Title: Tetrandrine Enhances H₂O₂-Induced Apoptotic Cell Death Through Caspase-dependent Pathway in Human Keratinocytes

Authors: YI-CHING CHENG1, CHAO-LIN KUO2, SHENG-YAO HSU3,4, TZONG-DER WAY1, CHING-LING CHENG5, JAW-CHYUN CHEN6, KUO-CHING LIU7, SHU-FEN PENG1,8, WAI-JANE HO6, FU-SHIN CHUEH9 and WEN-WEN HUANG1*

Abstract. Background: Tetrandrine, a bis-benzylisoquinoline alkaloid, induces apoptosis of many types of human cancer cell. Hydrogen peroxide (H₂O₂) is a reactive oxygen species inducer; however, there are no reports to show whether pre-treatment of tetrandrine with H₂O₂ induces more cell apoptosis than H₂O₂ alone. Thus, the present study investigated the effects of tetrandrine on H₂O₂-induced cell apoptosis of human keratinocytes, HaCaT, in vitro. Materials and Methods: HaCaT cells were pre-treated with and without tetrandrine for 1 h, and then treated with H₂O₂ for examining cell morphological changes and cell viability using contrast-phase microscopy and propidium iodide (PI) exclusion assay, respectively. Cells were measured apoptotic cell death by using annexin V/PI double staining and further analyzed by flow cytometer. Cells were further assessed for DNA condensation using 2-(4-amidinophenyl)-6-indolecarbamidine staining. Western blotting was used to measure expression of apoptosis-associated proteins and confocal laser microscopy was used to measure the protein expression and nuclear translocation from the cytoplasm to nuclei. Results: Pre-treatment of tetrandrine for 1 h and treatment with H₂O₂ enhanced H₂O₂-induced cell morphological changes and reduced cell viability, whilst increasing apoptotic cell death and DNA condensation. Furthermore, tetrandrine significantly increased expression of reactive oxygen species-associated proteins such as superoxide dismutase (Cu/Zn) and superoxide dismutase (Mn) but significantly reduced the level of catalase, which was also confirmed by confocal laser microscopy. It also increased expression of DNA repair-associated proteins ataxia telangiectasia mutated, ataxia-telangectasia and Rad3-related, phospho-P53, P53 and phosphorylated histone H2AX, and of pro-apoptotic proteins BCL2 apoptosis regulator-associated X-protein, caspase-3, caspase-8, caspase-9 and poly ADP ribose polymerase in HaCaT cells. Conclusion: These are the first and novel findings showing tetrandrine enhances H₂O₂-induced apoptotic cell death of HaCaT cells and may provide a potent approach for the treatment of proliferated malignant keratinocytes.

*These Authors contributed equally to this work.

Correspondence to: Fu-Shih Chueh, Ph.D., Department of Food Nutrition and Health Biotechnology, Asia University, No. 500, Lioufeng Road, Wufeng, Taichung, Taiwan, R.O.C.; Tel: +886 423323456 ext. 1848, e-mail: fushin@asia.edu.tw and Wen-Wen Huang, Ph.D., Department of Biological Science and Technology, China Medical University, No. 100, Section 1, Jingmao Road, Beitun District, Taichung, Taiwan, R.O.C.; Tel: +886 422053366 ext. 2527, Fax: +886 422053764, e-mail: wwhuang@mail.cmu.edu.tw

Key Words: Tetrandrine, hydrogen peroxide, cell apoptosis, caspase, HaCaT cells.
Skin covers the human body's outer surface and is the first line of defense against microbial and chemical attacks (1). The skin is therefore exposed to various stressors (2, 3) such as UV light (4, 5), and air pollutants (6, 7), including heavy metals (Cu, Mn, Ni, Pb, and Ti) and polycyclic aromatic hydrocarbons (8). Prolonged exposure to such stresses may cause skin damage, leading to the induction of skin cancer (9). The majority of the epidermis consists of keratinocytes (10), which form a physical barrier, and they have diverse receptors for the stimulation of signaling transduction pathways to other layers of the skin (11, 12). However, epidermal keratinocytes are very susceptible to the effects of environmental pollutants, leading to oxidative stress, which induces cancer, aging, and inflammatory disorders (13, 14). Abnormalities of keratinocyte growth leads to skin disorders, such as psoriasis, inflammatory allergic diseases, and chronic wounds (15). Reactive oxygen species (ROS), including most free radicals, have been shown to damage cellular proteins, lipids, and DNA (16) which can result in skin disorders (17). Oxidative stress is an important cause of DNA damage (18) and may induce about 10,000 DNA alterations per cell per day (19). In the body, endogenous antioxidant enzymes, including nicotinamide adenine dinucleotide phosphate dehydrogenase (quinone) 1 and heme oxygenase-1, function to reduce ROS in order to maintain normal skin biology (20). ROS at low levels is essential for cells to avoid extracellular invaders and to maintain cellular signaling. Overproduction of ROS by oxidative stress can injure DNA, proteins and lipids (21), resulting in cancer induction, cardiovascular diseases, and neurodegenerative diseases (22). Therefore, approaches for protecting the skin against oxidative stress are needed.

Hydrogen peroxide (H$_2$O$_2$) is an unstable ROS, and induces oxidative stress (14). Exogenous H$_2$O$_2$ inhibited porcine trophoderm, reduced cell viability, arrested cells in S and G$_2$/M phases, and increased cell apoptosis and autophagy (23). Moreover, H$_2$O$_2$ was reported to freely pass through the cell membrane to damage cells, such as during replicative senescence (19). H$_2$O$_2$ also triggers apoptosis of keratinocytes via the release of cytochrome c, cleaved caspase activity, and pro-apoptotic gene expression (21).

