Effect of intravenous pulses of methylprednisolone 250 mg versus dexamethasone 6 mg in hospitalised adults with severe COVID-19 pneumonia: An open-label randomised trial

Luis Corral-Gudino1,2 | Ivan Cusacovich2,3 | Jose Ignacio Martín-González4,5 | Alberto Muela-Moliner6 | Jésica Abadía-Otero1,2 | Roberto González-Fuentes3 | Ángela Ruiz-de-Temíno1,2 | Elena Tapia-Moral3 | Francisca Cuadrado-Medina1,2 | Miguel Martín-Asenjo3 | Pablo Miramontes-González1,2 | Jose Luis Delgado-González3 | Sandra Ines4,5 | Laura Abad-Manteca1,2 | Iciar Usategui-Martín3 | Tomás Ruiz-Albi7 | Sara Miranda-Riaño3 | Patricia Rodríguez-Fortúnez8 | Consuelo Rodríguez-Jiménez8 | Esperanza López-Franco9 | Miguel Marcos4,5,9 | MP3 pulses COVID-19 collaborative group

1Internal Medicine Department, Hospital Universitario Río Hortega, Gerencia Regional de Salud de Castilla y Leon (SACYL), Valladolid, Spain
2Department of Medicine, Dermatology and Toxicology, School of Medicine, Universidad de Valladolid, Valladolid, Spain
3Internal Medicine Department, Hospital Clínico Universitario de Valladolid, Gerencia Regional de Salud de Castilla y Leon (SACYL), Valladolid, Spain
4Internal Medicine Department, Hospital Universitario de Salamanca-IBSAL, Gerencia Regional de Salud de Castilla y Leon (SACYL), Salamanca, Spain
5School of Medicine, Universidad de Salamanca, Salamanca, Spain
6Internal Medicine Department, Hospital Universitario de León, Gerencia Regional de Salud de Castilla y Leon (SACYL), León, Spain
7Pneumology Department, Hospital Universitario Río Hortega, Gerencia Regional de Salud de Castilla y Leon (SACYL), Valladolid, Spain
8Clinical Trials Unit, Pharmacology Department, Complejo Hospitalario Universitario de Canarias, Santa Cruz de Tenerife, Spain
9UICEC, Complejo Asistencial Universitario de Salamanca - Instituto de Investigación Biomédica de Salamanca (IBSAL), Plataforma SCReN, Salamanca, Spain

Correspondence
Luis Corral-Gudino, Internal Medicine Department, Hospital Universitario Río Hortega, Gerencia Regional de Salud de Castilla y Leon (SACYL), C/Dulzaina no 2, 47012 Valladolid, Spain.
Email: lcorral@saludcastillayleon.es

Funding information
IBSAL

Abstract
Background: The efficacy and safety of high versus medium doses of glucocorticoids for the treatment of patients with COVID-19 has shown mixed outcomes in controlled trials and observational studies. We aimed to evaluate the effectiveness of methylprednisolone 250 mg bolus versus dexamethasone 6 mg in patients with severe COVID-19.

Methods: A randomised, open-label, controlled trial was conducted between February and August 2021 at four hospitals in Spain. The trial was suspended...
Dexamethasone was identified in a key article published on 22 June 2020, as the first drug able to reduce mortality in severe or critically ill patients with severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection (COVID-19).\(^1\) Since then, dexamethasone with the Randomized Evaluation of COVID-19 Therapy (RECOVERY) regimen (6 mg/day for 10 days) has been included in most guidelines for the treatment of COVID-19. Although different glucocorticoids (GCs) such as methylprednisolone have been widely used as off-label therapy since the start of the COVID-19 pandemic,\(^2\) and up to three GCs have been evaluated in clinical trials (dexamethasone, methylprednisolone and hydrocortisone),\(^3\) we are uncertain whether other GCs or different dosages or timings could be more effective than the classic dexamethasone regimen.\(^4\) Dysregulation of the immune response and hyperinflammation are linked to severe pneumonia in COVID-19. Some fundamental mechanisms are neutrophil dysfunction, cytokine increase,\(^5\) complement hyperactivation\(^6\) and macrophage hyperactivation.\(^7\) Due to their profound immunomodulatory actions,\(^8\) GCs have anti-inflammatory and immunosuppressive properties and are applied in multiple inflammatory conditions. The main mechanism of GCs, the genomic pathway, is mediated through the activation of intracellular glucocorticoid receptors (GRs). GCs diffuse across the cell membrane and bind to the GR in the cytosol. Both form a complex in which GR is reorganised and transduced into the nucleus, where it binds to DNA and stimulates target gene expression to switch off multiple inflammatory genes. This results in decreased production of proinflammatory proteins (transrepression) and switches on other genes that increase the expression of regulatory-including anti-inflammatory proteins (transactivation).\(^9\) This is intended to be the predominant effect when low-to-medium doses of GCs (less than 160 mg hydrocortisone equivalent, as in the RECOVERY regimen) are used. In the higher concentrations (doses higher than 400–500 mg of hydrocortisone equivalent, as in methylprednisolone pulses), GCs have additional rapid effects on the synthesis of anti-inflammatory proteins and post-genomic effects. These effects are mediated by the interaction of the GC with GRs localised in the plasma membrane instead of in the cytoplasm, by non-specific interactions with the cellular membrane and by interaction with non-classic receptors also associated with the plasma membrane. GCs modify the polarity and permeability of the cellular membranes of immune cells. These membrane-initiated GC signals are the non-genomic pathways.\(^10\) In the non-genomic pathways, gene expression is not affected, at least initially or directly. The activation of these non-genomic pathways with higher doses of GCs (bolus) has been beneficial in the treatment of several immune-mediated diseases, such as giant cell arteritis,\(^11\) multiple sclerosis,\(^12\) rheumatoid arthritis,\(^13\) lupus nephritis,\(^14\) primary immune thrombocytopenia,\(^15\) inflammatory

