Multivariate UV spectrophotometric quantification of Cilnidipine in bulk drug and pharmaceutical formulations

Vimal Ravi, Kokilambigai K S*, Kavitha J, Seetharaman R, Lakshmi K S
Department of Pharmaceutical Analysis, SRM College of Pharmacy, SRM Institute of Science and Technology, Kattankulathur Tamil Nadu, India

ABSTRACT
The aim of this research work was to develop a simple, accurate, sensitive and validated Ultra Violet (UV) spectrophotometric assay using the multivariate regression method for the analysis of Cilnidipine. This multivariate calibration technique was based on equations constructed using linear regression analysis using the correlation between absorbance and concentration at five selected equidistant wavelengths. Cilnidipine had a maximum absorbance at 240 nm. The findings were statistically analyzed for significance. A linear plot in the concentration range of 3-9 µg/mL, with a regression coefficient of 0.999 was obtained. The % RSD for intra-day and Inter-day precision were 0.4558 and 0.6099, respectively. The assay was determined and found to be 99.1% - 101.67% % w/w.

Keywords: Cilnidipine, Antihypertensive agent, UV spectrophotometry, Multivariate calibration, Assay, ICH guidelines.

INTRODUCTION
Cilnidipine is a majorly L-type calcium channel blocker that is used in the ailments of hypertension and other heart related conditions such as stroke and angina. It is often recommended for diabetic patients with these conditions [1]. Clinical and animal tests have proven its efficacy as a Reno protective, cardioprotective and neuroprotective agent. It demonstrates both L-type and N-type Ca^{2+} channel blocking activity and is hence a dual activity drug in antihypertensive pharmacotherapy. Cilnidipine suppresses the cardiovascular neurohumoral regulation, sympathetic nervous system as well as the renin-angiotensin-aldosterone system [2]. Cilnidipine (Figure 1) is a dihydropyridine compound with an IUPAC nomenclature of 3-O- (2-methoxyethyl)5-O-[{(E)-3-phenylprop-2-enyl] 2,6-dimethyl-4-(3-nitrophenyl)-1,4-dihydropyridine-3,5-dicarboxylate, a molecular formula of C_{27}H_{28}N_{2}O_{7} and a molecular weight of 492.5 g/mol [3]. The drug is official in Indian Pharmacopoeia [4]. Literature review showed findings of various UV-Vis Spectrophotometry [5-17] available for its estimation.

Figure 1: Chemical structure of Cilnidipine

The technique being suggested provides a higher confidence in results as it directly evaluates Cilnidipine and has been attested with greater accuracy and precision than a classical UV-Visible assay. This technique is also more cost effective, direct and rapid than other methods, and can be used for bulk drugs as well as various dosage forms. This multivariate standardization method simplifies the individual result and converts it into a “m” value as a reliant variable [18-20].

Within optimized conditions, this analytical technique would provide excellent sensitivity, resolving power, expeditiousness and cost effectiveness for a validated quantification of Cilnidipine. The absorbance of an analyte (X) i.e. Cilnidipine, is scanned at 5 different wavelengths (λ = 236, 238, 240, 242 and 244 nm), the following formula can then be applied for any preferred wavelength.

\[A_{\lambda} = a X C_x + k_1 \] \hspace{1cm} (1)
\[A_{\lambda} = b X C_x + k_2 \] \hspace{1cm} (2)
\[A_{\lambda} = c X C_x + k_3 \] \hspace{1cm} (3)
\[A_{\lambda} = d X C_x + k_4 \] \hspace{1cm} (4)
\[A_{\lambda} = e X C_x + k_5 \] \hspace{1cm} (5)

Where \(A_{\lambda} \) is the analyte's absorbance, a, b, c, d, and e being slopes of the analyte's linear regression functions; intercepts are denoted as k1, k2, k3, k4, k5 at the five specified wavelengths, and Cx is the...
The λ max of Cilnidipine was found to be 240 nm with Methanol as the solvent as shown in Figure 2.

