Research Article

Emmanuele DiBenedetto, Ugo Gianazza* and Colin Klaus

A necessary and sufficient condition for the continuity of local minima of parabolic variational integrals with linear growth

Abstract: For proper minimizers of parabolic variational integrals with linear growth with respect to $|Du|$, we establish a necessary and sufficient condition for u to be continuous at a point (x_0, t_0), in terms of a sufficient fast decay of the total variation of u about (x_0, t_0). These minimizers arise also as proper solutions to the parabolic 1-Laplacian equation. Hence, the continuity condition continues to hold for such solutions.

Keywords: Continuity, linear growth, parabolic variational integral, parabolic 1-Laplacian

MSC 2010: Primary 35K67, 35B65; secondary 49N60

DOI: 10.1515/acv-2015-0014
Received March 27, 2015; revised October 5, 2015; accepted December 1, 2015

Communicated by: Juha Kinnunen

1 Introduction

Let E be an open subset of \mathbb{R}^N, and denote by $\text{BV}(E)$ the space of functions $v \in L^1(E)$ with finite total variation [8], i.e.,

$$
\|Dv\|(E) := \sup_{\varphi \in [C^1_0(E)]^N, |\varphi| \leq 1} \left\{ \left \langle Dv, \varphi \right \rangle = - \int_E v \text{ div } \varphi \, dx \right\} < \infty.
$$

Here $Dv = (D_1v, \ldots, D_Nv)$ is the vector valued Radon measure, representing the distributional gradient of v. A function $v \in \text{BV}_{\text{loc}}(E)$ if $v \in \text{BV}(E')$ for all open sets $E' \subseteq E$. For $T > 0$, let $E_T = E \times (0, T)$, and denote by $L^1(0, T; \text{BV}(E))$ the collection of all maps $v: [0, T] \to \text{BV}(E)$ such that

$$
v \in L^1(E_T), \quad \|Dv(t)\|(E) \in L^1(0, T),$$

and the maps

$$(0, T) \ni t \mapsto \langle Dv(t), \varphi \rangle$$

are measurable with respect to the Lebesgue measure in \mathbb{R} for all $\varphi \in [C^1_0(E)]^N$.

A function $u \in L^1_{\text{loc}}(0, T; \text{BV}_{\text{loc}}(E))$ is a local parabolic minimizer of the total variation flow in E_T if

$$
\int_0^T \left(\int_E -u \varphi_t \, dx + \|Du(t)\|(E) \right) \, dt \leq \int_0^T \|D(u - \varphi)(t)\|(E) \, dt \tag{1.1}
$$

for all $\varphi \in C^0_0(E_T)$. This notion has been introduced in [3] and modeled in [11]. It is a parabolic version of the elliptic local minima of total variation flow as introduced in [9].

Emmanuele DiBenedetto, Colin Klaus: Department of Mathematics, Vanderbilt University, 1326 Stevenson Center, Nashville TN 37240, USA, e-mail: em.diben@vanderbilt.edu, colin.j.klaus@vanderbilt.edu

*Corresponding author: Ugo Gianazza: Dipartimento di Matematica “F. Casorati”, Università di Pavia, via Ferrata 1, 27100 Pavia, Italy, e-mail: gianazza@imati.cnr.it
1.1 The main result

Let $B_ρ(x_o)$ denote the ball of radius $ρ$ about x_o. If $x_o = 0$, we write $B_ρ(x_o) = B_ρ$. We introduce the cylinders $Q_ρ(θ) = B_ρ × (−θ, 0)$, where $θ$ is a positive parameter to be chosen as needed. If $θ = 1$, we write $Q_ρ(1) = Q_ρ$.

For a point $(x_o, t_o) ∈ R^{N+1}$ we let $[(x_o, t_o) + Q_ρ(θ)]$ be the cylinder of “vertex” at (x_o, t_o) and congruent to $Q_ρ(θ)$, i.e.,

$$[(x_o, t_o) + Q_ρ(θ)] = B_ρ(x_o) × (t_o − θρ, t_o),$$

and we let $ρ > 0$ be so small that $[(x_o, t_o) + Q_ρ(θ)] ⊂ E_T$.

Theorem 1.1. Let $u ∈ L^1_{loc}(0, T; BV_{loc}(E))$ be a local parabolic minimizer of the total variation flow in E_T, satisfying in addition

$$u ∈ L^∞_{loc}(E_T) \quad \text{and} \quad u_t ∈ L^1_{loc}(E_T).$$

Then, u is continuous at some $(x_o, t_o) ∈ E_T$ if and only if

$$\limsup_{ρ ↘ 0} \frac{ρ}{|Q_ρ|} \int_{t_o - ρ}^{t_o} \|Du(·, t)\|(B_ρ(x_o)) \, dt = 0.$$ \hspace{1cm} (1.3)

For stationary, elliptic minimizers, condition (1.3) has been introduced in [9]. The stationary version of (1.3) implies that u is quasi-continuous at x_o. For time-dependent minimizers, however, (1.3) gives no information on the possible quasi-continuity of u at (x_o, t_o). Condition (1.3) is only a measure-theoretical restriction on the speed at which a possible discontinuity may develop at (x_o, t_o). For this reason our proof is entirely different than [9], being based instead on a DeGiorgi-type iteration technique that exploits precisely such a measure-theoretical information.

2 Comments on boundedness and continuity

The theorem requires that u is locally bounded and that $u_t ∈ L^1_{loc}(E_T)$. In the elliptic case, local minimizers of the total gradient flow in E, are locally bounded ([9, §2]). This is not the case, in general, for parabolic minimizers in E_T, even if $u_t ∈ C^∞_{loc}(0, T; L^1_{loc}(E))$. Consider the function

$$B_1 × (−∞, 1) ∋ (x, t) ↦ F(|x|, t) = (1 − t)\frac{N − 1}{|x|} \quad \text{for} \quad N ≥ 3.$$

