Data Set for the Reporting of Carcinomas of the Nasal Cavity and Paranasal Sinuses

Explanations and Recommendations of the Guidelines
From the International Collaboration on Cancer Reporting

Alessandro Franchi, MD; Justin A. Bishop, MD; Hedley Coleman, MD; Uta Flucke, MD; Lisa F. Licitra, MD; José Luis Llorente Pendas, MD; Edward B. Stelow, MD; Mary Toner, MD; Ilan Weinreb, MD; Bruce M. Wenig, MD; Lester D. R. Thompson, MD

- The International Collaboration on Cancer Reporting was established to internationally unify and standardize the pathologic reporting of cancers based on collected evidence, as well as to allow systematic multi-institutional intercountry data collection to guide cancer care in the future. This data set has been developed by the collaborative efforts of an international multidisciplinary panel of experts involved in the care of patients with carcinomas of the nasal cavity and paranasal sinuses (sinonasal tract). The nasal cavity and paranasal sinuses (including frontal, sphenoid, ethmoid, and maxillary sinuses) comprise a very complex anatomic area of the head and neck, affected by a sometimes bewildering array of neoplasms. Management of malignancies in this anatomic region involves complex surgery because of the anatomic confines and close proximity to many vital structures. Given a multidisciplinary approach, the standardized reporting of the carcinomas that develop in this anatomic region include both required (core) and recommended (noncore) elements in pathology reporting in order to be able to identify critical prognostic factors, often requiring clinical and radiologic correlation. A summary of the International Collaboration on Cancer Reporting guidelines and clinically relevant elements, along with additional explanatory notes, are provided, based on evidentiary support from the literature, set in the context of practical application.

(Arch Pathol Lab Med. 2019;143:424–431; doi: 10.5858/arpa.2018-0404-SA)

Sinonasal malignancies are rare and aggressive tumors, with an incidence of less than 1 case per 100,000 population annually, representing 3% to 5% of all head and neck cancers.1–3 They occur predominately in adult male patients and present with nonspecific symptoms that are often indistinguishable from inflammatory diseases. Thus, the diagnosis is often delayed with the tumor in locally advanced stage. In comparison with other malignancies of the head and neck, an elevated fraction of sinonasal carcinomas can be attributed to occupational exposures, including wood and leather dusts for intestinal-type adenocarcinoma or to several chemical substances (glues, formaldehyde, chrome, nickel, and compounds used in the textile industry) for squamous cell carcinoma. Sinonasal neuroendocrine carcinoma may also arise in the setting of previous high-dose radiotherapy. Finally, human papillomavirus (HPV) is emerging as an important etiologic factor in a subset of sinonasal carcinomas.

A comprehensive pathologic report is essential for cancer diagnosis, staging, prognostication, and optimal therapeutic decision making. Moreover, standardized procedures enable reliable data collection, cohort stratification, and research, especially in rare cancers.

To these aims, a standardized data set ensures that histopathology reports include all relevant information and present it in a concise and consistent format that conforms to international standards. The International Collaboration...
on Cancer Reporting (ICCR) was established in 2011 through a collaboration between the College of American Pathologists, the Canadian Association of Pathologists-Association Canadienne des Pathologistes in association with the Canadian Partnership Against Cancer, the Royal Colleges of Pathologists of Australasia and the United Kingdom, joined in 2013 by the European Society of Pathologists, and followed by the American Society of Clinical Pathology and the Royal College of Physicians of Ireland, Faculty of Pathology, as sustaining members. Furthermore, for this data set, members of the authoring panel were chosen from the additional sponsoring organizations: the North American Society of Head and Neck Pathology; the American Academy of Oral and Maxillofacial Pathology; the British Society for Oral and Maxillofacial Pathology; and the International Association of Oral and Maxillofacial Pathologists. The ICCR aims to produce globally standardized, evidence-based reporting data sets for various organ systems by harnessing international experience and expertise.

