Changes in the Inflammatory Response to Injury and Its Resolution during the Loss of Regenerative Capacity in Developing *Xenopus* Limbs

Anthony L. Mescher¹*, Anton W. Neff³, Michael W. King²

¹ Indiana University Center for Regenerative Biology and Medicine, Indiana University School of Medicine, Bloomington, Indiana, United States of America, ² Indiana University School of Medicine, Terre Haute, Indiana, United States of America

Abstract

Tissue and organ regeneration, unlike development, involves an injury that in postembryonic animals triggers inflammation followed by resolution. How inflammation affects epimorphic regeneration is largely uninvestigated. Here we examine inflammation and its resolution in *Xenopus laevis* hindlimb regeneration, which declines during larval development. During the first 5 days postamputation, both regeneration-competent stage 53 and regeneration-deficient stage 57 hindlimbs showed very rapid accumulation of leukocytes and cells expressing interleukin-1β and matrix metalloproteinase 9. Expression of genes for factors mediating inflammatory resolution appeared more persistent at stages 55 and 57 than at stage 53, suggesting changes in this process during development. FoxP3, a marker for regulatory T cells, was upregulated by amputation in limbs at all three stages but only persisted at stage 57, when it was also detected before amputation. Expression of genes for cellular reprogramming, such as SALL4, was upregulated in limbs at all 3 stages, but markers of limb patterning, such as Shh, were expressed later and less actively after amputation in regeneration-deficient limbs. Topical application of specific proinflammatory agents to freshly amputated limbs increased interleukin-1β expression locally. With aqueous solutions of the proinflammatory metal beryllium sulfate, this effect persisted through 7 days postamputation and was accompanied by inhibition of regeneration. In BeSO₄-treated limbs expression of markers for both inflammation and resolution, including FoxP3, was prolonged, while genes for cellular reprogramming were relatively unaffected and those for limb patterning failed to be expressed normally. These data imply that in *Xenopus* hindlimbs postamputation inflammation and its resolution change during development, with little effect on cellular dedifferentiation or reprogramming, but potentially interfering with the expression of genes required for blastema patterning. The results suggest that developmental changes in the larval anuran immune system may be involved in the ontogenetic loss of epimorphic regeneration in this system.

Citation: Mescher AL, Neff AW, King MW (2013) Changes in the Inflammatory Response to Injury and Its Resolution during the Loss of Regenerative Capacity in Developing *Xenopus* Limbs. PLoS ONE 8(11): e80477. doi:10.1371/journal.pone.0080477

Editor: Valquiria Bueno, UNIFESP Federal University of São Paulo, Brazil

Received August 19, 2013; **Accepted** October 12, 2013; **Published** November 20, 2013

Copyright: © 2013 Mescher et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This work was supported by a grant from the U.S. National Science Foundation to A.L.M. (Grant IOS-0814399). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

E-mail: mescher@indiana.edu

Introduction

Best developed among certain teleost fishes and urodele amphibians, the capacity of vertebrates to regenerate appendages (epimorphic regeneration) shows both considerable phylogenetic variation and a general decline during ontogeny [1]. Among anuran amphibians (frogs and toads) regenerative ability in developing larval hindlimbs diminishes gradually and variably, with amputation during or after late premetamorphic stages generally resulting in simple scarring of the stump or an unpatterned regenerate [2,3]. Tail regeneration in *Xenopus laevis* occurs throughout larval development except during a transient “refractory period” from stages 45 to 47, but also occurs more slowly and imperfectly at late larval stages [4,5]. The causes of this ontogenetic loss of regenerative capacity remain unknown, but we have suggested that that major changes in the premetamorphic anuran immune system [6] may produce local changes in the inflammatory response to injury that interfere with epimorphic regeneration [7].

In *Xenopus* the inflammation triggered by amputation has been shown to involve many local physiological changes, including hypoxia, generation of reactive O₂ species (ROS), and production of cytokines that recruit and activate neutrophils and monocytes/macrophages [8–11]. In mammals sustained signaling by these cells of the innate immune system can activate an adaptive immune response, as dendritic cells undergo maturation/activation and release cytokines that elicit T helper and effector cells [12,13]. When the inflammation-inducing injury includes grafting genetically disparate cells or stem cells that express new proteins, the adaptive response can result in rejection of the transplanted cells [14].

Inflammation is highly regulated and self-limited, normally leading directly to programmed resolution and a return to local tissue homeostasis with angiogenesis and tissue repair [15]. Formerly considered a largely passive process, resolution involves synthesis and activity of protein and lipid mediators that produce a wide variety of local anti-inflammatory effects including inhibition of both antigen-presenting cell (APC) and T cell function [16–18].
The extent of the inflammatory response to injury and the effectiveness of its resolution together determine the eventual outcome of the repair or regenerative process [17,19]. Monocyte-derived macrophages are of key importance during inflammation and its resolution, with major roles in phagocytosis, antigen-presentation, and production of various cytokines and matrix metalloproteases. Recognition and engulfment of apoptotic cells, mainly leukocytes, by macrophages down-regulates their release of pro-inflammatory mediators and limits fibrosis [20]. The relevance of such effects for epimorphic regeneration is suggested by the recent demonstration that deletion of macrophages in an adult urodele (the axolotl, *Ambystoma mexicanum*) during the initial period after limb amputation resulted in the formation of fibrotic limb stumps and complete blockade of regeneration in all cases [21].

