Strong-coupling surface polaron in a magnetic field

Hua Xiukun

Department of Physics
Suzhou University, Suzhou, 215006, China

Abstract

By applying variational method, the strong electron-surface optical (SO) phonon interaction and the weak electron-longitudinal optical (LO) phonon interaction are studied systematically in present paper. The formula of induced energy V_{e-so}, V_{e-lo} in both the ground and excited states are given. The numerical results show that as the distance between the electron and the polar crystal surface increases, the electron-LO phonon interaction energy increases yet the electron-SO phonon interaction energy decreases. The numerical results also show that both electron-LO and electron-SO phonon interaction are enhanced as the magnetic field strength increases.

Key words: Semiconductors, Electron-phonon interactions
1. Introduction

The behavior of polaron has received much attention in the past decades [1,2]. Huybrechts [3] proposed a linear combination operator method and investigated the property of polaron in strong electron-phonon coupling case. Tokuda [4] added another variational parameter to the momentum operator and studied the ground-state energy and effective mass of the bulk polaron. Gu [5] discussed the the ground-state energy, the first-excited state energy and the effective mass of intermediate-coupling polaron in a polaron slab. When external magnetic field is applied to the electron-phonon interaction system, the property of magnetopolaron attracted many investigators’ interests. Whitfield et al [6] studied the effectiveness of adiabatic approximation theory for a polaron in a magnetic field and they found that the usual adiabatic theory applied to a polaron in a strong magnetic field does not give the right weak coupling limit. Ercelebi [7] studied the two-dimensional magnetopolaron in the strong-coupling regime and proposed a modified coherent phonon state. Hai, Peeters et al [8] did research into the polaron-cyclotron-resonance spectrum resulting from interface- and slab-phonon modes in a GaAs/AlAs quantum well and an experiment was done to investigate the resonant magnetopolaron effects due to interface phonons in GaAs/AlGaAs multiple quantum well structures by Wang, Nickle et al [9]. Recently, the author etc have studied the electron self-energy and effective mass by the powerful Green’s function method [10].

For the bulk polaron, the perturbation theory is applicable when \(\alpha_l < 1 \) and the LLP (Lee-Low-Pines) variational method is effective when \(\alpha_l < 6 \). For the surface polaron, Pan [11] showed that when the electron-surface optical (SO) phonon coupling constant \(\alpha_s > 2.5 \), the strong coupling theory must be applied. Therefor, in some polar crystals, the weak electron-LO phonon coupling and strong electron-SO phonon coupling should be considered together. So far, the research work in such a field has been scarce.

In the present paper, using variational method and taking weak electron-LO phonon and strong electron-SO phonon interaction into account, we give the ground and excited states energies of the system, the electron-LO phonon interaction induced energy \(V_{e-LO} \) and the electron-SO phonon interaction induced energy \(V_{e-SO} \). Using polar crystal AgBr as an example, numerical evaluation are also presented.

2. Theory

Considering the following system: the semi-infinite space \(z > 0 \) is occupied by the AgBr
crystal, whereas the space \(z < 0 \) is a vacuum. The external magnetic field is applied along the \(z \) direction and an electron is moving in the polar crystal. \(\mathbf{B} = (0, 0, B) \), choosing the symmetric gauge for the vector potential, i.e. \(\mathbf{A} = B/2(-y, x, 0) \), the Hamiltonian describing an electron coupled to both LO phonons and SO phonons can be written as \(\hbar = m_b = 1 \), \(m_b \) is the band mass of the electron

\[
H = H_0 + H_\perp + H_{e-ph} = H_\perp + H_{/ /},
\]

\[
H_0 = \frac{P_\perp^2}{2} + \frac{\omega^2}{8}(x^2 + y^2) + \frac{\omega_e}{2}L_z + \sum_k \omega_{lo}a_k^\dagger a_k + \sum_q \omega_{so}b_q^\dagger b_q,
\]

