We study the decay behaviors of the fully-bottom tetraquark states within the diquark-antidiquark picture, and calculate their relative branching ratios through the Fierz rearrangement. Our results suggest that the $C = +$ states can be searched for in the $\mu^+ \mu^- \Upsilon(1S)$ and $\mu^+ \mu^- \Upsilon(2S)$ channels with the relative branching ratio $B(\Upsilon(1S) \rightarrow \mu^+ \mu^- \Upsilon(2S))/B(\Upsilon(1S) \rightarrow \mu^+ \mu^- \Upsilon(1S)) \approx 0.4$. Our results also suggest that the $C = -$ states can be searched for in the $\mu^+ \mu^- \eta_b(1S)$ and $\mu^+ \mu^- \eta_b(2S)$ channels with the similar relative branching ratio $B(\Upsilon(1S) \rightarrow \mu^+ \mu^- \eta_b(2S))/B(\Upsilon(1S) \rightarrow \mu^+ \mu^- \eta_b(1S)) \approx 0.4$. We also reanalyse the fully-charm tetraquark states, and study the $\Upsilon(6900)$ decay into the $J/\psi \psi(2S)$ channel to obtain the relative branching ratio $B(J/\psi \psi(2S))/B(J/\psi \psi(2S)) \approx 0.1$.

Keywords: exotic hadron, fully-bottom tetraquark, fully-charm tetraquark, Fierz rearrangement

I. INTRODUCTION

In 2020 the LHCb collaboration reported their observation of two exotic structures in the di-J/ψ invariant mass spectrum [1], i.e., a broad structure ranging from 6.2 to 6.8 GeV and a narrow structure at around 6.9 GeV. They described the latter as a resonance with the Breit-Wigner lineshape, whose mass and width were measured to be

$$X(6900) : M = 6905 \pm 11 \pm 7 \text{ MeV},$$
$$\Gamma = 80 \pm 19 \pm 33 \text{ MeV}. \quad (1)$$

These values were obtained under the assumption that no interference with the non-resonant single-parton scattering continuum is present. Assuming that the continuum interferes with the broad structure, the above values were shifted to be

$$X(6900) : M = 6886 \pm 11 \pm 11 \text{ MeV},$$
$$\Gamma = 168 \pm 33 \pm 69 \text{ MeV}. \quad (2)$$

The above two structures are good candidates for the fully-charm tetraquark states, and their observation immediately attracted much attention from the particle physics community [2–50]. We refer to our recent review [51] as well as the reviews [52–72] and the reports [73–75] for their detailed discussions. Especially, some theorists reanalysed the LHCb data on the di-J/ψ spectrum [1] and proposed the existence of more structures, e.g., the authors of Ref. [76] reproduced three peak structures at near 6.5, 6.9, and 7.3 GeV, while the authors of Ref. [77] proposed the existence of a near-threshold state in the di-J/ψ system at near 6.2 GeV.

We refer to Refs. [78–87] and the reviews [51, 71] for more discussions.

Very recently, the CMS and ATLAS collaborations also investigated the di-J/ψ invariant mass spectrum, and both of them confirmed the existence of the $X(6900)$ [88, 89]. Besides, the CMS collaboration observed two new structures, the $X(6600)$ and $X(7200)$, in the di-J/ψ invariant mass spectrum. Their masses and widths were measured to be [88]:

$$X(6600) : M = 6552 \pm 10 \pm 12 \text{ MeV},$$
$$\Gamma = 124 \pm 29 \pm 34 \text{ MeV}; \quad (3)$$
$$X(6900) : M = 6927 \pm 9 \pm 5 \text{ MeV},$$
$$\Gamma = 122 \pm 22 \pm 19 \text{ MeV}; \quad (4)$$
$$X(7200) : M = 7287 \pm 19 \pm 5 \text{ MeV},$$
$$\Gamma = 95 \pm 46 \pm 20 \text{ MeV}. \quad (5)$$

The ATLAS collaboration investigated the di-J/ψ invariant mass spectrum, and their best fit was performed with three interfering resonances, whose masses and widths were measured to be [89]:

$$X(6200) : M = 6.22 \pm 0.05 \pm 0.04 \pm 0.03 \text{ GeV},$$
$$\Gamma = 0.31 \pm 0.12 \pm 0.07 \pm 0.08 \text{ GeV}; \quad (6)$$
$$X(6600) : M = 6.62 \pm 0.03 \pm 0.02 \pm 0.01 \text{ GeV},$$
$$\Gamma = 0.31 \pm 0.09 \pm 0.06 \pm 0.11 \text{ GeV}; \quad (7)$$
$$X(6900) : M = 6.87 \pm 0.03 \pm 0.06 \pm 0.01 \text{ GeV},$$
$$\Gamma = 0.12 \pm 0.04 \pm 0.03 \pm 0.01 \text{ GeV}. \quad (8)$$

The ATLAS collaboration also investigated the $J/\psi \psi(2S)$ invariant mass spectrum. They reported the evidence for an enhancement at 6.9 GeV and a resonance at 7.2 GeV, whose masses and widths were measured to be [89]:

$$X(6900) : M = 6.78 \pm 0.36 \pm 0.35 \pm 0.54 \text{ GeV},$$
$$\Gamma = 0.39 \pm 1.12 \pm 0.07 \pm 0.07 \text{ GeV}; \quad (9)$$

Hua-Xing Chen* and Yi-Xin Yan†

School of Physics, Southeast University, Nanjing 210094, China

Wei Chen‡

School of Physics, Sun Yat-Sen University, Guangzhou 510275, China

Electronic address: hxchen@seu.edu.cn

Electronic address: yxyan@seu.edu.cn

Electronic address: chenwei29@mail.sysu.edu.cn

*Ionic address: hxchen@seu.edu.cn

†Ionic address: yxyan@seu.edu.cn

‡Ionic address: chenwei29@mail.sysu.edu.cn

*Electronic address: hxchen@seu.edu.cn

†Electronic address: yxyan@seu.edu.cn

‡Electronic address: chenwei29@mail.sysu.edu.cn
TABLE I: Mass spectra of the fully-charm and fully-bottom tetraquark states, calculated in Ref. [121] through the QCD sum rule method.

