Thrombolytic potential of Ocimum sanctum L., Curcuma longa L., Azadirachta indica L. and Anacardium occidentale L.

Irfan Newaz Khan¹, Md. Razibul Habib²*, Md. Mominur Rahman³, Adnan Mannan⁴, Md. Mominul Islam Sarker¹ and Sourav Hawlader¹

¹Department of Pharmacy, University of Science & Technology Chittagong (USTC), Bangladesh
² Department of Pharmacy, East West University, Dhaka, Bangladesh
³Department of Genetic Engineering & Biotechnology, University of Chittagong, Bangladesh

INTRODUCTION

Thromboembolic disorders such as pulmonary emboli, deep vein thrombosis, strokes and heart attacks are the main causes of morbidity and mortality in developed countries. Thrombolytic therapy uses drugs called thrombolytic agents, such as alteplase, anistreplase, streptokinase, urokinase, and tissue plasminogen activator (tPA) to dissolve clots. Thrombolytic therapy is also used to dissolve blood clots that form in catheters or tubes put into people’s bodies for medical treatments, such as dialysis or chemotherapy. However, the relatively weak substrate specificity of first generation agents (streptokinase and urokinase) can result in a state of systemic fibrinolysis and associated bleeding complications. Because of the shortcomings of the available thrombolytic drugs, attempts are underway to develop improved recombinant variants of these drugs [1-5]. Recently, preventive measures against thrombosis have been tried. Oral administration of the fibrinolytic enzyme nattokinase was one example, which has been reported to enhance fibrinolytic activity in plasma and the production of tPA [6].

Since ancient times, herbal preparations have been used for the treatment of several diseases. The leaves and/or twigs, stem, bark and underground parts of plants are most often used for traditional medicines. Herbal products are often perceived as safe because they are “natural” [7]. Considerable efforts have been directed towards the discovery and development of natural products from various plant and animal sources which have antplatelet [8, 9], anticoagulant [10, 11], antithrombotic [12], and thrombolytic activity. Epidemiologic studies have provided evidence that foods with experimentally proved antithrombotic effect could reduce risk of thrombosis. Herbs showing thrombolytic activity have been studied and some significant observations have been reported [13]. Ocimum sanctum belongs to Lamiaceae family and is known by a common name of “Tulsi” in India & Bangladesh. Fixed oil of Ocimum sanctum increases blood clotting [14] time and percentage increase was comparable to aspirin and could be due to inhibition of platelet aggregation. Turmeric (Curcuma longa) inhibits platelet aggregation [15].

The aim of our work was to investigate whether our selected herbal plants (aqueous extract of Ocimum sanctum, Curcuma longa, Azadirachta indica & Anacardium occidentale) possess thrombolytic activity or not by using an in-vitro procedure.

ATERIALS AND METHODS

Streptokinase (SK)

To the commercially available lyophilized SK vial (Polamin Werk GmbH, Herdecke, Germany) of 15, 00,000 IU, 5 ml sterile distilled water was added and mixed properly. This suspension was used as a stock from which 100 μl (30,000 IU) was used for in vitro thrombolysis [16].

Specimen

Whole blood (5 ml) was drawn from healthy human volunteers (n = 10) without a history of oral contraceptive or anticoagulant therapy (using a protocol approved by the Institutional Ethics Committee of Central India Institute of Medical Sciences, Nagpur). 500 μl of blood was transferred to each of the ten previously weighed alpine tubes to form clots.

Collection and extraction

Different parts of Ocimum sanctum (leaves), Curcuma longa (Rhizomes), Azadirachta indica (leaves) & Anacardium occidentale (Fruits/Nuts) was collected at their full mature form, from Chitragong, Bangladesh. The plant parts were identified by Bangladesh forest research institute (BFRI), Chitragong. After cleaning, the plant parts of selected plant were taken and air dried for 10 days, and then kept in an oven at 45°C for 72 hours. Then the dried plant parts were ground. After grinding the glass extractor was used for extraction process. 10g of dried powder was taken in the glass extractor. Before placing, the extractor was washed properly and then dried. Then 500ml of solvent methanol was added gradually & extraction was done.