Factors mediating inflammation and resolution are among those most strongly up-regulated by amputation in the *Xenopus* hindlimb transcriptome and proteome [9,22]. The aim of the present study was to compare various parameters of inflammation and resolution in amputated *Xenopus* hindlimbs at developmental stages capable of essentially complete epimorphic regeneration (stage 53), incompletely patterned regeneration with only 2 or 3 digits (stage 55), and either no regeneration or patterning (stage 57). This experimental design allows tests of the hypothesis that the local response to limb amputation changes during the period when the ability to regenerate normally patterned limbs is gradually lost. The decline in regenerative capacity was found to be accompanied by prolonged expression of several factors mediating resolution of inflammation in the amputated limbs. Treatment of stage 53/54 limb stumps with the persistent proinflammatory agent beryllium blocked regeneration and prolonged expression of markers for both inflammation and resolution. Beryllium treatment had little effect on the up-regulation of a gene for cellular reprogramming, but inhibited expression of several required for limb blastema patterning. The results suggest that the decline in limb regenerative capacity in *Xenopus* is accompanied by ontogenic changes in the inflammatory response to trauma and that the changes primarily impact patterning of a new limb.

Methods

Limb Amputation and Blastema Collection

Larval *Xenopus laevis* were raised in the laboratory or obtained commercially (NASCO, Ft. Atkinson, WI) and hindlimbs were staged according to Nieuwkoop and Faber [23]. Larval axolotls (*A. mexicanum*), 3–4 cm in length, were obtained from the Ambystoma Genetic Stock Center. Hindlimbs at various developmental stages were amputated bilaterally at the mid-zegopodia. For comparisons of the response to amputation at different developmental stages, tissues from 20 limbs at each stage were collected immediately and at 6 hrs, 1, 3, and 5 days post-amputation from 20 limbs were collected 1 mm proximal to the original plane of amputation and pooled for RNA extraction and gene expression analysis. For comparing the inflammatory responses of intact and isolated limbs, newly amputated hindlimb stumps were treated as described below and immediately explanted to individual cultures, using procedures described previously [24]. At each of the times indicated, 20 explanted limbs and 20 limbs regenerating in vivo were collected and the distal tissues pooled as indicated above. At various stages of regeneration additional limbs were fixed in MEMFA (0.1 M MOPS, 2 mM EGTA, 1 mM MgSO4, 3.7% formaldehyde) for histological processing, paraffin sectioning, and H&E staining or for enzyme histochemistry to localize leukocyte myeloperoxidase (MPO; Sigma Aldrich).

The study was conducted in strict accordance with the relevant NIH guidelines, with the protocol approved by the Indiana University Bloomington Institutional Animal Care and Use Committee (Protocol Number: 9017). All surgery and animal treatments were performed under benzocaine anesthesia and all efforts were made to minimize suffering.

Application of Immune Adjuvants

To test whether immunostimulation of the wounded limb tissues affected subsequent events of regeneration newly amputated hindlimb stumps were treated locally with the one of following solutions: polyA-U (Sigma Aldrich), 50 mg/ml in 0.67X phosphate-buffered saline (PBS); Freund’s complete adjuvant (Difco); lipopolysaccharide (LPS), 50 mg/ml mineral oil; BeSO4 or NiCl2 (various concentrations in 0.67X PBS); mineral oil control. For these applications individual hindlimb stumps of each anesthetized larva were positioned so that solution did not contact the pelvis, tail, or other region and the solution was applied to the cut amputation surface for 30 seconds with a pipette. Immediately after such treatments each larva was rinsed and placed in its tank for observation and subsequent tissue collection. Since amputation wounds were closed by epitelization within a few hours each immunostimulant was applied topically only one time.

Reverse-transcription and Quantitative PCR (qPCR)

Analysis of the expression of several genes was carried out using both end-point and quantitative RT-PCR essentially as described [25]. Total RNA samples were extracted using the RNAqueous Micro system (Ambion, USA). Reverse transcription reactions were carried out using 1 μg of total RNA purified from indicated sources. Each end-point PCR reaction was carried out using the equivalent of 16.7 ng of input RNA, whereas each qPCR reaction was carried out using the equivalent of 2.8 ng of input RNA. As a control for RNA loading into the RT reaction, expression of *Xenopus laevis* ornithine decarboxylase (ODC) was assayed [25]. Analysis of ODC expression was carried out using 25 cycles, whereas all other genes were analyzed using 30 cycles except for FoxP3 which required 40 cycles (denoted by an asterisk in Figure legend).

