THERMODYNAMIC EXPANSION TO ARBITRARY MODULI

JEAN BOURGAIN, ALEX KONTOROVICH, AND MICHAEL MAGEE

Abstract. We extend the thermodynamic expansion results in [BGS11, MOW15] from square-free to arbitrary moduli by developing a novel decoupling technique and applying [BV12].

Contents

1. Statements 1
2. Proofs 2
References 9

1. Statements

In this short note, we use the “modular” expansion of [BV12], valid for arbitrary moduli, to extend the “archimedean”-thermodynamic expansion results in [BGS11, MOW15] from square-free to arbitrary moduli.

Theorem 1.1. Let Γ be a finitely-generated, Zariski dense, Schottky (that is, free, convex-cocompact) subgroup of $\text{SL}_2(\mathbb{Z})$, and let $\delta \in (0, 1)$ be its critical exponent. For an integer q, let $\Gamma(q) := \{ \gamma \in \Gamma : \gamma \equiv I \pmod{q} \}$. Then there is an $\varepsilon > 0$ and $q_0 \geq 1$ such that, for all integers q coprime to q_0, the resolvent of the Laplace operator

$$R_{\Gamma(q)} = (\Delta - s(1 - s))^{-1} : C^\infty_c(\Gamma(q) \backslash \mathbb{H}) \to C^\infty(\Gamma(q) \backslash \mathbb{H})$$

is holomorphic in the strip $\Re(s) > \delta - \varepsilon$, except for a simple pole at $s = \delta$.

This extends the statements of [BGS11, Theorems 1.4 and 1.5] and [OW14, Theorem 1.3] to arbitrary moduli q; see also the discussion below [MOW15, Theorem 1.1].

In a similar way, we deal with semigroups.

Date: July 30, 2015.
Bourgain is partially supported by NSF grant DMS-1301619.
Kontorovich is partially supported by an NSF CAREER grant DMS-1254788 and DMS-1455705, an NSF FRG grant DMS-1463940, an Alfred P. Sloan Research Fellowship, and a BSF grant.
Magee is partially supported by NSF grant DMS-1128155.
Theorem 1.2. The statement of [MOW15, Corollary 1.2] holds when specialized to the “Zaremba” (or continued fraction) setting of [MOW15, §6.1], without the restriction that the modulus q be square-free.

In particular, this justifies Remark 8.8 in [BK14]. We expect analogous arguments will also prove the uniform exponential mixing result in [OW14, Theorem 1.1] for arbitrary moduli.

2. Proofs

The proofs are a relatively minor adaptation of the argument in [MOW15], which builds on the breakthrough in [OW14] (the latter is itself based on key ideas in [BGS11] combined with [Dol98, Nau05, Sto11]). The point of departure from the treatment in [MOW15] is in the analysis of the measure $\mu_{s,x,\alpha}$ in equation (135), culminating in Lemma 4.8, valid for arbitrary moduli q. We will follow this treatment, henceforth importing all the concepts and notation from that paper.

Thus we are lead to study the measure $\mu_{s,x,\alpha}$ on $G = SL_2(q)$ given by

$$\mu = \mu_{s,x,\alpha} = \sum_{\alpha^N > \alpha} \exp(\tau_N + ib\tau_N(\alpha_N^N x))\delta_{c_{\alpha^N x}},$$

(2.1)

as in [MOW15, (135)]. Here $x \in I$, α^M is a fixed branch of T^{-M}, and $\alpha^N = \alpha^M \alpha^R$. For ease of exposition, we first assume that we are treating the full shift as in Theorem 1.2, and that we can therefore view sums over branches α^N as sums over globally (on I) defined branches of T^{-N}. Moreover, assume for simplicity that $\Gamma(\text{mod } q) = SL_2(q)$. (Both of these assumptions are satisfied in the Zaremba setting of [BK14].)

Our goal in this paper is to prove the following

Theorem 2.2. For $|a - s_0| < a_0$ and $\varphi \in E_q$ (as defined in [MOW15, §4.1]), we have

$$\|\mu * \varphi\|_2 \leq C q^{-1/4} B \|\varphi\|_2,$$

(2.3)

where

$$\|\mu\|_1 < B.$$

This is the replacement of [MOW15, Lemma 4.5] (bypassing the property (MIX)), and the rest of the proof of [MOW15, Lemma 4.8] follows analogously.

