In silico toxicity protocols

Glenn J. Myatt*, Ernst Ahlbergb, Yumi Akahoric, David Allend, Alexander Amberge, Lennart T. Angere, Aynur Aptulaf, Scott Auerbachg, Lisa Beilke, Phillip Bellionl, Romualdo Benigni, Joel Bercu, Ewan D. Booth, Dave Bowerb, Alessandro Briggom, Natalie Burden, Zoryana Cammerero, Mark T.D. Croninp, Kevin P. Cross, Laura Custerd, Magdalena Dettwiler, Krista Dobo, Kevin A. Ford, Marie C. Fortin, Samantha E. Gad-McDonaldd, Nichola Gellatyl, Kyle P. Gloverf, Susanne Glowienc, Jacky Van Gompel, Steve Gutsell, Barry Hardyi, James S. Harvey, Jedd Hillegass, Masamitsu Honma, Jui-Hua Hsiehh, Chia-Wen Hsu, Kathy Hegh, Candice Johnsonh, Robert Jolly, David Jones, Ray Kemper, Michelle O. Kenyon, Marlene T. Kim, Naomi L. Kruhlak, Sunil A. Kulkarni, Klaus Kümmerer, Penny Leavitt, Bernhard Majer, Scott Masten, Scott Miller, Janet Moser, Moiz Muntam, Wolfgang Muster, Louise Neilson, Tudor I. Oprea, Grace Patlewicz, Alexandre Paulino, Elena Lo Piparo, Mark Powley, Donald P. Quigley, M. Vijayaraj Reddy, Andrea-Nicole Richarzu, Patricia Ruiz, Benoit Schitlser, Rositsa Sera, Wendy Simpson, Lidiya Stavitskaya, Reinhard Stidi, Diana Suarez-Rodriguez, David T. Szabo, Andrew Teasdale, Alejandra Trejo-Martin, Jean-Pierre Valentt, Anna Vuorinen, Brian A. Wall, Pete Watts, Angela T. White, Kristine L. Witt, Catrin Hasselgren.

* Corresponding author.
E-mail address: gmyatt@leadscope.com (G.J. Myatt).

Available online 17 April 2018
0273-2300/ © 2018 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license (http://creativecommons.org/licenses/BY/4.0/).
There are a number of different situations where in silico methods serve an important role in the hazard assessment of existing chemicals or new substances under development that would benefit from the development of in silico toxicity protocols. These include:

- emergency situations where rapid understanding of potential toxicological consequences from exposure is needed in the absence of existing toxicological testing data;
- cases where there is only a limited supply of a test material available;
- scenarios where there are challenges to conduct laboratory studies;
- instances where synthesis of a complex test material is not feasible; and
- situations where a less time-consuming and less expensive high-throughput approach than an experimental test is needed.

IST methods are one approach to generating additional information for complementing and ultimately enhancing the reliability or supporting a risk assessment, including an understanding of the structural and/or mechanistic basis that may contribute ideas for the rational design of new chemicals, development of a testing strategy or an overall weight-of-evidence evaluation. IST inherently supports the principle of the 3Rs (replacement, refinement and reduction) relating to the use of animals in research (Russell and Burch, 1959; Ford, 2016).
Table 1

In silico toxicology application	**Discussion**
1. Alternative to test data.	The use of non-animal alternative methods including in silico approaches, may substitute for other types of tests in regulatory submissions in certain cases. Acceptable alternative methods for filling data gaps are outlined in Annex XI of the European Union’s REACH regulation (EU, 2006). In the United States, Frank R. Lautenberg Chemical Safety for the 21st Century Act revised the Toxic Substances Control Act (TSCA) to include predictive models and expert review as part of an overall assessment (TSCA, 2016). The United States Food and Drug Administration (US FDA) Center for Devices and Radiological Health (CDRH) issued a guidance for industry and FDA staff. This guidance is on the use of International Standard ISO 10993–1 for biological evaluation of medical devices and indicates in the absence of experimentally derived carcinogenicity information, structure activity relationship modeling for these materials may be needed (CDRH, 2016). The FDA draft guidance on Electronic Nicotine Delivery Devices (ENDS) also discusses the use of computational toxicology models in the absence of toxicological data for potential toxicants created by the aerosolization process (PMTA/FDA, 2016). When chemicals with limited toxicity data are required to be classified and labeled for shipping or other purposes, in silico toxicology provides an alternative method for quickly filling the data gaps in the toxicity/safety information, such as predictions of acute toxicity to support assignment to the Globally Harmonized System of Classification and Labelling category (Freidig et al., 2007; ECHA, 2012).
2. As part of the weight-of-evidence in regulatory submissions.	There are currently several regulatory frameworks where only specific laboratory tests for an endpoint of concern may be submitted (such as for drugs or food additives). However, in such cases, in silico predictions can be submitted alongside standard toxicological data to complement the assessment. This may include in silico assessments provided as supporting data or adjuncts to the primary in vivo or in vitro studies to give a mechanistic understanding of the observed results and/or allow a better definition of experimental needs. Additionally, in silico methods may be used to guide or prioritize in vitro testing (EU, 2012). The European Union’s Cosmetics Regulation (EU, 2009a) prohibits the use of animal testing for products or ingredients and a complete marketing ban of such products tested as a whole or containing tested ingredients. This requires the use of alternative methods, such as in silico toxicology. In a recent memorandum, the European Commission’s Scientific Committee for Consumer Safety (SCCS), which is responsible for the risk assessment of cosmetic ingredients, acknowledged the importance and limitations of in silico methods; the SCCS recommended that in silico methods be used either for internal decision making or as part of a weight-of-evidence (WOE) approach to estimate toxicity risks before embarking on any experimental testing (SCCS, 2016).
3. Mixtures assessment.	Most exposures are not to a single chemical but rather to complex mixtures of chemicals that may be found in food, beverages, the environment, cigarette smoke, electronic nicotine delivery systems (ENDS) aerosols, botanical drugs or natural products. In certain situations, it may be possible to use in silico methods to assess individual components since today’s in silico analysis can only be performed on identifiable chemicals. While preliminary analytical work is required to identify all chemicals in the mixture above appropriate Analytical Evaluation Thresholds (AET) (Ball and Norwood, 2012), leveraging in silico approaches may avoid having to synthesize or purify each of the potentially large number of mixture components to perform standard toxicological tests (Mumtaz et al., 2010). Careful consideration is required for mixtures when there are multiple chemicals for interactions, such as synergistic or additive effects that may have the same, similar or different mechanisms of action (MOA).
4. Assessment of impurities and degradation products.	Chemicals, such as pharmaceuticals or plant protection products, may contain low levels of impurities produced during manufacturing and degradation. Many such substances, when present at levels above accepted thresholds, need to be assessed. In most cases, mutagenicity evaluation of the impurity under question is required as a first step of the risk assessment. (Harvey et al., 2017) The ICH M7 guideline provides specific recommendations for assessing drug impurities (ICH M7, 2017(R1)), including the use of two complementary computational toxicology methodologies (i.e., statistical-based and expert rule-based models) to predict bacterial mutagenicity.
5. Residues of plant protection products.	Residues of plant protection products may be evaluated as a part of residue definition for dietary risk assessment of plant protection products (EU, 2009b). In this context, in silico methods provide a useful alternative approach. (EFSA, 2016)
6. Assessment of extractables and leachables.	Medical devices, such as inhaled aerosols, food-contact substances, and consumer product packaging materials may pose a risk for human health due to release of potentially harmful chemicals that are used in the production of the components (Biessny et al., 2017). These include plasticizers, copolymers, vulcanization additives, etc. for which toxicological data is often lacking but where a risk assessment must be performed. A migration or leachables study supports the discovery, identification, and quantification of any leachables. An in silico toxicological assessment, in certain situations, can provide sufficient data for the risk assessment.
7. Workers’ safety and occupational health.	Chemicals used in the manufacture of a product are assessed for mutagenicity, carcinogenicity, skin and respiratory sensitization, irritation (skin, eye and respiratory), and reproductive and developmental toxicity and possibly acute toxicity. In silico assessments make it possible to estimate the potential toxicity of chemicals and adopt proper engineering controls and personal protective equipment usage to protect workers who could be exposed to these substances during production, transfer, storage, and delivery processes (EU, 2006). In silico approaches have been utilized to assess these major toxicological endpoints in the occupational safety setting. In silico methods to predict respiratory sensitization potential of industrial chemicals have recently been reviewed by Seed and Agius (2017).
8. Metabolite analysis.	Metabolites can present an increased or decreased risk of local or systemic toxicity compared with the parent chemical (Mumtaz and Durkin, 1992). While reactive or toxic metabolites may be formed by an organism, their identification, separation as well as possible synthesis for testing purposes may be challenging. In silico methods provide a practical alternative approach to understanding the safety profiles of this potentially large number of chemicals as well as to support the prediction of metabolites.

