Intracellular Sodium Activity in the Sea Urchin Egg during Fertilization

SHELDON S. SHEN and LAWRENCE J. BURGART
Department of Zoology, Iowa State University, Ames, Iowa 50011

ABSTRACT Fertilization of the sea urchin egg triggers a sequence of events that are necessary for metabolic derepression and stimulation of proliferation. Changes in intracellular Ca$^{2+}$ and H$^{+}$ activities regulate the sequence of events. Intracellular sodium activity is important in the regulation of the intracellular activities of these ions and may directly regulate metabolic events. Using Na$^{+}$-sensitive microelectrodes we continuously measured the intracellular Na$^{+}$ activity during fertilization. The results show an increase in intracellular sodium activity mediated by two pathways of Na$^{+}$ entry: Na$^{+}$ permeability increase during the fertilization potential and initiation of Na$^{+}$-H$^{+}$ exchange activity. Intracellular Na$^{+}$ activity returned to unfertilized levels by 20 min after fertilization. This decrease was inhibited by ouabain, which suggests the activation of Na$^{+}$, K$^{+}$ ATPase during fertilization.

Fertilization of the sea urchin egg initiates a sequence of morphologic and biochemical events necessary for its conversion from a quiescent to a proliferous state. An increase in intracellular pH is a major event that regulates the biosynthetic events during fertilization (48). The postulated ionic mechanism for cytoplasmic alkalinization is activation of an exchange between extracellular Na$^{+}$ and intracellular H$^{+}$ (16). Acid release during fertilization has been reported by a number of investigators (38). The transport of H$^{+}$ equivalents does not require K$^{+}$, Ca$^{2+}$, or Mg$^{2+}$ (26), but does require Na$^{+}$ (16, 22). The increase in intracellular pH during fertilization is also Na$^{+}$ dependent (16, 40). Further evidence of a Na$^{+}$-H$^{+}$ exchange mechanism is the sensitivity of both acid efflux and cytoplasmic alkalinization to amiloride (16, 40). Although acid production and the increase in internal pH during fertilization are both Na$^{+}$ dependent and amiloride sensitive, acid release and cytoplasmic alkalinization may not be directly coupled in a 1:1, simple mechanism for the following reasons. (a) The rate of acid production is linearly dependent on external Na$^{+}$ concentration, whereas the rate of cytoplasmic alkalinization is independent of Na$^{+}$ concentration above the minimal concentration necessary for egg activation (16, 40). (b) Eggs activated with 10 mM NH$_4$Cl and then washed in fresh seawater release acid upon fertilization (27). Fertilization of ammonia-pulsed eggs does not induce further cytoplasmic alkalinization (37). (c) Acid efflux initiates 30–60 s after fertilization and is completed by 2 to 4 min (2, 22, 47). The rise in intracellular pH starts 60 to 90 s after fertilization and is completed by 6 to 8 min (15, 46). (d) Amiloride at 0.1 mM in 40 mM Na$^{+}$ artificial seawater (ASW) blocked acid release (16); however, at similar concentrations, cytoplasmic alkalinization was unchanged (40). An alternative proposal to link acid production with cytoplasmic alkalinization is an allosteric role for Na$^{+}$. The binding of Na$^{+}$ to sites on the plasma membrane is supposed to be regulatory and required for activation of the mechanism directly responsible for the rise in internal pH (40). Since the internal buffering power of the egg is nearly 40 mEq/pH unit (29), the kinetics of acid production might appear to be faster than the kinetics of intracellular alkalinization. One method to resolve the uncertainty is the direct measurement of Na$^{+}$ activity during fertilization.

A critical role for ion movements in the control of mammalian cell metabolism and proliferation is becoming increasingly evident. Among the earliest events in growth factor stimulation of cellular proliferation is depolarization of the plasma membrane, due to an increase in Na$^{+}$ permeability (13, 20, 31). This increase in Na$^{+}$ influx may lead to increased cellular Na$^{+}$ content (34, 42), which may be of mitogenic importance (8, 9). In addition, the increase in Na$^{+}$ influx may be closely linked to activation of the Na$^{+}$, K$^{+}$ ATPase (17, 35, 42). More recently a second pathway of Na$^{+}$ entry has been proposed, that of the Na$^{+}$-H$^{+}$ exchange (21, 25, 32, 36). Although these results suggest the importance of changes in intracellular Na$^{+}$ activity during proliferation, no direct measurement of intracellular Na$^{+}$ activity during cellular activa-