Denote by D_aF that component of the measure DF which is absolutely continuous with respect to the Lebesgue measure in R^N. One verifies that $DF = D_aF$ and $\|DF(t)\|(B_1) = \|D_aF(t)\|_{1, B_1}$. By direct computation, we have

$$\int_0^T \int_{B_1} \left(−Fφ_t + \frac{D_aF}{|D_aF|} \cdot Dφ \right) \, dx \, dt = 0$$

for all $φ ∈ C^∞_0(B_1 × (0, T)), 0 < T < 1$. It follows that

$$\int_0^T \int_{B_1} \left(−Fφ_t + \frac{D_aF}{|D_aF|} \cdot D_aF \right) \, dx \, dt = \int_0^T \int_{B_1} \frac{D_aF}{|D_aF|} \cdot D_a(F − φ) \, dx \, dt,$$

which yields

$$\int_0^T \int_{B_1} (−Fφ_t + |D_aF|) \, dx \, dt ≤ \int_0^T \int_{B_1} |D_a(F − φ)| \, dx \, dt.$$

Thus, F is a local, unbounded, parabolic minimizer of the total variation flow. The requirement $u ∈ L^∞_{loc}(E_T)$ could be replaced by $u ∈ L^{r}_{loc}(E_T)$ for some $r > N$. A discussion on this issue is provided in Appendix B.
2.1 On the modulus of continuity

While Theorem 1.1 gives a necessary and sufficient condition for continuity at a given point, it provides no information on the modulus of continuity of \(u\) at \((x_0, t_0)\). Consider the following two time-independent functions in \(B_\rho \times (0, \infty)\) for some \(\rho < 1:\)

\[
\begin{aligned}
 u_1(x_1, x_2) &= \begin{cases}
 \frac{1}{\ln x_1} & \text{for } x_1 > 0, \\
 0 & \text{for } x_1 = 0, \\
 -\frac{1}{\ln(x_1)} & \text{for } x_1 < 0,
 \end{cases} \\
 u_2(x_1, x_2) &= \begin{cases}
 \sqrt{x_1} & \text{for } x_1 > 0, \\
 -\sqrt{-x_1} & \text{for } x_1 \leq 0.
 \end{cases}
\end{aligned}
\]

Both of them are stationary parabolic minimizers of the total variation flow in the sense of (1.1)–(1.2) over \(B_\frac{1}{2} \times (0, \infty)\). We establish this for \(u_1\), and note that the statement for \(u_2\) can be verified analogously. Since \(u_1 \in W^{1,1}(B_\rho)\), and is time-independent, one also has \(u \in L^1(0, T; BV(B_\rho))\). To verify (1.1), one needs to show that

\[
\|Du_1\|(B_\rho) \leq \int_0^T \|D(u_1 + \varphi)(\cdot, t)\|(B_\rho) \, dt
\]

for all \(T > 0\) and all \(\varphi \in C^\infty_0(B_\rho \times (0, T))\). Let \(\mathcal{H}^k(A)\) denote the \(k\)-dimensional Hausdorff measure of a Borel set \(A \subset \mathbb{R}^N\). One checks that \(\mathcal{H}^k(\{Du_1 = 0\}) = 0\), and there exists a closed set \(K \subset B_\rho\) such that \(\mathcal{H}^{N-1}(K) = 0\) and

\[
\int_{B_\rho - K} \frac{Du_1}{|Du_1|} \cdot D\varphi \, dx = 0 \quad \text{for all } \varphi \in C^\infty_0(B_\rho - K).
\]

From this and by [5, Lemma 4 in §8], for all \(\psi \in C^\infty_0(B_\rho)\), one has

\[
\|Du_1\|(B_\rho) \leq \|D(u_1 + \psi)\|(B_\rho),
\]

which, in turn, yields (2.1). The two functions \(u_1\) and \(u_2\) can be regarded as equibounded near the origin. They both satisfy (1.3), and exhibit quite different moduli of continuity at the origin. This occurrence is in line with a remark of Evans [7]. A sufficiently smooth minimizer of the elliptic functional \(\|Du\|(E)\) is a function whose level sets are surfaces of zero mean curvature. Thus, if \(u\) is a minimizer, so is \(\varphi(u)\) for all continuous monotone functions \(\varphi(\cdot)\). This implies that a modulus of continuity cannot be identified solely in terms of an upper bound of \(u\).

3 Singular parabolic DeGiorgi classes

Let \(\mathcal{C}(Q_\rho(\theta))\) denote the class of all non-negative, piecewise smooth, cutoff functions \(\zeta\) defined in \(Q_\rho(\theta)\), vanishing outside \(B_\rho\) such that \(\zeta_t \geq 0\) and satisfying

\[
|D\zeta| + \zeta_t \in L^\infty(Q_\rho(\theta)).
\]

For a measurable function \(u: E_T \rightarrow \mathbb{R}\) and \(k \in \mathbb{R}\), set

\[
(u - k)_+ = \{\max(u - k) \wedge 0\}.
\]

The singular, parabolic DeGiorgi class \([DG]^{+}(E_T; \gamma)\) is the collection of all measurable maps

\[
u \in C^0_{\text{loc}}((0, T); L^2_{\text{loc}}(E)) \cap L^1_{\text{loc}}(0, T; BV_{\text{loc}}(E)),
\]

(3.1)
satisfying
\[
\sup_{t_0 - \theta \leq t \leq t_0} \int_{B_\rho(x_0)} (u - k)^2 \xi(x, t) \, dx + \int_{t_0 - \theta \rho}^{t_0} \|D((u - k)_\xi(c)) (B_{\rho}(x_0))\| \, dt \\
\leq \gamma \int_{(x_0, t_0) + Q_{\rho}(\theta)} [(u - k)^2_\xi + (u - k)^2_\xi(\zeta_\xi)] \, dx \, dt + \int_{B_\rho(x_0)} (u - k)^2 \xi(x, t_0 - \theta \rho) \, dx
\]
for all \((x_0, t_0) + Q_{\rho}(\theta) \subset E_T\), all \(k \in \mathbb{R}\), all \(\xi \in \mathcal{C}(E_T)\), and for a given positive constant \(\gamma\). The singular DeGiorgi classes \([DG](E_T; \gamma)\) are defined as \([DG](E_T; \gamma) = [DG]^+(E_T; \gamma) \cap [DG]^{-}(E_T; \gamma)\).

3.1 The main result

The main result of this note is that the necessary and sufficient condition of Theorem 1.1 holds for functions \(u \in DG(E_T; \gamma) \cap L^\infty_{\text{loc}}(E_T)\). Indeed, the proof of Theorem 1.1, only uses the local integral inequalities (3.2). In particular, the second of (1.2) is not needed.

