Enhanced Visible Light-Responsive Photocatalytic Properties of Ag/BiPbO$_2$Cl Nanosheet Composites

Ai Jiao Xu, Shang Shen Feng*, Shi Jie Shen, Yan Ping Liu and Wen Wu Zhong*

Abstract

Ag/BiPbO$_2$Cl nanosheet composites were successfully prepared by hydrothermal synthesis and photo-reduction. The morphology, microstructure, and optical properties of the as-prepared Ag/BiPbO$_2$Cl nanosheet composites were characterized using TEM, XRD, and UV-Vis diffuse reflection spectroscopy. The prepared Ag/BiPbO$_2$Cl nanosheet composites with 0.5 wt% Ag exhibit favorable photocatalytic activity, which is 3.6 times that of BiPbO$_2$Cl nanosheet. The enhanced photocatalytic properties can be attributed to the inner electromagnetic field, higher visible light response range, excellent conductivity, and lower Fermi level of Ag.

Keywords: Photocatalysis, Co-catalyst, Hydrothermal, Bismuth-based semiconductor

Background

In recent years, environmental pollution has become increasingly serious. In order to solve the problem of organic pollutants, semiconductor photocatalytic materials have been widely adopted due to their unique advantages [1–4]. ZnO, TiO$_2$, and other wide bandgap semiconductors are popular in photocatalytic degradation of organic pollutants [5–8]. However, wide bandgap semiconductors can only absorb ultraviolet lights, which limits the application prospects of these catalysts. Therefore, it is necessary to search for photocatalytic materials that are responsive to visible lights [9, 10].

Bismuth-based semiconductor photocatalysts possess rich structural characteristics and suitable valence band positions, which can satisfy the requirements of organic matter decomposition [11, 12]. Among them, BiPbO$_2$Cl is considered to be commendable due to its narrow band gap, built-in electric field between [BiPbO$_2$] and [Cl] plates, and hybrid band structure [13, 14]. Nevertheless, the fast electron-hole recombination rate limits its application in the field of photocatalysis.

It has been reported that the combination of semiconductor photocatalytic materials with noble metals or graphene can improve their photocatalytic properties [15, 16]. This is because the recombination rate of photo-generated electrons and holes decreases after compounding. Noble metals, such as Au, Ag, and Pt, have been used as electron acceptors to separate the photo-generated electron and holes [17, 18].

In this paper, the Ag/BiPbO$_2$Cl composite photocatalyst was synthesized by hydrothermal method and photo-reduction for improving the photocatalytic properties of BiPbO$_2$Cl nanosheets. The prepared Ag/BiPbO$_2$Cl nanosheet composites with 0.5 wt% Ag exhibit favorable photocatalytic activity, which is 3.6 times that of BiPbO$_2$Cl nanosheet.

Methods

Preparation of Ag/BiPbO$_2$Cl Nanosheet Composites

The BiPbO$_2$Cl nanosheets were prepared through one-step hydrothermal method as we used before [13]. The Ag/BiPbO$_2$Cl composites were synthesized by photo-reduction. The obtained BiPbO$_2$Cl (1 mmol) was dispersed in 20 mL deionized water with the aid of magnetic stirring, and then, an appropriate amount of AgNO$_3$ was added. The suspension was then irradiated with a 500-W Xe lamp with stirring at room temperature for 3 h, with light being cut off below 420 nm using a cut-off filter. The resulting granules were washed with deionized water to remove residual organic matter and dried in air at 80 °C for 2 h. In order to study the effect of Ag content on the photocatalytic activity...
of BiPbO$_2$Cl, the added contents of Ag were denoted as 0.25, 0.5, and 0.75 wt%.

Photocatalytic Activities
The photocatalytic activity was characterized in a XPA series photochemical reaction instrument by a 500-W Xe lamp with a cutoff filter of 420 nm. The characterization of photocatalytic activity of samples was used by methyl orange (MO) as organic dyes. During the photocatalytic performance test, 50 mg Ag/BiPbO$_2$Cl nanosheet composite powders was added into 50 mL MO aqueous solution (10 mg/L) with continuous stirring for 1 h in the dark. The absorption spectra of the solution were collected on a Shimadzu UV-2700 spectrometer.

