Unmanned aerial systems in search and rescue applications with their path planning: a review

Ajith V S¹*, Jolly KG²

¹Asst. Professor, Department of Aeronautical Engineering, Jawaharlal College of Engineering and Technology, Palakkad, India (Affiliated to APJ Abdul Kalam Technological University), Research Scholar, Department of Mechanical Engineering, N S S College of Engineering, Palakkad, India.

²Professor, Department of Mechanical Engineering, N S S College of Engineering, Palakkad, India. (Affiliated to APJ Abdul Kalam Technological University)

*vs.ajith.aero@gmail.com

Abstract. In recent days, the Unmanned Aerial Systems (UAS) is an emerging technology rapidly across many warfare’s and enable new civilian domains which include real-time monitoring, security, border surveillance, wildlife surveys, providing wireless coverage, weather monitoring, smart farming, surveying, search and rescue, products delivery, farming, and civil structure inspection. Initially, there were many challenges in the design and control of UAS as it lacks an onboard pilot for navigation. Now the condition is improved with the implementation of artificial intelligence techniques in path planning and their coordination. Unmanned Aerial vehicles (UAV) in UAS technology open up new potentials in a variety of fields. This paper presents a review of recent literature, starting with the introduction about the UAS and its types, components, developments, potential applications of UAV in search and rescue and the paper completes with a summary of the different path planning methods used in UAS.

1. Introduction

The unmanned aerial vehicle (UAV) is an airborne unit comparable to an airplane; however, it differs from an aircraft in that it does not have an onboard pilot [1]. UAVs can be used to execute surveillance or recognition missions based on their controllability it’s termed remotely operated or autonomous systems. They are mostly utilized in search and rescue, mapping and surveying, monitoring environmental change, disaster response, and other applications[2],[3]. The usage of UAVs in geometrics and photogrammetry has grown significantly, as has the development of mathematical algorithms and sensors to enable more exact navigation and stabilization of UAVs [4],[5]. Generally, UAVs are equipped with various types of sensors for search and rescue operations. UAVs are widely used to supplement the human sensory units in damage assessment and evaluation, area mapping or surveying, and visual inspection because of their increasing availability and outstanding camera guiding capabilities[6]. Despite significant efforts by academics to expand the field of UAV features such as autonomously exploring, aerial grasping, or transportation, their use remains confined to
human-operated surveillance and cinematography[6],[7]. The primary goal of a Search and Rescue (SAR) operation is to detect also retrieve subjects in the lowest amount of time feasible. This is essential since any delay may lower the victim's chances of survival[8]. UAS is appropriate for circumstances that are too risky and unsafe where direct observing of humanly impractical. These winged robots can monitor the condition from the sky using appropriate sensors, and then send the acquired data to human controllers at the ground control station for an extra act if required. The UAS may be used for a variety of reasons, but in this article, the authors focused solely on search and rescue missions.

2. Classification of UAV

There is no universal classification to systematically describe the model's various classifications, but it can be considered based on different authors' criteria. According to the author[5], depending on how they operate, unmanned vehicles may be divided into five main categories These include unmanned ground vehicles, unmanned aerial vehicles, unmanned surface vehicles, unmanned underwater vehicles, AND unmanned spacecraft. Here the authors have primarily concentrated only on the second type, unmanned aerial vehicles. Based on [6],[9],[10],[11],[12],[13],[14],[15],[16],[17]the UAV’s are classified based on their build types as presented in table 1.

Types of wing	Advantages	Disadvantages
Fixed	Long-range Endurance	Poor maneuverability compared to Vertical Take-off And Landing(VTOL). Horizontal take-off requiring substantial space.
Tilt	Benefits of both fixed and VTOL.	Complex And Expensive.
Unmanned Helicopter	VTOL, high maneuver capability, high payloads.	Expensive and also a comparably high cost for maintenance.
Multi-copter	VTOL, lightweight, reasonable cost, easy to launch.	Restricted payloads. Weak to wind/gust due to low weight.

Another kind of classification[19] is (i) Lighter than air, (ii) heavier than air as presented in figure 1.

![Figure 1. UAV Classification][18]

Based on authors [8],[5],[10],[11],[13],[14],[15],[19],[20],[21],[22],[23],[24] the UAV systems are also classified based on different constructional and performance data and it's projected below fig. 2.
3. Components of UAS

According to [18], [25],[26],[27],[28] a UAS is an agent with the following components as shown in fig.3., (a) a UAV, (b) human-operated control station, or an autonomous and (c) A command and control system, presented in figure 3.

