Titanium dioxide nanoparticles exacerbate DSS-induced colitis: role of the NLRP3 inflammasome

Pedro A Ruiz,1 Belen Morón,1 Helen M Becker,1 Silvia Lang,1 Kirstin Atrott,1 Marianne R Spalinger,1 Michael Scharl,1,2 Kacper A Wojtal,1 Anne Fischbeck-Terhalle,1 Isabelle Frey-Wagner,1 Martin Hausmann,1 Thomas Kraemer,3 Gerhard Rogler1,2

INTRODUCTION

The aetiology of IBD remains only partially understood; however, it is now accepted that both Crohn’s disease (CD) and UC are caused by interplay of genetic and environmental factors that trigger an inappropriate immune response.1,2 The incidence of IBD is increasing in many nations undergoing ‘westernisation’, supporting an important role of environmental factors during IBD pathogenesis.3,4 Among those environmental triggers are the increased hygiene and ‘Western diet’, which includes ingestion of nanoparticles.5,6

Inorganic nanoparticles and microparticles are used as additives to influence the appearance of a dietary product. The most commonly used additives are submicron-sized (100–1000 nm diameter) particles of titanium dioxide (TiO2, E171) and aluminium silicate (E559). Food and pharma grade
TiO₂ is found both in its bulk form and as nanoparticle. In fact, at least 36% of the TiO₂ particles present in food consists of nanoparticles with a particle diameter less than 100 nm.7 The daily intake of TiO₂ was estimated by the European Food Safety Authorities in 2004 to be 1.28 mg/kg bodyweight.8 Further to this, in a dietary study assessing the TiO₂ consumption of patients with CD and healthy volunteers Lomer et al9 estimated that the median individual TiO₂ intake in both groups was 2.5 mg/day. A later study estimated a daily intake of TiO₂ food grade of 0.2–2 mg/kg bodyweight,10 evidencing that TiO₂ is ingested in substantial amounts on a daily basis. To date, no restrictions for the use of TiO₂ are enforced by food safety authorities and only good manufacturing practice guidelines limit the use of these compounds.10 11 An increasing body of literature has revealed that exposure to TiO₂ can cause adverse effects, including the production of reactive oxygen species (ROS),12 inflammatory responses and tumour formation.13 In mice, TiO₂ nanoparticles cause genotoxic effects in blood cells, bone marrow and liver, and DNA deletions in the offspring.14 Cytotoxic effects resulting from TiO₂-induced production of ROS were observed in human lymphoblastoid cells,15 fibroblasts, bronchial epithelial cells16 and alveolar macrophages,17 which led to the classification of TiO₂ as ‘possibly carcinogenic for humans’. Nanoparticles can accumulate in several organs, such as kidney, lung, brain, liver and spleen.18 19 In intestinal biopsies, dark aggregates of TiO₂ were detected in M-cells of Peyers’ patches and in underlying macrophages.20 Interestingly, these sites of TiO₂ uptake correspond to regions where first signs of inflammation in patients with CD manifest.21

Nucleotide-binding oligomerisation domain receptor, pyrin domain containing (NLRP)3 is a member of the Nod-like receptor (NLR) family that regulates the activation of caspase-1 by forming signalling complexes called ‘inflammasomes’. On activation, NLRP3 binds to the apoptosis-associated speck-like protein containing a caspase recruitment domain (ASC) adapter protein, which in turn recruits and activates caspase-1. Activated caspase-1 cleaves pro-interleukin (IL)-1β and pro-IL-18 into their biologically active forms.22 23 Single nucleotide polymorphisms in the Nlrp3 gene have been linked to the development of CD.24 NLRP3 has been shown to be activated by a wide range of pathogens and intrinsic danger signals like ATP,25 ROS, crystalline monosodium urate,26 cholesterol crystals27 and inorganic materials like aluminium salts,28 asbestos and silica crystals.29 Similarly, inorganic TiO₂ nanoparticles activate the NLRP3 inflammasome and induce a proinflammatory response in human keratinocytes, human dendritic cells and murine macrophages.30

In the present study, we analysed the effect of TiO₂ on intestinal inflammation as well as the contribution of the NLRP3 inflammasome in TiO₂-mediated inflammatory responses. For this purpose, we used the dextran sodium sulfate (DSS) acute colitis model in the wild-type (WT) and NLRP3-deficient (Nlrp3−/−) mice. Oral administration of TiO₂ nanoparticles worsened intestinal inflammation through NLRP3. Moreover, crystals were found to accumulate in splenic tissue of TiO₂-administered mice, but not in those receiving water. In vitro experiments showed that both TiO₂ nanoparticles and food grade TiO₂ microparticles trigger proinflammatory cytokine secretion through NLRP3 inflammasome activation, and accumulate in human intestinal epithelial cells (IECs) and macrophages. TiO₂ particles induced ROS production in IECs and increased epithelial permeability. Finally, an increase of titanium burden in blood of patients with UC having active disease was found, evidencing an impaired barrier function and suggesting that TiO₂ nanoparticles could pose a specific risk to patients with IBD.

