OBJECTIVE — We developed a new method of estimating visceral fat area (VFA) using multifrequency bioelectrical impedance (BI).

RESEARCH DESIGN AND METHODS — We considered abdominal composition as a parallel circuit model composed of VFA and subcutaneous fat area and calculated the impedance of VFA (IPVFA) from this model. The methods were tested against measures of VFA by computed tomography (CT). Multiple regression analysis was performed on 103 participants to estimate VFA. We cross-validated the regression equation against CT-measured VFA in 30 additional participants.

RESULTS — The regression equation was VFA = 3.57 × sagittal abdominal diameter + 311.97 × waist-to-height ratio + 0.71 × age + 23.93 × sex + 1.57 × IPVFA (250 kHz) − 174.35 (r = 0.904; P < 0.01). We observed a strong correlation by cross-validation (r = 0.905).

CONCLUSIONS — Our method using BI is a simple and convenient method for accurately estimating VFA.

From the 1Division of Epidemiology, Department of Public Health and Forensic Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan; the 2Department of Exercise Physiology, Utsunomiya University, Tochigi, Japan; the 3Department of Public Health, School of Medicine, Dokkyo University, Tochigi, Japan; the 4Division of Diabetes and Endocrinology, Department of Internal Medicine, Jikei University Daisan Hospital, Tokyo, Japan; the 5Department of Internal Medicine, Sirasawa Hospital, Tochigi, Japan; and the 6Tanita Body Weight Scientific Institute, Tokyo, Japan.

Corresponding author: Hideaki Komiya, komiya@cc.utsunomiya-u.ac.jp.

Received 17 June 2009 and accepted 5 February 2010. Published ahead of print at http://care.diabetesjournals.org on 11 February 2010. DOI: 10.2337/dc09-1099.

© 2010 by the American Diabetes Association. Readers may use this article as long as the work is properly cited, the use is educational and not for profit, and the work is not altered. See http://creativecommons.org/licenses/by-nc-nd/3.0/ for details.

The costs of publication of this article were defrayed in part by the payment of page charges. This article must therefore be hereby marked “advertisement” in accordance with 18 U.S.C. Section 1734 solely to indicate this fact.
CONCLUSIONS — In this study, because subcutaneous fat layer thickness affected the impedance when electrodes were placed on the abdomen (6), we considered abdominal composition as a parallel circuit model and calculated IP_{VFA} using the formula for a parallel circuit. Therefore, we eliminated the effect of SFA by this model.

In Japan, waist circumference at the umbilicus level was used to screen for VFA \(\geq 100 \) cm\(^2\) because CT has some problems such as radiation exposure (15). However, our regression equation demonstrated higher sensitivity and specificity than waist circumference.

A major strength of our study is that the number of study participants was more than in any previous study (4–6,13). Additionally, we cross-validated the regression equation and obtained a strong correlation (\(r = 0.905, P < 0.01 \)). On the other hand, our study has several limitations. First, the study participants were young (mean age \(\pm SD: 30.3 \pm 10.8 \) years), and the proportion of VFA \(\geq 100 \) cm\(^2\) was small (16.5%), so we may not be able to adapt this regression equation for middle-aged people who have a higher proportion of VFA \(\geq 100 \) cm\(^2\) than young people. Second, the data are limited to the Japanese population, which may have different VFA characteristics than other populations.

Our new method using BI is a simple and convenient method for accurately estimating VFA. We can easily screen excess accumulation of VFA, which is associated with metabolic syndrome. The method may be a useful tool for primary prevention of metabolic syndrome.

Acknowledgments — This study was supported partly by a Grant-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science, and Technology Japan (no. 19500592). M.N. is a recipient of a Research Fellowships of the Japan Society for the Promotion of Science for Young Scientists.

No potential conflicts of interest relevant to this article were reported.

References
1. Boyko EJ, Fujimoto WY, Leonetti DL, Newell-Morris L. Visceral adiposity and risk of type 2 diabetes: a prospective study among Japanese Americans. Diabetes Care 2000;23:465–471
2. Fujimoto WY, Bergstrom RW, Boyko EJ, Chen KW, Leonetti DL, Newell-Morris L, Shofer JB, Wahl PW. Visceral adiposity and incident coronary heart disease in Japanese-American men: the 10-year follow-up results of the Seattle Japanese-American Community Diabetes Study. Diabetes Care 1999;22:1808–1812
3. Itoh H. Metabolic domino: new concept in lifestyle medicine. Drugs Today (Barc) 2006;42:(Suppl. C):9–16
4. Fernandes RA, Rosa CS, Buonani C, Oliveira AR, Freitas Junior IF. The use of bioelectrical impedance to detect excess

Figure 1—Correlation plot between VFA observed by CT and VFA estimated by impedance.

