Characterization of florfenicol resistance genes in the coagulase-negative

*Staphylococcus* (CoNS) isolates and genomic features of a

multidrug-resistant *Staphylococcus lentus* strain H29

Chongyang Wu¹,²,⁴,⁵, Xueya Zhang¹,²,⁵, Jialei Liang², Qiaoling Li¹,², Hailong Lin¹,²,
Chaoquin Lin², Hongmao Liu², Danying Zhou¹, Wei Lu¹, Zhewei Sun¹, Xi Lin¹, Hailin
Zhang², Kewei Li¹, Teng Xu³,* Qiyu Bao¹,* and Junwan Lu¹,*

¹ School of Laboratory Medicine and Life Science/Institute of Biomedical Informatics,
Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
² The Second Affiliated Hospital and Yuying Children’s Hospital, Wenzhou Medical
University, Wenzhou, Zhejiang 325027, China
³ Institute of Translational Medicine, Baotou Central Hospital, Baotou 014040, China
⁴ Department of Laboratory Medicine, West China Hospital, Sichuan University,
Chengdu, Sichuan 610041, China

Corresponding author:
Junwan Lu

Mailing Address: School of Laboratory Medicine and Life Sciences/Institute of
Biomedical Informatics, Wenzhou Medical University, Chashan University Town,
Wenzhou 325035, China
Tel: +86 577 86689358

Fax: +86 577 86689358

E-mail: lujunwan304041474@qq.com

Teng Xu

Mailing Address: Institute of Translational Medicine, Baotou Central Hospital, Baotou 014040, China.

Tel: +86-472-6995304

Fax: +86-472-6995304

Email: xuteng@wmu.edu.cn

Qiyu Bao

Mailing Address: School of Laboratory Medicine and Life Sciences/Institute of Biomedical Informatics, Wenzhou Medical University, Chashan University Town, Wenzhou 325035, China

Tel: +86-577-86699398

Fax: +86-577-86699398

E-mail: baoqy@genomics.cn

ξ These authors contributed equally to this work.
**Abstract**

**Background:** With the wide use of florfenicol to prevent and treat the bacterial infection of domestic animals, the emergence of the florfenicol resistance bacteria is increasingly serious. It is very important to elucidate the molecular mechanism of the bacteria’s resistance to florfenicol.

**Methods:** The minimum inhibitory concentration (MIC) levels was determined by the agar dilution method, and polymerase chain reaction (PCR) was conducted to analyze the distribution of florfenicol resistance genes in 39 CoNS strains isolated from poultry and livestock animals and seafood. The whole genome sequence of one multidrug-resistant strain, *Staphylococcus lentus* H29, was characterized, and comparative genomics analysis of the resistance gene-related sequences was also performed.

**Results:** As a result, the isolates from the animals showed a higher resistance rate (23/28, 82.1%) and much higher MIC levels of florfenicol than those from seafood. Twenty-seven animal isolates carried 37 florfenicol resistance genes (including 26 *fexA*, 6 *cfr* and 5 *fexB* genes), of which 1 carried a *cfr* gene, 16 carried a *fexA* gene, 5 carried both *fexA* and *fexB* genes and 5 carried both *fexA* and *cfr* genes. On the other hand, all 11 isolates from seafood were sensitive to florfenicol, and only 3 carried a *fexA* gene each. The whole genome sequence of *S. lentus* H29 was composed of a chromosome and two plasmids (pH29-46, pH29-26) and harbored 11 resistance genes, including 6 genes [*cfr, fexA, ant(6)-Ia, aacA-aphD, mecA and mph(C)*] encoded on the chromosome, four genes [*cfr, fexA, aacA-aphD and tcaA*] on pH29-46 and one
gene (fosD) on pH29-26. It was interested to find that the S. lentus H29 genome carried two identical copies of the gene arrays of radC-tnpABC-hp-fexA (5,671 bp) and IS256-cfr (2,690 bp), of which one copy of the two gene arrays was encoded on plasmid pH29-46, while the other was encoded on the chromosome.

**Conclusions:** The current study revealed the wide distribution of florfenicol resistance genes (cfr, fexA and fexB) in animal bacteria, and to the best of our knowledge, this is the first report of one CoNS strain carrying two identical copies of florfenicol resistance-related gene arrays.

**Keywords:** Coagulase-negative staphylococci; *Staphylococcus lentus*; florfenicol resistance genes; whole genome; comparative genomics analysis
1. Background

