Transfection of COS-1 cells with DT-diaphorase cDNA: role of a base change at position 609

V Misra, HJ Klamut and AM Rauth

Department of Medical Biophysics, University of Toronto, Division of Experimental Therapeutics, Ontario Cancer Institute, 610 University Avenue, Toronto, Ontario, Canada, M5G 2M9

Summary DT-diaphorase, a homodimeric flavoenzyme, can provide for a defence mechanism against carcinogenesis mediated by dietary or environmental quinones as well as bioactivate quinone-containing chemotherapeutic drugs. Human cell lines and strains have been identified with very low or undetectable enzymatic activity and a C to T transition at nucleotide 609 of the DT-diaphorase cDNA. This single base change is predicted to result in a proline to serine change in amino acid 187. Human cells homozygous for this base transition fail to exhibit Western blot reactivity for DT-diaphorase, suggesting that this substitution results in protein instability. To directly test whether this base change affects DT-diaphorase enzymatic activity and/or protein stability in vivo, mammalian expression vectors containing DT-diaphorase cDNA with or without the nucleotide 609 base transition were transiently transfected in COS-1 cells. Co-transfection with a human growth hormone expression vector allowed normalization for transfection efficiency. COS-1 transfected expressing the C to T base change displayed at least a tenfold reduction in DT-diaphorase activity (P < 0.001) and a two- to threefold reduction in protein levels compared with wild-type transfecants. These results are the first to detect the presence of DT-diaphorase protein coded for by the 609 base transition in mammalian cells and confirm its predicted reduced enzymatic activity.

Keywords: DT-diaphorase; transfection; COS-1 cells; polymorphism

DT-diaphorase [NAD(P)H (reduced nicotinamide adenine di-nucleotide, with or without phosphate):quinone oxidoreductase (NQO), EC 1.6.99.2] is a homodimeric flavoprotein that acts on its substrates by two-electron reduction (Ernster, 1967). It uses a wide range of substrates, such as aromatic nitro and nitroso compounds, phenolic antioxidants, azo dyes and quinone-containing compounds (Horie, 1990; Ross et al, 1993). Reduction of the quinine ring to its semiquinone radical form can be mediated by one-electron reductases such as NADPH:cytochrome P-450 reductase and NADH:cytochrome b5 reductase (Powis, 1987). However, DT-diaphorase converts the parent quinone to its hydroquinone form in a single-step two-electron transfer reaction, thereby by-passing semiquinone radical formation (Iyenagi, 1987). Redox cycling between the parent quinone and the semiquinone species in aerobic cells has been implicated in carcinogenesis (Koster, 1991). Reduction of various dietary and environmental quinones by DT-diaphorase may protect DNA and cellular organelles against insults from reactive oxygen intermediates (Chesis et al, 1984; Powis, 1987; Lind et al, 1992). Conversely, a number of quinone-containing chemotherapeutic drugs such as mitomycin C, the indoloquinone E09, and the aziridinyquinones can be activated by DT-diaphorase (Siegel et al, 1990; Begleiter et al, 1992; Walton et al, 1992) into DNA alkylating agents by conversion to their hydroquinone forms in a single-step two-electron transfer reaction.

In the BE human colon carcinoma cell line, a homozygous C to T base transition in nucleotide 609 of DT-diaphorase cDNA has been implicated in causing low to undetectable DT-diaphorase activity (Traver et al, 1992). A wide range of DT-diaphorase activities was observed in human fibroblast strains taken from a cancer-prone family and unrelated donors (Marshall et al, 1991). DT-diaphorase activity appeared to be related to the allelic status at nucleotide 609 (C or T) in these cells, also suggesting that this substitution may impair enzyme activity (Kuehl et al, 1995). In addition, the BE cell line and human cell strains that have no or very low DT-diaphorase activity have normal mRNA levels but lack detectable levels of DT-diaphorase protein when tested with polyclonal and/or monoclonal antibodies directed against DT-diaphorase (Marshall et al, 1991; Traver et al, 1997). To test the hypothesis that this base change impairs DT-diaphorase enzymatic activity, mammalian expression vectors containing DT-diaphorase cDNAs (derived from cells that are homozygous for either the C or T nucleotide at position 609) were transiently transfected into COS-1 monkey kidney cells that express very low levels of endogenous DT-diaphorase activity.