1 INTRODUCTION

Dexamethasone was identified in a key article published on 22 June 2020, as the first drug able to reduce mortality in severe or critically ill patients with severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection (COVID-19).\(^1\) Since then, dexamethasone with the Randomized Evaluation of COVID-19 Therapy (RECOVERY) regimen (6 mg/day for 10 days) has been included in most guidelines for the treatment of COVID-19. Although different glucocorticoids (GCs) such as methylprednisolone have been widely used as off-label therapy since the start of the COVID-19 pandemic,\(^2\) and up to three GCs have been evaluated in clinical trials (dexamethasone, methylprednisolone and hydrocortisone),\(^3\) we are uncertain whether other GCs or different dosages or timings could be more effective than the classic dexamethasone regimen.\(^4\) Dysregulation of the immune response and hyperinflammation are linked to severe pneumonia in COVID-19. Some fundamental mechanisms are neutrophil dysfunction, cytokine increase,\(^5\) complement hyperactivation\(^6\) and macrophage hyperactivation.\(^7\) Due to their profound immunomodulatory actions,\(^8\) GCs have anti-inflammatory and immunosuppressive properties and are applied in multiple inflammatory conditions. The main mechanism of GCs, the genomic pathway, is mediated through the activation of intracellular glucocorticoid receptors (GRs). GCs diffuse across the cell membrane and bind to the GR in the cytosol. Both form a complex in which GR is reorganised and transduced into the nucleus, where it binds to DNA and stimulates target gene expression to switch off multiple inflammatory genes. This results in decreased production of proinflammatory proteins (transrepression) and switches on other genes that increase the expression of regulatory-including anti-inflammatory proteins (transactivation).\(^9\) This is intended to be the predominant effect when low-to-medium doses of GCs (less than 160 mg hydrocortisone equivalent, as in the RECOVERY regimen) are used. In the higher concentrations (doses higher than 400–500 mg of hydrocortisone equivalent, as in methylprednisolone pulses), GCs have additional rapid effects on the synthesis of anti-inflammatory proteins and post-genomic effects. These effects are mediated by the interaction of the GC with GRs localised in the plasma membrane instead of in the cytoplasm, by non-specific interactions with the cellular membrane and by interaction with non-classic receptors also associated with the plasma membrane. GCs modify the polarity and permeability of the cellular membranes of immune cells. These membrane-initiated GC signals are the non-genomic pathways.\(^10\) In the non-genomic pathways, gene expression is not affected, at least initially or directly. The activation of these non-genomic pathways with higher doses of GCs (bolus) has been beneficial in the treatment of several immune-mediated diseases, such as giant cell arteritis,\(^11\) multiple sclerosis,\(^12\) rheumatoid arthritis,\(^13\) lupus nephritis,\(^14\) primary immune thrombocytopenia,\(^15\) inflammatory

Results: Of the 128 randomised patients, 125 were analysed (mean age 60 ± 17 years; 82 males [66%]). Mortality at 28 days was 4.8% in the 250 mg methylprednisolone group versus 4.8% in the 6 mg dexamethasone group (absolute risk difference, 0.1% [95% CI, −8.8 to 9.1%; \(p = 0.98\)). None of the secondary outcomes (admission to the intensive care unit, non-invasive respiratory or high-flow oxygen support, additional immunosuppressive drugs, or length of stay), or prespecified sensitivity analyses were statistically significant. Hyperglycaemia was more frequent in the methylprednisolone group at 27.0 versus 8.1% (absolute risk difference, −18.9% [95% CI, −31.8 to - 5.6%]; \(p = 0.007\)).

Conclusions: Among severe but not critical patients with COVID-19, 250 mg/d for 3 days of methylprednisolone compared with 6 mg/d for 10 days of dexamethasone did not result in a decrease in mortality or intubation.

Keywords
COVID-19, dexamethasone, intubation, intratracheal, methylprednisolone, mortality
demyelinating polyradiculoneuropathy and non-specific interstitial pneumonia. The comparison of high doses of dexamethasone with the RECOVERY regimen in COVID-19 has shown mixed outcomes in randomised controlled studies. A recent systematic review suggested the possibility that medium-to-high doses of GCs may benefit patients with severe COVID-19.

The MP3-pulses-COVID-19 trial was conducted to evaluate the efficacy and safety of higher doses of GCs, able to initiate immunomodulatory non-genomic GC actions, in patients with severe but not critical COVID-19 pneumonia. The hypothesis was that methylprednisolone 250 mg pulses compared with the RECOVERY dexamethasone regimen would reduce mortality and/or intubation at 28 days in these patients.

2 | METHODS

2.1 | Trial design

The MP3-pulses-COVID-19 trial was an investigator-initiated, multicentre, parallel-group, low-intervention, phase IV, open-label and randomised clinical trial. The trial protocol was approved by the Spanish Agency of Medicines and Medical Devices (AEMPS), the Ethical Committee for Drug Research (CEIm) of the Hospital Universitario de Salamanca and the CEIms at each trial site. The trial was registered with EUDRA CT (2020-005026-28) and Clinicaltrials.gov (NCT04780581). The study was sponsored by the Institute of Health Science Research of Castilla y Leon (IECSCYL) and the Institute for Biomedical Research of Salamanca (IBSAL). Safety monitoring was conducted by the Spanish Clinical Research Network (SCREn). Informed consent was obtained from the patients or their legal surrogates according to the Spanish regulation.

