DNA Is Taken Up by Root Hairs and Pollen, and Stimulates Root and Pollen Tube Growth

Chanyarat Paungfoo-Lonhienne*, Thierry G.A. Lonhienne, Stephen R. Mudge, Peer M. Schenk, Michael Christie, Bernard J. Carroll, and Susanne Schmidt

School of Biological Sciences (C.P.-L., S.R.M., P.M.S., S.S.) and the Australian Research Council Centre of Excellence for Integrative Legume Research and School of Chemistry and Molecular Biosciences (T.G.A.L., M.C., B.J.C.), University of Queensland, St. Lucia, Queensland 4072, Australia

Phosphorus (P) enters roots as inorganic phosphate (P_i) derived from organic and inorganic P compounds in the soil. Nucleic acids can support plant growth as the sole source of P in axenic culture but are thought to be converted into P_i by plant-derived nucleases and phosphatases prior to uptake. Here, we show that a nuclease-resistant analog of DNA is taken up by plant cells. Fluorescently labeled S-DNA of 25 bp, which is protected against enzymatic breakdown by its phosphorothioate backbone, was taken up and detected in root cells including root hairs and pollen tubes. These results indicate that current views of plant P acquisition may have to be revised to include uptake of DNA into cells. We further show that addition of DNA to was taken up and detected in root cells including root hairs and pollen tubes. These results indicate that current views of plant

However, similar to other nutrients, notably nitrogen, research on P nutrition of plants has focused on inorganic sources although organic P (P_org) in soil can account for 40% to 80% of the total P pool of mineral and organic soils, respectively (Bower, 1945; Raghothama, 1999; Vance et al., 2003). P_org compounds in soils are derived from plant residues, soil biota, and from synthesis by soil microbes (Jencks et al., 1964). Soil P_org is composed primarily of phospholipids, nucleic acids, and phytin (Dyer and Wrenshall, 1941). Phytic acid (inositol hexaphosphate) and its salts phytate, account for a large proportion of the P_org pool of soils (Anderson, 1980). Nucleic acids (RNA, DNA) represent approximately 1% to 2% of the soil P_org pool (Dalal, 1977). It can be released from prokaryotic and eukaryotic cells after death and protected against nuclease degradation by its adsorption on soil colloids and sand particles (Pietramellara et al., 2009).

Although P_org can be a substantial constituent of the soil P pool, its contribution to the P nutrition of plants is poorly understood. P_org can be converted to P_i via root-exuded enzymes (Tarafdar and Claassen, 1988; Marschner, 1995; Vance et al., 2003). Secretion of nucleolytic enzymes and breakdown of nucleic acid were considered the reason for the observed growth of axenic Arabidopsis (Arabidopsis thaliana) and wheat (Triticum aestivum) on nucleic acid substrates as the sole P source (Chen et al., 2000; Richardson et al., 2000).

Whether plants take up intact DNA has not been reported. We recently showed that roots take up protein, possibly via endocytosis (Paungfoo-Lonhienne

1 This work was supported by the University of Queensland and the Australian Research Council

2 These authors contributed equally to the article.

3 These authors contributed equally to the article.

* Corresponding author; e-mail chanyarat@uq.edu.au.

The author responsible for distribution of materials integral to the findings presented in this article in accordance with the policy described in the Instructions for Authors (www.plantphysiol.org) is: Chanyarat Paungfoo-Lonhienne (chanyarat@uq.edu.au).

[OA] Open Access articles can be viewed online without a subscription.

www.plantphysiol.org/cgi/doi/10.1104/pp.110.154963
et al., 2008). We hypothesized that roots may take up DNA by a similar process and grew Arabidopsis in the presence of phosphorothioate oligonucleotides (S-DNA) labeled with Cy3-fluorescent dye. S-DNA has a sulfur backbone and cannot be digested by plant nucleases, allowing tracking DNA of known size into cells (Spitzer and Eckstein, 1988). We examined if S-DNA of 25 nucleotides in length enters root hairs and pollen tubes as both types of cells are strongly elongated and have similar polarized growth (Schiefelbein et al., 1993; Hepler et al., 2001). We also assessed if addition of DNA to the growth medium affects the morphology of roots and pollen tubes. Here, we present evidence that plants take up DNA and demonstrate that the presence of DNA in the growth medium enhances lateral branching of roots, and the length of root hairs and pollen tubes, irrespective of P_i supply.

