Введение

Взаимосвязь между деятельностью почек и сердца является необычайно важной для осуществления регуляторных функций и контроля гемодинамики. Почки играют центральную роль в поддержании объёмного гомеостаза организма, электролитного баланса, а также регуляции артериального давления [1]. Взаимоотношения между сердцем и почками осуществляются на множественных уровнях, включая ренин-ангиотензин-альдостероновую систему (РААС), симпатическую нервную систему (СНС), натрийуретические пептиды, эндотелин и антидиуретические гормоны [2]. Поэтому понимание взаимодействия двух этих важных систем является ключевым моментом для улучшения ведения пациентов с кардиorenальной болезнью. Старение популяции и растущая заболеваемость артериальной гипертензией, сахарным диабетом типа 2, ожирением, а также другие сердечно-сосудистые (СС) факторы риска ассоциируются с увеличением количества новых случаев патологии сердца и почек. Поэтому неудивительно, что распространенность сердечной недостаточности и хронической болезни почек (ХБП) продолжает расти. Кроме того, было показано, что снижение функции почек даже легкой и умеренной степени коррелирует с более высокой
заболеваемостью и смертностью пациентов с сердечной недостаточностью и острым коронарным синдромом [3]. Тесная взаимосвязь между ХБП и растущей СС-заболеваемостью и смертностью уже была продемонстрирована в ряде эпидемиологических и клинических исследований [4]. Более того, хотя уровень смертности от ишемической болезни сердца в течение последних 10 лет снизился на 35%, как следствие контроля факторов СС-риска и оптимальных режимов терапии, у пациентов с ХБП за этот же период подобной тенденции не наблюдалось. Значительное число пациентов с ХБП умирают вследствие СС-осложнений ещё до того, как они достигнут терминальной почечной недостаточности (ТПН), а нарушение функции почек у пациентов с первичной патологией сердца представляет значительно более высокий риск заболеваемости и смертности от сердечно-сосудистой болезни (ССБ) [5]. Таким образом, учитывая статус популяции и контроль факторов СС-риска, в особенности артериальной гипертензии, крайне необходимо понимание механизмов нарушения функции почек как патогенетического фактора развития ССБ.

Патофизиологические механизмы, лежащие в основе кардиоренальной болезни

Сердечно-сосудистые заболевания (ССЗ) являются ведущей причиной смерти и инвалидизации по всему миру. СС-события редко отмечаются у пациентов без предсуществующей болезни, напротив, в типичных случаях они являются финальной стадией патологического процесса, обусловливающего прогрессирующее повреждение сосудов. Эта стадия получила название кардиоренального континуума [6]. На рисунке изображена общая структура кардиоренального континуума, в упрощенном виде отражающая последовательность развития атеросклеротического процесса, начиная с I стадии, на которой факторы риска ССБ выявляются и могут корректироваться, если для их контроля применяются оптимальные терапевтические подходы. Недавно состоявшаяся конференция по достижению консенсуса представила классификацию кардиоренальной болезни, включая деление на пять подтипов кардиоренальных синдромов в соответствии с их патофизиологическими механизмами [7].

Для почечных и СС-заболеваний характерны один и те же этиопатогенетические факторы риска, включающие артериальную гипертензию, дислипидемию, нарушения метаболизма глюкозы, курение, ожирение и низкую физическую активность. В случае адекватного контроля указанных факторов возможно предотвращение развития атеросклеротического процесса и последующего поражения органов-мишеней (ПОМ), т.е., СС-событий. Таким образом, профилактика может осуществляться не только на I стадии, но и на протяжении всего континуума. По мере развития кардиоренального процесса прогрессирует атеросклеротическое повреждение сосудов и может выявляться субклиническое поражение органов. Это является промежуточной стадией в континууме сосудистой болезни и детерминантой риска ССБ в целом. На данном этапе подключаются ХБП и ряд состояний, ассоциированных со снижением функции почек, таких как анемия, вторичный гиперпаратиреоз или накопление атерогенных субстанций, становятся новыми факторами риска ССБ и ускоряют развитие сосудистой болезни.

Терапевтические воздействия на этом этапе могут вызывать регресс СС-повреждения, как это было показано в исследовании LIFE (Losartan Intervention for Endpoint Reduction in Hypertension), в котором более низкое отношение альбумин/креатинин мочи и уменьшение гипертрофии левого желудочка (ГЛЖ) были ассоциированы с более низкой частотой развития СС-событий. Таким образом, необходимо устанавливать
чёткие цели по коррекции факторов СС-риска. В настоящее время доступны многочисленные данные, касающиеся ключевой роли ПОМ в определении факторов риска ССБ у индивидуумов с наличием или отсутствием артериальной гипертензии. Если не достигнуто уменьшение поражения сердечно-сосудистой системы, процесс продолжается с развитием СС-событий и прогрессированием ХБП до клинически явной нефропатии и ССБ.

