Probing the single-particle character of rotational states in ^{19}F using a short-lived isomeric beam

D. Santiago-Gonzalez, K. Auranen, M. L. Avila, A. D. Ayangeakaa, B. B. Back, S. Bottoni, M. P. Carpenter, J. Chen, C. M. Deibel, A. A. Hood, C. R. Hoffman, R. V. F. Janssens, C. L. Jiang, B. P. Kay, S. A. Kuvin, A. Lauer, J. P. Schiffer, J. Sethi, R. Talwar, I. Wiedenhöver, J. Winkelbauer, and S. Zhu

1 Department of Physics and Astronomy, Louisiana State University, Baton Rouge, LA 70803, USA
2 Physics Division, Argonne National Laboratory, Argonne, IL 60439, USA
3 Department of Physics, University of Connecticut, Storrs, CT 06269, USA
4 Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20742, USA
5 Department of Physics, Florida State University, Tallahassee, FL 32306, USA
6 Los Alamos National Laboratory, Los Alamos, NM 87544, USA

(Dated: 2018/10/13)

A beam containing a substantial component of both the $J^{\pi} = 5^{+}$, $T_{1/2} = 162$ ns isomeric state of ^{18}F and its 1^{+}, 109.77-min ground state has been utilized to study members of the ground-state rotational band in ^{19}F through the neutron transfer reaction (d,p) in inverse kinematics. The resulting spectroscopic strengths confirm the single-particle nature of the $13/2^{+}$ band-terminating state. The agreement between shell-model calculations, using an interaction constructed within the sd shell, and our experimental results reinforces the idea of a single-particle/collective duality in the descriptions of the structure of atomic nuclei.

The duality of the collective and single-particle descriptions of the structure of atomic nuclei has been recognized for some 60 years. It is perhaps best summarized by an excerpt from the Nobel lecture of Aage Bohr [1, 2], “It was quite a dramatic moment when it was realized that some of the spectra in the light nuclei that had been successfully analyzed by the shell-model approach could be given a very simple interpretation in terms of the rotational coupling scheme.” Central to these comments by Bohr was the “special role” played by the ^{19}F nucleus, one of the lightest nuclei to exhibit rotational features. At that time, the ^{19}F spectrum had just been described by both shell-model calculations assuming only a small number of valence nucleons [3, 4], as well as by a collective model assuming rotational structures [5, 6].

Since these pioneering calculations, a great deal of work has been done aiming to refine the theoretical description of ^{19}F [7–15], not the least of which involved identifying the similarities between wave functions generated from both approaches [16] and the recent accessibility of ^{19}F to ab initio calculations [17]. Within a collective description, the ground-state rotational band in ^{19}F exhibits the characteristic staggering, or “signature splitting,” of a $K = 1/2$ rotational structure [18] where a measured static quadrupole moment points towards prolate deformation and the states are linked by relatively enhanced electric quadrupole transitions. The band proceeds from its bandhead, with a spin-parity of $J_{\text{min}}^{\pi} = 1/2^{+}$, to its terminating state, $J_{\text{max}}^{\pi} = 13/2^{+}$. This termination is evidence for the importance of shell structure since this is the maximum spin that can be generated from three nucleons in the sd-shell outside the ^{16}O core.

The nucleus ^{18}F has a $J^{\pi} = 5^{+}$ excited state that consists of two maximally-aligned $0d_{5/2}$ nucleons outside the closed-shell ^{16}O core [19]. This level has a 162(7)-ns half-life [14], comparable to the flight time of an ion beam in the tens of MeV/u range over a few meters. By producing a beam of this isomer (^{18m}F), and bringing it to a target, states in ^{19}F of $J \geq 5/2$, including the $13/2^{+}$ terminating state, can be produced by the addition of yet another $0d_{5/2}$ neutron.

In this Letter, we report on the extraction of spectroscopic overlaps between initial states in ^{18m}F and final states in ^{19}F, including the terminating $13/2^{+}$ state of the $K = 1/2$ rotational band, via the single-neutron (d,p) transfer reaction. Combined with a simultaneous measurement of the (d,p) reaction with a ^{18}F beam in its $J^{\pi} = 1^{+}$ ground state (^{18g}F), whereby the lower-spin members of the band were populated, a determination of the single-particle character of the ^{19}F ground-state rotational band was obtained for the first time in a single experiment.

