CORRIGENDUM TO “SYNDE蒂CALLY PROXIMAL PAIRS” [J. MATH. ANAL. APPL. 379 (2011) 656–663]

JIAN LI, T.K. SUBRAHMONIAN MOOTHATHU, AND PIOTR OPROCHA

ABSTRACT. We give a counterexample to Theorem 9 in “Syndetically proximal pairs” [J. Math. Anal. Appl. 379 (2011) 656–663]. We also provide sufficient conditions for the conclusion of Theorem 9 to hold.

1. INTRODUCTION

The reader not familiar with the theory of entropy, in particular this theory in the context of one-dimensional dynamics, is referred to monographs [2, 9, 1].

One of the celebrated results in the one-dimensional dynamics is that if a continuous interval map \(f : [0,1] \to [0,1] \) has positive topological entropy then there is a horseshoe in its iteration [7, 8]. An important consequence of this result is that it has a factor map to the full shift. More specifically, we have the following useful result, see [10, Theorem 8] for this version. Note that the one-sided full shift dynamical system on the alphabet \(\{0, 1, 2, \ldots, m - 1\} \) is denoted by \((\Sigma_m, \sigma)\).

Theorem 1.1. Let \(f : [0,1] \to [0,1] \) be a continuous map with positive topological entropy. Then there exist \(n \in \mathbb{N} \), an \(f^n \)-invariant closed set \(X \subset [0,1] \), and a continuous surjection \(\phi : X \to \Sigma_2 \) such that

1. \(\phi \circ f^n(x) = \sigma \circ \phi(x) \) for every \(x \in X \).
2. \(|\phi^{-1}(y)| \leq 2 \) for every \(y \in \Sigma_2 \).
3. The set \(\{y \in \Sigma_2 : |\phi^{-1}(y)| > 1\} \) is at most countable.

It is claimed [10] that the map \(\phi \) in Theorem 1.1 can be chosen to be a homeomorphism. The following result is Theorem 9 in [10].

Theorem 1.2. Let \(f : [0,1] \to [0,1] \) be a continuous map with positive topological entropy and let \(m \geq 2 \). Then there exist \(n \in \mathbb{N} \), an \(f^{2n} \)-invariant closed set \(X \subset [0,1] \), and a homeomorphism \(\phi : X \to \Sigma_m \) such that \(\phi \circ f^{2n}(x) = \sigma \circ \phi(x) \) for every \(x \in X \).

After checking the proof of Theorem 1.2 in [10] carefully, we found some gaps in the proof and later realized that we are able to construct a counterexample to the statement of Theorem 1.2. Strictly speaking, we have the following result.

Theorem 1.3. There exists a surjective continuous map \(f : [0,1] \to [0,1] \) with positive topological entropy such that for every \(n \in \mathbb{N} \) and every \(f^n \)-invariant closed set \(X \subset [0,1] \) the map \(f^n|_X \) is not topologically conjugate to the full shift dynamical system \((\Sigma_2, \sigma)\).

Remark 1.4. Even though Theorem 1.2 turns out to be false, several results using it remain valid, for examples Theorems 10 and 11 in [10], Theorem 6.1 in [4], Theorem 6.7 in [5]. It seems sufficient to use Theorem 1.1 instead of Theorem 1.2 and some standard techniques such as in the proof of Theorem 5.17 in [9].

We also give sufficient conditions for the conclusion of Theorem 1.2 to hold. These conditions cover quite a large class of interval maps.

Theorem 1.5. Let \(f : [0,1] \to [0,1] \) be a continuous map. If \(f \) is transitive, then there exist \(n \in \mathbb{N} \) and an \(f^n \)-invariant closed set \(X \subset [0,1] \) such that \(f^n|_X \) is topologically conjugate to the shift dynamical system \((\Sigma_2, \sigma)\).
Recall that a point $x \in [0, 1]$ is equicontinuous if for every $\varepsilon > 0$ there exists an open neighborhood U of x such that $\text{diam}(f^n(U)) < \varepsilon$ for all $n \geq 0$.

Corollary 1.6. Let $f : [0, 1] \to [0, 1]$ be a continuous map. If the set of equicontinuity points of f fails to be dense in $[0, 1]$, then there exist $n \in \mathbb{N}$ and an f^n-invariant closed set $X \subset [0, 1]$ such that $f^n|_X$ is topologically conjugate to the shift dynamical system (Σ_2, σ).