Хотя предупредительные стратегии должны присутствовать на протяжении всего континуума, вмешательства на данном этапе способны лишь сдерживать появление СС и почечных событий [8]. Эта последняя стадия представляет собой ситуацию дальнейшего прогрессирования сосудистой болезни, приводящего к появлению клинически явного ПОМ (инфаркт миокарда, стенокардия, инсульт, транзиторная ишемическая атака, явная почечная дисфункция и поражение периферических сосудов), которое, в конечном итоге, завершится терминальной почечной недостаточностью (ТПН) или смертью. На этом этапе самое лучшее, что мы можем сделать, это отсрочить развитие подобных событий.

Сердечно-сосудистые заболевания, ассоциированные с заболеванием почек

Кардиоренальный континуум является патофизиологическим континуумом, который описывает развитие на молекулярном и клеточном уровнях процессов, которые манифестируют клинической болезнью. На протяжении двух последних десятилетий огромное число исследований обеспечило большой объем знаний, касающихся терапевтических воздействий, которые могут вмешаться в течение континуума.

Итак, процесс начинается с оценки факторов риска ССБ. На этой I стадии кардиоренальной болезни превентивные стратегии являются наиболее важными для прерывания её прогрессирования [9]. Это подтверждается рядом данных, продемонстрировавших, что у пациентов с высоким риском, при отсутствии признаков повреждения почек, может отмечаться положительный эффект от раннего терапевтического воздействия. В ходе многоцентрового, двойного слепого рандомизированного исследования Benedict (Bergamo nephrologic diabetes complications trial), оценивавшего возможность фармацевтической интервенции предотвратить микроальбуминурию у пациентов высокого риска, было показано, что препараты, предотвращающие развитие микроальбуминурии [10]. Проливает свет на этот вопрос данные и других продолжающихся исследований, в том числе исследования ROAD-MAP (Randomised Olmesartan and Diabetes Microalbuminuria Prevention) – плацебо контролируемого многоцентрового двойного слепого исследования с использованием параллельных групп, исследующего эффект блокатора рецепторов ангиотензина (БРА) медоксомилла олмесартана на частоту появления новых случаев микроальбуминурии у гипертензивных пациентов с сахарным диабетом типа 2 и целевым уровнем артериального давления <130/80 мм рт. ст. Кроме того, ROADMAP также будет анализировать эффекты медоксомила олмесартана на ретинопатию и другие микрососудистые осложнения [11]. Исследование диабетической ретинопатии при приёме кандесартана (DIRECTs) разработано с целью исследования первичной (частота появления) и вторичной (прогрессирование) профилактики диабетической ретинопатии посредством блокады первого типа рецепторов ангиотензина 2 при помощи кандесартана у нормотензивных пациентов с сахарным диабетом типа 1 с нормоальбуминурией и вторичной профилактике у нормотензивных или леченных гипертензивных пациентов с сахарным диабетом типа 2 с нормоальбуминурией. Эти серии исследований также поддержат превентивные стратегии, направленные на предупреждение прогрессирования атеросклеротического процесса, приводящего к развитию повреждения сердечно-сосудистой системы [12].

