Abstract

It is shown that a trace invariant projection map, i.e. a positive unital idempotent map, of a finite dimensional C^*-algebra into itself is non-decomposable if and only if it is atomic, or equivalently not the sum of a 2-positive and a 2-copositive map. In particular projections onto spin factors of dimension greater than 6 are atomic.

Introduction

The classification theory for positive linear maps between C^*-algebras has been progressing slowly since Stinepring [6] introduced the class of completely positive maps in 1955. Even in the simple case when both C^*-algebras are the complex 3×3 matrices $M_3(\mathbb{C})$, the classification problem is still open. So far main emphasis has been on completely positive maps, copositive maps, i.e. those which are the composition of a completely positive map and an anti-automorphism, or more generally, k-positive maps, which are maps \(\phi \) such that \(\phi \otimes \tau_k \) is positive, where \(\tau_k \) is the identity on \(M_k(\mathbb{C}) \), and the corresponding k-copositive maps. These maps are reasonably well understood, see e.g. [5]. Furthermore maps which are sums of completely positive maps and copositive maps, called decomposable maps, and those which are not, called nondecomposable maps, have attracted much attention.

A more general class of which we have a reasonably good understanding is the cone of \((k,m)\)-decomposable maps, which are those which are the sum of a k-positive and an m-copositive map, including the case when one of them is the zero map. They are all contained in the cone of \((2,2)\)-decomposable maps. It is thus natural to consider maps which are not \((2,2)\)-decomposable, called atomic in the literature. It was shown by Ha [3] that the natural generalizations of the Choi map [1] are atomic. In the present paper we shall show that trace preserving projection maps are atomic if and only if they are nondecomposable. In [7] it was shown that the projection maps onto spin factors of dimension greater than 6 are nondecomposable, hence we obtain atomic maps in arbitrary large dimensions. We shall at the end apply the above results to give a sufficient condition for a positive map to be be atomic, in terms of algebraic properties of its fixed point set.
1 Atomic projection maps

If B is a unital C*-algebra a positive linear map $P: B \to B$ is called a projection map if $P(1) = 1$ and $P^2 = P$. The theory of such maps is intimately related to the theory of Jordan algebras of self-adjoint operators under the Jordan product $a \circ b = \frac{1}{2}(ab + ba)$ for $a, b \in B_{sa}$, the self-adjoint operators in B. See [4] for the theory of Jordan algebras of self-adjoint operators. In fact, if P is faithful, so $P(a) \neq 0$ for $a > 0$, then $A = P(B_{sa})$ is a Jordan subalgebra of B_{sa}. [2]. Furthermore, by [7] P is decomposable if and only if A is a reversible Jordan algebra, i.e. A is closed under symmetric products $a_1a_2...a_n + a_na_n_1...a_1$, with $a_i \in A$. In the present section we shall sharpen the above result by replacing decomposable by $(2,2)$-decomposable maps. For simplicity we shall assume the C*-algebra B is acting on a finite dimensional Hilbert space H and denote the usual trace on $B(H)$ by Tr.

Theorem 1 Let B be a C*-algebra acting on a finite dimensional Hilbert space. Let $P: B \to B$ be a trace preserving unital projection map. Then we have:

(i) P is $(2,2)$-decomposable if and only if P is decomposable.

(ii) P is atomic if and only if $A = P(B_{sa})$ is a nonreversible Jordan algebra.

The proof will be divided into some lemmas. We first recall that a spin system in $B(H)$ is a set $(s_i)_{i \in I}$ of symmetries, i.e. self-adjoint unitaries in $B(H)$, such that $s_i \circ s_j = 0$ for $i \neq j$. The real linear span of 1 and the s_i is a Jordan algebra called a spin factor, see [4] Chapter 6. If H is finite dimensional there is a canonical positive trace preserving projection map P of $B(H)$ onto $A + iA$, see [2]. For simplicity we often write $P: B(H) \to A$.

Lemma 2 Let $A \subset B(H)$ be a spin factor. Let $e_1, ..., e_k$ be nonzero minimal projections in the commutant of A with sum 1. Let

$$P_i: e_iB(H)e_i \to Ae_i$$

be the canonical projection map, and let $P: B(H) \to A$ be the canonical projection map. Let $\alpha_i: Ae_i \to A$ by $\alpha(\alpha e_i) = a$. Then α_i is an isomorphism, and

$$P(a) = \sum \text{Tr}(e_i)\alpha_i(P_i(e_iae_i)).$$

Hence P is decomposable if and only if each P_i is decomposable.

