47 Years of Interpretive Structural Modelling (ISM) as a Methodology: A Worldwide View

Ahmad Fikri Ab Rahman, Zamri Mahamod, Muhammad Zulhilmi Zainuddin

To Link this Article: http://dx.doi.org/10.6007/IJARBSS/v12-i5/13299

Received: 12 March 2022, Revised: 16 April 2022, Accepted: 29 April 2022

Published Online: 11 May 2022

In-Text Citation: (Ab Rahman ET AL., 2022)
To Cite this Article: Ab Rahman, A. F., Mahamod, Z., Zainuddin, M. Z. (2022). 47 Years of Interpretive Structural Modelling (ISM) as a Methodology: A Worldwide View. International Journal of Academic Research in Business and Social Sciences. 12(5), 1673 – 1689.

Copyright: © 2022 The Author(s)
Published by Human Resource Management Academic Research Society (www.hrmars.com)
This article is published under the Creative Commons Attribution (CC BY 4.0) license. Anyone may reproduce, distribute, translate and create derivative works of this article (for both commercial and non-commercial purposes), subject to full attribution to the original publication and authors. The full terms of this license may be seen at: http://creativecommons.org/licenses/by/4.0/legalcode

Vol. 12, No. 5, 2022, Pg. 1673 – 1689

http://hrmars.com/index.php/pages/detail/IJARBSS

JOURNAL HOMEPAGE

Full Terms & Conditions of access and use can be found at
http://hrmars.com/index.php/pages/detail/publication-ethics
47 Years of Interpretive Structural Modelling (ISM) as a Methodology: A Worldwide View

Ahmad Fikri Ab Rahman¹, Zamri Mahamod², Muhammad Zulhilmi Zainuddin³

¹, ²Faculty of Education, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor, Malaysia, ³Sekolah Kebangsaan Felcra Bukit Kepong, 85300, Muar, Johor, Malaysia
Email: cikgufiq91@gmail.com, d-zam@ukm.edu.my, g-41029986@moe-dl.edu.my
Corresponding Author Email: d-zam@ukm.edu.my

Abstract
This study aims to review a worldwide view of the evolution, dissemination, keyword frequency and collaboration among authors and countries in ISM. Using the Scopus database, this paper used the bibliometric analysis to examine 556 scholarly works related to ISM from 1974 to December 2021. This study’s finding shows that India dominates the ISM study in terms of authors, institution and country. Even though the Business, Management and Accounting field dominate the research of ISM, other fields have begun to use ISM as a methodology in their research. The implication of this study is summed up in the presentation of a worldwide view of the ISM in 47 years, which allows other researchers to use this methodology in various fields as a starting point for additional analyses.

Keywords: Bibliometric, Scopus, Review, Interpretive Structural Modelling, ISM

Introduction
ISM is one of the most distinctive and intriguing research methodologies for application. ISM was discovered for the first time by Harary in 1965. The mathematical foundation for ISM approach can be found in Harary's research, and Warfield provided the philosophical foundation that led to the establishment of this approach in 1974 (Khaba & Bhar, 2017; Mannan et al., 2016). This approach is a computer-assisted process that organises people's ideas into a graphical map structure that depicts a more manageable elemental relationship (Warfield, 1974).

ISM organises individual ideas into a group discussion by mapping the relationships between various elements (Attri et al., 2013; Kaur & Sharma, 2017). In ISM, the resulting process is formed by the knowledge and experience of individuals involved in in-depth discussions and analysis of an issue (Rana et al., 2019). Thus, every decision made in ISM must consist of experts, decision-makers or stakeholders. The researcher must organise several brainstorming sessions to understand the complementary effect of one driver on others and reach an expert consensus (Piya et al., 2020).

The number of experts involved is not fixed and depends on the researcher. For example, Janes (1988) suggested seven to eight experts. Ghazali et al (2020) also used eight
experts, Jamil (2016); Chauhan et al (2018); Hsu et al (2019) used nine experts, Nilashi et al (2019) with ten experts and Chen et al (2021) used 11 experts. However, Janes argued that the experts used were unnecessary to be many as it would take a long time to discuss and argue about the study.

