DyCaPPON: Dynamic Circuit and Packet Passive Optical Network (Extended Version)

Xing Wei, Frank Aurzada, Michael P. McGarry, and Martin Reisslein

Abstract—Dynamic circuits are well suited for applications that require predictable service with a constant bit rate for a prescribed period of time, such as cloud computing and e-science applications. Past research on upstream transmission in passive optical networks (PONs) has mainly considered packet-switched traffic and has focused on optimizing packet-level performance metrics, such as reducing mean delay. This study proposes and evaluates a dynamic circuit and packet PON (DyCaPPON) that provides dynamic circuits along with packet-switched service. DyCaPPON provides (i) flexible packet-switched service through dynamic bandwidth allocation in periodic polling cycles, and (ii) consistent circuit service by allocating each active circuit a fixed-duration upstream transmission window during each fixed-duration polling cycle. We analyze circuit-level performance metrics, including the blocking probability of dynamic circuit requests in DyCaPPON through a stochastic knapsack-based analysis. Through this analysis we also determine the bandwidth occupied by admitted circuits. The remaining bandwidth is available for packet traffic and we conduct an approximate analysis of the resulting mean delay of packet traffic. Through extensive numerical evaluations and verifying simulations we demonstrate the circuit blocking and packet delay trade-offs in DyCaPPON.

Index Terms—Dynamic circuit switching; Ethernet Passive Optical Network; Grant scheduling; Grant sizing; Packet delay; Stochastic knapsack.

I. INTRODUCTION

Optical networks have traditionally employed three main switching paradigms, namely circuit switching, burst switching, and packet switching, which have extensively studied respective benefits and limitations [2–5]. In order to achieve the predictable network service of circuit switching while enjoying some of the flexibilities of burst and packet switching, dynamic circuit switching has been introduced [6]. Dynamic circuit switching can be traced back to research toward differentiated levels of blocking rates of calls [7]. Today, a plethora of network applications ranging from the migration of data and computing work loads to cloud storage and computing [8] as well as high-bit rate e-science applications, e.g., for remote scientific collaborations, to big data applications of governments, private organizations, and households are well supported by dynamic circuit switching [6]. Moreover, gaming applications benefit from predictable low-delay service [9–12] provided by circuits, as do emerging virtual reality applications [13–15]. Also, circuits can aid in the timely transmission of data from continuous media applications, such as live or streaming video. Video traffic is often highly variable and may require smoothing before transmission over a circuit [16–22] or require a combination of circuit transport for a constant base bit stream and packet switched transport for the traffic burst exceeding the base bit stream rate. Both commercial and research/education network providers have recently started to offer optical dynamic circuit switching services [23, 24].

While dynamic circuit switching has received growing research attention in core and metro networks [24–32], mechanisms for supporting dynamic circuit switching in passive optical networks (PONs), which are a promising technology for networks access [33–38], are largely an open research area. As reviewed in Section II, PON research on the upstream transmission direction from the distributed Optical Network Units (ONUs) to the central Optical Line Terminal (OLT) has mainly focused on mechanisms supporting packet-switched transport [39–41]. While some of these packet-switched transport mechanisms support quality of service akin to circuits through service differentiation mechanisms, to the best of our knowledge there has been no prior study of circuit-level performance in PONs, e.g., the blocking probability of circuit requests for a given circuit request rate and circuit holding time.

In this article, we present the first circuit-level performance study of a PON with polling-based medium access control. We make three main original contributions towards the concept of efficiently supporting both Dynamic Circuit and Packet traffic in the upstream direction on a PON, which we refer to as DyCaPPON:

- We propose a novel DyCaPPON polling cycle structure that exploits the dynamic circuit transmissions to mask the round-trip propagation delay for dynamic bandwidth allocation to packet traffic.
- We develop a stochastic knapsack-based model of DyCaPPON to evaluate the circuit-level performance, including the blocking probabilities for different classes of circuit requests.
- We analyze the bandwidth sharing between circuit and packet traffic in DyCaPPON and evaluate packet-level performance, such as mean packet delay, as a function of the circuit traffic.
This article is organized as follows. We first review related work in Section II. In Section III, we describe the considered access network structure and define both the circuit and packet traffic models as well as the corresponding circuit- and packet-level performance metrics. In Section IV, we introduce the DyCaPPON polling cycle structure and outline the steps for admission control of dynamic circuit requests and dynamic bandwidth allocation to packet traffic. In Section V, we analyze the performance metrics relating to the dynamic circuit traffic, namely the blocking probabilities for the different circuit classes. We also analyze the bandwidth portion of a cycle consumed by active circuits, which in turn determines the bandwidth portion available for packet traffic, and analyze the resulting mean delay for packet traffic. In Section VI, we validate numerical results from our analysis with simulations and present illustrative circuit- and packet-level performance results for DyCaPPON. We summarize our conclusions in Section VII and outline future research directions towards the DyCaPPON concept.

II. RELATED WORK

The existing research on upstream transmission in passive optical access networks has mainly focused on packet traffic and related packet-level performance metrics. A number of studies has primarily focused on differentiating the packet-level QoS for different classes of packet traffic, e.g., [42]–[50]. In contrast to these studies, we consider only best effort service for the packet traffic in this article. In future work, mechanisms for differentiation of packet-level QoS could be integrated into the packet partition (see Section IV) of the DyCaPPON polling cycle.

The needs of applications for transmission with predictable quality of service has led to various enhancements of packet-switched transport for providing quality of service (QoS). A few studies, e.g., [51]–[56], have specifically focused on providing deterministic QoS, i.e., absolute guarantees for packet-level performance metrics, such as packet delay or jitter. Several studies have had a focus on the efficient integration of deterministic QoS mechanisms with one or several lower-priority packet traffic classes in polling-based PONs, e.g., [57]–[63]. The resulting packet scheduling problems have received particular attention [64]–[66]. Generally, these prior studies have found that fixed-duration polling cycles are well suited for supporting consistent QoS service. Similar to prior studies, we employ fixed-duration polling cycles in DyCaPPON, specifically on a PON with a single-wavelength upstream channel.

The prior studies commonly considered traffic flows characterized through leaky-bucket parameters that bound the long-term average bit rate as well as the size of sudden traffic bursts. Most of these studies include admission control, i.e., admit a new traffic flow only when the packet-level performance guarantees can still be met with the new traffic flow added to the existing flows. However, the circuit-level performance, i.e., the probability of blocking (i.e., denial of admission) of a new request has not been considered. In contrast, the circuits in DyCaPPON provide absolute QoS to constant bit rate traffic flows without bursts and we analyze the probability of new traffic flows (circuits) being admitted or blocked. This flow (circuit) level performance is important for network dimensioning and providing QoS at the level of traffic flows.

For completeness, we briefly note that a PON architecture that can provide circuits to ONUs through orthogonal frequency division multiplexing techniques on the physical layer has been proposed in [67]. Our study, in contrast, focuses on efficient medium access control techniques for supporting circuit traffic. A QoS approach based on burst switching in a PON has been proposed in [68]. To the best of our knowledge, circuit level performance in PONs has so far only been examined in [69] for the specific context of optical code division multiplexing [70].

We also note for completeness that large file transmissions in optical networks have been examined in several studies, e.g., [71]–[80]. These queuing theoretic analyses typically employed detailed Markov models and become computationally quite demanding for high-speed links. Also, these complex existing models considered a given node with local control of all link transmissions. In contrast, we develop a simple performance model for the distributed transmissions of the ONUs that are coordinated through polling-based medium access control in DyCaPPON. Our DyCaPPON model is accurate for the circuits and approximate for the packet service. More specifically, we model the dynamics of the circuit traffic, which is given priority over packet traffic up to an aggregate circuit bandwidth of C_c in DyCaPPON, with accurate stochastic knapsack modeling techniques in Section V-A. In Section V-B, we present an approximate delay model for the packet traffic, which in DyCaPPON can consume the bandwidth left unused by circuit traffic.

III. SYSTEM MODEL

A. Network structure

We consider a PON with J ONUs attached to the OLT with a single downstream wavelength channel and a single upstream wavelength channel [41], [81]. We denote C for the transmission bit rate (bandwidth) of a channel [bits/s]. We denote τ [s] for the one-way propagation delay between the OLT and the equidistant ONUs. We denote Γ [s] for the fixed duration of a polling cycle. The model notations are summarized in Table I.

