Solvability graphs of finite groups

Parthajit Bhowal¹, Deiborlang Nongsiang², Rajat Kanti Nath∗¹

¹Department of Mathematical Sciences, Tezpur University, Napaam-784028, Sonitpur, Assam, India
²Department of Mathematics, Union Christian College, Umiam-793122, Meghalaya, India

Abstract

Let G be a finite non-solvable group with solvable radical Sol(G). The solvability graph Γs(G) of G is a graph with vertex set G \ Sol(G) and two distinct vertices u and v are adjacent if and only if ⟨u, v⟩ is solvable. We show that Γs(G) is not a star graph, a tree, an n-partite graph for any positive integer n ≥ 2 and not a regular graph for any non-solvable finite group G. We compute the girth of Γs(G) and derive a lower bound of the clique number of Γs(G). We prove the non-existence of finite non-solvable groups whose solvability graphs are planar, toroidal, double-toroidal, triple-toroidal or projective. We conclude the paper by obtaining a relation between Γs(G) and the solvability degree of G.

Mathematics Subject Classification (2010). 20D60, 05C25

Keywords. solvable graph, genus, solvability degree, finite group

1. Introduction

Let G be a finite group and u ∈ G. The solvabilizer of u, denoted by SolG(u), is the set given by {v ∈ G : ⟨u, v⟩ is solvable}. Note that the centralizer C_G(u) := {v ∈ G : uv = vu} is a subset of SolG(u) and hence the center Z(G) ⊆ SolG(u) for all u ∈ G. By [21, Proposition 2.13], |C_G(u)| divides |SolG(u)| for all u ∈ G though SolG(u) is not a subgroup of G in general. A group G is called a S-group if SolG(u) is a subgroup of G for all u ∈ G. A finite group G is a S-group if and only if it is solvable (see [21, Proposition 2.22]). Many other properties of SolG(u) can be found in [21]. We write Sol(G) = {u ∈ G : ⟨u, v⟩ is solvable for all v ∈ G}. It is easy to see that Sol(G) = u∈G SolG(u). Also, Sol(G) is the solvable radical of G (see [18]). The solvability graph of a finite non-solvable group G is a simple undirected graph whose vertex set is G \ Sol(G), and two vertices u and v are adjacent if ⟨u, v⟩ is a solvable. We write Γs(G) to denote this graph. It is worth mentioning that Γs(G) is the complement of the non-solvable graph of G considered in [4,21] and extension of commuting and nilpotent graphs of finite groups that are studied extensively in [1–3, 5, 6, 9–11, 13–16, 25, 26]. It is worth mentioning that the study of commuting graphs of finite groups is originated from a question posed by Erdös [23].

In this paper, we show that Γs(G) is not a star graph, a tree, an n-partite graph for any positive integer n ≥ 2 and not a regular graph for any non-solvable finite group G. In Section 2, we also show that the girth of Γs(G) is 3 and the clique number of Γs(G) is

∗Corresponding Author.
Email addresses: bhowal.parthajit8@gmail.com (P. Bhowal), ndeiborlang@yahoo.in (D. Nongsiang), rajatkantinath@yahoo.com (R.K. Nath)
Received: 05.06.2019; Accepted: 09.03.2020
greater than or equal to 4. In Section 3, we first show that for a given non-negative integer k, there are at the most finitely many finite non-solvable groups whose soluble graph have genus k. We also show that there is no finite non-solvable group, whose soluble graph is planar, toroidal, double-toroidal, triple-toroidal or projective. We conclude the paper by obtaining a relation between $\Gamma_\text{s}(G)$ and $P_4(G)$ in Section 4, where $P_4(G)$ is the probability that a randomly chosen pair of elements of G generate a soluble group (see [20]).

The reader may refer to [27] and [28] for various standard graph theoretic terminologies. For any subset X of the vertex set of a graph Γ, we write $\Gamma[X]$ to denote the induced subgraph of Γ on X. The girth of Γ is the minimum of the lengths of all cycles in Γ, and is denoted by $\text{girth}(\Gamma)$. We write $\omega(\Gamma)$ to denote the clique number of Γ which is the least upper bound of the sizes of all the cliques of Γ. The smallest non-negative integer k is called the genus of a graph Γ if Γ can be embedded on the surface obtained by attaching k handles to a sphere. Let $\gamma(\Gamma)$ be the genus of Γ. Then, it is clear that $\gamma(\Gamma) \geq \gamma(\Gamma_0)$ for any subgraph Γ_0 of Γ. Let K_n be the complete graph on n vertices and mK_n the disjoint union of m copies of K_n. It was proved in [7, Corollary 1] that $\gamma(\Gamma) \geq \gamma(K_m) + \gamma(K_n)$ if Γ has two disjoint subgraphs isomorphic to K_m and K_n. Also, by [28, Theorem 6-38] we have

$$\gamma(K_n) = \left\lceil \frac{(n-3)(n-4)}{12} \right\rceil \text{ if } n \geq 3. \quad (1.1)$$

A graph Γ is called planar, toroidal, double-toroidal and triple-toroidal if $\gamma(\Gamma) = 0, 1, 2$ and 3 respectively.

