Characterization of six microsatellite loci in *Myrica faya* (Myricaceae) and cross amplification in the endangered endemic *M. rivas-martinezii* in Canary Islands, Spain

Miguel A. González-Pérez, Craig Newton, Pedro A. Sosa, Elizabeth Rivero and Edna A. González-González

1Departamento de Biología, Universidad de Las Palmas de Gran Canaria, Canary Islands, Spain.
2ATG Genetics Inc, Vancouver, British Columbia, Canada.

Abstract

Six novel polymorphic microsatellite markers were isolated from enriched libraries in *Myrica faya* Ait., recently renamed *Morella faya*, (fayatree, firetree, or firebush) in order to examine the genetic diversity in natural populations. Also, test cross-specific amplification and genetic diversity in *Myrica rivas-martinezii*, which is endemic on the Canary islands. Microsatellite loci were screened in 225 individuals of both species from different islands of the Canarian archipelago. All markers were successfully amplified from both *Myrica* species, with an average number of 6.5 and 9.3 alleles per locus in *M. rivas-martinezii* and *M. faya*, respectively. There was no evidence for linkage disequilibrium between loci, and the probability of null alleles ranged from 0.01 to 0.17.

Key words: *Myrica rivas-martinezii*, *Myrica faya*, microsatellite, Canary Islands, genetic diversity.

Received: February 7, 2008; Accepted: June 3, 2008.

M. faya is native to the northern islands of Macaronesia, the Azores, Madeira, and the Canaries in the North Atlantic Ocean. It is found in most laurel forest plots, but also grows well at degraded sites and outside the range of the laurel forest ecosystems. *M. faya* is quite abundant due to its high colonizing capacity (Bañares et al., 2004). In addition, *Myrica faya* has been recognized as one of the twelve most noxious plants alien to Hawaii due to its ability to rapidly and aggressively invade and colonize the Hawaiian environment (Smith, 1985).

M. faya co-occurs very close (separated by few meters) to *Myrica rivas-martinezii* A. Santos. The latter is an endangered endemic species of the laurel forests on the Canary Islands. *M. rivas-martinezii* is found on rather poor soils along the inferior margins of the laurel forest domain, especially in isolated locations that have been the object of multiple exploitations. It is a perennial, woody species that was first time described in El Hierro in 1980 (Santos-Guerra, 1980). This dioecious tree species occurs on only three islands (El Hierro, La Gomera and La Palma) of the Canarian archipelago. Its most abundant population (with about 40 individuals) is located at El Fayal, in an area of approximately 90 km² on El Hierro Island. Only ten isolated individuals are known in La Gomera Island, six of which have male flowers, all in different locations and separated by linear distances ranging from 1 to 7 km, but isolated by deep ravines and cliffs. In La Palma, the only two known individuals (one male and one female) are separated by more than 20 km (Bañares et al., 2004). *Myrica rivas-martinezii* has been classified as Critically Endangered according to IUCN categories (VVAA, 2000). It is also protected by the Canarian Government (Boletín Oficial de Canarias – BOC, 2001) and the European Habitat Directive (Beltrán et al., 1999).

Previous studies showed no evidence for genetic differentiation on the basis of the sequences of either the pastid rbcl gene, which encodes the large subunit of rubisco, or the 18S-26S nuclear internal transcribed spacer (ITS) region (Huguet et al., 2005). Yet, Batista et al. (2004) showed higher genetic diversity levels in *M. rivas-martinezii* using RAPDs.

We sampled 41 specimens of *Myrica rivas-martinezii* and 183 of *M. faya* in El Hierro, La Gomera, and La Palma Island (Table 1). Microsatellite loci were isolated from *M. faya* genomic DNA using biotin/streptavidin enrichment (Khasa et al., 2000). Briefly, genomic DNA was digested with restriction endonucleases (*Hae*III, *Alu*I and *Rsa*I) and linkers were added using T4 DNA ligase. Linker adapted total genomic fragments were then enriched by hybridization with 5′ biotin AC12 and TC12 followed by separation with streptavidin paramagnetic beads (M270S, Invitrogen, CA). After amplification with linker-specific primers, en-
riched fragments were cloned into plasmid vectors (pGEM3Z+, Promega) and single colonies containing ACn or TCn microsatellites were identified by colony hybridisation. After one round of biotin enrichment, 75/1000 ampicillin resistant colonies contained microsatellite sequences. Inserts from 23 positive colonies were amplified with M13 universal forward and reverse primers, treated with exonuclease I and Antarctic alkaline phosphatase (New England Biolabs), and then sequenced from both orientations using a ABI3730 capillary electrophoresis system (NAPS Service, University of British Columbia).

PCR primers complementary to the flanking regions of 13 loci were designed with approximately 40% GC and avoiding palindromic sequence motifs. Out of 13 microsatellite loci analyzed, six yielded PCR products of expected size and were considered robust and predictable enough for further analyses (Table 2).

