Rigorous formulation of two-parameter double-hybrid density-functionals

Emmanuel Fromager

Laboratoire de Chimie Quantique,
Institut de Chimie, CNRS / Université de Strasbourg,
4 rue Blaise Pascal, 67000 Strasbourg, France.

A two-parameter extension of the density-scaled double hybrid approach of Sharkas et al. [J. Chem. Phys. 134, 064113 (2011)] is presented. It is based on the explicit treatment of a fraction of multideterminantal exact exchange. The connection with conventional double hybrids is made when neglecting density scaling in the correlation functional as well as second-order corrections to the density. In this context, the fraction \(a_c \) of second-order Møller-Plesset (MP2) correlation energy is not necessarily equal to the square of the fraction \(a_x \) of Hartree-Fock exchange. More specifically, it is shown that \(a_c \leq a_x^2 \), a condition that conventional semi-empirical double hybrids actually fulfill. In addition, a new procedure for calculating the orbitals, which has a better justification than the one routinely used, is proposed. Referred to as \(\lambda_1 \) variant, the corresponding double hybrid approximation has been tested on a small set consisting of \(\text{H}_2, \text{N}_2, \text{Be}_2, \text{Mg}_2 \) and \(\text{Ar}_2 \). Three conventional double hybrids (B2-PLYP, B2GP-PLYP and PBE0-DH) have been considered. Potential curves obtained with \(\lambda_1 \)- and regular double hybrids can, in some cases, differ significantly. In particular, for the weakly bound dimers, the \(\lambda_1 \) variant binds systematically more than the regular ones, which is an improvement in many but not all cases. Including density scaling in the correlation functionals may of course change the results significantly. Moreover, optimized effective potentials (OEPs) based on a partially-interacting system could also be used to generate proper orbitals. Work is currently in progress in those directions.

I. INTRODUCTION

Sharkas et al.\(^7\) recently proposed a rigorous formulation of one-parameter double hybrid density-functionals, which is based on the combination of second-order Møller-Plesset (MP2) perturbation theory with a density-scaled correlation functional. The connection with regular double hybrids\(^7\) could be made when neglecting density scaling. Note that, in their approach, the fraction \(a_c \) parameter is either chosen irrespective of \(a_x \) or expressed in terms of \(a_x \) but not \(a_c = a_x^2 \). In the latter case, one can for example refer to the Perdew-Burke-Ernzerhof-zero double hybrid (PBE0-DH) functional of Brémond and Adamo\(^7\), which is characterized by \(a_c = a_x^3 \).

This work deals with the rigorous formulation of density-scaled two-parameter double hybrids. It is organized as follows: an exact two-parameter energy expression is firstly derived in Sec. IIA. Approximate formulations are then investigated for defining single hybrid (Sec. IIB) and double hybrid (Sec. IIC) energy expressions. In Sec. IID, the connection with conventional double hybrids is made. In addition, a new procedure for computing orbitals is proposed, defining thus what is referred to as \(\lambda_1 \) variant of the double hybrids. A summary of the different approximations that have been formulated is then given in Sec. IIE. Following the computational details (Sec. IID), results obtained with regular and \(\lambda_1 \)-double hybrids on a small test set consisting of \(\text{H}_2, \text{N}_2, \text{Be}_2, \text{Mg}_2 \) and \(\text{Ar}_2 \) are presented and discussed in Sec. IV.

II. THEORY

A. Multideterminantal exact exchange

The approach recently proposed by Sharkas et al.\(^7\) for deriving rigorous one-parameter double-hybrid functionals is based on the separation of the universal Hohenberg-Kohn\(^7\) functional \(F[n] = F^{\lambda_1}[n] + \Sigma_{\text{Hxc}}[n] \) into a partially-interacting contribution

\[
F^{\lambda_1}[n] = \min_{\Psi \rightarrow n} \langle \Psi | \hat{T} + \lambda_1 \hat{W}_{ee} | \Psi \rangle
= \langle \Psi^{\lambda_1}[n] | \hat{T} + \lambda_1 \hat{W}_{ee} | \Psi^{\lambda_1}[n] \rangle,
\]

with \(0 \leq \lambda_1 \leq 1 \), and the complement \(\lambda_1 \)-dependent Hartree-exchange-correlation (Hxc) density-functional

\[
\Sigma_{\text{Hxc}}[n] = (1 - \lambda_1) E_{\text{Hx}}[n] + \Sigma_{\text{Hxc}}^{\lambda_1}[n],
\]

\[
\Sigma_{\text{Hxc}}^{\lambda_1}[n] = E_c[n] - E_{c}^{\lambda_1}[n],
\]

where \(E_{\text{Hx}}[n] = \langle \Psi^{KS}[n] | \hat{W}_{ee} | \Psi^{KS}[n] \rangle \) is the usual exact Hartree-exchange (Hx) term based on the non-interacting Kohn-Sham (KS) determinant\(^7\). The correlation functionals \(E_c[n] \) and \(E_{c}^{\lambda_1}[n] \) correspond to fully and partially
\(\lambda_1 \)-interacting systems, respectively. The exact ground-state energy is then expressed as follows, according to the variational principle:

