Mini review

Quality control of cytoplasmic proteins inside the nucleus

Lion Borgert, Swadha Mishra, Fabian den Brave *

Institute of Biochemistry and Molecular Biology, Faculty of Medicine, University of Bonn, 53115 Bonn, Germany

A R T I C L E I N F O

Article history:
Received 11 June 2022
Received in revised form 13 August 2022
Accepted 15 August 2022
Available online 23 August 2022

Keywords:
Protein quality control
Ubiquitin-proteasome system
Chaperones
Nucleus
Mitochondria
Protein aggregation

A B S T R A C T

A complex network of molecular chaperones and proteolytic machinery safeguards the proteins which comprise the proteome, from the time they are synthesized on ribosomes to their destruction via proteolysis. Impaired protein quality control results in the accumulation of aberrant proteins, which may undergo unwanted spurious interactions with other proteins, thereby interfering with a broad range of cellular functions. To protect the cellular environment, such proteins are degraded or sequestered into inclusions in different subcellular compartments. Recent findings demonstrate that aberrant or mistargeted proteins from different cytoplasmic compartments are removed from their environment by transporting them into the nucleus. These proteins are degraded by the nuclear ubiquitin–proteasome system or sequestered into intra-nuclear inclusions. Here, we discuss the emerging role of the nucleus as a cellular quality compartment based on recent findings in the yeast Saccharomyces cerevisiae. We describe the current knowledge on cytoplasmic substrates of nuclear protein quality control, the mechanism of nuclear import of such proteins, as well as possible advantages and risks of nuclear sequestration of aberrant proteins.

C2022 The Authors. Published by Elsevier B.V. on behalf of Research Network of Computational and Structural Biotechnology. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Contents

1. Introduction ... 4618
2. Mechanisms of protein quality control .. 4619
3. Protein turnover in the nucleus ... 4619
4. Formation and clearance of nuclear protein inclusions .. 4621
5. Sequestration of cytoplasmic proteins into the nucleus .. 4621
6. Transport of misfolded proteins into the nucleus ... 4621
7. Conclusion and perspective .. 4622
CRediT authorship contribution statement ... 4623
Declaration of Competing Interest .. 4623
Acknowledgements .. 4623
References ... 4623

1. Introduction

The nuclear compartment is part of a complex and intricately organized internal membrane system inside the eukaryotic cell harboring the vast majority of genetic material required for life. Essential processes like DNA-replication, DNA-repair, gene regulation, transcription, ribosome biogenesis, and mRNA splicing occur in this compartment. The nucleoplasm is bound by two membranes, the nuclear envelope, which is continuous with the endoplasmic reticulum (ER) [1]. The transport of RNAs and proteins between the nucleus and the cytoplasm occurs through nuclear pore complexes spanning both lipid bilayers of the nuclear envelope. An emerging function of the nucleus is its role in the turnover and sequestration of proteins imported from different cytoplasmic compartments. The import of mistargeted or aberrant proteins into...
the nucleus might pose a risk to the integrity of the nuclear proteome and nuclear function. Thus, an intact nuclear protein homeostasis (or proteostasis) is indispensable to maintain cellular function when cytoplasmic proteins are imported for quality control.

A complex network of proteolytic systems and molecular chaperones, collectively termed the proteostasis network ensures the fidelity of the nuclear proteome [2,3]. The correct folding of proteins can be perturbed by genetic mutations, defects in protein synthesis, thermal stress, or conditions that cause abnormal protein modification such as oxidative stress. Especially metastable proteins with disordered regions are susceptible to undergo unwanted interactions and tend to form toxic aggregates, which are associated with neurodegenerative diseases. In mammals, for instance, such metastable proteins account for approximately 30% of the proteome [4]. Failure in protein quality control is usually visible by the accumulation of proteins in aggregates, a hallmark of many neurodegenerative diseases, where the formation of protein inclusions is often observed along with an age-dependent decline of the capacity of the cellular proteostasis network [5–7]. Many of these diseases such as Huntington’s disease, dentatorubral-pallidoluysian atrophy, spinal-bulbar muscular atrophy [5–7], and many others, collectively termed the proteostasis network ensures the maintenance of protein stability is determined by the nuclear proteostasis (or proteostasis) is indispensable to maintain cellular function when cytoplasmic proteins are imported for quality control [5–7].

Failure in protein quality control is usually visible by the accumulation of proteins in aggregates, a hallmark of many neurodegenerative diseases, where the formation of protein inclusions is often observed along with an age-dependent decline of the capacity of the cellular proteostasis network [5–7]. Many of these diseases such as Huntington’s disease, dentatorubral-pallidoluysian atrophy, spinal-bulbar muscular atrophy, and several forms of spinocerebellar ataxia, show protein aggregation inside the nucleus [8,9]. These observations highlight the involvement of the nucleus in the quality control of proteins aggregating inside the nucleus [8,9].

Protein degradation is often supported by molecular chaperones, which maintain substrates in a soluble state or mediate disaggregation, thereby achieving substrate specificity [57–59]. A hexameric complex with a central pore, through which substrates are pulled using the force generated by the activity of two ATPase domains [42,43]. In protein quality control, Cdc48 is critical in proteasomal degradation of proteins that require extraction out of or across membranes, as in ER associated-degradation (ERAD) and mitochondria-associated degradation (MAD), or from ribosomes as in ribosome-associated quality control (RQC) [40,44,45]. When protein degradation fails, sequestration of proteins into cellular inclusions or different organelles is a common strategy to limit the burden of damaged proteins on the proteostasis network [46,47]. This includes the formation of cytoplasmic and nuclear protein aggregates, as well as the transport of proteins into mitochondria or the nucleus [10,11,48–51].

