Vaccines for Caprine Brucellosis: Status and Prospective

Abstract
Brucellosis is an endemic world wide zoonosis, affecting both human and animals. It is caused by bacteria belonging to genus Brucella. There is host specificity in Brucella species, however selective and restricted inter species transmission is also reported causing zoonosis. In human brucellosis is mainly caused by Brucella melitensis followed by Brucella abortus. Brucella melitensis is more virulent than Brucella abortus and first to cause human brucellosis. It is responsible for caprine brucellosis and goats residing in close vicinity to human are main source of infection. This can be avoided by the use of safe and effective vaccination of goat population. There is an effective vaccine for the caprine vaccination ie. Rev.1, however it is hazardous to human, thus its use is not recommended in many of the countries. Under such circumstances development and trials of various traditional and advanced vaccines have been attempted. These have been summarized and discussed on merit and demerit basis, in present paper with a possibility to obtain safe and effective vaccine against Brucella melitensis.

Keywords: Brucellosis; Brucella melitensis; Vaccine; Vaccination; Rev.1.

Introduction
Brucellosis in goats is mainly caused by B. melitensis, although this pathogen may also infect cattle and other ruminants [1]. This pathogen has three different biovars [2]. B. melitensis was the first species in the genus Brucella described and was first isolated by Bruce in 1887 [3] from the spleens of soldiers dying of Mediterranean fever on the island of Malta. The origin of the disease remained a mystery for nearly 20 years until Themistocles Zammit accidentally demonstrated the zoonotic nature of the disease in 1905 by isolating B. melitensis from goat’s milk [4]. Initially it was believed that goats were not the source of infection since they did not become ill when inoculated with Brucella cultures [5]. However, the causing organism is mainly responsible for human brucellosis all over the world. Thus the prevention of human brucellosis largely depends upon the prevention and control of caprine brucellosis and similar to the control strategies against any infectious disease vaccination is the first and foremost step to the control animal brucellosis [6]. The most common methods for control of the ovine brucellosis are vaccination of animals and slaughter of infected flocks [7,8]. There is no human vaccine in contrast to animals where vaccination is supposed to be one of the most cost-effective measures to achieve eradication [9-11] and to improve human health in endemic areas [12,13].

Discussion
For animal use vaccines B. abortus S19, Cotton stain 45, RB51 and B. melitensis Rev.1 have been successfully used in large and small ruminants, respectively [14-16]. Effective well established B. melitensis strain Rev.1 vaccine is available for sheep and goats [15,17,18]. It protects animals for years together and protection has been evaluated after conjunctival and subcutaneous inoculation in kids, lambs and adults [1,19,20]. Despite the controversial background of creating hindrance in serological detection of infection, shedding in secretions and virulence to human [21], it has been used in many developing and European countries to control the disease in animals as it protects large proportion of vaccinated animals against infection [22,23]. Many developed countries have eradicated the disease with the use of these vaccines, but vaccination induced abortions in pregnant animals, transmission of disease in humans through vaccinated animals [10,21,24] and resistance of Rev.1 (most pathogenic to humans) against the antibiotic streptomycin which is used to treat the disease had forced bans on these in many countries [10,25,26]. Further B. melitensis Rev.1 vaccine strain under standard conditions (i.e. full dose via the subcutaneous route in young animals) elicit a long lasting serological response against smooth lipopolysaccharide (sLPS) of the Brucella surface that interferes in serodiagnosis of infection as agglutination test and that seriously interferes with serological screening for infected due to similarity with wild strain of B. melitensis [15,27,28]. In comparison to full dose, the reduced dose elicits shorter and less intense antibody response following vaccination [29-31] and can be used safely in pregnant sheep and goats [30-35]. However, excretion of vaccine strain mainly in vaginal excretion and foetal contents during abortion in pregnant sheep and goats after field infections [36-39] further showed the necessity to put stress on different methods of vaccination.

