This is the published version of a paper published in *Ecology and Evolution*.

Citation for the original published paper (version of record):

Kalokora, O J., Gullström, M., Buriyo, A S., Mtolera, M S., Björk, M. (2022)
Seagrass meadows mixed with calcareous algae have higher plant productivity and
sedimentary blue carbon storage
*Ecology and Evolution*, 12(2): e8579
https://doi.org/10.1002/ece3.8579

Access to the published version may require subscription.

N.B. When citing this work, cite the original published paper.

Permanent link to this version:
http://urn.kb.se/resolve?urn=urn:nbn:se:sh:diva-48508
Seagrass meadows mixed with calcareous algae have higher plant productivity and sedimentary blue carbon storage

Olivia J. Kalokora1 | Martin Gullström2 | Amelia S. Buriyo3 | Matern S. P. Mtolera4 | Mats Björk5

1Dar es Salaam University College of Education (DUCE), Dar es Salaam, Tanzania
2School of Natural Sciences, Technology and Environmental Studies, Södertörn University, Huddinge, Sweden
3Department of Botany, University of Dar es Salaam, Dar es Salaam, Tanzania
4Institute of Marine Sciences, University of Dar es Salaam, Zanzibar, Tanzania
5Department of Ecology, Environment and Plant Sciences, Stockholm University, Stockholm, Sweden

Correspondence
Mats Björk, Department of Ecology, Environment and Plant Sciences, Stockholm University, Stockholm, Sweden. Email: mats.bjork@su.se

Funding information
Styrelsen för Internationellt Utvecklingssamarbete

Abstract
Seagrass meadows capture and store large amounts of carbon in the sediment beneath, thereby serving as efficient sinks of atmospheric CO₂. Carbon sequestration levels may however differ greatly among meadows depending on, among other factors, the plant community composition. Tropical seagrass meadows are often intermixed with macroalgae, many of which are calcareous, which may compete with seagrass for nutrients, light, and space. While the photosynthetic CO₂ uptake by both seagrasses and calcareous algae may increase the overall calcification in the system (by increasing the calcium carbonate saturation state, Ω), the calcification process of calcareous algae may lead to a release of CO₂, thereby affecting both productivity and calcification, and eventually also the meadows' carbon storage. This study estimated how plant productivity, CaCO₃ production, and sediment carbon levels were affected by plant community composition (seagrass and calcareous algae) in a tropical seagrass-dominated embayment (Zanzibar, Tanzania). Overall, the patterns of variability in productivity differed between the plant types, with net areal biomass productivity being highest in meadows containing both seagrass and calcareous algae. Low and moderate densities of calcareous algae enhanced seagrass biomass growth, while the presence of seagrass reduced the productivity of calcareous algae but increased their CaCO₃ content. Sedimentary carbon levels were highest when seagrasses were mixed with low or moderate cover of calcareous algae. The findings show that plant community composition can be an important driver for ecosystem productivity and blue carbon sequestration.

KEYWORDS
blue carbon, calcification, Halimeda opuntia, plant interactions, productivity, seagrass meadows, Thalassia hemprichii

TAXONOMY CLASSIFICATION
Biogeochemistry; Botany; Ecosystem ecology
1 | INTRODUCTION

Seagrass meadows are ecologically and economically important habitats globally and recognized for provision of numerous highly valuable ecosystem goods and services (Costanza et al., 1997; Unsworth & Cullen, 2010). In recent years, they have been increasingly acknowledged as major carbon sinks contributing up to 15% of the total carbon stored in the ocean (Kennedy & Björk, 2009). Their efficiency in carbon storage is attributed to high metabolic rates of seagrass (Duarte et al., 2010) producing excess carbohydrate stored in the underground parts (Duarte & Cebrian, 1996), which together with an efficient filtering capacity results in a high capture of both autochthonous and allochthonous carbon into the sediment (Fourquearan, Duarte, et al., 2012). However, seagrass meadows, especially in the tropics, are commonly mixed with calcareous algae, such as *Halimeda* spp. and *Penicillus* spp. (Kangwe et al., 2012; Ortegón-Aznar et al., 2017). Interactions between seagrass and calcareous algae may influence community development (Schoener, 1983), productivity (Barry et al., 2013; Davis & Fourquearan, 2001), and thus potentially also sediment carbon sequestration. The strength and nature of such processes may however differ depending on the proportion of a meadow’s plant components, which has not yet been studied in detail.

Calcareous algae have been shown to contribute greatly to the CaCO$_3$ fraction of tropical seagrass sediments, for example, in the Western Indian Ocean (Muzuka et al., 2001) and Caribbean (Gischler, 1994; Ortegón-Aznar et al., 2017). Nevertheless, calcareous algae may also increase seagrass productivity by causing release of CO$_2$ by their calcification. Calcium carbonate (CaCO$_3$) precipitation reduces seawater pH and might thereby be causing a release of CO$_2$ (Frankignouille et al., 1994, 1995; Ware et al., 1992), as recently shown in calcareous algae (Kalokora et al., 2020), even though the photosynthetic uptake of CO$_2$ may exceed that of the release from calcification (Cornwall et al., 2018). The CO$_2$ released from calcification can either escape to the atmosphere, thereby contributing to increases in atmospheric CO$_2$, or be utilized by the calcareous algae themselves and nearby plants through photosynthesis (Invers et al., 2001; Schneider & Erez, 2006; Semesi et al., 2009), leading to greater productivity and higher rates of blue carbon sequestration (Russell et al., 2013). At the same time, photosynthetic CO$_2$ uptake by seagrasses increases the calcium carbonate saturation state, Ω, and pH of the surrounding seawater, which can enhance the calcification of both calcareous algae (Semesi et al., 2009) and corals (Unsworth et al., 2012) within the habitats, thereby also affecting the amount of CO$_2$ released from calcification (Björk & Beer, 2009; Macreadie et al., 2017). Calcareous algae may therefore largely influence the carbon cycle in seagrass meadows and hence affect their carbon storage.

