1. Introduction

Citric acid which is also known as 2-hydroxy-propane-1, 2, 3-tricarboxylic acid (C₆H₈O₇·H₂O) is a weak organic acid, with a pH of 0.2, which occurs naturally in all citrus fruits (Makut and Ekeleme, 2018). It is a solid in its pure form at room temperature and has a melting point of 153°C (Almousa et al., 2018). Naturally, citric acid is produced by metabolic pathways that take place in a living cell via tricarboxylic acid cycle (Nwoba et al., 2012). Citric acid is commonly used in food and beverages, detergents, pharmaceuticals, cosmetics, toiletries and other industries (Majumder et al., 2010). The beverages and food industries account for about 75% of the world’s citric consumption, mainly as an ingredient in carbonated drinks and an acidulant (Show et al., 2015). Industrially, metal finishing and cleaning accounts for the largest use of citric acid, followed by lubricants, chelating agents, animal feeds and plasticizer (Bauweleers et al., 2014).

The consumption of citric acid is expected to multiply owing to its demand and numerous applications (Gruben et al., 2014; Weyda et al., 2014; Van der staat et al., 2014; Omojasola et al., 2014). Based on market trend, it is apparent that there will be a surge in the global citric acid production by looking for alternatives that are more economical, more environmentally friendly and have higher production yield (Show et al., 2015). The citric acid cost is high, mainly due to the high cost of the substrates and this has necessitated the search for cheap and easily available substrate for citric acid production (Ezea et al., 2015). Many developing counties within the tropics have a lot of underutilized cassava pulp that can be converted to citric acid. Cassava pulp is a waste generated within the tropics during fufu process of fermentation. Currently disposal of this waste product poses considerable economic and environmental problems as they are underutilized. Development of process for value addition and processing of cassava pulp is a sure way of reducing the cost of citric acid production.

The objective of our study was to investigate citric acid production from cassava pulp that is abundant in developing counties within the tropics and also develop some optimization strategies to enhance citric acid production.

2. Material and methods

2.1 Microorganism and culture maintenance
Aspergillus niger strain was obtained from Department of Microbiology University of Nigeria, Nsukka. The cultures were maintained on potato dextrose agar (PDA) slants at 4°C and subcultured at intervals.

2.2 Inoculums preparation

The spores of Aspergillus niger was harvested from potato dextrose Agar slant using a sterile solution of 0.01% Tween 80. The inoculation wire loop was used to dislodge the spores and to ensure proper mixing of the culture with the Tween 80. A 10 ml of 5 x 10^7 spores/ml was counted using haemocytometer.

2.3 Substrate and pretreatments

Cassava pulp residue was obtained from Fufu processing site at Nsukka in Enugu State of Nigeria. The waste was sundried, ground and sieved into flour using Muslim cloth. The flour was thermally pretreated to gelatinize the starch by suspending different concentration into 100ml of distilled water. The sample was sterilized with an autoclave at 121°C for 15 minutes.

2.4 Submerged fermentation

Submerged fermentation was carried out using a 250ml foam-plugged Erlenmeyer flask. Different concentrations of cassava flour 5 to 25% were weighed using DENVER Instrument, Model: MXX- 123 USA and suspended in 100ml nutrient medium containing NH₄NO₃ 2 g/l; KH₂PO₄ 0.2 g/l; ZnSO₄.7H₂O 0.01 g/l; Fe(SO₄)₂.7H₂O 0.01 g/l and MgSO₄.7H₂O 0.5 g/l before pretreatment. The sample was inoculated with 10ml of Aspergillus niger spores and incubation at 30°C for 144 hours.

2.5 Effect of initial pH on citric acid production

The effect of initial pH on citric acid production was carried out by adjusting the pH to 3.5, 4.5, 5.5, 6.5, 7.5 and 8.5 using 0.1M HCl and 0.1M NaOH before Pretreatment.

