INTRODUCTION

Urinary bladder cancer is the most lethal urologic malignancy worldwide. It is estimated to affect nearly 75000 people in the United States, with 15000 people dying from the disease every year. About 75% of bladder cancer patients present with non-muscle-invasive bladder cancer, with the remaining presenting with muscle-invasive bladder cancer, including metastatic cancer. Non-muscle-invasive bladder cancer patients are initially treated with transurethral resection and half of these patients experience recurrence of the disease. About 5–30% of these patients progress to muscle-invasive bladder cancer. In spite of an overall 5-year survival rate for bladder cancer of 82%, the 5-year survival rate for metastatic cancer only 6%; the 5-year survival rate for localized cancers is 94%. Since most initial diagnoses are made from transurethral bladder biopsies, it can be difficult to determine the tumor is invasive. Therefore, there is a clear need for both predictors of muscular invasion and effective targets for novel systemic therapies.

Eph receptors are differentially expressed in numerous malignant tumors. This study intended to analyze the roles of EphB receptors (EphB2, B3, and B4) in urinary bladder cancer.

Materials and Methods: Tissue microarray-based immunohistochemical analysis was used to investigate the expression patterns of EphB2, EphB3, and EphB4 in 154 bladder cancer specimens. Immunohistochemical staining was conducted examining the extent of stained cells and staining intensity. EphB was considered to be highly expressed when the intensity of staining was more than moderate in >25% of cells in the tissue section. Small interfering RNA (siRNA) was used to knock down EphB expression in bladder cancer cell lines (T24, 5637) to determine the effects of EphB on tumor cell invasion, proliferation, and migration.

Results: EphB receptors (B2, B3, and B4) were detected in 40.9% (EphB2, 63/154), 71.4% (EphB3, 110/154), and 53.2% (EphB4, 82/154) of bladder cancer specimens. Low expression of EphB2, B3, and B4 receptors were significantly associated with higher tumor grade (EphB2, \(p < 0.001 \); EphB3, \(p = 0.032 \); EphB4, \(p < 0.001 \)) and muscular invasion (EphB2, \(p = 0.002 \); EphB3, \(p = 0.009 \); EphB4, \(p < 0.001 \)). No obvious correlation was observed with other clinicopathological variables, such as age, sex, recurrence, lymph node involvement, metastasis, and overall survival. Inactivation of EphB receptors by siRNA transfection increased cell viability, tumor cell invasion, proliferation, and migration in comparison with untransfected cancer cells.

Conclusion: Low expression of EphB receptors (B2, B3, and B4) can be a predictive marker for muscular invasion of bladder cancer.

Key Words: EphB2, EphB3, EphB4, bladder cancer, muscle invasion, predictive marker
pressing cancer progression depending on the cancer type. EphB expression has been shown to be related to poor prognosis in osteosarcoma, endometrial cancer, and melanoma.

A retrospective study indicated that EphB4, EphB6, EphA2, EphA4, and EphA7 were significantly associated with poor overall survival in breast cancer patients. Their results demonstrated that several Eph receptors may be important targets for treatment in breast cancer. Another study demonstrated that EphB4 was upregulated in bladder cancer cells and mediated cell survival. Additionally, several studies have demonstrated that EphB4 is overexpressed in a few different cancers, including head and neck, breast, prostate, and uterine cancer.

In breast cancer, Eph receptor expression was found to be significantly associated with cancer aggressiveness and invasiveness. In an animal model of breast cancer, overexpression of EphB2 induced tumor progression and promoted metastasis. Notwithstanding, the clinical significance of EphB expression in cancer is controversial. Loss of EphB2 expression has been shown to be correlated with more advanced colorectal cancer and poorer overall survival. In bladder cancer, researchers indicated that loss of EphB2 expression and overexpression of EphB4 could possibly affect tumor progression.

Meanwhile, EphB3 knockout mice exhibited an increased frequency of retinal ganglion cell axon guidance errors to the optic disc, where EphB3 is involved in the formation of topographic maps. However, in malignant tumors, the function of EphB3 remains unknown. Moreover, while some researchers have reported a suppressive effect for EphB receptors (B2, B3, and B4) in colorectal cancer, other noted tumor-promoting properties for EphB3 in lung cancer.

The Eph family comprises a group of receptor protein tyrosine kinases that are involved in parenchyma tissue integrity and cell-cell communication during embryogenesis. Since the disorganization of tissue architecture is critical for tumor invasiveness, we aimed to examine the expression of EphB family receptors during bladder cancer progression. To our knowledge, EphB (B2, B3, and B4) expression in urinary bladder cancer has not been well investigated, and to elucidate the roles of EphB receptors in bladder cancer, we examined the expression of EphB receptors in surgical bladder specimens and performed functional studies using bladder cancer cell lines.

