Green multicomponent synthesis, antimicrobial and antioxidant evaluation of novel 5-amino-isoxazole-4-carbonitriles

Hamid Beyzaei1*, Mahboubeh Kamali Deljoo1, Reza Aryan1, Behzad Ghasemi2, Mohammad Mehdi Zahedi3 and Mohammadreza Moghaddam-Manesh4

Abstract

Background: Design and synthesis of new inhibitor agents to deal with pathogenic microorganisms is expanding. In this project, an efficient, environmentally friendly, economical, rapid and mild procedure was developed for the synthesis of novel functionalized isoxazole derivatives as antimicrobial potentials.

Methods: Multicomponent reaction between malononitrile (1), hydroxylamine hydrochloride (2) and different aryl or heteroaryl aldehydes 3a–i afforded novel 5-amino-isoxazole-4-carbonitriles 4a–i in good product yields and short reaction times. Deep eutectic solvent K2CO3/glycerol was used as catalytic reaction media. Structure of all molecules were characterized by different analytical tools. In vitro inhibitory activity of all derivatives was evaluated against a variety of pathogenic bacteria including both Gram-negative and Gram-positive strains as well as some fungi. In addition, their free radical scavenging activities were assessed against DPPH.

Results: Broad-spectrum antimicrobial activities were observed with isoxazoles 4a, b, d. In addition, antioxidant activity of isoxazole 4i was proven on DPPH.

Conclusions: In this project, compounds 4a, b, d could efficiently inhibit the growth of various bacterial and fungal pathogens. Antioxidant properties of derivative 4i were also significant. These biologically active compounds are suitable candidates to synthesize new prodrugs and drugs due to the presence of different functional groups on their rings.

Keywords: Antibacterial activity, Antifungal property, Antioxidant effect, Isoxazole, Multicomponent synthesis

Background

Isoxazoles are five-membered aromatic heterocycles containing adjacent oxygen and nitrogen atoms. The isoxazole ring system is found in a variety of naturally occurring compounds and biologically active molecules [1]. They are especially useful in medicine, since many antifungal drugs belong to the isoxazole class [2]. Sulfoisoxazole and sulfamethoxazole are two bacteriostatic sulfonamide antibiotics that applied alone or combined with others in the treatment of infections caused Gram-positive and Gram-negative bacteria [3, 4]. Acivicin is a γ-glutamyl transferase inhibitor with anticancer, anti-parasitic and antileishmania activities [5]. Isoxazole derivatives possess a broad variety of biological activities viz. antifungal, anti-inflammatory, antiplatelet, anti-HIV, anti-Alzheimer and analgesic [6–11].

Cycloisomerization of α,β-acetylenic oximes [12], cycloaddition of aldoxime and alkynes [13], reaction of alkyl nitriles and α-chlorooximes [14], 1,3-dipolar cycloaddition of in situ generated nitrile oxides and terminal acetylenes [15, 16], addition of hydroxylamine to α-cyano ketones [17] and palladium-catalyzed four-component coupling of a terminal alkyne, hydroxylamine and carbon monoxide [18] are some recently developed
methods for isoxazole synthesis. Furthermore, multicomponent reaction of active methylene compounds, aldehydes and hydroxylamine derivatives were well studied under different conditions [19–23].

Deep eutectic solvents (DES) play an essential key in green chemistry. They can be used as safe, low-cost, non-toxic, reusable, catalytic and environmentally friendly media in the most reactions [24]. Their applications are expanding in the field of materials, energy and environmental science [25]. Glycerol is a valuable green, non-toxic, low flammable and available solvent that applied as anti-freezer, sweetener, humectant, lubricant and thickener in industry [26]. This natural polyol as hydrogen bond donor is present in DESs with hydrogen bond acceptors such as choline chloride, methyl triphenyl phosphonium bromide, benzyl triphenyl phosphonium chloride, allyl triphenyl phosphonium bromide, N,N-diethylethanolammonium chloride, and tetra-n-butyrammonium bromide [27]. Glycerol/potassium carbonate is a low cost and environmentally friendly DES that recently its efficiently was proven in the preparation of pyrazole derivatives [28].