ISM is easier to analyze using Concept Star software (Yahaya et al., 2018). This software can compare pair-wise to describe complex issues as elements based on the numbering concept of sorting the elements with contextual relationships to produce a graphical map. The identified factors were structured into a hierarchical model using this method (Anantatmula & Kanungo, 2010). In addition, ISM generates a hierarchical graph with nodes and directed arcs, where the nodes represent the system’s variables (elements) and the arcs represent the direction of the associations (Bashir & Ojiako, 2020a; Mathiyazhagan et al., 2013).

In the resulting model, problem-solving will be more systematic and structured in order of correct priority. Each element derived from literature studies will be arranged in graphic form following an expert agreement, which is unique to ISM (Abdullah & Siraj, 2018; Chen et al., 2021). These elements serve as guidelines for the dimensions that are formed in the model. According to Srivastava and Sushil (2013) as well as Janssen et al (2018) and Agrawal et al. (2020), the ISM methodology consists of several distinct steps.

1. Identify the experts based on their years of experience and expertise in both the industry and academia.
2. Determine the factors, elements, and barriers that are relevant to the research question based on literature review and expert’s opinion.
3. Determine the relationship between the factors that have been identified and their context.
4. Create the structural self-interaction matrix (SSIM) for each factor based on the expert’s recommendations.
5. Compile and analyse the reachability matrix in light of the SSIM, as well as the transitivity. Specifically, the primary assumption in ISM is related to the transitivity of the contextual relation, which is to say that if factor A is related to factor B and factor B is also related to factor C, then factor A is also related to the factor C.
6. After conducting a transitivity analysis, divide the factors into different levels based on the final reachability matrix.
7. Create the digraph, which the ISM model will follow.

Problem Statement
Nonetheless, the field of study that applies to ISM, on the other hand, is still uncommon (Rahman et al., 2021). Although the matrix formula is featured in ISM (Ahmad et al., 2019; Sushil, 2012), its application is not limited to mathematics, business and management, or engineering. ISM is universal because the majority of ISM’s research participants are experts, and they are not solely limited to one field. Remember that each field has its own experts.

According to Table 1, there is still a limited number of ISM studies indexed in the Scopus Database. There were only 437 total publications in journals as of December 2021, 92 from conference proceedings, 25 total publications in book series, and another two from a book and undefined source types. All of this resulted in a total of 556 publications indexed in the Scopus database.
Table 1. Source type

Source Type	TP	%
Journal	437	78.60%
Conference Proceeding	92	16.55%
Book Series	25	4.50%
Book	1	0.18%
Undefined	1	0.18%
Total	**556**	**100.00%**

Notes: TP=total number of publications

As a result, bibliometric studies must be conducted to identify the evolution, dissemination, cooperation, and keywords associated with ISM. Bibliometrics is a method of retrieving and statistically analysing metrics in published documents (Saha et al., 2020). Bibliometric analysis frequently uses information system tools to conduct a thorough search of relevant documents that appear in multiple databases (Wang et al., 2017). The database information will be quantitatively analysed and visually presented (Shiau & Dwivedi, 2013). In other words, bibliometrics are an active field of research devoted to developing methods and statistics to assist researchers in taking advantage of all types of data provided by a publication (Cowhitt et al., 2019). As a result, bibliometrics are the best methodologies for analysing ISM metadata in order to be more detailed in numerical terms.

This study conducted a bibliometric analysis of ISMs based on three major research questions: (1) How has ISM research evolved and disseminated? (2) Who are the major authors and countries involved in ISM research, and how do they collaborate? (3) What is the frequency, co-occurrence, and evolution of keywords in ISM research? This bibliometric analysis addresses the following aspects in order to answer these three questions:

1. **Evolution and dissemination**
 - Evolution by year
 - Dissemination by subject areas

2. **Frequency of keywords**
 - Top keywords
 - Co-occurrence keywords
 - Evolution of co-occurrence article keywords

3. **Co-authorship network**
 - Top authors
 - Co-authorship author network
 - Co-authorship countries network

