Aggregated Learning: A Vector Quantization Approach to Learning with Neural Networks

Hongyu Guo
National Research Council Canada
1200 Montreal Road, Ottawa
hongyu.guo@nrc-cnrc.gc.ca

Yongyi Mao
School of Electrical Engineering & Computer Science
University of Ottawa, Ottawa, Ontario
yymao@eecs.uottawa.ca

Richong Zhang
School of Computer Science and Engineering
Beihang University, Beijing, China
zhangrc@act.buaa.edu.cn

Abstract

We establish an equivalence between information bottleneck (IB) learning and an unconventional quantization problem, “IB quantization”. Under this equivalence, standard neural network models correspond to scalar IB quantizers. We prove a coding theorem for IB quantization, which implies that scalar IB quantizers are in general inferior to vector IB quantizers. This inspires us to develop a learning framework for neural networks, AgrLearn, that corresponds to vector IB quantizers. We experimentally verify that AgrLearn applied to some deep network models of current art improves upon them, while requiring less training data. With a heuristic smoothing, AgrLearn further improves its performance, resulting in new state of the art in image classification on Cifar10.

1 Introduction

The revival of neural networks in the paradigm of deep learning [7] has stimulated intense interest in understanding the working of deep neural networks (see, e.g. [16, 23]). Among various research efforts, an information-theoretic approach, information bottleneck (IB) [18], stands out as a promising and fundamental tool to theorize the learning of deep neural networks [16].

This paper builds upon some previous works on IB [11, 14, 18]. We first precisely formulate the IB learning problem and an unconventional quantization problem, which we refer to as IB quantization. We prove that the two problems are in fact equivalent. Under this equivalence, one can regard the current neural network models as “scalar IB quantizers”. With conventional quantization problem, it is well known that scalar quantizers are in general inferior to vector quantizers. We prove in this paper that similar results hold for the IB quantization problem, paralleling the classical rate-distortion theory [15]. This in turn motivates us to develop a vector IB quantization approach for learning with neural networks. This approach results in a simple framework for neural network modeling, which we call Aggregated Learning (AgrLearn).

Briefly, in AgrLearn, a neural network classification model is structured to simultaneously classify n objects (Figure 1). This resembles a standard vector quantizer, which simultaneously quantizes multiple signals. In the training of the AgrLearn model, n random training objects are aggregated to a single amalgamated object and passed to the model. When using the trained model for prediction, the input to the model is also an aggregation of n objects, which can be all different or replicas of the object.

Preprint. Work in progress.
We conduct extensive experiments, applying AgrLearn to the current art of deep learning architectures for image and text classification. Experimental results suggest that AgrLearn brings significant gain in classification accuracy. Furthermore, with a heuristic smoothing, AgrLearn achieves an error rate of 2.45% on Cifar10, breaking the current record over this dataset.

In practice, AgrLearn can be easily integrated into existing neural network architectures with just addition of a few lines of code. Furthermore our experiments suggest that AgrLearn can dramatically reduce the required training examples (e.g., by 80% on Cifar10). This can be particularly advantageous for real-world learning problem with scarce labeled data.

2 The Aggregated Learning Framework

Throughout the paper, a random variable will be denoted by a capitalized letter, say, \(X \), and a value it may take is denoted by its lower-case version, say, \(x \). The distribution of a random variable is denoted by \(p \) subscripted by the random variable, for example, \(p_X \).

We consider a generic classification setting. We use \(\mathcal{X} \) to denote the space of objects to be classified, where an object \(X \) distributes according to an unknown distribution \(p_X \) on \(\mathcal{X} \). Let \(\mathcal{Y} \) denote the space of class labels. There is an unknown function \(F : \mathcal{X} \rightarrow \mathcal{Y} \) which assigns an object \(X \) a class label \(Y := F(X) \). Let \(D_X := \{x_1, x_2, \ldots, x_N\} \) be a given set of training examples, drawn i.i.d. from \(p_X \). The objective of learning in this setting is to find an approximation of \(F \) based on the training set \(D := \{(x_i, F(x_i)) : x_i \in D_X\} \).

