Phenotype Prediction of Pathogenic Nonsynonymous Single Nucleotide Polymorphisms in \textit{WFS1}

Xuli Qian1, Luyang Qin1, Guangqian Xing2 & Xin Cao1

Wolfram syndrome (WS) is a rare, progressive, neurodegenerative disorder that has an autosomal recessive pattern of inheritance. The gene for WS, wolfram syndrome 1 gene (\textit{WFS1}), is located on human chromosome 4p16.1 and encodes a transmembrane protein. To date, approximately 230 mutations in \textit{WFS1} have been confirmed, in which nonsynonymous single nucleotide polymorphisms (nsSNPs) are the most common forms of genetic variation. Nonetheless, there is poor knowledge on the relationship between SNP genotype and phenotype in other nsSNPs of the \textit{WFS1} gene. Here, we analysed 395 nsSNPs associated with the \textit{WFS1} gene using different computational methods and identified 20 nsSNPs to be potentially pathogenic. Furthermore, to identify the amino acid distributions and significances of pathogenic nsSNPs in the protein of \textit{WFS1}, its transmembrane domain was constructed by the TMHMM server, which suggested that mutations outside of the TMHelix could have more effects on protein function. The predicted pathogenic mutations for the nsSNPs of the \textit{WFS1} gene provide an excellent guide for screening pathogenic mutations.

Wolfram syndrome (WS) (MIM 222300), also known as DIDMOAD (diabetes insipidus, insulin-deficient diabetes mellitus, optic atrophy and deafness), is a rare neurodegenerative disorder of autosomal recessive inheritance, characterised by diabetes insipidus, insulin-deficient diabetes mellitus, optic atrophy and deafness. Of these symptoms, diabetes mellitus is the most common manifestation of WS with a median onset age of 6 years1 and always presents before the age of 162. The prevalence of WS is approximately 1/700,000 individuals in the UK, and 1/100,000 individuals in North America3. Since the first report for WS by Wolfram and Wagener in 19384, progressively more cases have been observed. Many studies have been performed to investigate the genetic basis of this hereditary disease and have identified that loss-of-function mutations in the \textit{WFS1} gene are the main cause of the syndrome5.

\textit{WFS1}, located on human chromosome 4p16.1, is composed of eight exons, of which only the first exon is a noncoding exon, and most mutations in \textit{WFS1} have been identified in exon 8 but also in exons 3, 4, 5 and 66–8. \textit{WFS1} encodes the protein wolframin, which is abundantly expressed in pancreas, brain, heart, and muscle and is thought to be a novel endoplasmic reticulum (ER) calcium channel or a regulator of channel activity9,10. Additionally, wolframin appears to be involved in membrane trafficking, protein processing11, regulation of intracellular Ca2+ homeostasis12 and β-cell dysfunction13,14. Mutations in the \textit{WFS1} gene may result in instability and a significantly reduced half-life of wolframin in the endoplasmic reticulum and then may cause disease15.

To date, approximately 230 mutations in \textit{WFS1} have been reported (https://lovdd.euro-wabb.org/home.php?select_db=WFS1). Although nsSNPs are the most common form of genetic variation in these mutations, the relationship between the genotype and phenotype of other nsSNPs in the \textit{WFS1} gene is unclear.
Given the large number of nsSNPs in the WFS1 gene, it is expensive and time-consuming to experimentally explore the functional effects of these SNPs. The prediction of the phenotypic effects of nsSNPs based on different computational methods has become a well-known methodology 16,17, and several research articles have cited its effectiveness in identifying deleterious, disease-related mutations 18,19. In those methods, predicting pathogenic nsSNPs is based on identifying structural and functional damaging properties. This study will facilitate the investigation of the role of nsSNPs in WFS1 and identify pathogenic nsSNPs associated with the WFS1 gene based on different computational methods. Among these methods, the prediction of deleterious and damaging nsSNPs was performed by SIFT and PolyPhen-2. A support vector machine (SVM) along with the SIFT algorithm, PhD-SNP and MutPred were used to detect disease-associated nsSNPs. In addition, to identify the amino acid distributions and significances of pathogenic nsSNPs in the protein of WFS1, we constructed the transmembrane domain by the TMHMM server v2.0.

Results
SNP dataset from databases. The nsSNPs were collected from the NCBI dbSNP, HGMD, Deafness Variation Databases and the Locus Specific Database, in which the NCBI dbSNP database was the primary source, containing approximately 1,500 SNPs, and the other three were as supplemental. After filtering, a total of 395 nsSNPs were identified.

NsSNP prediction results of WFS1. To identify deleterious mutations from the nsSNPs in the WFS1 gene, the SIFT and PolyPhen-2 server were used to predict whether the mutations were deleterious/damaging. The SIFT server was used to calculate the tolerance index of all 395 collected nsSNPs with evolutionary conservation analysis, and a SIFT score value of < 0.05 was considered to be deleterious. Meanwhile, we subjected all 395 nsSNPs to the PolyPhen-2 structure-based analysis server to further analyze the effects of amino acid substitutions (AAS) on the structures and functions. Of the 395 nsSNPs in the WFS1 gene, 174 nsSNPs were predicted to be deleterious by SIFT and the remaining nsSNPs were tolerated except for nonsense mutations for which SIFT provided no score. Among these deleterious nsSNPs, 32 mutations (P7L, G154A, W314R, P346L, Y351C, S353C, R375C, E394V, E394K, S430L, S430Y, R517P, L662P, T665I, R732C, G702S, R708C, N714T, G736R, G736D, G736S, G834S, L842F and P885L) were reported to be highly deleterious with SIFT scores of 0.000. Obviously, in these highly deleterious nsSNPs, the mutation frequencies in the amino acid loci 394, 430, 684, 690, 699, 702 and 736 were higher than other loci. In PolyPhen-2, 235 nsSNPs were predicted to be damaging to protein structure and function, of which 89 mutations were predicted to be highly deleterious with PolyPhen-2 scores of 1.000. A total of 156 nsSNPs were predicted to be deleterious and damaging by both SIFT and PolyPhen-2 (Table 1) after excluding all nonsense mutations. Additionally, of these 156 nsSNPs, 28 nsSNPs (P346L, Y351C, S353C, R375C, E394V, E394K, S430L, S430W, Y528D, P533S, Y699H, Y699C, Y699S, A684V, A684G, A684T, A684C, C690R, C690G, G695V, Y699H, Y699C, A742R, S702C, G736D, G736R, G736S, G834S, L842F and P885L) were predicted to be highly deleterious and damaging by both algorithms with SIFT scores of 0.000 and PolyPhen-2 scores of 1 (Table 1).

