COLORFUL COVERINGS OF POLYTOPES AND PIERCING NUMBERS OF COLORFUL d-INTERVALS

FLORIAN FRICK, SHIRA ZERBIB

Received October 24, 2017
Online First February 11, 2019

We prove a common strengthening of Bárány’s colorful Carathéodory theorem and the KKMS theorem. In fact, our main result is a colorful polytopal KKMS theorem, which extends a colorful KKMS theorem due to Shih and Lee [Math. Ann. 296 (1993), no. 1, 35–61] as well as a polytopal KKMS theorem due to Komiya [Econ. Theory 4 (1994), no. 3, 463–466]. The (seemingly unrelated) colorful Carathéodory theorem is a special case as well. We apply our theorem to establish an upper bound on the piercing number of colorful d-interval hypergraphs, extending earlier results of Tardos [Combinatorica 15 (1995), no. 1, 123–134] and Kaiser [Discrete Comput. Geom. 18 (1997), no. 2, 195–203].

1. Introduction

The KKM theorem of Knaster, Kuratowski, and Mazurkiewicz [11] is a set covering variant of Brouwer’s fixed point theorem. It states that for any covering of the k-simplex Δ_k on vertex set $[k+1]$ with closed sets A_1, \ldots, A_{k+1} such that the face spanned by vertices in S is contained in $\bigcup_{i \in S} A_i$ for every $S \subset [k+1]$, the intersection $\bigcap_{i \in [k+1]} A_i$ is nonempty.

The KKM theorem has inspired many extensions and variants, some of which we will briefly survey in Section 2. Important strengthenings include a colorful extension of the KKM theorem due to Gale [9] that deals with $k+1$ possibly distinct coverings of the k-simplex and the KKMS theorem of Shapley [16], where the sets in the covering are associated to faces of the k-simplex instead of its vertices. Further generalizations of the KKMS theorem are a polytopal version due to Komiya [12] and the colorful KKMS theorem of Shih and Lee [17].

Mathematics Subject Classification (2010): 55M20, 52B11, 05B40, 52A35
In this note we prove a colorful polytopal KKMS theorem, extending all results above. This result is finally sufficiently general to also specialize to Bárány’s celebrated colorful Carathéodory theorem [5] from 1982, which asserts that if X_1, \ldots, X_{k+1} are subsets of \mathbb{R}^k with $0 \in \text{conv} X_i$ for every $i \in [k+1]$, then there exists a choice of points $x_1 \in X_1, \ldots, x_{k+1} \in X_{k+1}$ such that $0 \in \text{conv}\{x_1, \ldots, x_{k+1}\}$. Carathéodory’s classical result is the case $X_1 = X_2 = \cdots = X_{k+1}$. We deduce the colorful Carathéodory theorem from our main result in Section 3.

For a set $\sigma \subset \mathbb{R}^k$ we denote by C_{σ} the cone of σ, that is, the union of all rays emanating from the origin that intersect σ. Our main result is the following:

Theorem 1.1. Let P be a k-dimensional polytope with $0 \in P$. Suppose for every nonempty, proper face σ of P we are given $k+1$ points $y^{(1)}_{\sigma}, \ldots, y^{(k+1)}_{\sigma} \in C_{\sigma}$ and $k+1$ closed sets $A^{(1)}_{\sigma}, \ldots, A^{(k+1)}_{\sigma} \subset P$. If $\sigma \subset \bigcup_{\tau \subset \sigma} A^{(j)}_{\tau}$ for every face σ of P and every $j \in [k+1]$, then there exist faces $\sigma_1, \ldots, \sigma_{k+1}$ of P such that $0 \in \text{conv}\{y^{(1)}_{\sigma_1}, \ldots, y^{(k+1)}_{\sigma_{k+1}}\}$ and $\bigcap_{i=1}^{k+1} A^{(i)}_{\sigma_i} \neq \emptyset$.

Our proof of this result relies on a topological mapping degree argument. As such, it is entirely different from Bárány’s proof of the colorful Carathéodory theorem, and thus provides a new topological route to prove this theorem. Our argument is also less involved than the topological proof given recently by Meunier, Mulzer, Sarrabezolles, and Stein [14] to show that algorithmically finding the configuration whose existence is guaranteed by the colorful Carathéodory theorem is in PPAD (that is, informally speaking, it can be found by a path-following algorithm). Our method, however, involves a limiting argument and thus does not have immediate algorithmic consequences. Finally, our proof of Theorem 1.1 exhibits a surprisingly simple way to prove KKMS-type results and their polytopal and colorful extensions.

As an application of Theorem 1.1 we prove a bound on the piercing numbers of colorful d-interval hypergraphs. A d-interval is a union of at most d disjoint closed intervals on \mathbb{R}. A d-interval h is separated if it consists of d disjoint interval components $h = h^1 \cup \cdots \cup h^d$ with $h^{i+1} \subset (i, i+1)$ for $i \in \{0, \ldots, d-1\}$. A hypergraph of (separated) d-intervals is a hypergraph H whose vertex set is \mathbb{R} and whose edge set is a finite family of (separated) d-intervals.