In the information bottleneck (IB) formulation [18] of such a learning problem, one is interested in learning a representation \(T \) of \(X \) in another space \(\mathcal{T} \). We will refer to \(T \) as a bottleneck representation. When using a neural network model for classification, in this paper, we regard \(T \) as the vector computed at the final hidden layer of the network before it is passed to a standard softmax layer to generate the predictive distribution over \(\mathcal{Y} \). We will denote by \(h \) the function implemented by the network that computes \(T \) from the \(X \), namely, \(h \) corresponds to the part of the network from input all the way to the final hidden layer and \(T = h(X) \).

The IB method insists the following fundamental principles.

I. The mutual information \(I(X; T) \) should be as small as possible.
II. The mutual information \(I(Y; T) \) should be as large as possible.

Principle I insists that \(h \) squeeze out the maximum amount of information contained in \(X \) so that the information irrelevant to \(Y \) is removed from \(T \). Principle II insists that \(T \) contain the maximum amount of information about \(Y \) so that all information relevant to classification is maintained. Intuitively, the first principle forces the model not over-fitted to the irrelevant features of \(X \), whereas the second aims at maximizing the classification accuracy.

In general the two principles have conflicting objectives. A natural approach to deal with this conflict is to set up a constrained optimization problem which implements one principle as the objective function and the other as the constraint. This results in the following problem formulations, where \(T \) is random variable taking values in \(\mathcal{T} \) and forming a Markov chain \(Y = X - T \) with \((Y, X) \).

\[
\hat{p}_{T|X} := \arg\min_{p_{T|X} : I(Y; T) \geq A} I(X; T) \quad \text{for some prescribed value } A \tag{1}
\]

We refer to this problem as the IB learning problem and denote by \(R_{\text{IB-learn}}(A) \) the minimum value of the objective function in (1). Here we have assumed that the joint distribution \(p_{XY} \) is known. We
2.2 The IB Quantization Problem

The IB quantization problem is motivated by the approach of this paper. The formulation of IB learning (1) resembles greatly the rate-distortion problem in information theory, which studies the fundamental limit of quantization. This observation, also made in (11), in fact has motivated the approach of this paper.

The first observation we make in this paper is the following result.

Lemma 1 For any given p_{XY} and bottleneck space \mathcal{T}, $R_{IB-learn}(A) \leq R_{IB-NN}(A)$. Furthermore, there exist p_{XY} and \mathcal{T} such that this inequality holds strictly.

This lemma suggests that using a neural network model for IB learning is in general not optimal. We will show later that AgrLearn presented in this paper may be seen as augmenting a standard network model to overcome its limitation.

The formulation of IB learning (1) resembles greatly the rate-distortion problem (15) in information theory, which studies the fundamental limit of quantization. This observation, also made in (11), in fact has motivated the approach of this paper.

We next introduce a special kind of quantization problem and show its connection to IB learning.

2.2 The IB Quantization Problem

Suppose that the distribution p_X under p_{XY} characterizes an information source, which generates a sequence of i.i.d. random variables (X_1, X_2, \ldots, X_n). Throughout the paper, any sequence of random variables (X_1, X_2, \ldots, X_n), i.i.d. or not, will also be denoted by X^n.

Given p_{XY} and the bottleneck space \mathcal{T}, an $(n, 2^{nR})$ IB-quantization code is a pair (f_n, g_n) of functions, in which $f_n : \mathcal{X}^n \rightarrow \{1, 2, \ldots, 2^{nR}\}$ maps each sequence in \mathcal{X}^n to an integer in $\{1, 2, \ldots, 2^{nR}\}$ and $g_n : \{1, 2, \ldots, 2^{nR}\} \rightarrow \mathcal{T}^n$ maps an integer in $\{1, 2, \ldots, 2^{nR}\}$ to a sequence in \mathcal{T}^n. Using this code, f_n encodes the sequence X^n as the integer $f_n(X^n)$, and g_n "reconstructs" X^n as a representation $g_n(f_n(X^n))$ in \mathcal{T}^n. The quantity R is referred to as the rate of the code.

Given p_{XY} and \mathcal{T}, let the distortion $d_{IB}(x, t; q_{Y|X}, q_{Y|T})$ between any $x \in \mathcal{X}$ and any $t \in \mathcal{T}$ with respect to any two arbitrary conditional distributions $q_{Y|X}$ and $q_{Y|T}$ be defined by

$$d_{IB}(x, t; q_{Y|X}, q_{Y|T}) := KL(q_{Y|X}(\cdot|x)||q_{Y|T}(\cdot|t)), \quad (3)$$

where $q_{Y|T}(y|t) := \sum_{x \in \mathcal{X}} q_{X|T}(x|t)q_{Y|X}(y|x)$, and $KL(\cdot||\cdot)$ denotes the KL divergence.