Оптимальное ведение пациентов с наличием нескольких факторов риска является ключевым, особенно при сочетании артериальной гипертензии с другими состояниями. Понимание того, что некоторые антигипертензивные препараты способны вызывать нежелательные метаболические эффекты, заставляет анализировать в исследованиях по антигипертензивной терапии встречаемость новых случаев сахарного диабета. Практически все такие исследования, анализирующие новые случаи сахарного диабета как конечные точки, показали значительно большую заболеваемость у пациентов, получавших терапию диуретиками и/или бета-блокаторами, в сравнении с пациентами получавшими лечение ингибиторами ангиотензинпревращающего фермента (и-АПФ), БРА или антиагрегантами кальция [13–16]. Также было показано, что применение БРА [17] и и-АПФ [13], ассоциируются со значительно меньшей частотой новых случаев сахарного диабета, чем применение агонистов кальция. В исследовании ONTARGET (Ongoing Telmisartan Alone and in Combination with Ramipril Global Endpoint Trial) производится сравнение...
телмисартана, рамиприла и их комбинации в профиляктике сердечно-сосудистой заболеваемости и смертности у пациентов с высоким риском [18]. Блокатор рецепторов ангиотензина телмисартан был выбран для исследования ONTARGET в связи с его стойким антигипертензивным действием в течение 24-часового промежутка между дозами [19]. Препаратом сравнения был выбран и-АПФ рамиприл, поскольку в исследовании HOPE (Heart Outcomes Prevention Evaluation) было показано, что рамиприл снижает частоту СС-событий в похожей популяции пациентов [20]. У пациентов, включенных в исследование ONTARGET, имеется сосудистая болезнь (ИБС, облитерирующий атеросклероз периферических сосудов, инсульт) или сахарный диабет с ПОМ. Первичным исходом является суммарная конечная точка, включающая ССБ, смерть, инсульт, острый инфаркт миокарда и госпитализации по поводу застойной сердечной недостаточности. Также были включены различные варианты почечных исходов. Параллельным исследованием в рамках ONTARGET является TRANSCEND (Telmisartan Randomized Assessment Study in ACE-I- Intolerant Subjects with CV disease), сравнивающее протективный эффект на сердечно-сосудистую систему телмисартана и плацебо у пациентов с непереносимостью и-АПФ [18]. Уже опубликованы первые результаты этого исследования, в которых сделан акцент на то, что телмисартан был эквивалентен рамиприлу по эффективности лечения пациентов с сосудистыми заболеваниями или с сахарным диабетом с высоким риском, и что телмисартан переносился лучше [21]. Сочетание этих двух препаратов характеризовалось увеличением числа нежелательных явлений без увеличения эффективности. От этого исследования, включающего более 150 000 пациентов-лет, ожидаются новые данные, касающиеся превентивных мер на протяжении кардиоренального континуума. В исследовании TROPHY (Trial of Preventing Hypertention) была высказана гипотеза, что раннее начало терапии канцесартаном может предотвратить или отсрочить появление артериальной гипертензии, чем плацебо [22]. В исследовании ASCOT (Anglo-Scandinavian Cardiac Outcomes Trial) оценивались положительные эффекты терапии статинами у пациентов с артериальной гипертензией [23]. Аторвастатин, который был добавлен к терапии более чем у 10 000 пациентов с артериальной гипертензией и дополнительными факторами риска ССБ и уровнем общего холестерина сыворотки крови <6,5 ммоль/л, снижал уровень общего холестерина сыворотки на 19,9% в сравнении с плацебо. Это сопровождалось значительными положительными эффектами в отношении общего числа снижения сердечно-сосудистых и почечных событий (снижение на 36%) и инсульта (снижение на 27%). Недавно было досрочно завершено исследование ACCOMPLISH (Avoiding Cardiovascular Events through Combination Therapy in Patient Living with Systolic Hypertention), поскольку был достигнут исход предопределенной эффективности, и опубликованы результаты промежуточного анализа. Исследование включало более чем 11 400 пациентов, которые получали либо комбинированную терапию амлодипином и беназеприлом, или гидрохлортиазидом с беназеприлом. Первичная комбинированная конечная точка СС-заболеваемости и смертности была определена как смерть от сердечно-сосудистых причин, фатальный или нефатальный инфаркт миокарда, фатальный или нефатальный инсульт, реваскуляризация или нестабильная стенокардия, потребовавшие госпитализации. Терапия амлодипин/беназеприл значительно уменьшала СС-заболеваемость и смертность в сравнении с терапией гидрохлортиазид/беназеприл (относительный риск (ОР) 0,80; 95% доверительный интервал (ДИ) 0,71–0,90) [24]. Механические и химические повреждения, являющиеся результатом воздействия этих взаимосвязанных факторов риска ССБ, способствуют общему прогрессированию сосудистого повреждения сосудов, начинающегося с эндотелиальной дисфункции и атеросклероза. Это приводит к повреждению органов-мишеней, таким как ГЛЖ, субклиническое атеросклеротическое поражение сосудов и повреждение почек, которое может быть обнаружено по наличию микроальбуминурии и нарушения фильтрации (рСКФ) <60 мл/мин/1,73 м² – или значительное повреждение креатинина сыворотки. На этой стадии процессы повреждения сосудов могут подвергнуться обратному развитию, и было показано, что подавление РААС является наиболее эффективным фармакологическим воздействием, наряду со строгим контролем факторов риска ССБ. Международные рекомендации, посвященные артериальной гипертензии, признают микроальбуминурию, повышенный уровень креатинина сыворотки крови, снижение рСКФ основными факторами риска ССБ, которые способствуют повышению риска, привносящим другими сосуществующими факторами [25–27]. Диагноз повреждения почек, индуцированного артериальной гипертензией,
обычно базируется на выявлении сниженной функции почек и/или повышенной экскреции с мочой альбумина. Снижение функции почек классифицируется в соответствии с рСКФ, рассчитанной по формуле MDRD (Modification of Diet and Renal Disease), учитывая возраст, пол, расу и креатинин сыворотки [28]. Значения рСКФ <60 мл/мин/1,73 м² указывают на ХБП 3 стадии, тогда как значения <30 и 15 мл/мин/1,73 м² указывают на ХБП 4 и 5 стадии соответственно [29]. Формула Коккрофта–Гольта рассчитывает клиренс креатинина (CrCl) на основании возраста, пола, массы тела и креатинина сыворотки [30]. Эта формула применяма при СКФ >60 мл/мин/1,73 м², но переоценивает CrCl на стадиях ХБП 3–5 [31]. Обе формулы помогают выявить ухудшение функции почек легкой степени, когда показатели креатинина сыворотки ещё находятся в пределах нормальных значений.

