Inflation, electroweak phase transition, and Higgs searches at the LHC in the two-Higgs-doublet model

Lei Wang

Department of Physics, Yantai University, Yantai 264005, P. R. China

Abstract: Combining the Higgs searches at the LHC, we study the Higgs inflation in the type-I and type-II two-Higgs-doublet models with non-minimally couplings to gravity. After imposing relevant theoretical and experimental constraints, we find that the Higgs inflation imposes stringent constraints on the mass splitting between A, H^{\pm}, and H, and they tend to be nearly degenerate in mass with increasing of their masses. The direct searches for Higgs at the LHC can exclude many points achieving Higgs inflation in the region of $m_H (m_A) < 450$ GeV in the type-I model, and impose a lower bound on $\tan \beta$ for the type-II model. The Higgs inflation disfavors the wrong sign Yukawa coupling region of type-II model. In the parameter space achieving the Higgs inflation, the type-I and type-II models can produce a first order electroweak phase transition, but v_c/T_c is much smaller than 1.0.
1 Introduction

The cosmic inflation during very early phase of the Universe can explain a number of cosmological problems, such as the horizon and flatness problems [1–3]. A attractive scenario is the Standard Model (SM) Higgs as the inflaton field, which is non-minimally coupled to gravity [4–6]. The SM Higgs plays an important role in particle physics, and its properties can be measured at the LHC. However, the current LHC data set the SM Higgs mass, $m_h \approx 125$ GeV [7, 8], which hints that the SM Higgs self-coupling runs to be negative values well below the Planck scale or the inflationary scale [9–11]. The SM vacuum becomes unstable before the non-minimal coupling becomes dominant. Therefore, the Higgs sectors of the SM need to be extended to achieve the Higgs inflation.

The two-Higgs-doublet model (2HDM) is a simple extension of SM by introducing a second $SU(2)_L$ Higgs doublet, which contains two neutral CP-even Higgs bosons h and H, one neutral pseudoscalar A, and a pair of charged Higgs H^\pm [12]. The ATLAS and CMS experimental data show that the properties of the discovered 125 GeV boson are well consistent with the SM Higgs boson. In addition, no excesses are observed in the searches for the additional Higgs. Therefore, the searches for Higgs at the LHC can impose stringent constraints on new physics models, especially for the 2HDM. In this paper, we consider the
recent LHC Higgs data, and discuss the Higgs inflation in the type-I 2HDM [13, 14] and type-II 2HDM [13, 15]. There have been some studies on the inflation in the inert doublet model [16, 17] and general 2HDM [18]. Next, we will combine the inflation to discuss the electroweak phase transition (EWPT) in the early universe, and the electroweak baryogenesis mechanism requires a strongly first order EWPT (FOEWPT) to give a successful explanation of the observed baryon asymmetry of the universe (BAU) [19]. The EWPT in the 2HDM has been extensively studied in the Refs. [20–35].

The paper is organized as follows. In Sec. II we will introduce the type-I and type-II 2HDMs with non-minimal couplings to gravity and inflation dynamics. In Sec. III we show the parameter space achieving the Higgs inflation after imposing relevant theoretical and experimental constraints. In Sec. IV, we combine inflation to discuss the EWPT. Finally, we give our conclusion in Sec. V.

2 Two-Higgs-doublet model with non-minimally couplings to gravity

2.1 Two-Higgs-doublet model

In the type-I and type-II 2HDMs, the Higgs potential with a soft Z_2 symmetry breaking can be written as [36]

$$V_{tree} = m_{11}^2 (\Phi_1^\dagger \Phi_1) + m_{22}^2 (\Phi_2^\dagger \Phi_2) - [m_{12}^2 (\Phi_1^\dagger \Phi_2 + h.c.)]
+ \frac{\lambda_1}{2} (\Phi_1^\dagger \Phi_1)^2 + \frac{\lambda_2}{2} (\Phi_2^\dagger \Phi_2)^2 + \lambda_3 (\Phi_1^\dagger \Phi_1)(\Phi_2^\dagger \Phi_2) + \lambda_4 (\Phi_1^\dagger \Phi_2)(\Phi_2^\dagger \Phi_1)
+ \left[\frac{\lambda_5}{2} (\Phi_1^\dagger \Phi_2)^2 + h.c.\right].$$ (2.1)

We consider a CP-conserving case in which all λ_i and m_{ij}^2 are real. The two complex Higgs doublet fields Φ_1 and Φ_2 have hypercharge $Y = 1$ and are expanded as

$$\Phi_1 = \frac{1}{\sqrt{2}} \left(\phi_1^+ (v_1 + \phi_1 + i a_1) \right), \quad \Phi_2 = \frac{1}{\sqrt{2}} \left(\phi_2^+ (v_2 + \phi_2 + i a_2) \right),$$ (2.2)

with v_1 and v_2 being the electroweak vacuum expectation values (VEVs) and $v^2 = v_1^2 + v_2^2 = (246 \text{ GeV})^2$. We define the ratio of the two VEVs as $\tan \beta = v_2/v_1$. After spontaneous electroweak symmetry breaking, the mass eigenstates are obtained from the original fields by the rotation matrices,

$$\begin{pmatrix} H \\ h \end{pmatrix} = \begin{pmatrix} \cos \alpha & \sin \alpha \\ -\sin \alpha & \cos \alpha \end{pmatrix} \begin{pmatrix} \phi_1 \\ \phi_2 \end{pmatrix},$$ (2.3)

$$\begin{pmatrix} G^0 \\ A \end{pmatrix} = \begin{pmatrix} \cos \beta & \sin \beta \\ -\sin \beta & \cos \beta \end{pmatrix} \begin{pmatrix} a_1 \\ a_2 \end{pmatrix},$$ (2.4)

$$\begin{pmatrix} G^+ \\ H^- \end{pmatrix} = \begin{pmatrix} \cos \beta & \sin \beta \\ -\sin \beta & \cos \beta \end{pmatrix} \begin{pmatrix} \phi_1^+ \\ \phi_2^+ \end{pmatrix}. $$ (2.5)
The G^0 and G^\pm are Goldstones which are eaten by gauge bosons Z and W^\pm. The remaining physical states are two neutral CP-even states h, H, one neutral pseudoscalar A, and a pair of charged scalars H^\pm.

The type-I and type-II 2HDMs have different Z_2 parity assignments for the right field of fermion. The Yukawa interactions of type-I model are

$$-\mathcal{L} = Y_{u2} \bar{Q}_L \Phi_2 u_R + Y_{d2} \bar{Q}_L \Phi_2 d_R + Y_{\ell2} \bar{L}_L \Phi_2 \ell_R + \text{h.c.}. \quad (2.6)$$

The Yukawa interactions of type-II 2HDM are

$$-\mathcal{L} = Y_{u2} \bar{Q}_L \Phi_2 u_R + Y_{d1} \bar{Q}_L \Phi_1 d_R + Y_{\ell1} \bar{L}_L \Phi_1 \ell_R + \text{h.c.}. \quad (2.7)$$

where $Q^T_L = (u_L, d_L), L^T_L = (\nu_L, l_L)$, $\Phi_1, 2 = i\tau_2 \Phi_1^*, \Phi_2^*$, and $Y_{u2}, Y_{d1,d2}$ and $Y_{\ell1,\ell2}$ are 3×3 matrices in family space.

The Yukawa couplings of the neutral Higgs bosons with respect to the SM are

$$y_{hi} = \sin(\beta - \alpha), \quad y_{Hi} = \cos(\beta - \alpha),$$

$$y_{fi} = -iK_f \text{ (for } u), \quad y_{fi} = iK_f \text{ (for } d, \ell),$$

with $K_u = K_\ell = K_u \equiv 1/\tan \beta$ for type-I, and $K_u \equiv 1/\tan \beta$ and $K_d = K_\ell \equiv -\tan \beta$ for type-II. \quad (2.8)

The Yukawa interactions of the charged Higgs are

$$\mathcal{L}_Y = -\frac{\sqrt{2}}{v} H^+ \{ \bar{u}_i [K_d (V_{CKM})_{ij} m_{dj} P_R - K_u m_{ui} (V_{CKM})_{ij} P_L] d_j + \bar{\nu}_\ell m_\ell P_R \ell \} + \text{h.c.}, \quad (2.9)$$

where $i,j = 1,2,3$. The neutral Higgs boson couplings with the gauge bosons normalized to the SM are

$$y_{hV} = \sin(\beta - \alpha), \quad y_{HV} = \cos(\beta - \alpha),$$

where $V = Z, W$. In the type-II model, the 125 GeV Higgs h is allowed to have the SM-like coupling and wrong sign Yukawa coupling,

$$y_{hV} > 0 \text{ for SM-like coupling}, \quad y_{hV} < 0 \text{ for wrong sign Yukawa coupling.} \quad (2.11)$$

2.2 Inflation dynamics

To examine the inflation dynamics, we give the relevant Jordan frame Lagrangian,

$$\frac{\mathcal{L}_I}{\sqrt{-g}} = \frac{R}{2} + \left(\xi_1 |\Phi_1|^2 + \xi_2 |\Phi_2|^2 \right) R - |D_\mu \Phi_1|^2 - |D_\mu \Phi_2|^2 - V(\Phi_1, \Phi_2), \quad (2.12)$$

where we have set $m_{Pl} = 1$. R is the Ricci scalar, and ξ_1 and ξ_2 are dimensionless couplings of the doublet fields to gravity.
We make the conformal transformation on the metric,

\[g^E_{\mu\nu} = g_{\mu\nu} \Omega^2 \]

with \(\Omega^2 \equiv 1 + 2\xi_1|\Phi_1|^2 + 2\xi_2|\Phi_2|^2 \), \(\xi_1, \xi_2 \geq 0 \), \((\Phi_1, \Phi_2) \rightarrow (\Phi_1^{(E)}, \Phi_2^{(E)}) \), \(\Omega^2 \equiv 1 + 2\xi_1|\Phi_1^{(E)}|^2 + 2\xi_2|\Phi_2^{(E)}|^2 \) and obtain the Einstein frame action without the gauge interactions [16, 37]

\[\frac{\mathcal{L}_E}{\sqrt{-g_E}} = \frac{R}{2} - \frac{3}{4} \left[\partial_{\mu} \log \left(1 + 2\xi_1|\Phi_1|^2 + 2\xi_2|\Phi_2|^2 \right) \right]^2 - \frac{V_{\text{E}}(\Phi_1, \Phi_2)}{1 + 2\xi_1|\Phi_1^{(E)}|^2 + 2\xi_2|\Phi_2^{(E)}|^2} \]