To begin, we pick some $o \in I$, and define the measure ν by:

$$\nu \equiv \exp(\tau^M(a^Mo))\mu_1,$$

(2.4)

where μ_1 is the measure given by

$$\mu_1 \equiv \sum_{\alpha^R} \exp(\tau^R(\alpha^Ro))\delta_{c_{\alpha^R o}},$$

(2.5)

Lemma 2.6. We have

$$|\mu| \leq C \nu.$$

(2.7)
Proof. Use the “contraction property” in [MOW15, (145-146)] and argue as in the proof of [MOW15, Lemma 4.4]. □

We will now manipulate μ_1. We assume that R can be decomposed further as

$$ R = R'L, \quad (2.8) $$

with L to be chosen later (a sufficiently large constant independent of R' and q).

Now split α^R as

$$ \alpha^R = \alpha^L \cdot \alpha^{L-1} \cdots \alpha^1, \quad (2.9) $$

where the α^k are branches of T^{-L}. This splitting (2.9) is uniquely determined by α^R. For each $k \geq 2$, we also split

$$ \alpha_k^L = \alpha_{k-1}^L \cdot \alpha^1, $$

where $\alpha_k^L = g_{i_k}$ for some i_k.

Write out

$$ \tau_a^R(\alpha^R o) = \sum_{i=0}^{R-1} \tau_a(T^i \alpha^R o) $$

$$ = \sum_{i=0}^{R'-1} \sum_{\ell=0}^{L-1} \tau_a(T^{i\ell} \alpha^R o) $$

$$ = \sum_{i=0}^{R'-1} \sum_{\ell=0}^{L-1} \tau_a(T^{i\ell} \alpha^L_{R'-i} \alpha^L_{R'-i-1} \cdots \alpha^L_1 o) $$

$$ = \sum_{i=0}^{R'-1} \tau_a^L(\alpha^L_{R'-i} \alpha^L_{R'-i-1} \cdots \alpha^L_1 o) \quad (2.10) $$

We now perform decoupling term by term in the above. We will use the shorthand

$$ \alpha^{Lj} \equiv \alpha^L_j \cdot \alpha^{L-1} \cdots \alpha^1.$$

For $j \geq 2$, we compare each term in (2.10) of the form

$$ \tau_a^L(\alpha^{Lj}(o)) $$

to

$$ \tau_a^L(\alpha^L_j \alpha^{L-1}_{j-1} o). $$

This gives

$$ \tau_a^L(\alpha^{Lj}(o)) = \tau_a^L(\alpha^L_j \alpha^{L-1}_{j-1} o) + O\left(\sup |\tau_a^L \circ \alpha^L_j| d(\alpha^{L-1}_{j-1} o, \alpha^{L-1}_{j-1} \alpha^L_1 \cdots \alpha^L_1 o)\right) $$

$$ = \tau_a^L(\alpha^L_j \alpha^{L-1}_{j-1} o) + O(\gamma^{-(L-1)}), \quad (2.11) $$

where we used [MOW15, (68)], valid when a is suitably close to s_0.

We will also use the formula

$$ \delta_{c}^{R}(\alpha^R o) = \delta_{c}^{L}(\alpha^L o) \cdot \delta_{c}^{L}(\alpha^{2L} o) \cdot \delta_{c}^{L}(\alpha^{3L} o) \cdot \cdots \cdot \delta_{c}^{L}(\alpha^{R'L} o). \quad (2.12) $$
Then combining (2.10) and (2.12), we write

$$\mu_1 = \sum_{\alpha_1^{L-1}, \ldots, \alpha_{R'}^{L-1}} \sum_{\alpha_1^1, \ldots, \alpha_{R'}^1} \exp(\tau_a^R(\alpha^R o)) \delta_{c_q^L(\alpha^R o)}$$

$$= \sum_{\alpha_1^{L-1}, \ldots, \alpha_{R'}^{L-1}} \sum_{\alpha_1^1, \ldots, \alpha_{R'}^1} \exp\left(\sum_{j=1}^{R'} \tau_{a_j}^L(\alpha^j L(o))\right) \times \delta_{c_q^L(\alpha^R o)} \delta_{c_q^L(\alpha^{2L} o)} \delta_{c_q^L(\alpha^{3L} o)} \ldots \delta_{c_q^L(\alpha^{R'L} o)},$$

(2.13)

We now decouple, replacing each term of the form

$$e^{\tau_{a_j}^L(\alpha^j L(o))} \mapsto e^{\tau_{a_j}^L(\alpha^j L-1 o)} \equiv \beta_j$$

with \(j \geq 2\), at a cost of a multiplicative factor of \(\exp(c_\gamma^{-L})\); here \(c\) is proportional to the implied constant of (2.11). When \(j = 1\), no replacement is performed, and we set \(\beta_1 \equiv e^{\tau_{a_1}^L(\alpha_1^L o)}\).

