Mutation of the SPS1-encoded protein kinase of Saccharomyces cerevisiae leads to defects in transcription and morphology during spore formation

Helena Friesen, Rayna Lunz, Steven Doyle, and Jacqueline Segall

Department of Biochemistry, Department of Microbiology, and Department of Molecular and Medical Genetics, University of Toronto, Toronto, Ontario, Canada M5S 1A8

During sporulation of Saccharomyces cerevisiae, meiosis is followed by encapsulation of haploid nuclei within multilayered spore walls. Completion of the late events of the sporulation program requires the SPS1 gene. This developmentally regulated gene, which is expressed as cells are nearing the end of meiosis, encodes a protein with homology to serine/threonine protein kinases. The catalytic domain of Sps1 is 44% identical to the kinase domain of yeast Ste20, a protein involved in the pheromone-induced signal transduction pathway. Cells of a MATa/MATa sps1/sps1 strain arrest after meiosis and fail to activate genes that are normally expressed at a late time of sporulation. The mutant cells do not form refractile spores as assessed by phase-contrast microscopy and do not display the natural fluorescence and ether resistance that is characteristic of mature spores. Examination by electron microscopy reveals, however, that prospore-like compartments form in some of the mutant cells. These immature spores lack the cross-linked surface layer that surrounds wild-type spores and are more variable in size and number than are the spores of wild-type cells. Despite their inability to complete spore formation, sps1-arrested cells are able to resume mitotic growth on transfer to rich medium, generating haploid progeny. Our results suggest that the developmentally regulated Sps1 kinase is required for normal progression of transcriptional, biochemical, and morphological events during the later portion of the sporulation program.

[Key Words: Saccharomyces cerevisiae; kinase; sporulation; spore wall]

Received July 1, 1994; accepted July 28, 1994.

Sporulation is initiated in the yeast Saccharomyces cerevisiae when MATa/MATa diploid cells are starved for nitrogen in the presence of a nonfermentable carbon source such as acetate [for review, see Esposito and Klapholz 1981]. A single round of DNA replication is followed by a lengthy prophase during which homologous chromosomes pair and undergo a high level of genetic recombination. The homologous chromosomes segregate to opposite poles of the nucleus in the meiosis I reductional division. This is followed rapidly by the meiosis-like meiosis II division in which sister chromatids segregate from each other. In yeast, the nucleus remains intact throughout meiosis. The intranuclear segregation of the chromosomes generates four bulges in the nucleus, one beside each spindle pole body [for review, see Byers 1981]. Prospore walls begin to form at the spindle pole bodies and expand to encapsulate the haploid meiotic products present in each nuclear lobe. Maturation of the spore walls then generates the four spores that are retained within the ascus sac.

A number of different approaches have been used to identify genes involved in sporulation-specific events. Various genetic screens have led to the isolation of mutants that are defective in meiotic recombination, homolog pairing, segregation of chromosomes, and spore formation [for examples, see Esposito and Esposito 1969, 1974; Tsuboi 1983; Rockmill and Roeder 1988; Hollingsworth and Byers 1989; Briza et al. 1990b; Malone et al. 1991]. Cloning and characterization of a large number of the genes identified in these studies have almost invariably revealed that they are expressed preferentially in sporulating cells [for review, see Mitchell 1994]. In contrast, many of the sporulation-specific genes that were identified on the basis of their expression pattern [Clancy et al. 1983; Percival-Smith and Segall 1984; Gottlin-Ninfa and Kaback 1986; Law and Segall 1988; Bishop et al. 1992; Coo et al. 1992] do not appear to have an essential role in the sporulation program [Garber and Segall 1986; Gottlin-Ninfa and Kaback 1986; Percival-
Sps1 is a putative serine/threonine protein kinase

The identification of SPS1 as a gene that is preferentially expressed midway through the sporulation program of *S. cerevisiae* (Percival-Smith and Segall 1984) suggested that its product might participate in a sporulation-specific event. We found previously that mutation of SPS1 blocks spore formation (Percival-Smith and Segall 1986). To determine whether the deduced amino acid sequence of Sps1 might provide some clue as to its role, we determined the nucleotide sequence of the gene. The sequence revealed a single long open reading frame (ORF) of 1470 bp [Fig. 1]. The predicted 490-amino-acid protein encoded by this ORF has a calculated molecular weight of 55,668. A comparison of the predicted Sps1 protein with proteins in the National Center for Biotechnology Information data base revealed that the Sps1 sequence from residue 18 to 272 was similar to the catalytic domain of protein kinases. Sps1 contained all of the invariant amino acids identified by Hanks (1991) in a comparison of 100 serine/threonine protein kinases. The amino acid sequences of subdomains VIf and VIII, which appear to determine the specificity of the kinase, suggested that Sps1 was a serine/threonine protein kinase [Hanks et al. 1988]. The carboxy-terminal nonkinase domain of Sps1 had no significant similarity to other proteins in the data base. A BLAST search (Altschul et al. 1990) of the National Center for Biotechnology Information data base revealed that the proteins with the highest sequence identity with the kinase domain of Sps1 were the yeast kinase Ste20, which is a member of the mitogen-activated protein (MAP) kinase pathway involved in pheromone response in yeast; p65PAK, a kinase from rat brain that is activated by the GTP-bound form of a small Ras-related protein and that is postulated to be involved in response of the cytoskeletal network to extracellular signals [Manser et al. 1994]; a human B lymphocyte protein kinase [Katz et al. 1994]; and an uncharacterized yeast kinase (GenBank accession number X69322). The primary sequence of the kinase domain of Sps1 was 44% and 42% identical with the sequence of the kinase domains of Ste20 and p65PAK, respectively (Fig. 2). The similarity in sequence between Sps1 and a member of a MAP kinase activation pathway raises the possibility that Sps1 might be involved in a signal transduction event during sporulation.

