Glucose and C-peptide Changes in the Peri-Onset Period of Type 1 Diabetes in the Diabetes Prevention Trial-Type 1

Jay M. Sosenko, MD, Jerry P. Palmer, MD, Lisa Rafkin-Mervis, MS CDE, Jeffrey P. Krischer, PhD, David Cuthbertson, MS, Della Matheson, RN, Jay S. Skyler, MD

Corresponding Author:
Jay M. Sosenko, MD
Email: jsosenko@med.miami.edu

Received 20 May 2008 and accepted 19 July 2008.

This is an uncopyedited electronic version of an article accepted for publication in Diabetes Care. The American Diabetes Association, publisher of Diabetes Care, is not responsible for any errors or omissions in this version of the manuscript or any version derived from it by third parties. The definitive publisher-authenticated version will be available in a future issue of Diabetes Care in print and online at http://care.diabetesjournals.org.
Objective: We examined metabolic changes in the period immediately following the diagnosis of type 1 diabetes (TID) and in the period leading up to its diagnosis in Diabetes Prevention Trial-1 (DPT-1) participants.

Research Design and Methods: The study included oral insulin trial participants and parenteral insulin trial controls (n=63) diagnosed with a 2-hr diabetic oral glucose tolerance test (OGTT) that was confirmed by another diabetic OGTT within three months. Differences in glucose and C-peptide levels between the OGTTs were assessed.

Results: Glucose levels increased at 90 (p=0.006) and 120 minutes (p<0.001) from the initial diabetic OGTT to the confirmatory diabetic OGTT (mean±SD interval: 5.5±2.8 weeks). Peak C-peptide levels fell substantially between the OGTTs (median change: -14.3%, p<0.001). Among the 55 individuals whose last non-diabetic OGTT was approximately six months prior to the initial diabetic OGTT, peak C-peptide levels decreased between these two OGTTs (median change: -14.0%, p=0.052). Among those same individuals the median change in peak C-peptide levels from the last normal OGTT to the confirmatory OGTT (interval: 7.5±1.3 months) was -23.8% (p<0.001). Median rates of change in peak C-peptide levels were 0.00 ng/ml/month (p=0.468, n=36) from approximately 12 months to 6 months before diagnosis, -0.10 ng/ml/month (p=0.059, n=55) from 6 months before diagnosis to diagnosis, and -0.43 ng/ml/month (p=0.002, n=63) from the initial diabetic OGTT to the confirmatory diabetic OGTT.

Conclusion: It appears that post-challenge C-peptide levels begin to decrease appreciably in the six months prior to diagnosis and decrease even more rapidly within three months after diagnosis.
Evidence suggests that there is progressive metabolic dysfunction prior to and following the diagnosis of type 1 diabetes (T1D). A considerable number of individuals who develop T1D appear to have a gradual metabolic deterioration (1-3) until within six months of diagnosis after which the deterioration becomes more rapid (4). Following diagnosis, there also appears to be a progressive loss of insulin secretion (5-8). However, evidence for this has been derived from studies performed within a clinical context. Individuals were assessed after being diagnosed by clinical presentation and after therapeutic measures were initiated. There are no studies that have followed changes in insulin secretion from before the diagnosis of T1D to immediately after its diagnosis in humans. Such information would be highly useful for gauging how quickly interventions should be implemented to delay or prevent the loss of insulin secretion in T1D. Interventions that are initiated before a substantial loss of insulin secretion occurs could be more efficacious.

The Diabetes Prevention Trial-1 (DPT-1) provides unique data for examining insulin secretion in the early stages of T1D (9,10). Oral glucose tolerance tests (OGTTs) were performed every six months for diagnostic surveillance, so that the diagnosis of T1D was captured very close to onset. Also, participants who had OGTTs in the diabetic range were confirmed for T1D with repeat OGTTs. These two features of the DPT-1 data were utilized to determine the rate and extent of metabolic deterioration that occurs in the peri-onset period of T1D.

