Health outcomes related to the provision of free, tangible goods: A systematic review

Nav Persaud, Liane Steiner, Hannah Woods, Tatiana Aratangy, Susitha Wanigaratne, Jane Polsky, Stephen Hwang, Gurleen Chahal, Andrew Pinto

1 Centre for Urban Health Solutions, St. Michael’s Hospital, Toronto, Canada, 2 Department of Family and Community Medicine, St. Michael’s Hospital, Toronto, Canada, 3 Department of Family and Community Medicine, Faculty of Medicine, University of Toronto, Toronto, Canada, 4 Division of General Internal Medicine, University of Toronto, Toronto, Canada, 5 The Upstream Lab, Centre for Urban Health Solutions, Li Ka Shing Knowledge Institute, St. Michael’s Hospital, Toronto, Canada, 6 Dalla Lana School of Public Health, University of Toronto, Toronto, Canada

* nav.persaud@utoronto.ca

Abstract

Background

Free provision of tangible goods that may improve health is one approach to addressing discrepancies in health outcomes related to income, yet it is unclear whether providing goods for free improves health. We systematically reviewed the literature that reported the association between the free provision of tangible goods and health outcomes.

Methods

A search was performed for relevant literature in all languages from 1995-May 2017. Eligible studies were observational and experimental which had at least one tangible item provided for free and had at least one quantitative measure of health. Studies were excluded if the intervention was primarily a service and the free good was relatively unimportant; if the good was a medication; or if the data in a study was duplicated in another study. Covidence screening software was used to manage articles for two levels of screening. Data was extracted using an adaption of the Cochrane data collection template. Health outcomes, those that affect the quality or duration of life, are the outcomes of interest. The study was registered with PROSPERO (CRD42017069463).

Findings

The initial search identified 3370 articles and 59 were included in the final set with a range of 20 to 252 246 participants. The risk of bias assessment revealed that overall, the studies were of medium to high quality. Among the studies included in this review, 80 health outcomes were statistically significant favouring the intervention, 19 health outcomes were statistically significant favouring the control, 141 health outcomes were not significant and significance was unknown for 28 health outcomes.
Interpretation

The results of this systematic review provide evidence that free goods can improve health outcomes in certain circumstances, although there were important gaps and limitations in the existing literature.

Introduction

Disparities in health along socioeconomic lines are well established: groups with lower income and socioeconomic position consistently experience worse health outcomes, including higher rates of mortality.[1, 2] One of many possible explanations for better health outcomes among those with higher socioeconomic status is that income allows greater access to tangible goods that can improve health, such as safe shelter, healthy foods, clean water, and essential medicines. Worse health outcomes among lower socioeconomic status groups may be explained by reduced access to education and child care, exposure to hazards such as air pollution or contaminated drinking water, exposure to violence, reduced access to health care services, or discrimination based on gender, ethnicity or other characteristics.[3, 4] Some of these potential alternative explanations may be indirectly related to access to tangible goods, such as water filtration systems that can mitigate effects of contaminated water and medicines that may mitigate the effects of poor access to health care services. The importance of tangible goods has long been recognized through accounting for “non-cash” income, such as the value of housing provided by governments, and by defining poverty based on the cost of tangible goods (as in reference budgets that are baskets of goods and services that are considered necessary to reach an acceptable standard of living for an individual household within a given country, region or city) and essential services rather than based on relative income level.[5, 6]

If people lack a good that is required for their health and well-being, a simple response is to provide it for free. This approach appears to underpin many governmental and non-governmental programs routinely devote substantial resources to distributing goods to people in need.[7–9] Yet it is unclear whether providing goods for free promotes health. Free tangible goods may not be used as intended or at all: their positive health effects may not overcome other causes of poor health, or they may even cause unintended harm (e.g. providing safety equipment such as bicycle helmets could encourage risky behavior).[10] Providing people with free goods could complement other efforts to promote health, such as providing services like healthcare,[11] and providing a Basic Income.[12, 13] The receipt of free tangible goods could free up limited household income or resources that would otherwise be consumed in obtaining those goods and this additional disposable income may result in improved health.

We are not aware of any previous systematic effort in the existing scientific literature to assess whether providing free goods promotes health. We systematically reviewed the literature for studies that reported the association between the free provision of tangible goods and health outcomes.

Methods

Search strategy

A search strategy was developed in consultation with an information specialist. This systematic review was registered on PROSPERO (CRD42017069463, Aug 30 2017).

We defined “tangible goods” as a physical good or object that could be given to persons or families. We generated a list of items which were hypothesized to be distributed without charge to patients or study participants. The list of items was sent to several other researchers for
feedback who had expertise in primary health care, social determinants of health, health economics, epidemiology, public health, homelessness, housing, refugee health, access to healthy food and income security. After feedback was received, a final list of key terms was created with all suggestions included (S1 File, Search strategy).

Key terms were searched in the following databases: EMBASE, MEDLINE, CINAHL, PsycINFO, Cochrane, ProQuest databases (others could include Applied Social Sciences Index and Abstracts (ASSIA), FRANCIS, International Bibliography of the Social Sciences (IBSS), PAIS International, ProQuest Family Health, ProQuest, Social Services Abstracts, Sociological Abstracts) in all languages from 1995-present. We also looked through trial registries. The search was conducted in June 2017.

Inclusion criteria

Eligible studies were observational (e.g. case-control, cohort, before-after, pre-post or longitudinal), and experimental studies (e.g. randomized controlled trial), which had at least one tangible item provided free of cost to participants. Examples of free goods included transit passes, food boxes, infant goods, bicycle helmets, condoms, needles, and other drug paraphernalia. Studies had to have at least one quantitative measure of health. We understood “health” as the quality or duration of life. Although housing retention is not a health outcome, it was treated as such because housing is closely related to quality of life.[14] Included studies were also required to have a comparison or control group that allowed the effect of the free good to be measured. Studies published between January 1995 and May 2017 were eligible.

Exclusion criteria

We excluded studies in which a service such as advice, health screening procedure or a diagnostic test was provided; if the intervention was primarily a service and the free good was relatively unimportant (e.g. giving participants a voucher for a health service); if the good was a medication (e.g. nicotine replacement, contraception, naloxone kits); or if the data in a study was duplicated in another study (duplicated data was defined as data from the same participant at the same timepoint).

Screening

Covidence screening software [15] was used to manage articles while screening. In level one screening, all titles and abstracts were reviewed to determine if they met the inclusion criteria for the study. Level two consisted of screening the full text of articles to determine whether they met the inclusion criteria. Each article was appraised by two reviewers (LS and HW) for both levels and disagreements were discussed. If the reviewers did not come to a decision, a third investigator (NP) was consulted.

We attempted to include only one report of each health outcome. We excluded reports where both the outcomes and participants were the same as a study that was already included. We included reports where the participants and outcomes only partially overlapped between reports. If multiple reports included the same outcome for the same participants, we included that outcome only once.

Extraction technique

Publication information, study characteristics, participant demographics, the health outcomes measured in the study and the quantitative results were extracted from each study by one reviewer using an adaptation of the Cochrane data collection template. [16]
Quality appraisal

The quality of each article was appraised by two individual reviewers using the Cochrane Risk of Bias assessment tool for randomized control trials [17] and ROBINS 1 assessment tool for non-randomized control trials [18]. The Cochrane Risk of Bias tool assesses seven potential sources of bias including random sequence generation, allocation concealment, blinding of participants, blinding of outcome assessments, incomplete outcome data, selective reporting, and funding source. [17] The ROBINS 1 tool also assesses seven potential sources of bias including bias due to confounding, bias in selection of participants into the study, bias in classification of interventions, bias due to deviations from intended interventions, bias due to missing data, bias in measurement of outcomes, and bias in selection of the reported results. [18] We did not exclude any studies based on the risk of bias assessment.

Presentation of findings

We grouped studies based on the type of free good provided and the outcome reported.

Results

Literature search

The initial search identified 3370 articles of interest. In the first level of screening based on abstract review, 3132 articles were excluded, leaving 238 articles for full manuscript review. This second level of screening removed a further 179 articles yielding a final set of 59 articles which met full eligibility criteria (Fig 1).

Study characteristics

The 59 included studies included a range of 20 to 252 246 participants with a median of 872.5. The length of the studies ranged from two to 180 months with a median of 15.5 months. Of the 59 articles, 29 were randomized controlled trials (RCTs) and 30 were observational studies.

Among the 59 included studies, 45 (76.3%) were from countries that are considered high income according to the 2016 World Bank Report. [20] These countries included the USA (20 studies), Canada (13 studies), United Kingdom (four studies), Norway (two studies), Israel (two studies), Ireland (one study), New Zealand (one study), Australia (one study), and France (one study). Fourteen studies (23.7%) were from countries considered low or medium income by the 2016 World Bank Report. [20] These countries included India (three studies), Cameroon (two studies), and one study each from Mexico, Colombia, Ukraine, Pakistan, Ghana, Kenya, Nigeria, China and Zanzibar.

Among the 59 included studies, the free goods provided were housing (20 studies), food (17 studies), safety equipment (six studies), insecticide treated nets (five studies), hygiene, and water sanitation (six studies) and miscellaneous (five studies).

Risk of bias

Among the RCTs there were: no studies judged to be at a low risk of bias in all domains, one (3.4%) study was at a low or unknown risk of bias for all domains and 28 (96.6%) studies were at a high risk of bias in at least one domain (Fig 2). Among observational studies, there was: one (3.3%) study judged to be at a low risk of bias or no information in all domains, 11 (36.7%) studies at a low or moderate risk of bias or no information for all domains, 13 (43.3%) studies at serious risk of bias in at least one domain (but not at critical risk of bias in any domain), and five (16.7%) studies at critical risk of bias in at least one domain (Fig 3). Risk of
bias assessment data is available as S1 Table, Cochrane risk of bias assessment for RCTs and S2 Table, ROBINS 1 risk of bias assessment for observational studies.

Results by type of good

Housing. There were 24,940 participants in the 20 housing studies (there was some overlap in participants between studies; see the Methods section) (Table 1). All studies were
conducted in either Canada (12 studies) or the USA (eight studies). Nineteen of these studies (95%) had a co-intervention, of which eighteen were “Housing First” programs. For example, in addition to housing, the intervention offered participants treatment for various addictions, mental health challenges and other social supports. [21] The primary reported outcomes in housing studies were stable housing (11 studies, 55%); substance use (10 studies, 50%); psychiatric symptoms or mental health (eight studies, 40%); quality of life, including QoLI-20, community functioning (MCAS) and community integration (CIS-PHY and CIS-PSYCH) (eight studies, 40%); health status, including BMI, waist circumference, physical health ailments and health assessments using EQ5D-VAS, and physical SF-12 assessment forms (six studies, 30%); food security (two studies, 10%); and death (one study, 5%). The study durations ranged from six months to 180 months. Housing studies reported a total of 114 outcomes (with duplicates removed), of which 42 were statistically significant, 62 were not significant, and significance was unknown for 10 outcomes. Of the 42 statistically significant outcomes, 37 outcomes (from 15 different studies) favoured the intervention, and five outcomes (from two different studies) favoured the control.