(2.14)

\[V_{\text{E}}(\Phi_1, \Phi_2) = \frac{V}{(1 + 2\xi_1|\Phi_1|^2 + 2\xi_2|\Phi_2|^2)^2} \]

(2.15)

To examine inflation dynamics, we take two Higgs doublets as

\[\Phi_1 = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 \\ h_1 \end{pmatrix}, \quad \Phi_2 = \frac{1}{\sqrt{2}} \begin{pmatrix} 0 \\ h_2 e^{i\theta} \end{pmatrix} \]

(2.16)

Ignoring the mass terms, the Einstein action in terms of field \(\phi^i = h_1, h_2, \theta \) becomes

\[\frac{\mathcal{L}_E}{\sqrt{-g_E}} = \frac{R}{2} - \frac{1}{2} S_{ij} \partial_{\mu} \phi^i \partial^{\mu} \phi^j - V_{\text{E}}(\phi^i), \]

(2.17)

where

\[S_{ij} = \frac{1}{1 + \xi_1 h_1^2 + \xi_2 h_2^2} \begin{pmatrix} 1 + \frac{6\xi_1^2 h_1^2}{1 + \xi_1 h_1^2 + \xi_2 h_2^2} & 1 + \frac{6\xi_1 \xi_2 h_1 h_2}{1 + \xi_1 h_1^2 + \xi_2 h_2^2} & 0 \\ 1 + \frac{6\xi_1 \xi_2 h_1 h_2}{1 + \xi_1 h_1^2 + \xi_2 h_2^2} & 1 + \frac{6\xi_2^2 h_2^2}{1 + \xi_1 h_1^2 + \xi_2 h_2^2} & 0 \\ 0 & 0 & 1 + \frac{6\xi_2 h_2^2}{1 + \xi_1 h_1^2 + \xi_2 h_2^2} \end{pmatrix} \]

(2.18)

\[V_{\text{E}}(\phi^i) = \frac{\lambda_1 h_1^4 + \lambda_2 h_2^4 + 2(\lambda_3 + \lambda_4) h_1^2 h_2^2 + 2\lambda_5 h_1^2 h_2^2 \cos(2\theta)}{8 (1 + \xi_1 h_1^2 + \xi_2 h_2^2)^2} \]

(2.19)

We redefine the scalar fields as follows [38],

\[\varphi = \sqrt{\frac{3}{2}} \log(1 + \xi_1 h_1^2 + \xi_2 h_2^2), \]

(2.20)

\[\rho = \frac{h_2}{h_1}, \]

(2.21)

and obtain the potential,

\[V_{\text{E}}(\varphi, \rho, \theta) = \frac{\lambda_1 + \lambda_2 \rho^4 + 2(\lambda_3 + \lambda_4) \rho^2 + 2\lambda_5 \rho^2 \cos(2\theta)}{8 (\xi_1 + \xi_2 \rho^2)^2} \left(1 - e^{-2\varphi/\sqrt{6}} \right)^2. \]

(2.22)

For \(\lambda_5 \ll \lambda_1, \lambda_2, \lambda_3, \lambda_4 \), the \(\theta \) term of the potential in Eq. (2.22) does not affect the stabilization of the orthogonal mode \(\rho \). If the parameters satisfy the following conditions,

\[\lambda_2 \xi_1 - (\lambda_3 + \lambda_4) \xi_2 > 0, \quad \lambda_1 \xi_2 - (\lambda_3 + \lambda_4) \xi_1 > 0, \]

(2.23)
\(\rho \) is stabilized at a finite value \(\rho_0^2 = \frac{2(\lambda_3 + \lambda_4)\xi_1}{\lambda_3 \xi_1 - (\lambda_3 + \lambda_4)\xi_2} \) by the requirement of the potential extrema. Thus, we obtain the \(\rho \) independent part of potential,

\[
V_{\rho \text{-indep}} = \frac{\lambda_{\text{eff}}}{8 (\xi_1 + \xi_2 \rho_0^2)^2} \left(1 - e^{-2\varphi/\sqrt{\rho}} \right)^2 \left(1 + \frac{2\lambda_5 \rho_0^2}{\lambda_{\text{eff}}} \cos(2\theta) \right),
\]

(2.24)

where \(\lambda_{\text{eff}} = \lambda_1 + \lambda_2 \rho_0^4 + 2(\lambda_3 + \lambda_4)\rho_0^2 \). When \(|\lambda_5| \) is smaller than \(10^{-7} \), both the CP-even Higgs \(\varphi \) and the pseudoscalar Higgs \(\theta \) can drive the inflation, and the theoretical values of the inflationary observables are well consistent with the experimental values of Planck collaboration. The detailed discussions can be found in [16]. However, in the type-I and type-II models there is no symmetry to produce such small \(|\lambda_5| \), and therefore we assume \(|\lambda_5| \gg 10^{-7} \). As a result, the \(\theta \) field does not drive the inflation but rather it is stabilized. After stabilizing \(\theta \) at the minimum, we obtain the \(\theta \) independent part of potential,

\[
V_{\theta \text{-indep}} \approx \frac{\lambda_1 + \lambda_2 \rho_0^4 + 2 \lambda_L \rho_0^2}{8 (\xi_1 + \xi_2 \rho_0^2)^2} \left(1 - e^{-2\varphi/\sqrt{\rho}} \right)^2,
\]

(2.25)

with \(\lambda_L \equiv \lambda_3 + \lambda_4 - |\lambda_5| \). The \(\varphi \) field can drive inflation, and the \(\rho \) field needs to be stabilized by the extremum condition of the potential of Eq. (2.25),

\[
0 = \frac{\partial V_{\theta \text{-indep}}}{\partial \rho} = \frac{\rho (x_{1\rho}^2 - x_2)}{2 (\xi_1 + \xi_2 \rho_0^2)^3} \left(1 - e^{-2\varphi/\sqrt{\rho}} \right)^2,
\]

(2.26)

with \(x_1 \equiv \lambda_2 \xi_1 - \lambda_L \xi_2 \) and \(x_2 \equiv \lambda_1 \xi_2 - \lambda_L \xi_1 \). Therefore, there are three extrema at \(\rho^2 = 0, \infty, \) and \(x_2/x_1 \). In addition to \(\lambda_1 > 0 \) and \(\lambda_2 > 0 \), the potential stability requires \(\xi_1 \) and \(\xi_2 \) to be positive at large field values. The double derivative of the potential is

\[
\frac{\partial^2 V_{\theta \text{-indep}}}{\partial \rho^2} = \frac{3 x_{1\rho}^2 - x_2}{2 (\xi_1 + \xi_2 \rho_0^2)^4} \left(1 - e^{-2\varphi/\sqrt{\rho}} \right)^2.
\]

(2.27)

(1) \(x_1 > 0 \) and \(x_2 < 0 \). The potential of Eq. (2.25) has one minimum only at \(\rho^2 = 0 \). For such case, the \(h_1 \) field plays the role of the inflation, which is called \(h_1 \)-inflation. The potential of Eq. (2.25) becomes

\[
V = \frac{\lambda_1}{8 \xi_1^2} \left(1 - e^{-2\varphi/\sqrt{\rho}} \right)^2.
\]

(2.28)

(2) \(x_1 < 0 \) and \(x_2 > 0 \). The potential of Eq. (2.25) has one minimum only at \(\rho^2 = \infty \). As a result, the \(h_2 \) field plays the role of the inflation, which is called \(h_2 \)-inflation. The potential of Eq. (2.25) becomes

\[
V = \frac{\lambda_2}{8 \xi_2^2} \left(1 - e^{-2\varphi/\sqrt{\rho}} \right)^2.
\]

(2.29)

(3) \(x_1 < 0 \) and \(x_2 < 0 \). The potential of Eq. (2.25) has two minima at \(\rho^2 = 0 \) and \(\rho^2 = \infty \). Both of the \(h_1 \)-inflation and the \(h_2 \)-inflation are feasible, and which one is chosen depends on the initial conditions for the \(\rho \).
(4) $x_1 > 0$ and $x_2 > 0$. The potential of Eq. (2.25) has one minimum only at $\rho^2 = \frac{x_2^2}{x_1^2}$. As a result, the inflaton is a mixture of h_1 and h_2.

In this paper we focus on the pure Higgs inflation, namely h_1-inflation and h_2-inflation. For the h_1-inflation and h_2-inflation, the slow roll potentials of Eq. (2.28) and Eq. (2.29) do not depend on ξ_2 and ξ_1, respectively, and therefore we simply take $\xi_2 = 0$ for the h_1-inflation and $\xi_1 = 0$ for the h_2-inflation.