\[
H_\perp = \frac{P_z^2}{2} + \frac{e^2}{4z\varepsilon_\infty(\varepsilon_\infty + 1)},
\]

\[H_{e-ph} = H_{e-lo} + H_{e-so},\]

\[H_{e-lo} = \sum_k [V^*_k \sin(zk_z)\exp(-ik_{//} \cdot \rho)a_k^\dagger + h.c.],\]

\[H_{e-so} = \sum_q [V^*_q \exp(-qz)\exp(-iq \cdot \rho)b_q^\dagger + h.c.].\]

where

\[
V^*_k = i\left(\frac{4\pi e^2\omega_{lo}}{\varepsilon V}\right)^{\frac{1}{2}}k, \quad \frac{1}{\varepsilon} = \frac{1}{\varepsilon_\infty} - \frac{1}{\varepsilon_0}.
\]

\[
V^*_q = i\left(\frac{\pi e^2\omega_{so}}{\varepsilon^* qA}\right)^{\frac{1}{2}}, \quad \frac{1}{\varepsilon^*} = \frac{\varepsilon_0 - 1}{\varepsilon_0 + 1} - \frac{\varepsilon_\infty - 1}{\varepsilon_\infty + 1}.
\]

In the above equations, \(a_k^\dagger (a_k) \) is the creation(annihilation) operator of bulk LO phonons with three-dimensional wave vector \(k \), \(b_k^\dagger (b_k) \) is the corresponding operator for the SO phonons with two-dimensional wave vector \(q \). \(P_{//} = (p_x, p_y) \) and \(\rho = (x, y) \) are the electron momentum and position vector in xy plane, respectively, and \(p_z \) is the electron momentum in z direction. \(k_{//} = (k_x, k_y) \) is phonon wave vector in the xy plane. \(\omega_{lo} \) and \(\omega_{so} \) are the frequencies of the bulk LO and SO phonons. \(\varepsilon_0 \) and \(\varepsilon_\infty \) are the static and high-frequencies dielectric constant of the crystal respectively. \(A \) and \(V \) are the surface area and the volume of the crystal.

The polaron system wave function can be separated into the electron and the phonon parts.

\[
|\psi\rangle = |\phi_e\rangle|\phi_{ph}\rangle
\]

With \(|\phi_{ph}\rangle = u_1 u_2 |0\rangle \), \(|0\rangle \) is the phonon ground state, and the explicit form of \(u_1, u_2 \) will be introduced in the following.
Let us start from the unitary transformation:

\[u_1 = \exp(-i (\sum_k a_1 a_1^\dagger a_k k_{//} \cdot \rho + \sum_q a_2 b_q^\dagger b_q \cdot \rho)) \]

(8)

With \(a_1 = 1 \) and \(a_2 = 0 \) corresponding to the weak-coupling limit case and the strong-coupling limit case respectively. The parts of polaron Hamiltonian can be transformed into:

\[H'_0 = u_1^{-1} H_0 u_1 = \frac{1}{2} (P_{//} - \sum_k a_k a_k^\dagger) + \frac{\omega_c^2}{8} (x^2 + y^2) + \frac{\omega_c}{2} L_z \]

\[+ \frac{\omega_c}{2} \sum_k a_k^\dagger (yk_x - xk_y) + \sum_k \omega_{lo} a_k^\dagger a_k + \sum_q \omega_{so} b_q^\dagger b_q , \]

(9)

\[H'_{e-so} = u_1^{-1} H_{e-so} u_1 = \sum_q [V^*_q \exp(-qz) \exp(-iq \cdot \rho) \rho \cdot \rho + h.c.] , \]

(10)

\[H'_{e-so} = u_1^{-1} H_{e-so} u_1 = H \]

(12)

Following the scheme of Huybrechts, we introduce the creation and annihilation operators \(c_j^\dagger \) and \(c_j \) by

\[p_j = \frac{\sqrt{\lambda}}{2} (c_j^\dagger + c_j) , \]

(13)

\[\rho_j = \frac{i}{\sqrt{\lambda}} (c_j - c_j^\dagger) . \]

(14)

Where the subscript \(j \) refers to the \(x \) and \(y \) directions, \(\lambda \) is the variational parameter, and \(c_j^\dagger (c_j) \) is Boson operator.

