Challenges of the Blue Economy: Evidence and Research Trends

Rosa María Martínez Vázquez (✉️ rosamaria@ual.es)
University of Almería

Juan Milán García
University of Almería: Universidad de Almería

Jaime de Pablo Valenciano
University of Almería: Universidad de Almería

Research

Keywords: blue economy, blue growth, ocean economy, maritime economy, marine economy, bibliometric analysis

DOI: https://doi.org/10.21203/rs.3.rs-212565/v1

License: This work is licensed under a Creative Commons Attribution 4.0 International License.
Read Full License
Abstract

Background

The Blue Economy is a recent field of study that encompasses economic activities that depend on the sea, often associated with other economic sectors, including tourism, maritime transport, energy and fishing. Blue growth supports the sustainable growth of the maritime and marine sectors as the oceans and seas are engines of the global economy and have great potential for growth and innovation. This article undertakes a bibliometric analysis in the terms of blue economy, maritime economy, ocean economy, marine economy, and Blue Growth to analysis the scientific production of this field of study. The main objective is to find out if there is a link between the blue economy and the circular economy.

Results

The results show an evolving and growing trend during the last decade regarding the number of published articles and citations. Nascent and future research trends include terms such as small-scale fisheries, blue degrowth, aquatic species, biofuel, growth of the coastal blue economy, and internationalization. New researchers, experts, public institutions, and private companies who wish to understand the roots of the Blue Economy and its evolution over time may find this article useful to design and develop strategies that lead to its efficient management, preservation, and sustainability.

Conclusions

In conclusion, it highlights the need for alliances between the sectors that compose blue growth with the incorporation of the circular economy in order to achieve a sustainable blue economy.

1. Background

Throughout history, the sea has always been present in the economic activities of all civilizations as a food resource, a means of transportation and commercial trade. In recent years the term Blue Economy (BE) has become a concept closely related to maritime resources and developed economies in the oceans. The BE aims to promote economic growth, improve life and social inclusion without compromising the oceans’ environmental sustainability and coastal areas since the sea's resources are limited and their physical conditions have been harmed by human actions (EC, 2020).

The first appearance of the term BE dates back to 2009, at the congress of the Senate Committee on Commerce, Science and Transportation of the United States. The importance of the BE for the USA's overall economy, the excellent business opportunities it provides, and the concerns about climate change are excellent opportunities for new blue jobs in renewable energy (Cantwell, 2009). In that same year, the International Symposium on Blue Economy Initiative for Green Growth in Korea took place, where "the concept of using ocean resources in a way that respects the environment can evaluate how both..."
business activity models and new technologies satisfy economic and environmental conditions, contributing to the sustainability of these resources” (Joroff, 2009).

Subsequently, Gunter Pauli (2010), a leading proponent of the BE’s economic model, published a book entitled, “The Blue Economy” (Balboa & Somonte, 2014; Sakhuja, 2015; Bueger, 2015; Geissdoerfer et al., 2017) which proposed it as a model based on technological innovation to supply products at low cost, promote local job creation and a model that is respectful of the environment and competitive in the markets.

At the United Nations Conference on Sustainable Development held in Rio de Janeiro in 2012, the oceans were deemed to be priority areas, with some initial objectives being proposed such as the “sustainable consumption and production patterns”, food security, sustainable energy for all and disaster risk reduction and resilience (UNCTAD, 2014).

Undoubtedly, ocean resources generate numerous benefits to the world economy and offer essential opportunities for transportation, food production, energy, mineral extraction, biotechnology, human settlement in coastal areas, tourism and recreation, and scientific research (Kaczynski, 2011).

In academic research, a literature review on the BE also needs to include similar concepts. Lee et al. (2020) state that “the term BE has been used in different ways and similar terms such as “ocean economy” or “marine economy” are used without clear definitions.” At the same time, when analyzing other articles that address BE, it was observed that ocean economy (OE), marine economy (ME), and blue growth (BG) were also used as synonyms (Kaczynski, 2011; Spamer, 2015). Table 1 shows some of the definitions of these terms.

Table 1. Definitions of BE, BG, ME and OE
Concept	Author	Definitions and related concepts
BE	World Bank, 2013	The sustainable use of ocean resources for economic growth, the improvement of livelihoods and jobs, and the health of ocean ecosystems.
	Costa et al., 2019	The concept of rethinking industrial processes and searching for a viable biological solution that reduces contamination.
	Phelan et al., 2020	It has become synonymous with generating wealth from activities related to the oceans while protecting and supporting marine ecosystems.
	Graziano et al., 2019	It arises from the growing worldwide interest in the growth of water-based activities.
	Schutter & Hicks, 2019	It seeks to curb biodiversity loss while stimulating economic development, thereby integrating environmental and economic interests.
	Kathijotes, 2013	It is the mainstream of national development and can integrate land and sea-based socio-economic sustainable development.
	Kaczynski, 2011	It refers to the commercially sustainable development of the oceans.
	Hoegh-Guldberg et al., 2015; Patil et al., 2016; UNECA, 2016	It has emerged in the last two decades from various forums, but above all from within the policy and practice of environmental development.
BG	Caswell et al., 2020	Emerging from national and international marine policy, it aims to promote the growth of ocean economies and at the same time holistically manage marine socio-ecological systems.
	Dalton et al., 2019	The creation of economic activity and jobs at sea, while the multiple uses of spaces make efficient use of the available sea surface by combining industries.
	Boonstra et al., 2018	It is relatively new and aims to achieve economic growth based on the exploitation of marine resources while avoiding their degradation, excessive use, and pollution.
	Burgess et al., 2018	It is the most recent term to refer to the most holistic management of complex marine socio-ecological systems. It is a dynamic and complex system that covers all industries and regions.
ME	Qi, & Xiao, 2019	It is a dynamic and complex system that covers all industries and regions.
	Wenwen et al., 2016	It is a new economic form that emphasizes a new development concept, a new operating mechanism, and a management model.
	Caban et al., 2017	It is particularly exposed to dangers due to the environment of its operations. These risks are the result of deliberate and incidental actions (hydrometeorological, mechanical conditions, etc.).
Author	Date	Narrative
--------	------	-----------
Bentlage et al., 2014.	A heterogeneous innovation system with enduring relevance to the spatial and functional development of European regions.	
Spamer, 2015.	It simultaneously fosters social inclusion, environmental sustainability, strengthening maritime ecosystems, transparent governance, and economic growth and development.	
OE UNCTAD, 2014	A subset and complement of the evolving development paradigm emphasizing greener, more sustainable, and more inclusive economic pathways.	
Potgieter, 2018	It is considered a crucial factor for global economic growth and development, offering excellent opportunities, challenges, and risks.	
Colgan, 2013	They are marine construction, resource, shipping, and tourism and recreation industries whose establishments are located near ocean shorelines or large lakes.	

It is important to highlight that the concept of BE gives rise to two conflicts of interest. On the one hand, those linked to economic growth and development, and on the other, those linked with safeguarding and protecting the ocean's resources. Kathijotes (2013) states that the objective of BE models is to transfer resources from scarcity to abundance and address the issues that cause environmental problems.

