Advanced pixel sensors and readout electronics based on 3D integration for the SuperB Silicon Vertex Tracker

Valerio Re
on behalf of the VIPIX collaboration

Università di Bergamo
Outline

• The SuperB project and the Silicon Vertex Tracker

• Pixels in the SuperB SVT

• Evolution from 2D devices to 3D integration for advanced SuperB pixels
The SuperB Project

• The physics case for a high luminosity B Factory is clearly established.
 - Flavour physics is rich, promises sensitivity to New Physics ... but large
 statistics (50-100 ab$^{-1}$) is needed
• First generation of B-Factories (PEP-II and KEKB) exceeded their
design goals ($L \sim 1.2-1.7 \times 10^{34}$ cm$^{-2}$ s$^{-1}$, integrated 1.2 ab$^{-1}$) but an
upgrade of ~ 2 orders of magnitude in L is needed to get 50 ab$^{-1}$.
• Increasing Luminosity by brute-force (higher currents) is expensive and
difficult
 - wall plug power and detector background explosion
 - effective limitation around 5×10^{35} cm$^{-2}$ s$^{-1}$
• The SuperB italian accelerator concept allows to reach $L = 10^{36}$ cm$^{-2}$ s$^{-1}$
with moderate beam current (2A) using very small beam size ($\sim 1/100$ of
present B-Factories beams exploiting the ILC R&D on damping rings &
final focus) with the help of the Crab Waist scheme at the IP to keep
the beams small & stable after collision (verified with tests on Dafne)
• This approach allows to (re-) use parts of existing detectors and
machine components.
SuperB approval and site

• SuperB has been approved by the Italian Government as the first in a list of 14 “flagship” projects within the new national research plan.

• A financial allocation of 250 Million Euros in about five years has been approved for the “superb flavour factory”

• The site was decided: SuperB will be built in the campus of the Tor Vergata University campus near Rome

• Beam lines for synchrotron light (very high brightness) experiments will be available at the SuperB facility

• First collisions: mid 2016
Machine parameters

	Units	HER	LER	HER	LER	HER	LER
Machine		Super B		PEP II		Super KEKB	
Circumference	m	1258.4	2200	3016.3			
Frequency turn	Hz	2.38E+05	1.36E+05	9.95E+04			
# bunch		978	1732	2500			
Frequency collision	MHz	233	236	249			
Full crossing angle	Rad	0.066	0.000	0.083			
Energy	GeV	6.7	4.18	9.0	3.1	7	4
Energy ratio		1.60	2.90	1.75			
μx	cm	2.6	3.2	35	40	2.4	3.2
βy	μm	253	205	9000	10800	410	270
coupling	%	0.25	0.25	0.24	0.45	0.35	0.40
Radial emittance εx	nm	2.07	2.37	55	33	2.4	3.1
Vertical emittance εy	pm	5.18	5.93	1300	1500	8.4	12.4
Bunch length	cm	0.5	0.5	1.15	1.25	0.5	0.6
Current	A	1.89	2.44	2.07	3.21	2.6	3.62
# particles/bunch	10^10	5.08	6.56	5.49	8.52	6.55	9.13
Hor. size @ IP σx	μm	7.34	8.71	43.87	36.33	7.75	10.62
Ver. size @ IP σy	nm	36.2	34.9	3421	4025	59.0	59.0
Piwinski angle		22.50	18.95	0.00	0.00	26.79	23.46
Horizontal tune shift	%	0.21	0.33	5	0.28	0.28	9.00
Vertical tune shift	%	9.89	9.55	5	8.75	9.00	9.00

Luminosity \(10^{36}\ Hz/cm^2\) | 1.02 | 0.012 | 0.80 |
SuperB Detector (with options)

Valerio Re – TIPP2011, Chicago, June 9, 2011
The SuperB Silicon Vertex Tracker

The SVT provides precise tracking and vertex reconstruction, crucial for time dependent measurements.