In this study, we conducted a field survey to assess how plant productivity, calcium carbonate production, and sedimentary carbon levels were affected by interaction between a seagrass, *Thalassia hemprichii* ( Ehrenberg) Ascherson, and calcareous algae (*Halimeda* spp., mostly *H. opuntia* Lamouroux) at different relative cover in a tropical bay of Zanzibar, Tanzania. Specifically, we tested the following hypotheses: (i) an increase in relative cover of seagrass would reduce the primary productivity of the calcareous algae due to shading; (ii) an increase in relative cover of calcareous algae would increase the primary productivity of seagrass due to increased availability of CO$_2$ from calcification; (iii) calcification of calcareous algae will increase with increased relative cover of seagrass, even though shading might to some extent reduce primary productivity; and (iv) a higher relative cover of seagrass will result in higher organic carbon storage in the sediment, whereas a higher cover of calcareous algae would result in a higher inorganic carbon storage in the sediment.

2 | MATERIALS AND METHODS

2.1 | Study area and field sampling design

The field survey was conducted in Chwaka Bay on the east coast of Unguja Island, Zanzibar, Tanzania (6°8’ to 6°15’S, 39°22’ to 39°30’E). The bay is a semi-enclosed embayment with a maximum average tidal range of 3.2 m at spring tide (Cederløf et al., 1995). The bay is dominated by extensive seagrass meadows (of varying densities) and encompasses up to 11 species of seagrass (Gullström et al., 2012), which are commonly mixed with different species of the calcareous algal genus *Halimeda* (Gullström et al., 2006). The study was conducted from May to July 2017 during the South Eastern (SE) monsoon period, which is characterized by weak rainfall and low stable air temperatures (Mahongo, 2014). Within the bay, three representative sites (Chwaka [CenterPoint: 6°09’30”S, 39°26’31”E], Mkanjani [CenterPoint: 6°08’59”S, 39°26’18”E], and Marumbi [CenterPoint: 6°07’60”S, 39°26’05”E]) were chosen (Figure 1) containing meadows dominated by *Thalassia hemprichii* (a climax seagrass species widely distributed across the Indo-Pacific region; Short et al., 2007), and a large proportion of calcareous green algae (*Halimeda* spp., mostly *H. opuntia*) identified according to Oliveira et al. (2005). To describe the general vegetation patterns of the three sites, we determined structural habitat characteristics (seagrass shoot density, thalli density of calcareous algae, and plant height; Table S1) using conventional methodologies described by Duarte et al. (2001). General estimations of physicochemical parameters and light were made for each site. During three days, at morning, midday, and evening (n = 3 at each time), dissolved oxygen, salinity (conductivity), and temperature were measured using a YSI Multimeter (YSI 85/10 Ohio USA), pH was estimated using a Hanna Combo meter (HI98129 Hanna Instruments USA) and light intensity was measured using a quantum meter (Li-Cor model LI-189 Japan) (Table S2).

The three studied sites contained three randomly selected plots (15 m$^2$) each (located 4–5 m apart), where comparisons have been done on 4 or 5 subplots (0.25 × 0.25 m) of different plant community compositions. Each subplot was hence replicated 9 times (3 sites × 3 plots). In total, there were 70 subplots, including 15 response variables with 4 subplots and 2 response variables with 5 subplots (Table 1, Table S3). Plant community compositions were divided into the following categories:
1. Seagrass (S): 90%–100% cover of *T. hemprichii*
2. $S_{\text{high}} CA_{\text{low}}$: High cover (70%–80%) of *T. hemprichii*, low cover (20%–30%) of *H. opuntia*
3. $S_{\text{mod}} CA_{\text{mod}}$: Moderate cover (45%–55%) of *T. hemprichii*, moderate cover (45%–55%) of *H. opuntia*
4. $S_{\text{low}} CA_{\text{high}}$: Low cover (20%–30%) of *T. hemprichii*, high cover (70%–80%) of *H. opuntia*
5. Calcareous algae (CA): 90%–100% cover of *H. opuntia*.

The subplots were selected based on the natural distribution of the species, and no manipulations were made. All measurements were executed during low spring tide.

### 2.2 Measurements of growth and production of seagrass and calcareous algae

Growth of seagrass was determined by the hole punch technique (Short et al., 2001). In each subplot (except CA), 5–7 shoots of approximately similar size (c. 13–16 cm; Suppl. Table 1) were punched by piercing a needle through all blades in a shoot to make a hole just above the basal meristem region. The punched seagrass shoots were marked by colored cable tags for easy relocation during harvesting. Similarly, in each subplot (except Seag), 3–4 algal thalli of approximately the same size (c. 7 cm; Table S1) were selected and marked using cable tags without disturbing the plant (Ballesteros, 1991). The cable tags were placed on the top segment (usually the fifth segment), and during subsequent harvesting, the segments above the cable tag were counted as new segments and the rest were the mature segments. Marked seagrass shoots and algal thalli were left to grow in situ for 13 days after which they were harvested. In addition, three algal thalli adjacent to the tagged ones were collected from each plot (except for Seag) for determining the percent of CaCO$_3$ per thalli. Harvested seagrass shoots were rinsed with freshwater, scraped to remove epiphytes, and rinsed again with water before being separated into new and mature parts by cutting the leaf at the hole. Seagrass leaves without punch marks were considered new leaves. Plant material was then oven dried at 60°C to constant weight. The amount of new plant material per time yielded seagrass shoot biomass productivity (g DW day$^{-1}$ shoot$^{-1}$, Equation 1), seagrass leaf elongation rate per leaf (mm day$^{-1}$ leaf$^{-1}$, Equation 2), seagrass leaf elongation rate per shoot (mm day$^{-1}$ shoot$^{-1}$, Equation 3), and seagrass leaf production per shoot (number of leaves day$^{-1}$ shoot$^{-1}$, Equation 4):

\[
\text{Seagrass shoot biomass productivity} = \frac{\text{New biomass growth per shoot}}{\text{Time}}
\]  

