Adaptive Discretization for Adversarial Lipschitz Bandits

Chara Podimata (Harvard)

Joint work with Aleksandrs Slivkins (Microsoft Research NYC)
Multi-Armed Bandits (MAB)

- Fixed set of actions A that you can play for T rounds.
- At each round t ALG picks some arm $x_t \in A$.
- Receives reward $g_t(x_t) \in [0,1]$.
- explore-exploit tradeoff

Regret: $R(T) = \max_{x^* \in A} \sum_{t \in [T]} g_t(x^*) - \sum_{t \in [T]} g_t(x_t) \leq o(T)$

General Setting $R(T) = \tilde{O}(\sqrt{TK})$, $K=\#\text{arms}$

Well-studied problem with lots of applications

Dynamic Pricing
- arms = prices
- reward = revenue condition on purchase
- seller wants to pick prices to max revenue

Web Ad Placement
- arms = ads
- reward = click through rate
- seller wants to pick ads to max clicks
Bandits with Similarity Information

What if set of actions is super large/infinite?

\(o(T) \) regret impossible without side info!

Side Info in Dynamic Pricing

- Numerical similarity between arms.
- Smoothness of revenue function.

Side Info in Web Ad Placement

- Topical taxonomy, feature vectors etc.
- Context: user profile, page content etc.

(Stochastic) Lipschitz Bandits

Lipschitz reward functions

\[|\mathbb{E}[g_t(x)] - \mathbb{E}[g_t(y)]| \leq D(x, y) \]

similarity metric

Very well-studied in the literature

[Agrawal, 95], [Kleinberg NIPS14], [Kleinberg Slivkins, Upfal STOC08/JACM19], [Bubeck, Munos, Stoltz, Szepesvari NIPS08/JMLR11], [Slivkins, Radlinski, Gollapudi, ICML10/JMLR13], [Slivkins COLT11/JMLR14], [Munos NIPS11], [Slivkins NIPS11], [Valko, Carpenter, Munos, ICML13], [Minsker COLT13], [Bull, BJS15], [Ho, Slivkins, Vaughan, EC14/JAIR16], [Grill, Valko, Munos NIPS15], [Krishnamurthy, Langford, Slivkins, Zhang COLT19/JMLR20]

* This talk: arms space \(A = [0,1]^d \); results generalize to arbitrary metrics
Uniform Discretization
[Kleinberg & Leighton FOCS03], [Kleinberg NIPS14]
• Create ϵ-net for arms: $K = \epsilon^{-d}$ arms
• Apply any K-MAB algo to each discretization
• Lipschitz info for all arms

Worst-case regret for Lipschitz MAB: $R(T) = \mathcal{O}(T^{d+1})$

Adaptive Discretization
[Kleinberg, Slivkins, Upfal STOC08] [Bubeck, Munos, Stoltz, Szepesvari: NIPS08]
• “Zoom in” on better payoffs.
• $R(T) \leq \tilde{O}\left(T^{\frac{d+1}{d+2}}\right)$, $z = \text{ZoomDim} \leq d$
captures “nice” instances

Easy to implement + optimal for worst-case instances, wasteful for benign ones.
How do we take advantage of “nicer” instances in adversarial Lipschitz bandits, while performing optimally in the worst case?

- New algorithm
- Similar results to IID, with (much) more work & new ideas!
Main Result: Adversarial Zooming Algorithm

\begin{equation}
\text{Regret } \tilde{O} \left(T^{\frac{z+1}{z+2}} \right), \text{ where } z = \text{“Adversarial Zooming Dimension”} \leq d
\end{equation}

1) Worst-case optimal, improves for “nice” instances

2) Matches prior work for IID rewards: \(z \approx \text{ZoomDim} \)

3) 1-sided Lipschitzness suffices ⇒ dynamic pricing

\text{Construction: set of examples for IID rewards & small ZoomDim → examples with adv. rewards & small AdvZoomDim}

“dimension” = \(\inf \{ d' \geq 0 : A_\epsilon \text{ can be covered with } \gamma \cdot \epsilon^{-d'} \text{ sets of diameter } \leq \epsilon, \forall \epsilon > 0 \} \)

Covering dim: \(A_\epsilon = A \)

\text{ZoomDim for IID rewards:}
\(A_\epsilon = \{ \text{arms with gap } \leq \epsilon \} \)
\(\text{Gap}(x) := \max_{y \in A} \mathbb{E}[g_t(y)] - \mathbb{E}[g_t(x)] \)

\text{Adversarial rewards:}
\(\text{AdvGap}_t(x) := \frac{1}{t} \max_{y \in A} \sum_{\tau \in [t]} g_\tau(y) - g_\tau(x) \)
\(A_\epsilon: \text{arms } x \text{ such that } \text{AdvGap}_t(x) < \tilde{O}(\epsilon) \text{ for some stopping time } t > \Omega(\epsilon^{-2}). \)
What It Means to “Zoom-In”

1. Maintain a hierarchical partition of the space.
2. Start with 1 node = whole space.
3. Choose node ~ probability distribution.
4. Zoom-in on node once you have enough confidence about its reward.
What It Means to “Zoom-In”

