Abstract

We characterize the virtually soluble profinite groups of finite rank that are finitely axiomatizable in the class of all profinite groups.
1 Introduction

We give a group-theoretic criterion of finite axiomatizability for certain profinite groups, namely the virtually soluble groups of finite rank; this solves Problem 1 of [NST]. To articulate it precisely we need to recall some definitions.

- Throughout, \(L \) is a first-order language: either the language of groups \(L_{gp} \), or the language \(L_\pi \) for some set of primes \(\pi \): this is \(L_{gp} \) augmented with unary function symbols \(P_\lambda \), one for each \(\lambda \in \mathbb{Z}_\pi = \prod_{p \in \pi} \mathbb{Z}_p \); these are interpreted in a profinite group as profinite powers, \(P_\lambda(g) = g^\lambda \) (cf. [FJ], Chap. 1, Ex. 9).

- A profinite group \(G \) has an \(L \)-presentation in a class \(C \) of profinite groups if \(G \) has a finite generating set \(\{g_1, \ldots, g_d\} \) and there is an \(L \)-formula \(\psi(x_1, \ldots, x_d) \) such that \(G \models \psi(g) \) and for any profinite group \(H \in C \) and \(h_1, \ldots, h_d \in H \), if \(H \models \psi(h) \) then the map sending \(g_i \) to \(h_i \) for each \(i \) extends to an epimorphism \(G \to H \) (see [NST] §5.3).

- A profinite group \(G \) has rank \(r = \text{rk}(G) \) if every closed (equivalently, open) subgroup can be (topologically) generated by \(r \) elements, and \(r \) is the least such integer (see [DDMS], §3.2).

- A profinite group \(G \) is finitely axiomatizable (FA) in \(C \) if there is a sentence \(\sigma_G \) in \(L \) such that \(G \models \sigma_G \), and for any profinite group \(H \in C \), if \(H \models \sigma_G \) then \(H \) is isomorphic to \(G \). When \(C \) is the class of all profinite groups we say that \(G \) is FA.

- A profinite group \(G \) satisfies the OS condition (for Oger-Sabbagh) if the image of \(Z(G) \) in the abelianization of \(G \) is periodic.

Here \(Z(G) \) denotes the centre of \(G \). The set of primes \(p \) such that \(G \) has a nontrivial Sylow pro-\(p \) subgroup will be denoted \(\pi(G) \). A profinite group is said to be virtually \(C \) for some class \(C \) if it has an open normal \(C \)-subgroup.

- \(C_\pi \) denotes the class of all pronilpotent groups \(G \) with \(\pi(G) \subseteq \pi \).
A profinite group G is in C^q if G has an open normal subgroup H such that $H \in C_\pi$ and $G^q \leq H$. The notation assumes that q is a π-number, so $\pi(G) \subseteq \pi$.

Note that $G \in C_\pi$ if and only if G is a Cartesian product of pro-p groups with $p \in \pi$.

Before stating the main result we need the following observation, proved in the next section:

Lemma 1.1 Let G be a virtually prosoluble group of finite rank with $\pi := \pi(G)$ finite. Then $G \in C_\pi^q$ for some π-number q.

Now we can state

Theorem 1.2 Let G be a virtually soluble profinite group of finite rank, and assume (1) $\pi(G)$ is finite and (2) G has an L-presentation in C_π^q, where $G \in C_\pi^q$. Then G is finitely axiomatizable if and only if every open subgroup of G satisfies the OS condition.

Remarks

1. The hypothesis of an L-presentation is automatically fulfilled when L is L_π, $\pi = \pi(G)$; see \[2\] below. When L is L_{gp}, a sufficient (though by no means necessary) condition is that G be the C_π^q completion of a finitely presented abstract group Γ, for example a polycyclic group (in view of Lemma [1.] this is in fact the same as the pro-π completion of Γ when Γ is virtually soluble of finite rank); cf. [NST], Prop. 5.13(i), which is the case where $q = 1$.

The unavoidability of some such hypothesis is discussed in the introduction of [NST]; in fact it is an (obvious) consequence of ‘finite axiomatizability’ if the latter is defined to include a generating tuple, as in Theorem 5.15 of [NST]. It will be clear from the proof - which is an application of that result - that Theorem 1.2 holds as well with such an amended definition.

2. Suppose that instead of (1) we assume that G is pronilpotent. Then G is FA if and only (a) every open subgroup of G satisfies the OS condition and (b) $\pi(G)$ is finite. Indeed, Proposition 1.3 of [NST] shows that if G is pronilpotent and FA then $\pi(G)$ is finite.

3. The theorem generalises Theorem 5.16 of [NST] which deals with the nilpotent case; in that case, the OS condition for G is automatically inherited by all open subgroups (a simple exercise).

4. The title of this paper refers to C. Lasserre [L], who in a similar way characterizes finite axiomatizability for virtually polycyclic groups in the class of finitely generated abstract groups. Note that a profinite group is soluble of finite rank if and only if it is poly-procyclic.
5. **Problem**: Is the pronilpotency hypothesis required in Remark 2. above? In other words, does G being FA imply that $\pi(G)$ is finite, for a virtually soluble profinite group G of finite rank? This would yield a more elegant characterization; but it seems hard to either prove or disprove.