\(J^{PC}\)	Currents	\(T_{c\overline{c}}\) (GeV)	\(T_{b\overline{b}}\) (GeV)
0++	\(J_{1}^{++}\)	6.44 ± 0.15	18.45 ± 0.15
	\(J_{2}^{++}\)	6.46 ± 0.16	18.46 ± 0.14
1++	\(J_{3a}^{++}\)	6.51 ± 0.15	18.54 ± 0.15
2++	\(J_{4a,\beta}^{++}\)	6.51 ± 0.15	18.53 ± 0.15
0−−	\(J_{1}^{--}\)	6.84 ± 0.18	18.77 ± 0.18
	\(J_{6}^{--}\)	6.85 ± 0.18	18.79 ± 0.18
1−+	\(J_{8a}^{-+}\)	6.84 ± 0.18	18.80 ± 0.18
	\(J_{8}^{-+}\)	6.88 ± 0.18	18.83 ± 0.18
1−−	\(J_{10a}^{-−}\)	6.84 ± 0.18	18.77 ± 0.18
	\(J_{11}^{-−}\)	6.83 ± 0.18	18.77 ± 0.16

\[X(7200) : \quad M = 7.22 \pm 0.03^{+0.02}_{-0.03} \text{ GeV}, \quad (10) \]
\[\Gamma = 0.10^{+0.15}_{-0.07} \pm 0.05 \text{ GeV}. \]

Actually, the fully-heavy tetraquark states were already studied by some theorists in the 1980s [90–98], but there have not been many relevant experiments from that time till now. Besides the above experiments [1, 88, 89], in 2017 the CMS collaboration found an excess in the \(\Upsilon(1S)\mu^+\mu^-\) invariant mass spectrum near 18.5 GeV with a global significance of 3.6\(\sigma\) [99, 100], and in 2019 the ANDY collaboration at RHIC reported an evidence of a significance peak at around 18.12 GeV [101]. These structures are good candidates for the fully-bottom tetraquark states, and they also attracted some attention from the particle physics community [102–117]. Since these structures were not confirmed by some other experiments [118, 119], they require more investigations crucially.

In Ref. [120] we have studied the two-body decay behaviors of the fully-charm tetraquark states within the diquark-antidiquark picture, and calculated their relative branching ratios through the Fierz rearrangement of the Dirac and color indices. In this paper we shall further study the decay behaviors of the fully-bottom tetraquark states. As summarized in Table I, our previous QCD sum rule results suggest that the fully-charm tetraquark states lie above the di-charmonium thresholds, while some of the fully-bottom tetraquark states lie below the di-bottomonium thresholds [121]. Accordingly, in this paper we shall investigate not the fall-apart two-body decays, but the three-body decays of the fully-bottom tetraquark states. We shall study their decays into one bottomonium meson and one muon-antimuon pair, with the muon-antimuon pair produced by another intermediate vector bottomonium meson. This method has been applied in Refs. [122–126] to investigate some other exotic hadrons, such as the \(Z_c(3900)\) and the \(P_c\) states, etc. Especially, our results obtained in Ref. [122] for the \(Z_c(3900)\) are consistent with those obtained in Refs. [127–129] using the QCD sum rule method and the non-relativistic effective field theory. Besides, a similar arrangement of the spin and color indices in the nonrelativistic case was applied in Refs. [130–135] to study the decay properties of exotic hadrons, and our results obtained in Ref. [124] for the \(P_c\) states are consistent with those obtained in Ref. [130] through the heavy quark spin symmetry.

This paper is organized as follows. In Sec. II we construct the fully-bottom tetraquark currents within the diquark-antidiquark picture, and apply the Fierz rearrangement to transform them into the meson-meson currents. Based on the obtained Fierz identities, we study the decay behaviors of the fully-bottom tetraquark states in Sec. III, and calculate their relative branching ratios. The results are summarized and discussed in Sec. IV.

II. CURRENTS AND FIERZ IDENTITIES

In Refs. [120, 121] we have systematically constructed all the fully-heavy tetraquark currents without derivatives. We briefly summarize them in this section, which will be used to study the decay behaviors of the fully-bottom tetraquark states in the next section.

Besides, in Ref. [136] we have systematically constructed all the \(P\)-wave fully-strange tetraquark currents by explicitly adding the covariant derivative operator. Their corresponding fully-heavy tetraquark currents with derivatives can be similarly constructed. See Refs. [137, 138] for more discussions. However, we shall not investigate them in the present study, since many relevant decay constants are not known yet. We also refer to Refs. [2, 139] where the authors systematically classified the \(S-/P\)-wave fully-heavy/strange tetraquark states using the nonrelativistic quark model within the diquark-antidiquark picture.

A. Currents of the positive parity

There are altogether twelve fully-bottom tetraquark currents of the positive parity, four of which correspond to the \(S\)-wave fully-bottom tetraquark states within the diquark-antidiquark picture:

\begin{align}
J_1^{++} & = b_a^T C \gamma_5 b_b \bar{b}_a \gamma_5 C \bar{b}_b^T , \\
J_2^{++} & = b_a^T C \gamma_\mu b_b \bar{b}_a \gamma^\mu C \bar{b}_b^T , \\
J_3^{-+} & = b_a^T C \gamma_\mu b_b \bar{b}_a \gamma_\mu C \bar{b}_b^T , \\
J_4^{-+} & = b_a^T C \gamma_\mu b_b \bar{b}_a \gamma_\mu C \bar{b}_b^T , \\
J_5^{++} & = b_a^{\mu \nu} b_a^T C \gamma_\mu b_b \bar{b}_a \gamma_\nu C \bar{b}_b^T .
\end{align}
In the above expressions b_a is the bottom quark field with the color index a, and $P_{\alpha\beta}^{\mu\nu}$ is the projection operator,

$$
\mathcal{P}^{\alpha\beta\mu\nu} = g^{\alpha\mu}g^{\beta\nu} + g^{\alpha\nu}g^{\beta\mu} - \frac{1}{2}g^{\alpha\beta}g^{\mu\nu}.
$$

(15)

After applying the Fierz transformation, we obtain:

$$
J_i^{0^{-+}} = \frac{1}{4}\xi_{11}^{0^{-+}} - \frac{1}{4}\xi_{12}^{0^{-+}} - \frac{1}{4}\xi_{13}^{0^{-+}} + \frac{1}{4}\xi_{14}^{0^{-+}} - \frac{1}{4}\xi_{15}^{0^{-+}} - \frac{1}{4}\xi_{16}^{0^{-+}} - \frac{1}{4}\xi_{17}^{0^{-+}},
$$

(16)

$$
J_j^{0^{-+}} = \frac{1}{2}\xi_{12}^{0^{-+}} - \frac{1}{2}\xi_{13}^{0^{-+}} + \frac{1}{2}\xi_{14}^{0^{-+}} + \frac{1}{2}\xi_{15}^{0^{-+}},
$$

(17)

$$
J_{\alpha\beta}^{0^{-+}} = 3i\xi_{6\alpha\beta}^{0^{-+}} - \xi_{14\alpha}^{0^{-+}},
$$

