Composite Fe₃O₄-MXene-Carbon Nanotube Electrodes for Supercapacitors Prepared Using the New Colloidal Method

Wenyu Liang and Igor Zhitomirsky *

Department of Materials Science and Engineering, McMaster University, Hamilton, ON L8S 4L7, Canada; liangyw26@mcmaster.ca
* Correspondence: zhitom@mcmaster.ca

Abstract: MXenes, such as Ti₃C₂Tx, are promising materials for electrodes of supercapacitors (SCs). Colloidal techniques have potential for the fabrication of advanced Ti₃C₂Tx composites with high areal capacitance (Cₐ). This paper reports the fabrication of Ti₃C₂Tx-Fe₃O₄-multiwalled carbon nanotube (CNT) electrodes, which show Cₐ of 5.52 F cm⁻² in the negative potential range in 0.5 M Na₂SO₄ electrolyte. Good capacitive performance is achieved at a mass loading of 35 mg cm⁻² due to the use of Celestine blue (CB) as a co-dispersant for individual materials. The mechanisms of CB adsorption on Ti₃C₂Tx, Fe₃O₄, and CNTs and their electrostatic co-dispersion are discussed. The comparison of the capacitive behavior of Ti₃C₂Tx-Fe₃O₄-CNT electrodes with Ti₃C₂Tx-CNT and Fe₃O₄-CNT electrodes for the same active mass, electrode thickness and CNT content reveals a synergistic effect of the individual capacitive materials, which is observed due to the use of CB. The high Cₐ of Ti₃C₂Tx-Fe₃O₄-CNT composites makes them promising materials for application in negative electrodes of asymmetric SC devices.

Keywords: iron oxide; MXene; supercapacitor; electrode; dispersion; composite; carbon nanotube

1. Introduction

Ti₃C₂Tx belongs to the family of MXene-type materials, which are of great technological interest for applications in electrodes of SCs [1–3]. The interest in Ti₃C₂Tx is attributed to the high capacitance and low electrical resistivity of this material. The promising capacitive properties of Ti₃C₂Tx result from its high surface area and the redox active nature of surface functional groups. Enhanced capacitive properties were obtained for Ti₃C₂Tx composites, containing different conductive additives, such as graphene [4], acetylene black [5], and carbon black [6] and for nitrogen-doped Ti₃C₂Tx [7–9]. Moreover, advanced Ti₃C₂Tx composites were developed, containing other components, such as ZnO [10], MnO₂ [11], TiO₂ [12], and Mn₃O₄ [13]. Investigations revealed the stable cycling behavior of Ti₃C₂Tx composites [14–19].

High specific capacitance (Cₛ) normalized by active mass (AM) was reported for composite electrodes [9,12,14,20–28] with relatively low AMs, typically below 8 mg cm⁻². The Cₛ of such electrodes was below 1 F cm⁻². Capacitive properties of Ti₃C₂Tx composites were tested in various electrolytes, such as HCl [29], H₂SO₄ [27,30,31], KOH [12,32], KCl [33], K₂SO₄ [34], Na₂SO₄ [34], Li₂SO₄ [34], and other electrolytes [35,36]. Ti₃C₂Tx-based electrodes were utilized for the fabrication of symmetric SCs, containing two similar Ti₃C₂Tx-based electrodes, with maximum operation voltages in the range of 0.4–1.2 V [9,31,37,38].

The progress in applications of SC devices will depend on the ability to fabricate efficient electrodes and devices with high Cₛ, which can be achieved at high AM loadings. Another important benefit of high AM electrodes is their low ratio of the mass of electrochemically inactive components to the AMs. With the goal to increase energy–power characteristics, there is a growing trend in devices that operate in enlarged voltage windows. Of particular importance are environmentally friendly neutral electrolytes, such as...
Na$_2$SO$_4$, which facilitate the design of asymmetric aqueous cells with voltage windows above 1.2 V.

Ti$_3$C$_2$Tx-based electrodes with AMs of 1–3 mg cm$^{-2}$ were analyzed in Na$_2$SO$_4$ electrolyte [34,39,40] and relatively high C$_m$ were obtained at such low AM loadings. Therefore, the development of electrodes with higher AMs can potentially result in high C$_S$. However, it is challenging [41] to achieve high C$_S$ owing to the electrolyte diffusion limitations and high electrical resistance at high AMs. The increase in AM to the level of 20 mg cm$^{-2}$ allowed the design of composites [42] with C$_S$ of 1.087 F cm$^{-2}$ at the galvanostatic charging conditions of 1 mA cm$^{-2}$ and 0.783 F cm$^{-2}$ at potential sweep conditions of 1 mV s$^{-1}$. Such electrodes [42] were utilized for symmetric Ti$_3$C$_2$Tx SC.

