Chronic \(\text{Ca}^{2+} \) influx through voltage-dependent \(\text{Ca}^{2+} \) channels enhance delayed rectifier \(\text{K}^{+} \) currents via activating Src family tyrosine kinase in rat hippocampal neurons

Yoon-Sil Yang\(^1\)#, Sang-Chan Jeon\(^1\), Dong-Kwan Kim\(^3\), Su-Yong Eun\(^1,2\), and Sung-Cherl Jung\(^1,2,\ast\)

\(^1\)Department of Physiology, School of Medicine, \(^2\)Institute of Medical Science, Jeju National University, Jeju 63243, \(^3\)Department of Physiology, College of Medicine, Konyang University, Daejeon 35365, Korea

ABSTRACT Excessive influx and the subsequent rapid cytosolic elevation of \(\text{Ca}^{2+} \) in neurons is the major cause to induce hyperexcitability and irreversible cell damage although it is an essential ion for cellular signalings. Therefore, most neurons exhibit several cellular mechanisms to homeostatically regulate cytosolic \(\text{Ca}^{2+} \) level in normal as well as pathological conditions. Delayed rectifier \(\text{K}^{+} \) channels (\(\text{I}_{\text{DR}} \) channels) play a role to suppress membrane excitability by inducing \(\text{K}^{+} \) outflow in various conditions, indicating their potential role in preventing pathogenic conditions and cell damage under \(\text{Ca}^{2+} \)-mediated excitotoxic conditions. In the present study, we electrophysiologically evaluated the response of \(\text{I}_{\text{DR}} \) channels to hyperexcitable conditions induced by high \(\text{Ca}^{2+} \) pretreatment (3.6 mM, for 24 hours) in cultured hippocampal neurons. In results, high \(\text{Ca}^{2+} \)-treatment significantly increased the amplitude of \(\text{I}_{\text{DR}} \) without changes of gating kinetics. Nimodipine but not APV blocked \(\text{Ca}^{2+} \)-induced \(\text{I}_{\text{DR}} \) enhancement, confirming that the change of \(\text{I}_{\text{DR}} \) might be targeted by \(\text{Ca}^{2+} \) influx through voltage-dependent \(\text{Ca}^{2+} \) channels (VDCCs) rather than NMDA receptors (NMDARs). The VDCC-mediated \(\text{I}_{\text{DR}} \) enhancement was not affected by either \(\text{Ca}^{2+} \)-induced \(\text{Ca}^{2+} \) release (CICR) or small conductance \(\text{Ca}^{2+} \)-activated \(\text{K}^{+} \) channels (SK channels). Furthermore, PP2 but not H89 completely abolished \(\text{I}_{\text{DR}} \) enhancement under high \(\text{Ca}^{2+} \) condition, indicating that the activation of Src family tyrosine kinases (SFKs) is required for \(\text{Ca}^{2+} \)-mediated \(\text{I}_{\text{DR}} \) enhancement. Thus, SFKs may be sensitive to excessive \(\text{Ca}^{2+} \) influx through VDCCs and enhance \(\text{I}_{\text{DR}} \) to activate a neuroprotective mechanism against \(\text{Ca}^{2+} \)-mediated hyperexcitability in neurons.

INTRODUCTION

Dynamic changes of cytosolic \(\text{Ca}^{2+} \) level under physiological conditions are essential for cellular signalings of protein synthesis and signal transmission of neurons in central nervous system (CNS). However, due to its cytotoxic effects, excessive influx of \(\text{Ca}^{2+} \) and subsequent rapid elevation of [\(\text{Ca}^{2+} \)], can induce irreversible damage of neurons or result in pathological dysfunctions such as epileptic seizure. Hence, mammalian neurons exhibit several protective mechanisms to homeostatically regulate membrane excitability and cytosolic \(\text{Ca}^{2+} \) level. Several types of voltage dependent ion channels are involved in these neuroprotective processes via regulating cation flow. In its original description based on neuronal excitability, intrinsic excitability can be defined as the ability to fire action potentials (APs), which are determined by voltage-dependent \(\text{K}^{+} \) and \(\text{Na}^{+} \) channels (\(\text{K}_{\text{v}} \) and \(\text{Na}_{\text{v}} \) channels) [1]. Therefore, cation channels especially sensitive to membrane potential are key factors to...
regulate excitability in most neurons even though they are inhibitory. In particular, several subtypes of Kv channels can determine resting membrane potential and effectively induce cation outflow to downregulate neuronal excitability in many conditions of membrane depolarization [2].

