Quark masses and decay constants in $N_f = 2 + 1 + 1$ isoQCD with Wilson clover twisted mass fermions

G. Bergnera, P. Dimopoulosb, J. Finkenrathc, E. Fiorenzad, R. Frezzottie, M. Garofalof, B. Kostrzewag, F. Sanfilippoh, S. Simulah, U. Wengeri

a University of Jena, Institute for Theoretical Physics, Max-Wien-Platz 1, D-07743 Jena, Germany
b Dipartimento di Scienze Matematiche, Fisiche e Informatiche, Università di Parma, via Università, 12 - I 43121 Parma
c Computation-based Science and Technology Research Center, The Cyprus Institute, 20 Konstantinou Kavafi Street, 2121 Nicosia, Cyprus
d CP3 - Origins & IMADA, University of Southern Denmark, Campusvej 55, 5230 Odense, Denmark
e University of Rome Tor Vergata and INFN Roma Tor Vergata, Via della Ricerca Scientifica 1, I-00133, Rome, Italy
f Dip. di Matematica e Fisica, University of Roma Tre, Via della Vasca Navale 84, I-00146 Rome, Italy
g HISKP (Theory), Rheinische Friedrich-Wilhelms-Universität Bonn, Nussallee 14-16, 53115 Bonn, Germany
h INFN section of Roma Tre, Via della Vasca Navale 84, I-00146 Rome, Italy
i Institute for Theoretical Physics, Albert Einstein Center for Fundamental Physics, University of Bern, Sidlerstr. 5, CH-3012 Bern, Switzerland

We present a preliminary study of the pion, kaon and D-meson masses and decay constants in isosymmetric QCD, as well as a preliminary result for the light-quark renormalized mass. The analysis is based on the gauge ensembles produced by ETMC with $N_f = 2 + 1 + 1$ flavours of Wilson-clover twisted mass quarks, spanning a range of lattice spacings from ~ 0.10 to 0.07 fm and include configurations at the physical pion point on lattices with linear size up to $L \sim 5.6$ fm.

37th International Symposium on Lattice Field Theory - Lattice2019
16-22 June 2019
Wuhan, China

*Speaker.
†marco.garofalo@roma2.infn.it
1. Action

We present a preliminary analysis based on the gauge ensembles produced by the Extended Twisted Mass Collaboration (ETMC) in isosymmetric QCD (isoQCD) with \(N_f = 2 + 1 + 1 \) flavours of Wilson-clover twisted mass quarks [1], i.e. in a lattice setup where physical observables can be evaluated at maximal twist with no O(a) scaling violations [2]. The lattice action is given by

\[
S = S_g + S_{\text{im}} + S_{\text{int}}^0,
\]

where for \(S_g \) we choose the Iwasaki improved gluon action (see e.g. eq. (2) of [1]). For the light (up and down) sea quark doublet \(\chi_L = (u,d) \), the twisted mass action [3] takes the form

\[
S_{\text{im}}^L = \sum_x \tilde{\chi}_L(x) \left[D_W(U) + i 4 c_{\text{SW}} \sigma_{\mu \nu} F_{\mu \nu}(U) + m_0 + i \mu_4 \gamma^5 \right] \chi_L(x).
\]

where \(\mu_4 \) is the twisted and \(m_0 \) the (untwisted) Wilson bare quark mass. The Pauli matrix \(\tau_3 \) acts in flavour space and \(D_W \) is the massless Wilson-Dirac operator. The Wilson quark mass \(m_0 \) and the clover term \(\frac{1}{4} c_{\text{SW}} \sigma_{\mu \nu} F_{\mu \nu}(U) \) with Sheikoleslami-Wohlert improvement coefficient \(c_{\text{SW}} \) [4] are trivial in flavour space.

For the strange \((s)\) and charm \((c)\) sea quark pair (field \(\chi_h = (c,s) \)) the action reads [5]

\[
S_{\text{im}}^h = \sum_x \tilde{\chi}_h(x) \left[D_W(U) + i 4 c_{\text{SW}} \sigma_{\mu \nu} F_{\mu \nu}(U) + m_{0h} - \mu_5 \tau_1 + i \mu_4 \tau^5 \right] \chi_h(x).
\]

The term \(\mu_5 \tau_1 \) is absent in eq. (1.2) as the \(u \) and \(d \) quarks are mass degenerate. By tuning the light and heavy Wilson bare quark masses \(m_0 \) and \(m_{0h} \) to their common critical value \(m_{\text{crit}} \) the maximally twisted fermion action is obtained for which all physical observables are O(a)-improved [2, 5].