The sinonasal tract has a very complex anatomy, with numerous vital structures housed within a relatively confined and limited space. Familiarity with the anatomy, in addition to the diagnoses of the neoplasms of this region, are important for staging and prognostic purposes. Thus, the international collaborative effort achieved by the ICCR is critical for the reporting of carcinomas of the sinonasal tract to ensure international uniformity in pathologic examination and to facilitate multi-institutional and cross-regional data collection for improved patient management. The ICCR data sets include core and noncore elements. The core elements are required, considered essential for the clinical management and prognosis or staging of the neoplasms. The noncore elements are recommended as good clinical practice but may not be clinically validated or used in management decisions at this time. The ICCR data set includes the minimum reporting requirements for the reporting of resection and biopsy specimens of mucosal epithelial malignancies of the nasal cavities and paranasal sinuses. There is significant variation in the strength of the evidence available for these tumors, with most data derived from retrospective case series because of the rare nature of primary neoplasms. Sinonasal melanomas, sarcomas, and hematolymphoid tumors are excluded. Further, this process was conducted to incorporate the fourth series of the World Health Organization (WHO) Classification of Head and Neck Tumors and the 8th edition of the Union for International Cancer Control cancer staging system.

DATA SET ELEMENTS

Core (Required) Elements

Neoadjuvant Therapy.—Patients with locally advanced sinonasal carcinomas may be treated with preoperative chemotherapy or concurrent chemoradiotherapy protocols that may result in a significant improvement in survival in selected patients. Such treatments may significantly alter the gross and microscopic appearance of the tumor and result in difficulties in tumor typing and grading. Although quantification of the extent of response is considered not relevant for clinical purposes, specimens should be extensively sampled, and changes presumably induced by treatment should be reported. Type of (chemo) therapy, number of cycles, interval between last cycle of chemotherapy, and local regional treatment initiation can also be annotated if available.

Operative Procedure.—Different options are currently available for the surgical treatment of sinonasal malignancies, which may be chosen according to histopathology, extent of the lesion, and experience of the surgeon. Surgical approaches include craniofacial resections (open or endoscopic), endoscopic endonasal resections, and combined approaches. This results in a wide range of surgical specimens submitted for histopathologic analysis (Figure 1).

Specimens Submitted.—Specimens from endoscopic surgery typically consist of fragmented material that should be properly labeled at the time of surgery, including a description of the anatomic site and type of tissue submitted (tumor, margin, or other). Because of the inherent orientation difficulty in samples, separately submitted margins, properly identified and labeled, are encouraged. Surgical resection specimens consist most often of the maxillary bone and adjacent anatomic structures removed according to the extent of the primary tumor (Figure 2).

Tumor Site.—The sinonasal tract consists of the nasal cavity and the paired paranasal sinuses (maxillary, ethmoid, frontal, and sphenoid). The nasal cavity can be further subdivided into the nasal septum, floor, lateral wall, and vestibule. Among sinonasal tract carcinomas, the most common site of tumor origin is the maxillary sinus, followed by the nasal cavity and ethmoid sinus. It is rare for carcinomas to arise from the frontal or sphenoid sinuses.

The precise tumor site within the sinonasal tract is important to record. This is not always easy to determine, because some exophytic tumors may almost entirely fill the nasal fossa without any infiltration, and only involve a relatively limited portion of the mucosa (Figure 3). Second, there is prognostic importance to the tumor location. For example, carcinomas primary to the nasal cavity have been shown to have an improved prognosis compared with carcinomas primary to the paranasal sinuses, likely because nasal carcinomas give rise to symptoms (eg, nasal obstruction or epistaxis) and reach clinical attention earlier in the disease course. Among maxillary sinus carcinomas, those arising from the anterior-inferior portion have a better prognosis than those arising from the superior-posterior portion, likely because the latter group more easily involves the skull base and/or orbit. Interestingly, primary maxillary carcinomas have a behavior different from carcinomas originating in the oral cavity and secondarily involving the maxilla. Further, there are separate staging systems for the 2 major anatomic sites: maxillary sinus and nasal cavity and/or ethmoid sinus. Finally, certain carcinomas are closely associated with specific sinonasal subsites. For example, intestinal-type adenocarcinomas and neuroendocrine carcinomas occur most often in the ethmoid sinuses, whereas squamous cell carcinoma occurs most often in the maxillary sinuses.