Tetrandrine, a bis-benzylisoquinoline alkaloid, was extracted from the dried root of *Stephania tetrandra*. Tetrandrine has anti-allergenic (24) and anti-inflammatory (25) properties. It is clinically used for treating rheumatoid arthritis (26, 27), silicosis (28), and cardiovascular disease (29) in the Chinese population. Furthermore, tetrandrine exhibits anticancer activities via induction of apoptosis in human breast (30), gastric (31), lung (32), oral (33), and liver (34) cancer, nasopharyngeal (35) and epidermoid (36) carcinoma cells, and laryngeal cancer stem cells (37). However, the bioactivity of tetrandrine pre-treatment in skin cells subjected to oxidative stress has not yet been studied. Therefore, in the present study, the effects of tetrandrine on apoptosis of H$_2$O$_2$-treated HaCaT human keratinocytes were evaluated *in vitro*. Furthermore, the molecular mechanisms of apoptosis associated with the effect of tetrandrine were also investigated in HaCaT cells.

Materials and Methods

Chemicals and reagents. Tetrandrine, dimethyl sulfoxide, propidium iodide (PI), and trypsin-ethylenediamine tetra-acetic acid were obtained from Sigma Chemical Co. (St. Louis, MO, USA). Dulbecco’s modified Eagle’s medium (DMEM), fetal bovine serum, L-glutamine, and antibiotic (penicillin/streptomycin) were purchased from Gibco®/Invitrogen Life Technologies (Carlsbad, CA, USA). Primary antibodies to superoxide dismutase (SOD) (Cu/Zn), SOD (Mn), catalase, and β-actin were obtained from Santa Cruz Biotechnology; antibodies to caspase-3, BCL2 apoptosis regulator-associated X-protein (BAX), and BCL2 were from Cell Signaling Technology, Inc. (Beverly, MA, USA); and those against poly ADP ribose polymerase (PARP), ataxia telangiectasia mutated (ATM), ataxia-telangiectasia and Rad3 related (ATR), P53, and phospho-P53 (p-P53) were from Calbiochem (San Diego, CA, USA); anti-phosphorylated histone H2AX (p-H2A.X) was from GeneTex Inc. (Irvine, CA, USA). The secondary antibody (anti-IgG) was purchased from Cell Signaling Technology, Inc. (Beverly, MA, USA). Tetrandrine stock solutions were dissolved in dimethyl sulfoxide and further diluted in the culture medium.

Cell culture. HaCaT Human keratinocyte cells were kindly provided by Professor Huey-Chun Huang (China Medical University, Taiwan, ROC). HaCaT cells were cultured in DMEM supplemented with 1% antibiotic (100 units/ml penicillin and 100 μg/ml streptomycin), 10% fetal bovine serum, and 2 mM L-glutamine at 37°C in a humidified incubator with 5% CO$_2$.

Examination of cell morphological changes and cell viability. HaCaT cells were cultured to 80% confluence and harvested (passage 2). Cells (1×106 cells/ml) were cultured in 12-well plates with DMEM overnight. Cells were treated with DMSO (as control group), tetrandrine at 20 μM, H$_2$O$_2$ at 500 μM, or pre-treated with 20 μM tetrandrine for 1 h and then treated with 500 μM H$_2$O$_2$ for 3, 6, or 12 h. After treatment, cells were observed under phase-contrast microscopy, and cell viability examination was performed by PI exclusion assay as described previously (38).

Annexin V/PI staining. Annexin V/PI double staining assay was used to measure apoptotic cell death as described previously (38). HaCaT cells (1×105 cells/ml) were plated in 12-well plates for 24 h. The cells were treated with DMSO, 500 μM H$_2$O$_2$ or pre-treated with 20 μM tetrandrine for 1 h and then treated with 500 μM H$_2$O$_2$ for 12 h. After treatment, cells from individual wells were collected, resuspended in annexin V binding buffer, and incubated with annexin V/PI in the dark for 15 min. All cells from each treatment were collected and further analyzed using BD FACSCalibur (BD Biosciences, San Jose, CA, USA) for determining apoptotic cell numbers. Experiments were performed in triplicate.
with 20 μM tetrandrine for 1 h and then treated with 500 μM H\textsubscript{2}O\textsubscript{2} for 12 h. Subsequently, cells were fixed in 4% paraformaldehyde in phosphate-buffered saline (PBS) for 20 min at room temperature and stained with DAPI solution (2 μg/ml) and examined and photographed under a fluorescence microscope as described previously (39).

Western blotting analysis. HaCaT cells (3×106 cells/dish) were cultured onto 10-cm dishes overnight and treated with DMSO, 500 μM H\textsubscript{2}O\textsubscript{2} or pre-treated with 20 μM tetrandrine for 1 h and then treated with 500 μM H\textsubscript{2}O\textsubscript{2} for 12 h. At the end of incubation, cells were collected, total proteins were extracted, and their protein concentration was quantified by Bio-Rad protein assay kit (Hercules, CA, USA) (40-42). A defined amount of sample (30 μg) from each treatment was separated by 10% (w/v) sodium dodecyl sulfate polyacrylamide gel electrophoresis and then transferred onto polyvinylidene fluoride membranes (Millipore, Belford, MA, USA). Subsequently, the membranes were reacted with primary antibodies against SOD (Cu/Zn), SOD (Mn), catalase, ATM, ATR, p-H2A.X, p-P53, P53, BAX, BCL2, caspase-3, caspase-8, caspase-9, PARP, and β-actin at 4°C overnight. Membranes were then washed with PBS with Tween® 20, incubated with peroxidase-conjugated anti-mouse IgG, and proteins bands were visualized by their chemiluminescence signals using enhanced chemiluminescent
detection kit (Amersham Biosciences ECLTM, Buckinghamshire, UK) as described previously (40, 43).

