Abstract
Barrett’s esophagus (BE) confers a significant increased risk for development of esophageal adenocarcinoma (EAC), with the pathogenesis appearing to progress through a “metaplasia-dysplasia-carcinoma” (MDC) sequence. Many of the genetic insults driving this MDC sequence have recently been characterized, providing targets for candidate biomarkers with potential clinical utility to stratify risk in individual patients. Many clinical risk factors have been investigated, and associations with a variety of genetic, specific gastrointestinal and other modifiable factors have been proposed in the literature. This review summarizes the current understanding of the mechanisms involved in neoplastic progression of BE to EAC and critically appraises the relative roles and contributions of these putative risk factors from the published evidence currently available.

© 2011 Baishideng. All rights reserved.

Key words: Barrett’s esophagus; Esophageal adenocarcinoma; Metaplasia-dysplasia-carcinoma; Neoplastic progression; Risk factors

Peer reviewer: Evangelos Tsiambas, MD, PhD, Lecturer in Molecular Cytopathology, Department of Pathology, Medical School, University of Athens, Ag Paraskevi Attiki 15341, Greece

Wiseman EF, Ang YS. Risk factors for neoplastic progression in Barrett’s esophagus. World J Gastroenterol 2011; 17(32): 3672-3683
Available from: URL: http://www.wjgnet.com/1007-9327/full/v17/i32/3672.htm DOI: http://dx.doi.org/10.3748/wjg.v17.i32.3672

INTRODUCTION
Barrett’s esophagus (BE) describes a condition where native esophageal stratified squamous epithelium is replaced by metaplastic columnar epithelium, with cephalad displacement of the squamocolumnar junction. BE represents the only identified precursor lesion and most important risk factor for esophageal adenocarcinoma (EAC). Patients with BE have an estimated 30- to 125-fold greater risk of developing EAC than the general population. A systematic review of 27 studies suggested annual progression rates of 0.5%, whereas a review of 8 UK studies by Jankowski et al showed cancer risk of 1.0% per year.

BE PATHOGENESIS AND MECHANISMS OF NEOPLASTIC PROGRESSION
BE is an acquired condition where healing from esophageal mucosal injury (typically triggered by gastro-esophageal reflux disease (GERD)) is metaplastic, with replacement of damaged squamous cells by columnar epithelium. Ordinarily, esophageal healing involves regeneration of squamous cells; it remains unclear why the response is metaplastic in some individuals, since only a minority of patients with GERD develop BE. Progression of BE to EAC occurs by a metaplasia-dysplasia-carcinoma (MDC) sequence. Metaplastic columnar epithelial cells are predisposed to genetic damage with potential for developing...
dysplasia[5]. Dysplasia represents a histological spectrum from low- to high-grade, defined by degree of cytological and architectural disruption present, with genetic instability resulting in progressive acquisition of genetic abnormalities towards a frankly neoplastic phenotype. These can be considered within the framework of Hanahan and Weinberg’s[6] model of “cancer hallmarks” necessary for carcinogenesis, whereby cancer cells must acquire growth self-sufficiency, insensitivity to anti-growth signals, avoidance of apoptosis, limitless replicative potential, sustained angiogenesis, and invasive and metastatic potential[5].

Many genetic insults conferring these advantages in the BE MDC sequence have been characterized. Initiating events probably involve genes regulating cell cycle progression, notably p16. Mutations, loss of heterozygosity (LOH) or promoter hypermethylation (i.e. silencing) of p16 have been identified in 80% of BE, whilst p16 hypermethylation correlated with the degree of dysplasia in some studies[8]. Additional changes identified include upregulation of cyclins D1 and E, transforming growth factor-α and epidermal growth factor (EGF), each contributing towards growth autonomy[6,7]. These mutations should trigger apoptosis via p53-dependent pathways. However, subsequent accrual of p53 lesions confers resistance to apoptosis, and has been identified in 52%-93% of EACs (compared with 1%-5% non-malignant BE cell lines)[8]. Inactivation of p53 increases clonal genomic instability, predisposing to widespread DNA changes and evolution of ploidy lesions, late events in cancer progression. Many other genetic and molecular alterations have been described[8,12,26] (Table 1).

The concept of a linear, stepwise evolution of tumor suppressor gene mutations in which clonal expansion of a solitary mutated clone expands to fill the entire Barrett’s segment has been termed the “selective sweep to fixation” model. However, an alternative model has been proposed by Leedham et al.[9], who performed genetic analysis of individual crypts rather than a flow purified whole biopsy specimen. This technique permitted identification of certain mutations masked by whole biopsy segment analysis (attributed to dilution effect of the normal stroma on whole biopsy analysis), whilst also revealing a greater degree of genotypical and phenotypical heterogeneity within the same biopsy sample than previous studies appreciated. The demonstrated lack of a single founder mutation present in every crypt suggested that the clonal expansion arose from multiple independent clones rather than a single common founder mutation[8,50] (Figure 1).

This enhanced understanding prompted research into > 200 candidate novel biomarkers of disease progression in BE/EAC. Several, including 17p LOH, cyclin D1, tetraploidy and aneuploidy, have undergone phase 3/4 validation and in future might have clinical/prognostic utility as intermediate markers of progression[9]. However, Leedham’s recent findings call into question the reliability of “surveillance” biomarker identification via genetic analysis of whole biopsy specimens, since minority clones within the sample (harboring neoplastic potential) might not be detected[9].

![Figure 1 Clonal evolution models in Barrett’s esophagus. A: The current model of clonal evolution adapted from Maley et al[6]. Founder mutation (red cross) occurs in a single progenitor and provides a growth advantage that predisposes to a selective sweep. Successive selective sweeps result in progression along the metaplasia dysplasia pathway. Clone bifurcation is responsible for the genetic heterogeneity in this model; B: The newly proposed model of evolution based on the mutation of multiple progenitor cells situated in esophageal gland squamous ducts located throughout the length of the esophagus (red crosses). Multiple independent clones then arise and evolve separately. The presence of multiple different clones gives rise to a mosaic interdigitating clonal pattern of the Barrett’s segment represented as the striped areas[6].](image)

Currently, dysplasia remains the only validated marker for identifying BE patients at risk, and forms the basis of EAC surveillance. However, this is imperfect. The tempo of progression towards EAC is highly variable and it remains unclear whether relentless progression through the MDC sequence is inevitable; some evidence suggests that high-grade dysplasia may remain stable for years or even regress[10]. Patients with BE may develop EAC during surveillance without detection of earlier MDC stages. This might relate to pace of progression, sampling error or lesions skipping directly from non-dysplastic disease to cancer. Other limitations of dysplasia as a prognostic marker include inter-observer variability in histological interpretation, and that inflammation may mimic dysplastic changes[11].

RISK FACTORS FOR NEOPLASTIC PROGRESSION

Until molecular biomarkers enter clinical practice it remains important to identify other clinical risk factors for malignant progression to effectively allocate resources and individualize surveillance programs, targeting those at highest risk. Identifying modifiable risk factors will also...
Positive p53 immunostaining in 87% EAC vs 55% BE with HG-dysplasia vs 9% LG-dysplasia vs 0% non-dysplastic BE

17p (p53) LOH found in 91% BE vs 0% LG-dysplasia: -?7p allelic losses precede aneuploidy

p53 expression in 64% EAC vs 31% non-dysplastic BE with 0% non-dysplastic BE: trend of ↑ p53 expression with ↑ tumour grade: -?p53 mutation early event in malignant progression

p53 immunoreactivity only in EAC/BE with HG-dysplasia (not in BE with LG-/no dysplasia); mutated p53 in 69%: -?late event in MDC sequence (during transition to HG-dysplasia)

p53 protein expression in 85% EAC specimens vs 60% BE with HG-dysplasia vs 7% LG-dysplasia (P < 0.001)

p53 mutations identified in 75% EAC specimens; p53 overexpression in 58% EAC vs 60% BE with HG-dysplasia vs 12% LG-dysplasia vs 0% non-dysplastic BE

↓ surface expression of Fas in EAC specimens; impaired translocation of Fas to membrane wild-type Fas protein retained in cytoplasm in EAC cell line: -?potential mechanism by which EAC cells evade Fas-mediated apoptosis

Strong Src expression in 85% EAC vs 93% BE HG-dysplasia vs 72% BE LG-dysplasia vs 27% BE specimens