Quantitative PCR was performed utilizing the MX3000P QPCR System (Stratagene, USA.). Fluorescence detection chemistry involved utilization of SYBR green dye master mix (Bio Rad, USA) and was carried out as described [22]. Each RT reaction was equalized for RNA input by assessing the level of expression of the relatively invariant housekeeping gene ornithine decarboxylase (ODC) and expression of each gene of interest was then normalized to the level of ODC. For determination of expression levels by qPCR, standard curves were run for each gene of interest as well as for the normalizer gene, ODC. Standard curves were performed using purified PCR product for each gene serially diluted over a 625-fold range starting with 100 fg of product. Following normalization of amplification results to ODC, the level of expression of each gene is expressed as a relative ratio to the level present at the time of amputation. Statistical comparisons were made of each gene comparing expression at each time point between untreated limbs and beryllium treated limbs using independent samples T-test.

PCR primer sequences and GenBank accession numbers are:

ODC

Accession #
X56316

FoxP3

Accession #
BC084819
Results and Discussion

Resolution of inflammation is prolonged after amputation of regeneration-incompetent limbs

Developmental stages 53 through 57 cover most of the period during which *Xenopus* hindlimbs lose their capacity for epimorphic regeneration: amputated stage 53 limbs produce well-patterned regenerates typically lacking only the most anterior digit (regeneration-competent), while the larger stage 57 limb stumps are regeneration-deficient, forming at most small, skin-covered cartilaginous spikes. Amputation at either stage elicited a rapid increase in cells staining for myeloperoxidase (MPO), a marker for neutrophils and macrophages, as shown by histochemistry of whole-mounts (Fig. 1). At both stages MPO+ cells were abundant in the limb stumps within 6 hours post-amputation (6 hPA), concentrated distally near the cut tissues now covered by wound epithelia. The distal concentration of MPO+ cells decreased by one day post-amputation (1 dPA) in limbs of both stages and labeled cells became more dispersed throughout the limb stumps as resolution of the acute inflammatory response began. Three and 5 dPA labeled cells were further dispersed in both stage 53 and stage 57 limb stumps, with more MPO+ cells persisting in the older limbs (Fig. 1). These results indicate no obvious difference in amputated limbs at these stages in the accumulation and removal of neutrophils and macrophages.

Many genes important in inflammation and resolution were identified in our previous microarray and/or proteomic analyses of larval *Xenopus* limb blastemas [9,22], in addition to genes involved in cellular reprogramming and limb patterning. Expression of several such genes was examined in stage 53, 55 and 57 limbs at various times post-amputation to compare further the local inflammatory response during the larval period when regenerative capacity declines. The key proinflammatory interleukin IL-1β, like the accumulation of MPO+ cells, showed strong, transient up-regulation at 6 hPA in limbs at all three stages (Fig. 2a), most likely within macrophages and other antigen-presenting cells [26]. Expression of matrix metalloproteinase-9 (MMP9) also began within hours but continued for at least 3 d at all stages. Genes for immunomodulatory proteins involved in resolving inflammation, such as annexin-A1 (ANXA1) [16], fibrinogen-like protein 2 (FGL2) [27], and suppressors of cytokine signaling (SOCS1 and 3) [28], were also expressed more persistently than IL-1β. Although up-regulated within 6 hPA at all stages, expression of these resolution factors diminished within 1 day or less at stage 53, but appeared to remain elevated through at least 3 dPA at stage 57 (Fig. 2a). Expression of these factors was also found at low levels in control (unamputated) limbs at stages 55 and 57, but not at stage 53, suggesting differentiation and/or arrival in limbs of cells with immunoregulatory activity during development. Expression of galectin-1, another promoter of resolution [18], was not seen at any time in stage 53 or 55 limbs, but at stage 57 was found in control limbs, with apparent up-regulation by amputation (Fig. 2a).

Galectin-1 is an important product of activated regulatory T cells (Treg) [29], which suppress activity of effector T cells during inflammation and have been implicated in the regenerative capacity of tails in *Xenopus* [30]. Expression of the Treg marker FoxP3 occurred transiently at 6 hPA in limbs at all three stages and was detected in stage 57 control limbs but not earlier (Fig. 2a), suggesting that Treg can be elicited by injury as early as stage 53 but are not resident in normal limb tissues until stage 57.

When local expression of genes regulating inflammation was compared with that of genes for cell reprogramming and blastema patterning, the expression profiles were found to be distinctly different (Fig. 2b). Expression of *SALL4*, which characterizes both stem cells and cells undergoing reprogramming [31,32], began within 1 day and continued through 6 dPA at all three stages of limb development, with weaker and more delayed expression at stage 57 (Fig. 2b). In axolotl limbs *SALL4* is involved in the cellular dedifferentiation that follows amputation, while *SALL1* and *SALL3* are expressed in limb patterning [33]. Previous analyses in *Xenopus* limbs not only showed *SALL4* expression delayed until 3-5 dPA at stage 57, but also found that *SALL4* is not expressed at all in limbs partially transsected but not amputated [34].