Food. There were 307,583 participants in the 17 food studies (Table 2). Food studies were conducted in USA (11 studies), Norway (two studies), Mexico (one study), Colombia (one study), and Canada (one study). The primary reported outcomes in food studies were food security (two studies, 10%); health status, including BMI, waist circumference, physical health ailments and health assessments using EQ5D-VAS, and physical SF-12 assessment forms (six studies, 30%); food security (two studies, 10%); and death (one study, 5%). The study durations ranged from six months to 180 months. Food studies reported a total of 114 outcomes (with duplicates removed), of which 42 were statistically significant, 62 were not significant, and significance was unknown for 10 outcomes. Of the 42 statistically significant outcomes, 37 outcomes (from 15 different studies) favoured the intervention, and five outcomes (from two different studies) favoured the control.
Table 1. Characteristics of included housing studies (N = 20).

Study	Study type	Country	Participants	Intervention vs. Comparison	Co-intervention	Time	Health Outcome	Results	
Tenhere 2004 [21]	RCT	USA	225 homeless adults with serious mental illness	Housing First vs treatment as usual	Participants in both groups had additional counseling and resources available	24 months	Residential stability	$F_{5,27} = 27.7, p < 0.001$	
							Alcohol use	$F_{5,27} = 1.1, p = 0.38$ (favors control)	
							Drug use	$F_{5,27} = 0.48, p = 0.74$ (favors control)	
							Psychiatric symptoms	$F_{5,27} = 0.48, p = 0.80$ (favors control)	
							Decrease in homeless status	$F_{5,27} = 10.1, p = 0.001$	
Stefancic 2007 [22]	RCT	USA	200 homeless adults with serious mental illness	Housing First vs treatment as usual	Participants in both groups had additional counseling and resources available	47 months	Housing retention at 20 months	Intervention: 10% 20% Control: 15%	Not significant
Patell 2011 [23]	Qualitative	USA	83 homeless adults with serious mental illness	Housing First vs treatment first	Participants in both groups had additional counseling and resources available	12 months	Substance use during the program (number of people)	$\chi^2 = 8.40, df = 1, p = 0.004$	
Jacob 2013 [24]	Observational	USA	11680 children in public housing with their family	Housing voucher vs no housing voucher	Participants in both groups had additional counseling and resources available	12 months	Deaths from disease	OR 0.91 (95%CI: 0.80–2.23, p = 0.84) (favors control)	
							Accidental deaths	OR 1.07 (95%CI: 0.64–1.79, p = 0.81) (favors control)	
Montgomery 2013 [25]	Observational	USA	177 homeless veterans with mental illness	Housing First vs treatment as usual	Participants in both groups had additional counseling and resources available	12 months	Housing first treatment as usual association with residential stability	Adjusted incidence ratio 0.85 (95%CI: 0.79–1.05)	
Patterson 2013 [26]	RCT	Canada	497 homeless adults with serious mental illness in Vancouver	Housing First vs treatment as usual	Participants in both groups had additional counseling and resources available	12 months	QOL moderate needs	Intervention: baseline 72.2 (SD: 21.6), follow up 91.3 (SD: 20.6), Control: baseline 72.8 (SD: 23.3), follow up 85.7 (SD: 23.2), p = 0.005 (favors control)	
Paleps 2013 [27]	Parallel RCT	Canada	497 homeless adults with serious mental illness in Vancouver	Housing First vs treatment as usual	Participants in both groups had additional counseling and resources available	12 months	Housing first treatment as usual association with residential stability	Adjusted incidence ratio 0.85 (95%CI: 0.79–1.05)	
Bean 2013 [28]	Longitudinal	USA	20 medically vulnerable and homeless participants who received housing and peer support by Project HOPE	Baseline (at the day of move-in to housing), follow up (6 months after move-in)	Participant received peer support, additional counseling and resources available	6 months	Physical-QOL, Baseline: 3.96 (SD: 0.82), follow up: 3.51 (SD: 0.65), p = 0.008		
							Psychological-QOL, Baseline: 3.29 (SD: 0.87), follow up: 3.66 (SD: 0.72), p = 0.05		
							Social Relationships, Baseline: 3.19 (SD: 0.90), follow up: 3.62 (SD: 0.87), p = 0.05		
							Environment-QOL, Baseline: 2.75 (SD: 0.69), follow up: 3.66 (SD: 0.67), p = 0.001		
							Diagnosed with a mental illness (people)	Baseline: 6, follow up: 8, p = 0.38 (favors control)	

(Continued)
Study	Study type	Country	Participants	Intervention vs. Comparison	Co-intervention	Time	Health Outcome	Results	
Kessler 2014[29]	RCT	USA	460 low income families living in assisted housing	Voucher to move to a low poverty area or unrestricted moving voucher vs no voucher	The low poverty voucher group received counseling	12-18 months	Major depressive disorder: Low Poverty voucher group	Boys: OR 2.29 (95% CI: 1.2-3.9), p = 0.03; 95% CI: 1-7.3; p = 0.001	
							Girls: OR 0.9 (95% CI: 0.3-2.1), p = 0.001		
							Combined: OR 1 (95% CI: 1-2.8); p = 0.5		
							Panic disorder: Low Poverty voucher group	Combined: OR 0.7 (95% CI: 0.4-1.1); p = 0.2	
							Posttraumatic stress disorder: Low Poverty voucher group	Boys: OR 3.45 (95% CI: 1.6-7.4), p = 0.001	
							Girls: OR 1.2 (95% CI: 0.8-1.8), p = 0.001		
							Combined: OR 1.8 (95% CI: 1.2-2.7); p = 0.001		
							Oppositional-defiant disorder: Low Poverty voucher group	Combined: OR 0.7 (95% CI: 0.5-1.1); p = 0.1	
							Intermittent explosive disorder: Low Poverty voucher group	Combined: OR 0 (95% CI: 0.6-1); p = 0.01	
							Conduct disorder: Low Poverty voucher group	Boys: OR 3.9 (95% CI: 1.5-9.8), p = 0.001	
							Girls: OR 0.5 (95% CI: 0.2-1.4), p = 0.001		
							Combined: OR 1.6 (95% CI: 1.2-2.1); p = 0.001		
							Major depressive disorder: Traditional voucher group	Boys: OR 1.79 (95% CI: 0.9-3.9), p = 0.2	
							Girls: OR 0.6 (95% CI: 0.3-0.9), p = 0.001		
							Combined: OR 0.9 (95% CI: 0.6-1.3); p = 0.07		
							Panic disorder: Traditional voucher group	Combined: OR 0.9 (95% CI: 0.5-1.4); p = 0.7	
							Posttraumatic stress disorder: Traditional voucher group	Boys: OR 2.75 (95% CI: 1.5-8.0), p = 0.001	
							Girls: OR 0.7 (95% CI: 0.3-1.7), p = 0.001		
							Combined: OR 1.1 (95% CI: 0.7-1.7); p = 0.3		
							Oppositional-defiant disorder: Traditional voucher group	Combined: OR 1 (95% CI: 0.8-1.3); p = 0.7	
							Intermittent explosive disorder: Traditional voucher group	Combined: OR 0 (95% CI: 0.7-1.2); p = 0.7	
							Conduct disorder: Traditional voucher group	Boys: OR 2.9 (95% CI: 0.8-9.3), p = 0.2	
							Girls: OR 1.9 (95% CI: 0.9-3.9), p = 0.02		
							Combined: OR 1.9 (95% CI: 0.9-2.1); p = 0.001		
Aubry 2015[30]	RCT	Canada	500 High need homeless adults with severe mental illness	Housing First vs treatment as usual	Participants in both groups had additional counseling and resources available	12 months	Quality of Life (QOL) Mean change 7.27 (95% CI: 3.8-10.6); p < 0.001		
							Substance misuse (GAIN SS) IRR 0.86 (95% CI: 0.65-1.1); p = 0.4		
							Community functioning Mean change 1.81 (95% CI: 0.65-2.98); p = 0.003		
							Percent of time stably housed moderate need Intensive Case Management (ICM) IRR 0.86 (95% CI: 0.23-0.91); p = 0.05		
							Opioid use on 30 days IRR 0.86 (95% CI: 0.23-0.91); p = 0.05		
							Daily substance use moderate need ICR AOR 0.78 (95% CI: 0.37-1.6); p = 0.3		
Study	Study type	Country	Participants	Intervention vs. Comparison	Co-intervention	Time	Health Outcome	Results	
---	------------	---------	--------------	----------------------------	-----------------	------	--	--	
Stergiopulos 2015 [35]	RCT	Canada	378 homeless adults with serious mental illness	Housing First vs treatment as usual	Participants in both groups had additional counseling and resources available	24 months	Time in stable residence: Intervention: 75% (95% CI: 70.5–79.7); Control: 59.3% (95% CI: 53.3–64.2)	Change in mean difference: 1.25 (95% CI: -6.96–9.46); p = 0.66 (favors control)	
							Health status (EQ-5D-VAS)	Change in mean difference: 0.91 (95% CI: 0.85–1.0); p = 0.50 (favors control)	
							Substance use problem severity (GAIN-SU)	Change in mean difference: 0.91 (95% CI: 0.85–1.0); p = 0.50 (favors control)	
							Psychological community integration (CIS-PHY)	Change in mean difference: 0.91 (95% CI: 0.85–1.0); p = 0.50 (favors control)	
							Physical community integration (CIS-JPSYCH)	Change in mean difference: 0.91 (95% CI: 0.85–1.0); p = 0.50 (favors control)	
							Quality of life (QoL)	Change in mean difference: 1.24 (95% CI: 1.18–1.30); p = 0.50 (favors control)	
Woodhall-melink 2015[36]	RCT	Canada	575 homeless adults with serious mental illness	Housing First vs treatment as usual	Participants in both groups had additional counseling and resources available	24 months	BMI moderate needs: β0 = 0.00063; p = 0.99 (favors control)	Change in mean difference: 0.00063 (95% CI: 0.00050–0.00075); p = 0.99 (favors control)	
							BMI high needs: β0 = 0.00063; p = 0.99 (favors control)	Change in mean difference: 0.00063 (95% CI: 0.00050–0.00075); p = 0.99 (favors control)	
							Waist circumference- moderate needs β0 = 0.01; p = 0.001 (favors control)	Change in mean difference: 0.01 (95% CI: 0.000–0.021; p = 0.001 (favors control)	
							Waist circumference- high needs β0 = 0.01; p = 0.001 (favors control)	Change in mean difference: 0.01 (95% CI: 0.000–0.021; p = 0.001 (favors control)	
Kozloff 2016 [37]	RCT	Canada	156 homeless youth with serious mental illness	Housing First vs treatment as usual	Participants in both groups had additional counseling and resources available	24 months	Days in stable housing: Adjusted mean difference: 34% (95% CI: 24–43); p = 0.001	Change in mean difference: 2.81 (95% CI: -4.09 to 0.02); p = 0.08 (favors control)	
							Number of events Difference or ratio of changes from baseline (24 months) 0.64 (95% CI: 0.57–0.72); p = 0.001 (favors control)	Change in mean difference: 0.64 (95% CI: 0.57–0.72); p = 0.001 (favors control)	
							Health (EQ-5D) Difference or ratio of changes from baseline (24 months) 0.28 (95% CI: 0.16–0.40); p = 0.001 (favors control)	Change in mean difference: 0.28 (95% CI: 0.16–0.40); p = 0.001 (favors control)	
							QOLI-20 Difference or ratio of changes from baseline (24 months) 0.28 (95% CI: 0.16–0.40); p = 0.001 (favors control)	Change in mean difference: 0.28 (95% CI: 0.16–0.40); p = 0.001 (favors control)	
							MCAS Difference or ratio of changes from baseline (24 months) 0.28 (95% CI: 0.16–0.40); p = 0.001 (favors control)	Change in mean difference: 0.28 (95% CI: 0.16–0.40); p = 0.001 (favors control)	
							Community integration (CIS) Difference or ratio of changes from baseline (24 months) 0.99 (95% CI: 0.99–1.00); p = 0.8 (favors control)	Change in mean difference: 0.99 (95% CI: 0.99–1.00); p = 0.8 (favors control)	
							Recovery Assessment Scale (RAS) Difference or ratio of changes from baseline (24 months) 1.00 (95% CI: 1.00–1.00); p = 0.8 (favors control)	Change in mean difference: 1.00 (95% CI: 1.00–1.00); p = 0.8 (favors control)	
							Physical health (SF-12) Difference or ratio of changes from baseline (24 months) 1.45 (95% CI: 1.35–1.56); p = 0.5 (favors control)	Change in mean difference: 1.45 (95% CI: 1.35–1.56); p = 0.5 (favors control)	
							Mental health (SF-12) Difference or ratio of changes from baseline (24 months) 1.45 (95% CI: 1.35–1.56); p = 0.5 (favors control)	Change in mean difference: 1.45 (95% CI: 1.35–1.56); p = 0.5 (favors control)	
							Colorado Symptom Index (CSI) Difference or ratio of changes from baseline (24 months) 1.45 (95% CI: 1.35–1.56); p = 0.5 (favors control)	Change in mean difference: 1.45 (95% CI: 1.35–1.56); p = 0.5 (favors control)	
							GAIN-SFS Difference or ratio of changes from baseline (24 months) 1.45 (95% CI: 1.35–1.56); p = 0.5 (favors control)	Change in mean difference: 1.45 (95% CI: 1.35–1.56); p = 0.5 (favors control)	
							Violence of violent robbery, physical, or sexual assault Difference or ratio of changes from baseline (24 months) 1.45 (95% CI: 1.35–1.56); p = 0.5 (favors control)	Change in mean difference: 1.45 (95% CI: 1.35–1.56); p = 0.5 (favors control)	
Stergiopulos 2016 [35]	Pragmatic RCT	Canada	237 moderate needs homeless adults with mental illness	Housing First vs treatment as usual	Participants in both groups had additional counseling and resources available	24 months	Participants housed Intervention: 75% (95% CI: 70–79); Control: 45% (95% CI: 35–60)	Change in mean difference: 0.30 (95% CI: 0.18–0.42); p = 0.3 (favors control)	
							Number of events Ratio of rate ratios 1.06 (95% CI: 1.00–1.12); p = 0.05 (favors control)	Change in mean difference: 1.06 (95% CI: 1.00–1.12); p = 0.05 (favors control)	
							Number of days in past 30 incarcerated alcohol problems Ratio of rate ratios 0.24 (95% CI: 0.18–0.33); p = 0.5 (favors control)	Change in mean difference: 0.24 (95% CI: 0.18–0.33); p = 0.5 (favors control)	
							Number of days in past 30 incarcerated drug problems Ratio of rate ratios 0.24 (95% CI: 0.18–0.33); p = 0.5 (favors control)	Change in mean difference: 0.24 (95% CI: 0.18–0.33); p = 0.5 (favors control)	

