Molecular phylogeny of Acremonium and its taxonomic implications

Anthony E. Glenn
Department of Plant Pathology, University of Georgia, Athens, Georgia 30602

Charles W. Bacon
USDA-ARS, Toxicology & Mycotoxin Research Unit, Russell Research Center, Athens, Georgia 30613

Robert Price
Department of Botany, University of Georgia, Athens, Georgia 30602

Richard T. Hanlin
Department of Plant Pathology, University of Georgia, Athens, Georgia 30602

Abstract: Acremonium is generally considered to be a highly polyphyletic form genus containing distantly related fungi. Sectional divisions within Acremonium distinguish the clavicipitaceous grass endophytes of sect. Albolanosa from the generally saprobic species of sections Acremonium, Chaetomioides, Gliomastix, and Nectrioidea. In an effort to assess the possible number of lineages currently placed within Acremonium and to determine which groups of sexual ascomycetes are phylogenetically affiliated with Acremonium species, maximum parsimony and neighbor-joining analyses were performed using partial sequences of the nuclear small subunit ribosomal DNA (18S rDNA). Acremonium was shown to be a polyphyletic taxon with affiliations to at least three ascomycetous orders: 1) most of the examined species from the sections Acremonium, Gliomastix, and Nectrioidea showed a relationship to the Hypocreales; 2) the grass endophytes of sect. Albolanosa and other taxa from the Clavicipitaceae formed a monophyletic group derived from within the Hypocreales; 3) the thermophilic A. albamense of sect. Chaetomioides was derived from within the Sordariales. Acremonium alternatum, the type species of the genus, was one of the species showing affiliation to the Hypocreales. In order to eliminate some of the heterogeneity within Acremonium while also emphasizing the unique biological, morphological, and ecological characteristics of the grass endophytes, we are proposing that the anamorphs of Epichloë and closely related asexual grass endophytes be reclassified into the new form genus Neotyphodium. Phylogenetic and taxonomic considerations are also presented for other taxa.

Key Words: Clavicipitaceae, endophytes, Epichloë, Hypocreales, Neotyphodium, rDNA

INTRODUCTION

Members of the family Clavicipitaceae (Hypocreales; Ascomycotina) are well known pathogens of a diverse assemblage of hosts including grasses, sedges, other ascomycetes, and insects. These fungi are found throughout the tropical and temperate regions of the world (Diehl, 1950; White, 1994b). Rogerson (1970) listed 31 genera in the family, but eight of these are considered to be synonyms. The family is divided into three subfamilies with the insect and fungal pathogens variously placed in the Oomycetoideae and Cordycipitoideae (Diehl, 1950). The plant pathogens are by far the most widely studied and economically important members of the family and are classified as the subfamily Clavicipitaceae (Diehl, 1950). Diehl (1950) further divides the taxa of the Clavicipitaceae into the three tribes Clavicipitae, Balansiae, and Ustilaginoideae. The fungus-host interactions of these taxa can be broadly categorized as being epibiotic or endophytic, systemic or localized, and heavily pathogenic, moderately pathogenic, or mutualistic.

Most of the grass pathogens are in the tribe Balansiae (Diehl, 1950) and are either localized to epibiotic reproductive stromata on leaves or inflorescences or form systemic endophytic infections intercellularly within their hosts in addition to forming external reproductive stromata. The Balansiae include the teleomorphic taxa Atkinsonella, Balansia, Balansiosis, Epichloë, and Myriogenospora (Diehl, 1950; Luttrell and Bacon, 1977; Rykard et al., 1984). Myriogenospora is completely superficial without any penetration of the host epidermis (Luttrell and Bacon, 1977; White and Glenn, 1994), but Atkinsonella has some localized intercellular hyphae associated with the stroma (Leuchtmann and Clay, 1988; Morgan-Jones and White, 1989). Balansia contains a few epibiotic species (Leuchtmann and Clay, 1988; Clay and Frentz, 1993), but most species have a well de-
veloped endophytic habit (White et al., 1995). All species of the *Epichloë typhina* (Pers.: Fr.) Tul. group, including the apparent asexual derivatives of *Epichloë*, are intercellular grass endophytes (White, 1994b). Asexual grass endophytes were largely overlooked as being related to *Epichloë* until Bacon et al. (1977) found intercellular hyphae growing within tall fescue. They referred to the fescue endophyte as a biotype of *E. typhina* based on concurrent *in vitro* examinations and the earlier report by Sampson (1983). The obscurity of these asexual endophytes was a result of the host grasses never showing any symptoms or signs of a fungal infection. For the anamorph of the fungus, Bacon et al. (1977) applied the name *Sphacelia typhina* Sacc. which was the binomial designated by Saccardo (1881) for the anamorph of *E. typhina*. However, *S. typhina* was later considered a nomen dubium by Morgan:Jones and Gams (1982) because of insufficient type material. *Typhodium* (Link, 1826) is another genus of uncertain application to the anamorph of *E. typhina* and is now considered a synonym of *Epichloë* (Hawksworth et al., 1983). However, as a "convention of convenience," Diehl (1950) applied *Typhodium* as a form genus and used the term "typhodial" when referring to the anamorph of *Epichloë*.

Based on *in vitro* similarities, Morgan-Jones and Gams (1982) placed the anamorphs of both the fescue endophyte and *E. typhina* in the form genus *Acremonium*. The authors erected the new sect. *Albolanosa* for these endophytic fungi with the *in vitro* characteristics of slow-growing white to yellow colonies, solitary phialides narrower at the base than the subtending hyphae, hyaline and smooth-walled conidia, and teleomorphs in the Clavicipitaceae. They stated that the exclusively solitary phialides of the endophytes preclude them from classification in *Verticillium* sect. *Prostrata* which was restricted to those taxa, such as *Cordyceps* spp., that possess verticillate as well as solitary phialides (see also Gams, 1971). Morgan-Jones and Gams (1982) reported slight *in vitro* morphological differences between the anamorph of *E. typhina* and those of *Holcus mollis* L., *Dactylis glomerata* L., and *Sphenopholis obtusata* (Michx.) Scribn., which they treated as *A. typhinum* Morgan-Jones & W. Gams, and the tall fescue endophyte, which they described as the separate species *A. coenophialum* Morgan-Jones & W. Gams.

Acremonium is a cosmopolitan, morphologically simple genus (see Gams, 1971). *Acremonium alabamense* Link : Fr. is the lectotype and produces conidia in chains or heads. The genus *Cephalosporium* has often been distinguished from *Acremonium* because of the accumulation of conidia in slimy heads. However, Gams (1971) concluded heads versus chains was untenable as a generic character and merged the two under the older *Acremonium*. The form genus *Gliomastix* and monophialidic species of *Paecilomyces* were also merged into *Acremonium* (Gams, 1971), thereby expanding its definition to comprise generally slow-growing species with hyaline or pigmented conidia that are one-celled or exceptionally two-celled, in chains or slimy heads, and produced from orthophialidic or basitonioculately branched conidiophores.

Acremonium is perceived to be a heterogeneous taxon because several morphologically distinct teleomorphic genera have *Acremonium*-like anamorphs. Most of the known teleomorphs of *Acremonium* are species of *Nectria* (Gams, 1971; Samuels, 1973, 1976a,b; Lowen, 1995), but teleomorphic genera such as *Hypocreopsis*, *Hypomyces*, *Thielaviopsis*, *Pronectria*, *Nectriopsis*, *Epichloë*, *Emericellopsis*, *Mycoarachis*, and *Nigrosabulum* also have anamorphs classified in *Acremonium* (Malloch and Cain, 1970; Gams, 1971; Morgan-Jones and Gams, 1982; Samuels, 1988; Lowen, 1995). Gams (1971, 1975) divided *Acremonium* into three sections: *Acremonium*, *Nectrioides*, and *Gliomastix*. The majority of the species in these sections are saprobic in a wide variety of habitats, but some are plant parasites. Some species of sect. *Nectrioides* have teleomorphs in the genus *Nectria*, but most of the species in the three sections do not have any known association to teleomorphs. Along with the establishment of sect. *Albolanosa*, Morgan-Jones and Gams (1982) also erected the new sect. *Chaetomoides* for anamorphs of ascomycetes within the family Chaetomiaceae that have, among other characteristics, short-aculate to lageniform phialides. *Acremonium alabamense* Morgan-Jones, the type species of sect. *Chaetomoides*, is a thermophilic fungus originally isolated from fallen pine needles (Morgan-Jones, 1974), and it is the anamorph of *Thielaviopsis terrestris* (Apinis) Malloch & Cain (Morgan-Jones and Gams, 1982). Other species of this section are anamorphs of several *Chaetomium* species and cannot be distinguished without their teleomorphs (Morgan-Jones and Gams, 1982). Most recently, sect. *Lichenoides* was erected for lichenicolous species (Lowen, 1995), and some of these species have hypocreaceous teleomorphs while others are not associated with any teleomorph.