The elements of the UAV include the sensors to perceive the environment, systems to impart analysis capabilities, communication capabilities, and the use of onboard computers for planning and decision-making, and require vehicle control algorithms. To fly an unmanned aerial vehicle (UAV), we need to use the flight controller, which is a microprocessor that interacts with the transmitter to control the UAV, each RC transmitter includes several channels[24],[29]. As reported by [12], UAVs come in a variety of forms, each with its own (aerodynamic configuration, weight, range, size, etc.). As a general rule, UAV systems may be classified into one of the following four configurations as presented in figure 4. While considering literature [14],[18],[30], [31],[32] the UAV consists of the following parts the UAV airframe structure and its materials[34], the flight computer, the communication modules, the actuators, the sensors, the payloads, the propulsion systems, the power source. These modules coordinate work to get vital control of UAVs and a general view in figure 5. The ground control station is designed for high-quality commercial and military drones. A command and control system provides remote communication between the UAV and the ground station. Transmission of data includes [34],[35],[30],[36],[37] flight data, commands, and sensor data, such as video, images, and measurement values. The wireless data link interacts with the drone’s control module to adjust the

![Figure 2. Classification of UAVs based on important performance characteristics.](image1)

![Figure 3. Block diagram of a typical UAS [18].](image2)
aircraft's throttle, flight control surfaces, rotors, etc. according to the type of drone and the required flight parameters.

4. Application of UAV

Robotic SAR systems have many differences, such as the amount and type of robots involved (USV, UAV, UGV, and UUV) in the environment (urban, marine wilderness), the level of autonomy, and how humans control the robot, etc. Few of the important applications [25],[38],[39],[40],[41],[42],[43] are discussed here,

4.1. Maritime search and rescue

During maritime SAR operations [44],[45],[46],[47], it is imperative that the responders’ safety be protected at all times. Lack of coverage or poor meteorological and/or marine circumstances often compel these groups to modify or even halt their activities. Considering the author[50] there are various applications in the field of maritime but[8] has classified it in two, Offshore Marine Search and Rescue Operations and Nearshore Marine SAR Operations[49] as shown in figure 6. While considering the offshore maritime SAR operations [49] conducted a test on ROAZ-USV with a precise GPS for location and both visible spectrum and infrared cameras to detect human or animal presence in the water as shown in figure 7. However, [52] improved the system by introducing various types of systems to it. And also [51] describes the UAS types and equipment used in maritime scientific missions along with applications in physical and biological resource management. The idea of delivering floats[52] to drowned people to help them stay afloat has created more supports.

Figure 4. UAV configurations [12].

Figure 5. General view of a UAS network [26]

Figure 6. Search and Rescue cases (yellow dots) in the Hawaiian Island region [49].

Figure 7. An aerial image of a blue whale was generated from a photogrammetric survey by a UAV[51].
4.2. Defense application

UAS systems have been there for years, now they are the standard fighting force, with unrivaled endurance and devastating combat capabilities[55]. Unlike drones used in other civil applications, military drones must provide much higher precision and accuracy so it becomes more expensive. And also it requires advanced algorithms and powerful sensors that can sense their surroundings and perform assigned actions. The UAV system provides operational, technical, economic, and environmental benefits[56]. The development of UAV systems has created the possibility for the military to conduct military operations in a more efficient and less risky way than if the aircraft were piloted by people. Furthermore[57], in cases other than counterinsurgency and counter-terrorism, the effectiveness of drones is highly dependent on the operating environment. UAVs can be most useful when performing important tasks that are too dangerous for manned aircraft, such as conducting electronic warfare in enemy territory or real-time detection or identification of ground objects[58]. Even this can be used in border surveillance where the soldiers cannot reach due to many environmental, physical, or any other conditions. While author[57] focuses on two airborne surveillance applications: cooperative search & monitoring of targets, a simple UAV-specific mission on the Warfield is shown in figure 8.

UAV systems now have numerous intelligence, surveillance, and reconnaissance (ISR) capabilities and tactical air support to the armed forces laser illumination of targets designated to be hit, route and zone recognition, combat damage assessment, providing real-time information, and new fire capabilities[58].

Figure 8. UAV-specific missions on the Warfield[58].

