BOULIGAND-SEVERI TANGENTS IN MV-ALGEBRAS

MANUELA BUSANICHE AND DANIELE MUNDICI

Abstract. In their recent seminal paper published in the Annals of Pure and Applied Logic, Dubuc and Poveda call an MV-algebra A strongly semisimple if all principal quotients of A are semisimple. All boolean algebras are strongly semisimple, and so are all finitely presented MV-algebras. We show that for any 1-generator MV-algebra semisimplicity is equivalent to strong semisimplicity. Further, a semisimple 2-generator MV-algebra A is strongly semisimple iff its maximal spectral space $\mu(A) \subseteq [0, 1]^2$ does not have any rational Bouligand-Severi tangents at its rational points. In general, when A is finitely generated and $\mu(A) \subseteq [0, 1]^n$ has a Bouligand-Severi tangent then A is not strongly semisimple.

1. Introduction: stable consequence

We refer to [3] and [6] for background on MV-algebras. Following Dubuc and Poveda [4], we say that an MV-algebra A is strongly semisimple if for every principal ideal I of A the quotient A/I is semisimple. Since $\{0\}$ is a principal ideal of A, every strongly semisimple MV-algebra is semisimple.

From a classical result by Hay [5] and Wójcicki [11] (also see [3, 4.6.7] and [6, 1.6]), it follows that every finitely presented MV-algebra is strongly semisimple. Trivially, all hyperarchimedean MV-algebras, whence in particular all boolean algebras, are strongly semisimple, and so are all simple and all finite MV-algebras, [3, 3.5 and 3.6.5].

Our paper is devoted to characterizing n-generator strongly semisimple MV-algebras for $n = 1, 2$. In Theorem 2.1 we show that when $n = 1$ strong semisimplicity is equivalent to semisimplicity.

As the reader will recall ([3, 9.1.5]), the free n-generator MV-algebra is the MV-algebra $M([0, 1]^n)$ of all McNaughton functions $f : [0, 1]^n \to [0, 1]$, with pointwise operations of negation $\neg x = 1 - x$ and truncated addition $x \oplus y = \min(1, x + y)$.

For any nonempty closed set $X \subseteq [0, 1]^n$ we let $\mathcal{M}(X)$ denote the MV-algebra of restrictions to X of the functions in $\mathcal{M}([0, 1]^n)$, in symbols,

$$\mathcal{M}(X) = \{ f \upharpoonright X \mid f \in \mathcal{M}([0, 1]^n) \}.$$

By [3, 3.6.7], $\mathcal{M}(X)$ is a semisimple MV-algebra—actually, up to isomorphism, $\mathcal{M}(X)$ is the most general possible n-generator semisimple MV-algebra A: to see this, pick generators $\{a_1, \ldots, a_n\}$ of A. Let $\pi_i : [0, 1]^n \to [0, 1]$ be the projection functions in the free MV-algebra $\mathcal{M}([0, 1]^n)$ for $i = 1, \ldots, n$. Then the assignment that maps $\pi_i \mapsto a_i$ for each $i = 1, \ldots, n$ uniquely extends to a homomorphism $\eta_a : \mathcal{M}([0, 1]^n) \to A$ of the free n-generator MV-algebra onto A. Let $\mathfrak{h}_a = \ker(\eta_a)$ be the kernel of this homomorphism and

$$Z_a = \bigcap \{ Zf \mid f \in \mathfrak{h}_a \} \quad (1)$$
the intersection of the zeroesets of the McNaughton functions in h_a. Then
\[A \cong \mathcal{M}(\mathbb{Z}_a). \] (2)

In Theorem 3.4 we prove that a 2-generator MV-algebra $A = \mathcal{M}(X)$ with $X \subseteq [0, 1]^2$ is strongly semisimple iff X has no rational outgoing Bouligand-Severi tangent vector at any of its rational points, [1, 9, 7]. Having such a tangent is a sufficient condition for $\mathcal{M}(X)$ not to be strongly semisimple, for any $X \subseteq [0, 1]^n$, (Theorem 3.3). Here, as usual, a point $x \in \mathbb{R}^n$ is said to be rational if so are all its coordinates.

