Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
UV-C (254 nm) lethal doses for SARS-CoV-2

Dear Editor

The rapid and continuous spread of SARS-CoV-2, responsible for COVID-19, has been challenging global health systems and many strategies have been proposed to face the COVID-19 pandemic crisis [1]. In this scenario, ultraviolet lamps emitting ultraviolet C (UV-C) germicidal radiation (peak emission at 254 nm) are in the spotlight to provide efficient and sustainable disinfection of air, liquids and surfaces (e.g., plastics, fabrics, metals, etc). However, UV light with wavelengths greater than 180 nm can cause health adverse effects as eye damage, skin cancer and ageing, and UV-C should be not used in inhabited environments. Herein, we established the inactivation kinetics and reported the UV-C lethal doses (LD) for SARS-CoV-2.

A twenty-four-well plate was seeded with 2×10^6/mL Vero cells (ATCC CCL-81) for a final volume of 500 μL/well. Cells were kept in the DMEM High Glucose (DMEN-HG) culture medium (Sigma-Aldrich, USA) supplemented with 10 % bovine fetal serum, 100 units/mL penicillin and 100 μg/mL streptomycin. Subsequently, the plate was incubated at 37 °C with 5% CO$_2$ for 24 h, and then the culture medium was completely removed and replaced by 750 μL of DMEM-HG without supplementation [2,3].

An aliquot of the SARS-CoV-2 stock, previously characterized by Araujo et al. [4], was thawed and 100 μL were diluted in 900 μL of DMEM-HG without supplementation. Then, 200 μL of this dilution were placed in wells of a 24-well plate, which were exposed to the UV-C lamp (UVsurface, Biolambda, Brazil) placed 30 cm above the plate to allow an uniform irradiance over the plate wells (2.2 ± 0.2 mW/cm2). Light was delivered by 2, 30 and 120 s corresponding to doses of 4.4, 66 and 264 mJ/cm2, respectively. Controls were not submitted to irradiation.

After exposure to UV-C light, aliquots of 83.4 μL were placed into the plates containing the previously seeded Vero cells and incubated for 1 h at 37 °C with 5% CO$_2$ for viral adsorption. Thereafter, 166.6 μL of DMEM-HG medium containing 12 % fetal bovine serum were added and the plate was incubated for 48 h at 37 °C with 5% CO$_2$.

After that, 100 μL of medium from each well was removed and placed into a lysis buffer solution to proceed with the extraction of the viral RNA using the MagMAX™ CORE Nucleic Acid Purification Kit (Thermo Fisher). After extraction, the number of copies of SARS-CoV-2 per mL was obtained using the RT-qPCR technique. Results were normalized in relation to controls for the calculation of viral inhibition rates of each sample. For the viral inactivation kinetics, we used the methodology reported by Sabino et al. [5].

UV-C inactivation kinetics and lethal doses for SARS-CoV-2 are presented at Fig. 1 and Table 1, respectively. We verified that within less than a second, UV-C irradiation was able to inactivate more than 99% of SARS-CoV-2 viral particles. In fact, LD$_{90}$ and LD$_{99.999}$ were achieved at 0.016 and 108.714 mJ/cm2 (0.01 and 49.42 s) respectively.

In summary, we report the inactivation kinetics and lethal dose analysis of UV-C radiation, emitted by low-pressure mercury lamps at 254 nm, against SARS-CoV-2, in a controlled in vitro experiment. Our findings can help scientific community and health authorities to develop safe and effective protocols to reduce the dissemination of SARS-CoV-2 during this global health crisis. Thus, we strongly encourage further studies in more realistic situations.

Declaration of Competing Interest

The authors report no declarations of interest.

Acknowledgments

CPS, RRGM and ELD were supported by the São Paulo Research Foundation (FAPESP, grants 2017/22406-0, 2017/24769-2 and 2016/20045-7). CPS and DFSM were supported by the Brazilian National Council for Scientific and Technological Development (CNPq, scholarship 141901/2016-0). FPS thanks Coordination for the Improvement of Higher Education Personnel (CAPES) for his scholarship. MSR thanks the Photonics Institute for financial support (INFO/CNPq grant 465763/2014-6).

References

[1] N. Zhu, D. Zhang, W. Wang, X. Li, B. Yang, J. Song, et al., China novel coronavirus investigaring and research team (2020). A novel coronavirus from patients with pneumonia in China. N. Engl. J. Med. 382 (8) (2019) 727–733.
[2] Y. Shi, D.H. Yang, J. Xiong, J. Jia, B. Huang, Y.X. Jin, Inhibition of genes expression of SARS coronavirus by synthetic small interfering RNAs, Cell Res. 15 (2005) 193-200,
[3] C. Taşlan, B. Yurtsever, G. Sir Karkaus, D. Dilek KançaGü, S. Demir, S. Abaruz, et al., SARS-CoV-2 isolation and propagation from Turkish COVID-19 patients, Turk. J. Biol. 44 (2020) 192–202.
[4] D.B. Araujo, R.R.G. Machado, D.E. Amgarten, F.M. Malta, G.G. de Araujo, C.O. Monteiro, et al., SARS-CoV-2 Isolation From the First Reported Patients in Brazil and Establishment of a Coordinated Task Network, Memórias do Instituto Oswaldo Cruz, 2020, https://doi.org/10.1590/0074-02760200342.
https://doi.org/10.1016/j.pdpdt.2020.101995
Received 5 August 2020
Available online 8 September 2020
1572-1000/© 2020 Elsevier B.V. All rights reserved.
Fig. 1. Inactivation kinetics of SARS-CoV-2 promoted by UV-C radiation at 254 nm.

Table 1

Viral inactivation (%)	UV-C dose (mJ/cm²)	Exposure time (s)
90	0.016	0.01
99	0.706	0.32
99.9	6.556	2.98
99.99	31.880	14.49
99.999	108.714	49.42

[5] C.P. Sabino, M. Wainwright, C. Dos Anjos, F.P. Sellera, M.S. Baptista, N. Lincopan, M.S. Ribeiro, Inactivation kinetics and lethal dose analysis of antimicrobial blue light and photodynamic therapy, Photodiagnosis Photodyn. Ther. 28 (2019) 186-191.

Caetano P. Sabinoa,b,*

a Department of Clinical Analysis, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil
b BioLambda, Scientific and Commercial LTD, São Paulo, Brazil

Fábio P. Selleraa,b

a Department of Internal Medicine, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo, Brazil
b School of Veterinary Medicine, Metropolitan University of Santos, Santos, Brazil

Douglas F. Sales-Medina, Rafael Rahal Guaragna Machado, Edison Luiz Durigon, Lucio H. Freitas-Junior

Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil

Martha S. Ribeiro**

Center for Lasers and Applications, Nuclear and Energy Research Institute (IPEN-CNEN/SP), São Paulo, SP, Brazil

* Corresponding author at: Department of Clinical Analysis, Faculty of Pharmaceutical Sciences, University of São Paulo, São Paulo, Brazil.

** Corresponding author.

\textit{E-mail address: caetanosabino@gmail.com} (C.P. Sabino).
\textit{E-mail address: marthasr@usp.br} (M.S. Ribeiro).