ABSTRACT

The Japan Collaborative Cohort Study for Evaluation of Cancer Risk (JACC Study) was established in the late 1980s to evaluate the risk impact of lifestyle factors and levels of serum components on human health. During the 20-year follow-up period, the results of the study have been published in almost 200 original articles in peer-reviewed English-language journals. However, continued follow-up of the study subjects became difficult because of the retirements of principal researchers, city mergers throughout Japan in the year 2000, and reduced funding. Thus, we decided to terminate the JACC Study follow-up at the end of 2009. As a final point of interest, we reviewed the population registry information of survivors. A total of 207 (0.19%) subjects were ineligible, leaving 110,585 eligible participants (46,395 men and 64,190 women). Moreover, errors in coding date of birth and sex were found in 356 (0.32%) and 59 (0.05%) cases, respectively, during routine follow-up and final review. Although such errors were unexpected, their impact is believed to be negligible because of the small numbers relative to the large total study population. Here, we describe the final cohort profile at the end of the JACC Study along with selected characteristics of the participants and their status at the final follow-up. Although follow-up of the JACC Study participants is finished, we will continue to analyze and publish study results.

Key words: JACC Study; cohort study; Japan; follow-up

INTRODUCTION

To evaluate the risk impact of lifestyle factors and levels of serum components on human health, in the late 1980s we established a large-scale cohort study, the Japan Collaborative Cohort Study for Evaluation of Cancer Risk (JACC Study). During a follow-up period of approximately 20 years, data on deaths from major causes such as stomach cancer, lung cancer, and cardiovascular diseases enabled examination of risk factors. We subsequently published results regarding associations between lifestyle factors and health status in almost 200 original research articles in peer-reviewed English-language journals. Additionally, we are currently developing a website to increase public awareness.1

The enthusiasm of researchers is always important in promoting a cohort study, but enthusiasm is not enough since such work takes many years to bear fruit. A substantial budget is also required. The JACC Study was started after receiving a promise of funds for 10 years; however, after the initial 10 years had passed, it became necessary to apply for small public grants to maintain and follow cohort participants. In addition, administrative mergers of cities, towns, and villages throughout Japan in the year 2000 sometimes caused further difficulties in following subjects in the study area, due to changes in partnerships between local governmental offices and researchers. Moreover, with the retirement of key researchers, it was not always easy to transfer their work to their successors. As a result of these challenges, we decided to...
terminate follow-up of participants in the JACC Study at the end of 2009.

As a final point of interest, we used population registers in the study area to review the list of survivors. Some subjects were found to be no longer living in the study area, although the overall number of such participants was small. Moreover, a small number of errors in the coding of date of birth and sex were identified during follow-up data collection. Here we describe the final cohort profile obtained upon completion of the JACC Study. Data on cancer incidence have not yet been compiled because of the time lag of the cancer registry system. This process is expected to continue until 2013, at which point incidence information until 2009 will be made available.

METHODS

Study subjects
Details of the study design and concept have been described elsewhere.2–4 Briefly, the JACC Study was a multicenter collaborative study in which 24 institutions voluntarily participated. Recruitment of study subjects living in 45 areas was managed by individual investigators whose responsibility was to construct the cohort in that area. Data were collected from 1988 through 1990. However, although most baseline surveys were performed during this 3-year period, some subjects were recruited before and after this period because of the need for a preliminary study in 3 areas and later collaboration in 1 area. Individual informed consent before participation in the study was obtained in 36 of the 45 study areas (written consent in 35 areas and oral consent in 1 area); in the remaining 9 areas, group consent from the area leader was obtained. Participant eligibility was verified by individual investigators, who confirmed that (1) the participant was living within the study area and (2) was aged 40 to 79 years at baseline. In addition, date of birth and sex were further verified using official documents and/or a completed self-administered questionnaire.

