Change in mRNA Expression after Atenolol, a Beta-adrenergic Receptor Antagonist and Association with Pharmacological Response

Utkarsh Kohli, MD,* Britney L. Grayson, BS,† Thomas M. Aune, PhD,‡ Laxmi V. Ghimire, MD,* Daniel Kurnik, MD,*‡ and C. Michael Stein, MD*

*Department of Medicine, Division of Clinical Pharmacology, and †Rheumatology, Vanderbilt University, Nashville, TN, USA; ‡Department of Medicine, Division of Clinical Pharmacology, Chaim Sheba Medical Center, Ramat Gan, and Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel

DOI: 10.1111/j.1753-5174.2009.00020.x

ABSTRACT

Aims. Genetic determinants of variability in response to β-blockers are poorly characterized. We defined changes in mRNA expression after a β-blocker to identify novel genes that could affect response and correlated these with inhibition of exercise-induced tachycardia, a measure of β-blocker sensitivity.

Methods. Nine subjects exercised before and after a single oral dose of 25mg atenolol and mRNA gene expression was measured using an Affymetrix GeneChip Human Gene 1.0 ST Array. The area under the heart rate-exercise intensity curve (AUC) was calculated for each subject; the difference between post- and pre-atenolol AUCs (∆AUC), a measure of β-blocker response, was correlated with the fold-change in mRNA expression of the genes that changed more than 1.3-fold.

Results. Fifty genes showed more than 1.3-fold increase in expression; 9 of these reached statistical significance (P < 0.05). Thirty-six genes had more than 1.3-fold decrease in expression after atenolol; 6 of these reached statistical significance (P < 0.05). Change in mRNA expression of FGFBP2 and Probeset ID 8118979 was significantly correlated with atenolol response (P = 0.03 and 0.02, respectively).

Conclusion. The expression of several genes not previously identified as part of the adrenergic signaling pathway changed in response to a single oral dose of atenolol. Variation in these genes could contribute to unexplained differences in response to β-blockers.

Key Words. Atenolol; mRNA expression; Microarray

Re-use of this article is permitted in accordance with the Terms and Conditions set out at http://www3.interscience.wiley.com/authorresources/onlineopen.html

Introduction

Beta-blockers are frequently prescribed to treat ischemic heart disease, heart failure, hypertension, and arrhythmias [1–5]. They block the effects of agonists acting on β-adrenergic receptors (ARs) and influence downstream signaling pathways. There are substantial interindividual and ethnic differences in response to β-blockers that are partly accounted for by variation in the genes encoding the β1-AR (ADRB1) and mediators of downstream signaling pathways [6,7]. The relationship between variability in ADRB1 and other candidate genes and variability in response to β-blockers has been extensively evaluated [6,8], but much of the variability remains unexplained.

Another approach to identifying the mechanisms underlying interindividual variability in response would be to identify additional candidate
genes by examining the changes in messenger RNA (mRNA) that occur after exposure to a β-blocker. There is no information regarding such an approach.

Therefore, we carried out this exploratory study to identify novel genes that may regulate response to a β-blocker by measuring changes in mRNA expression after oral administration of a β-blocker (atenolol) to subjects who underwent an exercise test to determine β-blocker sensitivity. We also studied the correlation between change in mRNA expression after atenolol administration and β-blocker sensitivity, assessed by attenuation of exercise-induced tachycardia [9].

Methods

Subjects

This study was approved by the Institutional Review Board of Vanderbilt University Medical Centre, Nashville, TN, and all subjects gave written informed consent. We enrolled 9 unrelated subjects; one subject was excluded from analysis because the post-treatment sample could not be hybridized. Subjects were eligible to participate if they were between 18–40 years of age and had no clinically significant abnormality based on medical history, physical examination, electrocardiogram, and routine laboratory testing. Subjects reported their ethnicity and that of their parents and grandparents using checkboxes to choose among “Caucasian”, “African–American”, “Hispanic”, “Chinese”, “Japanese”, and “other” (the latter to be specified). Multiple choices were permitted. A patient was assigned to an ethnic group when both parents and at least three out of four grandparents were of the same ethnicity. Patients were free of medications and dietary supplements for at least 1 week and received a controlled alcohol-free and caffeine-free diet (providing 150 mmol of sodium, 70 mmol of potassium, and 600 mmol of calcium daily) for 5 days before the study.