For further background and motivation, see the introduction to [NST]. We recall that a pro-p group has finite rank if and only if it is p-adic analytic; for this and more information about these groups see [DDMS].

I would like to thank Andre Nies for introducing me to finite axiomatizability in general, and to Lasserre’s paper in particular.

2 Initial observations

We briefly recall some material from [NST], Section 2. All formulae are L-formulae. A subset S of a group G is definable if

$$S = \phi(\mathbf{a}; G) := \{ g \in G \mid G \models \phi(\mathbf{a}; g) \}$$

where $\phi(t_1, \ldots, t_r, x)$ is a formula and $\mathbf{a} = (a_1, \ldots, a_r) \in G^r$ (here r may be zero). S is definably closed if in addition, for every profinite group H and $b \in H^r$ the subset $\phi(b; H)$ is closed in H. If S is a definably closed (normal) subgroup of G, we can (and will) assume that

$$\phi(t; x) \land \phi(t; y) \to \phi(t; x^{-1}y) \quad \text{(subgroup)}$$

$$\phi(t; x) \to \phi(t; x^y) \quad \text{(normal)}.$$

Then for H and b as above the subset $\phi(b; H)$ is a closed (normal) subgroup of H.

First-order formulae equivalent to various other useful group-theoretic assertions can be found in [NST], Section 2.

If G is a finitely generated profinite group then every subgroup of finite index is open and definably closed, and the derived group G' is definably closed (see [NST], Thm. 2.1). More specifically, If G is an r-generator pronilpotent group then every element of G' is equal to a product of r commutators (cf. [DDMS], proof of Prop. 1.19). In general, if G has finite rank then every centralizer is definably closed, because every subgroup is finitely generated.

If H is a definable subset and N is a definable normal subgroup of a group G, a definable subset of H is definable in G, and S is a definable subset of G/N iff $\pi^{-1}(S)$ is definable in G where $\pi : G \to G/N$ is the quotient mapping.

We will use these observations without special mention.

A formula constructed to axiomatize a group G will often take the parametric form $\chi(a_1, \ldots, a_r)$ where the a_i are elements of G; to avoid repeating the obvious, it should then be understood that the corresponding axiom will be $\exists x_1 \ldots \exists x_r. \chi(x_1, \ldots, x_r)$.

I will write

$$H <_o G$$
to mean that \(H \) is an open normal subgroup of \(G \).

Lemma 2.1 Let \(G \) be a virtually prosoluble group of finite rank with \(\pi := \pi(G) \) finite. Then \(G \in C_\pi^q \) for some \(\pi \)-number \(q \).

Proof. Put \(r = \text{rk}(G) \). Let \(K \) be the intersection of the kernels of all homomorphisms \(G \to \text{GL}_r(F_p), p \in \pi \), and let \(H < G \) be prosoluble. Then \(H_0 := K \cap H < G \).

Now suppose \(N < H_0 \). Then \(N \geq N_0 \) for some \(N_0 < G \), and we have a chain

\[
N_0 < N_1 < \ldots < N_k = H_0
\]

with each \(N_i \) normal in \(G \) and \(N_i/N_{i-1} \cong \mathbb{F}_p^s \) for some \(p \in \pi \) and \(s \leq r \). Now \(K \) centralizes each such factor, so \(H_0/N_0 \) is nilpotent. It follows that \(H_0 \) is pronilpotent, hence \(H_0 \in C_\pi \). Set \(q = |G : H_0| \). \(\blacksquare \)

Proposition 2.2 If \(\pi \) is finite, \(G \in C_\pi^q \) and \(G \) has finite rank then \(G \) has an \(L_\pi \)-presentation in \(C_\pi^q \).

Proof. [NST], Proposition 5.13(ii) is the case where \(G \in C_\pi \); but the proof only uses the fact that \(G \) is virtually a product of uniform pro-\(p \) groups, \(p \in \pi \), and this still holds if \(G \) is virtually \(C_\pi \) (of finite rank). (In the proof of [NST], Lemma 5.14, one should add the first-order condition saying that each of the words \(w_i \) is a product of \(m \) \(q \)-th powers, for some suitable \(m \)).

It also uses a formula

\[
\beta_d(y_1, \ldots, y_d)
\]

which asserts for a \(C_\pi \) group \(H \) that \(\{y_1, \ldots, y_d\} \) generates \(H \); in effect this asserts that \(\{y_1, \ldots, y_d\} \) generates \(H \) modulo its Frattini subgroup \(\Phi(H) \), which is open in \(H \). But \(\Phi(H) \) is open in \(G \), and a similar formula may be constructed to assert that \(\{y_1, \ldots, y_d\} \) generates \(G \) modulo \(\Phi(H) \); this does the job since \(\Phi(H) \subseteq \Phi(G) \). \(\blacksquare \)

3 ‘Only if’

The analogue for finitely generated abstract groups was established by Francis Oger in Theorem 3 of [O]. The following proof is essentially his argument, adapted to deal with profinite groups in place of finitely generated groups.

