Derivation and applications of human hepatocyte-like cells

Shuang Li, Shi-Qian Huang, Yong-Xu Zhao, Yu-Jie Ding, Dan-Jun Ma, Qiu-Rong Ding

ORCID number: Shuang Li (0000-0003-3929-2732); Shi-Qian Huang (0000-0003-3066-8664); Yong-Xu Zhao (0000-0003-4668-8165); Yu-Jie Ding (0000-0001-9134-6493); Dan-Jun Ma (0000-0002-1555-6306); Qiu-Rong Ding (0000-0001-9906-6787).

Author contributions: Li S, Ma DJ and Ding QR contributed to conceptualization; Li S contributed to original draft preparation; Huang SQ, Zhao YX, Ding YJ, Ma DJ and Ding QR contributed to review and editing.

Supported by National Key RD Program of China, No. 017YFA0102800; and No. 2017YFA0103700; the National Natural Science Foundation of China, No. 31670829.

Conflict-of-interest statement: None of the authors have any conflicts of interest relevant to this study.

Open-Access: This is an open-access article that was selected by an in-house editor and fully peer-reviewed by external reviewers. It is distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/

Manuscript source: Invited Manuscript

Received: February 16, 2019

Abstract

Human hepatocyte-like cells (HLCs) derived from human pluripotent stem cells (hPSCs) promise a valuable source of cells with human genetic background, physiologically relevant liver functions, and unlimited supply. With over 10 years’ efforts in this field, great achievements have been made. HLCs have been successfully derived and applied in disease modeling, toxicity testing and drug discovery. Large cohorts of induced pluripotent stem cells-derived HLCs have been recently applied in studying population genetics and functional outputs of common genetic variants in vitro. This has offered a new paradigm for genome-wide association studies and possibly in vitro pharmacogenomics in the nearly future. However, HLCs have not yet been successfully applied in bioartificial liver devices and have only displayed limited success in cell transplantation. HLCs still have an immature hepatocyte phenotype and exist as a population with great heterogeneity, and HLCs derived from different hPSC lines display variable differentiation efficiency. Therefore, continuous improvement to the quality of HLCs, deeper investigation of relevant biological processes, and proper adaptation of recent advances in cell culture platforms, genome editing technology, and bioengineering systems are required before HLCs can fulfill the needs in basic and translational research. In this review, we summarize the discoveries, achievements, and challenges in the derivation and applications of HLCs.
Hepatocyte-like cells (HLCs) derived from human pluripotent stem cells (hPSCs) have a great application prospect as an unlimited supply of human hepatocytes in disease modeling, toxicity testing and drug discovery. In this review, we summarize the derivation of HLCs from hPSCs, and the limitations and optimization of current differentiation protocols. We also discuss progress in the application of HLCs, and reveal the exciting future of HLCs for use in the study of rare diseases, population genetics, and in vitro pharmacogenomics.

INTRODUCTION

The liver represents one of the most pivotal organs of the human body in regulating glucose homeostasis, lipid metabolism, detoxification and many other physiological processes. As liver diseases, including fatty liver diseases, hepatic carcinoma, and viral hepatitis, continue to increase in prevalence, there is an urgent need for development of effective treatments, and sufficiently cell or tissue sources for transplantation. Primary human hepatocytes and liver donors offer immediate resources for studying liver diseases and transplantation. However, both primary cells and available donor transplants are in persistent shortage. Although different culture systems have been identified recently that enable long-term culture and expansion of both rodent and human primary hepatocytes[1-4], the capacity of expansion is still limited and has donor-dependent variability. As stem cells are known to have potent self-renewal ability as well as the capacity to differentiate into different somatic cell types, they have been proposed as an ideal alternative cell source for large or even unlimited supplies of hepatocytes and even liver tissues. Human hepatocytes can be derived from embryonic stem cells (ESCs), induced pluripotent stem cells (iPSCs), mesenchymal stem cells and hepatic progenitor cells[5]. As the cells derived from stem cells often have incomplete function and exhibit characteristics of fetal liver cells, they are generally defined as hepatocyte-like cells (HLCs). The discovery made by Gurdon and Yamanaka that mature cells from individual patients can be reprogrammed to iPSCs, opened up the possibility that these cells can be applied to disease modeling and organ transplantation. Furthermore, intense efforts have been made in recent years in generating better HLCs and liver organoids from PSCs, and in applications of these cells in various fields. Therefore, in this review, we focus on HLCs derived from human pluripotent stem cells (hPSCs) and discuss recent progress in the derivation and applications of HLCs in biomedical research.

DERIVATION OF HUMAN HLCs

hPSCs include human ESCs, mostly derived from the inner cell mass of the fertilized eggs, and iPSCs reprogrammed from terminally differentiated somatic cells. hPSCs promise an unlimited supply of human somatic cells, due to their theoretical capacity for self-renewal and differentiation into any kind of somatic cell types in human body. To date, many protocols have been established to generate human hepatocytes derived from hPSCs. Most induction methods are based on the understanding of the embryonic development processes of the liver, and aimed to imitate in Petri dishes the endoderm development, endoderm hepatic specification and hepatic maturation stages. The directed differentiation protocols either rely on the use of embryoid body (EB) formation[6-7] or start with monolayer culture, with the latter more frequently adapted currently in laboratories. EB formation means to mimic the blastocyst and...
epiblast architecture; however, it can be easily disturbed by suboptimal culture conditions and sources of reagents, for example, different batches of fetal bovine serum can affect to a large degree the quality of generated EBs. Most protocols currently in use apply similar strategies with contributions from individual laboratories by improving inducers of differentiation and optimizing their combinations (Table 1). These protocols can be largely specified to three consecutive steps: endoderm differentiation, hepatic induction, and liver maturation.

Endoderm formation

Transforming growth factor (TGF) β family member Nodal is vital in endoderm formation, based on studies in developmental biology in models including frogs, zebrafish, and mice[8-10]. Although Nodal is an attractive candidate for inducing hPSCs to differentiate into definitive endoderm (DE), it is difficult to get highly active protein. Activin is another TGFβ family member, which mimics Nodal activity in triggering similar intracellular signaling events[11], thus is often used as a substitution of Nodal in vitro[12]. In 2005, D’Amour et al.[13] demonstrated efficient endoderm induction from monolayers of hPSCs by applying activin A, which was subsequently reproduced by many other groups. The monolayer culture here seems important to the endoderm differentiation in that cells can be exposed evenly to the endodermal inducer, activin A, and can better synchronize development of the endodermal cell fate[14]. Levels of Nodal signaling comprise key elements in cell fate determination, with high level promotes endoderm differentiation, whereas low level initiates mesoderm specification[14-17]. Therefore, high concentrations of activin A are now widely utilized for endoderm induction in hPSC culture[16-20]. Besides, activation of fibroblast growth factor (FGF), bone morphogenetic protein (BMP) and Wnt signaling pathways also promote endoderm development[17-19]. Phosphatidylinositol 3-kinase (PI3K) inhibitors, such as LY 294002 and AKT1-II, also promote activin-A-induced endoderm development[17]. Several studies have shown that low doses of serum are necessary for activin A to induce an efficient endoderm program[17,18,19].