Protocol

Details of the exercise protocol have been described in detail elsewhere [6]. Briefly, after an overnight fast a 20 G intravenous cannula was inserted into an antecubital arm vein for blood sampling and after 30 minutes of supine rest, a baseline blood sample was drawn for mRNA analysis into two PAXgene Blood mRNA Tubes (PreAnalytiX/Qiagen Inc., Valencia, CA), incubated at room temperature for 2 hours, and then stored at −20°C. Then, subjects exercised on an electronically braked supine bicycle ergometer at sequentially increasing workloads of 25, 50, and 75 watts for 2 minutes each. Then, 10 minutes after completion of exercise, subjects swallowed a 25 mg tablet of atenolol. A second blood sample for mRNA expression was collected 2.5 hours after atenolol (to coincide with peak atenolol concentrations) and immediately after the blood draw a second exercise test was performed as per previously described protocol.

mRNA

Total mRNA was extracted from whole blood using PAXgene Blood mRNA Kit (Qiagen, Valencia, CA) and then subjected to DNase treatment according to the manufacturer’s instructions (Qiagen, Valencia, CA). The mRNA were assessed for concentration by spectrophotometry and integrity using the Agilent Bioanalyzer (Agilent Technologies, Palo Alto, CA), and then stored at −20°C.

Microarray

Following quality control, the mRNA was prepared for microarray analysis using the GeneChip Whole Transcript (WT) Sense Target Labeling Assay protocol (Affymetrix Inc, Santa Clara, CA). Briefly, a total of 100ng of total mRNA was reverse transcribed to cDNA T7-random primers followed by second-strand synthesis. The double-stranded cDNA was then used as template in an in vitro transcription reaction followed by cDNA synthesis, fragmentation of the single stranded cDNA and labeling through a terminal deoxytransferase reaction. The biotinylated cDNA (5 μg) was fragmented and hybridized to an Affymetrix GeneChip Human Gene 1.0 ST Array (Affymetrix Inc, Santa Clara, CA).

Data Analysis

Following scanning, CEL files were imported into Partek Genomic Suitev6.4 (Partek Inc, St Louis, MO) and robust multi-chip average (RMA) normalized. A paired-sample t-test was performed between the pre-treatment and post-treatment groups. A 1.3-fold change in gene expression was considered potentially significant [10].

Demographic data are expressed as mean ± standard deviation (SD). We used two-sample Wilcoxon rank-sum (Mann-Whitney) test to compare outcomes before and after atenolol. A response-feature approach was used to model multiple heart rate measurements in the same subjects.
In these analyses, the response feature was the area under the heart rate-exercise intensity curve (AUC) for each subject. The difference between post- and pre-atenolol heart rate AUCs (ΔAUC) was calculated to determine the response to atenolol and this was correlated with the fold-change in mRNA expression of the genes that were significantly upregulated and downregulated (≥1.3-fold) using a non-parametric measure of correlation (Spearman’s rank correlation coefficient). Analyses were performed using the statistical software STATA v.10.0 (StataCorp, College Station, TX) and Partek (Partek Inc, St Louis, MO).

Results

Subjects

The demographic characteristics of the study subjects (n = 8) are described in Table 1.

Characteristic (N = 8)	Mean ± SD
Age (years)	28.3 ± 6.3
Sex (Male/Female)	5/3
Ethnicity: Caucasian/African American/Hispanic/Asian	2/1/1/4
Weight (kg)	70.5 ± 12.0
Height (m)	1.72 ± 0.08

Atenolol Effect

Atenolol significantly reduced the resting heart rate (mean reduction = 6.5 ± 6.8 beats/minute; \(P = 0.02 \)), and heart rate at all the exercise stages (mean reduction = 13 ± 10.2, 13.1 ± 9.9, 19.0 ± 9.5 beats/minute at 25, 50, and 75W of exercise, respectively; all \(P < 0.02 \)). Heart rate-AUC was also significantly reduced (mean reduction = 1050 ± 658 beats/minute.watt; \(P = 0.02 \)).

Microarray

There were 50 genes upregulated more than 1.3-fold (Table 2). Change in mRNA expression for 9 of these genes (TXN, SLC04C1, LOC339240, SNRPN, CLEC2B, SNORA49 and Probeset IDs 8142763, 7984008, 7906751) reached statistical significance (\(P < 0.05 \)) (Figure 1). A range of other genes including WD repeat domain 74, small cajal body-specific mRNA 7, killer cell lectin-like receptor subfamily F, S100 calcium binding protein A12, and fibroblast growth factor binding protein 2 were also upregulated. Change in mRNA expression for fibroblast growth factor binding protein 2 (FGFBP2) correlated significantly with atenolol effect (ΔAUC) (Spearman coefficient = −0.76; \(P = 0.03 \)).

