Biochemical Characterization of UDP-N-acetylMuramoyl-L-alanyl-D-glutamate (MurE) from *Verrucomicrobium spinosum* DSM 4136\(^\dag\)

Sean E. McGrotty\(^1\), Dhivyaa T. Pattaniyil\(^2\), Delphine Patin\(^3,4\), Didier Blanot\(^3,4\), Arvind C. Ravichandran\(^5\), Hironori Suzuki\(^5\), Renwick C. J. Dobson\(^5,6\), Michael A. Savka\(^1\), André O. Hudson\(^1*\)

1 The Thomas H. Gosnell School of Life Sciences, Rochester Institute of Technology, Rochester, New York, United States of America, 2 The School of Chemistry and Materials Science, Rochester Institute of Technology, Rochester, New York, United States of America, 3 Univ Paris-Sud, Laboratoire des Enveloppes Bactéries et Antibiotiques, Institut de Biochimie et Biophysique Moléculaire et Cellulaire, Orsay, France, 4 Centre National de la Recherche Scientifique, Orsay, France, 5 Biomolecular Interaction Centre, School of Biological Sciences, University of Canterbury, Christchurch, New Zealand, 6 Department of Biochemistry and Molecular Biology, Bio21 Molecular and Biotechnology Institute, The University of Melbourne, Parkville, Victoria, Australia

**Abstract**

*Verrucomicrobium spinosum* is a Gram-negative bacterium that is related to bacteria from the genus *Chlamydia*. The bacterium is pathogenic towards *Drosophila melanogaster* and *Caenorhabditis elegans*, using a type III secretion system to facilitate pathogenicity. *V. spinosum* employs the recently discovered L,L-diaminopimelate aminotransferase biosynthetic pathway to generate the bacterial cell wall and protein precursors diaminopimelate and lysine. A survey of the *V. spinosum* genome provides evidence that the bacterium should be able to synthesize peptidoglycan de novo, since all of the necessary genes are present. The enzyme UDP-N-acetylMuramoyl-L-alanyl-D-glutamate: 2,6-diaminopimelate ligase (MurE) (E.C. 6.3.2.15) catalyzes a reaction in the cytoplasmic step of peptidoglycan biosynthesis by adding the third amino acid residue to the peptide stem. The murE ortholog from *V. spinosum* (murE\(_{Vs}\)) was cloned and was shown to possess UDP-MurNAc-L-Ala-D-Glu:2,6-diaminopimelate ligase activity *in vivo* using functional complementation. *In vitro* analysis using the purified recombinant enzyme demonstrated that MurE\(_{Vs}\) has a pH optimum of 9.6 and a magnesium optimum of 30 mM. 2,6-Diaminopimelate was the preferred substrate with a *K_m* of 17 \(\mu\)M, when compared to other substrates that are structurally related. Sequence alignment and structural analysis using homology modeling suggest that key residues that make up the active site of the enzyme are conserved in MurE\(_s\). Our kinetic analysis and structural model of MurE\(_{Vs}\) is consistent with other MurE enzymes from Gram-negative bacteria that have been characterized. To verify that *V. spinosum* incorporates diaminopimelate into its cell wall, we purified peptidoglycan from a *V. spinosum* culture; analysis revealed the presence of diaminopimelate, consistent with that of a bona fide peptidoglycan from Gram-negative bacteria.

**Citation:** McGrotty SE, Pattaniyil DT, Patin D, Blanot D, Ravichandran AC, et al. (2013) Biochemical Characterization of UDP-N-acetylMuramoyl-L-alanyl-D-glutamate: meso-2,6-diaminopimelate ligase (MurE) from *Verrucomicrobium spinosum* DSM 4136\(^\dag\). PLoS ONE 8(6): e66458. doi:10.1371/journal.pone.0066458

**Editor:** Ivo G. Boneca, Institut Pasteur Paris, France

**Received** March 13, 2013; **Accepted** May 6, 2013; **Published** June 13, 2013

**Copyright:** © 2013 McGrotty et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

**Funding:** This research was supported by a National Science Foundation (NSF) (MCB-1120541) and a Rochester Institute of Technology (RIT) College of Science 2012 Dean’s Research Initiation Grant to AOH. MAS acknowledges a RIT College of Science Faculty Development (FEAD-2012) grant. SEN and DTP were supported by the NSF MCB-1120541 awarded to AOH as undergraduate students in the Bioinformatics program in the Thomas H. Gosnell School of Life Sciences and the 2012 Dean’s Research Initiation Grant to AOH. SEM and DTP were supported by the Centre National de la Recherche Scientifique (UMR 8619). HS acknowledges the Royal Society of New Zealand and the Japan Society for the Promotion of Science for salary support, in part (contract/grant number W911NF-11-1-0481 for supported, in part. DP and DB were supported by grants from the Centre National de la Recherche Scientifique (UMR 8619); HS acknowledges the Royal Society of New Zealand and the Japan Society for the Promotion of Science for salary support by the FY 2012 Researcher Exchange Program. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

**Competing Interests:** The authors have declared that no competing interests exist.

---

**Introduction**

The bacterial cell wall plays an integral role in withstanding stress from external and internal forces in addition to maintaining the shape of bacteria. As such, the cell wall is essential for cell viability due to its overarching function in providing physical support for the cytoplasmic membrane. The cell wall of bacteria is mainly composed of a cross-linked polymer known as peptidoglycan (PG). PG contains glycans chains and peptide stems, and its monomer unit consists of a disaccharide tetrapeptide (Fig. 1) [1]. Its synthesis is divided into three main steps. In the first step, the nucleotide sugar-linked precursors UDP-N-acetylmuramyl-pentapeptide (UDP-MurNAc-pentapeptide) and UDP-N-acetylglucosamine (UDP-GlcNAc) are synthesized in the cytoplasm. In the second step, precursor lipid intermediates (lipids I and II) are synthesized at the cytoplasmic membrane. The polymerization of newly synthesized disaccharide-peptide units and incorporation into the growing PG by penicillin-binding proteins (PBPs) is the third and final step of the pathway [2].