Inserting this into (2.13) gives

$$\mu_1 \leq \sum_{\alpha_1^{L-1}, \ldots, \alpha_{R'}^{L-1}} \sum_{\alpha_1^1, \ldots, \alpha_{R'}^1} \beta_1 \delta_{c_q^L(\alpha^L o)} \exp(c_\gamma^{-L})^{R'-1} \left(\sum_{\alpha_2^1, \ldots, \alpha_{R'}^1} \prod_{j=2}^{R'} \beta_j \delta_{c_q^L(\alpha^{2L} o)} \delta_{c_q^L(\alpha^{3L} o)} \ldots \delta_{c_q^L(\alpha^{R'L} o)}\right).$$

(2.14)

Note that, although \(\beta_j\) depends on all of the indices in \(\alpha_j^L \alpha_{j-1}^{L-1}\), because \(\alpha_{j-1}^{L-1}\) are fixed in the outermost sum, we treat \(\beta_j\) as a function of \(\alpha_j^1\).

We claim that each term \(c_q^L(\alpha^j L o)\) also only depends on one \(\alpha_j^1\). This is because we have \(\alpha^{jL} = g_{k_1} \ldots g_{k_L} \alpha^{(j-1)L}\) for some choice of \(g_{km}\), and hence for whatever \(o\) is chosen, we have

$$c_q^L(\alpha^{jL} o) = c_q(g_{k_{L-1}} \alpha^{(j-1)L} o) c_q(g_{k_{L-2}} g_{k_{L-1}} \alpha^{(j-1)L} o) \ldots c_q(g_{k_1} \ldots g_{k_L} \alpha^{(j-1)L} o),$$

see [MOW15, (69)]. Since \(g_{km}\) maps \(I\) into \(I_{km}\), we have

$$c_q(g_{km} o') = g_{km} \mod q$$

for any \(o' \in I\). Thus

$$c_q^L(\alpha^{jL} o) = g_{k_L} \ldots g_{k_1} \mod q.$$

(2.15)

Here

$$g_{k_L} = \alpha_j^1.$$

(2.16)
This means we may distribute the convolution and product over the sum, writing (2.14) as

\[\mu_1 \leq \exp(c\gamma^L)R'^{-1} \sum_{\alpha_{L-1}^1,\alpha_{L-1}^2,\ldots,\alpha_{R'}^1} \left(\sum_{\alpha_1^1} \beta_1 \delta_{c\gamma^L}^{\alpha_{L-1}} \right) \ast \left(\sum_{\alpha_2^1} \beta_2 \delta_{c\gamma^L}^{\alpha_{L-1}^2} \right) \ast \ldots \]

\[\ldots \ast \left(\sum_{\alpha_{R'}^1} \beta_{R'} \delta_{c\gamma^L}^{\alpha_{R'}\alpha_{L-1}} \right). \]

(2.17)

We give each convolved term in (2.17) a name, defining, for each \(j \geq 1 \), the measure

\[\eta_j = \eta_j^{(\alpha_{L-1}^j,\alpha_{L-1}^{j-1})} = \sum_{\alpha_1^j} \beta_1 \delta_{c\gamma^L}^{\alpha_{L-1}^j}. \]

(2.18)

We have thus proved the following

Proposition 2.19. We have

\[\mu_1 \leq \exp(c\gamma^L)R'^{-1} \sum_{\alpha_{L-1}^1,\alpha_{L-1}^2,\ldots,\alpha_{R'}^1} \eta_1 \ast \eta_2 \ast \ldots \ast \eta_{R'}. \]

(2.20)

Next we observe that each of the measures \(\eta_j \) is nearly flat, in that their coefficients in (2.18) differ by constants:

Lemma 2.21. For each \(j \geq 1 \) and any \(\alpha_1^j \) and \(\alpha_1'^j \), we have

\[\frac{\beta_j'}{\beta_j} \leq \exp(c\gamma^{L+1}). \]

(2.22)

Proof. The first \(L-1 \) terms of \(\beta_j \) and \(\beta_j' \) agree, so we again use the “contraction property” [MOW15, (145-146)]. \(\square \)

Since the measures \(\eta_j \) are nearly flat, we may now apply the expansion result in [BV12].