Thirty-six genes were downregulated at least 1.3-fold after atenolol administration (Table 3); the decrease in mRNA expression for 6 of these
Genes upregulated more than 1.3-fold
Gene symbol

RPL34
WDR74
SCARNA7
SNRPN
TXN
SNRPN
RPS3A
hCG_1983332
8144569
RPL26
KLRF1
8142763
RPL9
S100A12
SNRPN
LSM3
7984008
FGFBP2
hCG_1787519
SLC04C1
LOC339240
S100A8
KLRB1
Gene

SNRPN
CLEC2B
8102728
8107940
SNORD28
SNORD29
SNORD30
SNORD31
SNORD32
SF3B14
8103222
8103070

*P value represents the change in mRNA comparing before and after atenolol; **P value represents the significance of Spearman's correlation coefficient examining the association between fold-change in mRNA expression and attenuation of exercise-induced tachycardia by atenolol.
Table 3 Genes downregulated more than 1.3-fold

Gene symbol	Gene title	Ref seq ID	Function	Fold change ± SE	P value*	Spearman’s Rho	P value**	
SLC4A1	Solute Carrier Family 4, Anion Exchanger, Member 1 (17q21.31)	NM_000342	Erythrocyte chloride/bicarbonate exchanger involved in carbon dioxide transport.	−1.53 ± 1.29	0.14	−0.12	0.78	
HBZ	Hemoglobin, Zeta (16p13.3)	NM_005332	Alpha-like hemoglobin. Synthesized in the yolk sac of the early embryo.	−1.53 ± 1.26	0.11	−0.53	0.18	
FKBP5	FK506 Binding Protein 5 (6p21.3-p21.2)	NM_004117	Role in immunoregulation and calcineurin inhibition.	−1.51 ± 1.16	0.03*	0.17	0.69	
7996260 (Probeset ID)				−1.51 ± 1.17	0.04*	−0.29	0.49	
8169638 (Probeset ID)				−1.48 ± 1.24	0.11	−0.43	0.28	
TRIM58	Tripartite Motif-Containing 58 (1q44)	NM_015431		−1.47 ± 1.22	0.09	−0.24	0.56	
SELENBP1	Selenium Binding Protein 1 (1q21-q22)	NM_003944	Selenium-binding protein family.	−1.45 ± 1.25	0.14	−0.2	0.64	
ALAS2	Delta-Aminolevulinate Synthase 2 (Xp11.21)	NM_00032	Erythroid-specific mitochondrially located enzyme.	−1.41 ± 1.26	0.18	−0.19	0.64	
GMPR	Guanosine Monophosphate Reductase (6p23)	NM_006877	Catalyzes the irreversible NADPH-dependent reductive deamination of guanosine monophosphate (GMP) to inosine monophosphate (IMP).	−1.40 ± 1.20	0.11	−0.19	0.64	
EPB49	Erythrocyte Membrane Protein band 4.9 (dematin) (8p21.1)	NM_001978		−1.40 ± 1.27	0.20	−0.21	0.61	
SLC38A5	Solute Carrier Family 38, member 5 (Xp11.23)	NM_03518	Mediates Na(+)−coupled transport of neutral amino acids.	−1.40 ± 1.25	0.18	−0.43	0.28	
ALS2CR2	Amyotrophic Lateral Sclerosis 2 (juvenile) Chromosome region (2q33.1)	NM_018571		−1.38 ± 1.28	0.23	−0.2	0.64	
SNCA	Alpha Synuclein (non A4 component of amyloid precursor) (4q22.1)	NM_000345	Inhibits phospholipase D2.	−1.38 ± 1.26	0.20	−0.19	0.65	
SLC6A8	Solute Carrier Family 6 (neurotransmitter transporter) (Xq28)	NM_005629	Transports creatine into and out of cells.	−1.37 ± 1.12	0.03*	−0.38	0.34	
OR2W3	Olfactory Receptor, Family 2, Subfamily W, Member 3 (1q44)	NM_001001957		−1.36 ± 1.17	0.09	−0.41	0.31	
Gene Name	Description	Probeset ID	Change Over Baseline	P-value	Fold Change	Fold Change	Fold Change	Fold Change
-----------	-------------	-------------	-----------------------	---------	-------------	-------------	-------------	-------------
C16orf35	Chromosome 16 Open Reading Frame 35 (6p13.3)	NM_001077350	-1.36 ± 1.22	0.17	-0.55	0.15		
GYP/C	Glycophorin C (Gerbich blood group) (2q14-q21)	NM_002101	-1.36 ± 1.21	0.15	0.77	0.02**		
CS/DA	Cold Shock Domain Protein A (12p13.1)	NM_003651	-1.35 ± 1.24	0.21	-0.40	0.32		
SLC25A39	Solute Carrier Family 25, Member 39 (17q12)	NM_016016	-1.34 ± 1.24	0.21	-0.34	0.41		
WDR40A	WD Repeat Domain 40A (9p13.3)	NM_015397	-1.34 ± 1.22	0.19	-0.19	0.65		
SLC25A39	Solute Carrier Family 25, Member 39 (17q12)	NM_138578	-1.34 ± 1.22	0.19	-0.19	0.65		
GYPA	Glycophorin A (MNS blood group) (4q28.2-q31.1)	NM_002099	-1.33 ± 1.18	0.13	-0.14	0.73		
TMOD1	Tropomodulin 1 (9q22.3)	NM_003275	-1.33 ± 1.25	0.25	0.13	0.76		
TMEM63B	Transmembrane Protein 63B (6p21.1)	NM_0018426	-1.33 ± 1.34	0.37	0.62	0.1		
PDZK1I/P1	PDZK1 Interacting Protein 1 (1p33)	NM_005764	-1.32 ± 1.21	0.18	-0.34	0.41		
GYPA	Glycophorin A (MNS blood group) (4q28.2-q31.1)	NM_002099	-1.32 ± 1.16	0.11	0.31	0.45		
PDZK1I/P1	PDZK1 Interacting Protein 1 (1p33)	NM_005764	-1.32 ± 1.14	0.08	0.05	0.90		
TMOD1	Tropomodulin 1 (9q22.3)	NM_003275	-1.31 ± 1.30	0.32	-0.02	0.95		