Coagulase-negative *Staphylococcus* (CoNS) are opportunistic pathogens that are found not only in animals and humans but also widely in the environment, including dust, soil, water and air. CoNS are also considered a repository of resistance genes, highlighting their threat to public health[1]. In poultry, CoNS infection can lead to arthritis, cow mastitis, and even systemic infections[2]. Florfenicol (FF) is an antimicrobial widely used in veterinary medicine that acts by binding to the 50S ribosomal subunit, leading to inhibition of protein synthesis. Because of its broad antibacterial activity and few adverse effects, florfenicol has been licensed exclusively for use in veterinary medicine to treat infections caused by, for example, *Pasteurella multocida*, *Staphylococcus* sp. and *Streptococcus* sp. in companion animals, farm animals and fish[3]. However, the increasing use of the antibiotics for the treatment and prevention of infectious diseases in animals has contributed to the emergence and widespread of florfenicol resistance genes among bacteria of different species or genera. Reports of multidrug-resistant CoNS are also increasing, and this increased resistance of CoNS to antibiotics also limits the choice of drugs to treat infections[4]. To date, a variety of florfenicol resistance mechanisms have been characterized, including efflux pumps (*floR, fexA/fexB* and *pexA/pexB*)[5-9], rRNA methyltransferase (*cfr*)[10], chloramphenicol hydrolase (*estDL136*)[11], chloramphenicol acyltransferases (*catA or catC*)[12] and ribosomal protection proteins (*optrA* and *poxtA*)[13, 14]. In CoNS, only *cfr*, *optrA*, *poxtA* and *fexA/fexB* have been identified. The gene *cfr* was initially found on the 17.1-kb plasmid pSCFS1
from an *S. sciuri* isolate and was shown to encode an rRNA methylase mediating resistance to phenicol by methylation of the 23S rRNA. In contrast, the gene *fexA*, which encodes an efflux protein within the major facilitator superfamily (MFS), was first identified on the 34-kb plasmid pSCFS2 from *S. lentus* and was shown to be part of the Tn554-like transposon Tn558. *fexB*, also a phenicol exporter gene, was first identified on the pEFM-1 (35 kb in size) of *E. hirae*, both strains with swine origins. The genes *optrA* and *poxtA* encode ribosomal protection proteins of the ABC-F family. The gene *optrA* was first identified in *E. faecalis* and *E. faecium* and later found in various other gram-positive bacteria[15, 16], while *poxtA* was recently identified on the MRSA (methicillin-resistant *Staphylococcus aureus*) chromosome.

As a member of CoNS, *S. lentus* was traditionally considered to be an animal pathogen and has been isolated from a wide range of pets, farm animals, wild animals, and retail meats[17]. *S. lentus* has also been identified as the causative organism in several serious human infections, including endocarditis, peritonitis, septic shock, urinary tract infection, and wound infections, and its clinical significance is apparently increasing. In this work, in addition to detecting the florfenicol resistance levels and resistance genes of 39 *Staphylococcus* isolates from poultry and seafood, we also investigated the molecular mechanism of florfenicol resistance of a *S. lentus* strain with high level florfenicol resistance isolated from a hen. Through whole genome sequencing, we found, for the first time, two copies of the genes *cfr* and *fexA* colocalized on a plasmid as well as the chromosome of a bacterium.
2. Materials and Methods

2.1. Bacteria and antimicrobial susceptibility testing

CoNS strains were isolated from fresh fecal samples of ducks, cows, chickens and pigs collected from several farms in Sichuan, Zhejiang, Shanxi, Shandong and Henan provinces, China, in 2016 and from fresh seafood intestinal contents from Wenzhou, Zhejiang, China, in 2018. The isolates were identified by Gram’s staining and serum coagulase testing in strict accordance with experimental procedures and verified by homology comparisons of the 16S rRNA genes. Antimicrobial susceptibility was evaluated by the agar dilution method following the guidelines recommended by the Clinical and Laboratory Standards Institute (CLSI, 2017: M100 https://clsi.org/standards/). The MIC of linezolid was determined by the agar dilution method according to the European Committee on Antimicrobial Susceptibility Testing (EUCAST, www.eucast.org). S. aureus ATCC29213 was used as a control strain.

2.2. Clonal relationship analysis of the strains resistant to flornicol

To examine the clonal relatedness of the flornicol-resistant strains, we used PFGE to perform molecular typing for the 23 flornicol resistance gene-positive strains (flornicol MIC ≥32 µg/mL). Genomic DNA from 23 isolates was digested with 40 U of Smal (Takara, Dalian, China). Smal restriction patterns of the isolates were analyzed and interpreted according to initial criteria. The Bio-Rad Quantity One program was used to analyze the PFGE results, and a minimum spanning tree was constructed using a categorical coefficient with the unweighted pair group method with arithmetic mean (UPGMA) clustering.
2.3. Detection of florfenicol resistance genes

The florfenicol resistance genes (*fexA, fexB, cfr, oprA, pexA* and *floR*) were detected by PCR with the primers previously reported (Table 1). Genomic DNA was extracted from each of the 39 isolates using the AxyPrep Bacterial Genomic DNA Miniprep kit (Axygen Scientific, Union City, CA, USA) and was used as the template for PCR amplification. Positive amplification products were verified by sequencing with an ABI 3730 automated sequencer (Shanghai Sunny Biotechnology Co., Ltd., Shanghai, China), and the sequencing results were compared with BLAST against the corresponding resistance gene sequences in NCBI nucleotide database (https://blast.ncbi.nlm.nih.gov/blast.cgi).

Table 1. Primer sequences and PCR product sizes of the florfenicol resistance genes

| Primer  | Sequence (5’-3’) | Amplicon size (bp) | Annealing temperature (°C) | Reference |
|---------|------------------|--------------------|---------------------------|-----------|
| *floR1*-F | ATGACCCACACACGCCCGCGGTCGGGCG | 1198 | 58 | [7] |
| *floR1*-R | CTTGCATCCCGCGACGTTCTCTCTTGAGA |  |  | |
| *fexA1*-F | CTTTCTGGACAGGCTGGAA | 332 | 57 | [6] |
| *fexA1*-R | CCAGTCTGCTCCACGGTTA |  |  | |
| *fexB1*-F | ACTGGACAGGGAGCTTAAT | 319 | 57 | [8] |
| *fexB1*-R | CTCGCCCGAAGTACATTGAC |  |  | |
| *cfr1*-F | GGGAGGATTTAATAAATAATTGAGAAACA | 580 | 58 | [7] |
| *cfr1*-R | CTTATATGTGCATGATATACATTACCTCAT |  |  | |
| *oprA1*-F | CTTATGGATGGTTGCGGAGC | 309 | 56 | [11] |
| *oprA1*-R | CCATGGGGTTTGACCTAGTCA |  |  | |
2.4. Sequencing and annotation of the *S. lentus* H29 genome

Genomic DNA was extracted from *S. lentus* H29 as mentioned above and sequenced with Illumina HiSeq 2500 and Pacific Bioscience sequencers at Annoroad Gene Technology Co., Ltd. (Beijing, China). Pacific Bioscience sequencing reads of approximately 10-20 kb in length were assembled by Canu v1.2[18]. Two FASTQ sequence files corresponding to the reads derived from HiSeq 2500 sequencing were used to control assembly quality and to correct possible misidentified bases.