It is recognized that some carcinomas, particularly highly aggressive types like sinonasal undifferentiated carcinoma or nuclear protein in testis (NUT) carcinoma, usually affect more than 1 subsite. In this case, every affected site should be specified in the report.

Tumor Dimensions.—The maximum diameter of the tumor should ideally be assessed on the unfixed specimen to avoid size underestimation resulting from formalin fixation–induced shrinkage. Care should be taken not to overestimate tumor size by including areas of adjacent nonneoplastic tissue. The gross assessment of tumor size should be
confirmed microscopically, and in cases where nonneoplastic tissue has been mistakenly incorporated into the tumor measurement, tumor size should be adjusted accordingly. If tumor dimensions are estimated only microscopically, then “at least” should be added to indicate that the measurement is an underestimation resulting from fixation and tissue processing. The option “cannot be assessed” may be used when the tumor is submitted in fragments, as in endoscopic resections. In these cases, radiographic imaging may also be considered to determine tumor dimensions.

Histologic Tumor Type.—All sinonasal tract carcinomas should be given a type based on the most recent edition of the WHO’s *Classification of Head and Neck Tumours*, currently from the 4th edition (Table 1). Importantly, because of an effort to reduce duplication and only including an entity once in the book, not every histologic sinonasal tract tumor is described.

The sinonasal tract gives rise to a very large and diverse group of carcinomas, which may arise from the surface epithelium or the underlying seromucinous glands. Squamous cell carcinoma is, by far, the most common sinonasal malignancy, and it is subdivided primarily into keratinizing and nonkeratinizing subtypes (Figure 4, A). Additional subtypes (eg, spindle cell, basaloid, adenosquamous) are rare but should be noted if present. Uncommon carcinoma variants (such as sinonasal undifferentiated carcinoma, NUT carcinoma) are also included, whereas adenocarcinomas are separated into salivary gland types, intestinal types (Figure 5), and nonintestinal types, among other less common variants. Correct classification results in appropriate treatment, correlated with overall patient outcome. These classifications will take additional importance as targeted, molecular-based therapies become more widespread.25–27

Histologic Tumor Grade.—A 3-tiered grading system based on degree of differentiation is used for squamous cell carcinoma, and it is also applied to some sinonasal adenocarcinomas, as well as selected salivary gland neoplasms (eg, adenoid cystic carcinoma, mucoepidermoid

Table 1. World Health Organization Classification of Sinonasal Tract Carcinomas

Descriptor	ICD-O Codes
Keratinizing squamous cell carcinoma	8071/3
Nonkeratinizing squamous cell carcinoma	8072/3
Spindle cell squamous cell carcinoma	8074/3
Lymphoepithelial carcinoma	8082/3
Sinonasal undifferentiated carcinoma	8020/3
NUT carcinoma	8023/3
Neuroendocrine carcinomas	
Small cell neuroendocrine carcinoma	8041/3
Large cell neuroendocrine carcinoma	8013/3
Adenocarcinomas	
Intestinal-type adenocarcinoma	8144/3
Non–intestinal-type adenocarcinoma	8140/3

Abbreviations: ICD-O, International Classification of Diseases for Oncology; NUT, nuclear protein in testis.