B. Traffic Models

For circuit traffic, we consider K classes of circuits with bandwidths $b = (b_1, b_2, \ldots, b_K)$. We denote λ_c [requests/s] for the aggregate Poisson process arrival rate of circuit requests. A given circuit request is for a circuit of class k, $k = 1, 2, \ldots, K$, with probability p_k. We denote the mean circuit bit rate of the offered circuit traffic by $\bar{b} = \sum_{k=1}^{K} p_k b_k$.

For completeness, we briefly note that a PON architecture that can provide circuits to ONUs through orthogonal frequency division multiplexing techniques on the physical layer has been proposed in [67]. Our study, in contrast, focuses on efficient medium access control techniques for supporting circuit traffic. A QoS approach based on burst switching in a PON has been proposed in [68]. To the best of our knowledge, circuit level performance in PONs has so far only been examined in [69] for the specific context of optical code division multiplexing [70].

We also note for completeness that large file transmissions in optical networks have been examined in several studies, e.g., [71]–[80]. These queuing theoretic analyses typically employed detailed Markov models and become computationally quite demanding for high-speed links. Also, these complex existing models considered a given node with local control of all link transmissions. In contrast, we develop a simple performance model for the distributed transmissions of the ONUs that are coordinated through polling-based medium access control in DyCaPPON. Our DyCaPPON model is accurate for the circuits and approximate for the packet service. More specifically, we model the dynamics of the circuit traffic, which is given priority over packet traffic up to an aggregate circuit bandwidth of C_c in DyCaPPON, with accurate stochastic knapsack modeling techniques in Section V-A. In Section V-B, we present an approximate delay model for the packet traffic, which in DyCaPPON can consume the bandwidth left unused by circuit traffic.

III. SYSTEM MODEL

A. Network structure

We consider a PON with J ONUs attached to the OLT with a single downstream wavelength channel and a single upstream wavelength channel [41], [81]. We denote C for the transmission bit rate (bandwidth) of a channel [bits/s]. We denote τ [s] for the one-way propagation delay between the OLT and the equidistant ONUs. We denote Γ [s] for the fixed duration of a polling cycle. The model notations are summarized in Table I.

B. Traffic Models

For circuit traffic, we consider K classes of circuits with bandwidths $b = (b_1, b_2, \ldots, b_K)$. We denote λ_c [requests/s] for the aggregate Poisson process arrival rate of circuit requests. A given circuit request is for a circuit of class k, $k = 1, 2, \ldots, K$, with probability p_k. We denote the mean circuit bit rate of the offered circuit traffic by $\bar{b} = \sum_{k=1}^{K} p_k b_k$.

For completeness, we briefly note that a PON architecture that can provide circuits to ONUs through orthogonal frequency division multiplexing techniques on the physical layer has been proposed in [67]. Our study, in contrast, focuses on efficient medium access control techniques for supporting circuit traffic. A QoS approach based on burst switching in a PON has been proposed in [68]. To the best of our knowledge, circuit level performance in PONs has so far only been examined in [69] for the specific context of optical code division multiplexing [70].

We also note for completeness that large file transmissions in optical networks have been examined in several studies, e.g., [71]–[80]. These queuing theoretic analyses typically employed detailed Markov models and become computationally quite demanding for high-speed links. Also, these complex existing models considered a given node with local control of all link transmissions. In contrast, we develop a simple performance model for the distributed transmissions of the ONUs that are coordinated through polling-based medium access control in DyCaPPON. Our DyCaPPON model is accurate for the circuits and approximate for the packet service. More specifically, we model the dynamics of the circuit traffic, which is given priority over packet traffic up to an aggregate circuit bandwidth of C_c in DyCaPPON, with accurate stochastic knapsack modeling techniques in Section V-A. In Section V-B, we present an approximate delay model for the packet traffic, which in DyCaPPON can consume the bandwidth left unused by circuit traffic.
Fig. 1. An upstream cycle \(n \) has fixed duration \(\Gamma \) and has a circuit partition of duration \(\Xi(n) \) (that depends on the bandwidth demands of the accepted circuits) while a packet partition occupies the remaining cycle duration \(\Gamma - \Xi(n) \). The exact duration \(G\Sigma(n) \) of the packet partition in cycle \(n \) is evaluated in Eqn. 4. Each ONU sends a report during each packet partition. Packet traffic reported in cycle \(n - 1 \) is served in the packet partition of cycle \(n \) (if there is no backlog). A circuit requested in cycle \(n - 1 \) starts in the circuit partition of cycle \(n + 1 \). The \(2\tau \) round-trip propagation delay between the last ONU report (R) of a cycle \(n - 1 \) and the first packet transmission following the grant (G) of the next cycle \(n \) is masked by the circuit partition, provided \(\Xi(n) > 2\tau \).

We model the circuit holding time (duration) as an exponential random variable with mean \(1/\mu \). We denote the resulting offered circuit traffic intensity (load) by \(\chi = \lambda_c \bar{b}/(\mu C) \).

For packet traffic, we denote \(\bar{P} \) and \(\sigma_p^2 \) for the mean and the variance of the packet size [in bit], respectively. We denote \(\lambda_p \) for the aggregate Poisson process arrival rate [packets/s] of packet traffic across the \(J \) ONUs and denote \(\pi := p\bar{P}/C \) for the packet traffic intensity (load).

Throughout, we define the packet sizes and circuit bit rates to include the per-packet overheads, such as the preamble for Ethernet frames and the interpacket gap, as well as the packet overheads when packetizing circuit traffic for transmission.

C. Performance Metrics

For circuit traffic, we consider the blocking probability \(B_k, \ k = 1, 2, \ldots, K \), i.e., the probability that a request for a class \(k \) circuit is blocked, i.e., cannot be accommodated within the transmission rate limit for circuit service \(C_c \). We define the average circuit blocking probability as \(\bar{B} = \sum_{k=1}^{K} p_k B_k \). For packet traffic, we consider the mean packet delay \(D \) defined as the time period from the instant of packet arrival at the ONU to the instant of complete delivery of the packet to the OLT.

IV. DyCAPPON Upstream Bandwidth Management

A. Overview of Cycle and Polling Structure

In order to provide circuit traffic with consistent upstream transmission service with a fixed circuit bandwidth, DyCaP- PON employs a polling cycle with a fixed duration \(\Gamma \) [s]. An active circuit with bandwidth \(b \) is allocated an upstream transmission window of duration \(b\Gamma/C \) in every cycle. Thus, by transmitting at the full upstream channel bit rate \(C \) for duration \(b\Gamma/C \) once per cycle of duration \(\Gamma \), the circuit experiences a transmission bit rate (averaged over the cycle duration) of \(b \). We let \(\Xi(n) \) denote the aggregate of the upstream transmission windows of all active circuits in the PON in cycle \(n \), and refer to \(\Xi(n) \) as the circuit partition duration. We refer to the remaining duration \(\Gamma - \Xi(n) \) as the packet partition duration of cycle \(n \).

As illustrated in Fig. 1, a given cycle \(n \) consists of the circuit partition followed by the packet partition. During the packet partition of each cycle, each ONU sends a report message to the OLT. The report message signals new circuit requests as well as the occupancy level (queue depth) of the packet service queue in the ONU to the OLT. The signaling information for the circuit requests, i.e., requested circuit bandwidth and duration, can be carried in the Report message of the MPCP protocol in EPONs with similar modifications as used for signaling information for operation on multiple wavelength channels [32].

Specifically, for signaling dynamic circuit requests, an ONU report in the packet partition of cycle \(n - 1 \) carries circuit requests generated since the ONU’s preceding report in cycle \(n - 2 \). The report reaches the OLT by the end of cycle \(n - 1 \) and the OLT executes circuit admission control as described in Section IV-B. The ONU is informed about the outcome of the admission control (circuit is admitted or blocked) in the gate message that is transmitted on the downstream wavelength channel at the beginning of cycle \(n \). In the DyCaPPON design, the gate message propagates downstream while the upstream circuit transmissions of cycle \(n \) are propagating upstream. Thus, if the circuit was admitted, the ONU commences the circuit transmission with the circuit partition of cycle \(n + 1 \).