Estimated VFA area by impedance

estimated by IP_{VFA} (14). We calculated the sensitivity and specificity at VFA \(\geq 100 \) cm\(^2\) by the regression equation (15). The correlation between impedance and VFA and SFA was examined by Pearson correlation coefficient. All \(P \) values were two-tailed, and \(P < 0.05 \) was accepted as statistically significant.

RESULTS — The weakest and strongest correlation between impedance obtained at the five frequencies and VFA and SFA were \(r = 0.734–0.747 \) (IP_{VFA}) and \(r = 0.834–0.872 \) (IP_{SFA}), respectively.

The regression equation was VFA = 3.57 \(\times \) sagittal abdominal diameter + 311.97 \(\times \) WHtR + 0.71 \(\times \) age + 23.93 \(\times \) sex + 1.57 \(\times \) IP_{VFA} (250 kHz) – 174.35 \(r = 0.904, P < 0.01 \) (Fig. 1).

Also, we observed a strong correlation in the cross-validation subsample \((r = 0.905, P < 0.01) \). The Bland-Altman method showed a mean difference and 1.96 SD of 0.00 \(\pm 40.78 \) cm\(^2\). There was no increasing bias for heavier participants. We observed a high sensitivity and specificity (0.941 and 0.988, respectively) when we discriminated VFA \(\geq 100 \) cm\(^2\) or \(<100 \) cm\(^2\) by the regression equation. Meanwhile, waist circumference (W) at the umbilicus level (men: W \(\geq 85 \) cm, women: W \(\geq 90 \) cm) is used for screening of VFA \(\geq 100 \) cm\(^2\) in Japan (15), thus sensitivity and specificity were 0.882 and 0.919, respectively, by W in our participants.
visceral and subcutaneous fat. J Pediatr (Rio J) 2007;83:529–534
5. Ryo M, Maeda K, Onda T, Katashima M, Okumiya A, Nishida M, Nishida M, Yamaguchi T, Funahashi T, Matsuzawa Y, Nakamura T, Shimomura I. A new simple method for the measurement of visceral fat accumulation by bioelectrical impedance. Diabetes Care 2005;28:451–453
6. Scharletter H, Schlager T, Stollberger R, Felsberger R, Hutten H, Hinghofer-Szalkay H. Assessing abdominal fatness with local bioimpedance analysis: basics and experimental findings. Int J Obes Relat Metab Disord 2001;25:502–511
7. Pinilla JC, Webster B, Baetz M, Reeder B, Hattori S, Liu L. Effect of body positions and splints in bioelectrical impedance analysis. J Parenter Enteral Nutr 1992;16:408–412
8. Roos AN, Westendorp RG, Frolich M, Meinders AE. Tetrapolar body impedance is influenced by body posture and plasma sodium concentration. Eur J Clin Nutr 1992;46:53–60
9. Scharletter H, Monif M, Laszlo Z, Lambauer T, Hutten H, Hinghofer-Szalkay H. Effect of postural changes on the reliability of volume estimations from bioimpedance spectroscopy data. Kidney Int 1997;51:1078–1087
10. Baker LE. Principles of the impedance technique. IEEE Eng Med Biol Mag 1989;8:11–15
11. Caterine MR, Yoerger DM, Spencer KT, Miller SG, Kerber RE. Effect of electrode position and gel-application technique on predicted transcardiac current during transthoracic defibrillation. Ann Emerg Med 1997;29:588–595
12. Zhu F, Leonard EF, Levin NW. Body composition modeling in the calf using an equivalent circuit model of multi-frequency bioimpedance analysis. Physiol Meas 2005;26:S133–S143
13. Nagai M, Komiya H, Mori Y, Ohta T, Kashiwa Y, Ikeda Y. Development of a new method for estimating visceral fat area with multi-frequency bioelectrical impedance. Tohoku J Exp Med 2008;214:105–112
14. Bland JM, Altman DG. Statistical methods for assessing agreement between two methods of clinical measurement. Lancet 1986;1:307–310
15. Oda E. New criteria for ‘obesity disease’ in Japan. Circ J 2002;70:150