Bicuspid aortic valve morphology and hemodynamics by same-day echocardiography and cardiac MRI

Jeesoo Lee · Nadia El Hangouche · Ashitha Pathrose · Gilles Soulat · Alex J. Barker · James D. Thomas · Michael Markl

Received: 6 January 2022 / Accepted: 7 March 2022 / Published online: 16 March 2022
© The Author(s), under exclusive licence to Springer Nature B.V. 2022

Abstract
This study investigated the impact of bicuspid aortic valve (BAV) on valve morphology and motion as well as proximal and aortic hemodynamics using a same-day echocardiography and cardiac MRI. Transthoracic echocardiography, two-dimensional cine MRI of the aortic valve, and aortic 4D flow MRI were performed on the same day in 9 normofunctional BAV patients (age = 41 ± 12, 3 female), 4 BAV with moderate to severe aortic stenosis (AS) (age = 63 ± 5, 1 female), and 36 healthy tricuspid aortic valve controls (age = 52 ± 10, 21 female). Valve opening and closing timings and transvalvular peak velocity were measured using B-mode and Doppler echocardiogram, respectively. Valve orifice morphology at a fully-opened state was characterized using cine MRI. Ascending aortic (AAo) wall shear stress (WSS) was measured using 4D flow MRI data. Valve motion timings were similar between BAV and controls. BAV was associated with an increased orifice aspect ratio (1.44 ± 0.11 vs. 1.10 ± 0.13, P < 0.001), transvalvular peak velocity (1.5 ± 0.3 vs. 1.2 ± 0.2 m/s, P < 0.001) and maximum AAo WSS (1.62 ± 0.31 vs. 0.91 ± 0.24 Pa, P < 0.001). The increased orifice aspect ratio was associated with the increase in transvalvular peak velocity (r = 0.80, P < 0.0001) and maximum AAo WSS (r = 0.83, P < 0.0001). Transvalvular peak velocity was also positively correlated with maximum AAo WSS (r = 0.83, P < 0.0001). A same-day echo and MRI imaging allows for a comprehensive assessment of the impact of aortic valve disease on valve function and hemodynamics. In this pilot application to BAV, we found increased orifice aspect ratio may be responsible for increased transvalvular peak velocity and maximum AAo WSS.

Keywords Bicuspid aortic valve · Echocardiography · 4D flow MRI · Aortic valve morphology · Aortic valvular hemodynamics

Introduction

Bicuspid aortic valve (BAV) is the most common congenital cardiovascular defect that occurs in 1–2% of the general population in the United States [1]. BAV is associated with a wide range of complications such as valvular stenosis and regurgitation and aortic aneurysm and dissection [2, 3]. Progression to secondary complications is thought to result from genetic defects in vascular connective tissue [4]. However, additional evidence suggests that BAV can result in abnormal ascending aortic (AAo) flow associated with the development of aortopathy, even in patients without aortic valve stenosis (AS) [5–8].

Four-dimensional (4D) flow MRI has played an instrumental role in detecting valve-mediated abnormal aortic flow (e.g., helical flow patterns, eccentric valvular outflow jet patterns and skewed velocity profile) in BAV patients [6–9].
Wall shear stress (WSS), which represents the viscous friction force exerted on the aortic wall by blood flow, has been regarded as an important flow metric associated with vascular remodeling [10]. Analysis of aortic WSS by 4D flow MRI has shown asymmetric and elevated WSS in the AAo of BAV patients [11–13]. In addition, recent studies provide evidence that elevated WSS can be associated with degeneration of the aortic wall (elastic fiber thinning on histopathology) [11, 14]. However, 4D flow MRI has insufficient spatial and temporal resolution to accurately assess BAV morphology and function, potentially important physiologic mechanisms implicated in AAo flow and WSS changes. The impact of valve metrics such as opening and closing dynamics, valve orifice shape, and near-valve flow on changes in AAo WSS in BAV is thus not fully understood.

This study presents a multimodality approach that combines echocardiography (echo), 2D cine MRI, and 4D flow MRI to investigate in detail aortic valve morphology, valve motion, as well as near-valve flow and downstream AAo WSS affected in BAV patients compared to healthy subjects with normal tricuspid aortic valve (TAV). The specific objectives were (1) to assess dynamic characteristics of valve leaflet opening and closing motion and aortic valvular flow using echo, (2) to assess morphological characteristics of valve orifice shape using cine MRI, and (3) to assess downstream 3D WSS using aortic 4D flow MRI. We hypothesized that this combined echo and MRI approach could detect the relationships between BAV morphology, valve motion dynamics, near-valve and downstream aortic hemodynamics.