2.6 Effect of incubation temperature on citric acid production

The effect of incubation temperature on citric acid production by Aspergillus niger was carried out by incubating under the following temperature 20°C, 25°C, 30°C, 35°C and 40°C for 144 hours.

2.7 Effect of agitation on citric acid production from cassava pulp

The effect of agitation condition on citric acid production was carried out by incubating the flasks in the rotary incubator shaker (model: VWR International by B. Bran Scientific & Instrument Company England) at 100, 125, 200, 225, 300 and 325 rotations per minutes (rpm) for 144 hours.

2.8 Evaluation of the effects of local nitrogen sources on citric acid production

The effects of extracts of the following local nitrogen sources on citric acid production were evaluated; Fiofio (Cajanus cajan), Ukwa (African bread fruit) Treculia africana and soybean (Glycine max). These were achieved by cracking and removing the hard coat followed by boiling 100 g of each in 1000 ml of distilled water in a pressure cooker for 40 minutes. After boiling the remaining broth was sieved and diluted to 1000 ml with distilled water. Thereafter, 0.2 ml of each extract was added in 100ml containing the cassava pulp medium and autoclaved at 121°C for 15 min. After cooling the Aspergillus niger was inoculated and incubated at 30°C for 144 hours. Different concentrations of soybean extract were investigated. The concentrations were; 0.1, 0.2, 0.3, 0.4 and 0.5 % of soybean extract.

2.9 Analytical techniques

Citric acid was estimated using pyridine acetic anhydride method as reported by Marrier and Boulet (1958). A 1 ml of diluted culture filtrate along with 1.30 ml of pyridine was added in the test tube and swirled briskly. Then 5.70 ml of acetic anhydride was added in the test tube. The test tube was placed in a water bath at 32°C for 30 min. The absorbance was measured on a Spectrophotometer 722S B. Bran Scientific and Instrument Company, England at 420 nm against the blank and the citric acids of the samples were estimated with reference standard. The pH of the sample was determined using digital pH meter (DENVER Instrument, Model: UB- 10058245 ultraBASIC USA).

3. Results

3.1 Effect of different concentrations of cassava pulp

Figure 1 shows the effect of different concentrations of cassava pulp on citric acid production by Aspergillus niger. Citric acid concentration increased as the concentration of cassava pulp increased up to 20 % with maximum concentration of 14.9 ± 0.413 g/l citric acid after 120 hours of fermentation.

3.2 Effect of pH on citric acid production from cassava pulp

Figure 2 shows the effect of initial pH on citric acid production from cassava pulp using Aspergillus niger. pH 5.5 was the optimum with maximum citric acid concentration of 16.8 ± 0.23 g/l after 120 hours of fermentation. There was a reduction in in citric acid concentration from pH 6.5 to pH 8.5.

3.3 Effect of temperature on citric acid production

Incubation temperature at 30°C was the optimum with maximum citric acid concentration of 23.7 ± 0.42 g/l after 120 hours of fermentation (fig 3). The citric acid concentration increased from 20°C with the optimum at 30°C. There was a reduction in citric acid concentration from 35°C to 40°C throughout the fermentation time.

3.4 Effect of agitation speed on citric acid production

Citric acid concentration increased as the agitation speed increased from 100 rpm to 225 rpm with maximum concentration of 25.2 ± 0.32 g/l citric acid after 120 hours of fermentation (fig 4). There was a decreased in citric acid concentration between 300 rpm and 325 rpm agitation speed.

3.5 Effect of local nitrogen sources on citric acid production

Evaluation of different local nitrogen sources; fio fio, soybean, ukwa with the control shows that soybean was the best for citric acid yield with maximum citric acid concentration of 28.2 ± 0.51 g/l after 120 hours of incubation (fig 5). This was followed by fio fio, though there was no significant difference between the fio fio enriched medium with the control. Ukwa did not show any enhancement when compared with the control. Different soybean concentrations as the best nitrogen were evaluated. As the concentration of soybean extract increased up to 0.3 %, the citric acid concentration of 31.2 ± 0.35 g/l after 120 hours of fermentation (fig 6).
Figure 1 Effect of different concentrations of cassava pulp on citric acid production by *Aspergillus niger* in submerged culture.

