Whole-genome sequencing for an enhanced understanding of genetic variation among South Africans

Ananyo Choudhury1, Michèle Ramsay1,2, Scott Hazelhurst1,3, Shaun Aron1, Soraya Bardien4, Gerrit Botha5, Emile R. Chimusa6, Alan Christoffels7, Junaid Gamieldien7,7, Mahjoubeh J. Sefid-Dashti7, Fourie Joubert8, Ayton Meintjes5, Nicola Mulder5, Raj Ramesar6, Jasper Rees9, Kathrine Scholtz10, Dhriti Sengupta1, Himla Soodyall2,11, Philip Venter12, Louise Warnich13 & Michael S. Pepper14

The Southern African Human Genome Programme is a national initiative that aspires to unlock the unique genetic character of southern African populations for a better understanding of human genetic diversity. In this pilot study the Southern African Human Genome Programme characterizes the genomes of 24 individuals (8 Coloured and 16 black southeastern Bantu-speakers) using deep whole-genome sequencing. A total of ~16 million unique variants are identified. Despite the shallow time depth since divergence between the two main southeastern Bantu-speaking groups (Nguni and Sotho-Tswana), principal component analysis and structure analysis reveal significant ($p < 10^{-6}$) differentiation, and F_{ST} analysis identifies regions with high divergence. The Coloured individuals show evidence of varying proportions of admixture with Khoesan, Bantu-speakers, Europeans, and populations from the Indian sub-continent. Whole-genome sequencing data reveal extensive genomic diversity, increasing our understanding of the complex and region-specific history of African populations and highlighting its potential impact on biomedical research and genetic susceptibility to disease.
African populations harbor the greatest genetic diversity1-5 and have the highest per capita health burden (WHO), yet they are rarely included in large genome studies of disease association6-8. The complex history of the people of sub-Saharan Africa is reflected in the diversity of extant populations and recent migrations that have led to extensive regional admixture9-11. This diversity provides both a challenge and an opportunity for biomedical research and the hope that Africans will one day benefit from genomic medicine.

Present day South Africans include a major ethnolinguistic group of black southeastern Bantu-speakers (79.2% of the population), an admixed population (including European, Southeast Asian, South Asian, Bantu-speaking African, and hunter gatherer ancestries) referred to as Coloured (COL)12-14 (8.9%), whites of European origin (8.9%), an Indian population originating from the Indian sub-continent (2.5%), and a small proportion of additional ethnolinguistic affiliations not broadly covered in the aforementioned (http://www.statssa.gov.za/). The focus of this pilot study from the Southern African Human Genome Programme (SAHGP) is on the southeastern Bantu-speaker and COL populations.

Archaeological evidence suggests that the migration of groups of Bantu-speaking agro-pastoralists into southern Africa was initiated about 2000 years ago15-17. It further supports two different migration paths, one in the east and one in the west of Africa, giving rise to southeastern Bantu-speaker (SEB) and southwestern Bantu-speakers (SWB)15, 13, 18. Migration of SEB is estimated to have occurred in multiple distinct waves (in the early, middle, and late iron age) along the eastern coast19-23. The patterns of distribution of artifacts and rock art from different iron-age sites indicate the complex nature of the interactions between the Bantu-speaking immigrants and the Khoesan (KS) inhabitants24. These involved long phases of coexistence, trade, assimilation of hunter–gatherer peoples into agro-pastoralist communities, and in some cases the displacement of KS groups25-28. Such interactions have not only involved linguistic and cultural exchange but also admixture at the genetic level29, 30. It can be postulated that the migration of each Bantu-speaking group into a new territory likely involved an independent set of interactions and admixture events with the resident agro-pastoralist Bantu-speaker and hunter–gatherer populations.

These migrations and interactions have led to the formation of ethnolinguistic divisions within the SEB of present day South Africa, of which the two major groups are the Nguni-speakers and Sotho-Tswana-speakers who are estimated to have diverged geographically over the past 500 years or so31. The Nguni-speakers expanded to occupy the coastal areas extending down the east coast of South Africa, whereas Sotho-Tswana-speakers expanded across the highland plateau between the eastern escarpment and the more arid regions in the west32. Although the details of the arrival of these populations are unclear, it is proposed that the Nguni- and Sotho-Tswana-speakers or their antecedents migrated to southern Africa and started occupying vast territories by the fifteenth century21, 22, 31. Some of the boundaries between these populations have, however, been obscured by more recent migrations, conquests, admixture, and, in some cases, rapid language adaptations, especially over the last two centuries32. This makes the consideration of geography and language important when assessing the divergence of these groups and begs the question as to whether genetic studies would be sufficiently powered to detect population differences.

Southern African populations have recently been investigated using a number of genomic approaches including genotyping array and, more rarely, whole-genome sequencing (WGS) technologies9, 13, 29, 30, 33-38. However, the focus of most of these studies has been to analyze the genomic diversity among hunter–gatherers and the extent of their admixture in the present day SEB13, 29, 30, 36, 38. An early study, based on mtDNA, Y-chromosome, and a limited number of autosomal markers, suggested that the ethnolinguistic divisions between the major SEB groups were reflected by observed genetic divergence, although the clustering was not consistent for the three data types39. More recent genome-scale studies have not replicated the substructure within the SEB9, 38 and in some cases the authors concluded that the SEB is genetically a relatively homogenous group. This assumption needs more thorough investigation.

Over the past century there has been extensive urbanization of SEB in South Africa and the migration to economic hubs has resulted in a confluence of multiple ethnolinguistically diverse groups (http://www.statssa.gov.za/). When recruiting study participants from urban settings, the ethnolinguistic boundaries become blurred and the distinctions are no longer evident. We have therefore purposely recruited the SEB for this study from rural and semi-urban regions where we anticipated little or no ethnolinguistic admixture.

The arrival and settlement of Europeans during the last 500 years is an important migration that has influenced the peopling of southern Africa12, 40. Slave trade into the Western Cape from the 1600s also brought South Asian and Southeast Asian people to South Africa12. The interactions between these populations, Bantu-speakers and KS, have given rise to complex admixed population, one of which is the five-way admixed Cape COL population12. The recent and complex admixture patterns of the COL populations from different geographic regions and religious affiliations have been investigated in many different studies12-14, 30, 40, 41. They confirmed the presence of at least five ancestral populations and demonstrate significantly different ancestry proportions among individuals sampled from different regions of South Africa13, 40, 42. These studies were all based on SNP-array data and, to date, no WGS data have been published from COL individuals. Largely due to unavailability of data from appropriate ancestral populations, representation of populations from Southeast and South Asia may, in some instances, have biased the estimate of ancestry proportions.

