We consider higher-derivative quantum gravity where renormalization group improved effective action beyond one-loop approximation is derived. Using this effective action, the quantum-corrected FRW equations are analyzed. De Sitter universe solution is found. It is demonstrated that such de Sitter inflationary universe is unstable. The slow-roll inflationary parameters are calculated. The contribution of renormalization group improved Gauss-Bonnet term to quantum-corrected FRW equations as well as to instability of de Sitter universe is estimated. It is demonstrated that in this case the spectral index and tensor-to-scalar ratio are consistent with Planck data.

PACS numbers: 98.80.Cq, 12.60.-i, 04.50.Kd, 95.36.+x

I. INTRODUCTION

Recent more precise observational WMAP data \(^1\) as well as corrected Planck constraints \(^2\) increased the interest to the theoretical models for inflationary universe. There is large variety of the inflationary models (for review, see, for instance, Refs. \(^3\)) which may comply with observational data, at least, up to some extent. Additionally, due to BICEP2 experiment \(^4\) there appear more indications that inflation is closely related not only with quantum field theory but presumably with quantum gravity or string effects.

In fact, during last years there was much activity in the account of quantum effects of General Relativity in the construction of inflationary universe (for the introduction and review, see Ref. \(^5\)). Furthermore, recent study \(^6\) indicates that quantum effects of specific models of (non-renormalizable) higher-derivative F(R)-gravity may give consistent inflation which complies with Planck data. The next natural step is extension of quantum-corrected inflationary scenario for multiplicatively-renormalizable higher derivative gravity (for a general review, see Ref. \(^7\)).

The very interesting attempt in this direction has been recently made in Ref. \(^9\).

The purpose of the current work is the study of the inflationary universe in general higher-derivative quantum gravity \(^7\). Making use the fact that one-loop beta-functions of such theory are well-known and their asymptotically free regime is well investigated, we apply renormalization group (RG) considerations to get RG improved effective action in general higher-derivative gravity. This technique is well-developed in quantum field theory in curved spacetime \(^10\). It permits to get the effective action beyond one-loop approximation, making sum of all leading logs of the theory.

The paper is organized as follows. In Section 2, we present the renormalization-group improved effective action of multiplicatively-renormalizable higher-derivative gravity. In order to do so, the one-loop effective coupling constants are used. Subsequently, the quantum-corrected equations of motion are derived on the flat Friedmann-Robertson-Walker space-time. In Section 3, using the asymptotic behaviour of the gravitational running constants, de Sitter inflationary universe is constructed. The asymptotically-free regime is discussed in detail. Section 4 is devoted to the study of the dynamics of such quantum-corrected inflation. It is shown that de Sitter space is unstable and can lead to a large amount of inflation. Slow-roll conditions are discussed and the expressions for slow-roll parameters are found. In Section 5, we consider the contribution from total derivative and surface terms (topological Gauss-Bonnet term and dalambertian of the curvature) to RG improved effective action. It is demonstrated that with these terms the spectral index can be compatible with Planck data. Conclusions and final remarks are given in Section 6.
II. RENORMALIZATION-GROUP IMPROVED EFFECTIVE ACTION AND QUANTUM-CORRECTED FRW EQUATIONS

In this section we start from the general action of higher-derivative gravity which is known to be multiplicatively-renormalizable theory (see Ref. [7] for general introduction and review). The starting action has the following form

\[I = \int \mathcal{M} d^4x \sqrt{-g} \left(\frac{R}{\kappa^2} - \Lambda + aR_{\mu\nu}R^{\mu\nu} + bR^2 + cR_{\mu\nu\xi\sigma}R^{\mu\nu\xi\sigma} + d\Box R \right), \]

\[\text{(II.1)} \]

where \(g \) is the determinant of the metric tensor \(g_{\mu\nu} \), \(\mathcal{M} \) is the space-time manifold, \(R, R_{\mu\nu}, R_{\mu\nu\xi\sigma} \) are the Ricci scalar, the Ricci tensor and the Riemann tensor, respectively, and \(\Box \equiv g^{\mu\nu}\nabla_\mu\nabla_\nu \) is the covariant d’Alembertian, \(\nabla_\mu \) being the covariant derivative operator associated with the metric \(g_{\mu\nu} \). Here, \(\kappa^2 > 0, \Lambda, a, b, c \) and \(d \) are constants which characterize the gravitational interaction. The above lagrangian contains some terms not important in four dimensions. First of all, we note that \(\Box R \) is a surface term which does not give any contribution to the dynamical equations. Second, we have

\[R_{\mu\nu}R^{\mu\nu} = \frac{C^2}{2} - \frac{G}{2} + \frac{R^2}{3}, \quad R_{\mu\nu\xi\sigma}R^{\mu\nu\xi\sigma} = 2C^2 - G + \frac{R^2}{3}, \]

\[\text{(II.2)} \]

where \(G \) and \(C^2 \) are the Gauss-Bonnet term and the “square” of the Weyl tensor,

\[G = R^2 - 4R_{\mu\nu}R^{\mu\nu} + R_{\mu\nu\xi\sigma}R^{\mu\nu\xi\sigma}, \quad C^2 = \frac{1}{3}R^2 - 2R_{\mu\nu}R^{\mu\nu} + R_{\xi\mu\nu\sigma}R^{\xi\mu\nu\sigma}. \]

\[\text{(II.3)} \]

The Gauss-Bonnet term is a topological invariant in four dimensions, and we can drop it from the action. Thus, we can rewrite the higher derivative terms with the help of the Weyl squared tensor.

Let us express the constants which appear in the starting action in terms of more convenient coupling constants which stress that the theory under consideration is asymptotically-free one. In order to do it, we follow the notations of Ref. [7]. To take into account quantum gravity effects we use the renormalization-group (RG) improved effective action. The calculation of RG improved effective action has been developed in multiplicatively-renormalizable quantum field theory in curved spacetime. In general terms, this technique is described in detail in Refs. [7, 10]. Recently, RG improved scalar potential in curved spacetime has been applied in the study of inflation [11]. In the simplest version [10], RG improved effective action follows from the solution of RG equation applied to complete effective action of the multiplicatively renormalizable theory. The final result is very simple: one has to replace constants in the classical action by one-loop effective coupling constants where corresponding RG parameter is defined as log term of characteristic mass scale in the theory.

Applying the above considerations to higher-derivative quantum gravity, one can get RG improved effective action as the following:

\[I = \int \mathcal{M} d^4x \sqrt{-g} \left[\frac{R}{\kappa^2(t')} - \frac{\omega(t')}{3\Lambda(t')} R^2 + \frac{1}{\lambda(t')} C^2 - \Lambda(t') \right]. \]

\[\text{(II.4)} \]

The effective coupling constants \(\lambda \equiv \lambda(t'), \omega \equiv \omega(t'), \kappa^2 \equiv \kappa^2(t') \) and \(\Lambda \equiv \Lambda(t') \) obey to the one-loop RG equations [12]

\[\frac{d\lambda}{dt'} = -\beta_2 \lambda^2 \equiv -\left(\frac{133}{10} \right) \lambda^2, \]

\[\text{(II.5)} \]

\[\frac{d\omega}{dt'} = -\lambda(\omega\beta_2 + \beta_3) \equiv -\lambda \left(\frac{10}{3} \omega^2 + \frac{183}{10} \omega + \frac{5}{12} \right), \]

\[\text{(II.6)} \]

\[\frac{d\kappa^2}{dt'} = \kappa^2 \gamma \equiv \kappa^2 \lambda \left(\frac{10}{3} \omega - \frac{13}{6} - \frac{1}{4\omega} \right), \]

\[\text{(II.7)} \]

\[\frac{d\Lambda}{dt'} = \beta_4 \left(\frac{1}{(\kappa^2)^2} - 2\gamma \Lambda(t') \right) \equiv \frac{\lambda^2}{(\kappa^2)^2} \left(\frac{5}{2} + \frac{1}{8\omega^2} \right) + \lambda \left(\frac{28}{3} + \frac{1}{3\omega} \right). \]

\[\text{(II.8)} \]

1. Note that higher-derivative theory of the type of [11] as well as other higher-derivative modified gravities may even pass solar system tests, for instance, due to chameleon scenario [8] and so on.
Note that $\kappa^2(t')$ is positive defined, and in general $\lambda(t')$ and $\Lambda(t')$ are also positive defined to have a positive contribution to the Weyl tensor and a positive effective cosmological constant in the action; on the other hand, $\omega(t')$ is expected to be negative to have a positive R^2-term. In the above expressions, $\beta_{2,3,4}$ and γ correspond to

$$
\beta_2 = \frac{133}{10}, \quad \beta_3 = \frac{10}{3}\omega^2 + 5\omega + \frac{5}{12}, \quad \beta_4 = \frac{\lambda^2}{2} \left(5 + \frac{1}{4\omega^2} \right) + \frac{\lambda}{3} (\kappa^2)^2 \Lambda \left(20\omega + 15 - \frac{1}{2\omega} \right), \quad \gamma = \lambda \left(\frac{10}{3}\omega - \frac{13}{6} - \frac{1}{4\omega} \right).
$$

The RG parameter t' is given by

$$
t' = \frac{t'_0}{2} \log \left(\frac{R}{R_0} \right)^2,
$$

where $t'_0 > 0$ is dimensionless constant introduced for the sake of completeness and R_0 is the mass scale for the Ricci scalar. We set R_0 as the value of the Ricci scalar in the current nearly de Sitter universe ($R_0 = 4\Lambda$, Λ being the cosmological constant), such that $t'(R = R_0) = 0$ today, while in the past $0 < t'(R_0 < R)$. Note that the de Sitter solution of the current accelerated expansion is a final attractor of Friedmann universe.

For Eq. (II.5) we also have the explicit solution

$$
\lambda(t') = \frac{\lambda(0)}{1 + \lambda(0)\beta_2 t'},
$$

where $\lambda(0)$ is the integration constant corresponding to the value of λ at $t' = 0$, namely $\lambda(t = t_0) \equiv \lambda(R = R_0) = \lambda(0)$.

One important remark is in order: when we introduce the effective running constants in (I.1), we also get a contribution from the Gauss-Bonnet and $\Box R$ in RG improved effective action, since it is not more possible to write the Gauss-Bonnet term like a total derivative and $\Box R$ in terms of a flux in three dimensions. This fact will be discussed in below, but for the moment we work with the simplified action.