For this reason, it is necessary to propose solutions that take advantage of all available opportunities and analyze the threats to the OE. Lee et al. (2020) link the BE and the UN Sustainable Development Goals (SDGs) and conclude that the objectives that are linked to the BE are: underwater life (14); land ecosystems (15); peace, justice, and stable institutions (16) and alliances to achieve the objectives (17). Linking BE with SDGs is challenging, and conflict areas exist primarily around divergent views on the legitimacy of different sectors as components of BE, particularly high carbon-intensive industries such as oil and gas and the emerging seabed mining industry (Voyer et al., 2018). Furthermore, the increase in human activity, in the form of new or intensified uses, such as the generation of renewable marine energy, exert greater influence and cause conflicts between BE sectors (Hoerterer et al., 2020).

In 2012 the European Union implemented its BG strategy and established subsectors within the field of the BE (EC, 2014; Philipp et al., 2020). The BG Strategy breaks down the BE into five main sectors: Biotechnology, Renewable Energy, Coastal and Maritime Tourism, Aquaculture and Mineral Resources, and integrates other sectors such as fishing, transportation, offshore oil and gas extraction, and ship construction and repair.

Biotechnology presents excellent opportunities to produce natural products with possible applications in the food and pharmaceutical sectors (Rotter et al., 2020; Skrzeszewska & Beran, 2016). It is a recent and developing sector that is part of the bioeconomy, the latter developing and using renewable biological resources from the land and sea. For example, the cultivation of seaweed is expected to provide sustainable biomass that facilitates the development of the marine bioeconomy through BG (Ingle et al.,
2018) and is considered an industrial benchmark for achieving a competitive, circular, and sustainable economy that is less dependent on fossil carbon (Bell et al., 2018).

Renewable wind energy from marine sources and the conversion of thermal energy from the ocean is increasingly present at the global ocean level (Vedachalam et al., 2016; Van den Burg et al., 2019). Novel hybrid robust/stochastic approaches are used to participate in the electricity market, including renewable energy procurement through large consumer purchases that respond to the energy demands of wind turbines (WT), photovoltaic systems (PV), bilateral contracts (BCs), and micro-turbines (MTs), and energy storage systems (ESS) (Abedinia et al., 2019). Other strategies focus on the optimal programming of electrical energy consumption in multiple cooling systems (Saeedi et al., 2019) or models based on heat and energy centers (Khodaei et al., 2018).

Tourism has played a decisive role in developing many island economies, triggering other activities to obtain local economic returns. Similarly, aquaculture and fisheries have contributed to the economic development of certain regions without jeopardizing access to essential resources such as small-scale fisheries (Said & MacMillan, 2020; Brent et al., 2020; Ertör-Akyazi, 2020). The exploitation and extraction of offshore oil and gas is a reality in many economies around the world wherein nations must weigh the economic benefits against the negative impact it may have on living marine resources (Voyer et al., 2018; Papageorgiou & Kyvelou, 2018; Lodge et al., 2014).

Globally, shipping is the primary means of supplying raw materials, consumer goods, and energy, becoming a facilitator of world trade and contributing to economic growth and employment, both at sea and on land (McKinley et al., 2019). In addition, the shipbuilding industry provides real added value to numerous coastal communities (Sdoukopoulos et al., 2019).

Through bibliometric analysis, this study's main objective is the quantitative study between 1979 and 2020 of the evolution of the scientific production on the BE. It aims to evaluate the importance of those articles focused on this line of research. Its main contribution is the assimilation of the BE into the Circular Economy (CE) since both are key to supporting BG and guaranteeing the sustainability of economic activities developed within the blue context.

The results point to 2010 being a turning point that marks a continuous growing trend. Subsequently, the keywords, their trends and thematic evolution are examined. It is followed by a discussion of the link between themes, the most relevant findings, and future lines of research.

2. Methodology

Bibliometry offers useful results from the authors’ production in a field of research, trends, the most cited articles, and the concentration of documents in impact journals (Junquera & Miter, 2007).

The first step was to select the terms through a prior review of those economies linked to the seas and oceans, with BE, BG, ME, and OE being the most representative terms.
The next step involved locating and extracting data on all the documents in the WoS (Web of Science) Core Collection that contain the terms established in the search criteria in order to visualize the behavior of scientific production over time, providing high-quality data and a complete description that facilitates data processing and for the broad recognition it has obtained in the scientific community (Podsakoff et al., 2008; Odriozola-Fernández et al., 2019). For this study, the WoS database was selected. This database is widely recognized for gathering reliable and multidisciplinary research, with studies recommending its use due to the high proportion of exclusive journals (Mongeon & Paul-Hus, 2016).

A similar search query was carried out on the Scopus database using the same criteria to guarantee the data’s completeness. The results were similar to those obtained from WoS (Harzing & Alakangas, 2016; Martín-Martín et al., 2018; Gao et al., 2020).

The data was then processed to analyze the number of articles published per year, the number of citations, and their h-index. Bibliometric analysis, the study of the scientific activity of authors, has been used to prepare this article and has been used in various areas.

Figure 1 depicts the descriptive statistical analysis of the main variables: cites per article, total cites, h-index, year, and articles. The matrix indicates the correlation between them (the closer to 1, the stronger the correlation; if the values are closer to -1, there is an inverse correlation between variables, while if there is a zero value, there is no correlation). In the present case, the articles variable is highly correlated with the total of citations, h-index, and years. In contrast, there is an inverse correlation with the variable cites per article and year.

In this work, the number of articles, citations, citations per article, and h-index, the most relevant countries, institutions, and authors are studied. The keywords are also taken into account in order to discover new lines of research. A database search has been carried out, filtering by topic in the title, the abstract, author keywords, and Keywords Plus. The search for the keywords was carried out using the terms: “blue economy” or “ocean economy” or “blue growth” or “maritime economy” or “marine economy.” In the next stage, 780 results were obtained, from which articles were filtered, leaving 499 articles to be processed and analyzed in the fourth stage. The results were then filtered to include only articles as many of them have been published in journals with an impact factor in Journal Citation Reports (JCR). This indicator is highly regarded and valued by organizations that evaluate research activity, guaranteeing a strict review process and high-quality results (Dahl et al., 2015; Gong et al., 2019; Milan-García et al., 2019).

Lastly, once the document search was filtered to include only articles, the data was exported and processed using two tools: Vosviewer and Biblioshiny. In this way, clusters can be created by downloading information from the Web of Science database.

The VOSviewer program offers the basic functionality necessary to visualize bibliometric networks, citation links between publications, collaboration between researchers, and co-occurrence links between scientific terms (Van Eck & Waltman, 2011). According to a logical bibliometric workflow, the Bibliometrix tool, developed in the statistical and graphical language R, is also used to add weight to the study. R is
highly extensible as it uses a functional, object-oriented programming language, and therefore it is relatively easy to automate parsing and create new functions. It is utilized to create graphs for three metrics at different levels: sources, authors, and documents, and analyzing knowledge structures at the conceptual, intellectual and social level (Aria & Cuccurullo, 2017) (Fig. 2).