(1)

\[
\text{Seagrass leaf elongation rate per leaf} = \frac{\text{Leaf increment in a leaf}}{\text{Time}}
\]  

(2)

\[
\text{Seagrass leaf elongation rate per shoot} = \frac{\text{Leaf increment per all leaves in a shoot}}{\text{Time}}
\]  

(3)

\[
\text{Seagrass leaves produced per shoot} = \frac{\text{Number of new leaves formed per shoot}}{\text{Time}}
\]  

(4)
| Plant category       | Abbreviation               |
|----------------------|----------------------------|
| **Response variable**|                            |
| Seagrass             |                            |
| Seagrass shoot biomass productivity (Equation 1) (g DW day⁻¹ shoot⁻¹) | SeagShoBioProd |
| Seagrass leaf elongation rate per leaf (Equation 2) (mm day⁻¹ leaf⁻¹) | SeagLeafElongLeaf |
| Seagrass leaf elongation rate per shoot (Equation 3) (mm day⁻¹ shoot⁻¹) | SeagLeafElongSho |
| Seagrass leaf production per shoot (Equation 4) (number of leaves day⁻¹ shoot⁻¹) | SeagLeafProSho |
| Seagrass net areal shoot biomass productivity (Equation 5) (g DW m⁻² day⁻¹) | SeagAreaBioPro |
| Seagrass coverageₐ (% cover of seagrass) | SeagCov |
| **Calcareaeous algae** |                            |
| Calc algae thalli weight (g DW thallus⁻²) | CABIom |
| Calc algae segment growth (Equation 6)ₐ (segments day⁻¹ tip⁻¹) | CASegmGro |
| Calc algae biomass productivity (Equation 7) (g DW day⁻¹ thalli⁻¹) | CABIoPro |
| Calc algae net areal biomass productivity (Equation 8)ₐ (g DW m⁻² day⁻¹) | CAAreaBioPro |
| Calc algae CaCO₃ in mature thalli segments (Equation 9)ₐ (% DW CaCO₃) | CACaCO₃Mat |
| Calc algae CaCO₃ in new thalli segments (Equation 9)ₐ (% DW CaCO₃) | CACaCO₃New |
| Calc algae CaCO₃ in whole thalli (Equation 9)ₐ (% DW CaCO₃) | CACaCO₃Who |
| Calc algae CaCO₃ productivity (Equation 10) (g CaCO₃ day⁻¹ thalli⁻¹) | CACaCO₃Pro |
| Calc algae net areal CaCO₃ productivity (Equation 11) (g CaCO₃ m⁻² day⁻¹) | CAAreaCaCO₃Pro |
| Calc algae standing CaCO₃ (Equation 12) (g CaCO₃ m⁻²) | CACaCO₃Stand |
| Calc algae coverageₐ (% cover of calc algae) | CACov |
| Total net areal biomass productivity (Equation 5 + 8) (g DW m⁻² day⁻¹) | TotAreaBioPro |

ₐResponse variables where data have been transformed due to heterogeneous variances (for details, see Data analysis).

Seagrass net areal shoot (aboveground) biomass productivity (g DW m⁻² day⁻¹, Equation 5) was calculated by multiplying production per shoot by the appropriate mean shoot density per m²:

\[
\text{Seagrass net areal shoot biomass productivity} = \text{Seagrass shoot biomass productivity} \times \text{shoot density}
\]  

(5)

For calcareaeous algae, marked thalli were separated into mature and new segments; rinsed with freshwater to remove sand, debris, and epiphytic material; and wrapped separately in aluminum foil before being oven dried at 60°C to constant weight. The growth of calcareaeous algae segments (segments day⁻¹ tip⁻¹, Equation 6) was calculated from the number of new segments per time, while the thalli biomass productivity (g DW day⁻¹ thalli⁻¹, Equation 7) was estimated from new biomass growth per time:

\[
\text{Calcareaeous algae segment growth} = \frac{\text{Number of new segments}}{\text{Time}}
\]  

(6)

\[
\text{Calcareaeous algae biomass productivity} = \frac{\text{Biomass growth per thalli}}{\text{time}}
\]  

(7)

**TABLE 1** Plant metrics used as response variables in univariate comparisons (Figures 2, 3, and Table S3) and correlative assessments (Figure 4) of plant community composition categories.
Calcareous algae net areal biomass productivity (g DW m⁻² day⁻¹, Equation 8) was calculated by multiplying thalli biomass productivity with thalli density per m²:

\[
\text{Calcareous algae net areal biomass productivity} = \text{Thalli biomass productivity} \times \text{Thalli density}
\] (8)

Finally, the total net areal biomass productivity (for vegetated subplots) was calculated by adding seagrass net areal shoot biomass productivity (Equation 5) to calcareous algae net areal biomass productivity (Equation 8).