MATERIAL AND METHODS

Mouse experiments

Acute colitis was induced in female WT (C57BL/6) and Nlrp3−/− mice between 12 and 14 weeks of age by oral administration of 1.5% DSS10 (MP Biomedicals) in drinking water ad libitum for 7 days. A suspension of TiO₂ nanoparticles (rutile, 30–50 nm, IoLiTec) in drinking water was administered daily by oral gavage. WT mice were divided in three groups of 12 mice each, and received water, 50 or 500 mg TiO₂/day/kg bodyweight. Nlrp3−/− mice received water (n=10) or 500 mg TiO₂/day/kg bodyweight (n=10). On day 8, colitis was assessed by endoscopy and mice were sacrificed for sample collection. All the animal experiments were approved by the veterinary authorities of Zurich, Switzerland.

Colonoscopy and determination of histological score

Animals were anaesthetised intraperitoneally with a mixture of ketamine 90–120 mg/kg bodyweight (Vetokine) and xylazine 8 mg/kg bodyweight (Bayer), and colonoscopy was performed as described previously.31 Animals were sacrificed and colon length was measured. About 1 cm of tissue was removed from the distal third of the colon and fixed in 4% formalin overnight. H&E stained sections of the paraffin-embedded tissue were used for histological analysis. Histological score was determined as described previously12 13 by two independent, blinded investigators.

Western blotting and co-immunoprecipitation

Total protein from cell monolayers was harvested into M-PER lysis buffer (Thermo Fisher Scientific) and western blotting was performed to determine the expression of NLRP3 (Enzo life sciences), caspase-1, ASC, IL-1β (Cell Signaling Technologies) and IL-18 (MBL). Co-immunoprecipitation (Co-IP) was performed overnight at 4°C using NLRP3 antibody. Immunocomplexes were collected with Protein G Sepharose beads (GE Healthcare) for 1 h at 4°C prior to western blotting.

Microscopy of spleen cryosections and Caco-2 monolayers

Confocal reflection microscopy was combined with fluorescence microscopy in a Leica SP8 laser scanning confocal microscope, as described previously.28 Caco-2 cells grown on coverslips and transwells were fixed with 4% PFA for 20 min. Coverslips were directly subjected to H&E staining. Cryosections of transwells with Caco-2 monolayers were cut at cryogenic temperatures at 5–20 μm thickness. Sections were stained with H&E or DAPI-containing mounting medium (Vector Laboratories) and images were captured using a fluorescent microscope (Axioplan2, Zeiss). For electron microscopy, Caco-2 cells were fixed and embedded in Epon according to established protocols.34 Electron microscopic analysis, including elemental analysis was performed with a CM12 electron microscope (FEI) equipped with an EDX detector (Genesis, EDAX). For quantification of intracellular microparticles, 5 μm sections of TiO₂-stimulated Caco-2 monolayers grown on transwell membranes were used. Particles and aggregates of TiO₂ were counted in phase-contrast view, and DAPI-stained nuclei were counted in blue fluorescent channel.

Cell culture and reagents

THP-1 cells were maintained in RPMI medium (Invitrogen) supplemented with 10% fetal calf serum (VWR). To induce differentiation, 40 nM phorbol-12-myristate-13-acetate (Sigma-
Alrich) was added to 0.5×10^6 cells/mL. Caco-2 and HT-29 were obtained from the German Collection of Cells and Microorganisms (DSMZ). Other IEC lines were provided and previously described by the Department of Internal Medicine Regensburg and cultured under conditions as recommended by the DSMZ. Inflammasome activation was triggered in IECs with crude lipopolysaccharide (Santa Cruz) at a concentration of 10 μg/mL TiO2 (AHRSE; geometric particle size of ca 0.36 μm, PSD of around 1.35), an uncoated anatase of high purity used in cosmetics and food, was obtained from Huntsman Pigments. Particles were sterilised by addition of 1 mL 70% ethanol to 20 mg TiO2 and by subsequently vacuum freeze-drying. Particles were resuspended in ultrapure water and sonicated for 5 min to obtain a homogenous suspension.

Isolation and stimulation of bone marrow-derived macrophages

Mononuclear phagocyte progenitor cells were flushed from femoral and tibial bones from C57/BL6 mice with cell culture medium. After centrifugation, cells were resuspended in medium containing 30 ng/mL recombinant murine macrophage-stimulating factor (Biovision) and kept for 5 days before stimulation with 20 μg/mL TiO2 and 5 μM cytochalasin D (Invivogen).

ELISA analysis

ELISAs directed against active forms of IL-1β (R&D Systems) and IL-18 (MBL) were conducted with cell culture supernatants according to manufacturer’s instructions.

Small interfering RNA knockdown of inflammasome components

Undifferentiated THP-1 cells were transfected with three sets of small interfering RNAs (siRNAs) for caspase-1, ASC and NLRP3 at a concentration of 100 pmol each, and electroporated using the Amaxa nuclease kit (Mirus Bio LLC) following manufacturer’s instructions.

