Abstract. Almost hypercomplex pseudo-Hermitian manifolds are considered. Isotropic hyper-Kähler manifolds are introduced. A 4-parametric family of 4-dimensional manifolds of this type is constructed on a Lie group. This family is characterized geometrically. The condition a 4-manifold to be isotropic hyper-Kähler is given.

Mathematics Subject Classification (2000): 53C26, 53C15, 53C50, 53C55
Key words: almost hypercomplex manifold, pseudo-Hermitian metric, indefinite metric, Lie group

Contents

1 Hypercomplex pseudo-Hermitian structures on a vector space 2

2 Almost \((H,G)\)-structures on a manifold 6

3 A Lie group as a 4-dimensional \((H,G)\)-manifold 8

Introduction

The general setting of this paper is inspired by the work of D. V. Alekseevsky and S. Marchiafava [1]. Our purpose is to develop a parallel direction including indefinite metrics. More precisely we combine the ordinary Hermitian metrics with the so-called by us skew-Hermitian metrics with respect to the almost hypercomplex structure.

In the first section we consider an appropriate decomposition of the space of all bilinear forms on a vector space equipped with a hypercomplex structure.

*Corresponding author
Here we emphasize on a notion of the skew-Hermitian metric. In fact, we construct three skew-Hermitian metrics and one Hermitian, i.e. a pseudo-Hermitian structure.

In the second we develop the notion of an almost hypercomplex manifold with a pseudo-Hermitian structure and particularly the so-called pseudo-hyper-Kählerian and isotropic Kähler structures.

Finally, in the third section we equip a 4-dimensional Lie group with an almost hypercomplex pseudo-Hermitian structure and we characterize it geometrically.

1 Hypercomplex pseudo-Hermitian structures on a vector space

Let \(V \) be a real 4\(n \)-dimensional vector space. A (local) basis on \(V \) is denoted by \(\{ \partial/\partial x^i, \partial/\partial y^i, \partial/\partial u^i, \partial/\partial v^i \}, i = 1, 2, \ldots, n \). Each vector \(\mathbf{x} \) of \(V \) is represented in the mentioned basis as follows

\[
\mathbf{x} = x^i \frac{\partial}{\partial x^i} + y^i \frac{\partial}{\partial y^i} + u^i \frac{\partial}{\partial u^i} + v^i \frac{\partial}{\partial v^i},
\]

(1)

A standard hypercomplex structure on \(V \) is defined as in [8]:

\[
\begin{align*}
J_1 \frac{\partial}{\partial x^i} &= \frac{\partial}{\partial y^i}, & J_1 \frac{\partial}{\partial y^i} &= -\frac{\partial}{\partial x^i}, & J_1 \frac{\partial}{\partial u^i} &= -\frac{\partial}{\partial v^i}, & J_1 \frac{\partial}{\partial v^i} &= \frac{\partial}{\partial u^i}; \\
J_2 \frac{\partial}{\partial x^i} &= \frac{\partial}{\partial u^i}, & J_2 \frac{\partial}{\partial u^i} &= -\frac{\partial}{\partial x^i}, & J_2 \frac{\partial}{\partial v^i} &= -\frac{\partial}{\partial y^i}, & J_2 \frac{\partial}{\partial y^i} &= \frac{\partial}{\partial v^i}; \\
J_3 \frac{\partial}{\partial x^i} &= -\frac{\partial}{\partial v^i}, & J_3 \frac{\partial}{\partial v^i} &= -\frac{\partial}{\partial x^i}, & J_3 \frac{\partial}{\partial u^i} &= \frac{\partial}{\partial y^i}, & J_3 \frac{\partial}{\partial y^i} &= -\frac{\partial}{\partial u^i}.
\end{align*}
\]

(2)

The following properties about \(J_i \) are direct consequences of (2)

\[
\begin{align*}
J_1^2 &= J_2^2 = J_3^2 = -\text{Id}, & J_1 J_2 &= -J_2 J_1 = J_3, & J_2 J_3 &= -J_3 J_2 = J_1, & J_3 J_1 &= -J_1 J_3 = J_2.
\end{align*}
\]

(3)

If \(x \in V \), i.e. \(x(x^1, \ldots, x^n, y^1, \ldots, y^n; u^1, \ldots, u^n; v^1, \ldots, v^n) \) then according to (2) and (3) we have

\[
\begin{align*}
J_1 x(-y^1, \ldots, -y^n; x^1, \ldots, x^n; v^1, \ldots, v^n; -u^1, \ldots, -u^n), \\
J_2 x(-u^1, \ldots, -u^n; -v^1, \ldots, -v^n; x^1, \ldots, x^n; y^1, \ldots, y^n), \\
J_3 x(v^1, \ldots, v^n; -u^1, \ldots, -u^n; y^1, \ldots, y^n; -x^1, \ldots, -x^n).
\end{align*}
\]

Definition 1.1 ([1])

1) A triple \(H = (J_1, J_2, J_3) \) of anticommuting complex structures on \(V \) with \(J_3 = J_1 J_2 \) is called a hypercomplex structure on \(V \);

2) The 3-dimensional subspace \(Q = \langle H \rangle = \mathbb{R} J_1 + \mathbb{R} J_2 + \mathbb{R} J_3 \) of the space of endomorphisms \(\text{End} V \) is called a quaternionic structure on \(V \). It is said that \(H = (J_3) \) is an admissible basis of \(Q \).
Almost hypercomplex pseudo-Hermitian manifolds and an example

Note that two admissible bases H and H' of $Q = \langle H \rangle = \langle H' \rangle$ are related by an orthogonal matrix in $\text{SO}(3)$.