\[
E = \min \left\{ \langle \Psi^{\lambda_1} [n] | \hat{T} + \lambda_1 \hat{W}_{ce} + \hat{V}_{ne} | \Psi^{\lambda_1} [n] \rangle + E_{Hxc}^{\lambda_1} [n] \right\},
\]

where \(\hat{V}_{ne} = \int dr \, v_{ne}(r) \, \hat{n}(r) \) is the nuclear potential operator. Rewritten in terms of a minimization over wave functions, Eq. (3) becomes

\[
E = \min \left\{ \langle \Psi | \hat{T} + \lambda_1 \hat{W}_{ce} + \hat{V}_{ne} | \Psi \rangle + E_{Hxc}^{\lambda_1} [n_{\Psi^{\lambda_1}}] \right\}
\]

where \(\Psi^{\lambda_1} \) fulfills the self-consistent equation

\[
\hat{V}_{Hxc}^{\lambda_1} [n] = \int dr \, \frac{\delta E_{Hxc}^{\lambda_1} [n]}{\delta n(r)} \, \hat{n}(r).
\]

In order to introduce a second scaling factor \(\lambda_2 \), and thus derive two-parameter double hybrids, let us consider the following partitioning of the complement \(\lambda_1 \)-Hxc functional:

\[
E_{Hxc}^{\lambda_1} [n] = E_{Hxc,mld}^{\lambda_1} [n] + E_{c,mld}^{\lambda_1} [n],
\]

which is based on the multideterminantal definition of the exact exchange (mdEXX), as introduced by Toulouse, Gori-Giorgi and Savin in the context of range-separated density-functional theory (DFT),

\[
E_{Hxc,mld}^{\lambda_1} [n] = (1 - \lambda_1) \langle \Psi^{\lambda_1} [n] | \hat{W}_{ce} | \Psi^{\lambda_1} [n] \rangle.
\]

The corresponding complement correlation functional differs therefore from the one given in Eq. (2) according to Eqs. (6) and (7) it can be expressed as

\[
E_{c,mld}^{\lambda_1} [n] = E_c^{\lambda_1} [n] - (1 - \lambda_1) \Delta E_{\lambda_1}^{\lambda_1} [n],
\]

\[
\Delta E_{\lambda_1}^{\lambda_1} [n] = \left(\langle \Psi^{\lambda_1} [n] | \hat{W}_{ce} | \Psi^{\lambda_1} [n] \rangle - \langle \Phi_{KS}^{\lambda_1} [n] | \hat{W}_{ce} | \Phi_{KS}^{\lambda_1} [n] \rangle \right).
\]

Recombined with Eq. (3), Eq. (7) leads to the explicit calculation of 100% of mdEXX. In the spirit of usual hybrid functionals, we want to keep the flexibility of treating only a fraction \(\lambda_2 \) (\(0 \leq \lambda_2 \leq 1 \)) of mdEXX explicitly. For that purpose, we split the complement mdHxc functional as follows:

\[
E_{Hxc,mld}^{\lambda_1} [n] = (\lambda_2 - \lambda_1) \langle \Psi^{\lambda_1} [n] | \hat{W}_{ce} | \Psi^{\lambda_1} [n] \rangle + (1 - \lambda_2) \langle \Psi^{\lambda_1} [n] | \hat{W}_{ce} | \Psi^{\lambda_1} [n] \rangle + E_{Hxc}^{\lambda_1} [n],
\]

and introduce the complement \(\lambda_1 \)- and \(\lambda_2 \)-dependent Hxc density-functional energy:

\[
E_{Hxc}^{\lambda_1,\lambda_2} [n] = (1 - \lambda_2) \langle \Psi^{\lambda_1} [n] | \hat{W}_{ce} | \Psi^{\lambda_1} [n] \rangle + E_{c,mld}^{\lambda_1} [n]
\]

\[
- (\lambda_2 - \lambda_1) \langle \Psi^{\lambda_1} [n] | \hat{W}_{ce} | \Psi^{\lambda_1} [n] \rangle + E_{Hxc}^{\lambda_1} [n],
\]

which, according to Eqs. (6) and (8), can be rewritten as

\[
E_{Hxc}^{\lambda_1,\lambda_2} [n] = (1 - \lambda_2) \langle \Psi^{\lambda_1} [n] | \hat{W}_{ce} | \Psi^{\lambda_1} [n] \rangle + E_{Hxc}^{\lambda_1} [n] + (\lambda_2 - \lambda_1) \Delta E_{\lambda_1}^{\lambda_1} [n] + E_{c,mld}^{\lambda_1} [n].
\]