Strong Src expression in 85% EAC vs 93% BE HG-dysplasia vs 72% BE LG-dysplasia vs 27% BE specimens

Table 1 Published evidence from selected studies investigating genetic and epigenetic changes implicated in the metaplasia-dysplasia-carcinoma sequence of Barrett’s esophagus

Factor	Summary of major findings/conclusions	Ref.
Growth self-sufficiency	[↑ nuclear cyclin D1 immunostaining in 46% BE specimens: -?cyclin D1 overexpression early event in MDC sequence]	Arber et al[9]
	[↑ nuclear cyclin D1 immunostaining in 64% EAC specimens]	Arber et al[9]
	Cyclin D1 expression correlates with degree of dysplasia in BE	Coppola et al[10]
	Cyclin D1 expression 43% BE mucosa (vs 0% normal mucosa)	Umansky et al[11]
Cyclin E	[↑ cyclin E expression in neoplastic cells in BE]	Coppola et al[10]
	Cyclin E expression 37% BE mucosa (vs 0% normal mucosa)	Umansky et al[11]
	85% EAC specimens displayed low p27 protein levels (despite high p27 mRNA): -p27 inactivated in most BE-associated EAC (post-transcriptional modification)→loss of cell cycle inhibition	Singh et al[12]
	Experimentally-induced BE and EAC development in mouse model significantly enhanced by p27 gene knockout	Ellis et al[13]
EGF (and EGF-R)	[↑ EGF in cytoplasm of BE epithelial cells (vs gastric mucosa)]	Jankowski et al[14]
	EGF-R expression area in inflamed mucosa (43.1%) significantly > normal mucosa (29.5%); all BE showed positive EGF-R staining	Jankowski et al[14]
	EGF/EGF-R expression significantly ↑ in BE and EAC specimens (vs normal mucosa) by flow cytometry (P < 0.01)	Jankowski et al[14]
	EGF-R expression positive in 64% of BE-associated EAC; ↑ staining associated with poorer survival (P = 0.004)	Yacoub et al[15]
	EGF A61G G/G genotype associated with >double EAC risk in BE pts (vs A/A or A/G) (OR 2.2)	Lanuti et al[16]
TGF-α	[↑ TGF-α expression in cells from BE and EAC mucosa (vs normal gastric mucosa)] by flow cytometry (P < 0.01)	Jankowski et al[14]
HGF (and HGF-R)	HGF expression significantly ↑ in BE specimens (vs normal esophageal mucosa)	Konturek et al[17]
	Intense HGF-R immunostaining in 100% EAC and dysplastic BE specimens (vs minimal staining in non-dysplastic BE or normal mucosa); HGF-R mRNA and protein levels ↑ in EAC cell lines	Herrera et al[18]
Erb family tyrosine kinases	Membranous c-erbB2 overexpressed in 26% EAC (vs 0% BE with dysplasia): -?later event in MDC sequence	Hardwick et al[19]
	c-erbB-2 gene amplification in 14% EAC vs 11% HG-dysplasia vs 0% metaplasia/LG-dysplasia specimens	Geddert et al[20]
FGF	Immunostaining intensity for FGF sequentially ↑ from metaplasia/LG-dysplasia (negligible)→HG-dysplasia (weak/moderate)→EAC (moderate/strong)	Soblow et al[21]
	FGF-1 mRNA and protein expression sequentially ↑ in HG-dysplasia/EAC (vs metaplasia/LG-dysplasia/controls)	Soblow et al[21]
Src family tyrosine kinases	Src-specific activity 3-4-fold ↑ in BE and 6-fold ↑ in EAC (vs controls); -?Src activation early event in MDC sequence	Kumble et al[22]
	Strong Src expression in 85% EAC vs 93% BE HG-dysplasia vs 72% BE LG-dysplasia vs 27% BE specimens	Itavani et al[23]
Insensitivity to anti-growth signals	p16	Gonzalez et al[24]
	9p21 (p16) LOH observed in 89% EAC specimens (vs 0% non-dysplastic BE); homozygous p16 deletion in only 25%	Gonzalez et al[24]
	p16 promoter hypermethylation (inactivation) in 75% BE with HG-dysplasia vs 56% LG-dysplasia (vs 3% non-dysplastic BE)	Klump et al[25]
APC	5q (APC) LOH seen in 80% EAC specimens (and surrounding mucosa)	Barrett et al[26]
	APC gene LOH observed in 60% EAC specimens (vs 0% non-dysplastic BE)	Gonzalez et al[24]
	APC promoter hypermethylation in 92% EAC vs 40% BE (vs 0% normal esophageal tissues)	Kawakami et al[27]
Avoidance of apoptosis	p53	Younes et al[28]
	Positive p53 immunostaining in 87% EAC vs 55% BE with HG-dysplasia vs 9% LG-dysplasia vs 0% non-dysplastic BE	Younes et al[28]
	17p (p53) LOH found in 91% BE pts who developed aneuploid cell populations: -?7p allelic losses precede aneuploidy	Blount et al[29]
	p53 overexpression in 64% EAC vs 31% non-dysplastic BE 0% non-dysplastic BE: trend of ↑ p53 expression with ↑ tumour grade: -?p53 mutation early event in malignant progression	Symmans et al[30]
	p53 immunoreactivity only in EAC/BE with HG-dysplasia (not in BE with LG-/no dysplasia); mutated p53 in 69%: -?late event in MDC sequence (during transition to HG-dysplasia)	Rice et al[31]
	p53 protein expression in 85% EAC specimens vs 60% BE with HG-dysplasia vs 7% LG-dysplasia (P < 0.001)	Rioux-Leclercq et al[32]
	p53 mutations identified in 75% EAC specimens; p53 overexpression in 58% EAC vs 60% BE with HG-dysplasia vs 12% LG-dysplasia vs 0% non-dysplastic BE	Chung et al[33]
	↓ surface expression of Fas in EAC specimens; impaired translocation of Fas to membrane wild-type Fas protein retained in cytoplasm in EAC cell line: -?potential mechanism by which EAC cells evade Fas-mediated apoptosis	Hughes et al[34]
Fas (CD95)	↓ surface expression of Fas and resistance to Fas-mediated apoptosis observed in EAC cell lines	Mahidhara et al[35]
Bcl-xL/Bax/Bcl-2	Bcl-xL positive in all dysplasia and EAC cells, but negative in 47% non-dysplastic BE: -?switch to anti-apoptotic phenotype in transformation from metaplasia to EAC	van der Woude et al[36]
COX-2

Bcl-2 expression in 84% LG-dysplasia vs 0% HG-dysplasia or EAC
Cytoplasmic Bcl-xl immunostaining in 59% EAC vs 71% BE/HG-dysplasia vs 60% LG-dysplasia vs 27% non-dysplastic

COX-2

↑ COX-2 mRNA levels in 80% BE and 100% EAC specimens (vs normal gastric controls) (P < 0.001);
COX-2 immunostaining strongly positive in 100% BE samples (> gastric controls)
COX-2 immunopositivity in 91% non-dysplastic BE vs 94% dysplastic vs 97% EAC
Natural/synthetic COX-2 inhibitors suppressed proliferation, induced apoptosis and blocked cell cycle in EAC cell lines
COX-2 mRNA strongly upregulated in experimentally-induced BE epithelium in rat model (vs absent in control animals);
COX-2 overexpression observed in human BE patients with dysplasia

Limitless replicative potential

Telomerase
Telomerase RNA positive in 100% EAC/BE with HG-dysplasia vs 90% LG-dysplasia vs 70% non-dysplastic BE; marked ↑ telomerase RNA accompanies transition along MDC sequence
human telomerase reverse transcriptase (catalytic subunit of telomerase) expression ↑ at all stages of BE vs normal controls, and in EAC (P = 0.003) and dysplastic BE (P = 0.056) vs non-dysplastic BE
Telomerase activity (by telomeric repeat amplification protocol assay) ↑ in EAC samples vs adjacent mucosa (P = 0.0002) and in EAC vs BE (P = 0.001); no difference BE vs adjacent mucosa
Telomerase inhibition (by small interference RNAs) induced senescence in 40% and apoptosis in 86% in BE cell lines