1. Maintain a hierarchical partition of the space.
2. Start with 1 node = whole space.
3. Choose node ~ probability distribution.
4. Zoom-in on node once you have enough confidence about its reward.
What It Means to “Zoom-In”

1. Maintain a hierarchical partition of the space.
2. Start with 1 node = whole space.
3. Choose node ~ probability distribution.
4. Zoom-in on node once you have enough confidence about its reward.
5. Parent de-activated, children get inherited information, weights.
What It Means to “Zoom-In”

1. Maintain a hierarchical partition of the space.
2. Start with 1 node = whole space.
3. Choose node ~ probability distribution.
4. Zoom-in on node once you have enough confidence about its reward.
5. Parent de-activated, children get inherited information, weights.
1. Maintain a hierarchical partition of the space.
2. Start with 1 node = whole space.
3. Choose node ~ probability distribution.
4. Zoom-in on node once you have enough confidence about its reward.
5. Parent de-activated, children get inherited information, weights.
Tree of a Worst-Case Instance

1. Maintain a hierarchical partition of the space.
2. Start with 1 node = whole space.
3. Choose node ~ probability distribution.
4. **Zoom-in** on node once you have enough confidence about its reward.
5. Parent de-activated, children get **inherited information**, weights.
What It Means to “Zoom-In”

1. Maintain a hierarchical partition of the space.
2. Start with 1 node = whole space.
3. Choose node \sim probability distribution.
4. **Zoom-in** on node once you have enough confidence about its reward.
5. Parent de-activated, children get inherited information, weights.

Prior work on iid setting
Zoom-in idea + optimism in the face of uncertainty

Adversarial Lipschitz MAB: Zoom-in idea + EXP3
Roadblocks

Issue	IID	Adversarial
When zooming: small confidence term → small gap	Easy	Breaks
Roadblocks

Issue	IID	Adversarial
When zooming: small confidence term \rightarrow small gap	Easy	Breaks
Bound the total regret from arms with very small gap	Easy	Breaks
Roadblocks

Issue	IID	Adversarial
When zooming: small confidence term \rightarrow small gap	Easy	Breaks
Bound the total regret from arms with very small gap	Easy	Breaks
Key steps for K-arm analysis hold for variable $K = \#arms$	Easy	Hard
Roadblocks

Issue	IID	Adversarial
When zooming: small confidence term \rightarrow small gap	Easy	Breaks
Bound the total regret from arms with very small gap	Easy	Breaks
Key steps for K-arm analysis hold for variable K = #arms	Easy	Hard
Bounding the parent’s influence on the child	No need	Must
Roadblocks

Issue	IID	Adversarial
When zooming: small confidence term → small gap	Easy	Breaks
Bound the total regret from arms with very small gap	Easy	Breaks
Key steps for K-arm analysis hold for variable $K = \#\text{arms}$	Easy	Hard
Bounding the parent’s influence on the child	No need	Must
“exploration statistic” for a given arm	$\#\text{samples}$	total prob. mass
Roadblocks

Issue	IID	Adversarial
When zooming: small confidence term \rightarrow small gap	Easy	Breaks
Bound the total regret from arms with very small gap	Easy	Breaks
Key steps for K-arm analysis hold for variable $K =$#arms	Easy	Hard
Bounding the parent's influence on the child	No need	Must
“exploration statistic” for a given arm	#samples	total prob. mass
Confidence radius directly uses “exploration statistic”	Yes	No
Adversarial Zooming

Parameters: $\beta_t, \gamma_t, \eta_t \in (0, 1/2] \ \forall t$

Variables: active nodes A_t, weights $w_{t,\eta}$

For all rounds $t = 1, ..., T$:

1. Sample tree node $U_t \sim \pi_t(\cdot)$, where

 $\pi_t(\cdot) \leftarrow (1 - \gamma_t)p_t(\cdot) + \frac{\gamma_t}{|A_t|}$ and $p_t \propto w_{t,\eta}$.

2. Play default arm x_t for U_t, observe reward $g_t(x_t)$.

For all active nodes $u \in A_t$:

3. Estimator (= IPS + “conf term”):

 $\hat{g}_t(u) = \frac{g_t(x_t)1\{u=U_t\}}{\pi_t(u)} + \frac{(1+4 \log T)\beta_t}{\pi_t(u)}$.

4. MW update:

 $w_{t+1,\eta}(u) = w_{t,\eta}(u) \cdot \exp(\eta \cdot \hat{g}_t(u))$.