In order to develop applications of Gly/K2CO3 to other heterocycles, it was successfully used as catalytic media in the synthesis of novel 5-amino-isoxazole-4-carbonitrile derivatives via multicomponent reaction of malononitrile, hydroxylamine and various aryl aldehydes. In vitro inhibitory activity of all derivatives was evaluated against some pathogenic bacteria including both Gram-negative and Gram-positive strains as well as some fungi. In addition, their antioxidant potentials were assessed against DPPH.

Results

Characterization of isoxazoles 4a–i

Multicomponent reaction of malononitrile (1), hydroxylamine hydrochloride (2) and aryl or heteroaryl aldehydes 3a–i afforded 5-amino-isoxazole-4-carbonitriles 4a–i in 70–94% yields (Scheme 1). Products were obtained in glycerol/potassium carbonate (4:1) at room temperature for 20–120 min.

Evaluation of the bioactivity of isoxazoles 4a–i

All synthesized compounds were assessed for their antimicrobial efficiency as well as antioxidant activity. Inhibitory effects of isoxazoles 4a–i were presented as MIC, MBC and MFC values in Tables 1 and 2.

Discussion

Chemistry

The effects of variations in solvent, temperature and order mixing reactants were studied on product yield and reaction time. Aldoximes were produced as major products in glycerol at different conditions. They were also formed in Gly/K2CO3 deep eutectic solvents under one-pot two-step procedures involving initial mixing hydroxylamine and aldehydes, followed by malononitrile. In addition, oximes were present as by-products in one-pot two-step processes involving initial mixing malononitrile and aldehydes. There are two possible mechanisms to form the products (Scheme 2). A reaction pathway, that does not lead to the target products, includes the reaction of aldoximes produced from aldehydes and hydroxylamine with malononitrile. On another path, the Knoevenagel condensation of aldehydes with malononitrile gives aryldiene malononitriles, which react with hydroxylamine to form isoxazoles. The best results were obtained via simultaneous reaction of reagents in Gly/K2CO3 (4:1 molar) as green catalytic media at room temperature.

Scheme 1 Multicomponent synthesis of 5-amino-isoxazole-4-carbonitriles
temperature, which considered as optimal conditions. Increase in Gly/K₂CO₃ ratio and temperature led to a decrease in yields.

Multicomponent reaction of hydroxylamine derivatives, aldehydes and active methylene compounds is an efficient procedure to synthesize isoxazoles. Some recently proposed protocols were presented in Table 3. According to the data in the Table 3, reaction times decreased in the presence of catalysts at room temperature or under heating or UV radiation. It seems that basic catalysts are more effective than acidic equivalents. Our newly modified process provides an efficient, simple, economical, safe and eco-friendly reaction under mild conditions at acceptable products yields.

The chemical structure of isoxazoles 4a–i was characterized by spectral data. Nitrile groups were detected by FT-IR (~ 2220 cm⁻¹) and ¹³C NMR (~ 115 ppm). Amino groups were also identified based on their absorption bands in region of ~ 3430–3330 cm⁻¹ and proton chemical shifts appeared approximately 8.50 ppm.

Biological evaluation
Based on the results obtained, isoxazoles 4a, b, d, e showed broad-spectrum inhibitory activates against both