Glimmer3.02 software with default parameters was used to predict potential open reading frames (ORFs). ORF annotation was determined by performing BLASTX comparisons with the NCBI nonredundant protein database. Comparisons of nucleotide sequences and amino acid sequences were performed by BLASTN and BLASTP, respectively[19]. BLASTp was applied to compare amino acid sequences with those in the Antibiotic Resistance Genes Database (ARDB [https://card.mcmaster.ca/]). The map of the plasmid with GC content and GC skew was drawn with the online CGView Server (http://stothard.afns.ualberta.ca/cgview_server/) and local GView 1.7 with a visual interface[20]. The plasmid sequences used in this study were downloaded from the NCBI database ([http://www.ncbi.nlm.nih.gov](http://www.ncbi.nlm.nih.gov)). The rRNA gene sequences were annotated by the online tool RNAmmer ([http://www.cbs.dtu.dk/services/RNAmmer/])[21], and the tRNA sequences were
annotated by the online tool tRNAscan-SE 2.0 ([http://lowelab.ucsc.edu/tRNAscan-SE/][22]). Promoter sites were predicted by using Soft Berry BPROM software ([http://linux1.softberry.com/berry.phtml?topic=bprom&group=programs&subgroup=gfindb]).

2.5. Comparative genomics analysis

Sequences containing resistance genes were obtained from the NCBI nucleotide database by the BLASTN program using the resistance gene sequences of *S. lentus* H29 as the query. The resulting sequences were filtered, and only sequences containing complete resistance genes were retained. CD-HIT was used to cluster the retained sequences using the genome sequence of *S. lentus* H29 as the reference with an identity of ≥ 90%. The sequence sharing the greatest similarity to the other sequences in each cluster was chosen as the candidate for ortholog analysis. Orthologous groups of the genes from the candidate sequences were identified using BLASTP[19]. Sequence retrieval, statistical analysis and other bioinformatics tools used in this study were applied with Perl and Bioperl scripts ([http://www.perl.org/](http://www.perl.org/)).

3. Results and Discussions

3.1. Bacterial strains and antimicrobial susceptibility testing

A total of 39 CoNS strains including 9 species were analyzed in this work (Table S1). Among them, 28 strains were isolated from animal feces and 11 strains were isolated from the seafood intestinal contents. The strains included *S. epidermidis* (4),
S. lentus (2), S. equorum (6), S. saprophyticus (7), S. sciuri (4), S. haemolyticus (3), S. gallinarum (2), S. cohnii (3), S. warneri (4) and 4 unclassified ones. The S. saprophyticus strains, with the most isolates, were isolated from both the animals and seafood, which was in accordance with the statistics reported[23]. S. epidermis is most commonly isolated from humans[24], while in this work, it was present in the animals as well as seafood. The results of the antimicrobial susceptibility testing of the strains to 21 antimicrobial agents showed that the strains isolated from the animals generally showed wider resistance spectra and higher MIC levels than those isolated from seafood. More than 60% (17/28) of the animal strains showed resistance to 6 antibiotics, including FFC (82.1%, 23/28), CHL (85.8%, 24/28), CLI (75.0%, 21/28), TET (67.9%, 19/28), STR (64.3%, 18/28) and ERY (60.7%, 17/28), while the seafood bacteria were only resistant to ERY (63.6%, 7/11) (Table 2, Table S2). Although most antibiotic resistance rates against the animal CoNS isolates were similar to those previously reported, the resistance rates for CLR (39.3%, 11/28) and FD (36.7%, 10/28) were higher in this study than those in recent publications[25], which may indicate the abused use of the drugs in local livestock husbandry. Meanwhile, more than 90% of the animal isolates were sensitive to eight other antibiotics, especially AMK, TMP and TGC with all the strains sensitive to them. However, the seafood isolates only showed certain resistance rates to ERY (63.6%, 7/11) and CLI (36.4%, 4/11), and most strains were totally sensitive to some antibiotics, such as LZD, FOX, VAN and NOR (Table 2).