Because of the possible heterogeneity of *Acremonium*, the placement of the grass endophytes in sect. *Albolanosa* was done with no claim of phylogenetic relationship to the nonendophytic species in the other sections (Morgan-Jones and Gams, 1982; White and Morgan-Jones, 1987). This classification scheme was based strictly on *in vitro* morphological similarities. Some disagreement with this classification of the endophytes was initially expressed, and it continues
TABLE I. Acremonium taxa included in the analyses and the various sections in which they are classified

Sect. Acremonium b,c	Sect. Nectrioidea d,e	Sect. Gliomastix b	Sect. Albo-lanosa d	Sect. Chaetomioides a
A. alternatum	A. rutilum	A. murorum	A. coenophialum	A. abalambense (= Thielavia terrestris)
A. kiliense	A. chrysogenum			
A. strictum	A. furcatum			
Emericellops terricola (= Acremonium sp.)	Nectria vilius (= A. bericlyanum)			
Emericellops minima (= Acremonium sp.)				

Teleomorphs are indicated if they are known, and precedence in the listing is given to the teleomorphs except for the ease of A. alabamense which was obtained from ATCC (#26796) as A. alabamense and not as T. terrestris.

* Gams (1971).
* Gams (1975).
* Morgan-Jones and Gams (1982).
* See Samuels et al. (1991) and Gams and Van Zaayen (1982).

to be debated (Latch et al., 1984; Rykard et al., 1984; Morgan-Jones et al., 1992; Gams, 1995). The simple morphology of the anamorphs may have been derived multiple times in the evolution of fungi. However, the connection of so many Acremonium species to Nectria and other genera of the Hypocreaceae suggests that while there may be some heterogeneity created by sect. Albolanosa and sect. Chaetomioides, Acremonium may be more homogeneous than postulated.

The application of strict monophyly has been suggested for fungal systematics and taxonomy so as to reflect the phylogenetic history of a group of organisms (Vilgalys et al., 1993). If a monophyletic classification scheme is to be the ultimate goal for any group of fungi, then the current delimitation of Acremonium is open to question. Molecular phylogenetic data are particularly helpful in resolving relationships of morphologically simple organisms such as those in Acremonium. Therefore, using sequences of the nuclear encoded small subunit ribosomal DNA (18S rDNA), this project was undertaken to 1) assess the minimum number of separate lineages currently placed within the form genus Acremonium, 2) determine which groups of sexual ascomycetes may be closely affiliated with Acremonium species in the current classification, 3) determine if Acremonium sect. Albolanosa is appropriate for classification of the grass endophytes, and if not, 4) propose a new taxon for this group.

MATERIALS AND METHODS

Fungal isolates.—A total of fifteen taxa having anamorphs currently classified in Acremonium were selected from sections Acremonium, Albolanosa, Chaetomioides, Gliomastix, and Nectrioidea for inclusion in the rDNA comparisons (TABLES I, II). Isolates from sect. Lichenoidea were not sampled because of the recent establishment of this newest section. All isolates of Acremonium were either type or authenticated cultures, and additional taxa were either personally collected or obtained from other researchers (TABLE II). The fungi were maintained on cornmeal-malt agar (CMM) (Rykard et al., 1982) at room temperature.

Nucleic acid extraction.—For extraction of total genomic DNA from mycelium, all isolates were grown in M102 liquid medium (Rykard et al., 1982) on a rotary shaker (200 rpm) at room temperature until adequate growth occurred (usually 1–2 wk). The mycelium was collected by centrifugation, and the pelletted tissue was washed once with sterile distilled water to remove excess medium. The tissue was then ground in liquid nitrogen and stored at −80 °C until ready for nucleic acid extraction. Extractions were made from 0.2–0.5 g (wet weight) of ground mycelium.

The nucleic acid extraction procedure was a modification of Lee and Taylor (1990) in which the chloroform:phenol step was repeated at least once so as to remove as much cellular debris as possible. The extracted nucleic acid samples were diluted to provide solutions with a DNA concentration range of 0.1 to 1.0 ng μL⁻¹.

Polymerase chain reaction and sequencing.—Fifty μL of each diluted sample was used as template for polymerase chain reactions (PCR) (Mullis and Falloona, 1987; Saiki et al., 1988). For each amplification, a total reaction volume of 100 μL was made containing diluted template, 10 mM Tris-Cl (pH 8.3), 50 mM
Table II. Taxa included in the analyses, source of isolates, and accession numbers for 18S rDNA sequences

Taxon	Isolate source*	GenBank accession #
Acremonium alabamense	ATCC 26796b	U43969
Acremonium alternatum	CBS 223.70 & 406.66	U43970
Acremonium chrysogenum	ATCC 14615b	U43971
Acremonium coehophialum	ATCC 52274b; Festuca arundinacea	U43942
Acremonium furcatum	CBS 122.42b & 508.65	U43972
Acremonium kiliense	ATCC 34716b	U43973
Acremonium murorum	CBS 214.69	U43966
Acremonium rutiles	CBS 225.70 & 394.66	U43967
Acremonium strictum	ATCC 34717b	U43968
Acremonium uncinate	J. F. White; Festuca pratensis	U43943
Ascochytra apis	UCB 78:018	M83264
Atkinisonella hypoxylon	A. E. Glenn; Danthonia spicata	U44034
Balansia aristida	J. F. White; Aristida sp.	U44035
Balansia kennisiana	A. E. Glenn; Andropogon sp.	U44036
Balansia obtecta	J. F. White; Cenchrus echinatus	U44037
Balansia scrofulosa	ATCC 16582	U432390
Balansia strangulans	J. F. White; Panicum sp.	U43038
Candida tropicalis	MUCL 30002	M55527
Ceratoctis fimbriata	T. C. Harrington C89	U32418
Chaetomium globosum	A. E. Glenn	U44039
Claviceps purpurea	R. T. Hanlin; Dactylis glomerata	U43049
Cordyceps capitata	A. E. Glenn; Elaphomyces sp.	U43041
Cryphonectria parasitica	R. T. Hanlin 5606	Denise Silva, unpub.
Daldinia concentrica	ATCC 36569	U32402
Diaporthe phaseolorum	F. A. Uecker 458	L36085
Echinodothis tuberiformis	J. F. White; Arundinaria testa	U43042
Emericellopsis minima	ATCC 16216	U44043
Emericellopsis terricola	CBS 120.40b	U44112
Epichloe amarillans	J. F. White; Agrostis hiemalis (Ab3)	U35034
Epichloe festucae	J. F. White; Festuca rubra rubra	U44113
Eurotium rubrum	UCB 88-016	U00970
Hypocrea belliola	G. J. Samuels 89-83	U32408
Hypomyces polyborinus	ATCC 46844	U32410
Microascus trigonosporus	RSA 1942	L36987
Monascus purpureus	ATCC 16365	M83260
Myriogenospora atramentosa	A. E. Glenn; Andropogon sp.	U44114
Myriogenospora atramentosa	A. E. Glenn Erianthus brevibaris	U44115
Nectria cinnabarinosa	G. J. Samuels 89-107	U32412
Nectria vilior	ATCC 16217	U44116
Neocosmospora vasinfecta	ATCC 28867	U44117
Saccharomyces cerevisiae	—	M72607
Taphrina deformans	ATCC 34556	U00971
Xylaria hypoxylon	ATCC 49768	U20378

*a ATCC = American Type Culture Collection, USA; CBS = Centraalbureau voor Schimmelcultures, Netherlands; MUCL = Mycothèque de l'Université Catholique, Louvain-la-Neuve, Belgium; RSA = Rancho Santo Ana, USA; UCB = University of California, Berkeley Microgarden, USA.

b Type culture.

