In vitro Toxicity and Genotoxic Activity of Aqueous Leaf Extracts From Four Varieties of Olea europea (L)

Luc Verschaeve1, Hayet Edziri2, Roel Anthonissen, Dalenda Boujnah3, Fethia Skhiri4, Hechmi Chehab3, Mahjoub Aouni2, Maha Mastouri2

Scientific Institute of Public Health, Toxicology Unit, Brussels, 1University of Antwerp, Department of Biomedical Sciences, Antwerp, Belgium, 2Laboratory of Transmissible Diseases and Biologically Active Substances, Faculty of Pharmacy, Monastir, 3The Olive Tree Institute, Sousse Resort, Sousse, 4Laboratory of Genetic Biodiversity and Valorisation of Bio Resources, Higher Institute of Biotechnology of Monastir, Monastir, Tunisia

Submitted: 30-05-2016 Revised: 11-07-2016 Published: 07-04-2017

ABSTRACT
Aim: Despite its therapeutic value almost nothing is known about potential adverse health effects of Olea europea L. We therefore investigated the in vitro toxicity and genotoxicity of leaf extracts of this plant. Material and Methods: Extracts from olive tree leaves were obtained from four different regions in Tunisia. We investigated the in vitro toxicity, genotoxicity and antigenotoxicity of their aqueous extracts using the neutral red (Nru) uptake, Vitotox and alkaline comet assays. Results: None of the extracts were found to be toxic and none of them were genotoxic, although some doubt exists for the extract obtained at Meski (North of Tunisia). On the basis of the Vitotox test only, none of the extracts appeared to have antigenotoxic (or cogenotoxic) properties. Discussion: The negative genotoxicity underline the safe use of the leaves, for example, as hypoglycemic and antidiabetic preparations. Lack of antigenotoxicity may indicate that the previously reported anticancer effects do not result from protection against genotoxicity.

Key words: Olea europaea L, Vitotox test, comet assay, genotoxicity, antigenotoxicity

HIGHLIGHTS
- We investigated the in vitro toxicity and genotoxicity of aqueous extracts of olives
- The neutral Red Uptake test, Vitotox and alkaline comet assay were used
- Leaf extracts from 4 different origins were investigated
- None of them showed in vitro toxicity or genotoxicity
- The extracts also didn’t have antigenotoxic properties

INTRODUCTION
Olive (Olea europaea L.) is an evergreen sclerophyllous tree cultivated in the Mediterranean region since ancient times. Olive orchards have been reliable producers of food and oil for thousands of years, supporting successive civilizations in the Mediterranean area. Olea europaea (syn. Zaytoun, in Arabic) belongs to the family Oleaceae and is a small evergreen tree, from 12 to 20 ft. high, with hoary, rigid branches, and a grayish bark. It is greatly growing in developed and developing countries for its known healing effects.1 It is for example widely used in folk medicine in the European Mediterranean area, Arabia peninsula, India, and other tropical and subropical regions, as diuretic, hypotensive, emolient, and for urinary and bladder infections.2,3 Leaves are taken orally for stomach and intestinal diseases and used as mouth cleanser.3 Decoctions of the dried fruit and of dried leaf are taken orally for diarrhea and to treat respiratory and urinary tract infections. Leaves decoction has also hypotensive,4 anti-inflammatory,5 diuretic,7 and anticancer9 activities. Despite its therapeutic value, this medicinal plant was never tested for its possible adverse health effects the way our modern pharmaceutical products are. It is important to investigate not only its potential adverse effects but also its potential beneficial effects. The aim of this study is therefore to fill this gap by investigating the genotoxic activity of four varieties of Olea europaea L. leaf extracts and to compare their activities.

MATERIAL AND METHODS
Plant material
Olea europaea leaf varieties were selected from different regions in Tunisia, Chetoui (North), Meski (North), Oueslati (Center), Jurbou (Sahel). The varieties were identified by Professor Dalenda Boujnah from the olive institute of Sousse, Tunisia and voucher specimen numbers were attributed to each of the samples.