Results

Sps1 is expressed as meiosis is nearing completion

To determine the time at which Sps1 serves its role in sporulation, we correlated the time of expression of the SPS1 gene in our standard wild-type strain with the major events of sporulation. The temporal pattern of expression of SPS1 was determined by Northern blot analysis of RNA prepared from cells that had been harvested at various times after transfer to sporulation medium [Fig. 3A]. Completion of the meiotic divisions was assessed by examination of aliquots of 4', 6'-diamidino-2-phenylindole (DAPI)-stained cells; in this procedure, the fluorescent visualization of DNA allows chromosome segregation to be monitored [Fig. 3B]. The appearance of binucleate cells and tetranucleate cells is considered to mark the completion of meiosis I and meiosis II, respectively. Spore formation was monitored by phase-contrast microscopy [Fig. 3B,D]. This analysis indicated that SPS1 transcripts were first detectable 6 hr after transfer of cells to sporulation medium [Fig. 3A]. Accumulation of transcript was maximal at 8–10 hr of sporulation [Fig. 3A]; at this time the sporulating cells were beginning to complete meiosis I as assessed by the appearance of binucleate cells [Fig. 3B]. As tetranucleate cells began to accumulate between 10 and 13 hr, the level of SPS1 transcripts was beginning to decline [Fig. 3A,B]. The level of SPS1 transcripts continued to decline during the period of spor formation between 12 and 16 hr [Fig. 3A,B].

We also compared the time of expression of SPS1 with the time of expression of two other sporulation-specific genes, *HOPI* and *DIT1*. *HOPI*, which is required for pairing of homologous chromosomes [Hollingsworth and Byers 1989; Hollingsworth et al. 1990], is expressed coincidently with a large number of other meiotic genes such as *SPO11* [Acheson et al. 1987], *RED1* [Thompson and Roeder 1989], and *REC114* [Pittman et al. 1993], which encode products required for successful completion of meiosis [for review, see Mitchell 1994]. *DIT1*, which is expressed just prior to spore formation, is required for deposition of the outermost layer of the spore wall [Briza et al. 1990b]. We found that *HOPI*, *SPS1*, and *DIT1* were turned on sequentially [Fig. 3A]; expression of *HOPI* preceded expression of *SPS1* by ~2 hr, and expression of *DIT1* began 2 hr after the *SPS1* gene had been turned on. This sequential pattern of gene expression was consistent with previous observations [Briza et al. 1990b, Mitchell et al. 1990; Smith et al. 1990].

Sps1 is not essential for meiosis

The observation that SPS1 was expressed as meiosis was nearing completion suggested that SPS1 was required for a postmeiotic event. We found that cells of a *MATa*/*MATa Δsps1/Δsps1* strain successfully completed the meiotic divisions. Generation of the Δsps1 allele for this strain was achieved by replacement of the S' region of SPS1 with a DNA fragment containing *TRP1* [see Materials and methods]; no SPS1-derived transcripts could be
detected in the MATa/MATα Δspa1/Δspa1 strain in sporulation medium (data not shown). Examination of DAPI-stained cells by fluorescence microscopy indicated that both meiosis I and meiosis II occurred at approximately the same times in the mutant cells as in wild-type cells, with the majority of multinucleate cells appearing between 8 and 12 hr (Fig. 3B,C). In various experiments, we found that meiosis I occurred in the mutant cells with an efficiency of 80-100% of that in wild-type cells [Fig. 3B,C; data not shown] and meiosis II occurred with an efficiency of 60-75% of that in wild-type cells [Fig. 3B,C; data not shown]. Although the Δspa1 mutant cells reproducibly showed a reduction in the efficiency of the second meiotic division, the majority of the mutant cells that had completed meiosis I went on to complete meiosis II but were then unable to form spores as assessed by phase-contrast microscopy (Fig. 3E). We found that a portion of the mutant cells that had been in sporulation medium were unusually large (Fig. 3E). The mutant cells that had been in sporulation medium also lacked the fluorescence and ether resistance that is attributed to deposition of a dityrosine-containing macromolecule on the outer surface of the spore [data not shown; Briza et al. 1990a,b]. We therefore concluded that the major effect of the absence of the SPA1 gene product was to prevent proper packaging of spores.

Haploid progeny can be generated from spa1-arrested cells. As described above, DAPI is a fluorescent dye allowing visualization of DNA; thus the segregation of homologous chromosomes to opposite poles during meiosis I leads to the appearance of cells that are referred to as binucleate, and the subsequent segregation of sister chromatids to opposite poles during meiosis II leads to the appearance of cells that are referred to as tetraneurate. The nuclear envelope, however, remains intact during yeast meiosis; at the end of meiosis II, the extended and lobulated nucleus of the so-called tetraneurate cell contains a haploid complement of chromosomes in each nuclear lobe. Compartmentalization of the haploid genomes is thought to be dependent on formation of prospore walls around the nuclear lobes. The prospore envelope, which pinches off the haploid nuclei and traps some cytoplasmic material, then serves as the scaffold for deposition of spore wall-specific material (Moens 1971; Moens and Rapport 1971). Upon germination, the four spores present within the ascus sac are released and the growth of the individual spores gives rise to haploid progeny.

To test for compartmentalization of the meiotic products in spa1-arrested cells, we assessed the ploidy of progeny derived from these cells. If the meiotic nucleus generated in an spa1/spa1 cell did undergo compartmentalization, we anticipated that it would be possible to recover haploid progeny. First, we determined whether spa1-arrested cells could resume mitotic growth (Fig. 4). We found that the viability of spa1/spa1 cells that had been in sporulation medium for 24 hr was ~80% that of wild-type sporulating cells [Fig. 4]. We then assessed the
A yeast kinase required for spore maturation

DNA content of the progeny derived from sporulating cells by flow cytometry. FACS analyses were first performed on exponentially growing cultures of haploid SPsl cells, diploid SPsl/SPsl cells, and diploid sps1/sps1 cells. These control scans showed a typical distribution of cells with a greater portion of the population being in G2 than in G1 [Fig. 5A-C]. Similar scans were then performed on cultures that had been incubated in sporulation medium for 21 hr, diluted, and grown in liquid rich medium for 21 hr. In the scan of wild-type diploid cells subjected to this regimen, germination and growth of haploid spores were visualized by the appearance of a peak of G1 cells with a 1N DNA content [Fig. 5D]. The peak of G2 cells with a 4N DNA content in this scan indicated that a portion of the cells in the population were diploids. Most of these diploid cells were presumably derived from cells that did not enter the meiotic pathway on transfer to sporulation medium. It is possible that these nonsporulating cells resumed growth prior to germination of spores, accounting for the relatively low portion present in the population derived from wild-type cells that had been in sporulation medium for 21 hr. A FACS analysis of a culture derived from sps1-arrested cells returned to growth medium revealed a minor population of haploid cells, approximately one-fifth to one-third the portion present in the population derived from wild-type sporulating cultures [Fig. 5E; data not shown]. On the basis of this analysis we concluded that the sps1-derived cells could generate haploid progeny, although less efficiently than did wild-type cells. The reduced level of haploidization can be accounted for in part by the fact that the mutant cells completed meiosis less efficiently than did wild-type cells.