Theorem 3.1 Let \(G \) be a finitely generated profinite group that is virtually \(C_\pi \), where \(\pi \) is a finite set of primes. Suppose that \(G \) has an open subgroup that fails to satisfy the OS condition. Let \(\sigma \) be a sentence satisfied by \(G \). Then for almost all primes \(q \) there exists a profinite group \(G_q \) that satisfies \(\sigma \) and contains elements of order \(q \).
In particular, such a group G_q cannot be isomorphic to G when $q \notin \pi(G)$; in view of Lemma 1.1 this suffices to establish the ‘only if’ direction of Theorem 1.2.

The first step is the following lemma, which is proved just like Prop. 1 of [O], replacing \mathbb{Z}-modules by \mathbb{Z}_p-modules where appropriate:

Lemma 3.2 Suppose that the f.g. profinite group Γ is virtually pro-p and that some open subgroup of Γ fails to satisfy the OS condition. Then Γ has closed normal subgroups A, N such that $A \cap N = 1$, AN is open in G, and $A \cong \mathbb{Z}_p^r$ for some finite $r \geq 1$.

Now let G be as in Theorem 3.1. Thus G has an open normal subgroup $Q = Q_1 \times \cdots \times Q_k$ where Q_i is a pro-p_i group for each i and $\pi = \{p_1, \ldots, p_k\}$; and G has an open subgroup L that fails to satisfy the OS condition. Set $L_i = L \cap Q_i$. Say $z \in Z(L)$ has infinite order modulo L'. Then $z^m = y_1 \cdots y_k$ with $y_i \in Z(L_i)$, where $m = |G : Q|$, and for at least one value of i the element y_i has infinite order modulo L_i'. Let's assume that $i = 1$, and put $p = p_1$. Thus Q_1 is a pro-p group and its open subgroup L_1 fails to satisfy the OS condition.

Put $M = Q_2 \times \cdots \times Q_k$. Applying Lemma 3.2 to $\Gamma = G/M$ we find closed normal subgroups $A^* / M, N / M$ of G / M such that $A^* \cap N = M, A^* N$ is open in G, and $A^*/M \cong \mathbb{Z}_p^r$ for some finite $r \geq 1$. Put $A = A^* \cap Q_1$. Then $A^* \cap Q = A \times M$, so $A \cong (A^* \cap Q) / M$ which is open in A^* / M and so $A \cong \mathbb{Z}_p^r$. Also

$$A \cap N = A_1 \cap Q_1 \cap N = M \cap Q_1 = 1$$
$$AN = AMN = (A^* \cap Q)N \leq_o A_1N \leq_o G.$$

Thus G has closed normal subgroups A, N such that $K := A \times N$ is open in G and $A \cong \mathbb{Z}_p^r$ for some finite $r \geq 1$.

Write $F = G / K$, so the action of G makes A into a $\mathbb{Z}_p F$-module, which we write additively. F is a finite group. The matrices representing G relative to a \mathbb{Z}_p-basis $\{e_1, \ldots, e_r\}$ of A have entries in a finitely generated subring of \mathbb{Z}_p; then $E = \bigoplus e_i R$ is an $R G$-module, and as $\mathbb{Z}_p G$-modules

$$A \cong E \otimes_R \mathbb{Z}_p.$$

By a standard argument (cf. paragraph 5 in the proof of [O], Theorem 2), we can embed A in the $\mathbb{Q}_p (G / A)$-module $\tilde{A} = \mathbb{Q}_p A \cong \mathbb{Q}_p^r$ and G in a group \tilde{G} such that

$$\tilde{G} \cap \tilde{A} = A$$
$$\tilde{G} = \tilde{A} G = \tilde{A} \rtimes T;$$

here T / N is a complement to $\tilde{K} / N := (A \times N) / N$ in the extension \tilde{G} / N of $\tilde{K} / N \cong \mathbb{Q}_p^r$ by the finite group $\tilde{G} / \tilde{K} \cong F$.

As $T / N \cong G / K$ is finite, we can set $A_1 = p^{-e} A$ for some finite e to obtain

$$H := A_1 G = A_1 \rtimes T;$$

6
and G has finite index s, say, in H.

In particular H is again a finitely generated profinite group, and so $G = \kappa(H)$ for some formula κ (with parameters) that defines G as a closed subgroup. Then H satisfies the sentence

$$
\psi := \text{res}(\kappa; \sigma) \land s(\kappa) \land \text{ind}^*(\kappa; s)
$$

asserting that κ defines a closed subgroup that satisfies σ and has index exactly s (see [NST], Section 2).

Now suppose that H_q is a profinite group that satisfies ψ and contains an element y of order q, where q is a prime not dividing s. Then $G_q := \kappa(H_q)$ is a closed subgroup that satisfies σ, and G_q has index s so $y \in G_q$. To complete the proof it will therefore suffice to construct groups like H_q for almost all primes q.

Let ϖ denote the set of primes q such that $qR \neq R$. The complement of ϖ is finite (R is ‘generically free’ over \mathbb{Z}, [E], Thm. 14.4). For each $q \in \varpi$ we choose a maximal ideal m_q containing q; then $R/m_q = \Phi_q \cong \mathbb{F}_{q^f(q)}$ for some finite $f(q)$ ([AM], Cor. 5.24).

