Base-free nickel-catalysed decarbonylative Suzuki–Miyaura coupling of acid fluorides

Christian A. Malapit1, James R. Bour1, Conor E. Brigham1 & Melanie S. Sanford1*

The Suzuki–Miyaura cross-coupling of organoboron nucleophiles with aryl halide electrophiles is one of the most widely used carbon–carbon bond-forming reactions in organic and medicinal chemistry1,2. A key challenge associated with these transformations is that they generally require the addition of an exogenous base, the role of which is to enable transmetallation between the organoboron nucleophile and the metal catalyst3. This requirement limits the substrate scope of the reaction because the added base promotes competitive decomposition of many organoboron substrates4–5.

As such, considerable research has focused on strategies for mitigating base-mediated side reactions6–12. Previous efforts have primarily focused either on designing strategically masked organoboron reagents (to slow base-mediated decomposition)6–8 or on developing highly active palladium precatalysts (to accelerate cross-coupling reactions with organoboron reagents). R, alkyl or aryl group; Ar, aryl group.

To investigate oxidative addition under mild conditions (compared to, for example, the corresponding aryl fluorides13–20, esters26–28 or amides29–30), and using readily available and inexpensive carboxylic acid derivatives as coupling partners. Notably, a similar strategy was recently applied to the palladium-catalysed decarbonylative coupling of acid fluorides with triethyl(trifluoromethyl)silane16. Stoichiometric studies were first conducted to assess the viability of each step of the proposed catalytic cycle. To investigate oxidative addition and decarbonylation, benzylic fluoride 1 was reacted with Ni(cod)2 and PCy3 (Fig. 2a) (cod, 1,5-cyclooctadiene; PCy3, tricyclohexylphosphine). The benzyl nickel fluoride intermediate 2 was formed rapidly.

The Suzuki–Miyaura reaction involves the palladium-catalysed coupling of an aryl halide (Ar–X) with a boronic acid in the presence of exogenous base (MX*). The role of the base (Fig. 1b, cycle I) is to convert the ‘transmetallation-inactive’ [Ar–Pd–X] intermediate (where X = chloride, bromide or iodide) to a ‘transmetallation-active’ intermediate [Ar–Pd–X*] (where X* = hydroxide or fluoride). [Ar–Pd–X*] then participates in fast transmetallation with a boronic acid23–25. However, the base also mediates the off-cycle formation of organoborinate intermediates that competitively decompose via protodeboronation, oxidation and/or homocoupling15–16. Inspired by several literature reports13,16, we proposed that the combination of a nickel catalyst and an acid fluoride electrophile would directly form a ‘transmetallation-active’ intermediate [Ar–Ni–F] via oxidative addition and subsequent decarbonylation (Fig. 1b, cycle II). Importantly, Ni0 is well-known to participate in oxidative addition reactions with carboxylic acid derivatives15,26–28. This approach offers several advantages, which include eliminating the requirement for exogenous base; using highly electrophilic ArC(O)F substrates, which should undergo rapid oxidative addition under mild conditions (compared to, for example, the corresponding aryl fluorides13–19, esters26–28 or amides27–29); and using readily available and inexpensive carboxylic acid derivatives as coupling partners. Notably, a similar strategy was recently applied to the palladium-catalysed decarbonylative coupling of acid fluorides with triethyl(trifluoromethyl)silane16.

Stoichiometric studies were first conducted to assess the viability of each step of the proposed catalytic cycle. To investigate oxidative addition and decarbonylation, benzylic fluoride 1 was reacted with Ni(cod)2 and PCy3 (Fig. 2a) (cod, 1,5-cyclooctadiene; PCy3, tricyclohexylphosphine). The benzyl nickel fluoride intermediate 2 was formed rapidly.
(within 10 min at room temperature), and this complex underwent decarbonylation to afford phenyl nickel fluoride complex \(3 \) in 90% yield after 15 h. To confirm that \(3 \) is transmetallation-active, this complex was treated with 4-fluorophenyl boronic acid. As predicted, biaryl \(5 \) (the product of transmetallation and subsequent C–C bond-forming reductive elimination) was formed in 90% yield after 1 h at room temperature. An analogous reaction with 2,4,6-trifluorophenylboronic acid (which is known to undergo rapid protodeboronation under basic conditions)\(^{4,10} \) provided \(6 \) in >95% yield, indicating that transmetallation with \(3 \) is faster than protodeboronation. Notably, the analogous phenyl nickel chloride \(7 \) and phenyl nickel bromide \(8 \) do not react with aryl boronic acids to form \(5 \) and \(6 \), respectively, even when heated at 100 °C.