A matching in a hypergraph $H = (V, E)$ with vertex set V and edge set E is a set of disjoint edges. A cover is a subset of V intersecting all edges. The matching number $\nu(H)$ is the maximal size of a matching, and the covering number (or piercing number) $\tau(H)$ is the minimal size of a cover. Tardos
[19] and Kaiser [10] proved the following bound on the covering number in hypergraphs of d-intervals:

Theorem 1.2 (Tardos [19], Kaiser [10]). In every hypergraph H of d-intervals we have $\tau(H) \leq (d^2 - d + 1)\nu(H)$. Moreover, if H is a hypergraph of separated d-intervals, then $\tau(H) \leq (d^2 - d)\nu(H)$.

Matoušek [13] showed that this bound is not far from the truth: There are examples of hypergraphs of d-intervals in which $\tau = \Omega(d^2 \log d)$. Aharoni, Kaiser and Zerbib [1] gave a proof of Theorem 1.2 that used the KKMS theorem and Komiya’s polytopal extension, Theorem 2.1. Using Theorem 1.1 we prove here a colorful generalization of Theorem 1.2:

Theorem 1.3. Let F_i, $i \in [k+1]$, be $k+1$ hypergraphs of d-intervals and let $F = \bigcup_{i=1}^{k+1} F_i$.

1. If $\tau(F_i) > k$ for all $i \in [k+1]$, then there exists a collection \mathcal{M} of pairwise disjoint d-intervals in F of size $|\mathcal{M}| \geq \frac{k+1}{d^2 - d + 1}$, with $|\mathcal{M} \cap F_i| \leq 1$.
2. If F_i consists of separated d-intervals and $\tau(F_i) > kd$ for all $i \in [k+1]$, then there exists a collection \mathcal{M} of pairwise disjoint separated d-intervals in F of size $|\mathcal{M}| \geq \frac{k+1}{d^2 - d + 1}$, with $|\mathcal{M} \cap F_i| \leq 1$.

Note that Theorem 1.2 is the case where all the hypergraphs F_i are the same. In Section 2 we introduce some notation and, as an introduction to our methods, provide a new simple proof of Komiya’s theorem. Then, in Section 3, we prove Theorem 1.1 and use it to derive Bárány’s colorful Carathéodory theorem. Section 4 is devoted to the proof of Theorem 1.3.

2. Coverings of polytopes and Komiya’s theorem

Let Δ_k be the k-dimensional simplex with vertex set $[k+1]$ realized in \mathbb{R}^{k+1} as \(\{ x \in \mathbb{R}_{\geq 0}^{k+1} : \sum_{i=1}^{k+1} x_i = 0 \} \). For every $S \subset [k+1]$ let Δ^S be the face of Δ_k spanned by the vertices in S. Recall that the KKM theorem asserts that if A_1, \ldots, A_{k+1} are closed sets covering Δ_k so that $\Delta^S \subset \bigcup_{i \in S} A_i$ for every $S \subset [k+1]$, then the intersection of all the sets A_i is non-empty. We will refer to covers A_1, \ldots, A_{k+1} as above as KKM covers.

A generalization of this result, known as the KKMS theorem, was proven by Shapley [16] in 1973. Now we have a cover of Δ_k by closed sets A_T, $T \subset [k+1]$, so that $\Delta^S \subset \bigcup_{T \subset S} A_T$ for every $S \subset [k+1]$. Such a collection of sets A_T is called a KKMS cover. The conclusion of the KKMS theorem is that there exists a balanced collection T_1, \ldots, T_m of subsets of $[k+1]$ for which
Here \(T_1, \ldots, T_m \) form a balanced collection if the barycenters of the corresponding faces \(\Delta_{T_1}, \ldots, \Delta_{T_m} \) contain the barycenter of \(\Delta_k \) in their convex hull.

A different generalization of the KKM theorem is a colorful version due to Gale [9]. It states that given \(k+1 \) KKM covers \(A^{(i)}_1, \ldots, A^{(i)}_{k+1}, i \in [k+1], \) of the \(k \)-simplex \(\Delta_k \), there is a permutation \(\pi \) of \([k+1] \) such that \(\bigcap_{i \in [k+1]} A^{(i)}_{\pi(i)} \) is nonempty. This theorem is colorful in the sense that we think of each KKM cover as having a different color; the theorem then asserts that there is an intersection of \(k+1 \) sets of pairwise distinct colors associated to pairwise distinct vertices. Asada et al. [2] showed that one can additionally prescribe \(\pi(1) \).