3. Results

3.1 Descriptive Analysis

Figure 3 represents a descriptive analysis of the terms ME, OE, BE, and BG, making a note of the chronological order of the articles when these concepts first appeared.

The first mention of ME appeared in 1979 in the article entitled "Marine Economy of Poland 1945-1975". It addressed the growth of two port complexes located on the Polish Baltic Sea coast, Gdansk-Gdynia and Szczecin-Swinoujscie, pointing to the important economic activities in the area such as the export of coal and coke, ships, minerals, cereals, gypsum, rolled steel products, wood, cement, and food. It also pointed to tourism development along the coastal regions that required environmental protection (Leszczycki, 1979). Later, in 1992, the article "The Intercolonial Railway, Freight Rates and The Maritime Economy in Canada" stated that this infrastructure was a crucial piece in the history of maritime economic development and a transport link between the maritime islands and the center from Canada (Cruikshank, 1992).

In 2004 the article "Employment and Wages for the U.S. Ocean and Coastal Economy" was published on the subject of OE and performed a preliminary analysis of the United States' coastal and ocean economy between 1990 and 2001 to prepare coherent national estimates of economic values, based on economic and other measures related to the coasts and the oceans (Colgan, 2004).

The article "The Future of Blue Economy: Lessons for European Union" marked the beginning of research on BE and made some preliminary considerations about the growing convergence of economic, social, technical, and environmental factors that contributed to generating new opportunities in the world's oceans. Furthermore, thanks to the cooperation between European ocean industries and government institutions, together with the training of various experts, they became the epicenter of applying the European BE at sea (Kaczynski, 2011).

In 2013 the BG Strategy, "Scenarios for Selected Maritime Economic Functions Union," appeared and examined the usages of the scenarios of the BG project. It aimed to develop the maritime dimension of the Europe 2020 strategy, with a 15-year horizon (2025-2030). In this regard, the scenarios were understood and developed in two ways: the micro-future scenarios and the general scenarios (Wolters, 2013).

3.2 Scientific production analysis
Table 2 shows the evolution of scientific production in the period (2020-1979) by the number of articles, citations, citations per article (average), and the annual h-index.

Table 2. Evolution in the number of articles, citations, average citations per article and h-index

Year	Articles	Citations	Cites per article	h-index
1979	1	0	0.00	0
1992	2	22	11.00	2
1997	1	10	10.00	1
1998	2	156	78.00	1
1999	1	0	0.00	1
2001	1	7	7.00	1
2004	2	3	1.50	1
2006	1	7	7.00	1
2007	4	12	3.00	2
2008	3	8	2.67	1
2009	2	5	2.50	1
2010	9	116	12.89	5
2011	9	265	29.44	6
2012	7	100	14.29	5
2013	13	145	11.15	5
2014	26	315	12.12	10
2015	23	327	14.22	12
2016	41	377	9.20	12
2017	59	391	6.63	11
2018	104	531	5.11	12
2019	143	146	1.02	6
2020	37	5	0.14	1
In 2010, there was an increase in the number of articles and citations resulting from the article, “The importance of estimating the contribution of the oceans to national economies” by Kildom & McIlgorm (2010). The authors stated that the oceans were in trouble and experienced changes that could compromise life on both the sea and the land, affecting the economy and the environment.

The year 2018 stands out for the number of citations, reaching its maximum value of 531 (Figure 4). The most cited article, “Blue growth: savior or ocean grabbing?” questions political proposals and places them within the framework of the broader debates on the neo-liberalization of nature (Barbesgaard, 2018). Other authors with a high number of citations address BG, tracing its roots to the conceptualization of sustainable development under the title “What is blue growth? The semantics of Sustainable Development of marine environments” (Eikeset et al., 2018). The authors further manifest the complexity of ocean systems, combined with data and capacity constraints, demanding a pragmatic management approach (Burgess et al., 2018).

The most cited articles closely related to the terms “BE, BG, ME, and OE,” in addition to the authors, journal, date of publication, and total citations, are listed in Table 3. Of note is the article by Silver et al. (2015), with 89 citations, which addresses how BE became operational and how it was articulated in four factors: oceans as natural capital, good business, the integral part of the Pacific Small Island Developing States (SIDS) and small-scale fisheries livelihoods. The second-ranked article by Kildow & McIlgorm (2010) addresses the importance of knowing the oceans so that governments can have proactive behaviors in response to the demands of the population and nature in coastal and ocean environments. The third-ranked article, “BG: savior or ocean grabbing?”, critically addresses the political proposals, which fail to envision the problems of the environment and climate change.

Table 3. Most cited articles.
Articles (ordered by number of citations)

Title	Authors	Journal title	Citations
BE and competing discourses in international oceans governance	Silver et al., 2015	Journal of Environment & Development	89
The importance of estimating the contribution of the oceans to national economies	Kildow & McIlgorm, 2010	Marine Policy	66
BG: savior or ocean grabbing?	Barbesgaard, 2018	Journal of Peasant Studies	62
The role of the marine sector in the Irish national economy: an input-output analysis	Morrissey et al., 2013	Marine Policy	60
What is BG? the semantics of sustainable development of marine environments	Eikeset et al., 2018	Marine Policy	50
Assembling a BE moment? geographic engagement with globalizing biological-economic relations in multi-use marine environments	Winder et al., 2017	Dialogues in Human Geography	46
Quantifying the value of multi-sectoral marine commercial activity in Ireland	Morrissey et al., 2011	Marine Policy	42
The Spanish approach to marine spatial planning, marine strategy framework directive vs. EU integrated maritime policy	De Vivero & Mateos, 2012	Marine Policy	42
A methodology for multi-criteria design of multi-use offshore platforms for marine renewable energy harvesting	Zanuttigh et al., 2016	Renewable Energy	41
Ecosystem-based marine management in European regional seas calls for nested governance structures and coordination-a policy brief	Raakjaer et al., 2014	Marine Policy	40

The remaining articles address the marine sector’s role in the national economy, the concept of BG in the marine environment, the integrated maritime policy, and platforms for harvesting marine renewable energy.

Figure 5 depicts the authors and their links to scientific journals and the most representative keywords. In this instance, Morrissey, McIlgorm, Van der Burg, Morato, Bennett, and Soma have published the greatest volume of articles in *Marine Policy*, the scientific journal with the highest impact and the greatest number of relevant keywords.

3.3 Analysis of keywords
The keywords used in the article titles and abstracts are then analyzed according to their relevance and co-occurrence to create a co-occurrence map of all the terms used in the 499 selected articles (figure 6), using Vosviewer software. The minimum number of occurrences of a selected term is set at 25. Of the 12,858 terms found, 133 met the threshold and were included in the final analysis. From these results, a relevance score was calculated. The title and abstract fields were used to extract data. To extract the highest number of terms from the publications, the labels of the structured abstracts and the copyright statements are included.