RESULTS

Arabidopsis Roots Take Up Externally Supplied DNA

To examine whether DNA, rather than nucleotides or P_i derived from DNA, was taken up by plant roots, nuclease-resistant phosphorothioate DNA (S-DNA) was added to intact roots of axenic Arabidopsis. When 1 μM Cy3-S-DNA (25-bp long) was added to roots of Arabidopsis grown axenically in solid medium, fluorescence was observed in root hairs and root epidermis (Fig. 1, B and E). The same roots showed strong fluorescence when stained with fluorescein diacetate (FDA), indicating that root cells are alive (Fig. 1C; Widholm, 1972). This observation was supported by cytoplasmic streaming in root hair cells in which Cy3-S-DNA was detected (Fig. 1E; Supplemental Video S1).

No fluorescence was observed in plants incubated with free 1 μM Cy3 (Fig. 1H), confirming that fluorescence observed in Cy3-S-DNA incubated roots is not caused by free Cy3 dye entering root cells. We detected no fluorescence in roots of plants incubated with 1 μM Rhodamine Green 3,000 molecular weight dextran (rhodamine dextran; Fig. 1K), a molecule of a molecular mass similar to Cy3-S-DNA, which further lends confidence to the notion that Cy3-S-DNA was actively incorporated into root cells. We also observed internalization of Cy3-S-DNA in roots of Arabidopsis grown axenically in liquid culture (Supplemental Fig. S1), thus excluding the possibility that entry of Cy3-S-DNA was the result of damaging manipulation of roots grown in solid medium. Taken together, the results presented here are strong evidence that Arabidopsis is able to incorporate DNA into root cells by a process specific to DNA.

DNA in Growth Medium Increases Lateral Branching, Lateral Root Length, and Root Hair Length

Plants grown with no or low P_i supply (0.114 μg KH₂PO₄ per mL growth medium) produced more biomass in the presence of DNA (0.8 mg herring sperm DNA of 120–3,000 nucleotides length per mL growth medium; Supplemental Fig. S2), confirming that DNA was used as a P source as had been previously reported (Chen et al., 2000).

Arabidopsis plants grown with adequate P supply (5.7 μg KH₂PO₄ per mL medium; a standard concentration in Arabidopsis axenic culture) had similar dry weight and P content regardless of the addition of DNA (0.8 mg DNA per mL; Fig. 2, A and B), indicating that plants in both treatments were P replete. However, the presence of DNA in the growth medium induced changes in root morphology (Figs. 2, C–F and 3). P-replete plants grown in the presence of DNA had significantly more lateral roots (31.4 ± 2.9 per plant and 22 ± 1.7 per plant; Figs. 2C and 3, A–D) and
greater average lateral root length (1.52 ± 0.1 cm and 0.9 ± 0.1 cm; Fig. 3D) than plants grown with adequate Pi supply alone (P < 0.005). Average root hair length was significantly (P < 0.0001) greater in P-replete plants grown with DNA than with Pi alone (245 ± 11.3 μm and 131 ± 4.2 μm, respectively; Figs. 2E and 3, C–F; Supplemental Fig. S3), while length of the primary root was similar in both treatments (Fig. 2F). Furthermore, these effects on root morphology were also observed when purified plasmid was used as a DNA source (Supplemental Fig. S4), ruling out the possibility that they are triggered by a compound present in the herring sperm DNA.