TABLE I

Main model notations

Notation	Description
\(C \)	Transmission rate [bit/s] of upstream channel
\(C_c \)	Transm. rate limit for circuit service, \(C_c \leq C \)
\(J \)	Number of ONUs
\(\tau \)	One-way propagation delay [s]
\(\bar{b} = (b_1, \ldots, b_K) \)	Bit rates [bit/s] for circuit classes \(k = 1, 2, \ldots, K \)
\(\lambda_c \)	Aggregate circuit requests arrival rate [circuits/s]
\(\bar{b} = \sum_{k=1}^{K} p_k b_k \)	Prob. that a request is for circuit type \(k \)
\(1/\mu \)	Mean circuit bit rate [bit/s] of offered circuit traf.
\(\chi = \lambda_c \bar{b} \)	Mean circuit holding time [s/circuit]
\(\chi = \lambda_c \bar{b} \)	Offered circuit traffic intensity (load)
\(P, \sigma_p^2 \)	Mean [bit] and variance of packet size
\(\pi = \frac{P\bar{P}}{\lambda_p C} \)	Packet traffic intensity (load); \(\lambda_p \) is agg. packet generation rate [packets/s] at all \(J \) ONUs
\(\Gamma \)	Total cycle duration [s], constant
\(\Xi \)	Cycle duration (rand. var.) occupied by circuit traf.
\(\omega \)	Mean per-cycle overhead time [s] for upstream transmissions (report transm. times, guard times)
\(n = (n_1, \ldots, n_K) \)	Stochastic knapsack model for circuits
\(q(\beta) \)	State vector of numbers of circuits of class \(k \)
\(\beta = n \cdot b \)	Aggregate bandwidth of active circuits
\(\beta = n \cdot b \)	Equilibrium probability for active circuits having aggregate bandwidth \(\beta \)
\(B_k \)	Blocking probability for circuit class \(k \)
\(D \)	Mean packet delay [s]
For signaling packet traffic, the ONU report in the packet partition of cycle \(n-1 \) carries the current queue depth as of the report generation instant. Based on this queue depth, the OLT determines the effective bandwidth request and bandwidth allocation as described in Section IV-C. The gate message transmitted downstream at the beginning of cycle \(n \) informs the ONU about its upstream transmission window in the packet partition of cycle \(n \).

As illustrated in Fig. 1 in the DyCaPPON design, the circuit partition is positioned at the beginning of the cycle, in an effort to mitigate the idle time between the end of the packet transmissions in the preceding cycle and the beginning of the packet transmissions of the current cycle. In particular, when the last packet transmission of cycle \(n-1 \) arrives at the OLT at the end of cycle \(n-1 \), the first packet transmission of cycle \(n \) can arrive at the OLT at the very earliest one roundtrip propagation delay (plus typically negligible processing time and gate transmission time) after the beginning of cycle \(n \). If the circuit partition duration \(\Xi(n) \) is longer than the roundtrip propagation delay \(2\tau \), then idle time between packet partitions is avoided. On the other hand, if \(\Xi(n) < 2\tau \), then there an idle channel period of duration \(2\tau - \Xi(n) \) between the end of the circuit partition and the beginning of the packet partition in cycle \(n \).

Note that this DyCaPPON design trades off lower responsiveness to circuit requests for the masking of the roundtrip propagation delay. Specifically, when an ONU signals a dynamic circuit request in the report message in cycle \(n-1 \), it can at the earliest transmit circuit traffic in cycle \(n+1 \). On the other hand, packet traffic signaled in the report message in cycle \(n-1 \) can be transmitted in the next cycle, i.e., cycle \(n \).

Fig. 2 illustrates the structure of a given cycle in more detail, including the overheads for the upstream transmissions. Each ONU that has an active circuit in the cycle requires a guard time of duration \(t_g \) in the circuit partition. Thus, with \(\eta \) denoting the number of ONUs with active circuits in the cycle, the duration of the circuit partition is \(\Xi(n) + \eta t_g \). In the packet partition, each of the \(J \) ONUs transmits at least a report message plus possibly some data upstream, resulting in an overhead of \(J(t_R + t_g) \). Thus, the overhead per cycle is

\[
\omega_o = \eta t_g + J(t_R + t_g).
\]

The resulting aggregate limit of the transmission windows for packets in cycle \(n \) is

\[
G^p(n) = \Gamma - \max\{2\tau, \Xi(n)\} - \omega_o.
\]

1) Low-Packet-Traffic Mode Polling: If there is little packet traffic, the circuit partition \(\Xi(n) \) and the immediately following packet transmission phase denoted P1 in Fig. 3 may leave significant portions of the fixed-duration cycle idle. In such low-packet-traffic cycles, the OLT can launch additional polling rounds denoted P2, P3, and P4 in Fig. 3 to serve newly arrived packets with low delay. Specifically, if all granted packet upstream transmissions have arrived at the OLT and there is more than \(J(t_R + t_g) + 2\tau \) time remaining until the end of the cycle (i.e., the beginning of the arrival of the next circuit partition \(\Xi_{n+1} \)) at the OLT, then the OLT can launch another polling round.

B. Dynamic Circuit Admission Control

For each circuit class \(k \), \(k = 1, 2, \ldots, K \), the OLT tracks the number \(n_k \) of currently active circuits, i.e., the OLT tracks the state vector \(n := (n_1, \ldots, n_K) \) representing the numbers of active circuits. Taking the inner product of \(n \) with the vector \(b := (b_1, \ldots, b_K) \) representing the bit rates of the circuit classes gives the currently required aggregate circuit bandwidth

\[
\beta = b \cdot n = \sum_{k=1}^{K} b_k n_k,
\]

which corresponds to the circuit partition duration

\[
\Xi(n) = \frac{\beta\Gamma}{C}.
\]

For a given limit \(C_c, C_c \leq C \), of bandwidth available for circuit service, we let \(S \) denote the state space of the stochastic knapsack model \[33\] of the dynamic circuits, i.e.,

\[
S := \{n \in \mathbb{I}^K : b \cdot n \leq C_c\},
\]

where \(I \) is the set of non-negative integers.

For an incoming ONU request for a circuit of class \(k \), we let \(S_k \) denote the subset of the state space \(S \) that can accommodate the circuit request, i.e., has at least spare bandwidth \(b_k \) before reaching the circuit bandwidth limit \(C_c \). Formally,

\[
S_k := \{n \in S : b \cdot n \leq C_c - b_k\}.
\]

Thus, if presently \(n \in S_k \), then the new class \(k \) circuit can be admitted; otherwise, the class \(k \) circuit request must be rejected (blocked).

C. Packet Traffic Dynamic Bandwidth Allocation

With the offline scheduling approach \[41\] of DyCaPPON, the reported packet queue occupancy corresponds to the duration of the upstream packet transmission windows \(R_j, j = 1, 2, \ldots, J \), requested by ONU \(j \). Based on these requests, and the available aggregate upstream transmission window \(G^p \), the OLT allocates upstream packet transmission windows with durations \(G^p_j, j = 1, 2, \ldots, J \), to the individual ONUs.

The problem of fairly allocating bandwidth so as to enforce a maximum cycle duration has been extensively studied for the Limited grant sizing approach \[43, 44\], which we adapt as follows. We set the packet grant limit for cycle \(n \) to

\[
G_{\text{max}}(n) = \frac{G^p(n)}{J}.
\]

If an ONU requests less than the maximum packet grant duration \(G_{\text{max}}(n) \), it is granted its full request and the excess bandwidth (i.e., difference between \(G_{\text{max}}(n) \) and allocated grant) is collected by an excess bandwidth distribution mechanism. If an ONU requests a grant duration longer than \(G_{\text{max}}(n) \), it is allocated this maximum grant duration, plus a portion of the excess bandwidth according to the equitable distribution approach with a controlled excess allocation bound \[84, 85\].
With the Limited grant sizing approach, there is commonly an unused slot remainder of the grant allocation to ONUs [86–88] due to the next queued packet not fitting into the remaining granted transmission window. We model this unused slot remainder by half of the average packet size \(\bar{P} \) for each of the \(J \) ONUs. Thus, the total mean unused transmission window duration in a given cycle is

\[
\omega_u = \frac{J \bar{P}}{2C}.
\]

V. PERFORMANCE ANALYSIS

A. Circuit Traffic

1) Request Blocking: In this section, we employ techniques from the analysis of stochastic knapsacks [83] to evaluate the blocking probabilities \(B_{k_c} \) of the circuit class. We also evaluate the mean duration of the circuit partition \(\Xi \), which governs the mean available packet partition duration \(G^p \), which in turn is a key parameter for the evaluation of the mean packet delay in Section V-B2.