Preparation of sample solution

10 mg of Cilnidipine was accurately weighed and powdered. A weight corresponding to 10 mg was measured into a 10 ml volumetric flask, dissolved and made up to the mark with methanol to obtain 1 mg/mL. This solution was then filtered and used for further analysis.

Determination of λ max

The above equation can be further condensed to

\[A_T = C_\lambda (a + b + c + d + e) + K_T \]

Where \(A_T \) and \(K_T \) is the summation of the absorbance acquired cum totality of intercepts of regression equations at selected five wavelengths respectively. The concentration of the analyte \(X \) is computed by following formula.

\[C_\lambda = \frac{A_T - K_T}{(a + b + c + d + e)} \]

MATERIALS AND METHODS

Chemicals and reagents

Methanol (Gradient grade, Finar Chemicals), Cilnidipine was obtained as a gift sample from Ideal Analytical and Research Institute, Pondicherry. The marketed tablet formulation used was Cilaheart-10, Mankind Pharma, India, (Label claim – 10 milligram Cilnidipine), acquired from a local market.

Instrumentation

LAB INDIA 3092 UV-Visible double beam spectrophotometer, Ultra Sonicator Bath, Analytical balance, Micropipette

Analytical method development

Choice of the solvent

In Methanol, Cilnidipine was found to be freely soluble. Hence, it was used for further dilutions of both standard and sample drug.

Standard stock solution

Cilnidipine standard stock solution was prepared by the dissolution 10 mg of the standard drug in 5 mL of Methanol and then making up to the mark in a 10 mL standard flask with the same solvent. 1mL of this solution was transferred to another 10mL volumetric flask and made up to 10mL with diluent to obtain a 10 \(\mu g/mL \) concentration. From this standard stock solution, several concentrations (3-9 \(\mu g/mL \)) of solution were prepared.

Determination of λ max

The standard stock solution was diluted in methanol to obtain 6 \(\mu g/mL \). This solution was measured in the Ultra-Violet region from 200 - 400 nm. The \(\lambda_{max} \) was obtained as 240 nm (Figure 2). The linear curve was obtained with a graph plotting the absorbance against the concentration (Table 1). The solutions were scanned across the range surrounding 240 nm i.e., 236, 238, 240, 242, 244 nm to better enhance the correlation and to diminish instrumental oscillations.

Preparation of sample solution

20 tablets of Cilnidipine were accurately weighed and powdered. A weight corresponding to 10 mg was measured into a 10 ml volumetric flask, dissolved and made up to the mark with methanol to obtain 1 mg/mL. This solution was then filtered and used for further analysis.

Method Validation

According to ICH Q2B guidelines this method was validated for sensitivity, precision, accuracy, and linearity.

Linearity

The different concentrations over the range of 3-9\(\mu g/mL \) was prepared from the standard stock solution of Cilnidipine. In order to minimize instrumental fluctuations and to better the correlation, these solutions were scanned overrange of wavelength surrounding its absorbance maxima at 236, 238, 240, 242, 244 nm respectively. The absorbances were recorded and the standardizations were obtained by plotting a concentration vs absorbance graph. (Figure 3, Table 1).

Concentration (µg/mL)	Absorbance²
3	0.239
4.5	0.361
6	0.475
7.5	0.594
9	0.719

²Average of 5 determinations; UV= Ultra violet

By calculating the detection limit and quantification limit using the below formula, the sensitivity of the method was determined.

LOD = 3.3 \(\sigma /S \) .. (8)

LOQ = 10 \(\sigma /S \) .. (9)

Here, \(\sigma \) is the standard deviation (SD) of the lowermost concentration and

\(S \) is the slope of the standard curve.

Precision

To assess the intra-day and inter-day precision, 6 \(\mu g/mL \) solution was scanned six times in a short interval of time in one day for intraday precision and on six different days for inter-day precision.

