ON THE k-ABELIAN COMPLEXITY OF THE CANTOR SEQUENCE

JIN CHEN, XIAOTAO LÜ, AND WEN WU*

ABSTRACT. In this paper, we prove that for every integer $k \geq 1$, the k-abelian complexity function of the Cantor sequence $c = 101000101\cdots$ is a 3-regular sequence.

1. INTRODUCTION

This paper is devoted to the study of the k-abelian complexity of the Cantor sequence
$$c := c_0c_1c_2 \cdots = 1010001010000000101000101\cdots$$
which satisfies $c_0 = 1$ and for all $n \geq 0$,
$$c_{3n} = c_{3n+2} = c_n \text{ and } c_{3n+1} = 0.$$ (1.1)

The k-abelian complexity, which was introduced by Karhumäki in [8], is a measure of disorder of infinite words. It has been studied widely in [12, 13, 14, 15, 16]. Before we give its definition, we need some notations. Let A be a finite alphabet and A^n be the set of words of length n for every positive integer n. Denote A^* the set of all finite words on A. For two words $u, v \in A^*$, v is called a factor of u if $u = wvw'$ where $w, w' \in A^*$. For a word $u = u_0u_1\cdots u_{n-1} \in A^n$, the prefix and suffix of length $\ell \geq 1$ are defined as
$$\text{pref}_\ell(u) := u_0u_1\cdots u_{\ell-1} \text{ and } \text{suffix}_\ell(u) := u_{n-\ell}\cdots u_{n-1};$$
while for $\ell \leq 0$, we define $\text{pref}_\ell(u) = \varepsilon$ and $\text{suffix}_\ell(u) = \varepsilon$, where ε is the empty word. Denote $|u|$ the length of a word u and denote $|u|_w$ the number of occurrences of a word v in u.

Definition 1 (see [17]). Let $k \geq 1$ be an integer. Two words $u, v \in A^*$ are called k-abelian equivalent, written by $u \sim_k v$, if $\text{pref}_{k-1}(u) = \text{pref}_{k-1}(v)$, $\text{suffix}_{k-1}(u) = \text{suffix}_{k-1}(v)$ and $|u|_w = |v|_w$ for every $w \in A^k$.

The above definition is one of the equivalent definitions of the k-abelian equivalence; see also [16]. The k-abelian equivalence is in fact an equivalence relation. The k-abelian complexity of an infinite word ω is the function $P_\omega^{(k)} : \mathbb{N} \to \mathbb{N}$ and for every $n \geq 1$, $P_\omega^{(k)}(n)$ is assigned to be the number of k-abelian equivalence classes of factors of ω of length n. Precisely, for every positive integer n,
$$P_\omega^{(k)}(n) = \text{Card}(F_\omega(n)/\sim_k),$$
where $F_\omega(n)$ is the set of all factors of length n occurring in ω.

In our first result, we reduce the k-abelian equivalence of any two factors of c to the abelian equivalence of such factors. In detail, we prove the following theorem.

Theorem 1. Let $k \geq 1$ be an integer and let u, v be two factors of c satisfying $|u| = |v|$. If $\text{pref}_k(u) = \text{pref}_k(v)$ and $\text{suffix}_k(u) = \text{suffix}_k(v)$, then $u \sim_{k+1} v$ if and only if $u \sim_1 v$.

2010 Mathematics Subject Classification. 68R15 and 11B85.
Key words and phrases. Cantor sequence; k-abelian complexity; k-regular sequences.
This work was supported by NSFC (Nos. 11401188 and 11626110).
* Wen Wu is the corresponding author.
By using Theorem 1 we are able to study the k-abelian complexity of c for every $k \geq 1$, and we have the following result.

Theorem 2. For every integer $k \geq 1$, the k-abelian complexity function of the Cantor sequence is a 3-regular sequence.

The k-regular sequence was introduced by Allouch and Shallit [2] as an extension of the k-automatic sequence. The definitions of the k-automatic sequences and the k-regular sequences are stated below; see also [1, 5].

Definition 2. For an integer $k \geq 1$, a sequence $w = (w_n)_{n \geq 0}$ is a k-automatic sequence if its k-kernel

$$K_k(w) = \{(w_{kn+c})_{n \geq 0} \mid c \geq 0, 0 \leq c < k^k\}$$

is a finite set. The sequence w is called a k-regular sequence if the \mathbb{Z}-module generated by its k-kernel is finitely generated.

Kärki, Saarela and Zamboni [14] studied the k-abelian complexity of the Thue-Morse sequence, which is a 2-automatic sequence. Vandomme, Parreau and Rigo [17] conjectured that the 2-abelian complexity of the Thue-Morse sequence is a 2-regular sequence. This has been proved independently in [12] by Greinecker and in [13] by Parreau, Rigo, Rowland and Vandomme.

Our result (Theorem 2) supports the following more general conjecture, which has been posed in [13].

Conjecture 1. The k-abelian complexity of any ℓ-automatic sequence is an ℓ-regular sequence.

This paper is organized as follows. In Section 2, we give the recurrence relations for the abelian complexity of the Cantor sequence c. In Section 3, we prove Theorem 1. In the last section, we prove the proof of Theorem 2.

2. **Abelian complexity**

The abelian complexity of an infinite word ω is in fact the 1-abelian complexity of ω. For more details of the abelian complexity, see [3, 5, 8, 9, 10, 11] and references therein. In this section, we shall investigate the abelian complexity of c.

First we introduce a useful result which characterizes the left and right special factors of c. Recall that a factor v of w is called right special (resp. left special) if both va and vb (resp. av and bw) are factors of w for distinct letters $a, b \in \mathcal{A}$. We denote $\mathcal{RS}_w(n)$ (resp. $\mathcal{LS}_w(n)$) the set of all right special (resp. left special) factors of w of length n.

Lemma 1. For every $i \geq 0$ and $3^i < k \leq 3^{i+1}$,

$$\mathcal{RS}_c(k) = \{0^k, \text{suff}_k(\sigma^i(010))\} \quad \text{and} \quad \mathcal{LS}_c(k) = \{0^k, \text{pref}_k(\sigma^i(010))\}.$$

Proof. The result follows from [7, Theorem 1] and the fact that every left special factor in c is the reversal of some right special factor in c. \qed

Let $\omega = \omega_1 \omega_2 \omega_3 \cdots$ be an infinite sequence on $\{0, 1\}$. It is proved in [3, Proposition 2.2] that the abelian complexity of ω is related to its digit sums in the following way: for every $n \geq 1$,

$$P_c^{(1)}(n) = M_\omega(n) - m_\omega(n) + 1,$$

where

$$M_\omega(n) := \max \{\sum_{j=1}^{n+i}\omega_j \mid i \geq 0\} \quad \text{and} \quad m_\omega(n) := \min \{\sum_{j=1}^{n+i}\omega_j \mid i \geq 0\}.$$ \hfill (2.1)

For the digit sums of the Cantor sequence c, we have the following lemma.
Lemma 2. For every integer \(n \geq 1 \), \(M_c(n) = \sum_{i=0}^{n-1} c_i \) and \(m_c(n) = 0 \).