4.3. Urban search and rescue

Urban SAR [29],[59],[60],[61],[62],[63],[64],[65],[66] is one of the most visible applications of employing UAVs instead of human missions. The main objective of urban search and rescue (USAR) teams in the case of a natural or man-made disaster are to locate victims as soon as feasible[66]. Even seconds may make a difference in a survivor[69]. Visual data and information on the impact of catastrophes from UAVs may be provided in live time as shown in figure 9. Emergency workers need to have actual information to make better judgments and save time in the event of a disaster or accident occurs[68]. UAVs can significantly reduce the cost and risk of SAR missions by providing rapid situational awareness over a very large area, minimizing the time and number of investigation teams to identify out injured or missing persons. Infrared (IR) thermal imaging cameras are used to spot the heat of the human body to find the missing person[69]. This feature greatly improves the ability to find people and things that may be hidden during daytime work at night. While considering various literature[70] describes a Fog Computing architecture for hybrid human drone cooperation that can manage real-time limitations and synchronisation goals. To enhance reaction times and change search patterns dynamically, the drone fleet may cooperate with ground people using this architecture.

Figure 9. Global description of the system for urban SAR operations.
4.4. Wilderness search and rescue

UAVs have numerous uses in forestry, from forest cover assessment to species categorization to simultaneous monitoring of forest fires[1],[11],[71],[11]. While the authors of [75] have used drones for regular monitoring of animal populations and wildlife health. The unhealthy animals can also be rescued and provided necessary medical aids. Also, drones are being used for wildlife surveys, monitoring forest fires, and rescuing the animals when necessary. While the authors[73] have developed a prototype for forest fire suppression using drones.

5. Path planning of UAV

Autonomous UAV path planning is both one of its most successful and one of the most challenging parts of autonomous UAV engineering[74],[75],[76],[77],[78],[79].

Table 2. Features and challenges of existing works.

Author [Citation]	Adopted methodology	Features	Challenges
Yang and Yoo[98]	Joint Genetic Algorithm (GA) and Ant Colony Optimization	Dynamic environmental adaptivity, high utility, and maximize network data communication.	Higher energy consumption, Lower convergence.
Na and Yoo[100]	Particle Swarm Optimization (PSO)	Maximize the aggregated sensor data information’s value, better sensing information acquisition.	Higher computational complexity in terms of time.
Xu et al.[101]	Grey Wolf Optimizer	Minimizing the overall flight cost, lower path cost, and faster convergence speed.	Higher fuel consumption
Qu et al.[102]	Modified Symbiotic Organisms Search and the Simplified Grey Wolf Optimizer	Higher convergence speed, Improve exploitation ability, shorter execution time.	Tedious, Higher computational cost.
Shao et al.[103]	improved PSO	Faster convergence speed, Lower computational cost, achieve the highest success rate.	Higher path failures.
Shen et al.[104]	Tabu Table into PSO Parallel Genetic Algorithm and Parallel Particle Swarm Optimization	Has a faster iterative speed.	Higher detection time.
Jamshidi et al[105], Jing li et al[106]		The performance of the path planning is very high.	More computation time, less effect on the network function.
Ramirez Atencia et al[107]	Genetic Algorithms	Reduced makespan, Improved fuel consumption.	Lower convergence speed, Higher computational complexity, and computational cost.
For example, the route planning problem for a UAV may be viewed as an optimization problem in which all the goals must discover a feasible path from the beginning location to the terminal position while following different optimization parameters and mission restrictions, and environmental constraints[80],[81]. Several approaches for UAV path planning have been suggested in recent years. It is possible to design a path using graph-based methods such as the Voronoi Diagram Algorithm or A* Algorithms, Probabilistic Roadmaps. The UAV’s kinematic and dynamic limitations, however, are seldom taken into consideration in these algorithms, therefore they are rarely helpful in actual [82],[83],[84],[85]. Furthermore, these algorithms are related to the production map, which must be generated and processed in advance, rendering the cost map construction period. Another kind of optimal routes planning approach is the potential field-based method. Algorithms such as the artificial potential field and the interfering fluid dynamics[86]. Such algorithms determine the relationship between the attractive and disgusting fields geographically in terms of generating the flyable direction [86],[87],[88],[89],[90],[91]. As a consequence, they become easily stuck in a local minimum. This is because, when the target and barriers are near, no practicable route can be assured. Population-based evolutionary algorithms have made significant strides in recent years with the advancement of swarm intelligence techniques, and they continue to have a good potential to find the best solution in a more effective and scalable manner[92],[93],[94],[95],[96],[97],[98],[99]. When developing a UAV's coverage path, the most important factors to consider are the path length, the weight, the optimality of the path, the range, endurance, completeness, cost-efficiency, time-efficiency, and energy. The various path planning techniques and their features are tabulated in table 2.