Assessment of lysosomal integrity

Caco-2 and HT-29 cells were stained with 1 μg/mL acridine orange (Sigma-Aldrich) for 15 min prior to TiO2 and cytochalasin D stimulation. Lysosomal rupture was analysed by fluorescent microscopy (Axioplan2, Zeiss).

Measurement of ROS production

IECs were incubated with Hank’s balanced salt solution (HBSS) (Sigma-Aldrich) containing 50 μM of dihydro-dichlorofluorescin diacetate (Sigma-Aldrich) for 30 min at 37°C. ROS-induced fluorescence was detected using a microplate reader with an excitation wavelength of 485 nm and an emission wavelength of 528 nm.

Epithelial permeability studies

Caco-2 cells were grown as monolayers on transwell membranes as described above. Flux of fluorescein isothiocyanate-dextran beads (average molecular weight 40 000, Sigma-Aldrich) was measured 2 h after addition of 1 mg/mL beads to the apical compartment. Fluorescence intensity in aliquots from the basolateral compartment was measured using a microplate reader with an excitation wavelength of 485 nm and an emission wavelength of 525 nm.

Human subjects

The study was conducted as a subproject of the Swiss IBD Cohort Study and was approved by the Ethics Committee (EK 1316). Prior to inclusion into the study, written informed consent was obtained from all patients. Inclusion criteria for enrolment of patients with IBD having active disease were 18–80 years of age and at least one episode of active disease between 1 September 2010 and 31 August 2011. Flare-up episodes reported by the patient were verified by a physician in the course of a clinical examination. Inclusion criteria for enrolment of patients with IBD in clinical remission were 18–80 years of age and maintenance of clinical remission between 1 September 2010 and 31 August 2011. Exclusion criteria in this study were perianal CD and positive results of microbiological workup of faecal samples for known infectious agents. Clinical activity in patients with CD and patients with UC was assessed using the Harvey Bradshaw Index (HBI) and the Rachmilewitz Index, respectively. A flare-up episode in patients with CD was defined as a rise in HBI value of ≥4 points. A flare-up in patients with UC was defined as an increase in the Rachmilewitz Index value of ≥5 points. Titanium levels in blood samples from healthy volunteers (n=28), patients with UC having active disease (n=5), patients with UC in remission (n=6), patients with CD having active disease (n=8) and patients with CD in remission (n=9) were measured by inductively coupled plasma mass spectrometry (ICP-MS) at the Department of Forensic Pharmacology and Toxicology of the University of Zurich, Switzerland.

Inductively coupled plasma mass spectrometry

Sample preparation for ICP-MS

All calibration standard solutions were prepared from 1 mg/mL single element standard solutions (Merck) by dilution with ultrapure water. About 0.5 mL of whole blood from patients was diluted in 4.5 mL ultrapure water and infused into the ICP-MS. Seronorm trace elements whole blood samples (level 3; titanium concentration: 24 μg/L; accepted range 20–28 μg/L) were prepared in the same manner as the whole blood samples from patients and used as control (SERO AS).

ICP-MS

A Varian ICP-MS 810 (low resolution) equipped with type 142 Varian cooler and a Varian SPS 3 Autosampler (Varian) were used with the following measurement parameters: analysis type: quantitative; acquisition mode: steady state; scan mode: peak hopping; spacing: coarse; points/peak: 1; scans/replicate: 50; replicates/sample: 3; plasma flow: 18.00 L/min; auxiliary flow: 1.75 L/min; sheath gas flow: 0.24 L/min; nebuliser flow: 1.00 L/min; sampling depth: 5.00 mm; power: 1.35 kW; pump rate: 7 rpm; stabilisation delay 0 s; ion optics (volt) version number: 0; first extraction lens: 0.00; second extraction lens: −129.00; third extraction lens: −214.00; left mirror lens: 32.00; right mirror lens: 17.00; bottom mirror lens: 28.00; corner lens: −199.00; entrance lens: −1.00; fringe bias: −4.50; entrance plate: −32.00; detector focus: true pole bias: 0.00; sampling aerosol generation: nebuliser, source: autosampler; fast pump during sample delay/rinse: On; probe height: 0 mm; premix: Off; rinse time: 10 s; spray chamber cooling: on spray chamber temperature: 3.00°C; sample uptake delay: 50 s; smart rinse: No; switch delay: OFF; scan time: 1415 ms; replicate time: 70.75 s; titanium isotope for quantification: 49. All chemicals (eg, water, acid, hydrogen peroxide) and materials (eg, tubes, blood Monovettes including needles) were checked for interferences. All results were under the detection limit of the procedure (0.25 μg/L). Calibration was done in every series, using standard solutions of 1, 10 and 100 μg/L Titanium and a blank. The results of the Seronorm quality control samples were very good. Mean (n=14) of the results of the Seronorm control
level 3 (target value 24 μg/L) was 24.5 μg/L with a coefficient of variation of 9.6%. Thus, the method was more than suitable for our purposes, especially considering that, while accuracy may be marginally compromised, relative differences between the groups should stay the same.

Statistics
Statistical analysis was performed using Student’s t test, Mann–Whitney test or one-way analysis of variance with Dunnett’s post-test. The results are expressed as mean±SEM and significance was set as p<0.05.