An analysis of the results reveals that the most productive period, between 2016-2020, has produced the most relevant terms. The ten most relevant terms are linked to maritime spatial planning, China, marine economy, ocean economy, economic development, efficiency, and coastal areas. The most current terms have to do with the marine industry and access. In this sense, due to the boom in emerging marine industries and the support of nation states for marine technology, many Chinese universities have added specialties related to marine technology (Li, 2019; Wenwen et al., 2016). This industry has become a significant growth engine for China’s economic development (Li & Zhang, 2019). Access refers to the exploitation of marine resources, coastal and fishing resources, spatial access to coastal communities, and the rights and property related to marine governance (Andriamahefazafy et al., 2020; Bennett et al., 2018; Kerr et al., 2015; Said et al., 2020).

An analysis of the keywords identifies the most used terms and the most current trends related to the new areas of the concepts studied. The trend analysis depicted in Figure 7 uses a color scale that goes from blue to yellow and categorizes the terms used in this field of study from the least to the most innovative in the period studied. Trends linked to concepts such as small-scale fishing, degrowth, aquatic species, biofuel, growth of the coastal BE, and internationalization are observed. These recent trends arising from the BE address the need to connect human and industrial activities that obtain their inputs from the sea by creating cooperative alliances at an international level, promoting sectors such as fishing, tourism, and energy. In addition, BE favors environmental sustainability since it uses renewable energy.

The growth of the coastal BE can be linked to the government of Taiwan, which proposes a growth program for the coastal BE at the national level to promote ocean-related industries based on sustainable development. In general, farming the sea is based on artificial technologies and it is argued that by developing marine fish farming, it is possible to contribute to the transformation of capture fisheries by integrating the concept of BE (Chen et al. 2020). As for the term “blue degrowth,” this calls for the retreat of specific activities currently in the hands of large companies. In this sense, the decrease is intended to criticize the traditional ideas of growth and sustainability by promoting an equitable reduction in production and consumption, along with a socially transformative vision (Carver, 2020).

The role of biofuels in the BE is gaining momentum. The research of Kaşdoğan (2020) examines algae-based biofuel production systems designed on the high seas and integrated with wastewater treatment and carbon dioxide absorption processes to revitalize faith in biofuels in the BE.
4. Discussion

Past research has addressed aspects of OE and ME from the perspective of the economic activities derived from the sea, specifically food catches, commercial transport, and the maritime industry (Keefer et al., 1998; Benevolo, 1999). Subsequently, the sustainability approach within the maritime economy was included (Zhan et al., 2004) along with the specific characteristics, the type of risk, and the uncertain areas of this economy (Di et al., 2007; Salmonowicz, 2007; Gogoberidze, 2008) and the continued development of integrated marine policies (Carpenter, 2012; De Vivero & Mateos, 2012).

Despite the tremendous potential of ensuring the oceans' sustainability, the growth of the BE presents some challenges. One of the most obvious obstacles is the lack of common and agreed-upon goals of BG. For some, blue growth revolves around maximizing economic growth derived from marine and aquatic resources (Boonstra et al., 2018; Holma et al., 2019). However, for others, it means maximizing “inclusive” economic growth derived from marine and aquatic resources (Eikeset et al., 2018; Pudzis et al., 2018; Soma et al., 2018; Hay Mele et al., 2019). A real example of inclusion is in the Pacific Small Island Developing States (SIDS), which, like many developing countries, the issues of oceans, climate change, and energy are essential to poverty eradication. It is impossible to suppress poverty unless the health of ocean ecosystems is guaranteed and preserved as they are essential for food security, livelihoods, and economic (Assevero & Chitre, 2012). The concepts of the “BE” and “BG” have been grouped together in a conceptual framework and are used as political discourse throughout the world as a way of representing the possible contribution to human well-being that both aquatic and marine spaces can make. Different interpretations of the concept of the BE are recognized. It is the very diverse definitions that generate a certain imprecision that allows the BE to encompass divergent visions and ideologies (Childs & Hicks, 2019).

Fernández et al. (2015) express the need to promote the BE to foster the progress and growth of maritime sectors, which can and should be sustainable. In this context, the development of integrated maritime policies is based on the belief that maritime zones can achieve higher growth rates, pointing out that the European Atlantic Arc could contribute to this BG.

Most activities related to the economic exploitation of the maritime environment carried out by humans do not conform to the notions of a “BE” since this economic exploitation does not often focus on a sustainable maritime environment (Rayner et al., 2019). Similarly, it has been found that the synergies, conflicts between sectors, and political decisions could influence the sustainable growth of the BE in highly contested regions such as the North Sea basin. This could result in sustainable growth having a stronger influence than the effects of climate change, making it a more flexible and adaptable approach to policymaking that considers changing economic, social, and environmental realities (Hoerterer et al., 2020).

Coastal communities are directly affected by the BE and the effective management of ocean resources for BG. Although the term ocean economics is often promoted as something new, there are historical analogies that can provide insights for contemporary planning and implementation of BG (Potgieter,
In this sense, thanks to the use and treatment of raw materials of marine origin, such as macroalgae, their multiple uses are essential for the efficient recovery of marine biomass (Prabhu et al., 2020).

While the protection of marine areas is considered a fundamental part of mitigating climate change, on a practical level, its success is overshadowed by the current expansion of offshore drilling for oil and gas (Brent et al., 2020). The prospects for growth in the ocean economy are promising because ocean industries address issues such as food security, energy security, and climate change (Zghyer et al., 2019). On the other hand, there are discrepancies regarding the legitimacy of the different sectors that make up the BE, specifically the industries with high carbon intensity and the emerging seabed mining industry (Voyer et al., 2018). Numerous authors warn of the danger of privatizing ocean spaces through the BE (Voyer et al., 2018; Said & MacMillan, 2020; Bogadóttir, 2020; Brent et al., 2020).

Due to the current transformation of the oceans as places of integral industrialization, it is necessary to reflect on the experiences obtained from fishing and fisheries policies to understand and intervene in modernization processes and practices (Arbo et al., 2018).

Another aspect to consider is climate change. Due to the negative consequences for coastal populations caused by rising sea levels, it is vital to develop defensive infrastructures. Since the turn of the century, the loss of landmass in the Greenland ice sheet has been accelerating. Between 2003 and 2013, this ice sheet has contributed an average of 0.8 ± 0.2 mm per year to the rise in sea levels (out of a global average sea-level rise of approximately 3 mm / year). The highest level of ice melt occurred in 2012 (Van Dijk et al., 2014).

Changes in the balance of surface mass, relative to changes in solid ice discharge, are vitally important across the Arctic areas and will continue in the future (Moon et al., 2018). For example, the Netherlands, a region crisscrossed by large rivers such as the Rhine, Meuse, and Scheldt, is protected by a network of levees. Approximately 59% of its territory is at risk of flooding, 26% is under the sea level and 29% can flood if the rivers overflow. According to the commission that manages the Delta Plan, which addresses the threat of water, a temperature increase of two degrees in the North Sea could mean a rise of between one and two meters.

Scientific studies about New York City reveal that the sea level could rise by two meters by 2100, endangering the survival of Manhattan, a threat for which the city is already taking measures (Oppenheimer et al., 2019). In Florida, the effects of climate change are likely to include flooding associated with rising sea levels, increased invasive species, damage to coral reefs, and increasing frequency of damaging hurricanes. Tide levels along the US eastern seaboard of the United States during the past century were spatially variable, with the relative sea-level rising more rapidly along the Mid-Atlantic Bay than along the Bay of the South Atlantic and the Gulf of Maine (Piecuch et al., 2018). Other authors (Kong et al., 2016) state that rising sea levels, tides, extreme weather conditions, high temperatures, and ocean acidification present serious problems that could affect shipping, shipbuilding,
the fishing industry, and coastal tourism and even compromise human health and labor-intensive production activities, such as the sea salt industry, sea fishing and the use of seawater.