The objective of this study was to form Fe$_3$O$_4$-Ti$_3$C$_2$Tx-CNT electrodes for SCs. The use of CB as a co-dispersant allowed the fabrication of electrodes, which showed good electrochemical performance at AM of 35 mg cm$^{-2}$. CB allowed adsorption on individual materials and their dispersion due its polyaromatic structure, containing a chelating catechol ligand and electric charge. The experimental data of this investigation showed that C$_S$ of 5.52 F cm$^{-2}$ can be achieved in the negative potential range in 0.5 M Na$_2$SO$_4$ electrolyte due to the use of advanced co-dispersant and a synergistic effect of the individual components.

2. Materials and Methods

Celestine blue (CB), FeCl$_3$·6H$_2$O, FeCl$_2$·4H$_2$O, NH$_4$OH, Na$_2$SO$_4$, co-polymer of vinyl butyral, vinyl acetate and vinyl alcohol (PVBAA, 65 kDa) were purchased from Millipore Sigma, Burlington, MA, USA. The diameter and length of CNT (multiwalled, Bayer Corp. Whippany, NJ, USA) were 13 nm and 1–2 μm, respectively. Ti$_3$C$_2$Tx was purchased from Laizhou Kai Kai Ceramic Materials Co., Ltd., Laizhou, China. Fe$_3$O$_4$ was prepared as described in by a chemical precipitation method [43] from solutions of FeCl$_2$ and FeCl$_3$, containing dispersed CNT or co-dispersed CNT and Ti$_3$C$_2$Tx. In contrast to the previous investigation [43], pristine CNT were used. In this approach, CNT and Ti$_3$C$_2$Tx were dispersed or co-dispersed using CB as a surfactant. For the fabrication of Fe$_3$O$_4$-CNT electrodes, the synthesis of Fe$_3$O$_4$ was performed in the presence of CNT, dispersed using CB. For the fabrication of Ti$_3$C$_2$Tx-CNT electrodes, Ti$_3$C$_2$Tx was co-dispersed with CNT in water using CB as a co-dispersant. Active materials (AM) for Ti$_3$C$_2$Tx-Fe$_3$O$_4$-CNT electrodes were prepared by precipitating Fe$_3$O$_4$ in the presence of co-dispersed Ti$_3$C$_2$Tx and CNT. The amount of the CB dispersant in the suspension was 15% of the total mass of Ti$_3$C$_2$Tx, Fe$_3$O$_4$ and CNT. After filtration, obtained AM were washed with water and ethanol in order to remove non-adsorbed dispersant and dried in air. In order to analyze the effect of CB, AM for Ti$_3$C$_2$Tx-(Fe$_3$O$_4$-CNT) electrodes were prepared by fabrication of Fe$_3$O$_4$-CNT powder, as described above, and its mixing with Ti$_3$C$_2$Tx. The Ti$_3$C$_2$Tx/Fe$_3$O$_4$ mass ratio was 5:3 in the Ti$_3$C$_2$Tx-(Fe$_3$O$_4$-CNT) and Ti$_3$C$_2$Tx-Fe$_3$O$_4$-CNT electrodes. The mass ratio of CNT to the mass of active materials, such as Fe$_3$O$_4$ in Fe$_3$O$_4$-CNT, Ti$_3$C$_2$Tx in Ti$_3$C$_2$Tx-CNT, Fe$_3$O$_4$ and Ti$_3$C$_2$Tx (total) in Ti$_3$C$_2$Tx-(Fe$_3$O$_4$-CNT) and Ti$_3$C$_2$Tx-Fe$_3$O$_4$-CNT was 1:4.

Obtained powders were used for the fabrication of slurries in ethanol for the impregnation of commercial Ni foam current collectors (95% porosity, Vale, Rio de Janeiro, Brazil). The slurries contained dissolved PVBAA binder. The mass of the binder was 3% of the total mass of the active material (AM). The total AM of impregnated material after drying was 35 mg cm$^{-2}$, which included 3% PVBAA binder. All of the impregnated Ni foams were pressed using a calendering machine in order to obtain a final electrode thickness of 0.38 mm.

Electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV) studies were performed using a potentiostat (PARSTAT 2273, AMETEK, Berwyn, PA, USA). Galvanostatic charge discharge (GCD) was conducted using a Biologic AMP 300 potentiostat. The capacitive behavior of the electrodes was tested in an aqueous 0.5 M Na$_2$SO$_4$ solution. Pt gauze was utilized as a counter electrode, and a saturated calomel electrode (SCE) was used as a reference. The area of the working electrode was 1 cm2. Capacitances C$_S$ and C$_m$,
normalized by the electrode area or mass of the active material, respectively, were obtained from the CV or GCD data, and complex C_s components (C_s' and C_s'') were calculated from the EIS testing results obtained at a signal of 5 mV, as described in [41]. JSM-7000F microscope (JEOL, Peabody, MA, USA) was used for SEM investigations.

