Ca²⁺ mishandling and mitochondrial dysfunction: a converging road to prediabetic and diabetic cardiomyopathy

Carolina Jaquenod De Giusti · Julieta Palomeque · Alicia Mattiazzi

Received: 24 May 2021 / Revised: 17 November 2021 / Accepted: 3 December 2021 / Published online: 3 January 2022
© The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022

Abstract
Diabetic cardiomyopathy is defined as the myocardial dysfunction that suffers patients with diabetes mellitus (DM) in the absence of hypertension and structural heart diseases such as valvular or coronary artery dysfunctions. Since the impact of DM on cardiac function is rather silent and slow, early stages of diabetic cardiomyopathy, known as prediabetes, are poorly recognized, and, on many occasions, cardiac illness is diagnosed only after a severe degree of dysfunction was reached. Therefore, exploration and recognition of the initial pathophysiological mechanisms that lead to cardiac dysfunction in diabetic cardiomyopathy are of vital importance for an on-time diagnosis and treatment of the malady. Among the complex and intricate mechanisms involved in diabetic cardiomyopathy, Ca²⁺ mishandling and mitochondrial dysfunction have been described as pivotal early processes. In the present review, we will focus on these two processes and the molecular pathway that relates these two alterations to the earlier stages and the development of diabetic cardiomyopathy.

Keywords
Diabetic cardiomyopathy · Calcium mishandling · Mitochondrial dysfunction

Introduction
Metabolic diseases (MetD) involve a cluster of illnesses with disrupted normal metabolism, among which are prediabetes, metabolic syndrome, and diabetes mellitus (DM). Diabetes mellitus (DM) is a chronic metabolic disorder that affects millions of people globally, with an exponential increase. Indeed, it is expected that this pandemic disease will affect more than 690 million people by 2045 [66]. These huge numbers are alarming, because this chronic illness is one of the major contributors, together with aging and obesity, to the increased rate of heart failure (HF) and related morbidity and mortality, worldwide [74, 206]. Moreover, DM is also a risk factor for many infectious diseases, i.e., tuberculosis, melioidosis, dengue, virus infection [279], and the actual pandemic of COVID-19 [283].

According to the American Diabetes Association, the majority of cases of DM belong to one of two broad etiopathogenetic categories: type 1 DM (T1DM) and type 2 DM (T2DM). However, in many cases, diabetic individuals do not easily fit into a single class (see for review, [5, 6]). The usually described T1DM, previously known as juvenile-onset diabetes or insulin-dependent diabetes, is an autoimmune disease that results from the destruction of insulin-producing β-cells in the pancreas, which leads to insulin deficiency. This autoimmune disease has been associated with different genetic predispositions and environmental factors. However, the underlying initial mechanisms are still poorly defined. T2DM accounts for 90–95% of all cases of DM [5] and constitutes a broad-spectrum syndrome, with a frequent late diagnosis; thus, target organs may be severely affected well before the symptoms appear. The cause of T2DM is a combination of resistance to insulin action and an inadequate compensatory insulin secretory response.

In the heart, DM produces diabetic cardiomyopathy, which finally culminates in HF [112, 141]. Diabetic cardiomyopathy can be defined as the myocardial dysfunction that suffers patients with DM in the absence of hypertension and structural heart diseases such as valvular or coronary artery dysfunctions. Heart disease may initiate with diastolic dysfunction, mainly in T2DM (HF with preserved
ejection fraction, HFP EF, EF ≥ 50%) that is later associated with systolic dysfunction, finally leading to systolic HF with EF < 40% [225].

Similar to many other insidious diseases, like hypertension, obesity, or cancer, T2DM starts several decades before reaching an overt and complete disease. Particularly, it may begin as a metabolic syndrome or as prediabetes. Indeed, metabolic defects precede overt clinical disease in most cases of T2DM. These metabolic derangements include impaired glucose tolerance and impaired fasting glucose. The presence of these alterations defines the prediabetic state [6, 253]. Because metabolic syndrome and prediabetes are usually silent conditions, the most studied entity is T2DM. Moreover, although T1DM and T2DM have different etiologies, both diseases share similar systemic metabolic imbalances [125, 225] that may be at the origin of the multiorgan alterations of DM, including diabetic cardiomyopathy [136].

Identification of the tight association between DM and cardiac disease occurred in 1972 when Rubler et al. (1972) described a new type of cardiomyopathy in patients with DM called diabetic cardiomyopathy [235]. Two years later, the Framingham study recognized the importance of DM in HF [141]. Subsequent studies showed that HF occurs at rates three to five times higher in DM patients than in the general population [112].

The underlying pathophysiology of the prolonged process that culminates in diabetic cardiomyopathy and HF is rather complex. However, it is known that impaired Ca²⁺ handling and mitochondrial dysfunction associated with enhanced ROS production and Ca²⁺-calmodulin-dependent protein kinase (CaMKII) activity (two crucial players in HF of different origins, [182]) appeared altered even at the prediabetic stages. In this early phase of the illness, diabetic cardiomyopathy and even DM symptoms are absent or unnoticed [98], making the knowledge of prediabetic prevalence, rather uncertain. However, the bad prognosis of prediabetic individuals underpins the decisive importance of studying the underlying mechanisms of the illness at the very early stages. Unfortunately, these earlier periods have been seldom assessed at the cellular and molecular level.

In the present review, we will focus on the molecular mechanisms mediating cytosolic, sarcoplasmic reticulum (SR), and mitochondrial Ca²⁺ mishandling in diabetic cardiomyopathy and how these alterations may be involved in the decrease in contractility, arrhythmias, and apoptosis observed that may finally end in overt HF. In the last part of the review, we will depict what is known about Ca²⁺ mishandling and mitochondria dysfunction in the early stages of the illness.

Excitation–contraction coupling and cardiac mitochondria function

Ca²⁺ is a critical second messenger and Ca²⁺ homeostasis is crucial for maintaining cardiac function. Indeed, alterations in Ca²⁺ handling are associated with major cardiac disorders [152].

In each heartbeat, the Ca²⁺ entered through the L-type Ca²⁺ channels (LTCC) during the action potential (AP) binds to the ryanodine receptors (RyR2) and triggers a release of Ca²⁺ from the SR by a mechanism known as

Fig. 1 EC coupling. AP induces Ca²⁺ entry through the LTCC channels that induces RyR2 opening and Ca²⁺ release from the SR. Ca²⁺ binds to the contractile machinery producing myocyte contraction. Ca²⁺ reenters the SR trough the SERCA2a and exits the cell trough the NCX, leading to the decrease of Ca²⁺ transient and mechanical relaxation. Inset: Imbalanced ion currents can result in membrane potential alterations known as early and delayed afterdepolarizations, EAD, and DAD, respectively, according to the moment that they occur relative to the regular AP. EADs arise before the completion of AP, whereas DADs occur after AP completion. Possible ectopic beats are in red and blue. Below: An ECG with the ectopic beat produced by a DAD.
Ca2+-induced-Ca2+-release [95] (Fig. 1). The rise in Ca2+ allows actin-myosin interaction and muscle contraction (known as excitation–contraction coupling, ECC), but also increases the transport rate of mechanisms that remove Ca2+ from the cytosol. These mechanisms are mainly the SR Ca2+-ATPase (SERCA2a) and the Na+/Ca2+ exchanger (NCX), causing the fall of Ca2+ transient and mechanical relaxation. The enhanced activity of SERCA2a allows refilling of SR Ca2+ store, whereas the NCX activity extrudes the Ca2+ that entered the cell through the LTCC [22].

RyR2 are macromolecular complexes highly controlled by different interacting proteins that regulate their activity, like FK506-binding protein-12.6 (FKBP12.6), calmodulin (CaM), calsequestrin-2 (CASQ2), junctin (JCTN), triadin (TRDN), and βII-spectrin. Other proteins in the RyR2 complex regulate the level of RyR2 post-translational modifications, like protein kinase A (PKA), Ca2+ calmodulin dependent protein kinase (CaMKII), SPEG, and protein phosphatase type-1 and type-2A (PP1 and PP2A, respectively). The RyR2 channel is also regulated by S-nitrosylation and oxidation ([22, 23, 160], and see below). SERCA2a activity is mainly regulated by phospholamban (PLN) [264]. PLN phosphorylation by PKA or CaMKII increases SERCA2a pump activity [99]. The PLN-SERCA2a duet is regulated by additional proteins, which either enhance or decrease SERCA2a activity and the rate of SR Ca2+ reuptake (see for reviews [153, 188]).

The heart has one of the highest energy demands in the organism, to support metabolism, contraction, and ion homeostasis. In healthy myocytes, the strategic positioning and abundance of mitochondria ensure the necessary ATP delivery to rapidly face this high energy demand. Under physiological Ca2+ concentrations, local transfer of Ca2+ to the mitochondria stimulates energy production by positively regulating the tricarboxylic acid (TCA) cycle enzymes and indirectly the pyruvate dehydrogenase complex (PDH), increasing NADH and FADH2 production, and enhancing electron transport chain (ETC) activity [200]. This SR-mitochondria Ca2+ trafficking provides a fundamental link between Ca2+-dependent contraction and mitochondria metabolic output. Indeed, a fraction of cardiac mitochondria resides in close proximity to the junctional SR. This immediacy plays a functional role in excitation-metabolism coupling (EMC) and programmed cell death (Fig. 2B) ([58, 111] and see below). Additionally, ETC is the main cellular process that generates reactive oxygen species (ROS) under both physiological and pathological conditions [9].

To reach the mitochondrial matrix, Ca2+ needs to cross two lipid bilayers, the outer and the inner mitochondrial membranes. In the outer mitochondrial membrane, Ca2+ crosses through the voltage-dependent anion channel (VDAC), which allows the transport of ions and small proteins (Fig. 2B). The inner mitochondrial membrane is completely ion impermeable, and the driving force for Ca2+ entry is the mitochondrial membrane potential (ΔΨ\textsubscript{m} around −150 to −180 mV) [159]. Mitochondrial matrix Ca2+ concentration balance is achieved by two main mechanisms: Ca2+ enters mostly through the mitochondrial Ca2+ uniporter complex (MCU) and exits through the Na+/Ca2+ Li+ exchanger (NCLX) or through the H+/Ca2+ exchanger (HCX) in tissues where mitochondrial NCLX activity is low [266]. Heart inducible MCU deleted mice present normal resting mitochondrial Ca2+ levels indicating alternative Ca2+ entry mechanisms [156]. The MCU is a large complex with multiple regulatory proteins. It is formed by the inner membrane components, MCU, a dominant-negative MCUb and EMRE (essential MCU regulator), and the intermembrane space regulators: the EF-hand proteins MICU1, MICU2, and MICU3. Additionally, MUCR1 seems to be involved in MCU-EMRE interaction [79]. On the other hand, recent evidence suggests that besides its well-established role in mitochondria-mediated cell death, the mitochondrial permeability transition pore (mPTP) participates in the maintenance of mitochondria Ca2+ homeostasis through the extrusion of mitochondrial Ca2+ [148, 180]. The identity of the mPTP is still under discussion, but one of the most accepted conformations is that it is formed by VDAC in the outer membrane and the adenine nucleotide translocase (ANT) in the inner membrane and the regulatory protein cyclophilin D (CyD) in the matrix side [17] (Fig. 2B). The mPTP opening may be induced by Ca2+ and ROS, ADP, H+, Mg2+, and NADH increase the Ca2+ threshold for mPTP opening [17].

SR-Ca2+ leak and SR-mitochondria interaction

SR Ca2+ release in cardiac myocytes occurs via local events referred to as Ca2+ sparks [64]. The normal twitch Ca2+ transient in ventricular myocytes results from the temporal and spatial summation of thousands of Ca2+ spark events which are synchronized by the AP and L-type Ca2+ current (IC\textsubscript{a}) via Ca2+-induced Ca2+-release [49, 50, 95, 177, 178]. Ca2+ sparks also occur in a stochastic manner during rest, even in the absence of Ca2+ influx, although at very low frequency in cardiac cells [64, 241]. Diastolic SR Ca2+ leak may be augmented by an increase in SR Ca2+ load (above a certain threshold, small changes in SR Ca2+ load result in far greater increases in Ca2+ release) [247] and by factors that alter RyR2 regulation [25, 191] (Fig. 2A).

Three different sites have been found to change RyR2 activity: Ser2808 (2809 in human heart), Ser2814 (2815 in humans), and Ser2030 [288, 291, 298] (Fig. 2A). Activation of CaMKII and the subsequent phosphorylation of S2814 are generally considered the critical post-translational modifications that enhance SR Ca2+ leak in HF [87, 233], ischemia–reperfusion injury [78, 237], and several other
diseases, including diabetic cardiomyopathy [93, 256, 261]. Importantly, CaMKII may be also persistently over-activated (autonomous activation of the kinase) by posttranslational modifications including autophosphorylation [129], oxidation [91], S-nitrosylation [57, 92], and O-GlcNAcylation (OGN) [91] as well as by reactive carbonyl species [26, 301]). These modifications occur in several cardiac diseases, including diabetic cardiomyopathy, a disease characterized by the increase in oxidative stress. CaMKII can phosphorylate different substrates, including RyR2 and PLN, which are associated with increased SR Ca2+ leak and enhanced propensity to arrhythmias and cell death (see below).

RyR2 may also suffer redox modifications. Although the current understanding of redox-mediated RyR2 activity remains incomplete, its impact on RyR2 function and dysfunction is supported by a variety of experimental results (see for review [55, 85, 171]). Oxidation of RyR2 SH residues increases the activity of RyR2 channels and the rate of calcium fluxes in isolated SR vesicles [124] and enhances SR Ca2+ leak and arrhythmias [18, 268]. S-nitrosylation and S-glutathionylation have been also shown to increase the activity of RyR2 channels in vitro in subcellular cardiac muscle fractions and in isolated cardiomyocytes [86, 171, 239] (Fig. 2A).

Mitochondria and endoplasmic reticulum (ER) or SR are in close contact (approximately 15–50 nm apart) at multiple sites called mitochondria-ER contact sites (MERC) [58, 111]. The fraction of membranes comprised in these interactions is defined as the mitochondrial associated membranes (MAMs). MERCs are involved in multiple critical functions among which is ER/SR-mitochondria Ca2+ shuttling [149, 229, 230, 234]. These narrow spaces constitute high concentration domains of Ca2+ released by IP3R or RyR2 that affect mitochondrial Ca2+ homeostasis, energetics, metabolism, and mitochondrial dynamics [300]. Several protein-like structures acting as physical tethers link both organelles. Among these proteins are mitofusin 2 (Mfn-2) [62, 75, 201] and GRP75, which link the Ca2+ channel IP3R, isoform 2 (IP3R2), to VDAC [263]. Similarly, IP3R2 has been described to bind with the FUN14 domain containing 1 (FUNDC1) to modulate SR Ca2+ release [295]. Seidlmayer et al., 2019, recently showed the crucial role of physical tethering of SR and mitochondria by Mfn-2 for metabolic feedback induced by IP3 (Fig. 2B) [245]. VDAC has also physical interactions with the RyR2, which, coupled with MCU co-localization with the RyR2, helps to explain how ER/SR-mitochondrial Ca2+ transport is possible [146]. Studies by De La Fuente et al., 2016, showed that Ca2+ signaling activity promotes MCU recruitment to dyad (RyR2) areas [76]. In this way, MCU “hot spots” can be formed at the mitochondria-SR/ER associations favoring local Ca2+ signaling and the excitation-energetics coupling (Fig. 2B).

