Technical and economic analysis of parameters of urban distribution electric networks 10 kV

A D Taslimov1, S A Keshuv2, Najimadidinov R K3, Kh Aminov4, A A Yuldashev3,
1Tashkent State Technical University named by Islam Karimov, Tashkent, Uzbekistan
2Kazakh National Agrarian University, Almaty, Kazakhstan
3Karalpak State University

Abstract. In the article, using the criterion analysis method, the analysis of the stability of total costs, the sensitivity of parameters to changes in the initial data (to the analysis of the influence of errors in the initial data) is carried out, and recommendations are given on the use of the obtained parameters for 10 kV distribution electrical networks.

Keywords. Optimization, unification, optimal parameters, stability, sensitivity, similarity criterion.

1 Introduction

Solving the problem of choosing the parameters of electrical distribution networks (DET) requires the use of methods of mathematical and geometric programming. This method is the method of criterion analysis or programming [1-3], which makes it possible to solve a complex of problems of choosing parameters. An important advantage of the criterion analysis method is that some tasks of quantitative analysis (for example, the stability of the technical and economic function to parameters, the sensitivity of optimal solutions to the initial data) are solved without knowing the numerical values of the initial data [7-11].

Consider the total costs of 10 kV DET for one power source (PS), which, taking into account the actual capital costs, operating costs and electricity losses, are determined by the expression [4-5]:

$$Z_c = Z_{c(1)} \sigma + S_{T(1)} S_{PS} M^{0.25} + Z_{c(2)} S_{T(2)} S_{PS} M^{0.33} F_{H,C} +$$

$$Z_{c(3)} S_{T(3)} S_{PS} M^{0.13} F_{H,C} N^{1.25} + Z_{c(4)} S_{T(4)} S_{PS} M^{1.06} F_{H,C} N^{0.3} \ (1)$$

Where $Z_{c(i)}$ - initial data; $N_{F,C}$ - number of standard cable cross-sections; $F_{H,C}$ - cross-sections of the head sections of cable lines 10 kV, mm²; M_C - the number of lines outgoing from one PS; S_{PS} - power PS, mVA; $S_{T(i)}$ installed capacity of transformers, kVA; σ - electrical load density, referred to as PS tires, mVA/km².

On the basis of (1), using the criterion analysis method, the economic values of the DET parameters corresponding to the minimum total costs are determined. The calculation results and their analysis are given in [6].

It should be pointed out that the results obtained in [5] are intermediate, since they were obtained without taking into account the stability and the zone of equal efficiency of total costs. The study of the stability of the total costs of 10 kV DET in the area of its minimum involves an analysis of the applicability of discrete standard values of economic parameters in the area of equal efficiency of total costs and creates the prerequisites for further unification of these parameters [12-19].

To study economic sustainability based on (1), we write down the general criterion equation for a 10 kV network in the following form:

$$Z_c = \pi_1 M_1^{0.3} + \pi_2 M_2^{1.06} F_{2} + \pi_3 M_3^{0.13} F_{1} + \pi_4 M_4^{1.25} F_{2} + \pi_5 M_5^{0.3} F_{3} N_{1} \ (2)$$

Where π - means that all parameters are expressed in relative units from their economic values; π_1, π_2, π_3, π_4 - similarity criteria for economic options. Similarity criteria in matrix form are determined by the formula (2):

$$\pi_E = (\alpha^T)^{-1} \cdot \beta$$

Here α^T - parameter exponent matrix; π_E - column matrix of similarity criteria; m - number of components of total costs; n - number of parameters.

For model (1), we compose the transposed matrix from the exponents of the parameters α^T and find the inverse matrix $(\alpha^T)^{-1}$:

$$\alpha^T = \begin{bmatrix} 0 & 0 & -1 & 0.3 \\ 0.5 & 0.06 & -0.13 & 1.21 \\ -1 & -1 & -1 & -1 \end{bmatrix}$$

$$\beta = \begin{bmatrix} O \\ \pi_{E1} \\ \pi_{E2} \\ \pi_{E3} \end{bmatrix}$$

© The Authors, published by EDP Sciences. This is an open access article distributed under the terms of the Creative Commons Attribution License 4.0 (http://creativecommons.org/licenses/by/4.0/).
In this case, the economic values of the similarity criteria in matrix form are:

\[
\begin{pmatrix}
\pi_{1E} \\
\pi_{2E} \\
\pi_{3E} \\
\pi_{4E}
\end{pmatrix} =
\begin{pmatrix}
-1.579 & -1.743 & 1.327 & -0.336 \\
1.553 & 1.26 & -0.464 & -0.232 \\
-0.763 & 0.111 & -0.199 & -0.1 \\
0.79 & 0.372 & -0.664 & -0.332
\end{pmatrix}
\]