6. Conclusion
UAV can be considered a valuable technology in SAR. In this paper, the search and rescue (SAR) operations of the UAS were discussed, which helps to identify the targets in different operations and the ability to reduce casualties so drastically. Several path planning methods have been discussed here to discover optimal or close-optimal collision-free pathways for UAVs. And also investigated the scope of several successfully implemented path planning algorithms in an unmanned aerial vehicle that focuses on increasing range, endurance, payload, and coverage area, flying over low-altitude urban areas. In addition, through the integration of artificial intelligence and drone technology, drones can make their own decisions and independence to human controllers present at ground stations. These will be milestones to transform present-day remote-controlled/semi-autonomous UAS to autonomous smart UAS for the future.

References

[1] Berie H T and Burud I 2018 Application of unmanned aerial vehicles in earth resources monitoring: Focus on evaluating potentials for forest monitoring in Ethiopia Eur. J. Remote Sens.51 326–35
[2] Liu P, Chen A Y, Huang Y N, Han J Y, Lai J S, Kang S C, Wu T H, Wen M C and Tsai M H 2014 A review of rotorcraft unmanned aerial vehicle (UAV) developments and applications in civil engineering Smart Struct. Syst.13 1065–94
[3] Shahmoradi J, Talebi E, Roghanchi P and Hassanalian M 2020 A comprehensive review of applications of drone technology in the mining industry Drones4 1–25
[4] Saurav kumar E K 2018 Literature survey on unmanned aerial vehicle Int. J. Pure Appl. Math.119 4381–7
[5] Shakhatreh H, Sawalmeh A H, Al-Fuqaha A, Dou Z, Almaita E, Khalil I, Othman N S, Khreishah A and Guizani M 2019 Unmanned Aerial Vehicles (UAVs): A Survey on Civil Applications and Key Research Challenges IEEE Access7 48572–634
[6] Hahnemann R, Schindler D, Kamel M, Siegwart R and Nieto J 2017 A decentralized multi-agent unmanned aerial system to search, pick up, and relocate objects SSRR 2017 - 15th IEEE
International Symposium on Safety, Security and Rescue Robotics, Conf. (IEEE) pp 123–8

[7] Vidyadharan A, Philpott R, Kwasa B J and Bloebaum C L 2017 Analysis of autonomous unmanned aerial systems based on operational scenarios using value modelling Drones 1 1–17

[8] Yeong S P, King M and Dol S S 2015 A Review on Marine Search and Rescue Operations Using Unmanned Aerial Vehicles World Acad. Sci. Eng. Technol. Int. J. Mar. Environ. Sc. 9 396–9

[9] Matthias Heutger D M K 2014 Unmanned Aerial Vehicles in Logistics (DHL Perspective on implications and use cases for the logistics industry)

[10] Korchenko A G and Illyash O S 2013 The generalized classification of Unmanned Air Vehicles 2013 IEEE 2nd International Conference on Actual Problems of Unmanned Air Vehicles Developments, APUAVD 2013 - Proceedings (IEEE) pp 28–34

[11] Gupta S G, Ghome M and Jawindiya P M 2013 Review of Unmanned Aircraft System (UAS) Int. J. Adv. Res. Comput. Eng. Technol. 2

[12] Kovalev I V., Voroshilova A A and Karaseva M V. 2013 Analysis of the current situation and development trend of the international cargo UAVs market Journal of Physics: Conference Series vol 1399 (IOP Publishing) pp 1–8

[13] Ajith V S, Sameer M and Kumar. K K 2017 Design and structural analysis of wing-fuselage bracket of a UAV Int. J. Creat. Res. Thoughts www.ijcrt.org 896–903

[14] Cai G, Dias J and Seneviratne L 2014 A Survey of Small-Scale Unmanned Aerial Vehicles: Recent Advances and Future Development Trends Unmanned Syst. 2 175–99

[15] Shraim H, Awada A and Youness R 2018 A survey on quadrotors: Configurations, modeling and identification, control, collision avoidance, fault diagnosis and tolerant control IEEE Aerosp. Electron. Syst. Mag. 33 14–33

[16] Hansen J P, Alapetite A, MacKenzie I S and Møllenbach E 2014 The use of gaze to control drones Eye Tracking Research and Applications Symposium (ETRA) (Association for Computing Machinery New York, NY, United States) pp 27–34

[17] Park Y Bin, Nguyen K H, Kweon J H, Choi J H and Han J S 2011 Structural analysis of a composite target-drone Int. J. Aeronaut. Sp. Sci. 12 84–91

