There is convincing evidence from recent human and animal studies that suggests the intestinal microbiota plays an important role in regulating immune responses associated with the development of allergic asthma, particularly during early infancy. Although identifying the mechanistic link between host-microbe interactions in the gut and lung mucosal tissues has proved challenging, several very recent studies are now providing significant insights. We have shown that administering vancomycin to mice early in life shifts resident gut flora and enhances future susceptibility to allergic asthma. This effect was not observed in mice given another antibiotic, streptomycin, nor when either antibiotic was administered to adult mice. In this addendum, we further analyze the link between early life administration of vancomycin and future susceptibility to asthma and describe how specific immune cell populations, which have been implicated in other asthma-related microbiota studies, are affected. We propose that shifts in gut microbiota exacerbate asthma-related immune responses when they occur shortly after birth and before weaning (perinatal period), and suggest that these effects may be mediated, at least in the case of vancomycin, by elevated serum IgE and reduced regulatory T cell populations.

Intestinal Microbiota Impact Allergic Asthma

Allergic asthma rates have been steadily increasing in developed countries around the world. The disparity between asthma rates in developing countries and industrialized nations highlights the importance of environmental factors in this disease. Recent epidemiological data emphasize the significance of microbial exposures early in childhood and identify mode of birth delivery, farm habitation, and antibiotic use as mitigating factors conferring protection or increasing risk of asthma later in life. These studies underscore the importance of the indigenous microbiota, and suggest that failure to establish a healthy gut flora early in life alters maturation of the immune system, promoting altered allergic responses in adulthood.

Recent human studies have documented differences in the gut flora of allergic and non-allergic infants, and suggest that pre- and postnatal antibiotic exposures can increase the risk of allergic asthma. Likewise, in a murine model of allergic airways disease, germ-free mice exhibit more severe disease than conventionally housed controls, an effect that could be ameliorated by re-colonization with conventional flora. Antibiotics create global changes in microbial communities, a characteristic which has made them incredibly useful as tools for studying how shifts in the microbiota can affect different disease states.

Addendum to Russell SL, Gold MJ, Willing BP, Thorson L, Wioland M, et al. Early life antibiotic-driven changes in microbiota enhance susceptibility to allergic asthma. EBBO Reg 2012; 13:440-7; PMID:22422004; http://dx.doi.org/10.1038/embor.2012.32

Keywords: antibiotics, asthma, gut, microbiota, early life, perinatal programming, immune mechanisms

Submitted: 10/13/12
Revised: 12/19/12
Accepted: 01/10/13

*Correspondence to: Kelly M. McNagny and Brett B. Finlay; Email: kmcnagny@brc.ubc.ca and bfinlay@mail.ubc.ca
suggesting that microbial composition, and not simply bacterial numbers, can influence allergic sensitization.13

Microbiota Composition During the Perinatal Period Affects Allergic Responses

There is now substantial evidence in human and animal studies that gut colonization early in life plays an important role in guiding immune development and maintaining mucosal homeostasis throughout life.14 It has been hypothesized that there may be a “critical window” of time during which a developmental program is initiated, and if this program is disrupted by an altered pattern of microbial colonization (as a result of antibiotics, diet, mode and time of birth delivery or other environmental factors) the host may be predisposed to a number of chronic diseases initiated by aberrant mucosal immune responses.15

The importance of establishing healthy gut flora during the perinatal period has been confirmed repeatedly in a number of murine models of allergic asthma. Olszak et al.16 have shown that mice treated with a cocktail of antibiotics have elevated IgE accumulation in gut and lung mucosa, indicating that early microbial colonization reduces mucosal iNKT cell tolerance to alter immune homeostatic mechanisms to enhance future asthma susceptibility occurs between birth and 3 weeks of age.