Снижение СКФ и увеличение риска ССБ также можно выявить на основании повышенного уровня цистатина С сыворотки [32]. Если повышенная концентрация креатинина сыворотки или низкая рСКФ (или CrCl) указывают на сниженный уровень фильтрации плазмы на гломерулярном уровне, то увеличение экскреции альбумина или белка со мочой свидетельствуют о нарушении гломерулярного фильтрационного барьера, ведущего к увеличению экскреции альбумина. Было показано, что микроальбуминурия является предиктором развития клинически явной диабетической нефропатии у пациентов как с сахарным диабетом типа 1, так и с сахарным диабетом типа 2 [33]. Тем не менее, только примерно у 40% пациентов с сахарным диабетом типа 2 развоятся микроальбуминурия, и из них примерно у 50% микроальбуминурия появится в течение последующих 10 лет [34]. Напротив, было показано, что у пациентов с артериальной гипертензией как с наличием сахарного диабета, так и без него, микроальбуминурия, даже ниже принятых в настоящее время пороговых значений [35], является предиктором СС-событий. В ряде исследований сообщается о стойкой взаимосвязи между СС-смертностью и не СС-смертностью и отношением белок/креатинин мочи >3,9 мг/г у мужчин и 7,5 мг/г у женщин [36]. Таким образом, термин «микроальбуминурия» может ввести в заблуждение (поскольку он ошибочно предполагает также незначительность повреждения) и должен, теоретически, быть заменен на термин «альбуминурия низкого уровня» [37]. Микроальбуминурия может определяться в разовых анализы мочи путем определения отношения концентрации альбумина мочи к концентрации креатинина мочи (анализ суточной мочи и ночных порций мочи не рекомендуется в связи с неаккуратностью сбора мочи). Начальные данные о том, что наличие микроальбуминурии увеличивает риск ССБ, появились при наблюдении пациентов группы высокого риска [38]. Данные исследования NORE [39] подтвердили прогностическое значение микроальбуминурии, которое оказалось по значимости аналогично ишемической болезни сердца и было одинаково как для пациентов с сопутствующим сахарным диабетом, так и без него.

Также было продемонстрировано значение экскреции альбумина с мочой, как фактора риска ССБ, как у пациентов с артериальной гипертензией без сахарного диабета, так и в общей популяции [40]. Некоторые из этих исследований указывают на то, что взаимосвязь между альбумином мочи и риском ССБ представляет собой континуум, берущий свое начало задолго до принятой пороговой точки. Необходимо, что альбуминурия представляя собой мочу, так и снижение СКФ, независимо ассоциированы с повышенным риском ССБ, который особенно высок в случае одновременного сосуществования обоих нарушений [41]. В сущности, распространенность альбуминурии как микро, так и макро, увеличивается при падении расчетной СКФ менее <60 мл/мин/1,73 м² [42].

Пациенты, у которых развивается ТПН, составляют меньше, чем в группе ССБ и могут считаться выжившими, поскольку ССБ является причиной большинства смертей у пациентов с ХБП до развития ТПН [43]. И наоборот, далеко зашедшие стадии ССБ способствуют развитию ХБП и, таким образом, взаимосвязь между ХБП и ССБ приобретает характер порочного круга. То, что ХБП и ССБ не только взаимосвязаны, но и взаимодействуют, как фактора риска ССБ, привело к возрастанию интереса к перестройке функции почек в исследованиях, включающих пациентов с артериальной гипертензией, а также пациентов с сердечной недостаточностью и постинфарктным кардиосклерозом. Этот интерес в полной мере оправдан, так как во всех указанных ситуациях нарушение функции почек является предиктором развития СС-событий или смерти.