RESULTS
Administration of TiO2 nanoparticles aggravates DSS-induced colitis
To study the impact of TiO2 nanoparticles in colitis, and the role of NLRP3 inflammasome in TiO2-mediated effects, DSS-treated WT and Nlrp3−/− mice were administered with 0, 50 or 500 mg/kg/day TiO2 nanoparticles by oral gavage. WT mice receiving TiO2 presented a more severe colitis than mice receiving TiO2-free drinking water, as evidenced by a significant shortening of the colon (figure 1A), and colonoscopy results (figure 1B). In contrast, Nlrp3−/− mice administered with 500 mg/kg/day TiO2 showed no differences in colon length or colonoscopy findings compared with WT and Nlrp3−/− mice receiving water (figure 1A,B). Similarly, H&E stained sections of colonic tissue presented a significantly higher inflammatory cell infiltration (figure 1C) and total histological score with a severe disruption of the mucosal epithelium in TiO2-treated WT, but not Nlrp3−/− mice (figure 1D,E). Mice receiving TiO2 in the absence of colitis did not present shortening of the colon, or increased histological scores (data not shown), suggesting that TiO2 might be deleterious only in pre-existing inflammation. Recent studies have shown that, after intravenous injection of TiO2 in rats, significant levels of TiO2 in spleen and liver were still found 30 days post injection.39 When applied intraperitoneally in mice, TiO2 was distributed throughout the entire body but was mainly retained in liver and spleen.40 In our experimental setting, analysis of splenic cryosections using a combination of confocal and reflexion microscopy revealed that oral administration of TiO2 led to the accumulation of crystals in the spleen of DSS-treated mice in a dose-dependent manner (figure 1F).

TiO2 induces NLRP3 activation and caspase-1 downstream effectors in human IECs and macrophages
Since IECs have rarely been used in NLRP3 inflammasome studies, protein expression of NLRP3 was confirmed by western blot in human IEC lines (see online supplementary figure S1A). Interestingly, both nanoparticles and microparticles induced IL-1β secretion in the monocytic cell line THP-1 (figure 2A), as well as caspase-1 cleavage (figure 2B) and IL-1β cleavage (figure 2C) in both Caco-2 and THP-1 cells. Co-IP of NLRP3 further evidenced the association of the inflammasome components caspase-1, ASC and NLRP3 on stimulation with both TiO2

Figure 1 Administration of titanium dioxide (TiO2) nanoparticles aggravates colitis in the dextran sodium sulfate (DSS) mouse model of acute colitis through activation of the nucleotide-binding oligomerisation domain receptor, pyrin domain containing (NLRP)3 inflammasome. (A–E) DSS-treated wild-type (WT) and Nlrp3−/− C57BL/6J mice received TiO2 by oral gavage as indicated. Mice were sacrificed at day 8 and colon length was measured (A). Mucosal damage was assessed by colonoscopy (B). H&E staining of sections displayed severe barrier breakdown (C) with extensive infiltration reaching the lamina muscularis mucosae (D). Total histological score was calculated as the sum of epithelial damage and infiltration score (E). Results represent mean±SEM; WT mice: n=12, Nlrp3−/− mice: n=10, *p<0.05; **p<0.01; ***p<0.001. (F) Cryosections of spleen from DSS-treated WT mice administered with TiO2 or TiO2-free water were fixed and nuclei were stained with DAPI (blue). The presence of crystals (red) was analysed combining confocal reflection microscopy with fluorescence microscopy. Results are representative of four experiments. Scale bars: 10 μm.
Crystal forms (figure 2D). TiO₂ microparticles induced IL-18 cytokine secretion in Caco-2 and THP-1 cells (figure 2E,F). Moreover, siRNA knockdown of the inflammasome components NLRP3, ASC and caspase-1 in THP-1 cells significantly reduced the levels of IL-1β, demonstrating that TiO₂-induced IL-1β release is NLRP3 inflammasome-dependent (figure 2G).

TiO₂ accumulates in human IECs and macrophages in a dose-dependent manner
In agreement with previous reports,²³ incubation of THP-1 cells with food grade TiO₂ microparticles led to intracellular accumulation of dark aggregates (figure 3A). Additionally, we observed that TiO₂ was taken up by murine BMDMs (figure 3B). Pretreatment of BMDMs with cytochalasin D, an inhibitor of endocytosis, did not inhibit the accumulation of TiO₂ aggregates (figure 3C), pointing to an endocytosis-independent uptake mechanism. As the intestinal epithelium is subjected to major exposure to TiO₂, we investigated whether TiO₂ also penetrates IECs. Treatment of monolayers of the IEC lines HT-29 and Caco-2 with TiO₂ microparticles for 24 h resulted in intracellular accumulation of TiO₂ (figure 3D,E). To mimic the physiological setting in the intestine, tight monolayers of Caco-2 cells growing on transwell filters were stimulated apically with TiO₂. Cross-sections of these monolayers revealed dark, intracellular aggregates of microparticles (figure 4C,D), which were present in a dose-dependent manner (figure 4A,B). These findings were confirmed by electron microscopy: TiO₂ was detectable in cross-sections of Caco-2 monolayers as electron dense aggregates (figure 4E) and elemental analysis of selected areas confirmed that aggregates contained titanium (figure 4F).