The stochastic knapsack model [83] is a generalization of the well-known Erlang loss system model to circuits with heterogeneous bandwidths. In brief, in the stochastic knapsack model, objects of different classes (sizes) arrive to a knapsack of fixed capacity (size) according to a stochastic arrival process. If a newly arriving object fits into the currently vacant knapsack space, it is admitted to the knapsack and remains in the knapsack for some random holding time. After the expiration of the holding time, the object leaves the knapsack and frees up the knapsack space that it occupied. If the size of a newly arriving object exceeds the currently vacant knapsack space, the object is blocked from entering the knapsack, and is considered dropped (lost).

We model the prescribed limit \(C_c \) on the bandwidth available for circuit service as the knapsack capacity. The requests for circuits of bandwidth \(b_k \), \(k = 1, 2, \ldots, K \), arriving according to a Poisson process with rate \(p_k \lambda_c \) are modeled as the objects seeking entry into the knapsack. An admitted circuit of class \(k \) occupies the bandwidth (knapsack space) \(b_k \) for an exponentially distributed holding time with mean \(1/\mu \).

We denote \(S(\beta) \) for the set of states \(n \) that occupy an aggregate bandwidth \(\beta \), \(0 \leq \beta \leq C_c \), i.e.,

\[
S(\beta) := \{ n \in S : b \cdot n = \beta \}.
\]

Let \(q(\beta) \) denote the equilibrium probability of the currently active circuits occupying an aggregate bandwidth of \(\beta \). Through the recursive Kaufman-Roberts algorithm [83, p. 23], which is given in the Appendix, the equilibrium probabilities \(q(\beta) \) can be computed with a time complexity of \(O(C_c K) \) and a memory complexity of \(O(C_c + K) \).

The blocking probability \(B_{k_c} \), \(k = 1, 2, \ldots, K \) is obtained by summing the equilibrium probabilities \(q(\beta) \) of the sets of states that have less than \(b_k \) available circuit bandwidth, i.e.,

\[
B_{k_c} = \sum_{\beta=C_c-b_k+1}^{C_c} q(\beta). \quad (10)
\]

We define the average circuit blocking probability

\[
\bar{B} = \sum_{k=1}^{K} p_k B_{k_c}. \quad (11)
\]

2) Aggregate Circuit Bandwidth: The performance evaluation for packet delay in Section V-B requires taking expectations over the distribution \(q(\beta) \) of the aggregate bandwidth \(\beta \) occupied by circuits. In preparation for these packet evaluations, we define \(E_\beta[f(\beta)] \) to denote the expectation of a function \(f \) of the random variable \(\beta \) over the distribution \(q(\beta) \), i.e., we define

\[
E_\beta[f(\beta)] = \sum_{\beta=0}^{C_c} f(\beta) q(\beta). \quad (12)
\]
With this definition, the mean aggregate bandwidth of the active circuits is obtained as
\[\bar{\beta} = \mathbb{E}_\beta[\beta] = \sum_{\beta=0}^{C_c} \beta q(\beta). \] (13)

Note that by taking the expectation of (3), the corresponding mean duration of the circuit partition is
\[\bar{\xi} = \mathbb{E}_\beta[\beta \Gamma / C] = \bar{\beta} \Gamma / C. \]

3) Delay and Delay Variation: In this section we analyze the delay and delay variations experienced by circuit traffic as it traverses a DyCaPPON network from ONU to OLT. Initially we ignore delay variations, i.e., we consider that a given circuit with bit rate \(b \) has a fixed position for the transmission of its \(b \Gamma \) bits in each cycle. Three delay components arise: The “accumulation/dispersal” delay of \(\Gamma \) for the \(b \Gamma \) bits of circuit traffic that are transmitted per cycle. Note that the first bit arriving to form a “chunk” of \(b \Gamma \) bits experiences the delay \(\Gamma \) at the ONU, waiting for subsequent bits to “fill up (accumulate)” the chunk. The last bit of a chunk experiences essentially no delay at the ONU, but has to wait for a duration of \(\Gamma \) at the OLT to “send out (disperse)” the chunk at the circuit bit rate \(b \). The other delay components are the transmission delay of \(b \Gamma / C \) and the propagation delay \(\tau \). Thus, the total delay is
\[\Gamma \left(1 + \frac{b}{C} \right) + \tau. \] (14)

Circuit traffic does not experience delay variations (jitter) in DyCaPPON as long as the positions (in time) of the circuit transmissions in the cycle are held fixed. When an ongoing circuit is closing down or a new circuit is established, it may become necessary to rearrange the transmission positions of the circuits in the cycle in order to keep all circuit transmissions within the circuit partition at the beginning of the cycle and avoid idle times during the circuit partition. Adaptations of packing algorithms could be employed to minimize the shifts in transmission positions. Note that for a given circuit service limit \(C_c \), the worst-case delay variation for a given circuit with rate \(b \) is less than \(\Gamma (C_c - b) / C \) as the circuit could at the most shift from the beginning to the end of the circuit partition of maximum duration \(\Gamma C_c / C \).

B. Packet Traffic

1) Stability Limit: Inserting the circuit partition duration \(\bar{\xi} \) from (4) into the expression for the aggregate limit \(\bar{G}^p \) on the transmission window for packets in a cycle from (2) and taking the expectation \(\mathbb{E}_\beta[\cdot] \) with respect to the distribution of the aggregate circuit bandwidth \(\beta \), we obtain
\[\bar{G}^p = \Gamma - \mathbb{E}_\beta \left[\max \left\{ 2 \tau, \frac{\beta \Gamma}{C} \right\} \right] - \omega_u. \] (15)

Considering the unused slot remainder \(\omega_u \) (3), the mean portion of a cycle available for upstream packet traffic transmissions is limited to
\[\pi_{\text{max}} = 1 - \mathbb{E}_\beta \left[\max \left\{ 2 \tau, \frac{\beta \Gamma}{C} \right\} \right] - \omega_u = \omega_u / \Gamma. \] (16)

That is, the packet traffic intensity \(\tau \) must be less than \(\pi_{\text{max}} \) for stability of the packet service, i.e., for finite packet delays.

2) Mean Delay: In this section, we present for stable packet service an approximate analysis of the mean delay \(D \) of packets transmitted during the packet partition. In DyCaPPON, packets are transmitted on the bandwidth that is presently not occupied by admitted circuits. Thus, fluctuations in the aggregate occupied circuit bandwidth \(\beta \) affect the packet delays. If the circuit bandwidth \(\beta \) is presently high, packets experience longer delays than for presently low circuit bandwidth \(\beta \). The aggregated occupied circuit bandwidth \(\beta \) fluctuates as circuits are newly admitted and occupy bandwidth and as existing circuits reach the end of their holding time and release their occupied bandwidth. The time scale of these fluctuations of \(\beta \) increases as the average circuit holding time \(1 / \mu \) increases, i.e., as the circuit departure rate \(\mu \) decreases (and correspondingly, the circuit request arrival rate \(\lambda \) decreases for a given fixed circuit traffic load \(\chi \)).

