Reproductive potential and biological characteristics of the parasitoid *Cotesia flavipes* (Hymenoptera: Braconidae) in *Diatraea saccharalis* (Lepidoptera: Crambidae) depending on parasitoid-host ratio

Samir Oliveira Kassab¹, Marcelo Sousa Barbosa³, Fabricio Fagundes Pereira¹*, Camila Rossoni¹, Patrik Luiz Pastori², Jéssica Terilli Lucchetta¹, Mariana Santana Guerra³, and José Cola Zanuncio⁴

Abstract

This study assessed the biological characteristics of *Cotesia flavipes* (Cameron) (Hymenoptera: Braconidae) with different densities of female parasitoids with *Diatraea saccharalis* (Fabricius) (Lepidoptera: Crambidae) caterpillars. Third instar caterpillars of *D. saccharalis* were exposed to *C. flavipes* females at parasitoid to host ratios of 1:1, 3:1, 6:1, 9:1, and 12:1, with 5 replications. The parasitism of *C. flavipes* was 90% at 3:1 ratio, and the emergence was 100% for all densities. The life cycle of *C. flavipes* ranged from 18.17 ± 0.26 to 18.93 ± 0.50 d with the densities of 12:1 and 1:1 parasitoid to host. The higher progeny of *C. flavipes* (87.38 ± 2.07 and 67.18 ± 2.57 individuals per *D. saccharalis* caterpillar) were obtained at the densities of 3:1 and 6:1, respectively. The sex ratio of parasitoid per *D. saccharalis* caterpillar ranged from 0.12 ± 0.05 to 0.66 ± 0.02 between the parasitoid to host densities of 12:1 and 3:1, respectively. The density of 3:1 *C. flavipes* females per *D. saccharalis* caterpillar was found to be optimal for propagation of the parasitoid.

Key Words: biological control; larval parasitoid; sugarcane borer

Resumen

Este estudio evaluó las características biológicas de *Cotesia flavipes* (Cameron) (Hymenoptera: Braconidae) con diferentes densidades de fêmeas de *C. flavipes*, con lagartas de *Diatraea saccharalis* (Fabricius) (Lepidoptera: Crambidae). Lagartas del terceiro instar de *D. saccharalis* foram expostas às fêmeas de *C. flavipes* na seguinte proporção (parasitoide para hospedeiro): 1:1, 3:1, 6:1, 9:1, e 12:1, com 5 repetições. O parasitismo de *C. flavipes* foi de 90% na densidade de 3:1, e a emergência foi de 100% para todas as densidades. O ciclo de vida de *C. flavipes* variou de 18,17 ± 0,26 a 18,93 ± 0,50 dias, com as densidades de 12:1 e 1:1 parasitoide:hospedeiro. A maior progênie de *C. flavipes* (87,38 ± 2,07 e 67,18 ± 2,57 indivíduos por lagarta *D. saccharalis*) foi obtida nas densidades de 3:1 e 6:1, respectivamente. A razão sexual deste parasitoide por lagarta de *D. saccharalis* variou de 0,12 ± 0,05 a 0,66 ± 0,02 entre as densidades parasitoide para hospedeiro. A densidade de fêmeas de *C. flavipes* 3:1 por lagarta de *D. saccharalis* foi considerada ideal para a multiplicação propagação desse parasitoide.

Palavras Clave: controle biológico; parasitoide de larvas; broca da cana-de-açúcar

¹Departamento de Ciências Biológicas e Ambientais, Universidade Federal da Grande Dourados, 79804-970, Dourados, Mato Grosso do Sul, Brazil; E-mail: samirkassab@gmail.com (S. O. K.), tetrastichus@gmail.com (F. F. P.), camilarossoni15@hotmail.com (C. R.), jessicaluchetta@hotmail.com (J. T. L.)

²Departamento de Fitotecnia, Universidade Federal do Ceará, 60.356-000, Fortaleza, Ceará, Brazil; E-mail: pipastori@ufc.br (P. L. P.)

³Departamento de Ciências Agrárias, Universidade Federal da Grande Dourados, 79804-970, Dourados, Mato Grosso do Sul, Brazil; E-mail: marcelo_sousad2@hotmail.com (M. S. B.), sgmariana@hotmail.com (M. S. G.)

⁴Departamento de Entomologia/BIOAGRO, Universidade Federal de Viçosa, 36570-900, Viçosa, Minas Gerais, Brazil; E-mail: zanuncio@ufv.br (J. C. Z.)