Now as $\mathbb{Z}_p T$-modules, $A_1 \cong A \cong E \otimes_R \mathbb{Z}_p$. For each $q \in \varpi$ let $B_q = E/Em_q \cong E \otimes_R \Phi_q$, and put

$$
H_q = (B_q \oplus A_1) \rtimes T.
$$

This is a profinite group having elements of order q, and it remains to show that H_q satisfies ψ for almost all q. Put

$$
\varpi^* := \{ q \in \varpi \mid H_q \models \neg \psi \}.
$$

Lemma 3.3 Suppose that ϖ^* is infinite. Let \mathcal{U} be a non-principal ultrafilter on the set ϖ^*. Then

$$
H^\mathcal{U} \cong \left(\prod_{q \in \varpi^*} H_q \right) / \mathcal{U},
$$

i.e. the two ultraproducts are isomorphic as groups.

As $H \models \psi$, it follows by Lós’s Theorem that ϖ^* must be finite, and the proof is complete, modulo the

Proof of Lemma 3.3. This is essentially contained in the proof of [O], Theorem 3, with R replacing \mathbb{Z}. For clarity, I sketch the argument here.

Observe that

$$
B_q \oplus A_1 \cong E \otimes (\Phi_q \oplus \mathbb{Z}_p)
$$

as RT-modules, where $\otimes = \otimes_R$. Let K denote the field of fractions of R.

Consider the R-modules

$$Q := \left(\prod_{q \in \pi^*} \Phi_q \right) / \mathcal{U},$$

$$P := \prod_{q \in \pi^*} \Phi_q,$$

$$V := \bigcap_{0 \neq r \in R} Pr.$$

Here Q is a vector space of dimension 2^{\aleph_0} over K, while V is a divisible submodule of the torsion-free R-module P. This implies both that V is a K-vector space (of dimension bigger than 2^{\aleph_0}), and that V is a direct summand of P. Thus $V \cong Q \oplus V$ and $P = V \oplus S$ for some R-submodule S, whence

$$P \cong Q \oplus V \oplus S = Q \oplus P.$$

It follows that

$$A_1^U \cong E \otimes P \cong E \otimes (Q \oplus P) \cong \prod_{q \in \pi^*} (B_q \oplus A_1) / \mathcal{U}. \tag{1}$$

These are R-module isomorphisms (the tensor and ultraproduct operations commute because $E \cong R^d$), and also T-module automorphisms, since T acts trivially on the right-hand factors.

Recall now that $H = A_1 \rtimes T$ is an extension of $A_1 \times N$ by the finite group $F = T/N$, that splits over A_1 (so a corresponding 2-cocycle maps $F \times F$ into N). It follows that H^U is similarly an extension of $(A_1 \times N)^U$ by F that splits over A_1^U:

$$H^U \cong A_1^U \rtimes \tilde{T}$$

where $\tilde{T} = N^U \rtimes T \, \text{ (with } T \text{ diagonally embedded in } T^d)$. Similarly

$$\left(\prod_{q \in \pi^*} H_q \right) / \mathcal{U} \cong \prod_{q \in \pi^*} (B_q \oplus A_1) / \mathcal{U} \times \tilde{T}.$$

As the action of \tilde{T} on the respective modules factors through T, the lemma now follows from (1). ■

4 Proof of Theorem 1.2, ‘if’

Suppose now that $G \in C^q_\pi$ is soluble of finite rank, where $\pi = \pi(G)$ is finite. Assume that G has an L-presentation in C^q_π. If $q = 1$, Theorem 5.15 of [NST] asserts that G is finitely axiomatizable in C_π. However the proof works equally well in the more general case. Thus we may suppose that G is finitely axiomatizable in C^q_π.

To complete the proof of Theorem 1.2 it will therefore suffice to establish
Theorem 4.1 Let $G \in C_2^\pi$ be virtually soluble of finite rank. Assume that every open subgroup of G satisfies the OS condition. Then G satisfies a sentence χ_G such that every profinite group satisfying χ_G is in C_2^π.

The first step reduces to the case where $G \in C_\pi$. Let us call a sentence χ such that every profinite group satisfying χ is in C_2^π a C_2^π-sentence.

Lemma 4.2 Suppose that the f.g. profinite group G has an open normal subgroup $H \in C_\pi$ with $G^\prime \leq H$, and that H satisfies a C_π-sentence. Then

(1) G satisfies a C_2^π-sentence;

(2) if also $G \in C_\pi$ then G satisfies a C_π-sentence.

Proof. The subgroup H is definably closed: that is, $H = \kappa(G)$ where κ always defines a closed normal subgroup in any profinite group.

(1) Take χ to assert, for a group G, that the index of $\kappa(G)$ in G is equal to $|G : H|$ and that $\kappa(G)$ satisfies χ_1, where χ_1 is the C_π-sentence satisfied by H. Then χ is a C_2^π-sentence.