2. Mechanisms of protein quality control

An elaborate proteostasis network ensures proper protein folding and targeting, or if this fails, efficient degradation of non-native proteins [16]. At the center of this network are molecular chaperones, which assist in protein folding and prevent aggregation, refold stress-denatured proteins and cooperate with both, the ubiquitin proteasome system (UPS) as well as the autophagy pathway, to degrade terminally misfolded proteins. The main proteolytic machinery degrading proteins in the cytosol and the nucleus is the 26S proteasome [17–19]. This large multi-subunit complex consists of a 19S cap required for substrate recognition and unfolding, and a 20S core particle harboring the proteolytic activity inside its ring-like structure. In most cases, proteasomal turnover of proteins is mediated by post-translational modification with ubiquitin, a process known as ubiquitylation. Predominantly, ubiquitin is attached to lysine residues, but also ubiquitylation of other amino acids has been observed [20–22].

Especially chains of several ubiquitin moieties, built on internal lysine residues at positions K11 and K48 of ubiquitin, destine proteins for degradation [23,24]. Substrate ubiquitylation is mediated by an enzymatic cascade, involving a ubiquitin-activating enzyme (E1), ubiquitin-conjugating enzymes (E2), and ubiquitin-ligases (E3) [25]. The ubiquitin-ligase Ubr1 is conserved between yeast and mammals, its nuclear localization has only been observed in yeast [15,60]. Originally, Ubr1 was identified as a ubiquitin-ligase of the N-end rule pathway, where protein stability is determined by the N-terminal amino acid
Ubr1 can directly interact with basic or bulky hydrophobic amino acids at the N-terminus of a protein and mediate its ubiquitylation and turnover. In protein quality control, substrate recognition by Ubr1 is largely independent of the identity of N-terminal amino acid [14, 62–65]. Instead, Ubr1 requires Hsp70 with its Hsp40 co-factors Ydj1 and Sis1 as well as the NEFs Fes1 and Sse1 for substrate ubiquitylation [13, 14, 62, 66–68]. Sis1 directly supports substrate recognition through physical interaction with Ubr1 [67]. Ydj1 interacts with substrates of Ubr1 and is required for their ubiquitylation, which might be due to the requirement of Ydj1 to maintain substrates in a soluble state [66, 67]. Ubr1 and San1 often show an overlap in substrate specificity [13, 14]. This might be explained by the fact that hydrophobic stretches as recognized by San1 can also be bound by chaperones co-operating with Ubr1 [30, 57]. Another determinant for specificity between those two ligases might be the size of a substrate as an increase in molecular mass rendered San1 substrates Ubr1-dependent [69]. It should be noted that here Ubr1 dependent degradation is rather dependent on the cytoplasmic fraction of Ubr1 and likewise it has been shown that some San1 substrates become Ubr1 dependent when targeted to the cytoplasm.

A special class of ubiquitin-ligase involved in quality control within the nucleoplasm is the heterodimeric protein Sxl5/Sxl8. This ligase contains several SUMO-interacting motifs, which allow binding to proteins that are modified with the ubiquitin-like protein SUMO (small ubiquitin-like modifier) [70]. While SUMOylation in most cases has regulatory, non-proteolytic functions, SUMO-mediated proteolysis by the ubiquitin proteasome system can serve to terminate nuclear processes regulated through SUMOylation [71]. In addition, Sxl5/Sxl8 mediates the turnover of mutant variants of some transcription factors, suggesting a role in protein quality control [72]. Ubiquitin-dependent turnover of nuclear proteins is also mediated by ubiquitin-ligases residing on the inner side of the nuclear envelope. Doa10 is localized to the nuclear envelope and the ER and can therefore target soluble proteins from the nucleoplasm and cytosol as well as membrane-bound proteins from the nuclear envelope and the ER membrane [73–75]. Doa10 targets proteins containing an amphipathic helix with a hydrophobic surface [76–78]. In some cases Doa10-dependent turnover requires Hsp70 together with Ydj1 or Sis1 [76, 79, 80]. Due to its ability to target soluble proteins, Doa10 also displays overlapping substrate specificity with the soluble ubiquitin ligases San1 and Ubr1 [81, 82]. In addition to Doa10, the nuclear envelope resident Asi-complex targets misfolded or mislocalized membrane proteins for proteasomal degradation [83, 84]. This complex consisting of Asi1, Asi2, and Asi3 is a branch of ERAD that localizes exclusively to the inner nuclear membrane.

The ligases San1, Ubr1, Sxl5/Sxl8 and Doa10 promote the formation of K48-linked ubiquitin chains [85–87]. In addition, Doa10 can also mediate the formation of K11-linked ubiquitin chains, due to its interaction with different ubiquitin-conjugating enzymes [87, 88]. Inside the nucleus K48-linked ubiquitin chains are sufficient to achieve efficient turnover, while it was shown that
degradation of some proteins in the cytosol requires the formation of mixed K48- and K11-linked chains [89].

Taken together, a diverse set of ubiquitin-ligases with distinct but also overlapping modes of substrate recognition provide a robust nuclear quality control network.