In 1993 Shih and Lee [17] proved a common generalization of the KKMS theorem and Gale’s colorful KKM theorem: Given \(k+1 \) KKMS covers \(A^i_1, T \subset [k+1], i \in [k+1], \) of \(\Delta_k \), there exists a balanced collection \(T_1, \ldots, T_{k+1} \) of subsets of \([k+1] \) for which we have \(\bigcap_{i=1}^m A^i_{\pi(i)} \neq \emptyset \).

Another far reaching extension of the KKMS theorem to general polytopes is due to Komiya [12] from 1994. Komiya proved that the simplex \(\Delta_k \) in the KKMS theorem can be replaced by any \(k \)-dimensional polytope \(P \), and that the barycenters of the faces can be replaced by any points \(y_\sigma \) in the face \(\sigma \):

Theorem 2.1 (Komiya’s theorem [12]). Let \(P \) be a polytope, and for every nonempty face \(\sigma \) of \(P \) choose a point \(y_\sigma \in \sigma \) and a closed set \(A_\sigma \subset P \). If \(\sigma \subset \bigcup_{T \subset \sigma} A_T \) for every face \(\sigma \) of \(P \), then there are faces \(\sigma_1, \ldots, \sigma_m \) of \(P \) such that \(y_P \in \text{conv}\{y_{\sigma_1}, \ldots, y_{\sigma_m}\} \) and \(\bigcap_{i=1}^m A_{\pi(i)} \neq \emptyset \).

This specializes to the KKMS theorem if \(P \) is the simplex and each point \(y_\sigma \) is the barycenter of the face \(\sigma \). Moreover, there are quantitative versions of the KKMS theorem due to De Loera, Peterson, and Su [6] as well as Asada et al. [2] and KKM theorems for general pairs of spaces due to Musin [15].

To set the stage we will first present a simple proof of Komiya’s theorem. Recall that the KKM theorem can be easily deduced from Sperner’s lemma on vertex labelings of triangulations of a simplex. Our proof of Komiya’s theorem – just as Shapley’s original proof of the KKMS theorem – first establishes an equivalent Sperner-type version. A **Sperner–Shapley labeling** of a triangulation \(T \) of a polytope \(P \) is a map \(f: V(T) \longrightarrow \{\sigma: \sigma \text{ a nonempty face of } P\} \) from the vertex set \(V(T) \) of \(T \) to the set of nonempty faces of \(P \) such that \(f(v) \subset \text{supp}(v) \), where \(\text{supp}(v) \) is the minimal face of \(P \) containing \(v \). We prove the following polytopal Sperner–Shapley theorem that will imply Theorem 2.1 by a limiting and compactness argument:
Theorem 2.2. Let T be a triangulation of the polytope $P \subset \mathbb{R}^k$, and let $f: V(T) \rightarrow \{\sigma: \sigma$ a nonempty face of $P\}$ be a Sperner–Shapley labeling of T. For every nonempty face σ of P choose a point $y_\sigma \in \sigma$. Then there is a face τ of T such that $y_P \in \text{conv}\{y_{f(v)}: v \text{ vertex of } \tau\}$.

Proof. The Sperner–Shapley labeling f maps vertices of the triangulation T of P to faces of P; thus mapping a vertex v to the chosen point $y_{f(v)}$ in the face $f(v)$ and extending linearly onto faces of T defines a continuous map $F: P \rightarrow P$. By the Sperner–Shapley condition for every face σ of P we have that $F(\sigma) \subset \sigma$. This implies that F is homotopic to the identity on ∂P, and thus $F|_{\partial P}$ has degree one. Then F is surjective and we can find a point $x \in P$ such that $F(x) = y_P$. Let τ be the smallest face of T containing x. By the definition of F the image $F(\tau)$ is equal to the convex hull $\text{conv}\{y_{f(v)}: v \text{ vertex of } \tau\}$.

Proof of Theorem 2.1 Let $\varepsilon > 0$, and let T be a triangulation of P such that every face of T has diameter at most ε. Given a cover $\{A_\sigma: \sigma$ a nonempty face of $P\}$ that satisfies the covering condition of the theorem we define a Sperner–Shapley labeling in the following way: For a vertex v of T, label v by a face $\sigma \subset \text{supp}(v)$ such that $v \in A_\sigma$. Such a face σ exists since $v \in \text{supp}(v) \subset \bigcup_{\sigma \subset \text{supp}(v)} A_\sigma$. Thus by Theorem 2.2 there is a face τ of T whose vertices are labeled by faces $\sigma_1, \ldots, \sigma_m$ of P such that $y_P \in \text{conv}\{y_{\sigma_1}, \ldots, y_{\sigma_m}\}$. In particular, the ε-neighborhoods of the sets A_{σ_i}, $i \in [m]$, intersect. Now let ε tend to zero. As there are only finitely many collections of faces of P, one collection $\sigma_1, \ldots, \sigma_m$ must appear infinitely many times. By compactness of P the sets A_{σ_i}, $i \in [m]$, then all intersect since they are closed.

