Prediction of Biopharmaceutical Drug Disposition Classification System (BDDCS) by Structural Parameters

Yeganeh Golfar¹,², Ali Shayanfar³

¹ Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran. ² Student Research Committee and Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran. ³ Pharmaceutical Analysis Research Center and Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran

Received, November 16, 2018; Revised, January 24, 2019; Accepted, June 8, 2019; Published, June 21, 2019.

ABSTRACT - Modeling of physicochemical and pharmacokinetic properties is important for the prediction and mechanism characterization in drug discovery and development. Biopharmaceutics Drug Disposition Classification System (BDDCS) is a four-class system based on solubility and metabolism. This system is employed to delineate the role of transporters in pharmacokinetics and their interaction with metabolizing enzymes. It further anticipates drug disposition and potential drug-drug interactions in the liver and intestine. According to BDDCS, drugs are classified into four groups in terms of the extent of metabolism and solubility (high and low). In this study, structural parameters of drugs were used to develop classification-based models for the prediction of BDDCS class.

Reported BDDCS data of drugs were collected from the literature, and structural descriptors (Abraham solvation parameters and octanol–water partition coefficient (log P)) were calculated by ACD/Labs software. Data were divided into training and test sets. Classification-based models were then used to predict the class of each drug in BDDCS system using structural parameters and the validity of the established models was evaluated by an external test set.

The results of this study showed that log P and Abraham solvation parameters are able to predict the class of solubility and metabolism in BDDCS system with good accuracy. Based on the developed methods for prediction solubility and metabolism class, BDDCS could be predicted in the correct with an acceptable accuracy.

Structural properties of drugs, i.e. logP and Abraham solvation parameters (polarizability, hydrogen bonding acidity and basicity), are capable of estimating the class of solubility and metabolism with an acceptable accuracy.

INTRODUCTION

A major stage in drug discovery and development is evaluating the pharmacokinetic (PK) and physicochemical (PC) properties of the candidate drugs. Computational methods have become an increasingly important part of drug design and discovery over the recent decades, used for predicting the PK and PC of a candidate drug through the use of structural parameters and their correlation which is required for an efficient use of existing drugs and effective development of new drugs [1, 2].

The important parameters which control the rate and extent of oral drug absorption are the drug solubility and gastrointestinal permeability. The importance of these two properties has been emphasized in the biopharmaceutics classification system (BCS) that categorizes drugs into four groups based on their solubility and permeability. In this system, a drug substance is “highly soluble” when its highest dose strength is soluble in 250 mL or less of aqueous media over a pH range of 1-7.5 at 37°C. A drug is “highly permeable” when the extent of absorption in humans is equal or greater than 90% of an administered dose [3, 4].

In 2005, Wu and Benet introduced a new system according to solubility and metabolism, to predict potential drug-drug interactions in the intestine and/or liver and drug disposition. They named this system the biopharmaceutics drug disposition classification system (BDDCS) [5]. Table 1 illustrated the BCS and BDDCS classification of drugs based on solubility and permeability/metabolism.

For class 1 drugs, only metabolic interactions need to be considered in the intestine and the liver. The efflux transporter, metabolic and the efflux transporter-enzyme interaction in the intestine must be taken into consideration for class 2 drugs.

Corresponding Author: Ali Shayanfar, Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran. Email: shayanfara@tbzmed.ac.ir
Table 1. BCS and BDDCS classification of drugs based on solubility and permeability/metabolism.

Class I	Class II	Class III	Class IV
High solubility	Low solubility	High solubility	Low solubility
BCS	BDDCS	BCS	BDDCS
High Permeability	Extensive metabolism	Low Permeability	Low metabolism

Uptake transporter, efflux transporter and uptake-efflux transporter interaction are of major importance in class 3 and 4 drugs. Therefore, the major route of elimination for class 1 and 2 drugs is metabolism, while that of class 3 and 4 drugs is renal and biliary excretion of unchanged drug [6].

The aim of BDDCS is for characterizing disposition of new molecular entities (NME) and drugs already on the market and the purpose of BCS is to render the bio waivers of in vivo bioequivalence studies facile for drugs that display no significant intestinal absorption problems [7]. Although the classification between BCS and BDDCS only differ about 5-10%, Benet et al. [8] estimated the difference between BCS and BDDCS to occur for about 40% of class 1 drugs, for which FDA has granted bio waivers. Accordingly, knowing the different BDDCS classes based on the structure of a new NME can anticipate its disposition and may reduce the cost of drug discovery and development. Various classification models have been proposed to predict the physicochemical and pharmacokinetic toxicity properties of pharmaceuticals [9-11]. Logistic regression [12, 13] is a simple method and an extension of linear regression and a statistical method used to estimate the relationship between the independent variables in modeling the binary response data.

The purpose of the present research was to predict the class of a drug in BDDCS system. Therefore, the structural parameters of drugs and classification-based models were used to predict solubility and metabolism classes (high or low), separately. Then, these models were applied to estimate BDDCS class.

COMPUTATIONAL METHODS

Processing metabolism and solubility data and calculation of molecular descriptors

Data and molecular descriptors

Experimental classification of 927 drugs based on BDDCS (metabolism and solubility) and corresponding maximum dose of each compound were taken from the published data set of Benet and coworkers [8]. A data set of 595 orally administered drugs from which their highest dose strength expressed as a mass quantity, not as a concentration (e.g. solutions), were included for metabolism and solubility modeling following the removal of all salt forms. For all 595 compounds, SMILES (simplified molecular-input line-entry system) code was employed via www.pubchem.ncbi.nlm.nih.gov, and the numerical values for clogP (calculated octanol–water partition coefficient) and Abraham solvation parameters were computed by ACD/Labs software (https://ilab.acdlabs.com). These parameters are independent variables, or descriptors, with the following solute properties: E is the excess molar refraction, S indicates dipolarity/polarizability descriptors of the solute, A and B are the solute hydrogen-bond acidity and basicity, and V is the McGowan volume of the solute [14].

Classification of data to training and test sets

Dataset was sorted based on ascending clogP, where from six consecutive compounds, one was allocated to the test set. The training sets were used to build separate models and predict metabolism and solubility classes. Therefore, 595 compounds classified into 496 compounds for the training set and the remaining data (99 data points) as test set to evaluate the prediction capability of the developed models.

Binning of solubility compounds

496 compounds were divided into the following groups:

1) Compounds with high solubility (class 1 and 3) according to BDDCS as class H (high solubility).
2) Compounds with low solubility (class 2 and 4) according BDDCS as class L (low solubility).

Binning of metabolism compounds

496 compounds were divided into the following groups:

1) Compounds with high metabolism (class 1 and 2) according to BDDCS as class H (high metabolism).
2) Compounds with low metabolism (class 3 and 4) according to reference BDDCS as class L (low metabolism).

Modeling

Various thresholds and models developed by the training set (based on the structural parameters, clogP and Abraham solvation parameters) were analyzed, and the optimal parameters and their values were obtained by calculating the prediction accuracy of solubility and metabolism class (number of correct prediction/total data) for the test set. The threshold to define the boundary between high and low metabolism was set at clogP=2. Therefore, a compound with clogP>2 would be defined as high metabolism and a compound with clogP<2 would follow a binary regression model. The definition of the borderline between high and low solubility was set at maximum dose=10 mg, hence compounds with a maximum dose under 10 mg would be defined as highly soluble and those with a maximum dose higher than 10 mg followed a binary logistic regression by SPSS version 21 software (www.spss.com.hk) for classification of drugs into the two mentioned sub-groups.

For the binary regression method, each class (metabolism and solubility) was set as a dependent variable and binary classification was carried out using selected molecular descriptors as independent variables to develop the models for metabolism and solubility. Features were selected for the logistic regression model based on probability values (p-value) associated with each descriptor whenever they were statistically significant at the 99% level (p<0.01). It shows the probability that the descriptor is there by chance is less than 1% [15].

P-values and coefficients in regression analysis work together to show relationships in the model that are statistically significant. The software compares the t-statistic with values in the Student’s t distribution to determine the p-value.

The models were developed by binary logistic regression and structural parameters, clogP and Abraham solvation parameters, and maximum dose to predict BDDCS class. Separate models for metabolism and solubility were built using training sets of 496 compounds. The prediction capability of the developed models was checked by a test set composed of 99 compounds.

RESULTS

Solubility prediction

In the training set, 20% of the drugs had a maximum dose lower than 10 (N=100). Most of these drugs (85%) belonged to class 1 and 3 (highly soluble), a criterion applied to classify them in the correct group with a good accuracy. Based on the definition, when the highest dose strength of a drug substance is soluble in 250 mL or less of aqueous media over a pH range of 1-7.5 at 37°C, it is considered as “highly soluble”[16]. Therefore, dose is a critical parameter based on the obtained results in this work and most drugs with a maximum dose of 10 mg or less are highly soluble. The remaining data points (N=396) were applied to develop a model by Abraham solvation parameters and clogP based on binary logistic regression, where the obtained model is:

\[
p = \frac{e^{(3.203+1.295B- .8825-0.373clogP)}}{1+e^{(3.203+1.295B- .8825-0.373clogP)}} \quad \text{Eq. 1}
\]

where P is the probability of binary responses (class 0 or 1) based on the solubility. In addition, probability values (p-value) associated with each descriptor were less than 0.01. The model was able to predict (Eq. 1) 79% and 68% of high and low soluble drugs of the training set in the correct group, respectively. Overall, using maximum dose, B (hydrogen bond basicity), S (polarizability) and clogP, the solubility class of 74% of compounds was classified in the correct group.

To evaluate the prediction capability of the model, 99 compounds in test set were used to predict the correct class of drug based on solubility. 82% of the compounds with maximum doses lower than 10 (N=17) were highly soluble, and Eq. 1 could accurately predict 73% of drugs with maximum doses higher than 10 (N=82) in correct group. Therefore, total prediction accuracy for the test set was 74%.

Metabolism prediction

In training set, 54% drugs had a clogP higher than 2 (N=270). Most of these drugs (91%) belonged to class 1 and 2 (high metabolism), a criterion applied to classify them in the correct group with a good accuracy. The remaining data points (N=226) were applied to develop a model by Abraham solvation parameters and clogP based on binary logistic regression, where the obtained model is:

\[
p = \frac{e^{(0.734-1.260A+ .357clogP)}}{1+e^{(0.734-1.260A+ .357clogP)}} \quad \text{Eq. 2}
\]

Eq. 2 was able to correctly predict 80% and 66% of high and low metabolize drugs in the correct class, respectively. Generally, using A (hydrogen bond acidity) and clogP, metabolism class of 83%
of the studied drugs could be classified in the correct group.

To evaluate the prediction capability of the model, 99 compounds in the test set were used to predict the correct class of drug based on metabolism. 89% of compounds with clogP higher than 2 (N=54) were high metabolism and Eq. 2 could accurately predict 84% of drugs with clogP lower than 2 (N=45) in the correct group. Overall, total prediction accuracy for the test set was 86%.

BDDCS prediction

The results associated with the prediction of the BDDCS class of the studied drugs are shown in Table 2. Based on the developed methods for prediction solubility and metabolism class, 64% and 63% of training and test set could be predicted in the correct BDDCS class.

DISCUSSION

In this study, we described a computational method to predict the BDDCS class of compounds based on their molecular descriptors. The dataset was obtained from the published data set of Benet et al. [8]. Due to the removing salts and the solution forms of drugs, the dataset was reduced to 595 oral drugs, divided into training (496 drugs) and test (99 drugs) sets. As outlined earlier, BDDCS is a modification of the BCS [17] that utilizes drug metabolism rather than intestinal permeability [18]. In this work, we attempted to build models to predict the class of metabolism and solubility class.

Both metabolism and solubility are important properties in drug discovery. However, these properties are complex and can be difficult to model. BDDCS class prediction can overcome variable metabolism and solubility data by predicting the compound classes rather than specific values as a primary initial screening of compounds. However, suitable thresholds for discriminating between high and low metabolism/solubility should be carefully considered.

There are many factors influencing solubility and metabolism, where a threshold for discriminating between high and low metabolism/solubility can be used to improve the prediction of BDDCS class. The definition of the borderline between high and low solubility is set at maximum dose 10 mg. Compounds with maximum doses lower than 10 mg were defined as highly soluble (85% and 82% for training and test set, respectively) while only 55% of drugs with maximum dose>10 are high soluble. Therefore, Eq. 1 is necessary for classification of data with a high dose in correct group. Using B, S and clogP (Eq. 1), solubility class could be accurately predicted (74% and 73% for training and test set, respectively) for those with maximum doses of higher than 10. The results for the prediction solubility class of drugs are shown in Figure 1. These data show that maximum dose is necessary for prediction class of solubility.

