Aggression, Aggression-Related Psychopathologies and Their Models

József Haller*

Department of Criminal Psychology, Faculty of Law Enforcement, University of Public Service, Budapest, Hungary

Neural mechanisms of aggression and violence are often studied in the laboratory by means of animal models. A multitude of such models were developed over the last decades, which, however, were rarely if ever compared systematically from a psychopathological perspective. By overviewing the main models, I show here that the classical ones exploited the natural tendency of animals to defend their territory, to fight for social rank, to defend themselves from imminent dangers and to defend their pups. All these forms of aggression are functional and adaptive; consequently, not necessarily appropriate for modeling non-natural states, e.g., aggression-related psychopathologies. A number of more psychopathology-oriented models were also developed over the last two decades, which were based on the etiological factors of aggression-related mental disorders. When animals were exposed to such factors, their aggressiveness suffered durable changes, which were deviant in the meaning that they broke the evolutionarily conserved rules that minimize the dangers associated with aggression. Changes in aggression were associated with a series of dysfunctions that affected other domains of functioning, like with aggression-related disorders where aggression is just one of the symptoms. The comparative overview of such models suggests that while the approach still suffers from a series of deficits, they hold the important potential of extending our knowledge on aggression control over the pathological domain of this behavior.

Keywords: aggression, psychopathologies, violence, laboratory models, strength, limitations

INTRODUCTION

Why are people aggressive and how can this behavior be kept under control? These two questions appear crucial in a world where over 20 million Disability-Adjusted Life Years are lost each year due to interpersonal violence, which ranks it the 18th on the list of the World Health Organization, ahead of many serious diseases including various forms of cancer (World Health Organization [WHO], 2022). Moreover, in terms of deaths causes, violence is in an even more “prominent” position (World Health Organization [WHO], 2015). Solutions to the problem of aggression are currently sought by various disciplines from sociology to psychology and criminology (McGuire, 2008; Meier and Wilkowski, 2013; Glowacki and McDermott, 2022).

Biomedical research is among the major research avenues to address the questions formulated above, for two reasons. Firstly, the most dangerous form of aggression, i.e., criminal violence is quite frequently associated with psychiatric disorders. Although estimates vary, the share of mentally disordered violent offenders was as high 90-100% in some studies (Freedman and Hemenway, 2000; Gostisha et al., 2014). Secondly, criminal violence is associated with a series of neural dysfunctions ranging from prefrontal deficits to amygdala dysfunctions and deficient prefrontal cortex-amygdala
none
threats (Parmigiani et al., 1988). Although this behavioral profile resembles that seen in models of abnormal aggression (see below) the behavior is functional in mothers and serves inclusive fitness, i.e., the transmission of genes to the next generation.

The visible burrow system is one of the main experimental setups that allows the study of aggression in the context of complex social environments (Blanchard et al., 1988). In this and similar models, rodent colonies live together for long periods of time in large enclosures that include burrows, e.g., natural living spaces for rodents. The colonies may be composed of males only or may be mixed-sex, in which case pups and juveniles will soon become parts of the colony. The paradigm allows the study of complex social relationships, e.g., the formation and maintenance of social hierarchies and their temporal evolution. Such colonies were also used to study the interaction between group-living and the ontogenetic development of emotionality (Kaiser et al., 2007) and the social integration of animals submitted to models of abnormal aggression (Tulogi et al., 2014). Although ecologically highly valid, this model requires considerable laboratory space, costly living enclosures for subjects, and is labor-intensive. Probably for this reason, more simple variants of the model were developed, where the enclosure was smaller, lacked burrows, and the length of cohabitation was reduced to a couple of weeks (Millard and Gentsch, 2006; Mikics et al., 2007).

The behavioral variables studied in all these models are the latency of the first bite, biting attack counts, threatening and defensive postures, behaviors indicative of dominance relationships (dominant and submissive postures), amiable interactions (e.g., social investigation) and several aggression-unrelated activities like exploration and resting. Aggressiveness is considered increased when bite latencies are reduced, bite counts and the duration of threatening and dominant postures are increased. Decreased times devoted to defense and submission may also indicate increased aggressiveness. Increased aggression is usually associated with decreased amiable interactions.

Strength and Limitations
The main advantage of classical aggression models is their high ethological validity and robustness. Studying aggression by these models is relatively simple because the behavior is expressed spontaneously once incentives and opportunities are present or are created in a laboratory context. Importantly, a variety of aggression types are modeled, which have their human equivalents, and as such, findings may be generalizable to humans (Blanchard, 2017).

The strength of such models, however, are at the same time their limitations. All the aggressions observed in classical models are functional. The defense of a territory and fighting for social rank (in the resident-intruder test and colony models, respectively) ensure access to food, mating partners and other resources. Escaping fearful situations by counterattacks serves survival when no other escape is available, whereas the defense of pups serves inclusive fitness. This is in line with the biological approach, which conceptualizes aggression as a form of competition that consists in the delivery of harm for gaining access to resources and reproduction. Although wording may differ from author to author, the essence of the approach remained the same over the last century (Craig, 1917; Jalabert et al., 2018). This approach has several implications, which are highly important from the point of view of modeling aggression and violence in the laboratory. Firstly, it involves that aggression per se is a natural behavior, moreover, indispensable for survival and genetic fitness. Not surprisingly, it is present in all the species that are anatomically able to perform it from worms, cephalopods, insects, to vertebrates and mammals (Fitzpatrick and Wellington, 1983; Reinhard and Rowell, 2005; Huffard et al., 2010). As such, aggression is maintained evolutionarily because it is adaptive. Secondly, being an essential behavior, it is naturally innate. Individuals can perform it without prior learning as shown by studies in animals raised in total social isolation (Harlow, 1965). Although animals and humans may improve their fighting abilities by experience (e.g., during play-fighting), the basic motor patterns are innate.

For the society, however, psychopathological forms of aggression are more problematic than functional aggression, not lastly because they are persistent and are embedded in an array of dysfunctions called mental disorders or psychopathological states. In contrast to functional aggression, mental disorders are no natural states. According to the Diagnostic and Statistical Manual of Mental Disorders (DSM), they are diagnosed when a perception, feeling, or behavior is inappropriate to the situation, it lasts long or occurs frequently over a prolonged period and causes distress and/or impairments in important areas of functioning (American Psychiatric Association, 2013). Although aggression-related psychopathologies may occur early, they are not inherited, and their development can be assigned to certain causes, called etiological factors.