For circuit holding times that are orders of magnitude larger than the typically packet delays (service times) in the system, the fluctuations of the circuit bandwidth \(\beta \) occur at a significantly longer (slower) time scale than the packet service time scale. That is, the bandwidth \(\beta \) occupied by circuits exhibits significant correlations over time which in turn give rise to complex correlations with the packet queuing delay. For instance, packets arriving during a long period of high circuit bandwidth may experience very long queuing delays and are possibly only served after some circuits release their bandwidth. As illustrated in Section VI-C, the effects of these complex correlations become significant for scenarios with moderate to long circuit holding times \(1 / \mu \) when the circuit traffic load is low to moderate relative to the circuit bandwidth limit \(C_c \) (so that pronounced circuit bandwidth fluctuations are possible), and the packet traffic load on the remaining bandwidth of approximately \(C - C_c \) is relatively high, so that substantial packet queue build-up can occur. We leave a detailed mathematical analysis of the complex correlations occurring in these scenarios in the context of DyCaPPON for future research.

In the present study, we focus on an approximate packet delay analysis that neglects the outlined correlations. We base our approximate packet delay analysis on the expectation \(\mathbb{E}_\beta[f(\beta)] \), i.e., we linearly weigh packet delay metrics \(f(\beta) \) with the probability masses \(q(\beta) \) for the aggregate circuit bandwidth \(\beta \). We also neglect the “low-load” operating mode of Section V-A1 in the analysis.

In the proposed DyCaPPON cycle structure, a packet experiences five main components, namely (i) the reporting delay from the generation instant of the packet to the transmission of the report message informing the OLT about the packet, which for the fixed cycle duration of DyCaPPON equals half the cycle duration, i.e., \(\Gamma / 2 \), (ii) the report-to-packet partition delay \(D_{r-p} \) from the instant of report transmission to the beginning of the packet partition in the next cycle, (iii) the queuing delay \(D_q \) from the reception instant of the grant message to the beginning of the transmission of the packet, as well as (iv) the packet transmission delay with mean \(\bar{P} / C \), and (v) the upstream propagation delay \(\tau \).

In the report-to-packet partition delay we include a delay component of half the mean duration of the packet partition.
\(G_p/2\) to account for the delay of the reporting of a particular ONU to the end of the packet partition. The delay from the end of the packet partition in one cycle to the beginning of the packet partition of the next cycle is the maximum of the roundtrip propagation delay \(2\tau\) and the mean duration of the circuit partition \(\Xi\). Thus, we obtain overall for the report-to-packet partition delay

\[
D_{r-p} = \frac{G_p}{2} + E_\beta \max \left\{ 2\tau, \frac{\beta \Gamma}{C} \right\}
\]

(17)

\[
= \frac{1}{2} \left(\Gamma + E_\beta \max \left\{ 2\tau, \frac{\beta \Gamma}{C} \right\} - \omega_o \right)
\]

(18)

We model the queueing delay with an M/G/1 queue. Generally, for messages with mean service time \(L/C\), normalized message size variance \(\sigma^2/L^2\), and traffic intensity \(\rho\), the M/G/1 queue has expected queueing delay [91]

\[
D_{M/G/1} = \frac{\rho L}{C} \left(1 + \frac{\sigma^2}{L^2} \right)
\]

(19)

For DyCaPPON, we model the aggregate packet traffic from all \(J\) ONUs as feeding into one M/G/1 queue with mean packet size \(\bar{P}\) and packet size variance \(\sigma^2_p\). We model the circuit partitions, when the upstream channel is not serving packet traffic, through scaling of the packet traffic intensity. In particular, the upstream channel is available for serving packet traffic only for the mean fraction \((G_p-\omega_o)/\Gamma\) of a cycle. Thus, for large backlogs served across several cycles, the packet traffic intensity during the packet partition is effectively

\[
\pi_{\text{eff}} = \frac{\pi}{\pi_{\text{max}}}
\]

(20)

Hence, the mean queueing delay is approximately

\[
D_q = \frac{\pi_{\text{eff}} \bar{P}}{2(1-\pi_{\text{eff}})}
\]

(21)

Thus, the overall mean packet delay is approximately

\[
D = \frac{\Gamma}{2} + D_{r-p} + D_q + \frac{\bar{P}}{C} + \tau
\]

(22)

VI. DYCAPPOP PERFORMANCE RESULTS

A. Evaluation Setup

We consider an EPON with \(J = 32\) ONUs, a channel bit rate \(C = 10\) Gb/s, and a cycle duration \(\Gamma = 2\) ms. Each ONU has abundant buffer space and a one-way propagation delay of \(\tau = 96\) \(\mu s\) to the OLT. The guard time is \(t_g = 5\) \(\mu s\) and the report message has 64 Bytes. We consider \(K = 3\) classes of circuits as specified in Table II. A packet has 64 Bytes with 60% probability, 300 Bytes with 4% probability, 580 Bytes with 11% probability, and 1518 bytes with 25% probability, thus the mean packet size is \(\bar{P} = 493.7\) Bytes. The verifying simulations were conducted with a CSIM based simulator and are reported with 90% confidence intervals which are too small to be visible in the plots.
TABLE III
CIRCUIT BLOCKING PROBABILITIES B_k FROM ANALYSIS (A) EQN. (15) WITH REPRESENTATIVE VERIFYING SIMULATIONS (S) FOR GIVEN OFFERED CIRCUIT TRAFFIC LOAD χ. CIRCUIT BANDWIDTH LIMIT $C_c = 2$ OR 4 Gbps AND MEAN CIRCUIT HOLDING TIME $1/\mu$. THE BLOCKING PROBABILITIES ARE INDEPENDENT OF THE PACKET TRAFFIC LOAD π. TABLE ALSO GIVES AVERAGE CIRCUIT TRAFFIC BIT RATE β FROM (13), MEAN DURATION OF PACKET PHASE G_p (16), AND PACKET TRAFFIC LOAD LIMIT π_{max} (16).

χ	C_c [Gbps]	$1/\mu$ [s]	B_1 [%]	B_2 [%]	B_3 [%]	B [%]	β [10^9 Gbps]	G_p [ms]	π_{max}
0.1	4 A	0.001	0.028	0.057	1.05	1.68	0.842	0.93	1.70
0.1	2 A	0.001	0.028	0.057	1.05	1.68	0.842	0.93	1.70
0.1	0.5 S	0.001	0.028	0.057	1.05	1.68	0.842	0.93	1.70
0.1	0.02 S	0.001	0.028	0.057	1.05	1.68	0.842	0.93	1.70
0.4	4 A	0.001	0.028	0.057	1.05	1.68	0.842	0.93	1.70
0.4	0.5 S	0.001	0.028	0.057	1.05	1.68	0.842	0.93	1.70
0.4	0.02 S	0.001	0.028	0.057	1.05	1.68	0.842	0.93	1.70
0.4	2 A	0.001	0.028	0.057	1.05	1.68	0.842	0.93	1.70
0.4	0.5 S	0.001	0.028	0.057	1.05	1.68	0.842	0.93	1.70
0.4	0.02 S	0.001	0.028	0.057	1.05	1.68	0.842	0.93	1.70
0.7	4 A	0.001	0.028	0.057	1.05	1.68	0.842	0.93	1.70
0.7	0.5 S	0.001	0.028	0.057	1.05	1.68	0.842	0.93	1.70
0.7	0.02 S	0.001	0.028	0.057	1.05	1.68	0.842	0.93	1.70
0.7	2 A	0.001	0.028	0.057	1.05	1.68	0.842	0.93	1.70
0.7	0.5 S	0.001	0.028	0.057	1.05	1.68	0.842	0.93	1.70
0.7	0.02 S	0.001	0.028	0.057	1.05	1.68	0.842	0.93	1.70

Fig. 6. Impact of packet traffic load π: Mean packet delay D from simulations (S) and analysis (A) as a function of total traffic load $\chi + \pi$, which is varied by varying π for fixed circuit traffic load $\chi = 0.1$, 0.4, or 0.7, with $C_c = 4$ Gbps, and two different $1/\mu$ values.

B. Impact of Packet Traffic Load π

In Table III we present circuit blocking probability results. In Figs. 6-7 we plot packet delay results for increasing packet traffic load χ. We consider three levels of offered circuit traffic load χ, which are held constant as the packet traffic load π increases. DyCaPPON ensures consistent circuit service with the blocking probabilities and delay characterized in Section V-A irrespective of the packet traffic load π, that is, the packet traffic does not degrade the circuit service at all. Specifically, Table III gives the blocking probabilities B_k as well as the average circuit blocking probability $B = \sum_{k=1}^{K} p_k B_k$ for the different levels of offered circuit traffic load; these blocking probability values hold for the full range of packet traffic loads π.

