Effect dual inoculation of *Azotobacter* and *Azospirillum* on the productive trait upland red rice cultivar

Muhidin¹, E Syam’un², Kaimuddin², Y Musa², G R Sadimantara¹, S Leomo³, G A K Sutariatî¹, D N Yusuf³ and TC Rakian¹

¹Department of Agrotechnology, Faculty of Agriculture, Halu Oleo University, Kendari, Southeast Sulawesi 93212 Indonesia
²Department of Agronomy, Faculty of Agriculture, Hasanuddin University, Makassar, South Sulawesi, 90245 Indonesia
³Department of Soil Sciences, Faculty of Agriculture, Halu Oleo University Kendari, Southeast Sulawesi, 93232 Indonesia

Email: muhidinunhalu@gmail.com

Abstract. The aims of this research were to analyze the effect of dual inoculation of *Azotobacter* and *Azospirillum* on the productive trait upland red rice cultivar. The research was conducted in the field of experimental farm, department of agronomy, the faculty of agriculture, Halu Oleo University. This research arranged in split-plot design with dual inoculation treatment in the main plot and cultivar differences in the subplot, with three replications. The dual inoculation treatment consist of three levels as follows: b₀ = without inoculation, b₁ = treatment with *Azotobacter* 2.5 L ha⁻¹ + *Azospirillum* 2.5 L ha⁻¹ and b₂ = Treatment with *Azotobacter* 5.0 L ha⁻¹ + *Azospirillum* 5.0 L ha⁻¹. The type of cultivar used were (v₁) = Labandiri, (v₂) = Jangkobembe, (v₃) = Ranggohitam and (v₄) = Paedara. The result showed that the bacterial fixator application would (1) increase the productive tillers, and (2) increase rice productivity through the increase of productive tillers and grain weight.

1. Introduction

Rice is not the only source of carbohydrate but also a source of nutritive food [1]. Rice as a nutritive food because containing anthocyanins,[2]. Anthocyanin functions as an antioxidant [3,4] and plays an important role in human health [5]. As the functional food, rice, and especially red rice must be produced in an eco-friendly way and as much as minimize using of inorganic fertilizer [6].

The need for rice in Indonesia continues to increase in line with population growth, although food development other than rice also continues to increase [7]. Various attempts were made to increase rice production, including by developing upland rice [8,9], improving seed quality [10,11], and plant breeding through the irradiance [12,13] or hybridization [14–17].

Most of the efforts to increase production are made by providing inorganic fertilizer as one of the technologies are chosen [18]. The main choice the use of inorganic fertilizers because the fertilization effects have quickly seen [19]. However, continuous use of inorganic fertilizers can result in a decrease of soil fertility [20] and environmental sustainability [21,22].

Cultivation of red rice in the organic model is one of a good choice. That reduces as much as possible the use of synthetic materials and replacing them with improved organic fertilizer [23–25], that enriched plant growth promoter rhizobacteria (PGPR) as biological fertilizer. One of the PGPR
are root endophytic diazotrophic bacteria such as *Azotobacter* [25,26], and *Azospirillum*, [27,28]. *Azotobacter* sp. and *Azospirillum* sp., produce growth hormones, and it is able to carry out nitrogen fixation from the air [29,30]. Some research results show that the treatment of Azotobacter and Azospirillum can increase plant growth and production [31,32]. The use of organic fertilizer enriched with biological fertilizers had promised prospects and environmentally friendly.

2. **Materials and methods**

The research arranged in split plot design. The dual inoculation treatment placed it as main plot, consists of 3 level, include b0 = without inoculation; b1 = treatment with *Azotobacter* 2.5 L ha⁻¹ plus *Azospirillum* 2.5 L ha⁻¹; and b2 = treatment with *Azotobacter* 5.0 L ha⁻¹ plus *Azospirillum* 5.0 L ha⁻¹. The different of cultivar placed as subplot, i.e., (V₁) = Labandiri, (V₂) = Jangkobembe, (V₃) = Ranggohitam, (V₄) = Paedara.

Several generative characters are examined, such as the number of productive tillers, the number of filled grains, and the potential for grain production. The data processing in this study were performed using analysis of variance (ANOVA) with SPSS and further tested using Duncan’s Multiple Range Test (DMRT).

