Nature of magnetism in \(\text{Ca}_3\text{Co}_2\text{O}_6 \)

Hua Wu, M. W. Haverkort, D. I. Khomskii, and L. H. Tjeng

II. Physikalisches Institut, Universität zu Köln, Zülpicher Str. 77, D-50937 Köln, Germany

(Dated: March 23, 2022)

We find using LSDA+U band structure calculations that the novel one-dimensional cobaltate \(\text{Ca}_3\text{Co}_2\text{O}_6 \) is not a ferromagnetic half-metal but a Mott insulator. Both the octahedral and the trigonal Co ions are formally trivalent, with the octahedral being in the low-spin and the trigonal in the high-spin state. The inclusion of the spin-orbit coupling leads to the occupation of the minority-spin \(d_2 \) orbital for the unusually coordinated trigonal Co, producing a giant orbital moment (1.57 \(\mu_B \)). It also results in an anomalously large magnetocrystalline anisotropy (of order 70 meV), elucidating why the magnetism is highly Ising-like. The role of the oxygen holes, carrying an induced magnetic moment of 0.13 \(\mu_B \) per oxygen, for the exchange interactions is discussed.

PACS numbers: 71.20.-b, 71.70.-d, 75.25.+z, 75.30.Gw

The one-dimensional (1D) cobaltate \(\text{Ca}_3\text{Co}_2\text{O}_6 \) and isostructural \(A_3M\text{M'}\text{O}_6 \) \((A=\text{alkaline-earth metal}; M, M'=\text{transition metals})\) compounds attract now considerable attention due to their peculiar crystal structure and very unusual properties. A large number of research activities have been triggered by the discovery of the unconventional magnetic structure with strange magnetization jumps \(3 \, 4 \, 5 \, 6 \, 7 \, 8 \, 9 \, 10 \, 11 \, 12 \, 13 \, 14 \, 15 \), reminiscent of quantum tunneling of magnetization in molecular magnets, and also by the observation of the large thermoelectric power and magnetoresistance \(16 \, 17 \, 18 \).

From a theoretical point of view, the understanding of the \(\text{Ca}_3\text{Co}_2\text{O}_6 \) system is far from satisfactory. The crystal structure consists of triangular lattice of \(c \)-axis chains of alternating CoO, octahedra and trigonal prisms sharing common faces \(1 \, 2 \). Both the spin and valence state of the Co ions in these two positions, i.e. Co\text{act} and Co\text{trig}, respectively, are a matter of controversy. There were several suggestions made \(1 \, 2 \, 3 \, 4 \, 5 \, 6 \, 7 \, 8 \, 9 \, 10 \, 11 \, 12 \, 13 \, 14 \, 15 \). The most common ones being either the non-magnetic low-spin (LS, \(S=0 \)) Co\text{act}\text{Ib} and magnetic high-spin (HS, \(S=2 \)) Co\text{act}\text{II} or the LS (\(S=1/2 \)) Co\text{trig} and HS (\(S=3/2 \)) Co\text{trig}. Recent LSDA and GGA calculations do not provide clarity: Whangbo et al. \(17 \) and Eyert et al. \(18 \) support the first alternative, while Vidya et al. \(19 \) the second one. To add to the confusion, all those calculations \(17 \, 18 \, 19 \) predict \(\text{Ca}_3\text{Co}_2\text{O}_6 \) to be a metal, in strong disagreement with the experiments \(16 \, 17 \, 18 \). In fact, it has been even claimed \(19 \) that this material would be the first 1D oxide displaying ferromagnetic half-metallicity (FMHM).

Another problem is the nature of magnetism in this material. In modeling the intriguing magnetic properties, it was always concluded or assumed that the Co chains behave as an Ising system with ferromagnetic (FM) intrachain exchange \(3 \, 4 \, 5 \, 6 \, 7 \, 8 \, 9 \, 10 \). The nature of such behavior, however, is completely unclear: the origin of Ising-like behavior was not discussed at all, and attempts to explain the FM exchange using an ionic superexchange model \(20 \) meet some problems.

In view of these controversies, we carried out a theoretical study of the electronic structure and magnetic properties of \(\text{Ca}_3\text{Co}_2\text{O}_6 \) in which we took more explicitly into account the correlated motion of the electrons typical in transition metal oxides. In this work we used the LSDA+U method \(21 \), including also the spin-orbit coupling (SOC). We settle theoretically the issue on the valence (spin) state, and find that \(\text{Ca}_3\text{Co}_2\text{O}_6 \) is a Mott or rather charge-transfer insulator \(22 \) already for moderate values of Hubbard \(U \).

The inclusion of the SOC leads to a series of surprising but experimentally sound results: a giant orbital moment for the HS Co\text{trig} ion consistent with the experimentally observed large total magnetic moment, an anomalously large magnetocrystalline anisotropy important to explain the Ising-like properties, and an unusual orbital occupation of the Co\text{trig} ion requiring a completely new approach for modeling the exchange interactions.