Даже с самых ранних стадий ХБП увеличивает риск ССБ у любого пациента с артериальной гипертензией и у любого пациента с установленными формами ССБ [44]. Снижение частоты СС-событий в популяции пациентов с ХБП требует внедрения эффективных комплексных терапевтических воздействий, защищающих и почку, и СС-систему. Указанные воздействия должны применяться на самых ранних стадиях ХБП, и строгий контроль...
артериального давления у любого пациента с повышенным глобальным риском ССБ и высоким артериальным давлением является обязательным. В отсутствии других факторов риска ССБ высокий уровень артериального давления позволяет отнести пациентов к группе с высокими дополнительными факторами риска ССБ. Напротив, для такой же оценки пациентов с тремя или более ассоциированными факторами риска ССБ, ПОМ, сахарным диабетом или другими ассоциированными клиническими состояниями требуется только лишь высокий нормальный или даже более низкий уровень артериального давления. Соответственно пациенты с артериальной гипертензией и высоким дополнительным риском ССБ могут быть обнаружены на любой из трех стадий континуума, включающего ССБ и болезни почек. Как только обнаруживается минимальное снижение функции почек, риск ССБ продолжает нарастать, вплоть до развития ТПН.

По мере снижения функции почек развивается ПОМ, а ХБП привносит в общую картину ряд клинических характеристик, которые повышают вероятность появления СС-событий при прогрессировании атеросклеротического процесса. Выявлены ХБП анемия и вторичный гиперпаратиреоз глобально ухудшают исходы пациентов, независимо от наличия миокардиопатий, а коррекция этих состояний является ключевым моментом в плане снижения абсолютного риска ССБ [45, 46]. Среди пациентов, страдающих артериальной гипертензией, которые наблюдались авторами, у 7,6% отмечалось снижение функции почек, определяемое по уровню креатинина сыворотки, и у 25% имелось снижение функции почек, определяемое как рСКФ >90 мл/мин/1,73 м², умерший риск ССБ у лиц, у которых уровень смертности от ССБ в общей популяции, с коррекцией на возраст. Это имеет косвенное значение, что артериальное давление является обязательным, а уровень смертности, намного превышающий уровень смертности от ССБ в общей популяции, с коррекцией на возраст. Это несоответствие наблюдается во всех возрастных группах, но наиболее выражено у пациентов молодого возраста с ТПН, у которых уровень смертности от ССБ в 300 раз выше, чем в контрольной группе того же возраста с нормальной функцией почек [51]. К моменту развития ТПН у 40% пациентов имеются признаки хронической сердечной недостаточности, и 85% этих пациентов имеют нарушение структуры и функции левого желудочка (ЛЖ).

Также было показано, что взаимосвязь между почечной патологией и СС-смертностью распространяется также на пациентов с более умеренным снижением функции почек. Более того, большинство пациентов с рСКФ <60 мл/мин/1,73 м² умирали вследствие причин, ассоциированных с ССБ, а не в результате прогрессирующего снижения функции почек до ТПН. Кроме того, имеются также доказательства структурных и функциональных нарушений сердца. Данные о структурных особенностях сердца в популяции пациентов с дисфункцией почек описаны с помощью эхокардиографической техники и сравнительных критериев для диагностики ГЛЖ, выявивших, что распространенность ГЛЖ у пациентов с ССБ уровнем смертности признается значимым дополнительным фактором риска ССБ, ПОМ, сахарным диабетом или другими ассоциированными факторами риска ССБ. Напротив, для такой же популяции пациентов, страдающих артериальной гипертензией и высоким дополни}

ISSN 1561-6274. Нефрология. 2013. Том 17. №1.

16
клиническая значимость дисфункции почек и ГЛЖ у пациентов с артериальной гипертензией еще полностью неясна, существуют многочисленные сообщения о взаимосвязи альбуминурии с заболеваемостью и смертностью.

Исследование LIFE также показало, что простое измерение отношения альбумин/креатинин мочи еще больше оптимизирует стратификацию риска по геометрии ЛЖ и что пациенты с ГЛЖ имеют повышенный риск развития альбуминурии. Эти данные требуют дальнейшего изучения для совершенствования лечения и формирования рекомендаций. У пациентов с сахарным диабетом риск развития конечных точек ССБ прогрессивно повышается при более высоких показателях отношения альбумин/креатинин мочи. Существующие данные показывают, что альбуминурия, даже ниже обычно принятого у пациентов с диабетом порогового уровня, определяет повышенный риск СС-заболеваемости и смертности. Отношение альбумин/креатинин мочи не прогнозирует риск инфаркта миокарда. Возможно, сахарный диабет сам по себе является сильным предиктором СС-заболеваемости и смертности, частично перекрывая влияние альбуминурии, как фактора риска, в популяции с относительно низкими уровнями альбуминурии. Результаты других исследований предполагают, что альбуминурия ниже утвержденных значений является фактором риска хронической сердечной недостаточности у пациентов с наличием или отсутствием сахарного диабета, указывая на то, что взаимосвязь между альбуминурией и риском ССБ в других популяциях не может напрямую применяться у пациентов с артериальной гипертензией без сахарного диабета [54].

