Quality Control of Non-Sterile Drug Product According to United States Pharmacopeia Instruction

Aiesheh Gholizadeh-Hashjin, Farzaneh Lotfipour, Somayeh Hallaj-Nezhadi

1. Drug & Food Control Department, Pharmacy Faculty, Tabriz University of Medical Sciences, Tabriz, Iran

ABSTRACT

Pharmaceutical products are classified into two groups according to the microbiological point of view: 1) sterile products and 2) non-sterile products. The sterilized term refers to the products that are free of any microorganisms. Their production is done under aseptic conditions, but the production of non-sterile products is not under aseptic conditions and therefore, they are not free of microorganisms; for this type of products legal authorities defined microbial limit ranges. The contamination of medicinal products by microorganisms can lead to adverse changes such as: change in physical attribute (appearance, color, smell, and viscosity), reduction of therapeutic effects, development of disease and ultimately the loss of consumer reliance. There have been reports about presence of unauthorized microorganisms in non-sterile medicinal products, which has led to more research and attention in this regard. In this paper, the methods for controlling the microbial quality of non-sterile drug products have been reviewed based on the latest version of United States Pharmacopeia (USP), including <61>, <62>, and <1111> general chapters that can be used as a reliable source for researchers in the pharmacy industry and drug control labs.

Keywords: Quality control, Non-sterile drug products, United States Pharmacopeia

Introduction

Pharmaceutical products are classified into two groups according to the microbiological point of view: 1) sterile products and 2) non-sterile products. The sterilized term refers to the products that are free of any microorganisms. Their production is done under aseptic conditions, but the production of non-sterile products is not under aseptic conditions (1,2) and therefore they are not free from microorganisms; for this type of products legal authorities defined microbial limit ranges.

The requirements for non-sterile products acceptance may vary slightly depending on the legal authorities of different countries or even different pharmaceutical companies. "Microbial limit Test" is a phrase used to evaluate the microbial content of non-sterile products and has four steps: sample preparation, preliminary testing, counting and identification, each step is described in the following.

A review study from 2004-2011 revealed that 75% of the non-sterile products recalls were from OTC (over the counter) and self-care products. Most of recalls are because of (3):

- The presence of objectionable microorganisms (72%)
- Over load of microorganisms (15%)
- Errors in sterilizing equipment or diagnostic kit (7%)
- Failure of microbiological tests (5%)
- Manufacturing defects (1%)
Objectionable microorganism refers to a pathogenic opportunistic microorganism, with specific characteristics such as production of endotoxin, exotoxin, spore and so on. These microorganisms can grow under certain temperature and nutritional conditions and could affect the quality and safety of the product. Contamination at any stage of the process can represent a serious risk to the final product and must be controlled to maintain the quality and safety of the product (4). Very few products, such as syrup and elixir, have a preservative nature. Other products contain preservatives to keep the safety of the product (5).

Failure to comply the aseptic conditions with regard to sterile products, especially in the hospital, has led to the emergence of nosocomial infections such as Staphylococcus aureus and Enterobacter in propofol - Pseudomonas aeruginosa and Enterobacter in dextrose vial (for multiple-dose purposes) which was unfortunately led to two deaths in each of these cases (6,7). A review study in 2019 showed that extemporaneous medicine which was made in hospital and community pharmacies in some cases has led to the emergence of infection such as meningitis in people consuming these contaminated products (8). A study by Hosseyeni et al. in 2014 on the gastric juice production process of a pharmaceutical company in Iran indicated the presence of some unauthorized microorganisms during the manufacturing process (9). Also, a study by Mohammadi et al. warned of the presence of unauthorized microbial agents in cosmetics (10). In 2015, Ratajczak et al. investigated 1285 non-sterile products in Saudi Arabia and found that microbiological criteria were not approved in 1.87% of the non-sterile products. Also naturally products were more contaminated (5.7%) (11). Table 1 lists the studies tested microbial limit in non-sterile products in Iran. There are low numbers of such studies in Iran and also the results indicated that most of the products had not met the requirements of the Pharmacopoeia. Therefore, there is a necessity for more attention to such studies domestically. Most contaminants of non-sterile raw materials and products include bacteria, mold and fungi (3). This indicates that quality control of non-sterile pharmaceutical products requires high precision at all stages of the process that include: raw materials, during manufacturing, final product and after market entry. There are some differences between the FDA (US Food and Drug Administration) guidelines and the US Pharmacopoeia (USP) (12). In this paper, microbial quality control methods for non-sterile products have been reviewed based on the latest USP revision, chapters <61>, <62> and <1111> (13) which can be used as a reliable source by researchers and practitioners in the pharmaceutical industry and laboratories.

Tests related to these chapters of the USP address how to quantify and identify mesophilic bacteria and fungi that may grow under aerobic conditions. The purpose of these tests is to investigate the properties of the drug’s raw material and product in terms of microbial quality.

It is worth noting that the methods described in this section are not applicable to compounds that contain live microorganisms for therapeutic purpose. Also, the guidelines introduced in the USP deal only with target microorganisms and do not cover all the objectionable microorganisms represented by the FDA (14). Appendices 16 in British Pharmacopoeia (BP) (15), Chapters 2.6.12, 2.6.13 and 5.4.1 in European Pharmacopoeia (EP) (16) and Chapters 4.05 and 5.02 in Japanese Pharmacopoeia (17) have also described microbial limit test. Recent editions of these books have been more harmonized so the differences between these books are very minor in new editions (18).

Overall, common detection methods involve bacterial culture and biochemical tests, a procedure that usually takes 5–6 days to be completed. Thus, fast and sensitive methods are required for bacterial detections in the field of pharmaceutical sciences. For example, in one study a multiplex polymerase chain reaction (mPCR) assay was developed for simultaneous detection and identification of four indicator pathogenic bacteria in a single reaction (19).

Microbiological Examination of Nonsterile Products: Acceptance Criteria for Pharmaceutical Preparations and Substances for Pharmaceutical Use

Acceptance criteria for non-sterile pharmaceutical products based on total aerobic microbial count (TAMC) and total yeast and mold count (TYMC) and tests for the absence of specified organisms (due to the route of administration) is shows in Table 2.

According to Table 2, the interpretation of the results will be as follows:
If the number of 10^3cfu, 10^2cfu, 10^1cfu is stated in the table, the highest acceptable level of microorganisms in the counting method is 20, 200, 2000 and so on.

This table is not necessarily comprehensive and in specific cases may include the presence of other microorganisms depending on the nature of the raw material and the production process.

Microbiological Examination of Nonsterile Products: Microbial Enumeration Tests

General considerations

All tests should be carried out under sterile conditions to prevent the entry of other microorganisms during...
If the medicinal product contains antimicrobial activity, the effect of the antimicrobial agent should be eliminated or neutralized (Table 3); if the neutralizing agents are used for this purpose their effect on non-toxicity to the microorganisms must be ensured (to avoid false negative results). If surfactants are used in

Table 1. Studies on microbial limit test in non-sterile drug products in Iran – (Institute of Standards and Industrial Research of Iran: ISIIR)
Title
Survey of bacteriological contamination of cosmetic creams in Iran
Microbial quality of some herbal solid dosage forms
Microbial quality survey of sunscreen products in Iranian market
Characterization of Iranian bentonites to be used as pharmaceutical materials
Microbial Content in some Foundation Creams in Iran’s Market
the preparation of the sample, its non-toxicity to the microorganisms and its compatibility with the neutralizing agent should be determined.

First Step: Sample Preparation

The sample preparation depends on the physical properties of the drug product. For each sample, 10 g or 10 cc of the product is tested (unless otherwise specified in the relevant monograph). For liquid and solid aerosols and transdermal patches 10 aerosol containers or 10 patches should be tested. The dilution of the samples should be such that the possible errors are minimized and the errors are predictable, so the method should be validated (26).

In some specific cases the amount to be tested may be reduced.

Second step: Preliminary Test, Bacterial Inoculation and Dilution

The purpose of preliminary test is to find out if the preservation of samples has been removed in first step or not. Thus, sufficient amounts of bacterial suspension were added to the sample and control

Route of Administration	TAMC (cfu (colony forming unit)/mL or cfu/g)	TYMC (cfu/mL or cfu/g)	Specified Microorganism(s)
Nonaqueous preparations for oral use	10^3	10^2	Absence of *E. coli* (1 g or 1 mL)
Aqueous preparations for oral use	10^2	10^1	Absence of *E. coli* (1 g or 1 mL)
Rectal use	10^3	10^2	Absence of *S. aureus* (1 g or 1 mL)
Oromucosal use	10^2	10^1	Absence of *S. aureus* (1 g or 1 mL)
Gingival use	10^2	10^1	Absence of *P. aeruginosa* (1 g or 1 mL)
Cutaneous use	10^2	10^1	Absence of *S. aureus* (1 g or 1 mL)
Nasal use	10^2	10^1	Absence of *S. aureus* (1 g or 1 mL)
Auricular use	10^2	10^1	Absence of *S. aureus* (1 g or 1 mL)
Vaginal use	10^2	10^1	Absence of *S. aureus* (1 g or 1 mL)
Transdermal patches (limits for one patch including adhesive layer and backing)	10^2	10^1	Absence of *S. aureus* (1 patch)
Inhalation use (special requirements apply to liquid preparations for nebulization)	10^2	10^1	Absence of *S. aureus* (1 g or 1 mL)
Substances for pharmaceutical use	10^3	10^2	Absence of *Candida albicans* (1 g or 1 mL)
(without sample material) to produce less than 100 cfu bacterium.