Reproduced with permission from World Health Organization/International Agency for Research on Cancer (IARC).24 The morphology codes are from the ICD-O. Behavior is coded /3 for malignant tumors.
carcinoma, etc). Undifferentiated tumors should be considered high grade. Minor salivary gland neoplasms have grading systems unique to selected tumors, whereas other adenocarcinomas are assigned a grade based on necrosis and mitotic activity. Nearly all sinonasal tract neuroendocrine carcinomas are high grade.

Bone/Cartilage Invasion.—Bone invasion is a frequent finding in sinonasal carcinomas. Both bone erosion and destruction are reported, but sometimes findings from radiographic studies may need to be incorporated into this evaluation because limited biopsies may not include enough material to yield a meaningful interpretation. In resections, it is strongly recommended that histologic sections be taken from the areas of maximum bone involvement (after appropriate decalcification).

Perineural Invasion.—The frequency of perineural invasion (including named nerves) in sinonasal carcinomas is lower than it is in other head and neck sites, and it varies according to the histologic subtype, identified most frequently in adenoid cystic, sinonasal undifferentiated, squamous cell, and NUT carcinomas, respectively. In sinonasal carcinomas, perineural invasion is associated with a high rate of positive margins, with maxillary origin, and with previous surgical treatment, but it is not an independent prognostic factor.

Lymphovascular Invasion.—Lymphovascular invasion includes neoplastic cells within an endothelial-lined space, either lymphatic or venous, and it must be distinguished from retraction artifacts. Immunohistochemical staining for an endothelial marker may help in this distinction in selected cases. Lymphovascular invasion is reported in up to 60% of sinonasal squamous cell carcinomas, but its clinical significance remains elusive.

Margin Status.—Complete tumor resection with negative surgical margins poses a significant challenge in sinonasal carcinomas, given the proximity to critical anatomic structures. The presence of residual microscopic disease has been reported with high frequency in cases managed both by open and by endoscopic surgical techniques. In a large series of sinonasal squamous cell carcinomas treated with surgery, 16% had microscopic residual disease and 13% had macroscopic positive resection margins. A negative surgical margin is associated with improved overall survival in retrospective studies for both open and endoscopic approaches.

Ideally, the resection specimen should be oriented by the surgeon, including sutures or other annotations, best achieved by direct communication between the surgeon and pathologist, supplemented with specimen photography before and after sectioning. Failing this, the margins should be labeled by the surgeon and/or illustrated with a diagram. Specimens from endoscopic tumor resections should also be labeled and oriented, if possible. If the margins are sent separately, for frozen section or otherwise, identification of their site in relation to the resection specimen should be clarified by the surgeon. The surgical margins—mucosal, soft tissue, bone, and deep—should be thoroughly sampled, because additional therapy is often predicated on margin status. Because of limited data, a clear margin ranges from 3 to 7 mm, with 5 mm generally associated with a better prognosis, although recurrence is seen in up to 25% of patients with a clear margin. Depending on stage and other factors, a narrower margin may be adequate. When the complex anatomy is taken into consideration, a “pushing” border into the peribulbar tissues may not

Figure 2. T2-weighted magnetic resonance imaging image showing postoperative status of a sinonasal adenocarcinoma without any residual tumor.

Figure 3. T2-weighted magnetic resonance imaging image showing an exophytic adenocarcinoma filling almost entirely the nasal fossa but exclusively implanted in the olfactory area.
require orbital exenteration to achieve a 5 mm margin, if it is a low-grade neoplasm (Figure 6). Thus, margin status is one parameter of many used in treatment and prognostication.46–48 Most studies also consider carcinoma in situ/high-grade dysplasia as a positive margin.40 The presence of dysplasia at the margin is associated with a significant risk of local recurrence49 and development of a second primary.50 Thus, this information, including distance to the margin from invasive and in situ/dysplasia, is reported.