(18)

$$
J_{4\alpha\beta}^{0^{-+}} = \frac{1}{2}\xi_{8\alpha\beta}^{0^{-+}} - \frac{1}{2}\xi_{9\alpha\beta}^{0^{-+}} + \frac{1}{2}\xi_{10\alpha\beta}^{0^{-+}},
$$

(19)

where

$$
\xi_{11}^{0^{-+}} = \bar{b}_a b_a \bar{b}_b b_b,
\xi_{12}^{0^{-+}} = \bar{b}_a \gamma_5 b_a \bar{b}_b \gamma_5 b_b,
\xi_{13}^{0^{-+}} = \bar{b}_a \gamma_{\mu} b_a \bar{b}_b \gamma^{\mu} b_b,
\xi_{14}^{0^{-+}} = \bar{b}_a \gamma_5 \gamma_{\mu} b_a \bar{b}_b \gamma^{\mu} b_b,
\xi_{15}^{0^{-+}} = \bar{b}_a \sigma_{\mu\nu} b_a \bar{b}_b \sigma^{\mu\nu} b_b,
\xi_{16}^{0^{-+}} = \bar{b}_a \gamma_5 \gamma_{\mu} b_a \bar{b}_b \gamma^{\mu} b_b,
\xi_{17}^{0^{-+}} = \bar{b}_a \gamma_5 \gamma_{\mu} b_a \bar{b}_b \sigma_{\mu\nu} b_b.
$$

(20)

III. RELATIVE BRANCHING RATIOS

In this section we study possible decay channels of the fully-bottom tetraquark states, and calculate their relative branching ratios. The same method has been applied in Ref. [120] to study the fully-charm tetraquark states. We separately investigate the S- and P-wave fully-bottom tetraquark states as follows:

- According to our previous QCD sum rule calculations summarized in Table I, we assume the masses of the S-wave fully-bottom tetraquark states to be about 18.5 GeV. This value is below the $\eta_b(1S)/\eta_b(1S)\eta_b(1S)/\eta_b(1S)\eta_b(1S)$ thresholds, so the S-wave fully-bottom tetraquark states can not fall-apart decay into these two-body channels. Instead, they can decay into one bottomonium meson and one intermediate $\Upsilon(1S)/\Upsilon(2S)/\cdots$ meson, with the intermediate meson annihilating to be a photon and then transferring into a muon-antimuon pair. We depict this decay process in Fig. 1.

- According to our previous QCD sum rule calculations summarized in Table I, we assume the masses of the P-wave fully-bottom tetraquark states to be about 18.8 GeV. This value is below the $\eta_b(1S)\Upsilon(1S)/\Upsilon(1S)\Upsilon(1S)$ thresholds, so the P-wave fully-bottom tetraquark states can not fall-apart decay into these two-body channels. This value is above the $\eta_b(1S)\eta_b(1S)$ threshold, but the
FIG. 1: Decay mechanism of a fully-bottom tetraquark state into one bottomonium meson and one intermediate \(\Upsilon(1S)/\Upsilon(2S)/\cdots \) meson, with the intermediate \(\Upsilon(1S)/\Upsilon(2S)/\cdots \) meson annihilating to be a photon and then transferring into a muon-antimuon pair.

\(P \)-wave fully-bottom tetraquark states of \(J^{PC} = 0^{-+}/1^{-\pm} \) can not decay into this two-body channel neither, due to either the \(C \)-parity conservation or the Bose-Einstein statistics. Accordingly, we shall also investigate the three-body decay process depicted in Fig. 1.

As an example, we apply the Fierz rearrangement given in Eq. (16) to investigate the decay properties of the fully-bottom tetraquark state of \(J^{PC} = 0^{-+} \) corresponding to the current \(J_1^{0++} \) defined in Eq. (11). We denote this state as \(|X_1; 0^{++}\rangle \), and assume the coupling to be

\[
(0|J_1^{0++}|X_1; 0^{++}) = f_{X_1},
\]

with \(f_{X_1} \), the decay constant. As summarized in Table I, its mass has been calculated in Ref. [128] through the QCD sum rule method to be 18.45 ± 0.15 GeV.

As depicted in Fig. 2, when the magenta \(\bar{b} \) antiquark and the green \(b \) quark meet each other, and the yellow \(\bar{b} \) antiquark and the blue \(b \) quark meet each other at the same time, \(|X_1; 0^{++}\rangle \) can decay into two bottomonium states:

\[
\begin{align*}
[b_a(x)b_b(x)] & \quad [\bar{b}_a(x)\bar{b}_b(x)] & (37) \\
\text{Fierz} & \quad [\bar{b}_a(x)b_b(x)] & [b_b(x)b_a(x)] \\
\text{decay} & \quad [\bar{b}_a(y)b_a(y)] & [b_b(z)b_b(z)] \\
\end{align*}
\]

This decay process can be described by the Fierz rearrangement given in Eq. (16), i.e.,

\[
J_1^{0++} = b_a^T C \gamma_5 b_b \bar{a}_a \gamma_5 C \bar{b}_b^T \]

\[
= -\frac{1}{4} b_a a_b a_b b_b \bar{a}_a a_b \gamma_5 b_b \bar{a}_a a_b \gamma_5 b_b - \frac{1}{4} b_a \gamma_5 a_b \bar{a}_a \gamma_5 b_b + \frac{1}{8} b_a \gamma_5 a_b \bar{a}_a \gamma_5 b_b.
\]

In principle, we need the decay constant \(f_{X_1} \) as an input to calculate the partial decay widths, but it is not necessary any more if we only calculate the relative branching ratios. Moreover, because the couplings of meson operators to meson states have been well studied in the literature, but the couplings of tetraquark currents to tetraquark states have not, the decay constant \(f_{X_1} \) is not so well determined compared to the bottomonium decay constants listed in Table II. Therefore, we can calculate the relative branching ratios more reliably than the partial decay widths.