(continued on next page)
applications that currently can benefit from in silico methods. Stanton and Kruszewski (2016) quantified the benefits of using in silico and read-across methods where they determined that the approach used across two voluntary high-production-volume (HPV) chemical programs for 261 chemicals obviated the use of 100,000–150,000 test animals and saved 50,000,000 US$ to 70,000,000 US$.

The increased interest and acceptance of in silico methods for regulatory data submission and chemicals evaluation is driving the adoption of its use for regulatory purposes. Several guidance documents have been drafted to improve standardization, harmonization, and uptake of in silico methods by regulatory authorities including the International Council for Harmonization (ICH) M7 guideline (assessment and control of DNA reactive (mutagenic) impurities in pharmaceuticals to limit potential carcinogenic risk) (ICH M7, 2017(R1)), the European Union's Registration, Evaluation, Authorization, and restriction of Chemicals (REACH) regulation (EU, 2006; ECHA, 2008; ECHA, 2015), European Food Safety Authority (EFSA) residue guidance (EFSA, 2016), Canada's Chemicals Management Plan (CMP) assessments for new and existing substances under the Canadian Environmental Protection Act, 1999 (CEPA 1999) (Canada, 2016), and the Toxic Substances Control Act (TSCA) (TSCA, 2016). A number of national and international initiatives have focused on developing specific documents supporting the use of in silico tools. The OECD has published a series of (Quantitative) Structure-Activity Relationship (QSAR) validation principles that are discussed in detail in Section 2.3.2 (OECD, 2004; OECD, 2007). Other initiatives include the North American Free Trade Agreement pesticides Quantitative Structure-Activity Relationship (QSAR) guidance (NAFTA, 2012), considerations on the use of in silico approaches for assessing cosmetics ingredients (Amaral et al., 2014), European Food Safety Agency report (EFSA, 2014), European Chemicals Agency REACH supporting documentation (ECHA, 2008; ECHA, 2016; 2017b), Organization for Economic Co-operation and Development (OECD) documentation (OECD, 2007; OECD, 2014; OECD, 2015), and the ICH M7 guideline (previously mentioned) along with complementary peer reviewed publications outlining the process for implementation of such computational assessments (e.g., Amberg et al., 2016; Barber et al., 2015; Powley, 2015; Schilter et al., 2014). Certain projects have provided substantial guidance on the documentation of the models and prediction results (JRC, 2014; Patlewicz et al., 2016) as well as principles and workflows to support safety assessments (Bassan and Worth, 2008; ECHA, 2015; Worth et al., 2014; Berggren et al., 2017; Amaral et al., 2017).

These prior initiatives provide a robust foundation for the current project to establish the IST protocols described here; however, several issues have hindered the general acceptance and use of in silico methods on a larger scale. In particular, there remains a lack of generally accepted procedures for performing in silico assessments for the toxicological endpoints. The lack of such procedures or protocols has led to inconsistency in the application and use of in silico tools across different organizations, industries, and regulatory agencies (e.g., searching

In silico toxicity application	Discussion
9. Ecotoxicology.	Various chemicals are discharged into the environment that may cause harm. Furthermore, the parent compounds can be transformed by hydrolysis, redox-reactions, or photolysis into numerous additional chemicals. IST methods often provide the most practical approach to assess the potential effects on the environment and wildlife species of the many chemicals that are discharged. Prediction of physicochemical parameters supports assessment of potential environmental exposure to the chemical (e.g., persistence and distribution). As an example, Chm et al., 2015 describes the use of in silico assessment of potentially hazardous contaminants present in water.
10. Green chemistry and safer alternatives.	In silico methods can play an important role when identifying alternative chemicals that may have a safer profile than existing chemicals (Rastogi et al., 2014). This includes, for example, alternatives for use in manufacturing processes, alternative packaging/delivery materials and the use of specific additives. In silico methods can provide insights about structural features responsible for the toxicity of different groups of chemicals and thereby allow for the rational design of intrinsically safer chemicals.
11. Selection of product development candidates.	In early product discovery or development, many thousands of compounds may be evaluated. In silico methods may provide a helpful approach to selecting candidates, since in silico methods are inexpensive, rapid to perform, and high throughput. In addition, in silico methods can suggest which molecular substructures (toxicophores) are responsible for the predicted toxic activity, thereby supporting the optimization of future compounds (Hillisch et al., 2015; Myatt et al., 2016). Later in the product development process, a smaller number of chemicals may be selected as candidates to take forward for further development; in normal situations, priority would be given to the candidate(s) with the most advantageous safety profile(s) (Myatt et al., 2016).
12. Emergency response situations.	When one or more chemicals are unexpectedly released into the environment (e.g., the West Virginia chemical spill (NTP, 2016)) or into a production process, it is important to quickly evaluate the potential effects on humans, wildlife, and the environment. In such emergency situations the toxicological profile of the released chemicals needs to be established as quickly as possible to support the proper emergency response and to protect emergency services staff and bystanders (Hochstein et al., 2008; Schilter et al., 2014). In such a limited timeframe and in the absence of previously generated data, in silico approaches may be a practical option for rapid hazard identification.
13. Prioritizing testing of chemicals.	In silico approaches can help prioritize in vitro and in vivo toxicology testing, based on the chemical's exposure and prediction of toxicity; they are an important aspect of the work at several organizations such as the US EPA, National Toxicology Program, Environment and Climate Change Canada and ECHA (Schwerz, 1995). In silico methods may be used to prioritize (based on potential toxicological liabilities) the order in which a series of toxicological studies will be performed (Myatt et al., 2016).
14. Rationalization of in vivo or in vitro study results.	As mentioned previously in the description of the in silico application titled "As part of the weight-of-evidence in regulatory studies", results from quantitative structure-activity relationship (QSAR) models (toxicophore information, chemical fragments or physicochemical properties) may be used in conjunction with biological data to infer a mechanism of action (MOA), molecular initiating event (MIE), or mode of toxicity as part of an adverse outcome pathway (AOP) (Martin et al., 2015; Ellison et al., 2016). Information from in silico methods can also be used to tailor an in vivo study, e.g., by inclusion of additional endpoints. When existing experimental data on a compound are equivocal or when not all relevant safety information are available or accessible, in silico data may be used as additional information as part of the weight-of-evidence approach in reaching a more informed decision (Kruhlak et al., 2012).
databases, applying predictive models and alerts, performing an expert review/assessment, documenting and communicating the results and associated uncertainties. The use of traditional experimental evidence coupled with in silico information to support hazard identification and risk assessment also varies both across, and often within, organizations. Although not always, such ad hoc approaches may be time-consuming and the results poorly accepted. Standardization of protocols will enhance the acceptability of the methods and their results by end users. Additionally, there are misconceptions about when in silico predictions are appropriate to use as well as a lack of defined consensus processes for interpreting the result(s) of such predictions (Bower et al., 2017; SCCS, 2016). Some scientists view in silico methods as a “black box” that inhibits their ability to critically assess the predictions and their reliability (Alves et al., 2016). Others lack expertise to interpret the results of in silico predictions, and some have an unrealistic expectation that an in silico prediction can always provide an unerring definitive assessment.