Mechanisms Linking Gut Microbes and Lung Inflammation: The Gut-Lung Axis

Our study supports the existence of a common mucosal immune system, where mucosal tissues like the gut and lung function as a system-wide organ,19 linked by immunological mechanisms that remain largely undefined. In elegant studies, Hill et al.17 have shown that mice treated with a cocktail of antibiotics have elevated IgE levels and higher numbers of circulating basophils in their blood compared with conventionally treated mice. These mice develop more severe airway inflammation due to increased basophil-mediated Th2 responses. Mechanistically, their data suggest that intestinal bacteria downregulate the level of IgE production by B cells through a MyD88-dependent pathway. In the absence of either these bacteria or a functional MyD88 signaling cascade in B cells, IgE production increases and isotype-switched to the IgG1 by the third three weeks of postnatal life up until weaning). Similar to our previous study with lifelong administration of vancomycin, ovalbumin (OVA)-challenge of mice treated perinatally with vancomycin led to increased total inflammatory cell infiltration in the bronchoalveolar lavage (BAL) relative to the OVA-challenged controls (Fig. 1A). Animals treated with vancomycin strictly perinatally (in utero) exhibited comparable disease to the controls. Although perinatal vancomycin treatment only moderately increased eosinophil numbers in the BAL compared with controls (Fig. 1B) the bulk of the increase in BAL counts we observed appeared to be due to an increase in neutrophil infiltrates (Fig. 1C). Neutrophilia is typically observed in more severe, chronic forms of asthma.18 Pathology scores for perinatally treated mice were intermediate between OVA-challenged controls and lifelong vancomycin-treated animals (Fig. 1D). Together, these data suggest that the “critical window” for vancomycin-driven shifts in microbiota to alter immune homeostatic mechanisms to enhance future asthma susceptibility occurs between birth and 3 weeks of age.

To determine whether perinatal or neonatal vancomycin treatment results in exacerbated asthma to the same extent as lifelong vancomycin treatment in our previous study, we repeated asthma induction as before, but this time included a cohort of mice treated exclusively perinatally (throughout the 21 d of in utero development) or pre- and perinatally (from 7 weeks onward, and through the first three weeks of postnatal life up until weaning). Similar to our previous study with lifelong administration of vancomycin, ovalbumin (OVA)-challenge of mice treated perinatally with vancomycin led to increased total inflammatory cell infiltration in the bronchoalveolar lavage (BAL) relative to the OVA-challenged controls (Fig. 1A). Animals treated with vancomycin strictly perinatally (in utero) exhibited comparable disease to the controls. Although perinatal vancomycin treatment only moderately increased eosinophil numbers in the BAL compared with controls (Fig. 1B) the bulk of the increase in BAL counts we observed appeared to be due to an increase in neutrophil infiltrates (Fig. 1C). Neutrophilia is typically observed in more severe, chronic forms of asthma.18 Pathology scores for perinatally treated mice were intermediate between OVA-challenged controls and lifelong vancomycin-treated animals (Fig. 1D). Together, these data suggest that the “critical window” for vancomycin-driven shifts in microbiota to alter immune homeostatic mechanisms to enhance future asthma susceptibility occurs between birth and 3 weeks of age.

Mechanisms Linking Gut Microbes and Lung Inflammation: The Gut-Lung Axis

Our study supports the existence of a common mucosal immune system, where mucosal tissues like the gut and lung function as a system-wide organ,19 linked by immunological mechanisms that remain largely undefined. In elegant studies, Hill et al.17 have shown that mice treated with a cocktail of antibiotics have elevated IgE levels and higher numbers of circulating basophils in their blood compared with conventionally treated mice. These mice develop more severe airway inflammation due to increased basophil-mediated Th2 responses. Mechanistically, their data suggest that intestinal bacteria downregulate the level of IgE production by B cells through a MyD88-dependent pathway. In the absence of either these bacteria or a functional MyD88 signaling cascade in B cells, IgE production increases and isotype-switched to the IgG1 by the third
To determine whether Treg numbers could be influenced by antibiotic treatment specifically during the perinatal period, we investigated whether mice treated perinatally with vancomycin had normal CD25+Foxp3+ Treg populations. Interestingly, mice that received perinatal vancomycin had reduced Treg populations relative to control mice, much like those observed after lifelong vancomycin treatment (Fig. 4). Thus, our data support the notion that Tregs may be responsible for restraining aberrant allergic-type (Th2) inflammation in mucosal tissues. These data support the model proposed previously by Josefowicz et al., 24 who showed that mice deficient in Tregs (specifically inducible Tregs) spontaneously develop Th2-type pathologies at gut and lung mucosal sites.

