Serum soluble PD-1 plays a role in predicting infection complications in patients with acute pancreatitis

CURRENT STATUS: UNDER REVIEW

Journal of Inflammation • BMC

Xingxing Yu
Xiehe Affiliated Hospital of Fujian Medical University

Yu Pan
Xiehe Affiliated Hospital of Fujian Medical University

Qinglin Fei
Xiehe Affiliated Hospital of Fujian Medical University

Xianchao Lin
Xiehe Affiliated Hospital of Fujian Medical University

Zhijiang Chen
Xiehe Affiliated Hospital of Fujian Medical University

Heguang Huang
Xiehe Affiliated Hospital of Fujian Medical University

✉ heguanghuang22@163.com Corresponding Author
ORCiD: https://orcid.org/0000-0003-1459-5546

DOI:
10.21203/rs.3.rs-16631/v1

SUBJECT AREAS
Immunology

KEYWORDS
Acute pancreatitis, PD-1, PD-L1, Immunosuppression, infection complication
Abstract

Background: Most of acute pancreatitis (AP) are mild and self-limiting, however, 15%-20% of patients develop severe AP (SAP) or moderately SAP (MSAP) with local or systemic complications. Infection complications (ICs) result in 40-70% morbidity and high mortality rates among SAP and MSAP patients. It’s require that early identification of SAP and MSAP patients at risk of developing ICs. Several studies have indicated that serum soluble programmed cell death protein (sPD-1) or programmed cell death 1 ligand (sPD-L1) levels were higher in patients with severe sepsis than in healthy volunteers, and have a predictive capacity for mortality. However, the role of serum soluble PD-1/PD-L1 in AP remains unclear. This study aimed to investigate whether the ICs of AP patients is associated with their sPD-1 and sPD-L1 levels, which were determined via enzyme-linked immunosorbent assay of peripheral blood samples from 63 MSAP and SAP patients and 30 healthy volunteers.

Results: The serum sPD-1 levels in AP patients on days 1, 3 and 10 after onset were significantly increased in a time-dependent manner compared with that in healthy volunteers. Moreover, the AP patients with ICs had significantly higher serum sPD-1 levels than the AP patients without ICs. While serum sPD-L1 levels in AP patients were similar to that in healthy volunteers. Besides, serum levels of sPD-1/sPD-L1 10 were negatively correlated with circulating lymphocytes. Univariate and Multivariate regression analyses showed that the up-regulated serum sPD-1 level was an independent risk factor for ICs in AP. The area under the receiver operating characteristics (ROCs) curve indicated that combination with Acute Physiology and Chronic Health Evaluation II (APACHE II) score and serum sPD-1 level had a high accuracy in predicting ICs in AP patients.

Conclusion: Serum sPD-1/sPD-L1 may be involved in the immunosuppressive process in AP. Moreover, the serum sPD-1 level may be an independent risk factor for predicting ICs in AP patients.

Background

Acute pancreatitis (AP) is a common acute abdomen in general surgery, and most of AP are mild and self-limiting, without complications and only needing a short hospitalisation [1]. However, 15%-20% of patients develop severe AP (SAP) or moderately SAP (MSAP) with local or systemic complications,
which has high mortality [2, 3]. The main reason for the high mortality among SAP and MSAP patients is the infection complications (ICs), morbidity for which can be approximately 40–70% [4–6]. It’s required that early identification of SAP and MSAP patients at risk of developing ICs.

Studies showed that early immunosuppression of SAP has led to the occurrence of systemic ICs and multiple organ failure [7–8]. Programmed cell death protein (PD-1) is a co-inhibitory molecule belonging to the CD28 family, mainly expressed in activated T lymphocytes, natural killer T cells, and bone marrow cells [9–10]. The programmed cell death 1 ligand (PD-L1) is a ligand for PD-1 expressed on antigen presenting and hematopoietic cells [10]. The PD-1/PD-L1 pathway has been shown to regulate lymphocyte proliferation and apoptosis and play an important role in immune regulation [11–13]. Previous studies had shown that PD-1 and PD-L1 exist in two forms: cell membrane-bound and soluble forms [14]. Soluble PD-1 and PD-L1 (sPD-1/sPD-L1) can be detected in human serum. sPD-1 may promote T cell responses by inhibiting the PD-1/PD-L1 signaling pathways, while excessive sPD-1 may lead to immunosuppression [14]; sPD-L1 was released into blood by the surface of PD-L1-expressing cells that may reflect PD-L1 levels [15]. Additionally, sPD-L1 may retain immunosuppression induction [15]. A recent study revealed that PD-1 expression in peripheral T cells and PD-L1 expression in monocytes increased significantly in sepsis patients than in healthy controls [16], and in AP patients with ICs than the patients without ICs [17]. Several studies have indicated that serum sPD-1/sPD-L1 levels were higher in patients with severe sepsis than in healthy volunteers and had a predictive capacity for mortality [18–19]. However, the relationship between serum sPD-1/sPD-L1 levels and ICs in AP has not been certified. Furthermore, serum sPD-1/sPD-L1 expression is easy to examine and has potential applications.