Standardization of in silico tool use and interpretation of results would greatly reduce the burden on both industry and regulators to provide confidence in or justification for the use of these approaches. The objective of developing IST protocols is to define in silico assessment principles so the results can be generated, recorded, communicated, archived and then evaluated in a uniform, consistent and reproducible manner. Incorporating these principles routinely into the use of in silico methods will support a more transparent analysis of the results and serves to mitigate “black box” concerns.1 This approach is similar to guideline studies that provide a framework for the proper conduct of toxicological studies and assurance in the validity of the results (such as OECD Guidelines for the Testing of Chemicals) (OECD, 2017). The development of these protocols is driven by consensus amongst leading scientists representing industry, private sector and governmental agencies. Consequently, this project provides an important step towards a quality-driven science for IST or good in silico practice.

Herein, we provide a framework to develop a series of procedures for performing an in silico assessment to foster greater acceptance. These IST protocols are being created for a number of toxicological endpoints (e.g., genetic toxicity, carcinogenicity, acute toxicity, reproductive toxicity, developmental toxicity) as well as other related properties (e.g., biodegradation and bioaccumulation) that could impact the chemical hazard classification. Throughout this publication, these toxicological and related endpoints are referred to as “major endpoints” and the protocols are referred to as IST protocols. These protocols will support the assessment of hazards and in some cases the prediction of quantitative values, such as a No Observed Adverse Effect Levels (NOAELs); however, these protocols do not define how a risk assessment will be performed. This publication outlines the components of an IST protocol, including schematics to describe how a prediction could be performed, approaches to assess the reliability and confidence of the results, and items that may be considered as part of an expert review. This publication also outlines the process for creating the IST protocols through an international consortium comprising representatives across regulatory agencies, government research agencies, different industrial sectors, academia and other stakeholders. Specific endpoint-dependent considerations will be described in future separate publications and IST protocols (developed as a result of this process) will also be published for widespread use and for incorporation into different technology platforms.

1 It should be noted that black box models may be acceptable in certain situations, such as compound filtering and virtual screening, as long as they show acceptable performance in validation studies; however, for most applications the acceptance of this class of models is low.

2. In silico toxicology protocols

2.1. Overview

Each IST protocol describes the prediction process in a consistent, transparent, and well-documented manner. This includes recommendations on how to:

1) plan the in silico analyses including identifying what toxicological effects or mechanisms to predict (Section 2.2), what in silico methodologies to use (Section 2.3.1), and other selection criteria for the in silico methods (Section 2.3.2),
2) conduct the appropriate individual software predictions (Section 2.3.3) and further database searches (Section 2.5),
3) perform and document the in silico analysis (Sections 2.6 and 2.7) including expert review (Section 2.4), and
4) report and share the information and assessment results, including information about uncertainties (Section 2.9).

Section 2.8 provides a template for the individual IST protocols for major toxicological endpoints. IST protocols could be applicable for use with several in silico programs, including different in silico models and databases.

2.2. Toxicological effects and mechanisms

In an experimental approach, hazard is evaluated based on specific observations (toxicological effects) during toxicity studies. Often, toxicity of a chemical involves a biological event: a non-specific or specific interaction with a vital biological structure, which causes sequential perturbation of a physiological pathway at a cellular, tissue, organ and/or system level, leading to a toxicological effect observed at the organism level. Experiments evaluating the potential of a chemical to cause such a biological event (e.g., in vitro analysis of specific interaction with a cellular receptor or inhibition of an enzyme or non-specific cytotoxicity), may support hazard assessment and provide information about the mechanism of toxicity. Such an approach is utilized in the Adverse Outcome Pathway (AOP), where identification of a molecular initiating event supports assessment of the related adverse outcome at the organism level (Bell et al., 2016; OECD, 2016a; OECD, 2016b). A computational approach to hazard assessment may address the two complementary levels of hazard identification in a similar way (i.e., predicting the resulting manifestation (effect) or the molecular perturbation (mechanism) that led to the toxicological effect).

Each IST protocol defines a series of known toxicological effects and mechanisms relevant to the assessment of the major toxicological endpoint. For example, in the reproductive toxicity IST protocol, the list of toxicological effects/mechanisms may include reduced sperm count, androgen signaling disruption in vitro, and so on. Within each IST protocol, these effects/mechanisms may be species and/or route of administration specific.

Fig. 1 outlines a general approach to performing an in silico assessment. For each toxicological effect/mechanism, relevant information (as defined in the IST protocol) is collected, including any available experimental data as well as in silico predictions. The experimental data and/or in silico results are then analyzed and an overall assessment of the toxicological effect or mechanism is generated alongside a reliability score (defined in Section 2.6.2) that reflects the quality of the results. The assessment results and reliability scores for a range of relevant toxicological effects/mechanisms are then used to support a hazard assessment within the hazard assessment framework.

2.3. In silico predictions

2.3.1. In silico methodologies

Several organizations develop and make available computer
software packages for predicting toxicity or physicochemical properties of query chemical(s). These systems generally contain one or more models, where each model predicts the compound’s putative toxicological effect or mechanism. For example, a model may predict the results for bacterial gene mutation using data generated from the bacterial reverse mutation test or Ames test. These models may be revised over time as more data become available, structure-activity relationships are better characterized, and any data set used is updated. Each new or updated model is given a different version number because the results from different model versions may vary and it is important to track the source of the results (Amberg et al., 2016).

All IST protocols will identify the toxicological effects or mechanisms to be predicted as discussed in Section 2.2. These predictions may be dichotomous (e.g., predict mutagenic or non-mutagenic compounds), quantal (e.g., Globally Harmonized System [GHS] classification and labeling scheme) or quantitative/continuous (e.g., prediction of median toxic dose [TD50] values). The specific IST protocols will detail the type of prediction(s) ideally generated.

The major in silico prediction methodologies include the following:

- **Statistical-based (or QSAR).** This methodology uses a mathematical model that was derived from a training set of chemicals. The training set includes the chemicals that were found to be positive and negative in a given toxicological study (e.g., the bacterial reverse mutation assay) or to induce a continuous response (e.g., NOAEL in teratogenicity) that the model will predict. As part of the process to generate the model, physicochemical property-based descriptors (e.g., molecular weight, octanol water partition coefficient [log P]), electronic and topological descriptors (e.g., quantum mechanics calculations), or chemical structure-based descriptors (e.g., the presence or absence of different functional groups) are generated and used to describe the training set compounds. The model encodes the relationship between these descriptors and the (toxicological) response. After the model is built and validated (OECD, 2007; Myatt et al., 2016), it can be used to make a prediction. The (physico)chemical descriptors incorporated into the model are then generated for the test compound and are used by the model to generate a prediction. This prediction is only accepted when the test compound is sufficiently similar to the training set compounds (i.e., it is considered within the applicability domain of the QSAR model, often considering the significance of descriptors) (Netzeva et al., 2005; Carrió et al., 2014; Patlewicz et al., 2016). This applicability domain analysis may be performed automatically by some software to determine whether the training set compounds share similar chemical and/or biological properties with the test chemical.

- **Expert rule-based (or expert/structural alerts).** This methodology uses structural rules or alerts to make predictions for specific toxicological effects or mechanisms of toxicity. These rules are derived from the literature or from an analysis of data sets generated by scientists. Structural alerts are defined as molecular substructures that can activate the toxicological effect or mechanism. The rules may also encode situations where the alert is deactivated. Expert rule-based models often include a description of the toxic mechanism and examples from the literature or other reference sources to justify the structural alert. A positive prediction is generally made when a structural alert is present (without deactivating structural features or properties) in the test compound. When no alerts are triggered for a test chemical, a negative prediction may be generated for well investigated endpoints; however, additional analysis is generally required to make this assessment as discussed further in

* From the literature, database or study report

Fig. 1. Overview of the IST protocol framework, showing how experimental data or in silico model(s) for each defined toxicological effect/mechanism are assessed and used to support a hazard assessment. (Note Effect/Mechanism N is used to illustrate that there can be any number of effects/mechanisms in each protocol).
Section 2.4.3.