TiO₂ triggers ROS production and epithelial permeability in IECs
The uptake of TiO₂ particles has been associated with the production of ROS,¹⁶ which are major inducers of NLRP3 inflammasome activation via stress-associated signals.⁴¹ Our results show that TiO₂ microparticles induced ROS production in HT-29 (figure 5A) and Caco-2 cells (figure 5B) in a dose-dependent manner. Particulate matter has been shown to induce inflammasome activation through lysosomal rupture following endocytosis.²⁸ To investigate whether this is also the case with TiO₂ microparticles, lysosomal staining with acridine orange was performed on IECs stimulated with TiO₂. Fluorescence microscopy did not show any loss of lysosomal integrity in TiO₂-treated Caco-2 and HT-29 cells (see online supplementary figure S2A–C). Based on our results showing intracellular accumulation of TiO₂ in epithelial monolayers, we sought to
investigate the effects of TiO2 on epithelial permeability. For this purpose, we used the transwell model system with Caco-2 cells, which form tight monolayers with an apical-basolateral polarity. The treatment of Caco-2 with 20 μg/mL TiO2 resulted in a significant increase of epithelial permeability (figure 5C).

Patients with UC having active disease present increased levels of titanium in systemic circulation
Given the increased permeability in the mucosa of patients with IBD, and based on our findings showing the proinflammatory effects of food-derived TiO2 and its ability to traverse the intestinal mucosa in vivo, we hypothesised that patients with IBD may have a higher systemic burden of titanium. Using ICP-MS, we assessed the levels of titanium in whole blood of healthy donors and patients with IBD. Initial data analysis did not reveal significant differences in titanium levels when comparing healthy donors with patients with IBD (figure 6A). However, we observed significantly higher titanium levels in the subgroup of patients with UC having active disease (figure 6B).

DISCUSSION
Our results show that oral administration of TiO2 nanoparticles enhances intestinal inflammation in the DSS mouse model of colitis. Although TiO2 concentrations used are higher than the amounts the human gut is daily exposed to, the results obtained suggest that TiO2 is biologically active and support a growing body of literature evidencing the deleterious effects of TiO2 in vivo.42–48 TiO2 proinflammatory effects required NLRP3 inflammasome activation as shown when comparing WT with Nlrp3−/− mice. The role of NLRP3 in DSS colitis is controversial with reports showing detrimental49 50 and protective51 52 roles for NLRP3. In our study, 1.5% DSS induced a mild inflammation in WT and Nlrp3−/− mice and we did not detect significant differences between the two groups. Despite the relatively large consumption of TiO2, stability and aggregation in GI fluids has received limited attention. Recent studies using in vitro human digestion models have shown that SiO2 and Ag nanoparticles, which agglomerated under conditions of low pH and high electrolytes as in the gastric compartment, become bioavailable under intestinal conditions.49 50 Our mouse experiments demonstrate a dose-dependent accumulation of crystals in the spleen, pointing to the fact that ingested TiO2 can traverse the intestinal mucosa and reach the systemic circulation. This finding agrees with recent studies showing that TiO2 nanoparticles translocate through the intestinal epithelium and accumulate in the spleen in orally administered mice.51 52 Of note, we could not find accumulation of TiO2 crystals in the colonic epithelium, suggesting that TiO2 nanoparticles are mostly absorbed in the small intestine. This is in accordance with previous studies showing that TiO2 particles translocate through the epithelium lining the small intestine, in particular Peyer’s patches.20 51 We show that TiO2 nanoparticles and microparticles induce NLRP3-ASC-caspase-1 assembly and caspase-1 cleavage, resulting in the release of functionally active IL-1β in Caco-2 and THP-1 cells in the absence of other stimulus. TiO2 microparticles also induced IL-18 secretion in both cell lines. Since TiO2 microparticles contain a significant amount of nanosized particles, it is likely that the effects observed on microparticle stimulation are due, at least in part, to the presence of TiO2 nanoparticles. Knockdown of NLRP3, ASC and caspase-1 abrogated TiO2-induced IL-1β expression in macrophages, evidencing the crucial role of the NLRP3 inflammasome in TiO2-mediated proinflammatory responses. In vitro experiments showed that TiO2 microparticles are taken up by human non-phagocytic IECs as well as macrophage-like THP-1 cells. In agreement with previous reports showing that TiO2 particles can enter cells via non-endocytic mechanisms,53 our results point to that TiO2 uptake was not endocytosis-mediated, and no specific subcellular structure was found to be associated with TiO2 accumulations. Moreover, we did not observe an involvement of lysosomal structures or TiO2-induced lysosomal damage, suggesting that TiO2 particles might interact with lipid membranes and are passively transported into cells, as seen with silica nanoparticles.54 TiO2 particles were shown to disturb...
epithelial barrier function in Caco-2 monolayers. Although small, this effect hints at an influence of TiO₂ in epithelial permeability, and is in accordance with studies showing that TiO₂ nanoparticles induce tight junction remodelling in the intestinal epithelium of mice.^{51} Mimicking human gut exposure to TiO₂ particles in vitro meets often with difficulties: as TiO₂ particles are in an aqueous suspension, they tend to precipitate forming blankets by the end of the incubation time. This might negatively affect cellular responses on TiO₂ stimulation, especially at high concentrations. The detection of significant ROS production in TiO₂-stimulated IECs is in line with previous studies showing that uptake of particulate matter is accompanied by ROS production and inflammasome activation.^{29-55} Strikingly, ICP-MS analysis revealed increased levels of titanium in the blood of patients with UC having active disease, pointing to that the disturbed barrier function associated with IBD allows for a higher translocation of TiO₂ nanoparticles into the systemic blood stream. Absorbed TiO₂ might enhance inflammation and barrier permeability, facilitating further TiO₂ penetration on subsequent exposures. This would support the suggested therapeutic benefit from low inorganic particle diet observed in patients with IBD. For example, the reduction of nano and microparticles in the diet of patients with CD significantly decreased their disease activity within a month of treatment.^{56} In contrast, a posterior multi-centered follow-up with 83 patients with CD did not show any effect of a microparticle free diet.^{57} However, in this trial dietary calcium was also restricted, and effects may have been masked by the corticosteroid treatment received by the participants of the study.