The experiment was performed at the ATLAS facility at Argonne National Laboratory and utilized the HELIOS spectrometer [20, 21], a device designed for measuring transfer reactions in inverse kinematics. A radioactive beam of ^{18}F at an energy of 14 MeV/u was produced with an intensity of $\sim 5 \times 10^{5}$ pps via the in-flight technique [22, 23]. The $^2\text{H}(^{17}\text{O},^{18}\text{F})n$ production reaction was used with an ^{17}O primary beam (15 MeV/u) at a typical intensity of 60 pA. A cryogenically-cooled deuterium-filled gas cell (~80 K and 1.4 × 10^5 Pa) provided the production target material. The resulting ^{18}F beam was comprised of ions in both ground and isomeric states. Previous experiments using ^{18m}F beams include those of Refs. [24–28]. In the present work, the $^{18m}\text{F}/^{18g}\text{F}$ ratio has been estimated to be 0.56(8) immediately after production and 0.11(2) after transport to...
Figure 1. Apparent excitation energy in 19F extracted from protons in coincidence with 19F recoils following 18g.m.18F(d,p) reactions (black points with statistical uncertainties). A multi-Gaussian fit of the known levels in 19F including a small linear background and fixed widths is shown in gray. States populated from (d,p) reactions on 18F are in blue while those from 18m18F are in red. Weak levels, which, if removed from the fit would have little effect on the χ^2 value are represented by dashed lines. Black labels identify states belonging to the ground-state rotational band.

The solenoidal field was set to 2.85 T and deuterated polyethylene (CD$_2$) targets with a nominal thickness of 400 μg/cm2 were placed near the center of the field region. Upstream of the target location, an on-axis position-sensitive Si detector array was installed for proton detection. Protons were uniquely identified from their cyclotron periods after completing a single orbit from the target to the Si detector array. A fast-counting, segmented ionization chamber [29] centered around 0° was positioned downstream of the target for 19F recoil detection. Coincidence events between protons and recoiling ions were determined by the relative time difference between the two detectors. Acceptance for proton-recoil events was possible up to \sim5 MeV in excitation energy, covering all but the 11/2$^+_1$ member in the 19F ground-state rotational band. The acceptance also included proton center-of-mass angles, $\theta_{c.m.}$, ranging from \sim10-35°.

Levels in 19F populated by reactions on the isomeric beam appear shifted by -1.07 MeV relative to ground-state reactions, hence the ‘apparent’ qualifier in the angle-integrated excitation spectrum of Fig. 1. The shift is primarily the result of the Q-value difference between 18m18F(d,p) ($Q = 9.328$ MeV) and 18g.m18F(d,p) ($Q = 8.207$ MeV). In addition, a \sim50 keV shift arises from differences in the kinematics between the two reactions. The Q-value resolution was 280 keV FWHM, driven primarily by the target thickness and the emittance of the secondary beam. The best fit to the data using known 19F excitation energies [14] is shown in Fig. 1 by the solid grey line.

Figure 2. Angular distributions for states in 19F obtained from 18m18F(d,p) reactions, (a) 1/2$^+_1$ and 5/2$^+_1$ doublet, (b) 3/2$^+_1$, (c) 7/2$^+_1$, and from 18g.m18F(d,p) reactions, (d) 13/2$^+_1$. The 13/2$^+_1$ data include the 0.11(2) normalization factor to account for the 18m18F/18g.m18F secondary beam ratio. The DWBA calculations are represented by the lines.
the flight time of the beam to the target at the HELIOS experimental station. There are no experimental data available for the \((d,n)\) beam-production reaction at the relevant energies and, therefore, the relative strengths of the population of the bound states of \(^{18}\text{F}\) were taken from an analogous \(^{18}\text{O}(^3\text{He},d)\) proton-transfer reaction [19]. The bulk of the relevant reaction yield proceeds to ten states below the proton separation energy in \(^{18}\text{F}\). The high-lying states decay by prompt \(\gamma\)-ray emission with known branching ratios to either \(^{18}\text{F}\) or \(^{18}\text{mF}\) [14]. The \(^{2}\text{H}(^{18}\text{O},^{18}\text{F})n\) cross sections were calculated with the distorted wave Born approximation (DWBA) utilizing the \textit{Ptolemy} code [30]. The DWBA prescription, including the choice of optical-model parameters, was validated through comparisons with available \(^{18}\text{O}(d,p)\) cross-section data at a similar energy (13.15 MeV/u) [31].