- **Read-across:** Read-across uses data on one or more analogs (the "source") to make a prediction about a query compound or compounds (the "target"). Source compounds are identified that have a structurally or toxicologically meaningful relationship to the target compound, often underpinned by an understanding of a plausible biological mechanism shared between the source and target compounds. The toxicological experimental data from these source compounds can then be used to "read-across" to the specific target compound(s). Read-across is an intellectually-derived endpoint-specific method that provides justification for why a chemical is similar to another chemical (with respect to chemical reactivity, toxicokinetics, mechanism/mode of action, structure, physicochemical properties, and metabolic profile) (Wu et al., 2010; ECETOC 2012; Patlewicz et al., 2013a; b; OECD 2014; Blackburn and Stuard, 2014; Patlewicz (2014); Patlewicz et al., 2015; Schultz et al., 2015; Ball et al., 2016; ECHA 2017b).

- **Other approaches:** In certain cases, other in silico methodologies may be appropriate. Examples include the use of molecular dynamics (e.g., simulating interactions of a query chemical with a metabolic enzyme) and receptor binding as an indication of a possible Molecular Initiating Event (e.g., estrogen receptor-ligand docking).

Each IST protocol will include an assessment of key computational aspects and specific issues to consider. For example, when performing read-across, issues such as the data quality of the source compound(s), how to perform an assessment of non-reactive chemical features and selection of grouping approaches used to form categories will be discussed to ensure source compound(s) are sufficiently similar, both chemically and biologically, for the endpoint being considered. Each methodology has its strengths and weaknesses, which often depend on the type of toxicological effect or mechanism being predicted. This will be discussed in the individual IST protocols. In addition, there may be cases of unique or novel compounds for which it is not possible to make a prediction or for which confidence in the predictions is so low as to render it meaningless or unhelpful.

2.3.2. In silico methods selection criteria

In silico methods selection may include the following five considerations:

1. **Relevant toxicological effects or mechanisms.** As discussed in Section 2.2, each IST protocol will define a series of toxicological effects or mechanisms relevant to a specific endpoint and appropriate in silico models need to be selected that predict these specific effects or mechanisms.

2. **Model validity.** Best practices for validation of (Q)SAR in silico models have been documented in a number of publications (Cherkasov et al., 2014; Raies and Bajic, 2016; Myatt et al., 2016), and models built using these best practices may be preferred. The OECD has published a series of validation principles for in silico models (OECD, 2004; OECD, 2007) and valid statistical-based or expert rule-based in silico methods. Such QSAR methods have: 1) a defined endpoint; 2) an unambiguous algorithm; 3) a defined domain of applicability; 4) appropriate measures of goodness-of-fit, robustness and predictivity; and 5) a mechanistic interpretation, if possible. Any in silico model must include documentation that supports an assessment of the model's scientific validity, including the toxicological effect or mechanism being predicted, version number, type of methodology, training set size and content, as well as any predictive performance information. Validation performance is documented in report formats such as the QSAR Model Reporting Format (QMRF) (JRC, 2014). The level of adherence to the OECD principles and the performance statistics need to be appropriate for the purpose of the assessment.

3. **Chemical space.** Often, in silico models will only make predictions for specific classes of chemicals, the so called “applicability domain”. The chosen in silico model(s) may report the applicability domain assessment to demonstrate its proficiency for this class of compounds. Vice versa, only models are ideally chosen where the query compound is in the applicability domain (Netzeva et al., 2005; Carrió et al., 2014; Patlewicz et al., 2016).

4. **Model combinations.** Complementary or independent in silico models may be selected, as concurring results increase the reliability of the prediction (as discussed in Section 2.6.2).

5. **Supporting an expert review.** For QSAR models, tools to help the expert review (see Section 2.4) include the ability to allow examination of the descriptors and weightings used in the model, underlying training set data, and how the applicability domain assessment was defined. For expert rule-based systems, this could include how the alert was defined (including any factors that activate or deactivate the alert), any mechanistic understanding associated with the alert, citations, and any relevant known examples of alerting chemicals.

Read across may be used when there are experimental data from high quality databases for one or more substances which are similar enough to the target chemical of interest. The Read-Across Assessment Framework (RAAF), or similar published and established frameworks, may be used to document the read-across assessment and to support its scientific plausibility (ECHA, 2017b; Patlewicz et al., 2013b; Blackburn and Stuard, 2014; Schultz et al., 2015; Patlewicz et al., 2015). The OECD has also produced guidance on the process of grouping chemicals and other considerations as part of a read-across assessment (OECD, 2014), and ECHA has generated guidelines on the process of performing a valid read-across assessment (ECHA, 2008).

2.3.3. **Running the in silico models**

All in silico systems require an electronic representation of the chemical structure and any errors in this representation will result in invalid predictions. Therefore, it is important to ensure that the chemical structure is properly curated and entered following conventions set out by the model's developer, including appropriate representations for tautomers, aromaticity, salt forms, stereochemistry, charges, and specific functional groups (e.g., nitro or carboxylic acid groups). It is possible that different formats (i.e., SMILES vs. MOL files) may be processed differently. It is also important to verify that the software correctly interprets the structural representation during processing, particularly for complex molecules. For some types of chemicals, in silico models may not be applicable due to the structural representation or the unsuitability of the experiment assay for the specific chemical class. Some in silico models cannot distinguish cis- and trans-isomers. Examples include non-discrete chemical substances, UVICBs (unknown/variable composition, complex reaction products and biologicals), metals, inorganics, polymers, mixtures, organometallics and nano-materials (Mansouri et al., 2016).

Some models, such as statistical-based models, allow for prediction settings to be adjusted or turned off (e.g., they report “positive” when a value is greater than a predetermined threshold). The settings are ideally selected in a way that does not compromise the model's validity (such as changing the validation statistics of the model) and appropriately reported.

A thorough documentation of all selected models and computer software packages including, version numbers, and any parameters set, is needed as part of the materials and methods in sufficient detail to assess and potentially repeat the analysis (discussed in Section 2.9). In addition, the results need to be presented in enough detail to fully understand how they were generated and to critically assess the findings.
2.4. In silico expert review

2.4.1. Overview

As with in vitro or in vivo study data, in silico predictions may be critically assessed and an expert review of the output is often prudent (Dobo et al., 2012; Sutter et al., 2013). Frameworks for conducting an expert review ensure that it is performed in a consistent and transparent manner. Examples of such a review framework include the Office of Health Assessment and Translation (OHAT) systematic review and evidence integration (Rookey et al., 2014), weight-of-evidence assessments (ECHA, 2017a), and Integrated Approaches to Testing and Assessment (IATA) (OECD, 2016a; OECD, 2016b).

The purpose of an in silico expert review is to evaluate the reliability of the prediction. The outcome of the review provides information to include in the assessment of the toxicological effect or mechanism. As part of this review, the expert might agree with, or refute, individual in silico predictions. In addition, these reviews might support cases when a chemical is out of the applicability domain of the model, support the use of an equivocal prediction (i.e., there is evidence both for and against the supposition), or support cases where multiple predictions do not agree. A checklist of items to consider and report will help to ensure such reviews are performed in a consistent manner (as illustrated in Tables 2 and 3). This review may include knowledge from proprietary information available within an organization from the testing of related chemicals.

When an expert review assesses multiple predictions from different in silico systems, it is important to justify how they complement each other with regard to the training set (i.e., the use of relevant guideline studies plus relevant chemical classes), methodology (e.g., expert rule-based vs. statistical-based vs. read-across), or QSAR descriptor sets.

It is essential to document the reasoning and decisions of the expert review steps so they can be retraced at any time, including the information used as the basis for the review.

2.4.2. Expert review of statistical models

An expert review of a statistical-based model involves a critical assessment of how the model generated the prediction. This includes examining the weightings of the model descriptors (e.g., structural features or physicochemical properties related to toxicity), underlying data, chemical space of the training set of the model, and the experimental results for analog compounds and model performance for these analogs (e.g., nearest-neighbor list of compounds) (Amberg et al., 2016). This may also incorporate an understanding of the mechanism of toxicity or knowledge of factors that activate or deactivate the toxicity.