Rewriting (9), (11) using (13), (14), one gets:

\[H'_0 = \frac{\lambda}{8} \left(\sum_j (c_j^\dagger c_j^\dagger c_j + c_j c_j c_j^\dagger) + \sum_j (c_j^\dagger c_j + c_j c_j^\dagger) \right) - \frac{\sqrt{\lambda}}{2} \sum_{k,j} a_k^\dagger a_k k_{//} (c_j^\dagger + c_j) \]

\[+ \frac{1}{2} \sum_k a_k^\dagger a_k k_{//}^2 + \frac{1}{2} \sum_{k,k'} a_k^\dagger a_{k'}^\dagger a_k a_{k'} k_{//} k_{//}' + \frac{\omega_c^2}{8\lambda} \sum_j (c_j^\dagger c_j + c_j c_j^\dagger) \]

\[- \frac{\omega_c^2}{8\lambda} \sum_j (c_j^\dagger c_j^\dagger + c_j c_j) + \frac{i\omega_c}{2} (c_y c_y^\dagger - c_x c_x^\dagger) + \sum_k \omega_{lo} a_k^\dagger a_k + \sum_q \omega_{so} b_q^\dagger b_q \]

\[+ \frac{i\omega_c}{2\sqrt{\lambda}} \sum_k a_k^\dagger a_k [k_x (c_y^\dagger - c_y) - k_y (c_x^\dagger - c_x)] , \]

(15)

\[H'_{e-so} = \sum_q [V^*_q \exp(-qz) \exp(\sum_j \frac{q_j}{\sqrt{\lambda}} (c_j - c_j^\dagger)) b_q^\dagger + h.c.] , \]

(16)
Yet, H'_{e-lo} and H'_{\perp} are invariable in forms. Let continue to do the u_2 transformation:

$$u_2 = \exp[\sum_k (a_k^+ f_k e^{-ikx/\rho_0} - a_k f_k^* e^{ikx/\rho_0}) + \sum_q (b_q^+ g_q e^{-iq\rho_0} - b_q g_q^* e^{iq\rho_0})]$$ \hspace{1cm} (17)

Where $f_k(f_k^*)$ and $g_q(g_q^*)$ are variational parameters, and $\rho_0 = (x_0, y_0)$ is the electron orbit center where $x_0 = x/2 - p_y/\omega_c$, $y_0 = y/2 + p_x/\omega_c$. The necessity of making the phonon deformation centered at ρ_0 was emphasized in an elaborate discussion by Whitfield et al [6].

$$u_2^{-1} a_k u_2 = a_k + f_k e^{-ikx/\rho_0}, \quad u_2^{-1} a_k^\dagger u_2 = a_k^\dagger + f_k^* e^{ikx/\rho_0}, \quad (18)$$

$$u_2^{-1} b_q u_2 = b_q + g_q e^{-iq\rho_0}, \quad u_2^{-1} b_q^\dagger u_2 = b_q^\dagger + g_q^* e^{iq\rho_0} \quad . \quad (19)$$

Performing u_2 transformation and using (18) and (19), one can get H_o'', H'_{e-lo} and H'_{e-so} after lengthy calculation.