(2) The Frattini subgroup $\Phi(H) = H'H^m$ is open in G; here $m = \prod_{p \in \pi} p$. Since now G is pro-nilpotent, we have $\gamma_n(G) \leq H'H^m$ for some n, and this is expressible by a first-order sentence ψ, say, since H and $\Phi(H)$ are definable in G. The conjunction $\chi \land \psi$ is then a C_π-sentence satisfied by G. For if $G \models \chi \land \psi$ and $\bar{H} = \kappa(G)$ then \bar{H} is a C_π group and $|\bar{G} : \bar{H}| = |G : H|$, so G is a pro-π group; and \bar{G} is pronilpotent because $\bar{G}/\Phi(\bar{H})$ is nilpotent, which implies that \bar{G}/N is nilpotent for every open normal subgroup N of \bar{G} contained in \bar{H}. □

Replacing G by a suitable open normal subgroup, we may henceforth assume that $G \in C_\pi$, and have to prove that G satisfies a C_π-sentence (at this point we are only using claim (1) of the lemma). Note that then G is soluble.

We will often use the fact that a C_π group of finite rank satisfies the maximal condition for closed subgroups (cf. [DDMS] Ex. 1.14). In particular, for such a group G the Fitting subgroup $\text{Fit}(G)$ of G is the unique maximal nilpotent closed normal subgroup.

Proposition 4.3 Let G be a soluble C_π group of finite rank and set $F := \text{Fit}(G)$. Then G/F is virtually abelian, $C_G(F) = Z(F)$, and F is definably closed, by a formula $\phi_1(S; -)$ (S a finite set of parameters).

Proof. The first two claims are well known: G is a linear group by [DDMS], Thm. 7.19, hence virtually nilpotent-by-abelian by the Lie-Kolchin Theorem; the second claim holds for every soluble group G. The first one implies that G has a (definable) open normal subgroup G^\dagger such that $G^\dagger \leq F \leq G^\dagger$. Then $\text{Fit}(G^\dagger) = F$, and if F is definably closed in G^\dagger then it is definably closed in G. So for the final claim we may replace G by G^\dagger and assume that G/F is abelian.

Say F is generated by the finite set T, and is nilpotent of class c. Then $x \in F$ iff $\phi_1(T; x)$ holds where

\[\phi_1(T; x) \iff \{t, x\} = 1 \text{ for each } t \in T; \]
to see this, note that $\phi_1(T; x)$ implies that $F \langle x \rangle / F'$ is nilpotent, whence $F \langle x \rangle$ is nilpotent as well as normal in G. It is easy to see that $\phi_1(S; -)$ defines a closed set in any profinite group with a given subset S.

Next we prove a special case of Theorem 4.1. Recall that the FC-centre of a group G is the set $Z_f(G)$ of all elements whose conjugacy class is finite. If G is a profinite group of finite rank then $Z_f(G)$ is the unique maximal member of the family of subgroups whose centralizer is open.

Proposition 4.4 Let G be a torsion-free soluble pro-p group of finite rank. Assume that $G/\text{Fit}(G)$ is infinite and abelian, and that $Z_f(G) = 1$. Then G satisfies a $C\{p\}$-sentence.

This depends on the next few lemmas.

Lemma 4.5 Let X be a profinite group and A a profinite X-module such that

$$\text{for } a \in A, \ x \in X, \ \ ax = a \implies (a = 0 \lor x = 1),$$

$$pA + A(X - 1) < A.$$ \hspace{1cm} (3)

Then X is a pro-p group.

Proof. Let $q \neq p$ be a prime and $Y = \langle y \rangle$ a pro-q subgroup of X. Assuming that $y \neq 1$ we derive a contradiction. Let $a \in A \setminus (pA + A(X - 1))$.

Now $y = z^p$ for some $z \in Y$. Set $u = z - 1$. Then $au \in A(Y - 1)$, so $au = b(y - 1)$ for some $b \in A$, and then

$$a(y - 1) = a((u + 1)^p - 1)$$

$$= au(u^{p-1} + pw)$$

$$= b(y - 1)(u^{p-1} + pw) = b(u^{p-1} + pw)(y - 1)$$

where $w = u^{p-2} + \cdots + 1$.

Since $y \neq 1$ this implies that $a = b(u^{p-1} + pw) \in pA + A(X - 1)$, contradicting hypothesis. \hspace{1cm} ■

Lemma 4.6 Let X be a profinite group and A a profinite X-module such that

$$\bigcap_{1 \neq x \in X} A(x - 1) = 0.$$ \hspace{1cm} (4)

If (2) and (3) hold then A is a pro-p group.

Proof. Lemma 4.5 shows that X is pro-p. Let B be the pro-p' component of A. Then for $1 \neq x \in X$ we have $B(x - 1) = B(x - 1)^2$ (coprime action), and it follows from (2) that $B = B(x - 1)$. Now (1) implies that $B = 0$. (‘Coprime action’ refers to the fact that if a finite p-group acts nilpotently on an abelian p' group, it acts trivially; this transfers to the profinite case.) \hspace{1cm} ■
Note that (4) holds automatically if X acts faithfully on A and is infinite: for the open normal subgroups U of $A \times X$ intersect in \{1\}, and for each such U we may choose $x \in U \cap X \setminus \{1\}$ giving $A(x - 1) \subseteq U$.