Classical models undoubtedly contributed greatly to the understanding aggression as a biological phenomenon. One can rather confidently assume that behaviors observed in simple laboratory environments are analogous to those displayed in nature and studies in a variety of species including lower animals show that the mechanisms governing aggression are rather universal. For instance, serotonin decreases aggressiveness in fish, amphibians, reptiles, birds, rats, humans, moreover, octopuses (Deckel, 1996; Clotfelter et al., 2007; Ten Eyck, 2008; Mosienko et al., 2012; Dennis et al., 2013; Edsinger and Dölen, 2018; da Cunha-Bang and Knudsen, 2021). At the same time, however, it is questionable whether an innate and functional behavior shaped by evolution can model behavioral alterations prompted by environmental insults, i.e., etiological factors. Among other reasons supporting such doubts are studies showing that the neural mechanisms underlying deviant animal aggression are quite different from those underlying natural forms (see below).

MODELS OF PSYCHOPATHOLOGICAL AGGRESSION
In principle, abnormal aggression models offer the possibility of understanding not aggression as a natural behavior but unwanted aggression as a psychopathological phenomenon. From a broader perspective, the development of abnormal aggression models marked a shift from the biological to the biomedical approach,
which, as such, may provide a new way to answer the questions asked in the first sentence of this study.

The Principles of Developing Psychopathologic Aggression Models

Laboratory models of abnormal aggression assumed that humans and animals respond similarly to environmental insults. Consequently, the etiological factors of aggression-related psychopathologies would elicit behavioral changes that are analogous (to a certain extent at least) to those seen in disordered people (Figure 1). As such, the central element of an abnormal aggression model is the etiological factor, more accurately its laboratory model.

In the models developed so far, the effects of etiological factors on aggression were investigated in the resident-intruder test, one of the oldest models of aggression. In contrast to earlier practices, however, qualitative changes became more important than the classical quantitative measures (e.g., bite latency, bite counts etc.) because it was observed that under the effect of etiological factors the adaptive behavior transformed into a disruptive one (Haller et al., 2001; Haller and Kruk, 2006; Miczek et al., 2013).

Particularly, it was observed that rodents submitted to various etiological factors of aggression-related psychopathologies, the rules governing natural aggression were violated: aggression became unnecessarily dangerous, unpredictable to social partners, and unsafe for evolutionarily valuable individuals (females, pups). For the rules of evolutionarily sustainable aggression and their violation by animals exposed to etiological factors of aggression-related psychopathologies see Table 1. As such, the behavioral patterns observed in these models fulfills the basic criteria of psychopathologies set forth by the DSM-5 (American Psychiatric Association, 2013). Behaviors were inappropriate to the contexts where they were expressed, the condition was long-lasting; moreover, was difficult to correct, and caused significant impairments in critical areas of functioning. In addition, alterations in aggression were associated with a series of physiological dysfunctions, e.g., augmented, or blunted stress responses, and behavioral deficits, e.g., decreased sociability, increased anxiety-like and depression-like behaviors, deficits in social integration, etc. As with aggression-related psychiatric disorders, dysfunctional aggression seems to be embedded in a wider array of dysfunctions.

The Main Abnormal Aggression Models

There are a number of abnormal aggression models, each being based on a particular etiological factor of aggression-related psychopathologies. I will present these models below grouped according to the nature of etiological factors. For a summary, see Table 2.

Genetics

The heritability of aggression-related psychopathologies is rather robust; it may account for over 50% of variance in aggression (attention deficit-hyperactivity disorder: 51%, Young et al., 2009; antisocial personality disorder: 51%, Rosenström et al., 2017; conduct disorder with callous-unemotional traits: 75%; Viding et al., 2013; psychopathy: 52%; Hicks et al., 2012). As such, heritability may be considered an etiological factor per se.

The heritability of aggressiveness prompted the development of selection lines for aggression. Three such selection lines were created so far: the short attack latency mice (van Oortmerssen and Bakker, 1981), the Turku aggressive (Lagerspetz and Lagerspetz, 1971), and the North Carolina 900 selection lines (Cairns et al., 1983). All three displayed excessive aggression; in addition, the short attack latency mice delivered attacks on vulnerable body targets (head, throat, belly), showed reduced signaling of attack intentions, disregarded appeasement signals (submission by the opponent), and attacked females (Haller et al., 2006; Natarajan and Caramaschi, 2010). As such, these selection lines displayed abnormal aggression, and may be used as models of aggression-related psychopathologies. In theory, they may be used to model the role of the genetic component of psychopathological aggression, especially so as the behavioral profile of the three lines is markedly different (Natarajan et al., 2009). This suggests that the selection process affected different...
sets of genes with different behavioral consequences, which may offer the opportunity to study the interaction between specific behavioral profiles and genetic backgrounds. This possibility was not exploited so far.

Symptoms of abnormal aggression – targeting bites on vulnerable body parts, deficient signaling of attack intentions and attacks on females – were observed also in rats selected for anxiety (Liebsch et al., 1998; Neumann et al., 2010; Beiderbeck et al., 2012). Remarkably, both the high-anxiety and the low-anxiety strain showed abnormal aggression, but their behavioral profile was different, which may be considered another unexploited opportunity to investigate the genetic underpinnings of specific and stable aggressive behavioral profiles.

Developmental Stress

It is believed that significant life events suffered in critical periods of life elicit persistent changes in behavior and may lead to the development of psychopathologies in general, and aggression-related psychopathologies in particular. Critical periods of life, when stressors lead to the delayed increase of the likelihood of aggression and aggression-related psychopathologies include the fetal period, when the effects of stressors are mediated by the mother (Salatino-Oliveira et al., 2016; Savolainen et al., 2018), early childhood (Wright et al., 2016; McLaughlin et al., 2017), and adolescence (Herrenkohl et al., 2001; Estrada-Martinez et al., 2011).

Fetal (maternal) and early (neonatal) stressors do change the behavior of adult rodents; yet the observed changes are consistent with increased anxiety and depression rather than aggression and in addition, data on abnormal aggression symptoms were conflicting (Sandi and Haller, 2015; Haller, 2020, p. 159). By contrast, stressors administered during adolescence resulted in the development of three important models of abnormal aggression.