Abbreviation list: BaP : benzo[a]pyrene, EMS: ethyl methane sulfonate, LMP: low melting point, Nru50: 50% inhibition of Nru, NR: neutral red, NRU: neutral red uptake, OD: optical density, PBS: phosphate buffer saline, SDS: sodium dodecyl sulphate, S/N: signal to noise ratio, 4NQO : 4-nitroquinoline oxide

Correspondence: Dr. Luc Verschaeve, Department of Food, Medicines and Consumers Safety, Toxicology Unit, Scientific Institute of Public health (WIV-ISPI), Brussels, Belgium. E-mail: luc.verschaeve@wiv-ispi.be DOI: 10.4103/0973-1296.203980

For reprints contact: reprints@medknow.com

Cite this article as: Verschaeve L, Edziri H, Anthonissen R, Boujnah D, Skhiri F, Chehab H, Aouni M, Mastouri M. In vitro Toxicity and genotoxic activity of aqueous leaf extracts from four varieties of Olea europea (L). Phcog Mag 2017;13:63-8.
Preparation of leaves aqueous extracts

Three grams of dried material (leaves) was extracted by soaking in 100 mL distilled water at ambient temperature for 24 h in a shaker to give a concentration of 3% dry tissue. Extracts were then filtered in vacuum. First, through a Whatman #3 disk and then, re-filtered through a nitrocellulose paper (Ø = 0.45 µm) to reduce the risk of interference by micro-organisms.

Genotoxicity test: bacterial Vibotox test

Two Salmonella typhimurium TA104 constructs were obtained as components of the Vibotoxic18 Kit from GENTaur bvba (Kampenhout, Belgium). They were grown overnight at 37°C (shaking) above 1.5 indicates genotoxicity.[9,10] The second strain contains the lux gene (TA104-recN2-4 or genox strain). Light is measured with a luminometer (Modulus Microplate Multi-mode Reader, Turner Biosystems, Leiden, The Netherlands) every 5 min during 4 h. A signal-to-noise (S/N) ratio above 1.5 indicates genotoxicity.[9,10] The second strain contains the lux gene under control of a constitutive promoter so that the light production is not influenced by genotoxic compounds. This so-called TA104-p1 strain (or Cytox strain) is used as an internal control. If light production goes down in this strain, it indicates a toxic response; if light production goes up it indicates that the test compound influences the lux gene other than via DNA damage. In this case, a “positive” response in the Genox strain probably does not reflect genotoxicity as could initially be thought. Bacteria were exposed to the extracts in different concentrations (0.02–0.1–0.5 mg/mL and 0.2–1.0–5.0 mg/mL) in the presence and absence of a metabolizing S9 fraction to investigate their genotoxicity. They were also treated with the extracts together with a chemical mutagen to investigate antigenotoxicity. Therefore, extracts were tested in the same concentrations as well as in three lower concentrations (1/5 dilutions). The chemical mutagens were 0.4 ppm 4-nitroquinoline oxide (4NQO; in the absence of S9) and 800 ppm benzo(a)pyrene (BaP; in the presence of S9). The mutagens were also used in the same concentration as positive controls in all tests. Bacteria and test compounds (extracts with or without mutagen) were then placed into the luminometer where light emission was measured (4 h). The culture medium was not changed in between. Therefore, extracts and chemical mutagens were still present in the medium when the cells were placed in the luminometer.

In vitro toxicity test: the neutral red uptake test

The NRU test[11] is based on the ability of living cells to take up and bind NR. NR is a dye which easily penetrates cell membranes via cellulose paper (Ø = 0.45 µm) to reduce the risk of interference by micro-organisms.

In vitro Cytotoxicity, Genotoxicity and Antigenotoxicity of Olea Europea (L)

The calculated NI50 for the positive control in an experiment should be within 2.5 SD of these historical data for SDS. If this is not the case, the results cannot be accepted, and the test should be repeated. The reported results were all in accordance with the requirements.