If the antimicrobial effect of preservative persists, re-addition of bacterial suspensions should be performed after neutralization, dilution, or repeated filtration.

Filtration

The size of membrane filters should be less than 0.45 μm. For the determination of TAMC, the filter membrane is transferred to the surface of Soybean–Casein Digest Agar and for the determination of TYMC the membrane is transferred to the Sabouraud Dextrose Agar surface. The plate is incubated according to the conditions in Table 4 and then counted.

Third step: counting

There are several methods for counting, including:

1. Colony counting methods on plates
2. Filtration
3. And MPN (most probable number) methods (Figure 1).

Table 4. Preparation and Use of Test Microorganisms

Microorganism	Preparation of Test Strain	Growth Promotion	Suitability of Counting Method in the Presence of Product
Staphylococcus aureus such as ATCC 6538	Soybean–Casein Digest Agar or Soybean–Casein Digest Broth 30-35°C 18–24 hours	Soybean–Casein Digest Agar and Soybean–Casein Digest Broth ≤ 100 cfu 30-35°C ≤ 3 days	Soybean–Casein Digest Agar/MPN Soybean–Casein Digest Broth ≤ 100 cfu 30-35°C ≤ 3 days
Pseudomonas aeruginosa such as ATCC 9027	Soybean–Casein Digest Agar or Soybean–Casein Digest Broth 30-35°C 18–24 hours	Soybean–Casein Digest Agar and Soybean–Casein Digest Broth ≤ 100 cfu 30-35°C ≤ 3 days	Soybean–Casein Digest Agar/MPN Soybean–Casein Digest Broth ≤ 100 cfu 30-35°C ≤ 3 days
Bacillus subtilis such as ATCC 6633	Soybean–Casein Digest Agar or Soybean–Casein Digest Broth 30-35°C 18–24 hours	Soybean–Casein Digest Agar and Soybean–Casein Digest Broth ≤ 100 cfu 30-35°C ≤ 3 days	Soybean–Casein Digest Agar/MPN Soybean–Casein Digest Broth ≤ 100 cfu 30-35°C ≤ 3 days
Candida Albicans such as ATCC 10231	Sabouraud Dextrose Agar or Sabouraud Dextrose Broth 20–25°C 2–3 days	Soybean–Casein Digest Agar ≤ 100 cfu 30-35°C ≤ 5	Soybean–Casein Digest Agar ≤ 100 cfu 30-35°C ≤ 5 days MPN: not applicable
Aspergillus brasiliensis such as ATCC 16404	Sabouraud Dextrose Agar or Potato–Dextrose Agar 20–25°C 5-7 days, or until good sporulation is achieved	Soybean–Casein Digest Agar ≤ 100 cfu 30-35°C ≤ 5	Soybean–Casein Digest Agar ≤ 100 cfu 30-35°C ≤ 5 days MPN: not applicable

The MPN method is less accurate than other methods, although it may be the most appropriate method for specific product with low microbial loads.

Table 3. Common neutralizing agents/methods for interfering substances

Potential Neutralizing Agents/Method	Interfering Substance
Sodium hydrogen sulfite (Sodium bisulfite)	Glutaraldehyde, mercurials
Dilution	Phenolics, alcohol, aldehydes, sorbate
Glycine	Aldehydes
Lecithin	Quaternary ammonium compounds (QACs), parahydroxybenzoates (parabens), biguanidines
Polysorbate	QACs, iodine, parabens
Thiglycollate	Mercurials
Thiosulfate	Mercurials, halogens, aldehydes
Mg or Ca ions	EDTA

The size of membrane filters should be less than 0.45 μm. For the determination of TAMC, the filter membrane is transferred to the surface of Soybean–Casein Digest Agar and for the determination of TYMC the membrane is transferred to the Sabouraud Dextrose Agar surface. The plate is incubated according to the conditions in Table 4 and then counted.

Third step: counting

There are several methods for counting, including:

1. Colony counting methods on plates
2. Filtration
3. And MPN (most probable number) methods (Figure 1).

Table 4. Preparation and Use of Test Microorganisms

Microorganism	Preparation of Test Strain	Growth Promotion	Suitability of Counting Method in the Presence of Product
Staphylococcus aureus such as ATCC 6538	Soybean–Casein Digest Agar or Soybean–Casein Digest Broth 30-35°C 18–24 hours	Soybean–Casein Digest Agar and Soybean–Casein Digest Broth ≤ 100 cfu 30-35°C ≤ 3 days	Soybean–Casein Digest Agar/MPN Soybean–Casein Digest Broth ≤ 100 cfu 30-35°C ≤ 3 days
Pseudomonas aeruginosa such as ATCC 9027	Soybean–Casein Digest Agar or Soybean–Casein Digest Broth 30-35°C 18–24 hours	Soybean–Casein Digest Agar and Soybean–Casein Digest Broth ≤ 100 cfu 30-35°C ≤ 3 days	Soybean–Casein Digest Agar/MPN Soybean–Casein Digest Broth ≤ 100 cfu 30-35°C ≤ 3 days
Bacillus subtilis such as ATCC 6633	Soybean–Casein Digest Agar or Soybean–Casein Digest Broth 30-35°C 18–24 hours	Soybean–Casein Digest Agar and Soybean–Casein Digest Broth ≤ 100 cfu 30-35°C ≤ 3 days	Soybean–Casein Digest Agar/MPN Soybean–Casein Digest Broth ≤ 100 cfu 30-35°C ≤ 3 days
Candida Albicans such as ATCC 10231	Sabouraud Dextrose Agar or Sabouraud Dextrose Broth 20–25°C 2–3 days	Soybean–Casein Digest Agar ≤ 100 cfu 30-35°C ≤ 5	Soybean–Casein Digest Agar ≤ 100 cfu 30-35°C ≤ 5 days MPN: not applicable
Aspergillus brasiliensis such as ATCC 16404	Sabouraud Dextrose Agar or Potato–Dextrose Agar 20–25°C 5-7 days, or until good sporulation is achieved	Soybean–Casein Digest Agar ≤ 100 cfu 30-35°C ≤ 5	Soybean–Casein Digest Agar ≤ 100 cfu 30-35°C ≤ 5 days MPN: not applicable

The MPN method is less accurate than other methods, although it may be the most appropriate method for specific product with low microbial loads.

Table 3. Common neutralizing agents/methods for interfering substances

Potential Neutralizing Agents/Method	Interfering Substance
Sodium hydrogen sulfite (Sodium bisulfite)	Glutaraldehyde, mercurials
Dilution	Phenolics, alcohol, aldehydes, sorbate
Glycine	Aldehydes
Lecithin	Quaternary ammonium compounds (QACs), parahydroxybenzoates (parabens), biguanidines
Polysorbate	QACs, iodine, parabens
Thiglycollate	Mercurials
Thiosulfate	Mercurials, halogens, aldehydes
Mg or Ca ions	EDTA
Quality Control of Non-Sterile Drug Product According to United States Pharmacopeia Instruction

Figure 1. Scheme of MPN method

NCTC	Aerobic microorganisms
Such as ATCC 6538	*Staphylococcus aureus*
Such as ATCC 9027	*Pseudomonas aeruginosa*
Such as ATCC 8739	*Escherichia coli*
Such as ATCC 14028	*Salmonella enterica subsp. enterica serovar Typhimurium or,*
Such as NCTC 6017	as an alternative, *Salmonella enterica subsp. enterica serovar Abony*
Such as ATCC 10231	*Candida albicans*

Table 5. Aerobic microorganisms in identification tests (NCTC - National Collection of Type Cultures)

Table 6. Interpretation of Results

Probable Number of Bacteria per g or mL of Product	0.001 g or 0.001 mL	0.01 g or 0.01 mL	0.1 g or 0.1 mL
more than 10^3	+	+	+
less than 10^3 and more than 10^2	-	-	+
less than 10^2 and more than 10	-	-	-
less than 10	-	-	-

Generally, common detection methods involve bacterial culture as well as biochemical tests (27), Table 5 describes aerobic microorganisms in identification tests. For instance, *Pseudomonas aeruginosa* (P. aeruginosa) as an important human pathogen is responsible for infection in hospitals as well as the community (28).