Proof. Since \(0^n \) is always a factor of \(c \) for every \(n \geq 1 \), we have \(m_c(n) = 0 \) for every \(n \geq 1 \).

For every \(i \geq 0 \) and \(n \geq 1 \), let \(\Sigma(i, n) := \sum_{j=i}^{n-1} c_j \). We only need to show that \(M_c(n) \leq \Sigma(0, n) \) for every \(n \geq 1 \), since the inverse inequality always holds by definition. For this purpose, we shall prove that for every \(n \geq 1 \),

\[
\Sigma(i, n) \leq \Sigma(0, n) \quad \text{for every integer } i \geq 0, \quad (2.2)
\]

Since ‘1’ occurs in \(c \) and ‘11’ does not occur in \(c \), we have \(\Sigma(i, 1) \leq 1 = \Sigma(0, 1) \) and \(\Sigma(i, 2) \leq 1 = \Sigma(0, 2) \). Now suppose \((2.2)\) holds for \(n < m \). We first deal with the case: \(m = 3j + 2 \). By (1.1), we have the following nine recurrence relations:

\[
\begin{align*}
\Sigma(3i, 3n) &= 2\Sigma(i, n), & \Sigma(3i + 1, 3n + 2) &= \Sigma(i, n + 1) + \Sigma(i + 1, n), \\
\Sigma(3i, 3n + 1) &= \Sigma(i, n) + \Sigma(i, n + 1), & \Sigma(3i + 2, 3n) &= \Sigma(i, n) + \Sigma(i + 1, n), \\
\Sigma(3i, 3n + 2) &= \Sigma(i, n) + \Sigma(i, n + 1), & \Sigma(3i + 2, 3n + 1) &= \Sigma(i, n + 1) + \Sigma(i + 1, n), \\
\Sigma(3i + 1, 3n) &= \Sigma(i, n) + \Sigma(i + 1, n), & \Sigma(3i + 2, 3n + 2) &= \Sigma(i, n + 1) + \Sigma(i + 1, n + 1), \\
\Sigma(3i + 1, 3n + 1) &= \Sigma(i, n) + \Sigma(i + 1, n). & \Sigma(3i + 1, 3n + 1) &= \Sigma(i, n) + \Sigma(i + 1, n).
\end{align*}
\]

By the above equations and the inductive assumption, for every \(i \geq 0 \),

\[
\begin{align*}
\Sigma(3i, 3j + 2) &= \Sigma(i, j) + \Sigma(i, j + 1) \leq \Sigma(0, j) + \Sigma(0, j + 1) = \Sigma(0, 3j + 2), \\
\Sigma(3i + 1, 3j + 2) &= \Sigma(i, j) + \Sigma(i, j + 1) \leq \Sigma(0, j) + \Sigma(0, j + 1) = \Sigma(0, 3j + 2).
\end{align*}
\]

Note that at least one of \(c_i \) and \(c_{i+1} \) must be zero. So

\[
\Sigma(3i + 2, 3j + 2) = \Sigma(i, j + 1) + \Sigma(i + 1, j + 1) = \Sigma(0, j + 1) + \Sigma(0, j + 1) = \Sigma(0, 3j + 2).
\]

Therefore, \((2.2)\) holds in the case \(m = 3j + 2 \). Following the same way, we can verify \((2.2)\) when \(m = 3j, 3j + 1 \).

Corollary 1. \(M_c(1) = 1 \), \(M_c(2) = 1 \) and for every \(n \geq 1 \),

\[
M_c(3n) = 2M_c(n) \quad \text{and} \quad M_c(3n + 1) = M_c(3n + 2) = M_c(n) + M_c(n + 1).
\]

Moreover, \(\{M_c(n)\}_{n \geq 1} \) is a 3-regular sequence.

Proposition 1. \(P_c^{(1)}(1) = 2 \), \(P_c^{(1)}(2) = 2 \) and for every \(n \geq 1 \),

\[
P_c^{(1)}(3n) = 2P_c^{(1)}(n) - 1 \quad \text{and} \quad P_c^{(1)}(3n + 1) = P_c^{(1)}(3n + 2) = P_c^{(1)}(n) + P_c^{(1)}(n + 1) - 1.
\]

Moreover, \(\{P_c^{(1)}(n)\}_{n \geq 1} \) is a 3-regular sequence.

Proof. It follows from Lemma 2 Corollary 1 and (2.1).

3. FROM \(k \)-ABELIAN EQUIVALENCE TO 1-ABELIAN EQUIVALENCE

In this section, we give a key theorem, which implies that under certain condition, \(k \)-abelian equivalence can be reduced to 1-abelian equivalence. Using this theorem, we deduce the regularity of the \(k \)-abelian complexity of \(c \) from that of the abelian complexity of \(c \). Before stating the result, we give two auxiliary lemmas. For \(z, w \in \mathcal{A}^* \), we define

\[
P(z, w) := \begin{cases}
1, & \text{if } z \text{ is a prefix of } w, \\
0, & \text{otherwise},
\end{cases}
\quad \text{and} \quad
S(z, w) := \begin{cases}
1, & \text{if } z \text{ is a suffix of } w, \\
0, & \text{otherwise}.
\end{cases}
\]
Lemma 3. Let $\omega \in \{0,1\}^N$ and $u, z \in \mathcal{F}_\omega$ with $|u| \geq |z|$. Suppose $z = ayb$, where $a, b \in \{0,1\}$. We have

$$|u|_z = \begin{cases} |u|_ay - S(ay, u), & \text{if } ay \notin RS_\omega, \\ |u|yb - P(yb, u), & \text{if } yb \notin LS_\omega, \\ |u|_ay - |u|ay(b \cdot b) - S(ay, u), & \text{if } ay \in RS_\omega, \\ |u|yb - |u|(1 - a)b - P(yb, u), & \text{if } yb \in LS_\omega. \end{cases}$$

Proof. Note that $|u|_ay - S(ay, u)$ is the number of occurrences of a right extendable ay in u. When ay is not right special, every right extension of a right extendable ay must be z. So, $|u|_ay - S(ay, u) = |u|_z$. When ay is right special, its right extensions are either z or $ay(1 - b)$. So, $|u|_ay - S(ay, u) = |u|z + |u|ay(1 - b)$. The rest cases can be verified in the same way. \qed