Accuracy

Using the standard addition technique, the recovery study for the suggested technique was resolved at 80%, 100%, and 120%. The standard and sample stock solutions were prepared. 0.3 mL of standard was pipetted out into a three standard 10mL volumetric flasks and to it 0.48, 0.3, 0.72 mL of sample solution were added respectively, making up to a capacity of 10 mL with Methanol. These solutions were measured with a UV spectrophotometer, and the percentage recovery was calculated.

Assay

The amount of Cilnidipine present in the tablet formulation was calculated by measuring the absorbance of the extracted tablet solution at 240 nm.

RESULTS AND DISCUSSION

The \(\lambda_{max} \) of Cilnidipine was found to be 240 nm with Methanol as the solvent as shown in Figure 2.
The technique is linear within the assigned concentration range of 3-9 µg/mL. The linear regression analysis shows good linear relationship with $R^2=0.9997 - 0.9999$ for all the calibration plots. For precision, the % relative standard deviation was found to be 0.4558 and 0.6099. The LOD and LOQ obtained are 0.1436 µg/mL and 0.4352 µg/mL respectively. Therefore, the values were found to fall according to ICH guideline limits of validation parameters.

Linearity

The linearity was recorded at 236, 238, 240, 242 and 244 nm in the concentration range of 3-9 µg/mL and depicted in Figure 3 and corresponding calibration curves and residual plots are presented in Figures 4 to 8 & 9-13 respectively. For each of the wavelengths, the low values of % relative standard deviation show that the technique is accurate and precise. The LOD and LOQ were calculated and reported in Table 2.

Figure 2- UV spectrum of Cilnidipine (6 µg/mL), λ_{max} at 240 nm

Figure 3- UV Spectrum of Cilnidipine showing linearity at 240 nm

Figure 4- Calibration curve at 236 nm

Figure 9- Residual plot at 236 nm
Table 2: Linearity data with LOD and LOQ at selected five wavelengths

Wavelength (nm)	Regression equation	R²	LOD (µg/mL)	LOQ (µg/mL)	% RSD
236	y = 0.0795x + 0.0004	0.9998	0.1319	0.3997	0.6654
238	y = 0.0926x + 0.0002	0.9999	0.1098	0.3330	0.5548
240	y = 0.0842x + 0.0002	0.9997	0.1436	0.4352	0.7251
242	y = 0.0824x + 0.0008	0.9999	0.0840	0.2545	0.4235
244	y = 0.0815x + 0.0006	0.9997	0.1439	0.4361	0.7256

nm = Nanometer; µg/mL = Microgram per millilitre

Precision

The low values of standard deviation indicate that this technique is specific and % RSD for the intra-day and inter-day precision were found to be 0.4558 and 0.6099 respectively. It lies within the limits of less than 2% at each wavelength. The low percentage value of relative standard deviation reveal that the suggested technique is accurate and precise (Figure 14, 15).

Recovery

As per ICH guidelines, the % recovery of Cilnidipine was found to be from the range of 99.67% - 101.67% w/w. The recovery was between the acceptable range of 97 - 103 % w/w (Figure 16, Table 3).

Figure 14: UV spectra showing intraday precision

Figure 15: UV spectra showing interday precision

Figure 16: UV Spectrum showing accuracy of Cilnidipine
CONCLUSIONS
This novel multivariate technique is evidently more accurate, precise, reproducible, cost effective and more sensitive than classical UV-Visible Spectrophotometry for Cilnidipine assay. This multilinear regression analysis is proven to be desirable for testing absorbance ratio method. In the laboratory premises.

CONFLICTS OF INTEREST
The authors report no conflict of interest in this study.

ACKNOWLEDGMENT
The authors are thankful to the Chancellor of SRM Institute of Science and Technology, and the management of SRM College of Pharmacy, SRM Institute of Science and Technology, Kattankulathur for allowing to carry out the research work within the university laboratory premises.