MATERIALS AND METHODS

Chemicals and reagents

2,6-Dichlorophenolindophenol (DCPIP), dicoumarol, FAD, bovine serum albumin, β-NADPH, Tween-20 and Tris-HCl were obtained from Sigma Chemical (St Louis, MO, USA). Lipofectamine reagent was obtained from Life Technologies (Gibco-BRL, Burlington, ON, Canada). Recombinant human growth hormone levels in culture medium were determined using a commercially available radioimmunoassay kit (Joldan Diagnostics, Aurora, ON, Canada). Hybridoma supernatants containing a mixture of two
anti-DT-diaphorase monoclonal antibodies (B771, rat/human NQO, reactive; A180 human NQO, specific) as well as purified human recombinant DT-diaphorase were supplied by Dr David Ross (University of Colorado Health Sciences Center, Denver, CO, USA).

Preparation of eukaryotic expression vectors

Total RNA was isolated from the human fibroblast cell strains GM38 and 3701T, which are homozygous for the C and T nucleotide at position 609 respectively, as previously described (Kuehl et al, 1995). Reverse transcriptase polymerase chain reaction (RT-PCR) was used to amplify cDNAs using Superscript II reverse transcriptase (Gibco) and AmpliTaq polymerase (Perkin Elmer, Norwalk, CT, USA) corresponding to the DT-diaphorase open reading frame using the following primers: 5'NQO1 sense: ATGCAAGCTAATCAGCGCCCCGGACTG (bases 23-40 of NQO1; HindIII restriction site indicated by underline); 3'NQO1, anti-sense: CGACGTCGACAAAGGATAATCCAGCTAAGGA (bases 879-898 of NQO1; SalI site indicated by underline).

The resulting 895-bp fragments, containing the full-length DT-diaphorase coding region, were inserted into the HindIII and SalI sites of pBAPr-1-neo (Kuehl, 1995). These constructs were digested with HindIII and XbaI to release DT-diaphorase cDNAs, which were then gel-purified and subcloned into the pRC/CMV expression vector (Invitrogen, San Diego, CA, USA). Constructs containing DT-diaphorase cDNA inserts with a C or T nucleotide at position 609 were designated as pRC/CMV.DTD609C and pRC/CMV.DTD609T respectively. Constructs were purified for transfection experiments by two rounds of cesium chloride continuous density gradient centrifugation. The sequence integrity of pRC/CMV.DTD609C and pRC/CMV.DTD609T were verified by Sanger sequencing of both strands using Sequence Version 2.0 T7 DNA polymerase (United States Biochemical, Cleveland, OH, USA).

Cell culture

COS-1 monkey kidney cells were obtained from the American Type Culture Collection (Rockville, MD, USA) and grown in alpha minimum essential media supplemented with 10% fetal bovine serum (Sigma Chemical, growth medium) and maintained in a humidified atmosphere containing 5% carbon dioxide at 37°C.

Transient transfection of NQO1 cDNA

COS-1 cells were seeded on 100-mm-diameter tissue culture dishes (NUNC, Denmark) 24 h before transfection at a density of 90–100 cells mm⁻² in growth medium and maintained in a humidified atmosphere with 5% carbon dioxide at 37°C. Lipofectamine transfection was performed according to the manufacturer’s protocol (Gibco-BRL). Briefly, transfections were performed using 20 μl (2 mg ml⁻¹) lipofectamine and 5 μg of pRC/CMV.DTD609C or pRC/CMV.DTD609T co-transfected with 5 μg of pXGH5 (Seldon et al, 1986) in 1.6 ml of antibiotic-free alpha minimal essential media. Mock-transfected (Lipofectamine only) and vector-control transfectants (pRC/CMV vector alone) were similarly treated. Cells were incubated with this mixture for 5 h, followed by an overnight incubation with the addition of 10% fetal bovine serum at which time the media were replaced with fresh growth medium. Twenty-four hours later, an aliquot of growth medium was retained for analysis of recombinant human growth hormone levels and cells were harvested for recombinant DT-diaphorase enzymatic assays.

