Three new *Graphium* species from baobab trees in South Africa and Madagascar

E.M. Cruywagen¹, Z.W. de Beer¹, J. Roux¹, M.J. Wingfield¹

Key words

Adansonia digitata
Adansonia rubrostipa
fungal biodiversity
Microscales

Abstract

Baobabs (*Adansonia* spp.) are iconic trees, known for their immense size, strange forms, sources of food and as the subjects of myths and mysteries. It is thus surprising that little is known regarding the fungi that infect these trees. During a survey to determine which wound infecting fungi occur on baobabs, synnematous structures were observed and *Graphium*-like isolates were obtained. Culture characteristics and micro-morphology, together with DNA sequence comparisons for the SSU rRNA, rRNA-ITS and TEF-1α gene regions were used to characterise these fungi. These data revealed three novel *Graphium* spp. and these are described as *G. adansoniae*, *G. madagascariense* and *G. fabiforme*.

Article info

Received: 2 September 2010; Accepted: 4 November 2010; Published: 8 December 2010.

INTRODUCTION

Baobab trees are iconic plants and represent some of the most recognisable trees in the world. The eight species of baobabs reside in the single genus, *Adansonia*. Madagascar is their centre of diversity, with six species endemic to the island. These include *A. granddieri*, *A. madagascariensis*, *A. perrieri*, *A. rubrostipa*, *A. suarezensis* and *A. za* (Baum 1995, Wickens & Lowe 2008). *Adansonia digitata*, the African baobab, has a wide distribution from as far north as the Sahel to a few degrees south of the Tropic of Capricorn in the south of the continent (Wickens & Lowe 2008). This species has also been introduced into Madagascar and other parts of the world (Maheshwari 1971). The remaining species, *A. gregorii*, occurs in the northwestern part of Australia, in the Kimberley ranges (Baum 1995, Wickens & Lowe 2008).

The different species of baobab trees are not only part of the local folklore of the regions where they occur, but each has a multitude of uses (Wickens 1982, Gebauer et al. 2002). Every part of the baobab tree can be used for either food, fodder, medicine, shelter or to produce useful utensils. The fruit of *A. digitata* represents a source of vitamin C (Chadare et al. 2009) and the leaves, seeds and young roots can all be eaten. The bark is used to produce ropes and fish traps and the wood can be used as fodder or as thatching for roofs (Wickens 1982).

Ironically, very little is known regarding the fungal associates of baobabs in the countries where they occur. Research on baobab trees has typically concerned the nutritional value of the fruit, seeds and leaves of the trees (Yazzie et al. 1994, Boukari et al. 2001). Some studies have been conducted on the ecology of baobabs in Africa (Dhillon & Gustad 2004, Venter & Witkowski 2009), and also on the effect of elephant populations on baobab survival and regeneration (Swanepoel & Swanepoel 1986, Barnes et al. 1994, Edkins et al. 2008). Baobab trees can survive and recover from an incredible level of damage by humans and/or elephants. However, in recent years there is evidence of baobab trees dying of unknown cause (Anonymous 1991, Pearce et al. 1994, Alberts 2005, Patrut et al. 2007, Edkins et al. 2008). This has prompted a study to identify the fungi occurring on wounds of these trees and to establish a base of understanding of the mycological diversity associated with baobabs. During these investigations, fungi producing synnemata were observed on wounded as well as dead baobab trees in South Africa and Madagascar. *Graphium*-like fungi were obtained from spore-drops taken from these structures. The aim of this study is to identify and characterise these fungi based on DNA sequence comparisons and morphology.

MATERIALS AND METHODS

Isolates examined

Isolates from South Africa used were obtained from an elephant-damaged *A. digitata* tree (Fig. 1) in the Kruger National Park and from an *A. digitata* tree next to the N1 highway close to Musina (Limpopo Province) that had been damaged by a motor vehicle. The Madagascar isolates were obtained from the wood of a recently felled *A. rubrostipa* tree. All isolates (Table 1) are maintained in the culture collection (CMW) of the Forestry and Agricultural Biotechnology Institute (FABI), Pretoria, South Africa.

Representative strains have also been deposited at the Centraalbureau voor Schimmelcultures (CBS), Utrecht, The Netherlands. Herbarium specimens of types and para-types were deposited in the herbarium of the National Collection of Fungi, Pretoria, South Africa (PREM). Two isolates each, including the ex-type isolates, of five known species in the *G. penicillioidei* complex (Table 1) were retrieved from the CMW collection, and included in the study for comparative purposes.

