Mitochondrial genome of *Hormaphis betulae* and its comparative analysis with *Pseudoregma bambucicola* (Hemiptera: Hormaphidinae)

Xiang Nong, Yunjian Liu, Lidan Wang, Shengnan Zhong, Xiaobo Yu, and Yue Xie

ABSTRACT

Hormaphis betulae (Hemiptera: Hormaphidinae) is a common aphid of birch plants. Here, the complete mitochondrial genome sequence of a representative of this aphid from China was determined using next generation sequencing platform. The genome was 15,129 bp in length and encoded 13 protein-coding genes, 22 tRNA genes, and 2 rRNA genes. The phylogeny revealed that two Chinese isolates of *H. betulae* clustered together and formed a monophyletic relationship with *Pseudoregma bambucicola* in the subfamily Hormaphidinae, supporting their species validity in Aphididae. The cumulative mitochondrial DNA data provides a better understanding of the phylogenetic relationship of this species in plant aphids.

KEYWORDS

Mitochondrial genome; *Hormaphis betulae*; aphids; phylogeny

CONTACT

Xiang Nong, nongx2008@163.com, Bamboo Diseases and Pest control and Resources Development Key Laboratory of Sichuan Province, Leshan, 614000, China; College of Life Science, Leshan Normal University, Leshan, China; Yue Xie, xyue1985@gmail.com, Department of Parasitology, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China.

These authors have contributed equally to this work.

© 2020 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group. This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial License (http://creativecommons.org/licenses/by-nc/4.0/), which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
and the rrnS (776 bp) between tRNA-Val and D-loop region, consistent with those of P. bambucicola (Nong et al. 2019). The D-loop region (551 bp) with 83.1% A + T content was located between rrnS and tRNA-Ile.

A maximum-likelihood (ML) phylogeny was reconstructed on the basis of a concatenated amino acid sequence of 13 protein-coding genes from 26 aphid species, using Adelges laricis as outgroup. This phylogeneric tree showed that two Chinese isolates of H. betulae clustered together and formed a branch that was monophyletic with P. bambucicola in the subfamily Hormaphidinae, with 100% bootstrap confidence, supporting their species validity among the family Aphididae (Figure 1). In addition, each subfamily of Aphidinae, Calaphidinae, Greenideinae, Eriosomatinae or Hormaphidinae within this topology formed a monophyletic group in Aphididae, which were consistent with the results of recent molecular studies (Li et al. 2017; Nong et al. 2019; Zhang et al. 2019). Taken together, the complete mtDNA of H. betulae sequenced here added a novel marker resource for genetic and evolutionary biological studies of this birch pest.

Disclosure statement

No potential conflict of interest was reported by the authors.

Funding

This study was supported by the Science and Technology Department of Sichuan Province [Nos. 19YJC103 and 2019JY0290], the Scientific Research Fund of Sichuan Provincial Education Department [No. 18TD0032], and Bamboo Diseases and Pest Control and Resources Development Key Laboratory of Sichuan Province [No. 17ZZ015], Sichuan, China.

References

Aoki S, Kurosu U. 1991. Host alternation of Hormaphis betulae (Homoptera, Aphidioidea). Jpn J Entomol. 59:164.
Bernt M, Donath A, Jühling F, Externbrink F, Florentz C, Fritzsch G, Pütz J, Middendorf M, Stadler PF. 2013. MITOS: improved de novo metazoan mitochondrial genome annotation. Mol Phylogenet Evol. 69(2):313–319.
Blackman RL. Eastop VF. 2017. Aphids on the world’s plants. An identification and information guide. (accessed 10 April 2017).
Cameron SL. 2014. Insect mitochondrial genomics: implications for evolution and phylogeny. Annu Rev Entomol. 59(1):95–117.
De Mandal S, Chhakchhuak L, Gurusubramanian G, Kumar NS. 2014. Mitochondrial markers for identification and phylogenetic studies in insects — a review. DNA Barcodes. 2(1):19.
Hahn C, Bachmann L, Chevreux B. 2013. Reconstructing mitochondrial genomes directly from genomic next-generation sequencing reads—a baiting and iterative mapping approach. Nucleic Acids Res. 41(13):e129–e129.
Kurosu U, Aoki S. 1991. Gall cleaning by the aphid Hormaphis betulae. J Ethol. 9(2):51–55.
Li YQ, Chen J, Qiao GX. 2013. Comparative analysis of mitochondrial genomes of five aphid species (Hemiptera: Aphididae) and phylogenetic implications. PLoS One. 8(10):e77511.
Zhang H, Deng J, Liu Q, Huang X. 2019. The mitochondrial genome of a social aphid, Pseudoregma bambucicola (Hemiptera: Aphididae: Hormaphidinae). Mitochondrial DNA B Resour. 4(2):2100–2101.

Figure 1. Inferred maximum likelihood (ML) tree based on concatenated amino-acid sequences of 13 mitochondrial protein-coding genes of H. betulae and other related aphid species, using MtArt + I + G model with 10,000 bootstrap replications (<50% support not shown). The black dot represents the species in this study.