BaBar SVT
- 5 Layers of double-sided Si strip sensor
- Low-mass design. ($p_t < 2.7$ GeV)
- Stand-alone tracking for slow particles.
- 97% reconstruction efficiency
- Resolution ~15 μm at normal incidence

SuperB SVT based on Babar SVT design for $R>3$cm. BUT:

1) reduced beam energy asymmetry (6.7×4.2 GeV vs. 9×3.1 GeV) requires an improved vertex resolution (~factor 2)
 - Layer0 very close to IP (@1.5 cm) with low material budget (<1% X_0) and fine granularity (50 μm pitch)
 - Layer0 area 100 cm2

2) bkg levels depend steeply on radius
 - Layer0 needs to be fast and rad hard (>20x5 MHz/cm2, >3x5 MRad/yr)

B$\to\pi\pi$ decay mode, $\beta\gamma=0.28$, beam pipe $X/X_0=0.42\%$, hit resolution =10 μm

The SVT provides precise tracking and vertex reconstruction, crucial for time dependent measurements.
SuperB SVT Layer 0 technology options

- Striplets option: mature technology, not so robust

MAPS and 3D vertically integrated pixels are the two most advanced options considered for Layer0 upgrade:

- **Reduction of front-end pitch to 50x50 \(\mu \text{m}^2 \)**
 - Produced and tested FE prototype chip with 50x50 \(\mu \text{m}^2 \) pitch & fast data push readout (already developed for DNW MAPS) - (4k pixels, ST 130 nm)

- **CMOS MAPS option: new & challenging technology.**
 - Sensor & readout in 50 \(\mu \text{m} \) thick chip
 - Extensive R&D (SLIM5-INFN Collaboration) on
 - Deep N-well devices 50x50\(\mu \text{m}^2 \) with in-pixel sparsification.
 - Fast readout architecture implemented
 - CMOS MAPS (4k pixels) successfully tested with beams.

Thin pixels with Vertical Integration: reduction of material and improved performance.

- Two options are being pursued (VIPIX - INFN Collab.)
 - DNW MAPS with 2 tiers
 - Hybrid Pixel: FE chip with 2 tiers + high resistivity sensor

Valerio Re – TIPP2011, Chicago, June 9, 2011
Evolving from 2D to 3D

• We are targeting 50 x 50 μm² pixels (resolution requirement) with pixel-level sparsified readout and time stamping (background tolerance)

• If readout CMOS chips can expand to 2 (or more...) layers, more advanced and optimized functions can be integrated in smaller pixels

• In a 3D structure, one of the layers can be a high resistivity pixel sensor, or a CMOS sensor; several constraints can be removed with the help of 3D integration
3D technology choices by SuperB-VIPIX

- Tezzaron “via middle” process for the face-to-face bonding between two 130 nm CMOS wafers by GlobalFoundries
- This approach is followed by the 3D-IC consortium promoted by Fermilab; the Italian VIPIX collaboration is a member of this consortium together with 17 international groups
- TSVs are drilled at the foundry in the early stages of CMOS wafers processing. Very high density interconnections (< 10 μm) are possible with this technique.

E.g.: 2-layer CMOS chips for pixel readout with many pixel-level interconnections

Valerio Re – TIPP2011, Chicago, June 9, 2011
The SuperB-VIPIX way to 3D-integrated pixels

• Readout of high resistivity pixels: from Superpix0 to Superpix1
 Improve the performance of the analog section (e.g., gain uniformity and threshold dispersion), separate analog and digital, add logic functions for a more flexible readout architecture (triggerable, time-stamp ordered)

• CMOS sensors: from 2D APSEL to 3D APSEL
 Same as above, but also improving the sensor performance (smaller capacitance, better charge collection)
Deep N-Well (DNW) sensor concept

New approach in CMOS MAPS design compatible with data sparsification architecture to improve the readout speed potential

Efficiency vs. threshold

Developed in a 130 nm CMOS process, various different chips successfully tested with radioactive sources and in a beam

90Sr electrons

Average Signal for MIP (MPV) = 980e-$^-$

Cluster signal (mV)

Noise events

$\text{S/N}=23$

Landau

Efficiency 92% because of PMOS N-wells in the pixel cell

Power

PREAMPLER

SHAPER

DISC

LATCH

Efficiency vs. threshold

Runs 3158-3163

100μm thick

300μm thick

0.5 MIP

Valerio Re – TIPP2011, Chicago, June 9, 2011
Latest 2D generation of deep N-well MAPS: APSEL4D and APSEL5T

To reduce the area of logic blocks with PMOS in the pixel, the matrix is subdivided in MacroPixel (MP=4x4) with point to point connection to the periphery readout logic:

- Register hit MP & store timestamp
- Enable MP readout
- Receive, sparsify, format data to output bus

With respect to APSEL4D, scaling to larger matrix size dictates to remove the shaper stage to make room for additional macropixel private lines.

Small matrix successfully tested with shaperless front-end and improved sensor layout.
3D integration for a large deep N-well MAPS matrix

Sensor performance:

All the PMOS (and their competitive N-wells) of the digital section are removed from the sensing layer.