The vaccination with lesser bacterial load in smaller volume through conjunctiva was also attempted with lesser serological response and protection almost similar to full and reduced dose in young calves and adult animals [19,39-43]. Conjunctival route produces lesser abortion and excretion of vaccine strain [39,41].
and these can be further reduced by the vaccination during early pregnancy [39]. However, the dose of vaccination and reimmunization depends upon the age, species and physiological status of animal [19,20,30]. Although the serodiagnosis problems can be partially solved by using the conjunctival route during calf hood and by avoiding adult vaccination [44] but serological follow up individual animals, the breeding conditions characteristic of small ruminants make these measures unrealistic. Therefore, effective brucellosis vaccines not interfering in diagnosis with minimum or no virulence for human would represent a major breakthrough [26,45].

To overcome these problems many other options were attempted in sheep and goats as B. suis S2 attenuated strain with smooth LPS [1,46,47], live attenuated rough (S-LPS lacking) Brucella strain, B. abortus RB51 [48,49], live rough strains obtained by transposon mutagenesis from smooth B. melitensis 16M strain, VTRM1 [50] and smooth B. abortus 2308 strain, RbK strain [51] with limited success. Use of targeted and transposon mutagenesis through disruption of per, wbo A and so also wbk A (putative perosamine synthetase and glycosyltransferase genes) resulted in the development of R mutants that showed better results than RB51 under laboratory trials [52-54]. Rough (R) brucella mutants which lack the LPS immunodominant N-formylperosamine O-poly saccharide (O-PS) were also attempted for vaccination after attenuation [15,26,45]. Moreover, rough vaccines or spontaneous mutants were developed after repeated passage on antibiotic-containing media like RB51, a B. abortus R mutant that carries IS711-disrupted wbo A (putative glycosyl transferase gene). This has lightened a torch of hope to have good vaccine. These mutants resulted from the alteration in OPS precursor synthesis, its polymerization and transport or due to the many other possible defects in the inner core oligosaccharide [45,54]. However, RB51 yielded controversial results in cattle and was not effective in sheep. Furthermore it has resistant to the antibiotic rifampin used to treat brucellosis [15,45]. Many other mutants of B. melitensis viz. RBM9, RBM11, RBM15, RBM17 and RBM19 have been obtained by repeated passage over antibiotic containing media [55] but the presence of undefined LPS and resistance against rifampin, an antibiotic used for the treatment against brucellosis, render them ineffective [45,55]. Moreover under controlled experimental and field conditions rough vaccine has been reported to be least equivalent to the Rev.1 vaccine [12].

In 2000, a vaccine prepared from a killed, whole cell suspension of Brucella melitensis was given without adjuvant or with added Mycobacterium phlei or bentonite clay in cattle and sheep revealed higher levels of both humoral and cell mediated immunity [56]. In china an attenuated B. melitensis vaccine MS-90 is being used for vaccination of sheep and goats [57,50]. However, the antibody responses raised by those two live vaccines are difficult to distinguish from naturally Brucella infected animals using the conventional serological tests.

BP26, Periplasmic protein of Brucella is reported to be a hope for better diagnosis in brucellosis [59-62] being most conserved in all the species of brucella with sensitivity and specificity for the diagnosis of animal brucellosis by enzyme immunoassays (EIAs) [60,61,63-66]. It also revealed excellent antibody and cellular responses [67,68]. However, the molecular feature of BP26 antigen remains unclear: A mutant obtained by deletion of BP26 in Rev.1 [69] revealed protection against B. melitensis in sheep or B. ovis in rams [70,71] while BP26-deleted M5-90 mutant lost its ability to induce protective immunity [72,73]. This BP26 antigen within Rev. 1 induces high IgG1 titers and cellular response of IFN-γ, IL-4, IL-5 and IL-6 [67,74]. BP26, TF (trigger factor) and omp31 are potent source of protective immunity against Brucella infections [63,75-77].

Recombinant BP26 has been investigated for diagnosis of brucellosis in sheep and goats [60,61,66,78]. A DNA vaccine encoding outer membrane protein (OMP31) of Brucella melitensis 16M has also been reported to induce immune response in mice [79]. Recently the NMP (membrane protein extract) in comparison to rBP26 (rough BP26) are reported to be more sensitive and specific in ELISA for detection of antibodies to Brucella from sheep, and had 90% agreement with the combination of SAT and RBPT [80], has reported that an invasive E. coli vector platform can deliver antigens of B. melitensis to the immune system. In such conditions invasive E. coli may be an ideal vaccine since they are nonpathogenic, can deliver antigens to antigen-presenting cells, and contain natural adjuvant properties to promote cellular immune responses [81]. However; the vaccination results of these mutants are yet to be proven in the form of best vaccine with immune response at par to S-19 or Rev.1. The live attenuated Brucella melitensis vaccine strain Rev1 is recognized worldwide as the best vaccine available against brucellosis in sheep and goats [10,11,82,83].