Let N_k be the connected sum of k projective planes. A simple graph which can be embedded in N_k but not in N_{k-1}, is called a graph of crosscap k. The notation $\bar{\gamma}(\Gamma)$ stand for the crosscap of a graph Γ. It is easy to see that $\bar{\gamma}(\Gamma) \geq \gamma(\Gamma_0)$ for any subgraph Γ_0 of Γ. It was shown in [8] that

$$\bar{\gamma}(K_n) = \begin{cases} \lceil \frac{1}{6}(n-3)(n-4) \rceil & \text{if } n \geq 3 \text{ and } n \neq 7, \\ 3 & \text{if } n = 7. \end{cases} \quad (1.2)$$

A graph Γ is called a projective graph if $\bar{\gamma}(\Gamma) = 1$. It is worth mentioning that $2K_5$ is not projective graph (see [17]).

2. Graph realization

We begin with the following lemma.

Lemma 2.1. For every $u \in G \setminus \text{Sol}(G)$ we have

$$\text{deg}(u) = |\text{Sol}_G(u)| - |\text{Sol}(G)| - 1.$$

Proof. Note that $\text{deg}(u)$ represents the number of vertices from $G \setminus \text{Sol}(G)$ which are adjacent to u. Since $u \in \text{Sol}_G(u)$, therefore $|\text{Sol}_G(u)| - 1$ represents the number of vertices which are adjacent to u. Since we are excluding $\text{Sol}(G)$ from the vertex set therefore $\text{deg}(u) = |\text{Sol}_G(u)| - |\text{Sol}(G)| - 1$. \hfill \square

Proposition 2.2. $\Gamma_\text{s}(G)$ is not a star.

Proof. Suppose for a contradiction $\Gamma_\text{s}(G)$ is a star. Let $|G| - |\text{Sol}(G)| = n$. Then there exists $u \in G \setminus \text{Sol}(G)$ such that $\text{deg}(u) = n - 1$. Therefore, by Lemma 2.1, $|\text{Sol}_G(u)| = |G|$. This gives $u \in \text{Sol}(G)$, a contradiction. Hence, the result follows. \hfill \square

Proposition 2.3. $\Gamma_\text{s}(G)$ is not complete bipartite.

Proof. Let $\Gamma_\text{s}(G)$ be complete bipartite. Suppose that A_1 and A_2 are parts of the bipartition. Then, by Proposition 2.2, $|A_1| \geq 2$ and $|A_2| \geq 2$. Let $u \in A_1, v \in A_2$. If $|\{u, v\} \setminus \text{Sol}(G)| \geq 2$, then there exists $y \in \{u, v\} \setminus \text{Sol}(G)$ such that $y \not\in A_1$ and $y \not\in A_2$. But then $y \notin A_1$ and $y \notin A_2$, a contradiction.
It follows that \(|\langle u, v \rangle \text{Sol}(G) \setminus \text{Sol}(G)| = 2\). In particular, \(\text{Sol}(G) = 1\) and \(\langle u, v \rangle\) is cyclic of order 3 or \(|\text{Sol}(G)| = 2\) and \(v = uz\) for \(z\) an involution in \(\text{Sol}(G)\). Now the neighbours of \(u \in A_1\) is just \(u^2 \in A_2\) or \(uz\) in the respective cases. Hence \(|A_2| = |A_1| = 1\), a contradiction. Hence, the result follows. \(\square\)

Following similar arguments as in the proof of Proposition 2.3 we get the following result.

Proposition 2.4. \(\Gamma_s(G)\) is not complete \(n\)-partite.

Proposition 2.5. For any finite non-solvable group \(G\), \(\Gamma_s(G)\) has no isolated vertex.

Proof. Suppose \(x\) is an isolated vertex of \(\Gamma_s(G)\). Then \(|\text{Sol}(G)| = 1\); otherwise \(x\) is adjacent to \(xz\) for any \(z \in \text{Sol}(G) \setminus \{1\}\). Thus it follows that \(o(x) = 2\); otherwise \(x\) is adjacent to \(x^2\). Let \(y \in G\). Then \(\langle x, x^y \rangle\) is dihedral and so \(x = x^9\) as \(x\) is isolated. Hence \(x \in Z(G)\) and so \(x \in Z(G) \leq \text{Sol}(G)\), a contradiction. Hence, \(\Gamma_s(G)\) has no isolated vertex. \(\square\)

The following lemma is useful in proving the next two results as well as some results in subsequent sections.

Lemma 2.6. Let \(G\) be a finite non-solvable group. Then there exist \(x \in G\) such that \(x, x^2 \notin \text{Sol}(G)\).

Proof. Suppose that for all \(x \in G\), we have \(x^2 \in \text{Sol}(G)\). Therefore, \(G/\text{Sol}(G)\) is elementary abelian and hence solvable. Also, \(\text{Sol}(G)\) is solvable. It follows that \(G\) is solvable, a contradiction. Hence, the result follows. \(\square\)

Theorem 2.7. Let \(G\) be a finite non-solvable group. Then \(\text{girth}(\Gamma_s(G)) = 3\).

