Charge induced effects on structures and properties of silane and disilane derivatives

D. Balamurugan* and R. Prasad

Department of Physics, Indian Institute of Technology, Kanpur 208016, India

Abstract

Using *ab-initio* electronic structure methods we have investigated the ground state structures and properties of neutral and charged SiH\(_m\) (m=1-4) and Si\(_2\)H\(_n\) (n=1-6) clusters which are produced in the plasma enhanced chemical vapor deposition process used in the preparation of hydrogenated amorphous silicon (\(a\)-Si:H). Our results show that charging a neutral cluster distorts it and the distortion mainly occurs through the orientation of Si-H bond. We attribute structural changes in the charged clusters to electrostatic repulsion between the bonded and non-bonded electrons. We find that in addition to the usual Si-H bond, hydrogen atoms form Si-H-H and Si-H-Si bonds in some clusters. The vibrations of Si-H, Si-Si, Si-H-Si bond stretching modes show that the frequencies are shifted significantly upon charging. The frequency shifts in the charged clusters are consistent with their bond length variations. We discuss the fragmentation pathways of silane into binary products and the role of fragmented silane radicals in the cluster formation and \(a\)-Si:H film deposition process.

PACS numbers: 73.22.-f, 31.15.Ar, 36.40.Wa, 36.40.Mr

*Present address: Department of Chemistry, Tulane University, New Orleans, LA 70118
I. INTRODUCTION

Silane (SiH₄) is used in the plasma enhanced chemical vapor deposition (PECVD) process to produce hydrogenated amorphous silicon (a-Si:H) which has potential applications in solar cells and flat panel devices. Before a-Si:H film deposition takes place, the gaseous silane molecules are decomposed either by using electric field [1] or by thermal energy [2]. The decomposed species live for a short time in plasma environment and contribute to a-Si:H film growth. In the plasma, the decomposed species exist also in charged states. Experimental studies [2, 3, 4, 5, 6, 7, 8, 9, 10, 11] have shown the presence of various neutral and charged species in the plasma such as Si, SiH₂, Si₂H₆, SiH₃⁺, Si₂H₅⁺ and SiₓH⁺ (x=4-10). Also the experimental investigations [1, 3, 4, 12, 13, 14] show that the decomposed species have a great influence on the properties of a-Si:H films. Therefore, investigating the structure and properties of neutral and charged silane and disilane derivatives can help in gaining a better understanding of a-Si:H film growth in the PECVD process. With this motivation we have carried out *ab-initio* electronic structure calculations to study (1) the ground state structure, (2) vibrational frequencies, (3) fragmentation and (4) clustering process of neutral and charged SiHₙ (m=1-4) and Si₂Hₙ(n=1-6) clusters.

In the recent past, several electronic structure calculations have been presented on neutral and charged silane and disilane derivatives at various levels of accuracy [15, 16, 17, 18, 19, 20]. The ground and excited states of SiH have been investigated using multireference configuration interaction approach [15]. Using configuration interaction and coupled cluster method with single and double excitations, a detailed vibrational analysis on SiH₂⁻ has been performed [16]. Coupled cluster calculations have been carried out to study the ground state structures and vibrational properties of SiHₙ (n = 2-4) clusters [17]. Grev and Schaefer [18] applied coupled cluster method to identify the local minima of Si₂H₂. Gupte and Prasad [19] reported ground state structures and vibrational frequencies of SiₙHₘ (n=1,2 and m = 1-6) clusters using non-orthogonal tight binding molecular dynamics. Recently, the potential energy surface of Si₂H⁻ has been explored [20] using coupled cluster and configuration interaction methods. However, *ab-initio* calculations on neutral and charged silane and disilane derivatives using the same methodology are still lacking. We have performed density functional theory calculations to understand the charge induced effects on the structure and properties of silane and disilane derivatives.
The fragmentation and the clustering reactions of silane derivatives in the PECVD process are not yet well understood. Phenomenological model calculations have been carried out to understand the formation of various clusters during silane discharge and their role on film deposition process\cite{6, 21}. Using semi-empirical method the collisions between Si\(^+\) and H\(_2\) over a range of collision energies have been studied\cite{22}. Sosa and Lee\cite{23} performed density functional theory calculations to study the insertion reactions of SiH\(_2\), SiHF and SiF\(_2\) into H\(_2\) and found that fluorine substitution increases the reaction barrier heights. In a series of theoretical investigations, Raghavachari\cite{24, 25, 26, 27} showed that the sequential clustering reactions of silane with Si\(^+\), SiH\(^+\), SiH\(_2\)\(^+\) and SiH\(_3\)\(^+\) end with different products such as Si\(_2\)H\(_4\)\(^+\), Si\(_2\)H\(_5\)\(^+\), Si\(_3\)H\(_3\)\(^+\), Si\(_3\)H\(_5\)\(^+\), Si\(_4\)H\(_7\)\(^+\), Si\(_5\)H\(_{10}\)\(^+\) and Si\(_5\)H\(_{11}\)\(^+\). We have also investigated the fragmentation of silane and the role of the fragmented radicals in the beginning steps of the clustering process.

Our \textit{ab-initio} calculations on neutral and charged SiH\(_m\) (m=1-4) and Si\(_2\)H\(_n\) (n=1-6) clusters show several interesting findings about their ground state structures and properties. We find that in addition to the usual Si-H bond, hydrogen atoms in some clusters form Si-H-H and Si-H-Si bonds. Charging the cluster affects the Si-H bond orientations and Si-H, Si-H-Si and Si-Si bond lengths. We explain the bond orientations and bond length variations of the charged clusters using molecular orbital, charge density and population analysis.

We have done vibrational analysis of the neutral and charged clusters and find that the frequencies of stretching modes of Si-H, Si-Si and H-Si-H bonds shift considerably upon charging. These frequency shifts are consistent with the bond length variations of the charged clusters. The fragmentation studies on neutral and charged silane show that the major radicals formed are SiH\(_2\), SiH\(_2\)\(^+\), SiH\(_3\)\(^+\) and SiH\(_3\)\(^-\). These radicals undergo further clustering processes which lead to disilane derivatives. We also discuss the possible role of these radicals in \(a\)-Si:H film deposition process.