*Corresponding author; E-mail: tetrastichus@gmail.com
per host may affect parasitism (Sampaio et al. 2001), progeny sex ratio (Chong & Oetting 2006, 2007), life cycle (Pereira et al. 2010), and the longevity of descendants (Favero et al. 2013; Pastori et al. 2013). *Cotesia flavipes* reared with *D. saccharalis* presented the appropriate biological characteristics, but the ideal proportion of the females of this natural enemy per caterpillar host needs to be better understood to increase the biological effectiveness of *C. flavipes*, and to improve the multiplication of this natural enemy. Therefore, the objective of this work was to evaluate the biological characteristics of *C. flavipes* with *D. saccharalis* caterpillars in different densities using adult parasitoid females.

Materials and Methods

MULTIPLICATION OF DIATRAEA SACCHARALIS

Eggs of *D. saccharalis* were obtained from the rearing facility of the Laboratory of Biological Insect Control, Dourados, Mato Grosso do Sul, Brazil, and placed in glass vials (8.5 cm diam × 13 cm high) with an artificial diet based on wheat germ, soybean, and sugar cane yeast for newly hatched to the fourth instar caterpillars (Hensley & Hammond 1968). At this stage, the caterpillars were transferred to disposable Petri dishes (6.5 cm diam × 2.5 cm high) and fed with a soybean meal and sugar cane yeast diet until they reached the pupal stage (Parra 2007). A group of 5% of pupae were randomly selected without deformation. Pupae were placed in plastic pots covered with a screen until they reached the adult stage. The adults were separated into groups of 20 males and 30 females per cage of polyvinyl chloride (PVC) tubes (10 cm diam × 22 cm high). These cages were closed using bond paper and elastic and lined internally with paper sheets as the oviposition site. Eggs of *D. saccharalis* were collected daily, washed with a copper sulfate solution, and stored in a climate chamber at 25 ± 2 °C, 70 ± 10% RH, and a 14:8 h (L:D) photoperiod until hatching. The longevity of the host *D. saccharalis* (100 mL) with artificial diet (Parra 2007) and exposed to 24 h old third instar larvae was placed in disposable Petri dishes with artificial diet based on wheat germ, soybean, and sugar cane yeast for 24 h, after which time the parasitoid females were removed from the cups. Each treatment consisted in 10 caterpillars and were replicated 5 times. Treatments were represented by densities of 1, 3, 6, 9, and 12 *C. flavipes* females per 1 *D. saccharalis* (1:1, 3:1, 6:1, 9:1, 12:1) (parasitoid to host). A completely randomized design was used.

The duration of the life cycle and percentage of parasitism (natural mortality of the host) (Abbott 1925), percentage of emergence of the progeny produced per female (if = number of female progeny divided by number of females density), sex ratio (rs = number of females divided by number of adults), longevity 20 males and 20 females, and body length (mm) of female *C. flavipes*. The progeny ratio of females per female, sex ratio, and the body size (mm) of *C. flavipes* females emerged per *D. saccharalis* caterpillar were subjected to the analysis of variance and regression. Data of the number of males and females, parasitism, and emergence were subjected to the analysis of variance and, when significant, at 5% probability by the Scott-Knott test. The statistical software used for data analysis was the free version SigmaPlot (Systat Software Inc, San Jose, California, USA).

Results

The percentage of parasitism of *D. saccharalis* caterpillars varied with the density of *C. flavipes* females from 34.33% to 90% (Fig. 1). However, the percentage of caterpillars with emergence of this parasitoid was 100% for all densities (Table 1).

The life cycle of *C. flavipes* was 18.93 ± 0.50, 18.26 ± 0.05, 18.45 ± 0.23, 18.34 ± 0.17, and 18.17 ± 0.26 d from egg to adult at the densities of 1:1, 3:1, 6:1, 9:1, and 12:1 parasitoid to host, respectively. The density of *C. flavipes* female per *D. saccharalis* caterpillar affected its progeny (ŷ = 9.9335 + 40.2034x − 6.5109x^2 + 0.2775x^3; F = 6.6438; P = 0.0008; R^2 = 0.55), and ranged from 32.94 ± 2.37 to 87.38 ± 2.07 individuals of *C. flavipes* per *D. saccharalis* caterpillar (Fig. 2A). The number of male and female *C. flavipes* per *D. saccharalis* caterpillar was higher at the densities of 3:1 (parasitoids per caterpillar) and 6:1 (parasitoids per caterpillar) parasitoid to host (Table 1).