Given p_{XY}, the code (f_n, g_n) induces a joint distribution $p_{Y^n|X^n T^n}$ between the i.i.d. pairs $(Y_1, X_1), (Y_2, X_2), \ldots, (Y_n, X_n)$ and $T^n := (T_1, T_2, \ldots, T_n) := g_n(f_n(X^n))$. Under this joint distribution, the distributions $p_Y, X, T, p_{Y|X},$ and $p_{Y|T}$ are all well defined for each $i = 1, 2, \ldots, n$. Then for every two sequences $x^n \in \mathcal{X}^n$ and $t^n \in \mathcal{T}^n$, define their IB distortion as

$$d_{IB}(x^n, t^n) := \frac{1}{n} \sum_{i=1}^n d_{IB}(x_i, t_i; p_{Y_i|X_i}, p_{Y_i|T_i}).$$

Under these definitions, the IB quantization problem is to find an IB-quantization code (f_n, g_n) having the smallest rate R subject to constraint $E d_{IB}(X^n, T^n) \leq D$, where E denotes expectation. Note that different from the distortion function in a conventional quantization problem, the IB distortion function d_{IB} in fact depends on the choice of IB-quantization code (f_n, g_n).

Before presenting the rate-distortion results for IB quantization, we relate an IB-quantization code to the bottleneck-generating function h in the neural network.

Lemma 2 The function h in the neural network is equivalent to a $(1, 2^R)$ IB-quantization code (f_1, g_1) with some rate R. Specifically, $h = g_1 \circ f_1$.

3
In the language of quantization, an \((f_1, g_1)\) quantization code is referred to as a scalar quantizer, which encodes and reconstructs the signal \(X\) one at a time; an \((f_n, g_n)\) quantization code with \(n > 1\) is referred to as a vector quantizer, which encodes and reconstructs \(n\) signals all together. Using these terminologies, the conventional neural network models are “scalar quantizers”, since they classify objects one at a time.

With conventional quantization problem, it is well known that vector quantizers can provide higher efficiency in terms of achieving the same level of distortion at a lower rate. We next show that this is also the case for the IB quantization problem.

Given \(p_{XY}\) and \(T\), a rate distortion pair \((R, D)\) is said to be \(n\)-achievable if there exists an \((n, 2^nR)\) IB-quantization code \((f_n, g_n)\) such that \(\overline{E}_IB(X^n, T^n) \leq D\). The pair \((R, D)\) is said to be \(\infty\)-achievable, or simply, achievable, if there exists a sequence of \((n, 2^nR)\) IB-quantization codes \((f_n, g_n)\) such that \(\lim_{n \to \infty} \overline{E}_IB(X^n, T^n) \leq D\).

Lemma 3 Let \(m\) be a positive integer. For any given \(p_{XY}\) and \(T\), a rate-distortion pair \((R, D)\) is \(m\)-achievable, then \((R, D)\) is also \(km\)-achievable for any integer \(k > 1\).

By this lemma, for any scalar quantizers \((f_1, g_1)\), there is a vector quantizer that is at least as efficient.

Given \(p_{XY}\) and \(T\), the IB rate-distortion function \(R_{IB-RD}(D)\) is the infimum of all rates \(R\) for which \((R, D)\) is achievable.

Theorem 1 Given \(p_{XY}\) and \(T\), the IB rate-distortion function is

\[
R_{IB-RD}(D) = \min_{p_{T|X}: \overline{E}_IB(X:T) \leq D} I(X; T)
\]

where the expectation is over the Markov chain \(Y - X - T\) specified by \(p_{XY}\) and \(p_{T|X}\).

We note that a similar result to this theorem is also proved in [11]. However, in [11], the result (Theorem 2 therein) relies on a strong assumption on the cardinalities of \(X\) and \(T\), which is not required in the above theorem.

Lemma 4 There exist some \(p_{XY}\) and \(T\) such that some rate-distortion pair \((R, D)\) satisfying \(R = R_{IB-RD}(D)\) is not \(1\)-achievable.