Pathologic Staging.—Staging of sinonasal cancer remains a difficult task because of the complexity of the anatomic site and the heterogeneity of the tumor types. Nevertheless, an accurate staging is essential for treatment and prognosis implications.51 The data set is based on the T category of the 8th edition of the Union for International Cancer Control staging system, which is identical to that of the previous edition (Table 2). Tumors located in the maxillary sinus are separated from those arising in the nasal cavity and ethmoid sinus. The pT stage is based on the involved anatomic sites, as well as invasion of the bone, orbit, dura, and other structures. Most sinonasal carcinomas present in advanced T category (T3 and T4). It is worth noting that a number of studies have reported significant discrepancies between clinical and pathological T categorization.52,53 In particular, imaging is not sufficiently accurate in the assessment of invasion of the orbit, the skull base, and frontal or sphenoid sinuses.52 Thus, careful histopathologic assessment is essential for a correct staging of sinonasal carcinomas. Finally, when neck lymph node dissections are included as part of the surgical specimen, a separate linked data set for Nodal Excisions and Neck Dissection Specimens for Head & Neck Tumours has to be completed.70

Noncore (Recommended) Elements

Tumor Focality.—Sinonasal carcinomas may present with multiple synchronous lesions located in different anatomic subsites.36 Similar to other data sets for reporting carcinomas of the head and neck, multiple different histologic primaries are separately reported. The term “multifocal” may be used for microscopic foci of in situ or invasive carcinoma adjacent to the primary.

Coexistent Pathology.—A number of histopathologic findings may be associated with sinonasal tract carcinomas. The presence of squamous dysplasia/carcinoma in situ can be used as evidence for histologic classification of the tumor. This is especially true with spindle cell carcinoma or other variants of squamous cell carcinoma that arise from and are often associated with overlying squamous dysplasia/carcinoma in situ.54 It is well recognized that a subset of sinonasal squamous cell carcinomas, and less frequently other histologic types, originate from preexisting sinonasal papillomas (formerly Schneiderian papilloma). These tumors represent a group of sinonasal carcinomas characterized by specific genetic alterations and oncogenic mechanisms.55–57

Finally, foci of intestinal metaplasia of the adjacent sinonasal respiratory epithelium can be detected in about 25% of intestinal-type adenocarcinomas.58,59

Ancillary Studies.—Ancillary studies are variably needed for the diagnosis of specific entities at this site. For example, NUT carcinoma is recognized by the presence of

Figure 4. Nonkeratinizing squamous cell carcinoma. The tumor consists of nonkeratinizing atypical squamoid cells, with peripheral palisading of tumor cell nuclei (A). These tumors are frequently human papillomavirus (HPV) related, and thus positive for both p16 (B) and high-risk HPV by DNA in situ hybridization (inset) (hematoxylin-eosin, original magnification ×300 [A]; original magnifications ×150 [B] and ×400 [inset]).
nuclear protein in testis (NUTM1) gene rearrangement or positivity with the C52 monoclonal antibody against NUT protein. The diagnosis of HPV-related multiphenotypic sinonasal carcinoma requires HPV-specific testing as part of the tumor definition (Figure 4, B), whereas for the diagnosis of SMARCB1 (INI1)–deficient carcinoma, loss of nuclear immunohistochemical staining for INI1 is required.

In poorly differentiated malignancies, immunohistochemical markers can be used to assign a tumor to a specific category. Useful markers of squamous differentiation are p40, p63, and cytokeratin 5/6, whereas markers of intestinal differentiation, such as cytokeratin 20 and CDX2, help in the diagnosis of intestinal-type adenocarcinoma.