Using the following expressions based on a uniform coordinate scaling of the density:

\[
E_c^{\lambda_1} [n] = \lambda_1^2 E_c[n_{1/\lambda_1}],
\]

\[
\Delta E_{\lambda_1}^{\lambda_1} [n] = \frac{\partial E_c^{\lambda_1} [n]}{\partial \lambda} \bigg|_{\lambda=\lambda_1},
\]

\[
n_{1/\lambda_1}(r) = (1/\lambda_1)^3 n(r/\lambda_1),
\]

as well as Eq. (2), the more explicit density-scaled two-parameter (DS2) form

\[
E_{Hxc}^{\lambda_1,\lambda_2} [n] = (1 - \lambda_2) E_{Hxc} [n] + E_{c} [n] - \lambda_1^2 E_c[n_{1/\lambda_1}]
\]

\[
+ 2\lambda_1 (1 - \lambda_2) E_c[n_{1/\lambda_1}]
\]

\[
+ \lambda_1^2 (1 - \lambda_2) \frac{\partial E_c[n_{1/\lambda_1}]}{\partial \lambda} \bigg|_{\lambda=\lambda_1},
\]

is obtained and the exact ground-state energy in Eq. (4) can then be rewritten as follows:

\[
E = \min \left\{ \langle \Psi^{\lambda_1} [n] | \hat{T} + \lambda_2 \hat{W}_{ce} + \hat{V}_{ne} | \Psi^{\lambda_1} [n] \rangle + E_{Hxc}^{\lambda_1,\lambda_2} [n] \right\},
\]

or, in terms of minimization over local potentials,

\[
E = \min \left\{ \langle \Psi^{\lambda_1} [v] | \hat{T} + \lambda_2 \hat{W}_{ce} + \hat{V}_{ne} | \Psi^{\lambda_1} [v] \rangle + E_{Hxc}^{\lambda_1,\lambda_2} [n_{\Psi^{\lambda_1} [v]}] \right\},
\]

where \(\Psi^{\lambda_1} [v] \) denotes the ground state of the \(\lambda_1 \)-interacting Hamiltonian \(\hat{T} + \lambda_1 \hat{W}_{ce} + \int dr \, v(r) \hat{n}(r) \). It is important to notice that, for a fixed \(\lambda_1 \) value, the exact minimizing potential \(v^{\lambda_1} \) is the one which ensures that the density of \(\Psi^{\lambda_1} [v^{\lambda_1}] \) equals the exact ground-state density. Therefore, it does not depend on \(\lambda_2 \). When choosing \(\lambda_2 = \lambda_1 \), the minimization over potentials in Eq. (15) can be replaced by a minimization over wave functions so that
Eq. (4) is recovered and, according to Eq. (5), the exact potential \(v^{\lambda_1} \) can be expressed as

\[
v^{\lambda_1}(\mathbf{r}) = v_{ne}(\mathbf{r}) + \frac{\delta E_{\text{Hxc}}^{\lambda_1}}{\delta n(\mathbf{r})} [n_{\Phi^{\lambda_1}}].
\]

(16)

As a result, for any \(\lambda_1 \) and \(\lambda_2 \) values, the exact ground-state energy can be written as

\[
E = \langle \Psi^{\lambda_1} | \hat{T} + \lambda_2 \hat{W}_{ee} + \hat{V}_{ne} | \Psi^{\lambda_1} \rangle + E_{\text{Hxc}}^{\lambda_1,\lambda_2} [n_{\Phi^{\lambda_1}}].
\]

(17)

If \(\lambda_2 \neq \lambda_1 \), the energy cannot be obtained straightforwardly from a minimization over wave functions:

\[
E \neq \min \left\{ \langle \Psi | \hat{T} + \lambda_2 \hat{W}_{ee} + \hat{V}_{ne} | \Psi \rangle + E_{\text{Hxc}}^{\lambda_1,\lambda_2} [n_{\Phi}] \right\},
\]

(18)

since the minimizing wave function would be eigenfunction of a \(\lambda_2 \)-interacting system and therefore could not be equal to \(\Psi^{\lambda_1} \), which is eigenfunction of a \(\lambda_1 \)-interacting system. As discussed in Sec. II B, it is in principle possible to adapt regular optimized effective potential (OEP) methods to this context in order to implement Eq. (15).

\[E_{\text{Hxc},\text{DS2H}}^{\lambda_1} [n] = (1 - \lambda_1) E_{\text{Hxc}}^{\lambda_1} [n] + E_c [n] - \lambda_1 (2 \lambda_2 - \lambda_1) E_c [n_1/\lambda_1]
\]

(20)

where \(E_{\text{Hxc}}^{\lambda_1} [n] \) is the HF exchange energy. We thus obtain a density-scaled two-parameter hybrid (DS2H) exchange-correlation energy:

\[
E_{\text{Hxc,DS2H}}^{\lambda_1} [n] = (1 - \lambda_1) E_{\text{Hxc}}^{\lambda_1} [n] + E_c [n] - \lambda_1 (2 \lambda_2 - \lambda_1) E_c [n_1/\lambda_1]
\]

(21)

Note that, in the particular case \(\lambda_1 = \lambda_2 \), the exact DS2-HF-OEP potential can be expressed in terms of a functional derivative like in the exact theory (see Sec. II A). Indeed, the DS2-HF functional in Eq. (13) reduces then to a DS1-Hxc functional which corresponds to the complement \(\lambda_1 \)-Hxc functional:

\[
E_{\text{Hxc}}^{\lambda_1} [n] = (1 - \lambda_1) E_{\text{Hxc}}^{\lambda_1} [n] + E_c [n] - \lambda_1 (2 \lambda_2 - \lambda_1) E_c [n_1/\lambda_1]
\]

