Top down electroweak dipole operators

Kaori Fuyuto a, *, Michael Ramsey-Musolf a, b

a Amherst Center for Fundamental Interactions, Department of Physics, University of Massachusetts Amherst, MA 01003, USA
b Kavli Institute for Theoretical Physics, University of California, Santa Barbara, CA 93106, USA

A R T I C L E I N F O

Article history:
Received 19 November 2017
Received in revised form 6 March 2018
Accepted 11 April 2018
Available online 13 April 2018
Editor: B. Grinstein

A B S T R A C T

We derive present constraints on, and prospective sensitivity to, the electric dipole moment (EDM) of the top quark (d t) implied by searches for the EDMs of the electron and nucleons. Above the electroweak scale v, the d t arises from two gauge invariant operators generated at a scale \Lambda \gg v that also mix with the light fermion EDMs under renormalization group evolution at two-loop order. Bounds on the EDMs of first generation fermion systems thus imply bounds on |d t|. Working in the leading log-squared approximation, we find that the present upper bound on |d t| is 10−15 cm for \Lambda = 1 TeV, except in regions of finely tuned cancellations that allow for |d t| to be up to fifty times larger. Future d n and d n probes may yield an order of magnitude increase in d t sensitivity, while inclusion of a prospective proton EDM search may lead to an additional increase in reach.

© 2018 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

The search for physics beyond the Standard Model (BSM) lies at the forefront of both high- and low-energy physics. The properties of the top quark constitute a particularly interesting meeting ground for the two regimes. Theoretically, top quarks may provide a unique window into BSM physics, given that the top Yukawa coupling is large compared to all other Standard Model (SM) fermions. Experimentally, top quarks can be copiously produced in high energy proton–proton collisions, while their indirect effects – generated via quantum loops – can be pronounced. Indeed, the breaking of custodial SU(2) symmetry by the top quark-bottom quark mass splitting has a significant impact on the interpretation of electroweak precision tests at the loop level. This sensitivity provided an early handle on the value of the top quark mass and, after the discovery of the top quark, an important test of the self-consistency of the SM at the level of quantum corrections.

The CP property of top quark interactions is a topic of on-going interest. In the context of electroweak baryogenesis (EWBG) [1], CP-violating (CPV) interactions of the top quark with an extended scalar sector can yield the observed cosmic baryon asymmetry [2–7]. The presence of BSM CPV in the top quark sector may also appear in the guise of a top electric dipole moments (EDM) and chromo-electric dipole moment (CEDM), two of a number of possible higher dimension top quark operators. Since the top CPV EDM is chirality changing, it can be significantly enhanced compared to light fermion (C)EDMs by the large top Yukawa coupling.

While direct collider probes of the (C)EDM have been studied extensively [8–27], a complementary way to access the top EDM (d t) and CEDM (d t) is through their indirect effects, such as the resulting, radiatively-induced light fermion EDMs. This possibility has been explored in several studies [28–31]. The most powerful limit on d t appears to result from the limit on the EDM of the electron |d e| < 8.7 × 10−29 cm (90% C.L.) [32] (see also the recent result using HI, |d e| < 1.3 × 10−28 cm (90% C.L.) [33]), implying |d t| < 5.0 × 10−20 cm (90% C.L.) [30,31].

In this study, we focus on d t. If it is generated by BSM physics at a scale \Lambda that lies well above the electroweak scale v = 246 GeV, then it is likely that two dimension-six CPV dipole operators emerge, coupling respectively to the U(1) Y and SU(2) L gauge bosons. We henceforth denote these operators as O 1 B and O 1 W, respectively. Denoting their coefficients as C 1 B (W)/\Lambda 2, we note that the presence of CPV implies that the dimensionless Wilson coefficients C 1 B (W) are, in general, complex. After electroweak symmetry breaking (EWSB), one linear combination yields d t at tree-level. The operators O 1 B and O 1 W will also radiatively generate all other light fermion EDMs at two-loop order. Bounds on d n as well as on the neutron EDM, d n, then yield (in principle) complementary constraints on C 1 B (W), with corresponding implications for d t.