Identification test for Escherichia coli

Dilute the sample 10 times that equal to 1 g or 1 cc of the product, then transfer it to the soy bean casein digest broth and mix, incubate for 18-24 hours at 35-30°C.

Subculture: After incubation, 1 mL of the soy bean casein digest broth was transferred to 100 mL of MacConkey broth (incubation at 42-44°C, 24-48 h); finally the sample was transferred from MacConkey broth.
broth to the MacConkey agar medium (incubation 18–72 h, 30–35°C).

The product is acceptable when no colony growth is observed and the identification test is negative.

Identification Test for Salmonella

Prepare the sample which is equal to 10 g or 10 cc of the product. After transferring the sample to the soy bean casein digest broth medium and mixing, incubation perform for 24 to 18 hours at 30-35°C.

0.1 mL of soy bean casein broth was transferred to 10 mL of Rappaport Vassiliadis Salmonella Enrichment Broth medium and incubated for 18-24 h at 30-35°C. Then transfer to Xylose Lysine Deoxycholate Agar medium and incubate at 30-35°C for 18-72 hours.

The presence of Salmonella is characterized by the growth of red colonies with or without black centers, which is confirmed by complementary identification tests. The product is acceptable when no colony growth is observed and the complementary identification tests is negative.

Test Strains	Property	Test/Medium
Test for bile tolerant Gram negative bacteria		
E. coli	Growth promoting	Enterobacteria Enrichment Broth Mossel
S. aureus	Inhibitory	
E. coli	Growth promoting+ Indicative	Violet Red Bile Glucose Agar
P. aeruginosa	Test for *Escherichia coli*	
E. coli	Growth promoting	MacConkey Broth
S. aureus	Inhibitory	MacConkey Agar
E. coli	Growth promoting+ Indicative	
Test for salmonella		
Salmonella enterica subsp. enterica serovar Typhimurium or Salmonella enterica subsp. enterica serovar Abony	Growth promoting	Rappaport Vassiliadis Salmonella Enrichment Broth
S. aureus	Inhibitory	
Salmonella enterica subsp. enterica serovar Typhimurium or Salmonella enterica subsp. enterica serovar Abony	Growth promoting+ Indicative	Xylose Lysine Deoxycholate Agar
Test for Pseudomonas aeruginosa		
P. aeruginosa	Growth promoting	Cetrimide Agar
E. coli	Inhibitory	
Test for Staphylococcus aureus		
S. aureus	Growth promoting+ Indicative	Mannitol Salt Agar
E. coli	Inhibitory	
Test for Clostridia		
Cl. sporogenes	Growth promoting	Reinforced Medium for Clostridia
Cl. sporogenes	Growth promoting	Columbia Agar
Test for Candida albicans		
C. albicans	Growth promoting	Sabouraud Dextrose Broth
C. albicans	Growth promoting+ Indicative	Sabouraud Dextrose Agar
Identification Test for *Pseudomonas aeruginosa*

Dilute the sample 10 times that at least equal to 1 g of the product. Use 10 cc or any other amounts which is equal to 1 g or 1 cc of the product and mix with appropriate volume of soy bean casein digest broth medium.

When the transdermal patch is tested, a volume of the sample is filtered through a sterile membrane filter to make it equivalent to one transdermal patch and then transferred to 100 mL of soy bean casein digest broth medium and incubate for 24-28 hours at 30-35°C.

Subculture: transferred to the Citrimide Agar media and incubated for 18-72 hours at 30-35°C.

Colony growth indicates the possibility of *Pseudomonas aeruginosa* presence and is confirmed by complementary identification tests. The product is acceptable when no colony growth is observed and the complementary identification tests is negative.

Identification test for Staphylococcus aureus

As same as identification test for *Pseudomonas aeruginosa* but the *Staphylococcus aureus* is sub cultured in mannitol salt agar medium.

The growth of yellow or white colonies surrounded by yellow halo indicates the possibility of *S. aureus* presence and is confirmed by complementary identification tests. The product is acceptable when no colony growth is observed and the complementary identification tests is negative.

Identification test for Clostridia

The sample was diluted for 10 times (at least up to 20 cc) which at least equaled to 2 g or 2 cc of the product, it was then divided into two part. One of these parts was heated to 80°C for 10 minutes and cooled rapidly while the other part should not heated.

Subculture: 10 cc or the amount which was equals to 1 g or 1 cc of the product (for each of the two parts) was mixed with suitable amount of refined Clostridia culture medium and is incubated under anaerobic conditions at 35-35°C for 48-72 hours. After incubation for each of two samples, subculture were done in Columbia Agar medium and then incubated under anaerobic conditions at 30-35°C for 48-72 hours.

Anaerobic growth of rod bacteria (with or without endospores) and negative catalase test, indicated the presence of Clostridia, and were confirmed by complementary identification tests. The product was acceptable when no colony growth was observed and the complementary identification tests were negative.

Identification Test for Candida albicans

10 cc or any other amounts which was equal to 1 g or 1 cc or more of the product was mixed with appropriate volume of sabouraud dextrose broth and incubated for 3-5 days at 30-35°C.

Subculture: subculture was done on sabouraud dextrose agar medium and incubated for 4-4 hours at 35-30°C.

The growth of white colonies can indicate the presence of *Candida albicans* and is confirmed by complementary identification tests. The product is acceptable when no colony growth is observed and the complementary identification tests tests is negative.

Table 7 describes the growth promoting, inhibitory, and indicative properties of media.

Conclusion

Non-sterile products should be within the permissible range of microbial content in order to maintain the safety, efficacy and quality of the product. Objectionable microorganisms can be counted and identified using methods described in detail in chapters <61> and <62> of USP in relation to sample preparation, counting and identification. However, the pharmaceutical industry must also pay attention to such microorganisms that are not listed on the USP, but could contaminate the product depending on their production conditions. Products with low aqueous activity may be resistant to bacterial growth, but contaminating microorganisms may survive and have the potential risk to contaminate the product. Adhering to the principles of cGMP leads to preventing contamination during production which causes the producing of the products that have high quality and stability, and as a result greater satisfaction and confidence from consumers will be achieved. Due to the fact that there are very few studies on the evaluation of non-sterile products in terms of microbial content in Iran, there is a greater need for such studies domestically.

Conflict of Interest

Authors declared no conflict of interests.
مقدمه
فرآورده‌های غیر استریل مبتنی بر اطلاعات فارماکوپه ایالات متحده و روزگار اپیدمی‌های میکروارگانیسم، به دو گروه دسته بندی می‌گردد: 1- فرآورده‌های غیر استریل و 2- فرآورده‌های غیر استریلی اطلاق می‌شود که از هر گونه میکروارگانیسم به دو گروه بیماری و نفوذی با توجه به نهادهای قانونی محدوده فیزیکی در ظاهر، به عنوان نمونه از این گروه می‌تواند رودان، بو، گازهای تولید کننده، سایر امتحانات ضرر به کارگاه‌ها (چنین برای افرادی که در داخل محیط سیستم، تحت شرایط آسپتیک یا در معرض شرایط آسپتیک شرایط و همین‌طور به دسته‌ای از این دسته از فرآورده‌ها گروه شده‌اند. این قوانین ممکن است با توجه به نهادهای قانونی کشورهای مختلف و نهایتاً گزارش‌های طبی بیمار مورد نظر فیزیکی ایجاد کنند. در این مقاله روش کنترل کیفیت میکروارگانیسم فرآورده‌های غیر استریل، به عنوان یکی از بهترین روش‌ها برای همگامی‌سازی آزمایش‌ها و شرایط در صنعت دارویی و از هماتوپاژی‌های کنترل دارو، مورد استفاده قرار گرفت.

