) for second order slope rotatable designs under intra-class correlated structure of errors using SUBA with two unequal block sizes for \(\rho(0 \leq \rho \leq 0.9)\) and \(6 \leq v \leq 16\) \((V\) number of factors\) respectively.

6. Conclusion
In this paper, the measure of slope rotatability for second order response surface designs with intra-class correlated structure of errors using SUBA with two unequal block sizes is studied. The degree of slope rotatability of the given design calculated for different values of \(\rho(0 \leq \rho \leq 0.9)\) for \(6 \leq v \leq 16\) \((V\) number of factors\). In this new method, we obtain designs with fewer number of design points. The implications of fewer number of design points leads to effective and reduced cost of experimentation.

Table 1: Values of \(m_{Dd}^{(\rho)}\) for second order slope rotatable designs under intra-class correlated structure of errors using SUBA with two unequal block sizes for \(\rho(0 \leq \rho \leq 0.9)\) and \(6 \leq v \leq 16\) \((V\) number of factors\)

\(\rho\)	\(\alpha\)	\(0\)	\(0.1\)	\(0.2\)	\(0.3\)	\(0.4\)	\(0.5\)	\(0.6\)	\(0.7\)	\(0.8\)	\(0.9\)
1	0.9773	0.9815	0.9853	0.9887	0.9917	0.9942	0.9963	0.9979	0.9991	0.9998	
1.3	0.9699	0.9756	0.9806	0.9851	0.9899	0.9932	0.9951	0.9972	0.9988	0.9997	
1.6	0.9661	0.9724	0.9780	0.9831	0.9875	0.9913	0.9944	0.9969	0.9986	0.9996	
1.9	0.9377	0.9949	0.9959	0.9969	0.9977	0.9984	0.9989	0.9994	0.9997	0.9999	

Note: Here \(\alpha^*\) indicates that the values of slope rotatability for second order response surface designs under intra-class correlated structure of errors using SUBA with two unequal block sizes.

Table 2: Values of \(m_{Dd}^{(\rho)}\) for second order slope rotatable designs under intra-class correlated structure of errors using SUBA with two unequal block sizes for \(\rho(0 \leq \rho \leq 0.9)\) and \(6 \leq v \leq 16\) \((V\) number of factors\)

\(\rho\)	\(\alpha\)	\(0\)	\(0.1\)	\(0.2\)	\(0.3\)	\(0.4\)	\(0.5\)	\(0.6\)	\(0.7\)	\(0.8\)	\(0.9\)
1	0.9949	0.9959	0.9968	0.9975	0.9982	0.9987	0.9992	0.9995	0.9998	0.9998	
1.3	0.9918	0.9933	0.9967	0.9974	0.9979	0.9985	0.9989	0.9993	0.9996	0.9998	
1.6	0.9881	0.9803	0.9923	0.9941	0.9957	0.9969	0.9981	0.9984	0.9993	0.9999	
1.9	0.9983	0.9986	0.9989	0.9991	0.9994	0.9996	0.9997	0.9998	0.9999	0.9999	

Table 3: Values of \(m_{Dd}^{(\rho)}\) for second order slope rotatable designs under intra-class correlated structure of errors using SUBA with two unequal block sizes for \(\rho(0 \leq \rho \leq 0.9)\) and \(6 \leq v \leq 16\) \((V\) number of factors\)

\(\rho\)	\(\alpha\)	\(0\)	\(0.1\)	\(0.2\)	\(0.3\)	\(0.4\)	\(0.5\)	\(0.6\)	\(0.7\)	\(0.8\)	\(0.9\)
1	0.9990	0.9992	0.9994	0.9995	0.9996	0.9998	0.9998	0.9999	0.9999	0.9999	
1.3	0.9979	0.9983	0.9987	0.9989	0.9992	0.9995	0.9997	0.9998	0.9999	0.9999	
1.6	0.9978	0.9981	0.9985	0.9989	0.9992	0.9996	0.9997	0.9998	0.9999	0.9999	
1.9	0.9990	0.9992	0.9994	0.9996	0.9997	0.9998	0.9999	0.9999	0.9999	0.9999	

Table 4: Values of \(m_{Dd}^{(\rho)}\) for second order slope rotatable designs under intra-class correlated structure of errors using SUBA with two unequal block sizes for \(\rho(0 \leq \rho \leq 0.9)\) and \(6 \leq v \leq 16\) \((V\) number of factors\)

\(\rho\)	\(\alpha\)	\(0\)	\(0.1\)	\(0.2\)	\(0.3\)	\(0.4\)	\(0.5\)	\(0.6\)	\(0.7\)	\(0.8\)	\(0.9\)
1	0.9970	0.9976	0.9981	0.9985	0.9989	0.9993	0.9995	0.9997	0.9999	0.9999	
1.3	0.9967	0.9976	0.9981	0.9985	0.9989	0.9992	0.9995	0.9997	0.9999	0.9999	
1.6	0.9967	0.9973	0.9979	0.9984	0.9989	0.9992	0.9995	0.9997	0.9999	0.9999	
1.9	0.9954	0.9963	0.9971	0.9977	0.9983	0.9988	0.9993	0.9996	0.9998	0.9999	
2.2	0.9954	0.9963	0.9971	0.9979	0.9984	0.9989	0.9993	0.9996	0.9998	0.9999	
2.5	0.9990	0.9992	0.9994	0.9995	0.9996	0.9998	0.9998	0.9999	0.9999	0.9999	
2.8	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999	0.9999	

Note: ~198~
Table 2: Values of WSRRs $R_p^{(0.95)}(\alpha)$ for second order slope rotatable designs under intra-class correlated structure of errors using SUBA with two unequal block sizes for $\rho^{0.05} \leq \rho \leq 0.9$ and for $6 \leq \upsilon \leq 16$ (υ number of factors)