The matrices of J_1 and J_2 are given in [8] by $(n \times n)$-sets of (4×4)-matrices $J_\alpha = \text{diag}(I_\alpha, I_\alpha, \ldots, I_\alpha)$, where I_α ($\alpha = 1, 2, 3$) are respectively

\[
I_1 = \begin{pmatrix}
0 & 1 & 0 & 0 \\
-1 & 0 & 0 & 0 \\
0 & 0 & 0 & -1 \\
0 & 0 & 1 & 0
\end{pmatrix},
I_2 = \begin{pmatrix}
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
-1 & 0 & 0 & 0 \\
0 & -1 & 0 & 0
\end{pmatrix},
\]

and consequently

\[
I_3 = \begin{pmatrix}
0 & 0 & 0 & 1 \\
0 & 0 & -1 & 0 \\
0 & 1 & 0 & 0 \\
-1 & 0 & 0 & 0
\end{pmatrix}.
\]

The matrices J_α of the complex structures J_α ($\alpha = 1, 2, 3$) with respect to an admissible frame for $H = (J_\alpha)$ are called standard matrices.

A bilinear form f on V is defined as ordinary, $f : V \times V \to \mathbb{R}$. We denote by $\mathcal{B}(V)$ the set of all bilinear forms on V. Each f is a tensor of type $(0, 2)$, and $\mathcal{B}(V)$ is a vector space of dimension $16n^2$.

Let J be a given complex structure on V. A bilinear form f on V is called Hermitian (respectively, skew-Hermitian) with respect to J if the identity $f(Jx, Jy) = f(x, y)$ (respectively, $f(Jx, Jy) = -f(x, y)$) holds true.

Definition 1.2 ([1]) A bilinear form f on V is called an Hermitian bilinear form with respect to $H = (J_\alpha)$ if it is Hermitian with respect to any complex structure J_α, $\alpha = 1, 2, 3$, i.e.

\[
f(J_\alpha x, J_\alpha y) = f(x, y), \quad \forall x, y \in V.
\]

We will denote by $\mathcal{B}_H(V)$ the set of all Hermitian bilinear forms on V.

In [6] is introduced the notion of pseudo-Hermitian bilinear forms, namely:

Definition 1.3 ([6]) A bilinear form f on V is called a pseudo-Hermitian bilinear form with respect to $H = (J_1, J_2, J_3)$, if it is Hermitian with respect to J_α and skew-Hermitian with respect to J_β and J_γ, i.e.

\[
f(J_\alpha x, J_\alpha y) = -f(J_\beta x, J_\beta y) = -f(J_\gamma x, J_\gamma y) = f(x, y), \quad \forall x, y \in V,
\]

where (α, β, γ) is a circular permutation of $(1, 2, 3)$.
Now, let us show the existence of the introduced bilinear forms on V.

We denote $f \in B_\alpha \subset B(V)$ ($\alpha = 1, 2, 3$) when f satisfies the conditions (4). Let us remark that $B_H(V)$ is a subspace of the vector space $B(V)$. The projector $\Pi_H : B(V) \rightarrow B_H(V)$ is defined in [1] as follows

$$f \rightarrow (\Pi_H f)(x, y) := \frac{1}{4} \{ f(x, y) + f(J_1 x, J_1 y) + f(J_2 x, J_2 y) + f(J_3 x, J_3 y) \}. \quad (5)$$

For convenience we set $\Pi_0 := \Pi_H$ and $B_0 := B_H(V)$. Clearly, Π_0 is a projector, i.e. $\Pi_0^2 = \Pi_0$.

Analogously we define the operators: $\Pi_\alpha : B(V) \rightarrow B_\alpha$, $\alpha = 1, 2, 3$ as follows

$$f \rightarrow (\Pi_\alpha f)(x, y) := \frac{1}{4} \{ f(x, y) + f(J_\alpha x, J_\alpha y) - f(J_\beta x, J_\beta y) - f(J_\gamma x, J_\gamma y) \}, \quad (6)$$

where (α, β, γ) is a circular permutation of $(1, 2, 3)$. It is not difficult to see that $\Pi_\alpha f \in B_\alpha$, $\alpha = 1, 2, 3$.

In view of (5)–(6) the following proposition holds:

Proposition 1.1 The vector space $B(V)$ admits the following decomposition

$$B(V) = B_0 \oplus B_1 \oplus B_2 \oplus B_3, \quad B_\alpha = \text{Im} \Pi_\alpha, \quad \alpha = 0, 1, 2, 3,$$

where the operators Π_0, Π_1, Π_2 and Π_3 are projectors with values in $B(V)$ such that

$$\Pi_2^2 = \Pi_0, \quad \Pi_0 + \Pi_1 + \Pi_2 + \Pi_3 = \text{Id},$$

$$\Pi_\alpha \circ \Pi_\beta = \Pi_\beta \circ \Pi_\alpha = 0, \quad \alpha \neq \beta; \quad \alpha, \beta \in \{0, 1, 2, 3\}.$$

So, pseudo-Hermitian bilinear forms exist and moreover they are three types in any vector space V equipped with a hypercomplex structure H, denoted by (V, H).