By a rational vector we mean a nonzero vector $w \in \mathbb{R}^n$ such that the line $\mathbb{R}w \subseteq \mathbb{R}^n$ contains at least two rational points.

Notation: Given $g \in \mathcal{M}([0, 1]^n)$ let $Zg = \{ x \in [0, 1]^n \mid g(x) = 0 \}$. Following [3, p.33] or [6, p.21], for $k \in \mathbb{N}$, $k \cdot g$ stands for k-fold pointwise truncated addition of g.

2. One-generator MV-algebras

Theorem 2.1. Every one-generator semisimple MV-algebra A is strongly semisimple.

Proof. As in (1)-(2), let $X \subseteq [0, 1]$ be a nonempty closed set such that $A \cong \mathcal{M}(X)$. For some $g \in \mathcal{M}([0, 1])$ let J be the principal ideal of $\mathcal{M}([0, 1])$ generated by g, and J' be the principal ideal of $\mathcal{M}(X)$ generated by $g' = g|X$. Observe that $J' = \{ f|X \mid f \in J \}$. For every $f \in \mathcal{M}([0, 1])$, letting $f' = f|X$ we must prove: if f' belongs to all maximal ideals of $\mathcal{M}(X)$ to which g' belongs, then f' belongs to J'. In the light of [3, 3.6.6] and [6, 4.19], this amounts to proving

\[\text{if } f = 0 \text{ on } Zg \cap X \text{ then } f|X \in J'. \] (3)

Let Δ be a triangulation of $[0, 1]$ such that f and g are linear over every simplex of Δ. The existence of Δ follows from the piecewise linearity of f and g, [10]. In view of the compactness of X and $[0, 1]$, it is sufficient to settle the following

Claim. Suppose $f \in \mathcal{M}([0, 1])$ vanishes over $Zg \cap X$. Then for all $x \in X$ there is an open neighbourhood $N_x \ni x$ in $[0, 1]$ together with an integer $m_x \geq 0$ such that $m_x \cdot g \geq f$ on $N_x \cap X$.

We proceed by cases:

Case 1: $g(x) > 0$. Then for some integer r and open neighbourhood $N_x \ni x$ we have $g > 1/r$ over N_x. Letting $m_x = r$ we have $1 = m_x \cdot g \geq f$ over N_x, whence a fortiori, $m_x \cdot g \geq f$ over $N_x \cap X$.

Case 2: $g(x) = 0$. Since f vanishes over $Zg \cap X$, then $f(x) = 0$. Let T be a 1-simplex of Δ such that $x \in T$. Let T_x be the smallest face of T containing x.

Subcase 2.1: $T_x = T$. Then $x \in \text{int}(T)$. Since g is linear over T then g vanishes over T. By our hypotheses on f and Δ, f vanishes over T, whence and $0 = g \geq f = 0$ on T. Letting $N_x = \text{int}(T)$ and $m_x = 1$, we get $m_x \cdot g \geq f$ over N_x whence a fortiori, the inequality holds over $N_x \cap X$.

Subcase 2.2: $T_x = \{x\}$. Then $T = \text{conv}(x, y)$ for some $y \neq x$. Without loss of generality, $y > x$. We will exhibit a right open neighbourhood $R_x \ni x$ and an integer $r_x \geq 0$ such that $r_x \cdot g \geq f$ on $R_x \cap X$. The same argument yields a left neighbourhood $L_x \ni x$ and an integer $l_x \geq 0$ such that $l_x \cdot g \geq f$ on $L_x \cap X$. One then takes $N_x = R_x \cup L_x$ and $m_x = \max(r_x, l_x)$.

