Positions of Pluto extracted from digitized Pulkovo photographic plates taken in 1930 – 1960.

E.V. Khrutskaya1 †, J.-P. De Cuyper2, S.I. Kalinin1, A.A. Berezhnoy1, G. de Decker2

1 Pulkovo Observatory, 65/1 Pulkovskoye chaussee, Saint Petersburg, 196140, Russia*
2 Royal Observatory of Belgium, Ringlaan 3, B-1180 Ukkel, Belgium

October 29, 2013

Abstract

We present the results of determination of Pluto’s positions derived from photographic plates taken in 1930 – 1960. Observations were made with Normal Astrograph at Pulkovo Observatory. Digitization of these plates was performed with high precision scanner at Royal Observatory of Belgium (ROB Digitizer). Mean values of standard errors of plate positions (x, y) lie between 12 and 18 mas. The UCAC4 catalogue was used as an astrometric calibrator. Standard errors of equatorial coordinates obtained are within 85 to 100 mas. Final table contains 63 positions of Pluto referred to the HCRF/UCAC4 frame.

Key words: astrometry – ephemerides – Kuiper belt objects: individual: Pluto – techniques: image processing.

1 Introduction

Progress in construction of the modern planetary ephemerides systems is significantly depend on length and quality of series of positional observations of

†This paper is dedicated to the memory of our colleague and initiator of this work, Dr. Evgeniya Khrutskaya, who recently passed away.

*e-mail: deimos@gao.spb.ru
Solar system bodies. Especially this is actual for outer planets. Ephemeris based positions of Pluto traditionally demonstrate deficiencies of various dynamical ephemerides systems like DE, INPOP and other.

Large sets of old photographic observations of Pluto were initially processed through manual measurements with various machines. Pluto’s positions observed were formally referred to various reference frames (FK3, FK4, FK5) and they were distorted by systematic errors of old reference catalogues. Hence, standard errors of these positions of Pluto were about 0.2 to 0.4 arcsec.

Significant improvement of the data considered has been made possible through digitization of old photographic plates with high precision scanners. Modern astrometric catalogues also facilitate to determine all positions of Pluto in present time reference frame (HCRF). As a result, the accuracy of the Pluto’s positions refined should be about 100 mas and better. This accuracy is mainly limited due to the quality of old photographic plates and systematic errors of coordinates and proper motions of the reference stars.

High precision positions of Pluto extracted from early photographic observations may be needed for New Horizons mission (Guo and Farquhar (2005), Beauvalet et al. (2012)).

Large archive of old photographic plates is stored at Pulkovo Observatory. These plates were mainly taken at Pulkovo Observatory. Significant part of this archive consists of the photographic plates taken to determine the positions of the Solar system bodies. Pluto’s images are contained on the more than 250 photographic plates. The results of digitization and astrometric reductions of 63 early photographic plates taken at Pulkovo Observatory in 1930 – 1960 are presented in this paper. This work is a part of large plan of digitization of old photographic plates, which is being realised at Pulkovo Observatory (Khrutskaya et al. (2013)). A short description of astrograph and other details of observations are given in Section 2. Digitization of plates is schematically considered in Section 3. Basic stages of processing of the observations are reflected in Section 4. Section 5 contains table of final Pluto’s positions and necessary remarks. A brief overview of the main conclusions is given in Section 6.

2 Observations

The photographic observations of Pluto considered were started at Pulkovo Observatory in 1930. First plates were taken by S.G. Kostinsky in March of 1930. Observations were made every year during the Pluto’s opposition with Normal Astrograph (D/F = 330 mm/3467 mm, latitude = 59.771280 deg,
longitude = 30.324977 deg, altitude = 77.48 meters). The size of the photographic plate was 16 × 16 cm (astrometrically good FOV was 2 × 2 degrees with scale = 59.56 arcsec/mm). Exposure time was 1 hour. These observations had been interrupted in 1941 due to war. The lenses of the Normal Astrograph were saved. They were installed on the reconstructed telescope in 1948. The observations of Pluto were restarted in 1949.