The plan of the paper is as follows. In section \textbf{II} we give computational details of the present work. In section \textbf{III} we present and discuss in detail the ground state geometries of neutral and charged silane and disilane derivatives. Vibrational analysis of these clusters is discussed in section \textbf{IV}. In section \textbf{V} we discuss the fragmentation of silane and the formation of bigger hydrogenated silicon clusters. Finally, in section \textbf{VI} we give our conclusions.
II. COMPUTATIONAL DETAILS

We have used the Car-Parrinello molecular dynamics (CPMD) \cite{28, 29} and Gaussian98 \cite{30} package for our study. Using the CPMD method \cite{31, 32} with simulated annealing optimization we have obtained the ground state structures of the neutral clusters. The pseudopotentials for silicon and hydrogen have been generated using the Bachelet, Hamann and Schlüter technique \cite{33}. The local density approximation (LDA) of the density functional theory has been used with the Ceperley-Alder \cite{34} exchange-correlation energy functional parameterized by Perdew and Zunger \cite{35}. The wave functions were expanded in a plane wave basis with 12 Rydberg energy cut-off and $k=0$ point was used for Brillouin zone sampling. During simulation volume of the system was kept constant and to avoid interaction between the clusters a big fcc supercell with side length of 35 a.u. was used. To perform simulated annealing, the system was taken to high temperatures (1200K in the steps of 300K), equilibrated for a long time (about 16,000 steps) and then slowly cooled down (in the steps of 50K) to 300K. Below this temperature the steepest descent optimization was found to be more efficient to obtain the ground state geometry. The desired temperature was achieved by rescaling atomic velocities and the atoms were moved according to the velocity Verlet algorithm \cite{36} with a time step of 5 a.u. The fictitious mass of the electron was taken to be 200 a.u. Our SiH$_n$ ($n = 2$-4) and Si$_2$H$_2$ ground state structures obtained using the CPMD method are in good agreement with those found earlier \cite{17, 18} using \textit{ab-initio} quantum chemical calculations.

For obtaining the ground state structures of the charged clusters \cite{37} we have used Gaussian98 package. We have taken the structures of neutral clusters obtained from the CPMD calculations and re-optimized the neutral and charged clusters using Gaussian98 package by Berny’s optimization technique \cite{38}. The geometry optimization has been done with Becke’s 3 parameter hybrid functional (B3LYP) for exchange-correlation functional and employing 6-311g** basis set \cite{30, 39}. The vibrational frequencies of the neutral and charged clusters are calculated with the same functional and basis set. We see from Table I that the ionization potentials (IP) of the clusters obtained from Gaussian calculations are in good agreement with the experimental values \cite{40, 41, 42}. The IP values of Si and Si$_2$ have been calculated with various multiplicities to take account of the orbital degeneracy. We find that the ground state of Si, Si$^+$, Si$_2$ and Si$_2^+$ have multiplicities 3, 2, 3 and 4 respectively. The IP values of
Si and Si$_2$ reported in Table I have been obtained using the ground state multiplicities. Our calculated umbrella mode frequency 894 cm$^{-1}$ of SiH$_3^-$ is in excellent agreement with the experimental value43 of 880 cm$^{-1}$.

III. GROUND STATE STRUCTURES

A. Charge induced structural modifications

In this section we discuss the charge induced effects on the structures of SiH$_m$ (m=1-4) and Si$_2$H$_n$ (n=1-6) clusters. In Fig. 1 and 2 we have shown the ground state structures of neutral and charged silane and disilane derivatives obtained using Gaussian98 package employing B3LYP/6-311G**. From Fig. 1 we see that the structure of SiH$_2$ is asymmetrical top whose bond angle opens up when positively charged and does not change much when negatively charged. The structure of SiH$_3$ is pyramidal which becomes planar when positively charged and Si-H bonds further bend when negatively charged.

The ground state structure of SiH$_4$ has tetrahedral symmetry. This symmetry is destroyed upon charging$^{41, 44, 45}$ and we see in Fig. 1 that SiH$_4^+$ and SiH$_4^-$ have very different structures. This symmetry breaking has been attributed to the Jahn-Teller effect$^{45, 46, 47, 48}$. The structure of SiH$_4^+$ obtained by our calculation is in agreement with the structure obtained by earlier calculations$^{49, 50, 51, 52, 53}$. Our ground state of SiH$_5^+$ is in good agreement with the result obtained by Boo and Lee54. The structure of SiH$_5^+$ is more like a complex of SiH$_3^+$ and H$_2$ and that of SiH$_5^-$ is more like a complex of SiH$_4^-$ and H.

Interestingly, two H atoms in SiH$_4^+$ and SiH$_5^+$ are over-coordinated and form Si-H-H bond. This Si-H-H bond is formed between three atoms by two electrons and is an example of multi-center bond55. A similar type of three center-two electron bond, C-H-H bond, has been observed$^{55, 56}$ in CH$_5^+$. It was predicted that due to the three center - two electron bond, SiH$_5^+$ and CH$_5^+$ have fluxional behavior$^{54, 55, 56}$, that is, these molecules do not have definite structure and bonding arrangement which makes it difficult to characterize them using spectroscopic techniques. These results show that charging clusters not only changes the structure but also can give rise to the formation of unusual bonds.

The over-coordination of H atom has also been seen in neutral clusters such as Si$_2$H, Si$_2$H$_2$ and Si$_2$H$_3$. We see from Fig. 2 that hydrogen atom is over-coordinated in these
clusters by connecting both silicon atoms and forms a Si-H-Si bridge bond. Note that
Si-H-Si bridge bond is a multi-centered bond and is different from Si-H bond, which is a
two-centered bond. The Si-H-Si bridge bonded frame of the clusters does not change
when the clusters are charged. In the case of negatively charged Si₂H₂, hydrogen atoms are
slightly pushed away from each other without changing each Si-H-Si frame.

Now we discuss the charge induced effects on the structure of disilane derivatives. From
Fig. 2 we see that Si-H bonds of Si₂H₃ are tilted away from Si-Si bond when positively
charged and toward Si-Si bond when negatively charged. Si₂H₄ is nearly planar and results
in a perfectly planar structure when positively charged. On the other hand, Si-H bonds of
Si₂H₅ tilt significantly out of plane when negatively charged. Si₂H₅ consist of SiH₃ and SiH₂
units connected by Si-Si bond. We see from the figure that H atoms of SiH₂ unit in Si₂H₅⁺
move slightly upward while those in Si₂H₅⁻ are further pushed down. From the figure we
see that Si₂H₆ consist of two SiH₃ units connected by Si-Si bond. Upon charging there is
no significant change in the overall structure, but each SiH₃ units of Si₂H₆⁺ and Si₂H₆⁻
distort as those of SiH₃⁺ and SiH₃⁻ clusters. The ground states of neutral and charged
silane and disilane derivatives show that the structural modifications occur mainly through
the bending of Si-H bonds.