2.2 | Trial sites and patients

Patients were screened and randomised between 1 February 2021 and 15 August 2021, at four hospitals in Spain.

Eligible patients were those aged 18 years or older, hospitalised with confirmed SARS-CoV-2 infection, with evidence of pulmonary involvement on radiology, and who required supplementary oxygen. Patients were excluded if their situation was so serious that the doctor in charge thought they could die within 24 hours; if they required one of the following ventilatory supports at the time of randomisation: (a) high-flow oxygen devices, (b) non-invasive mechanical ventilation, (c) invasive mechanical ventilation, (d) extracorporeal membrane oxygenation (ECMO); or if the patient had been treated in the 2 weeks before randomization with glucocorticoids or inflammation-modifying drugs. The complete inclusion and exclusion criteria are detailed in the Supplement.

2.3 | Randomisation

Randomisation was performed using a centralised, computer-generated allocation, stratified by trial site and by age under 70 years. Eligible patients were randomly allocated in a 1:1 ratio to methylprednisolone pulses or the dexamethasone RECOVERY regimen. The study was open-label, so treatment assignments were not concealed from patients or clinicians.

2.4 | Interventions

A daily intravenous pulse with methylprednisolone 250mg (equivalent to approximately 1250mg of hydrocortisone or 46.9 mg of dexamethasone) for 3 days or a daily dose of 6 mg of dexamethasone (equivalent to approximately 160 mg of hydrocortisone or to 32 mg of methylprednisolone) for up to 10 days was administered. For the dexamethasone group, the first 3 days of treatment were intravenous (7.2 mg of dexamethasone phosphate). From days 4 to 10, dexamethasone could be administered intravenously or orally according to clinician judgement. No placebo was used from days 4 to 10 for patients in the methylprednisolone group. Dexamethasone could be stopped in patients who recovered and were discharged from the hospital.

All other interventions for COVID-19 treatment were at the discretion of the clinicians according to the standard of care (SOC) in each hospital (detailed in Supplement).

2.5 | Outcomes

The primary outcome was the mortality rate at 28 days. The secondary outcomes were (a) the proportion of patients admitted to the intensive care unit at 28 days, (b) the proportion of patients with non-invasive respiratory support requirements (high-flow oxygen or non-invasive mechanical ventilation requirements) at 28 days, (c) the proportion of patients with tracheal intubation at 28 days, (d) the proportion of patients who needed additional immunosuppressive drugs, (e) the length of stay in hospital, and (f) the clinical status at every visit according to the World Health Organization (WHO) 10-category scale. Due to the lower number of fatalities registered in the
trial, a non-prespecified composite outcome, defined as the mortality rate at 90 days or tracheal intubation, was also analysed.

The safety outcomes included three pre-specified adverse events likely related to GC use: (a) secondary infections, (b) hyperglycaemia and (c) psychotic states. In addition, any severe adverse event (SAE) was registered.

2.6 | Sample size calculation

We initially estimated that 290 patients were required for the trial to have 80% power to show an absolute reduction of 12% in mortality rate at 28 days at a 2-sided α level of 5%, assuming that 23% in the 6 mg dexamethasone group would die. The estimation of the mortality rate of 23% in the dexamethasone group was based on the data from two previous clinical trials,1,27 and the mortality estimation of 11% in the methylprednisolone pulses group was based on three observational studies.28–30

Two interim analyses for efficacy and security outcomes were planned after the recruitment of 100 and 200 patients, respectively.

2.7 | Statistical analysis

Categorical variables were presented as number and proportion, and continuous variables were presented as mean and standard deviation. A modified intention-to-treat comparison was conducted. We excluded from analysis the participants who were excluded before the initiation of therapy. In addition, a per protocol analysis was performed in patients who received at least two doses of the GC.

For the primary outcome of 28-day mortality, we used the log-rank statistic to test the null hypothesis of equal survival curves. Time-to-event secondary outcomes and the composite outcome were compared between the two groups with the Kaplan–Meier approach. Differences in categorical data were analysed using the Cochran–Mantel–Haenszel test. Differences in continuous variables were analysed using Student’s t-test.

Pre-specified analyses of primary, secondary and composite outcomes were performed in subgroups defined by two characteristics at the time of randomization: (a) days since symptom onset (<7 versus ≥7 days) and (b) the presence of a hyper-inflammatory state. We considered that a patient had a hyperinflammatory state when we found any of the following laboratory parameters: (a) ferritin ≥1000 mg/dl, (b) interleukin-6 (IL-6) ≥20 pg/ml, (c) D-dimer ≥1000 mg/dl or (d) C-reactive protein (CRP) ≥150 mg/L. Due to the imbalance in vaccination status between the groups, a post hoc, non-prespecified analysis according to vaccination at the time of randomization was performed.

A pre-defined sensitivity analysis excluding patients with do-not-intubate orders was performed.

Estimates of rate and risk ratios are shown with 95% confidence intervals. All the p-values are 2-sided and shown without adjustment for multiple testing, and p < 0.05 was considered statistically significant. The analyses were performed using IBM SPSS Statistics for Windows, Version 26.0 (Armonk, NY, USA: IBM Corp.).

3 | RESULTS

Between 10 February 2021 and 31 August 2021, a total of 158 patients were assessed for eligibility, and 128 were randomised: 64 were randomised to receive 250 mg/d of methylprednisolone (high GC dose) for 3 consecutive days, and 64 were randomised to receive 6 mg/d of dexamethasone (medium GC dose) for 10 consecutive days (Figure 1). Of these, 125 were included in the full modified intention-to-treat analysis (mean age, 60 ± 17 years; 83 [66%] were men). The final sample size was smaller than originally planned because the study was terminated after the first interim analysis based on investigators expecting the study to be futile and because of ongoing recruitment challenges (see discussion section).