Bacterial species	Products	Antibiotic
1310	4a 256, 4b 128, 4c –, 4d –, 4e –, 4f –, 4g –, 4h –, 4i –	Gentamicin 0.063
1290	4a 64, 4b 256, 4c –, 4d 256, 4e –, 4f –, 4g –, 4h –, 4i –	Gentamicin 0.063
1234	4a –, 4b 32, 4c –, 4d –, 4e –, 4f –, 4g –, 4h –, 4i –	Gentamicin 2
1188	4a –, 4b 64, 4c –, 4d 128, 4e –, 4f –, 4g –, 4h –, 4i –	Gentamicin 8
1855	4a –, 4b 512, 4c –, 4d 128, 4e –, 4f –, 4g –, 4h –, 4i –	Gentamicin 16
1399	4a –, 4b –, 4c 32, 4d –, 4e –, 4f –, 4g –, 4h –, 4i –	Gentamicin 8
1768	4a 512, 4b 128, 4c 256, 4d 256, 4e –, 4f –, 4g 128, 4h –, 4i –	Gentamicin 0.5
1297	4a 32, 4b 64, 4c 32, 4d 64, 4e 32, 4f 256, 4g 32, 4h 64, 4i 2	Gentamicin 2
1445	4a –, 4b 256, 4c –, 4d 64, 4e –, 4f –, 4g –, 4h –, 4i –	Gentamicin 2
1240	4a 256, 4b 512, 4c –, 4d –, 4e –, 4f –, 4g –, 4h –, 4i –	Gentamicin 1
1633	4a 512, 4b 128, 4c 256, 4d 256, 4e –, 4f –, 4g 128, 4h –, 4i –	Gentamicin 1
1023	4a –, 4b 512, 4c –, 4d 256, 4e –, 4f –, 4g –, 4h –, 4i –	Gentamicin 2
1435	4a –, 4b 512, 4c –, 4d 256, 4e –, 4f –, 4g –, 4h –, 4i –	Gentamicin 2
1494	4a 32, 4b –, 4c –, 4d 128, 4e –, 4f –, 4g –, 4h –, 4i –	Gentamicin 1
1189	4a 128, 4b 256, 4c –, 4d 256, 4e –, 4f –, 4g 128, 4h –, 4i –	Gentamicin 1
1665	4a 512, 4b 128, 4c 256, 4d 256, 4e –, 4f –, 4g 128, 4h –, 4i –	Gentamicin 4
1447	4a 64, 4b 32, 4c –, 4d 256, 4e 128, 4f 512, 4g –, 4h –, 4i 0.063	
128	4a 128, 4b 256, 4c –, 4d 256, 4e –, 4f 128, 4g –, 4h –, 4i 0.125	

- No noticeable antibacterial effect at concentration of 10,240 μg ml⁻¹, MIC (μg ml⁻¹), MBC (μg ml⁻¹)
Gram-positive and Gram-negative bacteria. These compounds respectively include \(p\)-tolyl, 4-hydroxyphenyl, 2,4-dichlorophenyl and 2,6-dichlorophenyl substituents in 3-position on isoxazole ring. Heterocycle 4b was the only effective antibacterial agent on Shigella flexneri. Similarly, Shigella dysenteriae and Escherichia coli were blocked only with isoxazole 4d. Derivatives 4c, f, g, h, i were effective only against Gram-positive pathogens. All derivative could inhibit the growth of Gram-positive Listeria monocytogenes. No antifungal activity was observed with heterocyclic compounds 4c, e, f, g, h, i. Isoxazoles 4b, d were effective on all tested pathogenic fungi. Free radical scavenging ability of methanolic solutions of all synthesized compounds against DPPH was determined spectrophotometrically at 517 nm. However, notable in vitro antioxidant activity was only observed in isoxazole 4i, including pyridine-4yl substituent, with an \(IC_{50} = 67.51 \mu g ml^{-1}\). These effects are comparable to the effects of isoxazole derivatives with \(IC_{50}\) in the range 62.76–100.73 \(\mu g ml^{-1}\) [29].

Conclusion

In summary, some novel 5-amino-isoxazole-4-carbonitriles were prepared via a green and efficient multicomponent procedure in acceptable product yields and short reaction times. Antimicrobial activity of isoxazoles was studied against a variety of bacterial and fungal pathogens. Significant inhibitory potentials were observed with compounds 4a, b, d. Isoxazole 4i also showed considerable antioxidant activities. These functionalized biologically active compounds could applied as prodrugs in future researches.