That is, achieving the fundamental limit \(R_{IB-RD}(D)\) for IB quantization in general requires vector quantizers. In fact, in many cases, the limit is only achievable at asymptotically large \(n\).

2.3 IB Learning as IB Quantization

Theorem 2 \(R_{IB-learn}(A) = R_{IB-RD}(I(X; Y) - A)\).

This theorem suggests that solving the IB learning problem that achieves \(R_{IB-learn}(A)\) is equivalent to finding the optimal IB-quantization code that achieves \(R_{IB-RD}(I(X; Y) - A)\) (noting that given \(p_{XY}\), \(I(X; Y)\) is merely a given constant). But as suggested in Lemma 1, the standard neural network model in general cannot provide the optimal \(p_{T|X}\), paralleling the fact suggested in Lemma 4 that scalar IB quantizer is not optimal. On the other hand, as indicated in Theorem 1, there always exist vector quantizers (having possibly infinitely large \(n\)) which are optimal. This calls for a neural network learning approach that corresponds to vector IB quantizers.

2.4 Aggregated Learning (AgrLearn)

Based on the above analysis, we now present the framework of Aggregated Learning, or AgrLearn in short, for neural networks.

Instead of taking a single object in \(X\) as input, AgrLearn takes \(n\) objects \(X^n\) as input. Here the value \(n\) is presribed by the model designer and is referred to as the fold of AgrLearn. In fold-\(n\) AgrLearn (Figure[1]), the bottleneck is generated as \(T^n = H(X^n)\) using some function \(H\), and this “aggregated bottleneck” \(T^n\) is then passed to \(n\) parallel soft-max layers. Let \(\text{softmax}(y_i | H(x^n); \theta_i)\) denote the \(i\)th softmax layer, with learnable parameter \(\theta_i\), which maps the bottleneck \(H(x^n)\) to the predictive distribution \(p_{Y_i|x^n}\) of label \(Y_i\). The AgrLearn model then states

\[
p_{Y^n|X^n}(y^n|x^n) = \prod_{i=1}^n p_{Y_i|X^n}(y_i|x^n) = \prod_{i=1}^n \text{softmax}(y_i | H(x^n); \theta_i).
\]

4
We note that (5) may appear to contradict the usual understanding that \((X_i, Y_i)\)'s are independent. To clear any doubts about this, we remark that this understanding of independence is not incorrect. However, as suggested in Lemma 1, neural network models that implement this independence can be inadequate to provide the optimal bottleneck representation under the IB learning principle. This “contradiction” in question resembles the fact in the conventional quantization that even when the source signals are independent, it is still beneficial to quantize them jointly \([2]\).

To train the AgrLearn model, a number of aggregated training examples are formed (as many as one can), each by concatenating \(n\) random objects sampled from \(D_X\) with replacement. We then minimize the cross-entropy loss over all aggregated training examples.

When using the trained model for prediction, the following “Replicated Classification” protocol is used\(\footnote{Two additional protocols are in fact also investigated.} \([4]\). Each object \(X\) is replicated \(n\) times and concatenated to form the input. The average of \(n\) predictive distributions generated by the model is taken as the label predictive distribution for \(X\).

2.5 Complication of Finite Sample Size \(N\)

The analysis above that motivates AgrLearn is based on the assumption that \(p_{XY}\) is known. This assumption corresponds to the asymptotic limit of infinite number \(N\) of training examples. In such a limit and assuming sufficient capacity of AgrLearn, larger aggregation fold \(n\) in theory gives rise to better bottleneck \(T\) (in the sense of minimizing \(I(X; T)\) subject to the \(I(Y; T)\) constraint).

In practice, one however only has access to the empirical distribution \(\tilde{p}_{XY}\) through observing the \(N\) training examples in \(D_X\). As such, AgrLearn, in the large-\(n\) limit, can only solve for the empirical version of the optimization problem \((1)\), namely, finding \(\min_{p_T|X} \tilde{I}(Y; T)\geq A \min_{p_T|X} \tilde{I}(X; T)\), where \(\tilde{I}(X; T)\) and \(\tilde{I}(Y; T)\) are \(I(X; T)\) and \(I(Y; T)\) induced by \(\tilde{p}_{XY}\) and \(p_T|X\). The solution to the empirical version of the problem in general deviates from that to the original problem. Thus we expect, for finite \(N\), that there is a critical value \(n^*\) of fold \(n\), above which AgrLearn degrades its performance with increasing \(n\). How to characterize \(n^*\) remains open at this time. Nonetheless it is sensible to expect that \(n^*\) increases with \(N\), since larger \(N\) makes \(\tilde{p}_{XY}\) better approximate \(p_{XY}\).