The patient characteristics at baseline and the use of respiratory support, anticoagulants, antibacterials and antivirals were similar in both groups (Table 1). An imbalance existed in vaccination status between trial arms (22% of vaccinated patients in the high-GC dose arm versus 11% in the medium-GC dose arm). Most of the patients were vaccinated 3 weeks or less before randomisation. Post hoc analyses were performed according to vaccination status to assess whether this difference affected trial outcomes. No differences were found in this analysis.

One patient was administered an erroneous trial intervention. The rest of the patients received the trial intervention according to randomisation. The duration of the treatment was 3 days for 97% of patients in the methylprednisolone group (61/63). The mean number of dexamethasone doses was 9 ± 2 days (9.7% received 5 or fewer doses, 17.7% received 6 to 8 doses and 72.6% received 9 to 10 doses).

3.1 | Primary outcome

At 28 days after randomisation, 3 (4.8%) patients in the methylprednisolone group and 3 (4.8%) in the dexamethasone group had died (absolute risk difference, 0.1% [95%
CI, −8.8 to 9.1%; p = 0.98) The results were similar in the per protocol analysis (Table S1 in the Supplement) and the pre-planned sensitivity analysis (Table S2a–S2d). The causes of death are detailed in Table S3.

3.2 Secondary outcomes

None of the secondary outcomes was statistically significant: admission to the intensive care unit within 28 days, non-invasive respiratory support within 28 days, high-flow oxygen support within 28 days, additional immunosuppressive drugs within 28 days or length of stay (Table 2). The non-prespecified composite outcome of the mortality rate at 90 days or tracheal intubation was not significant either. At 90 days after randomization, 10 (15.9%) patients in the methylprednisolone group and 9 (15%) in the medium GC dose group were intubated or had died (composite outcome; absolute risk difference, −0.9% [95% CI, −13.8 to 12.3%]; p = 0.83). The survival curves for mortality at 90 days and the composite endpoint of mortality or intubation are shown in Figure 2. No differences existed between the groups.

The pre-planned subgroup analysis and the post hoc analysis by vaccination status are shown in Figure 3. No differences were found. The rest of the subgroup analyses are shown in Table S2a–S2d in the Supplement.

The differences in clinical status at every visit according to the WHO 10-category scale are shown in Figure 4. Data on surrogate markers of inflammatory and radiographic changes are shown in Table S4a–S4d.

3.3 Adverse events likely related to glucocorticoids and serious adverse events

At 28 days, 7 (11.1%) patients in the methylprednisolone group and 8 (12.9%) in the dexamethasone group had secondary infections (absolute risk difference, 1.8% [95% CI, −10.1 to 13.7%]; p = 0.76). The infection detail and microbiological data of every patient

FIGURE 1 Screening, randomisation and follow-up of patients in the MP3-pulses-COVID-19 trial.
TABLE 1	Baseline participant characteristics, COVID data and medications		
	MP 250 mg pulses (Equivalent to 1250 mg of hydrocortisone)	DXM 6 mg (Equivalent to 160 mg of hydrocortisone)	Total
n	63	62	125
Age, years, mean ± SD	60 ± 17	59 ± 16	60 ± 17
Sex (male, %)	43 (68%)	40 (65%)	83 (66%)
Comorbidities			
Barthel Index, mean ± SD	99 ± 4	99 ± 6	99 ± 5
Hypertension, n (%)	31 (49%)	22 (36%)	53 (42%)
Diabetes, n (%)	13 (21%)	10 (16%)	23 (18%)
Dyslipidaemia, n (%)	16 (25%)	22 (36%)	38 (30%)
Heart failure, n (%)	4 (6%)	4 (6%)	8 (6%)
Cardiac ischaemia, n (%)	4 (6%)	5 (8%)	9 (7%)
Stroke, n (%)	4 (6%)	5 (8%)	9 (7%)
COPD, n (%)	1 (2%)	2 (3%)	3 (2%)
Asthma, n (%)	3 (5%)	0 (0%)	3 (2%)
Hypoventilation, n (%)	3 (5%)	0 (0%)	3 (2%)
Chronic kidney disease, n (%)	2 (3%)	4 (7%)	6 (5%)
Liver disease, n (%)	1 (2%)	1 (2%)	2 (2%)
Neoplasia, n (%)	7 (11%)	4 (6%)	11 (9%)
Transplant, n (%)	0 (0%)	0 (0%)	0 (0%)
HIV, n (%)	0 (0%)	1 (2%)	1 (1%)
Autoimmune disease, n (%)	1 (2%)	1 (2%)	2 (2%)
Dementia (mild), n (%)	0 (0%)	1 (2%)	1 (1%)
Current smoker, n (%)	0 (0%)	5 (8%)	5 (4%)
Charlson score, mean ± SD	0.6 ± 1.1	0.6 ± 1.2	0.6 ± 1.2
Clinical Frailty Scale			
Very fit to managing well	59 (94%)	60 (97%)	119 (95%)
Vulnerable to moderately frail	4 (6%)	2 (3%)	6 (5%)
Severely frail to terminally ill	0 (0%)	0 (0%)	0 (0%)
Days from symptom onset to inclusion, mean ± SD	8 ± 4	7 ± 5	7 ± 5
Days from diagnosis to inclusion, mean ± SD	5 ± 4	5 ± 4	5 ± 4
Days from hospital admission to inclusion, mean ± SD	1 ± 4	1 ± 1	1 ± 3
COVID-19 characteristics			
Fever, n (%)	47 (75%)	43 (69%)	90 (72%)
Arthralgia/myalgia, n (%)	21 (33%)	19 (31%)	40 (32%)
Cough, n (%)	47 (75%)	43 (69%)	90 (72%)
Thoracic pain, n (%)	8 (13%)	7 (11%)	15 (12%)
Nausea, n (%)	13 (21%)	10 (16%)	23 (18%)
Diarrhoea, n (%)	18 (29%)	16 (27%)	34 (27%)
Hyposmia/hypogeusia, n (%)	10 (16%)	13 (21%)	23 (18%)
Headache, n (%)	15 (24%)	9 (15%)	24 (19%)
PaFi (PaO2/FIO2), mean ± SD	247 ± 50	266 ± 67	258 ± 60
Creatinine, mg/dl, mean ± SD	0.9 ± 0.3	0.9 ± 0.2	0.9 ± 0.3
AST, U/L, mean ± SD	43 ± 58	43 ± 44	43 ± 52
are in Table S5. Hyperglycaemia was more frequent in the methylprednisolone group (27.0%) versus the dexamethasone group (8.1%; absolute risk difference, −18.9% [95% CI, −31.8 to −−5.6%; p = 0.007]. All the episodes of hyperglycaemia were transient, lasting less than 12 hours after glucocorticoid administration. All the episodes were controlled by administering short-acting subcutaneous insulin. No patient needed long-term treatment with additional specific measures for glycaemia control. There were 116 adverse events, 68 of which were registered as SAEs. The adverse events are detailed in Table S6.