For further study, we used PhD-SNP and MutPred to investigate whether these 156 filtered deleterious and damaging nsSNPs were associated with disease. PhD-SNP is optimised to classify disease-causing point mutations from the given datasets, and MutPred is also a web application tool developed to classify an AAS as either disease-associated or neutral in humans but also predicts the molecular cause of disease/deleterious AASs. Of the 156 nsSNPs, 97 disease-associated nsSNPs were predicted by PhD-SNP and 91 nsSNPs were predicted to be disease-associated by MutPred tools. But it is worth noting that some of the 28 mutations with scores of 0.000 for SIFT and 1.000 for PolyPhen-2 in Table 1 like P346L, Y351C, S353C, R375C, E394V, E394K, S430L, S430W, Y528D, P533S, Y699H, Y699C, Y699S, A684V, A684G, A684T, A684C, C690R, C690G, G695V, Y699H, Y699C, R732C, G702S, R708C, G736D, G736R, G736S, G834S, L842F and P885L) were predicted to be highly deleterious and damaging by both algorithms with SIFT scores of 0.000 and PolyPhen-2 scores of 1 (Table 1).

Additionally, to better understand how the pathogenic nsSNPs affect protein conformation and result in disease states, we constructed wild type and mutant proteins via the Robetta and SWISS-MODEL tools (Fig. 1, Supplementary file 1-4). And the geometric evaluations of the modeled 3D structure were performed using PROCHECK by calculating the Ramachandran plot (Fig. 2). The wild type protein showed 99.4% of residues in most favoured and allowed region and the overall average of G factors was 0.27 which showed the structure was usual. In this step, we randomly selected three predicted nsSNPs (P292S, S443I and G695V) that have been reported to be pathogenic 20,21 and compared the structures...
Amino Acid Change	Nucleotide Variation	SIFT Score	PolyPhen-2 Score	SNP ID
R24H	G/A	0.011	0.999	rs71524364
T104I	C/T	0.021	0.992	
G107E	G/A	0.004		
G107R	G/A	0.003	1	
Y110N	T/A	0.023	0.999	CM050353
D118A	A/C	0.004	0.999	rs71524349
A126T	G/A	0.007	1	
G154A	G/C	0	0.996	
T156M	C/T	0.002	1	
D171N	G/A	0.049	0.953	
R177P	G/C	0.010	1	CM083208
A198V	C/T	0.047	0.875	rs142687752
E202G	A/G	0.043	0.998	WFS1_00230
D211N	G/A	0.017	0.813	rs138682654
R228H	G/A	0.037		
E273K	G/A	0.018	0.904	
P292S	C/T	0.008	1	CM992981
I296S	T/G	0.003	0.688	CM992982
W314R	T/A	0	0.999	WFS1_00229
L327I	C/A	0.013	1	
F329I	T/A	0.031	0.99	
P346L	C/T	0	1	CM073420
F350V	T/G	0.045	0.999	
Y351C	A/G	0	1	rs181988441
S353C	C/G	0	1	rs143547567
C360Y	G/A	0.001	0.999	rs147157374
T361I	C/T	0.002		
R375C	C/T	0	1	rs200095753
R375H	G/A	0.003	1	rs142671083
T378N	C/A	0.007	0.999	WFS1_00097
D389E	T/G	0.007	0.978	
E394K	G/A	0	1	
E394V	A/T	0	1	rs146563951
L402P	T/C	0.001	1	CM112216
H407R	A/G	0.010	0.684	rs14007862
V412A	T/C	0.021	0.981	rs144951440
F417S	T/C	0.002	0.95	rs111570388
I427S	T/G	0.005	0.903	CM073419
S430L	C/T	0	1	WFS1_00218
S430W	C/G	0	1	WFS1_00194
L432V	C/G	0.027	1	rs35031397
F439C	T/G	0.002	0.913	rs141585847
S443I	G/T	0.002	0.997	CM015195
T455M	C/T	0.027	1	
R456C	C/T	0.010	0.689	
E462G	A/G	0.016	0.99	rs398123066
E462G	A/G	0.016	0.99	
C505Y	G/A	0.001	0.998	CM031397