DNA extraction, PCR amplification, and DNA sequencing

DNA extraction was performed using PrepmanUltra (Applied Biosystems, Foster City, CA, USA) following the method described by Linnakoski et al. (2008). A part of the small subunit ribosomal RNA (SSU) gene region was amplified using prim-
Name	CMW no.	Other no.	Herbarium no.	Host plant / Insect Origin Collector or supplier	GenBank accession no.
G. adansoniae	30617				
	30618				
	30619				
	30620				
	30621				
	30622				
	30623				
	30624				
	30625				
	30626				
	30627				
	30628				
	30629				
G. basitruncatum	30630				
	30631				
	30632				
G. carbonarium	30633				
	30634				
	30635				
	30636				
G. fabiforme	30637				
	30638				
	30639				
	30640				
G. fimbriisporum	30641				
	30642				
	30643				
	30644				
G. laricis	30645				
	30646				
	30647				
	30648				
G. madagascariense	30649				
	30650				
	30651				
	30652				
G. penicillioides	30653				
	30654				
	30655				
	30656				
G. pseudormiticum	30657				
	30658				
	30659				
	30660				
G. sp. 1	30661				
	30662				
	30663				
	30664				
G. sp. 2	30665				
	30666				
	30667				
	30668				
G. sp. 3	30669				
	30670				
	30671				
	30672				
G. sp. 4	30673				
	30674				
	30675				
	30676				
G. sp. 5	30677				
	30678				
	30679				
	30680				
G. sp. 6	30681				
	30682				
	30683				
	30684				
G. sp. 7	30685				
	30686				
	30687				
	30688				

Notes:
- CMW: Culture collection of the Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa.
- CBS: Centraalbureau voor Schimmelcultures, Utrecht, The Netherlands; CCF: Culture Collection of Fungi, Department of Microbiology, Charles University, Prague; JCM: Japan Collection of Microorganisms, Wako, Japan; UAMH: University of Alberta Microfungus Collection & Herbarium, Devonian Botanic Garden, Edmonton, Canada.
- PREM: National Collection of Fungi, Pretoria, South Africa.
- Accession numbers of the sequences obtained in this study are shown in bold.
- T: Ex-type strain.
- No amplification: all attempts to amplify the SSU for these two isolates failed.
- UAMH: Department of Botany, Faculty of Science, Charles University, Prague; FABI: University of Alberta Microfungus Collection & Herbarium; CBS: Centraalbureau voor Schimmelcultures; CCF: Culture Collection of Fungi; JCM: Japan Collection of Microorganisms; UAMH: University of Alberta Microfungus Collection & Herbarium.
ers NS1, NS3, NS4 and NS8 (White et al. 1990). The first and second internal transcribed spacer (ITS 1 and ITS 2) regions of the rRNA gene, including the 5.8S rRNA gene, were amplified with primers ITS1F (Gardes & Bruns 1993) and ITS4 (White et al. 1990), while part of the translation elongation factor 1α (TEF-1α) gene was amplified using primers EF1F and EF2R (Jacobs et al. 2004).

The PCR reaction mixtures for all three gene regions consisted of 2.6 U Expand High Fidelity Taq Polymerase mixture (Boehringer Mannheim, South Africa), 5 μL PCR reaction buffer, 3 mM MgCl₂, 0.2 mM of each dNTP, and 0.2 mM of each primer (total volume: 50 μL). For the ITS and TEF-1α gene regions, PCR conditions were 2 min at 95 °C, followed by 35 cycles of 30 s at 94 °C, 30 s at 52 °C and 1 min at 72 °C, and finally one cycle of 8 min at 72 °C. The same reaction mixture as above was used for SSU genes but in this case, PCR conditions were 3 min at 95 °C, then 35 cycles of 30 s at 94 °C, 45 s at 52–56 °C and 2 min at 72 °C, followed by a final cycle of 8 min at 72 °C. PCR products were purified with the High Pure PCR purification kit (Roche, Mannheim, Germany).

The PCR fragments of each gene region were sequenced using both the forward and reverse primers mentioned above. The ABI Prism® Big Dye™ Terminator v3.0 Ready Reaction Cycle sequencing Kit (Applied Biosystems) was used for the sequencing PCR. Sequences were determined with an ABI PRISM™ 3100 Genetic Analyzer (Applied Biosystems). DNA sequences of opposite strands were edited and consensus sequences obtained using MEGA v4.0 (Tamura et al. 2007).

Phylogenetic analyses

Appropriate reference sequences were downloaded from NCBI GenBank (http://www.ncbi.nlm.nih.gov) and incorporated into the three separate datasets, which were compiled in MEGA v4.0 (Tamura et al. 2007). Sequences were aligned online with MAFFT 6 (Katoh & Toh 2008), using the G-INS-i strategy for the SSU dataset, and the E-INS-i strategy for the ITS and TEF-1α datasets.

Three different analyses were conducted on each of the three datasets. The introns in the SSU dataset were excluded from the analyses. Maximum likelihood (ML) analyses were conducted in the online version of PhyML v3.0 (Guindon & Gascuel 2003). The best fit substitution models were determined using the Akaike Information Criterion (AIC) in jModelTest v0.1.1 (Posada 2008). The selected model for SSU was HKY+I, for ITS it was GTR+I+G, and for TEF-1α it was TrN+G. Maximum parsimony (MP) analyses were performed using PAUP v4.0 beta 10 (Swofford 2003) with Tree Bisection-Reconnection (TBR) and 10 trees saved per replicate. Confidence levels for
both the ML and MP trees were estimated using 1000 bootstrap replicates. Bayesian inference, based on a Markov Chain Monte Carlo (MCMC) approach, was performed in MrBayes v3.1.2 (Ronquist & Huelsenbeck 2003). Base equilibrium frequencies, instantaneous substitution rates and among-site rate variation values were estimated independently on shared topologies. Two independent Markov chains were initiated from a random starting tree after which runs of 10 M generations (sample frequency 10 d and averages were computed. Burn-in values were determined using Tracer v1.4 (http://tree.bio.ed.ac.uk/software/tracer/), and all sampled trees lower than the burn-in values were discarded. The remaining trees were pooled into a 50% majority rule consensus tree.