Conclusion

Due to this contraindication there is unavailability of universally adopted vaccine and vaccination strategy, making the eradication of the disease difficult [11,12]. WHO [12] has also agreed that “correctly standardized Elberg 101 strain Rev.1 vaccine should continue to be considered as the basis of brucellosis control in small ruminants where vaccination is applied, until new safer and effective versions of B. abortus and B. melitensis vaccines based on rough strains, have been tested under controlled experimental and field conditions and shown to be at least equivalent to the Rev.1 vaccine”.

References

1. Verjer GM, Grayon M, Zundel E (1995) Comparison of the effi cacy of Brucella suis strain 2 and Brucella melitensis Rev 1 live vaccines against a Brucella melitensis experimental infection in pregnant ewes. Vaccine 13(2): 191-196.
2. Bricker BJ, Halling SM (1994) Differentiation of Brucella abortus bv. 1, 2 and 4, Brucella melitensis, Brucella ovis and Brucella suis bv 1 by PCR. J Clin Microbiol 32(11): 2660-2666.
3. Alton DD (1990) Brucella melitensis. In: Nielsen K, Duncan R (Eds.), Animal brucellosis. CRC Press, USA, pp. 383-409.
4. Godfroid J, Cloeckaert A, Liautard JP (2005) From the discovery of the Malta fever’s agent to the discovery of a marine reservoir, brucellosis has continued been a reemerging zoonosis. Vet Res 36(3): 313-326.
5. Pappas G, Papadimitriou P (2007) Challenges in Brucella bacteremia. Int Antimicrob Agents 30(Suppl 1): 29-31.
6. Alton DD (1967) Rev 1 Brucella melitensis vaccine. Serological reactions in Maltese goats. J Comp Pathol 77(3): 327-329.

Citation: Kumar A, Gupta VK, Verma AK, Yadav SK, Rahal A (2016) Vaccines for Caprine Brucellosis: Status and Prospective. Int J Vaccines Vaccin 2(3): 00030. DOI: 10.15406/ijVV.2016.02.00030
7. Blasco JM, Garin-Bastuji B, Marin CM, Gerbier G, Fanlo J, et al. (1999a) Efficacy of different rose Bengal and complementary fixation antigens for the diagnosis of Brucella melitensis infection in sheep and goats. Vet Rec 134(16): 415-420.

8. Da Costa MR, Irache JM, Gamaç O (2012) A cellular vaccines for ovine brucellosis: A safer alternative against a worldwide disease. Expert Rev Vaccines 11(1):87-95.

9. Nicoletti PL (1990) Vaccination. In: Nielsen KH, Duncan JR (Eds.), Animal Brucellosis. Boca Raton: CRC Press, USA, pp. 283-299.

10. Bastuji GB, Lasco JM, Grayon M, Verger JM (1998) Brucella melitensis infection in sheep: present and future. Vet Res 29(3-4): 255-274.

11. Office International des Epizooties (OIE) (2010) Manual of standards for diagnostic tests and vaccines. (3rd edn), Office International des Epizooties, Paris, France, pp. 251.

12. WHO / MZCP (1998) Human and Animal Brucellosis. Report of a WHO/MZCP workshop, Damascus, Syria.

13. Zieesstag J, Schelling E, Roth F, Bonhof B, Don de Savigy, et al. (2007) Human benefits of animal interventions for zoonosis control. Emerg Infect Dis 13(4): 527-531.

14. Alton GG (1968) Further studies on the duration of immunity produced in goats by the Rev-1 Brucella melitensis vaccine. J Comp Pathol 78(2): 173-178.

15. González D, Grillo MJ, De Miguel MJ, Ali T, Arcos-Gorvel V, et al. (2008) Brucellosis Vaccines: Assessment of Brucella melitensis Lipopolysaccharide Rough Mutants Defective in Core and O-Polysaccharide Synthesis and Export. PLoS ONE 3(7): e276.