Proof. For $k \in \mathbb{N}$, let S_k be the collection of all $x \in [0, 1]$ with the following property: for every open neighborhood U of x, there is $n \in \mathbb{N}$ such that $\text{diam}(f^n(U)) \geq 1/k$. Then it may be seen that each S_k is closed (and also f-invariant; but this we do not need). Note that $\bigcup_{k=1}^{\infty} S_k$ is the complement of the set of equicontinuity points of f (in other words, $\bigcup_{k=1}^{\infty} S_k$ is the set of sensitivity points of f). By the hypothesis of the Corollary, $\bigcup_{k=1}^{\infty} S_k$ contains a nondegenerate interval. Since S_k’s are closed, we conclude by Baire category theorem that $\text{int}(S_k) \neq \emptyset$ for some $k \in \mathbb{N}$. Now by Proposition 2.40 of [9], there exists a cycle L_1, \ldots, L_p of closed intervals such that f restricted to $L_1 \cup \cdots \cup L_p$ is transitive. Then f^n restricted to L_1 must be transitive. It is enough to apply Theorem 1.5 to the restriction of f^n to L_1. \hfill \square

Corollary 1.7. Let $f : [0, 1] \to [0, 1]$ be a continuous map with positive entropy. If f has a dense set of periodic points, then there exist $n \in \mathbb{N}$ and an f^n-invariant closed set $X \subset [0, 1]$ such that $f^n|_X$ is topologically conjugate to the shift dynamical system (Σ_2, σ).

Proof. Since $h(f) > 0$, f^2 cannot be identity. Hence by Proposition 3.8 of [9], either f or f^2 must be transitive on a nondegenerate closed interval $J \subset [0, 1]$. Apply Theorem 1.5 to $f|_J$ or $f^2|_J$. \hfill \square

2. **Proofs of the main results**

Proof of Theorem 1.3. In fact we will construct a map $f : [0, 2] \to [0, 2]$ which after normalization to a map $\tilde{f} : [0, 1] \to [0, 1]$ is an example as required.

Start by considering a map $g : [0, 1] \to [0, 1]$ defined by $g(x) = \min\{1, 3/2 - 3|3x - 3/2\}$. In other words, g is a tent map with slope ± 3 and flattened top. Note that there is a Cantor set $C \subset [0, 1]$ such that (C,g) is conjugated (by a homeomorphism $\eta : C \to \Sigma_2$) with (Σ_2, σ) and if $x \in [0, 1] \setminus C$ then there is $n \geq 0$ such that $g^n(x) = 0$.

Let $\{C_i\}_{i \in \mathbb{A}}$ be the family of all closed subsets of C such that $g^k(C_i) = C_i$ for some $k > 0$ and $(\eta(C_i), \sigma_C)$ is a non-trivial mixing sofic shift in the higher power block representation of the full shift (Σ_2, σ) which is conjugated with (Σ_2, σ_C). Since every sofic shift has a labeled graph presentation (see [6, §3.1]), the set \mathbb{A} is countable. Note that it may happen that for some $i \neq j$ we have $C_i \subset C_j$ or even $C_i = C_j$ but $k_i \neq k_j$.

Note that each (C_i, g^k) is non-trivial mixing. There is a countable sequence $\{x_i\}_{i \in \mathbb{A}}$ of points (not necessarily pairwise distinct) such that $x_i \in C_i$ is a transitive point of (C_i, g^k) for all $n \geq 1$. Since C_i is perfect, for every nonempty open set $U \subset C_i$ there are points $a, b, c \in U$, $a < b < c$ and $c - a < \varepsilon$. Then $V = (a, c) \cap C_i$ is a nonempty open subset of C_i and for every $y \in V$ we have $(y - \varepsilon, y) \cap C_i \neq \emptyset$ and $(y, y + \varepsilon) \cap C_i \neq \emptyset$. This immediately shows that the set of points $y \in C_i$ such that for every $\varepsilon > 0$ we have $(y - \varepsilon, y) \cap C_i \neq \emptyset$ and $(y, y + \varepsilon) \cap C_i \neq \emptyset$ is residual. Therefore we can require that x_i is such that for any $\varepsilon > 0$ and $n > 0$ there are $s, t > 0$ such that $g^{sn}(x_i) \in (x_i - \varepsilon, x_i)$ and $g^{tn}(x_i) \in (x_i, x_i + \varepsilon)$.