Morphology

Cultures were grown on 2 % malt extract agar (MEA; 20 g malt extract, Biolab, Merck, Midrand, South Africa; 20 g agar, Biolab; 1 000 mL dH2O) as well as homemade oatmeal agar (OA; 20 g oats, boiled and filtrated, with 20 g agar added and made up to 1 000 mL with dH2O). Fungal structures were mounted in 85 % lactic acid for morphological comparisons. Microscopic observations were made using a Zeiss Axioscope compound microscope and photographic images captured using a Zeiss Axioscam MRc digital camera. AxioVision v4 (Carl Zeiss Ltd., Germany) was used for all measurements. Fifty measurements were taken for each taxonomically informative structure of the isolates chosen to represent the new species. Colony colours were defined using the colour charts of Rayner (1970). Nomenclatural novelties and descriptions were deposited in MycoBank www.MycoBank.org; Crous et al. 2004).

Cultures were grown for 7 d on 2 % MEA to provide inoculum for growth comparisons in culture. A 4 mm cork borer was used to make circular plugs that were placed aseptically at the centres of 2 % MEA plates. Three replicates of each culture were incubated at temperatures 10–35 °C at 5 °C intervals. Measurements of the colony diameters were taken after 7 and 10 d and averages were computed.

Asexual fruiting structures of the selected isolates were examined with scanning electron microscopy (SEM). Cultures were grown on MEA until sporulation. A colonised block of agar was cut from the agar and immersed in 2.5 % glutaraldehyde in 0.075 M phosphate buffer (pH 7) for 1 h. The specimens were washed three times (10 min each) in 0.075 M phosphate buffer and dehydrated for 10 min in each of 30%, 50%, 70%, 90% as well as three times in 100 % ethanol. The specimens were critical point dried and sputter coated with gold. Specimens were examined with a JSM-6400 SEM (JEOL, Tokyo) at 5 kV and images captured with Orion v6.60.4 (E.L.I. s.p.r.l., Brussels, Belgium).

RESULTS

DNA sequencing, introns in SSU genes and phylogenetic analyses

Amplification of the SSU genes yielded fragments varying between 1 506 and 1 670 bp in size. After alignment with sequences from GenBank, it was found that two isolates of G. adansoniae (CMW 30619, CMW 30620) from baobab in South Africa contained introns, 372 bp in size and in a similar position (Fig. 2a) to introns in Graphium basitruncatum, G. pseudormiticum, and Graphium sp. 3. BLAST searches in GenBank revealed that these introns are rare but correspond in length and structure with group I introns as defined by Li & Zhang (2005). The group I introns from the isolates indicated in Fig. 2 were aligned and a neighbour-joining tree was constructed in MEGA v4.0 to determine the similarities between introns from the different isolates (Fig. 2b). The intron of G. putredinis was very different from the introns of the four isolates from the G. penicillioides complex, which were similar and grouped closer to each other. The introns of the two G. adansoniae isolates were identical. A second intron in G. basitruncatum and the intron in G. pseudomiticum corresponded to group IE introns previously found in another Microascalean species, Gondwanamycyes proteae (Gibb & Hauser 2003). Three isolates of G. madagascariense from Madagascar did not have
introns in this position. For two of the Madagascar isolates of G. fabiforme (CMW 30626, CMW 30627), it was not possible to amplify the SSU genes despite repeated attempts using different primer combinations. All introns in the SSU dataset were excluded from the phylogenetic analyses of the G. penicillioides complex.

The aligned SSU dataset without introns contained a total of 1,668 characters of which 1,517 were constant and 70 characters were parsimony informative. The ITS dataset consisted of 556 characters with 256 constant and 252 parsimony informative. There were 614 characters in the TEF-1α dataset including 357 constant and 255 parsimony informative characters. Based on MP, the SSU, ITS and TEF-1α datasets had tree lengths of 181, 631 and 565, consistency indexes (CI) of 0.906, 0.729 and 0.789 and retention indexes (RI) of 0.953, 0.906 and 0.903 respectively. Maximum likelihood trees are displayed (Fig. 3–5) with bootstrap values for MP in italics and ML roman (MP/ML). Posterior probability values higher than 0.95 are indicated with bold lines.

Based on the SSU gene sequences (Fig. 3) the isolates obtained from baobab trees formed a monophyletic lineage in the G. penicillioides complex, with G. penicillioides, G. basitruncatum and two undescribed Graphium species, one from Ecuador (Geldenhuis et al. 2004) and one from Costa Rica (Hulcr et al. 2007), as the closest phylogenetic neighbours. The isolates from South Africa were identical in sequence to the Madagascar isolates, except for the 372 bp group I intron that was absent in the isolates from Madagascar.