### 2.3 Determination of CaCO₃ content and calcification

Dried samples of new, mature, and whole thalli (i.e., three thalli apart from the marked ones collected from each plot during harvesting) were ground to a fine powder using mortar and pestle. CaCO₃ content was estimated after acidification of the dried samples following Kennedy et al. (2005). Three subsamples of 2 g each were then taken from each sample and treated with excess 2 M HCl until the effervescence stopped. All samples were oven dried at 60°C to constant weight, left to cool, and then reweighed. The CaCO₃ content of calcareous algae (in mature or new segments and in whole thalli) was calculated from the average weight loss (Equation 9):

\[
\text{Calcareous algae CaCO₃ in thalli segments} = \frac{\text{Initial weight before acidification} - \text{Final weight after acidification}}{\text{Initial weight before acidification}} \times 100
\] (9)

The relative CaCO₃ productivity was calculated as the increase in CaCO₃ per thallus over time (g CaCO₃ day⁻¹ thallus⁻¹. Equation 10), and the net areal CaCO₃ productivity (g CaCO₃ m⁻² day⁻¹. Equation 11) was calculated by multiplying the relative productivity with the thallus density per area:

\[
\text{Calcareous algae CaCO₃ productivity} = \frac{\text{CaCO₃ increase per thallus}}{\text{Time}}
\] (10)

\[
\text{Calcareous algae net areal CaCO₃ productivity} = \text{CaCO₃ productivity} \times \text{thalli density}
\] (11)

The standing stock of CaCO₃ in living calcareous algae (g CaCO₃ m⁻², Equation 12) was estimated by multiplying the content of CaCO₃ in thalli with thallus density:

\[
\text{Calcareous algae standing CaCO₃} = \text{CaCO₃ content per thalli} \times \text{thalli density}
\] (12)

### 2.4 Determination of organic and inorganic carbon content of the sediment

At the end of the survey, one sediment sample was taken from each subplot (n = 9) using a corer (8 cm in diameter) pushed down to 15 cm depth. In the vicinity of each plot (just outside the meadow but close to the plot), three sediment cores were taken from unvegetated sediments (n = 9). Larger shells, infauna, and large plant materials were removed from the sediment before being oven dried at 60°C to constant weight. Samples were homogenized by grinding using mortar and pestle and prewashed using ethanol to minimize contamination. The amount of organic carbon was determined by the Loss on Ignition (LOI) method described by Heiri et al. (2001). Following this method, each subsample (0.1 g) was dried at 90–100°C for one hour and allowed to cool at room temperature in a desiccator, reweighed to obtain dry weight before combustion, and then combusted in a muffle furnace (450°C for 16 h). Samples were allowed to cool at room temperature and reweighed to obtain dry weight after combustion. The percentage of organic matter loss (% LOI) was calculated according to Equation 13. Since % LOI includes other element such as nitrogen, oxygen, and sulfur, the percentage of organic carbon (% Cₜₒᵣ₃) was calculated using LOI as a proxy of Cₜₒᵣ₃ according to Fourqurean et al. (2012) using Equation 14. The percentage of inorganic carbon in the sediment was calculated from the weight difference between the pre-ashed and weight loss during ignition as shown in Equation 15.

\[
\% \text{ loss on ignition (LOI)} = \frac{\text{Dry weight before combustion} - \text{Dry weight after combustion}}{\text{Dry weight before combustion}} \times 100
\] (13)

\[
\% \text{ sediment organic carbon} = 0.43 \times \% \text{ LOI} - 0.33
\] (14)

\[
\% \text{ sediment inorganic carbon} = \frac{\text{Dry weight before combustion} - \text{Weight loss during combustion}}{\text{Dry weight before combustion}} \times 100
\] (15)
2.5 Data analysis

Data from the measurements of biomass, productivity, CaCO$_3$ content, and calcification of the two plant types were analyzed using nested analysis of variance (ANOVA) with Site (3 levels) as a fixed factor and Plot (3 levels) as a random factor nested within Site. As the different response variables (Table 1) did not differ among the three sites, one-way ANOVAs were performed to test for differences among the four or five subplot categories of plant community compositions of each response variable (n = 9). To limit the probability of Type I errors, adjustment of the significant level for multiple testing was performed following the Bonferroni procedure (Holm, 1979). Differences in sedimentary organic and inorganic carbon content among subplots were tested separately using one-way ANOVA. Prior to all ANOVA analyses, homogeneity of variances was checked using Levene’s test. When the data were heteroscedastic, log$_{10}$ transformation was used. In those cases where data remained heteroscedastic despite transformation, the nonparametric Kruskal–Wallis test was used. Tukey’s test was used for pairwise comparisons between different subplot categories. The relative importance of a range of predictor variables on plant and CaCO$_3$ productivity was assessed using partial least squares (PLS) regression analysis on Log$_{10}$-transformed data using SIMCA 13.0.3 software (UNETRICS, Malmö, Sweden). PLS regression analysis comprises a multivariate statistical technique (based on covariances), where predictive models are constructed from multiple response variables and multiple explanatory (predictor) variables. This method allows for identifying underlying factors by modeling of linear (or polynomial) relationships between one or several response variables (i.e., Y from a matrix) and predictors (i.e., X from a matrix) known as latent variables. The relative importance of the selected predictors is assessed by modeling projections to latent structures, that is, variables with the best predictive power. Q$^2$ statistics is based on a matrix of regression coefficients and applied to measure the cross-validated variance and hence predictability of different models (with a significant level of 5%). R$^2$ cum is a measure of the cumulative fraction of selected predictors and provides a measure of model fit to the original data. In contrast to many other regression methods, PLS regression modeling is a useful statistical technique when the number of independent variables is large, and one must deal with
multi-collinearity (Carrascal et al., 2009). It has been used in different types of ecological research (Asplund et al., 2011; Gullström et al., 2018; Staveley et al., 2017).

3 | RESULTS

3.1 | Plant productivity, CaCO₃ content, and calcification

All differences among subplots are described in detail in Figures 2-4 and Table S3, and below, we present general trends. Seagrass shoot biomass productivity (Equation 1) was lower in the unmixed seagrass subplot compared to all other subplots, while seagrass leaf elongation rate per leaf (Equation 2) increased with decreasing cover of calcareous algae. Seagrass leaf elongation rate per shoot (Equation 3) showed no clear trend, and we found no significant differences in the number of seagrass leaves produced per shoot (Equation 4).

