Sum of K-frames in Hilbert C*-Modules

Mohammad Mahmoudieha,b, Gholamreza Abbaspour Tabadkana, Aliakbar Arefijamaalc

aSchool of Mathematics and Computer Science, Damghan University, Damghan, Iran
bDepartment of Basic Sciences, Faculty of Valiasr, Tehran Branch, Technical and Vocational University (TVU), Tehran, Iran.
cDepartment of Mathematics and Computer Sciences, Hakim Sabzevari University, Sabzevar, Iran.

Abstract. In this paper, we investigate some conditions under which the action of an operator on a K-frame, remain again a K-frame for Hilbert module E. We also give a generalization of Douglas theorem to prove that the sum of two K-frames under certain condition is again a K-frame. Finally, we characterize the K-frame generators in terms of operators.

1. Introduction

Frames were first introduced in 1952 by Duffin and Schaeffer [6]. Frames can be viewed as redundant bases which are generalization of orthonormal bases. Many generalizations of frames were introduced, e.g., frames of subspaces [4], Pseudo-frames [1], G-frames [17], and fusion frames [3]. Recently, L. Gavruta introduced the concept of K-frame for a given bounded operator K on Hilbert space in [10]. Hilbert C*-modules arose as generalizations of the notion of Hilbert space. The basic idea was to consider modules over C*-algebras instead of linear spaces and to allow the inner product to take values in the C*-algebra of coefficients being C-(anti-)linear in its arguments [13]. In [8] authors generalized frame concept for operators in Hilbert C*-modules. The paper is organized as follows. In Section 2, some notations and preliminary results of Hilbert Modules, their frames and K-frames are given. In Section 3, we study the action of operators on K-frames and under certain conditions, we shall show that it is again a K-frame. The next section is devoted to sum of K-frames. In fact, to show that the sum of two K-frames under certain conditions is again a K-frame we need to say a generalization of the Douglas Theorem [18], which may interest by its own. Finally, in the last section, we consider a unitary system of operators and characterize the K-frame generators in terms of operators. We also look forward to sum of two K-frame generators to be a K-frame generator.

2. Preliminaries

In this section we give some preliminaries about frames, K-frames in Hilbert spaces and Hilbert modules and related operators which we need in the following sections. A finite or countable sequence \(\{f_k\}_{k \in J}\) is
called a frame for a separable Hilbert space H if there exist constants $A, B > 0$ such that

$$A \|f\|^2 \leq \sum_{k \in J} |(f, f_k)|^2 \leq B \|f\|^2, \quad \forall f \in H.$$

Frank and Larson [8] introduced the notion of frames in Hilbert C^*-modules as a generalization of frames in Hilbert spaces. A (left) Hilbert C^*-module over the C^*-algebra \mathcal{A} is a left \mathcal{A}-module E equipped with an \mathcal{A}-valued inner product satisfy the following conditions:

1. $\langle x, x \rangle \geq 0$ for every $x \in E$ and $\langle x, x \rangle = 0$ if and only if $x = 0$,
2. $\langle x, y \rangle = \langle y, x \rangle^*$ for every $x, y \in E$,
3. $\langle \cdot, \cdot \rangle$ is \mathcal{A}-linear in the first argument,
4. E is complete with respect to the norm $\|x\|^2 = \|\langle x, x \rangle\|_\mathcal{A}$.

Given Hilbert C^*-modules E and F, we denote by $L_\mathcal{A}(E, F)$ or $L(E, F)$ the set of all adjointable operators from E to F i.e. the set of all maps $T : E \to F$ such that there exists $T^* : F \to E$ with the property

$$\langle Tx, y \rangle = \langle x, T^*y \rangle,$$

for all $x \in E, y \in F$. It is well-known that each adjointable operator is necessarily bounded \mathcal{A}-linear in the sense $T(ax) = aT(x)$, for all $a \in \mathcal{A}, x \in E$. We denote $L(E)$ for $L(E, E)$. In fact $L(E)$ is a C^*-algebra.

Let \mathcal{A} be a C^*-algebra and consider

$$\ell^2(\mathcal{A}) := \{|a_j|_\mathcal{A} \subseteq \mathcal{A} : \sum_j a_j a_j^* \text{ converges in norm in } \mathcal{A}\}.$$

It is easy to see that $\ell^2(\mathcal{A})$ with pointwise operations and the inner product

$$\langle |a_j|, |b_j| \rangle = \sum_j a_j b_j^*,$$

becomes a Hilbert C^*-module which is called the standard Hilbert C^*-module over \mathcal{A}. Throughout this paper, we suppose E is a Hilbert \mathcal{A}-module and J a countable index set. Also, we denote the range of $T \in L(E)$ by $R(T)$, and the kernel of T by $N(T)$. A Hilbert \mathcal{A}-module E is called finitely generated (countably generated) if there exists a finite subset $\{|x_1, \ldots, x_j|\}$ (countable set $\{|x_j|\}_{j \in \mathbb{N}}$) of E such that E equals the closed \mathcal{A}-linear hull of this set. The basic theory of Hilbert C^*-modules can be found in [13].

