On optimal approximability results for computing the strong metric dimension

Bhaskar DasGupta and Nasim Mobasher
Department of Computer Science
University of Illinois at Chicago
Chicago, IL 60607, USA
Emails: {bdasgup,nmobas2}@uic.edu
August 7, 2014

Abstract

In this short note, we observe that the problem of computing the strong metric dimension of a graph can be reduced to the problem of computing a minimum node cover of a transformed graph within an additive logarithmic factor. This implies both a 2-approximation algorithm and a \((2 - \varepsilon)\)-inapproximability for the problem of computing the strong metric dimension of a graph.

1 Introduction

The strong metric dimension of a graph was introduced in [7] as an alternative to the previously introduced (weak) metric dimension of graphs [2, 8]. Subsequently, the strong metric dimension has been investigated in several research papers such as [5, 6, 10]. Let \(G = (V,E) \) be a given undirected graph of \(n \) nodes. To define the strong metric dimension, we will use the following notations and terminologies:

- \(\text{Nbr}(u) = \{ v \mid \{u,v\} \in E \} \) is the set of neighbors of \((i.e., \text{nodes adjacent to})\) a node \(u \).
- \(u \leftrightarrow v \) denotes a shortest path from between nodes \(u \) and \(v \) of length (number of edges) \(d_{u,v} = \ell(u \leftrightarrow v) \).
- \(\text{diam}(G) = \max_{u,v \in V} \{d_{u,v}\} \) denotes the diameter of a graph \(G \).
- A shortest path \(u \leftrightarrow v \) is maximal if and only if it is not properly included inside another shortest path, \(i.e., \text{if and only if}\)
 \[(\forall x \in \text{Nbr}(u) \ d(x,v) \leq d(u,v)) \land (\forall y \in \text{Nbr}(v) \ d(y,u) \leq d(u,v))\]
- A node \(x \) strongly resolves a pair of nodes \(u \) and \(v \), denoted by \(x \triangleright \{u,v\} \), if and only if either \(v \) is on a shortest path between \(x \) and \(u \) or either \(u \) is on a shortest path between \(x \) and \(v \).
- A set of nodes \(V' \subseteq V \) is a strongly resolving set for \(G \), denoted by \(V' \triangleright G \), if and only if every distinct pair of nodes of \(G \) is strongly resolved by some node in \(V' \), \(i.e., \text{if and only if}\)
 \[\forall (u,v \in V, u \neq v) \exists x \in V': x \triangleright \{u,v\}\]

Then, the problem of computing the string metric dimension of a graph is defined as shown below:

*\hspace{1cm} Research partially supported by NSF grants IIS-1160995.
Problem name: Strong Metric Dimension (STR-MET-DIM)

Instance: an undirected graph \(G = (V, E) \).

Valid Solution: a set of nodes \(V' \subseteq V \) such that \(V' \triangleright G \).

Goal: minimize \(|V'||.

Related notation: \(\text{sdim}(G) = \min_{V' \subseteq V \triangleright G} \{ |V'| \} \).

In this short note, we observe that the problem of computing the strong metric dimension of a graph can be reduced to the problem of computing a minimum node cover of a transformed graph within an additive logarithmic factor. This implies both a 2-approximation algorithm and a \((2 - \epsilon)\)-inapproximability for the problem of computing the strong metric dimension of a graph. More precisely, our result is summarized by the following Lemma.

Lemma 1.1.

(a) **STR-MET-DIM** admits a polynomial-time 2-approximation.

(b) Assuming the unique games conjecture\(^1\) (UGC) is true, **STR-MET-DIM** does not admit any polynomial-time \((2 - \epsilon)\)-approximation for any constant \(\epsilon > 0 \) even if the given graph is restricted in the sense that

(i) \(\text{diam}(G) \leq 2 \), or

(ii) \(G \) is bipartite and \(\text{diam}(G) \leq 4 \).

