Elucidating the molecular responses of apple rootstock resistant to ARD pathogens: challenges and opportunities for development of genomics-assisted breeding tools

Yanmin Zhu¹, Gennaro Fazio¹ and Mark Mazzola²

Apple replant disease (ARD) is a major limitation to the establishment of economically viable orchards on replant sites due to the build-up and long-term survival of pathogen inoculum. Several soilborne necrotrophic fungi and oomycetes are primarily responsible for ARD, and symptoms range from serious inhibition of growth to the death of young trees. Chemical fumigation has been the primary method used for control of ARD, and manipulating soil microbial ecology to reduce pathogen density and aggressiveness is being investigated. To date, innate resistance of apple rootstocks as a means to control this disease has not been carefully explored, partly due to the complex etiology and the difficulty in phenotyping the disease resistance. Molecular defense responses of plant roots to soilborne necrotrophic pathogens are largely elusive, although considerable progress has been achieved using foliar disease systems. Plant defense responses to necrotrophic pathogens consist of several interacting modules and operate as a network. Upon pathogen detection by plants, cellular signals such as the oscillation of Ca²⁺ concentration, reactive oxygen species (ROS) burst and protein kinase activity, lead to plant hormone biosynthesis and signaling. Jasmonic acid (JA) and ethylene (ET) are known to be fundamental to the induction and regulation of defense mechanisms toward invading necrotrophic pathogens. Complicated hormone crosstalk modulates the fine-tuning of transcriptional reprogramming and metabolic redirection, resulting in production of antimicrobial metabolites, enzyme inhibitors and cell wall refortification to restrict further pathogenesis. Transcriptome profiling of apple roots in response to inoculation with Pythium ultimum demonstrated that there is a high degree of conservation regarding the molecular framework of defense responses compared with those observed with foliar tissues. It is conceivable that the timing and intensity of genotype-specific defense responses may lead to different outcomes between rootstocks in response to invasion by necrotrophic pathogens. Elucidation of host defense mechanisms is critical in developing molecular tools for genomics-assisted breeding of resistant apple rootstocks. Due to their perennial nature, use of resistant rootstocks as a component for disease management might offer a durable and cost-effective benefit to tree performance than the standard practice of soil fumigation for control of ARD.

INTRODUCTION

Apple replant disease (ARD) is caused by a complex of soilborne necrotrophic fungi and oomycetes, and at times can be aggravated by the lesion nematode Pratylenchus penetrans.¹⁻³ When young trees are planted on a site that has a previous history of apple (or closely related species) cultivation, they develop disease symptoms ranging from mildly uneven growth to serious growth inhibition and even death of trees, especially for trees planted in previous orchard rows. In the absence of control, the effects of ARD can exist over the entire lifetime of the orchard in the form of decreased fruit yields. As a result, this disease is a primary limitation to the establishment of an economically viable orchard on replant sites. The principal method for the control of ARD is pre-plant fumigation of orchard soils to eradicate ARD pathogens,⁴,⁵ but fumigation is not feasible after orchard establishment. In addition to the cost, the future availability of currently used fumigants could be restricted due to environmental concerns. Moreover, recent studies have demonstrated that the efficacy of fumigation in terms of plant growth and pathogen pressure in treated soils is short lived.⁶ Establishing new plantings on sites where no apple or closely related crops have grown could theoretically be an option, but the availability of such land in the major production regions is limited or non-existent. Fallowing for extended periods as a cultural practice was reported to provide partial control of the peach replant problem,⁷ but no detectable benefit to growth and yield of apple tree was observed on replant orchard sites after up to 3 years of fallowing.⁸ Measures aimed at managing microbial communities in orchard soil to promote plant heath and minimize pathogen aggressiveness can be effective in many situations, though the satisfactory efficacy of such an approach across the diversity of orchard systems needs further investigation.

Host tolerance/resistance is an economically attractive means of managing diseases in tree fruit production systems. Recent studies suggested that the production of a more fibrous root system contributes to the enhanced performance of certain ARD tolerant rootstocks such as Geneva 210,⁹⁻¹¹ although tolerance to individual components of the ARD pathogen complex has been detected in apple germplasm.¹²⁻¹⁴ Even tolerant rootstocks exhibit increased growth in response to soil fumigation indicating incomplete resistance to the causal pathogen complex among the commercially available apple rootstock germplasm. Utilization of innate resistance to ARD pathogens could provide a cost-effective, durable and environment-friendly disease control strategy, yet the molecular basis of apple root resistance responses to ARD pathogens is
unknown. Due to the hidden nature of the root system and lack of standard phenotyping methods, the molecular characterization of root interactions with soilborne necrotrophic pathogens is currently rare even on model plant species.15–17 Nevertheless, newly available genomic approaches, accumulated apple genetic resources and the recent progress in the study of molecular plant–necrotroph interactions present the opportunity to elucidate the molecular networks functional in apple root resistance to ARD pathogens. Such a knowledge basis is essential for targeted and efficient introduction of the resistant gene pool by genomics-assisted breeding into future apple rootstock varieties.