Table 2 is in line 550, page 25.
3.2. Identification of florfenicol resistance genes in the CoNS isolates

In *Staphylococcus*, florfenicol resistance has been reported to be mainly mediated by *cfr*, *fexA*, *fexB*, *optrA*, and *poxtA* [26]. In this work, of all 6 florfenicol resistance-related genes (*fexA*, *cfr*, *optrA*, *floR*, *fexB* and *pexA*), only 3 (*fexA*, *cfr* and *fexB*) were identified in the 39 *Staphylococcus* strains. A total of 37 genes, including 26 *fexA*, 6 *cfr* and 5 *fexB* genes, were identified in 27 strains, with one (*S. cohnii* H19) and 16 strains with a *cfr* and a *fexA* gene, respectively, 5 strains carrying both *fexA* and *cfr* genes, and other 5 isolates harboring both *fexA* and *fexB* genes, while the remaining twelve strains were free of the resistance gene. Many studies have reported that *fexA* is the most common florfenicol resistance gene in household animals in rural China [4, 9, 27]. In this study, the *fexA* gene occupied 70.3% (26/37) of the florfenicol resistance genes. Strains from animals presented a much higher positive rate and carried much more resistance genes, with 82.1% (23/28) of the strains carrying 91.9% (34/37) of the resistance genes, while in the seafood bacteria, only three strains (3/11, 27.3%) carried one *fexA* gene each (3/37, 8.1%). All 23 florfenicol-resistant isolates (florfenicol MIC level $\geq 32\ \mu g/mL$) were isolated from animals, and they all carried two (*fexA* and *fexB*) or one (*fexA*) florfenicol resistance gene. Among the 16 florfenicol-sensitive isolates (MIC $\leq 1\ \mu g/mL$), 12 were free of the florfenicol resistance gene, and 3 (*HXM5, HXM10* and *HXM13* all isolated from seafood) carried a *fexA* gene and one strain from poultry with a *cfr* gene. Among the 5 isolates
that carried both fexA and cfr, two strains (S. sciuri FC11 and S. haemolyticus FC24) showed an MIC value of 8 μg/mL to linezolid, which was interpreted as an intermediate for linezolid, while the other three strains showed MIC values of ≤ 0.25 μg/mL for linezolid. According to previous reports, linezolid resistance were related with ATP-binding cassette transporter gene optrA and it has been identified in bacteria of the animal origin[28, 29]. However, in this work, the optrA gene has not been identified in these strains. This may indicate that other mechanisms rather than optrA conferring the low-level linezolid resistance might exist in these two bacteria.

3.3. Clonal relatedness of the florfenicol-resistant CoNS isolates

Clonal relationship analysis for 23 florfenicol-resistant strains (MIC ≥ 32 μg/mL) revealed that no clonal relatedness was identified among them, including the strains of the same species (Fig. 1). The highest similarity of 63% was observed between two strains of different species, S. equorum (H37) and S. haemolyticus (FP36), which were isolated from different hosts (hen and pig, respectively).

3.4. General features of the S. lentus H29 genome

To analyze the molecular characteristics of the florfenicol-resistant CoNS strains, S. lentus H29, co-carrying fexA and cfr with a wide resistance spectrum and high MIC values to the antibiotics tested, was chosen for whole genome sequencing (WGS) analysis, and the general features of the H29 genome are shown in Table 3. The complete genome of S. lentus H29 consists of one chromosome and two plasmids (pH29-46 and pH29-26). The chromosome was 2,802,282 bp in length, encoded 2,683 ORFs and had a G+C content of 31.9%. pH29-46 was 46,167 bp in length and
encoded 46 ORFs, and pH29-26 was 26,210 bp in length and encoded 26 ORFs. At present, except for *S. lentus* H29, no complete genome sequence of *S. lentus* is available in the NCBI nucleotide database. The whole genome of *S. lentus* H29 encoded 11 resistance genes, of which 6 [cfr, fexA, ant(6)-Ia, aacA-aphD, mecA and \textit{mph}(C)] were encoded on the chromosome, 4 [cfr, fexA, aacA-aphD and \Delta tcaA] on pH29-46 and 1 (\textit{fasD}) on pH29-26. The resistance phenotypes coincided with the resistance genotypes (Table 4). In addition to showing resistance to florfenicol (MIC of 256 μg/mL) and chloramphenicol (MIC of 256 μg/mL), *S. lentus* H29 was also resistant to erythromycin (>64 μg/mL) and macrolide antibiotics.

Table 3. General characteristics of the *S. lentus* H29 genome

|                      | Chromosome | pH29-46 | pH29-26 |
|----------------------|------------|---------|---------|
| Size (bp)            | 2,802,282  | 46,167  | 26,210  |
| GC content (%)       | 31.90      | 29.73   | 31.94   |
| Predicted CDs        | 2,741      | 46      | 30      |
| Known proteins       | 1,929      | 33      | 20      |
| Hypothetical proteins| 812        | 13      | 10      |
| Protein coding sequences (%) | 87.30 | 82.33 | 87.54 |
| Average ORF length (bp) | 892 | 719 | 878 |
Table 4. Antimicrobial resistance determinants in *S. lentus* H29

| Antibiotics class   | Antibiotics tested | MIC (µg/mL) | Interpretation | Resistance genes     |
|---------------------|--------------------|-------------|----------------|----------------------|
| Macrolide           | erythromycin       | >64         | R              | *erm*(ABC)           |
| lincosamide         | clindamycin        | >64         | R              |                      |
|                     | clarithromycin     | >64         | R              |                      |
|                     | streptomycin       | 64          | R              |                      |
| Aminoglycosides     | gentamycin         | 4           | S              | *aac-aph, ant-Ia*    |
|                     | amikacin           | 4           | S              |                      |
|                     | kanamycin          | >64         | R              |                      |
| β-lactam            | cefoxitin          | 2           | R              | *mecA, mecC*         |
|                     | oxacillin          | 2           | R              |                      |
| Fusidic Acid        | Fusidic Acid       | 1           | S              |                      |
| Rifampicin          | Rifampin           | >64         | R              | *rpoB*               |
| FLuoroquinolones    | norfloxacin        | >64         | R              | *norA*               |
|                     | levofloxacin       | 4           | R              | *gyrA, gyrB*         |
| Phenicol            | Chloramphenicol    | 256         | R              | *cml*                |
|                     | Florfenicol        | 256         | R              | *cfr, fexA*          |
| Sulfonamides/         | Sulfonamides/     | 1           | S              |                      |
| Trimethoprim        | Trimethoprim       |             |                |                      |
| Tetracycline        | Tetracycline       | 64          | R              | *tet(K), tet(L)*     |
|                     | Tigecycline        | 2           | S              |                      |
| oxazolidinones      | Linezolid          | <0.125      | S              |                      |
| Glycopeptides       | Vancomycin         | 2           | S              |                      |
|                     | Teicoplanin        | 0.5         | S              |                      |