With finite \(N\), the product \((\tilde{p}_{XY})^n\) of the empirical distribution \(\tilde{p}_{XY}\) is a non-smooth approximation of the true product \((p_{XY})^n\), and the “non-smoothness” increases with \(n\). Intuitively, instead of using \((\tilde{p}_{XY})^n\) to approximate \((p_{XY})^n\), using some smoother approximations may improve the performance of AgrLearn. In some of our experiments, we incorporate the strategy of “MixUp”\(\footnote{Here an epoch refers to going over \(N\) aggregated training examples, where \(N = |D_X|\).}\([24]\) as a heuristics to smooth \((\tilde{p}_{XY})^n\) in AgrLearn.

3 Experimental Studies

We evaluate AgrLearn with several widely deployed deep network architectures for classification tasks in the image and natural language domains. Standard benchmarking data sets are used. Unless otherwise specified, fold number \(n = 8\) is used in all AgrLearn models.

All models examined are trained using mini-batched backprop for 400 epochs\(\footnote{We evaluate AgrLearn with several widely deployed deep network architectures for classification tasks in the image and natural language domains. Standard benchmarking data sets are used. Unless otherwise specified, fold number \(n = 8\) is used in all AgrLearn models.}\) with exactly the same hyper-parameter settings without dropout. Specifically, weight decay is \(10^{-4}\), and each mini-batch contains 64 aggregated training examples. The learning rate is set to 0.1 initially and decays by a factor of 10 after 100, 150, and 250 epochs for all models. Each reported performance value (accuracy or error rate) is the median of the performance values obtained in the final 10 epochs.
3.1 Image Recognition

Experiments are conducted on the Cifar10 and Cifar100 datasets, both having 50,000 training images and 10,000 test images. The former contains 10 image classes and the latter contains 100. We apply AgrLearn to the 18-layer Pre-activation ResNet (“ResNet-18”) [3] implemented in [8]. The resulting AgrLearn model (“AgrLearn-ResNet-18”) differs from ResNet-18 only in its \(n \) parallel soft-max layers (as opposed to the single soft-max layer in ResNet-18).

Predictive Performance The prediction error rates of AgrLearn-ResNet-18 and ResNet-18 are shown in Table 1. It can be seen that AgrLearn significantly boosts the performance of ResNet-18, with relative error reductions of 14.4% and 7.4% on Cifar10 and Cifar100 respectively. Remarkably this performance gain simply involves plugging an existing neural network architecture in AgrLearn without any (hyper-)parameter tuning.

Dataset	ResNet-18	AgrLearn-ResNet-18	Relative Improvement over ResNet-18
Cifar10	5.53	4.73	14.4%
Cifar100	25.6	23.7	7.4%

Table 1: Test error rate (%) comparison of AgrLearn-ResNet-18 and ResNet-18

Model Behavior During Training The typical behavior of AgrLearn-ResNet-18 and ResNet-18 (in terms of training cross-entropy loss and testing error rate) across training epochs is shown in Figure 2a. It is seen that during earlier training epochs, the test error of AgrLearn (green curve) fluctuates more than that of ResNet (blue curve) until both curves drop and stabilize. In the “stable phase” of training, the test error of AgrLearn continues to decrease whereas the test performance of ResNet cannot be further improved. This can be explained by the training loss curve of ResNet (red curve), which drops to zero quickly in this phase and provides no training signal for further tuning the network parameters. In contrast, the training curve of AgrLearn (brown curve) maintains a relatively high level, allowing the model to keep tuning itself. The relatively higher training loss of AgrLearn is due to the much larger space of the amalgamated examples. Even in the stable phase, one expects that the model is still seeing new combinations of images. In a sense, we argue that aggregating several examples into a single input can be seen as an implicit form of regularization, preventing the model from over-fitted by individual examples.

![Figure 2a](image)

(a) Training loss and test error on Cifar10.