KCI, 2.5 mM MgCl2, 0.5 μM of each primer, 200 μM of each dNTP, and 2.5 units of AmpliTaq® DNA polymerase (Roche Molecular Systems, Inc., Branchburg, NJ). Each reaction mixture was topped off with a thin layer of mineral oil and amplified using a Perkin-Elmer DNA Thermal Cycler 480 (Norwalk, CT).

A segment of the small subunit ribosomal RNA gene (18S rDNA) was amplified using primers NS1 and NS6 (White et al., 1990). Thermal cycling parameters for amplification consisted of one initial cycle with denaturation at 95 C for 5 min, annealing at 54 C for 30 s, and extension at 72 C for 45 s. This cycle was followed by 38 cycles with denaturation at 95 C for 30 s, annealing at 54 C for 30 s, and exten-
Glenn et al.: Molecular Phylogeny of Acremonium

373

sion at 72 C for 45 s. (plus 4 sec addition to extension segment per cycle). A final cycle was performed with an extension segment of 72 C for 10 min.

Amplified products were separated from unincorporated nucleotides and primers using either minicolumns (Wizard® PCR Preps, Promega Corp., Madison, WI) or microconcentrators (Microcon® 100, Amicon, Inc., Beverly, MA) following each manufacturer's protocol. Purified samples were sequenced by the Molecular Genetics Facility of the University of Georgia (Athens, GA) using an Applied Biosystems automated sequencer (model 373A, version 1.2.1). Primers NS1, NS2, and NS3 (White et al., 1990) were used for sequencing the 18S rDNA. Primers NS1 and NS2 provide complementary sequences, but the complementary sequence to NS3 was not determined. The rDNA sequences were easily aligned by direct examination.

Data analysis.—Maximum parsimony analysis of the aligned sequences was conducted using PAUP v. 3.1.1 (Swofford, 1993) on a Macintosh Performa 6115CD. Alignment gaps were treated as missing data (GAP-MODE=MISSING). However, one gap was included as an additional character in the data matrix (absence and presence of gap were coded as 0 and 1, respectively). In total, 43 isolates were included in the analysis (TABLE II). As a result of the large data set, only heuristic searches were performed with the following options in effect: tree-bisection-reconnection (TBR) swapping algorithm, collapsing zero length branches, and saving all minimal length trees (MULPARS). Ten replications with random addition of taxa were performed for each heuristic search in order to find any additional islands of minimum length trees (Maddison, 1991). To measure the relative support and stability of the resulting clades, bootstrap values (Efron, 1982; Felsenstein, 1985) and decay indices (Bremer, 1988; Donoghue et al., 1992) were calculated using PAUP v. 3.1.1. The computational intensity of these two values is directly dependent on the number of taxa and characters. Executing these computations on all of the taxa included was beyond the capability of the computer. Therefore, selected taxa were excluded, and the bootstrap values and decay indices were calculated on the smaller representative selection. Bootstrapping was performed with 250 replications. Decay indices up to 4 steps longer than the most parsimonious trees were determined. Saccharomyces cerevisiae E. C. Hansen, Taphrina deformans (Berk.) Tul., and Candida tropicalis (Castellani) Berkhout were used as outgroup taxa based on the results of previous analyses at a broader taxonomic scale by Berbee and Taylor (1992), Bruns et al. (1992), and Spatafora and Blackwell (1993).

Phenetic analyses were also performed on the aligned 18S rDNA sequences using MEGA v. 1.01 (Kumar et al., 1993). Since MEGA isn’t capable of evaluating binary code, the alignment gap was not included as an additional character in the data set. For neighbor-joining analyses (Saitou and Nei, 1987), the gamma (Kimura 2-parameter) distance method was used with complete deletion of all sites containing gaps or missing information. Bootstrapping of the neighbor-joining tree was performed with 500 replications. Again, S. cerevisiae, T. deformans, and C. tropicalis were used as outgroup taxa.

RESULTS

Segments of the ssrRNA gene (18S rDNA) encompassing 937 bp were analyzed. Alignment of sequences was easily accomplished by direct examination due to the gene’s conserved nature. An alignment gap of one base pair, common to the outgroup taxa and the Clavicipitaceae, was added to the data set as an additional character. Of the 43 taxa included in this study (TABLE II), sequences from 16 of these were obtained from either GenBank or other researchers. The remaining 27 were sequenced for this study. Our sequencing efforts focused primarily on the form genus Acremonium and the ascomycete family Clavicipitaceae. Aligned sequences are available from the authors upon request.

A maximum parsimony analysis with all taxa included yielded eight equally parsimonious trees of 656 steps. For each of these trees, the consistency index (CI) was 0.585 with autapomorphies included, the retention index (RI) was 0.712, and the rescaled consistency index (RC) was 0.417. The strict consensus of the eight trees is presented in Fig. 1. In order to determine bootstrap and decay values for the broad range of taxa included in this study, a smaller subset of selected taxa was chosen to represent the various clades, and the support values were computed on the smaller collection of taxa. The maximum parsimony strict consensus cladogram of this subset is presented in Fig. 2 along with the bootstrap and decay indices. This same subset of taxa was also analyzed using the neighbor-joining method, and the results are presented in Fig. 3.

Based on these results, Acremonium is a polyphyletic taxon having species associated with at least three or four currently recognized ascomycete orders (Fig. 1). First, A. fuscatum F. & V. Moreau: W. Gams is potentially associated with Microascales and Ceratoqystis of the order Microascales. The bootstrap values for this connection are 67% using maximum parsi-
Among the Acremonium species having affiliation to the Hypocreales is the type species of the genus, A. alternatum. It was weakly associated with other taxa such as A. kiliense Grütz, A. strictum W. Cams, Emericellopsis minima, and E. terricola J. F. H. Beyma. The parsimony clade of these five taxa had a bootstrap value of only 59% and a decay index of +1 (Fig. 2). The phylogenetic placement of the cleistothelial Emericellopsis in the Hypocreales is supported here by the 18S rDNA sequences of both E. terricola and E. minima.

The monophyletic Clavicipitales appears to have been derived from within the Hypocreales (Figs. 1–3). Monophyly of the Clavicipitaceae, the only family in the order Clavicipitales, was supported by neighbor-joining analysis with an 89% bootstrap value (Fig. 3), and support from maximum parsimony analysis was only slightly weaker with a bootstrap of 85% and a decay index of +3 (Fig. 2).