The focus of the SAHGP pilot study is to provide a WGS-based, unbiased estimate of genetic variation in the region and to study the genetic differences between some of the major ethnolinguistic groups in the country. The study included 24 ethnically self-identified individuals comprising 16 SEBs (seven Sotho-Tswana- and nine Nguni-speakers) and 8 COL individuals. The first major aim was to study possible correlations between language groups and genetic clustering. The results suggest that, at least for individuals sampled on the basis of both language and geographic location, there is a discernable genetic separation between the two major SEB ethnolinguistic groups. The second major aim was to investigate the ancestral composition of the COL individuals based on novel WGS data and a comprehensive assortment of potential ancestral populations. As a result of the inclusion of additional representative populations our study demonstrates a much stronger South Asian ancestry in the COL when compared to previous studies. We document significant novel SNV discovery from the 24 WGS and highlight the potential implications for disease susceptibility in Africans.

Results
Description of variants discovered. This study used deep WGS (~50×; Supplementary Table 1) data to provide an unbiased assessment of genomic variation in 24 apparently healthy South African male individuals. In an attempt to capture a spectrum of diversity in under-represented populations we included eight
individuals of mixed ancestry from the Western Cape (referred to as COL) and 16 black South African SEB (7 Sotho-speakers from the Free State (SOT), eight Xhosa-speakers (XHS) from the Eastern Cape and 1 Zulu-speaker (ZUS) from Gauteng; Fig. 1a). Single-nucleotide variants (SNVs) were called using three different approaches with high concordance and only SNVs called by all three were used for downstream analyses (Supplementary Table 2 and Supplementary Note 1). Indels and copy number variants (CNVs) were called according to the standard Illumina pipeline. The analysis approach is outlined in Supplementary Fig. 1a. The average number of SNVs, indels, and CNVs was markedly higher in the black South Africans compared to the COL individuals (Fig. 1b–d and Supplementary Tables 2, 3). Across the 24 samples, 16.3 million unique SNVs were identified. A significant proportion of the SNVs identified were singletons (Fig. 1e). Interestingly, the number of singletons in SOT and XHS was found to be higher in comparison to singletons detected in randomly selected low-coverage African WGS sets of equal size (Fig. 1f, Supplementary Notes 1, 2); however, the observed differences in addition to demographic factors might also reflect the differences in sequencing coverage among the studies\(^5,\) \(^43,\) \(^44\) (Supplementary Notes 1, 2).

SNVs and indels were annotated according to genomic locations using ANNOVAR\(^45\) (Supplementary Tables 4, 5). A total of 3936 unique loss of function (LOF) candidate variants, which included stop gain, stop loss, splice, and frameshift mutations, were observed (Supplementary Fig. 2). The list was pruned by excluding variants observed at a MAF > 0.01 in 1000 Genomes
Table 1 SNVs showing potential knockout configurations in 16 genes that have two or more LOF mutations in the heterozygous state in the same individual

Gene	Position	COL	ZUS	SOT	XHS	Type
LILRA3	19_54803664	1	0	0	0	Stopgain
	19_54803979	1	0	0	0	Splicing
SLC17A9	20_61588315	1	0	0	0	Splicing
	20_61588316	1	0	0	0	Splicing
UGT2A3	4_6987185	0	1	0	0	Frameshift_deletion
	4_69796262	0	0	1	0	Splicing
AC006486.1	19_42747163	1	0	0	0	Frameshift_deletion
PLSCR2	3_146177945	0	0	0	1	Splicing
	3_146177635	0	0	0	1	Frameshift_deletion
ETNPPL	4_109681449	0	1	0	0	Frameshift_deletion
	4_109681452	0	1	0	0	Stopgain
ZNF816	19_53454007	0	0	0	1	Frameshift_deletion
	19_53454370	0	0	0	1	Stopgain
AC026740.1	5_668574	2	0	0	0	Frameshift_insertion
	5_668654	2	0	0	0	Frameshift_deletion
AC078925.1	12_131514221	0	1	0	0	Frameshift_insertion
	12_131514761	0	1	0	0	Frameshift_insertion
AC078925.1	12_131514265	0	0	0	1	Frameshift_deletion
	12_131514264	0	0	0	1	Frameshift_deletion
IGSF22	11_18728743	0	1	0	0	Frameshift_deletion
	11_18727647	0	1	0	0	Frameshift_deletion
FNDC3A	13_49775314	0	1	0	0	Frameshift_deletion
	13_49775366	0	1	0	0	Frameshift_deletion
AGAP6	10_51748861	1	0	1	0	Frameshift_deletion
	10_51768674	1	0	1	0	Frameshift_deletion
SORBS3	8_22423388	1	0	1	0	Frameshift_deletion
	8_22432396	1	0	1	0	Frameshift_deletion
LRRC9	14_60448779	1	0	1	0	Frameshift_deletion
	14_60474859	1	0	1	0	Frameshift_deletion
CDHR3	7_105668924	0	1	0	0	Splicing
	7_105641910	0	1	0	0	Stopgain
AC008686.1	19_38990040	0	0	1	0	Frameshift_deletion
	19_3899019	0	0	1	0	Frameshift_deletion

* See Supplementary Table 7 for further detail. The number of individuals tested per group: COL (n = 8), SOT (n = 7), ZUS (n = 1), and XHS (n = 7).

Project Phase 3 (KGP)\(^{16}\) and the African Genome Variation Project (AGVP)\(^{9}\), resulting in 1703 variants. Their gene locations were determined and 146 genes had at least two LOF variants in the data set, of which 22 genes showed a potential knockout configuration (two heterozygous LOF variants in the same individual) in at least one individual. Six of the genes were excluded because they are listed in the false discovery panel\(^{47}\) and the LOF variants in the remaining 16 genes are shown in Table 1 and Supplementary Table 6. These genes are not associated with known phenotypes in OMIM (http://www.omim.org/), with the exception of SLC17A9, which has variants segregating with autosomal dominant disseminated superficial actinic porokeratosis-8 in two unrelated Chinese families (http://www.genecards.org).