3. Results and Discussion

Figure 1A,B shows SEM images of Ti_3C_2T_x particles used in this investigation. The particles exhibit an accordion-like structure, which is beneficial for electrolyte access to the material. However, some small pores may not be accessible by the electrolyte. It is in this regard that the investigations of other pseudocapacitive materials did not show correlation between BET surface area and capacitance [44–47]. The SEM images of Ti_3C_2T_x-Fe_3O_4-CNT composites (Figure 1C,D) show that Ti_3C_2T_x particles were covered with Fe_3O_4 and CNT.

Figure 1. SEM images at different magnifications of (A,B) as-received Ti_3C_2T_x and (C,D) Ti_3C_2T_x-Fe_3O_4-CNT.

Ti_3C_2T_x particles were used for the fabrication of composite Ti_3C_2T_x-Fe_3O_4-CNT electrodes. Pure Ti_3C_2T_x-CNT and Fe_3O_4-CNT electrodes were also fabricated and tested for comparison. The X-ray diffraction patterns of the composite Ti_3C_2T_x-CNT, Fe_3O_4-CNT, and Ti_3C_2T_x-Fe_3O_4-CNT materials presented in the Supplementary Information (Figure S1) show diffraction peaks of the individual components. All the electrodes contained 20% CNTs as conductive additives. In this investigation, CNTs were used as conductive additives for capacitive Fe_3O_4 [48–50] and Ti_3C_2T_x [1–3] materials. Previous investigations highlighted the need for the fabrication of electrodes with high AMs and enhanced ratio of the AM to the mass of current collector and other passive components [41]. Commonly used so far are activated carbon (AC) commercial supercapacitors with high AM [41,51] of about 10 mg·cm⁻². Another important parameter is electrode thickness [52]. It has been demonstrated that significant uncertainty in supercapacitor metrics stems from reporting gravimetric capacitance of thick electrodes with low packing density [51]. In such electrodes, empty space is filled by an electrolyte, thereby increasing the weight of the device without adding capacitance. However, such electrodes show enhanced AM normalized capacitance due to enhanced access of the electrolyte to the active materials [51]. Inves-
tigations showed that electrodes must be of comparable thickness for the comparison of their performance [53]. It is important to note that AC has a relatively low density and typical thickness of AC electrodes with active mass of 10 mg cm\(^{-2}\) is about 0.6 mm [54]. In our investigation, the thickness of all the investigated electrodes was 0.38 mm and AM loading was 35 mg cm\(^{-2}\). The higher AM of the fabricated electrodes, compared to that of AC electrodes, resulted from higher density of Ti\(_3\)C\(_2\)T\(_x\) and Fe\(_3\)O\(_4\) materials used in this investigation. The high AM loading was beneficial for increasing the ratio of AM - to the total mass, which includes not only AM, but also mass of current collectors, electrolyte and other components. The ability to achieve high capacitance using electrodes with high AM and low impedance is critical for the development of advanced electrodes.

In this investigation, CB was used as a dispersant for Ti\(_3\)C\(_2\)T\(_x\), Fe\(_3\)O\(_4\) and CNTs. CB has generated significant interest as an advanced dispersant for the fabrication of composites for supercapacitors and other applications [55–57]. Sedimentation tests showed good colloidal stability of the Ti\(_3\)C\(_2\)T\(_x\), Fe\(_3\)O\(_4\) and CNT suspensions, prepared using CB. It is important to note that the chemical structure of CB contains a catechol ligand, which facilitates CB adsorption on inorganic materials by complexation of metal atoms on the material surface [58]. Such interactions of CB with Ti atoms on the Ti\(_3\)C\(_2\)T\(_x\) surface or Fe atoms on the Fe\(_3\)O\(_4\) surface facilitated CB adsorption. The polyaromatic structure of CB allowed for its adsorption on CNTs and the adsorption mechanism of CB involved \(\pi-\pi\) interactions with side walls of CNTs [59]. The adsorbed cationic CB allowed for electrostatic dispersion of Ti\(_3\)C\(_2\)T\(_x\), Fe\(_3\)O\(_4\) and CNT and facilitated their enhanced mixing. Co-dispersion of Ti\(_3\)C\(_2\)T\(_x\) with CNTs and Fe\(_3\)O\(_4\) with CNTs allowed for good performance of Ti\(_3\)C\(_2\)T\(_x\)-CNT and Fe\(_3\)O\(_4\)-CNT electrodes at high AM loadings.