Data from the ITS gene (Fig. 4) distinguished the six known species in the G. penicillioides complex, and also five of the seven species from previous studies yet to be described, including Graphium sp. 1 (Massoumi Alamouti et al. 2007), Graphium sp. 3 (Okada et al. 2000), G. fimбриisperum, Graphium sp. 4 (Okada et al. 2000), Graphium sp. 5 (Geldenhuys et al. 2004), G. basitruncatum, G. penicillioides sensu stricto, Graphium sp. 6 (Hulcr et al. 2007), G. adansoniae (Group A), G. madagascariense (Group B), G. pseudomiticum, G. laricis, Graphium sp. 2 (Massoumi Alamouti et al. 2007), Graphium sp. 7 (Kim et al. unpublished).
Fig. 4 Unrooted ML tree of the *Graphium penicillioides* complex based on ITS sequences. Bootstrap values for MP (italics) and ML (roman) above 75 % are given at the nodes. Branches with Bayesian posterior probabilities of more than 0.95 are printed in bold. GenBank accession numbers are shown in bold for isolates newly sequenced in this study.
unpubl.). The South African isolates (Group A) grouped in a monophyletic lineage with three of the Madagascar isolates (Group B). These two groups differed from each other in 7 bp. The other two Madagascar isolates (Group C) grouped closely with the undescribed Graphium sp. 4 (CBS 506.86) from the study of Okada et al. (2000).

In the tree obtained with TEF-1α gene sequences (Fig. 5), all the five known Graphium spp. that were included formed well-supported lineages. The isolates from baobabs formed clades similar to those obtained from the ITS tree, with two Madagascar isolates in a separate clade (Group C), not closely related to any other species. The remaining isolates again formed a larger monophyletic group, but with the Madagascar isolates forming a subgroup (Group B) based on 23 bp differences from the South African isolates (Group A).

Morphology

Isolates representing Groups A (South Africa) and B (Madagascar) had similar growth form in culture (Fig. 6, 7), but slight differences in conidial shape and size. Group B had conidia of variable size including smaller or larger conidia than those in Group A. The conidial morphology was more variable in Group B than in Group A.

Group C isolates were very different to those in Group A and B based on culture (Fig. 6i), and micromorphology. This group of isolates at first produced conidia that were cylindrical to obovoid (Fig. 6k) when just beginning to sporulate, but reniform conidia (Fig. 6l) were abundant in cultures older than four weeks. No teleomorph structures were found to be associated with any of the isolates, neither in culture nor host tissue from which the fungus was isolated.

The growth rates and optimal growth temperature in culture for isolates representing Group A and B differed substantially (Fig. 7). In this regard, Group A isolates all grew faster than Group B isolates at all temperatures tested, while isolates representing Group C grew the slowest (Fig. 7).

Taxonomy

Based on DNA sequence data and morphology, the isolates from baobabs in South Africa and Madagascar could be separated into three distinct groups (Group A–C). These three groups represent distinct taxa, described here as new species in the genus Graphium.

Graphium adansoniae Cruywagen, Z.W. de Beer & Jol. Roux, sp. nov. — MycoBank MB518674; Fig. 6a–d

Teleomorph: Unknown.

Colonial 61 mm diametro post 7 dies in 25 °C in MEA, crescent optime in 35 °C. Coloniae melilinae, infra fulvae. Synnemata abundantes sed dispersa, ex agar orientia, plerumque singula, interdum aggregata. Stipes laete vel atrobrunnei, (68–)88–140(–151) μm longi, apice (23–)60–97 μm lati. Conidia non septata, hyalina cylindrica vel obovoidea basi truncata, (3.5–)60–97 μm wide at the apex. Conidiophores with 2–4 branches, conidiogenous cells annellated. Conidiophores forming a hyaline mucilaginous mass on a synnemata; hyaline, cylindrical to obovoid, (3.5–)4–5(–6) × 1.5–2.5 μm, in massa hyalina mucosa facta, primo alba, cum aeta brunnescensia.

Etymology. Name reflects the African baobab tree Adansonia digitata from which the fungus was isolated.

Colonies on MEA 61 mm diam after 7 d at 25 °C.dark, with optimal growth at 35 °C; hazel on OA and honey on MEA; reverse buff. Mycelium mostly aerial, flat, hyphae hyaline, septate, 1–3 μm wide. Synnemata scattered but abundant, arising from the agar, mostly single, sometimes in groups. Stipes pale to dark brown, (68–)88–140(–151) μm long, apice (23–)60–97 μm lati. Conidia non septata, hyalina cylindrica vel obovoidea basi truncata, (3.5–)60–97 μm wide at the apex. Conidiophores with 2–4 branches, conidiogenous cells annellated. Conidia aseptate, hyalina, cylindrical to obovoid, (3.5–)4–5(–6) × 1.5–2.5 μm, in massa hyalina mucosa, primo alba, cum aeta brunnescensia.