Figure 2 Effect of pH on citric acid production from cassava pulp by *Aspergillus niger* using submerged culture.

Figure 3 Effect of different temperature on citric acid production from cassava pulp by *Aspergillus niger* using submerged culture.
4. Discussion

The production of citric acid by *Aspergillus niger* cultured on 20% cassava pulp showed that the highest yield of 31.2 g/l after 120 hours of fermentation is in consistent with Okareh et al. (2016) who reported 30.54 g/l and 28.93 g/l citric acid by *Aspergillus niger* and indigenous microflora during production of citric acid from solid state fermentation of sugar cane waste. This is in accordance with Morgunova et al. (2018) who reported the same range of biomass concentration during citric acid production from different renewable raw materials. Auta et al. (2014) reported similar concentration of *parkia biolobosa* fruit
pulp as substrate during citric acid by acid production by *Aspergillus niger*. This suggested that *Aspergillus niger* can utilize different substrates for citric acid production.

4.1 Effect of pH

pH 5.5 was the optimum with maximum citric acid concentration of 16.8 g/l after 120 hours of fermentation. There was a reduction in citric acid concentration from pH 6.5 to pH 8.5. This is in agreement with Lodhi *et al.* (2001) who made similar observation during production of citric acid from waste bread by *Aspergillus niger*. Chetan *et al.* (2018) reported the same pH range during comparison of citric acid production from *Aspergillus niger* in solid and suspension state fermentation. Similar pH was reported by Auta *et al.* (2014) during citric acid production by *Aspergillus niger* from *parkia bigobosa* fruit pulp. This shows that pH requirement depends on the strain and culture condition. The initial pH of a medium must be optimized and defined to suit the microorganism, substrate and production technique (Show *et al.*, 2015; Torrado *et al.*, 2011). A high pH often results in the deactivation of the enzyme necessary for citric acid production. During fermentation, the pH of the medium is important because a low pH reduces the risk of contamination (Ayeni *et al.*, 2019).

4.2 Effect of temperature

Incubation temperature at 30°C was the optimum with maximum citric acid concentration of 23.7 g/l after 120 hours of fermentation. The citric acid concentration increased from 20°C with the optimum at 30°C. There was a reduction in citric acid concentration from 35°C to 40°C throughout the fermentation time. This is in agreement with Santheshkumar *et al.* (2019) who reported 30°C as the optimum temperature for citric acid production during utilization of fruit waste for the production of citric acid by *Aspergillus niger*. Similar result was reported by Chetan *et al.* (2018) during comparative study on citric acid production by *Aspergillus niger* in solid and suspension state fermentation. Lodhi *et al.* (2001) reported 37°C during production of citric acid from waste bread by *Aspergillus niger*. This result suggested that different temperature can be an optimum depending on the temperature of an organism.

4.3 Effect of agitation

Citric acid concentration increased as the agitation speed increased from 100 rpm to 225 rpm with maximum concentration of 25.2 g/l citric acid after 120 hours of fermentation (fig 4). There was a decreased in citric acid concentration between 300 rpm and 325 rpm agitation speed. This result agreed with Anand *et al.* (2008) who reported that citric acid production increased from 170 to 230 rpm in a stirrer fermenter using *Aspergillus niger*. (Mohamed *et al.*, 1995) reported that increasing agitation rate up to 225 rpm increased production of citric acid but reduced the size of pellets formation by *Aspergillus niger*. Increase in agitation speed to some extent helps to circulate oxygen in the fermentation medium. Economical, it is better to gradually increase the aeration rate by monitoring and regulating the agitation speed. Extreme agitation can incur some losses. It can destroy the organism’s ability to synthesis and accumulate citric acid.