Proof. Since A is a simple Jordan algebra α_i is an isomorphism. Let (s_j) be a spin system generating A. Then $(s_j e_i)$ is a spin system generating Ae_i. Let $c_i = \text{Tr}(e_i)^{-1}$. Then $c_i\text{Tr}$ is the tracial state on $e_iB(H)e_i$, and the canonical projection P_i being the orthogonal projection of $e_iB(H)e_i$ with respect to the Hilbert Schmidt structure onto the subspace generated by Ae_i is given by

$$P_i(e_iae_i) = c_i\text{Tr}(e_iae_i)e_i + c_i \sum_j \text{Tr}(ae_isjesje_i)e_i = c_iP(e_iae_i)e_i.$$

2
Thus we have
\[\alpha_i(P_i(e_i a e_i)) = \alpha_i(c_i P(e_i a e_i)e_i) = c_i P(e_i a e_i). \]

Let \(E : B(H) \to \bigoplus e_i B(H) e_i \), given by \(E(x) = \sum e_i x e_i \). Then \(E \) is completely positive, and by uniqueness of \(P \) as the trace invariant projection of \(B(H) \) onto \(A \), \(P \) is the restriction
\[P = (P|\bigoplus e_i B(H) e_i) \circ E. \]

Thus, if \(a \in B(H) \) then
\[P(a) = \sum_i P(e_i a e_i) = \sum_i c_i^{-1} \alpha_i P_i(e_i a e_i) = \sum_i \text{Tr}(e_i) \alpha_i (P_i(e_i a e_i)) \]

Since \(E \) and \(\alpha_i \) are completely positive, \(P \) is decomposable if and only if each \(P_i \) is decomposable. The proof is complete.

In the case when \(A \) is a spin factor we have reduced the proof of the theorem to the case when \(A \) is irreducible, \(C^*(A) = B(H) \), or equivalently the commutant of \(A \) is the scalars.

Lemma 3 Let \(R_2 \) denote the real symmetric \(2 \times 2 \) matrices. Let \(\phi : M_2(\mathbb{C}) \to M_2(\mathbb{C}) \) be a positive map such that if \(\iota_{R_2} \) denotes the identity map on \(R_2 \), then \(\iota_{R_2} \geq \mu \phi \) for some \(\mu \geq 0 \). Then \(\phi = \lambda \iota_{R_2} \) for some \(\lambda \geq 0 \).

Proof. Let \(e \) be a 1-dimensional projection in \(R_2 \). Then \(e = \iota_{R_2}(e) \geq \mu \phi(e) \geq 0 \), so \(\phi(e) = \alpha e, \alpha \geq 0 \). Similarly \(\phi(1-e) = \beta(1-e) \), since \(1-e \) is also 1-dimensional. Thus \(\phi(1) \) belongs to the maximal abelian subalgebra of \(R_2 \) generated by \(e \). This holds for all minimal projections \(e \) in \(R_2 \), which is possible only if \(\phi(1) = \lambda 1 \) for some \(\lambda \geq 0 \). Since \(1 = \alpha 1 + \beta(1-e) \), \(\alpha = \beta = \lambda \), i.e., \(\phi(e) = \lambda e \) for all minimal projections \(e \in R_2 \), so that \(\phi = \lambda \iota_{R_2} \). The proof is complete.

Lemma 4 Let \(A \subseteq B(H) \) be a spin factor and \(P \) the canonical projection of \(B(H) \) onto \(A \). Suppose \(\phi : B(H) \to B(H) \) is a positive linear map such that \(\phi \leq \mu \phi \) for some \(\mu > 0 \). Then the restriction \(\phi|A = \lambda \iota_A \) for some \(\lambda \geq 0 \), where \(\iota_A \) is the identity map on \(A \).