Novel variants. Of the 16.3 million unique SNVs identified, 815,404 were detected to be novel (defined as absent from dbSNP142\(^{38}\), KGP\(^{46}\), and the AGVP study\(^{9}\) (Supplementary Table 7)). Novel SNVs were categorized according to minor allele count (MAC), with the largest proportion of variant alleles observed only once (Fig. 1g). The large number of novel variants demonstrates the potential for novel discovery in African populations. The representation of novel SNVs in various functional categories was also studied and is summarized in Fig. 1h (Supplementary Note 3). The distribution of novel SNVs across the genome is shown in Supplementary Fig. 3 and Supplementary Table 8 and highlights regions of high density and potential interest (Supplementary Note 3). Regions with high overall SNV density differences between black South Africans and other African populations were identified (Supplementary Note 4). Several of these regions were found to be associated with protein-coding genes (Supplementary Table 9). Local ancestry analysis of these regions may reveal hotspots for mutational activity or enrichment of haplotype blocks from specific ancestral populations (e.g., the KS).

Population structure and admixture. Recent historical events including geographic isolation, cultural practices, political conflict, colonization, and extensive admixture have shaped the genetic diversity among populations of southern Africa\(^{11, 30, 49}\). Comparative studies for population structure and admixture were done using SNP-array data available in the public domain\(^{9, 30, 46}\) (see Supplementary Table 10 for the list of populations used). Fig. 2a shows global data and Fig. 2b focuses on Africa.

Principal component analysis (PCA) showed that the COL individuals form a dispersed cluster linked to African and non-African populations including European, South-Asian (Indian sub-continent), and Austronesian populations\(^{30}\), confirming their parental contributions as reported in historical accounts (Fig. 2, Supplementary Fig. 4, and Supplementary Note 5). The analysis of ancestry proportions based on novel proxy populations provided an indication of substantive admixture from the Indian.
sub-continent along with contributions from the European, KS, SEB, and the Austronesians (Malay; Fig. 2c, Supplementary Table 10, Supplementary Fig. 5, and Supplementary Note 6). However, it needs to be noted that the admixture among groups of COL individuals is known to differ significantly along religious lines and geographic dispersal51, 52.

Despite the recent linguistic and geographic divergence between the XHS and SOT groups, genetic data using PCA showed them to be significantly different ($p < 10^{-6}$; Fig. 2 and Supplementary Fig. 6). The genetic structure between the two groups was also reflected in the structure analysis (Fig. 2c and Supplementary Fig. 7).

One individual who self-identified as XHS was found to have recent non-African admixture of European origin (he is identified as XHD in Fig. 2a), leaving 15 individuals in the SEB group. The ZUS individual did not seem to cluster with the AGV Zulu participants (see Supplementary Fig. 6e)9. The ZUS individual was recruited in Soweto, Johannesburg, which is a cosmopolitan area having attracted migrants from across southern Africa, with different ethnic backgrounds. Soweto has a complex history, including people who were forcibly relocated there under apartheid legislation from other urbanized areas in the 1950s53. Thus, Soweto has an effective 120-year history of people from different backgrounds living together in an urbanized setting.

Fig. 2 Genetic differentiation of Sotho and Xhosa-speakers demonstrated by principal component analysis (PCA) and ADMIXTURE analysis. PCA was performed using the Illumina 2.5 M array data for comparative purposes. Overall, 197,279 SNVs were used in the analysis. **a** Comparison of South Africans relative to selected world populations (also in Supplementary Fig. 4; PC1, 2, and 3 explain 50, 16, and 14% of structure variation, respectively). **b** This shows the same data and analysis but zooming-in on selected populations for clarity. The Sotho (SOT) and Xhosa (XHS) show distinctive clustering, and thereby suggest significant genetic differentiation. **c** ADMIXTURE analysis was done with a selection of world populations. A summarized result for $K = 7$ is shown here (more details in the Supplementary Fig. 7a, b). Above the horizontal line each individual in the SAHGP sample is shown, one row per person; below the line we show the average ancestral composition for all members of that group. The populations included from the present study are Sotho (SOT), Xhosa (XHS), Zulu from Soweto (ZUS), Coloured (COL), and the admixed Xhosa individual from South Africa (XHD). Additional populations used in this analysis are Baganda from Uganda (BAG), Bengali from Bangladesh (BEB), Utah Residents (CEPH) with Northern and Western European Ancestry (CEU), COL from Wellington (CWC), Northern and Central Khoesan including Ju/
'Ohoansi, Glui, and Gilana and !Xuun (KSA), Southern Khoesan including Khwe, Karretjie, Nama and #Khomani (KSB), Luhy in Webuye, Kenya (LWK), South Eastern Bantu speakers from Schlebusch et al. 2012 (SEB2); Black South Africans from Soweto based on May et al. 2013 (SEB3); Malay from Singapore (SSMP); southwestern Bantu-speakers (SWB); Yoruba in Ibadan, Nigeria (YRI); Zulu from South Africa (ZUL). Further information on these populations is available in Supplementary Table 10.
Although there is only one ZUS individual in the study and so comment risks being anecdotal, the fact that the ZUS individual does not cluster in our sample with the ZUL individuals (from the AGVP data set) indicates that care needs to be taken in interpreting ethnic origin when recruiting from urbanized areas in African countries. Language and self-identity may not be good markers for genetic background.

Regions of genomic differentiation between Sotho and Xhosa. To investigate the differentiation of SOT and XHS further, we studied the distribution of average fixation index (F_{ST}) scores (in 25 kb windows) across the genome (Supplementary Note 7). The analysis of regional F_{ST} was able to identify genomic regions with high divergence between the two groups (Supplementary Fig. 8 and Supplementary Table 11). Although a large proportion of the high F_{ST} windows was found to occur in the intergenic regions and pseudogenes, some of the windows were found to include the olfactory receptor genes OR4S2 and OR4C6, and other genes like SEMA4F, EREG, PLN, and PTF1A (Supplementary Fig. 8 and Supplementary Table 11). The potential biological roles of these genes were inferred using the Genecards database (http://www.genecards.org). The gene SEMA4F encodes a transmembrane class IV semaphorin family protein, which plays a role in neural development. This gene has been suggested to be involved in neurogenesis related to prostate cancer, the development of neurofibromas, and breast cancer tumorigenesis. In addition to cancers, the SEMA4F gene has also been suggested to be involved in pulmonary tuberculosis and dyslexia. The EREG (epiregulin) gene can function as a ligand of EGFR (epidermal growth factor receptor), as well as a ligand of most members of the ERBB (v-erb-b2 oncogene homolog) family of tyrosine-kinase receptors and is known to be associated to diseases like colorectal cancer, and hypopharynx cancer. Similarly, the PTF1A gene is a transcription factor involved in pancreatic development. Diseases associated with PTF1A include pancreatic cancer and cerebellar agenesis. In the absence of data for variation in phenotype or disease incidence or prevalence in these groups, it is not possible to infer whether the highlighted genes have any medical or evolutionary significance for these populations. Nevertheless, the genetic differences in these regions might flag some of these diseases/traits for epidemiological investigation among the southern African populations.
Affinities of populations based on rare variant sharing.