کلیدواژه‌ها: کنترل کیفیت، فرآورده‌های دارویی غیر استریل، فارماکوپه ایالات متحده

چکیده
فرآورده‌های دارویی از نظر جستجو و وسیله نقلیه بر اساس دستورالعمل فارماکوپه ایالات متحده، به عنوان منابع اصلی برای اطلاعات پزشکی، به دنبال این نگاهی بررسی پذیری، تبیین، ایران،

اطلاعات مقاله

تاریخچه مقاله

دریافت: ۱۳۸۶/۰۷/۲۷
پذیرش: ۱۳۸۸/۰۷/۱۴
انتشار آنلاین: ۱۳۸۹/۰۷/۱۹
موضوع: میکروب‌شناسی پزشکی
نویسنده مسئول: سمیه حلاج نژاد، دانشکده داروسازی دانشگاه علوم پزشکی ابریز، تبریز، ایران
ایمیل: hallajnezhadis@tbzmed.ac.ir

مقدمة
اندیشه حلاج نژاد، دانشکده داروسازی، دانشگاه علوم پزشکی ابریز، تبریز، ایران

باکتری‌ها و شناسایی آنها است که در ادامه هر کدام از مراحل به نقص

شرح داده خواهند شد

مطالعه‌ای مربوط به سال‌های ۱۳۹۴-۱۳۹۵ نشان داد که ۷۹/۵٪

OTC جمع‌آوری از دارویی‌های غیر استریل مربوط به محصولات و بهداشتی بوده است. اغلب جمع‌آوری‌ها عقل

در صورت به‌کارگیری (۲):

- وجود میکروارگانیسم خطرناک (۷۲/۳٪)
- آنالوگی بیش از حد جمار (۱۵/۷٪)
- خط‌های عضلانی تجزیه و با خاطراتای کیته‌های تست‌هایی (۱/۷٪)
- خطا در استریلیتی استفاده (۱۵/۷٪)
- بسته‌بندی میکروارگانیسم خطرناک (۷/۱٪)
- میکروارگانیسم خطرناکی با ویژگی‌های خاص نظیر تولید

FK0194787

www.jimn.ir

مجله میکروب‌شناسی پزشکی ایران

سال ۱۳۹۸ شماره ۶ - آذر و دی

علاوه بر این فرآورده‌ها غیر استریل در اساس دستورالعمل فارماکوپه ایالات متحده

عایشه قلی زاده هشیجین، فرزانه لطفی پور، سمیه حلاج نژاد

۱- کنترل دارو و غذا، دانشکده داروسازی، دانشگاه علوم پزشکی تبریز، ایران

۲۴۹

Majallah-i mikrub/shinast-i pizishkht-i Iran.
همزمان چهار باکتری بیماری‌زایی که در تست محدودیت میکروبی تشخیص و شناسایی می‌شود، یک مطالعه سریع و حساس برای تشخیص عوامل بیماری‌زای در صنعت روز طول می‌کشد. روش‌های تشخیص رایج، آزمایشات بیوشیمیایی، با توانایی منجر به کاهش یا حذف اثر دارو یا عوارض جانبی می‌شوند. به‌طور پایدار خطر جدی در پروسه بازیافت به‌وجود می‌آید. این پرداز از جمله از راه‌هایی که در آزمایشگاه‌ها و گزینه‌ها خاصیت پزشکی را دارد، سایر محصولات به‌منظور بهبود ایمنی فرآورده‌ها حاوی پروازنده‌های باربری‌ست. عدم رعایت شرایط استاندارد، در رابطه با محصولات استریلی خصوصاً در بیمارستان‌ها به‌طور عمده‌ای به‌نظر می‌رسد. تحقیقات اخیر این روش‌ها در محصولات غیر استریل به چشم می‌خورند و تمام میکروارگانسیم‌ها به عنوان یک منبع اصلی می‌باشند. شایان ذکر است که روش‌های کن‌ترول دارو به‌عنوان یک منبع موثق توسط محترم‌های دارویی غیر استریل در این مقاله چنین بررسی نمی‌شود. به‌عنوان مثال، داروخانه‌های فارماکوپه آمریکا ذکر شده است، انجام شده است که منجر به ظهور عفونت‌های بیمارستانی در بسیاری از افراد مصرف‌کنندگان این داروها می‌شود. به‌طور خاص در افرادی که در هر مرحله از تولید عوامل میکروبی غیر مجاز در فرآورده‌ها به‌وجود می‌آید. به‌طور کلی، واکنش خدمات به‌زودی می‌تواند تحت شرایط جویانه و باعث بروز مشکلات کاهش‌یافته این پروازنده‌ها شود. بدان علتی که می‌شناسند، این داروها به‌طور خاص در بیمارستان‌ها و پزشکی‌ها به‌عنوان مورد استفاده قرار گرفته‌اند، بسیار مهم و ضروری است که در تحقیقات این داروها به‌عنوان اثرات جانبی به‌پایان برسد.

1. فارماکوپیا ایالات متحده (USP) در مورد میکروب‌های فرآورده‌های نارنجی (Guttae) می‌تواند تحت شرایط دمایی و تغذیه‌ای خاصة رشد کرده و بر کُمی گرفته و این امر نشان‌دهنده نیست که یافته‌های در مرحله از پلیمراز چندگانه (Multiplex polymerase chain reaction) می‌تواند منجر به کاهش یا حذف اثر دارو شوند و یا عوارض جانبی بسیاری از محصولات غیر استریلی به‌وجود می‌آید. این داروها به‌طور عمده‌ای در محصولات غیر استریلی به‌وجود می‌آورند. در بررسی فصل ۱۱ USP از آزمایشگاه‌های میکروپولیزیک محصولات غیر استریلی ضوابط پذیرش برای محصولات دارویی و مواد مورد استفاده در صنعت داروسازی حضور میکروورگان‌سیم‌های بخصوصی در فرآورده‌های غیر استریلی می‌تواند منجر به کاهش یا حذف اثر دارو شود و یا عوارض جانبی.
جانبه مضری در فرد مصرف‌کننده ایجاد کنند. کارخانجات داروسازی Current good manufacturing (cGMP) می‌بایست با انجام قوانین مطالعه را به دنبال و توزیع از وجود حداقل بار Meikoubi در فرآیند اشکال‌الداری اطمینان حاصل کند. می‌بایست با اجرای قوانین میکروبی در فرم نهایی اشکال دارویی اطمینان حاصل کند.

معیارهای پذیرش فرآورده‌های غیر استریل دارویی بر اساس تعداد تام میکروب (TAMC: total aerobic microbial count) تعداد تام قارچ و مخمر (TYMC: total yeast and mold count) و تست‌هایی برای عدم حضور ارگانیسم‌های مشخص شده (با توجه به راه تجویز) است (جدول ۲). همچنین معمولاً پذیرش براساس نتایج منحصر به فرد و یا گرچه تکرار صورت گرفته باشد، بر اساس میانگین تعداد تکرار است (مانند روش شمارش مستقیم در پلیت).

جدول ۱. مطالعات مربوط به تست محدودیت میکروبی در فرآورده‌های غیر استریل در ایران

متغیر	منبع	سال مطالعه	نتیجه گیری	منبع	نمونه مورد هدف	مطالعه هدف
۱۳۷۸	FDA, USP BP	۱۳۸۸	عدم انطباق کیفیت محصولات با ضوابط و USP	USP	TMC>1100 cfu/mL	بررسی کنترل کیفیت میکروبی برخی از اشکال دارویی گیاهی موجود
۱۹۹۱	سازمان استاندارد ایران	۱۳۹۱	عدم انطباق کیفیت محصولات با ضوابط سازمان استاندارد	USP	۱۰ نمونه ضدآفتاب	بررسی کنترل کیفیت میکروبی ضدآفتاب‌های موجود
۲۰۰۳	USP, EP	۱۳۹۳	عدم انطباق کیفیت محصولات با ضوابط USP	USP	۷ نمونه ضدآفتاب (۵ نمونه غیر رسی و ۲ نمونه رسی)	بررسی محتوا میکروبی در برخی کرم‌های ضدآفتاب‌های موجود
با توجه به جدول ۲ تفسیر نتایج به صورت ذیل خواهد بود:

در صورتی که تعداد CFU/10⁵ CFU در جدول قید شده باشد، می‌تواند موجب خطرات برای فرد شود. شاید باید به جزئیات دقیق‌تری پرداخته و باید میکروب‌ها را کنترل کنیم.

این جدول لزوماً جامع و فراگیر نیست و ممکن است حضور برخی میکروب‌ها با توجه به ماهیت مواد اولیه و پروسه تولید مورد ارزیابی قرار گیرد. علاوه بر میکروب‌ها، احتمال وجود بیماری‌های دیگر نیز نیز ممکن است.

۱. نحوه استعمال محصول: خطراتی که با توجه به راه مصرف محصول می‌تواند مطرح شود (راه‌های جسمی، بینی، مسیر تنفسی)

۲. ماهیت محصول: قابلیت محصول برای بروز بیماری و اینکه آیا محصول به‌طور کاملاً کافی برای جلوگیری از رشد میکروب‌ها در جسد بیمار کاربرد دارد یا خیر.

۳. روش استفاده: جمع‌بندی رشک خطر می‌تواند از توزین به کودک متفاوت باشد.

۴. استفاده از مواد تهیه شده سیستم ایمنی: همانند کورتیکوستروئیدها وجود بیماری، زخم، اسباب به ارگان خاص

میکروب‌های خاص	TYMC (cfu/mL or cfu/g)	TAMC (cfu/colony forming unit/mL or cfu/g)	راه تجویز
E. coli (1g or 1mL)	10²	10²	محصولات غیرمانی برای مصرف خوراکی
S. aureus (1g or 1mL)	10²	10²	محصولات سالم برای مصرف خوراکی
P. aeruginosa (1g or 1mL)	10²	10²	محصولات رکنالی
C. albicans (1g or 1mL)	10²	10²	محصولات غیرمانی برای مصرف خوراکی

مصرف خوراکی: عدد حضور E. coli ((1g or 1mL) 10² CFU، CFU 10⁵ CFU) 2000 عدد است و به این ترتیب بوده‌است.