In summary, these findings show that orally administered TiO₂ nanoparticles worsen intestinal inflammation in mice through the activation of NLRP3 inflammasome. TiO₂ is one of

Figure 4 Aggregates of titanium dioxide (TiO₂) accumulate intracellularly in Caco-2 cells in a dose-dependent manner. (A and B), Caco-2 cells grown on transwells were incubated with 100 µg/mL TiO₂ for 24 h. Cross-sections were stained with H&E (A) or DAPI to visualise nuclei and the same frame was observed in phase-contrast view to identify TiO₂ aggregates (B). Scale bar: 25 μm. TiO₂ aggregates were located intracellularly in aggregates of various sizes, indicated by arrows. (C–F) Cross-sections were processed as described above, and TiO₂ aggregates and nuclei were counted. Incubation of Caco-2 for 24 h with indicated amounts of TiO₂ resulted in a dose-dependent increase of intracellular TiO₂ (C). The size of TiO₂ aggregates also increased in a dose-dependent manner. Electron dense regions with a diameter larger than 3.5 μm were considered as large aggregates (D). Cross-sections were subjected to transmission electron microscopy, revealing electron-dense aggregates indicated by arrows (E). The elemental analysis of a selected region (indicated as asterisk in panel E) confirmed that aggregates contained titanium, which appeared as main peak at 4.5 keV (indicated by arrow) (F).

Figure 5 Titanium dioxide (TiO₂) triggers production of reactive oxygen species (ROS) and influences epithelial permeability in human intestinal epithelial cells (IECs). (A and B) HT-29 showed significantly increased production of ROS at the highest dose of 100 μg/mL of TiO₂ (A). In Caco-2 cells, a significant increase of ROS was detected at TiO₂ concentrations of 20 and 100 µg/mL (B). (C) Monolayers of Caco-2 cells were treated with indicated amounts of TiO₂ for 24 h, and incubated apically with FITC-labelled beads for 1 h. An increase of basolateral fluorescence was observed in TiO₂-treated cells as compared with non-treated cells (n=5, **p<0.05).
the most produced nanomaterials in the world and its use as food additive is on the rise. Since TiO₂ is also used in pharmaceu-
tical formulations, local luminal concentrations of TiO₂ might reach substantial levels. Depending on the properties of the
pills, they disintegrate at different sections of the GI tract and can affect the epithelium in a very distinct and concentrated
manner. A local accumulation of TiO₂ may have profound effects on patients with a disturbed barrier function as found in
IBD. Very high concentrations of particles are often chosen in toxicity studies to ensure bioactivity across the assays evalu-
ated. Hence, there is a pressing need for biologically relevant human exposure information to facilitate interpretation of
assay results. Since the long-term effects of dietary TiO₂ may be revealed only in decades, after a lifetime exposition to TiO₂,
our data suggest a more cautious use of these particles.

Correction notice This article has been corrected since it published online first. An Open Access licence has been added.

Acknowledgements The authors acknowledge the expert technical support from Gery Barthet in preparing samples for electron microscopy of the Center for Microscopy and Image Analysis, University of Zurich. Contribu-
tors PAR, HMB: Data acquisition, manuscript preparation; BM, SL, KA, MRS, AF-T: Data acquisition; MS, KAW, IF-W, MH, TK: Critical revision; GR: Study supervision and manuscript preparation.

Funding This research was supported by a grant from the Swiss Philanthropy Foundation to GR and research grants from the Swiss National Science Foundation (Grant No. 314730_153380) and the Swiss IBD Cohort (Grant No. 314730_153380).

Competing interests None declared.

Provenance and peer review Commissioned; externally peer reviewed.