Theorem 2.23. Assume \(L \) is sufficiently large (depending only on \(\Gamma \)). Then for \(\varphi \in L^0_0(G) \), we have

\[\| \eta_j \ast \varphi \|_2 \leq (1 - C_1) \| \eta_j \|_1 \| \varphi \|_2, \]

(2.24)

Here \(C_1 > 0 \) depends on \(\Gamma \) but not on \(q \).

To prove this theorem, we need the following simple

Lemma 2.25. Let \(\pi \) be a unitary \(G \)-representation on a Hilbert space \(\mathcal{H} \), and assume that the operator \(A \) acts on \(\mathcal{H} \) via

\[A \varphi = \sum_{j \in J} \pi(h_j) \varphi, \]
for some $h_j \in G$ and indexing set J. Assume that A has the “spectral gap” property: there is some $C_0 > 0$ so that
\[
\langle A\varphi, \varphi \rangle \leq (1 - C_0) |J| \| \varphi \|^2. \tag{2.26}
\]
For some positive coefficients $\kappa_j > 0$, let \tilde{A} act on \mathcal{H} as
\[
\tilde{A}\varphi = \sum_{j \in J} \kappa_j \pi(h_j)\varphi,
\]
and assume that the L^∞ norm of the coefficients is controlled by the L^1 norm, in the sense that for some $K \geq 1$,
\[
\max \kappa_j \leq K \bar{\kappa}, \tag{2.27}
\]
where
\[
\bar{\kappa} := \frac{1}{|J|} \sum_j \kappa_j
\]
is the coefficient average. Then \tilde{A} has the following “spectral gap”:
\[
\langle \tilde{A}\varphi, \varphi \rangle \leq \bar{\kappa} (1 - C_0 + \sqrt{K - 1}) |J| \| \varphi \|^2. \tag{2.28}
\]

Proof. This is an exercise in Cauchy-Schwarz. \qed

With this lemma, it is a simple matter to give a

Proof of Theorem 2.23.

We will apply Lemma 2.25 with $\mathcal{H} = L^2_0(G)$ and π the right-regular representation. Recalling (2.18), we can write
\[
\| \eta_j * \varphi \|_2^2 = \langle \tilde{A}\varphi, \varphi \rangle,
\]
where \tilde{A} acts by convolution with the measure
\[
\sum_{\alpha_j, \alpha_j'} \beta_j \beta_j' \delta_{c_q(\alpha_j \cdot \alpha_j')^{-1}}.
\]
Using the notation of (2.15) and (2.16), note that
\[
c_q^{L}(\alpha^{L} \cdot \alpha'^{L})^{-1} = \alpha_j^1 \cdot g_{k_{L-1}} \cdots g_{k_1} (\alpha_j'^{L} \cdot g_{k_{L-1}} \cdots g_{k_1})^{-1} = \alpha_j^1 (\alpha_j'^{L})^{-1}.
\]
The indexing set J of Lemma 2.25 then runs over pairs α_j, α_j', the coefficients κ_j are the products $\beta_j \beta_j'$, and the elements h_j are $\alpha_j^1 (\alpha_j'^{L})^{-1}$.

That the operator A (without coefficients) has a spectral gap (2.26) is precisely the statement proved in [BV12], with C_0 independent of q.\footnote{Here we need the products $\alpha_j^1 (\alpha_j'^{L})^{-1}$ to generate group with Zariski closure SL_2. In the Zaremba case, it is important that each α_j^1 is a product of two generators $\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$. Otherwise, e.g., the products $\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}^{-1} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$ could all be lower-triangular.} The bound (2.27) follows
from (2.22) with

\[K = \exp(2c\gamma^{-L+1}). \]

Note also that

\[|J| \bar{\kappa} = \left(\sum_{\alpha_j} \beta_j \right)^2 = \| \eta_j \|_1^2. \]

Choosing \(L \) sufficiently large (depending only on \(\Gamma \)), one can make \(K \) sufficiently close to 1 so that (2.28) gives (2.24), as claimed. \(\square \)

Corollary 2.29. Assume that \(L \) is sufficiently large (depending only on \(\Gamma \)). Then there is some \(C_2 > 0 \) also depending only on \(\Gamma \) so that, for any \(\varphi \in L^2_0(G) \), we have

\[\| \mu_1 * \varphi \|_2 \leq (1 - C_2)^R \| \mu_1 \|_1 \| \varphi \|_2. \]
\[\text{(2.30)} \]