The following lemma found the relation between the range of an operator and the kernel of its adjoint operator.

Lemma 2.1. ([19], Lemma 15.3.5; [13], Theorem 3.2) Let $T \in L(E, F)$. Then

1. $N(T) = N(|T|), N(T^*) = R(T)^+, N(T^*)^+ = R(T)^+ \supseteq R(T)$;
2. $R(T)$ is closed if and only if $R(T^*)$ is closed, and in this case $R(T)$ and $R(T^*)$ are orthogonally complemented with $R(T) = N(T^*)^+$ and $R(T^*) = N(T)^+$.

The following theorem is extended Douglas theorem [7] for Hilbert modules.

Theorem 2.2. [18] Let $T^* \in L(G, F)$ and $T \in L(E, F)$ with $\overline{R(T^*)}$ orthogonally complemented. The following statements are equivalent:

1. $T^*T^* \leq \lambda TT^*$ for some $\lambda > 0$;
2. There exists $\mu > 0$ such that $\|T^*z\| \leq \mu \|Tz\|$ for all $z \in F$;
3. There exists $D \in L(G, E)$ such that $T^* = TD$, i.e. the equation $TX = T^*$ has a solution;
4. $R(T^*) \subseteq R(T)$.
Here, we recall the concept of frame in Hilbert C^*-modules which is defined in [8]. Let E be a countably generated Hilbert module over a unital C^*-algebra \mathcal{A}. A sequence $\{x_j\}_{j \in J} \subset E$ is said to be a frame if there exist two constant $C,D > 0$ such that

$$C\langle x, x \rangle \leq \sum_{j} \langle x, x_j \rangle \langle x_j, x \rangle \leq D\langle x, x \rangle, \text{ for all } x \in E. \quad (1)$$

The optimal constants (i.e. maximal for C and minimal for D) are called frame bounds. If the sum in (1) converges in norm, the frame is called standard frame. In this paper all frames consider standard frames. The sequence $\{x_j\}_{j \in J}$ is called a Bessel sequence with bound D if the upper inequality in (1) holds for every $x \in E$.

Let $\{x_j\}_{j \in J}$ be a Bessel sequence for Hilbert module E over \mathcal{A}. The operator $T : E \to \ell^2(\mathcal{A})$ defined by $Tx = \{(x,x_j)\}_{j \in J}$ is called the analysis operator. The adjoint operator $T^* : \ell^2(\mathcal{A}) \to E$ which is given by

$$T^*[c_j]_{j \in J} = \sum_{j \in J} c_j x_j,$$

is called the pre-frame operator or the synthesis operator. By composing T and T^*, we obtain the frame operator $S : E \to E$ given by

$$Sx = T^*Tx = \sum_{j \in J} \langle x, x_j \rangle x_j, \quad (x \in E).$$

By [8], if $\{x_j\}_{j \in J}$ is a frame, the frame operator is positive and invertible. Also it is the unique operator in $L(E)$ such that the reconstruction formula

$$x = \sum_{j \in J} \langle x, S^{-1}x_j \rangle x_j = \sum_{j \in J} \langle x, x_j \rangle S^{-1}x_j, \quad x \in E,$$

holds. It is easy to see that the sequence $\{S^{-1}x_j\}_{j \in J}$ is a frame for E, and it is called the canonical dual frame of $\{x_j\}_{j \in J}$.

Theorem 2.3. [14], Proposition 2.2] Let $\{x_j\}_{j \in J}$ be a sequence in E such that $\sum_{j \in J} c_j x_j$ converges for all $c = \{c_j\}_{j \in J} \in \ell^2(\mathcal{A})$. Then $\{x_j\}_{j \in J}$ is a Bessel sequence in E.

Theorem 2.4. [12] Let E be a finitely or countably generated Hilbert module over a unital C^*-algebra \mathcal{A}, and $\{x_j\}_{j \in J}$ be a sequence in E. Then $\{x_j\}_{j \in J}$ is a frame for E with bounds C and D if and only if

$$C\|x\|^2 \leq \|\sum_{j \in J} \langle x, x_j \rangle \langle x_j, x \rangle\| \leq D\|x\|^2, \quad (x \in E).$$

Najati in [14] extended the concept of atomic system and a K-frame to Hilbert modules.

Definition 2.5. A sequence $\{x_j\}_{j \in J}$ of E is called an atomic system for $K \in L(E)$ if the following statement hold:

1. The series $\sum_{j \in J} c_j x_j$ converges for all $c = \{c_j\}_{j \in J} \in \ell^2(\mathcal{A})$;
2. There exists $C > 0$ such that for every $x \in E$ there exists $\{a_j\}_{j \in J} \in \ell^2(\mathcal{A})$ such that $\sum_{j \in J} a_j a_j^* \leq C\langle x, x \rangle$ and $Kx = \sum_{j \in J} a_j x_j$.

By Theorem 2.3, the condition (1) in the above definition, actually says that $\{x_j\}_{j \in J}$ is a Bessel sequence.

