Draft Genome Sequence of the Plant Growth-Promoting Sphingobium sp. Strain AEW4, Isolated from the Rhizosphere of the Beachgrass Ammophila breviligulata

Abanoub E. Wanees, Shari J. Zaslow, Savannah J. Potter, Brandon P. Hsieh, Brianna L. Boss, Javier A. Izquierdo

ABSTRACT Sphingobium sp. strain AEW4 is a novel isolate from rhizosphere soil attached to the root of the American beachgrass Ammophila breviligulata. The genomic sequence consisted of 4,678,518 bp and 4,428 protein-coding sequences. Here we report the draft genome sequence of this strain and some initial insights on its plant growth-promoting capabilities.
utilization of various monosaccharides, and genes that are essential for acetoin, butanediol, and butyrate fermentation. These are all promising key processes that may confer this organism with plant growth-promoting properties in interactions with the beachgrass *Ammophila breviligulata*, which will be the focus of future studies.

Accession number(s). The genome sequence of *Sphingobium* sp. strain AEW4 has been deposited in GenBank under the accession no. PYGL00000000.

ACKNOWLEDGMENTS

This work has been supported by the National Science Foundation (NSF) grant IOS-1645909.

We also thank Brian Zitani and Vincent Biondo from the Department of Environmental Control at the Town of Babylon for their assistance identifying appropriate beachgrass sampling locations.

REFERENCES

1. Compant S, Clément C, Sessitsch A. 2010. Plant growth-promoting bacteria in the rhizo- and endosphere of plants: their role, colonization, mechanisms involved and prospects for utilization. Soil Biol Biochem 42:669–678. https://doi.org/10.1016/j.soilbio.2009.11.024.

2. Stolz A, Schmidt-Maag C, Denner E, Busse HU, Egli T, Kampfer P. 2000. Description of *Sphingomonas xenophaga* sp. nov. for strains BN6T and N9N which degrade xenobiotic aromatic compounds. Int J Syst Evol Microbiol 50:35–41. https://doi.org/10.1099/ijsem.0.00277-13-50-1-35.

3. Pal R, Bhasin VK, Lal R. 2006. Proposal to reclassify *Sphingomonas xenophaga* Stolz et al. 2000 as *Sphingobium xenophagum* comb. nov. and *Sphingopyxis taejonensis* Lee et al. 2001 as *Sphingobium xenophagum* comb. nov. and *Sphingopyxis taejonensis* comb. nov., respectively. Int J Syst Evol Microbiol 56:667–670. https://doi.org/10.1099/ijs.0.64161-0.

4. Pan F, Meng Q, Wang Q, Luo S, Chen B, Khan KY, Yang X, Feng Y. 2016. Endophytic bacterium *Sphingomonas* SaMR12 promotes cadmium accumulation by increasing glutathione biosynthesis in *Sedum alfredii* Hance. Chemosphere 154:358–366. https://doi.org/10.1016/j.chemosphere.2016.03.120.

5. Zhang L, Gao JS, Kim SG, Zhang CW, Jiang QJ, Ma XT, Zhang J, Zhang XQ. 2016. *Novosphingobium oryzae* sp. nov., a potential plant-promoting endophytic bacterium isolated from rice roots. Int J Syst Evol Microbiol 66:302–307. https://doi.org/10.1099/ijsem.0.000718.

6. Waigi MG, Sun K, Gao Y. 2017. Sphingomonads in microbe-assisted phyto-remediation: tackling soil pollution. Trends Biotechnol 35:883–899. https://doi.org/10.1016/j.tibtech.2017.06.014.

7. Verma H, Kumar R, Oldach P, Sangwan N, Khurana JP, Gilbert JA, Lal R. 2014. Comparative genomic analysis of nine *Sphingobium* strains: insights into their evolution and hexachlorocyclohexane (HCH) degradation pathways. BMC Genomics 15:1014. https://doi.org/10.1186/1471-2164-15-1014.

8. Angiuoli SV, Gussman A, Klimke W, Cochrane G, Field D, Garrity G, Kodira CD, Kyrpides N, Madupu R, Markowitz V, Tatusova T, Thomson N, White O. 2008. Toward an online repository of standard operating procedures (SOPs) for (Meta)genomic annotation. Omics 12:137–141. https://doi.org/10.1089/omi.2008.0017.

9. Overbeek R, Olson R, Pusch GD, Olsen GJ, Davis JJ, Disz T, Edwards RA, Gerdes S, Parrello B, Shukla M, Vonstein V, Wattam AR, Xia F, Stevens R. 2014. The SEED and the rapid annotation of microbial genomes using subsystems technology (RAST). Nucleic Acids Res 42:D206–D214. https://doi.org/10.1093/nar/gkt1226.

10. Weber T, Blin K, Duddela S, Krug D, Kim HU, Brucoleri R, Lee SY, Fischbach MA, Muller R, Wohlleben W, Breitling R, Takano E, Medema MH. 2015. antiSMASH 3.0—a comprehensive resource for the genome mining of biosynthetic gene clusters. Nucleic Acids Res 43:W237–W237. https://doi.org/10.1093/nar/gkv437.

11. Qu Y, Zhou J, Wang J, Fu X, Xing L. 2005. Microbial community dynamics in bioaugmented sequencing batch reactors for bromoamine acid removal. FEMS Microbiol Lett 246:143–149. https://doi.org/10.1016/j.femsle.2005.04.006.