In this study, we investigated the levels of serum sPD-1/sPD-L1 in SAP and MSAP patients and healthy volunteers to understand the association of these parameters with immune status and ICs in AP patients.

Results

Characteristics of the patients

According to the revised Atlanta classification [20], a total of 63 patients with AP (28 SAP and 35
MSAP patients) were included in this study, with an average age of 51.08 ± 13.56 years. For the classification of AP etiology, hypertriglyceridemia-induced pancreatitis was the main cause, accounting for 38.1%, followed by biliary 30.2%, alcoholicity 6.3%, and other factors 25.4%. All AP patients underwent three AP-related scoring system after admission, including the BISAP (assessment after 24-h admission), Ranson (48-h), and APACHE II (48-h) scores. The clinical characteristics of these patients are shown in Table 1.

Serum sPD-1 and sPD-L1 levels in patients of AP

Serum levels of sPD-1 and sPD-L1 were measured in patients of AP on day 1 (d1), day 3 (d3) and day 10 (d10) after admission. The serum sPD-1 levels in AP patients on d1, d3 and d10 were significantly elevated compared with that in healthy controls (P < 0.05, P < 0.01, P < 0.01; Figure 1A). Moreover, serum sPD-1 level in AP patients were up-regulated in a time-dependent manner, and were most elevated on day 10 compared to that on day 1 (P < 0.01; Figure 1A). However, serum sPD-L1 levels on d1, d3 and d10 in AP patients were similar to that in healthy controls (Figure 1B).

Correlation between clinical indicators and serum sPD-1/sPD-L1 levels

We further investigated the relationship between clinical indicators and serum sPD-1/sPD-L1 levels. We observed that the serum levels of sPD-1 and sPD-L1 on day 10 were both negative correlated with lymphocyte count (r = -0.335, P = 0.015; r = -0.294, P = 0.035; Table2), whereas the serum level of sPD-1 on day 1 was positive correlated with lymphocyte-monocyte ratio (LMR) (r = 0.269, P = 0.034; Table2). Moreover, the serum level of sPD-1 on days 3 and 10 were negative associated with the hematocrit (HCT) (r = -0.289, P = 0.021; r = -0.331, P = 0.016).

Correlation between serum sPD-1/sPD-L1 levels and ICs of AP

To investigate the relationship between ICs of AP and serum sPD-1/sPD-L1 levels, all patients were divided into two groups: AP with (n=36) and without (n=27) ICs. We found that APACHE II scores was significantly higher in the AP with ICs group than in the AP without ICs group (P< 0.001; Table 3). Whereas the HCT was significantly higher in the AP without ICs group than in the AP with ICs group (P = 0.003; Table 3). The AP with ICs group had significantly higher serum sPD-1 levels on days 3 and 10 than the AP without ICs group (P < 0.001, P < 0.001; Table 3). However, there were no significant
differences between AP with ICs group and AP without ICs group with regard to serum sPD-L1 levels.

Serum sPD-1 may be an independent factor for predicting ICs in AP

To determine the predictive effect of age, APACHE II scores, HCT, and lymphocyte, monocyte, and neutrophil counts on day 1, and serum sPD-1 and sPD-L1 levels on days 1 and 3 for ICs, we performed a logistic regression analysis. Univariate analysis demonstrated that HCT (OR 0.908, 95% CI 0.842–0.980, P = 0.013), APACHE II score (OR 1.420, 95% CI 1.134–1.776, P = 0.002), and serum sPD-1 level on day 3 (OR 1.013, 95% CI 1.005–1.021, P = 0.002) were significantly associated with ICs of AP (Table 4). Furthermore, we performed multivariate analysis to evaluate HCT, APACHE II score, and serum sPD-1 level on day 3 as independent predictors of ICs. The results suggested that serum sPD-1 levels on day 3 (OR 1.009, 95% CI 1.001–1.018, P = 0.029) and the APACHE II score (OR 1.281, 95% CI 1.008–1.629, P = 0.043) were independent risk predictors of ICs in AP (Table 4).

