ABSTRACT

Introduction Relationships between endogenous female sex hormones and glycemic traits remain understudied, especially in men. We examined whether endogenous 17α-hydroxyprogesterone (17-OHP), progesterone, estradiol (E2), and free estradiol (fE2) were associated with glycemic traits and glycemic deterioration.

Research design and methods 921 mainly middle-aged and elderly men and 390 perimenopausal/postmenopausal women from the German population-based Cooperative Health Research in the Region of Augsburg (KORA) F4/FF4 cohort study were followed up for a median of 6.4 years. Sex hormones were measured at baseline using mass spectrometry. We calculated regression coefficients (β) and ORs with 95% CIs using multivariable-adjusted linear and logistic regression models for Z-standardized hormones and glycemic traits or glycemic deterioration (ie, worsening of categorized glucose tolerance status), respectively.

Results In the cross-sectional analysis (n=1222 men and n=594 women), in men, 17-OHP was inversely associated with 2h-glucose (2hG) (β=−0.067, 95% CI −0.120 to −0.013) and fasting insulin (β=−0.074, 95% CI −0.118 to −0.030), and positively associated with Quantitative Insulin Sensitivity Check Index (QUICKI) (β=0.061, 95% CI 0.018 to 0.105). Progesterone was inversely associated with fasting insulin (β=−0.047, 95% CI −0.088 to −0.006) and positively associated with QUICKI (β=0.041, 95% CI 0.001 to 0.082). E2 was inversely associated with fasting insulin (β=−0.068, 95% CI −0.116 to −0.020) and positively associated with QUICKI (β=0.059, 95% CI 0.012 to 0.107). fE2 was positively associated with glycated hemoglobin (HbA1c) (β=0.079, 95% CI 0.027 to 0.132). In women, 17-OHP was positively associated with fasting glucose (FG) (β=0.068, 95% CI 0.014 to 0.123). E2 was positively associated with FG (β=0.080, 95% CI 0.020 to 0.141) and HbA1c (β=0.121, 95% CI 0.062 to 0.180). In the sensitivity analyses restricted to postmenopausal women, we observed a positive association between 17-OHP and glycemic deterioration (OR=1.518, 95% CI 1.033 to 2.264).

Conclusions Inter-relations exist between female sex hormones and glucose-related traits among men. Endogenous progesterogens and estrogens appear to be involved in glucose homeostasis not only in women but in men as well.

Significance of this study

What is already known about this subject?

- Endogenous progesterone and estradiol (E2) were associated with type 2 diabetes (T2D) and related glycemic traits in previous cross-sectional studies in postmenopausal women.

What are the new findings?

- We demonstrated that endogenous progesterone, 17α-hydroxyprogesterone (17-OHP), the product of progesterone hydrolysis, and E2 are independently associated with glycemic traits in men as well.

- Among postmenopausal women only, we demonstrated a positive association of endogenous 17-OHP with fasting glucose and glycemic deterioration.

How might these results change the focus of research or clinical practice?

- Although regarded as female sex hormones, endogenous progesterogens and estrogens appear to be involved in glucose homeostasis not only in women but in men as well.

INTRODUCTION

Extensive evidence from human and animal studies suggests that sex hormones are involved in modifying cardiometabolic risk, in particular diabetes development. These differences in risk may be explained by changes in body composition, alterations in glucose metabolism, and insulin sensitivity-related traits among men. Endogenous progesterogens and estrogens appear to be involved in glucose homeostasis not only in women but in men as well. Further well-powered studies assessing causal associations between endogenous female sex hormones and glycemic traits are warranted.
due to declining sex hormone concentrations associated with aging and menopause. However, whether glycemic traits specifically mediate the relationship between female sex hormones and glycemic deterioration remains controversial.

Estrogens and progestogens comprise female sex hormones. Estradiol (E2) is the most potent and abundant endogenous estrogen. Higher levels of endogenous E2 have been associated with increased type 2 diabetes (T2D) risks in several population-based settings. Conversely, when used in hormone replacement therapy (HRT), E2 confers beneficial effects on glycemic control by reducing glycated hemoglobin (HbA1c) levels, fasting glucose (FG), and fasting insulin. Another endogenous hormone - progesterone, important especially during pregnancy, has been found to have positive associations with FG and HbA1c, and inverse associations with HOMA-β in both men and women. The product of progesterone hydrolysis, 17α-hydroxyprogesterone (17-OHP), has been observed to be elevated in patients with T2D. A study conducted in pregnant women showed that administration of 17-OHP caproate, a progestin-only contraceptive used to prevent preterm delivery, was associated with increased postchallenge glucose levels and increased risk of gestational diabetes (GD). Notably, women who develop GD are at higher risk of developing T2D later in life.

Both estrogens and progestogens exist endogenously in men as well, but they are not considered as clinically relevant as they are in women—leading to the lack of studies regarding these sex hormones in men. There is evidence concerning detrimental effects of estrogen deficiency in men. However, evidence for progestogens is limited. Available studies involving endogenous estrogen are mainly cross-sectional, have limited sample sizes, and lack comprehensive glycemic outcomes. Additionally, we are not aware of any epidemiological study to date investigating endogenous 17-OHP as an exposure. Therefore, this study was conducted to explore the associations of endogenous 17-OHP, progesterone, E2, and free estradiol (IE2) with FG, 2h-glucose (2hG), HbA1c, fasting insulin, and Quantitative Insulin Sensitivity Check Index (QUICKI), separately in men and in perimenopausal/postmenopausal women. Furthermore, we examined prospective associations of these female sex hormones with glycemic deterioration defined as aberrant progressions from NGT or pre-diabetes to either pre-diabetes or diabetes during 6.4 years of follow-up.