DNA Uptake by Root Hairs and Pollen

Pollen Tubes of Arabidopsis and Nicotiana benthamiana Take Up S-DNA and Have Enhanced Growth in the Presence of DNA

Root hairs and pollen tubes have similar growth morphology and we therefore tested if pollen tubes take up DNA. Arabidopsis and Nicotiana benthamiana pollen was germinated for 5 or 3 h respectively, in the presence of S-DNA or Cy3-S-DNA to determine the effect on pollen tube growth and possible incorporation of Cy3-S-DNA. As indicated by strong fluorescence inside pollen tubes, Cy3-S-DNA was taken up into Arabidopsis (Fig. 4B) and N. benthamiana pollen (data not shown). Similar to root hairs, pollen tubes did not take up free Cy3 dye (Fig. 4E), confirming that fluorescence observed in pollen incubated with Cy3-S-DNA was due to uptake of the whole molecule (Fig. 4B). The viability of cells taking up S-DNA was assessed using FDA staining and Figure 4C shows that S-DNA detected in pollen tubes was taken up by living cell. Similar to roots, pollen did not take up 1 μM rhodamine dextran (Fig. 4H), supporting the notion that uptake of S-DNA into roots and into pollen tubes occurs via a similar, active process.

Adding DNA to the germinating medium as plasmid, circular double-stranded DNA of 5,006 nucleotides in length, significantly (P < 0.0001) increased the length of pollen tubes (Fig. 5). pollen tube growth

Figure 2. Dry weight, P content, and root growth of Arabidopsis plants grown on medium with and without DNA. Dry weight (A), P content (B), and primary root length (F) were similar in plants grown with and without DNA while number of lateral root (C), lateral root length (D), and root hair length (E) increased in response to addition of DNA. Seeds were germinated and cultivated for 14 d (A and B) or 11 d (C–F) on medium containing adequate supply of Pi (5.7 μg KH₂PO₄ per mL growth medium) without DNA (–DNA) or with DNA (+DNA, 0.8 mg mL⁻¹) added. Bars of A and B represent average and SEM of four plates with 100 Arabidopsis plants per plate. Bars represent averages and SEM of five plants (C, D, and F) or 10 roots hairs on each of three plants (E). Different letters indicate significant differences at P < 0.005 (C and D) or P < 0.0001 (E). Error bars indicate SEM.

Figure 3. Root growth of axenic Arabidopsis plants on medium with or without externally supplied DNA. Plants were grown for 11 d on medium containing an adequate concentration of Pi (5.7 μg KH₂PO₄ per mL growth medium without DNA [A, C, and E] or with DNA [0.8 mg DNA per mL growth medium] added [B, D, and F]). Root hair length (D and F) and number of lateral root (B) increased in response to the addition of DNA. C and D are enlarged images of a and b, respectively. E and F are enlarged images of c and d, respectively. Bright-field images of E and F were taken with a confocal microscope.
experiments were carried out with plasmid DNA because, in contrast to fish sperm DNA used in the whole-plant experiments described above, plasmid DNA does not precipitate in the pollen-germinating medium that contains polyethylene glycol. The length of Arabidopsis pollen tubes with and without DNA in the germinating medium differed significantly ($P < 0.0001$), averaging 0.69 ± 0.012 mm (mean ± SEM) and 0.44 ± 0.008 mm, respectively (Fig. 5C). Similarly, average lengths of *N. benthamiana* pollen tubes were 0.89 ± 0.0169 mm (with DNA added) and 0.47 ± 0.013 mm (without DNA added; Fig. 5D).