1 Abbreviations used in this paper. ASW, artificial seawater; a_{Na}, intracellular Na$^{+}$ activity; E_{m}, membrane potential.
A similar sequence of ion movements has been documented during fertilization of the sea urchin egg. The earliest measurable response to fertilization is membrane depolarization or the fertilization potential (12), which results in part from an increase in Na+ permeability of the egg membrane (14, 44). The resultant Na+ influx elevates the Na+ content by 20 to 30% (4, 28) and activation of Na+, K+ ATPase during fertilization has been reported (5, 11). Furthermore, a fraction of the Na+ entry may be coupled to H+ efflux via Na+-H+ exchange (11, 16, 29). In this study we measured intracellular Na+ activity (akNa+) with Na+-sensitive microelectrodes during fertilization. We found an elevation of Na+ activity by both Na+ influx during the fertilization potential and activation of Na+-H+ exchange. We present further evidence for a metabolic energy dependent, internal pH regulator in fertilized eggs. By 20 min after fertilization, Na+ activity returned to unfertilized levels by an ouabain-sensitive mechanism.

MATERIALS AND METHODS

Gametes and Solutions: Lytechinus pictus were purchased from Pacific Bio-Marine Laboratories Inc. (Venice, CA) and maintained in Instant Ocean culture systems (Aquarium Systems, Mentor, OH) with biweekly feedings of the Macroystis alga. Eggs and sperm were obtained by injection of 0.5 M KCl into the coelomic cavity. The sperm were collected dry and stored at 4°C. The jelly coats were removed from the eggs by passage of the eggs through fine mesh silk, and then the eggs were washed twice in ASW. The dejellied eggs were maintained at 16 to 18°C and constantly stirred at 60 rpm. All experiments used eggs within 4 h of shedding and were done in ASW of the following composition (millimolar): NaCl, 25; choline Cl, 445; MgCl2, 27; NaHCO3, 2.5; pH 8 with 0.1 M KOH or 0.1 M HCl. Low Na+ (25 mM) ASW had the following composition (millimolar): NaCl, 25; choline Cl, 445; KCl, 7.5; MgSO4, 29; MgCl2, 27; KHCO3, 2.5; pH 8 with 0.1 M KOH or 0.1 M HCl. The osmolality of the stock choline Cl (Sigma Chemical Co., St. Louis, MO) was determined with a freezing point osmometer (model 3W, Advanced Instruments, Inc., Needham Heights, MA). Osmolality (Sigma Chemical Co.) and amiloride (Merck, Sharp and Dohme Research Laboratory, Rahway, NJ) were dissolved in 25 mM Na+ ASW at 1 mM and 0.5 mM, respectively. In the experiments reported here, the solutions were either used straight or diluted with the bath solution 1:1.

Fabrication of Microelectrodes: Conventional microelectrodes for recording membrane potentials were made from 1.5-mm o.d. omega-dot tubing (Glass Co. of America, Inc., Bargaintown, NJ) and filled directly with 3 M KCl. The tip resistances of these electrodes in ASW ranged from 25 to 60 MΩ. Na+-sensitive microelectrodes were constructed by use of techniques similar to those reported by others (30). Pulled pipettes were preheated for 2 h at 200°C in a drying oven, exposed to hexamethyldisilazane (Sigma Chemical Co.) vapor for 20 to 40 min, and baked for 30 min more after the vapor was evacuated. The electrodes were allowed to cool in a desiccator and backfilled with 0.2 μl of Na+ exchanger (WP-1, Instruments, Inc., New Haven, CT). The resin-filled electrodes were then backfilled with 0.5 M NaCl reference solution. To minimize the exchange column length and contact exchange with reference solution, a second micropipette with a long tip taper was pulled, broken below the electrode against the egg membrane, then briefly overturned the negative electrode and inserted into the egg. Impalement of eggs with conventional microelectrodes was made by bringing the tip of the needle through the egg jelly coats and into the coelomic cavity. The needle was then removed. The penetration of the Na+ exchanger was thus reduced, thus lowering the electrode performance. The Na+-selective microelectrodes were calibrated in pure NaCl solutions (10 to 500 mM) and in solutions consisting of 10 to 100 mM NaCl with 220 mM KCl. The slopes of the electrodes used in this report varied from 56 to 61 mV/decade. The selectivity of the electrodes was measured by the separate solution method (19) in 0.1 M NaCl, 0.1 M KCl, and 0.1 M choline Cl. The selectivity ratios were 32 to 5 for Na+ over K+; 75, which agreed with those determined by the fixed interference method (19). The selectivity ratios were 250 to 440 for Na+ over choline. Even with an intracellular K+ concentration of 220 mM (43), the Na+-sensitive microelectrodes were sufficiently sensitive to record 0.1 to 1 mM changes in Na+ activity in the ranges reported here.