Proof. Suppose for a contradiction that \(\Gamma_s(G)\) has no 3-cycle. Let \(x \in G\) such that \(x, x^2 \notin \text{Sol}(G)\) (by Lemma 2.6). Suppose \(|\text{Sol}(G)| \geq 2\). Let \(z \in \text{Sol}(G), z \neq 1\), then \(x, x^2\) and \(xz\) form a 3-cycle, which is a contradiction. Thus \(|\text{Sol}(G)| = 1\). In this case, every element of \(G\) has order 2 or 3; otherwise, \(\{x, x^2, x^3\}\) forms a 3-cycle in \(\Gamma_s(G)\) for all \(x \in G\) with \(o(x) > 3\). Therefore, \(|G| = 2^m3^n\) for some non-negative integers \(m\) and \(n\). By Burnside’s Theorem, it follows that \(G\) is solvable; a contradiction. Hence, \(\text{girth}(\Gamma_s(G)) = 3\). \(\square\)

Theorem 2.8. Let \(G\) be a finite non-solvable group. Then \(\omega(\Gamma_s(G)) \geq 4\).

Proof. Suppose for a contradiction that \(G\) is a finite non-solvable group with \(\omega(\Gamma_s(G)) \leq 3\). Let \(x \in G \setminus \text{Sol}(G)\) such that \(x^2 \notin \text{Sol}(G)\) according to Lemma 2.6. Suppose \(|\text{Sol}(G)| \geq 2\). Let \(z \in \text{Sol}(G), z \neq 1\), then \(\{x, x^2, xz, x^2z\}\) is a clique which is a contradiction. Thus \(|\text{Sol}(G)| = 1\). In this case every element of \(G \setminus \text{Sol}(G)\) has order 2, 3 or 4 otherwise \(\{x, x^2, x^3, x^4\}\) is a clique with \(o(x) > 4\), which is a contradiction. Therefore \(|G| = 2^m3^n\) where \(m, n\) are non-negative integers. Again, by Burnside’s Theorem, it follows that \(G\) is solvable; a contradiction. This completes the proof. \(\square\)

As a consequence of Theorem 2.7 and Theorem 2.8 we have the following corollary.

Corollary 2.9. The solvable graph of a finite non-solvable group is not a tree.

We conclude this section with the following result.

Proposition 2.10. \(\Gamma_s(G)\) is not regular.

Proof. Follows from [21, Corollary 3.17], noting the fact that a graph is regular if and only if its complement is regular. \(\square\)
3. Genus and diameter

We begin this section with the following useful lemma.

Lemma 3.1. Let G be a finite group and H a solvable subgroup of G. Then $\langle H, \text{Sol}(G) \rangle$ is a solvable subgroup of G.

Proposition 3.2. Let G be a finite non-solvable group such that $\gamma(\Gamma_s(G)) = m$.

(a) If S is a nonempty subset of $G \setminus \text{Sol}(G)$ such that $\langle x, y \rangle$ is solvable for all $x, y \in S$, then $|S| \leq \left\lfloor \frac{7 + \sqrt{1 + 48m}}{2} \right\rfloor$.

(b) $|\text{Sol}(G)| \leq \frac{1}{1-t} \left(\frac{7 + \sqrt{1 + 48m}}{2} \right)^t$, where $t = \max\{o(x\text{Sol}(G)) \mid x \text{Sol}(G) \in G/\text{Sol}(G)\}$.

(c) If H is a solvable subgroup of G, then $|H| \leq \left(\frac{7 + \sqrt{1 + 48m}}{2} \right)^t |H \cap \text{Sol}(G)|$.

Proof. We have $\Gamma_s(G)[S] \cong K_{|S|}$ and $\gamma(K_{|S|}) = \gamma(\Gamma_s(G)[S]) \leq \gamma(\Gamma_s(G))$. Therefore, if $m = 0$ then $\gamma(K_{|S|}) = 0$. This gives $|S| \leq 4$, otherwise $K_{|S|}$ will have a subgraph K_5 having genus 1. If $m > 0$ then, by Heawood’s formula [27, Theorem 6.3.25], we have

$$|S| = \omega(\Gamma_s(G)[S]) \leq \omega(\Gamma_s(G)) \leq \chi(\Gamma_s(G)) \leq \left\lfloor \frac{7 + \sqrt{1 + 48m}}{2} \right\rfloor$$

where $\chi(\Gamma_s(G))$ is the chromatic number of $\Gamma_s(G)$. Hence part (a) follows.

Part (b) follows from Lemma 3.1 and part (a) considering $S = \sum_{i=1}^{t-1} y^i \text{Sol}(G)$, where $y \in G \setminus \text{Sol}(G)$ such that $o(y\text{Sol}(G)) = t$.

Part (c) follows from part (a) noting that $H = (H \setminus \text{Sol}(G)) \cup (H \cap \text{Sol}(G))$. □

Theorem 3.3. Let G be a finite non-solvable group. Then $|G|$ is bounded above by a function of $\gamma(\Gamma_s(G))$.

Proof. Let $\gamma(\Gamma_s(G)) = m$ and $h_m = \left\lfloor \frac{7 + \sqrt{1 + 48m}}{2} \right\rfloor$. By Lemma 3.1, we have $\Gamma_s(G)[x \text{Sol}(G)] \cong K_{|\text{Sol}(G)|}$, where $x \in G \setminus \text{Sol}(G)$. Therefore by Proposition 3.2(a), $|\text{Sol}(G)| \leq h_m$.