Assay for DT-diaphorase enzymatic activity

Transfectants were harvested by scraping, centrifuged at 250 g for 5 min at 4°C, resuspended in 1 ml of phosphate-buffered saline (PBS), and lysed by exposure to five 10-s ultrasound pulses at 10-s intervals using a Vibra Cell sonicator (Sonic and Materials, Danbury, CT, USA). DT-diaphorase activity, expressed as nmol min⁻¹ mg⁻¹ total protein, was determined according to a modification (Kuehl et al, 1995) of an assay developed by Benson et al (1980) and is expressed as dicoumarol inhibitable activity measured by the loss of DCPiP at 600 nm. DT-diaphorase activities in cell extracts were determined in the presence of 35 μM DCPiP in a buffer containing 25 mM Tris-HCl (pH 7.4), 0.23 mg ml⁻¹ bovine serum albumin, 0.2 mM NADPH, 0.01% Tween-20, 4 μM flavin adenine dinucleotide, with or without 25 μM dicoumarol. Protein concentration was measured using the Bradford method (1976).

Western blot analysis

COS-1 cells were transfected with DT-diaphorase expression vectors, grown to a density of 4 × 10⁶ cells in 100-mm-diameter tissue culture dishes and harvested by scraping in 2 ml of PBS. Half the cell suspension was used to determine DT-diaphorase activity as described above, whereas the remaining half was used for Western blot analysis (Burnette, 1981). Cell lysates were prepared by resuspending cell pellets in 200 μl cell harvest buffer [0.1 M Tris-HCl, 1% sodium dodecyl sulphate (SDS), 10 mM EDTA, 20 mM dithiothreitol (DTT)] and incubation in a boiling water bath for 2 min. Protein concentration was measured using the Bradford method (1976) and protein (20 μg per lane) was separated by 12% SDS polyacrylamide gel electrophoresis and electrotransfered to nitrocellulose membranes. After transfer, membranes were blocked in Tris-buffered saline containing 5% skim milk powder and 1% heat-inactivated fetal bovine serum for 2 h, and then incubated overnight with 15 ml of hybridoma supernatant containing a mixture of two of the anti-DT-diaphorase monoclonal antibodies at 4°C. Blots were washed in Tris-buffered saline containing 0.05% Tween-20 and incubated for 90 min with a 1:4000 dilution of goat anti-mouse horseradish peroxidase conjugated antibody in Tris-buffered saline containing 1% skim milk powder and 1% heat-inactivated fetal bovine serum. Bands were visualized using an enhanced chemiluminescence detection kit (Amersham Life Science, Oakville ON, Canada) and autoradiography. Purified human recombinant DT-diaphorase (20 ng) was included as a positive molecular weight control. Densitometric analysis was performed using a Computing Densitometer and ImageQuant v. 3.3 software package (Molecular Dynamics, Sunnyvale, CA, USA). Band densities were quantified in ng relative to a positive molecular weight control.

Statistical analysis

DT-diaphorase activity was expressed as nmol/min/mg protein/ng human growth hormone. Two-way analysis of variance (ANOVA) was used to compare the means of enzymatic activities in
COS-1 cells transfected with either pRc/CMV.DTD609C or pRc/CMV.DTD609T. Data were evaluated as two treatments (pRc/CMV.DTD609C or pRc/CMV.DTD609T), each was represented by three separate experiments. Two-way ANOVA allows comparison of means of treatments by separating the intraexperimental variation from interexperimental variation.

RESULTS

Co-transfection of COS-1 cells

COS-1 cells were transiently transfected with eukaryotic expression vectors containing DT-diaphorase cDNAs prepared from mRNA extracted from GM38 or 3701T skin fibroblast strains, which are homozygous for either the C or T nucleotide at position 609 respectively (Kuehl et al., 1995). Untransfected COS-1 cells displayed a background activity within the limit of detection of the assay, as did mock-transfected and vector-control transfected cells (mean ± s.d. of three determinations 3.6 ± 2.2, 3.3 ± 2.2 and 2.0 ± 0.6 nmol min⁻¹ mg⁻¹ protein respectively). DT-diaphorase activities of pRc/CMV.DTD609C and pRc/CMV.DTD609T transfectants were corrected for average background enzymatic activity. Two-way ANOVA indicated that DT-diaphorase activities in cells transfected with pRc/CMV.DTD609C or pRc/CMV.DTD609T were significantly different (P << 0.001). To control for the possibility that differences in DT-diaphorase activities arise from differences in transfection efficiencies, cells were simultaneously transfected with the pXGH5 plasmid, which provides for recombinant human growth hormone expression from the mouse metallothionein-I promoter. Two-way ANOVA indicated that recombinant human growth hormone levels were similar in both pRc/CMV.DTD609C and pRc/CMV.DTD609T co-transfectants for each experiment (P >> 0.1).