Among the many types of K’ channels expressed in CNS neurons, Kv2.1 is a major component of delayed rectifier K’ channel (I_{DR}, channel), exhibiting sustained outward K+ currents [3-5]. This subtype plays a direct role in lowering membrane potential thus inhibiting AP initiation as well as limiting repetitive APs firing. Thus, the hyperpolarization of membrane potential and blockade of depolarization by Kv2.1 can prevent hyperexcitability that activates cytotoxic cascades and induces neuronal damage [6,7]. Previous studies showed that Kv2.1 channels are sensitive to changes in cytosolic Ca²⁺ level. For example, cytosolic Ca²⁺ increase and subsequent calcineurin activation affects the gating kinetics of I_{DR} channels via dephosphorylating Kv2.1 channels, since calcineurin-dependent dephosphorylation of Kv2.1 decreases the threshold for I_{DR} channel opening and disrupts channel clustering, resulting in changes of activation kinetics [1,8]. Kv2.1 channels have many serine, threonine, and tyrosine phosphorylation sites. These participate in the regulation of I_{DR} channel kinetics; for e.g., PKA-mediated phosphorylation in serine/threonine sites induces the changes of gating kinetics but not membrane expression of Kv2.1 channels [9,10]. Dynamic changes of gating kinetics by de- or phosphorylation of Kv2.1 channels seem to be minor but significant for regulating K’ outflow and membrane excitability under physiological conditions. However, other studies have recently demonstrated that under several pathological conditions such as epileptic seizures and ischemic damages, acute increment of cytosolic Ca²⁺ rapidly potentiates I_{DR}, and thus suppresses hyperexcitability [11-13]. These results suggest that rapid changes of cytosolic Ca²⁺ may stimulate more effective signaling pathways by which I_{DR} channels directly regulate membrane excitability. However, whether excessive Ca²⁺ influx rapidly and potentially enhances I_{DR} remains unclear.

In the present study, we confirmed that dissociated hippocampal neurons of rats showed significant increase of I_{DR} after high Ca²⁺ treatment, which could enhance synaptic activities and membrane excitability. The Ca²⁺-mediated I_{DR} upregulation was sensitive to activity of voltage-dependent Ca²⁺ channels (VDCCs) but not NMDA receptors (NMDARs), suggesting a neuroprotective signaling pathway that is not targeted by postsynaptic Ca²⁺ influx via NMDARs. In the additional experiment, we confirmed that the contribution of Src family tyrosine kinase (SFK) was necessary for upregulating I_{DR} under high Ca²⁺ condition, suggesting that the increased expression of I_{DR} channels via SFK activation is a protective mechanism against excitotoxicity and pathogenic processes in neurons.

METHODS

Animal preparation and hippocampal primary culture

Hippocampal primary cultures were prepared from embryonic 20-day SD rats. After pregnant rats were deeply anesthetized, the embryos were removed and transferred to an ice-cold normal tyrode solution containing the following (in mM): 140 NaCl, 5.4 KCl, 2.3 MgCl₂, 10 HEPES, 5 glucose. The pH level was adjusted to 7.4 with NaOH. Isolated hippocampi from embryonic rat brains were transferred to ice-cold minimal essential medium (MEM) containing Earle’s salts and glutamine with 10% fetal bovine serum, 0.45% glucose, 1 mM sodium pyruvate, 25 µM glutamate and antibiotics, and the hippocampi were triturated. The cells were counted and seeded on glass coverslips coated with poly-L-lysine (Sigma-Aldrich) at a density of 9×10⁴ cells/ml and transferred to an incubator gassed with 95% O₂ and 5% CO₂, at 37°C. After 7 hours, the whole plating medium was exchanged to Neurobasal medium (Sigma-Aldrich) containing B-27 (Invitrogen), and a half of the medium was replaced with new media once at DIV 5. Detail protocols for cell preparation and recording techniques were as previously reported [14,15]. All experiments and procedures with animals were approved by the Animal Care and Use Committee of Jeju National University.