5. Conclusions

The BE presents significant challenges at an economic, social, and environmental level, which is why the BG strategy is presented as the key piece of the puzzle to guarantee environmental sustainability and efficient management of the seas and oceans’ resources. In this context, the SDGs imply that economic development is both inclusive and respectful of the environment, and it is necessary to find a balance between economic, social and environmental spaces. For example, one cannot consider eradicating poverty without guaranteeing the health of ocean ecosystems that are fundamental to food security, livelihoods, and economic development. Therefore, it is urgent to set goals with objectives and indicators that demand productive, healthy, and resilient oceans.

As analyzed, BE is a recent term rooted in sustainable development, so it needs more time for it to be adopted by all economic agents, politicians, and society in general. Thanks to the BG Strategy, it is possible to continue with economic activities arising from the seas and oceans in a more sustainable way that reduces the direct and indirect effects of its execution and minimize the negative impact on the ecosystem.

Regarding scientific production related to these concepts, there is a noticeable growing trend in the number of articles published in journals with high impact factors, especially in the last decade, which is evidence of a growing interest in investigating these terms and this novel field. Although in practice, the BE has always been present in the economic activity and the political agenda of all the countries of the world.

Analysis of keyword trends shows the need to protect coastal areas and traditional activities against the marine industry. These include the urgent transformation of large farms, waste treatment, and a commitment to cleaner energy that respects maritime ecosystems. The oceans are recognized as being essential to sustaining life on Earth, and the overexploitation of their resources jeopardizes their ability to continue to provide food, economic benefits, and environmental services to society. Another critical issue is the role that community ecotourism plays within the dynamics of the BE since marine and coastal tourism constitutes one of the largest and fastest-growing segments of tourism. There are sustainability problems related to the marine tourism sector, especially in protected areas, which could be reduced if the BG strategy is further promoted.

The main conclusion of this research is that BE poses some fundamental conflicts of interest. On the one hand, some studies support growth and development, while others prioritize the protection of ocean resources. Thus, it is essential to harness resources and promoting renewable energies with the resources offered by the oceans and seas, create alliances with different interest groups, unite efforts, and find common elements to continue with the BG, taking into account each community’s problems and constituting a significant global challenge.
One of the limitations of this study is the difficulty in measuring the impacts of economic activity and therefore quantifying the environmental impacts. Therefore, it would be interesting to carry out studies that can provide solid arguments to support it (Surís-Regueiro, 2013; Moore et al., 2016).

Possible future lines of research on the BE could focus on incorporating this model of the CE since few articles have addressed this aspect jointly. The relationship between BE and CE should go beyond addressing the issue of global marine waste, but rather be an integrated part of the BG strategy, the circular BG strategy in a broader sense: new components and more respectful treatments, less polluting marine minerals, sustainable management and the equitable distribution of marine resources. Regarding the political agenda, there should be specific lines of financing that support research into the blue economy and sectors of the CE. Together, the two must be integrated to achieve more efficient and sustainable results.

Abbreviations

BCs: Bilateral Contracts
BE: Blue Economy
BG: Blue Growth
CE: Circular Economy
ESS: Energy Storage Systems
ME: Marine Economy
MTs: Micro-Turbines
OE: Ocean Economy
PV: Photovoltaic systems
SDGs: Sustainable Development Goals
WT: Wind Turbines

Declarations

Availability of data and materials

The datasets used and/or analysed during the current study are available from the corresponding author on request.

Ethics approval and consent to participate
Not applicable.

Consent for publication

Not applicable.

Competing interests

The authors declare that they have no competing interests.

Funding

This research received no external funding.

Authors’ Contributions

Conceptualization, R.M.M.V., J.M.G. and J.D.P.V.; methodology, R.M.M.V., J.M.G. and J.D.P.V.; software, R.M.M.V., J.M.G. and J.D.P.V.; validation, R.M.M.V., J.M.G. and J.D.P.V.; formal analysis, R.M.M.V., J.M.G. and J.D.P.V.; investigation R.M.M.V., J.M.G. and J.D.P.V.; resources, R.M.M.V., J.M.G. and J.D.P.V.; writing—original draft preparation, R.M.M.V., J.M.G. and J.D.P.V. All authors have read and agreed to the published version of the manuscript.

Acknowledgements

Not applicable

References

1. Andriamahefazafy, M., Bailey, M., Sinan, H., & Kull, C. A. (2020). The paradox of sustainable tuna fisheries in the Western Indian Ocean: between visions of blue economy and realities of accumulation. *Sustainability Science*, 15(1), 75-89.
2. Arbo, P., Knol, M., Linke, S., & Martin, K. S. (2018). The transformation of the oceans and the future of marine social science. *Maritime Studies*, 17(3), 295-304.
3. Aria, M., & Cuccurullo, C. (2017). bibliometrix: An R-tool for comprehensive science mapping analysis. *Journal of Informetrics*, 11(4), 959-975.
4. Assevero, V. A., & Chitre, S. P. (2012). Rio 20-An Analysis of the Zero Draft and the Final Outcome Document “The Future We Want.” Available at SSRN 2177316.
5. Balboa, C. H., & Somonte, M. D. (2014). Economía circular como marco para el ecodiseño: el modelo ECO-3. *Informador técnico*, 78(1), 82-90.
6. Barbesgaard, M. (2018). Blue growth: savior or ocean grabbing? *The Journal of Peasant Studies*, 45(1), 130-149.
7. Bennett, N. J., Kaplan-Hallam, M., Augustine, G., Ban, N., Belhabib, D., Brueckner-Irwin, I., ... & Foley, P. (2018). Coastal and Indigenous community access to marine resources and the ocean: a policy imperative for Canada. *Marine Policy*, 87, 186-193.

8. Bentlage, M., Wiese, A., Brandt, A., Thierstein, A., & Witlox, F. (2014). Revealing Relevant Proximities. Knowledge Networks in the Maritime Economy in a Spatial, Functional, and Relational Perspective. *Raumforschung und Raumordnung*, 72(4), 275-291.

9. Bogadóttir, R. (2020) Blue Growth and its discontents in the Faroe Islands: an island perspective on Blue (De)Growth, sustainability, and environmental justice. *Sustainability Science*, 15, 103–115. https://doi.org/10.1007/s11625-019-00763-z

10. Boonstra, W. J., Valman, M., & Björkvik, E. (2018). A sea of many colours—How relevant is Blue Growth for capture fisheries in the Global North, and vice versa? *Marine Policy*, 87, 340-349.

11. Brent, Z. W., Barbesgaard, M., & Pedersen, C. (2020). The Blue Fix: What's driving blue growth? *Sustainability Science*, 15(1), 31-43.