(1) The ground state:

Determining the ground state $|0\rangle$ in the new representation by

$$c_j |0\rangle = a_k |0\rangle = b_q |0\rangle = 0$$ \hspace{1cm} (20)

one gets the energy $E''_{ji}(0)$ of the ground state

$$E''_{ji}(0) = <H''_{ji}> = <H''_0 + H''_{e-lo} + H''_{e-so}>$$

$$= \frac{\lambda}{4} + \frac{\omega^2}{4\lambda} + \sum_k \omega_{lo} |f_k|^2 + \sum_q \omega_{so} |g_q|^2 + \frac{1}{2} \sum_k |f_k|^2 k_{ji}^2 + \frac{1}{2} \sum_{k,k'} |f_k|^2 |f_{k'}|^2 k \cdot k'$$

$$+ \sum_k [V_k^* \sin(zk_z) f_k^* + V_k \sin(zk_z) f_k] \exp(-\frac{k_{ji}^2}{8}(\frac{1}{\lambda} + \frac{\lambda}{\omega^2_c}))$$

$$+ \sum_q [V_q^* \exp(-qz) g_q^* + V_q \exp(-qz) g_q] \exp(-\frac{q^2}{8}(\frac{1}{\lambda} + \frac{\lambda}{\omega^2_c})). \quad (21)$$

Minimizing $E''_{ji}(0)$ with respect to $f_k(f_k^*)$ and $g_q(g_q^*)$ and neglecting higher order of f_k, one gets

$$E''_{ji}(0) = \frac{\lambda}{4} + \frac{\omega^2}{4\lambda} + V_{e-lo}(0) + V_{e-so}(0)$$ \hspace{1cm} (22)

Where $V_{e-lo}(0)$ and $V_{e-so}(0)$ are the correction energy induced by electron-LO phonon and electron-SO phonon interaction respectively, with

$$V_{e-lo} = - \sum_k |V_k|^2 \sin^2(zk_z) \exp(-\frac{k_{ji}^2}{4}(\frac{1}{\lambda} + \frac{\lambda}{\omega^2_c}), \quad (23)$$
\[V_{e-s0} = -\sum_q \frac{|V_q|^2 \exp(-2qz) \exp\left(-\frac{q^2}{4}\left(\frac{1}{\lambda} + \frac{1}{\omega^2}\right)\right)}{\omega_{so}}. \] (24)

Considering the explicit forms of \(V_k \) and \(V_q \), (23) and (24) can be reduced to

\[V_{e-lo} = -\frac{\sqrt{2\alpha l\omega_{lo}}}{2} \int_0^\infty \left(1 - e^{-2k_z^2}\right) \exp\left(-\frac{k^2_z}{4}\left(\frac{1}{\lambda} + \lambda\omega^2\right)\right) \frac{dk_z}{1 + \frac{k^2_z}{2\omega_{lo}}}, \] (25)

\[V_{e-so} = -\frac{\sqrt{2\alpha_s\omega_{so}}}{2} \int_0^\infty \exp(-2qz) \exp\left(-\frac{q^2}{4}\left(\frac{1}{\lambda} + \frac{1}{\omega^2}\right)\right) dq. \] (26)

In eq.(22), if neglecting \(V_{e-lo}(0), V_{e-so}(0) \) and minimizing \(E''_{//}(0) \) with respect to \(\lambda \), one can obtain \(\lambda = \omega_c \) and \(E''_{//}(0) = \frac{1}{2}\omega_c \). Obviously, this is the electron ground state energy of Landau Level.

The effective Hamiltonian of the polaron system in the ground state \(H_{eff} \) is

\[H_{eff} = E''_{//}(0) + H_\perp = \frac{p_z^2}{2} + \frac{\lambda}{4} + \frac{\omega^2}{4\lambda} + V_{e-lo} + V_{e-so} + V_{img}, \] (27)

with

\[V_{img} = \frac{\epsilon^2(\varepsilon_\infty - 1)}{4\varepsilon_\infty + 1}. \]

(2) The excited state:

The excited state \(|1> \) in the new representation is

\[|1> = c_j^\dagger |0> = a_k^\dagger |0> = b_q^\dagger |0> \] (28)

considering

\[<1|\exp(-iq \cdot \rho_0)|1> = \exp\left(-\frac{q^2}{8\lambda} - \frac{\lambda q^2}{8\omega^2_c}\right) \left[1 - \left(\frac{q^2}{8\lambda} + \frac{\lambda q^2}{8\omega^2_c}\right)^2\right] \] (29)

similarly, one gets

\[E''_{//}(1) = \frac{3\lambda}{4} + \frac{3\omega^2}{4\lambda} + \omega_{lo} + \omega_{so} + V_{e-lo}(1) + V_{e-so}(1) \] (30)