METHODS

Study population and selection criteria

The data for the study were obtained from the Cooperative Health Research in the Region of Augsburg (KORA) baseline (F4) (2006–2008) and follow-up (FF4) studies (2013–2014). Both studies are follow-up examinations of the KORA S4 study (1999–2001) conducted in Augsburg, Southern Germany, and two surrounding counties. The study design has been described previously in detail. The KORA F4 study included 3080 participants aged between 32 and 81 years, of whom 2161 also participated in KORA FF4. Three participants who withdrew consent were removed from the analyses. After further exclusions as described in figure 1, the final sample for the cross-sectional analysis comprised 1816 participants (1222 men and 594 women), while the prospective analysis sample comprised 1311 participants (921 men and 390 women). Participants taking antidiabetic medications were excluded from both cross-sectional and prospective analyses examining continuous glycemic traits as outcomes.

Assessment of the outcomes

Previously known T2D was a self-report that could be validated by a physician or medical chart review, or as self-reported current use of glucose-lowering medication. Participants without known T2D were given a standard 75g, oral glucose tolerance test (OGTT). Blood samples were taken without stasis after an overnight fast of 28 hours and 2 hours after glucose solution ingestion. Serum glucose was measured using hexokinase-G6PD (GLUFlex; Dade Behring, USA). In KORA FF4, glucose levels were quantified in serum either by using the glucose colorimetric assay (Dimension Vista 1500

Figure 1 Flowchart showing sample sizes and exclusions. HbA1c, glycated hemoglobin; KORA, Cooperative Health Research in the Region of Augsburg; NGT, normoglycemia; OGTT, oral glucose tolerance test; QUICKI, Quantitative Insulin Sensitivity Check Index; T2D, type 2 diabetes.
Assessment of the exposures: sex hormone measurements

Progesterone, 17-OHP, and E2 were quantified in serum using liquid chromatography–electrospray ionization–tandem mass spectrometry and the Absolute IDQ Stero17 Kit (BIOCRATES Life Sciences, Austria) (online supplemental material 1). The calibration, imputation, and normalization of sex hormone measurements are described in detail in online supplemental material 2.

Assessment of covariates

In KORA F4, total cholesterol and high-density lipoprotein (HDL) cholesterol were measured in fresh serum by enzymatic methods (CHOL Flex and AHDL Flex, Dade Behring). Triglycerides were measured in fresh serum enzymatically (glycerine phosphate oxidase peroxidase method) (TGL Flex, Dade Behring). C reactive protein (CRP) was quantified from frozen plasma using a high-sensitivity latex-enhanced nephelometric assay (BN II Analyzer, Dade Behring). Thyroid-stimulating hormone (TSH) was measured using electrochemiluminescent methods (Dimension Vista Systems; Siemens, Germany). Serum creatinine was measured in fresh serum with a modified Jaffe test (KREA Flex, Dade Behring) according to IDMS standards. The estimated glomerular filtration rate (eGFR) was calculated using the Chronic Kidney Disease Epidemiology Collaboration (CKD-EPI) formula. Information on age, sex, statin medication, hypertension, smoking status, alcohol consumption, physical activity, and history of parental diabetes was assessed using a standardized interview, performed by trained medical staff. Hypertension was defined as having a blood pressure of ≥140/90 mm Hg or taking antihypertensive medication, given that the participants were aware of having hypertension. Information on medication use within 7 days before examination was obtained from a database. Smoking status was categorized as never smoked, former smokers, and current smokers (smoking≥1 cigarette a day). Alcohol consumption was categorized into three groups: no consumption (0 g/day), moderate consumption (men 0.1–29.9 g/day and women 0.1–19.9 g/day), and high consumption (men≥20 g/day and women≥20 g/day). Physical activity was estimated through two separate four-category interview questions regarding the time spent per week on sports activities in summer and winter. Possible answers were (1)>2 hours, (2) 1–2 hours, (3) <1 hour, and (4) none. Participants who had a total score of <3, obtained by summing the numbers (1)–(4) relating to winter and summer, were classified to be ‘physically active’. Parental diabetes was categorized as no parental diabetes history, unknown parental diabetes history, or ≥1 parent with diabetes history.

Statistical analyses

Baseline characteristics of normally distributed continuous covariates are expressed as means with corresponding SD. Non-normally distributed continuous covariates were expressed as medians with the corresponding 25th and 75th percentiles. Proportions are expressed as percentages. Differences between participants with and without glycemic deterioration were calculated using Mann-Whitney U tests, while differences in categorical variables were compared using Kruskal-Wallis tests. Skewed variables were natural log (ln)-transformed to improve normalization. Z-standardization was performed sex-specifically for exposures, respectively, to achieve comparability despite their different scales. Due to significant differences between participants with and without glycemic deterioration, we performed analyses with and without glycemic deterioration as covariates.
interactions between sex and some hormones regarding
glycemic traits (online supplemental table 1), sex-
stratified analyses were employed throughout this study.

Linear regression was performed to explore the cross-
sectional and prospective relationships between progesto-
gen and estrogen with glycemic traits, such as FG, 2hG,
HbA1c, fasting insulin, and QUICKI. β-estimates with 95%
CIs for Z-scores of sex hormones are given as per one
sex-specific SD increase in ln-transformed progestogens
and estrogens, respectively. Association analyses focusing
on pathophysiological mechanisms were adjusted for F4
T2D risk factors such as age, waist circumference, height,
ln(triglycerides), total cholesterol:HDL cholesterol ratio,
actual hypertension (yes/no), and use of statins (yes/no)
(model 1). Additional adjustments included lifestyle risk
factors such as smoking status (never/former/current),
alcohol consumption (no/low/high), and physical
activity (active/inactive), and additionally, ln(CRP)
(continuous), ln(TSH) (continuous), eGFR (contin-
uous), and history of parental diabetes (no history/
unknown history/≥1 parent with diabetes) (model 2). In
the prospective analyses, there were further adjustments
for F4 values of respective glycemic traits.