3.5. Comparative genomics analysis of the resistance plasmids and the *fexA*- and *cfr*-related sequences in the *S. lentus* H29 genome
Three plasmids, pSX01 (NZ_KP890694.1) of *Staphylococcus xylosus* 378, pSR01 (NZ_CP019564.1) of *Staphylococcus aureus* strain SR434 and pLRSA417 (KJ922127.1) of *Staphylococcus aureus* 417, sharing the highest nucleotide sequence similarities (coverage > 70%, identities ≥ 97%) with pH29-46 were retrieved from the NCBI nucleotide database. According to the structure and function of the genes encoded on the plasmid, pH29-46 could be divided into two regions (Regions A and B, Fig. 2). Region A was about 26 kb in size encoding the backbone genes, mainly including a replication gene *repA*, a segregation gene *parM*, 16 T4SS genes and several hypothetical protein genes, and it displayed 98–100% identity to the corresponding regions of the plasmids pSR01 and pLRSA417. Region B, about 20 kb in length, harbored five resistance genes, which could be divided into two segments. One segment (about 7.5 kb in length) included the *tnpABC* and *fexA* genes, which were not present in the three plasmids from the database. The other segment was a 12.5 kb sequence encoding the resistance genes of *cfr*, *aacA-aphD* and *tcaA*, and three copies of IS256 showing 99% identity and 80% coverage to the sequence on pSR01 and pLRSA417.

It was interested to find that the *S. lentus* H29 genome carried two identical copies of the gene arrays of *radC-tnpABC-hp-fexA* (5,671 bp) and IS256-*cfr* (2,690 bp), of which one copy was encoded on plasmid pH29-46, while the other was encoded on the chromosome. To the best of our knowledge, this is the first case that the combination of the mobile genetic element related *cfr* (IS256-*cfr*) and *fexA* (*tnpABC-hp-fexA*) was identified in both the plasmid (pH29-46) and the chromosome.
of an isolate *S. lentus* H29, respectively, even though this combination has been identified in several other plasmids such as pSS-01 of *S. cohnii* (JQ041372.1) and either IS256-cfr or *tnpABC-hp-fexA*) has been identified encoded in plasmids or chromosomes in other *Staphylococcus* strains of different sources (Fig. 3). These findings indicate that the *cfr* and *fexA* genes encoded on pH29-46 and the MGEs carrying them can be horizontally transferred between strains of different species, causing the spread of drug resistance. On the other hand, these MGE-related florfenicol resistance genes identified in CoNS of different origins (such as those isolated from animals and humans) demonstrate the threat of the use of antibiotics in animals to human health.

**Conclusions**

In this work, the animal CoNS isolates showed resistance to multiple antibiotics, including florfenicol, chloramphenicol, tetracycline, erythromycin, streptomycin, clindamycin and other common veterinary antibiotics, while seafood-derived isolates were much less resistant to these antibiotics. The main molecular mechanism that makes the CoNS isolates resistant to florfenicol is the *fexA, fexB* and *cfr* genes they carry. It was interesting to find that one isolate *S. lentus* H29 harbored two identical copies of the gene arrays that carried either a *fexA* or a *cfr* gene, with one copy on a plasmid and the other on the chromosome. Genetic structure analysis of the *fexA* and *cfr* gene-related sequences indicated that these florfenicol resistance genes were related to mobile genetic elements and located on both plasmids and chromosomes.
among different Staphylococci species. These findings indicate that the resistance
genes in Staphylococci may be transmitted between different Staphylococci species
through horizontal gene transfer, causing widespread florfenicol and chloramphenicol
resistance.

Abbreviations

CoNS, Coagulase-negative Staphylococcus; BLAST, The Basic Local Alignment
Search Tool; MIC, Minimum Inhibitory Concentration; PFGE, Pulsed-field gel
electrophoresis. PCR: polymerase chain reaction.

Acknowledgments

The authors would like to acknowledge all study participants and individual who
contributed for the study.

Authors’ contributions

CW, XZ, JL, QL, HL, CL, WL, XL and HZ collected the strains and performed
the experiments. JL, HL, DZ, ZS, KL and TX analyzed the experimental results. JL,
ZS, TX and JL performed the bioinformatics analysis. CW, XZ and QB co-led the
writing of the manuscript. TX, QB and JL designed the work. All authors read and
approved the final manuscript

Funding

This work was funded by grants from the Natural Science Foundation of
Zhejiang Province (LY14C060005 and LQ17H190001), the National Natural Science
Foundation of China (81973382, 31500109 and 81960381) and the Science &
Technology Project of Inner Mongolia Autonomous Region, China (201800125).

**Availability of data and materials**

All data generated or analyzed during this study are included in this published article and its supplementary information files. The data related to the paper are deposited in the NCBI GenBank. The accession numbers (available soon) for the chromosome, pH29-46 and pH29-26 are XXXX, XXX and XXX, respectively.

