Classification of arbitrary-dimensional multipartite pure states under stochastic local operations and classical communication using the rank of coefficient matrix

Shuhao Wang¹, Yao Lu¹, Ming Gao¹, Jianlian Cui² and Junlin Li¹,³

¹ State Key Laboratory of Low-Dimensional Quantum Physics, Department of Physics, Tsinghua University, Beijing 100084, People's Republic of China
² Department of Mathematical Sciences, Tsinghua University, Beijing 100084, People’s Republic of China
³ Tsinghua National Laboratory for Information Science and Technology, Beijing 100084, People’s Republic of China

E-mail: center@mail.tsinghua.edu.cn

Received 8 September 2012, in final form 22 January 2013
Published 21 February 2013
Online at stacks.iop.org/JPhysA/46/105303

Abstract
We study multipartite entanglement under stochastic local operations and classical communication (SLOCC) and propose the entanglement classification under SLOCC for arbitrary-dimensional multipartite (n-qudit) pure states via the rank of coefficient matrix, together with the permutation of qudits. The ranks of the coefficient matrices have been proved to be entanglement monotones. The entanglement classification of the 2⊗2⊗2⊗4 system is discussed in terms of the generalized method, and 22 different SLOCC families are found.

PACS numbers: 03.67.Mn, 03.65.Ud

(Some figures may appear in colour only in the online journal)

Entanglement plays a vital role in quantum information processing, which includes quantum teleportation, quantum cryptography, quantum computation, etc [1]. Classification of different types of multipartite entanglement has been one of the main tasks in quantum information theory. Many studies on multipartite entanglement classification under different restrictions, such as local operations and classical communication (LOCC) and stochastic LOCC (SLOCC) [2, 3], have been conducted in recent years. The difference between LOCC and SLOCC can be interpreted as follows: if two states can be made equivalent up to LOCC with some non-zero probability, they are said to be SLOCC equivalent [3]. Suppose that two n-qudit pure states \(|\psi\rangle\) and \(|\phi\rangle\) are in the n-partite Hilbert space \(\mathcal{H}^n = \mathcal{H}_1 \otimes \mathcal{H}_2 \otimes \cdots \otimes \mathcal{H}_n\), where \(\mathcal{H}_1, \mathcal{H}_2, \ldots, \mathcal{H}_n\) have the dimensions \(d_1, d_2, \ldots, d_n\), respectively. In mathematics, if \(|\psi\rangle\) and \(|\phi\rangle\) are LOCC equivalent if there exists local unitary operators \(U_{(1)}, U_{(2)}, \ldots, U_{(n)}\) in \(U(d_1, \mathbb{C}), U(d_2, \mathbb{C}), \ldots, U(d_n, \mathbb{C})\), respectively, such that [3]

\[
|\psi\rangle = U_{(1)} \otimes U_{(2)} \otimes \cdots \otimes U_{(n)}|\phi\rangle.
\]
If $|\psi\rangle$ and $|\phi\rangle$ are SLOCC equivalent, then they can be expressed as [4]

$$|\psi\rangle = F_{(1)} \otimes F_{(2)} \otimes \cdots \otimes F_{(n)} |\phi\rangle,$$

where $F_{(1)}, F_{(2)}, \ldots, F_{(n)}$ are invertible local operators (ILOs) in $GL(d_1, \mathbb{C}), GL(d_2, \mathbb{C}), \ldots, GL(d_n, \mathbb{C})$, respectively. In this paper, we concentrate on the entanglement classification under SLOCC.

It has been shown that two pure states that are equivalent under SLOCC can perform the same quantum information tasks [4]. The main idea of entanglement classification is to find an invariant preserved under SLOCC, and considerable research has been conducted on the entanglement classification of three [4], four [5–10] and n-qubit pure states [11–14] under SLOCC since the beginning of this century. Recently, Li and Li have proposed a simpler and more efficient approach to the SLOCC classification of general n-qubit pure states in [15]. A general n-qubit pure state can be expanded as $|\psi\rangle = \sum_{i=0}^{2^n-1} a_i |i\rangle$, where a_i are the coefficients and $|i\rangle$ are the binary basis states. The coefficient matrix is constructed as follows:

$$M(|\psi\rangle) = \begin{pmatrix}
 a_{00\cdots0} & \cdots & a_{00\cdots1} \\
 a_{10\cdots0} & \cdots & a_{10\cdots1} \\
 \vdots & \ddots & \vdots \\
 a_{1\cdots0} & \cdots & a_{1\cdots1}
\end{pmatrix},$$

where the subscripts of the coefficients are written in binary form. For two n-qubit pure states connected by SLOCC, Li and Li proved that the ranks of the coefficient matrices are equal whether or not the permutation of qubits is fulfilled on both states. This theorem provides a way of partitioning all the n-qubit states into different families.