Figure 2 shows capacitive performances of Ti\(_3\)C\(_2\)T\(_x\)-CNT and Fe\(_3\)O\(_4\)-CNT electrodes. Cyclic voltammetry (CV) studies showed nearly rectangular shape CVs for Ti\(_3\)C\(_2\)T\(_x\)-CNT electrodes and \(C_S = 1.96 \text{ F cm}^{-2}\) at 2 mV s\(^{-1}\). The obtained \(C_S\) was significantly higher than literature data for Ti\(_3\)C\(_2\)T\(_x\) based electrodes, discussed in the Introduction. The capacitance retention at 100 mV s\(^{-1}\) was 23.5%. Relatively high capacitances were also achieved using Fe\(_3\)O\(_4\)-CNT electrodes. The highest \(C_S = 4.42 \text{ F cm}^{-2}\) was attained at 2 mV s\(^{-1}\). The use of CB as a co-dispersant allowed for higher capacitance of the Fe\(_3\)O\(_4\)-CNT electrodes compared to the previous results [43] for the Fe\(_3\)O\(_4\)-CNT electrodes, containing functionalized CNTs. The capacitance retention at 100 mV s\(^{-1}\) was 14.9%. The capacitive properties of Fe\(_3\)O\(_4\)-CNT composites resulted from the double layer charging mechanism of Fe\(_3\)O\(_4\) and CNTs and pseudocapacitive mechanism of Fe\(_3\)O\(_4\) attributed to Fe\(^{2+}\)/Fe\(^{3+}\) redox couple [48–50].

Figure 2. (A,B) Cyclic voltammetry data at (a) 2, (b) 5 and (c) 10 mV s\(^{-1}\), (C) capacitances for ((A,C) (a)) Ti\(_3\)C\(_2\)T\(_x\)-CNT and ((B,C) (b)) Fe\(_3\)O\(_4\)-CNT electrodes.

Figure 3 shows EIS data for the Ti\(_3\)C\(_2\)T\(_x\)-CNT and Fe\(_3\)O\(_4\)-CNT electrodes. The Nyquist plot of complex impedance revealed lower resistance, \(R = Z'\), compared to the literature data [42]. The low electrical resistance is an important factor controlling capacitive perfor-
mance of electrodes. The differential capacitance C_S' derived from the EIS data at 5 mV signal amplitude was inferior to the integral C_S calculated for potential span of 0.8 V. The discrepancy can be attributed to different parameters, such as charge--discharge time, electrode potential and limited accessibility of some redox sites at low voltages. The electrodes showed relatively high relaxation frequencies [60,61], corresponding to C_S'' maxima.

Figure 3. (A) Nyquist Z'' vs. Z' graph for EIS data, (B) C_S' and (C) C_S'', derived from the EIS data for (a) $\text{Ti}_3\text{C}_2\text{Ti}_X$-CNT and (b) Fe_3O_4-CNT electrodes.

Figure 4A,B shows charge-discharge behavior of the $\text{Ti}_3\text{C}_2\text{Ti}_X$-CNT and Fe_3O_4-CNT electrodes. The electrodes showed nearly triangular symmetric GCD profile. The capacitances were calculated from the GCD data and are presented in Figure 4C. C_S reduced from 2.05 to 1.40 F·cm$^{-2}$ and from 3.41 to 2.5 F·cm$^{-2}$, for $\text{Ti}_3\text{C}_2\text{Ti}_X$-CNT and Fe_3O_4-CNT electrodes, respectively, in the current range 3–35 mA·cm$^{-2}$. The GCD data showed good capacitance retention with increasing current density.

Figure 4. Galvanostatic charge-discharge curves of (A) $\text{Ti}_3\text{C}_2\text{Ti}_X$-CNT, (B) Fe_3O_4-CNT at (a) 3, (b) 5 (c) 7, (d) 10 (e) 20 and (f) 35 mA·cm$^{-2}$, (C) capacitances derived from GCD tests for (a) $\text{Ti}_3\text{C}_2\text{Ti}_X$-CNT and (b) Fe_3O_4-CNT electrodes.