We calculated ORs with 95% CIs using logistic regres-
sion to investigate associations between female sex
hormones and glycemic deterioration. These associa-
tions were additionally investigated for non-linearity by
testing whether the introduction of a restricted cubic
spline, with three knots placed at the 30th, 60th, and 90th
percentiles, would improve the model fit where medians
were set as the reference values for each exposure.

The confounders that constitute our models are
common T2D risk factors, along with variables that
affect T2D pathophysiology and circulating sex hormone
levels. We adjusted for statin usage as they can increase

triglyceride levels and total cholesterol:HDL cholesterol ratio; were more likely to be hypertensive; had elevated
CRP; and were more likely to have ≥1 parent with diabetes compared with those without glycemic deterioration (ie, non-cases). Among women, cases had lower TSH levels. In men, cases had higher 17-OHP, E2, and fE2 levels compared with non-cases. In women, sex hormone levels were not significantly different between cases and non-cases. At F4 and FF4, cases had higher FG, 2hG, HbA1c, fasting insulin, and lower QUICKI values compared with non-cases in men and women (table 1).

Cross-sectional associations of endogenous progestogens
and estrogens with glycemic traits

Cross-sectional associations are summarized in figure 2.
In men, 17-OHP was inversely associated with 2hG
(β=−0.074, 95% CI −0.130 to −0.019), fasting insulin
(β=−0.093, 95% CI −0.140 to −0.046), and positively
asociated with QUICKI (β=0.079, 95% CI 0.032 to 0.126)
after adjustment using model 1. On further adjust-
ment (model 2), the significance persisted for all three
outcomes: 2hG (β=−0.067, 95% CI −0.120 to −0.013),
fasting insulin (β=−0.074, 95% CI −0.118 to −0.030), and
QUICKI (β=0.061, 95% CI 0.018 to 0.105). Inverse asso-
ciations were detected between progesterone and fasting
inulin in model 1 (β=−0.052, 95% CI −0.096 to −0.008).
The association remained significant after further adjust-
ment for T2D risk factors (model 2: β=−0.045, 95% CI
−0.086 to −0.004) and additional adjustment for albumin
(β=−0.047, 95% CI −0.088 to −0.006). Also, progesterone
was initially associated with QUICKI in model 1 (β=0.045,
95% CI 0.001 to 0.088), but the association became non-
significant after further adjustment (model 2, β=0.040,
95% CI −0.001 to 0.080) (online supplemental table 2). In women, 17-OHP was positively associated with fasting
glucose (β=0.071, 95% CI 0.015 to 0.127) in model 1. The
significance persisted after further adjustment in model
2 (β=0.068, 95% CI 0.014 to 0.123). No further associations
were found between 17-OHP and progesterone and glycemic
traits in women (online supplemental table 3).

In men, after adjustment using model 1, E2 was inversely
associated with 2hG (β=−0.059, 95% CI −0.118 to −0.001),
fasting insulin (β=−0.113, 95% CI −0.163 to −0.062), and
positively associated with QUICKI (β=0.105, 95% CI 0.054
to 0.155). After further adjustment in model 2, significant
associations ceased for 2hG (β=−0.024, 95% CI −0.081 to
0.033), while it persisted for fasting insulin (β=−0.068,
95% CI −0.116 to −0.020) and QUICKI (β=0.059, 95%
CI 0.012 to 0.107). On further adjustment with SHBG,
the associations of E2 with 2hG (β=−0.013, 95% CI −0.073
to 0.046) and fasting insulin (β=−0.055, 95% CI −0.105
to −0.005) did not change significantly. However, the
association between E2 and QUICKI ceased (β=0.044,
95% CI −0.005 to 0.093). fE2 was found to be positively
associated with HbA1c, after adjustment in models 1
(β=0.012, 95% CI 0.004 to 0.021) and 2 (β=0.079, 95%
CI 0.027 to 0.132). No further associations were found
between fE2 and glycemic traits in men. In women, no

RESULTS

Baseline characteristics

Men and women with glycemic deterioration (ie, cases)
were older; had larger waist circumference and higher

BMJ Open Diab Res Care 2021;9:e001951. doi:10.1136/bmjdc-2020-001951
Table 1 Descriptive characteristics of men and perimenopausal/postmenopausal women in KORA F4/FF4*