MATERIALS AND METHODS

Patients and tissue samples for EphB (B2, B3, and B4) immunohistochemistry

Cases of bladder cancer treated at the CHA Bundang Medical Center, School of Medicine, CHA University from 2006 to 2012 were reviewed. A total of 154 specimens of bladder cancer were obtained from 134 patients who underwent transurethral resection of the bladder (TURB) or partial cystectomy or radical cystectomy. Eighteen patients had repeated surgery (6 patients: TURB and repeated TURB; 7 patients: TURB and radical cystectomy; 3 patients: TURB and partial cystectomy; 1 patient: TURB and repeated TURB twice; 1 patient: two times of TURB and radical cystectomy). When possible, adjacent normal tissue was also collected. Human specimens were collected under approval from the CHA Bundang Medical Center Institutional Review Board (IRB2017-09-052).

Analysis and grading of tissues were performed by a blinded reviewer. A manual tissue arrayer (Quick-Ray Manual Tissue Microarrayer; Unitma Co. Ltd., Seoul, Korea) was used to construct issue microarrays from archival formalin-fixed, paraffin-embedded tissue blocks. Tissue cylinders (diameter: 3 mm) were punched from the tumor region of the donor block and were re-embedded into the recipient block. Four μm sections were made from tissue microarrays.

Immunohistochemistry

Tissue microarray sections were deparaffinized in xylene and rehydrated in alcohol. Endogenous peroxidase activity was suppressed by 10 min of immersion in 3% hydrogen peroxide. For antigen retrieval, each section was heated in 0.01 mol/L sodium citrate buffer (pH 6.0) for 30 min. The sections were washed three times in phosphate-buffered saline (PBS) for 5 min and incubated for 1 h at room temperature with mouse monoclonal antibodies to human EphB2, EphB3, and EphB4 (1:100; Epitomics, Burlingame, CA, USA). The sections were then incubated with horseradish peroxidase-labeled rabbit anti-mouse immunoglobulin (DAKO; 1 h at room temperature) and developed with diaminobenzidine at room temperature to reveal staining.

Interpretation of immunostaining

Positive ephrin receptor (EphB2, B3, and B4) staining was defined as brown granules in the cytoplasm or nuclei. Staining intensity was evaluated as no staining, weak intensity, moderate intensity, or strong intensity. The extent of staining was categorized as follows: 0–4%, 5–25%, 26–50%, 51–75%, and 76–100%. A case was considered to highly express EphB when the intensity of staining was more than moderate in >25% of cells in the tissue section.

Cell lines and culture

The human bladder cancer cell lines (T24, 5637) were obtained from the American Type Culture Collection (Rockville, MD, USA). T24 and 5637 cells were cultured in Roswell Park Memorial Institute (RPMI)-1640 medium supplemented with 10% fetal bovine serum (FBS), 100 U/mL penicillin, and 100 mg/mL streptomycin, and incubated at 37°C in a humidified atmosphere consisting of 5% CO2.