This investigation revealed a synergistic effect of $\text{Ti}_3\text{C}_2\text{Ti}_X$, CNT and Fe_3O_4, which allowed for enhanced capacitance of the composite $\text{Ti}_3\text{C}_2\text{Ti}_X$-$\text{Fe}_3\text{O}_4$-CNT electrodes, compared to the capacitances of $\text{Ti}_3\text{C}_2\text{Ti}_X$-CNT and Fe_3O_4-CNT electrodes at the same AM, electrode thickness and CNT content. The use of CB as a dispersant was critical to achieve enhanced capacitance. The effect of CB is evident from the comparison of testing results for two composites, prepared at different experimental conditions, as was described in the Materials and Methods section. $\text{Ti}_3\text{C}_2\text{Ti}_X$-(Fe$_3O_4$-CNT) electrodes were prepared by precipitation of Fe$_3$O$_4$ in the presence of CNTs dispersed with CB, followed by washing drying and mixing with $\text{Ti}_3\text{C}_2\text{Ti}_X$. In contrast $\text{Ti}_3\text{C}_2\text{Ti}_X$-$\text{Fe}_3\text{O}_4$-CNT electrodes were prepared by precipitation of Fe$_3$O$_4$ in the presence of co-dispersed $\text{Ti}_3\text{C}_2\text{Ti}_X$ and CNTs.
CV testing results showed significantly larger CV areas for Ti$_3$C$_2$T$_X$-Fe$_3$O$_4$-CNT, compared to Ti$_3$C$_2$T$_X$-(Fe$_3$O$_4$-CNT) electrodes (Figure 5A,B). This resulted in higher capacitance of the Ti$_3$C$_2$T$_X$-Fe$_3$O$_4$-CNT and indicated the influence of CB dispersant used for the preparation of the composites on the properties of the electrodes. The highest capacitances of 5.52 and 3.90 F·cm$^{-2}$ were obtained for Ti$_3$C$_2$T$_X$-Fe$_3$O$_4$-CNT and Ti$_3$C$_2$T$_X$-(Fe$_3$O$_4$-CNT) electrodes, respectively, at 2 mV·s$^{-1}$. In order to analyze the charge storage properties of the electrodes, a parameter b was calculated from the following equation [62,63].

$$i = a\nu^b$$

where i is a current, ν—scan rate and a is a parameter. Parameter b was found to be 0.68 for the Ti$_3$C$_2$T$_X$-Fe$_3$O$_4$-CNT electrodes (Supplementary Information, Figure S2). It is known that $b = 1$ for purely double-layer capacitive mechanism and $b = 0.5$ for battery-type materials. The electrodes with 0.5 < b < 1 combine capacitive and battery properties. According to [62], the battery-type charge storage mechanism is dominant for electrodes with 0.5 < b < 0.8. Therefore, the Ti$_3$C$_2$T$_X$-Fe$_3$O$_4$-CNT electrodes show mixed double-layer capacitive and battery-type properties with a dominant battery-type charge storage mechanism.

![Figure 5. (A,B) Cyclic voltammetry data at (a) 2, (b) 5 and (c) 10 mV·s$^{-1}$, (C) capacitances for ((A,C) (a)) Ti$_3$C$_2$T$_X$-(Fe$_3$O$_4$-CNT) and ((B,C) (b)) Ti$_3$C$_2$T$_X$-Fe$_3$O$_4$-CNT electrodes.](image)

EIS studies (Figure 6) revealed lower resistance, higher capacitance and higher relaxation frequency of Ti$_3$C$_2$T$_X$-Fe$_3$O$_4$-CNT electrodes, compared to Ti$_3$C$_2$T$_X$-(Fe$_3$O$_4$-CNT) electrodes. GCD data showed nearly triangular symmetric charge–discharge curves, with longer charge and discharge times for Ti$_3$C$_2$T$_X$-Fe$_3$O$_4$-CNT electrodes, compared to Ti$_3$C$_2$T$_X$-(Fe$_3$O$_4$-CNT) at the same current densities (Figure 7A,B). The longer charge/discharge times indicated higher capacitances. The capacitances were calculated from the GCD data and presented in Figure 7C at different current densities. C_s reduced from 4.35 to 3.33 F·cm$^{-2}$ and from 3.46 to 2.58 F·cm$^{-2}$ for Ti$_3$C$_2$T$_X$-Fe$_3$O$_4$-CNT and Ti$_3$C$_2$T$_X$-(Fe$_3$O$_4$-CNT) composites, respectively, with current increase from 3 to 35 mA·cm$^{-2}$.

![Figure 7. (C) Capacitances for Ti$_3$C$_2$T$_X$-Fe$_3$O$_4$-CNT and Ti$_3$C$_2$T$_X$-(Fe$_3$O$_4$-CNT) composites.](image)
Figure 6. (A) Nyquist Z'' vs. Z' graph for EIS data, (B,C), (B) C'_S and (C) C''_S, derived from the EIS data for (a) Ti$_3$C$_2$TX-(Fe$_3$O$_4$-CNT) and (b) Ti$_3$C$_2$TX–Fe$_3$O$_4$-CNT electrodes.

Figure 7. GCD curves for (A) Ti$_3$C$_2$TX–Fe$_3$O$_4$-CNT, (B) Ti$_3$C$_2$TX–Fe$_3$O$_4$-CNT at (a) 3, (b) 5 (c) 7, (d) 10 (e) 20 and (f) 35 mA cm$^{-2}$, (C) capacitances versus current density, calculated from GCD data for (a) Ti$_3$C$_2$TX-(Fe$_3$O$_4$-CNT) and (b) Ti$_3$C$_2$TX–Fe$_3$O$_4$-CNT.