Open Access This is an Open Access article distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which
permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is
properly cited and the use is non-commercial. See: http://creativecommons.org/ licenses/by-nc/4.0/

REFERENCES
1 Maloy KJ, Powrie F. Intestinal homeostasis and its breakdown in inflammatory bowel disease. Nature 2011;474:298–306.
2 Scharl M, Rogler G. Inflammatory bowel disease pathogenesis: what is new? Curr Gastroenterol Rep 2012;14:301–9.
3 Rogler G. Interaction between susceptibility and environment: examples from the digestive tract. Dig Dis 2011;29:136–43.
4 Rogler G, Vavrikova S. Exposure in IBD: recent insights in environmental factors that influence the onset and course of IBD. Inflamm Bowel Dis 2015;21:400–8.
5 Hanauer SB. Inflammatory bowel disease: epidemiology, pathogenesis, and therapeutic opportunities. Inflamm Bowel Dis 2006;12(Suppl 1):S3–9.
6 Lofthus EV Jr. Clinical epidemiology of inflammatory bowel disease: Incidence, prevalence, and environmental influences. Gastroenterology 2004;126:1504–17.
7 Weir A, Westerhoff P, Fabricius L, et al. Titanium dioxide nanoparticles in food and personal care products. Environ Sci Technol 2012;46:242–50.
8 EFSA. Opinion of the Scientific Panel on Food Additives, Flavourings, Processing Aids and materials in Contact with Food on a request from the Commission related to the safety in use of rutile titanium dioxide as an alternative to the presently permitted anatase form. EFSA J 2004;163:1–12.
9 Lomer MC, Hutchinson C, Volker S, et al. Dietary sources of inorganic microparticles and their intake in healthy subjects and patients with Crohn’s disease. Br J Nutr 2004;92:947–55.
10 [No authors listed]. Specifications for the identity and purity of food additives and their toxicological profile. 2001. Available from: http://ec.europa.eu/food/food/foodadditives/docs/10170717.pdf
11 Other authors listed. The inorganic particle size distribution of aluminum, anatase, and rutile forms of titanium dioxide: differences in physical properties between these forms. Food Chem 2015;184:406–13.
12 U.S. Environmental Protection Agency. Titanium dioxide. 2002;2002:59:1–22.
13 Maloy KJ, Powrie F. Intestinal homeostasis and its breakdown in inflammatory bowel disease. Gut 2011;60:1287–96.
14 Birdwell P, Brearley J, Bowden C, et al. A study of the titanium dioxide concentration in UK retail pasta. J Food Sci Technol 2015;52:335–42.
15 Wang J, Zhou Y, Meng J, et al. Titanium dioxide nanoparticles induce DNA damage and genetic instability in vivo. Cancer Res 2009;69:8784–9.
16 Wang JJ, Sanderson BJ, Wang H. Cyto- and genotoxicity of ultrafine TiO₂ particles in cultured human lymphoblastoid cells. Mutat Res 2007;628:99–106.
17 Schaebben SK, Theron LT, Baker D, et al. Nanomaterial cytotoxicity is composition, size, and cell type dependent. Part Fibre Toxicol 2010;7:22.
18 Baan R, Straif K, Grosse Y, et al. Carcinogenicity of carbon black, titanium dioxide, and talc. Lancet Oncol 2006;7:295–296.
19 Wang J, Zhou G, Chen C, et al. Acute toxicity and biodistribution of different sized titanium dioxide particles in mice after oral administration. Toxicol Lett 2007;168:176–85.
20 Borm PJ, Robbins D, Haubold S, et al. The potential risks of nanomaterials: a review carried out under the ECETOC. Part Fibre Toxicol 2006;3:11.
21 Powell JJ, Ayling CC, Harvey RS, et al. Characterisation of inorganic microparticles in pigment cells of human gut associated lymphoid tissue. Gut 1996;38:390–5.
22 Lomer MC, Thompson RP, Powell JJ. Fine and ultrafine particles of the diet: influence on the mucosal immune response and association with Crohn’s disease. Proc Nutr Soc 2002;61:123–30.
23 Franchi L, Eigenbrod T, Muñoz-Planillo R, et al. The inflammasome: a caspase-1-activation platform that regulates immune responses and disease pathogenesis. Nat Immunol 2009;10:241–7.
24 Yazdi AS, Guarda G, Riteau N, et al. Nanoparticles activate the NLRp3 inflammasome and cause pulmonary inflammation through release of IL-1α and IL-1ß. Proc Natl Acad Sci USA 2010;107:19446–54.
25 Villani AC, Lemiere M, Fortin G, et al. Common variants in the NLRP3 region contribute to Crohn’s disease susceptibility. Nat Genet 2009;41:71–6.
26 Marialihasan S, Weiss DS, Newton K, et al. Cryopyrin activates the inflammasome in response to toxins and ATP. Nature 2006;440:228–32.
