Linear Algebraic Calculation of Green’s function for Large-Scale Electronic Structure Theory

R. Takayama, T. Hoshi, T. Sogabe, S.-L. Zhang and T. Fujiwara

1 Research and Development for Applying Advanced Computational Science and Technology (ACT-JST), Japan Science and Technology Agency, 4-1-8 Honcho, Kawanishi-shi, Saitama 332-0012, Japan
2 Department of Applied Physics, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan and
3 Core Research for Evolutional Science and Technology (CREST-JST), Japan Science and Technology Agency, 4-1-8 Honcho, Kawanishi-shi, Saitama 332-0012, Japan
(Dated: October 1, 2018)

A linear algebraic method named the shifted conjugate-orthogonal-conjugate-gradient method is introduced for large-scale electronic structure calculation. The method gives an iterative solver algorithm of the Green’s function and the density matrix without calculating eigenstates. The problem is reduced to independent linear equations at many energy points and the calculation is actually carried out only for a single energy point. The method is robust against the round-off error and the calculation can reach the machine accuracy. With the observation of residual vectors, the accuracy can be controlled, microscopically, independently for each element of the Green’s function, and dynamically, at each step in dynamical simulations. The method is applied to both semiconductor and metal.

PACS numbers: 71.15.-m, 71.15.Nc, 71.15.Pd

I. INTRODUCTION

Large-scale atomistic simulation with quantum mechanical freedom of electrons requires manipulation of a large Hamiltonian matrix. In order to calculate physical quantities of a system, we should obtain either eigenstates or the density matrix of the system. The calculation of eigenstates is usually reduced to matrix diagonalization procedure and this procedure results in severe computational cost for a large-scale system.

Any physical quantity \( X \) can be evaluated by means of the density matrix \( \rho \) as

\[
\langle X \rangle = \int \int d\mathbf{r} d\mathbf{r}' \rho(\mathbf{r}, \mathbf{r}') X(\mathbf{r}', \mathbf{r}). \tag{1}
\]

Even though the density matrix is of long-range, only the short-range behavior of the density matrix is necessary, if \( X \) is a short-range operator. The energy and forces acting on an individual atom are really this case, and the locality of the Hamiltonian realizes this feature in large-scale calculation. Moreover, the density matrix \( \rho \) can be obtained from the Green’s function. Therefore, the essential methodology for large-scale electronic structure calculation and molecular dynamics (MD) simulation is how to obtain density matrix \( \rho \) or Green’s function without calculating eigenstates.

We have developed a set of methods for large-scale atomistic simulation without calculating eigenstates in fully quantum mechanical description of electron systems. Among them, the subspace diagonalization method based on Krylov subspace (SD-KS method) was introduced, where the original Hamiltonian matrix \( H \) is reduced to a small size easy-tractable one and its diagonalization leads to approximation of the density matrix of the original system. The first important feature of the SD-KS method is that we can monitor numerical accuracy during the simulation using a residual error of the Green’s function, as shown in the present paper. The second important feature is that the SD-KS method can be used both for metallic and insulating systems. We found, however, that the SD-KS method has a numerical instability, when the energy spectrum is calculated with a very fine energy resolution, as discussed in Appendix A.

Then our new strategy to obtain the Green’s function and the density matrix is to solve linear equations with a given basis \( |j\rangle \);

\[
(z - H)|x_j\rangle = |j\rangle. \tag{2}
\]

In the present case, the Hamiltonian \( H \) is real symmetric and \( (z - H) \) is not Hermitian but complex symmetric with a complex energy \( (z \equiv E + i\gamma) \). Once the linear equation is solved, one can obtain any element of the Green’s function as

\[
G_{ij}(z) = \langle i|(z - H)^{-1}|j\rangle = \langle i|x_j\rangle. \tag{3}
\]

The numerical energy integration is required to obtain the one-body density matrix;

\[
\rho_{ij} = -\frac{1}{\pi} \int_{-\infty}^{\infty} \text{Im} \ G_{ij}(E + i\gamma) f \left( \frac{E - \mu}{k_B T} \right) dE, \tag{4}
\]
with the Fermi distribution function $f(x)$ and a small imaginary part of energy ($\gamma \to 0^+$). The chemical potential $\mu$ is determined so that the sum of the diagonal elements of the density matrix equals the total number of electrons.

The aim of the present paper is to introduce the shifted conjugate-orthogonal conjugate-gradient (COCG) method, an iterative solver algorithm of eq. 2. The Green’s function and the density matrix are obtained using eqs. 3 and 4. The shifted COCG method shares the before-mentioned two features with the SD-KS method. Moreover, the third important feature of the shifted COCG method, different from the SD-KS method, is the robustness against round-off error and the calculation can reach the machine accuracy.