The \(^{18}\text{mF}/^{18}\text{F}\) ratio at the production gas cell was calculated to be 0.56(8). The flight path from the gas cell to the HELIOS experimental station was 16.3 m, and at a beam energy of 14 MeV/u, corresponds to a time of flight of 1.9 \(T_{1/2}\) of the isomeric state. Hence, the ratio at the HELIOS target was \(^{18}\text{mF}/^{18}\text{F} = 0.11(2)\).

The relative single-neutron overlaps (spectroscopic factors) between initial states in \(^{18}\text{F}\) and final states in \(^{18}\text{F}\), \(S\) (isospin factor \(C^2 = 1\)), were extracted from the ratio of measured cross sections to those calculated with DWBA. In the standard procedure, the depth of the Woods-Saxon potential was varied to reproduce the binding energy of each final state. The deuteron wave function was calculated with the \(V_{18}\) potential [32]. A global set of optical model parameters [33] was used to calculate the angular distributions shown in Fig. 2. Angular distributions obtained using a static set of parameters [34] produced similar results within uncertainties.

The \(S\) values resulting from best fits of the DWBA calculations to the angular distributions (Fig. 2), as well as upper limits on the \(S\) values determined from ratios of integrated cross sections, are given in Table I while the spectroscopic strengths, \((2J_z + 1)/(2J_f + 1)S\), are shown in Fig. 3. All \(S\) values have been normalized to the \(3/2^+_1\)-\(^{18}\text{F}\) transfer spectroscopic factor. Uncertainties on \(S\) are due to the choice of optical-model and bound-state parameters of the DWBA calculations. Uncertainty in the deduced \(^{18}\text{mF}/^{18}\text{F}\) ratio of the beam also contributes for levels which were populated by transfer on the isomer.

The data on the population of the \(^{18}\text{F}\) \(K = 1/2^+\) band are clearly present in the apparent excitation energy spectrum of Fig. 1. As expected from the relatively small isomeric component in our beam, the dominant features in our spectrum are similar to those in Fig. 2 of Ref. [35] and Fig. 5 of Ref. [36], where there was no isomeric component in the beam. The \(S\) values deduced for the lower-spin members of the \(K = 1/2^+\) band populated by transfer on the \(^{18}\text{F}\), namely the \(1/2^+\)(0.000 MeV), \(5/2^+\)(0.197 MeV), \(3/2^+(1.554 \text{ MeV})\), and \(7/2^+(4.378 \text{ MeV})\) \(^{19}\text{F}\) states, are consistent with those from Ref. [35] (see Table I). For the unresolved lowest-lying \(1/2^+\) and \(5/2^+\) levels, single line shapes with \(\ell = 0\) and \(2\) transfers were assumed, respectively. Due to the limited angular coverage, our measurement is not sensitive to the population of the 0.110-MeV, \(1/2^-\) level. The angular distributions of the \(3/2^+\) and \(7/2^+\) states did not require any sizable contributions (\(> 5\%\)) from \(\ell = 0\) neutron transfer.

There are structures in the spectrum of Fig. 1, noticeable between 3-3.8 MeV, a featureless region in the \(^{18}\text{F}\) transfer spectra of Refs [35, 36]. Accounting for the -1.07-MeV shift in apparent excitation energy for the \((d,p)\) reaction on \(^{18}\text{mF}\), there are three previously known levels in this region that are accessible via neutron transfer: the \(7/2^+_1\) (4.378 MeV), \(5/2^+_2\) (4.550 MeV), and \(13/2^+\) (4.648 MeV) states [14]. Indeed, in the apparent energy spectrum of Fig. 1, lines corresponding to the population of the \(13/2^+\) and \(7/2^+\) levels are observed in the 3-3.8 MeV range, identifying neutron transfer onto the isomeric \(5^+\) level of \(^{18}\text{F}\) for the first time. Of the five other known levels also open to population through transfer on \(^{18}\text{mF}\) in the energy region covered, upper limits on yields for the \(5/2^+_1\) (-0.873 MeV), \(9/2^+_1\) (1.710 MeV), and \(5/2^+_2\) (4.037 MeV) states could be determined. The angular distribution for the \(13/2^+\) state, and the resulting DWBA fit [Fig. 2(d)], identify it as a strong \(\ell = 2\) neu-