[18] Boukoberine M N, Zhou Z and Benbouzid M 2019 A critical review on unmanned aerial vehicles power supply and energy management: Solutions, strategies, and prospects Appl. Energy 255 1–22

[19] Dr. Maziar Arjomand, Agostino S and Matthew Mammone, Matthieu Nelson T Z 2016 Classification of unmanned aerial vehicles

[20] Norouzi Ghazbi S, Aghli Y, Alimohammadi M and Akbari A A 2016 Quadrotors unmanned aerial vehicles: A review Int. J. Smart Sens. Intel. Syst. 9 309–33

[21] Everaerts J and V I W G I 2008 The use of unmanned aerial vehicles (UAVs) for remote sensing and mapping Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 37 1187–92

[22] Decuyper E 2001 Unmanned aerial vehicles (UAV) - An overview Eur. J. Mech. Environ. Eng. 46 99–107

[23] Konstantinos Dalamagkidis 2015 Handbook of unmanned aerial vehicles Handbook of Unmanned Aerial Vehicles ed G J V K.P. Valavanis (Springer Netherlands, (2015), 1-3022) pp 83–91

[24] Mogli U R and Deepak B B V L 2018 Review on Application of Drone Systems in Precision Agriculture Procedia Computer Science vol 133 (Elsevier B.V.) pp 502–9

[25] Hackney C and Clayton A I 2015 Unmanned Aerial Vehicles (UAVs) and their application in geomorphic mapping Geomorphological Techniques vol 7 (British Society for Geomorphology) pp 1–12

[26] Riahi Manesh M and Kaabouch N 2019 Cyber-attacks on unmanned aerial system networks: Detection, countermeasure, and future research directions Comput. Secur. 85 386–401

[27] Galante-Sempere D, Ramos-Valido D, Khemchandani S L and Del Pino J 2020 Low-power rfed wake-up receiver design for low-cost wireless sensor network applications Sensors
Coloma I and Molina P 2014 Unmanned aerial systems for photogrammetry and remote sensing: A review ISPRS J. Photogramm. Remote Sens. 92 79–97

Acuna V 2018 Using Unmanned Aerial Vehicles for Wireless Localization in Search and Rescue (FLORIDA INTERNATIONAL UNIVERSITY)

Pastor E, Lopez J and Royo P 2006 A hardware / software architecture for uav payload and mission control 25th Digital Avionics Systems Conference October 15, 2006 (IEEE) pp 5B4-1-5B4-8

Demir K A, Cicibas H and Arica N 2015 Unmanned aerial vehicle domain: Areas of research Def. Sci. J. 65 319–29

Mohammadi A, Feng Y, Zhang C, Baek S and Rawashdeh S 2018 Autonomous landing of a UAV on a moving platform using model predictive control Drones 2 1–15

Ajith vs, Paramasivam D R and Vidhya. K 2017 Study of Optimal Design of Spar Beam for the Wing of an Aircraft Int. J. Eng. Dev. Res. 5 179–93

Ahmed F, Amir M and Anwar N 2018 Construction monitoring and reporting using drones and unmanned aerial vehicles (UAVs) The Tenth International Conference on Construction in the 21st Century (CITC-10) pp 1–8

Cameron S, Hailes S, Julier S, McClean S, Parr G, Trigoni N, Ahmed M, McPhillips G, de Nardi R, Nie J, Symington A, Teacy L and Waharte S 2010 SUAAVE: Combining aerial robots and wireless networking 25th Bristol International UAV Systems Conference pp 1–14

Puttige V R and Anavatti S G 2007 Comparison of real-time online and offline neural network models for a UAV IEEE International Conference on Neural Networks - Conference Proceedings (IEEE) pp 412–7

Kopecki G, Pieniążek J, Rogalski T, Rzucidło P and Tomeczyk A 2010 Proposal for navigation and control system for small UAV Aviation 14 77–82

Queralta J P, Taipalmaa J, Pullinen B C, Sarker V K, Gia T N, Tenhunen H, Gabbouj M, Raitharju J and Westerlund T 2020 Collaborative Multi-Robot Systems for Search and Rescue: Coordination and Perception 1–28

Waslander S L 2007 Multi-agent systems design for aerospace applications (STANFORD UNIVERSITY)

Nawaz H, Ali H M and Massan S-R 2019 Applications of unmanned aerial vehicles: a review 3C Tecnol. innovación Apl. a la pyme 85–105

Park S and Choi Y 2020 Applications of unmanned aerial vehicles in mining from exploration to reclamtion: A review Minerals 10 1–32