To do this we apply Eq. (38) to derive the couplings of the current \(J_1^{0++} \) to both the \(\Upsilon(1S)/\Upsilon(1S) \) and \(\Upsilon(1S)h_b(1P) \) channels to be:

\[
\langle 0|J_1^{0++}|\Upsilon(p_1, \epsilon_1) \Upsilon(p_2, \epsilon_2)\rangle = \epsilon_1^T \epsilon_2^\mu \left(-\frac{1}{2} m_f^2 g_{f^2 g_{\mu\nu}} - \frac{1}{2} (f_1^2)^2 p_1 \cdot p_2 g_{\mu\nu} + \frac{1}{2} (f_1^2)^2 p_{1\mu} p_{2\nu} \right),
\]

\[
\langle 0|J_1^{0++}|\Upsilon(p_1, \epsilon_1) h_b(p_2, \epsilon_2)\rangle = -\frac{1}{2} \epsilon_1^T \epsilon_2^\mu f_1^T f_1 g_{\mu\nu} p_{1\mu} p_{2\nu},
\]

from which we further extract the couplings of \(|X_1; 0^{++}\rangle \) to both the \(\Upsilon(1S)/\Upsilon(1S) \) and \(\Upsilon(1S)h_b(1P) \) channels to be:

\[
\langle X_1(p); 0^{++}|\Upsilon(p_1, \epsilon_1) \Upsilon(p_2, \epsilon_2)\rangle = c \times \epsilon_1^T \epsilon_2^\mu \left(-\frac{1}{2} m_f^2 f_1^T f_1 g_{\mu\nu} - \frac{1}{2} (f_1^2)^2 p_1 \cdot p_2 g_{\mu\nu} + \frac{1}{2} (f_1^2)^2 p_{1\mu} p_{2\nu} \right),
\]

\[
\langle X_1(p); 0^{++}|\Upsilon(p_1, \epsilon_1) h_b(p_2, \epsilon_2)\rangle = -\frac{c}{2} \epsilon_1^T \epsilon_2^\mu f_1^T f_1 g_{\mu\nu} p_{1\mu} p_{2\nu}.
\]

The decay constants \(f_\Upsilon = f_{\Upsilon(1S)}, f^T_\Upsilon = f^T_{\Upsilon(1S)} \) and \(f_{h_b} = f_{h_b(1P)} \) of the \(\Upsilon(1S) \) and \(h_b(1P) \) mesons are given
in Table II. The overall factor c is related to the decay constant f_{X_1}, which will be eliminated when calculating the relative branching ratios.

Based on Eq. (41), we can write the decay amplitude of the three-body decay process $|X_1; 0^{++} \rangle \rightarrow \Upsilon(1S)\Upsilon(1S) \rightarrow \Upsilon(1S)\mu^+\mu^-$ as

$$
M \left(X_1(p) \rightarrow \Upsilon(p_1, \epsilon_1) \Upsilon(q, \epsilon_2) \rightarrow \Upsilon(p_1, \epsilon_1)\mu^- (p_2)\mu^+(p_3) \right) = \epsilon_1 \epsilon^* \left(-\frac{1}{2} m_T^2 f_{1/2}^2 g_{\mu 0} - \frac{1}{2} (f_{1/2}^2)^2 p_1 \cdot g_{\mu \nu} + \frac{1}{2} (f_{1/2}^2)^2 p_1 \cdot g_{\mu \nu} \right) \left(\frac{\tilde{u}(p_2)\gamma_\alpha v(p_3)}{q^2 - m_0^2 + i m_T \Gamma_T} \right) \left(g^{\alpha \nu} - q^{\alpha} q^{\nu} / m_T^2 \right),
$$

where $u(p_2)$ and $v(p_3)$ are the Dirac spinors of the μ^- and μ^+, respectively. The overall factor c' is related to the coupling of $\Upsilon(1S)$ to the photon, which will also be eliminated when calculating the relative branching ratios.
We use Eq. (43) to further evaluate the partial decay width to be:

$$\Gamma (X_1(p) \to \Upsilon(p_1, e_1) \mu^+ \mu^- (p_3))$$

\[
= \frac{1}{(2\pi)^3} \frac{e^2 e'^2}{32 m_{X_1}} \int \frac{d^2 m^2_{12} d^2 m^2_{23}}{q^2 - m_{X_1}^2 + m_{\gamma} \Gamma_{\gamma}} \times \text{Tr}[\gamma_\alpha (p_2 + m_{\mu^-}) \gamma_\alpha (p_3 - m_{\mu^+})] \\
\times \left(-\frac{1}{2} m_2^2 f_2^2 g_{\mu\nu} + \frac{1}{2} (f_T^2)^2 p_1 \cdot q_{\mu\nu} + \frac{1}{2} (f_T^2)^2 p_1 \cdot q_{\mu\nu} \right) \\
\times \left(\frac{g_{\mu\nu} - \frac{q_{\mu} q_{\nu}}{m_{\gamma}^2}}{m_{\gamma}^2} \right) \left(\frac{g_{\alpha\beta} - \frac{q_{\alpha} q_{\beta}}{m_{\gamma}^2}}{m_{\gamma}^2} \right) \times \left(\frac{g_{\mu\nu} - \frac{p_{\mu} p_{\nu}}{m_{\gamma}^2}}{m_{\gamma}^2} \right) .
\]

Similarly, we study the three-body decay process $|X_1; 0^{++} \to h_b(1P) \Upsilon(1S) \to h_b(1P) \mu^+ \mu^-|$ and calculate its partial decay width. After eliminating the overall factors c and c', we obtain:

$$\frac{B(|X_1; 0^{++} \to h_b(1P) \Upsilon(1S) \to h_b(1P) \mu^+ \mu^-)}{B(|X_1; 0^{++} \to \Upsilon(1S) \Upsilon(1S) \to \Upsilon(1S) \mu^+ \mu^-)} = 0.002 .$$

(45)

The above procedures are applied to investigate the process with the intermediate $\Upsilon(1S)$ meson. We can apply the same procedures to investigate the process with the intermediate $\Upsilon(2S)/\Upsilon(3S)/\cdots$ mesons, and the obtained results are approximately the same, while we do not consider other intermediate bottomonium mesons in the present study, such as the $\Upsilon(1D)$ meson, etc. Assuming that the $|X_1; 0^{++} \to \Upsilon(1S) \mu^+ \mu^-|$ and $|X_1; 0^{++} \to h_b(1P) \mu^+ \mu^-|$ decays are dominated by these processes, we finally obtain

$$\frac{B(|X_1; 0^{++} \to h_b(1P) \mu^+ \mu^-)}{B(|X_1; 0^{++} \to \Upsilon(1S) \mu^+ \mu^-)} \approx 0.002 .$$

(46)

After considering several relevant channels, we obtain:

$$\frac{B(|X_1; 0^{++} \to \Upsilon(1S) \mu^+ \mu^-)}{B(|X_1; 0^{++} \to \Upsilon(1S) \mu^+ \mu^-)} \approx 1 : 0.42 : 0.002 .$$

(47)

Similarly, we apply the above procedures to investigate the S- and P-wave fully-bottom tetraquark states $|X_{2, 11; 1}^{PC} \to \Upsilon(1S) \mu^+ \mu^-|$ through the currents $\bar{J}_{2, 11}^{PC}$. The obtained results are summarized in Table III, which we shall use to draw conclusions in the next section. It is interesting to notice that some relative branching ratios are significantly larger/smaller than the others, which is partly due to that these ratios are proportional to the square of the Fierz coefficients given in Eqs. (16-19) and Eqs. (28-34).