According to device simulation, efficiency ramps up to 99%.

Deep N-well area can be reduced, decreasing the sensor capacitance and allowing for a better noise/power trade-off.
The analog section in a 3D deep N-well MAPS

- **Charge preamplifier with a** C_{FB} **continuously discharged by an NMOS biased in deep subthreshold region.**

- **RC-CR shaper with a transconductor feedback network:**
 - V_{bl} chip wide distributed by an external voltage reference (not affected by voltage drop issues)

Thanks to 3D integration: use MiM capacitors, independently optimize noise and threshold dispersion (also DAC for local threshold adjustment), achieve a high charge sensitivity in a reliable way.
Voltage drop on analog VDD/GND lines

$$\Delta V_d = 15/20 \text{ mV (typ/max)}$$

Voltage drop on the AVDD and AGND lines causes changes in some pixel current sources, in particular in the **shaper input branch** and in the **transconductor**. These current changes lead to a degradation of the front-end performance (i.e. charge sensitivity and peaking time).

This problem is overcome by distributing a reference voltage to each pixel according to the schematic above.

M. Manghisoni, E. Quartieri et al., "High Accuracy Injection Circuit for Pixel-Level Calibration of Readout Electronics" presented at the 2010 IEEE Nuclear Science Symposium Conference, Knoxville, USA, October 30 - November 6 2010.
Effect of compensation of power supply voltage drops on peaking time and charge sensitivity

Voltage drop is simulated as a symmetrical voltage variation in the analog power (AVDD) and ground (AGND) lines.

\[AVDD = 1.5 \, V - \Delta V_d, \, AGND = \Delta V_d \]

![Graphs showing effect of compensation on peaking time and charge sensitivity.](image)
Complex in-pixel logic can be implemented without reducing the pixel collection efficiency; readout can be data push or triggered.

Timestamp (TS) is broadcast to pixels and each pixel latches the current TS when fires.

Matrix readout is TS ordered
- A readout TS enters the pixel and an HIT-OR-OUT is generated for columns with hits associated to that TS
- A column is read only if HIT-OR-OUT=1
- DATA_OUT is generated for pixels in the active columns with hits associated to that TS.

VHDL simulation in data push mode (100MHz/cm² input hit rate)
Readout Effi > 99% @ 50 MHz clock with timestamp of 200 ns.
Design features and simulations for the 3D MAPS

Design features and simulations for the 3D MAPS
3D Apsel
Charge sensitivity
Peaking time
ENC
Threshold dispersion before/after correction
INL (@ 2000 e-)
Analog power consumption
Detector parasitic capacitance
Matrix size
Pixel pitch

Valerio Re – TIPP2011, Chicago, June 9, 2011
Superpix0: performance and limitations of a 2D CMOS readout chip for 50x50 um² high resistivity pixels

Test results with sensor:

ENC: 100 e rms
Threshold dispersion: 500 e-
Gain: 40 mV/fC
(with ~5% dispersion)
Power: 2 μW/pixel

The chip architecture is derived from the 2D APSEL MAPS, with a shaperless front-end and a 2x8 MacroPixel readout structure.
Superpix1: a 3D CMOS chip for 50x50 μm² pixels

- Lower detector parasitic capacitance ($C_D ≈ 150$ fF): lower noise and power consumption.
- Lower power consumption ($I_{cell} ≈ 7μA$) reduces the voltage drop effects on the channel-to-channel baseline voltage (V_{bl}) dispersion, also less noisy than transconductor.
- C_2 linearly discharged by a constant current I_{mir}, linear increase of the recovery time with input signal amplitude.
- Fine tuning system in order to reduce the threshold dispersion:
 - I_{DAC} is set by a 4 bit current steering DAC in each channel.
 - DAC driven by a thermometric code decoder.

Valerio Re – TIPP2011, Chicago, June 9, 2011
Superpix1: a 3D CMOS chip for 50x50 μm² pixels

Parameter	Value
Charge sensitivity	48 mV/fC
Peaking time @ 16000 injected electrons	260 ns
ENC	130 e-
Threshold dispersion before/after correction	560/65 e-
Analog power consumption	10 μW/pixel
Detector capacitance	150 fF
Matrix size	128x32 pixels
Pixel pitch	50 μm

This plot shows that an optimum condition exists for the threshold correction operation (DAC output range ≈5\(\sigma_{th}\)):

![Graph showing the relationship between DAC output range and threshold correction](image)

To be connected to a high resistivity pixel sensor

The readout architecture is the same as in the 3D MAPS device
Status of 3D integration of pixel sensors and electronics for the SuperB SVT (3D APSEL)

We are getting ready for a submission in the Tezzaron/GlobalFoundries technology, which will be organized by CMC/CMP/MOSIS.