These stoichiometric studies were next translated to a nickel-catalysed decarbonylative coupling between acid fluoride \(9 \) and 4-methoxysphenyl boronic acid (\(10 \)). The use of 10 mol % \(\text{Ni(cod)}_2 \) and 20 mol % \(\text{PCy}_3 \) as catalyst afforded biaryl \(11 \) along with a ketone by-product \(12 \) (11:12 = 85:15). Triethylphosphine afforded poorer selectivity (11:12 = 30:70), whereas methyl(diphenyl)phosphine (\(\text{PPPh}_2\text{Me} \)) provided \(11 \) as a single detectable product in 95% yield. These changes in selectivity as a function of phosphine arise from ligand effects on the decarbonylation step (see Supplementary Information for details).

A key advantage of acid fluoride electrophiles is that they are directly accessible from carboxylic acids via deoxyfluorination. Evaluation of various deoxyfluorinating reagents and bases revealed that the combination of tetramethylfluoroformamidinium hexafluorophosphate (TFFH) and 1,8-bis(dimethylamino)naphthalene converts carboxylic acid \(13 \) to acid fluoride \(9 \) within 15 min at room temperature. The subsequent addition of nickel catalyst and boronic acid \(10 \) to the same pot and heating for 16 h at 100 °C then affords biaryl product \(11 \) in 86% yield. Various aromatic and heteroaromatic carboxylic acids participate in this one-pot nickel-catalysed coupling with arylboronic acids (Fig. 3). Esters, nitriles, trifluoromethyl groups, methyl- and phenyl ethers, sulfonamides, amides, alkenes, imidazoles, oxazoles and pinacolboronate esters are tolerated. Aryl chlorides and phenyl esters\(^{16,28} \)—common electrophiles in other nickel-catalysed cross-coupling reactions—are also compatible, demonstrating the orthogonality of the current method. Moderate yields were obtained with acid fluorides bearing electron-donating substituents (products \(17–23 \)) as well as those with ortho-substituents (products \(20–23 \)). For the former, analysis of the crude reaction mixtures by gas chromatography coupled with mass spectrometry showed ketone side products, indicating that decarbonylation is relatively slow with electron-rich substrates. With the latter, unreacted starting material remained, suggesting that oxidative addition is sluggish when the acid fluoride is sterically hindered. Heteroaromatic carboxylic acids, including thiophene, benzofuran, indole, pyridine and quinoline derivatives, are also effective coupling partners. Finally, various carboxylic acid-containing bioactive molecules, including probenecid, bexarotene, tamibarotene,
Tributyl(4-methoxyphenyl)stannane was used as the coupling partner. For details of reaction conditions and for examples of acid fluorides that did not undergo high-yielding decarbonylative coupling, see Supplementary Information.

Data availability

The main data supporting the findings of this study are available within the article and its Supplementary Information. Additional data are available from the corresponding author upon request. Metrical parameters for the structures of complexes 28 and 29 (see Supplementary Information) are available free of charge from the Cambridge Crystallographic Data Centre (https://www.ccdc.cam.ac.uk/) under reference numbers CCDC 1837039 and CCDC 1837038, respectively.

Received: 14 April 2018; Accepted: 22 August 2018; Published online 24 October 2018.

1. Suzuki, A. Cross-coupling reactions of organoboranes: an easy way to construct C–C bonds (Nobel Lecture). Angew. Chem. Int. Ed. 50, 6722–6737 (2011).
2. Brown, D. G. & Boström, J. Analysis of past and present synthetic methodologies on medicinal chemistry: where have all the new reactions gone? J. Med. Chem. 59, 4443–4458 (2016).
3. Lennox, A. J. J. & Lloyd-Jones, G. C. Transmetalation in the Suzuki–Miyaura coupling: the fork in the trail. Angew. Chem. Int. Ed. 52, 7362–7370 (2013).
4. Cox, P. A. et al. Base-catalyzed aryl-B(OH)2 protodeboronation revisited: from concerted proton transfer to liberation of a transient aryl anion. J. Am. Chem. Soc. 139, 13156–13165 (2017).
5. Cox, P. A., Leach, A. G., Campbell, A. D. & Lloyd-Jones, G. C. Protodeboronation of heteroaromatic, vinyl cyclopropyl boronic acids: pH-rate profiles, autocatalysis, and disproportionation. J. Am. Chem. Soc. 138, 9145–9157 (2016).
6. Molander, G. A. & Biolatto, B. Palladium-catalyzed Suzuki–Miyaura cross-coupling reactions of potassium aryl- and heteroaryltrifluoroborates. J. Org. Chem. 68, 4302–4314 (2003).
7. Knapp, D. M., Gillis, E. P. & Burke, M. D. A general solution for unstable boronic acids: slow-release cross-coupling from air-stable MIDA boronates. J. Am. Chem. Soc. 131, 6961–6963 (2009).