4. Formation and clearance of nuclear protein inclusions

Despite the presence of multiple ubiquitin-ligases and the high abundance of proteasomes, timely degradation of proteins might fail due to acute stress, overloading of the proteolytic capacity of the nuclear proteostasis network, or impairment of the nuclear ubiquitin proteasome system. Under such conditions, proteins are sequestered into intra nuclear inclusions [49,50,90]. The formation of this intranuclear quality control compartment, termed INQ, depends on the nuclear aggregase Btn2 [49]. INQ formation is triggered upon expression of misfolded model substrates or in response to proteotoxic or genotoxic stress [49,91]. Btn2-dependent INQ formation maintains proteostasis under conditions of limited chaperone capacity, demonstrating the protective role of protein sequestration into inclusions [92]. Nuclear, as well as cytoplasmic proteins, are found in INQ, depending on the conditions analyzed [10,91]. In particular proteasomal inhibition results in an increased abundance of cytoplasmic proteins in intra-nuclear inclusions [10].

Proteolytic turnover of intra-nuclear protein aggregates requires a preceding disaggregation step, to facilitate degradation by the proteasome. In the nucleus, disaggregation by Hsp104 in conjunction with Hsp40/Hsp70 mainly targets proteins for Hsp70 dependent refolding [92–94]. However, Hsp104 has also been shown to support Doa10-dependent degradation by the proteasome [95]. Efficient disaggregation of nuclear inclusions is supported by the physical interaction of Btn2 with the Hsp40 Sis1, which mediates disaggregation in conjunction with Hsp70 and Hsp104 [90,92]. In addition, the Hsp40 Apj1 localizes to INQ and mediates disaggregation together with Hsp70 and its NEF Sse1 (Hsp110) [10]. While Hsp104 allows for complete disaggregation and refolding, Apj1 appears to rather solubilize proteins for proteasomal turnover [10,92]. In addition, Cdc48 was shown to extract specific proteins from INQ [96]. In line with this, it has been shown that Cdc48 is required for targeting insoluble proteins for San1-dependent turnover [97]. Collectively, these data demonstrate that nuclear inclusions present a reversible storage compartment for proteins under stress conditions.

5. Sequestration of cytoplasmic proteins into the nucleus

Although, each cellular compartment contains a designated protein quality control machinery, extensive crosstalk between different compartments has been observed, where damaged proteins are rerouted within the cell [46]. The role of the nucleus in the quality control of cytoplasmic proteins has been initially observed in studies analyzing the behavior of different model substrates of misfolded cytosolic proteins, are found in INQ, depending on the conditions analyzed [10,91]. In particular proteasomal inhibition results in an increased abundance of cytoplasmic proteins in intra-nuclear inclusions [10].

Proteolytic turnover of intra-nuclear protein aggregates requires a preceding disaggregation step, to facilitate degradation by the proteasome. In the nucleus, disaggregation by Hsp104 in conjunction with Hsp40/Hsp70 mainly targets proteins for Hsp70 dependent refolding [92–94]. However, Hsp104 has also been shown to support Doa10-dependent degradation by the proteasome [95]. Efficient disaggregation of nuclear inclusions is supported by the physical interaction of Btn2 with the Hsp40 Sis1, which mediates disaggregation in conjunction with Hsp70 and Hsp104 [90,92]. In addition, the Hsp40 Apj1 localizes to INQ and mediates disaggregation together with Hsp70 and its NEF Sse1 (Hsp110) [10]. While Hsp104 allows for complete disaggregation and refolding, Apj1 appears to rather solubilize proteins for proteasomal turnover [10,92]. In addition, Cdc48 was shown to extract specific proteins from INQ [96]. In line with this, it has been shown that Cdc48 is required for targeting insoluble proteins for San1-dependent turnover [97]. Collectively, these data demonstrate that nuclear inclusions present a reversible storage compartment for proteins under stress conditions.

6. Transport of misfolded proteins into the nucleus

While an increasing body of evidence shows that cytoplasmic proteins are targeted to the nucleus especially under conditions of impaired protein homeostasis, little is known about the mechanistic details of this process. Critical factors for nuclear targeting of misfolded proteins are heat shock proteins (Hsp) such as Hsp70 chaperones with specific Hsp40 co-chaperones and nucleotide exchange factors [12,15,80,100] (Fig. 2). Here, the two Hsp40 co-chaperones Sis1 and Ydj1 in conjunction with Hsp70 and the Sse1 were shown to play an important role [12,15]. Depletion of Sis1 blocks nuclear import and thereby turnover of AssCPY* [12]. Sis1 shuttles between the cytosol and the nucleus, where it accumulates upon proteasome inhibition. The shuttling function of Sis1 is required for nuclear targeting and San1-dependent degradation of AssCPY*, as Sis1 variants artificially localized to just the nucleus or just the cytoplasm do not support the turnover of AssCPY*. While Sis1 is only required for a subset of substrates, Ydj1 seems to be generally involved in the transport of cytoplasmic proteins [12,15]. Mechanistically, Ydj1 appears to be required for nuclear targeting by keeping the substrates in a soluble state and preventing their aggregation. In line with this, it was shown that the nuclear import of proteins from cytoplasmic aggregates is blocked when Hsp104 is inhibited [49]. Classically, the nuclear import of most proteins is mediated by nuclear transport receptors of the karyopherin family [101]. For AssCPY* it has been shown that turnover is impaired in cells deficient in the karyopherin/importin-α Srp1 [12]. However, nuclear import inhibition might also impair the nuclear localization of quality control components, such as Sis1 which is imported into the nucleus in an Srp1 independent manner [90]. If classical import receptors are generally required for the nuclear import of misfolded proteins remains to be investigated. One possibility is that chaperones co-operate with
karyopherins in the transport of proteins into the nucleus. The Hsp70 Ssa2 has been shown to mediate the transport of tRNAs to the nucleus in conjunction with Sis1 and Ydj1[102]. In this study, it was shown that Ssa2 can mediate transport through the nuclear pore complex, which is facilitated by interaction with the nucleoporin Nup116. Transport of misfolded proteins through the nuclear pore complex was also abolished when the non-essential nuclear pore complex subunit Nup42 was deleted [49]. However, it is unclear if Nup42 or Nup116 are directly involved in the transport of misfolded proteins through the nuclear pore complex. Interestingly, proteasomes bind to the nucleoplasmic side of nuclear pore complexes, raising the question if these are directly involved in the degradation of proteins imported for turnover[103,104].