Sustained angiogenesis

VEGF (and VEGF-R)
VEGF expression correlated with higher vascularisation in BE and EAC specimens
VEGF-A expressed in BE epithelium; VEGFR-2 strongly expressed in immature endothelial cells feeding BE epithelium; ↑ VEGF-C expression in BE (vs absent in normal epithelium); ↑ VEGFR-3 in EAC: aberrant neovascularisation early in MDC sequence
VEGF expressed in 64% EAC specimens; significantly correlated with angio/lymphatic invasion/survival
VEGF expression significantly ↑ in EAC (> dysplastic BE > BE > normal epithelium)

Invasive/metastatic potential

CAMs
expression in EAC specimens of E-cadherin (in 74%); α-catenin (60%) and β-catenin (72%)
Abnormal expression of β-catenin (P = 0.002), α-catenin (P < 0.01) and E-cadherin (P = 0.049)
significantly associated with higher degrees of BE-related dysplasia
↑ expression of E-cadherin with progression along MDC sequence (P < 0.01); in contrast P-cadherin absent from BE (absent dysplasia) but expressed in 67% EAC specimens
Slug (E-cadherin repressor) immunostaining and mRNA levels overexpressed in EAC vs BE metaplasia specimens; -7Slu upregulation represents mechanism of E-cadherin silencing

Cathepsins
Detecting ampicilin at chromosome 2p22-23 resulting in cathepsin B overexpression (observed in 73% EAC samples)
↑ cathepsin C expression in EAC (vs BE vs normal) in rat model
Stepwise ↑ cathepsin D mRNA levels in GERD→BE→EAC tissue
CD44-H and -V6 variant frequently expressed in BE; differing expression patterns along spectrum normal = dysplastic BE → EAC: ↑CD44H and V6 involved in carcinogenesis of BE mucosa
↑ CD44 expression in EAC/HG-dysplasia (vs BE/LG-dysplasia)

COX-2: Cyclooxygenase-2.

suggesting exposure to an exogenous risk factor in early life contributing increased risk in all ages of the cohort (Figure 2). Multiple risk factors for neoplastic progression of BE have been investigated (Table 2).

INNATE HOST FACTORS

Age is a well-recognized risk for both BE and EAC. Corley et al. reported an incidence of BE of 2/100 000 for 21-30-year-old and 31/100 000 for 61-70-year-old, whilst El-Serag et al. calculated the risk of EAC to increase by 6.6% for each 5-year age increase. Evidence specifically linking age to risk of neoplastic progression within BE is lacking, but it seems intuitive to propose advancing age as an independent risk factor.

BE displays a male preponderance of approximately 2:1, rising to 4:1 for BE-associated EAC, suggesting an independent influence of gender on risk of neoplastic pro-

Table 2. Clinical and demographic risk factors for neoplastic progression of Barrett’s esophagus

Innate factors	Gastrointestinal factors	Other modifiable factors
Age	Bile and acid reflux	Obesity
Gender	Anti-reflux surgery	Diet
Ethnicity	Proton pump inhibition	Alcohol
	Pharmacological lower esophageal sphincter relaxation	Smoking
	Salivary nitrates	Socioeconomic status
	Barrett’s segment length	Pharmacological COX-2 inhibition

BE: Barrett’s esophagus; MDC: Metaplasia-dysplasia-carcinoma; EAC: Esophageal adenocarcinoma; EGF: Epidermal growth factor; EGF-R: EGF receptor; pts: Patients; OR: Odds ratio; TGF: Transforming growth factor; HGF: Hepatocyte growth factor; HGF-R: HGF receptor; mRNA: Messenger RNA; COX: Cyclooxygenase-2; VEGF: Vascular endothelial growth factor; VEGF-R: VEGF receptor; CAM: Cell adhesion molecule; GERP: Gastro-esophageal reflux disease.

Wiseman EF et al. Risk factors in Barrett’s neoplasia.
Wiseman EF et al. Risk factors in Barrett’s neoplasia

GASTROINTESTINAL FACTORS

Bile/acid reflux

The relationship between GERD and BE is well established, and whilst reflux of gastric acid is known to induce chronic mucosal esophageal injury the contribution of bile salts and acids (from duodenal refluxate) is increasingly recognized. Vaezi and Richter demonstrated patients with complicated BE (dysplasia/stricture/ulceration) reflux significantly greater amounts of both gastric and bile acids than those with uncomplicated BE, and postulated that complications might result from synergism between the two.[78] Bile salts induce esophageal injury over a wide pH range, and patients with BE display significantly more bile salts in aspiration studies than patients with mild reflux only.[79] Menges et al.[80] observed a strong correlation between duration of esophageal exposure to acid and bile with severity of pathological change in BE. Furthermore, proton pump inhibitor (PPI) therapy predisposes to upper gastrointestinal bacterial colonization and consequent bile salt-deconjugation, which, in this high pH environment, has been linked to chronic inflammation.[81]

Refluxate-mediated inflammation might promote carcinogenesis via both the arachidonic acid (AA) pathway and induction of oxidative stress. Low pH and bile salts promote expression of cyclooxygenase-2 (COX-2), catalyzing conversion of AA into various prostaglandins, including PGE2. PGE2 increases proliferation of BE epithelial cells and inhibits tumor surveillance through suppressing natural killer cell function. Consequently, abnormal cells displaying genomic instability may accumulate. COX-2 expression has been shown to increase with neoplastic progression of BE, supporting a role for the AA pathway in EAC carcinogenesis.[84] Chronic mucosal injury also induces production of reactive oxygen species (ROS), depletes antioxidants and increases expression of oxidative stress-related genes. High levels of oxygen radicals and lipid peroxidation products have been demonstrated in BE epithelial cells, with reduced levels of vitamin C and glutathione, indicating compromised oxidant defences.[82] ROS have well-established mutagenic capacity, whilst subsequent apoptosis of mutated cells is additionally suppressed by capacity of bile salts to induce proteasomal degradation of p53.[83]

The Factors Influencing the Barrett’s Adenocarcinoma Relationship (FINBAR) study suggested GERD symptom chronicity and frequency appeared better predictors for neoplastic progression than severity.[84] However, a significant proportion of EAC patients (40%-50%) do not recall ever having prior reflux.[85] Furthermore, reflux of gastroduodenal contents correlates poorly with heartburn symptoms, BE is frequently asymptomatic and development of less sensitive Barrett’s epithelium may ameliorate symptoms. Thus, symptom-based risk scores for assessing progression risk have so far not proved useful in clinical practice.

PPIs

PPIs increase pH of gastric refluxate, attenuating acid-induced damage. Ouatu-Lascar et al.[86] showed “normalization” of intraesophageal pH with acid suppression favors differentiation and reduces cellular proliferation in BE biopsy specimens. However, PPIs have not prevented...
recent increases in EAC, and the observation of EAC with PPI administration in animal models raises concern they might actually favor progression of BE[87]. This might be mediated via interaction of gastrin with its cholecystokinin receptor, CCK-R. PPIs elevate serum gastrin levels, which on binding to CCK-R, stimulate expression of EGF and trefoil peptide, inducing COX-2 expression. Gastrin exposure increases proliferation in esophageal cell culture, and BE mucosa expresses more CCK-R than normal squamous mucosa. CCK-R stimulation also inactivates pro-apoptotic factors[88].

Despite this, the clinical relevance in humans remains unproven. Three large studies have examined PPI usage and EAC risk in BE patients, each reporting a strong inverse correlation. Two observed a decreased risk with longer duration of PPI, and one showed an increased risk with delayed PPI use[89]. Obszynska \textit{et al}[89] investigated effects of hypergastrinemia induced by different PPI doses in cell models and BE patients. Despite increased cell proliferation \textit{in vitro}, COX2 induction and enhanced epithelial restitution, they found no evidence of longer-term harm using surrogate biomarkers of proliferation or apoptosis \textit{in vitro}. The Aspirin Esomeprazole Chemoprevention Trial (AspECT) is currently investigating effects of different PPI doses in combination with aspirin on EAC risk.

\section*{Anti-reflux surgery}

Theoretically, anti-reflux surgery should prevent reflux of duodenal contents, against which PPIs have no effect, potentially mitigating against progression of BE. Unfortunately, this is not supported by the available evidence. Two large cohort studies failed to show cancer protection in GERD patients[90,92], whilst a meta-analysis by Corey \textit{et al}[92] concluded no reduction in progression risk for BE. However, different surgical procedures were employed and effectiveness of reflux control was not always assessed.