Our calculations were performed by using the full-potential augmented plane waves plus local orbital method \(23 \). We took the \(\text{Ca}_3\text{Co}_2\text{O}_6 \) structure data determined by neutron diffraction measurements at 40 K \(1 \). The muffin-tin sphere radii are chosen to be 2.7, 2.0 and 1.6 Bohr for Ca, Co and O atoms, respectively. The cut-off energy of 16 Ryd is used for plane wave expansion, and 5×5×5 k-mesh for integrations over the Brillouin zone. The SOC is included by the second-variational method with scalar relativistic wave functions \(27 \). The easy magnetization direction is along the \(c \)-axis chains.

We plot in Fig. 1 the LSDA results, which give a FMHM solution, in agreement with previous calculations \(17 \, 18 \, 19 \). One should note that the Fermi level is located in a narrow Co\text{trig} 3d band with no more than 1 eV width, which is consistent with the system being 1D. It is then also natural to expect that already modest electron correlation effects at the Co sites will be able to turn this material into a Mott insulator.

Another important point to note from our LSDA results is that for the Co\text{trig} ion, the crystal fields do not split up the 3d orbitals into the usual \(e_g \) and \(t_{2g} \) levels.
Instead, it is found that the $x^2 - y^2$ is degenerate with the xy, and the yz with zx orbital, as can be seen from Fig. 1(b). In the presence of the SOC, it is then better to use the complex orbitals d_0, d_2/d_{-2}, and d_1/d_{-1}. Significant from the LSDA is also that the narrow d_0 singlet and d_2/d_{-2} doublet bands are almost degenerate. Fig. 2 sketches the local crystal field energy diagram. This implies that SOC, so far not included in all the LSDA calculations [17, 18, 19], could have a substantial effect on the outcome for the predictions on the magnetic properties. An interesting aspect from Fig. 1(b) is the finding that the d_1/d_{-1} band is split off from the d_0 and d_2/d_{-2} bands by about 1 eV, i.e. much larger than the SOC energy scale. Therefore, the SOC Hamiltonian can be simplified into just $\zeta l_2 s_2$ by neglecting the $l_+ s_-$ and $l_- s_+$ mixing terms. This has far reaching consequences for the magnetocrystalline anisotropy as we will show below.
Hu et al. have recently found using soft-x-ray magnetic circular dichroism that Ca$_3$Co$_2$O$_6$ indeed has an orbital moment which is significantly larger than 1 μ_B [27].

Adding the orbital moment to the 4 μ_B from the S=2 spin contribution, we end up with the total magnetic moment of about 5.66 μ_B/fu. Experimentally, Maignan et al. [9] found from magnetization measurements the saturated total moment close to 5.0 μ_B. We may speculate that perhaps a small part of the sample ($\approx 10\%$) is somewhat misaligned, which due to the anomalously large magnetocrystalline anisotropy as we will show below, will then not get magnetized. In any case, since it is easier to find experimental reasons why the sample is not fully magnetized rather than over-magnetized, it is probably better that the theory slightly overestimates the moment. It would be especially unsatisfactory, if one, for example, would ignore the SOC or assume that the sixth electron occupies the d_0 spin-down orbital, giving in both cases a total moment of only 4.0 μ_B. In fact, as listed in Table I, we find in our LSDA+U+SOC calculations that the configuration with the sixth electron forced to occupy the d_0 spin-down orbital is unstable by 71 meV/fu as compared to the ground state. Important is that this analysis is also robust against the particular choice of U made here. Fig. 4 (bottom panel) shows that the spin and orbital moments stay constant within 0.2 μ_B as long as the system is an insulator, i.e. when U is varied between 2.5 and 6 eV.

The occupation of the spin-down d_2 orbital has as a consequence that the orbital and, due to the SOC, also the spin contributions to the magnetic moment are oriented along the z-direction, i.e. the c-axis. To flip both the spin and orbital moments into the plane perpendicular to the c-axis is impossible, since this would require that the spin-down d_1 and d_{-1} become partially occupied, and we have seen from the LSDA calculations in Fig. 1(b) that this would cost roughly the crystal field energy (~ 1 eV). To flip only the spin moment into the plane but keep the orbital moment along the c-axis is also quite difficult, since this would cost the full spin-orbit splitting of about 70 meV. Also a third scenario in which one tries to alter the moment directions by occupying non-spin-orbit-active spin-down d_0 orbital is equally unlikely, since our LSDA+U+SOC calculations show that this would cost 71 meV, as already mentioned above and in Table I. All this means that the magnetocrystalline anisotropy is exceptionally large, and that all the relevant magnetic degrees of freedom are highly fixed in the z-direction, justifying why the magnetic behavior of Ca$_3$Co$_2$O$_6$ can be well described by Ising models.