DT-diaphorase activities were normalized to recombinant human growth hormone levels (transfection efficiency) and two-way ANOVA confirmed the significant difference in DT-diaphorase activities in pRc/CMV.DTD609C and pRc/CMV.DTD609T transfectants (P << 0.001) (Figure 1). COS-1 cells transfected with pRc/CMV.DTD609C displayed mean DT-diaphorase activities of 260 ± 110 nmol min⁻¹ mg⁻¹ protein ng⁻¹ HGH, which were tenfold greater than activities observed in pRc/CMV.DTD609T transfectants (25 ± 15 nmol min⁻¹ mg⁻¹ protein ng⁻¹ HGH). These results confirmed that DT-diaphorase cDNAs containing a T nucleotide at position 609 encode a DT-diaphorase protein with reduced enzymatic activity.

Western blot analysis

To examine whether the C to T nucleotide substitution leads to decreased protein stability, recombinant DT-diaphorase protein levels were also examined in COS-1 cells transfected with either the pRc/CMV.DTD609C or pRc/CMV.DTD609T constructs. As shown in Figure 2A, Western blot analysis of two independent pRc/CMV.DTD609C or pRc/CMV.DTD609T transfected cell extracts demonstrated that both mutant and wild-type recombinant DT-diaphorase are expressed at high levels in COS-1 cells. The mutant DT-diaphorase protein appeared to run slightly faster than the wild-type DT-diaphorase protein and densitometry (Figure 2B) indicated that wild-type transfectants contained approximately threefold greater DT-diaphorase protein than mutant transfectants (mean amounts of DT-diaphorase protein loaded from wild-type and mutant extracts were estimated to be 240 and 80 ng respectively). These results suggest that lower mutant DT-diaphorase enzyme activities cannot be entirely accounted for by a decrease in protein stabilities.

DISCUSSION

DT-diaphorase has been shown to reduce quinone-containing chemotherapeutic drugs such as mitomycin C and the indoloquinone E09 to their hydroquinone forms leading to the formation of DNA-alkylating agents (Verwiej et al., 1994; Workman, 1994). These drugs may be used to target tumour cells that are rich in DT-diaphorase. Elevated DT-diaphorase activity has been observed in a number of tumour cell lines (Robertson et al., 1992). Tumour biopsy material from patient lung, colon and breast have also been shown to contain elevated DT-diaphorase activities compared with surrounding normal tissue (Koudstaal et al., 1975; Schlager et al., 1990).

The actual role of DT-diaphorase in controlling cell sensitivity to quinone-containing drugs is, however, controversial as one-electron reductases may also play important roles, especially in hypoxic cells (Rauth et al., 1993; Rockwell et al., 1993). The recent work of Fitzsimmons et al (1996) showing a correlation between DT-diaphorase enzymatic activity and aerobic sensitivity to mitomycin C and E09 in the National Cancer Institute human tumour cell line panel is currently the best evidence for this role. The one-electron reductases NADPH:cytochrome P-450 reductase and NADH:cytochrome b, reductase fail to display such a correlation in this study. The alternative role for DT-diaphorase as a detoxifying agent, by one-step two-electron reduction of dietary and environmental quinones to redox active products remains a potentially important function for the enzyme (Powis, 1987).

Cells that are homozygous for a C to T nucleotide transition at position 609 of the DT-diaphorase cDNA were found to contain low to undetectable DT-diaphorase enzymatic activities
mutant DT-diaphorase protein was detected by Western blot analysis in HCT 116-R30A cells, but at 5% of the levels present in the parental mitomycin C-sensitive line. This mutant isoform was also expressed at detectable levels in E. coli and COS-7 cells (Hu et al., 1996). Therefore, stable expression of this DT-diaphorase isoform may be cell-type specific. However, as the tryptophan 139 mutant has enzymatic activity similar to the wild-type enzyme, the reduced activity displayed by HCT 116-R30A cells has been attributed to the low levels of mutant DT-diaphorase protein. The present paper suggests that the serine 187 mutation results in a reduction in both enzymatic activity and protein stability. Therefore, cells that express the serine 187 mutant would be predicted to be resistant to drugs targeted for DT-diaphorase activation.