The charge induced structural distortions of silane and disilane derivatives can be under-
stood from the nature of valance electron density distribution. First, we discuss the nature
of valance electron distribution and its influence on charged SiH₂ structure. Then, using
the same arguments we explain the structural modifications of other charged clusters. The
valance electron density distribution of neutral and charged SiH₂ are shown in Fig. 3. From
the figure we see that the electron density of SiH₂ is highly localized near H atoms and also
on top of silicon atom. We call the electron density between Si and H as bonded while on top
of Si as non-bonded. This non-bonded electron distribution is in some sense, similar to the
Lewis dot of unpaired electrons. The density of bonded electrons is highly localized near
H atoms due to the fact that hydrogen is more electronegative and withdraws electron
from silicon atom. We see from the figure that the non-bonded electron density of SiH₂,
on top Si atom, decreases when positively charged and increases when negatively charged.
Thus in Fig. 1 for SiH₂ the non-bonded electron density is schematically represented by a
half filled circle on Si. For SiH₂⁺ it is shown by an open circle indicating the decrease in
the non-bonded electron density while for SiH₂⁻, it is shown by a filled circle indicating the
increase in the non-bonded electron density.

Now we discuss how the structural modifications of charged SiH$_2$ can be understood in terms of the bonded and non-bonded electron density. Since the ground state of SiH$_2$ is not a linear geometry, the non-bonded electron density would exert a downward force on the bonded electron density. Since the non-bonded electron density of SiH$_2^+$ is lower than that of neutral SiH$_2$, its downward push on H atoms of SiH$_2^+$ is also lower than that of neutral SiH$_2$ which results in the opening of H-Si-H bond angle. From this argument one would expect that SiH$_2^{++}$ should have further opening in the bond angle. Indeed, we find that the optimization on SiH$_2^{++}$ results in an almost linear geometry with a larger bond angle. In contrast, in SiH$_2^-$ there is increment in the non-bonded electron density on top of silicon atom. Thus one would expect that the bond angle should get smaller than that of the neutral cluster due to the excess push on H atoms. But the reduction of H-Si-H angle is opposed by the increased H-H repulsion. The H-H repulsion in SiH$_2^-$ increases because charges on H increase when SiH$_2$ is negatively charged[59].

The structural modifications of other charged clusters can be explained using the same arguments given in the previous paragraph. To understand the nature of valance electron distribution, we have done charge density analysis of all these clusters. We find that the non-bonded electron density distribution decreases when positively charged and increases when negatively charged. From the charge density analysis we have also located the non-bonded electron density in these clusters. As in the case of neutral and charged SiH$_2$ clusters, the non-bonded electron density is schematically represented by half, open and filled circles for the neutral, positive and negative clusters in Fig. 1 and 2. From this schematic representation it is easy to understand the structural modifications in the charged clusters. Hydrogen atoms bonded to Si are attracted to the nearby open circle while they are repelled away from the nearby filled circle. The attraction of H to an open circle and the repulsion of H to a filled circle are due to the electrostatic interaction as explained in the case of charged SiH$_2$ clusters.

B. Charge induced bond length variations

We find that charging the clusters not only changes Si-H bond orientations but also Si-H, Si-H-Si and Si-Si bond lengths. In Fig. 4(a), 4(b) and 4(c), we have shown Si-H, Si-H-Si
and Si-Si bond lengths of the neutral and charged clusters as a function of cluster size. We see from the figure that Si-H bond length of a positively charged cluster is shorter than that of the corresponding neutral cluster while it is longer for the negatively charged cluster. On the other hand, Si-H-Si and Si-Si bond lengths of both positive as well as negative charged cluster are longer than that of the neutral cluster. However, Si₂H₃⁺ is an exception where Si-Si and Si-H-Si bond lengths are shorter than those of the neutral cluster. From Fig. 4(c) we see that Si-Si bond length of a neutral Si₂Hₙ cluster increases as a function of H and reaches maximum for Si₂H₆, but the bond length of Si₂H₄ is shorter than that of its neighboring Si₂H₃ and Si₂H₅ clusters.

To understand the Si-Si and Si-H bond length variations of charged silane and disilane derivatives we first consider the bond length variations of Si₂ and SiH dimers. Si₂ has bond length of 2.144 Å, the bond expands in both positive as well as negative charged state to 2.308 and 2.453 Å respectively. On the other hand, depending on the charged state the bond length of SiH dimer decreases or increases. SiH dimer has bond length of 1.536 Å, which shortens to 1.518 Å when positively charged and expands to 1.566 Å when negatively charged. The different trends seen in the bond lengths of charged Si₂ and SiH dimers can be understood with the results obtained from population analysis. The population analysis on charged dimers are done by keeping the bond distance same as those of neutral dimers. The population analysis on Si₂ shows that each atom of the neutral dimer has zero charge, whereas each atom of Si₂⁺ has +0.5e and that of Si₂⁻ has -0.5e. The atoms of charged Si₂ are equally charged and repel each other which results in bond length expansion in both positive and negative charged state. The population analysis on neutral SiH dimer shows that a net charge of +0.35e on Si and -0.35e on H atom. The charge transfer from silicon to hydrogen is the indication of polar covalent bond which is consistent considering the fact that electronegativity of silicon is smaller than hydrogen. The population analysis on SiH⁺ shows that the silicon atom in the dimer holds a charge of +1.36e and hydrogen -0.36e. This means that the lost electron is primarily from Si atom in the SiH dimer. Hence the positively charged silicon pulls the H atom closer and reduces the bond length. In the negative charged state, Si atom carries a charge of -0.68e and H atom, a charge of -0.32e and this shows that the extra electron is accumulated primarily on silicon atom. This extra electron density on Si of SiH⁻ repels the H atom and results in the bond length expansion. Our population analysis on neutral and charged SiH dimer shows that Si atom holds the
excess charge in SiH\(^+\) and SiH\(^-\). This can be understood by considering the energies required to add or remove an electron from Si and H atoms. Si atom has smaller ionization potential (IP) than H atom while it has larger electron affinity (EA) than H atom\(^6\). Therefore adding or removing an electron from Si is easier with respect to H atom.

The general trends of Si-Si and Si-H bond length variations of charged clusters are consistent with the bond length variations of Si\(_2\) and SiH dimers when charged. As mentioned earlier, Si-H-Si bond expands under both the charged state. In Si-H-Si unit, two silicon atoms are also bonded and they expand irrespective of the charged state. As a result of Si-Si expansion, Si-H-Si bridge bond expands under positive as well as negative charged state.