For example, the relative branching ratio of $|X_{11; 1}^{1-} \to \chi_{b0}(1P) \mu^+ \mu^-|$ decaying into the $\mu^+ \mu^+ \chi_{b0}(1P)$ channel is significantly larger than that of the $\mu^+ \mu^- \eta_s(1S)$ channel:

$$\frac{B(|X_{11; 1}^{1-} \to \chi_{b0}(1P) \mu^+ \mu^-)}{B(|X_{11; 1}^{1-} \to \eta_s(1S) \mu^+ \mu^-) \approx 12 ,$$

(48)

where the factor contributed by the Fierz coefficients is 9. Besides, the relative branching ratios are also contributed by the decay constants as well as the kinematics. For example, the relative branching ratio of $|X_3; 1^{-} \to \chi_{b0}(1P) \mu^+ \mu^-|$ decaying into the $\mu^+ \mu^- \chi_{b0}(1P)$ channel is not far from that of the $\mu^+ \mu^- \Upsilon(1S)$ channel:

$$\frac{B(|X_3; 1^{-} \to \chi_{b0}(1P) \mu^+ \mu^-)}{B(|X_3; 1^{-} \to \Upsilon(1S) \mu^+ \mu^-) \approx 0.27 .$$

(49)

The Fierz coefficients do not contribute to this ratio, while the factors contributed by the decay constants and the kinematics are about 0.33 and 0.81, respectively.

In our previous study [120] we have studied the decays of the fully-charm tetraquark states into the $1S$ and $1P$ double-charmonium channels $J/\psi J/\psi$, $J/\psi \eta_c(1S)$, and $\eta_c(1S) \eta_c(1S)$, etc. In the present study we further take into account the $2S$ double-charmonium channels $J/\psi \eta_c(2S)$, $\eta_c(2S) \eta_c(2S)$, $J/\psi \eta_c(2S)$, and $\eta_c(1S) \psi(2S)$. The obtained results are summarized in Table IV, which we shall also use to draw conclusions in the next section.

IV. SUMMARY AND DISCUSSIONS

In this paper we systematically study the decay behaviors of the fully-bottom and fully-charm tetraquark states through their corresponding interpolating currents without derivatives. We work within the diquark-antidiquark picture, and apply the Fierz rearrangement of the Dirac and color indices to transform the diquark-antidiquark currents into the meson-meson currents. The obtained Fierz identities are given in Eqs. (16-19) and Eqs. (28-34).

Based on these Fierz identities, we study the decay mechanism depicted in Fig. 1, where a fully-bottom tetraquark state decays into one bottomonium meson and one intermediate $\Upsilon(1S)/\Upsilon(2S)/\cdots$ meson, with the intermediate $\Upsilon(1S)/\Upsilon(2S)/\cdots$ meson annihilating to be a photon and then transferring into a muon-antimuon pair. We consider several possible decay channels and calculate their relative branching ratios. The obtained results are summarized in Table III, where the masses of the S- and P-wave fully-bottom tetraquark states are assumed to be 18.5 GeV and 18.8 GeV, respectively [121]. In the calculations we work within the naive factorization scheme, so the uncertainty of our results is significantly larger than the well-developed QCD factorization scheme (about 5% when studying the weak and radiative decays).
TABLE III: Relative branching ratios of the S- and P-wave fully-bottom tetraquark states $|X_{1-11}; J^{PC}\rangle$ corresponding to the currents J_{1-11}. In the 3rd-5th columns we show the branching ratios relative to the $\mu^+ \mu^- \Upsilon(1S)$ channel, and in the 6th-9th columns we show the branching ratios relative to the $\mu^+ \mu^- \eta_b(1S)$ channel.

J^{PC}	Current	Decay Channels
		$\mu^+ \mu^- \Upsilon(1S)$ $\mu^+ \mu^- \Upsilon(2S)$ $\mu^+ \mu^- h_b(1P)$ $\mu^+ \mu^- \eta_b(1S)$ $\mu^+ \mu^- \eta_b(2S)$ $\mu^+ \mu^- \chi_b(1P)$ $\mu^+ \mu^- \chi_b(1P)$
0++	J_{1}^{++}	1 0.42 0.002 - - - -
	J_{2}^{++}	1 0.42 - - - - - -
1+-	J_{3a}^{-+}	- - - 1 0.42 - 1×10^{-4}
2++	J_{4a0}^{++}	1 0.42 0.002 - - - -
0−−	J_{2}^{--}	1 0.39 0.090 - - - -
1−+	J_{3a}^{++}	1 0.39 0.090 - - - -
1−−	J_{110}^{--}	- - - 1 0.38 1.3 0.070
	J_{11a}^{--}	- - - - 1 0.38 12 0.070

TABLE IV: Relative branching ratios of the S- and P-wave fully-charm tetraquark states, calculated through the fully-charm tetraquark currents $J_{1-11}\vert_{b/f=b\alpha/c}$. In the 3rd-9th columns we show the branching ratios relative to the $J/\psi J/\psi$ channel, and in the 10th-15th columns we show the branching ratios relative to the $J/\psi \eta_c$ channel. The notations $\psi' \equiv \psi(2S)$ and $\eta_c' \equiv \eta_c(2S)$ are used here.

J^{PC}	Current	Decay Channels
		$J/\psi J/\psi$ $J/\psi \psi'$ $\eta_c \eta_c$ $\eta_c \eta_c'$ $J/\psi h_c$ $\eta_c \chi_c$ $\eta_c \chi_c$ $J/\psi \eta_c$ $J/\psi \eta_c'$ $\psi' \eta_c$ $J/\psi \chi_c$ $J/\psi \chi_c$ $\eta_c h_c$
0++	J_{1}^{++}	1 - 0.45 - - - - 2×10^{-5} - - - - - -
	J_{2}^{++}	1 - 4.1 - - - - 9×10^{-5} - - - - - -
1+-	J_{3a}^{-+}	- - - - 1 - - - - - -
2++	J_{4a0}^{++}	1 - 0.036 - - - - 0.003 - - - - - -
0−−	J_{2}^{--}	1 0.071 - - 0.21 0.69 - - - - - -
	J_{3}^{--}	1 0.071 - - 0.21 6.2 - - - - - -
0−−	J_{2}^{--}	- - - - 1 0.048 0.078 - 1.4 - - - - - -
1−+	J_{3a}^{-+}	1 0.071 - - 0.78 - 0.94 - - - - - -
	J_{3a}^{-+}	1 0.071 - - 0.78 - 8.4 - - - - - -
1−−	J_{110}^{--}	- - - - 1 0.048 0.078 0.79 1.5 0.43 - - - - - -
	J_{11a}^{--}	- - - - - - - - - - - - - - - - - -

