Synthesis and antiplasmodial activity of novel phenanthroline derivatives: An in vivo study

Azar Tahghighi 1*, Safoura Karimi 1,2, Arezoo Rafie Parhizgar 1,2, Sedigheh Zakeri 1

1Malaria and Vector Research Group (MVRG), Biotechnology Research Center (BRC), Pasteur Institute of Iran, Tehran, Iran
2Department of Medicinal Chemistry, Pharmaceutical Sciences Branch, Islamic Azad University, Tehran, Iran

ABSTRACT

Objective(s): Due to the rapid increased drug resistance to *Plasmodium* parasites, an urgent need to achieve new antimalarial drugs is felt. Therefore, in this study, the new synthetic phenanthroline derivatives were synthesized with antiplasmodial activity.

Materials and Methods: A series of 1,10-phenanthroline derivatives containing amino-alcohol and amino-ether substituents were synthetized via facile procedures, starting with 5,6-epoxy-1,10-phenanthroline. Their antiplasmodial activity was then evaluated using Peter's 4-day suppressive test against *Plasmodium berghei*-infected mice (ANKA strain). Furthermore, the mean survival time of the mice treated with synthetic compounds was compared with the negative control group.

Results: The results demonstrated that the compounds 6-{3-(dihydroxypropylamino)-5,6-dihydro-1,10-phenanthroline-5-ol (7b) at the dose of 150 mg/kg/day and 4-(1,10-phenanthroline-5-yloxy)-N,N-dipropylbutan-1-amine (8b) at the dose of 15 mg/kg/day have 90.58% and 88.32% suppression, respectively. All synthetic compounds prolonged the mean survival time of treated mice in comparison with negative control groups, indicating the in vivo antiplasmodial activity of these new compounds.

Conclusion: The present study is the first attempt to achieve new, effective synthetic compounds based on phenanthroline scaffold with the antiplasmodial activity. However, more research is needed to optimize their antiplasmodial activity.

Introduction

Malaria is one of the most important parasitic diseases worldwide, which is transmitted by female anopheline mosquitoes. Based on WHO reports in 2015, 95 countries had ongoing malaria transmission with an estimated 3.2 billion people at the risk of malaria, especially *Plasmodium falciparum*, as the most deadly malaria parasite in the world (1). Furthermore, there were an estimated 214 million new cases of malaria and 438,000 deaths annually, which are mostly children. Despite many efforts to control, eliminate, and eventually eradicate this infection, malaria still remains the greatest global health problem. However, for malaria control, there are various methods such as personal protection, mosquito control using insect repellents and insecticides, malaria prophylaxis, and treatment with antimalarial drugs. In fact, the initial detection and treatment of the disease by itself are sufficient for the control of this epidemic infection, at least at its early stages. By these preventive actions, the parasite load in the community is decreased, thereby reducing the transmission of the disease.

Drug therapy is one of the main methods of malaria control. There are some drugs that affect different stages (exoerythrocytic, erythrocytic, and sexual) of the parasite’s life cycle. For instance, chloroquine (CQ), mefloquine (MQ), amodiaquine (AQ), and halofantrine (HAL) are effective drugs in parasite’s erythrocytic stage that interfere with detoxification mechanism of the parasite (Figure 1). These drugs belong to the family of quinoline analogs. Actually, CQ and AQ are 4-aminoquinoline derivatives, whereas MQ and HAL are aryl-amino alcohols derivatives. All these drugs have already been used in malaria control, elimination, and eradication programs because of their easy usage, affordable synthesis, or great clinical efficacy. Some of them are also safe for children and pregnant women. Nevertheless, in recent years, the value of these drugs for the prevention and treatment of malaria has decreased after development and the spread of drug resistance, especially against quinoline analogs (3, 4). Indeed, the re-emerging of malaria in many endemic areas of the world is attributed to the rapid increase of resistance to available antimalarial drugs and the...
Phenanthroline derivatives have antimalarial activity

Figure 1. Antimalarial drugs (quinine, chloroquine, mefloquine, amodiaquine, and halofantrine), synthetic compounds with phenanthroline scaffold (1-N-benzyl-1,10-phenanthroline bromide (1); 1-N-benzyl-1,10-phenanthroline iodide (2); 1-N-(4-methoxy-benzyl)-1,10-phenanthroline bromide (3); 1-N-(3,4-dimethoxy-benzyl)-1,10-phenanthroline bromide (5); (N-Benzoyl-N',N'-di(2-hydroxyethylthiourea)-S,O)(4-methyl-1,10-phenanthroline)platinum(II) Chloride (6), and designed compounds (amino-alcohol and amino-ether phenanthroline derivatives 7a-7b and 8a-8b)

resistance of vectors to insecticides. As an example, P. falciparum is extremely resistant to CQ and MQ in the areas where these drugs are used widely (5). In addition, AQ resistance has been reported in South America, Asia, and East Africa (6). It is noticeable that there is cross-resistance between these quinoline drugs due to the similarity of their chemical structures (7).

Considering the resistance problem to CQ and its quinoline analogs, a new drug with different scaffolds, known as HAL, was discovered. HAL was primarily purposed for healthy people, to protect them from malaria (8). This aryl-amino alcohol derivative with phenanthrene scaffold is effective against CQ and multi-drug-resistant P. falciparum malaria. But, its use is limited to malaria treatment due to the risk of toxicity and unreliable absorption. On the other hand, development of MQ resistance resulted in cross-resistance to HAL, thus reducing its usage (9).