Proposition 3.1. Let \(u\) in the functional classes (3.1) be a parabolic minimizer of the total variation flow in \(E_T\), in the sense of (1.1), satisfying in addition (1.2). Then, \(u \in DG(E_T; 2)\).

The proof will be given in Appendix A.

Remark 3.2. Note that in the context of \(DG(E_T)\) classes, the characteristic condition (1.3) holds with no further requirement that \(u_t \in L^1_{\text{loc}}(E_T)\). The latter, however, is needed to cast a parabolic minimizer of the total variation flow into a \(DG(E_T)\)-class as stated in Proposition 3.1.

4 A singular diffusion equation

Consider (formally) the parabolic 1-Laplacian equation
\[
u_t - \text{div} \left(\frac{Du}{|Du|} \right) = 0 \quad \text{formally in } E_T.
\]

Let \(\mathcal{P}\) be the class of all Lipschitz continuous non-decreasing functions \(p(\cdot)\), defined in \(\mathbb{R}\) with \(p'\) compactly supported. Denote by \(\mathcal{C}(E_T)\) the class of all non-negative functions \(\xi\) defined in \(E_T\) such that \(\xi(\cdot, t) \in C^1_{\text{loc}}(E)\) for all \(t \in (0, T)\), and \(0 \leq \xi \leq \zeta < \infty\) in \(E_T\). A function \(u \in C^1_{\text{loc}}(0, T; L^1(E))\) is a local solution to (4.1) if the following hold:

(a) \(p(u) \in L^1_{\text{loc}}(0, T; BV(E))\) for all \(p \in \mathcal{P}\).

(b) There exists a vector valued function \(z \in [L^\infty(E_T)]^N\) with \(\|z\|_{\text{loc}, E} \leq 1\), such that \(u_t = \text{div} z\) in \(\mathcal{P}(E_T)\).

(c) Denoting by \(d\|Dp(u - \ell)\|\) the measure in \(E\) generated by the total variation \(\|Dp(u - \ell)\|(E)\), we have
\[
\int_E \left(\int_0^{t_2} \int_0^{t_1} p(s) \, d\zeta dx \, ds + \int_{t_2}^{t_1} \int_0^{T_2} \zeta d\|Dp(u - \ell)\| \right) \, dt \\
\leq \int_E \left(\int_0^{t_2} \int_0^{t_1} p(s) \, d\zeta dx \, ds + \int_{t_2}^{t_1} \int_0^{T_2} p(s) \, d\zeta dx \, ds \right) \zeta dx \, dt - \int_E z \cdot D\zeta(p(u - \ell) \, dx \, dt
\]
for all \(\ell \in \mathbb{R}\), all \(p \in \mathcal{P}\), all \(\zeta \in \mathcal{C}(E_T)\), and all \([t_1, t_2] \subset (0, T)\).

This notion is a local version of a global one introduced in [1, Chapter 3]. Similar notions are found in [1, 3, 4, 10], associated with issues of existence for the Cauchy problem and boundary value problems associated with (4.1). The notion of solution in [3], called *variational*, is different and closely related to the variational integrals (1.1).
Our results are local in nature and disengaged from any initial or boundary conditions. Let u be a local solution to (4.1) in the indicated sense, which in addition is locally bounded in E_T. In (4.2), take $\ell = 0$ and $p_s(u) = \pm (u - k)_s$. Since $u \in L^{10}(E_T)$, one verifies that $p_s \in \mathcal{P}$. Standard calculations then yield that u is in the DeGiorgi classes $[DG]^+(E; \gamma)$ for some fixed $\gamma > 0$. As a consequence, we have the following corollary.

Corollary 4.1. Let $u \in L^{10}(E_T)$ be a local solution to (4.1) in E_T, in the sense (a)–(c) above. Then, u is continuous at some $(x_0, t_0) \in E_T$ if and only if (1.3) holds true.

5 Proof of the necessary condition

Let $u \in [DG](E_T; \gamma)$ be continuous at $(x_0, t_0) \in E_T$, which we may take as the origin of \mathbb{R}^{N+1}, and we may assume $u(0, 0) = 0$. In (3.2) for $(u - k)_s$, take $\theta = 1$ and $k = 0$. Let also $\zeta \in \mathcal{C}(Q_{2\rho})$ be such that $\zeta(\cdot, -2\rho) = 0$, $\zeta = 1$ on $Q_{2\rho}$, and

$$|D\zeta| + \zeta_t \leq \frac{3}{\rho}.$$

Repeat the same choices in (3.2) for $(u - k)_s$. Adding the resulting inequalities gives

$$\frac{\rho}{|Q_{\rho}|} \int_0^\rho \|D(u\zeta)(\cdot, t)||B_{2\rho}|| dt \leq 2^{N+1} \gamma \iint_{Q_{2\rho}} (u + u^2) \ dx \ dt. \quad (5.1)$$

Since the total variation $\| Dw \|$ of a function $w \in BV$ can be seen as a measure (see, for example, [12, Chapter 1, §1]), we have

$$\frac{\rho}{|Q_{\rho}|} \int_0^\rho \|D(u\zeta)(\cdot, t)||B_{2\rho}|| dt \leq \frac{\rho}{|Q_{\rho}|} \int_0^\rho \|D(u\zeta)(\cdot, t)||B_{2\rho}|| dt.$$

On the other hand, $u\zeta \equiv u$ in $Q_{\rho} \supset Q_{\rho}$, and therefore we conclude

$$\frac{\rho}{|Q_{\rho}|} \int_\rho^\rho \|Du(\cdot, t)||B_{\rho}|| dt \leq 2^{N+1} \gamma \iint_{Q_{2\rho}} (u + u^2) \ dx \ dt.$$

The right-hand side tends to zero as $\rho \to 0$, thereby implying the necessary condition of Theorem 1.1. \hfill \square

6 A DeGiorgi-type lemma

For a fixed cylinder $[(y, s) + Q_{\rho}(\theta)] \subset E_T$, denote by μ_\pm and ω non-negative numbers such that

$$\mu_+ \geq \text{ess sup}_{[(y, s) + Q_{\rho}(\theta)]} u, \quad \mu_- \leq \text{ess inf}_{[(y, s) + Q_{\rho}(\theta)]} u, \quad \omega \geq \mu_+ - \mu_-.$$ \hfill (6.1)

Let $\zeta \in (0, \tfrac{1}{2})$ be fixed and let $\theta = 2\zeta \omega$. This is an intrinsic cylinder in that its length $\theta \rho$ depends on the oscillation of u within it. We assume momentarily that the indicated choice of parameters can be effected.