The early subjugation model consists in repeatedly exposing hamsters and occasionally rats to defeats from adult males in their peripubertal period (postnatal days 28 to 42) (Delville et al., 1998; Cunningham and McGinnis, 2008). This early treatment durably increased aggressiveness in adulthood, accelerated the development of aggressive behavior such that adult forms of aggression were expressed in juveniles, and decreased the age-selectivity of aggression by promoting attacks on juveniles by adults (Wommack and Delville, 2003; Ferris et al., 2005). Subjugation stress also delayed sexual maturation and led to social avoidance (Bastida et al., 2009, 2014).

The peripubertal stress model is very similar to the early subjugation model except that the stressors administered to juveniles were non-social. Peripubertal rats were exposed successively at two-day intervals to the open field, fox odor, and an elevated platform, all which elicited stress responses. These ostensibly minor stressors dramatically increased the level of aggression in adulthood, elicited attacks on vulnerable body parts of opponents, decreased the signaling of attack intentions, and induced attacks on females and anaesthetized opponents (Cordero et al., 2012; Márquez et al., 2013; Papilloud et al., 2018; Walker et al., 2018). Interestingly, similar behavioral changes were observed in females exposed to the three stressors in the peripubertal period (Cordero et al., 2013). Thus, the full spectrum of abnormal aggression symptoms was observed in the peripubertal stress model; moreover, changes were independent of gender.

The post-weaning social isolation model consists in rearing rats in individual cages from weaning to adulthood. When confronted with intruders as adults, rats submitted to this model showed high levels of aggression, a phenomenon observed long before the development of the concept of abnormal aggression (Potegal and Eion, 1989). Subsequent research showed that rats submitted to the model preferentially attacked vulnerable body parts of their opponents and did deficiently signal attack intentions by social threats (Tóth et al., 2008; Toth et al., 2011). In contrast to all the models presented above, aggression was expressed on the background of high behavioral agitation and exacerbated autonomic and glucocorticoid stress responses. Behavioral and physiological alterations were persistent and resistant to resocialization (Tulogdi et al., 2014). Notably, rats

Etiological factor category

Genetics	Selection for aggression	Benus et al., 1991	D, E, F, P, V
Developmental stress	Early subjugation	Delville et al., 1998	A, E
	Peripubertal stress	Márquez et al., 2013	D, E, F, P, V
	Post-weaning social isolation	Tóth et al., 2008	D, E, P, V
Drugs	Alcohol	Miczek et al., 1992	E, V
	Anabolic androgenic steroids	Melloni and Ferris, 1996	E, F
	Cocaine	Ricci et al., 2005	E
Physiology	Hypothalamic stimulation	Hess, 1928	D, E, F, P, V
	Selection for stress responses	Walker et al., 2017	no data*
	Glucocorticoid deficit	Haller et al., 2001	D, P, V

Note that many models were developed long before the concept of abnormal animal aggression was developed. In their case, symptoms of abnormal aggression were identified considerably later, often by different authors. For instance, the SAL/LAL aggression selection lines were created in the early 90's (Benus et al., 1991), yet the abnormality of the increased aggression of the SAL line was documented considerably later (Haller et al., 2006). A, accelerated development of aggression; D, disregarding social signals; E, excessive aggression; F, attacks on females; P, poor signaling of attack intentions; V, attacks on vulnerable targets; *, the paper reported on an “abnormality index”, without detailing this.
submitted to the model showed marked deficits in social integration when placed in social groups. A similar behavioral profile was observed in female rats submitted to the model (Oliveira et al., 2019). This study also showed that isolation rearing impaired social memory in both males and females and promoted attacks against juveniles in females.

Taken together, these findings show that stressors administered during puberty lasting change behavior and favor the display of deviant forms of aggression in adulthood. Behavioral changes proved gender-independent in two of the three models, and aggression profiles—complemented with other physiological and behavioral deficits—were durable, moreover, resistant to simple interventions, e.g., resocialization.

Drugs

Human observations show that various drugs, among others alcohol, anabolic-androgenic steroids, and psychostimulants enhance aggressiveness (Bennett et al., 1970; Cherek et al., 1987; Licata et al., 1993; Su et al., 1993).

Such drugs may increase aggression shortly after their consumption and behavioral effects subside once drug effects fade away. Although temporary, such states are listed among mental disorders by the DSM-5 (American Psychiatric Association, 2013) under the term “intoxication”, e.g., “Alcohol intoxication” (DSM-5 p. 497) and “Stimulant intoxication” (DSM-5, p. 567). Both involve increases in anger and aggression, and aggression models were built for both. Alcohol self-administration consistently increased aggression in a subgroup of laboratory rodents, whereas in others aggression remained unchanged or even decreased (Miczek et al., 1992, 2013). This situation is highly similar to the human case, where the effects of alcohol on aggression also show high individual variation. For a long time, the arguments for the abnormality of alcohol-induced aggression were increased aggressiveness, and the emergence of lasting attack bursts that are uncharacteristic to the species studied (Miczek et al., 2013). It was, however, recently shown that alcohol intoxication changed attack targeting (Newman et al., 2018), which is one of the key symptoms of abnormal aggression. Amphetamine also increased aggression and in addition, it prompted attacks on females (Gobrogge et al., 2009), one of the signs that may render aggression abnormal.

In other cases, drugs may have long-lasting effects on behavior, especially when exposure covers sensitive life periods, e.g., adolescence. For instance, anabolic androgenic steroids administered during puberty to hamsters dramatically increased aggression in adulthood, and accelerated the development of adult aggression forms, which, as shown in Table 1 may be considered a sign of behavioral abnormality in this species (Melloni and Ferris, 1996; Morrison et al., 2014; Lee et al., 2021). The administration of anabolic androgenic steroids to adults has similar behavioral consequences (Ambar and Chiavegatto, 2009). Cocaine treatment during puberty also increases aggression in adulthood (Ricci et al., 2005). Unfortunately, no other measures of abnormal aggression were studied with this model.

Taken together, these findings show that (i) The administration of certain drugs increases aggression acutely, which may be considered a model of psychopathological aggression elicited by drug intoxication. (ii) Certain compounds have long-term effects on aggression when animals are treated during their puberty. Although symptoms of abnormal aggression were studied sporadically, the few available data suggest that beyond increased aggression levels, the aggression displayed in these models is deviant.

Physiological Models

In this section I present models that were based on physiological phenomena known to be associated with aggression-related psychopathologies rather than on their etiological factors. Particularly, I present the hypothalamic stimulation model, work in rats selected for high stress responses, and the glucocorticoid deficiency model of abnormal aggression.