Methods

Study cohort

A total of 13 BAV patients and 36 healthy volunteers with TAV (age = 52 ± 10, female = 20) were prospectively enrolled for same-day transthoracic echo and cardiac MRI, including 4D flow MRI. Based on American Society of Echocardiography guidelines [15], BAV patients were divided into two subgroups with and without echocardiography proven aortic valve stenosis (AS): 9 BAV patients without AS and 4 BAV patients with AS (2 moderate-to-severe and 2 severe). Subject demographics are summarized in Table 1. The study was approved by our institutional review board and informed consent was obtained from all participants.

Data acquisition—MRI

All MRI exams were conducted on a 1.5 T or 3 T MRI system (1.5 T Aera, Avanto and 3 T Skyra, Siemens Healthineers AG, Erlangen, Germany). The MRI protocol included 2D steady-state free precession cine MRI for imaging of the aortic valve and free-breathing 4D flow MRI covering the thoracic aorta. For cine MRI, the imaging plane was placed across the valve leaflets seen on cardiac 3-chamber and left ventricular outflow tract view images and signals were acquired during breath-hold at end inspiration with following pulse sequence parameters: echo time = 1.2–3.3 ms, flip angle = 18–83°, temporal resolution = 24.6–57.2 ms, bandwidth = 400/930 Hz/pixel, field-of-view = 270–420 × 244–420 × 6 (slice thickness) mm³ with in-plane spatial resolution = 1.4–2.2 × 1.3–2.4 mm². For 4D flow MRI, a sagittal oblique orientation was used as an imaging volume with the use of a prospective or retrospective electrocardiogram gating and a navigator for respiratory motion compensation. Pulse sequence parameters were as follows: Sagittal oblique field of view = 255–315 × 340–420 × 68–97 mm³, spatial resolution = 2.1–2.6 × 2.1–2.6 × 2.4–3.7 mm³, echo time = 2.3–2.5 ms, flip angle = 7/15°, temporal resolution = 38.4–40.6 ms, bandwidth = 455/460 Hz/pixel, encoding velocity (venc) = 150–350 cm/s along all three directions and total scan time = 806 ± 255 s.

Table 1 Patient demographics

	BAV	BAV AS	Control	P value
n (female)	9 (3)	4 (1)	36 (21)	0.10
Age	41 ± 12	63 ± 5	52 ± 10	0.10
Body surface area [m²]	1.92 ± 0.25	1.97 ± 0.14	1.90 ± 0.25	0.86
Systolic pressure [mmHg]	123.0 ± 14.8	129.3 ± 6.8	123.0 ± 26.3	0.50
Diastolic pressure [mmHg]	74.8 ± 10.3	73.5 ± 11.0	76.8 ± 12.9	0.84
Ejection fraction [%]	59.0 ± 5.0	56.3 ± 5.0†	62.0 ± 4.5	0.006
BAV fusion type	LR = 8, RN = 1	LR = 4	Tricuspid	
Aortic stenosis grade	None	MS = 2, S = 2	None	

BAV bicuspid aortic valve, AS aortic stenosis, MS moderate to severe, S severe, LR left–right, RN right-noncoronary
†Denotes a significant difference compared the control group (P < 0.017)
Data acquisition—echo

All echo exams following a standard-of-care protocol were conducted using an echocardiography scanner (Vivid E95, GE Healthcare, Horten, Norway) and a transducer for adult cardiac imaging (M5Sc-D 1.4–4.6 MHz). In each set of echocardiograms of a subject, parasternal long-axis and short-axis B-mode images that captured aortic valve motion was used to assess aortic valve motion and continuous-wave Doppler velocity spectrum of flow through the aortic valve was used to assess near-valve flow dynamics.