Measurement of Intracellular Na+ Activities: Eggs were held on polylysine-coated plastic petri dishes (Falcon 1008; Falcon Labware Div., Becton-Dickinson & Co., Oxnard, CA). The membrane potential was recorded as the potential difference between the 3 M KCl-filled conventional microelectrodes and the 3 M KClagar bridge connected by an Ag-AgCl wire to a Biodyne AM-4 preamplifier (Biodyne Electronics, Santa Monica, CA). The Na+-sensitive microelectrode was connected by an Ag-AgCl wire to a FD223 electrometer (W-P Instruments, Inc.). The criteria for successful penetration of sea urchin eggs by both microelectrodes have been detailed elsewhere (37). Impalement of eggs with conventional microelectrodes was made by bringing the electrode against the egg membrane, then briefly overriding the negative capacitance compensation. This method of impalement does not work with ion-selective microelectrodes, whose entry into the egg requires a sharp mechanical tapping of the manipulator. To determine that both electrodes are inactivated in the egg with minimal damage, current pulses are passed through the KCl electrode periodically and the corresponding voltage deflections are monitored by the ion-selective electrode. Excessive membrane damage or vesiculation at the electrode tips results in a loss of electrical coupling. In some cases, partial egg activation occurred. This could be detected visually by a localized elevation of the fertilization envelope and poor electrical coupling. When partial egg activation occurred, the experiment was terminated. The outputs of the two amplifiers were displayed on a Tektronix 5111 storage oscilloscope (Tektronix, Inc., Beaverton, OR) and stored on magnetic tape with an instrumentation cassette recorder (model C4, A. R. Vetter Co., Rebersburg, PA). Pen recordings were made with a differential chart recorder (model 3314, Soltec Corp., Sun Valley, CA).

Ionic activities of calibrating solutions and ASW were determined from activity coefficients published by Conway (10). The Na+ activity coefficient in ASW was estimated at 0.68. In all experiments, the Na+-sensitive electrode was calibrated both before and after impalement of the egg. Changes in base line or slope were <±3 mV for the experiments reported. The intracellular Na+ electrode potential was electronically corrected for the simultaneously measured membrane potential (Em). The Em was determined by interpolation of the corrected potential with the calibration curve obtained from varying NaCl with a constant 220 mM KCl (23). All experimental data are expressed as mean ± standard deviation. Statistical comparisons were carried out by conventional paired-data analysis.

Acid Release during Fertilization: Acid production by sea urchin eggs during fertilization was followed by using a pH-stat system consisting of a Radiometer (Copenhagen) pH meter (PHM 82), titrator (TTR 80), and autoburette (ABU 12). 2-mM aliquots of 0.5% ovijects in ASW were maintained in suspension with a magnetic "feeder." The pH of the egg suspension was allowed to stabilize at 8.00. After rinsing with 5 μl of dry sperm, the decrease in the ASW pH was titrated with the addition of 1 mM NaOH. A chart recorder (Radiometer SBR-3) plotted the delivery of base as a function of time. The largest pH deviation during clamping to 8.00 was 0.03 pH unit. The calculated acid efflux values were corrected for acid release by the sperm and expressed as mEq: molar acid release from eggs = (volume of base added × molarity of base)/egg volume determined by ovicent. Acid release by sperm activation was measured by the addition of 5 μl dry sperm to ASW without the eggs.

RESULTS

Intracellular Na+ Activity during Fertilization in ASW

Unfertilized eggs of Lytechinus pictus were placed in ASW and penetrated with both a Na+-sensitive microelectrode and a conventional microelectrode. The measured akNa+ was well below electrochemical equilibrium. From seven recordings in ASW, we calculated a mean akNa+ of 23.7 ± 7 mM (range 14 to 34 mM) and a mean sodium equilibrium potential of +66 mV. The Em of these doubly impaled unfertilized eggs was −10 ± 2.2 mV, which is similar to values previously reported (38, 39). Fig. 1 shows a typical response to fertilization. In this example, akNa+ of the unfertilized egg stabilized at 25.5 mM and began to rise soon after the elevation of the fertilization potential. The apparent fall of akNa+ at t = 0 is probably due to the difference in voltage response times of the ion-selective microelectrode and the conventional microelectrode. When the rise time of the fertilization potential was spontaneously lower, no initial decrease in akNa+ was evident. By 12 to 14 min after fertilization, the akNa+ stabilized at a new elevated level. In Fig. 1, the peak akNa+ was 47 mM and from five fertilization...
recordings, a mean peak value of 42 ± 12.9 mM was measured. Subsequently, \(a_{\text{Na}} \) was observed to decrease slowly. During this time the zygote membrane hyperpolarized due to an increased K⁺ conductance (44, 45). Although we did not simultaneously measure intracellular pH, increased K⁺ conductance is known to depend upon cytoplasmic alkalinization (41) and thus serves as an indicator of the rise in internal pH in these experiments.