In what follows, we perform an explicit two-loop computation of the light fermion EDMs induced by O 1 B (W), retaining the leading ln 2(\Lambda/v) contributions. After translating the light quark EDMs into d n, we derive constraints on the C 1 B (W)/\Lambda 2, along with the corre-
sponding implications for d_t, using the present neutron and electron EDM bounds. We will make no \textit{a priori} assumptions about the relationships between the C_{FB} and C_{FW} at the scale Λ, endeavoring to be as model-independent as possible. In these respects, our analysis complements the earlier studies in Refs. [28–31]. In this context, we also find that there exist regions where cancellations between these two operators can considerably weaken the generic constraints, albeit with some degree of fine-tuning. Looking ahead, we illustrate the potential reach of next generation electron and nucleon EDM searches.

2. Effective operators

To set the conventions for our analysis, we start with the CPV effective Lagrangian generated by BSM physics at the scale Λ [30,31]:

$$L_{\text{eff}} = -\frac{1}{\Lambda^2} \sum_{f=e,u,d,t} \left(\frac{g_1}{\sqrt{2}} C_{FB} O_{FB} + \frac{g_2}{\sqrt{2}} C_{FW} O_{FW} + \text{h.c.} \right) + \frac{1}{\Lambda^2} \sum_{X=B,W} C_X O_H X \nonumber + \frac{1}{\Lambda^2} \sum_{F=L,\bar{Q},f=e,d,t} \left(C_{(1)}^{(0)} O_{(0)}^{(0)} F^{(0)} F_f + \text{h.c.} \right),$$

where the first line indicates the dipole operators

$$O_{EB} = \bar{L} \sigma^{\mu\nu} e_R B_{\mu\nu},$$
$$O_{EW} = \bar{L} \sigma^{\mu\nu} e_R \tau^A H W^A_{\mu\nu},$$
$$O_{TB} = \bar{Q} \sigma^{\mu\nu} t_R B_{\mu\nu},$$
$$O_{TW} = \bar{Q} \sigma^{\mu\nu} t_R \tau^A H W^A_{\mu\nu}. \tag{2}$$

The second and third lines represent gauge-Higgs and 4-fermi operators

$$O_{HB} = g_1^2 H^+ B^\dagger_{\mu\nu} B^{\mu\nu},$$
$$O_{HW} = g_2^2 H^+ W^A_{\mu\nu} W^A_{\mu\nu},$$
$$O_{HBB} = g_1 g_2 H^+ \tau^A H W^A_{\mu\nu} B^{\mu\nu}. \tag{3}$$

and

$$O_{(1)}^{(3)} = \bar{L} a \sigma^{\mu\nu} e_R e_B (\bar{Q}^b \sigma_{\mu\nu} \tau_R),$$
$$O_{(1)}^{(4)} = \bar{Q}^a \tau_R e_B (\bar{Q}^b \tau_R),$$
$$O_{(1)}^{(8)} = \bar{Q}^a \tau_R e_B (\bar{Q}^b \tau^A \tau_R). \tag{4}$$

Here, L and Q are the lepton and quark doublets, e_R (t_R) is the right-handed electron (top quark), τ^A is the Pauli matrix, and H is the Higgs doublet with $H = i \tau^2 H^*$; $B_{\mu\nu}$ and $W^A_{\mu\nu}$ are the $U(1)_Y$ and $SU(2)_L$ field strengths, respectively; and g_1 and g_2 represent their gauge couplings; \bar{X} is defined as $e_{\mu\nu\rho\sigma} X^{\mu\nu\rho\sigma}/2$; a and b are the SU(2) indices. The dipole operators for the up (down) quark $O_{ub,\bar{u}d,\bar{d}u}$ ($O_{db,\bar{d}u}$) are also given by the same structure as $O_{BB,\bar{B}B}$ ($O_{BB,\bar{B}B}$). For a listing of the complete set of dimension-six CPV operators, see, e.g., [34,35]. The operators that we employ here are listed in [35].