Let us consider the flat Friedmann-Robertson-Walker (FRW) space-time, whose general form is given by

$$
ds^2 = -N(t)^2 dt^2 + a(t)^2 (dx^2 + dy^2 + dz^2),
$$

where $a = a(t)$ is the scale factor depending on the cosmological time t and $N \equiv N(t)$ is an arbitrary lapse function, which describes the gauge freedom associated with the reparametrization invariance of the action. For the above metric, the Ricci scalar and the square of the Weyl tensor read

$$
R = \frac{1}{N^2} \left[6 \left(\frac{a'}{a} \right)^2 + 6 \left(\frac{\dot{a}}{a} \right) - 6 \left(\frac{\dot{N}}{N} \right) \left(\frac{\ddot{a}}{a} \right) \right], \quad C^2 = 0,
$$

where the dot denotes the derivative with respect to the cosmological time t. The fact that the Weyl tensor is zero on the general form of the metric indicates that its contribution to the action and therefore to the derivation of the field equations of the theory is null. In fact one can write on FRW background

$$
\delta I_{C^2} = \frac{1}{\lambda(t')} \delta \left(\sqrt{-g} C^2 \right) + \left(\sqrt{-g} C^2 \right) \delta \left(\frac{1}{\lambda(t')} \right) = \frac{1}{\lambda(t')} \delta \left(\sqrt{-g} C^2 \right),
$$

but

$$
\frac{1}{\lambda(t')} \delta \left(\sqrt{-g} C^2 \right) = 0,
$$

and it is well known that the square of the Weyl tensor does not enter in the Friedmann-like equations.

To derive the equations of motion (EOMs), we will use a method based on the Lagrangian multiplier $\text{I}[13,14]$. If we plug the expression for the Ricci scalar (II.13) into the action (II.4), we get higher derivative lagrangian theory. In order to derive a standard (first order) lagrangian theory, we introduce a Lagrangian multiplier ξ as $\text{I}[13,14]$

$$
I = \int_\mathcal{M} d^4\sqrt{-g} \left[\frac{R}{\kappa^2(t')} - \frac{\omega(t')}{3\lambda(t')} R^2 - \Lambda(t) - \xi \left[R - \frac{1}{N^2} \left(6 \left(\frac{\dot{a}}{a} \right)^2 + 6 \left(\frac{\ddot{a}}{a} \right) - 6 \left(\frac{\dot{N}}{N} \right) \left(\frac{\ddot{a}}{a} \right) \right) \right] \right],
$$

where we have taken into account (II.13). By making the derivation with respect to R, one finds

$$
\xi = -2 \frac{\omega(t')}{3\lambda(t')} + \frac{1}{\kappa^2} - \Delta(t') \frac{dt'}{dR},
$$

where
where

\[\Delta(t') = \left[\frac{R}{\kappa^2(t')} \frac{d\kappa^2(t')}{dt'} + R^2 \frac{d}{dt} \left(\frac{\omega(t')}{3\lambda(t')} \right) + \frac{d\Lambda(t')}{dt'} \right], \]

(II.18)

since it is understood that the functions \(\kappa^2(t'), \Lambda(t'), \lambda(t'), \) and \(\omega(t') \) depend on \(R \) through \(t' \) as in Eq. (II.10).

Therefore, by substituting (II.17) and making an integration by parts one obtains the (standard) Lagrangian

\[\mathcal{L}(a, \dot{a}, N, R, \dot{R}) = -Na^3\Lambda(t') - \frac{6\dot{a}^2a}{\kappa^2(t')} + \frac{6\dot{a}a_0^2(2\dot{t}')(t')^2}{3\lambda(t')} + \frac{\omega(t')}{3\lambda(t')} a^3 N \left[R^2 + \frac{12R\dot{a}^2}{a^2} + \frac{12R\ddot{R}}{a^2N^2} \right] + \frac{d}{dt} \left[\frac{\omega(t')}{3\lambda(t')} \right] \frac{dt'}{dR} \frac{R}{N} + 6a^3 \left(\frac{R}{6} + \frac{\dot{a}^2}{a^2N^2} \right) \Delta(t') \frac{dt'}{dR} + 6\dot{a} \left(\frac{a^2}{N} \right) \left[\frac{d\Delta(t')}{dt'} \left(\frac{dt'}{dR} \right)^2 + \Delta(t') \frac{d^2t'}{dR^2} \right] \dot{R}. \]

(II.19)

If we derive this Lagrangian with respect to \(N(t) \) and therefore we choose the gauge \(N(t) = 1 \), we get

\[0 = -a^3\Lambda(t') + \frac{6\dot{a}^2a}{\kappa^2(t')} - \frac{6\dot{a}a_0^2(2\dot{t}')(t')^2}{3\lambda(t')} + \frac{\omega(t')}{3\lambda(t')} a^3 \left[R^2 - 12R\ddot{R} \right] - 12R^2\dot{a}^2 \frac{d}{dt} \left(\frac{\omega(t')}{3\lambda(t')} \right) \left(\frac{dt'}{dR} \right) \dot{R}. \]

(II.20)

The variation with respect to \(a(t) \) leads to

\[0 = -3a^2\Lambda(t') + \frac{6\dot{a}^2a}{\kappa^2(t')} + \frac{6\dot{a}a_0^2(2\dot{t}')(t')^2}{3\lambda(t')} + \frac{\omega(t')}{\lambda(t')} \left(R^2\dot{a}^2 - 4\dot{R}\ddot{a} - 8\dot{R}\dot{a} - 8\dddot{a} - 4\ddot{R} \right) - 24\frac{d}{dt} \left(\frac{\omega(t')}{\lambda(t')} \right) R \]

\[+ \left(3a^2R - 6\dot{a}^2 - 12a\ddot{a} \right) \Delta(t') \frac{dt'}{dR} - \left(12a\dot{R} + 6a\ddot{R} \right) \left[\frac{d\Delta(t')}{dt'} \left(\frac{dt'}{dR} \right)^2 + \Delta(t') \frac{d^2t'}{dR^2} \right] \]

\[- 6a^2\dot{R}^2 \left[\frac{d^2\Delta(t')}{dt'^2} \left(\frac{dt'}{dR} \right)^3 + 3 \frac{d\Delta(t')}{dt'} \left(\frac{dt'}{dR} \right) \frac{d^2t'}{dR^2} + \Delta(t') \frac{d^2t'}{dR^2} \right], \]

(II.21)

where we have set \(N(t) = 1 \) again and \(d/dt \equiv \dot{R}(dt'/dR)d/dt' \). Finally, the variation of the Lagrangian with respect to \(R \), remembering that \(t' \) is a function of \(R \), returns to be the expression in (II.13), and by putting \(N(t) = 1 \) we have

\[R = 6 \left(\frac{\dot{a}}{a} \right)^2 + 6 \left(\frac{\ddot{a}}{a} \right). \]

(II.22)

We obtained a system of three second order equations (II.20)–(II.22), where one is redundant (in the absence of matter contributions), namely it can be derived from the other two.

Eq. (II.20) and Eq. (II.22) can be rewritten as

\[0 = -\Lambda(t') + \frac{6H^2}{\kappa^2(t')} - \frac{6H}{(2\dot{t}')^2} \frac{d\kappa^2(t')}{dt'} \left(\frac{t_0'\dot{R}}{R} \right) + \frac{\omega(t')}{3\lambda(t')} \left[6RH - 12H\dot{R} \right] - 12H \frac{d}{dt} \left(\frac{\omega(t')}{3\lambda(t')} \right) \left(\frac{\dot{t}_0'}{R} \right). \]

(II.23)

\[R = 12H^2 + 6\dot{H}, \]

(II.24)

where we have introduced the Hubble parameter \(H = \dot{a}/a \) and we have used (II.10) to write \(dt'/dR = t_0'/R \). In the following expression, we explicit develop Eq. (II.23) in terms of the functions \(\lambda(t'), \omega(t'), \kappa^2(t') \) and \(\Lambda(t') \) by using
the set of equations (II.5)–(II.8) and Eq. (II.24) for the Ricci scalar,

\[0 = \frac{12\omega}{\lambda} \left(-6H^2\dot{H} - 2H\ddot{H} + \dot{H}^2\right) - \frac{H\lambda_0(4\omega^2 - 26\omega - 3)(4H\dot{H} + \ddot{H})}{2\kappa^2\omega(2H^2 + \dot{H})} + \frac{6H^2}{\kappa^2} \]

\[-\frac{t_0}{360\kappa^3\omega^3} \left(H(4H\dot{H} + \ddot{H})\right) \left(120\kappa^4\omega^3(4\omega + 3)(2\omega(100\omega + 549) + 25)(2H^2 + \dot{H})^2 - 2\kappa^2\lambda\omega(24H^2(\omega(20\omega(100\omega + 409) - 2121) + 210) + 15) + 12\dot{H}(\omega(20\omega(100\omega + 409) - 2121) + 210) + 15) + 12\dot{H}(\omega(1616\omega - 355) - 45)) - 15\lambda^2(2\omega(4\omega(50\omega + 97) - 25) - 71) - 5) - 180\kappa^2\omega^2\left(2H^2 + \dot{H}\right) \right) \]

\[\left(20\kappa^2\omega(2\omega + 3) + 1\right) \left(2H^2 + \dot{H}\right) + \lambda \left(-40\omega^2 + 26\omega + 3\right) \] + 15\omega(2H^4 + 7H^2\dot{H} + H\ddot{H} + \dot{H}^2)

\[\left(120\kappa^4\omega^2(4\omega(2\omega + 3) + 1) \left(2H^2 + \dot{H}\right) + 4\kappa^2\lambda\omega \left(6H^2(-40\omega^2 + 26\omega + 3) + \dot{H}(6(13 - 20\omega) + 9) - 2\kappa^2\Lambda(28\omega + 1)) - 3\lambda^2(20\omega^2 + 1))\right) + 10Ht_0(8\omega^2 + 12\omega + 1) (4H\dot{H} + \ddot{H}) - \Lambda. \] (II.25)

Here, \(\lambda \equiv \lambda(t') \), \(\omega \equiv \omega(t') \), \(\kappa^2 \equiv \kappa^2(t') \) and \(\Lambda \equiv \Lambda(t') \). One should remember that \(t' \) is related to \(R \) as in Eq. (I.10), and only \(\Lambda(t') \) is given by (I.11). Note that the above approach suggests the consistent way to account for quantum effects of higher-derivative gravity. Note also that different approach to take into account such quantum effects at the inflationary universe was developed in Ref. [3].