Theorem 2.6. [14] If $K \in L(E)$, then there exists an atomic system for K.

Theorem 2.7. [14] Let $\{x_j\}_{j \in J}$ be a Bessel sequence for E and $K \in L(E)$. Suppose that $T \in L(E, \ell^2(\mathcal{A}))$ is given by $T(x) = \{(x, x_j)\}_{j \in J}$ and $R(T)$ is orthogonally complemented. Then the following statements are equivalent:
1. \(\{x_j\}_{j \in \mathbb{J}} \) is an atomic system for \(K \);
2. There exist constants \(C, B > 0 \) such that
\[
B\|K^*x\|^2 \leq \| \sum_j \langle x, x_j \rangle \langle x_j, x \rangle \| \leq C\|x\|^2;
\]
3. There exists \(D \in L(E, \ell^2(\mathcal{A})) \) such that \(K = T^*D \).

Definition 2.8. Let \(E \) be a Hilbert \(\mathcal{A} \)-module, \(\{x_j\}_{j \in \mathbb{J}} \subset E \) and \(K \in L(E) \). The sequence \(\{x_j\}_{j \in \mathbb{J}} \) is said to be a \(K \)-frame if there exist constants \(C, D > 0 \) such that
\[
C\langle K^*x, K^*x \rangle \leq \sum_{j \in \mathbb{J}} \langle x, x_j \rangle \langle x_j, x \rangle \leq D\langle x, x \rangle, \quad x \in E.
\]

The following theorem gives a characterization of \(K \)-frames using linear adjointable operators.

Theorem 2.9. [14] Let \(K \in L(E) \) and \(\{x_j\}_{j \in \mathbb{J}} \) be a Bessel sequence for \(E \). Suppose that \(T \in L(E, \ell^2(\mathcal{A})) \) is given by \(T(x) = \{\langle x, x_j \rangle\}_{j \in \mathbb{J}} \) and \(R(T) \) is orthogonally complemented. Then \(\{x_j\}_{j \in \mathbb{J}} \) is a \(K \)-frame for \(E \) if and only if there exists a linear bounded operator \(L : \ell^2(\mathcal{A}) \to E \) such that \(Lx_j = x_j \) and \(R(K) \subseteq R(L) \), where \(\{e_j\}_{j \in \mathbb{J}} \) is the canonical orthonormal basis for \(\ell^2(\mathcal{A}) \).

3. Operators On \(K \)-frames

In this section we study the action of an operator on a \(K \)-frame. The following lemma shows that the action of an adjointable operator on a Bessel sequence is again a Bessel sequence.

Lemma 3.1. Let \(E \) be a Hilbert \(\mathcal{A} \)-module and \(\{x_j\}_{j \in \mathbb{J}} \) be a Bessel sequence. Then \(\{Mx_j\}_{j \in \mathbb{J}} \) is a Bessel sequence for every \(M \in L(E) \).

Proof. Since \(\{x_j\}_{j \in \mathbb{J}} \) is a Bessel sequence there exists constant \(D \) such that
\[
\sum_{j \in \mathbb{J}} \langle x, x_j \rangle \langle x_j, x \rangle \leq D\langle x, x \rangle,
\]
for every \(x \in E \). So
\[
\sum_{j \in \mathbb{J}} \langle x, Mx_j \rangle \langle Mx_j, x \rangle = \sum_{j \in \mathbb{J}} \langle M^*x, x_j \rangle \langle x_j, M^*x \rangle \leq D\langle M^*x, M^*x \rangle = D\langle MM^*x, x \rangle \leq D\|M\|^2 \langle x, x \rangle,
\]
for every \(x \in E \). \(\Box \)

Theorem 3.2. Let \(E \) be a Hilbert \(\mathcal{A} \)-module, \(K \in L(E) \) and \(\{x_j\}_{j \in \mathbb{J}} \) be a \(K \)-frame for \(E \). Let \(M \in L(E) \) with \(R(M) \subset R(K) \) and \(R(K^*) \) is orthogonally complemented. Then \(\{x_j\}_{j \in \mathbb{J}} \) is an \(M \)-frame for \(E \).

Proof. Since \(\{x_j\}_{j \in \mathbb{J}} \) is a \(K \)-frame then there exist positive numbers \(\mu \) and \(\lambda \) such that
\[
\lambda\langle K^*x, K^*x \rangle \leq \sum_{j \in \mathbb{J}} \langle x, x_j \rangle \langle x_j, x \rangle \leq \mu\langle x, x \rangle.
\]
Using Theorem 2.2, the fact that \(R(M) \subset R(K) \) shows that \(MM^* \leq \lambda^* KK^* \) for some \(\lambda > 0 \). So

\[
\langle MM^* x, x \rangle \leq \lambda^* \langle KK^* x, x \rangle,
\]

and hence,

\[
\frac{\lambda}{\lambda^*} \langle MM^* x, x \rangle \leq \lambda \langle K^* x, K^* x \rangle.
\]

From (3), we have

\[
\frac{\lambda}{\lambda^*} \langle MM^* x, x \rangle \leq \sum_{j \in \mathbb{J}} \langle x, x_j \rangle \langle x_j, x \rangle \leq \mu(x, x).
\]

Therefore, \(\{x_j\}_{j \in \mathbb{J}} \) is an \(M \)-frame with the bounds \(\frac{\lambda}{\lambda^*} \) and \(\mu \) for \(E \). \[\Box\]

In the following theorem, we obtain the result of the last theorem by different conditions.