7. Conclusion and perspective

The transport of cytoplasmic proteins into the nucleus for degradation has been observed for a variety of substrates. Inside the nucleus, these proteins are ubiquitylated by multiple ubiquitin ligases, which thereby facilitate proteasomal turnover. However, it should be noted that the nuclear import of cytoplasmic proteins per se does not infer that this occurs solely for protein degradation. For instance, several enzymes of the mitochondrial tricarboxylic acid cycle can move into the nucleus, where they exert regulatory functions [105,106]. Likewise, impaired mitochondrial import of the protein ATP51 results in nuclear localization, where it drives the mitochondrial unfolded protein response [107]. Also, the ubiquitin ligases San1, Ubr1, and Doa10 with established roles in nuclear protein quality control have been shown to regulate the stability of a few transcriptional regulators, assigning a regulatory role to these ligases [108–110]. Thus, a clear distinction between nuclear function versus nuclear quality control of normally cytoplasmic proteins remains to be investigated in many cases. However, the large number of cytoplasmic proteins targeted inside the nucleus upon proteotoxic stress, such as proteasome or mitochondrial import inhibition, is consistent with a role of the nucleus in the quality control of such proteins. Moreover, the observation that well-characterized terminally misfolded model substrates like ΔssCPY* are transported into the nucleus for degradation further supports this hypothesis.

The potential role of the nucleus as a compartment for protein degradation could explain the enrichment of proteasomes inside the nucleus. To date, it is unclear to what extent cytoplasmic proteins are targeted to the nucleus for protein quality control which might preferentially occur under severe stress conditions when cytoplasmic protein quality control is overloaded. The physiological advantage of nuclear sequestration of damaged proteins is not fully understood as it can be expected to pose a substantial risk to the functionality of the nuclear proteome. Accumulation of misfolded cytoplasmic proteins inside the nucleus can potentially overload the nuclear proteostasis network, which in turn would cause the accumulation of aberrant nuclear proteins. Indeed, proteotoxic stress and impaired protein quality control, for instance, due to depletion of nuclear ubiquitin, result in impaired DNA repair and genomic instability in yeast and mammals [111–113]. It is conceivable that the trafficking of damaged proteins has a role in buffering proteotoxic stress between different compartments. The elimination of mistargeted or damaged proteins from the cytosol may serve to protect newly synthesized proteins from unwanted interactions. In addition, it has been hypothesized that spatial separation of protein synthesis and turnover prevents premature degradation of newly synthesized proteins [16]. In line with this, some cytoplasmic proteins are only efficiently degraded when targeted into the nucleus [11,12]. How the nuclear proteome...
is protected from potential damage caused by imported aberrant cytoplasmic proteins remains to be investigated.

The transport of damaged proteins for quality control inside the nucleus is not well understood. For some substrates, the involvement of Hsp40/Hsp70 chaperones has been demonstrated [15]. However, it remains unclear what determines the nuclear import of such proteins and how this process is regulated to prevent the nuclear targeting of proteins that might still reach their native folding or subcellular compartment. In particular, the possible involvement of classical nuclear import pathways is still unknown. Moreover, it has not been addressed if misfolded cytoplasmic proteins might get re-exported into the cytosol upon refolding.

Nuclear targeting of cytoplasmic proteins has mainly been described in yeast, however, some findings indicate that this process may be conserved in mammalian cells. As in yeast, the misfolded cytosolic protein ΔAspCPY* as well as a mutant variant of firefly luciferase accumulate in nuclear inclusions upon protea-some inhibition [12]. Moreover, aberrant proteins resulting from the translation of non-stop mRNAs are targeted to the nucleolus and PML bodies, which serve as protein quality control compartments in the mammalian nucleus [111,114,115]. Also, several forms of the mainly cytosolic localized protein Ataxin are found in nuclear aggregates upon pathogenic extension of the proteins polyglutamine tracts [116]. The reason for this nuclear localization remains to be identified. One possibility is that such proteins are normally targeted for degradation by nuclear proteasomes, which is prevented by aggregation caused by the polyglutamine extension. Conversely, polyglutamine proteins can sequester chaperones, thereby inhibiting the nuclear import of misfolded proteins [12]. Thus, nuclear sequestration of cytoplasmic proteins might not only contribute to the severity of pathologic nuclear protein aggregation but also represent a protein quality control pathway impaired in such disease conditions. Thus, understanding the contribution of the nucleus in the quality control of cytoplasmic proteins is central for a comprehensive view on the cellular proteostasis network.