Genotoxicity test: comet assay

Possible DNA breakage effects were investigated by the alkaline comet assay on human C3A hepatic cells. The test was performed according to standard methods.[13] In short, cells were grown in 24-well plates (1 mL/400,000 cells). After a 24 h growth period, plant extracts were added in different concentrations. Concentrations were 5.0, 1.0, 0.2, and 0 mg/mL. Cells were trypsinized after another 24 h, brought to PBS and kept on ice to prevent further DNA damage. A 10 mL cell suspension + 300 mL 0.8% LMP agarose was brought on precoated slides (1% NMP agarose). The pH was adjusted to pH = 10 with NaOH pellets. The slides remained overnight into the lysing solution. The next day, slides were brought into denaturation buffer (0.3M NaOH, 1 mM EDTA in water, t = 17°C, pH = 13) in which electrophoresis (20 min, 1.2 V/cm, 300 mA) occurred. After lysis, histones and nucleosomes were removed leaving supercoiled DNA behind. DNA damage results in broken DNA fragments and loops that will unwind and migrate in the agarose gel. A “comet-like” figure is formed that can be visualized after staining with a fluorescent dye. Slides were then treated with the extracts in different concentrations. Concentrations were 5.0, 1.0, 0.2, and 0 mg/mL. Cells were trypsinized after another 24 h, brought to PBS and kept on ice to prevent further DNA damage. A 10 mL cell suspension + 300 mL 0.8% LMP agarose was brought on precoated slides (1% NMP agarose). The pH was adjusted to pH = 10 with NaOH pellets. The slides remained overnight into the lysing solution. The next day, slides were brought into denaturation buffer (0.3M NaOH, 1 mM EDTA in water, t = 17°C, pH = 13) in which electrophoresis (20 min, 1.2 V/cm, 300 mA) occurred. After lysis, histones and nucleosomes were removed leaving supercoiled DNA behind. DNA damage results in broken DNA fragments and loops that will unwind and migrate in the agarose gel. A “comet-like” figure is formed that can be visualized after staining with a fluorescent dye. Slides were then treated with the extracts in different concentrations. Concentrations were 5.0, 1.0, 0.2, and 0 mg/mL. Cells were trypsinized after another 24 h, brought to PBS and kept on ice to prevent further DNA damage. A 10 mL cell suspension + 300 mL 0.8% LMP agarose was brought on precoated slides (1% NMP agarose). The pH was adjusted to pH = 10 with NaOH pellets. The slides remained overnight into the lysing solution. The next day, slides were brought into denaturation buffer (0.3M NaOH, 1 mM EDTA in water, t = 17°C, pH = 13) in which electrophoresis (20 min, 1.2 V/cm, 300 mA) occurred. After lysis, histones and nucleosomes were removed leaving supercoiled DNA behind. DNA damage results in broken DNA fragments and loops that will unwind and migrate in the agarose gel. A “comet-like” figure is formed that can be visualized after staining with a fluorescent dye. Slides were then treated with the extracts in different concentrations. Concentrations were 5.0, 1.0, 0.2, and 0 mg/mL. Cells were trypsinized after another 24 h, brought to PBS and kept on ice to prevent further DNA damage. A 10 mL cell suspension + 300 mL 0.8% LMP agarose was brought on precoated slides (1% NMP agarose). The pH was adjusted to pH = 10 with NaOH pellets. The slides remained overnight into the lysing solution. The next day, slides were brought into denaturation buffer (0.3M NaOH, 1 mM EDTA in water, t = 17°C, pH = 13) in which electrophoresis (20 min, 1.2 V/cm, 300 mA) occurred. After lysis, histones and nucleosomes were removed leaving supercoiled DNA behind. DNA damage results in broken DNA fragments and loops that will unwind and migrate in the agarose gel. A “comet-like” figure is formed that can be visualized after staining with a fluorescent dye. Slides were then treated with the extracts in different concentrations. Concentrations were 5.0, 1.0, 0.2, and 0 mg/mL. Cells were trypsinized after another 24 h, brought to PBS and kept on ice to prevent further DNA damage. A 10 mL cell suspension + 300 mL 0.8% LMP agarose was brought on precoated slides (1% NMP agarose). The pH was adjusted to pH = 10 with NaOH pellets. The slides remained overnight into the lysing solution. The next day, slides were brought into denaturation buffer (0.3M NaOH, 1 mM EDTA in water, t = 17°C, pH = 13) in which electrophoresis (20 min, 1.2 V/cm, 300 mA) occurred.
LUC VERSCHAEVE, et al.: In vitro Cytotoxicity, Genotoxicity and Antigenotoxicity of Olea Europea (L)

Figure 1: Example of Vitotox test results for one of the investigated extracts (Meski) in the absence and presence of S9.