The present paper is organized as follows; In Sec. II, Krylov subspace will be explained and the shifted COCG method will be introduced. In Sec. III, the residual norm (RN) will be introduced to monitor the convergence behavior of the method. The number of operations in actual calculation is also discussed. Section IV is devoted to the linear equations, eq. (2), for a given set of energy points. The essence of the present subsection, rather than the bracket notation. Hereafter the equation at $z = \gamma_{ref}$ is called ‘reference’ system.

For eq. 4, we use the COCG algorithm, a standard iterative algorithm for a linear equation with a complex symmetric matrix $A$. At the $n$-th iteration, the solution vector $x_n$, the residual vector $r_n$, and the search direction vector $p_n$ are represented as

$$ x_n = x_{n-1} + \alpha_n p_{n-1}, $$

$$ r_n = r_{n-1} - \alpha_n A p_{n-1}, $$

$$ p_n = r_n + \beta_n p_{n-1}, $$

respectively. Here, coefficients $\alpha_n$ and $\beta_n$ are given as

$$ \alpha_n = \frac{r_n^T r_n}{p_n^T A p_n}, $$

$$ \beta_n = \frac{r_{n+1}^T r_{n+1}}{r_n^T r_n}. $$

The initial conditions for iteration are $x_0 = p_{-1} = 0$, $r_0 = b$, $\beta_{-1} = 0$, $\alpha_{-1} = 1$. Note here that the inner products are given as $a^T b \neq a^T \bar{b}$. When the iteration number $n$ reaches the matrix dimension of $A$, denoted $M$, the residual vector should be zero and the solution vector should be exact ($r_M = 0, x_M = A^{-1} b$).

Eliminating $p_{n-1}$ from eq. 2 with eq. 10, we obtain three-term recurrence relation for the residual vector;

$$ r_{n+1} = -\alpha_n A r_n + \left( 1 + \frac{\beta_{n-1} \alpha_n}{\alpha_{n-1}} \right) r_n - \frac{\beta_{n-1} \alpha_n}{\alpha_{n-1}} r_{n-1}. $$

The actual procedures are given in the next subsection.
The most time-consuming part of the COCG algorithm is the matrix-vector product \((A\mathbf{p})_n\) in eq. (11). This matrix-vector product corresponds to the procedure for updating the KS: \(K_n(A, \mathbf{b}) \Rightarrow K_{n+1}(A, \mathbf{b})\).

Similarly, we reformulate eq. (4) with a shifted energy point \(z = z_{\text{ref}} + \sigma\) as
\[
(A + \sigma I)x = b.
\]
(14)

For the ‘shifted’ system, the \(n\)-th solution vector \(\mathbf{x}_n^\sigma\) and the search direction vector \(\mathbf{p}_n^\sigma\) are given as
\[
\mathbf{x}_n^\sigma = \mathbf{x}_{n-1}^\sigma + \alpha_n^\sigma \mathbf{p}_{n-1}^\sigma,
\]
(15)
\[
\mathbf{p}_n^\sigma = \mathbf{r}_n^\sigma + \beta_n^\sigma \mathbf{p}_{n-1}^\sigma.
\]
(16)

The initial values of the vectors or coefficients are chosen to be the same as in the reference system. The equation corresponding to eq. (15) of the shifted system is
\[
r_{n+1}^\sigma = -\alpha_n^\sigma (A + \sigma I) r_n^\sigma + \left(1 + \frac{\beta_n^\sigma \alpha_n^\sigma}{\alpha_{n-1}^\sigma}ight) r_n^\sigma - \frac{\beta_n^\sigma \alpha_n^\sigma}{\alpha_{n-1}^\sigma} r_{n-1}^\sigma.
\]
(17)

Since the KS between the reference and shifted systems are equivalent \((K_n(A, \mathbf{b}) = K_n(A + \sigma I, \mathbf{b}))\), as stated in eq. (6), one can prove that the residual vectors between them, \(r_n^\sigma\) and \(r_n\), are collinear,
\[
r_n^\sigma = \frac{1}{\pi_n^\sigma} r_n.
\]
(18)

which is the theorem of collinear residual for shifted linear systems. With eq. (18), eq. (15) can be modified as
\[
r_{n+1}^\sigma = \frac{\pi_n^\sigma}{\pi_{n+1}^\sigma} \alpha_n (A + \sigma I) r_n^\sigma + \frac{\pi_n^\sigma}{\pi_{n+1}^\sigma} \left(1 + \alpha_n \sigma + \frac{\beta_n \alpha_n}{\alpha_{n-1}}\right) r_n^\sigma - \frac{\pi_n^\sigma \beta_n}{\pi_{n+1}^\sigma} \frac{\beta_n \alpha_n}{\alpha_{n-1}} r_{n-1}^\sigma.
\]
(19)