The shorter Si-Si bond observed in Si\(_2\)H\(_4\) is due to the formation of a \(\pi\) bond between silicon atoms. The \(\pi\) bond has a shorter bond length when compared to a \(\sigma\) bond\(^{62}\). The highest occupied molecular orbital (HOMO) of Si\(_2\)H\(_4\), Si\(_2\)H\(_3\) and Si\(_2\)H\(_3^+\) are shown in Fig. 5. From the figure we see that the HOMO of Si\(_2\)H\(_4\) is spread above and below the line connecting the two Si atoms. This indicates that the HOMO of Si\(_2\)H\(_4\) is formed due to the side overlap between valance \(p\) orbitals of silicon atoms which is a characteristic of \(\pi\) bonding\(^{62}\). Si\(_2\)H\(_3^+\) has shorter Si-Si and Si-H-Si bonds compared to the corresponding neutral cluster. From Fig. 5 we see that the HOMO of Si\(_2\)H\(_3^+\) is slightly spread above and below the Si-Si bond while such a spread is absent in neutral Si\(_2\)H\(_3\). This means that HOMO of Si\(_2\)H\(_3^+\) has gained slightly \(\pi\) character compared to that of neutral Si\(_2\)H\(_3\) and hence Si-Si bond is shorter than that of the neutral cluster. Due to the reduction in Si-Si bond length, Si-H-Si bond length of Si\(_2\)H\(_3^+\) is also reduced from that of the neutral cluster.

IV. VIBRATIONAL ANALYSIS

In this section we discuss the charge induced effects on vibrational frequencies of the clusters. Also we identify the modes corresponding to internal rotation of subunits in the clusters. The vibrational frequencies and force constants of silane and disilane derivatives are given in Tables II and III. Our calculated vibrational frequencies 922, 980, 2235 and 2244 cm\(^{-1}\) for SiH\(_4\) are in good agreement with those of experimentally obtained values\(^6\) of 914, 953, 2189 and 2267 cm\(^{-1}\).

We notice from the tables that SiH\(_4^+\), SiH\(_5^+\), Si\(_2\)H\(_3^+\), Si\(_2\)H\(_4^−\), neutral and charged clusters
of \(\text{Si}_2\text{H}_5\) and \(\text{Si}_2\text{H}_6\) have one mode with very low frequency and nearly zero force constant. A small frequency and force constant for a mode imply that during the vibrational motion the atoms of the cluster move in a nearly constant potential energy surface. This may be an indication that the mode corresponds to either transition state or internal rotation \[45, 64, 65, 66\] of the cluster. We looked into the vibrational motion corresponding to low frequency modes of the clusters. We find that the low frequency modes are associated with the internal rotation of subunits about some symmetry axis of the clusters.

One vibrational frequency of \(\text{SiH}_3\) corresponds to the umbrella mode. The umbrella mode frequency of \(\text{SiH}_3\) is 760 cm\(^{-1}\) which increases for both \(\text{SiH}_3^+\) and \(\text{SiH}_3^-\) to 839 and 894 cm\(^{-1}\) respectively. The inversion barriers for \(\text{SiH}_3\) and \(\text{SiH}_3^-\) are 0.22 and 1.24 eV respectively. Because of the increased barrier height, the frequency of \(\text{SiH}_3^-\) is larger than that of \(\text{SiH}_3\). Although \(\text{SiH}_3^+\) is planar without inversion barrier, the frequency and force constant of the umbrella mode are larger than those of the neutral and negative clusters. This is due to the fact that the potential energy surface of \(\text{SiH}_3^+\) about the center of inversion has different shape from those of \(\text{SiH}_3\) and \(\text{SiH}_3^-\). At the inversion center, \(\text{SiH}_3\) and \(\text{SiH}_3^-\) have barriers while \(\text{SiH}_3^+\) has potential energy minimum as shown in Fig. 6.

We find that charging the cluster shifts the stretching frequency of Si-H, Si-Si and H-Si-H bonds. From Table II and III we see that the trend of frequency variations in Si-H, Si-Si and Si-H-Si stretch modes of charged clusters is opposite to the trend of their bond length variations which is shown in Fig. 4. For example, Si-H stretch frequency of SiH dimer is 2013 cm\(^{-1}\) which increases to 2137 cm\(^{-1}\) for SiH\(^+\) and decreases to 1827 cm\(^{-1}\) for SiH\(^-\). From Fig. 4 we see that the bond length is shorter for SiH\(^+\) while it is longer for SiH\(^-\) from that of the neutral SiH dimer. Such a relationship between Si-H bond length variation and frequency variation seen in SiH dimer holds true for Si-H, Si-Si and Si-H-Si bonds of all the clusters. In general, longer bond length reduces the frequency and vice versa. This relationship is reasonable since expansion of the bond means that the bond gets weaker and hence the corresponding stretch mode has lower frequency. On the other hand shortening of the bond length means that the bond gets stronger and hence the stretch mode has larger frequency.
V. FRAGMENTATION OF SILANE AND THE FORMATION OF BIGGER CLUSTERS

A. Fragmentation of neutral and charged silane

For the fragmentation studies, we have considered various possible fragmentation pathways of silane into binary products. Also the charged clusters are included in our investigation as they exist in PECVD plasma. The fragmentation energy of a cluster has been calculated by taking the difference between total energy of reactant with those of product clusters. Among the possible fragmentation channels of neutral and charged silane the low energy channels are

\[\text{SiH}_4 \rightarrow \text{SiH}_2 + \text{H}_2 (+2.57 \text{eV}) \] (1)
\[\text{SiH}_4^+ \rightarrow \text{SiH}_2^+ + \text{H}_2 (+0.60 \text{eV}) \] (2)
\[\text{SiH}_4^- \rightarrow \text{SiH}_3^- + \text{H} (+1.33 \text{eV}) \] (3)

where the number in the parenthesis is the fragmentation energy.

As we see from the above reactions, production of hydrogen in molecular form is favored in \(\text{SiH}_4 \) and \(\text{SiH}_4^+ \) while atomic hydrogen is favored in \(\text{SiH}_4^- \). Our low energy fragmentation channel of \(\text{SiH}_4 \) agrees with the experimental study\[8\]. There is another process where hydrogen atom is attached with \(\text{SiH}_4^+ \) and forms \(\text{SiH}_5^+ \), which undergoes fragmentation as given below.

\[\text{SiH}_4^+ + \text{H} \rightarrow \text{SiH}_5^+ \rightarrow \text{SiH}_3^+ + \text{H}_2 (+0.64 \text{eV}) \] (4)

This process is quite possible since a large amount of hydrogen is available in the PECVD plasma and we see from the fragmentation energies of \(\text{SiH}_4^+ \) and \(\text{SiH}_5^+ \) that the latter is more stable to the fragmentation of \(\text{H}_2 \). We find that the energy required to break \(\text{H}_2 \) from \(\text{SiH}_5^- \) is negative and is about -0.24 eV. This indicates that \(\text{SiH}_5^- \) is highly unstable. Therefore, \(\text{SiH}_5^- \) is not considered in our fragmentation study.