With the development of quantum information theory, the importance of qudit is gradually recognized. Maximally entangled qudits have been shown to violate local realism more strongly and are less affected by noise than qubits [16–21]. Using entangled qudits can provide more secure schemes against eavesdropping attacks in quantum cryptography [22–25], and also offers advantages including greater channel capacity for quantum communication [26] as well as more reliable quantum processing [27]. Much effort has been put into the classification of bipartite and tripartite states with higher dimensions in systems such as $2 \otimes 2 \otimes n$ [29, 30], $2 \otimes n \otimes n$ [31], $2 \otimes m \otimes n$ [32–34] and $m \otimes n \otimes n$ [35].

In this paper, we generalize the concept of coefficient matrix to n-qudit pure states. A theorem is provided to show that the rank of the coefficient matrix is invariant under SLOCC. By calculating the rank of coefficient matrix along with the permutation of qudits, we successfully obtain the results of classification for n-qudit pure states under SLOCC. We have also proved that each of the ranks of the coefficient matrices is an entanglement monotone. We investigate several examples and interesting entanglement properties are discovered. Using our theorems, we discuss the entanglement classification of the $2 \otimes 2 \otimes 2 \otimes 4$ system, which we believe has never been studied before.

Suppose an n-qudit pure state $|\psi\rangle$ in the n-partite Hilbert space $\mathcal{H}^n = \mathcal{H}_1 \otimes \mathcal{H}_2 \otimes \cdots \otimes \mathcal{H}_n$, where $\mathcal{H}_1, \mathcal{H}_2, \ldots, \mathcal{H}_n$ have the dimensions d_1, d_2, \ldots, d_n, respectively, which can be expanded in the form

$$|\psi\rangle = \sum_{s_1s_2 \cdots s_n} a_s |s_1s_2 \cdots s_n\rangle,$$

where s_i are integers from 0 to d_i-1, and $s = (s_1, s_2, \ldots, s_n)$.
where \(a_i \) are the coefficients and \(|s_1s_2\cdots s_n]\) are the basis states
\[
|s_1s_2\cdots s_n]\rangle = |s_1]\otimes |s_2]\otimes \cdots \otimes |s_n]\rangle
\] (5)
with \(s_k \in \{0, 1, \ldots, d_k - 1\}, k = 1, \ldots, n \). The coefficient matrix \(M(|\psi]\rangle) \) is constructed by arranging \(a_i (i = 0, \ldots, \prod_{k=1}^{n} d_k - 1) \) in lexicographical ascending order
\[
M(|\psi]\rangle) = \begin{pmatrix}
 a_{00}\cdots 0 & \cdots & a_{0d_{n-1}}0 & \cdots & a_{0d_{n-1}d_{n-2}}0 & \cdots & a_{0d_{n-1}d_{n-2}\cdots d_2}0 & \cdots & a_{0d_{n-1}d_{n-2}\cdots d_2d_1}0 \\
 a_{10}\cdots 0 & \cdots & a_{1d_{n-1}}0 & \cdots & a_{1d_{n-1}d_{n-2}}0 & \cdots & a_{1d_{n-1}d_{n-2}\cdots d_2}0 & \cdots & a_{1d_{n-1}d_{n-2}\cdots d_2d_1}0 \\
 \vdots & & \vdots & & \vdots & & \vdots & & \vdots \\
 a_{d_{n-1}}0 & \cdots & a_{d_{n-1}d_{n-2}}0 & \cdots & a_{d_{n-1}d_{n-2}\cdots d_2}0 & \cdots & a_{d_{n-1}d_{n-2}\cdots d_2d_1}0 \\
 \end{pmatrix}
\] (6)
where \(1 \leq l \leq n - 1 \).

To illustrate, we consider the \(n \)-qudit GHZ state [36]
\[
|\text{GHZ}\rangle = \frac{1}{\sqrt{d}} |0\rangle^{\otimes n} + |1\rangle^{\otimes n} + \cdots + |d-1\rangle^{\otimes n}.
\] (7)
It can be calculated that all the coefficient matrices have the form of
\[
M(|\text{GHZ}\rangle) = \begin{pmatrix}
 1 & 0 & \cdots & 0 & 0 \\
 0 & \ddots & \cdots & 0 & 0 \\
 \vdots & \vdots & \ddots & \vdots & \vdots \\
 0 & 0 & \cdots & 0 & 0 \\
 0 & 0 & \cdots & 0 & 1/\sqrt{d} \\
\end{pmatrix}
\] (8)
where the coefficient matrices are usually not square matrices, they have \(d \) diagonal element being non-zero, and the non-diagonal elements are all zero. A simple calculation shows that \(\text{rank}(|\text{GHZ}\rangle) = d \).