4 | DISCUSSION

In this multicentre, open-label, randomised clinical trial including adults with severe COVID-19, treatment with 250 mg/d of methylprednisolone (equivalent to approximately 1250 mg of hydrocortisone) compared with 6 mg/d of dexamethasone (equivalent to approximately 160 mg of hydrocortisone) did not result in a significant reduction in mortality at 28 days. None of the secondary outcomes or pre-specified sensitivity analyses were statistically significant. Hyperglycaemia was the only adverse event more frequently associated with the higher dose of GC.
TABLE 2	Primary and secondary outcomes and predefined adverse events likely related to glucocorticoid use				
MP 250 mg pulses (Equivalent to 1250 mg of hydrocortisone)	DXM 6 mg (Equivalent to 160 mg of hydrocortisone)	Absolute risk difference (95% CI)	OR (95% CI)	p-value	
Primary outcome					
Mortality within 28 d, n/total (%)	3/63 (5%)	3/62 (5%)	0.1% (−8.8 to 9.1%)	1.0 (0.2 to 5.1)	0.984
Secondary outcome					
Admission to intensive care unit within 28 d, n/total (%)	10/63 (16%)	9/62 (15%)	−1.4% (−14.2 to 11.5%)	1.1 (0.4 to 3.0)	0.833
Tracheal intubation within 28 d, n/total (%)	8/63 (13%)	7/60 (12%)	−1.0% (−13.0 to 11.1%)	1.1 (0.4 to 3.3)	0.809
Non-invasive respiratory support within 28 d, n/total (%)	3/63 (5%)	2/62 (3%)	−1.5% (−10.2 to 6.9%)	1.5 (0.2 to 9.3)	0.661
High-flow oxygen support within 28 d, n/total (%)	6/63 (10%)	8/60 (13%)	3.4% (−8.2 to 15.1%)	0.7 (0.2 to 2.2)	0.549
Additional immunosuppressive drugs within 28 d, n/total (%)	14/63 (22%)	14/62 (23%)	0.4% (−14.2 to 14.9%)	1.0 (0.4 to 2.3)	0.962
Mortality within 90 d, n/total (%)	6/63 (10%)	4/60 (7%)	−2.9% (−13.4 to 7.7%)	1.5 (0.4 to 5.5)	0.572
Length of stay, mean ± SD	13 ± 15	13 ± 12	−0.3 days (−5 to 5)	---	0.908
Adverse events					
Secondary infections within 28 d, n/total (%)	7/63 (11%)	8/62 (13%)	1.8% (−10.1 to 13.7%)	0.8 (0.3 to 2.5)	0.758
Hyperglycaemia within 28 d, n/total (%)	17/63 (27%)	5/62 (8%)	−18.9% (−31.8 to −5.6%)	4.2 (1.4 to 12.3)	0.007
Psychotic states within 28 d, n/total (%)	1/63 (2%)	0/62 (0%)	−1.6% (−8.5 to 4.4%)	---	0.319
Composite outcome (post hoc addition)					
Mortality within 90 d or tracheal intubation within 28 d	10/63 (16%)	9/60 (15%)	−0.9% (−13.8 to 12.3%)	1.1 (0.4 to 2.8)	0.833
Systemic GCs have been demonstrated to improve survival when administered to patients needing oxygen supplementation, from moderately to critically ill. However, the optimal GC dose is yet to be discovered. Medium-dose regimens, such as the RECOVERY trial regimen of 6 mg of dexamethasone once daily,1 have been compared with high-dose regimens in some clinical trials with different results, from favourable to unfavourable (Table S7a–7cd).18–24 Importantly, none of the published clinical trials has shown clinically significant differences in the occurrence of SAEs between medium- and high-dose regimens. Hyperglycaemia was more frequent in the methylprednisolone group in our study. This adverse event was not associated with an increased risk of infections or other complications. Their transient nature and the use of insulin therapy to quickly maintain blood glucose justify the lack of impact of the hyperglycaemia episodes.