It has been observed that deposition of \(\text{SiH}_3 \) on the film improves the material quality whereas deposition of \(\text{SiH} \) and \(\text{SiH}_2 \) degrades the material quality\[1\]. Therefore, it is important to understand the production of \(\text{SiH}_3 \) and its role on the film deposition process. We see
from equations (3) and (4) that SiH$_3^-$ and SiH$_3^+$ are produced in the fragmentation process after attaching an electron with SiH$_4$ and hydrogen atom with SiH$_4^+$. This indicates that the production of SiH$_3$ can be improved by controlling the electron and H content in PECVD plasma. It is interesting to compare these processes with the experimental investigation\[67\] on argon/hydrogen expanding thermal plasma. The investigation suggests that a significant amount of SiH$_3$ is produced by electron collision and hydrogen collision process.

The structure and dipole moment of SiH$_3$ may play a role on improving a:Si-H film quality. As we have mentioned, SiH$_3$ has low inversion barriers of 0.22 eV. This implies that SiH$_3$ can transform to planar structure from its ground state pyramidal structure by crossing the barrier. The barrier crossing can easily occur in the hot plasma environment. When the cluster transforms into the planar structure, its dipole moment changes by a considerable amount. The dipole moment of pyramidal SiH$_3$ is 0.16D and that of planar SiH$_3$ is zero. Because of its zero dipole moment the planar SiH$_3$ does not get easily physisorbed on the film. This low physisorbtion behavior of planar SiH$_3$ cluster is similar to that of CH$_3$ in hydrogenated amorphous carbon film deposition\[68\]. Since the planar SiH$_3$ has low physisorption property, it can migrate on the surface until it gets absorbed by a highly reactive site which could be a dangling bond, surface void or some defect. The surface gets smoother due to the migration of planar SiH$_3$, as a result the film quality improves.

B. Formation of bigger clusters

We have shown in the silane fragmentation process that the product radicals are SiH$_2$, SiH$_2^+$, SiH$_3^+$ and SiH$_3^-$\[3, 4, 5, 6, 7, 21\]. These radicals are reactive as they have unsaturated bonds and can react with silane and with each other forming new species.\[3, 4, 5, 6, 7, 21\]. The new species formed in the clustering process of the radicals with silane are

\[
SiH_2 + SiH_4 \rightarrow Si_2H_6(-2.29eV) \tag{5}
\]
\[
SiH_2^+ + SiH_4 \rightarrow Si_2H_6^+(−1.68eV) \tag{6}
\]
\[
SiH_3^+ + SiH_4 \rightarrow Si_2H_5^+ + H_2(−0.33eV) \tag{7}
\]
\[
SiH_3^- + SiH_4 \rightarrow Si_2H_5^- + H_2(−0.29eV) \tag{8}
\]
As we see from the above equations, the interaction of SiH$_2$ with SiH$_4$ resulting in Si$_2$H$_6$ is highly favored which agrees well with the experimental results [5, 8].

The species formed by clustering of the radicals with each other are

\[
\begin{align*}
SiH_2 + SiH_2 & \rightarrow Si_2H_4 (-2.63 eV) \\
SiH_2 + SiH_2^+ & \rightarrow Si_2H_4^+ (-3.71 eV) \\
SiH_2 + SiH_3^+ & \rightarrow Si_2H_5^+ (-2.90 eV) \\
SiH_2 + SiH_3^- & \rightarrow Si_2H_5^- (-2.86 eV) \\
SiH_3^+ + SiH_3^- & \rightarrow Si_2H_6 (-10.00 eV)
\end{align*}
\]

The number in the parentheses is the cluster formation energy for the process, which is calculated by taking the total energy difference between the product and the reactant clusters.

Except Si$_2$H$_6$ and Si$_2$H$_6^+$, other products formed in the above reactions undergo further clustering processes as they have unsaturated bonds. Since Si$_2$H$_6^+$ is saturated with hydrogen, it favors fragmentation. Si$_2$H$_6$ is the immediate stable cluster formed by the reaction of silane fragmented radicals. It is interesting to see that recent experimental observations [2, 5, 8, 67] show sufficient amount of Si$_2$H$_6$ in silane decomposed PECVD plasma.

VI. CONCLUSIONS

Using the *ab initio* electronic structure methods we have found the ground state structures of neutral and charged silane, disilane and their decomposed species. Interestingly, in addition to usual Si-H bond, hydrogen forms Si-H-Si and Si-H-H bonds in some of these clusters; it forms Si-H-Si bridge bond in Si$_2$H, Si$_2$H$_2$ and Si$_2$H$_3$ clusters and three center two electron Si-H-H bond in SiH$_4^+$ and SiH$_5^+$ clusters. We find that charging the clusters induces structural modifications which mainly occur through Si-H bond orientations. We attribute these structural modifications to electrostatic repulsion between the non-bonded electrons and bonded electrons.

We find that Si-H bond of Si$_m$H$_n$ cluster is shortened when positively charged and expanded when negatively charged. On the other hand Si-Si and Si-H-Si bonds of the cluster
expand irrespective of the charged state. The bond length variations of Si-H and Si-Si bonds in the charged clusters are similar to that of charged SiH and Si₂ dimers.

Our vibrational analysis shows that frequencies of Si-H, Si-Si, Si-H-Si stretch modes show significant changes when the clusters are charged. These frequency shifts are consistent with their bond length variations.

We have shown that the low energy pathways of fragmenting neutral and charged silane are associated with SiH₂, SiH₂⁺, SiH₃⁺ and SiH₃⁻ products. The fragmentation results indicate that the production of SiH₃ can be controlled by electron and H content in the PECVD plasma. We speculate that the experimentally observed improvement in α-S:H film quality by SiH₃ deposition is due to the surface migration of planar SiH₃. The investigation on the clustering process shows that Si₂H₆ is the immediate stable cluster formed by the silane decomposed radicals which is consistent with the experimental observations.

Acknowledgment

It is a pleasure to thank Profs. S. C. Agarwal and M. K. Harbola for helpful discussions and comments. This work was supported by the Department of Science and Technology, New Delhi via project No. SP/S2/M-51/96.