Artemisins, as the best antimalarial drugs in the current situation, showed very rapid parasite clearance.
times. Since artemisinins have a short half-life and are fast acting, artemisinin-based combination therapy (ACT), especially with a different class of long-lasting antimalarial drugs, has been recommended for treating *P. falciparum* malaria (10). Recently, resistance to ACTs has been reported in Asian countries, which can be the start of a catastrophic incidence in the world (11). It is remarkable that drug resistance can lead to malaria prophylaxis and treatment failure in the absence of an alternative, tolerable and safe drug, particularly for children and pregnant women. Therefore, pharmaceutical companies and academic researchers have focused on the development of novel antimalarial drugs. In this light, these groups considered two main features for drug discovery: first, discovery of new natural products with antimalarial activity and second, the achievement of new synthetic medicines with activity against the strains of the parasite, which is a powerful tool for malaria control (12).

Drug development based on synthetic methods plays a vital role in modern drug discovery, and in this concern, the identification of lead compound is very important. For instance, chloroquine was designed to overcome drug resistance and to enhance desired pharmacological properties. Due to the importance of aromatic or heteroaromatic scaffolds in medicinal chemistry, other new compounds with different scaffolds were synthesized and evaluated in antimalarial tests (13). The 1,10-phenanthroline is one of these heteroaromatic scaffolds that is considered as diaza-analog of phenanthrene with two nitrogen atoms at C-1 and C-10 positions and quinoline analog with a fused pyridine ring. Therefore, considering the side effects, high cost, and unreliable absorption of HAL, the researchers synthesized its diaza-analogs by the replacement of phenanthrene with 1,10-phenanthroline and evaluated their antimalarial activities in both *in vitro and in vivo* tests (Figure 1) (14-20).

In the present study, with regard to the spread of resistance to quinoline antimalarial drugs, their disadvantages, and the great potential of 1,10-phenanthroline (14-19), four new phenanthroline derivatives were synthesized and evaluated for the first time against *Plasmodium berghei* (ANKA strain). Similar to the available antimalarial drugs, these derivatives were composed of aliphatic side chain containing tertiary amine. They were synthesized from 5,6-epoxy-1,10-phenanthroline as a starting agent. As shown in Figure 1, the phenanthroline derivatives are divided into two groups: amino-alcohol, and amino-ether phenanthroline compounds. The antimalarial activity of the synthetic compounds was also assessed by Peter’s test in mice inoculated with *P. berghei*. Furthermore, the mean survival time of the mice treated with synthetic compounds was compared with the negative control groups.

Materials and Methods

Chemistry

All chemical reagents and materials were purchased from Sigma-Aldrich Company (USA). Solvents were procured from Sunchun Company (South Korea). The key intermediates 5,6-epoxy-1,10-phenanthroline (9) and 5-hydroxy-1,10-phenanthroline (10) were prepared based on the methods described in literatures (21, 22). Uncorrected melting points were determined on a Kofler hot stage apparatus. The IR spectra were obtained on a Shimadzu 470 spectrophotometer (potassium bromide dixes). 1H-NMR and 13C-NMR spectra were recorded on a Varian Unity 500 spectrometer, and chemical shifts (δ) were reported in ppm relative to tetramethylsilane, as an internal standard. The mass spectra were run on a Finigan TSQ-70 spectrometer (Finigan, USA) at 70 eV. Elemental analyses were carried out on the CHN rapid elemental analyzer (GmbH, Germany) for C, H, and N, and the results were within 0.4% of the theoretical values. Merck silica gel 60 F254 plates were used for analytical TLC. The logP of compounds were performed using ACD/ChemSketch Freeware version.

Table 1. The in vivo activities of four synthetic compounds (7a-b and 8a-b) against Plasmodium berghei

F-value	Mean survival rate (day)	% Suppression of parasitemia	Average % parasitemia ± SD	Dose (mg/kg)	logP	Compounds	Groups
< 0.0001	22.00	53.47	4.98 ± 0.43	150	1.73	7a	1
	16.75	27.08	7.88 ± 1.04	100			
	17.75	18.50	8.72 ± 1.49	50			
	22.25	90.58	1.01 ± 0.94	150	3.18	7b*	2
< 0.0001	18.50	74.63	2.71 ± 1.14	100			
	17.50	22.25	8.32 ± 1.53	50			
	22.00	52.98	5.03 ± 1.15	30	3.83	8a	3
0.009	20.75	30.89	7.39 ± 1.49	20			
	19.50	13.22	9.28 ± 1.05	10			
	21.67	88.32	1.25 ± 1.24	15	4.28	8b*	4
< 0.0001	21.00	47.94	5.57 ± 1.13	12.5			
	18.75	17.17	8.06 ± 1.34	10			
	15.50	0	10.47 ± 2.42	0			
	16.00	0	10.93 ± 2.075	20 %			
	-	100	-	25			

SD: Standard Deviation; * shows the most potent compounds.
Synthesis of 6-(3-(diethylamino)propylamino)-5,6-dihydro-1,10-phenanthroline-5-ol (7a)

A mixture of 0.2 g (1.02 mmol) 5,6-epoxy phenanthroline (9) and 1.6 ml (10.15 mmol) 3-(diethylamino)propylamine in absolute ethanol was refluxed at 80 °C for 24 hr. The completion of the reaction was detected by TLC, and the solvent was removed under reduced pressure to obtain a brown solid. The solid was dissolved in dichloromethane (100 ml) and washed with aqueous NaOH 10%. Then the organic layer was separated and washed with brine (30 ml) and was dried using sodium sulfate. The filtrated organic layer was concentrated by a rotary evaporator. The final product was purified by silica gel column chromatography (dichloromethane/ethanol) for obtaining a cream solid.