Methods

Materials

All reagents, solvents, antibiotics, DPPH and antifungal agents were purchased from commercial sources.
5-Amino-3-(4-nitrophenyl)isoxazole-4-carbonitrile (4c)

Yield: 0.21 g, 92%; mp: 183–184 °C; reaction time: 35 min; IR (KBr) ν = 3417, 3379 (NH2), 2220 (C≡N), 1647 (C–O–N) cm−1; 1H NMR (400 MHz, DMSO-d6) δ: 7.92 (d, J = 9.4 Hz, 2H, H-2,6’), 7.86 (s, 1H, H-3), 7.80 (d, J = 7.1 Hz, 1H, H-4’), 7.48 (d, J = 7.1 Hz, 2H, H-3’,5’), 8.18 (s, 2H, NH2); 13C NMR (100 MHz, DMSO-d6) δ: 79.50 (C-4), 113.07 (C-5), 144.10 (C-6), 157.10 (C-3), 138.30 (C-2’), 138.18 (C-4’), 144.40 (C-5’), 157.10 (C-3’); Anal. Calcd. for C10H6N4O3: C 52.18, H 2.63, N 24.34. Found: C 52.24, H 2.59, N 24.37.

5-Amino-3-(2,4-dichlorophenyl)isoxazole-4-carbonitrile (4d)

Yield: 0.23 g, 92%; mp: 119–120 °C; reaction time: 60 min; IR (KBr) ν = 3432, 3358 (NH2), 2220 (C≡N), 1648 (C–O–N) cm−1; 1H NMR (400 MHz, DMSO-d6) δ: 7.64 (m, 1H, H-5), 7.84 (s, 1H, H-3), 8.01 (d, J = 7.9 Hz, 1H, H-6’), 8.58 (s, 2H, NH2); 13C NMR (100 MHz, DMSO-d6) δ: 87.50 (C-4), 113.76 (C-5), 128.28 (C-5), 128.75 (C-1), 129.69 (C-6), 130.47 (C-3), 131.38 (C-2’), 139.18 (C-4’), 144.13 (C-5’), 157.13 (C-3’); Anal. Calcd. for C10H6N4O3: C 52.18, H 2.63, N 24.34. Found: C 52.24, H 2.59, N 24.37.

5-Amino-3-(2,6-dichlorophenyl)isoxazole-4-carbonitrile (4e)

Yield: 0.22 g, 88%; mp: 150–152 °C; reaction time: 50 min; IR (KBr) ν = 3432, 3358 (NH2), 2220 (C≡N), 1647 (C–O–N) cm−1; 1H NMR (400 MHz, DMSO-d6) δ: 7.38 (d, J = 7.1 Hz, 1H, H-4’), 7.48 (d, J = 7.1 Hz, 2H, H-3’,5’), 8.18 (s, 2H, NH2); 13C NMR (100 MHz, DMSO-d6) δ: 82.57 (C-4), 113.10 (C-5), 129.31 (C-3’), 129.78 (C-1), 131.37 (C-2’), 134.32 (C-4’), 144.20 (C-5’), 155.25 (C-3’); Anal. Calcd. for C10H4N4O3: C 52.18, H 2.63, N 24.34. Found: C 52.20, H 2.66, N 24.29.

5-Amino-3-(2-hydroxy-3-methoxyphenyl)isoxazole-4-carbonitrile (4f)

Yield: 0.17 g, 75%; mp: 220–222 °C; reaction time: 120 min; IR (KBr) ν = 3509 (OH), 3408, 3341 (NH2), 2230 (C≡N), 1606 (C–O–N) cm−1; 1H NMR (400 MHz, DMSO-d6) δ: 3.87 (s, 3H, CH3), 7.27–7.39 (m, 3H, H-4’,5’,6’), 8.38 (s, 2H, NH2), 10.31 (s, 1H, OH); 13C NMR (100 MHz, DMSO-d6) δ: 56.67 (CH3), 102.74.
(C-4), 114.97 (C≡N), 117.82 (C′-4), 118.37 (C-1), 121.16 (C-5), 125.82 (C′-6), 143.68 (C-2′), 146.87 (C-5′), 154.08 (C-3′), 157.00 (C-3); Anal. Calcd. for C₁₁H₉N₄O₂: C 57.14, H 3.92, N 18.17. Found: C 57.19, H 3.94, N 18.13.