of the conventional hadrons) [144-147]. However, we calculate the relative branching ratios after eliminating several ambiguous overall factors, such as the decay constant $a\cdot x$, and the coupling of the $\Upsilon(1S)$ to the photon. This largely reduces our uncertainty, e.g., we roughly estimate the uncertainty of Eq. (48) to be

$$\frac{\mathcal{B}(|X_{11}; 1^{-+} \rangle \rightarrow \chi_b(1P) \mu^+ \mu^-)}{\mathcal{B}(|X_{11}; 1^{-+} \rangle \rightarrow \eta_b(1S) \mu^+ \mu^-)} \approx 12^{+24}_{-8},$$

based on our previous systematical QCD sum rule studies on the decay properties of the excited heavy baryons [148, 149].
Our results suggest that the fully-bottom tetraquark states of $J^{PC} = 0^{+}/2^{+}/0^{-}/1^{-}^{+}$ can be searched for in the $\mu^{+}\mu^{-}\Upsilon(1S)$ channel, and they can also be searched for in the $\mu^{+}\mu^{-}\Upsilon(2S)$ channel, with the relative branching ratio $B(X \rightarrow \mu\mu\Upsilon(2S))/B(X \rightarrow \mu\mu\Upsilon(1S)) \approx 0.4$. Our results also suggest that the fully-bottom tetraquark states of $J^{PC} = 1^{++}/0^{--}/1^{--}$ can be searched for in the $\mu^{+}\mu^{-}\eta(1S)$ channel, and they can also be searched for in the $\mu^{+}\mu^{-}\eta(2S)$ channel, with the similar relative branching ratio $B(X \rightarrow \mu\mu\eta(2S))/B(X \rightarrow \mu\mu\eta(1S)) \approx 0.4$. We propose to examine these decay channels to search for the fully-bottom tetraquark states in future CMS experiments.

In this paper we also update our previous study of Ref. [120] and reanalyze the fall-apart two-body decays of the fully-charm tetraquark states. The obtained results are summarized in Table IV, where the masses of the S- and P-wave fully-charm tetraquark states are assumed to be 6.5 GeV and 6.9 GeV, respectively [121]. These states were used in Ref. [120] to explain the broad structure at around 6.2-6.8 GeV and the narrow structure at around 6.9 GeV observed by LHCb in the J/ψ invariant mass spectrum [1]. Based on the results of the present study, we calculate the $X(6900)$ decay into the $J/\psi\psi(2S)$ channel and obtain the relative branching ratio $B(X \rightarrow J/\psi\psi(2S))/B(X \rightarrow J/\psi J/\psi) \approx 0.1$.

Acknowledgments

We thank Xiang Liu and Shi-Lin Zhu for helpful discussion. This project is supported by the National Natural Science Foundation of China under Grants No. 12075019 and No. 12175318, the Jiangsu Provincial Double-Innovation Program under Grant No. JSSCRC2021488, the Natural Science Foundation of Guangdong Province of China under Grant No. 2022A1515011922, and the Fundamental Research Funds for the Central Universities.

[1] R. Aaij et al. [LHCb Collaboration], Observation of structure in the J/ψ-pair mass spectrum, Sci. Bull. 65 (2020) no.23, 1983-1993.
[2] M. S. Liu, F. X. Liu, X. H. Zhong and Q. Zhao, Full-heavy tetraquark states and their evidences in the LHCb di-J/ψ spectrum, arXiv:2006.11952 [hep-ph].
[3] R. Tiwari, D. P. Rathaud and A. K. Rai, Spectroscopy of all charm tetraquark states, arXiv:2108.04017 [hep-ph].
[4] Q. F. Lü, D. Y. Chen and Y. B. Dong, Masses of fully heavy tetraquarks $QQ\bar{Q}\bar{Q}$ in an extended relativized quark model, Eur. Phys. J. C 80 (2020) no.9, 871.
[5] R. N. Faustov, V. O. Galkin and E. M. Savchenko, Masses of the $QQ\bar{Q}\bar{Q}$ tetraquarks in the relativistic diquark-antidiquark picture, Phys. Rev. D 102 (2020) no.11, 114030.
[6] J. R. Zhang, 0^{+} fully-charmed tetraquark states, Phys. Rev. D 103 (2021) no.1, 014018.
[7] Q. Li, C. H. Chang, G. L. Wang and T. Wang, Mass spectra and wave functions of $T_{Q\bar{Q}Q\bar{Q}}$ tetraquarks, Phys. Rev. D 104 (2021) no.1, 014018.
[8] M. A. Bedolla, J. Ferretti, C. D. Roberts and E. Santopinto, Spectrum of fully-heavy tetraquarks from a diquark-antidiquark perspective, Eur. Phys. J. C 80 (2020) no.11, 1004.
[9] X. Z. Weng, X. L. Chen, W. Z. Deng and S. L. Zhu, Systematics of fully heavy tetraquarks, Phys. Rev. D 103 (2021) no.3, 034001.
[10] F. X. Liu, M. S. Liu, X. H. Zhong and Q. Zhao, Higher mass spectra of the fully-charmed and fully-bottom tetraquarks, Phys. Rev. D 104 (2021) no.11, 116029.
[11] J. F. Giron and R. F. Lebed, Simple spectrum of c\bar{c}c\bar{c} states in the dynamical diquark model, Phys. Rev. D 102 (2020) no.7, 074003.
[12] M. Karliner and J. L. Rosner, Interpretation of structure in the di- J/ψ spectrum, Phys. Rev. D 102 (2020) no.11, 114039.
[13] Z. Zhao, K. Xu, A. Kaewsod, X. Liu, A. Limphirat and Y. Yan, Study of charmoniumlike and fully-charm tetraquark spectroscopy, Phys. Rev. D 103 (2021) no.11, 116027.
[14] H. Mutuk, Nonrelativistic treatment of fully-heavy tetraquarks as diquark-antidiquark states, Eur. Phys. J. C 81 (2021) no.4, 367.
[15] G. J. Wang, L. Meng, M. Oka and S. L. Zhu, Higher fully charmed tetraquarks: Radial excitations and P-wave states, Phys. Rev. D 104 (2021) no.3, 036016.
[16] Z. G. Wang, Tetraquark candidates in the LHCb’s di-J/ψ mass spectrum, Chin. Phys. C 44 (2020) no.11, 113106.
[17] H. W. Ke, X. Han, X. H. Liu and Y. L. Shi, Tetraquark state $X(6900)$ and the interaction between diquark and antidiquark, Eur. Phys. J. C 81 (2021) no.5, 427.
[18] R. Zhu, Fully-heavy tetraquark spectra and production at hadron colliders, Nucl. Phys. B 966 (2021), 115393.
[19] X. Jin, Y. Xue, H. Huang and J. Ping, Fully-heavy tetraquarks in constituent quark models, Eur. Phys. J. C 80 (2020) no.11, 1083.
[20] G. Yang, J. Ping and J. Segovia, Exotic resonances of fully-heavy tetraquarks in a lattice-QCD inspired quark model, Phys. Rev. D 104 (2021) no.1, 014006.
[21] R. M. Albuquerque, S. Narison, A. Rabemannanarja, D. Rabetiarivony and G. Randriamanakanza, Doubly-hidden scalar heavy molecules and tetraquarks states from QCD at NLO, Phys. Rev. D 102 (2020) no.9, 094001.
[22] R. M. Albuquerque, S. Narison, D. Rabetiarivony and G. Randriamanakanza, Doubly hidden 0^{++} molecules and tetraquarks states from QCD at NLO, Nucl. Part. Phys. Proc. 312-317 (2021), 120-124.
[23] R. H. Wu, Y. S. Zuo, C. Y. Wang, C. Meng, Y. Q. Ma and K. T. Chao, NLO results with operator mixing for fully heavy tetraquarks in QCD sum rules, arXiv:2201.11714 [hep-ph].
[24] Z. Asadi and G. R. Boroun, Masses of fully heavy
tetraquark states from a four-quark static potential model, Phys. Rev. D 105 (2022) no.1, 014006.

