Live pigs produced from genome edited zygotes

Simon G. Lillico1, Chris Proudfoot1, Daniel F. Carlson3,4, Dana Stverakova1, Claire Neil1, Carol Blain1, Tim J. King1, William A. Ritchie2, Wenfang Tan3, Alan J. Mileham5, David G. McLaren5, Scott C. Fahrenkrug3,4 & C. Bruce A. Whitelaw1

1The Roslin Institute and R(D)SVS, Easter Bush Campus, University of Edinburgh, Edinburgh, EH25 9RG, UK, 2Roslin Embryology, Edinburgh, UK, 3Center for Genome Engineering and Department of Animal Sciences, University of Minnesota, Saint Paul, MN 55108, USA, 4Recombinetics Inc, 2575 University Ave. West, Suite 100, Saint Paul, MN 55108, USA, 5Genus plc, 1525 River Rd., DeForest, WI 53532, USA.

Transcription activator-like effector nuclease (TALEN) and zinc finger nuclease (ZFN) genome editing technology enables site directed engineering of the genome. Here we demonstrate for the first time that both TALEN and ZFN injected directly into pig zygotes can produce live genome edited pigs. Monoallelic as well as heterozygous and homozygous biallelic events were identified, significantly broadening the use of genome editor technology in livestock by enabling gene knockout in zygotes from any chosen mating.

Gene mutation provides a powerful strategy to investigate gene function and has potential biotechnology and animal breeding applications1,2. Traditionally for livestock, specific gene knockout strategies have been based around homologous recombination in somatic cells destined for use in somatic cell nuclear transfer (SCNT) protocols3. Although significantly more efficient than when first developed, SCNT is limited by the need to isolate cells for any given genotype. The ability to perform gene knockout directly in the zygote of any chosen mating would enable engineering of any genotype.

The recent development of hybrid molecular enzymes (genome editing tools) capable of directing double-strand breaks to a specific target sequence provides a new tool for reverse genetics4,5. These targetable DNA cleavage reagents can be engineered to recognize and cleave a precise DNA sequence within a genome. The induced double strand breaks are a target for repair by the error prone non-homologous end-joining repair pathway, resulting in targeted mutation in a proportion of events. Unlike transgenesis, genome editing does not require a transferred DNA transgene and no genetic mark beyond that of the mutation is introduced into the genome.

Genome editing technology has been successfully applied to zebrafish6, rabbits7 and rodents8,9 by the direct injection of embryos, but in livestock utility has remained restricted to SCNT methodology10–13. To extend this technology beyond that of our previous work using TALEN SCNT13, we sought to establish genome editing technology in livestock by zygote injection of either TALEN or ZFN and present data on the effect of dose of genome editor on embryo development and frequency of live births. In this study we demonstrate that both TALEN and ZFN technology can be efficiently applied to engineer pig zygotes that result in gene edited live births, both mono- and bi-allelic (Table 1; Supplementary Fig. 1), significantly broadening the use of editor technology in livestock.

Results

With the aim to demonstrate the potential of this technology for animal breeding we selected RELA as the target locus. We have previously argued for a role of porcine RELA in the pathology associated with African Swine Fever Virus infection in pigs. Specifically, polymorphic sequence variation within the transactivation domains of porcine RELA parallels the differing severity associated with African Swine Fever Virus infection observed in domestic pigs such as warthogs14. Therefore we designed genome editing tools to target mutation to this region of the porcine RELA gene (Fig. 1A). The TALENs were designed using the TALE-NT software13 and assembled to target a region located at 1458 to 1505 bp relative to the translational start site in the porcine RELA CDNA sequence (NM_001114281).

Studies in rats demonstrated that zygote cytoplasmic injection was as effective as pronuclear injection for the delivery of genome editors. Given the difficulty associated with visualization of the pronucleus in porcine zygotes,
we elected to perform cytoplasmic injection. Oocytes were harvested from slaughterhouse material for in vitro studies and superovulated artificially inseminated sows were used for embryos destined for transfer into recipients. Initially 208 zygotes were subjected to a single 10 pl cytoplasmic injection of a solution composed 20 ng/μl RELA TALEN mRNA with 5 ng/μl EGFP mRNA (to enable visual identification and isolation of embryos that functionally translated the injected mRNA). After approximately 3 days of in vitro development, GFP fluorescence was detected in 36% of embryos. The presence of non-expressing embryos may reflect as yet unknown species differences in the ability to process introduced RNA since it is not generally seen in rodents nor in bovine but in our hands is reproducible in pigs. We conclude that mRNA injected into the cytoplasm of pig zygotes translates to functional protein in a proportion of embryos (Table 1).

