Experimental Realization of a 2D Fractional Quantum Spin Liquid

R. Coldea1,2, D.A. Tennant2,3, A.M. Tsvelik4, and Z. Tylczynski5

1Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
2ISIS Facility, Rutherford Appleton Laboratory, Chilton, Didcot, Oxon OX11 0QX, UK
3Oxford Physics, Clarendon Laboratory, Parks Road, Oxford OX1 3PU, UK
4University of Oxford, Department of Theoretical Physics, 1 Keble Road, Oxford OX1 3NP, UK
5Institute of Physics, Adam Mickiewicz University, Umultowska 85, 61-614 Poznan, Poland
(3 November 2000)

The ground-state ordering and dynamics of the two-dimensional (2D) $S=1/2$ frustrated Heisenberg antiferromagnet Cs\textsubscript{2}CuCl\textsubscript{4} is explored using neutron scattering in high magnetic fields. We find that the dynamic correlations show a highly dispersive continuum of excited states, characteristic of the RVB state, arising from pairs of $S=1/2$ spinons. Quantum renormalization factors for the excitation energies (1.65) and incommensuration (0.56) are large.

The concept of fractional quantum states is central to the modern theory of strongly correlated systems. In magnetism, the most famous example is the spin $S=1/2$ 1D Heisenberg antiferromagnetic chain (HAFC) where pairs of $S=1/2$ spinons are deconfined from locally allowed $S=1$ states; a phenomenon that is now well established both theoretically \cite{Anderson} and experimentally \cite{Tsvelik}. These spinons are topological excitations identified with quantum domain walls. Experimentally, such fractionalization is manifest as a highly dispersive continuum in the dynamical magnetic susceptibility measured by \textit{e.g.} neutron scattering \cite{Coldea} and for the HAFC identified as creation of pairs of spinons.

In 1973 Anderson \cite{Anderson} suggested that a 2D fractional quantum spin liquid may take the form of a “resonating valence bond” (RVB) state comprising singlet spin pairings in the ground state, and with pairs of excited $S=1/2$ spinons separating via rearrangement of those bonds. The dominant feature of the RVB state, present in all its theoretical descriptions \cite{Anderson,Hussey} is an extended, highly-dispersive, continuum. To date this feature remains unobserved in any 2D magnet; in the case of the $S=1/2$ Heisenberg square lattice (HSL) mean field confining effects lead to $S=1$ magnons and a renormalized classical picture of fluctuations around local Néel order emerges \cite{Coldea}. One may think, however, that because frustrating interactions can counteract the staggered fields responsible for confinement \cite{Coldea}, they may provide a route to generating fractional phases in 2D.

We explore such a scenario by making neutron scattering studies on Cs\textsubscript{2}CuCl\textsubscript{4}. By exploiting its unique experimental properties as a low-exchange quantum magnet \cite{Coldea} we reveal an unexpectedly strong two-dimensionality in the form of a triangular antiferromagnet with partially released frustration. The simplicity of the couplings in Cs\textsubscript{2}CuCl\textsubscript{4} makes it a model system to investigate generic features of 2D frustrated quantum antiferromagnets.

The structure of Cs\textsubscript{2}CuCl\textsubscript{4} is orthorhombic (\textit{Pnma}) with lattice parameters $a=9.65$ Å, $b=7.48$ Å and $c=12.35$ Å at 0.3 K. Magnetic interactions are mostly restricted between Cu2+ $S=1/2$ spin-sites in the (b,c) plane, see Fig. 1(a), with coupling J along b ("chains") and zigzag "interchain" coupling J' along the c-axis \cite{Coldea}. A small interlayer coupling $J'' < 10^{-2} J$ (along a) stabilizes 3D order below $T_N = 0.62$ K into an incommensurate structure along b due to the frustrated couplings; weak anisotropies confine the ordered moments to rotate in cycloids near coincident with the (b,c) plane, see Fig. 1(d) but with a small tilt of the cycloidal plane relative to the (b,c) plane whose sense alternates along c such that for each plaquette (isosceles triangle) $(\mathbf{S}_1\cdot(\mathbf{S}_2\times\mathbf{S}_3))$ is small but nonzero (order is noncoplanar) \cite{Coldea}, making this system a candidate for a chiral spin state \cite{Coldea}. The minimal Hamiltonian determining the magnetic order is

$$
\mathcal{H} = \sum_{(i,i')} J\mathbf{S}_i \cdot \mathbf{S}_{i'} + J' \sum_{(i,j)} \mathbf{S}_i \cdot \mathbf{S}_j
$$

with each interacting spin-pair counted once, see Fig. 1(a); a detailed description of the full Hamiltonian including small Dzyaloshinskii-Moriya terms is given elsewhere \cite{Coldea}. The Hamiltonian interpolates between non-interacting HAFCs ($J' = 0$), the fully frustrated triangular lattice ($J' = J$), and unfrustrated HSL ($J = 0$).