Methodology

A bibliometric analysis is becoming more popular as one method for determining the trend and pattern of research (Ahmi et al., 2020). The research trends can be seen by categorising the publications by year, author, institution, or country. The impact and performance can also be measured using matrices such as the number of citations, citations per year, h index, and g index. Furthermore, state of the art in publications can be mapped and visualised by employing various indicators such as co-authorship, co-citation, keyword or phrase occurrences, and bibliographic coupling (Zakaria et al., 2021). According to this study, 556 documents from the SCOPUS database were analysed with Harzing’s Publish or Perish, Microsoft Excel and visualised by VOSviewer software.
The statistics were obtained on 31st December 2021 from the Scopus database. Scopus was chosen since it included over 82 million entries from 7000 publishers. Scopus now contains 1.7 billion cited references since 1970. As a result, the search phrase "Interpretive Structural Model *" in the article title is utilised to locate relevant publications linked to research employing Interpretive Structural Model* in the subject of study. The symbol of an asterisk (*) was used refers to several terms used in this study, including "modelling," "modeling," and "models." Furthermore, data search is not restricted by year or language. Everything is still utilised to obtain valuable data. In the following step, all data obtained through searches in the Scopus database was exported into comma-separated values (.csv) and research information systems (.ris) formatted files.

Results and Discussion

Evolution and Dissemination

Evolution by Year

Table 2 displays statistics on yearly publications of ISMs research from 1974 to 2021, indicating the rising trend in the number of publications. For 47 years, 1974 was the first year that documents on ISMs were published and indexed by Scopus with only four papers. The earliest documents were published by Waller from Magdelen College, United Kingdom, Farris from Evansville, United States and Malone from the American University of United States. Another author is Fitz, but unfortunately, this author has no affiliation history in Scopus.

From 1974 through 2013, the Scopus database had less than 20 documents about ISMs. Surprisingly, the number of publications published on ISMs increased dramatically beginning in 2014, with 27 documents released that year. The number progressively rose in 2018 with 75 documents, indicating the rising interest in ISMs. Even though there were just 78 articles in 2021, this analysis was done soon after December 2021. As a result, the whole year's worth of documents had yet to be released. In contrast, several journals had already published their 2020 publications, and the Scopus database recorded these figures as well.
Table 2. Publication by year

Year	TP	NCP	TC	C/P	C/CP	h	g
2021	78	38	109	1.40	2.87	5	7
2020	63	48	379	6.02	7.90	11	17
2019	70	58	665	9.50	11.47	14	23
2018	75	63	830	11.07	13.17	17	25
2017	56	53	1166	20.82	22.00	17	32
2016	44	41	939	21.34	22.90	11	17
2015	32	31	1202	37.56	38.77	14	23
2014	27	23	664	24.59	28.87	11	12
2013	19	17	1177	61.95	69.24	14	19
2012	12	10	740	61.67	74.00	6	12
2011	7	6	196	28.00	32.67	4	7
2010	11	10	145	13.18	14.50	5	11
2009	4	3	484	121.00	161.33	3	4
2008	6	6	279	46.50	46.50	4	6
2007	3	3	103	34.33	34.33	2	3
2006	1	1	143	143.00	143.00	1	1
2005	2	2	219	109.50	109.50	1	2
2004	2	1	26	13.00	26.00	1	2
1995	1	1	7	7.00	7.00	1	1
1993	1	1	3	3.00	3.00	1	1
1992	1	1	41	41.00	41.00	1	1
1990	1	0	0	0.00	0.00	0	0
1989	1	1	17	17.00	17.00	1	1
1988	3	3	99	33.00	33.00	2	3
1985	1	1	0	0.00	0.00	1	1
1984	1	1	3	3.00	3.00	1	1
1981	1	1	2	2.00	2.00	1	1
1980	3	3	32	10.67	10.67	2	3
1979	1	1	2	2.00	2.00	1	1
1978	1	1	120	120.00	120.00	1	1
1977	3	3	23	7.67	7.67	2	3
1976	1	1	11	11.00	11.00	1	1
1975	3	3	405	135.00	135.00	3	3
1974	4	3	8	2.00	2.67	2	2

Notes: TP=total number of publications; NCP=number of cited publications; TC=total citations; C/P=average citations per publication; C/CP=average citations per cited publication; h=h-index; and g=g-index.