The electric stimulation of the hypothalamus elicits biting attacks on conspecifics in a variety of species as shown first by Hess (1928) in rats. Systematic studies identified the precise anatomical location of the so-called hypothalamic attack area and helped tremendously in deciphering the neural underpinnings of aggression (Kruk, 1991; Siegel et al., 1999). Optogenetic stimulation, which presents a series of advantages over electric stimulations served the same purposes in the last decade (Anderson, 2012; Falkner et al., 2020). Attacks elicited from the hypothalamus have a series of features that resemble aggression observed in abnormal aggression models. Particularly, attacks are not preceded by social signals, are frequently targeted toward vulnerable body parts of opponents, are not dampened by submissive signals, and do not spare any opponent neither females nor juveniles. However, one can argue that all these are due to the direct activation of the circuitry of aggression, which
overrules other factors. As such, hypothalamic aggression is a mechanistic model rather than a true abnormal aggression model. Yet by exploiting the versatility of the optogenetic technique one can selectively elicit either enhanced normal aggression, i.e., that lacks the symptoms of abnormal aggression, or the other way round abnormal aggression that is not associated with increased attack counts (Biro et al., 2018). As such, this approach may be uniquely useful in deciphering the circuits specifically underlying deviant aggression.

Given the tight relationship between stress responses and aggression (Haller, 2022) recent findings on the behavior of rats selected for high glucocorticoid stress responses appear especially pertinent for this study. Selected rats showed increased aggression in terms of both decreased attack latencies and increased bite counts (Walker et al., 2017). A subsequent study by an overlapping set of authors revealed that high stress-responsiveness was associated with symptoms of abnormal aggression (Walker and Sandi, 2018). Interestingly, the high stress responsive rats was less affected by peripubertal stress than the wild-type, suggesting that there is a yet unexplored and to a certain extent counterintuitive interaction between inborn stress-responsiveness and the behavioral effects of early stressors.

Finally, I briefly describe the model which raised for the first time the possibility of modeling human psychopathologic aggression in laboratory rodents (Haller et al., 2001). The physiological phenomenon modeled was glucocorticoid deficiency, which was observed first in habitually violent offenders (Virkkunen, 1985) and then in kindergarten-age children, where low glucocorticoid levels predicted aggression problems two years in advance (McBurnett et al., 2000). Subsequent research clarified that chronically low constitutive glucocorticoid production and/or habitually low glucocorticoid stress responses are associated with aggression in a series of disorders, e.g., conduct, oppositional-defiant, antisocial personality, and posttraumatic stress disorders, as well as with violent crime (Haller, 2020, pp. 186–201; Haller, 2022). The findings of McBurnett et al. (2000) were also confirmed by subsequent research, which demonstrated that deficits in glucocorticoid production were followed within a few years by psychopathological and/or criminal aggression. Noteworthy, low glucocorticoid background not only characterized certain aggression-related psychopathologies but also the early subjugation and peripubertal stress models (Ferris et al., 2005; Márquez et al., 2013; Papilloud et al., 2018).

The glucocorticoid deficit was attained in rats by the surgical removal of the adrenals to limit endogenous glucocorticoid secretion and the implantation of subcutaneous corticosterone pellets to prevent neural damages induced by the total absence of glucocorticoids (Haller et al., 2001). As a result, rats had low day-time levels of plasma glucocorticoids without being able to develop glucocorticoid stress responses. Note that rats are nocturnal animals, for which their glucocorticoid levels are about 2-3 times smaller during the day than during the night. Glucocorticoid deficiency did not affect the level of aggression (bite counts remained unchanged), but dramatically increased the share of bites directed toward the vulnerable body parts of opponents, reduced the propensity of animals to signal their attack intentions by threats, and induced social deficits indicative of reduced sociability (Haller et al., 2004, 2005). The short-term inhibition of glucocorticoid secretion by metyrapone had effects opposite to those seen after the chronic treatment, i.e., adrenalectomy (Halasz et al., 2008) and the abolishment of the chronic glucocorticoid deficit by daily glucocorticoid injections also abolished the symptoms of abnormal aggression (Haller et al., 2001). Thus, one can hypothesize that the association between chronic glucocorticoid deficits and abnormal aggression was causal. Importantly for the followings, glucocorticoid deficits were associated with a marked autonomic hypoarousal (Haller et al., 2004). Heart rates were less increased by aggression in glucocorticoid-deficient rats than in controls, and more importantly, heart rates returned to control levels while rats were still fighting, whereas in controls, heart rates remained high long after the aggressive encounter terminated. This is in sharp contrast with the autonomic responses observed in rats submitted to the post-weaning social isolation model.

Taken together, these findings show that mimicking physiological conditions associated with aggression-related psychopathologies induced abnormal aggression just as efficiently as the etiological factors of these disorders.

Strength and Limitations

The main strength of abnormal aggression models is that they appear relevant from a psychopathological perspective. In general, psychopathologies develop in previously healthy individuals under the effects of environmental insults, e.g., etiological factors, which generate a persistent pattern of emotional and behavioral changes that are inappropriate in the context in which they occur. This phenomenon is rather well modeled in the paradigms presented above. A further strength of these models is that, taken together, they cover all or most of the main etiological factors that are believed to lead to aggression-related psychopathologies.

The main limitation is that the correspondence between the models and psychopathologies remains poorly understood and as such is open to debate. At present, three hypotheses seem to emerge as shown in the next sections.

The “Overactivation” Hypothesis

According to this approach, the mechanisms of adaptive and abnormal aggression differ in quantitative terms only (Covington et al., 2019). Certain elements of the adaptive aggression circuits may be up- or downregulated, their connectivity may increase or decrease, but the circuits essentially remain the same. In a way, this hypothesis restores the validity of classical aggression models for understanding psychopathological aggression, and renders abnormal aggression models complementary approaches, which may clarify details unaddressed by classical ones. For instance, an abnormal aggression model may show which component of the basic neural mechanisms of aggression changes under the influence of a particular etiological factor. Although conceivable, and may be true for particular aggression models, mechanistic changes observed in many models go far beyond the quantitative changes assumed by this approach as shown below.
The Core Pathway Dichotomy Hypothesis

It was suggested that abnormal aggression models outline two core pathways of abnormal aggression that are differentiated by the emotional component of aggression (Haller, 2013, 2018a,b) (Figure 2).