![Figure 2b](image)

(b) Two inputs and their filter maps on MNIST.

Feature Map Visualization To visualize the extracted feature by AgrLearn, we perform a small experiment on MNIST using a fold-2 AgrLearn on a 3-layer CNN as implemented in [20]. Here we consider a binary classification task where only images for digits “7” and “8” are to be classified. Figure 2b shows two amalgamated input images (left two) and their corresponding feature maps obtained at the final hidden layer of the learned model. Note that the top images in the two inputs are identical, but since they are paired with different images to form the input, different features are extracted (e.g., the regions enclosed by the red boxes). This confirms that AgrLearn extracts joint features across the aggregated examples, as we expect in our design rationale for AgrLearn.

Sensitivity to Model Complexity With fold-\(n \) AgrLearn, the output label space becomes \(Y^n \). This significantly larger label space seems to suggest that AgrLearn favors more complex model. In this study, we start with AgrLearn-ResNet-18 and investigate the behavior of the model when it becomes more complex. The options we investigate include increasing the model width (by doubling or
tripling the number of filters per layer) and increasing the model depth (from 18 layers to 34 layers). The performances of these models are given in Table 2.

Table 2 shows that increasing the model width improves the performance of AgrLearn on both Cifar10 and Cifar100. For example, doubling the number of filters reduces the error rate from 4.73% to 4.2% on Cifar10, and tripling it further decreases the error rate to 4.14%.

Data set	18 layers	18 layers+double	18 layers+triple	34 layers	34 layers+double
Cifar10	4.73	4.20	4.14	5.01	4.18
Cifar100	23.70	21.18	20.21	22.18	22.02

Table 2: Test error rates (%) of AgrLearn-ResNet-18 (“18 layer”) and its more complex variants

However increasing the model depth is not as effective. For example, on Cifar10, AgrLearn-ResNet-18 (with error rate 4.73%) outperforms its 34-layer variant (error rate of 5.01%). But the 34-layer model, when further enhanced by the width, has a performance boost (to error rate 4.18%). On Cifar100, increasing AgrLearn-ResNet-18 to 34 layers only slightly improves its performance.

We hypothesize that with AgrLearn, the width of a model plays a critical role. This is because the model must extract joint features across individual objects in the amalgamated example. Nonetheless optimizing over width and optimizing over depth are likely coupled, and they may be further complicated by the internal computations in the model, such as convolution, activation, and pooling.

Behavior with Respect to Fold Number and Robustness to Data Scarcity We also conduct experiments investigating the performance of AgrLearn-ResNet-18 with varying fold n and with respect to varying training sample size N. The Cifar10 dataset is used in this study, as well as two of its randomly reduced subsets, one containing 20% of the training data and the other containing 50%.

Figure 3 suggests that the performance of AgrLearn models vary with fold n. The best performing fold number for AgrLearn-ResNet-18 on 20%, 50% and 100% of the Cifar10 dataset appears to be 2, 4, and 8 (or larger) respectively. This supports our conjecture in Section 2.5 regarding the existence of the critical fold n^*.

Using only 20% of Cifar10, we investigate the performance of AgrLearn-ResNet-18 with increasing widths, namely, with the number of filters doubled, tripled, or quadrupled. In Figure 3 we see that the fold-6 triple-width and quadruple-width AgrLearn-ResNet-18 models trained using 20% of Cifar10 perform comparably to or even better than ResNet-18 trained on the entire Cifar10. This demonstrates the robustness of AgrLearn to data scarcity, making AgrLearn an appealing solution to practical learning problems with inadequate labeled data.

New State Of The Art Following the discussion in Section 2.5, we apply a recent data augmentation method MixUp [24] as a heuristics to smooth $(p_{XY})^n$. Briefly, MixUp augments the training data with synthetic training examples, each obtained by interpolating a pair of original examples and their corresponding labels. In our experiments, we apply this strategy to triple-width AgrLearn-ResNet-18, where the ResNet structure follows that in [8]. Specifically, MixUp is deployed to the 8-fold amalgamated images and their label vectors to augment the training set. This model turns out to achieve an error rate of 2.56% on Cifar10, beating the current best record of 2.7%.
reported in [24]. Note that the current best record was achieved by a WideResNet architecture [22] of 28 layers, also augmented with MixUp. We then apply AgrLearn to the same WideResNet architecture as implemented in [21] but only using 22 layers. When augmented with MixUp, this model gives rise to an even lower error rate of 2.54%. At this end, we have provided two new state-of-the-art performance records, by simply applying AgrLearn to existing models and augmenting the amalgamated data with MixUp. These results, to an extent validating our analysis in Section 2.5, are summarized in Table 3.