Drugs treatment

To electrophysiologically observe the changes of I_{DR} in cultured hippocampal neurons, high Ca²⁺ condition was induced by doubling Ca²⁺ concentration of culture media (normal 1.8 mM) up to 3.6 mM (with CaCl₂, Sigma-Aldrich) for 24 hours. APV (100 mM, Sigma-Aldrich) and nimodipine (10 mM, Sigma-Aldrich) were used with high Ca²⁺ treatment to block NMDARs and VDCCs, respectively, in some experiments. H89 was added to block the activation of PKA and ryanodine receptors and IP₃ receptors of ER were blocked by Ryanodine and 2AP, respectively. Blockers of kinases and receptors were obtained from Sigma Aldrich. Caffeine or 4CMC (Sigma-Aldrich) were used to test the effects of CICR via ryanodine receptor activation. Details of drugs treatment are mentioned in results and legends of figures.

Electrophysiology

For patch-clamp recordings of dissociated hippocampal neurons, DIV 6-8 cultured cells were transferred to a recording chamber with a continuous flow of recording solution containing the following (in mM): 145 NaCl, 5 KCl, 2 CaCl₂, 1.3 MgCl₂, 10 HEPES, 10 glucose. pH level was adjusted to 7.4 with NaOH, and bubbled with 95% O₂ and 5% CO₂. TTX (0.5 µM, Tocrise) was added to the recording solution to block the Nav channels. The patch pipettes (4–6 MΩ) were filled with an internal solution containing the following (in mM): 20 KCl, 125 K⁺-gluconate, 30 KCl, 125 K⁺-gluconate, 20 KCl, 125 K⁺-gluconate, 20 KCl, 125 K⁺-gluconate.
4 NaCl, 10 HEPES, 0.5 EGTA, 4 ATP, 0.3 tris-GTP, and 10 phosphocreatin. pH and osmolarity were adjusted to 7.2 and 280–300 mOsm, respectively. In all experiments, neurons showing 7–11 pF whole cell capacitance were used. Whole cell recording parameters were monitored throughout each experiment and recordings where series resistance (6–20 MΩ) varied by more than 10% were rejected.

All recordings were performed at room temperature, low-pass filtered at 5 kHz, and digitized at 10 kHz by a Digidata 1322A convertor. Voltage-clamping whole cell patches, command pulse generation and data recording were performed using Axopatch 200B and pClamp 8 software. Thick-walled, filaments patch electrodes had tip resistance of 3–6 MOhm. For adjusting whole-cell parameters, membrane capacitance and series resistance were manually compensated in Axopatch 200B during applying command pulses. Series resistance varied between 8–30 MOhm, and recordings where series resistance varied by more than 10% were rejected. No electronic compensation for series resistance was employed during currents recording. Pulse commands to record sustained currents in voltage-clamping mode are described in detail in results and figures. Sustained K+ currents were digitally isolated using a prepulse protocol after subtracting leak currents. Peak currents were measured at +60 mV. All experimental data were additionally analyzed using IGOR pro software.

Statistical analysis

Further data and statistical analysis was performed using SPSS and Excel software and data were expressed as the mean value±standard error (SEM). The Student’s t-test was used, and statistical difference between groups was indicated for p values of <0.05 or 0.01.