One core pathway involves the coactivation of the rivalry aggression and predatory aggression circuits. The main axis of the former is the medial prefrontal cortex – medial amygdala – mediobasal hypothalamus – dorsal periaqueductal gray pathway, whereas the main axis of the latter is the orbitofrontal cortex – central amygdala – lateral hypothalamus – ventral periaqueductal gray pathway. This dual activation was observed neither in classical aggression models nor in predatory aggression models but was clearly visible in the glucocorticoid deficit model (Tulogdi et al., 2010, 2015). It was shown subsequently that similar coactivation patterns were operational in a series of other abnormal aggression models, where – like in the glucocorticoid deficit model – aggression was associated with decreased glucocorticoid and autonomic stress responses. Such models were together called the hypoarousal models of abnormal aggression and include mice selected for aggressiveness (short attack latency mice), rats selected for extremes in anxiety, as well as the early subjugation, and the peripubertal stress models (see Haller, 2013, 2018a,b for reviews).

The second core pathway may be associated with less dramatic changes in the controlling mechanisms. This may be the case for abnormal aggression models associated with increased stress responses called hyperarousal models. For example, the first mechanistic study on the post-weaning social isolation model suggested that abnormal aggression and behavioral agitation are associated with the overactivation of the “regular” rivalry aggression circuitry (Toth et al., 2012). As such, this model may conform to the “overactivation” approach presented above. Subsequent research showed, however, that the prefrontal cortex suffered a series of anatomical and functional changes in response to social isolation (Biro et al., 2017). Particularly, the thickness of the infralimbic and prelimbic cortices decreased, and decreases were also observed in the vascularization, glial density and dendritic arborization of these areas. Another study revealed that the methylation status of the brain-derived neurotrophic factor (BDNF) changed in all three the infralimbic cortex, medial amygdala and lateral hypothalamus, the projections from the hippocampus to the prefrontal cortex weakened, and changes were observed in perineuronal nets as well (Mikics et al., 2018). Taken together, these findings suggest that neural changes associated with these models cannot be simply assigned to the overactivation hypothesis. For space limitations, I cannot overview all the hyperarousal models, but it occurs that complex neural changes were observed in all.

Taken together, these findings suggest that (1) abnormal aggression results from complex neuronal changes that are considerably broader that that suggested by the overactivation hypothesis. (2) There are at least two different mechanisms that are associated with, or underlie abnormal aggression. One mechanism may be operational in hypoarousal, whereas the other in hyperarousal models. Tentatively, the two models are laboratory analogs of aggression-related psychopathologies of the proactive and reactive type, e.g., conduct and antisocial personality disorders, psychopathy, as well as violent crime on one side and borderline personality, bipolar and intermittent explosive disorders on the other (Haller, 2020).

The Disorder Model Hypothesis

This hypothesis suggest that abnormal aggression models are analogous with specific psychopathologies. For instance, one study proposed that abnormal aggression models should be evaluated based on adapted DSM-5 criteria and suggested that certain abnormal aggression models may be analogous with particular psychopathologies (Haller, 2018c). Another set of studies suggested that attacks on females by peripubertally stressed males may model intimate partner violence and showed that attacked females display behavioral alterations analogous to human victims (Cordero et al., 2012; Poirier et al., 2013). In a similar vein, the premature development of adult aggression in the early subjugation model may be perceived as being analogous to juvenile delinquency, whereas drug-induced abnormal aggression models with human drug-related violence. Such assumptions may occur far-fetched at present but may be workable on the long run.

CONCLUDING REMARKS

The classical models of aggression were of great service when the basic mechanisms of aggression were studied and are still important reference points for the new psychopathology-oriented models. The latter marked a shift from the biological approach to aggression to the psychopathological approach to violence. Many new models were developed over the last two decades, each shedding light to a new aspect of abnormal aggression and violence. The new approach is still suffering from a series of “childhood diseases.” Few models were studied systematically so far, and only a restricted number of findings were crosschecked by independent research groups. In addition, the correspondence between specific models and specific psychopathological states is not entirely clear. I believe, however, that the psychopathology-oriented approach has the potential for understanding the neural mechanisms of abnormal aggression and may significantly contribute to development of novel treatment strategies.

AUTHOR CONTRIBUTIONS

The author confirms being the sole contributor of this work and has approved it for publication.

FUNDING

This study was funded by the National University of Public Service by a grant awarded to the Criminal Psychology Workshop.
REFERENCES

Ambar, G., and Chiavegatto, S. (2009). Anabolic-androgenic steroid treatment induces behavioral disinhibition and downregulation of serotonin receptor messenger RNA in the prefrontal cortex and amygdala of male mice. *Genes Brain Behav.* 8, 161–173. doi: 10.1111/j.1610-183X.2008.00458.x

American Psychiatric Association (2013). *Diagnostic and Statistical Manual of Mental Disorders*, 5th Edn. Washington, DC: American Psychiatric Association.

Anderson, D. J. (2012). Optogenetics, sex, and violence in the brain: implications for psychiatry. *Biol. Psychiatry* 71, 1081–1089. doi: 10.1016/j.biopsych.2011.11.012

Bastida, C. C., Puga, F., Delvalle, Y. (2009). Risk assessment and avoidance in juvenile golden hamsters exposed to repeated stress. *Horm. Behav.* 55, 158–162. doi: 10.1016/j.yhbeh.2008.09.009

Bastida, C. C., Puga, F., Gómez-Lima, F., Jennings, K. J., Wommack, J. C., and Delvalle, Y. (2014). Chronic social stress in puberty alters appetitive male sexual behavior and neural metabolic activity. *Horm. Behav.* 66, 220–227. doi: 10.1016/j.yhbeh.2014.05.002

Beiderbeck, D. I., Reber, S. O., Havasi, A., Bredewold, R., Veenema, A. H., and Bastida, C. C., Puga, F., Gonzalez-Lima, F., Jennings, K. J., Wommack, J. C., and Delvalle, Y. (2009). Behavioral differences between artificially selected aggressive and non-aggressive mice: response to apomorphine. *Behav. Brain Res.* 203, 208–208. doi: 10.1016/j.bbr.2009.04.011

Belfry, K. D., and Kolla, N. J. (2021). Cold-Blooded and on purpose: a review of the biology of proactive aggression. *Philos. Trans. R. Soc. Lond. B Biol. Sci.* 376(Pt A), 22–28. doi: 10.1098/rstb.2018.07.061