Humpe A 2020 Bridge inspection with an off-the-shelf 360° camera drone Drones 4 1–23

Tsouros D C, Bibi S and Sarigiannidis P G 2019 A review on UAV-based applications for precision agriculture Inf.10

Matos A, Silva E, Almeida J, Martins A, Ferreira H, Ferreira B, Alves J, Dias A, Fioravanti S, Bertin D and Lobo V 2017 Unmanned Maritime Systems for Search and Rescue Search and Rescue Robotics - From Theory to Practice pp 77–92

Matos A, Silva E, Cruz N, Alves J C, Almeida D, Pinto M, Martins A, Almeida J and Machado D 2013 Development of an Unmanned Capsule for large-scale maritime search and rescue Ocean. 2013 MTS/IEEE - San Diego An Ocean Common

Lomonaco V, Trotta A, Ziosi M, Ávila J de D Y and Díaz-Rodríguez N 2018 Intelligent Drone Swarm for Search and Rescue Operations at Sea 11–4

Martins A, Dias A, Almeida J, Ferreira H, Almeida C, Amaral G, Machado D, Sousa J, Pereira P, Matos A, Lobo V and Silva E 2013 Field experiments for marine casualty detection with autonomous surface vehicles OCEANS 2013 MTS/IEEE - San Diego: An Ocean in Common

Pribyl S T 2018 Regulating Drones in Maritime and Energy Sectors Handb. Unmanned Aer. Veh. 1–22

Futch V and Allen A 2019 Search and rescue applications: On the need to improve ocean
observing data systems in offshore or remote locations *Front. Mar. Sci.*6 1–7

[50] Klimkowska A, Lee I and Choi K 2016 Possibilities of uas for maritime monitoring *Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. - ISPRS Arch.*2016-Janua 885–91

[51] Johnston D W 2019 Unoccupied aircraft systems in marine science and conservation *Ann. Rev. Mar. Sci.*11 439–63

[52] Kurowski M, Korte H and Lambe B P 2012 AGaPaS - A new approach for search-and-rescue-operations at sea *IFAC Proceedings Volumes (IFAC-PapersOnline)* vol 9 (IFAC) pp 73–8

[53] Atul Pant 2016 *Aerial Drones in future Wars, A conceptual prospective*

[54] Air Marshal Narayan Menon 2012 Military Application for Unmanned Aerial Systems in India *Indian Def. Rev.*27.2 1–7

[55] Centre for Security Studies 2010 The Military Utility of Drones *CSS Anal. Secur. Policy*3

[56] Meng L, Peng Z, Zhou J, Zhang J, Lu Z, Baumann A and Du Y 2020 Real-time detection of ground objects based on unmanned aerial vehicle remote sensing with deep learning: Application in excavator detection for pipeline safety *Remote Sens.*12

[57] Khan A 2015 *Coordinated Unmanned Aerial Vehicles for Surveillance of Targets* (Alpen-Adria-Universität Klagenfurt Fakultät für Technische Wissenschaften in)

[58] JELER E G 2019 Military and civilian applications of UAV systems *STRATEGIES XXI International Scientific Conference The Complex and Dynamic Nature of the Security Environment* vol 1 (CEEOL) pp 379–86

[59] Singhal G, Bansod B and Mathew L 2018 Unmanned Aerial Vehicle Classification , Applications and Challenges : A Review Preprints 1–19

[60] Naidoo Y, Stopforth R and Bright G 2011 Development of an UAV for search & rescue applications: Mechatronic integration for a quadrotor helicopter *IEEE AFRICON Conference* (IEEE) pp 13–5

[61] Kulkarni S, Chaphekar V, Chowdhury M M U, Erden F and Guvenc I 2020 UAV aided search and rescue operation using reinforcement learning *Conference Proceedings - IEEE SOUTHEASTCON* vol 2 (IEEE)

[62] Andrade F A de A, Hovenburg A R, de Lima L N, Rodin C D, Johansen T A, Storvold R, Correia C A M and Haddad D B 2019 Autonomous unmanned aerial vehicles in search and rescue missions using real-time cooperative model predictive control *Sensors (Switzerland)*19

[63] Silvagni M, Tonoli A, Zenerino E and Chiaberge M 2017 Multipurpose UAV for search and rescue operations in mountain avalanche events *Geomatics, Nat. Hazards Risk*18 18–33

[64] Shobika A, Thenkuzhali N, Suganya S, Nivedha G R and Hiemaja R 2018 Human Detection System Using Drone For Earthquake Rescue Operation *Int. J. Adv. Res. Comput. Commun. Eng.*7 154–60