Table I. Relative spectroscopic factors, \(S\), for levels belonging to the \(^{18}\text{F}\) \(K = 1/2^+\) band [14]. All \(S\) values are normalized to that of the 1.554-MeV \(3/2^+_1\) level. Only \(S\) values above 0.01 are shown and (—) signifies the non-observation or inaccessibility of a given level.

\(E_f\) (MeV)	\(J^+_f\)	\(J^-_f\)	\(\ell\)	Present	Ref. [35]	Theory\(^a\)
0	\(1/2^+_1\)	\(1^+\)	0	0.4(2)	0.75(15)	0.64
0.197	\(5/2^+_1\)	\(1^+\)	2	0.6(2)	0.40(8)	0.48
	\(3/2^+_1\)	\(5^+\)	2	\(< 1.0\)		0.54
1.554	\(3/2^+_1\)	\(1^+\)	2	1	1	1
2.780	\(9/2^+_1\)	\(5^+\)	2	\(< 0.4\)		0.30
				\(2 < 1.2\)		0.57
4.378	\(7/2^+_1\)	\(1^+\)	2	0.40(3)	0.5(1)	0.39
				\(< 1.3\)		1.03
4.648	\(13/2^+_1\)	\(5^+\)	2	1.8(4)		1.72
6.500	\(11/2^+_1\)	\(5^+\)	2	0		0.50

\(\text{a}\) Shell-model calculations using the USDB interaction [15].

\(\text{b}\) Includes calculated value of 0.11(2) for the \(^{18}\text{F}\) isomer to g.s.

\(\text{c}\) Assumed pure \(\ell\) transfer.
tron transfer, solidifying its population from 18F in its 5^+ isomeric state.

Accessibility to an in-flight beam of 18F in both its ground 1^+ and fully stretched 5^+ states has enabled the extraction of (or setting limits on) the relative spectroscopic overlaps of the $1/2^+, 3/2^+, 5/2^+, 7/2^+, 9/2^+$ and $13/2^+$ members of the ground-state rotational band of 19F (Table I and Fig. 3). The extracted S value for the $13/2^+$ state, and its spectroscopic strength exceed those of all other states in the rotational band. This observation confirms the dominant single-particle configuration in this band-terminating state as corresponding to the maximally-aligned, terminating state. Agreement between shell-model calculation and the experimentally determined spectroscopic factors for the inspected rotational states strengthens the notion of a collective and single-particle duality in the descriptions of the structure of atomic nuclei. The present measurement was possible only through the production of a beam of 18F whereby a significant fraction of ions resided in their short-lived isomeric state.

ACKNOWLEDGMENTS

The authors thank C. Dickerson and R. C. Pardo for developing the 18F isomeric beam. This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Nuclear Physics, under contract number DE-AC02-06CH11357 (ANL) and grant No. DE-FG02-96ER40978 (LSU). This research used resources of ANL’s ATLAS facility, which is a DOE Office of Science User Facility.

\[\frac{(2J_f+1)(J_f-1)}{2} S \]

\[J_f (\hbar) \]

\[\begin{array}{c|c|c|c|c}
\text{Calc. from g.s.} & \text{Calc. from isomer} & \text{Experiment} & \text{Experimental limit} \\
\hline
1/2^+ & 3/2^+ & 5/2^+ & 7/2^+ & 9/2^+ & 11/2^+ \\
5/2^+ & 7/2^+ & 9/2^+ & 11/2^+ \\
13/2^+ & & & & \\
\end{array} \]