Table 2

Expert review elements	Considerations
A. Inspection of model output	• A review of the applicability domain information provided by the model's software might increase or decrease reliability in the prediction.
	• The results of the QSAR model might include a score (e.g., a probability of a positive outcome). The prediction reliability may be increased where a score indicating a high likelihood can be justified through an expert review of the available information.
	• As part of the process of building a QSAR model, structural descriptors are selected (often automatically) when there is a statistical association to the (toxicological) data to be predicted; however, the selected descriptors might not be biologically meaningful for the predicted toxicological effect/mechanism, as discussed in Powley (2015). This assessment may be supported by inspecting the training set examples that match the descriptors whenever possible. An expert review may determine the result is incorrect if other structural moieties in the training set examples are more likely responsible for the biological activity, (i.e., the descriptors identified were coincidental and in fact irrelevant) (Amberg et al., 2016).
	• Another scenario is when the structural descriptors map to experimental data that is incorrect and attributable to known problems with an assay. Again, these features may be discounted if they are not relevant to the toxicological effect or mechanism and this may lead to a reversal of the overall assessment. For example, chemicals containing acid halides may give false positive results due to possible interaction with the solvent DMSO in the Ames assay (Amberg et al., 2015).
	• Descriptors identified as significant by the model that are also present in the query compound may be associated with a biological mechanism. An expert review may evaluate whether the mechanism is plausible for the query compound, including potential metabolism consideration. For example, does the highlighted feature represent a known reactive group or a known toxicophore? This analysis may lead to an increase in prediction reliability.
	• In some systems, it is possible to inspect the training set's experimental data and references for those examples that are primarily used in the prediction. An assessment of these full studies for these examples (as discussed in Section 2.9) could be used to justify an increase in the reliability of the prediction result.
	• The structural diversity of the underlying chemicals for each significant descriptor may be reviewed as part of an expert review. Structural features that map to a large number of structurally diverse compounds would provide additional evidence that the toxicological effects or mechanisms associated with the descriptor could be extrapolated across different chemical classes (increasing reliability in the prediction), whereas a structural feature whose underlying data constitutes a congeneric series might not, especially if the query compound is structurally distant (decreasing reliability in the prediction).
	• An evaluation of the quality of the experimental data of the training set chemicals used for building of the model (e.g., if a guideline study was used to generate these data) may increase the reliability of the prediction result.
	• Is there any supporting information from the literature or elsewhere to support any correlation between the physicochemical properties identified as significant by the model and the toxicological effect/mechanism?
	• An evaluation of the quality of the experimental data of the training set chemicals used for building of the model (e.g., if a guideline study was used to generate these data) may increase the reliability of the prediction result.

(Note A: items to consider when the QSAR model includes structure-based descriptions; Note B: items to consider when the QSAR model includes physicochemical descriptors).
Table 3
Checklist of elements to consider as part of an expert review of results from expert rule-based.

Expert review elements	Considerations
A. Alert score or qualitative output	• The results from the alert system might include information related to the likelihood of a positive outcome (e.g., precision of the alert). The reliability of the prediction may be increased when such a score can be justified through an expert review of the information provided.
B. Justification of negative prediction	• Additional considerations may be important where no alerts are identified in the test chemical. Such analysis may focus on similar analogs as well as other chemicals containing the different structural elements of the test chemical to verify there is no potential toxicity attributable to these fragments, such as additional reactive features. Such analysis may be used to evaluate the reliability of the negative prediction.
C. Reliability of the mechanism of toxicity	• If a negative prediction has a structure of concern, a further inspection of the rules may determine why the compound was not included to elucidate the underlying cause for firing no alert. Is the prediction really negative, equivocal, or not in of the applicability domain of the model?
D. Inspection of chemicals and experimental data matching the alert	• Although the presence of a structural alert increases the potential of the chemical to exert a toxicological effect or mechanism, this effect may depend on other features of the molecule. If a mechanism of toxicity is proposed for the structural alert, then an expert may assess the plausibility of the mechanism for the query compound. For example, the presence of other substituents in the molecule may impact the activity, potentially deactivating the alerting structure. This may include metabolism considerations.
	• The prediction of the reliability can be assessed by the quality of the experimental data of the reference set substances used to make the prediction (e.g., if a guideline study to generate these data).
	• The structural diversity of the matching chemical may also be considered. For example, alerts that match diverse structures may increase the reliability over alerts where the matching chemicals are from a tight congenic series. This is especially true when the reference set examples are structurally dissimilar from the query chemical.
	• Review of the scientific literature to support the alert to understand the strengths and limitations of the experimental data supporting it.

The items described in Table 2 provide a checklist of elements to consider as part of any QSAR expert review to ensure such a review is as objective as possible, transparent and based on a consistent set of considerations. An expert review may increase the reliability of statistical model results based on one or more elements defined in Table 2.

Individual IST protocols will outline specific points to consider when performing an expert review, such as how the similarity of analogs could be assessed.

2.4.3. Expert review of expert rule-based (structural) alert systems

An expert review of the results from an expert rule-based alert system may involve inspection of the underlying information as well as external knowledge. Special emphasis needs to be placed on the assessment of chemicals where no alerts are identified in the expert alert system. When no alert is fired (i.e., it is not predicted active), it is often not reported if the prediction is negative, equivocal, or out of the applicability domain of the model and often no prediction is generated. An expert review may increase the reliability of the results based on one or more elements defined in Table 3.

2.4.4. Read-across expert review

Read-across contains an expert assessment by its nature: it requires expert judgment of the analogs, their data and extrapolation to the query chemical. For example, read-across assessments performed and documented according to the RAAF (i.e., following the detailed RAAF Assessment Elements), or similar frameworks, as discussed earlier, incorporate an expert review as part of the assessment. This type of assessment includes a strong justification for biological plausibility of any analogs selected (including an assessment of the structural differences and similarities to the target structure, and an analysis of potential metabolism). It also includes an expert assessment when a read-across prediction concludes there is an absence of effects. In addition, an assessment of supporting evidence (including the reliability of the source data), any weight-of-evidence considerations, and an assessment of any possible bias in the selection of source chemicals is required.

2.5. Assessment of available experimental data

Experimental data may have been previously generated and reported for a chemical being assessed, for example, in the literature or through a public or proprietary database. To support the identification of experimental data, each IST protocol will identify a series of relevant study types and specific result(s) corresponding to the identified toxicological effects or mechanisms, as discussed in Section 2.2. To illustrate, in the assessment of the toxicological effect/mechanism bacterial gene mutation (part of the genetic toxicity IST protocol), the overall mutagenic or non-mutagenic results from a bacterial reverse mutation assay may be used. A more complex example is in the assessment of the toxicological effect/mechanism of sperm morphology (part of the reproductive IST protocol). Here, specific results from potentially different study types, such as one- or two-generation reproductive studies, repeated dose toxicity studies or segment I (fertility) studies, and possibly also from different species (rat, mouse, rabbit) will be applicable.

The selection of experimental study types need focus on those that have general value based on scientific justification. This includes study types that have widespread use in risk assessments, regulatory acceptance and that follow internationally recognized test guidelines. In addition, other types of data may be considered relevant on a case-by-case basis. Numerous guidance documents discuss acceptable studies, their relevancy, and their use in hazard identification, hazard characterization and risk assessment. These include guidance documents from the ICH (ICH, 2017), OECD (OECD, 2017), European Food Safety Authority (EFSA) (EFSA, 2017), Scientific Committee on Consumer Safety (SCCS) (SCCS, 2017), REACH/ECWA (ECHA, 2008; ECHA, 2015), United States Environmental Protection Agency (EPA) Office of Chemical Safety and Pollution Prevention (OCSPP, 2017), and National Institute of Environmental Health Sciences (NIEHS) (NIEHS, 2017) guidance documents. Such guidance documents provide a useful basis for test considerations but may not always be harmonized across legislation, industrial sector or geographical regions, as requirements may differ across guidance documents.

The IST protocols will discuss how to assess and document the experimental data and uncertainties to ensure the proper justification of the experimental results’ reliability, including defining what specific elements or fields are important to document. With older studies predating existing guidelines, it will often still be possible to perform an expert review to determine the adequacy of the data, but it will be important to document specifically why the study results were considered acceptable or dismissed as unacceptable. The IST protocols will also provide recommendations on how to select a result when multiple studies (with potentially conflicting results) for the same effect or mechanism are reported.