The optimal threshold to define the boundary between high and low metabolism based on the training set is set at clogP=2. In compounds with clogP higher than 2, metabolism classes were predicted with good accuracy (91% and 89% for training and test set, respectively). In other words, the compounds with clogP>2 are lipophilic compounds with high metabolism. Moreover, the model developed based on logistic regression by clog P and A (Eq. 2) for low metabolism drugs (clogP<2) was able to predict the metabolism class of studied compounds with an acceptable accuracy (73% and 84% for training and test set, respectively). These findings indicate that clogP which used to predict various physicochemical, pharmacokinetic and biological properties of compounds [19-21] and could be calculated based on the structure of compounds with good accuracy [22], is a crucial parameter to predicting the metabolism class of drugs in BDDCS. The intrinsic lipophilicity (log P) is a common parameter for predicting solubility and metabolism. It is a physical feature introduced to describe a compound’s affinity towards lipid-like environments, affecting drug absorption, bioavailability, hydrophobic drug-receptor interactions, and metabolism of molecules. It describes the equilibrium distribution of molecular drug candidates (unionized form of the molecule) between water and octanol and is independent of pH. Several researchers have reported an inverse relationship between clogP and aqueous solubility [23-25]. ClogP has been utilized instead of experimental logP in modeling studies, where there is a high correlation between them [26, 27].

A (hydrogen bond acidity) is yet another significant parameter for predicting the metabolism of low lipophilic drugs clogP<2. The results related to the prediction metabolism class of the studied drugs were shown in Figure 2.

Collinear descriptors (R²>0.8) should be avoided in developing models [28], as they may entail the over fitting of the data. The inter-correlation between the selected parameters in Eq. 1 and 2 was less than 0.5, a value corroborating the validity of the developed model from this viewpoint.
Figure 1. Prediction of solubility class. Number of training set and test sets are 496 and 99, respectively. N is number of compounds.

\[P = \frac{e^{(3.203+1.295B-1.8825-0.373\text{clog}P)}}{1 + e^{(3.203+1.295B-1.8825-0.373\text{clog}P)}} \]

Figure 2. Prediction of metabolism class. Number of training set and test sets are 496 and 99, respectively. N is number of compounds.
Similar results associated with the prediction of the solubility and metabolism class of external test set confirm the prediction capability of the developed models.

Both models applied the Abraham solvation parameters for the prediction of solubility and metabolism, confirming the previous studies which applied these parameters for the analysis and prediction of physicochemical properties and pharmacokinetic parameters such as adsorption, distribution and toxicological features of drugs [14, 29, 30].

A computational procedure for predicting the BDDCS class was attempted by Broccatelli et al [31] by molecular structures calculated from the VolSurf+ software. Similarly, the proposed method predicted the BDDCS class with relatively good accuracy with a general lack of predictability for class 4 drugs. However, relatively simple statistical method (logistic regression) and descriptors i.e. clogP and Abraham solvation parameters of solute, are more acceptable in modeling studies [15], and could be useful in predicting solubility and metabolism class and estimating drug-drug interactions and transporter effects in drug disposition.

Solubility and metabolism are complex parameters whose values are affected by various factors. It is possible that the applied parameters were not sufficient to estimate the correct class. However, the variations and inaccuracy of data are among the possible reasons for the unsuccessful attempts of medicinal chemists in developing models with high capability of predicting the physicochemical, pharmacokinetic and activity of drugs. For instance, the best model for aqueous solubility prediction has a mean percentage deviation (MPD) of more than 100% [32], and the MPD value for solubility in the solvent mixture is higher than 25% for pharmaceuticals [33].

In this study, we demonstrated that the developed models for prediction solubility and metabolism could estimate BDDCS with 64% accuracy, a value which does not seem to be very satisfactory. However, following the publication of BDDCS for over 900 data points in 2011 [8], Benet and coworkers [34] in 2016 amend the classification of 13 drugs. In this data set, five compounds in the training set (colchicine, diclofenac, flecainide, pindolol and saxagliptin) and four compounds in the test set (aliskiren, clonidine, metoclopramide and pitavastatin) were corrected in terms of BDDCS. These data (old and new class, and prediction class in this study) are listed in Table 3. According to the old data set, the proposed method can predict only one compound in the correct group, while based on the updated data, the BDDCS class of five data points (diclofenac, flecainide, metoclopramide, pindolol and clonidine) was classified in the correct group. Given the possible errors in experimental data and maximum 25% prediction based on probability rules, the obtained results confirm the good accuracy of the developed models. Given the possible incorrect errors in experimental data and maximum 25% prediction based on probability rules, the obtained results confirm the good accuracy of the developed models.

CONCLUSION

To predict the BDDCS of compounds, we proposed the use of threshold values by two parameters, clogP for metabolism and maximum dose for solubility, and logistic regression based models using clogP and Abraham solvation parameters.

The descriptors utilized in this work (the three Abraham solvation parameters, namely A, B and S) showing hydrogen bond acidity and basicity, and polarizability, respectively, clogP and maximum dose of compounds are adequate for the prediction of solubility and metabolism, and can be used in the prediction of BDDCS of drugs with an acceptable accuracy.

ACKNOWLEDGMENT

This article is a part of the results of Y.G's Pharm.D thesis No. 3986 registered at Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran.

REFERENCES

1. Stepensky D. Prediction of drug disposition on the basis of its chemical structure. Clin Pharmacokinet. 2013;52(6):415-31.
2. Dearden JC. Whither QSAR? Pharm Sci. 2017;23(2):82-3.
3. Amidon GL, Lennernäs H, Shah VP, Crison JR. A theoretical basis for a biopharmaceutic drug classification: the correlation of in vitro drug product dissolution and in vivo bioavailability. Pharm Res. 1995;12(3):413-20.
4. Yu LX, Amidon GL, Polli JE, Zhao H, Mehta MU, Conner DP, et al. Biopharmaceutics classification system: The scientific basis for bioequivalence and bioavailability of的新产品。Pharm Res. 2002;19(7):921-5.
5. Wu CY, Benet LZ. Predicting drug disposition via application of BCS: transport/absorption/elimination interplay and development of a biopharmaceutics drug
disposition classification system. Pharm Res. 2005;22(1):11-23.
6. Benet LZ. Predicting drug disposition via application of a biopharmaceutics drug disposition classification system. Basic Clin Pharmacol Toxicol. 2010;106(3):162-7.
7. Benet LZ. The role of BCS (biopharmaceutics classification system) and BDDCS (biopharmaceutics drug disposition classification system) in drug development. J Pharm Sci. 2013;102(1):34-42.
8. Benet LZ, Broccatelli F, Oprea TI. BDDCS applied to over 900 drugs. AAPS J. 2011;13(4):519-47.
9. Newby D, Freitas AA, Ghafourian T. Comparing multilabel classification methods for provisional biopharmaceutics class prediction. Mol Pharm. 2015;12(1):87-102.
10. Toropova AP, Toropov AA. CORAL: Binary classifications (active/inactive) for drug-induced liver injury. Toxicol Lett. 2017;268:51-7.
11. Dave RA, Morris ME. Novel high/low solubility classification methods for new molecular entities. Int J Pharm. 2016;511(1):111-26.
12. Hosmer Jr DW, Lemeshow S, Sturdivant RX. Applied logistic regression: John Wiley & Sons; NewYork, 2013.
13. Ren YY, Zhou LC, Yang L, Liu PY, Zhao BW, Liu HX. Predicting the aquatic toxicity mode of action using logistic regression and linear discriminant analysis. SAR QSAR Environ Res. 2016;27(9):721-46.
14. Acree WE, Grubbs LM, Abraham MH. Prediction of partition coefficients and permeability of drug molecules in biological systems with Abraham model solute descriptors derived from measured solubilities and water-to-organic solvent partition coefficients. In: Acree WE. (ed.) Toxicity and Drug Testing. InTech Publisher; NewYork, 2012, pp. 91-128.
15. Dearden JC, Cronin MTD, Kaiser KLE. How not to develop a quantitative structure-activity or structure-property relationship (QSAR/QSPR). SAR QSAR Environ Res. 2009;20(3-4):241-66.
16. Chen ML, Amidon GL, Benet LZ, Lennernas H, Yu LX. The BCS, BDDCS, and regulatory guidances. Pharm Res. 2011;28(9):1774-8.
17. Emami J. In vitro-in vivo correlation: from theory to applications. J Pharm Pharm Sci. 2006;9(2):169-89.
18. Larregieu CA, Benet LZ. Distinguishing between the permeability relationships with absorption and metabolism to improve BCS and BDDCS predictions in early drug discovery. Mol Pharm. 2014;11(4):1335-44.
19. Smith CJ, Perfetti TA, Ko GM, Garg R. Ames mutagenicity, structural alerts of carcinogenicity, Hansch QSAR parameters (ClogP, CMR, MgVol), tumor site concordance/multiplicity, and tumorigenicity rank in NTP 2-year rodent studies. Toxicol Res Appl. 2018;2:2397847318759327.
20. Emami S, Jouyban A, Valizadeh H, Shayanfar A. Are Crystallinity Parameters Critical for Drug Solubility Prediction? J Solut Chem. 2015;44(12):2297-315.
21. Ghafourian T, Amin Z. QSAR models for the prediction of plasma protein binding. BioImpacts. 2013;3(1):21.
22. Hughes LD, Palmer DS, Nigsch F, Mitchell JBO. Why are some properties more difficult to predict than others? A study of QSPR models of solubility, melting point, and log P. J Chem Inf Model. 2008;48(1):220-32.
23. Faller B, Ertl P. Computational approaches to determine drug solubility. Adv Drug deliv Rev. 2007;59(7):533-45.
24. Salahinejad M, Le TC, Winkler DA. Aqueous solubility prediction: Do crystal lattice interactions help? Mol Pharm. 2013;10(7):2757-66.
25. Louis B, Agrawal VK, Khadikar PV. Prediction of intrinsic solubility of generic drugs using MLR, ANN and SVM analyses. Eur J Med Chem. 2010;45(9):4018-25.
26. Machatha SG, Yalkowsky SH. Comparison of the octanol/water partition coefficients calculated by ClogP®, ACDlogP and KowWin® to experimentally determined values. Int J Pharm. 2005;294(1-2):185-92.
27. Jouyban A. Solubility prediction of drugs in water-polyethylene glycol 400 mixtures using Jouyban–Acree model. Chem Pharm Bull. 2006;54(11):1561-6.
28. Cherkasov A, Muratov EN, Fourches D, Varnek A, Baskin II, Cronin M, et al. QSAR modeling: Where have you been? Where are you going to? J Med Chem. 2014;57(12):4977-5010.
29. Abraham MH. Human intestinal absorption - Neutral molecules and ionic species. J Pharm Sci. 2014;103(7):1956-66.
30. Abraham MH, Smith RE, Luchtefeld R, Boorem AJ, Lou R, Acree Jr WE. Prediction of solubility of drugs and other compounds in organic solvents. J Pharm Sci. 2010;99(3):1500-15.
31. Broccatelli F, Cruciani G, Benet LZ, Oprea TI. BDDCS class prediction for new molecular entities. Mol Pharm. 2012;9(3):570-80.
32. Shayanfar A, Fakhree M, Jouyban A. A simple QSPR model to predict aqueous solubility of drugs. J Drug Deliv Sci Tec. 2010;20(6):467-76.
33. Jouyban A. Review of the cosolvency models for predicting solubility of drugs in water-cosolvent mixtures. J Pharm Pharm Sci. 2008;11(1):32-58.
34. Hoosey CM, Chan R, Benet LZ. BDDCS Predictions, Self-Correcting aspects of BDDCS assignments, BDDCS assignment Corrections, and classification for more than 175 additional drugs. AAPS J. 2016;18(1):251-60.
Table 2. List of studied compounds, BDDCS class, structural parameters and prediction class of solubility (high=H, low=L), metabolism (high=H, low=L) and BDDCS class by the developed methods in this study (A: hydrogen bond acidity, B: hydrogen bond basicity, S: polarizability, log P: octanol–water partition coefficient)