مصرف اولیه مصرف دندانی و لثه: عدد حضور S. aureus ((1g or 1mL) 10² CFU، CFU 10⁵ CFU) 2000 عدد است و به این ترتیب بوده‌است.

مصرف پوستی: عدد حضور P. aeruginosa ((1g or 1mL) 10² CFU، CFU 10⁵ CFU) 2000 عدد است و به این ترتیب بوده‌است.

مصرف بینی: عدد حضور S. aureus ((1g or 1mL) 10² CFU، CFU 10⁵ CFU) 2000 عدد است و به این ترتیب بوده‌است.

مصرف مصرف استنشاقی (لازمات خاص برای فرم‌های متعدد، نیاز است)

مصرف واژینال: عدد حضور P. aeruginosa ((1g or 1mL) 10² CFU، CFU 10⁵ CFU) 2000 عدد است و به این ترتیب بوده‌است.

مصرف استنشاقی (لازمات خاص برای فرم‌های متعدد، نیاز است)

مصرف استنشاقی (لازمات خاص برای فرم‌های متعدد، نیاز است)

مصرف استنشاقی (لازمات خاص برای فرم‌های متعدد، نیاز است)
بررسی فصل USP: تست های شمارش میکروبی

ملاحظات کلی

تمام آزمایشات انجام شده می‌باشند تحت شرایط استریل انجام شودند از ورود میکروگانیسم خارجی در اینجا تست گلولی‌نشود. در صورتی که فراورده‌داری حاوی عفونت ضد میکروبی باشد، اثر ماده ضد میکروب می‌بایست حذف یا خنثی شود. در صورتی که فراورده‌داری حاوی عفونت ضد میکروبی باشد، اثر ماده ضد میکروب می‌بایست حذف یا خنثی شود.

روش‌های شمارش

روش‌های مختلفی برای شمارش بار میکروبی وجود دارند؛ از جمله: روش‌های شمارش کلونی‌ها در پلیت، فیلتراسیون و روش MPN (most probable number). در این بین روش MPN نسبت به سایر روش‌ها از صحت کمتری برخوردار است، هر چند برای فراورده‌های خاص با بار میکروبی پایین می‌تواند مناسب‌ترین روش باشد.

انتخاب روش شمارش به فاکتورهای مختلفی از جمله ماهیت فراورده و محدوده مجاز برای آن فراورده وابسته است.

نکته حائز اهمیت این است که روش شمارش منتخب بایست قادر به انجام تست بر روی تعدادی کافی از نمونه باشد تا بتوان درباره کیفیت میکروبی محصول قضاوت نمود.

گام اول: آماده‌سازی نمونه

روش آماده‌سازی نمونه به خصوصیات فیزیکی محصول دارویی متغیر و استراتیژی است. در ادامه روش‌های آماده‌سازی برای هر فرم دارویی به تفکیک قید شده. اگر هیچ‌یک از روش‌های ذیل رضایت‌بخش نبود، می‌بایست روش جایگزین مناسبی توسط محقق تعیین شود.

محصولات محلول در آب: محصول مورد نظر در محلول بافری سدیم کلراید و پپتون با pH 7، بافر فسفات با pH 2/7/1 یا محیط سدیم کلراید-پپتون با pH 7/2 با فشار سفت با چکش مایع کانتین دایژنیکتی براث حل یا رقیق می‌شود (غالباً رقت 1 به 10 اکسوز می‌شود) در صورت نیاز pH را را توان
مقدار مورد نیاز از شکل دارویی برای انجام تست برای هر نمونه ۱۰ گرم یا ۱۰ سی سی از محصول تست می‌شود (مگر اینکه در مونوگراف مربوطه عدد دیگری قید شده باشد). برای آئروسل‌های مایع و جامد ۱۰ عدد ظرف حاوی آئروسل و برای پچ‌های ترنس درمال ۱۰ عدد پچ می‌بایست تست شوند.

مقداری که می‌بایست تست شود تحت شرایط زیر کاهش یابد:
• مقدار دارو در هر واحد دارویی (قرص، کپسول، تزریقی) کمتر یا مساوی ۱ mg باشد یا مقدار در هر گرم یا لیتر (برای فرم‌هایی که در واحد دوز ارائه نمی‌شوند) کمتر از ۱ mg باشد. در چنین مواردی مقدار یا اندازه نمونه کمتر از مقدار محصول دارویی (ماهیت ملایم) باشد.
• برای موادی که بعنوان مواد فعال دارویی می‌شوند وقتی مقدار نمونه خیلی کمی باشد سایز جی بهبود یافته داشته باشد و مقدار نمونه کمتر از ۱۰۰۰ سی سی باشد.

مواد خشک کننده
مواد خشک کننده ممکن است برای کنترل فعالیت عوامل ضد میکروبی استفاده شود (جدول ۳). این مواد می‌تواند قبل از استریلیزاسیون به رقیق کننده متناقص افزوده شود. در صورتی که از مواد خشک کننده استفاده شود، کارایی و عدم سمیت آنها بر روی میکروگاپسنس می‌بایست ثابت شود. برای انتخاب این امر از نمونه بالاکی حاوی ماده خشک کننده استفاده می‌شود.

گام دوم: تست مقدم‌گذاری
می‌توان با وجود این اطماعات می‌توان صریحاً اعلام کرد که این اولویت محصول داروییی باید دسته‌بندی‌های اختصاصی که به صورت دستی به محصول افزوده می‌شوند محتمل نیست. اما این نکته حائز اهمیت است که با وجود این محصول رشد میکروب‌گانه‌ها تعیین شده در USP را ماهی کند. اما ممکن است رشد میکروب‌گانه‌های که USP در قید نشدنی ماهی نشود.

فیلتراسیون غشایی

بند می‌توان فیلترهای غشایی با سایز کمتر از 0.45μm استفاده می‌شود. نوع جنس فیلتر طوری انتخاب می‌شود که کارایی فیلتر توسط اجزاء داخل نمونه لازم آمیخت تا نتایج قاری نباشد. برای هر کدام از میکروب‌گانه‌های استفاده شده یک نوع فیلتر غشایی استفاده می‌شود. مقادیر مناسب از نمونه آماده شده را (اثر مقادیر بالایی از انظار رود تحقیگ معیار کمتر از محصول با یک یا چند فیلتر کرده و

فیلتر با حجم مناسب از رقیق کننده داشته می‌شود. غشای فیلتر به سطح میکروب‌گانه‌های مختلف تیمچ (TAMC) بایستی است. AGR این کازئین دایجست آگار و برای تعیین TYMC سطح سبارود دکستروز آگار انکوباسیون مطابق شرایط جدول 1: نتایج کازئین دایجست آگار و برای تعیین TYMC استفاده شده است. برای روش MPN سطح شماره 109 بر لیتر USP به سطح غشایی تیمچ (TAMC) بایستی است که بر روی سطح محیط کشت خشک یا بخار بسته و پس از انکوباسیون، شمارش شناسی روش پور پلیت انجام می‌یابد.

MPN

روش MPN

دقت و صحت روش MPN از دو روی کلی مکس است و نتایج غیر قابل اکتا (خصوصا در رابطه با شمارش قارچها) بسته می‌آید. این روش برای شمارش تیمچ (TAMC) تحت شرایطی که هیچ روش دیگری موجود نباشد مورد استفاده قرار گیرد. برای هرکدام از USP تست‌های جدایگانه ای صورت گیرد که تحت شرایط USP لاصقی، برای کنترل کیفیت به منظور استفاده کارایی فیلتر، توسط USP USP به منظور استفاده کارایی فیلتر، توسط USP

باژایی میکروب‌گانه‌ها در حضور محصول

برای هر کدام از میکروب‌گانه‌های لیست‌شده در USP تست‌های جدایگانه ای صورت گیرد که تحت شرایط USP لاصقی، برای کنترل کیفیت به منظور استفاده کارایی فیلتر، توسط USP