[1] W. M. M. Kessels, R. J. Severens, A. H. Smets, B. A. Korevaar, G. J. Adriaenssens, D. C. Schran and M. C. M. van de Sanden, J. Appl. Phys., 89, 2404 (2001).
[2] H. L. Duan, G. A. Zaharias and S. F. Bent, Appl. Phys. Lett. 78, 1784 (2001).
[3] G. Bano, P. Horvath, K. Rozsa and A. Gallagher, J. Appl. Phys. 98, 13304 (2005).
[4] A. Gallagher, A. A. Howling and Ch. Hollenstein, J. Appl. Phys. 91, 5571 (2002).
[5] P. Horvath, K. Rozsa and A. Gallagher J. Appl. Phys. 96, 7660 (2004).
[6] M. A. Childs and A. Gallagher, J. Appl. Phys. 87, 1076 (2000).
[7] J. R. Doyle, D. A. Doughty, and A. Gallagher, J. Appl. Phys. 71, 4771 (1992).
[8] J. R. Doyle, D. A. Doughty, and A. Gallagher, J. Appl. Phys. 71, 4727 (1992).
[9] A. Leroux, W. M. M. Kessels, D. C. Schram and M. C. M. van de Sanden, J. Appl. Phys. 88, 537 (2000).
[10] J. R. Doyle, D. A. Doughty, and A. Gallagher, J. Appl. Phys. 68, 4375 (1990).
[11] D. A. Doughty and A. Gallagher, Phys. Rev. A 42, 6166 (1990).
[12] A. von Keudell and John R. Abelson, Phys. Rev. B 59, 5791 (1999).
[13] B. M. Jelenkovic and A. Gallagher, J. Appl. Phys. 82, 1546 (1997).
[14] D. M. Tanenbaum, A. L. Laracuente and A. Gallagher, Appl. Phys. Lett. 68, 1705 (1996).
[15] A. Kalemos, A. Mavridis and A. Metropoulos, J. Chem. Phys. 116, 6529 (2002).
[16] M. Shen, Y. Xie and H. Schaefer III, J. Chem. Phys. 93, 8098 (1990).
[17] W. D. Allen and H. F. Schaefer III, Chemical Physics, 108, 243 (1986).
[18] R. S. Grev and H. F. Schaefer III, J. Chem. Phys. 97, 7990 (1992).
[19] G. R. Gupte and R. Prasad, Int. J. Mod. Phys. B 12, 1607 (1998); ibid, B 12, 1737 (1998).
[20] C. Pak, L. Sari, J. C. Rienstra-Kiracofe, S. S. Wesolowski, L. Horny, Y. Yamaguchi and H. F. Schaefer III, J. Chem. Phys. 118, 7256 (2003).
[21] A. Gallagher, Phys. Rev. E 62, 2690 (2000).
[22] N. Chaâbane, H. Vach and G. H. Peslherbe, J. Non-Crystalline Solids, 299-302, 42 (2002).
[23] C. Sosa and C. Lee, J. Chem. Phys. 98, 8004 (1993).
[24] K. Raghavachari, J. Chem. Phys. 92, 452 (1990).
[25] K. Raghavachari, J. Chem. Phys. 95, 7373 (1991).
[26] K. Raghavachari, J. Chem. Phys. 96, 4440 (1992).
[27] K. Raghavachari, J. Chem. Phys. 88, 1688 (1988).
[28] R. Car and M. Parrinello, Phys. Rev. Lett. 55, 2471 (1985).
[29] For a review, see, for example, M. Parrinello, Solid State Communications 102, 107 (1997).

D. K. Remler and P. A. Madden, Molecular Physics 70, 921 (1990).
[30] Gaussian 98, Revision A.11.1, M. J. Frisch et al Gaussian, Inc., Pittsburgh PA, 2001.
[31] The computational procedure for our CPMD calculation on SiH$_m$ and Si$_2$H$_m$ clusters is similar to that of our earlier CPMD calculations done on Si$_m$ (m=2-10) and Si$_m$H (m=1-10) clusters.
[32] D. Balamurugan and R. Prasad, Phys. Rev. B 64, 205406 (2001).
[33] G. B. Bachelet, D. R. Hamann and M. Schlüter, Phys. Rev. B 26, 4199 (1982).
[34] D. M. Ceperley and B. J. Alder, Phys. Rev. Lett. 45, 566 (1980).
[35] J. P. Perdew and A. Zunger, Phys. Rev. B 23, 5048 (1981).
[36] See, for example, J. M. Haile, *Molecular dynamics simulation* (John Wiley and Sons, New York, 1992).
Here we would like to point out the difficulties in performing plane wave calculations for negatively charged clusters. We have performed plane wave pseudopotential calculations as implemented in VASP package for positive and negative charged clusters. VASP set of calculations have been performed with ultrasoft pseudo-potential using local density approximation (LDA). We have used 150 eV Ecut for neutral and charged clusters. Calculations on neutral as well as charged clusters have been performed using a simple cubic supercell of 20 Å length. This length is sufficiently big enough to isolate the clusters from their supercell image. Moreover VASP handles the charged systems by applying a background charge to maintain the charge neutrality and by adding dipole and quadrupole corrections. Using the big supercell with the added corrections we find that the VASP calculated total energies and structures of positive clusters are good while those of negative clusters are not good. In the negatively charged clusters the upper most electron is highly diffusive in nature. Therefore, negative clusters require an even larger supercell. Since Gaussian package calculations are performed in real space, the image problem which occurs in supercell technique can be avoided. All the values reported for the clusters in this article have been obtained using Gaussian package.

[38] H. B. Schlegel, J. Comp. Chem. 3, 214 (1982), H. B. Schlegel, "Geometry Optimization on Potential Energy Surfaces," in Modern Electronic Structure Theory, Ed. D. R. Yarkony, 2 vols., World Scientific Publishing: Singapore, 1994.

[39] J. B. Foresman and A. Frisch, Exploring Chemistry with Electronic Structure Methods (Second Edition, Gaussian, Inc. Pittsburgh, PA, 1993).

[40] J. Berkowitz, J. P. Greene, H. Cho and B. Ruščić, J. Chem. Phys. 86, 1235 (1987).

[41] U. Itoh, Y. Toyashima, H. Onuki, N. Washida and T. Ibuki, J. Chem. Phys. 85, 4867 (1986).

[42] R. Robertson and A. Gallagher, J. Appl. Phys. 59, 3402 (1986).

[43] M. R. Nimlos and G. B. Ellison, J. Am. Chem. Soc. 108, 6522 (1986).

[44] The symmetry breaking of charged SiH₄ clusters and their vibrational properties have been discussed earlier. For the sake of completeness we have included some results in this paper.

[45] D. Balamurugan, M. K. Harbola and R. Prasad, Phys. Rev. A 69, 033201 (2004).

[46] I. B. Bersuker, Chem. Rev. 101, 1067 (2001).

[47] M. D. Sturje in The Jahn-Teller effect in solids edited by F. Sietz, D. Turnbull and H. Ehrenreich, volume 20 of Solid State Physics, Advances in Research and Applications (1967)
p. 91.

[48] R. Englman, *The Jahn-Teller effect in molecules and crystals* (Wiley-Interscience, New York, 1972).

[49] R. F. Frey and E. R. Davidson, J. Chem. Phys. 89, 4227 (1988).