Comparing the coefficients in eqs. (18) and (19), we obtain
\[
\alpha_n^\sigma = \frac{\pi_n^\sigma}{\pi_{n+1}^\sigma} \alpha_n,
\]
(20)
\[
\beta_n^\sigma = \left(\frac{\pi_n^\sigma}{\pi_{n+1}^\sigma}\right)^2 \beta_n,
\]
(21)
\[
\pi_n^\sigma = \left(1 + \alpha_n \sigma + \frac{\beta_n \alpha_n}{\alpha_{n-1}}\right) \pi_{n-1}^\sigma - \frac{\beta_n \alpha_n}{\alpha_{n-1}} \pi_{n-1}^\sigma.
\]
(22)

The initial values of \(\pi_0^\sigma = \pi_{-1}^\sigma = 1\). We can update the vector \(r_n^\sigma\) and the coefficients \(\alpha_n^\sigma\) and \(\beta_n^\sigma\) using eqs. (20), (21), and (22), which do not include any matrix-vector product. Consequently, the time-consuming procedure of the matrix-vector product is needed only for the reference system, which reduces the computational cost drastically. The detail of the computational cost will be estimated in Sec. III E.

We note here that the shift parameter \(\sigma(\equiv z - z_{\text{ref}})\) is an arbitrary complex variable in principle but we choose the value to be real \((\sigma = E - E_{\text{ref}})\) in all the practical calculations of the present paper. We also note that a practical electronic-structure calculation can be parallelized with the present method, because the original problem of eq. (4) is independent with respect to the basis suffix \(j\).

### III. CONVERGENCE BEHAVIOR AND COMPUTATIONAL COST

#### A. Convergence behavior with residual norm

Since the shifted COCG method is an iterative solver algorithm for eq. (4), we should establish a systematic procedure to find an optimal iteration number in the context of electronic structure calculation. In this section, such a systematic procedure is introduced by monitoring the norm of residual vector.

At the \(n\)-th iteration, we denote the solution vectors for the reference and shifted systems as \(|x_n^{(j)}\rangle\) and \(|x_n^{(\sigma(j)}\rangle\), respectively. The corresponding residual vectors are written by
\[
|r_n^{(j)}\rangle = |j\rangle - (z_{\text{ref}} - H)|x_n^{(j)}\rangle
\]
(23)
\[
|r_n^{(\sigma(j)}\rangle = |j\rangle - (z_{\text{ref}} + \sigma - H)|x_n^{(\sigma(j)}\rangle = \frac{1}{\pi_n} |r_n^{(j)}\rangle,
\]
(24)

respectively. The last equality is given by eq. (18).

Since we need only the elements of the density matrix among near-sited orbital pairs or of the short-distance components in eq. (11), the convergence is necessary only for these components, but not for far-distance components. Therefore, we define a residual norm (RN) from the components only among these near-sited orbitals \(|i\rangle\) that are determined by the interaction range of Hamiltonian:
\[
||r_n^{(j)}\rangle||^2 = \sum_i ||(i|r_n^{(j)}\rangle||^2,
\]
(25)
\[
||r_n^{(\sigma(j)}\rangle||^2 = \sum_i ||(i|r_n^{(\sigma(j)}\rangle||^2 = \left|\frac{1}{\pi_n}\right|^2 ||r_n^{(j)}\rangle||^2,
\]
(26)

where \(M_{\text{int}}\) is the number of interacting orbitals \(|i\rangle\) for a basis \(|j\rangle\), typically 10 to 10^2. Note that the RN is an energy-dependent quantity.