Continued
Amino Acid Change	Nucleotide Variation	SIFT Score	PolyPhen-2 Score	SNP ID
L506R	T/G	0.003	0.95	CM043878
L511P	T/C	0.001	0.949	
Y513S	A/C	0.036	0.98	
R517H	G/A	0.024	0.986	rs150394663
R517P	G/C	0.022	0.904	
M518I	G/A	0.013	0.978	rs138232538
A519V	C/T	0.047	1	rs201557396
Y528D	T/G	0	1	CM087003
P533S	C/T	0	1	rs146132083
C537Y	G/A	0.003	0.999	rs199910987
L543R	T/G	0.003	1	CM031400
Y545M	G/A	0.038	0.992	rs201993978
Y546D	T/A	0.004	0.999	CM031401
R558C	C/T	0.001	1	rs199946797
R558H	G/A	0.002	1	CM031402
A575G	C/G	0.018	0.528	rs71524360
G576S	G/A	0.031	0.882	rs1805069
V582M	G/A	0.009	0.916	rs377677692
R587W	C/T	0.005	0.999	rs138968466
L594R	T/G	0.001	0.999	rs200288171
A602E	C/A	0.011	0.74	rs2230720
A602G	C/G	0.001	0.74	
P607L	C/T	0.040	0.999	rs373862003
P607R	C/G	0.010	1	CM033825
R611C	C/T	0.008	0.999	rs144993516
L637P	T/C	0.002	1	WFS1_00215
T641M	C/T	0.018	0.985	rs37662985
R653C	C/T	0.007	1	rs201064551
E655G	A/G	0.006	0.999	CM024439
E655K	G/A	0.015	0.995	CM108408
S662P	T/C	0.004	1	rs376341111
L664R	T/G	0.001	1	CM090453
T665I	C/T	0.002	0.976	
T665N	C/A	0.005	0.544	rs138258392
T665P	A/C	0.004	0.544	rs369656458
Y669C	A/G	0	1	CM983479
Y669H	T/C	0	1	CM072120
Y669S	A/C	0	1	CM090454
L673P	T/C	0.026	0.998	CM056420
G674E	G/A	0.029	1	CM020990
G674R	G/A	0.024	1	rs200672755
G674V	G/T	0.013	1	CM020991
R676C	C/T	0.030	1	rs201623184
W678L	G/T	0.008	0.999	CM073425
A684G	C/G	0	1	
A684T	G/A	0	1	
A684V	C/T	0	1	rs387906930
R685C	C/T	0.003	1	rs112967046

Continued
Amino Acid Change	Nucleotide Variation	SIFT Score	PolyPhen-2 Score	SNP ID
R685P	G/C	0.023	0.999	CM081852
R685P	G/C	0.023	0.999	
I688T	T/C	0.002	0.999	
G690G	T/G	0	1	CM087004
G690R	T/C	0	1	CM092988
G695V	G/T	0.001	1	rs28937891
T699M	C/T	0.001	1	CM992989
W700C	G/T	0.001	1	
G702D	G/A	0	1	CM090455
G702S	G/A	0	1	rs71532862
R703C	C/T	0.024	1	rs20188856
K705N	G/C	0.032	0.997	CM032680
R708C	C/T	0	1	rs20099217
R708H	G/A	0.003	1	rs36962548
D713G	A/G	0.012	0.999	rs143280847
N714T	A/C	0	0.998	rs397517196
L723P	T/C	0.001	1	
P724L	C/T	0.002	1	rs28937890
P724S	C/T	0.043	1	
R726C	C/T	0.007	1	rs71526458
R726H	G/A	0.018	1	rs149013740
G736D	G/A	0	1	rs71530912
G736R	G/C	0	1	
G736S	G/A	0	1	rs71532864
Y739D	T/G	0.006	1	rs36773581
C742R	T/C	0.010	1	rs71532865
C742W	C/G	0.002	1	rs71532866
R756C	C/T	0.002	1	rs138127684
A761V	C/T	0.031	0.818	rs71526459
H763P	A/C	0.014	0.995	
D771G	A/G	0.011	1	CM015267
D771H	G/C	0.003	1	CM052942
R772C	C/T	0.005	1	rs149540655
E776V	A/T	0.001	1	rs56002719
G780R	G/C	0.046	0.989	CM012813
G780S	G/A	0.049	0.896	rs387906931
R791C	C/T	0.019	0.982	rs200528166
K800E	A/G	0.038	0.958	rs55674815
L804P	T/C	0.001	1	WFS1_00226
S807R	A/C	0.012	0.973	CM020992
E809K	G/A	0.042	0.999	rs71539673
R818C	C/T	0.014	1	rs35932623
L829P	T/C	0.001	1	rs104893883
G831D	G/A	0.012	1	rs28937895
R832C	C/T	0.010	1	rs148089728
G834S	G/A	0	1	rs398124214
L842F	C/T	0	1	rs71530915
A844T	G/A	0.047	0.973	CM053436

Continued
between the wild type and mutant proteins. We observed that after mutation, not only did the amino acid change, but it also affected the entire protein structure. All of the three protein structures (P292S, S443I and G695V) representing different mutations gained or lost some α-helixes, suggesting a potential molecular mechanism resulting in WS.

Amino acid distribution in the transmembrane domain.

To elucidate the amino acid distributions and significances of predicted pathogenic nsSNPs in wolframin, we constructed its transmembrane domain using the TMHMM server v2.0 (Fig. 3). In this analysis, the transmembrane domain of wolframin was divided into 9 TMhelixes, with each TMhelix being approximately 23-amino acids long. Except for the third and seventh TMhelix, 18 pathogenic mutations were distributed across the other seven TMhelixes, accounting for 25.71% of all 70 pathogenic mutations, of which 13 were previously known. Notably, most pathogenic mutations in our study were not located in the transmembrane domain but in the C-terminal domain of wolframin (Table 3). In all 70 pathogenic mutations, approximately 52 were not located in the TMhelix (74.29%), 39 of which were located in the C-terminal domain. Thirty-seven pathogenic mutations have been previously reported in the 52 mutations not located in the TMhelix, and only 15 mutations were predicted to be potentially pathogenic.

Discussion

WS is a rare autosomal recessive disorder with a number of loss-of-function mutations of the WFS1, both within and between most affected patients/families. Wide tissue distribution of wolframin and many mutations in WFS1 resulting in WS may contribute to different phenotypes. Growing evidences have presented many clinical signs and possible correlations between the genotype and the development of the neurologic manifestations, the age at onset of diabetes mellitus, hearing defects, and diabetes insipidus in WS on the cohort of WS patients. So far, although a large number of variants of the WFS1 gene have been identified, novel mutations are continuously found in this gene. Furthermore, the pathogenic role of different mutations, polymorphisms and sequencing variants of the gene remains largely unknown. Phenotypic prediction of the effects of nsSNPs might identify meaningful changes in genes that alter protein function to induce phenotypic consequences. The sheer number of SNPs in online databases provides an abundant resource to predict the phenotypic effects of nsSNPs, and known pathogenic mutations from the literature provide us an opportunity to inspect prediction accuracy, which indicates whether the relationships between nsSNP prediction results and known pathogenic mutations are confirmed by *in vivo* and *in vitro* experiments.