No.	Generic Name	BDDCS	A:	B:	S:	clogP	Dose (mg)	Prediction of solubility	Prediction of metabolism	Prediction of BDDCS																																																																																																																																																																																																																																																																																																																																																																																																																															
1	Acarbose	1	3.35	6.22	4.52	-6.66	100	H	L	3																																																																																																																																																																																																																																																																																																																																																																																																																															
2	Acetaminophen	1	0.95	0.8	1.63	0.49	1000	H	L	3																																																																																																																																																																																																																																																																																																																																																																																																																															
3	Acetazolamide	4	0.85	1.5	2.55	-0.98	250	H	L	3																																																																																																																																																																																																																																																																																																																																																																																																																															
4	Acetohexamide	1	0.59	1.46	2.79	2.25	500	L	H	2																																																																																																																																																																																																																																																																																																																																																																																																																															
5	Acrivastine	3	0.57	1.45	2	1.46	8	H	H	1																																																																																																																																																																																																																																																																																																																																																																																																																															
6	Acyclovir	4	0.65	2.18	1.95	-2.42	800	H	L	3																																																																																																																																																																																																																																																																																																																																																																																																																															
7	Adefovir Dipivoxil	3	0.23	2.91	2.93	-1.98	10	H	L	3																																																																																																																																																																																																																																																																																																																																																																																																																															
8	Albendazole	2	0.71	1.12	1.96	3.46	200	L	H	2																																																																																																																																																																																																																																																																																																																																																																																																																															
9	Albuterol	3	1.19	1.82	1.26	0.06	4	H	L	3																																																																																																																																																																																																																																																																																																																																																																																																																															
10	Aflaminalin	1	0.63	1.01	1.01	8.24	1	H	H	1																																																																																																																																																																																																																																																																																																																																																																																																																															
11	Allopurinol	2	0.27	1.54	1.04	0.63	300	H	H	1																																																																																																																																																																																																																																																																																																																																																																																																																															
12	Almotriptan	3	0.31	1.65	2.16	1.79	12.5	H	H	1																																																																																																																																																																																																																																																																																																																																																																																																																															
13	Alsohexine	1	0.35	1.38	2.64	1.74	1	H	H	1																																																																																																																																																																																																																																																																																																																																																																																																																															
14	Alprazolam	1	0.84	1.95	2.56	2	H	H	1																																																																																																																																																																																																																																																																																																																																																																																																																																
15	Alpranolol	1	0.29	1.36	1.12	-0.86	200	H	H	1																																																																																																																																																																																																																																																																																																																																																																																																																															
16	Altretamine	2	0	1.3	1.53	1.67	10	H	H	1																																																																																																																																																																																																																																																																																																																																																																																																																															
17	Alvimopan	3	1.33	1.96	1.41	2.16	100	H	H	1																																																																																																																																																																																																																																																																																																																																																																																																																															
18	Amantadine	3	0.21	0.64	0.68	2	100	H	H	1																																																																																																																																																																																																																																																																																																																																																																																																																															
19	Ambrisentan	1	0.57	1.52	2.32	3.33	10	L	H	2																																																																																																																																																																																																																																																																																																																																																																																																																															
20	Amboxol	1	0.73	1.12	1.89	2.66	30	H	H	1																																																																																																																																																																																																																																																																																																																																																																																																																															
21	Amiloride	3	1.01	2.16	2.12	0.11	5	H	L	3																																																																																																																																																																																																																																																																																																																																																																																																																															
22	Aminogluthethimide	2	0.56	1.34	1.79	0.77	250	H	H	1																																																																																																																																																																																																																																																																																																																																																																																																																															
23	Aminophenazone	1	0	1.79	1.88	1.04	300	H	H	1																																																																																																																																																																																																																																																																																																																																																																																																																															
24	Amisulpride	4	0.5	2.18	3.16	1.8	200	L	H	2																																																																																																																																																																																																																																																																																																																																																																																																																															
25	Amiodipine	1	0.36	2.19	2.26	3.43	10	H	H	1																																																																																																																																																																																																																																																																																																																																																																																																																															
26	Amoxapine	1	0.16	1.43	1.68	3.41	150	H	H	1																																																																																																																																																																																																																																																																																																																																																																																																																															
27	Amoxicillin	3	1.55	2.9	3.59	-1.87	500	H	L	3																																																																																																																																																																																																																																																																																																																																																																																																																															
28	Ampicillin	3	1.06	2.62	3.01	-1.2	500	L	H	3																																																																																																																																																																																																																																																																																																																																																																																																																															
29	Anastrozole	1	0	1	2.38	1.29	1	H	H	1																																																																																																																																																																																																																																																																																																																																																																																																																															
30	Antipyrine	1	0	1.28	1.75	-1.79	500	H	H	1																																																																																																																																																																																																																																																																																																																																																																																																																															
31	Aprepitant	2	0.39	2.11	2.49	4.6	10	L	H	2																																																																																																																																																																																																																																																																																																																																																																																																																															
32	Aripiprazole	2	0.41	1.75	2.53	5.31	30	L	H	2																																																																																																																																																																																																																																																																																																																																																																																																																															
33	Asenapine	1	0	0.91	1.58	4.58	10	L	H	2																																																																																																																																																																																																																																																																																																																																																																																																																															
---	---	---	---	---	---	---	---																																																																																																																																																																																																																																																																																																																																																																																																																																		
34	Astemizole	2	0.13	1.64	2.7	6.09	10	L	H	2																																																																																																																																																																																																																																																																																																																																																																																																																															
35	Atenolol	3	0.78	1.85	1.97	-0.11	100	H	L	3																																																																																																																																																																																																																																																																																																																																																																																																																															
36	Atomoxetine	1	0.13	0.9	1.36	3.94	60	H	H	1																																																																																																																																																																																																																																																																																																																																																																																																																															
37	Atovaquone	4	0.31	1.21	2.54	6.35	250	L	H	2																																																																																																																																																																																																																																																																																																																																																																																																																															
38	Atropine	3	0.31	1.31	3.15	1.3	25	L	H	2																																																																																																																																																																																																																																																																																																																																																																																																																															
39	Azathioprine	1	0.35	1.56	2.86	0.51	100	L	H	2																																																																																																																																																																																																																																																																																																																																																																																																																															
40	Azithromycin	3	0.97	4.91	2.67	2.64	600	H	H	1																																																																																																																																																																																																																																																																																																																																																																																																																															
41	Bambuterol	1	0.38	2.25	2.2	0.56	20	H	H	1																																																																																																																																																																																																																																																																																																																																																																																																																															
42	Benazepril	1	0.71	2.08	2.75	1.82	40	H	H	1																																																																																																																																																																																																																																																																																																																																																																																																																															
43	Bendroflumethiazide	3	1.01	1.84	2.89	1.73	10	L	H	2																																																																																																																																																																																																																																																																																																																																																																																																																															
44	Benidipine	1	0.13	2.13	2.99	7.41	8	H	H	1																																																																																																																																																																																																																																																																																																																																																																																																																															
45	Benzerazide	1	2.01	2.63	2.78	-2.9	50	H	L	3																																																																																																																																																																																																																																																																																																																																																																																																																															
46	Benznidazole	1	0.35	0.57	0.98	0.9	20	H	H	1																																																																																																																																																																																																																																																																																																																																																																																																																															
47	Bepridil	1	0	1.32	1.81	6.2	400	L	H	2																																																																																																																																																																																																																																																																																																																																																																																																																															
48	Beraprost	1	1.2	1.51	2.03	2.04	0.04	H	H	1																																																																																																																																																																																																																																																																																																																																																																																																																															
49	Betamethasone	1	0.8	1.97	2.95	1.79	0.75	H	H	1																																																																																																																																																																																																																																																																																																																																																																																																																															
50	Bexarotene	2	0.57	0.67	1.29	8.19	75	L	H	2																																																																																																																																																																																																																																																																																																																																																																																																																															
51	Bicalutamide	2	0.71	1.63	3.05	2.71	50	L	H	2																																																																																																																																																																																																																																																																																																																																																																																																																															
52	Biotin	3	0.95	1.22	1.86	-0.08	5	H	L	3																																																																																																																																																																																																																																																																																																																																																																																																																															
53	Biperiden	1	0.31	1.17	1.32	4.94	2	H	H	1																																																																																																																																																																																																																																																																																																																																																																																																																															
54	Bopindolol	1	0.46	1.48	2.14	4.98	2	H	H	1																																																																																																																																																																																																																																																																																																																																																																																																																															
55	Bosantan	2	0	2.48	3.5	4.17	125	L	H	2																																																																																																																																																																																																																																																																																																																																																																																																																															
56	Bromperidol	1	0.31	1.45	2.16	4	10	L	H	2																																																																																																																																																																																																																																																																																																																																																																																																																															
57	Budesonide	1	0.48	2.16	3.23	2.91	3	H	H	1																																																																																																																																																																																																																																																																																																																																																																																																																															
58	Bunetanide	3	1.16	1.7	1.92	3.37	500	H	H	1																																																																																																																																																																																																																																																																																																																																																																																																																															
59	Bupropion	1	0.13	0.94	1.32	3.21	100	H	H	1																																																																																																																																																																																																																																																																																																																																																																																																																															
60	Buspirone	2	0	2.16	2.18	2.19	10	H	H	1																																																																																																																																																																																																																																																																																																																																																																																																																															
61	Busulfan	1	0	1.46	2.25	-0.59	2	H	H	1																																																																																																																																																																																																																																																																																																																																																																																																																															
62	Butabarbital	1	0.52	1.24	1.34	1.58	100	H	H	1																																																																																																																																																																																																																																																																																																																																																																																																																															
63	Butalbital	1	0.52	1.3	1.4	1.63	50	H	H	1																																																																																																																																																																																																																																																																																																																																																																																																																															
64	Butorphanol	1	0.73	1.32	1.42	3.73	5	H	H	1																																																																																																																																																																																																																																																																																																																																																																																																																															
65	Cadrilazine	3	0.57	1.84	2.14	0.93	10	H	H	1																																																																																																																																																																																																																																																																																																																																																																																																																															
66	Caffeine	1	0	1.27	1.9	-0.04	65	H	H	1																																																																																																																																																																																																																																																																																																																																																																																																																															
67	Candesartan cilexetil	4	0.63	2.39	4.11	7.33	32	L	H	2																																																																																																																																																																																																																																																																																																																																																																																																																															
68	Captopril	3	0.57	1.13	1.77	0.89	100	H	H	1																																																																																																																																																																																																																																																																																																																																																																																																																															
69	Carbamazepine	2	0.39	0.92	2.06	2.38	300	L	H	2																																																																																																																																																																																																																																																																																																																																																																																																																															
70	Carbencicillin	3	1.42	2.41	3.14	1.64	382	L	L	4																																																																																																																																																																																																																																																																																																																																																																																																																															
71	Carbidopa	1	1.69	1.77	1.79	-0.45	25	H	L	3																																																																																																																																																																																																																																																																																																																																																																																																																															
72	Cefaclor	3	1.06	2.54	3.41	-1.64	500	H	L	3																																																																																																																																																																																																																																																																																																																																																																																																																															
No.	Drug	1	2	3	4	5	6	7	8	9	10																																																																																																																																																																																																																																																																																																																																																																																																																														
-----	---------------------	---	---	---	---	---	---	---	---	---	----																																																																																																																																																																																																																																																																																																																																																																																																																														
73	Cefadroxil	3	1.55	2.82	3.48	-2.51	1000	H	L	3																																																																																																																																																																																																																																																																																																																																																																																																																															
74	Cefamandole	3	1.02	3.18	2.01	0.11	5	H	L	3																																																																																																																																																																																																																																																																																																																																																																																																																															
75	Cefdinir	4	1.38	2.85	3.68	-0.48	300	H	L	3																																																																																																																																																																																																																																																																																																																																																																																																																															
76	Cefditoren Pivoxil	2	0.5	3.45	4.52	2.71	200	L	H	2																																																																																																																																																																																																																																																																																																																																																																																																																															
77	Cefpodoxime	4	1.07	2.95	3.67	-0.41	200	H	L	3																																																																																																																																																																																																																																																																																																																																																																																																																															
78	Cefpodoxime Proxetil	2	0.5	3.5	1.68	0.8	750	H	H	1																																																																																																																																																																																																																																																																																																																																																																																																																															
79	Cefprozil	4	1.55	2.89	3.22	-1.87	875	H	L	3																																																																																																																																																																																																																																																																																																																																																																																																																															
80	Cefributen	4	1.64	2.77	4.02	-1.21	400	L	L	4																																																																																																																																																																																																																																																																																																																																																																																																																															
81	Cefuroxime	3	1.29	2.9	3.62	0.23	50	H	L	3																																																																																																																																																																																																																																																																																																																																																																																																																															
82	Cephradine	3	1.06	2.59	1.06	-1.73	250	H	L	3																																																																																																																																																																																																																																																																																																																																																																																																																															
83	Cervastatin	1	1.2	1.8	2.25	3.56	0.8	H	H	1																																																																																																																																																																																																																																																																																																																																																																																																																															
84	Cetrizine	3	0.57	1.76	2.24	2.08	5	H	H	1																																																																																																																																																																																																																																																																																																																																																																																																																															
85	Chlorambucil	1	0.57	0.8	1.6	3.63	2	H	H	1																																																																																																																																																																																																																																																																																																																																																																																																																															
86	Chlor Diazepoxide	1	0.31	1.41	1.31	3.79	25	H	H	1																																																																																																																																																																																																																																																																																																																																																																																																																															
87	Chloromethiazole	1	0	0.3	0.91	1.68	192	H	H	1																																																																																																																																																																																																																																																																																																																																																																																																																															
88	Chloroquine	3	0.13	1.29	1.63	5.06	500	L	H	2																																																																																																																																																																																																																																																																																																																																																																																																																															
89	Chlorothiazide	4	0.64	1.66	2.74	-1	500	H	L	3																																																																																																																																																																																																																																																																																																																																																																																																																															
90	Chlorpheniramine	1	0	1.02	1.49	3.15	4	H	H	1																																																																																																																																																																																																																																																																																																																																																																																																																															
91	Chlorpromazine	1	0	0.99	1.45	5.3	4	H	H	1																																																																																																																																																																																																																																																																																																																																																																																																																															
92	Chlorthalidone	4	1.01	1.98	3.05	0.45	100	L	L	4																																																																																																																																																																																																																																																																																																																																																																																																																															
93	Chloroxazone	2	0.45	0.5	1.32	2.51	500	H	H	1																																																																																																																																																																																																																																																																																																																																																																																																																															
94	Cilazapril	1	0.71	2.51	2.7	0.5	2.6	H	H	1																																																																																																																																																																																																																																																																																																																																																																																																																															
95	Cilazaprilat	3	1.28	2.5	2.74	1.0	2.6	H	H	1																																																																																																																																																																																																																																																																																																																																																																																																																															
96	Cilostazol	2	0.41	1.63	2.37	3.53	45	L	H	2																																																																																																																																																																																																																																																																																																																																																																																																																															
97	Cimetidine	3	0.74	1.86	1.87	0.19	800	H	L	3																																																																																																																																																																																																																																																																																																																																																																																																																															
98	Cinoxacin	4	0.57	1.55	2.05	1.74	500	H	H	1																																																																																																																																																																																																																																																																																																																																																																																																																															
99	Cisapride	2	0.5	2.17	3.15	3.81	20	L	H	2																																																																																																																																																																																																																																																																																																																																																																																																																															
