SOROSGERJESZTÉSŰ EGYENÁRAMÚ MOTOR MODELLEZÉSI ELJÁRÁSAINAK ÁTTEKINTÉSE

REVIEW OF THE MODELLING METHODS OF SERIES WOUND DC MOTORS

Szántó Attila,1 Szántó András,2 Sziki Gusztáv Áron3

Debreceni Egyetem, Informatikai Tudományok Doktori Iskola. Debrecen, Magyarország
1 szanto.attila93@gmail.com
2 andras.szanto.0503@gmail.com
3 sziki@eng.unideb.hu

Abstract

Thanks to technological development and ever-increasing environmental regulations, electric and hybrid vehicles are playing an increasingly important role in road transport. An important part of these vehicles is the electric motor, several different types of which are utilized in modern vehicles. One of these types is the series wound DC motor. In this publication, we review the different modelling methods of the above motor type. On the basis of the models we can perform the simulation in MATLAB/Simulink environment. We also present the technical parameters and characteristics that are needed to run the simulation, and the measurement procedure for determining them. Finally, we present the measurement system we have developed for the measurement and testing the motors.

Keywords: series wound DC motor, modelling, simulation, MATLAB/Simulink.

Összefoglalás

A technológia fejlődésének, valamint az egyre szigorodó környezetvédelmi előírásoknak köszönhetően az elektromos és hibrid járművek egyre szélesebb körben terjednek el a közúti közlekedésben. A járművek egyik fő alkotórésze a villanymotor, amelynek számos típusa létezik, és teljesít szolgálatot a modern járművekben. A jelen publikációban az elektromos járművek hajtására kifejlesztett soros gerjesztésű egyenáramú motor modellezési eljárásait tekintjük át. A modellek alapján –MATLAB/Simulink környezetben – elkészíthető a motor szimulációja. A továbbiakban bemutatjuk, hogy a szimulációs program futtatásához milyen bemenő paraméterek és karakterisztikák szükségesek, valamint ismertetjük a meghatározásukhoz alkalmazott kísérleti eljárásokat, megadva a részletes leírásukat tartalmazó irodalmi forrást. Végül bemutatjuk az általunk kifejlesztett mérőrendszert, amellyel a mérések elvégezhetők.

Kulcsszavak: soros gerjesztésű DC motor, modellezés, szimuláció, MATLAB/Simulink.

1. Bevezetés

Napjainkban a közúti közlekedésben egyre szélesebb körben terjednek el a különböző alternatív hajtású járművek. Ennek okai egyrészt a klímaváltozás miatt szigorodó környezetvédelmi előírások, jogszabályok, másrészt a rohamosan fejlődő technológia. A különböző alternatív hajtások közül leginkább az elektromos és hibrid hajtások terjedtek el, köszönhetően az akkumulátorok, valamint az elektromos és hibrid rendszerek gyors fejlődésének.

Mivel a hibrid és elektromos rendszerű hajtáskokban található valamilyen villanymotor, ebből adódóan az elektromos motorokkal kapcsolatos
kutatások egyre hangsúlyosabbak. A Debreceni Egyetem Műszaki Karán a hallgatói csapatok – saját fejlesztésű és kivitelezésű járművekkel – rendszeres résztvevői alternatív hajtású járművek számára hirdetett versenyeknek (Shell ECO Marathon, MVM Futam, Pneumobil és Elektromobil versenyek). A tudatosabb tervezés és eredményesebb versenyénő érdekében Matlab/Simulink-környezetben [1] kifejlesztettük egy járműdinamikai szimulációs programot, amely a jármű műszaki adataiból előállítja a jármű menetdinamikai függvényeit. A programot felhasználva optimálizálhatjuk a jármű, illetve a hajtásánc műszaki jellemzőit egy adott versenyfeladathoz.

A szimulációs program fontos része a jármű hajtásának, ezen belül motorjának szimulációja. Kutatásaink során a Debreceni egyetem egyetem Műszaki Karán tervezett és kivitezett elektromos hajtású versenyautó soros gerjesztésű egyenáramú motorját modelleztük.

A modellünk alapján MATLAB/Simulink-környezetben elkészítettük a motor simulációját [2]. Emellett a motor saját fejlesztésű műkőrendszeren teszteltük, és a teszt eredményeit összehasonlítottuk a mérési eredményekkel [2].