But, before this, we would like to test the chips from the first run of the 3D-IC consortium.
The first 3D-IC run

In 2009, the Italian VIPIX collaboration submitted 3D active pixel devices in the first run of the 3DIC Consortium.

In January 2011, we received the first samples, before the interconnection. These 2D devices were successfully tested.

These chips include MAPS devices with two different designs:

• 1) APSEL-like chip (data driven continuous sparsified readout, 40 x 40 \(\mu \text{m}^2 \) pixels)

• 2) Chip for the ILC Vertex (intertrain sparsified readout, 20 x 20 \(\mu \text{m}^2 \) pixels)
Tests of the layer with sensing electrode and analog front-end in APSEL chips from the first run of the 3D-IC consortium

Analog signals, electronic noise (ENC ~ 50 e) and spectra from radioactive sources have been measured.

From 90Sr spectra, average signal from MIPS is close to 900 electrons (MPV).
Tests of the analog layer in a 64x64 matrix (ILC VTX design) in the first run of the 3D-IC consortium

Measured ENC ~ 70 e at 5 μW/pixel power dissipation

threshold dispersion ~ 50 e
3D processing is slowly progressing

All tested 2D circuits are working, suggesting that 3D bonded circuits should work.

By May 17 two wafer pairs were bonded with good bonding results. Thinning is the next step, followed by backside metal deposition and finally chip dicing.

The second 3D-IC run will start soon after the tests of chip from the first run.
Remaining 3D processing steps in the first run of the 3D-IC consortium

Thin wafer-2 to about 12 um to expose super via.

Add metallization on back of wafer-2 for bump bond or wire bond
Open issues and further R&D

3D integration: can we access this technology in a reliable and stable way? Are there other useful approaches to 3D?

AIDA WP3: Advanced pixel sensors based on 3D integration of 2 layers in heterogeneous technologies (talk by H.-G. Moser on Tuesday in the satellite 3D meeting)

“via last” process, 4-side buttable device (reducing dead area and material budget) with low density interconnections in the device periphery.

Hybrid pixels: can they be thin enough? Thinning studies of readout chips and sensors are being pursued by the pixel community.

MAPS: Tolerance to displacement damage could be a showstopper (estimated yearly fluence $\phi \sim 5 \times 10^{12}$ n/cm2); a high-resistivity, fully depleted sensing layer with analog CMOS front-end might be the solution.
Conclusions

• The performance of the innermost Layer0 of the Silicon Vertex Tracker at SuperB can greatly benefit from 3D integration in terms of both electronics and sensor

• An advanced pixelated detector will be required by Layer0 when SuperB operates at full luminosity (about 2 years after first collisions) because of high background

• R&D will proceed to a technology choice on Layer0 pixels in about two years from now
The INFN VIPIX collaboration

VIPIX - Vertically Integrated PIXels

G. Batignani¹, S. Bettarini¹, M. Dell’Orso¹, F. Forti¹, P. Giannetti¹, M. A. Giorgi¹, F. Morsani¹, N. Neri¹, E. Paoloni¹, M. Piendibene¹, G. Rizzo¹

L. Ratti², V. Speziali², M. Manghisoni², V. Re²³, G. Traversi²³, L. Gaioni²

L. Bosio⁴, L. Lanceri⁴

G. Bruni⁵, M. Bruschi⁵, R. Di Sipio⁵, B. Giacobbe⁵, F. M. Giorgi⁵, A. Gabrielli⁵, C. Sbarra⁵, N. Semprini⁵, M. Villa⁵, A. Zoccoli⁵, M. Caccia⁶, F. Risigo⁶

G.F. Dalla Betta⁷, A. Repchankova⁷, V. Tyzhnevyi⁷, G. Verzellesi⁷

L. Bissi⁸, P. Ciampolini⁸, A. Marras⁸, G. Matrella⁸, P. Placidi⁸, E. Pilicer⁸, D. Passeri⁸, L. Servoli⁸, P. Tuccheri⁸

E. Bernieri⁹, G. Conte⁹, M. C. Rossi⁹, G. Assanto⁹, L. Colace⁹, E. Spiriti⁹

¹INFN Pisa
²INFN Pavia
³Università di Bergamo
⁴INFN Trieste
⁵INFN Bologna
⁶INFN Milano
⁷Università degli Studi di Trento and INFN Padova
⁸INFN Perugia
⁹INFN Roma III
Backup slides
Exploiting 3D integration: readout architecture without MacroPixel