Ca2+ leak from the RyR2 has been related to either reduced or increased mitochondrial Ca2+ content, both
Ca$^{2+}$ mishandling in diabetic cardiomyopathy

As described above, Ca$^{2+}$ is a key element in ECC, EMC and excitation-transcription coupling, but also in triggering apoptosis and genetic adaptive (maladaptive) responses, like hypertrophy [65, 195]. Therefore, it is critical to establish the alterations in Ca$^{2+}$ handling as well as the more relevant changes (expression, function, and regulation) of proteins involved in Ca$^{2+}$ handling in the evolution of diabetic cardiomyopathy to delineate strategic actions to avoid the progression of the disease. Ca$^{2+}$ mishandling in diabetic cardiomyopathy is the main cause of depressed contractility, slow relaxation, triggered arrhythmias, and altered cellular processes, as apoptosis or mitophagy.

a. Main triggers of diabetic cardiomyopathy

When diabetic cardiomyopathy evolves to HF, it shares most of the alterations observed in HF from different etiologies, i.e., left ventricular hypertrophy, interstitial fibrosis, cell death, diastolic and systolic dysfunction, impaired contractility, Ca$^{2+}$ mishandling, altered substrate utilization, myocardial lipotoxicity, inflammation, impaired autophagy, endoplasmic reticulum stress, and oxidative stress [136]. Additionally, all these mechanisms are linked and can be coordinated. Although the triggers for these changes include hyperglycemia, hyperlipidemia, and hyperinsulinemia, the beginning of the different cardiac abnormalities is not yet clearly determined. Belke et al., 2004, suggested hyperglycemia as the main factor responsible for diabetic cardiomyopathy in both, type 1 and 2 of DM [20]. The authors argue that despite insulin levels differ between the two models, both exhibit important hyperglycemia and progressive cardiomyopathy with increasing plasma glucose levels and advanced glycation end products (AGEs) [1]. In contrast, other insulin-resistant models with modest hyperglycemia show only discreet cardiomyopathy [19, 223]. Indeed, hyperglycemia induces oxidative-stress, producing tissue/cell damage in several target organs including the heart [40]. Hyperglycemia leads to the formation of AGEs, forming irreversible cross-links in many large proteins (such as collagen), generating myocardial fibrosis and increased stiffness [10, 13, 48, 56, 120, 184]. Probably more important in the context of this review, cross-linked AGEs were demonstrated in RyR2, associated with a decrease in the activity of RyR2 [27], and associated with a decreased expression of SERCA2a [28], in part through their action on nuclear gene expression (see below). These changes have been related to diastolic and systolic dysfunction in diabetic cardiomyopathy [154]. Experimental evidence also demonstrated a crucial role of hyperglycemia on CaMKII activation and arrhythmogenesis.
in diabetic cardiomyopathy [93], although additional pathological factors exacerbated the risk for arrhythmias in this cardiomyopathy [122].

Animal models

There are a wide variety of preclinical animal models of DM with specific characteristics that may be relevant to studying type 1 or type 2 DM. Among the animal models used as experimental tools to study T1DM are the streptozotocin (STZ) model, [32], which is the most frequently model used to mimic T1DM, and the spontaneous type 1 diabetes models, among which are the non-obese diabetic (NOD) mouse [185], possibly the most used of spontaneous models, the OVE26 mouse model [90] and the heterozygous Ins2 +/− Akita diabetic mouse [306] (Table 1 and Supplemental Table 1a and b).

To study T2DM, the most used models are the ob/ob [311] and db/db [54] mutant mice, the Zucker diabetic fatty (ZDF) rat [52], and the spontaneously diabetic model Otsuka Long-Evans Tokushima Fatty (OLETF) rat model [142]. There are also models of diet-induced diabetes, for instance, low STZ and high fat diet (HFD), high fat and high sucrose diet (HFHS), or the fructose-rich diet (FRD), all of which can result in insulin resistance and T2DM [220]. HIP rats are obese rats expressing the human isoform of amylin, a pancreatic hormone co-secreted with insulin in the pancreatic β-cells, used as a model of late-diabetic cardiomyopathy [47]. Non-mammals’ models, like zebrafish, C. elegans, and *Drosophila melanogaster* have been also used as DM models [29, 80] (Table 2 and Supplemental Table 2a and b). These models may be very useful, because of their shorter cycle life, the whole-genome interference RNAi library available, and the low maintenance cost [144].

All these models were valuable experimental tools for studying the underlying mechanisms of T1DM and T2DM in the human being, and in all cases, their use present different types of advantages and disadvantages (for review about this issue, see [42, 143]). In all cases, extrapolation of the results to humans has to be cautious, because, in addition to some unique characteristics that the models may have, the studies may reflect different stages and severities of the illness, different predispositions to cardiomyopathies, or even confounding effects produced by the toxicity of drugs or the genetic mutation used to induce DM [42].

b. Low contractility and slow cardiac relaxation

Despite the model diversity, contractile depression, delay relaxation associated with a diminished transient Ca²⁺ amplitude, and prolongation of intracellular Ca²⁺ decay are hallmark characteristics of diabetic cardiomyopathy in the hearts of T1DM and T2DM, as shown in Tables 1 and 2 [20, 248, 249]. In several diabetic cardiomyopathy models, of either T1DM or T2DM, altered relaxation appears before a significant decrease in contractility occurs. Moreover, when intracellular Ca²⁺ transients were measured, changes in contractility and relaxation are associated to similar changes in Ca²⁺ transient’s amplitude and relaxation, underpinning the importance of Ca²⁺ mishandling in diabetic cardiomyopathy (see supplementary Tables 1 and 2). A reduced SR Ca²⁺ content may be due to a reduced SERCA2a pump activity, an increased SR Ca²⁺ leak via RyR2, an enhanced Ca²⁺ extrusion via NCX, and/or a decrease in ICa, Tables 1 and 2 of supplementary materials display some results of different aspects of Ca²⁺ handling and mitochondrial alterations in different models of diabetic cardiomyopathy. Tables 1 and 2 are a summary of most common alterations observed in different models.

A decrease in SERCA2a expression or activity is a common finding in the different models in which this protein has been explored [20, 28, 67, 203]. In some diabetic models, for instance, in STZ treated rats or the Akita model in T1DM or the db/db mouse model in T2DM, there is an increase in PLN expression and a decrease in PLN phosphorylation, which should lead to SERCA2a inhibition [216], and may well explain the decrease in Ca²⁺ transient and contractility as well as the slow relaxation typical of this disease [20]. Indeed, it has been shown that restoration of SERCA2a expression with an adeno-viral vector improves contractile function and reverts the increased cardiomyocyte size in T2DM hearts [236]. However, although SERCA2a depression appears as a main mechanism for the decrease in contractility and relaxation observed in DCM, some T2DM diabetic cardiomyopathy (T2DC) models show decreased contractility and even relaxation, without changes in SERCA2a expression or PLN alterations (Supplementary Table 2). Interestingly, studies by Krallik et al., 2005, indicated a greater depression of Ca²⁺ transient decay in OVE26 than in db/db myocytes, in association with a significant decrease in SERCA2a expression in the OVE26 but without changes in db/db myocytes, despite similar degrees of diminished contractility [151]. These somewhat unexpected findings may indicate different stages of evolution of the illness, different species and preparations, but also that other mechanisms may be playing a role in the decrease in contractility observed in T2DC. For instance, Pereira et al., 2006, described a decrease in SR Ca²⁺ content associated with a decrease in RyR2 expression, L-type Ca²⁺ current, and an increase in NCX expression, all of which may contribute to decrease SR Ca²⁺ load [177]. Unfortunately no measurements of SERCA2a activity or expression were performed in this study, to explain the impairment of relaxation described. Chou et al., 2017, found similar expression of SERCA2a but slower Ca²⁺ transient decay, attributed to prolonged AP duration due to CaMKII-dependent slowing of Ca²⁺ current.
Model	Experimental preparation	Contractility/relaxation	Systolic/diastolic function	Ca\(^{2+}\) transient amplitude/decay time	SERCA2a/PLN ratio and SR Ca\(^{2+}\) load	RyR2	LTCC \(I_{Ca}\)	NCX (forward)	Ca\(^{2+}\) SpF or waves/arrhythmias	PKA	CaMKII	Observations	References
STZ treated rats	Whole animal (ECC), isolated heart, myocytes and mitochondria, sarcolemma preparations	↓ or = / ↓ or = / ↓ or = / ↓ or ↑	↓ or = / ↓ or = / ↓ or = / ↓ or ↑ diastolic Ca\(^{2+}\) release	↓ or = / ↓ or = / ↓ or = / ↓ or ↑ [3H]Ry binding, ↓[3H]Ry affinity, ↓RyR2 expression	↓ or = / ↓ or = / ↓ or = / ↓ or ↑ SR Ca\(^{2+}\) content, ↓SER-CA2a expression, ↑PLN expression, ↓↑ or = PLN phosphoprotein expression	↑	↑ or ↓	↓ or = / ↓	Effects partially reverted with exercise. Increased myocytes necrosis and apoptosis. Reduced mitochondrial function.	[27, 39, 67, 104, 157, 158, 164, 203, 248, 249, 256, 304, 309]			
STZ treated mice	Whole animal (ECC), isolated myocytes	↓ or = / ↓ (ns) / ↑	↑ PLN expression (ns) and OGN	S2814A mice were protected from AF	↑	↓	↑	↑	Mitochondrial disruption. Increased inflammation and apoptosis. Increased oxidative stress and OGN. Increased AF reverted by CaMKII inhibition (AC3-I). Inhibition of CaMKII oxidation (and oxidative stress generation) protected from AF. Diastolic dysfunction less severe in mice protected from CaMKII OGN or oxidation. Increased arrhythmias frequency. CaMKII deletion protected from arrhythmias. Increased SR Ca\(^{2+}\) leak	[123, 192, 316]			
Model	Experimental preparation	Contractility/relaxation	Systolic/diastolic function	Ca\(^{2+}\) transient amplitude/decay time	SERCA2a/PLN ratio and SR Ca\(^{2+}\) load	RyR2	LTCC (I\(_{Ca}\))	NCX (forward)	Ca\(^{2+}\) SpF or waves/arrhythmias	PKA	CaMKII	Observations	References
-----------	--------------------------------	--------------------------	-----------------------------	---	--	------	-----------------	----------------	-------------------------------------	-----	---------	--	--------------
OV26 mice	Whole animal (ECC), isolated heart, myocytes and mitochondria	↓ (ns) / ↓	↓ / ↓	ND / ↑	↓SERCA2a expression = PLN expression							Disorganized mitochondria in heart tissue and mitochondrial damage. Increased mitochondrial biogenesis. Mitochondrial dysfunction and increased oxidative stress in high glucose treated OV26 myocytes	[169, 250, 251, 299, 305]
NOD mice	Whole animal ECC, isolated hearts, and mitochondria	↓ / ↓	↓ or =/ ↓	ND/ ↑	↓SERCA2a expression = PLN expression							Reduced LV weight. Higher respiratory ratio, decreased complex IV expression. Increased arrhythmia frequency	[84, 213, 244]
Akita	Whole animal ECC, isolated hearts, myocytes, and mitochondria	Modest ↓ or =/ ND	↓ or =/ ↓	=/ ↑	↓SERCA2a expression = PLN expression = or ↓ PLN phosph	↓ reduced cell surfaces LTCCs = activity						Conserved or reduced ventricular dimensions. Increased palmitate and reduced glucose oxidation. No mitochondrial uncoupling but increased UCP2 and UCP3 expression. Reduced mitochondrial function and ETC gene expression. Reduced and increased oxidative stress. Reduced cristae density and mitochondrial disruption	[16, 44, 161, 179, 215]

TIDM type 1 diabetes mellitus, *STZ* streptozotocin. ↑, increased vs control. ↓, decreased vs control. =, no difference vs control. Contractility/relaxation is included when developed pressure was measured. Systolic/diastolic function is included when echocardiographic (ECC) data is available. *SERCA2a* sarcolemmal reticulum ATPase 2. *PLN* phospholamban. *RyR* ryanodine receptor 2. *NCX* sodium/calcium exchanger. *Ca\(^{2+}\)* + SpF calcium sparks frequency. *PKA* and *CaMKII* are referring to their activity, measured directly or by canonical targets phosphorylation. *Phosp* phosphorylation. *LTCC* L type calcium channel current. *AGES* advanced glycation end products. ND not determined. (ns) not significant difference. *AF* atrial fibrillation.
Table 2 Summary of excitation–contraction coupling parameter characteristics in myocardiopathy of type 2 diabetes

Model	Experimental preparation	Contractility/relaxation	Systolic/diastolic function	Ca²⁺ transient amplitude/decay	SERCA2a/PLN ratio and SR Ca²⁺ load	RyR2	LTCC \((I_{Ca}) \)	NCX	Ca²⁺ SpF or waves/arrhythmias	PKA	CaMKII	Observations	
db/db mice	Whole animal (ECC), isolated heart, and myocytes	↓ / ↓	↓ / ↓	↓ / ↑	↓ SERCA2a expression and activity, = PLN expression ↑ PLN phosphorylation ↓ SR Ca²⁺ load	= or ↓ RyR2 expression ↑ CaMKII = or ↓ RyR2 phosph (2814) ↓ synchrony of Ca²⁺ release increased SR Ca²⁺ leak	↑ or ↓	=	↑	Initial decrease in SERCA expression associated with increased relaxation prevented by reversing OGN. Decreased diastolic and systolic Ca²⁺. Exercise training normalizes or reduces the dysfunction. Increased mitochondrial biogenesis, apoptosis, and oxidative stress. Reduced mitochondrial membrane potential and mitochondrial function. Mitochondrial uncoupling mediated by fatty acids and UCPs activation.			
ob/ob mice	Whole animal (ECC), isolated heart, and myocytes	↓ / ↓	= / ↓	↓ or = / ↑	= SERCA2a but increased oxidation and reduced activity	= or ↓ RyR2 expression ↑ CaMKII = or ↓ RyR2 phosph (2814) ↓ synchrony of Ca²⁺ release increased SR Ca²⁺ leak	↑	=	↑	Increased cardiomyocyte length. Mitochondria swelling, disorganization of cristae and loss of integrity. Reduced mitochondrial function. Increased oxidative stress. Slower mitochondrial Ca²⁺ uptake.			
Model	Experimental preparation	Contractility/relaxation	Systolic/diastolic function	Ca2+ transient amplitude/decay	SERCA2a/PLN ratio and SR Ca2+ load	RyR2	LTCC (I\textsubscript{Ca})	NCX	Ca2+ SpF or waves/arhythmias	PKA	CaMKII	Observations	References
---	---	--------------------------	-----------------------------	---	---	------	----------------	------	--	-----	---------	--	------------
Zucker diabetic fatty (ZDF) rats	Whole animal (ECC), isolated myocytes, and mitochondria	↓ or =/↓ Altered time course	=/ or =/↑	↓ or =/= or ↑ SERCA2a and PLN expression	= SR Ca2+ uptake	= SR Ca2+ load			↑ No changes in myofilament Ca2+ sensitivity. Increased susceptibility to mPTP opening and oxidative stress. Reduced mitochondrial function. Increased apoptosis.				
OLETF 30% Sucrose feeded	Isolated hearts, and mitochondria	=/↓	ND /↑	↓ SERCA2a expression					Effects age dependent	[2]			
HFHS diet treated mice	Whole animal (ECC), isolated heart	=/↓	ND /↑						Increased oxidative stress and posttranslational protein modifications.	[220]			
High fat diet + low dose of STZ treated mice	Whole animal treated mice	=/↓	=/↓						Increased oxidative stress and OGN. Increased AF reverted by CaMKII inhibition (AC3-I). Inhibition of CaMKII oxidation but not OGN protected from AF.	[192]			
High fat diet drosophila melanogaster	Whole animal treated mice	=/↓	↓ / ND						↓ IP, R, expression	[29]			

\textit{T2DM} type 2 diabetes mellitus. ↑, increased vs control. ↓, decreased vs control. =, no difference vs control. Contractility/relaxation is included when developed pressure was measured. Systolic/diastolic function is included when echocardiographic (ECC) data is available. SERCA2a sarcoplasmic reticulum ATPase 2. PLN phospholamban. RyR ryanodine receptor 2. NCX sodium/calcium exchanger. Ca2+ + SpF calcium sparks frequency. PKA and CaMKII are referring to their activity, measured directly or by canonical targets phosphorylation. Phosphorylation. LTCC L type calcium channel current. OGN O-GlcNAcylation. AF atrial fibrillation. OLETF Otsuka Long-Evans Tokushima Fatty rat model of diabetes mellitus, HFHS high fat and sugar, HFD high fat diet. ND not determined.
the increase in late Na+ current ([69] and see Supplementary Table 2). Other authors showed mitochondrial dysfunction associated to either decrease contractility or relaxation [97, 134, 227]. Indeed, impaired energy metabolism has been also associated to hyperglycemia cardiac contractile deficiency [150]. In the Zucker diabetic fatty (ZDF) rats, a well-known model of T2DM, the decrease in contractility and relaxation observed without significant alterations in SR Ca2+ load was attributed to an increase in SR Ca2+ sparks or a diabetic-induced alteration at the myofilament level [73]. The first possibility seems unlikely, since the increase in spontaneous Ca2+ sparks would lead to a decrease in SR Ca2+ content, unless a concomitant increase in SR Ca2+ uptake occurs, which seems not to be the case. In contrast, changes at the contractile protein level, including depressed sensitivity of myofilament to Ca2+, have been described by others in STZ-treated rats [3, 187], ZDF rats [127] and ob/ob mice [167] (Supplemental Table 2). This finding is very interesting since studies in human cardiac tissue report alterations at the myofilament level in T2DC [21, 107, 140].

