Economical effect of lumen apposing metal stents for treating benign foregut strictures

Alexander Hallac, Wichit Srikureja, Eashen Liu, Parag Dhumal, Ashish Thatte, Nishant Puri

AIM
To evaluate the clinical and economical efficacy of lumen apposing metal stent (LAMS) in the treatment of benign foregut strictures.

METHODS
A single center retrospective database of patients who underwent endoscopic treatment of benign foregut strictures between January 2014 and May 2017 was analyzed. A control group of non-stented patients who underwent three endoscopic dilations was compared to patients who underwent LAMS placement. Statistical tests performed included independent t-tests and five-parameter regression analysis.

RESULTS
Nine hundred and ninety-eight foregut endoscopic dilations were performed between January 2014 and May 2017. 15 patients underwent endoscopic LAMS placement for treatment of benign foregut stricture. Thirty-six patients with recurrent benign foregut strictures underwent three or more endoscopic dilations without stent placement. The cost ratio of endoscopic dilation to LAMS (stent, placement and retrieval) is 5.77. Cost effective analysis demonstrated LAMS to be economical after three endoscopic dilation overall.

Abstract
AIM
To evaluate the clinical and economical efficacy of lumen apposing metal stent (LAMS) in the treatment of benign foregut strictures.

METHODS
A single center retrospective database of patients who underwent endoscopic treatment of benign foregut strictures between January 2014 and May 2017 was analyzed. A control group of non-stented patients who underwent three endoscopic dilations was compared to patients who underwent LAMS placement. Statistical tests performed included independent t-tests and five-parameter regression analysis.

RESULTS
Nine hundred and ninety-eight foregut endoscopic dilations were performed between January 2014 and May 2017. 15 patients underwent endoscopic LAMS placement for treatment of benign foregut stricture. Thirty-six patients with recurrent benign foregut strictures underwent three or more endoscopic dilations without stent placement. The cost ratio of endoscopic dilation to LAMS (stent, placement and retrieval) is 5.77. Cost effective analysis demonstrated LAMS to be economical after three endoscopic dilation overall.
LAMS was cost effective after two dilations in the Postsurgical stricture subgroup.

CONCLUSION
Endoscopists should consider LAMS for the treatment of benign foregut strictures if symptoms persist past three endoscopic dilations. Post-surgical strictures may benefit from LAMS if symptoms persist after two dilations in a post-surgical. Early intervention with LAMS appears to be a clinically and economically viable option for durable symptomatic relief in patients with these strictures.

Key words: Benign esophageal stricture; Endoscopy economics; Stent economics; Self expandable metallic stents; Esophageal diseases

© The Author(s) 2018. Published by Baishideng Publishing Group Inc. All rights reserved.

Core tip: The findings of our study will be helpful with clinical decision making when treating benign strictures of the esophagus and foregut. The main finding of our study is that lumen apposing metal stents have the potential to have an economical advantage over repeated dilations in the treatment of recurrent benign foregut strictures. Reports of placing lumen apposing stents as an alternative to serial endoscopic dilation have been reported, however no economic analysis has been published.

INFORMATION
Pathological or therapeutic disruption of the foregut tissue is common, yet diverse in both its etiology and severity. Surgical anastomosis, peptic injury, radiation, caustic ingestion, eosinophilic esophagitis, Schatzki rings and esophageal webs all disrupt the innate tissue and predispose to luminal stricture formation[1,2]. The mechanism by which esophageal strictures develop is hypothesized to be the result of fibrous tissue production and collagen deposition stimulated by deep ulceration or chronic inflammation[3,4]. The principle symptoms of foregut stricture disease include, dysphagia, early satiety, epigastric pain, heart burn, nausea and vomiting. The current gold standard treatment of foregut strictures is balloon dilation (CRE) and Savary-Gilliard dilations of the esophagus and foregut. The main finding of our study is that lumen apposing metal stents have the potential to have an economical advantage over repeated dilations in the treatment of recurrent benign foregut strictures. Reports of placing lumen apposing stents as an alternative to serial endoscopic dilation have been reported, however no economic analysis has been published.