(Continued)
Study	Study type	Country	Participants	Intervention vs. Comparison	Co-intervention	Time	Health Outcome	Results
Aubry 2016[37]	RCT	Canada	950 homeless adults with serious mental illness	Housing First with Assertive Community Treatment (ACT) vs treatment as usual	Participants in both groups had additional counseling and resources available	48 months	Time housed in previous 3 months	Intervention: baseline 10.7% (SD: 7.1%); follow-up 72.8% (SD: 12.8%); Control: baseline 10.6% (SD: 6.9%); follow-up 41.7% (SD: 7.1%); unknown significance
							Days housed at final interview	Intervention: baseline 78.6% (SD: 16.1%); follow-up 72.8% (SD: 42.6%); Control: baseline 45.9% (SD: 26.3%); follow-up 35.6% (SD: 16.1%); unknown significance
							Present stable housing	Intervention follow-up: 74% (95% CI: 69–78%); Control: baselines 86% (SD: 18%); follow-up 41% (95% CI: 35–46%); unknown significance
							Length of stay (days)	Intervention follow-up: 280 (SD: 174); Control: follow-up 115 (SD: 133); unknown significance
							Percent stable housing	Intervention follow-up: 74% (95% CI: 69–78%); Control follow-up: 41% (95% CI: 35–46%); unknown significance
							Physical integration	Intervention: baseline 1 (SD: 1.1); follow-up 1 (SD: 1.2); Control: baseline 1 (SD: 1.2); follow-up 1 (SD: 1.2); unknown significance
							Psychological integration	Intervention: baseline 1 (SD: 1.1); follow-up 1 (SD: 1.2); Control: baseline 1 (SD: 1.2); follow-up 1 (SD: 1.2); unknown significance
							Health status (EQ-5D)	Intervention: baseline 0 (SD: 0.24); follow-up 0 (SD: 0.24); Control: baseline 0 (SD: 0.24); follow-up 0 (SD: 0.24); unknown significance
							Substance use problems (GAIN)	Intervention: baseline 1 (SD: 1.8); follow-up 1 (SD: 1.1); Control: baseline 1 (SD: 1.8); follow-up 1 (SD: 1.2); unknown significance
							Overall health	Combined: p = 0.003; unknown significance
							Quality of life	Combined: p = 0.002; unknown significance
							Recovery assessment	Combined: p = 0.002; unknown significance

(Continued)
Study	Study type	Country	Participants	Intervention vs. Comparison	Co-intervention	Time	Health Outcome	Results
O'Campo 2017 [40]	RCT	Canada	2148 Homeless adults with serious mental illness	Housing First vs treatment as usual	Participants in both groups had additional counseling and resources available	24 months	Homelessness duration ≥ 3 years moderate needs	Unadjusted OR 0.96 (95%CI: 0.92–0.98); p < 0.01
							Community functioning variable: MCS total score moderate needs (lower scores are associated with poorer functioning)	Unadjusted OR 1.02 (95%CI: 0.99–1.06); p = 0.36
							CSIL total score ≥ 20 moderate needs	Unadjusted OR 0.00 (95%CI: 0.00–0.01); p < 0.01
							Days in the past month experienced alcohol problems moderate needs	Unadjusted OR 0.96 (95%CI: 0.95–0.97); p < 0.01
							Days in the past month experienced drug problems moderate needs	Unadjusted OR 0.97 (95%CI: 0.96–0.98); p < 0.01
							Physical health variables: Ulcer moderate needs	Unadjusted OR 0.95 (95%CI: 0.90–1.00); p = 0.048 favours control
							Physical health variables: bowel problems moderate needs	Unadjusted OR 0.85 (95%CI: 0.80–0.90); p = 0.011 favours control
							Physical health variables: high blood pressure moderate needs	Unadjusted OR 1.22 (95%CI: 0.84–1.48); p = 0.001 favours control
							Physical health variables: diabetes moderate needs	Unadjusted OR 1.02 (95%CI: 0.87–1.20); p = 0.816
							Number of times participants achieved high or marginal food security: moderate needs Montreal	Rate ratio 1.02 (95%CI: 0.99–1.05); p = 0.441
							Number of times participants achieved high or marginal food security: moderate needs Toronto	Rate ratio 1.02 (95%CI: 0.99–1.05); p = 0.441
							Number of times participants achieved high or marginal food security: moderate needs Vancouver	Rate ratio 1.02 (95%CI: 0.99–1.05); p = 0.441
							Number of times participants achieved high or marginal food security: marginal food security: high needs Moncton	Rate ratio 0.98 (95%CI: 0.78–1.24); p = 0.782
							Number of times participants achieved high or marginal food security: marginal food security: high needs Montreal	Rate ratio 0.98 (95%CI: 0.78–1.24); p = 0.782
							Number of times participants achieved high or marginal food security: marginal food security: high needs Toronto	Rate ratio 0.98 (95%CI: 0.78–1.24); p = 0.782
							Number of times participants achieved high or marginal food security: marginal food security: high needs Vancouver	Rate ratio 0.98 (95%CI: 0.78–1.24); p = 0.782
							Health outcomes related to the provision of free, tangible goods	Rate ratio 0.98 (95%CI: 0.91–1.17); p = 0.338

Results favor the intervention unless indicated otherwise
Study	Study type	Country	Participants	Intervention vs. Comparison	Co-intervention	Time	Health Outcome	Results	
Murphy 1998 [2]	Cross sectional and longitudinal observations	USA	169 Elementary school students	School breakfast program vs no school breakfast program	NR	4 months	Depression (the children’s depression inventory scale)	Intervention: baseline 3; follow up 4.2; Control: baseline 7; follow up 6.8; p < 0.01	
								The revised children’s manifest anxiety scale	Intervention: baseline 7; follow up 7.3; Control: baseline 114; follow up 7.3; p < 0.05
								Pediatric symptom checklist	Intervention: baseline 13; follow up 14.7; Control: baseline 109; follow up 14.7; p < 0.05
Gibson 2003 [3]	Cohort	USA	6731 Low income adults	Current Food Stamp Program (FSP) participation vs no current FSP participation	NR	NR	Obese (percent)	Follow-up: Intervention 29.3; Control 19.2; p < 0.05	
								Overweight but not obese (percent)	Follow-up: Intervention 29.3; Control 25.6; p < 0.05
								Underweight (percent)	Follow-up: Intervention 3.5; Control 2.4; p < 0.05
								BMI	Follow-up: Intervention 26.8 (SEM 0.5); Control 27.8 (SEM 0.6); p < 0.01
Gibson 2004 [4]	Cohort	USA	7843 Children	Current Food Stamp Program (FSP) participation vs no current FSP participation	NR	NR	Overweight boys (percent)	Follow-up: Intervention 16.8; Control 17.4; p < 0.05	
								Overweight girls (percent)	Follow-up: Intervention 25.9; Control 24.6; p < 0.05
								Underweight (percent)	Follow-up: Intervention 4.9; Control 5.2; p < 0.05
								BMI girls	Follow-up: Intervention 19.6 (SEM 0.6); Control 19.5 (SEM 0.7); p < 0.05
								Overweight girls	Follow-up: Intervention 18.9; Control 14.9; p < 0.05
								BMI girls	Follow-up: Intervention 19.5 (SEM 0.1); Control 19.9 (SEM 0.2); p < 0.05
Ramirez-lopez 2005[5]	A quasi-experimental, longitudinal prospective study	Mexico	610 School children	School breakfast program vs no school breakfast program	NR	NR	Body fat (percent)	Intervention: baseline 17.1 (SD 0.1); follow up 17.2 (SD 0.1); Control: baseline 17.1 (SD 0.2); follow up 16.9 (SD 0.2); p < 0.05	
								BMI	Intervention: baseline 14.6 (95%CI: 14.3–14.9); follow up 14.5 (95%CI: 14.2–14.8); Control: baseline 14.9 (95%CI: 14.7–15.0); follow up 14.6 (95%CI: 14.3–14.9); p < 0.05
								Triglycerides (mg/dl)	Intervention: baseline 55.1 (95%CI: 54.8–55.3); follow up 55.4 (95%CI: 55.1–55.7); p < 0.05
								Cholesterol (mg/dl)	Intervention: baseline 148.4 (95%CI: 148.3–148.5); follow up 148.3 (95%CI: 148.2–148.4); Control: baseline 148.5 (95%CI: 148.4–148.5); follow up 148.3 (95%CI: 148.2–148.3); p < 0.05
Lee 2007[6]	Retrospective longitudinal study	USA	252, 248 Children in Illinois	Participant in food stamps, women infants and children (WIC) program vs no participants	WC includes nutrition, education and counseling	60 months	Abuse	mean of outcomes 0.02; p < 0.05	
								Neglect	mean of outcomes 0.01; p < 0.05