Sample Characterization
The powder's X-ray diffraction (XRD) patterns were measured on a PANalytical X’Pert Pro X-ray diffractometer with Cu K$_\alpha$ radiation (1.54178 Å). The surface morphology was obtained on the scanning electron microscope (SEM, Hitachi S-4800). Transmission electron microscope (TEM) morphology was measured on a JEOL JEM-2011 TEM. The UV-vis diffuse reflectance spectra were measured on Shimadzu UV-2450. The X-ray photoelectron spectroscopy (XPS) was measured on a Pekin Elmer PHI-5300 XPS. The photoluminescence (PL) emission spectra were measured on a Shimadzu RF-5301 with excitation wavelength at 320 nm.

Results and Discussion
Photocatalytic activity of the BiPbO$_2$Cl and Ag/BiPbO$_2$Cl composites has been evaluated with degradation of MO under illumination of visible light (> 420 nm). The concentration of the MO liquid is characterized by the relative absorption strength at 464 nm. Figure 1a shows the visible light photocatalytic activity of the BiPbO$_2$Cl and Ag/BiPbO$_2$Cl composites. Prior to degradation, the MO solution containing the photocatalyst was stirred for 1 h in the dark environment to achieve adsorption equilibrium. From Fig. 1a, it can be concluded that the photocatalytic efficiency of the BiPbO$_2$Cl composites increases with the increase of Ag content, reaching a maximum when the Ag content is 0.5 wt%. This may be due to the absorption of photo-generated electrons by Ag, resulting in a decrease in the photo-generated electron-hole recombination rate, thereby increasing its photocatalytic activity. As the Ag content further increases, its photocatalytic efficiency decreases. When the content of Ag further increases, the content of BiPbO$_2$Cl correspondingly decreases, resulting in a decrease in the number of photo-generated carriers and so as the photocatalytic activity. Figure 1b shows the photocatalytic reaction kinetics of the BiPbO$_2$Cl and Ag/BiPbO$_2$Cl composites. From Fig. 1b, we can draw that the MO degradation rate over Ag/BiPbO$_2$Cl composites (0.0158 min$^{-1}$) is about 3.6 times that of the BiPbO$_2$Cl (0.0044 min$^{-1}$).

In order to study the morphology and microstructure, SEM, TEM, and XRD were adopted for studying the BiPbO$_2$Cl and Ag/BiPbO$_2$Cl composites. From Fig. 2a, one can see that BiPbO$_2$Cl is featured as nanosheets, with thickness of about 12 nm. Figure 2b shows the SEM morphology of 0.5 wt% Ag/BiPbO$_2$Cl composites; the silver nanoparticles are randomly distributed on the surface of the nanosheet BiPbO$_2$Cl. The diameter of Ag particles is about 10 nm. The HRTEM (Fig. 2c) images also reveal the existence of Ag. The existence of Ag is further evidenced by XPS. Figure 2d shows the XRD of BiPbO$_2$Cl and 0.5 wt% Ag/BiPbO$_2$Cl composites. Compared with the XRD pattern of the BiPbO$_2$Cl, the pattern of Ag/BiPbO$_2$Cl composites has no obvious changes, which may result from the low amount of Ag. The compositional analysis is measured by EDS (Fig. 3). Bi, Pb, O, Cl, and Ag

![Fig. 1a Photocatalytic degradation of MO with BiPbO$_2$Cl and Ag/BiPbO$_2$Cl composites. b Kinetics of MO decolorization in solutions](image-url)
elements are observed in the sample. Moreover, the EDS elemental mappings indicate that Ag element is evenly distributed throughout Ag/BiPbO$_2$Cl composites.