Expression of genes involved in limb patterning as well as cell reprogramming, such as *TBX3*, Sbh, *Msec* and *SALL1*, occurred as expected during blastema development in stage 53 limbs but was
Figure 1. Whole-mounts of stage 53 and stage 57 Xenopus hindlimbs from 0 hours to 5 days post-amputation (PA) stained by enzyme histochemistry for myeloperoxidase (MPO), a marker for neutrophils and macrophages. Only background staining is visible at the time of amputation (0 hPA), but by 6 hPA in limbs of both stages the number of brown MPO+ cells increase greatly near the site of amputation. MPO staining diminished slowly through 5 dPA in limbs of both stages. The larger, very dark structures are melanocytes.

doi:10.1371/journal.pone.0080477.g001

Figure 2. Expression of genes previously identified in studies of gene activity during the early phase of Xenopus limb regeneration, shown by RT-PCR at different times PA during the transition from regeneration-complete to –incomplete in stages 53, 55, and 57. Tissue from 20 limb stumps was used for each time point and expression of the loading control ornithine decarboxylase (ODC) is shown in the top row. (a) Genes with primarily inflammation-related function: Expression of interleukin-1β (IL-1β) appeared maximal by 6 hPA but then was rapidly diminished at all stages. Expression of factors involved in the resolution of inflammation, including annexin-A1 (ANXA1), fibrinogen-like protein 2 (FGL2), suppressors of cytokine signaling (SOCS) 1 and 3, galectin-1, and the key marker for regulatory T cells, FoxP3, were also all up-regulated by 6hPA and then diminished in limbs of all 3 stages, but more slowly in regeneration-incomplete limbs suggesting that inflammation-related activity persists after amputation in the more developed limbs. Low expression of many of these pro-resolution factors, including FoxP3, was seen already at the time of amputation in regeneration-deficient limbs, indicating the presence of immune cells not found in limbs at early regeneration-complete stages. (b) Genes with primarily cell reprogramming and organ patterning function: Expression of SALL4 and TBX3, both involved in cell reprogramming during early blastema formation, are up-regulated by amputation at all 3 stages, but much more slowly and at apparently lower levels in regeneration-incomplete limbs. Expression of genes required for blastema patterning, including Shh, Msx1, SALL1, and HOXA13, occurred at various times PA in stage 53 limbs, but was increasingly reduced and delayed in regeneration-deficient limbs, results consistent with the failure of the latter limbs to regenerate with normal patterns. Cycle number for ODC PCR was 25; FoxP3 required 40 cycles and all other genes 30.

doi:10.1371/journal.pone.0080477.g002
delayed in stage 55 limbs and was minimal in stage 57 limbs (Fig. 2b). These results suggest that the persistent expression in regeneration-deficient limb stumps of genes involved with inflammation and resolution has little effect on cell reprogramming, but may be incompatible with the normal precisely integrated expression of genes that result in blastema patterning. Histological observations during the 2 weeks after amputation in regeneration-complete and -deficient hindlimbs were similar to those reported previously [2,35]. Limbs at regeneration-incompetent stages showed little tissue dedifferentiation, produced only small pseudoblastemas [35], or “fibroblastemas” [36], which during the second week post-amputation formed a layer of dense connective tissue beneath the distal epidermis and in most cases a growing mass of cartilage around the cut, eroding ends of the skeletal elements (data not shown).

Inflammation following BeSO₄ treatment reduces regenerative capacity in early larval limb stumps

To test the correlation between prolonged local inflammation and regenerative decline we sought to increase the proinflammatory effect of amputation by applying immune adjuvants to the wound in regeneration-competent hindlimbs (stage 53/54). Polyluboxylate and LPS, Freund’s complete adjuvant, and NiCl₂ applied one time to the wound immediately after amputation all caused IL-1β expression to persist for at least 1 dPA as measured by RT-PCR, but had no consistent inhibitory effect on limb regeneration (data not shown).

However similar treatment with another immunostimulant BeSO₄ increased edema within the distal limb stump, followed by failure of blastema formation and epimorphic regeneration (Fig. 3). Unlike the other adjuvants tested the beryllium ion persists in exposed tissues and can lead to chronic local inflammation [37]. Be has long been known to inhibit limb regeneration after a very brief exposure in newly amputated larval Ambystoma limbs [38–40]. Localized exposure of stage 53/54 limb stumps to 10 mM BeSO₄ increased inflammation at the wound site and completely inhibited regeneration with no mortality (Table 1). Similar treatment with higher concentrations of BeSO₄ produced more widespread edema and erythema, usually followed by death within about 1 d (Table 1).

Comparing the responses to Be exposure of *Xenopus* tadpole limbs and larval axolotl limbs of similar size yielded information on the nature of the Be effect (Table 2). The lowest BeSO₄ concentration (10 mM) that inhibited *Xenopus* regeneration had no apparent effect at all in urodele larvae; there was no sign of local inflammation and all limbs regenerates normally. Only at 40 mM BeSO₄ did edema and erythema begin to occur locally, with regenerative failure in half the axolotl limbs. At 100 mM BeSO₄, which was consistently fatal to the anuran larvae, inflammation was increased only locally, while regeneration was blocked completely (Table 2). No axolotls died after localized BeSO₄ exposure at any concentration. These major differences in mortality and effect on regeneration between *Xenopus* and axolotl larvae after brief treatment of the limbs with BeSO₄ provided strong initial evidence that the regenerative inhibition is not due to direct toxic effects produced by applying this substance to the cut tissues.