	Men (n=796)	Perimenopausal/postmenopausal women† (n=331)				
	Non-cases‡ (n=604)	Cases‡ (n=192)	P value	Non-cases‡ (n=247)	Cases‡ (n=84)	P value
Age (years)	51.6 (12.2)	58.5 (10.9)	<0.001	59.7 (8.5)	62.4 (8.5)	0.005
Height (cm)	177 (6.9)	175 (6.9)	<0.001	161 (6.1)	160 (6.4)	0.068
Waist circumference (cm)	95 (89,103)	101 (95,109)	<0.001	85 (78,93)	93 (88,102)	<0.001
Triglycerides (mmol/L)	1.26 (0.87,1.74)	1.56 (1.07, 2.4)	<0.001	1.03 (0.75,1.39)	1.24 (0.99,1.78)	<0.001
Total cholesterol/HDL cholesterol	4.17 (3.51,5.00)	4.54 (3.85,5.47)	<0.001	3.60 (3.02,4.19)	4.10 (3.47,4.78)	<0.001
Hypertension (%)	28.6	50.0	<0.001	28.3	52.3	<0.001
Statin use (%)	6.9	17.7	<0.001	10.5	9.5	0.957
Smoking status						
Never (%)	32.9	37.5	0.081	54.3	63.1	0.306
Former (%)	46.4	49.0		31.2	27.4	
Current (%)	20.7	13.5		14.6	9.5	
Alcohol consumption						
None (%)	16.4	20.3	0.435	35.2	45.2	0.258
Moderate (%)	66.2	64.1		49.8	42.9	
High (%)	17.4	15.6		14.9	11.9	
Physically active (%)	59.6	57.3	0.629	63.9	51.2	0.052
CRP (mg/L)	0.85 (0.44,1.78)	1.28 (0.67, 2.28)	<0.001	1.05 (0.53,2.05)	1.96 (1.02,4.06)	<0.001
eGFR (mL/min/1.73 m²)	92.1 (14.9)	86.3 (13.3)	<0.001	86.2 (14.5)	84.5 (14.7)	0.354
TSH (mIU/L)	1.25 (0.87,1.85)	1.36 (0.91, 1.99)	0.085	1.32 (0.87,1.88)	1.18 (0.75,1.65)	0.038
Parental history of diabetes (%)						
Both parents without diabetes	65.9	48.9	<0.001	60.3	47.6	0.091
Unknown parental history	14.1	26.6		16.2	17.8	
≥1 parent with diabetes	20.0	24.5		23.5	34.5	
17-OHP (nmol/L)	2.88 (2.12,3.94)	2.51 (1.93,3.52)	0.002	0.77 (0.52,1.21)	0.87 (0.52,1.34)	0.267
Progesterone (nmol/L)	0.20 (0.12,0.32)	0.17 (0.10,0.31)	0.063	0.12 (0.04,0.23)	0.12 (0.06,0.19)	0.762
E2 (nmol/L)	0.49 (0.36,0.68)	0.42 (0.29,0.54)	<0.001	0.17 (0.09,0.28)	0.17 (0.10,0.27)	0.970
fE2 (nmol/L)	0.010 (0.007,0.016)	0.008 (0.006, 0.013)	<0.001	0.003 (0.001,0.004)	0.003 (0.001, .005)	0.406
F4						
FG (mmol/L)	5.22 (4.94,5.50)	5.61 (5.33,5.89)	<0.001	5.00 (4.78,5.33)	5.42 (5.17,5.94)	<0.001
2hG (mmol/L)	5.50 (4.67,6.33)	6.61 (5.71,7.40)	<0.001	5.39 (4.56,6.47)	6.72 (5.77,7.40)	<0.001
HbA1c (%)	5.3 (5.1,5.5)	5.5 (5.4,5.8)	<0.001	5.4 (5.3,5.6)	5.6 (5.4, 5.9)	<0.001

Continued
significant associations were observed between E2 and glycemic traits after adjustment in models 1 and 2, and after further adjustment for SHBG. However, fE2 was positively associated with fasting glucose after adjusting with models 1 and 2, respectively (model 2: \(\beta=0.080, 95\% \text{ CI} 0.020 \text{ to } 0.141 \) and HbA1c (model 2: \(\beta=0.121, 95\% \text{ CI} 0.062 \text{ to } 0.180 \)) (online supplemental table 3). Substitution of waist circumference and height with body mass index did not significantly change the results (data not shown).

In the sensitivity analyses, among men, the inverse association between progesterone and fasting insulin remained significant in model 2 after additional adjustment for albumin. As for the association between progesterone and QUICKI, additional adjustment for albumin in model 2 reinstated the significance (\(\beta=0.041, 95\% \text{ CI} 0.001 \text{ to } 0.082 \)), which was previously made insignificant after adjustment in model 2 (\(\beta=0.040, 95\% \text{ CI} -0.001 \text{ to } 0.082 \)) (online supplemental table 2). The positive association between E2 and QUICKI remained significant after additional adjustment with SHBG in model 2. In women, additional adjustments with albumin and SHBG did not significantly change the results (online supplemental table 3). After perimenopausal women were excluded, associations between sex hormones and fasting glucose, as well as HbA1c, generally became stronger. Specifically, progesterone (\(\beta=0.071, 95\% \text{ CI} 0.007 \text{ to } 0.136 \)) and E2 (\(\beta=0.076, 95\% \text{ CI} 0.014 \text{ to } 0.137 \)) became significantly associated with fasting glucose and progesterone with HbA1c (\(\beta=0.071, 95\% \text{ CI} 0.008 \text{ to } 0.133 \)) (online supplemental table 3).

In men, there were interactions between 17-OHP and progesterone (online supplemental table 6). Selected results are shown in figure 3. Lower fasting insulin levels were observed when both 17-OHP and progesterone levels were at the lowest or highest (figure 3A). Higher QUICKI values were observed in men when both 17-OHP and progesterone concentrations were at the lowest or highest. Lower QUICKI values were observed in men with the highest progesterone and lowest 17-OHP levels and also with the highest 17-OHP and lowest progesterone levels (figure 3B). In women, no interactions were detected between 17-OHP and progesterone on fasting glucose (online supplemental table 6).

Glycemic deterioration

No significant associations between progestogens and estrogens with glycemic deterioration were observed in men and women (figure 4). After removal of perimenopausal women in the sensitivity analysis, 17-OHP was significantly associated with glycemic deterioration in postmenopausal women (OR=1.518, 95% CI 1.033 to 2.264) (online supplemental table 4). We also assessed for non-linear relationships across different progestogen and estrogen concentrations (online supplemental figure 2). However, there were no indications for significant non-linear relationships (online supplemental table 5).
Prospective associations of endogenous progestogens and estrogens with glycemic traits

In men, progesterone was positively associated with fasting insulin ($\beta=0.052$, 95% CI 0.005 to 0.098) and inversely associated with QUICKI ($\beta=-0.048$, 95% CI −0.095 to −0.001).