In this framework isospin breaking lattice artifacts affect significantly the unitary neutral pion mass making it typically smaller than its charged counterpart, which in turn may render unquenched Monte Carlo simulations numerically unstable. This phenomenon here is substantially suppressed by introducing a clover term in the action [6, 1], which proves crucial for simulations close to the physical pion point with lattice spacings in the range \((0.10, 0.07)\) fm [1], where topological freezing is not a problem. Within a \(\sim 10\% \) accuracy, the clover term coefficient \(c_{\text{SW}} \) can be fixed through its estimate in one-loop [7] tadpole boosted perturbation theory, namely \(c_{\text{SW}} \approx 1 + 0.113(3) \frac{m_\pi^2}{P} \) with \(P \) the plaquette expectation value. Here we follow this prescription at all values of \(g_0^2 \) (corresponding to lattice spacings \(a \sim 0.10, 0.08, 0.07 \) fm - see Sect. 2). The parameters of the various simulation ensembles are shown in Table 1.

For the \((c,s)\) quark sector we adopt a mixed action setup using Osterwalder-Seiler fermions in the valence, with the same critical mass, \(m_{\text{crit}} \), as determined in the unitary setup and with action [8]

\[
S_{\text{imOS}}^{h,\text{val}} = \sum_f \sum_x \tilde{\chi}_f(x) \left[D_W(U) + i 4 c_{\text{SW}} \sigma_{\mu \nu} F_{\mu \nu}(U) + m_{\text{crit}} + i \mu_4 \gamma^5 \right] \chi_f(x).
\]

Reflection positivity of renormalized correlation functions in the continuum limit is guaranteed because the renormalized \(c \) and \(s \) valence masses are matched to their sea counterparts through

\[
m_{\text{ren}}^{c,s} = \frac{1}{Z_p} \left(\frac{Z_p}{Z_{\mu_4}} \mu_4 \right),
\]

where \(Z_p \) and \(Z_{\mu_4} \) are the renormalization factors for the quark and the gluonic pieces, respectively.
Table 1: Simulations details for the ETMC gauge ensembles with $N_f = 2 + 1 + 1$ Wilson-clover twisted mass quarks: volume, number of gauge configurations analyzed, $\kappa = (8 + 2\mu \text{crit})^{-1}$, bare twisted masses $a\mu_l$, $a\mu_s$, $a\mu_\delta$, and β. We have set $c_{SW} = [1.74, 1.69, 1.645]$ for $\beta = [1.726, 1.778, 1.836]$, respectively.

name	$L^3\cdot T/a^4$	Nconf	κ	$a\mu_l$	$a\mu_s$	$a\mu_\delta$	β
cA211.53.24	24·48	628	0.1400645	0.0053	0.1408	0.1521	1.726
cA211.40.24	24·48	662	0.1400645	0.0040	0.1408	0.1521	1.726
cA211.30.32	32·64	1237	0.1400645	0.0030	0.1408	0.1521	1.726
cA211.12.48	48·96	322	0.1400650	0.0012	0.1408	0.1521	1.726
cB211.25.48	48·96	314	0.1394267	0.0072	0.1246864	0.1315052	1.778
cC211.072.64	64·128	187	0.1394265	0.0072	0.1246864	0.1315052	1.778
cC211.06.80	80·160	210	0.1387510	0.0006	0.106586	0.107146	1.836

Table 2: Values of the valence bare quark masses for each of the ensembles analysed here.

name	$a\mu_{valence}$	$a\mu_c$
cA211.53.24	0.0053	0.0176
cA211.40.24	0.0040	0.0176
cA211.30.32	0.0030	0.0176
cA211.12.48	0.0012	0.0176
cB211.25.48	0.0025	0.0148
cC211.072.64	0.00072	0.0148
cC211.06.80	0.0006	0.0128

with Z_p and Z_δ denoting the non-singlet pseudoscalar and scalar Wilson fermion quark bilinear renormalization constants. In this way we avoid any undesired $s\cdot c$ quark mixing (through cutoff effects) in the valence and preserve the automatic $O(a)$ improvement of physical observables [8].

The masses of the sea strange and charm quarks are set, at each β, to values close to the physical ones (with a few percent tolerance) through the tuning procedure described in Ref. [1]. As for valence mass parameters, we evaluated correlators at light valence quark mass μ_l equal to its sea counterpart, as well as at three values of quark mass (μ_s) in the strange region and four values of the quark mass (μ_δ) in the charm region (see Table 2), which allows for a precise interpolation to the physical s and c point as determined by the K- and D-meson masses. Quark propagators with light and strange-like valence masses are obtained from inversions of the Dirac Matrix using the DDαAMG multi-grid algorithm optimized for twisted mass fermions [9].