To further understand the genetic affinities of the South Africans, we performed f_2 analysis using WGS data from the KGP\(^\text{46}\). If a variant occurred only twice in the merged SAHGP-KGP data set, such that one copy was observed in the SEB, the KGP\(^\text{46}\) population with the other copy was noted (Supplementary Note 8). The SEB included 7 SOT, 7 XHS, and the ZUS population with the other copy was noted (Supplementary Note 8).

The frequency of f_2 variants shared with SEB by various KGP\(^\text{46}\) populations is summarized in Fig. 3a, demonstrating that the majority of f_2 variants was shared with the Luhya from Kenya. There was also significant but less sharing with other African populations (especially ACB and ESN) and low sharing with non-African populations. This trend was also observed when the analysis was extended to examining SNVs, irrespective of MAC, shared between the SEB and a single KGP\(^\text{46}\) population (Supplementary Fig. 9). The COL also showed the same pattern of f_2 variant sharing with the KGP\(^\text{46}\) populations (Fig. 3b). The higher sharing of f_2 variants between South African populations with the East African Niger-Congo-speakers compared to West African Niger-Congo-speakers is consistent with the historical accounts of Bantu migration\(^\text{49, 54}\). The distribution of continent-specific variants also demonstrated a similar pattern (Supplementary Fig. 9 and Supplementary Note 8).
Characterization of Khoesan affinities. An important characteristic that distinguishes the SEB from other Africans is the relative proportion of KS admixture\(^8, 29, 49, 55–57\). Genetic distance between the KS and the SAHGP populations was estimated using \(F_{ST}\). As expected, the SOT and XHS showed closer affinity between the KS and the SAHGP populations was estimated using \(F_{ST}\). The distribution of the runs of homozygosity (ROH) segments in the SAHGP populations was compared to various populations from Africa and other continents (Supplementary Note 10). The comparison of ROH between African and non-African populations challenges the previous observations of uniformly lower ROH in Africans\(^9, 60\) and shows extreme diversity in ROH segments among African populations\(^30\) (Fig. 4, Supplementary Fig. 11, Supplementary Data Set 1). The southern African Bantu-speakers (shown in light purple in Fig. 4) were found, in general, to harbor longer and more abundant ROH segments in comparison to Bantu-speaking populations from the East, Central West, and West Africa. The KS exhibited large variations in ROH length and abundance. More northern KS populations, SWB, and the Somali were found to show the highest ROH length and abundance within the continent, in some cases comparable to non-African populations. The COL, along with other recently admixed populations like the ASW and ACB, shows the lowest total ROH as well as the smallest number of segments among the African populations (Fig. 4 and Supplementary Fig. 12), reflecting their relatively recent and complex multi-ancestral admixture\(^15\).

The significance levels of differences in ROH length between populations were estimated using the Mann–Whitney U-test and are shown in Supplementary Fig. 11 and Supplementary Data Set 1.

Distribution of mitochondrial and Y chromosome haplogroups. Mitochondrial and Y chromosome haplogroups showed a gender-biased gene flow (Table 2). The mtDNA haplogroups were predominantly KS with two-thirds showing the L0d haplogroup in both the COL and black South Africans. Two of the COL individuals had Southeast Asian/European haplogroups and one had a haplogroup found in Bantu-speakers. Four of the black South Africans had mtDNA haplogroups found among other eastern Bantu-speakers and one a haplogroup common in West Africa. Conversely, the Y haplogroups showed significant differences between the COL group (predominantly of European origin, with one African haplogroup) and black South Africans. The self-reported black South African (XHD) with significant recent admixture had a paternal lineage of Mediterranean origin (Table 2). The mtDNA and Y haplogroup findings are consistent with previous studies that indicated cross-cultural assimilation, favoring the inclusion of female hunter–gatherers into Bantu-speaking farming communities\(^8, 41, 61–64\).

There are no tables or figures provided in the document. The text is organized in paragraphs and sections, and it appears to be a scientific article discussing the genetic relationships and admixture patterns in various populations, focusing on the Khoesan and Bantu groups. The analysis includes genetic distance metrics, admixture estimates, and haplogroup distribution, with a particular emphasis on ROH segments and their implications for understanding historical migration and admixture events.
Discussion

The SAHGP study is the first report on the genetic architecture of Africans using high-coverage WGS data that is fully funded by an African government and analyzed and interpreted locally. It demonstrates capacity for genome analysis and highlights the high discovery rate of novel variants and a deeper understanding of population histories and affinities.

Although hinted at in an earlier study, population differentiation among the SEB has not been reported in any of the recent genome-scale studies. In fact, many of these studies have shown and/or assumed the SEB to be a genetically homogeneous population. Despite the small number of samples, our study is the first genome-scale study to report genetic differentiation between the two major language divisions of the SEB in South Africa. We postulate that one reason is the locations from which participants were sampled. In our study, we purposely recruited the SEB from rural areas or regions with little ethnolinguistic diversity, whereas other studies may have recruited from urban settings with a multi-ethnic and multi-cultural mix of individuals. Careful scrutiny of the PCA plots in the AGVP study, in the light of our findings, shows evidence of a tighter and more homogeneous clustering of the Zulu from Kwa-Zulu Natal and a more diffuse clustering of the Sotho who were recruited from urban Soweto, just outside Johannesburg. The latter self-reported as Sotho-speakers but may have had parents from two different ethnolinguistic groupings. Furthermore, in the detailed analysis of admixture reported in the AGVP study (Extended data Figure 7) clear differences in the nature, source, and timing of admixture in the Sotho and Zulu are evident.