Dataset	Report SOTA	AgrLearn	AgrLearn
Cifar10	2.7% (WideResNet-28-10/MixUp)	2.56% (ResNet-18)	2.45% (WideResNet-22)

Table 3: Error rates (%): new state of the art (SOTA) established by AgrLearn.

3.2 Text Classification

We test AgrLearn with two widely adopted NLP deep-learning architectures, CNN and LSTM [4], using two benchmark sentence-classification datasets, Movie Review [13] and Subjectivity [12]. Movie Review and Subjectivity contain respectively 10,662 and 1,000 sentences, with binary labels. We use 10% of random examples in each dataset for testing and the rest for training, as is in [5].

For CNN, we adopt CNN-sentence [5] and implement it exactly as in [6]. For LSTM, we just simply replace the convolution and pooling components in CNN-sentence with standard LSTM units as implemented in [1]. The final feature map of CNN and final state of LSTM are passed to a logistic regression classifier for label prediction. Each sentence enters the models via a learnable, randomly initialized word-embedding dictionary. For CNN, all sentences are zero-padded to the same length.

The fold-2 AgrLearn models corresponding to the CNN and LSTM models are also constructed. In AgrLearn-CNN, the aggregation of two sentences in each input simply involves concatenating the two zero-padded sentences. In AgrLearn-LSTM, when two sentences are concatenated in tandem, an EOS word is inserted after the first sentence.

We train and test the CNN, LSTM and their respective AgrLearn models on the two datasets, and report their performances in Table 4. Clearly, the AgrLearn models improve upon their corresponding CNN or LSTM counterparts. In particular, the relative performance gain brought by AgrLearn on the CNN model appears more significant, amounting to 4.2% on Movie Review and 3.8% on Subjectivity.

Dataset	CNN	AgrLearn-CNN	LSTM	AgrLearn-LSTM
Movie Review	76.1	79.3	76.2	77.8
Subjectivity	90.01	93.5	90.2	92.1

Table 4: Accuracy (%) obtained by CNN, LSTM and their respective AgrLearn models.

4 Conclusion, Discussion and Outlook

Aggregated Learning, or AgrLearn, is a simple and effective neural network modeling framework, justified information-theoretically. It builds on a connection between IB learning and IB quantization and exploits the power of vector quantization. As shown in our experiments, it can be applied to an existing network architecture with virtually no programming or tuning effort. We have demonstrated its effectiveness through the significant performance gain it brings to the current art of deep network models and through the two new state-of-the-art classification accuracies that we have easily obtained. Its robustness to small training sample is also a salient feature, making AgrLearn particularly attractive in practice, where the labeled data may not be abundant.

We need to acknowledge that the gain brought by AgrLearn is not free of cost. In fact, the memory consumption of fold-\(n\) AgrLearn is \(n\) times what is required by the conventional model.

Simultaneously classifying several examples, AgrLearn is reminiscent of “collective inference” [9, 10], a setting in which several correlated random variables are inferred all at once. Although the two settings also exhibit adequate differences in methodologies and principles, it is perhaps interesting to investigate if there is a deeper connection between the two.

https://www.cs.cornell.edu/people/pabo/movie-review-data/
Another line of research, seemingly related to AgrLearn, is data augmentation [17, 19, 24], including, for example, MixUp. In our opinion, however, it is incorrect to regard AgrLearn as a data augmentation scheme. Aggregating examples in AgrLearn expands the input space, which induces additional modeling freedom (although we made little effort in this work exploiting this freedom). Such a property, not possessed by data augmentation schemes, clearly distinguishes AgrLearn from those schemes.

The motivation of AgrLearn is the fundamental notion of information bottleneck (IB). The effectiveness of AgrLearn demonstrated in this paper may serve as additional validation of the IB theory.