Blanchard, R. J., Blanchard, D. C., Rodgers, J., and Weiss, S. M. (1990). The effect of neurokinin1 receptor blockade on territorial aggression and in the hypothalamus. *J. Neurosci.* 38, 4065–4075. doi: 10.1523/JNEUROSCI.32.17-1987.178

Biro, L., Sipos, E., Bruzsik, B., Farkas, I., Zelena, D., Balazsfi, D., et al. (2018). Task structure and functional alterations in the prefrontal cortex after post-natal stress: relationship with species-typical and deviant aggression. *Brain Struct. Funct.* 222, 1861–1875. doi: 10.1007/s00429-016-1312-z

Cordero, M. I., Ansermet, F., and Sandi, C. (2013). Long-term programming of enhanced aggression by periurethral pressure in female rats. *Psychoneuroendocrinology* 38, 2758–2769. doi: 10.1016/j.psyneuen.2013.07.005

Cordero, M. I., Poirier, G. L., Marquez, C., Veenit, V., Fontana, X., Salehi, B., et al. (2012). Evidence for biological roots in the transgenerational transmission of intimate partner violence. *Transl. Psychiatry.* 2:e106. doi: 10.1038/tp.2012.32

Covington, H. E. III, Newman, E. L., Leonard, M. Z., and Miczek, K. A. (2019). Translational models of adaptive and excessive fighting: an emerging role for neural circuits in pathological aggression. *F1000Res* 8:F1000 FacultyRev-963. doi: 10.26888/F1000research.18883.1

Craig, W. (1917). Appetites and aversions as constituents of instincts. *Proc. Natl. Acad. Sci. U.S.A.* 3, 685–688. doi: 10.1073/pnas.33.12.685

Cunningham, R. L., and McGinnis, M. Y. (2008). Prepubertal social subjugation and anabolic androgenic steroid-induced aggression in male rats. *J. Neuroendocrinol.* 20, 997–1005. doi: 10.1111/j.1365-2826.2008.01756.x

du Cunha-Bang, S., and Knudsen, G. M. (2021). The modulatory role of serotonin on human impulsive aggression. *Biol. Psychiatry* 90, 447–457. doi: 10.1016/j.biopsych.2021.05.016

Deckel, A. W. (1996). Behavioral changes in *Anolis carolinensis* following injection with fluoxetine. *Behav. Brain Res.* 78, 175–182. doi: 10.1016/0166-4328(95)00246-4

Delvalle, Y., Melloni, R. H. Jr., and Ferris, C. F. (1998). Behavioral and neurobiological consequences of social subjugation during puberty in golden hamsters. *J. Neurosci.* 18, 2667–2672. doi: 10.1523/JNEUROSCI.18-07-02667.1998

Dennis, R. L., Lay, D. C. Jr., and Cheng, H. W. (2013). Effects of early serotonin programming on behavior and central monoamine concentrations in an avian model. *Behav. Brain Res.* 235, 293–296. doi: 10.1016/j.bbr.2013.07.043

Dingesinger, E., and Dolen, G. A. (2018). Conserved role for serotoninergic neurotransmission in mediating social behavior in octopus. *Curr. Biol.* 28, 3136–3142.e4. doi: 10.1016/j.cub.2018.07.061

Estrada-Martínez, L. M., Padilla, M. B., Caldwell, C. H., and Schulz, A. J. (2011). Examining the influence of family environments on youth violence: a comparison of Mexican, Puerto Rican, Cuban, non-Latino Black, and non-Latino White adolescents. *J. Youth Adolesc.* 40, 1039–1051. doi: 10.1007/s10964-010-9624-4

Falkner, A. L., Wei, D., Song, A., Watske, L. W., Chen, L., Chen, P., et al. (2020). Hierarchical representations of aggression in a hypothalamic-midbrain circuit. *Neuron* 160, 637–648.e6. doi: 10.1016/j.neuron.2020.02.014

Ferris, C. F., Messenger, T., and Sullivan, R. (2005). Behavioral and neuroendocrine consequences of social subjugation across adolescence and adulthood. *Front. Zool.* 2:7. doi: 10.1186/1742-9994-2-7

Fitzpatrick, S. M., and Wellington, W. G. (1983). Insect territoriality. *Can. J. Zool.* 61, 471–486. doi: 10.1139/83-064

Freedman, D., and Hemenway, D. (2000). Precursors of lethal violence: a death row methodological and translational aspects. *Neurosci. Biobehav. Rev.* 24, 97–109. doi: 10.1016/s0165-1781(02)00037-7

Gandelman, R. (1972). Mice: postpartum aggression elicited by the presence of an intruder. *Horm. Behav.* 3, 23–28. doi: 10.1016/00246-4995(72)90010-5

Glewacki, L., and McDermott, R. (2022). Key individuals catalyse intergroup violence. *Philos. Trans. R. Soc. Lond. B Biol. Sci.* 377:20210141. doi: 10.1098/rstb.2021.0141

Grobrogge, K. L., Liu, Y., Young, L. J., and Wang, Z. (2009). Anterior hypothalamic vasopressin regulates pair-bonding and drug-induced aggression in a monogamous rodent. *Proc. Natl. Acad. Sci. U.S.A.* 106, 19144–19149. doi: 10.1073/pnas.0908620106

GosticI, A. J., Vitacco, M. J., Dismukes, A. R., Brieman, C., Merz, J., and Shirtcliff, E. A. (2014). Beyond physiological hypoarousal: the role of life stress and callous-unemotional traits in incarcerated adolescent males. *Horm. Behav.* 65, 469–479. doi: 10.1016/j.yhbeh.2014.03.016

Hall, J. (2013). The neurobiology of abnormal manifestations of aggression—a review of hypothalamic mechanisms in cats, rodents, and humans. *Brain Res. Bull.* 93, 97–109. doi: 10.1016/j.brainresbull.2012.10.003

Haller, J. (2017). Studies into abnormal aggression in humans and rodents: methodological and translational aspects. *Neurosci. Biobehav. Rev.* 76(Pt A), 77–86. doi: 10.1016/j.neubiorev.2017.02.022
Haller, J. (2018a). The role of the lateral hypothalamus in violent intraspecific aggression-the glucocorticoid deficit hypothesis. *Front. Syst. Neurosci.* 12:26. doi: 10.3389/fnsys.2018.00026

Haller, J. (2018b). The role of central and medial amygdala in normal and abnormal aggression: a review of classical approaches. *Neurosci. Biobehav. Rev.* 85, 34–43. doi: 10.1016/j.neubiorev.2017.09.017

Haller, J. (2018c). Preclinical models of conduct disorder - principles and pharmacologic perspectives. *Neurosci. Biobehav. Rev.* 91, 112–120. doi: 10.1016/j.neubiorev.2016.05.032

Haller, J. (2020). *Neurobiopsychosocial Perspectives on Aggression and Violence. From Biology to Law Enforcement.* Cham: Springer.