(Continued)
Study	Study type	Country	Participants	Intervention vs. Comparison	Co-intervention	Time	Health Outcome	Results	
Arsenault 2009	Observational	Colombia	3202 Children enrolled in the public primary school system age 5-12	School snack vs no school snack	NR	5 months	Hemoglobin, Mean change 1 (95% CI: 0–2)	favours control	p = 0.001
Arsenault 2009	Observational	Colombia	3202 Children enrolled in the public primary school system age 5-12	School snack vs no school snack	NR	5 months	Plasma ferritin Mean change 1	favours control	p = 0.0001
Arsenault 2009	Observational	Colombia	3202 Children enrolled in the public primary school system age 5-12	School snack vs no school snack	NR	5 months	Plasma vitamin B-12, Mean change 17	favours control	p = 0.0001
Ask 2010	Controlled intervention	Norway	150 School students	Free school lunch vs no free school lunch	NR	4 months	Male BMI Intervention: baseline 20.7 (SD: 3.1); follow up 21.3 (SD: 3.3) Control: baseline 20.8 (SD: 2.9); follow up 21.2 (SD: 2.9)	favours control	p = 0.0001
Ask 2010	Controlled intervention	Norway	150 School students	Free school lunch vs no free school lunch	NR	4 months	Female BMI Intervention: baseline 20.7 (SD: 3.1); follow up 21.3 (SD: 3.3) Control: baseline 20.8 (SD: 2.9); follow up 21.2 (SD: 2.9)	favours control	p = 0.0001
NiMurchu 2010	Step wedge cluster RCT	New Zealand	424 School age student	Free school breakfast vs no free breakfast	NR	12 months	Food security (study child) OR 0.89 (95%CI: 0.7–1.18) p = 0.49	favours control	p = 0.31
Chen 2011	Cohort	USA	1723 Low income women	Food stamp participant vs non-participant	NR	NR	BMI Coefficient 0.201 (SE: 0.066) p = 0.0001	favours control	p = 0.0001
Leung 2011	A cross-sectional analysis of the 2007 Adult California Health Interview Survey	USA	7741 Adults in public assistance programs	People participating in food assistance programs vs non-participants	NR	NR	SNAP participants BMI Adjusted difference 1.08 (95%CI: 0.5–2.22)	favours control	p = 0.0001
Leung 2011	A cross-sectional analysis of the 2007 Adult California Health Interview Survey	USA	7741 Adults in public assistance programs	People participating in food assistance programs vs non-participants	NR	NR	SNAP participants obesity (BMI ≥ 30.0kg/m2) Adjusted prevalence ratio 1.305 (95%CI: 1.1–1.5)	favours control	p = 0.0001
Leung 2011	A cross-sectional analysis of the 2007 Adult California Health Interview Survey	USA	7741 Adults in public assistance programs	People participating in food assistance programs vs non-participants	NR	NR	SNAP participants obesity (BMI ≥ 30.0kg/m2) Adjusted prevalence ratio 1.305 (95%CI: 1.1–1.5)	favours control	p = 0.0001
Leung 2011	A cross-sectional analysis of the 2007 Adult California Health Interview Survey	USA	7741 Adults in public assistance programs	People participating in food assistance programs vs non-participants	NR	NR	SNAP participants obesity (BMI ≥ 30.0kg/m2) Adjusted prevalence ratio 1.305 (95%CI: 1.1–1.5)	favours control	p = 0.0001
Leung 2011	A cross-sectional analysis of the 2007 Adult California Health Interview Survey	USA	7741 Adults in public assistance programs	People participating in food assistance programs vs non-participants	NR	NR	SNAP participants obesity (BMI ≥ 30.0kg/m2) Adjusted prevalence ratio 1.305 (95%CI: 1.1–1.5)	favours control	p = 0.0001

(Continued)
Table 2. (Continued)

Study	Study type	Country	Participants	Intervention vs. Comparison	Co-intervention	Time	Health Outcome	Results
Jilcott 2011[52]	Cross sectional study: analyzed data from the 2005–2006 National Health and Nutrition Examination Survey	USA	945 Food stamp eligible adults	Received food stamps vs no food stamps	NR	NR	BMI	Intervention follow-up: 30.5 (95% CI: 28.9–32.1) Control follow-up: 28.3 (95% CI: 27.5–29.2) P = 0.03, favouring control
							Waist circumference	Intervention follow-up: 98.4 (95% CI: 96.1–102.6) Control follow-up: 94.2–96.8 (95% CI: P = 0.06, favouring control
Nicholas 2011[53]	Analyze data from the Health and Retirement Study (HRS), a nationally representative, longitudinal survey of older Americans	USA	558 Diabetic older adults	Received food stamps vs no food stamps	NR	NR	Food insufficient	Intervention: 0.27 (SD: 0.45) Control: 0.16 (SD: 0.34), favouring control
							HbA1c	Intervention: 7.22 (SD: 1.39) Control: 7.11 (SD: 1.5), favouring control
Schmeiser 2012[54]	Retrospective longitudinal study	USA	16553 Low-income children	Participated in Supplemental Nutrition Assistance Program (SNAP) vs non-participants	NR	NR	BMI percentile girls	Number of past 60 months participating in SNAP (IV) Individual fixed-effects State fixed-effects: -0.3723; p < 0.01
							Overweight girls	Number of past 60 months participating in SNAP (IV) Individual fixed-effects State fixed-effects: -0.0034; p = 0.4, favouring control
							Obese girls	Number of past 60 months participating in SNAP (IV) Individual fixed-effects State fixed-effects: -0.0011; p = 0.001, favouring control
							BMI percentile boys	Number of past 60 months participating in SNAP (IV) Individual fixed-effects State fixed-effects: -0.00574; p = 0.001
							Overweight boys	Number of past 60 months participating in SNAP (IV) Individual fixed-effects State fixed-effects: -0.0078; p = 0.01
							Obese boys	Number of past 60 months participating in SNAP (IV) Individual fixed-effects State fixed-effects: -0.0041; p = 0.001
Leung 2013[55]	Multistage cross-sectional survey	USA	5193 Low-income children	Participated in Supplemental Nutrition Assistance Program (SNAP) vs non-participants	NR	NR	Number of children overweight	Age and gender adjusted OR: 0.94 (95% CI: 0.7–1.29), favouring control
							Number of obese children	Age and gender adjusted OR: 1.31 (95% CI: 0.91–1.89), favouring control
Bere 2014[56]	Cluster randomized trial	Norway	320 Children: 10- to 12-year-old children from 2 Norwegian counties	Free fruit vs no free fruit	NR	96 months	BMI	Follow-up: intervention: 1.27 (95% CI: 0.9–1.76) Control: 1.35 (95% CI: 0.9–1.96) p = 0.1, favouring control
							Percent overweight	Follow-up: intervention: 1.5 (95% CI: 0.8–2.8) Control: 1.5 (95% CI: 0.9–2.6) p = 0.04

(Continued)
Study	Study type	Country	Participants	Intervention vs. Comparison	Co-intervention	Time	Health Outcome	Results*
McMahon 2015	Quasi-experimental regression discontinuity analysis	Ukraine	947 Children residing in the contaminated district after Chernobyl	3 Free meals vs 2 free meals (uses same sample group for both intervention and control at different times)	NR	NR	Individual whole-body content of 137 Cesium adjusted for body weight (Bq/m²)	Spearman r = 0.26 p < 0.001
							Unspecified anemia (prevalence ratio)	Follow up: three meals 0.57 (95%CI: 0.48–0.67); Two meals 1.31 (95%CI: 1.11–1.57); p = 0.0001
							Allergy (prevalence ratio)	Follow up: three meals 1.41 (95%CI: 0.86–1.93); Two meals 1.26 (95%CI: 0.92–1.93); p = 0.72 favour control
							Atopic dermatitis (prevalence ratio)	Follow up: three meals 1.22 (95%CI: 0.65–2.14); Two meals 1.62 (95%CI: 0.58–4.82); p = 0.52 favour control
							Bronchitis (prevalence ratio)	Follow up: three meals 0.99 (95%CI: 0.81–1.48); Two meals 1.24 (95%CI: 0.91–1.69); p = 0.43 favour control
							Common cold (prevalence ratio)	Follow up: three meals 1.27 (95%CI: 0.85–1.84); Two meals 2.32 (95%CI: 1.79–3.0); p = 0.01
							Lymph node enlargement (prevalence ratio)	Follow up: three meals 1.01 (95%CI: 0.91–1.11); Two meals 1.07 (95%CI: 0.93–1.22); p = 0.84 favour control
							Chronic tonsillitis/adenoiditis (prevalence ratio)	Follow up: three meals 0.91 (95%CI: 0.86–0.96); Two meals 0.93 (95%CI: 0.84–1.03); p = 0.52 favour control
							Hemoglobin (g/dL)	Follow up: three meals 12.14 (95%CI: 12.05–12.22); and (95%): 12.65 (95%CI: 12.56–12.71); 2 meals beginning (1996): 12.46 (95%CI: 12.38–12.52) and (95%): 12.72 (95%CI: 12.66–12.79) unknown significance
							BMI kg/m²	Follow up: three meals 17.22 (95%CI: 16.99–17.44); and (95%): 17.45 (95%CI: 17.27–17.63) 2 meals beginning (1996): 17.47 (95%CI: 17.34–17.60) and (95%): 17.78 (95%CI: 17.61–17.94) unknown significance

*Results favor the intervention unless indicated otherwise

https://doi.org/10.1371/journal.pone.0213845.t002
study), New Zealand (one study), Ukraine (one study). One study (5-9%) involved a co-intervention consisting of nutrition and education counselling. [41] The most commonly measured health outcome was Body Mass Index (BMI) measured in 12 studies (70-6%). The study durations ranged from four to 96 months. Food studies reported a total of 73 outcomes, of which 28 were statistically significant, 41 were not significant, and significance was unknown for four outcomes. Of the 28 statistically significant outcomes, 22 outcomes (from eight different studies) favoured the intervention, and six outcomes (from three different studies) favoured the control group.