Глобальный терапевтический подход, ориентированный на почечные исходы
Прогрессирование ХБП, заключающееся в снижении СКФ, происходит с различной скоростью, при этом более быстрая степень снижения обычно отмечается у пациентов с диабетической нефропатией в связи с наличием протеинурии. Имеется ряд методов лечения, эффективных в отношении замедления скорости снижения функции почек. Среди них можно отметить препараты, снижающие...
артериальное давление, предпочитательно и-АПФ и/или антагонисты ангиотензина II, малосолевая и низкобелковая диеты, гиполипидемические препараты [59]. К сожалению, для достижения максимальной эффективности указанных методов лечения, в соответствии с рекомендацией Европейского общества артериальной гипертензии/Европейского общества кардиологии, необходимо выявление пациентов на ранних стадиях заболевания, до развития значительной потери функции почек. Эта задача упрощается путём оценки СКФ и измерения микроальбуминурии у каждого пациента с артериальной гипертензией. Имеется сильная связь между уровнем отношения альбумин/креатинин мочи приблизительно >2 мг/г или расчетным уровнем экскреции 2 мг/сут со смертью от ССБ, инфарктом миокарда, инсультом и повышенным артериальным давлением. Как следствие, снижение уровня альбуминурии в течение лечения приводит к уменьшению числа сосудистых осложнений при артериальной гипертензии и, таким образом, снижает риск в целом. Есть данные, что у пациентов с сахарным диабетом типа 2 с диабетической нефропатией, а также у пациентов с недиабетическими заболеваниями почек, степень снижения альбуминурии на фоне блокады РААС ассоциирована с повышением уровня нефропротекции, а также со снижением уровня риска ССБ [60]. Уменьшение как систолического, так и диастолического артериального давления является важным фактором снижения микроальбуминурии. Несмотря на четкую связь между уровнями артериального давления и альбуминурией, и-АПФ и БРА проявляют более выраженную способность снижения микроальбуминурии у пациентов с артериальной гипертензией в сравнении с другими группами препаратов, такими как антагонисты кальция, бета-блокаторы или диуретики [61].