If both confidence terms are small:

5. Activate children, deactivate parent:

 $A_{t+1} \leftarrow A_t \cup \text{Children}(u) \setminus \{u\}$

6. Split parent’s weight among children v:

 $w_{t+1}(v) = w_{t+1}(u) / |\text{Children}(u)|$
Adversarial Zooming

Analysis I: Zooming Rule

Total conf term: $\approx \sum_{\tau \in [T]} \beta_{\tau} / \pi_{\tau}(act_{\tau}(u))$,
$act_{\tau}(u) =$ active ancestor of u at round τ
Instantaneous conf term: $\approx \beta_{\tau} / \pi_{\tau}(u)$
Adversarial Zooming

Analysis II: Multiplicative Weights

Parameters: $\beta_t, \gamma_t, \eta_t \in (0, 1/2]$ $\forall t$

Variables: active nodes A_t, weights $w_{t, \eta}$

For all rounds $t = 1, \ldots, T$:

1. Sample tree node $U_t \sim \pi_t(\cdot)$, where
 \[
 \pi_t(\cdot) \leftarrow (1 - \gamma_t)p_t(\cdot) + \frac{\gamma_t}{|A_t|} \text{ and } p_t \propto w_{t, \eta_t}.
 \]

2. Play default arm x_t for U_t, observe reward $g_t(x_t)$.

For all active nodes $u \in A_t$:

3. Estimator (= IPS + “conf term”):
 \[
 \hat{g}_t(u) = g_t(x_t) \cdot \mathbf{1}_{u = U_t} + \left(1 + 4 \log T\right) \cdot \beta_t.
 \]

4. MW update:
 \[
 w_{t+1, \eta}(u) = w_{t, \eta}(u) \cdot \exp(\eta \cdot \hat{g}_t(u)).
 \]

If both confidence terms are small:

5. Activate children, deactivate parent:
 \[
 A_{t+1} \leftarrow A_t \cup \text{Children}(u) \setminus \{u\}
 \]

6. Split parent’s weight among children v:
 \[
 w_{t+1}(v) = w_{t+1}(u)/|\text{Children}(u)|\]

1) Analyzing the weight and bias inheritance:
 \[
 w_{t+1, \eta}(u) = C_{\text{prod}}(u) \cdot \exp(\eta \sum_{\tau \in [t]} \hat{g}_\tau(\text{act}_\tau(u))
 \]

$\Pi_{v \in \text{Ancestors}(u)} \text{Children}(v)$ active ancestor of u at round τ

2) Changing sets of active arms + changing η_t’s → potential function definition:
 \[
 \Phi_t(\eta) = \left(\frac{1}{|A_t|} \sum_{u \in A_t} w_{t+1, \eta}(u)\right)^{1/\eta}
 \]

3) MW-style analysis
 \[
 Q := \ln \left(\frac{\Phi_T(\eta_T)}{\Phi_0(\eta_0)}\right)
 \]
 \[
 \leq \sum_{t \in [T]} g_t(x_t) + O(\ln T) \left(\gamma_t + \beta_t + \sum_{u \in A_t^2} \hat{g}_t(u)\right)
 \]
Adversarial Zooming

Parameters: $\beta_t, \gamma_t, \eta_t \in (0, \frac{1}{2}] \ \forall t$
Variables: active nodes A_t, weights $w_{t, \eta}$

For all rounds $t = 1, \ldots, T$:
1. Sample tree node $U_t \sim \pi_t(\cdot)$, where
 \[\pi_t(\cdot) \leftarrow (1 - \gamma_t) p_t(\cdot) + \frac{\gamma_t}{|A_t|} \] and $p_t \propto w_{t, \eta}$.
2. Play default arm x_t for U_t, observe reward $g_t(x_t)$.
3. Estimator (= IPS + “conf term”):
 \[\hat{g}_t(u) = \frac{g_t(x_t) \cdot 1\{u = U_t\}}{\pi_t(u)} + \frac{(1 + 4 \log T) \cdot \beta_t}{\pi_t(u)} . \]
4. MW update:
 \[w_{t+1, \eta}(u) = w_{t, \eta}(u) \cdot \exp(\eta \cdot \hat{g}_t(u)) . \]
5. Activate children, deactivate parent:
 \[A_{t+1} \leftarrow A_t \cup \text{Children}(u) \setminus \{u\} . \]
6. Split parent’s weight among children v:
 \[w_{t+1}(v) = w_{t+1}(u) / |\text{Children}(u)| . \]

Analysis III: Estimated Rewards

1) Lipschitzness in expectation
2) IPS concentration
3) Zooming invariant
4) Effect of inherited rewards is drowned out
\[R(T) \leq \tilde{O} \left(\sqrt{dT} + O\left(\frac{1}{\beta_T} \right) + O\left(\frac{\ln |A_T|}{\eta_T} \right) + \sum_{t \in [T]} \beta_t + \gamma_t \ln T \right) . \]

Final Computation

1) Worst-case number of active nodes does not grow arbitrarily large.
2) Plug in def of $\text{AdvGap}_t(x)$.
\[R(T) = \tilde{O} \left(\frac{T^{z+1}}{z+2} \right) . \]
Conclusions

Adaptive discretization works for Adversarial Lipschitz bandits, achieves similar results as in the IID case, takes new ideas.

Future Directions

1) Mitigate Lipschitz assumptions [further], e.g., via “smoothed regret”
2) Extend to more general pricing problems (ongoing work)
3) Extend to Contextual Bandits

Thank you!