Synthesis of 6-(3-(dibutylamino)propylamino)-5,6-dihydro-1,10-phenanthroline-5-ol (7b)

A mixture of 0.2 g (1.02 mmol) 5,6-epoxy phenanthroline (9) and 2.4 ml (10.65 mmol) 3-(dibutylamino)propylamine in absolute ethanol was stirred at room temperature for eight days. The completion of the reaction was detected by TLC and the solvent was removed under reduced pressure to obtain a brown grassy solid. The solid was dissolved in dichloromethane (100×2 ml) and washed with aqueous NaOH 10%. The organic layer was then separated and washed with brine (30 ml) and dried using sodium sulfate. The filtrated organic layer was concentrated by a rotary evaporator. The final product was purified by silica gel column chromatography (dichloromethane/ethanol) to obtain a cream solid.

General procedure for the synthesis of intermediates 11a-b

A mixture of 0.11 g (4.58 mmol) sodium hydride and 0.2 g (1.02 mmol) 5-hydroxy-1,10-phenanthroline (10) in 15 ml of ethanol was stirred vigorously at room temperature for 30 min. The mixture was then added to the solution of dibromo alkyl (5.96 mmol) in dry THF dropwise; this mixture was refluxed for ~3-4 hr. The completion of the reaction was detected by TLC. After filtration, the solvents were removed under reduced pressure to obtain a yellow viscose solid. Excess of dibromo alkyl was removed by hot petroleum ether, and finally, a cream solid was obtained.

General procedure for the synthesis of compounds 8a-b

A volume of 0.65 mmol bromoalkoxy-1,10-phenanthroline (11a-b), 2.5 mmol dipropylamine, and 3 g potassium carbonate were mixed in 20 ml of absolute ethanol, and the mixture was then refluxed for ~24-28 hr. The completion of the reaction was detected by TLC, and the solvent was removed under reduced pressure to obtain a dark yellow viscose solid. The residue was decanted with H2O and chloroform. The organic phase was separated, and the solvent was removed under reduced pressure to obtain a yellow solid. The solid was purified by silica gel column chromatography (ethyl acetate/petroleum ether) until a cream solid was obtained.

Evaluation of antiplasmodial activity (Peter’s test)

The experimental female BALB/c mice (6-8 weeks) were purchased from Pasteur Institute of Iran (Tehran) and were kept under standard conditions for ten days to adapt to the laboratory animal housing facilities. The synthetic compounds, 7a-b and 8a-b, were administered intraperitoneally to three female BALB/c mice for 5 days with the concentrations of 10 to 150 mg/kg/day. The signs of mortality in each group were monitored daily. The optimum dose of compounds 7a-b was 150 mg/kg/day, while for compounds 8a and 8b were 30 and 15 mg/kg/day, respectively. The antiplasmodial (schizontocidal) activity of synthetic compounds (7a-b and 8a-b) was evaluated using the 4-day suppressive test against P. berghei infection in mice (23). The 19-22 g mice were weighed and randomized into seven groups and again weighted after the experiment. The stock of CQ-sensitive P. berghei (ANKA) parasite (500 µl containing 25% P. berghei) was defrosted and injected into two female BALB/c mice. Next, five animals were selected and infected with P. berghei through passaging. Each animal was inoculated IP with 2-10⁷-infected erythrocytes of P. berghei in PBS (200 µl) on the first day (D0) of the experiment. The compounds were solubilized in 20% DMSO and prediluted in PBS to make appropriate concentrations. The first treatment was accomplished three hours after the mice were infected (D0) and treated daily for four consecutive days (D4). Groups 1 and 2 were treated with compounds 7a and 7b (50, 100, and 150 mg/kg/day) by IP injection for four days, whereas groups 3 and 4 were treated with compounds 8a (10, 20, and 30 mg/kg/day) and 8b (10, 12.5, and 15 mg/kg/day) (Table 1). Mice groups 5 and 6 received PBS and 20% DMSO as negative controls, and mice group 7 was treated by CQ (25 mg/kg/day), as a positive control, for four days (Table 1). On day four, tail blood smears were taken, stained with 10% Giemsa stain in phosphate buffer (pH 7.2) for 20 min and then visualized under a microscope at 100× magnifications to determine the parasitemia level. The parasitized red blood cells on at least 2,000 red blood cells were counted to calculate the percentage of parasitemia (%parasitemia = the number of infected RBC/total number of RBC ×100). The percentage of parasitemia suppression for each group was evaluated by comparing the percentage of parasitemia in negative controls with that in the treated group (%suppression = parasitemia in negative control - parasitemia in treated group/parasitemia in negative control ×100). During the treatment, all mice were weighted on days 0 and 4. Also, the dissection of the internal organs (spleen, liver, and kidney) was done on
the seventh day of treatment. The kidneys of the treated groups did not show any change. Furthermore, the mortality of mice was monitored daily during experiment up to 24 days post-infection, and the mean survival rate of each group was calculated.

Statistical analysis

Control and test data were analyzed using SPSS (version 22.0, 2012). One-way ANOVA was used to test the statistical differences for three doses within a group, followed by LSD and Tukey's test for pairwise comparisons. P≤0.05 was considered statistically as significant.

Results

Chemistry

The pathway for the synthesis of compounds 7a-b is shown in Scheme 1. The intermediate of 5,6-epoxy-1,10-phenanthroline (9) was obtained from the reaction of 1,10-phenanthroline with aqueous sodium hypochlorite (21, 24; Scheme 1). The reaction of 5,6-epoxy-1,10-phenanthroline (9) with alkyl diamines in absolute ethanol gave compounds 7a-b in good yields. Indeed, epoxide is reactive due to the ring strain and can easily react with alkyl diamines through nucleophilic attack. It is remarkable that the epoxide ring opening is stereospecific, and nucleophilic attack with inversion gives trans product. The compound 7a, the hydrogens of the phenanthroline nucleus, indicated a triplet at 8.62 ppm (H3 and H6 in phenanthroline), doublet at 7.90 ppm (H5 in phenanthroline), and multiplet at 7.40 ppm (H2 and H7 in phenanthroline). The compound 7a had a trans format, which was confirmed by a doublet at 4.74 ppm (H4 in phenanthroline) and a doublet at 3.80 ppm (H3 in phenanthroline) with coupling constant \(\sim 9.5 \) Hz.