\section*{Lower esophageal sphincter-relaxing drugs}

Pharmacological lower esophageal sphincter (LES) relaxation might promote development/progression of BE by increasing reflux, suggested by the observation that drugs with these effects (e.g. tricyclic antidepressants) have increased in use alongside the rise in EAC. A Swedish population-based study by Lagergren \textit{et al}[94] reported a positive association between EAC and long-term use of LES-relaxing drugs, with the strongest association for anti-histaminers; this association disappeared after adjustment for reflux symptoms.

\section*{Helicobacter pylori infection}

An increase in BE-associated EAC alongside falling rates of \textit{Helicobacter pylori} (H. pylori) infection has led some to propose a protective effect of \textit{H. pylori}, mediated by its influence in reducing gastric acidity. The virulent cagA strain is particularly associated with high-grade gastric inflammation and atrophy[95]. A meta-analysis by Rokkas \textit{et al}[96] reported statistically significant inverse relationships between \textit{H. pylori} infection and both EAC and BE [odds ratio (OR), 0.52% and 0.64%, respectively]. Furthermore, a large prospective study of BE patients and GERD controls found less \textit{H. pylori} infection with increasing “severity” of disease: 44% in GERD; 35% in uncomplicated BE; 14%-15% in BE with high-grade dysplasia/EAC[97]. However, another study, controlling for demographic and lifestyle factors, failed to demonstrate reduced EAC with cagA+ infection[98]. A confounding factor might be the degree of bile acid reflux, since excessive bile reflux may prevent \textit{H. pylori} colonization and contribute to chronic mucosal injury[80]. The protective role for \textit{H. pylori} is debatable and since \textit{H. pylori} colonization might be mediated by its in vivo expression of CCK-R, stimulate expression of COX-2 in vivo. The Aspirin Esomeprazole Chemoprevention Trial (AspECT) is currently investigating effects of different PPI doses in combination with aspirin on EAC risk.

\section*{Salivary nitrates}

Dictary nitrate, concentrated in saliva and reduced to nitrites by oral flora, produces intra-esophageal nitric oxide (NO) during reflux. Achlorhydria induced by PPI or atrophic gastritis may cause overgrowth of nitrate-reducing bacteria in the upper gut, providing another source of nitrite[89]. Clemons demonstrated the capacity of NO to induce double-strand DNA breaks in esophageal BE cells \textit{in vitro}, which could promote neoplastic progression[99]. Increasing agricultural nitrate use in the latter 20th century caused significant increases in nitrate content of leafy vegetables and drinking water[100] and could have partially contributed to the increase in EAC incidence.

\section*{Barrett’s segment length}

Although EAC can develop in BE segments of any length, several observational studies support the intuitive notion that longer segments confer greater risk[101]. However, a meta-analysis by Thomas \textit{et al}[102] showed only a non-significant trend towards reduced progression with shorter BE segments, and evidence remains insufficient to advocate surveillance strategies based on segment length alone.

\section*{OTHER MODIFIABLE RISK FACTORS}

\subsection*{Obesity}

Increasing obesity has also paralleled increased rates of BE and EAC. Strong links between obesity and both GERD and erosive esophagitis have been established[103]. It is logical that this might predispose to BE, but a meta-analysis specifically comparing body mass index (BMI) in BE cases with population controls showed only a modest risk increase[104]. However, elevated BMI is a strong risk factor for EAC (OR, 1.8 and 2.4 for BMI > 25 and BMI > 30, respectively)[105]. Increased risk may relate more to distribution of body fat than BMI alone, with visceral (abdominal) obesity conferring greater risk[106]. Other studies noted an association between obesity in early life and EAC risk, suggesting adiposity may act early in the disease process[84,97]. Although a small prospective study by Oberg and colleagues failed to identify any association between BMI...
and progression from BE to low- or high-grade dysplasia[108], it had limited power, and a larger study from the Seattle Barrett’s Esophagus Program revealed strong correlations between waist-to-hip ratio and intermediate biomarkers of progression[109]; again, associations were less apparent for elevated BMI per se.

Obesity causes GERD through several mechanical and physiological mechanisms. However, part of the association between obesity and EAC is independent of GERD, suggesting a role for reflux-independent mechanisms, probably linked to important endocrine actions of adipose tissue. Many recent studies have linked several adipokines (metabolically active factors) to plausible actions in the MDC process[110-117] (Table 3).

Kristal et al[118] investigated whether weight loss (alongside other dietary measures) impacted upon measured biomarkers of cellular proliferation in BE. Despite weight loss (mean 3.6 kg) at 18 mo no differences in biomarkers were observed. This study was relatively small, and the lack of response might relate to the relatively modest weight loss, and/or choice of proliferation markers employed.

Diet

Several studies have shown an association between a diet high in fruit and vegetables and reduced EAC. A large population-based Swedish study found individuals in the highest exposure quartile of fruit and vegetable intake to have approximately 50% less EAC compared to the lowest quartile[119]. However, Kristal et al’s study observed no effect on biomarkers of BE cell proliferation despite a net increase in fruit and vegetable consumption[118], whilst the FINBAR study observed a reduction in EAC with increased fruit, but not vegetable, consumption[84]. A protective effect for the natural anti-oxidants in fruit was proposed. A well-controlled, prospective study by Dong et al[120] showed patients who took multivitamin pills had significantly decreased risk of tetraploidy [hazard ratio (HR), 0.19] and frank EAC (HR, 0.38). Significant inverse associations with EAC were also observed for supplemental vitamins C (HR, 0.25) and E (HR, 0.25), both well-recognized antioxidants.

Chen et al[21] observed a significant inverse association between zinc intake and EAC risk compared with controls (OR, 0.5); inverse associations were also noted for vitamin A, β-cryptoxanthin, riboflavin, folate, fiber, protein and carbohydrate, whilst saturated fat intake was positively associated with EAC. Rudolph et al[22] investigated selenium levels in 396 BE patients: those with levels in the upper three quartiles were less likely to display high-grade dysplasia (OR, 0.5), aneuploidy (OR, 0.4) or 17p LOH (OR, 0.5) than the lowest quartile. No association was observed with p16 LOH (an early event in the MDC sequence), indicating selenium’s protective effects might occur late in progression to EAC.

Alcohol

Data supporting links between alcohol and BE/EAC are sparse. The UK BE registry found no association between alcohol consumption in patients with BE compared with reflux esophagitis[23]. Although at least eleven studies have investigated the relationship between alcohol and EAC only six have shown a positive association, and in most it was weak[124-134]. One study even seemed to suggest wine to be protective[135].

Smoking

Studies of smoking and BE/EAC are contradictory. An Australian population-based case-control study found smoking was associated with 2- to 3-fold increased risk of BE and BE with dysplasia[136]. However, there was no dose-response effect. Other small studies found no clear association[31]. Whilst smoking is a strong risk factor for esophageal squamous cell carcinoma, studies of EAC have been inconsistent, yielding conclusions ranging from complete absence of association[132-134] to a significant OR of 3.4 for current smokers[129]. Problems with study methodology occur and certainly smoking has rarely been a primary endpoint for studies of BE/EAC.
Socioeconomic status

There are no clear associations between socioeconomic status and neoplastic progression of BE. Some studies suggest increased EAC risk in higher socioeconomic groups, others the reverse\(^2\).

COX-2 inhibition

Given the role of the AA pathway in neoplastic progression, pharmacological inhibition of COX-2 might modify the natural history of BE. Various studies have investigated whether aspirin and non-steroidal anti-inflammatory drugs (NSAIDs) might confer protection against EAC. A meta-analysis by Corley \textit{et al}\(^3\) including 1813 EAC patients suggested a protective association (OR, 0.67). Both intermittent and frequent use appeared advantageous, with evidence of a dose-effect, whilst aspirin conferred greater protection than NSAIDs.

However the Chemoprevention for Barrett’s Oesophagus Trial randomized 100 BE patients with dysplasia to either celecoxib 200 mg twice daily or placebo, with negative results\(^4\). A retrospective analysis of the UK BE registry with a total follow-up of 3683 patient-years also failed to demonstrate a protective effect of aspirin\(^5\). AspECT should provide further useful information.

CONCLUSION

The etiology of progression of BE is probably multi-factorial, with contributions from environmental risk factors interacting with genetically-determined characteristics. Obesity and ongoing bile and acid reflux are emerging as potentially modifiable risk factors, though designing practical interventions has so far proved difficult. Developments in understanding the MDC process in BE may provide future testable therapeutic targets.