After fertilization (Table I), \(a_{\text{Na}} \) rose 2 mM in the first 90 s and 7 mM during the first 6 min. The latter paired values were significantly greater \((P < 0.01)\) than the unfertilized level. Previous measurements of intracellular pH showed that alkalinization occurred between 90 s and 6 min after fertilization (46). Before and during the initial period of alkalinization is the fertilization potential, a period of increased Na⁺ permeability (44). Thus the increase in \(a_{\text{Na}} \) during fertilization may occur by Na⁺ influx during the fertilization potential, as well as during activation of the Na⁺-H⁺ exchange. Since cytoplasmic alkalinization is normal in 25 mM Na⁺ ASW but the Na⁺ flux during fertilization is near zero (40), the amount of \(a_{\text{Na}} \) increase due to activation of Na⁺-H⁺ exchange may be measured with minimal interference of Na⁺ influx during the fertilization potential in 25 mM Na⁺ ASW condition.

Table I. \(a_{\text{Na}} \) during Fertilization

Condition	ASW	25 mM Na⁺ ASW
Unfertilized	23.3 ± 7.6	12.0 ± 4.3
Post-fertilization	90 s	25.9 ± 7.8
		12.6 ± 3.9
	6 min	30.6 ± 10.1
		14.7 ± 4.3

* Values are the mean ± SD of six embryos continuously monitored during fertilization either in ASW or in 25 mM Na⁺ ASW.
* Time from start of fertilization was determined from \(t = 0 \) (onset of the fertilization potential).

\(-21.8 ± 8.4\) mV. The reduction in unfertilized \(a_{\text{Na}} \) was probably due to the decrease in Na⁺ entry during electrode impalements with the near 20-fold reduction of ASW Na⁺ content. In six successful fertilization recordings (Table I), we observed no significant rise in \(a_{\text{Na}} \) during the first 90 s, but we measured a significant \((P < 0.01)\) rise of almost 3 mM by 6 min post fertilization. Since Na⁺ influx was greatly reduced in 25 mM Na⁺ ASW, this rise in \(a_{\text{Na}} \) was probably a result of activation of Na⁺-H⁺ exchange.

Fig. 2 shows a typical fertilization recording in 25 mM Na⁺ ASW. The stable \(a_{\text{Na}} \) of this unfertilized egg was 9.5 mM and remained constant until 90 s after fertilization. An inverted fertilization potential was often seen with the reduction of the Na⁺ chemical gradient. By 5 min after fertilization, \(a_{\text{Na}} \) had reached a peak value of 11.2 mM. The \(a_{\text{Na}} \) began to decline by 6 min after fertilization, such that by 16 to 20 min, \(a_{\text{Na}} \) had returned to the unfertilized level. During this time the membrane hyperpolarized, which indicated that the rise in intracellular pH had occurred. The stable mean \(a_{\text{Na}} \) of zygotes

\[a_{\text{Na}} \] during Fertilization in 25 mM Na⁺ ASW

The Na⁺ content of ASW was reduced to 25 mM by substitution with choline. From 18 recordings of unfertilized eggs in the low Na⁺ ASW, a mean \(a_{\text{Na}} \) of 13.5 ± 8.1 mM (range of 5.5 to 21.5 mM) and a sodium equilibrium potential of +5.8 mV were calculated. The mean \(E_m \) of these eggs was

\[\begin{align*} E_m \end{align*} = -20 \text{ mV} \]
in low Na\(^{+}\) ASW by 15 min after fertilization was 11.0 ± 4.5 mM.

Acid Release during Fertilization

In many cases, comparisons between acid release, \(^{22}\)Na flux, and cytoplasmic alkalinization are made with recordings from different sea urchin species. To alleviate this problem and make comparisons more meaningful, we measured the acid released during fertilization of eggs from the same batches used for measuring \(a_{\text{Na}}\). In nine experiments, the mean amount of acid released in one minute intervals and the total release were plotted, as shown in Fig. 3; one such continuous record of acid efflux is shown in the inset. Less than 2% of the total acid release occurred during the first minute, with 28, 30, and 20% of the efflux occurring during minutes 2, 3, and 4, respectively. The time course of acid efflux closely matched the time course of \(a_{\text{Na}}\) increase measured in 25 mM Na\(^{+}\) ASW (Fig. 2). During the interval of cytoplasmic alkalinization (90 s to 6 min), 95% of the acid efflux occurred. In nine experiments, the mean acid efflux was 4.45 ± 1.85 mM. Since 20% of this acid release is Na\(^{+}\) independent and correlates with the cortical granule discharge (16, 22), the calculated Na\(^{+}\) dependent acid release is ~3.6 mM. The mean \(a_{\text{Na}}\) increase during fertilization in 25 mM Na\(^{+}\) ASW was 2.7 mM (Table I). When 0.68 is used as the activity coefficient of the cytoplasm, this is equivalent to an increase of 3.9 mM of Na\(^{+}\), which suggests a 1:1 stoichiometry of the Na\(^{+}\)-H\(^{+}\) exchange.