16. Ebrahimi M, Nejad RB, Alamian S, Mokhberalsafa L, Abedini F, et al. (2012) Safety and efficacy of reduced doses of Brucella melitensis strain Rev.1 vaccine in pregnant Iranian fat-tailed ewes. Vet Ital 48(4): 405-412.

17. Alton GG (1966) Duration of the immunity produced in goats by Rev.1 Brucella melitensis vaccine. J Comp Pathol 76(2): 241-253.

18. Blasco JM (1997) A review of the use of B. melitensis Rev 1 vaccine in adult sheep and goats. Prev Vet Med 31(3-4): 275-283.

19. Fensterbank R, Pardon P, Marly J (1985) Vaccination of ewes by a single conjunctival administration of B. melitensis Rev.1 vaccine. Ann Rech Vet 16(4): 351-356.

20. Ferrer DM (1998) Comparación entre métodos inmunológicos de diagnóstico de la brucelosis ovina por Brucella melitensis y eficacia de la inmunización de ovejas adultas con la vacuna Rev.1 por vía conjuntival. University of Murcia, Spain.

21. Blasco JM, Díaz R (1993) Brucella melitensis Rev1 vaccine as a cause of human brucellosis. Lancet 342(8874): 805.

22. Garrido F (1992) Rev 1 and B-19 vaccine control in Spain. Observations on the handling and effectiveness of Rev 1 vaccine and the immune response. In: Plommet M (Ed.), Prevention of Brucellosis in the Mediterranean countries. Padoc Scientific Publishers, Wageningen, Netherlands, pp. 223-231.

23. Banai M (2002) Control of small ruminant brucellosis by use of Brucella melitensis Rev. 1 vaccine: laboratory aspects and field observations. Vet Microbiol 90(1-4): 497-519.

24. Spink WW (1956) The nature of brucellosis. Food and Agriculture Organization of the United Nations, USA.

25. Ariza J, Pellicer T, Pallares R, Roz A, Gudif S (1992) Specific antibody profile in human brucellosis. Clin Infect Dis 14(1): 131-140.

26. Schurig GC, Sripanganathan N, Corbel MJ (2002) Brucellosis vaccines: past, present and future. Vet Microbiol 90(1-4): 479-496.

27. Alton GG, Elberg S (1967) Rev 1 Brucella melitensis Vaccine. A review of ten years study. Vet Bull 37: 793-800.

28. MacMillan AP (1997) Investigation of the performance of the Rose Bengal plate test in the diagnosis of Brucella melitensis infection of sheep and goats. World Animal Review 89: 57-60.

29. Blasco JM, Estrada A, Mercadal M (1984) A note on adult sheep vaccination with reduced dose of Brucella melitensis Rev.1. Ann Vet Res 15(4): 553-556.

30. Gasca A, Jiménez JM, Díaz L (1985) Experiencias sobre vacunación antibrucelar de cabras adultas con la cepa Rev.1. BNE, p. 33-34.

31. Henriques H, Hueston WD, Hoblet KH, Shulaw WP (1992) Field trials evaluating the safety and serologic reactions of reduced dose Brucella melitensis Rev.1 vaccination in adult sheep. Prev Vet Med 13(3): 205-215.

32. Kolar J (1984) Diagnosis and control of brucellosis in small ruminants. Prev Vet Med 2(1-4): 215-225.

33. Al-Khalaf SA, Mohamad BT, Nicoletti P (1992) Control of brucellosis in Kuwait by vaccination of cattle, sheep and goats with Brucella abortus strain 19 or Brucella melitensis strain Rev 1. Trop Anim Health Prod 24(1): 45-49.

34. Kolar J (1995) Some experience from brucellosis control with Rev.1 vaccine in a heavily infected country - Mongolia. FAO/WHO/OIE Round table on the use of Rev.1 vaccine in Small Ruminants and Cattle. CNEVA, Alfort, France, p. 21-22.

35. Uysal Y (1995) Field experience with Rev 1 vaccine in Turkey. FAO/WHO/OIE Round Table on the use of Rev.1 vaccine in small ruminant and cattle. CNEVA, Alfort, France.