Let x determined by (1) and

$$y = a^i \frac{\partial}{\partial x^i} + b^i \frac{\partial}{\partial y^i} + c^i \frac{\partial}{\partial u^i} + d^i \frac{\partial}{\partial v^i}, \quad i = 1, 2, \ldots, n$$

be arbitrary vectors on V. Following [9], we define as in [6] a pseudo-Euclidean metric of signature $(2n, 2n)$ on V by a symmetric bilinear form g as follows

$$g(x, y) := \sum_{i=1}^{n} (-x^i a^i - y^i b^i + u^i c^i + v^i d^i).$$
Almost hypercomplex pseudo-Hermitian manifolds and an example

Hence for the local basis \(\{ \partial/\partial x^i, \partial/\partial y^i, \partial/\partial u^i, \partial/\partial v^i \} \), \(i = 1, 2, \ldots, n \) on \(V \) we have for \(i, j \in \{ 1, 2, \ldots, n \} \)

\[
-g \left(\frac{\partial}{\partial x^i}, \frac{\partial}{\partial x^j} \right) = -g \left(\frac{\partial}{\partial y^i}, \frac{\partial}{\partial y^j} \right) = g \left(\frac{\partial}{\partial u^i}, \frac{\partial}{\partial u^j} \right) = g \left(\frac{\partial}{\partial v^i}, \frac{\partial}{\partial v^j} \right) = \delta_{ij},
\]

\[
g \left(\frac{\partial}{\partial x^i}, \frac{\partial}{\partial y^j} \right) = g \left(\frac{\partial}{\partial x^j}, \frac{\partial}{\partial y^i} \right) = g \left(\frac{\partial}{\partial u^i}, \frac{\partial}{\partial v^j} \right) = g \left(\frac{\partial}{\partial v^i}, \frac{\partial}{\partial u^j} \right) = 0.
\]

Let us remark that if we denote \(e_i = \partial/\partial x^i \) \((i = 1, 2, \ldots, n) \) then according to (2) the basis

\[
(e_1, e_2, \ldots, e_n; J_1 e_1, J_1 e_2, \ldots, J_1 e_n; \ldots; J_3 e_1, J_3 e_2, \ldots, J_3 e_n)
\]

is an an admissible basis of \(H \) and it is orthonormal with respect to \(g \).

Because of the properties

\[
g(J_1 x, J_1 y) = -g(J_2 x, J_2 y) = -g(J_3 x, J_3 y) = g(x, y), \tag{8}
\]

the pseudo-Euclidean metric \(g \) is a symmetric pseudo-Hermitian bilinear form and \(g \in \mathcal{B}_1 \). Moreover, \(g_1(x, y) := g(J_1 x, y) = -g(J_1 y, x) \) coincides with the known Kähler form with respect to \(J_1 \), i.e. \(\Phi(x, y) := g_1(x, y) \) [6].

The associated bilinear forms \(g_2(x, y) := g(J_2 x, y) \) and \(g_3(x, y) := g(J_3 x, y) \) of \(g \) are symmetric and \(\Phi \in \mathcal{B}_0, g \in \mathcal{B}_1, g_2 \in \mathcal{B}_3, g_3 \in \mathcal{B}_2 \), i.e. the Kähler form \(\Phi \) is Hermitian and \(g, g_2, g_3 \) are pseudo-Hermitian of different types, but they have the same signature \((2n, 2n)\). Then the structure \((H, G) := (H, g, \Phi, g_2, g_3)\) is called a hypercomplex pseudo-Hermitian structure on \(V \) [6].

According to [8], the matrices that commute with \(J_\alpha \) \((\alpha = 1, 2, 3) \) are \(A = (A_{ij}) \), \(i, j \in \{ 1, 2, \ldots, n \} \), where every \((A_{ij}) \) is a \((4 \times 4)\)-matrix of the form

\[
A_{ij} = \begin{pmatrix} P & Q \\ -Q & P \end{pmatrix}, \quad P = \begin{pmatrix} a & b \\ -b & a \end{pmatrix}, \quad Q = \begin{pmatrix} c & d \\ d & -c \end{pmatrix}, \quad a, b, c, d \in \mathbb{R}.
\]

The set of the \(J_\alpha \)-commuting matrices, that are invertible, is a group which is isomorphic to \(\text{GL}(n, \mathbb{H}) \).