(22)

Moreover, using the one-to-one correspondence between the density \(n_{\Phi} \) of any single determinant \(\Phi \) and the local potential \(v^{\lambda_1} [n_{\Phi}] \) such that the density of the HF determinant \(\Phi^{\lambda_1} [v^{\lambda_1} [n_{\Phi}]] \) equals \(n_{\Phi} \), the energy in Eq. (19) can be simply obtained by minimization over single determinants, that is without using OEPs. It then corresponds to the DS1H energy of Sharkas et al. 7, which equals

\[
E_{\text{DS1H}}^{\lambda_1} = \min_{\Phi} \left\{ \langle \Phi | \hat{T} + \lambda_1 \hat{W}_{ee} + \hat{V}_{ne} | \Phi \rangle + E_{\text{Hxc}}^{\lambda_1} [n_{\Phi}] \right\}
\]

(23)

The minimizing determinant \(\Phi^{\lambda_1} \) fulfills the self-consistent equation

\[
(\hat{T} + \lambda_1 \hat{U}_{\text{HF}} [\Phi^{\lambda_1}] + \hat{V}_{ne} + E_{\text{Hxc}}^{\lambda_1} [n_{\Phi^{\lambda_1}}]) [\Phi^{\lambda_1}] = E_{\text{DS1H}}^{\lambda_1} [\Phi^{\lambda_1}],
\]

(24)

where \(\hat{U}_{\text{HF}} [\Phi^{\lambda_1}] \) is the nonlocal HF potential, so that, in this particular case, the minimizing potential in Eq. (19) can be expressed as

\[
v^{\lambda_1}_{\text{DS1H}}(\mathbf{r}) = v_{ne}(\mathbf{r}) + \frac{\delta E_{\text{Hxc}}^{\lambda_1}}{\delta n(\mathbf{r})} [n_{\Phi^{\lambda_1}}],
\]

(25)
and the exchange-correlation in Eq. (21) reduces to
\[
E_{xc,DS1H}^{\lambda_1} = \lambda_1 E_{xc}^{\Phi} + (1 - \lambda_1) E_x[n] + E_c[n] - \lambda_1^2 E_{xc}[n_{1/\lambda_1}],
\] (26)