Lemma 6.1. Let u belong to $[DG]^+(E_T, \gamma)$. There exists a number ν_- depending on N and γ only, such that if

$$[u \leq \mu_- + \zeta \omega] \cap [(y, s) + Q_{\rho}(\theta)] \leq \nu_- |Q_{\rho}(\theta)|,$$ \hfill (6.2)

then

$$u \geq \mu_- + \frac{1}{2} \zeta \omega \quad \text{a.e. in } [(y, s) + Q_{\rho}(\theta)].$$ \hfill (6.3)

Likewise, if u belongs to $[DG]^+(E_T, \gamma)$, there exists a number ν_+ depending on N and γ only, such that if

$$[u \leq \mu_+ - \zeta \omega] \cap [(y, s) + Q_{\rho}(\theta)] \leq \nu_+ |Q_{\rho}(\theta)|,$$ \hfill (6.4)

then

$$u \leq \mu_+ - \frac{1}{2} \zeta \omega \quad \text{a.e. in } [(y, s) + Q_{\rho}(\theta)].$$ \hfill (6.5)
Proof. We prove (6.2)–(6.3); the proof of (6.4)–(6.5) is similar. We may assume \((y, s) = (0, 0)\) and for \(n = 0, 1, \ldots\), set
\[
\rho_n = \rho + \frac{\rho}{2^n}, \quad B_n = B_{\rho_n}, \quad Q_n = B_n \times (-\theta \rho_n, 0).
\]
Apply (3.2) over \(B_n\) and \(Q_n\) to \((u - k_n)_-\), for the levels
\[
k_n = \mu_- + \xi_n \alpha, \quad \text{where} \quad \xi_n = \frac{1}{2} \xi + \frac{1}{2^{n+1}} \xi.
\]
The cutoff function \(\zeta\) is taken of the form \(\zeta(x, t) = \zeta_1(x) \zeta_2(t)\), where
\[
\zeta_1 = \begin{cases} 1 & \text{in } B_{n+1}, \\ 0 & \text{in } \mathbb{R}^N - B_n, \end{cases} \quad \text{and} \quad \zeta_2 = \begin{cases} 0 & \text{for } t < -\theta \rho_n, \\ 1 & \text{for } t \geq -\theta \rho_{n+1}, \end{cases}
\]
where
\[
\zeta_1 \leq \frac{1}{\rho} \left(\int_{B_n} (u - k_n)^2 dx + \int_{-\theta \rho_n}^0 |D(u - k_n)_- \zeta_1| |B_n| dt \right) \leq \gamma \frac{2^n}{\rho} \left(\int_{Q_n} (u - k_n)_- dx dt + \frac{1}{\theta} \int_{Q_n} (u - k_n)^2 dx dt \right) \leq \gamma \frac{2^n (\xi \omega)}{\rho} |[u < k_n] \cap Q_n|.
\]

By [6, the embedding Proposition 4.1 in Preliminaries],
\[
\int_{Q_n} [(u - k_n)_- \zeta_1]^{\frac{N+2}{N}} dx dt \leq \frac{1}{\theta \rho_n} \|D[(u - k_n)_- \zeta_1] \| |B_n| dt \left(\int_{-\theta \rho_n}^0 \left(\int_{B_n} (u - k_n)_- \zeta_1 \right)^2 dx \right)^{\frac{1}{2}} \leq \gamma \left(\frac{2^n}{\rho} \xi \omega \right)^{\frac{N+2}{N}} |[u < k_n] \cap Q_n|^{\frac{N+2}{N}}.
\]
Estimate below
\[
\int_{Q_n} [(u - k_n)_- \zeta_1]^{\frac{N+2}{N}} dx dt \geq \left(\frac{\xi \omega}{2^{n+2}} \right)^{\frac{N+2}{N}} |[u < k_n+1] \cap Q_{n+1}|,
\]
and set
\[
Y_n = |[u < k_n] \cap Q_n| \left| Q_n \right|.
\]
Then,
\[
Y_{n+1} \leq \gamma b^n Y_{n}^{1+\frac{1}{b}},
\]
where
\[
b = 2^{\frac{1}{b}} |3N+1|.
\]
By [6, Lemma 5.1 in Preliminaries], \([Y_n] \to 0\) as \(n \to \infty\), provided
\[
Y_0 \leq \gamma^{-N} b^{-N} =: \nu_-
\]
The proof of (6.4)–(6.5) is almost identical. One starts from inequalities (3.2) written for the truncated functions
\[
(u - k_n)_+ \quad \text{with} \quad k_n = \mu_- - \xi_n \alpha
\]
for the same choice of \(\xi_n\).
7 A time expansion of positivity

For a fixed cylinder
\[(y, s) + Q^+_2(\theta) = B_{2\rho}(y) \times (s, s + \theta \rho) \subset E_T,\]
denote by \(\mu_+\) and \(\omega\) the non-negative numbers satisfying the analogue of (6.1). Let also \(\xi \in (0, 1)\) be a fixed parameter. The value of \(\theta\) will be determined by the proof; we momentarily assume that such a choice can be made.

Lemma 7.1. Let \(u \in [DG]^-(E_T, \gamma)\) and assume that for some \((y, s) \in E_T\) and some \(\rho > 0\),
\[|u(\cdot, s) + \mu_+ + \xi \omega| \cap B_\rho(y) \geq \frac{1}{2}|B_\rho(y)|.\]
Then, there exist \(\delta\) and \(\varepsilon\) in \((0, 1)\), depending only on \(N, \gamma\) and independent of \(\xi\), such that
\[|u(\cdot, t) - \mu_+ + \varepsilon \xi \omega| \cap B_\rho(y) \geq \frac{1}{4}|B_\rho|\]
for all \((s, s + \delta(\xi \omega) \rho)\).