One difference between the present study and others is the lower mortality rate. This low rate might be explained by the type of patients studied: we excluded critical patients and those requiring high-flow oxygen devices or non-invasive mechanical ventilation. In addition, because vaccination started in January 2021 for older people in Spain, the median age of patients admitted to hospital for COVID-19 dropped significantly in this period, with a resulting mortality rate decrease. The median age in our

FIGURE 2 Primary and composite outcome curves to day 90.

FIGURE 3 Mortality within 90 days or intubation absolute risk difference in the three predefined subgroups and post hoc vaccination comparison.
The previous trial27 and the RECOVERY trial1 was 70 years and 66 years, respectively, nearly 10 years older than the patients in the current trial, which had a median age of 60 years. Additionally, the changes in COVID-19 variants of concern (VOC) could play a role in the mortality rate decrease. Alpha and Delta were the VOC dominant in our region during the study period.31

One of the strengths of this study is the homogeneity of the sample, with all patients in group 5 of the WHO clinical progression scale. The use of a high-dose bolus of methylprednisolone does not seem to be an advantage in these patients when compared with dexamethasone 6 mg, but it could be an alternative to the RECOVERY scheme of GCs. However, the study design does not allow non-inferiority analysis, so this cannot be definitively confirmed. The use of a short course of 3 days of methylprednisolone bolus could predominantly activate the non-genomic pathway because the genomic pathway is slower and needs several days for a complete activation. Future research could be framed by the hypothesis of a potential role of the combination of an initial extra short course of high-dose pulse GC therapy for induction (1 to 3 days), followed by a short course of moderate-dose GC for maintenance (10 days or until hospital discharge) to potentiate the anti-inflammatory effect by the activation of both genomic and non-genomic pathways. However, the results of a recent study also seem to rule out a possible benefit of this treatment scheme.24

\subsection*{4.1 Limitations}

This trial has several limitations. First, the sample size was not achieved due to the early termination of the study. The sample size estimation for the primary outcomes was based on data from the first waves of COVID-19. The impact of vaccination programmes in early 2021 in Spain dramatically changed the characteristics of hospitalised patients with COVID-19. As older persons were prioritised for vaccination, an impressive decline occurred in the number of hospital admissions for patients aged over 70 years, resulting in a spectacular decrease in mortality rates. Considering this, our initial estimation for sample size calculation was outdated. In addition to the flaw in sample size calculation, the study was prematurely terminated according to pre-defined criteria. The first pre-defined criterion was the inability to enrol an acceptable number of patients. In the summer of 2021, a marked decrease occurred in the number of hospitalised patients and the severity of the admitted patients in Spain due to a high percentage of people vaccinated and the
end of the fifth wave of COVID-19. Due to the inability to include new patients in the study, the monitoring committee decided to conditionally stop the trial in August 2021. In addition to this pre-defined criterion to pre-maturely discontinue the study, the futility analysis for the primary outcome of the first 100 recruited patients found a conditional power lower than the 20% pre-defined threshold for futility. After careful clinical consideration, the principal investigators and the monitoring committee considered that continuing the trial would be unlikely to change the results. The decision to stop the trial was communicated in writing to the CEIm of the Hospital Universitario de Salamanca and to the AEMPS. The recruitment period was closed on 15 August 2021, and the trial was definitively stopped on 11 November 2021. A second limitation is that the open-label design and investigator-reported data on adverse events and infections may have led to bias in the description of these events. Third, an imbalance in vaccination status existed between the two randomised groups. No differences were found in the post hoc analysis according to vaccination status, and the imbalance is not likely to have affected the trial outcomes.

5 | CONCLUSIONS

Among severe, but not critically ill, patients with COVID-19, 250 mg/d of methylprednisolone compared with 6 mg/d of dexamethasone did not result in a statistically significant reduction in mortality at 28 days. However, the trial may have been underpowered to identify a significant difference.

AUTHOR CONTRIBUTIONS

Corral-Gudino, Luis had full access to all the data in the study and takes responsibility for the integrity of the data and the accuracy of the data analysis. The corresponding author had final responsibility for the decision to submit for publication.

1. Substantial contributions to:
 a. Conception and design (Corral-Gudino, Luis; López-Franco, Esperanza)
 b. Acquisition of data (Corral-Gudino, Luis; Cusacovich, Ivan; Martín-González, Jose Ignacio; Muela-Moliner, Alberto; Abadía-Otero, Jésica; González-Fuentes, Roberto; Ruiz-de-Temíno, Ángela; Tapia-Moral, Elena; Cuadrado-Medina, Francisca; Martín-Asenjo, Miguel; Miramontes-González, Pablo; Delgado-González, Jose Luis; Ines, Sandra; Abad-Manteca, Laura; Usategui-Martín, Iciar; Ruiz-Albi, Tomás; Miranda-Riaño, Sara; Rodríguez-Fortún, Patricia and Rodríguez-Jiménez, Consuelo, López-Franco, Esperanza; Marcos, Miguel)
 c. Analysis and interpretation of data (Corral-Gudino, Luis; Cusacovich, Ivan; Martín-González, Jose Ignacio; Muela-Moliner, Alberto and Marcos, Miguel)

2. Drafting the article or revising it critically for important intellectual content (Corral-Gudino, Luis; Cusacovich, Ivan; Martín-González, Jose Ignacio; Muela-Moliner, Alberto; Abadía-Otero, Jésica; González-Fuentes, Roberto; Ruiz-de-Temíno, Ángela; Tapia-Moral, Elena; Cuadrado-Medina, Francisca; Martín-Asenjo, Miguel; Miramontes-González, Pablo; Delgado-González, Jose Luis; Ines, Sandra; Abad-Manteca, Laura; Usategui-Martín, Iciar; Ruiz-Albi, Tomás; Miranda-Riaño, Sara; Rodríguez-Fortún, Patricia and Rodríguez-Jiménez, Consuelo, López-Franco, Esperanza; Marcos, Miguel)