*Verrucomicrobium spinosum* is a Gram-negative heterotrophic bacterium that is generally found in fresh water and soil. The bacterium has garnered a lot of interest from the scientific community due to its close evolutionarily relationship with...
bacteria from the genus *Chlamydia* [3]. Annotation of the genome suggests that the bacterium employs a protein secretion system known as Type III that is involved in pathogenicity [4]. A recent study shows that *V. spinosum* is pathogenic to *Drosophila melanogaster* and *Caenorhabditis elegans* [5].

*V. spinosum* was found to employ the recently discovered L,L-diaminopimelate aminotransferase (DapL) pathway [6,7,8,9] as the sole route for the synthesis of diaminopimelate (A2pm) and L-lysine (L-Lys), based on biochemical and bioinformatical evidence [10]. In the anabolism of PG, the penultimate intermediate in the L-lysine biosynthesis pathway, meso-diaminopimelate (meso-A2pm), serves as one of the cross-linking amino acids in Gram-negative bacteria, and L-Lys serves the same purpose in many Gram-positive bacteria [11].

The enzyme UDP-N-acetylmuramoyl-L-alanyl-D-glutamate:meso-2,6-diaminopimelate ligase (MurE) (E.C. 6.3.2.15) catalyzes the addition of the third amino acid residue to the peptide stem of PG in the cytoplasmic step of PG synthesis. In most bacteria, this third residue is either meso-A2pm or L-Lys (Fig. 1). In particular species, other amino acids can be found, such as L-ornithine, meso-lanthionine, l,L-A2pm, l-diaminobutyric acid or l-homoserine [1,12,13]. Since the third residue in the bacterial cell wall is involved in PG cross-linking, the lack of or incorrect substrate incorporation into the PG macromolecule can lead to improperly constructed PG and ultimately to cell death via lysis due to inability of the bacterium to maintain osmotic pressure [14,15].

Here we report the first characterization of a Mur ligase from the genus *Verrucomicrobiurn*, namely MurE from *V. spinosum* (*MurEVs*). *In vivo* analysis demonstrates that the enzyme is able to functionally complement an *Escherichia coli* strain that harbors a mutation in the *murE* gene. *In vitro* analyses, we show that MurEVs is a meso-A2pm-adding enzyme. Furthermore, we present a structural analysis of the enzyme using protein sequence alignment and homology modeling, which shows that key amino acids for substrate binding and/or catalysis are conserved in MurEVs. Together, these experiments contribute to the further understanding of the kinetic, physical and structural properties of the Mur ligase involved in the synthesis of PG from the organism *V. spinosum*. Finally, *V. spinosum* PG was purified and analyzed; its composition in which A2pm is one of the main constituents is similar to that of most Gram-negative bacteria.

**Materials and Methods**

*V. spinosum* growth conditions

*V. spinosum DSM 4136* was cultured in R2A medium at 26°C [10].

PCR amplification and cloning of the *V. spinosum* murE open reading frame (ORF) for protein expression and purification

The open reading frame annotated by the locus tag (VspiD_010100019130) UDP,N-acetylmuramoyl-L-alanyl-D-glutamate:meso-2,6-diaminopimelate ligase was amplified by PCR. The following forward and reverse primers were used: murE-Forward 5’-CACCA*ATG*ACCATTTTGCGCGATCTTATCGAGGGT-3’ and murE-Reverse 5’-GTCGAC*TGA*CTGAGCGTCTCCCTCCTTTGCGGTG-3’ (the underlined sequence represents the restriction enzyme site used to facilitate sub-cloning of the ORF while the bold and italicized sequences represent initiation and termination codons). The PCR reaction contained 12 pmol of forward and reverse primers, 1 mM MgSO4, 0.5 mM of each of the four dioxynucleotide triphosphates, 0.5 ng of

---

**Figure 1. The monomer unit of the peptidoglycan structure.** The disaccharide moiety is composed of the amino sugars N-acetylglucosamine (GlcNAc) and N-acetylmuramic acid (MurNAc) linked via a β-1,4 glycosidic bond. The amino acid at position 3 of the stem peptide is meso-diaminopimelic acid (R = COOH) in most Gram-negative bacteria and L-lysine (R = H) in most Gram-positive bacteria. doi:10.1371/journal.pone.0066458.g001

