Integrating Different Lines of Evidence to Establish a Novel Ascomycete Genus and Family (*Anastomitrabeculia, Anastomitrabeculiaceae*) in Pleosporales

Chitrabhanu S. Bhunjun 1,2, Chayanard Phukhamsakda 1,3, Rajesh Jeewon 4, Itthayakorn Promputtha 5 and Kevin D. Hyde 1,5,*

Abstract: A novel genus, *Anastomitrabeculia*, is introduced herein for a distinct species, *Anastomitrabeculia didymospora*, collected as a saprobe on dead bamboo culms from a freshwater stream in Thailand. *Anastomitrabeculia* is distinct in its trabeculate pseudoparaphyses and ascospores with longitudinally striate wall ornamentation. A new family, *Anastomitrabeculiaceae*, is introduced to accommodate *Anastomitrabeculia*. *Anastomitrabeculiaceae* forms an independent lineage basal to *Halojulellaceae* in Pleosporales and it is closely related to *Neohendersoniaceae* based on phylogenetic analyses of a combined LSU, SSU and TEF1α dataset. In addition, divergence time estimates provide further support for the establishment of *Anastomitrabeculiaceae*. The family diverged around 84 million years ago (MYA) during the Cretaceous period, which supports the establishment of the new family. The crown and stem age of *Anastomitrabeculiaceae* was also compared to morphologically similar pleosporalean families.

Keywords: BEAST; Dothideomycetes; Pleosporales; Poaceae; taxonomy; three new taxa; trabeculate pseudoparaphyses

1. Introduction

Pleosporales is the largest order within *Dothideomycetes* (*Ascomycota*) [1]. The taxonomic and phylogenetic relationships of families and genera within this order are well documented [1–7]. *Pleosporales* comprises two suborders, *Massarineae* and *Pleosporineae* [1]. *Pleosporineae* includes economically important plant pathogens and *Massarineae* includes mainly saprobes from terrestrial or aquatic environments [1,3]. Zhang et al. [1] revised 174 genera and accepted 26 families in *Pleosporales*. The suborder *Massarineae* was resurrected to accommodate five families, the *Lentitheciaceae, Massarineae, Montagulaceae (Didynosphaeriaceae), Morosphaeriaceae* and *Trematosphaeriaceae* [1]. Hyde et al. [2] correlated morphology with phylogenetic evidence and accepted 41 families in this order. Tanaka et al. [3] introduced two new families, *Parabambusicolaceae* and *Sulcatisporaceae*, accepting 12 families in *Massarineae*. The family *Longipedicellataceae* was introduced, and the divergence time in *Pleosporales* was estimated with emphasis on *Massarineae* [4]. The crown age of *Pleosporales* was dated to 211 MYA and *Massarineae* was dated to 130 MYA [4]. Species boundaries in *Cucurbitariaceae* were revised [5] and the family, *Lentimurisporaceae*, was introduced in *Pleosporales* [6].
Species in this order are abundant and occur in terrestrial, marine and freshwater habitats [7–9]. The species can be epiphytes, endophytes or parasites of living leaves or stems, hyperparasites on fungi or insects, lichenized, or saprobes of dead plant stems, leaves or bark [7–9]. Currently, about 400 genera in 64 families are known in Pleosporales [1,2,7,10–13], with numerous coelomycetous and hyphomycetous taxa as their asexual morphs [1,13–15].

Several pleosporalean taxa are pathogens associated with a broad range of hosts including bamboo. Bamboo (Poaceae) comprises over 115 genera with around 1500 species [16–18], can be found in diverse climates [17], and are widely distributed in various forest types in Thailand [18,19]. It has been estimated that around 1100 fungal species belonging to over 200 genera have been described or recorded worldwide on bamboo and most of these bamboo-associated fungi are ascomycetes [20,21].

Divergence time estimates using molecular clock methodologies have been widely used in fungal taxonomy [4,11,22–27]. Several studies have applied molecular dating to provide additional evidence for higher taxa ranking in Pleosporales [4,6,7,11]. In this study, we introduce a novel bambusicolous species, Anastomitrabeculia didymospora within Anastomitrabeculia, which is accommodated in a new family, Anastomitrabeculiaceae, based on morphology, multi-loci phylogeny and divergence times estimates.

2. Materials and Methods

2.1. Sample Collection, Isolation and Identification

Dead bamboo culms were collected from a freshwater stream from Krabi province, Thailand, in 2015. The samples were incubated in plastic boxes with sterile and moist tissue at 25–30 °C for 3 days. Pure fungal colonies were obtained using single-spore isolation [28]. Germinating spores were transferred aseptically to potato dextrose agar (PDA) and malt extract agar (MEA) (Difco™). The cultures were incubated at 25 °C with frequent observations. Fungal characters were observed using a stereo microscope (Zeiss SteREO Discovery v. 8) fitted with an Axio Cam ERC5S and a Leica DM2500 compound microscope attached with a Leica MC190 HD camera. All microscopic measurements were carried out using Tarosoft (R) Image Frame Work program and the images were processed with Adobe Photoshop CS6 version 13.0 software (Adobe Systems, San Jose, CA, USA). The type specimens were deposited in the Mae Fah Luang University (MFLU) Herbarium, Chiang Rai, Thailand, and pure cultures were deposited at the Mae Fah Luang University Culture Collection (MFLUCC). The new taxon was linked with Facesoffungi numbers (FoF) [29] and Index Fungorum (Index Fungorum 2020, http://www.indexfungorum.org/, accessed on 2 December 2020) and established based on guidelines recommended by Jeewon and Hyde [30].

2.2. DNA Extraction, PCR Amplification and DNA Sequencing

DNA extraction, PCR amplification, DNA sequencing and phylogenetic analysis were carried out as detailed in Dissanayake et al. [31]. Total genomic DNA was extracted from fresh mycelium with a Biospin Fungus Genomic DNA Extraction Kit (BioFlux®) (Hangzhou, PR. China) following the manufacturer’s protocol. The nuclear ribosomal large subunit 28S rRNA gene (LSU) [32], the nuclear ribosomal small subunit 18S rRNA gene (SSU) [33] and the translation elongation factor 1-alpha gene (TEF1α) [34] were amplified using primers (LSU: LROR/LR5, SSU: NS1/NS4 and TEF1α: 983F/2218R). Polymerase chain reaction (PCR) was performed using PCR mixtures containing 5–10 ng DNA, 1X PCR buffer, 0.8 units Taq polymerase, 0.3 µM of each primer, 0.2 mM dNTP and 1.5 mM MgCl2. PCR conditions were set at an initial denaturation for 3 min at 94 °C, followed by 40 cycles of 45 s of denaturation at 94 °C, annealing for 50 s at 56 °C for LSU, SSU and 52 °C for TEF1α and extension for 1 min at 72 °C, with a final extension of 10 min at 72 °C. All the PCR products were visualised on 1% Agarose gels with added 6 µL of 4S green dyes, per each 100 mL. Successful PCR products were purified and sequencing was performed by Shanghai Sangon Biological Engineering Technology & Services Co. (Shanghai, PR. China). All sequences generated in this study were submitted to GenBank
Table 1. DNA sequences and GenBank numbers used for the phylogenetic analyses in this study. The ex-type strains are in bold and the new taxon introduced in this study is indicated in blue.