Data analysis—echocardiography

Echo data post-processing and measurements were performed using EchoPAC (v2.02, GE Healthcare, Horten, Norway). Valve leaflet motion was analyzed by measuring the timings of three leaflet motion phases: valve rapid opening time, valve slow closing time and valve rapid closing time suggested previously by De Paulis et al. [16] and Leyh et al. [17] They quantified the timings based on an aortic valve motion diagram (Fig. 1A) seen on aortic valve M-mode echocardiogram. However, we noted that M-mode often fails to visualize all of the three phases due to the use of a single fixed beamline. In this study, we used parasternal long or short-axis aortic valve two B-mode echocardiogram to reconstruct the valve motion diagram B-mode echocardiogram (Fig. 1B, C). The measurement procedure was as follows: (1) Place an interrogation line across the aortic valve leaflets, (2) extract B-mode signals along the line and plot them over time (Fig. 1C), (3) measure the duration of each phase observable in the plot. If there is a missed phase in the diagram, the position of the interrogation line was adjusted and the step (2) and (3) were repeated. For near-valve flow

![Diagram](image_url)

(a) Schematic valve motion diagram

(b) Acquisition of valve motion diagram using B-mode

(c) Acquired valve motion diagram and timing measurement

Fig. 1 Valve leaflet motion timing measurement. a A schematic diagram of aortic valve leaflet motion diagram. The diagram illustrates three distinct leaflet motion phases: rapid opening, slow closing, and rapid closing phase. b Reconstructing M-mode from 2D B-mode. The extraction of M-mode traces by placing an interrogation line (green line) across the valve leaflets. c Two valve leaflet motion diagrams are reconstructed by adjusting interrogation lines to capture the valve opening phase (left) and valve closing phase (right)
dynamics characterization, peak velocity and time-to-peak velocity (TTP) of transvalvular flow were measured as a peak point and a duration between the inception of velocity increase to the peak point, respectively, as described in Fig. 2. All timings were divided by $\sqrt{RR \text{ interval}}$ according to Bazett's formula to minimize the effects of heart rate variability on the timing measurements [18].

Data analysis—2D cine MRI

Valve morphology was characterized based on 2D cine MRI images at the level of the aortic valve. The orifice and aortic sinus region at mid-systole (largest orifice area) were manually contoured (Fig. 3A) and used to quantify the following morphological parameters (Fig. 3B):

- Relative orifice area: orifice area divided by the area of aortic sinus
- Orifice aspect ratio: ratio of the long-axis (d_l) vs. short-axis diameter (d_s). The short axis was measured based on a line from a commissural point of a conjoined leaflet on

![Fig. 2 Transvalvular flow peak velocity and time-to-peak velocity measurements using aortic valve continuous-wave Doppler](image)

![Fig. 3 Valve morphology characterization using 2D cine MRI at the level of the aortic valve. A. Aortic sinus (orange) and valve orifice (blue) are contoured at the maximum valve opening. B. A_o and A_s denote the valve orifice contour area and aortic sinus contour area, respectively. d_l and d_s denote the long and short axis length of the orifice contour, respectively. d_l was measured based on a line from a commissural point of a conjoined leaflet on the sinus to the midpoint of the opposite leaflet. d_s was automatically calculated based on the ellipse area formula ($d_s = 4A_o/\pi d_l$).](image)
the sinus to the midpoint of the opposite leaflet. The long axis diameter, d_l, was automatically calculated based on the formula of ellipse area ($d_l = 4 \times \frac{\text{orifice area}}{\pi d_s}$).

4D flow MRI—wall shear stress

4D flow MRI datasets were preprocessed for phase offset correction, noise masking, and velocity anti-aliasing as described previously [19] using in-house MATLAB (R2018b, Mathworks Inc., Natick, USA) code. The thoracic aorta region within the 4D flow MRI dataset was automatically identified using a deep learning approach described previously [20] and was used to create a mask to remove velocity vectors outside of the aorta. Peak systole was defined as the time point in systole when the average velocity magnitude in the aorta was the highest. Peak-systolic aortic WSS on the aorta surface was calculated by using a previously developed method [21]. Briefly, velocity gradient vectors were calculated at the surface of the aorta 3D segmentation mask and multiplied the dynamic viscosity of blood (3.2 cP) to calculate WSS vectors at the aorta wall. Figure 4 shows maximum intensity projection images of 3D aortic WSS magnitude at peak systole for a subject in each cohort. Median WSS values in the ascending aorta were quantified by a manually defined region-of-interest from the sinus of Valsalva to the onset of the brachiocephalic artery. In addition, maximum WSS was determined as the mean of the 5% highest WSS values.