Thus, the economic values of the similarity criteria are:

\[
\pi_{1E} = 0.336; \quad \pi_{2E} = 0.232; \\
\pi_{3E} = 0.1; \quad \pi_{4E} = 0.332.
\]

Taking into account the values of the similarity criteria, the criterion equation takes the form:

\[
Z_{(i)} = 0.336 M_{(i)}^{10} + 0.232 M_{(i)}^{11} F_{(i)} + 0.14 M_{(i)}^{12} F_{(i)} + 0.332 M_{(i)}^{13} N_{(i)}^{1,0} N_{(j)}^{1,0} + 0.332 M_{(i)}^{13} N_{(j)}^{1,0} N_{(j)}^{1,0}, \quad (3)
\]

From equation (3) we obtain expressions that are directly used to study the economic sustainability of total costs:

at \(M_{(i)} = 1, \quad F_{(i)}^* = 1 \) \(Z_{(i)}^* = 0.568 + 0.1 N_{(i)}^{1,0} + 0.332 N_{(i)}^{1,0} \), \quad (4)

at \(M_{(i)} = 1, \quad N_{(j)}^* = 1 \) \(Z_{(i)}^* = 0.336 + 0.332 F_{(i)}^* + 0.332 F_{(j)}^* \), \quad (5)

at \(F_{(i)}^* = 1, \quad N_{(j)}^{1,0} = 1 \) \(Z_{(i)}^* = 0.336 M_{(i)}^{10} + 0.232 M_{(i)}^{11} F_{(i)} + 0.14 M_{(i)}^{12} F_{(i)} + 0.332 M_{(i)}^{13} N_{(j)}^{1,0} + 0.332 M_{(i)}^{13} N_{(j)}^{1,0} \), \quad (6)

The analysis of the economic sustainability of total costs to changes in parameters is carried out according to the dependences in Fig. 1 constructed according to criterion equations (4)-(6).

Fig.1. Investigation of the stability of the function of total costs to deviations of parameters from their economic values

Dependencies Fig. 1 allow to determine the degree of economic stability of the total costs for 10 kV DET to changes in individual parameters.

Fig. 1 it follows that the total costs are most resistant to changes in the parameters \(N_{F,i} \) and \(F_{M,j} \) and to the least extent to changes in the parameter \(M_{i} \). In general, the parameters \(N_{F,i} \) and \(F_{M,j} \) have a significant area of equal efficiency; for example, when

\[
Z_{(i)}^* = 1.05; \quad N_{F,i}^{1,0} = 0.37 - 1.6; \quad F_{M,j} = 0.45 - 1.9.
\]

Thus, a significant equally economical zone of total costs for the parameters \(N_{F,i} \) and \(F_{M,j} \) on the one hand, creates the preconditions for the unification of cable cross-sections, on the other hand, it does not allow to unambiguously select these parameters - the number and values of standard cross-sections of 10 kV DET cables. In this case, additional criteria are used for the final selection of these parameters [20-26].

The obtained economic values of the parameters depend both on the initial data and on the completeness and accuracy of the total costs. When forming the total costs of 10 kV DET as a function of the number of cable cross-sections used, a number of assumptions and approximations were made, which affected the values of the generalized coefficients \(Z_{(i)} \).

In addition, the influence of the initial data error on the parameters of the 10 kV DET needs to be clarified for practical purposes. Therefore, it is necessary to investigate the influence of possible changes in the initial data (generalized coefficients) on the values of the parameters, that is, the sensitivity of the economic parameters \(N_{F,i} \), \(F_{M,j} \) and \(M_{i} \). From (5) we get:

\[
N_{F,i}^{*} = \frac{Z_{(i)}^{1,0}}{Z_{(i)}^{4,0}} Z_{(i)}^{0,763}, \quad (7) \quad F_{M,j}^{*} = \frac{Z_{(i)}^{1,0}}{Z_{(i)}^{4,0}} Z_{(i)}^{0,12} Z_{(i)}^{0,372}, \quad (8)
\]

\[
M_{i}^{*} = \frac{Z_{(i)}^{2,0}}{Z_{(i)}^{4,0}} Z_{(i)}^{0,664} Z_{(i)}^{0,664}, \quad (9)
\]

Where \(i=a, c \).

Expressions (7)-(9) show how the possible ranges of variation of the error of generalized constants (initial data) affect the economic values of the parameters. By (7)-(9) graphs of sensitivity were constructed (Fig. 2a, b, c).
As can be seen from Fig. 2c the number of outgoing lines 10 kV M_C (from PS) is most sensitive to a change in the generalized constants $Z_{C(i)}$, determined by the constant part of the unit cost of 10 kV cable lines M_C respectively. With the growth of $Z_{C(i)}$, the economic values of the M_C parameters decrease significantly [27-32].