The sex ratio of *C. flavipes* emerged per *D. saccharalis* caterpillar varied (ŷ = 0.7203 − 0.0019x − 0.0023x^2; F = 9.1467; P = 0.0004; R^2 = 0.52) with the parasitoid to host densities (Fig. 2B). The rate of female parasitoid per female parasitoid (ŷ = 35.7941 − 6.2973x + 0.2913x^2; F = 48.4844; P = 0.0001; R^2 = 0.82) ranged from 1.82 ± 0.43 to 29.44 ± 3.86 at 12:1 to 1:1 parasitoid to host ratio (Fig. 3A). The longevity of *C. flavipes* females ranged from 2.10 ± 0.64 to 1.51 ± 0.47 d at 1:1 and 12:1 parasitoid to host density. The longevity of males ranged from 1.84 ± 1.32 to 1.67 ± 1.07 d between densities.

The body length of the *C. flavipes* females was 2.27 ± 0.31 mm to 2.09 ± 0.52 mm (ŷ = 2.5428 − 0.3317x + 0.0607x^2 − 0.0030x^3) and for males ranged from 1.89 ± 0.27 mm to 1.83 ± 0.18 mm (F = 34.1565; P = 0.0001; R^2 = 0.83) (Fig. 3B).

Fig. 1. Parasitism percentage of *Diatraea saccharalis* depending on *Cotesia flavipes* density: 1:1, 3:1, 6:1, 9:1, 12:1 (parasitoids to host) at 25 ± 2 °C, 70 ± 10% RH, and a 12:12 h (L:D) photoperiod. P = 0.05 (significance level).
Discussion

This study indicated that parasitism, progeny, sex ratio, and longevity of *C. flavipes* females are directly affected by the density of parasitoid to host. Based on our results, *D. saccharalis* should be multiplied with a ratio of 3:1 (parasitoid to host). Chong and Oetting (2007) mentioned that the density of parasitoid females per host can reduce the fertility and efficiency of mass rearing systems, principally due to the increased competition between immature parasitoids. Furthermore, Braconidae present the mechanisms to manipulate the immune response of their hosts (Strand & Pech 1995) with polydnavirus to facilitate the development of its larvae (Dupas et al. 2006, 2008).

The lowest parasitism rates of *C. flavipes* females on *D. saccharalis* caterpillars at the proportions of 1:1 to 12:1 parasitoid to host suggested the presence of defense mechanisms controlling immature parasitoids. Pennacchio and Strand (2006) suggested that hosts could present cellular defenses and reactions involving encapsulation and melanization of endoparasitoid eggs. On the other hand, parasitism by several females can increase the survival of immature parasitoids by overcoming the host immune response (Hood et al. 2012; Mahmoud et al. 2012). However, the increased competition for resources may hinder the development of immature parasitoids and the emergence of adults, as reported with the density of 28 *Trichospilus diatraeae* (Che-
female parasitoids are responsible for parasitism and progeny production. The reduced progeny with the higher densities (9:1 to 12:1) (parasitoid to host) suggested high proportions of parasitoid females per host result in greater competition and death of immature parasitoids. Similar results were found by Pereira et al. (2010) when evaluating how the density of female *Palmistinus elaeisini* Delvare and LaSalle (Hymenoptera: Eulophidae) affects their reproductive performance on pupae of *Bombyx mori* L. (Lepidoptera: Bombyciidae).

The small size of the progenies found with 9:1 and 12:1 (parasitoid to host) ratio may also be explained by the lower amount of resources available per host, which limits the parasitoid development. However, Pereira et al. (2017) reported insect hosts that already have been parasitized are considered a low quality resource, which may affect the number of ovipositions made by other parasitoids. Because the number of eggs laid affects the host immune response, the offspring survivorship also may affect. Fupa of *Diaphania hyalinata* L. (Lepidoptera: Crambidae) received 1 to 5 parasitoid *P. elaeisini* ovipositions. *Palmistinus elaeisini* developmental time decreased with increased oviposition density and 3 ovipositions provided higher offspring numbers, particularly female production, and optimal larval fitness. Progeny body mass and sex ratio were not affected by oviposition density. Females and males survived longer with 1 oviposition of the female parasitoid. Parasitoid emergence increased with the number of parasitoid ovipositions, and 100% parasitism and corresponding 100% host pupal mortality were achieved with all oviposition densities. An increased number of ovipositions decreased the number of total hemocytes and granulocytes, plasmatocytes, and prohemocytes in the circulating host hemolymph. Oenocytes and espherulocytes were not affected by the number of parasitoid ovipositions in the host. Superparasitism is a strategy of *P. elaeisini* for optimal progeny fitness, balancing optimal progeny performance with amelioration of host immune response (Pereira et al. 2017).