For each ensemble we computed the two-point pseudo-scalar (PS) correlators defined as

$$C(t) = \frac{1}{L^3} \sum_{x,z} \langle 0| P_{qq'}(x) P_{qq'}(z) \rangle \delta_\tau(t_x-t_z),$$

(1.6)

where $P_{qq'}(x) = Z_q(x) i\gamma_5 Z_{q'}(x)$ with single-flavour Z_q and q in $\{l, s, c\}$. In this work for all mesons the twisted mass of the two valence quarks q, q' are always taken with opposite signs (or equivalently in the physical quark basis of Ref. [2] the Wilson parameters of the two valence quarks take opposite values), as this choice is known to suppress $O(a^2)$ errors. These two-point correlators are evaluated for the four combinations resulting from smeared or local interpolating fields at the sink and/or the source and analysed through the GEVP method [10] for the extraction of the ground-
state masses \(\langle M_{PS} \rangle \) and matrix elements. \(^1\) We employ a Jacobi smearing of the quark fields \([11]\) combined with APE smearing of the gauge links \([12]\).

For maximally twisted quarks the value of the matrix elements \(\mathcal{Z}_{PS} = |\langle PS | P_{q\bar{q}} | 0 \rangle|^2 \) determines the PS-meson decay constant with no need of any renormalization constant \([3]\), namely

\[
a f_{PS} = a(\mu_q + \mu_{\bar{q}}) \frac{\sqrt{a^4 \mathcal{Z}_{PS}}}{aM_{PS} \sinh(aM_{PS})}. \tag{1.7}
\]

For all ensembles the value of the bare parameter \(m_{0(h)} \) is tuned towards \(m_{crit} \) so that the renormalized untwisted current quark mass \(Z_A m_{PCAC} \) is well below \(0.1a\mu_t \), which is enough to make negligible the \(O(a) \) errors due to small numerical deviations from maximal twist. A marginal exception occurs only for the ensemble \(cA211.12.48 \), where a longer autocorrelation makes negligible the \(O(\xi) \) errors due to small numerical deviations from maximal twist. A

2. Lattice calibration and determination of \(w_0 \) from \(f_\pi \)

We carried out fits of the dependence of \(f_\pi \), written in units of the gradient flow scale \(w_0 \) \([13]\), on the meson mass \(M_\pi^2 \) using the SU(2) chiral perturbation theory (ChPT) formula

\[
(f_\pi w_0) = (f w_0) \left[1 - 2 \xi_\pi^M \log \xi_\pi^M + P_3 \xi_\pi^M + P_4 a^2 / w_0^2 \right] K_{FSE}^\pi(T),
\]

where \(\xi_\pi^M = M_\pi^2 / (16\pi^2 f^2) \) and \(f \), which has been left free to vary in the fit, is the SU(2) low-energy-constant entering the leading order chiral effective Lagrangian. The parameter \(P_3 \) is related to the next-to-leading low-energy-constant \(\ell_4 \) with \(P_3 = 2\ell_4 + 4 \log \left(M_\pi^{phys} / (4\pi f) \right) \), with \(M_\pi^{phys} \) being the value of the pion mass at the physical point. The factor \(K_{FSE}^\pi(T) \) represents the correction for finite size effects (FSE), as computed in Ref \([14]\) with ChPT at NLO using a resummed asymptotic formula. To further check the values of \(K_{FSE}^\pi(T) \) the ETM Collaboration is generating further ensembles with the bare parameters equal to those of the ensemble \(cA211.25.48 \) (see Tab. 2) except for the volume. Using data from these ensembles we will be able to fix higher order details and cross-check reliability of the chiral PT FSE correction formulae we employ. The result of the fit (2.1) is plotted in Fig. 1. Imposing in the continuum limit at pion point that \(M_\pi = 134.80 \text{ MeV} \) \([15]\) and \(f_{\pi}^{\text{phen.}} = 130.41 \text{ MeV} \) \([16]\) we find our preliminary estimate of the gradient flow scale \(w_0 \) and the other fit parameters (the coefficient describing lattice artefacts is compatible with zero)

\[
w_0 = 0.1706(18) \text{ fm,} \quad f = 122.31(18) \text{ MeV,} \quad \ell_4 = 4.3(1), \quad P_4 = -0.04(5). \quad (2.2)
\]

The error quoted here and below in Eqs. (3.2), (3.4) and (4.3) are only statistical. Our value of the parameter \(w_0 \) is compatible with a previous estimate in the \(N_f = 2 + 1 + 1 \) theory \([17]\). In future studies we plan to set the scale using the \(\Omega \) baryon mass rather than \(f_{\pi}^{\text{phen.}} \).