4.4 Effect of different nitrogen sources on citric acid production

Soybean was the best for citric acid yield with maximum citric acid concentration of 28.2 g/l after 120 hours of incubation. This was followed by fio foo, though there was no significant difference between the fio fio enriched medium with the control. Ulwa did not show any enhancement when compared with the control. As the concentration of soybean extract increased up to 0.3 %, the citric acid concentration equally increased after 120 hours of fermentation. Though, there is little or no information on the by local nitrogen extract such as fio foo, soybean and ulwa. The type of nitrogen source affects the synthesis of citric acid as well as fungal growth (Show *et al.*, 2015). Makut and Ekeleme, 2018 reported an improved citric acid production using soybean cake by *Aspergillus niger* and *Trichoderma viride*. Similar observation has been noted by Kudzai *et al.* (2016) in a medium supplemented with NH4NO3 and (NH4)2SO4 as nitrogen sources. This implies that using local nitrogen extract as the source of nitrogen may be cost effective for citric acid production. The concentration of nitrogen has been found to have a strong effect on the production of citric acid. Nitrogen is not only part of cell’s protein, but also necessary for cellular metabolism (Show *et al.*, 2015).

5. Conclusion

In conclusion, this study revealed that cassava pulp waste has the potential to be used as substrate in the production of citric acid by *Aspergillus niger*. In addition, soybean extract has a great potential in citric acid production from cassava pulp when combined with other culture parameters such as pH, temperature and agitation.

Acknowledgement

We thank the laboratory staffs of university of Nigeria Nsukka and IART Ibadan for their on the course of doing this work.

Declaration of interest

There is no conflict of interest in this work.

References

1. Almousa, A.A; Abd El-Ghany, M.N. and Ashour, E.H. (2018). Citric Acid Fermentation by Aspergillus niger. Journal of Innovations in Pharmaceutical and Biological Sciences, 5: 20-37.
2. Anand Kishore, K., Praveen Kumar, M., Ravi Krishna, K. and Venkat Reddy, G. (2008). Optimization of Process Variables of Citric Acid Production using Aspergillus niger in a Batch Fermenter. Engineering Letter, 16: p. 17.
3. Auta, H. S., Abidoye, K. T., Tahir, H., Ibrahim, A. D. and Aransiola, S. A. (2014). Citric acid production by *Aspergillus niger* cultivated on *Parkia bigobosa* fruit pulp. International Scholarly Research Notice volume 2014, Article ID 762021, 8 pages.
4. Ayem, O. A., Daramola, M.O., Taiwo, O., Olarewaju, O.I., Oyekunle, D. T., Sekooi, P. T. and Elehinafe, F. B. (2019). Production of Citric acid from the fermentation of pineapple waste by *Aspergillus niger*. The Open Chemical Engineering Journal, 13: 88-96.
5. Bauweeleers, H.M.K., Groesenenken, D.R, Van peij NNE (2014). Gene useful for industrial production of citric acid. In: Google patents.
6. Chetan, D. M., Sarang, S. F., Nithin, N., Priyanka, N. and Bhat, R. S. (2018). Comparison of citric acid production from *Aspergillus niger* in solid and suspension state fermentation. International Journal of Green Pharmacy, 12: 502.
7. Ekeleme, I. K. and Makut, M. D. (2018). Citric acid production by *Aspergillus niger* and *Trichoderma viride* using hydrolysed potato peels substrate. Asian Journal of Advances in Agriculture Research, 5: 1-7.
8. Ezee, I., Chejina, V. N. and Ogbonna, J. C. (2015). Biological Production of citric acid in Solid State Cultures of *Aspergillus niger*. ChemXpress, B: 201-207.
9. Gruben, B.S, Zhuo, M., Wiebenga, A., Ballering, J., Overkamp, K.M, Punt P. J. and De vries R.P. (2014). *Aspergillus niger* RhaR, a regulator involved in -mannose release and catabolism. *Apply microbrial Biotechnology*, 90: 1-10.
10. Kudzai, C. T., Ajay, K. and Ambika, P. (2016). Citric acid production by Aspergillus niger using different substrates. Malaysian Journal of Microbiology, 12: 199-204.