DISCUSSION

This study provides, to our knowledge, the first evidence that plants take up P_{org} in the form of DNA. Following the observation that axenically grown Arabidopsis and wheat can grow with DNA as the sole source of P, it was proposed that prior to uptake, DNA is converted into P_{i} by root-exuded nucleases (Abel et al., 2000; Richardson et al., 2000). We used nuclease-resistant S-DNA, 25-bp long and labeled with Cy3-fluorescent dye, to demonstrate that root hairs and pollen tubes take up S-DNA. S-DNA has a mass of approximately 16.5 kD, somewhat less than GFP (26.9 kD) that is also incorporated into roots (Paungfoo-Lonhienne et al., 2008). Cy3 dye is much smaller than S-DNA and GFP with a mass of 767 D (http://flowcyt.salk.edu/fluo.html) and was not incorporated into roots when administered alone. Furthermore, we show that roots of Arabidopsis cultivated in liquid medium took up S-DNA, confirming that entry of S-DNA is not due to damage and passive leakage into roots or root hairs that could occur during manipulation of roots grown on solid media. The pattern of fluorescence observed following uptake of Cy3-labeled S-DNA is strikingly similar to those seen in roots that have taken up GFP (Paungfoo-Lonhienne et al., 2008) as well as in transgenic plants expressing GFP under the control of trichoblast-specific phosphate transporter promoters (Mudge et al., 2002, 2003). The observation that DNA enters root trichoblasts (i.e.
root hairs) and pollen tubes provides further evidence that large exogenous biomolecules can enter plant cells.

Root hairs are tip-growing, tubular-shaped outgrowths that emerge from the basal end of specialized trichoblast cells (Foreman and Dolan, 2001). Root hairs substantially increase the absorbing surface of roots and have a main role for the uptake of water and nutrients into plants (Greulach and Adams, 1967; Parker et al., 2000). The uptake of S-DNA and previously reported uptake of protein (Paungfoo-Lonhienne et al., 2008) appears to be restricted to root-hair-producing trichoblast cells and root hairs. Root hairs are the major site of P uptake (Gahoonia and Nielsen, 1998) as trichoblasts express the high-affinity phosphate transporters responsible for P uptake (Mudge et al., 2002, 2003; Schunmann et al., 2004). The observation that uptake of larger molecules such as DNA and protein occurs in trichoblasts indicates that these specialized epidermal cells may have a more wide-ranging ability for the acquisition of compounds from the soil solution than previously considered. This ability is not restricted to Arabidopsis, since uptake of Cy3-S-DNA also occurred into root hairs and root-hair-producing trichoblasts of tomato (Solanum lycopersicum; Supplemental Fig. S5), which in contrast to nonmycorrhizal Arabidopsis, forms endomycorrhizal symbioses.

Root hairs and pollen tubes have similar polarized growth (Schiefelbein et al., 1993), and pollen is used to study uptake facilitated by membrane transporters (Komarova et al., 2008). We investigated whether pollen tubes resemble root hairs in their ability to take up DNA. The results showed that pollen tubes of Arabidopsis and N. benthamiana take up Cy3-labeled S-DNA, and, similar to root hairs, pollen tubes grew longer in the presence of DNA. This observation suggests that similar mechanisms of DNA uptake and growth stimulation exist in root hairs and pollen tubes.

The second key finding of the research presented here is that exogenously supplied DNA affects root morphology and pollen tube growth. Plants increase root branching, root length, root hair density, and length in response to P deficiency (Bates and Lynch, 1996; Ma et al., 2001; Gojon et al., 2009), yet results presented here show that root branching, length of lateral roots, and length of root hairs increase in the presence of DNA, irrespective of the plant P nutrition status. Biomass and P contents were similar in plants grown with adequate supply of P, in the presence or absence of DNA, and the observed increases in root branching and root hair length are therefore not a response to low P supply. Similarly, DNA-derived nitrogen or reduced carbon compounds are an unlikely cause for the observed changes in root morphogenesis because plants were adequately supplied with these compounds in the growth medium.

The ecological significance of the research presented here may be explained by the need of plants to forage for localized supplies of nutrients (Hutchings and Dekroon, 1994). Root development responds to heterogeneous distribution of nutrients and lateral roots proliferate preferentially within nutrient-rich zones (Jackson et al., 1990; Robinson, 1994). Similarly to other P forms in soil, DNA is adsorbed by soil colloids and particles (Pietramellara et al., 2009), and DNA-induced root proliferation could enhance access to not only this P source but to other colocated nutrients. Indeed, it is possible that presence of DNA is an environmental cue for enrichment of multiple nutrients in the soil, especially associated with decaying organic matter. Our results indicate that exogenous DNA could act nonspecifically as signaling molecules for root development, but further research is required to elaborate the mechanisms and the ecological relevance.