CRediT authorship contribution statement

Lion Borgert: Writing – original draft, Writing – review & editing, Swadha Mishra: Writing – review & editing, Visualization, Fabian den Brave: Conceptualization, Writing – original draft, Writing – review & editing, Funding acquisition.

Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgements

We thank Lucas Cairo and Mari Aaltonen for critical reading of the manuscript. Work included in this article has been performed in partial fulfillment of the requirements for the doctoral thesis of L.B. and S.M. The work was funded by a grant of the BONFOR program of the University Clinic Bonn to F.d.B.

References

[1] Taddei A, Gasser SM. Structure and function in the budding yeast nucleus. Genetics 2012;192:107–29.
[2] Gardner RG, Nelson ZW, Gottschling DE. Degradation-mediated protein quality control in the nucleus. Cell 2005;120:803–15.
[3] Gallagher PS, Oser ML, Abraham AC, Kaganovich D, Gardner RG. Cellular maintenance of nuclear protein homeostasis. Cell Mol Life Sci 2014;71:1865–79.
[4] Balchin A, Hayer-Hartl M, Hartl FU. In vivo aspects of protein folding and quality control. Science 2016;353, aa4354.
[5] Hartl FU. Cellular Homeostasis and Aging. Annu Rev Biochem 2016;85:1–4.
[6] Hopp MS, Kasturi P, Hartl FU. The proteostasis network and its decline in aging. Nat Rev Mol Cell Biol 2019.
[7] Douglas PM, Dillin A. Protein homeostasis and aging in neurodegeneration. J Cell Biol 2010;190:759–80.
[8] Chung CG, Lee H, Lee SB. Mechanisms of protein toxicity in neurodegenerative diseases. Cell Mol Life Sci 2018;75:3159–80.
[9] Moro K, Weng SM, Arzberger T, May S, Rentzsch K, Kremmer E, et al. The C9orf72 GGGGCC repeat is translated into a repeat sequence in FTD/ALS. Science 2013;339:1335–38.
[10] den Brave F, Cairo LV, Jagadeesan C, Ruger-Herreros C, Mogk A, Bukau B, et al. Chaperone-mediated protein disaggregation triggers proteolytic clearance of nuclear and cytosolic protein inclusions. Cell Rep 2020.
[11] Shukla VP, Barbeau WA, Xiao T, Knutson CS, Schuler MH, Alpley JS, et al. A nuclear-based quality control pathway for non-imported mitochondrial proteins. Elife 2021;10.
[12] Park SH, Kukushkin Y, Gupta R, Chen T, Konagai A, Hopp MS, et al. PolyQ proteins interfere with nuclear degradation of cytosolic proteins by sequestering the Sis1p chaperone. Cell 2013;154:134–45.
[13] Prasad R, Kawaguchi S, Ng D. A nucleus-based quality control mechanism for cytosolic proteins. Mol Biol Cell 2010;21:2117–27.
[14] Heck JW, Cheung SK, Hampton RY. Cytoplasmic protein quality control degradation mediated by parallel actions of the E3 ubiquitin ligases Ubr1 and Snt1. Proc Natl Acad Sci USA 2010;107:1106–11.
[15] Prasad R, Xu C, Goy RW. Hsp40/Hsp70 chaperones adapt nuclear protein quality control to serve cytosolic clients. J Cell Biol 2018;217:2019–32.
[16] Klaips CL, Jayaraj GC, Hartl FU. Pathways of cellular proteinostasis in aging and disease. J Cell Biol 2018;217:51–63.
[17] Annu I, Sommer T, Wolf DH. Protein quality control and elimination of protein waste: the role of the ubiquitin-proteasome system. Biochim Biophys Acta, Mol Cell Biol Lipids 1843;2014:182–96.
[18] Finley D, Chen X, Walters KJ. Gates, Channels, and Switches: Elements of the Proteasome Machine. Trends Biochem Sci 2016;41:77–83.
[19] Chen X, Htet ZM, Lopez-Alfonzo E, Martin A, Walters KJ: Proteasome interaction with ubiquitinated substrates: from mechanisms to therapies. FBS J 2021;288:5231–51.
[20] Cadwell K, Coscoy L. Ubiquitination on nonlysine residues by a viral E3 ubiquitin ligase. Science 2005;309:127–30.
[21] McClellan AJ, Laugesen SH, Elgaard L. Cellular functions and molecular mechanisms of non-lysine ubiquitination. Open Biol 2019;9:1900147.
[22] Kerscher O, Felberbaum R, Hochstrasser M. Modification of proteins by ubiquitin and ubiquitin-like proteins. Annu Rev Cell Dev Biol 2006;22:159–80.
[23] Yau R, Rape M. The increasing complexity of the ubiquitin code. Nat Cell Biol 2016;18:579–86.
[24] French ME, Koehler CF, Hunter T. Emerging functions of branched ubiquitin chains. Cell Discov 2017;1–6.
[25] Cappadocia L, Lima CD. Ubiquitin-like Protein Conjugation: Structures, Chemistry, and Mechanism. Chem Rev 2018;118:889–918.
[26] Chaugule VK, Walden H. Specificity and disease in the ubiquitin system. Biochem Soc Trans 2016;44:212–27.
[27] Zheng N, Shubek N. Ubiquitin Ligases: Structure, Function, and Regulation. Mol Cell 2019;71:267–77.
[28] Kohler V, Andreasen C. Hsp70-mediated quality control: should I stay or should I go? Biol Chem 2020;401:1233–48.
[29] Abildgaard AB, Gersing SK, Larsen-Ledet S, Nielsen SV, Stein A, Lindoff-Larsen K, et al. Co-Chaperones in Targeting and Delivery of Misfolded Proteins to the 26S Proteasome. Biomolecules 2020;10.
[30] Roszenzweig R, Nillegoda NB, Mayer MP, Bukau B. The Hsp70 chaperone network. Nat Rev Mol Cell Biol 2019;20:665–80.