After EWSB, the dipole operators in Eq. (1) produce the EDMs

$$L_{\text{eff}} \Rightarrow -i \sum_{f=e,u,d,t} d_f \tilde{d}_f \sigma^{\mu\nu} \gamma_5 f F_{\mu\nu}, \tag{5}$$

with $F_{\mu\nu}$ being the photon field strength tensor. The coupling d_f is related to the Wilson coefficients of the operators

$$d_{e(d)} = \frac{e}{\Lambda^2} \left\{ \text{Im}(C_{e(d)B}) - \text{Im}(C_{e(d)W}) \right\},$$
$$d_{t(u)} = \frac{e}{\Lambda^2} \left\{ \text{Im}(C_{t(u)B}) + \text{Im}(C_{t(u)W}) \right\}. \tag{6}$$

The opposite relative sign between the C_{FB} and C_{FW} for up- and down-type fermions is due to their isospin projection quantum numbers. To facilitate comparison with the experimental EDM limits, it is useful to express a factor of ev/Λ^2 with units of fm1

$$\frac{ev}{\Lambda^2} = \frac{e}{\Lambda} \left(\frac{v}{\Lambda} \right)^2 \simeq (7.8 \times 10^{-4} \text{ e fm}) \left(\frac{v}{\Lambda} \right)^2. \tag{7}$$

In addition to the bounds on $|d_f|$ quoted above, we consider the constraints implied by the light-quark contributions to d_u, whose experimental limit is $|d_u| < 3.0 \times 10^{-26}$ e cm (90% C.L.) [37]. As we discuss below, the d_u-contributions from O_{TB} and O_{TW} may cancel in some finely-tuned portions of parameter space. Inclusion of the d_u constraints may provide a complementary probe of this “cancellation region”. Outside of this region, present EDM limits imply an upper bound on $|d_u| < 10^{-19}$ e cm, depending on the value of Λ. Looking to the future, next generation EDM searches may reach the levels of sensitivity: $|d_u| < 1.0 \times 10^{-29}$ e cm and $|d_u| < 3.0 \times 10^{-28}$ e cm [38], implying an order of magnitude increase in the sensitivity to d_u. In addition, efforts are underway to develop storage ring proton EDM search with sensitivity 10^{-29} e cm [39]. For the scenario considered here, the constraints from diamagnetic atom EDM searches, such as that of the 199Hg atom [40] can be comparable to those from d_u. Although the latest 199Hg result yields an upper bound on $|d_u|$ that is roughly two times stronger than the direct limit, we expect the latter to become considerably more stringent with the next generation experiments. Consequently, we will use the direct d_u bounds in what follows.

3. Loop calculations

The existence of the top quark dipole operators in Eq. (1) at a renormalization scale $\mu = \Lambda$ will lead to non-vanishing electron and light-quark dipole operators through the two-loop Barr-Zee diagrams of Fig. 1. This effect corresponds to the electroweak operator mixing in the renormalization group evolution (RGE) from Λ to ν, thereby relating the Wilson coefficients of the electron and light quark dipole operators at the EW scale to $C_{FB}(\Lambda)$ and $C_{FW}(\Lambda)$. Below the scale ν, we integrate out the heavy SM degrees of freedom (τ, W, Z, and h), and the dominant contributions when running to the low-energy scale relevant to experiment involve $SU(3)_c$ interactions. The upper two diagrams induce the up quark EDM, the lower two diagrams yield the electron and down quark EDMs. This assignment can be understood by considering which Higgs field is chosen as an external particle. Each diagram has two opposite fermion flows (corresponding to distinct Wick contractions), as well as topologies involving crossing of the scalar and gauge boson lines.

In addition to the overall logarithmic divergence associated with these diagrams, logarithmically divergent one-loop subgraphs associated with the upper and lower loops in Fig. 1 correspond to mixing between $O_{TB,\bar{B}B}$ and $O_{HBB,\bar{B}B}$ and $O_{(1,3)}^{(4)}$.\footnote{Since our definitions of the dipole operators are accompanied with a factor of $1/\sqrt{2}$, the coefficient of ev/\Lambda^2 becomes smaller than that in [36].}

\footnote{The limit is obtained by assuming that the ThE EDM does not receive a contribution from semileptonic four-fermion interactions.}

\footnote{Although the EDM of the strange quark and chromo EDMs also contribute to the neutron EDM, we do not include them, here.}
traction

scale

anomalous

is

lower

terms.