In the present study, we predicted 20 potentially pathogenic mutations and 50 known pathogenic mutations using *in silico* methods, and combined the results of the most common changes by MutPred and the predictions of the three protein structures by the SWISS-MODEL to determine that the most probable mutational effects causing WS might be the gains or losses of α-helixes. It is worth to consider that some predicted pathogenic nsSNPs have been confirmed by *in vitro* functional studies and genetic analysis for WS families, which could indirectly verify the accuracy of our methods. For example, p.P724L(c.2171C>T) and p.G695V(c.2084G>T) of WFS1 have been reported to lead to WS and which cause the formation of detergent-insoluble aggregates of wolframin when was expressed in COS-7 cells.

Table 1. Deleterious and damaging nsSNPs of WFS1 prioritised using SIFT and PolyPhen-2 scores.

Amino Acid Change	Nucleotide Variation	SIFT Score	PolyPhen-2 Score	SNP ID		
A844V	C/T	0.036	0.999	rs200192011		
R859P	G/C	0.004	1	CM052943		
R859W	C/T	0.001	1	rs37298367		
H860D	C/G	0.007	0.96	CM043881		
I863M	C/G	0.003	0.977	rs71524393		
E864K	G/A	0.045	1	rs74315205		
R868C	C/T	0.008	1	rs148611943		
R868H	G/A	0.031	1	rs56393026		
A874T	G/A	0.006	1	rs200775335		
K876T	A/C	0.006	0.98	rs144900514		
P885L	C/T	0	1	rs372855769		
A889V	C/T	0.024	0.855	rs147934586		
Amino Acid Change	g Value	p Value	Molecular Change	Prediction Reliability	SNP ID*	Reported or not
-------------------	---------	---------	------------------	------------------------	---------	----------------
Y110N	0.849	0.0133	Gain of disorder	Confident Hypotheses	CM050353	Y41
R177P	0.817	0.0021	Loss of MoRF binding	Very Confident Hypotheses	CM083208	Y42
P292S	0.942	0.0093	Gain of helix	Very Confident Hypotheses	CM992981	Y26
I296S	0.867	0.0051	Gain of loop	Very Confident Hypotheses	CM992982	Y28
W314R	0.884	0.0162	Gain of methylation at W314	Confident Hypotheses	WFS1_00229	Y43
F329I	0.774	0.0344	Gain of sheet	Actionable Hypotheses	rs188848517	N
S353C	0.502	0.0266	Gain of sheet	Actionable Hypotheses	rs143547567	N
R375H	0.670	0.0444	Loss of helix	Actionable Hypotheses	rs142671083	N
R375C	0.669	0.0444	Loss of helix	Actionable Hypotheses	rs200095753	N
E394V	0.811	0.0425	Gain of helix	Confident Hypotheses	rs146563951	Y44
E394K	0.826	0.0176	Gain of methylation at E394	Confident Hypotheses	rs373146435	N
L402P	0.679	0.0215	Gain of relative solvent accessibility	Actionable Hypotheses	CM112216	Y23
H427S	0.828	0.0082	Gain of disorder	Very Confident Hypotheses	CM073419	Y45
S430L	0.793	0.0203	Loss of loop	Confident Hypotheses	WFS1_00218	Y22
S430W	0.790	0.0266	Gain of sheet	Confident Hypotheses	WFS1_00194	Y23
F439C	0.835	0.0357	Loss of sheet	Confident Hypotheses	rs141585847	N
S443I	0.836	0.0221	Gain of sheet	Confident Hypotheses	CM015195	Y21
C505Y	0.975	0.0062	Loss of catalytic residue at P504	Very Confident Hypotheses	CM031397	Y46
L506R	0.858	0.0196	Loss of helix	Confident Hypotheses	CM043878	Y47
L511P	0.748	0.0016	Gain of sheet	Actionable Hypotheses	Y25	
R517P	0.534	0.0072	Loss of helix	Actionable Hypotheses	N	
Y528D	0.939	0.0037	Loss of sheet	Very Confident Hypotheses	CM087003	Y44
P533S	0.886	0.0228	Loss of sheet	Confident Hypotheses	rs146132083	Y44
L543R	0.768	0.0228	Loss of sheet	Actionable Hypotheses	CM031400	Y46
V546D	0.828	0.0037	Loss of sheet	Very Confident Hypotheses	CM031401	Y46
R558C	0.890	0.0296	Loss of methylation at R558	Confident Hypotheses	rs199946797	Y46
R558H	0.950	0.0296	Loss of methylation at R558	Confident Hypotheses	CM031402	Y46
L594R	0.688	0.0344	Gain of sheet	Actionable Hypotheses	rs200288171	N
P607I	0.748	0.0022	Gain of helix	Actionable Hypotheses	rs373862003	N
P607R	0.954	0.0005	Gain of MoRF binding	Very Confident Hypotheses	CM033825	Y26
L637P	0.683	0.0072	Loss of helix	Actionable Hypotheses	WFS1_00215	Y21
E655G	0.756	0.0187	Loss of solvent accessibility	Actionable Hypotheses	CM024439	Y44
E655K	0.811	0.0049	Gain of MoRF binding	Very Confident Hypotheses	CM108408	Y21
S662P	0.816	0.0312	Gain of loop	Confident Hypotheses	rs376341411	N
L664R	0.926	0.0090	Gain of MoRF binding	Very Confident Hypotheses	CM090453	Y23
T665I	0.821	0.0117	Gain of helix	Confident Hypotheses	N	
L672P	0.874	0.0076	Loss of helix	Very Confident Hypotheses	CM056420	Y44
G674R	0.964	0.0328	Gain of MoRF binding	Confident Hypotheses	rs200672755	Y55
G674V	0.958	0.0325	Gain of helix	Confident Hypotheses	CM020991	Y24
W678L	0.933	0.0132	Loss of catalytic residue at A677	Confident Hypotheses	CM073425	Y27
A684V	0.755	0.0104	Loss of helix	Actionable Hypotheses	rs387909630	Y21
R685P	0.859	0.0033	Loss of helix	Very Confident Hypotheses	Y28	
C690R	0.945	0.0008	Gain of MoRF binding	Very Confident Hypotheses	CM992988	Y20
C690G	0.955	0.0115	Gain of disorder	Confident Hypotheses	CM087004	Y48