The proline to serine substitution at amino acid 187 in DT-diaphorase may predispose individuals to cancer by removing an enzymatic defense mechanism against carcinogenesis. However, the importance of DT-diaphorase in cancer prevention is not clear, and factors such as the interplay of DT-diaphorase with other enzymes acting on common substrates need to be investigated further. The results of this study provide further support for a causal link between the C to T mutation at nucleotide 609 and predisposition to cancer. This mutation may also serve as a prognostic indicator for the effectiveness of chemotherapeutic drugs activated by this enzyme.

ACKNOWLEDGEMENTS

This work was supported by a grant from the National Cancer Institute of Canada. The authors would like to thank Dawn Gray for technical assistance.

REFERENCES

Begleiter A, Robotham E and Leith MK (1992) Role of NAD(P)H:quinone acceptor (DT-diaphorase) oxidoreductase in activation of mitomycin C under hypoxia. Mol Pharm 41: 677–682
Benson AM, Hunkler MJ and Talalay P (1980) Increase NAD(P)H:quinone reductase by dietary antioxidants. Possible role in protection against carcinogenesis and toxicity. Biochemistry 17: 5216–5220
Bradford MM (1976) A rapid and sensitive method for the quantification of microgram quantities using the principle of protein-dye binding. Anal Biochem 72: 248–254
Burnette WN (1981) ‘Western blotting’: electrophoretic transfer of proteins from sodium dodecyl sulfate-polyacrylamide gels to unmodified nitrocellulose and radiographic detection with antibody and radiolabeled protein A. Anal Biochem 112: 195–203
Chesis PL, Levin DE, Smith MT, Ernster L and Ames BN (1984) Mutagenicity of quinones: pathways of metabolic activation and detoxification. Proc Natl Acad Sci USA 81: 1696–1700
Eickelmann P, Schulz WA, Robbe B, Schütz-Drager B and Sies H (1994) Loss of heterozygosity at the NAD(P)H:quinone oxidoreductase locus associated with increased resistance against mitomycin C in a human bladder cell line. Biol Chem Hoppe-Seyler 375: 439–445
Ernster L (1967) DT-diaphorase. Methods Enzymol 10: 309–317
Fitzsimmons SA, Workman P, Grever M, Paulk K, Camalier R and Lewis AD (1996) Reductase expression across the National Cancer Institute tumor cell line panel: correlation with sensitivity to mitomycin C and E09. J Natl Cancer Inst 88: 259–269
Horie S (1990) Advances in research on DT-diaphorase. Kutsatsu Arch Exp Med 63: 11–30
Hu LT, Stamberg J and Pan SS (1996) The NAD(P)H:quinone oxidoreductase locus in human colon carcinoma HCT 116 cells resistant to mitomycin C. Cancer Res 56: 5223–5229
Iyenagi T (1987) On the mechanism of one- and two-electron transfer by flavin enzymes. Chem Scr 27A: 31–36
Koster AS (1991) Bioreductive activation of quinones: a mixed blessing. Pharm Weekbl Sci 13: 123–126
Koudstaal J, Makkink B and Overdip SH (1975) Enzyme histochemical pattern in human tumors – II. Oxidoreductases in the carcinoma of colon and breast. Eur J Cancer 11: 111–115
Kuehl BK (1995) The involvement of DT-diaphorase in mitomycin C sensitivity and in a cancer-prone phenotype. PhD thesis. University of Toronto. Department of Medical Biophysics.
Kuehl BK, Paterson JWE, Peacock JW, Paterson MC and Rauth AM (1995). Presence of a heterozygous substitution and its relationship to DT-diaphorase activity. Br J Cancer 72: 555–561
Lind C, Hochstein P and Ernstner L (1992) DT-diaphorase as a quinone reductase: a cellular control device against semiquinone and superoxide radical formation. Arch Biochem Biophys 216: 178–185