Hepatic specification

In early embryo development, FGF signals and BMP signals initiate the liver gene program and simultaneously block that for pancreas development[21,22]. Consistent with the in vivo discoveries, the signaling molecules FGF and BMP have also been demonstrated to be important in generating hepatic cells from DE cells in vitro. The combination of FGFs and BMPs are thus widely used to induce hepatic endoderm programs[19,21,23]. Dimethylsulfoxide (DMSO) can assist in promoting hPSC differentiation and specific generation of hepatic progenitors, and is usually used in hepatic differentiation[19,22,26,27].

Liver maturation

As for further liver maturation, hepatic progenitors are mostly treated by hepatocyte growth factor (HGF), oncostatin M (OSM), and glucocorticoid dexamethasone (Dex). HGF binds to its tyrosine kinase receptor c-Met, promoting hepatoblast proliferation, increasing cell migration and improving cell survival[24,25]. OSM produced by hematopoietic cells is an interleukin(IL)-6 family cytokine, which induces hepatic maturation by the phosphorylation of signal transducer and activator of transcription[26,27]. The glucocorticoid dexamethasone has also been implicated in the maturation of the hepatocytes[12,25]. After the maturation stage, obtained HLCs display many hepatocyte features, such as albumin expression and secretion, urea secretion, low-density lipoprotein (LDL) uptake, indocyanine green (ICG) uptake, and glycogen storage (Table 1). However, those cells express fetal liver markers, such as a-fetoprotein (AFP), and have lower activities of CYP450 enzymes when compared to primary liver tissue. With comparison of a set of human adult and fetal liver markers, it is roughly estimated that the HLCs have the characteristics of fetal hepatocytes at < 20 wk gestation[19].

Protocol optimization

Different strategies have been adopted with the aim to promote maturation and to reduce the large heterogeneity of HLCs. One strategy is to use 3D culture, mimicking liver development in the body, thus promoting further maturation. Indeed, it has been shown that cells demonstrate more matured phenotypes in 3D than other culture systems. For example, it has been demonstrated that cAMP signaling within the 3D hepatoblast aggregates can promote further maturation of HLCs that display comparable metabolic enzyme levels to those of primary human hepatocytes[28]. The other main strategy is to optimize the current protocols through screening for molecules that can improve differentiation, and to understand better the molecular mechanisms underlying liver development. Towards this aim, by screening 4000
Table 1 Summary of hepatocyte-like cells differentiation protocols

Ref.	EB / monolayer	Protocol features	Endoderm induction	Hepatic specification and maturation	In vitro functional assays	In vivo assay
Cai et al[18], 2007	Monolayer	Activin A, ITS	Activin A, ITS	FGF4, BMP2, HGF, OSM, Dex	ALB, Glycogen, ICG, LDL, CYP450	Yes
Hay et al[19], 2008	Monolayer	Activin A, Wnt3a	Serum, DMSO, Insulin, HGF, OSM	FGF4, HGF, OSM, Dex	Urea, Glucconeogenesis, AFP	Yes
Agarwal et al[24], 2008	Monolayer	Activin A, low serum	Activin A, bFGF	FGF, DMSO, Dex	ALB, Urea, AAT, CYP450	Yes
Basma et al[7], 2009	EB/monolayer	Activin A, bFGF	Activin A, low serum	FGF4, BMP2, HGF, OSM, Dex	ALB, Urea, Glucogen, CYP450	No
Song et al[24], 2009	Monolayer	Activin A	Activin A	FGF4, BMP2, HGF, KGF, OSM, Dex	ALB, Urea, AAT, CYP450	No
Si-Tayeb et al[21], 2010	Monolayer	Activin A, Wnt3a	Activin A, Wnt3a	β-ME, DMSO, Insulin, HGF, OSM	CYP450, Fibrinogen, Transhyretin, AFP	No
Sullivan et al[23], 2010	Monolayer	Activin A, Wnt3a	Activin A, Wnt3a	BMP4, FGF2, HGF, OSM	Glycogen, LDL, O storage, ICG, Urea	Yes
Touboul et al[25], 2010	Monolayer	Activin A, FGF2, BMP4, LY294002	Activin A, FGF2, BMP4, FGF4, HGF, EGF	FGF10, RA, SB431542, FGF4, HGF, EGF	Glycogen, CYP450, ICG, LDL	Yes
Borowiak et al[35], 2009	Monolayer	Activin A, Wnt3a, HGF	Activin A, Wnt3a, HGF	OSM, Dex, ITS	CYP450, Urea, LDL, Glycogen	Yes
Ogawa et al[34], 2013	EB/monolayer	BMP4, Activin A, Wnt3a	BMP4, Activin A, Wnt3a	FGF10, bFGF, BMP4, HGF, OSM, Dex, cAMP	ICG, Glycogen, ALB, CYP450	No
Siller et al[37], 2015	Monolayer	CHIR99021	CHIR99021	DMSO, dihexa, Dex	ALB, Glycogen, ICG, CYP450	No

EB: Embryoid bodies; KGF: Keratinocyte growth factor; β-ME: 2-mercaptoethanol; RA: Retinoic acid; EGF: Epidermal growth factor; ITS: Insulin, transferrin, selenium; dihexa: Hepatocyte growth factor receptor agonist N-hexanoic-Tyr, Ile-(6) aminohexanoic amide; ALB: Albumin secretion; AFP: Alpha-fetoprotein secretion; AAT: Alpha-1-antitrypsin secretion; LDL: Low-density lipoprotein uptake; glycogen: Glycogen storage; ICG: Indocyanine green uptake; Urea: Urea secretion and production; CYP450: CYP450 activity.

APPLICATIONS OF HLCs

Disease models

Human PSCs offer a unique in vitro cellular model system for disease modeling. Induced PSCs derived from patients or hPSCs engineered with specific disease-causing mutations using genome editing technologies allow researchers to study the consequences of genetic mutations with a human- and patient-specific genetic background; whereas the differentiation processes in vitro often recapitulate aspects of normal development, thus providing the opportunity to investigate the developmental and degenerative processes of certain human diseases. Furthermore, as hPSCs possess great capacity in self-renewal, they can offer large-scale cellular materials with identical genetic background for disease modeling and for possible compound screenings to develop potential treatments.

Studying rare genetic variants

For modeling liver diseases with rare mutations in Mendelian diseases, patient-
specific iPSCs carrying certain genetic mutations are often derived and differentiated to HLCs. Many disease models of inborn liver metabolic disorders, such as α1-antitrypsin deficiency, familial hypercholesterolemia, glycogen storage disease type 1a, and Wilson’s disease, have been generated[40-42]. Upon differentiation to HLCs, these cells with genetic mutations displayed certain disease phenotypes that are reflected in patients, highlighting potential utility of these models for studying diseases or screening for therapeutic interventions. In situations in which patients are not available, disease mutations of interest can be engineered using genome editing technologies into wild-type hPSCs to create mutant hPSCs for disease study[43,44]. Drug screening with these disease models can highlight novel discoveries for disease treatment. In a study by the Duncan and Rader groups[45], HLCs derived from familial hypercholesterolemia iPSCs were applied to drug screening to identify potential LDL-cholesterol (LDL-C)-lowering drugs, which has successfully revealed cardiac glycosides as a candidate treatment for hypercholesterolemia. Other than studying diseases harboring genetic mutations, hPSC-derived HLCs are also powerful in providing cellular models for studying the lifecycle of hepatitis viruses. hPSC-derived HLCs have been used in hepatitis C virus (HCV) infection and screening for anti-HCV drugs[46], as well as modeling hepatitis B virus infection[47].