Total DNA was extracted following the Dellaporta et al. (1983) method modified by Corniquel and Mercier (1994). Each 25 μL PCR reaction contained approximately 20 ng DNA, 10 pmol of each primer, 0.25 μL BSA (0.4%), as well as PCR Master Mix (Reddy-Mix, ABgene, Surrey, UK). Amplifications were carried out using the following conditions: 3 min denaturation at 95 °C, 35 cycles of 30 s denaturation at 95 °C, 30 s annealing at 55 °C, and 1.5 min elongation at 72 °C, followed by 5 min final elongation at 72 °C. The products were detected using an ABI 3100 Genetic Analyzer and fragment sizes were determined using GENESCAN v. 2.02 and GENOTYPER v. 1.1 (Applied Biosystems, Inc.). We identified allele peak profiles at each locus and assigned a genotype to each individual.

Exact Hardy-Weinberg tests to measure the significance of deviations from the null hypothesis of random union of gametes (Guo and Thompson, 1992) were carried out on natural populations of M. rivas-martinezii and M. faya using Fisher exact test, both for each pair of loci and within each population using GENEPOP 1.2. (Raymond and Rousset, 1995). Basic genetic diversity indices, mean number of alleles (A), the observed (Ho), and unbiased expected

Table 1 - Myrica rivas-martinezii and M. faya populations analysed in the Canary Islands.

Island	Species	N
La Gomera	M. rivas-martinezii	10
	M. faya	132
El Hierro	M. rivas-martinezii	30
	M. faya	38
La Palma	M. rivas-martinezii	2
	M. faya	13
Total	M. rivas-martinezii	42
	M. faya	183

N = sample size.

Table 2 - Characteristics of six microsatellite loci developed for Myrica rivas-martinezii and cross amplification in M. faya, expected heterozygosity (He), probability of paternity exclusion (Q), probability of genetic identity (I), proportion of null alleles (Pna), and GenBank accession number.

Locus	Species	Repeat motif	Size range (bp)	PCR Primer sequence (5' - 3')	GenBank accession
M5	M. faya	(GA)21	197-228	F:6FAM-GCCATCTGCATACCACAACAG	AM922310
	M. rivas-martinezii	7	0.56	0.59	
M10	M. faya	(AG)24	155-191	F:VIC-TGCTTATTTCTTTGACACGACC	AM922311
	M. rivas-martinezii	16	0.88	0.89	
M11	M. faya	(CT)27	169-193	F:NED-GCCTTCAGATCAAAGTATGCA	AM922312
	M. rivas-martinezii	11	0.50	0.58	
M18	M. faya	(TC)20	315-343	F:6FAM-ATGATATGTAGTGAAAGAGACG	AM922313
	M. rivas-martinezii	12	0.73	0.76	
M20	M. faya	(GT)18	166-181	F:VIC-GTGACCCCTTACATGGATAGG	AM922314
	M. rivas-martinezii	6	0.46	0.47	
Mean	M. faya				

Island	Species	A	Ho	He	Pna	Q	I
La Gomera	M. rivas-martinezii	7	0.56	0.59	0.02	0.31	0.25
	M. faya						
El Hierro	M. rivas-martinezii	16	0.88	0.89	0.01	0.16	0.09
	M. faya						
La Palma	M. rivas-martinezii	11	0.50	0.58	0.10	0.62	0.06
	M. faya						
Total	M. rivas-martinezii	12	0.73	0.76	0.01	0.16	0.09
	M. faya						

González-Pérez et al.
(He) heterozygosities (Nei, 1978), paternity exclusion probability (Q) (Weir, 1996), and probability of genetic identity (I) (Paetkau et al., 1995), were estimated using IDENTITY 1.0. The combined probability of paternity exclusion, \(Q_C = 1 - [\Pi(1 - Q_i)] \) and the combined probability of genetic identity \(I_C = \Pi_i \) were also estimated for overall loci. The proportion of null alleles for each locus was calculated as \((He-Ho)/1 + He\), following Brookfield (1996).

All six loci were polymorphic, the number of alleles ranging from 3 (M24) to 16 (M10), while Ho ranged from 0.30 (M5) to 0.88 (M10), and gene diversity (He) from 0.32 (M5) to 0.89 (M10). Only one locus (M24) showed values of proportion of null alleles over 10% in both species, suggesting the possibility of null alleles (Table 2). Except for locus M24, none of the other loci showed significant deviations from Hardy-Weinberg equilibrium in Myrica rivas-martinezii, (data not shown). The M24 locus was estimated to have a null allele frequency of 0.16.

While there was no evidence for linkage disequilibrium between loci in the data set of 225 individuals of both Myrica species, three (M11, M20 and M24) of the six analyzed loci showed significant defect of heterozygote in Myrica faya. These three loci were estimated to have null allele frequencies of 0.10, 0.04, and 0.17, respectively. Many of the loci showed high probability of paternity exclusion, which should provide powerful markers for paternity exclusion when genotype data from several loci are combined. Total paternity exclusion probability (Q) for this set of six microsatellite loci was estimated at 0.981 for Myrica faya, and 0.941 for Myrica rivas-martinezii. Total probabilities of identity (I) were 5.71 x 10^-6 and 9.03 x 10^-5 for Myrica faya and Myrica rivas-martinezii, respectively.