5-Amino-3-(furan-2-yl)isoxazole-4-carbonitrile (4g)
Yield: 0.13 g, 85%; mp: 270–272 °C (dec.); reaction time: 25 min; IR (KBr) ν: 3425, 3369 (NH₂), 2221 (C≡N), 1288 (C–O–N) cm⁻¹; ¹H NMR (400 MHz, DMSO-d₆): δ: 6.77 (m, 1H, H-3), 7.23 (m, 1H, H-2), 8.02 (m, 1H, H-4), 8.30 (s, 2H, NH₂); ¹³C NMR (100 MHz, DMSO-d₆): δ: 76.90 (C-4), 109.35 (C-2), 113.05 (C-3), 115.52 (C≡N), 135.12 (C-4′), 146.31 (C-3′), 153.00 (C-1′), 160.29 (C-5′); Anal. Calcd. for C₈H₅N₃O₂: C 54.86, H 2.88, N 24.03. Found: C 54.81, H 2.90, N 24.03.

5-Amino-3-(thiophen-2-yl)isoxazole-4-carbonitrile (4h)
Yield: 0.15 g, 79%; mp: 249–251 °C (dec.) (Lit. [31]: 225–226 °C); reaction time: 60 min; IR (KBr) ν: 3434, 3356 (NH₂), 2216 (C≡N), 1281 (C–O–N) cm⁻¹; ¹H NMR (400 MHz, DMSO-d₆): δ: 7.25 (m, 1H, H-3), 7.45 (m, 1H, H-2), 7.87 (m, 1H, H-4), 8.34 (s, 2H, NH₂); ¹³C NMR (100 MHz, DMSO-d₆): δ: 80.52 (C-4), 115.26 (C≡N), 128.16 (C-2′), 130.63 (C-3′), 131.21 (C-4′), 141.09 (C-1′), 152.56 (C-3′), 161.60 (C-5′); Anal. Calcd. for C₈H₅N₃S: C 50.25, H 2.64, S 18.13. Found: C 50.31, H 2.61, N 22.01, S 16.77.

5-Amino-3-(pyridin-4-yl)isoxazole-4-carbonitrile (4i)
Yield: 0.17 g, 91%; mp: 270–272 °C (dec.); reaction time: 20 min; IR (KBr) ν: 3434, 3356 (NH₂), 2216 (C≡N), 1602 (C≡N), 1288 (C–O–N) cm⁻¹; ¹H NMR (400 MHz, DMSO-d₆): δ: 7.37–7.55 (m, 2H, H-2′,6′), 8.45 (s, 2H, NH₂), 8.76 (d, J = 7.5 Hz, 2H, H-3′,5′); ¹³C NMR (100 MHz, DMSO-d₆): δ: 80.03 (C-4), 114.82 (C≡N), 123.80 (C-2′,6′), 142.69 (C-1′), 150.39 (C-3′,5′), 152.43 (C-3′), 161.23 (C-5′); Anal. Calcd. for C₁₁H₉N₃O₂: C 58.06, H 3.25, N 30.09. Found: C 58.01, H 3.27, N 30.15.

Biological assay
Gram-negative bacterial strains including *Pseudomonas aeruginosa* (PTCC 1310), *Shigella flexneri* (PTCC 1234), *Shigella dysenteriae* (PTCC 1188), *Klebsiella pneumoniae* (PTCC 1290), *Acinetobacter baumannii* (PTCC 1855), *Escherichia coli* (PTCC 1399), Gram-positive bacterial strains including *Streptococcus pyogenes* (PTCC 1447), *Streptococcus agalactiae* (PTCC 1768), *Streptococcus pneumoniae* (PTCC 1240), *Staphylococcus epidermidis* (PTCC 1435), *Rhodococcus equi* (PTCC 1633), *Listeria monocytogenes* (PTCC 1297), *Streptococcus equinus* (PTCC 1445), *Bacillus subtilis* subsp. *spizizenii* (PTCC 1023), *Bacillus thuringiensis* subsp. *kurstaki* (PTCC 1494), *Staphylococcus aureus* (PTCC 1189), *Bacillus cereus* (PTCC 1665) and fungi including *Aspergillus fumigatus* (PTCC 5009), *Candida albicans* (PTCC 5027) and *Fusarium oxysporum* (PTCC 5115) were prepared from the Persian Type Culture Collection (PTCC), Karaj, Iran. All biological tests were repeated at least three times. The results were reported as the mean of three independent experiments.