[25] B. C. Yang, L. Tang and C. F. Qiao, Scalar fully-heavy tetraquark states $QQ'QQ'$ in QCD sum rules, Eur. Phys. J. C 81 (2021) no.4, 324.

[26] G. Huang, J. Zhao and P. Zhuang, Pair structure of heavy tetraquark systems, Phys. Rev. D 103 (2021) no.5, 054014.

[27] F. Feng, Y. Huang, Y. Jia, W. L. Sang, X. Xiong and J. Y. Zhang, Fragmentation production of fully-charmed tetraquarks at LHC, arXiv:2009.08450 [hep-ph].

[28] Y. Huang, F. Feng, Y. Jia, W. L. Sang, D. S. Yang and J. Y. Zhang, Inclusive production of fully-charmed 1^+ - tetraquark at B factory, Chin. Phys. C 45 (2021) no.9, 093101.

[29] Y. Q. Ma and H. F. Zhang, Exploring the Di-J/ψ Resonances around 6.9 GeV Based on ab initio Perturbative QCD, arXiv:2009.08376 [hep-ph].

[30] R. Maciula, W. Schäfer and A. Szczurek, On the mechanism of $T_{3c}(6900)$ tetraquark production, Phys. Lett. B 812 (2021), 136010.

[31] V. P. Gonçalves and B. D. Moreira, Fully - heavy tetraquark production by $\gamma\gamma$ interactions in hadronic collisions at the LHC, Phys. Lett. B 816 (2021), 136249.

[32] X. Y. Wang, Q. Y. Lin, H. Xu, Y. P. Xie, Y. Huang and X. Chen, Discovery potential for the LHCb fully-charmed tetraquark $X(6900)$ state via $p\bar{p}$ annihilation reaction, Phys. Rev. D 102 (2020), 116014.

[33] A. Esposito, C. A. Manzari, A. Pilloni and A. D. Polosa, Hunting for tetraquarks in ultraforward heavy ion collisions, Phys. Rev. D 104 (2021) no.11, 114029.

[34] Z. Zhuang, Y. Zhang, Y. Ma and Q. Wang, Lineshape of the compact fully heavy tetraquark, Phys. Rev. D 105 (2022) no.5, 054026.

[35] J. Zhao, S. Shi and P. Zhuang, Fully-heavy tetraquarks in a strongly interacting medium, Phys. Rev. D 102 (2020) no.11, 114001.

[36] C. Becchi, J. Ferreretti, A. Giachino, L. Maiani and E. Santopinto, A study of $cc\bar{c}\bar{c}$ tetraquark decays in 4μ modes and in $D^{(*)}\bar{D}^{(*)}$ at LHC, Phys. Lett. B 811 (2020), 135952.

[37] S. Andrađić, M. Siddikov and I. Schmidt, Exclusive photoproduction of heavy quarkonia pairs, Phys. Rev. D 105 (2022) no.7, 076022.

[38] J. P. Lansberg and M. A. Ozcelik, Curing the unphysical behaviour of NLO quarkonium production at the LHC and its relevance to constrain the gluon PDF at low scales, Eur. Phys. J. C 81 (2021) no.6, 497.

[39] J. Sommenschin and D. Weissman, Deciphering the recently discovered tetraquark candidates around 6.9 GeV, Eur. Phys. J. C 81 (2021) no.1, 25.

[40] J. W. Zhu, X. D. Guo, R. Y. Zhang, W. G. Ma and X. Q. Li, A possible interpretation for $X(6900)$ observed in four-muon final state by LHCb – A light Higgs-like boson? arXiv:2011.07799 [hep-ph].

[41] B. D. Wan and C. F. Qiao, Gluonic tetracharm configuration of $X(6900)$, Phys. Lett. B 817 (2021), 136339.

[42] M. C. Gordillo, F. De Soto and J. Segovia, Diffusion Monte Carlo calculations of fully-heavy multiquark bound states, Phys. Rev. D 102 (2020) no.11, 114007.

[43] M. Z. Liu and L. S. Geng, Is $X(7200)$ the heavy anti-quark diquark symmetry partner of $X(3872)$? Eur. Phys. J. C 81 (2021) no.2, 179.

[44] A. J. Majarshin, Y. A. Luo, F. Pan and J. Segovia, Bosonic algebraic approach applied to the $[QQ][\bar{Q}\bar{Q}]$ tetraquarks, Phys. Rev. D 105 (2022) no.5, 054024.

[45] D. L. B. Sombillo, Y. Ikeda, T. Sato and A. Hosaka, Model independent analysis of coupled-channel scattering: A deep learning approach, Phys. Rev. D 104 (2021) no.3, 036001.

[46] Z. Kuang, K. Serafin, X. Zhao and J. P. Vary, All-charm tetraquark in Front Form dynamics, Phys. Rev. D 105 (2022), 094028.

[47] G. Yang, J. Ping, L. He and Q. Wang, Potential model prediction of fully-heavy tetraquarks $QQQQ(\ell= c, b)$, arXiv:2006.13756 [hep-ph].

[48] Z. H. Yang, Q. N. Wang, W. Chen and H. X. Chen, Investigation of the stability for fully-heavy bc\bar{c} tetraquark states, Phys. Rev. D 104 (2021) no.1, 014003.