Theorem 3.3. Let \(\{x_j\}_{j \in \mathbb{J}} \) be a \(K \)-frame for Hilbert \(\mathfrak{A} \)-module \(E \). Suppose that \(T \in L(E, \ell^2(\mathfrak{A})) \) with \(T(x) = \{(x, x_j)\}_{j \in \mathbb{J}} \) for every \(x \in E \), \(\mathbb{R}(T) \) is orthogonally complemented and \(M \in L(E) \) such that \(R(M) \subset R(K) \). Then \(\{x_j\}_{j \in \mathbb{J}} \) is an \(M \)-frame for \(E \).

Proof. By Theorem 2.9, there exists \(L : \ell^2(\mathfrak{A}) \to E \) such that \(Le_j = f_j \), \(j \in \mathbb{J} \) and \(R(K) \subset R(L) \). So \(R(M) \subset R(L) \). Now again by Theorem 2.9, we conclude that \(\{x_j\}_{j \in \mathbb{J}} \) is an \(M \)-frame for \(E \). \[\Box\]

Theorem 3.4. Let \(E \) be a Hilbert \(\mathfrak{A} \)-module and \(K \in L(E) \) with the dense range. Let \(\{x_j\}_{j \in \mathbb{J}} \) be a \(K \)-frame for \(E \) and \(T \in L(E) \) has closed range. If \(\{Tx_j\}_{j \in \mathbb{J}} \) is a \(K \)-frame for \(E \) with \(T \) is surjective.

Proof. Suppose that \(K^* x = 0 \) for \(x \in E \). Then for each \(y \in E \), \(\langle Ky, x \rangle = \langle y, K^* x \rangle = 0 \) and \(\langle z, x \rangle = 0 \) for each \(z \in E \). Since \(R(K) \) is dense in \(E \), hence \(x = 0 \) and so \(K^* \) is injective. Now, we show that \(T^* \) is injective too. Note that if \(\{Tx_j\}_{j \in \mathbb{J}} \) is a \(K \)-frame for \(E \) with bounds \(\lambda \) and \(\mu \), then

\[
\lambda \|K^* x\|^2 \leq \| \sum_{j \in \mathbb{J}} \langle x, Tx_j \rangle \langle Tx_j, x \rangle \| \leq \mu \|x\|^2,
\]

and therefore,

\[
\lambda \|K^* x\|^2 \leq \| \sum_{j \in \mathbb{J}} \langle T^* x, x_j \rangle \langle x_j, x \rangle \| \leq \mu \|x\|^2.
\]

If \(x \in N(T^*) \) then \(T^* x = 0 \). Hence \(\langle T^* x, x_j \rangle = 0 \) for each \(j \in \mathbb{J} \), and so \(K^* x = 0 \), by the last inequality. Since \(K^* \) is injective, it follows that \(x = 0 \), and so \(T^* \) is injective. Therefore

\[
E = N(T^*) + \mathbb{R}(T) = \mathbb{R}(T) = R(T),
\]

and this completes the proof. \[\Box\]

Theorem 3.5. Let \(K \in L(E) \) and \(\{x_j\}_{j \in \mathbb{J}} \) be a \(K \)-frame for \(E \). If \(T \in L(E) \) has closed range, \(R(K^*) \subset R(T) \), \(\mathbb{R}(TK) \) is orthogonal complemented and \(KT = TK \), then \(\{Tx_j\}_{j \in \mathbb{J}} \) is a \(K \)-frame for \(R(T) \).

Proof. It was proved in [20] that if \(T \) has closed range, then \(T \) has the Moore-Penrose inverse operator \(T^+ \) such that \(TT^+ T = T \) and \(T^+ T T^+ = T^+ \). So \(TT^+ |_{\mathbb{R}(T)} = I_{\mathbb{R}(T)} \) and \((TT^+)^* = I = T^+ \). For every \(x \in R(T) \) we have

\[
\langle K^* x, K^* x \rangle = \langle (TT^+)K^* x, (TT^+)K^* x \rangle
\]

\[
= \langle T^+ TK^* x, T^+ TK^* x \rangle
\]

\[
\leq \|T^+\|^2 \langle T^* K^* x, T^* K^* x \rangle,
\]

}\[\Box\]
and so
\[\|(T^*)^*\|^2 \langle K^*x, K^*x \rangle \leq \langle T^*K^*x, T^*K^*x \rangle. \]