A MULTITROPHIC PATHOGEN COMPLEX INCITING ARD

Increasing pathogen densities over time in perennial cropping systems has been well documented18 and may play a part in reduced productivity over the lifespan of an apple orchard. It also has been shown that this increase in pathogen densities contributes to the general difficulty of replanting of sites with an economically viable crop of the same or similar species. This phenomenon, typically referred to as replant disease or disorder, afflicts the majority of tree fruit and nut crop production systems, including apple,19,20 in all of the major fruit-growing regions of the world.21 Studies employing traditional culture-based methods have yielded the bulk of our knowledge concerning the etiology of apple replant disease, the importance of microbial interactions on disease severity, and the temporal nature of pathogen-complex development over the commercial lifespan of an orchard. Although replant disease has generally been attributed to biotic factors, the identity and consistency of the complex inciting this disease have been the subject of much debate. A number of in-depth studies concerning disease etiology are in agreement regarding the cause of replant disease,1,2,18,20,22,23 Using a multiphasic approach to investigate the etiology of apple replant disease and incorporating a diversity of methods to discern the causal biology, a surprisingly consistent assemblage of pathogens/parasites has been documented as the principal causal agents of replant disease. These elements include, but are not limited to, Cylindrocarpon, Phytophthora, Pythium and Rhizoctonia spp., along with the endoparasitic nematode Pratylenchus penetrans.1,1,2,18,20,23 While species composition within the fungal/oomycete genera and relative contribution to disease development may vary from orchard to orchard21,24–26 the complex as a whole has shown consistency across geographic regions.1,2,20,24 Likewise, non-fumigant approaches, such as soil amendment of brassicaceous seed meals specifically targeting this pathogen complex, have proven effective in controlling the disease highlighting the contribution of this complex to the etiology of apple replant disease.26 Other components of soil microbial community which influence disease incidence and the manipulation of orchard soil microbial communities as a means to control ARD has been thoroughly reviewed.27

ROOTSTOCK RESISTANCE AS A CRUCIAL COMPONENT FOR ARD MANAGEMENT

The utilization of dual genotype plants in perennial tree crops where the root system (rootstock) is of one type and the grafted aerial system (scion) of another, is an ancient technology that has been modernized through breeding and selection of specialized rootstocks.28,29 The dual nature of the grafted trees has allowed a ‘divide and conquer’ strategy for the achievement of higher yields by focusing breeding efforts on very different traits in the two constituent parts. Productivity, tolerance to abiotic stresses and resistance to biotic stresses (root diseases and insects) are the target traits of rootstock breeding.30–35 exploiting one or a combination of many mechanisms, including gene for gene resistance,36 promotion of a beneficial microbial community,37 production of antimicrobial substances in the roots38 and rapid regeneration of root systems.39,40 It is clear that the implementation of disease tolerant/resistant, high yielding rootstocks has increased per acre productivity of high-quality fruit and gradually decreased labor, fertilizer and antimicrobial compound applications.39 The complex nature of replant diseases makes breeding for tolerance or resistance very challenging, but some germplasm in the breeding pipeline, such as the progenitor of apple Malus sieversii, has been described as possessing resistance to multiple apple diseases.13,40,41 Evaluations utilized in breeding for resistance have been limited to inoculation with pathogen cocktails42 and subsequent assessment of seedling death or planting in pathogen-infested fields43,44 with very little understanding of the mechanisms behind such resistance. Yet breeding strategies for complex diseases like ARD are better served by a reductionist approach that isolates each of the potential culprits and identifies the magnitude of the effects on and responses of plant roots to individual pathogens, with the appreciation that in the field some factors may interact (e.g., root nematodes forming entry wounds for fungal pathogens). The application of robust markers in marker-assisted breeding based on knowledge of how resistance operates in apple roots would also facilitate the development of new resistant cultivars, since most root diseases are difficult to phenotype on single plants.44,45

GENOMICS-ASSISTED BREEDING FOR ACCURATE AND EFFICIENT INCORPORATION OF RESISTANT TRAITS

Breeding of rootstock tree crops is a time-consuming and resource-demanding process, with many target traits such as dwarfing, precocity, productivity and resistance to various diseases and insects.46,47 The detection and exploitation of genetic variation in germplasm collections and breeding populations have always been an integral part of plant breeding, but utilization of DNA-based molecular markers to predict phenotypes can improve the precision and efficiency.48,49 Genomics-assisted breeding, in general, refers to application of genomic tools in breeding practices for developing superior germplasm with enhanced agronomical traits.50,51 A range of approaches including genomics, transcriptomics and proteomics can be employed to establish and utilize the relationship between genotype and phenotype, and identify genes or molecular markers associated with traits of interest. The ultimate goal is to use these genomic resources to establish the connection between desirable traits and a tightly linked marker or an allelic form of the gene that is known to contribute significantly towards the target trait. From there forward, the desirable genes can be bred into horticulturally acceptable plant forms from wild germplasm sources with a minimal linkage drag (i.e., the tendency of genes inherited together as they are located proximal to each other on a chromosome). With the increasing availability of abundant markers such as single-nucleotide polymorphism across whole apple genomes, high-throughput genotyping technologies such as whole-genome genotyping array and continually improved statistical software, genomic selection holds promise for the manipulation of complex polygenic traits often controlled by many small effect genes.52–54 Currently, the specific apple genes or genetic loci associated with resistant responses to ARD pathogens are basically unknown.

ELUSIVE MOLECULAR RESPONSES OF PLANT ROOTS TO SOILBORNE NECROTROPHIC PATHOGENS

Plant pathogens can be classified as biotrophic or necrotrophic based on their mode of attack. Biotrophic pathogens invade and acquire nutrients from living plant cells until the pathogen life cycle is completed, while necrotrophic pathogens kill the plant cell and then utilize nutrients from dead cells.55 Based on studies using model systems, it is clear that plants use discrete defense mechanisms to deal with these two types of attackers.56–58 Plant resistance to biotrophic pathogens is based on host induction of localized necrosis to limit pathogen spread. Resistance to necrotrophic pathogens involves production of antimicrobial compounds and cell wall reinforcement to limit pathogen progression and prevent
cell death. While many foliar pathogens are biotrophic, the majority of root pathogens are necrotrophs. Hemibiotrophs may begin the infection as a biotroph and complete infection as a necrotroph, but very likely resistance operates during the initial biotrophic portion of the infection process. 59 All ARD pathogens appear to be necrotrophs; whether or not a brief biotrophic phase exists for some of them during the initial infection stage may require further study. A greater understanding of the mechanisms that underlie rootstock tolerance of root growth influencing groups of fungal endophytes is obtained because recent studies have demonstrated that many soilborne microbial pathogens can establish asymptomatic relationships with the roots of nonhost species. 64 This new insight might account for the persistence of the majority of soilborne pathogens in soil for extended periods of time in the absence of plant hosts. As roots grow in close proximity, certain pathogen propagules may detect root exudates resulting in stimulation of spore germination and mycelial growth toward roots by chemotaxis and chemotropism. 57,62