(1) h_1-inflation at $\rho^2 = 0$. Taking $\xi_2 = 0$ and replacing (h_1, h_2) with (ρ, φ), we can obtain the kinetic term from Eq. (2.17) and Eq. (2.18),

$$L_{kin-h_1} = -\frac{1}{2} \left(1 + \frac{\rho^2 + 1}{6\xi_1} \right) (\partial_\mu \varphi)^2 - \frac{\rho}{\sqrt{6\xi_1}} (\partial_\mu \varphi)(\partial_\mu \rho) - \frac{1}{2\xi_1} (\partial_\mu \rho)^2. \quad (2.30)$$

The potential of Eq. (2.25) is simplified as

$$V_{h_1} = \frac{\lambda_1 + \lambda_2 \rho^4 + 2\lambda_L \rho^2}{8\xi_1^2} \left(1 - e^{-2\varphi/\sqrt{6}} \right)^2. \quad (2.31)$$

For a large non-minimal coupling, $\xi_1 \gg 1$, the kinetic mixing term $\partial_\mu \varphi \partial_\mu \rho$ can be neglected, and the kinetic term for φ field is approximately canonical. The kinetic term for ρ field is non-canonical, and becomes canonically normalized by further field redefinition $\hat{\rho} = \frac{\rho}{\sqrt{\xi_1}}$ [38]. In the large-field limit for inflation, we can obtain the mass of the canonically normalized $\hat{\rho}$ from the potential of Eq. (2.31),

$$m_{\hat{\rho}}^2 = \frac{\lambda_L}{2\xi_1}, \quad (2.32)$$

which is required to be larger than the Hubble parameter $H^2 = \frac{\lambda_1}{\xi_1}$, leading to

$$\lambda_L > \frac{2\lambda_1}{\xi_1}. \quad (2.33)$$

The condition can be easily satisfied for a large ξ_1.

(2) h_2-inflation at $\rho^2 = \infty$. Taking $\xi_1 = 0$ and replacing (h_1, h_2) with (ρ, φ), we can obtain the kinetic term from Eq. (2.17) and Eq. (2.18),

$$L_{kin-h_2} = -\frac{1}{2} \left(1 + \frac{\rho^2 + 1}{6\xi_2^2 \rho^2} \right) (\partial_\mu \varphi)^2 + \frac{1}{\sqrt{6\xi_2^2 \rho^4}} (\partial_\mu \varphi)(\partial_\mu \rho) - \frac{1}{2\xi_2^2 \rho^4} (\partial_\mu \rho)^2. \quad (2.34)$$

The potential of Eq. (2.25) is simplified as

$$V_{h_2} = \frac{\lambda_1 + \lambda_2 \rho^4 + 2\lambda_L \rho^2}{8\xi_2^2 \rho^4} \left(1 - e^{-2\varphi/\sqrt{6}} \right)^2. \quad (2.35)$$

For $\xi_2 \gg 1$, the kinetic mixing term $\partial_\mu \varphi \partial_\mu \rho$ can be neglected, and the kinetic term for φ field is approximately canonical. The kinetic term for ρ field becomes canonically
normalized by further field redefinition $\hat{\rho} = \frac{1}{\sqrt{\xi \rho}}$ [38]. The mass of the canonically normalized $\hat{\rho}$ is obtained from the potential of Eq. (2.35),

$$m_{\hat{\rho}}^2 = \frac{\lambda L}{2 \xi_2},$$

which is required to be larger than the Hubble parameter $H^2 = \frac{\lambda_2}{\xi_2^2}$, leading to

$$\lambda_L > \frac{2 \lambda_2}{\xi_2}.$$ (2.37)

The condition can be easily satisfied for a large ξ_2.

Since the potential stability requires $\lambda_1 > 0$ and $\lambda_2 > 0$ as well as $\xi_1 > 0$ ($\xi_2 > 0$) for the h_1 (h_2)-inflation, Eq. (2.33) and Eq. (2.37) imply $\lambda_L > 0$ for the h_1-inflation and the h_2-inflation. The condition of $x_1 > 0$ and $x_2 < 0$ is naturally satisfied for the h_1-inflation with $\xi_2 = 0$. Similarly, $x_1 < 0$ and $x_2 > 0$ is satisfied for the h_2-inflation with $\xi_1 = 0$.

The slow roll parameters used to characterize the inflation dynamics are,

$$\epsilon(\varphi) = \frac{1}{2} \left(\frac{dV(\varphi)/d\varphi}{V(\varphi)} \right)^2, \quad \eta(\varphi) = \frac{d^2V(\varphi)/d\varphi^2}{V(\varphi)}.$$ (2.38)

The field value at the end of inflation φ_e is determined by $\epsilon = 1$, and the horizon exit value φ_* can be calculated by assuming an e-folding number between the two periods,

$$N = \int_{\varphi_0}^{\varphi_*} d\varphi \frac{1}{\sqrt{2\epsilon}}.$$ (2.39)

Taking $N = 60$ and the slow roll parameters at the φ_*, we calculate the inflationary observables of spectrum index n_s, the tensor to scalar ratio of r, and the scalar amplitude P_s,

$$n_s = 1 + 2 \eta - 6 \epsilon \mid_{\varphi_*} = 0.9678,$$ (2.40)

$$r = 16 \epsilon \mid_{\varphi_*} = 0.003,$$ (2.41)

$$P_s = \frac{V}{24\pi^2 \epsilon} \mid_{\varphi_*}. \quad (2.42)$$

The Planck collaboration reported constraints on the three inflation observables [39]:

$$n_s = 0.9649 \pm 0.0042,$$ (2.43)

$$r < 0.056,$$ (2.44)

$$P_s = (2.099 \pm 0.014) \times 10^{-9}. \quad (2.45)$$

The values of n_s and r are well consistent with the Plank bounds. The scalar amplitude P_s imposes very stringent constraint on λ_1 and ξ_1 for h_1-inflation and λ_2 and ξ_2 for h_2-inflation.
3 Inflation and relevant constraints at low energy

3.1 Numerical calculations

We take the light CP-even Higgs boson h as the SM-like Higgs, $m_h = 125$ GeV. The experimental data of $b \rightarrow s\gamma$ imposes stringent bound on the charged Higgs mass of the type-II 2HDM, $m_{H^\pm} > 570$ GeV [40, 41]. In the type-I model the bound of $b \rightarrow s\gamma$ can be sizably alleviated, and we take $m_{H^\pm} > 80$ GeV considering the constraints from search for Higgs at the LEP collider. The other key parameters are scanned over in the following ranges:

$$150 \text{GeV} < m_H < 2000 \text{GeV}, \quad m_A > 10 \text{GeV}, \quad 0.93 < |\sin(\beta - \alpha)| < 1,$$

$$1 < \tan \beta < 50 \text{ for type } -\text{I}, \quad 1 < \tan \beta < 15 \text{ for type } -\text{II}. \quad (3.1)$$

To perform the inflation condition, we run λ_i and m_{ij} from the electroweak scale to unitarity scale $\mu_U = \min(1/\xi_1, 1/\xi_2)$ via the two-loop renormalization group (RG) equations, which is implemented by 2HDME [42]. The theory is only well defined up to the scale $\mu_U = \min(1/\xi_1, 1/\xi_2)$ at which unitarity is violated by the WW scattering processes with exchange of graviton [43–51]. Therefore, additional new physics should be introduced at the unitarity scale μ_U to restore unitarity, which is beyond the scope of this paper. The new physics is generally assumed to not significantly affect the discussions in the previous section, but it is likely to affect the running of the relevant parameters above μ_U [38]. Due to uncertainties from new physics above μ_U, the running of the parameters during inflation cannot be reliably calculated [52–55]. Therefore, the running of the parameters above the unitarity scale μ_U are omitted, see e.g. [16, 18].

We impose the following theoretical constraints:

1. Perturbativity. To satisfy the perturbativity during the RG evolution, we impose the upper limit on the quartic coupling,

$$\lambda_i(Q) \leq 4\pi. \quad (3.2)$$

2. Vacuum stability. In order to ensure vacuum stability, the potential should be positive for large values of the fields, which requires

$$\lambda_1(Q) > 0, \quad \lambda_2(Q) > 0, \quad \lambda_3(Q) + \sqrt{\lambda_1(Q)\lambda_2(Q)} > 0,$$

$$\lambda_3(Q) + \lambda_4(Q) - |\lambda_5(Q)| + \sqrt{\lambda_1(Q)\lambda_2(Q)} > 0. \quad (3.3)$$

Here we take the RG improved potential where the parameters are replaced by their two-loop running couplings. Taking the type-II 2HDM as an example, the full one-loop effective potential can revive a large fraction of points which is ruled out by the vacuum stability of the pure tree-level potential [56, 57]. However, the results of the vacuum stability of the one-loop effective potential are essentially in agreement with the RG improved potential with the two-loop running couplings [56].
(3) Unitarity. To respect unitarity, the eigenvalues of the $2 \rightarrow 2$ scalar scattering matrix are imposed the following bounds [58, 59],

$$
\frac{3}{2}(\lambda_1(Q) + \lambda_2(Q)) \pm \sqrt{\frac{9}{4}(\lambda_1(Q) - \lambda_2(Q))^2 + (2\lambda_3(Q) + \lambda_4(Q))^2} \leq 8\pi,
$$

$$
\frac{1}{2}(\lambda_1(Q) + \lambda_2(Q)) \pm \sqrt{\frac{1}{4}(\lambda_1(Q) - \lambda_2(Q))^2 + \lambda_4(Q)^2} \leq 8\pi,
$$

$$
\frac{1}{2}(\lambda_1(Q) + \lambda_2(Q)) \pm \sqrt{\frac{1}{4}(\lambda_1(Q) - \lambda_2(Q))^2 + \lambda_5(Q)^2} \leq 8\pi,
$$

$$
\lambda_3(Q) \pm \lambda_4(Q) \leq 8\pi,
$$

$$
\lambda_3(Q) \pm \lambda_5(Q) \leq 8\pi.
$$

(3.4)

In the following discussions, λ_i is used to denote the quartic coupling at electroweak scale, and the corresponding quartic coupling at unitarity scale is expressed by $\overline{\lambda}_i$. In addition to the inflation condition and theoretical constraints, we consider the following observables at the low energy:

(1) The oblique parameters. The S, T, U parameters can give strong constraints on the Higgs mass spectrum of 2HDM. We employ 2HDMC [60] to calculate the S, T, U parameters, and fit the results of Ref. [61],

$$
S = 0.02 \pm 0.10, \quad T = 0.07 \pm 0.12, \quad U = 0.00 \pm 0.09,
$$

(3.5)

with the correlation coefficients of

$$
\rho_{ST} = 0.92, \quad \rho_{SU} = -0.66, \quad \rho_{TU} = -0.86.
$$

(3.6)

(2) The flavor observables and R_b. SuperIso-3.4 [62] is used to calculate $Br(B \rightarrow X_s\gamma)$, and Δm_{Bs} is calculated following the formulas in [63]. Besides, following the formulas in [64, 65] we calculate R_b of bottom quarks produced in Z decays.