Statistical methods

Numerical data are reported in mean ± standard deviation or median ± interquartile depending on data normality determined by the Lilliefors test. Differences between the three groups were evaluated using one-way analysis of variance or Kruskal–Wallis test. When the difference between all three groups was statistically significant ($P < 0.05$), the pair-wise difference was tested using a two-tailed unpaired t-test (normal distribution) or Wilcoxon rank-sum test with an adjusted significance level ($P < 0.017$) using Bonferroni correction. Pearson correlation coefficients were calculated to investigate associations between valve morphology, valve leaflet motion timings and hemodynamic parameters. Correlation analysis was performed with data points from (1) all groups and (2) BAV and healthy TAV controls (BAV AS excluded).

Results

Study cohort

Patient demographics are summarized in Table 1. Age, body surface area, systolic blood pressure, diastolic blood pressure between all three groups were not statistically significantly different. BAV AS patients had lower ejection fraction than TAV controls ($56.3 ± 5.0$ vs. $62.0 ± 4.5$, $P < 0.007$). Echocardiography-based valve leaflet motion timings could not be analyzed for cases when image quality was insufficient to identify the aortic valve and/or when out-of-plane valve movement made the aortic valve disappear during the

![Fig. 4 Example maximum intensity projection images of peak systolic aortic wall shear stress (WSS) magnitude distribution. (a) BAV patient without aortic stenosis. (b) BAV patient with severe aortic stenosis. (c) TAV patient. The white closed curve denotes the ascending aortic region-of-interest (ROI).](image-url)
valve closing phase. Valve rapid opening time could not be obtained from 2 BAV AS patients and 8 healthy controls, and valve slow closing time and valve rapid closing time could not be obtained from 1 BAV patient, 2 BAV AS patients and 13 TAV controls.

Echocardiographic measurements—valve leaflet motion and near-valve flow dynamics

As summarized in Table 2, valve motion timings (valve rapid opening time, valve slow closing time and valve rapid closing time) were similar between all three groups. Faster transvalvular peak velocity was observed for BAV patients compared to TAV controls (1.5 ± 0.3 m/s vs. 1.2 ± 0.2 m/s, P < 0.001) which further increased in BAV AS patients, as expected (4.0 ± 0.8 m/s, P < 0.001 vs. BAV and healthy controls). Transvalvular TTP was similar for BAV and healthy controls (71 ± 5 vs. 77 ± 15 ms, P = 0.252). Delayed TTP was noted in BAV AS patients (124 ± 24 ms, P < 0.001 vs. BAV and TAV controls).

MRI measurements—valve morphology

Relative orifice area was slightly smaller in BAV patients (42.5 ± 4.6%) than TAV controls (48.4 ± 6.8%, P < 0.022), but not statistically significant (Table 2). BAV AS patients had the smallest relative orifice area (16.5 ± 2.7%, P < 0.001 vs. BAV and healthy controls) as expected. The orifice aspect ratio was significantly different between all groups. The orifice aspect ratio was close to unity in TAV controls (1.10 ± 0.13). BAV patients had higher aspect ratio (1.44 ± 0.11, P < 0.016) which further increased with AS but with greater variance (5.99 ± 4.43, P = 0.001 vs. BAV and P < 0.001 vs. healthy controls).

MRI measurements—aortic hemodynamics

An example of WSS distribution along the aorta representing each cohort is illustrated in Fig. 4 using maximum intensity projection along the anterior to posterior direction. Local high WSS regions were noted in the ascending aorta of BAV and BAV AS patients, whereas TAV controls have overall lower WSS. As shown in Table 2, maximum AAo WSS was significantly different between all three groups. TAV controls demonstrated the lowest maximum AAo WSS (0.91 ± 0.24 Pa). BAV patients demonstrated higher maximum AAo WSS (1.62 ± 0.31 Pa, P = 0.0013) which increased further with AS (2.90 ± 0.76 Pa, P = 0.002 vs. BAV and P < 0.001 vs. TAV controls). A similar trend was observed for median AAo WSS but the difference between BAV and BAV AS was not statistically significant.