Continued
WFS1 spanning approximately 33.4 kb of genomic DNA, consists of eight exons and produces a peptide product which is 890-amino acid long (wolframin). The amino acid distribution results of wolframin suggest that wolframin contains 9 transmembrane domains. These results are consistent with the previous research which provides experimental evidence that wolframin contains 9 transmembrane segments and is embedded in the membrane in an Ncyt/Clum topology. However, the prediction for wolframin available at UniProt database gives 11 transmembrane domains (http://www.uniprot.org/uniprot/O76024) (Table 4), and the difference between the two predicted results was mainly in the TMhelix 5, TMhelix 6 and TMhelix 11. In our result, the 493–515 amino acids are located in TMhelix 5; while in UniProt, this region has been divided into TMhelix 5 and TMhelix 6 domains, respectively; the 653–890 amino acids have also been predicted as two TMhelixes in the same way in the UniProt. With reference to most researches, the wolframin were considered as 9 transmembrane domains with some evidences, and this is due to the differences in the execution of algorithm. Additionally, our results also indicate that the mutations outside of the TMhelix could have more pronounced functional effects, especially in the C-terminal with 39 predicted mutations. Many of the reported missense mutations are located in the C-terminal hydrophilic part of the protein, and the experiments also support these predictions.

The p.A684V(c.2051C>T) and p.L511P (c.1532T>C) were ectopically expressed in HEK293 cells which showed reduced protein levels compared to wild type wolframin, strongly indicating that the mutation is disease-causing. Meanwhile, by direct DNA sequencing and linkage analysis, p.L804P (c.2411T>C) and p.R859P (c.2576G>C) were identified after screening the entire coding region of the WFS1 gene in a Chinese WS family and in a US family with the nonsyndromic hearing loss, respectively.

Amino Acid Change	g Value	p Value	Molecular Change	Prediction Reliability	SNP ID*	Reported or not
G695V	0.911	0.0036	Gain of sheet	Very Confident Hypotheses	rs28937891	Y*
H696Y	0.764	0.0390	Gain of sheet	Actionable Hypotheses	WFS1_00098	Y*
W700C	0.942	0.0157	Loss of MoRF binding	Confident Hypotheses	CM992989	Y*
G702S	0.887	0.0315	Loss of sheet	Confident Hypotheses	rs71532862	Y*
G702D	0.96	0.0315	Loss of sheet	Confident Hypotheses	CM090455	Y*
R708C	0.921	0.0182	Loss of MoRF binding	Confident Hypotheses	rs200099217	Y*
L723P	0.731	0.0045	Gain of loop	Actionable Hypotheses	Y*	
P724L	0.926	0.0336	Loss of catalyticresi due at P724	Confident Hypotheses	rs28937890	Y*
R732H	0.855	0.0444	Loss of helix	Confident Hypotheses	rs149013740	N
R732C	0.848	0.0376	Loss of helix	Confident Hypotheses	rs71526458	N
G736D	0.934	0.0425	Gain of helix	Confident Hypotheses	rs71530912	N
G736R	0.965	0.0117	Gain of helix	Confident Hypotheses	Y*	
Y739D	0.736	0.0332	Gain of disorder	Actionable Hypotheses	rs36773581	N
C742R	0.814	0.013	Gain of disorder	Confident Hypotheses	rs71532865	N
E776V	0.939	0.050	Gain of MoRF binding	Confident Hypotheses	rs56002719	Y*
L804P	0.768	0.0063	Loss of sheet	Actionable Hypotheses	WFS1_00226	Y*
L829P	0.928	0.0079	Gain of loop	Very Confident Hypotheses	rs10489383	Y*
G831D	0.923	0.0143	Gain of helix	Confident Hypotheses	rs28937895	Y*
R832C	0.505	0.0228	Loss of sheet	Actionable Hypotheses	rs148089728	N
R859W	0.596	0.0152	Loss of disorder	Actionable Hypotheses	rs372298367	N
R859P	0.853	0.0315	Loss of sheet	Confident Hypotheses	CM052943	Y*
H860D	0.769	0.0104	Loss of sheet	Actionable Hypotheses	CM048881	Y*
E864K	0.901	0.0016	Gain of MoRF binding	Very Confident Hypotheses	rs74315205	Y*
R868C	0.843	0.0179	Loss of disorder	Confident Hypotheses	rs148611943	N
A874T	0.769	0.0061	Gain of sheet	Actionable Hypotheses	rs200775335	N
P885L	0.953	0.0117	Gain of helix	Confident Hypotheses	rs372855769	Y*

Table 2. Diseased-associated nsSNPs of WFS1 predicted using the PhD-SNP and MutPred servers.

"In the SNP ID column, the nsSNPs with the prefix "rs" are from dbSNP, and those with the prefix "CM" and "WFS1_" are from HGMD and Locus Specific Database, respectively, and the remaining with no SNP ID are in the Deafness Variation Database. The nsSNPs highlighted in bold are potential pathogenic nsSNPs which have not been reported.