The molecular underlying mechanisms of the decrease in SERCA2a expression and/or activity are not completely clear, when no changes in PLN expression or phosphorylation are found. Yet, experimental studies indicate different and possibly nonexclusive mechanisms. For instance, it was shown that the impairment of relaxation observed in diabetic cardiomyopathy in association with a decrease in the activity of SERCA2a was due to enhancing oxidative stress and SERCA2a oxidation [167, 267]. Experiments by Bidasee et al., 2004, showed that SERCA2a peptides were modified by cross- and no crosslinking AGEs, decreasing SERCA2a activity [28] (see also Supplementary Table 1). Indeed, diabetic cardiomyopathy is associated with significantly enhanced cardiac AGE and AGE receptors (RAGE) levels, which colocalize in cardiomyocytes [184]. The decrease in SERCA2a expression in myocytes subjected to hyperglycemia was coupled with a significant reduction in SERCA2a promoter activity and, in turn, associated with overall levels of nuclear O-GlcNAcylation (OGN), greatly suggesting the Sp1 OGN, one of the main transcriptional regulators of SERCA2a (ATP2A2 gene) expression [53]. O-GlcNAcylation of the transcription factor Sp1 was also described in, associated to diastolic dysfunction and SERCa2a decreased expression [106].

Alterations of RyR2 function were also described in several models of diabetic cardiomyopathy ([20, 26, 67, 116, 216, 248, 249, 256, 304, 609] and see Tables 1 and 2 of supplementary material). A common finding, mainly in T1DC, is a reduced expression and activity of RyR2 [26, 67, 116, 248, 249, 304, 308], resulting in reduced contractility, by decreasing SR Ca2+ gain [22]. In some of the studies, RyR2 alterations were associated with an increase in SR Ca2+ leak either in STZ-induced T1DC [20, 248, 249, 304] or in db/db T2DC [13] (Tables 1 and 2 of supplemental material), which would either produce or exacerbate the decrease in SR Ca2+ content and contractility observed in diabetic cardiomyopathy. Of note, the greater activity of RyR2, produced, for instance, by PKA or CaMKII phosphorylation, would not only favor SR Ca2+ leak and the decrease in contractility, but also systolic Ca2+ release, counteracting the effect of SR Ca2+ leak. Indeed, it was shown that fractional Ca2+ release is enhanced by CaMKII-dependent phosphorylation of RyR2 [190, 280], for a given SR Ca2+ load [162]. Moreover, the increase in SR Ca2+ leak can also contribute to slowing twitch relaxation. For instance, Shao et al., 2009, showed in STZ-induced T1DC a delayed relaxation and Ca2+ transient decrease in the absence of significant changes in SERCA2a expression or PLN phosphorylation [249]. These results emphasize the putative role of SR Ca2+ leak on the depressed contractility and delayed relaxation observed in diabetic cardiomyopathy [24].

The increase in SR Ca2+ leak in diabetic cardiomyopathy has been associated with different mechanisms. In STZ animals, RyR2 has been shown to be phosphorylated at S2808/9 [248, 304], a residue mainly phosphorylated by PKA, but also by CaMKII [99], and at the CaMKII site S2814/5, in association with a decrease in PKA and an increase in CaMKII activities, indicating that the increase in S2808/9 phosphorylation should be therefore attributed to CaMKII [249] (Fig. 2A). As previously mentioned, the activity of CaMKII has been shown to be increased in different models of either T1 or T2 diabetic cardiomyopathy [69, 73, 122, 261]. The increase in SR Ca2+ leak has been also associated to a decrease in the RyR2 regulatory protein FKBP12.6 [20, 248, 304, 308, 309]. FKBP12.6, a peptidyl-prolyl cis–trans isomerase, tightly associates with RyR2, stabilizing its closed conformational state and facilitating channel closure [35] (Fig. 2A). In T1DC, Yaras et al., 2007, showed a decreased expression of FKBP12.6 and RyR2. RyR2 phosphorylation and SR Ca2+ leak, with an increased activity of PKA and PKC, that could be blocked by inhibition of PKC and the angiotensin 1 receptors [303]. These results linked Ca2+ mishandling in diabetic cardiomyopathy with the increased activity of the renin-angiotensin system observed [221]. The increase in ROS production is a main mechanism of RyR2 alterations in STZ-induced diabetic cardiomyopathy that may be reversed by increasing of antioxidant protection [276]. Bidasee et al., 2004, showed a decrease in RyR2 activity with no changes in RyR2 expression in STZ rat myocytes, attributed, as in the case of SERCA2a, to AGEs [249]. In STZ rat myocytes, Tian et al., 2011, further showed an increase in the leakiness of RyR2, independent of RyR2 phosphorylation and/or FKBP12.6 downregulation. This effect was attributed to the enhanced cyclic adenosine diphosphate ribose levels.
observed in these myocytes [269]. Moreover, and as discussed for SERCA2a, the underlying mechanisms of the decrease in RyR2 expression described in different models of diabetic cardiomyopathy are not clear. In STZ-induced diabetic cardiomyopathy, it has been suggested that insulin deficiency may play a role, due to its influence on gene expression [249]. The results regarding NCX function and ICa in diabetic cardiomyopathy are controversial (Tables 1 and 2 and Tables 1 and 2 of supplemental material). In db/db myocytes, NCX function was reported to be normal [20, 69]. On the contrary, Stolen et al., 2009, and Pereira et al., 2006, reported an enhanced NCX activity in db/db mice [216, 261], while in T1DM, it was found to be depressed due to a decrease in the NCX expression or activity [34, 67]. As discussed above, in the cases of enhanced activity, it may contribute to SR Ca2+ unloading and depressed contractility of diabetic cardiomyopathy. The results on ICa are also mixed; whereas several authors reported that ICa was not affected in diabetic cardiomyopathy [67, 138, 157, 166, 304], other authors describe a decrease in ICa suggesting that this reduction may be also involved in the reduced SR Ca2+ content observed in diabetic cardiomyopathy [34, 165, 216, 261, 287]. As noted above, these conflicting results might arise from the diabetes model used and/or possibly more important, from the degree of evolution of diabetic cardiomyopathy.

In summary, SERCA2a and RyR2 appeared to be the most affected ECC proteins in diabetic cardiomyopathy (although not unique) and in turn the responsible for the slowing of relaxation, the decrease in SR Ca2+ load, and the decrease in the amplitude of Ca2+ transients and contractility observed in most diabetic cardiomyopathy models [20, 67, 158, 216, 248, 304].

c. Cardiac arrhythmias

Beyond the alterations in contractility, cardiac arrhythmias propensity is also a hallmark in diabetic cardiomyopathy, and diabetic patients are at an increased risk of cardiac arrhythmias and sudden death, arrhythmia’s most feared consequence [199, 259, 274]. Reentry is the common arrhythmogenic mechanism. Reentry occurs when an AP did not extinguish being able to reactivate a region already recovered from refractoriness. Reentry can arise from abnormalities in conduction, repolarization, or both (Tse et al., 2016). In diabetic cardiomyopathy both abnormalities are present, establishing a powerful arrhythmogenic substrate, further strengthened by systemic factors, like autonomic neuropathy or inflammation [139, 196] and associated heart diseases like coronary artery disease [69, 126, 198, 260, 312]. Moreover, altered ionic currents and Ca2+ mishandling favor EADs, DADs, and spontaneous APs and constitute the arrhythmogenic trigger. In the advanced diabetic cardiomyopathy, these mechanisms coexist making the dissection of each one difficult (see for review [274]). A detailed review of cardiac arrhythmias in diabetic cardiomyopathy has been recently published [122]. In this review, we will concentrate on triggered arrhythmias that occur at the cellular level due to Ca2+ mishandling.

Abnormal Ca2+ cycling is linked to triggered activity which may occur due to an imbalance in ionic currents favoring a depolarizing net inward current [51]. This imbalance originates membrane potential alterations called early and delayed afterdepolarizations, EADs and DADs, respectively, according to the moment that they occur relative to the regular AP. EADs arise before the completion of AP, whereas DADs occur after AP completion (Fig. 1, inset). These mechanisms may produce sustained arrhythmias by reentry circuits [174]. EADs occur usually in the presence of prolonged repolarization and are attributed to reactivation of ICa (131), although the NCX current (INCX) may also be involved [289]. DADs are caused by spontaneous Ca2+ releases from the SR [22]. In the context of SR Ca2+ overload and RyR2 sensitization, the Ca2+ released by a group of RyR2 activates neighboring RyR2. This activation may propagate in a regenerative way along the myocytes, as Ca2+ waves [63]. Ca2+ waves are potentially arrhythmogenic, since the extrusion of Ca2+ through the NCX may trigger a transient inward current (Ii) that depolarizes the cell membrane. If the magnitude of depolarization attains the membrane potential threshold, a spontaneous AP and contraction occur [22, 190, 258] (Fig. 1, inset).

Abnormal RyR2 gating and SR Ca2+ leak have been critically linked with RyR2 mutations or posttranslational modifications of RyR2 or associated regulatory proteins [23, 81, 99, 118, 292]. As discussed above, an increase in SR Ca2+ leak and arrhythmogenesis was associated with different types of RyR2 alterations in diabetic cardiomyopathy models of T1DM and T2DM [20, 93, 248, 249, 304] (see Tables 1 and 2 of supplemental materials).

As discussed above, the importance of CaMKII-dependent phosphorylation of RyR2 on SR Ca2+ leak and triggered arrhythmias in diabetic cardiomyopathy has been emphasized in several studies [261]. Indeed, CaMKII may be activated by different mechanisms, all of which are present in diabetic cardiomyopathy [282], i.e., T287-phosphorylated CaMKII, M281/282-oxidized CaMKII, and S280 O-linked Glycosylated CaMKII are increased in both, animal diabetic cardiomyopathy models and diabetic human heart samples [73, 93, 183, 207]. The first associations of Ser2814 phosphorylation (the CaMKII site) with SR Ca2+ leak in diabetic cardiomyopathy were almost simultaneously made by Shao et al. [249], who also described an increase in RyR2 phosphorylation at Ser2808/9 site (mainly phosphorylated by PKA), and Stolen et al. [261], who described an increase in Ser2814 site phosphorylation.
phosphorylation and in CaMKII-dependent phosphorylation of Thr17 site of PLN. In contrast, they did not find any significant increase in RyR2-Ser2808/9 site phosphorylation. Erickson et al. [93] also associated the increase in CaMKII activity with the enhanced SR Ca²⁺ leak and ventricular arrhythmias produced by hyperglycemia. An increased CaMKII-dependent phosphorylation of RyR2 and in Thr17 site of PLN, associated with an increased SR Ca²⁺ leak, was also described in a prediabetes model ([255] and see below).

An association between redox modifications of RyR2 and arrhythmias was observed in mice treated with HFD. These mice present ventricular arrhythmias, an increased expression of NADPH oxidase, isoform 2 (NOX2) at the heart level, and enhanced activity of RyR2 associated to a decrease in free thiol residues compared to control. Ventricular arrhythmias were prevented by treatment of the animals with apocynin, a ROS scavenger and potent NOX2 inhibitor [238]. In a HiP rat model of late-onset T2DC, an increase in DADs was observed, associated to enhanced CaMKII and PKA phosphorylation and oxidation of RyR2 [219].

The mechanism of the increased SR Ca²⁺ leak produced by the sole increase in Ca²⁺ RyR2 sensitivity is difficult to explain. An increase in SR Ca²⁺ leak cannot be sustained by increasing RyR2 activity, unless there is a simultaneous enhancement of SR Ca²⁺ uptake that continuously refills the SR, to maintain the necessary SR Ca²⁺ level to activate RyR2 [273]. In consonance with this premise, Pereira et al. [216], working in db/db mice, described a decrease in SR Ca²⁺ load associated with a diminished frequency of Ca²⁺ sparks. Similar results were obtained in STZ-treated rats by Lacombe et al., 2007, [157] (see Tables 1 and 2 of supplemental material). Therefore, it is possible that the increase in SR Ca²⁺ leak described in db/db mice [261] and HIP rats [219], and in STZ-treated rats by several authors [122, 192, 219, 248, 249, 304], could be associated not only with RyR2 phosphorylation or activation, but also with mechanisms that enhance SERCA2a activity (like PLN phosphorylation or decreased PLN expression), able to maintain the SR Ca²⁺ load for a persistent SR Ca²⁺ leak. An increase in CaMKII-dependent PLN phosphorylation was indeed observed by Stolen et al., 2009, in db/db mouse cardiomyocytes [261], and by us, in prediabetic mice and rats [98, 255]. In contrast, the increase in SR Ca²⁺ leak observed by Shao et al., 2009, is more difficult to explain, because no increase in PLN phosphorylation or decrease in PLN expression were observed [249].

Earlier experiments by Nordin et al., 1985, described that ventricular muscles from diabetic rats were more prone than normal myocardium to develop delayed after depolarizations and triggered activity under conditions believed to cause myoplasmic Ca²⁺ overload, like increasing extracellular Ca²⁺ [208]. More recently Chou et al., 2017, showed in db/db mice an increased propensity to ventricular arrhythmias and alternans [69]. These experiments were performed in vivo or in ex vivo preparations, and the propensity to ventricular arrhythmias was induced by a specific pacing protocol that allows SR Ca²⁺ loading. Besides, the authors described a significant increase in total PLN phosphorylation. This increase may be the result of sympathetic overactivity, which is common in diabetic patients [172] and may contribute to increasing PLN phosphorylation levels. In line with this concept, the paradoxical triggered arrhythmias observed in HF [218] that occur despite the decreased SR Ca²⁺ load could be explained by the preserved β-adrenergic responsiveness in animals with HF. Indeed, it was found that β-adrenergic stimulation resulted in a greater increase in SR Ca²⁺ load in HF than in control rabbit myocytes [218].

In summary, triggered arrhythmias due to Ca²⁺ mishandling constitute a very common finding in different models of diabetic cardiomyopathy and several studies point to CaMKII activation and RyR2 phosphorylation as a main player in this type of arrhythmias in diabetic cardiomyopathy.

Although the above results referred to ventricular triggered arrhythmias, it is important to mention that diabetes increases the risk of atrial fibrillation [286]. Although the pathogenesis of atrial fibrillation is not well clarified, the atrial structural and electromechanical remodeling described in diabetic cardiomyopathy constitute a more than suitable substrate for triggered arrhythmias, and several of the underlying mechanisms described for ventricular arrhythmias may be shared by atrial fibrillation [173]. As it will be discussed below, changes in myofilament responsiveness to Ca were described in ventricular and atrial tissue of patients with diabetic cardiomyopathy [140].

Finally, most of the results described above were obtained in ventricular myocytes of rodents. However, as with any animal model, there are limitations in extrapolating the results to human disease, which include its rapid intrinsic resting heart rate and variations in ion channel distribution and kinetics underlying depolarization and repolarization. Moreover, most of the studies in isolated myocytes are usually performed at an artificially low stimulation frequency and temperature, which further complicate interpretations and extrapolations to human being. However, it is also true that rodents have proved to be an excellent tool for exploring underlying mechanisms of arrhythmias (see for review [70]). Besides, several studies in the intact heart performed at higher frequencies and more physiological temperatures support conclusions obtained in isolated myocytes [11, 278]. In any case, it should be cautious when extrapolating rodents results to human disease.

Nuclear Ca²⁺ and gene transcription in diabetic cardiomyopathy

As stated above, there is close interaction between cytosolic Ca²⁺ and nuclear envelope and nuclear Ca²⁺. Besides,
Mitochondria dysfunction in diabetic cardiomyopathy

In the context of DM, reduced glucose uptake as a result of the lack of insulin or the insulin resistance induces a substrate shift toward increased free fatty acid internalization and oxidation [257]. Additionally, increased levels of mitochondrial acetyl CoA and cytosolic citrate inhibit PDH and glycolysis, reducing glucose oxidation (Randle cycle) [222]. This metabolic shift that results in reduced ATP production, increased ROS generation, and impaired mitochondrial respiration capacity is also observed in human diabetic cardiomyopathy [7, 226]. Interestingly, reduced mitochondrial energetics and increased ROS production were observed in mice with a cardiomyocyte-specific deletion of the insulin receptors, suggesting that lack of insulin signaling might also be the cause for the phenotype observed in T2DM hearts [33]. However, increasing glucose uptake to control levels in a model of T1DM worsened mitochondrial function and diabetic cardiomyopathy [290].