GAAM: سوم شمارش میکروب‌گانه‌ها

باید USP روش MPN از USP

باید USP روش MPN از USP

مجله میکروب‌شناسی پزشکی ایران | سال 13 شماره 5 | آذر و دی 1398

325
جدول 3. عوامل رایج جهت خنثی کردن مواد ضد میکروبی مداخله‌کننده

مواد مداخله‌کننده	سدیم هیدروژن سولفیت (سدیم بی سولفیت)	رنگ سازی	قلی‌پزشکی، الکل، اسید، و پروتئزاتی	الکل	کنترل‌کننده	نیتریک سیستم‌ها	ترکیبات قلی‌پزشکی	پروتئزاتی
گلوتارآلدهید	مواد مداخله‌کننده	رنگ سازی	قلی‌پزشکی، الکل، اسید، و پروتئزاتی	الکل	کنترل‌کننده	نیتریک سیستم‌ها	ترکیبات قلی‌پزشکی	پروتئزاتی
ترکیبات QACs	مواد مداخله‌کننده	رنگ سازی	قلی‌پزشکی، الکل، اسید، و پروتئزاتی	الکل	کنترل‌کننده	نیتریک سیستم‌ها	ترکیبات قلی‌پزشکی	پروتئزاتی
پلی‌سیستین	مواد مداخله‌کننده	رنگ سازی	قلی‌پزشکی، الکل، اسید، و پروتئزاتی	الکل	کنترل‌کننده	نیتریک سیستم‌ها	ترکیبات قلی‌پزشکی	پروتئزاتی
ترکیبات جیوه‌های هالوژن‌دار	مواد مداخله‌کننده	رنگ سازی	قلی‌پزشکی، الکل، اسید، و پروتئزاتی	الکل	کنترل‌کننده	نیتریک سیستم‌ها	ترکیبات قلی‌پزشکی	پروتئزاتی
EDTA	مواد مداخله‌کننده	رنگ سازی	قلی‌پزشکی، الکل، اسید، و پروتئزاتی	الکل	کنترل‌کننده	نیتریک سیستم‌ها	ترکیبات قلی‌پزشکی	پروتئزاتی

جدول 4. ناحیه آماده‌سازی و استفاده از میکروارگانیسم‌های مورد آزمایش (American Type Culture Collection - ATCC)

میکروارگانیسم	آماده‌سازی	تقویت	استفاده محدود	تقویت	استفاده محدود	
Staphylococcus aureus such as ATCC 6538						
	سوی بین کازئین دایجست آگار	100 cfu	≥	°C	35-30	کمتر مساوی
	سوی بین کازئین دایجست براث	30-25	کمتر مساوی			
	سوی بین کازئین دایجست آگار	≥	°C	35-30	کمتر مساوی	
	سوی بین کازئین دایجست براث	≤	کمتر مساوی			
Pseudomonas aeruginosa such as ATCC 9027						
	سوی بین کازئین دایجست آگار	100 cfu	≥	°C	35-30	کمتر مساوی
	سوی بین کازئین دایجست براث	30-25	کمتر مساوی			
	سوی بین کازئین دایجست آگار	≥	°C	35-30	کمتر مساوی	
	سوی بین کازئین دایجست براث	≤	کمتر مساوی			
Bacillus subtilis such as 6633 ATCC						
	سوی بین کازئین دایجست آگار	100 cfu	≥	°C	35-30	کمتر مساوی
	سوی بین کازئین دایجست براث	30-25	کمتر مساوی			
	سوی بین کازئین دایجست آگار	≥	°C	35-30	کمتر مساوی	
	سوی بین کازئین دایجست براث	≤	کمتر مساوی			
Candida Albicans such as ATCC 10231						
	سوی بین کازئین دایجست آگار	100 cfu	≥	°C	35-30	کمتر مساوی
	سوی بین کازئین دایجست براث	25-20	کمتر مساوی			
	سوی بین کازئین دایجست آگار	≥	°C	35-30	کمتر مساوی	
	سوی بین کازئین دایجست براث	≤	کمتر مساوی			
Aspergillus brasiliensis such as ATCC 16404						
	سوی بین کازئین دایجست آگار	100 cfu	≥	°C	35-30	کمتر مساوی
	سوی بین کازئین دایجست براث	10-5	کمتر مساوی			
	سوی بین کازئین دایجست آگار	≥	°C	35-30	کمتر مساوی	
	سوی بین کازئین دایجست براث	≤	کمتر مساوی			

MPN: غیر قابل استفاده

TA: تناسب روش شمارش در حضور محصول
شکل 1. نمای کلی از روش MPN

جدول 5. تعداد میکروگانیسم‌های محتمل در نمونه توسط روش MPN در هر g یا mL محصول

تعداد لوله‌های کدر شده از هر سری رفت (که نشانگر رشد میکروگانیسم‌های محتمل است)	حد اطمینان 95% در محصول در هر g یا mL MPN	تعداد لوله‌های کدر شده از هر سری رفت (که نشانگر رشد میکروگانیسم‌های محتمل است)
0	0	0
1	1	1
2	2	2
3	3	3
4	4	4
5	5	5
6	6	6
7	7	7
8	8	8
9	9	9
10	10	10
11	11	11
12	12	12
13	13	13
14	14	14
15	15	15
16	16	16

نمره: 337
تعداد لوله‌های کمر صدها از هر سری رفت (که نشانگر رشد میکروارگانیسم‌هستند)	MPN در هر g یا mL	حد اطمینان 95/%
1	0	9.2
2	1	8.35
3	2	5.39
4	6	5.39
5	10	5.39
6	1	5.39
7	2	5.39
8	0	5.39
9	2	5.39
10	1	5.39
11	1	5.39
12	1	5.39
13	1	5.39
14	1	5.39
15	1	5.39
16	1	5.39
17	1	5.39
18	1	5.39
19	1	5.39
20	1	5.39
21	1	5.39
22	1	5.39
23	1	5.39
24	1	5.39
25	1	5.39
26	1	5.39
27	1	5.39
28	1	5.39
29	1	5.39
30	1	5.39
31	1	5.39
32	1	5.39
33	1	5.39
34	1	5.39
35	1	5.39
36	1	5.39
37	1	5.39
38	1	5.39
39	1	5.39
40	1	5.39
41	1	5.39
42	1	5.39
43	1	5.39
44	1	5.39
45	1	5.39
46	1	5.39
47	1	5.39
48	1	5.39
49	1	5.39
50	1	5.39
51	1	5.39
52	1	5.39
53	1	5.39
54	1	5.39
55	1	5.39
56	1	5.39
57	1	5.39
58	1	5.39
59	1	5.39
60	1	5.39
61	1	5.39
62	1	5.39
63	1	5.39
64	1	5.39
65	1	5.39
66	1	5.39
67	1	5.39
68	1	5.39
69	1	5.39
70	1	5.39
71	1	5.39
72	1	5.39
73	1	5.39
74	1	5.39
75	1	5.39
76	1	5.39
77	1	5.39
78	1	5.39
79	1	5.39
80	1	5.39
81	1	5.39
82	1	5.39
83	1	5.39
84	1	5.39
85	1	5.39
86	1	5.39
87	1	5.39
88	1	5.39
89	1	5.39
90	1	5.39
91	1	5.39
92	1	5.39
93	1	5.39
94	1	5.39
95	1	5.39
96	1	5.39
97	1	5.39
98	1	5.39
99	1	5.39
100	1	5.39
In the work of the Botanists, it was required to identify the presence or absence of microorganisms. Consequently, TACM (total aerobic count) was considered as the quantitative test for the identification of microorganisms based on the growth of colonies at 30°-35°C. The growth was checked after 2-5 days of incubation at 30°-35°C. The colony count was calculated by using the MPN method.

For the purpose of determining the number of microorganisms in the sample, a plate method was used. The sample was inoculated onto a solid medium and incubated at 30°-35°C for 2-5 days. The colony count was calculated by counting the colonies on the plates.

Following the incubation, the plates were observed for the presence of colonies. The number of colonies was calculated by using the MPN method. The results were then compared with the standard values to determine the presence or absence of microorganisms.

In summary, the method for the determination of the number of microorganisms was as follows:

1. Prepare a sample for analysis.
2. Inoculate the sample onto a solid medium.
3. Incubate the medium at 30°-35°C for 2-5 days.
4. Count the colonies on the plates.
5. Calculate the number of microorganisms using the MPN method.
6. Compare the results with the standard values.

This method was found to be effective in identifying the presence or absence of microorganisms in the sample.
میکروگانیسم‌های هوازی

جدول ۶ به میکروگانیسم‌های هوازی مورد استفاده در تست شناسایی می‌پردازد. به عنوان مثال یکی از این میکروگانیسم‌ها سودوموناس آئروژینوزا می‌باشد که به عنوان پاتوژن‌های مهم انسانی مسئول عفونت در بیمارستان‌ها و همچنین جامعه هستند.

(National Collection of Type Cultures. NCTC)

NCTC	میکروگانیسم‌های هوازی
Such as ATCC 6538	Staphylococcus aureus
Such as ATCC 9027	Pseudomonas aeruginosa
Such as ATCC 8739	Escherichia coli
Such as ATCC 14028	Salmonella enterica subsp. enterica serovar Typhimurium or,
Such as NCTC 6017	as an alternative, Salmonella enterica subsp. enterica serovar Abony
Such as ATCC 10231	Candida albicans

جدول ۷ تفسیر نتایج - تعداد محتمل باکتری در هر گیا آب یا mL از نمونه

نتایج برای هر مقادیر از محصول	تعداد محتمل باکتری در هر گیا آب یا mL
	+
+	
	-
-	

به عنوان جایگزین آماده‌سازی و سپس رقیق کردن Cl. Sporogenes حاوی سولولهای رویشی می‌توان از سولولهای حاوی اسپور پیدا برای تهیه استفاده کرد.