Subsubcase 2.2.1: If both g and f vanish at y, then they vanish over T (because they are linear over T). Upon defining $R_x = \text{int}(T) \cup \{x\}$ and $r_x = 1$ we get $r_x \cdot g \geq f$ over R_x, whence in particular, over $R_x \cap X$.
Subsubcase 2.2.2: If both \(g \) and \(f \) are \(> 0 \) at \(y \) then for all suitably large \(m \) we have \(1 = m \cdot g \geq f \) on \(T \). Letting \(r_x \) the smallest such \(m \) and \(\mathcal{R}_x = \text{int}(T) \cup \{x\} \) we have the desired inequality over \(\mathcal{R}_x \) and a fortiori over \(\mathcal{R}_x \cap X \).

Subsubcase 2.2.3: \(g(y) = 0, f(y) > 0 \). By our hypotheses on \(\Delta \), \(g \) is linear over \(T \) and hence \(g = 0 \) over \(T \). It follows that \(X \cap T = \{x\} \); for otherwise, our assumption \(Z \cap X \supset Zg \cap X \) together with the linearity of \(f \) over \(T \) would imply \(f(y) = 0 \), against our current hypothesis. Letting \(\mathcal{R}_x = \text{int}(T) \cup \{x\} \) and \(r_x = 1 \) we have \(r_x \cdot g \geq f \) over \(\mathcal{R}_x \cap X \). \(\square \)

3. Strong semisimplicity and Bouligand-Severi tangents

Severi [8, §53, p.59 and p.392], [9, §1, p.99] and independently, Bouligand [1, p.32] called a half-line \(H \subset \mathbb{R}^n \) tangent to a set \(X \subset \mathbb{R}^n \) at an accumulation point \(x \) of \(X \) if for all \(\epsilon, \delta > 0 \) there is \(y \in X \) other than \(x \) such that \(||y - x|| < \epsilon \), and the angle between \(H \) and the half-line through \(y \) originating at \(x \) is \(> \delta \).

Here as usual, \(||v|| \) is the length of vector \(v \in \mathbb{R}^n \).

Severi [9, §2, p. 100 and §4, p.102] noted that for any accumulation point \(x \) of a closed set \(X \) there is a half-line \(H \) tangent to \(X \) at \(x \).

Today (see, e.g., [2, p.16], [7, p.1376]), Bouligand-Severi tangents are routinely introduced as follows:

Definition 3.1. Let \(x \) be an element of a closed subset \(X \) of \(\mathbb{R}^n \), and \(u \) a unit vector in \(\mathbb{R}^n \). We then say that \(u \) is a Bouligand-Severi tangent (unit) vector to \(X \) at \(x \) if \(X \) contains a sequence \(x_0, x_1, \ldots \) of elements, all different from \(x \), such that

\[
\lim_{i \to \infty} x_i = x \quad \text{and} \quad \lim_{i \to \infty} (x_i - x)/||x_i - x|| = u.
\]

Observe that \(x \) is an accumulation point of \(X \). We further say that \(u \) is outgoing if for some \(\lambda > 0 \) the segment \(\text{conv}(x, x + \lambda u) \) intersects \(X \) only at \(x \).

Already Severi noted that his definition of tangent half-line \(H = \mathbb{R}_{\geq 0}u \) is equivalent to Definition 3.1:

Proposition 3.2. ([9, §5, p.103]). For any nonempty closed subset \(X \) of \(\mathbb{R}^n \), point \(x \in X \), and unit vector \(u \in \mathbb{R}^n \) the following conditions are equivalent:

(i) For all \(\epsilon, \delta > 0 \), the cone \(\text{cone}_{x, u, \epsilon, \delta} \) with apex \(x \), axis parallel to \(u \), vertex angle \(2\delta \) and height \(\epsilon \) contains infinitely many points of \(X \).

(ii) \(u \) is a Bouligand-Severi tangent vector to \(X \) at \(x \).