*P-value represents the change in mRNA comparing before and after atenolol; **P-value represents the significance of Spearman’s correlation coefficient examining the association between fold-change in mRNA expression and attenuation of exercise-induced tachycardia by atenolol.
Thirty-six genes are downregulated at least 1.3-fold after atenolol administration, and the decrease in mRNA expression for 6 of these genes (FKBP5, SLC6A8 and Probeset IDs 7996260, 8084810, 8003857, 8125461) is statistically significant. These genes can be categorized into 3 broad ontogenic groups based on the proteins that they code: transport proteins, ion channels and cytoskeletal proteins. FKBPs codes for a chaperone protein that has been implicated in stress related disorders [16,17]. The other downregulated genes code for a wide variety of proteins like solute carrier family 4, anion exchanger, hemoglobin zeta, tripartite motif-containing 58, and δ-aminolevulinate synthase 2. As is the case with the upregulated genes, the role of these downregulated genes in adrenergic signaling is not known.

 change in mRNA expression of Probeset ID 8118979 is correlated significantly with attenuation of exercise-induced tachycardia.

Discussion

There is no information about the effect of a β-blocker on mRNA expression, thus our finding that several genes are upregulated or downregulated are of interest. There are 50 genes upregulated more than 1.3-fold, and change in mRNA expression for 9 of these genes is statistically significant (P < 0.05). Many of these genes code for ribosomal proteins, small nuclear ribonucleoprotein polypeptides and signal transduction pathways that have not previously been associated with β-blocker signaling. One of the significantly upregulated genes (TXN) codes for thioredoxin. Thioredoxins act as antioxidants by facilitating the reduction of other proteins by cysteine thiol-disulfide exchange [12,13]. The thioredoxins are kept in the reduced state by the flavoenzyme thioredoxin reductase, in a NADPH-dependent reaction [14]. Thioredoxin reductase activity is indirectly regulated by β2-ARs in human cutaneous tissue; its activity in human melanoma cells is stimulated by calcium, and calcium exchange between these cells and surrounding skin is stimulated by β2-ARs [15]. Another upregulated gene, SLC04C1, codes for an organic anion transporter that is expressed on the basolateral membrane of renal proximal tubular cells. It transports cardiac glycosides, thyroid hormone, cAMP, and methotrexate in a sodium-independent manner [16]. However, no clear role has been identified for these significantly upregulated genes in the adrenergic signaling pathway.