Follow-up
As follow-up information, dates and causes of death were annually or biannually confirmed, with the permission of the Director-General of the Prime Minister’s Office (Ministry of Public Management, Home Affairs, Post and Telecommunications) and/or the Ministry of Health, Labor and Welfare, Japan. The date of move-out of cohort members from the study area was also annually or biannually verified by the investigator in cooperation with key members of the local governmental office. In 24 of the 45 areas, data on cancer incidence such as date of diagnosis and primary site were also collected through population-based cancer registers or by reviewing the records of local major hospitals. In most areas, follow-up was completed at the end of 2009; however, it was stopped at the end of 1999 in 4 areas, at the end of 2003 in another 4 areas, and at the end of 2008 in 2 areas.

Final data setup: correction of birth date and sex information, identification of decedents and subjects who had moved, and deletion of ineligible participants

To confirm if study participants had survived and were living in the study area at the end of follow-up, we conducted a systematic review of population registers of cohort members in 17 areas followed until 2009. In the remaining 18 areas followed until 2009, annual or biannual follow-up surveys were routinely performed using population registers; thus, no further reviews were conducted. If data from participants presumed to survive were found to be missing at the end of 2009, attempts were made to obtain information on their mortality status or current location, and relevant information was added to the follow-up data. A few participants were found to have never lived in the study area and were thus excluded from the baseline data.

This review process revealed some errors in coding of date of birth and sex. Moreover, during the merge of follow-up data with baseline identifiable data (name, date of birth, and sex), further errors in date of birth and sex were found. All such errors were corrected.

RESULTS

Of 110,792 participants aged 40 to 79 years at baseline, 207 (0.19%) were found to have never lived in the study area. As a result, 110,585 participants (46,395 men and 64,190 women) were ultimately deemed eligible as subjects for the JACC Study, with 707,136 and 1,025,703 person-years of follow-up for men and women, respectively. Errors in the coding of date of birth and sex were found in 356 (0.32%) and 59 (0.05%) cases, respectively, during routine follow-up and final review. Table 1 shows the age and sex distribution of study participants. There were no subjects from the Shikoku region. As compared with the overall distribution of the Japanese population in 1989, our cohort participants were slightly older and included a higher percentage of women.

Table 2 shows the follow-up results, and Table 3 shows the major causes of death up to 2009. These values include the follow-up information (death or move-out from the study area) that was reported in 10 of 17 areas for 516 subjects (0.5%) through a systematic review of population registers of cohort members. Finally, 27,410 deaths (24.8%; 15,401 men, 12,009 women) and 6,402 move-outs (5.8%; 2,343 men, 4,059 women) were identified during the median 18.0-year follow-up. The first cause of death was cancer among men (37.6%) and circulatory disease among women (33.7%), and the second cause of death was circulatory disease (27.8%) and cancer (30.8%), respectively (Table 3). Among those who died of cancer, the first, second, and third leading causes of death were cancer of the lung (23.2%), stomach (18.4%), and liver (10.7%) among men and cancer of the stomach (15.4%), lung (11.2%), liver, and pancreas (9.2% for both)
among women. When cancers of the colon and rectum were grouped together, that category was the second leading cause of death (12.7%) among women.

DISCUSSION

This final profile of the JACC Study Group describes the number of participants and their follow-up status. During the median 18-year follow-up, we found errors in the coding of date of birth and sex data as well as incorrectly registered cases. Accordingly, we would advise future researchers planning a field study to thoroughly check participant eligibility and basic information such as date of birth and sex; this can be performed at least twice, by using a population register and a self-questionnaire.

Although follow-up information was annually or biannually confirmed, 516 subjects who had died or moved out of the study area were not identified during routine follow-up. The

Table 1. Age distribution of cohort members at baseline by region

Age at baseline	Total	%						
40–44	45–49	50–54	55–59	60–64	65–69	70–74	75–79	
Men								
Japan general population 1989 (×1000)								
JACC Study participants								
%								
Hokkaido								
Tohoku								
Kanto								
Chubu								
Chugoku								
Kyushu								
Women								
Japan general population 1989 (×1000)								
JACC Study participants								
%								
Hokkaido								
Tohoku								
Kanto								
Chubu								
Chugoku								
Kyushu								