The

circled

quark dipole operator, and the other wavy lines

correspond to the gauge fields \(B \) or \(W^A \). While the upper two diagrams lead to the
dipole operator of the up quark, the lower diagrams yield those of the electron and
down quark. The “\(\cdots \)” indicate additional topologies that contribute to the light
fermion EDMs.

\begin{equation}
E_f = \gamma_f \left[4 (Y_F + Y_f) (Y_Q + Y_I) g_1^2 + 5 g_2^2 \right].
\end{equation}

where \(F = L \) or \(O \) for \(f = e \) or \(d \). These of the up quark are given by

\begin{align*}
A_u &= -\gamma_u \left[8 (Y_Q + Y_u) (Y_Q + Y_I) g_1^2 + 3 g_2^2 \right], \\
B_u &= -\gamma_u \left[6 (Y_Q + Y_I) g_2^2 \right], \\
D_u &= -\gamma_u \left[2 (Y_Q + Y_u) g_1^2 \right], \\
E_u &= -\gamma_u \left[4 (Y_Q + Y_u) (Y_Q + Y_I) g_1^2 + 2 g_2^2 \right].
\end{align*}

where \(\gamma_f = N_c y_f y_t / (4 \pi)^4 \) with \(N_c = 3 \) and the hyper charges

\begin{align*}
Y_f = \begin{cases} -1/2, & Y_e = -1, \ Y_Q = 1/6, \ Y_t = 2/3 \text{ and } Y_d = -1/3. \\
\end{cases}
\end{align*}

\(\gamma_f \) is roughly an order of magnitude smaller than \(\gamma_{u,d} \) due to the
Yukawa coupling. Our results are in agreement with those implied by general RGE considerations and the one-loop anomalous dimension given in Refs. [47,48].

Using these results, it is straightforward to obtain the light fermion EDMs as defined in Eq. (6):

\begin{align*}
d_{e(d)} &= -\frac{e}{2 v} \left(\frac{\Lambda}{\Lambda} \right)^2 \ln^2 \left(\frac{\Lambda}{v} \right) \\
&\times \left[(A_{e(d)} - D_{e(d)}) \text{Im}(C_{IB}) + (B_{e(d)} - E_{e(d)}) \text{Im}(C_{IW}) \right], \\
d_{e(d)} &= -\frac{e}{2 v} \left(\frac{\Lambda}{\Lambda} \right)^2 \ln^2 \left(\frac{\Lambda}{v} \right) \\
&\times \left[(A_u + D_u) \text{Im}(C_{IB}) + (B_u + E_u) \text{Im}(C_{IW}) \right].
\end{align*}

In general, the \(d_f \) depend more strongly on \(\text{Im}(C_{IW}) \) than on \(\text{Im}(C_{IB}) \), a feature due in part to the dependence on \(g_2 \). Specifically, the \(\text{Im}(C_{IB}) \) contribution depends on \(g_2^2 \) comes from only \(A_f \), while both \(B_f \) and \(E_f \) contain \(g_2^2 \) contributions. The dependence on \(\Lambda \) comes from \((v/\Lambda)^2 \) and \(\log^2(\Lambda/v) \) factors. When translating the limits on \(d_{e(d)} \) into bounds on \(|d_f| \), the \((v/\Lambda)^2 \)-dependence that is common to all EDMs. To assess the impact of the remaining logarithmic dependence, in our numerical analyses we consider two benchmark choices: \(\Lambda = 1 \) TeV and \(10 \) TeV. The ratio

\[\frac{\ln^2(\Lambda = 1 \text{ TeV}/v)}{\ln^2(\Lambda = 10 \text{ TeV}/v)} \]

is about 0.14.

For the light quark EDMs, we take into account the QCD contributions to their evolution from the EW scale to the low-energy scale [44,49–53]. As clearly discussed in [51], the effect suppresses the dipole operators at the low-energy. We choose the low-energy scale \(\Lambda_{\text{had}} = 2 \text{ GeV} \) in order to match onto the lattice QCD computation of the resulting neutron EDM given in [54,55]. We obtain

\[d_q(\Lambda_{\text{had}}) = 0.85 d_q(v). \]

4. Results

It is useful to consider the constraints on \((v/\Lambda)^2 \text{Im}(C_{IB}/W) \) since the EDM definitions absorb the leading \((v/\Lambda)^2 \) factor is noted above. The present and prospective bounds are shown in Figs. 3–6. In addition to considering the two benchmark choices for \(\Lambda \), we also consider two cases, corresponding to \(\text{Im}(C_{IB}) \) and \(\text{Im}(C_{IW}) \) having the same (positive) sign or opposite sign. The latter exhibits the possibility of finely-tuned cancellations.