GFP positive embryos were screened for editing events by Cel1 surveyor assay (Fig. 1B) and sequencing of PCR amplified fragments (Supplementary Fig. 2). We detected 16 editing events in 46 GFP-positive embryos analyzed (35%). In a second experiment we tested 34 embryos injected with 2 pl of 20 ng/μl RELA TALEN mRNA but without selection for GFP activity; and detected 2 editing events (6%). In two further experiments where 2 pl of 10 ng/μl and 2 ng/μl RELA TALEN mRNA was injected, 0% and 18% editing frequency, respectively, were observed. We suspect the lack of cutting observed for the 10 ng/μl dose may simply reflect the small tested sample size (n = 3). In total we identified 21 editing events in porcine embryos in vitro (21% of tested embryos: Table 1), and a high frequency of these editing events were biallelic in nature (33% of edited embryos: Table 1). Calculating this as a frequency of tested embryos, we achieved a biallelic editing frequency of 7%. Since both edited embryos: Table 1). Calculating this as a frequency of tested embryos, we achieved a biallelic editing frequency of 7%. Since both edited embryos: Table 1). Calculating this as a frequency of tested embryos, we achieved a biallelic editing frequency of 7%. Since both edited embryos: Table 1). Calculating this as a frequency of tested embryos, we achieved a biallelic editing frequency of 7%. Since both edited embryos: Table 1). Calculating this as a frequency of tested embryos, we achieved a biallelic editing frequency of 7%. Since both edited embryos: Table 1). Calculating this as a frequency of tested embryos, we achieved a biallelic editing frequency of 7%. Since both edited embryos: Table 1). Calculating this as a frequency of tested embryos, we achieved a biallelic editing frequency of 7%. Since both edited embryos: Table 1). Calculating this as a frequency of tested embryos, we achieved a biallelic editing frequency of 7%. Since both edited embryos: Table 1). Calculating this as a frequency of tested embryos, we achieved a biallelic editing frequency of 7%. Since both edited embryos: Table 1). Calculating this as a frequency of tested embryos, we achieved a biallelic editing frequency of 7%. Since both edited embryos: Table 1). Calculating this as a frequency of tested embryos, we achieved a biallelic editing frequency of 7%. Since both

TALEN	Injected zygotes	GFP fluorescence (visual)	PCR amplified (tested)	Edited* (% of tested)	Biallelic (% of tested)
20 ng/μl	208	75	46	16 [35%]	5 [11%]
20 ng/μl	68	ND	34	2 [6%]	1 [3%]
10 ng/μl	38	ND	3	0 [0%]	0 [0%]
2 ng/μl	53	ND	17	3 [18%]	1 [6%]
total	367	NA	100	21 [21%]	7 [7%]

*Edited confirmed by sequencing PCR product.
**Of the 4 biallelic TALEN mediated editing events, only 1 was as homozygous event.
***The 1 biallelic ZFN mediated event was homozygous.

ND – not determined.
NA – not appropriate.

In parallel we tested a pair of ZFNs with a target location of 1496 to 1532 bp relative to the translational start site in porcine RELA cDNA sequence (NM_001114281). One transfer of embryos injected with RELA ZFN mRNA at 10 ng/μl failed to generate a pregnancy while the two transfers of embryos injected with RELA ZFN mRNA at 2 ng/μl both became pregnant resulting in the birth of 9 piglets. Of these 9 piglets, one carried an editing event at the ZFN target site (11%), comparable in frequency to our observed TALEN editing efficiency (Table 1). Direct sequencing of PCR products revealed a variety of editing events in piglets derived from TALEN and ZFN injected embryos (Supplementary Fig. 3). Analysis of ear biopsy isolated genomic DNA identified both deletions and insertions at the target sites. Sequence data from 2 animals constituted multiple overlapping traces indicating two or more editing events; this was subsequently confirmed by sequencing of multiple cloned PCR products. Presuming that in these cases of multiple editing the frequency of events detected in ear biopsy reflects frequency in the early embryo, designer nuclease editing can remain active beyond the 2-cell stage (i.e. some events display low representation in the PCR pool and are therefore only present in a subset of cells). In total, 5 biallelic events were identified from 9 edited piglets (56%; 9% of piglets born); 4 from TALEN and 1 from ZFN mRNA injections. Of these biallelic events 2 were homozygous, with 3 displaying different indels on each allele. While both piglets carrying homozygous biallelic event survived farrowing (milk in stomach post mortem), they were both accidentally killed by their mother within the first 24 hours of life.