Figure 2 Cross-sectional associations of endogenous progestogens and estrogens with glycemic traits in men and women of the KORA F4 cohort*. Results are expressed as the change in 1 log unit of the continuous outcome (standardized Z-score β-estimate with 95% CI) per 1 sex-specific SD increase in the respective progestogens and estrogens adjusted for baseline age, waist circumference, height, triglycerides, total cholesterol:high-density lipoprotein cholesterol ratio, hypertension, statin use, smoking status, alcohol consumption, physical activity, CRP, eGFR, TSH, and parental history of diabetes (model 2). *Men and perimenopausal/postmenopausal women who did not take antidiabetic medication. CRP, C reactive protein; E2, Estradiol; eGFR, estimated glomerular filtration rate; F4, baseline; FG, fasting glucose; FI, fasting insulin; HbA1c, glycated hemoglobin; 2hG, 2h-glucose; KORA, Cooperative Health Research in the Region of Augsburg; 17-OHP, 17α-hydroxyprogesterone; QUICKI, Quantitative Insulin Sensitivity Check Index; TSH, thyroid-stimulating hormone.

Figure 3 Interaction effects between 17-OHP and progesterone regarding fasting serum insulin and QUICKI. Contour plots estimated by linear regression models demonstrate the changes in fasting insulin and QUICKI for different concentrations of 17-OHP and progesterone. The predicted fasting serum insulin and QUICKI values were presented with gradients, ranging from black (low fasting insulin and QUICKI values) to white (high fasting insulin and QUICKI values). (A) P value for interaction=0.002. (B) P value for interaction=0.011. Linear predictions were adjusted for baseline age, waist circumference, height, triglycerides, total cholesterol:high-density lipoprotein cholesterol ratio, hypertension, statin use, smoking status, alcohol consumption, physical activity, CRP, eGFR, TSH, and parental diabetes history. 17-OHP, 17α-hydroxyprogesterone; CRP, C reactive protein; eGFR, estimated glomerular filtration rate; QUICKI, Quantitative Insulin Sensitivity Check Index; TSH, thyroid-stimulating hormone.
Epidemiology/Health services research

−0.000) after adjustment in model 1. However, associations between progesterone and fasting insulin (β=0.044, 95% CI −0.002 to 0.091) and QUICKI (β=−0.040, 95% CI −0.088 to 0.007) ceased after adjustment in model 2 (online supplemental table 7). In women, no associations were found between progestogens and estrogens and glycemic traits regardless of adjustments in models 1 and 2 and further adjustments for SHBG and albumin (online supplemental table 8).

DISCUSSION

In this population-based study of mainly middle-aged and elderly participants, we found that progestogens and estrogens were associated with glucose and insulin traits in men, whereas in women, associations were found only with glucose traits. Specifically, in the cross-sectional analyses in men, we found that higher levels of 17-OHP, progesterone, and E2 were associated with lower fasting insulin, whereas higher 17-OHP and E2 were associated with higher QUICKI values. Concerning glucose traits among men, higher 17-OHP levels were associated with lower 2hG concentrations whereas higher fE2 levels were associated with higher HbA1c concentrations. Among women, positive associations were observed between 17-OHP and fasting glucose and between fE2 and fasting glucose as well as HbA1c. After exclusion of perimenopausal women, we observed significant associations of progesterone, 17-OHP and E2 with fasting glucose and of progesterone with HbA1c. Furthermore, we found significant interactions between 17-OHP and progesterone on fasting insulin levels and QUICKI in men. In the prospective analyses, we found no associations in both men and women after multivariable adjustment in the main analyses. However, in the sensitivity analysis, the exclusion of perimenopausal women revealed that postmenopausal women with elevated baseline 17-OHP levels had an increased risk of glycemic deterioration.

Congruent to our results, a cross-sectional study conducted in a rural Chinese population found positive associations of progesterone with fasting glucose, HbA1c, and an increased risk of prevalent pre-diabetes and T2D in men and women. Furthermore, in the study of Jiang et al in men and women, progesterone was inversely associated with HOMA-2β, an index of β-cell function, but not with fasting insulin as seen among men in the present study. The slightly diverging observations could be due to differences in ethnicity, lifestyle factors, socioeconomic status, and sample size between the populations. A recent study in men and women by Lu et al reported positive correlations between 17-OHP and fasting glucose, 2hG, and HbA1c. This was consistent with our observations of a positive association between fasting glucose and 17-OHP among women. However, the study by Lu et al performed correlation analyses without appropriate
confounder adjustments, therefore limiting its interpretability. A Swedish longitudinal study (n=240) conducted among opposite-sex twins found no association between progesterone and diabetes risk. This corresponds to our null findings regarding the association of progestogens with glycemic deterioration. In the present study, the cross-sectional and prospective effect estimates of progesterone on fasting insulin and QUICKI show a change of direction in men. This could be due to the presence of (negative) confounding or random chance (given the insignificant results of model 2). However, our cross-sectional results are in line with current experimental evidence as described further.

Mechanisms by which progestogens alter glucose and insulin metabolism are nebulous, but there are some possible explanations. Elevated 17-OHOP can induce hyperglycemia in female mice, and CYP17A1 is suggested to play a role in modulating this effect. CYP17A1 converts progesterone to 17-OHOP, and Lu et al proposed that increased 17-OHOP levels due to aberrant expression of CYP17A1 in obese mice increase blood glucose via the glucocorticoid (GC) receptor. GCs can confer hyperglycemia and gluconeogenesis and could explain the positive association between 17-OHOP and fasting glucose in women. However, in men, we saw that 17-OHOP levels were negatively associated with 2hG levels. Among men, higher 17-OHOP levels could improve insulin sensitivity, thus lowering glucose levels. Specific variants in genes coding for CYP17A1 were suggestive of T2D susceptibility. Wang et al showed that polymorphism rs12413409, corresponding to CYP17A1 under-expression, was associated with increased fasting glucose only in men. Hence, the role of the polymorphism in glucose metabolism specific to men could explain our observations. We also observed interactions between 17-OHOP and progesterone on fasting insulin in men. Imbalanced progestogen concentrations can cause aberrant GC receptor signaling due to competitive binding and may thereby contribute to suboptimal insulin levels. Consequently, perturbations in glucose homeostasis may arise. Until now, 17-OHOP and diabetes risk have been implicated only in pregnant women. However, we showed that increased endogenous 17-OHOP could also impact glucose homeostasis later in life among postmenopausal women. Fluctuating sex hormones during the cycle in perimenopausal women could have confounded our results when perimenopausal and postmenopausal women were analyzed together.