The spectral data confirmed the structure of the derivatives. In \(^1\)HNMR spectra of compound 7b, the hydrogens of the phenanthroline nucleus showed a broad singlet at 8.72 ppm (H1 and H8 in phenanthroline), two sets of doublet at 8.03 ppm (H3 in phenanthroline) and 7.88 ppm (H5 in phenanthroline), and a multiplet at 7.31 ppm (H2 and H7 in phenanthroline). Also, a doublet at 4.84 ppm (H4 in phenanthroline) and a doublet at 3.92 ppm (H3 in phenanthroline) were detected with coupling constant \(\sim 10.5 \) Hz, which confirms the formation of trans product. In the \(^1\)HNMR spectra of compounds 7a-b, the aliphatic hydrogens in the side chain on the phenanthroline nucleus were recognizable regarding their spin-spin splitting patterns.

The synthesis of target compounds 8a and 8b is outlined in Scheme 1. As shown in the Scheme, the intermediate of 5-hydroxy-1,10-phenanthroline (10) was obtained from 5,6-epoxy-1,10-phenanthroline based on the method reported previously (22). The intermediates of bromoalkoxy-1,10-phenanthroline (11a-b) were obtained from the reaction of compound 10 in the presence of sodium hydride, as a strong and a solid base in dry ethanol, which can deprotonate the hydroxyl group. This mixture was then added to excess dibromo alkyl in dry tetrahydrofuran and refluxed. The reaction of intermediates 11a-b in absolute ethanol with dipropylamine in the presence of excess potassium carbonate afforded the final compounds (8a-b).

The \(^1\)HNMR spectra of compound 8a, the hydrogens of the phenanthroline nucleus in DMSO-d6 showed a doublet at 9.12 ppm (H1 in phenanthroline), a broad singlet at 8.91 ppm (H5 in phenanthroline), a doublet-doublet at 8.67 ppm (H3 in phenanthroline), a triplet at 8.33 ppm (H2 in phenanthroline), two sets of multiplet at 7.79 and 7.67 ppm (H2 and H7 in phenanthroline), and a singlet at 7.37 ppm (H4 in phenanthroline). The compound 8b, the hydrogens of the phenanthroline nucleus, indicated two sets of triplet at 9.19 and 9.00 ppm (H1 and H7 in phenanthroline), a doublet-doublet at 8.68 ppm (H3 in phenanthroline), a doublet at 8.07 ppm (H2 in phenanthroline), two sets of multiplet at 7.63 and 7.54 ppm (H2 and H7 in phenanthroline), and a singlet at 6.92 ppm (H4 in phenanthroline) in its \(^1\)HNMR spectra in CDCl3. The aliphatic hydrogens in the side chain on the phenanthroline nucleus of compounds 8a-b were recognizable with regards to their spin-spin splitting patterns in \(^1\)HNMR spectra. Finally, the formation of all synthetic compounds was confirmed by different analysis methods, including \(^1\)CNMR, Mass, and CHN analysis.

6-(3-(diethylamino)propylamino)-5,6-dihydro-1,10-phenanthroline-5-ol (7a)

Yield: 78%, m.p. > 300 °C. \(^1\)HNMR(CDCl3, 500 MHz) δ:

8.62 (t, 2H, J = 8 Hz, phen), 7.90 (d, 2H, J = 8 Hz, phen), 7.40 (m, 2H, phen), 5.02 (br s, 1H, -OH), 4.74 (d, 1H, J = 9.5 Hz, phen), 3.80 (d, 1H, J = 9.5 Hz, phen), 2.80 (br s, 1H, -NH), 2.60 (t, 2H, J = 7 Hz, -CH2), 2.38 (m, 4H, J = 7 Hz, -CH2), 1.52 (t, 2H, J = 7 Hz, -CH2), 0.93 (t, 6H, J = 7 Hz, -CH3). Anal.Calcd for C_{19}H_{28}N_{2}O: C, 69.91; H, 8.03; N, 17.16. Found: C, 69.73; H, 7.71; N, 17.09.

6-(3-(dibutylamino)propylamino)-5,6-dihydro-1,10-phenanthroline-5-ol (7b)

Yield: 58%, m.p. > 300 °C. \(^1\)HNMR(CDCl3, 500 MHz) δ:

8.72 (br s, 2H, phen), 8.03 (d, 1H, J = 8 Hz, phen), 7.88 (d, 1H, J = 8 Hz, phen), 7.31 (m, 2H, phen), 4.04 (d, 1H, J = 10.5 Hz, phen), 3.92 (d, 1H, J = 10.5 Hz, phen), 2.95 (t, 2H, J = 6 Hz, -CH2), 2.56 (t, 2H, J = 6.5 Hz, -CH2), 2.42 (m, 4H, J = 7 Hz, -CH2), 1.74 (m, 2H, J = 6.5 Hz, -CH2), 1.42 (m, 4H, J = 7 Hz, -CH2), 1.30 (m, 4H, J = 7.5 Hz, -CH2), 0.91 (t, 6H, J = 7.5 Hz, -CH3). MS (m/z,%): 383.4 [M+ 31], 339.4 (2), 240.2 (6), 210.2 (6), 181.2 (53), 142.2 (100), 100.2 (73), 70.1 (6), 41.1 (33). Anal.Calcd for C_{22}H_{32}N_{2}O: C, 72.21; H, 8.96; N, 14.65. Found: C, 72.37; H, 8.76; N, 14.86.
Phenanthroline derivatives have antimalarial activity

Tahghighi et al.

