Myeloid-derived suppressor cell and macrophage exert distinct angiogenic and immunosuppressive effects in breast cancer

Supplementary Materials

Supplementary Figure 1: The gating strategies of multicolor flow cytometric analysis to determine tumor-infiltrating myeloid cell populations in spontaneous MMTV-PyVT breast tumor tissues.
Supplementary Figure 2: The gating strategies of multicolor flow cytometric analysis to determine tumor-infiltrating myeloid cell populations in orthotopically implanted MCaP0008 breast tumor tissues.
Supplementary Figure 3: The gating strategies of multicolor flow cytometric analysis to determine tumor-infiltrating myeloid cell populations in orthotopically inoculated EO771 breast tumor tissues.
Supplementary Table 1: Primers used for Q-PCR analysis

Gene	Primer	Sequence (5’-3’)
β-actin	Forward	ATCGTGCGTGACATCAAAAGA
	Reverse	ACAGGATTCATACCCCAAGA
CCL17	Forward	TGCTTTCTGGGGACTTTCTTG
	Reverse	TGGCCTTCTTCACATGTTCG
CCL22	Forward	GTCCCTTTTGCTGTGGCAAT
	Reverse	ACGGTTATCAAAACAAGGCC
Arginase 1	Forward	CAACCAAGCTCTGGGAATCTG
	Reverse	AATCGGCCTTTTCTCTTTC
IL10	Forward	CCAGAGCCACATGCTCCTA
	Reverse	AGGGGAGAAATCAGATGACAG
MRC1	Forward	CCTGAAACAGCACTTGACA
	Reverse	GCAATGGCCCATAGAAAGC
TNFα	Forward	CCGATGGTTGTACCTTG TC
	Reverse	CGGACTCGGAAAGTCTA
IL1β	Forward	TGCCACCTTTTGACAGTGAT
	Reverse	TGTCCCTACCTGTGGAAAGTC
IL12a	Forward	GCCAGGTGTCTTAGGCAAGTC
	Reverse	AGCTCCCTTCTGTGAGAA
IFNγ	Forward	CCAAAGTCTTGAGTCAACAAACC
	Reverse	GGGAACATCTCTCCCACCC
iNOS	Forward	CCACCTCTATCAGGGAAAGAA
	Reverse	CTGCAACGAGATATGCTTA
CXCL9	Forward	AGTGTTGAGTTGACCAAGC
	Reverse	GAGTGGCGATCTAGGAG
CXCL10	Forward	TCATCCTGCTGGGTCTGAGT
	Reverse	CTCGTCGCAATATCAGCAAC
VEGFα	Forward	CAGACAGTAGGCCAGCC
	Reverse	CTGGGACACTGGCATGGG
PIGF	Forward	ATTCAGTCCTGTGGTCTGTC
	Reverse	GGTTCCTCTGTTCGCTC
CXCL12	Forward	ACACCTCATGCTGGCCCTT
	Reverse	TGAGCCATCTTTTGAAGCTTTTTC
MMP9	Forward	CGTGCTGGAGATTTGACCTG
	Reverse	TTGGAAACTCAACAGCAGA