Taxon	Strain Number	GenBank Accession Numbers		
		LSU	SSU	TEFa
Acrocalymma aquatica	MFLUCC 11-0208	JX276952	JX276953	-
Acrocalymma fici	CBS 317.76	KP170712	-	-
Acrocalymma medicaeignis	CPC 24340	KP170713	-	-
Acrocalymma medicaeignis	CPC 24341	KP170714	-	-
Acrocalymma medicaeignis	CPC 24345	KP170718	-	-
Acrocalymma pterocarpi	MFLUCC 17-0926	MK347949	MK347840	-
Aigialus grandis	BCC 20000	GU479775	GU479739	GU479837
Aigialus mangrovis	BCC 33563	GU479776	GU479741	GU479840
Aigialus parvus	BCC 18403	GU479778	GU479743	GU479842
Aigialus rhizophorae	CBS 118232	GU301796	-	GU349048
Amniculicola immersa	CBS 123083	FJ795498	GU456295	GU456273
Amniculicola lignicola	CBS 123094	EF493861	EF493863	-
Amniculicola parva	CBS 123092	GU301797	GU296134	GU349065
Amorosia littoralis	NN 6654	AM292055	AM292056	-
Anastomitrabeculia didymospora	MFLUCC 16-0412	JX276952	JX276953	-
Angustimassarina populi	MFLUCC 13-0034	KP388642	KP899128	K075164
Anteaglonium abbreviatum	ANM 925a	GQ221877	-	-
Anteaglonium globosum	SMH 5283	GQ221911	-	GQ221919
Anteaglonium parasilenum	MFLUCC 14-0821	KU922915	KU922916	-
Aquasubmersa japonica	HHUF 30468	LC194340	LC194298	LC194382
Aquasubmersa japonica	HHUF 30469	LC061856	LC061581	-
Arthonia dispersa	UPSC 2583	AY517381	AY517379	-
Ascochyta mangicola	BCC 09270	GU479782	GU479747	GU479846
Ascochyta marina	MD6011	KT259205	KT259207	-
Ascochyta marina	MD6012	KT259206	-	-
Ascochyta marina	MF416	MK007123	MK007124	-
Balnusandhika indica	GFUFC 18001	KF460274	-	-
Bambusicola massarinia	MFLUCC 11-0389	JX442037	JX442041	-
Berkleasmium micronesicum	BCC 8141	DQ280272	DQ280268	-
Berkleasmium nigroapicale	BCC 8220	DQ280273	DQ280269	-
Bimuria novae-zelandiae	CBS 107.79	AY016356	AY016338	DQ471087
Botryosphaeria dothidea	CBS 115476	AY929047	EU673173	AY236898
Brevicollum hyalosporum	MAFN 243400	LC271239	LC271236	LC271245
Brevicollum hyalosporum	MFLUCC 17-0007	MG602200	MG602202	MG739516
Brevicollum hyalosporum	PUFN 17628	MH198671	-	-
Capnodium salicinum	CBS 131.34	DQ676805	DQ676997	-
Cladosporium cladosporioides	CBS 170.54	DQ676807	DQ678004	-
Clematidios palatina	MFLUCC 15-0084	KU842381	KU842382	-
Corynespora cassicola	CBS 100822	GU301808	GU296144	GU349052
Corynespora smithii	CAB 5649b	GU323201	-	GU349018
Craspiares quadrisporus	HHUF 30590	LC271241	LC271238	LC271248
Crassiparipes quadrisporus	HHUF 30409	LC100025	LC100027	-
Crassiparipes octosporum	KT 2144	LC373108	LC373084	LC373120
Crassiparipes octosporum	KT 2894	LC373109	LC373085	LC373121
Crassiparipes octosporum	KT 3008	LC373110	LC373086	LC373122
Crassiparipes octosporum	KT 3029	LC373111	LC373087	LC373123