Relationships between valve dynamics, morphology and aortic hemodynamics

Relationships between morphological and hemodynamic parameters are summarized in Table 3. Significant strong correlations were found between increased relative valve orifice area and reduced transvalvular peak velocity (r = −0.77, P < 0.0001), between larger orifice aspect ratio and higher transvalvular peak velocity (r = 0.80, P < 0.0001) and between larger orifice aspect ratio and increased maximum AAo WSS (r = 0.79, P < 0.0001). As expected by moderate to severe AS status in the BAV AS group, orifice aspect ratio, peak velocity and WSS were far off from BAV and control groups as shown in Fig. 5, possibly driving the correlations. When BAV AS group was excluded to remove the impact of AS on the analysis, moderate correlations remained between orifice aspect ratio and transvalvular peak velocity (r = 0.43,

	BAV	BAV AS	Control	P value
Valve rapid opening time [ms]	31 ± 11	35 ± 7	31 ± 9	0.74
Valve slow closing time [ms]	267 ± 12	267 ± 30	267 ± 21	0.97
Valve rapid closing time [ms]	34 ± 8	37 ± 10	38 ± 11	0.40
Transvalvular peak velocity [m/s]	1.5 ± 0.3†‡	4.0 ± 0.8†	1.2 ± 0.2	< 0.001
Transvalvular flow TTP [ms]	71 ± 5‡	125 ± 22†	77 ± 15	< 0.001
Relative orifice area [%]	42.5 ± 4.6‡	16.5 ± 2.7†	48.4 ± 6.8	< 0.001
Orifice aspect ratio	1.44 ± 0.11†‡	5.99 ± 4.43†	1.10 ± 0.13	< 0.001
Max AAo WSS [Pa]	1.62 ± 0.31†‡	2.90 ± 0.76†	0.91 ± 0.24	< 0.001
Median AAo WSS [Pa]	0.77 ± 0.21†	0.92 ± 0.23†	0.60 ± 0.15	< 0.001

Symbols † and ‡ denotes a significant difference compared to the control group, and between BAV and BAV AS groups (P < 0.017)

TTP: time-to-peak velocity, LVOT: left ventricular outflow tract, WSS: wall shear stress, AAo: ascending aorta

Table 2 Summary of echocardiographic and MRI measurements
P = 0.003) and maximum AAo WSS (r = 0.38, P = 0.010) as shown in Fig. 5A and B, respectively. No significant associations were found between valve leaflet motion timings and valve morphology. Relationships between hemodynamic parameters are summarized in Table 4. A strong positive association was found between maximum AAo WSS and transvalvular peak velocity (r = 0.83, P < 0.0001) which remained significant when BAV AS patients were excluded (r = 0.51, P < 0.001) (Fig. 5C).

Discussion

This pilot study demonstrated the feasibility and the utility of same-day echo and cardiac MRI for comprehensive characterization of BAV and associated hemodynamics. Superior spatiotemporal resolution of echo was advantageous for evaluating rapid opening and closing valve leaflet motion and near-valve flow, while superior image contrast in 2D cine MRI and full volumetric thoracic aorta coverage of 4D flow MRI were advantageous for characterizing BAV morphology and 3D downstream hemodynamics. The same-day acquisition minimized potential variation in physiologic conditions between the two modalities. Despite the small number of BAV patients, we found significant differences in valve morphology (orifice aspect ratio), and hemodynamics near the valve (transvalvular peak velocity) and in the downstream (ascending aortic WSS) in BAV patients compared to healthy controls with TAV. Furthermore, moderate to strong correlations were observed between orifice aspect ratio by 2D cine MRI, transvalvular peak velocity by echo and ascending aortic WSS by 4D flow MRI.

Near-valve flow characterized using echo demonstrated significantly elevated transvalvular peak velocity in normally functioning BAV patients. This finding has been documented previously [22, 23], but its cause has not been well understood. We found that increased peak velocity was associated with the orifice aspect ratio. This relationship may be explained by an elliptical orifice providing a smaller jet flow area at the location of its narrowest section (i.e., vena contracta, where peak velocity occurs) compared to a circular orifice for a given orifice area, as shown by prior in-vitro studies [24, 25]. Flachskampf et al. have further demonstrated that the vena contracta area reduces as the orifice aspect ratio increases [25]. In addition, acceleration of transvalvular flow assessed by transvalvular TTP was maintained despite the increase in peak velocity in normal BAV compared to TAV controls. Previous studies have reported that a prolonged TTP is found in severe AS patients and is associated with a poor prognosis [26, 27]. In line with the studies, we observed a prolonged TTP in BAV AS patients suggesting that BAV might not alter temporal near valve flow characteristics unless it has progressed into AS.