We observe from Table III that for a given offered circuit traffic load level χ, the blocking probability increases with increasing circuit bit rate b_k, as it is less likely that sufficient bit rate is available for a higher bit rate circuit. Moreover, we observe that the blocking probabilities increase with increasing offered circuit traffic load χ. This is because the circuit transmission limit C_c becomes increasingly saturated with increasing offered circuit load χ, resulting in more blocked requests. The representative simulation results in Table III indicate that the stochastic knapsack analysis is accurate, as
has been extensively verified in the context of general circuit switched systems [83].

In Fig. 4 we plot the mean packet delay as a function of the total traffic load, i.e., the sum of offered circuit traffic load \(\chi \) plus the packet traffic load \(\pi \). We initially exclude the scenario with \(\chi = 0.1 \), \(C_c = 4 \) Gbps, and \(1/\mu = 0.5 \) s from consideration; this scenario is discussed in Section VI-C. We observe from Fig. 4 that for low packet traffic load \(\pi \) (i.e., for a total traffic load \(\chi + \pi \) just above the offered circuit traffic load \(\chi \)), the packet delay is nearly independent of the offered circuit traffic load \(\chi \). For low packet traffic load, the few packet transmissions fit easily into the packet partition of the cycle.

We observe from Figs. 4 and 8 sharp packet delay increases for high packet traffic loads \(\pi \) that approach the maximum total traffic load, i.e., offered circuit traffic load \(\chi \) plus maximum packet traffic load \(\pi_{\text{max}} \). For \(C_c = 2 \) Gbps, the maximum packet traffic load \(\pi_{\text{max}} \) is 0.85 for \(\chi = 0.1 \) and 0.78 for \(\chi = 0.7 \), see Table II. Note that the maximum packet traffic load \(\pi_{\text{max}} \) depends on the offered circuit traffic load \(\chi \) and the circuit traffic limit \(C_c \). For a low offered circuit traffic load \(\chi \) relative to \(C_c/C_c \), few circuit requests are blocked and the admitted circuit traffic load (equivalently mean aggregate circuit bandwidth \(\beta \)) is close to the offered circuit load \(\chi \). On the other hand, for high offered circuit traffic load \(\chi \), many circuit requests are blocked, resulting in an admitted circuit traffic load (mean aggregate circuit bandwidth \(\beta \)) significantly below the offered circuit traffic load \(\chi \). Thus, the total (normalized) traffic load, i.e., offered circuit load \(\chi \) plus packet traffic load \(\pi \), in a stable network can exceed one for high offered circuit traffic load \(\chi \).

C. Impact of Mean Circuit Holding Time

We now turn to the packet delay results for the scenario with low circuit traffic load \(\chi = 0.1 \) relative to the circuit bandwidth limit \(C_c = 4 \) Gbps and moderately long mean circuit holding time \(1/\mu = 0.5 \) s, which is included in Figs. 4 and 8. We observe for this scenario that the mean packet delays obtained from the simulations begin to increase dramatically as the total load \(\chi + \pi \) approaches 0.8. In contrast, for the circuit traffic load \(\chi = 0.1 \) in conjunction with the lower circuit bandwidth limit \(C_c = 2 \) Gbps and short mean circuit holding times \(1/\mu = 0.02 \) s, the mean packet delays remain low for total loads up to close to the total maximum load \(\chi + \pi_{\text{max}} = 0.95 \) and then increase sharply.

The pronounced delay increases at lower loads (in the 0.75–0.92 range) for the \(\chi = 0.1 \), \(C_c = 4 \) Gbps, \(1/\mu = 0.5 \) s scenario are mainly due to the higher-order complex correlations between the pronounced slow-time scale fluctuations of the circuit bandwidth and the packet queueing as explained in Section V-B2. The high circuit bandwidth limit \(C_c = 4 \) Gbps relative to the low circuit traffic load \(\chi = 0.1 \) allows pronounced fluctuations of the aggregate occupied circuit bandwidth \(\beta \). For the moderately long mean circuit holding time \(1/\mu = 0.5 \) s, these pronounced fluctuations occur at a long time scale relative to the packet service time scales, giving rise to pronounced correlation effects. That is, packets arriving during periods of high circuit bandwidth \(\beta \) may need to wait (queue) until some circuits end and release sufficient bandwidth to serve the queued packet backlog. These correlation effects are neglected in our approximate packet delay analysis in Section V-B2 giving rise to the large discrepancy between simulation and analysis observed for the \(\chi = 0.1 \), \(C_c = 4 \) Gbps, \(1/\mu = 0.5 \) s scenario in Fig. 4.

We observe from Fig. 4 for the scenarios with relatively high circuit traffic loads \(\chi = 0.4 \) and 0.7 relative to the considered circuit bandwidth limits \(C_c = 2 \) and 4 Gbps that
the mean packet delays remain low up to levels of the total load close to the total stability limit $\chi + \pi_{\text{max}}$ predicted from the stability analysis in Section V-B1. The relatively high circuit traffic loads χ lead to high circuit blocking probabilities (see Table III) and the admitted circuits utilize the available circuit traffic bandwidth C_c nearly fully for most of the time. Vacant portions of the circuit bandwidth C_c are quickly occupied by the frequently arriving new circuit requests. Thus, there are only relatively minor fluctuations of the bandwidth available for packet service and the approximate packet delay analysis is quite accurate.

Returning to the scenario with relatively low circuit traffic load $\chi = 0.1$ in Fig. 4 we observe that for the short mean circuit holding time $1/\mu = 0.02$, the mean packet delays remain low up to load levels close to the stability limit $\chi + \pi_{\text{max}}$. For these relatively short circuit durations, the pronounced fluctuations of the occupied circuit bandwidth occur on a sufficiently short time scale to avoid significant higher-order correlations between the circuit bandwidth and the packet service.

We examine these effects in more detail in Fig. 9 which shows means and standard deviations of packet delays as a function of the mean circuit holding time $1/\mu$ for fixed traffic load $\chi = 0.5$, $\pi = 0.6$. We observe that for the high $C_c = 4$ Gbps circuit bandwidth limit, the mean packet delay as well as the standard deviation of the packet delay obtained from simulations increase approximately linearly with increasing mean circuit holding time $1/\mu$. The $C_c = 4$ Gbps circuit bandwidth limit permits sufficiently large fluctuations of the circuit bandwidth β for the $\chi = 0.5$ load, such that for increasing circuit holding time, the packets increasingly experience large backlogs that can only be cleared when some circuits end and release their bandwidth. In contrast, for the lower circuit bandwidth limit $C_c = 2$ Gbps, which severely limits fluctuations of the circuit bandwidth β for the high circuit traffic load $\chi = 0.5$, the mean and standard deviation of the packet delay remain essentially constant for increasing $1/\mu$.

D. Impact of Offered Circuit Traffic Load χ

In Table IV we examine the impact of the circuit traffic load χ on the DyCaPPON performance more closely. We keep the packet traffic load fixed at $\pi = 0.7$ and examine the average circuit blocking probability \bar{B} and the mean packet delay D as a function of the circuit traffic load χ. We observe from Table IV that, as expected, the mean circuit blocking probability \bar{B} increases with increasing circuit traffic load χ, whereby analysis closely matches the simulations.

TABLE IV

χ	Avg. blocking prob. [%]	Avg. delay [ms]
0.0001	0.1	1.9
0.05	0.2	2.01
0.1	0.3	2.1
0.2	0.4	2.1
0.4	0.6	2.2
0.6	0.8	2.2
$\chi \to \infty$	100	2.23

For the packet traffic, we observe from Table IV a very slight increase in the mean packet delays D as the circuit traffic load χ increases. This is mainly because the transmission rate limit C_c for circuit service bounds the upstream transmission bandwidth the circuits can occupy to no more than C_c in each cycle. As the circuit traffic load χ increases, the circuit traffic utilizes this transmission rate limit C_c more and more fully. However, the packet traffic is guaranteed a portion $1 - C_c/C$ of the upstream transmission bandwidth. Formally, as the circuit traffic load χ grows large ($\chi \to \infty$), the mean aggregate circuit bandwidth β approaches the limit C_c, resulting in a lower bound for the packet traffic load limit Γ of $\pi_{\text{max}} = 1 - \max\{2\tau/T, C_c/C\} - (\omega_u + \omega_n)/T$ and corresponding upper bounds for the effective packet traffic intensity π_{eff} and the mean packet delay D.
upstream transmission bandwidth, network service providers limit need to trade off the circuit blocking probabilities and packet trade-off.

we see from Fig. 10(b) that as the effective packet traffic bandwidth, which deteriorate the packet service. Summarizing, values near the packet traffic intensity approaches one, the mean packet delay increases sharply. Thus, for ensuring low-delay packet service, the limit \(C_c \) should be kept sufficiently below \((1 - \pi)C \).