RESEARCH DESIGN AND METHODS

Subjects—Sixty-three participants of the parenteral and oral insulin DPT-1 trials who were diagnosed with two consecutive diabetic 2-hr OGTTs (initial and confirmatory) are included in the analyses. Those in the intervention arm of the parenteral insulin trial (n=41) were excluded, since they received insulin (as per protocol) between the two diabetic OGTTs. Also excluded were those (n=8) whose interval between the two OGTTs was greater than three months. The algorithm for determining risk in DPT-1 has been described (9). The presence of islet cell autoantibodies was required for entry into both trials. Participants were considered to be at >50% 5-year risk and eligible for the parenteral insulin trial if either the first-phase insulin response on intravenous glucose tolerance testing was below a defined threshold and/or there were OGTT abnormalities. If those metabolic criteria were not present, but insulin autoantibodies were positive, the 5-year risk was considered to be 26-50% and participants were eligible for the oral insulin trial. There was no overall treatment effect in either trial.

Procedures—Participants in the parenteral insulin trial intervention group received recombinant human ultralente insulin, while those in the oral insulin trial intervention group received recombinant human insulin crystals. OGTTs were performed at 6 month (±3 months) intervals in both trials. All study treatments were to be suspended for three days prior to the OGTT. The dose of oral glucose was 1.75 g per kilogram (maximum, 75 g of carbohydrate). Samples were obtained for plasma glucose and C-peptide measurements in the fasting state and at 30, 60, 90 and 120 minutes. Insulin measurements were not obtained; there was concern over the formation of insulin autoantibodies. Individuals with glucose values in the diabetic range at a routine visit were asked to return for confirmation by an OGTT within 60 days (some returned beyond 60 days), unless this was clinically contraindicated. Participants were to continue the same study regimen they
had been using prior to the initial diabetic OGTT. The age at the first of the diabetic OGTTs was considered the age at diagnosis. The thresholds for diabetes were fasting glucose values ≥ 126 mg/dl and/or 2-hr glucose values ≥ 200 mg/dl.

Laboratory Measures—Plasma glucose levels were measured by the glucose oxidase method. C-peptide levels were measured by radioimmunoassay. The interassay coefficient of variation for the C-peptide assay was 6.9% in a reference pool with relatively high values and 7.8% in a reference pool with relatively low values. Fasting C-peptide values in the undetectable range (<0.2 ng/ml) were assigned a value of 0.1 ng/ml for the analyses.

Data Analysis—The statistical significance of percent change against a null hypothesis of no change was assessed with signed rank tests. Pearson correlations and linear regression were utilized to assess associations. Values for rates of change in peak C-peptide were obtained by dividing the difference in peak C-peptide values for an interval by the length of the interval. OGTT areas under the curve (AUC) were calculated with the trapezoidal rule. Designated time intervals prior to diagnosis were within ±3 months. SAS 9.1.3 was used for the analyses. All p-values are 2-sided.

RESULTS

Sixty-three DPT-1 participants (51% female) are included in the analyses. All had a complete OGTT in the diabetic range that was confirmed by a second complete OGTT within an interval of 3 months. Of these, 31 were in the parenteral insulin trial and 32 were in the oral insulin trial (15 in the intervention group). The mean±SD age at the first diabetic OGTT was 13.2±6.9 years. The mean interval between the diabetic OGTTs was 5.5±2.8 weeks.

Table 1 shows glucose levels for the initial and confirmatory OGTTs. There was a tendency for glucose levels to increase between the first diabetic to the confirmatory diabetic OGTT with statistically significant increases at 90 (p=0.006), and 120 minutes (p<0.001), and for the AUC glucose (p=0.016). Figure 1A shows the corresponding percent changes.

Table 2 shows the C-peptide levels for the initial and confirmatory OGTTs. There were significant declines in C-peptide levels at each post-challenge time point, and for AUC and peak C-peptide values (p<0.01 for all). Figure 1B shows the corresponding percent changes. The median percent change in peak C-peptide levels was -14.3% (p<0.001). There was less of a decline in fasting C-peptide levels (-6.7%, p=0.416). When the fasting C-peptide/fasting glucose and the AUC C-peptide/AUC glucose ratios were examined, percent changes were appreciable for both the former (-10.3%, p=0.046) and the latter (-16.7%, p<0.001).

The change in AUC glucose values between the two diabetic OGTTs was positively associated with the length of the interval between them (r=0.32, p=0.011), whereas there was an inverse correlation of change of peak C-peptide levels with that interval (r=-0.31, p=0.014). Thus, the fall in peak C-peptide levels increased with longer intervals. A scatterplot for the association of the change in peak C-peptide levels between the OGTTs and the interval between the diabetic OGTTs (with the removal of an outlier) is shown in Figure 2. The correlation was almost identical (r=-0.31, p=0.016) with the outlier excluded. With an allowance for the peak C-peptide levels from the first diabetic OGTT, the slope for the association of change in peak C-peptide levels with the interval between the diabetic OGTTs was -0.56 ng/ml/month.