The pseudo-Euclidean metric \(g \) has a matrix with respect to the basis (7) of the form \(\mathbf{g} = \text{diag}(g, g, \ldots, g) \), where

\[
g = \begin{pmatrix} -I_2 & O_2 \\ O_2 & I_2 \end{pmatrix}.
\]

The group preserving \(\mathbf{g} \) is defined by the condition \(A^T \mathbf{g} A = \mathbf{g} \) for arbitrary \(A \in \text{GL}(4n, \mathbb{R}) \). It is clear that the group which preserves \(\mathbf{g} \) is \(\text{O}(2n, 2n) \).
The structural group of \((V, H, G)\) has the property to preserve the structures \(J_\alpha\) and the metric \(g\) (consequently \(\Phi, g_2, g_3\), too). Then this structural group is the intersection of \(\text{GL}(n, \mathbb{H})\) and \(\text{O}(2n, 2n)\). We get immediately that

\[
A \in \text{GL}(n, \mathbb{H}) \cap \text{O}(2n, 2n) \iff a^2 + b^2 = 1, \ c = d = 0.
\]

Therefore \(\text{GL}(n, \mathbb{H}) \cap \text{O}(2n, 2n)\) is an 1-parametrical group, i.e. the elements \(A_{ij}\) of \(A\) depend on 1 real parameter.

2 Almost \((H, G)\)-structures on a manifold

Let \((M, H)\) be an almost hypercomplex manifold \([1]\). We suppose that \(g\) is a symmetric tensor field of type \((0, 2)\). If it induces a pseudo-Hermitian inner product in \(T_p M, p \in M\), then \(g\) is called a pseudo-Hermitian metric on \(M\). The structure \((H, G) := (J_1, J_2, J_3, g, \Phi, g_2, g_3)\) is called an almost hypercomplex pseudo-Hermitian structure on \(M\) or in short an almost \((H, G)\)-structure on \(M\). The manifold \(M\) equipped with \(H\) and \(G\), i.e. \((M, H, G)\), is called an almost hypercomplex pseudo-Hermitian manifold, or in short an almost \((H, G)\)-manifold.

The structural tensors of the almost \((H, G)\)-manifold are the three tensors of type \((0, 3)\) determined by

\[
F_\alpha(x, y, z) = g((\nabla_x J_\alpha) y, z) = (\nabla_x g_\alpha)(y, z), \quad \alpha = 1, 2, 3, \tag{9}
\]

where \(\nabla\) is the Levi-Civita connection generated by \(g\) \([6]\).

The properties of \(H\) and \(g\) imply the following properties of \(F_\alpha\):

\[
\begin{align*}
F_1(x, y, z) &= F_2(x, J_3 y, z) + F_3(x, y, J_2 z), \\
F_2(x, y, z) &= F_3(x, J_1 y, z) + F_1(x, y, J_3 z), \\
F_3(x, y, z) &= F_1(x, J_2 y, z) - F_2(x, y, J_1 z);
\end{align*} \tag{10}
\]

\[
\begin{align*}
F_1(x, y, z) &= -F_1(x, z, y) = -F_1(x, J_1 y, J_2 z), \\
F_2(x, y, z) &= F_2(x, z, y) = F_2(x, J_2 y, J_3 z), \\
F_3(x, y, z) &= F_3(x, z, y) = F_3(x, J_3 y, J_1 z).
\end{align*} \tag{11}
\]

Let us consider the Nijenhuis tensors \(N_\alpha\) for \(J_\alpha\) and \(X, Y \in \mathfrak{X}(M)\) given by

\[
N_\alpha(X, Y) = [J_\alpha X, J_\alpha Y] - J_\alpha [J_\alpha X, Y] - J_\alpha [X, J_\alpha Y] - [X, Y].
\]

It is well known that the almost hypercomplex structure \(H = (J_\alpha)\) is a hypercomplex structure if \(N_\alpha\) vanishes for each \(\alpha = 1, 2, 3\). Moreover, it is known that one almost hypercomplex structure \(H\) is hypercomplex if and only if two of the structures \(J_\alpha\) \((\alpha = 1, 2, 3)\) are integrable. This means that two of the tensors \(N_\alpha\) vanish \([1]\).

Let us note that according to \((8)\) the manifold \((M, J_1, g)\) is almost Hermitian and the manifolds \((M, J_\alpha, g), \alpha = 2, 3\), are almost complex manifolds with Norden
Almost hypercomplex pseudo-Hermitian manifolds and an example

metric (or B-metric) [2, 3]. The basic classes of the mentioned two types of manifolds for dimension $4n$ are:

1. $W_1(J_1) : F_1(x, y, z) = -F_1(y, x, z)$,
2. $W_2(J_1) : \mathcal{S}_{x,y,z}\{F_1(x,y,z)\} = 0$,
3. $W_3(J_1) : F_1(x, y, z) = F_1(J_1 x, J_1 y, z), \quad \theta_1 = 0$,
4. $W_4(J_1) : F_1(x, y, z) = \frac{1}{2^{n-1}} \left\{ g(x, y) \theta_1(z) - g(x, z) \theta_1(y) - g(x, J_1 y) \theta_1(J_1 z) + g(x, J_1 z) \theta_1(J_1 y) \right\}$,

where $\theta_1(\cdot) = g^{ij} F_1(e_i, e_j, \cdot)$ for an arbitrary basis $\{e_i\}_{i=1}^{4n}$ [5].