Although the exact pathophysiologic mechanisms of diabetic cardiomyopathy are not completely understood (see above), mitochondrial dysfunction plays a central role [43, 88, 114, 136]. In this context, mitochondria quality control, mitochondrial fission and fusion, mitochondrial biogenesis, and mitophagy are central players in mitochondria dynamics and in the evolution of heart disease [242]. Mitophagy, a type of selective autophagy that clears damaged or unwanted mitochondria [109] is important for cardiovascular homeostasis and protection of the myocardium in cardiovascular diseases (for a review on the role of mitophagy in CD, see [197]). In diabetic cardiomyopathy, clearance of damaged mitochondria could reduce oxidative stress and apoptosis [168]. In HFD-treated mice, cardiac-specific deletion of the autophagy-related 7 (atg7) gene resulted in reduced autophagy and mitophagy and exacerbated mitochondrial dysfunction, fibrosis, and cell death by apoptosis [271]. Moreover, T1DM OVE26 mice presented increased cardiac mitochondrial area and number associated with impaired function and increased oxidative stress [250]. These results emphasize the importance that clearance of dysfunctional mitochondria needs to be balanced by new mitochondria biogenesis. As described below, similar dynamic alterations were found in the prediabetic heart [98]. Mitochondrial biogenesis seems to be reduced in skeletal muscles in patients with T2DM [228] and in adipocytes from ob/ob mice [68], while in HFD-treated rats, mitochondrial biogenesis is increased as a potential protective mechanism to increase fatty acids consumption and reduce ROS production [130].

The increased ROS generation leads to oxidative stress, inducing several cellular changes and activating cell death mechanisms that include autophagy, necrosis, and apoptosis and have distinctive roles. Autophagy acts as a homeostatic process that results in the lysosomal degradation of damaged organelles, protein aggregates, and is a critical step in tissue damage. The imbalance between autophagy and apoptosis may establish the progression of diabetes complications. In fact, apoptosis can be downregulated by autophagy [284]. Fatty acids accumulation results in ER stress [254] impairing autophagy and resulting in accumulation of dysfunctional organelles [115, 214]. Increasing autophagy and reducing myocyte apoptosis improve cardiac function in STZ mice [121].

ROS, including the superoxide anion, the hydroxyl radical, and hydrogen peroxide, are signaling molecules with important roles in both cardiac physiology and disease. Under physiological conditions, cardiac ROS are involved in heart development and cardiomyocyte maturation, Ca²⁺ handling, ECC, and vascular tone (reviewed in [46]). Mitochondrial ROS production involves mainly complex I and III activity. Excessive ROS production can result in ΔΨm dissipation and reduction in NADH production, resulting in the emission of H₂O₂, a mechanism known as ROS-induced ROS release [315]. Lipid accumulation in the ER results in ER stress that also induces ROS production, releasing Ca²⁺ from the ER storage and further increasing mitochondrial ROS production [45, 272]. When ROS disbalance occurs, oxidative stress can damage mitochondrial DNA, inducing protein oxidative damage and impairing energetics and further increasing ROS production [102, 300]. Indeed, dysregulated ROS production and oxidative stress have been implicated in several cardiac diseases, including cardiac

it is also known that the nucleus is equipped to produce InsP3 and to release and take up free Ca²⁺, independently of cytosolic InsP3 or Ca²⁺ [89]. Among the Ca²⁺-dependent pathways mediating transcriptional regulation in cardiomyocytes are the ones mediated by calmodulin, CaMKII, and calcineurin, which are overactive in several cardiac diseases, including diabetic cardiomyopathy. These pathways would be involved in re-expression of a fetal gene program, inducing maladaptive hypertrophy and remodeling of ion channels and transporters, ultimately impairing cardiac function [77, 82]. Indeed, it has been shown that changes in nuclear Ca²⁺ occur before cytosolic Ca²⁺ alterations in disease development, supporting the crucial role of nuclear Ca²⁺ in the activation of maladaptive gene programs [176]. The effect of enhanced CaMKII activity on nuclear Ca²⁺ and ventricular remodeling has been recently reviewed [122, 155] and may have also a role in diabetic cardiomyopathy remodeling. Interestingly, a transcriptomic analysis of cardiac left ventricle of STZ-treated rats revealed perturbations in the expression of genes corresponding to proteins expressed in mitochondria and in genes regulating cardiac fatty acid metabolism [113].
hypertrophy, HF, cardiac ischemia–reperfusion injury, and diabetic cardiomyopathy (reviewed in [175, 189, 193, 275]).

Additionally, Ca²⁺ can stimulate nitric oxide synthase (NOS), generating reactive nitrogen species (RNS) that can further enhance ROS production [36, 133]. Therefore, Ca²⁺ and ROS form a vicious cycle that can induce membrane depolarization, mitochondrial protein and DNA damage, mPTP opening, and cell death. Alterations in energy and ROS/Ca²⁺ coupling have been observed in HF, supporting the importance of Ca²⁺ in modulating energy and ROS production [209]. Antioxidant daily injection in mice models of T1DM and T2DM resulted in reduced oxidative stress and myocyte apoptosis, and restoration of diastolic function [204]. Mice lacking p66shc, a protein involved in ROS production [108], are protected from STZ-induced diastolic and systolic dysfunction, reducing diabetes induced cell apoptosis and necrosis [232]. Furthermore, hyperglycemia induces mitochondrial oxidative stress and mitochondrial fragmentation, which can cause cellular injury and dysfunction [307].

It is known that when mitochondrial Ca²⁺ overload occurs, the mPTP can open, resulting in the release of mitochondrial content (including Ca²⁺) and causing cell death [17]. Indeed, it was shown that FUNDC1 is upregulated in diabetic human hearts and Akita and STZ animal models of T1DM. The increased FUNDC1 is associated with increased MAM formation by binding to IP3R2, resulting in increased mitochondrial Ca²⁺ levels, mitochondrial dysfunction, increased ROS formation, and decreased mitochondrial membrane potential, while FUNDC1 deletion protected mice from cardiac dysfunction [294]. Mitochondrial Ca²⁺ overload due to SR Ca²⁺ leak can cause mitochondria dysfunction, oxidative stress, and apoptosis as seen in HF [240]. As discussed above, CaMKII was overactivated in several models of diabetic cardiomyopathy producing RyR2 phosphorylation and increasing SR Ca²⁺ leak [93, 248, 261]; additionally, CaMKII may directly favor mitochondrial Ca²⁺ uptake increasing MCU activity; however, this is a controversial issue that deserves further investigation [103, 137, 181, 205, 270]. Activated CaMKII phosphorylates Drp-1, a mitochondrial membrane protein, which results in increased mPTP opening, myocyte death, and heart hypertrophy after β-adrenergic stimulation [302]. This phosphorylation was also observed in ventricular samples from dilated cardiomyopathy and ischemic heart failure patients [302]. Increased Drp-1 acetylation has been also detected in obese Zucker and HFD fed mice, monkeys, and isolated myocytes treated with palmitate [128] resulting in heart dysfunction, mitochondrial fission, and cell death mediated by VDAC-1. Initiation of cell death by mitochondria in response to diverse stress signals, like hypoxia, oxidative stress, and Ca²⁺ overload, can be induced by opening of the mPTP, resulting in loss of ΔΨm and mitochondrial swelling or by permeabilization of the mitochondrial outer membrane and release of proapoptotic proteins [117].

On the other hand, reduced SR Ca²⁺ load and Ca²⁺ transients result in decreased mitochondrial Ca²⁺ uptake [145]. Reduced mitochondrial Ca²⁺ content also has deleterious effects on mitochondrial function. It can further reduce PDH phosphatase activity, resulting in decreased glucose and increased fatty acid utilization, increasing lactate production, oxygen consumption, and eventually altering contractile function [79]. Suarez et al. [262] described that reduced mitochondrial Ca²⁺ in diabetic cardiomyopathy due to reduced MCU expression results in reduced ΔΨm, increased ROS, and apoptosis in STZ-treated mice. Additionally, reduced cytosolic Ca²⁺ transients can reduce mitochondrial Ca²⁺ content, affecting ATP generation as seen in T1DM hearts [158, 308]. Reduced Ca²⁺ retention capacity as a result of increased sensitivity for mPTP opening can also lead to reduced mitochondrial Ca²⁺ content and impaired energetics in T1DM rat model and human diabetic cardiomyopathy [8, 212]. Results are less conclusive from T2DM models; however, reduced Ca²⁺ transients are also observed [20, 83, 97, 216, 261] that could result in reduced mitochondrial Ca²⁺ content. Levels of MCU complex proteins like EMRE, MICU1, MCU, and MCUb are also affected in both T1DM and T2DM, indicating that mitochondrial Ca²⁺ entry could be affected in DM not only by the amount of cytosolic Ca²⁺ or the magnitude of SR Ca²⁺ leak but also by mechanisms inherent to mitochondria themselves [79]. In T1DM mice, there is a reduction in MCU and EMRE levels and an increase in the expression of MCUB, resulting in reduced cardiac mitochondrial Ca²⁺ content. MCU adenoviral expression restored mitochondrial bioenergetics, reduced apoptosis, and improved cardiac function [262]. In db/db mice, reduced MICU1 expression is related to increased oxidative stress and myocyte apoptosis, while MICU1 restoration increased mitochondrial Ca²⁺ content and inhibited the development of diabetic cardiomyopathy, observed as enhanced heart function and reduced cardiac hypertrophy and fibrosis [134]. Is worth to note that in the later, the authors only compared mitochondrial Ca²⁺ content in db/db mice with or without MICU1 overexpression, without comparison with control mice.

Additionally, alterations in the expression and/or activity of the MCU complex proteins can be caused by transcription and/or protein expression regulation. For example, overexpression of microRNA (miR)-181c in DM results in COX-1 reduced expression. This in turn leads to increased ROS production, reduced MICU1 expression, and mitochondrial Ca²⁺ overload, which ultimately results in mitochondrial and heart dysfunction [14] (see [132] for an extensive review of the role of miR in regulating mitochondrial Ca²⁺).
Early alterations in diabetic cardiomyopathy: the prediabetic model

The prediabetic state can be defined as a metabolic dysfunction with impaired glucose tolerance and impaired fasting glucose, usually asymptomatic [6, 207]. However, cardiac defects in DM have a long progression before attaining the stage of diabetic cardiomyopathy with evident diastolic and systolic symptoms. Knowledge of alterations occurring at the early stages of the disease is necessary and essential for setting the first steps in the evolution of this cardiac illness. Unfortunately, and despite the acknowledgment of the prolonged evolution of diabetic cardiomyopathy and the fact that the prevalence of prediabetes is rising [72], studies tracking the early stages of diabetic cardiomyopathy are scarce. Even with this limitation, there is evidence that subjects with impaired glucose tolerance have impaired diastolic function of the left ventricle [12] and prediabetes and borderline diabetes are associated with an increased risk of sudden cardiac death possibly due to cardiac arrhythmias [59, 277]. Moreover, there is evidence suggesting an increased propensity to arrhythmias in young people with DM even in the absence of detectable systolic dysfunction [243].

In a prediabetes model for T2DM, induced by a FRD [4, 101], it was described that as early as 3 weeks of FRD, there was an enhanced ROS production and an increase in oxidized CaMKII activity in association with enhanced SR Ca2+ leak due to RyR2 phosphorylation at the CaMKII site (Ser2814). The increased SR Ca2+ leak occurs without significant changes in SERCA2a or PLN expression, but in association with an increase in phosphorylation Thr17 site of PLN and SERCA2a activity [98]. Surprisingly, SR Ca2+ leak was high enough to trigger in vivo ventricular arrhythmias [255] (Fig. 3), at this early stage of the evolution of the disease. These alterations were prevented by the CaMKII inhibitor KN-93, by co-treatment with the reactive oxygen species scavenger Tempol, in SRAIP mice, in which the CaMKII inhibitor autocamtide inhibitory peptide (AIP) is targeted to the SR [135], or in S2814A animals in which the CaMKII site of the RyR2 is replaced to Ala and cannot be phosphorylated [60, 280] (Fig. 3). Interestingly, and despite the increase in SR Ca2+ leak, SR Ca2+ load did not change in FRD myocytes. Thus, the increase in SR Ca2+ leak and consequent arrhythmogenic Ca2+ waves and arrhythmias observed in FRD myocytes may result from the combination of a decrease in SR Ca2+ threshold for Ca2+ leak and an increase in SERCA2a activity, possibly by CaMKII-dependent PLN phosphorylation, able to maintain SR Ca2+ content above Ca2+ threshold for Ca2+ leak.

In prediabetes, the exacerbated SR Ca2+ leak was also associated with augmented cardiac apoptosis, mitochondrial
swelling, and mitochondrial membrane depolarization in FRD mice [98]. These alterations did not occur in S2814A myocytes treated with FRD, supporting the concept that the increase in CaMKII-S2814 phosphorylation-induced SR Ca\(^{2+}\) leak was associated with increased mitochondrial SR Ca\(^{2+}\) load, dissipation of Δψm, opening of the mPTP, and release of apoptotic factors [211]. These experiments emphasize that apoptosis is already present at the early stages of the illness preceding diabetic cardiomyopathy, highlighting one of the possible mechanisms involved in cardiac damage. The experiments further indicate that ROS production is upstream the activation of CaMKII in the arrhythmogenic and apoptotic signaling cascade triggered by FRD and suggest an analogous signaling pathway for both phenomena [98, 255].

Both, the arrhythmia and the apoptosis observed in the prediabetes model were not only linked to increased CaMKII activity but also to ultra-structural changes that include increased proximity between SR and mitochondria, which could favor Ca\(^{2+}\) trafficking from one organelle to the other, and an increased mitochondrial density, that additionally were smaller and more spherical [98], suggesting dynamics changes, such as mitochondria fission, at this early stage. This remodeling was prevented in AC3I mice, with cardiac-targeted CaMKII inhibition [98]. A more recent paper in FRD mice also revealed an increase in several tethering proteins, like mitofusin-2 (Mfn2), Grp75, and VDAC, and confirmed the increased proximity between SR and mitochondria microdomains, the decrease in mitochondria diameter, and the increase in mitochondria roundness and density previously described, associated to an enhancement of fission protein, Drp1 [98]. Again, all these changes did not occur in AC3-I transgenic mice [100].

Interestingly, very similar results were recently obtained in a different model of prediabetes, the sucrose-induced metabolic syndrome with obesity (MTs) in rats [231]. MTs cardiomyocytes exhibited increased CaMKII activity, RyR2 phosphorylation at Ser2814 and PLN phosphorylation at Thr17 site, enhanced SERCA2a activity, and spontaneous Ca\(^{2+}\) waves that were inhibited by CaMKII inhibition. Moreover, the propensity to cardiac arrhythmias in obesity/hyperlipidemia, a main contributing factor in the development of metabolic syndromes, was also associated with increased CaMKII activity as well as PLN and RyR2 phosphorylation at the CaMKII sites [313]. In this study, there was also an increase in RyR2-Ser2808 phosphorylation which was significantly diminished by CaMKII inhibition, supporting the notion that phosphorylation of Ser2808 in diabetic cardiomyopathy was evoked by CaMKII activation.

Diastolic dysfunction was also observed at the prediabetic stage of Otsuka Long-Evans Tokushima Fatty [194], and in a prediabetic model of Long-Evans rats fed with HFD and treated with a single low dose of STZ, both models of T2DM. Although in this case no increase in CaMKII activity was found, there was an increased production of ROS in cardiac subsarcolemmal mitochondria and of Mfn2 expression [147].

Contractile decline and Ca\(^{2+}\) mishandling were also observed at the earliest stages of the STZ model T1DM, associated to a reduction of Vmax of SERCA2a and RyR2 conductance, although without major changes in SERCA2a, RyR2, NCX, or PLN expression [170]. Unfortunately, no attempts to measure protein phosphorylation or CaMKII activity were performed, which might provide some clue to explain the results obtained.

It is worthwhile to mention here that in rats with high sucrose diet-induced metabolic syndrome, it was also observed increased RyR2 phosphorylation at Ser2808 associated with reduced FKBP12.6 expression, with significantly increased SR Ca\(^{2+}\) leak, depressed SR Ca\(^{2+}\) loading, and reduced Ca\(^{2+}\) transient amplitude vs. controls [210].