As an alternative approach for detecting haploid progeny of sps1-arrested cells, we tested for segregation of recessive drug-resistance markers. In this experiment, SPsl/SPsl CAN1/1/can1 CYH2/cyh2 and sps1/sps1 CAN1/can1 CYH2/cyh2 cells, which are sensitive to canavanine and cycloheximide, were incubated in sporulation medium for 21 hr and then plated on rich medium and tested for resistance to cycloheximide and canavanine. One-half of the haploid progeny of wild-type cells would be expected to be resistant to each drug, as we were testing colonies derived from asci, each colony would be expected, in the absence of sib-matings, to contain drug-resistant cells. We found that 53% and 57% of the colonies derived from wild-type cells that had been in sporulation medium contained cells that were resistant to cycloheximide and canavanine, respectively. Nineteen percent and 15% of the colonies recovered from sps1/sps1 cells that had been in sporulation medium were resistant to cycloheximide and canavanine, respectively. The sps1 cyt2' and sps1 can1' cells appeared to be derived by haploidization, as most of the drug-resistant cells were also maters [data not shown]. In summary, both this genetic analysis and analysis of DNA content by flow cytometry indicated that sps1-arrested cells could generate haploid progeny on resumption of growth, although less efficiently than did wild-type sporulating cells.

Aberrant spore formation in sps1/sps1 cells

To assess the sporulation defect of sps1/sps1 cells in more detail, we used electron microscopy to examine cells that had been in sporulation medium for 21 hr. A typical wild-type ascus is depicted in Figure 6A. The outermost surface of the spore wall [Fig. 6C], which appears as a very thin, osmiophilic layer, consists of a cross-linked insoluble macromolecule containing a large amount of dityrosine [Briza et al. 1990a,b]. This layer, which is responsible for the resistance of spores to degradative enzymes and organic solvents [Briza et al. 1990b] is closely associated, perhaps by covalent linkages, with an underlying chitosan layer [Briza et al. 1988], which appears as a more diffuse osmiophilic layer. The innermost layers of the spore wall are similar in composition to the vegetative cell wall and often appear

Figure 2. Alignment of the kinase domain of Spsl with the corresponding domains of Ste20 and p65\(^{PAK}\). The deduced sequences of the kinase domains of Spsl, Ste20 [Leb­erer et al. 1992; Ramer and Davis 1993], and p65\(^{PAK}\) [Manser et al. 1994] have been aligned by eye, guided by the alignments generated by the BLAST program [Altschul et al. 1990]. The positions of gaps, introduced to maintain alignment and denoted by dashes, were guided by the comparisons of Hanks [1991]. The sequences of the kinase domains of Spsl, Ste20, and p65\(^{PAK}\) begin at residues 18, 620, and 269, respectively. Amino acids that are identical between Spsl and Ste20, between Spsl and p65\(^{PAK}\), or among all three proteins are highlighted. The top line denotes amino acids that are invariant (uppercase) or almost invariant (lowercase) in a comparison of the catalytic domains of 100 serine-threonine protein kinases [Hanks 1991]. Roman numerals indicate the 12 kinase subdomains identified by Hanks and Quinn [1991].
as a single electron-transparent layer (Katohda et al. 1984; Briza et al. 1988).

Examination of \(sps1/sps1 \) cells that had been in sporulation medium for 21 hr revealed that many of the mutant cells could elaborate prospore-like compartments. There were generally only one or two of these compartments per cell, and they were generally smaller than were wild-type spores. Some of the compartments were very similar in appearance to a prospore at an early stage of development, consisting of a nucleus surrounded by a double membrane. Other compartments had the appearance of prospores arrested just prior to spore wall maturation; at this stage, electron-transparent spore wall material has been deposited within the double membrane.

Figure 3. The \(SPS1 \) gene is expressed at the end of meiosis and is not required for completion of the meiotic divisions. [A] RNA was prepared from aliquots of wild-type cells (LP-HT) taken at various times after transfer to sporulation medium. The RNA was denatured, separated by electrophoresis through a 1.5% agarose–formaldehyde gel, and transferred to a nylon membrane. The blot was hybridized sequentially with radioactively labeled probes containing the \(HOP1 \) gene, the \(SPS1 \) gene, the \(DIT1 \) gene, and the \(PYK1 \) gene (see Materials and methods). Hybridization was quantified by PhosphorImager, and the relative amount of each sporulation-specific RNA is given as a ratio of the amount of that RNA to the amount of \(PYK1 \) RNA at each time point. This ratio was normalized by giving the highest ratio for each sporulation-specific RNA a value of 1. [□] \(HOP1 \); [■] \(SPS1 \); [○] \(DIT1 \). [B] Samples of cells from the same sporulating culture that was analyzed in A were fixed, stained with DAPI, and examined by fluorescence microscopy to determine the percentage of cells that had completed meiosis I (○) or meiosis II (●). Cells that appeared binucleate, trinucleate, or tetranucleate by DAPI staining were considered to have completed meiosis I. Cells that appeared trinucleate or tetranucleate were considered to have completed meiosis II. Cells were examined by phase-contrast microscopy to monitor ascus formation (□). [C] Samples of \(MATa/MATa \Delta sps1/\Delta sps1 \) cells (Y26) were examined as described for B. [D] Photograph of wild-type sporulated cells (Y30) viewed by phase-contrast microscopy. A high proportion of cells have formed asci with a triad or tetrad of spores visible. [E] Photograph of \(sps1/\Delta sps1 \) cells (Y26) viewed by phase-contrast microscopy. No asci are visible.