In men, E2 was negatively associated with fasting insulin levels and positively with insulin sensitivity in our study. Our observations are consistent with a study by Yan et al where they found that treatment with E2 improves insulin sensitivity in hepatocytes. A Mendelian randomization study by Wang et al found a causative protective role of SHBG against T2D. However, weaker causal estimates of the causative protective role of SHBG compared with those observed from meta-analyses of prospective studies suggest that the observed protective role of SHBG could be confounded, as opposed to direct SHBG action. This is consistent with our results as we saw that the positive associations between E2 and insulin sensitivity were independent of SHBG and typical T2D risk factors. Our results showed persistent positive associations between fE2 and HbA1c in both men and women. fE2 is the portion of E2 that is not bound to SHBG and is free to activate estrogen receptors (ERs). Under normal circumstances, E2 suppresses hepatic gluconeogenesis, potentially mediated through the activation of ERα-phosphoinositide 3-kinase-Akt-Foxo1 signaling. Due to the age-related E2 decline in both men and postmenopausal women, we hypothesize that hepatic gluconeogenesis increases, thereby causing elevated blood glucose and hence increased HbA1c levels over time. Prolonged hyperglycemia can cause oxidative stress in β cells. E2 can prevent acute oxidative injury in β-cells in a hyperglycemic state by suppressing the β-cell translocation gene 2 (BTG2)-p53-Bax pathway. ERα localization in pancreatic β cells shows that E2 can confer protective effects against oxidative stress directly on β cells and additionally in hepatocytes to prevent insulin-deficient diabetes. A meta-analysis showed women undergoing HRT had alterations in metabolic syndrome components, thereby supporting that perturbations in sex hormone levels can impair glucose homeostasis. These observations, together with mechanistic evidence, are consistent and support our results.

Strengths and limitations
To our knowledge, this study is the first population-based study to evaluate the relations between endogenous 17-OHOP and glucose metabolism in both men and women. We have a relatively large sample size for the cross-sectional analyses from a well-characterized population-based study in men and women. This allowed us to adjust for numerous potential confounders. Another strength of this study is the prospective design with OGTT data available at both baseline and follow-up, allowing us to investigate not only the development of clinically diagnosed T2D but also of early derangements in glucose metabolism and newly OGTT-diagnosed T2D. However, this study also has limitations. While we adjusted our results for many established T2D risk factors, we did not have detailed dietary information, and the possibility of residual confounding cannot be precluded. Additionally, in the cross-sectional analyses, we cannot clearly distinguish cause and effect. Also, we could not identify women with polycystic ovarian syndrome (PCOS) in our dataset as the information is unavailable. PCOS symptoms persist even in postmenopausal women and could cause perturbations in sex hormone concentrations and, thus, metabolic processes. Lastly, we could not account for the effects of change in endogenous progestogens and estrogens, as the sex hormones were measured only at baseline.

CONCLUSIONS
Our findings support an inter-relation between endogenous female sex hormones and altered glycemic
metabolism not only in middle-aged and elderly women but also in men. However, future studies should corroborate our findings in both men and women, in well-powered settings, with sufficient follow-up, and investigate directional associations through Mendelian randomization.

Author affiliations
1Institute of Epidemiology, Helmholtz Zentrum München, German Research Center for Environmental Health, Munich-Neuherberg, Germany
2Institute for Medical Information Processing, Biometry, and Epidemiology (IBE), Ludwig-Maximilians-Universität (LMU), Munich, Germany
3International Helmholtz Research School for Diabetes, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
4German Center for Diabetes Research (DZD), München-Neuherberg, Germany
5Research Unit, Molecular Endocrinology and Metabolism, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
6Institute for Biometrics and Epidemiology, German Diabetes Center (DDZ), Leibniz Institute for Biometrics and Epidemiology, Biometry, and Epidemiology (IBE), Ludwig-Maximilians-Universität (LMU), Munich, Germany
7Medizinische Klinik und Poliklinik IV, Ludwig-Maximilians-Universität (LMU), Munich, Germany
8German Center for Cardiovascular Research (DZHK), Partner Site Hamburg/Kiel/Lübeck, Lübeck, Germany
9Institute of Biometrics and Epidemiology, German Diabetes Center (DDZ), Leibniz Institute of Epidemiology, Helmholtz Zentrum München, Ludwig-Maximilians-Universität (LMU), Munich, Germany
10Lehrstuhl für Experimentelle Genetik, Technische Universität München, München, Germany
11Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
12German Centre for Cardiovascular Research (DZHK), Partner Site Munich Heart Alliance, München, Germany

Acknowledgements We thank the members of the Research Unit Molecular Endocrinology and Metabolism, Helmholtz Zentrum München, Germany, for their excellent technical work in sample preparation and quantification. We also extend our gratitude to all members of the Institute of Epidemiology, Helmholtz Zentrum München, and the KORA field staff in Augsburg who planned and conducted the study.

Contributors LHYL and BT designed the study. AC, TZ, CP, WR, JA, AP, and BT contributed data. UHYL performed all data analyses with guidance from FS and BT, and is the guarantor of this work. Result interpretation was done by UHYL, JN, and BT. LHYL wrote the manuscript with guidance from JN, and BT. All authors critically revised and approved the final version of the manuscript.