Confocal laser scanning microscopy for measuring protein expression. After plating on chambered coverslips at 1×10^{5} cells/ml, HaCaT cells were treated with DMSO, 500 μM H_{2}O_{2} or pre-treated with 20 μM tetrandrine for 1 h and then with H_{2}O_{2} for 12 h. Cells were then fixed with 4% paraformaldehyde in PBS, and permeabilized with 0.1% Triton-X 100 in PBS for 15 min. All samples were then washed and stained with primary antibodies to SOD1, catalase, and glutathione. Cells were washed with PBS, stained by fluorescein isothiocyanate-conjugated goat anti-mouse IgG (green fluorescence), and their nucleus was stained by PI (red fluorescence) as described previously (41). Individual samples were photographed for expression of associated proteins under a Leica TCS SP2 confocal microscope (Leica Microsystems, Bannockburn, IL, USA).

Statistical analysis. The results are presented as the mean±standard deviation. All samples were obtained three times independently. Statistical analyses were performed by one-way analysis of variance followed by Tukey test for determining significant differences among groups (p<0.05) using Sigma Plot 12 software (Systat Software, Inc., San Jose, CA, USA).

Results

Tetrandrine altered cell morphology and viability of HaCaT cells. HaCaT cells were treated with tetrandrine or H_{2}O_{2}, alone, or sequentially. Cells were monitored and photographed under phase-contrast microscopy. The cell morphology was unmistakably changed after 12-h treatment (Figure 1A). The total cell viability under each treatment was measured by PI exclusion assay. As shown in Figure 1B, pre-treatment of HaCaT cells with tetrandrine and then H_{2}O_{2} led to a reduction of cell viability (Figure 1B) when compared to cells treated with TET or H_{2}O_{2} alone.

Tetrandrine induced apoptotic cell death of HaCaT cells. As shown in Figure 2, when compared to the control group, H_{2}O_{2} (500 μM) treatment induced 7.2-fold annexin V-
positive cells (apoptotic cells), whilst pre-treatment with 20 μM of tetrandrine and then with \(H_2O_2 \) induced 9.0-fold annexin V-positive cells. These results indicated that \(H_2O_2 \) treated with tetrandrine increased apoptotic cell death and reduced the number of viable cells.

Tetrandrine induced morphological changes and chromatin condensation in nuclei (apoptotic death) of HaCaT cells. After HaCaT cells were pre-treated with tetrandrine and then with \(H_2O_2 \), cells were stained with DAPI and photographed under fluorescence microscopy. The results shown in Figure 3 indicate the brighter fluorescence of nuclei in HaCaT cells after pre-treatment with tetrandrine compared with that of \(H_2O_2 \) treatment alone. This bright fluorescence indicates that DNA was naked or chromatin was condensed. After calculating the difference in fluorescence (fold of control) between treated and untreated cells, the data indicated that cells pre-treated with tetrandrine had a 2.6-fold higher intensity than those under \(H_2O_2 \) treatment.

Tetrandrine affects ROS production, DNA damage, and expression of apoptosis-associated proteins in HaCaT cells. As shown in Figure 4, when compared to the control group, pre-treatment with tetrandrine then with \(H_2O_2 \) significantly increased the production of ROS-associated proteins such as SOD (Cu/Zn) and SOD (Mn) but significantly reduced the level of catalase (Figure 4A). It also increased the expression of DNA repair-associated proteins ATM, ATR, p-P53, P53, and p-H2A.X when compared to the control group (Figure 4B). Furthermore, such treatment increased the levels of pro-apoptotic proteins BAX, caspase-3, caspase-8, caspase-9, and PARP in HaCaT cells, whilst that of anti-apoptotic protein BCL2 did not decrease when compared to the control group (Figure 4C).

Tetrandrine affects the expression and the nuclear translocation of SOD1, catalase, and glutathione in \(H_2O_2 \)-treated HaCaT cells. The results from western blotting indicated that pre-treatment of tetrandrine then treatment with \(H_2O_2 \) significantly increased SOD (Cu/Zn) and SOD
but reduced catalase (Figure 4A) in HaCaT cells. In order to further confirm these associations of H$_2$O$_2$ treatment and their effects on SOD and glutathione expression, confocal laser microscopy was used to measure expression of both proteins in HaCaT cells. After cells were pre-treated with or without tetrandrine and treated with H$_2$O$_2$ (500 μM) for 12 h, cells were probed with SOD1, catalase, and glutathione antibodies, and then examined, observed and photographed under confocal laser microscopy. As shown in Figure 5, tetrandrine promoted the expression and nuclear translocation of SOD1 and glutathione but reduced the expression of catalase in HaCaT cells, indicating these observations are in agreement with the results from the western blotting assay.