Lemma 4. For every $i \geq 0$, $u \in \mathcal{F}_\omega$, let $\Delta_i := |u|_{0^{3i+2}} + |u|_{10^{3i+1}} - |u|_{0^{3i+3}} + 1$. Then $\Delta_i \in \{0, 1, 2\}$ and

$$\Delta_i = \begin{cases} |u|_{0^{3i+1}} + \frac{2}{3}|u|_{0^{3i+2}} + 1 - P(0^{3i+1}, u) \pmod{3}, & \text{if } P(0^{3i+1}, u) = S(0^{3i+1}, u) = 0, \\ |u|_{0^{3i+1}} + 1 - S(0^{3i+1}, u) - P(0^{3i+1}, u) \pmod{2}, & \text{otherwise}. \end{cases}$$

Proof. Let $Z(\ell)$ ($\ell \geq 1$) be the number of blocks of zeros (in u) of length not less than ℓ. For example, when $u = 0010100$, then $Z(1) = 3$ and $Z(2) = 2$. Note that, for every $\ell \geq 3^i + 1$, $|0^{\ell}|_{0^{3i+3}} - |0^{\ell}||_{0^{3i+2}} = 1$. So,

$$|u|_{0^{3i+2}} - |u|_{0^{3i+3}} = \sum_{v \text{ is a block of zeros in } u}(|v|_{0^{3i+2}} - |v|_{0^{3i+3}}) = \sum_{v \text{ is a block of zeros in } u}1 = Z(3^i + 1).$$

On the other hand, 10^{3i} only occurs in $\sigma^{i+1}(1)$. Thus, there is a block of zeros of length $3^i + \ell$ (for some $\ell \geq 1$) between two consecutive 10^{3i}. Since the block of zeros could also be the prefix or suffix of u, we have $|u|_{0^{3i+1}} - 1 \leq Z(3^i + 1) \leq |u|_{0^{3i+1}} + 1$, which implies $\Delta_i \in \{0, 1, 2\}$.

When $P(0^{3i+1}, u) = 1$ or $S(0^{3i+1}, u) = 1$, there is at least one block of zeros of length not less than $3^i + 1$, which is not located between two consecutive 10^{3i}. This implies that $|u|_{0^{3i+1}} \leq Z(3^i + 1) \leq |u|_{0^{3i+1}} + 1$. So, in this case, $\Delta_i \in \{0, 1\}$. Applying Lemma 3 to $|u|_{0^{3i+2}}$ and $|u|_{10^{3i+1}}$, we have

$$\Delta_i = |u|_{0^{3i+1}} - 2|u|_{0^{3i+2}} + 1 - S(0^{3i+1}, u) - P(0^{3i+1}, u). \quad (3.1)$$

Since $\Delta_i \in \{0, 1\}$, by (3.1), $\Delta_i = |u|_{0^{3i+1}} + 1 - S(0^{3i+1}, u) - P(0^{3i+1}, u) \pmod{2}$.

Now, suppose $P(0^{3i+1}, u) = S(0^{3i+1}, u) = 0$. Applying Lemma 3 to $|u|_{0^{3i+1}}$, by (3.1), we have

$$\Delta_i = |u|_{0^{3i+1}} - 2Z(3^i + 1) + 1 - P(0^{3i+1}, u). \quad (3.2)$$

Let \sum_v denote the sum over all blocks of zeros v of u of length not less than $3^i + 1$. Then

$$|u|_{0^{3i+1}} = \sum_v |v|_{0^{3i+1}} = \sum_v (|v| - 3^i) = \left(\sum_v |v|\right) - 3^iZ(3^i + 1)$$

Note that, in this case, all blocks of zeros of u are of length $3^{i+\ell}$ for some $\ell \geq 1$. So,

$$-2Z(3^i + 1) \equiv \frac{2}{3}|u|_{0^{3i+1}} \pmod{3}. \quad (3.3)$$

The result of this case follows from (3.3) and (3.2). \qed

Now, we prove Theorem 1.
Proof of Theorem 1. Let \(u, v \in \mathcal{F}_c \) satisfying \(|u| = |v| \), \(\text{pref}_k(u) = \text{pref}_k(v) \) and \(\text{suffix}_k(u) = \text{suffix}_k(v) \). When \(k \geq |u| \), the assumption gives \(u = v \). In this case, the result is trivial. In the following, we always assume that \(k < |u| \).

The ‘only if’ part follows directly from the definition of \(k \)-abelian equivalence. For the ‘if’ part, we only need to show that \(u \sim_k v \) implies that for every \(z \in \mathcal{F}_c(k + 1) \), \(|z|_u = |z|_v \). For this purpose, we separate \(\mathcal{F}_c(k + 1) \) into two disjoint parts, i.e., \(\mathcal{F}_c(k + 1) = E_1 \cup E_2 \), where

\[
E_1 = \{ z \in \mathcal{F}_c(k + 1) \mid \text{pref}_k(z) \notin \mathcal{R}_c(z) \text{ or } \text{suffix}_k(z) \notin \mathcal{L}_c(z) \},
\]

\[
E_2 = \{ z \in \mathcal{F}_c(k + 1) \mid \text{pref}_k(z) \in \mathcal{R}_c(z) \text{ and } \text{suffix}_k(z) \in \mathcal{L}_c(z) \}.
\]

Suppose \(z \in E_1 \). If \(\text{pref}_k(z) \notin \mathcal{R}_c(z) \), then by Lemma 8,

\[
|z|_u = |u|_{\text{pref}_k(z)} - S(\text{pref}_k(z), u) = |v|_{\text{pref}_k(z)} - S(\text{pref}_k(z), v) = |z|_v.
\]

If \(\text{suffix}_k(z) \notin \mathcal{L}_c(z) \), then by Lemma 8,

\[
|z|_u = |u|_{\text{suffix}_k(z)} - P(\text{suffix}_k(z), u) = |v|_{\text{suffix}_k(z)} - P(\text{suffix}_k(z), v) = |z|_v.
\]

So, for every \(z \in E_1 \), \(|z|_u = |z|_v \).

Now, let \(z \in E_2 \). Suppose \(3^i < k \leq 3^{i+1} \) for some \(i \geq 0 \). When \(k \neq 3^{i+1} \), by Lemma 11, \(E_2 = \{0^{k+1}\} \). By Lemma 8 and the assumptions of this result,

\[
|u|_{0^{k+1}} = |u|_{0^k} - |u|_{0^1} - S(0^k, u)
\]

\[
= |u|_{0^k} - (|u|_{0^{k-1}} - P(0^{k-1}, u)) - S(0^k, u)
\]

\[
= |v|_{0^k} - (|v|_{0^{k-1}} - P(0^{k-1}, v)) - S(0^k, v) = |v|_{0^{k+1}}.
\]

When \(k = 3^{i+1} \), by Lemma 11, \(E_2 = \{0^{k+1}, 0k^1, 10^k, 10^{k+1}\} \). For every \(w \in \mathcal{F}_c \), by Lemma 8 and 11 we have the following linear system:

\[
\begin{align*}
|w|_{0^{k+1}} + |w|_{0^1} &= |u|_{0^k} - S(0^k, w), \\
|w|_{0^{k+1}} + |w|_{10^k} &= |u|_{0^k} - P(0^k, w), \\
|w|_{10^k} + |w|_{10^{k-1}} &= |u|_{10^{k-1}} - S(10^{k-1}, w), \\
|w|_{0^{k+1}} + |w|_{10^{k-1}} &= |u|_{0^k} - 1 + \Delta_i,
\end{align*}
\] (3.4)

which determines \((|z|_u)_{z \in E_2}\) uniquely. If \(u \sim_k v \), then the linear systems (3.4) for \(u \) and \(v \) turn out to be the same one. So, \(u \sim_k v \) implies \(|z|_u = |z|_v \) for every factor \(z \in E_2 \).