To evaluate the predictive accuracy of serum sPD-1 levels on day 3 and the APACHE II score for ICs in AP patients, the receiver operating characteristics (ROCs) curve analysis was performed. The areas under the curve (AUC) values for serum sPD-1 levels on day 3 and APACHE II score were 0.796 (95% CI 0.681–0.911, P < 0.001) and 0.769 (95% CI 0.649–0.889, P < 0.001; Table 5 and Figure 2). By combining these two variables, a high accuracy for AP IC prediction was achieved (AUC = 0.826, 95% CI 0.721–0.931, P < 0.001; Table 5 and Figure 2).

Discussion

MSAP and SAP can develop into immunosuppression, leading to secondary infection and pancreatic necrosis [21,22]. Our study showed that compared with healthy volunteers, serum sPD-1 levels in the MSAP and SAP patients increased continuously during the early course of the disease, especially the patients with ICs. Moreover, elevated sPD-1 level was associated with enhanced occurrence of ICs. Studies showed that serum sPD-1 may promote T cell responses by inhibiting the PD-1/PD-L1 signaling pathway, but continuously excessive level of serum sPD-1 may serve as an antibody to block the PD-1/PD-L1 pathway, which leads to the aberrant activation and proliferation of T cells [14,24]. The uncontrolled immune regulation resulted in hyperimmune behavior in the early stage of SAP, however, with the consumption of lymphocyte, the hyperimmune status transformed into
immunosuppression and increased the incidence of ICs. Finally, a marked increase in sPD-1 levels may represent more severe immune damage in patients [26]. In addition, sPD-L1 may retain immunosuppressive condition and continuously increased of sPD-L1 ultimately aggravates immunosuppression [15,27]. Hence, serum sPD-1/sPD-L1 levels may play an important role in monitoring the immune status of AP patients and predicting the ICs and prognosis. Furthermore, our data indicated that serum sPD-1/sPD-L1 levels of AP patients are associated with LMR, HCT, and lymphocyte counts. Immune dysfunction in AP patients may be caused by decreased peripheral blood lymphocytes [27]. The decreased expression of human leucocyte antigen-DR (HLA-DR) on monocytes may lead to early immunosuppression of AP [28]. Moreover, serum sPD-L1 was reported to be involved in lymphocyte apoptosis [15]. Our investigation of the correlation between serum sPD-1/sPD-L1 and clinical indicators revealed that dynamic monitoring of serum sPD-1/sPD-L1 levels in AP patients may reflect systemic immunologic functions in AP patients.

Previous studies indicated that BISAP, Ranson, and APACHE II scores predict the mortality of AP patients with high accuracy [29-31] and high Ranson, BISAP, and APACHE II scores were also associated with organ failure and complications in AP patients [32,33]. In this study, we showed that the elevated serum sPD-1 level was an independent risk factor for ICs in patients of AP. Combination of APACHE II score and serum sPD-1 level may better predict ICs of AP patients. However, there remain some limitations in this study, we investigated these variates in AP patients from a single center and the number of cases in this study was small. Further study involving a large cohort from multiple centers is needed to confirm these results.

Conclusions
Serum sPD-1/sPD-L1 levels may be involved in the immunosuppressive process of AP, and sPD-1, which increases continuously in the peripheral blood of AP patients, may be an independent risk factor for predicting ICs in AP patients, which is potentially applicable in determining or improving AP patient prognosis.

Methods
Peripheral blood was obtained from 63 patients with MSAP or SAP at Fujian Medical University Union
Hospital, Fuzhou, China, from October 2017 to April 2019. Patient inclusion criteria: (1) patients with MSAP or SAP, according to 2012 edition of the Atlanta Convention AP classification criteria [20]; (2) aged 18 years or older; (3) admitted to the hospital within 48 hours of onset. Exclusion criteria: Patients (1) with mild acute pancreatitis; (2) treated for <10 days; (2) with chronic pancreatitis, pregnancy, breastfeeding, acute and chronic hepatitis, end-stage liver and kidney disease, immunodeficiency disease, and malignant tumor; (3) who had received immunosuppressive therapy. All patients were followed until discharge or hospital mortality. Patient baseline characteristics, Bedside Index for Severity in Acute Pancreatitis (BISAP), Ranson, and Acute Physiology and Chronic Health Evaluation II (APACHE II) scores were collected and recorded. Patient characteristics were collected and are shown in Table 1. This study was approved by the Committee for the Ethical Review of Research, Fujian Medical University Union Hospital.