Iran J Basic Med Sci, Vol. 21, No. 2, Feb 2018

Scheme 1. Synthetic route for the preparation of compounds 7a-b and 8a-b

Figure 2. The effect of synthetic compounds (7a-b and 8a-b) intraperitoneally in different doses on the percentage of parasitemia of Plasmodium berghei-infected mice (ANKA strain) on days 5 and 10 using the Peter’s 4-day suppressive test
5-(3-bromopropoxy)-1,10-phenanthroline (11a)
Yield: 85%, m.p. > 300 °C. 1H-NMR(DMSO-d6, 500 MHz) δ: 9.15 (d, 1H, J = 4.5 Hz, phen), 8.98 (dd, 1H, J = 4.5 Hz, phen), 8.74 (dd, 1H, J = 6.5 & J = 1.5 Hz, phen). 8.38 (dd, 1H, J = 6.5 and J = 1.5 Hz, phen), 7.81 (m, 1H, J = 4.5 Hz, phen), 7.71 (m, 1H, J = 4.5 Hz, phen), 7.40 (s, 1H, phen), 4.42 (t, 2H, J = 6.5 Hz, -CH2-), 3.84 (t, 2H, J = 6.5 Hz, -CH2-), 3.49 (br s, 2H, -NH), 2.89 (t, 4H, J = 2.5 Hz, -CH2-), 1.47 (m, 4H, J = 4 Hz, phen), 0.89 (t, 6H, J = 7 Hz, -CH3-). 13CNMR(DMSO-d6, 500 MHz) δ: 153.54, 153.50, 150.36, 147.49, 147.40, 147.36, 135.01, 130.62, 129.11, 123.44, 123.40, 112.91, 112.34, 112.01, 102.31, 66.82, 66.15, 46.43, 31.66, 27.42, 19.15, 11.61. MS (m/z, %) = 337.4 [M+], 308.3, 268.1(54), 236.2 (44), 196.2 (43), 167.2 (72), 140.1 (22), 114.1 (14), 73.2 (29), 45.1 (100). Anal.Calcd for C25H27N3O: C, 74.36; H, 8.31; N, 11.87.

5-(4-bromobutoxy)-1,10-phenanthroline (11b)
Yield: 93%, m.p. > 300 °C. 1H-NMR(CDCl3, 500 MHz) δ: 9.15 (d, 1H, J = 4 Hz, phen), 8.96 (d, 1H, J = 4 Hz, phen), 8.60 (dd, 1H, J = 6.5 and J = 1.5 Hz, phen), 8.02 (dd, 1H, J = 6.5 and J = 1.5 Hz, phen), 7.60 (q, 1H, J = 6.5 Hz, phen), 7.49 (q, 1H, J = 6.5 Hz, phen), 6.85 (s, 1H, phen), 4.21 (br s, 2H, -CH2-), 3.49 (br s, 2H, -CH2-), 2.05 (br s, 2H, -CH2-), 1.82 (br s, 2H, -CH2-).

3-(1,10-phenanthroline-5-yl)-N,N-dipropylpropan-1-amine (8a)
Yield: 65%, m.p. > 300 °C. 1H-NMR (DMSO-d6, 500 MHz) δ: 9.12 (d, 1H, J = 3.5 Hz, phen), 8.91 (brs, 1H, phen), 8.67 (dd, 1H, J = 8 and J = 2.5 Hz, phen), 8.33 (t, 1H, J = 3.5 Hz, phen), 7.79 (m, 1H, J = 4 Hz, phen), 7.67 (m, 1H, J = 4 Hz, phen), 7.37 (s, 1H, phen), 4.41 (t, 2H, J = 6 Hz, -CH2-), 2.89 (t, 4H, J = 7.5 Hz, -CH2-), 2.08 (br s, 2H), 1.55 (t, 4H, J = 7.5 Hz, -CH2-), 0.89 (t, 6H, J = 7.5 Hz, -CH3-). 13CNMR(DMSO-d6, 500 MHz) δ: 153.55, 153.50, 150.26, 147.49, 147.40, 147.36, 135.01, 130.62, 129.11, 123.34, 123.01, 102.31, 66.82, 66.15, 46.43, 31.66, 27.42, 19.15, 11.61. MS (m/z, %) = 335.3 [M+], 306.2, 268.1(54), 236.2 (44), 196.2 (43), 167.2 (72), 140.1 (22), 114.1 (14), 73.2 (29), 45.1 (100). Anal.Calcd for C25H27N3O: C, 74.69; H, 8.01; N, 11.96. Found: C, 74.89; H, 8.01; N, 11.87.

In vivo antiplasmodial activity
The compound 8b, as the amino-ether derivative of 1,10-phenanthroline, showed 88.32% in vivo suppression of parasitemia at the low dosage of 15 mg/kg/day by IP route using Peter's 4-day suppressive test against infected P. berghei (Table 1 and Figure 2) (23). However, 90.58% suppression was observed for the compound 7b, as the amino-
alcohol derivative of 1,10-phenanthroline, at the high
dose of 150 mg/kg/day. During the treatment, all
mice were weighed on days 0 and 4 (Figure 3A). All
treated mice had weight reduction, which can be
related to the lack of 100% reduction of parasitemia
after treatment with synthetic compounds. Seven
days after treatment, one of the mice in each group
was randomly selected and dissected. The dissection
of the internal organs (spleen, liver, and kidney)
presented a mild enlargement of the spleen and liver
in the treated groups with compounds 7a-b and 8a-b (Figures 3B and 3C, and 4) compared with the
control groups. The kidneys of the treated groups
did not show any change. The mortality of mice after IP
administration of the synthetic compounds was also
investigated, and all of the treated mice had a survival
rate higher than the negative control groups (Table 1
and Figure 3D).