As indicated in Figs. 2 and 3, Emericellopsis and its asexual derivatives in Acremonium sect. Albolanosa formed a well supported, monophyletic group with 84% and 96% bootstrap values, respectively. Atkinsonella, Balansia, and Myriogenospora formed a sister group to

Fig. 1. Strict consensus of eight cladograms (each of 656 steps, CI = 0.585, RI = 0.712, RC = 0.417) resulting from maximum parsimony analysis of 18S rDNA sequences of all taxa included in the study. Orders of the Euascomycetes are indicated. Black dots indicate species having Acremonium-like anamorphs.
FIG. 2. Strict consensus of two cladograms (each of 527 steps, CI = 0.639, RI = 0.727, RC = 0.465) resulting from maximum parsimony analysis of 18S rDNA sequences of a selected subset of taxa. Consensus cladogram is depicted with proportional branch lengths. Scale bar indicates the number of nucleotide changes per unit of measure. Bootstrap values greater than 50% are indicated above internodes. Decay indices are indicated below internodes. Black dots indicate species having Acremonium-like anamorphs. E = grass endophyte; e = grass epibiont.
Fig. 3. Neighbor-joining phenogram resulting from analysis of 18S rDNA sequences of a selected subset of taxa. Bootstrap confidence measures greater than 50% are indicated at internodes. Symbols are the same as in Fig. 2.
In general, there was a high degree of congruence between the resulting phylogenies of the cladistic (FIG. 2) and phenetic (FIG. 3) analyses. Relationships within the Hypocreales differed only in the placement of *N. vilior* and *A. chrysogenum* (Thirum. & Sukapure) W. Gams. Placement of the Xylariales also differed between the two analyses. Bootstrap values for comparable clades in the two resulting phylogenies were generally equivalent. However, three clades did show distinctly different values: the monophyletic clade comprising the Sordariales and Diaporthales, the Hypocreales clade, and the clade containing *A. furcatum* and the Microascales. These differences are probably inherent in the individual algorithms of the synapomorphy-based cladistical analysis and the similarity-based phenetic analysis and how they each affect the areas of the trees where the degree of support for the topology is limited.

DISCUSSION

New taxon and combinations.—Based on the 18S rDNA sequence analyses presented here, the present classification of the anamorphs of *Epichloë* and related mutualists in *Acremonium* is untenable. *Acremonium*, as typified by *A. alternatum*, appears to be restricted to the family Hypocreaceae. *Epichloë* and related genera of the Clavicipitaceae form a well circumscribed, monophyletic family that appears to be derived from within the Hypocreales. The monophyly of this family is supported by the unique morphology, ecology, and obligate parasitism of the Clavicipitaceae. The anamorphs of this family are unusual in that they are associated with stromatic tissue formed on a host (Diehl, 1950; Luttrell, 1980; Rykard et al., 1984; White and Morgan-Jones, 1987; Leuchtmann and Clay, 1988; Morgan-Jones and White, 1989). Therefore, we are proposing the erection of a new genus to accommodate anamorphs of clavicipitaceous fungi that form a palisade of simple phialidic conidiogenous cells over the surface of a stroma and in culture produce simple, strictly aculeate phialides often lacking a basal septum. Conidia oblong, ellipsoidal, cylindrical, fusiform, lunate, uncinate, hyaline, smooth-walled, amerosporous. Obligate parasites of grasses, some forming exposed ectostroma with palisade of phialides. Genus containing anamorphs of the Clavicipitaceae.

Etymology. Greek *neos* = new + *Typhodium*, a genus erected by Link (1826) that was of uncertain applicability to the anamorph of *Epichloë*.

Neotyphodium coenophialum (Morgan-Jones & W. Gams) Glenn, Bacon & Hanlin comb. nov.

Basionym. *Acremonium coenophialum* Morgan-Jones & W. Gams, Mycotaxon 15: 311. 1982.

No known teleomorph.

Neotyphodium typhinum (Morgan-Jones & W. Gams) Glenn, Bacon & Hanlin comb. nov.

Basionym. *Acremonium typhinum* Morgan-Jones & W. Gams, Mycotaxon 15: 311. 1982.

*Teleomorphs are species of *Epichloë*."

Neotyphodium lolii (Latch, Christensen & Samuels) Glenn, Bacon & Hanlin comb. nov.

Basionym. *Acremonium lolii* Latch, Christensen & Samuels (as *Acremonium loliae*), Mycotaxon 20: 535. 1984.

No known teleomorph.

Neotyphodium chisosum (J. F. White & Morgan-Jones) Glenn, Bacon & Hanlin comb. nov.

Basionym. *Acremonium chisosum* J. F. White & Morgan-Jones, Mycotaxon 28: 179. 1987.

No known teleomorph.

Neotyphodium starrii (J. F. White & Morgan-Jones) Glenn, Bacon & Hanlin comb. nov.

Basionym. *Acremonium starrii* J. F. White & Morgan-Jones, Mycotaxon 30: 87. 1987.

No known teleomorph.

Neotyphodium Glenn, Bacon & Hanlin gen. nov.

Coloniae albae vel flavidae, lente vel modice crescentes, hyphae aeriae saepe abundantes, byssaceae, typace non fasciculatae; phialides solitariae, raro verticillatae, aculeatae, orthotropicae, exoriundae ex hyphis aeris, basi plerumque septo carente. Conidia oblonga, ellipsoida vel cylindrica vel fusiformia vel lunata vel uncinita, hyalina, levia, amesorpic. Fungi parasitae obligati graminum, aliqui facientes ectostroma hymenio phialidum obtectum. Genus continens anamorphoses Clavicipitacearum.

Typus: *Acremonium coenophialum* Morgan-Jones & W. Gams.

Colonies white to yellowish, very to moderately slow growth rate, aerial hyphae often abundant, cottony but usually not fasciculate, phialides solitary, rarely verticillate, aculeate, orthotropic, arising from aerial hyphae, bases frequently lacking a septum. Conidia oblong, ellipsoidal, cylindrical, fusiform, lunate, uncinate, hyaline, smooth-walled, amerosporous. Obligate parasites of grasses, some forming exposed ectostroma with palisade of phialides. Genus containing anamorphs of the Clavicipitaceae.

Etymology. Greek *neos* = new + *Typhodium*, a genus erected by Link (1826) that was of uncertain applicability to the anamorph of *Epichloë*.

Neotyphodium coenophialum (Morgan-Jones & W. Gams) Glenn, Bacon & Hanlin comb. nov.

Basionym. *Acremonium coenophialum* Morgan-Jones & W. Gams, Mycotaxon 15: 311. 1982.

No known teleomorph.

Neotyphodium typhinum (Morgan-Jones & W. Gams) Glenn, Bacon & Hanlin comb. nov.

Basionym. *Acremonium typhinum* Morgan-Jones & W. Gams, Mycotaxon 15: 311. 1982.

*Teleomorphs are species of *Epichloë*."

Neotyphodium lolii (Latch, Christensen & Samuels) Glenn, Bacon & Hanlin comb. nov.

Basionym. *Acremonium lolii* Latch, Christensen & Samuels (as *Acremonium loliae*), Mycotaxon 20: 535. 1984.

No known teleomorph.

Neotyphodium chisosum (J. F. White & Morgan-Jones) Glenn, Bacon & Hanlin comb. nov.

Basionym. *Acremonium chisosum* J. F. White & Morgan-Jones, Mycotaxon 28: 179. 1987.

No known teleomorph.

Neotyphodium starrii (J. F. White & Morgan-Jones) Glenn, Bacon & Hanlin comb. nov.

Basionym. *Acremonium starrii* J. F. White & Morgan-Jones, Mycotaxon 30: 87. 1987.

No known teleomorph.
Neotyphodium huerfanum (J. F. White, G. T. Cole & Morgan-Jones) Glenn, Bacon & Hanlin comb. nov.

Basionym. Acremonium huerfanum J. F. White, G. T. Cole & Morgan-Jones, Mycologia 79: 148. 1987. No known teleomorph.

Neotyphodium uncinatum (W. Gams, Petrini & D. Schmidt) Glenn, Bacon & Hanlin comb. nov.

Basionym. Acremonium uncinatum W. Gams, Petrini & D. Schmidt, Mycotaxon 37: 67. 1990. No known teleomorph.

Neotyphodium chilense (Morgan-Jones, J. F. White & Piont.) Glenn, Bacon & Hanlin comb. nov.

Basionym. Acremonium chilense Morgan-Jones, J. F. White & Piont., Mycotaxon 39: 441. 1990. No known teleomorph.

While not included in our analyses, N. lolii and N. lolii have been shown to be closely related to N. coenophialum based upon maximum parsimony analysis of the two internal transcribed spacer (ITS) regions of rDNA (Schardl et al., 1991). Unfortunately, N. chilense, N. chilense, and N. huerfanum were also unavailable to us for examination, and these three have yet to be characterized by DNA-based phylogenetic analyses. We do, however, propose the transfer of these species into Neotyphodium based upon the examinations and personal communications of James F. White, Jr. and Walter Gams.