ρ	α	0	0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9
1.00	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
1.30	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
1.60	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
1.90	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
2.20	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
2.36	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
2.50	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
2.80	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000
3.10	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000

7. References
1. Box GEP, Hunter JS. Multifactor experimental designs for exploring response surfaces. Annals of Mathematical Statistics 1957;28:195-241.
2. Das MN, Narasimham VL. Construction of rotatable designs through balanced incomplete block designs, Annals of Mathematical Statistics 1962;33:1421-1439.
3. Das RN. Robust second order rotatable designs (part-I). Calcutta Statistical Association Bulletin 1997;47:199-214.
4. Das RN. Robust second order rotatable designs (part-I). Calcutta Statistical Association Bulletin 1999;49:193-194.
5. Das RN. Robust second order rotatable designs (part-III). Journal of Indian Society of Agricultural Statistics 2003a;56:117-130.
6. Das RN. Slope rotatability with correlated errors. Calcutta Statistical Association Bulletin 2003b;54:58-70.
7. Das RN. Robust response surfaces, Regression, and Positive data analysis. CRC Press, Taylor and Francis Group, New York 2014.
8. Das RN, Park SH. A measure of robust rotatability for second order response surface designs. Journal of the Korean Statistical Society 2007;36:557-578.
9. Das RN, Park SH. A measure of slope rotatability for robust second order response surface designs. Journal of Applied Statistics 2009;36:755-767.
10. Hader RJ, Park SH. Slope rotatable central composite designs. Technometrics 1978;20:413-417.
11. Park SH. A class of multifactor designs for estimating the slope of response surfaces. Technometrics 1987;29:449-453.
12. Park SH, Kim HJ. A measure of rotatability for second order response surface experimental designs. Journal of Applied Statistics 1992;19:391-404.
13. Park SH, Lim JH, Baba Y. A measure of rotatability for second order response surface designs. Annals of Institute of Statistical Mathematics 1993;45:655-664.
14. Rajyalakshmi K, Victorbabu BRe. Second order slope rotatable designs under intra-class correlation structure of errors using symmetrical unequal block arrangements with two unequal block arrangements. Thailand Statistician 2014;12:71-82.
15. Rajyalakshmi K, Victorbabu BRe. Second order slope rotatable designs under intra-class correlated error structure using balanced incomplete block designs. Thailand Statistician 2015;13:169-183.
16. Rajyalakshmi K, Sulochana B, Victorbabu BRe. A note on second order slope rotatable designs under intra-class correlated errors using pairwise balanced designs. Asian Journal of Probability and Statistics 2020;8:43-54.
17. Sulochana B, Victorbabu BRe. A study of second order slope rotatable designs under intra-class correlated structure of errors using a pair of balanced incomplete block designs. Andhra Agricultural Journal 2019;66:12-20.
18. Sulochana B, Victorbabu BRe. A study of second order slope rotatable designs under intra-class correlated structure of errors using a pair of symmetrical unequal block arrangements with two unequal block sizes. Journal of Interdisciplinary Cycle Research 2020a;27:239-247.
19. Sulochana B, Victorbabu BRe. A study of second order slope rotatable designs under intra-class correlated structure of errors using partially balanced incomplete block type designs. Asian Journal of Probability and Statistics 2020b;7:15-28.
20. Sulochana B, Victorbabu BRe. Measure of slope rotatability for second order response surface designs under intra-class correlated structure of errors using central composite designs. Journal of Mathematical and Computational Science 2021;1:735-768.
21. Sulochana B, Victorbabu BRe. Measure of slope rotatability for second order response surface designs under intra-class correlated structure of errors using balanced incomplete block designs. Paper presented at National Conference on Resent Advances In Statistics: Theory and Applications held during January 31- February 01, 2020, Department of Statistics, Sardar Patel University, Gujarat, India 2020d.
22. Sulochana B, Victorbabu BRe. Measure of slope rotatability for second order response surface designs under intra-class correlated structure of errors using pairwise balanced designs. Asian Journal of Probability and Statistics 2020e;10:13-32.
23. Victorbabu BRe. Construction of second order slope rotatable designs using symmetrical unequal block arrangements with two unequal block sizes. Journal of the Korean Statistical Society 2002;31:153-161.
24. Victorbabu BRe. On second order slope rotatable designs: A review. Journal of the Korean Statistical Society 2007;36:373-386.
25. Victorbabu BRe, Narasimham VL. Construction of second order slope rotatable designs through balanced incomplete block designs. Communications in Statistics -Theory and Methods 1991;20:2467-2478.
26. Victorbabu BRe, Narasimham VL. Construction of second order slope rotatable designs through pairwise balanced designs. Journal of the Indian Statistical Association of Agricultural Statistics 1993;45:200-205.
27. Victorbabu BRe, Surekha ChVVS. Construction of measure of second order slope rotatable designs using central composite designs. International Journal of Agricultural and Statistical Sciences 2011;7:351-360.
28. Victorbabu BRe, Surekha ChVVS. Construction of measure of second order slope rotatable designs using balanced incomplete block designs. Journal of Statistics 2012a;19:1-10.
29. Victorbabu BRe, Surekha ChVVS. Construction of measure of second order slope rotatable designs using pairwise balanced designs. International Journal of Statistics and Analysis 2012b;2:97-106.
30. Victorbabu BRe, Surekha ChVVS. Construction of measure of second order slope rotatable designs using symmetrical unequal block arrangements with two unequal block arrangements. Journal of Statistics and Management Systems 2012c;15:569-579.