Remark 1.2. If instead of assuming the correctness of UGC the standard assumption of \(P \neq \text{NP} \) is made, then the part (b) of the above theorem still holds provided one replaces \((2 - \epsilon)\)-inapproximability by \(1.36\)-inapproximability. This is easily obtained by a similar proof in which we use the \((10 \sqrt{5} - 21 \approx 1.3606)\)-inapproximability result.

2 Proof of Theorem 1.1

The standard minimum node cover (MNC) problem for a graph is defined as follows:

Instance:	an undirected graph \(G = (V, E) \).			
Valid Solution:	a set of nodes \(V' \subseteq V \) such that \(V' \cap \{u, v\} \neq \emptyset \) for every edge \(\{u, v\} \in E \).			
Goal:	minimize \(V'		.
Related notation:	\(\text{MNC}(G) = \min_{\forall \{u, v\} \in E : V' \cap \{u, v\} \neq \emptyset} \{	V'	\} \).	

Let \(G = (V, E) \) denote the input graph of \(n \) nodes. We recall the following result from [5].

Theorem 2.1. [5]

(a) Let \(\tilde{G} = (V, \tilde{E}) \) be the graph obtained from \(G \) in the following manner:

\[\{u, v\} \in \tilde{E} \iff u \neq v \text{ and } u \xleftrightarrow{5} v \text{ is a maximal shortest path in } G \]

Then \(\text{sdim}(G) = \text{MNC}(\tilde{G}) \) and \(V' \subseteq V \) is a valid solution of **STR-MET-DIM** on \(G \) if and only if \(V' \) is a valid solution of MNC on \(\tilde{G} \).

\(^1\)See [3] for a definition of the unique games conjecture.
(b) Let \(\tilde{G} = (\tilde{V}, \tilde{E}) \) be the graph from \(G \) built in the following manner:

- Let \(u_1, u_2, \ldots, u_\kappa \) be the nodes in \(G \) such that, for every \(u_i \) (\(1 \leq i \leq \kappa \)), there is a node \(v_i \neq u_i \) in \(G \) with the property that \(Nbr(u_i) = Nbr(v_i) \).

- Let \(\overline{G} = (V, \overline{E}) \) be the (edge) of \(G \), i.e., \(\{u, v\} \in \overline{E} \iff \{u, v\} \notin E \). Then \(\overline{G} \) is constructed as follows:
 \[
 \overline{V} = V \cup \{x_1, x_2, \ldots, x_k, y\} \text{ where } x_1, x_2, \ldots, x_k, y \notin V.
 \]
 \[
 \overline{E} = \overline{E} \cup \left(\cup_{j=1}^{k} \{x_j, u_j\} \right) \cup \left(\cup_{y' \in \overline{V} \setminus \{y\}} \{y', y\} \right).
 \]

Then, \(\text{diam}(\tilde{G}) = 2 \) and \(sdim(\tilde{G}) = \kappa + \text{MNC}(G) \).

\textbf{Proof of Lemma 1.1(a)}

Follows from Fact 2.1(a) and a well-known 2-approximation algorithm for \(\text{MNC} \) [9, Theorem 1.3].

\textbf{Proof of Lemma 1.1(b)}

Consider the standard Boolean satisfiability problem (SAT) and let \(\Phi \) be an input instance of SAT. Our starting point is the following inapproximability result proved Khot and Regev [4]:

\[[4, \text{setting } k = 2] \text{ Assuming UGC is true, there exists a polynomial time algorithm that transforms a given instance } \Phi \text{ of SAT to an input instance graph } G = (V, E) \text{ of MNC with } n \text{ nodes such that, for any arbitrarily small constant } \varepsilon > 0, \text{ the following holds:} \]

\[\begin{array}{ll}
 (\text{YES case}) & \text{if } \Phi \text{ is satisfiable then } \text{MNC}(G) \leq \left(\frac{1}{2} + \varepsilon \right) n, \text{ and} \\
 (\ast) & \text{if } \Phi \text{ is not satisfiable then } \text{MNC}(G) \geq (1 - \varepsilon)n. \\
\end{array} \]