ACKNOWLEDGMENTS

The authors would like to thank British Medical Journal Group publishing for permission to use the illustrations and graph. The clinical review was initially conducted by the first author (Wiseman EF) as part of a MSc degree at the University of Salford, Salford, UK. The manuscript has since been modified and updated by Ang YS with the latest developments in the field of BE.

REFERENCES

1. Reid BJ. Barrett’s esophagus and esophageal adenocarcinoma. \textit{Gastroenterol Clin North Am} 1991; 20: 817-834
2. Hage M, Siersma PD, van Dekken H, Steyerberg EW, Dees J, Kuipers EJ. Oesophageal cancer incidence and mortality in patients with long-segment Barrett’s oesophagus after a mean follow-up of 12.7 years. \textit{Scand J Gastroenterol} 2004; 39: 1175-1179
3. Shaheen NJ, Crosby MA, Bozymski EM, Sandler RS. Is there publication bias in the reporting of cancer risk in Barrett’s esophagus? \textit{Gastroenterology} 2000; 119: 333-338
4. Jankowski JA. Provenzale D, Moayyedi P. Esophageal adenocarcinoma arising from Barrett’s metaplasia has regional variations in the west. \textit{Gastroenterology} 2002; 122: 588-590
5. Boulton RA, Usselman B, Mohammed I, Jankowski J. Barrett’s esophagus: environmental influences in the progression of dysplasia. \textit{World J Surg} 2003; 27: 1014-1017
6. Hanahan D, Weinberg RA. The hallmarks of cancer. \textit{Cell} 2000; 100: 57-70
7. Morales CP, Souza RF, Spechler SJ. Hallmarks of cancer progression in Barrett’s oesophagus. \textit{Lancet} 2002; 360: 1587-1589
8. Klump B, Hsieh CJ, Holzmann K, Gregor M, Porschen R. Hypermethylation of the CDKN2/p16 promoter during neoplastic progression in Barrett’s esophagus. \textit{Gastroenterology} 1998; 115: 1381-1386
9. Arber N, Lightdale C, Rotterdam H, Han KH, Sgambato A, Yap E, Ahsan H, Finegold J, Stevens PD, Green PH, Hilschoo H, Neugut AI, Holt PR, Weinstein IB. Increased expression of the cyclin D1 gene in Barrett’s esophagus. \textit{Cancer Epidemiol Biomarkers Prev} 1996; 5: 457-459
10. Jankowski J, Hopwood D, Wormsley KG. Expression of epidermal growth factor, transforming growth factor alpha and their receptor in gastro-esophageal diseases. \textit{Dig Dis} 1993; 11: 1-11
11. Ireland AP, Clark GW, DeMeester TR. Barrett’s esophagus. The significance of p53 in clinical practice. \textit{Ann Surg} 1997; 225: 17-30
12. Wijnhoven BP, Tilanus HW, Djinens WN. Molecular biology of Barrett’s adenocarcinoma. \textit{Ann Surg} 2001; 233: 322-337
13. Arber N, Gammon MD, Hilschoo H, Britton JA, Zhang Y, Schonberg JB, Roterdam H, Fabian I, Holt PR, Weinstein IB. Overexpression of cyclin D1 occurs in both squamous carcinomas and adenocarcinomas of the esophagus and in adenocarcinomas of the stomach. \textit{Hum Pathol} 1999; 30: 1087-1092
14. Coppola D, Falcone R, Livingston S, Karl R, Nicosa S, Caico CM. Cyclin D1 expression correlates with degrees of dysplasia in Barrett’s esophagus. \textit{Lab Invest} 1997; 76: 298-302
15. Uman sky M, Yasui W, Hallack A, Brill S, Shapira I, Halpem Z, Hilschoo H, Rattan J, Meltzer S, Tahara E, Arber N. Proton pump inhibitors reduce cell cycle abnormalities in Barrett’s esophagus. \textit{Oncogene} 2001; 20: 7987-7991
16. Song S, Krishnan K, Liu K, Bresalier RS. Polyphenol E inhibits the growth of human Barrett’s and aerodigestive adenocarcinoma cells by suppressing cyclin D1 expression. \textit{Clin Cancer Res} 2009; 15: 622-631
17. Singh SP, Lipman J, Goldman H, Ellis FH, Aizenman L, Cangi MG, Signoretti S, Chiaur DS, Pagano M, Loda M. Loss or altered subcellular localization of p27 in Barrett’s associated adenocarcinoma. \textit{Cancer Res} 1998; 58: 1730-1735
18. Ellis FH, Xu X, Kulke MH, LoCicero J, Loda M. Malignant transformation of the esophageal mucosa is enhanced in p27 knockout mice. \textit{J Thorac Cardiovasc Surg} 2001; 122: 809-814
19. Jankowski J, Coghill G, Tregaskis B, Hopwood D, Wormsley KG. Epidermal growth factor in the oesophagus. \textit{Gut} 1992; 33: 1448-1453
20. Jankowski J, Murphy S, Coghill G, Grant A, Wormsley KG, Sanders DS, Kerr M, Hopwood D. Epidermal growth factor receptor expression in the oesophagus. \textit{Gut} 1992; 33: 439-443
21. Jankowski J, Hopwood D, Wormsley KG. Flow-cytometric analysis of growth-regulatory peptides and their receptors in Barrett’s oesophagus and oesophageal adenocarcinoma. \textit{Scand J Gastroenterol} 1992; 27: 147-154
22. Yacoub L, Goldman H, Odze RD. Transforming growth factor-alpha, epidermal growth factor receptor, and MiB-1 expression in Barrett’s-associated neoplasia: correlation with prognosis. \textit{Mod Pathol} 1997; 10: 105-112
23. Lanuti M, Liu G, Goodwin JM, Zhai R, Fuchs BC, Asomaning K, Su L, Nishioka NS, Tanabe KK, Christiani DC. A functional epidermal growth factor (EGF) polymorphism, EGF serum levels, and esophageal adenocarcinoma risk and outcome. \textit{Clin Cancer Res} 2008; 14: 5216-5222
24. Konturek PC, Nikiforuk A, Kania J, Raithel M, Hahn EG, Mühldorfer S. Activation of NFkappaB represents the central