EphB siRNA transfection

The siRNA used to silence EphB (B2, B3, and B4) and the negative control vector (cat. no. SN-1013) were purchased from Bi-
and antisense: 5'-UCC AAG AGU CCG AAA GUC C(dTdT)-3';
and antisense: 5'-ACU CUG UGA GAA UCA UGA C(dTdT)-3'.
si-EphB4, sense: 5'-GUC AUG AUU CUC ACA GAG U(dTdT)-3'
anti-EphB2 (Cell Signaling Technology, Danvers, MA, USA), an-
branes were incubated overnight at 4°C with 1:1000 dilution of
The membranes were blocked with 5% milk for 1 h. The mem-
amounts of proteins were electrophoresed on 10% SDS-PAGE
centrations were determined using the Bradford assay. Equal
were centrifuged at 13,000 rpm at 4°C for 15 min. Protein con-
Cells were lysed with Protein Extraction Reagent (Pro-Prep,
iNtRON Biotechnology, Seongnam, Korea) and the lysates
EphB (B2, B3, and B4) siRNA and control vector were
transfected into the cells using Lipofectamine 2000 (Invitro-
, Carlsbad, CA, USA), and the cells were assayed at 24, 48, and 72
h after transfection. The siRNA sequences were as follows:
si-EphB2, sense: 5'-GAG AAG UUG CCA CUC AUC A(dTdT)-3' and antisense: 5'-UGA UGA GUG GCA ACU UCU C(dTdT)-3';
si-EphB3, sense: 5'-GGA CUU UCG GAC UCUC UGG A(dTdT)-3' and antisense: 5'-UCC AAG AGU CCG AAA GUC C(dTdT)-3';
si-EphB4, sense: 5'-GUC AUG AUU CUC ACA GAG U(dTdT)-3' and antisense: 5'-ACU CUG UGA GAA UCA UGA C(dTdT)-3'.
Quantitative real-time PCR for Eph receptors (EphB2, B3, and B4)
Total RNA was extracted from cells using TRizol reagent (Invitro-
gen according to the manufacturer's instructions. For first-
strand cDNA synthesis, 1 μg of total RNA was reverse-tran-
scribed in a 20 μL reaction mix using a Superscript III kit (Invitrogen). Quantitative real-time PCR was performed in tri-
plicate using the Bio-Rad CFX96 Real-Time PCR Detection Sys-
tem. TaqMan Gene Expression Assay (Applied Biosystems, Paisley, UK) was used to analyze GAPDH (ABI code: Hs00606297_mL, sequence undisclosed), EphB2 (ABI code: Hs00362096_mL, sequence undisclosed), EphB3 (ABI code: Hs00177903_mL, sequence undisclosed), and EphB4 (ABI code: Hs011191113_mL, sequence undisclosed). The final reaction mix vol-
ume of 20 μL included 1-μL cDNA, 10 μL of TaqMan master mix (Applied Biosystems), and 1 μL primer and probe kit (Ap-
plied Biosystems). The reverse transcription conditions used
were 2 min at 50°C, 10 min at 95°C, and 1 min at 60°C for 40 cycles. Transcript levels were normalized against GAPDH ex-
pression. Gene expression was calculated using 2-ΔΔCt.20
Western blot analysis
Cells were lysed with Protein Extraction Reagent (Pro-Prep,
iNtRON Biotechnology, Seongnam, Korea) and the lysates were centrifuged at 13,000 rpm at 4°C for 15 min. Protein con-
centrations were determined using the Bradford assay. Equal
amounts of proteins were electrophoresed on 10% SDS-PAGE and transferred to nitrocellulose membranes at 100 V for 2 h. The membranes were blocked with 5% milk for 1 h. The membranes were incubated overnight at 4°C with 1:1,000 dilution of anti-EphB2 (Cell Signaling Technology, Danvers, MA, USA), anti-EphB3 (Thermo Fisher Scientific, Inc., Waltham, MA, USA), anti-EphB4 (Cell Signaling Technology), and 1:10,000 dilution of anti-β-actin (Santa Cruz Biotechnology, Santa Cruz, CA, USA). Then, the membranes were incubated with anti-rabbit 1:5,000 or anti-mouse 1:5,000 (Santa Cruz Biotechnology) secondary antibodies for 1 h at room temperature. After incubation, the protein bands were observed using ECL reagent (iNtRON Biotechnology). Protein expression was quantified using Quantity One® 1-D Analysis Software (Bio-Rad Laboratories, Hercules, CA, USA).

Wound-healing assay
A wound-healing assay was used to assess cell migration. Cells were seeded into 96-well tissue culture plates and cultured to a confluent monolayer. A sterile pipette tip was used to scratch the wound carefully. The monolayer was incubated in cell cul-
ture medium and then imaged at 24 h using a microscope.

Colony-forming assay
T24 and 5637 cells (1×10^5/well) were seeded in six-well plates. The next day, cells were transfected with EphB2, EphB3, and EphB4 siRNA and incubated for 48 h. Then, transfected cells were replated at 300 cells/well in six-well culture dishes. After 10 days, colonies were fixed with 4% paraformaldehyde for 10 min and visualized using hematoxylin. The number of colonies was defined as >50 cells/colony and counted.

Cell invasion assay
Matrigel invasion assay was performed using Boyden cham-
bers containing Transwell membrane, which was coated with BD Matrigel (BD Biocoat, Bedford, MA, USA). 1×10^6 cells in McCoy’s 5A medium supplemented with 0.1% BSA were plat-
ed in the upper chamber. McCoy’s 5A medium containing 10% FBS was added to the lower chamber. After 48 h of incubation, the non-invasive cells on the upper surface of the membrane were eliminated with a cotton swab. The cells that had passed to the lower surface of the membrane were fixed in 100% ethanol and stained with hematoxylin and eosin.

Statistical analysis
Statistical analysis was performed using SPSS 24.0 software (IBM Corp., Armonk, NY, USA). The χ^2 test and Kruskal-Wallis test were used. A one-way analysis of variance was used to ana-
yze colony forming, invasion, and wound healing assays. A p-
value<0.05 was considered statistically significant.