Specimens examined. South Africa, Limpopo, Pafuri, on elephant damaged African baobab tree (Adansonia digitata), 14 Feb. 2008, E.M. Cruywagen, holotype PREM 60308, culture ex-type CMW 30618 = CBS 124917; Limpopo, Musina, on A. digitata tree damaged by a motor vehicle, 20 Jun. 2007, E.M. Cruywagen & J. Roux, PREM 80309, culture CMW 30620 = CBS 124915.
Fig. 6 a–d. *Graphium adansoniae*. a. A 14 d old culture on MEA; b. synnema; c. conidia; d. annellidic conidiogenesis, SEM. — e–h. *Graphium madagascariense*. e. A 14 d old culture on MEA; f. synnema; g. conidia; h. annellidic conidiogenesis, SEM. — i–l. *Graphium fabiforme*. i. A 14 d old culture on MEA; j. synnema; k. conidia; l. annellidic conidiogenesis, SEM (a–d: CMW 30618, Group A; e–h: CMW 30628, Group B; i–l, CMW 30626; Group C). — Scale bars: b, f, j = 50 μm; in c, d, g, h, k, l = 10 μm.
Graphium madagascariense
Cruywagen, Z.W. de Beer & Jol. Roux, sp. nov. — MycoBank MB518676; Fig. 6e–h

Teleomorph. Unknown.

Coloniae 50 mm diametro post 7 dies in 25 °C in MEA, crescenti optime in 30 °C. Coloniae mellinae, infra cinnamomeae. Synnemata dispersa sed abundantia, ex agoaro orientia, plerumque singula, interdum aggregata. Stipites laete vel atrobrunnei, (58–)89–174–(211) μm longi, apice (10–)15–53–(85) μm lati. Conidia non-septata, hyalina cylindrica vel obovoidae basi truncata, (2.5–)3–5(–7.5) × 1.5–2(–3) μm, in massa hyalina mucosa facta, primo alba, cum etate brunnescensia.

Etymology. Name reflects the island of Madagascar where this species was found.

Colony colour on OA was hazel, and on MEA honey with reverse crimson. Mycelium mostly aerial, flat, hyphae hyaline, septate (1.5–)2–3(–3.5) μm wide. Synnemata scattered but abundant, arising from the agar, mostly single, sometimes in groups. Stipes are pale to dark brown, (58–)89–174–(211) μm long and (10–)15–53–(85) μm wide at the apex. Conidiophores with 2–4 branches, conidiogenous cells annellated. Conidia aseptate, hyaline, cylindrical to obovoid (2.5–3–5(–7.5) × 1.5–2(–3) μm, produced in a hyaline mucilaginous mass on the synnemata, bright transparent white when young, becoming dark brown with age.

Etymology. Name reflects the reniform (fabiform) shape of the conidia and also the institute, FABI, where the research to describe this species was conducted.

Specimens examined. MADAGASCAR, Morondava, on dead baobab tree (Adansonia rubrostipa), 10 Oct. 2007, J. Roux & M.J. Wingfield, holotype PREM 60312, culture ex-type CMW 30627 = CBS 124919; Morondava, on dead A. rubrostipa tree, 10 Oct. 2007, J. Roux & M.J. Wingfield, PREM 60311, culture CMW 30627 = CBS 127181.

Graphium fabiforme
Cruywagen, Z.W. de Beer & M.J. Wingfield, sp. nov. — MycoBank MB518678, Fig. 6i–l

Teleomorph. Unknown.

Coloniae 16 mm diametro post 7 dies in 25 °C in MEA, crescenti optime in 30 °C. Coloniae supra infraque fulvae. Synnemata in OA abundantia sed in medio culturae congregata, ex agoaro orientia, plerumque aggregata, interdum singula. Stipites atrobrunnei, (183–)319–496 μm longi, apice (82–)308–674 μm lati. Conidia non-septata, hyalina (3–)3.5–4.5(–5) × (1–)1.5–2 μm cylindrica vel obovoidae basi truncatae, etiam conidia reniformia in coloniis vetustioribus. Conidia in synnematibus in massa hyalina mucosa facta, primo hyalino-alba, cum etate atrobrunnescentia vel nigrescentia.

Etymology. Name reflects the island of Madagascar where this species was found.

Colony diameter (mm) after 10 d in the dark at 25 °C attained 16 mm diam, with optimal growth observed at 30 °C. Colony colour on MEA buff, reverse also buff; on OA colour was grey-olivaceus. Mycelium mostly aerial, flat, hyphae hyaline, septate (1.5–)2–3(–3.5) μm wide. Synnemata abundant, concentrated in the centre of cultures, arising from the agar, mostly in groups, sometimes single. Stipes dark brown, (183–)319–496 μm long and (82–)308–674 μm wide at the apex. Conidiophores with 2–4 branches, conidiogenous cells annellated. Conidia aseptate, hyaline, (3–)3.5–4.5(–5) × (1–)1.5–2 μm, cylindrical to obovoid in young cultures, with reniform shaped conidia also present in cultures older than 3 wk and abundant in 4 wk old cultures. Conidia produced in a hyaline mucilaginous mass on the synnemata, bright transparent white when young, becoming dark brown to black with age.