Proof. Let \(s_i \) and \(s_j, i \neq j \), belong to the spin system generating \(A \), and let \(F_{i,j} \) denote the canonical trace preserving conditional expectation of \(B(H) \) onto the \(C^* \)-algebra \(C^*(s_i, s_j) \) generated by \(s_i \) and \(s_j \). Since \(\text{span}\{1, s_i, s_j\} \approx R_2 \), by Lemma 3 the restriction \(F_{i,j} \circ \phi|_{R_2} = \lambda \iota_{R_2} \) for some \(\lambda \geq 0 \). Thus we have \(F_{i,j} \circ \phi(1) = \lambda 1 \), and \(F_{i,j} \circ \phi(s_i) = \lambda s_i \) and similarly for \(s_j \). Since this holds for all \(j \neq i \), it follows that \(F_{i,j} \circ \phi(1) = \lambda 1 \), and \(F_{i,j} \circ \phi(s_i) = \lambda s_i \) for all \(i \neq j \). Thus \(\phi(1) = \lambda 1 + a_{ij} \) with \(a_{ij} \) orthogonal to \(C^*(s_i, s_j) \) in the Hilbert Schmidt structure. But then \(a_{ij} = a_{kl} = a \) for all \(i, j, k, l \), and so \(a \) is orthogonal to \(A^2 = \{xy : x, y \in A\} \). Similarly \(\phi(s_i) = \lambda s_i + b \) with \(b \) orthogonal to \(A^2 \). Scaling \(\phi \) we may assume
\[\phi(1) = 1 + a, \phi(s_i) = s_i + b_i, a, b_i \perp A^2. \]
Let $s = s_i$ and $e = e_i = \frac{1}{2}(1 + s_i) = \frac{1}{2}(1 + s)$. Then e is a projection in A. Since $\phi \leq \mu P$, $\phi(e) \leq \mu e$. Since $f = \frac{1}{2}(1 - s) = 1 - e$ is a projection orthogonal to e, we have $\phi(e)f = 0$, and similarly $\phi(f)e = 0$. Calculating we get, using that $s^2 = 1$

\[0 = (\phi(1 + s))(1 - s) = ((1 + a) + (s + b))(1 - s) = a + b - as - bs, \]

\[0 = (\phi(1 - s))(1 + s) = ((1 + a) - (s + b))(1 + s) = a + b + as - bs. \]

Adding these two equations we get $0 = a - bs$, hence $\phi(1) = 1 + bs$, and $\phi(s) = s + b = (1 + bs)s = \phi(1)s$. Thus the product of the two self-adjoint operators $\phi(1)$ and s is self-adjoint, hence they commute. Since $s = s_i$ was an arbitrary symmetry in the spin system spanning A, $\phi(1)$ belongs to the commutant of A. But A was assumed to be irreducible, so $bs = 0 = b$, so that $\phi(1) = 1$, and $\phi(s_i) = s_i$ for all i. This completes the proof of the lemma.

Lemma 5: Let A be an irreducible spin factor acting on the finite dimensional Hilbert space H. Let $\phi, \psi: B(H) \to B(H)$ be unital maps with ϕ 2-positive and ψ 2-copositive such that their restrictions to A are the identity map. Let s, t be distinct symmetries in the spin system spanning A. Then

\[\phi(st) = st, \psi(st) = ts. \]

Proof. Let $x = s + it$. Since $st = -ts$ we have

\[x^*x = 2(1 + ist), xx^* = 2(1 - ist). \]

Hence $x^*x + xx^* = 4 \cdot 1 \in A$. Since ϕ is 2-positive it satisfies the Schwarz inequality \[\Pi, \text{Cor. 2.8}, \] hence $\phi(x^*x) \geq \phi(x)^*\phi(x) = x^*x$, and $\phi(xx^*) \geq \phi(x)\phi(x)^* = xx^*$. Thus

\[0 = \phi(x^*x + xx^*) - 4 \cdot 1 = \phi(x^*x) + \phi(xx^*) - 4 \cdot 1 \geq x^*x + xx^* - 4 \cdot 1 = 0, \]

Hence $\phi(x^*x) = x^*x$, and $\phi(xx^*) = xx^*$. In particular $\phi(st) = st$.

Since ψ is 2-copositive, $\psi(x^*x) \geq \psi(x)\psi(x)^* = xx^*$, so by the above argument applied to ψ we get $\psi(st) = ts$, completing the proof.

Lemma 6: Let $\phi, \psi: B(H) \to B(H)$ be unital maps with ϕ 2-positive and ψ 2-copositive. Let $a \in B(H)$. Then we have:

(i) If $\phi(aa^*) = \phi(a)\phi(a)^*$, then $\phi(ab) = \phi(a)\phi(b)$ $\forall b \in B(H)$.

(ii) If $\psi(a^*a) = \psi(a)\psi(a)^*$, then $\psi(ba) = \psi(a)\psi(b)$ $\forall b \in B(H)$.