We may now apply Theorem 1 repeatedly to reduce the \(k \)-abelian equivalence to the 1-abelian equivalence under the condition of Theorem 1.

Corollary 2. Let \(k \geq 1 \) and \(u, v \in \mathcal{F}_c \) satisfying \(|u| = |v| \). If \(\text{pref}_k(u) = \text{pref}_k(v) \) and \(\text{suffix}_k(u) = \text{suffix}_k(v) \), then \(u \sim_{k+1} v \) if and only if \(u \sim_k v \).

Remark 1. A similar result for Sturmian words is obtained by Karhumäki, Saarelä and Zamboni [16 Corollary 3.1]. We would like to ask that in general, what kind of infinite words share a property similar to Corollary 2?

4. \(k \)-ABELIAN COMPLEXITY

In this section, we first give the regularity of the 2-abelian complexity of \(c \). Then, by using Theorem 1 properly, we deduce the regularity of the \(k \)-abelian complexity of \(c \). We start by classifying the \(k \)-abelian equivalent classes of \(\mathcal{F}_c(u) \) by their prefixes and suffixes of length \(k - 1 \).

For every \(k \geq 2 \), \(x, y \in \mathcal{F}_c(k - 1) \) and every \(n \geq 1 \), let

\[
p_k(n, x, y) := \text{Card}(\mathcal{W}_{n,x,y}/\sim_k),
\]

where \(\mathcal{W}_{n,x,y} \) is the set of words of length \(n \) that start with \(x \) and end with \(y \) in the \(k \)-abelian equivalence class of \(\mathcal{F}_c(u) \).
where
\[W_{n,x,y} := \{ w \in \mathcal{F}_c(n) \mid \text{pref}_{k-1}(w) = x, \text{suffix}_{k-1}(w) = y \} \]
Here \(p_k(n, x, y) \) denotes the number of \(k \)-abelian equivalent classes with the prefix \(x \) and the suffix \(y \). Then, for every \(n \geq 1 \),
\[P_k(n) = \sum_{x,y \in \mathcal{F}_c(n-1)} p_k(n, x, y). \]
(4.1)

By Theorem 1
\[p_k(n, x, y) = \text{Card} \left(W_{n,x,y} / \sim_k \right) = \text{Card} \left(\{ |w|_1 \mid w \in W_{n,x,y} \} \right). \]
(4.2)

4.1. Regularity of the 2-abelian complexity of \(c \). Recall that the Cantor sequence \(c \) is thefixed point of the morphism \(\sigma : 0 \rightarrow 000, 1 \rightarrow 101 \) starting by 1, i.e., \(c = \sigma^\infty(1) \).

Lemma 5. For all \(i, j \geq 1 \), let \(d_j \) be the number of \('0' \) between the \(j \)-th \('1' \) and the \((j + 1) \)-th \('1' \)in \(c \), and let \(f(i,j) = j + \sum_{\ell=i}^{i+j-1} d_\ell \). Then, for every \(j \geq 1 \),
\[d_{2j-1} = 1 \text{ and } d_{2j} = 3d_j. \]
(4.3)

Proof. While applying \(\sigma \) to \('1' \) or a block of \('0' \)'s, we obtain only one block of \('0' \)'s in both cases. Note that in \(c \), every \('1' \) is followed by a block of \('0' \)'s. Before the \(i \)-th \('1' \), the number ofoccurrences of \('1' \) is \((i - 1) \) and there are \((i - 1) \) blocks of \('0' \)'s in \(c \). So, while applying \(\sigma \) to \(c \), the\(i \)-th \('1' \) will generate the \((2i - 1) \)-th block of \('0' \)'s, which implies \(d_{2i-1} = 1 \). For the same reason, the \(i \)-th block of \('0' \)'s will generate the \(2i \)-th block of \('0' \)'s. So, \(d_{2i} = 3d_i \). This proves (4.3).

The recurrence relations (4.3) follows directly from (4.3). We verify the first one as an example:
\[f(2i, 2j) = 2j + \sum_{\ell=2i}^{2i+2j-1} d_\ell = 2j + \sum_{\ell=i}^{i+j-1} (d_{2\ell} + d_{2\ell+1}) = 3j + 3 \sum_{\ell=i}^{i+j-1} d_\ell = 3f(i,j). \]

\[\square \]

Proposition 2. \(p_2(1, 0, 0) = p_2(1, 1, 1) = 1, p_2(1, 1, 0) = p_2(1, 1, 0) = 0 \) and for every \(n \geq 2 \),
\[\begin{align*}
& p_2(n, 0, 0) = M_c(n - 2) + 1, \quad (4.5a) \\
& p_2(n, 1, 0) = p_2(n, 0, 1) = M_c(n - 1), \quad (4.5b) \\
& p_2(n, 1, 1) = \begin{cases}
0, & \text{if } n \equiv 0 \pmod{2}, \\
1, & \text{if } n \equiv 1 \pmod{2}
\end{cases}. \quad (4.5c)
\end{align*} \]

Proof. The initial values can be showed by enumerating all the factors of length 1 and 2. Now,let \(n \geq 2 \) and suppose \(n < 3^i \) for some \(i \geq 1 \).

Clearly, for every \(w \in W_{n,0,0} \), \(|w|_1 \leq M_c(n - 2) \). So, \(p_2(n, 0, 0) \leq M_c(n - 2) + 1 \). We prove theinverse inequality in the following. For every \(0 \leq \ell \leq n - 1 \), let \(W_\ell = 0^{n-\ell} \text{pref} \sigma^\ell(01) \) which is afactor of \(\sigma^\ell(01) \) and hence, a factor of \(c \). Note that \(|W_0|_1 = 0 \) and \(|W_{n-2}|_1 = M_c(n - 2) \). Since\(|W_\ell|_1 \leq |W_{\ell+1}|_1 \leq |W_\ell|_1 + 1 \), we know that \(|W_\ell|_1 \) changescontinuously from 0 to \(M_c(n - 2) \) while \(\ell \) takes values from 0 to \(n - 2 \). Therefore, for every \(0 \leq s \leq M_c(n - 2) \), there exists\(0 \leq \ell \leq n - 2 \) such that \(|W_\ell|_1 = s \). If the last letter of \(W_\ell \) is 0, then \(W_\ell \in W_{n,0,0} \). Otherwise,\(|W_{\ell+1}|_1 = |W_\ell|_1 = s \) since 11 is not a factor of \(c \). So, \(W_{\ell+1} \in W_{n,0,0} \). This implies that
\[p_2(n, 0, 0) \geq M_c(n - 2) + 1 \]
which proves (4.5a).
Since for every factor w of c, its reversal \bar{w} is also a factor of c, we have $p_2(n, 1, 0) = p_2(n, 0, 1)$. Then, applying a similar argument on the words $W'_\ell = \text{supf}(\sigma^\ell(1))0^{n-\ell}$ where $1 \leq \ell \leq n - 1$, we obtain (4.5a).