In trying to explain the intra-chain FM exchange interaction we also have investigated the antiferromagnetic insulating (AFI) scenario. Here we took the chain as an alternation of spin-up and spin-down HS-Co$_{\text{trig}}$ ions with LS-Co$_{\text{oct}}$ ions in between. Our LSDA+U+SOC calculations show that this would cost 71 meV, as already mentioned above and in Table I. All this means that the magnetocrystalline anisotropy is exceptionally large, and that all the relevant magnetic degrees of freedom are highly fixed in the z-direction, justifying why the magnetic behavior of Ca$_3$Co$_2$O$_6$ can be well described by Ising models.

In trying to explain the intra-chain FM exchange interaction we also have investigated the antiferromagnetic insulating (AFI) scenario. Here we took the chain as an alternation of spin-up and spin-down HS-Co$_{\text{trig}}$ ions with LS-Co$_{\text{oct}}$ ions in between. Our LSDA+U+SOC calculations find that the AFI solution, having the same spin

![FIG. 3: Density of states (DOS) of Ca$_3$Co$_2$O$_6$ in the ferromagnetic insulating (FMI) state from LSDA+U+SOC.](image)

![FIG. 4: U dependence of the insulating gap (top panel), as well as of the spin and orbital contributions to the Co$_{\text{trig}}$ magnetic moment (bottom panel).](image)
and orbital moments at the HS Co\textsubscript{trig} ions as the FMI ground-state, lies above the latter by about 12 meV/fu, see Table I \cite{20}. As a result, the intra-chain FM coupling parameter of each HS Co\textsubscript{trig} pair can be estimated to be of the order of 1.5 meV (17 K), assuming a simple Heisenberg model with S=2. This intra-chain exchange parameter is in reasonable agreement with the experimentally observed intra-chain Curie temperature of 24±2 K \cite{2, 3, 4, 5}.

This result seems at first sight to support the ionic superexchange model proposed by Frésard et al. \cite{20}. That model used an \textit{ansatz} for the Co ions which was confirmed by our LSDA+U+SOC, namely LS Co3+ and HS Co3+ within the d\textsubscript{0} orbital half occupied, and found the exchange parameter of about 2 meV, very close to ours. However, that model considered basically a set of virtual excitations which are purely ionic in character and involve essentially only the Co\textsubscript{trig} and Co\textsubscript{oct} 3z2−r2 orbitals, in which case the solution should be AF, according to the first Goodenough-Kanamori-Anderson rule \cite{30}.

We believe that the intra-chain FM interaction is connected with the large contribution of holes on the oxygen. On the basis of general arguments and also our calculations, one finds that the actual charge distribution corresponds rather not to Co3+, but to Co2+L (L=oxyhgen hole), although the quantum numbers are those of Co3+. In this case two of such oxygen holes from two neighbouring HS-Co3+ form a triplet state at the LS-Co3+ in between, much the same as two oxygen holes form a triplet state around a metal vacancy in ZnO and CaO \cite{31}. This allows to gain the full coherent hybridization energy with the empty \textit{eg} states of the Co3+ion. An indication for this is the presence of a covalency-induced spin moment in the oxygen of about 0.13 \(\mu_B\) per ion as well as in the LS-Co3+ of about 0.07 \(\mu_B\), see Table I. This picture of the origin of the FM intra-chain exchange should be confirmed by further studies.

To conclude, we find using LSDA+U+SOC band structure calculations that Ca\textsubscript{3}Co\textsubscript{2}O\textsubscript{4} is not a ferromagnetic half-metal but a Mott insulator with both the octahedral and the trigonal Co ions being formally trivalent, which settles the valence-state issue. Spin-orbit coupling and unusual coordination of the trigonal Co ion lead to the occupation of the \(d_2\) spin-down orbital, generating a giant orbital moment (1.57 \(\mu_B\)) and an extremely large magnetocrystalline anisotropy (70 meV), which explains the Ising character of the magnetism of this material.

The ferromagnetic intra-chain interaction is presumably connected with the effect of oxygen holes in this small charge-transfer gap system. This also leads to an appreciable magnetic moment of 0.13 \(\mu_B\) on each oxygen.