Note that Theorem 2.1 is true also if all the sets A_σ are open in P. Indeed, given an open cover $\{A_\sigma: \sigma$ a nonempty face of $P\}$ of P as in Theorem 2.1, we can find closed sets $B_\sigma \subset A_\sigma$ that have the same nerve as A_σ (namely, any collection of sets $\{B_{\sigma_i}: i \in I\}$ intersects if and only if the corresponding collection $\{A_{\sigma_i}: i \in I\}$ intersects) and still satisfy $\sigma \subset \bigcup_{\tau \subset \sigma} B_\tau$ for every face σ of P.

3. A colorful Komiya theorem

Recall that the colorful KKMS theorem of Shih and Lee [17] states the following: If for every $i \in [k+1]$ the collection $\{A_\sigma^i: \sigma$ a nonempty face of $\Delta_k\}$ forms a KKMS cover of Δ_k, then there exists a balanced collection of faces $\sigma_1, \ldots, \sigma_k+1$ so that $\bigcap_{i=1}^{k+1} A_{\sigma_i}^i \neq \emptyset$. Theorem 1.1, proved in this section, is a
colorful extension of Theorem 2.1, and thus generalizes the colorful KKMS theorem to any polytope.

Let P be a k-dimensional polytope. Suppose that for every nonempty face σ of P we choose $k + 1$ points $y^{(1)}_{\sigma}, \ldots, y^{(k+1)}_{\sigma} \in \sigma$ and $k + 1$ closed sets $A^{(1)}_{\sigma}, \ldots, A^{(k+1)}_{\sigma} \subset P$, so that $\sigma \subseteq \bigcup_{\tau \subseteq \sigma} A^{(j)}_{\tau}$ for every face σ of P and every $j \in [k + 1]$. Theorem 2.1 now guarantees that for every fixed $j \in [k + 1]$ there are faces $\sigma^{(j)}_1, \ldots, \sigma^{(j)}_{m_j}$ of P such that $y^{(j)}_P \in \text{conv}\{y^{(j)}_{\sigma_1}, \ldots, y^{(j)}_{\sigma_{m_j}}\}$ and $\bigcap_{i=1}^{m_j} A^{(j)}_{\sigma_i}$ is nonempty. Now let us choose $y^{(1)}_P = y^{(2)}_P = \cdots = y^{(k+1)}_P$ and denote this point by y_P. The colorful Carathéodory theorem implies the existence of points $z_j \in \{y^{(j)}_{\sigma_1}, \ldots, y^{(j)}_{\sigma_{m_j}}\}$, $j \in [k + 1]$, such that $y_P \in \text{conv}\{z_1, \ldots, z_{k+1}\}$.

Theorem 1.1 shows that this implication can be realized simultaneously with the existence of sets $B_j \in \{A^{(j)}_{\sigma_1}, \ldots, A^{(j)}_{\sigma_{m_j}}\}$, $j \in [k + 1]$, such that $\bigcap_{j=1}^{k+1} B_j$ is nonempty. We prove Theorem 1.1 by applying the Sperner–Shapley version of Komiya’s theorem – Theorem 2.2 – to a labeling of the barycentric subdivision of a triangulation of P. The same idea was used by Su [18] to prove a colorful Sperner’s lemma. For related Sperner-type results for multiple Sperner labelings see Babson [3], Bapat [4], and Frick, Houston-Edwards, and Meunier [7].

Proof of Theorem 1.1 Let $\varepsilon > 0$, and let T be a triangulation of P such that every face of T has diameter at most ε. We will also assume that the chosen points $y^{(1)}_{\sigma}, \ldots, y^{(k+1)}_{\sigma}$ are contained in σ. This assumption does not restrict the generality of our proof since $0 \in \text{conv}\{x_1, \ldots, x_{k+1}\}$ for vectors $x_1, \ldots, x_{k+1} \in \mathbb{R}^k$ if and only if $0 \in \text{conv}\{\alpha_1 x_1, \ldots, \alpha_{k+1} x_{k+1}\}$ with arbitrary coefficients $\alpha_i > 0$. Denote by T' the barycentric subdivision of T. We now define a Sperner–Shapley labeling of the vertices of T': For $v \in V(T')$ let σ_v be the face of T so that v lies at the barycenter of σ_v, let $\ell = \dim \sigma_v$, and let τ be the minimal supporting face of P containing σ_v. By the conditions of the theorem, v is contained in a set $A^{(\ell+1)}_{\tau}$ where $\tau \subseteq \sigma$. We label v by τ. Thus by Theorem 2.2 there exists a face τ of T' (without loss of generality τ is a facet) whose vertices are labeled by faces $\sigma_1, \ldots, \sigma_{k+1}$ of P such that $0 \in \text{conv}\{y^{(1)}_{\sigma_1}, \ldots, y^{(k+1)}_{\sigma_{k+1}}\}$. In particular, the ε-neighborhoods of the sets $A^{(i)}_{\sigma_i}$, $i \in [k + 1]$, intersect. Now use a limiting argument as before.