When \(n = 1 \), \(\text{cone}_{x, u, \epsilon, \delta} \) is the segment \(\text{conv}(x, x + \epsilon u) \). When \(n = 2 \), \(\text{cone}_{x, u, \epsilon, \delta} \) is the isosceles triangle \(\text{conv}(x, a, b) \) with vertex \(x \), basis \(\text{conv}(a, b) \), height equal to \(\epsilon \) and vertex angle \(\arctan a/b = 2\delta \).

The next two results provide geometric necessary and sufficient conditions on \(X \) for the semisimple MV-algebra \(\mathcal{M}(X) \) to be strongly semisimple. These conditions are stated in terms of the non-existence of Bouligand-Severi tangent vectors having certain rationality properties.

Theorem 3.3. Let \(X \) be a nonempty closed set in \([0, 1]^n\). Suppose \(X \) has a Bouligand-Severi rational outgoing tangent vector \(u \) at some rational point \(x \in X \). Then \(\mathcal{M}(X) \) is not strongly semisimple.

Proof. Since \(u \) is outgoing, let \(\lambda > 0 \) satisfy \(X \cap \text{conv}(x, x + \lambda u) = \{x\} \). Without loss of generality \(x + \lambda u \in \mathbb{Q}^n \). Our hypothesis together with Proposition 3.2 yields a sequence \(w_1, w_2, \ldots \) of distinct points of \(X \), all distinct from \(x \), accumulating at \(x \), at strictly decreasing distances from \(x \), in such a way that the sequence of unit vectors \(u_i \) given by \((w_i - x)/||w_i - x|| \) tends to \(u \) as \(i \) tends to \(\infty \). Let \(y = x + \lambda u \).
Since \(X \cap \text{conv}(x, y) = \{x\} \), no point \(w_i \) lies on the segment \(\text{conv}(x, y) \), and we can further assume that the sequence of angles \(\omega \) is strictly decreasing and tends to zero as \(i \) tends to \(\infty \).

Since both points \(x \) and \(y \) are rational, then by [6, 2.10] for some \(g \in \mathcal{M}([0, 1]^n) \) the zeroset

\[
Z g = \{ z \in [0, 1]^n \mid g(z) = 0 \}
\]
coinsides with the segment \(\text{conv}(x, y) \). Thus,

\[
\frac{\partial g(x)}{\partial (u)} = 0.
\]

Let \(J \) be the ideal of \(\mathcal{M}([0, 1]^n) \) generated by \(g \),

\[
J = \{ f \in \mathcal{M}([0, 1]^n) \mid f \leq k \cdot g \text{ for some } k = 0, 1, 2, \ldots \}.
\]

Then for each \(f \in J \),

\[
\frac{\partial f(x)}{\partial (u)} = 0.
\]

Since the directional derivatives of \(f \) at \(x \) are continuous, (meaning that the map \(t \mapsto \partial f(x)/\partial t \) is continuous) it follows that

\[
\lim_{t \to u} \frac{\partial f(x)}{\partial t} = \frac{\partial f(x)}{\partial (u)} = 0.
\] (4)

Let \(g' = g|X \) and

\[
J' = \{ f' \in \mathcal{M}(X) \mid f' \leq k \cdot g' \text{ for some } k = 0, 1, 2, \ldots \}
\]

be the ideal of \(\mathcal{M}(X) \) generated by \(g' \). A moment’s reflection shows that

\[
J' = \{ l|X \mid l \in J \}.
\] (5)

One inclusion is trivial. For the converse inclusion, if \(f|X \leq (k \cdot g)|X \) then letting \(l = f \land k \cdot g \) we get \(l \leq k \cdot g \). So \(l \in J \) and \(l|X = f|X \), showing that \(f|X \) is extendible to some \(l \in J \).

