EXPANSIVE MAPS ARE ISOMETRIES
OREST BUCICOVSCHI AND DAVID A. MEYER

Abstract. In this short note we prove that any map f from a dense subset Y of a compact metric space X into X that does not decrease the distance is an isometry.

1. Preliminaries

It is a folklore result (but see [2]) that any map f from a compact metric space X to itself that does not decrease the distance ($d(f(x), f(y)) \geq d(x, y)$) – also called an expansive map, is in fact an isometry. After giving a proof of this well known statement we inquired in what measure the hypothesis X complete is necessary, and we saw that in fact it is true for totally bounded metric spaces. A further modification of the proof works with maps defined on a dense subset of a totally bounded metric space. We are aware that the result may well be known, with a published but possibly different proof. Feedback would be appreciated.

2. Some definitions

Let (X, d) a metric space. We say that X is totally bounded if for every $\epsilon > 0$ there exists a covering of Y with finitely many subsets of diameter $\leq \epsilon$. It is well known that a metric space is totally bounded if and only if it is a dense subset in a compact metric space (see [1]).

Let X a totally bounded metric space. Let $\epsilon > 0$. There exists a covering of X with m_ϵ subsets of diameter $\leq \epsilon$. Hence there exists at most m_ϵ points of X with pairwise distances $> \epsilon$. Let’s define $n_\epsilon = n_\epsilon(X)$ to be the largest size of a subset of X such that the distance between any two points is $> \epsilon$. It is easy to see that if $Y \subset X$ then $n_\epsilon(Y) \leq n_\epsilon(X)$ with equality if Y is dense in X. Let’s define

$$N_\epsilon(X) = \{(x_1, \ldots, x_n) | x_i \in X, d(x_i, x_j) > \epsilon \text{ for all } i \neq j\}$$

(1)

Let’s call the elements of $N_\epsilon(X)$ ϵ-nets of X. It is clear that for every ϵ-net $x = (x_1, \ldots, x_n)$ of X and y in X there exists i so that $d(y, x_i) \leq \epsilon$.

For an ϵ-net $x = (x_1, \ldots, x_n)$ define its gauge $G(x)$ to be

$$G(x) = \prod_{i<j} d(x_i, x_j)$$

(2)

the gauge $G(x)$ being a measure of the spread of x. It it clear that the function $G: N_\epsilon(X) \rightarrow (0, \infty)$ is bounded above by $\text{diam}(X)^n\epsilon$. We define $g_\epsilon(X)$ to be the supremum of G on $N_\epsilon(X)$. Again, $Y \subset X$ implies $g_\epsilon(Y) \leq g_\epsilon(X)$ with equality if Y is dense in X.

1
3. Statement and proof of the main result

Let X a totally bounded metric space, Y a dense subset of X and $f: Y \to X$ such that $d(f(x), f(y)) \geq d(x, y)$ for all x, y in Y. Then f is an isometry, that is, $d(f(x), f(y)) = d(x, y)$ for all x, y in Y.

Proof: Let $\epsilon > 0$. There exists $y \in N_{\epsilon}(Y)$ so that

\[G(y) > \frac{1}{1 + \epsilon} g_{\epsilon}(X) \]

We conclude that $f(y) \in N_{\epsilon}(X)$ and moreover

\[d(x_i, x_j) \leq d(f(x_i), f(x_j)) < (1 + \epsilon)d(x_i, x_j) \quad (3) \]

Let now y, z be in Y. There exist i, j so that

\[d(f(y), f(x_i)) \leq \epsilon \]
\[d(f(z), f(x_j)) \leq \epsilon \]

We conclude that

\[d(f(y), f(z)) \leq d(f(x_i), f(x_j)) + 2\epsilon \quad (4) \]

Now, we also have

\[d(y, x_i) \leq \epsilon \]
\[d(z, x_j) \leq \epsilon \]

and so $d(x_i, x_j) \leq d(y, z) + 2\epsilon$.

From the above we conclude

\[d(f(y), f(z)) \leq d(f(x_i), f(x_j)) + 2\epsilon < (1 + \epsilon)d(x_i, x_j) + 2\epsilon \leq (1 + \epsilon)(d(y, z) + 2\epsilon) + 2\epsilon \]

Since $\epsilon > 0$ was arbitrary we conclude $d(f(y), f(z)) \leq d(y, z)$.

References

[1] John L. Kelley General Topology D. Van Nostrand Company Inc. 1955
[2] Freudenthal, H., and Hurewicz, Witold. Dehnungen, Verkrümmungen, Isometrien Fundamenta Mathematicae 26.1 (1936): 120-122.