Table 2. Follow-up status until 2009 by sex and age

Age at baseline	Total	%	Person-years	Mortality rate (per 1000 person-years)							
40–44	45–49	50–54	55–59	60–64	65–69	70–74	75–79				
Men											
No. at baseline	5991	5794	6309	7690	8415	5516	4021	2825	2141	1770	27668
No. of deaths	394	658	1113	2000	3252	3056	2782	2146	15401		
%	6.6	11.4	17.6	26.0	38.6	55.4	69.2	80.7	33.2		
No. who left study area	539	377	433	467	529	422	242	102	298		
%	9.0	6.5	4.8	3.9	3.5	4.4	4.5	5.1			
Person-years	107048	102338	108465	124421	123896	74267	43689	23012	707136		
Mortality rate (per 1000 person-years)	3.7	4.4	4.8	5.5	6.9	8.7	7.8	6.3			
Women											
No. at baseline	7536	7912	9088	10792	11102	8589	5548	3623	64190		
No. of deaths	242	368	637	1218	1982	2544	2632	2386	12609		
%	3.2	4.7	7.0	11.3	17.9	29.6	47.4	65.9	18.7		
No. who left study area	605	488	479	522	606	592	483	264	4059		
%	8.0	6.2	5.3	6.8	6.9	7.8	7.8	7.8	6.3		
Person-years	134927	139091	159465	182347	174721	125510	71076	38566	1025703		
Mortality rate (per 1000 person-years)	1.8	2.6	4.0	6.7	11.3	20.3	37.0	61.9	11.7		
Table 3. Mortality distribution according to cause of death during entire follow-up period

Cause of death	Men	Women										
	40-44	45-49	50-54	55-59	60-64	65-69	70-74	75-79	Total	%	%*	
	40-44	45-49	50-54	55-59	60-64	65-69	70-74	75-79	Total	%	%*	
All causes	394	658	113	2000	3252	3056	2782	2146	15401	100.0		
40-49	242	368	637	1218	1982	2544	2632	2386	12009	100.0		
C00-C09	Certain infectious and parasitic diseases	6	10	18	38	56	62	44	33	267	1.7	
C10-C19	Neoplasms	160	312	542	927	1425	1073	972	561	5792	37.6	100.0
C15	Esophagus	12	14	28	42	55	39	17	10	216	3.7	
C16	Stomach	32	62	87	176	252	199	151	109	1068	18.4	
C18	Colon	12	14	36	41	67	59	44	35	308	5.3	
C19-C20	Rectum	8	17	26	52	39	30	27	22	221	3.8	
C22	Liver and intrahepatic bile ducts	21	46	79	128	167	77	66	37	621	10.7	
C23	Gall bladder	1	5	6	16	17	32	12	12	101	1.7	
C24	Other and unspecified parts of biliary tract	5	11	34	41	42	28	16	18	186	3.2	
C25	Pancreas	13	20	29	50	78	63	43	42	338	5.8	
C33-C34	Lung	27	50	114	205	364	290	181	114	1345	23.2	
C50	Breast	0	1	0	0	0	1	0	2	0.0		
C53	Cervix uteri	6	2	10	5	9	5	7	5	49	2.7	
C54	Corpus uteri	2	2	7	7	9	3	4	2	36	1.0	
C55	Uterus, part unspecified	2	3	1	3	13	9	8	7	46	1.2	
C56	Ovary	13	8	15	16	22	10	9	5	98	5.8	
C61	Prostate	2	4	20	21	68	49	59	279	4.8		
C64	Kidney	0	4	7	12	14	9	12	4	62	1.1	
C65-C67	Urinary tract	2	7	13	11	40	31	34	17	155	2.7	
C68-C85	Non-Hodgkin’s lymphoma	0	8	17	29	44	20	15	15	148	2.6	
C86-C89	Multiple myeloma	2	7	4	12	18	12	9	5	69	1.2	
C92	Myelodysplasia	5	10	11	16	17	7	9	3	78	1.3	
E00-E09	Endocrine, nutritional and metabolic diseases	8	10	17	29	38	35	27	28	192	1.2	
E09-G09	Diseases of the nervous system	4	7	17	19	50	39	18	10	164	1.1	
F00-F09	Diseases of the circulatory system	86	132	252	460	857	908	919	673	4287	27.8	
I00-I25	Ischemic heart disease	34	45	69	124	204	781	147	1003	821	11.8	
I46	Atrial fibrillation and flutter	0	0	4	10	19	25	24	15	97	1.0	
I50	Heart failure	7	14	26	56	121	151	178	153	711	8.5	
I60-I69	Cerebrovascular disease	30	44	113	194	362	389	408	285	1825	24.3	
J00-J09	Diseases of the respiratory system	14	40	62	219	408	501	550	500	2294	14.9	
J09-J18	Influenza and pneumonia	6	20	30	115	228	273	327	327	1326	2.2	
J43	Emphysema	0	1	6	19	58	58	64	44	250	0.0	
K00-K09	Diseases of the digestive system	28	35	53	78	82	109	80	46	511	3.3	
K74	Fibrosis and cirrhosis of liver	16	16	27	34	20	13	19	6	151	1.8	
L00-L09	Diseases of the genitourinary system	2	9	14	33	67	68	59	39	219	3.4	
N17-N19	Acute kidney failure and chronic kidney diseases	2	7	12	22	50	52	52	53	250	1.2	
R00-R99	Symptoms, signs, and abnormal clinical and laboratory findings, not elsewhere classified	4	4	6	7	26	52	99	109	307	2.0	
R54	Age-related physical debility	0	0	0	4	19	37	87	99	246	0.0	
S00-T88	External causes	78	86	113	150	170	150	126	93	966	6.3	
Others	4	13	19	40	73	59	60	34	302	2.0		