The objective of this study is to examine the use of LAMS in the treatment of benign foregut strictures. Case series and case reports have documented the use of LAMS in the treatment of benign foregut strictures. Case reports have documented the use of LAMS in benign foregut strictures at different locations in the foregut[11-17]. We aim to illustrate the clinical effectiveness and economics of LAMS.

MATERIALS AND METHODS
Institutional review board approval was obtained for the development of a retrospective database to evaluate the efficacy of LAMS in the treatment of benign foregut strictures. The database used for this study included all patients who underwent endoscopic dilation or LAMS placement for treatment of benign foregut strictures at a single non-university tertiary care center. The database was constructed by manual review of the electronic health record (EHR) system of a large regional health system. This retrospective case-control study was reported in accordance with the STROBE statement[18].

Current procedural terminology (CPT) codes were used to identify the most recent 1000 controlled radial balloon dilation (CRE) and Savary-Gilliard dilations of the foregut. All endoscopic procedures performed between January 2014 and May 2017 was reviewed, 998 procedures were identified. These procedures were reviewed to isolate all patients who underwent three or more CRE or Savary-Gilliard dilations during the 40-mo period, and 36 patients fit these criteria. Three or more dilations were selected as our inclusion criteria for recurrent strictures based on the fact that LAMS placement required a minimum of two endoscopies and LAMS placement is rarely first line therapy at our institution. The 36 patients’ medical records were interrogated to establish a control group for the comparison of LAMS versus serial endoscopic dilation.

Fifteen patients underwent endoscopic LAMS placement for treatment of benign foregut stricture disease. The LAMS were placed without electrocautery or sutures with the intention of maintaining luminal patency for 90 d or until surgical revision. The LAMS utilized were 10 mm in length, fully covered, with bilateral 21 mm or 24
mm flanges. When deployed the stent self-expanded to a luminal diameter of 10 mm or 15 mm (Axios™ Stent, Boston Scientific®, Marlborough, MA, United States). The patients who underwent LAMS placement consented to undergoing treatment with a medical device in an “off label” non-United States Federal Drug Enforcement Agency (FDA) approved indication.

Clinical end points were the number of symptom free days and the number of days between endoscopic dilations. The number of symptom free days and days between each endoscopic procedure was determined by documentation in the EHR and reported as mean time between dilations (MTBD) and mean symptom free days (MSFD). The review of EHR documentations was performed by a physician who is not a gastroenterologist to prevent potential bias. Complications were defined as removal of the stent prior to the intended 90-d duration of placement or hospital admission for gastrointestinal symptoms. Endoscopies performed prior to this study's 2014 start date were reviewed when available.

Statistical analysis

All statistical analysis was performed by a biostatistician using IBM SPSS Statistics for Windows, Version 24 (IBM Corp., Armonk, NY, United States). Statistical tests performed included independent t-tests and five-parameter regression analysis with the independent variable being endoscopic dilations as pair indices and the dependent variable being time. All patients that lacked sufficient follow up to accurately characterize their post stent clinical course were included in the descriptive statistical analysis and excluded from the case control analysis. Statistical significance was determined using a threshold of \(P = 0.05 \).

Economic analysis

The economic analysis was designed utilizing the recommendations of the International Association of Health Technology Agencies to increase generalizability to clinical gastroenterologists\(^{[19]}\). The 2016 Medicare National Average Payment fee schedule that was issued by Center for Medicare and Medicaid Services in January of 2016 was used to determine the cost of endoscopic interventions. A 2% reduction was calculated on all costs to reflect the sequestrations placed by the United States government on all Medicare rates. The cost we associated with each endoscopic dilation is the mean cost of a CRE and Savary-Gilliard dilations. The cost of the LAMS was the specific per unit cost at our institution. The breakeven number for using a stent is calculated by dividing the delta between the MSFD and MTBD by the coefficient of the regression.

RESULTS

Recurrent dilation group

Strictures of non-anastomotic origin accounted for 86.1% (\(n = 31 \)). Five post-surgical strictures located at anastomotic sites accounted for 13.9% of the recurrent dilation group (Table 1). Patients’ ages ranged from 26 to 90 years with a median of 66 years of age. The majority of patients were men (55.6%, \(n = 20 \)). The MTBD was \(147 \pm 156 \) d.