Since \(\{x_j\}_{j \in J} \) is a K-frame, with lower frame bound \(\lambda \) and \(R(T^*K^*) \subseteq R(K^*T^*) \), then by Theorem 2.2, there exists some \(\lambda' > 0 \) such that
\[
\sum_{j \in J} \langle x, T x_n \rangle \langle T x_n, x \rangle = \sum_{j \in J} \langle T^* x, x_n \rangle \langle x_n, T^* x \rangle
\geq \lambda \langle K^*T^* x, K^*T^* x \rangle
\geq \lambda' \lambda' \langle T^*K^* x, T^*K^* x \rangle.
\]

This implies that \(\{Tx_j\}_{j \in J} \) satisfies in lower frame condition. On the other hand, by Lemma 3.1, \(\{Tx_j\}_{j \in J} \) is a Bessel sequence and therefore \(\{Tx_j\}_{j \in J} \) is a K-frame for Hilbert module \(R(T) \).

Theorem 3.6. Let \(E \) be a Hilbert \(\mathcal{A} \)-module, \(K \in L(E) \) and \(\{x_j\}_{j \in J} \) be a K-frame for \(E \). Moreover, let \(T \in L(E) \) be a co-isometry such that \(R(T^*K^*) \subseteq R(K^*T^*) \) and \(R(TK) \) is orthogonal complemented. Then \(\{Tx_j\}_{j \in J} \) is a K-frame for \(E \).

Proof. Using Lemma 3.1, \(\{Tx_j\}_{j \in J} \) is a Bessel sequence. Also, by Theorem 2.2, there exists \(\lambda' > 0 \) such that
\[\|(T^*K^*)x\|^2 \leq \lambda' \|K^*T^*x\|^2 \]
for each \(x \in E \). Suppose \(\lambda \) is a lower bound for the K-frame \(\{x_j\}_{j \in J} \). Since \(T \) is a co-isometry, then
\[
\frac{\lambda}{\lambda'} \|K^*x\|^2 = \frac{\lambda}{\lambda'} \|T^*K^*x\|^2
\leq \lambda \|K^*T^*x\|^2
\leq \sum_{j \in J} \langle T^*x, x_n \rangle \langle x_n, T^*x \rangle
= \sum_{j \in J} \langle x, T x_n \rangle \langle T x_n, x \rangle,
\]
which implies that \(\{Tx_j\}_{j \in J} \) is a K-frame for \(E \).

Remark 3.7. Consider \(K \in L(E) \) with dense range, \(T \in L(E) \) with closed range such that \(TK = KT \) and \(\{x_j\}_{j \in J} \) is a K-frame for \(E \). Then \(\{Tx_j\}_{j \in J} \) is a K-frame for \(E \) if and only if \(T \) is surjective.

Theorem 3.8. Let \(K \in L(E) \) whose range is dense and \(\{x_j\}_{j \in J} \) is a K-frame for \(E \). Moreover, let \(T \in L(E) \) has closed the range. If \(\{Tx_j\}_{j \in J} \) and \(\{T^*x_j\}_{j \in J} \) are K-frames for \(E \), then \(T \) is invertible.

Proof. By Theorem 3.4, \(T \) is surjective. Since \(\{T^*x_j\}_{j \in J} \) is a K-frame for \(E \) then there exist positive numbers \(\mu \) and \(\lambda \) such that for every \(x \in E \)
\[
\lambda \|K^*x\|^2 \leq \sum_{j \in J} \langle x, T^*x_j \rangle \langle T^*x_j, x \rangle \leq \mu \|x\|^2.
\]
So for \(x \in N(T) \) we have
\[
\lambda \|K^*x\|^2 \leq \sum_{j \in J} \langle x, T^*x_j \rangle \langle T^*x_j, x \rangle = 0.
\]
Then \(\|K^*x\|^2 = 0 \) and so \(x \in N(K^*) \). On the other hand, \(K \in L(E) \) has dense range. Hence \(K^* \) is injective and so \(T \) is also injective.
4. Sums of K-frames

In this section we show that the sum of two K-frames in a Hilbert C^*-module under certain conditions is again a K-frame, it was proved in Hilbert space case by Ramu and Johnson [15]. In the proof of Theorem 3.2 of [13], it was indicated that if T has closed range then $R(T^*T)$ is closed and $R(T) = R(T^*T)$. The following theorem says that this result still holds for adjointable operators between Hilbert C^*-modules (even though $\overline{R(T^*)}$ may not be complemented).

Theorem 4.1. [13] For T in $L(E,F)$, the sub-spaces $R(T^*)$ and $R(T^*T)$ have the same closure.

In [16], Sharifi proved that the converse of above theorem is also true.

Theorem 4.2 (Lemma 1.1, [16]). Suppose $T \in L(E)$. Then the operator T has closed range if and only if $R(TT^*)$ has closed range. In this case, $R(T) = R(TT^*)$.

Corollary 4.3. Suppose $T \in L(E)^*$. Then $R(T)$ is closed if and only if $R(T^{1/2})$ is closed. In this case, $R(T) = R(T^{1/2})$.