Definition of ICs: infected pancreatic necrosis, bacteremia, pneumonia, infectious ascites or urinary tract infections during admission. The diagnostic criteria for infected pancreatic necrosis were ‘positive for peripancreatic effusion or pancreatic necrosis tissue culture’ obtained at the first pancreatic perivascular drainage or the first surgical treatment. The diagnostic criterion for bacteremia was ‘positive for blood culture’. Diagnostic criteria for pneumonia: (1) newly developed cough, or symptoms of the original respiratory disease, with purulent sputum, with or without chest pain; (2) fever ≥ 38 °C; (3) lung consolidation signs and/or wet rales; (4) white blood cell (WBC) > 10×10^9/L or < 4×10^9/L with or without nuclear left shift; (5) lung imaging suggests patchy infiltrating shadow or interstitial changes with or without pleural effusion. Any of the above 1 to 4 plus the fifth item can lead to a diagnosis, except for tuberculosis, lung cancer, non-infectious pulmonary interstitial disease, pulmonary edema, atelectasis, pulmonary embolism, pulmonary eosinophilic infiltration, and pulmonary vasculitis. The diagnostic criterion for infectious ascites is the positive ascites specimen obtained during the first abdominal puncture drainage or the first surgery. Diagnostic criteria (and confirmation) for urinary tract infections: bacterial colony count ≥ 10^5/mL and white blood cell count > 10/HP following centrifugation of urine collected midstream. Multiple infections in the same patient were considered one endpoint [17].
Blood samples

Peripheral blood samples were obtained from 30 healthy volunteers (control) and AP patients on days 1, 3, and 10 after admission. Serum samples were collected immediately after centrifugation at 3000 rpm for 15 min at 4 ºC, and stored at -80 ºC for subsequent analysis.

Serum sPD-1 and sPD-L1 analysis

Serum sPD-1/sPD-L1 was quantified using the human sPD-1/sPD-L1 enzyme-linked immunosorbent assay (ELISA) kit (RayBio®, GA, USA). Serum sPD-1/sPD-L1 levels were measured in duplicates and analyzed according to manufacturers' recommendations. A 1:50 dilution was used for all the samples. The nonlinear standard curve was constructed based on polynomial regression (degree = 2).

Statistical analysis

SPSS 22.0 software (SPSS Inc, Chicago, Illinois, USA) was used for statistical analysis. Results were presented as medians and interquartile ranges (IQR) or means ± standard deviation (SD), and categorical variables were shown as frequency and percentage. The normal distribution of all variables was tested using the Shapiro-Wilk test. Chi-square or Fishers tests for two-category variables. The independent sample t test was used to compare variables that conform to the normal distribution, and the Mann-Whitney U test to compare variables that are not normally distributed. The correlation was assessed by a Spearman rank test. The concentrations at different times (days 1, 3, and 10) in each group were compared using One-way Repeated Measures Analysis of Variance. A two-category univariate logistic regression analysis was performed to assess the correlation between the variables (Tables 4) and AP infectious complications. Then only the significant differences in univariate analysis were using multivariate stepwise regression analysis of variables. The area under the receiver operating characteristics (ROCs) curve (AUC) was used to estimate the accuracy of the predicted model, and the area under the curve was bilaterally P < 0.05. Figures were prepared using GraphPad Prism version 6.0 (GraphPad Software, San Diego, CA, USA).

Abbreviations

AP, acute pancreatitis; SAP, severe acute pancreatitis; MSAP, moderately severe acute pancreatitis; sPD-1, serum soluble programmed cell death; sPD-L1, serum soluble programmed cell death protein
ligand 1; IQR, interquartile range; APACHEII, Acute Physiology and Chronic Health Evaluation II; BISAP, The Bedside Index for Severity in Acute Pancreatitis; WBC, white blood cell; HCT, hematocrit; NLR, neutrophil-lymphocyte ratio; LMR, lymphocyte-monocyte ratio; PLR, platelet-lymphocyte ratio;

Declarations

Ethics approval and consent to participate:

All procedures performed in studies involving human participants were in accordance with the Helsinki declaration. All patients whose blood samples were used in this research provided written informed consent, and the study was approved by the Committee for the Ethical Review of Research, Fujian Medical University Union Hospital.