CONCLUSION

We have shown that a nuclease-resistant analog of DNA enters root hairs and pollen tubes to provide further evidence that exogenous biomolecules of high molecular mass can enter plant cells. Our study also presents evidence that Porg may be more important as a source of P for plants than previously considered and that exogenous DNA increases lateral root branching and root hair length by a mechanism independent of plant P status.

MATERIALS AND METHODS

DNA Preparations

For Arabidopsis (Arabidopsis thaliana) growth experiments, we used herring sperm DNA fragments, 120 to 3,000 nucleotides in length (10 mg DNA mL−1, Roche; Chen et al., 2000). To eliminate any minor contamination with small DNA fragments or free nucleic acids, herring sperm DNA was solubilized in sterile distilled water, filter sterilized (0.22-μm Millipore Filter), and twice subjected to dialysis at 4°C against distilled water (1:100 v/v) for 12 h. The dialysis tubing (Spectra/Por, Spectrum Laboratories Inc.) has a nominal M cutoff of 25 kD to remove traces of any contaminants of low molecular mass. The resulting DNA (8 mg mL−1) and the remaining dialysis water were stored in aliquots at −20°C. The Arabidopsis growth medium (see below) was supplemented either with dialyzed DNA (+DNA treatment), or with an equivalent volume of the remaining dialysis water (−DNA treatment). Because herring sperm DNA precipitates in germination medium of pollen, plasmid DNA was used instead. Plasmid DNA was isolated using a QIAGEN plasmid giga kit, and diluted in distilled water to a final concentration of 4 mg mL−1. DNA samples were twice subjected to dialysis at 4°C and stored in aliquots at −20°C. Due to the presence of DNA, the remaining dialysis water was used as a control (Molecular Probes).

To study the uptake of fluorescent DNA by Arabidopsis plants and pollen of Arabidopsis and Nicotiana benthamiana, we used Cy3-DNA (Sigma-Prolog) and Cy3-S-DNA (Sigma-Genosys). Cy3-DNA was 25 nucleotides in length (5′-ATGGTAGCAAGGCGGAGCGCAGG-3′) labeled with Cy3 at its 5′ end, and hybridized with its unlabeled antisense oligonucleotide (5′-ACACCTTGCCTGCTCACAT-3′). Cy3-S-DNA (Sigma-Genosys) was the same as Cy3-DNA, except that the labeled strand had phosphorothioate rather than phosphodiester linkages along its backbone. These sequences showed no significant homology (i.e. ≤14 nucleotide perfect match) with sequences in the Arabidopsis genome. Cy3 was used as the negative control (Molecular Probes).
Plant Material and Growth Conditions

Arabidopsis (ecotype Columbia-0) was used in this study. To meet the specific requirements of individual experiments, one of the following growth conditions was used.

Petri Dish Culture

Surface-sterilized seeds were grown on petri dishes containing 25 mL of P-free Murashige and Skoog (MS; Murashige and Skoog, 1962) basal salt solution (MS029, Sigma-Aldrich) supplemented with 5 g L\(^{-1}\) Suc, 5 mM KNO\(_3\), 2 mM Ca(NO\(_3\))\(_2\), 2 mM K\(_2\)HPO\(_4\), and 2.5 mM MES (pH 5.5). The media were adjusted to pH 5.5 and 0.3% phytagel (Phytotechnologies) was used as solidifying substance. Phytagel contains a minor amount of P (1 \(\mu\)g \(\mu\)L\(^{-1}\); Bates and Lynch, 1996) and was used for all experiments. P was added as P\(_2\)O\(_5\) (1.25 mM KH\(_2\)PO\(_4\)) or as a combination of P\(_2\)O\(_5\) (1.25 mM KH\(_2\)PO\(_4\)) and DNA (0.8 mg mL\(^{-1}\) of herring sperm DNA, equaling about 2.58 mM P). Plated seeds were incubated in a cold room for 3 d and then transferred to a growth cabinet (21°C, 16 h/8 h day/night, 150 \(\mu\)mol m\(^{-2}\) s\(^{-1}\)) for growth in a vertical position. After 14 d, plants were rinsed and cleaned three times in 0.5 mM CaCl\(_2\) to remove P from plant surfaces. Plants were dried at 60°C for 2 d, weighed, homogenized, and analyzed for P with a combustion elemental analyzer (Thermo Finnigan EA 1112 Series, CE Instruments). The results represent averages and SEM of four plates with 100 Arabidopsis plants per plate.