**Figure 2. Scanning electron microscopy of *V. spinosum* DSM 4136*. The white arrows show the wart-like prosthecae (WLP) and the white bar depicts a tube-like prosthecae (TLP). The picture was taken at 25 K magnification. The scale bar is 1 μm. doi:10.1371/journal.pone.0066458.g002
genomic DNA and 1 unit of Platinum *Pst* DNA polymerase (Invitrogen Corporation, Carlsbad, CA, USA). PCR conditions were: 1 cycle at 94°C for 2 min, followed by 30 cycles of 94°C for 15 s, 60°C for 30 s and 72°C for 2 min. The *mur*E*ORF* fragment was ligated into the plasmid pET100D-topo (Invitrogen Corporation, Carlsbad, CA, USA) to produce the plasmid pET100D::*
mur*E*ORF*. The recombinant protein encoded by this plasmid carries a MRGSHHHHHHGMASMTGGGQMGRR-DLYDDDDDKHPFT sequence containing a hexa-histidine tag derived from the pET100D plasmids at the amino terminus. To confirm the fidelity of the PCR reaction, the *mur*E *ORF* was sequenced from pET100D using the T7 promoter primer, 5’-TAATACGACTCACTATATAGGG-3’ and the T7 reverse primer, 5’-TATGTTATGTTGCTACGCGGTG-3’. The cloned *mur*E *ORF* was 100% identical to the sequences deposited in the Integrated Microbial Genomes public database (http://img.jgi.doe.gov/cgi-bin/w/main.cgi).

**Protein expression and purification of the recombinant MurE**

The *E. coli* BL21-CodonPlus® (DE3)-RIPL (Agilent Technologies, USA) strain was transformed with the plasmid pET100D::
mur*E*ORF* and grown in LB broth containing 50 mg·mL⁻¹ ampicillin and 34 μg·mL⁻¹ chloramphenicol at 37°C to an OD₆₅₀ of 0.5. Protein expression was induced in 1 L of culture using isopropyl β-D-1-thiogalactopyranoside (IPTG) to a final concentration of 0.5 mM for 8 h at 20°C. The cell pellet was lysed by sonication in a buffer consisting of 50 mM sodium phosphate, pH 8.0, and 300 mM NaCl. The soluble extract was incubated with 1 mL bed volume of TALON Metal Affinity Resin (Clontech, Mountain View CA, USA) for 30 min at 4°C. The resin was washed 5 times with 30 mL of sonication buffer containing 10 mM imidazole for 15 min each. The enzyme was eluted with 10 mL of sonication buffer containing 250 mM imidazole. The hexa-histidine tag was not removed after protein purification. The pure protein was concentrated in an Amicon Ultra 10,000 molecular weight cutoff filter unit replacing the elution buffer with 20 mM potassium phosphate buffer, pH 7.2, containing 1 mM DTT). After 30 min of incubation with 0.02% (w/v) pronase in 0.01 M Tris-HCl buffer (pH 7.4); (ii) overnight incubation with 0.05% (w/v) pancreatin in 0.1 M potassium phosphate buffer, pH 7.2, containing 1 mM DTT). After 30 min at 37°C, the reaction was stopped by the addition of glacial acetic acid (8 μL), followed by hophilization. The radioactive substrate and product were separated on a Nucleosil 100 C 18 5 μm column (150 x 4.6 mm; W. R. Grace S. A.) using 50 mM ammonium formate, pH 4.4, as the mobile phase at a flow rate of 0.6 mL·min⁻¹. Radioactivity was detected with a flow detector (model LB306-C1, Berthold) using the Quicksafe Flow 2 scintillator (Zinsser Analytic) at 0.6 mL·min⁻¹. Quantification was performed with the Radiosafe software (Berthold).

Identical assay conditions were used when the l,l and d,l isomers of Apm were tested as substrates. With lysine or ornithine, l-[¹⁴C]Lys or l-[¹⁴C]Orn, respectively, was used as the labeled substrate; in that case, radioactive substrate and product were separated by thin-layer chromatography on silica gel plates LK6D (Whatman) using 1-propanol/ammonium hydroxide/water (6:3:1; v/v) as the mobile phase, and the radioactive spots were located and quantified with a radioactivity scanner (Rita Star, Raytest Isotopenmeßgeräte GmbH).

**Determination of the kinetic constants**

For the determination of the kinetic constants, the same assay was used with various concentrations of one substrate and fixed concentrations of the others. In all cases, the enzyme concentration was chosen so that substrate consumption was <20%, the linearity being ensured within this interval even at the lowest substrate concentration. Data were fitted to the equation \( v = \frac{V_{\text{max}} S}{K_m + S} \) by the Levenberg-Marquardt method [19], where \( v \) is the initial velocity and \( S \) is the substrate concentration, and values ± standard deviation at 95% of confidence were calculated. The MDfit software developed by M. Desmadrill (UMR 8619, CNRS, Orsay, France) was used for this purpose.

**Sequence alignment and homology modeling**

A multiple amino acid sequence alignment between the Mur ligase enzymes of *V. spinosum* (ZP_02928794.1), *Mycobacterium tuberculosis* (CCE37632.1), *E. coli* (NP_414627.1) *Chlamydia trachomatis* (NP_219774.1) and *Pectobacterium carotovorum* (ZP_03031119.1) was generated using ClustalW2 (http://www.ebi.ac.uk/Tools/msa/clustalw2/) with the Gonnet scoring matrix. The homology model of the MurE*ORF* protein was generated using the SWISS-MODEL Protein Modeling Server [20,21,22] (http://swissmodel.expasy.org/) using the *E. coli* MurE structure as a template PDB id: 1E6C [23], which was identified using a PSI-BLAST search of the MurE*ORF* protein sequence against proteins in the Protein Data Bank using the web server: (http://blast.ncbi.nlm.nih.gov/). The model was examined by hand for clashes and appropriate geometry using the visualization software PyMOL (The PyMOL Molecular Graphics System, Schrödinger, LLC).