RESULTS
Association between EphB (B2, B3, and B4) immunoreactivity and clinicopathologic parameters in patients with bladder cancer
To investigate whether EphB (B2, B3, and B4) expression is as-
associated with bladder cancer, we analyzed EphB expression in
154 bladder cancer tissues. Of 154 specimens, 117 specimens
were obtained from TURB, 14 specimens from partial cystec-
tomy, and 23 specimens from radical cystectomy. Represen-
tative immunoreactivity of EphB (B2, B3, and B4) expression
is shown in Fig. 1. EphB (B2, B3, and B4) expression revealed
strong membranous staining, mostly combined with a cyto-

https://doi.org/10.3349/ymj.2021.62.8.679

681
plasmic immunostaining pattern tumor cells. EphB receptors (B2, B3, and B4) were detected in 40.9% (EphB2, 63/154), 71.4% (EphB3, 110/154), and 53.2% (EphB4, 82/154) of the bladder cancer tissues. Low expression of EphB2, B3, B4 receptors were significantly associated with higher tumor grade (EphB2, \(p < 0.001 \); EphB3, \(p = 0.032 \); EphB4, \(p < 0.001 \)) and muscular invasion (EphB2, \(p = 0.002 \); EphB3, \(p = 0.009 \); EphB4, \(p < 0.001 \)) (Table 1). Low expression of EphB2 and EphB4 were significantly more likely to undergo partial or radical cystectomy (EphB2, \(p = 0.002 \); EphB4, \(p < 0.001 \)). Similarly, patients with low expression of EphB2 and EphB4 were significantly more likely to undergo partial or radical cystectomy (EphB2, \(p = 0.002 \); EphB4, \(p < 0.001 \)). Fig. 2 depicts a significant association between the low expression of EphB (B2, B3, and B4) receptors and muscular invasiveness. Interestingly, high EphB (B2, B3, and B4) expression groups exhibited a correlation with non-muscular invasion of cancer. No obvious correlation was observed with other clinicopathological variables, such as age, sex, recurrence, lymph node involvement, and metastasis. There was no significant association between EphB (B2, B3, and B4) expression and overall survival (Fig. 3).

EphB siRNA inhibits EphB expression in bladder cancer cell lines

We employed siRNA against EphB (B2, B3, and B4) via transfection into T24 and 5637 bladder cancer cells. We examined EphB (B2, B3, and B4) mRNA expression in comparison with control cells after transfection at 24, 48, and 72 h, respectively. The results showed that EphB2 mRNA expression in T24 (72%, 50%, and 30.4%) and 5637 (61.6%, 73.6%, and 35.1%) cells was decreased (\(p < 0.05 \)) (Fig. 4A), as was EphB3 mRNA expression in T24 (72%, 42%, and 17%) and 5637 (53%, 62.2%, and 60%) cells (\(p < 0.05 \)) (Fig. 4B) and EphB4 mRNA expression in T24 (61.5%, 81.6%, and 50.6%) and 5637 (76.5%, 61.2%, and 43.5%) cells (\(p < 0.05 \)) (Fig. 4C). These results confirmed the effective suppressive effect of EphB (B2, B3, and B4) siRNA.

To demonstrate the efficiency of EphB (B2, B3, and B4) silencing at the protein level, we employed Western blot analysis to determine EphB (B2, B3, and B4) protein expression levels at 24, 48, and 72 h after transfection. We discovered that EphB (B2, B3, and B4) expression in T24 (51%, 69%, and 45%; 51%, 80%, and 95%; 86%, 62%, and 44%, respectively) and 5637 (53%, 62%, and 27%; 48%, 71%, and 92%; 84%, 46%, and 53%, respectively) cells decreased in comparison with the control cell line (\(p < 0.05 \)) (Fig. 5).

Effect of EphB suppression on cancer cell proliferation, migration, and invasiveness in EphB siRNA transfected bladder cancer cell lines

We conducted colony-forming, wound healing, and Matrigel invasion assays after EphB (B2, B3, and B4) siRNA transfection. Colony numbers for EphB (B2, B3, and B4) transfected
Table 1. Correlations among EphB Expression and Clinicopathological Parameters of Bladder Cancer