Let P be a Sylow p-subgroup of G for any prime p dividing $|G|$ having order p^n for some positive integer n. Then P is a solvable. Therefore, by Proposition 3.2(c), we have $|P| \leq h_m + |\text{Sol}(G)| \leq 2h_m$. Hence, $|G| < (2h_m)^h_m$ noting that the number of primes less than $2h_m$ is at most h_m. This completes the proof. □

As an immediate consequence of Theorem 3.3 we have the following corollary.

Corollary 3.4. Let n be a non-negative integer. Then there are at the most finitely many finite non-solvable groups G such that $\gamma(\Gamma_s(G)) = n$.

The following two lemmas are essential in proving the main results of this section.

Lemma 3.5. [24, Lemma 3.4] Let G be a finite group.

(a) If $|G| = 7m$ and the Sylow 7-subgroup is normal in G, then G has an abelian subgroup of order at least 14 or $|G| \leq 42$.

(b) If $|G| = 9m$, where 3 $\nmid m$ and the Sylow 3-subgroup is normal in G, then G has an abelian subgroup of order at least 18 or $|G| \leq 72$.

Lemma 3.6. If G is a non-solvable group of order not exceeding 120 then $\Gamma_s(G)$ has a subgraph isomorphic to K_{11} and $\gamma(\Gamma_s(G)) \geq 5$.

Proof. If G is a non-solvable group and $|G| \leq 120$ then G is isomorphic to A_5, $A_5 \times \mathbb{Z}_2$, S_5 or $SL(2,5)$. Note that $|\text{Sol}(A_5)| = |\text{Sol}(S_5)| = 1$ and $|\text{Sol}(A_5 \times \mathbb{Z}_2)| = |\text{Sol}(SL(2,5))| = 2$. Also, A_5 has a solvable subgroup of order 12 and S_5, $A_5 \times \mathbb{Z}_2$, $SL(2,5)$ have solvable subgroups of order 24. It follows that $\Gamma_s(G)$ has a subgraph isomorphic to K_{11}. Therefore, by (1.1), $\gamma(\Gamma_s(G)) \geq \gamma(K_{11}) = 5$. □
The solvable graph of a finite non-solvable group is neither planar, toroidal, double-toroidal nor triple-toroidal.

Proof. Let G be a finite non-solvable group. Note that it is enough to show $\gamma(\Gamma_s(G)) \geq 4$ to complete the proof. Suppose that $\gamma(\Gamma_s(G)) \leq 3$. Let $x \in G \setminus \text{Sol}(G)$ such that $x^2 \not\in \text{Sol}(G)$. Such element exists by Lemma 2.6. Since any two elements of the set $A = x \text{Sol}(G) \cup x^2 \text{Sol}(G)$ generate a solvable group, by Proposition 3.2(a), we have $|\text{Sol}(G)| = |A| \leq \frac{7 + \sqrt{1 + 4 \cdot 3 \cdot 53}}{2} = 9$. Thus $|\text{Sol}(G)| \leq 4$. Let p be a prime divisor of $|G|$ and P is a Sylow p-subgroup of G. Since P is solvable, by Proposition 3.2(e), we get $|P| \leq 9 + |P \cap \text{Sol}(G)| \leq 13$. If $|P| = 11$ or 13 then $|P \cap \text{Sol}(G)| = 1$. Therefore, $\Gamma_s(G)[P \setminus \text{Sol}(G)] \cong K_{10}$ or K_{12}. Using (1.1), we get $\gamma(\Gamma_s(G)[P \setminus \text{Sol}(G)]) = 4$ or 6. Therefore, $\gamma(\Gamma_s(G)) \geq \gamma(\Gamma_s(G)[P \setminus \text{Sol}(G)]) \geq 4$, a contradiction. Thus $|P| \leq 9$ and hence $p \leq 7$. This shows that $|G|$ divides $2^5 \cdot 3^2 \cdot 5 \cdot 7$.

We consider the following cases.

Case 1. $|\text{Sol}(G)| = 4$.

If H is a Sylow p-subgroup of G where $p = 5$ or 7 then $\langle H, \text{Sol}(G) \rangle$ is solvable since H is solvable (by Lemma 3.1). We have $|H \cap \text{Sol}(G)| = 1$ and $|\langle H, \text{Sol}(G) \rangle| = 20, 28$ according as $p = 5, 7$ respectively. Therefore $\Gamma_s(G)[\langle H, \text{Sol}(G) \rangle \setminus \text{Sol}(G)] \cong K_{16}$ or K_{24}. By (1.1) we get $\gamma(\Gamma_s(G)) \geq \gamma(\Gamma_s(G)[\langle H, \text{Sol}(G) \rangle \setminus \text{Sol}(G)]) \geq 13$, which is a contradiction.

Thus $|G|$ is a divisor of 72. Therefore, by Lemma 3.6 we have $\gamma(\Gamma_s(G)) \geq 5$, a contradiction.

Case 2. $|\text{Sol}(G)| = 3$.

If H is a Sylow p-subgroup of G where $p = 5$ or 7 then $\langle H, \text{Sol}(G) \rangle$ is solvable. We have $|H \cap \text{Sol}(G)| = 1$ and $|\langle H, \text{Sol}(G) \rangle| = 15, 21$ according as $p = 5, 7$ respectively. Therefore $\Gamma_s(G)[\langle H, \text{Sol}(G) \rangle \setminus \text{Sol}(G)] \cong K_{12}$ or K_{18}. By (1.1) we get $\gamma(\Gamma_s(G)) \geq \gamma(\Gamma_s(G)[\langle H, \text{Sol}(G) \rangle \setminus \text{Sol}(G)]) \geq 6$, which is a contradiction.