As apple root resistance to ARD pathogens is a barely explored and phenotyping-challenged biological process, transcriptomics is a potentially good starting point to uncover the genes, pathways, networks and genetic structure regulating root defense response. Our recent transcriptome profiling of apple root tissue in response to P. ulitum infection (as summarized below) revealed that there is substantial similarity to the genes and pathways identified from other plant tissues as they were challenged with necrotrophs. Here we provide an outline of the current understanding of plant–necrotroph interactions as a guideline, with the caveat that most data are derived from studies using non-horticultural species in non-root tissues based on interactions with a few diverse foliar pathogens.

THE MOLECULAR FRAMEWORK OF PLANT DEFENSE RESPONSES TO NECROTROPHIC PATHOGENS

As in animals, plants possess an innate immune system which enables pathogen detection and induction of defense responses. Plant immunity is comprised of distinct signaling sectors interacting in a complex fashion with network properties. 63–65 Plants exploit various strategies to perceive attack and translate the signal into a broad spectrum of inducible defense responses. 66 Cellular processes during plant defense include accumulation of reactive oxygen species (ROS) and nitric oxide (NO), hormone modulation, biosynthesis of various antimicrobial secondary metabolites and peptides, callose deposition and cell wall modifications. 67 Several plant hormones, including SA, jasmonic acid (JA) and ethylene (ET), are central to plant defense mechanisms but the operative mechanisms vary with the pathogen type or mode of attack. 68

Plant surveillance system, detection of pathogens and early signal transduction

Plants recognize necrotrophic pathogens primarily by the pathogen-associated molecular patterns (PAMP) of structural molecules (or elicitors) through pattern recognition receptors. The necrotrophs produce phytotoxins and cell wall degrading enzymes, and plants in turn activate a wide spectrum of immune responses to counteract these attacks. The cellular activities of plant immediately downstream of elicitor detection are still largely elusive; however, several signaling pathways are correlated with the PTI (PAMP-triggered immunity), including rapid influx of calcium (Ca2+), generation of ROS and NO, and activation of mitogen-activated protein kinases. 69–71

Calcium concentration. Oscillation of spatial and temporal Ca2+ concentration is one of several early signaling events among PAMP-induced defense responses. 74 Several families of proteins, including calmodulins, calmodulin-related proteins and Ca2+-dependent protein kinases function as Ca2+ sensors. 75 The molecular connection between Ca2+ concentration changes, H2O2 production, JA biosynthesis pathway and phytoalexin production has been demonstrated. 76

Oxidative burst and NO generation. Accumulation of ROS and NO is a commonly observed plant immune response. However, it may possess contrasting defense functions depending on a pathogen’s lifestyle. For example, the level of superoxide and hydrogen peroxide generated in plant cells during infection is associated with the relative virulence of Botrytis cinerea and Sclerotinia sclerotiorum. 77 Pharmacological analyses indicate that there are mutual positive feedback mechanisms between NO generation and JA biosynthesis induction in plant cells under stress conditions. 83 The connection among oxidative burst, cell wall lignification and phytoalexin accumulation is commonly observed during typical PTI responses, 78–80 which can lead to resistant phenotypes. 81

Kinase. Plant mitogen-activated protein kinase pathways fulfill many functions in plant responses to stress and pathogen infection. MPK6 and MPK3 were shown to phosphorylate ACS (1-aminocyclopropane-1-carboxylic acid synthases) 2 and 6 resulting in increased B. cinerea induces ET biosynthesis. 82–85 Phosphorylation of WRKY (transcription factors containing a conserved WRKYGQR amino acid sequence at their N-terminal ends) 33 by MPK3/MPK6 in response to B. cinerea infection is required for camalexin (a pathogen infection induced antimicrobial secondary metabolite) biosynthesis in Arabidopsis. 86

Plant hormone modulation during defense against necrotrophic pathogens

Based on studies using Arabidopsis mutants impaired in hormone biosynthesis and perception, as well as pharmacological treatments, it is well established that SA, ET and JA are vital components of plant defense responses 56,58,87–89 and plants use discrete hormone balances and fine tuning of crosstalk to deal with various attackers. SA-regulated defense mechanisms are activated in response to biotrophic pathogens, whereas JA/ET-mediated signaling pathways are critical to plant defense responses to necrotrophic pathogens. 56,90,91 SA and JA/ET regulated defense pathways are believed to be mutually antagonistic, but examples of synergistic interactions have also been reported. 92–95

JA. Disruption of genes in JA synthesis and response compromises plant defense to necrotrophs, whereas exogenous application of JA confers resistance to these pathogens. 96–98 Natural variation of sequences for potato allene oxide synthase 2, was shown to contribute to resistance toward two pathogens; Phytophthora infestans and Pectobacterium carotovorum (previously Erwinia carotovora) ssp. atroseptica. 99

ET. Studies of Arabidopsis interactions with various necrotrophic pathogens suggest that several components in ET signaling pathways regulate plant defense responses. Over-expression of ERF1 (ethylene response factor 1) enhances resistance against B. cinerea and increases susceptibility to the hemibiotroph Pseudomonas syringae pv tomato. 100 Increased susceptibility to necrotrophic fungi such as Pythium spp. and B. cinerea was linked to defective ethylene signal perception in the Arabidopsis etr1-1 and ein2 mutant and ethylene-insensitive transgenic tobacco expressing a defective ethylene receptor ETR1. 102–104