27 Martinson F, Pernillli V, Mayor A, et al. Gout-associated acid uric crystals activate the NALP3 inflammasome. Nature 2006;440:237–41.
28 Franchi L, Muñoz-Planillo R, Riteau N, et al. Sensing and secreting to microbes through the inflammasomes. Nat Immunol 2012;13:325–32.
29 Honvung V, Bauernfeind F, Halle A, et al. Silica crystals and aluminum salts activate the NALP3 inflammasome through phagosomal destabilization. Nat Immunol 2008;9:847–56.
30 Dostert C, Périlli V, Van Bruggen R, et al. Innate immune activation through Nalp3 inflammasome sensing of asbestos and silica. Science 2008;320:674–7.
31 Obermeier F, Kojunarihard G, Hans W, et al. Interferon-gamma (IFN-gamma)- and tumour necrosis factor (TNF)-induced nitric oxide as toxic effector molecule in chronic dextran sulphate sodium (DSS)-induced colitis in mice. Clin Exp Immunol 1999;116:238–45.
32 Becker C, Fattini MC, Neunath MF. High resolution colonoscopy in live mice. Nat Protoc 2010;5:290–4.
33 Hausmann M, Obermeier F, Paper DH, et al. In vivo treatment with the herbal phenylpropanoid acetoside ameliorates intestinal inflammation in dextran sulphate sodium-induced colitis. Clin Exp Immunol 2007;148:373–81.
34 Wirtz S, Neufert C, Weigmann B, et al. Chemically induced mouse models of intestinal inflammation. Nat Protoc 2007;2:541–6.
35 Jäger GP, Harlew M, Ziegler U, et al. Cerebrospinal fluid segregation optic neuropathy: an experimental model and a hypothesis. Br J Ophthalmol 2010;94:1088–93.
36 Obermeier F, Hausmann M, Kerferd M, et al. IL-15 protects intestinal epithelial cells. Eur J Immunol 2006;36:2691–9.
36 Pittet V, Juillerat P, Mortet C, et al. Cohort profile: the Swiss Inflammatory Bowel Disease Cohort Study (SIBDCS). Int J Epidemiol 2009;38:922–31.
37 Harvey RF, Bradshaw JM. A simple index of Crohn’s-disease activity. Lancet 1980;1:514.
38 Rachmilewitz D. Coated mesalazine (5-aminosalicylic acid) versus sulphasalazine in the treatment of active ulcerative colitis: a randomised trial. Br Med J 1989;298:82–6.
39 Shinohara N, Danno N, Ichinose T, et al. Tissue distribution and clearance of intravenously administered titanium dioxide (TiO(2)) nanoparticles. Nanotoxicology 2014;8:132–41.
40 Chen J, Dong X, Zhao J, et al. In vivo acute toxicity of titanium dioxide nanoparticles to mice after intraperitoneal injection. J Appl Toxicol 2009;29:330–7.
41 Tschopp J, Schroder K. NLRP3 inflammasome activation: The convergence of multiple signalling pathways on ROS production? Nat Rev Immunol 2010;10:210–15.
42 Duan Y, Liu J, Ma L, et al. Toxicological characteristics of nanoparticulate anatase titanium dioxide in mice. Biomaterials 2010;31:894–9.
43 Jovanovic B. Critical review of public health regulations of titanium dioxide, a human food additive. Int J Environ Assess Manag 2015;11:10–20.
44 Nogueira CM, de Azevedo WM, Dagli ML, et al. Titanium dioxide induced inflammation in the small intestine. World J Gastroenterol 2012;18:4729–35.
45 Bauer C, Duwell P, Mayer C, et al. Colitis induced in mice with dextran sulfate sodium (DSS) is mediated by the NLRP3 inflammasome. Gut 2010;59:1192–9.
46 Zaki MH, Boyd KL, Vogel P, et al. The NLRP3 inflammasome protects against loss of epithelial integrity and mortality during experimental colitis. Immunity 2010;32:379–91.
47 Hirotta SA, Ng J, Lueng A, et al. NLRP3 inflammasome plays a key role in the regulation of intestinal homeostasis. Inflamm Bowel Dis 2011;17:1359–72.
Supplementary Figures

Supplementary Figure 1. LPS induces the expression of inflammasome components in human IEC lines.

Commonly used IEC lines were stimulated with crude LPS at a concentration of 10 µg/ml for 24 h. Expression of NLRP3 and IL-18 was confirmed by Western Blot.
Supplementary Figure 2. Uptake of TiO$_2$ does not affect lysosomal stability in IECs.

A, B, and C, Caco-2 (A) and HT-29 (B) were grown on coverslips and left untreated, challenged with cytochalasin D, 20 μg/ml TiO$_2$, or with both compounds for 24 h and stained with acridine orange, which was incorporated in the cytosol (green) and lysosomes (red). No difference in number and structure of lysosomal compartments was observed as compared to untreated cells. Scale bars: 20 μm.

C, magnification of acridine-orange stained Caco-2 cells and HT-29 incubated with TiO$_2$, or TiO$_2$ and cytochalasin D. Lysosomes were present as round orange structure distributed equally in each cell. Blue specks are TiO$_2$ aggregates (indicated by arrow). Intact lysosomes were found in both treatment groups. Scale bars: 20 μm.