We are grateful to Zhiwei Hu, Antoine Maignan, Vincent Hardy, and George Sawatzky for stimulating discussions. This research is supported by the Deutsche Forschungsgemeinschaft through SFB 608.

\begin{table}[h]
\centering
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline
state & \(\Delta E\) & Co\textsubscript{oct} & Co\textsubscript{trig} & O & interstitial & total & \hline
LSDA & FMHM & 0.34 & Co3+ & 2.70 & 0.13 & 0.13 & 4.00 & \hline
LSDA+U+SOC & FM(d\textsubscript{0}) & 0 & 0.07 & 0.09 & 2.99 & 1.57 & 0.13 & 0.13 & 5.66 & \hline
LSDA+U+SOC & AF(d\textsubscript{0}) & 12 & 0 & 0 & \pm 2.99 & \pm 1.57 & \pm 0.13 & 0 & 0 & \hline
LSDA+U+SOC & FM(d\textsubscript{0}) & 71 & 0.002 & 0.03 & 2.96 & 0.10 & 0.14 & 0.14 & 4.13 & \hline
\end{tabular}
\caption{Calculated electronic state of Ca\textsubscript{3}Co\textsubscript{2}O\textsubscript{4}; total energy difference (meV) per formula unit; moments (\(\mu_B\)) at each Co\textsubscript{oct}, Co\textsubscript{trig}, and O ion, as well as in the interstitial region and total magnetic moment per formula unit. Both Co sites are trivalent in the solutions listed. The high-spin Co3+ has either the minority-spin \(d_2\) or \(d_0\) occupied.}
\end{table}

\begin{thebibliography}{99}
\bibitem{1} H. Fjellvåg et al., J. Solid State Chem. 124, 190 (1996).
\bibitem{2} S. Niitaka et al., J. Solid State Chem. 146, 137 (1999).
\bibitem{3} S. Aasland et al., Solid State Commun. 101, 187 (1997).
\bibitem{4} H. Kageyama et al., J. Phys. Soc. Jpn. 66, 1607 (1997).
\bibitem{5} A. Maignan et al., Eur. Phys. J. B 15, 657 (2000).
\bibitem{6} B. Martinez et al., Phys. Rev. B 64, 012417 (2001).
\bibitem{7} S. Niitaka et al., Phys. Rev. Lett. 87, 177202 (2001).
\bibitem{8} D. Flahaut et al., Phys. Rev. B 70, 094418 (2004).
\bibitem{9} A. Maignan et al., J. Mater. Chem. 14, 1231 (2004).
\bibitem{10} V. Hardy et al., Phys. Rev. B 70, 214439 (2004).
\bibitem{11} E. V. Sampathkumaran et al., Phys. Rev. B 70, 014437 (2004).
\bibitem{12} T. Sekimoto et al., J. Phys. Soc. Jpn. 73, 3217 (2004).
\bibitem{13} B. Raquet et al., Phys. Rev. B 65, 104442 (2002).
\bibitem{14} V. Hardy et al., Phys. Rev. B 68, 014423 (2003).
\bibitem{15} A. Maignan et al., Mater. Sci. Eng., B 104, 121 (2003).
\bibitem{16} K. Takubo et al., Phys. Rev. B 71, 075406 (2005).
\bibitem{17} M.-H. Whangbo et al., Solid State Commum. 125, 413 (2003).
\bibitem{18} V. Eyert et al., Chem. Phys. Lett. 385, 249 (2004).
\bibitem{19} R. Vidya et al., Phys. Rev. Lett. 91, 186404 (2003).
\bibitem{20} R. Frébard et al., Phys. Rev. B 69, 140405(R) (2004).
\bibitem{21} I. A. Anisimov et al., Phys. Rev. B 44, 943 (1991).
\bibitem{22} J. Zaanen et al., Phys. Rev. Lett. 55, 1404 (1985).
\bibitem{23} P. Blaha et al., http://www.wien2k.at
\bibitem{24} Our LSDA+U calculations show that the insulating ground state with a gap of 0.4 eV possesses LS-Co\textsubscript{oct} and HS-Co\textsubscript{trig} having the spin-down 3z2−r2 \(d_0\) occupied (no orbital moment); which is more stable by 392 meV/fu than the FM state with the HS-Co\textsubscript{trig} having the spin-down \(x^2−y^2/xy\) \(d_2\) occupied. Therefore, \(U\) determines the insulating behavior, but the SOC accounts for the Ising magnetism, as discussed in the main text.
\bibitem{25} T. Saitoh et al., Phys. Rev. B 52, 7934 (1995).
\end{thebibliography}
[26] A. Tanaka and T. Jo, J. Phys. Soc. Jpn. 63, 2788 (1994).
[27] Z. Hu (private communication).
[28] D. Dai and M.-H. Whangbo, Inorg. Chem. 44, 4407 (2005).
[29] In the all range of $U=0—6$ eV, the intrachain FM state is constantly more stable than the AF state, by 88, 49, 19, 12, 11 meV/fu when $U=0$, 2.5, 4, 5, 6 eV, respectively.

For any realistic value of U (about 4—6 eV), the exchange parameter is estimated to be 1.4—2.4 meV (16—27 K).

[30] J. B. Goodenough, *Magnetism and the Chemical Bond* (Wiley, New York, 1963)

[31] I. S. Elfimov et al., Phys. Rev. Lett. 89, 216403 (2002).