[65] Sandilya S, Mane G, Chatterjee S, Srivastava S P, Nafis I and Chauhan B S 2020 UAV Based Rescue Management System *Int. J. Adv. Res. Sci. Technol.*7 47–58

[66] Bravo R Z B and Leiras A 2015 Literature Review of the Applications of Uavs in Humanitarian Relief *XXXV Encontro Nacional de Engenharia de Producao (ABEPRO)* pp 1–15

[67] Półka M, Ptak S, Kuziora Ł and Kuczyńska A 2018 The Use of Unmanned Aerial Vehicles by Urban Search and Rescue Groups *Drones - Applications* (IntechOpen) pp 83–95

[68] Remy G, Senouci S-M, Jan F and Gourhant Y 2013 SAR.Drones: Drones for Advanced Search and Rescue Missions *Journées Natl. des Commun. dans les Transp.* 1–3

[69] Rakha T and Gorodetsky A 2018 Review of Unmanned Aerial System (UAS) applications in the built environment: Towards automated building inspection procedures using drones *Autom. Constr.*93 252–64

[70] Avezum M, Seitz A and Bruegge B 2019 Modcap: A platform for cooperative search and rescue missions *CEUR Workshop Proceedings* vol 1 (CEUR) pp 63–6

[71] Yin N, Liu R, Zeng B and Liu N 2019 A review: UAV-based Remote Sensing *IOP Conference Series: Materials Science and Engineering* vol 490 (IOP Publishing)
[72] Linchant J, Lisein J, Semeki J, Lejeune P and Vermeulen C 2015 Are unmanned aircraft systems (UASs) the future of wildlife monitoring? A review of accomplishments and challenges *Mamm. Rev.* 45 239–52

[73] Cameron, Timothy, David B 2016 *Fire Containment Drone* (Worcester Polytechnic Institute)

[74] Bortoff S A 2000 Path planning for UAVs *Proceedings of the American Control Conference* vol 1 (IEEE) pp 364–8

[75] Qiming Y, Jiandong Z and Guoqing S 2019 Modeling of UAV path planning based on IMM under POMDP framework *J. Syst. Eng. Electron.* 30 545–54

[76] Qie H, Shi D, Shen T, Xu X, Li Y and Wang L 2019 Joint Optimization of Multi-UAV Target Assignment and Path Planning Based on Multi-Agent Reinforcement Learning *IEEE Access* 7 146264–72

[77] Yin C, Xiao Z, Cao X, Xi X, Yang P and Wu D 2018 Offline and Online Search: UAV Multiobjective Path Planning Under Dynamic Urban Environment *IEEE Internet Things J.* 5 546–58

[78] M B N V and Jolly K G 2020 Path Planning of a Quadcopter for Search and Rescue Operation *Factura ’20 - National Conference On Emerging Trends In Manufacturing NSS* vol 7 (International Advanced Research Journal in Science, Engineering and Technology) pp 21–7

[79] Kumar P, Garg S, Singh A, Batra S, Kumar N and You I 2018 MVO-based 2-d path planning scheme for providing quality of service in UAV environment *IEEE Internet Things J.* 5 1698–707

[80] Liu C, Zhang S and Akbar A 2019 Ground Feature Oriented Path Planning for Unmanned Aerial Vehicle Mapping *IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens.* 12 1175–87

[81] Cabreira T M, Brisolara L B and Ferreira Paulo R 2019 Survey on coverage path planning with unmanned aerial vehicles *Drones* 3 1–38

[82] Wang H, Wang J, Ding G, Chen J, Gao F and Han Z 2019 Completion time minimization with path planning for fixed-wing UAV communications *IEEE Trans. Wirel. Commun.* 18 3485–99

[83] Wai R J and Prasetia A S 2019 Adaptive Neural Network Control and Optimal Path Planning of UAV Surveillance System with Energy Consumption Prediction *IEEE Access* 7 126137–53

[84] Wang Y, Bai P, Liang X, Wang W, Zhang J and Fu Q 2019 Reconnaissance Mission Conducted by UAV Swarms Based on Distributed PSO Path Planning Algorithms *IEEE Access* 7 105086–99

[85] Pei L and Haibin D 2012 Path planning of unmanned aerial vehicle based on improved gravitational search algorithm *Sci. China Technol. Sci.* 55 2712–9

[86] Zhang Z, Wu J, Dai J and He C 2020 A Novel Real-Time Penetration Path Planning Algorithm for Stealth UAV in 3D Complex Dynamic Environment *IEEE Access* 8 122757–71