Note that by the same argument as before, Theorem 1.1 is true also if all the sets $A^{(i)}_{\sigma_i}$ are open.

For a point $x \neq 0$ in \mathbb{R}^k let $H(x) = \{y \in \mathbb{R}^k : \langle x, y \rangle = 0\}$ be the hyperplane perpendicular to x and let $H^+(x) = \{y \in \mathbb{R}^k : \langle x, y \rangle \geq 0\}$ be the closed halfspace with boundary $H(x)$ containing x. Let us now show that Bárány’s colorful Carathéodory theorem is a special case of Theorem 1.1.
Theorem 3.1 (Colorful Carathéodory theorem, Bárány [5]). Let X_1,\ldots,X_{k+1} be finite subsets of \mathbb{R}^k with $0 \in \text{conv} X_i$ for every $i \in [k+1]$. Then there are $x_1 \in X_1,\ldots,x_{k+1} \in X_{k+1}$ such that $0 \in \text{conv}\{x_1,\ldots,x_{k+1}\}$.

Proof. We will assume that 0 is not contained in any of the sets X_1,\ldots,X_{k+1}, for otherwise we are done. Let $P \subset \mathbb{R}^k$ be a polytope containing 0 in its interior, such that if points x and y belong to the same face of P, then $\langle x,y \rangle \geq 0$. For example, a sufficiently fine subdivision of any polytope that contains 0 in its interior (slightly perturbed to be a strictly convex polytope) satisfies this condition. We can assume that any ray emanating from the origin intersects each X_i in at most one point by arbitrarily deleting any additional points from X_i. This will not affect the property that $0 \in \text{conv} X_i$. Furthermore, we can choose P in such a way that for each face σ and $i \in [k+1]$ the intersection $C_\sigma \cap X_i$ contains at most one point.

Now for each nonempty, proper face σ of P choose points $y_{\sigma}^{(i)}$ and sets $A_{\sigma}^{(i)}$ in the following way: If there exists $x \in C_\sigma \cap X_i$, then let $y_{\sigma}^{(i)} = x$ and $A_{\sigma}^{(i)} = \{y \in P : \langle y,x \rangle \geq 0\} = P \cap H^+(x)$; otherwise let $y_{\sigma}^{(i)}$ be some point in σ and let $A_{\sigma}^{(i)} = \sigma$.

Suppose the statement of the theorem was incorrect; then in particular, we can slightly perturb the vertices of P and those points $y_{\sigma}^{(i)}$ that were chosen arbitrarily in σ, to make sure that for any collection of points $y_{\sigma_1}^{(1)},\ldots,y_{\sigma_{k+1}}^{(k+1)}$ and any subset S of this collection of size at most k, $0 \notin \text{conv} S$.

Let us now check that with these definitions the conditions of Theorem 1.1 hold. Clearly, all the sets $A_{\sigma}^{(i)}$ are closed. The fact that P is covered by the sets $A_{\sigma}^{(i)}$ for every fixed i follows from the condition $0 \in \text{conv} X_i$. Indeed, this condition implies that for every $p \in P$ there exists a point $x \in X_i$ with $\langle p,x \rangle \geq 0$, and therefore, for the face σ of P for which $x \in C_\sigma$ we have $p \in A_{\sigma}^{(i)}$.

Now fix a proper face σ of P. We claim that $\sigma \subset A_{\sigma}^{(i)}$ for every i. Indeed, either $X_i \cap C_\sigma = \emptyset$ in which case $A_{\sigma}^{(i)} = \sigma$, or otherwise, pick $x \in X_i \cap C_\sigma$ and let $\lambda > 0$ such that $\lambda x \in \sigma$; then for every $p \in \sigma$ we have $\langle p,\lambda x \rangle \geq 0$ by our assumption on P, and thus $\langle p,x \rangle \geq 0$, or equivalently $p \in A_{\sigma}^{(i)}$.