Haller, J. (2022). Glucocorticoids and aggression: a tripartite interaction. *Curr. Top. Behav. Neurosci.* 54, 209–243. doi: 10.1007/7854_2022_307

Haller, J., and Kruk, M. R. (2006). Normal and abnormal aggression; human disorders and novel laboratory models. *Neurosci. Biobehav. Rev.* 30, 292–303. doi: 10.1016/j.neubiorev.2005.01.005

Haller, J., Halasz, J., Mikics, E., and Kruk, M. R. (2004). Chronic glucocorticoid deficiency-induced abnormal aggression, autonomic hypoarousal, and social deficit in rats. *J. Neuroendocrinol.* 16, 550–557. doi: 10.1111/j.1365-2826.2004.01201.x

Haller, J., Töth, M., and Halasz, J. (2005). The activation of raphe serotonergic neurons in normal and hypoarousal-driven aggression: a double labeling study in rats. *Behav. Brain Res.* 161, 88–94. doi: 10.1016/j.bbr.2005.01.006

Haller, J., Töth, M., Halasz, J., and De Boer, S. F. (2006). Patterns of violent aggression-induced brain c-fos expression in male mice selected for aggressiveness. *Physiol. Behav.* 88, 173–182. doi: 10.1016/j.physbeh.2006.01.030

Haller, J., van de Schaaf, J., and Kruk, M. R. (2001). Deviant forms of aggression in glucocorticoid hyporeactive rats: a model for ‘pathological’ aggression? *J. Neuroendocrinol.* 13, 102–107. doi: 10.1111/j.1365-2826.2001.00600.x

Harlow, H. F. (1965). Total social isolation: effects on macaque monkey behavior. *Science* 148:666. doi: 10.1126/science.148.3670.666-a

Herrenkohli, T. L., Hawkins, J. D., Chung, L. H., Hill, K. G., and Battin-Pearson, S. (2001). “School and community risk factors and interventions,” in Child delinquents: Development, Intervention, and Service Needs, eds R. Loebner and D. P. Farrington (Thousand Oaks, CA: Sage), 211–246.

Hicks, W. R. (1928). *Stammganglien-reizversuche.*

Haller, J. (2020a). *Psychopathology-Oriented Aggression Models from Biology to Law Enforcement.* Cham: Springer.

Haller, J. (2018b). The role of central and medial amygdala in normal and abnormal aggression. *Behav. Brain Res.* 3057(93)90504-m

Haller, J. (2018c). Preclinical models of conduct disorder - principles and pharmacologic perspectives. *Neurosci. Biobehav. Rev.* 91, 112–120. doi: 10.1016/j.neubiorev.2016.05.032

Haller, J. (2020). *Neurobiopsychosocial Perspectives on Aggression and Violence. From Biology to Law Enforcement.* Cham: Springer.

Herrenkohl, T. L., Hawkins, J. D., Chung, I., Hill, K. G., and Battin-Pearson, S. (2001). “School and community risk factors and interventions,” in Child delinquents: Development, Intervention, and Service Needs, eds R. Loebner and D. P. Farrington (Thousand Oaks, CA: Sage), 211–246.

Hicks, W. R. (1928). Stammganglien-reizversuche. *Biol. Psychiatr.* 82, 462–471. doi: 10.1016/j.biopsych.2017.02.1096

Meier, B. P., and Willkowski, B. M. (2013). Reducing the tendency to aggress: insights from social and personality psychology. *Soc. Person. Psychol. Compass* 7, 343–354. doi: 10.1111/spc3.12029

Melloni, R. H. Jr., and Ferris, C. F. (1996). Adolescent anabolic steroid use and aggressive behavior in golden hamsters. *Ann. N. Y. Acad. Sci.* 794, 372–375. doi: 10.1111/j.1749-6632.1996.tb2546.x

Meyer, J. M., Cummings, M. A., Proctor, G., and Stahl, S. M. (2016). Psychopharmacology of persistent violence and aggression. *Psychiatr. Clin. North Am.* 39, 541–556. doi: 10.1016/j.psc.2016.07.012

Miczek, K. A., de Boer, S. F., and Haller, J. (2013). Excessive aggression as a model of violence: a critical evaluation of current preclinical methods. *Psychopharmacology (Berl.)* 226, 445–458. doi: 10.1007/s00213-013-3008-x

Miczek, K. A., Weerts, E. M., Tornatzky, W., DeBold, J. F., and Batte, T. M. (1992). Alcohol and “bursts” of aggressive behavior: ethological analysis of individual differences in rats. *Psychopharmacology (Berl.)* 107, 551–563. doi: 10.1007/BF02245270

Milczek, E., Guirado, R., Unemori, J., Töth, M., Biró, L., Miskolczi, C., et al. (2018). Social learning requires plasticity enhanced by fluoxetine through prefrontal Bdnf-TrkB signaling to limit aggression induced by post-weaning social isolation. *Neuropsychopharmacology* 43, 235–245. doi: 10.1038/nnp.2017.142

Milczek, E., Barys, B., and Haller, J. (2007). The effect glucocorticoids on aggression in established colonies of rats. *Psychoneuroendocrinology* 32, 160–170. doi: 10.1016/j.psyneuen.2006.12.002

Millard, A., and Gentsch, C. (2006). Competition for sucrose pellets in tetrads of male wistar, fischer or sprague-dawley rats: is intra-group ranking reflected in the level of anxiety? *Behav. Brain Res.* 168, 243–254. doi: 10.1016/j.bbr.2005.11.012

Morrison, T. R., Ricci, I. A., and Melloni, R. H. Jr. (2014). γ-Aminobutyric acid neural signaling in the lateroanterior hypothalamus modulates aggressive behavior in adolescent anabolic/androgenic steroid-treated hamsters. *Behav. Pharmacol.* 25, 673–683. doi: 10.1097/FPB.0000000000000083