A failure to detect genetic differences between SEB groups who speak different but related languages in some of the previous studies is likely due to large-scale demographic changes that have occurred over the last two centuries. These include migrations, displacements, admixture, and adoption of new languages, that might have rendered language alone an inadequate proxy for capturing underlying genetic differences, especially in urban centers. According to oral history, linguistic and archaeological evidence, a common ancestry is likely to be as recent as 1000–1200 years for the SOT and XHS. Therefore, the differences in their genetic structure, in addition to differential admixture, could represent the consequences of very recent geographic, linguistic, and cultural separation with concomitant genetic drift effects, given the small effective population sizes. The small sample sizes for this pilot study, as well as the lack of population-scale WGS data from the KS populations, restricted our ability to investigate the role of genetic drift and selection in the genetic differentiation. Studies based on larger sample sizes will be necessary to assess the extent to which these factors have influenced the genomic differences. Given that differences were observed, this provides a compelling argument for investigating population substructure in South African studies as this may affect the outcomes and interpretation of biomedical genetic association and pharmacogenomics studies in the region.

Turning our attention to the admixed COL populations of South Africa, several studies have detected up to five distinct ancestry components, arising from KS, Bantu-speaker, East Asian/Southeast Asian, South Asian, and European admixture. In most of these studies, the Chinese and the Gujarati populations from the HapMap data set have been used to represent East/Southeast Asian and South Asian ancestors, respectively. A survey of the seventeenth century slave-trade routes, however, suggests these to be unsuitable proxies for the populations that might have contributed the East Asian and South Asian ancestry in COL individuals. Based on data from the KGP and Malay genome studies, we were able to identify the Malay as a better proxy for the Southeast Asian and the Bengali (BEB) for the South Asian ancestry. Moreover, the geographic locations of these populations were found to be much closer to the seventeenth century Dutch trading posts and historical accounts of the presence of these groups in the Cape during that time is also well documented. Based on the use of the more appropriate comparative populations, we were able demonstrate that the South Asian contribution was higher in comparison to the East Asian contribution. This was corroborated in an independent study of COL individuals in South Africa.

In conclusion, the SAHGP pilot study emphasizes the high discovery rate of novel variants in African populations. Despite previous reports of relatively low genetic divergence among SEBs, we detected significant population differentiation between two SEB groups in South Africa, highlighting the need to consider population structure in disease-association studies involving southern African populations. Our study is limited by the small number of participants and lack of representation of additional ethnolinguistic groups in the region. In particular, the absence of population-scale WGS data for KS groups restricted our ability to fully utilize WGS data in analyses such as admixture mapping and local ancestry detection. The availability of such data would enable a more comprehensive analysis and is expected to provide novel insights.

Methods

Participants and sample collection and DNA extraction. The study was approved by the Human Research Ethics Committee (HREC, Medical) of the University of the Witwatersrand, Johannesburg (Protocol number: M120223).

Three groups of participants were enrolled and venous blood was collected into tubes containing EDTA anticoagulant. Inclusion criteria were as follows: male, over the age of 18 years, four grandparents who speak the same language as the participant (in the Bantu-speakers in order to avoid recently admixed individuals), not known to be related to the other participants in the study, and willing to provide broad informed consent (including consent to share data and DNA for future studies approved by the HREC (Medical)). Where feasible, community engagement preceded enrollment. Three main ethnolinguistic groups were included in this SAHGP pilot study. Individuals self-identified in terms of the ethnolinguistic group as part of the recruitment process. Group 1: individuals of mixed ancestry (referred to as COL in the South African context) were recruited through the Western Province Blood Transfusion Service by Sister Debbie Joubert under the guidance of Professor Soraya Bardien. Group 2: Sotho (Sotho-Tswana-speakers): seven individuals in this group were recruited from in and around the town of Ventersburg in the North West Province, following community engagement done by Professor Michèle Ramsay and recruitment by Mr. and Mrs. Botha and Mrs. van den Berg.

Group 3: Khosa-speakers (Nguni language): eight individuals were recruited by Dr Nolwindo Makubalo from her medical clinic in the Eastern Cape Province. One individual was a Zulu-speaker (Nguni language) from Johannesburg. All DNA samples were extracted in the same laboratory using a modification of the salting out procedure. The DNA was normalized and sent to the service provider (Illumina Fast Track) as a single batch at the same time, and all the data were returned in one batch.

Data generation and processing. The DNA samples were normalized to ~60 ng/dil and ~5 µg DNA was submitted to the Illumina Service Centre for sequencing on the Illumina HiSeq 2000 instrument (~100 bp paired-end reads, ~314 bp insert size) with a minimum of x30 coverage. Initial analysis of the raw read data was conducted by Illumina FastTrack Sequencing Services using their in-house-developed Isaac analysis pipeline.

SNP array data. Each sample was also genotyped using the IlluminaOmni2.5 genotyping array.

Whole-genome alignment and BAM processing. Reads were aligned to NCBI 37 (hg19) of the human genome reference sequence using the Isaac Alignment Software. During the mapping selection phase, low-quality 3′ ends and adaptor sequences were trimmed. Following the alignment-phase PCR duplicates were marked and indels realigned by the Isaac Alignment Software. Finally, the base-quality scores were recalibrated using GATK to generate the final sorted, duplicate marked, indel-realigned BAM files that were used for variant calling (Supplementary Note 1). The quality of the alignment per sample was assessed using SAMtools version 1.1-26-g29630674 to examine the percentage of duplicates and successfully mapped reads (Supplementary Table 1).
SNV calling. SNV calling was performed on all samples using the Isaac Variant Caller. The final data set of variants produced by the Isaac Variant Caller was filtered based on various features to generate a high-quality SNV data set (Supplementary Note 1). To assess the accuracy of the variant calls generated by the Isaac Variant Caller, two additional approaches were used to recall variants using the BAM files produced by the Isaac Alignment software. Variant calling was conducted using GATK’s HaplotypeCaller version 3.2-2. Variant calling was conducted independently at the University of Pretoria (UP) using the same GATK pipeline with varying parameters (Supplementary Note 1). The Wits site conducted the variant calling using GATK’s suggested best practices, while UP used more stringent variant-calling parameters (Supplementary Note 1). Each of the GATK variant call data sets was filtered using the GATK Variant Quality Score Recallification and the transition–transversion ratios assessed across the range of MACs (Supplementary Note 1, Supplementary Table 2, and Supplementary Fig. 1). The concordance between the three filtered data sets was examined and found to have an overlap of 97% for the SNVs called (Supplementary Fig. 1). In order to move forward with a high-quality, robust set of SNVs, the intersection of filtered SNVs called by all three approaches was used for further downstream analysis.

Indels and structural variant calling. Indels and structural variants were called using the Isaac variant caller software according to the Illumina pipeline72.