We will perform a construction similar to the standard Denjoy extension of irrational rotation on the unit circle (see e.g. [3, Proposition 4.4.4]). First observe that by the definition $g^{j}(x_i) \neq 0$ for any $j \geq 0$ and $i \in \mathbb{A}$ and hence the set

$$D = \bigcup_{i \in \mathbb{A}} \bigcup_{k \geq 0} g^{-k}(\{x_i^j : j = 0, 1, \ldots\})$$

is countable, because if $z \neq 1$ then $g^{-1}(z)$ has exactly two elements. Furthermore $g(D) = D$, $g^{-1}(D) = D$ and $D \subset (0, 1/3) \cup (2/3, 1)$. Enumerate elements of D, say $D = \{z_j\}_{j \in \mathbb{N}}$. Extend $[0, 1]$ to $[0, 2]$ by inserting in place of each z_j an interval I_j of length 2^{-j}. This
way we have a monotone surjective map $\pi: [0, 2] \to [0, 1]$ which is one to one for each $x \in [0, 2] \setminus \bigcup I_j$ and $\pi(I_j) = z_j$ for $j \in \mathbb{N}$.

We will define a map $f: [0, 2] \to [0, 2]$ in the following way. For $x \not\in \bigcup I_j$ we put $f(x) = \pi \left(\frac{1}{2} g(\pi(x)) \right)$. If $x \in I_j$ then $\pi(x) = z_j \in D$ and hence $g(z_j) = 3$ or $g(z_j) = -3$. There exists $s \in \mathbb{N}$ such that $g(z_j) = z_s$. Then we define $f|_{I_j}: I_j \to I_s$ as a homeomorphic map of constant slope which is increasing when $g(z_j) = 3$ and decreasing in the other case. Observe that the map f defined that way is continuous and $\pi \circ f = f \circ \pi$.

Since f is an extension of g, the topological entropy of f is also positive. Suppose that there exist $m \in \mathbb{N}$ and an f^m-invariant closed set $X \subset [0, 2]$ such that (X, f^m) is conjugated to (Σ_2, σ). Then $(\pi(X), g^m)$ is mixing and infinite. This implies that $\overline{\pi(X)} \cap C \neq \emptyset$ because if $\pi(X) \setminus C \neq \emptyset$ then there exists an open set $U \subset \pi(X)$ and $k > 0$ such that $g^m(U) = \{0\}$ which is impossible. Hence $(\eta(\pi(X)), \sigma^m)$ is a factor of (X, f^m), and therefore is a sofic shift as a factor of a shift of finite type. Therefore there exists an $i \in A$ such that $\pi(X) = C_i$ and $m = k_i$. There exists $r \in \mathbb{N}$ such that $x_i = x_{i-r}$. Let $I_r = [a, b]$. Observe that $f^j(a, b) \cap (a, b) = \emptyset$ for every $j > 0$. In particular a and b are asymptotic, that is $\lim_{j \to \infty} f^j(a) = \lim_{j \to \infty} f^j(b) = 0$. Hence X is mixing and $\pi^{-1}(z_i) = I_i, I_i \subset X \cap \{a, b\}$. Without loss of generality, assume that $a \in X$. Note that the orbit of x_i under g^k intersects both intervals $(x_i - \epsilon, x_i)$ and $(x_i, x_i + \epsilon)$ for every $\epsilon > 0$. Let $\{s_j\}$ be an increasing sequence of positive integers such that $g^{s_j}(x_i) > x_i$ and $\lim_{j \to \infty} g^{s_j}(x_i) = x_i$. Without loss of generality we may also assume that $\lim_{j \to \infty} f^{s_j}(a)$ exists. Since π is monotone and $\pi \circ f = g \circ \pi$, we get $f^{s_j}(a) > b$ and so $\lim_{j \to \infty} f^{s_j}(a) = b$. This shows that $a, b \in X$. But for any asymptotic pair p, q in the one sided full shift, there exists n such that $\sigma^n(p) = \sigma^n(q)$. This implies $f^n(a) = f^n(b)$ which contradicts the fact that all intervals I_j are nondegenerate.