To avoid chronic inflammatory disorders like asthma, the host requires a
system of tightly regulated homeostatic mechanisms to maintain optimal balance between tolerogenic and Th2-type inflammatory responses. Recently published data suggests that if this balance is disrupted early in life by environmental insults and shifting microbial populations, aberrant immune responses to innocuous antigens run rampant, initiating cascades of allergy-related pathologies. It has been recognized that mucosal B cells residing in gut-associated lymphoid tissue can control Treg suppression of Th2 cell responses. Tregs induced by these B cells are capable of alleviating symptoms of allergic asthma.

Alternatively, rather than changing the abundance of particular immune cell lineages, antibiotic treatment could change the phenotypic behavior of immune cell populations. There is evidence that Tregs have phenotypic plasticity in different inflammatory environments. Respiratory syncytial virus (RSV) infection early in life has been shown to promote an inflammatory milieu in the lung, which caused local Tregs to lose their suppressive capacity, rendering the host more susceptible to allergic asthma later in life. It will be interesting to investigate whether Tregs in the gut or lung of mice treated with vancomycin express Th2-type inflammatory markers like GATA3 or IL-13 as demonstrated by Krishnamoorthy et al. in the RSV infection model.

What About the Lung Microbiota?

While many asthma studies have focused on contributions made by intestinal bacteria, there is new evidence suggesting that the airway microbiome may also play a role in allergic asthma.

Figure 2. Vancomycin treatment elevates steady-state serum IgE levels and enhances expression of surface-bound IgE on circulating basophils. A: Serum IgE from naive control or vancomycin-treated mice, as measured by ELISA. B: Flow cytometric analysis of blood basophils from naive control or vancomycin-treated mice. Basophils identified as CD3−CD4−CD8−B220−FcrγR1−CD49b−cells. C: Surface-bound IgE levels on blood basophils from untreated control or vancomycin-treated mice, as determined by flow cytometry. D: Representative histogram of surface-bound IgE on basophils from control and vancomycin-treated mice, as determined by flow cytometry. The data are shown as means of 4–5 mice per group ± SEM. Statistics shown are based on comparisons to untreated controls. PN, perinatal; LL, lifelong; Vanc, vancomycin. *p < 0.05, **p < 0.01.

Perhaps, in the presence of a healthy microbiota, mucosal B cells promote Treg induction in a MyD88-dependent manner. Correspondingly, in the presence of an altered or absent microbiota, B cell-intrinsic programming is altered, resulting in excessive secretion of IgE and uncontrolled production of allergic mediators like basophils and Th2 inflammatory responses at the site of allergen exposure.

Statistics shown are based on comparisons to untreated controls. PN, perinatal; LL, lifelong; Vanc, vancomycin. *p < 0.05, **p < 0.01.
one of the reasons why we chose to use it in our studies, so the fact that it had no effect on the skin microbiota is not surprising. This is relevant to our work because it suggests that (1) vancomycin has no effect on the skin, and this may also be true of airway microbiota, and (2) perhaps skin is a more immunologically distinct organ and is less influenced by external signals from the gut than the lung, which could be more closely linked by common inter-mucosal traffic. Regardless, knowing that skin immunity is shaped by resident bacteria in the local environment and not directly influenced gut microbes could direct our research in new ways, perhaps shifting the focus toward the immunological impact of microbes residing in the airways.

Until recently, the lung was believed to be a sterile environment, devoid of bacteria. With more sensitive sequencing methods becoming the norm, sparsely populated communities like those in the lung are easier to study. To investigate whether we could isolate any airway microbiota, we analyzed cell-free supernatants from murine BAL fluid. Despite our best efforts, we were unable to consistently amplify bacterial DNA from any of the treatment groups, thus we could not detect any vancomycin-induced effects on the lung microbiota. We also attempted to culture airway bacteria by plating BAL as well as lung homogenates incubated both aerobically and anaerobically, but obtained no growth in either condition. Perhaps alterations to our media could be made to better support growth of lung microbiota. We may need to further adapt our PCR protocol in order to detect a less abundant community of microbes; however, at face value, the small amount of bacteria detected in the lung begs the question of whether true colonization occurs in the healthy mouse lung.