The conidial stromata of species of Epichloë are easily and logically addressed by the teleomorphic nomen even though anamorphic binomials and varieties have been erected for the various species (Morgan-Jones and Gams, 1982; White, 1992). However, the abundance of asexual endophytes that rarely or never produce teleomorphic stromata [clonal type-III endophytes of White (1988)] means that a dual system of nomenclature must be maintained whereby the type-III endophytes are classified in Neotyphodium and the sexually reproducing species are classified in Epichloë.

As defined, Neotyphodium is the most appropriate form genus for the typhodial stage of Atkinsonella (Rykard et al., 1984). However, the applicability of the nomen Atkinsonella to all stages of its development is empirical and conveys a holomorphic view of this fungus. Exclusively asexual species are not known. Therefore, since no binomial is currently defined for the typhodial stage of Atkinsonella, we do not see the necessity of defining one under Neotyphodium. The binomial Epichloë borealis Ellis & Everh. has been established for the sympodially proliferating synanamorph of Atkinsonella (Dichl, 1950).

The anamorph of Echinodothis tuberiformis (Berk. & Ravenel) G. F. Atk. presents a similar problem as found with Atkinsonella. The anamorph of this epibiont is similar to Neotyphodium in that a palisade of phialidic conidiogenous cells are produced over the surface of a host-associated stroma, but the conidia are different in being didymosporous (White, 1993b). White (1993b) suggested that Echinodothis and Epichloë were closely related and might deserve classification together in a separate tribe. While lacking statistical support, cladistical analysis suggested that Echinodothis may be intermediate between Cordyceps and Claviceps and is not closely related to Epichloë (Fig. 1). As with Atkinsonella, the holomorphic application of E. tuberiformis to its anamorph and teleomorph means there is no need to establish an anamorphic binomial.

The Clavicipitales-Hypocreales relationship.—The Clavicipitales is a morphologically well circumscribed order of mostly parasitic ascomycetes possessing morphologically distinctive characters such as deliquescent lateral paraphyses, cylindrical asci with a thickened apical cap, and filiform ascospores that are often septate and may disarticulate into part-spores (Rogerson, 1970). However, the ordinal affinity of the clavicipitaceous genera has been evaluated and interpreted differently by several researchers [see Rogerson (1970) for a thorough historical review of the taxonomic literature].

In recent years, the ordinal relationships among hypocreaceous and clavicipitaceous genera has again come into question as a result of phylogenetic evaluations using molecular data. Maximum parsimony analyses using the nuclear encoded 18S rDNA have indicated a monophyletic relationship exists between genera of the Clavicipitales and the Hypocreales, suggesting that all taxa may be classifiable under the single order Hypocreales with the monophyletic Clavicipitaceae being a separate family from the paraphyletic Hypocreaceae (Spatafora and Blackwell, 1993). Our results, which also utilized 18S rDNA, show the same general relationship (Figs. 1–3). Additionally, gene phylogenies based on both the nuclear encoded large subunit ribosomal DNA (28S rDNA) and nuclear encoded orotidine-5'-monophosphate decarboxylase also support the derivation of the monophyletic Clavicipitaceae from within the Hypocreales (Rehner and Samuels, 1994b, 1995). All these gene phylogenies support the treatment by Kreisel (1969) with a single order incorporating the families Hypocreaceae (sensu Rogerson) and Clavicipitaceae.

The expanding Hypocreales.—Just as molecular systematics has aided in clarifying some of the taxonomic confusion concerning the ordinal relationships...
among hypocreaceous and clavicipitaceous genera, the same approaches are allowing systematists to propose phylogenetically informative holomorphic connections between anamorphs and teleomorphs (Schardl et al., 1991; Rehner and Samuels, 1994a). Such phylogenetic analyses are also generating proposals of novel intradoxal teleomorphic relationships which are expanding the delimitation of the Hypocreales (Rehner and Samuels, 1994a, 1995; results reported herein).

Our approach to the form genus Acremonium was similar to that used to investigate other polyphyletic form genera (Rehner and Samuels, 1994a, 1995). Our results (FIGS. 1–3) suggest Acremonium is indeed polyphyletic as currently circumscribed. Affiliation of the type species, A. alternatum, and other common species such as A. kiliense, A. strictum, A. chrysogenum, A. murorum (Corda) W. Gams, and A. rutilum W. Gams to the Hypocreaceae suggests that Acremonium should be restricted to anamorphs of only this family. Since many Acremonium species, including A. alternatum, do not produce ascomata in vitro, applying the taxonomic criterion of relationship to the Hypocreaceae is currently not feasible based on morphological characteristics. In order to strictly reserve Acremonium as anamorphs of the Hypocreaceae, DNA sequence analyses would be needed for each of the species of Acremonium that do not have a known teleomorph. While perhaps justified, such an immense task is not yet practicable. However, it is possible that most of the orphaned Acremonium species may be phylogenetically affiliated with the Hypocreales, as suggested by FIG. 1 which shows six orphaned species of Acremonium from the sections Acremonium, Gliomastix, and Nectriidea derived from within the Hypocreales. Of those sampled, only one orphaned species, A. furcatum of sect. Nectriidea, is not derived from within the Hypocreales.

At present the best we can do to eliminate some of the heterogeneity within Acremonium is to remove those species which are known to be associated with teleomorphs that are not within the Hypocreaceae (Gams, 1995). Though not examined, some, if not all, species of sect. Lichenoides would be expected to show affiliation to the Hypocreaceae since four of the nine species have hypocreaceous teleomorphs. Among the Acremonium species that were examined by us, the grass endophytes (sect. Albolanosa) and A. alabamense (sect. Chaetomioides) have teleomorphs that are in the Clavicipitaceae and Chaetomiaceae (Sordariales), respectively. Therefore, the generic placement of these anamorphs is in need of reevaluation. The morphological characteristics of A. alabamense are very similar to those of other 'true' Acremonium species in that it produces guttulate conidia in chains or heads from simple phialides, but A. alabamense is different in that it grows much more rapidly than other species and is thermophilic (Morgan-Jones, 1974; Morgan-Jones and Gams, 1982). Before any formal generic reassignment of this anamorph is proposed, a detailed study is needed to determine if other morphological characteristics exist which distinguish it from other species of Acremonium. However, because of the abundance of morphological and biological information that is available concerning the grass endophytes, the generic placement of the anamorphs of Epichloë and related grass symbionts is now ready to be addressed. A discussion of pertinent biological and taxonomic information is presented below.

Numerous systems of higher categories for the Ascomycotina have been suggested and are summarized in Hawksworth et al. (1983). Common to a few of these systems are the categorical divisions Plectomycetes and Pyrenomycetes at varying hierarchical levels. These two divisions are based on characters of the ascomata. Plectomycetes includes those fungi having typically globose, nonostiolate cleistothecia that produce asci at varying levels throughout the centrum (Fennell, 1973; Benny and Kimbrough, 1980), and Pyrenomycetes includes those fungi having flask-shaped, mostly ostiolute perithecia that produce asci from a single basal hymenium (Müller and von Arx, 1973). Suggestions have been made that the plectomycetes are a heterogeneous assemblage of morphologically similar fungi resulting from convergent evolution, and many plectomycetous genera are suggested to be derived from within the Pyrenomycetes (Malloch, 1981; Benny and Kimbrough, 1980). Recent molecular phylogenetic studies have confirmed that such a heterogeneity indeed exists. An initial maximum parsimony analysis indicated that there was a natural sister-group relationship between selected taxa corresponding well to the traditional ascomycete classes Plectomycetes and Pyrenomycetes (Berbee and Taylor, 1992). Such traditional plectomycetous taxa as Ascosphaera, Ajellomyces, Monascus, Talaromyces, and Thermoascus were found to form a monophyletic sister group to a monophyletic group of pyrenomycetes including Ophiostoma, Chaetomium, and Neurospora.