36. Alton GG (1970) Vaccination of goats with reduced doses of Rev 1 Brucella melitensis vaccine. Res Vet Sci 11(3): 54-59.

37. Crowther RW, Orphanides A, Polydorou K (1977) Vaccination of adult sheep with reduced doses of Brucella melitensis strain Rev 1. Trop Anim Hlth Prod 9(2): 85-91.

38. Fensterbank R, Pardon P, Marly J (1982) Comparison between subcutaneous and conjunctival route of vaccination of Rev: 1 strain against Brucella melitensis infection in ewes. Ann Rech Vet 13(4): 295-301.

39. Bagues MP, Marin CM, Barberán M, Blasco JM (1989) Responses of ewes to B. melitensisRev.1 vaccine administered by subcutaneous or conjunctival routes at different stages of pregnancy. Ann Rech Vet 20(2): 205-213.

40. Bagues MP, Marin CM, Blasco JM, Moriyón I, Gamaço C (1992) An ELISA with Brucella lipopolysaccharide antigen for the diagnosis of B. Melitensis infection in sheep and for the evaluation of serological responses following subcutaneous or conjunctival B. melitensis Rev 1 vaccination. Vet Microbiol 30(2-3): 233-241.

41. Zandel E, Verger JM, Grayon M, Michel R (1992) Conjunctival vaccination of pregnant ewes and goats with Brucella melitensis Rev.1 vaccine: safety and serological responses. Ann Rech Vet 23(2): 177-188.

42. Díaz AE, Marín C, Alonso B, Aragón V, Perez S, et al. (1994) Evaluation of serological tests for diagnosis of B. melitensis infection of goats. J Clin Microbiol 32(5): 1159-1165.