[31] Kampinga HH, Craig EA. The Hsp70 chaperone machinery: J proteins as drivers of functional specificity. Nat Rev Mol Cell Biol 2010;11:579–92.
[32] Nillegoda NB, Kirstein J, Szlachcic A, Berynskyy M, Stank A, Stengel F, et al. Crucial HSP70 co-chaperone complex unlocks metazoan protein disaggregation. Nature 2015;524:247–51.
[33] Gao X, Carmoni M, Nussbaum-Kramer C, Mogk A, Nillegoda NB, Szlachcic A, et al. Human Hsp70 Disaggregation Reverses Parkinson’s-Linked alpha-Synuclein Amyloid Fibres. Mol Cell 2015;59:781–93.
[34] Shorter J. The mammalian disaggregate machinery: Hsp110 synergizes with Hsp70 and Hsp40 to catalyze protein disaggregation and reactivation in a cell-free system. PLoS One 2011;6:e26319.
[35] Farsell DA, Kowal AS, Singer MA, Lindquist S. Protein disaggregation mediated by heat-shock protein Hsp104. Nature 1994;372:475–80.
[36] Shorter J, Southworth DR. Spiraling in Control: Structures and Mechanisms of the Hsp104 Disaggregator. Cold Spring Harbor Perspect Biol 2019;11.
[37] Waszczak A, Ackermann L, Hoppe T. Ring of Change: CDC48/p97 Drives Protein Dynamics at Chromatin. Front Genet 2016;7:73.
[38] Wu X, Rapoport TA. Mechanistic insights into ER-associated protein degradation. Curr Opin Cell Biol 2018;53:22–8.
[39] Aris I, Flick K, Kaiser P. CDC48/Sp1 participates in dissociation of protein complexes to regulate their activity. Curr Genet 2021;67:263–5.
[40] den Brave F, Gupta A, Becker T. Protein Quality Control at the Mitochondrial Surface. Front Cell Dev Biol 2021;9:795685.
[41] Tolay N, Buchberger A. Role of the Ubiquitin System in Stress Granule Metabolism. Int J Mol Sci 2022;23.
Bodnar NO, Rapoport TA. Molecular Mechanism of Substrate Processing by Swanson R, Locher M, Hochstrasser M. A conserved ubiquitin ligase of the Wang Z, Prelich G. Quality control of a transcriptional regulator by SUMO-Metzger MB, Scales JL, Dunklebarger MF, Loncarek J, Weissman AM. A protein Kaganovich D, Kopito R, Frydman J. Misfolded proteins partition between two Gowda NK, Kandasamy G, Froehlich MS, Dohmen RJ, Andreasson C. Hsp70 Carvalho P, Goder V, Rapoport TA. Distinct ubiquitin-ligase complexes define JFGurumela B, Kostova Z, Schaefer A, Wolf DH. A genomic screen identifies Johnson PR, Swanson R, Rakhilina L, Hochstrasser M. Degradation signal Psakhye I, Castellucci F, Branzei D. SUMO-chain-regulated proteasomal Gallagher PS, Clowes Candadai SV, Gardner RG. The requirement for Cdc48/ Pan M, Zheng Q, Wang T, Liang L, Mao J, Zuo C, et al. Structural insights into Medicherla B, Kostova Z, Schaefer A, Wolf DH. A genomic screen identifies Johnson PR, Swanson R, Rakhilina L, Hochstrasser M. Degradation signal Psakhye I, Castellucci F, Branzei D. SUMO-chain-regulated proteasomal Gallagher PS, Clowes Candadai SV, Gardner RG. The requirement for Cdc48/ Pan M, Zheng Q, Wang T, Liang L, Mao J, Zuo C, et al. Structural insights into Medicherla B, Kostova Z, Schaefer A, Wolf DH. A genomic screen identifies Johnson PR, Swanson R, Rakhilina L, Hochstrasser M. Degradation signal Psakhye I, Castellucci F, Branzei D. SUMO-chain-regulated proteasomal Gallagher PS, Clowes Candadai SV, Gardner RG. The requirement for Cdc48/ Pan M, Zheng Q, Wang T, Liang L, Mao J, Zuo C, et al. Structural insights into Medicherla B, Kostova Z, Schaefer A, Wolf DH. A genomic screen identifies Johnson PR, Swanson R, Rakhilina L, Hochstrasser M. Degradation signal Psakhye I, Castellucci F, Branzei D. SUMO-chain-regulated proteasomal Gallagher PS, Clowes Candadai SV, Gardner RG. The requirement for Cdc48/ Pan M, Zheng Q, Wang T, Liang L, Mao J, Zuo C, et al. Structural insights into Medicherla B, Kostova Z, Schaefer A, Wolf DH. A genomic screen identifies Johnson PR, Swanson R, Rakhilina L, Hochstrasser M. Degradation signal Psakhye I, Castellucci F, Branzei D. SUMO-chain-regulated proteasomal Gallagher PS, Clowes Candadai SV, Gardner RG. The requirement for Cdc48/ Pan M, Zheng Q, Wang T, Liang L, Mao J, Zuo C, et al. Structural insights into Medicherla B, Kostova Z, Schaefer A, Wolf DH. A genomic screen identifies Johnson PR, Swanson R, Rakhilina L, Hochstrasser M. Degradation signal Psakhye I, Castellucci F, Branzei D. SUMO-chain-regulated proteasomal Gallagher PS, Clowes Candadai SV, Gardner RG. The requirement for Cdc48/ Pan M, Zheng Q, Wang T, Liang L, Mao J, Zuo C, et al. Structural insights into Medicherla B, Kostova Z, Schaefer A, Wolf DH. A genomic screen identifies Johnson PR, Swanson R, Rakhilina L, Hochstrasser M. Degradation signal Psakhye I, Castellucci F, Branzei D. SUMO-chain-regulated proteasomal Gallagher PS, Clowes Candadai SV, Gardner RG. The requirement for Cdc48/ Pan M, Zheng Q, Wang T, Liang L, Mao J, Zuo C, et al. Structural insights into Medicherla B, Kostova Z, Schaefer A, Wolf DH. A genomic screen identifies Johnson PR, Swanson R, Rakhilina L, Hochstrasser M. Degradation signal Psakhye I, Castellucci F, Branzei D. SUMO-chain-regulated proteasomal