While a true higher level division appears to naturally exist between pyrenomycetes and some plectomycetes, molecular analyses are identifying other "plectomycetes" that appear to be derived from within the pyrenomycetes. Rodnemergiella and Heleococcus are cleistothecioid genera that have been previously placed in the Hypocreales (Rogerson, 1970; Malloch, 1981). This placement was supported by analysis of 28S rDNA sequences (Rehner and Sa-
muels, 1994a, 1995). Mycoarachis (Rehner and Samuels, 1994a) and Emericellopsis (FIGS. 1–3), so far classified in the cleistothecioid family Pseudeurotiaceae, also show affinity to the Hypocreales. The Pseudeurotiaceae was suggested by Malloch (1981) to be related to the Diaporthales on the basis of centrum development, but some members of this family now appear to be phylogenetically related to the Hypocreales. This relationship is directly relevant to this study in that Mycoarachis, Emericellopsis, and other members of the Pseudeurotiaceae possess Acremonium anamorphs (Malloch and Cain, 1970). Heleococcus also produces an Acremonium anamorph (Udagawa et al., 1995).

While ascomatal characteristics appear to vary dramatically between hypocreaceous genera, the possession of an Acremonium anamorph by many of these telemorphs appears to be a phylogenetically informative character supporting their link to the Hypocreales. It is interesting to note that Wu and Kimbrough (1990) found much similarity in the ascogonial and ascogenous systems of Emericellopsis, Ascosphaera, and Monascus even though Emericellopsis is phylogenetically distinct from the more closely related Ascosphaera and Monascus (FIG. 1). Such similarity in ascomatal development despite the phylogenetic separation implies that these ascomatal characteristics may be subject to convergent evolution. Also, the anamorphs of Ascosphaera (= Chrysosporium) and Monascus (= Basipetospora) are distinctly different from the Acremonium anamorph of Emericellopsis. Some of the other Acremonium-producing genera of the Pseudeurotiaceae that may prove to be hypocreous once molecular analyses are performed include Nigrosabulum, Hapsidospora, and Leucosphaerina (Malloch and Cain, 1970; Malloch, 1989). The inclusion of cleistothecioid forms within the Hypocreales is creating a need for reevaluation and refinement of the distinguishing characters defining this order.

Taxonomic considerations.—The fact that the telemorph of *A. alabamense* is *T. terrestris* of the family Chaetomiaceae is in opposition to the criterion of Acremonium being restricted to anamorphs of the Hypocreales. The thermophilic nature of *A. alabamense*, its rapid growth rate, and its truncated, dacyroid conidia were all considered by Morgan-Jones and Gams (1982) to be characters distinctive enough to warrant the creation of sect. Chaetomioides within Acremonium. While *A. alabamense* is typically orthophialdic like most species of Acremonium, perhaps its unique morphological and biological characters are more distinctive at the generic versus sectional level. Before any formal reclassification of *A. alabamense* is considered, more detailed morphological studies are needed to determine if other tangible characters exist that could be used for its generic distinction from Acremonium. A comparative analysis of conidium ontogeny of *A. alternatum* and *A. alabamense* may provide additional needed characters.

The potential taxonomic problems posed by *A. furcatum* are complex. Since its affiliation to an ascomycete order is currently vague, it must be retained in the genus Acremonium. If further molecular or morphological analyses should indicate a phylogenetic affiliation to the Hypocreaceae, then its current status would be maintained. If additional molecular analyses should confirm an affiliation to the Microascales as suggested by our results, or if its teleomorph is discovered and classified within the Microascales, a more phylogenetically appropriate classification for *A. furcatum* may then be justified.

The gene phylogenies presented here indicate that the Clavicipitaceae is a distinctive, monophyletic family derived from within the Hypocreales. Other phylogenetic analyses have also indicated this same relationship (Spatafora and Blackwell, 1993; Rehner and Samuels, 1995). The monophyletic nature of the Clavicipitaceae is substantiated by its unique ecology and morphology. Mating compatibility studies have shown that graminicolous species of *Balansia*, *Atkinsonella*, *Echinodothis*, and *Epichloë* are heterothallic, requiring the transfer of conidia (= spermatia) from a stroma of one mating type to a stroma of the opposite mating type (White and Bultman, 1987; Leuchtmann and Clay, 1989; White, 1993a, b; White et al., 1995). Mating compatibility of *Myriogenospora* has not been examined. Conidia of Claviceps are infective and do not function as spermatia (Luttrell, 1980). Diehl (1950) emphasized the importance of conidal fructification for taxonomic and systematic evaluations of these fungi. *Sphaelina*, the form genus for the anamorph of *Claviceps*, is characterized by a palisade of doliiform to lageniform phialides produced along the convoluted surface of the developing sclerotium, and this palisade bears a wet mass of amerosporous conidia (Diehl, 1950; Luttrell, 1980). In contrast, the "typhodial" conidial fructifications of *Epichloë*, herein classified in the form genus *Neotyphodium*, produce dry masses of amerosporous conidia from a continuous, nonconvoluted palisade of narrowly aculeate phialides over the surface of the host-associated stroma (Diehl, 1950; White and Morgan-Jones, 1987). The anamorphs of *Balansia* and *Myriogenospora* are classified in the form genus *Ephe- lis*, which is characterized by holoblastic, scolecosporous conidia produced successively from sympodially proliferating conidiophores in apothecoid cavities in host-associated stroma or pseudosclerotia (Diehl,
The close evolutionary connection between asexual grass endophytes and the sexually reproducing species of Epichloë has been examined from an ecological perspective (White, 1988), but a greater amount of attention has been given to molecular evaluations of relationships. The isozyme and molecular analyses previously performed on the asexual endophytes have mainly dealt with the variation and relationships that exist among some of the species. Leuchtmann and Clay (1990) found that isozyme profiles based on ten enzymes are virtually uniform throughout most isolates of _N. coenophialum_ (= _A. coenophialum_). They also found that no distinction could be made between the _Epichloë_ endophytes and the asexual endophytes, thereby suggesting that they jointly comprise a monophyletic group. Schardl et al. (1991) performed maximum parsimony analyses on sequences of the internal transcribed spacer (ITS) regions of rDNA and showed that the asexual endophytes formed a monophyletic group with _Epichloë_ and that asexual species apparently arose from _Epichloë_ on multiple occasions. Additionally, they found that sequence comparisons do not support some of the morphologically based species classifications of asexual endophytes. Based on maximum parsimony analyses of ITS sequences, An et al. (1992) reported that at least two distinct evolutionary origins of _Neotyphodium_-endophytes from _Epichloë_ had occurred in the single host species _Festuca arizonica_ Vasey. The studies by Leuchtmann and Clay (1990) and Schardl et al. (1991) are supportive of the existence of several different species of _Epichloë_ (see also White, 1993a; White, 1994a; Leuchtmann et al., 1994). The monophyletic nature of the Clavicipitaceae, the separation of _Epichloë_ from _A. alternatum_, the obligate parasitism of _Epichloë_ and its asexual derivatives, and the formation of a sporodochium-like pala-isade of phialides on an external stroma all indicate the distinct nature of _Epichloë_ and support the reclassification of its anamorphs. The doubtful identity of _Sphacelia_ as a form genus for these anamorphs (Diehl, 1950; Morgan-Jones and Gams, 1982) and the lack of any other valid or appropriate form genus means a new genus is needed to accommodate these fungi. _Typhodium_ was erected by Link (1826), but his meager description is vague and confusing so there is uncertainty as to whether he was describing the anamorph of _Epichloë_ or the teleomorph. Diehl (1950) felt that the conidial fructifications of _Epichloë_ were significantly different from those of _Claviceps_ and chose not to apply the form genus _Sphacelia_ to the anamorph of _Epichloë_. As an informal “conven-tion of convenience,” Diehl (1950) applied _Typhodium_ as the form genus for _Epichloë_ conidial fructifications. In following Diehl’s concept, we have proposed the form genus _Neotyphodium_ for the anamorphs of _Epichloë_ and its related asexual grass endophytes.