Functional categories for SNVs and indels. The annotation was performed with the ANNOVAR software69 using the database version (2015Mar22). Variant type counts for SNVs, indels and CNVs within each population was calculated.

Gene descriptions. The identification of genes in genomic regions of interests was performed using BioMart (http://www.ensembl.org/biomart/). The description of genes and their potential functions was inferred using GenCards (http://www.genecards.org/).

Relatedness. As several of the analysis methods used in this study assume the use of unrelated samples for accurate results, we assessed the data set for relatedness using an identity-by-descent (IBD) approach in PLINK v1.957. The IBD approach is based on calculating genome-wide identity by state (IBS) for each pair of individuals, based on the average proportion of alleles shared in common at the genotyped SNPs. The genotype data set was used for the IBD analysis and revealed no level of relatedness based on the π hat values generated, where values of greater than 0.1875 are indicative of closely related individuals.

Site frequency spectrum. To avoid bias due to possible incorrect assignment of ancestral alleles, a phased site frequency spectrum (SFS) based on MACs was calculated using a custom perl script. The script was used to study SFS in the three SAHGP populations along with eight randomly selected samples from representative African (YRI, ASW) and non-African populations (CEU) from the KGP46 and the AGVP (ZUL) data sets. As the main application of this analysis was to compare the SFS within each data set, it is necessary to standardize this analysis to be comparable between different studies.

Mitochondrial DNA haplotype calling. Haplogrep267 was used to identify mitochondrial haplotypes for each individual. For this, all reads were aligned using BWA-mem to the RSRS sequence. The BAM files produced were then uploaded to mtDNA-server as suggested by the website documentation. This service performs QC filtering (Mapping Quality Score < 20; read alignment quality < 30; base quality < 20; heteroplasy level < 1%; and BAQ filtering) and annotates regions of low complexity and NUMTS and finally assigns the most likely haplogroups.

Y chromosome haplogroup analysis. Y-chromosome haplogroup analysis was done using the AMY tree algorithm and tool77. For each person, the variants detected from the WGS were extracted, and converted into the correct format before being input into the AMY-tree program.

LOF analysis. The LOF mutations in our data set include Stop Gain, Stop Loss, Frameshifts (defined as indel in exon which in not a multiple of 3), and Splice Variants (defined as SNP/indel in position +1, +2, -1, -2 in introns). The above-mentioned categories of mutations in the whole-genome sequence data were identified using ANNOVAR83. The SNVs showing MAP > 0.05 were excluded as they were assumed to be mutations of lower impact. The distribution of the LOF variants in each individual was analyzed and if an individual was found to contain two different heterozygous LOF mutations, one in each chromosome, as inferred from phased whole-genome sequence data, in the same gene, the individual was characterized as a potential “complete knockout” with respect to that gene. Not all SNVs could be phased accurately because they were novel and therefore, when in doubt, we made the assumption that they were in a trans-configuration.

Population structure and admixture and relationship analysis. We investigated population structure using both PCA and structure analysis. In choosing comparison populations we took prior work and historical knowledge. After some preliminary experimentation we chose specific data sets (Supplementary Table 10). The KGP46 data for Yoruba in Badan (YRI), Luhya in Webuye, Kenya (LWK), Utah residents with Northern and Western European ancestry (CEU), and Bengali in Bangladesh (BEB) were used. In addition, Malays from the Singapore Sequencing Project84, Chinese New York City (CHB) and South Indians from Sivaganga (SIV) were also included. The populations from the study by Schlebusch et al.30, namely several Kho–San (KS), and COL groups (COLC and COLW), South-east Bantu-speakers (SEB) and SWB were included in the comparisons. Moreover, Baganda (BAG) and Zulu (ZUL) whole-genome sequences from the AGVP data set were also included in the analyses. The data were merged using PLINK v1.975, and filtered to exclude SNVs and/or individuals with poor quality. For both PCA and ADMIXTURE the SNVs were pruned to select sample SNVs not in LD with each other, leaving ~197 K SNVs for analysis.

PCA plots. PCA analysis was done using PLINK v1.975. Further analysis was done using EIGENSTRAT75 in order to estimate the statistical difference between the XHS and SOT.

Population structure analysis. Structure is a method developed by Pritchard and others for the analysis of the genetic structure of populations85. K values in the range 2–10, 40 independent runs were performed using ADMIXTURE, which were averaged using CLUMPP86. The maximum cross-validation score computed by Admixture is for $K = 7$. The tool Genesee (http://www.bioinf. wits.ac.za/software/genesis) was used to visualize the results from the PCA and population structure analyses.

Population differentiation. The analysis of the fixation index (F_{ST}) at the whole-genome level provides an estimate of the genetic distance between two populations and has been used extensively in inferring relationships between a set of populations8. We investigated the relationship between the southern African populations in our data sets and two distinct sets of populations known to be related to them; the Bantu-speaking groups (from South, West, and East Africa) and the KS populations from southern Africa. For a merged data set consisting of the SAHGP data, Schlebusch et al.30 and AGVP was generated. The Weir and Cockerham’s (W_{ST}) estimate87 was computed between the SAHGP and other groups using PLINK v1.975.

Local ancestry-based masking. Three data sets—the SAHGP, KGP46, and Schlebusch et al.30, all genotyped on the Illumina Omni 2.5 M SNP chip—were merged together using PLINK v1.975. The merged data set was phased using SHAPEIT282 with standard parameters. Analysis of local ancestry was performed using PGAmdx8 and the ZUL with the KGP46 and the ZUL from the SAHGP as target populations. Based on the ascertainment of ancestry of all the 20 SNP windows, the windows showing <20% of YRI ancestry were masked out to generate a minimal non-admixed SEB data set.

f2 and rare variant sharing analysis. To compare rare allele sharing between the SAHGP and the KGP46 data set, we merged the 15 SEB individuals (7 SOT, 7 XHS, and the ZUL with the KGP46 and the ZUL from the SAHGP) with individuals in regions that occur precisely twice in the merged data set (f_2 variants)88, 89. As the sample sizes in the two data sets were not uniform and an unbiased estimate of f_2 sharing was difficult, instead of performing a complete f2 analysis we focused on those f2 variants that occur at least once in one of the 15 SEB and once in the KGP46 data set. A similar analysis was performed using SNVs shared between only two populations irrespective of the minor allele frequency. This was mainly done to compensate for the small sample size in our study, which might have considered some SNVs to be singletons that could have been present multiple times if we had included more samples. Both these analyses were performed for the COL individuals. We also identified SNPs that occur in only one of the five continental population sets in the KGP46 data and studied their distribution in the 15 SEB and the 8 COL individuals.

