Evaluation of Stem Cell Components in Retrocorneal Membranes

Seok Hyun Lee,1 Kyoung Woo Kim,1 Mi Kyung Kim,2 Yeon Soo Chun,1 and Jae Chan Kim1

INTRODUCTION

Retrocorneal membranes (RCMs) are translucent web-like structures which gradually grow into the posterior surface of the cornea (1). They have been observed in various clinical conditions associated with disease and damage of the corneal endothelium such as ocular chemical burns, perforating corneal injuries, and infectious diseases (2, 3). The production of RCM is thought to be an end-stage disease process of the cornea leading to corneal opacity and blindness (4).

The origin of RCM is not yet well understood. Previous studies of RCM have focused on endothelial mesenchymal transformation (1, 4-6), which suggested that translucent web-like structures gradually grow from the posterior surface of the cornea into the anterior chamber by perforating Descemet’s membrane. In addition, light microscope examinations in previous studies revealed that RCMs resulted in the accumulation of an acellular, extracellular matrix. No cells could be identified in the early phases of corneal chemical burns (7); in the later stages following a corneal chemical burn, however, new types of cells, such as inflammatory and spindle cells, infiltrate the acellular cornea secondary to destruction of the ocular-blood barrier.

Primitive cells may promote wound healing through the activation of growth factors and cytokines, which may influence stem cell migration, proliferation, and differentiation during wound healing. In addition to this activation, pain has proven to be an important triggering factor for stem cell activation (8, 9).

A disrupted ocular blood barrier due to severe ocular surface damage, such as a chemical burn, may increase the serum component of the anterior chamber and alter the anterior chamber microenvironment. Given this background information, we hypothesized that the composition of a RCM might be derived from primitive cells such as mesenchymal stem cells rather than just an endothelial mesenchymal transition. To elucidate the types of cells that comprise a RCM, we analyzed the cell types in RCMs using various primitive cell markers.

MATERIALS AND METHODS

Patients and specimens collection
Six patients (four males and two females), aged between 42 and 74 yr, (mean age, 53.2 ± 11.0 yr) were recruited from the Department of Ophthalmology at Chung-Ang University Hospital. They all had a fibrous RCM behind the corneal endothelium which is clinically differentiated with epithelial downgrowth or thickened Descemet’s membrane by overlying corneal edema and...
frayed and irregular edge of RCMs. Despite temporary amniotic membrane patch graft and medical treatment for several months, all of patients had eventually undergone penetrating keratoplasty (PKP) and amniotic membrane transplantation due to corneal opacities and corneal thinning caused by chemical burns (Table 1). During PKP, after trephination of the cornea, abnormal web formation characterized of an RCM was obtained. Surgeon tried to dissect and separate an RCM from corneal overlying corneal endothelium meticulously to prepare the fixation block for histologic examination.

**Histologic examinations**

All tissue specimens were fixed in 4% buffered paraformaldehyde in the operating room. Fixed RCMs were dehydrated and embedded in paraffin. Paraffin sections were deparaffinized in xylene, rehydrated, and quenched with endogenous peroxidase. Cryostat sections were placed on gelatinized slides and fixed in cold acetone. Tissue sections were equilibrated in Tris-buffered saline (TBS) and blocked in non-immune serum (Zymed Laboratories, South San Francisco, CA, USA). The 4-μm-thick sections were stained with hematoxylin and eosin (H&E), periodic acid-Schiff (PAS), and Masson’s trichrome stain. In addition, for immunohistochemical stains, tissue sections were incubated with mouse monoclonal antibody against each of human type IV collagen, CD34, CD133, FGF-β, TGF-β, VEGF, vascular endothelial growth factor receptor-1 (VEGFR1), c-kit (CD117), beta-1-integrin (CD29), vimentin, hSTRO-1, and alpha-SMA to identify fibroblasts; CD34, CD133, vimentin, and beta-1-integrin to identify keratocytes; type IV collagen, CD133, VEGF, VEGFR1, and vimentin to identify corneal endothelial cells; beta-1-integrin, vimentin, TGF-β, and hSTRO-1 to identify mesenchymal stem cells; and CD34, CD133, and c-kit to identify hematopoietic stem cells.

**Ethics statement**

The institutional review board of Chung-Ang University approved this study (C2013143[1103]). Informed consent was obtained from all participants for the use of their tissues; and all procedures were performed according to the principles of the Declaration of Helsinki.