1. $W_1(J_\alpha) : F_\alpha(x, y, z) = \frac{1}{4n} \left\{ g(x, y) \theta_\alpha(z) + g(x, z) \theta_\alpha(y) + g(x, J_\alpha y) \theta_\alpha(J_\alpha z) + g(x, J_\alpha z) \theta_\alpha(J_\alpha y) \right\}$,
2. $W_2(J_\alpha) : \mathcal{S}_{x,y,z}\{F_\alpha(x,y,z)\} = 0, \quad \theta_\alpha = 0$,
3. $W_3(J_\alpha) : \mathcal{S}_{x,y,z}\{F_\alpha(x,y,z)\} = 0$,

where $\theta_\alpha(z) = g^{ij} F_\alpha(e_i, e_j, z)$, $\alpha = 2, 3$, for an arbitrary basis $\{e_i\}_{i=1}^{4n}$ and \mathcal{S} is the cyclic sum by three arguments [2].

The special class $W_0(J_\alpha) : F_\alpha = 0 \ (\alpha = 1, 2, 3)$ of the Kähler-type manifolds belongs to any other class within the corresponding classification.

We say that an almost hypercomplex pseudo-Hermitian manifold is a pseudo-hyper-Kähler manifold if $\nabla J_\alpha = 0 \ (\alpha = 1, 2, 3)$ with respect to the Levi-Civita connection generated by g [6].

Clearly, in this case we have $F_\alpha = 0 \ (\alpha = 1, 2, 3)$ or the manifold is Kählerian with respect to J_α, i.e. $(M, H, G) \in W_0(J_\alpha)$.

Immediately we obtain

Proposition 2.1 If $(M, H, G) \in W_0(J_\alpha) \cap W_0(J_\beta)$ then $(M, H, G) \in W_0(J_\gamma)$ for all cyclic permutations (α, β, γ) of $(1, 2, 3)$ and (M, H, G) is pseudo-hyper-Kählerian.

A basic property of the pseudo-hyper-Kähler manifolds is given in [6] by the following

Theorem 2.2 ([6]) Each pseudo-hyper-Kähler manifold is a flat pseudo-Riemannian manifold of signature $(2n, 2n)$.

As g is an indefinite metric, there exist isotropic vector fields X on M, i.e. $g(X, X) = 0$, $X \neq 0$, $X \in \mathfrak{X}(M)$. Following [4] we define the invariants

$$\|\nabla J_\alpha\|^2 = g^{ij} \ g^{kl} g((\nabla_i J_\alpha) e_k, (\nabla_j J_\alpha) e_l), \quad \alpha = 1, 2, 3, \quad (14)$$

where $\{e_i\}_{i=1}^{4n}$ is an arbitrary basis of $T_p M$, $p \in M$. Let us remark that the invariant $\|\nabla J_\alpha\|^2$ is the scalar square of the $(1, 2)$-tensor ∇J_α.

Definition 2.1 We say that an \((H, G)\)-manifold is:

(i) isotropic Kählerian with respect to \(J_\alpha\) if \(\|\nabla J_\alpha\|^2 = 0\) for some \(\alpha \in \{1, 2, 3\}\);

(ii) isotropic hyper-Kählerian if it is isotropic Kählerian with respect to every \(J_\alpha\) of \(H\).

Clearly, if \((M, H, G)\) is pseudo-hyper-Kählerian, then it is an isotropic hyper-Kähler manifold. The inverse statement does not hold.

3 A Lie group as a 4-dimensional \((H, G)\)-manifold

In [7] is constructed an example of a 4-dimensional Lie group equipped with a quasi-Kähler structure and Norden metric \(g\), i.e. it is a \(\mathcal{W}_3\)-manifold according to (13). There it is characterized with respect to \(\nabla\) of \(g\).

Theorem 3.1 ([7]) Let \((L, J, g)\) be a 4-dimensional almost complex manifold with Norden metric, where \(L\) is a connected Lie group with a corresponding Lie algebra determined by the global basis of left invariant vector fields \(\{X_1, X_2, X_3, X_4\}\); \(J\) is an almost complex structure defined by

\[
JX_1 = X_3, \quad JX_2 = X_4, \quad JX_3 = -X_1, \quad JX_4 = -X_2; \quad (15)
\]

\(g\) is an invariant Norden metric determined by

\[
g(X_1, X_1) = g(X_2, X_2) = -g(X_3, X_3) = -g(X_4, X_4) = 1, \quad g(X_i, X_j) = 0, \quad i \neq j; \quad g([X_i, X_j], X_k) + g([X_i, X_k], X_j) = 0. \quad (16)
\]

Then \((L, J, g)\) is a quasi-Kähler manifold with Norden metric if and only if \(L\) belongs to the 4-parametric family of Lie groups determined by the conditions

\[
[X_1, X_3] = \lambda_2 X_2 + \lambda_4 X_4, \quad [X_2, X_4] = \lambda_1 X_1 + \lambda_3 X_3, \\
[X_2, X_3] = -\lambda_2 X_1 - \lambda_3 X_4, \quad [X_3, X_4] = -\lambda_4 X_1 + \lambda_3 X_2, \\
[X_4, X_1] = \lambda_1 X_2 + \lambda_4 X_3, \quad [X_2, X_1] = -\lambda_2 X_3 + \lambda_1 X_4, \quad (17)
\]

where \(\lambda_i \in \mathbb{R}\) \((i = 1, 2, 3, 4)\) and \((\lambda_1, \lambda_2, \lambda_3, \lambda_4) \neq (0, 0, 0, 0)\). □