Figure 4. Viability of \(MATa/MATa \Delta sps1/\Delta sps1 \) cells in sporulation medium. Samples of \(MATa/MATa \) \(sps1/spsl \) cells (Y30, □) and \(MATa/MATa \Delta sps1/\Delta sps1 \) cells (Y26, ●) were taken at various times after transfer to sporulation medium. The aliquots were vortexed, diluted, and plated on YPD. For each strain, the number of viable cells is expressed as a ratio of the number of colony-forming units (cfu) at a given time after transfer of cells to sporulation medium to the number of cfu at the time of transfer to sporulation medium. In this experiment, the efficiency of ascus formation was 54% for strain Y30. Strain Y26 generated no asci.
A yeast kinase required for spore maturation

SPS1 is required for normal expression of late sporulation-specific genes

Several classes of temporally distinct sporulation-specific genes, referred to as early, middle, mid-late and late, are sequentially expressed as the sporulation program proceeds [for review, see Mitchell 1994]. Expression of middle SPS genes, which include SPS1, SPS2, and SPS4 (Percival-Smith and Segall 1984, 1986; Garber and Segall 1986), is followed by expression of the mid-late genes, DIT1 and DIT2, which are essential for formation of the

Figure 5. FACS analysis reveals that sps1-arrested cells generate haploid progeny. Cells were fixed and stained with propidium iodide prior to analysis in a Becton Dickinson FACScan. [A] Scan of haploid SPS1 cells (Y3031B) grown in YPD. The peaks of cells marked 1N and 2N represent cells in G1 and G2 of the cell cycle, respectively. [B] Scan of diploid SPS1/SPS1 cells (Y30) grown in YPD. [C] Scan of diploid sps1/spsl cells (Y26) grown in YPD. The peaks of cells marked 2N and 4N represent cells in G1 and G2 of the cell cycle, respectively. [D] Scan of SPS1/SPS1 cells (Y30) that had been incubated in sporulation medium for 21 hr and then grown in YPD for 21 hr. The efficiency of sporulation of these cells was ~60%. The peak of cells marked 1N represents haploid cells in G1. These cells were derived from spores that had germinated and had begun to grow vegetatively. The peak of cells marked 2N represents both haploid cells in G2 and diploid cells in G1. The diploid cells are those that failed to sporulate. The peak of cells marked 4N represent diploid cells in G2. [E] Scan of sps1/sps1 cells (Y26) that had been incubated in sporulation medium for 21 hr and then grown in YPD for 21 hr. No asci were seen in these cells after 21 hr in sporulation medium.

The graphs depict relative DNA content (x-axis) vs. cell number (y-axis).
outermost layer of the spore wall (Briza et al. 1990b). The late SPS genes SPS100 and SPS101 are activated ~4 hr after the DIT genes are turned on. The SPS100 gene has been shown to contribute to the development of the ether resistance that is a characteristic of mature spores [Law and Segall 1988]. To determine whether mutation of the SPS1 gene affected the pattern of sporulation-specific gene expression, we monitored accumulation of transcripts of various genes in wild-type cells and in sps1/sps1 cells in sporulation medium by Northern blot analysis. The expression of SPS2 and SPS4, which coincides with expression of SPS1, was similar in both strains (Fig. 7A,B). DIT1 transcripts, however, accumulated to a much higher level in the sps1/sps1 strain than in the wild-type strain (Fig. 7C), suggesting that the turning off of the DIT1 gene was delayed in the absence of SpS1. It is also possible that the DIT1 promoter was more active or that DIT1 transcripts were more stable in the absence of SpS1. Another dramatic effect of mutation of SPS1 was seen on examining expression of SPS100 and SPS101 genes. In wild-type cells, transcripts corresponding to these genes accumulated to a high level between 11 and 15 hr of sporulation and remained at a high level until 24 hr of sporulation [Fig. 7E,F; Law and Segall 1988]. Accumulation of SPS100 transcripts was both delayed and reduced in the sps1/sps1 strain in sporulation medium (Fig. 7E), and SPS101 transcripts failed to accumulate to a significant extent at any time in the mutant strain (Fig. 7F). Rehybridization of the blots of Figure 7 with radioactively labeled PYK1 DNA confirmed that approximately equal amounts of RNA had been loaded in each lane of the gels (Fig. 7D,G; data not shown).
found that cells could complete meiosis I and spsi/spsi. Mutation blocks spore wall development.

Figure 7. Expression of sporulation-specific genes in SPS1/SPS1 and spsi/spsi cells. Accumulation of transcripts was monitored for the following genes: [A] SPS2, [B] SPS4, [C] DIT1, [D] SPS100, [E] SPS101, [F] PYK1 as denoted in the column titled probe. RNA was purified from wild-type cells (strain LP-HT, denoted SPS1 in the column titled strain) and from spsi/spsi cells (strain YRL1, denoted spsi in the column titled strain) at the indicated times after transfer to sporulation medium. The RNA was denatured, separated by electrophoresis through a 1.5% agarose-formaldehyde gel, and transferred to a nylon membrane. The RNA blots were hybridized with the indicated radioactively labeled gene-specific probes (see Materials and methods). After autoradiography, the hybridized DNA was removed and all blots were rehybridized with a radioactively labeled probe containing the PYK1 gene to test for equal loading of RNA in all lanes. [D,C] The control hybridizations with the PYK1 probe for the filters of C and F, respectively. Only the portions of the autoradiographs that revealed hybridization with the probes are shown.

Discussion

Mutation of SPS1 blocks spore wall development and late sporulation-specific gene expression

The finding that SPS1 encodes a putative protein kinase prompted us to investigate the role of Sp1 in the sporulation program of S. cerevisiae in greater detail. As might be expected from the observation that maximal expression of SPS1 occurs as meiosis is nearing completion, we found that spsi/spsi cells could complete meiosis I and meiosis II as assayed by DAPI staining of nuclear material. The mutant cells, which did not form spores as assessed by phase-contrast microscopy, were able to re-enter the mitotic cycle on transfer to rich medium as has been shown for several other meiotically arrested mutants (Davidow and Byers 1984; Shuster and Byers 1989; Bishop et al. 1992; Honigberg et al. 1992, Rose and Holm 1993; Sym et al. 1993; Honigberg and Esposito 1994). The recovery of haploid progeny from spsi-arrested cells suggested that postmeiotic nuclear compartmentalization had occurred in a portion of the mutant cells. Electron microscopy revealed the formation of prospore-like compartments, usually one or two, in some of the spsi/spsi cells. These compartments, which were more variable in size than were wild-type spores, had the appearance of prospores that had been arrested at various stages of development prior to spore wall maturation. The observation that prospore-like compartments that were blocked at different stages of development as well as unenveloped nuclei could be found within the same cell suggests some degree of independence in the development of sister spores.