Since the Green’s function should be integrated over the given set of energy points to obtain the density matrix, we need to know the convergence behavior of the RN over the entire energy range. Then we average the RN over the energy range \((E_{\text{min}} < E < E_{\text{max}}\) or...
The convergence behavior was studied also in a bulk fcc Cu of 1568 atoms, a metallic system. The simulation cell is a $7 \times 7 \times 8$ supercell of the cubic unit cell. We constructed the Hamiltonian matrix from the second-order form ($H^{(2)}$) of the tight-binding linear muffin-tin orbital theory. \[22\] In Fig. 2 the a-RN is plotted with the starting bases of atomic s and t$_{2g}$ orbitals. Since the present method is a general linear-algebraic theory with a short-range Hamiltonian (matrix), the convergence behavior shows no generic difference, between semiconductor and metal or between different starting orbitals. In fact, the curves in Fig. 2 behave similarly in magnitude with a large iteration number, for example $n \geq 60$, though differently with a smaller iteration number.

\[\text{FIG. 2: Early stage in the decay behavior of the a-RN for Si crystal with 512 atoms and fcc Cu with 1568 atoms. In the Cu system, the two cases are plotted with the starting vectors \(j\) of s and t$_{2g}$ bases on an atom.}\]

B. Computational cost within one iteration

Numbers of operations within one iteration are estimated in Table II. Two points are found for the drastic reduction of computational cost, when the present method is compared to the conventional COCG method. For comparison, the case of the conventional COCG method is shown in the column labeled ‘COCG’, in which the conventional COCG methods is applied, independently, to all the systems ($N_{\text{ene}}$ systems) and the matrix-vector product governs the computational cost. In the shifted COCG method, on the other hand, the computational cost of the matrix-vector product is reduced by $1/N_{\text{ene}}$ ($MM_{\text{int}}N_{\text{ene}} \Rightarrow MM_{\text{int}}$), since the actual matrix-vector product is carried out only for the reference system, as discussed in Sec. II 113. Then the scalar-vector products may give a significant contribution to the computation, if all the elements ($M$ elements) of the vectors $x_n$, $p_n$, and $r_n^\sigma$ are calculated for all the systems, which is shown in the column labeled ‘sCOCG (total)’. In the present
calculation, however, we need the elements of these vectors only within the interaction range \( (M_{\text{int}} \text{ elements}) \), as discussed in Sec. III A. Since the vectors \( x_j^e, \ p_j^e \), and \( \tau_j^e \) in the shifted systems \( (N_{\text{ene}} - 1 \text{ systems}) \) are updated using eqs. (15), (16), (18), the update procedure can be carried out only for the necessary elements \( (M_{\text{int}} \text{ elements}) \). The calculation only for these elements gives another drastic reduction of the computation cost \( (3M(N_{\text{ene}} - 1) = 3M_{\text{int}}(N_{\text{ene}} - 1)) \), which is shown in the column labeled ‘sCOCG (present)’.

### IV. APPLICATIONS TO ELECTRONIC STRUCTURE CALCULATION

#### A. Reconstruction on Si(001) surface

The MD simulation with the shifted COCG method was tested in Si(001) surface reconstruction. The calculated system is a slab of 1024 atoms constituted of 16 layers with 64 atoms on each layer. The temperature parameter of the Fermi distribution function in eq. (4) is set to \( \tau = 0.005 \text{au} (=0.136 \text{eV}) \). We use the Hamiltonian and energy function in Ref. [21]. Other methodological details are the same as in Sec. III A. The atomic structure is relaxed, with the Hellmann-Feynman force on atoms, from an appropriate surface atomic configuration into the ground-state structure. Since the force on atoms is given after the calculation of the density matrix, the simulation was carried out by a double-loop iterative procedure; The inner loop is the iterative procedure of the shifted COCG method for calculating the density matrix with a given atomic configuration or a given Hamiltonian. The outer loop is the update of the atomic configuration, with force on atoms, to as to minimize the energy. When the KS dimension, or the iteration number of the inner loop, is \( n = 30 \) or larger, the resultant surface atoms form asymmetric dimers illustrated in the inset of Fig. 3(a), as should do. [23, 24] The resultant tilt angle of the asymmetric dimers is \( \theta = 13.4^\circ \), which agrees with experimental values of \( \theta \), between 5\(^\circ\) and 19\(^\circ\). [23]

FIG. 3: Result of a slab for Si(001) surface with asymmetric surface dimers; (a) Local density of states \( \sum_j - (1/\pi) \text{Im} G_{jj} \) for surface and bulk atoms, calculated with the KS dimension of \( n = 30 \). The surface atoms are classified into the upper and lower atoms of the asymmetric dimer, illustrated in the inset. The ‘bulk’ atom is an atom on deeper layers of the present slab system. (b) Decay behavior of a-RN for the atoms that appear in (a). The horizontal dotted line is an eyeguide for a typical convergence criteria.