For any \(f \in \mathcal{M}([0, 1]^n) \), the piecewise linearity of \(f \) ensures that for all large \(i \) the value of the incremental ratio \((f(w_i) - f(x))/||w_i - x|| \) coincides with the directional derivative \(\partial f(x)/\partial u \) along the unit vector \(u_i = (w_i - x)/||w_i - x|| \). Thus in particular, if \(f|X = f'| \in J' \), from (4)-(5) it follows that

\[
\lim_{i \to \infty} \frac{f(w_i) - f(x)}{||w_i - x||} = 0.
\]

Since \(x \) is rational, again by [6, 2.10] there is \(j \in \mathcal{M}([0, 1]^n) \) with \(Z j = \{x\} \). For some \(\omega > 0 \) we have \(\partial j(x)/\partial (u) = \omega \), whence

\[
\lim_{i \to \infty} \frac{j(w_i) - j(x)}{||w_i - x||} = \omega.
\]

Therefore, \(j' \notin J' \). Since \(Z g \cap X = \{x\} \), recalling [6, 4.19] we see that the only maximal of \(\mathcal{M}(X) \) containing \(J' \) is the set of all functions in \(\mathcal{M}(X) \) that vanish at \(x \). Thus, \(j' \) belongs to all maximal ideals of \(\mathcal{M}(X) \) containing \(J' \). By [3, 3.6.6], \(\mathcal{M}(X) \) is not strongly semisimple: specifically, \(j'/J' \) is infinitesimal in the principal quotient \(\mathcal{M}(X)/J' \).

As a partial converse we have:

Theorem 3.4. Let \(X \subseteq [0, 1]^n \) be a nonempty closed set. Suppose the MV-algebra \(\mathcal{M}(X) \) is not strongly semisimple.
(i) Then X has a Bouligand-Severi tangent vector u at some point $x \in X$ satisfying the following nonalignment condition: there is a sequence of distinct $w_i \in X$, all distinct from x such that
\[
\lim_{i \to \infty} w_i = x, \quad \lim_{i \to \infty} \frac{w_i - x}{||w_i - x||} = u, \quad w_i \notin \text{conv}(x, x + u) \text{ for all } i.
\]

(ii) In particular, if $n = 2$, then X has a Bouligand-Severi outgoing rational tangent vector u at some rational point $x \in X$.

Proof. (i) The hypothesis yields a function $g \in \mathcal{M}([0,1]^n)$, with its restriction $g' = g|X \in \mathcal{M}(X)$, in such a way that the principal ideal J' of $\mathcal{M}(X)$ generated by g',
\[
J' = \{ l' \in \mathcal{M}(X) \mid l' \leq k \cdot g' \text{ for some } k = 1, 2, \ldots \}
\]
is strictly contained in the intersection I of all maximal ideals of $\mathcal{M}(X)$ containing J'. Thus for some $j \in \mathcal{M}([0,1]^n)$ letting $j' = j|X$ we have $j' \in I \setminus J'$. By [3, 3.6.6] and [6, 4.19],
\[
j' = 0 \text{ on } Zg, \quad \text{i.e., } X \cap Zj \supseteq X \cap Zg \quad (6)
\]
and
\[
\forall m = 0, 1, \ldots \exists z_m \in X, \ j'(z_m) > m \cdot g'(z_m). \quad (7)
\]
There is a sequence of integers $0 < m_0 < m_1 < \ldots$ and a subsequence y_0, y_1, \ldots of $\{z_1, z_2, \ldots\}$ such that $y_i \neq y_l$ for $i \neq l$ and
\[
\forall t = 0, 1, \ldots, j'(y_t) > m_t \cdot g'(y_t). \quad (8)
\]
The compactness of X yields an accumulation point $x \in X$ of the y_t. Without loss of generality (taking a subsequence, if necessary) we can further assume
\[
||y_0 - x|| > ||y_1 - x|| > \cdots, \text{ whence } \lim_{i \to \infty} y_i = x. \quad (9)
\]
By (8), for all t, $j'(y_t) > 0$. Then by (6), $g'(y_t) > 0$. For each $i = 0, 1, \ldots$, letting the unit vector $u_i \in \mathbb{R}^n$ be defined by $u_i = (y_i - x)/||y_i - x||$, we obtain a sequence of (possibly repeated) unit vectors $u_i \in \mathbb{R}^n$. Since the boundary of the unit ball in \mathbb{R}^n is compact, some unit vector $u \in \mathbb{R}^n$ satisfies
\[
\forall \epsilon > 0 \text{ there are infinitely many } i \text{ such that } ||u_i - u|| < \epsilon.
\]
Some subsequence w_0, w_1, \ldots of the y_t will satisfy the condition
\[
\forall \epsilon, \delta > 0 \text{ there is } k \text{ such that for all } i > k, \quad w_i \in \text{cone}_{x, u, \epsilon, \delta}. \quad (10)
\]
Correspondingly, the sequence v_0, v_1, \ldots given by $v_k = (w_k - x)/||w_k - x||$ will satisfy
\[
\lim_{i \to \infty} v_i = u. \quad (11)
\]
We have just proved that u is a Bouligand-Severi tangent to X at x.