Each permutation of qubits gives a permutation \([q_1, q_2, \ldots, q_n]\) of \([1, 2, \ldots, n]\). So in this case, the coefficient matrices \(M_{q_1\cdots q_n} \) (here we have omitted the column qudits) can be constructed by taking the corresponding permutation. The relation between all the reduced density matrices and the coefficient matrices is given by [37]
\[
\rho_{q_1\cdots q_n} = M_{q_1\cdots q_n}M_{q_1\cdots q_n}^\dagger,
\] (9)
where \(M_{q_1\cdots q_n}^\dagger \) is the conjugate transpose of \(M_{q_1\cdots q_n} \). It is obvious that \(\text{rank}(M_{q_1\cdots q_n}) = \text{rank}(\rho_{q_1\cdots q_n}) \). Therefore, when considering all the particles, the local ranks [4] are exactly the ranks of the coefficient matrices in the case where \(l = 1 \).

In the following context, in the case where \(l \geq 2 \), the permutations of qudits are included in the set
\[
[s] = [(r_1, c_1)(r_2, c_2)\cdots (r_k, c_k)]
\] (10)
where \(1 \leq r_1 < r_2 < \cdots < r_k < l + (n \text{mod } 2) \), \(l < c_1 < c_2 < \cdots < c_k \leq n \), and \((r_i, c_i)\) represents the transposition of \(r_i \) and \(c_i \). The purpose of choosing the permutation form in equation (10) is to omit the permutations that end up exchanging rows or columns in the coefficient matrix. Letting \(k \) vary from 0 to \(l - (n \text{mod } 2) \), we obtain all the elements included in the set \([s] \). The case where \(k = 0 \) is defined as identical permutation, denoted by \(s_0 = I \). When \(l = 1 \), we choose \(s_k = (1, k + 1) \), \(k = 0, 1, \ldots, n - 1 \).
Theorem 1. According to equation (2), the coefficient matrices of $|\psi\rangle$ and $|\phi\rangle$ satisfy the relation

$$M(|\psi\rangle) = (F(1) \otimes \cdots \otimes F([n/2])) M(|\phi\rangle) (F([n/2]+1) \otimes \cdots \otimes F(n))^T.$$ \hspace{1cm} (11)

Applying permutation σ to both sides of equation (11) gives

$$M^\sigma(|\psi\rangle) = (F(1)^\sigma \otimes \cdots \otimes F([n/2])^\sigma) M^\sigma(|\phi\rangle) (F([n/2]+1)^\sigma \otimes \cdots \otimes F(n)^\sigma)^T,$$ \hspace{1cm} (12)

which indicates that $M^\sigma(|\psi\rangle)$ and $M^\sigma(|\phi\rangle)$ have the same rank.

The detailed proof is given in appendix.

Therefore, the classification of entanglement via the rank of the coefficient matrix has the significant advantage of being independent of the dimension of state and permutation of qudits. Let $F_{n,1}$ represent the family of all n-qudit states with rank r. It is clear that all full separable states belong to $F_{n,1}$. With the help of permutation of qudits, the families $F_{n,r}$ can be further divided into subfamilies. Define F^σ_r (here we have omitted the subscript n) as the subfamily whose coefficient matrix rank is r with respect to permutation σ. The general expression of the subfamilies is

$$F_{r_1,r_2,\ldots,r_m} = F_{r_1} \cap \cdots \cap F_{r_m}.$$ \hspace{1cm} (13)

In order to maximize the number of families, the value of l is given by

$$l = \text{argmax}\{P(l)\},$$ \hspace{1cm} (14)

where

$$P(l) = \prod_{\{q\}} \min \left\{ \prod_{k=1}^{l} d_{q_k}, \prod_{k=l+1}^{n} d_{q_k} \right\}$$ \hspace{1cm} (15)

with d_{q_k} the dimension of the party corresponding to q_k. It is obvious that for states with each party of the same dimension, the family number is maximized when $l = \lfloor n/2 \rfloor$.

Theorem 2. Each of the ranks of the coefficient matrices is an entanglement monotone.