| Method         | Inner Product | Scalar-Vector Product | Matrix-Vector Product |
|----------------|---------------|-----------------------|----------------------|
| COCG           | \( 3MN_{\text{ene}} \) | \( 3MN_{\text{ene}} \) | \( M_{\text{int}}N_{\text{ene}} \) |
| sCOCG (total)  | \( 3M \)     | \( 3MN_{\text{ene}} \) | \( M_{\text{int}} \) |
| sCOCG (present)| \( 3M \)     | \( 3M_{\text{int}}(N_{\text{ene}} - 1) + M_{\text{int}} \) |

TABLE I: Numbers of operations within one iteration; (i) Inner product in eqs. (16) and (17). (ii) Scalar-vector product in eqs. (9), (10) and eqs. (15), (16), (18) and (iii) Matrix-vector product in eq. (11). The parameters in the table are as follow; \( M \): the dimension of the original Hamiltonian matrix, \( N_{\text{ene}} \): the number of orbital within interaction range for one orbital, \( N_{\text{ene}} \): the number of energy points. Here, the cases of the three methods are plotted; (1) the conventional COCG method, labeled ‘COCG’, (2) the shifted COCG method with the calculation of all the elements of the Green’s function and the RN, labeled ‘sCOCG (total)’ and (3) the actual procedure in the present calculation, labeled ‘sCOCG (present)’. See the text for details.
Figure 2(b) shows the a-RN for these atoms as the function of the iteration number or the KS dimension. Here the a-RN for an atom is defined as the average of the a-RN, eq. (27), among the orbitals within the atom. In result, the a-RN for the surface atoms decays similarly, while that for the bulk atom faster. Considering the fact that the required number of iterations is \( n = 30 \) to obtain appropriate surface reconstruction, a practical convergence criteria is estimated as the horizontal dotted line in Fig. 3(b) on the order of \( R_j^{(n)}/R_j^{(2)} \sim 10^{-3} \). If this convergence criteria is used, the optimal number of iterations is approximately 18 for the bulk atom, less than that for the surface atoms \( (n = 30) \). In other words, the optimal iteration number is determined for microscopic freedoms or independently among atoms or bases \( (|j\rangle) \). Moreover, the microscopic control can be carried out dynamically, or at every step in MD simulations. In short, the observation of the a-RN gives a definite way of controlling the accuracy microscopically and dynamically, which is important among practical investigations.

### B. Metal system: fcc Cu

We calculated also the electronic structure of a bulk fcc Cu of 1568 atoms. The technical details are already explained in Sec. III A. The well-converged partial DOS is shown in Fig. 4 for s, p, \( e_g \) and \( t_{2g} \) orbitals. The result reproduces the essential characteristics, e.g. the resonance behavior of s and p orbitals and the energy separation between \( e_g \) and \( t_{2g} \) orbitals.

Another important property for analyzing cohesion is the crystal orbital Hamiltonian populations (COHP) defined as follows:

\[
C_{IJ,\alpha}(E) = -\frac{1}{\pi} \sum_{\beta} \text{Im} G_{I\alpha, J\beta}(E + i\gamma) H_{J\beta, I\alpha},
\]

\[
C_{IJ}(E) = \sum_{\alpha} C_{IJ,\alpha}(E),
\]

where \( I \) and \( J \) denote the atomic positions and \( \alpha \) and \( \beta \) orbitals. The quantity \( C_{IJ} \) is the COHP and we call the quantity \( C_{IJ, \alpha} \) partial COHP (PCOHP). The energy integration of the COHP (ICOHP) has the dimension of energy. The off-site term of ICOHP gives a quantitative discussion of the cohesive mechanism, because its negative and positive parts are the energy gain and loss in the electronic structure energy for cohesion, respectively.

Figure 5(a) shows the COHP and ICOHP for a first nearest-neighbor atom pair (a) and PCOHP for a first (b) or second (c) nearest-neighbor atom pair. Figure 5(a) shows the COHP and ICOHP for a nearest-neighbor atom pair. The PCOHP \( C_{IJ,\alpha}(E) \) is also shown in Fig. 5(b) only for the orbitals \( (\alpha) \) with major contribution. Since a nearest-neighbor pair lies along (011) direction in fcc, the significant values in the PCOHP come from \( \alpha = s, (p_y \pm p_z)/\sqrt{2} \) and \( d_{yz} \) orbitals. Figures 5(a)/(b) show that the two characteristic peaks of the COHP at \( E \simeq -5 \text{ eV} \) and \(-3 \text{ eV} \) are contributed mainly by the PCOHP of the \( d_{yz} \) orbital. The negative
and positive peaks originate from the bonding and anti-bonding coupling, respectively, of the t$_{2g}$ orbitals among the nearest-neighbor atom sites. Though the two corresponding peaks can be seen also in the PDOS of the t$_{2g}$ orbital in Fig. 4, the COHP, unlike PDOS, informs us the bonding or anti-bonding character of the corresponding state. From Fig. 4(b), we found that contributions from s and p orbitals are also appreciable. Moreover, the PCOHP for a second nearest-neighbor pair is plotted in Fig. 5(c). Since a second nearest-neighbor pair lies along (001) direction, the significant values in the PCOHP come from s, p$_z$ and d$_{3z^2-r^2}$ orbitals, though their magnitude is one order smaller than those for the first neighbor pair.