Table 1 | Numbers for TALEN edited indels in porcine embryos in vitro and piglets

Piglets	Transferred embryos	Recipients	Pregnancies	Piglets born	Edited* (% of born)	Biallelic (% of born)
20 ng/μl TALEN	60	2	0	NA	NA	NA
10 ng/μl TALEN	67	2	2	1	7	0 [0%]
2 ng/μl TALEN	266	7	1	39	8 [21%]	4 [10%]***
10 ng/μl ZFN	29	1	0	NA	NA	NA
2 ng/μl ZFN	80	2	2	9	1 [11%]	1 [11%]***
total	502	14	8	55	9 [16%]	5 [9%]

*Edited confirmed by sequencing PCR product.
**Of the 4 biallelic TALEN mediated editing events, only 1 was as homozygous event.
***The 1 biallelic ZFN mediated event was homozygous.

ND – not determined.
NA – not appropriate.
editing tools by the direct injection into the zygote is both efficient and able to generate biallelic mutations. This novel achievement paves the way for precise genome engineering of livestock independent of SCNT (cloning) technology.

Methods

Editor design and construction. Two types of editing tool were used: TALEN and ZFN. Both were designed to target the same region of porcine RELA gene. TALEN: TALEN were designed using the TALE-NT software and assembled using methods described previously11–13. Briefly, intermediary arrays were produced for the porcine RELA TALEN pair for Golden Gate cloning as follows; 150 ng each pFUS_A, pFUS_B, pLR-X and pC- which was then re-annealed before being subjected to SURVEYOR detection kit, TRANSGENOMIC for nuclease activity which cuts at 5‘-GCAATAACACTGACCCGACCGTG-3’ and was supplied as mRNA. Transient transfection of fibroblasts showed a cutting frequency of 45%. ZFN: ZFNs targeted to porcine RELA were purchased from Sigma. The ZFN displayed 84.7% cutting in MEL1 assay (Sigma data sheet) and was supplied as mRNA.

Zygote injections. To establish the frequency of genome editing in pig embryos an in vitro embryo culture experiment was performed. Pig Ovaries were collected, washed with pre-warmed phosphate buffered saline at 38 °C and follicles aspirated. Oocytes were washed in culture medium 5A before culturing in maturation medium for 4 hours (22 hours plus hormones and 22 hours minus hormones; 39 °C, 5% CO2), followed by gentle pipetting to remove cumulus cells and IVF for 6 hours (38.5 °C in 5% CO2). Zygotes were transferred to NCUS-23 HEPS base medium and subjected to a single 2–10 pl cytoplasmic injection of mRNA at 2, 10 or 20 ng/ul and incubated for 22 hours minus hormones and 23 hours plus hormones. Following surgery, the reproductive tract was exposed and embryos were transferred into the oviduct of recipients using a 3.5 French gauge tomcat catheter. Litter sizes ranged from 3–17 piglets.

Genotyping. Genome editing events in porcine embryos were identified by direct sequencing of amplified, isolated DNA and through a gel electrophoresis assay. The latter identified mismatch between the two allelles through digestion by the Cel1 enzyme. Sequencing: DNA was amplified from harvested embryos using the REPLIG® mini kit,Qiagen®. The REPLI®-g® DNA sample was then used as a template for High fidelity PCR (AccuPrime™ Tag DNA Polymerase High Fidelity, Invitrogen®) using p65NJF1 5‘-GCAATAACACTGACCCGACCGTG-3‘ and p65NRI 5‘-GCAGGTGTACCCAGTTTATTAGGACT-3‘ as primers designed to amplify a 308 base pair region of the wild-type porcine RELA gene that overlapped the TALEN and ZFN cut sites. The PCR product was purified then sent for sequence analysis to allow identification of editing events. Alternatively, the PCR products were cloned into a plasmid and individual plasmids sequenced allowing homologous and mosaic editing events to be analysed separately. Cell assay: The presence of mutations in the RELA gene were additionally identified using a Cel1 assay (SURVEYOR® mutation detection kit, TRANSGENOMIC®). The high fidelity PCR product was denatured/ re-annealed before being subjected to SURVEYOR® nuclease activity which cuts at base mismatches highlighting insertions, deletions and substitutions. The resulting fragments were subsequently separated by gel electrophoresis for analysis with size differences identifying edited events.