The thalli weight (CABiom), segment growth (Equation 6), and biomass productivity (Equation 7) of calcareous algae were all higher when the seagrass cover was reduced. The CaCO₃ content in thalli segments (i.e., mature segments, new segments, and whole thalli; Equation 9) was higher in meadows of higher seagrass cover. The CaCO₃ productivity per thallus (Equation 10) was clearly higher in subplots of less seagrass cover.

The standing CaCO₃ stock (Equation 12), cover of plants (SeagrCov and CACov), and net areal productivity (Equations 5, 8, and 11) varied as a consequence of plant community composition and are given as background information and for further calculations. The total net areal biomass productivity (Equations 5 and 8, Figure 3) was highest when seagrass was mixed with calcareous algae, followed by the seagrass subplots, which were in turn higher than the subplots containing only calcareous algae.

3.2 | The relative importance of predictor variables on plant and CaCO₃ productivity

Among the plant and CaCO₃ productivity measures presented in Table 1, we selected the most relevant variables showing significant differences among subplots and general trends of interest (i.e., seagrass leaf elongation rate per leaf, calcareous algae biomass productivity, calcareous algae CaCO₃ content in whole thalli, and calcareous algae CaCO₃ productivity). All four PLS models indicated significant relationships between independent variables (predictors) and the measured (response) variables. The cross-validated variance (Q² statistics) ranged from 28 to 87% (i.e., higher than the significant limit level of 5%), and therefore, all models showed high predictability. The cumulative fraction of all the examined predictors combined (R² cum) explained between 37 and 68% of the variation in the models, thereby displaying a relatively high degree of determination and fit.

Seagrass leaf elongation rate per leaf (Equation 2) was overall negatively correlated to productivity and cover of calcareous algae (biomass productivity, net areal biomass productivity, CaCO₃ productivity, and cover of calcareous algae), while positively correlated with CaCO₃ content in mature algal segments and seagrass cover (Figure 4a). Calcareous algae biomass productivity (Equation 7) showed positive relationships with net areal biomass productivity, cover, and CaCO₃ productivity of calcareous algae and negative relationships with seagrass leaf elongation rate per leaf, CaCO₃ content in mature algal segments, and seagrass cover (Figure 4b). Calcareous algae CaCO₃ content in whole thalli (Equation 9) was positively correlated with seagrass cover and CaCO₃ content in mature algal segments, whereas negatively correlated with cover, segment growth, and biomass of calcareous algae (Figure 4c). Calcareous algae CaCO₃ productivity (Equation 10) was positively related to net areal productivity, CaCO₃ standing stock, and cover of calcareous algae, and negatively related to seagrass cover and CaCO₃ content of mature algal segments (Figure 4d).

3.3 | Effects of plant cover on sedimentary blue carbon content

Sediment organic carbon content was higher in vegetated than in the unvegetated sediment (Tukey’s test at p < .05), although this was not significant for the seagrass subplots (Figure 5a). The mixed subplots with high (Seag-high/CA-low) or mid seagrass content (Seag-mid/CA-mid) showed significantly higher content of organic carbon compared to non-mixed subplots (Tukey’s test at p < .05, Figure 5a). For the inorganic carbon content of the sediment, the vegetated subplots showed clearly higher levels than the unvegetated sediment (Tukey’s test at p < .05, Figure 5b). No differences were found between any of the vegetated subplots (Figure 5b).

4 | DISCUSSION

Both plant productivity and sedimentary carbon levels were higher in the mixed plant communities than in areas where plants were growing in monospecific stands. Overall, the productivity measures show that plant community composition generally has a lower influence on seagrass productivity than on productivity of calcareous algae. As hypothesized, an increased relative cover of seagrass had a significant negative effect on calcareous algal biomass productivity, probably as an effect of shading from seagrass leaves on algal thalli in high seagrass shoot densities (McCoy & Kamenos, 2015) and possibly also from competition for CO₂ (Björk et al., 2004) or nutrients (Multer, 1988; South, 1983; Williams, 1990) that could result in large decreases in algal thalli size and biomass growth (Davis & Fourquean, 2001). Although an increase in the relative cover of calcareous algae reduced the seagrass leaf elongation rate (also shown in the PLS analysis), the seagrass biomass production increased (as
Contrary to our expectations and based on both among-subplot testing and PLS modeling, CaCO\textsubscript{3} productivity of calcareous algae was shown to strongly negatively correlate with seagrass cover (thereby positively correlate with cover of calcareous algae). However, the proportion of CaCO\textsubscript{3} in algal thalli increased in subplots with higher relative cover of seagrass, while thalli in monospecific subplots and subplots with higher relative cover of calcareous algae had lower CaCO\textsubscript{3} content. A similar increase in CaCO\textsubscript{3} content has been reported for *Halimeda incrassa* in seagrass meadows of the Cayman Islands (Barry et al., 2013). Such an increase in CaCO\textsubscript{3} content might be explained by the effect of seagrass photosynthesis, which in these shallow, dense seagrass meadows drastically increases pH and Ω\textsubscript{aragonite}, which in turn can enhance macroalgal calcification (Anthony et al., 2011; Semesi et al., 2009). As a consequence, thalli of calcareous algae growing more scattered within a seagrass meadow will have a higher carbonate content, and possibly also be more resistant to herbivory as a high CaCO\textsubscript{3} content has been suggested to enhance the effect of secondary metabolites that deter herbivores (Hay et al., 1994).