Let G be a group, A a non-zero G-module, and set $X := G/C_G(A)$.

- A is nice if $a \in A \setminus \{0\} \implies |G : C_G(a)|$ is infinite,
- A is very nice if both (4) and (2) hold.

Note that if A is a definable abelian normal subgroup of G, then for A to be very nice as a G-module is a first-order property of G.

Lemma 4.7 Let $A \neq 0$ be a nice G-module, where $G/C_G(A)$ is abelian. Let $a \in A \setminus \{0\}$ and suppose that $C_G(a)$ is maximal among centralizers of nonzero elements. Put $B = C_A(C_G(a))$. Then B is very nice, and if $B \neq A$ then A/B is nice.

Proof. Put $Y = C_G(a)$. Suppose $0 \neq b \in B$. Then $C_G(b) \supseteq Y$ so $C_G(b) = Y = C_G(B)$; thus B satisfies (2). That B satisfies (4) follows from the fact that $|G : C_G(B)| = |G : C_G(a)|$ is infinite.

Now let $c \in A \setminus B$ and let Y be the centralizer of c mod B. Then for $x \in X$,

$$y \in Y \implies c(x - 1)(y - 1) = c(y - 1)(x - 1) = 0,$$

so $Y \subseteq C_G(c(x - 1))$. If for some $x \in X$ we have $b := c(x - 1) \neq 0$ then $|G : C_G(b)|$ is infinite, hence so is $|G : Y|$. Otherwise, $c \in C_A(X) = B$. Thus A/B is nice.

Corollary 4.8 Let G be a pro-p group of finite rank such that $Z_f(G) = 1$. Let $A \neq 1$ be a definable torsion-free abelian closed normal subgroup, with $G/C_G(A)$ abelian. Then A has a chain of G-submodules (of length $k \geq 1$)

$$0 = Z_0 < Z_1 < \ldots < Z_k = A$$

such that each factor $A_i := Z_i/Z_{i-1}$ is a very nice G-module. Moreover each Z_i is definably closed in G.

Proof. The hypothesis $Z_f(G) = 1$ implies that A is a nice G-module. Let C_1 be maximal among centralizers in G of non-zero elements of A and set $Z_1 = C_A(C_1)$. Lemma 4.7 shows that Z_1 is very nice, and that if $Z_1 < A$ then A/Z_1 is nice. Note that Z_1 is definably closed (with parameters) because C_1 is finitely generated.

Now A/Z_1 is torsion-free, and if $Z_1 < A$ we can iterate.

Lemma 4.9 Let G be a soluble profinite group and F a nilpotent closed normal subgroup with $C_G(F) = Z(F)$. Assume that $F/F'F''$ is finite. If $Z(F)$ is a pro-p group then so is $C_G(F/F'F'')$.

11
Proof. The pro-p' component of F is normal but intersects $Z(F)$ trivially, so it is trivial. Thus F is a pro-p group. It follows that the Frattini subgroup of F is F'/F'', so F is finitely generated and F'/F'' is closed ([DDMS], Cor. 1.20). Now [DDMS], Prop. 5.5 shows that $C_G(F/F''p)/C_G(F)$ is a pro-p group, and the result follows.

Now we can complete the

Proof of Proposition 4.4 For simplicity in the following discussion, I will omit various parameters; it should be clear where these are needed.

G is a torsion-free soluble pro-p group of finite rank, $Z_f(G) = 1$, and G/F is infinite and abelian where

$$F = \text{Fit}(G) = \phi_1(G)$$

is definably closed (Proposition 4.3). Set $A = Z(F)$; then A is definable, and $A \neq 1$ (easy exercise). The condition $Z_f(G) = 1$ implies that A is nice as a G module.

Say F is nilpotent of class c. Note that $|F/F''p| = p^d$ for some $d \leq \text{rk}(G)$, so also $G/C_G(F/F''p)$ is finite, of order p^f say.

Now apply Lemma 4.8 to obtain a chain (5) with each Z_i definable by a formula η_i, and each factor $A_i := Z_i/Z_{i-1}$ a very nice G-module. Since G is pro-p, the following holds for each i:

$$pA_i + A_i(G - 1) \neq A_i.$$

Thus G satisfies a sentence α_i asserting, for any group \widetilde{G}, that $\widetilde{A}_i := \eta_i(\widetilde{G})/\eta_{i-1}(\widetilde{G})$ is a very nice \widetilde{G}-module and that (3) holds with \widetilde{A}_i for A and \widetilde{G} for X.

Now let χ be the conjunction of $\alpha_1 \land \ldots \land \alpha_k$ with sentences asserting the following for a group \widetilde{G}, with $\widetilde{F} = \phi_1(\widetilde{G})$, $\widetilde{Z} = Z(\widetilde{F})$, $\widetilde{Z}_i = \eta_i(\widetilde{G})$:

- $\widetilde{F} \triangleleft \widetilde{G}$ and \widetilde{F} is nilpotent of class at most c
- $\widetilde{G}/\widetilde{F}$ is abelian and $C_{\widetilde{G}}(\widetilde{F}) = \widetilde{Z}$
- $|\widetilde{F}/\widetilde{F}'\widetilde{p}| = p^d$ and $|\widetilde{G}/C_{\widetilde{G}}(\widetilde{F}/\widetilde{F}'\widetilde{p})| = p^f$
- $0 < \widetilde{Z}_1 < \ldots < \widetilde{Z}_k = \widetilde{Z}$.