SNV density comparisons. To study the variation in SNV enrichment patterns within Africa, we compared SNV densities in the YRI and LWK from the KGP46 data set to Zulu from the AGVP and SEB from the SAHGP data set. For this, we scanned the genome using 1 Mb sliding windows (with no overlap) and computed the number of SNVs occurring in that region in each population. The empirical distribution of SNV densities thus obtained for each population was used to assign a rank score and p-value to the density level observed for each window in that population. A similar scan was conducted using 25 kb windows. We noted that there are marked differences in sample size and coverage between data sets such as KGP46, AGVP, and SAHGP, and these factors could also result in differences in estimation of SNV densities. Therefore, we considered only the regions for which both Zulu and SEB were found to show similar SNV densities and vary strongly with both of the other African populations.
ROH analysis. Three data sets—the SAHGPP, AGVP, and Schlebusch et al.30, all genotyped on Illumina Omni 2.5 M SNP chip, were merged using PLINK v1.93b (Supplementary Table 13). An overall QC was performed on the merged data and SNVs with missingness greater than 0.05 and individuals with missingness greater than 0.05 were removed. We also excluded SNVs showing extreme deviation from Hardy–Weinberg equilibrium (p-value < 1 × 10−5) from the data. The populations were merged according to linguistic and geographic affinities into superpopulations (Supplementary Table 12). To correct for possible ascertainment bias, SNVs with frequencies lower than 0.01 in any of the merged superpopulations were removed (Supplementary Table 12). This resulted in a data set containing around 500 K SNPs (total genotyping rate in this data set was 0.999182). Total ROH length and number of ROH segments were estimated using PLINK v1.93b. By default, in PLINK v1.9 only ROH containing at least 100 SNVs, and of total length ≥1000 kb are noted. Therefore, we performed an additional analysis with the ROH window size set to 500 kb. The scanning window contained 50 SNVs and a scanning window hit was allowed to contain at most one heterozygous call and five missing calls. The Mann–Whitney U-test was used to test differences between the total lengths of ROH distribution in population and superpopulation pairs.

Regions of extreme differentiation between Sotho and Xhosa. To identify regions that show high FST variation within the SOT and XHC, the WGC FST estimate for each SNP was computed using PLINK v1.93b. A sliding window of 25 kb was used to scan the distribution of average FST scores across the genome and the top 0.005% windows showing highest FST scores were identified. As the WGS data include a lot of novel and population-specific SNVs, only the windows containing at least 10 SNVs that were found to be present in both the populations were considered (Supplementary Table 11).

Novel SNP identification and their genic distribution. The novel SNVs reported in this study were identified by comparing the presence of the SNVs occurring in the 15 SEB samples to all SNPs in the dbSNP142, in the KGP46 and Hardy, than 0.05 were removed. We also excluded SNVs showing extreme deviation from Hardy–Weinberg equilibrium (p-value < 1 × 10−5) from the data. The populations were merged according to linguistic and geographic affinities into superpopulations (Supplementary Table 12). To correct for possible ascertainment bias, SNVs with frequencies lower than 0.01 in any of the merged superpopulations were removed (Supplementary Table 12). This resulted in a data set containing around 500 K SNPs (total genotyping rate in this data set was 0.999182). Total ROH length and number of ROH segments were estimated using PLINK v1.93b. By default, in PLINK v1.9 only ROH containing at least 100 SNVs, and of total length ≥1000 kb are noted. Therefore, we performed an additional analysis with the ROH window size set to 500 kb. The scanning window contained 50 SNVs and a scanning window hit was allowed to contain at most one heterozygous call and five missing calls. The Mann–Whitney U-test was used to test differences between the total lengths of ROH distribution in population and superpopulation pairs.