Proof. Assume \((y, s) = (0, 0)\), and for \(k > 0\) and \(t > 0\) set
\[A_{k, \rho}(t) = \{u(\cdot, t) < k\} \cap B_\rho.\]
The assumption implies
\[|A_{\mu_+ + \xi \omega, \rho}(0)| \leq \frac{1}{2}|B_\rho|.\]
Write down inequalities (3.2) for the truncated functions \((u - \mu_+ + \xi \omega)_{\cdot, s} \cdot,\) over the cylinder \(B_{\rho} \times (0, \theta \rho)\), where \(\theta > 0\) is to be chosen. The cutoff function \(\xi\) is taken independent of \(t\), non-negative, and such that
\[\xi = 1 \quad \text{on } B_{(1 - \sigma)\rho} \quad \text{and} \quad |D\xi| \leq \frac{1}{\sigma \rho},\]
where \(\sigma \in (0, 1)\) is to be chosen. Discarding the non-negative term containing \(D(u - \mu_+ + \xi \omega)_{\cdot, s}\) on the left-hand side, these inequalities yield
\[
\int_{B_{(1 - \sigma)\rho}} \frac{(u - \mu_+ + \xi \omega)^2(x, t)}{B_\rho} \, dx \leq \int_{B_\rho} (u - \mu_+ + \xi \omega)^2(x, 0) \, dx + \frac{\sigma \rho}{\sigma \rho} \left(\int_{B_\rho} (u - \mu_+ + \xi \omega)^2 \, dx \right) \, dt
\]
\[\leq (\xi \omega)^2 \left[\frac{1}{2} + \frac{\theta}{\sigma(\xi \omega)} \right]|B_\rho|
\]
for all \(t \in (0, \theta \rho)\), where we have enforced (7.1). The left-hand side is estimated below by
\[
\int_{B_{(1 - \sigma)\rho}} (u - \mu_+ + \xi \omega)^2(x, t) \, dx \geq \int_{B_{(1 - \sigma)\rho} \cap u < \mu_+ + \varepsilon \xi \omega} (u - \mu_+ + \xi \omega)^2(x, t) \, dx \geq (\xi \omega)^2 (1 - \varepsilon)^2 |A_{\mu_+ + \varepsilon \xi \omega, (1 - \sigma)\rho}(t)|,
\]
where \(\varepsilon \in (0, 1)\) is to be chosen. Next, estimate
\[|A_{\mu_+ + \varepsilon \xi \omega, \rho}(t)| = |A_{\mu_+ + \varepsilon \xi \omega, (1 - \sigma)\rho}(t) \cup (A_{\mu_+ + \varepsilon \xi \omega, \rho}(t) - A_{\mu_+ + \varepsilon \xi \omega, (1 - \sigma)\rho}(t))| \leq |A_{\mu_+ + \varepsilon \xi \omega, (1 - \sigma)\rho}(t)| + |B_\rho - B_{(1 - \sigma)\rho}| \leq |A_{\mu_+ + \varepsilon \xi \omega, (1 - \sigma)\rho}(t)| + N\sigma |B_\rho|.
\]
Combining these estimates gives
\[|A_{\mu_+ + \varepsilon \xi \omega, \rho}(t)| \leq \frac{1}{(\xi \omega)^2 (1 - \varepsilon)^2} \int_{B_{(1 - \sigma)\rho}} (u - \mu_+ + \xi \omega)^2(x, t) \, dx + N\sigma |B_\rho|
\]
\[\leq \frac{1}{(1 - \varepsilon)^2} \left[\frac{1}{2} + \frac{\gamma \theta}{\sigma(\xi \omega)} + N\sigma \right]|B_\rho|.
\]
Choose \(\theta = \delta(\xi \omega)\) and then set
\[\sigma = \frac{1}{16N}, \quad \varepsilon = \frac{1}{32}, \quad \delta = \frac{1}{2^3 \gamma N}.
\]
This proves the lemma. \(\square\)
8 Proof of the sufficient part of Theorem 1.1

Having fixed \((x_0, t_0) \in E_T\), assume it coincides with the origin of \(\mathbb{R}^{N+1}\) and let \(\rho > 0\) be so small that \(Q_\rho \subset E_T\). Set

\[
\mu_+ = \text{ess sup}_{Q_\rho} u, \quad \mu_- = \text{ess inf}_{Q_\rho} u, \quad \omega = \mu_+ - \mu_- = \text{ess osc}_{Q_\rho} u.
\]

Without loss of generality, we may assume that \(\omega \leq 1\), so that

\[
Q_\rho(\omega) = B_\rho \times (-\omega \rho, 0) \subset Q_\rho \subset E_T
\]

and

\[
\text{ess osc}_u \leq \omega.
\]

If \(u\) were not continuous at \((x_0, t_0)\), there would exist \(\rho_0 > 0\) and \(\omega_0 > 0\) such that

\[
\omega_\rho = \text{ess osc}_u \geq \omega_0 > 0 \quad \text{for all } \rho \leq \rho_0. \quad (8.1)
\]

Let \(\delta\) be determined from the last equality of (7.2). At the time level \(t = -\delta \omega_\rho\), either

\[
\left| \left\{ u(\cdot, t) > \mu_+ + \frac{1}{2} \omega \right\} \cap B_\rho \right| \geq \frac{1}{2} |B_\rho|
\]

or

\[
\left| \left\{ u(\cdot, t) < \mu_+ - \frac{1}{2} \omega \right\} \cap B_\rho \right| \geq \frac{1}{2} |B_\rho|.
\]

Assuming the former holds, by Lemma 7.1,

\[
\left| \left\{ u(\cdot, t) > \mu_+ + \frac{\delta}{\rho} \omega \right\} \cap B_\rho \right| \geq \frac{1}{2} |B_\rho| \quad \text{for all } t \in (-\delta \omega_\rho, 0].
\]

Let \(2\xi = \frac{1}{\rho_0} \delta\). Then,

\[
\left| \left\{ u(\cdot, t) > \mu_+ + 2\xi \omega \right\} \cap B_\rho \right| \geq \frac{1}{2} |B_\rho| \quad \text{for all } t \in (-\xi \omega_\rho, 0]. \quad (8.2)
\]

Next, apply the discrete isoperimetric inequality of [6, Lemma 2.2 in Preliminaries] to the function \(u(\cdot, t)\), for \(t\) in the range \((-\xi \omega_\rho, 0]\), over the ball \(B_\rho\), for the levels

\[
k = \mu_- + \xi \omega \quad \text{and} \quad \ell = \mu_- + 2\xi \omega, \quad \text{so that} \quad \ell - k = \xi \omega.
\]