	Total (n=154)	EphB2	p value	EphB3	p value	EphB4	p value					
	Low	High										
Age (yr)	<60	41 (27)	20 (48.8)	21 (51.2)	8 (19.5)	33 (80.5)	16 (39.0)	25 (61.0)	0.117	0.134	0.143	0.247
≥60	113 (73)	71 (62.8)	42 (37.2)	36 (31.9)	77 (68.1)	56 (49.5)	57 (50.4)	0.622	0.335	0.336	0.940	
Sex	Male	118 (77)	71 (62.8)	47 (39.8)	36 (30.5)	82 (69.5)	55 (46.6)	63 (53.4)	0.117	0.134	0.143	0.247
	Female	36 (23)	20 (55.6)	16 (44.4)	8 (22.2)	28 (77.8)	17 (47.2)	19 (52.8)	0.622	0.335	0.336	0.940
Tumor grade	Low	59 (38)	24 (40.7)	35 (59.3)	11 (18.6)	48 (81.4)	15 (25.4)	44 (74.6)	0.001*	0.032*	0.001*	
	High	95 (62)	67 (70.5)	28 (29.5)	25 (61.0)	57 (40.0)	38 (40.0)	0.001*				
TNM stage	Stage 0a/Dis	64 (41)	26 (40.6)	38 (59.4)	11 (17.2)	53 (82.8)	16 (25.0)	48 (75.0)	0.004*†	0.076†	0.032*†	
	Stage I	21 (14)	15 (71.4)	6 (28.6)	6 (28.6)	15 (71.4)	18 (81.0)	13 (61.9)	0.001*†	0.032*†	0.001*†	
	Stage II	38 (25)	27 (71.1)	11 (28.9)	14 (36.8)	24 (63.2)	25 (65.8)	13 (34.2)	0.002*†	0.076†	0.032*†	
	Stage III	21 (14)	15 (71.4)	6 (28.6)	8 (38.1)	13 (61.9)	17 (81.0)	4 (19.0)	0.002*†	0.076†	0.032*†	
	Stage IV	10 (6)	8 (80.0)	2 (20.0)	5 (50.0)	5 (50.0)	6 (60.0)	4 (40.0)	0.002*†	0.076†	0.032*†	
Muscular invasion	No	85 (55)	41 (48.2)	44 (51.8)	17 (20.0)	68 (80.0)	24 (28.2)	61 (71.8)	0.002*†	0.009*†	0.001*†	
	Yes	69 (45)	50 (72.5)	19 (27.5)	27 (39.1)	42 (60.9)	48 (69.6)	21 (30.4)	0.002*†	0.009*†	0.001*†	
Recurrence	No	108 (70)	65 (60.2)	43 (39.8)	32 (29.6)	76 (70.4)	50 (46.3)	58 (53.7)	0.002*†	0.009*†	0.001*†	
	Yes	46 (30)	26 (56.5)	20 (43.5)	12 (26.1)	34 (73.9)	22 (47.8)	24 (52.2)	0.002*†	0.009*†	0.001*†	
LN involvement	No	150 (97)	88 (58.7)	62 (41.3)	42 (28.0)	108 (72.0)	71 (47.3)	79 (52.7)	0.002*†	0.009*†	0.001*†	
	Yes	4 (3)	3 (75.0)	1 (25.0)	2 (50.0)	2 (50.0)	1 (25.0)	3 (75.0)	0.002*†	0.009*†	0.001*†	
Metastasis	No	149 (97)	87 (58.4)	62 (41.6)	41 (27.5)	108 (72.5)	69 (46.3)	80 (53.7)	0.002*†	0.009*†	0.001*†	
	Yes	5 (3)	4 (80.0)	1 (20.0)	3 (60.0)	2 (40.0)	3 (60.0)	2 (40.0)	0.002*†	0.009*†	0.001*†	
Surgical procedure	TURB	117 (76)	61 (52.1)	56 (47.9)	30 (25.6)	87 (74.4)	43 (36.8)	74 (63.2)	0.002*†	0.009*†	0.001*†	
	Partial or radical cystectomy	37 (24)	30 (81.1)	7 (18.9)	14 (37.8)	23 (62.2)	29 (78.4)	8 (21.6)	0.002*†	0.009*†	0.001*†	
Death	No	138 (90)	85 (61.6)	53 (38.4)	40 (28.0)	98 (71.0)	62 (44.9)	76 (55.1)	0.002*†	0.009*†	0.001*†	
	Yes	16 (10)	6 (37.5)	10 (62.5)	4 (25.0)	12 (75.0)	10 (62.5)	6 (37.5)	0.002*†	0.009*†	0.001*†	

LN, lymph node; TURB, transurethral resection of the bladder.
Data are presented as n (%).
*p<0.05 was considered statistically significant, †Kruskal-Wallis test. All others were assessed using a χ² test.