Discussion

It is well documented that H$_2$O$_2$, an inducer of ROS (42, 44), also induces cytotoxic effects which cause cell death via induction of apoptosis, depending on the dose (39, 45). Cells produce ROS such as O$_2^-$, OH$^-$, and H$_2$O$_2$ in physiological intracellular reactions and functions in cellular metabolism,
Antioxidants are able to attenuate the damaging effects of ROS, and tetrandrine has been suggested to have potential as an antioxidant drug in (47). Studies have shown that tetrandrine induces cytotoxic effects through the induction of apoptosis of many types of human cancer cells in vitro (48, 49). The relationship between tetrandrine- and H$_2$O$_2$-induced cell death remains underexplored. Herein, we found that H$_2$O$_2$ induced morphological cell changes and reduced total viable HaCaT cells in vitro. However, HaCaT cells pretreated with tetrandrine and then treated with H$_2$O$_2$ led to increasing morphological changes and increased cell death.
Tetrandroline augmented the H$_2$O$_2$-induced cytotoxic effect. Another reason for selecting H$_2$O$_2$ for this study is that H$_2$O$_2$-induced apoptosis of retinal pigmented epithelial cells is a well-known study model for drug discovery (50-53), so our model system is similar.

Alone, tetrandroline and H$_2$O$_2$ both induce cancer cell apoptosis (30-32, 45, 46). Therefore, in order to further understand whether tetrandroline enhances H$_2$O$_2$ induced cytotoxic effects (reduced total viable cell number) in HaCaT cells through apoptotic cell death, annexin V/PI double staining assay was used to measure cell apoptosis. Annexin V/PI double staining assay indicated that H$_2$O$_2$ induced cell apoptosis (Figure 2A) and tetrandroline indeed enhanced H$_2$O$_2$-induced cell apoptosis (Figure 2B) in HaCaT cells. DAPI staining assay confirmed that tetrandroline also significantly enhanced H$_2$O$_2$-induced chromatin condensation (one of the characteristics of cell apoptosis) (Figure 3) in HaCaT cells. Both results are in agreement for tetrandroline enhancing H$_2$O$_2$-induced cell apoptosis in HaCaT cells in vitro.

We used western blotting assay for examining cellular protein expression in HaCaT cells in order to elucidate the possible molecular mechanisms involved in apoptosis induction. Pre-treatment of HaCaT cells with tetrandroline significantly enhanced H$_2$O$_2$ induced protein expression of pro-apoptotic BAX, caspase-3, caspase-8, caspase-9, and PARP but reduced that of anti-apoptotic protein BCL2 (Figure 4C). The anti-apoptotic BCL2-family proteins and apoptotic BAX protein play important roles in mitochondrion-dependent extrinsic and intrinsic cell death pathways (54, 55). BAX induces release of cytochrome c from mitochondria, resulting in activation of caspase-9, PARP and caspase-3 for the development of apoptosis (54, 55). Caspase-3, BAX, BCL2, and cytochrome c are well-known markers of apoptosis. Our results also showed that pre-treatment with tetrandroline significantly enhanced expression of H$_2$O$_2$-increased DNA repair-associated proteins, including ATM, ATR, p-P53, P53, and p-H2A.X (Figure 4B). Upon DNA damage, P53 expression and activation increases, resulting in repair of DNA damage or leading to cell death. The DNA repair-associated proteins such as ATM, ATR, and p-H2A.X that in these studies were increased (Figure 4B). ATR is closely related to two other DNA damage response kinases (ATM, and DNA-PK), these kinases responding to different DNA damage insults, that are primarily double-strand breaks for ATM and DNA-PK, and replication stress for ATR (56). γH2A.X expression was increased in HaCaT cells after pre-treatment with tetrandroline and treatment with H$_2$O$_2$. γH2A.X is a marker associated with DNA damage and repair (57).

Psoriasis is a skin disorder that shows a marked epidermal hyper-proliferation of keratinocytes, aberrant differentiation, and keratinocyte inflammation (58, 59). Herein, our results indicated that tetrandroline enhanced H$_2$O$_2$-induced apoptotic cell death of keratinocytes, thus, we suggest tetrandroline combined with H$_2$O$_2$ may be a potent approach for treating diseases involving hyper-proliferation of keratinocytes.

Numerous studies have shown that many diseases such as cancer, diabetes, and Parkinson's disease are associated with intracellular H$_2$O$_2$ generated via extracellular H$_2$O$_2$ (60-62). Antioxidants extracted from natural products can reduce skin injury, aging, and cancer risk based on their antioxidant activities (63, 64). Tetrandroline was reported to increase the expression of antioxidative enzymes (SOD and glutathione) in animal studies (65). Tetrandroline is one of the major components in traditional Chinese herbal medicine and has been shown to attenuate oxidative stress. Catalase, SOD, and glutathione peroxidase are major enzymes for effectively scavenging ROS and attenuating oxidative damage (66, 67). Catalase can break down H$_2$O$_2$ into its inert components, which has been associated with the determining the cancer-killing ability of natural products (68). Furthermore, H$_2$O$_2$ has been applied to different cell types, and can reduce cell viability, depending on a decrease in the concentration of catalase (69). Based on the results from our confocal laser microscopy study, tetrandroline pre-treatment and then treatment with H$_2$O$_2$ reduced H$_2$O$_2$-induced expression of catalase; however, it increased that of SOD(Cu/Zn) and SOD(Mn) (Figure 4A) in HaCaT cells. These results are in agreement with the results from confocal laser microscopy (Figure 5A).

In the present work, pre-treatment of HaCaT cells with tetrandroline significantly subsequently enhanced H$_2$O$_2$-induced cell apoptosis, through the molecular mechanism...
shown in Figure 6. These findings indicate a potential approach for the therapy of diseases associated with keratinocyte proliferation.

Conflicts of Interest

The Authors confirm that there are no conflicts of interest in regard to this study.

Authors’ Contributions

Study conception and design: YCC, FSC and WWH. Acquisition of data: YCC, CLK, SYH, TDW, CLC and JCC. Analysis and interpretation of data: YCC, KCL, SFP and WJH. Drafting of article: YCC, FSC and WWH. Critical revision: YCC and WWH.