Thus by Theorem 1.1 there exist faces $\sigma_1,\ldots,\sigma_{k+1}$ of P such that $\bigcap_{i=1}^{k+1} A_{\sigma_i}^{(i)} \neq \emptyset$ and $0 \in \text{conv}\{y_{\sigma_1}^{(1)},\ldots,y_{\sigma_{k+1}}^{(k+1)}\}$. We claim that $\bigcap_{i=1}^{k+1} A_{\sigma_i}^{(i)}$ can contain only the origin. Indeed, suppose that $0 \neq x_0 \in \bigcap_{i=1}^{k+1} A_{\sigma_i}^{(i)}$. Fix $i \in [k+1]$. If $y_{\sigma_i}^{(i)} \in C_{\sigma_i} \cap X_i$, then since $x_0 \in A_{\sigma_i}^{(i)}$ we have $y_{\sigma_i}^{(i)} \in H^+(x_0)$ by definition. Otherwise $x_0 \in A_{\sigma_i}^{(i)} = \sigma_i$ and $y_{\sigma_i}^{(i)} \in \sigma_i$, so by our choice of P we obtain again that $y_{\sigma_i}^{(i)} \in H^+(x_0)$. Thus all the points $y_{\sigma_1}^{(1)},\ldots,y_{\sigma_{k+1}}^{(k+1)}$ are in $H^+(x_0)$. But
since $0 \in \text{conv}\{y^{(1)}_{\sigma_1}, \ldots, y^{(k+1)}_{\sigma_{k+1}}\}$ this implies that the convex hull of the points in $\{y^{(1)}_{\sigma_1}, \ldots, y^{(k+1)}_{\sigma_{k+1}}\} \cap H(x_0)$ contains the origin. Now, the dimension of $H(x_0)$ is $k-1$, and thus by Carathéodory’s theorem there exists a set S of at most k of the points in $y^{(1)}_{\sigma_1}, \ldots, y^{(k+1)}_{\sigma_{k+1}}$ with $0 \in \text{conv} S$, in contradiction to our general position assumption.

We have shown that $\bigcap_{i=1}^{k+1} A^{(i)}_{(\sigma_i)} = \{0\}$, and thus in particular, $A^{(i)}_{(\sigma_i)} \neq \sigma_i$ for all i. By our definitions, this implies $y^{(i)}_{\sigma_i} \in X_i$ for all i, concluding the proof of the theorem.

Remark 3.2. Note that we could have avoided the usage of Carathéodory’s theorem in the proof of Theorem 3.1 by taking a more restrictive assumption on the polytope P, namely, that $\langle x, y \rangle > 0$ whenever the points x and y belong to the same face of P. Therefore, in particular, Theorem 3.1 specializes to Carathéodory’s theorem in the case where all the sets X_i are the same.

4. A colorful d-interval theorem

Recall that a fractional matching in a hypergraph $H = (V, E)$ is a function $f : E \rightarrow \mathbb{R}_{\geq 0}$ satisfying $\sum_{e : v \in e} f(e) \leq 1$ for all $v \in V$. A fractional cover is a function $g : V \rightarrow \mathbb{R}_{\geq 0}$ satisfying $\sum_{v : e \cap v} g(v) \geq 1$ for all $e \in E$. The fractional matching number $\nu^*(H)$ is the maximum of $\sum_{e \in E} f(e)$ over all fractional matchings f of H, and the fractional covering number $\tau^*(H)$ is the minimum of $\sum_{v \in V} g(v)$ over all fractional covers g. By linear programming duality, $\nu \leq \nu^* = \tau^* \leq \tau$. A perfect fractional matching in H is a fractional matching f in which $\sum_{e : v \in e} f(e) = 1$ for every $v \in V$. It is a simple observation that a collection of sets $I \subset 2^{[k+1]}$ is balanced if and only if the hypergraph $H = ([k+1], I)$ has a perfect fractional matching (see e.g., [1]). The rank of a hypergraph $H = (V, E)$ is the maximal size of an edge in H. H is d-partite if there exists a partition V_1, \ldots, V_d of V such that $|e \cap V_i| = 1$ for every $e \in E$ and $i \in [d]$.

For the proof of Theorem 1.3 we will use the following theorem by Füredi.

Theorem 4.1 (Füredi [8]). If H is a hypergraph of rank $d \geq 2$, then $\nu(H) \geq \frac{\nu^*(H)}{d-1+\frac{1}{d}}$. If, in addition, H is d-partite, then $\nu(H) \geq \frac{\nu^*(H)}{d-1}$.

We will also need the following simple counting argument.

Lemma 4.2. If a hypergraph $H = (V, E)$ of rank d has a perfect fractional matching, then $\nu^*(H) \geq \frac{|V|}{d}$.
Proof. Let \(f : E \to \mathbb{R}_{\geq 0} \) be a perfect fractional matching of \(H \). Then \(\sum_{v \in V} \sum_{e : v \in e} f(e) = \sum_{v \in V} 1 = |V| \). Since \(f(e) \) was counted \(|e| \leq d \) times in this equation for every edge \(e \in E \), we have that \(\nu^*(H) \geq \sum_{e \in E} f(e) \geq \frac{|V|}{d} \). ■

We are now ready to prove Theorem 1.3. The proof is an adaption of the methods in [1]. For the first part we need the simplectic version of Theorem 1.1, which was already proven by Shih and Lee [17], while the second part requires our more general polytopal extension.