Proof. Let

\[\langle x, y \rangle = \phi(xy^*) - \phi(x)\phi(y)^*, x, y \in B(H). \]

Then \langle, \rangle is an operator valued sesquilinear form such that for all states ω on $B(H)$, $\langle x, y \rangle_{\omega} = \omega(\langle x, y \rangle)$ is a sesquilinear form. Thus by the Cauchy - Schwarz inequality

\[|\langle x, y \rangle_{\omega}| \leq \omega(\phi(xx^*) - \phi(x)\phi(x)^*)^{\frac{1}{2}}\omega(\phi(yy^*) - \phi(y)\phi(y)^*)^{\frac{1}{2}}. \]
Hence if \(a \) is as in the statement of (i), then \(\langle a, b \rangle = 0 \) for all \(\omega \), hence \(\langle a, b \rangle \geq 0 \), i.e. \(\phi(ab^*) = \phi(a)\phi(b^*) \) for all \(b \in B(H) \), proving (i).

(ii) In this case we consider the operator valued sesquilinear form
\[
\langle x, y \rangle = \psi(xy^*) - \psi(y^*)\psi(y),
\]
and we use the same arguments as in (i). The proof is complete.

Let \(V_k \) denote the spin factor generated by a spin system consisting of \(k \) symmetries, defined as in [4], section 6.2.

Lemma 7 Let \(P \) be the canonical projection of \(B(H) \) onto the spin factor \(A \). Suppose \(P \) is \((2,2)\)-decomposable. Then \(P \) is decomposable, and \(A \) is one of the spin factors \(V_2, V_3, V_5 \).

Proof. By Lemma 2 we may assume the \(C^* \)-algebra generated by \(A, C^*(A) = B(H) \). Suppose \(P = \phi + \psi \) with \(\phi \) 2-positive and \(\psi \) 2-copositive. By Lemma 4 we can replace \(\phi \) and \(\psi \) by maps which are the identity map on \(A \), and assume \(P = \lambda \phi + (1 - \lambda)\psi, 0 \leq \lambda \leq 1 \). Then by Lemma 5 if \(s_k \neq s_j \) are symmetries in the spin system spanning \(A \) then \(\phi(s_k s_j) = s_k s_j \), and \(\psi(s_k s_j) = s_j s_k \). From the proof of Lemma 5 if \(x = s_k + is_j \), then \(\phi(xx^*) = xx^* \), and \(\psi(xx^*) = x^*x \), so by Lemma 6
\[
\phi(xx^*b) = \phi(xx^*)\phi(b) = xx^*\phi(b) \quad \forall b \in B(H).
\]
Now the monomials \(s_{i_1} s_{i_2} \ldots s_{i_n} \) span \(C^*(A) = B(H) \) linearly. For such monomials we have, since the above equation holds in particular for \(s_k s_j \),
\[
\phi(s_{i_1} s_{i_2} \ldots s_{i_n}) = s_{i_1} s_{i_2} \phi(s_{i_3} \ldots s_{i_n}) = s_{i_1} s_{i_2} s_{i_3} s_{i_4} \phi(s_{i_5} \ldots s_{i_n}) = \ldots = s_{i_1} s_{i_2} \ldots s_{i_n}.
\]
Thus \(\phi \) is the identity map. Similarly we have
\[
\psi(s_{i_1} s_{i_2} \ldots s_{i_n}) = s_{i_n} s_{i_{n-1}} \ldots s_{i_1},
\]
so that \(\psi \) is an anti-automorphism of order 2, which is the identity on \(A \). In particular \(\phi \) is completely positive, and \(\psi \) is copositive. It follows that \(P \) is decomposable. It then follows from [7], Corollary 7.3, that \(A \) is reversible, hence by [3], Theorem 6.2.5, that \(A \) is one of the spin factors \(V_2, V_3, V_5 \). The proof is complete.

Proof of Theorem 1. Let \(B \) be a \(C^* \)-algebra acting on the finite dimensional Hilbert space \(H \), and let \(P \) be a unital trace preserving positive projection map of \(B \) into itself. Let \(A = P(B_{sa}) \). By [2] \(A \) is a Jordan subalgebra of \(B_{sa} \). Composing \(P \) with the trace invariant conditional expectation \(E \) of \(B(H) \) onto \(B \) we may assume that \(P \) is a projection of \(B(H) \) onto \(A \). This does not alter the conclusion of the theorem since \(E \) is completely positive, see e.g. [8], Proposition
9.3. Let Z denote the center of A, see [4], 2.5.1, which is the self-adjoint part of an abelian C^*-algebra. Let p be a minimal projection in Z. Then by [4], Proposition 5.2.17, the center of $pA = pAp = Zp = \mathbb{R}p$, so pAp is a Jordan factor, also called a JW-factor. It follows that $A = \bigoplus_j Ap_j$, with p_j a minimal central projection in A, and Ap_j is a Jordan factor.