\footnote{We thank Adrian Signer for useful discussions on this point.}

\footnote{For analogous discussions regarding the relationship between the coefficient of the two-loop \(\ln^2 \) terms and products of two one-loop anomalous dimensions see Refs. [42,43].}
Fig. 3 shows the present constraints for the same sign case for the two different benchmark choices for Λ. The blue and green shaded regions are excluded by the limits in d_e and d_n, respectively. The black contours represent values of constant top quark EDM. For $\Lambda = 1$ (10) TeV, we find that $|d_t| \lesssim 6.5 \times 10^{-20}$ (9.3 $\times 10^{-21}$) e cm in the limit of $\text{Im}(C_{1W}) = 0$. Note that the maximum value for $\Lambda = 10$ TeV is roughly 0.14 times smaller than for $\Lambda = 1$ TeV, as expected from the \ln^2 dependence on $(\nu/\Lambda)^2$. We observe that our upper bound for $\Lambda = 1$ TeV is somewhat larger than obtained by the authors of Ref. [30,31], who assumed in their numerical analysis that only $\text{Im}(C_{1B})$, corresponding to a non-vanishing d_l, exists at the scale Λ. Indeed, we have verified that in the limit $\text{Im}(C_{1W}) = 0$, our expression for d_e agrees with that of [30]. Additional small numerical differences arise from the choice of the lower scale for the RGE and gauge coupling running. Here, we run from Λ to ν, whereas the RGEs in Refs. [30,31] are evolved down to the top mass scale. Moreover, we neglect the effect of gauge coupling running that was included in Refs. [30,31].

The prospective impact of future EDM searches is illustrated in Fig. 4, where we assume 90% C.L. limits of $|d_t| = 3.0 \times 10^{-28}$ e cm and $|d_n| = 1.0 \times 10^{-29}$ e cm. The same sign case, we see that the prospective constraint from d_e would still be stronger than from d_n. Naively, one would expect the impact of future experiments with these sensitivities to be comparable, since the light fermion EDMs scale linear with the fermion masses and the ratio of the light quark and electron EDMs is roughly a factor of ten. The somewhat stronger d_n sensitivity results from a factor of 3 difference in the future sensitivities and the suppression of the light quark EDMs due to the QCD evolution from the weak to hadronic scales. The resulting prospective bound on d_t for $\Lambda = 1$ (10) TeV...
is $|d_i| \lesssim 7.5 \times 10^{-21} \ (1.0 \times 10^{-21}) \ e$ cm. We also include the possibility of a future proton EDM search, with sensitivity $|d_p| = 1.0 \times 10^{-29} \ e$ cm indicated by the orange contour. Should a search with this sensitivity be realized, a factor of two could be improved.

Next, we consider the opposite sign case, with present and prospective constraints indicated in Figs. 5 and 6, respectively. Here, the situation is more subtle than for the same sign case, as there exist regions where cancellations between $\text{Im}(C_{EB})$ and $\text{Im}(C_{BW})$ can lead to the absence of any constraint from d_e. The present a_n bounds are not yet sufficiently strong to probe this “cancellation region” for $d_e \lesssim 10^{-19} \ (99) \ e$ cm for $\Lambda = 1 \ (10)$ TeV. Although the existence of this loophole admittedly requires a degree of fine tuning, a similar possibility of canceling contributions has been noted elsewhere in the case of the minimal supersymmetric SM and proposed as a possible solution to the “SUSY CP problem” [56-59]. Outside of this region, the present upper bound on d_e is the same as for the same sign case. As seen in Fig. 6, the future bound of d_e closes the loophole and yields of $|d_e| \lesssim 1.0 \times 10^{-19} \ (20) \ e$ cm for $\Lambda = 1 \ (10)$ TeV. On the other hand, the electron EDM with the future sensitivity plays a complementary role that covers the region where $|d_a| = 0$. The prospective, future proton EDM experiment gives a sensitivity to d_e with a similar order of magnitude, perhaps increasing the reach by factor of two. We summarize the present and future limits on d_e in Tables 1 and 2.