Acknowledgements

This work was supported by grant CMU109-ASIA-16 from China Medical University, Taichung, Taiwan, ROC. Experiments and data analysis were performed in part through the use of the Medical Research Core Facilities Center, Office of Research & Development at China Medical University, Taichung, Taiwan, R.O.C.

References

1. Costa MF, Durço AO, Rabelo TK, Barreto RSS and Guimarães AG: Effects of carvacrol, thymol and essential oils containing such monoterpenes on wound healing: A systematic review. J Pharm Pharmacol 71(2): 141-155, 2019. PMID: 30537169. DOI: 10.1111/jphp.13054

2. Di Meglio P, Duarte JH, Ahlfors H, Owens ND, Li Y, Villanova F, Tosi I, Hirota K, Nestle FO, Mrowietz U, Gilchrist MJ and Stockinger B: Activation of the aryl hydrocarbon receptor dampens the severity of inflammatory skin conditions. Immunity 40(6): 989-1001, 2014. PMID: 24909884. DOI: 10.1016/j.immuni.2014.04.019

3. Furue M, Tsuji G, Mitoma C, Nakahara T, Chiba T, Morino-Koga S and Uchi H: Gene regulation of filaggrin and other skin barrier proteins via aryl hydrocarbon receptor. J Dermatol Sci 80(2): 83-88, 2015. PMID: 26276439. DOI: 10.1016/j.jdermsci.2015.07.011

4. de Grujil FR: Action spectrum for photocarcinogenesis. Recent Results Cancer Res 139: 21-30, 1995. PMID: 7597292. DOI: 10.1007/978-3-642-78771-3_2

5. Young AR, Chadwick CA, Harrison GL, Nikaido O, Ramsden J and Potten CS: The similarity of action spectra for thymine dimers in human epidermis and erythema suggests that DNA is the chromophore for erythema. J Invest Dermatol 111(6): 982-988, 1998. PMID: 9856805. DOI: 10.1046/j.1523-1747.1998.00436.x

6. Hyun YJ, Piao MJ, Kang KA, Zhen AX, Madushan Fernando PDS, Kang HK, Ahn YS and Hyun JW: Effect of fermented fish oil on fine particulate matter-induced skin aging. Mar Drugs 17(1): 61, 2019. PMID: 30669248. DOI: 10.3390/md17010061

7. Li D, Li Y, Li G, Zhang Y, Li J and Chen H: Fluorescent reconstitution on deposition of PM2.5 in lung and extrapulmonary organs. Proc Natl Acad Sci USA 116(7): 2488-2493, 2019. PMID: 30692265. DOI: 10.1073/pnas.1818134116

8. Pan TL, Wang PW, Aljuffali IA, Huang CT, Lee CW and Fang JY: The impact of urban particulate pollution on skin barrier function and the subsequent drug absorption. J Dermatol Sci 78(1): 51-60, 2015. PMID: 25680853. DOI: 10.1016/j.jdermsci.2015.01.011

9. Segre JA: Epidermal barrier formation and recovery in skin disorders. J Clin Invest 116(5): 1150-1158, 2006. PMID: 16670755. DOI: 10.1172/JCI28521

10. Lewis DA, Yi Q, Travers JB and Spandau DF: UVB-induced senescence in human keratinocytes requires a functional insulin-like growth factor-1 receptor and p53. Mol Biol Cell 19(4): 1346-1353, 2008. PMID: 18216278. DOI: 10.1091/mbc.e07-10-1041

11. Raahala L, Hämäläinen L, Salonen P, Bart G, Tammi M, Pasonen-Seppänen S and Tammi R: Low dose ultraviolet B irradiation increases hyaluronan synthesis in epidermal keratinocytes via sequential induction of hyaluronan synthases Has-1-3 mediated by p38 and Ca2+/calmodulin-dependent protein kinase II (CaMKII) signaling. J Biol Chem 288(25): 17999-18013, 2013. PMID: 23645665. DOI: 10.1074/jbc.M113.472530

12. Moore C, Cevikbas F, Pasolli HA, Chen Y, Kong W, Kempeks C, Parekh P, Lee SH, Komitchou NA, Yeh I, Jokser NM, Fuchs E, Steinhoff M and Liedtke WB: UVB radiation generates sunburn pain and affects skin by activating epidermal TRPV4 ion channels and triggering endothelin-1 signaling. Proc Natl Acad Sci USA 110(34): E3225-E3234, 2013. PMID: 23929777. DOI: 10.1073/pnas.1312933110

13. Kim KE, Cho D and Park HJ: Air pollution and skin diseases: Adverse effects of airborne particulate matter on various skin diseases. Life Sci 152: 126-134, 2016. PMID: 27018067. DOI: 10.1016/j.lfs.2016.03.039

14. Nakashima Y, Ohta S and Wolf AM: Blue light-induced oxidative stress in live skin. Free Radic Biol Med 108: 300-310, 2017. PMID: 28315451. DOI: 10.1016/j.freeradbiomed.2017.03.010

15. Albanesi C, Scarponi C, Giustizieri ML and Girolomoni G: Keratinocytes in inflammatory skin diseases. Curr Drug Targets 14(10): 329-334, 2003. PMID: 16101542. DOI: 10.2174/1568010503920703

16. Gonzalez C, Sanz-Alfayate G, Agapito MT, Gomez-Niño A, Rocher A and Obeso A: Significance of ROS in oxygen sensing in cell systems with sensitivity to physiological hypoxia. Respir Physiol Neurobiol 132(1): 17-41, 2002. PMID: 12126693. DOI: 10.1016/s1569-9048(02)00047-2