Effects of Ouabain and Amiloride

Activation of the Na\(^{+}\), K\(^{+}\) ATPase during sea urchin fertilization was first suggested by Chambers (4, 5) and has since been studied in greater detail (6, 7, 11). The eventual return of \(a_{\text{Na}}\) to the unfertilized level in zygotes suggested the activation of Na\(^{+}\), K\(^{+}\) pumping during fertilization. As seen in Fig. 4, the addition of 0.5 mM ouabain to 25 mM Na\(^{+}\) ASW did not appreciably affect \(a_{\text{Na}}\) and \(E_{m}\) of the unfertilized egg, the rise in \(a_{\text{Na}}\) during fertilization, or membrane hyperpolarization. In three experiments, the time course of \(a_{\text{Na}}\) increase during fertilization in ouabain was similar to that in the absence of ouabain. However, the return of \(a_{\text{Na}}\) to the unfertilized level was blocked (Fig. 4), which strongly supports the idea of Na\(^{+}\), K\(^{+}\) ATPase activation during fertilization. Since the membrane hyperpolarized during fertilization in ouabain, inhibition of the Na\(^{+}\), K\(^{+}\) ATPase activation did not affect cytoplasmic alkalinization. Furthermore, we observed normal development through the blastula stage in 0.5 mM ouabain, which is in agreement with the observations of Chambers (5).

As a further test of Na\(^{+}\)-H\(^{+}\) exchange activation during fertilization, the effect of amiloride (3) was examined. Previous intracellular pH measurements have shown a reduction in the rate of cytoplasmic alkalinization with 0.25 to 0.5 mM...
amiloride in 25 mM Na+ ASW and an irreversible block at 1 mM amiloride concentration (40). Others have shown inhibition of Na+ influx and acid release with lower (0.1 mM) amiloride treatment during fertilization (16). As seen in Fig. 5, the addition of 0.25 mM amiloride in 25 mM Na+ ASW may cause a slight drop in aH in unfertilized eggs. In six experiments with 0.25 or 0.5 mM amiloride, the mean aH in the unfertilized eggs was 11.4 ± 4.6 mM and ranged from 5.7 to 17.5 mM. In all cases with amiloride treatment, fertilization did not result in a significant rise in aH. At 0.25 mM amiloride concentration, we observed membrane hyperpolarization in all cases (Fig. 5), and at 0.5 mM amiloride, membrane hyperpolarization was more delayed but did develop. These results agree with earlier observations of delayed cytoplasmic alkalinization (40). The lack of aH increase is in apparent contradiction with the presumed rise in internal pH. However, amiloride at these concentrations may only reduce the rate, and not abolish Na+-H+ exchange. Hence, the expected reduced rate of aH increase may be countered by the activity of Na+, K+ ATPase. Alternatively, these levels of amiloride may have blocked Na+-H+ exchange but not the activation of the metabolic energy-dependent, intracellular pH regulator of fertilized eggs (29, 37, 41).

DISCUSSION

Using Na+-sensitive microelectrodes, we measured aH during
fertilization of the *Lytechinus pictus* egg. If we assume an activity coefficient for the osmoplasm that is similar to the activity coefficient of 0.68 for ASW, our measured Na⁺ concentration in the unfertilized egg in ASW is ~35 mM, which is within the range of reported values of 22 to 52 mM (4, 28, 33). It appears that the resting Na⁺ concentration of the unfertilized egg in ASW is in reality lower than 35 mM. We base this conclusion on the following. (a) Impalement of the egg with microelectrodes introduces a small non-selective leakage (38). (b) In all cases we observed a gradual elevation of the aNa⁺ after electrode penetration. Normally the Na⁺-selective microelectrode was first placed inside the egg. After achieving a stable ion-selective electrode voltage, the egg was impaled with the conventional microelectrode. The aNa⁺ was observed to rise over minutes to a higher stable value than the initial activity. (c) The measured Na⁺ concentration in unfertilized eggs in 25 mM Na⁺ ASW is ~20 mM. The reduction in Na⁺ concentration resulted from a lower inward Na⁺ driving force and decreased amount of Na⁺ influx upon electrode penetrations. A similar drop in Na⁺ content of unfertilized *Paracentrotus lividus* eggs between seawater and Na⁺-free ASW has been reported (29). (d) The aNa⁺ of zygotes in ASW remained above the unfertilized level, whereas the zygotes in 25 mM Na⁺ ASW returned to unfertilized level. This difference suggests a continued influx of Na⁺ through the leakage conductance.