(Table 1) and the ITS region of *Anastomitrabeculia didymospora* was deposited with the accession number MW413900 (MFLUCC 16-0412) and MW413897 (MFLUCC 16-0417).
Taxon	Strain Number	GenBank Accession Numbers		
		LSU	**SSU**	**TEF1α**
Crassiperidium octosporum	KT 3046	LC373112	LC373088	LC373124
Crassiperidium octosporum	KT 3188	LC373113	LC373089	LC373125
Crassiperidium octosporum	KT 3468	LC373114	LC373090	LC373126
Crassiperidium octosporum	KT 3604	LC373115	LC373091	LC373127
Crassiperidium octosporum	KT 3605	LC373116	LC373092	LC373128
Crassiperidium octosporum	MM 9	LC373117	LC373093	LC373129
Crassiperidium quadrisporum	KT 27981	LC373118	LC373094	LC373130
Cryptoclypeus oxyphorus	HHUF 30507	LC373095	LC373131	
Cryptocoryneum akitaense	MAFF 245365	LC373132	LC373131	
Cryptocoryneum japonicum	MAFF 245370	LC373133	LC373131	
Cryptocoryneum longicondensatum	MAFF 245374	LC373134	LC373131	
Cyclothyriella rubronotata	CBS 141486	LX650544	LX650507	LX650519
Cyclotrichia rubronotata	CBS 121892	LX650541	-	LX650516
Cyclotrichia rubronotata	CBS 385.39	MH67543	-	-
Cyclotrichia rubronotata	CBS 419.85	GU301875	-	GU349002
Delitschia didyma	UME 31411	DQ84090	AF242264	
Delitschia winteri	CBS 225.62	DQ678077	DQ67922	DQ67922
Dendrographa decorans	Ertz 5003	AY548815	AY548809	-
Dendrographa leucophana f. minor		AF279382	AF279381	-
Dendryphion europaeum	CPC 22943	KJ869203	-	-
Dendryphion europaeum	CPC 23231	NG_059120	-	-
Didymosphaeria rubi-ulmifolii	MFLUCC 14-0023	KJ436586	KJ436588	-
Dissoconium aciculare	CBS 204.89	GU214419	GU214523	-
Ernakulamia cochinensis	PRC 3992	LT964670	-	-
Flavomyces fulophazii	CBS 135761	KP184040	KP184082	-
Fuscostagonospora cytisii	MFLUCC 16-0622	KY770978	KY770977	KY770977
Fuscostagonospora sasae	CBS 139687	AB870548	AB797258	-
Fusulina eucalyptorum	CBS 145083	MK047499	-	-
Gordonomyces mucovaginatus	CBS 127273	JN712552	-	-
Halotthia posidonae	BBH 22481	GU479786	GU479752	-
Helminthosporium aquaticum	MFLUCC 15-0357	KU697306	KU697310	-
Helminthosporium velutinum	MFLUCC 15-0423	KU697304	KU697305	-
Helminthosporium velutinum	MFLUCC 13-0243	KU697304	KU697305	-
Heratomecyes thailandica	MFLUCC 14-1140	KJ869203	KJ869204	-
Hohos wagradensis	TI	-	-	-
Hysterium angustatum	CBS 236.34	FJ161106	FJ161096	-
Hysterium angustatum	MFLUCC 16-0623	MH535893	MH535885	MH535878
Jahnula seychellensis	SS2113	ESI175665	ESI175643	-
Latorua caligans	CBS 576.65	KR873266	-	-
Latorua grootfonteinensis	CBS 369.72	KR873267	-	-
Lentimurispora urniformis	MFLUCC 18-0497	MH179144	MH179160	MH188055
Leoxyphium cacuminum	CBS 505.75	GQ387576	GQ387515	GU349069
Lepidophyllum fissipora	MFLUCC 11-0377	JP88646	-	-
Lignosphaeria thailandica	MFLUCC 11-0376	KPE88645	-	-
Taxon	Strain Number	GenBank Accession Numbers		
--	---------------	--------------------------		
Lindgomycetes ingoldianus	ATCC 200398	AB521736 AB521719 -		
Longistium tectonae	MFLUCC 12 0562	KU764700 KU712459 -		
Lophiotaeba eburnoides	HHUF 30079	LC001707 LC001706 -		
Lophiotaeba micional	CBS 627.86	GU301837 GU296167 GU349073		
Macrodiplodopsis desmazeri	CBS 140062	KR873372 - -		
Magnicamarosporium dossypyrcola	MFLUCC 16-0419	KY554212 KY554211 KY554209		
Massarina eburnea	CBS 473.64	GU301843 GU296173 -		
Massariosphaeria phacospora	CBS 611.86	GU301843 GU296173 -		
Mauritana rhizophorae	BCC 28866	GU371824 GU371832 GU371817		
Medicopsis romeroi	CBS 122784	EU754207 EU754210 KF015678		
Medicopsis romeroi	CBS 132878	KF015622 KF015648 KF015682		
Murispora rubicunda	IFRD 2017	FJ795307 GU456308 GU456289		
Neatoastrosphaeriella krabiensis	MFLUCC 11-0025	JN846729 JN846739 -		
Neohendersonia kickxii	CBS 112403	KX820266 - -		
Neohendersonia kickxii	CBS 122938	KX820268 - -		
Neohendersonia kickxii	CBS 134276	KX820267 - -		
Neohendersonia kickxii	CBS 122941	KX820269 - -		
Neohendersonia kickxii	CBS 122941	KX820269 - -		
Neomassaria fabacearum	MFLUCC 16-1875	KX524145 KX524147 KX524149		
Neomassaria formosana	NTUCC 17-007	MH174756 MH174759 MH174762		
Neomassarina chromolaenae	MFLUCC 17-1480	MT214466 MT214419 MT235785		
Neomassarina pandanicolana	MFLUCC 16-0270	MG298945 - MG298947 -		
Neomassarina thailandica	MFLUCC 10-0552	KX672157 KX672160 KX672163		
Neotorula aquatica	MFLUCC 150342	KU500576 KU500583 -		
Neotorula submersa	KUMCC 15-0280	KX789217 - -		
Ocellitambusa bambusae	MFLUCC 13-0855	KU863112 KU872116 -		
Ocellitambusa postula	MFLUCC 11-0502	KU863115 KU872118 -		
Ohleria modesta	MGC	KX650562 KX650563 KX650533		
Paradictyoarthrinium diffractum	MFLUCC 13-0466	KP744498 KP753960 -		
Paradictyoarthrinium diffractum	MFLUCC 12-0557	KP744497 - -		
Paradictyoarthrinium hydei	MFLUCC 13-0465	MG747497 - -		
Paradictyoarthrinium tectonicola	MFLUCC 13-0465	KP744500 KP753961 -		
Periconia thailandica	MFLUCC 17-0065	KU753888 KU753889 -		
Phaeoseptum aquaticum	CBS 123113	JN640072 - -		
Phaeoseptum terricola	MFLUCC 10-0102	MH105779 MH105780 MH105781		
Phyllosticta capitansis	CBS 226.77	KF206289 KF766300 -		
Piedraia hortae	CBS 480.64	GU214466 - -		
Polyphosphaeria fusca	CBS 125425	AB524607 AB524666 AB524822		
Preussia nigricans	CBS 363.69	DQ384098 DQ384087 -		
Preussia nigricans	CBS 264.69	GU301872 GU296197 GU349027		
Pseudoastrosphaeriella bambusae	MFLUCC 11-0205	KT955475 KT955455 KT955437		
Pseudoastrosphaeriella longicolla	MFLUCC 11-0171	KT955476 KT955456 KT955438		
Pseudoastrosphaeriella thailandensis	MFLUCC 10-0553	KT955477 KT955456 KT955439		
Pseudoastrosphateria eylonicola	HHUF 28984	LC194381 LC194339 LC194418		
Pseudomassariosphaeria broonicola	MFLUCC 15-0031	KT305994 KT305996 KT305999		
Pseudotetraploa curvippendiculata	CBS 125426	AB524610 AB524669 AB524825		
Quadritcruva septentrionalis	CBS 125428	AB524617 AB524476 AB524832		
Racodium rupestre	L424	EU048582 EU048577 -		
Racodium rupestre	L424	EU048582 EU048577 -		
Ramusculica thailandica	MFLUCC 13-0284	KP888647 KP899131 KP305767		
Rimora mangrovi	JK 5246A	GU301868 GU296193 -		
Roccella fusciformis	Teher 8171	FJ638979 - -		
Rostriconidium aquaticum	KUMCC 15-0297	MG208144 - MG207995 -		
Table 1. Cont.

Taxon	Strain Number	GenBank Accession Numbers		
		LSU	SSU	TEF1α
Rostriconidium aquaticum	MFLUCC 16-1113	MG208143	-	MG207994
Salsuginea ramicola	KT 2597.1	GU479800	GU479767	GU479861
Salsuginea ramicola	CBS 125781	MH877872	-	-
Scoris spongiosa	CBS 325.33	MH866910	GU214696	-
Seriascoma didymospora	MFLUCC 11-0179	KU863116	KU872119	-
Sigarisporea arundinis	JCM 13550	AB618998	AB618679	LC001737
Sigarisporea ravennica	MFLUCC 14-0005	KP698414	KP698415	-
Splanchnonema platani	CBS 222.37	KR909316	KR909318	KR909319
Sporodesmioides thailandica	KUMCC 16-0012	KX437758	KX437760	KX437767
Sporormia fimetaria	UPS:Dissing Gr.81.194	GQ203729	-	-
Sporormiella minima	CBS 52450	DQ468046	-	DQ468003
Stagonospora pseudocaricis	CBS 135132	KF251762	KF251259	KF252741
Stemblygium vesicarium	CBS 191.86	DQ247804	DQ247812	DQ471090
Stemblygium vesicarium	CBS 714.68	DQ678049	DQ767648	DQ677888
Sulcattispora acerina	KT2982	LC014610	LC014605	LC014615
Sulcosporium thailandicum	MFLUCC 12-0004	KT426563	KT426564	-
Tetraphiala quercus	CBS 143396	MH107966	-	MH108030
Tetralsapheria sascolia	KT 563	AB524631	AB524490	AB524838
Torula gaodangeris	MFLUCC 17-0234	NG_059827	NG_063641	-
Torulha herbarum	CBS 111855	KF443386	KF443391	KF443403
Triplosapheria maxima	MAF 239682	AB524637	AB524496	-
Tubufa chiangmaiensis	MFLUCC 11-0514	KF301538	KF301543	KF301557
Tubufa japonica	MFLUCC 12-0545	KJ880036	KJ880035	KJ880037
Vargamycetes aquaticus	CBS 639.63	KY853539	-	-
Vargamycetes aquaticus	HKUCC 10830	DQ408575	-	-
Versicloripsis triplexatum	HHUF 28815	AB330081	AB524501	-
Westerdykella dispersa	CBS 297.56	MH869191	-	-
Westerdykella ornata	CBS 379.55	GU301880	GU296208	GU349021
Xenomassariosphaeria rosae	MFLUCC 15-0179	MG829092	MG829192	-