The analysis of capacitances, measured using CV, EIS and GCD techniques showed that the capacitances of the Ti$_3$C$_2$TX–Fe$_3$O$_4$-CNT electrodes are higher than the capacitances of the Ti$_3$C$_2$TX-CNT and Fe$_3$O$_4$-CNT electrodes. Therefore, the experimental results of this work showed a synergistic effect of the individual capacitive materials. The comparison of the data for Ti$_3$C$_2$TX–Fe$_3$O$_4$-CNT and Ti$_3$C$_2$TX–(Fe$_3$O$_4$-CNT) electrodes and literature data of the previous investigations for Ti$_3$C$_2$TX [42] and Fe$_3$O$_4$ electrodes [43] showed the beneficial effect of co-dispersion of the individual components, which was achieved using CB as a dispersant. The ability to achieve high C_S of 5.52 F cm$^{-2}$ in the negative potential range in Na$_2$SO$_4$ is beneficial for the preparation of asymmetric SC. Ti$_3$C$_2$TX–Fe$_3$O$_4$-CNT electrodes showed relatively high C_S, compared to other anode materials [41]. The comparison with C_S for other Ti$_3$C$_2$TX-based electrodes in Na$_2$SO$_4$ electrolyte (Supplementary Information, Table S1) showed significant improvement in C_S. The capacitance of the negative electrodes is usually lower than that of positive electrodes. Advanced positive electrodes, based on MnO$_2$, Mn$_3$O$_4$, and BiMn$_2$O$_5$ have been developed with capacitance of about 5–8 F cm$^{-2}$ in the positive potential range [41]. Therefore, the capacitance of Ti$_3$C$_2$TX–Fe$_3$O$_4$-CNTs is comparable with capacitances of advanced positive electrodes. The Ti$_3$C$_2$TX–Fe$_3$O$_4$-CNT electrodes showed a slight C_S increase for the first 400 cycles and remained nearly constant after this initial increase (Figure 8). A similar increase was observed in the literature for other materials and was attributed to microstructure changes during initial cycling [64,65]. In contrast, the capacitance of the Ti$_3$C$_2$TX–CNT and Fe$_3$O$_4$-CNT electrodes decreased after cycling (Figure 8).
Xu, S.; Wei, G.; Li, J.; Han, W.; Gogotsi, Y. Flexible MXene–graphene electrodes with high volumetric capacitance for integrated co-cathode energy conversion/storage devices. *J. Mater. Chem. A* 2017, 5, 17442–17451. [CrossRef]
3. Gogotsi, Y.; Anasori, B. The Rise of MXenes. ACS Nano 2019, 13, 8491–8494. [CrossRef]

4. Wang, K.; Zheng, B.; Mackinder, M.; Baule, N.; Qiao, H.; Jin, H.; Schuelke, T.; Fan, Q.H. Graphene wrapped MXene via plasma exfoliation for all-solid-state flexible supercapacitors. Energy Storage Mater. 2019, 20, 299–306. [CrossRef]

5. Guo, J.; Zhao, Y.; Jiang, N.; Liu, A.; Gao, L.; Li, Y.; Wang, H.; Ma, T. One-pot synthesis of 2D Ti$_3$C$_2$/Ni$_2$CO$_3$(OH)$_2$ composite as electrode material with superior capacity and high stability for hybrid supercapacitor. Electrochim. Acta 2018, 292, 168–179. [CrossRef]

6. Cao, M.; Wang, F.; Wang, L.; Wu, W.; Lv, W.; Zhu, J. Room Temperature Oxidation of TiC$_2$N by Perfluorinated Ionic Liquid and Ionic Liquid Media. Ceram. Int. 2018, 44, 17539–17543. [CrossRef]

7. Tian, Y.; Que, W.; Luo, Y.; Yang, C.; Yin, X.; Kong, L.B. Surface nitrogen-modified 2D titanium carbide (MXene) with high energy density for aqueous supercapacitor applications. J. Mater. Chem. A 2019, 7, 5416–5425. [CrossRef]

8. Wang, F.; Cao, M.; Qin, Y.; Zhu, J.; Wang, L.; Tang, Y. ZnO nanoparticle-decorated two-dimensional titanium carbide with enhanced supercapacitive performance. Nano Energy 2017, 38, 368–376. [CrossRef]

9. Wang, F.; Cao, M.; Qin, Y.; Zhu, J.; Wang, L.; Tang, Y. ZnO nanoparticle-decorated two-dimensional titanium carbide with enhanced supercapacitive performance. RSC Adv. 2016, 6, 88934–88942. [CrossRef]