A szakirodalomban soros gerjesztésű egyenáramú motorra több, részben eltérő modell fellelhető. Ezek a modellek különböző műszaki adatokból, karakterisztikák ből számlanak, amelyek vagy megtalálhatóak a motor katalógusában, vagy kísérleti úton kell összehasonlítottuk a mérési eredményekkel [2].

2. Modellek soros gerjesztésű egyenáramú motorra

Az elektromos járművek hajtására alkalmazott villanymotorok közül egy a soros gerjesztésű, egyenáramú motor. A fenti motortípusnál az álló és a forgórész is tekercesl, és azok egymással sorba vannak kötve. Az álló és forgórész közötti elektromos kapcsolatot szénkefék biztosítják. A fenti motor modellezése egy elektromágneses és egy dinamikai egyenleten alapul, ezeket a továbbiakban ismertetjük.

2.1 Elektromágneses egyenlet

2.1.1. Az egyenlet általános alakja

A Kirchhoff-féle huroktörvény alapján a soros gerjesztésű egyenáramú motorra felírható az alábbi egyenlet:

$$U = (R_s + R_r) \cdot i + \varepsilon_s + \varepsilon_r + \varepsilon_{sr} + U_{kef}$$  (1)

ahol

- $U$ – a motor tápfeszültsége,
- $R_s$ és $R_r$ – az álló és forgó rész tekercseinek elektromos ellenállása,
- $i$ – a motoron átfolyó áram erőssége,
- $\varepsilon_s$ és $\varepsilon_r$ – az önindukció során az álló és forgó részben,
- $\varepsilon_{sr}$ – a kölcsönös indukció során a forgó részben indukált elektromotoros erő (visszaható elektromotoros erő),
- $U_{kef}$ – a kefefeszültség.

Az $\varepsilon_s$ és $\varepsilon_r$ elektromotoros erők számítására a [3, 4, 5, 6, 7, 8, 9, 10] szakirodalmakban egységesen a következő összefüggéseket használják:

$$\varepsilon_s = L_s(i) \cdot \frac{di}{dt}$$  (2)

$$\varepsilon_r = L_r(i) \cdot \frac{di}{dt}$$  (3)

ahol $L_s(i)$ és $L_r(i)$ az álló- és forgó rész öninduktivitása.

Mint látható, általános esetben az öninduktivitás függ a tekercsenként átfolyó áram erősségétől. Az $L_s(i)$ és $L_r(i)$ karakterisztikák kísérleti meghatározására a [2, 10] forrásokban találunk eljárást.

A másik megközelítésben [8, 9, 10] az elektromotoros erő számítására alapvetően két megközelítés létezik. Az egyik [2, 3, 4, 5, 6] szerint:

$$\varepsilon_{sr} = L_{sr}(i) \cdot \omega \cdot i$$  (4)

ahol

$\varepsilon_{sr} = L_{sr}(i)$ – az álló és forgórész kölcsönös induktivitása,
$\omega$ – a forgórész szögsebessége.

Az $L_{sr}(i)$ karakterisztikák kísérleti meghatározására a [2, 3] forrásban találunk eljárást.

A másik megközelítésben [8, 9, 10] az elektromotoros erőt az álló rész mágneses fluxusából ($\Psi_s(i)$) számolják:

$$\varepsilon_{sr} = K_e \cdot \Psi_s(i) \cdot \omega$$  (5)

ahol $K_e$ konstans, amely a névleges értékékből meghatározható.

Ehhez az (1) összefüggést kell felírni a motor állapotú állapotú működésére. Állapotú állapotban teljesül, hogy:
\[ \varepsilon_s = L_s(i) \cdot \frac{di}{dt} = 0, \quad \varepsilon_r = L_r(i) \cdot \frac{di}{dt} = 0 \quad (7) \]

Tehát:

\[ k_e = \frac{U_N - (R_s + R_r) \cdot i_N - U_{ref}}{\Psi_{SN} \cdot \omega_N} \quad (8) \]

A \( \Psi_s(i) \) karakterisztika kísérleti meghatározására a [2, 3] forrásokban találunk eljárást.