2.3. Phylogenetic Analysis

The sequence data were assembled using BioEdit v. 7.2.5 [35] and subjected to a BLAST search (https://blast.ncbi.nlm.nih.gov/Blast.cgi) to find the closest matches with taxa in Pleosporales. Reference sequence data of this order and some representatives of other orders of Dothideomycetes were downloaded from previously published studies [1,6,36–39]. The sequences were automatically aligned using default settings in MAFFT v. 7 (http://mafft.cbrc.jp/alignment/server/) [40]. A combined dataset of three gene regions (LSU, SSU and TEF1α) was prepared and manually adjusted using BioEdit and AliView [41]. Phylogenetic analyses of the combined dataset were performed using maximum likelihood, maximum parsimony and Bayesian inference method. Maximum likelihood analyses (ML), including 1000 bootstrap pseudoreplicates, were performed at the CIPRES web portal [42] using RAxML v. 8.2.12 [43]. Maximum parsimony analysis was conducted using PAUP v.4.0b 10 [44] with the heuristic search option and number of replications 1000 each. The Tree Length (TL), Consistency Indices (CI), Retention Indices (RI), Rescaled Consistency Indices (RC) and Homoplasy Index (HI) were documented.

The best model for different genes partition was determined in JModelTest version 2.1.10 [45] for posterior probability (PP). The general time reversible (GTR) model with a discrete gamma distribution plus invariant site (GTR+I+G) substitution model was used for the combined dataset. Posterior probabilities [46] were estimated by Markov Chain Monte Carlo sampling (MCMC) in MrBayes v. 3.2.6 [47]. Four simultaneous Markov chains were run for 10 million generations and trees were sampled every 1000th generation, thus resulting in 10,000 trees. The suitable burn-in phase was determined by inspecting traces
in Tracer version 1.7 [48]. The first 10% of generated trees representing the burn-in phase of the analyses were discarded, while the remaining trees were used to calculate posterior probabilities (PP) in the majority rule consensus tree. The phylogenograms were visualized with FigTree v1.4.0 program [49] and edited using Adobe Illustrator CS6 v15.0 (Adobe Systems, USA).

2.4. Fossil Calibration and Divergence Time Estimates

Divergence times were estimated with BEAST 2.6.2 [50] based on the methodology described in Phukhamsakda et al. [4]. The aligned sequence dataset (LSU, SSU and TEF1α) used for the phylogenetic analyses were loaded into BEAUTI 2.6.2 to prepare the XML file. Nucleotide substitution models were determined using JModelTest version 2.1.10. The GTR+I+G nucleotide substitution model was applied to LSU and TEF1α partitions. The symmetrical (SYM) model with a discrete gamma distribution plus invariant site (SYM+I+G) substitution model was applied to the SSU partition. The data partitions were set with unlinked substitution, linked clock model and linked tree. An uncorrelated relaxed clock model with lognormal distribution was used. The Yule speciation process, which assumes a constant rate of speciation divergence, was used as the tree prior [51]. The analysis was performed in BEAST 2.6.2 for 100 million generations, sampling every 1000 generations. The effective sample size (ESS) was analysed with Tracer version 1.7 to check that the values were greater than 200, as recommended by Drummond et al. [52]. The first 20% trees were discarded as the burn-in phase and the remaining trees were combined in LogCombiner 2.6.2. The maximum clade credibility was calculated in TreeAnnotator v 2.6.2. The phylograms were visualized with FigTree v.1.4.0 program.

To estimate the divergence time for Anastomitrabeculiaceae, the fossil Metacapnodium succinum (Metacapnodiacae) was used to set the crown age of Capnodiales using a normal distribution, mean of 100 MYA, SD of 150 MYA, giving 95% credibility interval of 346 MYA [4,23,53,54]. The fossil Margaretbarromyces dictyosporus was used to calibrate the crown age of Aigialus (Aigialaceae) using a gamma distribution, with an offset of 35 MYA, a shape of 1.0, scale of 25, providing 95% credibility interval of 110 MYA [4,55–57]. The split between Arthoniomycetes (outgroup) and Dothideomycetes was used as the secondary calibration using a normal distribution, mean of 300 MYA, SD of 50 MYA, giving 95% credibility interval of 382 MYA [22,36,53,54].

3. Results

3.1. Phylogenetic Analyses

The combined gene alignment comprised 196 strains and 2800 characters (LSU: 860 characters, SSU: 1039 characters and TEF1α: 901 characters). Among the 2800 characters, there were 1492 conserved sites (53%), 364 variable sites (13%) and 944 parsimony informative sites (34%). The parsimony analysis of the data matrix yielded one most parsimonious tree out of 1000 (CI = 0.265, RI = 0.659, RC = 0.175, HI = 0.735, Tree Length = 7606). Based on BLAST search in the NCBI GenBank of the LSU gene, the newly generated taxon MFLUCC 16-0412 and MFLUCC 16-0417 show 95% similarity to Crassiperidium quadrisporum (KT 27981 and KT 27982). The topology of the phylogenetic tree based on the LSU gene was generally congruent with the overall topology of the tree based on the combined dataset. Phylogenetic trees generated from maximum likelihood, maximum parsimony and Bayesian analysis of the combined dataset resulted in similar topologies with some exception. The position of Cyclothryiellaceae and Longiostiolaceae differed between the three methods. The best scoring RAxML tree had a final likelihood value of −40,523,297855 (Figure 1). The new taxon formed an independent lineage basal to the Halojulellaceae with strong Bayesian inference support and moderate support from maximum likelihood (0.99 PP/65% MLBT). A new genus Anastomitrabeculia is therefore introduced within Anastomitrabeculiaceae to accommodate the new species.
Figure 1. The best scoring RAxML tree based on a combined LSU, SSU and TEF1α dataset. RAxML bootstrap support and maximum parsimony values ≥60% (BT), as well as Bayesian posterior probabilities ≥0.90 (BYPP) are shown, respectively, near the nodes. The ex-type strains are in bold and the scale bar indicates 0.06 changes per site. The tree is rooted with species of Arthoniomycetes and the new taxon is indicated in blue.
3.2. Fossil Calibration and Divergence Time Estimates

The topology of the maximum clade credibility (MCC) tree (Figure 2) was congruent with the tree obtained from the Bayesian inference analysis and the maximum likelihood analysis. The divergence times of the dating analysis are listed in Table 2. The crown age of *Dothideomycetes* is estimated at 263 MYA during the Permian period based on the MCC tree. The split of *Arthoniomycetes* and *Dothideomycetes* occurred around 323 MYA during the Carboniferous period. The crown age of *Pleosporales* is estimated at 206 MYA, and *Hysteriales* diverged from *Pleosporales* approximately 236 MYA during the Triassic period. The crown age of *Anastomitrabeculiaceae* is estimated at around 2.6 MYA, and it diverged from *Halojulellaceae* at around 84 (52–116) MYA. *Anastomitrabeculiaceae* formed an independent lineage with close relationship to *Halojulellaceae* with strong posterior probability in the MCC tree (0.99 BYPP). The divergence time of *Anastomitrabeculiaceae* was compared to Pleosporalean families with trabeculate pseudoparaphyses, cylindrical asci and ascospores with a sheath (Table 3). The divergence time of *Anastomitrabeculiaceae* was also compared to *Didymosphaeriaceae* as they are morphologically similar by having trabeculate pseudoparaphyses and cylindrical asci.