Cancer cells increased significantly among T24 (202%, 169%, and 224%, respectively) and 5637 (231%, 193%, and 206%, respectively) cells in comparison with colony numbers of control cells at 10 days (p<0.05) (Fig. 6A). Cell motility with wound generation indicated that cell migration in transfected cells was increased in comparison with control cells. After 24 h, we observed that EphB (B2, B3, and B4) transfected cells led to increased migrating cell numbers among T24 (280%, 190%, and 266%, respectively) and 5637 (457%, 325%, and 439%, respectively) cells, compared with control cells (p<0.05) (Fig. 6B). Matrigel invasion assay was applied to evaluate invasion activity of the tumor cells. Fig. 6C shows the staining results at 48 h. EphB (B2, B3, and B4) siRNA transfected cells increased significantly among T24 (317%, 315%, and 325%, respectively) and 5637 (261%, 241%, and 237%, respectively) cells in comparison with control cells (p<0.05). The EphB (B2, B3, and B4) transfected cells become more invasive cancer cells.

DISCUSSION

Clinicians predict the probabilities of bladder cancer progression and recurrence patients using several parameters, such as tumor grade, tumor invasion, and clinical staging. Of these,
the most important factor is tumor invasiveness (T category). The recurrence rate of non-muscle-invasive bladder cancer is approximately 50–70%. About 2% of low-grade tumors and up to 45% of high-grade tumors progress to muscle-invasive cancer, which has a 5-year survival rate of less than 50%.

Ephs/ephrins signaling has drawn growing interest in regards to their function; however, their biological significance is not totally understood. Eph receptor tyrosine kinase signaling affects both contacting cells and can modulate various biological responses. Eph receptors guide invasion, adhesion, and epithelial phenotype by adjusting organization of the actin cytoskeleton, consequently directing the movement of tumor cells through their microenvironment. Dysregulating mutations in Eph receptors has been found to play a part in cancer pathogenesis. Even though bidirectional signaling promotes angiogenesis within tumor, its intrinsic role in tumor progression is complex and intriguing, as demonstrated by paradoxical effects. Eph protein expression has both tumor-promoting and tumor-suppressing effects in cancer. According to previous studies, Ephs/ephrins are often up-regulated in various malignant tumors and are correlated with high vascularity and poor prognosis in cancer, indicating their critical function in tumor progression. Overexpression of Eph receptors, including EphA1, EphA3, EphB2, and EphB4, has been reported during carcinogenesis. Meanwhile, however, both overexpression, and low expression of Eph receptor have been shown to be correlated with tumor progression. As well, some studies have indicated that overexpression of Eph receptors is associated with less malignant stage, while the loss of the Eph receptor is associated with more advanced stages.
A few studies have reported that EphB2 is a significant tumor suppressor gene in various tumor types. Batlle, et al. reported that in colon cancer cells silencing of EphB2 lead to an invasive phenotype. Guo, et al. described that EphB2 expression was progressively lost in each crucial point of colon cancer progression and that loss of EphB2 expression was associated with more advanced tumor stage and poor overall survival and liver metastasis. In gastric cancer, loss of EphB2 expression is lost in more advanced stages and metastasis.27 Recently, Li, et al. described that EphB2 is largely expressed in normal bladder tissue, but lost in bladder cancer, possibly acting as a cell survival factor. Similarly, in our study of 154 cases, 91 (59%) cases demonstrated low expression of EphB2, which was significantly associated with higher tumor grade, muscular invasion, advanced stage, and a high incidence of cystectomy. Our in vitro studies showed that EphB2 inactivation increased bladder cancer cell proliferation, motility and invasion, implying that the loss of EphB2 contributes to tumor invasion and metastasis of bladder cancer.

EphB3 was first researched in the developing nervous system. Administration of soluble ephrinB1 interfered with EphB3 function and elicited disorganization and a loss of migratory patterns of neural crest cell movement. In colorectal cancer, loss of EphB3 expression was found to result in aggressive adenocarcinoma in Apc (Min+) mice, and EphB3 appeared to play a role as an inhibitor of tumorigenesis by regulating intercellular repulsive and adhesive interactions. Moreover, the up-regulation of EphB3 expression was shown to increase cell-cell contact and to inhibit tumor growth in colon cancer. Recently, Gao, et al. reported that EphB3 expression was negatively associated with International Federation of Gynecologists and Obstetricians stage and histological grade in ovarian serous carcinomas. However, no study has investigated the role of EphB3 in bladder cancer. As far as we know, this is the first study to demonstrate the role of EphB3 in bladder cancer and we discovered that low expression of EphB3 was significantly associated with higher tumor grade and muscular invasion.

According to previous studies, the role of EphB4 is also controversial. Some studies have reported that EphB4 is up-regulated in bladder cancer, prostate cancer, and ovarian cancer.
Nevertheless, other studies have shown that EphB4 suppresses tumor growth. In breast cancer, knockdown of EphB4 suppressed breast cancer cell invasion, viability, and migration in vitro and tumor growth in vivo. The functional activation of EphB4 appears to play a role in tumor progression by enhancing angiogenesis via ephrinB2 in breast cancer. Hu, et al. reported that the status of EphB4 phosphorylation switched EphB4 from a tumor promoter to a tumor suppressor.