Dissemination by Subject Areas

Table 3 indicates that ISM was used in 23 subject areas. Even though there are many publications in the Business, Management and Accounting field (TP = 264, 47.48 %), the Engineering field (TP = 220, 40.11 %) is driving this trend by 44 complete publications (7.37 %) differences. Nevertheless, ISM is still used in a variety of fields, including Computer Science (TP = 114, 20.50%), Decision Sciences (TP = 107, 19.24%), Social Science (TP = 71, 12.77%) and
other fields. Subject areas are consistent with the ISM function, which is an ideal tool for managing complex and ambiguous problems to become more organised in various fields (Chauhan et al., 2018; Sushil, 2012). This diversity of research makes ISM is universal and can be further expanded in various fields.

Table 3. Subject areas

Subject Area	TP	%
Business, Management and Accounting	264	47.48%
Engineering	220	40.11%
Computer Science	114	20.50%
Decision Sciences	107	19.24%
Social Sciences	71	12.77%
Environmental Science	63	11.33%
Energy	36	6.47%
Mathematics	28	5.04%
Medicine	24	4.32%
Economics, Econometrics and Finance	21	3.78%
Materials Science	15	2.70%
Chemical Engineering	14	2.52%
Agricultural and Biological Sciences	13	2.34%
Earth and Planetary Sciences	10	1.80%
Psychology	8	1.44%
Biochemistry, Genetics and Molecular Biology	7	1.26%
Multidisciplinary	5	0.90%
Chemistry	5	0.90%
Health Professions	4	0.72%
Physics and Astronomy	4	0.72%
Arts and Humanities	1	0.18%
Nursing	1	0.18%
Pharmacology, Toxicology and Pharmaceutics	1	0.18%

Notes: TP=total number of publications

Frequency of Keywords

Top Keywords

Following Table 4, the most popular keywords all pointed to the same meaning of the term ISM. Nevertheless, one of the analyses in ISM (MICMAC Analysis) had also been designated as a keyword among the authors. This keyword can be associated with the MICMAC function in ISM, which is used to identify critical variables based on both their direct and indirect impacts on one another, using a classification system to identify critical variables (Bashir & Ojiako, 2020). Additionally, other keywords related to ISM’s application in specific areas, such as 'supply chain management,' 'sustainability,' and 'manufacture,' are included as top keywords and have an impact on the total number of publications in the ISM study.
Table 4. Top keywords

Keywords	TP	%
Interpretive Structural Modeling	201	36.15%
Interpretive Structural Modelling	113	20.32%
ISM	109	19.60%
Structural Modelling	55	9.89%
Interpretive Structural Modelling (ISM)	49	8.81%
Supply Chain Management	49	8.81%
MICMAC Analysis	47	8.45%
Interpretive Structural Modelling (ISM)	40	7.19%
Decision Making	36	6.47%
India	35	6.29%
Sustainable Development	35	6.29%
Manufacture	30	5.40%
MICMAC	28	5.04%
Barriers	25	4.50%
Sustainability	23	4.14%
Structural Analysis	22	3.96%

Notes: TP=total number of publications

Co-occurrence Keyword

Co-occurrence analysis examines the most frequently used keywords, resulting in a more in-depth understanding of the most popular topics and research trends (Chiaraluce et al., 2021). This paper recorded the co-occurrence analysis of author keywords as 1334 keywords from 1974 to December 2021. With a minimum of five occurrences, 26 keywords were chosen by threshold. As a result of Figure 1, the 26 keywords become divided into three clusters based on red, green and blue colours. Despite being divided into three clusters, the theme of ISM remains the most important keyword in each. Although in Table 4, the ‘modelling’ ‘modeling’, ‘MICMAC’, and ‘MICMAC analysis’ differences produce a different total publication, in order to create alignment, both are combined using a thesaurus in Microsoft Excel before being analysed by VOSviewer, as shown in Figure 1.
Evolution Co-occurrence Article Keyword

This study also broadens Figure 1 by making it available as a visualization in the form of a Visual Overlay utilizing VOSviewer. Figure 2 indicates that "element", "structure", "concept", "group", and "problem" are all within the purple range, indicating they were all previously published. ISM-based research is in its infancy and is only in a nascent stage in numerous fields of knowledge. However, since 2017, keyword evolution from the article has accelerated by expanding on the "design methodology approach" search intent. ISM is also applied in various fields, including education, psychology, and the arts and humanities. Expert consensus is used as a decision-maker, using the ISM (Lan et al., 2021). Unsurprisingly, the keywords "decision making" and "expert opinion" are also included in the green-labeled co-occurrence article keyword list.