17. Bottai G, Mancina R, Muratori M, Di Gennaro P and Lotti T: 17β-estradiol protects human skin fibroblasts and keratinocytes against oxidative damage. J Eur Acad Dermatol Venereol 27(10): 1236-1243, 2013. PMID: 22988828. DOI: 10.1111/j.1468-3083.2012.04697.x

18. Silva SAME, Michniak-Kohin B and Leonardi GR: An overview about oxidative stress in the context of skin aging. An Bras Dermatol 92(3): 367-374, 2017. PMID: 29186250. DOI: 10.1590/abd1806-4841.20175481

19. Park WH: MAPK inhibitors, particularly the JNK inhibitor, increase cell death effects in H2O2-treated lung cancer cells via increased superoxide anion and glutathione depletion. Oncol Rep 39(2): 860-870, 2018. PMID: 29207156. DOI: 10.3892/or.2017.6107

20. Yan S, Sorrell M and Berman Z: Functional interplay between ATM/ATR-mediated DNA damage response and DNA repair pathways in oxidative stress. Cell Mol Life Sci 71(20): 3951-3967, 2014. PMID: 24947324. DOI: 10.1007/s00018-014-1666-4
21 Friedberg EC: DNA damage and repair. Nature 421(6921): 436-440, 2003. PMID: 12540918. DOI: 10.1038/nature01408

22 Zuliani T, Denis V, Noblesse E, Schnebert S, Andre P, Dumas M and Ratinanud MH: Hydrogen peroxide-induced cell death in normal human keratinocytes is differentiation dependent. Free Radic Biol Med 38(3): 307-316, 2005. PMID: 15629860. DOI: 10.1016/j.freeradbiomed.2004.09.021

23 Luo Z, Xu X, Shao T, Zhang J, Xu W, Yao J and Xu J: ROS-induced autophagy regulates porcine trophoderm cell apoptosis, proliferation, and differentiation. Am J Physiol Cell Physiol 316(2): C198-C209, 2019. PMID: 30485137. DOI: 10.1152/ajpcell.00256.2018

24 Bhagya N and Chandrashekar KR: Tetrandrine – A molecule of wide bioactivity. Phytochemistry 125: 5-13, 2016. PMID: 26899361. DOI: 10.1016/j.phytochem.2016.02.005

25 Meng LH, Zhang H, Hayward L, Takemura H, Shao RG and Pommier Y: Tetrandrine induces early G1 arrest in human colon carcinoma cells by down-regulating the activity and inducing the degradation of G1-S specific cyclin-dependent kinases and by inducing p53 and p21Cip1. Cancer Res 64(24): 9086-9092, 2004. PMID: 15604277. DOI: 10.1158/0008-5472.CAN-04-0313

26 Gao LN, Feng QS, Zhang XW, Wang QS and Cui YL: Tetrandrine suppresses articular inflammatory response by inhibiting pro-inflammatory factors via NF-κB inactivation. J Orthop Res 34(9): 1557-1568, 2016. PMID: 26748661. DOI: 10.1002/jor.23155

27 Lai JH: Immunomodulatory effects and mechanisms of plant alkaloid tetrandrine in autoimmune diseases. Acta Pharmacol Sin 23(12): 1093-1101, 2002. PMID: 12466046.

28 Zhang HN, Xin HT, Zhang WD, Jin CJ, Huang SY and Zhang Y: [The anti-fibrotic effects of Qidan granule in experimental silicosis]. Zhonghua Yu Fang Yi Xue Za Zhi 47(4): 290-294, 2007. PMID: 17959051.

29 Liu C, Gong K, Mao X and Li W: Tetrandrine induces apoptosis by activating reactive oxygen species and repressing Akt activity in human hepatocellular carcinoma. Int J Cancer 129(6): 1519-1531, 2011. PMID: 21128229. DOI: 10.1002/ijc.25817

30 Bhagya N, Chandrashekar KR, Prabhu A and Rekha PD: Tetrandrine isolated from Cynanchum arthrotroides induces cytotoxicity and apoptosis through ROS and caspase pathways in breast and pancreatic cancer cells. In Vitro Cell Dev Biol Anim 55(3): 331-340, 2019. PMID: 30495115. DOI: 10.1007/s11626-019-00332-9

31 Bai XY, Liu YG, Song W, Li YY, Hou DS, Luo HM and Liu P: Anticancer activity of tetrandrine by inducing pro-death apoptosis and autophagy in human gastric cancer cells. J Pharm Pharmacol 70(8): 1048-1058, 2018. PMID: 29770446. DOI: 10.1111/jphp.12935

32 Chen Z, Zhao L, Zhao F, Yang G and Wang JF: Tetrandrine suppresses lung cancer growth and induces apoptosis, potentially via the VEGF/HIF-1α/ICAM-1 signaling pathway. Oncol Lett 15(5): 7433-7437, 2018. PMID: 29849704. DOI: 10.3892/ol.2018.8190

33 Lien JC, Lin MW, Chang SJ, Lai KC, Huang AC, Yu FS and Chung JG: Tetrandrine induces programmed cell death in human oral cancer CAL 27 cells through the reactive oxygen species production and caspase-dependent pathways and associated with beclin-1-induced cell autophagy. Environ Toxicol 32(1): 329-343, 2017. PMID: 26822499. DOI: 10.1002/tox.22238

34 Ng LT, Chiang LC, Lin YT and Lin CC: Antiproliferative and apoptotic effects of tetrandrine on different human hepatoma cell lines. Am J Chin Med 34(1): 125-135, 2006. PMID: 16437745. DOI: 10.1142/S01219245X06003692

35 Liu KC, Lin YJ, Hsiao YT, Lin ML, Yang JL, Huang YP, Chu YL and Chung JG: Tetrandrine induces apoptosis in human nasopharyngeal carcinoma NPC-TW 039 cells by endoplasmic reticulum stress and Ca2+/Calpain pathways. Anticancer Res 37(11): 6107-6118, 2017. PMID: 29061791. DOI: 10.21873/anticancer.12059

36 Chen XS, Bao MH and Mei XD: Reversing multidrug resistance of epidermoid carcinoma drug-resistant cell line KB-MRP1 by tetrandrine. Ai Zheng 26(8): 846-850, 2007. PMID: 17697545.