10. Lu, X.; Zhu, J.; Wu, W.; Zhang, B.; Zhou, A. Hierarchical architecture of PANI@ TiO$_2$/Ti$_3$C$_2$T$_x$ ternary composite electrode as high-performance supercapacitor. Energy Storage Mater. 2019, 29, 282–289. [CrossRef]
30. Cao, J.; Han, Y.; Zheng, X.; Wang, Q. Preparation and electrochemical performance of modified Ti3C2Tx/polypyrrole composites. J. Appl. Polym. Sci. 2019, 136, 47003. [CrossRef]
31. Jian, X.; He, M.; Chen, L.; Zhang, M.-M.; Li, R.; Gao, L.-J.; Fu, F.; Liang, Z.-H. Three-dimensional carambola-like MXene/polypyrrole composite produced by one-step co-electrodeposition method for electrochemical energy storage. Electrochim. Acta 2019, 318, 820–827. [CrossRef]
32. Li, X.; Zhu, J.; Wang, L.; Wu, W.; Fang, Y. In-situ growth of carbon nanotubes on two-dimensional titanium carbide for enhanced electrochemical performance. Electrochim. Acta 2017, 258, 291–301. [CrossRef]
33. Kim, K.; Okubo, M.; Yamada, A. Interfacial Dissociation of Contact-Ion-Pair on MXene Electrodes in Concentrated Aqueous Electrolytes. J. Electrochem. Soc. 2019, 166, A3739–A3744. [CrossRef]
34. Li, J.; Yuan, X.; Lin, C.; Yang, Y.; Xu, L.; Du, X.; Xie, J.; Lin, J.; Sun, J. Achieving High Pseudocapacitance of 2D Titanium Carbide (MXene) by Cation Intercalation and Surface Modification. Adv. Energy Mater. 2017, 7, 1602725. [CrossRef]
35. Luo, J.; Zhang, W.; Yuan, H.; Jin, C.; Zhang, L.; Huang, H.; Liang, C.; Xia, Y.; Zhang, J.; Gan, Y.; et al. Pillared Structure Design of MXene with Ultralarge Interlayer Spacing for High-Performance Lithium-Ion Capacitors. ACS Nano 2017, 11, 2459–2469. [CrossRef] [PubMed]
36. Shi, M.; Narayanasamy, M.; Yang, C.; Zhao, L.; Jiang, J.; Angaiah, S.; Yan, C. 3D interpenetrating assembly of partially oxidized MXene confined Mn–Fe bimetallic oxide for superior energy storage in ionic liquid. Electrochim. Acta 2020, 334, 135546. [CrossRef]
37. Li, H.; Chen, R.; Ali, M.; Lee, H.; Ko, M.J. In Situ Grown MWCNTs/MXenes Nanocomposites on Carbon Cloth for High-Performance Flexible Supercapacitors. Adv. Funct. Mater. 2020, 30, 2002739. [CrossRef]
38. Pan, Z.; Ji, X. Facile synthesis of nitrogen and oxygen co-doped C@Ti3C2 MXene for high performance symmetric supercapacitors. J. Power Sources 2019, 439, 227068. [CrossRef]
39. Wu, W.; Wei, D.; Zhu, J.; Niu, D.; Wang, F.; Wang, L.; Yang, L.; Yang, P.; Wang, C. Enhanced electrochemical performances of organ-like Ti3C2 MXenes/polypyrrole composites as supercapacitors electrode materials. Ceram. Int. 2019, 45, 7328–7337. [CrossRef]
40. Yang, B.; She, Y.; Zhang, C.; Kang, S.; Zhou, J.; Hu, W. Nitrogen Doped Intercalation TiO2/TiN/Ti3C2Tx Nanocomposite Electrodes with Enhanced Pseudocapacitance. Nanomaterials 2020, 10, 345. [CrossRef]
41. Chen, R.; Yu, M.; Sahu, R.P.; Puri, I.; Zhitomirsky, I. The Development of Pseudocapacitor Electrodes and Devices with High Active Mass Loading. Adv. Energy Mater. 2020, 10, 1903848. [CrossRef]
42. Guo, M.; Liu, C.; Zhang, Z.; Zhou, J.; Tang, Y.; Luo, S. Flexible Ti3C2Tx@Al electrodes with Ultrahigh Areal Capacitance: In Situ Regulation of Interlayer Conductivity and Spacing. Adv. Funct. Mater. 2018, 28, 1803196. [CrossRef]
43. Nawwar, M.; Poon, R.; Chen, R.; Sahu, R.P.; Puri, I.K.; Zhitomirsky, I. High areal capacitance of Fe3O4-decorated carbon nanotubes for supercapacitor electrodes. Carbon Energy 2019, 1, 124–133. [CrossRef]
44. Reddy, R.N.; Reddy, R.G. Sol–Gel MnO2 as an electrode material for electrochemical capacitors. J. Power Sources 2003, 124, 330–337. [CrossRef]
45. Jeong, Y.U.; Manthiram, A. Nanocrystalline Manganese Oxides for Electrochemical Capacitors with Neutral Electrolytes. J. Electrochem. Soc. 2002, 149, A1419–A1422. [CrossRef]