*Percentage of deaths per neoplasm.
use of population registers to verify that subjects are living in the study area is therefore necessary because it enables identification of deceased individuals and those who have moved out of the study area. Furthermore, 356 (0.32%) and 59 (0.05%) cases of incorrect coding of date of birth and sex, respectively, were found during routine follow-up and final review. Miscoding of data can occur by verification only once, and miscoding of date of birth and sex information may cause errors such as merging of the follow-up information of 1 participant with the baseline data of another participant. Thus, careful efforts such as independent double-entry are essential to reduce such miscoding.

The JACC Study is one of the largest cohort studies in Japan. Selected characteristics of study participants were similar to those of the Japanese general population, and thus, the JACC Study can be regarded as representative of the Japanese population, though it should be noted that no subjects were recruited from the Shikoku region. Almost 200 original articles on the risk factors for cancer, cardiovascular disease, and other diseases have been published using the results of the JACC Study. It was not an easy task to establish and maintain such a large collaborative cohort study with a limited budget; the voluntary efforts of the collaborators were essential. Although unexpected errors were found, we believe that the impact of these errors was negligible because the number of ineligible cases and amount of missing data were small relative to the large total study population.

Cohort studies need to continue over a long period if they are to yield fruitful results. Moreover, because all study participants must be followed up carefully and thoroughly, considerable funding is required. The JACC Study received systematic support for the first 10 years, at which point this funding ceased and maintenance and follow-up of cohort participants was accomplished by means of smaller grants. The retirements of principal researchers and city mergers throughout Japan made it difficult to continue follow-up. Thus, we decided to terminate the follow-up of participants in the JACC Study at the end of 2009. Our experience indicates that the development and maintenance of an appropriate long-term management system is essential when launching a cohort study and that adequate and steady support from funding bodies is also important.

We would like to express our sincere thanks to all participants and researchers related to the JACC Study, and to all the funding bodies that supported our study. Hereafter, we plan to use the final dataset and remaining sera to examine the risk impact of lifestyle factors and levels of serum components on human health.