**Purification and analysis of *V. spinosum* PG**

PG was prepared and analyzed essentially according to Mengin-Lecreux et al. [24]. Cells from 1 L of culture were harvested at 4°C and resuspended in 4% (w/v) sodium dodecyl sulfate (SDS) (10 mL·g⁻¹ of cell wet weight) under constant and vigorous stirring at 100°C for 30 min. The suspension was incubated overnight at 25°C followed by centrifugation for 1 h at 17,000 rpm. The pellet containing crude PG was washed 5 times with 10 mL of sterile water and stored in water for further analysis. Half of the preparation was used to obtain purified PG. Briefly, the following treatments at 37°C were performed: (i) overnight incubation with 0.05% (w/v) pancreatic in 0.1 M potassium phosphate buffer (pH 7.4); (ii) overnight incubation with 0.02% (w/v) pronase in 0.01 M Tris-HCl buffer (pH 7.4); (iii) overnight incubation with 0.02% (w/v) trypsin in 0.02 M potassium phosphate buffer (pH 7.4). Finally, after centrifugation and several washes with 8 M lithium chloride containing 0.1 M EDTA, and water, the pellet was stored in water. Aliquots of crude and purified PGs were hydrolyzed as described below.

**Amino acid and hexosamine analysis**

Samples were hydrolyzed in 6 M HCl containing 0.05% (v/v) 2-mercaptoethanol at 105°C for 24 h [proteins], or in 6 M HCl at 95°C for 16 h (PG). After evaporation of the acid, the pellet was dissolved with 67 mM trisodium citrate–HCl buffer (pH 2.2) and
injected into a Hitachi L-8900 amino acid analyzer equipped with a 2620MSC-PS column (ScienceTec). Amino acids and hexosamines were detected after post-column reaction with ninhydrin.

Results

The genome of *V. spinosum* contains the full complement of genes necessary for the de novo synthesis of peptidoglycan

The *V. spinosum* genome was searched from the Integrated Microbial Genomes (IMG) database (http://www.jgi.doe.gov/) using the annotated PG synthesis pathway from Kyoto Encyclopedia of Genes and Genomes (KEGG). The search resulted in the identification of 20 genes that are known to be involved in PG metabolism. Importantly, the search identified orthologs of all the genes necessary for the de novo synthesis of PG in *V. spinosum* (Table 1).

Identification of the MurE ortholog from *V. spinosum*

The orthologous MurE protein from *V. spinosum* was initially identified using the MurE protein sequence from *C. trachomatis* (NP_219774) as a query. The BlastP algorithm from the Integrated Microbial Genomes [IMG] database was employed. The search resulted in the identification of a putative MurE from *V. spinosum* annotated by the locus tag VspiD_010100019130, which is 37% identical to the *C. trachomatis* MurE [10].

Overproduction and purification of murE Ligase from *V. spinosum*

The murEVs gene was cloned into the pET100D/topo plasmid, allowing expression of the protein with an N-terminal short peptide extension comprising a hexa-histidine tag (see Materials and Methods). *E. coli* BL21 DE3-CodonPlus-RIPL cells, transformed with the resulting vector pET100D::murEVs, were grown and subjected to IPTG induction. Extraction and purification afforded 2.5 mg of MurEVs per liter of culture. The protein was homogenous by SDS-PAGE: a band at ~59 kDa could be observed, in keeping with a calculated molecular mass of 59,578 Da. (Fig. 3). Its identity was further confirmed by MALDI-TOF mass spectrometry: peaks at m/z 59,568 and 29,774 Da, corresponding to the [MH]+ and [M+2H]2+ ions, respectively, were observed (Fig. S1).

Kinetic properties of the MurE ligase from *V. spinosum*

The optimal pH, temperature and magnesium concentration for MurEVs were found to be 9.6, 44–46°C, and 30 mM, respectively. In *vitro* assays were thus performed at pH 9.6 and with 30 mM MgCl₂, the usual temperature of 37°C being used. With meso-A2pm and UDP-MurNAc-t-Ala-d-Glu as substrates, the maximum velocity was 36±2 μmol·min⁻¹·mg⁻¹. The $K_m$ values for the substrates were: ATP, 290±70 μM; UDP-MurNAc-t-Ala-d-Glu, 24±6 μM; and meso-A2pm, 17±3 μM. The enzyme proved to be stereospecific for meso-A2pm, since the rate of incorporation of the L,L or D,D isomer was <1% that of the meso isomer. No incorporation of L-lysine or L-ornithine could be detected, even

