Review Article
Systematic Review on Acupuncture for Treatment of Dysphagia after Stroke

Qiuping Ye,1 Yu Xie,2 Junheng Shi,1 Zhenhua Xu,2 Aihua Ou,2 and Nenggui Xu1

1Guangzhou University of Chinese Medicine, Airport Road, Baiyun District, Guangdong, Guangzhou 510006, China
2Guangdong Provincial Hospital of Chinese Medicine, Yide Road, Yuexiu District, Guangdong, Guangzhou 510006, China

Correspondence should be addressed to Zhenhua Xu; xzh197011@163.com

Received 3 March 2017; Revised 11 June 2017; Accepted 18 June 2017; Published 9 August 2017

Academic Editor: Ching-Liang Hsieh

Copyright © 2017 Qiuping Ye et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Objective. To assess the therapeutic efficacy of acupuncture for dysphagia after stroke. Methods. Seven electronic databases were searched from their inception until 31 September 2016. All randomized controlled trials (RCTs) incorporating acupuncture or acupuncture combined with other interventions for treatment of dysphagia after stroke were enrolled. Then they were extracted and assessed by two independent evaluators. Direct comparisons were conducted in RevMan 5.3.0 software. Results. 6010 patients of 71 papers were included. The pooled analysis of efficacy rate of 58 studies indicated that acupuncture group was superior to the control group with moderate heterogeneity (RR = 1.17, 95% CI: 1.13–1.21, Z = 9.08, and P < 0.00001); meta-analysis of the studies using blind method showed that the efficacy rate of acupuncture group was 3.01 times that of control group with no heterogeneity (RR = 3.01, 95% CI: 1.95–4.65, Z = 4.97, and P < 0.00001). Only 13 studies mentioned the safety evaluation. Conclusion. The result showed that the acupuncture group was better than control group in terms of efficacy rate of dysphagia after stroke. And the combining result of those researches using blind method was more strong in proof. Strict evaluation standard and high-quality RCT design are necessary for further exploration.

1. Introduction

Dysphagia was one of the most common sequelae after stroke. The incidence reached 81% [1]. There were many complications in dysphagia, such as cacotrophy [2], dehydration, aspiration, and pneumonia [3]. Those complications improve the morbidity, mortality, the rehabilitation, and the quality of life of the patients. So the medication and intervention time are very important for recovery. Acupuncture was an effective method and more and more welcomed and applied clinically [4]. There were many studies [5–7] about the acupuncture for treatment of dysphagia after stroke internationally, including the scalp acupuncture, nape needle, auricular needling, or combing with other methods.

Though, there were some systematic reviews focusing on the acupuncture for treatment of dysphagia in stroke. There was lack of higher quality research or the positive conclusion could not be obtained. Thus, the inclusion and exclusion criteria were formulated after integrating the previous relevant reports. And the studies using single blind method were pooled to be analysed alone.

2. Method and Data

The criterion of systematic review was published in the Cochrane Collaboration which was available on http://hand-book.cochrane.org/.

2.1. Type of Studies. All articles were included that reported an RCT in patients with dysphagia after stoke. And the animal experiments were not inclusive.

2.2. Participants. All the patients should conform to the explicit clinical diagnosis criteria of stroke and dysphagia. They should meet the following diagnosis of stroke: (1) the diagnostic criterion of the Fourth National Conference on cerebrovascular diseases in 1994 or the revised diagnostic criterion in 1995 or 1996; (2) the revised “Various Types of Cerebrovascular Disease Diagnosis Points” of The Fourth National Conference on cerebrovascular diseases of Chinese Medicine Association; (3) the “Chinese Cerebrovascular Disease Prevention And Treatment Guidelines (Try Out)” established by Neurology Branch of Chinese Medical Association.
2. Interventions. For the intervention in acupuncture group, acupuncture alone or combined with other interventions was all included, such as the rehabilitation training, swallowing therapeutic apparatus, swallowing training, and electrical stimulation. There was no distinction for the acupuncture manipulation, acupoint, stimulation intensity, and course of treatment. It is available for blank control group, drugs, or rehabilitation training in control group.