By [4], section 6.3, a Jordan factor C is either a spin factor or is reversible. In the latter case a projection onto C is necessarily decomposable, [7], Corollary 7.4, hence it remains to consider the case when Ap_j is a spin factor. But then Lemma 7 implies that the projection is decomposable if and only if it is $(2,2)$-decomposable, which proves part (i) of the theorem. Part (ii) is immediate from part (i) by again applying [7]. The proof is complete.

A closer look at the proof shows that we have proved a slightly more general result. Instead of assuming the projection map P is the sum of a 2-positive map ϕ and a 2-copositive map ψ, we could have assumed ϕ to satisfy the Schwarz inequality $\phi(x^*x) \geq \phi(x)^*\phi(x)$ and ψ the inequality $\psi(x^*x) \geq \psi(x)^*\psi(x)$.

Theorem 1 has a natural generalization to positive maps.

If B is a finite dimensional C^*-algebra and $\phi : B \rightarrow B$ is a positive unital map, then the fixed point set $B_\phi = \{ a \in B : \phi(a) = a \}$ has a natural structure as a Jordan algebra, see [2]. Furthermore, if there exists a faithful ϕ-invariant state on B, then there exists a faithful ϕ-invariant positive projection map $P_\phi : B \rightarrow B_\phi$ making $(B_\phi)_{sa}$ a Jordan subalgebra of B_{sa}. We then have the following extension of Theorem 1.

Theorem 8 Let B be C^*-algebra acting on a finite dimensional Hilbert space. Suppose $\phi : B \rightarrow B$ is a trace preserving unital positive map. Let $P_\phi : B \rightarrow B_\phi$ be the ϕ-invariant positive projection of B onto B_ϕ. If ϕ is $(2,2)$-decomposable then P_ϕ is decomposable, and $(B_\phi)_{sa}$ is a reversible Jordan algebra. In particular if $(B_\phi)_{sa}$ is nonreversible, then ϕ is atomic.

Proof. The projection map P_ϕ is a weak limit of averages $\phi_n = \frac{1}{n} \sum_0^{n-1} \phi_i$. If ϕ is $(2,2)$-decomposable, so is ϕ_n, say $\phi_n = \alpha_n + \beta_n$ with α_n 2-positive, and β_n 2-copositive. Now a subnet of (ϕ_n) converges weakly to P_ϕ. If α and β are corresponding weak limit points of α_n and β_n then α is 2-positive, and β is 2-copositive. Thus P_ϕ is $(2,2)$-decomposable, so by Theorem 1 P_ϕ is decomposable, because ϕ was assumed to be trace preserving, hence so is P_ϕ, and therefore P_ϕ is faithful. By [7], Corollary 7.3, $(B_\phi)_{sa}$ is reversible. The proof is complete.

References

[1] M-D. Choi, *A Schwarz inequality for positive linear maps on C^*-algebras*, Illinois J. Math. 18 (1974), 565-574.

[2] E. Effros and E. Størmer, *Positive projections and Jordan structure in operator algebras*, Math. Scand. 45 (1979), 127-138.
[3] K.-C. Ha, *Atomic positive linear maps in matrix algebras*, Publ.RIMS, 34, (1998), 591-599.

[4] H. Hanche-Olsen and E. Størmer, *Jordan operator algebras*, Monographs in Math. 21 Pitman (1984).

[5] L. Skowronek, E. Størmer, and K. Zyczkowski, *Cones of positive maps and their duality relations*, arXiv:quant-ph/0902.4877

[6] W.F. Stinespring, *Positive functions on C*-algebras*, Proc.Amer.Math. Soc. 6 (1955), 211-216.

[7] E. Størmer, *Decomposition of positive projections on C*-algebras*, Math. Ann. 247 (1980), 21 - 41.

[8] S. Stratila, *Modular theory in operator algebras*, Abacus Press, (1981).

Department of Mathematics, University of Oslo, 0316 Oslo, Norway.
e-mail: erlings@math.uio.no