БИБЛИОГРАФИЧЕСКИЙ СПИСОК

1. Hall JE, Brands MW, Shek EW. Central role of the kidney and abnormal fluid volume control in hypertension. J Hum Hypertens 1996; 10(10): 633–639
2. Schrier RW, Abraham WT. Hormones and hemodynamics in heart failure. NEJM 1999; 341(8): 577–585
3. Brown JR, Cochran RP, Leavitt BJ, et al. Multivariable prediction of renal insufficiency developing after cardiac surgery. Circulation 2007; 116(11): 1139–1143
4. Foley RN, Murray AM, Li S, et al. Chronic kidney disease and the risk for cardiovascular disease, renal replacement, and death in the United States Medicare population, 1998 to 1999. JASN 2005; 16(2): 489–495
5. Gruberg L, Weissman NJ, Waksman R, et al. Comparison of outcomes after percutaneous coronary revascularization with stents in patients with and without mild chronic renal insufficiency. Am J Cardiol 2002; 89(1): 54–57
6. Dzau VJ, Antman EM, Black HR, et al. The cardiovascular disease continuum validated: clinical evidence of improved patient outcomes: part II: clinical trial evidence (acute coronary syndromes through renal disease) and future directions. Circulation 2006; 114(25): 2871–2891
7. Ronco C, McCullough P, Anker SD, et al. Cardio-renal syndromes: report from the consensus conference of the acute dialysis quality initiative. Eur Heart J 2010; 31(6): 703–711
8. Ruijope ML, Kjeldsen SE, de la Sierra A, et al. The kidney and cardiovascular risk—implications for management: a consensus statement from the European Society of Hypertension. Blood Press 2007; 16(2): 72–79
9. Keane WF. Metabolic pathogenesis of cardiorenal disease. Am J Kidney Dis 2001; 38(6): 1372–1375
10. Ruggenenti P, Fassi A, Ileva AP, et al. Preventing microalbuminuria in type 2 diabetes. NEJM 2004; 351(19): 1941–1951
11. Haller H, Iberti GC, Minnara A, et al. Preventing microalbuminuria in patients with diabetes: rationale and design of the Randomised Olmesartan and Diabetes Microalbuminuria Prevention (ROADMAP) study. J Hypertens 2006; 24(2): 403–408
12. Sjölie AK, Bilous R, Chatuvredi N, et al. The Diabetic RETInopathy Candesartan Trials (DIRECT) Programme: baseline characteristics. J Renin Angiotensin Aldosterone Syst 2005; 6(1): 25–32
13. Julius S, Kjeldsen SE, Weber M, et al. Outcomes in hypertensive patients at high cardiovascular risk treated with regimens based on valsartan or amiodipine: the VALUE randomised trial. Lancet 2004; 363(9426): 2022–2031
14. Lithell H, Hansson L, Skoog I, et al. The Study on Cognition and Prognosis in the Elderly (SCOPE). Principal results of a randomised double-blind intervention trial. J Hypertens 2003; 21: 875–886
15. Hansson L, Lindholm LH, Niskanen L, et al. Effect of angiotensin-converting-enzyme inhibition compared with conventional therapy on cardiovascular morbidity and mortality in hypertension: the Captopril Prevention Project (CAPPP) randomised trial. Lancet 1999; 353(9153): 611–616
16. Hansson L, Hedner T, Lund-Johansen P, et al. Randomised trial of effects of calcium antagonists compared with diuretics and β-blockers on cardiovascular morbidity and mortality in hypertension: the Nordic Diltiazem (NORDIL) study. Lancet 2000; 356(9227): 359–365
17. The ALLHAT officers and coordinators for the ALLHAT Collaborative Research Group. Major outcomes in high-risk hypertensive patients randomized to angiotensin-converting enzyme inhibitor or calcium channel blocker vs diuretic: the Antihypertensive and Lipid-Lowering treatment to prevent Heart Attack Trial (ALLHAT). JAMA 2002; 288: 2981–2997
18. The ONTARGET/TRANSCEND investigators. Rationale, design, and baseline characteristics of 2 large, simple, randomized trials evaluating telmisartan, ramipril, and their combination in high-risk patients: the Ongoing Telmisartan Alone and Telmisartan plus Ramipril (ONTARGET/TRANSCEND) trials. Am Heart J 2004; 148: 52–61
19. Battershill AJ, Scott LJ. Telmisartan: a review of its use in the management of hypertension. Drugs 2006; 66(1): 51–83
20. Yusuf S, Sleight P, Pogue J, et al. Effects of an angiotensin-converting-enzyme inhibitor, ramipril, on cardiovascular events in high-risk patients. The Heart Outcomes Prevention Evaluation Study Investigators. NEJM 2000; 342: 145–153
21. Yusuf S, Teo KK, Pogue J, et al. Telmisartan, ramipril, or both in patients at high risk for vascular events. NEJM 2008; 358(15): 1547–1559
22. Julius S, Nesbitt SD, Egan BM, et al. Feasibility of treating prehypertension with an angiotensin-receptor blocker. NEJM 2006; 354(16): 1685–1697
23. Sever PS, Dahlof B, Poulter NR, et al. ASCOT investigators. The prevention of coronary events and stroke with atorvastatin in hypertensive subjects with average or below average cholesterol levels. The Anglo-Scandinavian Cardiac Outcomes Trial: Lipid Lowering Arm (ASCOT-LLA) Lancet 2003; 361: 1149–1158
24. Jamerson K, Weber MA, Bakris GL, et al. Benazepril plus amiodipine or hydrochlorothiazide for hypertension in high-risk patients. NEJM 2008; 359(23): 2417–2428