Similarly, no clear role has been identified in adrenergic signaling for other upregulated genes such as WD repeat domain 74, small cajal bodiespecific mRNA 7, killer cell lectin-like receptor subfamily F, S100 calcium binding protein A12, fibroblast growth factor binding protein 2, solute carrier organic anion transporter family, and keratin pseudogene.

This study has several limitations. Subjects exercised before atenolol was administered, and the effect of atenolol on mRNA expression could potentially have been altered by the preceding exercise. However, the majority of genes that changed more than 1.3-fold were not influenced by exercise in previous studies [20–25]. Another potential limitation is that we used whole blood for analysis of mRNA expression, and changes in mRNA expression can be lower than those obtained from isolated cells [26,27]. We studied change in mRNA expression 2.5 hours after administration of a single dose of atenolol, when peak atenolol concentrations are reached. The pattern of gene expression after atenolol may vary with time, and after chronic administration of drug. However, ethnic and genetic differences in sensitivity to atenolol measured as inhibition of exercise-induced tachycardia can be detected 2.5 hours after a single dose [6]. Therefore, the gene
expression profile at this time is of interest. We administered a single dose of atenolol (25 mg) to our subjects. It is possible that the change in the pattern of mRNA expression with higher doses or with multiple doses may differ. Also, we did not correct for multiple comparisons but included only those genes that were upregulated or downregulated more than 1.3 fold to limit the false discovery rate; there is little consensus on the optimum method of correction for multiple comparisons in gene expression assays [28], and the analysis should be regarded as exploratory and hypothesis-generating.

In conclusion, in this preliminary study many genes not known to be involved with adrenergic signaling were upregulated or downregulated in response to atenolol. Change in mRNA expression for 2 of these genes is significantly correlated with atenolol-mediated attenuation of exercise-induced tachycardia. Additional studies to determine the reproducibility of the findings and the effects of chronic therapy may provide novel insights into the mechanisms of actions of \(\beta \)-blockers.

Acknowledgements
All microarray experiments were performed in the Vanderbilt Microarray Shared Resource. The Vanderbilt Microarray Shared Resource is supported by the Vanderbilt Ingram Cancer Center (P30 CA68485), the Vanderbilt Digestive Disease Center (P30 DK58404), and the Vanderbilt Vision Center (P30 EY08126). We thank Braden Boone and Phillip Dexheimer for technical help.

Disclosure: None of the authors has a conflict of interest related to this work.

Funding Sources: This study was supported by Vanderbilt CTSA grant 1 UL 1 RR024975 from the National Center for Research Resources and P01 HL56693 from the National Institutes of Health. Dr. Stein is the recipient of the Dan May Chair in Medicine.

Corresponding Author: Charles M. Stein, MD, Division of Clinical Pharmacology, 542 RRB, Vanderbilt University School of Medicine, Nashville, TN 37232, USA. Tel. +1-615-936-3420; Fax: +1-615-936-2746; E-mail: mikes.stein@vanderbilt.edu