The present analysis demonstrates that, since the shifted COCG method can give the Green’s function with the machine accuracy, the resultant spectra reproduce the correct cohesive mechanism, in which the role of each orbital is well described not only for the major contribution from the first nearest-neighbor coupling but also for a minor contribution from the second nearest-neighbor coupling.

V. CONCLUSIVE DISCUSSION

In the present paper, we introduced the shifted COCG method based on the Krylov subspace and used the method as an iterative solver algorithm of the Green’s function in large electron systems. We analyzed the convergence behavior by means of the a-RN, which establishes a definite way of controlling accuracy. The theory realizes a practical method not only for MD simulations but also for obtaining the fine-resolution spectra, such as (P)DOS and COHP, without calculating eigen states. The method was applied to semiconductor and metal and the above statements were confirmed numerically.

When the present method is compared with the SD-KS method, we conclude that the two KS methods are complementary in the practical viewpoint and we should choose one, according to the purpose: If one would like to obtain the Green’s function in a very fine energy resolution, the shifted COCG method should be used, because it can reach the machine accuracy. On the other hand, as is discussed in Appendix A, the SD-KS method is suitable for obtaining the density matrix without numerical energy integration of the Green’s function, which is a typical situation in MD simulations.

Finally, we point out the generality of the present theory. Since the shifted COCG method is based on a general linear-algebraic theory with large matrices, it is applicable not only to electronic structure calculation with atomic orbital bases but also to calculation with other bases. Moreover, the method may be useful in many theoretical fields other than electronic structure theory, if a theory is reduced to a set of shifted linear equations.

Acknowledgments

Computation was carried out at the Center for Promotion of Computational Science and Engineering (CCSE) of Japan Atomic Energy Research Institute (JAERI) and also partially carried out at the Supercomputer Center, Institute for Solid State Physics, University of Tokyo. This work is financially supported by Grant-in-Aid from the Ministry of Education, Culture, Sports, Science and Technology and also by ACT-JST and CREST-JST.

APPENDIX A: NUMERICAL ASPECTS IN KRYLOV-SUBSPACE METHODS

This appendix is devoted to several aspects of the two KS methods (i) the shifted COCG method, the main subject of this paper, and (ii) the SD-KS method [11]. Pur-
particularly, numerical aspects will be discussed, including robustness against round-off error. Examples are demonstrated with silicon crystals, as in Sec. III.

1. Shifted COCG method

For the shifted COCG method, we discuss (I) the convergence behavior among different energy points and (II) the convergence behavior of long-distance component of the Green’s function. These discussions clarify how and why the present method is so successful.

First, we used the conventional COCG method at all the energy points (Nene = 1000 points), so as to investigate the convergence behavior among different energy points. Figure 6(a) shows the imaginary part of the well-converged Green’s function, corresponding to the density of states (DOS). The spectrum consists of a set of spikes with a finite width, owing to a small imaginary part of energy (γ = 0.002 au=0.0544eV). The required iteration numbers with various convergence criteria are seen in Fig. 6(b), in which the convergence criterion is set to be \( |\mathbf{r}_n^{(j)}|^2 \leq 10^{-16} \) with \( \varepsilon = -4 \) to -16. The resultant DOS profiles among these criteria are indistinguishable from that of Fig. 6(a). Figures 6(a) and (b) indicate that an energy point with a larger value of DOS requires a larger number of iterations, because the KS dimension should be larger in order to distinguish individuals among densely distributed nearby states.

In Fig. 7(a), the decay behavior of the RN is plotted for the four chosen energy points that were already discussed in Fig. 1 and Fig. 6(a). When Fig. 7(a) and Fig. 1 are compared, one can see that the decay behavior of the RN are quite different among the four energy points but the a-RN is universal, as should be from eq. (18). For example, we pick out the case in which the reference energy is chosen as the point labeled by (B). In the case, the RN \( |\mathbf{r}_n^{(j)}|^2 \) and the shift coefficient \( \pi_n \) go to the extreme orders of \( 10^{-250} \) and \( 10^{+250} \), respectively, at \( n = 300 \). Even in such an extreme case, the computational procedure works well and the a-RN follows the universal curve, as in Fig. 1.