11. Lodhi, A.K., Asghar, M., Zai, A. Ambreen, S. and Asad, M. J. (2001). Production of citric acid from waste bread by Aspergillus niger. Journal of Biological Sciences, 1: 182-183.

12. Majumder, L., Khalil, I., Munshi M. K., Alam K., Rashid, H., Begum, R. and Alam, N. (2010). Citric acid production by Aspergillus niger using molasses and pumpkin as substrates. European Journal of Biological Science, 2: 1-8.

13. Marrier, J. R. and Boulet, M. (1958). Direct determination of citric acid in milk with an improved pyridine acetic anhydride method. Journal of Dairy Science, 41: 1683.

14. Mohamed, I.A.K., Arbakariya, A. and Kamariah, Y. (1995) The Influence of Culture Condition on Citric acid Production by Aspergillus niger. ASEAN Food Journal, 10: 90-92.

15. Morgunov, I.G., Kamzolova, S. V. and Lunina, J. N. (2018). Citric acid production by Yarrowia Lipolytica yeast on Different Renewable Raw Materials. Fermentation, 4: 36.

16. Nwoba, E. G., Oghonna, J. C., Ominyi, M. C., Nwagu, K. E. and Gibson, U. G. (2012). Isolation of Citric Acid Producing Fungi and Optimization of Citric Acid Production by Selected Isolates. Global Journal of Bio-Science and Biotechnology, 1: 261-270.

17. Okareh, O. T., Enesi, O.D. and Olawoyin, R. (2016). Production of citric acid from solid state fermentation of sugarcane waste using Aspergillus niger and indigenous sugarcane microflora. African Journal of sustainable development 6 (1).

18. Omojola, P. F., Okun, H. A., Oladoye, C. O., Kayode, R.M. O. and Ahmed El-Imam, A. (2014). Citric acid production by Aspergillus niger and Trichoderma longibrachiatum using Ananas comosus wastes and saccharium officinarum bagasse. Nigerian Journal of Biochemistry and Molecular Biology, 29: 117-127.

19. Show, P. L., Oladele, K.O, Siew, Q.V., Zakry, F.A.A., Lan, J.C.W. and Ling, T. C. (2015). Overview of citric acid production from Aspergillus niger. Frontier in life science 3: 271-283.

20. Subramaniyan, S., Paramasivam, S., Kannaiyam, M. and Chinnaiyan, U. (2019). Utilization of fruit waste for the production of citric acid by using Aspergillus niger. Journal of Drugs Delivery and therapeutics, 9: 9-14.

21. Torrado, A. M., Cortes, S., Salgado, J. M., Max, B., Rodriigues, N., Bibbins, B., Attílio, C. and Dominguez, J. M. (2011). Citric acid production from orange peel wastes by solid-state fermentation. Brazilian Journal of Microbiology 42: 394-409.

22. Van der Straat L., Vernooij, M., Lammer M., Van den Berg, W., Schoniewille, T., Cordewener, J., Van den meer I, Koops, A. and De Graaff, L. H. (2014). Expression of the Aspergillus terrus itaconic acid biosynthesis cluster in Aspergillus niger. Microbial cell factories, 13: 1-9.

23. Weyda, I., Lubeck, M., Ahring, B. K. and Lubeck, P. S. (2014). Point mutation of the xylose reductase (XR) gene reduces xylitol accumulation and increases citric acid production in Aspergillus caronarius. Ind. Microbiol. Biotechnol. 41: 1-7.