Marshall RS, Paterson MC and Rauth AM (1991) DT-diaphorase activity and mitomycin C sensitivity in non-transformed cell strains derived from members of a cancer-prone family. Carcinogenesis 12: 1175–1180
Pan SS, Forrest GL, Akman SA and Hu LT (1995) NAD(P)H:quinone oxidoreductase expression and mitomycin C resistance developed by human colon cancer HCT 116 cells. Cancer Res 55: 330–335
Powis G (1987) Metabolism and reactions of quinoid anticancer agents. Pharmacol Ther 35: 157–162
Rauth AM, Marshall RS and Kuehl BL (1993) Cellular approaches to bioreductive drug mechanisms. Cancer Metastas Rev 12: 153–164
Robertson N, Stratford IJ, Houblbrook S, Carmichael J and Adams GE (1992) The sensitivity of human tumor cells to quinone bioreductive drugs. What role for DT-diaphorase? Biochem Pharm 44: 409–412
Rockwell S, Sartorelli AC, Tomasz M and Kennedy KA (1993) Cellular pharmacology of quinone bioreductive alkylating agents. Cancer Metastas Rev 12: 165–176
Ross D, Siegel D, Beall H, Prakash AS, Mulchay TM and Gibson NW (1993) DT-diaphorase in activation and detoxification of quinones. Cancer Metastas Rev 12: 83–101
Rosvold EA, McGlynn KA, Lustbader ED, Buetow RH (1995) Identification of an NAD(P)H:quinone oxidoreductase polymorphism and its association with lung cancer and smoking. Pharmacogenetics 5: 199–206
Rothman N, Traver RD, Smith MT, Hayes RB, Li G-L, Campman S, Dosemeci M, Zhang L, Linet M, Wacholder S, Yia S-N and Ross D (1996) Lack of NAD(P)H:quinone oxidoreductase activity (NQO1) is associated with increased benzene hematoxotoxicity. Proc Am Assoc Can Res 37: 258
Schlager JJ and Powis G (1990) Cytosolic NAD(P)H:quinone acceptor oxidoreductase in human normal and tumor tissue: effects of cigarette smoking and alcohol. Int J Cancer 45: 403–409
Seldon RF, Howie KB, Rowe ME, Goodman HM and Moore DD (1996). Human growth hormone as a reporter gene in regulation studies employing transient gene expression. Mol Cell Biol 9: 3173–3179
Siegel D, Gibson NW, Preusch, PC and Ross D (1990) Metabolism of NAD(P)H:quinone acceptor oxidoreductase (DT-diaphorase): role in diaziquone-induced DNA damage and cytotoxicity in human colon carcinoma cells. Cancer Res 50: 7293–7300
Traver RD, Horiokoshi T, Danenberg K, Stadlbauer THW, Danenberg PV, Ross D and Gibson NW (1992) NAD(P)H:quinone acceptor oxidoreductase gene expression in human colon carcinoma cells: characterization of a mutation which modulates DT-diaphorase activity and mitomycin C sensitivity. Cancer Res 52: 797–802
Traver RD, Siegel D, Beall HD, Phillips RM, Gibson NW, Franklin WA and Gibson NW (1997) Characterization of a polymorphism in NAD(P)H:quinone oxidoreductase (DT-diaphorase). Br J Cancer 75: 69–75
Verwiej J, Aamdal S, Schellens J, Koier I and Lund B (1994) Clinical studies with E09, a new indoloquinone bioreductive alkylating cytotoxic agent. Oncol Res 6: 519–523
Walton MI, Sugnet N and Workman P (1992) The role of human and rodent DT-diaphorase in the reductive metabolism of hypoxic cell cytotoxins. Int J Radiat Oncol Biol Phys 22: 643–647
Workman P (1994) Enzyme-directed bioreductive drug development revisited: a commentary on recent progress and future prospects with emphasis on quinone anticancer agents and quinone metabolizing enzymes, particularly DT-diaphorase. Oncol Res 6: 461–475
Wu K, Deng PS-K and Chen S (1997) Catalytic properties of a naturally occurring mutant of human NAD(P)H:quinone acceptor oxidoreductase (DT-diaphorase), Pro 187 to Ser. In Pathophysiology of Lipid Peroxidases and Related Free Radicals, Yagi K (ed.). Japan Scientific Societies Press: Tokyo