Proof of Theorem 1.5. First we recall a well known fact that if f is transitive but not mixing, then there is $0 < \epsilon < 1$ such that $[0, \epsilon]$ is f^2-invariant and the restriction of f^3 to $[0, \epsilon]$ is mixing (see e.g. [9, Proposition 2.16]). Replacing f by f^2 if necessary, we assume that f is mixing. As f has positive topological entropy (see e.g. [9, Proposition 4.70]), there exist $r \in \mathbb{N}$ and disjoint closed intervals J_0, J_1 such that $g := f^r$ satisfies $J_0 \cup J_1 \subset g(J_0) \cap g(J_1)$. Without loss of generality assume J_0 is to the left of J_1, and let (a, b) be the open interval between J_0 and J_1 (i.e., $a = \max J_0$ and $b = \min J_1$). For later use, keep in mind that $0 < a < b < 1$. By the horseshoe property of J_0 and J_1, for $k \in \mathbb{N}$ and $w = w_1 \cdots w_k \in \{0, 1\}^k$, we can find closed intervals $J_{w_1 \cdots w_k}$ such that $J_{w_1 \cdots w_k} \subset J_{w_1 \cdots w_{k-1}}$ and $g(J_{w_1 \cdots w_k}) = J_{w_1 \cdots w_{k-1}}$. For $\alpha = w_1 w_2 \cdots \in \Sigma_2$, let $J_\alpha = \bigcap_{w_1 \cdots w_k \in \Sigma_2} J_{w_1 \cdots w_k}$. Then J_α is either a singleton or a nondegenerate closed interval. If possible, let J_α be a nondegenerate closed interval. Since f is mixing and $0 < a < b < 1$, there is $n_0 \in \mathbb{N}$ such that $(a, b) \subset J_n$ for every $n \geq n_0$. On the other hand, $f^n(J_\alpha) = g^n(J_\alpha) \subset J_0 \cup J_1$ for every $n \in \mathbb{N}$. This is a contradiction, and therefore J_α must be a singleton, say $J_\alpha = \{x_\alpha\}$. Letting $X = \{x_\alpha: \alpha \in \Sigma_2\}$, we may check that X is a g-invariant closed set and (X, g) is topologically conjugate to (Σ_2, σ) via the conjugacy $x_\alpha \mapsto \alpha$.

ACKNOWLEDGEMENTS

The authors are grateful to Sylvie Ruette for numerous discussions on the construction of conjugacy with full shift and proofs in [9]. The authors would like to thank the anonymous referee for the careful reading and helpful suggestions.

Research of J. Li was supported in part by NSF of China (grant numbers 11401362 and 11471125). Research of P. Oprocha was supported by National Science Centre, Poland (NCN), grant no. 2015/17/B/ST1/01259.

REFERENCES

[1] L. Alsedà, J. Llibre, M. Misiurewicz, Combinatorial dynamics and entropy in dimension one, Second edition. Advanced Series in Nonlinear Dynamics, vol. 5. World Scientific Publishing Co., Inc., River Edge, NJ, 2000.
[2] L. S. Block, W. A. Coppel, *Dynamics in one dimension*. Lecture Notes in Mathematics, vol. 1513. Springer-Verlag, Berlin, 1992.

[3] B. Hasselblatt and A. Katok, *A first course in dynamics with a panorama of recent developments*, Cambridge University Press, New York, 2003.

[4] J. Li and P. Oprocha, *On n-scrambled tuples and distributional chaos in a sequence*, J. Difference Equ. Appl. 19 (2013), no. 6, 927–941.

[5] J. Li and S. Tu, *On proximality with Banach density one*, J. Math. Anal. Appl. 416 (2014), no. 1, 36–51.

[6] D. Lind, B. Marcus, *An introduction to symbolic dynamics and coding*. Cambridge University Press, Cambridge, 1995.

[7] M. Misiurewicz, W. Szlenk, *Entropy of piecewise monotone mappings*. Studia Math., 67 (1980), 45–63.

[8] M. Misiurewicz, *Invariant measures for continuous transformations of [0,1] with zero topological entropy*. Ergodic theory (Proc. Conf., Math. Forschungsinst., Oberwolfach, 1978), pp. 144–152, Lecture Notes in Math., 729, Springer, Berlin, 1979.

[9] S. Ruette. *Chaos on the interval*, University Lecture Series, 67. American Mathematical Society, Providence, RI, 2017.

[10] T. K. Subrahmonian Moothathu, *Syndetically proximal pairs*. J. Math. Anal. Appl. 379 (2011), 656–663.

(J. Li) Department of Mathematics, Shantou University, Shantou, 515063, Guangdong, China – and – Guangdong Provincial Key Laboratory of Digital Signal and Image Processing Techniques, Shantou University, Shantou, Guangdong 515063, China

E-mail address: lijian09@mail.ustc.edu.cn

(T.K. Moothathu) School of Mathematics and Statistics, University of Hyderabad, Hyderabad 500 046, India.

E-mail address: tksubru@gmail.com

(P. Oprocha) AGH University of Science and Technology, Faculty of Applied Mathematics, al. Mickiewicza 30, 30-059 Kraków, Poland – and – National Supercomputing Centre IT4Innovations, Division of the University of Ostrava, Institute for Research and Applications of Fuzzy Modeling, 30. dubna 22, 70103 Ostrava, Czech Republic

E-mail address:oprocha@agh.edu.pl