MATERIALS AND METHODS

Streptokinase (SK)

To the commercially available lyophilized SK vial (Polamin Werk GmbH, Herdecke, Germany) of 15, 00,000 IU, 5 ml sterile distilled water was added and mixed properly. This suspension was used as a stock from which 100 μl (30,000 IU) was used for in vitro thrombolysis [16].

Specimen

Whole blood (5 ml) was drawn from healthy human volunteers (n = 10) without a history of oral contraceptive or anticoagulant therapy (using a protocol approved by the Institutional Ethics Committee of Central India Institute of Medical Sciences, Nagpur). 500 μl of blood was transferred to each of the ten previously weighed alpine tubes to form clots.

Collection and extraction

Different parts of Ocimum sanctum (leaves), Curcuma longa (Rhizomes), Azadirachta indica (leaves) & Anacardium occidentale (Fruits/Nuts) was collected at their full mature form, from Chitragong, Bangladesh. The plant parts were identified by Bangladesh forest research institute (BFRI), Chitragong. After cleaning, the plant parts of selected plant were taken and air dried for 10 days, and then kept in an oven at 45°C for 72 hours. Then the dried plant parts were ground. After grinding the glass extractor was used for extraction process. 10g of dried powder was taken in the glass extractor. Before placing, the extractor was washed properly and then dried. Then 500ml of solvent methanol was added gradually & extraction was done.

KEYWORDS

O. sanctum, C. longa, A. indica, A. occidentale thrombolysis

received on 13-06-2011
accepted on 23-06-2011
available online 15-08-2011
www.jbclinpharm.com

*Corresponding Author E-mail: mrhjewel@gmail.com
Herbal Preparation
100 mg extract was suspended in 10 ml distilled water and the suspension was shaken vigorously on a vortex mixer. The suspension was kept overnight and decanted to remove the soluble supernatant, which was filtered through a 0.22 micron syringe filter. 100 μl of this aqueous preparation of herbs was added to the alpine tube containing the clots to check thrombolytic activity [16].

Clot lysis
Experiments for clot lysis were carried as reported earlier [16]. Venous blood was drawn from healthy volunteers (n = 10) and transferred in different pre-weighed sterile alpine tube (500 μl/tube) and incubated at 37°C for 45 minutes. After clot formation, serum was completely removed (aspirated out without disturbing the clot formed). Each tube having clot was again weighed to determine the clot weight (Clot weight = weight of clot containing tube – weight of tube alone). Each alpine tube containing clot was properly labeled and 100 μl of plant extract was added to the tubes. As a positive control, 100 μl of SK and as a negative non thrombolytic control, 100 μl of distilled water were separately added to the control tubes numbered. All the tubes were then incubated at 37°C for 90 minutes and observed for clot lysis. After treatment of clots with 100 μl of Ocimum sanctum, Curcuma longa, Azadirachta indica & Anacardium occidentale moderate clot lysis i.e., 30.01%, 32.94%, 27.47%, and 33.79% respectively was observed and when compared with the negative control (water) the mean clot lysis % difference was significant (p value < 0.0001). Percent clot lysis obtained after treating clots with different herbs and appropriate controls is shown in Table 1. Statistical representation of the effective clot lysis percentage by four herbal preparations, positive thrombolytic control (Streptokinase) and negative control (sterile distilled water) is tabulated in Table 1.

RESULTS
Addition of 100 μl SK, a positive control (30,000 I.U.) to the clots along with 90 minutes of incubation at 37°C, showed 86.2% clot lysis. Clots when treated with 100 μl sterile distilled water (negative control) showed only negligible clot lysis (4.7%). The mean difference in clot lysis percentage between positive and negative control was very significant (p value < 0.0009) After treatment of clots with 100 μl of Ocimum sanctum, Curcuma longa, Azadirachta indica & Anacardium occidentale moderate clot lysis i.e., 30.01%, 32.94%, 27.47%, and 33.79% respectively was observed and when compared with the negative control (water) the mean clot lysis % difference was significant (p value < 0.0001). Percent clot lysis obtained after treating clots with different herbs and appropriate controls is shown in Figure 1. Statistical representation of the effective clot lysis percentage by four herbal preparations, positive thrombolytic control (Streptokinase) and negative control (sterile distilled water) is tabulated in Table 1.