Funding This study was supported in part by a research grant within the German Center for Cardiovascular Research (DZHK) shared expertise program (DZHK B 17-035 SE) and by funding from the Helmholtz Alliance ‘Aging and Metabolic Programming, AMPRO’. LHYL is supported through the International Helmholtz Research School for Diabetes. TZ is supported by the German Center for Cardiovascular Research (DZHK B17110101, FKZ28120710102, and FKZ 811X2710160). The Cooperative Health Research in the Region of Augsburg study was initiated and financed by the Helmholtz Zentrum München, German Research Center for Environmental Health, which is funded by the German Federal Ministry of Education and Research and by the State of Bavaria.

Competing interests None declared.

Patient consent for publication Not required.

Ethics approval The KORA F4 and FF4 studies were carried out following the Declaration of Helsinki, including written consent from all participants. All study methods were approved by the ethics committee of the Bavarian Chamber of Physicians (Ethical Approval Number 06068).

Provenance and peer review Not commissioned; externally peer reviewed.

Data availability statement Data are available upon reasonable request. The data are subject to national data protection laws and restrictions were imposed by the ethics committee of the Bavarian Chamber of Physicians to ensure data privacy of the study participants. Therefore, data cannot be made freely available in a public repository. However, data can be requested through an individual project agreement with Cooperative Health Research in the Region of Augsburg (KORA). via the online portal KORA.parst (https://epi.helmholtz-muenchen.de/). Please contact the corresponding author, Barbara Thorand, in case of further questions.

Supplemental material This content has been supplied by the author(s). It has not been vetted by BMJ Publishing Group Limited (BMJ) and may not have been peer-reviewed. Any opinions or recommendations discussed are solely those of the author(s) and are not endorsed by BMJ. BMJ disclaims all liability and responsibility arising from any reliance placed on the content. Where the content includes any translated material, BMJ does not warrant the accuracy and reliability of the translations (including but not limited to local regulations, clinical guidelines, terminology, drug names and drug dosages), and is not responsible for any error and/or omissions arising from translation and adaptation or otherwise.

Open access This is an open access article distributed in accordance with the Creative Commons Attribution 4.0 Unported (CC BY 4.0) license, which permits others to copy, redistribute, remix, transform and build upon this work for any purpose, provided the original work is properly cited, a link to the licence is given, and indication of whether changes were made. See: https://creativecommons.org/licenses/by/4.0/.

ORCID ids
Lina Hui Ying Lau http://orcid.org/0000-0001-8265-4689
Alexander Cecil http://orcid.org/0000-0002-1430-1790
Florian Schiederecker http://orcid.org/0000-0002-5222-2348
Wolfgang Rathmann http://orcid.org/0000-0001-7804-1740
Cornelia Prehn http://orcid.org/0000-0002-1274-4715
Andreas Lechner http://orcid.org/0000-0002-0276-291X
Jerzy Adamski http://orcid.org/0000-0001-9259-0199
Annette Peters http://orcid.org/0000-0001-6645-0985
Barbara Thorand http://orcid.org/0000-0002-8416-6440

REFERENCES
1 Trumunt B, Smati S, Grandgeorge N, et al. Sex differences in metabolic regulation and diabetes susceptibility. Diabetologia 2020;63:453–61.
2 Brown MD, Korytkowski MT, Zmuda JM, et al. Insulin sensitivity in postmenopausal women: independent and combined associations with hormone replacement, cardiovascular fitness, and body composition. Diabetes Care 2000;23:1731–6.
3 Brussaard HE, Govers Leveren JA, Frolich M, et al. Short-term oestrogen replacement therapy improves insulin resistance, lipids and fibrinolysis in postmenopausal women with NIDDM. Diabetologia 1997;40:843–9.
4 Golden SH, Dobis AS, Vaidya D, et al. Endogenous sex hormones and glucose tolerance status in postmenopausal women. J Clin Endocrinol Metab 2007;92:1289–95.
5 Ding EL, Song Y, Malik VS, et al. Sex differences of endogenous sex hormones and risk of type 2 diabetes: a systematic review and meta-analysis. JAMA 2006;295:1288–99.
6 Ferrara A, Kärtner AJ, Ackerson LM, et al. Hormone replacement therapy is associated with better glycemic control in women with type 2 diabetes: the Northern California Kaiser Permanente diabetes registry. Diabetes Care 2001;24:1144–50.
7 Zhang Y, Howard BV, Cowan LD, et al. The effect of estrogen use on levels of glucose and insulin and the risk of type 2 diabetes in American Indian postmenopausal women : the strong heart study. Diabetes Care 2002;25:500–4.
8 Jiang J, Liu X, Liu X, et al. The effect of progesterone and pregnenolone on diabetes status in Chinese rural population: a dose-response analysis from Henan rural cohort. Eur J Endocrinol 2019;181:603–14.
9 Lu Y, Wang E, Chen Y, et al. Obesity-Induced excess of 17-hydroxyprogesterone promotes hyperglycemia through activation of glucocorticoid receptor. J Clin Invest 2020;130:3791–804.
10 Eke AC, Sheffield J, Graham EM. 17α-Hydroxyprogesterone caprote and the risk of glucose intolerance in pregnancy: a systematic review and meta-analysis. Obstet Gynecol 2019;133:468–75.
11 Kim C, Newton KM, Knopp RH. Gestational diabetes and the incidence of type 2 diabetes: a systematic review. Diabetes Care 2002;25:1862–8.
12 Oetzel M, Mukhopadhyay AK. Progesterone: the forgotten hormone in men? Aging Male 2004;7:236–57.
13 Zirilli L, Rochira V, Dazzi C, et al. Human models of aromatase deficiency. J Steroid Biochem Mol Biol 2008;109:212–8.