ACKNOWLEDGMENTS

We wish to express our sincere thanks to Drs. Kunio Aoki and Yoshiyuki Ohno, Professors Emeritus of the Nagoya University School of Medicine and former chairpersons of the JACC Study. For their encouragement and support during this study, we are also greatly indebted to Dr. Haruo Sugano, former Director of the Cancer Institute, Tokyo, who contributed greatly to the initiation of the JACC Study, to Dr. Tomoyuki Kitagawa, Director Emeritus of the Cancer Institute of the Japanese Foundation for Cancer Research and former project leader of the Grant-in-Aid for Scientific Research on Priority Area ‘Cancer’, and to Dr. Kazuo Tajima, Aichi Cancer Center, who was the previous project leader of the Grant-in-Aid for Scientific Research on Priority Area of Cancer Epidemiology.

Funding: This work was supported by Grants-in-Aid for Scientific Research from the Ministry of Education, Science, Sports and Culture of Japan (Monbusho), and Grants-in-Aid for Scientific Research on Priority Areas of Cancer, as well as Grants-in-Aid for Scientific Research on Priority Areas of Cancer Epidemiology from the Japanese Ministry of Education, Culture, Sports, Science and Technology (Monbu-Kagaku-sho) (Nos. 61010076, 62010074, 63010074, 1010068, 2151065, 3151064, 4151063, 5151069, 6279102, 11181101, 17015022, 18014011, 20014026 and 20390156).

Conflicts of interest: None declared.

Members of JACC Study Group

The present members of the JACC Study Group who co-authored this paper are: Dr. Akiko Tamakoshi (present chairperson of the study group), Hokkaido University Graduate School of Medicine; Drs. Mitsuji Mori & Fumio Sakauchi, Sapporo Medical University School of Medicine; Dr. Yutaka Motohashi, Akita University School of Medicine; Dr. Ichiro Tsuji, Tohoku University Graduate School of Medicine; Dr. Yoshikazu Nakamura, Jichi Medical School; Dr. Hiroyasu Iso, Osaka University School of Medicine; Dr. Haruo Mikami, Chiba Cancer Center; Dr. Michiko Kurosawa, Juntendo University School of Medicine; Dr. Yoshiharu Hoshiyama, Yokohama Soei University; Dr. Naohito Tanabe, University of Niigata Prefecture; Dr. Koji Tamakoshi, Nagoya University Graduate School of Health Science; Dr. Kenji Wakai, Nagoya University Graduate School of Medicine; Dr. Shinkan Tokudome, National Institute of Health and Nutrition; Dr. Koji Suzuki, Fujita Health University School of Health Sciences; Dr. Shuji Hashimoto, Fujita Health University School of Medicine; Dr. Shogo Kikuchi, Aichi Medical University School of Medicine; Dr. Yasuhiro Wada, Faculty of Nutrition, University of Kochi; Dr. Takashi Kawamura, Kyoto University Center for Student Health; Dr. Yoshiyuki Watanabe, Kyoto Prefectural University of Medicine Graduate School of Medical Science; Dr. Kotaro Ozasa, Radiation Effects Research Foundation; Dr. Tsuneharu Miki, Kyoto Prefectural University of Medicine Graduate School of Medical Science; Dr. Chigusa Date, School of Human Science and Environment, University of Hyogo; Dr. Kiyomi Sakata, Iwate Medical University; Dr. Yoichi Kurozawa, Tottori University Faculty of Medicine; Drs. Takesumi

J Epidemiol 2013;23(3):227-232
REFERENCES

1. The JACC Study Group. JACC Study. [cited 2012 October 3]. Available from: http://publichealth.med.hokudai.ac.jp/jacc/.

2. Ohno Y, Tamakoshi A; JACC Study Group. Japan collaborative cohort study for evaluation of cancer risk sponsored by Monbusho (JACC Study). J Epidemiol. 2001;11:144–50.

3. Tamakoshi A; Japan Collaborative Cohort Study for Evaluation of Cancer. Overview of the Japan Collaborative Cohort Study for Evaluation of Cancer (JACC). Asian Pac J Cancer Prev. 2007;8 Suppl:1–8.

4. Tamakoshi A, Yoshimura T, Inaba Y, Ito Y, Watanabe Y, Fukuda K, et al. Profile of the JACC Study. J Epidemiol. 2005;15 Suppl 1:S4–8.