The observation of elevated AAo WSS in normally functioning BAV patients with further increase in BAV AS patients is a common finding in previous literature [6, 11, 23, 28]. Increased flow derangement manifested as helical flow pattern, and eccentric and skewed flow toward the wall has been shown to contribute to the increase in AAo WSS in BAV patients [5–7]. In addition to previous findings, we observed that transvalvular peak velocity is associated with increased local AAo WSS (i.e., maximum WSS). The association with peak velocity may be a direct consequence since a faster valvular flow velocity is likely to create a greater velocity gradient on the wall elevating WSS. Furthermore, BAV has been shown to demonstrate higher flow displacement in the ascending aorta [6]. The skewed velocity profile will induce higher velocity gradients on the aortic surface closer to fast velocities, increasing WSS consequently, as illustrated in Fig. 4. We also noted maximum AAo WSS increased with increased orifice aspect ratio. The higher aspect ratio of the valve orifice may account for the faster transvalvular peak velocity causing the elevation in maximum AAo WSS, as discussed in the previous paragraph.

This study was the first attempt to characterize temporal BAV leaflet motion. We found similar valve motion timings between the groups implying that abnormal leaflet structure due to leaflet fusion might not significantly impact the opening and closing characteristics of the valve. The change in aortic valve opening and closing timings have been observed previously in patients who underwent a valve-sparing procedure with different techniques (David or Yacoub) [17, 29] or implanted with different aortic root prostheses [16] which produced different aortic root shapes and distensibility. Previous studies based on the observations in dogs suggested that expansion of the aortic root due to an increased left ventricular pressure at the beginning of systole triggers the valve to open before.
the onset of aortic forward flow [30, 31]. A study based on in vitro observation suggested a vortex trapped in the sinus activates the valve closing [32]. In light of these previous studies, valve leaflet motion would be primarily affected by structural abnormalities in the valve surrounding, not the valve itself. It should be noted that the temporal resolution of approximately 10 ms of the B-mode echocardiograms may limit the precision of rapid opening and closing

Fig. 5 Plots of significant association between echo and MRI parameters with and without BAV AS included in the analysis. Between valve morphology and hemodynamics: a orifice aspect ratio versus transvalvular peak velocity and b orifice aspect ratio versus maximum ascending aortic (AAo) wall shear stress (WSS). Between near-valve and distal hemodynamics: c Transvalvular peak velocity versus maximum AAo WSS.
transvalvular peak velocity, $r = 0.54$, $P < 0.001$
\[\text{Transvalvular TTP} \quad r = 0.54, P < 0.0001 \quad r = 0.35, P = 0.013\]

Table 4: Correlation analysis between near-valve hemodynamic parameters and ascending aortic wall shear stress

Parameter	Maximum AAo WSS	Median AAo WSS
Transvalvular peak velocity	$r = 0.83$, $P < 0.0001$	$r = 0.49$, $P < 0.001$
Transvalvular TTP	$r = 0.54$, $P < 0.0001$	$r = 0.35$, $P = 0.013$

Timing measurements. The aortic valve M-mode used by previous studies [16, 17] would resolve valve motion with higher temporal resolution (1–2 ms) [16, 17]. However, the use of retrospective B-mode allowed more subjects to be analyzed (39 vs. 16 out of total 49 subjects) using B-mode that enabled retrospective adjustment of valve leaflet motion interrogation line.

Patients with BAV are known to have a higher risk of developing aortic valve dysfunction and progressive proximal aortic dilation that could lead to aortic rupture or dissection [2, 3]. The combined echo and MRI assessment presented in this study is useful for a comprehensive and quantitative diagnosis of valvular function and the development of aortopathy in BAV patients. As demonstrated by this study, this dual-modality approach could provide measures of abnormal valve morphology (e.g., orifice aspect ratio) and valvular hemodynamics (e.g., transvalvular peak velocity) to assess valvular dysfunction, and measures of abnormal AAo hemodynamics (e.g., WSS distribution) to predict the risk of progressive AAo dilation [33]. Furthermore, novel insights into the link between valvular dysfunction and the development of aortopathy in BAV patients may be discovered.

A major limitation of this study is the small number of BAV patients with a predominant left and right leaflet fusion pattern. Another limitation is that the ascending aorta size was not controlled in this study which would impact the distribution and magnitude of WSS [5, 6]. Lastly, the BAV AS group consisted of mostly severe AS patients whose valve morphology and flow characteristics may be dominated by AS rather than BAV. However, within this limited cohort, we were still able to observe some significant relationships between valve morphology and aortic hemodynamics. Future work is warranted to confirm the study findings in a larger BAV cohort with controlled aortic size and BAV phenotype.