(3) The global fit to the 125 GeV Higgs signal data. We employ the version 2.0 of Lilith [66, 67] to perform the χ^2 calculation for the signal strengths of the 125 GeV Higgs combining the LHC run-I and run-II data. We require $\chi^2 - \chi^2_{\text{min}} \leq 6.18$ with χ^2_{min} being the minimum of χ^2. These surviving samples mean to be within the 2σ range in any two-dimension plane of the model parameters explaining the Higgs data.

(4) The exclusion limits of searches for additional Higgs bosons. HiggsBounds-4.3.1 [68, 69] is employed to perform the exclusion constraints from the neutral and charged Higgs searches at LEP at 95% confidence level.

We use SusHi to calculate the cross sections for H and A in the gluon fusion and $b\bar{b}$-associated production at NNLO in QCD [70]. The cross sections of H via vector boson fusion process are deduced from results of the LHC Higgs Cross Section Working
Table 1

Channel	Experiment	Mass range [GeV]	Luminosity
$gg/bb \to H/A \to \tau^+\tau^-$	CMS 13 TeV [73]	200-2500	36.1 fb$^{-1}$
$gg/bb \to H/A \to \tau^+\tau^-$	ATLAS 13 TeV [74]	200-2500	139 fb$^{-1}$
$gg \to H/A \to t\bar{t}$	CMS 13 TeV [75]	400-750	35.9 fb$^{-1}$
$gg \to H/A \to H/A$	CMS 13 TeV [76]	70-110	35.9 fb$^{-1}$
$VV \to H \to \gamma\gamma + VH$	CMS 13 TeV [76]	70-110	35.9 fb$^{-1}$
$gg/VV \to H \to W^+W^-$ ($e\nu\mu\nu$)	CMS 13 TeV [77]	200-3000	36.1 fb$^{-1}$
$gg/VV \to H \to W^+W^-$ ($\ell\nu\nu\nu$)	CMS 13 TeV [78]	200-3000	36.1 fb$^{-1}$

Table 2

Channel	Experiment	Mass range [GeV]	Luminosity
$gg/bb \to A \to hZ \to (bb)(b\bar{b})Z$	CMS 13 TeV [83]	200-3000	36.1 fb$^{-1}$
$gg/bb \to A \to hZ \to (bb)(b\bar{b})Z$	CMS 13 TeV [84]	200-3000	36.1 fb$^{-1}$
$gg/bb \to A \to hZ \to (bb)(b\bar{b})Z$	CMS 13 TeV [85]	200-3000	36.1 fb$^{-1}$
$gg/bb \to A \to hZ \to (bb)(b\bar{b})Z$	CMS 13 TeV [86]	200-3000	36.1 fb$^{-1}$
$gg \to A \to hZ \to (\tau^+\tau^-)(\ell\ell)$	CMS 13 TeV [87]	1000-3000	139 fb$^{-1}$
$pp \to h \to AA \to (bb)(\tau^+\tau^-)$	CMS 13 TeV [88]	750-3000	35.9 fb$^{-1}$
$pp \to h \to AA \to (bb)(\tau^+\tau^-)$	CMS 13 TeV [89]	250-900	35.9 fb$^{-1}$
$pp \to h \to AA \to (bb)(\tau^+\tau^-)$	CMS 13 TeV [90]	250-900	35.9 fb$^{-1}$
$pp \to h \to AA \to (bb)(\tau^+\tau^-)$	CMS 13 TeV [91]	250-900	35.9 fb$^{-1}$
$pp \to h \to AA \to (bb)(\tau^+\tau^-)$	CMS 13 TeV [92]	250-900	35.9 fb$^{-1}$

Group [71]. The top quark loop and b-quark loop respectively have destructive and constructive interference contributions to $gg \to A$ production in the type-II and type-I 2HDMs. Therefore, the contributions of top quark loop always dominate over those of b-quark loop in the type-I model. In the type-II model, the cross section of $gg \to A$ decreases with an increase of tan β, reaches the minimum value for the moderate tan β, and is dominated by the b-quark loop for enough large tan β [72]. The cross section of $gg \to H$ depends on $\sin(\beta - \alpha)$ in addition to tan β and m_H. 2HDMC is employed to calculate the branching ratios of the various decay modes of H and A.

We consider the searches for additional Higgs bosons at LHC, including $h \to AA$, $H/A \to \tau^+\tau^-, t\bar{t}$, $H/A \to \gamma\gamma$, VV, $H \to hh$, $A \to hZ$, HZ, $H \to AZ$. In Tables 1 and 2, we list the ATLAS and CMS analyses at the 13 TeV LHC with more than 35.9 fb$^{-1}$ integrated luminosity data. The analyses at the 8 TeV LHC and 13 TeV with less than
Figure 1. For the type-I model, scatter plots of λ_{12345} and λ_2 satisfying the constraints of pre-inflation and h_2-inflation.

35.9 fb$^{-1}$ integrated luminosity data are also included, which may be found in Ref. [33].

3.2 Results and discussions

3.2.1 Higgs inflation in type-I 2HDM

In Fig. 1, we impose the constraints of "pre-inflation" (denoting theoretical constraints, the oblique parameters, the signal data of the 125 GeV Higgs), and show the surviving samples achieving the h_2-inflation in the type-I 2HDM. The vacuum stability, perturbativity, and unitarity impose a stringent upper bound on λ_{12345} (λ_{12345} \equiv $|\lambda_1| + |\lambda_2| + |\lambda_3| + |\lambda_4| + |\lambda_5|$) at the electroweak scale, $\lambda_{12345} < 2.5$. If the quartic couplings at electroweak scale is too large, although they may satisfy the theoretical constraints at electroweak scale, the theoretical constraints at the high energy scale will not be satisfied with their evolution.

In Fig. 2, we comparatively show the surviving samples satisfying the oblique parameters, the signal data of the 125 GeV Higgs, and theoretical constraints at the electroweak scale, and those satisfying the constraints of pre-inflation and h_2-inflation. From Fig. 2, we find that the inflation can be achieved in whole range of 150 GeV < m_H < 2 TeV, and favors a small mass splitting between m_A (m_{H^\pm}) and m_H. The mass splitting is favored to decrease with an increase of m_H. m_A (m_{H^\pm}) $- m_H$ is favored to vary from -100 GeV to 70 GeV for a small m_H, and H, A, H^\pm tend to be nearly degenerate in mass for m_H approaching to 2 TeV. Schematically, the squared masses of H, A, and H^\pm can be given as $[96, 97]$,

$$m_\phi^2 \approx y_\phi M^2 + f_\phi(\lambda_i)v^2 + O(v^4/M^2),$$

(3.7)
Figure 2. For the type-I model, the bullets (green) satisfying the oblique parameters, the signal data of the 125 GeV Higgs, and theoretical constraints at the electroweak scale. The squares (red) satisfying the constraints of pre-inflation and h_2-inflation.

where $M^2 = \frac{m_{12}^2}{c_\beta s_\beta}$ with $s_\beta \equiv \sin \beta$ and $c_\beta \equiv \cos \beta$. $y_\phi = 1$ for A, H^\pm, and $y_\phi = \sin(\beta - \alpha)$ for H. Since the theoretical constraints require small λ_i, which lead to small mass splitting between H, A, and H^\pm according to Eq. (3.7).

The lower panel of Fig. 2 show that m_{12}^2 is favored to have small value and λ_2 is favored to be around 0.26 for a large $\tan \beta$. The main reason is from the theoretical constraints. The vacuum stability requires,

$$\lambda_1 > 0, \quad \lambda_2 > 0, \quad \lambda_3 > -\sqrt{\lambda_1 \lambda_2}, \quad \lambda_3 + \lambda_4 - | \lambda_5 | > -\sqrt{\lambda_1 \lambda_2},$$ \hspace{1cm} (3.8)
with [98, 99]

\[
v^2 \lambda_1 = \frac{m_H^2 c_\alpha^2 + m_H^2 s_\alpha^2 - m_{12}^2 t_\beta}{c_\beta^2}, \quad v^2 \lambda_2 = \frac{m_H^2 s_\alpha^2 + m_H^2 c_\alpha^2 - m_{12}^2 t_\beta^{-1}}{s_\beta^2},
\]

\[
v^2 \lambda_3 = \frac{(m_H^2 - m_h^2) s_\alpha c_\alpha + 2 m_{12}^2 s_\beta c_\beta - m_{12}^2}{s_\beta c_\beta}, \quad v^2 \lambda_4 = \frac{(m_A^2 - 2 m_{12}^2) s_\beta c_\beta + m_{12}^2}{s_\beta c_\beta},
\]

\[
v^2 \lambda_5 = -\frac{m_A^2 s_\beta c_\beta + m_{12}^2}{s_\beta c_\beta},
\]

(3.9)

where \(t_\beta \equiv \tan \beta, c_\alpha \equiv \cos \alpha, \) and \(s_\alpha \equiv \sin \alpha. \) When \(\sin(\beta - \alpha) \) is very close to 1.0, we can approximately obtain the following relations,

\[
v^2 \lambda_1 = m_h^2 - \frac{t_\beta^3 (m_{12}^2 - m_H^2 s_\beta c_\beta)}{s_\beta^2},
\]

\[
v^2 \lambda_2 = m_h^2 - \frac{(m_{12}^2 - m_H^2 s_\beta c_\beta)}{t_\beta s_\beta^2},
\]

\[
v^2 \lambda_3 = m_h^2 + 2 m_{12}^2 - m_H^2 - \frac{t_\beta (m_{12}^2 - m_H^2 s_\beta c_\beta)}{s_\beta^2},
\]

\[
v^2 \lambda_4 = m_A^2 - 2 m_{12}^2 + m_H^2 + \frac{t_\beta (m_{12}^2 - m_H^2 s_\beta c_\beta)}{s_\beta^2},
\]

\[
v^2 \lambda_5 = m_H^2 - m_A^2 + \frac{t_\beta (m_{12}^2 - m_H^2 s_\beta c_\beta)}{s_\beta^2}.
\]

(3.10)

For a large \(\tan \beta, \) the first condition of Eq. (3.8) favors \(m_{12}^2 - m_H^2 s_\beta c_\beta \rightarrow 0. \) As a result, we deduce \(\lambda_2 \approx 0.26 \) from the second equation of Eq. (3.10).