References
1 Foody JM, Farrell MH, Krumholz HM. Beta-blocker therapy in heart failure: Scientific review. JAMA 2002;287:883–9.
2 Frishman WH, Furberg CD, Friedewald WT. Beta-adrenergic blockade for survivors of acute myocardial infarction. N Engl J Med 1984;310:830–7.
3 Hennekens CH, Albert CM, Godfried SL, Gaziano JM, Buring JE. Adjunctive drug therapy of acute myocardial infarction—Evidence from clinical trials. N Engl J Med 1996;335:1660–7.
4 Kamalesh M, Cerel A, Burger AJ. Management of atrial fibrillation. N Engl J Med 1992;327:1031–2.
5 Chrysant SG, Chrysant GS, Dimas B. Current and future status of beta-blockers in the treatment of hypertension. Clin Cardiol 2008;31:249–52.
6 Kurnik D, Li C, Sofowora GG, Friedman EA, Muszkat M, Xie HG, et al. Beta-1-adrenoceptor genetic variants and ethnicity independently affect response to beta-blockade. Pharmacogenet Genomics 2008;18:895–902.
7 Liggett SB, Cresci S, Kelly RJ, Syed FM, Matkovich SJ, Hahn HS, et al. A GRK5 polymorphism that inhibits beta-adrenergic receptor signaling is protective in heart failure. Nat Med 2008;14:510–7.
8 Zhou HH, Silverstein DJ, Koshakji RP, Wood AJ. Interindividual differences in beta-receptor density contribute to variability in response to beta-adrenoceptor antagonists. Clin Pharmacol Ther 1989;45:587–92.
9 McDevitt DG. In vivo studies on the function of cardiac beta-adrenoceptors in man. Eur Heart J 1989;10(suppl B):22–8.
10 Wingrove JA, Daniels SE, Sehnert AJ, Tingley W, Elashoff MR, Rosenberg S, et al. Correlation of peripheral-blood gene expression with the extent of coronary artery stenosis. Circ Cardiovasc Genet 2008;1:31–8.
11 Dupont WD. Statistical modeling for biomedical researchers: A simple introduction to the analysis of complex data. Cambridge: Cambridge Univ. Pr.; 2002.
12 Holmgren A. Thioredoxin and glutaredoxin systems. J Biol Chem 1989;264:13963–6.
13 Nordberg J, Arner ES. Reactive oxygen species, antioxidants, and the mammalian thioredoxin system. Free Radic Biol Med 2001;31:1287–312.
14 Mustacich D, Povis G. Thioredoxin reductase. Biochem J 2000;346:1–8.
15 Schallreuter KU, Wood JM, Ehrke C, Lemke R. Calcium transport and regulation in human primary and metastatic melanoma. Biochim Biophys Acta 1992;1160:127–33.
16 Mikkaichi T, Suzuki T, Onogawa T, Tanemoto M, Mizutamari H, Okada M, et al. Isolation and characterization of a digoxin transporter and its rat homologue expressed in the kidney. Proc Natl Acad Sci USA 2004;101:3569–74.
17 Binder EB, Salyakina D, Lichtner P, Wochnik GM, Ising M, Putz B, et al. Polymorphisms in FKBP5 are associated with increased recurrence of depressive

Arch Drug Info 2009;2:41–50
episodes and rapid response to antidepressant treatment. Nat Genet 2004;36:1319–25.
18 Bachis A, Mallei A, Cruz MI, Wellstein A, Mocchetti I. Chronic antidepressant treatments increase basic fibroblast growth factor and fibroblast growth factor-binding protein in neurons. Neuropharmacology 2008;55:1114–20.
19 Jin Y, Sheikh F, Detillieux KA, Cattini PA. Role for early growth response-1 protein in alpha(1)-adrenergic stimulation of fibroblast growth factor-2 promoter activity in cardiac myocytes. Mol Pharmacol 2000;57:984–90.
20 Fehrenbach E. Multifarious microarray-based gene expression patterns in response to exercise. J Appl Physiol 2007;102:7–8.
21 Connolly PH, Caiozzo VJ, Zaldivar F, Nemet D, Larson J, Hung SP, et al. Effects of exercise on gene expression in human peripheral blood mononuclear cells. J Appl Physiol 2004;97:1461–9.
22 Buttner P, Mosig S, Lechtermann A, Funke H, Moorlen FC. Exercise affects the gene expression profiles of human white blood cells. J Appl Physiol 2007;102:26–36.
23 Zieker D, Zieker J, Dietzsch J, Burnet M, Northoff H, Fehrenbach E. cDNA-microarray analysis as a research tool for expression profiling in human peripheral blood following exercise. Exerc Immunol Rev 2005;11:86–96.
24 Zieker D, Fehrenbach E, Dietzsch J, Fliegner J, Waidmann M, Nieselt K, et al. cDNA microarray analysis reveals novel candidate genes expressed in human peripheral blood following exhaustive exercise. Physiol Genomics 2005;23:287–94.
25 Whistler T, Jones JF, Unger ER, Vernon SD. Exercise responsive genes measured in peripheral blood of women with chronic fatigue syndrome and matched control subjects. BMC Physiol 2005;5:5.
26 Feezor RJ, Baker HV, Mindrinos M, Hayden D, Tannahill CL, Brownstein BH, et al. Whole blood and leukocyte RNA isolation for gene expression analyses. Physiol Genomics 2004;19:247–54.
27 Tanriverdi K, Freeman JE. The promise and limitation of gene expression analysis. Circ Cardiovasc Genet 2008;1:7–9.
28 Loring JF. Evolution of microarray analysis. Neurobiol Aging 2006;27:1084–6.