The latest ISM study is in the early stages of Total Interpretive Structural Modelling (TISM). From Figure 2, it is evident that the latest keywords for TISM appear in yellow. TISM is ISM’s extended version to supply interpretation for the direct research and significant transitive linkages in a directed graph (Jena et al., 2017). These are graphical models, according to Sushil (2018), that represent hierarchical relationships and aid in better and more precise conceptualization. In a digraph, ISM only interprets the nodes, whereas TISM interprets both nodes and links.
Collaboration between authors from different countries is strongly encouraged in the academic world. The most current knowledge can be shared and combined through collaboration to produce more solid and powerful results (Wahid et al., 2020). Authors from various countries can apply their knowledge and experience to the application of ISM. The publications produced by the researchers can also help the institution's academic reputation.

The bibliometric analysis generates maps that depict relationships between authors and countries (Ahmi et al., 2020). The visual overview of this VOSviewer demonstrates the collaborative relationship that has been established between authors from various countries regarding ISM in their studies. Therefore, the thickness of the connecting lines of the visual overview represents the strength of the relationship between the terms (Wahid et al., 2020), whereas the size of the nodes represents the frequency with which the terms appear in the text.

Top Authors
This study also determines the top authors in ISMs research and is shown in Table 5. From a worldwide view, eleven authors are identified according to most publications, and this list is limited with a minimum of six total publications only. Based on the number, eight out of eleven authors from India and only three authors from the United Kingdom. Even though India dominates the top author's list with many publications, the first ranking is Rana from the University of Bradford, the United Kingdom, with 11 publications. Although she was productive in publishing, the number of citations she received was less than Sushil from the Indian Institute of Technology Delhi, with 715 citations of the six published publications.
Table 5: Top authors

Author Name	Institution	Country	TP	TC
Rana	University of Bradford	United Kingdom	11	326
Vinodh	National Institute of Technology Tiruchirappalli	India	10	205
Dhir	Indian Institute of Technology Delhi	India	8	94
Dubey	Liverpool Business School	United Kingdom	8	511
Dwivedi	Swansea University	United Kingdom	8	303
Shankar	Indian Institute of Technology Delhi	India	8	503
Gardas, B.B.	University of Mumbai	India	6	111
Seth	Indian Institute of Foreign Trade Development	India	6	67
Singh	Management Development Institute	India	6	155
Sushil	Indian Institute of Technology Delhi	India	6	715
Tripathy	Kalinga Institute of Industrial Technology	India	6	58

Notes: TP=total number of publications; TC=total citations

Co-authorship Author Network

There were 1221 authors in the co-authorship author's network published on ISM from 1974 to December 2021. This study removes publication with more than 25 co-authors to avoid insignificant contributions in the network map. At a minimum, three documents and three citations for each author are set as threshold values. With the threshold resolution, 84 authors have been identified for each author, but only 33 are visually mapped in Figure 3. The number is the fact that not all authors are connected.

Figure 3 depicts the cluster of the author's inter-relationship in five different colours. However, not all of these co-authorship deals involve top authors, as shown in Table 5. Nonetheless, Rana from the United Kingdom outperformed the other authors with 11 publications. Apart from Hughes, there is a co-authorship between Rana and Indian authors like Mathyizhagan, Dwivedi, Singh, Dhir, and Luthra, as shown in Figure 3.
Co-authorship Countries Network

From 1974 to August 2021, 63 countries were recorded for co-authorship in VOSviewer. With threshold, a minimum of three documents was published per country, each with at least three citations; 29 countries were chosen and divided into three clusters. However, only 28 countries are visually mapped in Figure 4. According to other countries, India remains at the top of the list with strong links, according to Figure 4. India is still ranked first, as shown in Table 6, with 292 total publications (TP) and 7221 total citations (TC). This ranking is not surprising given the fact that India is still dominating all institution lists based on Table 7. Based on Table 7, the Indian Institute of Technology, Delhi, gives a large amount of research using ISM as a methodology of 40 full publications and 2079 total citations.