Other plant hormones. Both tomato and Arabidopsis abscisic acid-deficient mutants demonstrated enhanced resistance to necrotrophs, which is attributed to induced transcription of JA/ET-responsive
genes and timely production of hydrogen peroxide.105 However, in other cases, mutants deficient in abscisic acid biosynthesis or insensitive to abscisic acid are more susceptible to infection by Alternaea brassicicola, B. cinerea, and Pythium irregulare.106 Responses to gibberellin can be repressed by DELLA proteins (i.e., contains the conserved amino-acid motifs DELLA), which also promote resistance to necrotrophs by activating JA/ET-dependent defense responses and susceptibility to biotrophs by repressing SA-dependent defense responses. DELLA proteins also promote the expression of genes encoding ROS detoxification enzymes and subsequently regulate the levels of ROS after biotic or abiotic stress.107,108

Crosstalk between plant hormones can result in multiple feedback regulations to fine tune gene expression patterns and feed forward regulations to coordinate expression intensity and duration.92,93 The plant transcription factors WRKY, NAC (transcription factor family including three sub groups of NAM, ATAF and CUC), ERF and MYB (myeloblastosis oncogene) families play key roles in plant resistance to necrotrophs under the regulation of plant hormones.109,110 For example, JA-inducible R2R3-MYB in tobacco protoplast (MYB51) is required to activate phenylpropanoid biosynthetic pathway and accumulate phenylpropanoids–polyamine conjugates under stress conditions.111

Secondary metabolism as an important component in plant defense
Both preformed antimicrobial compounds (phytoanticipins) and infection induced antimicrobial secondary metabolites (phytoalexins) have long been associated with plant resistance to fungal, oomycete and bacterial pathogens.112,113 Phytoalexins are small molecules of extreme structural diversity and with effective doses around order of magnitude 10^{-5}–10^{-4} M.114 In general, closely related plant families use similar secondary metabolites for defense purposes (e.g., isoflavonoids in the Leguminosae and sesquiterpenes in the Solanaceae), although some chemically related defense compounds are shared across taxa (e.g., phenylpropanoid derivatives).114-117

Biphenyl and dibenzofuran are the major phytoalexins in rosaceous plants.118 In a recent study, several biphenyl or dibenzoferan derivatives were reported to accumulate in the transition zone between the infected and healthy shoot segments of apple (Malus domestica cv Holsteiner Cox) and pear (Pyrus communis cv Conference) in response to inoculation with the fire blight bacterium Erwinia amylovora.119 Functional analysis of biphenyl synthase gene family of apple, which is responsible for the biosynthesis of the biphenyl and dibenzofuran carbon skeleton, suggested that biphenyl synthase 3 is primarily expressed in apple shoot tissue with highest transcript levels in the transition zone in fire blight-infected apple.120

Phytoalexins as an integral component of plant defense responses and their roles in disease resistance have been investigated for over half a century, though their roles in resistance phenotypes remain controversial.121-123 Among other reasons, differences in methods used to quantify phytoalexins may have contributed to the inconsistency regarding its effect. For example, the biosynthesis of camalexin is highly localized surrounding the infection site, but measurement of camalexin may be performed using the whole leaf or whole plant.124,125 Variations in genotype-specific dynamics of the rate and intensity of phytoalexin accumulation may be important to the outcome of plant–pathogen interactions; moreover, its accumulation at the right place and right time may be more critical in determining the resistant and susceptible phenotypes.123,126

GENOMIC APPROACHES TO ELUCIDATE THE DEFENSE NETWORKS IN APPLE ROOT TO ARD PATHOGENS
Although significant progress has been achieved on the molecular dissection of plant–necrotroph interactions in recent years, the vast majority of knowledge has been derived from foliar pathogens interacting with a few model plants. Currently, defense responses in plant root tissues, particularly in perennial tree species such as apple, is far less defined. With progress being made toward deciphering the apple genome and accumulation of germplasm and genetic resources, there is a great opportunity to advance our understanding of apple root responses to soilborne pathogens. Draft genome sequences for apple were released in 2010,127 and comprehensive apple EST collections now exist (more than 280,000 entries) (Genome Database for Rosaceae; http://www.rosaceae.org/).126 Available RNA-sequencing (RNA-seq) data were used to develop a comprehensive reference apple transcriptome, which provided improved annotation for apple genome sequences and also revealed many new features of apple transcriptome including novel and antisense transcripts.129,130 Genome sequences for several founding rootstock genotypes (Ottawa 3, Malling 27, Malling 9, Robusta 5, Geneva 41) are also available (Fazio, unpublished data). Apple genetic maps based on SSRs and single-nucleotide polymorphism marker have also been developed.52,131,132

Transcription regulation is a major step in the conversion of genome-encoded information to the agronomic trait.133-135 Therefore, large-scale transcriptomics is often a primary choice to uncover molecular or genetic bases controlling a less explored biological process. The massive-parallel sequencing technologies, also collectively known as next-generation sequencing, have revolutionized biological research within 10 years.136-137 RNA-seq, which simultaneously sequences the complementary DNAs of all transcript populations, has become a mainstay of transcriptomic analysis, although the first plant transcriptome analysis using RNA-seq was reported just a few years ago.138 Compared with the previous microarray technology, the RNA-seq approach offers several obvious advantages. As an open-end platform, RNA-seq is not restricted to only those transcripts deposited on the microarray, but can detect the abundance of all mRNAs in a sample including novel transcripts or alternative splicing variants. RNA-seq, being more sensitive in detecting the dynamic range of gene expression, favors the detection of low-abundance but often function-relevant gene transcripts. RNA-seq can generate more accurate or less biased transcript quantification and distinguish homologous genes and/or alleles at the ultimate resolution of single nucleotide variation.139,140 With the continuously decreasing cost, RNA-seq methodology can be used to establish the global molecular regulation network underlying the interactions between apple root and ARD.