استفاده از سولولهای اسپور پایدار برای تلقیح، روش جایگزین تهیه و رقیق‌سازی سولولهای رویشی Sporogenes محصول می‌شود. سولولهای اسپور پایدار ها در دمای ۳۰-۸°C تا حدی زمان معتبر قابل تغییر است. استفاده از نمونه کنترل منفی در انجام تست‌های شناسایی توصیه می‌شود.

محلول باقری سرم کلراد-پپتون با pH ۷/۲/۲ برای تهیه سولولهای رویشی استفاده می‌شود. در صورتی که این سولولهای در دمای ۲-۰°C ته داری شود، به مدت ۲۴ ساعت قابل استفاده است.

CLOSTRIDIA

Clostridium sporogenes (Cl. Sporogenes) such as ATCC 11437 or ATCC 19404 (NCTC 532).

گونه کلستریدیا، می‌باشد در محیط کشت تقویت شده و تحت شرایط می‌هوایی رشد کند (۲۵°C, ۲۰۰۰-۲۰۴۸ ساعت).
بررسی محصولات از لحاظ وجود یا عدم وجود باکتری‌های کرم منفی مقاووم به اسیدهای صرفایی
نمونه به رقی (200 گرم سی‌سی) می‌شود. رقی نمونه با توجه به منطقه‌بندی کرایه‌گیری داده شده، از اکثربانی در دمای 35-37°C، تا زمان صورت تا که باکتری‌ها آماده شوند (به اندازه کمی گرم یا 2 ساعت) بوده و اغلب بعد از 2 ساعت است.

به منظور بررسی عدم حضور باکتری‌های ماندن، مرحله قبل حجم از محلول که ماده‌های باشند به طور تعیین‌شده باعث شرده‌هایی تهیه می‌شود که به صورت در مرحله اول و به محیط کشت مقداری تزریق شوند. Enterobacteriaceae Enrichment Broth و به محیط کشت مقداری نسبت به مقدار ابتدا افزوده می‌شود. مطالعه انجام خواهد گرفت. سپس کشت تا وسیع‌تر بر روی محیط Red Violet Bile Broth Cat (انکوباسیون) 20-24 ساعت صورت می‌گیرد. سپس کشت تا وسیع‌تر بر روی محیط Red Violet Bile Broth Cat (انکوباسیون) 20-24 ساعت صورت می‌گیرد. سپس کشت تا وسیع‌تر بر روی محیط Red Violet Bile Broth Cat (انکوباسیون) 20-24 ساعت صورت می‌گیرد. سپس کشت تا وسیع‌تر بر روی محیط Red Violet Bile Broth Cat (انکوباسیون) 20-24 ساعت صورت می‌گیرد. سپس کشت تا وسیع‌تر بر روی محیط Red Violet Bile Broth Cat (انکوباسیون) 20-24 ساعت صورت می‌گیرد. سپس کشت تا وسیع‌تر بر روی محیط Red Violet Bile Broth Cat (انکوباسیون) 20-24 ساعت صورت می‌گیرد. سپس کشت تا وسیع‌تر بر روی محیط Red Violet Bile Broth Cat (انکوباسیون) 20-24 ساعت صورت می‌گیرد. سپس کشت T نشده می‌باشد توجه شود.

deit

کشت E. coli (Escherichia coli)

نمونه به رقی (200 گرم سی‌سی) می‌شود. رقی نمونه با توجه به منطقه‌بندی کرایه‌گیری داده شده، از اکثربانی در دمای 35-37°C، تا زمان صورت تا که باکتری‌ها آماده شوند (به اندازه کمی گرم یا 2 ساعت) بوده و اغلب بعد از 2 ساعت است.

کشت T نشده می‌باشد توجه شود.

تست بررسی ویژگی محیط کشت به یک محیط مناسب

تست بررسی ویژگی محیط کشت به یک محیط مناسب

جامد/لامپ: به استفاده از روش Surface spread از ویژگی باکتری‌های مناسب از محیط کشت مقدار (تعداد

100 cfu آلوه می‌شود. پس از اکثربانی در شرایط مناسب، کشت حاضر می‌شود. میکروارگانیسم در مقایسه با قبل از تلقیح باکتری بیانگر کارایی مناسب محیط کشت است.

تست بررسی ویژگی محیط کشت به یک محیط مناسب

حرکت قابلیت رشد گونه‌های مختلفی از نمونه اصلی

عده حرکت قابلیت رشد گونه‌های مختلفی از نمونه اصلی

با استفاده از روش Surface spread از ویژگی باکتری‌های مناسب از محیط کشت مقدار (تعداد

100 cfu آلوه می‌شود. پس از اکثربانی در شرایط مناسب، کشت حاضر می‌شود. میکروارگانیسم در مقایسه با قبل از تلقیح باکتری بیانگر کارایی مناسب محیط کشت است.

خاصیت محیط کشت در تحقیق با مهار رشد باکتری

تست بررسی ویژگی محیط کشت به یک محیط مناسب

محیط کشت: مقدار مناسبی از محیط کشت توسط حجم کمی از

میکروارگانیسم منظور می‌شود. پس از انکوباسیون در شرایط مشخص و کشت حاضر می‌شود. میکروارگانیسم در مقایسه با قبل از تلقیح باکتری بیانگر کارایی مناسب محیط کشت است.

محیط کشت: مقدار مناسبی از محیط کشت توسط حجم کمی از

میکروارگانیسم منظور می‌شود. پس از انکوباسیون در شرایط مشخص و کشت حاضر می‌شود. میکروارگانیسم در مقایسه با قبل از تلقیح باکتری بیانگر کارایی مناسب محیط کشت است.

محیط کشت: مقدار مناسبی از محیط کشت توسط حجم کمی از

میکروارگانیسم منظور می‌شود. پس از انکوباسیون در شرایط مشخص و کشت حاضر می‌شود. میکروارگانیسم در مقایسه با قبل از تلقیح باکتری بیانگر کارایی مناسب محیط کشت است.

محیط کشت: مقدار مناسبی از محیط کشت توسط حجم کمی از

میکروارگانیسم منظور می‌شود. پس از انکوباسیون در شرایط مشخص و کشت حاضر می‌شود. میکروارگانیسم در مقایسه با قبل از تلقیح باکتری بیانگر کارایی مناسب محیط کشت است.

محیط کشت: مقدار مناسبی از محیط کشت توسط حجم کمی از

میکروارگانیسم منظور می‌شود. پس از انکوباسیون در شرایط مشخص و کشت حاضر می‌شود. میکروارگانیسم در مقایسه با قبل از تلقیح باکتری بیانگر کارایی مناسب محیط کشت است.
محصول زمانی مورد قبول است که رشد کلونی مشاهده نشود و تست‌های شناسایی تکمیلی منفی باشد.

Staphylococcus aureus

نمونه با رنگ زرد یا سفید که توسط هالا رنگی سی سی محیط کشت مغذی شود تا معادل یک نمونه تهیه شود تا با حجم مناسبی سی سی یا مقداری که حداقل معادل ۱۰۰ میکروگرم از محصول باشد استفاده می‌شود.

Salmonella

نمونه را همان‌را مراحل توضیح داده شده در پیش که خونی در ازدیاد ۱۰۰ قسمت دیگری از محصول استفاده شود که برای گرمایی به حجم مناسبی به سی سی می‌شود و به مدت ۱۸-۲۴ ساعت

Clostridia

مرحله تست شناسایی برای

نمونه را با رنگ زرد یا سفید که توسط هالا رنگی سی سی محیط کشت مغذی شود تا معادل ۱۰۰ میکروگرم از محصول باشد استفاده می‌شود.

Pseudomonas aeruginosa

نمونه را با رنگ زرد یا سفید که توسط هالا رنگی سی سی محیط کشت مغذی شود تا معادل ۱۰۰ میکروگرم از محصول باشد استفاده می‌شود.
تفسیر: رشد یا به‌هوازی باکتری‌های میله‌ای (با یا بدون اندوسپور)، تست کاتالاز منفی باید باعث حضور کلستریدیا گردید و توسط تست‌های شناسایی تکمیلی تایید شود. مخصوصاً مورد قبول است که رشد کلونی مشاهده نشود و یا تست‌های شناسایی تکمیلی منفی باشد.

candida albicans

مراحل تست شناسایی برای

نمونه مطلق پروتوکل شرح داده شده برای هر محصول تهیه شده سپس 10 سی سی یا مقداری که معادل 1 گرم یا 1 سی سی از محصول باشد استفاده می‌شود تا به حجم مناسبی از محیط کشت مخلوط شود، سپس به مدت 3-5 روز در دمای 35-30°C انکوبه می‌شود.