Consent for publication:

Not applicable in this section.

Availability of data and materials:

Please contact with the authors.

Competing interests:

The authors declare that they have no competing interests.

Funding:

This study was supported by the Fund of Sailing of Fujian Medical University (2017XQ2024); Medical Center of Minimally Invasive Technology of Fujian Province (No. 171, 2017 and No. 4, 2017); Joint Funds of Scientific and Technological Innovation Program of Fujian Province (2017Y9059).

Authors' contributions:

YP, XL, and HH conceived the concept. HH and MP supervised the study. YP, QF, XY, FL and PX designed and performed the experiments. YP, XL, and MP wrote the manuscript. All authors approve the manuscript.

Acknowledgements:

The authors thank Yuanyuan Zhou for her kindly help.

Authors' information:

1 Department of General Surgery, Fujian Medical University Union Hospital, No.29 Xinquan Road,
Fuzhou 350001, People’s Republic of China.

References
1. Minkov GA, Halacheva KS, Yovtchev YP, Gulubova MV. Pathophysiological mechanisms of acute pancreatitis define inflammatory markers of clinical prognosis. Pancreas 2015;44:713-17.
2. Beger HG, Rau B, Isenmann R. Natural history of necrotizing pancreatitis. Pancreatology. 2003;3:93–101.
3. Tsui NC, Zhao E, Li Z, et al. Microbiological findings in secondary infection of severe acute pancreatitis: a retrospective clinical study. Pancreas. 2009;38:499-502.
4. Cacopardo B, Pinzone M, Berretta S, Fisichella R, Di Vita M, Zanghì G, Cappellani A, Nunnari G, Zanghì A. Localized and systemic bacterial infections in necrotizing pancreatitis submitted to surgical necrosectomy or percutaneous drainage of necrotic secretions. BMC Surg. 2013;13 Suppl 2:S50. doi:10.1186/1471-2482-13-S2-S50. Epub 2013 Oct 8.
5. Schmid SW, Uhl W, Friess H, Malfertheiner P, Buchler MW. The role of infection in acute pancreatitis. Gut. 1999;13(2):311–316.
6. Renner IG, Savage WT, 3rd, Pantoja JL, Renner VJ.Death due to acute pancreatitis. A retrospective analysis of 405 autopsy cases. Dig Dis Sci. 1985 Oct;30(10):1005–1018.
7. Ueda T, Takeyama Y, Yasuda T, Shinzaki M, Sawa H, Nakajima T, Ajiki T, Fujino Y, Suzuki Y, Kuroda Y. Immunosuppression in patients with severe acute pancreatitis. J Gastroenterol. 2006 Aug;41(8):779-84.
8. Hans G Beger and Bettina M Rau. Severe acute pancreatitis: Clinical course and management. World J Gastroenterol. 2007 Oct 14; 13(38): 5043-5051. Published online 2007 Oct 14. doi:10.3748/wjg.v13.i38.5043
9. Li JP, Yang J, Huang JR, Jiang DL, Zhang F, Liu MF, et al. Immunosuppression and the infection in patients with early SAP. Front Biosci (Landmark Ed) 2013;18:892–900. doi: 10.2741/4150.
10. Keir ME, Butte MJ, Freeman GJ, Sharpe AH. PD-1 and its ligands in tolerance and immunity. Annu Rev Immunol. 2008;26:677-704. doi: 10.1146/annurev.immunol.26.021607.090331.
11. Chang K, Svabek C, Vazquez-Guillamet C, Sato B, Rasche D, Wilson S, et al. Targeting the
programmed cell death 1: programmed cell death ligand 1 pathway reverses T cell exhaustion in patients with sepsis. Crit Care. 2014;18(1):R3. doi: 10.1186/cc13176.

12.Zhang Y, Zhou Y, Lou J, Li J, Bo L, Zhu K, et al. PD-L1 blockade improves survival in experimental sepsis by inhibiting lymphocyte apoptosis and reversing monocyte dysfunction. Crit Care. 2010;14(6):R220. doi:10.1186/cc9354.