RESULTS

In physiological regulation of neuronal excitability, the dominant role of small but sustained K+ outflow through I_{DR} channels is to determine and stabilize sub- and suprathreshold membrane potentials. However, signaling-mediated changes of its kinetics suggest a possibility that I_{DR} channels may also be targeted by hyperexcitable conditions. In the present study, we tested A-type K+ experimental condition not only induces the downregulation of IDR channels but also enhances synaptic Ca2+ influx by remodeling NMDARs composition, resulting in the hyperexcitability of hippocampal neurons [14,16]. After treating high Ca2+ to culture media for 24 hours, neurons were transferred to a recording chamber and washed in normal ACSF solution for electrophysiological measurement. In results, the current density of I_{DR} channels was significantly increased by high Ca2+ treatment, as shown in Fig. 1 (Control=112.62±10.28 pA/pF, n=13; high Ca2+=171.05±18.30 pA/pF, n=12, p=0.02). This indicates that I_{DR} channels may be upregulated under hyperexcitable conditions. Depolarization of membrane potential activates two major Ca2+ influx pathways: VDCC and NMDAR. High Ca2+-enhanced neuronal excitability is reportedly dependent on Ca2+ influx via NMDARs, hence it was necessary to confirm if the increase of I_{DR} was dependent on NMDARs [16]. APV (100 μM) or nimodipine (10 μM) with high Ca2+ treatment was applied to culture media for 24 hours before recording. APV-induced NMDARs block showed no effects on the high Ca2+-enhanced I_{DR} in this experiment; whereas, nimodipine, a VDCCs antagonist, significantly inhibited the effect of high Ca2+ treatment on I_{DR} (Fig. 1, APV=151.55±12.56 pA/pF, Nimodipine=96.03±9.34 pA/pF, p=0.48, 0.008 respectively, compared with high Ca2+). Thus, I_{DR} upregulation may be triggered by Ca2+ influx through VDCCs rather than NMDARs. Furthermore, because it is well known that Ca2+-induced Ca2+ release (CICR) is responsive to Ca2+ outflow through IDR channels in response to hyperexcitable condition induced by high Ca2+ overnight treatment (3.6 mM CaCl2, for 24 hours) in cultured hippocampal neurons. This experimental condition not only induces the downregulation of A-type K+ channels (I_{oa} channels) but also enhances synaptic Ca2+ influx by remodeling NMDARs composition, resulting in the hyperexcitability of hippocampal neurons [14,16]. After treating high Ca2+ to culture media for 24 hours, neurons were transferred to a recording chamber and washed in normal ACSF solution showing 7~11 pF whole cell capacitance were used. Whole cell recording parameters were monitored throughout each experiment and recordings where series resistance (6~20 MΩ) varied by more than 10% were rejected.

Fig. 1. I_{DR} is enhanced under high Ca^{2+} condition in cultured hippocampal neurons, showing the dependence on VDCCs but not NMDARs. (A) The experimental protocol of voltage clamping to record I_{DR} in hippocampal neurons and example traces of I_{DR}. High Ca^{2+}-induced Ca^{2+} release (CICR) is responsive to Ca^{2+}
influx, we also tested if it might participate in I_{OR} upregulation resulted from Ca$^{2+}$ influx via VDCCs. In Table 1, blocking of two major receptors of endoplasmic reticulum, ryanodine receptors (Ryanodine) and IP$_3$ receptors (2APB), showed no effects on enhanced I_{OR} under high Ca$^{2+}$ condition. Additionally, caffeine or 4CMC, agonists of ryanodine receptors, showed no enhancement effects on I_{OR}, unlike high Ca$^{2+}$ treatment. These results strongly indicated that Ca$^{2+}$ influx through VDCCs may directly regulate I_{OR} channels regardless of CICR activation.

Although the current density of I_{OR} was increased, the gating kinetics of I_{OR} channels was not affected under high Ca$^{2+}$ condition. In Fig. 2, the increase rate of I_{OR} positively reflected the increase rates of command pulse potentials in all experimental groups. At +80 mV injection, significant differences of I_{OR} amplitudes were observed between control and high Ca$^{2+}$ treated neurons (Fig. 2A and B). Control: 139.82±15.63 pA/pF; High Ca$^{2+}$=226.79±17.34 pA/pF, p=0.02. The current density of I_{OR} under high Ca$^{2+}$ condition was enhanced up to 60% in each injection range from −40 to 80 mV compared with the control group. However, in the analysis of conductance compensated by each membrane potential, activation properties of I_{OR} channels were consistent in all groups, indicating that the gating kinetics of I_{OR} channels may not be subjected to high Ca$^{2+}$ condition (Fig. 2C and D). V_s of activation: Control: 12.38±2.62 mV; High Ca$^{2+}$=22.21±4.4 mV, p=0.1). This result suggests that the upregulation of I_{OR} channels under high Ca$^{2+}$ condition may not be dependent on their dephosphorylation by calcineurin activated by Ca$^{2+}$ signaling. Additionally, both antagonists, APV and nimodipine, showed no effects on the activation kinetics of I_{OR} channels (V_s of activation; APV group=10.11±1.91; Nimodipine group=14.92±1.63, p=0.55 and 0.45, respectively).