Studying common genetic variants
As a remarkable improvement in the recent iPSC disease modeling fields, large, diverse population cohorts of iPSCs have been generated and differentiated in parallel to HLCs as well as other cell types, offering valuable tissue substitutes for studies to reveal the relationship between genotype and phenotype; for example, expression quantitative trait locus (eQTL) analysis[48,49]. Two independent cohorts of iPSCs have been generated from healthy donors (68 iPSC lines from 34 donors in one study and 91 iPSC lines from 91 donors in the other study) and used for subsequent hepatic differentiation and genetic analysis. Studies either successfully confirmed eQTLs previously characterized in vivo[50], or identified a number of loci controlling hepatic gene expression with these in vitro HLCs[51]. In one study, the cohort of iPSC-derived HLCs were also subjected to metabolite abundance quantitative trait locus (mQTL) analysis, leading to the discovery of a strong association between a lipid-dysregulating phenotype and the minor allele at the 1p13 locus[52]. For the first time, these two studies demonstrated the capacity for iPSCs-derived cells to reproduce in vivo phenotypes driven by common genetic variants, and uncovered a potentially unlimited supply of human cells that allow to discover cell-type-specific QTL (eQTL, mQTL and potentially others) that would be inaccessible using in vivo tissues. Together with several other studies that have performed genome-wide QTL analyses and identified a number of loci that contribute to interline heterogeneity using hundreds of undifferentiated iPSC lines[53-55], these studies have offered a new paradigm for human research, with iPSC-driven disease modeling being applied to study population genetics in vitro.

In vitro pharmacogenomics
Aside from drug discovery with iPSC-derived disease models with small cohorts, large cohorts of iPSCs and iPSC-derived cells have been proposed to perform trials-in-dish, to assist in translating the discoveries of genome-wide association studies (GWASs) into improved treatment regimens and drug discovery; that is, to apply genotype analysis to patient stratification and design of individual treatment plans[56]. In possible scenarios, iPSC-derived cells may provide an important link between drug development and Phase I trials, where iPSC-derived hepatocytes, cardiomyocytes or neurons can be used for preliminary safety screens with candidate drugs that might induce hepatotoxicity, cardiotoxicity, neurotoxicity or other off-target effects. Furthermore, between Phase I and Phase II trials, drug target cells derived from large cohorts of iPSCs can serve as the surrogate human population and be used in testing for drug efficacy; results from which can be applied to classify patients into responder and non-responder groups, thus increasing the relevance and successfully rate of further Phase 2 and 3 trials. Altogether, small or large cohorts of iPSCs and iPSC-derived function cell types are revolutionizing the field of drug discovery.

Making liver organoids
The liver is a highly specialized organ consisting of mostly hepatocytes, but also several other cell types, such as Kupffer cells, endothelia cells, bile duct cells, and hepatic stellate cells. These cells all contribute to the highly organized architecture and functions of liver tissue. Compared to HLCs in 2D culture, liver tissue organoids constitute more than one cell type, can resemble part of the architecture of liver tissue, and possess some functions that may not exist in HLCs. Liver organoids can either be derived from adult stem cells[57,58] or hPSCs[59-61]. Other than HLCs, development of
protocols to obtain other cell types derived from hPSCs that constitute the liver tissue are important. To date, protocols of directed differentiation to obtain cholangiocytes, endothelia cells and hepatic stellate cells have been established, which may further aid the generation of functional liver tissue organoids. Other reviews discuss the generation and application of tissue organoids, which can assist in better understanding the opportunities as well as challenges in this field.

Bioartificial livers

Artificial liver support systems have been developed to provide an alternative to orthotopic liver transplantation (OLT). Artificial livers use nonbiological components to perform hepatic detoxification, removing toxins and drugs that accumulate in the blood during liver failure. However, artificial livers do not have the capacity to adequately replicate the physiological liver function. The incorporation of live cells harboring liver functions into these artificial liver systems, which establishes the bioartificial livers (BALs) systems, offers a solution to overcome these limitations. BAL support systems are extracorporeal bioreactors in which whole livers or liver cells are cultured in a 3D manner within a network of hollow fibers for blood plasma perfusion. BAL systems provide both biotransformation and hepatic synthetic functions. To date, different sources of liver cells have been tested in BAL devices, for example, human primary hepatocytes, immortalized human hepatoma cell lines, porcine hepatocytes, as well as induced human hepatocytes transdifferentiated from human fibroblasts (hiHeps). While human hepatocytes are the preferred cells, obtaining sufficient human hepatocytes faces the same difficulty of organ shortage. Porcine hepatocytes are close to human hepatocytes, but have potential risk of xenozoonosis and immunological response. Hepatoma cells can provide large amounts of materials, but suffer from incompetent metabolism and ammonia clearance. hiHeps representing a new invaluable cell source for BAL devices, and have been successful in pigs as well as in primary tests in patients. While we have not seen reports of HLCs being applied in BAL devices, we envisage that HLCs will be a potential cell source for the treatment of liver failure in BAL support systems in the future. The advantages of HLCs are obvious: human or patient-specific genetic background, normal karyotype, potentially unlimited supply, and better liver functions. However, to obtain a large amount of functional and homogeneous hepatocytes from hPSCs still depends on continuous improvement to the differentiation protocols and development of optimal large-scale culture systems.

In vivo transplantation

OLT remains the most effective treatment for end-stage liver diseases. However, liver donor shortage and life-long need for immunosuppression are the main limitations to liver transplantation. A potential alternative to liver transplantation is hepatocyte transplantation. However, cell transplantation is also limited by the availability of effective cell sources, generation of alternative hepatocytes is thus an urgent problem. The ideal cell source should at least meet the following requirements: (1) Available in large quantity. Similar to hepatocytes needed in BAL devices, a large number of cells (≥ 10⁹) may be needed for transplantation to every adult patient; (2) High efficiency of in vivo homing and repopulation. Transplanted cells can home and adapt to the microenvironment in recipient and successfully repopulate the liver; (3) Low immunogenicity. Cells have no or low immunogenic responses, which can be suppressed by low doses of immunosuppressant; (4) No tumorigenic risk. Transplanted cells should have normal karyotype and be free of potential tumorigenic modulations, such as modifications in oncogenic or tumor suppressor genes. To date, several mouse hepatocytes have been adopted in testing the transplantation efficiency of human hepatocytes, which in general can be divided into two categories. One is a mouse model with a genetic disorder that causes depletion of the host hepatocytes, such as mice expressing urinary plasminogen activator (uPA) driven by the albumin or Mup promoter, and immunodeficient FRG [Fah(-/-) Rgs22(-/-) Il2rg (-/-)] mice; another is a mouse model with drug- or surgery-induced liver damage, including mice receiving treatment with retroxirine, diethylnitrosamine or partial hepatectomy (Table 2). Transplantation using primary human hepatocytes has been successful in mouse models, for example, with the FRG mouse model, the ratio of human hepatocytes in a mouse liver can be up to 90%. There are no definitive conclusions so far regarding whether the maturity of transplanted liver cells affects the efficiency of transplantation when HLCs are used. Cells in endoderm, hepatoblasts, and mature hepatocyte stages along the HLC differentiation process all have possibilities as donor cells in cell transplantation (Table 2). The microenvironment in recipient liver is thought to supply necessary signals to promote further maturation of transplanted cells, although direct evidence and the underlying mechanism are lacking. However, the overall HLC transplantation efficiency is lower.
compared to that of human primary hepatocytes\(^{[75]}\) (Table 2). Furthermore, transplantation with HLCs may suffer tumorigenic risks due to remnant undifferentiated hPSCs, and the immunogenicity has not been addressed so far, as most studies were performed with immunocompromised animals.