Inflammation following BeSO₄ treatment inhibits gene expression needed for patterning and growth of a limb regeneration blastema

The inhibition of regeneration by localized immunostimulation at the amputation site was investigated further by quantifying the Be effect on expression of specific genes related to inflammation, cell reprogramming, and blastema patterning. As shown in Figure 4 application of BeSO₄ at 10 mM to freshly amputated, regeneration-competent limbs stimulated significantly higher and prolonged expression of *IL-1β* and *FGL-2*, which promote and modulate inflammation and resolution but are normally expressed only transiently after amputation at this stage. While enhancing expression of those immunomodulatory genes, Be had no effect on the up-regulation or expression levels of *SALL4* (Fig. 4). The stimulated or normal expression of these genes is additional evidence against a toxic effect of the brief exposure of the limbs to BeSO₄ at the dose used here.

Unlike these genes involved in either inflammation or cell reprogramming, expression of the patterning-related genes *TBX3*, *Shh* and *SALL1* was significantly inhibited after Be treatment. Although these genes are all strongly up-regulated at 3 dPA in control regeneration-competent limbs, expression of each was significantly reduced in Be-treated limbs. At 7 dPA expression of *Shh* and *SALL1* was only one-third the levels seen in controls (Fig. 4). These results suggest that while cell reprogramming in the limb normally accompanies the inflammation and resolution elicited by amputation, prolonged inflammation disrupts the normal schedule of patterning gene expression. Tissue injury and inflammation have been shown to cause epigenetic changes in local cells that facilitate nuclear reprogramming [41,42]. Conversely, the microenvironment produced by unresolved inflammation can disrupt tissue patterning by deregulating Wnt and Shh signaling pathways and the dynamic expression of matricellular proteins [43,44].

To examine the roles of immigrating cells in the local response to amputation and BeSO₄ treatment, changes in gene expression during 7 dPA were also compared in stage 53 limbs amputated, with or without exposure to Be, and then either maintained in vivo or immediately explanted to organ culture (Fig. 5). This approach indicated clearly that expression of *IL-1β*, *FGL-2*, and *MMP9*, occurred almost exclusively in cells that enter the limb from blood

mM BeSO₄	n limbs	% mortality	regeneration inflammation
0	13	0	9/13 (70%) none
10	10	0	3/10 (30%) local
20	14	5/14 (36%) 0	local
40	6	5/6 (83%) 0	systemic
100	5	5/5 (100%) 0	---

*all 3 unpatterned “spikes”.
doi:10.1371/journal.pone.0080477.t001

Table 1. Effects of post-amputation limb treatment with BeSO₄ in *Xenopus* (stage 53/54).
Figure 3. The effect on regeneration of stage 53/54 limbs of local treatment with BeSO₄ solution (10 mM) immediately after amputation. (a) Epimorphic regeneration was completely inhibited by topical BeSO₄ while 5 of 6 contralateral limbs regenerated normally. One day PA wound epithelium (E) from adjacent epidermis had migrated across the amputation wound in both Be-treated (b) and control (c) limbs. Treated limbs but not controls also showed subepithelial accumulations of fluid and leukocytes (b). From 6 hours to 7 dPA distal areas of Be-treated limb stumps (d) became less edematous but showed no indication of blastema growth, while controls (e) underwent normal stages of blastema formation and growth. Sectioned tissues stained with hematoxylin & eosin. Bars indicate 50 μm in (b, c) and 100 μm in (d, e). Dashed lines indicate planes of amputation.

Table 2. Effects of post-amputation limb treatment with BeSO₄ in axolotl larvae (4 cm).

mM Be	n limbs	% mortality	regeneration	inflammation
0	16	0	100%	none
10	8	0	100%	none
20	8	0	100%	none
40	14	0	7/14 (50%)	slight, local
100	8	0	1/8 (13%)	local

*spike.

doi:10.1371/journal.pone.0080477.g003

doi:10.1371/journal.pone.0080477.t002
or elsewhere within hours of amputation (Fig. 5a). However local up-regulation and expression of the complement components C3 and C4 by amputation occur similarly in vivo and in cultured limbs (Fig. 5a), consistent with the report of Del Río-Tsonis et al. [45] that C3 is synthesized by dedifferentiating cells of the urodele limb. The importance of local complement expression for successful regeneration in a wide variety of models was reviewed recently by Mastellos et al. [46]. Some FoxP3-expressing cells are present in stage 53 limbs are seen to show Be stimulation even after explantation to organ culture. FoxP3-expressing cells also appear to enter limbs during inflammation since the marker’s expression is higher in vivo than in culture (Fig. 5a).

As expected expression of the cell reprogramming and patterning genes was seen in both explanted and intact limb stumps, with the brief exposure to BeSO₄ having an apparent inhibitory effect that was again minimal with SALL4 (Fig. 5b).