A positive correlation between sedimentary organic carbon and seagrass biomass has been reported from seagrass meadows in the western Indian Ocean (Gullström et al., 2018). Thus, we expected that the organic carbon content of the sediment would be highest in monospecific seagrass areas. It was however found that subplots with high or mid cover of seagrass mixed with calcareous algae had a significantly higher organic carbon content than the un-mixed seagrass subplot. The presence of calcareous algae apparently enhanced sediment carbon storage even though the algae by themselves had a comparatively low organic carbon production. It is possible that the combination of different plant types creates a physically complex structure that will increase particulate organic matter trapping capacity, leading to an increase in the amount of organic carbon in the sediment. Structural complexity in seagrass meadows has been shown to affect organic matter sedimentation (Dahls et al., 2018), and complex macroalgal assemblages trap considerable amounts of sediments (Stamski & Field, 2006). It has also been found that in Tangkhen Bay, Thailand, *Halimeda* spp. plays an important role as a source of organic matter in sediment (Tüntiprapas et al., 2019).
Seagrass meadows generally contain a range of different vegetation community compositions depending on, for example, bottom characteristics, water quality, light penetration, and temperature (Björk et al., 2008). Calcareous algae are particularly common in tropical seagrass meadows (Ortegón-Aznar et al., 2017), where they can influence the development of meadow configuration and plant composition (Schoener, 1983). In Chwaka Bay, mixed plant community compositions (that was found to benefit blue carbon stock levels) are commonly observed. Here, the relative cover of seagrass and Halimeda varies greatly within and among meadows, while there is no significant seasonal variation in general cover for either of the two plants studied here (Gullström et al., 2006). In the present study, the sedimentary organic content of seagrass meadows was dependent on the proportion of the meadow’s plant components. It is thus important to know how stable the relative plant cover mixtures are in space and time. While no data that show distribution patterns of seagrass versus Halimeda vegetation cover at a microscale (below meter scale) is available, the long-time stability of the general vegetation composition reported from Chwaka Bay (Gullström et al., 2006) makes it probable that the reported vegetation mixtures assessed here are indeed persistent enough to have an impact on the productivity and sedimentary carbon content of the system.

The inorganic carbon content of the sediment was in the same range as reported from earlier assessments in the area (Gullström et al., 2018) and similar in all vegetated subplots, and did not reflect either the relative cover of calcareous algae or the CaCO$_3$ production rate. When degraded, Halimeda carbonate disintegrates into thin flakes that are easily transported with currents over the meadows (Fornosa et al., 1992; Prager et al., 1996). This transport of CaCO$_3$ could possibly explain why all the vegetated subplots had similar inorganic carbon load, but since the unvegetated sediments had drastically lower levels of inorganic carbon it could not be the only explanation. One reason for this can be that unvegetated sediment obviously lack the structural complexity for efficiently trapping sediment particles. Another explanation might be that there are many other CaCO$_3$ producers in tropical seagrass meadows. In Chwaka Bay, the different Halimeda species have been shown to be the most important carbonate producers (Muzuka et al., 2001), but there are many reports of other seagrass meadow inhabitants that are producing large amounts of CaCO$_3$. For instance, in other tropical areas the epiphytic algal communities of different Thalassia species have been found to be major CaCO$_3$ producers (Frankovich & Zieman, 1994; Land, 1970; Nelsen & Ginsburg, 1986) and the seagrass itself (Thalassia testudinum) has been reported to precipitate aragonite needles in their cell walls, and as external deposits on their leaves (Enriquez & Schubert, 2014). These contributions could provide equal levels of CaCO$_3$ as the Halimeda species, thereby potentially equaling the inorganic carbon content between subplots, while the unvegetated sediment would receive less.

In summary, we found that sedimentary blue carbon storage levels were higher in mixed plant communities than when plants were growing in monospecific stands. This corresponded well with the total net areal biomass productivity measurements, where a mixture of seagrass and calcareous algae revealed the highest productivity levels. The findings clearly show that plant community composition could influence both ecosystem productivity and blue carbon sequestration in tropical seagrass meadows. The presence of calcareous algae within seagrass meadows should hence be carefully considered in conservation planning.

ACKNOWLEDGEMENTS
The authors want to thank Institute of Marine Science of the University of Dar es Salaam for providing space and equipment needed. We would also like to thank Charse Kweyunga, who is chief technician at Botany Department, University of Dar es Salaam, for analyzing sediment carbon content and thallus CaCO$_3$ content. Thanks are extended to the Swedish International Development Cooperation Agency (Sida) through the Bilateral Marine Science Programme between Sweden and Tanzania for financing this project.

CONFLICT OF INTEREST
The authors declare no competing interests.

AUTHOR CONTRIBUTIONS
Olivia J. Kalokora: Conceptualization (equal); Data curation (equal); Formal analysis (equal); Investigation (lead); Methodology (lead); Project administration (equal); Validation (equal); Visualization (equal); Writing – original draft (equal); Writing – review & editing (equal). Martin Gullstrom: Conceptualization (equal); Data curation (equal); Formal analysis (equal); Funding acquisition (equal); Investigation (equal); Methodology (equal); Project administration (equal); Resources (equal); Supervision (equal); Validation (lead); Visualization (equal); Writing – original draft (equal); Writing – review & editing (equal). Amelia S. Buriyo: Funding acquisition (equal); Investigation (supporting); Methodology (supporting); Project administration (equal); Supervision (equal); Validation (equal); Writing – review & editing (equal). Matern S. P. Mtolera: Conceptualization (supporting); Funding acquisition (lead); Investigation (supporting); Methodology (supporting); Project administration (lead); Supervision (equal); Validation (equal); Writing – review & editing (equal). Mats Björk: Conceptualization (equal); Data curation (equal); Formal analysis (equal); Funding acquisition (equal); Investigation (supporting); Methodology (supporting); Project administration (equal); Supervision (equal); Validation (equal); Visualization (equal); Writing – original draft (equal); Writing – review & editing (equal).

DATA AVAILABILITY STATEMENT
The data that support the findings of this study are openly available in Dryad at https://doi.org/10.5061/dryad.sxkgn0350.