On the de Sitter solution \(R_{\text{dS}} = 12H_{\text{dS}}^2 \), where \(H_{\text{dS}} \) is a constant, the system is simplified as

\[0 = \frac{6H^2}{\kappa^2} - \frac{t_0}{48(\kappa^2)^2\omega^2} \left(480H^4(\kappa^2)^2\omega^2(4\omega(2\omega + 3) + 1) + 4\kappa^2\omega(6H^2(-40\omega^2 + 26\omega + 3) - 2\kappa^2\Lambda(28\omega + 1)) \right) \]

\[-3\lambda^2(20\omega^2 + 1)) - \Lambda, \] (II.26)

where the functions \(\lambda, \omega, \kappa^2 \) and \(\Lambda \) are assumed to be constant and \(H \equiv H_{\text{dS}} \).

Hence, we obtained consistent system of quantum-corrected FRW equations from RG improved effective action corresponding to higher-derivative quantum gravity.

III. ASYMPTOTIC BEHAVIOUR OF THE EFFECTIVE COUPLING CONSTANTS AND DE SITTER SOLUTION FOR INFLATION

In order to solve the system (II.25), we need to investigate the asymptotic behaviour of the implicitly-given effective coupling constants \(\omega(t'), \kappa^2(t'), \Lambda(t') \), when \(t' \to \infty \), namely at the high curvature limit (\(R \to \infty \)) describing inflation (see (I.10)). Eq. (II.6) has two fixed points at

\[\omega_1 \simeq -0.02, \quad \omega_2 \simeq -5.47, \] (III.1)

and the analysis of the solution around the fixed points \(\omega(t') = \omega_{1,2} + \delta\omega(t') \), with \(|\delta\omega(t')| \ll 1 \), leads to

\[\frac{d\omega(t')}{dt'} \simeq -\lambda(t') \left(\frac{20}{3} \omega + \frac{183}{10}\right) |\omega_{1,2}\delta\omega(t')| - \lambda(t')^2 \beta_2 \left(\frac{dt'}{d\omega(t')}\right) \left(\frac{10}{3} \omega^2 + \frac{183}{10} \omega + \frac{5}{12}\right) |\omega_{1,2}\delta\omega(t')| \]

\[= -\lambda(t') \left(\frac{20}{3} \omega + \frac{158}{5}\right) |\omega_{1,2}\delta\omega(t')|, \] (III.2)

such that,

\[\omega(t') = \omega_{1,2} + \frac{c_0}{(1 + \lambda(0)\beta_2 t')^{q}}, \quad q = \frac{1}{\beta_2} \left(\frac{20}{3} \omega + \frac{158}{5}\right) |\omega_{1,2}|, \quad |c_0| \ll 1, \] (III.3)

where \(c_0 \) is a constant and we have introduced \(\lambda(t') \) as in (I.11). We immediately see that \(q \simeq 2.37 \) for \(\omega_1 \) rendering the solution stable when \(t' \to \infty \), but for \(\omega_2 \) one gets \(q \simeq -0.37 \) and the solution is unstable when \(t' \to \infty \). Thus, we expect that for large values of \(t' \) the function \(\omega(t') \) tends to the attractor \(\omega_1 \). Since between \(\omega_1 \) and \(\omega_2 \) the
derivative \(d\omega(t')/dt' \) with \(0 < \lambda(t') \) is positive, \(\omega(t') \) grows up with \(t' \) and approaches to \(\omega_1 \) being \(\omega(t') < \omega_1 \). When \(\omega_2 < \omega(t') < \omega_1 \) we may estimate from (III.2),

\[
\frac{d\omega(t')}{dt'} = -\frac{\lambda(t')}{2} \left(\frac{20}{3} \right) (\omega_1 - \omega_2) \delta \omega(t').
\]

Therefore, the solution (III.3) is rewritten as (see third Ref. in 12),

\[
\omega(t') = \omega_1 + \frac{c_0}{(1 + \lambda(0)\beta_2 t')} \delta \omega(t'), \quad p = \left(\frac{10}{3} \right) \frac{(\omega_1 - \omega_2)}{\beta_2} \simeq 1.36, \quad \left| c_0 \right| \ll 1.
\]

Note that related study for the behaviour of above dimensionless coupling constants in relation with dimensional transmutation is given in Ref. 17.

In order to study the behaviour of \(\kappa^2(t') \) and \(\Lambda(t') \), we introduce

\[
\tilde{\Lambda}(t') = (\kappa^2(t'))^2 \Lambda(t'),
\]

and Eq. (III.8) with Eq. (II.7) lead to

\[
\frac{d\tilde{\Lambda}(t')}{dt'} = \beta_4 \equiv \frac{\lambda(t')^2}{2} \left(5 + \frac{1}{4\omega(t')^2} \right) + \lambda(t') \tilde{\Lambda}(t') \left(\frac{20}{3} \omega(t') + 5 - \frac{1}{6\omega(t')} \right).
\]

In the asymptotic limit \(\omega(t') \approx \omega_1 \) we get

\[
\tilde{\Lambda} = -\frac{3\lambda(0)(1 + 20\omega_1^2)}{4\omega_1(1 + \lambda(0)\beta_2 t')(1 + 30\omega_1 + 6\beta_2 \omega_1 + 40\omega_1^2)} + \tilde{\Lambda}_0(1 + \lambda(0)\beta_2 t')^{W/\beta_2}, \quad W = \frac{20}{3} \omega_1 + 5 - \frac{1}{6\omega_1} = 13.2.
\]

As a consequence,

\[
\tilde{\Lambda}(t') \approx \tilde{\Lambda}_0(1 + \lambda(0)\beta_2 t')^{W/\beta_2},
\]

where the constant \(\tilde{\Lambda}_0 \) is assumed to be positive. On the other side, from Eq. (II.7) we have at \(\omega(t') \approx \omega_1 \),

\[
\kappa^2(t') \approx \kappa_0^2(1 + \lambda(0)\beta_2 t')^{Z/\beta_2}, \quad Z = \left(\frac{10}{3} \omega_1 - \frac{13}{6} - \frac{1}{4\omega_1} \right) \simeq 10.27,
\]

such that finally

\[
\Lambda(t') \approx \frac{\tilde{\Lambda}_0}{(\kappa_0^2)^2}(1 + \lambda(0)\beta_2 t')^{X/\beta_2}, \quad X = (W - 2Z) \simeq -7.34.
\]

Let us summarize the results. From the investigation of the asymptotic region, we can derive the effective running coupling constants of the model (III.4) as

\[
\lambda(t') = \frac{\lambda(0)}{(1 + \lambda(0)\beta_2 t')}, \quad \omega \simeq \omega_1 + \frac{c_0}{(1 + \lambda(0)\beta_2 t')} \delta \omega(t'), \quad \kappa^2(t') \simeq \kappa_0^2(1 + \lambda(0)\beta_2 t')^{0.77}, \quad \Lambda(t') \simeq \Lambda_0 \frac{1}{(1 + \lambda(0)\beta_2 t')^{0.55}}.
\]

Here, \(\Lambda_0 = \tilde{\Lambda}_0/(\kappa_0^2)^2 \) and \(|c_0| \ll |\omega_1| \), and we will omit its contribution at large \(t' \). One remark is in order. In principle these expressions correspond to the behaviour of the coupling constants in the high energy limit, when \(t' \to \infty \) and \(R_0 \ll R \), \(R_0 \) being the Ricci scalar at the present time, and they are valid as soon as \(\omega(t') \) is close to \(\omega_1 \). However, we may assume that the structure of the coupling constants keeps the same form at every epoch, since in fact out of inflation the curvature of the universe drastically decreases, \(t' \to 1 \), and the coupling constants are expected to be constant: in fact, we can consider \(\omega(t') \) sufficiently close to \(-\omega_1 \) at every time, namely we will not consider the additional corrections at small curvature. In particular, at the present de Sitter epoch with \(R = R_0 \) and \(t_0' = 0 \) (see Eq. (II.10) and the comment below) we must find

\[
\kappa^2(t_0') \equiv \kappa_0^2 = \frac{16\pi}{M_{Pl}}, \quad \Lambda(t_0') \equiv \Lambda_0 = 2\Lambda,
\]

where \(M_{Pl} \) is the Planck mass and \(\Lambda \) is the cosmological constant, which is much smaller than the curvature at the inflation scale. By considering \(\lambda(0) \) of the order of the unit to avoid the \(\Lambda^2 \)-correction at the present epoch, at the time of inflation one can put \(\tilde{\Lambda}(t') = 0 \).
Let us assume that $R = R_{ds}$ describes the curvature of (de Sitter) inflation. Since it must be $R_0 \ll R_{ds} \equiv 12H_{ds}^2$, where $R_0 = 4\Lambda$, one has

$$\log \left[\frac{R_{ds}}{R_0} \right] = \log \left[H_{ds}^2 \kappa_0^2 \right] - \log \left[\frac{\Lambda}{3\kappa_0^2} \right] \simeq - \log \left[\frac{\Lambda}{3\kappa_0^2} \right].$$ \hfill (III.14)

Thus, from (II.10) we get

$$t' \simeq - t'_0 \log \left[\frac{\Lambda}{3\kappa_0^2} \right], \quad 1 \ll t',$$ \hfill (III.15)

namely t' expresses the rate of the curvature of the current universe with respect to the Planck mass on logarithm scale: this approximation is valid as soon as R_{ds} is near to M_{Pl}^2 during inflation, where “near” is understood as “with respect to the cosmological constant scale”. In fact, the solution of Eq. (II.26) depends on the value of today $\lambda(0)$, which fixes the bound of inflation. From (II.26), we derive the following solution,

$$H_{ds}^2 \kappa_0^2 \simeq \frac{0.0146}{t'_0(\lambda(0)t')^{0.77}} \equiv \frac{0.0146}{t'_0^{0.77}(\lambda(0))^{0.77}} \frac{1}{\log \left[\frac{\Lambda}{3\kappa_0^2} \right]^{0.77}},$$ \hfill (III.16)

where we have taken into account that $1 \ll t'$. If we use the recent cosmological data [1] for the evaluation of Λ in Planck units (see also Ref. [18]),

$$\Lambda\kappa_0^2 \simeq 1.7 \times 10^{-121},$$ \hfill (III.17)

and we set for simplicity $t'_0 = 1$, we finally obtain

$$H_{ds}^2 \kappa_0^2 \simeq \frac{19 \times 10^{-5}}{\lambda(0)^{0.77}}.$$ \hfill (III.18)