جدول 8 و یزی‌گی‌های محیط کشت رشد مهر کننده رشد و نشان دهنده باکتری بر اساس محیط‌هایی کشت

گونه باکتری	تست/محیط کشت
E. coli	محیط کشت تهیه شده است و مورد تاکید قرار گرفته است.
P. aeruginosa	Mahadeh,
S. aureus	کشت ثانویه بر روی محیط کشت سابرود دکستروز آگار انجام گرفته و به مدت 4-24 ساعت در دمای 37°C تا خشک در نمایش گذاشته شود.
E. coli	تست برای باکتری‌های گرم منفی مقاوم به اسیدهای صفرایی
P. aeruginosa	RVBGA (Violet Red Bile Glucose Agar)
Escherichia coli	تست برای التیمپورالیا
S. aureus	تست برای Staphylococcus aureus
E. coli	تست برای Escherichia coli
P. aeruginosa	تست برای Pseudomonas aeruginosa
Salmonella enterica subsp. enterica serovar Typhimurium or	تست برای Salmonella enterica subsp. enterica serovar Typhimurium or
Salmonella enterica subsp. enterica serovar Abony	تست برای Salmonella enterica subsp. enterica serovar Abony
S. aureus	تست برای Staphylococcus aureus
Salmonella enterica subsp. enterica serovar Typhimurium or	تست برای Salmonella enterica subsp. enterica serovar Typhimurium or

343
نتیجه‌گیری

فرآورده‌های غیراستریل می‌بایست از لحاظ بار میکروبی در محدوده‌های مختلف خود باشد. این باید به این ترتیب باشد که مصرف کننده نتواند به فرآورده‌ای گاتو درنده باشد و نیز در سایر محصولات، میکروارگانیسم‌های آلوده‌کننده نتواند بر روی آنها بهبود یابد و بدون بهره‌برداری از USP و نیز مطابق با USP شود.

تشکر و قدردانی

نویسندگان برای همکاری به شکلی که با شبکه‌ی شرکت‌ها و دانشمندان اجتماعی اقتصادی اجتماعی انجام شده است، تشکر می‌کنند. در این راستا، می‌توان به Thomas C و Jessica R.Nicole Vu با استفاده از نوشته‌های ایشان اشاره کرد.

تعارض منافع

در این نوشتار، به غیر از موضوعات اصلی، مواردی که ممکن است به تعارض منافع منجر شوند مطرح نشده باشند. با این حال، نویسندگان به این موضوع توجه کننده اند و در آینده به آن‌ها نیز توجه خواهد کرد.

344
Reference

1. Rimbara E. Hugo and Russell's Pharmaceutical Microbiology. 8th ed. Willey-Blackwell publisher; 2012.

2. Lotfipour, Farzaneh, and Somayeh Hallaj-Nezhadi. “Microbial Quality Concerns for Biopharmaceuticals.” Latest Research into Quality Control (2012): 195-214. [DOI:10.5772/52114]

3. Vu N, Lou J, Kupiec T. Quality control analytical methods: Microbial limit tests for nonsterile pharmaceuticals, part 1. Int J Pharm Compd. 2014;18(3):213-21.

4. Sutton S. What is an objectionable organism. Am Pharmacist Rev. 2012;15(6):36-48

5. Clontz L. Microbial Limit and Bioburden Tests: Validation approaches and global requirements. 2nd ed. Lucia Clontz: CRC press publisher; 2009. [DOI:10.1201/N01420053487] [PMID] [PMCID]

6. Bennett SN, McNeil MM, Bland LA, Arduino MJ, Villarino ME, Perrotta DM, et al. Postoperative infections traced to contamination of an intravenous anesthetic, propofol. N Engl J Med. 1995; 333(3):147-154. [DOI:10.1056/NEJM199507203330303] [PMID]

7. Archibald LK, Ramos M, Arduino MJ, Aguerro SM, Deseda C, Banerjee S, et al. Enterobacter cloaceae and Pseudomonas aeruginosa polymicrobial bloodstream infections traced to extrinsic contamination of a dextrose multidose vial. J Pediatr. 1998;133(5):640-4. [DOI:10.1016/S0022-3476(98)70104-0]

8. Mohiuddin A. Extemporaneous Compounding: Cautions Vs Convenience. Research & Reviews: A Journal of Toxicology. 2019;9(1):26-43. [DOI:10.15520/ijmhs.v9i1.2420]

9. Hosseyni R, Raefi A, Hashemi M. Identification of Microbial Agents Indifferent Parts of the Gastric Juice Company. Iran J Med Microbiol. 2015;8(4):44-9.

10. Mohammad Sarab Badyeh F, Saeedi M, Enayatifard R, Morteza-Semmiani K, Akbari J. Microbial Contamination in some Moisturizing Creams in Iran Market. J of Mazandaran Univ of Med Sci. 2015;24(12):400-405.

11. Ratajczak M, Kubicka M, Kaminska D, Sawicka P, Dlugaszewska J. Microbiological quality of non-sterile pharmaceutical products. Saudi Pharm J. 2015;23(3):303-7. [DOI:10.1016/j.jsps.2014.11.015] [PMID] [PMCID]

12. Vu N, Lou J, Kupiec T. Quality Control: microbial limit tests for nonsterile pharmaceuticals, part 2. Int J Pharm Compd. 2014;18(4):305-10.

13. chapters <61>, <62> and <1111> The United States Pharmacopoeia. National formulary. 41st Ed.

14. GUIDE TO INSPECTIONS OF MICROBIOLOGICAL PHARMACEUTICAL QUALITY CONTROL LABORATORIES 2014. Available at: URL: http://www.fda.gov/oru/inspect_ref/igs/micro.html. Accessed February 18, 2014.

15. Apendix 16B. British pharmacopoeia. Vol. 5. London; 2016; p. 486-501.

16. 2.6.12 and 2.6.13 Chapters. Council of Europe. European Pharmacopoeia. 8th ed. Strasbourg: Council of Europe; 2014; p.185-194.

17. Pharmacopoeia J. The Japanese Pharmacopoeia. In: Nippo TY, editor. The Japanese Pharmacopoeia. 16 ed. Tokyo: Hirokawa Publishing; 2016. p. 138-47 & 21-0.

18. Dilip Maheshwari PV. Harmonization in Microbial Limit Test of USP and EP. AJPTI. 2106;04(19):61-70.

19. Farajnia S, Hassan M, Hallaj Nezhadi S, Mohammadnejad L, Milani M, Lotfipour F. Determination of indicator bacteria in pharmaceutical samples by multiplex PCR. Journal of Rapid Methods & Automation in Microbiology. 2009 Sep;17(3):328-38 [DOI:10.1111/j.1745-4581.2009.00154.x]

20. Behravan J, Bazzaz F, Malakeh P. Survey of bacteriological contamination of cosmetic creams in Iran (2000). Int. J. Dermatol. 2005;44(6):482-5. [DOI:10.1111/j.1365-4632.2005.01963.x] [PMID]

21. Enayatifard R, Asgarirad H, Kazemi-Sani B. Microbial quality of some herbal solid dosage forms. Afr. J. Biotechnol. 2010;9(11): 1701-05. [DOI:10.5897/AJB10.1673]

22. Haftbaradaran B, Abedi D, Jalali M, Bagherinejad MR. Microbial quality survey of sunscreen products in Iranian market. Adv Biomed Res 2014;3:180. 227-234. [DOI:10.4103/2277-9175.139534] [PMID] [PMCID]

23. Modabberi S, Namayandeh A, López-Galindo A, Viseras C, Setti M, Ranbaran M. Characterization of Iranian bentonites to be used as pharmaceutical materials. Applied Clay Science. 2015 Nov 1;116:193-201. [DOI:10.1016/j.clay.2015.03.013]

24. Sedghi Sharif-Abad N, Saeedi M, Enayatifard R, Morteza-Semnani K, Akbari J. Evaluation of microbial content of some sunscreen creams in Iran's market. Pharm Biomed Res. 2015;12(2):30-4. [DOI:10.18690/acadbpub.phbr.1.2.30]

25. Norouz-zadeh S, Saeedi M, Enayatifard R, Morteza-Semnani K, Akbari J. Microbial Content in some Foundation Creams in Iran's Market. J of Mazandaran Univ of Med Sci. 2014;24(118):214-9.

26. Hewitt W. Microbiological assay for pharmaceutical analysis: a rational approach: CRC press publisher; 2003. [DOI:10.1201/b12428]

27. Baird RM, Hodges NA, Denyer SP. Handbook of microbiological quality control in pharmaceuticals and medical devices: CRC press publisher; 2000. [DOI:10.4324/9780203035195]

28. Savadi P, Taghavi-Fard T, Milani M, Hashemzadeh N, Panahi V, McMllan NA, Hallaj-Nerzadi S. Piperacillin Encapsulation in Nanoliposomes Using Modified Freeze Drying of a Monophase Solution Method: Preparation, Characterization and In Vitro Antibacterial Activity. Current microbiology. 2020 May 6. [DOI:10.1007/s00284-020-02008-0] [PMID]