(In the rest of the proof, the symbol ‘≡’, otherwise stated, means equality modulo 2.)

Now, we prove (4.5a) for the case $n \equiv 0$. We first observe that for every $w \in W_{n,1,1}$, $|w| \equiv 1$. Since the number of 0 between two successive 1 must be 3^j for some $j \geq 0$ and $3^j \equiv 1$, we have $|w|_0 \equiv |w|_1 - 1$ for every $w \in W_{n,1,1}$. Therefore, $|w| = |w|_0 + |w|_1 \equiv 1$. Hence, $W_{n,1,1} = \emptyset$ when n is an even number, which implies $p_2(n, 1, 1) = 0$ when $n \equiv 0$.

In the following, we will prove (4.5c) when $n \equiv 1$. For every $w \in W_{n,1,1}$,

$$n = |w| = |w|_1 + |w|_0 = 1 + f(i, |w|_1 - 1)$$

for some $i \geq 1$. (Since if a word occurs in c, then it will occur infinitely many times in c, we can assume $i \geq 3$.) Therefore, we only need to prove that for every $m \geq 1$, there is only one integer $t_m \geq 2$ satisfying

$$2m + 1 = 1 + f(i, t_m) \quad (4.6)$$

for some $i \geq 1$. We reason by induction. Since $W_{3,1,1} = \{101\}$ and $W_{5,1,1} = \{10001\}$, it follows that (4.6) holds for $m = 1$ and 2. Assuming that (4.6) holds for every $\ell \leq m$, we prove it for $m + 1$. We only give the proof for the case $m = 3m'$; the other cases follow in a similar way. In this case, by inductive assumptions and (4.4),

$$2(m + 1) + 1 = 3(2m' + 1) = 3(1 + f(i, t_{m'})) = 1 + f(2i + 1, 2m' + 1),$$

which implies that there is a solution of (4.6) for $m + 1$. Now, we prove the uniqueness. Let $t \geq 2$ be a solution of (4.6) for $m + 1$. Then,

$$1 + f(i, t) = 2(m + 1) + 1 = 3(2m' + 1),$$

which implies $f(i, t) \equiv 2 \pmod{3}$. According to (4.4), this happens only if $(i, t) \equiv (1, 1)$. Write $i = 2i' + 1$ and $t = 2t' + 1$. Then, by (4.4) and (4.7),

$$2m' + 1 = \frac{1 + f(i, t)}{3} = 1 + f(i' + 1, t').$$

By the inductive assumption, we know that t' is the unique solution of (4.6) for m'. So, the only solution of (4.6) for $m + 1$ is $2t_{m'} + 1$. \hfill \Box

By Proposition 2, for every $n \geq 2$, we have

$$P_c^{(2)}(n) = M_c(n - 2) + 2M_c(n - 1) + 1 + \frac{1 + (-1)^{n+1}}{2}.$$

4.2. Regularity of the k-abelian complexity of c. In this part, we prove the regularity of the k-abelian complexity of the Cantor sequence for every $k \geq 3$.

Let F_c denote the set of all factors of c. For every $u \in F_c$ and $\ell \geq 1$, we define

$$\text{Type}(\ell, u) := \left\{ j = 0, 1, \cdots, 3^\ell - 1 \mid u = c_{3^j u_{n+j}} \cdots c_{3^j u_{n+|u| - 1}} \text{ for some } n \geq 0 \right\}.$$

The elements in $\text{Type}(\ell, u)$ are called types of u (with respect to ℓ). Clearly, for every ℓ and $u \in F_c$, $\text{Card}(\text{Type}(\ell, u)) \geq 1$.

Every type of u gives a decomposition of u in the following sense. For every $j \in \text{Type}(\ell, u)$, there is an integer $n \geq 0$ such that

$$u = \left(c_{3^j u_{n+j}} \cdots c_{3^j u_{(n+j) - 1}} \right) \left(c_{3^j u_{(n+j) - 1}} \cdots c_{3^j u_{(n+h) - 1}} \right) \left(c_{3^j u_{(n+h) - 1}} \cdots c_{3^j u_{n+|u| - 1}} \right)
= \text{supf}_j(\sigma^\ell(c_n)) \sigma^\ell(c_{n+1} \cdots c_{n+h-1}) \text{pref}_j(\sigma^\ell(c_{n+h})),$$

(4.8)
where \(h = \left\lfloor \frac{|u|}{3^i} \right\rfloor \), \(j_0 = 3^i - j \) and \(j_1 = j + |u| - 3^i h \). The following lemma shows that every non-zero factor of \(c \), which is long enough, occurs in a (relatively) fixed position, i.e., has only one type. By a non-zero factor we mean a factor that contains at least one letter ‘1’.

Lemma 6. For every integer \(\ell \geq 1 \) and every non-zero factor \(u \in \mathcal{F}_c \) with \(|u| > 3^\ell \),
\[
\text{Card}(\text{Type}(\ell, u)) = 1.
\]

Proof. We prove by induction on \(\ell \). We first prove the result for \(\ell = 1 \). Now, we show that \(\text{Card}(\text{Type}(1, u)) = 1 \) for \(u \in \mathcal{F}_c(4) \) with \(|u| > 0 \). We only verify the case \(u = 0001 \) as an example; the rest can be verified in the same way. Suppose \(0001 = c_n c_{n+1} c_{n+2} c_{n+3} \). Since \(c_{n+3} = 1 \), by (1.1), we have \(n \not\equiv 1 \pmod{3} \). If \(n \equiv 2 \pmod{3} \), then by (1.1), \(0 = c_{n+1} = c_{n+3} = 1 \), which is a contradiction. Thus, Type(1, 0001) = \{0\}.