For example, for $\lambda(0) = 1$, we have

$$- \frac{\omega_2}{3\lambda(0)} (4\Lambda\kappa_0^2) R \simeq 4.53 \times 10^{-123} R \ll R,$$

$$\frac{1.7 \times 10^{-121}}{3} M_{Pl}^2 \simeq \left(\frac{\Lambda}{3} \right) \ll H_{ds}^2 \simeq 3.8 \times 10^{-6} M_{Pl}^2.$$ \hfill (III.19)

The first condition guarantees that at the present epoch the R_0^2-contribution to the action (II.4) is negligible with respect to the Hilbert-Einstein term R_0/κ_0^2, where $R_0 = 4\Lambda$. The second condition shows that de Sitter solution of inflation takes place at very high curvature near to the Planck scale, such that the approximation (III.14) is well satisfied. We also note that during inflation

$$\frac{R}{\kappa^2(t')} \simeq 1.6 \times 10^{-9} M_{Pl}^4 \ll \frac{\omega(t')}{3\lambda(t')} R^2 \simeq 5.1 \times 10^{-8} M_{Pl}^4,$$ \hfill (III.20)

and the second term in (II.14) is dominant with respect to the Hilbert-Einstein contribution at the early universe, thanks to the fact that the running constant $\kappa^2(t')$ increases back into the past.

IV. DYNAMICS OF INFLATION

In this section, we would like to analyze the behaviour of the model (II.4) at high curvature, when the de Sitter solution describing inflation (III.16) takes place. First of all, in order to have the exit from inflation, one must show that the solution is unstable. Hence, we can try to describe the inflation in terms of e-folds number and slow-roll parameters.

A. Instability of de Sitter universe

Let us consider the following form of Hubble parameter which is used in Eq. (II.25),

$$H = H_{ds} + \delta H(t), \quad |\delta H(t)| \ll 1,$$ \hfill (IV.1)

To analyze the instability, we should calculate the second order term of the action

$$S = \int d^4x \sqrt{-g} \left[R - 2\kappa^2(t') \right].$$

where $\kappa^2(t')$ is the running constant. This term gives the second order correction to the Hubble parameter

$$H' - \frac{\kappa^2(t')}{3} H^2 \simeq 0,$$ \hfill (IV.2)

where H' is the Hubble parameter with respect to the running constant $\kappa^2(t')$. However, this term is not dominant because the second order correction is negligible compared to the first order term H_{ds}. Therefore, the second order term can be neglected.

Now, let us consider the slow-roll parameters which are defined as

$$\eta = \frac{\kappa^2(t') H^2}{2} \quad \text{and} \quad \xi = \frac{\kappa^2(t') H'}{H^2},$$

where $\kappa^2(t') = \frac{\Lambda}{3\kappa_0^2}$. The slow-roll parameters are related to the rate of change of the Hubble parameter and the curvature of the universe. If η and ξ are small, the inflation is considered to be slow-roll inflation.

The slow-roll parameters are given by

$$\eta = \frac{3}{2} \frac{\Lambda}{M_{Pl}^2}, \quad \xi = \frac{3}{2} \frac{\Lambda}{M_{Pl}^2},$$

where Λ is the cosmological constant and $M_{Pl} = \sqrt{8\pi G}$. Since $\Lambda \ll M_{Pl}^2$, the slow-roll parameters are small, which indicates that the inflation is slow-roll inflation.

This result is consistent with the observations of the cosmic microwave background radiation (CMB) and large-scale structure of the universe. The slow-roll parameters provide a good description of the inflationary universe, and they are related to the properties of the inflaton field, such as the mass and the potential.

Therefore, the inflationary model (II.4) with the potential $V(\phi)$ and the slow-roll parameters is a good candidate for describing the early universe. The slow-roll parameters provide a powerful tool for testing the inflationary model and understanding the properties of the inflaton field.
where \(\delta H(t) \) is the perturbation with respect to de Sitter inflation. By making use of Eq. \((11.26)\) and \((11.25)\), and by multiplying it by \(\kappa^3 \) one has at the first order in \(\delta H(t) \equiv \delta H \),

\[
0 = (\kappa_0 \delta H) \left[t_0' (H_{dS\kappa_0})^2 \left(34.344 - \frac{0.913 t_0'}{v} \right) + \frac{0.001 t_0'}{v} (H_{dS\kappa_0})^2 (\lambda(0)t')^{1.54} + \frac{0.346 t_0' - 0.086 t_0' (H_{dS\kappa_0})^2}{v^2 (\lambda(0)t')^{0.77}} \right] + 19.152 t_0' (H_{dS\kappa_0})^2 \]

\[
+ \frac{(\kappa_0^2 \delta H)}{t^3 (H_{dS\kappa_0})^3} \left[\frac{1}{t^2} (H_{dS\kappa_0})^4 (6.384 t'R^2 + t_0' (11.448 t' - 0.228 t_0')) \right.
\]

\[
- \frac{0.043 t'R^2 t_0'}{\lambda(0)t')^{0.77}} + \frac{0.001 t_0'}{\lambda(0)t')^{1.54}} + \frac{0.087 t'R^2 t_0'}{\lambda(0)t')^{0.77}} (H_{dS\kappa_0})^2 + 2 \times 10^{-4} t_0'
\]

\[
+ (H_{dS\kappa_0}) \delta H \left[\frac{0.223}{\lambda(0)t')^{0.77}} + \frac{0.172 \lambda(0)t_0'}{\lambda(0)t')^{1.54}} - 30.528 t_0' (H_{dS\kappa_0})^2 \right]. \tag{IV.2}
\]

If we assume

\[
1 \ll (H_{dS\kappa_0})^2 t'^2, \tag{IV.3}
\]

the above expression is simplified as

\[
D_0 \delta H + t' [19.152(H_{dS\kappa_0}) (\kappa_0 \delta H) + 6.384(\kappa_0^2 \delta H)] \simeq 0, \tag{IV.4}
\]

where

\[
D_0 = \left(\frac{0.223}{\lambda(0)t')^{0.77}} - 30.528 t_0' (H_{dS\kappa_0})^2 \right). \tag{IV.5}
\]

Thus, the solution of the equation reads

\[
\delta H = h_\pm \exp [A_\pm t], \quad A_\pm = \left[\frac{H_{dS}}{2} \left(-3 \pm \sqrt{9 - \frac{0.627 D_0}{(H_{dS\kappa_0})^2 t'}} \right) \right], \quad |h_\pm| \ll 1, \tag{IV.6}
\]

where \(h_\pm \) are the integration constants corresponding to plus and minus signs inside \(A_\pm \). By choosing the sign plus in \((IV.6)\), the solution is unstable under the condition

\[
D_0 < 0. \tag{IV.7}
\]

We would like to note that if we ignore the contribution from \(\delta H \) in \((IV.4)\), we get

\[
- \frac{\omega}{3}\lambda \left(-216H_{dS}^2 \right) \delta H(t) - 72\delta H(t) \simeq 0, \tag{IV.8}
\]

which is the equation for perturbation around the de Sitter solution in pure \(R^2 \)-theory with Lagrangian \(L = -(\omega/(3\lambda))R^2 \), \(\omega/3\lambda \) being constant. From this equation is not possible to know if the solution is stable or not, since \(\delta H \) mainly goes like \(\delta H \sim c \) const in the time and even a small contribution from the coefficient in front of \(\delta H(t) \) could make the solution unstable, such that a further analysis is required. In particular, the fact that the coefficient in front to \(R^2 \) is not a constant contributes to the instability of the solution, since for the Lagrangian \(L = -(\omega(t')/(3\lambda(t')))R^2 \) we get the equation

\[
- \frac{\omega}{3}\lambda \left[(-216H_{dS}^2) \delta H(t) - 72\delta H(t) \right] + (24H_{dS})^2 (6H_{dS})^3 \frac{d}{dR} \left(\frac{\omega(t')}{3\lambda(t')} \right) \delta H \simeq 0, \tag{IV.9}
\]

where we have omitted the additional contributions to \(\delta H \). The term related to \(\delta H \) corresponds to the last term of \(D_0 \) in \((IV.5)\), and, if it is dominant, it makes the solution \((IV.6)\) unstable.

