Recent Advances in Measuring Exhaled Breath and Estimating Exposure and Body Burden for Volatile Organic Compounds (VOCs)

Lance A. Wallace¹ and Edo D. Pellizzari²

¹Atmospheric Research and Exposure Assessment Laboratory, Warrenton, Virginia; ²Research Triangle Institute, Research Triangle Park, North Carolina

An improved portable breath measurement method has been developed that allows 1-min sampling times. The equipment has been successfully tested in field and chamber studies. Results of these studies suggest that breath levels following known exposures are predictable and reproducible across a small number of volunteers. The residence times in the body and the distribution in body compartments of several common air toxics have been determined. A simple four-compartment linear model is capable of fitting the observed data. The main parameters of the model include the fraction of the parent compound exhaled under steady-state conditions and the residence times in the compartments. The values of these parameters for several VOCs and for the four body compartments (blood, vessel-rich tissues, vessel-poor tissues, and fat) are provided.

Key words: breath, volatile organic chemicals, VOC, pharmacokinetics, personal monitors, Tenax, residence times, half-lives

Introduction

Measurement of volatile organic compounds (VOCs) in human breath has the promise of identifying important routes of exposure and relating exposure to body burden. Over the past decade, such measurements have been carried out for about 800 residents of eight cities and towns in the United States (1-10). Important findings from these efforts included the discovery that cigarette smoking is the single largest source of exposure to benzene and styrene. These early measurements employed a van-mounted spirometer. Breath samples were 20 to 40 liters and required 5 min to collect.

Over the past 2 years, a major improvement in breath sampling methods has allowed a rapid expansion of our understanding of how exposure to VOCs at environmental concentrations affects measured levels in exhaled breath; the time course of decay of the VOCs in breath; and the relationship of these breath concentrations to concentrations in other body tissues (total body burden).

Materials and Methods

A method for sampling exhaled breath capable of measuring sub-ppb levels was developed in 1979 (1). The method employs Tenax sorbents to collect breath samples from a Tedlar bag that has been filled by the subject exhaling through a two-way mouthpiece. The subject inhales pure humidified and charcoal-scrubbed air from a cylinder.

The entire system was mounted in a van to allow "house calls" to the participants in the U.S. EPA-sponsored Total Exposure Assessment Methodology (TEAM) studies of 1980 to 1987 (2-10). In these studies, about 800 residents of eight cities provided breath samples following a 12-hr period in which they carried personal monitors to measure their exposure to about 25 target VOCs. (Samples of drinking water were also collected to determine potential exposure through that pathway.) The TEAM studies have provided a unique database on typical personal air and drinking water exposures and breath levels for about a dozen prevalent VOCs.

One reason for collecting the breath sample was to check all important routes of exposure had been measured. In fact, an early important finding was directly due to breath measurements: the fact that smoking cigarettes is the single most important source of exposure to benzene for millions of Americans (11-13). Breath measurements revealed at once that smokers had 5 to 10 times the concentrations of benzene as nonsmokers (Table 1); the personal monitor, because it could not measure mainstream smoke, had detected only a modest increase in airborne exposure of about 50%. Similar results were noted for styrene.

A recent study (14) employed breath measurements to estimate contributions from a route of exposure (skin absorption) that is difficult to measure directly. In this study, chloroform was measured in the breath of persons immediately following a normal shower, and a shower wearing a rubber suit to prevent skin absorption. Breath levels from the normal shower were about twice those from the wet-suit shower, suggesting that skin absorption accounted for about as much chloroform uptake as inhalation.

The TEAM studies provided data on the relationship of breath levels to previous exposures. Typical breath-to-air ratios ranged from about 0.08 for xylenes and ethylbenzene up to about 0.75 for tetrachloroethylene (Table 2) (15). Awareness of these ratios allows a rough estimate to be made of previous exposure from a measured breath sample.

However, it is clear that the breath level following exposure to a given VOC is

This paper was presented at the Conference on Human Tissue Monitoring and Specimen Banking: Opportunities for Exposure Assessment, Risk Assessment, and Epidemiologic Research held 30 March-1 April 1993 in Research Triangle Park, North Carolina. This paper has been reviewed in accordance with the U.S. Environmental Protection Agency's peer and administrative review policies and approved for presentation and publication. Mention of trade names or commercial products does not constitute endorsement or recommendation for use.

Address correspondence to Dr. Lance A. Wallace, Atmospheric Research and Exposure Assessment Laboratory, US EPA Building, 166 Bicher Road, Vint Hill Farms Station, Warrenton, VA 22091. Telephone (703) 341-7508, Fax (703) 341-7575.