The components of \(\nabla\) are determined ([7]) by (17) and

\[
\nabla_{X_i} X_j = \frac{1}{2}[X_i, X_j] \quad (i, j = 1, 2, 3, 4). \quad (18)
\]
Almost hypercomplex pseudo-Hermitian manifolds and an example

Hence the components $R_{i,j,k,s} = R(X_i, X_j, X_k, X_s)$ $(i,j,k,s = 1,2,3,4)$ of the curvature tensor R on (L,g) are: [7]

$$
\begin{align*}
R_{1221} &= -\frac{3}{4} (\lambda_1^2 + \lambda_2^2), \\
R_{1441} &= -\frac{3}{4} (\lambda_1^2 - \lambda_2^2), \\
R_{2442} &= \frac{1}{4} (\lambda_1^2 - \lambda_2^2), \\
R_{1341} &= R_{2342} = -\frac{3}{4} \lambda_1 \lambda_2, \\
R_{1231} &= -R_{1234} = \frac{3}{4} \lambda_1 \lambda_4, \\
R_{1241} &= -R_{3243} = \frac{3}{4} \lambda_2 \lambda_4, \\
R_{1331} &= \frac{1}{4} (\lambda_1^2 - \lambda_2^2), \\
R_{2332} &= \frac{1}{4} (\lambda_1^2 - \lambda_2^2), \\
R_{3443} &= \frac{1}{4} (\lambda_1^2 + \lambda_2^2), \\
R_{2132} &= -R_{4134} = \frac{3}{4} \lambda_1 \lambda_3, \\
R_{2142} &= -R_{3143} = \frac{3}{4} \lambda_2 \lambda_3, \\
R_{3123} &= R_{4124} = \frac{1}{4} \lambda_3 \lambda_4,
\end{align*}
$$

(19)

and the scalar curvature τ on (L,g) is [7]

$$
\tau = -\frac{3}{2} (\lambda_1^2 + \lambda_2^2 - \lambda_3^2 - \lambda_4^2).
$$

(20)

Now we introduce a hypercomplex structure $H = (J_1, J_2, J_3)$ by the following way. At first, let J_2 be the given almost complex structure J by (15). Secondly, we define an almost complex structure J_1 as follows

$$
J_1 : \quad J_1 X_1 = X_2, \quad J_1 X_2 = -X_1, \quad J_1 X_3 = -X_4, \quad J_1 X_4 = X_3.
$$

(21)

Finally, let the almost complex structure J_3 be the composition of J_1 after J_2, i.e. $J_3 = J_1 J_2$.

Then the introduced structure (H,G) on L has the properties (3) and (8). Hence we have the following

Theorem 3.2 The manifold (L,H,G) is an almost hypercomplex pseudo-Hermitian manifold of dimension 4. \[\square\]

We continue by a characterization of the constructed manifold (L,H,G).

Let $(F_\alpha)_{i,j,k} = F_\alpha(X_i, X_j, X_k)$ and $(\theta_\alpha)_i = \theta_\alpha(X_i)$ be the components of the structural tensor F_α and its Lee form $\theta_\alpha (\alpha = 1,2,3)$, respectively. The nonzero components of F_2 are: [7]

$$
\begin{align*}
-(F_2)_{122} &= -(F_2)_{144} = 2(F_2)_{212} = 2(F_2)_{221} = 2(F_2)_{234} \\
2(F_2)_{112} &= 2(F_2)_{121} = 2(F_2)_{134} = 2(F_2)_{143} = -(F_2)_{211} \\
-(F_2)_{233} &= -2(F_2)_{311} = 2(F_2)_{323} = 2(F_2)_{332} = -2(F_2)_{341} = \lambda_2, \\
2(F_2)_{214} &= -2(F_2)_{223} = -2(F_2)_{232} = 2(F_2)_{241} = (F_2)_{322} \\
(F_2)_{444} &= -2(F_2)_{412} = -2(F_2)_{421} = -2(F_2)_{434} = -2(F_2)_{443} = \lambda_3, \\
-2(F_2)_{114} &= 2(F_2)_{123} = 2(F_2)_{132} = -2(F_2)_{141} = -2(F_2)_{312} \\
-2(F_2)_{321} &= -2(F_2)_{334} = -2(F_2)_{343} = (F_2)_{411} = (F_2)_{433} = \lambda_4.
\end{align*}
$$

(22)
Then we have $\theta_2 = 0$. By this way we confirm the statement in Theorem (3.1) that the introduced manifold in [7] is of the basic class \mathcal{W}_3 with respect to J_2 within the classification (13), i.e.

$$(L, J_2, g) \in \mathcal{W}_3(J_2).$$

(23)