Let us discuss the conditions \((IV.3)\) and \((IV.7)\). If

\[
\frac{0.007}{t_0' (\lambda(0)t')^{0.77}} < (H_{dS\kappa_0})^2, \tag{IV.10}
\]

...
both of the conditions are well satisfied and by taking into account de Sitter solution (III.16) we see that this formula holds always true and it is independent on the bound of inflation encoded in \(\lambda(0) \). It means, that de Sitter solution is unstable with

\[
D_0 \simeq -\frac{0.223}{(\lambda(0)t')^{0.77}},
\]

where we have used (III.16). Moreover,

\[
A_+ \simeq 0.796\frac{H_{dS}t'_0}{v}, \quad A_- \simeq -3H_{dS},
\]

where \(D_0 \) has been considered very small. For example, by setting \(H_{dS}\kappa_0 \) with (III.16)–(III.17) and by putting \(t'_0 = 1 \) and \(\lambda(0) = 1 \), one derives

\[
\delta H = h_- e^{-5833\times10^{-6}M_{Pl}t} + h_+ e^{5.54\times10^{-6}M_{Pl}t}.
\]

During inflation, as soon as \(t' \ll 1/A_+ \), avoiding the contribution of \(h_- \) which quickly disappears, one may estimate

\[
\delta H \simeq h_+, \quad \dot{\delta H} \simeq h_+ A_+, \quad \ddot{\delta H} \simeq h_+ A_+^2,
\]

where \(A_+ \) is the instability parameter. The duration of inflation \(\Delta t \) is of the order of magnitude

\[
\Delta t \sim \frac{1}{A_+},
\]

but may continue after the linear approximation of the perturbation. In the case of (IV.13) one has

\[
\Delta t \sim \frac{18 \times 10^4}{M_{Pl}}.
\]

The inflation solves the problems of initial conditions of the Friedmann universe (horizon and velocities problems), if \(\dot{a}_i/\dot{a}_0 < 10^{-5} \), where \(\dot{a}_i, \dot{a}_0 \) are the time derivatives of the scale factor at the Big Bang and today, respectively, and \(10^{-5} \) is the estimated value of the inhomogeneity (anisotropy) in our universe. Since at decelerating universe \(\dot{a}(t) \) decreases by a factor \(10^{28} \), it is required that \(\dot{a}_i/\dot{a}_f < 10^{-33} \), with \(a_i \) the scale factor at the beginning of inflation and \(a_f \) the scale factor at the end of inflation. If inflation is governed by a (quasi) de Sitter solution where \(a(t) = \exp(H_{dS}t) \), we introduce the number of e-folds \(N \) as

\[
N = \ln\left(\frac{a_f}{a_i}\right) = \int_{t_i}^{t_f} H(t)dt,
\]

and inflation is viable if \(N > 76 \). In our case,

\[
N \simeq H_{dS}\Delta t \sim \frac{H_{dS}}{A_+} \simeq 1.26\left(\frac{t'}{t'_0}\right),
\]

due to the fact that the Hubble parameter is almost a constant during inflation. In order to obtain a viable inflation it must be

\[
61 < \left(\frac{t'}{t'_0}\right).
\]

It means, from (II.10) and (III.14),

\[
3.1R_0 \times 10^{26} < R,
\]

and this condition is always satisfied for realistic inflation. For the case of (III.18), where the Hubble parameter during inflation is 117 times larger than today and whose duration of inflation is given by (IV.16), we get

\[
N \sim 339,
\]

and it is guaranteed the thermalization of a portion of universe much larger with respect to the observed one.

One remark is in order. The duration of inflation can be larger than (IV.15), namely the acceleration may continue after that time, when the linear approximation (IV.1) is not more valid. As a matter of fact, it depends on \(|h_+| \) in (IV.6), since acceleration ends when \(|\delta H(t)| \sim H_{dS}^2 \). Thus, the given formula (IV.18) must be understood as an order of magnitude/down limit for the e-folds.
B. Slow-roll parameters and spectral index

During the inflation the Hubble parameter must slowly decrease and the following approximations must be meet,

\[\frac{\dot{H}}{H^2} \ll 1, \quad \left| \frac{\ddot{H}}{H} \right| \ll 1. \]

(IV.22)

Thus, one introduces the slow-roll parameters

\[\epsilon = -\frac{\dot{H}}{H^2}, \quad \eta = -\frac{\dot{H}}{H^2} - \frac{\ddot{H}}{2HH} \equiv 2\epsilon - \frac{1}{2\epsilon H^2}, \]

(IV.23)

whose magnitude must be small during inflation and \(\dot{H} \) is assumed to be negative. In particular, since the acceleration is expressed as

\[\frac{\ddot{a}}{a} = \dot{H} + H^2, \]

(IV.24)

we see that the universe expands in accelerated way as soon as \(\epsilon < 1 \). By integrating the formula for the (positive and almost constant) \(\epsilon \) parameter in (IV.23) we also get

\[H(t) = \frac{1}{\epsilon (t_{dS} + t)}, \quad t_{dS} \simeq \frac{1}{\epsilon H_{dS}}, \]

(IV.25)

where \(t_{dS} \) is a positive time parameter and when the time increases the Hubble parameter decreases. In the limit \(t/t_{dS} \ll 1 \), one has

\[H(t) \simeq H_{dS} - H_{dS}^2 \epsilon t, \]

(IV.26)

and by taking into account (IV.14) we get

\[\epsilon \simeq \frac{(-h_+)}{(H_{dS})^2} = 0.796272 \left(\frac{t_0}{t} \right) \left(\frac{-h_+}{H_{dS}} \right), \]

(IV.27)

where \(h_+ < 0 \) and \(A_+ \) is given by (V.19). This relation is consistent with a direct evaluation of the slow-roll parameter \(\epsilon \) (IV.23) in the slow-roll limit (IV.22) of the equation of motion (II.25).

\[0 = 2\lambda^2 \epsilon \left[480H^4\kappa^4\omega^3(4\omega + 3)(2\omega(100\omega + 549) + 25) + 2\kappa^4\Lambda \omega(4(355 - 1616\omega)\omega + 45) - 15\lambda^2(\omega(2\omega(4\omega(50\omega + 97) - 25) - 71) - 5) \right] + 720\kappa^2\omega^3 (72H^4\kappa^2\omega\epsilon + 6H^2\lambda - \kappa^2\lambda)
+ 15\lambda\omega(-480H^4\kappa^4\omega^2(4\omega(2\omega + 3) + 1)(8\epsilon + 1) + 4\kappa^2\lambda \omega(3H^2(4\omega - 3)(10\omega + 1)(7\epsilon + 2) + 2\kappa^2\Lambda(28\omega + 1) + \lambda^2 (60\omega^2 + 3))]. \]

(IV.28)

By using (III.12), (III.13) with \(c_0 = \Lambda = 0 \), one obtains the solution

\[\epsilon \simeq \frac{-3 \times 10^{-4} t_0^2}{t^2(\lambda(0)t')^{-2}} - \frac{0.086(\lambda(0)t')^2 (H_{Ko})^2}{(\lambda(0)t')^2} - \frac{0.112 (H_{Ko})^2}{(\lambda(0)t')^2} + 7.632 t_0 (H_{Ko})^4
- \frac{0.003(t_0^2)}{t^2(\lambda(0)t')^{-2}} + \frac{0.913(t_0^2)(H_{Ko})^4}{(\lambda(0)t')^2} + t_0^2 (H_{Ko})^2 \left(\frac{0.301(\lambda(0)t')^2}{(\lambda(0)t')^2} - 61.056 (H_{Ko})^2 \right) - 19.152 t'(H_{Ko})^4, \]

(IV.29)

and under the condition (IV.3) we derive

\[\epsilon \simeq \frac{0.006}{t'(\lambda(0)t')^{0.77}(H_{Ko})^2} - \frac{0.398}{t'}. \]

(IV.30)

By expanding \(H(t) \) around de Sitter solution (III.16) we finally get

\[\epsilon \simeq \frac{-2(0,006)}{t'(\lambda(0)t')^{0.77}(H_{dS K0})^4} \delta H = \frac{0.012}{t'(\lambda(0)t')^{0.77}(H_{dS K0})^4} \frac{\epsilon}{\kappa_0 A_+}, \]

(IV.31)

where Eqs. (IV.14) and (IV.27) are considered: the equation is well satisfied by using III.16 again and (V.19). Thus, the \(\epsilon \) slow-roll parameter is related to the (initial) amplitude of perturbation and by using IV.18 one may estimate

\[\epsilon \simeq \frac{(-h_+)}{(H_{dS})^2} \sim \frac{(-h_+)}{(H_{dS})N}. \]

(IV.32)
Moreover, for the η slow-roll parameter in (IV.23) with (IV.14) one has
\[\eta \simeq - \frac{A_+}{2H_{dS}} \simeq - \frac{0.398t_0'}{v'} \simeq \frac{1}{2N}. \]
(IV.33)

Both of the parameters $\epsilon, |\eta|$ (IV.32)–(IV.33) are very small during inflation and the slow-roll approximations (IV.22) hold true. We also note that, since $|h_+| \ll H_{dS}$,
\[\epsilon \ll |\eta|, \]
(IV.34)
like in other scalar tensor theories for inflation, where usually $\epsilon \sim 1/N^2$, as in (IV.32) if we consider $(-h_+)/H_{dS} \sim 1/N$.

Given the slow-roll parameters, one can evaluate the universe anisotropy coming from inflation by introducing the spectral indexes. To be specific, the amplitude of the primordial scalar power spectrum reads
\[\Delta^2_R = \frac{\kappa^2 H^2}{8\pi^2 \epsilon}, \]
(IV.35)
and for slow-roll inflation the spectral index n_s and the tensor-to-scalar ratio are given by
\[n_s = 1 - 6\epsilon + 2\eta, \quad r = 16\epsilon. \]
(IV.36)

The last Planck data [1] constrain these quantities as
\[n_s = 0.9603 \pm 0.0073, \quad r < 0.11. \]
(IV.37)

For our model one has the scalar power spectrum
\[\Delta_R \simeq 1.25585 \left(H_{dS}\kappa_0^3 \right)^{\frac{3}{2}} \left(\frac{t'}{t_0'} \right) (-\kappa_0^3 h_+)^{-1}, \]
(IV.38)
and the spectral index and the tensor-to-scalar ratio,
\[n_s = 1 - \frac{A_+}{H_{dS}} \sim 1 - \frac{1}{N}, \quad r = \frac{16A_+ (-h_+)}{H_{dS} H_{dS}} \ll \frac{1}{N}, \]
(IV.39)
where we have used (IV.34). We see that the tensor-to-scalar ratio can satisfy the Planck results, being the e-folds of realistic inflation quite large. On the other side, in order to find the spectral index n_s in agreement with the Planck data (IV.37), we must require
\[21 < \frac{A_+}{H_{dS}} = 1.25585 \left(\frac{t'}{t_0'} \right) < 31, \]
(IV.40)

Since A_+/H_{dS} depends on the ratio between the curvature of the universe at the time of inflation and the curvature of today universe, it results particularly high and does not satisfy this condition, contributing to render near to one the spectral index n_s of the model. For example, in the case of (III.18) where the Hubble parameter during inflation is 117 times larger than today and the e-folds $N \sim A_+/H_{dS} \simeq 339$ as in (IV.21),
\[n_s \simeq 0.997, \quad r = 0.045 \frac{(-h_+)}{H_{dS}}. \]
(IV.41)

Since $(-h_+/H_{dS}) \ll 1$, the tensor-to-scalar ratio is smaller than 0.11, but the spectral index does not satisfy the Planck data. This should be compared with analysis of inflationary parameters for general $F(R)$-theory in fluid-like presentation [19] which may consistent with Planck data.