Proof. Beginning with (2.20), apply (2.24) \(R' \) times to get

\[\| \mu_1 * \varphi \|_2 \leq \exp(c\gamma^{-L}) \sum_{\alpha_1^{L-1} \ldots \alpha_{R'}^{L-1}} (1 - C_1)^{R'} \prod_{j=1}^{R'} \| \eta_j \|_1 \| \varphi \|_2. \]

Applying contraction yet again gives

\[\sum_{\alpha_1^{L-1} \ldots \alpha_{R'}^{L-1}} \prod_{j=1}^{R'} \| \eta_j \|_1 \leq \exp(c\gamma^{-L}) \prod_{j=1}^{R'} \| \eta_j \|_1 \| \varphi \|_2. \]

whence (2.30) follows on taking \(L \) large enough and recalling (2.8). \(\square \)

Returning to the measure \(\nu \) in (2.4), we have from (2.30) that

\[\| \nu * \varphi \|_2 \leq (1 - C_2)^R \| \nu \|_1 \| \varphi \|_2. \]
\[\text{(2.31)} \]

To conclude Theorem 2.2, we need the following

Lemma 2.32. Let \(\mu \) be a complex distribution on \(G = SL_2(q) \) and assume that \(|\mu| \leq C\nu \). Let \(E_q \subset L^2_0(G) \) be the subspace defined in [MOW15, §4.1], and let \(A : E_q \to E_q \) be the operator acting by convolution with \(\mu \). Then

\[\| A \| \leq C' \left[\frac{|G| \| \tilde{\nu} * \nu \|_2}{q} \right]^{1/4}. \]
\[\text{(2.33)} \]

Here \(\tilde{\mu}(g) = \mu(g^{-1}) \).

Proof. Note that the operator \(A^* A \) is self-adjoint, positive, and acts by convolution with \(\tilde{\mu} * \mu \). Let \(\lambda \) be an eigenvalue of \(A^* A \). Since \(A \) acts on \(E_q \), Frobenius gives that \(\lambda \) has multiplicity \(\text{mult}(\lambda) \) at least \(Cq \). We then have that

\[\lambda^2 \text{ mult}(\lambda) \leq \text{tr}[(A^* A)^2] = \sum_{g \in G} \langle (A^* A)^2 \delta_g, \delta_g \rangle = \sum_{g \in G} \| \tilde{\mu} * \mu * \delta_g \|_2^2 \]

\[= |G| \| \tilde{\mu} * \mu \|_2^2 \leq C^4 \| \tilde{\nu} * \nu \|_2^2. \]
The claim follows, as \(\|A\| = \max_\lambda \lambda^{1/2} \).

We apply the lemma to \(\mu \) in (2.1) using (2.7), giving
\[
\|\mu \ast \varphi\|_2 \leq C q^{1/2} \|\widetilde{\nu} \ast \nu\|_2^{1/2}.
\]
(2.34)

It remains to estimate the \(\nu \) convolution.

Proposition 2.35. Choosing \(R \) to be of size \(C \log q \) for suitable \(C \), we have that
\[
\|\widetilde{\nu} \ast \nu\|_2 \leq 2 \frac{\|\nu\|_2^2}{|G|^{1/2}}.
\]
(2.36)

Proof. Let
\[
\psi \equiv \delta_e - \frac{1}{|G|} 1_G \in L_0^2(G),
\]
and note that \(\|\psi\|_2 < 1 \). Then
\[
\|\widetilde{\nu} \ast \nu\|_2 = \|\widetilde{\nu} \ast \nu \ast \delta_e\|_2 \leq \|\widetilde{\nu} \ast \nu \ast \left(\frac{1}{|G|} 1_G \right)\|_2 + \|\widetilde{\nu} \ast \nu \ast \psi\|_2
\]
\[
\leq \frac{\|\nu\|_2^2}{|G|^{1/2}} + \|\nu\|_1 \|\nu \ast \psi\|_2,
\]
where we used the triangle inequality and Cauchy-Schwarz. Since \(\psi \in L_0^2(G) \), we apply (2.31), giving
\[
\|\nu \ast \psi\|_2 < (1 - C_2)^R \|\nu\|_1 < \frac{\|\nu\|_1}{|G|^{1/2}}
\]
by a suitable choice of \(R = C \log q \). The claim follows immediately. □