Specimens examined. MADAGASCAR, Morondava, on dead baobab tree (Adansonia rubrostipa), 10 Oct. 2007, J. Roux & M.J. Wingfield, holotype PREM 60310, culture ex-type CMW 30626 = CBS 124921; Morondava, on dead A. rubrostipa tree, 10 Oct. 2007, J. Roux & M.J. Wingfield, PREM 60311, culture CMW 30627 = CBS 127181.

DISCUSSION

Three new species in the genus Graphium were isolated and described from baobab trees in South Africa and Madagascar. These included G. adansoniae from South Africa, and G. madagascariense and G. fabiforme from Madagascar. Isolates of all these species were collected from dead or wounded baobab trees and recognised based on DNA sequence and morphological comparisons. In addition to the SSU and ITS sequences used to delineate species in this group in the past (Okada et al. 2000, Jacobs et al. 2003, Geldenhuis et al. 2004, Massoumi Alamouti et al. 2007, Hulcr et al. 2007), the TEF-1α gene sequence data for species in the G. penicillioides complex, including the three new species, are presented for the first time in this study.

These three new species reside in Graphium established by Corda in 1837, which at present includes the G. penicillioides and G. putredinis complexes in the Microascales (cf., Okada et al. 1998). These two species complexes were shown by Issakainen et al. (1997, 1999) and Okada et al. (1998) to be phylogenetically very different from species in the Ophiostomatales that at one time accommodated the genus Graphium (Seifert & Okada 1993). Those species related to the Ophiostomatales with Graphium morphology in appearance now reside in Pesotum, reinstated for synnematosan anamorphs in the Ophiostomatales. In contrast, Graphium was redefined to include all synnematosan species in the Microascales, including those in the G. penicillioides and G. putredinis complexes (Okada et al. 1998, 2000). The G. putredinis aggregate is phylogenetically related to Parascedosporium, Petriella, Pseudallescheria and Scedosporium species that are pathogenic to humans (Issakainen et al. 1997, 1999, de Hoog et al. 2000, Okada et al. 2000, Gilgado et al. 2007).

The G. penicillioides species complex forms a distinct lineage in the Microascales and does not have known teleomorph connections. This group includes the type species for the genus, G. penicillioides, and thus represents Graphium s.str. In addition to G. penicillioides, six known and seven undescribed species were recognised in the complex based on ITS sequences (Okada et al. 2000, Geldenhuis et al. 2004, Hulcr et al. 2007, Massoumi Alamouti et al. 2007, unpublished data in GenBank (GQ266157, GQ266158)). Most of these species have been isolated from insect galleries or exposed sapwood of trees (Jacobs et al. 2003, Geldenhuis et al. 2004, Hulcr et al. 2007, Paciura et al. 2010). It is, therefore, not surprising that the

![Fig. 7 Average colony diameters (mm) of the selected Graphium isolates from baobabs, on MEA at 10 °C, 15 °C, 20 °C, 25 °C, 30 °C and 35 °C after 10 d.](Image 323x69 to 550x226)
newly described G. adansoniae, G. madagascariensis and G. fabilome from wounds on baobab trees, form part of this complex. Along with the undescribed Graphium species from native Schizolobium parahybum in Ecuador (Geldenhuys et al. 2004) and Cecropia in Costa Rica (Hulcr et al. 2007), these species from Adansonia are the first Graphium species to be reported from angiosperms in the tropics or subtropics. Apart from these three species, the only other species previously reported from Africa was G. pseudomiticum, from a pine-infecting bark beetle on non-native pine trees in South Africa and thus most likely a fungus native to Europe (Mouton et al. 1994).

An intriguing outcome of this study was that two of the most closely related new Graphium species were isolated from different Adansonia species on two very distinct land masses. Graphium adansoniae was found on A. digitata in Africa and G. madagascariensis was isolated from A. rubrostipa in Madagascar. These results suggest that these fungi have some degree of host or substrate specificity. In a recent study, Pock Tsy et al. (2009) showed that baobab trees probably originated in West Africa and subsequently spread to other parts of the world where they speculated. The similarity in fungi isolated from different tree species on separate land masses, raises intriguing questions regarding the movement of fungi between these areas.

Graphium species are insect vectored (Jacobs et al. 2003, Geldenhuys et al. 2004, Massoumi Alamouti et al. 2007, Hulcr et al. 2007) and it is probable that there would be some relatedness among the insects that vector these fungi in Africa and in Madagascar. A study of these interactions would most likely lead to interesting observations about the biogeography and ecology of these microascalean fungi. This knowledge would add to intriguing patterns that are emerging relating to the occurrence of the sister species of Gondwanamyces in Africa (Marais & Wingfield 2001, Roets et al. 2009) and in Central America (Kolšík & Hulcr 2009). Similar to these two landmasses, Africa and Madagascar also share a common Gondwanaland ancestry which most likely played a role in the evolution of baobab species and their associated fungi and insects.