100	Citalopram	2	0	1.08	2.25	3.13	20	L	H	2																																																																																																																																																																																																																																																																																																																																																																																																																															
101	Clarithromycin	3	0.8	4.49	2.97	2.37	500	H	H	1																																																																																																																																																																																																																																																																																																																																																																																																																															
102	Clavulanic Acid	3	0.88	1.79	1.75	-1.07	125	H	L	3																																																																																																																																																																																																																																																																																																																																																																																																																															
103	Clemastine	1	0	0.97	1.55	5.45	2	H	H	1																																																																																																																																																																																																																																																																																																																																																																																																																															
104	Clodronic Acid	4	1.25	2.22	1.49	-0.14	800	H	L	3																																																																																																																																																																																																																																																																																																																																																																																																																															
105	Clofazimine	2	0.19	1.28	2.34	7.7	50	L	H	2																																																																																																																																																																																																																																																																																																																																																																																																																															
106	Clonazepam	1	0.47	1.09	2.25	2.38	2	H	H	1																																																																																																																																																																																																																																																																																																																																																																																																																															
107	Cloxicillin	4	0.84	2.32	3.27	2.52	250	L	H	2																																																																																																																																																																																																																																																																																																																																																																																																																															
108	Clozapine	2	0.2	1.65	1.66	3.71	100	H	H	1																																																																																																																																																																																																																																																																																																																																																																																																																															
109	Colchicine	1	0.26	2.08	3.32	1.2	0.6	H	H	1																																																																																																																																																																																																																																																																																																																																																																																																																															
110	Cortisone	1	0.41	1.9	1.63	1.3	0.4	H	H	1																																																																																																																																																																																																																																																																																																																																																																																																																															
111	Cyclizine	1	0	1.21	1.55	3.8	50	H	H	1																																																																																																																																																																																																																																																																																																																																																																																																																															
	Drug Name																																																																																																																																																																																																																																																																																																																																																																																																																																								
---	------------------------	---	---	---	---	---	---	---	---																																																																																																																																																																																																																																																																																																																																																																																																																																
112	Cycloserine	3	0.48	1.46	1.42	-1.19	250	H	L																																																																																																																																																																																																																																																																																																																																																																																																																																
113	Cyclosporine	2	1.17	7.39	9.65	14.36	100	L	H																																																																																																																																																																																																																																																																																																																																																																																																																																
114	Cyproheptadine	1	0	0.83	1.85	5.3	10	L	H																																																																																																																																																																																																																																																																																																																																																																																																																																
115	Dabigatran Etxilate	1	0.34	3.07	4.1	4.13	110	L	H																																																																																																																																																																																																																																																																																																																																																																																																																																
116	Dalfampridine	3	0.23	0.71	1.21	0.32	10	H	H																																																																																																																																																																																																																																																																																																																																																																																																																																
117	Danazol	2	0.4	1.03	2.58	3.93	5	H	L																																																																																																																																																																																																																																																																																																																																																																																																																																
118	Dantrolene	1	0.24	1.44	2.5	1.63	100	L	H																																																																																																																																																																																																																																																																																																																																																																																																																																
119	Darifenacin	1	0.49	1.58	2.18	3.62	1.6	H	L																																																																																																																																																																																																																																																																																																																																																																																																																																
120	Darunavir	2	0.64	2.86	3.74	2.89	600	L	H																																																																																																																																																																																																																																																																																																																																																																																																																																
121	Dasatinib	2	0.76	2.5	3.47	2.88	70	L	H																																																																																																																																																																																																																																																																																																																																																																																																																																
122	Debrisoquine	1	0.34	1.16	1.37	0.9	100	H	H																																																																																																																																																																																																																																																																																																																																																																																																																																
123	Delavirdine	2	0.81	2.45	3.89	2.41	200	L	H																																																																																																																																																																																																																																																																																																																																																																																																																																
124	Demeclocycline	3	2.27	3.57	3.93	-0.59	300	H	L																																																																																																																																																																																																																																																																																																																																																																																																																																
125	Desipramine	1	0.13	0.9	1.58	4.47	200	L	H																																																																																																																																																																																																																																																																																																																																																																																																																																
126	Desloratadine	2	0.13	0.99	1.55	3.83	5	H	H																																																																																																																																																																																																																																																																																																																																																																																																																																
127	Desmethyldiazepam	1	0.47	0.99	1	3.02	5	H	H																																																																																																																																																																																																																																																																																																																																																																																																																																
128	Desogestrel	1	0.4	0.84	1.96	4.68	5	H	H																																																																																																																																																																																																																																																																																																																																																																																																																																
129	Dexamethasone	1	0.8	1.97	2.95	1.79	5	H	H																																																																																																																																																																																																																																																																																																																																																																																																																																
130	Dexamethylenidate	1	0.13	0.94	1.29	2.56	10	H	L																																																																																																																																																																																																																																																																																																																																																																																																																																
131	Diazepam	1	0	1.04	1.72	2.96	10	H	H																																																																																																																																																																																																																																																																																																																																																																																																																																
132	Diazoxide	2	0.19	0.99	3.26	1.42	5	H	H																																																																																																																																																																																																																																																																																																																																																																																																																																
133	Diclofenac	1	0.7	0.67	1.95	4.73	50	L	H																																																																																																																																																																																																																																																																																																																																																																																																																																
134	Dicloxacillin	3	0.84	2.26	1.56	2.98	750	H	H																																																																																																																																																																																																																																																																																																																																																																																																																																
135	Dicoumarol	2	0.63	1.57	2.48	3.66	100	L	H																																																																																																																																																																																																																																																																																																																																																																																																																																
136	Didanosine	3	0.31	1.77	1.85	-1.62	25	H	L																																																																																																																																																																																																																																																																																																																																																																																																																																
137	Dilfurisal	2	0.7	0.44	1	4.4	500	L	H																																																																																																																																																																																																																																																																																																																																																																																																																																
138	Digitoxin	3	1.27	4.02	4.2	2.85	0.1	H	L																																																																																																																																																																																																																																																																																																																																																																																																																																
139	Digoxin	3	1.58	4.32	1.82	1.42	100	H	L																																																																																																																																																																																																																																																																																																																																																																																																																																
140	Dihydroquinidine	1	0.23	1.76	1.52	3.27	40	H	H																																																																																																																																																																																																																																																																																																																																																																																																																																
141	Dilevalol	1	1	1.72	2.3	2.5	50	H	H																																																																																																																																																																																																																																																																																																																																																																																																																																
142	Diloxyamide furoate	2	0.09	1.16	2.34	3.09	500	L	H																																																																																																																																																																																																																																																																																																																																																																																																																																
143	Diltiazem	1	0	2.22	2.14	3.65	120	H	H																																																																																																																																																																																																																																																																																																																																																																																																																																
144	Diphenhydramine	1	0	0.95	1.43	3.45	50	H	H																																																																																																																																																																																																																																																																																																																																																																																																																																
145	Dipyridamole	2	0.95	3.03	1.22	1.49	100	H	H																																																																																																																																																																																																																																																																																																																																																																																																																																
146	Disopyramide	3	0.49	1.64	2.26	2.58	150	H	H																																																																																																																																																																																																																																																																																																																																																																																																																																
147	Disulfiram	2	0	1.16	1.62	3.88	250	H	H																																																																																																																																																																																																																																																																																																																																																																																																																																
148	Dofetilide	3	0.72	2.16	3.3	1.99	0.5	H	H																																																																																																																																																																																																																																																																																																																																																																																																																																
149	Dolasetron	1	0.31	1.52	1.76	2.34	30	H	H																																																																																																																																																																																																																																																																																																																																																																																																																																
150	Donepezil	2	0	1.5	2.17	4.6	125	H	H																																																																																																																																																																																																																																																																																																																																																																																																																																
	Name	C0	C1	C2	C3	C4	C5	C6	C7	C8	C9																																																																																																																																																																																																																																																																																																																																																																																																																														
-----	---------------	----	----	----	----	----	----	----	----	----	----																																																																																																																																																																																																																																																																																																																																																																																																																														
151	Dosulepin	1	0	0.89	1.46	4.53	75	L	H	2																																																																																																																																																																																																																																																																																																																																																																																																																															
152	Doxazosin	1	0.23	2.6	4.45	3.53	8	H	H	1																																																																																																																																																																																																																																																																																																																																																																																																																															
153	Doxepin	1	0	0.98	1.46	4.09	100	H	H	1																																																																																																																																																																																																																																																																																																																																																																																																																															
154	Doxyecline	3	2.1	3.47	3.88	-0.51	40	H	L	3																																																																																																																																																																																																																																																																																																																																																																																																																															
155	Dronabinol	2	0.5	0.71	1.04	7.24	10	L	H	2																																																																																																																																																																																																																																																																																																																																																																																																																															
156	Dronedarone	2	0.36	1.97	2.98	8.57	400	L	H	2																																																																																																																																																																																																																																																																																																																																																																																																																															
157	Drospernone	2	0	1.24	3.29	2.84	3	H	H	1																																																																																																																																																																																																																																																																																																																																																																																																																															
158	Efavirenz	2	0.42	0.61	1.13	4.67	50	H	H	1																																																																																																																																																																																																																																																																																																																																																																																																																															
159	Emtricitabine	3	0.44	2	1.86	-1.29	200	H	L	3																																																																																																																																																																																																																																																																																																																																																																																																																															
160	Enalapril	1	0.71	1.92	2.61	0.67	20	H	H	1																																																																																																																																																																																																																																																																																																																																																																																																																															
161	Enalaprilat	3	1.28	1.91	2.08	0.88	250	L	L	3																																																																																																																																																																																																																																																																																																																																																																																																																															
162	Enoxacin	4	0.73	1.96	2.45	-1.6	400	H	L	3																																																																																																																																																																																																																																																																																																																																																																																																																															
163	Entacapone	2	0.58	1.38	2.85	1.76	200	L	H	2																																																																																																																																																																																																																																																																																																																																																																																																																															
164	Eplerenone	2	0	1.75	3.73	0.29	50	L	H	2																																																																																																																																																																																																																																																																																																																																																																																																																															
165	Ergonovine	1	0.81	1.89	2.47	1.23	0.2	H	H	1																																																																																																																																																																																																																																																																																																																																																																																																																															
166	Erythromycin	3	1.05	4.63	3.04	1.61	500	H	L	3																																																																																																																																																																																																																																																																																																																																																																																																																															
167	Estazolam	2	0	0.84	2.01	2.29	2	H	H	1																																																																																																																																																																																																																																																																																																																																																																																																																															
168	Estradiol	1	0.81	0.95	2.3	3.78	2	H	H	1																																																																																																																																																																																																																																																																																																																																																																																																																															
169	Eszopiclone	1	0	2.43	3.2	1.25	3	H	H	1																																																																																																																																																																																																																																																																																																																																																																																																																															
170	Ethambutol	3	0.78	1.72	0.98	0.12	400	H	L	3																																																																																																																																																																																																																																																																																																																																																																																																																															
171	Ethchlorvynol	2	0.4	0.47	0.82	1.57	750	H	H	1																																																																																																																																																																																																																																																																																																																																																																																																																															
172	Ethinylestradiol	1	0.9	1.02	3.79	3.86	0.25	H	L	3																																																																																																																																																																																																																																																																																																																																																																																																																															
173	Ethosuximide	1	0.34	0.93	0.94	0.4	250	H	H	1																																																																																																																																																																																																																																																																																																																																																																																																																															
174	Etidronic Acid	3	1.56	2.54	1.55	-2.54	400	H	L	3																																																																																																																																																																																																																																																																																																																																																																																																																															
175	Etofusin	2	0.88	0.9	2.12	3.43	10	L	H	2																																																																																																																																																																																																																																																																																																																																																																																																																															
176	Etoricoxib	2	0	1.41	2.77	2.35	120	L	H	2																																																																																																																																																																																																																																																																																																																																																																																																																															
177	Etravirine	2	0.47	1.42	3.44	5.22	100	L	H	2																																																																																																																																																																																																																																																																																																																																																																																																																															
178	Everolimus	1	0.63	4.73	4.73	7.1	1	H	H	1																																																																																																																																																																																																																																																																																																																																																																																																																															
179	Exemestane	2	0	1.14	2.6	3.28	25	L	H	2																																																																																																																																																																																																																																																																																																																																																																																																																															
180	Famciclovir	1	0.23	1.64	1.76	0.09	50	H	H	1																																																																																																																																																																																																																																																																																																																																																																																																																															
181	Felbamate	4	0.89	1.19	2.12	0.5	600	H	L	3																																																																																																																																																																																																																																																																																																																																																																																																																															
182	Felodipine	2	0.13	1.42	1.83	5.3	200	L	H	2																																																																																																																																																																																																																																																																																																																																																																																																																															
183	Fenofibrate	2	0	1.13	2.11	5.23	145	L	H	2																																																																																																																																																																																																																																																																																																																																																																																																																															
184	Fentanyl	1	0	1.33	2.82	3.62	15	L	H	2																																																																																																																																																																																																																																																																																																																																																																																																																															
185	Fesoterodine	1	0.31	1.58	1.75	4.36	8	H	H	1																																																																																																																																																																																																																																																																																																																																																																																																																															
186	Finasteride	1	0.51	1.6	3.23	3.01	5	H	H	1																																																																																																																																																																																																																																																																																																																																																																																																																															
187	Flecaïnide	3	0.41	1.32	1.68	3.66	150	H	H	1																																																																																																																																																																																																																																																																																																																																																																																																																															
188	Fleroxacin	4	0.57	1.81	2.37	-0.33	800	H	L	3																																																																																																																																																																																																																																																																																																																																																																																																																															
189	Fluconazole	3	0.31	1.42	2.45	-0.78	100	H	H	1																																																																																																																																																																																																																																																																																																																																																																																																																															
	Drug Name																																																																																																																																																																																																																																																																																																																																																																																																																																								
-----	---------------	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----																																																																																																																																																																																																																																																																																																																																																																																																																											
190	Flucytosine	3	0.47	1.2	1.27	-1.64	500	H	L	3																																																																																																																																																																																																																																																																																																																																																																																																																															
191	Flufenamic acid	2	0.72	0.59	1.36	5.53	100	L	H	2																																																																																																																																																																																																																																																																																																																																																																																																																															
192	Flunarizine	2	0	1.37	2.06	6.34	10	L	H	2																																																																																																																																																																																																																																																																																																																																																																																																																															
193	Flunitrazepam	1	0	1.15	2.15	1.78	1	H	H	1																																																																																																																																																																																																																																																																																																																																																																																																																															
194	Fluvanviteine	1	0.13	0.78	1.19	4.57	20	H	H	1																																																																																																																																																																																																																																																																																																																																																																																																																															
195	Flurazepam	1	0	1.55	1.89	4.22	30	H	H	1																																																																																																																																																																																																																																																																																																																																																																																																																															
196	Flurbiprofen	2	0.57	0.58	1.51	3.75	100	L	H	2																																																																																																																																																																																																																																																																																																																																																																																																																															