In terms of co-authorship, Figure 4 shows clear red links for India cooperating with the United States, China, Canada, Australia, Thailand, Poland, France, Denmark, Brazil, the United Kingdom, South Africa, Qatar, Oman, and the United Arab Emirates. However, while India dominates the top rankings as top countries and institutions, other countries are equally unpredictable. According to Table 6, even though the United States is ranked fourth with 34 total publications, the total number of citations received is quite high at 1146 compared to China and Iran which are respectively in the second and third rank. The United States has also developed co-authorship with India, France, Taiwan, the United Kingdom and China.
Table 6. Top countries

Country	TP	NCP	TC	C/P	C/CP	h	g
India	292	252	7221	24.73	28.65	45	76
China	56	43	934	16.68	21.72	15	30
Iran	50	35	222	4.44	6.34	7	13
United States	34	30	1273	37.44	42.43	15	34
Indonesia	23	16	54	2.35	3.38	4	5
United Kingdom	23	20	811	35.26	40.55	12	23
Taiwan	14	12	348	24.86	29.00	7	14
Australia	13	10	169	13.00	16.90	6	13
Japan	13	10	62	4.77	6.20	5	7
Malaysia	10	10	64	6.40	6.40	4	7

Notes: TP=total number of publications; NCP=number of cited publications; TC=total citations; C/P=average citations per publication; C/CP=average citations per cited publication; h=h-index; and g=g-index.

Table 7. Top institutions

Institution	Country	TP	TC
Indian Institute of Technology Delhi	India	40	2079
Symbiosis International Deemed University	India	23	737
Indian Institute of Technology Roorkee	India	16	575
National Institute of Technology Tiruchirappalli	India	14	380
Aligarh Muslim University	India	13	379
J.C. Bose University of Science and Technology, YMCA	India	12	150
Birla Institute of Technology and Science, Pilani	India	11	175
Amity University	India	10	146
Motilal Nehru National Institute of Technology Allahabad Delhi Technological University	India	9	503

Notes: TP=total number of publications; TC=total citations.
Limitation and Conclusion
This analysis is limited to the Scopus database. We did not look at additional databases like the web of Science (WOS), Google Scholar, or others that did not fit our search criteria. The keywords used in this study are also limited in document titles. Extending text analysis to abstracts may offer new information and frequencies. Also, some authors or institutions may have entered multiple names or spellings into Scopus, resulting in erroneous affiliations or production data.

In conclusion, all the matters discussed have answered this research question regarding evolution, dissemination, frequency of keywords and collaboration among authors and countries in ISM, using the Scopus database. The findings of the bibliometric analysis highlighted the collaboration among authors, countries, and the global evolution of ISMs research. For 47 years, ISM has been disseminated into 23 subject areas and dominated by the Business, Management and Accounting fields. In addition, productive authors and countries generating publications in ISM are Indians. India also shows the thickness colour in visuals by VOSviewer, which means their co-authorship networks with the United States, China, Canada, Australia, Thailand, Poland, France, Denmark, Brazil, the United Kingdom, South Africa, Qatar, Oman, and the United Arab Emirates. The rapid network of co-operation of the writer from various countries has also spurred the use of keywords either from authors or titles and abstracts in the article. Because the ISM is solidly named, the keywords used also carry the meaning associated with ISM either "interpretive structural modelling", "interpretive structural modeling" and "ISM". Regarding the evolution of co-occurrence title and abstract keywords, featured from purple to yellow shows the progress of keywords from "element", "structure", "concept", "group" and "problem" to "design methodology approaches", which is then expanded into "TISM".

As a suggestion, the findings of this paper can be used as evidence that shows the gap in the study in terms of methodology for various fields when using ISM. In addition, ISM is not limited to the Business, Management, Accounting or engineering fields, but also social science such as education can also implement ISM as a data collection method. Therefore, the
application of ISM to various fields must be expanded so that researchers can make the best use of their expertise and expert knowledge in the future.

References
Abdullah, M. R. T. L., & Siraj, S. (2018). The evaluation of mLearning implementation model for English language learning via fuzzy delphi method. *Pertanika Journal of Social Sciences & Humanities, 26*(5), 33–54.