MIC determination
Broth microdilution methods according to CLSI guidelines M07-A9 and M27-A2 were used for the determination of MIC values [32, 33]. Bacterial and fungal suspensions at 0.5 McFarland standard were prepared in MHB and SDB, respectively. They were diluted to 150 and 250 times with MHB and SDB, respectively. 20 µl of each isoxazoles 4a–i with concentration of 20,480 µg ml⁻¹ in DMSO was added to first and second wells in a row of a 96-well microtiter plate. 20 µl DMSO was added to wells 2–12, and two-fold serial dilutions were carried out in them. 170 µl of MHA or SDB with 10 µl of diluted microbial suspensions were added to all wells. Finally, a concentration range of 2048–1 µg ml⁻¹ of the derivatives was prepared in each row; in addition, the concentration of DMSO did not exceed 10% (v/v). Microtiter plates were incubated with shaking at 100 rpm at 37 °C for 24 h. Fungi must be incubated in the relative humidity (45–55%). The lowest concentration of derivatives that resulted in no visible turbidity was considered as the MIC value.

MBC and MFC determination
Time-kill test according to CLSI guideline M26-A was applied to determine MBC and MFC values [32, 33]. Samples of all wells that showed no growth in the MIC test, were cultured in MHA or SDA media plates. Dishes were incubated at 37 °C for another 24 h under similar conditions. The MBC or MFC was identified as the lowest concentration of derivatives at which no microorganisms survived.

IC₅₀ identification
Free radical scavenging activity of all synthesized heterocycles were evaluated against DPPH [34]. 1 ml of various concentrations of all compounds (25, 50, 75, and 100 µg ml⁻¹) in methanol was added to 4 ml of 0.004% (w/v) methanolic solution of freshly prepared DPPH. Solutions were shaken and left to stand for 30 min at room temperature in darkness. A solution including 1 ml of methanol and 4 ml of 0.004% (w/v) methanolic
solution of DPPH was considered as blank sample. The absorbance was read at 517 nm against methanol. It should be noted that the concentration of solute is decreased to one-fifth after a dilution. The inhibition percentage (I%) for scavenging DPPH free radical was calculated according to the following equation:

\[
I\% = \left(\frac{(A \text{ blank} - A \text{ sample})}{(A \text{ blank})} \right) \times 100.
\]

where “A blank” and “A sample” are the absorbance of control and sample solutions, respectively. A graph of inhibition percentage vs concentration (where X axis is concentration and Y axis is I%). Equation of straight lines was determined. The half maximal inhibitory concentration (IC_{50}) is “x” in equation \(y = mx + b \) while \(y = 50 \).

Additional file

Additional file 1. The copies of 1H NMR and 13C NMR spectra for isoxazoles 4a–i.

Abbreviations

MHb: Mueller–Hinton broth; SDB: sabouraud dextrose broth; MHA: Mueller–Hinton agar; SDA: sabouraud dextrose agar; DPPH: 1,1-diphenyl-2-picrylhydrazyl; HIV: the human immunodeficiency virus; DES: deep eutectic solvent; MIC: the minimum inhibitory concentration; MBC: the minimum bactericidal concentration; MFC: the minimum fungicidal concentration; FT-IR: Fourier Transform infrared; 1H NMR: proton nuclear magnetic resonance; 13C NMR: carbon-13 nuclear magnetic resonance; UV: ultraviolet; IC_{50}: the half maximal inhibitory concentration; PTCC: Persian Type Culture Collection; CLSI: Clinical and Laboratory Standards Institute.

Authors' contributions

HB: design of target compounds and supervision of synthetic part. MKD: synthesis of title compounds and collaboration in the antimicrobial and antioxidant tests. RA: design of target compounds and supervision of synthetic part. MM: collaboration in the synthetic part. All authors read and approved the final manuscript.

Author details

1. Department of Chemistry, Faculty of Science, University of Zabol, Zabol, Iran. 2. Torbat Jam Faculty of Medical Sciences, Torbat Jam, Iran. 3. Department of Chemistry, University of Saskatchewan, 110 Science Place, Saskatoon, SK S7N 5C9, Canada. 4. Young Researchers and Elite Club, Kerman Branch, Islamic Azad University, Kerman, Iran.