[50] F. D. Proft and P. Geerlings, Chem. Phys. Lett. 262, 782 (1996).

[51] T. Kudo and S. Nagase, Chem. Phys. 122, 233 (1988).

[52] R. Caballol, J. A. Catala and J. M. Problet, Chem. Phys. Lett. 130, 278 (1986).

[53] A. R. Porter, O. K. Al-Mushadani, M. D. Towler and R. J. Needs, J. Chem. Phys. 114, 7795 (2001).

[54] D. W. Boo and Y. T. Lee, J. Chem. Phys., 103, 514 (1995).

[55] D. Marx and M. Parrinello, Science, 284, 59 (1999).

[56] D. Marx and A. Savin, Angew. Chem. Int. Ed. Engl. 36, 2077 (1997).

[57] See, for example, I. N. Levine, *Quantum Chemistry* (Prentice-Hall, Englewood Cliffs, New Jersey, 1991) p. 503-506.

[58] J. Robles and L. J. Bartolotti, J. Am. Chem. Soc. 106, 3723 (1984).

[59] The population analysis gives charges on Si and H in SiH$_2^-$ respectively as -0.48e and -0.26e while for neutral SiH$_2$ the corresponding charges are 0.30e and -0.15e. The population numbers given here and in the other parts of text refers to the amount of charge on each atom with respect to nuclear charge obtained from natural population analysis using B3LYP/6-311G** calculations.

[60] Arthur Beiser, *Perspectives of Modern Physics* (McGraw Hill Book Company, New York, 1985) p. 300.

[61] CRC Handbook of Chemistry and Physics, 85th ed., edited by D. R. Lide (CRC, Boca Raton, FL, 2004). O. A. Vydrov and G. E. Scuseria, J. Chem. Phys. 122, 184107 (2005)

[62] John. W. Moore, Conard. L. Stanitski and Peter. C. Jurs, *Chemistry, The Molecular Science* 2nd edition, (Brooks/Cole-Thomson Learning, Belmont, 2005) p. 349.

[63] A. M. Coats, D. C. McKean and D. Steele, J. Mol. Struct. 320, 269 (1994).

[64] C. R. Quade, J. Mol. Spect. 188, 190 (1998).

[65] P. Y. Ayala and H. B. Schlegel, J. Chem. Phys. 108, 2314 (1998).

[66] Y. Duan, R. Wang and I. Mukhopadhyay, Chem. Phys. 280, 119(2002).

[67] M. C. M. van de Sanden, R. J. Serverens, W. M. M. Kessels, R. F. G. Meulenbroeks and D.
C. Schram, J. Appl. Phys. 84, 2426 (1998).

[68] J. Perrin, M. Shiratani, P. Kae-Nune, H. Videlot, J. Jolly and J. Guillon, J. Vac. Sci. Technol. A 16, 278 (1998).

[69] G. Kresse and J. Furthmüller, Comput. Mater. Sci. 6 15 (1996); Phys. Rev. B 54, 11169 (1996).

[70] V. Kumar and Y. Kawazoe, Phys. Rev. Lett. 90, 055502 (2003).

[71] G. Makov and M. C. Payne, Phys. Rev. B 51, 4014 (1995), G. Makov, R. Shah and M. C. Payne, Phys. Rev. B 53, 15513 (1996).

[72] J. Neugebauer and M. Scheffler, Phys. Rev. B 46, 16067 (1992).
Table. I. Our calculated ionization potentials (IP) of SiₘHₙ clusters using Gaussian98 package. The experimental values (a)[40], (b)[41] and (c)[42] are given in the last column.

	Gaussian98	Experiment
IP (eV)	IP (eV)	
Si	8.1	8.2(a)
SiH	8.0	7.9(a)
SiH₂	9.0	9(a)
SiH₃	8.1	8(a)
SiH₄	11.0	11(a), 12.4(b)
Si₂	7.8	7.7(c)
Si₂H	8.4	7.9(c)
Si₂H₂	8.0	7.7(c)
Si₂H₃	7.8	7.8(c)
Si₂H₄	7.9	7.6(c)
Si₂H₅	7.7	7.7(c)
Si₂H₆	9.6	7.9(c)
Table II The calculated vibrational frequencies ν (cm$^{-1}$) and force constants k (mDyne/Å) of neutral and charged SiH$_m$ (m=1-4) and also charged SiH$_5$ clusters using B3LYP functional employing 6-311g** basis set. Important modes such as stretch, breathing etc., have been identified.

	SiH	SiH$^+$	SiH$^-$		SiH$_2$	SiH$_2^+$	SiH$_2^-$		SiH$_3$	SiH$_3^+$	SiH$_3^-$		SiH$_4$	SiH$_4^+$	SiH$_4^-$		SiH$_5^+$	SiH$_5^-$															
1	Si-H stretch	2013	2.49	2037	2.81	1827	2.0512		1024	0.64	907	0.51	967	0.58		760	0.37	839	1.11	894	0.51		922	0.55	244	0.04	712	0.04		63	0.00	513	0.16
2	636	0.25	516	0.16																													
---	-----	------	-----	------																													
3	656	0.26	992	0.66																													
4	745	0.37	1041	0.71																													
5	869	0.46	1041	0.71																													
6	923	0.53	1204	0.86																													
7	926	0.53	1205	0.86																													
8	1046	0.65	1354	1.09																													
9	2289	3.12	1506	1.38																													
10	2350	3.45	1924	2.29																													
11	2360	3.48	1924	2.29																													
12	3955	9.29	1955	2.27																													
Table. III The calculated vibrational frequencies ν (cm$^{-1}$) and force constants k (mDyne/Å) of neutral and charged Si$_2$H$_n$ (n=1-4) clusters using B3LYP functional employing 6-311g** basis set. Si-H-Si (∥) mode corresponds to the motion of H atom parallel to Si-Si bond of the cluster and Si-H-Si (⊥) corresponds to the motion of H atom perpendicular to Si-Si bond.