Consider such an instance \(G \) of \(\text{MNC} \) as generated by the above transformation. We first construct the following graph \(G^+ = (V^+, E^+) \) from \(G \). Let \(k = 1 + \lceil \log_2 n \rceil \) and let \(b(j) = b_{k-1}(j)b_{k-2}(j) \ldots b_1(j)b_0(j) \)

be the binary representation of an integer \(j \in \{1, 2, \ldots, n\} \) using exactly \(k \) bits (e.g., if \(n = 5 \) then \(b(3) = 011 \)). Let \(u_1, u_2, \ldots, u_n \) be an arbitrary ordering of the nodes in \(V \). Then,

- \(V^+ = V \cup V_1^+ \) where \(V_1^+ = \{v_1, v_2, \ldots, v_{k-1}, y\} \) is a set of \(k \) new nodes, and

- \(E^+ = E \cup \left(\cup_{j=1}^{k} \{u_j, v_j\} \mid b_1(j) = 1 \right) \cup \left(\cup_{j=1}^{k-1} \{y, v_j\} \right). \)

Thus \(|V^+| = n + k \) and \(|E^+| < |E| + \frac{n^2}{2} + k \). Now, note that if \(V' \subseteq V \) is a solution of \(\text{MNC} \) on \(G \), then \(V' \cup V_1^+ \) is a solution of \(\text{MNC} \) on \(G^+ \), implying \(\text{MNC}(G^+) \leq \text{MNC}(G) + k \), and, conversely, if \(V' \subseteq V^+ \) is a solution of \(\text{MNC} \) on \(G^+ \), then \(V' \setminus V_1^+ \) is a solution of \(\text{MNC} \) on \(G \), implying \(\text{MNC}(G) \leq \text{MNC}(G^+) \). Combining the above inequalities with that in (\ast), we have

\[\begin{array}{ll}
 (\text{YES case}) & \text{if } \Phi \text{ is satisfiable then } \text{MNC}(G^+) < \left(\frac{1}{2} + \varepsilon \right) n + \log_2 n + 1, \text{ and} \\
 (\ast\ast) & \text{if } \Phi \text{ is not satisfiable then } \text{MNC}(G^+) \geq (1 - \varepsilon)n. \\
\end{array} \]

We now build the graph \(\tilde{G}^+ = (\tilde{V}^+, \tilde{E}^+) \) from \(G \) using the construction in Fact 2.1 and observe the following:

- For any \(i \neq j \), since \(b(i) \neq b(j) \), there exists an index \(t \) such that \(b_t(i) \neq b_t(j) \), say \(b_t(i) = 0 \) and \(b_t(j) = 1 \). Thus, \(Nbr(u_i) \neq Nbr(u_j) \) since \(v_t \in Nbr(u_j) \) but \(v_t \notin Nbr(u_i) \).

- Since \(b(i) \neq 0 \) for any \(i \) and \(b(1), b(2), \ldots, b(n) \) are distinct binary numbers each of exactly \(k \) bits, for any \(t \neq t' \) there is an index \(i \) such that \(b_t(i) \neq b_{t'}(i) \), say \(b_t(i) = 0 \) and \(b_{t'}(i) = 1 \). Thus, \(Nbr(v_t) \neq Nbr(v_{t'}) \) since \(u_t \in Nbr(v_{t'}) \) but \(u_t \notin Nbr(v_t) \).
• For any \(i \) and \(j \), \(\text{Nbr}(u_i) \neq \text{Nbr}(v_j) \) since \(y \in \text{Nbr}(v_j) \) but \(y \notin \text{Nbr}(u_i) \).

• For any \(i \), \(b(i) \neq 0 \) and thus there exists an index \(j \) such that \(b_j(i) = 1 \). This implies \(u_j \in \text{Nbr}(v_i) \) but \(u_j \notin \text{Nbr}(y) \) and therefore \(\text{Nbr}(v_i) \neq \text{Nbr}(y) \).