**Ethics approval and consent to participate**

Not applicable.

**Consent for publication**

Not applicable.

**Competing interests**

The authors declare that there are no conflicts of interest in this work.
1. Osman K, Alvarez-Ordónez A, Ruiz L, Badr J, ElHofy F, Al-Maary KS, et al. Antimicrobial resistance and virulence characterization of Staphylococcus aureus and coagulase-negative staphylococci from imported beef meat. Annals of clinical microbiology and antimicrobials. 2017;16(1):35; doi: 10.1186/s12941-017-0210-4.

2. Argemi X, Hansmann Y, Prola K, Prévost G. Coagulase-Negative Staphylococci Pathogenomics. Int J Mol Sci. 2019;20(5); doi: 10.3390/ijms20051215.

3. Schwarz S, Fessler AT, Loncaric I, Wu C, Kadlec K, Wang Y, et al. Antimicrobial Resistance among Staphylococci of Animal Origin. Microbiol Spectr. 2018;6(4); doi: 10.1128/microbiolspec.ARBA-0010-2017.

4. Schoenfelder SMK, Dong Y, Fellner AT, Schwarz S, Schoen C, Köck R, et al. Antibiotic resistance profiles of coagulase-negative staphylococci in livestock environments. Veterinary Microbiology. 2017;200:79-87; doi: 10.1016/j.vetmic.2016.04.019.

5. Lang KS, Anderson JM, Schwarz S, Williamson L, Handelsman J, Singer RS. Novel florfenicol and chloramphenicol resistance gene discovered in Alaskan soil by using functional metagenomics. Applied and environmental microbiology. 2010;76(15):5321-6; doi: 10.1128/AEM.00323-10.

6. Kehrenberg C, Schwarz S. Distribution of florfenicol resistance genes fexA and cfr among chloramphenicol-resistant Staphylococcus isolates. Antimicrob Agents Chemother. 2006;50(4):1156-63; doi: 10.1128/AAC.50.4.1156-1163.2006.

7. Zhu T, Liu S, Ying Y, Xu L, Liu Y, Jin J, et al. Genomic and functional characterization of faecal sample strains of Proteus cibarius carrying two floR antibiotic resistance genes and a multiresistance plasmid-encoded cfr gene. Comp Immunol Microbiol Infect Dis. 2020;69:101427; doi: 10.1016/j.cimid.2020.101427.

8. Freitas AR, Tedim AP, Duarte B, Elghaieb H, Abbassi MS, Hassen A, et al. Linezolid-resistant (Tn6246::fexB-poxtA) Enterococcus faecium strains colonizing humans and bovines on different continents: similarity without epidemiological link. J Antimicrob Chemother. 2020; doi: 10.1093/jac/dkaa227.

9. Zhao Q, Wang Y, Wang S, Wang Z, Du XD, Jiang H, et al. Prevalence and Abundance of Florfenicol and Linezolid Resistance Genes in Soils Adjacent to Swine Feedlots. Sci Rep. 2016;6:32192; doi: 10.1038/srep32192.

10. Shore AC, Lazaris A, Kinnevey PM, Brennan OM, Brennan GI, O’Connell B, et al. First Report of cfr-Carrying Plasmids in the Pandemic Sequence Type 22 Methicillin-Resistant Staphylococcus aureus Staphylococcal Cassette Chromosome mec Type IV Clone. Antimicrob Agents Chemother. 2016;60(5):3007-15; doi: 10.1128/AAC.02949-15.

11. Tao W, Lee MH, Wu J, Kim NH, Kim JC, Chung E, et al. Inactivation of chloramphenicol and florfenicol by a novel chloramphenicol hydrolase. Applied and environmental microbiology. 2012;78(17):6295-301; doi: 10.1128/aem.01154-12.

12. Tao W, Lee MH, Yoon MY, Kim JC, Malhotra S, Wu J, et al. Characterization of two metagenome-derived esterases that reactivate chloramphenicol by counteracting chloramphenicol acetyltransferase. J Microbiol Biotechnol. 2011;21(12):1203-10; doi: 10.4014/jmb.1107.07034.
13. Elghaieb H, Freitas AR, Abbassi MS, Novais C, Zouari M, Hassen A, et al. Dispersal of linezolid-resistant enterococci carrying poxTA or optrA in retail meat and food-producing animals from Tunisia. The Journal of antimicrobial chemotherapy. 2019;74(10):2865-9; doi: 10.1093/jac/dkz263.

14. Antonelli A, D'Andrea MM, Brenchiani A, Galeotti CL, Morroni G, Pollini S, et al. Characterization of poxTA, a novel phenicol-oxazolidinone-tetracycline resistance gene from an MRSA of clinical origin. J Antimicrob Chemother. 2018;73(7):1763-9; doi: 10.1093/jac/dky088.

15. Li D, Wang Y, Schwarz S, Cai J, Fan R, Li J, et al. Co-location of the oxazolidinone resistance genes optrA and cfr on a multiresistance plasmid from Staphylococcus sciuri. J Antimicrob Chemother. 2016;71(6):1474-8; doi: 10.1093/jac/dkw040.

16. He T, Shen Y, Schwarz S, Cai J, Lv Y, Li J, et al. Genetic environment of the transferable oxazolidinone/phenicol resistance gene optrA in Enterococcus faecalis isolates of human and animal origin. Journal of Antimicrobial Chemotherapy. 2016;71(6):1466-73; doi: 10.1093/jac/dkw016.