25. Chobanian AV, Bakris GL, Black HR, et al. The seventh report of the joint national committee on prevention, detection, evaluation, and treatment of high blood pressure: the JNC 7 report. JAMA 2003; 289(19): 2560–2572
26. Mancia G, De Backer G, Dominiczak A, et al. 2007 Guidelines for the Management of Arterial Hypertension: The Task Force for the Management of Arterial Hypertension of the European Society of Hypertension (ESH) and of the European Society of Cardiology (ESC) J Hypertens 2007; 25(6): 1105–1187
27. Tonelli M, Wiebe N, Culleton B, et al. Chronic kidney disease and mortality risk: a systematic review. J Am Soc Nephrol 2006; 17(7): 2034–2047
28. Hallan S, Asberg A, Lindberg M, Johnsen H. Validation of the modification of diet in renal disease formula for estimating GFR with special emphasis on calibration of the serum creatinine assay. Am J Kidney Dis 2004; 44(1): 84–93
29. Moe S, Druke T, Cunningham J, et al. Kidney Disease: Improving Global Outcomes (KDIGO). Definition and classification of chronic kidney disease: a position statement from Kidney Disease: Improving Global Outcomes (KDIGO). Kidney Int 2005; 67: 2089–2100
30. Cockcroft DW, Gault MH. Prediction of creatinine clearance from serum creatinine. Nephron 1976; 16(1):31–41
31. Ruliope LM, Zanchetti A, Julius S et al. Prediction of cardiovascular outcome by estimated glomerular filtration rate and estimated creatinine clearance in the high-risk hypertension population of the VALUE trial. J Hypertens 2007; 25(7): 1473–1479
32. Shlipak MG, Katz R, Sarnak MJ, et al. Cystatin C and prognosis for cardiovascular and kidney outcomes in elderly persons without chronic kidney disease. Am J Intern Med 2006; 145(4): 237–246
33. Parving HH. Initiation and progression of diabetic nephropathy. NEJM 1996; 335(22): 1682–1683
34. Gall MA, Hougaard P, Borch-Johnsen K, Parving HH. Risk factors for development of incipient and overt diabetic nephropathy in patients with non-insulin dependent diabetes mellitus: prospective, observational study. BMJ 1997; 314(7083): 783–788
35. Redon J, Williams B. Microalbuminuria as predictor of increased mortality in elderly people. J Am Soc Nephrol 1994; [suppl 45]: S171–S173
36. Arnlov J, Evans JC, Meigs JB, et al. Low-grade albuminuria and incidence of cardiovascular disease events in nonhypertensive and nondiabetic individuals: the framingham heart study. Circulation 2005; 112(7): 969–975
37. Damsgaard EM, Froland A, Jorgensen OD, Mogensen CE. Microalbuminuria as predictor of increased mortality in elderly people. BMJ 1990; 300(6720): 297–300
38. Gerstein HC, Mann JFE, Yi Q, et al. Albuminuria and risk of cardiovascular events, death, and heart failure in diabetic and nondiabetic individuals. JAMA 2001; 286(4): 421–426
39. Ageewall S, Wikstrand J, Ljungman S, Fagerberg B. Usefulness of microalbuminuria in predicting cardiovascular mortality in treated hypertensive men with and without diabetes mellitus. Am J Cardiol 1997; 80(2): 164–169
40. Sataridis P, Bakris GL. Microalbuminuria and chronic kidney disease as risk factors for cardiovascular disease. Nephrol Dial Transplant 2006; 21(9): 2366–2374
41. Segura J, Ruilope LM. Minor abnormalities of renal function: a situation requiring integrated management of cardiovascular risk. Fundam Clin Pharmacol 2005; 19(4): 429–437
42. Elsayed EF, Tighiouart H, Griffith J, et al. Cardiovascular disease and subsequent kidney disease. Arch Intern Med 2007; 167(11): 1130–1136
43. Ruilope LM, Lahera V, Rodicio JL, Romero JC. Are renal hemodynamics a key factor in the development and maintenance of arterial hypertension in humans? Hypertension 1994; 23(1): 3–9
44. Vlagopoulos PT, Tighiouart H, Weiner DE, et al. Anemia as a risk factor for cardiovascular disease and all-cause mortality in diabetes: the impact of chronic kidney disease. J Am Soc Nephrol 2005; 16(11): 3403–3410
45. Moe SM. Vascular calcification and renal osteodystrophy relationship in chronic kidney disease. Eur J Clin Invest 2006; 36(2): 51–62
46. Segura J, Campo C, Ruilope LM. How relevant and frequent is the presence of mild renal insufficiency in essential hypertension? J Clin Hypertens (Greenwich) 2002; 4(5): 332–336
47. Weiner DE, Tighiouart H, Amin MG, et al. Chronic kidney disease as a risk factor for cardiovascular disease and all-cause mortality: a pooled analysis of community-based studies. J Am Soc Nephrol 2004; 15(5): 1307–1315
48. Segura J, Campo C, Gil P, et al. Development of chronic kidney disease and cardiovascular prognosis in essential hypertensive patients. J Am Soc Nephrol 2004; 15(6): 1616–1622
49. Ruilope LM. The kidney as a sensor of cardiovascular risk in essential hypertension. J Am Soc Nephrol 2002; 13(3): S165–S168
50. Schiffrin EL, Lipman ML, Mann JFE. Chronic kidney disease: effects on the cardiovascular system. Circulation 2007; 116(1): 85–97
51. Ruliope LM, Zanchetti A, Julius S et al. Prediction of cardiovascular and noncardiovascular mortal-