Second, we discuss the convergence behavior of the Green’s function including its long-distance component, unlike in Sec. III. For monitoring the convergence behavior, we should define the ‘total’ residual norm (t-RN), instead of the RN in eq. (25), as

\[
|\mathbf{r}_n^{(j)}|^2 = \sum_i^M |\langle i | \mathbf{r}_n^{(j)} \rangle|^2 \tag{A1}
\]

where the elements are summed up among all the bases (M bases). In other words, the t-RN shows the convergence behavior for all the elements of the Green’s function (\( G_{ij} \) or \( G(r, r') \)), including its long-distance components. We should recall that the RN in eq. (25) is defined only for the short-distance components. The results are shown in Fig. 7(b), in which the decay behavior is slower than that in Fig. 7(a) at an earlier stage (\( n \leq 30 \)), though the behavior is the same at later stages. The difference at the earlier stage appears, because the accurate description of the Green’s function at further distances needs a larger number of KS bases or a larger iteration number. Moreover, the computational cost is enormous to calculate all the elements of the Green’s function, as shown in the ‘sCOCG(total)’ case of Table I. The present discussion clarifies that only the short-distance components of the Green’s function are required and calculated in practical applications.

2. Subspace diagonalization method

Here the subspace diagonalization method based on the KS (SD-KS method) is discussed for the comparison with the shifted COCG method. Though the two methods, commonly, give the density matrix or Green’s function within the KS, the difference between them comes from the computational cost and the effect of numerical round-off error.
The practical procedure of the SD-KS method is summarized as follows; an orthogonal basis set for the KS is constructed by the Lanczos process, a three-term recurrence relation: \(\{K^{(j)}_1\} \equiv \{j\}, \{K^{(j)}_2\}, \ldots \{K^{(j)}_\nu\}\). Here the number of bases \(\nu\) is the dimension of the KS, \(K_\nu(H,|j\rangle)\). This process creates simultaneously the reduced Hamiltonian matrix \(H^{(j)}\) within the KS \((H^{(j)} )_nm \equiv \langle K^{(j)}_n|H|K^{(j)}_m\rangle\), as a small tridiagonal matrix. Then the reduced matrix \(H^{(j)}\) is diagonalized and we obtain the eigenvalues \(\varepsilon^{(j)}_\alpha\) and the coefficients \(C^{(j)}_\alpha|K^{(j)}_\alpha\rangle\). The Green’s function is given as

\[
\langle i|G|j\rangle \equiv \sum_n \langle i|K^{(j)}_n\rangle \langle K^{(j)}_n|G^{(j)}|j\rangle \tag{A2}
\]

with the definition of

\[
G^{(j)}_\nu(z) = \sum_\alpha \frac{|w^{(j)}_\alpha\rangle \langle w^{(j)}_\alpha|}{z - \varepsilon^{(j)}_\alpha} \tag{A3}
\]

The density matrix can be given in a similar manner. The calculated band structure energy shows a rapid convergence as the function of the number of the KS bases \(\nu\), both in semiconductor and metal (fcc Cu, unpublished). In both cases, the result is well converged, typically, with \(\nu = 30\). We have simulated the reconstruction on Si(001) surface as in Sec. IV A and the resultant atomic position or LDOS agrees with the ones obtained by the shifted COCG method.

Several differences in numerical treatment are found between the SD-KS method and the shifted COCG method. The SD-KS method gives the Green’s function analytically in eq. (A3) and its energy integration for the density matrix, eq. (A4), can be given also analytically, while the shifted COCG method gives the Green’s function numerically on a given set of energy points and its energy integration should be carried out with a careful observation of the numerical error. Moreover, the computational cost of the SD-KS method is smaller than, typically a half of, that of the shifted COCG method, because the SD-KS method requires only real vectors, such as \(|K^{(j)}_n\rangle, |w^{(j)}_\alpha\rangle\), while the shifted COCG method requires several complex vectors, such as \(|x^{(j)}_n\rangle, |r^{(j)}_n\rangle\).

