Alterations of erythrocyte ATPase activity and oxygen consumption in patients with liver-blood deficiency syndrome

Lin-Jie Shi, Jun-Fan Liu, Zi-Qiang Zhang, Yi-Qin Lu, Yi-Gang Shu, Guo-Lin Chen, Zhi-Hua Xin, Jin-Yao Xu

Abstract

AIM: To investigate the pathophysiology of erythrocyte energy metabolic changes in patients with the traditional Chinese Medicine (TCM) liver-blood deficiency syndrome (LBDS).

METHODS: Erythrocyte membrane ATPase activity and oxygen consumption rate (OCR) were determined in 66 patients with LBDS, including 35 patients with iron deficiency anemia and 31 patients with chronic aplastic anemia. Thirty healthy adults served as controls.

RESULTS: ATPase activity and OCR were decreased in patients with LBDS.

CONCLUSION: The decreased erythrocyte ATPase activity and OCR might cause the energy hypometabolism in LBDS patients.

Key words: Erythrocytes; Cell membrane; Oxygen consumption; Adenosine triphosphatase; Liver-blood deficiency syndrome; Iron-deficiency anemia; Aplastic anemia

© The Author(s) 1997. Published by Baishideng Publishing Group Inc. All rights reserved.

INTRODUCTION

Erythrocytes, the most common blood cell, exhibit metabolic characteristics. We have conducted hemorrhheologic studies in patients with liver-blood deficiency syndrome (LBDS) [1], and observed that their hematocrit (Hct) was significantly decreased. This indicated a reduced erythrocyte count. There are few reports on erythrocyte metabolic alterations in patients with LBDS. In this study, the erythrocyte membrane ATPase activity and the erythrocyte oxygen consumption rate (OCR) were determined in patients with anemia, including iron deficiency anemia and chronic aplastic anemia.

MATERIALS AND METHODS

Diagnostic criteria

General clinical data are listed in Table 1. The patients enrolled in this study all had traditional Chinese Medicine (TCM) differentiated LBDS syndrome diagnosed by two clinicians according to our certified standard [2]. The symptoms included dizziness, decreased visual acuity and/or blurred vision, numbness of the extremities, face, lips, and nails appeared pale and malnourished, tongue appeared pale, and pulse taut and/or thready. Patients presenting with decreased visual acuity and/or blurred vision and numbness of the extremities along with an additional two symptoms (excluding those with Yinxu, Yangxu and Qixu) were diagnosed with LBDS. Iron deficiency anemia (IDA) was diagnosed according to the “Diagnostic Criteria and Curative Improvement Standard of Clinical Diseases” [3]. Chronic aplastic anemia (CAA) was diagnosed according to the June 1987 Baoji Conference revised standard [4]. Healthy adult blood donors served as controls.

Instruments

Equipment used included a portable automatic balanced recorder (XWT-104, Shanghai Dahua Instrument Factory), a Clark electrode and SP-2 dissolved oxygen assay controller (China Academy Vegetal Physiology Institute), a 2219-II thermostat circulation water bath (LKB), and a 751 spectrometer (Shanghai 3rd Analytic Instrument Factory).

Preparation of the erythrocyte membrane

Five milliliters of heparin anticoagulated fasting venous blood was centrifuged at 3000 rpm for 10 min. The buffy coat was discarded. The remainder was washed with isotonic Tris-HCl (310 mOsm, pH
Table 1 General clinical data

Groups	n	Male/Female	Age (yr)	Diseases
Control	30	15/15	34.2 ± 10.4 (20-46)	
IDA	31	16/15	36.6 ± 13.6 (19-56)	IDA 16, CAA 15
CAA	35	13/22	35.8 ± 15.2 (21-48)	IDA 19, CAA 16

Oxygen consumption rate (μL 100-h/ml compressed RBC) was calculated as

\[\text{Oxygen consumption rate} = \frac{\text{Pi consumption}}{\text{protein content}} \]

Results were expressed as mean ± standard deviation. A t-test and ANOVA were used for statistical analysis.

Table 2 Comparison of ATPase activities

Groups	n	Mg\(^{2+}\)-ATPase	Na\(^{+}\)-K\(^{+}\)-ATPase	Ca\(^{2+}\)-ATPase
Control	30	0.300 ± 0.160	0.300 ± 0.130	0.620 ± 0.120
LBDS	31	0.130 ± 0.072	0.154 ± 0.081	0.530 ± 0.139
CAA	15	0.132 ± 0.044	0.156 ± 0.067	0.562 ± 0.130
IDA	16	0.132 ± 0.093	0.152 ± 0.093	0.468 ± 0.215

*P < 0.05, **P < 0.01 vs control.