Table 2. Divergence time estimates obtained from BEAST analysis. The median and the 95% Highest Posterior Density are provided in million years ago (MYA). The geological time scales are given based on the median node age.

Nodes	Node Age	Geological Time Period
Arthoniomycetes–Dothideomycetes	323 (310–349)	Carboniferous
Dothideomycetes crown group	263 (216–313)	Permian
Hysteriales–Pleosporales	236 (188–300)	Triassic
Pleosporales crown group	206 (171–254)	Triassic
Capnodiales crown group	147 (99–200)	Jurassic
Anastomitrabeculiaceae stem group	84 (52–116)	Cretaceous
Aigialaceae–Aigialus sp.	37 (18–56)	Eocene
Anastomitrabeculiaceae crown group	2.6 (0.19–6.61)	Neogene

Table 3. Divergence time estimates obtained from BEAST analysis for families with similar morphology to *Anastomitrabeculiaceae*. The crown age and the stem age are provided in million years ago (MYA).

Families	Crown Age	Stem Age
Aigialaceae	102	141
Amniculicolaceae	90	177
Anastomitrabeculiaceae	2.6	84
Anteagloniaceae	52	98
Bambusicolaceae	29	57
Cyclothyriellaceae	66	95
Delitschiaceae	78	131
Didymosphaeriaceae	47	81
Fuscostagonosporaceae	26	63
Lindgomycetaceae	31	92
Neomassariaceae	82	131
Pseudoastrosphaeriellaceae	56	147
Tetraplosphaeriaceae	91	189
Figure 2. Maximum clade credibility (MCC) tree of families in Dothideomycetes using BEAST. Numbers at nodes indicate posterior probabilities (PP) for node support. Bars correspond to the 95% highest posterior density (HPD) intervals. Posterior probabilities greater than 0.95 are given near the nodes. The new taxon is indicated in blue. Geological time scales are given at the base together with scale in million years ago (MYA) [58].
3.3. Taxonomy

Anastomitrabeculiaceae Bhunjun, Phukhams and K.D. Hyde, _fam. nov._

Index Fungorum number: IF556817, Facesoffungi number: FoF 09521.

Etymology: Referring to the name of the type genus.

Saprobic on dead bamboo culms submerged in freshwater. **Sexual morph:** Ascomata immersed under a clypeus to semi-immersed, gregarious, uniloculate, globose to subglobose, carbonaceous, black. **Ostiole** central, apex well developed. **Peridium** multi-layered, sub-carbonaceous or coriaceous, with dark brown to hyaline cells arranged in a *textura angularis*. **Hamathecium** composed of numerous, filamentous, trabeculate pseudoparaphyses, septate, anastomosing between the asci and at the apex. **Ascii** bitunicate, fissitunicate, broad cylindrical to cylindrical-clavate, bulbous pedicel, with an ocular chamber. **Ascospores** biseriate, broadly fusiform, septate, smooth-walled, with wall ornamentation, surrounded by mucilaginous sheath.

Note: *Anastomitrabeculiaceae* is introduced to include _Anastomitrabeculia_, which is reported as a saprobe on bamboo culms. *Anastomitrabeculiaceae* is characterised by semi-immersed, coriaceous or carbonaceous ascomata with septate, trabeculate pseudoparaphyses and hyaline ascospores with longitudinally striate wall ornamentation, surrounded by mucilaginous sheath. _Anastomitrabeculiaceae_ formed a well-supported independent lineage closely related to *Halojulellaceae*, but *Halojulellaceae* differs by its cellular pseudoparaphyses and golden-brown ascospores.

Type genus: _Anastomitrabeculia_ Bhunjun, Phukhams and K.D. Hyde.

Anastomitrabeculia Bhunjun, Phukhams. and K.D. Hyde, _gen. nov._

Index Fungorum number: IF556680, Facesoffungi number: FoF 09522.

Etymology: Referring to the trabeculate pseudoparaphyses anastomosing between the asci and at the apex.

Colonies on natural substrate umbonate at the centre, circular, black shiny dots are visible on the host surface. **Ascomata** on surface of the host, immersed under a clypeus, gregarious, uniloculate, subglobose, carbonaceous. **Ostiole** orange pigment near ostiole. **Peridium** comprising multilayers of brown to hyaline cells of *textura angularis*, inner layers composed of thin, hyaline cells. **Ascii** 8–spored, bitunicate, fissitunicate, broad cylindrical to cylindrical-clavate, with a bulbous pedicellate, rounded at the apex, with an ocular chamber. **Ascospores** biseriate, broadly fusiform, tapering towards the ends, hyaline, with guttules in each cell, constricted at the septa, with longitudinally striate wall ornamentation, surrounded by mucilaginous sheath.

Note: *Anastomitrabeculia* is established as a monotypic genus. It is characterised by the presence of carbonaceous ascomata, with orange pigment near ostiole and ascospores with longitudinally striate wall ornamentation. *Anastomitrabeculiaceae* is morphologically similar to members of *Pleosporales* in having perithecioid ascomata, bitunicate asci and hyaline ascospores.

Type species: _Anastomitrabeculia didymospora_ Bhunjun, Phukhams and K.D. Hyde.

Anastomitrabeculia didymospora Bhunjun, Phukhams and K.D. Hyde, _sp. nov._

Index Fungorum number: IF556559; Facesoffungi number: FoF 09523 Figure 3.

Etymology: Referring to the didymosporous ascospores.

Holotype–MFLU 20-0694.

Saprobic on dead bamboo culms submerged in freshwater. **Sexual morph:** Ascomata 430–460 μm high, 435–575 μm diam., immersed under a clypeus to semi-immersed, gregarious, uniloculate, globose to subglobose, carbonaceous, rough, black, ostiolate. **Ostiole** 160 μm high, 270 μm diam., central, apex well developed, papillate, with pore-like opening, with periphyses filling the ostiolar canal, dark brown to black, orange pigment near ostiole. **Peridium** 6–18 μm wide, comprising 3–5 layers of brown to hyaline cells of *textura angularis*, inner layers composed of thin, hyaline cells. **Hamathecium** of dense, long, 0.8–1.25 μm wide (*X = 1 μm, n = 50*), filiform, filamentous, trabeculate pseudoparaphyses, septate, branched,
embedded in a gelatinous matrix, anastomosing between the asci and at the apex. *Asci* 125–160 × 15–20 µm (x = 145 × 17 µm, n = 20), 8-spored, bitunicate, fissitunicate, broad cylindrical to cylindrical-clavate, with bulbous pedicellate, rounded at the apex, with an ocular chamber. *Ascospores* 18–28 × 7–10 µm (x = 22.5 × 9 µm, n = 20), biseriate, broadly fusiform, tapering towards the ends, hyaline, 1-septate at the centre, constricted at the septum, cell above septate enlarged, straight, smooth-walled, with longitudinally striate wall ornamentation, surrounded by mucilaginous sheath. **Asexual morph:** Undetermined.