3 Digitization of plates

High precision scanner of Royal Observatory of Belgium (ROB Digitizer) was used to digitize Pulkovo plates, which contain images of Pluto. This machine was designed by AERO-TECH1 (USA). ROB Digitiser is equipped with Schneider Xenoplan lens and BCi4 camera (1280 × 1024 pixels, pixel sizes are 7 × 7 mkm). Maximum plate size is 35 cm. This machine is fully automated device. More detailed information about ROB Digitizer was presented in series of papers of J.-P. De Cuyper and his colleagues (De Cuyper et al. (2004), De Cuyper et al. (2005), De Cuyper et al. (2006), De Cuyper et al. (2009), De Cuyper et al. (2012)).

4 Astrometric reduction

The result of digitization of one photographic plate with the ROB Digitizer is presented as a grid of the overlapped images (imagets), which covered whole plate. The Lorentz profile was used to fit stellar and Pluto’s images. Position of the centre of each imaget is determined with high accuracy (about several nm). The differences between the positions of separate star derived from two of more imagets were represented using third term polynomial model. The parameters of this model were estimated by least-squares adjustment. The components of field of positional systematic errors caused by the camera of ROB Digitizer are seen in Fig 1. As a result, plate coordinates \((x, y)\) of Pluto and reference stars were corrected according to calculated parameters of adopted model of the systematic errors.

The UCAC4 (Zacharias et al. (2013)) was used as a reference catalogue. Magnitudes of the reference stars are within 11 to 14 mag. As a result, the number of reference stars was lie between 50 and 60 per one plate. Standard model of six constants was applied. Atmospheric refraction corrections were added. The unit weight errors are 90 to 100 mas. The standard errors of one Pluto’s position are within 100 to 120 mas. The same values obtained using

1www.aerotech.com
Figure 1: The components of the field of positional systematic errors caused by the camera of ROB Digitizer. The panel (a) demonstrates linear component, panel (b) shows quadratic component, and panel (c) presents the third order part. Figure (d) was constructed as a sum of (a),(b) and (c). Axis units are pixels. Maximum vector length is 0.25 mkm.
the old measuring machines and old reference catalogues were usually three or four times bigger (Lavdovsky (1953), Lavdovsky (1968), Rylkov (1996)). The attempt of refinement of the equatorial coordinates of Pluto based on the new manual measurements of the same photographic plates was made in 1990s. New set of positions of Pluto in the HCRF/UCAC3 frame were recently published (Rylkov (2013)). Typical unit weight errors of astrometric reduction in this work were 230 to 330 mas.

5 Positions of Pluto

The final equatorial coordinates of Pluto considered are presented in Table 1. On the whole, 63 positions have been determined in the HCRF/UCAC4 frame. The last column of Table 1 contains estimations of Pluto’s magnitude. These values were calculated using UCAC4 fit model magnitudes of the reference stars.

Table 1: Pulkovo positions of Pluto (1930 – 1960).

