Evolution of the ATLAS PanDA Production and Distributed Analysis System

T. Maeno1, K. De2, T. Wenaus1, P. Nilsson2, R. Walker3, A. Stradling2, V. Fine1, M. Potekhin1, S. Panitkin1, G. Compostella4, for the ATLAS Collaboration

1 Brookhaven National Laboratory, USA, 2 University of Texas at Arlington, USA, 3 Ludwig-Maximillians-Universität München, Germany, 4 Max-Planck-Institut für Physik, Germany

Introduction

The PanDA (Production and Distributed Analysis System) is the ATLAS workload management system for processing all Monte-Carlo simulation and data reprocessing jobs in addition to user and group analysis jobs. PanDA has performed well with high reliability and robustness during the two years of LHC data-taking, while being actively evolved to meet the rapidly changing requirements for analysis use cases. We will present a brief overview of the PanDA system, an overview of system evolution, results from the analysis of two years of PanDA usage statistics, and plans for the future.

The PanDA System

- The PanDA server [1]
 - the main component for managing a central task queue for all jobs
 - a brokerage module operates to prioritize and assign work on the basis of job type, priority, input data and its locality, and available CPU resources
- The pilot [2]
 - retrieves a job based on its priority from the PanDA server
 - runs the jobs as soon as CPU slots become available
- The autopyfactory [3]
 - pre-schedules pilots to OSG and EGEE/EGI grid sites using Condor-G
- The PanDA monitor [4]
 - Web-based monitoring system both for production and analysis

Improvements

Rebrokerage for Analysis jobs

- The brokerage assigns jobs to sites based on input data locality, workload distribution, software and CPU availability, site downtime and status, exactly when each job is submitted
- The situation may change while jobs are waiting at sites to be picked up by pilots
- More replicas of input may become available
- Workload distribution may change
- Rebrokerage has been implemented
- Waiting jobs are periodically reassigned to other sites
- When sites are blacklisted by HammerCloud [5] or Site Status Board [6], waiting jobs are immediately reassigned to other sites

Automatic reattempts for analysis jobs

- The pilot investigates the cause of failure for each failed job and reports it back to the PanDA server
- Automatic reattempt mechanism has been implemented to do as follows:
 - For recoverable problems, retries failed jobs at most three times at the same site
 - For site problems, sends failed jobs to another site

Adaptation for the CernVM File System

- Many ATLAS sites have been configured to use software on CernVM Files System [7]
- The brokerage still checks validity of software for those sites

Support for the multi-cloud model

- A cloud was composed of one Tier-1 site and regional Tier-2 sites
- Production tasks are assigned to clouds
- Data for production were transferred in each cloud to simplification of data transfers
- The constraint has been relaxed after accumulation of operational experience
- A Tier-2 site can be associated to multiple Tier-1 sites, i.e., can belong to multiple clouds
- Better usage of Tier-2 CPU resources
- Tier-2 sites can survive even if a Tier-1 site is down

Beyond-pledge Resource Management and Preferential Brokerage

- Some sites have regional CPU/storage resources by using budgets beyond ATLAS MoU share in addition to official resources
- Each site can be configured to use additional resources only for the users who belong to a particular country group when their jobs are waiting in the queue, otherwise, use those resources for other general users
- When the users who belong to a country group submit jobs, the brokerage preferentially assigns them to sites that provide additional resources for the country users

Fairshare for production activities

- ATLAS can set a fairshare policy at each site to define how CPU resources are allocated to production activities and/or physics working groups

Outbound network connection monitoring

- To block and/or kill problematic analysis jobs which naively do DoS attacks by connecting remote hosts
- connect and execute system calls are trapped on the worker node and all outbound network connections are monitored

Current Status

- The PanDA system has performed very well during the LHC data-taking year
- Concurrently running over 100k production jobs with 8% of single job failure rate
- Steady increase of analysis activities

Future Plans

- Adoption of new technologies
 - NoSQL, MQ, cloud service …
- Development of Job Execution and Definition Interface (JEDI)
- Dynamic job generation in PanDA
- Improvement of automation and efficiency
- Moving client functionalities to the server side
- Utilization of multi-core queues and AthenaMP
- Extension of PanDA as a generic high level workload manager usable by the wider distributed scientific computing community

References

1. Maeno T., Overview of ATLAS PanDa Workload Management, J. Phys. Conf. Ser. 331 (2011)
2. Nilsson P., The ATLAS PanDa Pilot in Operation, J. Phys. Conf. Ser. 331 (2011)
3. Caballero J., AutoPyFactory: A Scalable Flexible Pilot Factory Implementation, in Proc. of CHEP2012
4. Potekhin M., The ATLAS PanDA Monitoring System and its Evolution, J. Phys. Conf. Ser. 331 (2011)
5. Legger F., Improving ATLAS grid site reliability with functional tests using HammerCloud, in Proc. of CHEP2012
6. Iliessin C. B., Automating ATLAS Computing Operations using the Site Status Board, in Proc. of CHEP2012
7. Pedrag B., Status and Future Perspectives of CernVM-FS, in Proc. of CHEP2012