mode	Si$_2$	Si$_2^+$	Si$_2^-$
1 Si-Si stretch	600 5.94	546 4.92	586 5.65
Si$_2^-$H		Si$_2^-$H$^+$	
1 Si-Si stretch	543 4.02	407 2.22	556 4.29
2 Si-H-Si (∥)	1108 0.76	890 0.49	1104 0.75
3 Si-H-Si (⊥)	1565 1.49	1384 1.17	1479 1.33
Si$_2$H$_2$		Si$_2$H$_2^+$	
1 Si-Si stretch	522 1.93	395 1.00	346 0.40
2	963 0.59	993 0.63	782 0.44
3 Si-H-Si (∥)	1083 0.72	1054 0.68	948 0.55
4 Si-H-Si (∥)	1175 0.86	1171 0.86	954 0.56
5 Si-H-Si (⊥)	1534 1.43	1546 1.45	1418 1.22
6 Si-H-Si (⊥)	1616 1.57	1626 1.59	1550 1.44
Si$_2$H$_3$		Si$_2$H$_3^+$	
1 Si-Si stretch	358.07	198 0.02	496 0.15
2 Si-Si stretch	446.15	442 0.38	415 1.53
3	647 0.26	575 0.27	688 0.29
4	739 0.35	637 0.27	788 0.39
5	741 0.34	772 0.38	802 0.41
6 Si-H-Si (∥)	1090 0.71	1082 0.70	1118 0.75
7 Si-H-Si (⊥)	1497 1.37	1606 1.57	1375 1.16
8 Si-H stretch	2082 2.66	2192 2.96	1888 2.19
9 Si-H stretch	2089 2.68	2199 2.97	1908 2.24
Si$_2$H$_4$		Si$_2$H$_4^+$	

22
	323	0.09	336	0.08	198	0.02	
2	348	0.07	345	0.07	360	0.08	
3	448	0.13	370	0.08	458	0.12	
4	525	0.16	524	0.17	676	0.31	
5	Si-Si stretch	563	0.78	505	1.30	390	0.95
6	616	0.27	607	0.26	677	0.30	
7	919	0.53	853	0.45	936	0.54	
8	956	0.58	942	0.56	943	0.55	
9	Si-H stretch	2224	3.00	2279	3.14	1998	2.43
10	Si-H stretch	2228	3.01	2281	3.14	2000	2.47
11	Si-H stretch	2245	3.13	2326	3.38	2009	2.46
12	Si-H stretch	2257	3.17	2334	3.40	2019	2.52
	Si₂H₅	Si₂H₅⁺	Si₂H₅⁻				
1	128	0.01	40	0.00	175	0.02	
2	390	0.09	340	0.11	366	0.70	
3	406	0.12	362	0.08	390	0.09	
4	Si-Si stretch	424	0.41	397	0.21	398	0.10
5	597	0.25	608	0.26	676	0.32	
6	637	0.28	676	0.32	696	0.32	
7	876	0.49	817	0.43	923	0.55	
8	936	0.55	910	0.50	939	0.54	
9	949	0.56	921	0.52	970	0.58	
10	951	0.55	976	0.60	974	0.58	
11	Si-H stretch	2188	2.90	2235	3.01	1932	2.30
12	Si-H stretch	2199	2.95	2252	3.08	1935	2.28
13	Si-H stretch	2214	3.04	2280	3.19	2040	2.56
14	Si-H stretch	2223	3.01	2291	3.26	2072	2.65
15	Si-H stretch	2231	3.09	2304	3.30	2083	2.63
	Si₂H₆	Si₂H₆⁺	Si₂H₆⁻				
---	-------	-----	-----	-----	-----	-----	
1	131	0.01	105	0.01	162	0.02	
2	380	0.09	208	0.22	211	0.23	
3	380	0.09	265	0.04	250	0.04	
4	Si-Si stretch	423	0.75	267	0.04	285	0.05
5	636	0.29	328	0.07	498	0.18	
6	636	0.29	328	0.07	562	0.22	
7	855	0.47	723	0.34	855	0.47	
8	928	0.56	789	0.40	884	0.49	
9	945	0.54	918	0.52	932	0.53	
10	945	0.54	918	0.52	938	0.53	
11	959	0.56	928	0.53	962	0.58	
12	959	0.56	928	0.53	966	0.56	
13	Si-H stretch	2209	2.93	2256	3.03	1765	1.91
14	Si-H stretch	2217	2.99	2258	3.03	1826	2.03
15	Si-H stretch	2218	3.02	2314	3.33	2058	2.62
16	Si-H stretch	2219	3.03	2315	3.34	2061	2.58
17	Si-H stretch	2227	3.08	2321	3.36	2069	2.60
18	Si-H stretch	2229	3.08	2322	3.36	2076	2.66
FIGURE CAPTIONS

Fig. 1. The ground state structures of neutral and charged SiH$_m$ ($m = 2-4$) clusters. Also the structures of SiH$_5^+$ and SiH$_5^-$ clusters are shown. All the structures have been obtained using Gaussian98 program employing B3LYP/6-311G**. The gray ball represents Si atom and small black ball represents H atom. Note that Si and H atoms are connected by bonds. In addition to position of atoms, the non-bonded electron density distribution is also shown schematically by unconnected half, open and filled circles for neutral, positive and negative clusters respectively. The unconnected open and filled circles respectively represent the decrease and increase in the non-bonded electron density.

Fig. 2. Same as in Fig. 1 except for neutral and charged Si$_2$H$_n$ ($n = 1-6$) clusters.

Fig. 3. Valance electron density distribution of neutral and charged SiH$_2$ clusters. The iso-contour value of 0.07 is chosen to show clearly the density distribution variation between the neutral and charged SiH$_2$. The locations of Si and H atoms are also indicated.

Fig. 4. (a) Si-H, (b) Si-H-Si and (c) Si-Si bond lengths (Å) of neutral and charged Si$_n$H$_m$ (n=1 or 2, $m = 0-6$) clusters as a function of cluster size. Note that for Si-H-Si bond, it is Si-H distance which is plotted. The circles connected by thick line represents the bond lengths of neutral clusters, the square connected by broken line for positively charged and triangles connected by dotted line for negatively charged clusters.

Fig. 5. Iso-contour distribution of HOMO in Si$_2$H$_4$, Si$_2$H$_3$ and Si$_2$H$_3^+$.

Fig. 6. The total energy of SiH$_3$, SiH$_3^-$ and SiH$_3^+$ as a function of Si distance from the center of inversion. For each cluster the total energy is given with respect to its ground state energy. All these set of calculations have been performed by varying Si distance along symmetry axis and freezing H atoms. Since H atoms are frozen in the present set of calculations, for each cluster the total energy at the inversion center shown in the figure is slightly overestimated in comparison with the fully geometry optimized energy referred in the text. Note that 0.0 Å means that Si atom is at the inversion center and the structure of the cluster is planar.
(SiH$_2$) (SiH$_2^+$) (SiH$_2^-$)
Si-H bond length (Å)

- SiH
- SiH₂
- SiH₃
- Si₂H₃
- Si₂H₄
- Si₂H₅
- Si₂H₆

Si-H-Si bond length (Å)

- Si₂H
- Si₂H₂
- Si₂H₃
- Si₂H₄
- Si₂H₅
- Si₂H₆

Si-Si bond length (Å)

- Si₂
- Si₂H
- Si₂H₂
- Si₂H₃
- Si₂H₄
- Si₂H₅
- Si₂H₆

Neutral

+ve

-ve