In Fig. 3, we show the constraints of the direct searches for Higgs bosons at the LHC on the samples achieving the \(h_2 \)-inflation in the type-I model. The \(H/A \rightarrow VV, \gamma \gamma, H/A \rightarrow \tau^+ \tau^-, \) \(H \rightarrow hh, \) and \(A \rightarrow hZ \) channels can exclude many points achieving \(h_2 \)-inflation in the region of \(m_A \) \((m_H) < 450 \) GeV. However, \(\tan \beta \) is allowed to take large enough to suppress the production cross sections of \(H \) and \(A \) at the LHC. As a result, the constraints of these channels can be satisfied for a large \(\tan \beta. \) Since the signal data of the 125 GeV Higgs impose very stringent bound on the \(hAA \) coupling, the direct searches for \(h \rightarrow AA \) channels at the LHC fail to constrain the parameter space. Because we take \(\tan \beta > 1, \) \(H/A \rightarrow t\bar{t} \) do not impose any constraints. The inflation favors a small mass splitting between \(H \) and \(A, \) which leads that there are no constraints from \(H \rightarrow AZ \) and \(A \rightarrow HZ \) channels.

After imposing various relevant theoretical and experimental constraints, we project the surviving samples achieving the \(h_2 \)-inflation on the planes of \(\xi_2 \) versus \(\lambda_2 \) and \(m_A - m_H \) in Fig. 4. The non-minimal coupling parameter \(\xi_2 \) can be as low as 1000 for \(\lambda_2 \approx 0.26 \) and a very small mass splitting between \(H \) and \(A. \) For such case, the \(\lambda_2 \) sizably decreases via RG running up to the unitarity scale, which leads to \(\xi_2 \) around 1000.

Now we discuss the \(h_1 \)-inflation scenario in type-I 2HDM. Except for the inflation condition, the requirement of theory and experimental observables for \(h_1 \)-inflation are the same.
Figure 3. In the type-I model, all the surviving samples satisfies the constraints of pre-inflation, h_2-inflation, the exclusion limits from searches for Higgs at LEP, the flavor observables and R_b. The pluses (blue), diamonds (cyan), crosses (red), and squares (black) are respectively excluded by $H/A \rightarrow VV, \gamma \gamma$, $H/A \rightarrow \tau^+ \tau^-$, $H \rightarrow hh$, and $A \rightarrow hZ$ channels at the LHC. The bullets (green) are allowed by various LHC direct searches.

as those of h_2-inflation. In Fig. 5, we show the surviving samples achieving the h_1-inflation and satisfying various theoretical and experimental constraints. Similar to the h_2-inflation, the h_1-inflation favors $m_A (m_{H^\pm}) - m_H$ to be nearly in the range of -100 GeV and 70 GeV, and m_A, m_{H^\pm}, m_H tend to be nearly degenerate with an increase of m_H. The non-minimal coupling parameter ξ_1 can be as low as 10000 for small λ_1 and $m_A - m_H$.
In the type-I model, scatter plots of ξ_2 versus λ_2 and ξ_2 versus $m_A - m_H$ satisfying the constraints of pre-inflation, h_2-inflation, the flavor observables, the exclusion limits from searches for Higgs at LEP, the flavor observables, R_b, and the direct searches at the LHC.

3.2.2 Higgs inflation in type-II 2HDM

In Fig. 6 and Fig. 7, we impose the constraints of pre-inflation, and show the surviving samples achieving the h_2-inflation in the type-II 2HDM. Similar to type-I model, theoretical constraints require $\lambda_{12345} < 2.5$, and the h_2-inflation favors λ_2 to be around 0.26 for a large $\tan \beta$. A, H^\pm, and H are required to have small mass splitting, $|m_A(m_{H^\pm}) - m_H| < 20$ GeV, and m_H is favored to be larger than 560 GeV since the experimental value of $b \to s\gamma$ restricts $m_{H^\pm} > 570$ GeV. The mass splitting of A, H^\pm, and H of the type-II model allowed by h_2-inflation is much smaller than that of the type-I model since m_H can be as low as 150 GeV in the type-I model.

The lower-right panel of Fig. 7 shows that the surviving samples satisfying the constraints at electroweak scale are located in two different regions, i.e. the SM-like coupling region and wrong sign Yukawa coupling region. For the latter, $\sin(\beta - \alpha)$ is larger than 0 and has a sizable deviation from 1.0. For the former, $|\sin(\beta - \alpha)|$ is very closed to 1.0. Therefore, the factor of $s_\alpha c_\alpha$ in the wrong sign Yukawa coupling region is favored to have opposite sign from that of the SM-like coupling region. According to the third equation of Eq. (3.9), λ_3 in the wrong sign Yukawa coupling region λ_{12345} is much larger than 2.5, which breaks the theoretical constraints at high energy scale and does not achieve the h_2-inflation.

In Fig. 8, we show the constraints of the direct searches for Higgs bosons at the LHC on the samples achieving the h_2-inflation in the type-II model. The h_2-inflation favors the surviving samples with $m_H(m_A) > 560$ GeV and $|\sin(\beta - \alpha)| \approx 1.0$, as shown in Fig. 7. The HVV, Hhh, and AhZ couplings decrease with an increase of $|\sin(\beta - \alpha)|$. Therefore, the
Figure 5. In the type-I model, all the surviving samples satisfy the constraints of pre-inflation, h_1-inflation, the exclusion limits from searches for Higgs at LEP, the flavor observables, R_b, and the direct searches at the LHC.

$H/A \rightarrow VV, \gamma\gamma, H \rightarrow hh$, and $A \rightarrow hZ$ channels do not exclude those samples. Similar to reason for the type-I model, the $H/A \rightarrow t\bar{t}, H \rightarrow AZ$, and $A \rightarrow HZ$ channels do not impose any constraints on the parameter space. Different from the type-I model, the down-type quark and lepton Yukawa couplings of extra Higgs bosons can be sizably enhanced by a large $\tan \beta$. Therefore, the $b\bar{b} \rightarrow H/A \rightarrow \tau^+\tau^-$ channels can impose a lower bound on $\tan \beta$. For example, $\tan \beta > 10$ for $m_A (m_H) = 950$ GeV.

After imposing various relevant theoretical and experimental constraints, we project the surviving samples achieving the h_2-inflation in the type-II model on the planes of ξ_2 versus λ_2 and $m_A - m_H$ in Fig. 9. Similar to type-I model, the non-minimal coupling parameter ξ_2 can be closed to 1000 for $\lambda_2 \approx 0.26$ and a very small mass splitting between H and A.

Next we show the surviving samples achieving the h_1-inflation in the type-II model and satisfying various theoretical and experimental constraints in Fig. 10. Similar to the h_2-
Figure 6. For the type-II model, scatter plots of λ_{12345} and λ_2 satisfying the constraints of pre-inflation and h_2-inflation.

Figure 7. For the type-II model, the bullets (green) satisfying the oblique parameters, the signal data of the 125 GeV Higgs, and theoretical constraints at the electroweak scale. The squares (red) satisfying the constraints of pre-inflation and h_2-inflation.

inflation, the h_1-inflation favors the mass splitting between m_A (m_{H^\pm}) and m_H to be approximately in the range of -20 GeV and 20 GeV, and they tend to be nearly degenerate with an
Figure 8. In the type-II model, all the surviving samples satisfy the constraints of pre-inflation, h_2-inflation, the exclusion limits from searches for Higgs at LEP, the flavor observables, and R_b. The diamonds (cyan) are excluded by $H/A \rightarrow \tau^+\tau^-$ channels at the LHC, and the bullets (green) are allowed by various LHC direct searches.

Figure 9. In the type-II model, scatter plots of ξ_2 and λ_2 satisfying the constraints of pre-inflation, h_2-inflation, the exclusion limits from searches for Higgs at LEP, the flavor observables, R_b, and the direct searches at the LHC.

increase of m_H. Similar to the type-I model, the non-minimal coupling parameter ξ_1 can be as low as 10000 for small λ_1 and $m_A - m_H$.

4 Electroweak phase transition

Now we examine the FOEWPT in the parameter space achieving Higgs inflation in type-I and type-II 2HDMs. For the FOEWPT, the two degenerate minima will be at different points in field space and the critical temperature T_c, and be separated by a potential barrier.
Figure 10. In the type-II model, all the surviving samples satisfies the constraints of pre-inflation, h_1-inflation, the exclusion limits from searches for Higgs at LEP, the flavor observables, R_b, and the direct searches at the LHC.