"The p.A684V(c.2051C>T) and p.L511P (c.1532T>C) were ectopically expressed in HEK293 cells which showed reduced protein levels compared to wild type wolframin, strongly indicating that the mutation is disease-causing. Meanwhile, by direct DNA sequencing and linkage analysis, p.L804P (c.2411T>C) and p.R859P (c.2576G>C) were identified after screening the entire coding region of the WFS1 gene in a Chinese WS family and in a US family with the nonsyndromic hearing loss.

WFS1 spanning approximately 33.4 kb of genomic DNA, consists of eight exons and produces a peptide product which is 890-amino acid long (wolframin). The amino acid distribution results of wolframin suggest that wolframin contains 9 transmembrane domains. These results are consistent with the previous research which provides experimental evidence that wolframin contains 9 transmembrane segments and is embedded in the membrane in an Ncyt/Clum topology. However, the prediction for wolframin available at UniProt database gives 11 transmembrane domains (http://www.uniprot.org/uniprot/O76024) (Table 4), and the difference between the two predicted results was mainly in the TMhelix 5, TMhelix 6 and TMhelix 11. In our result, the 493–515 amino acids are located in TMhelix 5; while in UniProt, this region has been divided into TMhelix 5 and TMhelix 6 domains, respectively; the 653–890 amino acids have also been predicted as two TMhelices in the same way in the UniProt.
analysis, Zatyka et al. identified that the C-terminal domain of wolframin, which is positioned in the ER lumen, bind the C-terminal domain (amino acids 652–890) of the ER-localized Na\(^+\)/K\(^+\) ATPase beta-1 subunit (ATP1B1)\(^{28}\). And the Na\(^+\)/K\(^+\) ATPase deficiency has a crucial role in apoptosis and in neural degenerative disease which can be induced by mutations in WFS1, leading to the development of WS\(^{29}\).

In summary, we used extensive functional and structural level analyses to predict potentially pathogenic mutations for nsSNPs in the WFS1 gene and analysed the amino acid distributions of wolframin to provide a guide for screening pathogenic mutations and investigating the function of wolframin.
Figure 2. Ramachandran Plot of the wild type wolframin protein structure evaluated by PROCHECK.

Figure 3. Transmembrane domain structure of wolframin and its distribution of mutations\(^2\). The 70 predicted pathogenic mutations are highlighted with green/red coloured circles compared to “normal” sequence with blue circles. The 50 known pathogenic mutations are depicted in green and the 20 predicted potentially pathogenic mutations are in red. The transmembrane domain is depicted in yellow. The circle with green and red denotes that the locus has a known and predicted mutation.
Furthermore, we provide information for predicting the effects of nsSNPs in genes encoding transmembrane proteins and for further research in variant effect prediction.

Materials and Methods

Dataset collection. NsSNP datasets of the WFS1 gene were obtained from the NCBI dbSNP database (http://www.ncbi.nlm.nih.gov/projects/SNP/), HGMD (http://www.hgmd.cf.ac.uk/ac), Deafness Variation Database (http://deafnessvariationdatabase.org) and the Locus Specific Database (https://lovd.euro-wabb.org/home.php?select_db=WFS1). The amino acid sequence of wolframin was retrieved from the UniProt database (http://www.uniprot.org/). Data for the WFS1 gene were collected from Entrez Gene on the NCBI web site (http://www.ncbi.nlm.nih.gov/genbank/), and the literature search was performed using PubMed, Science Direct, and Web of Science.

Filtering and mining of nsSNPs. Because SNPs from the databases were not initially nsSNPs, we needed to perform some manual filtering. In this process, we eliminated SNPs in 3′ or 5′UTRs and synonymous SNPs. For prediction and analysis, SNP ID, gene name, protein accession, amino acid residue 1 (wild type), amino acid position, and amino acid residue 2 (missense) for all nsSNPs were collected from the NCBI dbSNP database, HGMD, and Deafness Variation Databases.

Predicting the phenotype of nsSNPs with the SIFT and PolyPhen-2 tools. After filtering the nsSNPs, we predicted their functional effects with the SIFT (http://sift-dna.org) and PolyPhen-2 (http://genetics.bwh.harvard.edu/pph2/) tools. In SIFT server, a highly conserved position is more likely to be deleterious with a SIFT score <0.05, whereas a tolerant mutation will have a SIFT score >0.05. PolyPhen-2 extracts various sequence- and structure-based features of the substitution site and inputs them into a probabilistic classifier based on a given AAS and protein accession. The mutation is appraised qualitatively, as benign, possibly damaging, or most likely damaging.

Identifying disease-associated nsSNPs using the PhD-SNP and MutPred tools. PhD-SNP (http://snps.biofold.org/phd-snp) and MutPred (http://mutpred.mutdb.org/) were based on a support vector machine (SVM) and the SIFT algorithm. To PhD-SNP, in briefly, after inputting the protein sequence, position and new residue, the substitution from the wild type residue to the mutant is encoded.
in a 20-element vector that is −1 in position relative to the wild type residue, 1 in the position relative to the mutant residues and 0 in the remaining 18 positions. Next, a second 20-element vector encoding the sequence environment is constructed to report the occurrence of residues in a window of 19 residues around the mutated residue. With this supervised learning approach, a given mutation is classified as disease or neutral35,36.

MutPred is based on SIFT scores, the gain or loss of 14 different structural and functional properties. Two important scores are contained in the output of MutPred: a general score (g), and top 5 property score (p). The general score (g) indicates the probability that the AAS is deleterious/disease-associated, whereas the top 5 property score (p) is the P-value that indicates whether certain structural and functional properties are affected. The combinations of high general scores and low property scores are referred to as actionable hypotheses, confident hypotheses, and very confident hypotheses 37.