This inequality is stated and proved in [6] for functions in \(W^{1,1}_{\text{loc}}(E)\). It continues to hold for \(u \in \text{BV}_{\text{loc}}(E)\), by virtue of the approximation procedure of [8, Theorem 1.17]. Taking also into account (8.2), this gives

\[
\xi \omega |\left\{ u(\cdot, t) < \mu_- + \xi \omega \right\} \cap B_\rho| \leq \gamma \rho \int (\rho^0 \text{Du})([u(\cdot, t) > k] \cap B_\rho).
\]

Integrating in \(dt\) over the time interval \((-\xi \omega_\rho, 0]\) gives

\[
\frac{|\left\{ u < \mu_- + \xi \omega \right\} \cap Q_\rho(\xi \omega)|}{|Q_\rho(\xi \omega)|} \leq \frac{\gamma}{(\xi \omega_\rho)^2 |Q_\rho|} \int_{-\rho}^0 \|\text{Du}(\cdot, t)\|(B_\rho) \, dt.
\]

By the assumption, the right-hand side tends to zero as \(\rho \searrow 0\). Hence, there exists \(\rho\) so small that

\[
\frac{|\left\{ u < \mu_- + \xi \omega \right\} \cap Q_\rho(\xi \omega)|}{|Q_\rho(\xi \omega)|} \leq \nu_-,
\]

where \(\nu_-\) is the number claimed by Lemma 6.1 for such choice of parameters. The Lemma then implies

\[
\text{ess inf}_{Q_{\frac{1}{2}}} u \geq \mu_- + \frac{1}{2} \xi \omega,
\]

and hence

\[
\text{ess osc}_{Q_{\frac{1}{2}}(\xi \omega)} u \leq \eta \omega, \quad \text{where} \quad \eta = 1 - \frac{1}{2} \xi \in (0, 1).
\]
Setting $\rho_1 = \frac{1}{2} \xi \omega \rho$ gives
\[
\omega_{\rho_1} = \text{ess osc}_{Q_{\rho_1}} u \leq \eta \omega.
\]
Repeat now the same argument starting from the cylinder Q_{ρ_1}, and proceed recursively to generate a decreasing sequence of radii $\{\rho_n\} \to 0$ such that
\[
\omega_0 \leq \text{ess osc}_{Q_{\rho_n}} u \leq \eta^n \omega \quad \text{for all } n \in \mathbb{N}.
\]

A Proof of Proposition 3.1

The proof uses an approximation procedure of [2]. Observe first that the assumption $u_t \in L^1_{\text{loc}}(E_T)$ permits to cast (1.1) in the form
\[
\|Du(t)(E)\| \leq \|D(u + \varphi(t))(E)\| + \int_E u_t \varphi \, dx \tag{A.1}
\]
for a.e. $t \in (0, T)$ and for all
\[
\varphi \in BV_{\text{loc}}(E) \cap L^\infty_{\text{loc}}(E) \quad \text{with } \text{supp}\{\varphi\} \subset E.
\]
We only prove the estimate for $(u - k)_+$, the one for $(u - k)_-$ is similar. Fix a cylinder
\[
[(x_o, t_o) + Q_{\rho}(\Theta)] \subset E_T.
\]
Up to a translation, assume that $(x_o, t_o) = (0, 0)$ and fix a time $t \in (-\theta \rho, 0)$ for which
\[
\int_{B_\rho} |u_t(x, t)| \, dx < \infty \quad \text{and} \quad u(\cdot, t) \in BV(E) \cap L^\infty(B_\rho).
\]
The next approximation procedure is carried out for such t fixed and we write $u(\cdot, t) = u$. By [8, Theorem 1.17], there exists $\{u_j\} \subset \mathcal{C}^\infty_0(B_\rho)$ such that
\[
\lim_{j \to \infty} \int_{B_\rho} |u_j - u| \, dx = 0 \quad \text{and} \quad \|Du\|(E) = \lim_{j \to \infty} \int_E |Du_j| \, dx. \tag{A.3}
\]
Test (A.1) with $\varphi = -\zeta(u - k)_+$, where $\zeta \in \mathcal{C}(Q_{\rho}(\Theta))$. This is an admissible choice, since $u \in BV(E) \cap L^\infty(B_\rho)$. Set $\varphi_j = -\zeta(u_j - k)_+$ for $j \in \mathbb{N}$. For a given $\epsilon > 0$, there exists $j_0 \in \mathbb{N}$ such that
\[
\int_E |Du_j| \, dx < \|Du(\cdot, t)\|(E) + \frac{1}{2} \epsilon \quad \text{for all } j \geq j_0.
\]
Here we have used the second equality of (A.3). By the first, $\{(u_j + \varphi_j)\} \to (u + \varphi)$ in $L^1(E)$. Therefore, for any $\psi \in \mathcal{C}^1_0(E)^N$ with $\|\psi\| \leq 1$,
\[
\int_E (u + \varphi) \, \text{div} \, \psi \, dx = \lim_{j \to \infty} \int_E (u_j + \varphi_j) \, \text{div} \, \psi \, dx \leq \liminf_{j \to \infty} \int_E |D(u_j + \varphi_j)| \, dx.
\]
Taking the supremum over all such ψ gives
\[
\|D(u + \varphi)(t)(E)\| \leq \liminf_{j \to \infty} \int_E |D(u_j + \varphi_j)| \, dx.
\]
Therefore, up to redefining \(j_0 \) we may also assume that
\[
\int_E |D(u_j + \varphi)| \, dx \geq \|D(u + \varphi)(E) - \frac{1}{2} \varepsilon \| \text{ for all } j \geq j_0.
\]
Combining the preceding inequalities gives that
\[
\int_E |Du| \, dx < \|D(\cdot, \cdot)(E) + \frac{1}{2} \varepsilon
\]
\[
\leq \|D(u + \varphi)(\cdot, \cdot)(E) + \int_E u_t(\cdot, t) \varphi \, dx + \frac{1}{2} \varepsilon
\]
\[
\leq \int_E |Du_j + \varphi| \, dx + \int_E u_t(\cdot, t) \varphi \, dx + \varepsilon
\]
for all \(j \geq j_0 \). Next, we estimate the first integral on the right-hand side as follows:
\[
\int_E |Du_j + \varphi| \, dx = \int_E |Du_j - \zeta(u_j - k)_+| \, dx
\]
\[
\leq \int_E |Du_j - \zeta(u_j - k)_+| \, dx + \int_E |D\zeta(u_j - k)_+| \, dx
\]
\[
\leq \int_E (1 - \zeta)|Du_j| + \zeta|Du_j - D(u_j - k)_+| \, dx + \int_E |D\zeta(u_j - k)_+| \, dx.
\]
Put this in (A.4), and absorb the first integral on the right-hand side into the left-hand side to obtain
\[
\int_E \zeta|Du_j - k)_+| \, dx \leq \int_E \zeta|Du_j| - |Du_j - D(u_j - k)_+| \, dx
\]
\[
\leq \int_E |D\zeta(u_j - k)_+| \, dx + \int_E u_t(\cdot, t) \varphi \, dx + \varepsilon.
\]
From this, we have
\[
\int_E |D(\zeta(u_j - k)_+)| \, dx \leq 2 \int_E |D\zeta(u_j - k)_+| \, dx + \int_E u_t(\cdot, t) \varphi \, dx + \varepsilon.
\]
Next let \(j \to \infty \), using the lower semicontinuity of the total variation with respect to \(L^1 \)-convergence. This gives
\[
\|D(\zeta(u - k)_+)(B_\rho)\| \leq \liminf_{j \to \infty} \int_E |D(\zeta(u_j - k)_+)| \, dx
\]
\[
\leq \lim_{j \to \infty} 2 \int_E |D\zeta(u_j - k)_+| \, dx + \int_E u_t(\cdot, \cdot) \varphi \, dx + \varepsilon
\]
\[
= 2 \int_E |D\zeta(u - k)_+| \, dx + \int_E u_t(\cdot, \cdot) \varphi \, dx + \varepsilon.
\]
Finally, let \(\varepsilon \to 0 \) and use the definition of \(\varphi \) to get
\[
\|D(\zeta(u - k)_+)(B_\rho)\| \leq 2 \int_{B_\rho} |D\zeta(u - k)_+| \, dx - \int_{B_\rho} \zeta_t(u - k)_+ \, dx.
\]
To conclude the proof, integrate in \(dt \) over \((-\theta \rho, 0)\). \(\square \)
B Boundedness of minimizers