C. Density-scaled two-parameter double hybrids

This section deals with the formulation of double hybrid functionals based on the energy expression given in Eq. (15). In the following, we denote \(v_0^{\lambda_1} \) any approximation to the exact minimizing potential \(v^{\lambda_1} \). An approximate expression for the energy is thus obtained:
\[
E_0^{\lambda_1,\lambda_2} = \langle \Psi_0^{\lambda_1} | \hat{T} + \lambda_2 \hat{W}_{ee} + \hat{V}_{ne} | \Psi_0^{\lambda_1} \rangle + E_{xc}^{\lambda_1,\lambda_2}[n_{\Phi_0^{\lambda_1}}],
\] (27)
where \(\Psi_0^{\lambda_1} \) is the ground state of the \(\lambda_1 \)-interacting system defined by \(v_0^{\lambda_1} \):
\[
\left(\hat{T} + \lambda_1 \hat{W}_{ee} + \hat{V}_{ne}^{\lambda_1} \right) | \Psi_0^{\lambda_1} \rangle = \mathcal{E}_0^{\lambda_1} | \Psi_0^{\lambda_1} \rangle,
\] (28)
with \(\hat{V}_{ne}^{\lambda_1} = \int d\mathbf{r} v_0^{\lambda_1}(\mathbf{r}) \hat{n}(\mathbf{r}) \). The energy in Eq. (27) can be rewritten as
\[
E_0^{\lambda_1,\lambda_2} = \mathcal{E}_0^{\lambda_1} + (\lambda_2 - \lambda_1) \langle \Psi_0^{\lambda_1} | \hat{W}_{ee} | \Psi_0^{\lambda_1} \rangle + \langle \Psi_0^{\lambda_1} | \hat{V}_{ne} - \hat{V}_{ne}^{\lambda_1} | \Psi_0^{\lambda_1} \rangle + E_{xc}^{\lambda_1,\lambda_2}[n_{\Phi_0^{\lambda_1}}],
\] (29)
which is convenient when applying, as we propose in the following, MP perturbation theory to the \(\lambda_1 \)-interacting system described by Eq. (28). The zeroth-order wave function is chosen to be the determinant \(\Phi_0^{\lambda_1} \) which fulfills the HF-type equation
\[
\left(\hat{T} + \lambda_1 \hat{U}_{HF}[\Phi_0^{\lambda_1}] + \hat{V}_{ne}^{\lambda_1} \right) | \Phi_0^{\lambda_1} \rangle = \mathcal{E}_0^{\lambda_1} | \Phi_0^{\lambda_1} \rangle.
\] (30)
Note that the Brillouin theorem is fulfilled in this context, which means that the wave function contains only double excitations through first order and, as a result, the density remains unchanged through first order\(^7\). The perturbation expansion of the fictitious \(\lambda_1 \)-interacting energy through second order equals:
\[
\mathcal{E}_0^{\lambda_1} = \langle \Phi_0^{\lambda_1} | \hat{T} + \lambda_1 \hat{W}_{ee} + \hat{V}_{ne}^{\lambda_1} | \Phi_0^{\lambda_1} \rangle + \lambda_1^2 E_{MP}^{(2)} + \ldots,
\] (31)
where \(E_{MP}^{(2)} \) is the conventional MP2 energy correction calculated with the \(\lambda_1 \)-interacting orbitals and orbital energies obtained from Eq. (30). Using the simplified perturbation expansion for the second term in the right-hand side of Eq. (29):
\[
\langle \Psi_0^{\lambda_1} | \hat{W}_{ee} | \Psi_0^{\lambda_1} \rangle = \langle \Phi_0^{\lambda_1} | \hat{W}_{ee} | \Phi_0^{\lambda_1} \rangle + 2 \lambda_1 E_{MP}^{(2)} + \ldots,
\] (32)
we obtain the final energy expression through second order:
\[
E_0^{\lambda_1,\lambda_2} = \langle \Phi_0^{\lambda_1} | \hat{T} + \lambda_2 \hat{W}_{ee} + \hat{V}_{ne} | \Phi_0^{\lambda_1} \rangle + E_{xc}^{\lambda_1,\lambda_2}[n_{\Phi_0^{\lambda_1}}] + \lambda_1(2\lambda_2 - 1)E_{MP}^{(2)} + \int d\mathbf{r} \left(v_{ne}(\mathbf{r}) - v_0^{\lambda_1}(\mathbf{r}) + \frac{\partial E_{xc}^{\lambda_1,\lambda_2}[n_{\Phi_0^{\lambda_1}}]}{\partial n(\mathbf{r})} \right) n^{(2)}(\mathbf{r}) \right) \delta n^{(2)}(\mathbf{r}).
\] (33)
where \(\delta n^{(2)}(\mathbf{r}) \) denotes the second-order correction to the density associated to \(\Psi_0^{\lambda_1} \). If we simply denote \(\Phi_0^{\lambda_1} \) and \(n \) the zeroth-order determinant \(\Phi_0^{\lambda_1} \) and its density, respectively, the exchange-correlation energy has, according to Eq. (13), the form of a density scaled two-parameter double hybrid (DS2DH) functional:
\[
E_{xc,DS2DH}^{\lambda_1,\lambda_2} = \lambda_2 E_{xc}^{\Phi} + (1 - \lambda_2) E_x[n] + E_c[n] - \lambda_2(2\lambda_2 - 1)E_{MP}^{(2)} + \int d\mathbf{r} \left(v_{ne}(\mathbf{r}) - v_0^{\lambda_1}(\mathbf{r}) + \frac{\partial E_{xc}^{\lambda_1,\lambda_2}[n_{\Phi_0^{\lambda_1}}]}{\partial n(\mathbf{r})} \right) \delta n^{(2)}(\mathbf{r}),
\] (34)
Let us consider the particular case \(\lambda_1 = \lambda_2 \). According to Eqs. (22) and (25), when choosing the DS1H determinant \(\Phi_0^{\lambda_1} \) and potential \(v_0^{\lambda_1}_{DS1H} \) as \(\Phi_0^{\lambda_1} \) and \(v_0^{\lambda_1} \) as \(\Phi_0^{\lambda_1} \) as well as the density scaling in the correlation functional. The second-order-density-correction term in the right-hand side of Eq. (34) cancels out and the DS1H exchange-correlation energy of Sharkas et al.\(^7\) is recovered:
\[
E_{xc,DS1H}^{\lambda_1} = \lambda_1 E_{xc}^{\Phi} + (1 - \lambda_1) E_x[n] + E_c[n] - \lambda_1^2 E_{MP}^{(2)}.
\] (35)
As shown in Sec. II D, the DS2DH functional defined in Eq. (34) can be connected with conventional double hybrids when neglecting both second-order corrections to the density as well as the density scaling in the correlation functional.

D. Connection with conventional double hybrids

In order to connect regular double hybrids with the one derived in Sec. II C, we neglect both second-order corrections to the density as well as the density scaling
in the correlation functional:
\[\lambda \text{ is defined as follows:} \]
\[a_x = \lambda_2, \]
\[a_c = \lambda_1(2\lambda_2 - \lambda_1) \]
\[= a_x^2 - (a_x - \lambda_1)^2. \]

Let us first notice that, by contrast to KS second-order perturbation theory (KS-PT2), single excitations do not appear in the 2DH energy expression. Indeed, the latter originates from a MP-type calculation, where the Bril-

When \(a_c = 0 \), the correlation energy is fully described by the correlation functional which means that the fictitious \(\lambda_1 \)-interacting system should be the non-interacting (KS) one, that is \(\lambda_1 = 0 \). The standard exchange-only-type KS-OEP scheme with \(a_x \) as fraction of exact exchange is thus recovered. We therefore conclude
\[\lambda_1 = a_x - \sqrt{a_x^2 - a_c}. \]