2.4. Outcome Measurement. The clinical symptoms had obviously improved with specific evaluation criteria such as the (1) Watian Swallowing Test (WST) [10]; (2) Standardized Swallowing Assessment (SSA) [11]; (3) Ichiro Fujishima Rating Scale (IFRS) [12]; (4) Caiteng 7 Rank for dysphagia [13] or with using the objective index as the efficacy evaluation scale of TCM diagnosis for stroke; (9) confirmed by head CT or MRI and other imaging methods for stroke; (10) Summary of the Sixth National Conference on cerebrovascular diseases.

3. Result

71 studies including 6010 patients were enrolled finally. There were 2991 participants in acupuncture group and 3019 participants in control group.

3.1. The Basic Characteristics. Two groups were compared statistically based on age, gender, duration, and degree of dysphagia. And the baseline was comparable. See Table 2; 12 studies used the complete random and allocation concealment; 10 studies used the single blind method in the outcome assessment and statistics analysis. For the incomplete outcome data, 12 studies reported the fall off and exit of patients without any effect on the result; 17 studies mentioned the funding support, and not the others.

3.2. Data Analysis. RevMan 5.3.0 software was used for data analysis. And the different outcome assessment indicators were used to be classified and analysed. They were presented as risk ratio (RR) or mean difference (MD) with a 95% confidence interval.

3.3. Efficacy Rate. 62 studies used the clinical efficacy rate as the evaluation indicator with the dichotomous data. So the risk ratio (RR) was used to show the result. We found the medium heterogeneity ($I^2 = 68\%$) after combining data. We could observe from the funnel plot that 3 studies [19, 31, 82] had deviated from the center line. After sensitivity analysis, we found that one study [19] considered the significantly effective result as recovery and the other as invalidation, which led to difference in results. At the same time, the intervention group of the two studies [31, 82] was treated with acupuncture combined with western medicine. And the curative effect was significantly higher than that of the control group. All the dots were equally distributed on both sides of the dashed line in the funnel plot with no publication bias after removing them (Figure 4). The moderate heterogeneity was found after remerging ($I^2 = 58\%$). So we chose the random effect model (Figure 5). The pooled analysis showed that the total rectangle was on the right of the equivalent line, which indicated the curative effect of acupuncture group was

Table 1: Retrieved literatures.

Database	CNKI	WanFang	CSJD	CBM	PubMed	EMBASE	Cochrane	SCI
Number	1361	1451	593	388	41	0	2	13
Evidence-Based Complementary and Alternative Medicine

Records identified through electronic search (n = 3849)
Records through other search (n = 0)

Record after duplication (n = 2877)
Obviously inconsistent with the theme (n = 1811)

Record Screened (n = 1076)
Record excluded (n = 792)

Excluded studies (n = 213) reason: unclear diagnosis (n = 7), not RCT or quasi-RCT studies (n = 183), electro-acupuncture in control group (n = 3), no random (n = 9), incomplete data (n = 4), no effective indicator (n = 2), no comparability in data (n = 5)

Consulted the full text (n = 284)

Eligible studies (n = 71)

Included the qualitative studies (n = 70)

Figure 1: The screening flow diagram.

better than the control group (RR = 1.17, 95% CI: 1.13–1.21, Z = 9.08, and P < 0.00001).

3.4. **Standard Swallowing Assessment (SSA).** There were 11 studies that used the SSA as the effective evaluation standard with the continuous data. The meta-analysis of them was showed in mean difference with high heterogeneity (I² = 83%). So the random effect model was used (Figure 6). The figure showed that acupuncture group could lower the SSA scores (MD = 3.7, 95% CI: −4.93 to −2.48, Z = 5.94, and P < 0.00001).

3.5. **Watian Swallowing Test.** The Watian Swallowing Test was used in 24 studies; 9 of them used the dichotomous data. The risk ratio was selected to demonstrate the count data. The results (Figure 7) showed high heterogeneity (I² = 87%). Hence the random effect model was used. And the rectangle was on the right of the equivalent line, which indicated that acupuncture group could improve the efficacy of dysphagia after stroke (RR = 1.25, 95% CI: 1.03–1.50, Z = 2.31, and P = 0.02 < 0.05).