1. Fahrenkrug, S. C. et al. Precision genetics for complex objectives in animal agriculture. Anim. Sci. 88, 2530–2539 (2010).
2. Tan, W. S., Carlson, D. F., Walton, M. W., Fahrenkrug, S. C. & Hackett, P. B. Precision editing of large animal genomes. Adv. Genet. 80, 37–97 (2012).
3. Clark, A. J. & Whitelaw, C. B. A. A future for transgenic livestock. *Nat. Rev. Genet.* **4**, 825–833 (2003).
4. Urnov, F. D., Rebar, E. J., Holmes, M. C., Zhang, H. S. & Gregory, P. D. Genome editing with engineered zinc finger nucleases. *Nat. Rev. Genet.* **11**, 636–646 (2010).
5. Miller, J. C. *et al.* A TALE nuclease architecture for efficient genome editing. *Nat. Biotechnol.* **29**, 143–148 (2011).
6. Bedell, V. M. *et al.* In vivo genome editing using a high-efficiency TALEN system. *Nature* **491**, 114–118 (2012).
7. Flisokowska, T. *et al.* Efficient immunoglobulin gene disruption and targeted replacement in rabbit using zinc finger nucleases. *PLoS ONE* **6**, e21045 (2011).
8. Guerts, A. M. *et al.* Knockout rats via embryo microinjection of zinc-finger nucleases. *Science* **325**, 433 (2009).
9. Carbery, I. D. *et al.* Targeted genome modification in mice using zinc-finger nucleases. *Genetics* **186**, 451–459 (2010).
10. Whyte, J. J. *et al.* Gene targeting with zinc finger nucleases to produce cloned eGFP knockout pigs. *Mol. Reprod. Dev.* **78**, 2 (2011).
11. Hauschild, J. *et al.* Efficient generation of biallelic knockout pigs using zinc-finger nucleases. *Proc. Natl. Acad. Sci. USA* **108**, 12013–12017 (2011).
12. Yang, D. *et al.* Generation of PPARα mono-allelic knockout pigs via zinc-finger nucleases and nuclear transfer. *Cell Res.* **21**, 979–982 (2011).
13. Carlson, D. F. *et al.* Efficient TALEN-mediated gene knockout in livestock. *Proc. Natl. Acad. Sci. USA* **109**, 17382–17387 (2012).
14. Palgrave, C. J. *et al.* Species-specific variation in RELA underlies differences in NF-kB activity: a potential role in African swine fever pathogenesis. *J. Virol.* **85**, 6008–6014 (2011).

Acknowledgements

This work was supported by Genus plc, Recombinetics Inc and through BBSRC Institute Strategic Programme Grant; DS was supported by a Genus plc internship at The Roslin Institute; CP was supported by NSF IOS 0965413. CBAW is grateful to advice on ZFN tools provided by Fyodor Urnov.

Author contributions

S.G.L., C.P., D.F.C., T.J.K., A.J.M., D.G.M., S.C.F. and C.B.A.W. conceived and designed the study. S.G.L., C.P., D.F.C., D.S., C.N., C.B., T.J.K., W.A.R. and W.T. performed the study. S.G.L., C.P., S.C.F. and C.B.A.W. analysed and wrote the manuscript. All authors reviewed the manuscript.

Additional information

DFC and SCF either have equity and/or work for Recombinetics Inc. WAR works for RoslinEmbryology. ALM and DGM work for Genus plc. CBAW consults for Genus plc and is on the Scientific Advisory Board of Recombinetics Inc.

Supplementary information accompanies this paper at http://www.nature.com/scientificreports

Competing financial interests: The authors declare no competing financial interests.

How to cite this article: Lillico, S.G. *et al.* Live pigs produced from genome edited zygotes. *Sci. Rep.* **3**, 2847; DOI:10.1038/srep02847 (2013).

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported license. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-nd/3.0