Table 2. Union for International Cancer Control (UICC) TNM 8th Edition Pathologic Staging of Nasal Cavity and Paranasal Sinuses

Stage	Description
pTx	Primary tumor cannot be assessed
pT0	No evidence of primary tumor
pTis	Carcinoma in situ
Maxillary sinus	
pT1	Tumor limited to the mucosa with no erosion or destruction of bone
pT2	Tumor causing bone erosion or destruction, including extension into the hard palate and/or middle nasal meatus, except extension to posterior wall of maxillary sinus and pterygoid plates
pT3	Tumor invades any of the following: bone of posterior wall of maxillary sinus, subcutaneous tissues, floor or medial wall of orbit, pterygoid fossa, or ethmoid sinuses
pT4	Moderately advanced or very advanced local disease
pT4a	Tumor invades any of the following: anterior orbital contents, skin of cheek, pterygoid plates, infratemporal fossa, sphenoid or frontal sinuses
pT4b	Tumor invades any of the following: orbital apex, dura, brain, middle cranial fossa, cranial nerves other than maxillary division of trigeminal nerve (V2), nasopharynx, or clivus
Nasal cavity and ethmoid sinus	
pT1	Tumor restricted to one subsite of nasal cavity or ethmoid sinus, with or without bony invasion
pT2	Tumor involves subsites in a single site or extends to involve an adjacent site within the nasoethmoidal complex, with or without bony invasion
pT3	Tumor extends to invade the medial wall or floor of the orbit, maxillary sinus, palate, or cribiform plate
pT4	Moderately advanced or very advanced local disease
pT4a	Tumor invades any of the following: anterior orbital contents, skin of nose or cheek, minimal extension to anterior cranial fossa, pterygoid plates, sphenoid or frontal sinuses
pT4b	Tumor invades any of the following: orbital apex, dura, brain, middle cranial fossa, cranial nerves other than V2, nasopharynx, or clivus

Figure 5. Sinonasal intestinal-type adenocarcinoma arising in a woodworker. Histologically, the tumor is identical to a colonic adenocarcinoma (hematoxylin-eosin, original magnification ×300).

Figure 6. T2-weighted magnetic resonance imaging image showing a sinonasal adenocarcinoma pushing but not infiltrating the orbit. However, there is infiltration of the dura mater into the anterior cranial fossa.
crine carcinomas can be diagnosed with the support of positive reactivity with at least 1 neuroendocrine marker.

A subset of sinonasal carcinomas appear to be related to high-risk HPV, including nonkeratinizing squamous cell carcinoma, basaloid squamous cell carcinoma, papillary squamous cell carcinoma, adenousquamous carcinoma, and conventional keratinizing squamous cell carcinoma. However, the clinical significance of these findings is still debated, and HPV testing is currently considered investigational in this context.

CONCLUSIONS

In summary, the contents of the ICCR data set for reporting carcinomas of the nasal cavity and paranasal sinuses were reviewed. In such a highly heterogeneous group of rare tumors, an internationally agreed-upon pathology data set is important to facilitate data collection and comparison, ensuring that all clinically relevant information is included.

The authors would like to express their appreciation to the sponsoring societies and organizations and give special thanks to Fleur Webster and Hannah B. Canlas for their exceptional organizational and editing contributions. The views expressed are those of the authors solely.