**RESULTS**

**Histopathologic analysis**

Routine histological sections with H&E staining revealed that the RCMs were composed of multiple layers of connective tissue. The membranes exhibited different features in terms of thickness, extent, vascularity, and cellularity. Spindle-shaped cells were widely spread in the stroma of the RCM tissue. Pigment-laden cells, which appeared to be limbal pigment epithelium, ciliary bodies, and/or iris pigment epithelium were also present in the tissue (Fig. 1A and B). RCMs consisted of multi-

---

**Table 1. Patient demographics**

| Case No. | Age (yr) | Sex | Cause of corneal burn | Grade | Treatment prior to PKP | Duration to PKP, month |
|----------|----------|-----|----------------------|-------|-----------------------|------------------------|
| 1        | 54       | Female | Alkali burn | Severe | TAMP, artificial tears, autologous serum eyedrops, T-lens | 12                     |
| 2        | 42       | Female | Alkali burn | Moderate | Artificial tears, autologous serum eyedrops, T-lens | 10                     |
| 3        | 74       | Male | Alkali burn | Severe | TAMP, artificial tears, autologous serum eyedrops, T-lens | 14                     |
| 4        | 47       | Male | Alkali burn | Severe | TAMP, artificial tears, autologous serum eyedrops, T-lens | 13                     |
| 5        | 48       | Male | Alkali burn | Severe | TAMP, artificial tears, autologous serum eyedrops, T-lens | 8                      |
| 6        | 54       | Male | Alkali burn | Moderate | TAMP, artificial tears, autologous serum eyedrops, T-lens | 12                     |

PKP, Penetrating keratoplasty; TAMP, Temporary amniotic membrane patch graft; T-lens, therapeutic soft contact lens.

**Table 2. Monoclonal and polyclonal antibodies used for immunohistochemical staining**

| Antibody                | Immunoglobulin | Dilution | Source               |
|-------------------------|----------------|----------|----------------------|
| Type IV collagen        | Mouse monoclonal IgG | × 100  | Santa Cruz*          |
| CD34                    | Mouse monoclonal IgG | × 100  | Santa Cruz*          |
| CD133                   | Rabbit polyclonal IgG | × 100  | Abcam†               |
| FGF-β                   | Goat polyclonal IgG | × 100  | Santa Cruz*          |
| TGF-β                   | Mouse monoclonal IgG | × 100  | Santa Cruz*          |
| VEGF                    | Rabbit polyclonal IgG | × 50   | Abcam§               |
| VEGFR1                  | Rabbit monoclonal IgG | × 100  | Abcam§               |
| c-kit                   | Rabbit polyclonal IgG | × 50   | Enogene‡             |
| β1-integrin             | Mouse monoclonal IgG | × 50   | Dako§                |
| Vimentin                | Mouse monoclonal IgG | × 100  | Dako§                |
| hSTRO-1                 | Mouse monoclonal IgG | × 100  | Santa Cruz*          |
| α-SMA                   | Mouse monoclonal IgG | × 100  | Santa Cruz*          |

*Santa Cruz, Santa Cruz, CA, USA; †Abcam, Cambridge, MA, USA; ‡Enogene, New York, NY, USA; §Dako, Glostrup, Denmark.

We used type IV collagen, FGF-β, TGF-β, vimentin, and α-SMA to identify fibroblasts; CD34, CD133, vimentin, and beta-1-integrin to identify keratocytes; type IV collagen, CD133, VEGF, VEGFR1, and vimentin to identify corneal endothelial cells; beta-1-integrin, vimentin, TGF-β, and hSTRO-1 to identify mesenchymal stem cells; and CD34, CD133, and c-kit to identify hematopoietic stem cells.
ple collagen layers and did not show evidence of an epithelial or endothelial layer. PAS staining (Fig. 1B) did not reveal any specific findings and Masson's trichrome staining (Fig. 1C) showed that the membranes were composed of collagenous tissue.

**Immunohistochemical analysis**

The six cases of RCMs had similar staining patterns after immunohistochemical staining. A summary of the immunohistochemical staining results for cells within the RCMs is displayed in Table 3. FGF-β-positive (Fig. 2A) and TGF-β-positive (Fig. 2B) spindle-shaped cells were observed in the RCMs. A marker representative of fibroblasts, α-SMA, reacted strongly with the spindle-shaped cells (Fig. 2C). Cells that stained positive for mesenchymal stem cell markers such as β1-integrin and vimentin as well as hSTRO-1-positive spindle-shaped cells (8, 10) were

**Table 3.** Results of immunohistochemical staining for cells in retrocorneal membranes in comparison with those of mesenchymal stem cells, fibroblasts, and corneal endothelial cells

| Cells on RCM | MSC | Fibroblast | CEC |
|--------------|-----|------------|-----|
| Type IV collagen | -   | +          | +   |
| CD34         | -   | -          | -   |
| CD1133       | -   | +          | -   |
| FGF-β        | +   | +          | +   |
| TGF-β        | +   | +          | +   |
| VEGF         | +   | -          | -   |
| VEGFR1       | ++  | -          | -   |
| c-kit        | -   | -          | -   |
| β1-integrin   | ++  | -          | +   |
| Vimentin     | ++  | +          | +   |
| hSTRO-1      | +   | +          | +   |
| α-SMA        | +++ | -          | -   |

RCM, retrocorneal membrane; MSC, mesenchymal stem cell; CEC, corneal endothelial cell.