Hygiene/Water sanitation. There were 10 504 participants in the six hygiene or water sanitation studies (the household was the unit of analysis in two studies) (Table 3). The free

Study	Study type	Country	Participants	Intervention vs Comparison	Co-intervention	Time	Health Outcome	Results*
Davies 2002	RCT	England	3731 Children from the age of 12 months to 5-5 years	Free fluoride toothpaste vs no free toothpaste	A leaflet was included with the packages	60 months	Decay-missing, and filled teeth index, Mean change 16%; p = 0.05	
Luby 2006	Cluster RCT	Pakistan	1337 Households in squatter settlements	10 Neighborhoods received bleach, 9 neighborhoods received supplies for hand washing, 9 neighborhoods received flocculant-disinfectant, 10 neighborhoods received flocculant-disinfectant plus hand washing, 9 neighborhoods were control	NR	9 months	Diarrhoea daily longitudinal prevalence: bleach water treatment	difference from control -55% (95%CI: -17-80)
Livny 2007	Cross-sectional study	Israel	1500 infants	Free tooth brushes and toothpaste vs no free good	NR	48 months	0 times brushed in the last 48 hours (percent of children with caries)	intervention = 12; control = 24 unknown significance
Boisson 2013	RCT	India	2163 Households with children under 5	Free sodium dichloroisocyanurate tablets vs no free sodium dichloroisocyanurate tablets	Intervention included a promotional campaign and instructions on how to use tablets	13 months	Diarrhoea (longitudinal prevalence)	Prevalence ratio 0.95 (95% CI: 0.79-1.3) favours control
Das 2013	Cohort	India	93 Patients with filarial lymphoedema	Free limb hygiene kit vs before receiving kit	NR	12 months	Frequency of acute dermatolympangioadenitis: grade 1 (per year)	Baseline 2.4; follow up 0.8 unknown significance
							Frequency of acute dermatolymphangioadenitis: grade 2 (per year)	Baseline 3.4; follow up 1.2 unknown significance
							Frequency of acute dermatolymphangioadenitis: Grade 3 (per year)	Baseline 4.8; follow up 1.8 unknown significance

(Continued)
goods distributed were toothbrushes and toothpaste (two studies), a drinking water disinfectant (two studies), and free soap (two studies). The studies were conducted in India (three studies), England (one study), Pakistan (one study), and Israel (one study). Three studies (50%) involved a co-intervention which consisted of social marketing, and educational campaigns. [58–60] The most common outcomes were diarrhoea prevalence in three studies

Table 3. (Continued)

Study	Study type	Country	Participants	Intervention vs Comparison	Co-intervention	Time	Health Outcome	Results
Nicholson 2014[60]	Cluster randomized controlled study	India	1680 Households of children (5 years) and their families (the number of participants was not 100% clear)	Free soap vs no soap	Included a social marketing program aimed to educate, motivate and reward children for hand washing	~10 months	Target children diarrhoea	Observed relative risk reduction 25.3% (95% CI: 36.6–2.3); p = 0.03
							Target children Acute respiratory infections	Observed relative risk reduction 14.4% (95% CI: 29.6–8.3); p = 0.001
							Children aged 5 and under (non-target) diarrhoea	Observed relative risk reduction 32.5% (95% CI: 41.1–3.8); p = 0.023
							Children aged 5 and under (non-target) Acute respiratory infection	Observed relative risk reduction 20.5% (95% CI: 29.8–11.3); p = 0.001
							Children aged 6–15 (non-Target) diarrhoea	Observed relative risk reduction 30.0% (95% CI: 38.7–6.6); p = 0.01
							Children aged 6–15 (non-Target) acute respiratory infection	Observed relative risk reduction 11.8% (95% CI: 24.4–5.5); p = 0.003
							whole families diarrhoea	Observed relative risk reduction 30.7% (95% CI: 37.5–5.5); p = 0.013
							whole families acute respiratory infection	Observed relative risk reduction 13.9% (95% CI: 23.1–6.5); p = <0.001
							Target children boils	Intervention: 2.87; Control: 3.86; p = 0.839 favourable control
							Target children ear infection	Intervention: 0.99; Control: 1.35; p = 0.114 favourable control
							Target children eye infection	Intervention: 0.38; Control: 0.7; p = <0.001
							Target children headache	Intervention: 0.67; Control: 0.88; p = 0.227 favourable control
							Target children vomiting	Intervention: 1.07; Control: 1.22; p = 0.718 favourable control
							Whole families boil	Intervention: 1.84; Control: 1.65; p = 0.062 favourable control
							Whole families ear infection	Intervention: 0.65; Control: 0.79; p = 0.379 favourable control
							Whole families eye infection	Intervention: 0.62; Control: 0.8; p = 0.788 favourable control
							Whole families headache	Intervention: 2.98; Control: 2.58; p = 0.12 favourable control
							Whole families vomiting	Intervention: 0.92; Control: 0.84; p = 0.073 favourable control

*Results favor the intervention unless indicated otherwise

https://doi.org/10.1371/journal.pone.0213845.t003
(50%); infection prevalence in two studies (33.3%); and prevalence of dental carries reported in two studies (33.3%). The study durations ranged from nine months to 60 months. These studies reported a total of 34 outcomes, of which 15 were statistically significant, 11 were not significant, and significance was unknown for eight outcomes. All of the 15 statistically significant outcomes (from three different studies) favoured the intervention.

Insecticide treated nets (ITN). There were 7661 participants in five studies providing ITN (Table 4). The studies were conducted in Cameroon (two studies), Ghana (one study), Kenya (one study), and Nigeria (one study). Three studies (60%) involved a co-intervention consisting of additional medical care, a social marketing campaign and preventative sulfadoxine-pyrimethamine treatment. [64–66] The most common outcomes measured were parasitaemia in three studies (60%); anemia in two studies (33.3%); malaria in two studies (33.3%). Other outcomes included mortality and birth weight. The study durations ranged from four months to 36 months. Eleven outcomes were reported, of which three were statistically significant, and eight were not. Of the three statistically significant outcomes (from three different studies), all favoured the intervention.

Safety equipment. Six studies provided free safety equipment including smoke alarms, hip protectors, mouth guards, and safety equipment for young children (e.g. stair gates and cupboard locks) (Table 5). We were unable to identify the total number of participants in these studies because some reports did not specify this information. The studies were conducted in England (two studies), USA (one study), Ireland (one study), Israel (one study) and Australia (one study). Five studies (83.3%) involved a co-intervention consisting of educational materials and sessions,[10, 69–71] as well as advice,[72] and one study offered stickers to promote the use of safety equipment.[71] The common outcome reported in all six studies was injury. Study duration ranged from six months to 72 months. Safety equipment studies reported a total of 23 outcomes, of which eight were statistically significant, 11 were not significant, and significance was unknown for four outcomes. Of the eight statistically significant outcomes, all eight outcomes (from three different studies) favoured the control and, according to the explanations provided in the articles, this may be been due to infrequent use of the safety equipment.[10, 71, 73]

Miscellaneous. Five studies involved a miscellaneous set of outcomes (Table 6). The distributed free goods included glucometer test strips for diabetic patients, glucometers, sunscreen, bus passes, and a mobile phone. Three studies (60%) involved a co-intervention consisting of a glucometer (intervention was test strips),[74] educational material and counseling (for the glucometer study) [75] as well as an automated message and calling card to reach participants’ primary care physicians (for the mobile phone study) [76]. The outcomes measured included HbA1c, blood glucose, triglycerides, Low Density Lipoprotein (LDL-C), Body Mass Index (BMI), waist circumference, rate of sunburns, and mortality rate. The study durations ranged from two months to 12 months. These studies reported 13 outcomes, of which three were statistically significant, eight were not significant, and significance was unknown for two outcomes. All three statistically significant outcomes (from two different studies) favoured the intervention.

Results by health outcome

In addition to analyzing the results of studies categorized by type of free good distributed to participants, we combined results from the reviewed studies for the health outcomes of mortality and diarrhea because these two outcomes were reported in studies of different categories of goods.

Mortality. Mortality was reported as a health outcome in three studies of mosquito nets (one study), housing vouchers (one study), and mobile phones (one study) including 17,730
participants. The first study gave families with children under five an insecticide treated insect net in Kenya. The study found that receiving a mosquito net was a significant predictor of reduced mortality (rate ratio: 0.56; 95% confidence interval (CI): 0.33–0.96). The second study gave a housing voucher to families of children living in public housing in the USA. Receiving a housing voucher was not a significant predictor of mortality in any of the 3
Table 5. Characteristics of included safety equipment studies (N = 6).

Study	Study type	Country	Participants	Intervention vs Comparison	Co-intervention	Time	Health Outcome	Results*
Mallonee 2000	Community intervention trial- pre and post design	USA	9291 Homes in the Oklahoma city area	Free smoke alarm vs no free smoke alarm	Were given written educational material, and periodic fire alarm tests to ensure distributed alarms were functioning correctly	72 months	Injury rates per 100 residential fires	Intervention = baseline 5-02, follow up 1-2; Control = baseline 1-95, follow up 2-19; unknown significance
DiGuiseppi 2002	Cluster RCT	England	Mean of 8191 primarily households including elderly people or children	Free smoke alarm vs no free smoke alarm	Smoke alarms were given with a fitting, educational brochures, and installation upon request	37 months	All injuries	Rate ratio = 1.3 (95% CI: 0.9 - 1.8) favours control
O’Halloran 2004	Cluster RCT	Ireland	Residents from 127 Nursing homes (~4117 residents)	Given hip protectors vs no hip protectors	A 1 hour information session was conducted with nursing home staff and support was given to nursing staff to implement this program, as well as posters and stickers promoting the use of hip protectors	18 months	Number of hip fractures (rate per 100 occupied beds)	Unadjusted rate ratio = 1.05 (95% CI: 0.76 - 1.45) favours control
Watson 2005	RCT	England	3428 Families of children younger than 5	Intervention received free or low cost safety equipment (Fitted stair gates, fire guards, smoke alarms, cupboard locks, and window locks) vs usual care	Provided a consultation/advice	24 months	Child in family had a medically attended injury	OR 1.14 (95% CI: 0.98 - 1.5) favours control
Zadik 2009	Retrospective study	Israel	Infantry units in the Israel Defense Forces (630 participants)	Intervention received boil an bite mouth guards vs control receiving none	NR	NR	Number of sports related oro-facial traumas	Intervention: 38/272; Control: 31/358; p < 0.05 favours control
							Dental fractures	Intervention: 25/272; Control: 17/358; p < 0.001 favours control
							Dental luxations/ subluxations	Intervention: 4/272; Control: 4/358 favours control
							Lip laceration	Intervention: 16/272; Control: 7/358; p < 0.001 favours control
							Chin laceration	Intervention: 8/272; Control: 5/358; p < 0.05 favours control
							Dislocation and/or pain of TMJ	Intervention: 6/272; Control: 1/358; p < 0.001 favours control
							Fracture of mandible	Intervention: 0/272; Control: 1/358; p < 0.001 favours control

(Continued)
categories; deaths from disease ($p = 0.84$), deaths by homicide ($p = 0.81$), and accidental deaths ($p = 0.19$). [24] The final study gave phones to pregnant women in Zanzibar. [76] Mortality was recorded in three ways: stillbirth (unadjusted odds ratio (UOR): $0.62; 95\%$CI: $0.31–1.22$), perinatal mortality (UOR: $0.49; 95\%$CI: $0.27–0.90$), and neonatal mortality (UOR: $0.85; 95\%$CI: $0.37–1.95$). Receiving a free phone significantly reduced perinatal mortality. [76]

Diarrhea. Diarrhea was reported as a health outcome in four studies of food (one study), and hygiene and water sanitation (three studies), which included 8382 participants. The first study conducted in Pakistan included households in squatter settlements receiving either bleach, hand washing supplies, flocculant-disinfectant, or flocculant-disinfectant plus hand washing. [61] The authors concluded that receiving any of the free goods, as well as the intense community-based intervention, which included meetings and presentations to community leaders and residents about the importance of hygiene and water contamination, reduced the daily longitudinal prevalence of diarrhoea; however, the level of statistical significance was not reported. [61] The second study, conducted in Colombia, gave primary school children a school snack. [47] The authors found that the rate of days per child year of diarrhoea (unadjusted rate ratio (URR): $0.68; CI: 0.63–0.73$), and diarrhoea with vomiting (URR: $0.63; CI: 0.52–0.75$) were significantly reduced with the provision of a school snack. [47] The third study, conducted in India, gave children under the age of five sodium dichloroisocyanurate tablets. [59] The authors found that the longitudinal prevalence of diarrhoea for children given sodium dichloroisocyanurate tablets was not significantly different from the control (prevalence ratio: $0.95; CI: 0.79–1.13$). [59] The final study, conducted in India, distributed soap to households with children under five, and outcomes were assessed for the target children, as well as their family, including siblings. [60] The authors reported significant relative risk reductions (RRR) in diarrhoea prevalence related to the provision of free soap among four groups: target children (RRR: $25.3\%; CI 36.6–2.3$); children aged five and under (non-target) (RRR: $32.5\%; CI 41.1–3.8$); children aged six-15 (non-target) (RRR: $30\%; CI 38.7–6.6$); and whole families (observed RRR $30.7\%; CI 37.5–5.5$). [60] As such, three of the four studies reported that diarrhoea was significantly reduced with the provision of free goods.