17. Mazal C, Sieger B. Staphylococcus lentus: The troublemaker. International Journal of Infectious Diseases. 2010;14; doi: 10.1016/j.ijid.2010.02.502.

18. Koren S, Walenz BP, Berlin K, Miller JR, Bergman NH, Phillippy AM. Canu: scalable and accurate long-read assembly via adaptive k-mer weighting and repeat separation. 2017;27(5):722-36; doi: 10.1101/gr.215087.116.

19. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. Journal of molecular biology. 1990;215(3):403-10; doi: 10.1016/s0022-2836(05)80360-2.

20. Petkau A, Stuart-Edwards M, Stothard P, Van Domselaar G. Interactive microbial genome visualization with GView. Bioinformatics (Oxford, England). 2010;26(24):3125-6; doi: 10.1093/bioinformatics/btq588.

21. Lagesen K, Hallin P, Rodland EA, Staerfeldt HH, Rognes T, Ussery DW. RNAmmer: consistent and rapid annotation of ribosomal RNA genes. Nucleic acids research. 2007;35(9):3100-8; doi: 10.1093/nar/gkm160.

22. Lowe TM, Chan PP. tRNAscan-SE On-line: integrating search and context for analysis of transfer RNA genes. Nucleic acids research. 2016;44(W1):W54-7; doi: 10.1093/nar/gkw413.

23. de Sousa VS, da-Silva APS, Sorenson L, Paschoal RP, Rabello RF, Campana EH, et al. Staphylococcus saprophyticus Recovered from Humans, Food, and Recreational Waters in Rio de Janeiro, Brazil. Int J Microbiol. 2017;2017:4287547; doi: 10.1155/2017/4287547.

24. Banaszkiewicz S, Calland JK, Mourkas E, Sheppard SK, Pascoe B, Bania J. Genetic Diversity of Composite Enterotoxigenic Staphylococcus epidermidis Pathogenicity Islands. Genome Biol Evol. 2019;11(12):3498-509; doi: 10.1093/gbe/evz259.

25. Cui J, Liang Z, Mo Z, Zhang J. The species distribution, antimicrobial resistance and risk factors for poor outcome of coagulase-negative staphylococci bacteraemia in China. Antimicrob Resist Infect Control. 2019;8:65; doi: 10.1186/s13756-019-0523-5.

26. Egan SA, Shore AC, O'Connell B, Brennan GI, Coleman DC. Linezolid resistance in Enterococcus faecium and Enterococcus faecalis from hospitalized patients in Ireland: high prevalence of the MDR genes optrA and poxTA in isolates with diverse genetic backgrounds. The Journal of antimicrobial chemotherapy. 2020; doi: 10.1093/jac/dkaa075.
27. Sun C, Zhang P, Ji X, Fan R, Chen B, Wang Y, et al. Presence and molecular characteristics of oxazolidinone resistance in staphylococci from household animals in rural China. The Journal of antimicrobial chemotherapy. 2018;73(5):1194-200; doi: 10.1093/jac/dky009.

28. Wang Y, Li X, Fu Y, Chen Y, Wang Y, Ye D, et al. Association of florfenicol residues with the abundance of oxazolidinone resistance genes in livestock manures. J Hazard Mater. 2020;399:123059; doi: 10.1016/j.jhazmat.2020.123059.

29. Wu Y, Fan R, Wang Y, Lei L, Feßler AT, Wang Z, et al. Analysis of combined resistance to oxazolidinones and phenicols among bacteria from dogs fed with raw meat/vegetables and the respective food items. Sci Rep. 2019;9(1):15500; doi: 10.1038/s41598-019-51918-y.
Figure 1. PFGE patterns of 23 florfenicol-resistant CoNS isolates.

Figure 2. Genetic map of pH29-46 and its comparison with other plasmids of the highest nucleotide sequence similarities. From the outside to the inside: circle 1, pH29-46 region A in purple and region B in green; circle 2, pSX01 (the plasmid of S. xylosus strain 378 isolated from pig, NZ_KP890694.1); circle 3, pSR01 (the plasmid of S. aureus strain SR434 isolated from human, NZ_CP019564.1); circle 3, pLRSA417 (S. aureus strain 417 isolated from human, KJ922127.1); circle 4, pH29-46 with genes encoded on the two strands. The red arrows indicate drug-resistant genes, blue arrows indicate transfer genes and the gray arrows indicate the genes encoding hypothetical proteins.

Figure 3. Genetic environments of the fexA and cfr genes encoded in plasmids or chromosomes. The sequences and their origins are: S. lentus S. LQQ24 chr (the chromosome of S. lentus S. LQQ24 isolated from chichen in China, KF029594.1), S. sciuri wo227 chr (the chromosome of S. sciuri wo227 isolated from swine, KX982170.1), S. lentus H29 chr (the chromosome of H29 isolated from hen of this work, XXXXX), S. lentus H29 pH29-46 (the plasmid of pH29-46 isolated from a hen of this work, XXXX), S. cohnii pSS-01 (the plasmid of S. cohnii SS-01 isolated from swine, JQ041372.1), S.aureus BA01611 chr (the chromosome of S.aureus BA01611 isolated from bovine, CP019945.1), S.aureus QD-CD9 chr (the chromosome of
S. aureus QD-CD9 isolated from in swine, CP031838.1). Antimicrobial resistance genes are in red, transposase or integrase genes are in blue and other genes are in gray. Gray-shaded areas represent regions with > 95% nucleotide sequence identities. The arrows indicate the positions and orientations of the genes.

Supplementary Materials

Supplementary Table S1. Resistance phenotype and florfenicol resistance genes of the CoNS isolates.