**Fig. 1.** Histochemical findings of the retrocorneal membranes. (A) H&E staining of the Case 1 demonstrates avascular connective tissue with spindle-shaped cells (arrow head) and pigment-laden cells (red arrow). (B) PAS staining of the Case 3 reveals no specific findings. (C) Masson’s trichrome staining detects a collagen fiber structure within the retrocorneal membranes (Case 3). (D, E, C) In Case 3, there are also spindle-shaped cells (arrow head) and pigment-laden cells (red arrow) in both of PAS staining and Masson’s trichrome staining photos (A, B, C: × 400).

**Fig. 2.** Spindle-shaped cells in the retrocorneal membranes were positive for FGF-β (Case 4, A), TGF-β (Case 4, B), α-SMA (Case 4, C), β1-integrin (Case 5, D), vimentin (Case 5, E) and hSTRO-1 (Case 6, F) (arrow heads). Pigment-laden cells do not react with any of the antibodies (red arrows) (A, F, C: × 400).
The incidence of RCM formation is known to be between 0%-7% after a perforating injury of the cornea and up to 54% after failed perforating keratoplasty (11). Risk factors that have been identified for RCM formation include chemical trauma, perforating injury, surgical trauma, and infectious disease. Many studies have been conducted to identify the pathogenesis of RCMs (1-6); however, the results have been largely inconclusive. These studies have suggested that RCMs are connected to damaged portions of Descemet’s membrane and that RCMs grow from the corneal endothelium into the anterior chamber (4, 5, 12-15). However, these hypotheses are based on the prerequisite that damaged corneas have functional kerocytes and endothelia.

We reasoned that endothelial cells of a damaged cornea, especially a chemically damaged cornea, would lack viability because cells are not present in the early stages following corneal damage, but as time progresses inflammatory cells begin to invade the corneal stroma. Additionally, Jakobiec and Bhat (16) reported that RCMs can be divided into five subtypes based on the results of immunohistochemical staining; however, their study analyzed only RCMs that were adherent to the posterior surface of the cornea and, in contrast, our study examined RCMs that were separated from the cornea. As such, we undertook this study based on the assumption that RCMs are composed of cells from other sites that substitute for the non-functional corneal cells rather than from an endothelial mesenchymal transformation.

**DISCUSSION**

Type IV collagen is found in basal lamina, extracellular matrix proteins, mature stroma, and corneal endothelium (17). Some studies have found that type IV collagen was expressed in RCMs in syphilitic RCMs, which led the investigators to suggest that the endothelium may possibly be transformed into mesenchymal cells (1, 14). However, some researchers have asserted that type IV collagen antibodies do not react with all RCMs (4). Similarly, our study revealed no reaction of type IV collagen and the rest were not tested; *Vimentin was positive, and the rest were not tested.

| Marker for Cell Type | Our study | Kawaguchi et al. (1) | Leung et al. (4) | Cockerham and Hidayat (6) | Dogru et al. (14) | Jakobiec and Bhat (16) | Wunderlich et al. (25) |
|----------------------|-----------|---------------------|-----------------|--------------------------|-----------------|----------------------|---------------------|
| CD34, CD133, c-kit   | Hematopoietic stem cell | -                  | Not checked     | Not checked              | Not checked     | -CD34*               | Not checked         |
| Type IV collagen     | Corneal endothelial cell | -                  | Type IV collagen† | Not checked              | Not checked     | Type IV collagen†    | Not checked         |
| p1-integrin, vimentin, TGF-β hSTRO-1 | Mesenchymal stem cell | +                  | Vimentin‡       | Not checked              | Vimentin‡       | Vimentin‡            | Vimentin‡           |
| α-SMA                | Fibroblast  | +                  | +               | Not checked              | +               | +                    | +                   |

*CD34 was negative and the rest were not tested; †Type IV collagen was positive, and the rest were not tested; ‡Vimentin was positive, and the rest were not tested.