Previously, Ledoux et al. [17] reported that the enhancement of intracellular Ca$^{2+}$ concentration induced the elevation of K$^+$ efflux through small conductance Ca$^{2+}$ channels (SK channels). Because of possible change in intracellular Ca$^{2+}$ concentration under the experimental condition, it was necessary to confirm whether the enhanced density of I_{OR} by high Ca$^{2+}$ was contaminated by the flow of SK channels even though the two channels exhibit totally different gating mechanisms. In Fig. 3, the effect of 100 nM apamin with high Ca$^{2+}$ was tested by adding to culture media for 24 hours to block SK channels. The addition of apamin did not influence the increased density of I_{OR} by high Ca$^{2+}$ treatment, indicating that upregulating I_{OR} is not via the activation of SK channels (179.37±26.56 pA/pF, p=0.04 and 0.81, as compared with control and high Ca$^{2+}$, respectively).

Ca$^{2+}$ signaling cascades activated by Ca$^{2+}$ influx through synaptic NMDARs induce the phosphorylation of protein kinase A (PKA) resulting in the downregulation of I_{A} in hippocampal neurons [15,18]. Although it is still under argument, it is possible that PKA regulates the turnover rate of proteins from plasma membrane and currents through various channels. In this study, PKA was not involved in the cellular processing to enhance I_{OR} under high Ca$^{2+}$ condition (Table 1, +H89). Rather, we confirmed that SFKs have a potentially important role in I_{OR} upregulation under high Ca$^{2+}$ condition (Fig. 3). Adding SFK blocker, PP2 (1 μM), to culture media with high Ca$^{2+}$ showed no enhancement of I_{OR} with similar levels as in control neurons that were not treated with any drugs (Ca$^{2+}$+PP2=99.01±10.52 pA/pF, p=0.43 and 0.02 compared with the control and high Ca$^{2+}$, respectively). Furthermore, PP2 alone showed no effect on the density of I_{OR}, indicating that high Ca$^{2+}$ condition possibly activate SFKs to prevent neuronal excitotoxicity or damage (123.46±20.23 pA/pF, p=0.63 compared with the control).

DISCUSSION

Neurons in CNS exhibit dynamic regulatory signalings to protect from hyperexcitable conditions that result in neuronal damage. Herein, we reported upregulation of I_{OR} channels, as a neuroprotective regulator, which increased K$^+$ outflow under hyperexcitable condition induced by high Ca$^{2+}$ overnight treatment in cultured hippocampal neurons. The high Ca$^{2+}$-induced enhancement of I_{OR} was dependent on Ca$^{2+}$ influx through VDCCs but not NMDARs and was not affected by CICRs that synergistically increase intracellular Ca$^{2+}$ level (Fig. 1 and Table 1). These results indicate that hippocampal neurons may homeostatically modulate I_{OR} channels in response to calcium influx.

Table 1. The densities of I_{OR} recorded in hippocampal neurons under each condition

	I_{OR} density (pA/pF)	n	p value, compared with
	average		Control high Ca$^{2+}$
Control	118.11±10.91	14	-
High Ca$^{2+}$	171.05±18.30	12	0.021*
High Ca$^{2+}$+Ryanodine	180.93±27.97	11	0.039*
High Ca$^{2+}$+2APB	157.54±22.42	8	0.106
Caffeine	99.88±11.91	11	0.292
4CMC	118.24±10.47	8	0.993
High Ca$^{2+}$+H89	192.84±36.08	7	0.027*

*p<0.05, **p<0.01.
Neuroprotective role of SFKs via IDR channels

Korean J Physiol Pharmacol 2017;21(2):259-265

www.kjpp.net

...to Ca\(^{2+}\) influx through VDCCs. Thus, neuronal excitability is consequently downregulated by the enhancement of K\(^{+}\) outflow via I\(_{\text{K}}\) channels. Furthermore, I\(_{\text{K}}\) enhancement was dependent on tyrosine kinases of Src family, indicating the possibility of an unique signaling cascade for the downregulation of excitability to prevent neuronal damages under hyperexcitable or pathogenic conditions.