The proposal and successful application of AgrLearn in this paper are believed to signal the beginning of a rich theme of research. Interesting questions may include: how can we characterize the interaction between model complexity, fold number and sample size in AgrLearn? and how can we fully exploit the modeling freedom in AgrLearn?
References

[1] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin, S. Ghemawat, G. Irving, M. Isard, M. Kudlur, J. Levenberg, R. Monga, S. Moore, D. G. Murray, B. Steiner, P. Tucker, V. Vasudevan, P. Warden, M. Wicke, Y. Yu, and X. Zheng. TensorFlow: A system for large-scale machine learning. In Proceedings of the 12th USENIX Conference on Operating Systems Design and Implementation, OSDI’16, pages 265–283, 2016.

[2] T. M. Cover and J. A. Thomas. Elements of Information Theory (Wiley Series in Telecommunications and Signal Processing). Wiley-Interscience, New York, NY, USA, 2006.

[3] K. He, X. Zhang, S. Ren, and J. Sun. Identity mappings in deep residual networks. In Computer Vision - ECCV 2016, Part IV, pages 630–645, 2016.

[4] S. Hochreiter and J. Schmidhuber. Long short-term memory. Neural Comput., 9(8):1735–1780, Nov. 1997.

[5] Y. Kim. Convolutional neural networks for sentence classification. In EMNLP, pages 1746–1751, 2014.

[6] Y. Kim. https://github.com/yoonkim/cnn_sentence, 2014.

[7] Y. LeCun, Y. Bengio, and G. E. Hinton. Deep learning. Nature, 521(7553):436–444, 2015.

[8] K. Liu. https://github.com/kuangliu/pytorch-cifar, 2017.

[9] S. A. Macskassy and F. Provost. Classification in networked data: A toolkit and a univariate case study. J. Mach. Learn. Res., 8:935–983, May 2007.

[10] J. Moore and J. Neville. Deep collective inference. In AAAI, pages 2364–2372, 2017.

[11] R. G.-B. A. Navot and N. Tishby. An information theoretic tradeoff between complexity and accuracy. In COLT, 2003.

[12] B. Pang and L. Lee. A sentimental education: Sentiment analysis using subjectivity summarization based on minimum cuts. In ACL, pages 271–278, 2004.

[13] B. Pang and L. Lee. Seeing stars: Exploiting class relationships for sentiment categorization with respect to rating scales. In ACL, pages 115–124, 2005.

[14] O. Shamir, S. Sabato, and N. Tishby. Learning and generalization with the information bottleneck. Theor. Comput. Sci., 411(29-30):2696–2711, June 2010.

[15] C. E. Shannon. Coding theorems for a discrete source with a fidelity criterion. IRE National Convention Record, 7, 1959.

[16] R. Shwartz-Ziv and N. Tishby. Opening the black box of deep neural networks via information. CoRR, abs/1703.00810, 2017.

[17] P. Y. Simard, Y. A. L. Cun, J. S. Denker, and B. Victorri. Transformation invariance in pattern recognition - tangent distance and tangent propagation. In Neural Networks: Tricks of the Trade, This Book is an Outgrowth of a 1996 NIPS Workshop, pages 239–274. Springer, 1998.

[18] N. Tishby, F. C. Pereira, and W. Bialek. The information bottleneck method. In Proceedings of 37th Annual Allerton Conference on Communication, Control and Computing, pages 368–377, 1999.

[19] V. Verma, A. Lamb, C. Beckham, A. C. Courville, I. Mitliagkas, and Y. Bengio. Manifold mixup: Encouraging meaningful on-manifold interpolation as a regularizer. CoRR, abs/1806.05236, 2018.

[20] Y. Wu et al. Tensorpack. https://github.com/tensorpack, 2016.

[21] S. Zagoruyko and N. Komodakis. https://github.com/szagoruyko/ wide-residual-networks, 2016.
[22] S. Zagoruyko and N. Komodakis. Wide residual networks. In Proceedings of the British Machine Vision Conference 2016, BMVC 2016, York, UK, September 19-22, 2016, 2016.

[23] C. Zhang, S. Bengio, M. Hardt, B. Recht, and O. Vinyals. Understanding deep learning requires rethinking generalization. ICLR, 2017.

[24] H. Zhang, M. Cissé, Y. N. Dauphin, and D. Lopez-Paz. mixup: Beyond empirical risk minimization. In ICLR, 2017.