Interestingly, the \textit{linearly scaled one-parameter double hybrid} functional (LS1DH) derived recently by Toulouse \textit{et al.}, which is characterized by \(a_x = a_x^2 \), is recovered here, though density scaling is neglected, when \(\lambda_1 \) equals
\[\lambda_1^{\text{LS1DH}} = a_x(1 - \sqrt{1 - a_x^2}). \]

Let us now focus on the calculation of the orbitals. As pointed out in Sec. \ref{sec:2DH}, the DS2DH and thus the 2DH exchange-correlation energies are based on HF-type orbitals calculated for a \(\lambda_1 \)-interacting system. A natural choice of orbitals would therefore be the DS2-HF-OEP ones. Since density scaling is neglected, we will refer to them as \(\lambda_1 \)-OEP-2H orbitals and the corresponding 2DH energy will be referred to as \(\lambda_1 \)-OEP-2DH. The \(\lambda_1 \)-OEP-2H scheme, which is an OEP-type calculation, can be formulated as follows, according to Eqs. \eqref{eq:21}, \eqref{eq:24} and \eqref{eq:39}:
\[E_{\lambda_1 \text{-OEP-2H}} = \min_v E_{\lambda_1 \text{-OEP-2H}}[v], \]
\[E_{\lambda_1 \text{-OEP-2H}}[v] = \left\{ \langle \Phi^{\lambda_1}[v]|\tilde{T} + \hat{V}_{\text{ne}}|\Phi^{\lambda_1}[v] \rangle + E_H[n_{\Phi^{\lambda_1}[v]}] + a_x E_x^{\text{MP}}[\Phi^{\lambda_1}[v]] + (1 - a_x) E_x[n_{\Phi^{\lambda_1}[v]} + (1 - a_c) E_c[n_{\Phi^{\lambda_1}[v]]] \right\}, \]
where \(\Phi^{\lambda_1}[v] \) fulfills the \(\lambda_1 \)-interacting HF equation
\[\left(\hat{T} + \lambda_1 \hat{U}_{\text{HF}}[\Phi^{\lambda_1}[v]] + \hat{V} \right) |\Phi^{\lambda_1}[v]\rangle = E_{\text{HF}}^{\lambda_1}[v]|\Phi^{\lambda_1}[v]\rangle, \]
with \(\hat{V} = \int dr v(r) \hat{n}(r) \) and \(\lambda_1 \) defined in Eq. \eqref{eq:41}. On the hand, for conventional double hybrids, the orbitals are obtained from a 2H calculation which can be formulated as:
\[E_{2H}^{a_x,a_c} = \min_v \left\{ \langle \Phi|\tilde{T} + \hat{V}_{\text{ne}}|\Phi \rangle + E_H[n_{\Phi}] + a_x E_x^{\text{MP}}[\Phi] + (1 - a_x) E_x[n_{\Phi}] + (1 - a_c) E_c[n_{\Phi}] \right\}. \]

The minimizing determinant \(\Phi \) in Eq. \eqref{eq:45} fulfills the 2H equation
\[\left(\hat{T} + \hat{V}_{\text{ne}} + a_x \hat{U}_{\text{HF}}[\Phi] + (1 - a_x) \hat{V}_{\text{Hx}}[n_{\Phi}] + (1 - a_c) \hat{V}_c[n_{\Phi}] \right) |\Phi\rangle = E_{2H}[\Phi], \]
and, therefore, can be interpreted as the HF determinant associated to a \(\lambda_2 \)-interacting system since, according to Eq. \eqref{eq:40}, \(\lambda_2 = a_x \). However, as shown in Sec. \ref{sec:2DH}, the 2DH exchange-correlation functional in Eq. \eqref{eq:38} can be justified when it is based on HF-type orbitals associated to a \(\lambda_1 \)-interacting Hamiltonian. This condition ensures that single excitations do not contribute to the exchange-correlation energy. In fact, the conventional calculation of the orbitals is simply deduced from Eq. \eqref{eq:43} when replacing the minimization over local potentials by a minimization over single determinants, which is justified only when \(\lambda_2 = \lambda_1 \) that is equivalent to \(a_c = a_x^2 \) (see Sec. \ref{sec:1DB}). As shown in Table \ref{tab:1} conventional double hybrids do not fulfill the latter condition. In this respect, double hybrids...
based on the λ_1-OEP-2H approximation have a better justification than the regular ones. Let us finally consider a possible alternative to the λ_1-OEP-2H scheme, which would not require the calculation of an OEP and would have a computational cost similar to conventional 2H calculations. As shown in Sec. IIA in the exact theory and for a fixed λ_1 value, the OEP should not depend on λ_2. As an approximation, referred to as λ_1-2H in the following, we assume that this statement still holds within the approximate λ_1-OEP-2H scheme. As a result, an approximate potential can be obtained when choosing, in Eq. (19), $\lambda_2 = \lambda_1$ instead of $\lambda_2 = \alpha_c$. In this particular case, according to Eqs. (22), (24), and (30), the λ_1-2H determinant $\tilde{\Phi}'$ fulfills the modified 2H equation