Mosienko, V., Bert, B., Beis, D., Matthies, S., Fink, H., Bader, M., et al. (2012). Exaggerated aggression and decreased anxiety in mice deficient in brain serotonin. *Transl. Psychiatry* 2:e122. doi: 10.1038/tp.2012.44

Natarajan, D., and Caramaschi, D. (2010). Animal violence denysitized. *Front. Behav. Neurosci.* 4:9. doi: 10.3389/fnbeh.2010.00009

Natarajan, D., de Vries, H., de Boer, S. F., and Koelhaas, J. M. (2009). Violent phenotype in SAL mice is inflexible and fixed in adulthood. *Aggress. Behav.* 35, 430–436. doi: 10.1002/ab.20312

Neumann, I. D., Veenvma, A. H., and Beiderbeck, D. I. (2010). Aggression and anxiety: social context and neurobiological links. *Front. Behav. Neurosci.* 4:12. doi: 10.3389/fnbeh.2010.00012

New, A. S., Hazlett, E. A., Buchsbaum, M. S., Goodman, M., Mitelman, S. A., Newmark, B., et al. (2007). Amygdala-prefrontal disconnection in borderline personality disorder. *Psychopharmacology* 32, 1629–1640. doi: 10.1038/sj.npp.1301283

Newman, E. L., Terunuma, M., Wang, T. L., Hewage, N., Bicakci, M. B., Moss, S. J., et al. (2018). Role for prefrontal Cortical NMDA receptors in murine aggression.
alcohol-heightened aggression. *Neuropsychopharmacology* 43, 1224–1234. doi: 10.1038/npp.2017.253

Oliveira, V. E. M., Lukas, M., Wolf, H. N., Durante, E., Lorenz, A., Mayer, A. L., et al. (2021). Oxytocin and vasopressin within the ventral and dorsal lateral septum modulate aggression in female rats. *Nat. Commun.* 12:2900. doi: 10.1038/s41467-021-23064-5

Oliveira, V. E. M., Neumann, I. D., and de Jong, T. R. (2019). Post-weaning social isolation exacerbates aggression in both sexes and affects the vasopressin and oxytocin system in a sex-specific manner. *Neuropsychopharmacology* 156:107504. doi: 10.1016/j.neuropharm.2019.01.019

Papilloud, A., Guillot de Suduiraut, I., Zanoletti, O., Grosse, J., and Sandi, C. (2018). Peripubertal stress increases play fighting at adolescence and modulates nucleus accumbens CB1 receptor expression and mitochondrial function in the amygdala. *Transl. Psychiatry* 8:156. doi: 10.1038/s41398-018-0122-5

Parmigiani, S., Brain, P. F., Mainardi, D., and Brunoni, V. (1988). Different patterns of biting attack employed by lactating female mice (*Mus domesticus*) in encounters with male and female conspecific intruders. *J. Comp. Psychol.* 102, 287–293. doi: 10.1037/0735-7036.102.3.287

Plyusnina, I., and Oskaia, I. (1997). Behavioral and adrenocortical responses to open-field test in rats selected for reduced aggressiveness toward humans. *Physiol. Behav.* 61, 381–385. doi: 10.1016/S0031-9384(96)00445-3

Poirier, G. L., Cordero, M. I., and Sandi, C. (2013). Female vulnerability to the development of depression-like behavior in a rat model of intimate partner violence is related to anxious temperament, coping responses, and amygdala vasopressin receptor 1a expression. *Front. Behav. Neurosci.* 7:35. doi: 10.3389/fnbeh.2013.00035

Potegal, M., and Eison, D. (1989). Aggressive behaviors in adult rats deprived of playfighting experience as juveniles. *Dev. Psychobiol.* 22, 159–172. doi: 10.1002/dev.420220206

Powell, D. A., Francis, J., Braman, M. J., and Schneiderman, N. (1969). Frequency of attack in shock-elicited aggression as a function of the performance of individual rats. *J. Exp. Anal. Behav.* 12, 817–823. doi: 10.1016/j.eab.1969.12.817

Raine, A., and Yang, Y. (2006). Neural foundations to moral reasoning and free will. *Frontiers in Behavioral Neuroscience* | www.frontiersin.org 11

Reinhard, J., and Rowell, D. M. (2005). Social behaviour in an Australian velvet worm, *Euperipatoides rowelli* (Onychophora: Peripatopsidae). *J. Zool.* 267, 1–7. doi: 10.1017/S0952836905007090

Ricci, L. A., Grimes, J. M., Knyshevski, I., and Mellon, R. H. (2005). Repeated cocaine exposure during adolescence alters glutamic acid decarboxylase-65 (GAD65) immunoreactivity in hamster brain: correlation with offensive aggression. *Brain Res. 1035*, 131–138. doi: 10.1016/j.brainres.2004.11.049

Rizzi, M., Gambini, O., and Marras, C. E. (2021). Posterior hypothalamus as a function in the amygdala. *Transl. Psychiatry* 11:004. doi: 10.1038/s41398-75-90086-4

Rizzi, M., Gambini, O., and Marras, C. E. (2021). Posterior hypothalamus as a function in the amygdala. *Transl. Psychiatry* 11:004. doi: 10.1038/s41398-75-90086-4

Rizzi, M., Gambini, O., and Marras, C. E. (2021). Posterior hypothalamus as a function in the amygdala. *Transl. Psychiatry* 11:004. doi: 10.1038/s41398-75-90086-4

Rizzi, M., Gambini, O., and Marras, C. E. (2021). Posterior hypothalamus as a function in the amygdala. *Transl. Psychiatry* 11:004. doi: 10.1038/s41398-75-90086-4
Wright, K. A., Turanovic, J. J., O’Neal, E. N., Morse, S. J., and Booth, E. T. (2016). The cycle of violence revisited: childhood victimization, resilience, and future violence. *J. Interpers. Violence* 34, 1261–1286. doi: 10.1177/0886260516651090

Young, S. E., Friedman, N. P., Miyake, A., Willcutt, E. G., Corley, R. P., Haberstick, B. C., et al. (2009). Behavioral disinhibition: liability for externalizing spectrum disorders and its genetic and environmental relation to response inhibition across adolescence. *J. Abnorm. Psychol.* 118, 117–130. doi: 10.1037/a0014657

Conflict of Interest: The author declares that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

Copyright © 2022 Haller. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.