Date (UTC)	RA_{J2000}	Dec_{J2000}	mag
	h m s	deg arcmin arcsec	
1930 03 17.789719	07 19 50.817	+21 59 35.65	13.92
1930 03 30.804780	07 19 41.127	+22 00 46.64	15.28
1930 04 04.808441	07 19 42.114	+22 01 05.24	15.91
1930 04 20.828469	07 20 02.851	+22 01 28.93	17.00
1931 03 17.759216	07 25 24.031	+22 11 58.06	15.81
1932 02 26.812448	07 31 52.265	+22 20 58.79	15.41
1932 03 05.795452	07 31 27.173	+22 19 19.08	15.64
1932 03 07.812845	07 31 21.704	+22 22 37.41	15.22
1932 03 12.828627	07 31 09.897	+22 23 18.97	15.97
1933 02 21.807410	07 37 53.523	+22 31 21.36	15.62
1933 03 02.775910	07 37 21.432	+22 33 01.61	15.19
1934 03 11.821253	07 42 45.103	+22 45 02.17	15.48
1934 03 13.804711	07 42 40.295	+22 45 17.75	16.30
1935 03 25.810697	08 07 50.850	+22 56 34.71	15.38
1938 02 21.852309	08 07 58.481	+23 17 13.83	15.45
1938 02 25.801219	08 07 41.152	+23 18 10.51	15.66
1938 03 23.793942	08 06 18.994	+23 22 23.95	15.75
1939 01 19.967109	08 17 11.937	+23 13 19.91	14.91
1939 01 21.944853	08 17 00.782	+23 14 04.09	15.05
1939 02 23.865193	08 14 07.519	+23 24 34.36	15.21
1940 03 14.853653	08 19 13.758	+23 34 43.38	14.46
Date (UTC)	RA_{J2000}	Dec_{J2000}	mag
-----------	-----------------	-----------------	-----
1940 03 25.782122	08 18 46.056	+23 35 59.74	15.21
1941 03 29.796793	08 25 03.844	+23 41 37.95	15.33
1941 04 02.810803	08 24 57.639	+23 41 49.34	15.45
1949 02 18.868166	09 22 57.730	+23 36 16.33	14.55
1949 02 26.879230	09 22 13.618	+23 39 35.72	14.48
1949 03 05.918632	09 21 37.176	+23 42 07.97	14.41
1950 02 24.875340	09 29 47.912	+23 33 37.03	14.98
1950 03 11.837299	09 28 30.430	+23 39 04.08	14.27
1950 03 14.808410	09 28 16.579	+23 39 55.71	14.82
1951 03 05.937238	09 36 28.140	+23 30 44.55	14.46
1951 03 06.957731	09 36 22.803	+23 31 06.95	14.60
1951 04 03.903170	09 34 24.975	+23 37 42.17	15.53
1951 04 07.803665	09 34 13.827	+23 38 00.78	14.64
1952 03 17.910959	09 42 58.088	+23 27 15.01	14.24
1952 04 15.875903	09 41 21.173	+23 30 59.10	14.65
1952 04 16.830595	09 41 19.405	+23 30 57.58	14.13
1952 04 19.835960	09 41 14.359	+23 30 49.13	14.44
1953 03 11.872657	09 51 07.190	+23 16 08.47	14.19
1953 03 14.872826	09 50 52.132	+23 17 10.28	14.61
1953 03 15.878425	09 50 47.199	+23 17 29.85	14.16
1954 03 21.803363	09 58 04.735	+23 08 34.98	14.33
1954 03 31.827987	09 57 22.251	+23 10 51.52	14.29
1954 04 20.844738	09 56 24.484	+23 12 04.21	14.54
1955 03 23.818454	10 05 46.646	+22 56 56.40	14.67
1955 04 08.802879	10 04 42.566	+23 00 00.68	14.92
1955 04 24.849265	10 04 02.172	+23 00 09.34	14.11
1956 03 16.883552	10 14 13.210	+22 41 06.98	14.14
1956 03 31.809652	10 13 03.446	+22 45 24.09	14.31
1956 04 30.885930	10 11 41.737	+22 46 10.28	14.54
1957 03 20.891375	10 21 55.962	+22 26 58.64	14.07
1957 03 25.864021	10 21 31.578	+22 28 35.01	13.76
1957 03 29.868455	10 21 13.086	+22 29 40.41	13.71
1957 04 01.809761	10 21 00.274	+22 30 21.15	14.74
1958 03 17.892602	10 30 19.971	+22 08 34.30	13.98
1958 03 20.875498	10 30 04.237	+22 09 44.71	14.15
1958 04 07.809527	10 28 41.460	+22 14 37.45	14.87
1959 03 03.905711	10 39 52.973	+21 42 27.59	14.84
Table 1 – continued