Environmental Health Perspectives
affected by such factors as the existing levels in breath, blood, and other body tissues, as well as the metabolic rate and other rate constants affecting the distribution and ultimate fate of the chemical. To take account of these effects, an initial linear mass-balance compartmental model was developed (16) and tested in a chamber study of four volunteers (17). The model had predicted a "deep" compartment residence time of 31 hr for tetrachloroethylene; the calculated residence time for one volunteer who had sat in a dry cleaner shop for 2 hr before entering the chamber was 31 hr.

The model was further developed and tested in a second chamber study (18). Estimates of about 1 to 2 hr for the residence time in the second compartment, and 6 to 8 hr for the residence time in the third compartment, were obtained (19).

However, the model predictions of a few minutes for the residence time in breath and blood could not be observed in this study due to the 20 min required between successive breath samples.

The model is fully derived elsewhere (20). For a constant concentration C_{AIR}, the alveolar breath concentration C_{ALV} is given by

$$C_{ALV} = fC_{AIR} \Sigma a_i(1-\exp(-t/\tau_i))$$

where f = fraction of parent compound exhaled at equilibrium; τ_i = residence time in ith compartment; a_i = fraction of total breath concentration contributed by the ith compartment at equilibrium ($t = \infty$); and $\Sigma a_i = 1$.

Recent Advances

Because of the limitations noted in the second chamber study, the U.S. EPA sponsored an effort to produce an improved breath sampling method. One goal was to collect a breath sample in less than 2 min, and be ready to collect another in 5 min. Another goal was to measure alveolar breath as much as possible. Finally, it was desirable to have a completely portable system that could be carried by a technician to potential high-exposure microenvironments (e.g., beauty salons, hardware stores) to collect breath samples immediately following the exposure.

All these goals were met with the new system (21,22). The subject inhales through a charcoal mask to scrub the air and exhales through a meter-long flexible tube. The breath remaining in the tube following expiration is alveolar air; this is sucked into an evacuated electropolished sphere (1.8 # liters) at a constant rate through a critical orifice. The system has no moving parts or power needs and can be transported in a suitcase.

The new breath system was tested by having subjects spend several hours in six microenvironments (23). Their personal exposures were monitored, and a series of breath samples were collected over the next 2 to 4 hr for a total of 21 aliphatic, aromatic, and halogenated VOCs. Residence times in the first two compartments (blood and vessel-rich tissues) were estimated. The model predictions of a few minutes for the residence time in the blood were verified.

A third chamber study was then designed to gather information on the deeper compartments (24). Five subjects were exposed in a chamber for 10 hr to moderately elevated levels (~1 ppm) of nine VOCs. Breath samples were collected intermittently over the next 24 hr.

Results

A four-phase decay in breath concentrations following the 10-hr exposure was noted (Figure 1). Residence times for all four compartments were estimated: 3 to 10 min (blood); 30 to 100 min (vessel-rich tissues); 3 to 7 hr (vessel-poor tissues); and 30 to 100 hr (fat) (LA Wallace, in preparation). The coefficients (a_i) of the four compartments were also estimated. These coefficients represent the fraction of the total breath concentrations contributed by each compartment at equilibrium. Observed values were on the order of 30% for the blood and the fat, and 20% for the vessel-rich and vessel-poor tissues (Figure 2). These coefficients can be multiplied by the tissue/air partition coefficients to obtain the fraction of the body burden in each compartment at equilibrium.

Values of f (the fraction of the parent chemical exhaled at equilibrium) were determined for nine chemicals by averaging across all results for five subjects. Xylenes and ethylbenzene had values of 0.06 to 0.08, in good agreement with the values of 0.08 to 0.10 calculated from the TEAM studies of several hundred nonsmokers (Table 2). Toluene had a value of 0.16 ± 0.02 (SD). Trichloroethylene had a value of 0.22 (± 0.05), again in good agreement with previous estimates from the TEAM studies. Dichloromethane had a value of 0.23 (± 0.03). Hexane and

Table 1. Benzene breath values (µg/m³).

Location	Smokers		N	Geometric mean		N	Geometric mean
Eliz-Bay, NJ (9/81)	160	19	170	5.2			
Eliz-Bay, NJ (2/83)	27	18	22	4.2			
Los Angeles (2/84)	39	12	78	2.0			
Los Angeles (5/84)	17	15	25	1.2			
Ant-Pitts, CA (6/84)	22	11	49	0.8			
Los Angeles (2/87)	11	19	37	4.3			
Los Angeles (7/87)	8	24	32	5.2			
Baltimore (4/87)	26	14	44	1.5			

* Cities of Elizabeth and Bayonne. 1981 data may have been contaminated by exhaust fumes. * Cities of Antioch and Pittsburg. * Community of Dundalk. Sources: New Jersey data, TEAM study data base; 1984 data, (7); Los Angeles 87, TEAM study database; Baltimore 87, TEAM study database.

Table 2. Breath/air ratios of VOCs for 328 nonsmokers.