Klimisch scores are a widely used approach adopted to support an assessment of experimental data reliability (Table 4; Klimisch et al.,
Table 4
Summary of Klimisch scores for data reliability (adapted from Klimisch et al., 1997) (Note “restriction”, as part of scores 1 and 2, implies restricted quality).

Score	Description	Summary
1	Reliable without restriction	• Well documented and accepted study or data from the literature • Performed according to valid and/or accepted test guidelines (e.g., OECD) • Preferably performed according to good laboratory practices (GLP)
2	Reliable with restriction	• Well documented and sufficient • Primarily not performed according to GLP • Partially complies with test guideline • Inferences between the measuring system and test substance • Test system not relevant to exposure • Method not acceptable for the endpoint • Not sufficiently documented for an expert review
3	Not reliable	• Test system not relevant to exposure • Method not acceptable for the endpoint • Not sufficiently documented for an expert review
4	Not assignable	• Lack of experimental details • Referenced from short abstract or secondary literature

The Klimisch score (1–4) is based on factors including whether the test was compliant with the OECD principles of Good Laboratory Practices (GLP) or Good In Vitro Methods Practices (GIVIMP) standards (OECD, 2016c), whether the data were generated using accepted test guidelines, whether the data are available for independent inspection, and the quality of the report. ECHA uses this score, for example, as part of its data submission process (ECHA, 2011), and there are tools to support the assignment of Klimisch scores (ECVAM, 2017; Schneider et al., 2009). Another approach to the assessment of the reliability of the experimental data is the Science in Risk Assessment and Policy (SciRAP) application, a web-based reporting and evaluation resource created to help understand how academic toxicity-related studies can be used as part of any regulatory assessment (Molander et al., 2014). An approach proposed by EFSA is a detailed analysis of different parameters of the study (e.g. statistical power; verification of measurement methods and data; control of experimental variables that could affect measurements; universality of the effects in validated test systems using relevant animal strains and appropriate routes of exposure, etc.) with detailed documentation of the process (EFSA, 2011).

2.6. Combined assessment of experimental data and in silico predictions

2.6.1. Toxicological effect or mechanism assessment
Reliable data, generally defined by Klimisch scores 1 or 2 reviewed by an expert (see Table 4), is ideally used for the toxicological effect or mechanism (shown in Fig. 1) whenever available. In the absence of adequate experimental data, results from one or more in silico models can be used to support assessment of the toxicological effect or mechanism. When multiple in silico model results, from potentially different methodologies, or QSAR models using different descriptors and/or training sets, are generated per toxicological effect or mechanism, the individual results need to be compiled to provide one overall assessment, as shown in Fig. 1. This assessment may take into consideration information from any expert review of the in silico results, as certain results may need to be refuted. Similarly, when there are data assigned Klimisch 3 or 4 and/or there are in silico results, this information needs to be compiled into an overall assessment. Individual IST protocols will document such procedures.

There are multiple approaches to compile results. A cautious approach is to use the most conservative data or prediction for this assessment. For example, when predicting the results of the bacterial reverse mutation test using two models, if either model’s prediction result is mutagenic then the overall assessment is mutagenic. Other options include a weight-of-evidence or consensus approach or selection of the prediction with the highest confidence (e.g., predictive probability score and relevance of analogous structures). Specific considerations per endpoint may be addressed in the individual IST protocols and may be dependent on the problem formulation.

2.6.2. Reliability scores
Reliability, in this context, is defined as the inherent quality of the experimental study (Klimisch et al., 1997) and/or in silico analysis. It is used to support any hazard assessment, in combination with other information. A reliability score (RS) is associated with the toxicological effect or mechanism assessment (as shown in Fig. 1). As noted earlier, when data from the literature or other sources are considered, Klimisch scores can be used to assess the reliability of the results. However, the Klimisch framework was never intended to assess the reliability of in silico predictions. It is also important to note that regardless of the approach taken, reliability assessments will contain subjective decisions.

A number of general factors can affect the reliability of in silico results:

- **Multiple in silico results**: Combining results from multiple complementary or independent in silico tools which use different methodologies or QSAR descriptors and/or training sets, has been shown to improve overall sensitivity, but it can lower specificity by increasing false positive rates (Myatt et al., 2016). In the case of quantitative predictions, such process are overly conservative estimates. Hence, consistency across several different models can increase the reliability of the results.
- **Expert review**: A plausible and well-documented read-across (consistent with the RAAF or similar frameworks) may be acceptable as part of a REACH regulatory submission as an alternative to experimental data. A structured expert review is implicit in any read-across assessment (as discussed in Section 2.4.4). Similarly, an explicit expert review (following the elements described in Sections 2.4.2 and 2.4.3) of the in silico predictions can improve the reliability of the final results, especially for negative predictions (Dobos et al., 2012).

To generate an overall reliability score for assessments based on experimental data and/or in silico predictions, the Klimisch score has been adapted (as shown in Fig. 2) to include an assessment of in silico prediction results.

Experimental data assigned a Klimisch score of 1 or 2 is assigned a score of RS1 and RS2, respectively, in this revised scheme. In silico results are not assigned a score of RS1 or RS2 since adequate experimental data is preferred over in silico predictions. Since in silico results may be used directly as part of certain regulatory submissions, whereas experimental data with a Klimisch score of 3 or 4 would not (or only as supporting data under REACH, for example), the next two categories (RS3 and RS4) represent, in part, in silico predictions. The following may be acceptable as part of a regulatory submission: (1) an adequately performed read-across prediction (EU, 2006), or (2) an expert review of in silico and/or other experimental data (ICH M7, 2017(R1); EU 2006); they are assigned a reliability score of RS3. A score of RS4 would be assigned when two or more predictive models are available that are complementary, with concurring results (with no expert review), and no supporting literature data are available. Examples include those predictive models that use either substantially different QSAR descriptors and/or QSAR training sets or different in silico methodologies.

3 As mentioned in Section 2.5, where high quality experimental data are available (as shown in Fig. 1), it may not be necessary to run in silico models. However, generating in silico predictions for chemicals with known values is sometimes performed to verify experimental results because an unexpected positive or negative experimental result in a physical assay may be explained by the presence of an active impurity or to provide additional weight-of-evidence or for other reasons.
If two or more in silico model results do not agree, then an expert review would be required to assess the results. This review might increase the confidence in the assessment, resulting in an increased reliability score of RS3. A single acceptable (as discussed in Section 2.3.2) in silico model result, without further expert review, is afforded the same reliability score of RS5 as an actual test result of lowest reliability (Klimisch 3 or 4). The in silico result is placed in the same category as low reliability data because such models inform decisions based on a series of compounds or trends. However, this reliability score may be increased following expert review. This reliability score closely follows the ICH M7 guideline, where submissions corresponding to reliability scores RS1-RS4 would be accepted according to the guideline. In addition to this score, it may be helpful to document any additional considerations that may be important to the overall assessment. Individual IST protocols may deviate from this scheme with appropriate justification.

2.6.3. Worked examples

Three examples from Amberg et al. (2016) illustrate how the framework described in this publication can be used for determining a toxicological effect or mechanism assessment and reliability score, based on experimental data and/or in silico predictions. Assessing reliability is an initial step in the overall assessment of hazard, where it will be combined with other information, including an evaluation of the relevance of the information, to support decision making.

In the example in Fig. 3, no experimental data were identified. Two in silico models were run; the statistical-based model prediction was negative and the expert rule-based alert prediction was negative. The initial score would be RS4 based on multiple concurring prediction results; however, an expert review was performed on the results from both methodologies and the negative result was confirmed with increased reliability. The review concluded there were no potentially reactive features in the chemical. This resulted in a negative overall

Fig. 2. Reliability of toxicity assessments based on computational models and experimental data.

Table:

Reliability score	RS5	RS4	RS3	RS2	RS1
Increasing reliability					
In silico results					
Single acceptable in silico result	Multiple concurring prediction results				

Fig. 3. Determining the bacterial gene mutation assessment and reliability score for two concurring in silico results with expert review.
assessment and a reliability score of RS3 (as a result of the expert review increasing the reliability).