12. Bueger, C. (2015). What is maritime security? *Marine Policy*, 53, 159-164.

13. Burgess, M. G., Clemence, M., McDermott, G. R., Costello, C., & Gaines, S. D. (2018). Five rules for pragmatic blue growth. *Marine Policy*, 87, 331-339.

14. Burgess, M. G., Clemence, M., McDermott, G. R., Costello, C., & Gaines, S. D. (2018). Five rules for pragmatic blue growth. *Marine Policy*, 87, 331-339.

15. Caban, J., Brumerčík, F., Vrábel, J., Ignaciuk, P., Misztal, W., & Marczuk, A. (2017). Safety of Maritime Transport in the Baltic Sea. In MATEC Web of Conferences (Vol. 134, p. 00003). EDP Sciences.

16. Cantwell, M. (2009). The Blue Economy: The Role of the Oceans in our Nation's Economic Future. U.S. Committee on Commerce, Science, And Transportation United States Senate One Hundred Eleventh Congress. Government Printing Office, Washington.

17. Carver, R. (2020). Lessons for blue degrowth from Namibia's emerging blue economy. *Sustainability Science*, 15(1), 131-143.

18. Caswell, B. A., Klein, E. S., Alleway, H. K., Ball, J. E., Botero, J., Cardinale, M., & Thurstan, R. H. (2020). Something old, something new: Historical perspectives provide lessons for blue growth agendas. *Fish and Fisheries*, doi:10.1111/faf.12460

19. Chen, J. L., Hsu, K., & Chuang, C. T. (2020). How do fishery resources enhance the development of coastal fishing communities: Lessons learned from a community-based sea farming project in Taiwan. *Ocean & Coastal Management*, 184, 105015.

20. Childs, J. R., & Hicks, C. C. (2019). Securing the blue: political ecologies of the blue economy in Africa. *Journal of Political Ecology*, 26(1), 323-340.

21. Colgan, C. S. (2004). Employment and wages for the US ocean and coastal economy. *Monthly Labor Review*, 127, 24.

22. Colgan, C. S. (2013). The ocean economy of the United States: Measurement, distribution, & trends. *Ocean and Coastal Management*, 71, 334-343. doi:10.1016/j.ocecoaman.2012.08.018
23. Costa, J. A. V., de Freitas, B. C. B., Lisboa, C. R., Santos, T. D., de Fraga Brusch, L. R., & de Morais, M. G. (2019). Microalgal biorefinery from CO2 and the effects under the Blue Economy. *Renewable and Sustainable Energy Reviews, 99*, 58-65.

24. Cruikshank, K. (1992). The Intercolonial Railway, Freight Rates, and the Maritime Economy. *Acadiensis, 22*(1), 87-110.

25. Dalton, G., Bardócz, T., Blanch, M., Campbell, D., Johnson, K., Lawrence, G., ... & Ortega, S. T. (2019). Feasibility of investment in Blue Growth multiple-use of space and multi-use platform projects; results of a novel assessment approach and case studies. *Renewable and Sustainable Energy Reviews, 107*, 338-359.

26. Eikeset, A. M., Mazzarella, A. B., Davíðsdóttir, B., Klinger, D. H., Levin, S. A., Rovenskaya, E., & Stenseth, N. C. (2018). What is blue growth? The semantics of “Sustainable Development” of marine environments. *Marine Policy, 87*, 177-179.

27. Ertör-Akyazi, P. (2020). Contesting growth in marine capture fisheries: the case of small-scale fishing cooperatives in Istanbul. *Sustainability Science, 15*(1), 45-62.

28. European Commission (2020). The EU Blue Economy Report. 2020. Publications Office of the European Union. Luxembourg.

29. European Commission (EC) (2014). Blue Growth. Accessed: December 2019, https://ec.europa.eu/assets/mare/infographics

30. Fernández-Macho, J., Murillas, A., Ansuategi, A., Escapa, M., Gallastegui, C., González, P., ... & Virto, J. (2015). Measuring the maritime economy: Spain in the European Atlantic Arc. *Marine Policy, 60*, 49-61.

31. Geissdoerfer, M., Savaget, P., Bocken, N. M., & Hultink, E. J. (2017). The Circular Economy–A new sustainability paradigm? *Journal of cleaner production, 143*, 757-768.

32. Graziano, M., Alexander, K. A., Liesch, M., Lema, E., & Torres, J. A. (2019). Understanding an emerging economic discourse through regional analysis: Blue economy clusters in the US Great Lakes basin. *Applied Geography, 105*, 111-123.

33. Hay Mele, B., Russo, L., & D’Alelio, D. (2019). Combining Marine Ecology and Economy to Roadmap the Integrated Coastal Management: A Systematic Literature Review. *Sustainability, 11*(16), 4393.

34. Hoegh-Guldberg, O., Beal, D., Chaudhry, T., Elhaj, H., Abdullat, A., Etessy, P., et al. (2015). Reviving the Ocean Economy: the case for action. Geneva, Gland, Switzerland: WWF International.

35. Hoerterer, C., Schupp, M. F., Benkens, A., Nickiewicz, D., Krause, G., & Buck, B. H. (2020). Stakeholder perspectives on opportunities and challenges in achieving sustainable growth of the Blue Economy in a changing climate. Frontiers in Marine Science.

36. Holma, M., Lindroos, M., Romakkaniemi, A., & Oinonen, S. (2019). Comparing economic and biological management objectives in the commercial Baltic salmon fisheries. *Marine Policy, 100*, 207-214.

37. Joroff, M. (2008). The Blue Economy: Sustainable industrialization of the oceans. Proceedings, International Symposium on Blue Economy Initiative for Green Growth, Massachusetts Institute of
Technology and Korean Maritime Institute, Seoul, Korea, May 7, 2009, pp. 173 -181.

38. Junquera, B. & Mitre, M. (2007). Value of bibliometric analysis for research policy: A case study of Spanish research into innovation and technology management. *Scientometrics, 71*(3), pp. 443-454.

39. Kaczynski, W. (2011). The future of the blue economy: lessons for the European Union. *Foundations of Management, 3*(1), 21-32.

40. Kaşdoğan, D. Designing sustainability in blues: the limits of technospatial growth imaginaries. *Sustainability Science, 15*, 145–160 (2020). https://doi.org/10.1007/s11625-019-00766-w

41. Kathijotes, N. (2013). Keynote: Blue economy-environmental and behavioural aspects towards sustainable coastal development. *Procedia-Social and Behavioral Sciences, 101*, 7-13.

42. Kerr, S., Colton, J., Johnson, K., & Wright, G. (2015). Rights and ownership in sea country: implications of marine renewable energy for indigenous and local communities. *Marine Policy, 52*, 108-115.

43. Kildow, J. T., & McIlgorm, A. (2010). The importance of estimating the contribution of the oceans to national economies. *Marine Policy, 34*(3), 367-374.

44. Kong, H., Yang, W. Kong, Wu, Q. (2016). Research on the sensitivity of the marine industry to climate change. In Advances in energy and environment research. Taylor & Francis Group, London.