Taken together and despite the reduced amount of information, it is clear that prediabetes is a silent process that initiates detrimental molecular pathways before any other apparent alteration could be detected. However, being prediabetes a condition in which blood glucose levels are above normal but below the defined threshold of diabetes [6, 207], the results described above emphasize the need of routinely testing of prediabetes in the population. Such strategy, together with lifestyle modifications (diet and exercise habit), would help to prevent the arrival of serious and definitive heart alterations or delay the onset of this disease [202, 285]. Unfortunately, health organizations have not uniform criteria for screening prediabetes in individuals that do not present risk factors for T2DM (obesity, hypertension, familiar background, etc.) [15]. In addition, the metabolic conditions in diabetic cardiomyopathy are tightly linked to hypertension and obesity, as well as coronary artery disease. Indeed, hypertension and hyperlipidemia are considered accelerating factors of hyperglycemia and diabetes-induced organ damage [41]. It has long been known that the superimposition of hypertension on diabetes further aggravates microvascular and macrovascular complications through additive mechanisms that include arteriolar and capillary damage in retinal, renal, coronary, cerebral, and peripheral vascular territories. Patients with hypertension and concomitant DM compared to non-hypertensive diabetics were found to have higher rates of cardiovascular death, myocardial infarction, angina pectoris, amputation, and stroke independent of other risk factors (hypertension diabetes study),
emphasizing the need of blood pressure and obesity control in prediabetes patients.

Results from patients with diabetic cardiomyopathy

In human diabetic cardiomyopathy, the results typically showed early alterations in diastolic function and even subclinical signs of systolic dysfunction before the appearance of any clinical symptoms in T1DM [243, 252, 310] as well as in T2DM [96, 105].

Unfortunately, only limited results were found at the level of Ca\(^{2+}\) handling, cardiomyocyte proteins, or mitochondria function. In isolated human atrial trabeculae of T2DC asymptomatic patients, it was found a prolonged systolic Ca\(^{2+}\) rise in association with decreased expression of RyR2 and enhanced phosphorylation of RyR2, associated with enhanced PKC and PKA activities. CaMKII expression or activity was not measured. In these trabeculae, no changes in relaxation nor in SERCA2a or PLN expression were found. These patients have normal ejection fraction but fasting glucose was significantly increased [224]. Interestingly, Yaras et al., 2007, showed that inhibition of PKC antagonized the hyperphosphorylation and restored the depleted protein levels of RyR2 in a rat model of T1DC [303].

The decreased contractility in human diabetic cardiomyopathy has been also associated with alterations at the myofilament levels. Jweied et al., 2005, described a decreased in Ca\(^{2+}\) myofilament sensitivity in ventricular trabeculae of T2DC patients presenting diastolic dysfunction although increased ejection fraction. The decrease in Ca\(^{2+}\) myofilament sensitivity was associated with an increased phosphorylation of troponin I and T [140]. A decrease in Ca\(^{2+}\) myofilament sensitivity would increase the rate of intracellular Ca\(^{2+}\) decay, favoring mechanical relaxation, and might be viewed as a compensatory mechanism for the decrease in SR Ca\(^{2+}\) uptake, although the authors did not explore this point. Moreover, similar decrease in Ca\(^{2+}\) myofilament responsiveness was recently observed in atrial tissue [21]. These findings do not exclude the participation of Ca\(^{2+}\) handling alterations in human diabetic cardiomyopathy but emphasized the fact that an alteration at the contractile proteins may contribute to cardiac dysfunction at least in T2DC.

Concluding remarks

DM is a complex syndrome and diabetic cardiomyopathy is the result of multiple alterations that finally evolve to HF. The insidious evolution of diabetic cardiomyopathy has precluded a clear knowledge of the underlying mechanisms of the illness. However, the increasing prevalence of the disease warrants a deep and better understanding of the mechanisms of diabetic cardiomyopathy at the molecular level, particularly at the early stages of the malady. Among these mechanisms, Ca\(^{2+}\) mishandling and mitochondria dysfunction, as well as maladaptive gene programs, play a crucial role in the different types and models of diabetic cardiomyopathy and are responsible, at least in part, for the diminished contractility and slowed relaxation, the propensity to triggered arrhythmias, and the increase in cell death. Moreover, some experimental evidence indicates that the increased activity of CaMKII is one of the prevailing mechanisms involved in Ca\(^{2+}\) mishandling that may lead to triggered arrhythmias and mitochondrial dysfunction. Possibly more important, all these alterations can be detected at the very early stages in the progression of diabetic cardiomyopathy or in conditions with high risk to evolve to DM, like obesity or metabolic syndrome. These studies underpin the need for timely detection of the illness at the possibly unique stages at which reversal of Ca\(^{2+}\) handling alterations and mitochondrial dysfunction could be achieved, and sudden cardiac death could be prevented.

Supplementary Information The online version contains supplementary material available at https://doi.org/10.1007/s00424-021-02650-y.

Declarations

Conflict of interest The authors declare no competing interests.

References

1. Aasum E, Hafstad AD, Severson DL, Larsen TS (2003) Age-dependent changes in metabolism, contractile function, and ischemic sensitivity in hearts from db/db mice. Diabetes 52:434–441. https://doi.org/10.2337/diabetes.52.2.434
2. Abe T, Ohga Y, Tabayashi N, Kobayashi S, Sakata S, Misawa H, Tsujii T, Kohzuki H, Suga H, Taniguchi S, Takaki M (2002) Left ventricular diastolic dysfunction in type 2 diabetes mellitus model rats. Am J Physiol Heart Circ Physiol 282:H138-148. https://doi.org/10.1152/ajpheart.2002.282.1.H138
3. Akella AB, Ding X, Cheng R, Gulati J (1995) Diminished Ca\(^{2+}\) sensitivity of skinned cardiac muscle contractility coincident with troponin T-band shifts in the diabetic rat. Circ Res 76:600–606. https://doi.org/10.1161/01.res.76.4.600
4. Alzugaray ME, Garcia ME, Del Zotto HH, Raschia MA, Paleomeque J, Rossi JP, Gagliardino JJ, Flores LE (2009) Changes in islet plasma membrane calcium-ATPase activity and isofrom expression induced by insulin resistance. Arch Biochem Biophys 490:17–23. https://doi.org/10.1016/j.abb.2009.07.022
5. American Diabetes A (2014) Standards of medical care in diabetes–2014. Diabetes Care 37(Suppl 1):S14-80. https://doi.org/10.2337/dc14-S014
6. American Diabetes A (2020) 2. Classification and diagnosis of diabetes: standards of medical care in diabetes-2020. Diabetes Care 43:S14–S31. https://doi.org/10.2337/dc20-S002
7. Anderson EJ, Kyson AP, Rodriguez E, Anderson CA, Lehr EJ, Neuffer PD (2009) Substrate-specific derangements in mitochondrial metabolism and redox balance in the atrium of the type 2 diabetic human heart. J Am Coll Cardiol 54:1891–1898. https://doi.org/10.1016/j.jacc.2009.07.031
8. Anderson EJ, Rodriguez E, Anderson CA, Thayne K, Chitwood WK, Kyson AP (2011) Increased propensity for cell death in diabetic human heart is mediated by mitochondrial-dependent pathways. Am J Physiol Heart Circ Physiol 300:H118–124. https://doi.org/10.1152/ajpheart.00932.2010
9. Aon MA, Cortassa S, O'Rourke B (2010) Redox-optimized ROS balance: a unifying hypothesis. Biochem Biophys Acta 1797:865–877. https://doi.org/10.1016/j.bbapap.2010.02.016
10. Aronson D (2003) Cross-linking of glycated collagen in the pathogenesis of arterial and myocardial stiffening of aging and diabetes. J Hypertens 21:3–12. https://doi.org/10.1097/00004872-200301000-00002
11. Bai Y, Jones PP, Guo J, Zhong X, Clark RB, Zhou Q, Wang R, Vallmitjana A, Benitez R, Hove-Madsen L, Semeniuk L, Guo A, Song LS, Duff JJ, Chen SR (2013) Phospholamban knockout breaks arrhythmogenic Ca(2+) waves and suppresses catecholaminergic polymorphic ventricular tachycardia in mice. Circ Res 113:517–526. https://doi.org/10.1161/CIRCRESAHA.113.301678
12. Bajraktari G, Koltau MS, Ademaj F, Rexhepaj N, Qirko S, Aronson D (2003) Cross-linking of glycated collagen in the pathogenesis of arterial and myocardial stiffening of aging and diabetes. J Hypertens 21:3–12. https://doi.org/10.1097/00004872-200301000-00002
13. Bakris GL, Bank AJ, Kass DA, Neutel JM, Preston RA, Oparil S (2015) Prediabetes diagnosis and treatment: a review. J Clin Hypertens (Greenwich) 17:23S–30S. https://doi.org/10.1152/ajpheart.00932.2010
14. Aronson D (2003) Cross-linking of glycated collagen in the pathogenesis of arterial and myocardial stiffening of aging and diabetes. J Hypertens 21:3–12. https://doi.org/10.1097/00004872-200301000-00002
15. Bansal N (2015) Prediabetes diagnosis and treatment: a review. World J Diabetes 6:296–303. https://doi.org/10.4239/wjd.v6.i2.296
16. Basu R, Oudit GY, Wang X, Zhang L, Ussher JR, Lopaschuk GD, Kassiri Z (2009) Type 1 diabetic cardiomyopathy in the Akita (Ins2WT/C96Y) mouse model is characterized by lipotoxicity and diabetic dysfunction with preserved systolic function. Am J Physiol Heart Circ Physiol 297:H2096-2108. https://doi.org/10.1152/ajpheart.00452.2009
17. Bauer TM, Murphy E (2020) Role of mitochondrial calcium and the permeability transition pore in regulating cell death. Circ Res 126:280–293. https://doi.org/10.1161/CIRCRESAHA.119.316306
18. Belevych AE, Terentyev D, Viatchenko-Karpinski S, Terentyeva R, Sridhar A, Nishijima Y, Wilson LD, Cardounel AJ, Laurita KR, Carnes CA, Billman GE, Gyorke S (2009) Redox modification of ryanodine receptors underlies calcium alternans in a canine model of sudden cardiac death. Cardiovasc Res 84:387–395. https://doi.org/10.1093/cvr/cvp246
19. Belke DD, Betuin S, Tuttle MJ, Gravelleau C, Young ME, Pham M, Zhang D, Cooksey RC, McClain DA, Litwin SE, Taegtmeyer H, Severyn D, Kahn CR, Abel ED (2002) Insulin signaling coordinately regulates cardiac size, metabolism, and contractile protein isoform expression. J Clin Invest 109:629–639. https://doi.org/10.1172/JCI13946
20. Belke DD, Swanson EA, Dillmann WH (2004) Decreased sarcoplasmic reticulum activity and contractility in diabetic db/db mouse heart. Diabetes 53:3201–3208. https://doi.org/10.2337/ diabetes.53.12.3201
21. Bening C, Alhussini K, Mazalou EA, Yaqub J, Hamouda K, Rada- kovic D, Schimmer C, Hirnle G, Leyh R (2018) Impact of diabetes mellitus on the contractile properties of the left and right atrial myofilaments. Eur J Cardiothorac Surg 54:826–831. https://doi.org/10.1093/ectjs/ezy154
22. Bers DM (2006) Altered cardiac myocyte Ca(2+) regulation in heart failure. Physiology 21:380–387. https://doi.org/10.1152/physiol.00019.2006
23. Bers DM (2006) Cardiac ryanodine receptor phosphorylation: target sites and functional consequences. Biochem J 396:e1-3. https://doi.org/10.1042/BJ20060377
24. Bers DM (2014) Cardiac sarcoplasmic reticulum calcium leak: basis and roles in cardiac dysfunction. Annu Rev Physiol 76:107–127. https://doi.org/10.1146/annurev-physiol-020911-153308
25. Bezzina CR, Lahrouchi N, Priori SG (2015) Genetics of sudden cardiac death. Circ Res 116:1919–1936. https://doi.org/10.1161/ CIRCRESAHA.116.304030
26. Bidasee KR, Nallani K, Besch HR Jr, Dincer UD (2003) Streptozotocin-induced diabetes increases disulfide bond formation on cardiac ryanodine receptor (RyR2). J Pharmacol Exp Ther 305:989–998. https://doi.org/10.1124/jpet.1.046201
27. Bidasee KR, Nallani K, Yu Y, Cocklin RR, Zhang Y, Wang M, Dincer UD, Besch HR Jr (2003) Chronic diabetes increases advanced glycation end products on cardiac ryanodine receptors/calcium-release channels. Diabetes 52:1825–1836. https://doi.org/10.2337/diabetes.A11.52.7.1825
28. Bidasee KR, Zhang Y, Shao CH, Wang M, Patel KP, Dincer UD, Besch HR Jr (2004) Diabetes increases formation of advanced glycation end products on Sarco(endo)plasmic reticulum Ca2+-ATPase. Diabetes 53:463–473. https://doi.org/10.2337/diabetes.53.2.463
29. Birse RT, Choi J, Reardon K, Rodriguez J, Graham S, Diop S, Ocorr K, Bodmer R, Oldham S (2010) High-fat-diet-induced obesity and heart dysfunction are regulated by the TOR pathway in Drosophila. Cell Metab 12:533–544. https://doi.org/10.1016/j.cmet.2010.09.014
30. Boivin B, Chevalier D, Villeneuve LR, Rousseau E, Allen BG (2003) Functional endothelin receptors are present on nuclei in cardiac ventricular myocytes. J Biol Chem 278:29153–29163. https://doi.org/10.1074/jbc.M301738200
31. Boivin B, Larvoie C, Vaniotis G, Baragli A, Villeneuve LR, Ethier N, Trieu P, Allen BG, Hebert TE (2006) Functional beta-adrenergic receptor signalling on nuclear membranes in adult rat and mouse ventricular myocytes, Cardiovasc Res 71:69–78. https://doi.org/10.1016/j.cardiores.2006.03.015
32. Bonnevie-Nielsen V, Lernmark A (1981) Effect of diabetes on islet area and beta-cell function. Acta Physiol Scand 40:77–81
33. Boudina S, Bugger H, Sena S, O’Neill BT, Zaha VG, Ilkun O, Wright JJ, Mazumder PK, Pfalreyman E, Tidwell TJ, Theobald H, Khali monchouk O, Wayment B, Sheng X, Rodnick KJ, Centini R, Chen D, Litwin SE, Weimer BE, Abel ED (2009) Contribution of impaired myocardial insulin signaling to mitochondrial dysfunction and oxidative stress in the heart. Circulation 119:1272–1283. https://doi.org/10.1161/CIRCULATIONAHA.108.792101
34. Bracken N, Howarth FC, Singh J (2006) Effects of streptozotocin-induced diabetes on contraction and calcium transport in rat ventricular cardiomyocytes. Ann N Y Acad Sci 1084:208–222. https://doi.org/10.1196/annals.1372.018
35. Brillantes AB, Ondrias K, Scott A, Kobrinsky E, Ondriasova E, Moschella MC, Jayaraman T, Landers M, Ehrlich BE, Marks AR (1994) Stabilization of calcium release channel (ryanodine receptor) function by FK506-binding protein. Cell 77:513–523. https://doi.org/10.1016/0092-8674(94)90214-3
36. Brookes PS, Yoon Y, Robotham JL, Anders MW, Sheu SS (2004) Calcium, ATP, and ROS: a mitochondrial love-hate triangle. Am J Physiol Cell Physiol 287:C817–833. https://doi.org/10.1152/ajpcell.00139.2004

37. Boudina S, Sena S, O’Neill BT, Tathireddy P, Young ME, Abel ED (2008) Reduced mitochondrial oxidative capacity and increased mitochondrial uncoupling impair myocardial energetic resistance to hyperglycemia in the diabetic heart. Circulation 112:2686–2695. https://doi.org/10.1161/CIRCULATIONAHA.105.554360

38. Burgoyne JR, Mongue-Din H, Eaton P, Shah AM (2012) Mitochondria in the diabetic heart. J Clin Invest 126:1874–1885. https://doi.org/10.1172/JCI55687

39. Bracken NK, Woodall AJ, Howarth FC, Singh J (2004) Voltage-dependence of contraction in streptozotocin-induced diabetic myocytes. Mol Cell Biochem 261:235–243. https://doi.org/10.1023/b.mcbi.0000028761.61216.5e