Thus $|G|$ is a divisor of 72. Therefore, by Lemma 3.6 we have $\gamma(\Gamma_s(G)) \geq 5$, a contradiction.

Case 3. $|\text{Sol}(G)| = 2$.

If H is a Sylow 7-subgroup of G then $\langle H, \text{Sol}(G) \rangle$ is solvable. We have $|H \cap \text{Sol}(G)| = 1$ and $|\langle H, \text{Sol}(G) \rangle| = 14$. So, $\Gamma_s(G)[\langle H, \text{Sol}(G) \rangle \setminus \text{Sol}(G)] \cong K_{12}$. By (1.1) we get $\gamma(\Gamma_s(G)) \geq \gamma(\Gamma_s(G)[\langle H, \text{Sol}(G) \rangle \setminus \text{Sol}(G)]) \geq 6$, which is a contradiction. Let K be a Sylow 3-subgroup of G. If $|K| = 9$ then $\langle K, \text{Sol}(G) \rangle$ is solvable since K is solvable (by Lemma 3.1). We have $|K \cap \text{Sol}(G)| = 1$ and $|\langle K, \text{Sol}(G) \rangle| = 18$. So, $\Gamma_s(G)[\langle K, \text{Sol}(G) \rangle \setminus \text{Sol}(G)] \cong K_{16}$. By (1.1) we get $\gamma(\Gamma_s(G)) \geq \gamma(\Gamma_s(G)[\langle K, \text{Sol}(G) \rangle \setminus \text{Sol}(G)]) \geq 13$, which is a contradiction.

Thus $|G|$ is a divisor of 120. Therefore, by Lemma 3.6 we have $\gamma(\Gamma_s(G)) \geq 5$, a contradiction.

Case 4. $|\text{Sol}(G)| = 1$.

In this case, first we shall show that $7 \nmid |G|$. On the contrary, assume that $7 \mid |G|$. Let n be the number of Sylow 7-subgroups of G. Then $n \mid 2^3 \cdot 3^2$. and $n \equiv 1 \mod 7$. If $n \neq 1$ then $n \geq 8$. Let H_1, \ldots, H_8 be the eight distinct Sylow 7-subgroups of G. Then the induced subgraphs $\Gamma_s(G)[H_i \setminus \text{Sol}(G)]$ for each $1 \leq i \leq 8$ contribute $\gamma(\Gamma_s(G)[H_i \setminus \text{Sol}(G)]) = 1$ to the genus of $\Gamma_s(G)$. Thus

$$\gamma(\Gamma_s(G)) \geq \sum_{i=1}^{8} \gamma(\Gamma_s(G)[H_i \setminus \text{Sol}(G)]) = 8,$$

a contradiction. Therefore, Sylow 7-subgroup of G is unique and hence normal. Since we have started with a non-solvable group, by Lemma 3.5, it follows that G has an abelian subgroup of order at least 14. Therefore, by (1.1) we have $\gamma(\Gamma_s(G)) \geq \gamma(K_{13}) = 8$, a contradiction. Hence, $|G|$ is a divisor of $2^3 \cdot 3^2 \cdot 5$.

Now, we shall show that $9 \nmid |G|$. Assume that, on the contrary, $9 \mid |G|$. If Sylow 3-subgroup of G is not normal in G, then the number of Sylow 3-subgroups is greater than
or equal to 4. Let H_1, H_2, H_3 be the three Sylow 3-subgroups of G. Then the induced subgraph $\Gamma_S(G)[H_1 \setminus \text{Sol}(G)] \cong K_8$ and so it contributes $\gamma(\Gamma_S(G)[H_1 \setminus \text{Sol}(G)]) = 2$ to the genus of $\Gamma_S(G)$. If $|H_1 \cap H_2| = 1$, then the induced subgraph $\Gamma_S(G)[H_2 \setminus \text{Sol}(G)] \cong K_8$ and so it contributes +2 to the genus $\Gamma_S(G)$. Thus

$$\gamma(\Gamma_S(G)) \geq \gamma(\Gamma_S(G)[(H_1 \cup H_2) \setminus \text{Sol}(G)]) = 4$$

which is a contradiction. So assume that $|H_1 \cap H_2| = 3$. Similarly $|H_1 \cap H_3| = 3$ and $|H_2 \cap H_3| = 3$. Let $M = H_2 \setminus H_1$. Then $|M| = 6$. Also note that if $L = H_1 \cup H_2$ and $K = H_3 \setminus L$, then $|K| \geq 4$. Also $H_1 \cap M = H_1 \cap K = M \cap K = 0$.

If $|K| \geq 5$ then H_1 contribute +2 to genus of $\Gamma_S(G)$, M and K each contribute +1 to genus of $\Gamma_S(G)$. Hence genus of $\Gamma_S(G)$ is greater than or equal to 4, a contradiction.