| Source | $|d_e|$ Limit |
|----------------|------------------------|
| Present (d_e, d_a) | $|d_e| \lesssim 7.5 \times 10^{-21} \ e$ cm |
| Future (d_e, d_a) | $|d_e| \lesssim 10^{-29} \ e$ cm |
| Future (d_e, d_a, d_p) | $|d_e| \lesssim 3.2 \times 10^{-21} \ e$ cm |

Table 1

Limits on $|d_e|$ at $\Lambda = 1 \ TeV$ applied to both same and opposite sign cases except for the cancellation region. The constraints for $\Lambda = 10 \ TeV$ are roughly 0.14 times smaller.
5. Conclusion and discussions

Due to its sizable Yukawa coupling, the top quark provides one of the most powerful windows into BSM physics. The top quark EDM is particularly interesting because it is sensitive to possible new sources of CPV and because one generally expects it to be enhanced relative to the light fermion EDMs by the ratio of the respective Yukawa couplings. Above the EW scale v, the top EDM originates from two gauge-invariant operators, O_{TB} and O_{TW}, that appear at the BSM scale Λ. These operators also induce light fermion EDMs at the two-loop level. Consequently, the stringent bounds on systems involving first generation fermion EDMs, including paramagnetic atoms and polar molecules, neutrons, and diamagnetic atoms, imply strong constraints on O_{TB} and O_{TW}. By combining the results from these systems involving light fermions, one obtains tight bounds on d_t. The prospects for obtaining even greater sensitivity with future EDM experiments are promising.

The resulting present constraints and prospective sensitivities indicated in Tables 1 and 2 imply that $|d_t|$ is smaller than $\sim 10^{-19} \, \text{e cm}$, except in the presence of finely tuned cancellations between O_{TB} and O_{TW}, allowing for a top EDM up to ~ 50 times larger. Next generation searches for the EDMs of the electron and neutron could yield up to a factor of ten increase in sensitivity, while a storage ring search for the proton EDM with sensitivity $|d_p| \sim 10^{-29} \, \text{e cm}$ could lead to an additional sensitivity increase. To the best of our knowledge, the d_t-reach of these experiments will exceed those of direct probes at the LHC.

Given these prospective sensitivities, it is important to bear in mind the opportunities for refined theoretical computations. In this work we have retained only the leading log-squared contribution to the RGE of O_{TB} and O_{TW} from Λ to v. Assessing the impact of sub-leading logarithmic contributions requires evaluation of the bona fide two-loop anomalous dimension matrix, associated with the $1/\epsilon$ terms in the two-loop calculation. These contributions will be analyzed in a forthcoming publication [41]. From the low-energy perspective, there exists room for refinements of the d_n computations. While the uncertainties associated with the up- and down-quark EDMs enter at the 10% level [54,55], those associated with the strange quark (not included in our study here) are considerably larger [54,55]. In addition, BSM scenarios that induce O_{TB} and O_{TW} may also give rise to the corresponding CPV gluonic operators (CDMs), a topic for which the phenomenology is considerably richer and the theoretical hadronic and nuclear uncertainties correspondingly more challenging. In that context, the interplay with LHC and future collider probes may be particularly enlightening.

Acknowledgements

We are grateful to Jordy de Vries and Adrian Signer for useful discussions and comments. We also thank Patrick Draper and Hiren Patel for having fruitful discussions. KF thanks Natsumi Nagata and Eibun Senaha for valuable discussions. MJRM thanks Haipeng An, Mark B. Wise, and Yue Zhang for several helpful communications. This work was supported in part under U.S. Department of Energy contract DE-SC0011095.