For every non-zero factor \(u \in \mathcal{F}_c \) with \(|u| > 4 \), let \(u = xvy \) where \(v \) is the first non-zero factor of length 4 of \(u \). Since Type(1, \(v \)) + |\(v \| \equiv Type(1, u) \pmod{3} \), we have
\[
\text{Card}(\text{Type}(1, u)) = 1.
\]

Suppose the result holds for \(\ell \). We prove it for \(\ell + 1 \). Let \(u \in \mathcal{F}_c \) with \(|u| > 3^{\ell+1} \) and \(i_0 \in \text{Type}(\ell, u) \). Then,
\[
u = c_{3^n+i_0} \cdots c_{3^{n+1}+i_0+|u|-1}
\]
for some \(n \geq 0 \). By (4.8), \(u \) uniquely determines \(i_0, |u| \) and \(c_n c_{n+1} \cdots c_{n+h} \) where \(h = \left\lfloor \frac{|u|+i_0}{3^\ell} \right\rfloor \). Since \(h \geq 3 \), \(n \equiv i_1 \pmod{3} \) where \(i_1 \in \text{Type}(1, c_n \cdots c_{n+h}) \). Therefore,
\[
3^\ell n + i_0 \equiv 3^\ell i_1 + i_0 \pmod{3^{\ell+1}}.
\]
By the inductive assumptions, \(\text{Card}(\text{Type}(1, c_n \cdots c_{n+h})) = 1 \) and \(\text{Card}(\text{Type}(\ell, u)) = 1 \). So, by (4.9), we have
\[
\text{Card}(\text{Type}(\ell + 1, u)) = 1.
\]

Lemma 7. For every integer \(\ell \geq 1 \) and every non-zero factor \(u \in \mathcal{F}_c \) with \(3^\ell < |u| \leq 3^{\ell+1} \),
\[
1 \leq \text{Card}(\text{Type}(\ell + 1, u)) \leq 2.
\]

Proof. Let \(u \in \mathcal{F}_c \) with \(3^\ell < |u| \leq 3^{\ell+1} \) and \(i_0 \in \text{Type}(\ell, u) \). Then, \(u = c_{3^n+i_0} \cdots c_{3^{n+1}+i_0+|u|-1} \) for some \(n \geq 0 \). By (4.8), \(u \) uniquely determines \(i_0, |u| \) and \(c_n c_{n+1} \cdots c_{n+h} =: v \), where \(h = \left\lfloor \frac{|u|+i_0}{3^\ell} \right\rfloor \). Note that \(v \) is a non-zero factor. Write \(q(v) := \max\{|j| \mid 0^j \text{ is a prefix of } v\} \). Then \(c_{n+q(v)} = 1 \), which implies \(n + q(v) \equiv 1 \pmod{3} \) by (1.1). So,
\[
3^\ell n + i_0 \equiv -3^\ell q(v) + i_0 \text{ or } 3^\ell (2 - q(v)) + i_0 \pmod{3^{\ell+1}}.
\]
The result follows from Lemma 6 and the above formula.

In the rest of this section, let \(i \) be the integer satisfying
\[
3^i + 1 < k \leq 3^{i+1} + 1.
\]
To study the regularity of \(\{p_k(n, x, y)\}_{n \geq 1} \) for \(x, y \in \mathcal{F}_c(k - 1) \), our idea is the following. We first give the upper bound of \(p_k(n, x, y) \) by using \(M_c(\cdot) \), which is a 3-regular sequence according to Corollary 1. Then, by constructing sufficiently many words which belong to different \(k \)-abelian equivalence classes, we show that the upper bound can be reached. Therefore, the regularity of \(\{p_k(n, x, y)\}_{n \geq 1} \) follows from the regularity of \(\{M_c(n)\}_{n \geq 1} \).

The following lemma contributes to the construction of words that belong to different \(k \)-abelian equivalence classes.

Lemma 8. Let \(\alpha \in \{0, 1\} \). For every \(\ell \geq 1 \) and every \(h = 1, 2, \ldots, M_c(\ell) \), there is a word \(W_h \in \mathcal{F}_c(\ell + 3) \) such that \(|W_h|_1 = h \) and \(W_h = 00U_h \alpha \), where \(U_h \in \mathcal{F}_c(\ell) \).
Proof. For all $j = 0, 1, \cdots, \ell + 1$, let

$$W_j = 0^{\ell+3-j}\text{pref}_j(\sigma^*(1)) \in \mathcal{F}_c(\ell + 3),$$

where $s \in \mathbb{N}$ satisfying $3^s > \ell + 1$. Since $|W_j| \leq |W_{j+1}| \leq |W_j| + 1$ and $|W_j| = M_c(\ell)$, we know that $|W_j|$ changes from 0 to $M_c(\ell)$ continuously while j takes values from 0 to ℓ. So, for every $h = 1, \cdots, M_c(\ell)$, there is a $j_h (\leq \ell)$ such that $|W_{j_h}| = h$. Moreover, we can require that the last letter of W_{j_h} is 0. Otherwise, 1 is the last letter of W_{j_h}. Then, W_{j_h+1} ends with 0 and $|W_{j_h+1}| = |W_{j_h}|$.

There also is a j'_h such that $|W_{j'_h}| = h$, of which the last letter is 1. Otherwise, 0 is the last letter of $W_{j'_h}$. Let $m_h := \max\{q \mid 0^q$ is a suffix of $W_{j'_h} \}$. Since $|W_{j'_h}| = h \geq 1$, we always have $m_h < j'_h$. Then, $W_{j'_h-m_h}$ ends with 1 and $|W_{j'_h-m_h}| = |W_{j'_h}|$. If $m_h > j'_h$, \[\square\]

Now, we shall show the regularity of $\{p_k(n, x, y)\}_{n \geq 1}$ for all $x, y \in \mathcal{F}_c(k-1)$.

Lemma 9. $\{p_k(n, 0^{k-1}, 0^{k-1})\}_{n \geq 1}$ is a 3-regular sequence.

Proof. Without loss of generality, we can assume that $n \geq 2 \cdot 3^{i+1} + 2k - 2$, since changing finite terms of a sequence does not change its regularity. Noticing that $3^i < k-1 \leq 3^{i+1}$, the occurrence of each $w \in \mathcal{W}_{n, 0^{k-1}, 0^{k-1}}$ in c must be one of the four forms in Figure 1.

\[\text{Figure 1.}\]

In all the four forms, we have $|w| = 2^{i+1}|u|$ and $|u| = \ell$ or $\ell - 1$, which implies

$$p_k(n, 0^{k-1}, 0^{k-1}) \leq M_c(\ell) + 1,$$

where $\ell = \left\lfloor \frac{n-2k+2}{3^{i+1}} \right\rfloor$. Next, we prove the inverse of (4.11). That is

$$p_k(n, 0^{k-1}, 0^{k-1}) \geq M_c(\ell) + 1. \quad (4.12)$$

Applying Lemma 8 for the above ℓ and $\alpha = 0$, we have

$$W_h = 00U_h0 \in \mathcal{F}_c(\ell + 3)$$

with $|W_h| = h$ for all $h = 1, 2, \cdots, M_c(\ell)$. Set $t := n - 3^{i+1}\ell - k + 1$. Then, $k - 1 \leq t < k - 1 + 3^{i+1}$. Therefore, $0^t\sigma^{i+1}(U_h)0^{k-1} \in \mathcal{W}_{n, 0^{k-1}, 0^{k-1}}$ and $|0^t\sigma^{i+1}(U_h)0^{k-1}| = 2t + 1$.