Fertilization of the sea urchin egg in ASW resulted in an almost 77% increase in aNa⁺. Most of this increase appears to be a result of increased Na⁺ permeability with fertilization. A 20-fold reduction of external Na⁺ concentration reduced the inward Na⁺ driving force and the resulting increase in aNa⁺ during fertilization to 22% (Table I). This value is similar to the measured increase in Na⁺ concentration with fertilization (4, 7), which suggests that intracellular Na⁺ is not compartmentalized. The rise in aNa⁺ was paralleled by acid efflux, which implies that the Na⁺ influx is by Na⁺-H⁺ exchange. We calculate the stoichiometry of this exchange to be 1:1, a value consistent with tracer flux determinations (11, 29).

Although aNa⁺ of fertilized eggs in ASW remained elevated above unfertilized levels, the aNa⁺ of fertilized eggs in 25 mM Na⁺ ASW returned to unfertilized levels by 20 min after fertilization. Since Na⁺ content of fertilized eggs measured by flame photometry returned to unfertilized level by 20 min (28) and there was no evidence for compartmentalization of Na⁺, it appears that the permanently elevated aNa⁺ observed here of zygotes in ASW was a consequence of a microelectrode impalement artifact, i.e., of continued entry of Na⁺ through the leakage conductance. The slight decrease in aNa⁺ in ASW and the full return to unfertilized level in 25 mM Na⁺ ASW appear to be consequences of activation of Na⁺, K⁺ ATPase during fertilization. Initially reported by Chambers (4, 5), the Na⁺, K⁺ ATPase in sea urchin eggs has recently been characterized (6, 7). The activity of Na⁺, K⁺ ATPase of unfertilized egg cortices increases nearly 10-fold with an increase in pH between 6.7 and 7.7 (6). Since the rise in internal pH is from 6.9 to 7.3 (39) and a consequence of Na⁺-H⁺ exchange, the activation of the Na⁺, K⁺ ATPase may at most truncate the rise in aNa⁺ near its completion. Since the presence of 0.5 mM ouabain in 25 mM Na⁺ ASW had no appreciable effect on aNa⁺ in the unfertilized egg, the Na⁺, K⁺ ATPase is probably inactive (6) and has no noticeable effect upon the rise of aNa⁺ during fertilization. But the return to the unfertilized level was blocked. It is interesting that the development of sea urchins in ouabain remained normal in appearance through the blastula stage. This suggests that the regulatory role of Na⁺, if any, is its influx or increased intracellular activity, rather than its efflux or decreased activity.

Further substantiation of the elevation of aNa⁺ as a result of Na⁺-H⁺ exchange was its inhibition by amiloride. Although 0.1 mM amiloride blocked acid efflux (16), 1 mM amiloride was required to block cytoplasmic alkalization (40). The data presented here suggest a possible explanation for this discrepancy. Amiloride of 0.25 mM was found to block the rise in aNa⁺, which would agree more closely with the earlier reported inhibition of acid efflux. Since membrane hyperpolarization during fertilization requires cytoplasmic alkalization (41), the observed membrane hyperpolarization during fertilization in amiloride agrees with earlier observations of cytoplasmic alkalization during fertilization in low concentrations of amiloride (40). A second ionic mechanism, which is directly dependent upon metabolic energy, has been suggested for regulation of intracellular pH in zygotes (29, 37, 41). The rise in intracellular pH at low concentrations of amiloride may be due to activation of the metabolic energy-dependent intracellular pH regulator (29, 37, 41). The alternative possibility of Na⁺, K⁺ ATPase activity countering a decreased rate of Na⁺-H⁺ exchange is unlikely because of the pH sensitivity of Na⁺, K⁺ ATPase (6) and the observed suppression of 46Rb uptake during fertilization in low Na⁺ ASW containing 0.1 mM amiloride (7). Amiloride may directly inhibit the Na⁺, K⁺ ATPase (43). Currently, we have no information about the ionic basis of the metabolic energy requiring pH regulator. However, our observations of inhibition of the aNa⁺ rise with low concentrations of amiloride is in agreement with the blocking concentration of amiloride on Na⁺-H⁺ exchange in mammalian cells (1, 18, 21, 32, 36).

We thank Dr. R. J. Hoffmann for the use of his Radiometer autotitrator system, Dr. C. D. Drewes for useful discussions, and Ms. Mary Nims for typing the manuscript.

This work was supported by National Science Foundation grant PCM 8316406 to Dr. Shen.

Received for publication 2 January 1985, and in revised form 11 April 1985.