REFERENCES
1. Chakraborty RN, Langade D, More S, 2021. Efficacy of Cilnidipine (L/N-type Calcium Channel Blocker) in Treatment of Hypertension: A Meta-Analysis of Randomized and Non-randomized Controlled Trials, Cureus. 13, e19822.
2. Chandra KS, Ramesh G, 2013. The fourth-generation Calcium channel blocker: Cilnidipine, Indian Heart J 65, 691–695.
3. National Center for Biotechnology Information, 2021. PubChem Compound Summary for CID 5282138, Cilnidipine.
4. The Indian Pharmacopoeia, Government of India, Ministry of health, vol/II: 2018, 1616-1617
5. Chaudhari PP, Bhalerao AV, 2012. Method Validation for Spectrophotometric Estimation of Cilnidipine, Int J Pharm Sci, 4, 96–98.
6. Haripriya M, Antony N, Jayasekhar P, 2013. Development and Validation of UV Spectrophotometric Method for the Simultaneous Estimation of Cilnidipine and Telmisartan in Tablet Dosage Form Utilizing Simultaneous Equation and Absorbance Ratio Method, Int. J. Pharm. Biol. Sci. 3, 343–348.
7. Safhi MM, 2013. Spectrophotometric Method for the Estimation of Cilnidipine in Bulk and Pharmaceutical Dosage Forms, Orient J. Chem. 29, 131–134.
8. Sidhdhapara M, Patel B, Parmar A, 2014. Development and Validation of Spectrophotometric Method for Simultaneous Determination of Cilnidipine and Olmesartan medoximil in Tablet Dosage Form, Int. J. Pharm. Biol. Sci. 4, 97–101.
9. Soni II, Panchal HJ, 2014. Development and Validation of Dual Wavelength UV Spectrophotometric Method for Simultaneous Estimation of Cilnidipine and Olmesartan Medoxomil in Tablet Dosage Form, Indian J. Pharm. Biol. Res. 2, 76–81.
10. Sidhdhapara M, Patel B, Parmar A, 2014. Derivative Spectrophotometric Method for Simultaneous Determination of Cilnidipine and Olmesartan Medoximil in Tablet Dosage Form, Der Pharm Chem. 6, 175–178.
11. Ghelani NC, Bhalodiya K, Dadhania K, et al, 2014. Development and Validation of Spectrophotometric Method for Simultaneous Estimation of Olmesartan Medoxomil and Cilnidipine by Simultaneous Equation Method. Pharm Tutor Mag. 2, 160–166.
12. Patel SN, Hinge MA, Bhanushali VM, 2015. Development and Validation of an UV Spectrophotometric Method for Simultaneous Determination of Cilnidipine and Chlorthalidone. J. Pharm. Res. 9, 41–45.
13. Buchiya FV, Bhim AI, Raj HA, et al, 2015. Simultaneous Determination of Cilnidipine and Valsartan in Synthetic Mixture Using Spectrophotometric Technique (Simultaneous Equation Method). Asian J. Pharm. Anal. 5, 21–25.
14. Hinge MA, Desai DK, Patel ES, et al, 2015. Development and Validation of UV Spectrophotometric Method for Simultaneous Estimation of Cilnidipine and Metoprolol Succinate in Bulk Drugs and Combined Dosage Form. Der Pharm. Lett. 7, 299–306.
15. Jani RJ, Patel SA, 2018. Simultaneous Spectrophotometric Determination of Azilsartan Kamedoxomil and Cilnidipine in Mixture. Int. J. Res. Pharm. Pharm. Sci. 3, 86–90.
16. Jani RJ, Patel SA, 2018. Development and Validation of Spectrophotometric Method for Simultaneous Estimation of Azilsartan Kamedoxomil and Cilnidipine in Synthetic Mixture. World J. Pharm. Res. 7, 948–958.
17. Safhi MM, 2015. Spectrophotometric Estimation of Cilnidipine