The finding that some spsi/spsi cells appeared to contain separated nuclei that had not been enveloped by prospore membranes contrasts with the observation that in wild-type cells meiotic nuclear division occurs concomitantly with prospore wall formation (Moens 1971). However, nuclear division occurring independently of spore wall formation has been observed previously in spo1/spo1, spo2/spo2, and spo3/spo3 mutant cells (Moens et al. 1974). Because some spsi/spsi cells contained more than four compartments, including prospore-like compartments and unenveloped nuclei, it would appear that occasionally only part of a nucleus was encapsulated or that an anucleate spore-like compartment formed. This is reminiscent of the lack of coordination between nuclear division and prospore wall formation seen in spo2 and spo3 diploids (Moens et al. 1974).

The mature wild-type spore wall is multilayered with the two outermost layers being spore specific (Kregervan Riij 1978; Briza et al. 1998, 1990a). The outermost layer, which contains a dityrosine-containing molecule, is deposited over a chitosan-containing layer (Briza et al. 1988, 1990a). These two outer layers appeared to be absent from the spsi spore-like compartments. It should be noted that the absence of these layers alone does not prevent visualization of spores by phase-contrast microscopy (Briza et al. 1990a; Pammer et al. 1992). We therefore infer that there is an additional structural defect in spsi spore walls. The chitosan layer appears to be essential for incorporation of dityrosine into the spore wall (Briza et al. 1990b, 1994; Pammer et al. 1992). Because we have found that at least one of the genes required for formation of the dityrosine-containing layer (Briza et al. 1990b, 1994) is expressed in the mutant cells, we therefore suggest that the absence of the chitosan layer might prevent deposition of the dityrosine-containing layer around the spsi spore-like compartments.

Because the viability of spsi-arrested cells was not as high as was the viability of wild-type sporulating cells, it is possible that completion of meiosis was lethal to some of the mutant cells. The recovery of a population of haploid progeny from spsi-arrested cells indicates, however, that some of the postmeiotic cells were viable. The origin of the haploid progeny that were derived from spsi-arrested cells is unclear. It is possible that a haploid nucleus that failed to be encapsulated in an immature spore migrated into a daughter bud on resumption of growth, as has been shown recently for spo14-arrested cells (Honigberg et al. 1992; Honigberg and Esposito 1994). Another possibility is that the spsi spores were released from the asc spore and began to grow.
In contemplating a possible role for Spsl kinase in sporulation, expression of *mu-* was almost undetectable in mutant cells than in wild-type cells. Expression of *SPS100* was delayed and reduced, and expression of *SPS101* was almost undetectable in *SPS1* mutant cells. Interestingly, this aberrant pattern of late gene expression is similar to that seen in cells compromised for efficient sporulation attributable to high-copy effects of *SPS2* (Percival-Smith and Segall 1987).

Possible targets of the SPS1-encoded protein kinase

In contemplating a possible role for Sps1 kinase in sporulation, not only do we wish to account for the defect in sporule packaging in the mutant cells but also for the observation that the mutant cells are less efficient than are wild-type cells in completing meiosis II. A structure that could contribute both to efficient completion of meiosis and to sporule packaging is the spindle pole body. During the second meiotic division, an outer plaque develops as an enlargement of the outer layer of the spindle pole body. Prospore wall formation initiates from this outer plaque (Moens and Rapport 1971; Davidow et al. 1980). A modification to the spindle pole bodies at the end of meiosis I, such as a hypothetical Sps1-dependent phosphorylation event, might contribute to the efficiency of the next round of spindle pole body duplication as well as to outer plaque development. In this scenario, the defect caused by the absence of Sps1 would ultimately prevent spore maturation and indirectly prevent activation of late *SPS* genes.

An alternative explanation for the phenotype of *sps1/sps1* cells is that Sps1-dependent phosphorylation leads to activation of a transcriptional regulator that is responsible for the expression of a set of mid–late sporulation-specific genes. This hypothetical set of *SPS1*-dependent genes not only would include structural genes required for efficient completion of meiosis II and spore wall maturation but also regulatory gene(s) required to activate expression of late *SPS* genes such as *SPS100*. Because *DIT1*, a mid-late gene required for spore wall maturation, is expressed in the asporogenous *sps1/sps1* cells, it is necessary to also invoke an *SPS1*-independent pathway for expression of some of the mid-late genes involved in spore wall formation. Additionally, the unusually high level of expression of *DIT1* in the *sps1/sps1* strain suggests that an *SPS1*-dependent gene might be responsible for turning down expression of *DIT1*.

The identification of Sps1 as a putative protein kinase adds to the growing list of kinases that have been found to play a role in sporulation in *S. cerevisiae* (for review, see Hoekstra et al. 1991). Entry into meiosis is regulated in part by a decrease in the activity of cAMP-dependent protein kinase in response to nutrient limitation (for review, see Broach 1991). The expression of *IME1*, a key regulatory gene required for almost all meiotic gene expression (for review, see Mitchell 1994), is stimulated by *MCK1*, which encodes a dual specificity kinase (Dailey et al. 1990; Negeborn and Mitchell 1991). This kinase also plays a role in ascus maturation (Negeborn and Mitchell 1991) and centromere function [Shero and Hieter 1991]. The *RIM11*-encoded kinase is required for *ime1* to activate expression of *IME2* (Mitchell and Bowdish 1992; Smith et al. 1993; Mitchell 1994). *Ime2/Sme1*, which contributes to early meiotic gene expression, is itself a putative protein kinase (Yoshida et al. 1990). Mek1, another meiosis-specific protein kinase homolog, is required for chromosome synopsis and recombination (Rockmill and Roeder 1991). Additionally, the cell cycle kinases Cdc28 and Cdc7 and the DNA repair-associated kinase Hrr25 are required for progression through meiosis (for review, see Hoekstra et al. 1991).

A protein kinase cascade regulating spore wall development

Four functionally distinct signal transduction pathways that operate via a protein kinase cascade to activate a MAP kinase have been identified in yeast (for review, see Errede and Levin 1993; Neiman 1993; Ammerer 1994; Marshall 1994). The observation that the catalytic domain of Sps1 has 44% identity with the catalytic domain of Ste20, a member of the MAP kinase pathway involved in response to mating pheromone, suggests the existence of a novel sporulation-specific kinase cascade. Indeed, a sporulation-specific gene, *SMK1*, encoding a protein with homology to MAP kinases (Krisak et al., this issue) has been identified. The phenotype of *smk1/smk1* cells is strikingly similar to that of *sps1/sps1* cells (Krisak et al., this issue). This raises the possibility that Sps1 and Smk1 are components of a kinase cascade required to coordinate events involved in spore wall formation.