Chemical	Ratio^a	SD^a
Aromatics and aliphatics		
Benzene	0.17	0.06
Styrene	0.20	0.11
m+p-Xylene	0.08	0.04
o-Xylene	0.08	0.02
Ethylbenzene	0.10	0.03
Octane	0.15	0.06
Chlorinated		
1,1-Trichloroethane	0.21	0.16
Carbon tetrachloride	0.26	0.14
Trichloroethylene	0.19	0.07
Tetrachloroethylene	0.75	0.19
m+p-Dichlorobenzene	0.44	0.18

^aFrom TEAM studies in New Jersey (1983), Los Angeles (1984), and Antioch-Pittsburgh, CA (1984).

^bMean and standard deviation of observed median values in the three locations.

Figure 1. Uptake and decay of p-xylene in a female subject exposed to 11 mg/m³ in a chamber for 10 hr. Breath levels reached a value of 400 µg/m³ and fell off to a concentration of 28 µg/m³ 24 hr postexposure. Shown is the fit of a four-compartment model to the data.
of the blood and mental state.

Figure 2. Estimated contributions of each body compartment to the average alveolar concentration of the nine VOCs. The first and fourth compartments (blood and fat, respectively) appear to account for about 30% of the total breath concentration. The second and third compartments may be identified with the vessel-rich and vessel-poor tissue groups (VRG and VPS), respectively.

decane had values of 0.35 (±0.08) and 0.10 (±0.02), respectively. Methyl chloroform (1,1,1-trichloroethane) had a value of 0.88 (±0.07). This value was in disagreement with the value of 0.21 suggested by the TEAM studies.

Discussion

Breath measurements have proved useful in identifying important sources of environmental exposure from pathways that are otherwise difficult to measure (benzene from smoking, chloroform from skin absorption). They would also be useful in identifying exposure from ingestion of VOCs in food or beverages, particularly since techniques for measuring food samples are often difficult or expensive. With the completion of a simple, inexpensive, portable device for rapid collection of breath samples, scores of interesting studies have become possible.

A research need is to compare breath and blood measurements at environmental levels. Present pharmacokinetic models rest partially on estimates of blood/air partition coefficients obtained from measurements at high levels of exposure; however, recent studies (25) suggest that the apparent partition coefficients at environmental concentrations of benzene are 2 to 4 times larger than the literature values. The recent improvement by the Centers for Disease Control (CDC) of an isotope-dilution measurement method for blood (26) has made it possible to carry out such studies without delay. Initial studies on a few subjects have been promising.

REFERENCES

1. Pellizzari ED, Erickson MD, Zweidinger R. Formulation of a Preliminary Assessment of Halogenated Organic Compounds in Man and Environmental Media. Washington:U.S. Environmental Protection Agency, 1979.

2. Wallace LA, Zweidinger R, Erickson M, Cooper S, Whitaker D, Pellizzari ED. Monitoring individual exposure: measurement of volatile organic compounds in breathing-zone air, drinking water, and exhaled breath. Environ Int 8:269–282 (1982).

3. Wallace LA, Pellizzari ED, Hartwell TD, Rosenzweig R, Erickson M, Sparacino C, Zelon H. Personal exposure to volatile organic compounds: 1. Direct measurement in breathing-zone air, drinking water, food, and exhaled breath. Environ Res 35:293–319 (1984).

4. Wallace LA, Pellizzari ED, Hartwell TD, Sparacino C, Sheldon LS, Zelon H. Personal exposures, indoor–outdoor relationships and breath levels of toxic air pollutants measured for 355 persons in New Jersey. Environ Sci 19:1651–1661 (1985).

5. Wallace LA. The TEAM Study: Summary and Analysis, Vol 1. EPA 600/6-87/002a. NTIS PB 88-10060. Washington: U.S. Environmental Protection Agency, 1987.

6. Pellizzari ED, Perritt R, Hartwell TD, Michael LC, Sheldon LS, Sparacino CM, Whitmore R, Leininger C, Zelon H, Handy RW, Smith D, Wallace LA. Total Exposure Assessment Methodology (TEAM) Study: Elizabeth and Bayonne, New Jersey, Devils Lake, North Dakota, and Greensboro, North Carolina, Vol 2. EPA 600/6-87/002b. NTIS PB 88-10007. EPA Washington: U.S. Environmental Protection Agency, 1987.

7. Pellizzari ED, Perritt R, Hartwell TD, Michael LC, Whitmore R, Handy RW, Smith D, Zelon H, Wallace LA. Total Exposure Assessment Methodology (TEAM) Study: Selected Communities in Northern and Southern California, Vol 3. EPA 600/6-87/002c. NTIS PB 88-100086. Washington: U.S. Environmental Protection Agency, 1987.

