Catalase, CAT2, is not Involved in Mitigation of Gamma Irradiation-induced H_2O_2 Accumulation or Lipid Peroxidation in *Arabidopsis thaliana*

Sultana Amena1, Minami Ikuko1, Matsushima Daiki1, Issak Mohammad1, Nakamura Yoshimasa3, Todoriki Setsuko2 and Murata Yoshiyuki1 *

1) Graduate School of Natural Science and Technology, Okayama University, 1-1-1 Tsuchima-naka, Okayama 700-8530 Japan
2) National Food Research Institute, 2-1-12 Kannondai, Tsukuba, Ibaraki 305-8642 Japan

*Arabidopsis thaliana*におけるガンマ線照射誘導過酸化水素蓄積と脂質過酸化の軽減にカタラーゼ CAT2 は関与しない

Amena Sultana1, 南 育子1, 松島大貴1, Mohammad Issak1,
中村宜智1, 等々力節子2, 村田芳行1 *

1) 岡山大学大学院自然科学研究科 (〒 700-8530 岡山市北区津島中 1-1-1)
2) (独)農研機構食品総合研究所 (〒 305-8642 つくば市観音台 2-1-12)

Summary

In Arabidopsis wild-type (Col-0 ecotype) and *cat2* mutant plants, gamma radiation induced H_2O_2 accumulation and lipid peroxidation at 10 kGy but not at 0.1 to 1 kGy. There were no significant differences in H_2O_2 accumulation and lipid peroxidation between the wild type and the *cat2* mutant. Hence, CAT2 may not be a key enzyme to protect gamma irradiation-induced damage.

Key words: Gamma radiation, catalase, hydrogen peroxide accumulation, lipid peroxidation

Introduction

Gamma irradiation affects growth and development due to cytological, genetical, biochemical, physiological and morphogenetic changes in cells and tissues of plants.1 Gamma irradiation induces H_2O_2 accumulation and lipid peroxidation.2 Catalase is one of antioxidant enzymes to scavenge H_2O_2 and catalase activities are changed by irradiation.3 Hence, it is thought that increasing activity of catalases is favorable to alleviation of damage caused by irradiation.4 However, it remains to be clarified roles of catalases in irradiated plants. We examined effects of gamma irradiation on an Arabidopsis catalase-deficient mutant, *cat2*, to elucidate roles of catalases in responses to gamma irradiation.

* 连絡先：muta@cc.okayama-u.ac.jp
Materials and Methods

Arabidopsis wild-type (Col-0, Columbia ecotype) and cat2 mutant plants were grown as described previously. The catalase activities in cat2 mutants were 50% lower than those in wild type. Arabidopsis Genome Initiative numbers for the genes discussed in this article are as follows: CAT1, AT1G20630; CAT2, AT4G35090; CAT3, AT1G20620. Rosette leaves were exposed to gamma rays from a 137Cs source in an irradiator (CS-500C, Yoshizawa Namari Kogyo Co. Ltd., Osaka, Japan). The dose rate was 0.1 kGy/h as measured with a Fricke dosimeter. Hydrogen peroxide accumulation in rosette leaves was detected by 3,3′-diaminobenzidine with some modifications according to previously described. Lipid peroxidation was evaluated using thiobarbituric acid according to previously described. The significance of differences between mean values was assessed using one way analysis of variance (ANOVA) with Tukey’s test. Differences were considered significant for p values of < 0.05.

Results and Discussion

Hydrogen peroxide accumulation was not significantly increased by irradiation at 0.1 kGy or 1 kGy but was significantly increased by irradiation at 10 kGy.

Fig. 1. Accumulation of H₂O₂ (A, B, C, and D) in Arabidopsis Rosette Leaves Irradiated by Gamma Rays.

A-B) Rosette leaves of wild-type and cat2 mutant plants were irradiated with gamma rays at 0 kGy, 0.1 kGy, 1 kGy, and 10 kGy; C-D) Rosette leaves of wild-type and cat2 mutant plants were incubated for 0 h, 1h, 10h and 100h. Averages for three independent experiments are shown. Error bars represent standard deviations. Values indicated by the same letter do not differ significantly at the 5% level, as determined by ANOVA with Tukey’s test.
There were no significant differences in \(\text{H}_2\text{O}_2 \) accumulation between the wild type and the cat2 mutant (Fig. 1A and B). Hence, scavenging of \(\text{H}_2\text{O}_2 \) may not be attributed to CAT2. Incubation in dark at room temperature for up to 100 h without irradiation did not affect \(\text{H}_2\text{O}_2 \) accumulation (Fig. 1C and D).

Lipid peroxidation level was not significantly increased by irradiation at 0.1 kGy or 1 kGy but was significantly increased by irradiation at 10 kGy (Fig. 2A and B). There were no significant differences in lipid peroxidation level between the wild type and the cat2 mutant (Fig. 2). Incubation in dark at room temperature for up to 100 h without irradiation did not affect lipid peroxidation level (Fig. 2C and D).