Wiseman EF \textit{et al.} Risk factors in Barrett’s neoplasia

WJG | www.wjgnet.com

3679 August 28, 2011 | Volume 17 | Issue 32
event in the neoplastic progression associated with Barrett’s esophagus: a possible link to the inflammation and over-expression of COX-2, PPARgamma and growth factors. Dig Dis Sci 2007; 52: 1075-1083
25 Herrera LJ, El-Hefnawy T, Queiroz de Oliveira PE, Raja S, Finkelstein S, Gooding W, Luketich JD, Godfrey TE, Hughes SJ. The HGF receptor c-Met is overexpressed in esophageal adenocarcinoma. Neoplasia 2005; 7: 75-84
26 Hardwick RH, Shepherd NA, Moorghen M, Newcomb PV, Alderson D. c-erbB-2 overexpression in the dysplasia/carcinoma sequence of Barrett’s oesophagus. J Clin Pathol 1995; 48: 129-132
27 Geddes H, Zerialou M, Wolter M, Heise JW, Gabbett HE, Sarbia M. Gene amplification and protein overexpression of c-erb-b2 in Barrett carcinoma and its precursor lesions. Am J Clin Pathol 2002; 118: 60-66
28 Soslow RA, Ying L, Altorki NK. Expression of acidic fibroblast growth factor in Barrett’s esophagus and associated esophageal adenocarcinoma. J Thorac Cardiovasc Surg 1997; 114: 838-843
29 Soslow RA, Nabeya Y, Ying L, Blundell M, Altorki NK. Acidic fibroblast growth factor is progressively increased in the development of esophageal glandular dysplasia and adenocarcinoma. Histopathology 1999; 35: 31-37
30 Kumble S, Omary MB, Cartwright CA, Triadafilopoulos G. Sreca activation in malignant and premalignant epithelia of Barrett’s esophagus. Gastroenterology 1997; 112: 348-356
31 Iravani S, Zhang HQ, Yuan ZQ, Cheng QJ, Karl RC, Jove R, Coppola D. Modification of insulin-like growth factor 1 receptor, c-Src, and Bcl-XL protein expression during the progression of Barrett’s neoplasia. Hum Pathol 2003; 34: 975-982
32 González MV, Artimelin ML, Rodrigo L, López-Larrea C, Menéndez AJ, Alvarez V, Pérez R, Fresno MF, Pérez MJ, Sampedro A, Coto E. Mutation analysis of the p53, APC, and p16 genes in the Barrett’s oesophagus, dysplasia, and adenocarcinoma. J Clin Pathol 1997; 50: 212-217
33 Barrett MT, Galipeau PC, Sanchez CA, Emond MJ, Reid BJ. Determination of the frequency of loss of heterozygosity in esophageal adenocarcinoma by cell sorting, whole genome amplification and microsatellite polymorphisms. Oncogene 1996; 12: 1873-1878
34 Kawakami K, Brabender J, Lord RV, Groshen S, Greenwald BD, Krasna MJ, Yin J, Feisher AS, Abraham JM, Beer DG, Sidransky D, Huss HT, Demeester TR, Eads C, Laird PW, Ilson DH, Kelsen DP, Harpole D, Moore MB, Danenberg KD, Danenberg VC, Meltzer SJ. Hypermethylation of APC DNA in plasma and prognosis of patients with esophageal adenocarcinoma. J Natl Cancer Inst 2000; 92: 1805-1811
35 Younes M, Lebovitz RM, Lechago LV, Lechago J. p53 protein accumulation in Barrett’s metaplasia, dysplasia, and carcinoma: a follow-up study. Gastroenterology 1993; 105: 1637-1642
36 Blount PL, Galipeau PC, Sanchez CA, Neshat K, Levine DS, Yin J, Suzuki H, Abraham JM, Meltzer SJ, Reid BJ. 17p allelic losses in diploid cells of patients with Barrett’s esophagus who develop aneuaploidy. Cancer Res 1994; 54: 2292-2295
37 Symmans FJ, Linehan JM, Bristo MJ, Filipe MI. p53 expression in Barrett’s oesophagus, dysplasia, and adenocarcinoma using antibody DO-7. J Pathol 1994; 173: 221-226
38 Rice TW, Goldblum JR, Falk GW, Tubbs RR, Kirby TJ, Casey G. p53 immunoreactivity in Barrett’s metaplasia, dysplasia, and carcinoma. J Thorac Cardiovasc Surg 1994; 108: 1132-1137
39 Rioux-Leclercq N, Turlin B, Sutherland F, Hereschab N, Launois B, Campion JP, Ramee MP. Analysis of Ki-67, p53 and Bcl-2 expression in the dysplasia-carcinoma sequence of Barrett’s esophagus. Oncol Rep 1999; 6: 877-882
40 Chung SM, Kao J, Hyjek E, Chen YT. p53 in esophageal adenocarcinoma: a critical reassessment of mutation frequency and identification of 72Arg as the dominant allele. Int J Oncol 2007; 31: 1351-1355
41 Hughes SJ, Nambu Y, Soldes OS, Hamstra D, Rehentulla A, Iannettoni MD, Orringer MB, Beer DG. Fas/APO-1 (CD95) is not translocated to the cell membrane in esophageal adenocarcinoma. Cancer Res 1997; 57: 1075-1083
42 Mahidhara RS, Queiroz De Oliveira PE, Kohout J, Beer DG, Lin J, Watkins SC, Robbins PD, Hughes SJ. Altered trafficking of Fas and subsequent resistance to Fas-mediated apoptosis occurs by a wild-type p53 independent mechanism in esophageal adenocarcinoma. J Surg Res 2005; 123: 302-311
43 van der Woude CJ, Jansen PL, Tiebosch AT, Beuving A, Homan M, Kleibeuker JH, Moshage H. Expression of apoptosis-related proteins in Barrett’s metaplasia-dysplasia-adenocarcinoma sequence: a switch to a more resistant phenotype. Hum Pathol 2002; 33: 686-692
44 Wilson KT, Fu S, Ramanujam KS, Meltzer SJ. Increased expression of inducible nitric oxide synthase and cyclooxygenase-2 in Barrett’s esophagus and associated adenocarcinomas. Cancer Res 1998; 58: 2929-2934
45 Lagorce C, Paraf F, Vidaud D, Couvelard A, Wendum D, Martin A, Flejou JF. Cyclooxygenase-2 is expressed frequently and early in Barrett’s oesophagus and associated adenocarcinoma. Histopathology 2003; 42: 457-465
46 Cheong E, Ivory K, Doleman J, Parker ML, Rhodes M, Johnson IT. Synthetic and naturally occurring COX-2 inhibitors suppress proliferation in a human esophageal adenocarcinoma cell line (OE33) by inducing apoptosis and cell cycle arrest. Carcinogenesis 2004; 25: 1945-1952
47 Majka J, Rembisz K, Migaczewski M, Budzynski A, Ptak-Belowska A, Pabianczyk R, Urbanczyk K, Zub-Pokrowiecka A, Matlok M, Brzozowski T. Cyclooxygenase-2 (COX-2) is the key event in pathophysiology of Barrett’s esophagus. Lesson from experimental animal model and human subjects. J Physiol Pharmacol 2010; 61: 409-418
48 Morales CP, Lee EL, Shay JW. In situ hybridization for the detection of telomerase RNA in the progression from Barrett’s esophagus to esophageal adenocarcinoma. Cancer 1998; 83: 652-659
49 Lord RV, Salonga D, Danenberg KD, Peters JH, DeMeester TR, Park JM, Johansson I, Skinner KA, Chandrasoma P, DeMeester SR, Brenner CG, Tsai PL, Danenberg PV. Telomerase reverse transcriptase expression is increased early in the Barrett’s metaplasia, dysplasia, adenocarcinoma sequence. J Gastrointest Surg 2000; 4: 135-142
50 Barclay J, Morris A, Nwokolo CU. Telomerase, hTERT and splice variants in Barrett’s oesophagus and oesophageal adenocarcinoma. Endoglin (CD105) and vascular endothelial growth factor expression in Barrett’s oesophagus. Correlation with VEGF expression. J Pathol 2000; 191: 221-227
51 Shamas MA, Koley H, Batch RB, Bertheau RC, Popovop A, Munshi NC, Goyal RK. Telomerase inhibition by siRNA causes senescence and apoptosis in Barrett’s adenocarcinoma cells: mechanism and therapeutic potential. Mol Cancer 2005; 4: 24
52 Couvelard A, Paraf F, Gratio V, Scoazec JY, Hénin D, Deott C, Fléjou JF. Angiogenesis in the neoplastic sequence of Barrett’s oesophagus. Correlation with VEGF expression. J Pathol 2000; 192: 14-18
53 Auvinen MI, Silvo EI, Ruohotula T, Salminen JT, Koivistoinen A, Siivola P, Rönholm R, Rämö JÖ, Bergman M, Salo JA. Incipient angiogenesis in Barrett’s epithelium and lymphangiohistiogenin in Barrett’s adenocarcinoma. J Clin Oncol 2002; 20: 2971-2979
54 Saad RS, El-Gohary Y, Memari E, Liu YL, Silverman JF. Endoglin (CD105) and vascular endothelial growth factor as prognostic markers in esophageal adenocarcinoma. Hum Pathol 2005; 36: 955-961
55 Griffiths EA, Pritchard SA, McGrath SM, Valentine HR, Price PM, Welch IM, West CM. Increasing expression of hypoxia-inducible proteins in the Barrett’s metaplasia-dysplasia-adenocarcinoma sequence. Br J Cancer 2007; 96: 1377-1383
56 Krishnadath KK, Tilanus HW, van Blankenstein M, Hop WC, Kremers ED, Dinjens WN, Bosman FT. Reduced expres-
ension of the cadherin-catenin complex in oesophageal adenocarcinoma correlates with poor prognosis. J Pathol 1997; 182: 331-338

57 Nashlington K, Chiappori A, Hamilton K, Shyr Y, Blanke C, Johnson D, Sawyer J, Beauchamp D. Expression of beta-catenin, alpha-catenin, and E-cadherin in Barrett's esophagus and esophageal adenocarcinomas. Mod Pathol 1998; 11: 805-813

58 Bailey T, Biddlestone L, Shepherd N, Barr H, Warner P, Jankowski J. Altered cadherin and catenin complexes in the Barrett's esophagus-dysplasia-adenocarcinoma sequence: correlation with disease progression and dedifferentiation. Am J Pathol 1998; 152: 135-144