Ste20 is stimulated by release of the βγ subunit complex from the heterotrimeric G-protein associated with the membrane-bound pheromone receptor and acts in conjunction with Ste5 to activate Ste11 kinase (Leberer et al. 1992; Ramer and Davis 1993; for review, see Sprague and Thorner 1992). Ste11 then activates Ste7 kinase [Neiman and Herskowitz 1994], which leads to activation of the MAP kinase homologs Fus3 and Kss1, which in turn activate the transcription factor Ste12 [for review, see Sprague and Thorner 1992]. In contrast to the role of a heterotrimeric G-protein in regulating Ste20 kinase, a Ras-related small GTP-binding protein recently has been shown to activate p65PAK, a mammalian relative of Ste20 [Manser et al. 1994]. Future experiments will reveal whether the activity of Sps1 is regulated solely by transcription, by a member of the G-protein family, or by some other mechanism. Further insight into the putative Sps1/Smk1 kinase pathway awaits the identification of other members of the cascade as well as the ultimate target of the pathway.

Materials and methods

Plasmids

p18 (Percival-Smith and Segall 1984) contains a 3.7-kb fragment of yeast DNA encompassing the entire *SPS1* gene inserted into
the BamHI site of pBR322. pSPS1–URA3, a replicating yeast plasmid containing the SPSt gene, was obtained by cloning a 2.3-kb BamHI–XbaI fragment purified from p18 (Percival-Smith and Segall 1986) that had been propagated in a dam^{-} strain of Escherichia coli between the corresponding sites of pRS316 (Sikorski and Hieter 1989). pCAN1–LEU2, used to integrate the CAN1 allele into the yeast genome, contained a 1.8-kb BamHI–SacI fragment encompassing the CAlsT1 gene (Hoffman 1985) cloned between the corresponding sites of pRS306 (Sikorski and Hieter 1989). pCAN1–LEU2, used to integrate the CAN1 allele into the yeast genome, contained a 1.8-kb BamHI–SacI fragment encompassing the CAlsT1 gene (Hoffman 1985) cloned between the corresponding sites of pRS306 (Sikorski and Hieter 1989).

This plasmid contains a DNA fragment encompassing the URA3 gene inserted into the BglII site at the 3' end of the SPSt gene (see Fig. 1). YipΔST, the plasmid used to delete the 5' end of the chromosomal SPSt gene, was a derivative of pRL1. pRL1 contained a 2.5-kb BamHI–BglII fragment from p18, encompassing most of the SPSt gene, inserted into the BamHI site of pUC18. YipΔST was constructed by replacement of the ClaI–EcoRV fragment of pRL1, which spans the 5'-end of the SPSt gene (see Fig. 1), with an 0.85-kb BglII–BglII fragment containing the TRP1 gene. In the construction of YipΔST, the ClaI and EcoRV site of pRL1 and the BglII ends of the TRP1-containing fragment were filled in with the Klenow form of DNA polymerase I. E. coli strains used for cloning were TG1 (K12 $\Delta lac prol E$ supE thi $\Delta hisDS/F' traD36 pioA^B^ lacP iacZAM18$) and DH5α (supE44 $\Delta lacU169 [\delta80 lacZAM15] hisD17 recA1 endA1 gptA96 thi-1 relA1$), and W3110 dam3 $\{\text{HsdR}^+ \text{ sup}^+ \text{ dam}^-\}$. CaCl2 transformations and recombinant DNA manipulations were carried out as described by Sambrook et al. (1989).

Yeast strains

All yeast strains used in this study were derived from the isogenic strains W3031A and W3031B (constructed by R. Rothstein) and their derivatives W3031A-H and W3031B-T (Law and Segall 1988) (see Table 1). LP112, provided by S. Lindquist, represents the diploid obtained by mating W3031A and W3031B, LP-HT represents the diploid obtained by mating W3031A-H and W3031B-T. With the exception of LP112, all diploids were obtained by prototrophic selection taking advantage of either chromosomal markers or markers introduced on plasmids for this purpose. The diploid strain YRL1 [MATa/ $\text{MATa spsl::URA3}/\text{spsl::URA3}$] was constructed in three steps. First, we transformed W3031A-H and W3031B-T with p18-2 DNA that had been digested with BamHI and XbaI, as described in Percival-Smith and Segall (1986). Second, insertion of the URA3-containing DNA fragment at the 3' end of the SPSt gene was confirmed by Southern blot analysis of genomic DNA from Ura+ transformants. Finally, a MATa spsl::URA3 strain and a MATa spsl::URA3 strain were mated to give the

* These strains were generated by the authors, with the exception of W3031A and W3031B (from R. Rothstein) and LP112 (from S. Lindquist).

Table 1. S. cerevisiae strains
Strain
W3031A
W3031B
W3031A-H
W3031B-T
LP112
LP-HT
Y6
Y7
Y8
Y31
Y26
Y30
YRL1

GENES & DEVELOPMENT 2171
diploid strain YRL1. Y8 [MATaΔspsl::TRPl] and Y31 [MATa Δspsl::TRPl] were obtained by transforming W3031B and Y7 [see below], respectively, with YipAST that had been digested with BamHI and HindIII. Deletion-substitution of the 5' end of the chromosomal SPSl gene with TRPl-containing DNA, to give the allele referred to as Δspsl, was confirmed by Southern blot analysis. We have found that MATa/MATa aspsl::TRPl and Y31 [MATaΔspsl::TRPl] behave identically in all our phenotypic and genetic analyses.

Diploid strains heterozygous for can1 and cyh2 were obtained as follows. First, a spontaneous cycloheximide-resistant mutant of W3031A, Y6, was isolated as described by Sikorski and Boeke (1991). Strain Y7, a canavanine-sensitive derivative of Y6, was generated by transforming Y6 with pCAN1-LEU2, which had been partially digested with EcoRI. This resulted in a spontaneous cycloheximide-resistant derivative of Y6, which was then transformed with YipAST that had been digested with BamHI and HindIII. Deletion-substitution of the 5' end of the chromosomal SPSl gene with TRPl-containing DNA, to give the allele referred to as Δspsl, was confirmed by Southern blot analysis. We have found that MATa/MATa aspsl::TRPl and Y31 [MATaΔspsl::TRPl] behave identically in all our phenotypic and genetic analyses.