In order to study the surface chemical state of the sample, the XPS analysis was adopted for studying the Ag/BiPbO$_2$Cl composites. As shown in Fig. 4a, the presence of Bi, Pb, O, Cl, and Ag could be observed in the XPS spectrum. As shown in Fig. 4b, the peaks of Bi 4f$_{7/2}$ and Bi 4f$_{5/2}$ are located at 159.1 and 164.5 eV, respectively, which are consistent with the characteristic of Bi$^{3+}$ [19, 20]. The peaks of Pb 4f$_{7/2}$ and Pb 4f$_{5/2}$ are located at 137.9 and 142.8 eV (Fig. 4c), which are consistent with the characteristic of Pb$^{2+}$ [21]. The peak of O 1s is located at 529.8 eV, which belongs to O$^{2-}$ from the Bi–O bond (Fig. 4d). As displayed in Fig. 4e, two peaks of Cl 2p are at 197.8 and 199.4 eV, which are consistent with the characteristic of Cl$^{-}$ [22]. As shown in Fig. 4f, two peaks of 368.1 and 374.3 eV are observed, which correspond to Ag 3d$_{3/2}$ and Ag 3d$_{5/2}$, respectively. According to the results reported by Zhang et al. [23], the peaks at 368.6 and 374.6 eV can be attributed to Ag0.

Compared with the yellow BiPbO$_2$Cl nanosheets, the color of the Ag/BiPbO$_2$Cl composites becomes darker with the increase of Ag content. The UV-vis absorption spectra of BiPbO$_2$Cl and Ag/BiPbO$_2$Cl composites are shown in Fig. 5a. The strong absorption below a wavelength of 600 nm is associated with the optical band gap of BiPbO$_2$Cl. After loading Ag on the surface of BiPbO$_2$Cl, the absorbance at the range of 450–800 nm is higher than that of pure BiPbO$_2$Cl, which is due to the absorption characteristic of surface plasmon caused by the composite of Ag and BiPbO$_2$Cl [24]. As a result, after the loading of Ag on the surface of BiPbO$_2$Cl, the visible light response range of BiPbO$_2$Cl is increased. The band gap calculated from Fig. 5a is shown in Fig. 5b. After compounding with Ag, the band gap of BiPbO$_2$Cl decreases from 2.05 to 1.68 eV. In addition, the photoluminescence emission spectra of BiPbO$_2$Cl and Ag/BiPbO$_2$Cl composites are carried out to reflect the recombination rate of photo-generated electrons and holes. As shown in Fig. 5c, the PL intensity is decreased drastically after the loading of Ag on the surface of
BiPbO$_2$Cl, which is attributed to the fast transfer of photo-generated electrons from BiPbO$_2$Cl to Ag, leading to reduction of recombination rate of photo-generated electrons and holes [25].

The principle of high photocatalytic activity for Ag/BiPbO$_2$Cl composites is as follows. First of all, the visible light response range is increased by the composition of Ag and BiPbO$_2$Cl. Secondly, the loading of Ag on the surface of BiPbO$_2$Cl could generate the inner electromagnetic field. When the BiPbO$_2$Cl semiconductor surface is in contact with Ag, redistribution of carriers is realized. Since the Fermi level of Ag is lower than that of BiPbO$_2$Cl [26], the photo-excited electrons transfer from the BiPbO$_2$Cl to Ag particles until their Fermi level is the same, thus forming the built-in field, as shown in Fig. 6b. The photo-generated electron will transfer quickly from BiPbO$_2$Cl to Ag with the help of the inner electromagnetic field and excellent conductivity of Ag. Thirdly, as shown in Fig. 6a, the electrons generated by BiPbO$_2$Cl will reduce the molecular O$_2$ to form the O$_2^-$ active species [27]. On the other side, the photo-generated holes tend to remain on the surface of BiPbO$_2$Cl. And then, these holes will

![Fig. 3](image1.png)
Fig. 3 EDS mapping of element of Ag/BiPbO$_2$Cl composites

![Fig. 4](image2.png)
Fig. 4 The XPS spectra of Ag/BiPbO$_2$Cl composites. a Survey, b Bi 4f, c Pb 4f, d O 1s, e Cl 2p, and f Ag 3d
transform the water molecules on the surface of BiPbO2Cl into OH\(^{-}\) active species. Under the effect of these active species of O\(_2\)\(^{-}\) and OH\(^{-}\), the MO molecules are decomposed into CO\(_2\) and H\(_2\)O. These results indicate that the loading of Ag on the surface of BiPbO2Cl could produce high visible light photocatalytic activity.