Interpretation

The results of this systematic review provide evidence that free goods can improve health outcomes in certain circumstances, although there are also important gaps and limitations in the
Table 6. Characteristics of included other studies (N = 5).

Study	Study type	Country	Participants	Intervention vs Comparison	Co-intervention	Time	Health Outcome	Results*	
Nyomba 2004[74]	RCT	Canada	62 Diabetics	Received test strips for their free glucometer vs no free test strips for free glucometer	Both groups received a free glucometer	12 months	HbAC1c	p = < 0.002 Random blood glucose measured at each doctor visit p = < 0.005	
Nicol 2007[77]	Three-arm prospective randomized trial	France	364 People staying at beach resorts	Free sunscreen vs no free sunscreen	NR	2 months	Sunburn during the week in the free sunscreen group vs control	Intervention 29.9%; Control 46.8% favours control Sunburn during the week in the free new labelled sunscreen group vs control	Intervention 21.2%; Control 46.8% favours control
Webb 2012[78]	Longitudinal design	England	Elderly residents	Intervention received a free bus pass, control was not eligible	NR	NR	BMI	mean change: Intervention: 0.22 (95% CI: 0.15–0.28) Control: 0.6 (95% CI: 0.43–0.77) unknown significance	
							Waist circumference	mean change: Intervention: 1.65 (95% CI: 1.47–1.83) Control: 2.17 (95% CI: 1.7–2.64) unknown significance	
Guo 2014[75]	RCT	China	132 Low income with type 2 diabetes	Received glucometers vs no free glucometers	education materials and counseling were provided to all groups	6 months	HbA1c	Overall difference between groups based on one-way ANOVA = -0.13 (95% CI: -0.38–0.12); p = 0.29 (favours control)	
							BMI	Overall difference between groups based on one-way ANOVA = 0.05 (95% CI: -0.34–0.44); p = 0.79 (favours control)	
							Triglycerides	Overall difference between groups based on one-way ANOVA = -0.14 (95% CI: -0.45–0.18); p = 0.39 (favours control)	
							LDL-C	Overall difference between groups based on one-way ANOVA = -0.01 (95% CI: -0.15–0.16); p = 0.92 (favours control)	
Lund 2014[76]	Cluster RCT	Zanzibar	2550 Pregnant women	Received mobile phone vs no free mobile phone	There was an automated short message component in addition to the intervention	NR	Still birth	Unadjusted odds ratio 0.62 (95% CI: 0.31–1.22) favours control	
							Perinatal mortality rate	Unadjusted odds ratio 0.49 (95% CI: 0.27–0.9)	
							Neonatal mortality rate	Unadjusted odds ratio 0.85 (95% CI: 0.37–1.95) favours control	

*Results favor the intervention unless indicated otherwise

https://doi.org/10.1371/journal.pone.0213845.t006

existing literature. Housing provision for people with serious mental health conditions in high-income countries and food provision to low-income children in high-income countries are supported by the largest number of studies. Of the 59 reviewed studies involving 379 932
participants (most were individuals but some were households) that examined the health effects of free goods, the most commonly studied free goods were housing (20 studies) and food (17 studies). Among the 268 total outcomes reported, the most commonly reported outcomes were housing retention in 12 housing studies and BMI in 12 food studies. Four RCTs were deemed to be unclear or at high risk of bias, and one non-RCT was rated as serious, critical or no information, in all risk of bias categories. Therefore, overall the studies were of medium to high quality in terms of bias. Among the studies included in this review, 80 health outcomes were statistically significant favouring the intervention, 19 health outcomes were statistically significant favouring the control, 141 health outcomes were not significant, and significance was unknown for 28 health outcomes.

The rationale underpinning how the provision of free tangible goods impacts health was typically not stated in the reviewed studies. However, we identify four related concepts that help us understand the rationale for providing free tangible goods. First, facilitating access to a good that is capable of promoting health should promote health unless there are unintended negative effects or implementation problems. We did in fact find some studies where those receiving a free good had worse health outcomes (e.g. hip protectors were associated with an increased risk of hip fractures).[71] Second, if poverty is defined, at least partially, as being unable to afford tangible goods (and services) in a market-based economy,[79] then studies examining the impact of free good provision on health describe the effect of poverty reduction on health. Findings from these studies could then be considered alongside studies of other interventions aimed at reducing poverty, such as a basic income as a complementary approach to reducing poverty.[12, 13] Third, the free provision of goods could be understood as "non-cash" income that is valued similar to its cash equivalent after being appropriately discounted.[6] Fourth, having certain tangible goods can be understood as fulfilling a basic human right (e.g. the right to adequate housing, the right to adequate nutrition and clean water).[80] The provision of such goods could be seen as achieving social justice and could have positive impacts not only for individuals but also for their communities.

Comparison with prior studies

To the best of our knowledge this is the first systematic review to examine a wide range of free tangible goods and their effects on health. One recent systematic review and narrative analysis of 31 Housing First studies found mixed results for the impact of providing free housing for substance abuse and psychiatric symptoms, a clear benefit for housing stability, and a benefit for quality of life. These findings generally align well with ours.[81]

A number of studies have examined whether people who were given free goods use them or resell them. One such study conducted among pregnant women and households with young children in Uganda, for example, investigated this concept with the provision of free long-lasting insecticide treated mosquito nets. [82] This study assessed the willingness to pay for a mosquito net and willingness to sell a mosquito net given for free by simulating market exchanges. Seventy-three percent of people who received free nets were unwilling to accept the maximum price offered to part with even one of their nets. [82] Most people who were given free nets were not likely to resell their nets and in fact did use them for their intended purpose. [82]

Other studies have investigated using financial investments to complement health interventions and further improve health outcomes. A non-randomized controlled assessment from sub-Saharan Africa, in which simultaneous investments were made in agriculture, the environment, business development, education, infrastructure, and health in rural village sites with high baseline levels of poverty and under nutrition, found that mortality rates in young
children decreased by 22% in study sites relative to baseline.\[83\] Reductions in poverty, food insecurity, stunting, and malaria parasitemia were also reported in study sites. \[83\]

Strengths and limitations of our study

Due to the great variety of free goods with potential to impact health, the design of a search strategy was challenging and we may have inadvertently omitted some key search terms. The wide array of interventions and outcomes meant that we could not perform a meta-analysis of results. The broad approach allowed us to include an interesting array of studies of different free tangible goods. Some studies involved co-interventions (e.g. almost all housing studies involved other supports in addition to free housing) and this limits the ability to determine whether the free good or the co-intervention affected health outcomes. We also excluded many studies that provided free tangible goods, including clean needles, condoms, and baby cribs, but did not report a health outcome. The literature may be biased towards studies of items with a less certain benefits. In other words, researchers may have decided not to study certain goods which are very likely to be beneficial (e.g. condoms, clean needles) and some such studies may not be ethical (i.e. it may be difficult to study the free provision of an item that is very likely to be beneficial). Some of the Housing First studies were overlapping as different reports included some of the same participants and some of the same outcomes, so we attempted to strike a balance between not excluding results and not counting the same results twice.

Conclusions and future work

Findings of this systematic review suggest that providing free tangible goods can promote health in certain circumstances. Additional high-quality studies of different goods are needed. Future work should also focus on the contexts in which free goods are most beneficial and explicitly state the theory or theories underpinning each study or intervention.

Supporting information

S1 Checklist. PRISMA checklist.
(DOC)

S1 File. Search strategy.
(DOCX)

S1 Table. Cochrane risk of bias assessment.
(DOCX)

S2 Table. ROBINS 1 risk of bias assessment.
(DOCX)

Acknowledgments

We thank Carolyn Ziegler with assistance designing and implementing the search strategy. We thank Anjli Bali for assistance obtaining articles. AP and NP are supported as Clinician Scientists by the Department of Family and Community Medicine, Faculty of Medicine, University of Toronto. AP is also supported by a fellowship from the Physicians’ Services Incorporated Foundation. NP is also supported by the Canada Research Chairs program. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
Author Contributions

Conceptualization: Nav Persaud, Andrew Pinto.

Data curation: Nav Persaud, Liane Steiner, Hannah Woods, Gurleen Chahal.

Formal analysis: Nav Persaud, Liane Steiner, Hannah Woods.

Investigation: Nav Persaud, Liane Steiner, Hannah Woods, Andrew Pinto.

Methodology: Nav Persaud, Liane Steiner, Hannah Woods, Stephen Hwang, Andrew Pinto.

Project administration: Nav Persaud.

Supervision: Nav Persaud.

Validation: Nav Persaud, Liane Steiner, Hannah Woods, Tatiana Aratangy, Susitha Wanigaratne, Jane Polsky, Stephen Hwang, Gurleen Chahal, Andrew Pinto.

Writing – original draft: Nav Persaud, Liane Steiner, Hannah Woods.

Writing – review & editing: Nav Persaud, Liane Steiner, Hannah Woods, Tatiana Aratangy, Susitha Wanigaratne, Jane Polsky, Stephen Hwang, Gurleen Chahal, Andrew Pinto.

References

1. Wilkinson RG, Pickett KE. Income inequality and population health: A review and explanation of the evidence. Social Science & Medicine. 2006; 62(7):1768–84. https://doi.org/10.1016/j.socscimed.2005.08.036.

2. Pickett KE, Wilkinson RG. Income inequality and health: A causal review. Social Science & Medicine. 2015; 128:316–26. https://doi.org/10.1016/j.socscimed.2014.12.031.

3. The World Health Organization. The determinants of health 2018. Available from: http://www.who.int/hia/evidence/doh/en/.

4. The World Health Organization. Social determinants of health 2018. Available from: http://www.who.int/social_determinants/sdh_definition/en/.

5. Kemetmüller M, Leitner C, Moser M, Jérusalmy O, Storms B, Bosch KvD, et al. Handbook of Reference Budgets. 2009.

6. Callan T, Keane C. Non-Cash Benefits and the Distribution of Economic Welfare. The Institute for the Study of Labor (IZA). 2009;(3954).

7. Malaria Campaign: Millions Receive Treated Mosquito Nets: The World Bank; 2011 [5 July 2018]. Available from: http://www.worldbank.org/en/news/feature/2011/04/24/malaria-campaign-millions-receive-treated-mosquito-nets.

8. Needle Syringe Programs: Ontario Harm Reduction Distribution Program; 2018 [5 July 2018]. Available from: http://www.ohrdp.ca/about-us/needle-exchange/.

9. Addressing Condom Supply and Demand in PEPFAR Programs 2017 [5 July 2018]. Available from: https://www.usaid.gov/what-we-do/global-health/hiv-and-aids/technical-areas/addressing-condom-supply-and-demand-pepfar.