45. Lee, K., Noh, J., & Khim, J. S. (2020). The blue economy and the United Nations’ sustainable development goals: Challenges and opportunities. *Environment International, 137* doi:10.1016/j.envint.2020.105528

46. Leszczycki, S. (1979). Marine Economy of Poland 1945-1975. *Mitteilungen Der Osterreichischen Geographischen Gesellschaft, 121*(2), 256-270.

47. Li, W. (2019). Interaction Mode of Marine Economic Management Talents Cultivation and Marine Industry. *Journal of Coastal Research, 94*(sp1), 577-580.

48. Li, Y. & Zhang, S., 2019. Relationship between environmental information disclosure and cost of equity of listed companies in China's marine industry. In: Li, L.; Wan, X., and Huang, X. (eds.), Recent Developments in Practices and Research on Coastal Regions: Transportation, Environment, and Economy. *Journal of Coastal Research, Special Issue No. 98*, pp. 42–45. Coconut Creek (Florida), ISSN 0749-0208.

49. Lodge, M., Johnson, D., Le Gurun, G., Wengler, M., Weaver, P., & Gunn, V. (2014). Seabed mining: International Seabed Authority environmental management plan for the Clarion–Clipperton Zone. A partnership approach. *Marine Policy, 49*, 66-72.

50. Maheswaran, R. (2017). Visualizing the Citation Patterns of Quantum Cryptography Research Publications: A Study Using Citenet Explorer. *International Journal of Retrieval Management, 5*(10), 7-9.

51. McKinley, E., Aller-Rojas, O., Hattam, C., Germond-Duret, C., San Martín, I. V., Hopkins, C. R., ... & Potts, T. (2019). Charting the course for a blue economy in Peru: a research agenda. *Environment, Development and Sustainability, 21*(5), 2253-2275.
52. Moon, T., Ahlstrom, A., Goelzer, H. et al., (2018). Rising Oceans Guaranteed: Arctic Land Ice Loss and Sea Level Rise. *Current Climate Change Reports*, 4, 211–222. https://doi.org/10.1007/s40641-018-0107-0

53. Oppenheimer, M., B.C. Glavovic, J. Hinkel, R. van de Wal, A.K. Magnan, A. Abd-Elgawad, R. Cai, M. Cifuentes-Jara, R.M. DeConto, T. Ghosh, J. Hay, F. Isla, B. Marzeion, B. Meyssignac, & Sebesvari, Z. (2019). Sea Level Rise and Implications for Low-Lying Islands, Coasts and Communities. In: IPCC Special Report on the Ocean and Cryosphere in a Changing Climate [Pörtner, H.-O., Roberts, D.C., Masson-Delmotte, V., Zhai, P., Tignor, M., Poloczanska, E., Mintenbeck, K., Alegria, A, Nicolai, M., Okem, A., Petzold, J., Rama, B., Weyer, N.M. (eds.)]. In press.

54. Papageorgiou, M., & Kyvelou, S. (2018). Aspects of marine spatial planning and governance: Adapting to the transboundary nature and the special conditions of the sea. *European Journal of Environmental Sciences*, 8(1), 31-37.

55. Patil, P., Virdin, J., Diez, S.M., Roberts, J. & Singh, A. (2016). Toward a Blue Economy: A Promise for Sustainable Growth in the Caribbean. Report No. AUS16344. World Bank. Washington, D.C.

56. Pauli, G. (2010). The Blue Economy: 10 years, 100 innovations, 1000 million jobs. Paradigm Publication.

57. Phelan, A., Ruhanen, L., & Mair, J. (2020). Ecosystem services approach for community-based ecotourism: towards an equitable and sustainable blue economy. *Journal of Sustainable Tourism*, 1-21.

58. Philipp, R.; Prause, G. & Meyer, C. (2020). Blue Growth Potential in the South Baltic Sea Region. *Transport and Telecommunication*, 21. 69-83. 10.2478/ttj-2020-0006.

59. Piecuch, C.G., Huybers, P., Hay, C.C. et al. (2018). Origin of spatial variation in US East Coast sea-level trends during 1900–2017. *Nature*, 564, 400–404 https://doi.org/10.1038/s41586-018-0787-6

60. Potgieter, T. (2018). Oceans economy, blue economy, and security: Notes on the South African potential and developments. *Journal of the Indian Ocean Region*, 14(1), 49-70. doi:10.1080/19480881.2018.1410962

61. Prabhu, M.S., Israel, A., Palatnik, R.R. et al. (2020). Integrated biorefinery process for sustainable fractionation of *Ulva ohnoi* (Chlorophyta): process optimization and revenue analysis. *Journal of Applied Phycology*, 32, pages 2271-2282 https://doi.org/10.1007/s10811-020-02044-0

62. Pudzis, E., Adlers, A., Pukite, I., Geipele, S., & Zeltins, N. (2018). Identification of Maritime Technology Development Mechanisms in the Context of Latvian Smart Specialisation and Blue Growth. *Latvian Journal of Physics*, 55(4):57-69. doi:10.2478/ljpts-2018-0029

63. Qi, X., & Xiao, W. (2019). Identifying the Evolutionary Path of Maritime Industries from the Perspective of Supernetwork. *Journal of Coastal Research*, 97(sp1), 131-135.

64. Rayner, R., Jolly, C., & Gouldman, C. C. (2019). Ocean observing and the blue economy. *Frontiers in Marine Science*, 6, 330.

65. Rotter, A., Bacu, A., Barbier, M., Bertoni, F., Bones, A. M., Cancela, M. L., & Dailianis, T. (2020). A new network for the advancement of marine biotechnology in Europe and beyond. *Frontiers in Marine
66. Said, A., & MacMillan, D. (2020). ‘Re-grabbing’ marine resources: a blue degrowth agenda for the resurgence of small-scale fisheries in Malta. *Sustainability Science, 15*(1), 91-102.

67. Sakhuja, V. (2015). Harnessing the blue economy. *Indian Foreign Affairs Journal, 10*(1), 39.

68. Schutter, M. S., & Hicks, C. C. (2019). Networking the Blue Economy in Seychelles: pioneers, resistance, and the power of influence. *Journal of Political Ecology, 26*(1), 425-447.

69. Sdoukopoulos, E., Tsafonias, G., Perra, V. M., Boile, M., & Lago, L. F. (2019). Identifying skill shortages and education and training gaps for the shipbuilding industry in Europe. In Sustainable Development and Innovations in Marine Technologies: Proceedings of the 18th International Congress of the Maritime Association of the Mediterranean (IMAM 2019), September 9-11, 2019, Varna, Bulgaria (p. 458). CRC Press.

70. Skrzeszewska, K., & Beran, I. M. (2016). Is ignorance of potential career paths a disincentive for starting a career in the maritime sectors? *Economic and Social Development: Book of Proceedings, 577.*

71. Soma, K., Van den Burg, S. W., Hoefnagel, E. W., Stuiver, M., & van der Heide, C. M. (2018). Social innovation—A future pathway for Blue growth? *Marine Policy, 87,* 363-370.

72. Spamer, J. (2015). Riding the African Blue Economy wave: A South African perspective. In 2015 4th International Conference on Advanced Logistics and Transport (ICALT) (pp. 59-64). IEEE.