The large e-folds number and the n_s spectral index too close to one are consequences of the small value of A_+ (IV.19), which depends on $d(\omega(t')/3\lambda(t'))/dt'$, as we explained under (IV.9). In particular, the fact that $d(\omega(t')/3\lambda(t'))/dt' = -\beta_3/3$, where β_3 is given in (II.10), such that $\beta_3 \ll 1$, makes this term too small compared with the coefficients in front of $\delta H(t), \delta H(t)$ in the equation for perturbation (IV.8). In the next section, we suggest a possible solution of the problem returning to the general action (II.4) with the Gauss-Bonnet and $\Box R$ terms which have been omitted in the above study.
V. THE ACCOUNT OF GAUSS-BONNET AND \(\square R\) TERMS AND SPECTRAL INDEX

As it was mentioned in second section, to construct the Lagrangian of higher-derivative gravity, also the Gauss-Bonnet and the \(\square R\) terms must be taken into account. They may give a non-zero contribution to the dynamical equations if the coefficients in front of them are not constant but depend on the curvature. This is precisely what happens when one solves RG equation and gets RG improved effective action. In the first part of this work we did not consider such contributions. Let us analyze their role on the dynamics of the inflation induced by higher-derivative quantum gravity. Let us consider the following additional piece to the action (II.13),

\[
I_{G,\square R} = - \int_M d^4 x \sqrt{-g} \left[\gamma(t') G - \zeta(t') \square R \right],
\]

where \(G\) is given by (II.3) and \(\gamma(t'), \zeta(t')\) are effective coupling constants depending on \(t'\) (II.10) and therefore on \(R\). We assume

\[
\gamma(t') = \gamma_0(1 + c_1 t'), \quad \zeta(t') = \zeta_0(1 + c_2 t'),
\]

where \(\gamma_0, \zeta_0\) are generic constants and \(c_{1,2}\) are numerical coefficients whose explicit values are not necessary in the below analysis. As it is explained in review [7] this is result of one-loop quantum calculation of these terms (vacuum polarization). For recent discussion of contribution of GB term in higher-derivative gravity, see Ref. [20]. Actually, the calculation of surface terms may be done in less/more than four dimensions, with subsequent dimensional continuation.

Hence, when \(t' \ll 1\), at the low curvature limit, \(\gamma(t'), \zeta(t')\) tend to constants, the derivatives do not diverge and below analysis. As it is explained in review [7] this is result of one-loop quantum calculation of these terms (vacuum polarization). For recent discussion of contribution of GB term in higher-derivative gravity, see Ref. [20]. Actually, the calculation of surface terms may be done in less/more than four dimensions, with subsequent dimensional continuation.

As it was mentioned in second section, to construct the Lagrangian of higher-derivative gravity, also the Gauss-Bonnet and the \(\square R\) terms must be taken into account. They may give a non-zero contribution to the dynamical equations if the coefficients in front of them are not constant but depend on the curvature. This is precisely what happens when one solves RG equation and gets RG improved effective action. In the first part of this work we did not consider such contributions. Let us analyze their role on the dynamics of the inflation induced by higher-derivative quantum gravity. Let us consider the following additional piece to the action (II.13),

\[
I_{G,\square R} = - \int_M d^4 x \sqrt{-g} \left[\gamma(t') G - \zeta(t') \square R \right],
\]

where \(G\) is given by (II.3) and \(\gamma(t'), \zeta(t')\) are effective coupling constants depending on \(t'\) (II.10) and therefore on \(R\). We assume

\[
\gamma(t') = \gamma_0(1 + c_1 t'), \quad \zeta(t') = \zeta_0(1 + c_2 t'),
\]

where \(\gamma_0, \zeta_0\) are generic constants and \(c_{1,2}\) are numerical coefficients whose explicit values are not necessary in the below analysis. As it is explained in review [7] this is result of one-loop quantum calculation of these terms (vacuum polarization). For recent discussion of contribution of GB term in higher-derivative gravity, see Ref. [20]. Actually, the calculation of surface terms may be done in less/more than four dimensions, with subsequent dimensional continuation.

Hence, when \(t' \ll 1\), at the low curvature limit, \(\gamma(t'), \zeta(t')\) tend to constants, the derivatives do not diverge and (V.1) turns out to be zero: on the other side, when \(1 \ll t'\), at the high curvature limit, they give a significative contribution to the dynamical equations of motion. The Gauss-Bonnet represents a new curvature invariant. On FRW metric it (II.12) reads

\[
G = \frac{24\dot{a}^2}{a^3 N^5} \left(\ddot{a} N - \dot{a} \dot{N} \right).
\]

Adding to the Lagrangian (II.10) the piece (V.1), we make an integration by parts with respect to \(\square R\), where \(\square R = (\sqrt{-g})^{-1} \partial_{\mu}(g^{\mu \nu} \sqrt{-g} \partial_{\nu} R) \equiv -(\sqrt{-g})^{-1} \partial_{\mu}(\sqrt{-g} \partial_{\nu} R)\), and introduce a new Lagrangian multiplier \(\sigma\) for the Gauss-Bonnet term (II.9), such that

\[
I_{G,\square R} = - \int_M d^4 x \sqrt{-g} \left[\gamma(t') G + \sigma \left[G - \frac{24\dot{a}^2}{a^3 N^5} \left(\ddot{a} N - \dot{a} \dot{N} \right) \right] - \left(\frac{d\gamma}{dt'} dA \right)^2 \right], \quad \sigma = -\gamma(t').
\]

Here the second expression has been derived from the variation with respect to \(G\) and \(A \equiv A(N, \dot{N}, a, \dot{a})\) is the explicit form of the Ricci scalar as a function of the metric (II.13),

\[
A(N, \dot{N}, a, \dot{a}) = \frac{1}{N^2} \left[6 \left(\frac{\dot{a}}{a} \right)^2 + 6 \left(\frac{\ddot{a}}{a} \right) - 6 \left(\frac{\dot{N}}{N} \right) \left(\frac{\dot{a}}{a} \right) \right].
\]

Thus, \(\Delta(t')\) in (II.17) reads

\[
\Delta(t') = \left[\frac{R}{(\kappa^2(t'))^2} \frac{d\kappa^2(t')}{dt'} + R^2 \frac{d}{dt'} \left(\frac{\omega(t')}{3 \lambda(t')} \right) + \frac{dA(t')}{dt'} + \frac{d\gamma(t')}{dt'} G \right],
\]

and the additional piece to the Lagrangian (II.19) results to be

\[
\mathcal{L}_{G,\square R}(N, \dot{N}, \dot{N}, a, \ddot{a}, R, \dot{R}) = 6\dot{a} \left(\frac{a^2}{N} \right) \left[\frac{d\gamma(t')}{dt'} \frac{dt'}{dR} G \right] + \frac{8\dot{a}^3}{N^3} \frac{d\gamma(t')}{dt'} \frac{dt'}{dR} \dot{R} + (N a^3) \left(\frac{d\gamma}{dt'} \frac{dt'}{dA} \dot{A} \right),
\]

where the first piece comes from the integration by parts of the second derivative metric functions of the Ricci scalar, the second term comes from the ones of the Gauss-Bonnet and the last piece corresponds to \(\square R\) -term. Note that now the Lagrangian depends on the higher derivatives of the metric due to the introduction of \(\dot{A}^2\). Equation (II.23),
in the gauge $N = 1$, is derived as

$$0 = -\Lambda(t') + \frac{6H^2}{\kappa^2} + \frac{6H}{\kappa^2(t')} \frac{dt^2(t')}{dt} \left(\frac{t_0^2 R}{R} \right) + \frac{\omega(t')}{3\lambda(t')} \left[6R\dot{H} - 12H \ddot{R} \right] - 12H \frac{d}{dt} \left(\frac{\omega(t')}{3\lambda(t')} \right) \left(\dot{R}t_0' \right)$$

$$+ 6 \left(H^2 + H \right) \Delta(t') \frac{\dot{t}_0^2 R}{R} - 6H \left(\frac{d\Delta(t')}{dt} \left(\frac{t_0^2 R}{R} \right)^2 - \Delta(t') \frac{t_0^2 R}{R} \right) \dot{R} - 24H^3 \frac{d\gamma(t')}{dt} \left(\frac{t_0^2 R}{R} \right) - 6H \left(\frac{d\gamma(t')}{dt} \right) \left(\frac{t_0^2 \dot{R}}{R} \right)$$

$$- 3A \dot{R}^2 - 2B \dot{R}^2 R + 6 \frac{d}{dt} \left[2A \left(4H^2 + 3\dot{H} \right) \dot{R} + B H \dot{R}^2 \right] + 18H \left[2A \left(4H^2 + 3\dot{H} \right) \dot{R} + B H \dot{R}^2 \right]$$

$$- 36 \left(3H^2 + \dot{H} \right) A H \dot{R} - 72H \frac{d}{dt} \left(A H \dot{R} \right) - 12 \frac{d^2}{dt^2} \left(A H \dot{R} \right),$$

(V.8)

where

$$\mathcal{A} = \left(\frac{d\zeta(t')}{dt} \right) \left(\frac{t_0^2 R}{R} \right), \quad \mathcal{B} = \left(\frac{d^2 \zeta(t')}{dt^2} \right) \left(\frac{t_0^2 R}{R} \right)^2 - \frac{d\zeta(t')}{dt} \left(\frac{t_0^2 R}{R} \right),$$

(V.9)

and the Ricci scalar R is given by (II.24). The derivative of the Lagrangian with respect to the Gauss-Bonnet leads to the Ricci scalar in (III.13), and the derivative with respect to the Ricci scalar leads to the Gauss-Bonnet one in (V.3), which reads in the gauge $N = 1$,

$$G = 24H^2 \left(H^2 + \dot{H} \right).$$

(V.10)