To complete the proof of (i) we prepare:

Fact 1. $g'(x) = 0$.

Otherwise, from the continuity of g, for some real $\rho > 0$ and suitably small $\epsilon > 0$, we have the inequality $g(z) > \rho$ for all z in the open ball $B_{x, \epsilon}$ of radius ϵ centered at x. By (10), $B_{x, \epsilon}$ contains infinitely many w_i. There is a fixed integer $\bar{m} > 0$ such that $1 = \bar{m} \cdot g' \geq j'$ for all these w_i, which contradicts (8).

Fact 2. $j'(x) = 0$.

This immediately follows from (6) and Fact 1.
Fact 3. $\partial g(x)/\partial u = 0$.

By way of contradiction, suppose $\partial g(x)/\partial u = \theta > 0$. In view of the continuity of the map $t \mapsto \partial g(x)/\partial t$, let $\delta > 0$ be such that $\partial g(x)/\partial r > \theta/2$, for any unit vector r such that $\hat{r}u < \delta$. Since by Fact 2 $j(x) = 0$ and both g and j are piecewise linear, there is an $\epsilon > 0$ together with an integer $\bar{k} > 0$ such that $\partial g(x)/\partial r > \theta/2$, for any unit vector r such that $\hat{r}u < \delta$.

Since by Fact 2 $j(x) = 0$ and both g and j are piecewise linear, there is an $\epsilon > 0$ together with an integer $\bar{k} > 0$ such that $\bar{k}/squaresmallsolid g \geq j$ over the cone $C = \text{cone}_{x,u,\epsilon,\delta}$. By (10), C contains infinitely many w_i, in contradiction with (8).

To conclude the proof of the nonalignment condition in (i), it is sufficient to settle the following:

Fact 4. There is $\lambda > 0$ such that for all large i the segment $\text{conv}(x, x+\lambda u)$ contains no w_i.

For otherwise, from Fact 3 $\partial g(x)/\partial u = 0$, whence the piecewise linearity of g ensures that g vanishes on infinitely many w_i of $\text{conv}(x, x+\lambda u)$ arbitrarily near x. Any such w_i belongs to X, whence by (6), $j(w_i) = 0$, in contradiction with (8).

The proof of (i) is now complete.

(ii) Let H^\pm be the two closed half-spaces of \mathbb{R}^2 determined by the line passing through x and $x + u$. By (10), infinitely many w_i lie in the same closed half-space, say, H^+. Without loss of generality, $H^+ \cap \text{int}([0, 1]^2) \neq \emptyset$. Let u^\perp be the orthogonal vector to u such that $x + u^\perp \in H^+$.

Fact 5. For all small $\epsilon > 0$,

$$\frac{\partial g(x + \epsilon u)}{\partial u^\perp} > 0.$$

By way of contradiction, assume $\partial g(x + \epsilon u)/\partial u^\perp = 0$. Since g is piecewise linear, by Facts 1 and 3, for suitably small $\eta, \omega > 0$, the function g vanishes over the triangle $T = \text{conv}(x, x + \eta u, x + \eta u + \omega u^\perp)$. By (10), T contains infinitely many w_i. By (6), $g(w_i) = j(w_i) = 0$ against (8).