To induce sporulation, cells were pregrown in YEPA (0.5% yeast extract, 1% Bacto-peptone, and 1% potassium acetate) to a concentration of 1 x 10^6 to 2 x 10^6 cells/ml, incubated for 21 hr in sporulation medium, and then diluted, and plated on YPD. After 24 hr incubation, the resistant colonies were patched on YPD, incubated for 24 hr, and replica plated to SD containing the appropriate supplements of adenine or in SD supplemented with 40 μg/ml of canavanine. To determine the efficiency of haploidization, we examined the recovering of recessive drug-resistant alleles. In these experiments SPSl/SPSl CAN1/can1 CYP2/cyh2 and sps1/spsl CAN1/can1 CYP2/cyh2 cells were pregrown in YEPA, transferred to sporulation medium at a concentration of 1 x 10^7 to 2 x 10^7 cells/ml, incubated for 21 hr in sporulation medium, diluted, and plated on YPD. After 24 hr incubation, the resistant colonies were patched on YPD, incubated for 24 hr, and replica plated to SD containing the appropriate supplements and either 10 μg/ml of cycloheximide or 60 μg/ml of canavanine.

For FACS analyses, wild-type and mutant cells were incubated in sporulation medium for 21 hr, diluted in YPD, and grown for 21 hr. Approximately 10^7 cells were washed and fixed in 70% ethanol. Fixed cells were resuspended in 50 mM sodium citrate at pH 7.4, sonicated briefly, and treated with 0.25 mg/ml of RNase A for 1 hr at 50°C. Cells were then stained with 8 μg/ml of propidium iodide in citrate buffer for 30 min at 24°C in the dark, treated with 0.2 mg/ml of proteinase K for 1 hr at 50°C, and sonicated to disperse clumps. Fluorescence was measured using a Becton Dickinson FACScan and analyzed with LYSIS II software. No gating was used, and 20,000 cells were examined in each experiment.

Electron microscopy

Cells from strains Y30 and Y26 that had been in sporulation medium for 21 hr were centrifuged, washed in H2O, and prepared for electron microscopy using procedures modified from Hayat (1970) and Briza et al. (1988). In brief, cells were fixed overnight in a solution containing 3% glutaraldehyde, 3% acrolein, and 0.1 M sodium cacodylate. Samples were washed and
postfixed in 1.5% potassium permanganate for 1 hr at 4°C, washed again, and fixed with 1% osmium tetroxide in veronyl acetate buffer for 30 min at 24°C. Samples were embedded in warm agar and dehydrated through a graded series of ethanol, and were then embedded in Spurr resin. Thin sections were stained with saturated uranyl acetate and Reynolds's lead citrate and examined on a Philips 300 electron microscope.

Acknowledgments

We thank Edward Winter and Saul Honigberg for very helpful discussions during the course of this work and for communicating results prior to publication. We thank Paul Sadowski, Anthony Percival-Smith, and Edward Winter for their valuable comments on our manuscript. We thank Randall Willis for technical assistance, Aaron Mitchell for plasmid DNAs, Brenda Andrews, Andrew Spence, and David Williams for assistance with microscopy, and Cheryl Smith of the Flow Cytometry Facility of the Department of Immunology, University of Toronto for assistance with FACS analysis. This work was supported by a Medical Research Council (Canada) grant [MA-6826] to J.S.

The publication costs of this article were defrayed in part by payment of page charges. This article must therefore be hereby marked “advertisement” in accordance with 18 USC section 1734 solely to indicate this fact.

References

Altschul, S.F., W. Gish, W. Miller, E.W. Myers, and D.L. Lipman. 1990. Basic local alignment search tool. J. Mol. Biol. 215: 403–410.

Ammerer, G. 1994. Sex, stress and integrity: The importance of meiosis-specific enzymes encoded by the \(\text{YPKl} \) gene of \(\text{Saccharomyces cerevisiae} \). J. Biol. Chem. 269: 439–456.

Becket, A., R.F. illingworth, and A.H. Rose. 1973. Ascospore wall development in \(\text{Saccharomyces cerevisiae} \). J. Bacteriol. 113: 1054–1067.

Bishop, D.K., D. Park, L. Xu, and N. Kleckner. 1992. Isolation, DNA sequence, and regulation of a meiosis-specific eukaryotic recombination gene. Proc. Natl. Acad. Sci. 80: 3000–3004.

Boeke, J.D., F. LaCroute, and G.R. Fink. 1984. A positive selection for transformation DNA restriction endonuclease fragments to high specificity-sensitive sporulation-deficient mutants. \(\text{Saccharomyces cerevisiae} \). Genetics 165: 183-191.

Broach, J.R. 1991. RAS genes in \(\text{Saccharomyces cerevisiae} \). Trends Genet. 7: 28–33.

Briza, P., A. Ellinger, G. Winkler, and M. Breitenbach. 1988. Chemical composition of the yeast ascospore wall. The second outer layer consists of chitosan. J. Biol. Chem. 263: 11569–11574.

—. 1990a. Characterization of a DL-dityrosine-containing macromolecule from yeast ascospore walls. J. Biol. Chem. 265: 15118–15123.

Briza, P., M. Breitenbach, A. Ellinger, and J. Segall. 1990b. Isolation of DIT to genes catalyzing two step reaction leading to a soluble LL-dityrosine-containing precursor of the yeast spore wall. Proc. Natl. Acad. Sci. 91: 4524–4528.

Byers, B. 1981. Cytology of the yeast life cycle (ed. J.N. Strathern, E.W. Jones, and J.R. Broach), pp. 59–96. In \(\text{The molecular biology of the yeast} \) \(\text{Saccharomyces cerevisiae} \). J. Biol. Chem. 258: 2193–2201.

Clancy, M.J., B. Buten-Magee, D.J. Straight, A.L. Kennedy, R.M. Partridge, and P.T. Magee. 1983. Isolation of genes expressed preferentially during sporulation in the \(\text{Saccharomyces cerevisiae} \). Proc. Natl. Acad. Sci. 80: 3000–3004.

Coe, J.G.S., L.E. Murray, C.J. Kennedy, and I.W. Dawes. 1992. The isolation of \(\text{SPS4} \) gene of \(\text{Saccharomyces cerevisiae} \). Genes & Dev. 6: 79–89.

Davidow, L.S. and B. Byers. 1984. Enhanced gene conversion and postmeiotic segregation in pachytene-arrested \(\text{Saccharomyces cerevisiae} \). Genetics 106: 165–183.