Proof. It has been shown that the rank of the coefficient matrix $M_{q_1,q_2,\ldots,q_r}(|\psi\rangle)$, which is the direct generalization of the Schmidt rank of the bipartite pure states, cannot be increased by LOCC [38]. Therefore, $\text{rank}(M_{q_1,q_2,\ldots,q_r}(|\psi\rangle))$ is an entanglement monotone. \hfill {\Box}

The theorem has shown that the rank of coefficient matrix is closely connected with the degree of entanglement. As an application of the generalized method, consider the following state:

$$|l_1, l_2, n\rangle = \left(\frac{n!}{l_0!l_1!l_2!} \right)^{-\frac{1}{2}} \sum_k P_k \begin{pmatrix} 1, \ldots, 1, 2, \ldots, 2, 0, \ldots, 0 \end{pmatrix},$$ \hspace{1cm} (16)

where $|1\rangle$, $|2\rangle$ are the excitations, $|0\rangle$ represents the ground state and l_0, l_1, l_2 are the number of states $|0\rangle$, $|1\rangle$, $|2\rangle$, respectively, which satisfy $l_1 + l_2 \leq n - 1$. P_k is the set that contains all permutations. We denote the states in equation (16) as D^σ_n states.

For D^σ_n states, states $|l_1, l_2, n\rangle$, $|l_2, l_1, n\rangle$, $|n - l_1 - l_2, l_1, n\rangle$, $|n - l_1 - l_2, l_2, n\rangle$, $|l_1, n - l_1 - l_2, n\rangle$ and $|l_2, n - l_1 - l_2, n\rangle$ can be transformed into each other under SLOCC, namely, they belong to the same family. In the following, we can arrange these states and denote them as $a(l_1, l_2, l_0)$, where $l_0 = n - l_1 - l_2$. We study the classification of entanglement of D^σ_n states with respect to l_1, l_2 and l_0. The variance of l_1, l_2 and l_0 and the ranks of the coefficient matrices M_{q_1,q_2,q_3} under different arrangements are shown in figure 1, which shows...
that the rank of the coefficient matrix increases with the decrease of the variance, and most of the D_9^3 states can be distinguished by the ranks of the coefficient matrices.

Physically speaking, states $|0\rangle$, $|1\rangle$ and $|2\rangle$ are on an equal footing. So the state is maximal entangled when l_0, l_1 and l_2 are close to each other, namely, the variance of l_0, l_1 and l_2 is as small as possible. According to theorem 2, figure 1 shows an inverse relationship between the variance and the rank of $M_{q_1q_2q_3q_4}$.

We then consider D_n^4 states, which are defined as

$$|l_1, l_2, l_3, n\rangle = \left(\frac{n!}{l_0! l_1! l_2! l_3!}\right)^{-\frac{1}{2}} \sum_{k} P_k \left(\frac{1, \ldots, 1, 2, \ldots, 2, 3, \ldots, 3, 0, \ldots, 0}{l_1, l_2, l_3, l_0}\right).$$

where $|1\rangle$, $|2\rangle$ and $|3\rangle$ are the excitations with l_1, l_2 and l_3 as their numbers, which satisfy $l_1 + l_2 + l_3 \leq n - 1$, whereas $|0\rangle$ is the ground state.

We study the classification of entanglement of D_n^4 states with respect to l_1, l_2, l_3 and l_0. The variance of l_1, l_2, l_3 and l_0 and the ranks of the coefficient matrices $M_{l_1l_2l_3l_0}$ under different arrangements are shown in figure 2. The rank of the coefficient matrices shows a contrasting trend with the decrease of the variance, the physical interpretation of this phenomenon is the same as the D_n^3 states, and we can distinguish most states in terms of the ranks of the coefficient matrices.

In the end, we discuss the entanglement classification of the $2 \otimes 2 \otimes 2 \otimes 4$ system. For the cases where $l = 1$, $l = 2$ and $l = 3$, the values of $\mathcal{P}(l)$ are 4, 64 and 4, respectively. To maximize the family number, we consider the case where $l = 2$. The set of permutation consists of three elements: $\{\sigma\} = \{\sigma_0 = I, \sigma_1 = (1, 3), \sigma_2 = (1, 4)\}$. The classification results are shown in table 1. It needs to be noted that the entangled states ($|W\rangle$ and $|GHZ\rangle$ states) in $F_{2,2,2}^{0\sigma_0,\sigma_1,\sigma_2}$ have a similar Frobenius algebra structure [39]. The entanglement structure of the $2 \otimes 2 \otimes 2 \otimes 4$ system is illustrated by an entanglement pyramid in figure 3.

In summary, the rank invariance of the coefficient matrix under SLOCC has been proven to be valid in the n-qudit pure states regardless of the dimension of each partite and the permutation of qudits. It has also been proved that each of the ranks of the coefficient matrices is an entanglement monotone. Numerical results showed that this generalization can investigate the entanglement feature of quantum states with qudits. We have discussed the entanglement...
Theoretical and experimental results. We expect that our generalization could come up with further theoretical and experimental results.