• Since \(G \) is a connected graph, for every node \(u_i \) there exists a node \(u_j \) such that \(\{u_i, u_j\} \in E^+ \). Thus, \(u_j \in \text{Nbr}(u_i) \) but \(u_j \notin \text{Nbr}(y) \), implying \(\text{Nbr}(u_i) \neq \text{Nbr}(y) \).

Thus, no two nodes in \(G^+ \) have the same neighborhood, implying \(\kappa = 0 \) and \(s\text{dim}(\hat{G}^+) = \text{MNC}(G^+) \). Thus, setting \(\varepsilon' = \varepsilon + \frac{\log_2 n + 1}{n} > \varepsilon \) to be any arbitrarily small constant, it follows from (**) that

\[
(\text{YES case}) \quad \text{if } \Phi \text{ is satisfiable then } \text{MNC}(G^+) < \left(1 + \varepsilon'\right)n, \quad \text{and}
\]

\[
(\text{NO case}) \quad \text{if } \Phi \text{ is not satisfiable then } \text{MNC}(G^+) \geq (1 - \varepsilon')n.
\]

This proves the claim in (b)(i). To prove (b)(ii), we modify the graph \(\hat{G}^+ \) to a new graph \(G' = (V', E') \) by splitting every edge into a sequence of two edges, i.e., for every edge \(\{u, v\} \) in \(\hat{G}^+ \) we add a new node \(x_{uv} \) in \(G' \) and replace the edge \(\{u, v\} \) by the two edges \(\{u, x_{uv}\} \) and \(\{v, x_{uv}\} \). Clearly \(G' \) is bipartite since all its cycles are of even length and \(\text{diam}(G') \leq 2 + \text{diam}(\hat{G}^+) = 4 \). To show that \(\text{sdim}(\hat{G}^+) = \text{sdim}(G') \), by Fact 2.1(a) it suffices to show that no maximal shortest path ends at a node \(x_{uv} \). Indeed, if a maximal shortest path \(\mathcal{P} \) from some node \(z \) ends at \(x_{uv} \), it must use one of the two edges \(\{u, x_{uv}\} \) and \(\{v, x_{uv}\} \), say \(\{u, x_{uv}\} \). Then adding the edge \(\{v, x_{uv}\} \) to the path provide a shortest path between \(v \) and \(z \) and thus \(\mathcal{P} \) was not maximal. As a result, the inapproximability result for \(\hat{G}^+ \) directly translates to that for \(G' \).

References

[1] I. Dinur, S. Safra. *On the hardness of approximating minimum vertex cover*, Annals of Mathematics, 162(1), 439-485, 2005.

[2] F. Harary and R. A. Melter. *On the metric dimension of a graph*, Ars Combinatoria, 2, 191-195, 1976.

[3] S. Khot. *On the power of unique 2-Prover 1-Round games*, 34th ACM Symposium on Theory of Computing, 767-775, 2002.

[4] S. Khot and O. Regev. *Vertex cover might be hard to approximate to within 2-\varepsilon*, Journal of Computer and System Sciences, 74(3), 335-349, 2008.

[5] O. R. Oellerman and J. Peters-Fransen. *The strong metric dimension of graphs and digraphs*, Discrete Applied Mathematics, 155, 356-364, 2007.

[6] J. A. Rodríguez-Velázqueza, I. G. Yerob, D. Kuziaka and O. R. Oellermannc. *On the strong metric dimension of Cartesian and direct products of graphs*, Discrete Mathematics, 335, 8-19, 2014.

[7] A. Sebő and E. Tannier. *On Metric Generators of Graphs*, Mathematics of Operations Research, 29(2), 383-393, 2004.

[8] P. J. Slater. *Leaves of trees*, Congressus Numerantium, 14, 549-559, 1975.

[9] V. Vazirani. *Approximation Algorithms*, Springer-Verlag, 2001.

[10] E. Yi. *On Strong Metric Dimension of Graphs and Their Complements*, Acta Mathematica Sinica, English Series, 29(8), 1479-1492, 2013.