The result of statistical analysis between the groups
demonstrated that the compound 7a in the high dose
(150 mg/kg/day) had a significant difference in
comparison to other doses (P<0.05) but did not show any
difference between the doses of 100 and 50 mg/kg
(P>0.05). The compound also indicated that difference
between the treated groups and the control groups
was statistically significant (P<0.05). The compound 7b
showed a significant difference not only in its three
doses but also in the control groups (P<0.05). On the
other hand, no difference was found for the compound 8a between doses of 10 and 20 mg/kg as
well as between doses of 20 and 30 mg/kg (P>0.05)
among its groups. However, there was a difference
between the low concentration (10 mg/kg) and the
control groups (P<0.05). The comparison among
three study groups of compound 8b as well as
between these groups and the control group indicated
no significant difference (P>0.05).

Discussion

Previous studies have shown that phenanthroline
derivatives have antimalarial activity (14-20). For
instance, the derivatives of N-benzyl-1,10-phenan-
throline (1 and 2) have been demonstrated to have
good activity against FCR-3 strain with the IC50 values
of 0.1 and 0.18 µM, respectively after 72-hr incubation
(Figure 1) (16). Indeed, the 1,10-phenanthroline ring
has metalloprotease inhibitory activity by chelating
metal ions. However, Sholikhah et al. (16) have
obtained contradictory result when synthesized the
compounds with N-aryl and N-alkyl substitution on
1,10-phenanthroline for blockage of the chelating site.
Their results confirmed that the antimalarial
activity of these compounds did not relate to the
chelating capacity. The compounds 1 and 2 are
nonpolar because of benzyl substituent and can easily
penetrate through the cell membrane. Sholikhah
et al. study has shown that the activity of N-benzyl-
1,10-phenanthroline derivatives was higher than that
of N-aryl-1,10-phenanthroline derivatives. These
compounds have also been evaluated by the classical
4-day suppressive test against P. berghei (18).
The most potent compound was (1)-N-benzyl-1,10-
phenanthrolinium iodide (2) (LD50= 121.42 mg/kg
and ED50= 2.08 mg/kg). Investigations have again
revealed that the benzyl group is the most important
moiety for antimalarial activity. The compound
with soft anion conjugate (I) has more effective
interaction with the cell membrane of the parasite,
hence giving a better antimalarial activity.

Modification of drug structure is a usual procedure to
achieve superior activity and less toxicity. Therefore, the
researchers designed and synthesized other 1,10-
phenanthrolinium derivatives. The antimalarial
activity of (1)-N-(4-methoxybenzyl)-1,10-phenan-
throlinium bromide (3) against two strains of P. falciparum,
FCR-3, and D10, have been indicated to have the IC50
values of 0.82 and 1.21 µM, respectively (15). The
suppression of parasitemia was never complete (100%
inhibition of parasite growth), and it had lower activity
compared to compounds 1 and 2. A previous study has
presented antimalarial activity of (1)-N-methyl-1,10-
phenanthrolinium sulfate (4) with the IC50 value of 260
nM and also showed that chloroquine diphosphate
was more potent than N-alkyl and N-benzyl-1,10
phenanthroline derivatives (17). Furthermore, the
modified fixed-ratio isobologram method has displayed an
in vitro additive interaction between the compound 4
and CQ. The compound (1)-N-(3,4-dimethoxybenzyl)-1,
10-phenanthrolinium bromide (5) was synthesized, and
the result of heme polymerization inhibitory activity
assay revealed that the IC50 value of 3.63 mM had more
antimalarial activity than CQ (19). The compound 5
has two nitrogens; the positively charged nitrogen
interacts with the electronegative oxygen at ferriproto-
porphyrin IX, and the other nitrogen (base) reacts with
the carboxylic acid group at ferriprotoporphyrin IX.
Thus, the heme polymerization process can be prevented. A complex of 1,10-phenanthroline platinum (II) benzoyl thiourea (6) presented a suitable activity against K1 and D10 strains of P. falciparum with the IC50 values of 488 and 282 nM, respectively (20). The complex showed a strong in vitro interaction with ferrirprotoporphyrin IX and inhibited β-hematin formation. The strong interaction of the phenanthroline complex with ferrirprotoporphyrin IX is attributed to the extended planar structure of phenanthroline ring with delocalized electrons in all of these complexes.

In vitro studies may lead to outcomes that do not relate to the situation occurring around a living organism. Therefore, in vivo studies are often apply more than in vitro because it is suitable for observing the overall effects of an experiment on a living microorganism.

In vivo evaluation of antimalarial compounds typically begins with the use of rodent malaria parasites, especially in drug discovery. In an extensively studied model of murine malaria, mice are infected with P. berghei, which is considered as a strong tool for biological studies in the field of malaria. In fact, P. berghei is genetically similar to P. falciparum and morphologically to P. vivax; therefore, it could be a good template for the study of malaria interventions.

In the present work, new amino-alcohol and amino-ether phenanthroline derivatives were synthesized and represented satisfactory results in inhibiting the parasitemia of P. berghei infection in BALB/c mice, though the reduction of parasitemia was never completed. Table 1 illustrates the mean percentage of parasitemia and the percentage of suppression for each group at four days. The best antimalarial compounds, 7b and 8b, showed a significant activity (P < 0.05) and a high mean survival rate of about 22 days for mice (Table 1, Figure 3D). More important, compounds 1 and 2 showed 63.71 and 82.27% growth inhibition in a dose of 12.8 mg/kg, whereas compound 4 presented 92.82% at a dose of 25.6 mg/kg. Antimalarial activity of these compounds was evaluated using Peter’s 4-day suppressive test against inoculated mouse with 1×10^7 P. berghei-infected erythrocytes. The compound 8b indicated 88.32% in vivo suppression of parasitemia at the low dosage of 15 mg/kg/day by IP route against inoculated mouse with 2×10^7 P. berghei-infected erythrocytes. Therefore, we can draw the conclusion that the compound 8a is a better candidate than the previously reported compounds.