73. UNCTAD. (2014). The State of Commodity Dependence 2014. Geneva: United Nations Conference on Trade and Development.

74. UNECA (2016). Africa’s Blue Economy: A Policy Handbook. UN Economic Commission for Africa (UNECA), Addis Ababa

75. Van den Burg, S. W. K., Aguilar-Manjarrez, J., Jenness, J., & Torrie, M. (2019). Assessment of the geographical potential for co-use of marine space, based on operational boundaries for Blue Growth sectors. *Marine Policy, 100,* 43-57.

76. Van Dijk, A. I. J. M., Renzullo, L. J., Wada, Y., & Tregoning, P. (2014). A global water cycle reanalysis (2003–2012) merging satellite gravimetry and altimetry observations with a hydrological multimodel ensemble. *Hydrology Earth System Sciences, 18*(8), 2955.

77. Van Eck, N. J., & Waltman, L. (2011). Text mining and visualization using VOSviewer. arXiv preprint arXiv:1109.2058.

78. Vedachalam, N., Ramesh, S., Umapathy, A., & Ramadass, G. A. (2016). Importance of gas hydrates for India and characterization of methane gas dissociation in the Krishna-Godavari basin reservoir. *Marine Technology Society Journal, 50*(6), 58-68.

79. Voyer, M., Quirk, G., McIlgorm, A., & Azmi, K. (2018). Shades of blue: what do competing interpretations of the Blue Economy mean for oceans’ governance? *Journal of Environmental Policy & Planning, 20*(5), 595-616.
80. Voyer, M., Schofield, C., Azmi, K., Warner, R., McIlgorm, A., & Quirk, G. (2018). Maritime security and the Blue Economy: intersections and interdependencies in the Indian Ocean. *Journal of the Indian Ocean Region, 14*(1), 28-48.

81. Wenwen, X., Bingxin, Z., & Lili, W. (2016). Marine Industrial Cluster Structure and Its Coupling Relationship with Urban Development: a Case of Shandong Province. *Polish Maritime Research, 23*(s1), 115-122.

82. Wolters, H. A., Gille, J., De Vet, J. M., & Molemaker, R. J. (2013). Scenarios for selected maritime economic functions. *European Journal of Futures Research, 1*(1), 11.

83. World Bank, 2013. Fish to 2030—Prospects for Fisheries and Aquaculture. World Bank Report Number 83177-GLB. Washington, DC.

84. Zghyer, R., Ostnes, R., & Halse, K. H. (2019). Is full-autonomy the way to go towards maximizing the ocean potentials? *TransNav: International Journal on Marine Navigation and Safety of Sea Transportation, 13*(1).

85. Gao, H., Ding, X., & Wu, S. (2020). Exploring the domain of open innovation: bibliometric and content analyses. *Journal of Cleaner Production, 122580.*

86. Harzing, A. W., & Alakangas, S. (2016). Google Scholar, Scopus, and the Web of Science: a longitudinal and cross-disciplinary comparison. *Scientometrics, 106*(2), 787-804.

87. Martín-Martín, A., Orduna-Malea, E., Thelwall, M., & López-Cózar, E. D. (2018). Google Scholar, Web of Science, and Scopus: A systematic comparison of citations in 252 subject categories. *Journal of Informetrics, 12*(4), 1160-1177.

88. Odriozola-Fernández, I., Berbegal-Mirabent, J., & Merigó-Lindahl, J. M. (2019). Open innovation in small and medium enterprises: a bibliometric analysis. *Journal of Organizational Change Management, 32*(2), doi: 10.1108/JOCM-12-2017-0491.

89. Podsakoff, P.M., MacKenzie, S.B., Podsakoff, N.P. and Bachrach, D.G. (2008), Scholarly influence in the field of management: a bibliometric analysis of the determinants of university and author impact in the past quarter century, *Journal of Management, Vol. 34 No. 4, pp. 641-720.*

90. Mongeon, P., & Paul-Hus, A. (2016). The journal coverage of Web of Science and Scopus: a comparative analysis. *Scientometrics, 106*(1), 213-228.

91. Milán-García, J., Uribe-Toril, J., Ruiz-Real, J. L., & de Pablo Valenciano, J. (2019). Sustainable local development: An overview of the state of knowledge. *Resources, 8*(1), 31.

92. Abedinia, O., Zareinejad, M., Doranehgard, M. H., Fathi, G., & Ghadimi, N. (2019). Optimal offering and bidding strategies of renewable energy based large consumer using a novel hybrid robust-stochastic approach. *Journal of Cleaner Production, 215,* 878-889.

93. Saeedi, M., Moradi, M., Hosseini, M., Emamifar, A., & Ghadimi, N. (2019). Robust optimization based optimal chiller loading under cooling demand uncertainty. *Applied Thermal Engineering, 148,* 1081-1091.

94. Khodaei, H., Hajiali, M., Darvishan, A., Sepehr, M., & Ghadimi, N. (2018). Fuzzy-based heat and power hub models for cost-emission operation of an industrial consumer using compromise programming.
95. Keefer, D. K., DeFrance, S. D., Moseley, M. E., Richardson, J. B., Satterlee, D. R., & Day-Lewis, A. (1998). Early maritime economy and El Niño events at Quebrada Tacahuay, Peru. *Science*, 281(5384), 1833-1835.

96. Benevolo, F. (1999). The Italian maritime economy in the Mediterranean area. In World Transport Research: Selected Proceedings of the 8th World Conference on Transport Research World Conference on Transport Research Society (No. Volume 1).

97. Zhang, Y. G., Dong, L. J., Yang, J., Wang, S. Y., & Song, X. R. (2004). Sustainable development of marine economy in China. *Chinese Geographical Science*, 14(4), 308-313.

98. Salmonowicz, H. (2007). Maritime Economy–System, Feature, Range and Tendency of Changes. 12 *Scientific Journals of the Maritime University of Szczecin*, (12), 157-172.

99. Di, Q., Han, Z., Liu, G., & Chang, H. (2007). Carrying capacity of marine region in Liaoning Province. *Chinese Geographical Science*, 17(3), 229-235.

100. Gogoberidze, G. (2008, May). Comprehensive estimation of marine economy and resource potential of coastal regions. In 2008 IEEE/OES US/EU-Baltic International Symposium (1-5). IEEE.

101. De Vivero, J. L. S., & Mateos, J. C. R. (2012). The Spanish approach to marine spatial planning. Marine Strategy Framework Directive vs. EU integrated maritime policy. *Marine Policy*, 36(1), 18-27.

102. Carpenter, A. (2012). The EU and Marine Environmental Policy: A Leader in Protecting the Marine Environment? *Journal of Contemporary European Research*, 8(2).

103. Moore, F., Lamond, J., & Appleby, T. (2016). Assessing the significance of the economic impact of Marine Conservation Zones in the Irish Sea upon the fisheries sector and regional economy in Northern Ireland. *Marine Policy*, 74, 136-142.

104. Surís-Regueiro, J. C., Garza-Gil, M. D., & Varela-Lafuente, M. M. (2013). Marine economy: A proposal for its definition in the European Union. *Marine Policy*, 42, 111-124.