In conclusion, we have demonstrated that a same-day echo and cardiac MRI could serve as a useful tool for a comprehensive evaluation of valve morphology and motion, and near-valve and distal 3D hemodynamics. In this pilot application to BAV, we found increased orifice aspect ratio of BAV may be responsible for increased transvalvular peak velocity and maximum AAo WSS. This multimodality approach could be expanded to various valvular heart diseases to identify temporal and spatial characteristics of valve morphology and associated hemodynamics.

Acknowledgements This study was supported by NIH R01HL115828 and R01HL133504. We would also like to thank General Electric, Inc., and the Irene D. Pritzker foundation for their financial and equipment support for this study.

Author contributions All authors have made significant contributions to this work and read and commented on previous manuscript versions. JL performed echocardiography and MRI image-processing, statistical data analysis and drafted the first version of the manuscript. NEH, AP, and GS participated in image processing and clinical data interpretation. AB was a senior investigator instrumental in study conceptualization and data acquisition management. JT and MM were principal investigators who conceived this study and provided clinical and technical guidance of echocardiography and MRI data interpretation.

Funding This study was supported by NIH R01HL115828 and R01HL133504. We would also like to thank General Electric, Inc., and the Irene D. Pritzker foundation for their financial and equipment support for this study.

Declarations

Conflict of interest All authors have no relevant financial or non-financial competing interests to report.

Ethical approval This study was performed in line with the principles of the Declaration of Helsinki. Approval was granted by the Internal Review Board of Northwestern University (STU00204434).

Consent to participate Informed consent was obtained from all individuals who participated in the study.

Consent to publish The authors affirm that human research participants provided informed consent to publish the study results.