For the root growth experiment, seedlings were grown vertically for 11 d on medium in 24-well cell culture plates. The plates were aerated by placing on a shaker table rotating at 80 rpm. The roots were rinsed twice with 0.5 mM CaCl\(_2\) to ensure that injury of roots after removal from the culture medium is not the cause of the observed incorporation of DNA (Supplemental Fig. S1). Briefly, Arabidopsis plants were grown axenically for 7 d in 1 mL 0.5\(^{-}\) strength MS medium (Murashige and Skoog, 1962) for 11 d. One micrometre of Cy3 (negative control) or Cy3-S-DNA was carefully poured on the surface of the media. Incubation was carried out for 3 h in the dark and at room temperature. Roots were carefully removed with forceps taking the entire plant from the medium and immediately washed twice with water before being viewed under confocal microscope as described below. Concurrently, 1 \(\mu\)g of Rhodamine Green 3,000 molecular weight dextran (rhodamine dextran; Molecular Probes) was used as another control for the uptake of high molecular mass compounds.

Liquid Culture

In addition to solid culture, we grew plants in axenic liquid culture to ensure that injury of roots after removal from the culture medium is not the cause of the observed incorporation of DNA (Supplemental Fig. S1). Arabidopsis plants were grown axenically for 7 d in 1 mL 0.5\(^{-}\) strength MS medium in 24-well cell culture plates. The plates were aerated by placing on a shaker table rotating at 80 rpm. The roots were rinsed twice with 0.5\(^{-}\) strength MS medium, and then Cy3-S-DNA was added to a final concentration of 0.2 \(\mu\)g. Roots were washed after 3 h of incubation and viewed with a confocal microscope (see below).

To ensure that the root growth was not an effect from any biologically active compound contained in herring sperm DNA, Arabidopsis plants were axenically grown for 10 d in a 12-well cell culture plate containing 2 mL 0.5\(^{-}\) strength MS medium with or without purified plasmid DNA (0.4 mg mL\(^{-1}\)). The length of 10 randomly selected root hairs was measured in three 2-mm segments at approximately 2-mm distance from the main root axis. Lateral root number, and lateral root lengths of 18 plants were measured as described above.

In Vitro Pollen Germination

For pollen growth experiments, pollen from three to five flowers of Arabidopsis or N. benthamiana was suspended in 45 \(\mu\)L of germination buffer (Tang et al., 2002) supplemented with 5 \(\mu\)L of distilled water or 5 \(\mu\)L of plasmid solution (4 \(\mu\)g plasmid mL\(^{-1}\)). Pollen was germinated on hanging drops (20 \(\mu\)L) at 22°C for 5 h (Arabidopsis) or 6 h (N. benthamiana). Germinated pollen was examined via microscopy (Nikon Eclipse E600) or confocal microscopy (Carl Zeiss). Determination of Arabidopsis and N. benthamiana pollen tube length was based on 100 pollen in three independent experiments.