![Figure 2](image)

Figure 2. Variance of l_1, l_2, l_3 and l_4 ranks of coefficient matrices $M_{(e_1 e_2 e_3 e_4)}$ under different arrangements (shown in the vertical axis) existing in D_4^4 states.

Table 1. SLOCC classification of the $2 \otimes 2 \otimes 2 \otimes 4$ system. The permutations are $\sigma_0 = I$, $\sigma_1 = (1,3)$, $\sigma_2 = (1,4)$.

SLOCC family	Representative entangled states								
$\mathcal{F}_{\sigma_0,\sigma_1,\sigma_2}^{2,4,4}$	$	0000\rangle +	0010\rangle +	0101\rangle +	0111\rangle +	1002\rangle +	1012\rangle +	1103\rangle +	1113\rangle$
$\mathcal{F}_{\sigma_0,\sigma_1,\sigma_2}^{4,2,2}$	$	0000\rangle +	0101\rangle +	0102\rangle +	1002\rangle +	0112\rangle +	0113\rangle$		
$\mathcal{F}_{\sigma_0,\sigma_1,\sigma_2}^{4,4,2}$	$	0000\rangle +	0010\rangle +	0102\rangle +	1002\rangle +	0112\rangle +	1012\rangle +	0113\rangle$	
$\mathcal{F}_{\sigma_0,\sigma_1,\sigma_2}^{4,4,3}$	$	0000\rangle +	0111\rangle +	0112\rangle +	1113\rangle$				
$\mathcal{F}_{\sigma_0,\sigma_1,\sigma_2}^{4,4,1}$	$	0000\rangle +	0111\rangle +	0102\rangle +	1002\rangle +	1112\rangle +	1113\rangle$		
$\mathcal{F}_{\sigma_0,\sigma_1,\sigma_2}^{3,3,2}$	$	0000\rangle +	1001\rangle +	1112\rangle$					
$\mathcal{F}_{\sigma_0,\sigma_1,\sigma_2}^{3,3,3}$	$	0000\rangle +	0110\rangle +	1112\rangle +	1113\rangle$				
$\mathcal{F}_{\sigma_0,\sigma_1,\sigma_2}^{2,2,2}$	$	0000\rangle +	0110\rangle +	1001\rangle +	1112\rangle$				
$\mathcal{F}_{\sigma_0,\sigma_1,\sigma_2}^{2,2,1}$	$	0000\rangle +	0110\rangle +	1112\rangle +	1113\rangle$				
$\mathcal{F}_{\sigma_0,\sigma_1,\sigma_2}^{4,4,4}$	$	0000\rangle +	0101\rangle +	0102\rangle +	0112\rangle +	0113\rangle +	0111\rangle$		
$\mathcal{F}_{\sigma_0,\sigma_1,\sigma_2}^{4,4,1}$	$	0000\rangle +	0111\rangle +	0102\rangle +	0113\rangle +	1112\rangle +	1113\rangle$		
$\mathcal{F}_{\sigma_0,\sigma_1,\sigma_2}^{4,4,2}$	$	0000\rangle +	0111\rangle +	0112\rangle +	1113\rangle +	1112\rangle +	1113\rangle$		
$\mathcal{F}_{\sigma_0,\sigma_1,\sigma_2}^{4,4,3}$	$	0000\rangle +	0111\rangle +	0112\rangle +	1113\rangle +	1112\rangle +	1113\rangle$		
$\mathcal{F}_{\sigma_0,\sigma_1,\sigma_2}^{4,4,4}$	$	0000\rangle +	0111\rangle +	0112\rangle +	1113\rangle +	1112\rangle +	1113\rangle$		
$\mathcal{F}_{\sigma_0,\sigma_1,\sigma_2}^{4,4,1}$	$	0000\rangle +	0111\rangle +	0112\rangle +	1113\rangle +	1112\rangle +	1113\rangle$		

We have classified the $2 \otimes 2 \otimes 2 \otimes 4$ system and found 22 different SLOCC families with respect to the generalized method. We expect that our generalization could come up with further theoretical and experimental results.
Figure 3. The entanglement pyramid of the $2 \otimes 2 \otimes 2 \otimes 4$ system, where we use (i, j, k) to represent $\sigma_{i,j}^{\sigma_0,\sigma_1,\sigma_2}$.

Acknowledgments

This work was supported by the National Natural Science Foundation of China (grant nos 11175094 and 11271217) and the National Basic Research Program of China (2009CB929402, 2011CB9216002).