43. Marin CM, Moreno E, Moriyon I, Díaz R, Blasco JM (1999) Performance of competitive and indirect enzyme-linked immunosorbent assays,
gel immunoprecipitation with native hapten polysaccharide and standard serological tests in diagnosis of sheep brucellosis. Clin Diagn Lab Immunol 6(2): 269-272.
10. De Frutos C, Durán FM, Leon M, Navarro A, Perales A, et al. (1994) Consideraciones sobre la epidemiología y el control de la brucelosis en pequeños rumiantes. Proceedings Jornadas Internacionales sobre Brucelosis, Madrid.
11. Morjón J, Grillo MJ, Monreal D, Gonzalez D, Marin CM, et al. (2004) Rough vaccines in animal brucellosis: structural and genetic basis and present status. Vet Res 35(1): 1-38.
12. Xin X (1986) Orally administrable brucellosis vaccine: B. suis S2 vaccine. Vaccine 4(4): 212-216.
13. Mustafa AA, Abusowa M (1993) Field-oriented trial of the Chinese Brucella suis strain 2 vaccine in sheep and goats in Libya. Vet Res 24(5): 422-429.
14. Schurig GG, Roop RM, Bagchi T, Boyle S, Buhrman D, et al. (1991) Biological properties of RB51; a stable rough strain of Brucella abortus. Vet Microbiol 28(2): 171-188.
15. Bagues MP, Marin CM, Barberan M, Blasco JM (1993) Evaluation of vaccines and of antigen therapy in a mouse model for Brucella ovis. Vaccine 1(1): 61-66.
16. Elzer P, Enright F, McQuinston, Boyle G, Schurig G (1998) Evaluation of a rough mutant of Brucella melitensis in pregnant goats. Res Vet Sci 64(3): 259-260.
17. Adams G, Ficht T, Allen C (1998) Derivation and evaluation of the rough rfbK brucellosis vaccine in cattle. Foro Nacional de Brucelosis, Mexico, pp. 141-150.
18. Winter AJ, Schurig GG, Boyle SM, Srranganathan N, Bevins JS, et al. (1996) Protection of BALB/c mice against homologous and heterologous species of Brucella by rough strain vaccines derived from Brucella melitensis and Brucella suis biovar 4. Am J Vet Res 57(5): 677-683.
19. Monreal D, Grillo MJ, Gonzalez D, Marin CM, de Miguel MJ, et al. (2003) Characterization of Brucella abortus O-polysaccharide and core lipo polysaccharide mutants and demonstration that a complete core is required for rough vaccines to be efficient against Brucella abortus and Brucella ovis in the mouse model. Infect Immun 71(6): 3261-3271.
20. Mc Donagh MM, Ficht TA (2006) Evaluation of protection afforded by Brucella abortus and Brucella melitensis unmarked deletion mutants exhibiting different rates of clearance in BALB/c mice. Infect Immun 74(7): 4048-4057.
21. Adone R, Ciuchini F, Marianelli C, Tarantino M, Pistoia C, et al. (2005) Protective properties of rifampin-resistant rough mutants of Brucella melitensis. Infect Immun 73(7): 4198-4204.
22. Ram S, Krishnappa G, Sastry KNV, Homegowa, Ramanatha KR (2000) Evaluation of killed Brucella melitensis vaccine adventaged with bentonite clay and Mycobacterium phlei in cattle and sheep. Indian Veterinary Journal 77(3): 189-192.
23. Deqiu S, Dongbo X, Jiming Y (2002) Epidemiology and control of brucellosis in China. Vet Microbiol 90(1-4): 165-182.
24. Zhang WY, Guo WD, Sun SH, Jiang JF, Sun HL, et al. (2010) Human brucellosis, Inner Mongolia, China. Emerg Infect Dis 16(12): 2001-2003.
25. Cloeckaert A, Debbarbh HSA, Vizcaino N, Saman E, Dubary G, Zygmunot MS (1996) Cloning, nucleotide sequence, and expression of the Brucella melitensis bp26 gene coding for a protein immunogenic in infected sheep. FEMS Microbiol Lett 140(2-3): 139-144.
26. Rossetti OL, Arese AL, Boschini ML, Cavero SI (1996) Cloning of Brucella abortus gene and characterization of expressed 26-kDa periplasmic protein: potential use for diagnosis. J Clin Microbiol 34(1): 165-169.
27. Salih AJ, Debarbh H, Zygmunot MS, Dubray G, Cloeckaert A (1996) Competitive enzyme-linked immunosorbent assay using monoclonal antibodies to the Brucella melitensis BP26 protein to evaluate antibody responses in infected and B. melitensis Rev.1 vaccinated sheep. Vet Microbiol 53(3-4): 325-337.
28. Li Jia-Yun, Liu Y, GaoXiao-Xue, Gao X, Cai H (2014) TLR2 and TLR4 signaling pathways are required for recombinant Brucella abortus BCS3P1-induced cytokine production, functional upregulation of mouse macrophages, and the Th1 immune response in vivo and in vitro. Cellular and Molecular Immunology 1: 477-494.
29. Vizcaino N, Cloeckaert A, Zygmunot MS, Dubray G (1996) Cloning, nucleotide sequence, and expression of the Brucella melitensis omp31 gene coding for an immunogenic major outer membrane protein. Infect Immun 64(9): 3744-3751.
30. Cloeckaert A, Vizcaino NJ, Paquet Y, Bowden RA, Elzer PH (2002) Major outer membrane proteins of Brucella spp. past, present and future. Vet Microbiol 90(1-4): 229-247.
31. Mediavilla P, Verger JM, Grinyo M, Cloeckaert A, Marin CM, et al. (2003) Epitope mapping of the Brucella melitensis BP26 immunogenic protein: usefulness for diagnosis of sheep brucellosis. Clin Diagn Lab Immunol 10(4): 647-651.
32. Gupta VK, Kumar R, Vohra J, Singh SV, Vihan VS (2010) Comparative evaluation of recombinant BP26 protein for serological diagnosis of Brucella melitensis infection in goats. Small Ruminant Research. 93(2-3): 119-125.
33. Clapp B, Walters N, Thornburg T, Hoyt T, Yang X, et al. (2011) DNA vaccination of bison to brucellar antigens elicits elevated antibody and IFN-γ responses. J Wildl Dis 47(3): 501-510.
34. Yang X, Hudson M, Walters N, Bargatze RF, Pascual DW (2005) Selection of protective epitopes for Brucella melitensis by DNA vaccination. Infect Immun 73(11): 7297-7303.
35. Cloeckaert A, Jacques I, Grillo MJ, Marin CM, Grinyo M et al. (2004) Development and evaluation as vaccines in mice of Brucella melitensis Rev.1 single and double deletion mutants of the bp26 and omp31 genes coding for antigens of diagnostic significance in ovine brucellosis. Vaccine 22(21-22): 2827-2835.
36. Jacques I, Verger JM, Laroucou K, Grinyo M, Vizcaino N, et al. (2007) Immunological responses and protective efficacy against Brucella melitensis induced by bp26 and omp31 B. melitensis Rev 1 deletion mutants in sheep. Vaccine 25(5): 794-805.
37. Grillo MJ, Marin CM, Barbérán M, de Miguel MJ, Laroucou K, et al. (2009) Efficacy of bp26 and bp26/omp31 B. melitensis Rev 1 deletion mutants against Brucella ovis in rams. Vaccine 27(2): 187-191.
38. Qu W, Wang ZJ, Zhen Q, Huang LY, Yu YQ, et al. (2009) Effect of bp26 on immune response and protective efficacy of M 5 against Brucella melitensis in mice. Journal of Jilin Agricultural University 31(4): 438-446.
39. WangZJ, Zhen Q, Qiao F, Wang YF, Du XY, et al. (2009) Construction of
BP26 tagged vaccine strain and development of discriminating PCR for Brucella. Wei Sheng Wu Xue Bao 49(3): 405-409.