High Ca\(^{2+}\) treatment for 24 hours used in this study (i.e. doubling Ca\(^{2+}\) concentration in culture media), is reported to mediate changes in the subunit composition of synaptic NMDARs, I\(_{\text{A}}\) density and Ca\(^{2+}\)-calmodulin dependent kinase activity [14,16,19]. Increased Ca\(^{2+}\) influx through NMDARs and subsequent I\(_{\text{A}}\) downregulation critically increases neuronal excitability due to changes in membrane resistance, firing rates of APs and after-hyperpolarizing potentials resulting from direct effects of the cationic flow through channels or receptors [16,19]. These effects of high Ca\(^{2+}\) condition possibly result in irreversible damage to hippocampal neurons. However, hippocampal neurons showing Ca\(^{2+}\)-induced downregulation of Kv4.2 channels had no effect on the resting membrane potential even though suprathreshold properties of membrane excitability were significantly changed [19]. This phenomenon is consistent with previous results in hippocampal neurons pretreated with high Ca\(^{2+}\), indicating that membrane potentials may also be targeted by a regulatory mechanism to prevent excitotoxicity [14]. In this study, the enhancement of IDR strongly suggested a neuroprotective mechanism related with IDR channels and Ca\(^{2+}\) influx through VDCCs (Fig. 1). IDR channels contribute to the restoration of depolarized membrane potential to resting membrane potential in cardiac cells, determining refractory period as well as heart rate. In nervous system, these channels seem to contribute to the regulation of somatodendritic excitability. Kv2 family mediated with IDR acts as a dominant regulatory factor for membrane excitability in hippocampal and cortical pyramidal neurons [20-22]. Experimental evidence indicates that the genetic manipulation of Kv2.1 directly affects intrinsic excitability, showing epileptiform activity, and that Kv2.1 knock-out mice exhibit defects in spatial learning [23].
These pathogenic outcomes are likely due to the hyperexcitability of neurons during development, as I_{DR} channels are targeted by cellular signaling pathways of various growth factors in young brain [24]. Therefore, enhanced I_{DR} under high Ca$^{2+}$ condition observed in this study may be a rapid but effective neuroprotective modulation to prevent entry into pathogenic stages.

As a critical regulator of neuronal excitability, I_{DR} channels are dominantly targeted by Ca$^{2+}$-mediated signaling in the manner of activity- and use-dependence. Even though I_{DR} channels are highly phosphorylated in neurons, the expression and gating kinetics of these channels are bidirectionally subjected to activity-dependent dephosphorylation, which is mediated by glutamatergic transmission [11,13,25]. The dephosphorylation of these channels can rapidly and homeostatically suppress neuronal excitability under pathological conditions via the enhancement of K$^+$ outflow. Dephosphorylation of I_{DR} channels under anoxic stress is dependent on Ca$^{2+}$ influx through NMDARs that are activated by excess glutamate release in synapses [25]. Thus, overexcitability of glutamatergic synapses in various pathological conditions possibly activates neuroprotective signalings to dephosphorylate and upregulate I_{DR} channels. However, we observed that enhanced I_{DR} under high Ca$^{2+}$ condition was clearly dependent on Ca$^{2+}$ influx through VDCCs but not NMDARs. This is evidenced by the effect of nimodipine to abolish the enhancement of I_{DR} (Fig. 1). Despite previous reports on the effects of VDCC blockers to inhibit I_{DR}, nimodipine, one of the dihydropyridines, showed no direct inhibition of I_{DR}. In this study (data not shown) [26–28]. Because I_{DR} downregulation is dependent on NMDARs under high Ca$^{2+}$ condition, I_{DR} enhancement may be a possible mechanism of compensatory regulation in hippocampal neurons that are chronically exposed to high Ca$^{2+}$ [14]. I_{DR} channels are predominantly regulated by calcineurin-dependent dephosphorylation, which is accompanied by changes of threshold as well as activation kinetics [1,8]. In this study, however, we confirmed that high Ca$^{2+}$-induced upregulation of I_{DR} involved only the increase of I_{DR} peak but not the alteration of gating kinetics, suggesting the possibility of another signaling mechanism distinctive to calcineurin-dependent dephosphorylation. Moreover, the bidirectional and homeostatic upregulation of I_{DR} observed in neurons is due to the overexcitation of glutamatergic synapses, hence, the enhancement of I_{DR} peak without a kinetic change may be originated from Ca$^{2+}$ influx via VDCCs rather than NMDARs [11,13,25].