Conclusions

In summary, highly efficient Ag/BiPbO2Cl composites were prepared by hydrothermal synthesis and photo-reduction. The obtained 0.5 wt% Ag/BiPbO2Cl nanosheet composite material has better photocatalytic activity, which is 3.6 times that of BiPbO2Cl nanosheets. After BiPbO2Cl nanosheets and Ag are composited, the visible light response range increases and the electron-hole recombination rate decreases, thus improving the visible light photocatalytic properties. The excellent photocatalytic property of Ag/BiPbO2Cl composites are attributed to the inner electromagnetic field, higher visible light response range, excellent conductivity, and lower Fermi level of Ag.

Abbreviations

DRS: Diffuse reflection spectroscopy; MO: Methyl orange; TEM: Transmission electron microscope; XRD: X-ray diffraction

Acknowledgements

We acknowledge financial support from the National Natural Science Foundation of China (Grant No. 51572183) and the Natural Science Foundation of Zhejiang Province, China (Grant No. LY15E010002).

Availability of Data and Materials

The datasets generated during and/or analyzed during the current study are available from the corresponding author on request.

Authors’ Contributions

SF and WZ designed this work. AX and SS performed the experiments. AX and YL analyzed the data. AX and WZ wrote this paper. All authors read and approved the final manuscript.

Competing Interests

The authors declare that they have no competing interests.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Received: 19 July 2018 Accepted: 3 September 2018

References

1. He RA, Cao SW, Zhou P, Yu JG (2014) Recent advances in visible light Bi-based photocatalysts. Chin J Catal 35:989–1007

2. LiangYC CCC, Lin TY, Cheng YR (2016) Synthesis and microstructure-dependent photoactivated properties of three-dimensional cadmium sulfide crystals. J Alloy Compd 688 Part A:769–775

3. Zhong WW, Lou YF, Jin SF, Wang WJ, Guo LW (2016) A new Bi-based visible-light-sensitive photocatalyst BiLa\(_x\)Ca\(_{1-x}\)O\(_4\) \(_2\): crystal structure, optical property and photocatalytic activity. Sci Rep 6:23135:1–6

4. Fu JW, Yu JG, Jiang CJ, Cheng B (2018) g-C\(_3\)N\(_4\)-based heterostructured photocatalysts. Adv Energy Mater 8:1701503