Proposition B.1. Let $u: E_T \to \mathbb{R}$ be a parabolic minimizer of the total variation flow in the sense of (1.1). Furthermore, assume that $u \in L^r_{\text{loc}}(E_T)$ for some $r > N$, and that it can be constructed as the limit in $L^r_{\text{loc}}(E_T)$ of a sequence of parabolic minimizers satisfying (1.2). Then, there exists a positive constant γ depending only upon N, γ, r such that

$$
\sup_{B_r(y) \times [s, t]} u_s \leq \gamma \left(\frac{\rho_0}{t-s} \right)^{\frac{1}{2n}} \left(\frac{1}{\rho_N(t-s)} \int_{2s-t}^{t} \int_{B_{q_0} (y)} u^r \, dx \, d\tau \right)^{-\frac{1}{2n}} + \frac{\gamma (t-s)}{\rho} \tag{B.1}
$$

for all cylinders $B_{q_0} (y) \times [s - (t-s), s + (t-s)] \subset E_T$.

The constant $\gamma(N, \gamma, r) \to \infty$ as either $r \to N$ or $r \to \infty$.

Remark B.2. The approximations to u do not require to satisfy (1.2) uniformly. The latter is only needed to cast a function satisfying (1.1) into a DeGiorgi class. The proof of the proposition only uses such a membership, and turns such a qualitative, non-uniform information into the quantitative information (B.1).

Proof of Proposition B.1. Let $\{u_j\}$ be a sequence of approximating functions to u. Since u_j satisfy (1.2), they belong to the classes $[DG](E_T; 2)$, by Proposition 3.1. It will suffice to establish (B.1) for u_j for a constant γ independent of j. Thus, in the calculations below we drop the suffix j from u_j. The proof will be given for non-negative $u \in [DG]^+(E_T; 2)$, the proof for the remaining case is identical; it is very similar to the proof of [6, Proposition A.2.1]. Assume $(y, s) = (0, 0)$ and for fixed $\sigma \in (0, 1)$ and $n = 0, 1, 2, \ldots$, set

$$
\rho_n = \sigma \rho + \frac{1-\sigma}{2^n} \rho, \quad t_n = -\sigma t - \frac{1-\sigma}{2^n} t,
$$

$$
B_n = B_{\rho_n}, \quad Q_n = B_n \times (t_n, t).
$$

This is a family of nested and shrinking cylinders with common “vertex” at $(0, t)$, and by construction

$$
Q_0 = B_\rho \times (-t, t) \quad \text{and} \quad Q_\infty = B_{\rho_0} \times (-\sigma t, t).
$$

We have assumed that u can be constructed as the limit in $L^r_{\text{loc}}(E_T)$ of a sequence of bounded parabolic minimizers. By working with such approximations, we may assume that u is qualitatively locally bounded. Therefore, set

$$
M = \text{ess sup}_{Q_n} \max_{Q_n} u, \quad M_\infty = \text{ess sup}_{Q_\infty} \max_{Q_\infty} u.
$$

We first find a relationship between M and M_∞. Denote by ζ a non-negative, piecewise smooth cutoff function in Q_n that equals one on Q_{n+1} and has the form $\zeta(x, t) = \zeta_1(x) \zeta_2(t)$, where

$$
\zeta_1 = \begin{cases}
1 & \text{in } B_{n+1}, \\
0 & \text{in } \mathbb{R}^N - B_{n},
\end{cases} \quad |D\zeta_1| \leq \frac{2^{n+1}}{(1-\sigma)\rho},
$$

$$
\zeta_2 = \begin{cases}
0 & \text{for } t \leq t_n, \\
1 & \text{for } t \geq t_{n+1},
\end{cases} \quad 0 \leq \zeta_2 \leq \frac{2^n}{(1-\sigma)t}.
$$