197	Flutamide	2	0.53	0.68	1.76	3.34	125	L	H	2																																																																																																																																																																																																																																																																																																																																																																																																																															
198	Fluvoxamine	1	0.23	1.14	0.95	3.32	100	H	H	1																																																																																																																																																																																																																																																																																																																																																																																																																															
199	Folic Acid	2	1.95	3.14	3.74	-2.31	5	H	L	3																																																																																																																																																																																																																																																																																																																																																																																																																															
200	Fosfluconazole	1	0.63	2.32	2.99	-0.78	100	H	L	3																																																																																																																																																																																																																																																																																																																																																																																																																															
201	Fosinopril	2	0.57	2.3	2.74	7.45	40	L	H	2																																																																																																																																																																																																																																																																																																																																																																																																																															
202	Frovatriptan	1	0.93	1.33	2.1	0.72	2.5	H	L	3																																																																																																																																																																																																																																																																																																																																																																																																																															
203	Furosemide	4	1.25	1.5	2.37	1.9	80	L	L	4																																																																																																																																																																																																																																																																																																																																																																																																																															
204	Gabapentin	3	0.78	0.93	0.99	-0.66	800	H	L	3																																																																																																																																																																																																																																																																																																																																																																																																																															
205	Galantamine	1	0.31	1.45	2.02	1.03	5	H	H	1																																																																																																																																																																																																																																																																																																																																																																																																																															
206	Gefitinib	2	0.25	1.87	2.97	5.6	250	L	H	2																																																																																																																																																																																																																																																																																																																																																																																																																															
207	Gemfibrozil	2	0.57	0.71	1.07	3.94	600	H	H	1																																																																																																																																																																																																																																																																																																																																																																																																																															
208	Glibornuride	1	0.84	1.64	2.46	3.7	25	L	H	2																																																																																																																																																																																																																																																																																																																																																																																																																															
209	Gliclazide	2	0.59	1.66	2.54	1.09	80	H	H	1																																																																																																																																																																																																																																																																																																																																																																																																																															
210	Glimepiride	2	0.75	2.15	3.5	3.96	4	H	H	1																																																																																																																																																																																																																																																																																																																																																																																																																															
211	Glipizide	2	0.85	2.19	1	2.57	250	H	H	1																																																																																																																																																																																																																																																																																																																																																																																																																															
212	Glyburide	2	0.85	2.01	1.77	4.24	40	L	H	2																																																																																																																																																																																																																																																																																																																																																																																																																															
213	Granisetron	1	0.26	1.56	2.38	1.72	1	H	H	1																																																																																																																																																																																																																																																																																																																																																																																																																															
214	Griseofulvin	2	0	1.58	1.87	1.91	100	H	H	1																																																																																																																																																																																																																																																																																																																																																																																																																															
215	Guanabenz	1	0.48	1.2	1.02	2.98	16	H	H	1																																																																																																																																																																																																																																																																																																																																																																																																																															
216	Haloperidol	2	0.31	1.45	2.08	3.85	20	L	H	2																																																																																																																																																																																																																																																																																																																																																																																																																															
217	Hexobarbital	1	0.24	1.33	1.5	1.63	250	H	H	1																																																																																																																																																																																																																																																																																																																																																																																																																															
218	Hydrochlorothiazide	3	1.01	1.76	2.77	-0.37	50	H	L	3																																																																																																																																																																																																																																																																																																																																																																																																																															
219	Hydrocodone	1	0	1.42	2.12	1.13	10	H	H	1																																																																																																																																																																																																																																																																																																																																																																																																																															
220	Hydroflumethiazide	3	1.01	1.72	2.44	-0.21	50	H	L	3																																																																																																																																																																																																																																																																																																																																																																																																																															
221	Hydromorphone	1	0.27	1.32	1.79	0.72	8	H	H	1																																																																																																																																																																																																																																																																																																																																																																																																																															
222	Hydroxychloroquine	1	0.36	1.66	1.84	4.12	200	H	H	1																																																																																																																																																																																																																																																																																																																																																																																																																															
223	Hydroxyurea	3	0.91	0.98	1.4	-1.8	1000	H	L	3																																																																																																																																																																																																																																																																																																																																																																																																																															
224	Hydroxyzine	1	0.23	1.8	2.41	4	30	L	H	2																																																																																																																																																																																																																																																																																																																																																																																																																															
225	Hyoscyamine	3	0.31	1.31	1.63	1.3	311	H	H	1																																																																																																																																																																																																																																																																																																																																																																																																																															
226	Ibandronate	3	1.56	3.05	1.76	-3.37	150	H	L	3																																																																																																																																																																																																																																																																																																																																																																																																																															
227	Ibuprofen	2	0.57	0.51	1.01	3.68	800	H	H	1																																																																																																																																																																																																																																																																																																																																																																																																																															
228	Iloperidone	2	0	1.73	2.85	4.27	12	L	H	2																																																																																																																																																																																																																																																																																																																																																																																																																															
	Name	M	F	C	R	L	H	1																																																																																																																																																																																																																																																																																																																																																																																																																																	
---	---------------------------	-------	-------	-------	-------	-------	-------	------																																																																																																																																																																																																																																																																																																																																																																																																																																	
229	Imidapril	0.71	2.22	2.85	1.53	10	H	H																																																																																																																																																																																																																																																																																																																																																																																																																																	
230	Imipramine	0	0.95	1.59	5.04	50	L	H																																																																																																																																																																																																																																																																																																																																																																																																																																	
231	Indobufen	0.57	1.15	1.66	3.27	300	H	1																																																																																																																																																																																																																																																																																																																																																																																																																																	
232	Indomethacin	0.57	1.24	2.49	4.18	50	L	H																																																																																																																																																																																																																																																																																																																																																																																																																																	
233	Irbesartan	0.63	1.69	2.71	6.04	300	L	H																																																																																																																																																																																																																																																																																																																																																																																																																																	
234	Isoniazid	0.47	1.39	1.85	-0.67	300	H	L																																																																																																																																																																																																																																																																																																																																																																																																																																	
235	Isosorbide Dinitrate	0	0.79	1.75	0.22	40	H	H																																																																																																																																																																																																																																																																																																																																																																																																																																	
236	Isotretinoin	0.57	0.8	0.98	6.74	10	L	H																																																																																																																																																																																																																																																																																																																																																																																																																																	
237	Itraconazole	0	2.95	4.54	5.99	100	L	H																																																																																																																																																																																																																																																																																																																																																																																																																																	
238	Ivabradine	1	0	2.35	3.25	3.97	7.5	H																																																																																																																																																																																																																																																																																																																																																																																																																																	
239	Ketanserin	0.26	1.82	2.01	3	25	L	H																																																																																																																																																																																																																																																																																																																																																																																																																																	
240	Ketoconazole	0	2.22	3.76	3.64	200	L	H																																																																																																																																																																																																																																																																																																																																																																																																																																	
241	Ketorolac	0.57	0.98	2.06	1.62	10	L	H																																																																																																																																																																																																																																																																																																																																																																																																																																	
242	Labetalol	1	1	1.72	2.15	2.5	200	L																																																																																																																																																																																																																																																																																																																																																																																																																																	
243	Lacosamide	0.53	1.48	2.55	0.39	50	H	H																																																																																																																																																																																																																																																																																																																																																																																																																																	
244	Lamivudine	0.44	2.02	1.92	-1.46	300	H	L																																																																																																																																																																																																																																																																																																																																																																																																																																	
245	Lamotrigine	0.45	0.93	2.13	2.53	200	L	H																																																																																																																																																																																																																																																																																																																																																																																																																																	
246	Lansoprazole	0.35	1.73	2.97	2.6	30	L	H																																																																																																																																																																																																																																																																																																																																																																																																																																	
247	Lapatinib ditosylate	0.33	2.13	3.87	5.97	250	L	H																																																																																																																																																																																																																																																																																																																																																																																																																																	
248	Leflunomide	0.47	0.81	2.17	2.32	10	L	H																																																																																																																																																																																																																																																																																																																																																																																																																																	
249	Lenalidomide	0.56	1.91	2.53	0.53	200	H	H																																																																																																																																																																																																																																																																																																																																																																																																																																	
250	Letrozole	0	0.97	2.92	1.24	2.5	2																																																																																																																																																																																																																																																																																																																																																																																																																																		
251	Leucovorin	3	2.16	4.11	4.65	-3.49	25	H																																																																																																																																																																																																																																																																																																																																																																																																																																	
252	Levamisole	0	0.88	1.01	1.84	50	H	H																																																																																																																																																																																																																																																																																																																																																																																																																																	
253	Levetiracetam	0.49	1.32	1.87	-0.34	1000	H	L																																																																																																																																																																																																																																																																																																																																																																																																																																	
254	Levocetirizine	0.57	1.76	2.24	2.08	10	H	H																																																																																																																																																																																																																																																																																																																																																																																																																																	
255	Levodopa	1.56	1.44	1.77	-2.82	250	H	L																																																																																																																																																																																																																																																																																																																																																																																																																																	
256	Levonorgestrel	0.4	1.07	2.45	3.31	0.75	H	H																																																																																																																																																																																																																																																																																																																																																																																																																																	
257	Linezolid	0.27	1.72	1.35	1.17	1.5	H	H																																																																																																																																																																																																																																																																																																																																																																																																																																	
258	Loperamide	0.31	1.88	2.9	4.66	2	H	H																																																																																																																																																																																																																																																																																																																																																																																																																																	
259	Lopinavir	0.92	2.89	4.57	6.1	200	L	H																																																																																																																																																																																																																																																																																																																																																																																																																																	
260	Loracarbef	1.06	2.42	3.26	-0.47	400	H	L																																																																																																																																																																																																																																																																																																																																																																																																																																	
261	Loratadine	0	1.14	2.17	5.05	10	L	H																																																																																																																																																																																																																																																																																																																																																																																																																																	
262	Lorazepam	0.64	1.29	1.83	2.37	2	H	H																																																																																																																																																																																																																																																																																																																																																																																																																																	
263	Lovastatin	0.31	1.44	2.34	4.08	40	L	H																																																																																																																																																																																																																																																																																																																																																																																																																																	
264	Maprotiline	0.13	0.68	1.27	4.52	75	H	H																																																																																																																																																																																																																																																																																																																																																																																																																																	
265	Mebendazole	0.71	1.38	2.76	3.08	100	L	H																																																																																																																																																																																																																																																																																																																																																																																																																																	
266	Mefenamic acid	0.65	0.7	1.47	5.29	250	L	H																																																																																																																																																																																																																																																																																																																																																																																																																																	
267	Mefloquine	0.38	1.22	1.04	3.67	250	H	H																																																																																																																																																																																																																																																																																																																																																																																																																																	
Compound	Value 1	Value 2	Value 3	Value 4	Value 5	Value 6	Value 7	Value 8	Value 9	Value 10	Value 11	Value 12	Value 13	Value 14	Value 15	Value 16	Value 17																																																																																																																																																																																																																																																																																																																																																																																																																								
---------------------------	---------	---------	---------	---------	---------	---------	---------	---------	---------	---------	---------	---------	---------	---------	---------	---------	---------																																																																																																																																																																																																																																																																																																																																																																																																																								
Melatonin	0.57	1.11	1.92	1.03	12	H	H	1																																																																																																																																																																																																																																																																																																																																																																																																																																	
Meloxicam	0.72	2.02	3.12	2.29	15	L	H	2																																																																																																																																																																																																																																																																																																																																																																																																																																	
Melphalan	0.78	1.37	1.9	-0.21	2	H	L	3																																																																																																																																																																																																																																																																																																																																																																																																																																	
Meperidine	1	0.97	3.13	2.23	20	H	H	1																																																																																																																																																																																																																																																																																																																																																																																																																																	
Meprobamate	0.89	1.12	1.62	0.92	400	H	L	3																																																																																																																																																																																																																																																																																																																																																																																																																																	
Mercaptopurine	0.43	0.7	1.31	0.82	50	H	H	1																																																																																																																																																																																																																																																																																																																																																																																																																																	
Mesalamine	0.93	0.7	1.52	1.06	1200	H	L	3																																																																																																																																																																																																																																																																																																																																																																																																																																	
Metaxalone	0.23	0.86	1.47	2.15	800	H	H	1																																																																																																																																																																																																																																																																																																																																																																																																																																	
Metformin	0.55	1.68	0.58	-1.63	1000	H	L	3																																																																																																																																																																																																																																																																																																																																																																																																																																	
Methazolamide	0.44	2.01	2.5	0.09	500	H	H	1																																																																																																																																																																																																																																																																																																																																																																																																																																	
Methotrexate	3	1.85	2.82	4.23	-0.53	15	L	4																																																																																																																																																																																																																																																																																																																																																																																																																																	
Methyldopa	3	1.56	1.45	1.73	-2.26	500	H	L	3																																																																																																																																																																																																																																																																																																																																																																																																																																
Methylergonovine	0.81	1.89	2.47	1.76	0.2	H	H	1																																																																																																																																																																																																																																																																																																																																																																																																																																	
Methylenephidate	0.13	0.94	1.29	2.56	20	H	H	1																																																																																																																																																																																																																																																																																																																																																																																																																																	
Methylprednisolone	0.73	2	3	1.74	32	L	H	2																																																																																																																																																																																																																																																																																																																																																																																																																																	
Metoprolol	0.29	1.52	2.9	1.49	75	H	H	1																																																																																																																																																																																																																																																																																																																																																																																																																																	
Metronidazole	0.31	0.86	1.75	-0.46	500	H	H	1																																																																																																																																																																																																																																																																																																																																																																																																																																	
Mexiletine	0.23	0.9	3.71	2.57	10	L	H	2																																																																																																																																																																																																																																																																																																																																																																																																																																	
Mianserin	1	0.16	1.03	1.35	3.76	50	H	H	1																																																																																																																																																																																																																																																																																																																																																																																																																																
Miglitol	3	1.18	1.23	1.57	-1.26	100	H	L	3																																																																																																																																																																																																																																																																																																																																																																																																																																
Miglustat	3	0.93	1.95	1.36	0.91	100	H	L	3																																																																																																																																																																																																																																																																																																																																																																																																																																
Milnacipran	3	0.21	1.33	2.32	1.91	500	H	H	1																																																																																																																																																																																																																																																																																																																																																																																																																																
Minoxidil	1	0.52	2.07	1.05	-0.72	10	H	L	3																																																																																																																																																																																																																																																																																																																																																																																																																																
Mitrazapine	1	0	1.52	2.16	2.81	45	H	H	1																																																																																																																																																																																																																																																																																																																																																																																																																																
Mispolostil	1	0.63	1.43	1.77	3.07	0.2	H	H	1																																																																																																																																																																																																																																																																																																																																																																																																																																
Mizolastine	2	0.39	2.15	3.09	2.84	10	L	H	2																																																																																																																																																																																																																																																																																																																																																																																																																																
Modafinil	2	0.49	1.47	3.2	0.94	200	L	H	2																																																																																																																																																																																																																																																																																																																																																																																																																																
Molindone	1	0.31	1.29	1.57	2.57	50	H	H	1																																																																																																																																																																																																																																																																																																																																																																																																																																