40. Brownlee M (2001) Biochemistry and molecular cell biology of diabetic complications. Nature 414:813–820. https://doi.org/10.1038/35094500

41. Brownlee M (2005) The pathobiology of diabetic complications: a unifying mechanism. Diabetes 54:1615–1625. https://doi.org/10.2377/diabetes.54.6.1615

42. Bugger H, Abel ED (2009) Rodent models of diabetic cardiomyopathy. Dis Model Mech 2:454–466. https://doi.org/10.1242/dmm.001941

43. Bugger H, Abel ED (2010) Mitochondria in the diabetic heart. Circulation 121:2686–2695. https://doi.org/10.1161/CIRCULATIONAHA.105.554360

44. Bracken NK, Woodall AJ, Howarth FC, Singh J (2004) Voltage-dependence of contraction in streptozotocin-induced diabetic myocytes. Mol Cell Biochem 261:235–243. https://doi.org/10.1023/b.mcbi.0000028761.61216.5e

45. Brookes PS, Yoon Y, Robotham JL, Anders MW, Sheu SS (2004) Calcium, ATP, and ROS: a mitochondrial love-hate triangle. Am J Physiol Cell Physiol 287:C817–833. https://doi.org/10.1152/ajpcell.00139.2004

46. Burgoyne JR, Mongue-Din H, Eaton P, Shah AM (2012) Mitochondria in the diabetic heart. J Clin Invest 126:1874–1885. https://doi.org/10.1172/JCI55687

47. Bracken NK, Woodall AJ, Howarth FC, Singh J (2004) Voltage-dependence of contraction in streptozotocin-induced diabetic myocytes. Mol Cell Biochem 261:235–243. https://doi.org/10.1023/b.mcbi.0000028761.61216.5e

48. Candido R, Srivastava P, Cooper ME, Burrell LM (2003) Diabetes due to a progressive defect in beta-cell mass in the akita mouse. J Clin Invest 112:1615–1622. https://doi.org/10.1172/JCI130238

49. Chiang CS, Huang CH, Chieng H, Chang YT, Chang D, Chen JJ, Chen YC, Chen YH, Shin HS, Campbell KP, Chen CC (2009) The Ca(v)3.2 T-type Ca(2+) channel is required for pressure overload-induced cardiac hypertrophy in mice. Circ Res 104:522–530. https://doi.org/10.1161/CIRCRESAHA.108.184051

50. Clark JR, McDonough PM, Swanson E, Tost SU, Suzuki M, Fukuda M, Dillmann WH (2003) Diabetes and the accompanying hyperglycemia impairs cardiomyocyte calcium cycling through increased nuclear O-GlcNAcylation. J Biol Chem 278:44230–44237. https://doi.org/10.1074/jbc.M308310200

51. Carmeliet E (1999) Cardiac ionic currents and acute ischemia: From channels to arrhythmias. Physiol Rev 79:917–1017. https://doi.org/10.1152/physrev.1999.79.3.917
66. Cho NH, Shaw JE, Karuranga S, Huang Y, da Rocha Fernandes JD, Ohrooge AW, Malanda B (2018) IDF diabetes atlas: global estimates of diabetes prevalence for 2017 and projections for 2045. Diabetes Res Clin Pract 138:271–281. https://doi.org/10.1016/j.diabres.2018.02.023

67. Choi KM, Zhong Y, Hoit BD, Grupp IL, Hahn H, Dilly KW, Guatimosim S, Lederer WJ, Matlab MA (2002) Defective intracellular Ca(2+) signaling contributes to cardiomyopathy in type 1 diabetic rats. Am J Physiol Heart Circ Physiol 283:H1398–1408. https://doi.org/10.1152/ajpheart.00313.2002

68. Chou CC, Ho CT, Lee HL, Chy, Yen TH, Wen MS, Lin SF, Lee CH, Chang PC (2017) Roles of impaired intracellular calcium cycling in arrhythmogenicity of diabetic mouse model. Pacing Clin Electrophysiol 40:1087–1095. https://doi.org/10.1111/pace.13166

69. Christoffersen C, Bollano E, Lindegaard ML, Bartels ED, Goetze JP, Andersen CB, Nielsen LB (2003) Cardiac lipid accumulation associated with diabetic dysfunction in obese mice. Endocrinology 144:3483–3490. https://doi.org/10.1210/en.2003-0242

70. Choy L, Yeo JM, Tse V, Chan SP, Tse G (2016) Cardiac disease and arrhythmogenesis: mechanistic insights from mouse models. Int J Cardiol Heart Vascular 1:1–10. https://doi.org/10.1016/j.ijch.2016.05.005

71. Christofidou CR, Dell’Aversano L, Grasso F, Scirè P, Arena E, Arancio O, Scirè CR (2018) Role of potassium channels in cardiac disease. Circ Res 114:1311–1319; discussion 1319. https://doi.org/10.1161/CIRCRESAHA.114.300568

72. Chretin J, Kim JS, Zhang LC, Hahn H, Grupp IL, Dilly KW, Zhong Y, Hoit BD (2016) Ryanodine receptor phosphorylation in cardiac disease. Circ Res 114:1311–1319; discussion 1319. https://doi.org/10.1161/CIRCRESAHA.114.300568

73. Daniels LJ, Wallace RS, Nicholson OM, Wilson GA, McDonald FJ, Jones PP, Baldi JC, Lamberts RR, Erickson JR (2018) Inhibition of calcium/calmodulin-dependent kinase II restores contraction and relaxation in isolated cardiac muscle from type 2 diabetic rats. Cardiovasc Diabetol 17:89. https://doi.org/10.1186/s12933-018-0732-x

74. Daviriz M, Targher G, Temporelli PL,ucci D, Gonzini L, Nico- losi GL, Marchioli R, Tognoni G, Latini R, Cosmi F, Tavazzi L, Maggioni AP, Investigators G-H (2017) Prognostic impact of diabetes and prediabetes on survival outcomes in patients with chronic heart failure: a post-hoc analysis of the GISSI-HF (Gruppo Italiano per lo Studio della Sopravvivenza nella Insufficienza Cardiaca-Heart Failure) Trial. J Am Heart Assoc 6:https://doi.org/10.1161/JAHA.116.005156

75. de Brito OM, Scorrano L (2008) Mitofusin 2 tethers endoplasmic reticulum to mitochondria. Nature 456:605–610. https://doi.org/10.1038/nature07534

76. De La Fuente S, Fernandez-Sanz C, Vail C, Agra EJ, Holmstrom K, Sun J, Mishra J, Williams D, Finkel T, Murphy E, Joseph SK, Sheu SS, Csordas G (2016) Strategic positioning and biased activity of the mitochondrial calcium uniporter in cardiac muscle. J Biol Chem 291:23343–23362. https://doi.org/10.1074/jbc.M116.755496

77. Dewenter M, van der Liieth A, Katus HA, Backs J (2017) Calcium signaling and transcriptional regulation in cardiomyocytes. Circ Res 121:1000–1020. https://doi.org/10.1161/CIRCRESAHA.117.310355

78. Di Carlo MN, Said M, Ling H, Valverde CA, De Giusti VC, Sommese L, Palomeque J, Aiello EA, Skapura DG, Rinaldi G, Respess JL, Brown JH, Wehrens XH, Salas MA, Mattiazzii A (2014) CaMKII-dependent phosphorylation of cardiac ryanodine receptors regulates cell death in cardiac ischemia/reperfusion injury. J Mol Cell Cardiol 74:274–283. https://doi.org/10.1016/j.yjmcc.2014.06.004

79. Diaz-Juaner J, Suarez JA, Dillmann WH, Suarez J (2021) Mitochondrial calcium handling and heart disease in diabetes mellitus. Biochim Biophys Acta 1867:165984. https://doi.org/10.1016/j.bbadis.2020.165984

80. Diop SB, Bisharat-Kernizan J, Birse RT, Oldham S, Ockor K, Bodmer R (2015) PGC-1α/sulpreg counteracts high-fat-diet-induced obesity and cardiac lipotoxicity downstream of TOR and brusher ATGL lipase. Cell Rep 10:1572–1584. https://doi.org/10.1016/j.celrep.2015.02.022

81. Dobrev D, Wehrens XH (2014) Role of RyR2 phosphorylation in heart failure and arrhythmias: controversies around ryano- dine receptor phosphorylation in cardiac disease. Circulation 114:1311–1319; discussion 1319. https://doi.org/10.1161/CIRCRESAHA.114.300568

82. Dominguez-Rodriguez A, Ruiz-Hurtado G, Benitah JP, Gomez AM (2012) The other side of cardiac Ca(2+) signaling: transcriptional control. Front Physiol 3:452. https://doi.org/10.3389/fphys.2012.00452

83. Dong F, Zhang X, Yang X, Esberg LB, Yang H, Zhang Z, Fulver B, Ren J (2006) Impaired cardiac contractile function in ventricular myocytes from leptin-deficient ob/ob obese mice. J Endocrinol 188:25–36. https://doi.org/10.1677/joe.1.06241

84. Dong B, Qi D, Yang L, Huang Y, Xiao X, Tai N, Wen L, Wong FS (2012) TLR4 regulates cardiac lipid accumulation and diabetic heart disease in the nonobese diabetic mouse model of type 1 diabetes. Am J Physiol Heart Circ Physiol 303:H732–742. https://doi.org/10.1152/ajpheart.00948.2011

85. Donoso P, Sanchez G (2013) Redox regulation of sarcoplasmic reticulum calcium cycling in the heart. Physiol Mini Rev 6

86. Donoso P, Sanchez G, Bull R, Hidalgo C (2011) Modulation of cardiac ryanodine receptor activity by ROS and RNS. Front Biosci 16:553–567. https://doi.org/10.2741/3705

87. Dries E, Santiago DJ, Gilbert G, Lenaerts I, Vandenberk B, Culver B, Ren J (2006) Impaired cardiac contractile function with chronic heart failure: a post-hoc analysis of the GISSI-HF (Gruppo Italiano per lo Studio della Sopravvivenza nella Insufficienza Cardiaca-Heart Failure) Trial. J Am Heart Assoc 6:https://doi.org/10.1161/JAHA.116.005156

88. Epstein PN, Overbeek PA, Means AR (1989) Calmodulin-induced early-onset diabetes in transgenic mice. Cell 58:1067–1073. https://doi.org/10.1016/0092-8674(89)90505-9

89. Erickson JR, Joiner ML, Guan X, Kutschke W, Yang J, Oddis CV, Bartlett RK, Lowe JS, O’Donnell SE, Aykin-Burns N, Zimmerman MC, Zimmerman K, Ham AJ, Weiss RM, Spitz DR, Shea MA, Colbran RJ, Mohler PJ, Anderson ME (2008) A dynamic pathway for calcium-independent activation of CaMKII by methionine oxidation. Cell 133:462–474. https://doi.org/10.1016/j.cell.2008.02.048

90. Erickson JR, Nichols CB, Uchinoami H, Stein ML, Bossuyt J, Bers DM (2015) S-nitrosylation induces both autonomous activation and inhibition of calcium/calmodulin-dependent protein kinase II delta. J Biol Chem 290:25646–25656. https://doi.org/10.1074/jbc.M115.650234
chronic heart failure. Eur Heart J 28:2879–2885. https://doi.org/10.1093/eurheartj/ehm486

121. He C, Zhu H, Li H, Zou MH, Xie Z (2013) Dissociation of Bcl-2-Beclin1 complex by activated AMPK enhances calcium autophagy and protects against cardiomyocyte apoptosis in diabetes. Diabetes 62:1270–1281. https://doi.org/10.2337/db12-0533

122. Hegyi B, Bers DM, Bossuyt J (2019) CaMKII signaling in heart diseases: emerging role in diabetic cardiomyopathy. J Mol Cell Cardiol 127:246–259. https://doi.org/10.1016/j.yjmcc.2019.01.001

123. Hegyi B, Fasoli A, Ko CY, Van BW, Alim CC, Shen EY, Ciccocioppo MM, Tapa S, Ripplinger CM, Erickson JR, Bossuyt J, Bers DM (2021) CaMKII serine 280 O-GlcNAcylation links diabetic hyperglycemia to proarrhythmia. Circ Res 129:98–113. https://doi.org/10.1161/CIRCRESAHA.120.318402

124. Hidalgo C, Bull R, Behrens MI, Donoso P (2004) Redox regulation of RyR-mediated Ca2+ release in muscle and neurons. Biol Res 37:539–552. https://doi.org/10.4067/s0716-9762004000007

125. Holscher ME, Bode C, Bugger H (2016) Diabetic cardiomyopathy: does the type of diabetes matter? Int J Mol Sci 17. https://doi.org/10.3390/ijms17122136

126. Howarth FC, Nowotny N, Zilahi E, El Haj MA, Lei M (2007) Altered expression of gap junction connexin proteins may partly underlie heart rhythm disturbances in the streptozotocin-induced diabetic rat heart. Mol Cell Biochem 305:145–151. https://doi.org/10.1007/s11010-007-9537-z

127. Howarth FC, Qureshi MA, Hassan Z, Al Kury LT, Isaya D, Parekh K, Yamhammer SR, Oz M, Adrian TE, Adeghate E (2011) Changing pattern of gene expression is associated with ventricular myocyte dysfunction and altered mechanisms of Ca2+ signaling in young type 2 Zucker diabetic fatty rat heart. Exp Physiol 96:325–337. https://doi.org/10.1113/exphys.2010.055574

128. Hu Q, Zhang H, Gutierrez Cortes N, Wang M, Wang P, Zhang J, Mattison JA, Smith E, Bettcher LF, Wang W (2020) Increased Drp1 acetylation by lipid overload induces cardiomyocyte death and heart dysfunction. Circ Res 126:456–470. https://doi.org/10.1161/CIRCRESAHA.119.315252

129. Hudmon A, Schulman H (2002) Neuronal Ca2+/calmodulin-dependent protein kinase II: the role of structure and autoregulation in cellular function. Annu Rev Biochem 71:473–510. https://doi.org/10.1146/annurev.biochem.71.110601.135410

130. Jain SS, Pagliaulonga S, Vigina C, Ludzki A, Mattison JA, Smith E, Bettcher LF, Wang M, Lakatta EG, Sheu SS, Wang W (2020) Increased Drp1 acetylation by lipid overload induces cardiomyocyte death and heart dysfunction. Circ Res 126:456–470. https://doi.org/10.1161/CIRCRESAHA.119.315252

131. Jain SS, Pagliaulonga S, Vigina C, Ludzki A, Herbst EA, Lally JS, Schrauben W, Hoeks J, Tulping AR, Bonen A, Holloway GP (2014) High-fat diet-induced mitochondrial biogenesis is regulated by mitochondrial-derived reactive oxygen species activation of CaMKII. Diabetes 63:1907–1913. https://doi.org/10.2337/db13-0816

132. January CT, Riddle JM (1989) Early afterdepolarizations: mechanism of induction and block. A role for L-type Ca2+ current. Circ Res 64:977–990. https://doi.org/10.1161/01.RES.64.5.977

133. Jaquenod De Giusti C, Roman B, Das S (2018) The influence of microRNAs on mitochondrial calcium. Front Physiol 9:1291. https://doi.org/10.3389/fphys.2018.01291

134. Jekabsons A, Ivanoviene L, Brown GC, Borutaite V (2003) Nitric oxide and calcium together inactivate mitochondrial complex I and induce cytochrome c release. J Mol Cell Cardiol 35:803–809. https://doi.org/10.1016/s0022-2828(03)00137-8

135. Ji L, Liu F, Jing Z, Huang Q, Zhao Y, Cao H, Li J, Yin C, Xing J, Li F (2017) MICU1 alleviates diabetic cardiomyopathy through mitochondrial Ca(2+)-dependent antioxidant response. Diabetes 66:1586–1600. https://doi.org/10.2337/db16-1237

136. Jia G, Hill MA, Sowers JR (2018) Diabetic cardiomyopathy: an update of mechanisms contributing to this clinical entity. Circ Res 122:624–638. https://doi.org/10.1161/CIRCRESAHA.117.311586

137. Joiner ML, Koval OM, Li J, He BJ, Allamargot C, Gao Z, Luczak ED, Hall DD, Fink BD, Chen B, Yang J, Moore SA, Scholz TD, Strack S, Mohler PJ, Sivitz WI, Song LS, Anderson ME (2012) CaMKII determines mitochondrial stress responses in heart. Nature 491:269–273. https://doi.org/10.1038/nature11444