3. Final approval of the version to be published (Corral-Gudino, Luis; Cusacovich, Ivan; Martín-González, Jose Ignacio; Muela-Moliner, Alberto; Abadía-Otero, Jésica; González-Fuentes, Roberto; Ruiz-de-Temíno, Ángela; Tapia-Moral, Elena; Cuadrado-Medina, Francisca; Martín-Asenjo, Miguel; Miramontes-González, Pablo; Delgado-González, Jose Luis; Ines, Sandra; Abad-Manteca, Laura; Usategui-Martín, Iciar; Ruiz-Albi, Tomás; Miranda-Riaño, Sara; Rodríguez-Fortún, Patricia; Rodríguez-Jiménez, Consuelo, López-Franco, Esperanza and Marcos, Miguel).

ACKNOWLEDGEMENTS

We thank the patients and relatives for agreeing to participate in the MP3 pulses COVID-19 trial. We thank the health professionals for their efforts in the care of patients with COVID-19 in the midst of this pandemic. We also thank the clinical and research staff involved in the design and conduct of the GLUCOCOVID trial, which preceded the MP3 pulses COVID-19 trial.

FUNDING INFORMATION

The study was sponsored by the Institute of Health Science Research of Castilla y Leon (IECSCYL) and the Institute for Biomedical Research of Salamanca (IBSAL).

CONFLICT OF INTEREST

The authors have no conflict of interest to declare.

DATA AVAILABILITY STATEMENT

The data that support the findings of this study are available from the corresponding author, Corral-Gudino, Luis, upon reasonable request.

PRIOR PRESENTATIONS

None.

TRIAL REGISTRATION

EUDRA CT (2020–005026-28), Clinicaltrials.gov (NCT04780581).
REFERENCES

1. Recovery Collaborative Group, Horby P, Lim WS, et al. Dexamethasone in hospitalized patients with Covid-19. N Engl J Med. 2021;384(8):693-704. doi:10.1056/NEJMoa2021436

2. Papamanoli A, Yoo J, Grewal P, et al. High-dose methylprednisolone in nonintubated patients with severe COVID-19 pneumonia. Eur J Clin Invest. 2021;51(2):e13458. doi:10.1111/eci.13458

3. Corral-Gudino L, Abadia-Otero J, Gómez-Barquero J. Unresolved questions about the treatment of COVID-19 with corticosteroids. Med Clin (Engl ed). 2021;156(3):143-144. doi:10.1016/j.medcl.2020.10.007

4. Wagner C, Griesel M, Mikolajewska A, et al. Systemic corticosteroids for the treatment of COVID-19. Cochrane Database Syst Rev. 2021;2021(8):CD014963. doi:10.1002/14651858.CD014963

5. Mulchandani R, Lyngdoh T, Kakkar AK. Deciphering the COVID-19 cytokine storm: systematic review and meta-analysis. Eur J Clin Invest. 2021;51(1):e13429. doi:10.1111/eji.13429

6. Afzali B, Noris M, Lambrecht BN, Kemper C. The state of complement in COVID-19. Nat Rev Immunol. Published Online December 15, 2022;22:77-84. doi:10.1038/s41577-021-00665-1

7. Merad M, Martin JC. Pathological inflammation in patients with COVID-19: a key role for monocytes and macrophages. Nat Rev Immunol. 2020;20(6):355-362. doi:10.1038/s41577-020-0331-4

8. Cain DW, Cidlowski JA. Immune regulation by glucocorticoids. Nat Rev Immunol. 2017;17(4):233-247. doi:10.1038/nri.2017.1

9. Stahn C, Buttgeriet F. Genomic and nongenomic effects of glucocorticoids. Nat Clin Pract Rheumatol. 2008;4(10):525-533. doi:10.1038/ncprheum0898

10. Panettieri RA, Schaafsm A, Amrani Y, Koziol-White C, Ostrom R, Tilba O. Non-genomic effects of glucocorticoids: an updated view. Trends Pharmacol Sci. 2019;40(1):38-49. doi:10.1016/j.tips.2018.11.002

11. Mazlumzadeh M, Hunder GG, Easley KA, et al. Treatment of giant cell arteritis using induction therapy with high-dose glucocorticoids: a double-blind, placebo-controlled, randomized prospective clinical trial. Arthritis Rheum. 2006;54(10):3310-3318. doi:10.1002/art.22163

12. Kupersmith MJ, Kaufman D, Paty DW, et al. Megadose corticosteroids in multiple sclerosis. Neurology. 1994;44(1):1-4. doi:10.1212/wnl.44.1.1

13. Smith MD, Ahern MJ, Roberts-Thomson PJ. Pulse methylprednisolone therapy in rheumatoid arthritis: unproved therapy, unjustified therapy, or effective adjunctive treatment? Ann Rheum Dis. 1990;49(4):265-267. doi:10.1136/ard.49.4.265

14. Fanouriakis A, Kostopoulou M, Cheema K, et al. 2019 update of the joint European league against rheumatism and European renal association-European dialysis and transplant association (EULAR/ERA-EDTA) recommendations for the management of lupus nephritis. Ann Rheum Dis. 2020;79(6):713-723. doi:10.1136/annrheumdis-2020-216924

15. Provan D, Arnold DM, Bussel JB, et al. Updated international consensus report on the investigation and management of primary immune thrombocytopenia. Blood Adv. 2019;3(22):3780-3817. doi:10.1182/bloodadvances.2019000812