In the example in Fig. 4, no experimental data were identified. Two in silico models were run; the statistical model prediction was positive and the expert alert prediction was positive. No expert review of the results was performed. The overall assessment was therefore positive and a reliability score of RS4 was assigned as a result of two concuring positive predictions using complementary in silico methodologies but without expert review.

In the example in Fig. 5, no experimental data were identified. Two in silico models were run; the statistical model prediction was positive and the expert alert prediction was negative. An expert review was performed on the results from both methodologies, refuting the statistical model's positive prediction. This review was based on an analysis of the test chemical's potential to react with DNA and the highlighted structural feature was determined to be irrelevant for the mechanism of interaction with DNA. This resulted in a negative overall assessment and a reliability score of RS3 (as a result of the expert review increasing the reliability).

2.7. Hazard assessment framework

2.7.1. Toxicological endpoints

Fig. 6 illustrates a general scheme for the prediction of a major toxicological endpoint. In this scheme, the specific toxicological effects or mechanisms are used to support the assessment of a series of toxicological endpoints. These toxicological endpoint assessments are, in turn, used in the overall assessment of the major toxicological endpoint. In Fig. 6, effect/mechanism 1 is identified as being relevant to an assessment of a specific toxicological endpoint (Endpoint 1). For example, bacterial gene mutation (effect/mechanism 1) is relevant to the assessment of gene mutation (endpoint 1). Endpoint 1 is, in turn, one of the endpoints that are relevant to the major toxicological endpoint (e.g., genetic toxicity). Other identified toxicological effects or mechanisms are associated with toxicological endpoints as shown in Fig. 6. For example, the mammalian gene mutation (effect/mechanism 2) is also relevant to the assessment of gene mutations (endpoint 1) and clastogenicity (endpoint 2) is another endpoint to be used in the assessment of genetic toxicity (a major toxicological endpoint). Fig. 6 also includes another example to illustrate how this scheme might be used to assess male reproductive toxicity.

The hazard assessment framework scheme for each IST protocol will contain different numbers of toxicological endpoints as needed to support the assessment of each major toxicological endpoint in a complete and transparent manner.

It is noteworthy that only the toxicological endpoints required to support a particular problem formulation need to be assessed. For example, in certain applications only an assessment of gene mutation may be needed (i.e., it may not be necessary to compute clastogenicity or the genetic toxicity major toxicological endpoint).

2.7.2. Relevance

Relevance, in this context, is defined as the scientific predictivity of the each toxicological effect or mechanism for the purpose of assessing a specific toxicological endpoint. As shown in Fig. 6, the assessment of toxicological endpoints may be based on the associated toxicological effects or mechanisms. To support a transparent overall analysis, the relevance of the toxicological effect/mechanism information in support of the assessment of the associated toxicological endpoint will be defined in the IST protocols. This relevance will be based on the collective experience of the consortium and available validation information.

2.7.3. Toxicological endpoint assessment

The assessment of each toxicological endpoint (as shown in Fig. 6) is a function of all associated toxicological effects or mechanisms and, in some cases, other toxicological endpoints. For example, in Fig. 6,
bacterial gene mutation and mammalian gene mutation (toxicological effects or mechanisms) are associated with gene mutation, whereas gene mutation and clastogenicity (both toxicological endpoints) are associated with genetic toxicity. Rules or general principles for combining all associated results for each endpoint will be defined in the upcoming IST protocols. For example, a rule may state that if one of the associated effects/mechanisms is positive then the endpoint assessment is positive. These rules or principles will take into consideration how combinations of different toxicological effects/mechanisms are evaluated to generate an assessment for any toxicological endpoint which may include a sequence of steps and incorporate Boolean logic.

2.7.4. Toxicological endpoint confidence

Confidence, in this context, is defined as a score that combines the reliability and relevance of the associated toxicological effects or mechanisms. This is an additional score associated with toxicological endpoints. The score may, in some cases, use other toxicological endpoint confidence scores (as shown in Fig. 6). This score will also take into consideration the completeness of the information available; for example, the confidence score may be lowered when information on an effect or mechanism is missing. It will also include complementary effects or mechanisms that need to be considered. This score will be generated based on a series of general principles and/or rules defined in each IST protocol. Each protocol will outline the different confidence values to generate, such as high, medium or low.

A confidence score is one of the most important items to generate. Different decision contexts tolerate a different level of confidence in the assessment result as exemplified in the following two scenarios.

1) Scenario 1. The decision is to prioritize a large number of chemicals to screen as part of product development. In this scenario, selecting a small subset of compounds using in silico methods supports strategic resource utilization with the eventual goal of reducing overall costs.

2) Scenario 2. A regulatory submission for a new cosmetic ingredient is being prepared based on results from in silico methods.

Although in both scenarios, toxicological endpoint assessments generated at the highest level of confidence would be preferable, Scenario 1 could still make beneficial use of lower confidence predictions because the safety consequences of a false negative is lower than in Scenario 2. Therefore, a risk assessment which takes into account the acceptable tolerance for a wrong prediction can be used to evaluate the necessity for high confidence.

The assignment of the confidence score for each toxicological endpoint has to support the decision context(s), regulatory framework and the type of product being assessed. Minimum confidence scores for regulatory purposes may need to be set; however for other applications, the use of these scores may be based on the individual organization’s risk tolerance or based on the context, a decision on the maximum permitted effort to be expended (since higher confidence score may be generated with additional resources), or an organization’s internal policy for using the confidence scores for specific tasks.

2.7.5. Expert review of toxicological endpoints

In certain situations, an expert review of the toxicological endpoint assessment and/or confidence may be warranted, and specific points to consider as part of such an expert review will be detailed in the individual IST protocols. This review may take into consideration the context of the assessment, that is, the type of product being assessed and any potential regulatory framework. It may be helpful to document any additional considerations concerning the assessment and confidence to support an overall assessment.

2.8. In silico toxicology protocol components

Ongoing efforts are concentrated on the development of individual IST protocols for major endpoints including genetic toxicity, carcinogenicity, acute toxicity, repeated dose toxicity, reproductive toxicity, and developmental toxicity. Table 5 outlines proposed common components for these IST protocols.

2.9. Reporting formats

Standardized reporting of the results and expert review is good scientific practice and assures that when such information is communicated to regulatory authorities, it is complete, consistent and transparent; this may avoid requests for additional information and maintain a consistent, expedient, and streamline regulatory review process. Table 6 outlines a proposed structure for the report format.

The proposed report format is more comprehensive than existing data formats by including information on overall assessment and expert reviews. For example, the “QSAR prediction reporting format” (QPRF; JRC, 2014) could be used to report the individual model results (as shown in Section D of Table 6), or “QSAR model reporting format” (QMRF) can be used to report the QSAR model’s details (as shown in Section H of Table 6).

The new proposed report format collects enough details on how the predictions were generated to enable another expert to repeat the process. It is also important that the reasoning and decisions of the
Table 5
Common components of an IST protocol (IATA = Integrated Approaches to Testing and Assessment; AOP = Adverse Outcome Pathways).

Section	Content
Introduction	• Describe the major toxicological endpoint being assessed
• Outline the general hazard assessment framework, including how a series of toxicological effects or mechanisms are related to one or more endpoints	
In silico methodologies and models	• Provide citations to any applicable AOPs or IATAs used
• Identify toxicological effects or mechanisms that might realistically be predicted	
• Define what in silico methodologies are appropriate to use	
• Specify additional considerations as to what constitutes an acceptable model	
• Discuss issues to be considered as part of any read-across analysis	
Experimental data	• Define specific study types and result(s) relevant to each toxicological effect or mechanism
• Define and justify the relevance of the information to the assessment of the toxicological endpoint (defined in the hazard assessment framework)	
• Define specific factors to consider when assessing the results and documenting the reliability of any available data or reference specific test guideline(s)	
Toxicological effects or mechanisms assessment and reliability scores	• Identify sources of data that may be considered
• Describe how each toxicological effect or mechanism assessment may be generated from available experimental data and/or in silico prediction(s)	
• Discuss any endpoint specific issues to consider as part of the reliability score	
Toxicological endpoint assessment and confidence	• Describe the toxicological endpoints that will be used as part of the hazard assessment framework
• Describe the rules or principles for determining each endpoint assessment, based on the associated effect/mechanisms or other endpoints	
• Define the rules or principles for determining each toxicological endpoint confidence, based on the relevance and reliability of the data (from associated effects/mechanisms) or confidence (from associated endpoints)	
• Identify points to consider as part of any expert review	
Reporting	• Define a format for a report of the results, expert review and conclusions
Other considerations	• Case studies

expert review steps are transparently documented and can be retraced at any time, including the information used as their basis for conclu-
sions.