Agrawal, V., Agarwal, S., & Agrawal, A. M. (2020). Modelling of factors of e-learning: An ISM approach. *International Journal of Continuing Engineering Education and Life-Long Learning, 30*(3), 327–349. https://doi.org/10.1504/ijceell.2020.108563

Ahmad, M., Tang, X. W., Qiu, J. N., & Ahmad, F. (2019). Interpretive structural modeling and micmac analysis for identifying and benchmarking significant factors of seismic soil liquefaction. *Applied Sciences (Switzerland), 9*(2). https://doi.org/10.3390/APP9020233

Ahmi, A., Tapa, A., & Hamzah, A. H. (2020). Mapping of financial technology (FinTech) research: A bibliometric analysis. *International Journal of Advanced Science and Technology, 29*(8), 379–392.

Ahmi, A., Saidin, Z. S., Nasir, H. M. M., & Ismail, Z. (2020). Applicability of lotka’s law in extensible business reporting language (XBRL) studies. *International Journal of Advanced Science and Technology, 29*(6), 282–289.

Anantatmula, V. S., & Kanungo, S. (2018). An interpretive structural modeling (ISM) and decision-making trail and evaluation laboratory (DEMATEL) method approach for the analysis of barriers of waste recycling in India. *Journal of the Air and Waste Management Association, 68*(2), 100–110. https://doi.org/10.1080/10962247.2016.1249441

Chen, W. K., Nalluri, V., Ma, S., Lin, M. M., & Lin, C. T. (2021). An exploration of the critical risk factors in sustainable telecom services: An analysis of indian telecom industries. *Sustainability (Switzerland), 13*(2), 1–22. https://doi.org/10.3390/su13020445

Chiaraluce, G., Bentivoglio, D., & Finco, A. (2021). Circular economy for a sustainable agri-food supply chain: A review for current trends and future pathways. *Sustainability, 13*(16), 9294. https://doi.org/10.3390/SU13169294

Cowhitt, T., Butler, T., & Wilson, E. (2019). Using social network analysis to complete literature reviews: A new systematic approach for independent researchers to detect and interpret prominent research programs within large collections of relevant literature. *International Journal of Social Research Methodology, 23*(5), 483–496.
Ghazali, N. H., Siraj, S., Ali, S. K. S., & Asra, K. (2020). Applications of Interpretive Structural Modeling for Walking Digital Gallery Physical Education and Health Model. International Journal of Academic Research in Business and Social Sciences, 10(7), 660–670.

Hsu, W.-L., Chen, Y.-S., Shiaw, Y.-C., Liu, H.-L., & Chern, T.-Y. (2019). Curriculum design in construction engineering departments for colleges in Taiwan. Education Sciences, 9(65), 2–15.

Janes, F. R. (1988). Interpretive structural modelling: A methodology for structuring complex issues. Transactions of the Institute of Measurement & Control, 10(3), 145–154. https://doi.org/10.1177/014233128801000306

Janssen, M., Rana, N. P., Slade, E. L., & Dwivedi, Y. K. (2018). Trustworthiness of digital government services: Deriving a comprehensive theory through interpretive structural modelling. Public Management Review, 20(5), 647–671. https://doi.org/10.1080/14719037.2017.1305689

Jena, J., Sidharth, S., Thakur, L. S., Kumar Pathak, D., & Pandey, V. C. (2017). Total interpretive structural modeling (TISM): Approach and application. Journal of Advances in Management Research, 14(2), 162–181. https://doi.org/10.1108/JAMR-10-2016-0087

Kaur, H., & Sharma, A. (2017). Dealing with interdependency among nfr using ism. Pertanika Journal of Science & Technology, 25(3), 871–889.

Khaba, S., & Bhar, C. (2017). Modeling the key barriers to lean construction using interpretive structural modeling. Journal of Modelling in Management, 12(4), 652–670. https://doi.org/10.1108/JM2-07-2015-0052

Lan, Q., Sughrue, M., Hopf, N. J., Mori, K., Park, J., Andrade-Barazarte, H., Balamurugan, M., Cenzato, M., Broggi, G., Kang, D., Kikuta, K., Zhao, Y., Zhang, H., Irie, S., Li, Y., Liew, B. S., & Kato, Y. (2021). International expert consensus statement about methods and indications for keyhole microneurosurgery from international society on minimally invasive neurosurgery. Neurosurgical Review, 44, 1–17.