Gallagher PS, Clowes Candadai SV, Gardner RG. The requirement for Cdc48/ Pan M, Zheng Q, Wang T, Liang L, Mao J, Zuo C, et al. Structural insights into Medicherla B, Kostova Z, Schaefer A, Wolf DH. A genomic screen identifies Johnson PR, Swanson R, Rakhilina L, Hochstrasser M. Degradation signal Psakhye I, Castellucci F, Branzei D. SUMO-chain-regulated proteasomal Gallagher PS, Clowes Candadai SV, Gardner RG. The requirement for Cdc48/ Pan M, Zheng Q, Wang T, Liang L, Mao J, Zuo C, et al. Structural insights into Medicherla B, Kostova Z, Schaefer A, Wolf DH. A genomic screen identifies Johnson PR, Swanson R, Rakhilina L, Hochstrasser M. Degradation signal Psakhye I, Castellucci F, Branzei D. SUMO-chain-regulated proteasomal Gallagher PS, Clowes Candadai SV, Gardner RG. The requirement for Cdc48/ Pan M, Zheng Q, Wang T, Liang L, Mao J, Zuo C, et al. Structural insights into Medicherla B, Kostova Z, Schaefer A, Wolf DH. A genomic screen identifies Johnson PR, Swanson R, Rakhilina L, Hochstrasser M. Degradation signal Psakhye I, Castellucci F, Branzei D. SUMO-chain-regulated proteasomal Gallagher PS, Clowes Candadai SV, Gardner RG. The requirement for Cdc48/ Pan M, Zheng Q, Wang T, Liang L, Mao J, Zuo C, et al. Structural insights into Medicherla B, Kostova Z, Schaefer A, Wolf DH. A genomic screen identifies Johnson PR, Swanson R, Rakhilina L, Hochstrasser M. Degradation signal Psakhye I, Castellucci F, Branzei D. SUMO-chain-regulated proteasomal Gallagher PS, Clowes Candadai SV, Gardner RG. The requirement for Cdc48/ Pan M, Zheng Q, Wang T, Liang L, Mao J, Zuo C, et al. Structural insights into Medicherla B, Kostova Z, Schaefer A, Wolf DH. A genomic screen identifies Johnson PR, Swanson R, Rakhilina L, Hochstrasser M. Degradation signal Psakhye I, Castellucci F, Branzei D. SUMO-chain-regulated proteasomal Gallagher PS, Clowes Candadai SV, Gardner RG. The requirement for Cdc48/ Pan M, Zheng Q, Wang T, Liang L, Mao J, Zuo C, et al. Structural insights into Medicherla B, Kostova Z, Schaefer A, Wolf DH. A genomic screen identifies Johnson PR, Swanson R, Rakhilina L, Hochstrasser M. Degradation signal Psakhye I, Castellucci F, Branzei D. SUMO-chain-regulated proteasomal Gallagher PS, Clowes Candadai SV, Gardner RG. The requirement for Cdc48/ Pan M, Zheng Q, Wang T, Liang L, Mao J, Zuo C, et al. Structural insights into Medicherla B, Kostova Z, Schaefer A, Wolf DH. A genomic screen identifies Johnson PR, Swanson R, Rakhilina L, Hochstrasser M. Degradation signal Psakhye I, Castellucci F, Branzei D. SUMO-chain-regulated proteasomal Gallagher PS, Clowes Candadai SV, Gardner RG. The requirement for Cdc48/ Pan M, Zheng Q, Wang T, Liang L, Mao J, Zuo C, et al. Structural insights into Medicherla B, Kostova Z, Schaefer A, Wolf DH. A genomic screen identifies Johnson PR, Swanson R, Rakhilina L, Hochstrasser M. Degradation signal Psakhye I, Castellucci F, Branzei D. SUMO-chain-regulated proteasomal Gallagher PS, Clowes Candadai SV, Gardner RG. The requirement for Cdc48/ Pan M, Zheng Q, Wang T, Liang L, Mao J, Zuo C, et al. Structural insights into Medicherla B, Kostova Z, Schaefer A, Wolf DH. A genomic screen identifies Johnson PR, Swanson R, Rakhilina L, Hochstrasser M. Degradation signal Psakhye I, Castellucci F, Branzei D. SUMO-chain-regulated proteasomal Gallagher PS, Clowes Candadai SV, Gardner RG. The requirement for Cdc48/ Pan M, Zheng Q, Wang T, Liang L, Mao J, Zuo C, et al. Structural insights into Medicherla B, Kostova Z, Schaefer A, Wolf DH. A genomic screen identifies Johnson PR, Swanson R, Rakhilina L, Hochstrasser M. Degradation signal Psakhye I, Castellucci F, Branzei D. SUMO-chain-regulated proteasomal Gallagher PS, Clowes Candadai SV, Gardner RG. The requirement for Cdc48/ Pan M, Zheng Q, Wang T, Liang L, Mao J, Zuo C, et al. Structural insights into Medicherla B, Kostova Z, Schaefer A, Wolf DH. A genomic screen identifies Johnson PR, Swanson R, Rakhilina L, Hochstrasser M. Degradation signal Psakhye I, Castellucci F, Branzei D. SUMO-chain-regulated proteasomal Gallagher PS, Clowes Candadai SV, Gardner RG. The requirement for Cdc48/ Pan M, Zheng Q, Wang T, Liang L, Mao J, Zuo C, et al. Structural insights into Medicherla B, Kostova Z, Schaefer A, Wolf DH. A genomic screen identifies Johnson PR, Swanson R, Rakhilina L, Hochstrasser M. Degradation signal Psakhye I, Castellucci F, Branzei D. SUMO-chain-regulated proteasomal Gallagher PS, Clowes Candadai SV, Gardner RG. The requirement for Cdc48/ Pan M, Zheng Q, Wang T, Liang L, Mao J, Zuo C, et al. Structural insights into Medicherla B, Kostova Z, Schaefer A, Wolf DH. A genomic screen acknowledges Ids2p and Rad23p as essential components of ER-associated degradation. Mol Cell 2017;60:635–46. 4624
Takano A, Kajita T, Mochizuki M, Endo T, Yoshihisa T. Cytosolic Hsp70 and co-chaperones constitute a novel system for tRNA import into the nucleus. Elife 2015;4.