Fact 6.

$$\frac{\partial j(x)}{\partial u} > 0.$$

Otherwise, $\partial j(x)/\partial u = 0$. Fact 5 yields a fixed integer \bar{h} such that, on a suitably small triangle of the form $T = \text{conv}(x, x + \epsilon u, x + \epsilon u + \omega u^\perp)$, we have $\bar{h} \cdot g \geq j$. By (10), T contains infinitely many w_i, again contradicting (8).

We now prove a strong form of Fact 4, showing that u is an outgoing tangent vector:

Fact 7. For some $\lambda > 0$ the segment $\text{conv}(x, x+\lambda u)$ intersects X only at x.

Otherwise, from Facts 1 and 3 it follows that g vanishes on infinitely many points of $X \cap \text{conv}(x, x + \lambda u)$ converging to x. By (6), j vanishes on all these points. Since j is piecewise linear, $\partial j(x)/\partial u = 0$, against Fact 6.

By a rational line in \mathbb{R}^n we mean a line passing through at least two distinct rational points.

Fact 8. x is a rational point, and u is a rational vector.
As a matter of fact, Facts 6 and 2 yield a rational line L through x. On the other hand, Facts 3 and 5 show that the line passing through x and $x+u$ is rational and different from L. Thus x is rational, whence so is the vector u.

We conclude that X has u as a Bouligand-Severi outgoing rational tangent vector at the rational point x. □

Recalling Theorem 3.3 we now obtain:

Corollary 3.5. Let $X \subseteq [0,1]^2$ be a nonempty closed set. Then $\mathcal{M}(X)$ is not strongly semisimple iff X has a Bouligand-Severi outgoing rational tangent vector u at some rational point $x \in X$.

References

[1] H. Bouligand, Sur les surfaces dépourvues de points hyperlimites, Ann. Soc. Polonaise Math., 9 (1930) 32–41.
[2] R.I.Bot, S.M. Grad, G.Wanka, Duality in vector optimization, Springer-Verlag, NY, 2009.
[3] R. Cignoli, I.M.L.D’Ottaviano, D. Mundici, Algebraic Foundations of many-valued Reasoning, Trends in Logic, Vol. 7, Kluwer Academic Publishers, Dordrecht, (2000).
[4] E. Dubuc, Y. Poveda, Representation theory of MV-algebras, Annals of Pure and Applied Logic, 161 (2010) 1024–1046.
[5] L.S. Hay, Axiomatization of the infinite-valued predicate calculus, Journal of Symbolic Logic, 28 (1963) 77-86.
[6] D. Mundici, Advanced Łukasiewicz calculus and MV-algebras, Trends in Logic, Vol. 35, Springer-Verlag, Berlin, NY, 2011.
[7] L. Rifford, Singularities of Viscosity Solutions and the Stabilization Problem in the Plane, Indiana University Mathematics Journal, 52, No. 5 (2003) 1373–1395.
[8] F. Severi, Conferenze di geometria algebrica (Raccolte da B. Segre), Stabilimento tipografico del Genio Civile, Roma, 1927, and Zanichelli, Bologna, 1927–1930.
[9] F. Severi, Su alcune questioni di topologia infinitesimale, Annales Soc. Polonaise Math., 9 (1931) 97–108.
[10] J. R. Stallings, Lectures on Polyhedral Topology, Tata Institute of Fundamental Research, Mumbai, 1967.
[11] R. Wójcicki, On matrix representations of consequence operations of Łukasiewicz sentential calculi, Zeitschrift für math. Logik und Grundlagen der Mathematik, 19 (1973) 239-247. Reprinted, In: R. Wójcicki, G. Malinowski (Eds.), Selected Papers on Łukasiewicz Sentential Calculi, Ossolineum, Wroclaw, 1977, pp. 101-111.