[87] Zhou X, Gao F, Fang X and Lan Z 2021 Improved Bat Algorithm for UAV Path Planning in Three-Dimensional Space *IEEE Access* 9 20100–16

[88] Zhu S, Gui L, Cheng N, Sun F and Zhang Q 2020 Joint Design of Access Point Selection and Path Planning for UAV-Assisted Cellular Networks *IEEE Internet Things J.* 7 220–33

[89] Xie J, García Carrillo L R and Jin L 2020 Path planning for UAV to cover multiple separated convex polygonal regions *IEEE Access* 8 51770–85

[90] Kim S H, Padilla G E G, Kim K J and Yu K H 2020 Flight Path Planning for a Solar Powered UAV in Wind Fields Using Direct Collocation *IEEE Trans. Aerosp. Electron. Syst.* 56 1094–105

[91] Khameh H B, Pimenta L C A and Tôrres L A B 2009 Autonomous UAV path planning and estimation *IEEE Robot. Autom. Mag.* 16 1247–53

[92] Liu W, Zheng Z and Cai K 2013 Adaptive path planning for unmanned aerial vehicles based on bi-level programming and variable planning time interval *Chinese J. Aeronaut.* 26 646–60

[93] Yang L, Qi J, Xiao J and Yong X 2015 A literature review of UAV 3D path planning *Proceedings of the World Congress on Intelligent Control and Automation (WCICA)* vol 2015-March (IEEE) pp 2376–81
[94] Shi L and Xu S 2020 UAV Path Planning with QoS Constraint in Device-to-Device 5G Networks Using Particle Swarm Optimization IEEE Access 13 7884–96
[95] Mardani A, Chiaberge M and Giaccone P 2019 Communication-aware UAV path planning IEEE Access 7 52609–21
[96] Li J, Xiong Y, She J and Wu M 2020 A Path Planning Method for Sweep Coverage with Multiple UAVs IEEE Internet Things J. 7 8967–78
[97] Wu X, Xu L, Zhen R and Wu X 2020 Bi-Directional Adaptive A* Algorithm Toward Optimal Path Planning for Large-Scale UAV under Multi-Constraints IEEE Access 8 85431–40
[98] Yang Q and Yoo S J 2018 Optimal UAV Path Planning: Sensing Data Acquisition over IoT Sensor Networks Using Multi-Objective Bio-Inspired Algorithms IEEE Access 6 13671–84
[99] Liu Y, Wang Q, Hu H and He Y 2018 A Novel Real-Time Moving Target Tracking and Path Planning System for a Quadrotor UAV in Unknown Unstructured Outdoor Scenes Yisha IEEE Trans. Syst. MAN, Cybern. Syst. 1–11
[100] Na H J and Yoo S J 2019 PSO-Based Dynamic UAV Positioning Algorithm for Sensing Information Acquisition in Wireless Sensor Networks IEEE Access 7 77499–513
[101] Xu C, Xu M and Yin C 2020 Optimized multi-UAV cooperative path planning under the complex confrontation environment Comput. Commun. 162 196–203
[102] Qu C, Gai W, Zhang J and Zhong M 2020 A novel hybrid grey wolf optimizer algorithm for unmanned aerial vehicle (UAV) path planning Knowledge-Based Syst. 194 105530
[103] Shao S, Peng Y, He C and Du Y 2020 Efficient path planning for UAV formation via comprehensively improved particle swarm optimization ISA Trans. 97 415–30
[104] Shen L, Wang Y, Liu K, Yang Z, Shi X, Yang X and Jing K 2020 Synergistic path planning of multi-UAVs for air pollution detection of ships in ports Transp. Res. Part E Logist. Transp. Rev. 144 102128
[105] Jamshidi V, Nekoukar V and Refan M H 2020 Analysis of Parallel Genetic Algorithm and Parallel Particle Swarm Optimization Algorithm UAV Path Planning on Controller Area Network J. Control. Autom. Electr. Syst. 31 129–40
[106] Li J, Xiong Y and She J 2021 An improved ant colony optimization for path planning with multiple UAVs 2021 IEEE International Conference on Mechatronics, ICM 2021 (IEEE) pp 2–6
[107] Ramirez-Atencia C, Bello-Orgaz G, R-Moreno M D and Camacho D 2017 Solving complex multi-UAV mission planning problems using multi-objective genetic algorithms Soft Computing vol 21 (Springer Berlin Heidelberg) pp 4883–900