Quantifying the couplings in (1) is of considerable importance both to guide theory and put our results in context. We do this using the following approach: neutron diffraction measurements were made on a single crystal of Cs\textsubscript{2}CuCl\textsubscript{4} in magnetic fields up to 7 T and temperatures down to 0.2 K using the PRISMA time-of-flight (TOF) spectrometer at the ISIS spallation neutron source. For fields along a (near perpendicular to the planes of spin rotation) a 3D incommensurate “cone” order is stable up to full ferromagnetic (F) alignment ($B_c = 8.44$ T at $T=0.03$ K), see Fig. 1(c). At $T = 0.2$ K magnetic Bragg peaks arising from the \textit{transverse} spin rotation move from $\epsilon_0 = 0.030(2)$ in zero field to $\epsilon = 0.047(2)$ at 7 T, where ϵ is the incommensuration relative to Néel order, see Fig.
Mean-field theory predicts no change with field, and the large renormalization observed is a purely quantum effect. Since the ferromagnetic (F) state is an eigenstate of \(\hat{J} \) with no fluctuations, \(\epsilon = 0 \) at the saturation field \(B_c \) is at its classical value \(\frac{\sin \pi \epsilon}{\epsilon} = J'/2J \). Higher-field measurements \(\epsilon' \) observe \(\epsilon = 0.053(1) \), implying an exchange coupling ratio of 0.33(1). The resulting quantum renormalization of the zero-field incommensuration \(\epsilon_0/\epsilon' = 0.56(2) \) is similar to the predicted value of 0.43(1) \((J'/J = 0.33(1)) \) estimated by series expansions using a paired singlet basis \(\hat{J} \). Additionally, the determined exchange coupling ratio is in agreement with the observed 2D dispersion in the saturated phase at 12 T \(\parallel a \) \(\epsilon' \), which give the bare exchange couplings-per-site \(J = 0.375(5) \text{ meV} \) within chains and 2\(J' = 0.25(1) \text{ meV} \) between chains. This demonstrates that “interchain” couplings are of the same order as “intrachain” and \(\text{Cs}_2\text{CuCl}_4 \) is therefore a quasi-2D system. These observations require a change in the point of view taken by earlier studies \(\hat{J} \), which proposed a quasi-1D picture based on estimates of the “interchain” couplings not including the large quantum renormalization of the incommensuration reported here. We now present detailed measurements of the excited states.

Dynamical correlations in a 2.5 cm\(^3\) single crystal of \(\text{Cs}_2\text{CuCl}_4 \) were probed using the indirect-geometry TOF spectrometer IRIS, also at ISIS. The energy resolution \((0.016 \text{ meV full-width-half-maximum (FWHM)}) \) was an improvement of nearly an order of magnitude compared to our previous studies \(\hat{J} \). The detectors form a semicircular 51-element array covering a wide range of scattering angles \((25.75^\circ \text{ to } 158.0^\circ) \). The sample was mounted with the \((a,b)\) scattering plane horizontal in a dilution refrigerator insert with base temperature 0.1 K.

The results for the \(b^* \) dispersion are shown in Fig. 2(a). Although the data points also have a finite wavevector component along \(a^* \), no measurable dispersion could be detected along this direction confirming that the coupling between layers \(J'' \) is negligible. The observed dispersion is well accounted for by the principal spin-wave mode \(\epsilon' \) of Hamiltonian \(\hat{J} \), \(\omega(k) = \sqrt{(J_k - J_Q) [(J_k - Q + J_k + Q)/2 - J_Q]} \) where the Fourier transform of exchange couplings is \(J_k = J \cos 2\pi k + 2J' \cos \pi k \cos \pi l \) and \(k = (h,k,l) \). The ordering wavevector in the 2D Brillouin zone of the triangular lattice is \(\mathbf{Q} = (0.5 + \epsilon_0) \mathbf{b}^* \) and the effective exchange parameters \(J = 0.62(1) \text{ meV} \) and \(J' = 2J \sin \pi\epsilon_0 \) (fixed) are in agreement with \(\hat{J} \). The quantum renormalization of the excitation energy \(J'/J = 1.65 \) is very large and is similar to the exact result \(\pi/2 \) for the 1D \(S = 1/2 \) HAF (see e.g. [1]). In contrast, the spin-wave velocity (energy) renormalization in the unfrustrated \(S = 1/2 \) HSL is only 1.18. Such large renormalizations of energy (1.65) and incommensuration (0.56) show the crucial importance of quantum fluctuations in the low-field state of \(\text{Cs}_2\text{CuCl}_4 \).