The regression results demonstrate that after the initial endoscopic dilation, patients with recurrent benign esophageal strictures will have a decreased time between subsequent dilations that averages 28 d. The reduction of time between subsequent dilations was 20 d in non-surgical strictures and 64 d in postoperative strictures.

LAMS group

The LAMS group consisted of 15 patients who underwent endoscopic LAMS placement as an adjunctive treatment for various benign strictures of the foregut (Table 2). Strictures occurred post surgically at locations including: Gastrojejunal anastomosis (GJ), Roux-en-Y gastric bypass (RYGB), vertical band gastroplasty (VBG), esophagogastric anastomosis (EG). The majority of the LAMS group were post-surgical strictures, of which 27% (\(n = 4 \)) resulted from weight loss surgeries. Thirteen percent (\(n = 2 \)) of patients had post procedural dysphagia and abdominal pain leading to elective premature LAMS removal (Table 2). Patient eight obtained partial relief of dysphagia on the initial LAMS which recurred promptly after LAMS removal prompting insertion of a second LAMS 21 d later intended to provide symptomatic relief prior to surgical intervention. Patient 14 underwent LAMS placement for a persistent peptic stricture of the duodenal bulb which initially relieved some symptoms, however; symptoms recurred and the LAMS was removed and replaced 74 d later for worsening symptoms.

The median length of follow up was 299 d (range, 7-628). The median duration of the endoscopic LAMS placement was 14.7 min (range, 3.3-68.3), LAMS removal had a median endoscopy duration of 14.7 min (range, 1.7-28.2).

Sixty percent (\(n = 8 \)) of the LAMS group had sufficient follow up for inclusion in a multivariate regression

Table 1 The mean time between dilations for all patients in the recurrent dilation group

	\(n \)	Mean time between dilations (d)	SD	\(t \)	\(P \)
Male	20	146.8	169.7	-0.01	0.9
Female	16	147.5	141.1		
Non-Surgical	31	137.6	159.9	-1.1	0.3
Surgical	5	205.7	121.4		
analysis (Table 3). Of the eight patients in the LAMS group included in the multivariate analysis, 63% (n = 5) had benign esophageal strictures, and 25% (n = 2) had pyloric stenosis. No difference was seen when performing an independent t test comparing patient gender and MSFD (t = -0.014, P = 0.95) in patients treated with LAMS. Similarly, surgical versus non-surgical stricture etiology did not demonstrate a difference in MSFD (t = 0.72, P = 0.511).

Clinical comparison
Comparing the MTBD of the 36 patients in the dilation group with that of the LAMS group showed a higher number of symptom free days in each analyzed subcategory (Table 4). Significant differences in the MTBD are demonstrated when comparing all patients in the LAMS group versus their recurrent dilation counterpart (P = 0.011). Sub-analysis dividing the patients by gender and surgical setting (if the stricture was post-surgical) showed that males who underwent LAMS placement reported significantly more symptom free days than their recurrent dilation group counterpart (P = 0.013) (Table 4).

Table 2 Pre and post lumen apposing metal stent details for the all patients who underwent endoscopic treatment during a 40-mo period at a non-university tertiary care center

Patient	Age (yr)	Gender	Anastomotic Stricture (Yes/No)	Stricture location	Prior foregut surgery	EGD dilations prior to stenting	Duration of stent insertion (d)	Stent migration (Yes/No)	Adverse Events	Symptomatic relief	Post stent interventions	
1	59	M	Yes	GJ	RYGB	2	168	No	No	Yes	No	
2	46	F	Yes	GJ	RYGB	3	91	No	No	No	Yes	
3	62	F	Yes	GJ	Distal gastrostomy	3	90	No	No	Yes	No	
4	86	M	No	Pyloric channel	Subtotal gastrectomy	3	138	No	No	No	Yes	
5	90	M	No	Distal esophagus	Nissen fundoplication	3	91	No	No	Yes	No	
6	78	F	No	Distal esophagus	Nissen fundoplication	4	31	No	No	Yes	No	
7	65	F	No	Pyloric channel	No	2	<159	Yes	No	Yes	No	
8	65	F	No	Mid Gastric Body	No	1	Stent 1: 184, Stent 2: 162	Yes	No	Yes	No	
9	73	F	No	Pyloric channel	No	2	98	No	No	No	Yes	
10	78	F	No	Mid Gastric Body	VBG	3	-	-	-	No	-	
11	72	M	Yes	EG	ILE	0	50	No	No	Yes	No	
12	56	M	Yes	EG	ILE	4	15	No	No	Yes	No	
13	73	F	Yes	EG	Total gastrectomy	3	7	No	Yes	No	Yes-EGD dilation	
14	69	M	No	First duodenal segment	No	1	Stent 1: 116, Stent 2: 205	No	No	No	No	-
15	78	M	No	Duodenal bulb	No	3	20	No	Yes	Yes	Obstructive jaundice from stent pressure	