For every non-zero factor $v \in \mathcal{F}_c(k-1)$, let $z_v := \max\{p \mid 0^p$ is a suffix of $v\}$ and

$$\tilde{L}_v := \{q \mod 3^{i+1} \mid c_q^{-1}(k-2-z_v) \cdots c_q^{-1}c_{q+1} \cdots c_{q+z_v} = v\},$$

where c_q is the last 1 in v. Then, it follows from Lemma 7 that $1 \leq \text{Card}(\tilde{L}_v) \leq 2$. Moreover, if $\tilde{L}_v = \{q_1, q_2\}$, where $0 \leq q_1 < q_2 \leq 3^{i+1} - 1$, then by (4.10), we have $q_2 = q_1 + 2 \cdot 3^i$.

For a word $w = w_1 \cdots w_n \in \mathcal{A}^n$, the reversal of w is defined to be $\bar{w} = w_{n-1} \cdots w_1 w_0$. When $w = uv$, we write $uv^{-1} := u$ and $u^{-1}w := v$ by convention.
Lemma 10. For all non-zero factors \(x, y \in \mathcal{F}_c(k-1) \), two sequences \(\{p_k(n, 0^{k-1}, y)\}_{n \geq 1} \) and \(\{p_k(n, x, 0^{k-1})\}_{n \geq 1} \) are both 3-regular sequences.

\textbf{Proof.} For every \(x \in \mathcal{F}_c \), its reversal \(\bar{x} \in \mathcal{F}_c \), since \(x \) is a factor of \(\sigma^m(1) \) for some \(m \geq 1 \) and \(\sigma^m(1) = \sigma^n(1) \). So, \(p_k(n, x, 0^{k-1}) = p_k(n, 0^{k-1}, \bar{x}) \) for every \(n \geq 1 \). Thus, we only need to verify the regularity of \(\{p_k(n, 0^{k-1}, y)\}_{n \geq 1} \) for every non-zero factor \(y \in \mathcal{F}_c(k-1) \).

Since changing finite terms of a sequence does not change its regularity, we can assume that \(n \geq 2 \cdot 3^{i+1} + 2k - 2 \). Recall that \(3^i < k - 1 \leq 3^{i+1} \). Each occurrence of every \(w \in \mathcal{W}_{n, 0^{k-1}, y} \) in \(c \) must be one of the six forms in Figure 2. In all the six forms, for every \(o_y \in \hat{L}_y \), we have

\[|w|_1 = 2^{i+1} |\tilde{u}|_1 - |\text{suff}_{3^{i+1} - o_y - 1}(\sigma^{i+1}(1))|_1 := n_{o_y} \quad (4.13) \]

and \(|\tilde{u}| = \ell(o_y) \) or \(\ell(o_y) + 1 \), where

\[\ell(o_y) = \left\lfloor \frac{n - k - o_y - z_y}{3^{i+1}} \right\rfloor \quad \text{and} \quad \tilde{u} = \begin{cases} u01, & \text{if } w \text{ is of Form 5 or 6,} \\ u1, & \text{otherwise.} \end{cases} \]

\textbf{Figure 2.}

When \(\text{Card}(\hat{L}_y) = 1 \), write \(\hat{L}_y = \{o_y\} \). By (4.13), we have

\[p_k(n, 0^{k-1}, y) \leq M_c(\ell(o_y) + 1). \quad (4.14) \]

On the other hand, applying Lemma 8 for \(\ell(o_y) \) and \(\alpha = 1 \), we have

\[W_h = 00U_h, 1 \in \mathcal{F}_c(\ell + 3) \text{ with } |W_h|_1 = h \]

for all \(h = 1, \ldots, M_c(\ell + 1) \). Set \(t := n - 3^{i+1} \ell - o_y - z_y - 1 \); so \(k - 1 \leq t < k - 1 + 3^{i+1} \). Therefore,

\[V_{o_y} := 0^t \sigma^{i+1}(U_h) \text{ pref}_{o_y + 1}(\sigma^{i+1}(1)) \text{ pref}_y \in \mathcal{W}_{n, 0^{k-1}, y} \]

and

\[|V_{o_y}|_1 = 2^{i+1} h - |\text{suff}_{3^{i+1} - o_y - 1}(\sigma^{i+1}(1))|_1 \]

for all \(h = 1, \ldots, M_c(\ell + 1) \). This implies that \(p_k(n, 0^{k-1}, y) \geq M_c(\ell(o_y) + 1) \). The previous inequality, (4.13) and Corollary 1 give the result in the case \(\text{Card}(\hat{L}_y) = 1 \).

Now suppose \(\text{Card}(\hat{L}_y) = 2 \) and set \(\hat{L}_y = \{o_y, o'_y := o_y + 2 \cdot 3^i\} \) with \(0 \leq o_y \leq 3^i - 1 \). From (4.13), we know that \(o'_y \equiv o_y + 2 \mod 2^{i+1} \). Therefore,

\[p_k(n, 0^{k-1}, y) \leq M_c(\ell(o_y) + 1) + M_c(\ell(o'_y) + 1). \quad (4.15) \]

For every \(q \in \hat{L}_y \), applying Lemma 8 for \(\ell(q) \) and \(\alpha = 1 \), we have

\[W_{h,q} = 00U_{h,q}, 1 \in \mathcal{F}_c(\ell + 3) \text{ with } |W_{h,q}|_1 = h \]
for every \(h = 1, \ldots, M_c(\ell_1 + 1) \). Set \(t(q) := n - 3^{i+1} \ell(q) - q - z_y - 1; \) so \(k - 1 \leq t(q) < k - 1 + 3^{i+1} \). Therefore, for every \(q \in \hat{L}_y \),
\[
V_q := 0^{t(q)}\sigma^{i+1}(U_{h,q})\text{pref}_{q+1}(\sigma^{i+1}(1))0^{z_y} \in W_{n,0^{k-1},y}
\]
and
\[
|V_q|_1 = 2^{i+1} h - |\text{suff}_{3^{i+1}-q-1}(\sigma^{i+1}(1))|_1
\]
for all \(h = 1, \ldots, M_c(\ell_1 + 1) \). Since \(|V_{o_y}|_1 \equiv |V_{o'_y}|_1 - 2^k \) (mod \(2^{i+1} \)), \(V_{o_y} \) and \(V_{o'_y} \) belongs to different \(k \)-abelian equivalence classes. Therefore,
\[
p_k(n, 0^{k-1}, y) \geq M_c (\ell(o_y) + 1) + M_c (\ell(o'_y) + 1).
\]
Combining (4.15), (4.16) and Corollary 1 the result follows. \(\Box \)

Lemma 11. For two non-zero factors \(x, y \in F_c(k - 1) \), \(\{p_k(n, x, y)\}_{n \geq 1} \) is ultimately periodic.