Mycofenolate mofetil	2	0.13	1.66	1.96	2.98	500	H	H	1																																																																																																																																																																																																																																																																																																																																																																																																																																
Nabumetone	2	0	0.7	3.34	2.98	500	L	H	2																																																																																																																																																																																																																																																																																																																																																																																																																																
Nadolol	3	0.83	1.9	1.56	0.38	160	H	L	3																																																																																																																																																																																																																																																																																																																																																																																																																																
Nalidixic acid	2	0.57	1.34	1.1	1.02	1200	H	H	1																																																																																																																																																																																																																																																																																																																																																																																																																																
Naproxen	2	0.57	0.75	1.49	2.82	500	H	H	1																																																																																																																																																																																																																																																																																																																																																																																																																																
Naratriptan	3	0.68	1.62	2.14	1.7	2.5	H	H	1																																																																																																																																																																																																																																																																																																																																																																																																																																
Nateglinide	2	0.83	1.12	2.02	4.3	120	L	H	2																																																																																																																																																																																																																																																																																																																																																																																																																																
Nefazodone	2	1	2.12	2.8	5.73	100	L	H	2																																																																																																																																																																																																																																																																																																																																																																																																																																
Nefopam	1	0	0.92	1.46	2.91	30	H	H	1																																																																																																																																																																																																																																																																																																																																																																																																																																
Nelfinavir	2	1.27	2.81	3.72	5.84	200	L	H	2																																																																																																																																																																																																																																																																																																																																																																																																																																
Neostigmine	3	0	0.73	1.21	-2.81	15	H	L	3																																																																																																																																																																																																																																																																																																																																																																																																																																
		0.57	0.13	0.29	0.39	0.38	0	0.26	0.72	0.13	0.74	0.43	0.13	0.47	0.13	0.27	0.71	0.4	0.2	0.13	3.55	0.57	0.13	0.95	1	0	0.26	0.57	0.38	0.39	0.29	0.23	0.5	0.31	0.13	0.57	0.78																																																																																																																																																																																																																																																																																																																																																																																																				
---	---	-----	------	------	------	------	---	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------	------																																																																																																																																																																																																																																																																																																																																																																																																			
	Drug																																																																																																																																																																																																																																																																																																																																																																																																																																								
---	--------------------	---	---	---	---	---	---	---	---	---	---	---	---																																																																																																																																																																																																																																																																																																																																																																																																																												
346	Penicillin V	4	0.84	2.27	2.86	1.94	500	H	H	H	1																																																																																																																																																																																																																																																																																																																																																																																																																														
347	Pentazocine	2	0.5	1.04	1.38	4.67	600	L	H	H	2																																																																																																																																																																																																																																																																																																																																																																																																																														
348	Pentoxyfiline	1	0	1.59	2.42	0.12	400	H	H	1																																																																																																																																																																																																																																																																																																																																																																																																																															
349	Perhexiline	2	0.13	0.56	0.62	7.15	100	H	H	1																																																																																																																																																																																																																																																																																																																																																																																																																															
350	Perindopril erbumine	1	0.71	1.88	2.23	1.21	8	H	H	1																																																																																																																																																																																																																																																																																																																																																																																																																															
351	Phencetin	2	0.41	0.87	1.55	1.71	500	H	H	1																																																																																																																																																																																																																																																																																																																																																																																																																															
352	Phenobarbital	1	0.52	1.29	1.81	1.37	60	H	H	1																																																																																																																																																																																																																																																																																																																																																																																																																															
353	Phenylbutazone	1	0	1.63	2.45	3.39	100	L	H	2																																																																																																																																																																																																																																																																																																																																																																																																																															
354	Phenylethylmalonamide	3	0.97	1.25	2.41	0.01	250	H	L	3																																																																																																																																																																																																																																																																																																																																																																																																																															
355	Pimozide	1	0.33	1.44	2.6	6.4	2	H	H	1																																																																																																																																																																																																																																																																																																																																																																																																																															
356	Pindolol	3	0.6	1.51	1.38	1.67	50	H	H	1																																																																																																																																																																																																																																																																																																																																																																																																																															
357	Pioglitazone	2	0.34	1.64	2.44	3.53	100	L	H	2																																																																																																																																																																																																																																																																																																																																																																																																																															
358	Piperazine	3	0.29	0.89	0.63	-1.48	500	H	L	3																																																																																																																																																																																																																																																																																																																																																																																																																															
359	Piracetam	3	0.49	1.28	1.88	-1.18	800	H	L	3																																																																																																																																																																																																																																																																																																																																																																																																																															
360	Pirenzepine	3	0.42	2.42	3.13	-0.35	50	H	H	1																																																																																																																																																																																																																																																																																																																																																																																																																															
361	Piroxicam	2	0.72	2.12	3.12	1.89	20	L	H	2																																																																																																																																																																																																																																																																																																																																																																																																																															
362	Pramipexole	3	0.36	0.97	2.69	1.17	600	L	H	2																																																																																																																																																																																																																																																																																																																																																																																																																															
363	Prasugrel	2	0	1.3	1.57	3.43	600	H	H	1																																																																																																																																																																																																																																																																																																																																																																																																																															
364	Prazepam	2	0	1.05	2.38	3.93	200	L	H	2																																																																																																																																																																																																																																																																																																																																																																																																																															
365	Prazosin	1	0.23	2.17	3.59	2.03	5	H	H	1																																																																																																																																																																																																																																																																																																																																																																																																																															
366	Prednisolone	1	0.72	2	4.46	1.42	0.25	H	H	1																																																																																																																																																																																																																																																																																																																																																																																																																															
367	Prednisone	2	0.41	1.97	3.25	1.66	50	L	H	2																																																																																																																																																																																																																																																																																																																																																																																																																															
368	Primaxine	1	0.34	1.49	1.76	2.6	15	H	H	1																																																																																																																																																																																																																																																																																																																																																																																																																															
369	Primidone	2	0.51	1.45	2.65	0.88	8	H	H	1																																																																																																																																																																																																																																																																																																																																																																																																																															
370	Probenecid	2	0.57	1.29	2.65	3.37	2	H	H	1																																																																																																																																																																																																																																																																																																																																																																																																																															
371	Probucol	2	0.62	1.2	1.38	10.97	500	L	H	2																																																																																																																																																																																																																																																																																																																																																																																																																															
372	Procainamide	3	0.5	1.49	2.11	1.42	1000	H	H	1																																																																																																																																																																																																																																																																																																																																																																																																																															
373	Prochlorperazine	1	0	1.47	2.11	4.38	10	L	H	2																																																																																																																																																																																																																																																																																																																																																																																																																															
374	Progesterone	2	0	1.04	2.49	3.78	200	L	H	2																																																																																																																																																																																																																																																																																																																																																																																																																															
375	Proguanil	1	0.74	1.59	1.19	2.53	100	H	H	1																																																																																																																																																																																																																																																																																																																																																																																																																															
376	Promazine	1	0	1.06	1.72	4.4	50	L	H	2																																																																																																																																																																																																																																																																																																																																																																																																																															
377	Promethazine	1	0	1.09	1.74	4.4	100	L	H	2																																																																																																																																																																																																																																																																																																																																																																																																																															
378	Propylthiouracil	1	0.39	1.03	1.74	0.97	50	H	H	1																																																																																																																																																																																																																																																																																																																																																																																																																															
379	Protriptyline	1	0.13	0.73	1.34	4.87	10	L	H	2																																																																																																																																																																																																																																																																																																																																																																																																																															
380	Pseudoephedrine	3	0.38	1.12	0.94	0.89	120	H	H	1																																																																																																																																																																																																																																																																																																																																																																																																																															
381	Pyrazinamide	1	0.49	1.04	1.68	-0.68	500	H	L	3																																																																																																																																																																																																																																																																																																																																																																																																																															
382	Pyridostigmine	3	0	0.7	1.23	-4.26	60	H	L	3																																																																																																																																																																																																																																																																																																																																																																																																																															
383	Pyrimethamine	3	0.45	0.99	2.69	3	40	L	H	2																																																																																																																																																																																																																																																																																																																																																																																																																															
384	Quinacrine	1	0.13	1.56	2.05	6.72	100	L	H	2																																																																																																																																																																																																																																																																																																																																																																																																																															
N	Drug Name	Type	Value 1	Value 2	Value 3	Value 4	Value 5	Value 6	Value 7	Value 8	Value 9	Value 10	Value 11	Value 12	Value 13	Value 14	Value 15	Value 16	Value 17	Value 18	Value 19	Value 20	Value 21	Value 22	Value 23	Value 24	Value 25	Value 26	Value 27	Value 28	Value 29	Value 30	Value 31	Value 32	Value 33	Value 34	Value 35	Value 36	Value 37	Value 38	Value 39	Value 40	Value 41	Value 42	Value 43	Value 44	Value 45	Value 46	Value 47	Value 48	Value 49	Value 50	Value 51	Value 52	Value 53	Value 54	Value 55	Value 56	Value 57	Value 58	Value 59	Value 60	Value 61	Value 62	Value 63	Value 64	Value 65	Value 66	Value 67	Value 68	Value 69	Value 70	Value 71	Value 72	Value 73	Value 74	Value 75	Value 76	Value 77	Value 78	Value 79	Value 80	Value 81	Value 82	Value 83	Value 84	Value 85	Value 86	Value 87	Value 88	Value 89	Value 90	Value 91	Value 92	Value 93	Value 94	Value 95	Value 96	Value 97	Value 98	Value 99	Value 100	Value 101	Value 102	Value 103	Value 104	Value 105	Value 106	Value 107	Value 108	Value 109	Value 110	Value 111	Value 112	Value 113	Value 114	Value 115	Value 116	Value 117	Value 118	Value 119	Value 120	Value 121	Value 122	Value 123	Value 124	Value 125	Value 126	Value 127	Value 128	Value 129	Value 130	Value 131	Value 132	Value 133	Value 134	Value 135	Value 136	Value 137	Value 138	Value 139	Value 140	Value 141	Value 142	Value 143	Value 144	Value 145	Value 146	Value 147	Value 148	Value 149	Value 150	Value 151	Value 152	Value 153	Value 154	Value 155	Value 156	Value 157	Value 158	Value 159	Value 160	Value 161	Value 162	Value 163	Value 164	Value 165	Value 166	Value 167	Value 168	Value 169	Value 170	Value 171	Value 172	Value 173	Value 174	Value 175	Value 176	Value 177	Value 178	Value 179	Value 180	Value 181	Value 182	Value 183	Value 184	Value 185	Value 186	Value 187	Value 188	Value 189	Value 190	Value 191	Value 192	Value 193	Value 194	Value 195	Value 196	Value 197	Value 198	Value 199	Value 200	Value 201	Value 202	Value 203	Value 204	Value 205	Value 206	Value 207	Value 208	Value 209	Value 210	Value 211	Value 212	Value 213	Value 214	Value 215	Value 216	Value 217	Value 218	Value 219	Value 220	Value 221	Value 222	Value 223	Value 224	Value 225	Value 226	Value 227	Value 228	Value 229	Value 230	Value 231	Value 232	Value 233	Value 234	Value 235	Value 236	Value 237	Value 238	Value 239	Value 240	Value 241	Value 242	Value 243	Value 244	Value 245	Value 246	Value 247	Value 248	Value 249	Value 250	Value 251	Value 252	Value 253	Value 254	Value 255	Value 256	Value 257	Value 258	Value 259	Value 260	Value 261	Value 262	Value 263	Value 264	Value 265	Value 266	Value 267	Value 268	Value 269	Value 270	Value 271	Value 272	Value 273	Value 274	Value 275	Value 276	Value 277	Value 278	Value 279	Value 280	Value 281	Value 282	Value 283	Value 284	Value 285	Value 286	Value 287	Value 288	Value 289	Value 290	Value 291	Value 292	Value 293	Value 294	Value 295	Value 296	Value 297	Value 298	Value 299	Value 300	Value 301	Value 302	Value 303	Value 304	Value 305	Value 306	Value 307	Value 308	Value 309	Value 310	Value 311	Value 312	Value 313	Value 314	Value 315	Value 316	Value 317	Value 318	Value 319	Value 320	Value 321	Value 322	Value 323	Value 324	Value 325	Value 326	Value 327	Value 328	Value 329	Value 330	Value 331	Value 332	Value 333	Value 334	Value 335	Value 336	Value 337	Value 338	Value 339	Value 340	Value 341	Value 342	Value 343	Value 344	Value 345	Value 346	Value 347	Value 348	Value 349	Value 350	Value 351	Value 352	Value 353	Value 354	Value 355	Value 356	Value 357	Value 358	Value 359	Value 360	Value 361	Value 362	Value 363	Value 364	Value 365	Value 366	Value 367	Value 368	Value 369	Value 370	Value 371	Value 372	Value 373	Value 374	Value 375	Value 376	Value 377	Value 378	Value 379	Value 380	Value 381	Value 382	Value 383	Value 384	Value 385	Value 386	Value 387	Value 388	Value 389	Value 390	Value 391	Value 392	Value 393	Value 394	Value 395	Value 396	Value 397	Value 398	Value 399	Value 400	Value 401	Value 402	Value 403	Value 404	Value 405	Value 406	Value 407	Value 408	Value 409	Value 410	Value 411	Value 412	Value 413	Value 414	Value 415	Value 416	Value 417	Value 418	Value 419	Value 420	Value 421	Value 422	Value 423
---	---	---	---	---	---																																																																																																																																																																																																																																																																																																																																																																																																																																				
424	Sulindac	2	0.57	1.39	2.72	3.16	200	L	H	2																																																																																																																																																																																																																																																																																																																																																																																																																															
425	Sulpiride	3	0.72	2.15	1.78	1.11	200	H	H	1																																																																																																																																																																																																																																																																																																																																																																																																																															
426	Tacrine	1	0.23	0.76	2.3	3.27	200	L	L	2																																																																																																																																																																																																																																																																																																																																																																																																																															
427	Tacrolimus	2	0.71	3.98	3.98	5.78	5	H	H	1																																																																																																																																																																																																																																																																																																																																																																																																																															
428	Tadalafil	2	0.31	2.27	3.27	2.58	20	L	H	2																																																																																																																																																																																																																																																																																																																																																																																																																															
429	Talinolol	3	0.81	2	1.97	3.15	100	H	H	1																																																																																																																																																																																																																																																																																																																																																																																																																															
430	Tamoxifen	1	0	1.11	1.85	6.82	20	L	H	2																																																																																																																																																																																																																																																																																																																																																																																																																															
431	Tamsulosin	1	0.59	2.11	2.9	2.17	0.4	H	H	1																																																																																																																																																																																																																																																																																																																																																																																																																															
432	Telmisartan	2	0.57	1.59	3.56	7.54	80	L	H	2																																																																																																																																																																																																																																																																																																																																																																																																																															
433	Temazepam	1	0.17	1.34	2.35	2.34	100	L	H	2																																																																																																																																																																																																																																																																																																																																																																																																																															
434	Temozolomide	2	0.49	1.82	2.49	-0.81	250	H	L	3																																																																																																																																																																																																																																																																																																																																																																																																																															
435	Tenofovir disoproxil	3	0.23	3.22	1.21	0.8	100	H	H	1																																																																																																																																																																																																																																																																																																																																																																																																																															
436	Tenoxicam	1	0.72	2.06	3.04	1.61	20	L	H	2																																																																																																																																																																																																																																																																																																																																																																																																																															
437	Terbinafine	2	0	0.86	1.34	5.96	250	L	H	2																																																																																																																																																																																																																																																																																																																																																																																																																															
438	Terbutaline	3	1.38	1.63	1.31	0.48	5	H	L	3																																																																																																																																																																																																																																																																																																																																																																																																																															
439	Terfenadine	2	0.63	1.8	2.04	6.07	60	L	H	2																																																																																																																																																																																																																																																																																																																																																																																																																															
440	Testolactone	2	0	1.03	2.17	2.63	50	L	H	2																																																																																																																																																																																																																																																																																																																																																																																																																															
441	Testosterone	2	0.31	1.01	2.27	3.22	40	L	H	2																																																																																																																																																																																																																																																																																																																																																																																																																															
442	Tetrabenazine	2	0	1.44	2.02	3.81	25	L	H	2																																																																																																																																																																																																																																																																																																																																																																																																																															
443	Thalidomide	2	0.34	1.72	2.74	0.53	25	H	H	1																																																																																																																																																																																																																																																																																																																																																																																																																															
444	Theophylline	1	0.35	1.29	1.99	-0.03	600	H	H	1																																																																																																																																																																																																																																																																																																																																																																																																																															
445	Thioguanine	1	0.77	1.14	1.47	-1.7	40	H	L	3																																																																																																																																																																																																																																																																																																																																																																																																																															
446	Thioridazine	1	0	1.13	1.93	6	200	L	H	2																																																																																																																																																																																																																																																																																																																																																																																																																															
447	Thyroxine	2	1.03	1.31	2.83	3.51	0.3	H	H	1																																																																																																																																																																																																																																																																																																																																																																																																																															
448	Tiaprofenic acid	2	0.57	0.81	1.89	2.54	300	L	H	2																																																																																																																																																																																																																																																																																																																																																																																																																															
449	Ticlopidine	1	0	0.62	1.32	4.39	250	L	H	2																																																																																																																																																																																																																																																																																																																																																																																																																															
450	Tilidine	1	0	1.07	1.61	3.76	60	H	H	2																																																																																																																																																																																																																																																																																																																																																																																																																															
451	Tiludronic acid	3	1.25	2.46	2.06	0.26	200	H	L	3																																																																																																																																																																																																																																																																																																																																																																																																																															
452	Tinidazole	1	0	1.13	2.4	-0.32	500	H	H	1																																																																																																																																																																																																																																																																																																																																																																																																																															
453	Tizanidine	2	0.39	1.19	1.69	2.09	80	H	H	1																																																																																																																																																																																																																																																																																																																																																																																																																															
454	Tocainide	3	0.47	1.24	1.62	0.26	600	H	H	1																																																																																																																																																																																																																																																																																																																																																																																																																															
455	Tolbutamide	2	0.93	1.09	2.3	2.5	300	H	H	1																																																																																																																																																																																																																																																																																																																																																																																																																															
456	Tolcapone	2	0.8	0.89	2.25	3.25	200	L	H	2																																																																																																																																																																																																																																																																																																																																																																																																																															
457	Toltenamic acid	2	0.71	0.69	1.64	5.66	200	L	H	2																																																																																																																																																																																																																																																																																																																																																																																																																															
458	Tolmetin	2	0.57	0.97	1.93	2.21	600	H	H	2																																																																																																																																																																																																																																																																																																																																																																																																																															
459	Tolterodine	1	0.5	1.08	1.42	5.24	2	H	H	1																																																																																																																																																																																																																																																																																																																																																																																																																															
460	Tolvaptan	2	0.72	1.86	3.31	4.65	30	L	H	2																																																																																																																																																																																																																																																																																																																																																																																																																															
461	Topiramate	3	0.44	2.17	1.77	0.04	300	H	H	1																																																																																																																																																																																																																																																																																																																																																																																																																															
462	Topotecan	3	0.67	2.73	3.69	0.73	1	H	H	1																																																																																																																																																																																																																																																																																																																																																																																																																															