Where \(V_{e-lo}(1) \) and \(V_{e-so}(1) \) are the correction energy induced by electron-LO phonon and electron-SO phonon interaction of the excited state respectively, with

\[V_{e-lo}(1) = -\sum_k |V_k|^2 \sin^2(\nu z) \exp\left(-\frac{k^2_z}{4}\left(\frac{1}{\lambda} + \lambda\omega^2\right)\right) \left[1 - \left(\frac{k^2_z}{8\lambda} + \frac{\lambda k^2_z}{8\omega^2_c}\right)^2\right], \] (31)

\[V_{e-so}(1) = -\sum_q |V_q|^2 \exp(-2qz) \exp\left(-\frac{q^2}{4}\left(\frac{1}{\lambda} + \lambda\omega^2\right)\right) \left[1 - \left(\frac{q^2}{8\lambda} + \frac{\lambda q^2}{8\omega^2_c}\right)^2\right] \omega_{so}. \] (32)
3. Discussion and Conclusion

Taking the polaron in polar crystal AgBr as an example, we perform a numerical evaluation. The parameters concerned are listed as follows: \(\varepsilon_0 = 10.6, \varepsilon_\infty = 4.68, \hbar \omega_{lo} = 17.1 \text{meV}, \hbar \omega_{so} = 14.5 \text{meV}, \alpha_l = 1.56, \alpha_s = 2.56, m_b = 0.22m, \) \(m \) is the free electron mass. All the above parameters are taken from [12].

Fig.1 Fig.2

Fig.1 shows the relationships between the induced potential \(|V_{e-lo}(0)|\) resulting from the electron-LO phonon interaction, the induced potential \(|V_{e-so}(0)|\) resulting from electron-SO phonon interaction, and their sum \(|V_{e-lo}(0)|+|V_{e-so}(0)|\) and the coordinate \(z \). From fig.1 we can see that the induced potential \(V_{e-lo}(0) \) increase with increasing coordinate \(z \), whereas \(V_{e-so}(0) \) decrease with increasing coordinate \(z \). Compared with the weak electron-phonon interaction case [13], \(|V_{e-so}(0)| \) and \(|V_{e-lo}(0)| \) are larger than the corresponding weak coupling ones, yet their lines tendency is similar to the weak coupling ones. When \(z < 10 \text{Å} \), \(|V_{e-so}(0)| \) is larger than \(|V_{e-lo}(0)| \), whereas for \(z > 35 \text{Å} \), \(|V_{e-so}(0)| \) becomes smaller compared with \(|V_{e-lo}(0)| \) and so \(|V_{e-lo}(0)| \) is the dominant term. \(|V_{e-lo}(0)|+|V_{e-so}(0)| \) decreases with increasing \(z \). When \(z > 35 \text{Å} \), \(|V_{e-lo}(0)|+|V_{e-so}(0)| \) approaches \(|V_{e-lo}(0)| \) because \(|V_{e-so}(0)| \) is much smaller compared with \(|V_{e-lo}(0)| \).