13.Latchman Y, Wood CR, Chernova T, Chaudhary D, Borde M, Chernova I, et al. PD-L2 is a second ligand for PD-1 and inhibits T cell activation. Nat Immunol. 2001;2(3):261–8. doi: 10.1038/85330.

14.Dai S, Jia R, Zhang X, Fang Q, Huang L. The PD-1/PD-Ls pathway and autoimmune diseases. Cell Immunol 290 1:72-79, 2014.

15.Frigola, X, Inman, BA, Lohse, CM et al. Identification of a soluble form of B7-H1 that retains immunosuppressive activity and is associated with aggressive renal cell carcinoma. Clin Cancer Res2011; 17: 1915-23.

16.Zhang Y, Li J, Lou J, Zhou Y, Bo L, Zhu J, Zhu K, Wan X, Cai Z, Deng X. Upregulation of programmed death-1 on T cells and programmed death ligand-1 on monocytes in septic shock patients. Crit Care. 2011;15:R70. doi: 10.1186/cc10059.

17.Tingting Pan,Tianyun Zhou,Lei Li,Zhaojun Liu,Ying Chen,Enqiang Mao,Meiling Li, Hongping Qu, JialinLiu.Monocyte programmed death ligand-1 expression is an early marker for predicting infectious complications in acute pancreatitis.Crit Care.2017; 21: 186. Published online 2017 Jul 14. doi: 10.1186/s13054-017-1781-3.

18.Zhao Y, Jia Y, Li C, Shao R, Fang Y.Predictive Value of Soluble Programmed Death-1 for Severe Sepsis and Septic Shock During the First Week in an Intensive Care Unit.Shock. 2019 Mar;51(3):289-297. doi: 10.1097/SHK.0000000000001171.

19.Zhao Y, Jia Y, Li C, Fang Y, Shao R.The risk stratification and prognostic evaluation of soluble programmed death-1 on patients with sepsis in emergency department.Am J Emerg Med.2018 Jan;36(1):43-48.doi: 10.1016/j.ajem.2017.07.002. Epub 2017 Jul 4.

20.Banks PABollen TL,Dervenis Cet al1.Classification of acute pancreatitis-2012 revision of the Atlanta classification and definitions by international consensus[J].Gut 2013;62(1):102-111.
21. Naskalski JW1, Kusnierz-Cabala B, Kedra B, Dumnicka P, Panek J, Maziarz B. Correlation of peripheral blood monocyte and neutrophil direct counts with plasma inflammatory cytokines and TNF-alpha soluble receptors in the initial phase of acute pancreatitis. Adv Med Sci. 2007;52:129-34

22. Yu Pan, Haizong Fang, Fengchun Lu, Minggui Pan, Fei Chen, Ping Xiong, Yi Yao, Heguang Huang. Ulinastatin ameliorates tissue damage of severe acute pancreatitis through modulating regulatory T cells. J Inflamm (Lond) 2017; 14: 7. Published online 2017 Mar 20. doi: 10.1186/s12950-017-0154-7.

23. Wu H, Miao M, Zhang G, Hu Y, Ming Z, Zhang X. Soluble PD-1 is associated with aberrant regulation of T cells activation in aplastic anemia. Immunol Invest 38 5:408–421, 2009.

24. Greisen SR, Rasmussen TK, Stengaard-Pedersen K, Hetland ML, Hørslev-Petersen K, Hvid M, Deleuran B. Increased soluble programmed death-1 (sPD-1) is associated with disease activity and radiographic progression in early rheumatoid arthritis. Scand J Rheumatol 43 2:101-108, 2014.

25. Han XC, Zhang YC, Wang Y, Jia MK. Clinical evaluation of serum interleukin 10 in patients with acute pancreatitis. Hepatobiliary Pancreat Dis Int. 2003;2(1):135–138.

26. Zhao Y, Jia Y, Li C, Shao R, Fang Y. Predictive Value of Soluble Programmed Death-1 for Severe Sepsis and Septic Shock During the First Week in an Intensive Care Unit. Shock. 2019 Mar;51(3):289-297. doi: 10.1097/SHK.0000000000001171.