3. \(f_K \) and \(f_D \)

In order to extract the decay constant \(f_K \) at the physical point we first perform a small linear interpolation of our lattice data for each ensemble to three reference values of the quantity \(Bm_{LO}^{\pi} = 1\)

\(^1\) As discussed in \([10]\) the mass of the lightest state is estimated through a \(t \)-plateau average of the smallest eigenvalue obtained (for a suitable choice of \(\ell_0 \)) from the GEVP method, viz. \(\lambda_0(t, \ell_0) = C \left(e^{-M_\pi(t-\ell_0)} + e^{-M_\pi(T-(t-\ell_0))} \right) \).
In Sect. 2) and the ratio f_K/f_π.

Finally we interpolate linearly the tree values of f_K obtained in the continuum and chiral fit to the physical Bm^{LO}_s mass value we extrapolate to the continuum limit and the physical M_π using our best fit to the data according to the polynomial Ansatz

\begin{equation}
 \frac{w_0 f_K}{f_\pi} = P_1 \left[1 - \frac{3}{4} \xi_\Omega \log \xi_\Omega^M + P_2 \xi_\Omega^M + P_4 \xi_\Omega^2 \right],
\end{equation}

where P_1, P_2, and P_4 depend on the specific value of Bm^{LO}_s. In Fig. 2 (left panel) we show the chiral and continuum extrapolation for the largest Bm^{LO}_s.

Finally the four values of f_D obtained for different M^{ref}_D in the continuum and physical pion mass limits, are interpolated linearly to the physical (isospin averaged) $M^{ref,sp}_D = 1.867$ GeV [16], obtaining the preliminary (with scale set as in Sect. 2)

\begin{equation}
 f_D = 215(6) \text{ MeV}.
\end{equation}

4. Renormalized light quark mass m_{ud}

In this section we present our preliminary result for the average light quark renormalized mass m_{ud}. We fit the pion mass M_π and the decay constant f_π to the SU(2) ChPT formula

\begin{align}
 (M_\pi w_0) &= 2(B w_0) (m_{ud} w_0) \left[1 + \xi_\ell \log \xi_\ell + P_1 \xi_\ell + P_2 \xi_\ell^2 / w_0^2 \right] K_{M^{FSE}}^F, \\
 (f_\pi w_0) &= (f w_0) \left[1 - 2 \xi_\ell \log \xi_\ell + P_3 \xi_\ell + P_4 \xi_\ell^2 / w_0^2 \right] K_f^{FSE},
\end{align}

where P_0, P_1, P_2, P_3, P_4 are the polynomial parameters of the expansion M^{ref}_D.
We show our chiral and continuum fits. Imposing as above the terms $\propto P_2$ and $\propto P_3$ describing the dominating lattice artifacts,

$$\xi_f = 2B_0m_f/(16\pi^2 f^2), \quad P_1 = -\bar{\ell}_3 - 2\log\left(M^\text{phys}_f/(4\pi f)\right), \quad P_3 = 2\bar{\ell}_4 + 4\log\left(M^\text{phys}_f/(4\pi f)\right)$$

and $m_t = \mu_t/Z_P$ the renormalized mass. The renormalization factors Z_P have been calculated at each g_5^2 with $\sim 1\%$ percent accuracy in the RI’-MOM scheme and then converted (with N3LO accuracy) to the \overline{MS} scheme using $N_f = 4$ gauge ensembles generated for the purpose of evaluating renormalization constants in mass-independent schemes. The quantity $B, f, \bar{\ell}_3, \bar{\ell}_4, P_2, P_3$ are left as fit parameters and the factor $K^\text{FSE}_{M^f/(4\pi f)}$ represents the correction for FSE as computed in Ref. [14].