Acknowledgements

The authors would like to thank the members of the University of Zabol for their support and assistance at the various stages this project.

Competing interests

The authors declare that they have no competing interests.

Availability of data and materials

All main data were presented in the form of tables and figures. Meanwhile, copies of 1H NMR and 13C NMR spectra for the title compounds were presented in the Additional file 1.

Funding

This work was supported by the [University of Zabol] under Grant [Number UOZ-GR-9517-15].

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Received: 31 May 2018 **Accepted:** 9 November 2018 **Published online:** 15 November 2018

References

1. Barmade MA, Murumkar PR, Sharma MK, Yadav MR (2016) Medicinal chemistry perspective of fused isoxazole derivatives. Curr Top Med Chem 16:2863–2883
2. Bormann AM, Morrison VA (2009) Review of the pharmacology and clinical studies of micafungin. Drug Des Dev Ther 3:295–302
3. Jorgensen JH, Crawford SA, Fiebelkorn KR (2005) Susceptibility of Neisseria meningitidis to 16 antmicrobial agents and characterization of resistance mechanisms affecting some agents. J Clin Microbiol 43:3162–3171
4. Fioni ATM, Nakahata EH, Cui A, Lustri WR, Corbi PP (2017) Synthesis, crystallographic studies, high resolution mass spectrometric analyses and antibacterial assays of silver(I) complexes with sulfadimethoxine and sulfadimethoxine. Polyhedron 121:172–179
5. Kreuzer J, Bach NC, Forler D, Sieber SA (2015) Target discovery of acicivin in cancer cells elucidates its mechanism of growth inhibition. Chem Sci 6:237–245
6. Jin RY, Sun XH, Liu YF, Long W, Chen B, Shen SQ, Ma HX (2016) Synthesis, crystal structure, biological activity and theoretical calculations of novel isoxazole derivatives. Spectrochim Acta Part A 152:226–232
7. Panda SS, Chowdary PVR, Jayasheere BS (2009) Synthesis, antiinflammatory and antibacterial activity of novel indolyl-isoxazoles. Indian J Pharm Sci 71:684–687
8. Gubérez M, Amigo J, Fuentes E, Palomo L, Astudillo L (2014) Synthetic isoxazole as antiplatelet agent. Platelets 25:234–238
9. Ali MA, Ismail R, Choon TS, Yoon YK, Wei AC, Pandian S, Samy JG, De Clercq E, Pannecouque C (2011) Synthesis and anti-HIV activity of novel 3-substituted phenyl-6,7-dimethoxy-3a,4-dihydro-3H-indeno[1,2-c] isoxazole analogues. Acta Pol Pharm 68:343–348
10. Filiali I, Romdhane A, Ziani M, Jannet HB, Bouajila J (2016) Synthesis of new harmine isoxazoles and evaluation of their potential anti-Alzheimer, anti-inflammatory, and anticancer activities. Med Chem 12:184–190
11. Abu-Haschem AA, El-Shazly M (2018) Synthesis of new isoxazole-, pyridazine-, pyrimidopyrazines and their anti-inflammatory and analgesic activity. Med Chem. https://doi.org/10.2174/157340641466618011210947
12. Tu KN, Hirner JJ, Blum SA (2016) Oxyboration with and without a catalyst: borylated isoxazoles via B-O o-bond addition. Org Lett 18:480–483
13. Kadam KS, Ghandi T, Gupta A, Gangopadhyay AK, Sharma R (2016) Alkyl nitrites: novel reagents for one-pot synthesis of 3,5-disubstituted isoxazoles from aldoximes and alkynes. Synthesis 48:3996–4008
14. Bourreau MP, Rider JT (2006) A convenient synthesis of 4-alkyl-5-aminoisoxazoles. Org Lett 8:3679–3680
15. Hansen TV, Wu P, Fokin WV (2005) One-pot copper (II)-catalyzed synthesis of 3,5-disubstituted isoxazoles. J Org Chem 70:7761–7764