| Locus Tag     | Protein Symbol | Annotated Gene Product Name | EC Number |
|---------------|----------------|-----------------------------|-----------|
| VspiD_010100024635 | PBP            | o-Alanyl-o-alanine carboxypeptidase-class C | 3.4.16.4  |
| VspiD_01010002270 | PBP            | Multimodular transpeptidase-transglycosylase-class A | 2.4.1.129 |
| VspiD_010100006740 | PBP            | Penicillin-binding protein 1C-class A | 2.4.1.129 |
| VspiD_010100020475 | PBP            | Penicillin-binding protein 2-class A | 2.4.1.129 |
| VspiD_010100007940 | PBP            | Peptidoglycan transpeptidase-class B | 2.4.1.129 |
| VspiD_010100017450 | PBP            | Peptidoglycan transpeptidase-class B | 2.4.1.129 |
| VspiD_010100019135 | PBP            | Peptidoglycan synthetase FtsI-class B | 2.4.1.129 |
| VspiD_010100018680 | PBP            | Cell elongation specific D,D-transpeptidase-class B | 2.4.1.129 |
| VspiD_010100019120 | PBP            | MraY Phospho-N-acetylmuramoyl-pentapeptide-transferase | 2.7.8.13 |
| VspiD_010100011745 | MurA            | UDP-N-acetylglucosamine 1-carboxyvinyltransferase | 2.5.1.7 |
| VspiD_010100019100 | MurG            | UDP-N-acetylglucosamine-N-acetylmuramoyl-(pentapeptide) pyrophosphoryl-undecaprenol-N-acetylglosamine transferase | 2.4.1.227 |
| VspiD_010100019125 | MurF            | UDP-N-acetylmuramoyl-tripeptide-o-alanyl-o-alanine ligase | 6.3.2.10 |
| VspiD_010100018175 | Ddl            | o-Alanineo-alanine ligase | 6.3.2.4 |
| VspiD_010100019115 | MurD            | UDP-N-acetylmuramoyl-1-alanine-glutamate ligase | 6.3.2.9 |
| VspiD_010100019130 | MurE            | UDP-N-acetylmuramoyl-1-alanine-o-glutamate;meso-2,6-diaminopimelate ligase | 6.3.2.13 |
| VspiD_010100026230 | UppP            | Undecaprenol pyrophosphate phosphatase | 3.6.1.27 |
| VspiD_010100018130 | MurB            | UDP-N-acetylenolpyruvylglucosamine reductase | 1.1.1.158 |
| VspiD_010100018130 | MurC            | UDP-N-acetylenolurate-alanine ligase | 6.3.2.8 |
| VspiD_010100000100 | AlaR            | Alanine racemase | 5.1.1.1 |
| VspiD_010100008415 | MurL            | Glutamate racemase | 5.1.1.3 |

The annotated gene product names are from NCBI (www.ncbi.nlm.nih.gov/protein/) queried of February 28, 2013. The penicillin-binding proteins (PBP) class designations are denoted by activity based on protein family (pfam) domains. Class A and class B PBPs are high-molecular mass PBPs while class C PBPs are low-molecular mass PBPs. Class A PBPs are predicted to have both transglycosylase and transpeptidase activities; class B PBPs are predicted to have only transpeptidase activity; class C PBPs are predicted to have α,ω-carboxypeptidase activity.

doi:10.1371/journal.pone.0066458.s001
with a significant amount of purified recombinant enzyme
(10\% (w/v) acrylamide gel and were stained using Coomassie
blue.
doi:10.1371/journal.pone.0066458.g003

Figure 3. Expression and purification of recombinant MurEVs
using His-tag affinity chromatography. Lane (1) protein makers
(kDa); Lane (2) 10 \( \mu \)g of soluble protein from uninduced cells; Lane (3)
10 \( \mu \)g of soluble protein from induced cells; Lane (4) 1 \( \mu \)g of purified recombinant MurEVs. The proteins were resolved on 10%

Sequence alignment and homology modeling
To identify conserved regions of the enzyme and motifs
employed during catalysis, a multiple amino acid sequence
alignment was performed between MurE enzymes from
V. spinosum, M. tuberculosis, E. coli, C. trachomatis and P. carotovorum
using ClustalW2 (http://www.ebi.ac.uk/Tools/msa/clustalw2/).
Ten of the 16 putative active site residues thought to be involved in
substrate binding were conserved among all five sequences. The
key DNPR motif [23,25,26] which comprises residues 409–412 in
V. spinosum sequence, was identical across all five sequences.

As annotated in the MurE Ec structure, the MurE Vs homology
model is predicted to have three domains: A, B and C (Fig. 4a).

Table 2. Specificity of MurE Vs for the amino acid substrate.

| Substrate | Enzymatic activity (\( \mu \)mol.min\(^{-1}.mg\(^{-1}\))\(^*\)) |
|-----------|--------------------------------------------------|
| meso-A2pm | 36                                               |
| \( \omega \)-A2pm | 0.18                                           |
| L-A2pm  | 0.043                                           |
| L-Lysine | ND\(^\text{a}\)                                    |
| L-Odmithine | ND\(^\text{a}\)                                |

\(^*\) Determined as described in Materials and Methods with fixed concentrations of ATP (5 mM), UDP-MurNAc-c-Ala-o-Glu (0.15 mM) and amino acid (0.15 mM).\(^\text{a}\) ND, no activity detected after 30 minutes with 11 \( \mu \)g of enzyme.
doi:10.1371/journal.pone.0066458.t002

Discussion
The heterotrophic Gram-negative bacterium V. spinosum has
recently garnered significant interest from the scientific
community, since the genome has been sequenced, annotated and is
publically available. In addition, the bacterium was found to be
pathogenic towards D. melanogaster and C. elegans, two model
invertebrate organisms [5].