Figure 3. *Anastomitrabeculia didymospora* (MFLU 20-0694, holotype). (a) Ascomata on bamboo. (b) Close-up of ascomata. (c) Vertical section of ascoma. (d) Ostiolar canal. (e) Peridium layer. (f) Trabeculate pseudoparaphyses. (g–i) Asci. (j) Pedicel. (k–o) Ascospores showing mucilaginous sheath. (p) Culture characteristics on PDA from above and below (9 cm diameter petri dish). Scale bar: (b) = 500 µm, (c) = 200 µm, (d–i) = 50 µm, (j–o) = 10 µm.

Culture characters: Ascospores germinating on MEA and PDA within 24 h with germ tubes developing from basal cells. Colonies on MEA and PDA umbonate at the centre, circular, friable, reaching 20 mm diameter after four weeks of incubation at 25 °C. Culture on MEA with white aerial mycelium, dark brown at the centre and paler towards the edge from above and below. Culture on PDA dark brown from above and below.

Material examined: THAILAND, Krabi province (8.1° N, 98.9° E), on dead bamboo culms, 15 December 2015, C. Phukhamsakda, KR001 (MFLU 20-0694, holotype), ibid,
18 December 2015 (MFLU 20-0695, paratype); ex-type living culture MFLUCC 16-0412; ex-paratype living culture, MFLUCC 16-0417.

4. Discussion

In this study, we introduce a new species, genus and family for a collection of Pleosporales found on bamboo. The introduction of new taxa, even at the family level, is not surprising, considering that about 93% of fungi remain unknown to science despite ca. 2000 species described every year [59,60]. Pleosporalean species can occur in terrestrial, marine and freshwater habitats [7–9]. Several studies have reported new pleosporalean taxa from freshwater or marine habitats or from bambusicolous hosts [1,3]. Pleosporales have unique characters such as perithecioid ascomata typically with a papilla and bitunicate, generally fissitunicate asci, bearing mostly septate ascospores of different colours and shapes, with or without a gelatinous sheath [7]. The morphology of Anastomitrabeculaceae is similar to members of the Pleosporales based on the presence of pseudoparaphyses, perithecioid ascomata, bitunicate asci and hyaline ascospores. Anastomitrabeculaceae is characterised by semi-immersed to superficial ascomata, trabeculate pseudoparaphyses, cylindrical asci and ascospores with longitudinally striate wall ornamentation, surrounded by mucilaginous sheath. The newly discovered species formed a well-supported independent lineage basal to the Halojulellaceae based on phylogenetic analyses of the combined dataset (0.99 PP/65% MLBT). Halojulellaceae differs by its cellular pseudoparaphyses and golden brown ascospores [2]. The new taxon is also phylogenetically closely related to Neohendersonsoniaceae, which differs by its cellular pseudoparaphyses and smooth-walled ascospore [61]. A novel genus Anastomitrabeculia is therefore introduced to accommodate one new species, Anastomitrabeculia didymospora. A new family, Anastomitrabeculaceae, is also introduced to accommodate this independent lineage.

Several pleosporalean families such as Aigialaceae, Amniculicolaceae, Anteagloniaceae, Astrosphaeriellaceae, Bambusicolaceae, Biastrisoraceae, Caryosporaceae, Cyclothyriellaceae, Delitschiaceae, Didymosphaeriaceae, Fuscostagonosporaceae, Lindgomycetaceae, Melanommataceae, Neomassariaceae, Pseudoastrosphaeriellaceae, Striagutulaceae and Tetraplosphaeriaceae share similar characters to Anastomitrabeculaceae in having trabeculate pseudoparaphyses, cylindrical asci and ascospores with a sheath [7]. The nature of pseudoparaphyses is often overlooked, but they have taxonomic relevance at the genus and possibly family levels [7], but not at the ordinal level [62]. These families differ from Anastomitrabeculaceae mainly by their ascospores, for example, Aigialaceae and Amniculicolaceae have brown and muriform ascospores [7]. Anteagloniaceae differs by having a peridium composed of dark brown cells of textura epidermoidea, cellular or trabeculate pseudoparaphyses and small, uniseriate ascospores [2]. Astrosphaeriellaceae differs by its brown, sub-fusiform to fusiform, dark brown ascospores [2]. Caryosporaceae differs by its broad-fusiform, ovoid or ellipsoid, brown ascospores [64]. Bambusicolaceae species have also been isolated from dead bamboo culms, but they differ from Anastomitrabeculaceae by their cellular pseudoparaphyses and multi-seriate, smooth-walled ascospores [2]. Cyclothyriellaceae differs by its uniseriate, ellipsoid to fusiform, brown ascospores with several eusepta [65]. Fuscostagonosporaceae differs in having globose to subglobose ascomata, fissitunicate ascospores with long stipes and narrowly fusiform ascospores [66]. Anastomitrabeculaceae shares several characters with Didymosphaeriaceae in having immersed ascomata formed under a clypeus, trabeculate pseudoparaphyses and cylindrical asci. Didymosphaeriaceae and Melanommataceae differ in having cellular or trabeculate pseudoparaphyses and brown, multi-septate, muriform ascospores [7]. Lindgomycetaceae differs by the presence of cellular or trabeculate pseudoparaphyses and brown, multi-septate ascospores with bipolar mucilaginous appendages [7]. Neomassariaceae differs by its immersed ascomata and ellipsoid ascospores. Pseudoastrosphaeriellaceae differs by its brown to reddish-brown ascospores with longitudinal ridges towards the ends and Striagutulaceae differs in having brown, ellipsoid...
ascospores with paler end cells. Tetraplosphaeriaceae differs by its immersed ascomata and slightly curved, pale brown ascospores [7].

Divergence time estimate has been widely used as supporting evidence to clarify taxonomic status of extant or novel families in fungal taxonomy [4,6,23,24,26,27,67]. In this study, the MCC tree was congruent with the topology of the trees generated from Bayesian inference analysis and maximum likelihood analyses. The divergence time estimates for the crown age of Dothideomycetes (263 MYA), the split of Dothideomycetes and Arthoniomycetes (323 MYA), the crown age of Pleosporales (206 MYA) and the divergence of Hysteriales from Pleosporales (236 MYA) are similar to previous studies [4,7,11]. Hyde et al. [27] recommended that the divergence times of families should be between 50 and 150 MYA. The stem age is usually preferred to the crown age in taxa ranking as it is not affected by the sample size of the clade [27]. Based on the MCC tree, Anastomitrabeculiaceae and Halojulellaceae share the stem age of 84 MYA which supports the establishment of Anastomitrabeculiaceae.

The divergence time of Anastomitrabeculiaceae was also compared to Pleosporalean families with trabeculate pseudoparaphyses, cylindrical asci and ascospores with a sheath (Table 3). Cyclothyriellaceae has an estimated crown age of 66 MYA and it diverged at 95 MYA. Fuscostagonosporaceae has a crown age of approximately 26 MYA and it diverged around 63 MYA. Bambusicolaceae, which was also isolated from dead bamboo culms, has a crown age of 29 MYA and a stem age of about 57 MYA. The stem age of Anastomitrabeculiaceae lies within the range of divergence times of those with similar morphology, but the crown age of Anastomitrabeculiaceae (2.6 MYA) is much earlier compared to these families. Bambusicolaceae was introduced by Hyde at al. [2] to accommodate three bambusicolous taxa, and it currently has 15 species [7]. Fuscostagonosporaceae was introduced by Hyde at al. [66] to accommodate one bambusicolous taxon and it currently has four species [7]. Ariyawansa et al. [64] introduced the pleosporalean family, Caryosporaceae, which is morphologically similar to Astrosphaeriellaceae and Trematosphaeriaceae [7]. Based on Liu et al. [11], the stem age of Caryosporaceae (85 MYA) is similar to Trematosphaeriaceae (88 MYA) compared to Astrosphaeriellaceae (113 MYA), but the crown age of Caryosporaceae (2 MYA) is much earlier compared to Astrosphaeriellaceae (55 MYA) and Trematosphaeriaceae (65 MYA). Astrosphaeriellaceae currently has 111 species, and Trematosphaeriaceae has 103 species, whereas Caryosporaceae has ten species [7]. Compared to their morphologically similar families, the early crown of Anastomitrabeculiaceae and Caryosporaceae could be due to their smaller sample size. Therefore, further collections are needed for an accurate estimation of the crown age as it is affected by the sample size of the clade [27]. This could also be due to rapid speciation of pleosporalean fungal species given their high adaptation capabilities.