ORCID
Martin Gullström https://orcid.org/0000-0002-7552-2431
Mats Björk https://orcid.org/0000-0003-0363-110X
REFERENCES

Anthony, K. R., Kleypas, J. A., & Gattuso, J. P. (2011). Coral reefs modify their seawater carbon chemistry—implications for impacts of ocean acidification. Global Change Biology, 17, 3655–3666.

Asplund, M. E., Rehnstam-Holm, A.-S., Atur, V., Raghunath, P., Saravanan, V., Hännström, K., Collin, B., Karunasagar, I., & Godhe, A. (2011). Water column dynamics of Vibrio in relation to phytoplankton community composition and environmental conditions in a tropical coastal area. Environmental Microbiology, 13, 2738–2751. https://doi.org/10.1111/j.1462-2920.2011.02545.x

Ballesteros, E. (1991). Seasonality of growth and production of deep-water population of Halimeda tuna (Chlorophyceae, Caulerpaceae) in the North-western Mediterranean. Botanica Marina, 34, 291–301.

Barry, S. C., Frazer, T. K., & Jacoby, C. A. (2013). Production and carbonate dynamics of Halimeda incrassata (Ellis) Lamouroux altered by Thalassia testudinum Banks and Soland ex König. Journal of Experimental Marine Biology and Ecology, 444, 73–80.

Björk, M., Axelson, L., & Beer, S. (2004). Why is Ulva intestinalis the only macroalga inhabiting isolated rockpools along the Swedish Atlantic coast? Marine Ecology Progress Series, 284, 109–116.

Björk, M., & Beer, S. (2009). Ocean acidification, could dense seagrass meadows resist? In L. J. McKenzie & R. L. Yoshih (Eds.), Seagrass Watch News (37, pp. 2–4). Seagrass Watch HQ.

Björk, M., Short, F., McLeod, E., & Beer, S. (2008). Managing seagrasses for resilience to climate change (pp. 1–56). IUCN. https://www.iucn.org/content/managing-seagrasses-resilience-climate-change-0

Carrascal, L. M., Galván, I., & Gordo, O. (2009). Partial least squares regression as an alternative to current regression methods used in ecology. Oikos, 118, 681–690. https://doi.org/10.1111/j.1600-0706.2008.16881.x

Cederlöf, U., Rydberg, L., Mgend, M., & Mwaipo, O. (1995). Tidal exchange in warm tropical lagoon, Chwaka Bay, Zanzibar. Ambio, 24, 458–464.

Cornwall, C. E., Comeau, S., DeCarlo, T. M., Moore, B., D’Alexis, Q., & McCulloch, M. T. (2018). Resistance of corals and coraline algae to ocean acidification: physiological control of calcification under natural pH variability. Proceedings of the Royal Society B: Biological Sciences, 285, 20181168. https://doi.org/10.1098/rspb.2018.1168

Costanza, R., d’Arge, R., de Groot, R., Farber, S., Grasso, M., Hannon, B., Limburg, K., Naeem, S., O’Neill, R. V., Paruelo, J., Raskin, R. G., Sutton, P., & van den Belt, M. (1997). The value of the world’s ecosystem services and natural capital. Nature, 387(6630), 253–260. https://doi.org/10.1038/387253a0

Dahl, M., Infantes, E., Clevesjö, R., Linderholm, H. W., Björk, M., & Gullström, M. (2018). Increased current flow enhances the risk of organic carbon loss from Zostera marina sediments: Insights from a flume experiment. Limnology and Oceanography, 63, 2793–2805. https://doi.org/10.1002/lno.11009

Davis, B. C., & Fourqueur, J. W. (2001). Competition between the tropical alga, Halimeda incrassata, and the seagrass, Thalassia testudinum. Aquatic Botany, 71, 217–232.

Duarte, C. M., & Cebrian, J. (1996). The fate of marine autotrophic production. Limnology and Oceanography, 41, 1758–1766. https://doi.org/10.4319/lo.1996.41.8.1758

Duarte, C. M., & Kirkman, H. (2001). Methods for measurement of seagrass abundance and depth distribution. In F. T. Short & R. G. Coles (Eds.), Global seagrass research methods (pp. 141–153). Elsevier.

Duarte, C. M., Marbà, N., Gacia, E., Fourqueur, J. W., Beggins, J., Barrón, C., & Apostolaki, E. T. (2010). Seagrass community metabolism: Assessing the carbon sink capacity of seagrass meadows. Global Biogeochemical Cycles, 24(4). https://doi.org/10.1029/2010GC003793

Enriquez, S., & Schubert, N. (2014). Direct contribution of the seagrass Thalassia testudinum to lime mud production. Nature Communications, 5, 3835.
Kennedy, H., & Björk, M. (2009). Seagrass meadows. In D. Laffoley & G. Grimsditch (Eds.), The management of natural coastal carbon sinks (pp. 23–29). IUCN. https://www.iucn.org/~/media/content/management/natural-coastal-carbon-sinks-2

Kennedy, P., Kennedy, H., & Papadimitriou, S. (2005). The effect of acidification on the determination of organic carbon, total nitrogen and their stable isotopic composition in algae and marine sediment. Rapid Communications in Mass Spectrometry, 19, 1063–1068.

Land, L. S. (1970). Carbonate mud: production by epibiont growth on Thalassia testudinum. Journal of Sedimentary Research, 40, 1361–1363. https://doi.org/10.1036/74D721B7-2B21-11D7-8648000102C1B65D

Macreadie, P. I., Serrano, O., Maher, D. T., Duarte, C. M., & Beardall, J. (2017). Addressing calcium carbonate cycling in blue carbon accounting. Limnology and Oceanography Letters, 2, 195–201.

Mahongo, S. B. (2014). Annual to inter-decadal variability in surface air temperature along the coast of Tanzania, Western Indian Ocean. Journal of Marine Science and Engineering, 13, 109–124.