A recent study from our laboratories confirmed the presence of
the plant-like biosynthetic pathway for diaminopimelate and L-
lysine in V. spinosum through the partial characterization of the
enzyme \( \omega \)-diaminopimelate aminotransferase (DapL) [10]. In the
same study, we identified the MurE ortholog and showed that the
enzyme was able to functionally complement an E. coli mutant that
harbors a mutation in the murE gene [10].
The genus *Verrucomicrobium* is evolutionarily related to the genus *Chlamydia* [3]. Interestingly, we were able to identify all the genes that are involved in the *de novo* anabolism of PG from the annotated genome of *V. spinosum* (Table 1). The MurE ortholog from *Chlamydia trachomatis* was identified and was shown to be an authentic MurE enzyme, even though PG cannot be detected from the bacterium using methods developed thus far [26]. Unlike *C. trachomatis*, we were able to isolate and detect PG from *V. spinosum* in addition to quantifying all the major components of the macromolecule. *V. spinosum* is an attractive candidate model organism to address questions relating to: i) the chlamydial PG paradox; and ii) the feasibility and plausibility of whether the newly discovered DapL enzyme is a potential target for antibiotic development given the fact the enzyme is involved in the synthesis of both PG and lysine.

MurEVs shares 37% and 35% amino acid identity to the MurE orthologs from *C. trachomatis* and *E. coli*, respectively. With regards to the substrate specificity of the enzyme, MurEVs resembles that of the *C. trachomatis* and *E. coli* orthologs by showing preference for meso-A2pm. The enzyme incorporated very weakly the two other stereoisomers of A2pm; it was unable to incorporate L-lysine and L-ornithine, two structurally related diamine compounds. Therefore, MurEVs is highly specific for meso-A2pm.
The enzyme’s optimum catalytic profile with respect to pH, temperature and $[\text{Mg}^{2+}]$ was examined to define optimum assay conditions and also gauge its similarity with other known MurE enzymes. MurEVs displays maximum activity at pH 9.6, which is slightly higher than those found in \textit{E. coli} (pH 8.0–9.2) and \textit{C. trachomatis} (pH 8.0–8.6) Mur ligases [15]. The optimal temperature for MurEVs (44–46°C) seems somewhat high but difficult to compare with other orthologs and paralogs since this parameter is almost never mentioned. These unusual values for MurEVs might be attributed to environmental factors such as the natural habitat(s) of the organism. As for the optimal $[\text{Mg}^{2+}]$ concentration, it falls within the range (5–100 mM) found for \textit{E. coli} and \textit{C. trachomatis} Mur ligases [15,26,30].

The maximum velocity of 36 $\mu$mol-min$^{-1}$-mg$^{-1}$ for the MurEVs, using saturating levels of all substrates is approximately 110, 26 and 14 times more than those of MurE Ct, MurE Ec and MurE from \textit{Pseudomonas aeruginosa}, respectively [15,26,31]. Whereas the higher specific activity of MurE Vs with respect to MurE Ct can easily be explained by the fact that \textit{Chlamydiae} are slow-growing, primarily intracellular organisms [26], we have no explanation for the difference between MurEVs and the orthologs from \textit{E. coli} and \textit{P. aeruginosa}.

Primary sequence analysis showed that MurEVs contains ten out of the sixteen amino acids that make up the active site of the enzyme including the DNPR motif. The DNPR motif is conserved among MurEs that have been experimentally authenticated. A homology model, based on the well characterized MurEEc enzyme

---

Figure 5. Multiple amino acid sequence alignment of five representative sequences of MurE. The residues that are predicted to be involved in binding in the active site are marked with a star below the sequence. The sequence identity score against MurE from \textit{V. spinosum} was: \textit{C. trachomatis}, 37%; \textit{E. coli}, 35%; \textit{P. carotovorum}, 36%; and \textit{M. tuberculosis}. The multiple amino acid sequence alignment figure was generated using the ESPript 2.2 server (http://espript.ibcp.fr/ESPript/cgi-bin/ESPript.cgi). doi:10.1371/journal.pone.0066458.g005
Many Gram-positive bacteria. The inhibition of DapL or other enzymes in the diaminopimelate/L-lysine pathway would affect bacterial growth in two different ways. First, the bacteria will be subsequently converted to the meso isomer by an epimerase; this results in a bact eriostatic effect, as already observed for other enzymes of the diaminopimelate/L-lysine pathway [33,34].

The genomes of animals and particularly humans do not possess the genetic machinery to facilitate the biosynthesis of diaminopimelate/L-lysine de novo. Therefore, animals must acquire L-lysine through dietary means. Thus there is a unique opportunity to assess the essentiality of enzymes that are important for cell wall and protein synthesis from eubacteria. V. spinosum is an attractive model bacterial system based on the fact that the organism is closely related to Chlamydia, which was found to use the DapL pathway to diaminopimelate/L-lysine. Bioinformatic analysis shows that the sequenced and annotated genomes of bacteria belonging to the genus Chlamydia contain putative dapL orthologs (data not shown). V. spinosum is aerobic and facile to culture using commercially available media because it is not an obligate intracellular bacterium as is the case with Chlamydia. Importantly, the bacterium is not pathogenic to mammals based on what we currently know. Since the genome of the organism can be genetically modified using transposon mutagenesis, analysis of genes that are essential for V. spinosum that are involved in the diaminopimelate/L-lysine biosynthesis can be the focus of future studies [10,35].

Here we present the identification and characterization of the first Mur ligase namely, MurE from the bacterium V. spinosum. Bioinformatic and biochemical analyses provide evidence that the bacterium is able to synthesize PG de novo. In vivo analysis shows that MurEVs is an authentic meso-A2pm adding enzyme. This was further validated by in vitro analyses that show that the kinetic and physical properties are consistent with MurE orthologs that have been experimentally confirmed. Finally, primary amino acid sequence and structural analysis based on protein modeling show that key amino acids that are involved in substrate binding and or catalysis are conserved in MurE Vs.