CAT2 is one of three catalase isoforms in *Arabidopsis thaliana* and is more dominant than CAT1 and CAT3\(^{10} \) and CAT2 rather than CAT1 or CAT3 more considerably contributes to the oxidative stress tolerance.\(^{9,10} \) However, this study suggests that CAT2 is not a key enzyme to mitigate \(\text{H}_2\text{O}_2 \) accumulation and lipid peroxidation induced by gamma irradiation in Arabidopsis.

Fig. 2. Lipid Peroxidation (A, B, C, and D) in Arabidopsis Rosette Leaves Irradiated by Gamma Rays. A-B) Rosette leaves of wild-type and cat2 mutant plants were irradiated with gamma rays at 0 kGy, 0.1 kGy, 1 kGy, and 10 kGy; C-D) Rosette leaves of wild-type and cat2 mutant plants were incubated for 0 h, 1h, 10h and 100h. Averages for three independent experiments are shown. Error bars represent standard deviations. Values indicated by the same letter do not differ significantly at the 5% level, as determined by ANOVA with Tukey’s test.
We recently have presented that there was no significant differences in susceptibility to gamma irradiation between Arabidopsis wild type and other catalase deficient mutants, cat3 and cat1 cat3.10 Hence, catalases may not be key enzymes to protect cellular damage induced by gamma irradiation in Arabidopsis.

References

1) Gunckel, J.E.; Sparrow, A.H. “Ionizing Radiations”. Biochemical, Physiological and Morphological Aspects of their Effects of Plants. in Encyclopedia Plant Physiol.. Ruhland, W. ed. Springer-Verlag, Berlin. 16, p.555-611 (1961).

2) El-Beltagi, H.S. et al. Effect of low doses γ-irradiation on oxidative stress and secondary metabolites production of rosemary. Rad. Phys. Chem.. 80, p.968-976 (2011).

3) Martinez-Solano, J.R. Electron beam ionization induced oxidative enzymatic activities in pepper (Capsicum annum L.), Associated with Ultrastruicture Cellular Damages. J. Agric. Food Chem.. 53, p.8593-8599 (2005).

4) De, Freitas, R.B. et al. Black grape juice protects spleen from lipid oxidation induced by gamma radiation in rats. J. Food Biochem.. doi:10.1111/j.1745-4514.2012.00651.x.(2012).

5) Murata, Y. et al. Schroeder JI abscisic acid activation of plasma membrane Ca2+ channels in guard cells requires cytosolic NAD(P)H and is differentially disrupted upstream and downstream of reactive oxygen species production in abi1-1 and abi2-1 protein phosphatase 2C mutants. The Plant Cell. 13, p.2513-2523(2001).

6) Jannat, R. et al. The roles of CATALASE2 in abscisic acid signaling in arabidopsis guard cells. Biosci. Biotechnol. Biochem.. 75, p.2034-2036 (2011).

7) Hossain, M.S. et al. Glucosinolate degradation products, isothiocyanates, nitriles, and thiocyanates, induce stomatal closure accompanied by peroxidase-mediated reactive oxygen species production in Arabidopsis thaliana. Biosci. Biotechnol. Biochem.. 77, p.977-983 (2013).

8) Dhindsa, R.S. et al. Leaf senescence: Correlated with increased levels of membrane permeability and lipid peroxidation, and decrease levels of superoxide dismutase and catalase. J. Exp. Bot.. 32, p.93-101 (1981).

9) Queval, G. et al. Conditionnal oxidative stress responses in the arabidopsis photorespiratory mutant cat2 demonstrate that redox state is a key modulator of daylength-dependent gene expression, and defines Photoperiod as a crucial factor in the regulation of H2O2-induced cell death. Plant J. 52, p.640-657 (2007).

10) Hu, Y. et al. Functional comparison of catalase genes in the elimination of photorespiratory H2O2 using promoter- and 3-untranslated region exchange experiments in the arabidopsis CAT2 photorespiratory mutant. Plant Cell Environ.. 33, p.1656-1670 (2010).

11) Sultana, A. et al. Catalase, CAT1 and CAT3, are not key enzymes to alleviate gamma irradiation-induced DNA damage, ROS accumulation, or lipid peroxidation in Arabidopsis thaliana. Biosci. Biotechnol. Biochem.. in press. (2013).

和文要旨

シロイスナズナ野生株（Col-0）及び cat2 変異体への 10 kGy のガンマ線照射は、H2O2 蓄積及び脂質過酸化生成を誘起したが、0.1 kGy と 1 kGy のガンマ線照射は、誘起しなかった。また、野生株と変異体の間で、H2O2 蓄積及び脂質過酸化に有意な差はなかった。以上の結果より、カタラーゼ CAT2 は、ガンマ線によって誘起される損傷を軽減するための重要な酵素ではないことが示唆された。

キーワード：ガンマ線照射、カタラーゼ、過酸化水素蓄積、脂質過酸化

(2013 年 7 月 29 日受理)