AN ELEMENTARY (NUMBER THEORY) PROOF OF TOUCHARD’S CONGRUENCE

GREG HURST AND ANDREW SCHULTZ

Abstract. Let B_n denote the nth Bell number. We use well-known recursive expressions for B_n to give a generalizing recursion that can be used to prove Touchard’s congruence.

1. Introduction

For a positive integer n, the Bell number B_n is the number of ways a set of n elements can be partitioned into nonempty subsets. Computations of Bell numbers rely on well-known recursive formulae. For example, one can compute B_{n+1} by enumerating partitions according to the size of the subset S which contains the $n+1$st element; if $|S| = n + 1 - d$ then there are \(\binom{n}{n-d} \) choices for the other elements of S and B_d ways to partition the elements not in S. Hence we have

\[
B_{n+1} = \sum_{d=0}^{n} B_d \binom{n}{n-d}.
\]

Alternatively, one can compute B_n by keeping track of the number of subsets in a given partition; the Stirling number of the second kind $\{n\}_k$ counts the number of partitions of n elements into precisely k subsets, and so one has the well-known formula

\[
B_n = \sum_{k=1}^{n} \{n\}_k.
\]

Calculations for $\{n\}_k$ rely on the binomial-like recurrence relation

\[
\{n+1\}_k = \{n\}_{k-1} + k \{n\}_k.
\]

Using the identities above, we derive an expression for B_{n+j} which generalizes both (1.1) and (1.2):
Theorem 1.4. For positive integers \(n \) and \(j \),

\[
B_{n+j} = \sum_{k=1}^{n} P_j(k) \binom{n}{k},
\]

where \(P_j(x) \) is the degree \(j \) polynomial \(\sum_{r=0}^{j} B_{j-r} \binom{j}{r} x^r \).

It appears that this formulation wasn’t discovered until recently when a combinatorial proof of this result was given in [1]. We arrived at this result independently through algebraic manipulations of (1.1-1.3); since this result comes directly from these well-known identities, it is surprising that Theorem 1.4 wasn’t recognized much sooner.

This project began when the first author was a student in the second author’s elementary number theory class. Before knowing the general form of the polynomials \(P_j(k) \) from Theorem 1.4, the authors could find specific identities such as

\[
B_{n+5} = \sum_{k=1}^{n} (k^5 + 5k^4 + 20k^3 + 50k^2 + 75k + 52) \binom{n}{k}.
\]

These computations were being carried out just as modular arithmetic was being introduced in the concurrent course, and it was clear that when \(j \) was prime the polynomials \(P_j(k) \) were ripe for simplification modulo \(j \). Flushing this observation out not only provided a great tour of some of the most familiar identities and techniques for computations modulo \(p \), but ultimately led to a rediscovery of

Corollary 1.5 (Touchard’s Congruence). For positive integers \(n \) and \(m \) and \(p \) a prime number,

\[
B_{n+p^m} \equiv mB_n + B_{n+1} \mod p.
\]

2. A Proof of Theorem 1.4

We prove the result by induction, with \(j = 0 \) our (trivial) base case. By induction we have

\[
B_{n+j+1} = \sum_{k=1}^{n+1} P_j(k) \binom{n+1}{k} = \sum_{k=1}^{n+1} \sum_{r=0}^{j} B_{j-r} \binom{j}{r} k^r \binom{n+1}{k}.
\]
Applying identity (1.3) to \(\binom{n+1}{k} \), and using \(\binom{n}{0} = \binom{n}{n+1} = 0 \), we have

\[
\sum_{k=1}^{n+1} \sum_{r=0}^{j} B_{j-r} \binom{j}{r} k^r \left(\binom{n}{k-1} + k \binom{n}{k} \right) = \sum_{k=2}^{n+1} \sum_{r=0}^{j} B_{j-r} \binom{j}{r} k^r \binom{n}{k-1} + \sum_{k=1}^{n} \sum_{r=0}^{j} B_{j-r} \binom{j}{r} k^{r+1} \binom{n}{k}.
\]

The coefficient of \(k^{\ell} \binom{n}{k} \) in this sum is then

\[
\sum_{r=\ell}^{j} B_{j-r} \binom{j}{r} \binom{\ell}{r} \ell + B_{j-(\ell-1)} \binom{j}{\ell-1} = \sum_{r=\ell}^{j} B_{j-r} \binom{j}{r} \binom{\ell}{r-\ell} + B_{j-\ell+1} \binom{j}{\ell-1}.
\]

We now make the change of variable \(d = j - r \) in the first sum and apply identity (1.1), leaving us with:

\[
\left(\sum_{d=0}^{j-\ell} B_d \binom{j-\ell}{j-\ell-d} \right) \binom{j}{\ell} + B_{j-\ell+1} \binom{j}{\ell-1} = B_{j-\ell+1} \binom{j}{\ell} + B_{j-\ell+1} \binom{j}{\ell-1} = B_{j-\ell+1} \binom{j+1}{\ell}.
\]

Thus we have \(B_{n+j+1} = \sum_{k=1}^{n} \sum_{r=0}^{j+1} B_{j+1-r} \binom{j+1}{r} k^r \binom{n}{k} = \sum_{k=1}^{n} P_{j+1}(k) \binom{n}{k} \).