- The MacroPixel arrangement was adopted to reduce the pixel-level logic (limiting the area of competitive N-wells) and the digital switching lines running above pixel columns

- Reasons to eliminate the MacroPixel architecture:
 - The routing of private lines (FastOR, Latch Enable) scales with matrix column dimension
 - Inefficiency due to dead time (freezed MP) depends on MP dimensions
 - Not-fired MP columns of fired MPs are also scanned (time consuming) by the sparsification logic
 - Only MP masking level can be reasonably implemented

- Matrix readout speed can increase, also carrying along a readout logic simplification

- Removing the MacroPixel and implementing timestamp latching at the pixel level appears possible with 3D integration, without reducing the pixel efficiency
Tezzaron vertical integration process flow (VIA FIRST):

- multi-tier tier chip; Tezzaron includes standard CMOS process by Chartered Semiconductor, Singapore.

Step 1: Fabricate individual tiers; on all wafers to be stacked: complete transistor fabrication, form super via Fill super via at same time connections are made to transistors

Step 2: Complete back end of line (BEOL) process by adding Al metal layers and top Cu metal (0.7 μm)

Step 3: Bond wafer-2 to first wafer-1 Cu-Cu thermo-compression bond

All wafers are bulk
Tezzaron vertical integration process flow:

Step 4: Thin the wafer-2 to about 12 um to expose super via. Add Cu to back of wafer-2 to bond wafer-2 to wafer-3. OR stop stacking now! Add metallization on back of wafer-2 for bump bond or wire bond.

Step 5: Stack wafer-3, thin wafer-3 (course and fine fine grind to 20 um and finish with CMP to expose W filled vias). Add final passivation and metal for bond pads.
Advantages of Tezzaron process

- No handle wafers needed
- No extra space allotment in BEOL processing for vias
- Vias are very small
- Vias can be placed close together
- Minimal material added with bond process
 - 35% coverage with 1.6 um of Cu gives Xo=0.0056%
 - No material budget problem associated with wafer bonding.
- Good models available for Chartered transistors
- Thinned transistors have been characterized
- Process supported by commercial tools and vendors
- Fast assembly
- Lower cost

Via diameter ~ 1.2 um
Pad diameter ~ 1.7 um

Via size plays an important role in high density pixel arrays
2.5 um
DNW MAPS Hit Efficiency measured in a CERN beam test (APSEL4D)

- MAPS hit efficiency up to 92% with threshold @ 400 e- (~ 4 \sigma_{noise} + 2 \sigma_{thr_disp})
- 300 and 100 \mu m thick chips give similar results
- Intrinsic resolution ~ 14 \mu m compatible with digital readout.

- Competitive N-wells (PMOS) in pixel cell can steal charge reducing the hit efficiency
4-bit current steering DAC

- Thermometric, sequential selection by lines and columns starting from one corner of the array
- Increase in overall power dissipation, slight complication for the slow control section
FE Chip architecture

- Use data push readout architecture developed for MAPS chip, now optimized with target rate (100 MHz/cm²) for full chip size (~1.3 cm²)
- VHDL simulation: readout efficiency > 98% @ 60 MHz RDclock
- Space time coordinates with time granularity 0.2-5.0 us (BCO clock)

- Each sub-matrix scan has its own readout & scan logic
- All readout working in parallel
- Queuing output system

- Data from the final barrel are sent to a common bus with a faster clock ~ 160 MHz

Common Pixel Data Bus – Active 1 column of pixel at a time
- the per-column readout starts at the arrival of a BC which increase also the time counter
- for each column, each MP is read by a sparsifier
- informations are collected in barrels and then get out of the submatrix

Matrix overview
- Binary pixels matrix
- Column-wide shared data-bus
- One column read per clock cycle
Vertically integrated MAPS in the second 3D-IC run: APSEL

- **Submatrix 1**: 128x50 pixel matrix, 50 μm pitch, Active area=32mm²
 - Data lines for 2 submatrices
 - 1.6 mm x 50 mm

- **Submatrix 2**: 128x50
 - Data lines for 2 submatrices
 - 0.16 mm x 50 mm

- **Readout**: 8mm², area=2x area from FE32x128
 - 1.6 mm x 0.5 mm

- **Beam axis**: 0.5 mm x 1.6 mm

- **Data lines**: 0.120 mm cut line, 8.99 mm