The estimated crown age of Pleosporales (206 MYA) lies within the early Triassic period. The origin of monocotyledons is estimated within the late Cretaceous period (around 145 MYA) [68]. This period is associated with the diversification of pleosporalean families, which continued during the early Cretaceous period when there was a major diversification and radiation of angiosperms, which favoured further diversification of Pleosporalean families to adapt to various hosts [69].

Hosts and their symbionts can speciate in parallel, which relates to a high level of congruence between the phylogeny of the hosts and their symbionts [70,71]. Therefore, studies focusing on divergence time is important for a better understanding of host–pathogen interaction as well as co-evolutionary interactions [72]. This study uses a polyphasic approach based on morphology, multi-locus phylogenetic analyses and divergence time estimates. By implementing a polyphasic approach, we provide strong evidence for introducing the new family based on congruent results supporting the establishment of a new family.

Author Contributions: Conceptualization, C.S.B., C.P.; methodology, C.S.B., C.P.; resources, K.D.H.; writing—original draft preparation, C.S.B.; writing—review and editing, C.S.B., C.P., R.J., I.P. and K.D.H.; supervision, K.D.H.; funding acquisition, K.D.H. All authors have read and agreed to the published version of the manuscript.
References

1. Zhang, Y.; Crous, P.W.; Schoch, C.L.; Hyde, K.D. Pleosporales. *Fungal Divers.* 2012, 53, 1–221. [CrossRef] [PubMed]

2. Hyde, K.D.; Jones, E.B.G.; Liu, J.K.; Ariyawansa, H.; Boehm, E.; Boonme, S.; Braun, U.; Chomnunti, P.; Crous, P.W.; Dai, D.Q.; et al. Families of Dothideomycetes. *Fungal Divers.* 2013, 63, 1–313. [CrossRef]

3. Tanaka, K.; Hirayama, K.; Yonezawa, H.; Sato, G.; Toriyabe, A.; Kudo, H.; Hashimoto, A.; Matsumura, M.; Harada, Y.; Kurihara, Y.; et al. Revision of the Massarinae (Pleosporales, Dothideomycetes). *Stud. Mycol.* 2015, 82, 75–136. [CrossRef] [PubMed]

4. Phukhamsakda, C.; Hongsan, S.; Ryberg, M.; Ariyawansa, H.A.; Chomnunti, P.; Bahkali, A.H.; Hyde, K.D. The evolution of Massarinae with Longipelliculateae fam. nov. *Mycosphere* 2016, 7, 1713–1731. [CrossRef]

5. Jaklitsch, W.M.; Checa, J.; Blanco, M.N.; Olariaga, I.; Tello, S.; Voglmayr, H. A preliminary account of the *Lentimurisporaceae*. *Cryptogam. Mycol.* 2014, 35, 1–316. [CrossRef]

6. Liu, N.G.; Lin, C.G.; Liu, J.K.; Samarakoon, S.; Bhat, D.J.; Hyde, K.D.; McKenzie, E.H.; Jumpathong, J. Higher level phylogenetic relationships within the bamboos (*Poaceae*). *Flora-Morphol. Distrib. Funct. Ecol. Plants* 2018, 167–263. [CrossRef] [PubMed]

7. Kruys, Å.; Eriksson, O.E.; Wedin, M. Phylogenetic relationships of coprophilous *Ascomycota*. *Mol. Phylogenet. Evol.* 2013, 79, 64–78. [CrossRef] [PubMed]

8. Kirschner, R.; Yang, Z.L.; Zhao, Q.; Feng, B. *Ovipoculum album*, a new anamorph with gelatinous cupulate bulbilliferous conidiomata from China and with affinities to the *Auriculariales* (*Basiomyctea*). *Fungal Divers.* 2009, 33, 55–65. [CrossRef]

9. Hyde, K.D.; Zhou, D.; McKenzie, E.; Ho, W.; Dalisay, T. Vertical distribution of saprobic fungi on bamboo culms. *Fungal Divers.* 2002, 11, 109–118. [CrossRef]