Date (UTC)	RA_{2000}	Dec_{2000}	mag
1959 03 09.888719	10 39 18.323	+21 45 43.26	13.91
1959 03 29.844783	10 37 31.893	+21 53 56.72	14.07
1959 03 30.857340	10 37 27.063	+21 54 14.49	13.81
1960 03 21.853283	10 46 24.607	+21 30 54.60	15.18
1960 03 25.865515	10 46 03.550	+21 32 27.32	14.48

6 Conclusion

The long and homogeneous series of Pulkovo photographic observations of Pluto performed in 1930 – 1960 and high precision scanner of Royal Observatory of Belgium have allowed us to obtain 63 accurate positions of Pluto in the HCRF/UCAC4 frame. Detailed investigation of positional systematic errors of the reference stars and Pluto have been performed. All necessary corrections were made to refine Pluto’s positions. Standard errors of the final equatorial coordinates of Pluto are within 85 to 100 mas. Only early part of Pulkovo photographic observations of Pluto has been digitized and processed. Digitization of Pulkovo photographic plates with Pluto images taken from 1960 to 1996 has been planned. Presented and expected results will be useful in construction of the modern planetary ephemerides systems.

Acknowledgements

This work was performed with support from the Russian Foundation for Basic Research (project no. 12-02-00675a). The authors express their thanks M.Yu. Khovritchev for his help in preparing the text of the paper.

References

Guo Y. and Farquhar R. W. 2005. Acta Astronautica, 56, 421

Beauvalet L., Lainey V., Arlot J.-E., Binzel R.P. 2012. A&A, 540, id.A65, 9

De Cuyper J. P., Winter L., Vanommeslaeghe J. 2004, in Ochsenbein F., Allen M.G. and Egret D., eds, ASP Conf. Ser., 314, Astronomical Data Analysis Software and Systems (ADASS) XIII, Astron. Soc. Pac., San Francisco, p. 77
De Cuyper J.P., Winter L. 2005, in Gabriel C., Arviset C., Ponz D., Solano E., eds, ASP Conf. Ser., 347, Astronomical Data Analysis Software and Systems (ADASS) XIV, Astron. Soc. Pac., San Francisco, p. 651

De Cuyper J. P., Winter L. 2006, in Bohlenoler D., Durand D., Dowler P., eds, ASP Conf. Ser., 351, Astronomical Data Analysis Software and Systems (ADASS) XV, Astron. Soc. Pac., San Francisco, p. 587

De Cuyper J. P., Winter L., De Decker G., Zacharias N., Pascu D., Arlot J.-E., Robert V., Lainey, V. 2009, in Bohlender D.A., Durand D., and Dowler P., eds, ASP Conf. Ser., 347, Astronomical Data Analysis Software and Systems (ADASS) XVIII, Astron. Soc. Pac., San Francisco, p. 275

De Cuyper J.-P., de Decker G., Laux U., Winter L., Zacharias N. 2012, in Ballester P., Egret D., and Lorente N.P.F., eds, ASP Conf. Ser., 461, Astronomical Data Analysis Software and Systems (ADASS) XXI, Astron. Soc. Pac., San Francisco, p. 315

Khrutskaya E., Berezhnoy A., Kalinin S. 2013, in Proc. of Workshop IAU “NAROO-GAIA. A new reduction of old observations in the Gaia era”, 99.

Lavdovsky V.V. 1953. Pulkovo, Glavnaia Astronomicheskaia Observatoriia, Izvestiia, 150, 145.

Lavdovsky V.V. 1968. Pulkovo, Glavnaia Astronomicheskaia Observatoriia, Izvestiia, 183, 118.

Rylkov V.P. 1996. Pulkovo, Glavnaia Astronomicheskaia Observatoriia, Izvestiia, 210, 52.

Rylkov V.P. 2013. Pulkovo, Glavnaia Astronomicheskaia Observatoriia, Izvestiia, 220, 317.

Zacharias N., Finch C.T., Girard T.M., Henden A., Bartlett J.L., Monet D.G., Zacharias M.I. 2013. AJ, 145, 2, 44.