8. Wallace LA, Pellizzari ED, Hartwell TD, Sparacino C, Whitmore R, Sheldon L, Zelon H, Perritt R. The TEAM Study: personal exposures to toxic substances in air, drinking water, and breath of 400 residents of New Jersey, North Carolina, and North Dakota. Environ Res 43:290–307 (1987).

9. Wallace LA, Pellizzari ED, Hartwell TD, Whitmore R, Perritt R, Sheldon L. The California TEAM study: breath concentrations and personal exposures to 26 volatile compounds in air and drinking water of 188 residents of Los Angeles, Antioch, and Pittsburgh, CA. Atmos Environ 22:2141–63 (1988).

10. Wallace LA, Nelson WC, Ziegensfurth R, Pellizzari ED. The Los Angeles TEAM study: personal exposures, indoor–outdoor air concentrations and breath concentrations of 25 volatile organic compounds. J Expo Anal Environ Epidemiol 2:37–72 (1991).

11. Wallace LA, Pellizzari ED. Personal air exposures and breath concentrations of benzene and other volatile hydrocarbons for smokers and nonsmokers. Toxicol Lett 55:113–116 (1986).

12. Wallace LA, Pellizzari ED, Hartwell TD, Perritt R, Ziegensfurth R. Exposures to benzene and other volatile organic compounds from active and passive smoking. Arch Environ Health 42:272–279 (1987).

13. Wallace LA. Major sources of exposure to benzene and other volatile organic compounds. Risk Anal 10:59–64 (1990).

14. Jo WK, Weisel CP, Lioy PJ. Routes of chlorofluorocarbon exposure and body burden from showering with contaminated tap water. Risk Anal 10:575–580 (1990).

15. Wallace LA. Exhaled breath as an indicator of recent exposure to volatile organic compounds. Paper 87-80.1. 80th Annual Meeting of the Air Pollution Control Association, 21–27 June 1987 New York, NY.

16. Wallace LA, Pellizzari ED, Hartwell TD, Zelon H, Sparacino C, Perritt R, Whitmore R. Concentrations of 20 volatile organic compounds in the air and drinking water of 350 residents of New Jersey compared with concentrations in their exhaled breath. J Occup Med 28:603–608 (1986).

17. Gordon S, Wallace LA, Pellizzari ED, O’Neill H. Breath measurements in a clean-air chamber to determine “wash-out” times for volatile organic compounds at environmental concentrations. Atmos Environ 22:2165–2170 (1988).

18. Pellizzari ED, Wallace LA, Gordon SM. Elimination kinetics of volatile organics in humans using breath measurements. J Expo Anal Environ Epidemiol 2(3):341–356 (1992).

19. Gordon SM, Wallace LA, Pellizzari ED, Moschandreas DJ. Residence times of volatile organic compounds in human breath following exposure to air pollutants at near-normal environmental concentrations. In: Total Exposure Assessment Methodology. Pittsburgh: Air and Waste Management Association 1990:247–256.

20. Wallace LA, Pellizzari ED, Gordon S. A linear model relating breath concentrations to environmental exposures: application to a chamber study of four volunteers exposed to volatile organic chemicals. J Expo Anal Environ Epidemiol 3:75–102 (1993).
21. Pellizzari ED, Thomas KW, Raymer JH, Smith DJ, Cooper SD. Measurements of exhaled breath using a new portable sampling method. Final report. Contract 68-02-4544. Research Triangle Park, NC: U.S. Environmental Protection Agency, 1990.

22. Raymer JH, Thomas K, Cooper S, Whitaker D, Pellizzari ED. A device for sampling human alveolar breath for the measurement of expired volatile organic compounds. J Anal Toxicol 14:337–44 (1990).

23. Raymer JH, Pellizzari ED, Cooper SD, Castillo NP, Thomas KW. Evaluation of a pharmacokinetic model for volatile organic compounds in breath and of the application of the analytical method to polar VOCs. Final report. EPA Contract 68-02-4544. Research Triangle Park, NC: U.S. Environmental Protection Agency, 1990.

24. Raymer JH, Thomas KW, Pellizzari ED, Cooper SD, Smith DJ, Kizakevich P, Pugh D. Breath and blood measurements of individuals exposed to volatile organic chemicals: elimination from the third compartment. Final report. Contract 68-02-4544. Research Triangle Park, NC: U.S. Environmental Protection Agency, 1992.

25. Perbellini I, Faccini GB, Pasini F, Cazzoli F, Pistoia S, Rosellini R, Valsecchi M, Brugnone F. Environmental and occupational exposure to benzene by analysis of breath and blood. Br J Ind Med 45:345–352 (1988).

26. Ashley DL, Bonin MA, Cardinali FL, McCraw JM, Holler JS, Needham LL, Patterson DG Jr. Determining volatile organic compounds in human blood from a large sample population using purge and trap gas chromatography mass spectrometry. Anal Chem 64:1021–1029 (1992).