Existing Challenges and New Insights

Despite the many challenges presented by the complex etiology of asthma, significant progress has been made in recent years to understand the environmental factors involved in disease development, with particular emphasis on the role of intestinal bacteria. We are beginning to understand the importance of colonization early in life and that altering microbial exposures during the perinatal period may promote dysregulated immune responses for a lifetime. It has been hypothesized that mucosal tissues like the gut and lung may function as a system-wide organ; however, we are only now beginning to understand the complex cellular and molecular mechanisms that mediate these interactions.

Methods

Mice. C57BL/6f mice (Jackson Laboratories) were bred and maintained in a specific pathogen-free facility at The Biomedical Research Center. All experiments were in accordance with the UBC Animal Care Committee guidelines.

Antibiotic treatment. C57BL/6f breeding pairs were given vancomycin (Sigma-Aldrich) at 200 mg/l in drinking water. In utero vancomycin-treated mice: breeding pairs were administered antibiotic-treated water for the duration of the pregnancy. When the pups were born, antibiotic-treated water was removed and replaced with regular water. Perinatal vancomycin-treated mice: breeding pairs were administered antibiotic-treated water for the duration of the pregnancy, and pups born from respective breeding pairs were reared on antibiotic-treated water until they were weaned (three weeks old). Once weaned, the pups were administered regular water. Lifelong vancomycin-treated mice: pups born from respective breeding pairs were reared on antibiotic-treated water with their littermates for the duration of the experiment.

Ovalbumin model of allergic asthma. Asthma was induced as previously described.

Histology. Lungs were collected, sectioned, stained and scored as previously described.

Determination of serum IgE. Total IgE in serum was measured by ELISA (BD Biosciences).

Isolation of immune cells and flow cytometry. Basophils were isolated from peripheral blood of 7-week-old naïve mice. Cells were stained with fluorochrome-conjugated antibodies against CD3, CD4, CD8, B220, CD117, FcεRIα and CD49b (BD Biosciences). Flow cytometry was performed using an LSR II (BD Biosciences) and data were analyzed with FlowJo 8.7 software (TreeStar). Colon
cells were isolated and analyzed by flow cytometry as previously described.11 Quantification of Cox6c. RNA samples were prepared using an RNasey Mini Kit and cDNA was synthesized using the QuantiTect RT Kit (both Qiagen). Real-time RT-PCR was performed using a SYBR Green I Master Mix (Roche) and a 7500 Fast Real-Time System (Applied Biosystems). Values were normalized to the expression of GAPDH for each sample. We used the same Cox6c primer sets as Olszak et al.16

Statistics. Differences between control and experimental groups were compared using Kruskal-Wallis one-way analysis of variance (ANOVA) to calculate statistical significance (GraphPad Prism software).

Summary

In this study, we used the antibiotic vancomycin as a tool to induce defined shifts in the intestinal microbiota and model an altered colonization state in early life. We have demonstrated a microbiota-driven, specific increase in susceptibility to experimental murine allergic asthma and have provided data that suggests these effects are mediated by increases in IgE as well as decreases in a regulatory T cell subset. Although the mechanisms involved in vancomycin-mediated exacerbation of murine allergic asthma remain to be directly elucidated, the data presented in this addendum provide new insights and offer avenues for future work. This new knowledge has extended our understanding of asthma development and could provide the framework for novel therapeutic or preventative approaches in the future.

Disclosure of Potential Conflicts of Interest

No potential conflicts of interest were disclosed.

Acknowledgments

We thank members of the Biomedical Research Center Animal Facility for their expert animal care. K.M.M. is a Michael Smith Foundation for Health Research Senior Scholar. This work was funded by a Canadian Institutes of Health Research (CIHR) Catalyst Grant and a CIHR Emerging Team Grant in partnership with Genome BC and the AllerGen National Network of Centres of Excellence, with support from the Smith Foundation for Health Research, the AllerGen National Network of Centres of Excellence, and the Canadian Institutes of Health Research (CIHR) Catalyst Grant and a CIHR Emerging Team Grant in partnership with Genome BC and the AllerGen National Center for Excellence.}