In this study, similar to the EphB2 and B3 results, EphB4 expression was reduced in 82 (53.2%) of the 154 cases, and this was correlated with tumor grade, muscular invasiveness, and advanced tumor stage. Contrary to our study, Li, et al. reported that the number of cells with EphB4 expression has been found to be reduced in most invasive cancers analyzed. This suggests that EphB4 could be an effective agent for therapeutic intervention.

For therapeutic usage, EphB4 knockdown with antisense oligodeoxynucleotides has been found to increase apoptosis and to decrease breast cancer cell survival.

To further define the functions of EphB2, B3, and B4 in bladder cancer invasion, we employed siRNA to knockdown the expression of EphB2, B3, and B4 in bladder cancer cells. In doing so, we confirm that EphB2, B3, and B4 knockdown leads to increased migration, invasion, and proliferation of bladder cancer cells. This suggests that the activation of EphB2, B3, and B4 may be helpful for bladder cancer treatment.

Recently, three-dimensional organoid cultures have demonstrated the importance of the WNT/β-catenin pathway in blad-
Fig. 6. Inhibition of EphB increases proliferation and invasion of bladder cancer cells (T24 and 5637). (A) Colony forming assay was performed to assess cell proliferation. The proliferation rate of the transfected cells was significantly faster than that of the control cells at 10 days. Colony numbers of transfected cells increased significantly, compared with that of control cells (10 days) (*p<0.05). (B) Cell migration (×100) was analyzed using wound-healing assay. Cell migration was increased significantly after EphB siRNA transfection, compared with that for control cells, after 24 h (*p<0.05). Cell invasion was significantly increased after EphB siRNA transfection, compared to control cells (*p<0.05). siRNA, small interfering RNA.
Low Expression of EphB in Bladder Cancer

This study verified previous results indicating that the expression of activated β-catenin with PTEN deletion promote bladder cancer development. EphB2 and EphB3 are β-catenin and T cell factor (Tcf) target genes in colorectal cancer. Low grade tumor areas exhibit an abundance of EphB positive cells, whereas clusters of EphB negative cells were equivalent to high grade areas in colorectal cancer. In colorectal cancer, EphB levels were found to be down-regulated despite Wnt signaling pathway activation, which suggested that cancer cells transcriptionally silenced EphB expression via tumor cell compartmentalization. Similarly, in our study, EphB2, EphB3, and EphB4 were down-regulated in higher tumor grade and more advanced stages of bladder cancer. Meanwhile, androgen can promote bladder cancer progression and metastasis through Slug mediated epithelial-mesenchymal transition (EMT), due to WNT/β-catenin signaling pathway activation. Mesenchymal-to-epithelial transition (MET) is the reverse process of EMT. EphB3 has been found to promote MET by enhancing cell-cell contact, and to suppress tumor growth in colorectal cancer. Inhibition of EphB4 has been shown to lead to the disruption of cell junctions that favor EMT in breast cancer. Thus, further investigation of EphB receptors and WNT/β-catenin signaling pathway in bladder cancer will be required.

Fig. 6. Inhibition of EphB increases proliferation and invasion of bladder cancer cells (T24 and 5637). (C) Matrigel invasion assay was used to analyze cell invasion (×100). Cell invasion was significantly increased after EphB siRNA transfection, compared to control cells (*p<0.05). siRNA, small interfering RNA.

In conclusion, observed correlations for low expression of EphB receptors (B2, B3, and B4) with muscular invasion indicated that EphB receptors may be key regulators of aggressive behavior and tumor progression in bladder cancer and potentially predictive markers of muscular invasion in bladder cancer patients.
AUTHOR CONTRIBUTIONS

Conceptualization: Tae Hoen Kim. Data curation: Jin Hyung Heo and Tae Ho Lee. Formal analysis: Gee Hoon Lee. Funding acquisition: Tae Ho Lee. Investigation: Tae Ho Lee. Methodology: Ju-Yeon Jeong. Project administration: Tae Hoen Kim. Resources: Ju-Yeon Jeong. Software: Gee Hoon Lee. Supervision: Tae Hoen Kim. Validation: Dong Soo Park. Visualization: Tae Ho Lee. Writing—original draft: Tae Ho Lee. Writing—review & editing: Tae Hoen Kim. Approval of final manuscript: all authors.