15 studies used the continuous data. And the mean difference was applied. The results showed that the heterogeneity of the merger was large. So we did the subgroup analysis according to the course of disease. Then the heterogeneity decreased from 95% to 67.4% (Figure 8). There was no publication bias in the funnel plot (Figure 9). Meanwhile, the pooled analysis showed that the acupuncture could lower the Watian Swallowing Test score (MD = 0.97, 95% CI: −1.11 to −0.47, Z = 4.82, and P < 0.00001).

3.6. **Swallowing Functional Assessment.** Among the included studies, 8 of them used the Swallowing Functional Assessment to evaluate the effectiveness of treatment with the continuous data. The result (Figure 10) exhibited the medium heterogeneity (I² = 65%) with mean difference (MD). The result explained that acupuncture could improve the
Evidence-Based Complementary and Alternative Medicine

swallowing function with the random effect model (MD = 1.48, 95% CI: 1.18 1.79, Z = 9.59, and P < 0.0001).

3.7. Swallowing Disorder Integral. 5 studies selected the swallowing disorder scoring as evaluated standard. The meta-analysis of the 5 dichotomous data sets showed that the heterogeneity decreased from 85% to 40% after removing one study [59]. The sensitivity analysis indicated that the heterogeneity might be the treatment course of this study which was longer than the others. We could see from the figure that the score of the control group was higher than the acupuncture group (Figure 11). It illustrated that acupuncture group was able to lower the swallowing disorder integral (MD = −0.71, 95% CI: −1.08 −0.33, Z = 3.7, and P = 0.0002).

3.8. Swallowing-Related Quality of Life (SWAL-QOL). 5 studies used the SWAL-QOL to express the Swallowing-Related Quality of Life before and after treatment. They all used the continuous data and mean difference to exhibit the results. The pooled analysis showed that rectangle was intersected with the equivalent line with high heterogeneity (I² = 100%), which means nothing (Figure 12).

3.9. Activities of Daily Living (ADL). 2 studies [67, 78] used ADL to express the curative effect, two [27, 45] used the Barthel index, and the other one [54] used modified Barthel index. Among them, the activities of daily living before and after treatment were showed using the continuous data and mean difference. The meta-analysis indicted that acupuncture group obviously improved the activities of daily living of the patients with lower heterogeneity (I² = 22%) (Figure 13). And it was 7.31 times as much as the control group (MD = 7.46, 95% CI: 5.49 9.47, Z = 7.31, and P < 0.0001).

3.10. Cai teng 7 Rank (CT7R). The CT7R was used in 2 studies [48, 87] with dichotomous and risk ratio. There was no heterogeneity (I² = 0%) after combining the data with the fixed effect model (Figure 14), which indicated that the Cai teng 7 Rank scores of the acupuncture group were higher than the control group (RR = 1.22, 95% CI: 1.04 1.42, Z = 2.49, and P = 0.01).

The pooled analysis (Figure 15) of the 2 studies [44, 56] using Ichiro Fujishima Rating Scale (IFRS) showed no meaning with medium heterogeneity (I² = 69%), neither the result of 2 studies [17, 45] using mini-nutritional assessment (MNA). Only one study [54] used Hamilton Depression Scale (HAM-D), which showed that the depression degree of acupuncture group was lighter than the control group.

3.11. Blind Method Analysis. We extracted 7 studies using blind method from the enrolled studies, among which 4 studies used the clinical therapeutic efficiency and 5 used Watian Swallowing Test efficacy rate. There was no heterogeneity (I² = 0%) after pooling them with dichotomous data and risk ratio (RR) (Figure 16). So the fixed effect model was used. The rectangle was on the right of equivalent line and the therapeutic efficiency of acupuncture group was 3.01 times
Evidence-Based Complementary and Alternative Medicine

Random sequence generation (selection bias)
Allocation concealment (selection bias)
Blinding of participants and personnel (performance bias)
Blinding of outcome assessment (detection bias)
Incomplete outcome data (attrition bias)
Selective reporting (reporting bias)
Other bias

Low risk of bias
Unclear risk of bias
High risk of bias

Figure 3: The summary of bias evaluation for the studies.