To improve the transplantation efficiency, several ectopic sites have been investigated, including spleen, peritoneal cavity, kidney, lung, pancreas and fat pads. Bioengineering approaches have also been applied in cell transplantation. For example, Song \(\text{et al.}^{[20]}\) transplanted hPSC-derived HLCs in immunocompetent mice via 3D cell coaggregates with stromal cells and encapsulation. This study demonstrated an improved approach for the engraftment of hPSC-derived HLCs\(^{[79]}\). In a different study, Nagamoto \(\text{et al.}^{[78]}\) used a cell sheet engineering technology by attaching HLC sheets onto the surface of mouse liver with acute liver failure, which showed improved hepatocyte engraftment and animal survival in contrast, genetic modification to HLCs represents another approach to improve transplantation efficiency. For example, Nagamoto \(\text{et al.}^{[74]}\) demonstrated higher transplantation efficiency using HLCs transduced with an adenovirus vector expressing FNK (Ad-FNK), by inhibiting apoptosis in the process of integration into liver. However, there is still a long way to go before HLCs can be used in clinical liver transplantation. Strenuous efforts are needed to understand the complex processes of cell transplantation, for example, the donor–host interactions, to improve the quality of HLCs and optimize the transplantation strategy. Plus, the potential tumorigenic risk of transplanted HLCs had to be carefully considered. Specifically, tumor cells can arise from cells with residual expression of factors in iPSC reprogramming process (\textit{e.g.}, the \textit{myc} expression), undifferentiated iPSCs remaining in the culture, and cells with mutations or karyotype abnormalities caught in the rather long \textit{in vitro} culture and differentiation processes. Several approaches can be adopted to reduce the tumorigenic risk: (1) Use integrating-free viruses or small molecules for iPSC reprogramming\(^{[80,81]}\); (2) Improve the \textit{in vitro} culture conditions and enhance the differentiation efficiency of hPSC-derived HLCs\(^{[82]}\); (3) Remove undifferentiated iPSCs, \textit{e.g.} through treatments with small molecules or antibodies that can specifically target iPSCs\(^{[83,84]}\); or enrich HLCs using HLC specific surface markers before transplantation\(^{[85]}\); (4) Monitor the genome integrity of cells at the iPSC stage and the HLC stage, through karyotype analysis and whole-genome sequencing; (5) Engineer a self-killing circuit in cells that would allow the trigger of cell death \textit{in vivo} to remove tumorigenic cells, if necessary, to further assure safety\(^{[86]}\). Nonetheless, hPSC-derived HLCs provide a potential valuable cell source to OLT for liver diseases that is worth pursuing.

CONCLUSION

The generation of iPSCs has revolutionized the whole field of cell biology. It is truly inspiring to imagine that we can grow any person’s pluripotent cells indefinitely in a dish and turn them into any cell type. With this capability of iPSCs, the approach to the study of human biology has been profoundly changed. HLCs were among the first batch of adult cell types that have been derived from iPSCs, and have been tested ever since for disease modeling, toxicity screening, and drug discovery, and as donor cells for transplantation (Figure 1). Complexities and difficulties in the derivation and applications of these HLCs seem beyond our initial expectations. More than 10 years have passed, but HLCs derived from hPSCs remain a largely heterogeneous population with incompetent liver cell function and low transplantation efficiency. Protocols to grow HLCs from hPSCs need to be substantially and continuously improved and standardized on the basis of deeper understanding of liver development. Despite the gap between the reality and ideal conditions, efforts have paid off well and the field has made tremendous achievements in recent years, such as generation of functional liver organoids, successful modeling of certain liver diseases, identification of candidate treatments, and application of large cohorts of HLCs for human genetic studies, to name a few (Figure 1). With advances in cell culture systems including 3D culture platforms\(^{[87]}\), coculturing conditions\(^{[88]}\), tissue-on-a-chip approaches\(^{[89]}\), and invention of new technologies including genome editing tools and bioengineering systems, HLCs obtained from hPSCs will eventually be able to fulfill the needs in biomedical research and clinical translation.
Table 2 Summary of transplantation studies using hepatocyte-like cells

Ref.	Animal model	Route	Proliferative stimulus	Type and number of cells	Donor / recipient (% engrafted)	Donor / recipient (% repopulated)	Time post-transplantation
Agarwal et al. [24], 2008	NOD-SCID mice	Portal vein	CCl₄-injured	10⁶ hES-DEs	< 1%	NA	28 d
Basma et al. [7], 2009	NOD-SCID mice	Spleen	Retrorsine and partial hepatectomy	1 x 10⁶ hES-HLCs	NA	NA	21 d
Liu et al. [77], 2011	NSG mice	Tail vein	dimethylnitrosamine -injured	0.1 - 2 x 10⁶ hiPSC-multistage hepatic cells	2%–17%	8%–15%	56 d
Asgari et al. [76], 2013	Normal mouse	Tail vein	CCl₄-injured	1 x 10⁶ hiPSC-HLCs	2 ± 0.7%	NA	35 d
Carpentier et al. [73], 2014	MUP-uPA/SCID/Bg mice	Spleen	NA	4 x 10⁶ hiPSC-HLCs	1%-7%	< 1 to up to 20%	100 d
Song et al. [20], 2015	Immunocompetent mice	Intrapitoneal cavity	NA	4.4 x 10⁶ hiPSC-HLCs in capsules	NA	NA	24 d
Nagamoto et al. [78], 2016	uPA/SCID mice	Spleen	NA	1 x 10⁶ Ad-FNK-transduced hiPSC-HLCs	NA	NA	28 d
Nagamoto et al. [78], 2016	Mice	hiPS-HLC sheet transplantation	2/3 partial hepatectomy and CCl₄-injured	8 x 10⁶ hiPSC-HLCs	NA	NA	14 d

DE: Definitive endoderm; HLCs: Hepatocyte-like cells; hiPSCs: Human pluripotent stem cells.
Figure 1 Derivation and applications of human hepatocyte-like cells. A: Directed differentiation process of human pluripotent stem cells (hPSCs)-derived hepatocyte-like cells (HLCs) in vitro includes endoderm development, endoderm hepatic specification, and hepatic maturation stages; B: Applications of human HLCs. HPSC-derived HLCs can be used to generate disease models to study rare or common genetic variants. These cellular models can be applied in pathophysiological research, drug screening, and toxicity testing. Cohorts of HLCs provide in vitro cell models for genome-wide association studies and potentially pharmacogenomics in dishes. HLCs also offer a potential cell source for bioartificial livers or liver transplantation. HLCs: Hepatocyte-like cells; hPSCs: Human pluripotent stem cells.