Davidow, L.S., L. Goetsch, and B. Byers. 1980. Preferential occurrence of nonsister spores in two-spored asci of \(\text{Saccharomyces cerevisiae} \). Cytometry Facility of the Department of Immunology, University of Toronto for assistance with FACS analysis. This work was supported by a Medical Research Council (Canada) grant [MA-6826] to J.S.

The publication costs of this article were defrayed in part by payment of page charges. This article must therefore be hereby marked “advertisement” in accordance with 18 USC section 1734 solely to indicate this fact.

References

Altschul, S.F., W. Gish, W. Miller, E.W. Myers, and D.L. Lipman. 1990. Basic local alignment search tool. J. Mol. Biol. 215: 403–410.

Ammerer, G. 1994. Sex, stress and integrity: The importance of MAP kinases in yeast. Curr. Opin. Genet. Dev. 4: 90–95.

Atcheson, C.L., B. DiDomenico, S. Frackman, R.E. Esposito, and R.T. Elder. 1987. Isolation, DNA sequence, and regulation of a meiosis-specific eukaryotic recombination gene. Proc. Natl. Acad. Sci. 84: 8035–8039.

Beckett, A., R.F. Illingworth, and A.H. Rose. 1973. Ascospore wall development in \(\text{Saccharomyces cerevisiae} \). J. Bacteriol. 113: 1054–1067.

Bishop, D.K., D. Park, L. Xu, and N. Kleckner. 1992. \(\text{DMC1} \): A meiosis-specific yeast homolog of \(\text{coli recA} \) required for recombination, synaptonemal complex formation, and cell cycle progression. Cell 69: 439–456.

Boeke, J.D., F. LaCroute, and G.R. Fink. 1984. A positive selection for mutants lacking orotidine-5′-phosphate decarboxylase activity in yeast: 5-Fluoro-orotic acid resistance. Mol. Gen. Genet. 197: 345–346.

Briza, P., A. Ellinger, G. Winkler, and M. Breitenbach. 1988. Chemical composition of the yeast ascospore wall. The second outer layer consists of chitosan. J. Biol. Chem. 263: 11569–11574.

—. 1990a. Characterization of a DL-dityrosine-containing macromolecule from yeast ascospore walls. J. Biol. Chem. 265: 15118–15123.

Briza, P., M. Breitenbach, A. Ellinger, and J. Segall. 1990b. Isolation of two developmentally regulated genes involved in spore wall maturation in \(\text{Saccharomyces cerevisiae} \). Genes & Dev. 4: 1775–1789.

Briza, P., M. Eckerstorfer, and M. Breitenbach. 1994. The sporulation-specific enzymes encoded by the \(\text{DIT1} \) and \(\text{DIT2} \) genes catalyze a two step reaction leading to a soluble LL-dityrosine-containing precursor of the yeast spore wall. Proc. Natl. Acad. Sci. 91: 4524–4528.
DNA topoisomerase II mutants. Mol. Cell. Biol. 13: 3445–3455.
Sambrook, J., E.F. Fritsch, and T. Maniatis. 1989. Molecular cloning: A laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York.
Sanger, F., S. Nicklen, and A.R. Coulson. 1977. DNA sequencing with chain-terminating inhibitors. Proc. Natl. Acad. Sci. 74: 5463–5467.
Schiestl, R.H. and R.D. Gietz. 1989. High efficiency transformation of intact yeast cells using single stranded nucleic acids as a carrier. Curr. Genet. 16: 339–346.
Sherman, F. 1991. Getting started with yeast. Methods Enzymol. 194: 3–21.
Shero, J.H. and P. Hieter. 1991. A suppressor of a centromere DNA mutation encodes a putative protein kinase [MCK1]. Genes & Dev. 5: 549–560.
Shuster, E.O. and B. Byers. 1989. Pachytene arrest and other meiotic effects of the star mutations in Saccharomyces cerevisiae. Genetics 123: 29–43.
Sikorski, R.S. and J.D. Boeke. 1991. In vitro mutagenesis and plasmid shuffling: From cloned gene to mutant yeast. Methods Enzymol. 194: 302–318.
Sikorski, R.S. and P. Hieter. 1989. A system of shuttle vectors and yeast host strains designed for efficient manipulation of DNA in Saccharomyces cerevisiae. Genetics 122: 19–27.
Smith, H.E., S.S. Su, L. Neigeborn, S.E. Driscoll, and A.P. Mitchell. 1990. Role of IMEl expression in regulation of meiosis in Saccharomyces cerevisiae. Mol. Cell. Biol. 10: 6103–6113.
Smith, H.E., S.E. Driscoll, R.A.L. Sia, H.E. Yuan, and A.P. Mitchell. 1993. Genetic evidence for transcriptional activation by the yeast IMEl gene product. Genetics 133: 775–784.
Sprague, G.F. Jr., and J.W. Thorner. 1992. Pheromone response and signal transduction during the mating process of Saccharomyces cerevisiae (ed. E.W. Jones, J.R. Pringle, and J.R. Broach), pp. 657–744. In The molecular and cellular biology of the yeast Saccharomyces: Gene expression. Cold Spring Harbor Laboratory, Cold Spring Harbor, New York.
Sym, M., J. Engebrecht, and G.S. Roeder. 1993. ZIP1 is a synaptonemal complex protein required for meiotic chromosome synopsis. Cell 72: 365–378.
Thompson, E.A. and G.S. Roeder. 1989. Expression and DNA sequence of RED1, a gene required for meiosis I chromosome segregation in yeast. Mol. & Gen. Genet. 218: 293–301.
Tsuboi, M. 1983. The isolation and genetic analysis of sporulation-deficient mutants in Saccharomyces cerevisiae. Mol. & Gen. Genet. 191: 17–21.
Yoshida, M., H. Kawaguchi, Y. Sakata, K.I. Kominami, M. Hirano, H. Shima, R. Akada, and I. Yamashita. 1990. Initiation of meiosis and sporulation in Saccharomyces cerevisiae requires a novel protein kinase homologue. Mol. & Gen. Genet. 221: 176–186.
Mutation of the SPS1-encoded protein kinase of Saccharomyces cerevisiae leads to defects in transcription and morphology during spore formation.

H Friesen, R Lunz, S Doyle, et al.

Genes Dev. 1994, 8:
Access the most recent version at doi:10.1101/gad.8.18.2162