Genetic diversity recorded for the endemic species Myrica rivas-martinezii was similar to those described for other endangered endemic species of the Canary Islands, for example Bencomia exstipulata (A = 6.20, Ho = 0.43, He = 0.65) (González-Pérez et al., 2004). In contrast genetic variability in Myrica faya was higher than corresponding values detected in other, not endangered native species of the Canary Islands, e.g., B. caudata (A = 6.40, Ho = 0.47, He = 0.62) (González-Pérez et al., 2004). This may reflect the high colonizing capacity of Myrica faya (Bañares et al., 2004).

Altogether, the primers described in this paper can provide useful markers to investigate genetic relationship between Myrica rivas-martinezii and Myrica faya.

Acknowledgments

We thank Angel Fernandez and Cito Chinea (Gara-jonay National Park), and Eduardo Carqué and Manuel Marrero (Teide National Park) for assistance in collecting Myrica samples. This work was supported by Ministerio de Educación y Ciencia, Dirección General de Investigación, Plan Nacional de I+D+I (CGL2004-03839). Edna A. González-González work was supported by a fellowship for Ministerio de Asuntos Exteriores y Cooperación-Agencia Española de Cooperación Internacional. We also thank Javier Sosa and Andrew Stephens for the revision of the English in this manuscript.

References

Bañares Á, Blanca G, Güemes J, Moreno JC and Ortiz S (2004) Atlas y Libro Rojo de la Flora Vascular Amenazada de España. Dirección General de Conservación de la Naturaleza, Madrid, 1072 pp.

Batista F, Bouza N, González-Pérez MA and Sosa PA (2004) High levels of genetic variation detected within and between populations of two endangered endemic species of the laurel forest from the Canary Islands, Myrica rivas-martinezii (Myricaceae) and Sideritis discolor (Lamiaceae). Aust J Bot 52:471-480.

Beltrán E, Wildpret W, Léon C, García A and Reyes J (1999) Libro Rojo de la Flora Canaria contenida en la Directiva Hábitats Europea. Dirección General de Conservación de la Naturaleza. Ministerio de Medio Ambiente, La Laguna, 694 pp.

Brookfield JF (1996) A simple new method for estimating null allele frequency for heterozygote deficiency. Mol Ecol 5:453-455.

Corniñel B and Mercier L (1994) Date palm (Phoenix dactylifera L.) cultivar identification by RFLP and RAPD. Plant Sci 101:163-172.

Dellaporta SL, Wood J and Hicks JB (1983) A plant DNA mini-preparation, version II. Plant Mol Biol Rep 1:19-21.

González-Pérez MA, Lledó MD, Fay MF, Lexer C and Sosa PA (2004) Isolation and characterisation of microsatellite loci in Bencomia exstipulata and B. caudata (Rosaceae). Mol Ecol Notes 4:130-132.

Guo SW and Thompson EA (1992) A simple new method for estimating null allele frequency for heterozygote deficiency. Biometrics 48:361-372.

Huguet V, Gouy M, Normand P, Zimfer JF and Fernandez MP (2005) Molecular phylogeny of Myricaceae: A re-examination of host-symbiont specificity. Mol Phylogenet Evol 34:557-568.

Khaza PD, Newton CH, Rahman MH, Jaquish B and Dancik BP (2000) Isolation, characterisation and inheritance of microsatellite loci in alpine and western larch. Genome 43:439-448.

Nei M (1978) Estimation of average heterozygosity and genetic distance from small number of individuals. Genetics 89:583-590.

Paetkau D, Calvert W, Stirling I and Strobeck C (1995) Microsatellite analysis of population structure in Canadian polar bears. Mol Ecol 4:347-354.

Raymond M and Rouset F (1995) GENEPOP, v. 1.2: Population genetics software for exact tests and ecumenicism. J Hered 86:248-249.
Santos-Guerra A (1980) Contribución al conocimiento de la flora y vegetación de la isla de El Hierro (Canarias). Fund J March Serie Universitaria 114:1-50.

Smith CW (1985) Impact of alien plants in Hawaii’s native biota. In: Stone CP and Scott JM (eds) Hawai’i’s Terrestrial Ecosystems: Preservation and Management. University of Hawaii, Honolulu, pp 180-250.

VVAA (2000) Lista roja de la flora vascular española (valoración según las categorías de la IUCN). Conservación Vegetal 6:11-38.

Weir BS (1996) Genetic Data Analysis II. Sinauer Associates Inc., Sunderland, 376 pp.

Internet Resources

Boletín Oficial de Canarias (2001) Decreto 151, de 23 de julio, por el que se crea el catálogo de especies amenazadas de Canarias. Boletín Oficial de Canarias 97:11101-11111. http://www.gobiernodecanarias.org/boc/2001/097/004.html.

IDENTITY 1.0 (Wagner HW and Sefc KM, 1999) http://www.boku.ac.at/zag/identity.htm.

Associate Editor: Márcio de Castro Silva Filho

License information: This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.