The establishment of _Neotyphodium_ helps to alleviate some of the heterogeneity of _Acremonium_ while emphasizing the unique, monophyletic nature of the grass endophytes. The employment of molecular data to substantiate this reclassification indicates the utility of DNA-based phylogenetic techniques in evaluating the taxonomic affinities of morphologically simple taxa such as _Acremonium_. However, limitations do exist. For example, the basic morphology of _A. alaba-mense_ is essentially the same as that of _A. alternatum_, but the two are affiliated with different ascomycete orders. More detailed morphological studies are now needed to determine if informative characters exist which could be used for their generic distinction. Results of phylogenetic analyses are useful as frameworks for further, more focused morphological and molecular comparisons. Such comparisons may help to alleviate some of the remaining heterogeneity of _Acremonium_.

ACKNOWLEDGMENTS

We are grateful to James F. White, Jr. for supplying us with several cultures and for his comments concerning the project and manuscript, to Joseph Spatafora and Denise Silva for providing us DNA sequences prior to their deposition into GenBank, and to Walter Gams and an unidentified reviewer for offering suggestions to improve the manuscript.

LITERATURE CITED

An, Z.-q., J.-S. Liu, M. R. Siegel, G. Bunge, and C. L. Schardl. 1992. Diversity and origins of endophytic fungal symbionts of the North American grass _Festuca arizonica_. _Theor. Appl. Genet._ 85: 366–371.

Bacon, C. W., J. K. Porter, J. D. Robbins, and E. S. Luttrell. 1977. _Epichloë typhina_ from toxic tall fescue grasses. _Appl. Environm. Microbiol._ 34: 576–581.

Benny, G. L., and J. W. Kimbrough. 1980. A synopsis of the orders and families of Plectomycetes with keys to genera. _Mycotaxon_ 12: 1–91.

Berbee, M. L., and J. W. Taylor. 1992. Two ascomycete classes based on fruiting-body characters and ribosomal DNA sequence. _Molec. Biol. Evol._ 9: 278–284.

Bremer, K. 1988. The limits of amino acid sequence data in angiosperm phylogenetic reconstruction. _Evolution_ 42: 795–803.

Bruns, T. D., R. Vilgalys, S. M. Barns, D. Gonzales, D. S. Hibbett, D. J. Lane, L. Simon, S. Stickel, T. M. Szaro,
W. G. Weisburg, and M. L. Sogin. 1992. Evolutionary relationships within the fungi: Analyses of nuclear small subunit RNA sequences. *Molec. Phylogenet. Evol.* 1: 231–241.

Clay, K., and I. C. Frenz. 1993. *Balansia pilulaeformis*, an epiphytic species. *Mycologia* 85: 527–534.

Diehl, W. W. 1950. *Balansia* and the *Balansiae* in America. Agriculture Monograph No. 4, USDA, Washington, D.C. 78 pp.

Donoghue, M. J., R. G. Olmstead, J. F. Smith, and J. D. Palmer. 1992. Phylogenetic relationships of Dipsoales based on *rbcL* sequences. *Ann. Missouri Bot. Gard.* 79: 333–345.

Efron, B. 1982. *The Jackknife, the Bootstrap and Other Resampling Plans*. CBMS-NSF Regional Conference Series in Applied Mathematics, Monograph 38, SIAM, Philadelphia. 92 pp.

Felsenstein, J. 1985. Confidence limits on phylogenies: An approach using the bootstrap. *Evolution* 39: 783–791.

Fennell, D. I. 1973. Plectomycetes: Eurotiaceae. Pp. 45–68. *In: The Fungi, an Advanced Treatise*. Vol. 4A. Eds., G. C. Ainsworth, F. K. Sparrow, and A. S. Sussman. Academic Press, New York.

Gams, W. 1971. *Cephalosporium-artige Schimmelpilze (Hyphomycetes)*. Gustav Fischer Verlag, Stuttgart. 262 pp.

———. 1975. *Cephalosporium*-like Hyphomycetes: Some tropical species. *Trans. Brit. Mycol. Soc.* 64: 389–404.

———. 1995. How natural should anamorph genera be? *Canad. J. Bot.* 73: S747–S753.

———, and A. Van Zaayen. 1982. Contribution to the taxonomy and pathogenicity of fuscicolus *Verticillium* species. *I. Taxonomy Neth. J Pl. Path.* 88: 57–78.

Hawksworth, D. L., B. C. Sutton, and G. C. Ainsworth. 1983. *Ainsworth and Bisby’s Dictionary of the Fungi*. 7th ed. CA International, Kew. 445 pp.

Kreisel, H. 1969. *Grundzüge eines natürlichen Systems der Pilze*. J. Cramer, Lehre. 245 pp.

Kumar, S., K. Tamura, and M. Nei. 1993. MEGA: Molecular evolutionary genetics analysis, version 1.01. The Pennsylvania State University, University Park, Pennsylvania.

Latch, G. C. M., M. J. Christensen, and G. J. Samuels. 1984. Five endophytes of *Lolium* and *Festuca* in New Zealand. *Mycotaxon* 20: 535–550.

Lee, S., and J. Taylor. 1990. Isolation of DNA from fungal mycelia and single spores. Pp. 282–287. In: *PCR Protocols: A Guide to Methods and Applications*. Eds., M. A. Innis, D. H. Gelfand, J. J. Sninsky, and T. J. White. Academic Press, New York.

Leuchtmann, A., and K. Clay. 1988. *Atkinsonella hypoxylon* and *Balansia cyperi*, epiphytic members of the *Balansiae*. *Mycologia* 80: 192–199.

———, and ———. 1989. Morphological, cultural and mating studies on *Atkinsonella*, including *A. texensis*. *Mycologia* 81: 692–701.

———, and ———. 1990. Isozyme variation in the *Acremonium/Epichloë* fungal endophyte complex. *Phytopathology* 80: 1133–1139.

———, C. L. Schardt, and M. R. Siegel. 1994. Sexual compatibility and taxonomy of a new species of *Epichloë* symbiotic with fine fescue grasses. *Mycologia* 86: 809–812.

Link, H. F. 1826. Entwurf eines phylogenologischen Pflanzen-systems nebst einer Anordnung der Kryptophyten. *Akad. Wiss. Berlin, Phys. Kl.* 1824: 143–194.

Lowen, R. 1995. *Acremonium* section *Lichenoidae* section nov. and *Promectria* oligospora species nov. *Mycotaxon* 53: 81–95.

Luttrell, E. S. 1980. Host-parasite relationships and development of the ergot sclerotium in *Claviceps purpurea*. *Canad. J. Bot.* 58: 942–958.

———, and C. W. Bacon. 1977. Classification of *Myriogenospora* in the Clavicipitaceae. *Canad. J. Bot.* 55: 2900–2907.

M addison, D. R. 1991. The discovery and importance of multiple islands of most-parasimilous tress. *Syst. Zool.* 40: 315–328.

Malloch, D. 1981. The plectomycete centrum. Pp. 73–91. *In: Ascomycete Systematics, the Luttrellian Concept*. Ed., D. R. Reynolds. Springer-Verlag, New York.

———. 1989. An undescribed species of *Leucosphaerina*. *Stud. Mycol.* 31: 107–111.

———, and R. F. Cain. 1970. Five new genera in the new family *Pseudeurotialae*, *Coronophorales*, *Sphaeriales*. Pp. 87–132. *In: Ascomycete Systematics, the Luttrellian Concept*. Ed., D. R. Reynolds. Springer-Verlag, New York.

Morgan-Jones, G. 1974. Notes on Hyphomycetes. V. A new thermophilic species of *Acremonium*. *Canad. J. Bot.* 52: 429–431.

———, and W. Gams. 1982. Notes on Hyphomycetes. XLI. An endophyte of *Festuca arundinacea* and the anamorph of *Epichloë typhina*, new taxa in one of two new sections of *Acremonium*. *Mycotaxon* 15: 311–318.