Figure 4: The funnel plot of clinical efficacy rate.

as much as the control group. The result indicated that the acupuncture group could improve the therapeutic efficiency of dysphagia after stroke (RR = 3.01, 95% CI: 1.95 4.65, Z = 4.97, and P < 0.00001).

Among the studies employing blind method, 4 of them used the SSA as the assessment indicator with continuous data and mean difference (MD). High heterogeneity was found after combined analysis. Sensitivity analysis revealed that heterogeneity might be due to the use of the test method and the gender imbalance in the clinical cases from one study [17]. The heterogeneity was lower (I² = 21%) after removing it. We could see from the figure (Figure 17) that the rectangle was on the left of equivalent line, with a trend that acupuncture group could lower the SSA scores (MD = −4.47, 95% CI: −6.59 −3.36, Z = 7.85, and P < 0.00001).

3.12. Adverse Reactions Report. Only 13 studies mentioned the security index, including how to prevent the subcutaneous hemorrhage, needle sickness, curved needle, broken needle, and the handing method during acupuncture process. Meanwhile, some studies reported the influence caused by the adverse reactions, not the others.

4. Discussion

The study indicated that the therapeutic efficacy of acupuncture or acupuncture combined with other intervention was better than the control group, though some pooled results had higher heterogeneity. The interventions such as the acupuncture, rehabilitation training, and swallowing training were related to the professional skill of the practitioners, the same as the efficacy evaluation. Meanwhile, the various source of cases might lead to difference statistic results.

4.1. Comparison with Other Literatures. The acupuncture alone or combined with other interventions is widely used for dysphagia after stroke in China. There exists some evidence about the acupuncture for dysphagia after stroke. One report [88] stated although acupuncture had a tendency to improve dysphagia after stroke, it could not get the positive conclusion. There was report [89] which indicated that acupuncture combined with the swallowing rehabilitation training had certain advantage. Long and Wu [90] pointed out that acupuncture may be benefit for dysphagia, but high-quality research was needed. The present study reworked out inclusion and exclusion criteria to evaluate the efficacy of acupuncture for treatment of dysphagia after stroke and showed stronger evidence in the result.