Figure 3. The information on relative strengths of states in 19F is plotted as a function of their spin, separately for the 18gF(d,p) (a) and 18mF(d,p) reaction (b). The limit on the $9/2^+$ state is obtained assuming $\ell = 2$. Shell-model calculations using the USDB interaction are represented by bars for $\ell = 0$ (striped), 2 (open), or $0 \& 2$ (hatched) strengths.
[1] A. Bohr, *Physics 1971-1980*, edited by S. Lundqvist, Nobel lectures (World Scientific, 1992).
[2] A. Bohr, *Rev. Mod. Phys.* **48**, 365 (1976).
[3] J. P. Elliott and B. H. Flowers, *Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences* **229**, 536 (1955).
[4] M. Redlich, *Phys. Rev.* **99**, 1427 (1955).
[5] E. B. Paul, *Philosophical Magazine* **2**, 311 (1957).
[6] G. Rakavy, *Nucl. Phys.* **4**, 375 (1957).
[7] M. G. Redlich, *Phys. Rev.* **110**, 468 (1958).
[8] A. Arima, S. Cohen, R. Lawson, and M. MacFarlane, *Nucl. Phys. A* **108**, 94 (1968).
[9] I. Hamamoto and A. Atima, *Nucl. Phys. A* **112**, 481 (1968).
[10] H. Benson and B. Flowers, *Nucl. Phys. A* **126**, 305 (1969).
[11] M. Oyamada, T. Terasawa, K. Nakahara, Y. Endo, H. Saito, and E. Tanaka, *Phys. Rev. C* **11**, 1578 (1975).
[12] B. A. Brown, B. H. Wildenthal, C. F. Williamson, F. N. Rad, S. Kowalski, H. Crannell, and J. T. O’Brien, *Phys. Rev. C* **32**, 1127 (1985).
[13] B. Brown and B. Wildenthal, *Annual Review of Nuclear and Particle Science* **38**, 29 (1988).
[14] D. R. Tilley et al., *Nucl. Phys. A* **595**, 1 (1995).
[15] B. A. Brown and W. A. Richter, *Phys. Rev. C* **74**, 034315 (2006).
[16] J. P. Elliott, *Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences* **245**, 128 (1958).
[17] S. R. Stroberg, H. Hergert, J. D. Holt, S. K. Bogner, and A. Schwenk, *Phys. Rev. C* **93**, 051301 (2016).
[18] A. Bohr and B. Mottelson, *Nuclear Structure*, Nuclear Structure No. v. 2 (W. A. Benjamin, 1975).
[19] L. M. Polsky, C. H. Holbrow, and R. Middleton, *Phys. Rev. A* **186**, 966 (1969).
[20] A. Wuosmaa, J. Schiffer, B. Back, C. Lister, and K. Rehm, *Nucl. Inst. and Meth. A* **580**, 1290 (2007).
[21] J. Lighthall et al., *Nucl. Inst. and Meth. A* **622**, 97 (2010).
[22] B. Harss et al., *Review of Scientific Instruments* **71**, 380 (2000).
[23] K. Rehm et al., *Nucl. Inst. and Meth. A* **647**, 3 (2011).
[24] F. D. Becchetti et al., *Phys. Rev. C* **42**, R801 (1990).
[25] J. A. Brown et al., *Phys. Rev. C* **51**, 1312 (1995).
[26] D. Roberts et al., *Nucl. Phys. A* **588** (1995).
[27] D. A. Roberts et al., *Phys. Rev. C* **65**, 044605 (2002).
[28] J. A. Zimmerman et al., *Nucl. Inst. and Meth. A* **579**, 476 (2007), proceedings of the 11th Symposium on Radiation Measurements and Applications.
[29] J. Lai et al., *Nuclear Inst. and Methods in Physics Research, A* (accepted).
[30] M. H. Macfarlane and S. C. Pieper, *Ptolemy: a program for heavy-ion direct-reaction calculations*, Tech. Rep. (Argonne National Lab., 1978).
[31] J. Testoni, S. Mayo, and P. Hodgson, *Nucl. Phys. A* **50**, 479 (1964).
[32] R. B. Wiringa, V. G. J. Stoks, and R. Schiavilla, *Phys. Rev. C* **51**, 38 (1995).
[33] H. An and C. Cai, *Phys. Rev. C* **73**, 054605 (2006).