Proof. Without loss of generality, we can assume that \(n \geq 2 \cdot 3^{i+1} + 2k - 2 \) since changing finite terms of a sequence does not change its regularity. Noticing that \(3^i < k - 1 \leq 3^{i+1} \), for every pair of factors \(x, y \) of length \(k - 1 \), the occurrence of each \(w \in W_{n,x,y} \) in \(c \) must be one of the nine forms in Figure 3.

![Figure 3.](image_url)

For every fixed pair of \(o_x \in \hat{L}_x \) and \(o_y \in \hat{L}_y \), in all the nine forms, we have
\[
n = |w| = 3^{i+1}(|\tilde{u}| - 1) + \ell(o_x, o_y)
\]
and
\[
|w|_1 = 2^{i+1}|\tilde{u}|_1 - |\text{pref}_{o_x+z_x-k+2}(\sigma^{i+1}(1))|_1 - |\text{suff}_{3^{i+1}-o_y-1}(\sigma^{i+1}(1))|_1,
\]
where \(\ell(o_x, o_y) := (k - 1 - o_x - z_x + o_y + z_y) \leq 2 \cdot 3^{i+1} \) and
\[
\tilde{u} = \begin{cases}
10u1, & \text{if } w \text{ is of Form 1 or 5}, \\
10u01, & \text{if } w \text{ is of Form 3}, \\
1u01, & \text{if } w \text{ is of Form 6 or 9}, \\
1u1, & \text{otherwise}.
\end{cases}
\]

Further, according to (4.15), \(\tilde{u} \) in (4.19) must satisfy \(|\tilde{u}| \equiv 1 \) mod 2. This fact and (4.17) yield that \(W_{n,x,y} = \emptyset \) when \(n \neq \ell(o_x, o_y) \) mod \(2 \cdot 3^{i+1} \).
Now we deal with the case \(n \equiv \ell(o_x, o_y) \mod 2 \cdot 3^{i+1} \). Note that by (4.5c), we have \(p(2j+1,1,1) = 1 \) for all \(j \geq 1 \). This fact and (4.18) imply that for all \(n = 2 \cdot 3^{i+1}j + \ell(o_x, o_y) \),

\[
p_k(n, x, y) = \text{Card}(\{|w|_1 \mid w \in W_{n,x,y}\}) = 1.
\]

In conclusion, let \(I_{x,y} = \{2 \cdot 3^{i+1}j + \ell(o_x, o_y) \mid j \geq 1, o_x \in \tilde{L}_x, o_y \in \tilde{L}_y\} \). We have

\[
p_k(n, x, y) = \begin{cases}
1, & \text{if } n \in I_{x,y}, \\
0, & \text{otherwise}.
\end{cases}
\]

Therefore, \(\{p_k(n, x, y)\}_{n \geq 1} \) is ultimately periodic with a period \(2 \cdot 3^{i+1} \).

\[\Box\]

Proposition 3. \(\{P_k^{(k)}(n)\}_{n \geq 1} \) is a 3-regular sequence for every \(k \geq 3 \).

Proof. It follows directly from Lemmas 9, 10 and 11 and (4.1).

\[\Box\]

Theorem 2 follows from Propositions 1, 2 and 3.

References

[1] J. P. Allouche and J. Shallit, Automatic sequences: Theory, Applications, Generalizations, Cambridge University Press 2003.

[2] J. P. Allouche, J. Shallit, The ring of \(k \)-regular sequences, Theoret. Comput. Sci. 98 (2) (1992): 163-197.

[3] L. Balkovič, K. Brimálo and O. Turek, Abelian complexity of infinite words associated with quadratic Parry numbers. Theoret. Comput. Sci. 412 (45) (2011): 6252-6260.

[4] M. Blake, and N. Rampersad, The abelian complexity of the paperfolding word. Discrete Math. 313(2013): 831-838.

[5] J. Currie, N. Rampersad, Recurrent words with constant Abelian complexity, Adv. Appl. Math. 47(2011): 116-124.

[6] S. Eilenberg, Automata, Languages, and Machines, vol. A, Academic Press, New York and London, 1974.

[7] X. T. Lü , J. Chen, Y. J. Guo, and Z. X. Wen, On the permutation complexity of the Cantor-like sequences, Theoret. Comput. Sci. 616 (2016): 100-110.

[8] J. Karhumäki, Generalized Parikh mappings and homomorphisms, Inform. and Control 47 (3) (1980): 155-165.

[9] G. Richomme, K. Saari, L. Zamboni, Abelian complexity of minimal subshifts, J. Lond. Math. Soc. 83(2011): 79-95.

[10] F. Blanchet-Sadri, N. Fox and N. Rampersad, On the asymptotic abelian complexity of morphic words. Adv. Appl. Math. 61 (2014): 46-84.

[11] O. Turek, Balances and abelian complexity of a certain class of infinite ternary words, RAIRO Theor. Inform. Appl. 44 (3) (2010): 313-337.

[12] F. Greinecker, On the 2-abelian complexity of the Thue-Morse word, Theoret. Comput. Sci. 503(2015): 88-105.

[13] A. Parreau, M. Rigo, E. Rowland, E. Vandomme, A New Approach to the 2-Regularity of the 1-Abelian Complexity of 2-Automatic Sequences, Electron. J. Combin. 22(2015): 1-27.

[14] J. Karhumäki, A. Saarela, L.Q. Zamboni, Variations of the Morse-Hedlund Theorem for \(k \)-Abelian Equivalence, Developments in language theory, 203214, Lecture Notes in Comput. Sci., Vol. 8633, Springer, Cham, 2014.

[15] J. Cassaigne, J. Karhumäki, A. Saarela, On growth and fluctuation of \(k \)-abelian complexity, International Computer Science Symposium in Russia. Springer International Publishing, 2015: 109-122.

[16] J. Karhumäki, A. Saarela, L.Q. Zamboni, On a generalization of Abelian equivalence and complexity of infinite words, J. Combin. Theory Ser. A 120(2013): 2189-2206.

[17] A. Parreau, M. Rigo, E. Vandomme, A conjecture on the \(2 \)-abelian complexity of the Thue-Morse word, http://orbi.ulg.ac.be/handle/2268/162740, 2014.
(J. Chen) College of Science, Huazhong Agricultural University, Wuhan 430070, China.
E-mail address: wind.golden@gmail.com

(X.T. Lü) School of Mathematics and Statistics, Huazhong University of Science and Technology,
Wuhan 430074, China.
E-mail address: M201270021@hust.edu.cn

(W. Wu) School of Mathematics, South China University of Technology, Guangzhou 510641, China.
E-mail address: wuwen@scut.edu.cn