Table 3: Recovery Studies

Wavelength (nm)	Amount present (µg/mL)	Amount added (µg/mL)	Absorbance	Amount recovered (µg/mL)	% Recovery
236	3	1.8	0.385	4.79	99.79
		3	0.486	6.01	100.17
		4.2	0.564	7.19	99.86
238	3	1.8	0.396	4.79	99.79
		3	0.499	5.99	99.83
		4.2	0.587	7.18	99.72
240	3	1.8	0.401	4.81	100.21
		3	0.509	6.03	100.50
		4.2	0.592	7.21	100.14
242	3	1.8	0.397	4.79	99.79
		3	0.501	5.98	99.67
		4.2	0.588	7.19	99.86
244	3	1.8	0.386	4.8	100.00
		3	0.493	6.1	101.67
		4.2	0.574	7.22	100.28

Table 4: Assay of Cilnidipine

Label claim (mg)	Amount obtained (mg)	% Assay
10	9.99	99.90
10.01	100.10	
10.00	99.90	
Average	9.96	99.63
SD	0.6429	
% RSD	0.6453	

CONCLUSIONS
This novel multivariate technique is evidently more accurate, precise, reproducible, cost effective and more sensitive than classical UV-Visible Spectrophotometry for Cilnidipine assay. This multilinear regression analysis is proven to be desirable for testing standard drug as well as other dosage forms of Cilnidipine. This method is validated using ICH Quality Guidelines and found to be within the set limits of validation. This is a simple working procedure in comparison to expensive and intricate techniques such as HPLC and HPTLC, and hence can be employed for routine analysis of Cilnidipine formulations in bulk drug and pharmaceuticals.

List of symbols/abbreviations

nm = Nanometer
µg/mL = Microgram per millilitre
g/mol = Gram per Mole
ICH = International Conference on Harmonization
UV = Ultraviolet
HPLC = High Performance Liquid Chromatography
HPTLC = High Performance Thin Layer Chromatography

CONFLICTS OF INTEREST
The authors report no conflict of interest in this study.

ACKNOWLEDGMENT
The authors are thankful to the Chancellor of SRM Institute of Science and Technology, and the management of SRM College of Pharmacy, SRM Institute of Science and Technology, Kattankulathur for allowing to carry out the research work within the university laboratory premises.
18. Kokilambigai KS, Seetharaman R, Kavitha J, 2017. Multivariate Calibration technique for the spectrophotometric quantification of Zaleplon in bulk and pharmaceutical formulations, J Pharm Sci Res. 9, 824-829.

19. Sai Susmitha A, Kokilambigai KS, Lakshmi KS, 2019. Spectrophotometric quantification of Telmisartan employing multivariate calibration technique in bulk and pharmaceutical formulations, Res J Pharm Technol. 12, 1799-1805.

20. Madhan S, Kavitha J, Lakshmi KS, 2016. Multivariate calibration technique for the spectrophotometric quantification of Ivermectin in Pharmaceutical Formulation, Asian J Pharm Clin Res. 12, 444-451.

21. Durgadevi P, Kokilambigai KS, Lakshmi KS, 2020. First order derivative spectrophotometric method for the quantification of Telmisartan employing Multivariate Calibration Technique. Res J Pharm Technol. 13, 774-780.

22. Naveena Rani D, Kokilambigai KS, Lakshmi KS, 2020. Multivariate calibration technique for the spectrophotometric quantification of Rasagiline in bulk drug and pharmaceutical formulation, Res J Pharm Technol. 13, 843-849.

23. Mani Aravinth R, Kokilambigai KS, Anusha Reddy C, 2021. Spectrophotometric quantification of Granisetron in bulk drug and pharmaceutical formulations employing multivariate calibration technique, J Med Pharm Allied Sci. 10, 3435-3439.

How to cite this article
Kokilambigai K S, Vimal Ravi, Kavitha J, Seetharaman R, Lakshmi. K S, 2022. Multivariate UV spectrophotometric quantification of Cilnidipine in bulk drug and pharmaceutical formulations. J. Med. P’ceutical Allied Sci. V11- I2, Pages - 4672 - 4678 doi: 10.55522/jmpas.V11I2.2718.