RNA-seq based large-scale, high-resolution transcriptomic profiling and fast-evolving bioinformatic analysis tools have demonstrated capability for the study of genome-wide sequence polymorphisms on transcriptome variations among intraspecific individuals. One of the recent, large-scale applications of RNA-seq is the detection of expression quantitative trait loci (eQTLs) by sequencing the individual transcriptome in a segregating population. In eQTL analysis, the variation in transcript abundance for each gene is treated as a heritable trait which is subjected to statistical genetic analyses across a population.141-143 Furthermore, applying a pre-defined network to query the eQTL dataset, or an a priori network analysis, can be an effective means to link causal gene and resulting phenotype.144 Therefore, eQTL analysis facilitates the dissection of the molecular basis of complex traits.144-146 For example, using such approaches, a transcription factor PAP1 in anthocyanin biosynthesis pathway, but not other related transcription factors, was shown to collocate with a phenolic-specific network eQTL.147-149 Recently, transcriptome profiling for 48 individuals from the ‘Ottawa 3’ × ‘Robusta 5’ apple rootstock mapping population identified a small set of thirty genes, physically clustered on the same location of chromosome 12, to be differentially expressed in shoot tips between resistant and susceptible trees to powdery mildew. Similarly, five differentially expressed between trees resistant and susceptible to woolly apple aphid, were clustered on chromosome
by ARD pathogens may be the foundation for subsequent genomics-assisted breeding.

Many questions remain: How do resistance traits in perennial root systems change in relation to tree age? Seedlings are typically the subject of research due to the feasibility of experimental design, but whether or not consistent responses in root systems between seedling and mature tree can be achieved should be investigated. How does the scion genotype influence the performance of root defense responses to pathogen infection? Mutual influence between rootstock and scion genotypes will be an interesting subject. For example, it was shown that rootstock genotypes can affect the performance of scion resistance to fire blight, 151 but the effect of scion genotypes on root resistance to ARD pathogens is unknown. How will the constituent variations of the ARD pathogen complex and other soil microbe communities from orchard to orchard affect performance of resistance traits? How different apple rootstock genotypes alter the soil biota by root exudation and subsequent manipulation of pathogen behavior? Recent studies indicated that the previous rootstock genotypes mainly influenced soil bacterial communities and current replanted rootstock genotype affected fungal communities more; pointing to the role of rootstock genotype-specific interactions with soil biota then influencing ARD incidence. 152 Nevertheless, identification of the molecular networks, the genetic loci, the signaling pathways and candidate genes contributing to the resistance to ARD pathogens is an essential first step. Marker assisted selection or genomics-assisted breeding can facilitate incorporating resistant traits more efficiently and accurately to new apple rootstocks. A commercial orchard will stand for several decades, so utilizing resistant rootstocks as an integral component for replant disease management can be more cost-effective and durable.

COMPETING INTERESTS
The authors declare no conflict of interest.

ACKNOWLEDGEMENTS
The authors are grateful to Dr Martha Hawes for her helpful advice. We also thank two anonymous reviewers for their thorough and critical review.

REFERENCES
1 Jaffee BA, Abawi GS, Mai WF. Fungi associated with roots of apple seedlings grown in soil from an apple replant site. Plant Dis 1982; 66 : 942–944.
2 Jaffee BA, Abawi GS, Mai WF. Role of soil microflora and Pratylenchus penetrans in an apple replant disease. Phytopathology 1982; 72 : 247–251.
3 Mazzola M. Identification and pathogenicity of Rhizoctonia spp. isolated from apple roots and orchard soil. Phytopathology 1997; 87 : 582–587.
4 Covey RP, Benson NR, Haglund WA. Effect of soil fumigation on the apple replant disease in Washington. Phytopathology 1979; 69 : 684–686.
5 Smith TJ. Orchard Update, Washington State Univ Coop Ext Bull September issue. Pullman, WA: Washington State University, 1995.
6 Mazzola M, Strauss SL. Resilience of orchard replant soils to pathogen re-infestation in response to Brassicaceae seed meal amendment. Aspects Appl Biol 2013; 119 : 69–77.
7 Trout T, Ajwa H, Schneider S. Fumigation and fallowing effects on replant problems in California peach. In: Proceedings of Annual International Research Conference on Methane Alt and Emissions Reductions. 2001.
8 Mazzola M, Mullinix K. Comparative field efficacy of management strategies containing Brassica napus seed meal or green manure for the control of apple replant disease. Plant Dis 2005; 89 : 1207–1213.
9 Atucha A, Emmett B and Bauerle TL. Growth rate of fine root systems influences rootstock tolerance to replant disease. Plant Soil 2014; 376 : 337–346.
10 Emmett B, Nelson EB, Kessler A, Bauerle TL. Fine-root system development and susceptibility to pathogen colonization. Planta 2014; 239 : 325–340.
11 Fazio G, Kivikylä D, Robinson TL. QTL mapping of root architectural traits in apple rootstocks. HortScience 2009; 44 : 986–987.
12 Iiuata DK, Merwin IA. Malus germplasm varies in resistance or tolerance to apple replant disease in a mixture of New York orchard soils. HortScience 2000; 35 : 262–268.
13 Mazzola M, Brown J, Zhao X, Izzo AD, Fazio G. Interaction of brassicaceous seed meal and apple rootstock on recovery of Phytophthora spp. and Pratylenchus penetrans from roots grown in replant soils. Plant Dis 2009; 93: 51–57.

14 Fazio G, Mazzola M. Target traits for the development of marker assisted selection of apple rootstocks—prospects and benefits. Acta Hortic 2004; 663: 823–828.