Mannan, B., Khurana, S., & Haleem, A. (2016). Modeling of critical factors for integrating sustainability with innovation for Indian small- and medium-scale manufacturing enterprises: An ism and micmac approach. Cogent Business and Management, 3(1). https://doi.org/10.1080/23311975.2016.1140318

Mathiyazhagan, K., Govindan, K., NoorulHaq, A., & Geng, Y. (2013). An ism approach for the barrier analysis in implementing green supply chain management. Journal of Cleaner Production, 47, 283–297. https://doi.org/10.1016/j.jclepro.2012.10.042

Jamil, M. R. (2016). Pembangunan model kurikulum latihan SkiVes bagi program pengajian kejuruteraan pembelajaran berasaskan kerja. [Development of SkiVes Training Curriculum Model for Work-Based Learning Engineering Studies Program]. Doctoral Thesis, Institute of Graduate Studies, Universiti Malaya.

Nilashi, M., Dalvi, M., Ibrahim, O., Zamani, M., & Ramayah, T. (2019). An interpretive structural modelling of the features influencing researchers’ selection of reference management software. Journal of Librarianship and Information Science, 51(1), 34–46. https://doi.org/10.1177/0961000616668961

Piya, S., Shamsuzzoha, A., & Khadem, M. (2020). An approach for analysing supply chain complexity drivers through interpretive structural modelling. International Journal of Logistics Research and Applications, 23(4), 311–336. https://doi.org/10.1080/13675567.2019.1691514

Rahman, M. N. A., Saad, M. I. M., Mamat, A. B., & Raji, M. N. A. (2021). Aplikasi pendekatan...
interpretive structural modeling (ISM) dalam pembangunan model pengurusan pentaksiran kanak-kanak prasekolah. *Southeast Asia Early Childhood Journal, 10*, 1–9. https://doi.org/10.37134/SAECJ.VOL10.SP.1.2021

Rana, N. P., Barnard, D. J., Baabdullah, A. M. A., Rees, D., & Roderick, S. (2019). Exploring barriers of m-commerce adoption in SMEs in the UK: Developing a framework using ism. *International Journal of Information Management, 44*, 141–153. https://doi.org/10.1016/J.IJINFOMGT.2018.10.009

Srivastava, A. K., & Sushil. (2013). Modeling strategic performance factors for effective strategy execution. *International Journal of Productivity and Performance Management, 62*(6), 554–582. https://doi.org/10.1108/IJPPM-11-2012-0121

Sushil. (2012). Interpreting the interpretive structural model. *Global Journal of Flexible Systems Management, 13*(2), 87–106. https://doi.org/10.1007/S40171-012-0008-3

Sushil. (2018). How to check correctness of total interpretive structural models? *Annals of Operations Research, 270*(1–2), 473–487. https://doi.org/10.1007/S10479-016-2312-3

Wahid, R., Ahmi, A., & Alam, A. S. A. F. (2020). Growth and collaboration in massive open online courses: A bibliometric analysis. *International Review of Research in Open and Distance Learning, 21*(4), 292–322. https://doi.org/10.19173/IRRODL.V21i4.4693

Warfield, J. N. (1974). Developing interconnection matrices in structural modeling. *IEEE Transactions on Systems, Man and Cybernetics, SMC-4*(1), 81–87. https://doi.org/10.1109/TSMC.1974.5408524

Yahaya, N., Rasul, M. S., & Yasin, R. M. (2018). Membangunkan model kompetensi nilai sosial bagi program perantisan sistem dual: Aplikasi interpretive structural modeling (ISM). *Sains Humanika, 10*(3–3). https://doi.org/10.11113/SH.V10N3-3.1515

Zakaria, R., Ahmi, A., Ahmad, A. H., Othman, Z., Aziz, K. F., Aziz, C. B. A., Ismail, C. A. N., & Shafin, N. (2021). Visualising and mapping a decade of literature on honey research: a bibliometric analysis from 2011 to 2020. *Journal of Apicultural Research, 60*(3), 359–368. https://doi.org/10.1080/00218839.2021.1898789