The upregulation of I_{DR} peak without changes of gating kinetics suggests the involvement of specific modulatory signalings of kinases, which can be activated under high Ca$^{2+}$ condition (Fig. 1 and 2). Previous reports focusing on regulatory mechanisms of Kv2.1 channel indicate that these channels possess a large number of kinase binding sites such as serine, threonine, and tyrosine, and are usually affected by all except threonine [9,10]. In particular, tyrosine kinases, such as Src and Fyn, seem to play an important role in the regulation of Kv2.1 channel expression. Although, tyrosine 124 phosphorylated by src regulates channels activities, tyrosine 810 phosphorylation influences the intracellular trafficking, regulating Kv2.1 channels expression [29–31]. Furthermore, growth differentiation factor 15 (GDF15)-induced upregulation of Kv2.1 channels expression was also abolished by the inhibition of Src-mediated phosphorylation of TGFβ receptors [24]. These previous reports indicate that SFKs are dominantly mediated with the cellular regulation of Kv2.1 channel expression, while the gating kinetics of I_{DR} channels is specifically targeted by serine kinases. Thus, the upregulation of I_{DR} by high Ca$^{2+}$ treatment observed in this study may be originated from the modulatory function of tyrosine kinases. Fig. 2 clearly shows that PP2 blocked the enhancement of I_{DR} under high Ca$^{2+}$ condition, indicative of SFKs’ roles in I_{DR} channels for preventing hyperexcitability.

Because excessive Ca$^{2+}$ influx is sufficient to cause hyperexcitability and irreversible damage to hippocampal neurons, resulting in pathological conditions, a number of subcellular signalings in neurons target the expression and gating kinetics of Kv channels which actively regulate membrane excitability. The current study confirmed that a neuroprotective regulatory mechanism involving I_{DR} channels in hippocampal neurons possibly plays a role to suppress neuronal excitability under various pathogenic conditions. Although further study is needed to clarify the relationship(s) between Ca$^{2+}$ influx via VDCCs and SFK signaling in I_{DR} upregulation, VDCC-mediated upregulation of I_{DR} suggests another signaling pathway to actively regulate membrane excitability of hippocampal neurons.

ACKNOWLEDGEMENTS

This work was supported by the Academic Research Foundation of Jeju National University Institute of medical science in 2014.

CONFLICTS OF INTEREST

The authors declare no conflicts of interest.

REFERENCES

1. Misonou H, Mohapatra DP, Trimmer JS. Kv2.1: a voltage-gated K$^+$ channel critical to dynamic control of neuronal excitability. Neurotoxicology. 2005;26:743–752.
2. Oliver D, Lien CC, Soom M, Baukrowitz T, Jonas P, Fakler B. Functional conversion between A-type and delayed rectifier K$^+$ channels by membrane lipids. Science. 2004;304:265–270.
3. Du J, Haak LL, Phillips-Tansley E, Russell JT, McBain CJ. Frequency-dependent regulation of rat hippocampal somato-dendritic excitability by the K$^+$ channel subunit Kv2.1. J Physiol. 2000;522:19-
Neuroprotective role of SFKs via IDR channels

12. Misonou H, Mohapatra DP, Park EW, Leung V, Zhen D, Misonou K, Park KS, Mohapatra DP, Misonou H, Trimmer JS. Graded regulation of neuronal apoptosis by Kv2.1-encoded potassium channels. J Neurosci. 2003;23:4798-4802.