Assume that $|K| = 4$. In this case $|M \cap H_3| = 2$. Let $x \in M \cap H_3$. Then H_1 contribute +2 to genus of $\Gamma_S(G)$, $M \setminus \{x\}$ and $K \cup \{x\}$ each contribute +1 to genus of $\Gamma_S(G)$. Hence genus of $\Gamma_S(G)$ is greater than or equal to 4, a contradiction.

These show that Sylow 3-subgroup of G is unique and hence normal in G. Therefore, by Lemma 3.5 and Lemma 3.6, G has an abelian subgroup A of order at least 18. Hence,

$$\gamma(\Gamma_S(G)) \geq \gamma(\Gamma_S(G)[A \setminus \text{Sol}(G)]) \geq \gamma(K_17) = 16$$

which is a contradiction. The above theorem gives that $\gamma(\Gamma_S(G)) \geq 4$. Usually, genera of solvable graphs of finite non-solvable groups are very large. For example, if G is the smallest non-solvable group A_5 then $\Gamma_S(G)$ has 59 vertices and 571 edges. Also $\gamma(\Gamma_S(G)) \geq 571/6 - 59/2 + 1 = 68$ (follows from [28, Corollary 6–14]). The following theorem shows that the crosscap number of the solvable graph of a finite non-solvable group is greater than 1.

Proposition 3.8. The solvable graph of a finite non-solvable group is not projective.

Proof. Suppose G is a finite non-solvable group whose solvable graph is projective. Note that if $\Gamma_S(G)$ has a subgraph isomorphic to K_n then, by (1.2), we must have $n \leq 6$. Let $x \in G$, such that $x, x^2 \notin \text{Sol}(G)$. Then

$$\Gamma_S(G)[x \text{Sol}(G) \cup x^2 \text{Sol}(G)] \cong K_{2|\text{Sol}(G)|}.$$

Therefore, $2|\text{Sol}(G)| \leq 6$ and hence $|\text{Sol}(G)| \leq 3$.

Let $p | |G|$ be a prime and P be a Sylow p-subgroup of G. Then $\Gamma_S(G)[P \setminus \text{Sol}(G)] \cong K_{|P|/|\text{Sol}(G)|}$ since P is solvable. Therefore, $|P \setminus \text{Sol}(G)| = |P| - |P \cap \text{Sol}(G)| \leq 6$ and hence $|P| \leq 9$. This shows that $|G|$ is a divisor of $2^3 \cdot 3^3 \cdot 5 \cdot 7$.

If $7 | |G|$ then Sylow 7-subgroup of G is unique and hence normal in G; otherwise, let H and K be two Sylow 7-subgroups of G. Then $|H \cap K| = |H \cap \text{Sol}(G)| = |K \cap \text{Sol}(G)| = 1$. Therefore, $\Gamma_S(G)[(H \cup K) \setminus \text{Sol}(G)]$ has a subgraph isomorphic to $2K_5$. Hence, $\Gamma_S(G)$ has a subgraph isomorphic to $2K_5$, which is a contradiction. Similarly, if $9 | |G|$, then the Sylow 3-subgroup of G is normal in G. Therefore, by Lemma 3.5, it follows that $|G| \leq 72$ or $|G|$ is a divisor of $2^3 \cdot 3^3 \cdot 5 \cdot 7$. In the both cases, by Lemma 3.6, $\Gamma_S(G)$ has complete subgraphs isomorphic to K_{11}, which is a contradiction. This completes the proof.

We conclude this section, by an observation and a couple of problems regarding the diameter and connectedness of $\Gamma_S(G)$. Using the following programme in GAP [29], we see that the solvable graph of the groups $A_5, S_5, A_5 \times \mathbb{Z}_2, SL(2, 5), PSL(3, 2)$ and $GL(2, 4)$ are connected with diameter 2. The solvable graphs of S_6 and A_6 are connected with diameters greater than 2.
g:=PSL(3,2);
sol:=RadicalGroup(g);
L:=[];
gsol:=Difference(g,sol);
for x in gsol do
 AddSet(L,[x]);
 for y in Difference(gsol,L) do
 if IsSolvable(Subgroup(g,[x,y]))=true then
 break;
 fi;
 i:=0;
 for z in gsol do
 if IsSolvable(Subgroup(g,[x,z]))=true and
 IsSolvable(Subgroup(g,[z,y]))=true
 then
 i:=1;
 break;
 fi;
 od;
 if i=0 then
 Print("Diameter>2");
 Print(x," ",y);
 fi;
 od;
od;

In this connection, we have the following problems.

Problem 3.1. Is $\Gamma_s(G)$ connected for any finite non-solvable group G?

Problem 3.2. Is there any finite bound for the diameter of $\Gamma_s(G)$ when $\Gamma_s(G)$ is connected?

4. Relations with solvability degree

The solvability degree of a finite group G is defined by the following ratio

$$P_s(G) := \frac{|\{(u, v) \in G \times G : \langle u, v \rangle \text{ is solvable}\}|}{|G|^2}.$$

Using the solvability criterion (see [12, Section 1]),

"A finite group is solvable if and only if every pair of its elements generates a solvable group"

for finite groups we have G is solvable if and only if its solvability degree is 1. It was shown in [20, Theorem A] that $P_s(G) \leq \frac{11}{19}$ for any finite non-solvable group G. In this section, we study a few properties of $P_s(G)$ and derive a connection between $P_s(G)$ and $\Gamma_s(G)$ for finite non-solvable groups G. We begin with the following lemma.