Figure 2: Representation of Vitotox test results for all four extracts in the presence and absence of S9.
of their pharmacological properties. This is why our research on olives (Olea europaea L.) also includes a (geno) toxicological part which is reported here. For the investigation of the potential genotoxicity/antigenotoxicity of the plant extracts, we used two indicator tests, the bacterial Vitotox test and the alkaline comet assay in human C3A cells. We chose both tests as previous investigations on a large number of medicinal plant extracts from different origin showed that a combination of both test is usually sufficient to decide upon an extract's genotoxicity profile. Therefore, the use of more time-consuming tests is apparently not imperative.\[17\]

The Vitotox test was at first performed in concentrations of 0.02–0.1–0.5 mg/mL. This corresponds to a dose range that was found accurate in many similar experiments with plant extracts.\[18,19\] Then, because of lack of any effect, also higher concentrations of 0.2–1.0–5.0 mg/mL were studied. The concentration of 5 mg/mL corresponds with the limits of solubility. Figure 1 gives an example of the results obtained for the extract “Meski” in the absence and presence of S9. It can be seen that in cultures without addition of S9 no toxicity was found (S/N ratio in Cytox strain remains approximately “1”) and that there was no genotoxicity as S/N in the Genox strain also did not increase. In the presence of S9 there is a slight increase in S/N in both the Cytox (up to S/N ≅ 1.2) and Genox strain (S/N reaching levels just below 1.5) but the criteria for genotoxicity (i.e., S/N > 1.5) were not yet fulfilled. Repeat experiments gave the same result (slight increase but at the most just below the threshold for genotoxicity). Another representation of the results is given in Figure 2 (for all extracts). It can be seen that the positive controls (4NQO and BaP) always showed genotoxicity (S/N > 1.5 in the Genox strain) and no toxicity (S/N >0.8 in the Cytox strain). The tested extracts where not toxic but also not genotoxic according to the Vitotox test criteria. Borderline genotoxicity was yet found for the Meski sample in the present of S9.

Figure 3: Example of NRU test results for the extract from Chetoui.

Figure 4: Comet test results for all four extracts. Statistical significant increases above background levels were indicated as x = P < 0.05; xx = P < 0.01, and xxx = P < 0.001.
The comet assay was performed on human C3A cells that retain their metabolic activity. For this reason tests were only performed in the absence of S9. Investigated concentrations were the highest possible (5 mg/mL, solubility limit concentration and highest recommended dose[20]) and two further dilutions from this. All tested doses were found nontoxic in the NRU test (NI₅₀ > 90%; Figure 3). Figure 3 is representative for all four extracts as none of them had NI₅₀ values lower than 90%. The comet assay was therefore performed on nontoxic (but yet high) concentrations of the extracts [Figure 4]. Statistically significant deviations were found at 1 mg/mL for the Chetoui sample but this was borderline and a higher concentration did not show increased DNA damage. Extract Meski did show increased DNA damage (% tail DNA) at the two highest concentrations. Taking the results of the Vitotox test and comet assays together we can conclude that only the Meski extract may have some genotoxic properties. However, the effect was low as can be seen when it is compared to that of well-known mutagens. Genotoxicity was, for example, much less impressive than that of the positive controls EMS (approximately 30% tail DNA at 0.75 mM), or 4NQO where concentrations of 0.075 up to 0.25 µg/mL showed highly significant increases of DNA damage (P < 0.001, results not shown).

Antigenotoxicity was also investigated in the Vitotox test. Here, the same extract concentrations and three further dilutions were tested in the presence of 4NQO or BaP. Figure 5 shows the results for the concentrations 0.2–1.0–5.0 mg/mL. Concentration “0” corresponds to 4NQO alone (without addition of an extract), concentration 0.2 mg/mL means that 4NQO was tested in conjunction with 0.2 mg/mL extract, etc. The same holds true for the samples with S9 where “0” is BaP alone and 0.2 is BaP + 0.2 mg/mL of the extract. Figure 5 shows that the extracts do not significantly reduce (or enhance) the genotoxicity of the known mutagen and hence that the extracts apparently do not have a strong antigenotoxic (or cogenotoxic) activity. As antigenotoxicity may be concentration dependent we also investigated lower concentrations of the extracts (1.6–8.0–40 µg/mL). The results did not show any important deviation from the damage induced by the known mutagens (not shown). We thus conclude that the four olive extracts (Olea europaea L.) obtained from different regions in Tunisia are not genotoxic (although some doubt exist with respect to the extract collected at Meski). None has important antigenotoxic properties and also do not enhance the genotoxicity of the mutagens 4NQO or BaP. Lack of antigenotoxicity, may indicate that the previously reported anticancer effects[8] do not result from protection against genotoxicity. The negative genotoxicity data furthermore underline the safe use of the leaves, for example, in hypoglycemic and antidiabetic preparations.

Financial support and sponsorship
Nil.

Conflicts of interest
There are no conflicts of interest.