Appendix

Now we prove the following theorem:

Let $|\psi\rangle, |\phi\rangle$ be any states in the n-partite Hilbert space $\mathcal{H} = \mathcal{H}_1 \otimes \mathcal{H}_2 \otimes \cdots \otimes \mathcal{H}_n$, where \mathcal{H}_i is of dimension d_i, $1 \leq i \leq n$. If there exist $A_i \in M_{d_i}(\mathbb{C})$ $(1 \leq i \leq n)$ such that

$$|\psi\rangle = A_1 \otimes A_2 \otimes \cdots \otimes A_n |\phi\rangle,$$

then, for any $1 \leq l < n$,

$$M(|\psi\rangle) = A_1 \otimes \cdots \otimes A_l M(|\phi\rangle) (A_{l+1} \otimes \cdots \otimes A_n)^T. \quad (A.2)$$

We will prove equation (A.2) by the induction method. Clearly, if $A_i = I_i$ (the identity matrix in $M_{d_i}(\mathbb{C})$) for every $1 \leq i \leq n$, then equation (11) holds.

Let $|\psi\rangle = \sum_{i=0}^{d_i-1} c_i |i\rangle$ and for $1 \leq r < n$,

$$|\psi\rangle = I_1 \otimes \cdots \otimes I_r \otimes A_{r+1} \otimes \cdots \otimes A_n |\phi\rangle. \quad (A.3)$$

For any $1 \leq l < n$, we assume that

$$M(|\psi\rangle) = I_1 \otimes \cdots \otimes I_r \otimes A_{r+1} \otimes \cdots \otimes A_l M(|\phi\rangle) (A_{l+1} \otimes \cdots \otimes A_n)^T,$$

when $r + 1 \leq l < n$;

$$M(|\psi\rangle) = I_1 \otimes \cdots \otimes I_r M(|\phi\rangle) (I_{r+1} \otimes \cdots \otimes I_n \otimes A_{r+1} \otimes \cdots \otimes A_n)^T,$$

when $1 \leq l < r < n$;

$$M(|\psi\rangle) = I_1 \otimes \cdots \otimes I_r M(|\phi\rangle) (A_{r+1} \otimes \cdots \otimes A_n)^T,$$

when $1 \leq l = r < n$. \quad (A.4)
Next, we will prove that when
\[|\psi^\prime\rangle = I_1 \otimes \cdots \otimes I_{r-1} \otimes A_r \otimes \cdots \otimes A_n |\phi\rangle, \]
(A.5)
there is
\[M(|\psi^\prime\rangle) = I_1 \otimes \cdots \otimes I_{r-1} \otimes A_r \otimes \cdots \otimes A_n M(|\phi\rangle)(A_{j+1} \otimes \cdots \otimes A_l)^T, \]
when \(r + 1 \leq \ell < n; \)
\[M(|\psi^\prime\rangle) = I_1 \otimes \cdots \otimes I_{r-1} \otimes A_r \otimes \cdots \otimes A_n |\phi\rangle, \]
when \(1 \leq \ell < r < n; \)
\[M(|\psi^\prime\rangle) = I_1 \otimes \cdots \otimes I_{r-1} \otimes A_n M(|\phi\rangle)(A_{j+1} \otimes \cdots \otimes A_l)^T, \]
when \(1 \leq \ell = r < n. \)
(A.6)

Write \[|\psi^\prime\rangle = \sum_{m=0}^{d-1} b_m |\phi\rangle \]
and
\[A_r = \begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1d_r} \\ a_{21} & a_{22} & \cdots & a_{2d_r} \\ \vdots & \vdots & \ddots & \vdots \\ a_{d_r1} & a_{d_r2} & \cdots & a_{dd_r} \end{pmatrix}. \]
(A.7)

Since
\[|\psi^\prime\rangle = I_1 \otimes \cdots \otimes I_{r-1} \otimes A_r \otimes I_{r+1} \otimes \cdots \otimes I_n |\psi\rangle, \]
(A.8)
we need only to prove that
\[M(|\psi^\prime\rangle) = I_1 \otimes \cdots \otimes I_{r-1} \otimes A_r \otimes I_{r+1} \otimes \cdots \otimes I_n M(|\phi\rangle), \]
when \(r + 1 \leq \ell < n; \)
\[M(|\psi^\prime\rangle) = I_{r-1} \otimes I_{r+1} \otimes \cdots \otimes I_n M(|\phi\rangle)(A_{j+1} \otimes \cdots \otimes A_l)^T, \]
when \(1 \leq \ell < r; \)
\[M(|\psi^\prime\rangle) = I_1 \otimes \cdots \otimes I_{r-1} \otimes A_n M(|\phi\rangle), \]
when \(1 \leq \ell = r < n. \)
(A.9)