Having in mind (16)–(18), (21) and (9), we obtain the nonzero components of F_1 as follows

$$(F_1)_{114} = -(F_1)_{123} = (F_1)_{132} = -(F_1)_{141} = (F_1)_{213} = (F_1)_{224} = -(F_1)_{231} = -(F_1)_{242} = \frac{1}{2}\lambda_1;$$

$$-(F_1)_{113} = -(F_1)_{124} = (F_1)_{131} = (F_1)_{142} = (F_1)_{214} = -(F_1)_{223} = (F_1)_{232} = -(F_1)_{241} = \frac{1}{2}\lambda_2;$$

$$-(F_1)_{314} = (F_1)_{323} = -(F_1)_{332} = (F_1)_{341} = (F_1)_{413} = (F_1)_{424} = -(F_1)_{431} = -(F_1)_{442} = \frac{1}{2}\lambda_3;$$

$$-(F_1)_{313} = -(F_1)_{324} = (F_1)_{331} = (F_1)_{342} = -(F_1)_{414} = (F_1)_{423} = -(F_1)_{432} = (F_1)_{441} = \frac{1}{2}\lambda_4.$$

(24)

Then we have

$$(\theta_1)_1 = -\lambda_4, \quad (\theta_1)_2 = \lambda_3, \quad (\theta_1)_3 = -\lambda_2, \quad (\theta_1)_4 = \lambda_1.$$

Since $(\lambda_1, \lambda_2, \lambda_3, \lambda_4) \neq (0, 0, 0, 0)$ then the 4-dimensional almost Hermitian manifold (L, J_1, g) is not Kählerian and $\theta_1 \neq 0$.

The validity of the property $F_1(X, Y, Z) = F_1(J_1X, J_1Y, Z)$ is verified by us in virtue of (21) and (24). It is equivalent to the vanishing of the Nijenhuis tensor of J_1, i.e. $N_1 = 0$. According to [5] for dimension 4 we get that the considered manifold belongs to the basic class $\mathcal{W}_4(J_1)$ within (12), i.e.

$$(L, J_1, g) \in \mathcal{W}_4(J_1).$$

(25)

As it is known [5], this class contains the conformally Kähler manifolds of Hermitian type. The necessary and sufficient condition a $\mathcal{W}_4(J_1)$-manifold to be locally or globally conformally Kählerian one is the Lee form θ_1 to be closed or exact. The basic components of $d\theta_1$ are:

$$d\theta_1(X_1, X_2) = \lambda_1^2 + \lambda_2^2, \quad d\theta_1(X_2, X_4) = d\theta_1(X_3, X_1) = \lambda_1\lambda_4 + \lambda_2\lambda_3,$$

$$d\theta_1(X_3, X_4) = -\lambda_3^2 - \lambda_4^2, \quad d\theta_1(X_1, X_4) = d\theta_1(X_2, X_3) = \lambda_3\lambda_4 - \lambda_2\lambda_3.$$

Hence, θ_1 is not closed and therefore the constructed $\mathcal{W}_4(J_1)$-manifold is not conformally Kählerian.
Having in mind (10), (22), (24), we compute the following nonzero components of F_3:

$$(F_3)_{121} = (F_3)_{121} = -(F_3)_{134} = -(F_3)_{143} = -2(F_3)_{211} = -2(F_3)_{244}$$
$$= (F_3)_{413} = (F_3)_{431} = (F_3)_{424} = (F_3)_{442} = \frac{1}{2} \lambda_1,$$
$$2(F_3)_{122} = 2(F_3)_{313} = -(F_3)_{212} = -(F_3)_{221} = (F_3)_{234} = (F_3)_{243}$$
$$= -(F_3)_{313} = -(F_3)_{331} = -(F_3)_{324} = -(F_3)_{342} = \frac{1}{2} \lambda_2,$$
$$2(F_3)_{213} = (F_3)_{231} = (F_3)_{224} = (F_3)_{242} = -(F_3)_{312} = -(F_3)_{321}$$
$$= (F_3)_{343} = (F_3)_{334} = -2(F_3)_{222} = -2(F_3)_{343} = \frac{1}{2} \lambda_3,$$
$$-(F_3)_{113} = -(F_3)_{124} = -(F_3)_{131} = -(F_3)_{142} = 2(F_3)_{311} = 2(F_3)_{344}$$
$$= (F_3)_{412} = (F_3)_{421} = -(F_3)_{434} = -(F_3)_{443} = \frac{1}{2} \lambda_4.$$

Hence, we establish directly that $\theta_3 = 0$ and $\mathcal{S}_{i,j,k}(F_3)_{ijk} = 0$. Therefore we obtain that the considered manifold belongs to the basic class $\mathcal{W}_3(J_3)$, i.e.

$$(L, J_3, g) \in \mathcal{W}_3(J_3).$$

Let us summarize the conclusions (23), (25) and (27) in the following statement.

Theorem 3.3 The constructed 4-dimensional almost hypercomplex pseudo-Hermitian manifold (L, H, G) on the Lie group L belongs to basic classes with respect to the three almost complex structures of different types as follows

$$(L, H, G) \in \mathcal{W}_4(J_1) \cap \mathcal{W}_3(J_2) \cap \mathcal{W}_3(J_3).$$

The square norm $||\nabla J_\alpha||^2$ of ∇J_α for an almost complex structure J_α is defined in [4] by (14). Having in mind the definition $F_\alpha(X, Y, Z) = g((\nabla X) J_\alpha, Y, Z)$ of the tensor F_α, we obtain the following equation for the square norm of ∇J_α

$$||\nabla J_\alpha||^2 = g^{ij} g^{kl} g^{pq} (F_\alpha)_{ikp} (F_\alpha)_{jlp},$$

therefore

$$||\nabla J_\alpha||^2 = ||F_\alpha||^2, \quad \alpha = 1, 2, 3.$$

By virtue of (24), (22), (26) we receive immediately that

$$-2 ||\nabla J_1||^2 = ||\nabla J_2||^2 = ||\nabla J_3||^2 = 4 \left(\lambda_1^2 + \lambda_2^2 - \lambda_3^2 - \lambda_4^2\right).$$