Of the 63 individuals included in the analysis, 55 had an OGTT approximately six months prior to the initial diabetic OGTT. The median percent change for the peak C-
The percent change in the peak C-peptide from the last non-diabetic OGTT to the second diabetic OGTT (mean±SD interval: 7.5±1.3 months) was -23.8% (p<0.001). The AUC C-peptide/AUC glucose percent change was even more marked (-45.7%, p<0.001) in that interval.

Figure 3 shows the median rates of change in peak C-peptide levels over intervals in the peri-onset period. The values were obtained by dividing the difference in peak C-peptide values for an interval by the length of the interval. There was minimal change (0.00 ng/ml/month, p= 0.468, n=36) in peak C-peptide from approximately 12 months to 6 months prior to diagnosis. There was a greater rate of decline in peak C-peptide levels from 6 months before diagnosis to diagnosis (-0.10 ng/ml/month, p=0.059, n=55), and an even greater rate of decline from diagnosis to within 3 months after diagnosis (-0.43 ng/ml/month, p=0.002, n=63).

CONCLUSIONS

The data in this report show that, on average, C-peptide levels decreased substantially in the interval from diagnosis to within three months after diagnosis. These changes occurred even with glucose levels still in a range associated with minimal or no symptoms.

We previously examined metabolic progression prior to diagnosis in DPT-1 participants (4). In that report peak C-peptide levels were consistent from approximately 30 to 6 months before diagnosis, after which levels declined. This report extends observations to the post-diagnostic period and suggests that there is an acceleration of post-challenge C-peptide loss once glucose levels are in the diabetic range. The median decline of -23.8% in peak C-peptide levels from the last non-diabetic OGTT to the confirmatory OGTT indicates that there is a marked loss of insulin secretion in the peri-onset period. The extent to which this loss is reversible cannot be determined from the data.

Estimates for the rate of change of peak C-peptide levels in the post-diagnostic period were obtained in two ways. In one approach (Figure 2) a regression analysis was utilized, whereas in the other approach (Figure 3) the estimate was derived from an analysis based on rate of change calculated for each individual. The rate of decline was substantial with either approach.

Glucose levels seem to have been maintained relative to the decline in C-peptide levels after diagnosis. This suggests the possibility that compensatory mechanisms for glucose homeostasis are at play, such as an increase in insulin sensitivity. Since C-peptide levels are only indicative of insulin secretion, it is also possible that a slowing of insulin degradation could have contributed to the maintenance of glucose levels.

For calculations of the rate of change in peak C-peptide levels, it was assumed that the rate of change was constant throughout the interval. This assumption is of particular importance in the interval from six months before diagnosis to diagnosis, since one cannot discern from the data the pattern of C-peptide decline within that period. Thus, the rate of decrease in C-peptide may be more rapid closer to diagnosis and similar to the rate of decline in C-peptide after diagnosis. Also, it should be emphasized that the average change provides an overall picture; individual patterns of change vary considerably.

Participation in the DPT-1 trials could have influenced the findings. However, we excluded those on parenteral insulin from the analyses and there was no overall effect from either insulin intervention. Knowledge of the results of the first diabetic OGTT could have resulted in lifestyle changes (11) or perhaps even have caused some to attempt to lower glucose levels with medication. Still, it
is doubtful that such interventions would explain the large degree of C-peptide loss.

There are no prior studies that have examined metabolic changes from before diagnosis to after diagnosis with OGTT surveillance. Also, no studies have assessed metabolic changes in newly diagnosed individuals as close to the onset of T1D. C-peptide levels appear to be much lower when T1D is clinically diagnosed (12-14) than when it is diagnosed through OGTT surveillance. It is important to emphasize that of all individuals diagnosed with T1D in DPT-1, 75% were asymptomatic (9). How our observations relate to the rate of decline of insulin secretion in symptomatic, clinically diagnosed patients is unknown. Studies of clinically diagnosed patients suggest that there is a progressive loss of insulin secretion which can be decreased by effective glucose control (15,16).