59 Jethwa P, Naqvi M, Hardy RG, Hotchin NA, Roberts S, Spychal R, Tselepis C. Overexpression of Slgn is associated with malignant progression of esophageal adenocarcinoma. World J Gastroenterol 2008; 14: 1044-1052

60 Hughes SJ, Glover TW, Zhu XX, Kuick R, Thoraval D, Oringer MB, Beer DG, Hanash S. A novel ampiclon at 8p22-23 results in overexpression of cathepsin D in esophageal adenocarcinoma. Proc Natl Acad Sci USA 1998; 95: 12410-12415

61 Cheng P, Gong J, Wang T, Chen J, Liu GS, Zhang R. Gene expression in rats with Barrett’s esophagus and esophageal adenocarcinoma induced by gastroduodenoesophageal reflux. World J Gastroenterol 2005; 11: 5117-5122

62 Breton J, Gage MC, Hay AW, Keen JN, Wild CP, Donnellan C, Findlay JB, Hardie LJ. Proteomic screening of a cell line model of esophageal carcinogenesis identifies cathepsin D and aldo-keto reductase IC2 and 1B10 dysregulation in Barrett’s esophagus and esophageal adenocarcinoma. J Proteome Res 2008; 7: 1953-1962

63 Lagorce-Pages C, Paraf F, Duboix S, Belghiti J, Flejou JF. Expression of CD44 in premalignant and malignant Barrett’s oesophagus. Histopathology 1998; 32: 7-14

64 Darlavoix T, Seendtag W, Yan P, Bachmann A, Bosman FT. Altered expression of CD44 and DKK1 in the progression of Barrett’s esophagus to esophageal adenocarcinoma. Virchows Arch 2009; 454: 629-637

65 Leedham SJ, Preston SL, McDonald SA, Elia G, Bhandari P, Poller D, Harrison R, Novelli MR, Jankowski JA, Wright NA. Individual crypt genetic heterogeneity and the origin of metaplastic glandular epithelium in human Barrett’s oesophagus. Gut 2008; 57: 1041-1048

66 Maley CC, Galipeau PC, Li X, Sanchez CA, Paulson TG, Reid BJ. Selectively advantageous mutations and hitchhikers in neoplastic p53 lesions are selected in Barrett’s esophagus. Cancer Res 2004; 64: 3414-3427

67 Paulson TG, Reid BJ. Focus on Barrett’s esophagus and esophageal adenocarcinoma. Cancer Cell 2004; 6: 11-16

68 Ramel S. Barrett’s esophagus: model of neoplastic progression. World J Surg 2003; 27: 1009-1013

69 Falk GW, Goldblum JR. Extent of low-grade dysplasia in Barrett’s esophagus: is it useful for risk stratification? Am J Gastroenterol 2007; 102: 494-496

70 El-Serag HB, Mason AC, Petersen N, Key CR. Epidemiological differences between adenocarcinoma of the oesophagus and adenocarcinoma of the gastric cardia in the USA. Gut 2002; 50: 368-372

71 Corley DA, Kubo A, Levin TR, Block G, Habel L, Rumore G, Quesenberry C, Buffler P. Race, ethnicity, sex and temporal differences in Barrett’s oesophagus diagnosis: a large community-based study. 1994-2006. Gut 2009; 58: 182-188

72 Wong A, FitzGerald RC. Epidemiologic risk factors for Barrett’s esophagus and associated adenocarcinoma. Clin Gastroenterol Hepatol 2005; 3: 1-10

73 von Rahden BH, Stein HJ, Siewert JR. Barrett’s esophagus and Barrett’s carcinoma. Curr Oncol Rep 2003; 5: 203-209

74 Rogers EL, Goldkind SF, Iseri OA, Bustin M, Goldkind L, Hamilton SR, Smith RL. Adenocarcinoma of the lower esophagus. A disease primarily of white men with Barrett’s esophagus. J Clin Gastroenterol 1986; 8: 613-618

75 Pondugula K, Wani S, Sharma P, Barrett’s esophagus and esophageal adenocarcinoma in adults: long-term GERD or something else? Curr Gastroenterol Rep 2007; 9: 468-474

76 Kubo A, Corley DA. Marked multi-ethnic variation of esophageal and gastric cardia carcinomas within the United States. Am J Gastroenterol 2004; 99: 582-588

77 El-Serag HB, Petersen NJ, Carter J, Graham DY, Richardson P, Gent M, Rabeneck L. Gastroesophageal reflux among different racial groups in the United States. Gastroenterology 2004; 126: 1692-1699

78 Vaezi MF, Richter JE. Synergism of acid and duodenogastroesophageal reflux in complicated Barrett’s esophagus. Surgery 1995; 117: 699-704

79 Nehra D, Howell P, Williams CP, Pye JK, Beynon J. Toxic bile acids in gastro-oesophageal reflux disease: influence of gastric acidity. Gut 1999; 44: 598-602

80 Menges M, Muller M, Zeitz M. Increased acid and bile reflux in Barrett’s esophagus compared to reflux esophagitis, and effect of proton pump inhibitor therapy. Am J Gastroenterol 2001; 96: 331-337

81 Theisen J, Nehra D, Citron D, Johansson J, Hagen JA, Crookes PF, DeMeester SR, Bremer CG, DeMeester TR, Peters JH. Suppression of gastric acid secretion in patients with gastroesophageal reflux disease results in bacterial overgrowth and deconjugation of bile acids. J Gastrointest Surg 2004; 8: 30-34

82 Wild CP, Hardie LJ. Reflux, Barrett’s oesophagus and adenocarcinoma: burning questions. Nat Rev Cancer 2003; 3: 676-684

83 Qiao D, Gaitonde SV, Qi W, Martinez JD. Deoxycholic acid suppresses p53 by stimulating proteasome-mediated p53 protein degradation. Carcinogenesis 2001; 22: 957-964

84 Anderson LA, Watson RG, Murphy SJ, Johnston BT, Comber H, Mc Guigan J, Reynolds JV, Murray LJ. Risk factors for Barrett’s oesophagus and oesophageal adenocarcinoma: results from the FINBAR study. World J Gastroenterol 2007; 13: 1585-1594

85 Chak A, Faulks A, Eng C, Grady W, Kinnard M, Ochs-Balcom H, Falk G. Gastroesophageal reflux symptoms in patients with adenocarcinoma of the esophagus or cardia. Cancer 2006; 107: 2160-2166

86 Ouatu-Lascar R, Fitzgerald RC, Triadafilopoulos G. Differentiation and proliferation in Barrett’s esophagus and the effects of acid suppression. Gastroenterology 1999; 117: 327-337

87 Attwood SE, Harrison LA, Preston SL, Jankowski JA. Esophageal adenocarcinoma in & 39; & 39; mice and men & quot; : back to basics! Am J Gastroenterol 2008; 103: 2367-2372

88 Butter NS, Wang KK. Mechanisms of disease: Carcinogene sis in Barrett’s esophagus. Nat Clin Pract Gastroenterol Hepatol 2004; 1: 106-112

89 Islami F, Kamangar F, Boftetta P. Use of proton pump inhibitors and risk of progression of Barrett’s esophagus to neoplastic lesions. Am J Gastroenterol 2009; 104: 2646-2648

90 Obszynska JA, Aherford PA, Nanji M, Clancy D, Santander S, Graham TA, Otto WR, West K, Harrison RF, Jankowski JA. Long-term proton pump induced hypergastrinemia does induce lineage-specific restitution but not clonal expansion in benign Barrett’s oesophagus in vivo. Gut 2010; 59: 156-163

91 Ye W, Chow WH, Lagergren J, Yin L, Nyren O. Risk of adenocarcinomas of the esophagus and gastric cardia in patients with gastroesophageal reflux diseases and after antireflux surgery. Gastroenterology 2001; 121: 1286-1293

92 Tran T, Spechler SJ, Richardson P, El-Serag HB. Fundoplication and the risk of esophageal cancer in gastroesophageal reflux disease: a Veterans Affairs cohort study. Am J Gastroenterol 2010; 105: 1002-1008

93 Corey KE, Schmitz SM, Shaeen N. Does a surgical antireflux procedure decrease the incidence of esophageal adeno-
Wiseman EF et al. Risk factors in Barrett’s neoplasia.