1Indicates patients included in the multivariate regression analysis. M: Male; F: Female; GJ: Gastro-jejunal anastomosis; RYGB: Roux-en-Y gastric bypass; VBG: Vertical band gastroplasty; EG: Esophago-gastric anastomosis; D1: Duodenal segment 1; D2: Duodenal segment 2.
Table 3 Regression analysis of the time between dilation (d) for patients who underwent lumen apposing metal stent placement

Group	R²	Intercept	Coefficient	F	P
Mean overall	68.3%	220.3	-27.8	8.6	0.04
Mean female	16.9%	192	-17.4	0.8	0.41
Mean male	96.1%	250	-39.3	99.3	0.001
Mean surgical	62.2%	96.2	-63.3	6.5	0.06
Mean nonsurgical	62.8%	188.3	-19.4	6.7	0.06

Table 4 The comparison of clinical outcomes in the lumen apposing metal stent and recurrent dilation groups

Group	n	Mean symptom free days	SD	t	P (two tail)	
Overall	Dilation	36	153	153.7	2.9	0.01
LAMS	8	327	156.9			
Male	Dilation	20	147	169.04	3.5	0.01
LAMS	3	347	73.7			
Female	Dilation	16	160	137.2	2.1	0.09
LAMS	5	353	190.9			
Nonsurgical	Dilation	31	144	158.7	1.5	0.26
LAMS	3	298	165.6			
Surgical	Dilation	5	209	114.08	2.06	0.07
LAMS	5	382	148.8			

LAMS: Lumen apposing metal stent.

Table 5 The economic analysis for lumen apposing metal stent utilization

Group	MSFD	MSFD/Cost Ratio	MTBD	Coefficient from Regression	Breakeven n
Overall	327	56.7	153	27.8	3.4
Male	347	60.1	147	39.3	2.2
Surgical	382	66.2	209	63.3	2.2

MSFD: Mean symptom free days; MTBD: Mean time between dilations (d).

Economic analysis results
The average cost of an endoscopic dilation is $1282, whereas the cost of a LAMS is $4060, endoscopic insertion and endoscopic removal cost $2399 and $937 respectively. The total cost for the LAMS and endoscopic insertion and removal is $7396; thus, a cost ratio is 5.7. Dividing the overall MSFD for the LAMS group and the recurrent dilation group by the cost ratio demonstrates that LAMS placement only became economical when the time between dilation is less than or equal to 57 d (Table 5). The overall MTBD for the recurrent dilation and LAMS group is 152 d. The overall breakeven number for using LAMS is 3.5 dilations, thus endoscopic LAMS placement is economical after the three dilations.

DISCUSSION
The use of esophageal prosthesis began over a century ago and progressed into commercially available applications in the 1970s. The current generation of SEMS were initially used in the biliary tree before being developed into esophageal specific applications in the 1990s[20]. The recommended use of SEMS is most clearly defined in the malignant stricture population; however, ambiguity exists in the use of SEMS in benign strictures of the gastrointestinal tract. Complications of stent migration and variability in efficacy of SEMS have limited their use in benign strictures.

The FDA approved the first LAMS in 2012 for the endoscopic treatment of pancreatic pseudocysts[21]. There is a paucity of published experience using LAMS in the treatment of benign foregut strictures, with only three studies, including ours, containing 15 or more patients[11,12]. The limited number of studies utilizing LAMS in benign stricture disease is primarily due to the low use of “off label” non-FDA approved devices. As such, we believe our results along with Irani et al[12] and Yang et al[11]’s showcase the utility of LAMS in the treatment of benign foregut strictures.