CD34 is a glycosylated transmembrane protein expressed in scattered widely throughout all RCMs. Additionally, beta-1-integrin (Fig. 2D), vimentin (Fig. 2E) and hSTRO-1 (Fig. 2F) were expressed in the spindle-shaped cells. However, all cells in the RCMs were negative for type IV collagen, CD133, and endothelial progenitor cell markers such as CD34 (Fig. 3A) and c-kit (Fig. 3B) except VEGF (Fig. 3C) and VEGFR1 (Fig. 3D). Pigment-laden cells did not react with any of the tested antibodies.
both hematopoietic stem cells and normal corneal cells and is therefore not expressed in injured corneas (18). C-kit, also called CD117, is a cytokine receptor expressed on the surface of hematopoietic stem cells. In this study, cells of the RCMs did not react with hematopoietic stem cell markers CD34, CD133, and c-kit, suggesting that RCMs do not originate from hematopoietic stem cells.

Beta-1-integrin, also known as CD29, is a cell surface receptor that interacts with the extracellular matrix and mediates various intracellular signals. It plays important roles in cell adhesion and other various processes including embryogenesis, hemothasis, tissue repair, and immune response (19). In addition, Vimentin is an intermediate filament protein that is found in various non-epithelial cells, including mesenchymal cells and fibroblasts (1, 4). hSTRO-1 is a cell surface protein expressed by bone marrow stromal cells and erythroid precursors (20, 21). These three proteins are markers of mesenchymal stem cells, and, in this study, were shown to interact with RCM cells. Specifically, reactions for beta-1-integrin and vimentin were uniformly positive in the spindle-shaped cells.

Based on the vascularized cornea expressing copious CD34-positive cells (data not shown) adjacent to RCMs, we hypothesized that RCMs are created by bone marrow-derived mesenchymal stem cells. Mesenchymal stem cells migrate from bone marrow via vascular routes; causes of these migrations include pain from hypoxia, tissue damage, and chemotaxis induced by cytokines (8). Thus, we speculated that RCMs were created by bone marrow-derived mesenchymal stem cells that migrate via the vasculature in injured and inflamed tissues.

RCMs were not only composed of fibroblast-like spindle-shaped cells, but also pigment-laden cells. These pigment-laden cells did not stain with PAS, Masson’s trichrome, or any of the immunohistochemical stains. Pigment cells are often found in the same environments as stem cells. For example, embryonic stem cells are found in pigmented epithelium, retinal stem cells originate from ciliary body or iris pigment epithelium, and limbal epithelial stem cells are pigmented in themselves (10, 22-24). Therefore, in those locations, pigmented cells might form a stem cell niche. In this way, pigment-laden cells in RCMs may create an environment for primitive cell differentiation resulting in newly formed structures.

Our study has a limitation which we could not perform all types of staining in all of cases. Instead, we collected positive cells (data not shown) adjacent to RCMs, we hypothesized that RCMs are created by bone marrow-derived mesenchymal stem cells. Mesenchymal stem cells migrate from bone marrow via vascular routes; causes of these migrations include pain from hypoxia, tissue damage, and chemotaxis induced by cytokines (8). Thus, we speculated that RCMs were created by bone marrow-derived mesenchymal stem cells that migrate via the vasculature in injured and inflamed tissues.

To analyze only a very small amount of RCM tissue. As such, we only evaluated the protein levels within RCMs and did not use RT-PCR to evaluate RNA levels. Although the origin of cells in RCMs cannot be confirmed to be derived from endothelial or bone marrow stem cells in this study, the results of immunohistochemical staining suggested that RCM cells may originate from progenitor cells or mesenchymal stem cell-like cells.

ACKNOWLEDGEMENTS

The authors thank the members of the Department of Pathology of Chung-Ang University for their helpful feedback and technical support.

DISCLOSURE

The authors indicate no financial support or potential conflicts of interest.