On de Sitter solution $R_{ds} = 12H_{ds}^2$, $G_{ds} = 24H_{ds}^4$, H_{ds} being constant, equation (II.26) is corrected as

$$0 = \frac{6H^2}{\kappa^2} - \frac{t_0^2}{48(\kappa^2)^2} \left(480H^4(\kappa^2)^2(4\omega(2\omega + 3) + 1) + 4\kappa^2 \lambda \omega \left(6H^2(- 40\omega^2 + 26\omega + 3) - 2\kappa^2 \Lambda(2\omega + 1) \right) \right)$$

$$- 3\lambda^2 (20\omega^2 + 1) - \Lambda + 12H^4 \frac{d\gamma(t')}{dt} t_0',$$

(V.11)

where the functions $\lambda, \omega, \kappa^2, \Lambda$ and $\gamma, d\gamma/ dt'$ are constants in the time. By using (II.12) (III.13) with $c_0 = \Lambda = 0$, and $1 \ll t'$, we obtain the solution

$$H_{ds}^2 \kappa_0^2 \simeq \frac{322.762}{22085.2 - 34725.2(d\gamma/ dt')} \left(\frac{t_0(\lambda(0)t')^0.77}{t_0^2} \right), \quad \frac{d\gamma}{dt'} < 0,$$

(V.12)

where $|d\gamma/ dt'| \ll t^2$ is used and we require that such a derivative is negative ($\gamma(t') < 0$ in (V.2)). Thus, given the form of $\gamma(t')$, de Sitter solution depends on the current value of $\lambda(t' = 0) = \lambda(0)$. Obviously, the $\Box R$-term does not give any contribution to the de Sitter solution. By using again the parametrization (II.12) (III.13) with $c_0 = \Lambda = 0$, and by multiplying (V.8) by κ_0^3, and by perturbating it with respect to de Sitter solution (V.12) as in (IV.1), we get

$$\frac{\kappa_0}{t^3(H_{ds}\kappa_0)^3} \left[\kappa_0 \delta H \left(t^2(H_{ds}\kappa_0)^4 \right) 6.384t^2 + t_0'(-18\gamma(t') + 18\zeta(t') - 6\gamma(t') \dot{t}_0 + 11.448) \right.$$

$$- 0.228t_0'^2 - 0.043t_0^2 (H_{ds}\kappa_0^2)(2)(\lambda(0)t')^{-0.77} + 0.001t_0^2 (\lambda(0)t')^{-1.54} + 0.087t_0^2 (H_{ds}\kappa_0^2)(2)(\lambda(0)t')^{-0.77}$$

$$+ 2 \times 10^{-4}t_0^2 (\lambda(0)t')^{-1.54} \right) + (H_{ds}\kappa_0) \delta H \left(t^2(H_{ds}\kappa_0)^4 \right) 19.152t^2 + t_0'(-54\gamma(t') + 72\zeta(t')$$

$$- 24\gamma(t') \dot{t}_0 + 34.344) - 0.913t_0'^2 - 0.086t_0^2 (H_{ds}\kappa_0^2)(2)(\lambda(0)t')^{-0.77} + 0.003t_0^2 (\lambda(0)t')^{-1.54}$$

$$+ 0.346t_0^2 (H_{ds}\kappa_0^2)(2)(\lambda(0)t')^{-0.77} + 0.001t_0' \dot{t}_0(\lambda(0)t')^{-1.54} \right] + (H_{ds}\kappa_0) \delta H \left[\frac{0.223}{(\lambda(0)t')^{0.77}} \right.$$

$$+ t_0' \frac{0.172(\lambda(0))}{(\lambda(0)t')^{0.77} + (H_{ds}\kappa_0^2)(2)(48\gamma(t') - 30.528)} \right] = 0, \quad H(t) = H_{ds} + \delta H(t), \quad |\delta H(t)| < 1,$$

(V.13)

where we introduced the notation

$$\gamma(t') \equiv \frac{d\gamma(t')}{dt'}, \quad \gamma' \equiv \frac{d^2\gamma(t')}{dt'^2}, \quad \zeta(t') \equiv \frac{d\zeta(t')}{dt'}.$$

(V.14)
If one assumes (V.3) and takes into account that \(|\gamma_\nu(t')|, |\zeta_\nu(t')| \ll t'\) and \(|\gamma_\nu(t')| \ll 1\), this expression is simplified as

\[
\dot{D}_0 H + t' [19.152(H_{dS} \kappa_0)(\kappa_0 \dot{\delta} H) + 6.384(\kappa_0^2 \ddot{\delta} H)] \simeq 0,
\]

where

\[
\dot{D}_0 = \left[\frac{0.223}{(\lambda(0)t')^{0.77}} - (30.528 - 48\gamma_\nu(t'))t_0' (H_{dS} \kappa_0)^2 \right].
\]

(V.15)

Thus, the solution of the above differential equation reads

\[
\delta H = h_\pm \exp \left[\tilde{A}_\pm t' \right], \quad \tilde{A}_\pm = \left[\frac{H_{dS}}{2} \left(-3 \pm \sqrt{9 - \frac{0.627 \dot{D}_0}{(H_{dS} \kappa_0)^2 t'} + 1 \right) \right], \quad |h_\pm| \ll 1,
\]

(V.17)

where \(h_\pm\) are the integration constants corresponding to the signs: plus and minus inside \(\tilde{A}_\pm\). The solution is unstable if \(\dot{D}_0 < 0\), namely

\[
\frac{0.223074}{(\lambda(0)t')^{0.77}} < [30.528 - 48\gamma_\nu(t')]t_0' (H_{dS} \kappa_0)^2,
\]

(V.18)

and, by using (V.12), one sees that this inequality is always satisfied independently on the value of \(\gamma_\nu(t')\). As a consequence, also (IV.3) that we have used to derive (V.13) is verified and it is interesting to note that \(\dot{D}_0\) evaluated with respect to de Sitter solution (V.12) is equal to \(D_0\) in (IV.11) evaluated with respect to de Sitter solution (III.14), from which we can understand that Gauss-Bonnet term contribution to the stability of de Sitter solution behaves like the one of a \(R^2\)-term (see (IV.8)–(IV.9) and related comment). By using (V.12) one gets

\[
\dot{A}_+ \simeq 36019 \times 10^{-9} \frac{H_{dS}t_0'}{t'} (22085.2 - 34725.2\gamma_\nu(t')) , \quad \dot{A}_- \simeq -3H_{dS},
\]

(V.19)

where \(\dot{D}_0\) is taken to be small. Thanks to the presence of the Gauss-Bonnet term in the action, the instability parameter \(\dot{A}_+\) can be increased with respect to the case considered before. Let us introduce our Ansatz (V.2). We obtain

\[
H_{dS}^2 \kappa_0^2 \simeq \frac{322.762}{(22085.2 - 34725.2\gamma_0 c_1) t_0'(\lambda(0)t')^{0.77}}, \quad \gamma_0 c_1 < 0,
\]

(V.20)

\[
\dot{A}_+ \simeq 36019 \times 10^{-9} \frac{H_{dS}t_0'}{t'} (22085.2 - 34725.2\gamma_0 c_1) , \quad \dot{A}_- \simeq -3H_{dS}.
\]

(V.21)

As a consequence, the instability parameter \(\dot{A}_+\) is larger than \(A_+\) in the absence of Gauss-Bonnet correction if \(\gamma_0 c_1\) is negative, namely, by taking \(0 < c_1\) and \(\gamma_0 < 0\), the Gauss-Bonnet contribution to the action is positive (see (V.14)): the analysis of inflation is similar to the previous case, but the \(e\)-folds and therefore the spectral index \(n_s\) are smaller.

To be specific, the \(\eta\) slow-roll parameter (V.33) and the spectral index \(n_s\) in (V.36) read

\[
\eta \simeq - \frac{18 \times 10^{-6} t_0'}{t'} (22085.2 - 34725.2\gamma_0 c_1), \quad n_s \simeq 1 - \frac{36019 \times 10^{-9} t_0'}{t'} (22085.2 - 34725.2\gamma_0 c_1),
\]

(V.22)

since we can still use (IV.34). The spectral index \(n_s\) is consistent with Planck data (IV.37) if

\[
900 < \left(\frac{t_0'}{t'} \right) (22085.2 - 34725.2\gamma_0 c_1) < 1305.
\]

(V.23)

If we set \(\lambda(0) = t_0 = 1\) and take (III.15) together with (III.17), we get from (V.23),

\[
-9.85 < \gamma_0 c_1 < -6.60.
\]

(V.24)

For example, for \(c_1 = 1\) and \(\gamma_0 = -7\) we find

\[
n_s \simeq 0.966,
\]

(V.25)
which is in agreement with the Planck data [IV.37]. The de Sitter solution results to be $H_{\text{gs}}^2 \approx 3.17 \times 10^{-7} M_{\text{Pl}}^2$, and inflation takes place near to the Planck scale, such that [III.14] is valid. In this kind of model, as we noted in [IV.16] the e-folds $N \sim 1/(1 - n_s)$, and in the present case we have $N \sim 30$: this is an order of magnitude/lower bound of the e-folds, being the duration of inflation related to the ϵ slow-roll parameter. The acceleration finishes when $\epsilon = 1$, out of the linear approximation of the perturbation, and therefore the exact amount of inflation depends on the initial amplitude $|h_\pm|$ of the perturbation (see [IV.32]), which in general is assumed to be small enough to guarantee a sufficient amount of inflation. In the present example, a viable inflation is obtained for $1 \ll t'/t'_0$, which is always true due to the large curvature scale of inflation.

We have demonstrated that the contribution from RG improved Gauss-Bonnet term can modify the instability of de Sitter solution describing inflation given a viable spectral index. In our derivation, we have taken into account also the $\Box R$ contribution, but, due to the Ansatz [V.2], it disappears. However, we furnished the formalism to treat the Lagrangian [V.1] with generic coefficients: if they grow up in the early-time universe, they modify the dynamics of inflation and can lead to a model compatible with the Planck data.