We introduce the increasing sequence of levels $k_n = k - 2^{-n}k$, where $k > 0$ is to be chosen, and in (3.2), take such a test function, to get

$$
\sup_{t_n \leq \tau \leq t} \int_{B_n} \left| (u - k_{n+1})_+ \right|^2 \, dx + \frac{1}{t_n} \int_{t_n}^{t} \|D[(u - k_{n+1})_+] \zeta(\cdot, \tau)\| (B_n) \, d\tau
\leq \frac{\gamma 2^n}{(1-\sigma)\rho} \int_{Q_n} \left| (u - k_{n+1})_+ \right|^2 \, dx + \frac{\gamma 2^n}{(1-\sigma)t} \int_{Q_n} (u - k_{n+1})_+^2 \, dx \, d\tau.
$$
Estimate
\[
\int_{Q_n}(u - k_n)^+ \, dx \, dt \leq \gamma \frac{n+1}{k^r-1} \int_{Q_n}(u - k_n)^+ \, dx \, dt,
\]
\[
\int_{Q_n}(u - k_n)^2 \, dx \, dt \leq \gamma \frac{n+1}{k^r-2} \int_{Q_n}(u - k_n)^+ \, dx \, dt.
\]
Taking these estimates into account yields
\[
\sup_{t_n \leq t \leq T} \left(\int_{Q_n}(u - k_n)^+, \xi \right)^2 \, dx \, dt + \int_{t_n}^T \|D((u - k_n)^+, \xi)(\cdot, \tau)\|_{(B_n)}^2 \, d\tau
\leq \gamma \frac{n+1}{k^r-1} \int_{Q_n}(u - k_n)^+ \, dx \, dt.
\]
Assuming that \(k > \frac{t}{\rho} \), this implies
\[
\sup_{t_n \leq t \leq T} \left(\int_{Q_n}(u - k_n)^+, \xi \right)^2 \, dx \, dt + \int_{t_n}^T \|D((u - k_n)^+, \xi)(\cdot, \tau)\|_{(B_n)}^2 \, d\tau
\leq \gamma \frac{n+1}{k^r-1} \int_{Q_n}(u - k_n)^+ \, dx \, dt.
\]
Set
\[
Y_n = \frac{1}{|Q_n|} \int_{Q_n}(u - k_n)^+ \, dx \, dt,
\]
and estimate
\[
Y_n+1 \leq \|u\|_{L^q(\Omega, \partial \Omega)} \left(\frac{1}{|Q_n|} \int_{Q_n}(u - k_n)^+ \, dx \, dt \right),
\]
where \(q := \frac{n+2}{N} \). Applying [6, the embedding Proposition 4.1 in Preliminaries], the previous inequality can be rewritten as
\[
Y_n+1 \leq \|u\|_{L^q(\Omega, \partial \Omega)} \left(\frac{b^n}{(1 - \alpha)^{2(N+1)}} \frac{1}{k^{(r-2)\frac{n+2}{N}}} \int_{Q_n}(u - k_n)^+/k \right),
\]
where \(b = 2^{\frac{n+1}{2}} \). Apply [6, Lemma 5.1 in Preliminaries], and conclude that \(Y_n \to 0 \) as \(n \to +\infty \), provided \(k \) is chosen to satisfy
\[
Y_\alpha = \int_{Q_n} u^+ \, dx \, dt = \frac{N+1}{(1 - \alpha)^{N+1}} \|u\|_{L^q(\Omega, \partial \Omega)} \left(\frac{t}{\rho} \right)^N \int_{Q_n}(u - k_n)^+ \, dx \, dt \leq \gamma \nu \frac{n+2}{N} \left(\frac{t}{\rho} \right)^N.
\]
which yields
\[
M_\alpha \leq \gamma \frac{n+2}{(1 - \alpha)^{N+1}} \left(\frac{t}{\rho} \right)^{N+1} \int_{Q_n}(u - k_n)^+ \, dx \, dt.
\]
The proof is concluded by [6, the interpolation Lemma 5.2 in Preliminaries].

Acknowledgment: We thank the referee for the valuable comments.

Funding: E. DiBenedetto and C. Klaus were supported by the NSF grant DMS-1265548.

References

[1] F. Andreu-Vaillo, V. Caselles and J.-M. Mazón, Parabolic Quasilinear Equations Minimizing Linear Growth Functionals, Progr. Math. 223, Birkhäuser, Basel, 2004.

[2] V. Bögelein, F. Duzaar, J. Kinnunen and P. Marcellini, A variational approach to the total variation flow, preprint (2014).
[3] V. Bögelein, F. Duzaar and P. Marcellini, A time dependent variational approach to image restoration, *SIAM J. Imaging Sci.* 8 (2015), no. 2, 968–1006.

[4] V. Bögelein, F. Duzaar and C. Scheven, The total variation flow with time dependent boundary values, preprint (2015).

[5] E. Bombieri, *Theory of Minimal Surfaces and a Counterexample to the Bernstein Conjecture in High Dimensions*, Courant Institute of Mathematical Sciences, New York, 1970.

[6] E. DiBenedetto, U. Gianazza and V. Vespri, *Harnack's Inequality for Degenerate and Singular Parabolic Equations*, Springer Monogr. Math., Springer, New York, 2012.

[7] L. C. Evans, The 1-Laplacian, the infinity Laplacian and differential games, in: *Perspectives in Nonlinear Partial Differential Equations in Honor of Haïm Brezis*, Contemp. Math. 445, American Mathematical Society, Providence (2007), 245–254.

[8] E. Giusti, *Minimal Surfaces and Functions of Bounded Variation*, Monogr. Math. 80, Birkhäuser, Basel, 1984.

[9] R. Hardt and D. Kinderlehrer, Variational principles with linear growth, in: *Partial Differential Equations and the Calculus of Variations. Vol. II*, Progr. Nonlinear Differential Equations Appl. 2, Birkhäuser, Boston (1989), 633–659.

[10] A. Lichnewsky and R. Temam, Pseudosolutions of the time-dependent minimal surface problem, *J. Differential Equations* 30 (1978), no. 3, 340–364.

[11] W. Wieser, Parabolic Q-minima and minimal solutions to variational flow, *Manuscripta Math.* 59 (1987), no. 1, 63–107.

[12] W. P. Ziemer, *Weakly Differentiable Functions*, Grad. Texts in Math. 120, Springer, New York, 1989.