The marked rate of decline of C-peptide levels in the peri-onset period provides a strong rationale for developing early interventions to prevent or delay the progression to T1D. Moreover, the data suggest that post-diagnostic interventions should be developed for application as close to the diagnosis of T1D as possible.
REFERENCES

1) Greenbaum CJ, Cuthbertson D, Krischer JP, the Diabetes Prevention Trial of Type 1 Diabetes Study Group: Type 1 diabetes manifested solely by 2-h oral glucose tolerance test criteria. Diabetes 50, 470-476, 2001

2) Schatz D, Cuthbertson D, Atkinson M, Salzler MC, Winter W, Muir A, Silverstein J, Cook R, Maclaren N, She J, Greenbaum C, Krischer J: Preservation of C-peptide secretion in subjects at high risk of developing type 1 diabetes mellitus – a new surrogate measure of non-progression? Pediatric Diabetes 5:72-79, 2004

3) Sosenko J, Palmer JP, Greenbaum CJ, Mahon J, Cowie C, Krischer JP, Chase HP, White NH, Buckingham B, Herold KC, Cuthbertson D, Skyler JS, The Diabetes Prevention Trial-Type 1 Study Group. Increasing the accuracy of oral glucose tolerance testing and extending its application to individuals with normal glucose tolerance for the prediction of type 1 diabetes. D Care 30:38-42, 2007

4) Sosenko J, Palmer JP, Greenbaum CJ, Mahon J, Cowie C, Krischer JP, Chase HP, White NH, Buckingham B, Herold KC, Cuthbertson D, Skyler JS, The Diabetes Prevention Trial-Type 1 Study Group. Patterns of metabolic progression to type 1 diabetes in the diabetes prevention trial- type 1. Diabetes Care 29:643-649, 2006

5) Snorgaard O, Lassen LH, Binder C: Homogeneity in pattern of decline of beta-cell function in IDDM. Prospective study of 204 consecutive cases followed for 7.4 yr. Diabetes Care 15:1009-1013, 1992

6) Palmer JP, Fleming GA, Greenbaum CJ, Herold KC, Jansa LD, Kolb H, Lachin JM, Polonsky KS, Pozzilli P, Skyler JS, Steffes MW: C-peptide is the appropriate outcome measure for type 1 diabetes clinical trials to preserve β-cell function: report of an ADA workshop, 21-22 October 2001. Diabetes 53:250-264, 2004

7) Steele, C, Hagopian WA, Gitelman S, Masharani U, Cavaghan M, Rother KL, Donaldson D, Harlan DM, Bluestone J, Herold KC: Insulin secretion in type 1 diabetes. Diabetes 53: 426-433, 2004

8) Sherry NA, Tsai EB, Herold KC: Natural history of β-cell function in type 1 diabetes. Diabetes 54 (Suppl. 2): S32-S39, 2005

9) Diabetes Prevention Trial – Type 1 Diabetes Study Group: Effects of insulin in relatives of patients with type 1 diabetes mellitus. New Engl J Med 346:1685-1691, 2002

10) Diabetes Prevention Trial – Type 1 Diabetes Study Group: Effects of oral insulin in relatives of patients with type 1 diabetes. Diabetes Care 28:1068-1076, 2005

11) Johnson SB, Baughcum AE, Hood K, Rafkin-Mervis LE, Schatz DA, the DPT-1 Study Group: Participant and Parent Experiences in the Parenteral Insulin Arm of the Diabetes Prevention Trial for Type 1 Diabetes. Diabetes Care 30:2193-2198, 2007

12) Faber OK, Binder C: β-cell function and blood glucose control in insulin dependent diabetics within the first month of insulin treatment. Diabetologia 13:263-268, 1977

13) Komulainen J, Knip M, Lounamaa R, Vähäsalo P, Karjalainen J, Sabbah E, Åkerblom HK, the Childhood Diabetes in Finland Study Group: Poor beta-cell function after the clinical manifestation of type 1 diabetes in children initially positive for islet cell specific autoantibodies. Diabet Med 14:532-537, 1997

14) O’Leary LA, Dorman JS, LaPorte RE, Orchard TJ, Becker DJ, Kuller LH, Eberhardt MS, Cavender DE, Rabin BS, Drash AL: Familial and sporadic insulin-dependent diabetes: evidence for heterogeneous etiologies? Diabetes Res Clin Pract 14:183-190, 1991
15) Ludvigsson J, Heding LG, Larsson Y, Leander E: C-peptide in juvenile diabetics beyond the postinitial remission period. Relation to clinical manifestation at onset of diabetes, remission and diabetic control. *Acta Paediatr Scand* 66:177-184, 1977
16) Shah SC, Malone JI, Simpson NE: A randomized trial of intensive insulin therapy in newly diagnosed insulin-dependent diabetes. *New Engl J Med* 350:550-555, 1989