Another interesting discovery in the present study was that we found group I introns in the ribosomal SSU of one of the newly discovered species, G. adansoniae. These sequences corresponded well with the group I intron sequences previously found in G. bastrucratum, G. putredinis, and Graphium sp. 3 (Okada et al. 1998), that were later classified as group IC1 introns (http://www.ma.ccbu.utexas.edu). Holst-Jensen et al. (1999) showed that group IC1 introns in several genera of the Sclerotiniaceae followed trends similar to what we observed for the Graphium isolates: 1) that introns were consistently present or absent at species level, but not at generic level; and 2) that introns were unique for each species. Our data also supported the suggestion by Haugen et al. (2005) that group I introns in the same insertion site are evolutionary related. Holst-Jensen et al. (1999) found that their ITS and intron phylogenies were incongruent, leading them to conclude that introns and rDNA do not share a common evolutionary history. The reason for this is that introns are most likely transferred horizontally (Holst-Jensen et al. 1999, Keeling & Palmer 2008), and care should thus be taken in the interpretation of phylogenies constructed using intron sequences. However, our results and those of Holst-Jensen et al. (1999) and Haugen et al. (2005), suggest that group I intron sequences might be useful in addition to sequence data from other genes and biological data to distinguish between closely related taxa.

The discovery of three new species of Graphium adds knowledge to the poorly documented fungal biodiversity in Africa. In this respect, Crous et al. (2006) estimated that there could be around seven species of unique fungi on each native plant in southern Africa. Clearly, only a fraction of these have been described and fewer have been studied in terms of their ecological roles. Surprisingly few fungi have been recorded from the iconic and biogeographically important, baobabs. Future studies of the fungi on these trees will likely contribute interesting insights into the ecology, biodiversity and biogeography of fungi.

Acknowledgements We thank Dr Sarah Venter for assistance in collecting material in the field. Mr. Allan Hall of the laboratory for microscopy and micro-analysis at the University of Pretoria is thanked for assistance with electron microscopy. We further acknowledge the National Research Foundation (NRF), Tree Protection Co-operative Programme (TCP) and the THRIP initiative of the Department of Trade and Industry (DTI) for financial assistance that made this study possible. Dr Pascal Dantu, Mrs. Rahajarinina Voninavoko and Mr. Emision Rakotoniaise of CIRAD in Madagascar are thanked for assisting with collections in that country. We also thank the South African National Parks and Kruger National Park for allowing us to sample there and for offering game guards to protect us while sampling.

REFERENCES

Alberts AH. 2005. Threatening baobab disease in Nyae Nyae conservancy. Khaudum National Park Report No. 11/1/1, Tsumkwe, Namibia.
Anonymous. 1991. Africa’s favourite tree falls ill. New Scientist 1784: 10.
Barnes RFW, Barnes KL, Kukula EB. 1994. The long-term impact of elephant browsing on baobab trees at Msembe, Ruaha National Park, Tanzania. African Journal of Ecology 32: 177–184.
Baum DA. 1995. A systematic revision of Adansonia (Bombacaceae). Annals of the Missouri Botanical Garden 82: 440–470.
Boukari I, Shier NW, Fernandez RX, Frisch J, Watkins BA, Pavelis LF, Fly AD. 2001. Calcium analysis of selected western African foods. Journal of Food Composition and Analysis 14: 37–42.
Chadare FJ, Linnemann AR, Hounhouigan JD, Nout MJR, Boekel MAJS van. 2009. Baobab food products: a review on their composition and nutritional value. Critical Reviews in Food Science and Nutrition 49: 254–274.
Corda ACJ. 1837. Icones fungorum hucusque cognitorum. 1. Published by the author, Prague, Czech Republic.
Crous PW, Gams W, Stalpers JA, Robert J, Stegeheus G. 2004. MycoBank: an online initiative to launch mycology into the 21st century. Studies in Mycology 50: 19–22.
Crous PW, Rong HW, Wood A, Lee S, Glen H, Botha W, Slippers B, Beer ZW de, Wingfield MJ. Harksworth DL. 2006. How many species of fungi are there at the tip of Africa? Studies in Mycology 55: 13–33.
Dhillon SS, Gustad G. 2004. Local management practices influence the virulence of the baobab (Adansonia digitata Linn.) in different land use types, Cinzana, Mali. Agriculture, Ecosystems & Environment 101: 85–103.
Edkins MT, Kruger LM, Harris K, Midgley JJ. 2008. Baobabs and elephants in Kruger National Park: nowhere to hide. African Journal of Ecology 46: 119–125.
Gardes M, Bruins TD. 1993. ITS primers with enhanced specificity for basidiomycetes application to the identification of mycorrhizae and rusts. Molecular Ecology 2: 113–118.
Gebauer J, El-Siddig K, Ebert G. 2002. Baobab (Adansonia digitata L.): a review on a multipurpose tree with promising future in the Sudan. Gartenbauwissenschaft 67: 155–160.
Geldenhuys MM, Roux J, Montenegro F, Beer ZW de, Wingfield MJ, Wingfield BD. 2004. Identification and pathogenicity of Graphium and Pesotum species from machete wounds on Schizolobium parahybum in Ecuador. Fungal Diversity 15: 137–151.
Gibb EA, Hausner G. 2003. A group I intron-like sequence in the nuclear small ribosomal subunit of the ophiostomatoid fungus Gondwanamyces proteae. Mycological Research 107: 1422–1425.
Gilgado F, Gene J, Cano J, Guarro J. 2007. Reclassification of Graphium tectonae as Parascedosporium tectonae gen. nov., comb. nov., Pseudallescheria africana as Petriellipsia africana gen. nov., comb. nov. and Pseudallescheria fimeti as Lophotrichus fimeti comb. nov. International Journal of Systematic and Evolutionary Microbiology 57: 2177–2178.
Gordon S, Gascuel O. 2003. A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Systematic Biology 52: 119–125.
Gibb EA, Hausner G. 2003. A group I intron-like sequence in the nuclear small ribosomal subunit of the ophiostomatoid fungus Gondwanamyces proteae. Mycological Research 107: 1422–1425.
Gilgado F, Gene J, Cano J, Guarro J. 2007. Reclassification of Graphium tectonae as Parascedosporium tectonae gen. nov., comb. nov., Pseudallescheria africana as Petriellipsia africana gen. nov., comb. nov. and Pseudallescheria fimeti as Lophotrichus fimeti comb. nov. International Journal of Systematic and Evolutionary Microbiology 57: 2177–2178.
Guindon S, Gascuel O. 2003. A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Systematic Biology 52: 696–704.
Haugen P, Simon DM, Bhattacharya D. 2005. The natural history of group I introns. Trends in Genetocics 21: 111–119.
Holst-Jensen A, Veasey M, Schumacher T, Johansen S. 1999. Structural characteristics and possible horizontal transfer of group I introns between closely related plant pathogenic fungi. Molecular Biology and Evolution 16: 114–126.
Hoog GS de, Guarro J, Gené J, Figueras M. 2000. Atlas of clinical fungi, 2nd edn. Centraalbureau voor Schimmelcultures / Universitat Rovira i Virgili, Utrecht, Reus, Spain.