BMJ Open Diab Res Care 2021;9:e001951. doi:10.1136/bmjdrcc-2020-001951

BMJ Open Diab Res Care first published as 10.1136/bmjdrcc-2020-001951 on 11 February 2021. Downloaded from http://drc.bmj.com/ on September 14, 2023 by guest. Protected by
14 Mauvais-Jarvis F, Clegg DJ, Hevener AL. The role of estrogens in control of energy balance and glucose homeostasis. Endoc Rev 2013;34:309–38.

15 Nilsson SE, Fransson E, Birsmar K. Relationship between serum progesterone concentrations and cardiovascular disease, diabetes, and mortality in elderly Swedish men and women: an 8-year prospective study. Gend Med 2009;6:433–43.

16 Laxy M, Knoll G, Schunk M, et al. Quality of diabetes care in Germany improved from 2000 to 2007 to 2014, but improvements diminished since 2007. Evidence from the population-based KorA studies. PLoS One 2016;11:e0164704.

17 Alberti KG, Zimmet PZ. Definition, diagnosis and classification of diabetes mellitus and its complications. Part 1: diagnosis and classification of diabetes mellitus provisional report of a who consultation. Diabet Med 1999;15:539–53.

18 Huth C, von Toerne C, Schederecker F, et al. Protein markers and risk of type 2 diabetes and prediabetes: a targeted proteomics approach in the KorA F4/FF4 cohort study. Eur J Epidemiol 2019;34:409–22.

19 Schederecker F, Cecil A, Prehn C, et al. Sex hormone-binding globulin, androgens and mortality: the KORA-F4 cohort study. Endocr Connect 2020;9:326.

20 Rinaldi S, Geay A, Déchaud H, et al. Validity of free testosterone and free estradiol determinations in serum samples from postmenopausal women by theoretical calculations. Cancer Epidemiol Biomarkers Prev 2002;11:1065–71 https://cebp.aacrjournals.org/content/11/10/1065.long

21 Levey AS, Stevens LA, Schmid CH, et al. A new equation to estimate glomerular filtration rate. Ann Intern Med 2009;150:604–12.

22 Mühlicher N, Behrend C, Stark R, et al. Datenbankgestützte online-verfassung von arzneimitteln im rahmen gesundheitswissenschaftlicher studien-erfahrungen mit der IDOM-Software. Informat Biom Epidemiol Med Biol 2003;34:601–11.

23 Meisinger C, Thondard B, Schneider A, et al. Sex differences in risk factors for incident type 2 diabetes mellitus: the MONICA Augsburg cohort study. Arch Intern Med 2002;162:82–9.

24 Sattar NA, Ginsberg HN, Ray K, et al. The use of statins in people at risk of developing diabetes mellitus: evidence and guidance for clinical practice. Atheroscler Suppl 2014;15:1–15.

25 Krassas GE, Poppe K, Gliore D. Thyroid function and human reproductive health. Endocr Rev 2010;31:702–55.

26 Tsai EC, Matsumoto AM, Fujimoto WY, et al. Association of bioavailable, free, and total testosterone with insulin resistance: influence of sex hormone-binding globulin and body fat. Diabetes Care 2004;27:861–8.

27 André C, Jacquot Y, Truong TT, et al. Analysis of the progesterone displacement of its human serum albumin binding site by beta-estradiol using biochromatographic approaches: effect of two salt modifiers. J Chromatogr B Analyt Technol Biomed Life Sci 2003;76:267–81.

28 Gregory MC, Denisov IG, Ginkovka YV, et al. Kinetic solvent isotope effect in human P450 CYP17A1-mediated androgen formation: evidence for a reactive peroxygen intermediate. J Am Chem Soc 2013;135:16245–7.

29 Bose SK, Hutson I, Harris CA. Hepatic glucocorticoid receptor plays a greater role than adipose GR in metabolic syndrome despite renal compensation. Endocrinology 2016;157:4943–60.

30 Wang L, Niu Y-M, Wu S-S, et al. A study on the association between polymorphisms in the cytochrome P450 family 17 subfamily a member 1 gene region and type 2 diabetes mellitus in Han Chinese. Front Endocrinol 2019;9:323.

31 Attardi BJ, Zeleznik A, Simhan H, et al. Comparison of progesterone and glucocorticoid receptor binding and stimulation of gene expression by progesterone, 17-alpha hydroxyprogesterone caproate, and related progestins. Am J Obstet Gynecol 2007;197:599.e1–599.e7.

32 Soares CN, Cohen LS. The perimenopause, depressive disorders, and hormonal variability. Sao Paulo Med J 2001;119:78–83.

33 Yan H, Yang W, Zhou F, et al. Estrogen improves insulin sensitivity and suppresses gluconeogenesis via the transcription factor FoxO1. Diabetes 2019;68:291–304.

34 Wang Q, Kangas AJ, Soininen P, et al. Sex hormone-binding globulin associations with circulating lipids and metabolites and the risk for type 2 diabetes: observational and causal effect estimates. Int J Epidemiol 2015;44:623–37.

35 Araki E, Oyadomari S, Mori M. Endoplasmic reticulum stress and diabetes mellitus. Intern Med 2003;42:7–14.

36 Kooptiwut S, Kaewin S, Semsrart N, et al. Estradiol prevents high glucose-induced β-cell apoptosis by decreased BTG2 expression. Sci Rep 2018;8:12256.

37 Le May C, Chu K, Hu M, et al. Estrogens protect pancreatic beta-cells from apoptosis and prevent insulin-deficient diabetes mellitus in mice. Proc Natl Acad Sci U S A 2006;103:9232–7.

38 Liu Y, Shimizu I, Oyama T, et al. Protective effect of estradiol on hepatocytic oxidative damage. World J Gastroenterol 2002;8:363–6.

39 Salpeter SR, Walsh JME, Ormiston TM, et al. Meta-Analysis: effect of hormone-replacement therapy on components of the metabolic syndrome in postmenopausal women. Diabetes Obes Metab 2006;8:538–54.