A remarkable feature of the measured dynamical correlations is that these do not show single particle poles, but rather extended continua. Fig. 2(b) (open circles) shows a scan at the magnetic zone boundary taken at 0.1 K. The scattering is highly asymmetric with a significant high-energy tail. The non-magnetic background (dashed line) is modeled by a constant-plus-exponential function. The magnetic peak disappears at 15 K (solid circles) and is replaced by a broad, overdamped, paramagnetic signal. Figs. 3A-D show 0.1 K data properly normalized and corrected for absorption, and with the non-magnetic background subtracted. To quantify discussion of the dynamical correlations measured by neutron scattering, we first consider a spin-wave model, which is known to provide a good description of the unfrustrated HSL \(\hat{J} \).

The dynamical correlations of the spin-wave model \(\hat{J} \) for Hamiltonian \(\hat{J} \) exhibit single-particle poles from three spin-1 magnon modes, polarized with respect to the cycloidal plane. Fig. 2(a) shows the main dispersion mode \(\omega(k) \), polarized out-of-plane, and the two secondary modes, \(\omega^-(k) = \omega(k - Q) \) and \(\omega^+(k) = \omega(k + Q) \), both polarized in-plane, where the equilibrium spin direction rotates in-plane with wavevector \(Q \). The expected scattering is given by the dashed lines in Figs. 3A-D, which clearly fails to account for the observed intensity as well as the extended high-energy tail of the scattering. This is not an instrumental effect as the FWHM of the energy resolution (horizontal bar in Fig. 2(b)) is an order of magnitude narrower than the signal width. Including next-order processes also fails to account for the scattering: the two-magnon scattering (polarized in-plane) contribution to the lineshape is also shown in Fig. 3D (shaded area) - this was calculated numerically using the method described in \(\text{[10]} \) using the experimentally estimated spin reduction \(\Delta S \sim 0.13 \) \(\text{[11]} \) to normalize the elastic, one- and two-magnon scattering.

Because in a neutron scattering process the total spin changes by \(\Delta S_{\text{total}} \sim 0, \pm 1 \) the absence of single-particle poles and the presence of excitation continua implies that the underlying excitations carry fractional quantum numbers. For \(J' = 0 \), these are rigorously known to be \(S = 1/2 \) spinons \(\hat{J} \), and two-spinon production is the principal neutron scattering process \(\hat{J}_2 \). Our analysis shows that the measured scattering can be described by the Müller ansatz lineshape appropriate to the 1D \(J' = 0 \) limit \(S(k,\omega) \sim \Theta (\omega - \omega_l(k)) \Theta (\omega_u(k) - \omega) / \sqrt{\omega^2 - \omega_l^2(k)} \), where \(\Theta \) is the Heaviside step function, and \(\omega_l \) and \(\omega_u \) are the lower and upper continuum boundaries, generalized to 2D such that: (1) the total cross-section has three continua with the lower boundaries \(\omega(k), \omega^-(k) \) and \(\omega^+(k) \) shown in Fig. 2(a); (2) the continua have equal weights and are isotropic in spin space; and (3) a modified upper boundary \(\omega_u \) (dashed upper line in Fig. 2(a)) is used. This model provides an excellent description of the data, see Figs. 3A-D. It is also noteworthy that both the asymmet-
neric dispersion, characteristic of 2D frustrated couplings, and the excitation continua are essentially unchanged at $T=0.9$ K above $T_N=0.62$ K in the disordered spin liquid phase showing that ordering affects only the low-energy behavior. We conclude that, in contrast to the HSL ($J=0$) where unfrustrated couplings confine spinons into $S=1$ magnons throughout the Brillouin zone, Cs$_2$CuCl$_4$ has fractional spin quasiparticles carrying the same quantum numbers as in the HAFC ($J'=0$), namely $S=1/2$ spinons, and, further, that these spinons are modified by the two-dimensionality at all energy scales. Although no evidence of spinon confinement is observed at any of the energy scales probed in our experiments, low energy $S=1$ Goldstone modes are expected to occur in the 3D ordered phase; weakly coupled HAFCs have recently been shown to exhibit dimensional crossover in the dynamical correlations from low-energy 3D spinwaves to high-energy 1D spinon continua on an energy scale of the interchain coupling $[17]$.

Magnetic fields applied within the ordering plane have a profoundly different effect from those along a. In fields along c a transition occurs above 1.4 T ($T < 0.3$ K) to a phase, marked S on Fig. 1(b), where (1) the structure is elliptical with a large elongation along the field direction, (2) the incommensuration approaches a linear relation with field with a large slope $[13]$, see Fig. 1(e), and (3) the total ordered moment decreases with increasing field. Above 2.1 T there is no long-range order at least down to 35 mK, and the system is in a spin liquid state. In this phase the dynamical correlations show shifts of continuum upper boundary indicating the importance of fluctuation renormalizations in the 2D frustrated couplings, and shows: (1) very strong quantum renormalizations indicating the importance of fluctuations; (2) continua in the dynamical correlations demonstrating fractional excitations; (3) very large field-driven incommensuration and disorder effects from inplane fields showing that exclusion statistics are important; and (4) stabilization of a spin liquid ground state by inplane fields. We believe new theoretical work is needed to explain these findings.