15 Li C, Shao J, Wang Y et al. Analysis of banana transcriptome and global gene expression profiles in banana roots in response to infection by race 1 and blight disease in Rosaceae. Plant Mol Biol Rep 2013; 31: 145–154.

16 Millet YA, Danna CH, Clay NK et al. Innate immune responses activated in Arabidopsis roots by microbe-associated molecular patterns. Plant Cell 2010; 22: 973–990.

17 Zhang Y, Wang XF, Ding ZG et al. Transcriptome profiling of Gossypium barbadense inoculated with Verticillium dahliae provides a resource for cotton improvement. BMC Genomics 2013; 14: 637.

18 Mazzola M. Transformation of soil microbial community structure and Rhizoctonia-suppressive potential in response to apple roots. Phytopathology 1999; 89: 920–927.

19 Mai WF, Abawi GS. Controlling replant disease of pome and stone fruits in northeastern United States by preplant fumigation. Plant Dis 1981; 65: 859–64.

20 Mazzola M. Elucidation of the microbial complex having a causal role in the development of apple replant disease in Washington. Phytopathology 1998; 88: 930–938.

21 Traquair JA. Etiology and control of orchard replant problems: a review. Can J Plant Pathol 1984; 6: 54–62.

22 Braun PG. The combination of Cylindrocarpon lucidum and Pythium irregular as a possible cause of apple replant disease in Nova Scotia. Can J Plant Pathol 1991; 13: 291–297.

23 Tewodemedhin YT, Mazzola M, Labuschagne I, McLeod A. A multi-phasis approach reveals that apple replant disease is caused by multiple biological agents, with some agents acting synergistically. Soil Biol Biochem 2011; 43: 1917–1927.

24 Tewodemedhin YT, Mazzola M, Mostert L, McLeod A. Cylindrocarpon species associated with apple tree roots in South Africa and their quantification using real-time PCR. Eur J Plant Pathol 2011; 129: 637–651.

25 Mazzola M, Brown J, Zhao X, Izzo AD, Fazio G. Interaction of brassicaceous seed meal and apple rootstock on recovery of Phytophthora spp. and Pratylenchus penetrans from roots grown in replant soils. Plant Dis 2009; 93: 51–57.

26 Mazzola M, Manici M. Apple replant disease: role of microbial ecology in cause and control. Ann Rev Phytopathol 2012; 50: 45–65.

27 Mazzola M, Brown J. Efficacy of brassicaceous seed meal formulations for the control of apple replant disease in organic and conventional orchard production systems. Plant Dis 2010; 94: 835–42.

28 Webster AD, Palmer JW, Wunschke JN. Rootstocks for temperate fruit crops: current uses, future potential and alternative strategies, Proceedings of the Seventh International Symposium on Orchard and Plantation Systems, Nelson, New Zealand, Acta Hortic 2001; 557: 25–34.

29 Wertheim SJ. Rootstock Guide: Apple, Pear, Cherry, European Plum, Wilhelminendorp: Proefstasion voor de Fruitteelt (Fruit Research Station), 1998.

30 Russo NL, Robinson TL, Fazio G, Aldwinckle HS. Field evaluation of 64 apple rootstocks for orchard performance and fire blight resistance. HortScience 2007; 42: 1517–1525.

31 Fazio G, Mazzola M. Target traits for the development of marker assisted selection of apple rootstocks - prospects and benefits. Acta Hortic 2004; 663: 823–828.

32 Leinfelder MM, Merwin IA. Rootstock selection, preplant soil treatments, and tree planting positions as factors in managing apple replant disease. HortScience 2006; 41: 394–401.

33 Utkhede RS, Smith EM. Impact of chemical, biological and cultural treatments on the growth and yield of apple in replant-disease soil. Aust Plant Pathol 2000; 29: 173–186.

34 Fazio G, Kviklys D, Grusak MA, Robinson TL, Fazio G, Thies JE. Brown MG. Rootstock genotype succession influences apple replant disease and root-zone microbial community composition in an orchard soil. Plant Soil 2010; 337: 259–272.

35 Inagaki YS, Noutoshi Y, Fujita K et al. Infection-inhibition activity of avenacin saponins against the fungal pathogens Blumeria graminis f sp hordei, Bipolaris oryzae, and Magnaporthe oryzae. J Gen Plant Pathol 2013; 79: 69–73.

36 Johnson WC. Methods and results of screening for disease- and insect-resistant apple rootstocks. Compact Fruit Tree 2000; 33: 108–111.

37 Okie WR, Reighard GL, Beckman TG et al. Field-screening Prunus for longevity in the southeastern United States. HortScience 1994; 29: 673–677.

38 Blenda AV, Reighard GL, Baird WV, Abbott AG. Simple sequence repeat markers for detecting sources of tolerance to PTSL in Prunus persica rootstocks. Euphytica 2006; 147: 287–295.

39 Fazio G, Aldwinckle HS, Robinson TL, Wan Y. Application of molecular markers in the development of peach rootstocks tolerant to ring nematode (Mesocyclospora xylarioides). Acta Hortic 2002; 592: 229–236.

40 Johnson WC, Aldwinckle HS, Cummins JN et al. The new USDA-ARS/Cornell University apple rootstock breeding and evaluation program. Acta Hortic 2001; 557: 35–40.

41 Auvil TD, Schmidt TR, Hanrahan I et al. Evaluation of dwarfing rootstocks in Washington apple replant sites. Acta Hortic 2011; 903: 265–271.

42 Fosline PL, Aldwinckle HS, Hale C, Mitchell R. Natural occurrence of fire blight in USDA apple germplasm collection after 10 years of observation. Acta Hortic 2002; 590: 351–357.