Proof of Theorem 1.3. For a point \(\vec{x} = (x_1, \ldots, x_{k+1}) \in \Delta_k \) let \(p_{\vec{x}}(j) = \sum_{i=1}^j x_t [0,1] \). Since \(\mathcal{F} \) is finite, by rescaling \(\mathbb{R} \) we may assume that \(\mathcal{F} \subset (0,1) \). For every \(T \subset [k+1] \) let \(A_T^i \) be the set consisting of all \(\vec{x} \in \Delta_k \) for which there exists a \(d \)-interval \(f \in \mathcal{F}_i \) satisfying:

(a) \(f \subset \bigcup_{j \in T} (p_{\vec{x}}(j-1), p_{\vec{x}}(j)) \), and

(b) \(f \cap (p_{\vec{x}}(j-1), p_{\vec{x}}(j)) \neq \emptyset \) for each \(j \in T \).

Note that \(A_T^i = \emptyset \) whenever \(|T| > d \).

Clearly, the sets \(A_T^i \) are open. The assumption \(\tau(\mathcal{F}_i) > k \) implies that for every \(\vec{x} = (x_1, \ldots, x_{k+1}) \in \Delta_k \), the set \(P(\vec{x}) = \{ p_{\vec{x}}(j) : j \in [k] \} \) is not a cover of \(\mathcal{F}_i \), meaning that there exists \(f \in \mathcal{F}_i \) not containing any \(p_{\vec{x}}(j) \). This, in turn, means that \(\vec{x} \in A_T^i \) for some \(T \subset [k+1] \), and thus the sets \(A_T^i \) form a cover of \(\Delta_k \) for every \(i \in [k+1] \).

To show that this is a KKMS cover, let \(\Delta^S \) be a face of \(\Delta_k \) for some \(S \subset [k+1] \). If \(\vec{x} \in \Delta^S \) then \((p_{\vec{x}}(j-1), p_{\vec{x}}(j)) = \emptyset \) for \(j \notin S \), and hence it is impossible to have \(f \cap (p_{\vec{x}}(j-1), p_{\vec{x}}(j)) \neq \emptyset \). Thus \(\vec{x} \in A_T^i \) for some \(T \subset S \). This proves that \(\Delta^S \subset \bigcup_{T \subset S, i} A_T^i \) for all \(i \in [k+1] \).

By Theorem 1.1 there exists a balanced collection of sets \(\mathcal{T} = \{ T_1, \ldots, T_{k+1} \} \) of subsets of \([k+1] \), satisfying \(\bigcap_{i=1}^{k+1} A_{T_i}^i \neq \emptyset \). In particular, \(|T_i| \leq d \) for all \(i \). (Recall that we think of a collection of sets \(\mathcal{T} \subset 2^{[k+1]} \) as faces of the \(k \)-dimensional simplex to apply the earlier geometric definition of balancedness.) Then by the observation mentioned above, the hypergraph \(H = ([k+1], \mathcal{T}) \) of rank \(d \) has a perfect fractional matching, and thus by Lemma 4.2 we have \(\nu^*(H) \geq \frac{k+1}{d^{2-d+1}} \). Therefore, by Theorem 4.1, \(\nu(H) \geq \frac{\nu^*(H)}{d^{-1} + \frac{1}{d}} \geq \frac{k+1}{d^{2-d+1}} \).

Let \(M \) be a matching in \(H \) of size \(m \geq \frac{k+1}{d^{2-d+1}} \). Let \(\vec{x} \in \bigcap_{i=1}^{k+1} A_{T_i}^i \). For every \(i \in [k+1] \) let \(f(T_i) \) be the \(d \)-interval of \(\mathcal{F}_i \) witnessing the fact that \(\vec{x} \in A_{T_i}^i \). Then the set \(\mathcal{M} = \{ f(T_i) : T_i \in \mathcal{M} \} \) is a matching of size \(m \) in \(\mathcal{F} \) with \(|\mathcal{M} \cap \mathcal{F}_i| \leq 1 \). This proves the first assertion of the theorem.

Now suppose that \(\mathcal{F}_i \) is a hypergraph of separated \(d \)-intervals for all \(i \in [k+1] \). For \(f \in \mathcal{F} \) let \(f^t \subset (t-1,t) \) be the \(t \)-th interval component of \(f \). We
can assume without loss of generality that \(f^t \) is nonempty. Let \(P = (\Delta_k)^d \).

For a \(d \)-tuple \(T = (j_1, \ldots, j_d) \subset [k+1]^d \) let \(A^i_T \) consist of all \(\vec{X} = \vec{x}^1 \times \cdots \times \vec{x}^d \in P \) for which there exists \(f \in F_i \) satisfying \(f^t \subset (t-1+p_{\vec{x}^j}(j_t-1), t-1+p_{\vec{x}^j}(j_t)) \) for all \(t \in [d] \).