DISCUSSION
Now-a-days, about 30% of the pharmaceuticals are prepared from plants worldwide [17]. A number of studies have been conducted by various researchers to find out the herbs and natural food sources and their supplements having antithrombotic (anticoagulant and antiplatelet) effect and there is evidence that consuming such food leads to prevention of coronary events and stroke [18-21]. There are several thrombolytic drugs obtained from various sources. Some are modified further with the use of recombinant technology in order to make these thrombolytic drugs more site specific and effective [20]. Side effects related to these drugs have been reported that lead to further complications [21]. Sometimes the patients die due to bleeding and embolism [22, 24-26].

Table 1: Effect of herbal extracts on in vitro clot lysis.

Herb/Drug	% Clot lysis (mean ± S.D)	P value (Two-tailed) when compared to negative control (water)
Streptokinase	86.2 ± 10.7	< 0.0009
Ocimum sanctum	30.01 ± 6.168	< 0.0001
Curcuma longa	32.94 ± 3.663	< 0.0001
Azadirachta indica	27.47 ± 6.943	< 0.0001
Anacardium occidentale	33.79% ± 2.926	< 0.0001

Statistical representation of the effective clot lysis percentage by herbal preparations, positive thrombolytic control (Streptokinase) and negative control (sterile distilled water) done by paired t-test analysis; clot lysis % is represented as mean ± S.D. and p values of all Herbal preparations were < 0.05 was considered as significant.
In our study to evaluate thrombolytic properties of different plant extracts, we have tried Ocimum sanctum, Curcuma longa, Azadirachta indica & Anacardium occidentale preparations. These are used since ancient times for curing vascular diseases & many other diseases. For example, Fagonia arabica (Dhamasa) was reported to have antithrombotic activity [16]. There are few more plant extracts/products which have been identified to have fibrinolytic activity. These are Lumbri-cus rubellus [26], Pleurotus ostreatus [29], Spirodela polyrhiza [30], Flammulina velutipes [31], and Ganoderma lucidum [32], Ginger (Zingiber officinale) [33], Garlic (Allium sativum) [34].

In this study, Streptokinase (SK), a known thrombolytic drug is used as a positive control [27]. Water, on the other hand, was selected as a negative control. The comparison of positive control with negative control clearly demonstrated that clot dissolution does not occur when water was added to the clot. By comparing with this positive & negative control, a significant thrombolytic activity was observed after treating the clots with Ocimum sanctum, Curcuma longa, Azadirachta indica & Anacardium occidentale extracts with P value (Two-tailed) less than 0.0001.

CONCLUSION
From this experiment, it can be concluded that the extracts of Ocimum sanctum, Curcuma longa, Azadirachta indica & Anacardium occidentale showed moderate to good clot lysis activity. Once found these herbal preparations may be incorporated as a thrombolytic agent for the improvement of the patients suffering from Atherosclerotic diseases. This is only a preliminary study and to make final comment the extract should thoroughly investigated phytochemically and pharmacologically to exploit their medicinal and pharmaceutical potentials.

CONFLICT OF INTEREST
There are no conflicts of interest.