4.2. Strengths and Limitations. In this paper, the studies included single blind method pooled to analysis alone and showed stronger evidence on acupuncture for treatment of dysphagia after stroke. We incorporated all researches in the past 5 years. Considering the clinical application of the intervention in this paper was special, such as the feeling of the patient. It was difficult to achieve true double blind. The studies using single blind method achieved the blind method to some extent. There was no or lower heterogeneity after combining.
Reference	Simple size (T/C/M/F)	Design/blind	Diagnostic criteria	Intervention	Control	Mean age (T/C)	Treatment course	Outcome measures
Luo et al. [17] 2015	33/29 62/62 (35/27)/62 (36/26)	RCT/single blind	FNCOCD-1994	A + BT + RT	BT + RT	68.45 ± 9.73/66.90 ± 11.55	38.82 ± 48.77/27.14 ± 47.30	SSA + MNA
Xia et al. [18] 2015	70/70 (39/33)/70 (28/32)	RCT/single blind	FNCOCD-1994	A	BT + RT	66.0 ± 8.4/68.4 ± 9.1	64.7 ± 32.0/60.0 ± 36.0	WST
Xie et al. [19] 2011	18/18/18 (10/8)/18 (11/9)	RCT/single blind	FNCOCD-1994	A + ST + ES	ST + ES	69.52 ± 6.01/65.41 ± 7.01	25.60 ± 3.09/24.32 ± 2.78	WST + IFRS
Yinc et al. [20] 2011	2015	RCT/single blind	FNCOCD-1994	A + ST	68.45 ± 9.73/66.90 ± 11.55	38.82 ± 48.77/27.14 ± 47.30	SSA + MNA	
Zhanget al. [21] 2014	29/29 (9/22)/29 (11/9)	RCT/single blind	FNCOCD-1994	A + TC + RT	BT + RT	65.55 ± 7.05/62.21 ± 8.37	42.56 ± 14.26/45.12 ± 12.56	SSA + DOSS
Wang [22] 2016	30/30 (18/14)/30 (17/13)	RCT/single blind	FNCOCD-1994	A + BT + ES	BT + ES	63.81 ± 6.01/65.41 ± 7.01	25.60 ± 3.09/24.32 ± 2.78	WST
Li and Bai [23] 2015	32/32 (22/10)/32 (20/10)	RCT/single blind	FNCOCD-1994	A + BT + RT	BT + RT	55.17 ± 4.73/54.97 ± 5.46	NR	WST
Liu [24] 2014	39/39 (16/23)/39 (19/20)	RCT/single blind	FNCOCD-1994	A + BT + RT	BT	61.65 ± 8.25/63.71 ± 7.12	4.56 ± 4.29/4.18 ± 4.19	SSA
Hang et al. [25] 2014	30/30 (16/14)/30 (13/15)	RCT/single blind	FNCOCD-1994	A + BT + OPT	BT	56.36 ± 10.55/56.36 ± 10.55	17.36 ± 15.52/19.49 ± 16.91	SSA + WST + NIHSS + Barthel
Chen et al. [26] 2009	82/82 (59/23)/82 (53/28)	RCT/no blind	FNCOCD-1995	A + RT	RT	WST	SSA	
Chen and Zhang [27] 2014	30/30 (16/14)/30 (13/15)	RCT/no blind	CCDPATGNNBCMA-2007	A + RT	RT	61.63 ± 10.87/60.90 ± 10.53	47.68 ± 41.63 d	WST
Chen et al. [28] 2016	168/168 (17/1)/168 (13/4)	RCT/no blind	SOSNOCD-2004	A + RT + BT	BT + RT	64.40 ± 11.20/64.05 ± 11.35	35.29 ± 32.84/33.12 ± 29.12	SSA + TIFRS
Wang [30] 2013	30/30 (16/14)/30 (13/15)	RCT/no blind	FNCOCD-1996	A + BT + TCM	BT	65.3 ± 8.2/66.4 ± 5.4	14.98 ± 13.02/15.79 ± 13.76	SSA
Duan [31] 2014	40/40 (24/6)/40 (20/5)	RCT/no blind	FNCOCD-1994	A + SM + BT	BT	52.5 ± 3.7/52.5 ± 3.7	NR	WST
Bao and Zou [32] 2012	30/30 (21/9)/30 (22/8)	RCT/no blind	FNCOCD-1997	A + WM	WM	68.40 ± 7.66/68.77 ± 6.06	48.80 ± 23.57/50.03 ± 24.33	SSA + NIHSS + Barthel
Fan et al. [33] 2015	30/30 (13/17)/30 (14/16)	RCT/no blind	FNCOCD-1996	A + WM	WM	67.76 ± 4.34/68.03 ± 4.05	46.37 ± 25.34/47.18 ± 26.15	SSA + WST + Smith et al. 1994
Feng et al. [34] 2016	30/30 (18/12)/30 (19/11)	RCT/no blind	GFDTAISC-2010	A + RT + BT	BT + RT	60 ± 12/58 ± 22	38 ± 18/39 ± 18	SSA + TIFRS
Zhen et al. [35] 2012	30/30 (16/14)/30 (13/17)	RCT/no blind	FNCOCD-1996	A + BT	BT	61 ± 3/60 ± 3	7 d-10 m/6 d-10 m	SSA
Chang et al. [36] 2014	38/38 (27/11)/38 (28/23)	RCT/no blind	FNCOCD-1996	A + ES + BT	ES + BT	46 ± 10/44 ± 11	16.6 ± 4.8/17.3 ± 5.2	SSA + WST + Smith et al. 1994
Wu et al. [37] 2014	80/80 (54/26)/75 (52/23)	RCT/no blind	TEESTCMDFS-1996	A + BT + ST	BT + ST	68/66	NR	WST