ORCID iDs

Tae Ho Lee https://orcid.org/0000-0002-6797-1042
Jin Hyung Heo https://orcid.org/0000-0002-4037-4491
Ju-Yeon Jeong https://orcid.org/0000-0002-6861-6587
Gee Hoon Lee https://orcid.org/0000-0002-0855-1312
Dong Soo Park https://orcid.org/0000-0002-1377-3630
Tae Hoen Kim https://orcid.org/0000-0002-2241-6694

REFERENCES

1. Siegel R, Ma J, Zou Z, Jemal A. Cancer statistics, 2014. CA Cancer J Clin 2014;64:9-29.
2. Cookson MS, Herr HW, Zhang ZF, Soloway S, Sogani PC, Fair WR. The treated natural history of high risk superficial bladder cancer: 15-year outcome. J Urol 1997;158:62-7.
3. Mitra AP, Datar RH, Cote RJ. Molecular pathways in invasive bladder cancer: new insights into mechanisms, progression, and target identification. J Clin Oncol 2006;24:5552-64.
4. Klein B. Eph/ephrin signalling during development. Development 2012;139:4105-9.
5. Pasquale EB. Eph receptors and ephrins in cancer: bidirectional signalling and beyond. Nat Rev Cancer 2010;10:165-80.
6. Takai N, Miyazaki T, Fujisawa K, Nasu K, Miyakawa I. Expression of receptor tyrosine kinase EphB4 and its ligand ephrin-B2 is associated with malignant potential in endometrial cancer. Oncol Rep 2001;8:567-73.
7. Varelias A, Koblar SA, Cowled PA, Carter CD, Clayer M. Human osteosarcoma expresses specific ephrin profiles: implications for tumorigenicity and prognosis. Cancer 2002;95:862-9.
8. Brantley-Sieders DM, Jiang A, Sarma K, Badu-Nkansah A, Walter DL, Shyr Y, et al. Eph/ephrin profiling in human breast cancer reveals significant associations between expression level and clinical outcome. PLoS One 2011;6:e24426.
9. Xia G, Kumar SR, Stein JP, Singh J, Krasnoperov V, Zhu S, et al. EphB4 receptor tyrosine kinase is expressed in bladder cancer and provides signals for cell survival. Oncogene 2006;25:769-80.
10. Kumar SR, Singh J, Xia G, Krasnoperov V, Hassamieh L, Ley EJ, et al. Receptor tyrosine kinase EphB4 is a survival factor in breast cancer. Ann J Pathol 2006;169:279-93.
11. Xia G, Kumar SR, Masood R, Zhu S, Reddy R, Krasnoperov V, et al. EphB4 expression and biological significance in prostate cancer. Cancer Res 2005;65:4623-32.
12. Kumar SR, Masood R, Spannuth WA, Singh J, Scehnet J, Kleiberg G, et al. The receptor tyrosine kinase EphB4 is overexpressed in ovarian cancer, provides survival signals and predicts poor outcome. Br J Cancer 2007;96:1083-91.
13. Masood R, Kumar SR, Sinha UK, Crowe DL, Krasnoperov V, Reddy RK, et al. EphB4 provides survival advantage to squamous cell carcinoma of the head and neck. Int J Cancer 2006;119:1236-48.
32. Hu F, Tao Z, Shen Z, Wang X, Hua F. Down-regulation of EphB4 phosphorylation is necessary for esophageal squamous cell carcinoma tumorigenecity. Tumour Biol 2014;35:7225-32.
33. Rutkowski R, Mertens-Walker I, Lisle JE, Herington AC, Stephenson SA. Evidence for a dual function of EphB4 as tumor promoter and suppressor regulated by the absence or presence of the ephrin-B2 ligand. Int J Cancer 2012;131:E614-24.
34. Yoshida T, Sopko NA, Kates M, Liu X, Joice G, McConkey DJ, et al. Three-dimensional organoid culture reveals involvement of Wnt/β-catenin pathway in proliferation of bladder cancer cells. Oncotarget 2018;9:11060-70.
35. Ahmad I, Morton JP, Singh LB, Radulescu SM, Ridgway RA, Patel S, et al. β-catenin activation synergizes with PTEN loss to cause bladder cancer formation. Oncogene 2011;30:178-89.
36. Clevers H, Batlle E. EphB/EphrinB receptors and Wnt signaling in colorectal cancer. Cancer Res 2006;66:2-5.
37. Jing Y, Cai D, Guo W, Jiang J, Jiang B, Lu Y, et al. Activated androgen receptor promotes bladder cancer metastasis via Slug mediated epithelial-mesenchymal transition. Cancer Lett 2014;348:135-45.
38. Noren NK, Foos G, Hauser CA, Pasquale EB. The EphB4 receptor suppresses breast cancer cell tumorigenicity through an Abl-Crk pathway. Nat Cell Biol 2006;8:815-25.