Data availability. The WGS and the SNP-array data that form the basis of the dataset(s) to provide access. The EGA will then create an EGA account with the relevant access permissions.
45. Wang, K., Li, M. & Hakonarson, H. ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data. Nucleic Acids Res. 38, e162 (2010).
46. Auton, A. et al. A global reference for human genetic variation. Nature 526, 68–74 (2015).
47. Fuentes Fajardo, K. V. et al. Detecting false-positive signals in exome sequencing. Hum. Mutat. 33, 609–613 (2012).
48. Sherry, S. T. et al. dbSNP—the NCBI database of genetic variation. Nucleic Acids Res. 29, 308–311 (2001).
49. Busby, G. B. et al. Admixture into and within sub-Saharan Africa. Elife 5, e12566 (2016).
50. Wong, L.-P. et al. Deep whole-genome sequencing of 100 southeast Asian Malays. Am. J. Hum. Genet. 92, 52–66 (2013).
51. Chippura, E. R. et al. Geno-Wide association study of ancestry-specific TB risk in the South African Coloured population. Hum. Mol. Genet. 23, 796–809 (2014).
52. Daya, V., van der Merwe, L., van Helden, P. D., Möller, M. & Hoal, E. G. The role of ancestry in TB susceptibility of an admixed South African population. Tuberculosis 94, 413–420 (2014).
53. Bonner, P. & Segal, L. Soweto: A History (Maskew Miller Longman, 1998).
54. Li, S., Schlebusch, C. & Jakobsson, M. Genetic variation reveals large-scale population expansion and migration during the expansion of Bantu-speaking peoples. Proc. Biol. Sci. 281, 20141448 (2014).
55. Pickrell, J. K. et al. Ancient west Eurasian ancestry in southern African Africa. Proc. Natl Acad. Sci. USA 111, 2632–2637 (2014).
56. Parani, E. et al. The impact of agricultural emergence on the genetic history of African rainforest hunter-gatherers and agriculturalists. Nat. Commun. 5, 3163 (2014).
57. Barbieri, C. et al. Unraveling the complex maternal history of Southern African Khoisan populations. Am. J. Phys. Anthropol. 153, 435–448 (2014).
58. Brisbin, A. et al. PCAdmix: principal components-based assignment of ancestry along the chromosomal axis in individuals with admixed ancestry from two or more populations. Hum. Biol. 84, 343–364 (2012).
59. Pemberton, T. J. et al. Genomic patterns of homogeneity in worldwide human populations. Am. J. Hum. Genet. 91, 275–292 (2012).
60. Kirin, M. et al. Genomic runs of homogeneity record population history and consanguinity. PLoS ONE 5, e13996 (2010).
61. Coelho, M. et al. On the edge of Bantu expansions: mtDNA, Y chromosome and lactase persistence genetic variation in southwestern Angola. BMC Evol. Biol. 9, 80 (2009).
62. Barbieri, C. et al. Ancient substructure in early mtDNA lineages of Southern Africa. The Am. J. Hum. Genet. 92, 285–292 (2013).
63. Schlebusch, C. M. et al. MDNA control region variation affirms diversity and deep sub-structure in populations from southern Africa. BMC Evol. Biol. 13, 56 (2013).
64. Montinano, F., Davies, J. & Capelli, C. Group membership, geography and shared ancestry: genetic variation in the Basotho of Lesotho. Am. J. Phys. Anthropol. 160, 156–161 (2016).
65. Cavalli-Sforza, L. L., Bodmer, W. F. The Genetics of Human Populations. (W.H. Freeman, 1971).
66. Nurse, G. T., Weiner, S. J. & Jenkins, T. The Peoples of Southern Africa and their Affinities (Oxford University Press, 1987).
67. Plettenburg, D. et al. ‘Of sheep and men’: earliest direct evidence of caprine domestication in southern Africa at Leopard Cave (Erongo, Namibia). PLoS ONE 7, e80340 (2012).
68. The International HapMap Consortium. A haplotype map of the human genome. Nature 437, 1299–1305 (2005).
69. State, P. F. A Brief History of the Netherlands (Facts On File, 2008).
70. Wolden, N. Indian ocean slaves in Cape Town, 1695–1710. J. South. Afr. Stud. 42, 389–408 (2016).
71. Miller, S. A., Dykes, D. D. & Polesky, H. F. A simple salting out procedure for extracting DNA from human nucleated cells. Nucleic Acids Res. 16, 1215 (1988).
72. Raczy, C. et al. Isca: ultra-fast whole-genome secondary analysis on Illumina sequencing platforms. Bioinformatics 29, 2041–2043 (2013).
73. McMenna, A. et al. The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 20, 1297–1303 (2010).
74. Li, H. et al. The Sequence Alignment/Map format and SAMtools. Bioinformatics 25, 2078–2079 (2009).
75. Chang, C. C. et al. Second-generation PLINK: rising to the challenge of larger and richer datasets. GigaScience 4, 7 (2015).
76. Weissensteiner, H. et al. Haplotype classification in the era of high-throughput sequencing. Nucleic Acids Res. 44, W58–W63 (2016).
77. Van Geystelen, A., Decorte, R. & Larmuseau, M. H. D. AMY-tree: an algorithm to use whole genome SNP calling for Y chromosomal phylogenetic applications. BMC Genomics 14, 101 (2013).
78. Price, A. L. et al. Principal components analysis corrects for stratification in genome-wide association studies. Nat. Genet. 38, 904–909 (2006).
79. Alexander, D. H., Novembre, J. & Lange, K. Fast model-based estimation of ancestry in unrelated individuals. Genome Res. 19, 1653–1664 (2009).
80. Jankowski, M. & Rosenberg, N. A. GLUMDP: a cluster matching and permutation program for dealing with label switching and multimodality in analysis of population structure. Bioinformatics 23, 1801–1806 (2007).
81. The Genome of the Netherlands Consortium. Whole-genome sequence variation, population structure and demographic history of the Dutch population. Nat. Genet. 41, 818–825 (2009).
82. Weir, B. S. & Cockerham, C. C. Estimating F-statistics for the analysis of population structure. Evolution 38, 1358–1370 (1984).
83. Delaneau, O., Zagury, J. F. & Marchini, J. Improved whole-chromosome phasing for disease and population genetic studies. Nat. Methods 10, 5–6 (2012).
84. Mathieson, I. & McVean, G. Demography and the age of rare variants. PLoS Genet. 10, e1004528 (2014).

Acknowledgements

We are grateful to the South African National Department of Science and Technology for funding this initiative under the umbrella of the Southern African Human Genome Programme (SAHGP). We thank Sister Debbie Joubert and the Western Province Blood Transfusion Service for recruitment of the COL study participants, Dr Nomlindo Makubalo for recruitment of the Xhosa-speakers from the Eastern Cape and Mr. and Mrs. Botha and Mrs. van der Berg for recruitment of the Sotho-speakers from the Free State province, as well as all the participants for generously agreeing to share their data and biological samples. We also thank the participants of the SAHGP launch meeting held in 2011 from which this pilot project was initiated (Supplementary Note 11). A.C. was supported by the AWI-Gen Collaborative Centre funded by the NIH (U54HG006998) as part of the H3Africa Consortium. M.R. is a South African Research Chair in Genomics and Bioinformatics of African populations hosted by the University of the Witwatersrand, funded by the Department of Science and Technology and administered by National Research Foundation of South Africa (N.R.F.). M.S.P. was funded by the South African Medical Research Council (Flagship and Stem Cell Extramural Unit awards) and the Institute for Cellular and Molecular Medicine (University of Pretoria). N.M. and S.A. were supported by the H3A-RIoNet NIH grant (U18HG069414).

Author contributions

M.R. and M.S.P. co-led the SAHGP initiative, and the project was designed and coordinated by the core working group including M.R., M.S.P., B.S., H.S., R.R., J.K.S., P.V., N.M., F.J., S.H., and I.V. M.R. and H.S. obtained ethics approval for the study. The data analysis team was led by S.H. (PCA: STRUCTURE and Y chromosome analysis) and included A.C. (novel SNV characterization, LDV variant, f2, Fst, SFS, and ROH analysis), N.M. (functional analysis), F.J. (variant calling), S.A. (variant calling), G.B. (functional annotation and data curation), E.R.C. (admixture), J.G. (functional annotation), M.I.S.D. (functional annotation), A.M. (functional annotation, SNV characterization, data curation, and mtDNA analysis), and D.S. (region Fst analysis, data visualization). All authors wrote the Methods section and notes on their analyses. M.R. and A.C. drafted the manuscript, and A.C. was responsible for coordinating Tables and Figures (including the Supplement). All authors read, commented on, and approved the manuscript.

Additional information

Supplementary Information accompanies this paper at 10.1038/s41467-017-00663-9.

Competing interests: The authors declare no competing financial interests.

Reprints and permission information is available online at http://npg.nature.com/reprintsandpermissions/

Publisher's note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. Material that is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2017