4.1 The thermal effective potential

We first take ρ_1 and ρ_2 as the field configurations, and obtain the field dependent masses of the scalars (h, H, A, H^\pm), the Goldstone boson (G, G^\pm), the gauge boson, and fermions. The masses of scalars are

\[\hat{m}_{h,H}^2 = \text{eigenvalues}(\hat{M}_B^2), \]
\[\hat{m}_{G,A}^2 = \text{eigenvalues}(\hat{M}_1^2), \]
\[\hat{m}_{G^\pm,H^\pm}^2 = \text{eigenvalues}(\hat{M}_C^2), \]

\[\text{eigenvalues}(\hat{M}_1^2), \]
\[\text{eigenvalues}(\hat{M}_B^2), \]
\[\text{eigenvalues}(\hat{M}_C^2), \]
\[\overrightarrow{M}_{P11} = \frac{3\lambda_1}{2} \rho_1^2 + \frac{\lambda_{345}}{2} \rho_2^2 + m_{12}^2 t_\beta - \frac{\lambda_1}{2} v^2 c_\beta^2 - \frac{\lambda_{345} v^2 s_\beta^2}{2} \]
\[\overrightarrow{M}_{P22} = \frac{3\lambda_2}{2} \rho_2^2 + \frac{\lambda_{345}}{2} \rho_1^2 + m_{12}^2 t_\beta - \frac{\lambda_2}{2} v^2 s_\beta^2 - \frac{\lambda_{345} v^2 c_\beta^2}{2} \]
\[\overrightarrow{M}_{P12} = \overrightarrow{M}_{P21} = \lambda_{345} \rho_1 \rho_2 - m_{12}^2 \]
\[\overrightarrow{M}_{A11} = \frac{\lambda_1}{2} \rho_1^2 + m_{12}^2 t_\beta - \frac{\lambda_1}{2} v^2 c_\beta^2 - \frac{\lambda_{345} v^2 s_\beta^2}{2} + \frac{(\lambda_3 + \lambda_4 - \lambda_5)}{2} \rho_2^2 \]
\[\overrightarrow{M}_{A22} = \frac{\lambda_2}{2} \rho_2^2 + m_{12}^2 t_\beta - \frac{\lambda_2}{2} v^2 s_\beta^2 - \frac{\lambda_{345} v^2 c_\beta^2}{2} + \frac{(\lambda_3 + \lambda_4 - \lambda_5)}{2} \rho_1^2 \]
\[\overrightarrow{M}_{A12} = \overrightarrow{M}_{A21} = \lambda_5 \rho_1 \rho_2 - m_{12}^2 \]
\[\overrightarrow{M}_{C11} = \frac{\lambda_1}{2} \rho_1^2 + m_{12}^2 t_\beta - \frac{\lambda_1}{2} v^2 c_\beta^2 - \frac{\lambda_{345} v^2 s_\beta^2}{2} + \frac{\lambda_3}{2} \rho_2^2 \]
\[\overrightarrow{M}_{C22} = \frac{\lambda_2}{2} \rho_2^2 + m_{12}^2 t_\beta - \frac{\lambda_2}{2} v^2 s_\beta^2 - \frac{\lambda_{345} v^2 c_\beta^2}{2} + \frac{\lambda_3}{2} \rho_1^2 \]
\[\overrightarrow{M}_{C12} = \overrightarrow{M}_{C21} = \frac{(\lambda_4 + \lambda_5)}{2} \rho_1 \rho_2 - m_{12}^2, \quad (4.4) \]

where \(\lambda_{345} = \lambda_3 + \lambda_4 + \lambda_5 \).

The masses of light fermions may be safely neglected, and the masses of top quark and bottom quark are

\[\hat{m}_t^2 = \frac{1}{2} y_t^2 \rho_2^2 / s_\beta^2, \quad \hat{m}_b^2 = \frac{1}{2} y_b^2 \rho_2^2 / s_\beta^2 \quad \text{for type } - I, \]
\[\hat{m}_t^2 = \frac{1}{2} y_t^2 \rho_2^2 / s_\beta^2, \quad \hat{m}_b^2 = \frac{1}{2} y_b^2 \rho_1^2 / c_\beta^2 \quad \text{for type } - II, \quad (4.5) \]

with \(y_t = \frac{\sqrt{2} m_t}{v} \) and \(y_b = \frac{\sqrt{2} m_b}{v} \). The masses of gauge boson are

\[\hat{m}_{W^\pm}^2 = \frac{1}{4} g^2 (\rho_1^2 + \rho_2^2), \]
\[\hat{m}_Z^2 = \frac{1}{4} (g^2 + g'^2) (\rho_1^2 + \rho_2^2), \]
\[\hat{m}_\gamma^2 = 0. \quad (4.6) \]

We take Landau gauge to calculate the thermal effective potential \(V_{eff} \),

\[V_{eff}(\rho_1, \rho_2, T) = V_0(\rho_1, \rho_2) + V_{CW}(\rho_1, \rho_2) + V_{CT}(\rho_1, \rho_2) + V_T(\rho_1, \rho_2, T) + V_{ring}(\rho_1, \rho_2, T). \quad (4.7) \]

Where \(V_0 \) is the tree-level potential, \(V_{CW} \) is the Coleman-Weinberg potential, \(V_{CT} \) is the counter term, \(V_T \) is the thermal correction, and \(V_{ring} \) is the resummed daisy corrections.
The tree-level potential V_0 is
\begin{align}
V_0(\rho_1, \rho_2) = & \left[\frac{1}{2} m_{12}^2 t_\beta - \frac{1}{4} \lambda_1 v^2 c_\beta - \frac{1}{4} \lambda_{345} v^2 \right] \rho_1^2 \\
+ & \left[\frac{1}{2} m_{12}^2 \frac{1}{12} - \frac{1}{4} \lambda_2 v^2 s_\beta - \frac{1}{4} \lambda_{345} v^2 c_\beta \right] \rho_2^2 \\
+ & \frac{\lambda_1}{8} \rho_1^4 + \frac{\lambda_2}{8} \rho_2^4 - m_{12}^2 \rho_1 \rho_2 + \frac{1}{4} \lambda_{345} \rho_1^2 \rho_2^2. \tag{4.8}
\end{align}

The Coleman-Weinberg potential in the \(\overline{\text{MS}} \) scheme at 1-loop level is \([100] \):
\begin{align}
V_{\text{CW}}(\rho_1, \rho_2) = & \sum_i (-1)^{2s_i} n_i \hat{m}_i^2(\rho_1, \rho_2) \\
& \times \frac{1}{64 \pi^2} \left[\ln \hat{m}_i^2(\rho_1, \rho_2) - C_i \right], \tag{4.9}
\end{align}
with $i = h, H, A, H^\pm, G, G^\pm, W^\pm, Z, t, b$. s_i is the spin of particle i and Q is a renormalization scale with $Q^2 = v^2$. The constants $C_i = \frac{3}{2}$ for scalars or fermions and $C_i = \frac{6}{5}$ for gauge bosons. n_i is the number of degree of freedom,
\begin{align*}
n_h = n_H = n_G = n_A = 1, \quad n_{H^\pm} = n_{G^\pm} = 2, \\
n_{W^\pm} = 6, \quad n_Z = 3, \quad n_t = n_b = 12. \tag{4.10}
\end{align*}

The V_{CW} term can slightly change the minimization conditions of scalar potential in Eq. (4.7) and the CP-even mass matrix. To maintain the minimization conditions at $T=0$, we need add the counter term
\begin{align}
V_{\text{CT}}(\rho_1, \rho_2) = & \delta m_1^2 \rho_1^2 + \delta m_2^2 \rho_2^2 + \delta \lambda_1 \rho_1^4 + \delta \lambda_{12} \rho_1^2 \rho_2^2 + \delta \lambda_2 \rho_2^4. \tag{4.11}
\end{align}
The relevant coefficients are determined by
\begin{align}
\frac{\partial V_{\text{CT}}}{\partial \rho_1} = & -\frac{\partial V_{\text{CW}}}{\partial \rho_1}, \quad \frac{\partial V_{\text{CT}}}{\partial \rho_2} = -\frac{\partial V_{\text{CW}}}{\partial \rho_2}, \tag{4.12}
\frac{\partial^2 V_{\text{CT}}}{\partial \rho_1 \partial \rho_1} = & -\frac{\partial^2 V_{\text{CW}}}{\partial \rho_1 \partial \rho_1}, \quad \frac{\partial^2 V_{\text{CT}}}{\partial \rho_1 \partial \rho_2} = -\frac{\partial^2 V_{\text{CW}}}{\partial \rho_1 \partial \rho_2}, \quad \frac{\partial^2 V_{\text{CT}}}{\partial \rho_2 \partial \rho_2} = -\frac{\partial^2 V_{\text{CW}}}{\partial \rho_2 \partial \rho_2}, \tag{4.13}
\end{align}
which are calculated at the electroweak minimum of $\rho_1 = v c_\beta$ and $\rho_2 = v s_\beta$.

It is a well-known problem that the vanishing Goldstone masses at $T = 0$ in the Landau gauge will lead to an infrared (IR) divergence due to the second derivative present in our renormalization conditions. To fix the divergence problem, we take an IR cut-off at $m_{IR}^2 = m_h^2$ for the Goldstone masses of the divergent terms, which gives a good approximation to the exact procedure of on-shell renormalization, as discussed in [29].

The thermal contributions V_T is \([101]\]
\begin{align}
V_{\text{th}}(\rho_1, \rho_2, T) = & \frac{T^4}{2 \pi^2} \sum_i n_i J_{B,F} \left(\hat{m}_i^2(\rho_1, \rho_2) \right), \tag{4.14}
\end{align}
where \(i = h, H, A, H^\pm, G, G^\pm, W^\pm, Z, t, b \), and the functions \(J_{B,F} \) are

\[
J_{B,F}(y) = \pm \int_0^\infty dx \, x^2 \ln \left[1 + \exp \left(-\sqrt{x^2 + y} \right) \right].
\] (4.15)