Finally, we give a

Proof of Theorem 2.2. Insert (2.36) into (2.34) and use (2.7) and \(|G| > C q^3 \). Clearly (2.3) holds with \(B = C \|\nu\|_1 \). □

2.1. Modifications for Subshifts.

We sketch here the modifications needed to handle the case \(\Gamma \) is a Schottky group as in Theorem 1.1. Then \(I = \bigcup_k I_k \), where to each \(I_k \) is assigned some \(g_k \in \text{SL}_2(\mathbb{Z}) \) such that \(T \mid I_k = g_k^{-1} \) and \(c_0 \mid I_k \equiv g_k \). The shift is restricted to exclude any letter \(g_k \) being followed by \(g_k^{-1} \). Note that while in [MOW15] it is stated that the values \(c_0(I) \) should freely generate a semigroup, the arguments also apply equally to the Schottky case.

In the decomposition (2.13), each sum on \(\alpha^1_j \) needs to be restricted to be admissible, once \(\alpha^L_{j-1} \) and \(\alpha^L_j \) are chosen (and each itself is an admissible sequence). The base points \(o \in I \) need to be chosen in the appropriate domains of branches of \(T^{-L} \), etc.; we only ever use the contraction principle, so these choices have no effect.

The following issue arises when \(\Gamma \) is generated by two elements, \(g \) and \(h \), say. Suppose \(\alpha^L_j \) ends in \(g \) while \(\alpha^L_{j-1} \) starts with \(g^{-1} \). Then in the \(\alpha^1_j \) sum, only \(h \) and \(h^{-1} \) are admissible, and this does not generate a Zariski dense group for the
THERMODYNAMIC EXPANSION TO ARBITRARY MODULI

operator A in the proof of Theorem 2.23. To fix this issue, one instead decomposes each block α_j^L as $\alpha_j^{L-2}\alpha_j^2$, that is, isolating two indices instead of one. With this adjustment, even if α_j^{L-2} ends in g and α_j^{L-2} starts in g^{-1}, the admissible α_j^2 sum runs over the elements $gh, gh^{-1}, hh, h^{-1}g^{-1}, h^{-1}h^{-1}$. It is then easy to see that the operator A in the proof of Theorem 2.23 generates a Zariski dense group (if Γ has more than two generators, this is clear). Now, this group and its generator set (and hence also its expansion constant C_0 in (2.26)) depend on α_j^{L-2} and α_j^{L-2} (or rather just their starting/ending letters). But as Γ is finitely generated, only a finite number of groups/generators arise in this way, and we simply take C_0 to be the worst one. With these modifications, the proof goes through as before.

References

[BGS11] J. Bourgain, A. Gamburd, and P. Sarnak. Generalization of Selberg’s 3/16th theorem and affine sieve. Acta Math., 207:255–290, 2011. 1, 2

[BK14] J. Bourgain and A. Kontorovich. On Zaremba’s conjecture. Annals Math., 180(1):137–196, 2014. 2

[BV12] Jean Bourgain and Péter P. Varjú. Expansion in $SL_d(\mathbb{Z}/q\mathbb{Z})$, q arbitrary. Invent. Math., 188(1):151–173, 2012. 1, 5, 6

[Dol98] Dmitry Dolgopyat. On decay of correlations in Anosov flows. Ann. of Math. (2), 147(2):357–390, 1998. 2

[MOW15] Michael Magee, Hee Oh, and Dale Winter. Expanding maps and continued fractions, 2015. Preprint, arXiv:1412.4284v2. 1, 2, 3, 4, 5, 7, 8

[Nau05] Frédéric Naud. Expanding maps on Cantor sets and analytic continuation of zeta functions. Ann. Sci. École Norm. Sup. (4), 38(1):116–153, 2005. 2

[OW14] Hee Oh and Dale Winter. Uniform exponential mixing and resonance free regions for convex cocompact congruence subgroups of SL(2,\mathbb{Z}), 2014. Preprint, arXiv:1410.4401v2. 1, 2

[Sto11] Luchezar Stoyanov. Spectra of Ruelle transfer operators for axiom A flows. Nonlinearity, 24(4):1089–1120, 2011. 2

E-mail address: bourgain@math.ias.edu

IAS, PRINCETON, NJ

E-mail address: alex.kontorovich@rutgers.edu

RUTGERS UNIVERSITY, NEW BRUNSWICK, NJ

E-mail address: mmagee@math.ias.edu

IAS, PRINCETON, NJ