15. Kim J, Jung SC, Clemens AM, Petralia RS, Hoffman DA. Regulation of Kv2.1 potassium channel subunits underlie slowly inactivating potassium current in neocortical pyramidal neurons. J Physiol. 2007;581:941-960.

16. Jung SC, Kim J, Hoffman DA. Rapid, bidirectional remodeling of synaptic NMDA receptor subunit composition by A-type K+ channel activity in hippocampal CA1 pyramidal neurons. Neuron. 2007;54:933-947.

17. Ledoux J, Werner ME, Brayden JE, Nelson MT. Calcium-activated potassium channels and the regulation of vascular tone. Physiology (Bethesda). 2006;21:69-78.

18. Hammond RS, Lin L, Sidorov MS, Wikenheiser AM, Hoffman DA. Protein kinase a mediates activity-dependent Kv4.2 channel trafficking. J Neurosci. 2008;28:7513-7519.

19. Kim J, Wei DS, Hoffman DA. Kv4 potassium channel subunits control action potential repolarization and frequency-dependent broadening in rat hippocampal CA1 pyramidal neurons. J Physiol. 2005;569:41-57.

20. Bekkers JM. Distribution and activation of voltage-gated potassium channels in cell-attached and outside-out patches from large layer 5 cortical pyramidal neurons of the rat. J Physiol. 2000;525:611-620.

21. Guan D, Tkatch T, Surmeier DJ, Armstrong WE, Foehring RC. Kv2 subunits underlie slowly inactivating potassium current in rat neocortical pyramidal neurons. J Physiol. 2007;581:941-960.

22. Mohapatra DP, Misonou H, Pan SJ, Held JE, Surmeier DJ, Trimmer JS. Regulation of intrinsic excitability in hippocampal neurons by activity-dependent modulation of the Kv2.1 potassium channel. Channels (Austin). 2009;3:46-56.

23. Speca DJ, Ogata G, Mandikian D, Bishop HI, Wiler SW, Eum K, Wenzel HJ, Doisy ET, Matt L, Campi KL, Golub MS, Nerbonne JM, Hell JW, Trainor BC, Sack JT, Schwartzkroin PA, Trimmer JS. Deletion of the Kv2.1 delayed rectifier potassium channel leads to neuronal and behavioral hyperexcitability. Genes Brain Behav. 2014;13:394-408.

24. Wang CY, Huang AQ, Zhou MH, Mei YA. GDF15 regulates Kv2.1-mediated outward K+ current through the Akt/mTOR signalling pathway in rat cerebellar granule cells. Biochem J. 2014;460:35-47.

25. Ito T, Nuriya M, Yasui M. Regulation of Kv2.1 phosphorylation in an animal model of anoxia. Neurobiol Dis. 2010;38:85-91.

26. Choe H, Lee YK, Lee YH, Choe H, Ko SH, Joo CU, Kim MH, Kim GS, Eun JS, Kim JH, Chae SW, Kwak YG. Papaverine blocks hKv1.5 channel current and human atrial ultrarapid delayed rectifier K+ currents. J Pharmocol Exp Ther. 2003;304:706-712.

27. Perchenet L, Clément-Chomienne O. Characterization of mibebradil block of the human heart delayed rectifier hKv1.5. J Pharmacol Exp Ther. 2000;295:771-778.

28. Rampé D, Wible B, Fedida D, Dage RC, Brown AM. Verapamil blocks a rapidly activating delayed rectifier K+ channel cloned from human heart. Mol Pharmacol. 1994;44:642-648.

29. Tiran Z, Peretz A, Attali B, Elson A. Phosphorylation-dependent regulation of Kv2.1 Channel activity at tyrosine 124 by Src and by protein-tyrosine phosphatase epsilon. J Biol Chem. 2003;278:17509-17514.

30. Sobko A, Peretz A, Attali B. Constitutive activation of delayed-rectifier potassium channels by a src family tyrosine kinase in Schwann cells. EMBO J. 1998;17:4723-4734.

31. Song MY, Hong C, Bae SH, So I, Park KS. Dynamic modulation of the kv2.1 channel by SRC-dependent tyrosine phosphorylation. J Proteome Res. 2012;11:1018-1026.