REFERENCES
1. Nicollini FA, Nichols WW, Melta JA, Saldeen TG, Schoenfeld R, Ross M, Player DW, Pohl GB, Mattsson C. Sustained rClow in dogs with coronary thrombosis with K2P, a novel mutant of tissue plasminogen activator. J Am Coll Cardiol. 1992;20:228-235.
2. Adams DS, Griffin LA, Nachajko WR, Reddy VB, Wei CM. A synthetic DNA encoding a modified human urokinase resistant to inhibition by serum plasminogen activator inhibitor. J Biol Chem. 1991;266:8176-8182.
3. Lijnen HR, Vanhoef B, DeGoe F, Okada K, Ueshima S, Matsuo O. On the mechanism of fibrin-specific plasminogen activation by staphylokinase. J Biol Chem. 1991;266:11826-32.
4. Marder VJ. Recombinant streptokinase – opportunity for an improved agent. Blood Coagul Fibrinolysis. 1993;4:1039-1040.
5. Wu DH, Shi GY, Chiang WJ, Hsu JM, Young KC, Chang CW. Coiled coil region of human urokinase resistant to inhibition by serum plasminogen activator inhibitor. J Biol Chem. 1991;266:8476-8482.
6. Leta GC, Mourão P A, Tovar AM. Human venous and arterial glycosaminogly-ans have similar affinity for plasma low-density lipoproteins. Biochim Bio-phys Acta 2002;1586:243-253.
7. Demrow HS, Slane PR, Folts JD. Administration of wine and grape juice in-}
8. Rajapakse N, Jung WK, Mendis E, Moon SH, Kim SK. A novel anticoagulant purified from fish protein hydrolysate inhibits factor Xla and platelet aggre-gation. Life Sciences 2005;76:2607-2619.
9. Yamamoto J, Yamada K, Naemura A, Yasumitsi T, Arai R. Testing various herbs for antithrombotic effect. Nutrition 2005;21:580-587.
10. Singh S, Rehan HM, Majumdar DK. Effect of Ocimum sanctum fixed oil on blood pressure, blood clotting time and pentobarbitone-induced sleeping time. J Ethnopharmacol 2001;78:139-43.
11. Zhanguang L, Longli W, Jiazeng L, Zhang G, Gao C. Basic and clinical study on the antithrombotic mechanism of glycosaminoglycan extracted from sea cucumber. Chin Med J 2000;113:706-711.
12. Rajapakse N, Jung WK, Mendis E, Moon SH, Kim SK. A novel anticoagulant purified from fish protein hydrolysate inhibits factor Xla and platelet aggre-gation. Life Sciences 2005;76:2607-2619.
13. Anwar AK, Ashfaq M, Nasreen MA. Pharmacognostic studies of selected indigenous plants of Pakistan. Pakistan Forest Institute, Peshawar NWFP, Pakistan;1979:15-35.
14. Gillman MW, Cupples LA, Gagnon D, Posner RM, Ellison RC, Castelli WP, Wolf PA. Protective effect of fruits and vegetables on development of stroke in men. JAMA 1995;273:1113-1117.
15. Jaishirupa KJ, Ascherio A, Manso JE, Stumper MJ, Rimm EB, Speizer F. Effect of fruit and vegetable intake in relation to risk of ischemic stroke. JAMA 1999;282:1233-39.
16. Liu S, Manso JE, Lee I-M, Cole SR, Hemekens CH, Willett WC, Buring JE. Fruit and vegetable intake and risk of cardiovascular disease: the Women’s Health Study. Am J Clin Nutr 2006;72:922-28.
17. Baruah BB, Dash RN, Chaudhari MR, Kadam SS. Plasminogen activators: A comparison. Vascular pharmacology 2006;41:1-9.
18. Gallus AS. Thrombolytic therapy for venous thrombosis & pulmonary embolism. Bailliere’s Clinical Haematology 1998;11:663-73.
19. Wardlaw JM, Berge E, del Zoppo G, Yamaguchi T. Thrombolysis for acute ischemic stroke. Stroke 2004;35:2914-15.
20. Capstick T, Henry MT. Efficacy of thrombolytic agents in the treatment of PE. Eur Respir J 2005;26:864-74.
21. Tillet WS, Gardiner RL. The fibrinolytic activity of hemolytic streptococci. J Exp Med 1935;63:485-502.
22. Jeon OH, Moon WJ, Kim DS. An anticoagulant/fibrinolytic protease from Lumbri-cus rubellus. J Biochem Molec Biol 1991;28:138-42.
23. Choi HS, Shin HH. Purification and characterization of a fibrinolytic protease from Spirodela polyrhiza. Biosci Biotechnol Biochem. 2001;65:781-86.
24. Shin HH, Choi HS. Fibrinolytic and antithrombotic protease from Spirulina maxima. Biochim Biophys Acta 2002;1586:243-253.