From equation (A.8), it can be computed that
\[b_{khl} = a_{1k} c_{hl} + a_{2k} c_{hl} + \cdots + a_{dk} c_{hl}, \]
(A.10)
where \(t, 1, 2, \ldots, d_2; k, 0, 1, \ldots, d_1 \cdots d_{r-1} - 1; s, 0, 1, \ldots, d - 1; h = d_{r+1} \cdots d_n. \) If \(r + 1 \leq l < n, \) write
\[M(|\psi\rangle) = \begin{pmatrix} c_0 & c_1 & \cdots & c_{d_1-1} \\ c_{d_1} & c_{d_1+1} & \cdots & c_{2d_1-1} \\ \vdots & \vdots & \ddots & \vdots \\ c_{d_1 \cdots d_{r-1} \cdots d_n} & c_{d_1 \cdots d_{r-1} d_{r+1} \cdots d_n} & \cdots & c_{d_1 \cdots d_{r-1} \cdots d_n} \end{pmatrix}, \]
(A.11)
if \(1 \leq \ell < r < n, \) write
\[M(|\psi\rangle) = \begin{pmatrix} c_0 & c_1 & \cdots & c_h & \cdots & c_{d_1+1} & \cdots & c_{d_1 \cdots d_n} \\ c_{d_1} & c_{d_1+1} & \cdots & c_{h+1} & \cdots & c_{d_1+1+1} & \cdots & c_{d_1 \cdots d_n+1} \\ \vdots & \vdots & \ddots & \vdots & \ddots & \vdots & \ddots & \vdots \\ c_{d_1 \cdots d_{r-1} \cdots d_n} & c_{d_1 \cdots d_{r-1} d_{r+1} \cdots d_n} & \cdots & c_{d_1 \cdots d_{r-1} \cdots d_n} \end{pmatrix}, \]
(A.12)
if 1 ≤ l = r < n, write

\[M(|\psi\rangle) = \begin{pmatrix} c_0 & c_1 & \cdots & c_{h-1} \\ c_d & c_{d+1} & \cdots & c_{2h-1} \\ \vdots & \vdots & \ddots & \vdots \\ c_{(d-1)d+b} & c_{(d-1)d+b+1} & \cdots & c_{(d-1)d+b+h-1} \end{pmatrix}, \]

(A.13)

then it follows from equation (A.10) that equations (A.9) holds.

Finally, we consider the permutation of qudits. Applying the permutation \(\sigma \) defined in equation (10) to both sides of equation (A.2), we have

\[M^\sigma(|\psi\rangle) = A_{\sigma}^1 \otimes \cdots \otimes A_{\sigma}^N (|\phi\rangle)(A_{\sigma}^1 \otimes \cdots \otimes A_{\sigma}^N)^T. \]

(A.14)

When \(A_1, \ldots, A_n \) are ILOs, it can be directly concluded from equation (A.14) that \(M^\sigma(|\psi\rangle) \) and \(M^\sigma(|\phi\rangle) \) have the same rank. Thus, two SLOCC equivalent states have the same rank with respect to every permutation of qudits.