As a final result of the work, we are able to present the very general quantum-corrected Lagrangian constructed with second degree corrections to the Einstein gravity:

$$I = \int_M d^4\sqrt{-g} \left[\frac{R}{\kappa^2(t')} - \frac{\omega(t')}{3\lambda(t')} R^2 + \frac{1}{\lambda(t')} C^2 - \gamma(t') G + \zeta(t') \Box R - \Lambda(t') \right], \quad t' = t'_0 - 2 \log \left[\frac{R}{R_0} \right]^2, \quad (V.26)$$

where t_0 is a number and $R_0 = 4A$ is the curvature of today universe, Λ being the cosmological constant. The one-loop running coupling constants $\lambda(t')$, $\omega(t')$, $\kappa^2(t')$, $\Lambda(t')$, $\gamma(t')$ and $\zeta(t')$ are found from higher-derivative quantum gravity. They can be written as

$$\lambda(t') = \frac{\lambda(0)}{(1 + \lambda(0)(133/10)t')}, \quad \omega(t') = \omega_1, \quad \kappa^2(t') = \kappa_0^2(1 + \lambda(0)(133/10)t')^{0.77}, \quad \Lambda(t') = \frac{\Lambda_0}{(1 + \lambda(0)(133/10)t')^{0.55}}, \quad (V.27)$$

with $\omega_1 = -0.02$, $\kappa_0^2 = 16\pi/M_{\text{Pl}}^2$, $\Lambda_0 = 2\Lambda$. The expressions for $\omega(t')$, $\kappa^2(t')$ and $\Lambda(t')$ are derived by investigating the asymptotic behaviour of the running constants at high curvature. However, the derivatives of the coupling constants obey to a set of RG equations that we have taken into account in our analysis. The form of $\gamma(t')$ and $\zeta(t')$ is given by

$$\gamma(t') = \gamma_0(1 + c_1 t'), \quad \zeta(t') = \zeta_0(1 + c_2 t'), \quad c_1 \gamma_0 < 0, \quad (V.28)$$

γ_0, ζ_0 and $c_{1,2}$ constants. Finally, $\lambda(0)$ is a number related to the bound of inflation. At small curvature ($t' \ll 1$), the action [V.26] reads

$$I = \int_M d^4\sqrt{-g} \left[\frac{R}{\kappa_0} + \frac{0.02}{\lambda(0)} R^2 + \frac{1}{\lambda(0)} C^2 - 2\Lambda \right], \quad t' = t'_0 - 2 \log \left[\frac{R}{R_0} \right]^2, \quad (V.29)$$

and the contributions of Gauss-Bonnet and $\Box R$-terms disappear when the coefficients become constant.

Inflation is described at high curvature for $1 \ll t'$, near to the Planck mass. The model possesses a de Sitter solution which depends on $\lambda(0)$. This solution is always unstable and the model exits from inflation. It is possible to calculate the behaviour of perturbations and show that the slow-roll conditions of inflation are satisfied with the ϵ slow-roll parameter much smaller than the η slow-roll parameter. The amount of inflation (e-folds) is sufficiently large, the tensor-to-scalar ratio r is very close to zero and, due to the contribution of the RG improved Gauss-Bonnet term in the action, the spectral index n_s satisfies the Planck data. The RG improved $\Box R$-term does not play any important role in the dynamics of inflation.

After inflation, the reheating process with the particle production must take place to recover the FRW universe. These processes occur when the curvature (Ricci scalar) oscillates and eventually in the presence of the interaction between the gravity and matter quantum fields. At the end of inflation $t' \rightarrow 0$ and the model turns out to be a quadratic correction R^2 of Einstein’s gravity (on FRW metric the square of Weyl tensor gives a zero contribution): this model has been well-investigated in the literature and it has been demonstrated that it is compatible with the reheating scenario.

VI. DISCUSSION

In this work we investigated the inflationary universe taking into account quantum gravity effects in frames of RG improved effective action of higher-derivative quantum gravity. The effective coupling constants in higher-derivative
quantum gravity obey to a set of one-loop RG equations found in Refs. [12] and may show the asymptotically-free behaviour. These one-loop RG equations which define the effective coupling constants are used to derive quantum-corrected dynamical FRW equations. In order to find the explicit form of the running coupling constants, their (asymptotically free) behaviour at high energy scale is used.

The model possesses a de Sitter solution at high curvature to describe expanding inflationary universe. The bound of de Sitter solution depends on the value of the running constant of R^2-term today. We have demonstrated that de Sitter solution is always unstable and takes place near to the Planck scale. Thus, it is possible to evaluate the instability parameter of the model and the amplitude of perturbations. The slow-roll conditions are well satisfied, and the slow-roll parameter is much larger than the ϵ slow-roll parameter: their behaviour with respect to the ϵ-folds N seems to be the same of the ones in scalar-tensor theories (see review [21]) for inflation ($\epsilon \sim 1/N^2$ and $|\eta| \sim 1/N$). The amount of inflation of the model is sufficiently large, the tensor-to-scalar ratio compatible with the Planck data it is necessary to take into account the contribution of RG improved Gauss-Bonnet term in the action. Note that other RG-improved surface term ($\Box R$) does not play any important role during inflation. At low energy, the effective running constants become constant and we recover the Friedmann universe.

It would be very interesting to compare the inflationary predictions (including the exit and reheating) of higher-derivative quantum gravity with those of Einstein quantum gravity in more detail. This will be considered elsewhere.

Acknowledgments

The research by SDO has been supported in part by MINECO(Spain), projects FIS2010-15640 and FIS2013-44881.

[1] G. Hinshaw et al. [WMAP Collaboration], Astrophys. J. Suppl. 208 (2013) 19 [arXiv:1212.5220 [astro-ph.CO]]; E. Komatsu et al. [WMAP Collaboration], Astrophys. J. Suppl. 180 (2009) 330 [arXiv:0803.0547 [astro-ph]].
[2] P. A. R. Ade et al. [Planck Collaboration], Astron. Astrophys. 571 (2014) A22 [arXiv:1303.5082 [astro-ph.CO]].
[3] V. Mukhanov, “Physical foundations of cosmology,” Cambridge, UK: Univ. Pr. (2005) 421 p; D. S. Gorbunov and V. A. Rubakov, “Introduction to the theory of the early universe: Cosmological perturbations and inflationary theory,” Hackensack, USA: World Scientific (2011) 489 p.
[4] P. A. R. Ade et al. [BICEP2 Collaboration], Phys. Rev. Lett. 112 (2014) 241101 [arXiv:1403.3985 [astro-ph.CO]].
[5] R. P. Woodard, arXiv:1407.4748 [gr-qc]; M. G. Romania, N. C. Tsamis and R. P. Woodard, Lect. Notes Phys. 863 (2013) 375 [arXiv:1204.6558 [gr-qc]].
[6] M. Rinaldi, G. Cognola, L. Vanzo and S. Zerbini, arXiv:1410.9631 [gr-qc]; K. Bamba, G. Cognola, S. D. Odintsov and S. Zerbini, Phys. Rev. D 90 (2014) 023525 [arXiv:1404.3311 [gr-qc]]; B. J. Broy, F. G. Pedro and A. Westphal, arXiv:1411.6010 [hep-th].
[7] I. L. Buchbinder, S. D. Odintsov and I. L. Shapiro, Effective action in quantum gravity, Bristol, UK: IOP (1992) 413 p; Riv. Nuovo Cim. 12N10 (1989) 1.
[8] J. Khoury and A. Weltman, Phys. Rev. D 69, 044026 (2004) [astro-ph/0309411].
[9] A. Salvio and A. Strumia, JHEP 1406, 080 (2014) [arXiv:1403.4226 [hep-ph]].
[10] E. Elizalde and S. D. Odintsov, Phys. Lett. B 303 (1993) 246; Phys. Lett. B 321 (1994) 199; Z. Phys. C 64 (1994) 699 [hep-th/9401057]; S. D. Odintsov, Fortsch. Phys. 39 (1991) 621.
[11] A. De Simone, M. P. Hertzberg and F. Wilczek, Phys. Lett. B 678 (2009) 1 [arXiv:0812.4946 [hep-ph]]; H. M. Lee, Phys. Lett. B 722 (2013) 198 [arXiv:1301.1787 [hep-ph]]; G. Barenboim, E. J. Chun and H. M. Lee, Phys. Lett. B 730 (2014) 81 [arXiv:1309.1695 [hep-ph]]; N. Okada and Q. Sha, arXiv:1311.0921 [hep-ph]; M. Herranen, T. Markkanen, S. Nurmi and A. Rajantie, Phys. Rev. Lett. 113 (2014) 21, 211102 [arXiv:1407.3141 [hep-ph]]; T. Inagaki et al., arXiv:1408.1270 [gr-qc]; E. Elizalde, S. D. Odintsov, E. O. Pozdeeva and S. Y. Vernov, Phys. Rev. D 90 (2014) 084001 [arXiv:1408.1285 [hep-th]]; Y. Hamada, H. Kawai and K. Y. Oda, JHEP 1407 (2014) 026 [arXiv:1407.6141 [hep-ph]]; H. J. He and Z. Z. Xianyu, JCAP 1410 (2014) 019 [arXiv:1407.7381 [hep-ph]].
[12] K. S. Stelle, Phys. Rev. D 16 (1977) 953; E. S. Fradkin and A. A. Tseytlin, Nucl. Phys. B 201 (1982) 469; I. G. Avramidi and A. O. Barvinsky, Phys. Lett. B 159 (1985) 269.
[13] A. Vilenkin, Phys. Rev. D 32 (1985) 2511.
[14] S. Capozziello, Int. J. Mod. Phys. D114483 (2002).
[15] G. Cognola, M. Gastaldi and S. Zerbini, Int. J. Theor. Phys. 47, 898 (2008) [gr-qc/0701138].
[16] G. Cognola, L. Sebastiani and S. Zerbini, arXiv:1006.1586 [gr-qc].
[17] M. B. Einhorn and D. R. T. Jones, arXiv:1410.8513 [hep-th].
[18] J. D. Barrow and D. J. Shaw, Gen. Rel. Grav. 43, 2555 (2011) [Int. J. Mod. Phys. D 20, 2875 (2011)] [arXiv:1105.3105 [gr-qc]].
[19] K. Bamba, S. Nojiri, S. D. Odintsov and D. Saez-Gomez, arXiv:1410.3993 [hep-th].
[20] M. B. Einhorn et al. [Collaboration], arXiv:1412.5572 [hep-th].

[21] Y. Fujii and K.-i. Maeda, The Scalar-Tensor Theory of Gravitation (Cambridge University Press, Cambridge, United Kingdom, 2003); V. Faraoni, Cosmology in scalar-tensor gravity (Springer, 2004).