The last equations and Equation (20) imply

Proposition 3.4 (i) If the manifold (L, H, G) is isotropic Kählerian with respect to some J_α ($\alpha = 1, 2, 3$) then it is isotropic hyper-Kählerian;

(ii) The manifold (L, H, G) is isotropic hyper-Kählerian if and only if the condition $\lambda_1^2 + \lambda_2^2 - \lambda_3^2 - \lambda_4^2 = 0$ holds;
The manifold \((L, H, G)\) is isotropic hyper-Kählerian if and only if it has zero scalar curvature \(\tau\).

The space of unitary invariants of order 2 for a 4-dimensional Hermitian manifold is determined by the three quantities:

\[
\tau, \tau^*_1, \|\nabla \Phi\|_2 = 2 \|\delta \Phi\|_2,
\]

where \(\tau^*_1 = \frac{1}{2} g^{ij} g^{kl} R(X_i, J_1 X_j, X_k, J_1 X_l)\) [5].

In other words, as \(\|F_1\|^2 = \|\nabla \Phi\|^2\) and \(\|\theta_1\|^2 = \|\delta \Phi\|^2\) we get

\[
2\tau^*_1 = -\|\theta_1\|^2 = \lambda_1^2 + \lambda_2^2 - \lambda_3^2 - \lambda_4^2.
\]

Let us compute the associated scalar curvatures \(\tau^*_\alpha\) on \((L, J_\alpha, g)\) for \(\alpha = 2, 3\) by \(\tau^*_\alpha := g^{ij} g^{kl} R(X_i, X_k, J_\alpha X_l, X_j)\) [3]. Then, using (19), we obtain

\[
\tau^*_2 = \lambda_1 \lambda_3 + \lambda_2 \lambda_4, \quad \tau^*_3 = \lambda_1 \lambda_4 - \lambda_2 \lambda_3.
\]

Having in mind the definitions of the Nijenhuis tensors \(N_\alpha\) of \(J_\alpha\) \((\alpha = 2, 3)\) and the commutators (17), we get the components \(N_\alpha(X_i, X_j)\) and after that the square norm of \(N_\alpha\) as follows

\[
\|N_\alpha\|^2 = 32 \left(\lambda_1^2 + \lambda_2^2 - \lambda_3^2 - \lambda_4^2\right), \quad \alpha = 2, 3.
\]

It is clear, according to Proposition (3.4) that the manifold \((L, H, G)\) is isotropic hyper-Kählerian and scalar flat if and only if it has isotropic Nijenhuis tensors of \(J_2\) and \(J_3\).

References

[1] D.V. Alekseevsky and S. Marchiafava, Quaternionic structures on a manifold and subordinated structures, Ann. Mat. Pura Appl. (IV) CLXXI (1996) 205-273. 1, 2, 3, 4, 6

[2] G. Ganchev and A. Borisov, Note on the almost complex manifolds with a Norden metric, Compt. rend. Acad. bulg. Sci. 39 (1986) 31-34. 7

[3] G. Ganchev, K. Gribachev and V. Mihova, B-Connections and their Conformal Invariants on Conformally Kahler Manifolds with B-Metric, Publ. Inst. Math. (Beograd) (N.S.) 42(56) (1987) 107-121. 7, 12

[4] E. García-Río and Y. Matsushita, Isotropic Kähler structures on Engel 4-manifolds, J. Geom. Phys. 33 (2000) 288-294. 7, 11

[5] A. Gray and L.M. Hervella, The sixteen classes of almost Hermitian manifolds and their linear invariants, Ann. Mat. Pura Appl. (IV) CXXIII (1980) 35-58. 7, 10, 12
Almost hypercomplex pseudo-Hermitian manifolds and an example

[6] K. Gribachev, M. Manev and S. Dimiev, On the almost hypercomplex pseudo-Hermitian manifolds, in: S. Dimiev and K. Sekigawa, Eds., Trends of Complex Analysis, Differential Geometry and Mathematical Physics, World Sci. Publ., Singapore, 2003, pp. 51-62.

[7] K. Gribachev, M. Manev and D. Mekerov. A Lie group as a 4-dimensional quasi-Kähler manifold with Norden metric, JP Jour. Geometry & Topology 6 (2006), no.1, 55-68.

[8] A. Sommese, Quaternionic manifolds, Math. Ann. 212 (1975) 191-214.

[9] J. Wolf, Spaces of constant curvature, University of California, Berkley, CA, 1972.

Kostadin Gribachev, Mancho Manev
University of Plovdiv
Faculty of Mathematics and Informatics
Department of Geometry
236 Bulgaria blvd.
Plovdiv 4003
Bulgaria

e-mail: costas@uni-plovdiv.bg, mmanev@yahoo.com
http://www.fmi-plovdiv.org/manev