ORCID

Jae Chan Kim http://orcid.org/0000-0003-4034-7685

REFERENCES

1. Kawaguchi R, Saika S, Wakayama M, Ooshima A, Ohnishi Y, Yabe H. Extracellular matrix components in a case of retrocorneal membrane associated with syphilitic interstitial keratitis. Cornea 2001; 20: 100-3.
2. Rodrigues MM, Waring GO, Laibson PR, Weinreb S. Endothelial alterations in congenital corneal dystrophies. Am J Ophthalmol 1975; 80: 678-89.
3. Brown SL, Kitano S. Pathogenesis of the retrocorneal membrane. Arch Ophthalmol 1966; 75: 518-25.
4. Leung EW, Rife L, Smith RE, Kay EP. Extracellular matrix components in retrocorneal fibrous membrane in comparison to corneal endothelium and Descemet’s membrane. Mol Vis 2000; 6: 15-23.
5. Cockerham GC, Hidayat AA. Retrocorneal membrane with myofibroblasts after perforating injury: an immunohistochemical and ultrastructural study of 11 cases. Cornea 1999; 18: 700-6.
6. Kay EP, Gu X, Smith RE. Corneal endothelial modulation: bFGF as direct mediator and corneal endothelium modulation factor as inducer. Invest Ophthalmol Vis Sci 1994; 35: 2427-35.
7. López-García JS, Rivas Jara L, García-Lozano I, Murube J. Histopathologic limbus evolution after alkaline burns. Cornea 2007; 26: 1043-8.
8. Hong HS, Lee J, Lee E, Kwon YS, Lee E, Ahn W, Jiang MH, Kim JC, Son Y. A new role of substance P as an injury-inducible messenger for mobilization of CD29(+) stromal-like cells. Nat Med 2009; 15: 425-35.
9. Lee JK, Song YS, Ha HS, Park JH, Kim MK, Park AJ, Kim JC. Endothelial progenitor cells in pterygium pathogenesis. Eye (Lond) 2007; 21: 1186-93.
10. Polisetti N, Fatima A, Madhira SL, Sangwan VS, Venuganti GK. Mesenchymal cells from limbal stroma of human eye. Mol Vis 2008; 14: 431-42.
11. Kremer I, Rapuano CJ, Cohen EJ, Laibson PR, Eagle BC Jr. Retrocorneal fibrous membranes in failed corneal grafts. Am J Ophthalmol 1993; 115:
12. Sanchez J, Polack FM. Autoradiographic study of retrocorneal membranes. Ann Ophthal 1978; 10: 1547-52.
13. Kay ED, Cheung CC, Jester JV, Nimni ME, Smith RE. Type I collagen and fibronectin synthesis by retrocorneal fibrous membrane. Invest Ophthal-mol Vis Sci 1982; 22: 200-12.
14. Dogru M, Kato N, Matsumoto Y, Tanaka Y, Akabane N, Shimmura S, Tsubota K, Shimazaki J. Immunohistochemistry and electron microscopy of retrocorneal scrolls in syphilitic interstitial keratitis. Curr Eye Res 2007; 32: 863-70.
15. Chiou AG, Chang C, Kaufman SC, Ohta T, Maitchouk D, Beuerman RW, Kaufman HE. Characterization of fibrous retrocorneal membrane by confocal microscopy. Cornea 1998; 17: 669-71.
16. Jakobiec FA, Bhat P. Retrocorneal membranes: a comparative immunohistochemical analysis of keratocytic, endothelial, and epithelial origins. Am J Ophthal 2010; 150: 230-42.e2.
17. Ide T, Nishida K, Yamato M, Sumide T, Utsumi M, Nozaki T, Kikuchi A, Okano T, Tano Y. Structural characterization of bioengineered human corneal endothelial cell sheets fabricated on temperature-responsive culture dishes. Biomaterials 2006; 27: 607-14.
18. Totì P, Tosi GM, Traversi C, Schürfeld K, Cardone C, Caporossi A. CD-34 stromal expression pattern in normal and altered human corneas. Ophthalmology 2002; 109: 1167-71.
19. Stepp MA. Corneal integrins and their functions. Exp Eye Res 2006; 83: 3-15.
20. Lee IG, Ye J, Kim JC. The involvement of multipotential progenitor cells in Mooren’s ulcer. Yonsei Med J 2005; 46: 353-8.
21. Kolf CM, Cho E, Tuan RS. Mesenchymal stromal cells: biology of adult mesenchymal stem cells: regulation of niche, self-renewal and differentiation. Arthritis Res Ther 2007; 9: 204.
22. Aoki H, Hara A, Motohashi T, Chem H, Kunisada T. Iris as a recipient tissue for pigment cells: organized in vivo differentiation of melanocytes and pigmented epithelium derived from embryonic stem cells in vitro. Dev Dyn 2008; 237: 2394-404.
23. Asami M, Sun G, Yamaguchi M, Kosaka M. Multipotent cells from mammalian iris pigment epithelium. Dev Biol 2007; 304: 433-46.
24. Sun G, Asami M, Ohta H, Kosaka J, Kosaka M. Retinal stem/progenitor properties of iris pigment epithelial cells. Dev Biol 2006; 298: 243-52.
25. Wunderlich K, Senn BC, Reiser P, Pech M, Flammer J, Meyer P. Connective tissue growth factor in retrocorneal membranes and corneal scars. Ophthalmologica 2000; 214: 341-6.