3. **Results**

3.1. **Effect of dual inoculation bacterial on productive tillers**

The results showed that dual inoculation treatment with *Azotobacter* and *Azospirillum* could increase the productive tillers, harvest date, and production (Table 1-3). The increase of productive tillers is in line with the increase of bacterial fixator dosage. It occurs in Labandiri, Ranggohitam, and Paedara cultivar. The highest number of productive tillers had on the Paedara Cultivar (18.69 clumps⁻¹), followed by Labandiri (18.61 clumps⁻¹), Ranggohitam (16.16 clumps⁻¹) and Jangkobembe (14.38 clumps⁻¹).

Table 1. Effect application of dual bacterial *Azotobacter* and *Azospirillum* on productive tillers.

Bacterial Treatment	Number of Productive Tiller
b₀ (Without bacterial treatment)	17.13 15.40 14.53 18.40 16.37
b₁ (*Azotobacter* 2.5 L ha⁻¹ + *Azospirillum* 2.5 L ha⁻¹)	19.67 14.67 14.73 17.07 16.53
b₂ (*Azotobacter* 5.0 L ha⁻¹ + *Azospirillum* 5.0 L ha⁻¹)	19.00 13.07 19.20 20.60 17.97
Average	18.60 14.38 16.16 18.69 16.96

Remarks : v₁=Labandiri, v₂=Jangkobembe, v₃=Ranggohitam, v₄=Paedara

3.2. **Effect of dual inoculation bacterial on harvest time and grain weight**

Variance analysis results showed that the treatment of fixator bacteria significantly affected the harvest date and grain weight (Table 2). The application of a bacterial fixator delayed the plant to reach the harvest date.

Table 2. Effect application of dual bacterial *Azotobacter* and *Azospirillum* on harvest date and grain weight of local upland red rice.

Bacterial Treatment	Harvest Date (Day)				
	v₁	v₂	v₃	v₄	Average
b₀ (Without bacterial treatment)	139.67 137.33 140.67 136.00 138.42				
b₁ (*Azotobacter* 2.5 L ha⁻¹ + *Azospirillum* 2.5 L ha⁻¹)	140.33 138.00 141.33 135.67 138.83				
b₂ (*Azotobacter* 5.0 L ha⁻¹ + *Azospirillum* 5.0 L ha⁻¹)	141.00 137.33 142.00 136.00 139.08				
Average	140.33 137.56 141.33 135.89 138.78				

Weight of 1000-grain
In the grain weight character (Table 2), it increases with increasing dosage of application of fixative bacteria. The highest weight of one thousand grain founded in the Paedara cultivar (29.12 g), then followed by Labandiri (28.90 g), Jangkobembe (27.98 g), and Ranggohitam (20.85 g).

Table 3. Effect application of dual bacterial *Azotobacter* and *Azospirillum* on the production of local upland red rice.

Bacterial Treatment	v1	v2	v3	v4	Average
b0 (Without bacterial treatment)	28.64	27.70	20.84	29.46	26.66
b1 (*Azotobacter* 2.5 L ha$^{-1}$ + *Azospirillum* 2.5 L ha$^{-1}$)	28.98	29.27	19.97	28.56	26.69
b2 (*Azotobacter* 5.0 L ha$^{-1}$ + *Azospirillum* 5.0 L ha$^{-1}$)	29.07	26.99	21.75	29.35	26.79
Average	28.90	27.98	20.85	29.12	26.71

Remarks: v1 = Labandiri, v2 = Jangkobembe, v3 = Ranggohitam, v4 = Paedara

Fixator bacterial treatment, in general, can increase grain production per clump. The increase in grain production is in line with the increase in the application of fixator bacteria, and this occurs in the cultivars of Labandiri, Ranggohitam, and Paedara.

3.3. Effect of dual inoculation bacterial on potential production

The fixator bacterial treatment could also increase grain production (Table 3). The highest average grain production found in Labandiri cultivar (32.75 g), followed by Paedara (31.77 g), Jangkobembe (22.72 g), and Ranggohitam (20.94 g) respectively.

4. Discussion

In general, the treatment of fixative bacteria could increase the productive tiller, weight of 1000 grain and potential production. The bacterial application could delay the plant entering the generative phase. It indicated by the delays in flower formation and the delay in plants entering the age of harvest. It can be understood because the bacteria applied can carry out nitrogen fixation so that it can increase nitrogen supply and result in an extension of the vegetative phase [33] and the delay in the plant entering the generative phase.

While in some characters, bacterial fixator treatment could increase the productive tiller, grain weight, and production potential. This situation occurs because the bacteria used is a non-symbiotic bacterium that can carry out nitrogen fixation and is also able to extract other nutrients so that it can affect the increase in production. The application of bacterial fixator can increase production through its effect on increasing the number of tillers and increasing the grain weight.