REFERENCES

1. **Zhang K**, Zhang L, Liu W, Ma X, Cen J, Sun Z, Wang C, Feng S, Zhang Z, Yue L, Sun L, Zhu Z, Chen X, Feng A, Wu J, Jiang Z, Li P, Cheng X, Gao D, Peng L, Hui L. In Vitro Expansion of Primary Human Hepatocytes with Efficient Liver Repopulation Capacity. *Cell Stem Cell* 2018; 23: 806-819.e4 [PMID: 30416071 DOI: 10.1016/j.stem.2018.10.018]

2. **Hu H**, Gehart H, Artegiani B, LÓpez-Iglesias C, Dekkers F, Basak O, van Es J, Chava de Sousa Lopes SM, Bergthel H, Korving J, van den Born M, Zou C, Quiró G, Chiriboga L, Rice CM, Ma S, Rios A, Peters PJ, de Jong YP, Clevers H. Long-Term Expansion of Functional Mouse and Human Hepatocytes as 3D Organoids. *Cell* 2018; 175: 1591-1606.e19 [PMID: 30500538 DOI: 10.1016/j.cell.2018.11.013]

3. **Fu GB**, Huang WJ, Zeng M, Zhou X, Wu HP, Liu CC, Wu H, Weng J, Zhang HD, Cai YC, Ashton C, Ding M, Tang D, Zhang BH, Gao Y, Yu WF, Zhai B, He ZY, Wang HY, Yan HX. Expansion and differentiation of human hepatocyte-derived liver progenitor-like cells and their use for the study of hepatotropic pathogens. *Cell Res* 2019; 29: 8-22 [PMID: 30361550 DOI: 10.1038/s41422-018-0103-x]

4. **Peng WC**, Logan CY, Fish M, Anbarchian T, Aguisanda F, Álvarez-Varela A, Wu P, Jin Y, Zhu J, Li B, Grompe M, Wang B, Nusse R. Inflammatory Cytokine TNFα Promotes the Long-Term Expansion of Primary Hepatocytes in 3D Culture. *Cell* 2018; 175: 1607-1619.e15 [PMID: 30590539 DOI: 10.1016/j.cell.2018.11.012]
Derivation and applications of hepatocyte-like cells

Li S et al.

1. Hu C, Li L. In vitro culture of isolated primary hepatocytes and stem-cell-derived hepatocytes for liver regeneration. *Protein Cell* 2015; 6: 562-574 [PMID: 26088193 DOI: 10.1007/s13238-015-0180-2]

2. Baharvand H, Hashemi SM, Kazemi Ashtiani S, Farrokhi A. Differentiation of human embryonic stem cells into hepatocytes in 2D and 3D culture systems in vitro. *J Dev Biol* 2006; 50: 645-652 [PMID: 16921788 DOI: 10.1038/sj.jb.3302726b]

3. Basma H, Soto-Gutiérrez A, Yamnam GR, Liu L, Ito R, Yamamoto T, Ellis E, Carson SD, Sato S, Chen Y, Murhead D, Navarro-Alvarez N, Wong RJ, Roy-Chowdhury J, Platt JL, Mercer DF, Miller JD, Strom SC, Kobayashi N, Fox J. Differentiation and transplantation of human embryonic stem cell-derived hepatocytes. *Gastroenterology* 2009; 136: 986-999 [PMID: 19353256]

4. Tam PP, Kanai-Azuma M, Kanai Y. Early endoderm development in vertebrates: Lineage differentiation and morphogenetic function. *Curr Opin Genet Dev* 2003; 13: 393-400 [PMID: 12888013]

5. Whitman M. Nodal signaling in early vertebrate embryos: themes and variations. *Dev Cell* 2001; 1: 605-617 [PMID: 11709181]

6. Schier AF. Nodal signaling in vertebrate development. *Annu Rev Cell Dev Biol* 2003; 19: 589-621 [PMID: 14570583 DOI: 10.1146/annurev.cellbio.19.041603.094522]

7. de Caestecker M. The transforming growth factor-β superfamily of receptors. *Cytokine Growth Factor Rev* 2004; 15: 1-11 [PMID: 14746089]

8. D’Amour KA, Agulnik ID, Elazzer E, Slager Y, Kroon E, Baetge EE. Efficient differentiation of human embryonic stem cells to definitive endoderm. *Nat Biotechnol* 2005; 23: 1534-1541 [PMID: 16258519 DOI: 10.1038/nbt1163]

9. Han S, Bourdon A, Hanou W, Dzednic N, Goldman O, Gouon-Evans V. Generation of functional hepatic cells from pluripotent stem cells. *J Stem Cell Res Ther* 2012; Suppl 10: 1-7 [PMID: 23564264]

10. Schier AF, Neuhauss SC, Helde KA, Talbot WS, Driever W. The one-eyed pinhead gene functions in mesoderm and endoderm formation in zebrafish and interacts with no tail. *Development* 1997; 124: 327-342 [PMID: 9053309]

11. Stainifer DV. A glimpse into the molecular entrails of endoderm formation. *Genes Dev* 2002; 16: 893-907 [PMID: 11959838 DOI: 10.1101/gad.974002]

12. Thiss B, Wright CV, Thiss C. Activin- and Nodal-related factors control antero-posterior patterning of the zebrafish embryo. *Nature* 2000; 403: 425-428 [PMID: 10667793 DOI: 10.1038/3500260]

13. McLean AB, D’Amour KA, Jones KL, Krishnamoorthy M, Kulik MJ, Reynolds DM, Sheppard AM, Liu H, Xu Y, Baetge EE; Dalton S. Activin a efficiently specifies definitive endoderm from human embryonic stem cells only when phosphatidylinositol 3-kinase signaling is suppressed. *Cell Stem Cell* 2007; 25: 29-38 [PMID: 17204604 DOI: 10.1016/j.stem.2006.02-019]

14. Cai J, Zhao Y, Liu Y, Ye F, Song Z, Qin H, Meng S, Chen Y, Zhou R, Song X, Guo Y, Ding M, Deng H. Directed differentiation of human embryonic stem cells into functional hepatic cells. *Hepatology* 2007; 45: 1229-1239 [PMID: 17464996 DOI: 10.1002/hep.21582]

15. Hay DC, Fletcher J, Payne C, Terrace JD, Gallagher RC, Snoeys J, Black JR, Wijtachacha D, Samuel K, Hannoun Z, Pryde A, Filippi C, Currie IS, Forbes SJ, Ross JA, Newsome PN Iredale JP. Highly efficient differentiation of hESCs to functional hepatic endoderm requires ActivinA and Wnt3a signaling. *Proc Natl Acad Sci USA* 2008; 105: 12301-12306 [PMID: 18719101 DOI: 10.1073/pnas.0806225105]