Suppose that \widetilde{G} is a profinite group satisfying χ, and \widetilde{F}, \widetilde{Z}, \widetilde{Z}_i are as defined above. Then \widetilde{F} is a closed nilpotent normal subgroup of \widetilde{G} with $\widetilde{G}/\widetilde{F}$ is abelian and $C_{\widetilde{G}}(\widetilde{F}) = Z(\widetilde{F})$. Lemma 4.6 with α_i shows that $\widetilde{A}_i := \widetilde{Z}_i/\widetilde{Z}_{i-1}$ is pro-p, for each i. It follows that \widetilde{Z} is a pro-p group. Then Lemma 4.9 shows that $C_{\widetilde{G}}(\widetilde{F}/\widetilde{F}'\widetilde{p})$ is pro-p, and it follows that G is a pro-p group.

Corollary 4.10 Let G be a torsion-free soluble C_{π} group of finite rank, where π is finite. Assume that $G/\text{Fit}(G)$ is infinite and abelian, and that $Z_f(G) = 1$. Then G satisfies a C_{π}-sentence.

12
Proof. We have $G = G_1 \times \cdots \times G_k$ where $G_i \neq 1$ is the Sylow pro-p_i subgroup of G and $\pi(G) = \{p_1, \ldots, p_k\} \subseteq \pi$; evidently $\text{Fit}(G) = \text{Fit}(G_1) \times \cdots \times \text{Fit}(G_k)$ and $Z_f(G_i) = 1$ for each i. Suppose that $G_i/\text{Fit}(G_i)$ is finite, for some i. Then $Z(\text{Fit}(G_i)) \leq Z_f(G_i) = 1$; this implies that $\text{Fit}(G_i) = 1$ and hence that $G_i = 1$, a contradiction.

Thus each $G_i/\text{Fit}(G_i)$ is infinite and abelian. Applying Proposition 4.4 we find for each i a $C_{[p, 1]}$-sentence χ, satisfied by G_i. Since $Z(G) \leq Z_f(G) = 1$ the subgroup G_i is definable in G as the centralizer of $\prod_{j \neq i} G_j$ (since G has finite rank, every centralizer is definable). Say $G_i = \kappa_i(G)$. Thus G satisfies a sentence χ which asserts (a) G is the direct product of the $\kappa_i(G)$ and (b) for each i the group $\kappa_i(G)$ satisfies χ_i. Any profinite group satisfying χ is then in C_π.

To prove Theorem 5.1 in full generality we make some more reductions.

From now on we assume that G is a soluble C_π group of finite rank, and that every open subgroup of G satisfies the OS condition. We shall prove that G satisfies some C_π-sentence.

In view of Lemma 4.2 (2), we may reduce G by any open normal subgroup. Since G is virtually torsion-free ([DDMS], Cor. 4.3) and virtually nilpotent-by-abelian, we may assume henceforth that G is torsion-free and nilpotent-by-abelian.

Suppose now that $F := \text{Fit}(G)$ is open in G. Then F is nilpotent and satisfies the OS condition. The proof of Theorem 5.16 of [NST] now shows that F satisfies a C_π-sentence χ_1, and again we are done by Lemma 4.2 (2). (The theorem in question also assumes that F has an L-presentation, and asserts that then F is FA in profinite groups; but the L-presentation is not used for the weaker assertion just quoted.)

From now on, we may therefore assume that G is torsion-free and that $G/\text{Fit}(G)$ is abelian and infinite.

The FC-centre $Z_f(G)$ of G was defined above. Put

$$G_1 = \lambda(G) := C_G(Z_f(G)),$$

$$Z_1 = Z(G_1).$$

Since G has finite rank, G_1 is open in G and so $Z_1 = Z(Z_f(G)).$

For $i > 0$ set

$$\frac{G_i}{Z_{i-1}} := \lambda\left(\frac{G_{i-1}}{Z_{i-1}}\right),$$

$$\frac{Z_i}{Z_{i-1}} := Z\left(\frac{G_i}{Z_{i-1}}\right).$$

For some finite n we have $Z_{n+1} = Z_n$; set $Z^*(G) = Z_n$ and $G^* = G_n$. Then $G^* \lhd_0 G$ and

$$Z_f(G^*/Z^*(G)) = 1,$$

$$Z^*(G) = \zeta_n(G^*)$$

13
This implies that for each \(x \in \text{r} \) where \(Z \) is nilpotent profinite group \(G \)

\[
\text{OS condition for } H \implies \text{centralizes } Q \leq \pi \text{ is a pro-group.}
\]

\[
\text{Remark As open subgroups of } G \text{ are definable, each } G_i \text{ and each } Z_i \text{ is definable, in particular } Z^*(G) \text{ and } G^* \text{ are definable, indeed definably closed. (Not uniformly: the definition depends on } G)\]

Lemma 4.11 ([NST], Lemma 5.17) There is a sentence \(\psi_\pi \) such that for any nilpotent profinite group \(N \),

\[
Z(N) \in C_\pi \implies N \models \psi_\pi \implies N/Z(N) \in C_\pi.
\]

Now we are ready to complete the proof of Theorem 4.1 In view of Lemma 4.2, it will suffice to show that \(G^* \) satisfies some \(C_\pi \)-sentence \(\chi \).