5. Conclusion

It concluded that the treatment of fixative bacteria affected the extension of the vegetative phase and delayed the plants reaching flowering. The bacterial treatment could increase the potential production, and it influences through the increasing of productive tillers and grain weight.
References

[1] Abbas A, Murtaza S, Aslam F, Khawar A, Rafique S and Naheed S 2011 Effect of processing on nutritional value of rice (Oryza sativa) World J. Med. Sci. 6 68–73

[2] Gunaratne A, Wu K, Li D, Bentota A, Corke H and Cai Y-Z 2013 Antioxidant activity and nutritional quality of traditional red-grained rice varieties containing proanthocyanidins Food Chem. 138 1153–61

[3] Shao Y and Bao J 2015 Polyphenols in whole rice grain: Genetic diversity and health benefits Food Chem. 180 86–97

[4] Shao Y, Xu F, Sun X, Bao J and Beta T 2014 Identification and quantification of phenolic acids and anthocyanins as antioxidants in bran, embryo and endosperm of white, red and black rice kernels (Oryza sativa L.) J. Cereal Sci. 59 211–8

[5] Bhat F M and Riar C S 2015 Health benefits of traditional rice varieties of temperate regions Med. Aromat. Plants 4

[6] Sutariati G A K, Bande L O S, Khaeruni A, Muhidin, Mudi L and Savitri R M 2018 The effectiveness of preplant seed bio-invigoration techniques using Bacillus sp. CKD061 to improving seed viability and vigor of several local upland rice cultivars of Southeast Sulawesi IOP Conf. Ser. Earth Environ. Sci. 122

[7] Muhidin, Leomo S, Alam S and Wijayanto T 2016 Comparative studies on different agroecosystem base on soil physicochemical properties to development of Sago Palm on Dryland Int. J. ChemTech Res. 9 511–8

[8] Muhidin, Syam’un E, Kaimuddin, Musa Y, Sadimantara G R, Usman, Leomo S and Rakian T C 2018 Shading effect on generative characters of upland red rice of Southeast Sulawesi, Indonesia IOP Conference Series: Earth and Environmental Science vol 157 p 012017

[9] Muhidin, Syam’un E, Kaimuddin, Musa Y, Sadimantara G R, Usman, Leomo S and Rakian T C 2018 The effect of shade on chlorophyll and anthocyanin content of upland red rice IOP Conf. Ser. Earth Environ. Sci. 122 012030

[10] Sutariati G A K, Muhidin, Rakian T C, Afa L O, Made Widanta I, Mudi L, Sadimantara G R and Leomo S 2018 The effect of integrated application of pre-plant seed bio-invigoration, organic and inorganic fertilizer on the growth and yield of local upland rice Biosci. Res. 15 160–5

[11] Sutariati G A K, Arif N, Muhidin, Rakian T C, Mudi L and Nuralam 2017 Persistency and seed breaking dormancy on local upland rice of Southeast Sulawesi, Indonesia Pakistan J. Biol. Sci. 20 563–70

[12] Sulistirini N W S, Wijayanto T, Madiki A and Boer D 2018 Relationship of some upland rice genotype after gamma irradiation IOP Conference Series: Earth and Environmental Science vol 122 (IOP Publishing) p 12033

[13] Sulistirini N W S, Wijayanto T, Madiki A, Boer D, Muhidin and Tufaila M 2018 Yield potential improvement of upland red rice using gamma irradiation on local upland rice from southeast sulawesi Indonesia Biosci. Res. 15 1673–8

[14] Sadimantara G R, Muhidin, Sri Sulistirini N W, Nuraida W, Sadimantara M S, Leomo S and Ginting S 2018 Agronomic and yield characteristics of new superior lines of amphibious rice derived from paddy rice and local upland rice crossbreeding in konawe of Indonesia Biosci. Res. 15 893–9

[15] Sadimantara G R, Alawyah T, Sulistirini N W S, Febrianti E and Muhidin 2019 Growth performance of two superior line of local upland rice (Oryza sativa L.) from SE Sulawesi on the low light intensity IOP Conference Series: Earth and Environmental Science vol 260 (IOP Publishing) p 12145