Since expression of Shh and other limb patterning genes likely depends on proliferation and blastema growth, potential cytotoxic or other antiproliferative effects of Be require further consideration. How does Be affect cells and tissues? BeSO₄ is only weakly carcinogenic or mutagenic and is toxic for cultured cells only after prolonged (hours) exposure at millimolar concentrations [47,48]. In the early studies with Be and amphibian regeneration, its effect was localized to the exposed cells only, since removal of another 0.5 mm of tissue from the Be-treated stump, either immediately or

Figure 4. Quantitative PCR of gene expression through 7 days post-amputation in control and 10 mM BeSO₄-treated stage 53/54 limbs. Tissue from 20 limb stumps was used for each time point. (Top) In untreated control limbs expression of inflammation-related IL-1β and FGL-2 are transient, expression of the patterning genes Shh and SALL1 begins by 3 dPA, and expression of the reprogramming gene SALL4 occurs throughout this period. In Be-treated limb stumps, IL-1β expression persists through 7 dPA, expression of the proresolution factor FGL-2 is five-fold higher than in controls and also highly persistent, while SALL4 and TBX3 expression is similar to that of control regenerates and expression of SALL1 and Shh remains very low. (Bottom) Compared individually expression of proinflammatory IL-1β and proresolution FGL-2 are both significantly elevated and persistent through 7 dPA in Be-treated limbs. In general Be had no significant effect on expression of SALL4, but inhibited expression of the patterning-related genes TBX3, SALL1 and Shh. Each time point shows the mean of triplicate PCR runs, with standard deviations. Statistical comparisons are between similar time points in the treated and untreated groups: * = P<0.05, ** = P<0.001, and no symbol indicating no statistical differences.

doi:10.1371/journal.pone.0080477.g004
several days later, was followed by normal regeneration [38,39,49]. Tsonis et al. [40] reported that immediate treatment of axolotl limbs with BeSO₄ blocked the transient increase in inositol phosphate production that occurs locally within a minute after amputation, a result consistent with the similar effects of BeSO₄ and phosphoinositide-3-kinase inhibitors on differential release of cytokines by LPS-stimulated monocytes and dendritic cells [50].

Thornton [39,51] and Singer [52] also used regenerating limbs of larval Ambystoma and adult newts respectively to test for toxicity after infusing millimolar solutions of Be compounds into blastemas. In those studies blastema growth and regeneration continued, but with increased inflammation, fibrosis and severe patterning defects, results consistent with the data reported here. No studies have determined the percentage of Be remaining in exposed limb tissue following a brief exposure to a specific concentration of a Be compound and washing of the amputation surface. However its lack of effect on expression of SALL4 and other genes, or the up-regulation of SALL4 at 5 dPA in stage 57 limbs (not shown), suggests further that Be is not directly cytotoxic.

 Virtually all of the acute and chronic human health problems caused by exposure to Be are elicited in susceptible individuals by hypersensitivity reactions involving Be-specific CD4⁺ T cells [48,53-55]. The observation that a concentration of BeSO₄ which completely inhibits limb regeneration and causes high mortality in Xenopus larvae has no effect on regeneration or mortality in axolotl larvae of similar age and size (Table 1) is more consistent with an immunodeficient status of urodele adaptive immunity compared to that of Xenopus. However, BeSO₄ treatment blocks NF-κB signaling during immune activation [7]. Fukazawa et al. [30] have shown that celastrol and another specific IKK inhibitor, enhanced regeneration in stage 54/55 (but not later stage) Xenopus hindlimbs, as shown by improved anterior-posterior patterning and digit formation [7]. Similar results were obtained with beclomethasone, an IkB kinase (IKK) inhibitor which blocks NF-κB signaling during immune activation [7].

Together these inhibitor studies suggest an important balance between inflammation and regeneration. Amputation rapidly triggers gene activity for inflammation and its resolution, as well as for cellular stemness/reprogramming, which is followed by...
growth and limb patterning. Blastema formation can fail if glucocorticoids are present during the early post-amputation period. Patterning and normal regeneration also fail if inflammation is prolonged locally by the persistent adjuvant Be or perhaps by impaired resolution in the absence of macrophage activity [21]. Conversely, in the presence of COX-2 inhibitors or specific immunosuppressants used to block allogeneic graft rejection and treat autoimmune disorders, regeneration of larval *Xenopus* tails and limbs can be improved.

The ameliorative effects of cyclosporine and other agents targeting the adaptive immune system suggest that the loss of patterning during tissue repair may involve T cell-dependent mechanisms [7,30]. Down-regulation of both APCs and lymphocytes during resolution is produced in part by annexin-A1, FGL-2, and galectin-1 [63–65], which together with SOCS and the T_{reg} marker FoxP3 appear here to be expressed more persistently in regeneration-deficient limb stumps. Activities of these resolving factors and T_{reg} in controlling local immune activity and maintaining self-tolerance in mammals are increasingly well-characterized; their expression in amputated larval *Xenopus* limbs suggests the possibility of similar roles in these tissues’ return to homeostasis after injury.