Lemma 4.1. Let G be a finite group. Then $P_s(G) = \frac{1}{|G|^2} \sum_{u \in G} |\text{Sol}_G(u)|$.

Proof. Let $S = \{(u, v) \in G \times G : \langle u, v \rangle \text{ is solvable}\}$. Then

$$S = \bigcup_{u \in G} \left(\{u\} \times \{v \in G : \langle u, v \rangle \text{ is solvable}\} \right) = \bigcup_{u \in G} \{u\} \times \text{Sol}_G(u).$$

Therefore, $|S| = \sum_{u \in G} |\text{Sol}_G(u)|$. Hence, the result follows. \qed
Corollary 4.2. $|G|P_s(G)$ is an integer for any finite group G.

Proof. By Proposition 2.16 of [21] we have that $|G|$ divides $\sum_{u \in G} |\text{Sol}_G(u)|$. Hence, the result follows from Lemma 4.1. \qed

We have the following lower bound for $P_s(G)$.

Theorem 4.3. For any finite group G,

$$P_s(G) \geq \frac{|\text{Sol}(G)|}{|G|} + \frac{2(|G| - |\text{Sol}(G)|)}{|G|^2}.$$

Proof. By Lemma 4.1, we have

$$|G|^2P_s(G) = \sum_{u \in \text{Sol}(G)} |\text{Sol}_G(u)| + \sum_{u \in G \setminus \text{Sol}(G)} |\text{Sol}_G(u)|$$

$$= |G||\text{Sol}(G)| + \sum_{u \in G \setminus \text{Sol}(G)} |\text{Sol}_G(u)|.$$

By Proposition 2.13 of [21], $|C_G(u)|$ is a divisor of $|\text{Sol}_G(u)|$ for all $u \in G$ where $C_G(u) = \{v \in G : uv = vu\}$, the centralizer of $u \in G$. Since $|C_G(u)| \geq 2$ for all $u \in G$ we have $|\text{Sol}_G(u)| \geq 2$ for all $u \in G$. Therefore

$$\sum_{u \in G \setminus \text{Sol}(G)} |\text{Sol}_G(u)| \geq 2(|G| - |\text{Sol}(G)|).$$

Hence, the result follows from (4.1). \qed

The following theorem shows that $P_s(G) > \text{Pr}(G)$ for any finite non-solvable group where $\text{Pr}(G)$ is the commuting probability of G (see [19]).

Theorem 4.4. Let G be a finite group. Then $P_s(G) \geq \text{Pr}(G)$ with equality if and only if G is a solvable group.

Proof. The result follows from Lemma 4.1 and the fact that $\text{Pr}(G) = \frac{1}{|G|^2} \sum_{u \in G} |C_G(u)|$ noting that $C_G(u) \subseteq \text{Sol}_G(u)$ and so $|\text{Sol}_G(u)| \geq |C_G(u)|$ for all $u \in G$.

The equality holds if and only if $C_G(u) = \text{Sol}_G(u)$ for all $u \in G$, that is $\text{Sol}_G(u)$ is a subgroup of G for all $u \in G$. Hence, by Proposition 2.22 of [21], the equality holds if and only if G is solvable. \qed

Let $|E(\Gamma_s(G))|$ be the number of edges of the non-solvable graph $\Gamma_s(G)$ of G. The following theorem gives a relation between $P_s(G)$ and $|E(\Gamma_s(G))|$.

Theorem 4.5. Let G be a finite non-solvable group. Then

$$2|E(\Gamma_s(G))| = |G|^2P_s(G) + |\text{Sol}(G)|^2 + |\text{Sol}(G)| - |G|(2|\text{Sol}(G)| + 1).$$

Proof. We have

$$2|E(\Gamma_s(G))| = |\{(x, y) \in (G \setminus \text{Sol}(G)) \times (G \setminus \text{Sol}(G)) : \langle x, y \rangle \text{ is solvable}\}| - |G| + |\text{Sol}(G)|.$$

Also

$$S = \{(x, y) \in G \times G : \langle x, y \rangle \text{ is solvable}\} = \text{Sol}(G) \times \text{Sol}(G) \cup \text{Sol}(G) \times (G \setminus \text{Sol}(G)) \cup (G \setminus \text{Sol}(G)) \times \text{Sol}(G) \cup \{(x, y) \in (G \setminus \text{Sol}(G)) \times (G \setminus \text{Sol}(G)) : \langle x, y \rangle \text{ is solvable}\}.$$

Therefore

$$|S| = |\text{Sol}(G)|^2 + 2|\text{Sol}(G)||(|G| - |\text{Sol}(G)|) + 2|E(\Gamma_s(G))| + |G| - |\text{Sol}(G)|$$

$$\implies |G|^2P_s(G) = |G|(2|\text{Sol}(G)| + 1) - |\text{Sol}(G)|^2 - |\text{Sol}(G)| + 2|E(\Gamma_s(G))|.$$

Hence, the result follows. \qed
We conclude this paper noting that lower bounds for $|E(\Gamma_s(G))|$ can be obtained from Theorem 4.5 using the lower bounds given in Theorem 4.3, Theorem 4.4 and the lower bounds for $\Pr(G)$ obtained in [22].