2.1.2. Lineáris és nemlineáris közelítés

A modellezési eljárás során egyaránt alkalmazhatunk lineáris és nemlineáris közelítést. A lineáris közelítés esetén feltételezzük, hogy az álló és forgó rész mágneses fluxusa, továbbá az álló rész által a forgórészben keltett mágneses fluxus egyenesen arányos a motoron átfolyó áram erősségével:

\[ \Psi(i) = L \cdot i \Rightarrow \frac{\Psi(i)}{i} = \text{állandó} \quad (9) \]

Azaz, ebben az esetben az álló és forgó rész öninduktivitása, valamint a kölcsönös induktivitás állandó, amelyek meghatározhatók a névleges értékekkel [10].

A nemlineáris közelítés esetében két esetet különböztetnek meg. Az első esetben statikus induktivitásokat alkalmaznak, amelyeket a mágneses fluxus és áramerősség hányadosaként értelmeznék. Ebben az esetben azonban a fenti hányados, így az induktivitás nem állandó, hanem függ az áramerősségtől:

\[ L(i) = \frac{\Psi(i)}{i} \neq \text{állandó} \quad (10) \]

A második esetben dinamikus induktivitásokat használnak, amelyet az alábbi összefüggés értelmez:

\[ L(i) = \frac{d\Psi(i)}{di} \quad (11) \]

Meg kell jegyezni, hogy a lineáris közelítés csak a motor állandósnál állapotú működés esetén ad pontos közelítést, dinamikus esetben (például, ha a motor felpörög) elég pontatlan. Az utóbbi esetben a dinamikus induktivitások használata ajánlott, amelyekkel minden esetben megvalósítható a pontos modelllezés. Itt meg kell jegyezni, hogy a pontosság tovább növelhető a Jill Atherton-modell alkalmazásával, amely a mágneses nemlineárítások mellett a vasmaggal kapcsolatos veszteségeket is figyelembe veszi.

2.2 Dinamikai egyenlet

A motor forgó részére felírható az alábbi mozgásegnyenlet:

\[ J \cdot \frac{d\omega}{dt} = T_{elm} - T_{terh} - T_{sürl} \quad (12) \]

ahol

\[ T_{elm} – az elektromágneses nyomaték, \]
\[ T_{terh} – a terhelő nyomaték, \]
\[ T_{sürl} – az ellenállási nyomaték, \]
\[ J – a forgóész tehetetlenségi nyomatéka. \]

Az elektromágneses nyomaték – az állórész mágneses fluxusából – a következő összefüggéssel számítható:

\[ T_{elm} = k_m \cdot \Psi_s(i) \cdot i \cdot \eta_m(i) \quad (13) \]

ahol

\[ k_m – állandó, \]
\[ \eta_m(i) – a motor hatásfoka, amely függ a motoron átfolyó áram erősségtől. \]

A nemlineáris közelítés esetében a névleges értékekből meghatározható:

\[ k_m = \frac{T_{elmN}}{\Psi_{SN} \cdot i_N \cdot \eta_{mN}} \quad (14) \]

\[ T_{elmN} = \frac{P_N}{\omega_N} \quad (15) \]

A fenti összefüggésben \( P_N \) a motor névleges teljesítménye. A \( \eta_m(i) \) karakterisztika általában szerepel a motor katalógusában.

Az elektromágneses nyomatékot a kölcsönös induktivitás ismertében a következő összefüggéssel számíthatjuk:

\[ T_{elm} = L_{sr}(i) \cdot i^2 \quad (16) \]

Az ellenállási nyomaték magában foglalja a csapágyak, valamint a kommunikátorokon súrlódó szénkéfek dinamikai ellenállását, valamint a légellenállást. Az ellenállási nyomaték számláztatására hagyományosan a következő összefüggést alkalmazzák:

\[ T_{sürl} = k_f \cdot \omega \quad (17) \]

ahol \( k_f \) állandó.