Set \(H = G^* \) and \(Y = Z^*(G) \); then \(Z_\pi(H/Y) = 1 \). Set \(F = \text{Fit}(H) \); then \(F = H \cap \text{Fit}(G) \geq Y \) and \(F/Y = \text{Fit}(H/Y) \), because \(Y = \zeta_n(H) \). It is easy to see that \(H/Y \) then satisfies the hypotheses of Corollary 4.10 consequently \(H/Y \models \beta \) for some \(C_\pi \)-sentence \(\beta \).

The OS condition for \(H \) implies that \(Z(H)^m \subseteq H' \) for some \(\pi \)-number \(m \).
This implies that for each \(x \in Z(H) \), \(x^m \) is a product of \(r \) commutators in \(H \), where \(r = \text{rk}(G) \).

Now \(F = \phi_1(H) \) and \(Y = \eta(H) \) are definably closed normal subgroups of \(H \).

The group \(H \) satisfies a sentence \(\chi \) which asserts the following for a group \(\tilde{H} \):

- \(x \in Z(\tilde{H}) \implies x^m = \prod_{i=1}^c \left[u_i, v_i\right] \) for some \(u_i, v_i \in \tilde{H} \)
- \(\tilde{F} = \phi_1(\tilde{H}) \triangleleft \tilde{H} \) and \(\tilde{F} \) is nilpotent of class \(c \)
- \(\tilde{F} \models \psi_\pi \)
- \(\tilde{Y} = \eta(\tilde{H}) \triangleleft \tilde{H} \), \(\tilde{Y} \subseteq \tilde{F} \) and \([\tilde{H}, \tilde{Y}] = 1 \)
- \(\tilde{H}/\tilde{Y} \models \beta \).

Now suppose that \(\tilde{H} \) is a profinite group satisfying \(\chi \). We show that \(\tilde{H} \in C_\pi \).

Define \(\tilde{F} \) and \(\tilde{Y} \) as above. These are both closed normal subgroups; also \(\tilde{H}/\tilde{Y} \in C_\pi \) because of \(\beta \), and \(\tilde{F}/Z(\tilde{F}) \in C_\pi \) because of \(\psi_\pi \). Thus \(\tilde{H}/(\tilde{Y} \cap Z(\tilde{F})) \) is a pro-\(\pi \) group.

I claim that \(\tilde{H} \) is pronilpotent. Suppose \(N \triangleleft_o \tilde{H} \). Then \(\tilde{H}/N\tilde{Y} \) is nilpotent and \(N\tilde{Y}/N \leq \zeta_n(\tilde{H}/N) \), so \(\tilde{H}/N \) is nilpotent, and the claim follows.

Let \(Q \) be a Sylow pro-\(q \) subgroup of \(\tilde{H} \) where \(q \notin \pi \) is a prime. Then \(Q \leq \tilde{Y} \cap Z(\tilde{F}) \). The \(C_\pi \) group \(\tilde{H}/F \) acts nilpotently on \(Q \), hence by coprime action it centralizes \(Q \). Hence \(Q \leq Z(\tilde{H}) \), and as \(Q = Q^m \) it follows that \(Q \leq \tilde{H}' \). As \(\tilde{H} \) is pronilpotent it follows that \(Q \cap \tilde{H}' = Q' \), so \(Q = Q' \).

It follows that \(Q = 1 \). Thus \(\tilde{H} \in C_\pi \).
References

[AM] M. F. Atiyah and I. G. Macdonald, *Introduction to commutative algebra*, Addison-Wesley, Reading, Mass., 1969.

[DDMS] J. D. Dixon, M. P. F. du Sautoy, A. Mann and D. Segal, *Analytic pro-p groups*, 2nd edn., CUP, Cambridge, 1999.

[E] D. Eisenbud, *Commutative Algebra with a view toward algebraic geometry*, Springer-Verlag, New York, 1995.

[FJ] M. D. Fried and M. Jarden, *Field arithmetic*, Springer-Verlag, Berlin-Heidelberg, 1986.

[L] C. Lasserre, Polycyclic-by-finite groups and first-order sentences, *J. Algebra* 396 (2013), 18-38.

[NST] A. Nies, D. Segal and K. Tent, Finite axiomatizability for profinite groups, *Proc. London Math. Soc. (3)* 123 (2021), 597-635.

[O] F. Oger, Quasi-finitely axiomatizable groups and groups which are prime models, *J. Group Theory* 9 (2006), 107-116.

[OS] F. Oger and G. Sabbagh, Quasi-finitely axiomatizable nilpotent groups, *J. Group Theory* 9 (2006), 95-106.