Table 1. Glucose (mg/dl) Values+ of Initial and Confirmatory Diabetic OGTTs (n=63)

	First OGTT	Confirmatory OGTT	p-value*
Glucose Fasting	106 (91,115)	107 (98,119)	0.117
Glucose 30 minutes	195 (168,217)	194 (170,216)	0.760
Glucose 60 minutes	241 (208,267)	254 (222,283)	0.089
Glucose 90 minutes	253 (234,284)	279 (238,310)	0.006
Glucose 120 minutes	246 (212,280)	283 (243,332)	<0.001
Glucose AUC (2-hr)	25.6 (24.0,28.2)	27.5 (24.2,31.1)	0.016

§ x10-3
+ Median values are shown. Values at the 25th and 75th percentiles are in parentheses.

Table 2. C-peptide (ng/ml) Values+ of Initial and Confirmatory Diabetic OGTTs (n=63)

	First OGTT	Confirmatory OGTT	p-value
C-peptide Fastings	1.5 (0.7,2.1)	1.2 (0.8,1.7)	0.054
C-peptide 30 minutes	2.6 (1.9,4.0)	2.2 (1.6,3.5)	0.001
C-peptide 60 minutes	3.1 (2.1,4.5)	2.7 (1.9,3.8)	<0.001
C-peptide 90 minutes	3.6 (2.3,5.3)	3.0 (2.1,4.3)	0.001
C-peptide 120 minutes	3.5 (2.5,5.5)	3.2 (2.1,5.0)	0.004
C-peptide Peak	3.8 (2.7,5.9)	3.2 (2.2,5.0)	<0.001
C-peptide AUC (2-hr)	350 (249,501)	309 (212,443)	<0.001

+ Median values are shown. Values at the 25th and 75th percentiles are in parentheses.
FIGURE LEGENDS

Figure 1A: Percent Changes in Glucose Indices after Diagnosis
Shown are the medians for the percent changes of glucose indices from the initial diabetic OGTT to the confirmatory diabetic OGTT. Glucose levels tended to increase especially at the later time points of the OGTT.

Figure 1B: Percent Changes in C-peptide Indices after Diagnosis
Shown are the medians for the percent changes of C-peptide indices from the initial diabetic OGTT to the confirmatory diabetic OGTT. With the exception of the fasting C-peptide, there was more than a 10% median decline for all of the indices.

Figure 2: Association between Change in Peak C-peptide and Time after Diagnosis
Shown is the scatterplot for the association between the change in peak C-peptide levels and the time after diagnosis. The amount of decline becomes more substantial with increasing time after diagnosis. [An outlier was removed with a change in peak C-peptide of -8.8 ng/ml and a time after diagnosis of 8.0 weeks (r=-0.31, p= 0.014 with the outlier included).] When an allowance was made for the peak C-peptide at the first diabetic OGTT, the slope for the difference in peak C-peptide vs. time after diagnosis was -0.56 ng/ml/month.

Figure 3: Rates of Change in Peak C-peptide in Peri-Onset Period
Shown is the rates of change of peak C-peptide levels according to intervals prior to and after diagnosis. C-peptide levels changed minimally between approximately 12 months and 6 months prior to diagnosis. There was a decline in the 6 months prior to diagnosis that was more substantial in the period following diagnosis.
Figure 1A: Percent Changes in Glucose Indices after Diagnosis

Figure 1B: Percent Changes in C-peptide Indices after Diagnosis
Figure 2: Association between Change in Peak C-peptide and Time after Diagnosis

![Graph showing the association between change in peak C-peptide and time after diagnosis. The correlation coefficient (r) is -0.31, p = 0.016, n=62.]

Figure 3: Rates of Change in Peak C-peptide in Peri-Onset Period

![Graph showing the rates of change in peak C-peptide in the peri-onset period. The median rate of change is significantly different between 12 months to 6 months (p = 0.059) and 6 months to diagnosis (p = 0.002).]

Peri-Onset Changes in Type 1 Diabetes