When offering circuit and packet service over shared PON upstream transmission bandwidth, network service providers need to trade off the circuit blocking probabilities and packet delays. As we observe from Fig. 10 the circuit bandwidth limit \(C_c \) provides an effective tuning knob for controlling this trade-off.

E. Impact of Limit \(C_c \) for Circuit Service

In Fig. [10] we examine the impact of the transmission rate limit \(C_c \) for circuit traffic. We consider different compositions \(\chi, \pi \) of the total traffic load \(\chi + \pi = 1.05 \). We observe from Fig. [10](a) that the average circuit blocking probability \(\bar{B} \) steadily decreases for increasing \(C_c \). In the example in Fig. [10] the average circuit blocking probability \(\bar{B} \) drops to negligible values below 1% for \(C_c \) values corresponding to roughly twice the offered circuit traffic load \(\chi \). For instance, for circuit load \(\chi = 0.25, \bar{B} \) drops to 0.9% for \(C_c = 5 \text{ Gb/s} \). The limit \(C_c \) thus provides an effective parameter for controlling the circuit blocking probability experienced by customers.

From Fig. [10](b), we observe that the mean packet delay abruptly increases when the \(C_c \) limit reduces the packet traffic portion \(1 - C_c/C \) of the upstream transmission bandwidth to values near the packet traffic intensity \(\pi \). We also observe from Fig. [10](b) that the approximate packet delay analysis is quite accurate for small to moderate \(C_c \) values (the slight delay overestimation is due to neglecting the low packet traffic polling), but underestimates the packet delays for large \(C_c \). Large circuit traffic limits \(C_c \) give the circuit traffic more flexibility for causing fluctuations of the occupied circuit bandwidth, which deteriorate the packet service. Summarizing, we see from Fig. [10](b) that as the effective packet traffic intensity \(\pi/(1-C_c/C) \) approaches one, the mean packet delay increases sharply. Thus, for ensuring low-delay packet service, the limit \(C_c \) should be kept sufficiently below \((1 - \pi)C \).

When offering circuit and packet service over shared PON upstream transmission bandwidth, network service providers need to trade off the circuit blocking probabilities and packet delays. As we observe from Fig. 10 the circuit bandwidth limit \(C_c \) provides an effective tuning knob for controlling this trade-off.

F. Impact of Low-Packet-Traffic Mode Polling

The Fig. [11] we examine the impact of low-packet-traffic mode polling from Section [IV-A1] on the mean packet delay \(D \). We observe from Fig. [11] that low-packet-traffic mode polling substantially reduces the mean packet delay compared to conventional polling for low packet traffic loads. This delay reduction is achieved by the more frequent polling which serves packets quicker in cycles with low load due to circuit traffic.

VII. Conclusion

We have proposed and evaluated DyCaPPON, a passive optical network that provides dynamic circuit and packet service. DyCaPPON is based on fixed duration cycles, ensuring consistent circuit service, that is completely unaffected by the packet traffic load. DyCaPPON masks the round-trip propagation delay for polling of the packet traffic queues in the ONUs with the upstream circuit traffic transmissions, providing for efficient usage of the upstream bandwidth. We have analyzed the circuit level performance, including the circuit blocking probability and delay experienced by circuit traffic in DyCaPPON, as well as the bandwidth available for packet traffic after serving the circuit traffic. We have also conducted an approximate analysis of the packet level performance.

Through extensive numerical investigations based on the analytical performance characterization of DyCaPPON as well as verifying simulations, we have demonstrated the circuit and packet traffic performance and trade-offs in DyCaPPON. The provided analytical performance characterizations as well as the identified performance trade-offs provide tools and guidance for dimensioning and operating PON access networks that provide a mix of circuit and packet oriented service.

There are several promising directions for future research on access networks that flexibly provide both circuit and packet service. One important future research direction is to broadly examine cycle-time structures and wavelength assignments in PONs providing circuit and packet service. In particular, the present study focused on a single upstream wavelength channel operated with a fixed polling cycle duration. Future research should examine the trade-offs arising from operating multiple upstream wavelength channels and combinations of fixed- or variable-duration polling cycles. An exciting future research direction is to extend the PON service further toward the individual user, e.g., by providing circuit and packet service on integrated PON and wireless access networks, such as [92–97], that reach individual mobile users or wireless sensor networks [98–100]. Further, exploring combined circuit and packet service in long-reach PONs with very long round trip propagation delays, which may require special protocol mechanisms, see e.g., [101–103], is an open research direction. Another direction is to examine the integration and interoperation of circuit and packet service in the PON access network with metropolitan area networks [104–109] and wide area networks to provide circuit and packet service [32].

APPENDIX: EVALUATION OF EQUILIBRIUM PROBABILITIES \(q(\beta) \)
In this Appendix, we present the recursive Kaufman-Roberts algorithm [83, p. 23] for computing the equilibrium probabilities \(q(\beta) \), \(0 \leq \beta \leq C_c \) that the currently active circuit occupy an aggregated bandwidth \(\beta \). For the execution of the algorithm, the given circuit bandwidths \(b_1, b_2, \ldots, b_K \) and limit \(C_c \) are suitably normalized so that incrementing \(\beta \) in integer steps covers all possible combinations of the circuit bandwidth. For instance, in the evaluation scenario considered in Section VI-A, all circuit bandwidth are integer multiples of 52 Mb/s. Thus, we normalize all bandwidths by 52 Mb/s and for e.g., \(C_c = 5 \) Gb/s execute the following algorithm for \(\beta = 0, 1, 2, \ldots, 96 \). (The variables \(b_k, C_c, \) and \(\beta \) refer to their normalized values, e.g., \(C_c = 96 \) for the \(C_c = 5 \) Gb/s example, in the algorithm below).

The algorithm first evaluates unnormalized occupancy probabilities \(q(\beta) \) that relate to a product-form solution of the stochastic knapsack [83]. Subsequently the normalization term \(G \) for the occupancy probabilities is evaluated, allowing then the evaluation of the actual occupancy probabilities \(q(\beta) \).

1. Set \(g(0) \leftarrow 1 \) and \(g(\beta) \leftarrow 0 \) for \(\beta < 0 \).
2. For \(\beta = 1, 2, \ldots, C_c \), set
 \[
 g(\beta) = \frac{1}{\beta} \sum_{k=1}^{K} \frac{b_k p_k \lambda}{\mu} g(\beta - b_k). \tag{23}
 \]
3. Set
 \[
 G = \sum_{\beta=0}^{C_c} g(\beta). \tag{24}
 \]
4. For \(\beta = 0, 1, \ldots, C_c \), set
 \[
 q(\beta) = \frac{g(\beta)}{G}. \tag{25}
 \]

REFERENCES

[1] X. Wei, F. Aurzada, M. McGarry, and M. Reisslein, “DyCaPPON: Dynamic circuit and packet passive optical network,” Optical Switching and Networking, in print, 2014.

[2] P. Molinero-Fernandez and N. McKeown, “The performance of circuit switching in the internet,” OSA J. Opt. Netw., vol. 2, no. 4, pp. 83–96, Apr. 2003.

[3] T. Coutelen, H. Elbiouze, and B. Jaumard, “Performance comparison of OCS and OBS switching paradigms,” in Proc. Transparent Optical Networks, Jul. 2005.

[4] X. Liu, C. Qiao, X. Yu, and W. Gong, “A fair packet-level performance comparison of OBS and OCS,” in Proc. OFC, Mar. 2006.