References

[1] Nielsen M A and Chuang I L 2000 Quantum Computation and Quantum Information (Cambridge: Cambridge University Press)
[2] Nielsen M A 1999 Conditions for a class of entanglement transformations Phys. Rev. Lett. 83 436
[3] Bennett C H, Popescu S, Rohrlich D, Smolin J A and Thapliyal A V 2000 Exact and asymptotic measures of multiparticle pure-state entanglement Phys. Rev. A 63 012307
[4] Dür W, Vidal G and Cirac J I 2000 Three qubits can be entangled in two inequivalent ways Phys. Rev. A 62 062314
[5] Verstraete F, Dehaene J, De Moor B and Verschelde H 2002 Four qubits can be entangled in nine different ways Phys. Rev. A 65 052312
[6] Lamata L, Leön J, Salgado D and Solano E 2006 Inductive classification of multiparticle entanglement under stochastic local operations and classical communication Phys. Rev. A 74 052336
[7] Lamata L, Levin J, Salgado D and Solano E 2007 Inductive entanglement classification of four qubits under stochastic local operations and classical communication Phys. Rev. A. 75 022318
[8] Zyczkowski K and Bengtsson I 2007 An introduction to quantum entanglement: a geometric approach arXiv: quant-ph/0606228
[9] Borsten L, Dahanayake D, Duff M J, Marrani A and Rubens W 2010 Four-qubit entanglement classification from string theory Phys. Rev. Lett. 105 100507
[10] Viehmann O, Eltschka C and Siewert J 2011 Polynomial invariants for discrimination and classification of four-qubit entanglement Phys. Rev. A. 83 052330
[11] Chen L and Chen Y X 2006 Range criterion and classification of true entanglement in a 2 × M × N system Phys. Rev. A 74 062310
[12] Bastin T, Krins S, Mathonet P, Godofeoid M, Lamata L and Solano E 2009 Operational families of entanglement classes for symmetric N-qubit states Phys. Rev. Lett. 103 070503
[13] Aulbach M 2011 Classification of entanglement in symmetric states arXiv:1103.0271
[14] Li X R and Li D F 2011 Rank-based slocc classification for odd n qubits Quantum Inform. Comput. 11 695
[15] Li X R and Li D F 2012 Classification of general q-qubit states under stochastic local operations and classical communication in terms of the rank of coefficient matrix Phys. Rev. Lett. 108 180502
[16] Kaszlikowski D, Gicartliski P, Zakowski M, Miklaszewski W and Zeilinger A 2000 Violations of local realism by two entangled n-dimensional systems are stronger than for two qubits Phys. Rev. Lett. 85 4418
[17] Chen J L, Kaszlikowski D, Kwek L C, Oh C H and Zukowski M 2001 Entangled three-state systems violate local realism more strongly than qubits: an analytical proof Phys. Rev. A 64 052109
[18] Collins D, Gisin N, Linden N, Massar S and Popescu S 2002 Bell inequalities for arbitrarily high-dimensional systems Phys. Rev. Lett. 88 040404
[19] Chen J L and Deng D L 2009 Tight correlation-function Bell inequality for multiparticle d-dimensional systems Phys. Rev. A 79 012111
[20] Son W, Lee I and Kim M S 2006 Generic Bell inequalities for multiparticle arbitrary dimensional systems Phys. Rev. Lett. 96 060406
[21] He Q Y, Drummond P D and Reid M D 2011 Entanglement, EPR steering, and Bell-nonlocality criteria for multipartite higher-spin systems Phys. Rev. A 83 032120
[22] Bechmann-Pasquinucci H and Peres A 2000 Quantum cryptography with 3-state systems Phys. Rev. Lett. 85 3133
[23] Bourennane M, Karlsson A and Björk G 2001 Quantum key distribution using multilevel encoding Phys. Rev. A 64 012306
[24] Cerf N J, Bourennane M, Karlsson A and Gisin N 2002 Security of quantum key distribution using d-level systems Phys. Rev. Lett. 88 127902
[25] Durt T, Cerf N J, Gisin N and Žukowski M 2003 Security of quantum key distribution with entangled qutrits Phys. Rev. A 67 012311
[26] Pan F, Lu G Y and Draayer J P 2006 Classification and quantification of entangled bipartite qutrit pure states Int. J. Mod. Phys. B 20 1333
[27] Fujiwara M, Takeoka M, Mizuno J and Sasaki M 2003 Exceeding the classical capacity limit in a quantum optical channel Phys. Rev. Lett. 90 167906
[28] Ralph T C, Resch K and Gilchrist A 2007 Efficient Toffoli gates using qudits Phys. Rev. A 75 022313
[29] Miyake A 2003 Classification of multipartite entangled states by multidimensional determinants Phys. Rev. A 67 021008
[30] Miyake A and Verstraete F 2004 Multipartite entanglement in $2 \times 2 \times n$ quantum systems Phys. Rev. A 69 012301
[31] Chitambar E, Miller C A and Shi Y Y 2010 Matrix pencils and entanglement classification J. Math. Phys. 51 072205
[32] Li J L, Li S Y and Qiao C F 2012 Classification of the entangled states of $2 \times N \times N$ J. Phys. A: Math. Theor. 43 055303
[33] Li X R and Li D F 2012 Method for classifying multiqubit states via the rank of the coefficient matrix and its application to four-qubit states Phys. Rev. A 85 052304
[34] Chitambar E, Miller C A and Shi Y Y 2010 Matrix pencils and entanglement classification J. Math. Phys. 51 072205
[35] Li J L, Li S Y and Qiao C F 2012 Classification of the entangled states $L \times N \times N$ Phys. Rev. A 85 012301
[36] Li X S, Long G L, Tong D M and Li F 2002 General scheme for superdense coding between multiparty Phys. Rev. A 65 022304
[37] Li X S, Long G L, Tong D M and Li F 2002 General scheme for superdense coding between multiparty Phys. Rev. A 65 022304
[38] Lo H K and Popescu S 2001 Concentrating entanglement by local actions: beyond mean values Phys. Rev. A 63 022301
[39] Coecke B and Kissinger 2010 A The compositional structure of multipartite quantum entanglement arXiv:1002.2540