3. Computations modulo \(p \)

If \(p \) is an odd prime, it is well known that \(\binom{p^m}{r} \equiv 0 \mod p \) whenever \(0 < r < p^m \), and so all but two of the terms of \(P_{p^m}(x) \) are congruent to zero modulo \(p \). Applying Theorem (1.4) and Fermat’s Little Theorem, we therefore have

\[
B_{n+p^m} \equiv \sum_{k=1}^{n} (B_{p^m} + k^{p^m} B_0) \binom{n}{k} \equiv \sum_{k=1}^{n} (B_{p^m} + k) \binom{n}{k} \mod p.
\]
Since \(P_1(k) = 1 + k \), Theorem 1.4 gives \(B_{n+1} = \sum (1 + k) \binom{n}{k} \), and so rearranging the previous congruence gives

\[
B_{n+p^m} \equiv (B_{p^m} - 1) \sum_{k=1}^{n} \binom{n}{k} + \sum_{k=1}^{n} (1 + k) \binom{n}{k} \equiv (B_{p^m} - 1)B_n + B_{n+1} \mod p.
\]

The same congruence holds for \(p = 2 \) as well: if \(m > 2 \) then \(\binom{2m}{r} \equiv 0 \mod 2 \) for \(0 < r < 2^m \) and our previous argument holds, and if \(m = 2 \) the only additional term is \(3k^2B_2 = 6 \equiv 0 \mod 2 \).

To verify Corollary 1.5 then, we only need to prove the following

Lemma 3.1. For every positive integer \(m \) and prime number \(p \), \(B_{p^m} \equiv m + 1 \mod p \).

Proof. \(B_{p^m} \) enumerates the partitions of \(\mathbb{Z}/p^m\mathbb{Z} \). Our strategy will be to let \(\mathbb{Z}/p^m\mathbb{Z} \) act on these partitions in the natural way: for elements \(x \) and \(y \) of \(\mathbb{Z}/p^m\mathbb{Z} \) we define \(f_y(x) = x + y \mod p^m \), and \(f_y(P) \) is the partition we get by applying \(f_y \) element-wise to \(P \). Any partition not fixed under this action will belong to an orbit of size a power of \(p \), and so the number of fixed partitions is equivalent to \(B_{p^m} \) modulo \(p \).

So suppose you have some fixed partition \(P \) with elements \(a \) and \(b \) inside subsets \(\mathcal{A} \) and \(\mathcal{B} \) (respectively). Then clearly \(f_{b-a}(a) = b \), and since \(P \) is fixed this means \(f_{b-a}(\mathcal{A}) = \mathcal{B} \). Hence for a fixed partition \(P \), all subsets of \(P \) must be the same size, and therefore some power of \(p \). We claim that the only fixed partition whose subsets are size \(p^j \) is the partition whose subsets contain elements which are congruent to each other modulo \(p^{m-j} \). This would leave us with \(m + 1 \) many fixed partitions, as desired.

To prove the claim, suppose to the contrary that we have a fixed partition \(P \) with elements \(a, b \) in the same \(p^j \)-element subset \(\mathcal{A} \) which satisfy \(a \not\equiv b \mod p^{m-j} \). Now \(f_{b-a}(a) = b \), and so \(\mathcal{A} \) is permuted by the action of \(f_{b-a} \). Hence for any integer \(r \), the \(r \)-fold composition of the map \(f_{b-a} \) — namely, the map \(f^{(r)}_{b-a} \) — again takes \(a \) to some element of \(\mathcal{A} \). Now clearly \(f^{(r)}_{b-a}(a) \equiv f^{(s)}_{b-a}(a) \mod p^m \) if and only if

\[
a + r(b - a) \equiv a + s(b - a) \mod p^m.
\]

Since \(a \not\equiv b \mod p^{m-j} \), however, this congruence forces \(r - s \equiv 0 \mod p^j+1 \). Hence for \(r \) between 1 and \(p^j+1 \), the elements \(f^{(r)}_{b-a}(a) \) are distinct constituents of \(\mathcal{A} \). It follows that \(|\mathcal{A}| > p^j \), a contradiction. \(\square \)
4. Acknowledgement

Both authors would like to thank Bruce Reznick for his advice, guidance, and constant cheer.

References

[1] M. Spivey. A Generalized Recurrence for Bell Numbers. *J. Int. Seq.* **11** (2008), no. 2, Article 08.2.5.

808 Coventry Point, Springfield IL, 62702 USA

E-mail address: ChipH588@aol.com

Department of Mathematics, University of Illinois at Urbana-Champaign, 1409 W. Green Street, Urbana, IL 61801 USA

E-mail address: acs@math.uiuc.edu