Niepel M, Molloy KR, Williams R, Farr JC, Meinema AC, Vecchietti N, et al. The nuclear basket proteins Mlp1p and Mlp2p are part of a dynamic interactome including Esc1p and the proteasome. Mol Biol Cell 2013;24:3920–38.

Albert S, Schaffer M, Beck F, Mosalaganti S, Asano S, Thomas HF, et al. Proteasomes tether to two distinct sites at the nuclear pore complex. Proc Natl Acad Sci U S A 2017;114:13726–31.

Nagaraj R, Sharples MS, Chi F, Braas D, Zhou Y, Kim R, Clark AT, Banerjee U. Nuclear Localization of Mitochondrial TCA Cycle Enzymes as a Critical Step in Mammalian Zygotic Genome Activation. Cell 2017;168:210–23. e211.

Liu X, Si W, He L, Yang J, Peng Y, Ren J, et al. The existence of a nonclassical TCA cycle in the nucleus that wires the metabolic-epigenetic circuitry. Signal Transduct Target Ther 2021;6:375.

Nargund AM, Pellegrino MW, Fiorese CJ, Baker BM, Haynes CM. Mitochondrial import efficiency of ATF5-1 regulates mitochondrial UPR activation. Science 2012;337:587–90.

Sos R, Firdoush J, Kaja A, Bhaumik SR. Fine-Tuning of FACT by the Ubiquitin Proteasome System in Regulation of Transcriptional Elongation. Mol Cell Biol 2016;36:1691–703.

Kitamura K, Taki M, Tanaka N, Yamashita I. Fission yeast Ubr1 ubiquitin ligase influences the oxidative stress response via degradation of active Pap1 bZIP transcription factor in the nucleus. Mol Microbiol 2011;80:739–55.

Hochstrasser M, Ellison MJ, Chau V, Varshavsky A. The short-lived MAT alpha 2 transcriptional regulator is ubiquitinated in vivo. Proc Natl Acad Sci USA 1991;88:4606–10.

Mediani L, Guillen-Boixet J, Venet J, Franzmann TM, Bigi I, Mateju D, et al. Defective ribosomal products challenge nuclear function by impairing nuclear condensate dynamics and immobilizing ubiquitin. EMBO J 2019;38:e101341.

Shor E, Fox CA, Broach JR. The yeast environmental stress response regulates mutagenesis induced by proteotoxic stress. PLoS Genet 2013;9:e1003680.

Ben Yehuda A, Risheq M, Novoplansky O, Bersuker K, Kopito RR, Goldberg M, et al. Ubiquitin Accumulation on Disease Associated Protein Aggregates Is Correlated with Nuclear Ubiquitin Depletion, Histone De-Ubiquitination and Impaired DNA Damage Response. PLoS One 2017;12:e0169054.

Lee D, Lee YI, Lee YS, Lee SB. The Mechanisms of Nuclear Proteotoxicity in Polyglutamine Spinocerebellar Ataxias. Front Neurosci 2020;14:489.