Fig.2 shows the induced potentials as a function of the electron coordinate \(z \) for different magnetic fields. In fig.2, the dot-line stands for the case when \(B=4 \text{T} \) and the solid-line stands for the \(B=8 \text{T} \) case. From fig.2, we can see that \(|V_{e-lo}(0)| \) and \(|V_{e-so}(0)| \) for \(B=8 \text{T} \) are larger than the corresponding ones for \(B=4 \text{T} \). This result show that external magnetic field can enhance the interaction between an electron and phonons. Let us give a possible physical explanation of the result. When magnetic field is applied, the polarizability of the crystal increases and the density of phonons increases. Because the strength of the electron-phonon interaction is proportional to the number of phonons, the interaction energies, for both \(|V_{e-lo}(0)| \) and \(|V_{e-so}(0)| \), increase with increasing magnetic field strength.
Fig. 3 illustrates the energy difference induced by the electron-LO (SO) phonon interaction between the excited and ground states. From Fig. 3 one can see that the difference between $V_{e-so}(1)$ and $V_{e-so}(0)$ decreases, yet the difference between $V_{e-lo}(1)$ and $V_{e-lo}(0)$ increases as the coordinate z increases. As z is small ($z < 10\text{Å}$) the magnitude of $V_{e-so}(1) - V_{e-so}(0)$ is much large than that of $V_{e-lo}(1) - V_{e-lo}(0)$, and when $z > 33\text{Å}$ $|V_{e-so}(1) - V_{e-so}(0)|$ becomes less than $|V_{e-lo}(1) - V_{e-lo}(0)|$. These results give further implication that the electron-SO phonon interaction play a dominant role as electron are near the polar crystal surface.

In summary, by applying variational method, the strong electron-surface optical (SO) phonon interaction and the weak electron-longitudinal optical (LO) phonon interaction are studied systematically in present paper. The formula of induced energies $V_{e-so}(0), V_{e-lo}(0), V_{e-so}(1), V_{e-lo}(1)$ are given. The numerical results show that as the distance between the electron and the polar crystal surface increases, the electron-LO phonon interaction energy increases yet the electron-SO phonon interaction energy decreases. The numerical results also show that both electron-LO and electron-SO phonon interaction are enhanced as the magnetic field strength increases.
References

[1] S. D. Sarma, and A. Madhukar, *Phys. Rev.* B22(1980)2823

[2] D. V. Melnikov and W. B. Fowler, *Phys. Rev.* B63 (2001)1653020

[3] W. J. Huybrechts, *J. Phys. C: Solid state phys.* 10(1977)3761

[4] N. J. Tokuda, *J. Phys. C: Solid state phys.* 13(1980)851

[5] Sh. W. Gu, Y. C. Li, and L. F. Zheng, *Phys. Rev.* B39(1989)1248

[6] G. Whitfield, R. Parker, and M. Rona, *Phys. Rev.* B13(1976)2132

[7] A. Ercelebi, *J. Phys.: Condens. Matter* 1(1989)2321

[8] G. Q. Hai, F. M. Peeters, and J. T. Devreese, *Phys. Rev.* B47(1993)10358

[9] Y. J. Wang, H. A. Nickle, and B. D. McCombe, *et al, Phys. Rev. Lett.* 79(1997)3226

[10] X. K. Hua, Y. Z. Wu and Zh. Y. Li, *Chin. Phys.* Vol. 12(2003)No.11 635

[11] J. S. Pan, *Phys. Status Solidi* b128(1985)307

[12] E. Kartheuser, *Polarons in Ionic crystals and polar semiconductors*, North-Holland, Amsterdam(1972)718

[13] B. H. Wei, K. W. Yu, and F. Ou, *J. Phys.: Condens. Matter* 6(1994)1893
Figure Captions

Fig.1. $|V_{e-so}(0)|$, $|V_{e-lo}(0)|$, and $|V_{e-so}(0)| + |V_{e-lo}(0)|$ as a function of coordinate z.

Fig.2. $|V_{e-so}(0)|$ and $|V_{e-lo}(0)|$ as a function of coordinate z for different magnetic fields. The solid line and the dot line represent $B=8T$ and $B=4T$, respectively.

Fig.3 $|V_{e-ph}(1) - V_{e-ph}(0)|$ as a function of coordinate z at $B=10T$.
$B = 10 \text{ T}$

$|V_{\text{eso}}(1) - V_{\text{eso}}(0)|$

$|V_{\text{eso}}(1) - V_{\text{eso}}(0)|$

$Z \times 10^{-10} \text{ m}$