43 Fosline PL, Aldwinckle HS. Evaluation of Malus sieversii seedling populations for disease resistance and horticultural traits. Acta Hortic 2004; 663: 529–534.

44 Johnson WC. Rootstock resistance to soilborne pathogens in the Apple Rootstock Breeding program in Geneva—challenges and successes. Acta Hortic 2011; 903: 61–68.

45 Auvil TD, Schmidt TR, Hanrahan I et al. Evaluation of dwarfing rootstocks in Washington apple replant sites. Acta Hortic 2011; 903: 265–271.
71 Boller T, Felix GA. Renaissance of elicitors: perception of microbe-associated molecular patterns and danger signals by pattern-recognition receptors. Annu Rev Plant Biol 2009; 60: 379–406.

72 Tao Y, Xie Z, Chen W et al. Quantitative nature of Arabidopsis responses during compatible and incompatible interactions with the bacterial pathogen Pseudomonas syringae. Plant Cell 2003; 15: 317–330.

73 Romeis T, Ludwig A, Martin R, Jones JD. Calcium-dependent protein kinases play an essential role in a plant defense response. EMBO J 2001; 20: 5556–5567.

74 Kurusu T, Hamada J, Nakajima H et al. Regulation of microbe-associated molecular pattern-induced hypersensitive cell death, phytoalexin production, and defense gene expression by calcineurin B-like protein-interacting protein kinases, OsCIPK14/15, in rice cultured cells. Plant Physiol 2010; 153: 678–692.

75 Reddy AS, Ali GS, Celenik H, Day I. Coping with stresses: roles of calcium- and abscisic acid- and jasmonic acid/ethylene-dependent responses via EDS1 and NDR1 in Arabidopsis. Annu Rev Plant Biol 2011; 62: 367–389.

76 Hu XY, Neill S, Yang Y, Cai W. Fungal elicitor Pep-25 increases cytosolic calcium ions, H2O2 production, and activates the octadecanoid pathway in Arabidopsis thaliana. Planta 2009; 229: 1201–1208.

77 Govrin EM, Levine A. The hypersensitive response facilitates plant infection by the necrotrophic pathogen Botrytis cinerea.Curr Biol 2000; 10: 751–757.

78 Denoux C, Galletti R, Mammarella N et al. Activation of defense response pathways by Oligos and Glc2 elicitors in Arabidopsis seedlings. Mol Plant 2008; 1: 423–445.

79 Ferrari S, Galletti R, Denoux C et al. Phytoalexins in Arabidopsis by elicitors is independent of salicylic acid, ethylene, or jasmonate signaling but requires PHYTOALEXIN DEFICIENT3. Plant Physiol 2007; 144: 367–379.

80 Lamb C, Dixon RA. The oxidative burst in plant disease resistance. Annu Rev Plant Physiol Plant Mol Biol 1997; 48: 251–275.

81 Galletti R, Denoux C, Gambetta S et al. Regulation of Arabidopsis resistance towards necrotrophic pathogens by Oligos and Glc2 elicitors in Arabidopsis seedlings. Mol Plant 2008; 1: 423–445.

82 Galletti R, Denoux C, Gambetta S et al. The Arabidopsis-mediated oxidative burst elicited by oligogalacturonides in Arabidopsis is dispensable for the activation of defense responses effective against Botrytis cinerea. Plant Physiol 2011; 150: 1695–1706.

83 van Dievoort C, Dixon RA. The oxidative burst in plant disease resistance. Annu Rev Plant Physiol Plant Mol Biol 1997; 48: 251–275.

84 Ferrari S, Galletti R, Denoux C et al. Resistance to Botrytis cinerea induced in Arabidopsis by elicitors is independent of salicylic acid, ethylene, or jasmonate signaling but requires PHYTOALEXIN DEFICIENT3. Plant Physiol 2007; 144: 367–379.

85 Brodersen P, Petersen M, Bjorn Nielsen H et al. Arabidopsis MAP kinase 4 regulates salicylic acid- and jasmonic acid/ethylene-dependent responses via EDS1 and PAD4. Plant J 2006; 47: 532–546.

86 Qi J, Fill BK, Petersen K et al. Arabidopsis MAP kinase 4 regulates gene expression through transcription factor release in the nucleus. EMBO J 2008; 27: 2214–2221.

87 Denoux C, Liu Y, Yang KY et al. A fungal-responsive MAPK cascade regulates phytoalexin biosynthesis in Arabidopsis. Proc Natl Acad Sci USA 2008; 105: 5638–5643.

88 Han L, Li G, Yang KY et al. Mitogen-activated protein kinase 3 and 6 regulate Phytoalexins-induced ethylene production in Arabidopsis. Plant J Cell Mol Biol 2010; 64: 114–127.

89 Mao G, Meng X, Liu Y et al. Phosphorylation of a WRKY transcription factor by two pathogen-responsive MAPKs drives phytoalexin biosynthesis in Arabidopsis. Plant Cell 2011; 23: 1639–1653.

90 Browse J. Jasmonate passes muster: a receptor and targets for the defense hormone. Annu Rev Cell Dev Biol 2009; 25: 183–205.

91 Bari R, Jones JD. Role of plant hormones in plant disease responses. Plant Mol Biol 2009; 69: 473–488.

92 Robert-Setianiantz A, Navarro L, Bari R, Jones JD. Pathological hormone imbalances. Curr Opin Plant Biol 2007; 10: 372–379.

93 Verhage A, van Wees SC, Pieterse CM. Plant immunity: it’s the hormones talking, but what do they say? Plant Physiol 2010; 154: 536–540.

94 Grant MR, Jones JD. Hormone (dis)harmoons plant health and disease. Science 2009; 324: 750–752.

95 Beckers GJ, Spoel SH. Fine-tuning plant defense signaling: salicylate versus jasmonate. Plant Biol Stuttg 2006; 8: 1–10.