$$
\left(\hat{T} + V_{\text{ne}} + a'_x \hat{U}_{\text{HF}}[\tilde{\Phi}'] + (1 - a'_x) \hat{V}_{\text{Hx}}[\tilde{n}_{\Phi'}] \right) (\tilde{\Phi}') = E'_{2\text{H}}[\tilde{\Phi}'],
$$

where the regular a_x and a_c parameters have been replaced by λ_1 and λ_2^2, respectively:

$$
a_x \rightarrow a'_x = \lambda_1 = a_x - \sqrt{a_x^2 - a_c},
$$

$$
a_c \rightarrow a'_c = \lambda_2^2 = 2a_x - \sqrt{a_x^2 - a_c} - a_c.
$$

We thus ensure that the orbitals are computed from a λ_1-interacting system. This procedure basically consists in approximating the exact potential v_{λ_1} by

$$
v_{\lambda_1,2\text{H}}(\mathbf{r}) = v_{\text{ne}}(\mathbf{r}) + (1 - a'_x) \frac{\delta E_{\text{Hx}}}{\delta \tilde{n}(\mathbf{r})}[\tilde{n}_{\Phi'}] + (1 - a'_c) \frac{\delta E_{\text{c}}}{\delta \tilde{n}(\mathbf{r})}[\tilde{n}_{\Phi'}].
$$

Using this potential and $\tilde{\Phi}'$ as v_{λ_1} and $\Phi_{\lambda_1}^{0}$ in Eq. (33), we obtain from Eqs. (36) and (39) the following expressions for the λ_1-2H energy:

$$
E_{x}^{a_x,a_c}_{\lambda_1,2\text{H}} = \left(\hat{\Phi}' \right) \left(\hat{T} + V_{\text{ne}}[\tilde{\Phi}'] + E_{\text{H}}[\tilde{n}'] + a_x E_{\text{HF}}[\tilde{\Phi}']
+ (1 - a_x) E_x[\tilde{n}']
+ (1 - a_c) E_c[\tilde{n}'] + a_c E_{\text{MP}}^{(2)} \right)
\right)
$$

$$
E_{xc}^{a_x,a_c}_{\lambda_1,2\text{H}} = E_{x}^{a_x,a_c}_{\lambda_1,2\text{H}} + a_c E_{\text{MP}}^{(2)}.
$$

where \tilde{n}' denotes the density of $\tilde{\Phi}'$ and $E_{\text{MP}}^{(2)}$ is the regular MP2 energy correction calculated with λ_1-2H orbitals and orbital energies. The λ_1-2H and λ_1-2DH exchange-correlation energies are therefore expressed respectively as

$$
E_{xc}^{a_x,a_c}_{\lambda_1,2\text{H}} = a_x E_{\text{HF}}[\tilde{\Phi}'] + (1 - a_x) E_x[\tilde{n}']
+ (1 - a_c) E_c[\tilde{n}'],
$$

and

$$
E_{xc}^{a_x,a_c}_{\lambda_1,2\text{H}} = a_x E_{\text{HF}}[\tilde{\Phi}'] + (1 - a_x) E_x[\tilde{n}']
+ (1 - a_c) E_c[\tilde{n}'] + a_c E_{\text{MP}}^{(2)}.
$$

Let us stress that the λ_1-2H and λ_1-2DH energies as defined in Eq. (50), and thus the corresponding exchange-correlation energies in Eqs. (51) and (52), are obtained from the same energy expressions as in the regular 2H and 2DH schemes, using standard α_x and α_c values. The difference comes from the orbitals which are calculated with the modified a'_x and a'_c coefficients.

E. Summary

A two-parameter extension of the DS1DH scheme proposed recently by Sharkas et al. has been derived. It is based on the explicit treatment of a fraction of mDExx which requires, in the general case, the calculation of an OEP for a partially-interacting system. Computing this OEP at the HF level of approximation leads to the DS2-HF-OEP scheme where the energy has a DS2H form. In addition, it was shown that, using any approximate potential, DS2DHs can be defined. The connection between the latter and regular double hybrids is made when neglecting both second-order corrections to the density and density scaling. In this case, the DS2-HF-OEP approximation reduces to the λ_1-OEP-2H one and the corresponding DS2DH scheme (which is based on the λ_1-OEP-2H potential) is then referred to as λ_1-OEP-2DH. As an alternative to the λ_1-OEP-2H calculation, the λ_1-2H scheme, where the OEP calculation is replaced by a 2H one with modified exchange and correlation coefficients, has been proposed. A λ_1-2DH approximation could thus be defined from the λ_1-OEP-2DH energy expression using λ_1-2H orbitals instead of the λ_1-OEP-2H ones. In this work, only λ_1-2H and λ_1-2DH results will be shown. The OEP-based schemes, which are currently under implementation, will be presented in a separate paper.