REFERENCES

1. Acklin, C. C., and R. C. Thomas. 1977. Micro-electrode measurement of the intracellular pH and buffering power of mouse soleus muscle fibres. *J. Physiol.* (Lond.) 267:791-810.
2. Allen, R. D., B. Markman, and E. C. Rowe. 1958. The time sequence of early events in the fertilization of sea urchin eggs. II. The production of acid. *Exp. Cell Res.* 13:346-359.
3. Benos, D. J. 1982. Amiloride: a molecular probe of sodium transport in tissues and cells. *Am. J. Physiol.* 242:C131-C145.
4. Chambers, E. L. 1972. Effect of fertilization on the Na⁺ and K⁺ content, and Na⁺ flux in the sea urchin egg, *Physiologist* 15:103.(Abstr.)
5. Chambers, E. L. 1975. Na⁺ is required for nuclear and cytoplasmic activation of sea urchin eggs by sperm and divalent ions. *J. Cell Biol.* 67(No. 2, Pt. 2)565a (Abstr.)
6. Ciapea, B., G. DeRenzis, J. P. Girard, and P. Payan. 1984. Sodium-potassium exchange in sea urchin egg I. Kinetic and biochemical characterization at fertilization. *J. Cell Physiol.* 121:235-242.
7. Ciapea, B., D. Allemande, P. Payan, and J. P. Girard. 1984. Sodium-potassium exchange in sea urchin egg II. Ionic events stimulating the Na⁺, K⁺ pump activity at fertilization. *J. Cell Physiol.* 121:243-250.
8. Conte, J. D., Jr. 1971. Unified theory on the basic mechanism of normal mitotic control and oncogenesis. *J. Theor. Biol.* 30:151-181.
9. Conte, J. D., Jr. 1980. Ionically mediated induction of mitogenesis in CNS neurons. *Ann. NY Acad. Sci.* USA 339:115-131.
10. Conway, B. E. 1952. Electrochemical Data. Elsevier, Amsterdam. 374 pp.
11. Girard, J. P. P. Payan, and C. Sardet. 1982. Changes in intracellular cations following fertilization of sea urchin eggs: Na⁺/H⁺ and Na⁺/K⁺ exchanges. *Exp. Cell Res.* 142:215-221.
12. Hagwara, S., and L. A. Jaffe. 1979. Electrical properties of egg cell membranes. *Annu. Rev. Biophys. Bioeng.* 8:385-416.
13. Hulter, D. F., and W. Frank. 1971. Electrophysiological Messungen an dem Oberflach-
426

The Journal of Cell Biology - Volume 101, 1985

enmembranen. Z Naturforsch 26b:1045-1048.

14. Ito, S., and K. Yoshioka. 1972. Real activation potential observed in sea urchin egg during fertilization. Exp Cell Res 72:547-551.

15. Johnson, C. H., and D. Epel. 1981. Intracellular pH of sea urchin eggs measured by the dimethylxanolidenedione (DMO) method. J Cell Biol 89:284-291.

16. Johnson, J. D., D. Epel, and M. Paul. 1976. Intracellular pH and activation of sea urchin eggs after fertilization. Nature Lond 262:661-664.

17. Kaplan, J. G. 1978. Membrane cation transport and the control of proliferation of mammalian cells. Ann Rev Physiol 40:19-41.

18. L'Allemain, G., S. Paris, and J. Pouyssegur. 1984. Growth factor action and intracellular pH regulation in fibroblasts. Evidence for a major role of the Na+/H+ antiport. J Biol Chem 259:5809-5815.

19. Moody, G. J., and J. D. R. Thomas. 1971. Selective Ion Sensitive Electrodes. Merrow Publishing Co. Ltd., Watford, England. 140 pp.

20. Moolenaar, W. H., S. W. de Laat, and P. T. van der Saag. 1979. Serum triggers a sequence of rapid ionic conductance changes in quiescent neuroblastoma cells. Nature Lond 279:721-723.

21. Moolenaar, W. H., C. L. Mummery, and P. T. van der Saag. 1979. Rapid ionic events and the initiation of growth in serum-stimulated neuroblastoma cells. Cell 23:789-798.

22. Nishiohka, D., and N. F. McGinn. 1980. Relationships between the release of acid, the cortical reaction, and the increase of protein synthesis in sea urchin eggs. J Exp Zool 212:215-223.

23. O'Doherty, J. F. Garcia-Diaz, and W. W. McD Armstrong. 1979. Sodium-selective liquid ion-exchanger microelectrodes for intracellular measurements. Science (Wash DC) 203:1349-1351.

24. Orme, F. W. 1969. Liquid ion-exchanger microelectrodes. In Glass Microelectrodes, M. Lavalle, O. F. Schanne, and N. C. Hebert, editors. John Wiley & Sons. New York. 376-403.