16. Song Z, Cai J, Liu Y, Zhao D, Yang J, Dao S, Song X, Guo Y, Zhao Y, Qin H, Yin X, Wu C, Che J, Lu S, Ding M, Deng H. Efficient generation of hepatocyte-like cells from human induced pluripotent stem cells. *Cell Res* 2009; 19: 1233-1242 [PMID: 19736565 DOI: 10.1038/cr.2009.107]

17. Si-Tayeb K, Noto FK, Nagaozka M, Li J, Battle MA, Duris C, North PE, Dalton S, Duncan SA. Highly efficient generation of hepatocyte-like cells from induced pluripotent stem cells. *Hepatology* 2010; 51: 297-305 [PMID: 19986274 DOI: 10.1002/hep.23354]

18. Sullivan GJ, Hay DC, Park HI, Fletcher J, Hannoun Z, Payne CM, Dalgetty D, Black JR, Ross JA, Samuel K, Wang G, Daley GQ, Lee JJ, Church GM, Forbes SJ, Iredale JP, Wilmot I. Generation of functional human hepatic endoderm from human induced pluripotent stem cells. *Hepatology* 2010; 51: 329-335 [PMID: 19877180 DOI: 10.1002/hep.23353]

19. Toublat T, Hannan NR, Corbeil S, Martinez A, Martinet C, Branchereau S, Mainot S, Strick-Marchand H, Pedersen R, Di Santo J, Weber A, Vallier L. Generation of functional hepatocytes from human embryonic stem cells under chemically defined conditions that recapitulate liver development. *Hepatology* 2010; 51: 1754-1765 [PMID: 20301097 DOI: 10.1002/hep.23506]

20. Agarwal S, Holton KL, Lanza R. Efficient differentiation of function hepatocytes from human embryonic stem cells. *Stem Cells* 2008; 26: 1117-1127 [PMID: 18292207 DOI: 10.1634/stemcells.2007-1102]

21. Zaret KS. Regulatory phases of early liver development: paradigms of organogenesis. *Nat Rev Genet* 2002; 3: 499-512 [PMID: 12094226 DOI: 10.1038/nrg837]

22. Ramashatla L, Chiu CP, Kundi P, Peng Y, Carpenter MK. Generation of hepatic-like cells from human embryonic stem cells. *Cell Transplant* 2003; 12: 1-11 [PMID: 12693659]

23. Soto-Gutierrez A, Navarro-Alvarez N, Rivas-Carrillo JD, Chen Y, Yamatsuji T, Tanaka N, Kobayashi N. Differentiation of human embryonic stem cells to hepatocytes using deleted variant of HGF and poly-amino-urethane-coated nonwoven polytetrafluoroethylene fabric. *Cell Transplant* 2006; 15: 335-341 [PMID: 16898227]

24. Kamiya I, Kinoshita T, Miyajima A. Oncostatin M and hepatocyte growth factor induce hepatic maturation via distinct signaling pathways. *FEBS Lett* 2001; 492: 90-94 [PMID: 11248243]

25. Schmidt C, Blati F, Goedecke S, Brinkmann V, Zschiesche W, Sharpe M, Gherardi E, Birchmeier C. Scatter factor/hepatocyte growth factor is essential for liver development. *Nature* 1995; 373: 699-702 [PMID: 785452 DOI: 10.1038/373690a]

26. Kinoshita T, Sekiguchi T, Xu MJ, Ito Y, Kamiya A, Tsui K, Nakahata T, Miyajima A. Hepatic differentiation induced by oncostatin M attenuates fetal liver hematopoiesis. *Proc Natl Acad Sci USA* 1999; 96: 7265-7270 [PMID: 10357403]

27. Kinoshita T, Miyajima A. Cytokine regulation of liver development. *Bioclinh Biophys Acta* 2002; 1592: 303-312 [PMID: 12421674]

28. Kamiya A, Kinoshita T, Ito Y, Matsui T, Morikawa Y, Senba E, Nakashima K, Taga T, Yoshida K, Kishimoto T, Miyajima A. Fetal liver development requires a paracrine action of oncostatin M through the gp130 signal transducer. *EMBO J* 1999; 18: 2127-2136 [PMID: 10205167 DOI: 10.1093/emboj/18.8.2127]

29. Funakoshi N, Durand P, Pascusi JM, Blanc P, Maurel P, Daujat-Chavanier M, Gerbal-Chaloin S.
Comparison of hepatic-like cell production from human embryonic stem cells and adult liver progenitor cells: CAR transduction activates a battery of detoxification genes. Stem Cell Rev 2011; 7: 518-531 [PMID: 21210253 DOI: 10.1007/s12015-010-9225-3]

Ogawa S, Suragisitchai J, Vartanez C, Ogawa M, Niapour M, Sugamori KS, Wang S, Tamblyn L, Guillenette C, Hoffmann E, Zhao B, Strom S, Laposa RR, Tyndale RF, Grant DM, Keller G. Three-dimensional culture and camp signaling promote the maturation of human pluripotent stem cell-derived hepatocytes. Development 2013; 140: 3285-3296 [PMID: 23861064 DOI: 10.1242/dev.090266]

Borowiak M, Maerl C, Chen S, Chen AE, Tang W, Fox JL, Schreiber SL, Melton DA. Small molecules efficiently direct endodermal differentiation of mouse and human embryonic stem cells. Cell Stem Cell 2009; 4: 348-358 [PMID: 19341624 DOI: 10.1016/j.stem.2009.09.014]

Tahamtani Y, Azarnia M, Farrokhli A, Sharifi-Zarchi A, Aghdami N, Buharvand H. Treatment of human embryonic stem cells with different combinations of priming and inducing factors toward definitive endoderm. Stem Cells Dev 2013; 22: 1419-1432 [PMID: 23249399 DOI: 10.1089/scd.2012.0453]

Siller R, Greenough S, Naumovska E, Sullivan GJ. Small-molecule-driven hepatopoietic differentiation of human pluripotent stem cells. Stem Cell Reports 2015; 4: 939-952 [PMID: 25937370 DOI: 10.1016/j.stemcr.2015.04.001]

Shan J, Schwartz RE, Ross NT, Logan DJ, Thomas D, Duncan SA, North TE, Goeßling W, Carpenter AE, Bhatia SN. Identification of small molecules for human hepatocyte expansion and iPSC differentiation. Nat Chem Biol 2013; 9: 514-520 [PMID: 23728495 DOI: 10.1038/nchembio.1270]

Li S, Li M, Liu X, Yang Y, Wei Y, Chen Y, Qiu Y, Zhou T, Feng Z, Ma D, Fang J, Ying H, Wang H, Musunuru K, Shao Z, Yao D, Ding Q. Genetic and Chemical Screenings Identify HDAC3 as a Key Regulator in Hepatic Differentiation of Human Pluripotent Stem Cells. Stem Cells Reports 2018; 11: 22-31 [PMID: 29861155 DOI: 10.1016/j.stemcr.2018.05.001]

