Background model of the ANAIS-112 dark matter experiment

J Amaré, S Cebrián, D Cintas, I Coarasa, E García, M Martínez, M A Oliván, Y Ortigoza, A Ortiz de Solórzano, J Puimedón, A Salinas, M L Sarsa and P Villar

1 Centro de Astropartículas y Física de Altas Energías (CAPA), Universidad de Zaragoza, Pedro Cerbuna 12, 50009 Zaragoza, Spain
2 Laboratorio Subterráneo de Canfranc, Paseo de los Ayerbe s.n., 22880 Canfranc Estación, Huesca, Spain
3 Fundación ARAID, Avenida de Ranillas 1D, 50018 Zaragoza, Spain
4 Fundación CIRCE, Avenida de Ranillas 3D, 50018 Zaragoza, Spain
5 Escuela Universitaria Politécnica de La Almunia de Doña Godina (EUPLA), Universidad de Zaragoza, Calle Mayor 5, La Almunia de Doña Godina, 50100 Zaragoza, Spain

E-mail: scebrian@unizar.es

Abstract. The ANAIS (Annual modulation with NaI(Tl) Scintillators) experiment aims at the confirmation or refutation of the DAMA/LIBRA positive annual modulation signal in the low energy detection rate. ANAIS-112, consisting of nine 12.5 kg NaI(Tl) modules, is taking data since August, 2017 at the Canfranc Underground Laboratory (LSC) in Spain. Results from the analysis of three years of data are compatible with the absence of modulation. The background model developed for all nine ANAIS-12 detectors was established from commissioning data and non-blinded events in the first year of data taking. Now, background characterization is being improved profiting from the larger accumulated exposure available. Here, the background model is described and comparisons of model and measurements for energy spectra and counting rate time evolution for three-year exposure (considering different analysis conditions) are presented.

1. Introduction

The observation by the DAMA/LIBRA experiment of an annual modulation signal in the counting rate, compatible with expectations from galactic dark matter particles due to Earth’s movement around the Sun, has intrigued the community for more than twenty years [1, 2]. The ANAIS-112 experiment, with a target of 112.5 kg of NaI(Tl) [3], is running smoothly at the Canfranc Underground Laboratory since 2017 aiming to test this observation using the same detection technique and target. A 3σ sensitivity to explore the DAMA/LIBRA result for five-year operation is expected [4]. After the first annual modulation analysis corresponding to 1.5 years [5], results from three years of data have been presented in 2021 [6]. Under the hypothesis of modulation, the deduced amplitudes from best fits are in all cases compatible with zero for the two energy regions considered at 2–6 and 1–6 keV.

A full description of the ANAIS-112 set-up and its performance can be found in [3]. The experiment consists of an array of 3×3 NaI(Tl) scintillators (named D0 to D8) manufactured

1 Electron equivalent energy is given throughout the paper.
by the Alpha Spectra Inc. company in Colorado (US); each crystal, with a mass of 12.5 kg, is
coupled to two Hamamatsu photomultipliers (PMTs) and enclosed in a copper vessel. The
shielding of ANAIS-112 is made of 10 cm of archaeological lead, 20 cm of low-activity lead, a
box filled with radon-free N₂ gas to avoid radon intrusion, and 40 cm of neutron moderator.
Sixteen plastic scintillators covering the set-up act as an active muon veto. The LSC facilities
are placed at a depth of 2450 m.w.e. The coincidence (in a 200 ns window) of the two PMT
signals from a module provides the acquisition trigger to digitize all PMT electric pulses. The
analysis threshold is set at 1 keV thanks to an outstanding light collection of ~15 photoelectrons
per keV for all detector units and an effective rejection of non-scintillation events.

The background of ANAIS-112 detectors is being analyzed since the beginning of the
operation at LSC of the first modules D0 and D1 [7] and models for all detectors were
developed from non-blinded events (corresponding to multiple-hits and to single-hit events
releasing energy above 6 keV) after the first year of data taking [8]. They are based on the
Geant4 simulation, including a detailed description of detectors and shielding, of the main
background sources quantified applying different techniques. Simulated energy spectra have
been cross-checked against measured data at different conditions and energy ranges. Now, the
background characterization is being improved thanks to the exposure accumulated over several
years, which allows for time-dependent analysis.

2. Background sources
The radioactivity of external components like PMTs and copper enclosures was measured
with HPGe detectors at LSC and included in the models. But the dominant background
contribution is the intrinsic activity of NaI(Tl) crystals, which has been directly assessed
for each ANAIS-112 detector in several set-ups. ⁴⁰K activity was quantified by identifying
coincidences among different modules [9], ranging the measured values from (1.33±0.04) mBq/kg
to (0.54±0.04) mBq/kg. The content of ²³²Th and ²³⁸U was determined from the measured
alpha rate following Pulse Shape Analysis and the study of BiPo sequences, being the activity
of the chain isotopes at the level of a few µBq/kg except for ²¹⁰Pb, which was found to be
out of equilibrium with measured activity between (3.15±0.10) mBq/kg and (0.7±0.1) mBq/kg.
Cosmogenic isotopes induced in the crystals when being on surface have also been carefully
studied [10, 11], including several short-lived Te and I isotopes which have already decayed
and ¹⁰⁹Cd and ¹¹³Sn, producing peaks at the binding energies of K-shell electrons (following
Electron Capture); for these two isotopes, the saturation activity assumption firstly considered
has been now relaxed according to the observed time evolution of the peaks. The activity of
²²Na was also quantified from the analysis of coincidences from high-energy gamma-rays, being
the measured rate at 0.9 keV well reproduced by simulation using the independently quantified
activity. An additional background source contributing only in the very low energy region was
identified, compatible with an initial tritium activity [12] at the level of 0.20 mBq/kg for the
first two crystals produced and 0.09 mBq/kg for the others.