46. Dong, W.; Rolison, D.R.; Dunna, B. Electrochemical Properties of High Surface Area Vanadium Oxide Aerogels. Electrochem. Solid State Lett. 1999, 3, 457–459. [CrossRef]
47. Dong, W.; Sakamoto, J.S.; Dunn, B. Electrochemical properties of vanadium oxide aerogels. Sci. Technol. Adv. Mater. 2003, 4, 3–11. [CrossRef]
48. Sinan, N.; Unur, E. Fe3O4/carbon nanocomposite: Investigation of capacitive & magnetic properties for supercapacitor applications. Mater. Chem. Phys. 2016, 183, 571–579. [CrossRef]
49. Ghaly, H.A.; El-Deen, A.G.; Souaya, E.R.; Allam, N.K. Asymmetric supercapacitors based on 3D graphene-wrapped V2O5 nanospheres and Fe3O4@3D graphene electrodes with high power and energy densities. Electrochim. Acta 2019, 310, 58–69. [CrossRef]
50. Nithya, V.D.; Arul, N.S. Progress and development of Fe3O4 electrodes for supercapacitors. J. Mater. Chem. A 2016, 4, 10767–10778. [CrossRef]
51. Gogotsi, Y.; Simon, P. True Performance Metrics in Electrochemical Energy Storage. Science 2011, 334, 917–918. [CrossRef]
52. Li, J.; Zhitomirsky, I. Cathodic electrophoretic deposition of manganese dioxide films. Colloids Surf. A Physicochem. Eng. Asp. 2009, 348, 248–253. [CrossRef]
53. Stoller, M.D.; Ruoff, R.S. Best practice methods for determining an electrode material’s performance for ultracapacitors. Energy Environ. Sci. 2010, 3, 1294–1301. [CrossRef]
54. Chen, J.; Fang, K.; Chen, Q.; Xu, J.; Wong, C.-P. Integrated paper electrodes derived from cotton stalks for high-performance flexible supercapacitors. Nano Energy 2018, 53, 337–344. [CrossRef]
55. Liu, Y.; Zhitomirsky, I. Electrochemical supercapacitor based on multifilferroic BiMn2O5. J. Power Sources 2015, 284, 377–382. [CrossRef]
56. Liang, W.; Zhitomirsky, I. Zn-Fe Double Hydroxide-Carbon Nanotube Anodes for Asymmetric Supercapacitors. Front. Mater. 2020, 7, 137. [CrossRef]
57. Liu, Y.; Aya, M.S.; Shi, K.; Zhu, G.-Z.; Botton, G.A.; Zhitomirsky, I. Surface modification and cathodic electrophoretic deposition of ceramic materials and composites using celestine blue dye. RSC Adv. 2014, 4, 29652–29659. [CrossRef]
58. Ata, M.S.; Liu, Y.; Zhitomirsky, I. A review of new methods of surface chemical modification, dispersion and electrophoretic deposition of metal oxide particles. RSC Adv. 2014, 4, 22716–22732. [CrossRef]
59. Ata, M.S.; Poon, R.; Syed, A.M.; Milne, J.; Zhitomirsky, I. New developments in non-covalent surface modification, dispersion and electrophoretic deposition of carbon nanotubes. Carbon 2018, 130, 584–598. [CrossRef]
60. Zhu, Y.; Shi, K.; Zhitomirsky, I. Polypyrrole coated carbon nanotubes for supercapacitor devices with enhanced electrochemical performance. J. Power Sources 2014, 268, 233–239. [CrossRef]
61. Shi, K.; Zhitomirsky, I. Fabrication of Polypyrrole-Coated Carbon Nanotubes Using Oxidant–Surfactant Nanocrystals for Supercapacitor Electrodes with High Mass Loading and Enhanced Performance. ACS Appl. Mater. Interfaces 2013, 5, 13161–13170. [CrossRef]
62. Okhay, O.; Tkach, A. Graphene/Reduced Graphene Oxide-Carbon Nanotubes Composite Electrodes: From Capacitive to Battery-Type Behaviour. Nanomaterials 2021, 11, 1240. [CrossRef]
63. Gogotsi, Y.; Penner, R.M. Energy Storage in Nanomaterials—Capacitive, Pseudocapacitive, or Battery-like? ACS Nano 2018, 12, 2081–2083. [CrossRef] [PubMed]
64. Rorabeck, K.; Zhitomirsky, I. Application of Octanohydroxamic Acid for Salting out Liquid–Liquid Extraction of Materials for Energy Storage in Supercapacitors. Molecules 2021, 26, 296. [CrossRef] [PubMed]
65. Rorabeck, K.; Zhitomirsky, I. Salting-out aided dispersive extraction of Mn$_3$O$_4$ nanoparticles and carbon nanotubes for application in supercapacitors. Colloids Surf. A Physicochem. Eng. Asp. 2021, 618, 126451. [CrossRef]