References

[1] V.A. Kuzmin, V.A. Rubakov, M.E. Shaposhnikov, Phys. Lett. B 155 (1985) 36; for reviews on electroweak baryogenesis, see A.G. Cohen, D.B. Kaplan, A.E. Nelson, Annu. Rev. Nucl. Part. Sci. 43 (1993) 27; M.Quiros, Helv. Phys. Acta 67 (1994) 451; V.A. Rubakov, M.E. Shaposhnikov, Uspek. Fiz. Nauk 166 (1996) 493; K. Funakubo, Prog. Theor. Phys. 96 (1996) 479; M. Trodden, Rev. Mod. Phys. 71 (1999) 1463; W. Bernreuther, Lect. Notes Phys. 591 (2002) 237; J.M. Cline, arXiv:hep-ph/0609145; D.E. Morrissey, M.J. Ramsey-Musolf, New J. Phys. 14 (2012) 125003; T. Konstandin, Phys. Usp. 56 (2013) 747, Usp. Fiz. Nauk 183 (2013) 785.

[2] S. Tulin, P. Winslow, Phys. Rev. D 84 (2011) 034013.

[3] J.M. Cline, K. Kainulainen, M. Trott, J. High Energy Phys. 1111 (2011) 089.

[4] M. Jiang, L. Bian, W. Huang, J. Phys. Rev. D 93 (6) (2016) 065032.

[5] F.P. Huang, P.H. Gu, P.F. Yin, Z.H. Yu, X. Zhang, Phys. Rev. D 93 (10) (2016) 103515.

[6] A. Kobakhidze, L. Wu, J. Yue, J. High Energy Phys. 1604 (2016) 011.

[7] K. Fuyuto, W.S. Hou, E. Senaha, arXiv:1705.05034 [hep-ph].

[8] S.K. Gupta, A.S. Mete, G. Valencia, Phys. Rev. D 80 (2009) 034013.

[9] A. Hayter, G. Valencia, Phys. Rev. D 93 (1) (2016) 014020.

[10] W. Bernreuther, D. Heisler, Z.G. Si, J. High Energy Phys. 1512 (2015) 026.

[11] S.D. Rindani, P. Sharma, A.W. Thomas, J. High Energy Phys. 1510 (2015) 180.

[12] A. Hayter, G. Valencia, Nucl. Part. Phys. Proc. 273–275 (2016) 775.

[13] Z. Hikoi, K. Ohkuma, Phys. Rev. D 88 (2013) 017503.

[14] W. Bernreuther, Z.G. Si, Phys. Lett. B 725 (2013) 115, Erratum: Phys. Lett. B 744 (2015) 413.

[15] A. Hayter, G. Valencia, Phys. Rev. D 88 (2013) 034033.

[16] M. Baumgart, B. Tweedie, J. High Energy Phys. 1303 (2013) 117.

[17] S.S. Biswal, S.D. Rindani, P. Sharma, Phys. Rev. D 88 (2013) 074018.

[18] Z. Hikoi, K. Ohkuma, Phys. Lett. B 716 (2012) 310.

[19] D. Choudhury, P. Saha, J. High Energy Phys. 1208 (2012) 144.

[20] J.A. Aguilar-Saavedra, B. Fukls, M.L. Mangano, Phys. Rev. D 91 (2015) 094021.

[21] Y.T. Chien, V. Cirigliano, W. Dekens, J. de Vries, E. Mereghetti, J. High Energy Phys. 1602 (2016) 011.

[22] U. Baur, A. Juste, L.H. Orr, D. Rainwater, Phys. Rev. D 71 (2005) 054013.

[23] U. Baur, A. Juste, L.H. Orr, D. Rainwater, Nucl. Phys. Proc. Suppl. 160 (2006) 17.

[24] A.O. Bouzas, F. Larios, Phys. Rev. D 87 (7) (2013) 074015.

[25] M. Fael, T. Gehrmann, Phys. Rev. D 88 (2013) 033003.

[26] S. Fayazbakhsh, S.T. Monfared, M. Mohammadi Najafabadi, Phys. Rev. D 92 (1) (2015) 014006.

[27] S.M. Etesami, S. Khatibi, M. Mohammadi Najafabadi, Eur. Phys. J. C 76 (2016) 533.

[28] A. Cordero-Cid, J.M. Hernandez, G. Tavares-Velasco, J.J. Toscano, J. Phys. G 35 (2008) 025004.

[29] J.F. Kamenik, M. Papucci, A. Weiler, Phys. Rev. D 85 (2012) 071501, Erratum: Phys. Rev. D 88 (3) (2013) 039903.