The thermal corrections with resumed ring diagrams are \([102, 103]\)

\[
V_{\text{ring}}(\rho_1, \rho_2, T) = -\frac{T}{12\pi} \sum_i n_i \left[(\bar{M}_i^2(\rho_1, \rho_2, T))^\frac{3}{2} - (\hat{m}_i^2(\rho_1, \rho_2, T))^\frac{3}{2} \right],
\] (4.16)

with \(i = h, H, A, H^\pm, G, G^\pm, W^\pm, L, Z_L, \gamma_L \). The \(W^\pm_L, Z_L, \) and \(\gamma_L \) are the longitudinal gauge bosons with \(n_{W^\pm_L} = 2, n_{Z_L} = n_{\gamma_L} = 1 \). The thermal Debye masses \(\bar{M}_i^2(\rho_1, \rho_2, T) \) are the eigenvalues of the full mass matrix,

\[
\bar{M}_i^2(\rho_1, \rho_2, T) = \text{eigenvalues} \left[\bar{\mathcal{M}}_X^2(\rho_1, \rho_2) + \Pi_X(T) \right],
\] (4.17)

with \(X = P, A, C \). \(\Pi_X \) are

\[
\Pi_{P11} = \left[\frac{9g^2}{2} + \frac{3g'^2}{2} + 6\lambda_1 + 4\lambda_3 + 2\lambda_4 \right] \frac{T^2}{24} \text{ for type } -I
\]
\[
\Pi_{P22} = \left[\frac{9g^2}{2} + \frac{3g'^2}{2} + \frac{6y_1^2 + 6y_2^2}{s_\beta^2} + 6\lambda_2 + 4\lambda_3 + 2\lambda_4 \right] \frac{T^2}{24} \text{ for type } -I
\]
\[
\Pi_{P11} = \left[\frac{9g^2}{2} + \frac{3g'^2}{2} + \frac{6y_2^2}{c_\beta^2} + 6\lambda_1 + 4\lambda_3 + 2\lambda_4 \right] \frac{T^2}{24} \text{ for type } -II
\]
\[
\Pi_{P22} = \left[\frac{9g^2}{2} + \frac{3g'^2}{2} + \frac{6y_1^2}{s_\beta^2} + 6\lambda_2 + 4\lambda_3 + 2\lambda_4 \right] \frac{T^2}{24} \text{ for type } -II
\]
\[
\Pi_{A11} = \Pi_{C11} = \Pi_{P11}
\]
\[
\Pi_{A22} = \Pi_{C22} = \Pi_{P22}
\]
\[
\Pi_{A12} = \Pi_{A21} = \Pi_{C12} = \Pi_{C21} = \Pi_{P12} = \Pi_{P21} = 0.
\] (4.18)

The physical mass of the longitudinally polarized \(W \) boson is

\[
\bar{M}_{W^\pm_L}^2 = \frac{1}{4}g^2(\rho_1^2 + \rho_2^2) + 2g^2T^2.
\] (4.19)

The physical mass of the longitudinally polarized \(Z \) and \(\gamma \) boson

\[
\bar{M}_{Z_L,\gamma_L}^2 = \frac{1}{8}(g^2 + g'^2)(\rho_1^2 + \rho_2^2) + (g^2 + g'^2)T^2 \pm \Delta,
\] (4.20)

with

\[
\Delta^2 = \frac{1}{64}(g^2 + g'^2)(\rho_1^2 + \rho_2^2 + 8T^2)^2 - g^2g'^2T^2(\rho_1^2 + \rho_2^2 + 4T^2).
\] (4.21)
4.2 Results and discussions

The strength of EWPT is quantified as

\[\xi_c = \frac{v_c}{T_c}, \]

(4.22)

where \(v_c = \sqrt{\langle \rho_1 \rangle^2 + \langle \rho_2 \rangle^2} \) at critical temperature \(T_c \). In order to avoid washing out the baryon number generated during the phase transition, a strongly FOEWPT is demanded and the conventional condition is \(\xi_c \geq 1 \). We use the numerical package CosmoTransitions [104] to analyze the phase transition.

We examine whether the FOEWPT can be achieved in the parameter space of the type-I and type-II models achieving the \(h_2 \)-inflation and \(h_1 \)-inflation and satisfying various relevant theoretical and experimental constraints. We find some surviving samples which can achieve a FOEWPT, and these samples are projected in Fig. 11. From Fig. 11, we find that \(\xi_c \) is always smaller than 0.17 although a FOEWPT can be achieved in the type-I and type-II models. The thermal correction \(V_T \) and the resummed daisy correction \(V_{ring} \) give the cubic terms of \(\phi_{1,2} \) proportional to \(T \), which play key roles in generating a potential barrier and achieving the FOEWPT. Since these corrections are at one-loop level, a strongly FOEWPT requires large \(\lambda_i \). However, the Higgs inflation favors small \(\lambda_i \), which leads that it is difficult to achieve the strongly FOEWPT and Higgs inflation simultaneously.

5 Conclusion

We study the Higgs inflation, EWPT, and the Higgs searches at the LHC in the type-I and type-II 2HDMs with non-minimally couplings to gravity. Imposing relevant theoretical and experimental constraints, we find that the Higgs inflation strongly restricts the mass splitting.
between A, H^\pm, and H, and the mass splitting tends to decrease with increasing of their masses. In the type-I model, $m_A (m_{H^\pm}) - m_H$ is allowed to vary from -100 GeV to 70 GeV for m_H around 150 GeV. Combining the constraints of the Higgs searches at the LHC and the flavor observables, the Higgs inflation requires $| m_A (m_{H^\pm}) - m_H | < 20$ GeV for the type-II model. The direct searches for Higgs at the LHC can exclude many points achieving Higgs inflation in the region of $m_H (m_A) < 450$ GeV in the type-I model, and impose a lower bound on $\tan \beta$ for the type-II model. Because of the theoretical constraints, the Higgs inflation disfavors the wrong sign Yukawa coupling region of type-II 2HDM. In the region achieving the Higgs inflation, the type-I and type-II 2HDMs can achieve a FOEWPT, but v_c/T_c is much smaller than 1.0.

Acknowledgment

We thank Bin Zhu for helpful discussions. This work was supported by the National Natural Science Foundation of China under grant 11975013. This work is also supported by the Project of Shandong Province Higher Educational Science and Technology Program under Grants No. 2019KJJ007.

References

[1] A. H. Guth, Phys. Rev. D 23, 347 (1981).
[2] A. A. Starobinsky, Phys. Lett. 91B, 99 (1980).
[3] A. D. Linde, Phys. Lett. 108B, 389 (1982).
[4] D. Salopek, J. Bond and J. M. Bardeen, Phys. Rev. D 40, (1989) 1753.
[5] F. L. Bezrukov and M. Shaposhnikov, Phys. Lett. B 659, 703 (2008).
[6] F. Bezrukov, A. Magnin, M. Shaposhnikov, S. Sibiryakov, JHEP 1101, 016 (2011).
[7] ATLAS Collaboration, G. Aad et al., Phys. Lett. B 716, 1 (2012).
[8] CMS Collaboration, S. Chatrchyan et al., Phys. Lett. B 716, 30 (2012).
[9] N. Cabibbo, L. Maiani, G. Parisi and R. Petronzio, Nucl. Phys. B 158, (1979) 295.
[10] M. Sher, Phys. Rept. 179, (1989) 273.
[11] J. Elias-Miro, J. R. Espinosa, G. F. Giudice, G. Isidori, A. Riotto and A. Strumia, arXiv:1112.3022.
[12] T. D. Lee, Phys. Rev. D 8, 1226 (1973).
[13] H. E. Haber, G. L. Kane and T. Sterling, Nucl. Phys. B 161, 493 (1979).
[14] L. J. Hall and M. B. Wise, Nucl. Phys. B 187, 397 (1981).
[15] J. F. Donoghue and L. F. Li, Phys. Rev. D 19, 945 (1979).
[16] J. O. Gong, H. M. Lee and S. K. Kang, JHEP 1204, 128 (2012).
[17] S. Choubey and A. Kumar, JHEP 1711, 080 (2017).
[18] T. Modak, K. Oda, Eur. Phys. Jour. C **80**, (2020) 863.
[19] A. D. Sakharov, Pisma Zh. Eksp. Teor. Fiz. **5**, 32 (1967).
[20] A. I. Bochkarev, S. V. Kuzmin and M. E. Shaposhnikov, Phys. Lett. B **244**, 275 (1990).
[21] J. M. Cline, P.-A. Lemieux, Phys. Rev. D **55**, 3873 (1997).
[22] G. C. Dorsch, S. J. Huber, K. Mimasu and J. M. No, Phys. Rev. Lett. **113**, 211802 (2014).
[23] L. Wang, J. M. Yang, M. Zhang, Y. Zhang, Phys. Lett. B **788**, 519 (2019).
[24] N. Chen, T. Li, Z. Teng, Y. Wu, arXiv:2006.06913.
[25] R. Zhou, L. Bian, arXiv:2001.01237.
[26] R. Zhou, L. Bian, H.-K Guo, Phys. Rev. D **101**, 091903 (2020).
[27] X. Wang, F. Huang, X. Zhang, Phys. Rev. D **101**, 015015 (2020).
[28] X. Wang, F. Huang, X. Zhang, JCAP **05**, 045 (2020).
[29] J. M. Cline, K. Kainulainen and M. Trott, JHEP **1111**, 089 (2011).
[30] P. Basler, M. Krause, M. Muhlleitner, J. Wittbrodt and A. Wlotzka, JHEP **1702**, 121 (2017).
[31] J. O. Andersen, T. Gorda, A. Helset, L. Niemi, T. V. I. Tenkanen, Phys. Rev. Lett. **121**, 191802 (2018).
[32] J. Bernon, L. Bian and Y. Jiang, JHEP **1805**, 151 (2018).
[33] X.-F. Han, L. Wang, Y. Zhang, Phys. Rev. D **103**, (2021) 035012.
[34] W. Su, A. G. Williams, M. Zhang, arXiv:2011.04540.
[35] Z. Zhang, C. Cai, X.-M. Jiang, Y.-L. Tang, Z.-H. Yu, H.-H. Zhang, arXiv:2102.01588.
[36] R. A. Battye, G. D. Brawn, A. Pilaftsis, JHEP **1108**, 020 (2011).
[37] D. I. Kaiser, Phys. Rev. D **81**, (2010) 084044.
[38] O. Lebedev and H. M. Lee, Eur. Phys. Jour. C **71**, (2011) 1821.
[39] Y. Akrami et al. [Planck Collaboration], arXiv:1807.06211.
[40] Heavy Flavor Averaging Group, Eur. Phys. Jour. C **77**, 895 (2017).
[41] M. Misiak, M. Steinhauser, Eur. Phys. Jour. C **77**, 201 (2017).
[42] J. Oredsson, Comput. Phys. Commun. **244**, (2019) 409-426.
[43] G.F. Giudice, H.M. Lee, Phys. Lett. B **694**, (2011) 294-300.
[44] O. Lebedev, H.M. Lee, Eur. Phys. Jour. C **71**, (2011) 1821.
[45] X. Calmet and R. Casadio, Phys. Lett. B **734**, (2014) 17.
[46] J. L. F. Barbon, J. R. Espinosa, Phys. Rev. D **79**, (2009) 081302.
[47] R. N. Lerner, J. McDonald, JCAP **1004**, 015 (2010).
[48] M. P. Hertzberg, JHEP **1011**, 023 (2010).
[49] F. Bezrukov, A. Magnin, M. Shaposhnikov, S. Sibiryakov, JHEP **1101**, 016 (2011).
[50] T. Prokopec and J. Weenink, arXiv:1403.3219.
[51] J. Ren, Z.-Z. Xianyu, H.-J. He, JCAP **1406**, (2014) 032.