The high sex ratio of *C. flavipes* per *D. saccharalis* caterpillar at the densities of 3:1 and 6:1 parasitoid to host is important because the female parasitoids are responsible for parasitism and progeny production (Amanil DM, Pena JE, Duncan RE. 2005. Effects of host age, female parasitoid age, and host plant on parasitism of *Ceratopogonion* (Ceratopogonion etteniquei) (Hymenoptera: Chalcidinae). Florida Entomologist 88: 77–82.

Andrade GS, Serrão JE, Zanuncio JC, Zanuncio TV, Leite GLD, Polanczyk RA. 2010. Immunity of an alternative host can be overcome by higher densities of its parasitoids *Palmistinus elaeisini* and *Trichosiris diastriatae*. *Pho O NE 5*: e13231. doi: 10.1371/journal.pone.0013231

Andrade GS, Sousa AH, Santos JC, Gama FC, Serrão JE, Zanuncio JC. 2012. Oogenesis pattern and type of ovariole of the parasitoid *Palmistinus elaeisini* (Hymenoptera: Eulophidae). Anais da Academia Brasileira de Ciências 84: 767–774.

Antigo MR, Oliveira HN, Carvalho GA, Pereira FF. 2013. Repelência de produtos fitossanitários usados na cana-de-açúcar e seus efeitos na emergência de *Trichogramma galloi*. Revista Ciência Agropecuária 44: 910–916.

Chichera RA, Pereira FF, Kassab SO, Barbosa RH, Pastori PL, Rossoni C. 2012. Capacidade de busca e reprodução de *Trichosiris diastriatae* e *Palmistinus elaeisini* (Hymenoptera: Eulophidae) em pupas de *Diatraea saccharalis* (Lepidoptera: Crambidae). Intermedia 37: 852–856.

Chong JH, Oetting RD. 2006. Functional response and progeny production of the Madeira mealybug parasitoid, *Anagyrus* sp. nov. nr. sinope: the effects of host and parasitoid densities. Biological Control 39: 320–328.

Chong JH, Oetting RD. 2007. Progeny fitness of the mealybug parasitoid *Anagyrus* sp. nov. nr. sinope (Hymenoptera: Encyrtidae) as affected by brood size, sex ratio, and host quality. Florida Entomologist 90: 656–664.

Dinardo-Miranda LL, Anjos IA, Costa VP, Fracasso JV. 2012. Resistance of sugarcane cultivars to *Diatraea saccharalis*. Pesquisa Agropecuária Brasileira 47: 1–7.

Dupas S, Gitauc CW, Branca A, Ru BPL, Silvain JF. 2008. Evolution of a polydnavirus gene in relation to parasitoid-host species immune resistance. Journal of Heredity 99: 491–496.

Dupas S, Gitauc C, Ru BPL, Silvain JF. 2006. Single-step PCR differentiation of *Cotesia sesamiae* (Cameron 1891) and *Cotesia flavipes* Cameron 1891 (Hymenoptera: Braconidae) used in polydnavirus markers. Journal Annales de la Societé Entomologique de France 42: 319–324.

Favero K, Pereira FF, Kassab SO, Oliveira HN, Costa DP, Zanuncio JC. 2013. Biological characteristics of *Cotesia flavipes* (Hymenoptera: Eulophidae) are influenced by the number of females exposed per pupa of *Tenebrio molitor* (Coleoptera: Tenebrionidae). Florida Entomologist 96: 583–589.

Garcia JF, Botelho PSM, Macedo LPM. 2009. Criação do parasitóide *Cotesia flavipes* em laboratório, pp. 199–219 in Bueno VH (ed.), Controle Biológico de Pragas: Produção Massal e Controle de Qualidade. Editora UFLA, Viçosa, Brazil.

Harvey JD, Egan SP, Feder JL. 2012. Interspecific competition and speciation in endoparasitoids. Evolutionary Biology 39: 219–230.

Hensley SD, Hammond Jr AM. 1968. Laboratory techniques for rearing the sugar-cane borer on an artificial diet. Journal of Economic Entomology 61: 1742–1743.

Hood G, Egan SP, Feder JL. 2012. Interspecific competition and speciation in endoparasitoids. Evolutionary Biology 39: 219–230.

Madeira mealybug parasitoid, *Palmistinus elaeisini* in two Crambids, *Diatrea saccharalis* and *Eoreuma loftini*: evidence of host development-ual disruption. Journal of Asia-Pacific Entomology 15: 63–68.

Parra JR [ed.]. 2007. Técnicas de Criação de Insetos para Programa de Controle Biológico. FEALQ, Piracicaba, Brazil.

Pastori PL, Zanuncio JC, Pereira FF, Pratissoli D, Ceccon PR, Serrão JE. 2013. Temperatura e tempo de refrigeração de pupas de *Anticarsia gemmatalis* (Lepi-