Clinical outcomes
Our results are most similar to the prospective multicenter trial performed by Yang et al[11]. Yang et al[11]’s cohort included 23 patients who underwent an average of 3.7 endoscopic dilations prior to LAMS placement. As such, this demonstrated the generalizability of our control group, which included individuals who underwent three or more endoscopic dilations. In addition to the 23 foregut LAMS placements, Yang et al[11]’s cohort included four colonic stricture stent placements with 60 d (IQR, 40-90 d) median duration of LAMS placement compared to our median of 96 d (IQR, 41-161 d). Both our cohort
and Yang et al's did not experience any tissue overgrowth or technical difficulties with LAMS removal; yet, these issues were encountered in Irani et al's series. The adverse events related to LAMS extraction could be more prevalent in Irani et al's series due to their 300 d median follow up time post LAMS insertion, which is slightly larger than both Yang et al's series and our own cohort, which had median follow up times of 100 and 299 d respectively. Yang et al, Irani et al and our own cohort all reported encountering patients with pain following LAMS insertion that was severe enough to prompt premature LAMS removal, the mean incidence of premature LAMS removal due to pain was 6% (range, 4.3%-7%). Our study included a unique adverse event after LAMS was placed across a duodenal bulb stricture (Table 2, Patient 15), in which the distal flange of the stent created backpressure on the intraduodenal segment of the common bile duct leading to abdominal pain and obstructive jaundice resulting in stent removal 20 d after placement.

Stent migration
In 2015, Fuccio et al performed a meta-analysis of SEMS use in refractory benign esophageal stricture. Fuccio et al's meta-analysis reported a stent migration rate of 36% in fully covered self-expanding metal stents (FCSEMS)\(^\text{[9]}\). Twenty-two percent of the patients in Fuccio et al's analysis who underwent FCSEMS placement met the Kochman et al's criteria for refractory benign esophageal stricture meaning they underwent at least five dilation sessions and/or cycles with dilation to at least 14 mm.

LAMS migration was confirmed in one of 15 patients in this study although a second stent migration could have occurred in the single patient lost to follow up (Table 2, Patient 11). Our reported LAMS migration rate of 6.7%-13.3% of patients is consistent with the two largest studies of LAMS that collectively had a migration rate of 7.5% in their 58 cases\(^\text{[12,13]}\).

Clinical success
Eighty-one percent of patients in our study had symptomatic relief. Repeat endoscopic procedures after LAMS placement was limited to stent exchanges in two patients and a non-therapeutic endoscopy in one patient. LAMS successfully controlled symptoms in two patients prior to undergoing revision gastric surgery. Approximately 83% of patients were symptom free at 100 d after LAMS removal in Yang et al's study, and the clinical success rate at 6 mo follow up was 61% in Irani et al's study.

Economic analysis
The cost breakeven point of the overall group is 3.5 and 2.2 dilations in the post-surgical group, which shows that stent placement may have an economical advantage over recurrent dilation after the third dilation. The male subgroup demonstrated a cost breakeven point after the second dilation; however, this finding is limited by a lack of sufficient number of subjects to provide a fe-

ARTICLE HIGHLIGHTS

Research background
The use of lumen apposing metal stents (LAMS) began in 2012 as a treatment modality for pancreatic pseudocysts. Currently, LAMS are being used in various endoscopic procedures such as pancreatic pseudocyst drainage.

Research motivation
The key question of our study is How effective and economical is the use of LAMS in the treatment of benign foregut strictures.

Research objectives
The main objective of this study was to determine how to appropriately utilize LAMS in the treatment of benign foregut strictures. Benign foregut strictures frequently recur therefore this study will contribute to the literature used to determine treatment strategies for these difficult recurrent strictures.

Research methods
The research methods that were adopted to realize our objective was a single center retrospective case-control study. The case-control study was complemented by a cost effectiveness analysis.