Protein structure prediction of pathogenic nsSNPs via Robetta and SWISS-MODEL tools.

As the structure of wolframin is not available and there is not suitable template for modelling, so we choose the Robetta server (http://robetta.bakerlab.org/) to construct the protein structure. The Robetta server is a full chain protein structure prediction server for ab initio and comparative modeling, and the SWISS-MODEL (http://swissmodel.expasy.org/) is a fully automated, dedicated protein structure homology-modelling server38,39. The amino acid sequence of wolframin was retrieved from NCBI (accession number: NP_005996.2). 3D-structure of wolframin was performed using Robetta server. And the mutant proteins were constructed by SWISS-MODEL with the template performed using Robetta server (Sup.file S). The quality of the modelled structure of native and mutant protein was evaluated by the PROCHECK (http://services.mbi.ucla.edu/SAVES/).

Analysis of the transmembrane domain by the TMHMM server v2.0.

TMHMM server v2.0 (http://www.cbs.dtu.dk/services/TMHMM/), based on a hidden Markov model (HMM) with an architecture that corresponds closely to the biological system, is a membrane protein topology prediction method. Compared with other servers, TMHMM server v2.0, which is thought to be currently the best

Distribution of Transmembrane Domain	Range of Amino Acid	Distribution of Transmembrane Domain	Range of Amino Acid
Outside	1–310	Outside	1–313
TMhelix-1	311–333	TMhelix-1	314–334
Inside	334–339	Inside	335–339
TMhelix-2	340–362	TMhelix-2	340–360
Outside	363–404	Outside	361–401
TMhelix-3	405–422	TMhelix-3	402–422
Inside	423–428	Inside	423–426
TMhelix-4	429–451	TMhelix-4	427–447
Outside	452–492	Outside	448–464
TMhelix-5	493–515	TMhelix-5	465–485
Inside	486–495	Inside	496–516
TMhelix-6	516–526	Outside	517–528
TMhelix-7	527–549	TMhelix-7	529–549
Outside	550–558	Inside	550–562
TMhelix-8	559–581	TMhelix-8	563–583
Inside	582–587	Outside	584–588
TMhelix-9	588–610	TMhelix-9	589–609
Outside	611–629	Inside	610–631
TMhelix-10	630–652	TMhelix-10	632–652
Inside	653–890	Topological domain	653–869
Total	890-amino acids	Total	870–890

Table 4. The prediction results to the transmembrane domain of wolframin from the TMHMM server and UniProt database. The domains highlighted in bold are the distributions of the C terminal domain.
performing transmembrane prediction program, can model and predict the location and orientation of alpha helices in membrane-spanning proteins with high accuracy.40