Proof. The proof is immediately consequence of replacement T by $T^{1/2}$ in the above theorem. □

Theorem 4.4. Let E be a Hilbert module and $A, B \in L(E)$ such that $R(A) + R(B)$ is closed. Then

$$R(A) + R(B) = R((AA^* + BB^*)^{1/2}).$$

Proof. Define $T \in L(E \oplus E)$ by $T := \begin{bmatrix} A & B \\ 0 & 0 \end{bmatrix}$. Then $T^* = \begin{bmatrix} A^* & 0 \\ B^* & 0 \end{bmatrix}$, and

$$TT^* = \begin{bmatrix} A & B \\ 0 & 0 \end{bmatrix} \begin{bmatrix} A^* & 0 \\ B^* & 0 \end{bmatrix} = \begin{bmatrix} AA^* + BB^* & 0 \\ 0 & 0 \end{bmatrix}.$$

So we have

$$(TT^*)^{1/2} = \begin{bmatrix} (AA^* + BB^*)^{1/2} & 0 \\ 0 & 0 \end{bmatrix}.$$

On the other hand

$$T \begin{bmatrix} E \\ E \end{bmatrix} = \begin{bmatrix} A & B \\ 0 & 0 \end{bmatrix} \begin{bmatrix} E \\ E \end{bmatrix},$$

thus

$$R(T) = R(A) + R(B) \oplus \{0\}.$$

Since $R(T) = (R(A) + R(B))$ is closed then by Theorem 4.2, $R(T) = R(TT^*)$. But by Corollary 4.3, $R(TT^*) = R((TT^*)^{1/2})$. So we have

$$R(A) + R(B) = R((AA^* + BB^*)^{1/2}).$$

□

The following theorem is a generalization of Douglas theorem [Theorem 1.1, [18]], for Hilbert modules.

Theorem 4.5. Let $A, B_1, B_2 \in L(E)$ and $R(B_1) + R(B_2)$ is closed. The following statements are equivalent.

1. $R(A) \subseteq R(B_1) + R(B_2)$;
2. $AA^* \leq \lambda(B_1 B_1^* + B_2 B_2^*)$ for some $\lambda > 0$;
3. There exist $X, Y \in L(E)$ such that $A = B_1X + B_2Y$.

Proof. (1) \(\implies\) (2): Suppose \(R(A) \subset R(B_1) + R(B_2)\). Then by Theorem 4.4, we have

\[
R(A) \subset R(B_1) + R(B_2) = R((B_1B_1^* + B_2B_2^*)^{1/2}),
\]

thus Theorem 2.2, implies \(AA^* \leq \lambda(B_1B_1^* + B_2B_2^*)\) for some \(\lambda > 0\).

(2) \(\implies\) (1): By Theorems 2.2, and 4.5, it is clear.

(3) \(\implies\) (1): It is obvious.

(1) \(\implies\) (3): Define \(S, T \in L(E \oplus E)\) by

\[
S = \begin{bmatrix} A & 0 \\ 0 & 0 \end{bmatrix}, \quad T = \begin{bmatrix} B_1 & B_2 \\ 0 & 0 \end{bmatrix}.
\]

Then \(R(S) \subset R(T)\) by Theorem 2.2. Suppose

\[
X = \begin{bmatrix} X_1 \\ X_2 \\ X_3 \\ X_4 \end{bmatrix},
\]

is the solution of \(S = TX\), so we have \(A = B_1X_1 + B_2X_2\). This completes the proof. \(\square\)

Following lemma shows that the sum of two Bessel sequences is a Bessel sequence too.

Lemma 4.6. Suppose that \(\{x_j\}_{j \in J}\) and \(\{y_j\}_{j \in J}\) are two Bessel sequences in Hilbert module \(E\). Then, by the Minkowski’s inequality, \(\{x_j + y_j\}_{j \in J}\) is also a Bessel sequence for \(E\).

Now we are going to show that under certain conditions the sum of two \(K\)-frame, is a \(K\)-frame.

Theorem 4.7. Let \(\{x_j\}_{j \in J}\) and \(\{y_j\}_{j \in J}\) be two \(K\)-frames for \(E\) and also let the corresponding operators in Theorem 2.9, be \(L_1\) and \(L_2\) respectively. If \(L_1L_2^*\) and \(L_2L_1^*\) are positive operators and \(R(L_1) + R(L_2)\) is closed, then \(\{x_j + y_j\}_{j \in J}\) is a \(K\)-frame for \(E\).