### Supporting Information

**Figure S1** MALDI-TOF mass spectrometry analysis of purified MurE Vs. Matrix: sinapinic acid. Peaks with m/z ratios consistent with the His6-tagged protein (calculated mass, 59,578 Da) are shown. (TIF)

**Figure S2** Homology model quality statistics. The cartoon structure shows the quality of model by coloring the residues according to the error. The coloring is from blue (relaible region) to red (potentially unreliable region). The residue error plot depicts the local model reliability with estimated pre-residue inaccuracies along the sequence. (TIF)

### Acknowledgments

The authors thank Dr. Richard Hallstone from the Chester F. Carlson Center for Imaging Science at RIT for acquisition of the scanning electron microscopy image. AOH thank Dr. Naomi Ward from the University of Wyoming for graciously providing the genomic DNA of Verrucomicrobi um spinosum DSM 4136T to facilitate this work. The authors acknowledge Matt Walters for help with image presentation. HS acknowledges the Royal Society of New Zealand and the Japan Society for the Promotion of Science Researcher Exchange Program.

### Author Contributions

Conceived and designed the experiments: AOH RCJD DP DB. Performed the experiments: AOH SEM DTP DP DB ACR HS RCJD MAS. Analyzed the data: AOH DP DB RCJD. Contributed reagents/materials/analysis tools: AOH DP DB RCJD. Wrote the paper: AOH DB RCJD.
References

1. Vollmer W, Blanot D, de Pedro MA (2008) Peptidoglycan structure and architecture. FEMS Microbiol Rev. 32:149–167.

2. Scheffers DJ, Pinho MG (2005) Bacterial cell wall synthesis: new insights from localization studies. Microbiol Mol Biol Rev. 69:583–607.

3. Wagner M, Horn M (2006) The Planctomycetes, Verrucomicrobia, Chlamydiae and sister phyla comprise a superphylum with biotecnological and medical relevance. Curr. Opin. Biotechnol. 17:241–249.

4. Hurek CJ (1998) Type III protein secretion systems in bacterial pathogens of animals and plants. Microbiol Mol Biol Rev. 62:379–433.

5. Sai M, Kanmeva OK, Fay DS, Kirkenko NV, Pilek J, Siaush-Hiza MM, et al. (2011) Genomic and experimental evidence suggests that Verrucomicrobium spinosum interacts with eukaryotes. Front. Microbiol. 2:211 doi: 10.3389/ fnmic.2011.00211.

6. Hudson AO, Singh BK, Leustek T, Gilvarg C (2006) An L,L-diaminopimelate aminotransferase defines a novel variant of the lysine biosynthesis pathway in plants. Plant Physiol. 140:292–301.

7. McCoy AJ, Adams NE, Hudson AO, Gilvarg C, Leustek T, et al. (2006) Diaminopimelate aminotransferase, a trans-kingdom enzyme shared by Chlamydia and plants for synthesis of diaminopimelate/lysine. Proc. Natl. Acad. Sci. USA. 103:17909–17914.

8. Hudson AO, Gilvarg C, Leustek T (2008) Biochemical and phylogenetic characterization of a novel diaminopimelate biosynthesis pathway in prokaryotes identifies a divergent form of L,L-diaminopimelate aminotransferase. J. Bacteriol. 190:3256–3263.

9. Liu Y, White RH, Whitan WB (2010) Methanococcus using the diaminopimelate aminotransferase (DapL) pathway for lysine biosynthesis. J. Bacteriol. 192:3304–3310.

10. Nachar VR, Davila KA, North RA, et al. (2012) Genomic and biochemical analysis of the diaminopimelate and lysine biosynthesis pathway in Verrucomicrobium spinosum: identification and partial characterization of the L,L-diaminopimelate aminotransferase and UDP-N-acetylmuramoyl-L-alanyl-D-glutamyl-D-meso-diaminopimelate ligase. Front. Microbiol. 3:183.

11. Hutton CA, Perugini MA, Gerrard JA (2007) Inhibition of lysine biosynthesis: an evolving antibiotic strategy. Mol. Biosyst. 3:458–463.

12. Schleifer KH, Kandler O (1972) Peptidoglycan types of bacterial cell wall and their taxonomic implications. Bacterol Rev. 36:407–477.

13. Barreteau H, Kovac A, Boniface A, Sova M, Gobec S, et al. (2008) Cytoplasmic N-acetylmuramyl-L-alanyl-D-glutamate:2,6-diaminopimelate ligase from Escherichia coli. Eur. J. Biochem. 275:1953–1961.

14. Mengin-Lecreulx D, Falla T, Blanot D, van Heijenoort J, Adams DJ, et al. (2006) Crystal structure of UDP-N-acetylmuramoyl-L-alanyl-D-glutamyl-D-meso-diaminopimelate ligase from Escherichia coli. J. Biol Chem. 281:10999–11006.

15. Patin D, Le Roux P, Blanot D, Mengin-Lecreulx D, van Heijenoort J (1992) Cytoplasmic steps of peptidoglycan synthesis in Escherichia coli. J. Bacteriol. 151:1109–1117.