References

1. Turner JH, Reh DD. Incidence and survival in patients with sinonasal cancer: a historical analysis of population-based data. Head Neck. 2012;34(6):877–885.
2. Dutta R, Dubal PM, Svider PF, Liu JK, Baredes S, Eloy JA. Sinonasal malignancies: a population-based analysis of site-specific incidence and survival. Laryngoscope. 2015;125(11):2491–2497.
3. Van Dijk BA, Gatta G, Capocaccia R, Pierannunzio D, Strojan P, Licitra L. RARECARE Working Group. Rare cancers of the head and neck area in Europe. Laryngoscope. 2017.
4. Slootweg PJ. Complex head and neck specimens and neck dissections: how to handle them. J Clin Pathol. 2005;58(3):243–248.
5. Ansa B, Goodman M, Ward K, et al. Sinonasal paranasal sinus carcinoma incidence and survival based on Surveillance, Epidemiology, and End Results data, 1973 to 2009. Cancer. 2013;119(14):2602–2610.
6. Robins PE, Powell DJ, Stansbie JM. Carcinoma of the nasal cavity and paranasal sinuses: incidence and presentation of different histological types. Clin Otolaryngol Allied Sci. 1979;4(6):431–456.
7. Sanghvi S, Khan MN, Patel NR, Yeldandi S, Baredes S, Eloy JA. Epidemiology of sinonasal squamous cell carcinoma: a comprehensive analysis of 959 patients. Laryngoscope. 2014;124(11):2661–2669.
8. Takahashi Y, Bell D, Agarwal G, et al. Comprehensive assessment of prognostic markers for sinonasal squamous cell carcinoma. Head Neck. 2014;36(8):1094–1102.
9. Smith SP, Russell J, Chen NW, Kuo YE. Resto VA. Sinonasal carcinoma: racial and ethnic disparities in survival—a review of 4714 patients. Otalaryngol Head Neck Surg. 2015;153(4):551–560.
10. Dulguerov P, Jacobsen MS, Allal AS, Lehmwan W, Calcaterra T. Nasal and paranasal sinus carcinoma: are we making progress: a series of 220 patients and a system review. Clin Otolaryngol. 2002;27(2):121–132.
11. Thorup C, Sebbesen L, Dano H, et al. Carcinoma of the nasal cavity and paranasal sinuses in Denmark 1995-2004. Acta Oncol. 2010;49(3):389–394.
12. Klintenberg C, Olofsson J, Hellquist H, Sokjer H. Adenocarcinoma of the ethmoid sinuses: a review of 83 cases with special reference to wood dust exposure. Cancer. 1984;54(3):482–488.
13. Mitchell EH, Diaz A, Yilmazer T, et al. Multimodality treatment for sinonasal neuroendocrine carcinoma. Head Neck. 2012;34(10):1372–1376.
14. Smith SR, Som P, Fahmy A, Lawson W, Sacks S, Brandwein M. A clinicopathological study of sinonasal neuroendocrine carcinoma: a homogenous indifferntiated carcinoma. Laryngoscope. 2000;110(10, pt 1):1617–1622.
15. El Naggar A, Chan JKC, Grandsir JR, Takata T, Slootweg PJ. eds. WHO Classification of Head and Neck Tumours. 4th ed. Lyon, France: IARC; 2017.
16. Franchi A, Innocenti DR, Palomba A, et al. Low prevalence of K-RAS, EGFR, and BRAF mutations in sinonasal adenocarcinomas: implications for anti-EGFR treatments. Pathol Oncol Res. 2014;20(3):571–579.
17. Hoeben A, van de Winkel L, Hoefers F, et al. Intestinal-type sinonasal adenocarcinoma: the road to molecular diagnosis and personalized treatment. Head Neck. 2016;38(10):1564–1570.
18. Santhala RR. Histological grading and prognostic biomarkers in salivary gland carcinomas. Adv Anat Pathol. 2011;18(1):29–45.
19. Helfnir DK, Hyams VJ, Hauck KW, Lingeman C. Low-grade adenocarcinoma of the nasal cavity and paranasal sinuses. Cancer. 1982;50(2):312–322.
20. Schramm EA, Franchi A, Geroski M, Franchi A, Nicolosi P. WHO-2002 TNM classification of ethmoid-type adenocarcinoma. In: El Naggar A, Chan JKC, Grandsir JR, Takata T, Slootweg PJ, eds. WHO Classification of Head and Neck Tumours. 4th ed. Lyon, France: IARC; 2017.