Research results
The cost breakeven point of using a LAMS compared to repeat endoscopic dilation was 3.5 and 2.2 dilations in patients with benign foregut strictures and post-surgical strictures, respectively. Our results demonstrate that stent placement may have an economical advantage over recurrent dilation once a patient has undergone three endoscopic dilations. The optimal duration of stent placement to provide maximum efficacy and minimum adverse events remains unknown, further prospective multicenter studies are needed.

Research conclusions
This study presents the novel finding that inserting a LAMS instead of serial
dilations can be a cost-effective treatment. We believe our results demonstrate that recurrent endoscopic dilation of benign foregut strictures can be optimally treated by LAMS in well selected patients. In summary, this study demonstrates that the interval between endoscopic dilations decreases overtime after each subsequent dilation. The use of LAMS for benign foregut strictures has been reported however we utilized an economic analysis to prove our hypothesis that there is a potential cost savings.

Research perspectives
This study has important clinical implications particularly in the United States where the placement of a LAMS for any reason other than evacuating a pancreatic pseudocyst is not Federal Drug Enforcement Agency approved. Endoscopists can incorporate the findings of this study into their clinical practice when treating patients whose benign foregut strictures continue to require endoscopic dilations.

REFERENCES
1 Ferguson DD. Evaluation and management of benign esophageal strictures. *Dis Esophagus* 2005; 18: 359-364 [PMID: 16336604 DOI: 10.1111/j.1442-2050.2005.00516.x]
2 Siersma PD, de Wijkerslooth LR. Dilation of refractory benign esophageal strictures. *Gastrointest Endosc* 2009; 70: 1000-1012 [PMID: 19879408 DOI: 10.1016/j.gie.2009.07.004]
3 Spechler SJ. Complications of gastroesophageal reflux disease. In: Castell DO, editor. The Esophagus. 2nd ed. Boston: Little, Brown; 1995: 533-544
4 Lew RJ, Kochman ML. A review of endoscopic methods of esophageal dilation. *J Clin Gastroenterol* 2002; 35: 117-126 [PMID: 12172355 DOI: 10.1097/00004836-200208000-00001]
5 Thomas T, Abrams KR, Subramanian V, Mannath J, Ragunath K. Esophageal stents for benign refractory strictures: a meta-analysis. *Endoscopy* 2011; 43: 386-393 [PMID: 21437850 DOI: 10.1055/s-0030-1256331]
6 van Boeckel PG, Vleggaar FP, Siersma PD. A comparison of temporary self-expanding plastic and biodegradable stents for refractory benign esophageal strictures. *Clin Gastroenterol Hepatol* 2011; 9: 653-659 [PMID: 21586341 DOI: 10.1016/j.cgh.2011.04.006]
7 Repici A, Vleggaar FP, Hassan C, van Boeckel PG, Romeo F, Pagano N, Malesci A, Siersma PD. Efficacy and safety of biodegradable stents for refractory benign esophageal strictures: the BEST (Biodegradable Esophageal Stent) study. *Gastrointest Endosc* 2010; 72: 927-934 [PMID: 21034894 DOI: 10.1016/j.gie.2010.07.031]
8 Dan DT, Gannavarapu B, Lee JG, Chang K, Muthusamy VR. Removable esophageal stents have poor efficacy for the treatment of refractory benign esophageal strictures (RBES). *Dis Esophagus* 2014; 27: 511-517 [PMID: 23121432 DOI: 10.1111/j.1442-2050.2012.01432.x]
9 Fuccio L, Hassan C, Frazzoni L, Miglio R, Repici A. Clinical outcomes following stent placement in refractory benign esophageal stricture: a systematic review and meta-analysis. *Endoscopy* 2016; 48: 141-148 [PMID: 26529754 DOI: 10.1055/s-0034-1393331]