Rashid ST, Corbineau S, Hannan N, Marinciai SJ, Miranda E, Alexander G, Huang-Doran I, Griffin J, Ahrlund-Richter L, Skepper J, Semple R, Weber A, Lomas DA, Vallier L. Modeling inherited metabolic disorders of the liver using human induced pluripotent stem cells. J Clin Invest 2010; 120: 3127-3136 [PMID: 20739751 DOI: 10.1122/jci31312]

Zhang S, Chen S, Li W, Guo X, Zhao P, Xu J, Chen Y, Pan Q, Liu X, Zychlinski D, Lu H, Tortorella MD, Schambach A, Wang Y, Pei D, Estabane MA. Rescue of ATPlib7B function in hepatocyte-like cells from Wilson's disease induced pluripotent stem cells using gene therapy or the chaperone drug curcumin. Hum Mol Genet 2011; 20: 3176-3187 [PMID: 21595220 DOI: 10.1093/hmg/ddr223]

Cayo MA, Cai J, DeLaforest A, Noto FK, Nakaoka M, Clark BS, Collery RF, Si-Tayeb K, Duncan SA. 3D induced pluripotent stem cell-derived hepatocytes faithfully recapitulate the pathophysiology of familial hypercholesterolemia. Hepatology 2012; 56: 2163-2171 [PMID: 22653811 DOI: 10.1002/hep.25871]

Ding Q, Lee YK, Schaefer EA, Peters DT, Veres A, Kim K, Kupferwasser N, Motola DL, Meissner TB, Hendriks WT, Trevisan M, Gupta RM, Xie F, Banks E, Friesen M, Schinzel RT, Xia F, Tang A, Xia Y, Figueroa E, Wann A, Ahsfeld T, Daheren L, Zang F, Rubin LL, Peng LF, Chung RT, Musunuru K, Cowan CA. A TALEN genome-editing system for generating human stem cell-based disease models. Cell Stem Cell 2013; 12: 238-251 [PMID: 23246482 DOI: 10.1016/j.stem.2012.11.011]

Ding Q, Regan SN, Xia Y, Oostrom LA, Cowan CA, Musunuru K. Enhanced efficiency of human pluripotent stem cell genome editing through replacing TALENs with CRISPRs. Cell Stem Cell 2013; 12: 393-394 [PMID: 23561441 DOI: 10.1016/j.stem.2013.05.006]

Cayo MA, Mallanna SK, Di Furio F, Jing R, Tolleriv LB, Bures M, Urick A, Noto FK, Pashos EE, Greseth MD, Czarnecki M, Traktman P, Yang W, Morrissey EE, Grompe M, Rader DJ, Duncan SA. A Drug Screen using Human iPS-Cell-Derived Hepatocyte-Like Cells Reveals Cardiac Glycosides as a Potential Treatment for Hypercholesterolemia. Cell Stem Cell 2017; 20: 478-489.e5 [PMID: 28384258 DOI: 10.1016/j.stem.2017.01.011]

Yoshida T, Takayama K, Kondoh M, Sakurai F, Tani H, Sakamoto N, Matsuura Y, Mizuguchi H, Yagi K. Use of human hepatocyte-like cells derived from induced pluripotent stem cells as a model for hepatitis C virus infection. Biochim Biophys Acta 2011; 416: 119-124 [PMID: 22093821 DOI: 10.1016/j.bjbc.2011.11.007]

Zhou XL, Sullivan GJ, Sun S, Park H. Humanized murine model for HBV and HCV using human induced pluripotent stem cells. Arch Pharm Res 2012; 35: 261-269 [PMID: 22370780 DOI: 10.1007/s12272-012-0268-6]

Pashos EE, Park Y, Wang X, Raghavan A, Yang W, Abbey D, Peters DT, Arbelaez J, Hernandez M, Kupferwasser N, Li W, Lian Z, Liu Y, Lv W, Lytle-Gabbin SL, Marchadier DH, Rogov P, Shi J, Slovik KJ, Stylianou DM, Wang L, Yan R, Zhang X, Kathiresan S, Duncan SA, Mikkelken TS, Morrissey EE, Rader DJ, Brown CD, Yang P, Wang X, Raghavan P, Hao X, Cheng X, Liu X, Zhang F, Kang H, Jia L, Wu Y, Chen Y, Qiu Y, Zhou T, Feng Z, Ma D, Huang H, Biggs W, Sandoval E, D'Antonio M, Jepsen K, Matsui H, Arias A, Ren B, Nairi N, Smith EN, D'Antonio-Chronowska A, Farley EK, Frazer KA. Large-Scale Profiling Reveals the Influence of Genetic Variation on Gene Expression in Human Induced Pluripotent Stem Cells. Cell Stem Cell 2017; 20: 533-546.e7 [PMID: 28388430 DOI: 10.1016/j.stem.2017.03.009]

Kilipinen H, Goncalves A, Leha A, Afzal V, Alasoo K, Ashford S, Bala S, Bentdiksh C, Casale FP, Culey OD, Daleck C, Faulconbridge A, Harrison PW, Kathuria A, McCarthy D, McCarthy SA, Melecky R, Menari Y, Moso N, Soares F, Manka A, Streeter L, Aga CO, Alderton A, Nelson R, Harper S, Patel M, White A, Patel SP, Clarke L, Halli R, Kunton KM, Kolb-Kokosinski A, Beales P, Birey E,
Danovi D, Lamond AJ, Ouwehand WH, Vallier L, Watt FM, Durbin R, Stegle O, Gaffney DJ. Common genetic variation drives molecular heterogeneity in human iPSCs. Nature 2017; 546: 370-375 [PMID: 28498815 DOI: 10.1038/nature22403]

Warren CR, Cowan CA. Humanity in a Dish: Population Genetics with iPSCs. Trends Cell Biol 2018; 28: 46-57 [PMID: 29054332 DOI: 10.1016/j.tcb.2017.09.006]

Muck J, Bonfanti P, Boj SF, Sato T, Loomans CJ, van de Wetering M, Sojoosi M, Li VS, Schuijers J, Gracinan A, Ringnald A, Begthel H, Hamer K, Mulder J, van Es JH, de Konig E, Vries RG, Heimberg H, Clevers H. Unlimited in vitro expansion of adult hPS-iPS-derived vascular endothelial and smooth muscle cells. EMBO J 2013; 32: 2708-2721 [PMID: 24043728 DOI: 10.1002/emboj.201304173]

Mucke M, Gehart H, van Boxtel R, Hamer K, Blozikjii F, Verstegen MM, Ellis E, van Wenum F, Fuchs A, de Ligt J, van de Wetering M, Sasaki N, Boers SJ, Kemperman H, de Jonge J, Jijzermans JN, Nieuwenhuis EE, Hoekstra R, Strom S, Vries RR, van der Laan L, Cuppen E, Clevers H. Long-term culture of genome-stable bipotent stem cells from adult human liver. Cell 2015; 160: 299-312 [PMID: 25533785 DOI: 10.1016/j.cell.2014.11.050]

Ogawa M, Ogawa S, Bear CE, Ahmadi S, Chin S, Li B, Grompe M, Keller G, Katham BM, Ghanekar A. Directed differentiation of cholangiocytes from human pluripotent stem cells. Nat Biotechnol 2015; 33: 853-861 [PMID: 26167630 DOI: 10.1038/nbt.3294]