74. Yang X, Walters N, Robison A, Trunkle T, Pascual DW (2007) Nasal immunization with recombinant Brucella melitensis bp26 and trigger factor with cholera toxin reduces B. melitensis colonization. Vaccine 25(12): 2261-2268.

75. Cassataro J, Estein SM, Pasquevich KA, Velikovsky CA, de la Barrera S, et al. (2005a) Vaccination with the recombinant Brucella outer membrane protein 31 or a derived 27-amino-acid synthetic peptide elicits a CD4+ T helper 1 response that protects against Brucella melitensis infection. Infect Immun 73(12): 8079-8088.

76. Cassataro J, Velikovsky CA, de la Barrera S, Estein SM, Bruno L, et al. (2005b) A DNA vaccine coding for the Brucella outer membrane protein 31 confers protection against B. melitensis and B. ovis infection by eliciting a specific cytotoxic response. Infect Immun 73(10): 6537-6546.

77. Pasquevich KA, Estein SM, Samartino C, Zwerdling A, Coria LM, et al. (2009) Immunization with recombinant Brucella species outer membrane protein Omp16 or Omp19 in adjuvant induces specific CD4+ and CD8+ T cells as well as systemic and oral protection against Brucella abortus infection. Infect Immun 77(1): 436-445.

78. Liu WX, Hu S, Qiao ZJ, Chen WY, Liu LT, et al. (2011) Expression, purification, and improved antigenic specificity of a truncated recombinant bp26 protein of Brucella melitensis M5-90: a potential antigen for differential serodiagnosis of brucellosis in sheep and goats. Biotechnol Appl Biochem 58(1): 32-38.

79. Gupta VK, Rout PK, Vihan VS (2007) Induction of Immune Response in Mice with a DNA Vaccine Encoding Outer Membrane Protein (OMP31) of Brucella melitensis 16M. Res Vet Sci 82(3): 305-313.

80. Qui J, Wang W, Wu J, Zhang H, Wang Y, et al. (2012) Characterization of Periplasmic Protein BP26 Epitopes of Brucella melitensis reacting with Murine Monoclonal and Sheep Antibodies. PLoS One 7(3): e34246.

81. Gupta VK, Radhakrishnan G, Harms J, Splitter G (2012) Invasive Escherichia coli vaccines expressing Brucella melitensis outer membrane proteins 31 or 16 or periplasmic protein BP26 confer protection in mice challenged with B. melitensis. Vaccine 30(27): 4017-4022.

82. Blasco JM, Marin CM, de Bagues MP, Barberan M, Hernandez A, et al. (1994b) Evaluation of allergic and serological tests for diagnosis of Brucella melitensis infection in sheep. J Clin Microbiol 32(8): 1835-1840.

83. Elberg SS, Faunce K (1957) Immunization against Brucella infection. VI: Immunity conferred on goats by a nondependent mutant from a streptomycin-dependent mutant strain of Brucella melitensis. J Bacteriol 73(2): 211-217.