10. Prieto, M.; Wedin, M. Dating the diversification of the major lineages of *Ascomycota* (Fungi). *PLoS ONE* 2013, 8, e65576. [CrossRef] [PubMed]
23. Hongsanan, S.; Sánchez-Ramírez, S.; Crous, P.W.; Ariyawansa, H.A.; Zhao, R.L.; Hyde, K.D. The evolution of fungal epiphytes. Mycosphere 2016, 7, 1690–1712. [CrossRef]
24. Hongsanan, S.; Maharachchikumbura, S.S.N.; Hyde, K.D.; Samaraoon, M.C.; Jeewon, R.; Zhao, Q.; Al-Sadi, A.M.; Bahkali, A.H. An updated phylogeny of Sordariomycetes based on phylogenetic and molecular clock evidence. Fungal Divers. 2017, 84, 25–41. [CrossRef]
25. Samaraoon, M.C.; Hyde, K.D.; Promputtha, I.; Hongsanan, S.; Ariyawansa, H.A.; Maharachchikumbura, S.S.N.; Daranagama, D.A.; Stadler, M.; Mapook, A. Evolution of Xylariomycetidae (Ascomycota: Sordariomycetes). Mycosphere 2016, 7, 1746–1761. [CrossRef]
26. Samaraoon, M.C.; Hyde, K.D.; Hongsanan, S.; McKenzie, E.H.; Ariyawansa, H.A.; Promputtha, I.; Zeng, X.Y.; Tian, Q.; Liu, J.K. Divergence time calibrations for ancient lineages of Ascomycota classification based on a modern review of estimations. Fungal Divers. 2019, 96, 285–346. [CrossRef]
27. Hyde, K.D.; Maharachchikumbura, S.S.; Hongsanan, S.; Samaraoon, M.C.; Lücking, R.; Dem, P.; Harishchandra, D.; Jeewon, R.; Zhao, R.L.; Xu, J.C.; et al. The ranking of fungi: A tribute to David L. Hawksworth on his 70th birthday. Fungal Divers. 2017, 84, 1–23. [CrossRef]
28. Senanayake, I.C.; Rathnayaka, A.R.; Marasinghe, D.S.; Calabon, M.S.; Gentekaki, E.; Lee, H.B.; Hurdeal, V.; Dem, P.; Dissanayake, L.S.; Wijesinghe, S.N.; et al. Morphological approaches in studying fungi: Collection, examination, isolation, sporulation and preservation. Mycosphere 2020, 11, 2678–2754. [CrossRef]
29. Jayasiri, C.S.; Hyde, K.D.; Ariyawansa, H.A.; Bhat, J.; Buyck, B.; Cai, L.; Dai, Y.C.; Abd-Elsalam, K.A.; Ertz, D.; Hidayat, I.; et al. The faces of fungi database: Fungal names linked with morphology, molecular and human attributes. Fungal Divers. 2015, 74, 3–18. [CrossRef]
30. Jeewon, R.; Hyde, K.D. Establishing species boundaries and new taxa among fungi: Recommendations to resolve taxonomic ambiguities. Mycosphere 2016, 7, 1669–1677. [CrossRef]
31. Dissanayake, A.J.; Bhunjun, C.S.; Maharachchikumbura, S.S.N.; Liu, J.K. Applied aspects of methods to infer phylogenetic relationships amongst fungi. Mycosphere 2020, 11, 2652–2676. [CrossRef]
32. Vilgalys, R.; Hester, M. Rapid genetic identification and mapping of enzymatically amplified ribosomal DNA from several Cryptococcus species. J. Bacteriol. 1990, 172, 4238–4246. [CrossRef] [PubMed]
33. White, T.J.; Bruns, T.; Lee, S.; Taylor, J. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In PCR Protocols; Elsevier: Amsterdam, The Netherlands, 1990; pp. 315–322. [CrossRef]
34. Rehner, S.A.; Buckley, E. A Beauveria phylogeny inferred from nuclear ITS and EF1-α sequences, evidence for cryptic diversification and links to Cordyceps teleomorphs. Mycologia 2005, 97, 84–98. [CrossRef] [PubMed]
35. Hall, T.A. BioEdit: A user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. In Nucleic Acids Symposium Series; Information Retrieval Ltd.: London, UK, 1999; Volume 41, pp. 95–98.
36. Pinnoi, A.; Jeewon, R.; Sakayaroj, J.; Hyde, K.D.; Jones, E.B.G. Berklasium crunisia sp. nov. and its phylogenetic affinities to the Pleosporales based on 18S and 28S rDNA sequence analyses. Mycologia 2007, 99, 378–384. [CrossRef]
37. Beimforde, C.; Feldberg, K.; Nylander, S.; Rikkinen, J.; Tuovila, H.; Dörfelt, H.; Gube, M.; Jackson, D.J.; Reitner, J.; Seyfullah, L.J.; et al. Estimating the Phanerozoic history of the Ascomycota lineages: Combining fossil and molecular data. Mol. Phylogenet. Evol. 2014, 78, 386–398. [CrossRef]
38. Pratibha, J.; Prabhugaonkar, A.; Hyde, K.D.; Bhat, D.J. Phylogenetic placement of Balsunandhika, Cancellidium and Pseudoepicoccum (asexual Ascomycota). Mycotaxa 2014, 86, 68–80. [CrossRef]
39. Thambugala, K.M.; Hyde, K.D.; Tanaka, K.; Tian, Q.; Wanasinghe, D.N.; Ariyawansa, H.A.; Jayasiri, S.C.; Boonmee, S.; Camporesi, E.; Hashimoto, A.; et al. Towards a natural classification and backbone tree for Lophiostomataceae and Amorosiacaeae. Fungal Divers. 2015, 74, 199–266. [CrossRef]
40. Katoh, K.; Rizawicki, Y.; Yamada, K.D. MAFFT online service: Multiple sequence alignment, interactive sequence choice and visualization. Brief. Bioinform. 2019, 20, 1160–1166. [CrossRef]
41. Larsson, A. AliView: A fast and lightweight alignment viewer and editor for large datasets. Bioinformatics 2014, 30, 3276–3278. [CrossRef]
42. Miller, M.A.; Pfeiffer, W.; Schwartz, T. Creating the CIPRES science gateway for inference of large phylogenetic trees. In Proceedings of the 2010 Gateway Computing Environments Workshop (GCE), New Orleans, LA, USA, 14 November 2010; pp. 1–8.
43. Stamatakis, A. RAxML version 8: A tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 2014, 30, 1312–1313. [CrossRef]
44. Swoford, D.L. PAUP: Phylogenetic Analysis Using Parsimony, Version 4.0 b10; Sinauer Associates: Sunderland, UK, 2002.
45. Darriba, D.; Taboada, G.L.; Doallo, R.; Posada, D. jModelTest 2: More models, new heuristics and parallel computing. Nat. Methods 2012, 9, 772. [CrossRef] [PubMed]
46. Zhaxybayeva, O.; Gogarten, J.P. Bootstrap, Bayesian probability and maximum likelihood mapping: Exploring new tools for comparative genome analyses. BMC Genom. 2002, 3, 4. [CrossRef]
47. Ronquist, F.; Teslenko, M.; van der Mark, P.; Ayres, D.L.; Darling, A.; Höhna, S.; Larget, B.; Liu, L.; Suchard, M.A.; Huelsenbeck, J.P. MrBayes 3.2: Efficient Bayesian phylogenetic inference and model choice across a large model space. Syst. Biol. 2012, 61, 539–542. [CrossRef] [PubMed]
48. Rambaut, A.; Drummond, A.J.; Xie, D.; Baele, G.; Suchard, M.A. Posterior summarization in Bayesian phylogenetics using Tracer 1.7. Syst. Biol. 2018, 67, 901. [CrossRef] [PubMed]
49. Rambaut, A. FigTree v1.4. Institute of Evolutionary Biology, University of Edinburgh, Edinburgh. Available online: http://tree.bio.ed.ac.uk/software/figtree/ (accessed on 15 August 2020).
50. Bouckaert, R.; Vaughan, T.G.; Barido-Sottani, J.; DUCHÉNE, S.; Fourment, M.; Gavryushkina, A.; Heled, J.; Jones, G.; Kühnert, D.; De Maio, N.; et al. BEAST 2.5: An advanced software platform for Bayesian evolutionary analysis. PLoS Comput. Biol. 2019, 15, e1006650. [CrossRef]
51. Gernhard, T.; Hartmann, K.; Steel, M. Stochastic properties of generalised Yule models, with biodiversity applications. J. Math. Biol. 2008, 57, 680–691. [CrossRef]
52. Drummond, A.J.; Suchard, M.A.; Xie, D.; Rambaut, A. Bayesian phylogenetics with BEAUti and the BEAST 1.7. Mol. Biol. Evol. 2012, 29, 1969–1973. [CrossRef]
53. Mindell, R.A.; Stockey, R.A.; Beard, G.; Currah, R.S. Fossil fungi ascomycete from the Eocene of Vancouver Island, British Columbia. Mycol. Res. 2007, 111, 680–684. [CrossRef]
54. Rambaut, A. FigTree v1.4. Institute of Evolutionary Biology, University of Edinburgh, Edinburgh. Available online: http://tree.bio.ed.ac.uk/software/figtree/ (accessed on 15 August 2020).
55. Taylor, T.N.; Krings, M.; Taylor, E.L. Ascomycota. In Fungal Biol. Rev. 2007, 111, 680–684. [CrossRef]
56. Zeng, X.Y.; Jeewon, R.; Hongsanan, S.; Hyde, K.D.; Wen, T.C. Unravelling evolutionary relationships between epifoliar Meliolaceae and angiosperms. J. Syst. Evol. 2020, in press. [CrossRef]