Sampaziotis F, de Brio MC, Madrigal P, Bertaro A, Sach-Parsy K, Soares FAC, Schrumpf E, Melum E, Karlsen TH, Bradley JA, Gelson WT, Davies S, Baker A, Kaser A, Alexander GJ, Hamann NR, Vallier L. Cholangiocytes derived from human induced pluripotent stem cells for disease modeling and drug validation. Nat Biotechnol 2013; 31: 845-852 [PMID: 26167629 DOI: 10.1038/nbt.2725]

Takebe T, Sekine K, Enomura M, Koike H, Kimura M, Ogata T, Zhang RR, Ueno Y, Zheng W, Koike N, Arayama S, Adachi Y, Taniguchi H. Vascularization and functional human liver from an iPSC-derived organ bud transplant. Nature 2013; 499: 481-484 [PMID: 23823721 DOI: 10.1038/nature12271]

Takebe T, Zhang RR, Koike H, Kimura M, Yoshizawa E, Enomura M, Koike N, Sekine K, Taniguchi H. Generation of a vascularized and functional human liver from an iPSC-derived organ bud transplant. Nat Protoc 2014; 9: 396-409 [PMID: 24477331 DOI: 10.1038/nprot.2014.209]

Patel CJ, Challet-Meylan L, Thoma EC, Ursch E, Heckel T, O'Sullivan JF, Grainger SJ, Kapp FG, Sun L, Christensen K, Xia Y, Florido MH, He W, Pan W, Prummer M, Warren CR, Jakob-Roetne R, Certo U, Rajagia R, Fesekug AD, Adatto I, Kling D, Huang P, Zon L, Chiakof EL, Gerszten RE, Graf M, Iacone R, Cowan CA. Generation of vascular endothelial and smooth muscle cells from human pluripotent stem cells. Nat Cell Biol 2015; 17: 994-1003 [PMID: 26214132 DOI: 10.1038/ncllb2050]

Coll M, Perea L, Boon P, Leite SB, Vallverdu J, Mannaefts I, Smoucas A, Mavri-Damelin D, Damelin LH, Eaton S, Rees M, Selden C, Hodgson HJ. Cells for bioartificial liver liver device implanted with induced human functional hepatocytes. Artif Organs 2017; 41: 267-268 [PMID: 26768767 DOI: 10.1080/01429548.2016.1226724]

Mavri-Damelin D, Danolin LH, Eaton S, Rees M, Selden C, Hodgson HJ. Cells for bioartificial liver device implanted with induced human functional hepatocytes. Nature 2014; 515: 166-176 [PMID: 25295540 DOI: 10.1038/nbt.2675]

Nagamoto Y, Takayama K, Tashiro K, Tateno C, Sakurai F, Tachibana M, Kawabata K, Mizuguchi H. Transplantation of a human iPSC-derived hepatocyte sheet increases survival in mice with acute liver failure. J Hepatol 2016; 64: 1068-1075 [PMID: 26778753 DOI: 10.1016/j.jhep.2016.01.004]

Li S et al. Derivation and applications of hepatocyte-like cells
Song W, Lu YC, Frankel AS, An D, Schwartz RE, Ma M. Engraftment of human induced pluripotent stem cell-derived hepatocytes in immunocompetent mice via 3D co-aggregation and encapsulation. Sci Rep 2015; 5: 16884 [PMID: 26592180 DOI: 10.1038/srep16884]

Lemaigre FP. Mechanisms of liver development: concepts for understanding liver disorders and design of novel therapies. Gastroenterology 2009; 137: 62-79 [PMID: 19328801 DOI: 10.1053/j.gastro.2009.03.035]

Oikita K, Nakagawa M, Hyenjong H, Ichisaka T, Yamanaka S. Generation of mouse induced pluripotent stem cells without viral vectors. Science 2008; 322: 949-953 [PMID: 18845712 DOI: 10.1126/science.1164270]

Okita K, Nakamura N, Akahira R, Taniguchi Y, Ikeda M, Sakurai F, Ohara O, Morio T, Sekiguchi K, Mizuguchi H. Generation of safe and therapeutically effective human induced pluripotent stem cell-derived hepatocyte-like cells for regenerative medicine. Hepatol Commun 2017; 1: 1058-1069 [PMID: 28813394 DOI: 10.1002/hep4.1111]

Ben-David U, Gan QF, Golan-Lev T, Arora P, Yanaka O, Oren YS, Leikin-Frenkel A, Graf M, Garippa R, Boehringer M, Grono G, Benvenisty N. Selective elimination of human pluripotent stem cells by an oleate synthesis inhibitor discovered in a high-throughput screen. Cell Stem Cell 2013; 12: 167-179 [PMID: 23318055 DOI: 10.1016/j.stem.2012.11.015]

Tang C, Lee AS, Volkmer JP, Sahoo D, Nag D, Mosley AR, Inlay MA, Ardehali R, Chavez SL, Pera RR, Behe B, Wu JC, Weissman IL, Drukker M. An antibody against SSEA-5 glycan on human pluripotent stem cells enables removal of teratoma-forming cells. Nat Biotechnol 2011; 29: 829-834 [PMID: 21841799 DOI: 10.1038/nbt.1947]

Peters DT, Henderson CA, Warren CR, Friesen M, Xia F, Becker CE, Musunuru K, Cowan CA. Asialoglycoprotein receptor 1 is a specific cell-surface marker for isolating hepatocytes derived from human pluripotent stem cells. Development 2016; 143: 1475-1481 [PMID: 27143754 DOI: 10.1242/dev.132209]

Kiuru M, Boyer JL, O' Connor TP, Crystal RG. Genetic control of wayward pluripotent stem cells and their progeny after transplantation. Cell Stem Cell 2009; 4: 289-300 [PMID: 19341619 DOI: 10.1016/j.stem.2009.03.010]

Choi SH, Kim YH, Quinti L, Tanzi RE, Kim DY. 3D culture models of Alzheimer's disease: a road map to a "cure-in-a-dish". Mol Neurodegener 2016; 11: 75 [PMID: 27938410 DOI: 10.1186/s13024-016-0139-7]

Giacomelli E, Bellin M, Sala L, van Meer BJ, Tertoolen LG, Orlova VV, Mummery CL. Three-dimensional cardiac microtissues composed of cardiomyocytes and endothelial cells co-differentiated from human pluripotent stem cells. Development 2017; 144: 1008-1017 [PMID: 28279973 DOI: 10.1242/dev.143348]

Wang G, McCain ML, Yang L, He A, Pasqualini FS, Agarwal A, Yuan H, Jiang D, Zhang D, Zhang L, Geva J, Roberts AF, Ma Q, Ding J, Chen J, Wang DZ, Li K, Wang J, Wanders RJ, Kulik W, Vaz FM, Laflamme MA, Murray CE, Chien KR, Kelley RJ, Church GM, Parker KK, Pu WT. Modeling the mitochondrial cardiomyopathy of Barth syndrome with induced pluripotent stem cell and heart-on-chip technologies. Nat Med 2014; 20: 616-623 [PMID: 24813252 DOI: 10.1038/nm.3545]