[16] Sadimantara G R, Kadidaa B, Sauib, Safuan L O and Muhidin 2018 Growth performance and yield stability of selected local upland rice genotypes in Buton Utara of Southeast Sulawesi IOP Conference Series: Earth and Environmental Science vol 122
[17] Sadimantara G R, Muhidin, Ginting S and Sulia rtini N W S 2016 The potential yield of some superior breeding lines of upland rice of Southeast Sulawesi Indonesia Biosci. Biotechnol. Res. Asia 13 1867–70
[18] Chen J, Lü S, Zhang Z, Zhao X, Li X, Ning P and Liu M 2018 Environmentally friendly fertilizers: A review of materials used and their effects on the environment Sci. Total Environ. 613 829–39
[19] Singh Brar B, Singh J, Singh G and Kaur G 2015 Effects of long term application of inorganic and organic fertilizers on soil organic carbon and physical properties in maize–wheat rotation Agronomy 5 220–38
[20] Bora R, Pandey P C, Singh D K, Yadav S K and Chilwal A 2018 Assessment of soil fertility status under long term balance fertilizer application on rice (Oryza sativa L.) ICS 6 1696–9
[21] Sabiha N-E, Salim R, Rahman S and Rola-Rubzen M F 2016 Measuring environmental sustainability in agriculture: A composite environmental impact index approach J. Environ. Manage. 166 84–93
[22] Rahman K M and Zhang D 2018 Effects of fertilizer broadcasting on the excessive use of inorganic fertilizers and environmental sustainability Sustainability 10 759
[23] Zhao J, Ni T, Li J, Lu Q, Fang Z, Huang Q, Zhang R, Li R, Shen B and Shen Q 2016 Effects of organic–inorganic compound fertilizer with reduced chemical fertilizer application on crop yields, soil biological activity and bacterial community structure in a rice–wheat cropping system Appl. soil Ecol. 99 1–12
[24] Zhang M, Yao Y, Tian Y, Ceng K, Zhao M, Zhao M and Yin B 2018 Increasing yield and N use efficiency with organic fertilizer in Chinese intensive rice cropping systems F. Crop. Res. 227 102–9
[25] Ding W, Xu X, He P, Ullah S, Zhang J, Cui Z and Zhou W 2018 Improving yield and nitrogen use efficiency through alternative fertilization options for rice in China: A meta-analysis F. Crop. Res. 227 11–8
[26] Banik A, Dash G K, Swain P, Kumar U, Mukhopadhyay S K and Dangar T K 2019 Application of rice (Oryza sativa L.) root endophytic diazotrophic Azotobacter sp. strain Avi2 (MCC 3432) can increase rice yield under greenhouse and field condition Microbiol. Res. 219 56–65
[27] Zhang J, Hussain S, Zhao F, Zhu L, Cao X, Yu S and Jin Q 2018 Effects of Azospirillum brasilense and Pseudomonas fluorescens on nitrogen transformation and enzyme activity in the rice rhizosphere F. Crop. Res. 181 1453–65
[28] Hahn L, Sá E L S de, Osório Filho B D, Machado R G, Damasceno R G and Giongo A 2016 Rhizobial Inoculation, Alone or Coinoculated with Azospirillum brasilense, Promotes Growth of Wetland Rice Rev. Bras. Ciência do Solo 40
[29] Fukami J, Cerezini P and Hungria M 2018 Azospirillum: benefits that go far beyond biological nitrogen fixation AMB Express 8 73
[30] Wani S A, Chand S, Wani M A, Ramzan M and Hakeem K R 2016 Azotobacter chroococcum—a potential biofertilizer in agriculture: an overview Soil Science: Agricultural and Environmental Prospectives (Springer) pp 333–48
[31] Nurmas A, Anwar, Karimuna L, Sabaruddin L, Khaeruni A and Muhidin 2018 The role of azotobacter sp. In reducing inorganic fertilizer of nitrogen on growth of local maize (zea mays L.) In ultisols Biosci. Res. 15 428–36
[32] Nurmas A, Karimuna L, Sabaruddin L, Khaeruni A, Muhidin, Rahayu M, Hasid R and Adawiyah R 2018 The effectiveness of azotobacter sp. In increasing grown of local maize and sorghum in the intercropping system in ultisols Biosci. Res. 15 1645–4652
[33] Muhidin, Syam’un E, Kaimuddin, Musa Y, Sadimantara G R, Rakian T C, Leomo S and Yusuf D N 2020 Effect of root endophytic diazotrophic azotobacter and azospirillum on the vegetative growth of local upland red rice Int. J. Sci. Technol. Res. 9 3345–8