—

Fig. 3 | Scope of the nickel-catalysed decarbonylative Suzuki–Miyaura reaction with various carboxylic acids. A (in green), p-anisyl. aContains inseparable protodecarbonylated carboxylic acid fluoride (7%) as impurity. bTributyl(4-methoxyphenyl)stannane was used as the coupling partner. For details of reaction conditions and for examples of acid fluorides that did not undergo high-yielding decarbonylative coupling, see Supplementary Information.

—

The generality of this method with respect to the boronic acid coupling partner was explored using probenecid as the substrate (Fig. 4a). Aryl boronic acids containing fluoride, ester and methyl ketone substituents were compatible. Alkenyl boronic acids underwent coupling to generate 45 and 46. Cyclopropyl, allyl and benzyl boronic acids reacted under the optimized conditions to afford moderate to good yields of 47–49. Additionally, without any modification on the conditions, arylstannane nucleophiles afforded the flavone and febuxostat analogues 36 and 37 (Fig. 3). Base-sensitive α-heteroaryl boronic acids, including furans, thiophenes and pyrroles, also underwent coupling (Fig. 4b). Finally, highly base-sensitive ortho-difluorophenyl boronic acids 47–50 underwent high-yielding coupling with probenecid acid fluoride.

A final set of studies focused on eliminating the need for air-sensitive Ni(cod)2 as the nickel source in these transformations. These investigations revealed that the combination of air-stable, commercially available Ni(o-tolyl)(PPh3)2Cl (63, 10 mol%) and CsF (10 mol%) affords a relatively comparable yield to the original catalyst system of Ni(cod)2 and PPh3Me in the formation of product 61 (Fig. 4c), as well as in related transformations (Supplementary Fig. 9). All of the catalysts and reagents for the reactions with Ni(o-tolyl)(PPh3)2Cl and CsF were weighed on the benchtop, without the requirement for an inert-atmosphere glove box. As such, this advance should render these coupling reactions even more practical and accessible to a wide variety of synthetic and medicinal chemistry researchers.
Fig. 4 | Scope of the nickel-catalysed decarbonylative Suzuki–Miyaura coupling with various organoboron reagents. a. (Hetero)aryl, alkenyl, and alkyl boronic acids. b. Organoboron reagents that undergo facile protodeboronation. b.r.s.m., based on recovered starting material. c. Use of a commercial, air-stable precatalyst 63. Method A involves standard conditions and is operated in a dry box. Method B: 10 mol% 63, 10 mol% CsF, all catalysts and reagents are handled on the benchtop. P (in blue), probenecid aryl fragment; Boc, tert-butoxycarbonyl. *Isolated product contains inseparable ketone by-product (5%). For details on reaction conditions and for examples of organoboron reagents that did not undergo high yielding decarbonylative coupling, see Supplementary Information.
30. Ichiishi, N., Malapit, C. A., Wozniak, L. & Sanford, M. S. Palladium- and nickel-catalyzed decarbonylative C–S coupling to convert thioesters to thioethers. Org. Lett. 20, 44–47 (2018).

31. Schaub, T., Backes, M. & Radius, U. Catalytic C–C bond formation accomplished by selective C–F activation of perfluorinated arenes. J. Am. Chem. Soc. 128, 15964–15965 (2006).

32. Tobisu, M., Xu, T., Shimasaki, T. & Chatani, N. Nickel-catalyzed Suzuki–Miyaura reaction of aryl fluorides. J. Am. Chem. Soc. 133, 19505–19511 (2011).

33. Liu, X.-W., Echavarren, J., Zarate, C. & Martin, R. Ni-catalyzed borylation of aryl fluorides via C–F cleavage. J. Am. Chem. Soc. 137, 12470–12473 (2015).

Acknowledgements We acknowledge financial support from National Institutes of Health NIGMS (GM073836) and the Danish National Research Foundation (Carbon Dioxide Activation Center; CADIAC). We acknowledge J. Kampf for X-ray crystallographic analyses of 2b and 3.

Author contributions C.A.M., J.R.B. and C.E.B. developed the stoichiometric reactions. C.A.M. discovered and developed the catalytic reactions. C.A.M., J.R.B. and M.S.S. conceived and designed the investigations. M.S.S. directed and supported the research. C.A.M., J.R.B. and M.S.S. wrote and revised the manuscript.

Competing interests The authors declare no competing interests.

Additional information Supplementary information is available for this paper at https://doi.org/10.1038/s41586-018-0628-7.

Reprints and permissions information is available at http://www.nature.com/reprints.

Correspondence and requests for materials should be addressed to M.S.S.

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.