Table 3 Comparison of erythrocyte OCR (oxygen consumption rate)

Groups	n	Oxygen consumption rate (μL 100-h/ml compressed RBC)
Control	30	107.26 ± 18.46
LBDS	35	82.25 ± 36.39
CAA	16	68.83 ± 24.83
IDA	19	100.17 ± 13.86

*P < 0.05 vs CAA, **P < 0.01 vs control.

RESULTS

The Mg\(^{2+}\)-ATPase, Na\(^{+}\)-K\(^{+}\)-ATPase, and Ca\(^{2+}\) ATPase activities in patients with LBDS were significantly decreased as compared with the healthy controls, (P < 0.01, P < 0.05, respectively) (Table 2). The patients diagnosed with CAA did not have a significant difference in the Ca\(^{2+}\)-ATPase activity compared to normal controls.

The erythrocyte OCR was generally decreased in the LBDS patients compared with the healthy controls. The erythrocyte OCR of patients diagnosed with IDA was not significantly significant from the healthy controls (P > 0.05). The erythrocyte OCR of patients diagnosed with CAA was significantly decreased from the healthy controls (P < 0.01). The difference between the IDA and CAA patients was significant (P < 0.01) (Table 3).

DISCUSSION

Na\(^{-}\)-K\(^{+}\)-ATPase is responsible for the active transport of sodium and potassium across the membrane, which maintains a high intracellular concentration of potassium and a low intracellular concentration of sodium. ATP is required for the active transport of these molecules[3]. If there is a decrease of Na\(^{-}\)-K\(^{+}\)-ATPase on the erythrocyte membrane, then there will be an increase of intracellular sodium concentrations, which could lead to a hypoenergetic status of the erythrocytes. Furthermore, if phosphorylation of membrane proteins is impaired in the ATPase deficient erythrocyte, then the formation of membrane protein polymers will be hindered. This affects cytoskeleton stability[4], resulting in abnormalities of the erythrocyte structure. Therefore, Na\(^{-}\)-K\(^{+}\)-ATPase is essential for the maintenance of the normal morphology, structure and function of the erythrocyte[5]. In mature erythrocytes, glucose catabolism is very active in order to provide the sodium pump with energy and to maintain the normal functioning of the erythrocytes (90% of the energy from glycolysis and 10% from the pentose phosphate pathway)[6].

We observed that the activities of the ATPases, including the Mg\(^{2+}\)-ATPase, the Na\(^{-}\)-K\(^{+}\)-ATPase and the Ca\(^{2+}\) ATPase, were significantly decreased compared to the normal controls. However, no differences were observed between the patients diagnosed with IDA and CAA. In addition, the oxygen consumption rate of the LBDS patients was decreased compared to the controls, especially the patients with CAA. Taken together, the results suggest that the erythrocyte ATPase activity and OCR are decreased in LBDS patients, which could lead to pathophysiological changes of decreased energy metabolism.

REFERENCES

1. Shi LJ, Cheng CH, Shu YG, Lou TL, Chen GL, Zhao JF. Examination of hematohology and erythrocyte deformability of patients with LBDS. Bulletin of Hunan Medical University 1990; 21: 131-133
2. Cheng GT, Xue SQ. Current diagnostic criteria of diseases. Beijing: Xueyuan Publishing House 1991: 710-712
3. Health Ministry of PLA (ed). Clinical diagnostic criteria and curative improvement standard. Beijing: People-s Army Surgeon Publisher House 1989: 140-141
4. Diagnostic criteria of aplastic anemia. Chinese Journal of Hematology 1987; 8: C4
5. Li H, Lu YQ, Peng XH, Liu H. Effect of Ginseng total saponin on the benzene induced rat aplastic anemia erythrocyte utilization of four hormones. Bulletin of Human Medical University 1994; 19: 381-384
6. Reinalia M, MacDonald E, Salem N, Linmao M, Trams EG. Standardized method for the determination of human erythrocyte membrane adenosine triphosphates. Anal Biochem 1982; 124: 19-26 (PMID: 6214964 DOI: 10.1016/0003-2697(82)90214-7)
7. Arnott RD, White R, Jerums G. Effect of thyroid status on ouabain binding to the human lymphocyte. J Clin Endocrinol Metab 1982; 54: 1150-1156 (PMID: 6281292 DOI: 10.1210/jcem-54-6-1150)
8. de Wardener HE, MacGregor GA. Dahl’s hypothesis that a saluretic substance may be responsible for a sustained rise in arterial pressure: its possible role in essential hypertension. Kidney Int 1980; 18: 1-9 (PMID: 7218655 DOI: 10.1038/ki.1980.104)
9. Graterri WR. The red cell membrane and its cytoskeleton. Biochem J 1981; 198: 1-8 (PMID: 7034726 DOI: 10.1042/bj1980001)
10. Lin JC. Blood biochemistry. Beijing: People’s Health Publishing House 1988: 230-232