10. Cameron ID, Kurrle S, Quine S, Sambrook P, March L, Chan D, et al. Increasing adherence with the use of hip protectors for older people living in the community. Osteoporosis International. 2011; 22 (2):617–26. https://doi.org/10.1007/s00198-010-1334-y PMID: 20571769

11. Dye C, Boerma T, Evans D, Harries A, Lienhardt C, McManus J, et al. Research for Universal Health Coverage. World Health Organization. 2013.

12. Beck S, Pulikki-Brännström A-M, San Sebastián M. Basic income–healthy outcome? Effects on health of an Indian basic income pilot project: a cluster randomised trial. Journal of Development Effectiveness. 2015; 7(1):111–26. https://doi.org/10.1080/19439342.2014.974200

13. Forget EL. The Town with No Poverty: The Health Effects of a Canadian Guaranteed Annual Income Field Experiment. Canadian Public Policy / Analyse de Politiques. 2011; 37(3):283–305.

14. Henwood BF, Cabassa LJ, Craig CM, Padgett DK. Permanent Supportive Housing: Addressing Homelessness and Health Disparities? American Journal of Public Health. 2013; 103(Suppl 2):S188–S92. https://doi.org/10.2105/AJPH.2013.301490 PMC3900899. PMID: 24148031
15. Covidence systematic review software Melborne, Australia: Vertitas Health Innovation Ltd 2018 [5 July 2018]. Available from: https://www.covidence.org/.

16. Cochrane Effective Practice and Organisation of Care (EPOC). Data collection form: Oslo: Norwegian Knowledge Centre for the Health Services; 2013. Available from: epoc.cochrane.org/epoc-resources-review-authors.

17. Higgins JPT, Altman DG, Gotzsche PC, Juni P, Moher D, Oxman AD, et al. The Cochrane Collaboration’s tool for assessing risk of bias in randomised trials. BMJ. 2011; 343: https://doi.org/10.1136/bmj.d5928 PMID: 22082177

18. Sterne JA, Hernán MA, Reeves BC, Savović J, Berkman ND, Viswanathan M, et al. ROBINS-I: a tool for assessing risk of bias in non-randomised studies of interventions. BMJ. 2016; 355. https://doi.org/10.1136/bmj.i4919 PMID: 27733354

19. Moher D, Liberati A, Tetzlaff J, Altman D, The PRISMA Group. Preferred Reporting Items for Systematic Reviews and Meta-Analyses: The PRISMA Statement.: PLoS Med; 2009.

20. James FN, Umar S. The World Bank’s classification of countries by income (English) Washington DC: World Bank Group; 2016. Available from: http://documents.worldbank.org/curated/en/40858146788942234/The-World-Banks-classification-of-countries-by-income

21. Tsemberis S, Gulcur L, Nakae M. Housing First, Consumer Choice, and Harm Reduction for Homeless Individuals With a Dual Diagnosis. American Journal of Public Health. 2004; 94(4):651–6. https://doi.org/10.1016/j.ajph.94.4.651 PMID: 15054020.

22. Stefancic A, Tsemberis S. Housing First for Long-Term Shelter Dwellers with Psychiatric Disabilities in a Suburban County: A Four-Year Study of Housing Access and Retention. The Journal of Primary Prevention. 2007; 28(3):265–79. https://doi.org/10.1007/s10935-007-0093-9 PMID: 17592778

23. Padgett DK, Stanhope V, Henwood BF, Stefancic A. Substance Use Outcomes Among Homeless Clients with Serious Mental Illness: Comparing Housing First with Treatment First Programs. Community Mental Health Journal. 2011; 47(2):227–32. https://doi.org/10.1007/s10597-009-9283-7 PMID: 20063061

24. Jacob BA, Ludwig J, Miller DL. The effects of housing and neighborhood conditions on child mortality. Journal of Health Economics. 2013; 32(1):195–206. https://doi.org/10.1016/j.jhealeco.2012.10.008 PMID: 23202264

25. Montgomery A, Hill L, Kane V, Culhane S. HOUSING CHRONICALLY HOMELESS VETERANS: EVALUATING THE EFFICACY OF A HOUSING FIRST APPROACH TO HUD-VASH. Journal of Community Psychology. 2013; 41(5):505–14. https://doi.org/10.1002/jcop

26. Patterson M, Moniruzzaman A, Palepu A, Zabkiewicz D, Frankish CJ, Krausz M, et al. Housing First improves subjective quality of life among homeless adults with mental illness: 12-month findings from a randomized controlled trial in Vancouver, British Columbia. Social Psychiatry and Psychiatric Epidemiology. 2013; 48(8):1245–59. https://doi.org/10.1007/s00127-013-0719-6 PMID: 23748928

27. Palepu A, Patterson ML, Moniruzzaman A, Frankish CJ, Somers J. Housing First Improves Residential Stability in Homeless Adults With Concurrent Substance Dependence and Mental Disorders. American Journal of Public Health. 2013; 103(S2):e30–e6. https://doi.org/10.2105/ajph.2013.301628 PMID: 24148035.

28. Bean K, Shafer M, Glennon M. The impact of housing first and peer support on people who are medically vulnerable and homeless. Psychiatric Rehabilitation Journal 2013; 36(1):48–50. https://doi.org/10.1037/h0094748 PMID: 23477765

29. Kessler RC, Duncan GJ, Gennetian LA, Katz LF, Kling JR, Sampson NA, et al. Associations of housing mobility interventions for children in high-poverty neighborhoods with subsequent mental disorders during adolescence. Jama. 2014; 311(9):937–48. Epub 2014/03/07. https://doi.org/10.1001/jama.2014.607 PMID: 24595778; PubMed Central PMCID: PMCPMC4100467.

30. Aubry T, Tsemberis S, Adair CE, Veldhuizen S, Streiner D, Latimer E, et al. One-year outcomes of a randomized controlled trial of housing first with ACT in five Canadian cities. Psychiatric services (Washington, DC). 2015; 66(5):463–9. Epub 2015/02/03. https://doi.org/10.1176/appi.ps.201400167 PMID: 25639993.

31. Kirst M, Zerger S, Misir V, Hwang S, Stergiopoulos V. The impact of a Housing First randomized controlled trial on substance use problems among homeless individuals with mental illness. Drug and Alcohol Dependence. 2015; 146:24–9. https://doi.org/10.1016/j.drugalcdep.2014.10.019 PMID: 25465295

32. Somers J, Moniruzzaman A, Palepu A. Changes in daily substance use among people experiencing homelessness and mental illness: 24-month outcomes following randomization to Housing First or usual care. Addiction. 2015; 110(10):1605–14. https://doi.org/10.1111/add.13011 PMID: 26052657

33. Stergiopoulos V, Gozdzik A, Misir V, Skosireva A, Connelly J, Sarang A, et al. Effectiveness of Housing First with Intensive Case Management in an Ethnically Diverse Sample of Homeless Adults with Mental Health outcomes related to the provision of free, tangible goods.
Health outcomes related to the provision of free, tangible goods

34. Woodhall-Melnik J, Misir V, Kaufman-Shriqui V, O’Campo P, Stergiopoulos V, Hwang S. The Impact of a 24 Month Housing First Intervention on Participants’ Body Mass Index and Waist Circumference: Results from the At Home / Chez Soi Toronto Site Randomized Controlled Trial. PLOS ONE. 2015; 10(9):e0137069. https://doi.org/10.1371/journal.pone.0137069 PMID: 26418677

35. Kozlof N, Adair CE, Palma Lazgare LI, Poremski D, Cheung AH, Sandu R, et al. “Housing First” for Homeless Youth With Mental Illness. Pediatrics. 2016; 138(4). Epub 2016/09/30. https://doi.org/10.1542/peds.2016-1514 PMID: 27681009.

36. Stergiopoulos V, Gozdzik A, Misir V, Skosireva A, Sarang A, Connelly J, et al. The effectiveness of a Housing First adaptation for ethnic minority groups: findings of a pragmatic randomized controlled trial. BMC Public Health. 2016; 16(1):1110. https://doi.org/10.1186/s12889-016-3768-4 PMID: 27769226

37. Aubry T, Goering P, Veldhuizen S, Adair CE, Bourque J, Distasio J, et al. A Multiple-City RCT of Housing First With Assertive Community Treatment for Homeless Canadians With Serious Mental https://doi.org/10.1176/appi.ps.201400587 PMID: Illness. Psychiatric services (Washington, DC). 2016; 67 (3):275–81. Epub 2015/12/02.

38. Collins S, Taylor E, King V, Hatsukami A, Jones M, Lee C-Y, et al. Suicidality Among Chronically Homeless People with Alcohol Problems Attenuates Following Exposure to Housing First. Suicide and Life-Threatening Behavior. 2016; 46(6):655–63. https://doi.org/10.1111/sltb.12250 PMID: 27061738

39. Somers JM, Moniruzzaman A, Patterson M, Currie L, Rezansoff SN, Palepu A, et al. A Randomized Trial Examining Housing First in Congregate and Scattered Site Formats. PLoS One. 2017; 12(1):e0168745. Epub 2017/01/12. https://doi.org/10.1371/journal.pone.0168745 PMID: 28076358; PubMed Central PMCID: PMCPMC5226665.

40. O’Campo P, Hwang SW, Gozdzik A, Schuler A, Kaufman-Shriqui V, Poremski D, et al. Food security among individuals experiencing homelessness and mental illness in the At Home/Chez Soi Trial. Public health nutrition. 2017; 20(11):2023–33. Epub 2017/06/30. https://doi.org/10.1017/S1368980017004498 PMID: 28560947.

41. Lee BJ, Mackey-Bilaver L. Effects of WIC and Food Stamp Program participation on child outcomes. Children and Youth Services Review. 2007; 29(4):501–17. https://doi.org/10.1016/j.childyouth.2006.10.005.

42. Murphy JM, Pagano ME, Nachmani J, Sperling P, Kane S, Kleinman RE. The relationship of school breakfast to psychosocial and academic functioning: cross-sectional and longitudinal observations in an inner-city school sample. Archives of pediatrics & adolescent medicine. 1998; 152(9):899–907. Epub 1998/09/22. PMID: 9743037.

43. Gibson D. Food Stamp Program Participation is Positively Related to Obesity in Low Income Women. The Journal of Nutrition. 2003; 133(7):2225–31. https://doi.org/10.1093/jn/133.7.2225 PMID: 12840184

44. Gibson D. Long-Term Food Stamp Program Participation is Differentially Related to Overweight in Young Girls and Boys. The Journal of Nutrition. 2004; 134(2):372–9. https://doi.org/10.1093/jn/134.2.372 PMID: 14747674

45. Ramirez-Lopez E, Grijalva-Haro MI, Valencia ME, Antonio Ponce J, Artalejo E. [Effect of a School Breakfast Program on the prevalence of obesity and cardiovascular risk factors in children]. Salud publica de Mexico. 2005; 47(2):126–33. Epub 2005/05/14. PMID: 15889638.

46. Gleason PM, Dodd AH. School breakfast program but not school lunch program participation is associated with lower body mass index. Journal of the American Dietetic Association. 2009; 109(2 Suppl): S118–28. Epub 2009/03/17. https://doi.org/10.1016/j/jada.2008.10.058 PMID: 19166668.