1. Langeren J, Bergstrom R, Adami HO, Nyren O. Association between medications that relax the lower esophageal sphincter and risk for esophageal adenocarcinoma. Ann Intern Med 2000; 133: 165-175

2. Maaross H, Vorobjova T, Sipponen P, Tamur R, Iibo R, Wadstrom T, Kevallik R, Villako K. An 18-year follow-up study of chronic gastritis and Helicobacter pylori association of CagA positivity with development of atrophy and activity of gastritis. Scand J Gastroenterol 1999; 34: 864-869

3. Rokkas T, Pitsiolos D, Sechopoulos P, Robotis I, Margantinis G. Relationship between Helicobacter pylori infection and esophageal neoplasia: a meta-analysis. Clin Gastroenterol Hepatol 2007; 5: 1413-1417, 1417.e1-1417.e2

4. Weston AP, Badr AS, Topalovski M, Chervan R, Dixon A, Hassanein RS. Prospective evaluation of the prevalence of gastric Helicobacter pylori infection in patients with GERD, Barrett’s esophagus, Barrett’s dysplasia, and Barrett’s adenocarcinoma. Am J Gastroenterol 2000; 95: 367-394

5. Wu AH, Crabtree JE, Bernstein L, Hawtin P, Cockburn M, Tseng CC, Forman D. Role of Helicobacter pylori CagA+ strains and risk of adenocarcinoma of the stomach and esophagus. Int J Cancer 2003; 103: 815-821

6. Clemens NJ, McCol KE, Fitzgerald RC. Nitric oxide and acid induce double-strand DNA breaks in Barrett’s esophagus. Carcinogenesis 2007; 28: 1198-1209

7. Forman D, Al-Dabbagh S, Doll R. Nitrates, nitrates and gastric cancer in Great Britain. Nature 1985; 313: 620-625

8. Falk GW. Risk factors for esophageal cancer development. Surg Oncol Clin N Am 2009; 18: 469-485

9. Thomas T, Abrams KR, De Caestecker JS, Robinson RJ. Meta-analysis: Cancer risk in Barrett’s esophagus. Aliment Pharmacol Ther 2007; 26: 1465-1477

10. Hampa H, Abraham NS, El-Serag HB. Meta-analysis: obesity and the risk for gastroesophageal reflux disease and its complications. Ann Intern Med 2005; 143: 199-211

11. Cook MB, Greenwood DC, Hardie LJ, Wild CP, Forman D. A systematic review and meta-analysis of the risk of increasing adiposity on Barrett’s esophagus. Am J Gastroenterol 2008; 103: 292-300

12. Kubo A, Corley DA. Body mass index and adenocarcinomas of the esophagus or gastric cardia: a systematic review and meta-analysis. Cancer Epidemiol Biomarkers Prev 2016; 15: 872-878

13. Murray L, Romero Y. Role of obesity in Barrett’s esophagus and cancer. Surg Oncol Clin N Am 2009; 18: 439-452

14. de Jonge PJ, Steyerberg EW, Kuipers EJ, Honkoop P, Wolt J, Low-fat, high fruit and vegetable diets and weight loss do not affect biomarkers of cellular proliferation in Barrett esophagus. Cancer Epidemiol Biomarkers Prev 2005; 14: 2377-2383

15. Terry P, Langeren J, Hansen H, Wolk A, Nyren O. Fruit and vegetable consumption in the prevention of oesophageal and gastric cancers. Eur J Cancer Prev 2001; 10: 365-369

16. Dong LM, Kristal AR, Peters U, Schenck J, Sanzchez CA, Rabinovitch PS, Odze RD, Standley J, Vaughan TL, Reid BJ. Low-fat, high fruit and vegetable diets and weight loss do not affect biomarkers of cellular proliferation in Barrett esophagus. Cancer Epidemiol Biomarkers Prev 2005; 14: 2377-2383

17. Chen H, Tucker KL, Graubard BI, Heineman EF, Markin RS, Potischman NA, Russell RM, Weisenburger DD. Nutrient intakes and adenocarcinoma of the esophagus and distal stomach. Nutr Cancer 2002; 42: 33-40

18. Rudolph RE, Vaughan TL, Kristal AR, Blount PL, Levine DS, Galipeau PC, Prevo LJ, Sanchez CA, Rabinovitch PS, Reid BJ. Serum selenium levels in relation to markers of neoplastic progression in esophageal adenocarcinoma: a prospective study. Nutr Cancer 2008; 60: 39-48

19. Kabat GC, Ng SK, Wynder EL. Tobacco, alcohol intake, and diet in relation to adenocarcinoma of the esophagus and gastric cardia. Cancer Causes Control 1993; 4: 123-132

20. Zhang ZF, Kurtz RC, Sun M, Karpeh M, Yu GP, Gargon N, Fein JS, Georgopoulos SK, Harlap S. Adenocarcinomas of the esophagus and gastric cardia with medical conditions, tobacco, alcohol, and socioeconomic factors. Cancer Epidemiol Biomarkers Prev 1996; 5: 761-768

21. Brown LM, Silverman DT, Pottam LM, Schoenborn JB, Greenberg RS, Swanson GM, Liff JM, Schwartz AG, Hayes RB, Blot WJ. Adenocarcinoma of the esophagus and esophagogastric junction in white men in the United States: alcohol, tobacco, and socioeconomic factors. Cancer Causes Control 1994; 5: 333-340
Vaughan TL, Davis S, Kristal A, Thomas DB. Obesity, alcohol, and tobacco as risk factors for cancers of the esophagus and gastric cardia: adenocarcinoma versus squamous cell carcinoma. *Cancer Epidemiol Biomarkers Prev* 1995; 4: 85-92

Menke-Playmers MB, Hop WC, Does J, van Blankenstein M, Tilanus HW. Risk factors for the development of an adenocarcinoma in columnar-lined (Barrett) esophagus. The Rotterdam Esophageal Tumor Study Group. *Cancer* 1993; 72: 1155-1158

Achkar JP, Post AB, Achkar E, Carey WD. Risk of extraluminal malignancy in patients with adenocarcinoma arising in Barrett’s esophagus. *Am J Gastroenterol* 1995; 90: 39-43

Gray MR, Donnelly RJ, Kingsnorth AN. The role of smoking and alcohol in metaplasia and cancer risk in Barrett’s columnar lined esophagus. *Gut* 1993; 34: 727-731

Levi F, Ollyo JB, La Vecchia C, Boyle P, Monnier P, Savary M. The consumption of tobacco, alcohol and the risk of adenocarcinoma in Barrett’s oesophagus. *Int J Cancer* 1990; 45: 852-854

Lagergren J, Bergström R, Lindgren A, Nyren O. The role of tobacco, snuff and alcohol use in the aetiology of cancer of the oesophagus and gastric cardia. *Int J Cancer* 2000; 85: 340-346

Avidan B, Sonnenberg A, Schnell TG, Chejfec G, Metz A, Sontag SJ. Hiatal hernia size, Barrett’s length, and severity of acid reflux are all risk factors for esophageal adenocarcinoma. *Am J Gastroenterol* 2002; 97: 1930-1936

Smith KJ, O’Brien SM, Smithers BM, Gotley DC, Webb PM, Green AC, Whiteman DC. Interactions among smoking, obesity, and symptoms of acid reflux in Barrett’s esophagus. *Cancer Epidemiol Biomarkers Prev* 2005; 14: 2481-2486

Corley DA, Kerlikowske K, Verma R, Buxton P. Protective association of aspirin/NSAIDs and esophageal cancer: a systematic review and meta-analysis. *Gastroenterology* 2003; 124: 47-56

Heath EJ, Canto MI, Piantadosi S, Montgomery E, Weinstein WM, Herman J, Dannenberg AJ, Yang VW, Shar AO, Hawk E, Forastiere AA. Secondary chemoprevention of Barrett’s esophagus with celecoxib: results of a randomized trial. *J Natl Cancer Inst* 2007; 99: 545-557

Gatenby PA, Ramus JR, Caygill CP, Winslet MC, Watson A. Aspirin is not chemoprotective for Barrett’s adenocarcinoma of the oesophagus in multicentre cohort. *Eur J Cancer Prev* 2009; 18: 381-384

S-Editor Sun H L-Editor Cant MR E-Editor Zheng XM