[52] F. L. Bezrukov, A. Magnin, M. Shaposhnikov, Phys. Lett. B **675**, 88 (2009).

[53] A. De Simone, M. P. Hertzberg, F. Wilczek, Phys. Lett. B **678**, 1 (2009).

[54] A. O. Barvinsky, A. Y. Kamenshchik, C. Kiefer, A. A. Starobinsky, C. Steinwachs, JCAP **0912**, 003 (2009).

[55] F. Bezrukov, M. Shaposhnikov, JHEP **0907**, 089 (2009).

[56] F. Staub, Phys. Lett. B **776**, (2018) 407-411.

[57] G. C. Dorsch, S. J. Huber, K. Mimasu, J. M. No, JHEP **12**, (2017) 086.

[58] S. Kanemura, T. Kubota, E. Takasugi, Phys. Lett. B **313**, (1993) 155.

[59] A. G. Akerod, A. Arhrib, E. M. Naimi, Phys. Lett. B **490**, (2000) 119.

[60] D. Eriksson, J. Rathsman, O. Stål, Comput. Phys. Commun. **181**, (2010) 189.

[61] M. Tanabashi et al., [Particle Data Group], Phys. Rev. D **98**, 030001 (2018).

[62] F. Mahmoudi, Comput. Phys. Commun. **180**, 1579-1673 (2009).

[63] C. Q. Geng and J. N. Ng, Phys. Rev. D **38**, 2857 (1988) [Erratum-ibid. D 41, 1715 (1990)].

[64] H. E. Haber, H. E. Logan, Phys. Rev. D **62**, 015011 (2010).

[65] G. Degrassi, P. Slavich, Phys. Rev. D **81**, 075001 (2010).

[66] J. Bernon, B. Dumont, S. Kraml, Phys. Rev. D **90**, 071301 (2014).

[67] S. Kraml, T. Q. Loc, D. T Nhung, L. D. Ninh, arXiv:1908.03952.

[68] P. Bechtle, O. Brein, S. Heinemeyer, G. Weiglein, K. E. Williams, Comput. Phys. Commun. **181**, 138-167 (2010).

[69] P. Bechtle, O. Brein, S. Heinemeyer, O. Stål, T. Stefaniak, G. Weiglein, K. E. Williams, Eur. Phys. Jour. C **74**, 2693 (2014).

[70] R. V. Harlander, S. Liebler, H. Mantler, Comput. Phys. Commun. **184**, 1605 (2013).

[71] S. Heinemeyer et al. [LHC Higgs Cross Section Working Group Collaboration], arXiv:1307.1347.

[72] L. Wang, X.-F. Han, JHEP **1404**, 128 (2014).

[73] ATLAS Collaboration, “Search for additional heavy neutral Higgs and gauge bosons in the ditau final state produced in 36 fb^{-1} of pp collisions at \sqrt{s} = 13 TeV with the ATLAS detector,” JHEP **1801**, 055 (2018).

[74] ATLAS Collaboration, “Search for heavy Higgs bosons decaying into two tau leptons with the ATLAS detector using p p collisions at at \sqrt{s} = 13 TeV,” arXiv:2002.12223.

[75] CMS Collaboration, “Search for heavy Higgs bosons decaying to a top quark pair in proton-proton collisions at \sqrt{s} = 13 TeV,” JHEP **2004**, (2020) 171.

[76] CMS Collaboration, “Search for new resonances in the diphoton final state in the mass range between 70 and 110 GeV in pp collisions at \sqrt{s} = 8 and 13 TeV,” CMS-PAS-HIG-17-013.

[77] ATLAS Collaboration, “Search for WW/WZ resonance production in \ell
\nu qq final states in pp collisions at \sqrt{s} = 13 TeV with the ATLAS detector,” arXiv:1710.07235.
[78] ATLAS Collaboration, “Search for heavy resonances decaying into WW in the $e\nu\mu\nu$ final state in pp collisions $\sqrt{s} = 13$ TeV with the ATLAS detector,” Eur. Phys. Jour. C 78, 24 (2018).

[79] CMS Collaboration, “Search for a heavy Higgs boson decaying to a pair of W bosons in proton-proton collisions at $\sqrt{s} = 13$ TeV,” arXiv:1912.01594.

[80] ATLAS Collaboration, “Search for heavy ZZ resonances in the $\ell^+\ell^−\ell^+\ell^−$ and $\ell^+\ell^−\nu\bar{\nu}$ final states using proton proton collisions at $\sqrt{s} = 13$ TeV with the ATLAS detector,” arXiv:1712.06386.

[81] ATLAS Collaboration, “Searches for heavy ZZ and ZW resonances in the $\ell\ell qq$ and $\nu\nu qq$ final states in pp collisions at $\sqrt{s} = 13$ TeV with the ATLAS detector,” arXiv:1708.09638.

[82] ATLAS Collaboration, “Search for heavy resonances decaying into a pair of Z bosons in the $\ell^+\ell^−\ell^+\ell^−$ and $\ell^+\ell^−\nu\bar{\nu}$ final states using 139 fb$^{-1}$ of proton–proton collisions at \sqrt{s} TeV with the ATLAS detector,” Eur. Phys. Jour. C 81, (2021) 332.

[83] CMS Collaboration, “Search for a massive resonance decaying to a pair of Higgs bosons in the four b quark final state in proton-proton collisions at $\sqrt{s} = 13$ TeV,” arXiv:1710.04960.

[84] CMS Collaboration, “Search for Higgs boson pair production in events with two bottom quarks and two tau leptons in proton-proton collisions at $\sqrt{s} = 13$ TeV,” arXiv:1707.02909.

[85] CMS Collaboration, “Combination of searches for Higgs boson pair production in proton-proton collisions at $\sqrt{s} = 13$ TeV,” Phys. Rev. Lett. 122, 121803 (2019).

[86] CMS Collaboration, “Search for resonant pair production of Higgs bosons in the $bbZZ$ channel in proton-proton collisions at $\sqrt{s} = 13$ TeV,” arXiv:2006.06391.

[87] ATLAS Collaboration, “Reconstruction and identification of boosted di-τ systems in a search for Higgs boson pairs using 13 TeV proton–proton collision data in ATLAS,” arXiv:2007.14811.

[88] ATLAS Collaboration, “Search for heavy resonances decaying into a W or Z boson and a Higgs boson in final states with leptons and b-jets in 36 fb$^{-1}$ of $\sqrt{s} = 13$ pp collisions with the ATLAS detector,” arXiv:1712.06518.

[89] CMS Collaboration, “Search for a heavy pseudoscalar boson decaying to a Z and a Higgs boson at $\sqrt{s} = 13$ TeV,” Eur. Phys. Jour. C 79, 564 (2019).

[90] CMS Collaboration, “Search for a heavy pseudoscalar Higgs boson decaying into a 125 GeV Higgs boson and a Z boson in final states with two tau and two light leptons at $\sqrt{s} = 13$ TeV,” arXiv:1910.11634.

[91] CMS Collaboration, “Search for an exotic decay of the Higgs boson to a pair of light pseudoscalars in the final state with two b quarks and two τ leptons in proton-proton collisions at $\sqrt{s} = 13$ TeV,” Phys. Lett. B 785, 462 (2018).

[92] CMS Collaboration, “Search for light pseudoscalar boson pairs produced from decays of the 125 GeV Higgs boson in final states with two muons and two nearby tracks in pp collisions at $\sqrt{s} = 13$ TeV,” arXiv:1907.07235.

[93] CMS Collaboration, “Search for a light pseudoscalar Higgs boson in the boosted $\mu\mu\tau\tau$ final state in proton-proton collisions at $\sqrt{s} = 13$ TeV,” arXiv:2005.08694.

[94] ATLAS Collaboration, “Search for a heavy Higgs boson decaying into a Z boson and another
heavy Higgs boson in the $\ell\ell$ bb final state in pp collisions $\sqrt{s}=13$ TeV with the ATLAS detector,” Phys. Lett. B 783, 392 (2018).

[95] CMS Collaboration, “Search for new neutral Higgs bosons through the $H \to Z A \to \ell^+\ell^- b\bar{b}$ process in pp collisions at $\sqrt{s}=13$ TeV,” arXiv:1911.03781.

[96] S. Kanemura, Y. Okada, E. Senaha, C.-P. Yuan, Phys. Rev. D 70, (2004) 115002.

[97] M. Krause, M. Muhlleitner, R. Santos, H. Ziesche, Phys. Rev. D 95, 075019 (2017).

[98] J. F. Gunion, H. E. Haber, Phys. Rev. D 67, 075019 (2003)

[99] F. Kling, J. M. No, S. Su, JHEP 1609, 093 (2016).

[100] S. R. Coleman and E. J. Weinberg, Phys. Rev. D 7, 1888 (1973).

[101] L. Dolan and R. Jackiw, Symmetry Behavior at Finite Temperature, Phys. Rev. D 9, 3320–3341 (1974).

[102] M. E. Carrington, Phys. Rev. D 45, 2933–2944 (1992).

[103] P. B. Arnold and O. Espinosa, Phys. Rev. D 47, 3546 (1993) [Erratum: Phys. Rev. D 50, 6662 (1994)].

[104] C. L. Wainwright, Comput. Phys. Commun. 183, 2006–2013 (2012).