16. Cecchi L, De Sarlo F, Machetti F (2006) 1,4-Diazabicyclo[2.2.2]octane (DABCO) as an efficient reagent for the synthesis of isoxazole derivatives from primary nitro compounds and dipolarophiles: the role of the base. Eur J Org Chem 2006:4852–4862
17. Johnson L, Powers J, Ma F, Jendza K, Wang B, Meredith E, Mainolfi N (2013) A reliable synthesis of 3-amino-5-alkyl and 5-amino-3-alkyl isoxazoles. Synthesis 45:171–173
18. Ahmed MSM, Kobyashi K, Mori A (2005) One-pot construction of pyrazoles and isoxazoles with palladium-catalyzed four-component coupling. Org Lett 7:4487–4490
19. Mirzadeh M, Mahdaviania GH (2012) Fast and efficient synthesis of 4-arylidene-3-phenylisoxazol-5-ones. J Chem. 9:425–429
20. Madabhushi S, Godala KR, Jillella R, Mallu KKR, Chinthala N (2014) A new multicomponent approach to highly functionalized 2,3-dihydroisoxazoles. Tetrahedron Lett 55:514–516
21. Saikh F, Das J, Ghosh S (2013) Synthesis of 3-methyl-4-arylmethylene isoxazole-5(4H)-ones by visible light in aqueous ethanol. Tetrahedron Lett 54:4679–4682
22. Kiyani H, Ghorbani F (2017) Potassium phthalimide as efficient basic organocatalyst for the synthesis of 3,4-disubstituted isoxazole-5(4H)-ones in aqueous medium. J Saudi Chem Soc 21:5112–5119
23. Kiyani H, Ghorbani F (2015) Boric acid-catalyzed multi-component reaction for efficient synthesis of 4H-isoxazol-5-ones in aqueous medium. Res Chem Intermed 41:2653–2664
24. Xu F, Zheng G-W, Zong M-H, Li N, Lou W-Y (2017) Recent progress on deep eutectic solvents in biocatalysis. Bioresour Bioprocess 4:34
25. Ge X, Gu C, Wang X, Tu J (2017) Deep eutectic solvents (DESs)-derived advanced functional materials for energy and environmental applications: challenges, opportunities, and future vision. J Mater Chem A 5:8209–8229
26. Garcia J, Garcia-Marina H, Pires E (2010) Glycerol based solvents: synthesis, properties and applications. Green Chem 12:426–434
27. AlDamar MK, Hayyan M, Alsaadi MA, Akib S, Hayyan A, Hashim MA (2016) Glycerol-based deep eutectic solvents: physical properties. J Mol Liq 215:98–103
28. Beyzaei H, Motraghi Z, Aryan R, Zahedi MW, Samzadeh-Kermani A (2017) Green one-pot synthesis of novel polysubstituted pyrazole derivatives as potential antimicrobial agents. Acta Chim Slov 64:911–918
29. Padma A, Rajasekhar C, Muralikrishna A, Padmavathi V (2011) Synthesis and antioxidant activity of oxazolylthiazolysulfonfylmethyl pyrazoles and isoxazoles. Eur J Med Chem 46:5034–5038
30. Naser J, Mjalli F, Jibril B, Al-Hatmi S, Gano Z (2013) Potassium carbonate as a salt for deep eutectic solvents. Int J Chem Eng Appl 4:114–118
31. El-Shafei AK, Sultan AA, Soliman AM, Meetzger J (1992) Synthesis and reactions of some 1,3-(2-thienyl)-1,3 oxopropanone nitriles derivatives. Phosphorus Sulfur Silicon Relat Elem 72:121–126
32. Beyzaei H, Moghadam-Manesh M, Aryan R, Ghasemi B, Samzadeh-Kermani A (2017) Synthesis and in vitro antibacterial evaluation of 6-substituted 4-aminopyrazolo[3,4-d]pyrimidines. Chem Pap 71:1685–1691
33. Arikan S (2007) Current status of antifungal susceptibility testing methods. Med Mycol 45:569–587
34. Bhaskara Reddy MV, Srinivasulu D, Peddanna K, Apparao Ch, Ramesh P (2015) Synthesis and antioxidant activity of new thiazole analogues possessing urea, thiourea, and selenourea functionality. Synth Commun 45:2592–2600