The economic values of the cross-sections of the head sections of the 10 kV CL (Fig.1a) are most sensitive to changes in the generalized constants $Z_{d(1)}$, $Z_{d(2)}$ and the least to a change in the constants $Z_{d(3)}$ and $Z_{d(4)}$, that is, the economic value parameter $F_{d(i)}$ is mainly determined by the cost characteristics of cable lines (Fig. 2b).

As can be seen from Fig. 2a, the economic value of the number of used cross-sections of 10 kV cables ($N_{F(i)}$) is most sensitive to changes in the generalized constants $Z_{d(1)}$ and $Z_{d(2)}$, determined by the cost characteristics of 10 kV cable lines. For example, when the coefficients $Z_{d(1)}$ change within 0.97 ± 1.03, the economic value of the $N_{F(i)}$ parameter changes only within 0.98 ± 1.05. Therefore, the possible range of variation of the parameter $N_{F(i)}$ lies within the permissible limits with a wide change in the initial data (generalized coefficients). The influence of other generalized coefficients ($Z_{d(3)}$ and $Z_{d(4)}$) on the value of the unification parameter $N_{F(i)}$ is insignificant (Fig. 2a, b, c).

Thus, the reliability of determining the economic value of the parameter M_d depends to the greatest extent on the error of the constant component of the characteristic of the cost of 10 kV cable lines, and the accuracy of determining the parameters $F_{H(i)}$ and $N_{F(i)}$ depends to the greatest extent on the error in determining the cost characteristics of cable lines [33-37].

2 Conclusions

Thus, by analyzing the characteristics of a complex technical and economic model of 10 kV DET, it was found that the reliability of determining the economic value of the parameter M_d depends to the greatest extent on the error of the constant component of the characteristic of the cost of cable lines, and the accuracy of determining the parameters $F_{H(i)}$ and $N_{F(i)}$ depends to the greatest extent on the error determination of the cost characteristics of cable lines 10kV. The significant stability of the technical and economic function to the parameter of the number of cross-sections used creates a prerequisite for further unification of the cross-sections of 10 kV DET cables.

References

1. Miron Grinkrug, Gordin S. Optimization of the parameters of urban electrical networks. “LAP Lambert Academie Publishing”, 2012.
2. Venikov V.A., Venikov G.V. Theory of similarity and modeling (Applied to the problems of the electric power industry). - M.: Publishing house - "Librokom", 2014. - 440p.
3. N.M. Cheremisin, V.V. Cherkashina. A criterion method for analyzing technical and economic problems in electrical networks and systems: a tutorial. - Kharkov: Fact, 2004. - 88 p.
4. I.Rakhmonov, A.Berdishev, N.Niyozov, A.Muratov and U.Khaliknazarov. Development of a scheme for generating the predicted value of specific electricity consumption // CONMECHYDRO – 2020. IOP Conf. Series: Materials Science and Engineering. 883 (2020) 012103. doi:10.1088/1757-899X/883/1/012103
5. F.A.Hoshimov, I.I.Bakhadirov, M.S.Kurbanbayeva, N.A.Aytbayev. Development of specific standards of energy consumption by types of produced products of the spinning product // RSES 2020. E3S Web of Conferences. 216 (2020) 01169. https://doi.org/10.1051/e3sconf/202021601169
6. F.A.Hoshimov, I.I.Bakhadirov, A.A.Alimov, M.T.Erejepov. Forecasting the electric consumption of objects using artificial neural networks // E3S Web of Conferences. 216 (2020) 01170. https://doi.org/10.1051/e3sconf/202021601170
7. I.U.Rakhmonov, L.Nematov, N.N.Niyozov, K.M.Reymov, T.Yuldoshev. Power consumption management from the positions of the general system theory // ICMSIT-2020. Journal of Physics: Conference Series. 1515 (2020) 022054. doi:10.1088/1742-6596/1515/2/022054
8. I.U.Rakhmonov, F.A.Hoshimov. Development of an algorithm for evaluating the dominant factors that have the greatest impact on the energy intensity of products // ENERGY-21. E3S Web of Conferences. 209 (2020) 07018. https://doi.org/10.1051/e3sconf/202020907018
36. A.D. Taslimov. Selection of a complex of parameters of distribution electric networks with respect to technical limitations // ENERGY-21. E3S Web of Conferences. 209 (2020) 07013. https://doi.org/10.1051/e3sconf/202020907013
37. A. Taslimov, F. Rakhimov, L. Nematov, N. Markaev, A. Bijanov, R. Yunusov. Economic load intervals for selecting 10 kV cable cross-sections for agricultural consumers // CONMECHYDRO – 2020. IOP Conf. Series: Materials Science and Engineering. 883 (2020) 012102. doi:10.1088/1757-899X/883/1/012102