REFERENCES
1. Visioli F, Bellomo G, Galli C. Free radical-scavenging properties of olive oil polyphenols. Biochem Biophys Res Commun 1998;247:60-4.
2. Samova LI, Shode FO, Ramnanan P, Nair A. Antihypertensive, antiatherosclerotic and antioxidant activity of triterpenoids isolated from Olea europaea subsp. Africana leaves. J Ethnopharmacol 2003;84:299-5.
3. Bellakhdar J, Claessse R, Fleurentin J, Yonis C. Repertory of standard herbal drugs in the Moroccan Pharmacopoeia. J Ethnopharmacol 1991;35:123-43.
4. De la Ribeiro R, Fiuza de Melo MM, de Barros F, Gomes C, Trolin G. Acute antihypertensive effect in conscious rats produced by some medicinal plants used in the state of Sao Paolo. J Ethnopharmacol 1986;15:261-69.

5. Alarcón-Aguiar FJ, Roman-Ramos R, Perez-Gutierrez S, Aguilar-Contreras A, Contreras-Weber CC, Flores-Saenz JL. Study of the anti-hyperglycemic effect of plant used as antidiabetics. J Ethnopharmacol 1998;6:101-10.

6. Pieroni A, Herrler D, Pieters L, Van Poel B, Vliekink AJ. In vitro anticomplementary activity of flavonoids from olive (Olea europaea) leaves. Pharmacize 1996;51:765-8.

7. Lawrendiadis G. Contribution to the knowledge of the medicinal plants of Greece, Planta Medica. 1961;9:164-69.

8. Goldsmith CD, Vuong QV, Saderzadeh E, Stathopoulos CE, Roach PD, Scarlett CJ. Phytochemical properties and anti-proliferative activity of Olea europaea L. Leaf extracts against pancreatic cancer cells. Molecules 2015;20:12892-3004.

9. Verschaeve L, Van Gompel J, Regniers L, Van Parys P, van der Lelie D. VITOTOX® genotoxicity and toxicity test for the rapid screening of chemicals. Environ Mol Mutagen 1999;33:240-8.

10. Verschaeve L. High-throughput bacterial mutagenicity testing: VITOTOX™ assay. Steinberg P (editor), High through put screening methods in toxicity testing 2013; John Wiley & Sons 213-32.

11. Borenfreund E, Puerner JA. Toxicity determination in vitro by morphological alterations and neutral red absorption. Toxicol Lett 1985;24:119-24.

12. Repetto G, Del Peso A, Zunta JL. Neutral red uptake assay for the estimation of cell viability/cytotoxicity. Nat Prot 2008;3:1125-31.

13. Olive PL, Banáth JP. The comet assay: A method to measure DNA damage in individual cells. Nat Prot 2006;1:23-9.

14. IARC. Monographs on the evaluation of carcinogenic risks to humans. Volume 82, Some traditional Herbal Medicines, some mycotoxins, naphthalene and styrene. Lyon, France: IARC Press. 2002.

15. Verschaeve L, Van Staden J. Mutagenic and antimutagenic properties of South African medicinal plant extracts. J Ethnopharmacol 2008;119:575-87.

16. Ndhlala AR, Anthonissen R, Stafford GI, Finnie JF, Verschaeve L, Van Staden J. In vitro cytotoxic and mutagenic evaluation of thirteen commercial herbal mixtures sold in Kwa Zulu-Natal, South Africa. S Afr J Bot 2010;76:132-8.

17. Verschaeve L. Investigations of plant-derived products with the in vitro comet assay. Front. Genet. Conference Abstract: ICAW 2015-11th International Comet Assay Workshop. 2015.

18. Edziri H, Mastouri M, Mahjoub A, Anthonissen R, Mertens B, Cammaerts S. et al. Toxic and mutagenic properties of extracts from Tunisian traditional medicinal plants investigated by the neutral red uptake, VITOTOX® and alkaline comet assays. S Afr J Bot 2011;77:703-10.

19. Rashed K, Anthonissen R, Cappoen D, Verschaeve L. Evaluating potential genotoxic effects of selected Egyptian medicinal plants. Pharmacogn Comm 2015;5:207-16.

20. Tice RR, Agurell E, Anderson D, Burlinson B, Hartmann A, Kobayashi H. Single cell gel/comet assay: guidelines for in vitro and in vivo genetic toxicology testing. Env Molec Mutagen 2000;35:206-21.