Since \(\tau(F) > kd \), the points \(t-1+p_{\vec{x}^j}(j) \), \(t \in [d], j \in [k], \) do not form a cover of \(F \). Therefore, as before, the sets \(A^i_T \) are open and satisfy the covering condition of Theorem 1.1. Thus, by Theorem 1.1, there exists a set \(\mathcal{T} = \{T_1, \ldots, T_{k+1}\} \) of \(d \)-tuples in \([k+1]^d\) containing the point \((\frac{1}{k+1}, \ldots, \frac{1}{k+1}) \times \cdots \times (\frac{1}{k+1}, \ldots, \frac{1}{k+1}) \in P \) in its convex hull and satisfying \(\bigcap_{i \in [k+1]} A^i_{T_i} \neq \emptyset \). Then the \(d \)-partite hypergraph \(H = (\bigcup_{i=1}^d V_i, \mathcal{T}) \), where \(V_i = [k+1] \) for all \(i \), has a perfect fractional matching, and hence by Lemma 4.2 we have \(\nu^*(H) \geq k+1 \). By Theorem 4.1, this implies \(\nu(H) \geq \frac{\nu^*(H)}{d-1} \geq \frac{k+1}{d-1} \).

Now, by the same argument as before, by taking \(\vec{X} \in \bigcap_{i \in [k+1]} A^i_{T_i} \) we obtain a matching in \(F \) of the same size as a maximal matching in \(H \), concluding the proof of the theorem.

Acknowledgment. This material is based upon work supported by the National Science Foundation under Grant No. DMS-1440140 while the authors were in residence at the Mathematical Sciences Research Institute in Berkeley, California, during the Fall 2017 semester.

References

[1] R. Aharoni, T. Kaiser and S. Zerbib: Fractional covers and matchings in families of weighted \(d \)-intervals, *Combinatorica* 37 (2017), 555–572.

[2] M. Asada, F. Frick, V. Pisharody, M. Polevy, D. Stoner, L. Tsang and Z. Wellner: Fair division and generalizations of Sperner- and KKM-type results, *SIAM J. Discrete Math.* 32 (2018), 591–610.

[3] E. Babson: Meunier conjecture, arXiv preprint arXiv:1209.0102 (2012).

[4] R. B. Bapat: A constructive proof of a permutation-based generalization of Sperner’s lemma, *Math. Program.* 44 (1989), 113–120.

[5] I. Bárány: A generalization of Carathéodory’s theorem, *Discrete Math.* 40 (1982), 141–152.

[6] J. A. De Loera, E. Peterson and F. E. Su: A polytopal generalization of Sperner’s lemma, *J. Combin. Theory, Ser. A* 100 (2002), 1–26.

[7] F. Frick, K. Houston-Edwards and F. Meunier: Achieving rental harmony with a secretive roommate, *Amer. Math. Monthly*, to appear.

[8] Z. Füredi: Maximum degree and fractional matchings in uniform hypergraphs, *Combinatorica* 1 (1981), no. 2, 155–162.

[9] D. Gale: Equilibrium in a discrete exchange economy with money, *Int. J. Game Theory* 13 (1984), no. 1, 61–64.

[10] T. Kaiser: Transversals of \(d \)-intervals, *Discrete Comput. Geom.* 18 (1997), no. 2, 195–203.
B. Knaster, C. Kuratowski and S. Mazurkiewicz: Ein Beweis des Fixpunktsatzes für n-dimensional Simplexe, *Fund. Math.* 14 (1929), 132–137.

H. Komiya: A simple proof of KKMS theorem, *Econ. Theory* 4 (1994), 463–466.

J. Matoušek: Lower bounds on the transversal numbers of d-intervals, *Discrete Comput. Geom.* 26 (2001), 283–287.

F. Meunier, W. Mulzer, P. Sarrabezolles and Y. Stein: *The rainbow at the end of the line: a PPAD formulation of the colorful Carathéodory theorem with applications*, Proceedings of the Twenty-Eighth Annual ACM-SIAM Symposium on Discrete Algorithms, Society for Industrial and Applied Mathematics, 2017, 1342–1351.

O. R. Musin: KKM type theorems with boundary conditions, *J. Fixed Point Theory Appl.* 19 (2017), 2037–2049.

L. S. Shapley: *On balanced games without side payments*, Math. Program., Math. Res. Center Publ. (T. C. Hu and S. M. Robinson, eds.), vol. 30, Academic Press, New York, 1973, 261–290.

M. Shih and S. Lee: Combinatorial formulae for multiple set-valued labellings, *Math. Ann.* 296 (1993), no. 1, 35–61.

F. E. Su: Rental harmony: Sperner’s lemma in fair division, *Amer. Math. Monthly* 106 (1999), 930–942.

G. Tardos: Transversals of 2-intervals, a topological approach, *Combinatorica* 15 (1995), 123–134.

Florian Frick
Department of Mathematical Sciences
Carnegie Mellon University
Pittsburgh, PA
frick@cmu.edu

Shira Zerbib
Department of Mathematics
University of Michigan
Ann Arbor, MI
zerbib@umich.edu