10 Spaander MC, Baron TH, Siersma PD, Fuccio L, Schumacher B, Escorsell A, Garcia-Pagán JC, Dumonceau JM, Conio M, de Ceglie A, Skowroniec J, Nordmark M, Seufferlein T, Van Gossuin A, Hassan C, Repici A, Bruno MJ. Esophageal stenting for benign and malignant disease: European Society of Gastrointestinal Endoscopy (ESGE) Clinical Guideline. *Endoscopy* 2016; 48: 939-948 [PMID: 27626318 DOI: 10.1055/s-0042-114210]
11 Yang D, Nieto JM, Saddique A, Riff BP, DiMaio CJ, Nagula S, Ismail AM, Ngauremphong S, Khashab MA, Wagh MS, Tzimas D, Buscaglia JM, Strand DS, Wang AY, Chauhan SS, Forssmark CE, Draganov PV. Lumen-apposing covered self-expandable metal stents for short benign gastrointestinal strictures: a multicenter study. *Endoscopy* 2017; 49: 327-333 [PMID: 28114688 DOI: 10.1055/s-0042-122779]
12 Irani S, Jalaj S, Ross A, Larsen M, Grimm IS, Baron TH. Use of a lumen-apposing metal stent to treat GI strictures (with videos). *Gastrointest Endosc* 2017; 85: 1285-1289 [PMID: 27633158 DOI: 10.1016/j.gie.2016.05-08-0605-9]
13 Adler DG. Esophageal placement of a lumen-apposing metal stent in a patient with a chronic anastomotic stricture. *Gastrointest Endosc* 2017; 85: 1291-1293 [PMID: 27717714 DOI: 10.1016/j.gie.2016.09.034]
14 Majumber S, Buttar NS, Gostout C, Levy MJ, Martin J, Petersen B, Topazian M, Wong Song LM, Abu Doushe BK. Lumen-apposing covered self-expanding metal stent for management of benign gastrointestinal strictures. *Endosc Int Open* 2016; 4: E96-E101 [PMID: 26793793 DOI: 10.1055/s-0041-108195]
15 Adler DG. Use of a lumen-apposing metal stent to treat pyloric stenosis. *Gastrointest Endosc* 2017; 86: 742-743 [PMID: 28389214 DOI: 10.1016/j.gie.2017.03.1536]
16 Podgaetz E, Garza-Castillon R, Andrade RS, Vega-Peralta J. Initial experience with a dual-anchor stent for anastomotic strictures after oesophagectomy. *Eur J Cardiothorac Surg* 2017; 51: 236-241 [PMID: 28186238 DOI: 10.1093/ ejcts/ezw283]
17 Adler DG. Lumen-Apposing Metal Stents for the Treatment of Refractory Benign Esophageal Strictures. *Am J Gastroenterol* 2017; 112: 516-517 [PMID: 28270670 DOI: 10.1038/ajg.2016.566]
18 von Elm E, Altman DG, Egger M, Pocock SJ, Gøtzsche PC, Vandebroucke JP, STROBE Initiative. The Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) statement: guidelines for reporting observational studies. *Epidemiology* 2007; 18: 800-804 [PMID: 18049194 DOI: 10.1097/EDE.0b013e3181577654]
19 Drummond M, Manca A, Sculpher M. Increasing the generalizability of economic evaluations: recommendations for the design, analysis, and reporting of studies. *Int J Technol Assess Health Care* 2005; 21: 165-171 [PMID: 15921055]
20 Irani S, Kozarek RA. History of GI Stenting: Rigid Prostheses in the Esophagus. In: Kozarek R, Baron T, Song HY. Self-Expandable Stents in the Gastrointestinal Tract. New York, Springer, 2013: 3-13 [DOI: 10.1007/978-1-6414-3748-6_1]
21 Itto T, Kimnoeller KF, Shah J, Sofani A, Itokawa F, Kuribara T, Tsuchiya T, Ishii K, Tsuji S, Ikeuchi N, Moriyaus N. Clinical evaluation of a novel lumen-apposing metal stent for endosonography-guided pancreatic pseudocyst and gallbladder drainage (with videos). *Gastrointest Endosc* 2012; 75: 870-876 [PMID: 22301347 DOI: 10.1016/j.gie.2011.08.020]
22 Kochman ML, McClave SA, Boyce HW. The refractory and the recurrent esophageal stricture: a definition. *Gastrointest Endosc* 2005; 62: 474-475 [PMID: 16111985 DOI: 10.1016/j. gie.2005.04.050]

P- Reviewer: Bilir C, Chow WK, Fiori E, Fogli L, Gianopoulos G, Goral V, Lee CL, Zhu YL S- Editor: Ma YJ L- Editor: A E- Editor: Wu YXJ