Proof. By the hypothesis we have

\[
L_1e_j = x_j, L_2e_j = y_j, R(K) \subset R(L_1), R(K) \subset R(L_2),
\]

where \(\{e_j\}_{j \in J}\) is the canonical orthonormal basis of \(\ell^2(A)\). So \(R(K) \subset R(L_1) + R(L_2)\), by Theorem 4.5, and \(KK^* \leq \lambda(L_1L_1^* + L_2L_2^*)\) for some \(\lambda > 0\). On the other hand for each \(x \in E\),

\[
\sum_{j \in J} \langle x, x_j + y_j \rangle \langle x_j + y_j, x \rangle = \sum_{j \in J} \langle (L_1 + L_2)^*x, e_j \rangle \langle e_j, (L_1 + L_2)^*x \rangle \\
= \langle (L_1 + L_2)^*x, e_j \rangle \langle e_j, (L_1 + L_2)^*x \rangle \\
= \langle (L_1 + L_2)^*x, (L_1 + L_2)^*x \rangle \\
= \langle L_1^*x, L_1^*x \rangle + \langle L_2^*x, L_2^*x \rangle + \langle L_1^*x, L_2^*x \rangle + \langle L_2^*x, L_1^*x \rangle \\
\geq \langle (L_1^*L_1 + L_2^*L_2)x, x \rangle \\
\geq \frac{1}{\lambda} \langle KK^*x, x \rangle \\
\geq \frac{1}{\lambda} \langle K^*x, K^*x \rangle.
\]

Thus \(\{x_j + y_j\}_{j \in J}\) is a \(K\)-frame. \(\square\)
5. K-frame vectors for unitary systems

A unitary system is a set of unitary operators which contains the identity operator. A vector \(\psi \) in \(E \) is called a complete K-frame vector for a unitary system \(\mathcal{U} \) on \(E \) if \(\mathcal{U}\psi = \{ U\psi \mid U \in \mathcal{U} \} \) is a K-frame for \(E \). If \(\mathcal{U}\psi \) is an orthonormal basis for \(E \), then \(\psi \) is called a complete wandering vector for \(\mathcal{U} \). The set of all complete K-frame vectors and complete wandering vectors for \(\mathcal{U} \) is denoted by \(\mathcal{F}_K(\mathcal{U}) \) and \(\omega(\mathcal{U}) \), respectively. In this section we characterize \(\mathcal{F}_K(\mathcal{U}) \) in terms of operators and elements of \(\omega(\mathcal{U}) \).

Definition 5.1. For a unitary system \(\mathcal{U} \) on a Hilbert module \(E \) and \(\psi \in \mathcal{U} \), the local commutant \(C_\psi(\mathcal{U}) \) of \(\mathcal{U} \) at \(\psi \) is defined by

\[
C_\psi(\mathcal{U}) = \{ T \in L(E) \mid TU\psi = UT\psi, \quad U \in \mathcal{U} \}.
\]

Also, let \(\ell_2^\mathcal{U}(\mathcal{A}) \) be the Hilbert \(\mathcal{A} \)-module defined by

\[
\ell_2^\mathcal{U}(\mathcal{A}) = \{ \langle a_U \rangle \in \mathcal{A} : \sum a_U a_U^* \text{ converges in } \| \cdot \| \}.
\]

The following theorem characterizes complete K-frame vectors in terms of operators on complete wandering vectors.

Theorem 5.2. Suppose \(\mathcal{U} \) is a unitary system of \(E \), \(K \in L(E) \), \(\psi \in \omega(\mathcal{U}) \) and \(\eta \in E \). Moreover, suppose that \(\psi, \eta \in L(E, \ell_2^\mathcal{U}(\mathcal{A})) \) is given by \(T_\psi(x) = \langle x, U\eta \rangle \) and \(R(T_\psi^*) \) is orthogonal complemented. Then \(\eta \in \mathcal{F}_K(\mathcal{U}) \) if and only if there exists an operator \(A \in C_\psi(\mathcal{U}) \) with \(R(K) \subseteq R(A) \) such that \(\eta = A\psi \).

Proof. (\(\Longleftarrow \)) Suppose \(\{ e_U \} \) denote the standard orthonormal basis of \(\ell_2^\mathcal{U}(\mathcal{A}) \), where \(e_U \) takes value \(1_A \) at \(U \) and \(0_A \) at every other \(U \). Now suppose \(\eta \in \mathcal{F}_K(\mathcal{U}) \). Define operator \(T_\psi \) from \(E \) to \(\ell_2^\mathcal{U}(\mathcal{A}) \) by \(T_\psi x = \sum \langle x, U\eta \rangle \langle U, U\eta \rangle e_U \). It is easy to check that \(T_\psi \) is well defined, adjointable and invertible. Let \(A = T_\psi \). Then for any \(x \in E \), we have

\[
\langle A^*x, A^*x \rangle = \sum \langle x, U\eta \rangle \langle U, U\eta \rangle \langle U\eta, U\eta \rangle U^*
\]

\[
= \sum \langle x, U\eta \rangle \langle U, U\eta \rangle \langle U\eta, x \rangle
\]

\[
\geq c\langle Kx, Kx \rangle,
\]

where \(c > 0 \) is the lower bound for K-frame \(\{ U\eta \mid U \in \mathcal{U} \} \). On the other hand \(R(A) = R(T_\psi^*) \) and so by Theorem 2.2, we have \(R(K) \subseteq R(A) \). To complete the proof, it remains to prove that \(\eta = A\psi \) and \(A \in C_\psi(\mathcal{U}) \). For any \(U \) and \(V \) in \(\mathcal{U} \)

\[
\langle V\eta, AU\psi \rangle = \langle V\eta, \sum \langle U, W\eta \rangle W\psi \rangle
\]

\[
= \sum \langle V\eta, W\eta \rangle \langle W\psi, U\psi \rangle
\]

\[
= \langle V\psi, U\psi \rangle.
\]

This implies that \(AU\psi = U\eta \), so \(A\psi = \eta \). Also \(AU\psi = U\eta = UA\psi \), hence \(A \in C_\psi(\mathcal{U}) \) and this completes the proof of this part.