96 Kunkel BN, Brooks DM. Cross talk between signaling pathways in pathogen defense. Curr Opin Plant Biol 2002; 5: 325–331.

97 Mur LA, Kenton P, Atzorn R et al. The outcomes of concentration specific interactions between salicylate and jasmonate signaling include synergy, antagonism, and oxidative stress leading to cell death. Plant Physiol 2006; 140: 249–262.

98 Schenk PM, Kazan K, Wilson J et al. Coordinated plant defense responses in Arabidopsis revealed by microarray analysis. Proc Natl Acad Sci USA 2000; 97: 11655–11660.

99 Albuquerque S, Chai MF, Luo H et al. Tomato protein kinase 1b mediates signaling of plant responses to necrotrophic fungi and insect herbivory. Plant Cell 2008; 20: 1964–1983.

100 Thomma BP, Penninckx IA, Broekaert WF, Cammue BP. The complexity of disease signaling in Arabidopsis. Curr Opin Immunol 2001; 13: 63–68.

101 Vijayan P, Shockey J, Levesque CA et al. A role for jasmonate in pathogen defense of Arabidopsis. Proc Natl Acad Sci USA 1998; 95: 7209–7214.
127 Velasco R, Zharkikh A, Affourtit J, Dhingra A et al. The genome of the domesticated apple (Malus × domestica Borkh). Nat Genet 2010; 42: 833–839.

128 Park S, Sugimoto N, Larson MD, Beaudry R, van Nocker S. Identification of genes with potential roles in apple fruit development and biochemistry through large-scale statistical analysis of expressed sequence tags. Plant Physiol 2006; 141: 811–824.

129 Bai Y, Dougherty LE, Xu K. Towards an improved apple reference transcriptome for wide comparative analysis among eukaryotes. Science 2014; 342: 427–438.

130 Chagne D, Crowhurst RN, Troggio M et al. Genome-wide SNP detection, validation, and development of an 8K SNP array for apple. PloS One 2012; 7: e31745.

131 Fazio G, Wan Y, Kviklys D et al. Rootstock genotype succession and its relationship to induction of early bearing in apple scions. J Am Soc Hort Sci 2014; 139: 87–98.

132 Ramírez SR, Basu C. Comparative analyses of plant transcription factor databases. Curr Genomics 2009; 10: 10–17.

133 Ptashne M. Regulation of transcription: from lambda to eukaryotes. Trends Biochem Sci 2005; 30: 275–279.

134 Riechmann JL, Heard J, Martin G et al. Arabidopsis transcription factors: genome-wide comparative analysis among eukaryotes. Science 2000; 290: 2105–2110.

135 Metzker ML. Sequencing technologies—the next generation. Nat Rev Genet 2010; 11: 31–46.

136 Schuster SC. Next-generation sequencing transforms today's biology. Nat Methods 2008; 5: 16–18.

137 Wang Z, Gerstein M, Snyder M. RNA-Seq: a revolutionary tool for transcriptomics. Nat Rev Genet 2009; 10: 57–63.

138 Martin LB, Fei Z, Giovannoni JJ, Rose JK. Catalyzing plant science research with RNA-seq. Front Plant Sci 2013; 4: 66.

139 Druka A, Potokina E, Luo Z et al. Expression quantitative trait loci analysis in plants. Plant Biotechnol J 2010; 8: 10–27.

140 Laurent A, Merwin IA, Fazio G, Thiet JE, Brown MG. The genome of the domesticated apple is correlated with siRNA production and indicates a large potential for plant-based functional genetic improvement. New Phytologist 2013; 200: 16–18.

141 Cubillos FA, Coustham V, Loudet O. Lessons from eQTL mapping studies: non-coding regions and their role behind natural phenotypic variation in plants. Curr Opin Plant Biol 2012; 15: 192–198.

142 Jensen RC, Nap JP. Genetical genomics: the added value from segregation. Trends Genet 2001; 17: 388–391.

143 Kliebenstein DJ. Quantitative genomics: analyzing intraspecific variation using global gene expression polymorphisms or eQTLs. Annu Rev Plant Biol 2009; 60: 93–114.

144 Majewski J and Pastinen T. The study of eQTL variations by RNA-seq: from SNPs to genes. Trends Genet 2011; 27: 72–79.

145 Wang J, Yu H, Xie W et al. A global analysis of QTLs for expression variations in rice shoots at the early seedling stage. Plant J 2010; 63: 1063–1074.

146 Kliebenstein DJ, West M, van Leeuwen H, Loudet O, Doerge R, St Clair D. Identification of QTLs controlling gene expression networks defined a priori. BMC Bioinformatics 2006; 7: 308.

147 Borevitz JO, Xia YJ, Blount J, Dixon RA, Lamb C. Activation tagging identifies a conserved MYB regulator of phenylpropanoid biosynthesis. Plant Cell 2000; 12: 2383–2393.

148 Jensen PJ, Fazio G, Altman N, Proul C, McNellis TW. Mapping in an apple (Malus × domestica) F1 segregating population based on physical clustering of differentially expressed genes. BMC Genomics 2014; 15: 261.

149 Cubillos FA, Coustham V, Loudet O. Lessons from eQTL mapping studies: non-coding regions and their role behind natural phenotypic variation in plants. Curr Opin Plant Biol 2012; 15: 192–198.

150 Jensen PJ, Makalowska I, Altman N et al. Rootstock regulated gene expression patterns in apple tree scions. Tree Genet Genome 2010; 6: 57–72.

151 Laurent A, Merwin IA, Fazio G, Thiet JE, Brown MG. Rootstock-genotype succession influences apple replant disease and root-zone microbial community composition in an orchard soil. Plant Soil 2010; 337: 259–272.

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-nd/3.0/