138. Jourdon P, Feuvray D (1993) Calcium and potassium currents of CaMKII determinates mitochondrial stress responses in heart. Nature 491:269–273. https://doi.org/10.1038/nature11444

139. Jungen C, Scherschel K, Flenner F, Jee H, Rajendran P, De Jong KA, Nikolaev V, Meyer C, Ardell JL, Tompkins JD (2019) Increased arrhythmia susceptibility in type 2 diabetic mice related to dysregulation of ventricular sympathetic innervation. Am J Physiol Heart Circ Physiol 317:H1328–H1341. https://doi.org/10.1152/ajpheart.00249.2019

140. Jweied EE, McKinney RD, Walker LA, Brodsky I, Geha AS, Massad MG, Buttrick PM, de Tombe PP (2005) Depressed cardiac myofilament function in human diabetes mellitus. Am J Physiol Heart Circ Physiol 289:H2478–2483. https://doi.org/10.1152/ajpheart.00063.2005

141. Kannel WB, Hjortland M, Castelli WP (1974) Role of diabetes in congestive heart failure: the Framingham study. Am J Cardiol 34:29–34. https://doi.org/10.1016/0002-9149(74)90089-7

142. Karu P, Hiraishi T, Mori S, Natori T (1994) OLETF (Otsuka Long-Evans Tokushima Fatty) rat: a new NIDDM rat strain. Diabetes Res Clin Pract 24(Suppl):S317-320. https://doi.org/10.1016/0168-8227(94)90029-0

143. Kannel WB, Hjortland M, Castelli WP (1974) Role of diabetes in congestive heart failure: the Framingham study. Am J Cardiol 34:29–34. https://doi.org/10.1016/0002-9149(74)90089-7

144. Kleinert M, Clemenensa C, Hofmann SM, Moore MC, Renner S, Woods SC, Huypens P, Beckers J, de Angelis MH, Schurmann A, Bakhti M, Klingenspor M, Heiman M, Cherrington AD, Ristow M, Lackert H, Wolf E, Havel PJ, Muller TD, Tschop MH (2018) Animal models of obesity and diabetes mellitus. Nat Rev Endocrinol 14:140–162. https://doi.org/10.1038/nrendo.2017.161

145. Kohlhaas M, Maack C (2010) Adverse bioenergetic consequences of Na+-Ca2+ exchanger-mediated Ca2+ influx in cardiac myocytes. Circulation 122:2273–2280. https://doi.org/10.1161/CIRCULATIONAHA.110.968057

146. Kohlhaas M, Maack C (2013) Calcium release microdomains and mitochondria. Cardiovasc Res 98:259–268. https://doi.org/10.1093/cvr/cvt032

147. Koncso G, Varga ZV, Baranyai T, Boengler K, Rohrbach S, Li L, Schluter KD, Schreckenberg R, Radovits T, Olah A, Matyas C, Lux A, Al-Khraimani M, Komlodi T, Bukosza N, Mathe D, Deres L, Bartekova M, Rajtik T, Adamekova A, Szigeti K, Hamar P, Helyes Z, Tretter L, Pacher P, Merkely B, Giricz Z, Schulz R, Ferdinand P (2016) Diastolic dysfunction in pre-diabetic male rats: role of mitochondrial oxidative stress. Am J Physiol Heart Circ Physiol 311:H927–H943. https://doi.org/10.1152/ajpheart.00049.2016

148. Korge P, Yang L, Yang JH, Wang Y, Yu Z, Weiss NJ (2011) Protective role of transient pore openings in calcium handling by cardiac mitochondria. J Biol Chem 286:34851–34857. https://doi.org/10.1074/jbc.M302193200

149. Korobova F, Ramabhadran V, Higgs HN (2013) An actin-dependent step in mitochondrial fission mediated by the...
ER-associated formin INF2. Science 339:464–467. https://doi.org/10.1126/science.1228360

150. Kota SK, Kota SK, Jammula S, Panda S, Modi KD (2011) Effect of diabetes on alteration of metabolism in cardiac myocytes: therapeutic implications. Diabetes Technol Ther 13:1155–1160. https://doi.org/10.1089/dia.2011.0120

151. Kralik PM, Ye G, Metreveli NS, Shem X, Epstein PN (2005) Cardiomyocyte dysfunction in models of type 1 and type 2 diabetes. Cardiovasc Toxicol 5:285–292. https://doi.org/10.1385/ct:5:3:285

152. Kranias EG, Bers DM (2007) Calcium signalling and disease: molecular pathology of calcium, vol 45. Subcellular Biochemistry

153. Kranias EG, Hajjar RJ (2012) Modulation of cardiac contractility by the phospholamban/SERCA2a regulome. Circ Res 110:1646–1660. https://doi.org/10.1161/CIRCRESAHA.111.259754

154. Krantuber AL, Del Rio C, Biesiadecki BJ, Hamlin RL, Ottobre J, Gyorke S, Lacombe VA, Viatchenko-Karpinski S, Terentyev D, Sridhar KL, Kwong JQ, Lu X, Correll RN, Schwanekamp JA, Vagnozzi RJ, Kranias EG, Hajjar RJ (2012) Modulation of cardiac contractility by the phospholamban/SERCA2a regulome. Circ Res 110:1646–1660. https://doi.org/10.1161/CIRCRESAHA.111.259754

155. Krantuber AL, Del Rio C, Biesiadecki BJ, Hamlin RL, Ottobre J, Gyorke S, Lacombe VA, Viatchenko-Karpinski S, Terentyev D, Sridhar KL, Kwong JQ, Lu X, Correll RN, Schwanekamp JA, Vagnozzi RJ, Kranias EG, Hajjar RJ (2012) Modulation of cardiac contractility by the phospholamban/SERCA2a regulome. Circ Res 110:1646–1660. https://doi.org/10.1161/CIRCRESAHA.111.259754

156. La Rocca TJ, Fabris F, Chen J, Benhayon D, Zhang S, McCol L, Schecter AD, Cheung JY, Sobie EA, Hajjar RJ, Leb-
184. Ma H, Li SY, Xu P, Babcock SA, Dolence EK, Brownlee M, Li Luo M, Guan X, Luczak ED, Lang D, Kutschke W, Gao Z, Yang N, Omori K, Matsuo H (2000) Alteration in left ventricular diastolic filling and accumulation of myocardial collagen at insulin-resistant prediabetic stage of a type II diabetic rat model. Circulation 101:899–907. https://doi.org/10.1161/01. cir.101.8.899
185. Molkentin JD (2004) Calcineurin-NFAT signaling regulates the cardiac hypertrophic response in coordination with the MAPKs. Cardiovasc Res 63:467–475. https://doi.org/10.1016/j.cardiores.2004.01.021
186. Malhotra A, Lopez MC, Nakouzi A (1995) Troponin subunits contribute to altered myosin ATPase activity in diabetic cardiomyopathy. Mol Cell Biochem 151:165–172. https://doi.org/10.1016/0301-5038(95)00047-x
187. Malhas A, Goulbourne C, Vaux DJ (2011) The nucleoplasmic reticulum: form and function. Trends Cell Biol 21:362–373. https://doi.org/10.1016/j.tcb.2011.03.008
188. Malhotra A, Lopez MC, Nakouzi A (1995) Troponin subunits contribute to altered myosin ATPase activity in diabetic cardiomyopathy. Mol Cell Biochem 151:165–172. https://doi.org/10.1007/BF03223339
189. Mattiazzi A, Tardiff JC, Kranias EG (2021) Stress seats a new guest at the table of PLN/SERCA and their partners. Circ Res 118:834–841. https://doi.org/10.1161/CIRCRESAHA.115.308093
190. McConkey D, Sequeira V, Kreusser MM, Dewenter M, Kappl R, Hoth M, Dudek J, Backs J, Maack C (2020) CaMKII does not control O-GlcNAcylation cause increased atrial fibrillation in diabetic mice by distinct mechanisms. J Clin Investig 131. https://doi.org/10.1172/JCI95747
191. Misra MK, Sarwat M, Bhakuni P, Tuteja R, Tuteja N (2009) Oxidative stress and ischemic myocardial syndromes. Med Sci Monit 15:RA209–219
192. Meissner G (2017) The structural basis of ryanodine receptor pore openings. Circ Res 118:834–841. https://doi.org/10.1161/CIRCRESAHA.115.308093
193. Meissner G, Alarcon ML, Vasconcellos LR, Hochman-Mendez C, Brasil G, Bassani RA, Casis O, Malan D, Travassos LH, Sepulveda M, Burgos JI, Vila-Petroff M, Dutra FF, Bozza MT, Paiva CN, Carvalho AB, Bonomo A, Fleischmann BK, de Carvalho ACC, Medei E (2016) Macrophage-dependent IL-1beta production induces cardiac arrhythmias in diabetic mice. Nat Commun 7:13344. https://doi.org/10.1038/ncomms13344
194. Misra MK, Sarwat M, Bhakuni P, Tuteja R, Tuteja N (2009) Oxidative stress and ischemic myocardial syndromes. Med Sci Monit 15:RA209–219
195. Mizushige K, Yao L, He Z, Lancer K, Huang H, Amin V, Lader JM, Vasquez C, Morley GE, Verdejo HE, Parra V, Lavandero S (2020) Emerging role of mitophagy in cardiovascular physiology and pathology. Mol Aspects Med 71:100822. https://doi.org/10.1016/j.mam.2019.09.006
196. Monnerat G, Alarcon ML, Vasconcellos LR, Hochman-Mendez C, Brasil G, Bassani RA, Casis O, Malan D, Travassos LH, Sepulveda M, Burgos JI, Vila-Petroff M, Dutra FF, Bozza MT, Paiva CN, Carvalho AB, Bonomo A, Fleischmann BK, de Carvalho ACC, Medei E (2016) Macrophage-dependent IL-1beta production induces cardiac arrhythmias in diabetic mice. Nat Commun 7:13344. https://doi.org/10.1038/ncomms13344
197. Morales PE, Arias-Duran C, Avalos-Guajardo Y, Aedo G, Verdejo HE, Parra V, Lavandero S (2020) Emerging role of mitophagy in cardiovascular physiology and pathology. Mol Aspects Med 71:100822. https://doi.org/10.1016/j.mam.2019.09.006
198. Morrow JP, Katchman A, Son NH, Trent CM, Khan R, Shiotomii T, Huang H, Amin V, Lader JM, Vasquez C, Morley GE, D’Armentio J, Homma S, Goldberg JJ, Marx SO (2011) Mice with cardiac overexpression of peroxisome proliferator-activated receptor gamma have impaired remodeling and spontaneous fatal ventricular arrhythmias. Circulation 124:2812–2821. https://doi.org/10.1161/CIRCULATIONAHA.111.056309
199. Movahed MR, Hashemzadeh M, Jamal M (2007) Increased prevalence of ventricular fibrillation in patients with type 2 diabetes mellitus. Heart Vessels 22:251–253. https://doi.org/10.1007/s00880-006-0962-9
200. Murphy E, Steenbergen C (2020) Regulation of mitochondrial Ca(2+) uptake. Annu Rev Physiol. https://doi.org/10.1146/annurev-physiol-031920-092419
201. Naon D, Zaninello M, Giacomello M, Varanita T, Grespi F, Noma T, Kiyomoto H, Yu Y, Hosomi N, Murohara K, Matsu K, Matsuno H (2000) Alteration in left ventricular diastolic filling and accumulation of myocardial collagen at insulin-resistant prediabetic stage of a type II diabetic rat model. Circulation 101:899–907. https://doi.org/10.1161/01.cir.101.8.899
202. Nelson KM, Reiber G, Boyko EJ, Nhanes III (2002) Diet and exercise among adults with type 2 diabetes: findings from the third national health and nutrition examination survey (Nhanes III). Diabetes Care 25:1722–1728. https://doi.org/10.2337/diabcare.25.10.1722
203. Netticadan T, Temsah RM, Kent A, Elimban V, Dhalla NS (2001) Mitophagy in cardiovascular physiology and pathology. Mol Aspects Med 71:100822. https://doi.org/10.1016/j.mam.2019.09.006
204. Ni R, Cao T, Xiong S, Ma J, Fan GC, Lacefield JC, Lu Y, Le Tissier S, Peng T (2016) Therapeutic inhibition of mitochondrial reactive oxygen species with mito-TEMPO reduces diabetic cardiomyopathy. Free Radical Biol Med 90:12–23. https://doi.org/10.1016/j.freeradbiomed.2015.11.013
205. Nickel AG, Kohlhaas M, Bertero E, Wilhelm D, Wagner M, Sequeira V, Kreusser MM, Dewenter M, Kappl R, Hoth M, Dudek J, Backs J, Maack C (2020) CaMKII does not control
mitochondrial Ca(2+) uptake in cardiac myocytes. J Physiol 598:1361–1376. https://doi.org/10.1113/jp276766

206. Nichols GA, Gullion CM, Koro CE, Ephross SA, Brown JB (2004) The incidence of congestive heart failure in type 2 diabetes: an update. Diabetes Care 27:1879–1884. https://doi.org/10.2337/diacare.27.8.1879

207. Nishio S, Teshima Y, Takahashi N, Thuc LC, Saito S, Fukui M, Kume O, Fukunaga N, Hara M, Nakagawa M, Saikawa T (2012) Activation of CaMKII as a key regulator of reactive oxygen species production in diabetic rat heart. J Mol Cell Cardiol 52:1103–1111. https://doi.org/10.1016/j.yjmcc.2012.02.006

208. Nordin C, Gilat E, Aronson RS (1985) Delayed afterdepolarizations and triggered activity in ventricular muscle from rats with streptozotocin-induced diabetes. Circ Res 57:28–34. https://doi.org/10.1161/01.res.57.1.28

209. Nishio S, Teshima Y, Takahashi N, Thuc LC, Saito S, Fukui M, Kume O, Fukunaga N, Hara M, Nakagawa M, Saikawa T (2012) Activation of CaMKII as a key regulator of reactive oxygen species production in diabetic rat heart. J Mol Cell Cardiol 52:1103–1111. https://doi.org/10.1016/j.yjmcc.2012.02.006

210. Olichon A, Baricault L, Gas N, Guillou E, Valette A, Belenguer Okatan EN, Durak AT, Turan B (2016) Electrophysiological

211. O’Rourke B, Ashok D, Liu T (2020) Mitochondrial Ca(2+);

212. Palomer X, Capdevila-Busquets E, Botteri G, Salvado L, Barroso

213. Palomer X, Capdevila-Busquets E, Botteri G, Salvado L, Barroso

214. Palomer X, Capdevila-Busquets E, Botteri G, Salvado L, Barroso

215. Palomer X, Capdevila-Busquets E, Botteri G, Salvado L, Barroso

216. Palomer X, Capdevila-Busquets E, Botteri G, Salvado L, Barroso

217. Palomer X, Capdevila-Busquets E, Botteri G, Salvado L, Barroso

218. Palomer X, Capdevila-Busquets E, Botteri G, Salvado L, Barroso

219. Palomer X, Capdevila-Busquets E, Botteri G, Salvado L, Barroso

220. Qin F, Siwik DA, Luptak I, Hou X, Wang L, Higuchi A, Weisbrod RM, Ouchi N, Tu VH, Calamaras TD, Miller EJ, Veberueen TJ, Walsh K, Cohen RA, Colucci WS (2012) The polyphenols resveratrol and S17834 prevent the structural and functional sequelae of diet-induced metabolic heart disease in mice. Circulation 125 (1757–1764):S1751–1756. https://doi.org/10.1161/CIRCULATIONAHA.111.067801

221. Raimondi L, De Paoli P, Mannucci E, Lonardo G, Sartiani L, Banchelli G, Pirisino R, Mugelli A, Cerbai E (2004) Restoration of cardiomyocyte functional properties by angiotensin II receptor blockade in diabetic rats. Diabetes 53:1927–1933. https://doi.org/10.2337/diabetes.53.7.1927

222. Randle PJ, Garland PB, Hales CN, Newsholme EA (1963) The glucose fatty-acid cycle. Its role in insulin sensitivity and the metabolic disturbances of diabetes mellitus. Lancet 1:785–789. https://doi.org/10.1016/s0140-6736(63)91500-9

223. Ren J, Sowers JR, Walsh MF, Brown RA (2000) Reduced contractile response to insulin and IGF-I in ventricular myocytes from genetically obese Zucker rats. Am J Physiol Heart Circ Physiol 279:H1708–1714. https://doi.org/10.1152/ajpheart.2000.279.4.H1708