In *Xenopus laevis* the hindlimbs and the adaptive immune system develop simultaneously. From stage 50, soon after limb buds first appear, to stage 58, when the larval thymus attains its maximal size and the hindlimbs are fully formed, the number of lymphocytes in the thymus increases from 3×10^{3} to 1–2×10^{5} [6]. During metamorphosis these lymphocytes are largely replaced by new T cells which undergo thymic selection for tolerance of newly produced antigens unique to the postmetamorphic frog. Mixed lymphocyte reactions (MLR, in vitro assays for the ability of helper T cells to recognize non-self-antigens, proliferate, and generate effector T cells) between larval and adult immune cells can first be detected at the same stage when limb regenerative ability begins to decline [66].

Recent experiments using limb progenitor cells to impart regenerative capacity to postmetamorphic *Xenopus* underline the importance of inflammation and resolution here [67]. Fibrin gel patches containing both dissociated limb bud cells and beads releasing Shh and FGF10 converted spike growth into middigit limb formation when applied to the amputation surface at froglet ankles or wrists, with the regenerates developing from both donor and host cells. As expected, long-term survival of these cell allografts, as well as intact limb bud grafts, required immunosuppression of the hosts by prior thymectomy (at stage 48/49). Addition of the anti-inflammatory protein thymosin β4 to the fibrin gel reduced apoptosis and doubled the proliferation rate in donor (but not host) cells, resulting in higher quality regenerates [68].

The injury-induced inflammatory response, including both its innate and adaptive components, is increasingly recognized as an important area within regenerative biology. The extensive literature on inflammation as a key determinant of scarring or regeneration in mammalian skin and other systems has revealed complex interactions among immune cells, stem cells and cells undergoing reprogramming. Further investigation of inflammation and resolution in the developing *Xenopus* limb and other models of vertebrate regeneration can be expected to shed light on the capacity for epimorphic regeneration and its attenuation or loss during both ontogeny and phylogeny.

Acknowledgments

The authors wish to thank Betsy Osborne for excellent technical assistance in all phases of the study, Sue Childress for histological processing, and Vidya Sankarasubramanian, Evelyn Nguyen and Alice Chen for additional assistance.

Author Contributions

Conceived and designed the experiments: ALM MWK. Performed the experiments: ALM MWK. Analyzed the data: ALM AWN MWK. Contributed reagents/materials/analysis tools: ALM MWK. Wrote the paper: ALM.

References

1. Brockes JP, Kumar A, Velloso CP (2001) Regeneration as an evolutionary variable. J Anat 199: 3–11.

2. Dent JN (1962) Limb regeneration in larvae and metamorphosing individuals of the South African clawed toad. J Morphol 110: 61–78.
3. Wolfe AD, Nye HLD, Cameron JA (2000) Extent of ossification at the amputation plane is correlated with the decline of blastema formation and regeneration in *Xenopus laevis* tadpoles. Dev Dyn 218: 681–697.

4. Beck CW, Christen B, Slack JM (2003) Molecular pathways needed for regeneration of spinal cord and muscle in a vertebrate. Dev Cell 3: 429–439.

5. Franchini A, Bertolotti E (2011) Tail regenerative capacity and iNOS immunolocalization in *Xenopus laevis* tadpoles. Cell Tissue Res 344: 261–269.

6. Robert J, Okha Y (2009) Comparative and developmental study of the immune system in *Xenopus laevis*. J Immunol Exp Mol Med 238: 1249–1259.

7. King MW, Neff AW, Mescher AL (2012) The developing *Xenopus* limb as a model for studies on the balance between inflammation and regeneration. Anat Rec 295: 1532–1561.

8. Yokoyama H (2003) Initiation of limb regeneration: the critical steps for determination of regenerative capacity. Dev Growth Differ 55: 11–22.

9. King MW, Neff AW, Mescher AL (2009) Proteomics analysis of regenerating amphibian limbs: changes during the onset of regeneration. Int J Dev Biol 53: 955–969.

10. Love NR, Chen Y, Bouey B, Gaichel MJ, Fairclough L, et al. (2011) Genome-wide analysis of gene expression during *Xenopus tropicalis* tadpole tail regeneration. BMC Dev Biol 11: 70.

11. Love NR, Chen Y, Ishihashi S, Krainikou P, Lea R, et al. (2013) Amputation-induced active oxygen species are required for successful *Xenopus* tadpole tail regeneration. Nat Cell Biol 15: 222–228.

12. Nathan C (2002) Points of control in inflammation. Nature 429: 845–852.

13. Rock KL, Lat JJ, Koos H (2011) Innate and adaptive immune responses to cell death. Immunol Rev 241: 191–205.

14. Wood KJ, Goto R (2012) Mechanisms of rejection: current perspectives. Transplantation 93: 1–10.

15. Widgerow AD (2012) Cellular resolution of inflammation—catabasis. Wound Rep Regen 20: 2–7.

16. Perretti M, D’Acquisto F (2009) Annexin A1 and glucocorticoids as effectors of the resolution of inflammation. Nat Rev Immunol 9: 62–70.