Itt meg kell jegyezni, hogy a fenti lineáris kapcsolat csak nagyobb fordulatszámok esetén ad jó közelítést. Pontosabb szimulációhoz az ellenállási nyomatékot ki kell mérni a fordulatszám függvényében. Erre a [2, 3] forrásokban található eljárással. A terhelő nyomatékot mindig a motor adott kialakulása határozza meg. Egy jármű esetében például a jármű hajtásából adódik a terhelő nyomaték.
3. Mérőrendszer a motoradatok és karakterisztikák kísérleti meghatározásához

Az 1. ábra a motoradatok és karakterisztikák méréséhez, valamint a tesztmérések elvégzéséhez kifejlesztett mérőrendszert mutatja. A mérőrendszer részletes leírását a [10] forrás tartalmazza.

4. Következtetések

Jelen közleményben áttekintettük a soros gerjesztésű egyenáramú motorok modellezésére a lehetséges eljárásokat. Mivel a modellek különböző motor paraméterekből épülnek fel, így eltérések lehetnek az egyes modellek alapján elkészített szimulációs programok eredményei között. A későbbiekben tervezzük megvizsgálni, hogy a modellekben alkalmazott egyszerűsítések milyen eltéréseket okoznak a szimulációs eredmények pontosságában.

Köszönetnyilvánítás

A kutatást az „Integrált kutatói utánpótlás-képzési program az informatika és számítástudomány diszciplínáris területein” (EFOP-3.6.3-VE-KOP-16-2017-00002) című projekt támogatta. A projekt az Európai Unió támogatásával, az Európai Szociális Alap társfinanszírozásával valósult meg.

Szakirodalmi hivatkozások

[1] Szántó A., Sziki G. Á., Hajdú S., Gáboa A., Sipos K. B.: Járműdynamikai szimuláció és optimalizáció. In: A XXIII. Fiatal műszakai tudományos ülésszak előadásai/Proceedings of the 23rd international scientific conference of youngth engineers, Kolozsvár/Cluj, Románia, Műszaki Tudományos Közlemények 9. (2018) 219–222. https://doi.org/10.33894/mtk-2018.09.50

[2] Sziki G. Á., Sarvajcz K., Kiss J., Gála T., Szántó A., Gáboa A., Husi G.: Experimental investigation of a series wound DC motor for modeling purpose in electric vehicles and mechatronics systems. Measurement, 109. (2017) 111–118. https://doi.org/10.1016/j.measurement.2017.05.055

[3] Hadziselimovic M., Blaznic M., Štumberger B., Zagradišnik I.: Magnetically Nonlinear Dynamic Model of a Series Wound DC Motor. Przeglad Elektrotechniczny 87/12b. (2011) 60–64.

[4] FFarhan A. Salem: Dynamic Modeling, Simulation and Control of Electric Machines for Mechatronics Applications. International Journal of Control, Automation and Systems, 1/2. (2013).

[5] Liceaga-Castro J. U., Siller-Alcalá I. I., Jaimez-Ponce J., Alcántara-Ramírez R.: Series DC Motor Modeling and Identification. 2017 International Conference on Control, Artificial Intelligence, Robotics & Optimization (ICCAIRO). https://doi.org/10.1109/ICCAIRO.2017.54

[6] Záskalický P.: Modelling of a Serial Wound DC Motor Supplied by a Semi-Controlled Rectifier. Advances in Electrical and Electronic Engineering. 5/1. (2006) 110–113.

[7] Valdez Martínez J. S., Guevara Lopez P., Medel Juarez J. J.: Series Wound DC Motor Modelling and Simulation, Considering Magnetic, Mechanical and Electric Power Losses. 52nd IEEE International Midwest Symposium on Circuits and Systems, 2009. https://doi.org/10.1109/MWSCAS.2009.5235954

[8] Santana J., Naredo J. L., Sandoval F., Grout I., Argüeta O. J.: Simulation and construction of a speed control for a DC series motor. Mechatronics, 12/9-10. (2002) 1145–1156. https://doi.org/10.1016/S0957-4158(02)00019-3

[9] Bitar Z., AlJabi S., Khamis I.: Modeling and Simulation of Series DC Motors in Electric Car. Energy Procedia, 50. (2014) 460–470. https://doi.org/10.1016/j.egypro.2014.06.056

[10] Barna G.: Simulation Model of a Series DC Motor for Traction Rail Vehicles. 21st International Conference on Methods and Models in Automation and Robotics (MMAR), 2016. https://doi.org/10.1109/MMAR.2016.7575192