(\(\Longleftrightarrow \)): Suppose that there exists an operator \(A \in C_\psi(\mathcal{U}) \) with \(R(K) \subseteq R(A) \) such that \(\eta = A\psi \). Then for any \(x \in E \), we have

\[
\sum \langle x, U\eta \rangle \langle U\eta, x \rangle = \sum \langle x, UA\psi \rangle \langle UA\psi, x \rangle
\]

\[
= \sum \langle A^*x, U\psi \rangle \langle U\psi, A^*x \rangle
\]

\[
= \langle A^*x, A^*x \rangle
\]

\[
\leq \| A^* \|^2 \| x \|^2.
\]
So \(|U\eta| \in \mathcal{U}U\) is a Bessel sequence for \(E\). Now let \(T_\eta\) and \(T_\psi\) be the operators as we defined in the first part of the proof, since \(\eta = A\psi\) so we have \(T_\eta = T_\psi A^*\). Since \(\psi \in \mathcal{w}(U)\), it is easy to see that \(T_\psi^*\) is invertible and hence \(R(T_\psi^*) = R(A)\). So \(R(K) \subset R(T_\psi^*)\). Therefore, by using Theorem 3.2 of [8] it is concluded that \(\eta \in \mathcal{U}_K(U)\).

References

[1] J. J. Benedetto and S. Li, The theory of multi resolution analysis frames and applications to filter banks, Applied and Computational Harmonic Analysis 5 (1998) 389-427.
[2] P. G. Casazza, O. Christensen and D. T. Stoeva, Frame expansions in separable Banach spaces, Journal of mathematical analysis and applications 307 (2005) 710-723.
[3] P. G. Casazza, G. Kutyniok and S. Li, Fusion frames and distributed processing, Applied and computational harmonic analysis 25 (2008) 114-152.
[4] P. G. Casazza and G. Kutyniok, Frames of subspaces Contemporary Mathematics 345 (2004) 87-114.
[5] O. Christensen, An introduction to frames and Riesz bases, Boston. Birkhäuser, 2003.
[6] R. J. Duffin and A. C. Schaeffer, A class of nonharmonic Fourier series Transactions of the American Mathematical Society 72 (1952) 341-366.
[7] R. G. Douglas, On majorization, factorization and range inclusion of operators on Hilbert space Proceedings of the American Mathematical Society 17 (1966) 413-415.
[8] M. Frank, and DR. Larson, A module frame concept for Hilbert, The Functional and Harmonic Analysis of Wavelets and Frames, AMS Special Session on the Functional and Harmonic Analysis of Wavelets, San Antonio, Texas, (1999), 207-247.
[9] K. Gröchenig, Describing functions: atomic decompositions versus frames, Monatshefte fur Mathematik 112 (1999) 1-42.
[10] L. Găvruța, Frames for operators Applied and Computational Harmonic Analysis 32 (2012) 139-144.
[11] M. Jalalian, F. Sultanzadeh and M. Hassani, On operator ranges in Hilbert \(C^*\)-module, The 4-th Seminar on Functional Analysis and its Applications. Ferdowsi University of Mashhad, Iran. (2016).
[12] W. Jing, Frames in Hilbert \(C^*\)-modules, Ph.D. Thesis, University of Central Florida, 2006.
[13] E. C. Lance, Hilbert \(C^*\)-modules, A Toolkit for Operator Algebraists, University of Leeds, Cambridge University Press, 1995.
[14] A. Najati, M. M. Saem and P. Găvruța, Frames and operators in Hilbert \(C^*\)-modules, arXiv preprint arXiv. 1403.0205, (2014).
[15] G. Ramu and P. S. Johnson, Frame operators of K-frames, SeMA Journal 73 (2016) 171-181.
[16] K. Sharifi, The product of Operators with closed range in Hilbert \(C^*\)-modules, Linear Algebra and its Applications 435 (2011) 1122-1130.
[17] W. Sun, G-frames and G-Riesz bases, Journal of Mathematical Analysis and Applications 322 (2006) 437-452.
[18] X. Fang, J. Yu and H. Yao, Solutions to operator equations on Hilbert \(C^*\)-modules, Linear Algebra and its Applications 431 (2009) 2142-2153.
[19] N.E. Wegge-Olsen, K-Theory and \(C^*\)-Algebras, A Friendly Approach, Oxford University Press, Oxford, 1993.
[20] Q. Xu and L. Sheng, Positive semi-definite matrices of adjointable operators on Hilbert \(C^*\)-modules, Linear Algebra and its Applications 428 (2008) 992-1000.