References
1. de Heredia, M. L., Clèries R. & Nunes V. Genotypic classification of patients with Wolfram syndrome: insights into the natural history of the disease and correlation with phenotype. Genetics in Medicine 15, 497–506 (2013).
2. Ayne, S. et al. Diagnosis and clinical features of Wolfram Syndrome. Management of Wolfram Syndrome: A Clinical Guideline. (2014) (https://euro-wabb.org/images/euro-wabb/guidelines/Wolfram_guideline_V14_%202018_04_2014.pdf). EURO-WABB Project. Accessed: 28th April 2014.
3. Barrett, T. G., Bundey S. E. & Macleod A. F. Neurodegeneration and diabetes: UK nationwide study of wolfram (didmod) syndrome. Lancet 346, 1458–1463 (1995).
4. Wolfram, D. J. & Wagener, H. P. Diabetes mellitus and simple optic atrophy among siblings: report of four cases. Mayo Clinic Proceedings 13, 715–718 (1938).
5. Matsunaga, K. et al. Wolfram syndrome in the Japanese population: molecular analysis of WFS1 gene and characterization of clinical features. PLoS One 9, e106906 (2014).
6. Inoue, H. et al. A gene encoding a transmembrane protein is mutated in patients with diabetes mellitus and optic atrophy (wolfram syndrome). Nature Genetics 20, 143–148 (1998).
7. Strom, T. M. et al. Diabetes insipidus, diabetes mellitus, optic atrophy and deafness (didmod) caused by mutations in a novel gene (wolframin) coding for a predicted transmembrane protein. Human Molecular Genetics 7, 2021–2028 (1998).
8. Rigoli, L., Lombardo, F. & i Bella, C. D. Wolfram syndrome and WFS1 gene. Clinical Genetics 79, 103–117 (2011).
9. Gasparin, M. R. et al. Identification of novel mutations of the WFS1 gene in Brazilian patients with wolfram syndrome. European Journal of Endocrinology 160, 309–316 (2009).
10. Süt, S. et al. Wfs1-deficient animals have brain-region-specific changes of Na+ K+ -ATPase activity and mRNA expression of α1 and 31 subunits. Journal of Neuroscience Research 93, 530–537 (2015).
11. Takeda, K. et al. WFS1 (wolfram syndrome 1) gene product: Predominant subcellular localization to endoplasmic reticulum in cultured cells and neuronal expression in rat brain. Human Molecular Genetics 10, 5477–5484 (2001).
12. Osman, A. A. et al. Wolframin expression induces novel ion channel activity in endoplasmic reticulum membranes and increases intracellular calcium. Journal of Biological Chemistry 278, 52755–52762 (2003).
13. McBain, S. C. & Morgan, N. G. Functional effects of expression of wolframin-antisense transcripts in brn-1d1 beta-cells. Biochemical and Biophysical Research Communications 307, 684–688 (2003).
14. Shang, L. et al. β-cell dysfunction due to increased ER stress in a stem cell model of Wolfram syndrome. Diabetes 63, 923–933 (2014).
15. Hofmann, S. et al. Wolfram syndrome: structural and functional analyses of mutant and wild-type wolframin, the WFS1 gene product. Human Molecular Genetics 12, 16 (2003).
16. Kumar, A. & Purohit, R. Computational investigation of pathogenic nsSNPs in CEPH3 protein. Gene 503, 75–82 (2012).
17. Naresh, K. et al. Computational screening of disease associated mutations on NPC1 gene and its structural consequence in Niemann-Pick type-C1. Frontiers in Biology 9, 410–421 (2014).
18. Banerjee, S. et al. In silico analysis of all point mutations on the 2B domain of K5/K14 causing epidermolysis bullosa simplex: a gene-phenotype correlation. Molecular Biosystems 10, 2567–2577 (2014).
19. Carvalho, M. A. et al. Determination of cancer risk associated with germ line brca1 missense variants by functional analysis. Cancer Research 67, 1494–1501 (2007).
20. Hardy, C. et al. Clinical and molecular genetic analysis of 19 wolfram syndrome kindreds demonstrating a wide spectrum of mutations in WFS1. American Journal of Human Genetics 65, 1279–1290 (1999).
21. Tessa, A. et al. Identification of novel WFS1 mutations in Italian children with Wolfram syndrome. Human Mutation 17,348–349 (2001).
22. Rohayem, J. et al. Diabetes and neurodegeneration in Wolfram syndrome: a multicenter study of phenotype and genotype. Diabetes Care 34, 1503–1510 (2011).
23. Chaussenet, A. et al. Neurologic features and genotype-phenotype correlation in Wolfram syndrome. Ann Neurol 69, 501–508 (2011).
24. Fonseca, S. G. et al. WFS1 is a novel component of the unfolded response and protein maintains homeostasis of the endoplasmic reticulum in pancreatic beta-cells. Journal of Biological Chemistry 280, 39609–39615 (2005).
25. Yuca, S. A. et al. Rapidly progressive renal disease as part of Wolfram syndrome in a large inbred Turkish family due to a novel WFS1 mutation (p.Leu511Pro). European Journal of Medical Genetics 55, 37–42 (2012).
26. Xu, Q., Qu, H. & Wei, S. Clinical and molecular genetic analysis of a new mutation in children with Wolfrain syndrome: a case report. Molecular Medicine Reports 7, 965–968 (2013).
27. Gurtler, N. et al. Two families with nonsyndromic low-frequency hearing loss harbor novel mutations in wolfram syndrome gene. Journal of Molecular Medicine 83, 553–560 (2005).
28. Zatyka, M. et al. Sodium-potassium ATPase 1 subunit is a molecular partner of Wolframin, an endoplasmic reticulum protein involved in ER stress. Human Molecular Genetics 17, 190–200 (2008).
29. Nanna, D. et al. Identification of p.A684V missense mutation in the WFS1 gene as a frequent cause of autosomal dominant optic atrophy and hearing impairment. American Journal of Medical Genetics Part A 155, 1298–1313 (2011).
30. Sherry, S. T. et al. dbSNP: the NCBI database of genetic variation. Nucleic Acids Research 29, 308–311 (2001).
31. Stenson, P. D. et al. The human gene mutation database: Building a comprehensive mutation repository for clinical and molecular genetics, diagnostic testing and personalized genomic medicine. Human Genetics 133, 1–9 (2014).
32. Sim, N. L. et al. Sift web server: Predicting effects of amino acid substitutions on proteins. Nucleic Acids Research 40, 452–457 (2012).
33. Ng, P. C. & Henikoff, S. Sift: Predicting amino acid changes that affect protein function. Nucleic Acids Research 31, 3812–3814 (2003).
34. Adzhubei, I. A. et al. A method and server for predicting damaging missense mutations. Nature Methods 7, 248–249 (2010).
35. Capriotti, E., Fariselli, P., Calabrese, R. & R. Casadio. Predicting protein stability changes from sequences using support vector machines. Bioinformatics 21 Suppl 2, S4–S8 (2005).
36. Capriotti, E., Calabrese, R. & R. Casadio. Predicting the insurgence of human genetic diseases associated to single point protein mutations with support vector machines and evolutionary information. Bioinformatics 22, 2729–2734 (2006).
37. Li, B. et al. Automated inference of molecular mechanisms of disease from amino acid substitutions. Bioinformatics 25, 2744–2750 (2009).
38. Arnold, K., Bordoli, L., Kopp, J. & Schwede, T. The SWISS-MODEL workspace: a web-based environment for protein structure homology modeling. Bioinformatics 22, 195–201 (2006).
WFS1: Qian, X. Phenotype Prediction of Pathogenic Nonsynonymous Single Nucleotide Polymorphisms in WFS1. Sci. Rep. 5, 14731; doi: 10.1038/srep14731 (2015).

This work is licensed under a Creative Commons Attribution 4.0 International License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/

Acknowledgements
This research was supported in part by the National Natural Science Foundation of China (No. 31171217) to XC, the Grant from Jiangsu Health Administration of China (LJ201120) and the Research Special Fund for Public Welfare Industry of Health, Ministry of Health of China (No. 201202005) to GX.

Author Contributions
Conceived and designed the experiments: X.C. Analyzed the data: X.Q. and G.X. Wrote the first draft of the manuscript: X.C. Reviewed, edited and approved the manuscript: X.Q. L.Q. partially modified the manuscript in the later phases of revised versions.

Additional Information
Supplementary information accompanies this paper at http://www.nature.com/srep

Competing financial interests: The authors declare no competing financial interests.

How to cite this article: Qian, X. et al. Phenotype Prediction of Pathogenic Nonsynonymous Single Nucleotide Polymorphisms in WFS1. Sci. Rep. 5, 14731; doi: 10.1038/srep14731 (2015).

Copyright and Reprints
This journal article is distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 International License (http://creativecommons.org/licenses/by-nc/4.0/), which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited and the Creative Commons logo and license are included.