37 Cui X, Xiao D and Wang X: Inhibition of laryngeal cancer stem cells by tetrandrine. Anticancer Drugs 30(9): 886-891, 2019. PMID: 31517730. DOI: 10.1097/CAD.0000000000000803

38 Lai KC, Hsu SC, Yang JS, Yu CC, Lein JC and Chung JG: Diallyl trisulfide inhibits migration, invasion and angiogenesis of human colon cancer HT-29 cells and umbilical vein endothelial cells, and suppresses murine xenograft tumour growth. J Cell Mol Med 19(2): 474-484, 2015. PMID: 25403643. DOI: 10.1111/jcmm.12486

39 Park J, Hwang JT, Kim YM, Ha J and Park OJ: Differential modulation of AMPK signaling pathways by low or high levels of exogenous reactive oxygen species in colon cancer cells. Ann N Y Acad Sci 1091: 102-109, 2006. PMID: 17341607. DOI: 10.1196/annals.1378.059

40 Liu KC, Shih TY, Kuo CL, Ma YS, Yang JL, Wu PP, Huang YP, Lai KC and Chung JG: Sulforaphane induces cell death through G2/M phase arrest and triggers apoptosis in HCT 116 human colon cancer cells. Am J Chin Med 44(6): 1289-1310, 2016. PMID: 27627923. DOI: 10.1142/S0192415X16500725

41 Cheng ZY, Hsiao YT, Huang YP, Peng SF, Huang WW, Liu KC, Hsia TC, Way TD and Chung JG: Casticin induces DNA damage and affects DNA repair associated protein expression in human lung cancer A549 cells (Running title: casticin induces DNA damage in lung cancer cells). Molecules 25(2):341, 2020. PMID: 31952105. DOI: 10.3390/molecules2502341

42 Beatty S, Koh H, Phil M, Henson D and Boulton M: The role of oxidative stress in the pathogenesis of age-related macular degeneration. Surv Ophthalmol 54(5): 113-134, 2000. PMID: 11033038. DOI: 10.1016/S0039-6257(00)00140-5

43 Lu CC, Yang JS, Chiang JH, Hour MJ, Lin KL, Lee TH and Chung JG: Cell death caused by quinolizidine HMJ-38 challenge in oral carcinoma CAL 27 cells: Dissections of endoplasmic reticulum stress, mitochondrial dysfunction and tumor xenografts. Biochim Biophys Acta 1840(7): 2310-2320, 2014. PMID: 24594224. DOI: 10.1016/j.bbadis.2014.02.022

44 Pacifi CI and Davies KJ: Protein, lipid and DNA repair systems in oxidative stress: The free-radical theory of aging revisited. Gerontology 37(1-3): 166-180, 1991. PMID: 2055497. DOI: 10.1159/000213257

45 Boulares AH, Yakovlev AG, Ivanova V, Stoica BA, Wang G, Iyer S and Smulson M: Role of poly(ADP-ribose) polymerase (PARP) cleavage in apoptosis. Caspase 3-resistant PARP mutant increases rates of apoptosis in transfected cells. J Biol Chem 274(33): 22932-22940, 1999. PMID: 10438458. DOI: 10.1074/jbc.274.33.22932

46 Fridovich I: The biology of oxygen radicals. Science 201(4359): 875-880, 1978. PMID: 210504. DOI: 10.1126/science.210504

47 Tan LT, Mahendra CK, Yow YY, Chan KG, Khan TM, Lee LH and Goh BH: Streptomyces sp. MUM273b: A mangrove-derived potential source for antioxidant and UVB radiation protectants. Microbiologiyopen 8(10): e859, 2019. PMID: 31199601. DOI: 10.1002/mbo3.859
48 Wang CH, Yang JM, Guo YB, Shen J and Pei XH: Anticancer activity of tetrandrine by inducing apoptosis in human breast cancer cell line MDA-MB-231 in vivo. Evid Based Complement Alternat Med 2020; 6823520, 2020. PMID: 32714412. DOI: 10.1155/2020/6823520

49 Jiang L and Hou R: Tetrandrine reverses paclitaxel resistance in human ovarian cancer via inducing apoptosis, cell cycle arrest through β-Catenin pathway. Onco Targets Ther 13: 3631-3639, 2020. PMID: 32431514. DOI: 10.2147/OTT.S235533

50 King RE, Kent KD and Bomser JA: Resveratrol reduces oxidation and proliferation of human retinal pigment epithelial cells via extracellular signal-regulated kinase inhibition. Chem Biol Interact 151(2): 143-149, 2005. PMID: 15698585. DOI: 10.1016/j.cbi.2004.11.003

51 Pittalà V, Fidilio A, Lazzara F, Platania CBM, Salerno L, Foresti R, Drago F and Bucolo C: Effects of novel nitric oxide-releasing molecules against oxidative stress on retinal pigmented epithelial cells. Oxid Med Cell Longev 2017: 1420892, 2017. PMID: 29158871. DOI: 10.1155/2017/1420892

52 Xie X, Feng J, Kang Z, Zhang S, Zhang L, Zhang Y, Li X and Tang Y: Taxifolin protects RPE cells against oxidative stress-induced apoptosis. Mol Vis 23: 520-528, 2017. PMID: 28761325.