5. Fang ZB, Wang YY, Xu DY, Tan YS, Liu XQ (2004) Blue luminescent center in ZnO films deposited on silicon substrates. Optical Mater 26:239–242
6. Hoffmann MR, Martin ST, Choi W, Bahnemann DW (1995) Environmental applications of semiconductor photocatalysis. Chem Rev 95:69–96
7. Fujishima R, Morikawa T, Okwaki T, Aoki K, Taga Y (2001) Visible-light photocatalysis in nitrogen-doped titanium oxides. Science 293:269–271
8. Chen XB, Bunda C (2008) The electronic origin of the visible-light absorption properties of C-, N- and S-doped TiO 2 nanomaterials. J Am Chem Soc 130:5018–5019
9. Amano F, Yamakata A, Nagami K, Osawa M, Ohtani B (2008) Visible light responsive pristine metal oxide photocatalyst: enhancement of activity by crystallization under hydrothermal treatment. J Am Chem Soc 130:17660–17661
10. Wang DF, Kako T, Ye JH (2008) Efficient photocatalytic decomposition of acetaldehyde over a solid-solution perovskite (Ag 0.75Sr0.25)(Nb0.75Ti0.25)O 3 under visible-light irradiation. J Am Chem Soc 130:2724–2725
11. Chen XL, Liang JK, Liu Y, Lan YC, Zhang YM, Che GC, Liu GD, Xing XY, Qiao XY (1999) Structural transformations of BiCuO 4 induced by mechanical deformation. J Appl Phys 85:3155–3158
12. Chen XL, Eysel W, Li JQ (1996) BiLa 4O 9: a monoclinic phase in the system Bi 2O 3–La 2O 3. J Solid State Chem 124:300–304
13. Zhong WW, Li DD, Jin SF, Wang WJ, Yang XA (2015) Synthesis and structure of BiPbO 2 Cl nanosheet with enhanced visible light photocatalytic activity. Appl Surf Sci 356:1341–1344
14. Shan ZS, Lin XP, Liu ML, Ding HM, Huang FQ (2009) A Bi-based oxychloride PbBiO 2 Cl as a novel efficient photocatalyst. Solid State Sci 11:1163–1169
15. Chowdhury S, Balasubramanian R (2014) Graphene/semiconductor nanocomposites (GSNs) for heterogeneous photocatalytic decolorization of wastewaters contaminated with synthetic dyes: a review. Appl Catal B Environ 160:161–307–324
16. Xu C, Xu YL, Zhuo JL (2014) Photocatalytic antifouling graphene oxide-mediated hierarchical filtration membranes with potential applications on water purification. ACS Appl Mater Interfaces 6:16117–16123
17. Lin F, Wang DG, Jiang ZX, Ma Y, Li J, Li RG, Li C (2012) Photocatalytic oxidation of thiophene on BiVO 4 with dual co-catalysts Pt and RuO 2 under visible light irradiation using molecular oxygen as oxidant. Energy Environ Sci 5:6400–6406
18. Lin HX, Ding LY, Pei ZX, Zhou YG, Long JJ, Deng WH, Wang XX (2014) Au deposited BiOCl with different facets: on determination of the facet-induced transfer preference of charge carriers and the different plasmonic activity. Appl Catal B Environ 160:161–98–105
19. Ye L, Deng K, Xu F, Tian L, Peng T, Zan L (2012) Increasing visible-light absorption for photocatalysis with black BiOCl. Phys Chem Chem Phys 1482–85
20. Hu JL, Fan WJ, Ye WQ, Huang CJ, Qiu XQ (2014) Insights into the photosensitivity activity of BiOCl under visible light irradiation. Appl Catal B Environ 158:159–182–189
21. Babuka T, Kityk IV, Parasyuk OV, Myronchuk G, Khyshtun OY, Fedorchuk AO, Makovska-Januskik M (2015) Origin of electronic properties of PbGa 2Se 4 crystal: experimental and theoretical investigations. J Alloy Comd 633:415–423
22. Wang C, Shao C, Liu Y, Zhang L (2008) Photocatalytic properties BiOCl and BiO 3 nanofibers prepared by electrospinning. Scr Mater 59:332–335
23. Zhang H, Wang G, Chen D, Lv X, Li J (2008) Tuning photoelectrochemical performances of Ag–TiO 2 nanocomposites via reduction/oxidation of Ag. Chem Mater 20:6543–6549
24. Liu YP, Fang L, Lu HD, Li YW, Hu CZ, Yu HG (2012) One-pot pyridine-assisted synthesis of visible-light-driven photocatalyst Ag/Ag 3PO 4. Appl Catal B Environ 115:116–245–252
25. Jiang J, Zhao X, Xia YI, Zhang LZ (2014) Synthesis and facet-dependent photoactivity of BiOCl single-crystalline nanosheets. J Am Chem Soc 136:4473–4476
26. Izumi H, Nishihara Y (2000) Electronic structure of BiPbO 2 Cl as a two-dimensional analogue of BaPb 2Bi 1 0 3. J Phys Rev B 61:9855–9858
27. Yu J, Dai G, Huang B (2009) Fabrication and characterization of visible-light-driven plasmonic photocatalyst Ag/AgCl/ TiO 2 nanotube arrays. J Phys Chem C 113:16394–16401