Statistical Analysis

Statistical analyses were performed using Student’s t tests (GraphPad Prism4, GraphPad Software, Inc.). Statistical analyses were performed using Student’s t tests (GraphPad Prism4, GraphPad Software, Inc.). Statistical analyses were performed using Student’s t tests (GraphPad Prism4, GraphPad Software, Inc.). Statistical analyses were performed using Student’s t tests (GraphPad Prism4, GraphPad Software, Inc.). Statistical analyses were performed using Student’s t tests (GraphPad Prism4, GraphPad Software, Inc.). Statistical analyses were performed using Student’s t tests (GraphPad Prism4, GraphPad Software, Inc.). Statistical analyses were performed using Student’s t tests (GraphPad Prism4, GraphPad Software, Inc.). Statistical analyses were performed using Student’s t tests (GraphPad Prism4, GraphPad Software, Inc.).
regulated expression of phytoase under the control of a phosphate transporter promoter enables Arabidopsis to grow on phytate as a sole P source. Plant Sci 165: 871–878
Murashige T, Skoog F (1962) A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol Plant 15: 473–497
Park MR, Baek SH, de los Reyes BG, Yun SJ (2007) Overexpression of a high-affinity phosphate transporter gene from tomato (NiPT1) en-hances phosphate uptake and accumulation in transgenic rice plants. Plant Soil 292: 259–269
Parkner JS, Cavell AC, Dolan L, Roberts K, Grienon CS (2000) Genetic interactions during root hair morphogenesis in Arabidopsis. Plant Cell 12: 1961–1974
Paungfoo-Lonhienne C, Lonhienne TGA, Rentsch D, Robinson N, Christie M, Webb RI, Gamage HK, Carroll BJ, Schenk PM, Schmidt S (2008) Plants can use protein as a nitrogen source without assistance from other organisms. Proc Natl Acad Sci USA 11: 4524–4529
Pietramellara G, Ascher J, Borgogni F, Ceccherini MT, Guerri G, Nannipieri P (2009) Extracellular DNA in soil and sediment: fate and ecological relevance. Biol Fertil Soils 45: 219–235
Raghothama KG (1999) Phosphate acquisition. Annu Rev Plant Physiol Plant Mol Biol 50: 665–693
Richardson AE, Hadobas PA, Hayes JE (2000) Acid phosphomonoesterase and phytyase activities of wheat (Triticum aestivum L.) roots and utilization of organic phosphorus substrates by seedlings grown in sterile culture. Plant Cell Environ 23: 397–405
Robinson D (1994) The responses of plants to non-uniform supplies of nutrients. New Phytol 127: 635–674
Schachtman DP, Reid RJ, Aylings SM (1998) Phosphate uptake by plants: from soil to cell. Plant Physiol 116: 447–453
Schiefelbein J, Galway M, Masucci J, Ford S (1993) Pollen tube and root- hair tip growth is disrupted in a mutant of Arabidopsis thaliana. Plant Physiol 103: 979–985
Schummann P, Richardson A, Vickers C, Delhaize E (2004) Promoter analysis of the barley Pht1;1 phosphate transporter gene identifies regions controlling root expression and responsiveness to phosphate deprivation. Plant Physiol 136: 4205–4214
Smith FW, Mudge SR, Rae AL, Glassop D (2003) Phosphate transport in plants. Plant Soil 248: 71–83
Spitzer S, Eckstein F (1988) Inhibition of deoxyribonucleases by phosphonothioate groups in oligodeoxyribonucleotides. Nucleic Acids Res 16: 11691–11704
Tang W, Ezcurrea I, Muschietti J, McCormick S (2002) A cysteine-rich extracellular protein, LAT52, interacts with the extracellular domain of the pollen receptor kinase LePRK2. Plant Cell 14: 2277–2287
Tarafdar JC, Claassen N (1988) Organic phosphorus compounds as a phosphorus source for higher plants through the activity of phospha-tases produced by plant roots and microorganisms. Biol Fertil Soils 5: 308–312
Vance C, Uhde-Stone C, Allan D (2003) Phosphate acquisition and use: critical adaptations by plants for securing a nonrenewable resource. New Phytol 157: 423–447
Widholm JM (1972) Use of fluorescein diacetate and phenosafranine for determining viability of cultured plant-cells. Stain Technol 47: 189–194
Xu GH, Chague V, Melamed-Bessudo C, Kapulnik Y, Jain A, Raghothama KG, Levy AA, Silber A (2007) Functional characterization of LePT4: a phosphate transporter in tomato with morccorrhiza-enhanced expression. J Exp Bot 58: 2491–2501