224. Reuter H, Gronke S, Adam C, Ribati M, Brabender J, Zobel C, Frank KF, Wippermann J, Schwerger RH, Brixius K, Muller-Ehmsen J (2008) Sarcoplasmic Ca2+ release is prolonged in non-failing myocardium of diabetic patients. Mol Cell Biochem 308:141–149. https://doi.org/10.1016/j.mcb.2007.09.018

225. Riehle C, Bauersachs J (2018) Of mice and men: models and mechanisms of diabetic cardiomyopathy. Basic Res Cardiovasc Dis 11:4-2. https://doi.org/10.1007/s12192-017-1005-9

226. Rizzuto R, De Paoli P, Mannucci E, Lonardo G, Sartiani L, Banchelli G, Pirisino R, Mugelli A, Cerbai E (2004) Restoration of cardiomyocyte functional properties by angiotensin II receptor blockade in diabetic rats. Diabetes 53:1927–1933. https://doi.org/10.2337/diabetes.53.7.1927

227. Rizzuto R, Brini M, Ucciani D, Cuffe M, Scarlato A, Bolla I, Formenti F, Lanza R, Galati P, Silvis M (2013) Enhanced oxidative stress sensitizes the mitochondrial permeability transition pore to opening in heart from Zucker Fa/ rats with type 2 diabetes. Life Sci 141:32–43. https://doi.org/10.1016/j.lfs.2015.09.018

228. Ritov VB, Mentshikova EV, He J, Ferrell RE, Goodpaster BH, Kelley DE (2005) Deficiency of subsarcolemmal mitochondria in obesity and type 2 diabetes. Diabetes 54:8–14. https://doi.org/10.2337/diabetes.54.1.8

229. Rizzuto R, Brini M, Ucciani D, Cuffe M, Scarlato A, Bolla I, Formenti F, Lanza R, Galati P, Silvis M (2013) Enhanced oxidative stress sensitizes the mitochondrial permeability transition pore to opening in heart from Zucker Fa/ rats with type 2 diabetes. Life Sci 141:32–43. https://doi.org/10.1016/j.lfs.2015.09.018

230. Rizzuto R, Brini M, Ucciani D, Cuffe M, Scarlato A, Bolla I, Formenti F, Lanza R, Galati P, Silvis M (2013) Enhanced oxidative stress sensitizes the mitochondrial permeability transition pore to opening in heart from Zucker Fa/ rats with type 2 diabetes. Life Sci 141:32–43. https://doi.org/10.1016/j.lfs.2015.09.018

231. Romero-Garcia T, Landa-Galvan HV, Pavon N, Mercado-Morales M, Valdivia HH, Rueda A (2020) Autonomous activation of CaMKII exacerbates diabetic calcium leak during beta-adrenergic stimulation in cardiomyocytes of metabolic syndrome rats. Cell Calcium 91:102267. https://doi.org/10.1016/j.cca.2020.102267
263. Szabadkai G, Bianchi K, Varnai P, De Stefani D, Wieckowski
262. Suarez J, Cividini F, Scott BT, Lehmann K, Diaz-Juarez J, Die-
261. Stolen TO, Hoydal MA, Kemi OJ, Catalucci D, Ceci M, Aasum

273. Trafford AW, Diaz ME, Sibbring GC, Eisner DA (2000) Modula-
272. Tow BD, Deb A, Neupane S, Patel S, Reed M, Loper AB,
270. Timmins JM, Ozcan L, Seimon TA, Li G, Malagelada C, Backs
269. Tian C, Shao CH, Moore CJ, Kutty S, Walseth T, DeSouza C,
268. Terentyev D, Gyorke I, Belevych AE, Terentyeva R, Sridhar A,
60

13

Ca2+ channels. J Cell Biol 175:901–911. https:// doi.org/ 10.
mediated coupling of endoplasmic reticulum and mitochondrial
MR, Cavagna D, Nagy AI, Balla T, Rizzuto R (2006) Chaperone-
heart improves mitochondrial calcium handling and cardiac func-

12. 031

https:// doi. org/ 10. 1111/j. 1469- 7793. 2000. t01-2- 00259.x

Ca2+ fluxes in rat ventricular myocytes. J Physiol 522(Pt 2):259–
270. https:// doi.org/ 10. 1111/j. 1469- 7793. 2000. 1-2-00259.x

https:// doi. org/ 10. 1046/j. 1464- 5491. 2002. 00835.x

Valverde CA, Mazzocchi G, Di Carlo MN, Ciocci Pardo A, Salas
N, Ragone MI, Felice JJ, Cely-Ortiz A, Consolini AE, Portian-
sky E, Mosca S, Kranias EG, Wehrens XHT, MattiazzI A (2019)
Ablation of phospholamban rescues reperfusion arrhythmias but
excacerbates myocardium infarction in hearts with Ca2+-caldnum-
lisin kinase II constitutive phosphorylation of ryanaodine receptors.
Cardiovasc Res 115:556–569. https:// doi.org/ 10. 1093/ cvr/cvy213

van Crevel R, van de Vijver S, Moore DAJ (2017) The global
diabetes epidemic: what does it mean for infectious diseases
in tropical countries? Lancet Diabetes Endocrinol 5:457–468.
https:// doi.org/ 10. 1016/S2213- 8587(17)30081-X

van Oort RJ, McCauley MD, Dixit SS, Perea L, Yang Y, Res-
press IL, Wang Q, De Almeida AC, Skapura DG, Anderson ME,
Bers DM, Wehrens XY (2010) Ryanaodine receptor phosphoryla-
tion by calcium/caldnumulin-dependent protein kinase II promotes
life-threatening ventricular arrhythmias in mice with heart fail-
ure. Circulation 122:2669–2679. https:// doi.org/ 10. 1161/ 101161/ CIRCU

Vaniotis G, Del Duca D, Trieu P, Rohlicek CV, Hebert TE, Allen
BG (2011) Nuclear beta-adrenergic receptors modulate gene
expression in adult rat heart. Cell Signal 23:89–98. https:// doi.
org/ 10. 1016/j CELLSIG. 2010.08.007

Varga ZV, Gircz Z, Laiutdel L, Hasko G, Ferdinandy P, Pacher P
(2015) Interplay of oxidative, nitrosative/nitrative stress, inflam-
mation, cell death and autophagy in diabetic cardiomyopathy.
Biochem Biophys Acta 1852:232–242. https:// doi.org/ 10. 1016/j.
bba. 2014. 06. 030

Vissanathan V, Puvvula A, Janthikar AD, Saha L, Johri AM, Kot-
sis V, Khanna NN, Dhanjil SK, Majhail M, Misra DP, Agarwal V,
Kitas GD, Sharma AM, Kolluri R, Naidu S, Suri JS (2021) Bidirec-
tional link between diabetes mellitus and coronavirus disease
2019 leading to cardiovascular disease: a narrative review. World
J Diabetes 12:215–237. https:// doi.org/ 10. 4239/ wjd. v12. i3. 215

Volpe CMO, Villar-Delfino PH, Dos Anjos PMF, Nogueira-
Machado JA (2018) Cellular death, reactive oxygen species
(ROS) and diabetic complications. Cell Death Dis 9:119. https://
doi.org/ 10. 4243/ wjd.v12.i3.215

Walker KZ, O’Dea K, Gomez M, Girgis S, Colaguri R (2010) Diet
and exercise in the prevention of diabetes. J Hum Nutr Dietetics
23:344–352. https:// doi.org/ 10. 1111/j. 1365- 277x. 2010. 01061.x

Wang A, Green JB, Halperin JL, Piccinini JP Sr (2019) Atrial
fibillation and diabetes mellitus: JACC review topic of the week.
J Am Coll Cardiol 74:1107–1115. https:// doi.org/ 10. 1016/j. jacc.
2019. 07. 020

Wang DW, Kiyosue T, Shigematsu S, Arita M (1995) Abnormali-
ties of K+ and Ca2+ currents in ventricular myocytes from rats
with chronic diabetes. Am J Physiol 269:H1288-1296. https://
doi.org/ 10. 1152/ ajpheart. 1995. 269.4.H1288

Wehrens XH, Lehnart SE, Reiken SR, Marks AR (2004)
Ca2+/caldnumulin-dependent protein kinase II phosphorylation
regulates the cardiac ryanodine receptor. Circ Res 94:e61-70. https://doi.org/10.1161/RES.0000125626.33783.E2

289. Weiss JN, Garfinkel A, Karagueuzian HS, Chen PS, Qu Z (2010) Early afterdepolarizations and cardiac arrhythmias. Heart Rhythm 7:1891–1899. https://doi.org/10.1016/j.hrthm.2010.09.017

290. Wende AR, Schell JC, Ha CM, Pepin ME, Khalimouckh O, Schwertz H, Pereira RO, Brahma MK, Tuinei J, Contreras-Ferrat A, Wang L, Andrizzzi CA, Olsen CD, Bradley WE, Dell Italia LJ, Dillmann WH, Litwin SE, Abel ED (2020) Maintaining myocar
dial glucose utilization in diabetic cardiomyopathy accelerates mitochondrial dysfunction. Diabetes 69:2094–2111. https://doi.org/10.2337/db19-1057

291. Witcher DR, Kovacs RJ, Schulman H, Cefali DC, Jones LR (1991) Unique phosphorylation site on the cardiac ryanodine receptor regulates calcium channel activity. J Biol Chem 266:11144–11152

292. Wleklinski MJ, Kannankeril PJ, Knollmann BC (2020) Molecu
lates calcium channel activity. J Biol Chem 266:11144–11152

293. Wu AZ, Xu D, Yang N, Lin SF, Chen PS, Cala SE, Chen Z (2016) Mitochondrial Ca(2+) transport in diabetic cardiomyopathy. Circ Res 118:1035–1045. https://doi.org/10.1161/CIRCRESAHA.116.307328

294. Xu HX, Cui SM, Zhang YM, Ren J (2020) Mitochondrial Ca(2+) homeostasis in heart failure. J Mol Cell Cardiol 7:1891–1899. https://doi.org/10.1016/j.yjmcc.2017.06.010

295. Yu T, Robotham JL, Yoon Y (2006) Increased production of reactive oxygen species in hyperglycemic conditions requires dynamic change of mitochondrial morphology. Proc Natl Acad Sci U S A 103:2653–2658. https://doi.org/10.1073/pnas.0511154103

296. Yu Z, Quamme GA, McNeill JH (1994) Depressed [Ca2+]i responses to isoproterenol and cAMP in isolated cardiomyocytes from experimental diabetic rats. Am J Physiol 266:H2334-2342. https://doi.org/10.1152/ajpheart.1994.266.6.H2334

297. Xu X, Zhang T, Bossuyt J, Li X, McKinsey TA, Dedman JR, Walsh MP, Warltier DC, Cheng H, Chen SR (2005) Characterization of a novel PKA phosphorylation site, serine-2030, reveals no PKA hyperphosphorylation of the cardiac ryanodine receptor in canine heart failure. Circ Res 96:847–855. https://doi.org/10.1161/01.RES.0000126376.26083.e8

298. Xie Z, Lau K, Eby B, Lozano P, He C, Pennington B, Li H, Rathi S, Dong Y, Tian R, Kem D, Zou MH (2017) Binding of FUN14 domain containing 1 with mitochondrial Ca(2+) channels maintains mitochondrial dynamics and function in hearts in vivo. Circulation 136:2248–2266. https://doi.org/10.1161/CIRCULATIONAHA.117.035552

299. Xu HX, Cui SM, Zhang YM, Ren J (2020) Mitochondrial Ca(2+) homeostasis in heart failure. J Mol Cell Cardiol 7:1891–1899. https://doi.org/10.1016/j.yjmcc.2017.06.010

300. Xu L, Eu JP, Meissner G, Stamler JS (1994) Activation of the cardiac calcium release channel (ryanodine receptor) by poly-S-nitrosylation. Science 279:234–237. https://doi.org/10.1126/science.279.5348.234

301. Xu S, Wang P, Zhang H, Gong G, Gutierrez Cortes N, Zhu W, Yoon Y, Tian R, Wang W (2016) CaMKII induces permeability transition through Drp1 phosphorylation during chronic beta-AR stimulation. Nat Commun 7:13189. https://doi.org/10.1038/ncomms13189

302. Yanas N, Bilginoglu A, Vassort G, Turan B (2007) Restoration of diabetes-induced abnormal local Ca2+ release in cardiomyocytes by angiotensin II receptor blockade. Am J Physiol Heart Circ Physiol 292:H912-920. https://doi.org/10.1152/ajpheart.00824.2006

303. Yanas N, Ugur M, Ozdemir S, Gurdal H, Purali N, Lacampagne A, Vassort G, Turan B (2005) Effects of diabetes on ryanodine recep
tor Ca release channel (RyR2) and Ca2+ homeostasis in rat heart. Diabetes 54:3082–3088. https://doi.org/10.2337/diabetes.54.11.3082

304. Ye G, Metreveli NS, Donthi RV, Xia S, Xu M, Carlson EC, Epstein PN (2004) Calbindin protects cardiomyocyte function in models of type 1 and type 2 diabetes. Diabetes 53:1336–1343. https://doi.org/10.2337/diabetes.53.5.1336

305. Yoshioka M, Kayo T, Ikeda T, Koizumi A (1997) A novel locus, Mody4, distal to D7Mit189 on chromosome 7 determines early-onset NIDDM in nonobese C57BL/6 (Akita) mutant mice. Diabetes 46:887–894. https://doi.org/10.2337/dba6.5.887

306. Yu T, Robotham JL, Yoon Y (2006) Increased production of reactive oxygen species in hyperglycemic conditions requires dynamic change of mitochondrial morphology. Proc Natl Acad Sci U S A 103:2653–2658. https://doi.org/10.1073/pnas.0511154103

307. Yu Z, Quamme GA, McNeill JH (1994) Depressed [Ca2+]i responses to isoproterenol and cAMP in isolated cardiomyocytes from experimental diabetic rats. Am J Physiol 266:H2334-2342. https://doi.org/10.1152/ajpheart.1994.266.6.H2334

308. Yu Z, Tibbitts GF, McNeill JH (1994) Cellular functions of diabetic cardiomyocytes: contractility, rapid-cooling contracture, and ryanodine binding. Am J Physiol 266:H2082-2089. https://doi.org/10.1152/ajpheart.1994.266.5.H2082

309. Zarich SW, Arbuckle BE, Cohen LR, Roberts M, Nesto RW (1998) Diabetic abnormalities in young asymptomatic diabetic patients assessed by pulsed Doppler echocardiography. J Am Coll Cardiol 12:114–120. https://doi.org/10.1016/0735-1097(88)90364-6

310. Zhang Y, Proença R, Maffei M, Barone M, Leopold L, Friedman JM (1994) Positional cloning of the mouse obese gene and its human homologue. Nature 372:425–432. https://doi.org/10.1038/372425a0

311. Zhang Y, Wu J, Jeevaratnam K, King JH, Guzadthur L, Ren X, Grace AA, Lei M, Huang CL, Fraser JA (2013) Conduction slowing contributes to spontaneous ventricular arrhythmias in intrinsically active murine RyR2-P2238S hearts. J Cardiovasc Electrophysiol 24:210–218. https://doi.org/10.1111/jce.12015

312. Zheng P, Quan D, Peng J, Xiong X, Liu Y, Kong B, Huang H (2017) Role of CaMKII in free fatty acid/hyperlipidemia-induced cardiac remodeling both in vitro and in vivo. J Mol Cell Cardiol 109:1–16. https://doi.org/10.1016/j.yjmcc.2017.06.010

313. Zima AV, Bare DJ, Migney GA, Blatter LA (2007) IP3-depend
tent nuclear Ca2+ signalling in the mammalian heart. J Physiol 584:601–611. https://doi.org/10.1111/j.1469-7991.2007.06271.x

314. Zorov DB, Juhászova M, Sollott SJ (2014) Mitochondrial reactive oxygen species (ROS) and ROS-induced ROS release. Physiol Rev 94:909–950. https://doi.org/10.1152/physrev.00026.2013

315. Zhao Y, Zhang L, Qiao Y, Zhou X, Wu G, Wang L, Peng Y, Dong X, Huang H, Si L, Zhang L, Zhang L, Li J, Wang W, Zhou L, Gao X (2013) Heme oxygenase-1 prevents cardiac dysfunction in streptozotocin-diabetic mice by reducing inflammation, oxidative stress, apoptosis and enhancing autophagy. PLoS ONE 8:e75927. https://doi.org/10.1371/journal.pone.0075927

Publisher's note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.