17. Serhan CN (2010) Novel lipid mediators and resolution mechanisms in acute inflammation: from resolve or not? Am J Pathol 177: 1576–1591.

18. Norling LV, Perretti M, Cooper D (2009) Endogenous galactolipids and the control of the host inflammatory response. J Endocrinol 201: 169–184.

19. Eming SA, Hammerschmidt M, Krieg T, Roers A (2009) Interrelation of innate and acquired immunity. Biometals 24: 1–17.

20. Chan CW, Kay LS, Khadaroo RG, Chan MW, Lakatoo S, et al. (2003) Soluble cytokine signaling proteins in myeloid signaling pathways. Curr Opin Hematol 10: 454–458.

21. King MW, Neff AW, Mescher AL (2009) Proteomics analysis of regenerating limb intercalary regenerate. Dev Dyn 238: 1249–1259.

22. Grow M, Neff AW, Mescher AL, King MW (2006) Global analysis of gene expression in *Xenopus* limbs during stage-dependent complete and incomplete regeneration. Dev Dyn 253: 2667–2683.

23. Nieuwkoop P, Faber J (1967) Normal Table of *Xenopus laevis* (Daudin). Amsterdam: North-Holland.

24. Mescher AL, Loh JH (1981) Newt forelimb regeneration blastemas in vitro: cellular response to explanation and effects of various growth-promoting substances. J Exp Zool 216: 235–245.

25. King MW, Neff AW, Loh JH (1998) Anterior structural defects by *Xenopus* embryos are associated with altered expression of cell adhesion molecules. J Exp Zool 282: 35202–35210.

26. Schröder K, Tischopp J (2010) The inflammasciences. Cell 140: 621–632.

27. D’Acquisto F, Kwon HY, Khadaroo RG, Chan MW, Lakatoo S, et al. (2003) Soluble fibrinogen-like protein 2 (*fibrolink*) exhibits immunosuppressive properties suppressing T cell proliferation and inhibiting maturation of bone marrow-derived dendritic cells. J Immunol 170: 4036–4044.

28. Wormald SJ, Hinton DJ (2007) The negative regulatory roles of suppressor of cytokine signaling proteins in myeloid signaling pathways. Curr Opin Hematol 14: 9–15.

29. Shevach EM (2009) Mechanisms of Foxp3+ T regulatory cell-mediated suppression. Immunol Rev 228: 363–645.

30. Fukuoka T, Naora Y, Kumeda T, Kubo T (2009) Suppression of the immune response potentiates tadpole tail regeneration during the refractory period. Development 136: 2323–2327.

31. Christen B, Robbins V, Raya M, Paramonov I, Belmonte JC (2010) Regeneration and reprogramming compared. BMC Biol 8: 5.

32. Han J, Yuan P, Yang H, Zhang J, Soh BS, et al. (2010) Tbx3 improves the germ-cell regeneration in the amputated forelimb of *Xenopus* frogs. Can J Zool 62: 2383–2391.

33. Sawyer RT, Maier LD (2011) Chronic beryllium disease: an updated model interaction between innate and acquired immunity. Biomolecules 24: 1–17.
70. Kinefuchi K, Kushida Y, Johnouchi M, Shimizu Y, Ohmeda H, et al. (2011) Chronic transplantation immunity in newts: temperature susceptibility of an effector phase in allo-skin graft rejection. Zool Sci 28: 509–516.
71. Wallace H (1981) Vertebrate Limb Regeneration. Chichester (U.K.): John Wiley & Sons.
72. Levesque M, Villiard E, Roy S (2010) Skin wound healing in axolotls: a scarless process. J Exp Zool B Mol Dev Evol 314: 684–697.
73. Seifert AW, Monaghan JR, Voss SR, Maden M (2010) Skin regeneration in adult axolotls: a blueprint for scar-free healing in vertebrates. PLoS One 7: e32075.
74. Ussing AP, Rosenkilde P (1995) Effect of induced metamorphosis on the immune system of the axolotl, Ambystoma mexicanum. Gen Comp Endocrinol 97: 308–319.
75. Sessions SK, Bryant SV (1988) Evidence that regenerative ability is an intrinsic property of limb cells in Xenopus. J Exp Zool 247: 39–44.
76. Du Pasquier L, Flajnik MF (1990) Expression of MHC class II antigens during Xenopus development. Dev Immunol 1.
77. Carrillo-Farga J, Castell A, Perez A, Rondan A (1990) Langerhans-like cells in amphibian epidermis. J Anat 172: 39–45.
78. Castell-Rodriguez AE, Hernandez-Penaola A, Sampedro-Carrillo EA, Herrera-Enriquez MA, Alvarez-Perez SJ, et al. (1999) ATPase and MHC class II molecules co-expression in Rana pipiens dendritic cells. Dev Comp Immunol 23: 473–485.
79. Mescher AL, Wolf WL, Moseman EA, Hartman B, Harrison C, et al. (2007) Cells of cutaneous immunity in Xenopus: Studies during larval development and limb regeneration. Dev Comp Immunol 31: 383–393.