In Fig. 3 we show our chiral and continuum fits. Imposing as above $M_\pi = 134.80$ MeV and $f_\pi = 130.41$ MeV we find the preliminary results

$$m_{ud}(\overline{MS}, 2 \text{ GeV}) = 3.66(11) \text{ MeV}, \quad w_0 = 0.1703(18) \text{ fm}, \quad \bar{\ell}_3 = 2.9(2), \quad \bar{\ell}_4 = 4.3(1), \quad B = 2539(78) \text{ MeV}, \quad f = 122.1(2) \text{ MeV}. \quad (4.3)$$

The values found for w_0, $\bar{\ell}_4$ and f are compatible with those in Eq. (2.2).

Figure 2: Preliminary chiral and continuum fit of f_K (left) and f_D (right) as a function of the renormalized quark mass m_f in units of the gradient flow scale w_0 [13]. f_K is plotted at a fixed $Bm_f^{LO} = 0.252$ GeV2. f_D is plotted at a fixed $M^f_{LO} = 1.61$ GeV. The fit functions we employ are given in Eq. (3.1) for f_K and Eq. (3.3) for f_D.

5. Outlook and Acknowledgements

We have discussed a first analysis of the gauge ensembles produced by ETMC with $N_f = 2 + 1 + 1$ flavours of Wilson-clover twisted mass quarks. The results are preliminary because a
thorough study of the systematic uncertainties in finite size corrections, in the chiral and continuum extrapolations and in the computation of m_{ud} renormalization constant is not included here. However already at this stage it is apparent that the physical pion mass point is safely reached and quite small lattice artifacts are found even for charmed observables.

The computation of the correlators was carried out on the Marconi-KNL supercomputer at CINECA within the PRACE project Pra17-4394. We thank all of ETMC for collaboration. This project was funded in part by the DFG as a project in the Sino-German CRC110 (TRR110). The authors gratefully acknowledge the Gauss Centre for Supercomputing e.V. (www.gauss-centre.eu) for funding this project by providing computing time on the GCS Supercomputers JUWELS [19] and JURECA [20] at Jülich Supercomputing Centre (JSC). F.S and S.S are supported by the Italian Ministry of Research (MIUR) under grant PRIN 20172LNEEZ. F.S is supported by INFN under GRANT73/CALAT.

References

[1] C. Alexandrou et al., *Phys. Rev.* D98 (2018) 054518.
[2] R. Frezzotti and G. C. Rossi, *JHEP* 08 (2004) 007.
[3] ALPHA collaboration, R. Frezzotti, P. A. Grassi, S. Sint and P. Weisz, *JHEP* 08 (2001) 058.
[4] B. Sheikholeslami and R. Wohlert, *Nucl. Phys.* B259 (1985) 572.
[5] R. Frezzotti and G. C. Rossi, *Nucl. Phys. Proc. Suppl.* 128 (2004) 193.
[6] D. Becirevic, P. Boucaud, V. Lubicz, G. Martinelli et al., *Phys. Rev.* D74 (2006) 034501.
[7] S. Aoki, R. Frezzotti and P. Weisz, *Nuclear Physics B* 540 (1999) 501.
[8] R. Frezzotti and G. C. Rossi, *JHEP* 10 (2004) 070.
[9] C. Alexandrou, S. Bacchio, J. Finkenrath, A. Frommer et al., *Phys. Rev.* D94 (2016) 114509.
[10] B. Blossier, M. Della Morte, G. von Hippel, T. Mendes et al., *JHEP* 04 (2009) 094.
[11] UKQCD COLLABORATION collaboration, C. R. Allton, C. T. Sachrajda, R. M. Baxter, S. P. Booth et al., *Phys. Rev.* D47 (1993) 5128.
[12] M. Falcioni, M. Paciello, G. Parisi and B. Taglienti, *Nuclear Physics B* 251 (1985) 624.
[13] Budapest-Marseille-Wuppertal collaboration, S. Borsányi, S. Dürr, Z. Fodor et al., *Journal of High Energy Physics* 2012 (2012) 10.
[14] G. Colangelo, S. Durr and C. Haeferi, *Nucl. Phys.* B721 (2005) 136.
[15] S. Aoki et al., *Eur. Phys. J.* C77 (2017) 112.
[16] PARTICLE DATA GROUP collaboration, M. Tanabashi, K. Hagiwara, K. Hikasa, K. Nakamura et al., *Phys. Rev. D* 98 (2018) 030001.
[17] MILC collaboration, A. Bazavov et al., *Phys. Rev.* D93 (2016) 094510.
[18] N. Carrasco et al., *Phys. Rev.* D91 (2015) 054507.
[19] Jülich Supercomputing Centre, *Journal of large-scale research facilities* 5 (2019).
[20] Jülich Supercomputing Centre, *Journal of large-scale research facilities* 4 (2018).