25. Patts, S., and J. Pouyssegur. 1983. Biochemical characterization of the amiloride-sensitive Na+/H+ antiport in Chinese hamster lung fibroblasts. J Biol Chem 258:3503-3508.

26. Paul, M., and D. Epel. 1975. Formation of fertilization acid by sea urchin eggs does not require specific ions. J Exp Zool 198:291-302.

27. Paul, M., J. D. Johnson, and D. Epel. 1976. Fertilization acid of sea urchin eggs is not a consequence of cortical granule exocytosis. J Exp Zool 197:127-133.

28. Payan, P., J. F. Grinstein, R. Christen, and C. Santel. 1981. Na+ movements and their oscillations during fertilization and cell cycle in sea urchin eggs. Exp Cell Res 134:339-344.

29. Payan, P., J. P. Girard, and B. Ciapa. 1983. Mechanisms regulating intracellular pH in sea urchin eggs. Dev Biol 100:29-38.

30. Reuss, L. P. Reinach, S. A. Weinman, and T. P. Grady. 1983. Intracellular ion activities and Ca2+ transport mechanism in budding cornelian epithelium. Ann J Physiol 244:C336-C347.

31. Rothenberg, P., L. Reuss, and L. Glaser. 1982. Serum and epidural growth factor transiently depolarize quiescent BSC-1 epithelial cells. Proc Natl Acad Sci USA 79:7783-7787.

32. Rothenberg, P., L. Glaser, P. Schlesinger, and D. Casel. 1983. Activation of Na+/H+ exchange by epidural growth factor elevates intracellular pH in A431 cells. J Biol Chem 258:12644-12653.

33. Rothschild, Lord, and H. Barnes. 1953. The inorganic constituents of the sea urchin egg. J Exp Biol 30:534-544.

34. Rozengurt, E., and L. A. Heppel. 1975. Serum rapidly stimulates ouabain-sensitive P32 influx in quiescent 3T3 cells. Proc Natl Acad Sci USA 72:4492-4495.

35. Rozengurt, E., and R. A. Steinhardt. 1982. Na+/H+ antiporn in Swiss 3T3 cells: mitogenic stimulation leads to cytoplasmic alkalization. Proc Natl Acad Sci USA 79:7778-7782.

36. Shen, S. S. 1982. The effects of external ions on pH in sea urchin eggs. Intracellular pH. Its Measurement, Regulation and Utilization in Cellular Functions. R. Nuccielli and D. W. Deamer, editors. Alan R. Liss, Inc., New York. 269-282.

37. Shen, S. S. 1983. Membrane properties and intracellular ion activities of marine invertebrate eggs and their changes during activation. In Mechanism and Control of Animal Fertilization. J. F. Hartmann, editor. Academic Press, Inc., New York. 213-227.

38. Shen, S. S., and R. A. Steinhardt. 1978. Direct measurement of intracellular pH during metabolic depression of the sea urchin egg. Nature Lond 272:252-254.

39. Shen, S. S., and R. A. Steinhardt. 1979. Intracellular pH and the sodium requirement at fertilization. Nature Lond 272:87-89.

40. Shen, S. S., and R. A. Steinhardt. 1980. Intracellular pH controls the development of new potassium conductance after fertilization of the sea urchin egg. Exp Cell Res 125:55-61.

41. Smith, J. B., and E. Rozengurt. 1978. Serum stimulates the Na+/K+ pump in quiescent fibroblasts by increasing Na+ entry. Proc Natl Acad Sci USA 75:5560-5564.

42. Soltoff, S. P., and J. Mandel. 1983. Amiloride directly inhibits the Na+K-ATPase activity of rabbit kidney proximal tubules. Science (Wash DC) 220:957-959.

43. Steinhardt, R. A., L. Luschn, and D. Mazia. 1971. Bieloelectric responses of the echinoderm egg to fertilization. Proc Natl Acad Sci USA 68:2426-2430.

44. Steinhardt, R. A., S. S. Shen, and D. Mazia. 1972. Membrane potential, membrane resistance and an energy requirement for the development of potassium conductance in the fertilization reaction of echinoderm egg. Exp Cell Res 72:195-203.

45. Steinhardt, R. A., S. S. Shen, and R. S. Zucker. 1978. Direct evidence for ionic messengers in two phases of metabolic depression at fertilization in the sea urchin egg. J Cell Reproduction. E. R. Dirksen, D. Prescott, and C. F. Fox, editors. Academic Press, Inc., New York. 415-424.

46. Tintle, L. G., and L. A. Jaffe. 1980. Actin, microvilli, and the fertilization cone of sea urchin eggs. J Cell Biol 87:771-782.

47. Whitaker, M., and R. A. Steinhardt. 1982. Ionic regulation of egg activation. Q Rev Biophys 15:593-666.