21. Singhs A, Zucca E, Bekradi M, et al. Clinical response of carcinomas harboring the BRD4-NUT oncoprotein to the targeted bromodomain inhibitor OTX015/MK-8668. Cancer Discov. 2016;6(5):492–500.
22. Dutta R, Dubal PM, Svider PF, Liu JK, Baredes S, Eloy JA. Sinonasal paranasal sinus: incidence and presentation of different histological types. Arch Otolaryngol Head Neck Surg. 2004;130(10):948–955.
23. Madison ML 2nd, Sorenson JM, Samant S, Robertson JH. The treatment of adenoid cystic carcinoma of the paranasal sinuses: a review of 28 cases with special reference to wood dust exposure. Arch Otolaryngol Head Neck Surg. 2010;136(1):9–16.
24. Cantu G, Golero CL, Mariani L, et al. Intestinal type adenocarcinoma of the ethmoid sinus in wood and leather workers: a retrospective study of 153 cases. Head Neck. 2011;33(5):647–654.
25. Cabcerchi JR, Patel K, Migliaccio IC, et al. Factors associated with a primary surgical approach for sinonasal squamous cell carcinoma. J Surg Oncol. 2017;117(4):756–764.
26. Vicari E, Carrau R, Snyderman C, Weissman J. The sensitivity and specificity of high-resolution imaging in evaluating perineural spread of adenoid cystic carcinoma to the skull base. Arch Otolaryngol Head Neck Surg. 2007;133(6):541–545.
27. Batra PS, Luong A, Kanowitz SJ, et al. Outcomes of minimally invasive endoscopic resection of anterior skull base neoplasms. Laryngoscope. 2010;120(1):39–45.
28. Dik EA, Willems SM, Ipenburg NA, Adriaansens SO, Rosenberg AJ, van Es JA. Status of primary sinonasal neuroendocrine carcinoma. In: El Nagar A, Chan JKC, Grandis JR, Takata T, Slootweg PJ, eds. WHO Classification of Head and Neck Tumours. 4th ed. Lyon, France: IARC; 2017.
29. Slootweg PJ. Intestinal-type adenocarcinoma. In: El Nagar A, Chan JKC, Grandis JR, Takata T, Slootweg PJ, eds. WHO Classification of Head and Neck Tumours. 4th ed. Lyon, France: IARC; 2017.
30. Klintenberg C, Olofsson J, Hellquist H, Sokjer H. Adenocarcinoma of the ethmoid sinuses: a contemporary review. Head Neck. 2013;35(9):1362–1370.
31. Stelow EB, Franchi A, Weing BM. Intestinal-type adenocarcinoma. In: El Nagar A, Chan JKC, Grandis JR, Takata T, Slootweg PJ, eds. WHO Classification of Head and Neck Tumours. 4th ed. Lyon, France: IARC; 2017.
32. Mitchell EH, Diaz A, Yilmazer T, et al. Multimodality treatment for sinonasal adenocarcinomas: implications for anti-EGFR treatments. Head Neck. 2016;38(10):1564–1570.
33. Sanghvi S, Khan MN, Patel NR, Yeldandi S, Baredes S, Eloy JA. Epidemiology of sinonasal squamous cell carcinoma: a comprehensive analysis of 959 patients. Laryngoscope. 2014;124(11):2661–2669.
34. Hass A, Goodman M, Ward K, et al. Paranasal sinus carcinoma incidence and survival based on Surveillance, Epidemiology, and End Results data, 1973 to 2009. Cancer. 2013;119(14):2602–2610.
35. Robins PE, Powell DJ, Stansbie JM. Carcinoma of the nasal cavity and paranasal sinuses: incidence and presentation of different histological types. Clin Otolaryngol Allied Sci. 1979;4(6):431–456.
36. Sanghvi S, Khan MN, Patel NR, Yeldandi S, Baredes S, Eloy JA. Epidemiology of sinonasal squamous cell carcinoma: a comprehensive analysis of 959 patients. Laryngoscope. 2014;124(11):76–83.
37. Takahashi Y, Bell D, Agarwal G, et al. Comprehensive assessment of prognostic markers for sinonasal squamous cell carcinoma. Head Neck. 2014;36(8):1094–1102.