Full details of the analysis and extensive results from other related experiments on Cs$_2$CuCl$_4$ will be given in a forthcoming publication $[13]$. We would like to thank M. Eskildsen, M.A. Adams and M.J. Bull for technical support and we acknowledge very useful discussions with D.F. McMorrow, R.A. Cowley, F.H.L. Essler, A.O. Gogolin and M. Kenzelmann. ORNL is managed for the US DOE by UT-Battelle, LLC, under contract DE-AC05-00OR22725. A.M.T. is grateful to Isaac Newton Institute and Trinity College Cambridge for kind hospitality.

[1] G. Müller et al., Phys. Rev. B 24, 1429 (1981); J.C. Talstra and F.D.M. Haldane, Phys. Rev. B 50, 6889 (1994).
[2] D.A. Tennant et al., Phys. Rev. B 52, 13368 (1995); D.C. Dender et al., Phys. Rev. B 53, 2583 (1996).
[3] P.W. Anderson, Mat. Res. Bull. 8, 153 (1973).
[4] V. Kalmeyer and R.B. Laughlin, Phys. Rev. Lett. 59, 2095 (1987); Phys. Rev. B 39, 11879 (1989).
[5] L. B. Ioffe and A. I. Larkin, Phys. Rev. B39, 8988 (1989).
[6] P. A. Lee and N. Nagaosa, Phys. Rev. B46, 5621 (1992).
[7] S.M. Hayden et al., Phys. Rev. Lett. 67, 3622 (1991); S.J. Clarke et al., Solid State Commun. 112, 561 (1999).
[8] See for example S. Sachdev, in Quantum Phase Transitions (Cambridge, Cambridge,1999) ch.13.
[9] S. Watanabe and H. Yokoyama, J. Phys. Soc. Japan 68, 2073 (1999); D. Allen, F.H.L. Essler, and A.A. Nersesyan, Phys. Rev. B 61, 8871 (2000).
[10] R. Coldea et al., Phys. Rev. Lett. 79, 151 (1997).
[11] R. Coldea et al., J. Phys.:Condens. Matter 8, 7473 (1996); J. Magn. Magn. Mater. 177, 659 (1998).
[12] X.-G. Wen, F. Wilczek, and A. Zee, Phys. Rev. B 39, 11413 (1989); R.B. Laughlin, Science 242, 525 (1988).
[13] R. Coldea et al., (in preparation).
[14] Z. Weihong, R.H. McKenzie, and R.R.P. Singh, Phys. Rev. B 59, 14367 (1999).
[15] J. Jensen and A.R. Mackintosh, in Rare Earth Magnetism. Structures and Excitations (Clarendon, Oxford, 1991) p. 291.
[16] D.A. Tennant et al., Phys. Rev. B 52, 13381 (1995).
[17] H.J. Schulz, Phys. Rev. Lett. 77, 2790 (1996); F.H.L. Essler, A.M. Tsvetik, and G. Delfino, Phys. Rev. B56, 11001 (1997); B. Lake, D.A. Tennant, and S.E. Nagler, Phys. Rev. Lett. 85, 832 (2000).
FIG. 1. (a) 2D couplings in Cs$_2$CuCl$_4$: Strong bonds J (heavy lines) and smaller frustrating zig-zag bonds J' (thin lines). (b) and (c) Magnetic phase diagram in a field along the c and a axes, respectively. Symbols show the boundaries of the various phases described in the text measured using neutron scattering (squares) and susceptibility (circles). Solid curves are a guide to the eye, and dashed line indicates crossover to paramagnetic behavior. (d) Spin rotation in the (b, c) plane. Heavy arrows are spin vectors and the circle indicates the spin rotation upon translation along the b-axis. (e) Incommensuration ϵ vs. field along c. (f) ϵ vs. field along a (solid line is a guide to the eye, solid circle is from).
Cone
B(T) || a
0.00 0.02 0.04 0.06 0.08
0.12 0.14 0.16 0.18 0.20

Cycloid
S = 0.20(2) K
Spin Liquid
T < 0.1 K
(2,½ - ε, 0)
(1,½ - ε, 1)
(0, ½ + ε, 2)

F(T) (K)
F(b) (e) (f)
0.2 0.4 0.6 0.8
0.00 0.02 0.04 0.06 0.08

\(T = 0.20(2) \text{ K} \)