———, and R. A. Phelps, and J. F. White, Jr. 1992. Systematic and biological studies in the Balansiae and related anamorphs. I. *Prolegone*. *Mycotaxon* 43: 401–415.

———, and J. F. White, Jr. 1989. Concerning *Atkinsonella texensis*, a pathogen of the grass *Stipa leucotricha*: Developmental morphology and mating system. *Mycotaxon* 35: 455–467.

Müller, E., and J. A. von Arx. 1973. *Pyrenomycetes: Meliolales, Coronoraphales, Spheleiales*. Pp. 87–152. *In: The Fungi, an Advanced Treatise*. Vol. 4A. Eds., G. C. Ainsworth, F. K. Sparrow, and A. S. Sussman. Academic Press, New York.

Mullis, K. B., and F. A. Follohna. 1987. Specific synthesis of DNA in vitro via a polymerase-catalyzed chain reaction. *Methods Enzymol.* 155: 335–340.

Rehner, S. A., and G. J. Samuels. 1994a. Taxonomy and phylogeny of *Gliocladium* analysed from nuclear large subunit ribosomal DNA sequences. *Mycol. Res.* 98: 625–634.

———, and ———. 1994b. Molecular systematics of the Hypocreales: Teleomorph gene phylogenies and the status of orphan anamorphs. Fifth International Mycological Congress (Abstracts). P. 178.

———, and ———. 1995. Molecular systematics of the Hypocreales: A teleomorph gene phylogeny and the status of their anamorphs. *Canad. J. Bot.* 73: S816–S823.

Rogerson, C. T. 1970. The hypocrealean fungi (Ascomycetes, Hypocreales). *Mycologia* 62: 865–910.

Rydk, D. M., E. S. Luttrell, and C. W. Bacon. 1982. De-
velopment of the conidial state of *Myriogenospora atra-
mentosa*. *Mycologia* 74: 648–654.

———. 1984. Conidiogenesis and co-
nidiomata in the Clavicipitoideae. *Mycologia* 76: 1095–
1103.

Saccardo, P. A. 1881. Fungi Veneti novi vel critici v. Mycol-
ogiae Venetae addendi. *Michelia* 2: 241–501.

Saiki, R. K., D. H. Gelfand, S. Stoffel, S. J. Scharf, R. Hig-
uchi, G. T. Horn, K. B. Mullis, and H. A. Erlich. 1988.
Primer-directed enzymatic amplification of DNA with
thermostable DNA polymerase. *Science* 239: 487–491.

Saitou, N., and M. Nei. 1987. The neighbor-joining meth-
od: A new method for reconstructing phylogenetic
trees. *Molec. Biol. Evol.* 4: 406–425.

Sampson, K. 1933. The systemic infection of grasses by *Epi-
chloë typhina* (Pers.) Tul. *Trans. Brit. Mycol. Soc.* 18:
30–47.

Samuels, G. J. 1973. The myxomyceticolous species of *Nec-
tria*. *Mycologia* 65: 401–420.

———. 1976a. A revision of the fungi formerly classified as *Nectria* subgenus *Hyphomycetes*. *Mem. New York Bot.
Gard.* 26: 1–126.

———. 1976b. Perfect states of *Acremonium*: The genera
Nectria, *Actinioopsis*, *Ijyha*, *Neohenningsia*, *Ophiodia-
tyon*, and *Peristomialis*. *New Zealand J. Bot.* 14: 231–260.

———. 1988. Fungicolous, lichenicolous, and myxomycet-
icolous species of *Hypocrea*, *Nectria*, *Per-
istomialis*, and *Trichomycetes*. *Mem. New York Bot.
Gard.* 48: 1–78.

———. 1994b. Taxonomic relationships among the mem-
bers of the Balansieae (Clavicipitales). Pp. 3–20. In: *Biotech-
nology of Endophytic Fungi of Grasses*. Eds. C. W.
Bacon and J. F. White, Jr. CRC Press, Boca Raton.

———. 1995a. Endophyte-host associations in grasses. XX.
Structural and reproductive studies of *Epiclloë amaril-
lans sp. nov.* and comparisons to *E. typhina*. *Mycologia* 86: 571–580.

———. 1995b. Structure and mating system of the gramin-
icolous fungal epibiont *Echinodonothis tuberformis* (Clav-
icipitales). *Amer j Bot.* 80: 1465–1471.

———. 1994a. Endophyte-host associations in grasses. XX.
Ecological and physiological features characterizing
Epiclloë in *England*. *Mycologia* 85: 431–441.

———. 1992. Endophyte-host associations in grasses. XVII.
Ecological and physiological features characterizing
Epiclloë typhina and some anamorphic varieties in Eng-
land. *Mycologia* 84: 431–441.

———. 1993a. Endophyte-host associations in grasses. XIX.
A systematic study of some sympatric species of *Epiclloë
in England*. *Mycologia* 85: 444–455.

———. 1993b. Structure and mating system of the gramin-
icolous fungal epibiont *Echinodonothis tuberformis* (Clav-
icipitales). *Amer j Bot.* 80: 1465–1471.

———. 1994b. Endophyte-host associations in grasses. XI.
A proposal concerning origin and evolution. *Mycologia* 80: 442–446.

———. 1994a. Endophyte-host associations in grasses. XX.
A study of two fungal epibions of grasses: Structural
features, host relationships, and classification in the
genus *Myriogenospora* (Clavicipitales). *Amer j Bot.* 81: 216–223.

———. 1994b. Taxonomic relationships among the members
of the Balansieae (Clavicipitales). Pp. 3–20. In: *Biotech-
nology of Endophytic Fungi of Grasses*. Eds. C. W.
Bacon and J. F. White, Jr. CRC Press, Boca Raton.

———. 1995a. Endophyte-host associations in grasses. XX.
Structural and reproductive studies of *Epiclloë amaril-
lans sp. nov.* and comparisons to *E. typhina*. *Mycologia* 86: 571–580.

———. 1995b. Structure and mating system of the gramin-
icolous fungal epibiont *Echinodonothis tuberformis* (Clav-
icipitales). *Amer j Bot.* 80: 1465–1471.

———. 1994a. Endophyte-host associations in grasses. XX.
Ecological and physiological features characterizing
Epiclloë in *England*. *Mycologia* 85: 431–441.

———. 1993a. Endophyte-host associations in grasses. XIX.
A systematic study of some sympatric species of *Epiclloë
in England*. *Mycologia* 85: 444–455.

White, J. F., Jr. 1988. Endophyte-host associations in forage
grasses. XI. A proposal concerning origin and evolution. *Mycologia* 80: 442–446.

———. 1988. Endophyte-host associations in grasses. XVII.
Ecological and physiological features characterizing
Epiclloë typhina and some anamorphic varieties in Eng-
land. *Mycologia* 84: 431–441.

———. 1992. Endophyte-host associations in grasses. XVII.
Ecological and physiological features characterizing
Epiclloë typhina and some anamorphic varieties in Eng-
land. *Mycologia* 84: 431–441.

———. 1993a. Endophyte-host associations in grasses. XIX.
A systematic study of some sympatric species of *Epiclloë
in England*. *Mycologia* 85: 444–455.

———. 1993b. Structure and mating system of the gramin-
icolous fungal epibiont *Echinodonothis tuberformis* (Clav-
icipitales). *Amer j Bot.* 80: 1465–1471.

———. 1994a. Endophyte-host associations in grasses. XX.
Ecological and physiological features characterizing
Epiclloë in *England*. *Mycologia* 85: 431–441.

———. 1993b. Structure and mating system of the gramin-
icolous fungal epibiont *Echinodonothis tuberformis* (Clav-
icipitales). *Amer j Bot.* 80: 1465–1471.

———. 1994a. Endophyte-host associations in grasses. XX.
Ecological and physiological features characterizing
Epiclloë in *England*. *Mycologia* 85: 431–441.

———. 1993a. Endophyte-host associations in grasses. XIX.
A systematic study of some sympatric species of *Epiclloë
in England*. *Mycologia* 85: 444–455.