Hulcr J, Kolářik M, Kirkendall LR. 2007. A new record of fungus-beetle symbiosis in Scolytodes bark beetles (Scolytinae, Curculionidae, Coleoptera). Symposia 43: 151–159.

Issakainen J, Jalava J, Eerola E, Campbell CK. 1999. Relatedness of Pseudallescheria, Scedosporium and Graphium pro parte based on SSU rDNA sequences. Journal of Medical and Veterinary Mycology 35: 389–398.

Issakainen J, Jalava J, Saari J, Campbell CK. 1999. Relationship of Scedosporium prolificans with Petriella confirmed by partial LSU rDNA sequences. Mycological Research 103: 1179–1184.

Jacobs K, Bergdahl DR, Wingfield MJ. 2004. Epitypification of Graphium penicillioides dormiticum sp. nov.: a new hyphomycete with unusual conidiogenesis. Mycological Research 108: 411–418.

Jacobs K, Kirisits T, Wingfield MJ. 2003. Taxonomic re-evaluation of three related species of Graphium, based on morphology, ecology and phylogeny. Mycologia 95: 714–727.

Kato K, Toh H. 2008. Recent developments in the MAFFT multiple sequence alignment program. Briefings in Bioinformatics 9: 286–298.

Keeling PJ, Palmer JD. 2008. Horizontal gene transfer in eukaryotic evolution. Nature Reviews Genetics 9: 605–618.

Kolářik M, Hulcr J. 2009. Mycobiota associated with the ambrosia beetle Scolytodes unipunctatus (Coleoptera: Curculionidae, Scolytinae). Mycological Research 113: 44–60.

Li Z, Zhang Y. 2005. Predicting the secondary structures and tertiary interactions of 211 group I introns in IE subgroup. Nucleic Acids Research 33: 2118–2128.

Linnakoski R, Beer ZW de, Roussi M, Niemelä P, Pappinen A, Wingfield MJ. 2008. Fungi including Ophiostoma karelicum sp. nov., associated with Scolytus ratzeburgii infesting birch in Finland and Russia. Mycological Research 112: 1475–1488.

Maheshwari JK. 1971. The baobab tree: disjunctive distribution and conservation. Biological Conservation 4: 57–60.

Marsais GJ, Wingfield MJ. 2001. Ophiostoma africanaum sp. nov., and a key to ophiostomatoid species from Protea infructescences. Mycological Research 105: 240–246.

Massoumi Alamouti S, Kim J-J, Humble L, Luzzovic A, Breuil C. 2007. Ophiostomatoid fungi associated with the northern spruce engraver, Ips perturbatus, in western Canada. Antonie van Leeuwenhoek 91: 19–34.

Mouton M, Wingfield MJ, Wyk PS van, Wyk WJ van. 2000. A new hyphomycete with unusual conidiogenesis. Mycological Research 98: 1272–1276.

Okada G, Jacobs K, Kirisits T, Louis-Seize GW, Seifert KA, Sugita T, Take-matsu A, Wingfield MJ. 2000. Epitypification of Graphium penicillioides Corda, with comments on the phylogeny and taxonomy of Graphium-like synnematous fungi. Studies in Mycology 45: 169–188.

Okada G, Seifert KA, Takematsu A, Yamaoka Y, Miyazaki S, Tubaki K. 1998. A molecular phylogenetic reappraisal of the Graphium complex based on 18s rDNA sequences. Canadian Journal of Botany 76: 1495–1506.