Hereafter we discuss a crucial difference of the SD-KS method from the shifted COCG method; the SD-KS method shows a numerical instability with a very large number of KS bases (\(\nu\)), owing to the accumulation of round-off error. The above instability is analyzed by introducing the RN with eq. (A4). An element of the RN is given as

\[
\langle i|\rho^{(j)}_{\nu\nu}\rangle = \langle i|I - (z - H)G^{(j)}_\nu(z)|j\rangle = \langle i|j\rangle - \sum_\alpha^\nu \frac{\langle i|z - H|w^{(j)}_\alpha\rangle \langle w^{(j)}_\alpha|j\rangle}{z - \varepsilon^{(j)}_\alpha} = \langle i|j\rangle - \sum_\alpha^\nu \left\{ \langle i|z - H|K^{(j)}_n\rangle C^{(j)}_\alpha \right\} \times \sum_m^\nu C^{(j)}_{\alpha m} \langle K^{(j)}_m|j\rangle \right\}. \tag{A4}
\]

This quantity can be calculated with a negligible computational cost, since all the quantities in eq. (A4), that is \(\{\varepsilon^{(j)}_\alpha\}, \{C^{(j)}_\alpha\}, \{\langle i|K^{(j)}_n\rangle\}\) and \(\{\langle i|H|K^{(j)}_m\rangle\}\), are always calculated in the generating procedure of the Green’s function \(G^{(j)}_\nu(z)\). The a-RN \(R^{(j)}_\nu\) can be defined in a similar way as in eq. (A4). The a-RN was examined for Si crystal in different system sizes (512, 4096, and 32768 atoms), and the results are shown in Fig. 8. Here a problematic situation appear in the cases of 512 and 4096 atoms, because the a-RN begins to grow after an appropriate value of the KS dimension \(\nu\). So as to analyze the growth of error, the RN with the case of 512 atoms is shown in Fig. 9 with its energy dependence. The spectrum consists of only spikes before the growth of error (\(\nu = 30\)), while a finite background appears after the beginning of the growth of error (\(\nu = 100\), Fig. 9(b)).

![FIG. 8: Decay behavior of the a-RN in the SD-KS method for Si crystals with 512, 4096 and 32768 atoms.](image)

The growth of error occurs, because the loss of orthogonality \((\langle K^{(j)}_n|K^{(j)}_m\rangle \neq \delta_{nm})\) always happens in actual calculation after a long iteration of the Lanczos procedure, owing to the accumulation of round-off error. In such a case, the calculated eigen vectors \(|w^{(j)}_\alpha\rangle\) have a finite deviation \(\xi^{(j)}_\alpha\) from the true eigen vectors;

\[
H^{K(j)}|w^{(j)}_\alpha\rangle = \varepsilon^{(j)}_\alpha |w^{(j)}_\alpha\rangle + \xi^{(j)}_\alpha. \tag{A5}
\]
Using eqs. (A4) and (A5), we obtain

\[
\langle i | r^{(j)}_i \rangle = \langle i | I - (z - H)G'_\nu^{(j)}(z) | j \rangle = \langle i | j \rangle - \sum_\alpha \langle i | z - H | w^{(j)}_\alpha \rangle \langle w^{(j)}_\alpha | j \rangle = \langle i | d \rangle + \sum_\nu \left\{ \langle i | \xi^{(j)}_\nu \rangle + \langle i | \delta H^{K(j)} | w^{(j)}_\alpha \rangle \right\} \frac{\langle w^{(j)}_\alpha | j \rangle}{z - \varepsilon^{(j)}_\nu}, \tag{A6}
\]

where we define \( \delta H^{K(j)} \equiv H - H^{K(j)} \) and use

\[
| d \rangle \equiv | j \rangle - \sum_\alpha \langle w^{(j)}_\alpha | \rangle \langle w^{(j)}_\alpha | j \rangle = \sum_\alpha \langle K_n^{(j)} | K_n^{(j)} \rangle. \tag{A7}
\]

The last equality of eq. (A7) is given by

\[
\sum_\alpha \langle w^{(j)}_\alpha | \rangle = \sum_\nu \langle K_n^{(j)} | K_n^{(j)} \rangle \tag{A8}
\]

and \( | K_n^{(j)} \rangle \equiv | j \rangle \). The first and second terms in eq. (A8) correspond to the finite background and the spiles in Fig. 9(a), respectively. With a small number of bases, as in Fig. 9(a), the orthogonality between the bases holds exactly and we obtain \( | d \rangle = | \xi^{(j)}_\nu \rangle = 0 \). Therefore, the energy-independent term, the first term of eq. (A6) does not appear. The spikes in Fig. 9(a) appear, because the reduced Hamiltonian matrix in the KS is deviated from the original one (\( \delta H^{K(j)} \equiv H - H^{K(j)} \neq 0 \)).