53 Zhu C, Dong Y, Liu H, Ren H and Cui Z: Hesperetin protects against H2O2-triggered oxidative damage via upregulation of the Keap1-Nrf2/HO-1 signal pathway in ARPE-19 cells. Biomed Pharmacother 88: 124-133, 2017. PMID: 28103505. DOI: 10.1016/j.biopha.2016.11.089

54 Brunelle JK and Letal A: Control of mitochondrial apoptosis by the Bcl-2 family. J Cell Sci 122(Pt 4): 437-441, 2009. PMID: 19193868. DOI: 10.1242/jcs.031682

55 Jourdain A and Martinou JC: Mitochondrial outer-membrane permeabilization and remodelling in apoptosis. Int J Biochem Cell Biol 41(10): 1884-1889, 2009. PMID: 19439192. DOI: 10.1016/j.biocel.2009.05.001

56 O'Driscoll M, Ruiz-Perez VL, Woods CG, Jeggo PA and Godship JA: A splicing mutation affecting expression of ataxiatelangiectasia and Rad3-related protein (ATR) results in Seckel syndrome. Nat Genet 33(4): 497-501, 2003. PMID: 12640452. DOI: 10.1038/ng1129

57 Crowe SL, Movsesyan VA, Jorgensen TJ and Kondratyev A: Rapid phosphorylation of histone H2A.X following ionotropic glutamate receptor activation. Eur J Neurosci 23(9): 2351-2361, 2006. PMID: 16706843. DOI: 10.1111/j.1460-9568.2006.04768.x

58 Afonina IS, Van Nuffel E and Beyaert R: Immune responses and therapeutic options in psoriasis. Cell Mol Life Sci 78(6): 2709-2727, 2021. PMID: 33386888. DOI: 10.1007/s00018-020-03726-1

59 Albanesi C, Madonna S, Gisondi P and Girolomoni G: The interplay between keratinocytes and immune cells in the pathogenesis of psoriasis. Front Immunol 9: 1549, 2018. PMID: 30034395. DOI: 10.3389/fimmu.2018.01549

60 Whittemore ER, Loo DT, Watt JA and Cotman CW: A detailed analysis of hydrogen peroxide-induced cell death in primary neuronal culture. Neuroscience 67(4): 921-932, 1995. PMID: 7675214. DOI: 10.1016/0306-4522(95)00108-u

61 Evans JL, Maddux BA and Goldfine ID: The molecular basis for oxidative stress-induced insulin resistance. Antioxid Redox Signal 7(7-8): 1040-1052, 2005. PMID: 15998259. DOI: 10.1089/ars.2005.7.1040

62 Trachootham D, Alexandre J and Huang P: Targeting cancer cells by ROS-mediated mechanisms: a radical therapeutic approach? Nat Rev Drug Discov 8(7): 579-591, 2009. PMID: 19478820. DOI: 10.1038/nrd2803

63 Sawicka D, Car H, Borawska MH and Nikliński J: The anticancer activity of propolis. Folia Histochem Cytobiol 50(1): 25-37, 2012. PMID: 22532133. DOI: 10.2478/18693

64 Zhou Y, Zheng J, Li Y, Xu DP, Li S, Chen YM and Li HB: Natural polyphenols for prevention and treatment of cancer. Nutrients 8(8): 515, 2016. PMID: 27556486. DOI: 10.3390/nu8080515

65 Wang X, Yang Y, Yang D, Tong G, Lv S, Lin X, Chen C and Dong W: Tetrandrine prevents monocrotaline-induced pulmonary arterial hypertension in rats through regulation of the protein expression of inducible nitric oxide synthase and cyclic guanosine monophosphate-dependent protein kinase type 1. J Vas c Surg 64(3): 1468-1477, 2016. PMID: 26527422. DOI: 10.1016/j.jvs.2015.09.016

66 Di Mambro VM, Borin MF and Fonseca MJ: Topical formulations with superoxide dismutase: influence of formulation composition on physical stability and enzymatic activity. J Pharm Biomed Anal 32(1): 97-105, 2003. PMID: 12852452. DOI: 10.1016/s0731-7085(03)00055-4

67 Shamsi FA, Chaudhry IA, Boulton ME and Al-Rajhi AA: L-carnitine protects human retinal pigment epithelial cells from oxidative damage. Curr Eye Res 32(6): 575-584, 2007. PMID: 17612973. DOI: 10.1080/02713680701363833

68 Raj L, Ide T, Gurkar AU, Foley M, Schenone M, Li X, Tolliday NJ, Golub TR, Carr SA, Shamji AF, Stern AM, Mandinova A, Schreiber SL and Lee SW: Selective killing of cancer cells by a small molecule targeting the stress response to ROS. Nature 475(7355): 231-234, 2011. PMID: 21753854. DOI: 10.1038/nature10167

69 Klingelhoefter C, Kämmerer U, Koospal M, Mühling B, Schneider M, Kapp M, Köhler A, Germer CT and Otto C: Natural resistance to ascorbic acid induced oxidative stress is mainly mediated by catalase activity. J Pharm Biomed Anal 78(6): 921-932, 1995. PMID: 7675214. DOI: 10.1016/0306-4522(95)00108-u

Received February 19, 2021
Revised March 30, 2021
Accepted March 31, 2021