Lipophilicity plays an important role in biological activity. In the current study, the amino-alcohol compound 7b with logP= 3.18 showed 90.58% suppression in the high dose (150 mg/kg/day) in comparison to its analog (7a, logP= 1.73) that indicated 53.47% suppression in the same dose (Table 1).

However, amino-ether compound 8b with high lipophilicity (logP= 4.28) was toxic in the concentration higher than 20 mg/kg/day. On the other hand, this compound showed a high suppressive effect in the concentration of 15 mg/kg/day, as compared to its analog 8a (logP= 3.83; Table 1). Both compounds 7b with NN-dibutylamino)propylamino moiety and compound 8b with N,N-dipropylbutan-1-amine moiety presented a high antimalarial activity in their groups.

Mechanistic studies have shown that CQ and its analogs interfere with the mechanism of heme polymerization by malaria parasite (25-27). Indeed, in the P. falciparum food vacuole (FV) is changed heme to hemozoin, which is a safe pigment for the parasite. This process is essential for the survival of the malaria parasite (26), whereas the antimalarial drugs (quinoline analogs) inhibit heme polymerization, which results in accumulation of toxic-free heme in FV and also leads to parasite’s death. Therefore, the inhibition of hemozoin formation is an excellent drug target for the development of antimalarial drugs (28). It is assumed that our synthetic compounds can also accumulate in FV and trap in its acidic (protonated) form. As a result, the new compounds have the ability to inhibit the formation of hemozoin and to increase the intracellular heme, which is toxic to the parasite. On the other hand, these compounds with new substitutions at position 4 of phenanthroline ring can have metallloprotease inhibitory activity because of free nitrogen atoms. These mechanistic studies can be evaluated in the next projects of our research group.

Conclusion

The present study illustrates the synthesis of new antimalarial compounds with phenanthroline scaffold. The results of this investigation revealed that the best compounds against P. berghei were derivatives of amino-alcohol phenanthroline 7b and amino-ether phenanthroline 8b. Although the decrease in the percentage of parasitemia was less than the reference drug in infected mice, with the spread of CQ resistance in different regions of the world, the necessity for a new, safe, well-tolerated and an affordable alternative drug is highly felt. Moreover, further research is required to be carried out on these compounds to optimize their antimalarial activities such as formulation strategies, co-formulation with other antimalarial drugs, and drug delivery systems.

Acknowledgment

The authors are grateful to Dr H Baseri (Department of Medical Entomology, School of Public Health, Tehran University, Tehran, Iran) for providing P. berghei (ANKA). This project (no. 740) has received a financial support from Pasteur Institute of Iran (PII), Tehran, Iran.
Compliance with ethical standards
All applicable and acceptable guidelines for the care and use of animals were considered.

Conflicts of interest
The authors declare no conflicts of interest.