[5] M. Batayneh, D. Schupke, M. Hoffmann, A. Kirstaechter, and B. Mukherjee, “Link-rate assignment in a WDM optical mesh network with differential link capacities: A network-engineering approach,” in Proc. HONET, Nov. 2008, pp. 216–219.

[6] M. Veeraraghavan, M. Karol, and G. Clapp, “Optical dynamic circuit services,” IEEE Commun. Mag., vol. 48, no. 11, pp. 109–117, Nov. 2010.

[7] A. Harissis and A. Ambler, “A new multiprocessor interconnection network with wide sense nonblocking capabilities,” in Proc. Midwest Symp. Circuits and Systems, Aug. 1989, pp. 923–926.

[8] M. Satyanarayanan, P. Bahl, R. Caceres, and N. Davies, “The case for VM-based cloudlets in mobile computing,” IEEE Pervasive Comp., vol. 8, no. 4, pp. 14–23, Oct. 2009.

[9] M. Bredel and M. Fidler, “A measurement study regarding quality of service and its impact on multiplayer online games,” in Proc. NetGames, 2010.

[10] F. Fitzek, G. Schulte, and M. Reisslein, “System architecture for billing of multi-player games in a wireless environment using GSM/UMTS and WLAN services,” in Proc. ACM NetGames, 2002, pp. 58–64.

[11] M. Maier and M. Herzog, “Online gaming and P2P file sharing in next-generation EPONs,” IEEE Communications Magazine, vol. 48, no. 2, pp. 48–55, Feb. 2010.

[12] C. Schaefer, T. Enders, H. Ritter, and M. Zitterbart, “Subjective quality assessment for multiplayer real-time games,” in Proc. ACM NetGames, 2002, pp. 74–78.

[13] G. Kurillo and R. Bajcsy, “3D teleimmersion for collaboration and interaction of geographically distributed users,” Virtual Reality, vol. 17, no. 1, pp. 29–43, 2013.

[14] M. Pallot, P. Daras, S. Richir, and E. Loup-Escande, “3D-live: live interactions through 3D visual environments,” in Proc. Virtual Reality Int. Conf., 2012.

[15] R. Vasudevan, Z. Zhou, G. Kurillo, E. Lobaton, R. Bajcsy, and K. Nahstedt, “Real-time stereo-visual system for 3D teleimmersive collaboration,” in Proc. IEEE ICME, 2010, pp. 1208–1213.

[16] N. Ghazisaiidi, M. Maier, and M. Reisslein, “VMP: A MAC protocol for EPON-based video-dominated FiWi access networks,” IEEE Trans. Broadcasting, vol. 58, no. 3, pp. 440–453, 2012.
L. Zhang and G.-S. Poo, "Shortest propagation delay (SPD) first scheduling for EPONs with heterogeneous propagation delays," IEEE J. on Selected Areas in Commun., vol. 28, no. 6, pp. 849–862, Aug. 2010.

A. Sivakumar, G. Sankaran, and K. Sivalingam, "Performance analysis of ONU-wavelength grouping schemes for efficient scheduling in long-reach EPONs," Opt. Switching Netw., vol. 10, no. 4, pp. 465–474, 2013.

I. Tomkos, L. Kazovsky, and K.-I. Kitayama, "Next-generation optical access networks: dynamic bandwidth allocation, resource use optimization, and QoS improvements," IEEE Netw., vol. 26, no. 2, pp. 4–6, 2012.

F. Zanini, L. Valcarenghi, D. P. Van, M. Chincoli, and P. Castoldi, "Introducing cognition in TDM PONs with cooperative cyclic sleep through runtime sleep time determination," Opt. Switching Netw., in print, 2013.

F. Auzrada, M. Scheutzow, M. Herzog, M. Maier, and M. Reisslein, "Delay analysis of Ethernet passive optical networks with gated service," OSA Journal of Optical Networking, vol. 7, no. 1, pp. 25–41, Jan. 2008.

F. Auzrada, M. Scheutzow, M. Reisslein, N. Ghazisaidi, and M. Maier, "Capacity and delay analysis of next-generation passive optical networks (NG-PONs)," IEEE Trans. on Communications, vol. 59, no. 5, pp. 1378–1388, May 2011.

J. Zheng and H. Moutah, "A survey of dynamic bandwidth allocation algorithms for Ethernet Passive Optical Networks," Optical Switching and Networking, vol. 6, no. 3, pp. 151–162, Jul. 2009.

I. Angelopoulos, H. C. Leglou, T. Argiropou, S. Zontos, E. Ringoot, and T. Van Caenegem, "Efficient transport of packets with QoS in an FSAN-aligned GPON," IEEE Comm. Mag., vol. 42, no. 2, pp. 92–98, Feb. 2004.

C. Assi, Y. Ye, S. Dixit, and M. Ali, "Dynamic bandwidth allocation for quality-of-service over Ethernet PONs," IEEE Journal on Selected Areas in Communications, vol. 21, no. 9, pp. 1467–1477, Nov. 2003.

A. Dixit, G. Das, B. Lannoo, D. Colle, M. Pickavet, and P. Demeester, "Fitter performance for QoS in Ethernet passive optical networks," in Proceedings of ECOC, 2011, pp. 1–3.

N. Ghanii, A. Shami, C. Assi, and M. Raja, "Intra-ONU bandwidth scheduling in Ethernet passive optical networks," IEEE Communications Letters, vol. 8, no. 11, pp. 683–685, 2004.

Y. Luo and N. Ansari, "Limited sharing with traffic prediction for dynamic bandwidth allocation and QoS provisioning over EPONs," OSA Journal of Optical Networking, vol. 4, no. 9, pp. 561–572, Sep. 2005.

M. Radiojevic and P. Matavulj, "Implementation of intra-ONU scheduling for Quality of Service support in Ethernet passive optical networks," IEEE/OSA J. of Lightwave Technology, vol. 27, no. 18, pp. 4055–4062, Sep. 2009.

S. Shehri, A. Hadjiantonis, G. Ellinas, C. Assi, and M. Ali, "A novel decentralized ethernet-based PON access architecture for provisioning differentiated QoS," IEEE/OSA J. of Lightwave Technology, vol. 22, no. 11, pp. 2483–2497, Nov. 2004.

A. Shami, X. Bai, N. Ghanii, C. Assi, and H. Moutah, "QoS control schemes for two-stage Ethernet passive optical access networks," IEEE J. on Sel. Areas in Commun., vol. 23, no. 8, pp. 1467–1478, Nov. 2005.

M. Vahabzadeh and A. Ghalfarpour Rahbar, "Modified smallest available report first: New dynamic bandwidth allocation schemes in QoS-capable EPONs," Optical Fiber Technology, vol. 17, no. 1, pp. 7–16, Jan. 2011.

T. Berisa, A. Bazant, and V. Mikac, "Bandwidth and delay guaranteed polling with adaptive cycle time (BDGPACT): A scheme for providing bandwidth and delay guarantees in passive optical networks," J. of Opt. Netw., vol. 8, no. 4, pp. 337–345, 2009.

T. Holmberg, "Analysis of EPONs under the static priority scheduling scheme with fixed transmission times," in Proc. NGI, 2006, pp. 1–8.

M. Ma, Y. Zhu, and T. Cheng, "A bandwidth guaranteed polling MAC protocol for Ethernet passive optical networks," in Proc. IEEE Infocom, Mar. 2003, pp. 22–31.

Y. Qin, D. Xue, L. Zhao, C. K. Siew, and H. He, "A novel approach for supporting deterministic quality-of-service in WDM EPON networks," Optical Switching and Networking, vol. 10, no. 4, pp. 378–392, 2013.

L. Zhang, E.-S. An, H.-G. Yeo, and S. Yang, "Dual DEB-GPS scheduler for delay-constraint applications in Ethernet passive optical networks," IEICE Trans. Commun., vol. 86, no. 5, pp. 1575–1584, Sep. 2003.

L. Zhang and G.-S. Poo, "Delay constraint dynamic bandwidth allocation in Ethernet Passive Optical Networks," in Proc. ICCS, 2004, pp. 126–130.