III. COMPUTATIONAL DETAILS

Both λ_1-2H and λ_1-2DH energy expressions in Eq. (50) can be simply implemented using a regular DFT code that can perform double hybrid calculations. A development version of the DALTON program package has been used in this work. In a first step, a λ_1-2H calculation is done. It consists in performing a 2H calculation with the modified exchange and correlation coefficients defined in Eq. (48). The corresponding orbitals and orbital energies are then used, in a second step, to compute the scaled MP2 term. In a third step, the λ_1-2H energy is obtained from a regular one-iteration 2H calculation, using the λ_1-2H orbitals as starting orbitals. Three conventional
IV. RESULTS AND DISCUSSION

In this section we compare, in terms of accuracy, the regular B2-PLYP, B2GP-PLYP and PBE0-DH double hybrids with their λ_1 variants, as defined in Sec. II D.

The potential curves computed for H_2, N_2, Be_2, Mg_2 and Ar_2. The following basis sets were used: cc-pVQZ7 for H_2 and N_2, aug-cc-pVQZ7 for Be_2 and Mg_2, and aug-cc-pVTZ7 for Ar_2.

V. CONCLUSIONS

A rigorous derivation of two-parameter double hybrids (2DHs) has been presented. It is based on the combination of the DS1DH scheme of Sharkas et al.7 with the explicit treatment of a fraction of multideterminantal exact exchange. The connection with regular double hybrids is made when neglecting both density scaling and second-order corrections to the density. It then appears, in this context, that the fraction of second-order Möller-Plesset (MP2) energy correlation is smaller or equal to the square of the fraction of Hartree Fock (HF) exchange. Interestingly, various conventional semi-empirical double hybrids fulfill this condition. In the light of those derivations, a new procedure for calculating the orbitals, which is more justified than the one used routinely, has been proposed. It still consists in performing a two-parameter hybrid calculation, but with modified exchange and correlation coefficients. Preliminary results presented in this work show that, in such a scheme which is referred to as λ_2-2DH, the MP2 energy contribution is, in absolute value, larger than the regular one. As a result, λ_1-2DH and regular double hybrid potential curves can, in some cases, differ significantly. In particular, for the tested weakly bound dimers, the λ_1 variants bind systematically more than the regular ones, which is often but not always an improvement. Including density scaling in the correlation functionals may of course change the results significantly. This still needs to be investigated. Moreover, optimized effective potentials (OEPs) based on a partially-interacting system could also be used to generate proper orbitals. Work is currently in progress in those directions.

Acknowledgments

E.F. thanks ANR (contract DYQUAMA), Andrew Teale for his help in computing the λ_1-2DH energy and his comments on this work, as well as Alexandrina Stoyanova and Julien Toulouse for fruitful discussions.
FIGURE CAPTIONS

Figure 1: Potential curves for H$_2$ (top) and N$_2$ (bottom). The “exact” curves are taken from Ref.?

Figure 2: Single hybrid (ΔE_{SH}) and scaled MP2 ($a_c \Delta E_{\text{MP2}}$) energy differences between λ_1- and conventional B2-PLYP, B2GP-PLYP and PBE0-DH double hybrids calculated for H$_2$ with respect to the bond distance (left); HOMO-LUMO gap for both λ_1- and conventional B2-PLYP, B2GP-PLYP and PBE0-DH double hybrids calculated for H$_2$ with respect to the bond distance (right).

Figure 3: Interaction energy curves for Be$_2$, Mg$_2$ and Ar$_2$. The accurate?, experimental? and CCSD(T) curves are taken as reference.
FIG. 1: Fromager, Journal of Chemical Physics

H_2 (cc–pVQZ)

N_2 (cc–pVQZ)
FIG. 2: Fromager et al, Journal of Chemical Physics

(a) \(H_2 \) (cc–pVQZ)

- \(\Delta E_{\text{SH}} \)
- \(\lambda_1 \)

(b) \(H_2 \) (cc–pVQZ)

- \(\Delta E_{\text{SH}} \)
- \(\lambda_1 \)
Interaction energy (µH) vs. Interatomic distance (a.u.)

Be$_2$ (aug–cc–pVQZ)

Mg$_2$ (aug–cc–pVQZ)

Ar$_2$ (aug–cc–pVTZ)
Functional	$a_x = \lambda_2$	α_x^2	α_c	$\lambda_1 = \alpha_x'$	α_c'
B2-PLYP7	0.53	0.28	0.27	0.43	0.19
B2T-PLYP7	0.60	0.36	0.31	0.38	0.14
mPW2-PLYP7	0.55	0.30	0.25	0.32	0.10
mPW2K-PLYP7	0.72	0.52	0.42	0.41	0.17
B2GP-PLYP7	0.65	0.42	0.36	0.40	0.16
B2π-PLYP7	0.602	0.362	0.273	0.303	0.092
PBE0-DH7 ($a_c = a_x^3$)	0.50	0.25	0.125	0.146	0.021

TABLE I: Regular (a_x, a_c) and modified (a_x', a_c') exchange-correlation coefficients corresponding to conventional double hybrids.