References

1. Virani SS, Alonso A, Aparicio HJ et al (2021) Heart disease and stroke statistics—2021 update: a report from the American Heart Association. Circulation 143(8):e254–e743
2. Fedak PW, Verma S, David TE et al (2002) Clinical and pathophysiologic implications of a bicuspid aortic valve. Circulation 106(8):900–904
3. Michelsen HJ, Khanna AD, Mahoney D et al (2011) Incidence of aortic complications in patients with bicuspid aortic valves. JAMA 306(10):1104–1112
4. Girdauskas E, Borger MA, Secknus MA et al (2011) Is aortopathy in bicuspid aortic valve disease a congenital defect or a result of abnormal hemodynamics? A critical reappraisal of a one-sided argument. Circulation 39(6):809–814
5. Bissell MM, Hess AT, Biasiolli L et al (2013) Aortic dilation in bicuspid aortic valve disease: flow pattern is a major contributor and differs with valve fusion type. Circulation 6(4):499–507
6. Mahadevia R, Barker AJ, Schnell S et al (2014) Bicuspid aortic cusp fusion morphology alters aortic three-dimensional outflow patterns, wall shear stress, and expression of aortopathy. Circulation 129(6):673–682
7. Mirabella L, Barker AJ, Saikrishnan N et al (2015) MRI-based protocol to characterize the relationship between bicuspid aortic valve morphology and hemodynamics. Ann Biomed Eng 43(8):1815–1827
8. Raghav V, Barker AJ, Mangiameli D et al (2018) Valve mediated hemodynamics and their association with distal ascending aortic diameter in bicuspid aortic valve subjects. J Magn Reson Imaging 47(1):246–254
9. Hope MD, Hope TA, Meadows AK et al (2010) Bicuspid aortic valve: four-dimensional MR evaluation of ascending aortic systemic flow patterns. Radiology 255(1):53–61
10. Dolan JM, Kolega J, Meng H (2013) High wall shear stress and spatial gradients in vascular pathology: a review. Ann Biomed Eng 41(7):1411–1427
11. Bollache E, Guzzardi DG, Sattari S et al (2018) Aortic valve-mediated wall shear stress is heterogeneous and predicts regional aortic elastic fiber thinning in bicuspid aortic valve-associated aortopathy. J Thorac Cardiovasc Surg 156(6):2112–2120
12. Meierhofer C, Schneider EP, Lyko C et al (2013) Wall shear stress and flow patterns in the ascending aorta in patients with bicuspid aortic valves differ significantly from tricuspid aortic valves: a prospective study. Eur Heart J 14(8):797–804
13. Rodriguez-Palomares JF, Dux-Santoy L, Guala A et al (2018) Aortic flow patterns and wall shear stress maps by 4D-flow cardiovascular magnetic resonance in the assessment of aortic dilatation in bicuspid aortic valve disease. J Cardiovasc Magn Reson 20(1):1–15
14. Guzzardi DG, Barker AJ, Van Ooij P et al (2015) Valve-related hemodynamics mediate human bicuspid aortopathy: insights from wall shear stress mapping. J Am Coll Cardiol 66(8):892–900
15. Baumgartner H, Hung J, Bermejo J et al (2016) Recommendations on the echocardiographic assessment of aortic valve stenosis: a focused update from the European Association of Cardiovascular Imaging and the American Society of Echocardiography. Eur Heart J 18(3):254–275
16. De Paulis R, De Matteis GM, Nardi P et al (2001) Opening and closing characteristics of the aortic valve after valve-sparing procedures using a new aortic root conduit. Ann Thorac Surg 72(2):487–494
17. Leyh RG, Schmidtke C, Sievers H-H et al (1999) Opening and closing characteristics of the aortic valve after different types of valve-preserving surgery. Circulation 100(21):2153–2160
18. Bazett HCJH (1920) An analysis of the time relations of electrocardiograms. Heart 7:353–370
19. Walker PG, Cranney GB, Scheidegger MB et al (1993) Semi-automated method for noise reduction and background phase error correction in MR phase velocity data. J Magn Reson Imaging 3(3):521–530
20. Berhane H, Scott M, Elbaz M et al (2020) Fully automated 3D aortic segmentation of 4D flow MRI for hemodynamic analysis using deep learning. Magn Reson Med 84:2204
21. Potters WV, van Ooij P, Marquering H et al (2015) Volumetric arterial wall shear stress calculation based on cine phase contrast MRI. J Magn Reson Imaging 41(2):505–516
22. Gordon DZ, Abbasi MA, Lee J et al (2020) Four-dimensional flow magnetic resonance imaging quantification of blood flow in bicuspid aortic valve. J Thorac Imaging 35(6):383–388
23. Rahman O, Scott M, Bollache E et al (2019) Interval changes in aortic peak velocity and wall shear stress in patients with bicuspid aortic valve disease. Int J Cardiovasc Imaging 35(10):1925–1934
24. Athar M, Ansari M, Khan M (2003) Flow characteristics of elliptical orifice plates. ISH J Hydraul Eng 9(2):22–35
25. Flachskampf FA, Weyman AE, Guerrero JL et al (1990) Influence of orifice geometry and flow rate on effective valve area: an in vitro study. J Am Coll Cardiol 15(5):1173–1180
26. Kamimura D, Hans S, Suzuki T et al (2016) Delayed time to peak velocity is useful for detecting severe aortic stenosis. J Am Heart Assoc 5(10):e003907
27. Kim SH, Kim JS, Kim BS et al (2014) Time to peak velocity of aortic flow is useful in predicting severe aortic stenosis. Int J Cardiol 172(3):e443–e446
28. van Ooij P, Markl M, Collins JD et al (2017) Aortic valve stenosis alters expression of regional aortic wall shear stress: new insights from a 4-dimensional flow magnetic resonance imaging study of 571 subjects. J Am Heart Assoc 6(9):e005959
29. Fries R, Graeter T, Aicher D et al (2006) In vitro comparison of aortic valve movement after valve-preserving aortic replacement. J Thorac Cardiovasc Surg 132(1):32–37
30. Flachskampf FA, Weyman AE, Guerrero JL et al (1990) Influence of orifice geometry and flow rate on effective valve area: an in vitro study. J Am Coll Cardiol 15(5):1173–1180
31. Thubrikar M, Bosher LP, Nolan SP (1979) The mechanism of opening of the aortic valve. J Thorac Cardiovasc Surg 77(6):863–870
32. Bellhouse B, Bellhouse F (1968) Mechanism of closure of the aortic valve. Nature 217(5123):86–87
33. Soulat G, Scott MB, Allen BD et al (2022) Association of regional wall shear stress and progressive ascending aorta dilation in bicuspid aortic valve. Cardiovasc Imaging 15(1):33–42

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.