3. Results from three-year exposure
After the first validation of the background model of the ANAIS-112 detectors carried out using
the first year of data [8], new comparisons between simulation and data collected from 2017 to
2020 (313.95 kg×y) have been made not only for energy spectra but also for the time evolution
of counting rates in different energy regions.

Figure 1 compares the ANAIS-112 spectra measured in different energy regions with the
model predictions; the low energy spectrum corresponds to events with multiplicity 1 (M1)
including the efficiency correction after filtering of non-scintillation events. Similar comparisons
have been made for each detector and considering also events with multiplicity 2 (M2), that
is, with energy depositions in two detectors. The overall agreement is satisfactory although
Figure 1. Comparison of the measured spectra at different energy regions in the three-year exposure data of ANAIS-112 (blue line) with the corresponding estimate from the background model (green line).

There are in the data unexplained events below 3 keV, which could be due to an unknown background source not included in the model or to events leaking the filtering procedures. Very promising results are being obtained to partially dispose of these unexplained events when applying machine-learning techniques in the filtering protocols [13].

The simulation of the different background sources has allowed to quantify the main contributions in the region of interest from 1 to 6 keV, being the most significant ones contaminations in the crystals: the continua from 210Pb (bulk+surface) and 3H (with 32.5% and 26.5% of the rate, respectively) and peaks from 40K and 22Na (with 12.0% and 2.0% each).

Several of the background contributions identified in ANAIS-112 are expected to decrease in time due to the half-life of radioactive isotopes, like 210Pb ($T_{1/2} = 22.2$ y) and cosmogenic 3H ($T_{1/2} = 12.3$ y) and 22Na ($T_{1/2} = 2.6$ y) in the NaI(Tl) crystals. The decrease in counting rates has been observed over the three-year data taking and is accounted for by the background models of the detectors in low energy windows. Figure 2 presents the evolution in time of the measured rates of M1 events at 6-10 keV and of M2 events at 1-6 keV; the shape of the observed exponential decay is well reproduced by the model, including a normalization factor f, for both event populations even if the “effective” lifetimes deduced for each of them are very different. This good agreement gives support to the predicted time evolution of M1 events at 1-6 keV evaluated for each detector, shown in Fig. 3, which has been considered in the annual modulation analysis corresponding to three-year exposure [6, 14].

4. Summary
A good understanding of the background of ANAIS-112 detectors, dominated by NaI(Tl) crystal activity, has been achieved. The energy spectra obtained in different conditions are well reproduced, which has been useful for design and sensitivity predictions. The measured counting rates in the regions 1-6 (2-6) keV are 3.46 (3.11) cpd/kg/keV, higher than model prediction by 20 (8.8)%; the observed excess of events below 3 keV is under study. Additionally, the detector background time evolution observed over the three-year data analyzed is also well described, supporting the model, which has been used in the annual modulation analysis carried out.

Acknowledgments
This work has been financially supported by the Spanish Ministerio de Economía y Competitividad and the European Regional Development Fund (MINECO-FEDER) under
Figure 2. Time evolution over the three-year data taking of ANAIS-112 of the measured counting rates (black points), the corresponding exponential fit (red line) and the background model estimate normalized by a factor f (green line), for M1 events at 6-10 keV (left) and M2 events at 1-6 keV (right).

Figure 3. Expected time evolution over ten years of the counting rate of M1 events at 1-6 keV for ANAIS-112 detectors according to their background models.

References
[1] Bernabei R et al 2003 La Riv. Nuovo Cimento 26 1
[2] Bernabei R et al 2020 Prog. Part. Nucl. Phys 114 103810
[3] Amaré J et al 2019 Eur. Phys. J. C 79 228
[4] Coarasa I et al 2019 Eur. Phys. J. C 79 233
[5] Amaré J et al 2019 Phys. Rev. Lett. 123 031301
[6] Amaré J et al 2021 Phys. Rev. D 103 102005
[7] Amaré J et al 2016 Eur. Phys. J. C 76 429
[8] Amaré J et al 2019 Eur. Phys. J. C 79 412
[9] Cuesta C et al 2014 Int. J. Mod. Phys. A 29 1443010
[10] Amaré J et al 2015 JCAP 02 046
[11] Villar P et al 2018 Int. J. Mod. Phys. A 33 184
[12] Amaré J et al 2018 Astropart. Phys 97 96
[13] Coarasa I et al, these Proceedings
[14] Martínez M et al, these Proceedings