[30] V. Cirigliano, W. Dekens, J. de Vries, E. Mereghetti, Phys. Rev. D 94 (1) (2016) 016002.

[31] V. Cirigliano, W. Dekens, J. de Vries, E. Mereghetti, Phys. Rev. D 94 (3) (2016) 034031.

[32] J. Baron, et al., ACME Collaboration, Science 343 (2014) 269.

[33] W.B. Cairncross, et al., arXiv:1704.07928 [physics.atom-ph].

[34] W. Buchmuller, D. Wyler, Nucl. Phys. B 268 (1986) 621.

[35] B. Grzadkowski, M. Iskrzynski, M. Misiak, J. Rospie, J. High Energy Phys. 1010 (2010) 085.

[36] J. Engel, M.J. Ramsey-Musolf, U. van Kolck, Prog. Part. Nucl. Phys. 71 (2013) 21.

[37] J.M. Perridge, et al., Phys. Rev. D 92 (9) (2015) 092003.

[38] 2015 Nuclear Science Advisory Committee Long Range Plan "Reaching for the Horizon", https://science.energy.gov/~/media/pap/np/acp/pdf/2015LRP/2015_LRPNS_091815.pdf.

[39] K. Kumar, Z.T. Lu, M.J. Ramsey-Musolf, arXiv:1312.5416 [hep-ph].

[40] B. Graner, Y. Chen, E.G. Lindahl, B.R. Heckel, Phys. Rev. Lett. 116 (16) (2016) 161601.

[41] K. Fuyuto, M.J. Ramsey-Musolf, in preparation.
[42] M. Knecht, A. Nyffeler, M. Perrottet, E. de Rafael, Phys. Rev. Lett. 88 (2002) 071802.
[43] M.J. Ramsey-Musolf, M.B. Wise, Phys. Rev. Lett. 89 (2002) 041601.
[44] J. Hisano, K. Tsumura, M.J.S. Yang, Phys. Lett. B 713 (2012) 473.
[45] M.J. Ramsey-Musolf, Phys. Rev. Lett. 88 (1999) 131909, Erratum: Phys. Rev. Lett. 84 (2000) 5681.
[46] G.M. Pruna, A. Signer, J. High Energy Phys. 1410 (2014) 014.
[47] R. Alonso, E.E. Jenkins, A.V. Manohar, M. Trott, J. High Energy Phys. 1404 (2014) 159.
[48] E.E. Jenkins, A.V. Manohar, M. Trott, J. High Energy Phys. 1401 (2014) 035.
[49] M.A. Shifman, A.I. Vainshtein, V.I. Zakharov, Phys. Rev. D 18 (1978) 2583, Erratum: Phys. Rev. D 19 (1979) 2815.
[50] M. Ciuchini, E. Franco, L. Reina, L. Silvestrini, Nucl. Phys. B 421 (1994) 41.
[51] G. Degrassi, E. Franco, S. Marchetti, L. Silvestrini, J. High Energy Phys. 0511 (2005) 044.
[52] W. Dekens, J. de Vries, J. High Energy Phys. 1305 (2013) 149.
[53] K. Fuyuto, J. Hisano, N. Nagata, K. Tsumura, J. High Energy Phys. 1312 (2013) 010.
[54] T. Bhattacharya, V. Cirigliano, R. Gupta, H.W. Lin, B. Yoon, Phys. Rev. Lett. 115 (21) (2015) 212002.
[55] T. Bhattacharya, et al., PNDME Collaboration, Phys. Rev. D 92 (9) (2015) 094511.
[56] T. Ibrahim, P. Nath, Phys. Rev. D 57 (1998) 478, Erratum: Phys. Rev. D 58 (1998) 019901, Erratum: Phys. Rev. D 60 (1999) 079903, Erratum: Phys. Rev. D 60 (1999) 119901.
[57] T. Ibrahim, P. Nath, Phys. Rev. D 58 (1998) 111301, Erratum: Phys. Rev. D 60 (1999) 099902.
[58] T. Falk, K.A. Olive, Phys. Lett. B 439 (1998) 71.
[59] M. Brhlik, G.J. Good, G.L. Kane, Phys. Rev. D 59 (1999) 115004.