16. Nobile-Orazio E, Cocito D, Jann S, et al. Frequency and time to relapse after discontinuing 6-month therapy with IVIg or pulsed methylprednisolone in CIDP. J Neurol Neurosurg Psychiatry. 2015;86(7):729-734. doi:10.1136/jnnp-2013-307515

17. Kondoh Y, Taniguchi H, Yokoi T, et al. Cyclophosphamide to relapse after discontinuing 6-month therapy with IVIg or pulsed methylprednisolone in CIDP. J Neurol Neurosurg Psychiatry. 2005;25(3):528-533. doi:10.1182/bloodadvances.2019000812

18. COVID STEROID 2 Trial Group, Munch MW, Myatra SN, et al. Effect of 12 mg vs 6 mg of dexamethasone on the number of days alive without life support in adults with COVID-19 and severe hypoxemia: the COVID STEROID 2 randomized trial. Jama. 2021;326(18):1807-1817. doi:10.1001/jama.2021.18295

19. Granholm A, Kjær MBN, Munch MW, et al. Long-term outcomes of dexamethasone 12 mg versus 6 mg in patents with COVID-19 and severe hypoxemia. Intensive Care Med. 2022;48(5):580-589. doi:10.1007/s00134-022-06677-2
H, Yekaninejad MS Comparing efficacy and safety of different doses of dexamethasone in the treatment of COVID-19: a three-arm randomized clinical trial. *Pharmacological Reports*. Published Online November 27, 2021;74(1):229–240. doi:10.1007/s43440-021-00341-0

21. Taboada M, Rodríguez N, Varela PM, et al. Effect of high versus low dose of dexamethasone on clinical worsening in patients hospitalised with moderate or severe COVID-19 pneumonia: an open-label, randomised clinical trial. *Eur Respir J*. Published online December 16, 2021;60(2):229–240. doi:10.1183/13993003.02518-2021

22. Maskin LP, Bonelli I, Olarte GL, et al. High-versus-low-dose dexamethasone for the treatment of COVID-19-related acute respiratory distress syndrome: a multicenter, randomized open-label clinical trial. *J Intensive Care Med*. Published online December 13, 2021;7(4):2102518. doi:10.1177/08850666211066799

23. Ranjbar K, Moghadami M, Mirahmadizadeh A, et al. Methylprednisolone or dexamethasone, which one is superior corticosteroid in the treatment of hospitalized COVID-19 patients: a triple-blinded randomized controlled trial. *BMC Infect Dis*. 2021;21(1):337. doi:10.1186/s12879-021-06045-3

24. Salvarani C, Massari M, Costantini M, et al. Intravenous methylprednisolone pulses in hospitalised patients with severe COVID-19 pneumonia, a double-blind, randomised, placebo-controlled trial. *Eur Respir J*. Published online March 31, 2022;2200025. doi:10.1183/13993003.00025-2022. Online ahead of print.

25. Li J, Liao X, Zhou Y, et al. Comparison of associations between glucocorticoids treatment and mortality in COVID-19 patients and SARS patients: a systematic review and meta-analysis. *Shock*. 2021;56(2):215-228. doi:10.1097/SHK.0000000000001738

26. WHO Working Group on the Clinical Characterisation and Management of COVID-19 infection. A minimal common outcome measure set for COVID-19 clinical research. *Lancet Infect Dis*. 2020;20(8):e192-e197. doi:10.1016/S1473-3099(20)30483-7

27. Corral-Gudino L, Bahamonde A, Arnaiz-Revillas F, et al. Methylprednisolone in adults hospitalized with COVID-19 pneumonia: an open-label randomized trial (GLUCOCOVID). *Wien Klin Wochenschr*. 2021;133(7-8):303-311. doi:10.1007/s00508-020-01805-8

28. Callejas Rubio JL, Luna Del Castillo J d D, de la Hera Fernández J, Guirao Arrabal E, Colmenero Ruiz M, Ortego Centeno N. Effectiveness of corticoid pulses in patients with cytokine storm syndrome induced by SARS-CoV-2 infection. *Med Clin (Engl ed).* 2020;155(4):159-161. doi:10.1016/j.medcl.2020.07.002

29. Rodríguez-Baño J, Pachón J, Carratalá J, et al. Treatment with tocilizumab or corticosteroids for COVID-19 patients with hyperinflammatory state: a multicentre cohort study (SAM-COVID-19). *Clin Microbiol Infect*. 2021;27(2):244-252. doi:10.1016/j.cmi.2020.08.010

30. Ruiz-Irastorza G, Pijoan JI, Bereciartua E, et al. Second week methyl-prednisolone pulses improve prognosis in patients with severe coronavirus disease 2019 pneumonia: an observational comparative study using routine care data. *PLoS ONE*. 2020;15(9):e0239401. doi:10.1371/journal.pone.0239401

31. Corral-Gudino L, Del-Amo-Merino MP, Eiros-Bouza JM, García-Cruces-Méndez JF, González MDG. The omicron wave and the waning of COVID-19 vaccine effectiveness. Influence of vaccine booster and age on confirmed infection incidence. *Eur J Intern Med*. 2022;102:122-124. doi:10.1016/j.ejim.2022.05.025

SUPPORTING INFORMATION

Additional supporting information can be found online in the Supporting Information section at the end of this article.

How to cite this article: Corral-Gudino L, Cusacovich I, Martín-González JJ, et al. Effect of intravenous pulses of methylprednisolone 250 mg versus dexamethasone 6 mg in hospitalised adults with severe COVID-19 pneumonia: An open-label randomised trial. *Eur J Clin Invest*. 2023;53:e13881. doi: [10.1111/eci.13881](https://doi.org/10.1111/eci.13881)