265
463	Toremifene	1	0	1.11	1.99	6.53	60	L	H	2
464	Torsemide	2	0.72	1.75	3.04	3.36	100	L	H	2
465	Tramadol	1	0.31	1.3	1.15	3.1	50	H	H	1
466	Trandolapril	2	0.71	1.96	1.47	2.1	6	H	H	1
467	Tretinoin	2	0.57	0.8	0.98	6.74	40	L	H	2
468	Triamcinolone	1	1.03	2.25	3.21	0.71	4	H	L	3
469	Triamcinolone acetonide	1	0.56	2.14	3.13	2.21	4	H	H	1
470	Triamterene	2	0.68	1.45	2.64	1.61	100	L	H	2
471	Triclabendazole	2	0.35	0.9	2.25	6.44	250	L	H	2
472	Trifluoperazine	1	0	1.42	1.79	4.69	10	L	H	2
473	Trihexyphenidyl	1	0.31	1.08	1.16	5.15	5	H	H	1
474	Trimetazidine	3	0.16	1.67	2	1.18	20	H	H	1
475	Trimethoprim	3	0.45	1.62	2.81	0.98	160	L	H	2
476	Tropisetron	1	0.31	1.21	1.78	2.88	5	H	H	1
477	Trospium	3	0.17	1.1	1.57	-1.16	20	H	H	1
478	Ursodiol	2	1.2	1.35	2.4	4.51	500	L	H	2
479	Valacyclovir	1	0.63	2.75	2.44	-1.22	1000	H	L	3
480	Valdecoxib	2	0.44	1.24	2.5	1.83	20	L	H	2
481	Valganciclovir	1	0.86	3.15	2.64	-2.18	450	H	L	3
482	Valproic Acid	1	0.61	0.46	0.54	2.76	250	H	L	1
483	Valsartan	4	1.21	1.82	3.32	4.86	320	L	H	2
484	Vardenafil	1	0.13	2.97	1.26	2.23	100	H	H	1
485	Vigabatrin	3	0.78	0.99	0.99	-2.22	500	H	L	3
486	Vitamin A (Retinol)	2	0.31	0.75	0.81	6.4	110	H	H	1
487	Vitamin B1	3	0.54	1.04	1.58	-5.97	500	H	L	3
488	Vitamin B2	4	1.33	2.69	2.71	-0.73	100	H	L	3
489	Vitamin D3	1	0.31	0.71	0.75	9.48	1.4	H	H	1
490	Voriconazole	2	0.31	1.5	2.19	0.52	200	H	H	1
491	Zafirlukast	2	0.85	2.13	4.09	7.09	20	L	H	2
492	Zidovudine	1	0.47	1.7	2.03	0.04	200	H	H	1
493	Zileuton	2	0.71	1.15	2.12	2.48	600	L	H	2
494	Zolmitriptan	1	0.48	1.65	2.67	1.29	5	H	H	1
495	Zonisamide	1	0.44	1.11	1.95	-0.36	100	H	H	1
496	Zopiclone	1	0	2.43	3.2	1.25	7.5	H	H	1