Supplementary Table S2. Antibiotics resistance profile of all 39 CoNS isolates.
Table 2. Characterization of the sensitivity of 39 CoNS isolates to 21 antibiotics

| Antibiotics | Animal (N=28) | Seafood (N=11) | Total (N=39) |
|-------------|--------------|---------------|-------------|
|             | S   | I   | R  | S   | I   | R  | S   | I   | R  |
| LZD         | 24 (85.8%) | 2 (7.1%) | 2 (7.1%) | 11 (100%) | 0 (0) | 0 (0%) | 35 (89.8%) | 2 (5.1%) | 2 (5.1%) |
| FD          | 18 (64.3%) | 0 (0) | 10 (36.7%) | 8 (72.7%) | 0 (0) | 3 (27.3%) | 26 (66.7%) | 0 (0) | 13 (33.3%) |
| CLI         | 7 (25.0%) | 0 (0) | 21 (75.0%) | 7 (63.6%) | 0 (0) | 4 (36.4%) | 14 (35.9%) | 0 (0) | 25 (64.1%) |
| AMK         | 28 (100%) | 0 (0) | 0 (0) | 11 (100%) | 0 (0) | 0 (0) | 39 (100%) | 0 (0) | 0 (0) |
| ERY         | 11 (39.3%) | 0 (0) | 17 (60.7%) | 4 (36.4%) | 0 (0) | 7 (63.6%) | 15 (38.5%) | 0 (0) | 24 (61.5%) |
| GEN         | 27 (96.4%) | 0 (0) | 1 (4.6%) | 11 (100%) | 0 (0) | 0 (0) | 38 (97.4%) | 0 (0) | 1 (2.6%) |
| OXA         | 24 (86.%) | 0 (0) | 4 (14%) | 9 (81.8%) | 0 (0) | 2 (18.2%) | 33 (84.6%) | 0 (0) | 6 (15.4%) |
| FOX         | 26 (93%) | 0 (0) | 2 (7%) | 11 (100%) | 0 (0) | 0 (0) | 37 (94.9%) | 0 (0) | 2 (5.1%) |
| RIF         | 24 (85.8%) | 0 (0) | 4 (14.2%) | 11 (100%) | 0 (0) | 0 (0) | 35 (89.8%) | 0 (0) | 4 (10.2%) |
|   |   |   |   |   |   |   |   |   |
|---|---|---|---|---|---|---|---|---|
| TMP | 28 (100%) | 0 (0) | 0 (0%) | 11 (100%) | 0 (0) | 0 (0) | 39 (100.0%) | 0 (0) | 0 (0) |
| TET | 9 (32.1%) | 0 (0) | 19 (67.9%) | 9 (81.8%) | 0 (0) | 2 (18.2%) | 18 (46.2%) | 0 (0) | 21 (53.8%) |
| VAN | 27 (96.4%) | 0 (0) | 1 (3.6%) | 11 (100%) | 0 (0) | 0 (0) | 38 (97.4%) | 0 (0) | 1 (2.6%) |
| CLR | 17 (60.7%) | 0 (0) | 11 (39.3%) | 8 (72.7%) | 0 (0) | 3 (27.2%) | 25 (64.1%) | 0 (0) | 14 (35.9%) |
| CHL | 4 (14.2%) | 0 (0) | 24 (85.8%) | 10 (90.9%) | 0 (0) | 1 (9.1%) | 14 (35.9%) | 0 (0) | 25 (64.1%) |
| LVX | 21 (75.0%) | 0 (0) | 7 (25.0%) | 10 (90.9%) | 0 (0) | 1 (9.1%) | 31 (79.5%) | 0 (0) | 8 (20.5%) |
| NOR | 23 (82.1%) | 0 (0) | 5 (17.9%) | 11 (100%) | 0 (0) | 0 (0) | 34 (87.2%) | 0 (0) | 5 (12.8%) |
| KAN | 21 (75.0%) | 0 (0) | 7 (25.0%) | 9 (81.8%) | 0 (0) | 2 (18.2%) | 30 (76.9%) | 0 (0) | 9 (23.1%) |
| TGC | 28 (100%) | 0 (0) | 0 (0) | 11 (100%) | 0 (0) | 0 (0) | 39 (100%) | 0 (0) | 0 (0) |
| TEC | 27 (96.4%) | 0 (0) | 1 (4.6%) | 11 (100%) | 0 (0) | 0 (0) | 38 (97.4%) | 0 (0) | 1 (2.6%) |
| STR | 10 (35.7%) | 0 (0) | 18 (64.3%) | 10 (90.9%) | 0 (0) | 1 (9.1%) | 20 (51.3%) | 0 (0) | 19 (48.7%) |
| FFC | 5 (17.9%) | 0 (0) | 23 (82.1%) | 11 (100%) | 0 (0) | 0 (0) | 16 (41.0%) | 0 (0) | 23 (59.0%) |

LZD, Linezolid; FD, Fusidic Acid; OXA, Oxacillin; TGC, Tigecycline; LVX, Levofloxacin; FOX, Cefoxitin; TMP, Trimethoprim; CHL, Chloramphenicol; TEC,
teicoplanin; FFC, Florfenicol; CLR, Clarithromycin; CLI, Clindamycin; RIF, Rifampin; NOR, Norfloxacin; VAN, Vancomycin; GEN, Gentamycin; TET, Tetracycline; STR, Streptomycin; AMK, Amikacin; KAN, Kanamycin; ERY, Erythromycin.