Acknowledgment. The authors would like to thank the referee for his/her valuable comments and suggestions. The first author is thankful to Council of Scientific and Industrial Research for the fellowship (File No. 09/796(0094)/2019-EMR-I).

References

[1] A. Abdollahi, M. Zarrin, *Non-nilpotent graph of a group*, Comm. Algebra, 38 (12), 4390–4403, 2010.
[2] A. Abdollahi, S. Akbari and H.R. Maimani, *Non-commuting graph of a group*, J. Algebra, 298 (2), 468–492, 2006.
[3] M. Afkhami, D.G.M. Farrokhi and K. Khashyarmanesh, *Planar, toroidal, and projective commuting and non-commuting graphs*, Comm. Algebra, 43 (7), 2964–2970, 2015.
[4] B. Akbari, *More on the Non-Solvable Graphs and Solvabilizers*, arXiv:1806.01012v1, 2018.
[5] S. Akbari, A. Mohammadian, H. Radjavi and P. Raja, *On the diameters of commuting graphs*, Linear Algebra Appl. 418 (1), 161–176, 2006.
[6] C. Bates, D. Bundy, S. Hart and P. Rowley, *A Note on Commuting Graphs for Symmetric Groups*, Electron. J. Combin. 16 (1), R6:1–13, 2009.
[7] J. Battle, F. Harary, Y. Kodama and J.W.T. Youngs, *Additivity of the genus of a graph*, Bull. Amer. Math. Soc. 68 (6), 565–568, 1962.
[8] A. Bouchet, *Orientable and nonorientable genus of the complete bipartite graph*, J. Combin. Theory Ser. B, 24 (1), 24–33, 1978.
[9] M.R. Darafsheh, H. Bigdely, A. Bahrami and M.D. Monfared, *Some results on non-commuting graph of a finite group*, Ital. J. Pure Appl. Math. 268, 371–387, 2010.
[10] A.K. Das and D. Nongsiang, *On the genus of the nilpotent graphs of finite groups*, Comm. Algebra 43 (12), 5282–5290, 2015.
[11] A.K. Das, D. Nongsiang, *On the genus of the commuting graphs of finite non-abelian groups*, Int. Electron. J. Algebra 19, 91–109, 2016.
[12] S. Dolfi, R.M. Guralnick, M. Herzog and C.E. Praeger, *A new solvability criterion for finite groups*, J. London Math. Soc. 85 (2), 269–281, 2012.
[13] J. Dutta and R.K. Nath, *Spectrum of commuting graphs of some classes of finite groups*, Matematika, 33 (1), 87–95, 2017.
[14] J. Dutta and R.K. Nath, *Finite groups whose commuting graphs integral*, Mat. Vesnik, 69 (3), 226–230, 2017.
[15] J. Dutta and R.K. Nath, *Laplacian and signless Laplacian spectrum of commuting graphs of finite groups*, Khayyam J. Math. 4 (1), 77–87, 2018.
[16] P. Dutta, J. Dutta and R.K. Nath, *Laplacian spectrum of non-commuting graphs of finite groups*, Indian J. Pure Appl. Math. 49 (2), 205–216, 2018.
[17] H.H. Glover, J.P. Huncke and C.S. Wang, *103 graphs that are irreducible for the projective plane*, J. Combin. Theory Ser. B 27 (3), 332–370, 1978.
[18] R. Guralnick, B. Kunyavskii, E. Plotkin and A. Shalev, *Thompson-like characterizations of the solvable radical*, J. Algebra, 300 (1), 363–375, 2006.
[19] R.M. Guralnick and G.R. Robinson, *On the commuting probability in finite groups*, J. Algebra, 300 (2), 509–528, 2006.
[20] R. Guralnick and J. Wilson, *The probability of generating a finite soluble group*, Proc. London Math. Soc. 81 (3), 405–427, 2000.
[21] D. Hai-Reuven, *Non-solvable graph of a finite group and solvabilizers*, arXiv:1307.2924v1, 2013.

[22] R.K. Nath and A.K. Das, *On a lower bound of commutativity degree*, Rend. Circ. Math. Palermo, 59 (1), 137–141, 2010.

[23] B.H. Neumann, *A problem of Paul Erdös on groups*, J. Aust. Math. Soc. (Ser. A), 21 (4), 467–472, 1976.

[24] D. Nongsiang, *Double-Toroidal and Triple-Toroidal Commuting and Nilpotent Graph*, Communicated.

[25] D. Nongsiang and P.K. Saikia, *On the non-nilpotent graphs of a group*, Int. Electron. J. Algebra, 22, 78–96, 2017.

[26] A.A. Talebi, *On the non-commuting graphs of group D_{2n}*, Int. J. Algebra, 2 (20), 957–961, 2008.

[27] D.B. West, *Introduction to Graph Theory* (Second Edition), PHI Learning Private Limited, New Delhi, 2009.

[28] A.T. White, *Graphs, Groups and Surfaces*, North-Holland Mathematics Studies, no. 8., American Elsevier Publishing Co., Inc., New York, 1973.

[29] The GAP Group, *GAP – Groups, Algorithms, and Programming, Version 4.6.4*, 2013 (http://www.gap-system.org).