Test set

1	Acitretin	2	0.57	0.97	1.32	6.07	25	L	H	2
2	Alfuzosin	1	0.48	2.24	3.39	3.55	10	L	H	2
3	Aliskiren	1	1.2	3.06	3.65	3.51	300	L	H	2
4	Aminocaproic acid	3	0.78	0.91	0.95	-2.24	1000	H	L	3
5	Amprenavir	2	0.61	2.61	3.52	3.29	50	L	H	2
6	Armodafinil	2	0.49	1.47	3.2	0.94	250	L	H	2
7	Aspirin	1	0.57	0.77	1.42	1.02	500	H	H	1
8	Auranofin	4	0	1.82	2.17	3.79	3	H	H	1
9	Azapropazone	4	0	2.16	2.1	1.79	300	H	H	1
10	Baclofen	3	0.78	1.02	1.47	-0.62	20	H	L	3
11	Betaxolol	1	0.29	1.53	1.31	2.32	20	H	H	1
12	Bevantolol	2	0.29	1.82	2.14	3	200	H	H	1
13	Bezafibrate	2	0.83	1.35	2.54	3.7	200	L	H	2
14	Bromazepam	1	0.47	1.27	1.93	1.7	6	H	H	1
15	Bromocriptine	1	0.79	3.66	4.28	6.58	5	H	H	1
16	Capecitabine	1	0.6	2.4	2.41	0.84	500	H	H	1
17	Carprofidine	1	0	1.12	1.45	9.97	2000	L	H	2
18	Carvedilol	2	0.62	2.09	3	4.04	25	L	H	2
19	Cefixime	4	1.64	3.12	4.01	0.25	400	L	L	4
20	Cefuroxim	2	0.44	1.22	2.43	4.37	200	L	H	2
21	Cetirizine	3	0.61	2.35	2.34	1.86	200	H	H	1
22	Cephalexin	3	1.06	2.54	3.27	-1.84	750	H	L	3
23	Cevimeline	1	0	0.9	0.86	1.14	30	H	H	1
24	Chloral hydrate	1	0.75	0.59	0.97	0.72	500	H	H	1
25	Chloramphenicol	1	0.87	1.65	2.66	1.28	250	L	H	2
26	Cinacalcet	2	0.13	0.63	1.37	6.35	90	L	H	2
27	Ciprofloxacin	4	0.73	1.85	2.5	-0.73	750	H	H	3
28	Clobazam	1	0	1.47	2.49	2.44	10	L	H	2
29	Clomipramine	1	0	0.89	1.66	5.92	75	L	H	2
30	Clonidine	3	0.39	0.9	1.19	1.73	0.3	H	H	1
31	Clorazepate	1	1.04	1.34	2.14	2.51	15	L	H	2
32	Clotrimazole	2	0	0.78	2.37	5.25	10	L	H	2
33	Cyclobenzaprine	1	0	0.83	1.41	5.1	10	L	H	2
34	Cyclophosphamide	1	0.14	1.18	2.2	0.8	50	H	H	1
35	Dapsone	2	0.45	1.35	2.84	0.89	100	L	H	2
36	Desmopressin	3	4.3	8.13	11.82	-3.14	0.2	H	L	3
37	Desvenlafaxine	3	0.81	1.22	1.34	2.68	100	H	H	1
38	Domperidone	2	0.72	1.83	3.13	4.27	20	L	H	2
39	Ebastine	2	0	1.41	2.37	6.94	10	L	H	2
40	Entecavir	3	1.05	2.29	2.18	-2.58	1	H	L	3
41	Ergotamine tartrate	1	0.79	3.69	4.6	4.66	2	H	H	1
42	Erythromycin stearate	4	0.91	4.49	3.3	1.61	500	H	H	1
43	Escitalopram	1	0	1.08	1.87	3.13	20	L	H	2

267
44	Etoposide	3	0.6	3.23	4.11	0.03	50	L	L	4
45	Ezetimibe	2	0.81	1.77	2.61	3.96	10	L	H	2
46	Famotidine	3	1.21	2.78	2.24	-1.17	40	H	L	3
47	Febuxostat	2	0.57	1.11	2.25	4.4	80	L	H	2
48	Fexofenadine	3	1.2	2.12	2.48	1.96	180	H	L	3
49	Fosfomycin tromethamine	3	0.63	1.38	0.98	-0.23	3000	H	L	3
50	Idebenone	2	0.31	1.56	0.84	3.42	180	H	H	1
51	Indapamide	1	0.7	1.86	3.2	2.96	25	H	H	2
52	Indoramin	2	0.57	1.49	2.66	2.84	25	L	H	2
53	Iopanoic acid	4	0.85	0.74	2	4.7	500	L	H	2
54	Isradipine	2	0.13	1.79	2.15	3.92	5	H	H	1
55	Ivermectin	1	0.68	4.23	3.21	5.39	3	H	H	1
56	Ketoprofen	2	0.57	0.87	1.97	2.76	75	L	H	2
57	Levofoxacin	3	0.57	2.05	2.58	-0.51	750	H	L	3
58	Lisinopril	3	1.49	2.47	2.98	-1.69	40	H	L	3
59	Lofepramine	2	0	1.35	2.63	7.29	70	L	H	2
60	Lomefoxacin	3	0.73	1.81	2.37	-0.11	400	H	L	3
61	Maraviroc	1	0.26	1.75	2.62	3.26	300	L	H	2
62	Memantine	3	0.21	0.66	0.58	3.03	10	H	H	1
63	Mesna	1	0.31	0.92	1.52	-1.55	400	H	L	3
64	Methadone	1	0	1.09	1.72	4.17	10	L	H	2
65	Methaqualone	2	0	0.94	1.74	3.65	500	L	H	2
66	Metoclopramide	3	0.5	1.63	2.31	2.23	10	H	H	1
67	Naloxone	1	0.5	1.75	2.02	0.16	2	H	H	1
68	Naltrexone	1	0.5	1.71	2.03	0.36	100	H	H	1
69	Nitrofurantoin	4	0.24	1.34	2.03	-0.47	100	H	H	1
70	Nitroglycerin	1	0	0.45	1.87	1.76	0.4	H	H	1
71	Omeprazole	1	0.35	2.05	3.18	2.57	40	L	H	2
72	Oxatremide	2	0.33	1.89	2.85	5.62	30	L	H	2
73	p-Aminosalicylic acid	1	0.93	0.65	1.48	1.06	1200	H	L	3
74	Phenylpropanolamine	3	0.46	1.22	1.09	0.58	75	H	H	1
75	Pitavastatin	2	1.2	1.59	2.63	3.59	4	H	H	1
76	Pravastatin	3	1.51	1.89	2.11	2.05	80	H	H	1
77	Praziquantel	2	0	1.46	2.42	3.36	600	L	H	2
78	Pregabalin	3	0.78	0.97	0.93	-0.92	300	H	L	3
79	Quazepam	2	0	0.49	1.57	3.2	15	L	H	2
80	Ramipril	1	0.71	1.96	2.68	1.54	10	H	H	1
81	Ridogrel	1	0.57	1.08	1.49	4.54	5	H	H	1
82	Ritodrine	3	1.38	1.76	1.83	1.65	10	H	L	3
Table 3. BDDCS class changes from initial publication for nine drugs and prediction of BDDCS class in this study

Generic Name	Listed class\(^a\)	Updated class\(^b\)	Prediction of BDDCS
Aliskiren	1	3	2
Clonidine	3	1	1
Colchicine	1	3	1
Diclofenac	1	2	2
Flecainide	3	1	1
Metoclopramide	3	1	1
Pindolol	3	1	1
Pitavastatin	2	4	1
Saxagliptin	3	1	2

\(^a\)Ref. [8]

\(^b\)Ref. [34]