References

1. Will-Karp M, Sandoe J, Karp CL. The genetic theory of allergic disease: reviving the hygiene hypothesis. Nat Rev Immunol 2001; 1:45–52; PMID:11395816; http://dx.doi.org/10.1038/35095579.
2. Rager P,ed. M., Baux B, Boiron A, Renard K, Bota C, Wernigen T. Mode of delivery and risk of allergic disease and asthma. J Allergy Clin Immunol 2011; 1:113–6; PMID:21575906; http://dx.doi.org/10.1016/j.jaci.2010.03.04.
3. Eppe M, Mayer M, Noordmans HC, Gennep J, Coolen WD, Buus-Feklandt C, et al. GALLBLAD Tumorogenic-2 Study Group. Exposure to environmental microorganisms and childhood asthma. N Engl J Med 2011; 364:738–47; PMID:21590399; http://dx.doi.org/10.1016/S0025-7753(11)65020-2.
4. Maria P, Maria GA, Blixtboden K, Ilyad DS, Kornstet A, Patrick DM, et al. Ambience use in children is associated with increased risk of asthma. Pediatr Res 2010; 12:3380–3; PMID:19259002; http://dx.doi.org/10.1016/j.pedres.2011.04.006.
5. Mark W, Fuentes K, Bracken MB. Perinatal or early-life exposure to antibiotics and risk of childhood asthma: a systematic review. Pediatrics 2011; 127:1125–33; PMID:21566051; http://dx.doi.org/10.1542/peds.2010-2852.
6. Novotny MC, Haffajee GB. The ‘microflora hypothesis’ of allergic asthma. Clin Exp Allergy 2005; 35:130–1; PMID:16391166; http://dx.doi.org/10.1111/j.1365-2222.2005.02572.x.
7. Birtcher MC, Felten S. What are the consequences of the ‘shaping the microflora’ hypothesis? Nat Rev Microbiol 2009; 7:497–501; PMID:19189491; http://dx.doi.org/10.1038/nrmicro2445.
8. van Nuenoegn JD, Sanders J, Stubenheurg EE, Perumal DS, Koppenhefer-C, Ketchem F, et al. Mode of delivery, gastrointestinal microbes, and their influence on asthma and atopy. J Allergy Clin Immunol 2011; 128:905–9, 9, 9, 9; PMID:21970007; http://dx.doi.org/10.1016/j.jaci.2011.07.027.
9. Hoehne T, Schelardi A, Schar C, Vedova K, Birken K, Colombo J, et al. Dysregulation of allergic airway inflammation in the absence of microbial stimulation. Am J Respir Crit Care Med 2011; 184:296–305; PMID:21741180; http://dx.doi.org/10.1164/ajrccm.2010-15740C.
10. Hill DA, Stareeva MC, Ah M, King JS, Kubicki D, Kulo M, et al. Commensal bacterial-derived signals regulate harmless hematopoiesis and allergic inflammation. Nat Med 2012; 18:599–60; PMID:22449707; http://dx.doi.org/10.1038/nm.2907.
11. Novotny MC, Nougayreda TR, Haffajee GB. Role of antibiotics and fungal microbe on shaping polychron allergic responses. Infect Immun 2004; 72:4996–5001; PMID:15322999; http://dx.doi.org/10.1128/IAI.72.9.4996-5001.2004.
12. Willing BP, Russell SL, Plater BR. Shifting the balance: allergic effects on host-microbiota metabolism. Nat Rev Microbiol 2011; 9:389–401; PMID:21598870; http://dx.doi.org/10.1038/nrmicro2596.
13. Russell SL, Gold MJ, Harmsen F, Willing BP, Timoney L, Whelan M, et al. Early-life antibiotic-driven changes in microbiota enhance susceptibility to allergic asthma. EMBO Rep 2012; 13:530– 7; PMID:22442904; http://dx.doi.org/10.1038/embor.2012.52.
14. Renz H, Brandtling P, Merzel M. The impact of perinatal immune development on mucosal homeostasis and chronic inflammation. Nat Rev Immunol 2012; 12:9–23; PMID:22259643.
15. Fanden S, Stubenheurg EE, van den Brink DA, Thijn C. The role of the intestinal microbiota in the development of allergic disease. Allergy 2011; 66:1225– 34; PMID:21771557; http://dx.doi.org/10.1111/j.1398-9995.2011.02462.x.
16. Olszak T, Attar D, Zoming S, Vora MP, Butcher J, Franke A, et al. Microbial exposure during early life have persistent effects on murine allergic T-cell function. Science 2012; 334:489–93; PMID:22245083; http://dx.doi.org/10.1126/science.1229028.
17. Fahey Jr. V. Enterohemophilus and nonphosphatidyl in allergic asthma: insights from clinical studies. Proc Am Thorac Soc 2009; 6:296–9; PMID:19378206; http://dx.doi.org/10.1513/pats.2008-0847BM.
18. Gill N, Whelan M, Plater BR. The future of mucosal immunology: studying an integrated mucosal network. Nat Rev Immunol 2010; 10:748– 66; PMID:20842637; http://dx.doi.org/10.1038/nri2756.
19. Hershfield CA, Bousty FD. To respond or not to respond: T cells in allergic asthma. Nat Rev Immunol 2008; 8:495–12; PMID:18267682; http://dx.doi.org/10.1038/nri2404.
20. Azadkhah K, Sotani T, Stanu T, Imada A, Koshikari T, Monzen Y, et al. Induction of colonic regulatory T cells by indigenous Clostridium species. Science 2011; 331:1511–20; PMID:21639258; http://dx.doi.org/10.1126/science.1205849.
21. Li VN, Huang F, Liu L, Qiao HM, Li Y, Cheng SH. Effect of oral feeding with Clostridium leptum on regulatory T-cell responses and allergic airway inflammation in mice. Ann Allergy Asthma Immunol. 2012; 109:208-13. PMID:22528057; http://dx.doi.org/10.1053/j.anai.2012.08.017.