27. Takeyama Y, Takas K, Ueda T, Hori Y, Goshima M, Kuroda Y. Peripheral lymphocyte reduction in severe acute pancreatitis is caused by apoptotic cell death. J Gastrointest Surg. 2000 Jul-Aug;4(4):379-87.

28. Mentula P, Kylänpää-Bäck ML, Kemppainen E, Takala A, Jansson SE, Kautiainen H, Puolakkainen P, Haapiainen R, Repo H. Decreased HLA (human leucocyte antigen)-DR expression on peripheral blood monocytes predicts the development of organ failure in patients with acute pancreatitis. Clin Sci (Lond). 2003 Oct;105(4):409-17.

29. Hagjer S, Kumar N. Evaluation of the BISAP scoring system in prognostication of acute pancreatitis - A prospective observational study. Int J Surg. 2018 Jun;54(Pt A):76-81. doi: 10.1016/j.ijsu.2018.04.026. Epub 2018 Apr 21.
30. Vasudevan S, Goswami P, Sonika U, Thakur B, Sreenivas V, Saraya A. Comparison of Various Scoring Systems and Biochemical Markers in Predicting the Outcome in Acute Pancreatitis. Pancreas. 2018 Jan; 47(1): 65-71. doi: 10.1097/MPA.0000000000000957.

31. Mounzer R, Langmead CJ, Wu BU, Evans AC, Bishehsari F, Muddana V, Singh VK, Slivka A, Whitcomb DC, Yadav D, Banks PA, Papachristou GI. Comparison of Existing Clinical Scoring Systems to Predict Persistent Organ Failure in Patients With Acute Pancreatitis. Gastroenterology. 2012 Jun; 142(7): 1476-82; quiz e15-6. doi: 10.1053/j.gastro.2012.03.005. Epub 2012 Mar 13.

32. Papachristou GI, Muddana V, Yadav D, O'Connell M, Sanders MK, Slivka A, Whitcomb DC. Comparison of BISAP, Ranson's, APACHE-II and CTSI Scores in Predicting Organ Failure, Complications, and Mortality in Acute Pancreatitis. Am J Gastroenterol. 2010 Feb; 105(2): 435-41; quiz 442. doi: 10.1038/ajg.2009.622. Epub 2009 Oct 27.

33. Anubhav Harshit Kumar, Mahavir Singh Griwan. A comparison of APACHE II, BISAP, Ranson's score and modified CTSI in predicting the severity of acute pancreatitis based on the 2012 revised Atlanta Classification. Gastroenterol Rep (Oxf) 2018 May; 6(2): 127–131. Published online 2017 Jul 28. doi: 10.1093/gastro/gox029

Tables
Table 1 Characteristics of AP patients
Characteristics

Characteristic	Data (n=63)
Age (years, mean ± SD)	51.08±13.56
Sex (n, female/male)	29/34
Severity of AP, n (%)	
Moderately severe	35 (55.6%)
Severe	28 (44.4%)
Etiology of AP, n (%)	
Biliary	19 (30.2%)
Hypertriglyceridemia	24 (38.1%)
Alcoholicity	4 (6.3%)
Other	16 (25.4%)
Ranson score, median (IQR)	2.0 (1–3)
BISAP score, median (IQR)	2.0 (1–2)
APACHE II score, median (IQR)	10.0 (8–15)
Infection complications, n	
Pneumonia	36
Infected necrosis	20
Bacteremia	3
Organ dysfunction, n	
Respiratory	29
Cardiovascular	10
Renal	11
Interventions, n	
Surgical	29
Mechanical ventilation	7
Renal replacement therapy	3
Hospital mortality, n (%)	2 (3.2%)

Abbreviations: IQR, interquartile range; APACHE II, Acute Physiology and Chronic Health Evaluation II; BISAP, The Bedside Index for Severity in Acute Pancreatitis

Table 2 Correlation between traditional clinical indicators and serum sPD-1/sPD-L1