References
1. World Health Organization. World Malaria Report 2015. Geneva 2015. Available at: http://www.who.int/malaria/publications/world-malaria-report-2015/.
2. Golan DE, Tashjian AH, Armstrong EJ. Principles of pharmacology: the pathophysiologic basis of drug therapy, 4st ed. Lippincott Williams & Wilkins; 2011.
3. Enserink M. Malaria’s drug miracle in danger. Science 2010; 328:844-846.
4. Kappe SH, Vaughan AM, Boddey JA, Cowman AF. That was then but this is now: malaria research in the time of an eradication agenda. Science 2010; 328:862-866.
5. Nosten F, Van Vugt M, Price R, Luxemburger C, Thwray KL, Brockman A, McGready R, ter Kuile F, Looareesuwan S, White NJ. Effects of artesunate-mefloquine combination on incidence of Plasmodium falciparum malaria and mefloquine resistance in western Thailand: a prospective study. Lancet 2000; 356:297-302.
6. Beshir K, Sutherland CJ, Merinopoulos I, Durrani N, Leslie T, Rowland M, Hallett L. Amodiaquine resistance in Plasmodium falciparum malaria in Afghanistan is associated with the pfcrt SVMNT allele at codons 72 to 76. Antimicrob Agents Chemother 2010; 54:3714-3716.
7. Smrkovski LL, Buck RL, Alcantara AK, Rodriguez CS, Uylangco CV. Studies of resistance to chloroquine, quinine, amodiaquine and mefloquine among Philippine strains of Plasmodium falciparum. Trans R Soc Trop Med Hyg 1985; 79:37-41.
8. Croft AM. A lesson learnt: the rise and fall of Lariam and halofan. J R Soc Med 2007; 100:170–174.
9. ter Kuile FO, Dolan G, Nosten F, Edstein MD, Luxemburger C, Phaipun L, Chongsuphajaisiddhi T, Webster HK, White NJ. Halofantrine versus mefloquine in treatment of multidrug-resistant falciparum malaria. Lancet 1993; 343:1044-1049.
10. Qui L, Su XZ. Discovery, mechanisms of action and combination therapy of artemisinin. Expert Rev Anti Infect Ther 2009; 7:999-1013.
11. Lim P, Aker AP, Khim N, Shah NK, Incardona S, Doung S, Yi P, Bouth DM, Boucher C, Puajakon OM, Meshnick SR, Wongstrichanalai C, Fandeur T, Le Bras J, Ringwald P, Arley F. Pfmdr1 copy number and artemisinin derivatives combination therapy failure in falciparum malaria in Cambodia. Malar J 2009; 8:11.
12. Sunjic V, Parulham MJ. Signposts to chiral drugs: organic synthesis in action. Springer Science & Business Media; 2011.
13. Biamonte MA, Sutherland CJ. Recent advances in malaria drug discovery. Bioorg Med Chem Lett 2013; 23:2829-2843.
14. Hadanu R, Mastjeh S, Jumina J, Mustofa M, Widjayanti MA, Sholikhah EN. Synthesis and antiplasmodial activity testing of (1)-N-(4-methoxybenzyl)-1,10-phenanthroline bromide. Indones J Chemistry 2010; 7:197-201.
15. Hadanu R, Matsjeh S, Jumina M, Widjayanti MA, Sholikhah EN. Synthesis and antiplasmodial activity testing of (1)-N-(4-methoxybenzyl)-1, 10-phenanthroline bromide compound. Proceeding of ICCS 2007; 24-26.
16. Sholikhah EN, Supargiyono S, Jumina J, Wijaya MA, Amin A, Hadanu R. Malaria drug discovery. Bioorg Med Chem Lett 2013; 23:2829-2843.
17. Bismarck J, Widjayanti MA, Jumina J. In vitro antiparasitic effect of a series of 1,10-phenoanthroline derivatives and cysteine protease inhibitor E64. Malar J 2009; 8:11.
18. Sholikhah EN, Supargiyono S, Mustofa M. Additive in vivo anti-plasmodial effect of N-alkyl and N-benzyl-1, 10-phenanthroline derivatives and artemisinin. Malar J 2009; 8:11.
19. Sholikhah EN, Supargiyono S, Mustofa M. Additive in vitro anti-plasmodial effect of N-alkyl and N-benzyl-1, 10-phenanthroline derivatives and cysteine protease inhibitor E64. Malar J 2010; 2010:540786.
20. Sholikhah EN, Wongsrichanalai C, Fandeur T, Bismarck J, Widjayanti MA, Jumina J, Wijaya MA. Malaria drug discovery. Bioorg Med Chem Lett 2013; 23:2829-2843.
21. Sholikhah EN, Supargiyono S, Mustofa M. In vitro antiparasitic effect of N-alkyl and N-benzyl-1, 10-phenanthroline derivatives and cysteine protease inhibitor E64. Malar J 2014; 14:1-6.
22. Golan DE, Tashjian AH, Armstrong EJ. Principles of pharmacology: the pathophysiologic basis of drug therapy, 4st ed. Lippincott Williams & Wilkins; 2011.
23. Enserink M. Malaria’s drug miracle in danger. Science 2010; 328:844-846.
24. Kappe SH, Vaughan AM, Boddey JA, Cowman AF. That was then but this is now: malaria research in the time of an eradication agenda. Science 2010; 328:862-866.
25. Nosten F, Van Vugt M, Price R, Luxemburger C, Thwray KL, Brockman A, McGready R, ter Kuile F, Looareesuwan S, White NJ. Effects of artesunate-mefloquine combination on incidence of Plasmodium falciparum malaria and mefloquine resistance in western Thailand: a prospective study. Lancet 2000; 356:297-302.
26. Beshir K, Sutherland CJ, Merinopoulos I, Durrani N, Leslie T, Rowland M, Hallett L. Amodiaquine resistance in Plasmodium falciparum malaria in Afghanistan is associated with the pfcrt SVMNT allele at codons 72 to 76. Antimicrob Agents Chemother 2010; 54:3714-3716.
27. Smrkovski LL, Buck RL, Alcantara AK, Rodriguez CS, Uylangco CV. Studies of resistance to chloroquine, quinine, amodiaquine and mefloquine among Philippine strains of Plasmodium falciparum. Trans R Soc Trop Med Hyg 1985; 79:37-41.
28. Croft AM. A lesson learnt: the rise and fall of Lariam and halofan. J R Soc Med 2007; 100:170-174.
29. ter Kuile FO, Dolan G, Nosten F, Edstein MD, Luxemburger C, Phaipun L, Chongsuphajaisiddhi T, Webster HK, White NJ. Halofantrine versus mefloquine in treatment of multidrug-resistant falciparum malaria. Lancet 1993; 343:1044-1049.
30. Qui L, Su XZ. Discovery, mechanisms of action and combination therapy of artemisinin. Expert Rev Anti Infect Ther 2009; 7:999-1013.
31. Lim P, Aker AP, Khim N, Shah NK, Incardona S, Doung S, Yi P, Bouth DM, Boucher C, Puajakon OM, Meshnick SR, Wongstrichanalai C, Fandeur T, Le Bras J, Ringwald P, Arley F. Pfmdr1 copy number and artemisinin derivatives combination therapy failure in falciparum malaria in Cambodia. Malar J 2009; 8:11.
32. Sunjic V, Parulham MJ. Signposts to chiral drugs: organic synthesis in action. Springer Science & Business Media; 2011.
33. Bismarck J, Widjayanti MA, Jumina J. In vitro antiparasitic effect of a series of 1,10-phenoanthroline derivatives and artemisinin. Malar J 2009; 8:11.
34. Sholikhah EN, Supargiyono S, Mustofa M. Additive in vivo anti-plasmodial effect of N-alkyl and N-benzyl-1, 10-phenanthroline derivatives and cysteine protease inhibitor E64. Malar J 2010; 2010:540786.
35. Sholikhah EN, Wongsrichanalai C, Fandeur T, Bismarck J, Widjayanti MA, Jumina J, Wijaya MA. Malaria drug discovery. Bioorg Med Chem Lett 2013; 23:2829-2843.