47. Arsenault JE, Mora-Plazas M, Forero Y, López-Arana S, Marín C, Baylin A, et al. Provision of a School Snack Is Associated with Vitamin B-12 Status, Linear Growth, and Morbidity in Children from Bogotá, Colombia. The Journal of Nutrition. 2009; 139(9):1744–50. https://doi.org/10.3945/jn.109.108662 PMC3151021. PMID: 19587125

48. Ask AS, Hernes S, Aarek I, Vik F, Brodahl C, Haugen M. Served of free school lunch to secondary-school pupils—a pilot study with health implications. Public health nutrition. 2010; 13(2):238–44. Epub 2009/08/05. https://doi.org/10.1017/S1368980009990772 PMID: 19650962.

49. Ni Mhurchu C, Turley M, Gorton D, Jiang Y, Michie J, Maddison R, et al. Effects of a free school breakfast programme on school attendance, achievement, psychosocial function, and nutrition: a stepped wedge cluster randomised trial. BMC Public Health. 2010; 10:738. Epub 2010/12/01. https://doi.org/10.1186/1471-2458-10-738 PMID: 21114862; PubMed Central PMCID: PMCPMC3009648.

50. Chen Z, Zhang Q. Nutrigenomics Hypothesis: Examining the Association Between Food Stamp Program Participation and Bodyweight Among Low-Income Women. Journal of Family and Economic Issues. 2011; 32(3):508–20. https://doi.org/10.1007/s10834-010-9233-0
51. Leung CW, Villamor E. Is participation in food and income assistance programmes associated with obesity in California adults? Results from a state-wide survey. Public health nutrition. 2011; 14(4):645–52. Epub 2010/08/13. https://doi.org/10.1017/S1368980010002090 PMID: 20701819.

52. Jilcott SB, Liu H, Dubose KD, Chen S, Kranz S. Food stamp participation is associated with fewer meals away from home, yet higher body mass index and waist circumference in a nationally representative sample. Journal of nutrition education and behavior. 2011; 43(2):110–5. Epub 2011/03/12. https://doi.org/10.1016/j.jneb.2010.06.001 PMID: 21392714.

53. Nicholas LH. Can Food Stamps help to reduce Medicare spending on diabetes? Economics and human biology. 2011; 9(1):1–13. Epub 2010/11/30. https://doi.org/10.1016/j.ehb.2010.10.003 PMID: 21112260; PubMed Central PMCID: PMC3032985.

54. Schmeiser MD. The impact of long-term participation in the supplemental nutrition assistance program on child obesity. Health economics. 2012; 21(4):386–404. Epub 2011/02/10. https://doi.org/10.1002/hec.1714 PMID: 21305645.

55. Leung CW, Blumenthal SJ, Hoffnagle EE, Jensen HH, Foerster SB, Nestle M, et al. Associations of food stamp participation with dietary quality and obesity in children. Pediatrics. 2013; 131(3):463–72. Epub 2013/02/27. https://doi.org/10.1542/peds.2012-0889 PMID: 23439902; PubMed Central PMCID: PMCPMC3581840.

56. Bere E, Klepp KI, Overby NC. Free school fruit: can an extra piece of fruit every school day contribute to the prevention of future weight gain? A cluster randomized trial. Food & nutrition research. 2014; 58. Epub 2014/08/26. https://doi.org/10.3402/fnr.v58.23194 PMID: 25147495; PubMed Central PMCID: PMCPMC4131001.

57. McMahon DM, Vdovenko VY, Stepanova YI, Karmaus W, Zhang H, Irving E, et al. Dietary supplementation with radionuclide-free food improves children’s health following community exposure to (137) Cesium: a prospective study. Environmental health: a global access science source. 2015; 14(4). Epub 2015/12/23. https://doi.org/10.1186/s12940-015-0084-x PMID: 26689948; PubMed Central PMCID: PMCPMC4687105.

58. Davies GM, Worthington HV, Ellwood RP, Bentley EM, Blinkhorn AS, Taylor GO, et al. A randomised controlled trial of the effectiveness of providing free fluoride toothpaste from the age of 12 months on reducing caries in 5–6 year old children. Community dental health. 2002; 19(3):131–6. Epub 2002/09/25. PMID: 12269458.

59. Boisson S, Stevenson M, Shapiro L, Kumar V, Singh LP, Ward D, et al. Effect of Household-Based Drinking Water Chlorination on Diarrhoea among Children under Five in Orissa, India: A Double-Blind Randomised Placebo-Controlled Trial. PLOS Medicine. 2010; 7(9). https://doi.org/10.1371/journal.pmed.1001497 PMID: 20964234.

60. Nicholson JA, Naeni M, Hoptroff M, Matheson JR, Roberts AJ, Taylor D, et al. An investigation of the effects of a hand washing intervention on health outcomes and school absence using a randomised trial in Indian urban communities. Tropical Medicine and International Health 2014; 19(3):284–92. https://doi.org/10.1111/tmi.12254 PMID: 24382344.

61. Luby SP, Agboatwalla M, Painter J, Altai A, Billhimer W, Keswick B, et al. Combining drinking water treatment and hand washing for diarrhoea prevention, a cluster randomised controlled trial. Tropical Medicine & International Health. 2006; 11(4):479–89. https://doi.org/10.1111/j.1365-3156.2006.01592.x PMID: 16553931.

62. Livny A, Sgan-Cohen HD. A review of a community program aimed at preventing early childhood caries among Jerusalem infants—a brief communication. Journal of public health dentistry. 2007; 67(2):78–82. Epub 2007/06/15. PMID: 17557677.

63. Das LK, Harichandrakumar KT, Vijayalakshmi G, De Britto LJ. Effect of domiciliary limb hygiene alone on lymphoedema volume and locomotor function in filarial lymphoedema patients in Puducherry, India. The Journal of communicable diseases. 2013; 45(1–2):17–23. Epub 2013/03/01. PMID: 25141550.

64. Browne E, H Maude G, Blinkova F. The impact of insecticide-treated bednets on malaria and anaemia in pregnancy in Kassena-Nankana district, Ghana: A randomized controlled trial2001. 667–76 p.

65. Fegan GW, Noor AM, Akhwale WS, Cousins S, Snow RW. Effect of expanded insecticide-treated bednet coverage on child survival in rural Kenya: a longitudinal study. Lancet (London, England). 2007; 370 (9592):1035–9. https://doi.org/10.1016/S0140-6736(07)61477-9 PMC2117339. PMID: 17889242.

66. Fokam E, Ngimuh L, Anchan E, Wanji S. Assessment of the usage and effectiveness of intermittent preventive treatment and insecticide-treated nets on the indicators of malaria among pregnant women attending antenatal care in the Buea Health District, Cameroon2016.

67. Anyaehie U, Nwagha UI, Anibiebe PN, Nwagha TU. The effect of free distribution of insecticide-treated nets on asymptomatic Plasmodium parasitemia in pregnant and nursing mothers in a rural Nigerian community. Nigerian journal of clinical practice. 2011; 14(1):19–22. Epub 2011/04/16. https://doi.org/10.4103/1119-3077.79234 PMID: 21493986.
68. Apinjoh TO, Anchang-Kimbi JK, Mugri RN, Tangoh DA, Nyingchu RV, Chi HF, et al. The effect of Insecticide Treated Nets (ITNs) on Plasmodium falciparum infection in rural and semi-urban communities in the south west region of Cameroon. PLoS One. 2015; 10(2):e0116300. Epub 2015/02/26. https://doi.org/10.1371/journal.pone.0116300 PMID: 25714837; PubMed Central PMCID: PMCPMC4340618.

69. DiGuiseppe C, Roberts I, Wade A, Sculpher M, Edwards P, Godward C, et al. Incidence of fires and related injuries after giving out free smoke alarms: cluster randomised controlled trial. Bmj. 2002; 325(7371):995. Epub 2002/11/02. PMID: 12411355; PubMed Central PMCID: PMCPMC131023.

70. Mallonee S. Evaluating Injury Prevention Programs: The Oklahoma City Smoke Alarm Project2000. 164–74 p.

71. O’Halloran PD, Cran GW, Beringer TRO, Kernohan G, O’Neill C, Orr J, et al. A cluster randomised controlled trial to evaluate a policy of making hip protectors available to residents of nursing homes. Age and Ageing. 2004; 33(6):582–8. https://doi.org/10.1093/ageing/afh200 PMID: 15381506

72. Watson M, Kendrick D, Coupland C, Woods A, Futers D, Robinson J. Providing child safety equipment to prevent injuries: randomised controlled trial. BMJ. 2005; 330(7484):178. https://doi.org/10.1136/bmj.38309.664444.8F PMID: 15604156

73. Zadik Y, Levin L. Does a free-of-charge distribution of boil-and-bite mouthguards to young adult amateur sportsmen affect oral and facial trauma? Dental Traumatology. 2009; 25:69–72. https://doi.org/10.1111/j.1600-9657.2008.00708.x PMID: 19208013

74. Nyomba BL, Berard L, Murphy L.J. Facilitating access to glucometer reagents increases blood glucose self-monitoring frequency and improves glycaemic control: a prospective study in insulin-treated diabetic patients. Diabetic medicine: a journal of the British Diabetic Association. 2004; 21(2):129–35. Epub 2004/02/27. PMID: 15381506

75. Guo H, Tian X, Li R, Jin N, Wu Z, Yu D. Reward-based, task-setting education strategy on glycemic control and self-management for low-income outpatients with type 2 diabetes Journal of Diabetes Investigation. 2014; 5:410–7. https://doi.org/10.1111/jdi.12152 PMID: 25411600

76. Lund S, Rasch V, Hemed M, Boas IM, Said A, Said K, et al. Mobile Phone Intervention Reduces Perinatal Mortality in Zanzibar: Secondary Outcomes of a Cluster Randomized Controlled Trial. JMIR mHealth and uHealth. 2014; 2(1):e15. https://doi.org/10.2196/mhealth.2941 PMID: 25098184

77. Nicoll I, Gauzy C, Gouvernet J, Richard MA, Grob JJ. Skin protection by sunscreens is improved by explicit labeling and providing free sunscreen. The Journal of investigative dermatology. 2007; 127(1):41–8. Epub 2006/10/28. https://doi.org/10.1038/sj.jid.5700509 PMID: 17068486.

78. Webb E, Netuveli G, Millett C. Free bus passes, use of public transport and obesity among older people in England. Journal of epidemiology and community health. 2012; 66(2):176–80. Epub 2011/09/14. https://doi.org/10.1136/jech.2011.133165 PMID: 21911850.

79. Storms B, Goedemé T, Bosch KVd, Penne T, Schuerman N, Stockman S. Pilot project for the development of a common methodology on reference budgets in Europe. European Comission, 2014.

80. United Nations General Assembly. Universal Declaration of Human Rights Paris: 1948 Contract No.: 217 (III) A.

81. Woodhall-Melnik JR, Dunn JR. A systematic review of outcomes associated with participation in Housing First programs. Housing Studies. 2016; 31(3):287–304. https://doi.org/10.1080/02673037.2015.1080816

82. Hoffmann V, Barrett CB, Just DR. Do Free Goods Stick to Poor Households? Experimental Evidence on Insecticide Treated Bednets. World Development. 2009; 37(3):607–17. https://doi.org/10.1016/j.worlddev.2008.08.003.

83. Pronyk PM, Muniz M, Nemser B, Somers M-A, McClellan L, Palm CA, et al. The effect of an integrated multisector model for achieving the Millennium Development Goals and improving child survival in rural sub-Saharan Africa: a non-randomised controlled assessment. The Lancet. 2012; 379(9832):2179–88. https://doi.org/10.1016/S0140-6736(12)60207-4.