Variable	Day 1	Day 3	Day 10	Day 1	Day 3	Day 1	Day 3	Day 10
Lymphocyte	r	0.168	0.156	-0.092	-0.023	-0.335	-0.294	
count, ×10⁹/L	P	0.188	0.244	0.474	0.861	0.015	0.035	
WBC, ×10⁹/L	r	0.048	-0.029	-0.088	-0.032	0.133	0.060	
Monocyte	r	-0.068	-0.144	-0.049	-0.040	-0.211	-0.080	
count, ×10⁹/L	P	0.595	0.259	0.703	0.756	0.134	0.574	
Neutrophil	r	-0.162	-0.052	-0.051	-0.085	-0.038	0.143	
count, ×10⁹/L	P	0.205	0.686	0.694	0.507	0.790	0.312	
HCT, %	r	-0.145	0.133	-0.289	0.125	-0.331	0.116	
NLR	r	-0.248	-0.138	0.038	-0.024	0.177	0.213	
LMR	r	0.061	0.280	0.766	0.850	0.210	0.129	
PLR	r	0.169	0.268	-0.015	0.019	-0.049	-0.092	

Abbreviations: WBC, white blood cell; HCT, hematocrit; NLR, neutrophil-lymphocyte ratio; LMR, lymphocyte-monocyte ratio; PLR, platelet-lymphocyte ratio

Table 3 Clinical indicators of patients with AP with or without ICs
Variable	AP with IC (n=36)	AP without IC (n=27)
Age, years	52.33 ± 13.76	49.41 ± 13.37
Male/Female, n	24/12	10/17
APACHE II score	13.56 ± 2.91	8.93 ± 2.43
WBC count, ×10^9/L	12.42 ± 5.41	12.97 ± 5.67
Neutrophil count on day 1, ×10^9/L	9.98 ± 5.23	10.35 ± 5.54
Monocyte count on day 1, ×10^9/L	0.84 ± 0.47	0.62 ± 0.30
Lymphocyte count on day 1, ×10^9/L	1.20 ±0.58	1.26 ± 0.66
PLT, ×10^9/L	282.06 ± 116.47	239.44 ± 105.32
HCT, %	31.66 ± 7.79	36.79 ± 6.75
sPD-1 levels on day 1, pg/ml	186.29 ± 124.51	165.57 ± 62.25
sPD-1 levels on day 3, pg/ml	266.03 ± 130.37	185.17 ± 78.79
sPD-1 levels on day 10, pg/ml	323.76 ± 167.25	210.97 ± 102.33
sPD-L1 levels on day 1, pg/ml	25.83 ± 16.01	30.78 ± 21.51
sPD-L1 levels on day 3, pg/ml	31.02 ± 17.61	29.49 ± 16.63
sPD-L1 levels on day 10, pg/ml	27.58 ± 15.02	33.75 ± 14.81

Abbreviations: APACHE II, Acute Physiology and Chronic Health Evaluation II; WBC, white blood cell; PLT, Platelet; HCT, hematocrit

Table 4 Univariate and Multivariate regression analysis of variables for ICs of AP

Variable	Univariate analysis	Multivariate analysis
	OR (95% CI)	P value
Age	1.016 (0.979–1.055)	0.395
HCT, %	0.908 (0.842–0.980)	0.013
APACHE II score	1.420 (1.134–1.776)	0.002
Lymphocyte count on day 1	0.863 (0.380–1.957)	0.724
Monocyte count on day 1	3.178 (0.757–13.344)	0.114
Neutrophil count on day 1	0.987 (0.898–1.084)	0.783
Serum sPD-1 levels on day 1	1.002 (0.997–1.007)	0.428
Serum sPD-1 levels on day 3	1.013 (1.005–1.021)	0.002
Serum sPD-L1 levels on day 1	0.985 (0.959–1.013)	0.300
Serum sPD-L1 levels on day 3	1.005 (0.976–1.033)	0.722

Abbreviations: HCT, hematocrit; APACHE II, Acute Physiology and Chronic Health Evaluation II

Table 5 AUCs of various parameters for predicting ICs in AP patients

Variable	AUC	P value	95% CI
APACHE II score	0.769	< 0.001	0.649–0.889
Serum sPD-1 levels on day 3	0.796	< 0.001	0.681–0.911
Combination of above two various	0.826	< 0.001	0.721–0.931

Figures
Figure 1

The serum sPD-1 and sPD-L1 levels in patients with AP. (A) sPD-1 and (B) sPD-L1 were measured in peripheral blood from healthy volunteers (control, n=30) and patients with AP (n = 63) on day 1 (d1), day 3 (d3) and day 10 (d10) after onset. *P < 0.05, **P < 0.01.
The area under the ROC curve (AUC) was used to estimate the accuracy of the predicted model. AUC of serum sPD-1 level on day 3: 0.796; AUC of APACHE II score: 0.769; AUC of combined: 0.826.