22. Savelieva EM, Karasik S, Suh HM, Khneizi R, Searson KM, Elmehtbi T, et al. Combined T regulatory cell and Th2 expression profile identifies children with cow’s milk allergy. Clin Immunol. 2010; 134:164-20. PMID:20227930; http://dx.doi.org/10.1016/j.clim.2010.02.011.

23. Hier D, Simon JC, Meier-Simon C, Milkeva L, Region S, Suck V, et al. Reduced maternal regulatory T-cell numbers and increased T helper type 2 cytokine production are associated with elevated levels of immunoglobulin E and eosinophilia in cord blood. Clin Exp Allergy. 2010; 40:495-506. PMID:20867377; http://dx.doi.org/10.1111/j.1365-2222.2010.03654.x.

24. Jarefowicz AZ, Nisic B, Kim HY, Tenzing P, Chinen T, Zheng Y, et al. Extrathymically generated regulatory T cells control mucosal TH2 inflammation. Nature. 2012; 482:395-9. PMID:22310920; http://dx.doi.org/10.1038/nature10772.

25. Chen RC, Cheng R. Regulatory T cells induced by nasal B cells ablate allergic airway hypersensitivity. Am J Respir Cell Mol Biol. 2012; 46:651-9. PMID:22295530; http://dx.doi.org/10.1165/rcmb.2011-0246OC.

26. Krishnamurthy N, Khare A, Otto TB, Bannikov M, Moser C, Yusagulli M, et al. Early infections with respiratory syncytial virus impair regulatory T-cell function and increase susceptibility to allergic asthma. Nat Med. 2012; 18:1025-31. PMID:22961187; http://dx.doi.org/10.1038/nm.2896.

27. Hilt MY, Burkett C, Pullo H, Cardenas P, Bush A, Booksy C, et al. Disturbed microbial commensal in asthmatic airways. PLoS One. 2010; 5:e8578. PMID:20932487; http://dx.doi.org/10.1371/journal.pone.0008578.

28. Huang YJ, Nelson CE, Brodie EL, Desantis TZ, Betke MS, Lin J, et al. National Heart, Lung, and Blood Institute’s Asthma Clinical Research Network. Airway microbiota and bronchial hyperresponsiveness in patients with suboptimally controlled asthma. J Allergy Clin Immunol. 2011; 127:372-81, e1-3; PMID:21194740; http://dx.doi.org/10.1016/j.jaci.2010.10.048.

29. Naik S, Bouladoux N, Wilhelm C, Molloy MJ, Salcedo R, Kastenmuller W, et al. Compartmentalized control of skin immunity by resident commensals. Science. 2012; 337:1115-9; PMID:22837383; http://dx.doi.org/10.1126/science.1225152.

30. Armstrong CJ, Wilson TS. Systemic absorption of vancomycin. J Clin Pathol. 1995; 48:689; PMID:7546186; http://dx.doi.org/10.1136/jcp.48.7.689-a.