16. Babic A, Patin D, Boniface A, Herve M, Mengin-Lecreulx D, et al. (2007) Genomic and experimental evidence suggests that Verrucomicrobium spinosum DSM 4136T. Arch. Microbiol. 193:307–312.

17. Michaud C, Mengin-Lecreulx D, van Heijenoort J, Blanot D (1990) Overproduction, purification and properties of the uridine-diphosphate-N-acetylmuramoyl-L-alanyl-D-glutamate:2,6-diaminopimelate ligase from Escherichia coli. Eur. J. Biochem. 194:55–61.

18. van Heijenoort J, Briaca E (1968) Contribution à l'étude des isomères de l'acide γ,δ-diaminopimélique. Bull. Soc. Chim. Fr. 7:2828–2831.

19. Press WH, Flannery BP, Teukolsky SA, Vetterling WT (1986) Numerical recipes: The art of scientific computing, Cambridge University Press, Cambridge, UK.

20. Arnold K, Bordoli L, Kopp J, Schwede T (2006) The SWISS-MODEL workspace: a web-based environment for protein structure homology modelling. Bioinformatics. 22:195–201.

21. Kiefer F, Arnold K, Kunzli M, Bordoli L, Schwede T (2009) The SWISS-MODEL repository and associated resources. Nucleic Acids Research. 37:387–392.

22. Perisch MC (1995) Protein Modeling by E-mail. Nat Biotechnol. 13:658–660.

23. Gordon E, Flouret B, Chamaillard M, Labigne A (2003) Nod2 is a general sensor of peptidoglycan through muramyl dipeptide (MDP) detection. J. Biol Chem. 278:8869–8872.

24. Girardin SE, Boneca IV, Viala J, Labigne A (2003) Nod2 is a general sensor of peptidoglycan through muramyl dipeptide (MDP) detection. J. Biol Chem. 278:8869–8872.

25. Patin D, Bostock J, Blanot D, Mengin-Lecreulx D, Chopra I (2009) Functional and biochemical analysis of the Chlamydia trachomatis ligase MurE, J. Bacteriol. 191:7430–7435.

26. Benkert P, Biasini M, Schwede T (2011) Toward the estimation of the absolute quality of individual protein structure models. Bioinformatics. 27:345–350.

27. Kuro K, Hughes HV, Brown PJ, Hall E, Tekkam S (2012) In situ probing of newly synthesized peptidoglycan in live bacteria with fluorescent t-aminom acids. Angew. Chem Int. Ed. 51: doi: 10.1002/anie.201206749.

28. Girardin SE, Boneca IV, Viala J, Chamaillard M, Labigne A (2003) Nod2 is a general sensor of peptidoglycan through muramyl dipeptide (MDP) detection. J. Biol Chem. 278:8869–8872.

29. Patin D, Bordoli L, Chopra I, Mengin-Lecreulx D, Blanot D (2012) Biochemical characterization of the chlamydial MurF ligase and possible sequence of the chlamydial peptidoglycan pentapeptide stem. J. Bacteriol. 194:505–512.

30. Girardin SE, Boneca IV, Viala J, Chamaillard M, Labigne A (2003) Nod2 is a general sensor of peptidoglycan through muramyl dipeptide (MDP) detection. J. Biol Chem. 278:8869–8872.

31. Paradi-Bleau C, Lloret A, Sanchis Grand F, Maaroufi H, Clarke T (2009) Pseudomonas aeruginosa MurE amide ligase: enzyme kinetics and peptide inhibitor. Biochem. J. 421:263–272.

32. Cox RJ (1996) The DAP pathway to lysine as a target for antimicrobial agents. Nat. Prod. Rep. 13:29–43.

33. Berge DA, DeWolf DE, Dunn GL, Grappel SF, Newman DJ (1986) Peptides of 2-aminoacidic acid: antibiotic agents that inhibit dianimopimamic acid biosynthesis. J. Med. Chem. 29:99–95.

34. Le Roux P, Blanot D, Mengin-Lecreulx D, van Heijenoort J (1999) Peptides containing 2-aminomimidic acid. Synthesis and study of in vitro effect on bacterial cells. Int. J. Peptide Protein Res. 37:103–111.

35. Donman BD, Steven BT, Ward NL (2011) Random transposon mutagenesis of Verrucomicrobium spinosum DSM 4136(T). Arch. Microbiol. 193:307–312.
Author/s:
McGroty, SE; Pattaniyil, DT; Patin, D; Blanot, D; Ravichandran, AC; Suzuki, H; Dobson, RCJ; Savka, MA; Hudson, AO

Title:
Biochemical Characterization of UDP-N-acetylmuramoyl-L-alanyl-D-glutamate: meso-2,6-diaminopimelate ligase (MurE) from Verrucomicrobium spinosum DSM 4136

Date:
2013-06-13

Citation:
McGroty, S. E., Pattaniyil, D. T., Patin, D., Blanot, D., Ravichandran, A. C., Suzuki, H., Dobson, R. C. J., Savka, M. A. & Hudson, A. O. (2013). Biochemical Characterization of UDP-N-acetylmuramoyl-L-alanyl-D-glutamate: meso-2,6-diaminopimelate ligase (MurE) from Verrucomicrobium spinosum DSM 4136. PLOS ONE, 8 (6), https://doi.org/10.1371/journal.pone.0066458.

Persistent Link:
http://hdl.handle.net/11343/264998

File Description:
Published version

License:
CC BY