McCoy, S. J., & Kamenos, N. A. (2015). Coraline algae (Rhodophyta) in a changing world: Integrating ecological, physiological, and geochemical responses to global change. Journal of Phycology, 51, 6–24.

Multur, H. G. (1988). Growth rate, ultrastructure and Sediment contribution of Halimeda incrassata and Halimeda monile, Nonsuch and Falmouth Bays, Antigua, W.I. Coral Reefs, 6, 179–186. https://doi.org/10.1007/BF00302014

Muzuka, A. N. N., Kangwe, J. W., Nyandwi, N., Wannäs, K. O., Mtolera, M. S. P., & Björk, M. (2001). Preliminary results of sediment sources, grain size distribution and relative cover of sand producing Halimeda species and associated flora in Chwaka Bay in Marine Science Development in Tanzania and Eastern Africa. In M. D. Richmond & J. Francis (Eds.), Proceedings of the 20th Anniversary Conference on Advances on Marine Sciences in Tanzania (pp. 51–59). IMS/WIOMSA.

Nelsen, J. E., & Ginsburg, R. N. (1986). Calcium carbonate production by epibionts on Thalassia in Florida Bay. Journal of Sedimentary Research, 56, 622–628.

Oliveira, E. C., Osterlund, K., & Mtolera, M. S. P. (2005). Marine plants of Tanzania. In N. Sporrong & M. Björk (Eds.), A field guide to the seaweeds and seagrasses of Tanzania (pp. 268). Botany Department, Stockholm University.

Ortegón-Aznar, I., Chuc-Contreras, A., & Collado-Vides, L. (2017). Calcareous green algae standing stock in a tropical sedimentary coast. Journal of Applied Phycology, 29, 2685–2693.

Prager, E. J., Southard, J. B., & Vivoni-Gallart, E. R. (1996). Experiments on the entrainment threshold of well-sorted and poorly sorted carbonate sands. Sediment, 43, 33–40.

Ralph, P. J., Durako, M. J., Enriquez, S., Collier, C. J., & Doblin, M. A. (2007). Impact of light limitation on seagrasses. Journal of Experimental Marine Biology and Ecology, 350, 176–193. https://doi.org/10.1016/j.jembe.2007.06.017

Russell, B. D., Connell, S. D., Uthicke, S., Muehllehner, N., Fabricius, K. E., & Hall- Spencer, J. M. (2013). Future seagrass beds: Can increased productivity lead to increased carbon storage? Marine Pollution Bulletin, 73, 463–469.

Schneider, K., & Erez, J. (2006). The effect of carbonate chemistry on calcification and photosynthesis in the hermatypic coral Acropora eurystoma. Limnology and Oceanography, 51, 1284–1293.

Schoener, T. W. (1983). Field experiments on interspecific competition. The American Naturalist, 122, 240–285. https://doi.org/10.1086/284133

Semesi, I. S., Beer, S., & Björk, M. (2009). Seagrass photosynthesis controls rates of calcification and photosynthesis of calcareous macroalgae in a tropical seagrass meadow. Marine Ecology Progress Series, 382, 41–47. https://doi.org/10.3354/meps07973

Short, F. T., Carruthers, T., Dennison, W., & Waycott, M. (2007). Global seagrass distribution and diversity: A bioregional model. Journal of Experimental Marine Biology and Ecology, 350, 3–20.

Short, F. T., & Duarte, M. C. (2001). Methods for the measurements of seagrass growth and production. In F. T. Short & R. G. Coles (Eds.), Global seagrass research methods (pp. 155–182). Elsevier.

South, G. R. (1983). A note on two communities of seagrasses and rhizophytic algae in Bermuda. Botanica Marina, 26, 243–248. https://doi.org/10.1515/botm.1983.26.5.243

Stamski, R. E., & Field, M. E. (2006). Characterization of sediment trapped by macroalgae on a Hawaiian reef flat. Estuarine, Coastal and Shelf Science, 66, 211–216.

Staveley, T. A. B., Perry, D., Lindborg, R., & Gullström, M. (2017). Seascap structure and complexity influence temperate seagrass fish assemblage composition. Ecography, 40, 936–946. https://doi.org/10.1111/ecog.02745

Tuntiprapas, P., Ken-Ichi, H., Hisao, O., Jannamane, P., Satoru, T., Milica, S., & Anancha, P. (2019). The contributions of allochthonous and autochthonous materials to organic carbon in coastal sediment: A case study from Tangkhen Bay, Phuket, Thailand. Ecological Research, 34, 718–729.

Unsworth, R. K. F., Collier, C. J., Henderson, G. M., & McKenzie, L. J. (2012). Tropical seagrass meadows modify seawater carbon chemistry: implications for coral reefs impacted by ocean acidification. Environmental Research Letters, 7, 24026.

Unsworth, R. K. F., & Cullen, L. C. (2010). Recognizing the necessity for Indo-Pacific Seagrass Conservation. Conservation Letters, 3, 63–73.

Ware, J. R., Smith, S. V., & Reaka-Kudla, M. L. (1992). Coral reefs: sources or sinks of atmospheric CO2? Coral Reefs, 11, 127–130. https://doi.org/10.1007/BF00255465

Williams, S. L. (1990). Experimental studies of Caribbean seagrass bed development. Ecological Monographs, 60, 449–469. https://doi.org/10.2307/1943015

**Supporting Information**

Additional supporting information may be found in the online version of the article at the publisher’s website.

**How to cite this article:** Kalokora, O. J., Gullström, M., Buriyo, A. S., Mtolera, M. S. P., & Björk, M. (2022). Seagrass meadows mixed with calcareous algae have higher plant productivity and sedimentary blue carbon storage. Ecology and Evolution, 12, e8579. [https://doi.org/10.1002/ece3.8579](https://doi.org/10.1002/ece3.8579)