[49] Q. N. Wang, Z. Y. Yang, W. Chen and H. X. Chen, Mass spectra for the cbc\bar{c} and bc\bar{c} tetraquark states, Phys. Rev. D 104 (2021) no.1, 014020.

[50] Q. N. Wang, Z. Y. Yang and W. Chen, Exotic fully-heavy $QQQQ$ tetraquark states in $8_{QQ}\otimes 8_{QQ}$ color configuration, Phys. Rev. D 104 (2021) no.11, 114037.

[51] H. X. Chen, W. Chen, X. Liu, Y. R. Liu and S. L. Zhu, An updated review of the new hadrons states, arXiv:2204.02640 [hep-ph].

[52] H. X. Chen, W. Chen, X. Liu and S. L. Zhu, The hidden-charm pentaquark and tetraquark states, Phys. Rept. 639, 1-121 (2016).

[53] Y. R. Liu, H. X. Chen, W. Chen, X. Liu and S. L. Zhu, Pentaquark and Tetraquark States, Prog. Part. Nucl. Phys. 107, 237 (2019).

[54] R. F. Lebed, R. E. Mitchell and E. S. Swanson, Heavy-Quark QCD exotics, Prog. Part. Nucl. Phys. 93, 143-194 (2017).

[55] A. Esposito, A. Pilloni and A. D. Polosa, Multiquark resonances, Phys. Rept. 668, 1-97 (2017).

[56] A. Hosaka, T. Iijima, K. Miyabayashi, Y. Sakai and S. Yasui, Exotic hadrons with heavy flavors: X, Y, Z, and related states, PTEP 2016 no.6, 062C01 (2016).

[57] F. K. Guo, C. Hanhart, U. G. Meissner, Q. Wang, Q. Zhao and B. S. Zou, Hadronic molecules, Rev. Mod. Phys. 90 no.1, 015004 (2018).

[58] A. Ali, J. S. Lange and S. Stone, Exotics: Heavy pentaquarks and tetraquarks, Prog. Part. Nucl. Phys. 97 , 123-198 (2017).

[59] S. L. Olsen, T. Skwarnicki and D. Zieminska, Nonstandard heavy mesons and baryons: Experimental evidence, Rev. Mod. Phys. 90 no.1, 015003 (2018).

[60] M. Karliner, J. L. Rosner and T. Skwarnicki, Multiquark States, Ann. Rev. Nucl. Part. Sci. 68, 17-44 (2018).

[61] S. D. Bass and P. Moskal, η and η mesons with connection to anomalous glue, Rev. Mod. Phys. 91 no.1, 015003 (2019).

[62] N. Brambilla, S. Eidelman, C. Hanhart, A. Nedelec, C. P. Shen, C. E. Thomas, A. Vairo and C. Z. Yuan, The XYZ states: Experimental and theoretical status and perspectives, Phys. Rept. 873, 1-154 (2020).

[63] F. K. Guo, X. H. Liu and S. Sakai, Threshold cusps and triangle singularities in hadronic reactions, Prog. Part. Nucl. Phys. 112, 103757 (2020).

[64] B. Ketzer, B. Grube and D. Ryabchikov, Light-meson spectroscopy with COMPASS, Prog. Part. Nucl. Phys. 113, 103755 (2020).

[65] G. Yang, J. Ping and J. Segovia, Tetra- and Pentaquark Structures in the Constituents Quark Model,
Towards the understanding of fully-heavy tetraquark states from various models, Phys. Rev. D 103 (2021) no.1, 014001.

J. M. Richard, A. Valcarce and J. Vijande, Few-body quark dynamics for doubly heavy baryons and tetraquarks, Phys. Rev. C 97, 035211 (2018).

Z. G. Wang, Analysis of the $QQQQ$ tetraquark states with QCD sum rules, Eur. Phys. J. C 77, 432 (2017).

Z. G. Wang and Z. Y. Di, Analysis of the Vector and Axialvector $QQQQ$ Tetraquark States with QCD Sum Rules, Acta Phys. Polon. B 50, 1335 (2019).

T. W. Chiu et al. [TWQCD Collaboration], Beauty mesons in lattice QCD with exact chiral symmetry, Phys. Lett. B 651 (2007), 171-176.

R. Aaij et al. [LHCb Collaboration], Search for beautiful tetraquarks in the $\Upsilon(1S)$ $\mu^+ \mu^-$ invariant-mass spectrum, JHEP 10 (2018), 086.

A. M. Sirunyan et al. [CMS Collaboration], Measurement of the $\Upsilon(1S)$ pair production cross section and search for resonances decaying to $\Upsilon(1S)\mu^+\mu^-$ in proton-proton collisions at $\sqrt{s} = 13$ TeV, Phys. Lett. B 808 (2020), 135578.

H. X. Chen, W. Chen, X. Liu and S. L. Zhu, Hunting for exotic double-charm/bottom tetraquark states, Phys. Lett. B 773, 247 (2017).

H. X. Chen, Decay properties of the $Z_c(3900)$ through the Fierz rearrangement, Chin. Phys. C 44 (2020) no.11, 114003.

H. X. Chen, Decay properties of the $X(3872)$ through the Fierz rearrangement, Commun. Theor. Phys. 74 (2022) no.2, 025201.

H. X. Chen, Decay properties of P_c states through the Fierz rearrangement, Eur. Phys. J. C 80 (2020) no.10, 945.

H. X. Chen, Hidden-charm pentaquark states through current algebra: from their production to decay, Chin. Phys. C 46 (2022) no.9, 093105.

H. X. Chen, Hadronic molecules in B decays, Phys. Rev. D 105 (2022) no.9, 094003.

J. M. Dias, F. S. Navarra, M. Nielsen and C. M. Zanetti, $Z_c^+(3900)$ decay width in QCD sum rules, Phys. Rev. D 88 (2013) no.1, 016004.

S. S. Agaev, K. Azizi and H. Sundu, Strong $Z_c^+(3900) \rightarrow J/\psi\pi^+\pi^-$ decays in QCD, Phys. Rev. D 93 (2016) no.7, 074002.
subleading power corrections, JHEP 2004, 023 (2020).
[148] H. M. Yang and H. X. Chen, \textit{P-wave bottom baryons of the SU(3) flavor 6_F},
Phys. Rev. D 101 (2020) no.11, 114013 [erratum: Phys. Rev. D 102 (2020) no.7, 079901].

[149] H. M. Yang and H. X. Chen, \textit{P-wave charmed baryons of the SU(3) flavor 6_F},
Phys. Rev. D 104 (2021) no.3, 034037.