3. Summary and outlook

IST is poised to play an increasingly significant role in the assessment of chemicals in a range of chemical exposure scenarios that have the potential to impact public health. Thus, this is an opportune time for the development of IST protocols. As expected, the quality and quantity of experimental data will vary as will the available in silico methods. For example, experimental data could be from a variety of sources, studies, protocols and laboratories using or not using GLP standards. Similarly, several in silico methods and approaches are available for assessment of toxicity. Thus, accepted selection criteria have to be defined for experimental data and in silico methods, for consistent and uniform use.

The development of IST protocols will support the use and adoption of in silico methods in the same manner in which in vitro and in vivo test guidelines support the use and adoption of those assays.

Fig. 7 summarizes the steps to perform an in silico assessment consistent with the framework defined in this publication. The key elements needed for the development of IST protocols are outlined in this publication, including: 1) how to select, assess and integrate in silico predictions alongside experimental data for defined toxicological effects or mechanisms, including a new methodology for establishing the reliability of this assessment, 2) a hazard assessment framework for systematic assessment of these toxicological effects or mechanisms to predict specific endpoints and assess the confidence in the results. Wherever possible, this is based on mechanistic knowledge on different biological levels of organization (Bell et al., 2016; OECD, 2016a; OECD, 2016b). Overall, the IST protocols will contain information to ensure predictions are performed in a consistent, repeatable, transparent and

Table 6
Elements of an in silico toxicity report (QMRF = QSAR Model Reporting Format).

Section	Content
Title page	• Title (including information on the decision context)
• Who generated the report and from which organization	
• Who performed the in silico analysis and/or expert review, including their organization	
• Date when this analysis was performed	
• Who the analysis was conducted for	
Executive summary	• Provide a summary of the study
• Describe the toxicity or properties being predicted	
• Include a table or summary showing the following:	
• The chemical(s) analyzed	
• Summary of in silico results, reviewed experimental data and overall assessment for each toxicological effect or mechanism	
• Summary of toxicological endpoint assessment and confidence	
• Summary of supporting information	
Purpose	• Specification of the problem formulation
Materials and methods	• QSAR model(s), expert alerts, and other models used with version number(s) and any parameters set as part of the prediction (e.g., QMRF format)
• Databases searched with version number(s)	
• Tools used as part of any read-across with version number(s)	
Results of Analysis	• Details of the results and expert review of the in silico models and any experimental data, including results of the applicability domain analysis
• Report of any read-across analysis, including source analogs and read-across justifications	
Conclusion	• Summarize the overall analysis including experimental data, in silico methods and expert review
References	• Complete bibliographic information or links to this information, including text guidelines referred to in the experimental data, etc.
Appendices (optional)	• Full (or summary) study reports used or links to the report, detailed (or summary) in silico reports, reports on the models used (e.g., QMRF reports)
ultimately accepted manner and will include a checklist (as defined in Section 2.4) to guide an expert review of the information. Each individual IST protocol will address how predictions will be performed in alignment with the framework discussed in this publication. These new protocols will provide specific guidance for each toxicological endpoint, including situations where no AOP or IATA is currently available. These protocols build on and fully incorporate wherever possible the considerable work previously reported, such as the OECD validation principles (see Sections 2.3.2), IATAs (see Sections 2.2), AOPs (see Sections 2.3.2), read-across frameworks (see Sections 2.3.2, 2.6.2), the Klimisch score (see Sections 2.5, 2.6.1, 2.6.2) and the QMRF/QPRF (see Sections 2.3.2, 2.9).

The IST protocols do not define how a risk assessment will be performed; they solely define the process which will lead to the prediction of the potential toxicity (hazard) of a chemical. Risk analysis depends on the exposure scenario, industry, regulatory framework and decision context based on the level of tolerated uncertainty and is performed in the hands of an expert.

The process of developing IST protocols requires an understanding of the best practices and science across various organizations, different industries and regulatory authorities. To develop such protocols, an international consortium was established comprising regulators, government agencies, industry, academics, model developers, and consultants across many different sectors. This consortium initially developed the overall strategy outlined in this publication. Working subgroups will develop individual IST protocols for major endpoints including genetic toxicity, carcinogenicity, acute toxicity, reproductive toxicity, and developmental toxicity. As each IST protocol is established, it will be reviewed internally within each organization and published. This process will evolve over time, as computational technology progresses, as will the assays and other information relevant to assessing these major endpoints emerges. Hence, similar to other test guidelines, the IST protocols will need to be periodically reviewed and updated. The implementation of IST protocols will also require user-friendly tools for performing such analyses and reporting the results, education, as well as further collaboration with organizations to support global adoption.

Disclaimer

FDA CDER Disclaimer: The findings and conclusions in this manuscript have not been formally disseminated by the FDA and should not be construed to represent any agency determination or policy. The mention of commercial products, their sources, or their use in connection with material reported herein is not to be construed as either an actual or implied endorsement of such products by the Department of Health and Human Services.

NIEHS Disclaimer: The findings and conclusions in this report are those of the author(s) and do not necessarily represent the official position of the National Institutes of Health (NIH), NIEHS. The mention of commercial products, their sources, or their use should not be construed as either an actual or implied endorsement of such products by the NIH/NIEHS.

MHRA Disclaimer: Any opinions expressed in this document are the author(s) and are not necessarily shared by other assessors at the Medicines and Healthcare products Regulatory Agency (MHRA). As such, they cannot be considered to be UK policy. The mention of commercial products, their sources, or their use in connection with material reported herein is not to be construed as either an actual or implied endorsement of such products by the UK's MHRA.

CDC/ATSDR Disclaimer: The findings and conclusions in this report are those of the author(s) and do not necessarily represent the official position of the Centers for Disease Control and Prevention or the Agency for Toxic Substances and Disease Registry. Mention of trade names is not an endorsement of any commercial product.

EPA Disclaimer: The views expressed in this article are those of the author(s) and do not necessarily reflect the views or policies of the U.S. Environmental Protection Agency. Mention of trade names or commercial products does not constitute endorsement or recommendation for use.

EFSA Disclaimer: This paper reflects Dr. Serafimova's personal view and is not endorsed by the European Food Safety Authority.

Health Canada Disclaimer: The findings and conclusions in this report are those of the author(s) and do not necessarily represent the official position of Health Canada. The mention of commercial products, their sources, or their use should not be construed as either an actual or implied endorsement of such products by Health Canada.

DHS Disclaimer: The findings and conclusions in this report are those of the author(s) and do not necessarily represent the official position of the U.S. Government, Department of Homeland Security (DHS), DHS Science and Technology (S&T) Homeland Security Advanced Research Projects Agency (HSARPA), or the Chemical Security Analysis Center (CSAC). In no event shall either the U.S. Government, DHS, HSARPA, CSAC, or the author(s) have any responsibility or liability for any consequences of any use, misuse, inability to use, or reliance upon the information contained herein, nor do any of the parties set forth in this disclaimer warrant or otherwise represent in any way the accuracy, adequacy, efficacy, or applicability of the contents hereof. The use of trade, firm, company, or corporation names including product descriptions does not constitute an official DHS endorsement of any service or product.

European Commission Disclaimer: The views expressed are solely those of the authors and the content does not necessarily represent the views or position of the European Commission.

Acknowledgements

Research reported in this publication was supported by the National Institute of Environmental Health Sciences of the National Institutes of Health under Award Number R43ES026909. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health. The authors would like to thank Sachin Bhusari and George Pugh from the Coca-Cola Company for their input into the manuscript.