Table 2: The basic characteristic of the included studies.
Reference	Simple size T/C (M/F)	Design/blind	Diagnostic criteria	Intervention	Control	Mean age (T/C)	Treatment course	Outcome measures
Zhang and Yin [38] 2012	62 (32/30)/56 (22/34)	RCT/no blind	RFNCOCD-1995	A + BT + ST	BT + ST	70 ± 2/68 ± 2	30.86 ± 12.72/31.78 ± 11.23	MBSAS + WST + DRS
Chen [39] 2008	30 (19/11)/30 (17/13) RCT/no blind	TEETSTCMDFS-1997	A + BT	BT	42–79/40–81	NR	WST	
Mao et al. [40] 2015	40 (22/8)/40 (21/9)	RCT/no blind	RFNCOCD-1995	A + RT + BT	RT + BT + SDTA	63.64/62.9	56.2 ± 7.23/54.8 ± 6.033	VFSS
Guo and Li [41] 2016	40 (23/7)/40 (25/15)	RCT/no blind	FNCOCD-1997	A + BT	BT + ST	55.28 ± 10.34/56.12 ± 11.47	21.19 ± 8.28/20.49 ± 9.15	SAA
Gao et al. [42] 2016	40 (24/6)/40 (23/8)	RCT/no blind	FNCOCD-1994	A + ST	ST	578 ± 4.9±59.2 ± 5.1	NR	WST
Bai [43] 2016	40 (16/24)/40 (15/25)	RCT/no blind	FNCOCD-1994	A + SDTA	SDTA	63.34 ± 9.04/63.15 ± 9.24	NR	WST
Chen [44] 2012	30 (19/11)/30 (20/10)	RCT/no blind	CDGPATGBNBCMAG-2005	A + ST + BT	ST + BT	61.3/61.52	52.6 ± 1.3/52.6 ± 1.3	VFSS + Rosenbek
Zhou et al. [45] 2015	30 (20/10)/30 (21/9)	RCT/no blind	CDGPATGBNBICMA-2005	A	RT	65.63 ± 9.33/64.35 ± 8.26	NR	WST
Liu [46] 2014	45 (28/7)/42 (27/15)	RCT/no blind	CDGPATGBNBICMA-2005	A	ST	52.3 ± 8.7±53.6 ± 8.5	NR	WST
Li et al. [47] 2013	30 (18/12)/30 (16/4)	RCT/no blind	CDGPATGBNBICMA-2005	A	BT	56.9 ± 4.6±57.1 ± 3.7	NR	WST
Wang [48] 2011	30 (19/11)/30 (21/9)	RCT/no blind	CDGPATGBNBICMA-2005	A	BT	61.7 ± 99.8	6–35 d7–34 d	WST
Liu and Zheng [49] 2014	33 (17/6)/31 (14/7)	RCT/no blind	CDGPATGBNBICMA-2005	A	BT	61.7 ± 99.8	6–35 d7–34 d	WST
Gu [50] 2011	35 (22/13)/35 (23/12)	RCT/no blind	CDGPATGBNBICMA-2005	A	BT	61.7 ± 99.8	6–35 d7–34 d	WST
Gao et al. [51] 2014	52 (31/21)/49 (27/22)	RCT/no blind	CDGPATGBNBICMA-2005	A	RT + SDTA	60.25 ± 8.36/61.37 ± 7.36	NR	WST
Chen [52] 2016	40 (24/6)/40 (23/8)	RCT/no blind	CDGPATGBNBICMA-2005	A	RT + ST	62.90 ± 10.04/63 ± 9.83	NR	WST
Ruan et al. [53] 2015	25 (12/13)/25 (14/11)	RCT/no blind	CDGPATGBNBICMA-2005	A	RT + ST	58.01 ± 10.74/57.98 ± 11.82	4702 ± 7.47/46.87 ± 6.96	WST
Qu [54] 2015	46 (35/11)/45 (31/4) RCT/no blind	CDGPATGBNBICMA-2005	A	RT + BT	RT + BT	61 ± 10/64 ± 10	54.63 ± 27/8.51.93 ± 23.10	WST + SSA + SWAL-QOL + HAMD + MBI
Zhang et al. [55] 2016	65 (47/18)/65 (49/16)	RCT/no blind	CDGPATGBNBICMA-2005	A	BT	63.87 ± 5.24/63.96 ± 5.33	2.32 ± 1.79/3.38 ± 1.90	WST + IFRS
Guo and Zhu [56] 2015	30 (30/30)	RCT/no blind	CDGPATGBNBICMA-2005	A	ST	69.06 ± 6.67/66.84 ± 10.39	27.23 ± 13.76/27.30 ± 8.11	WST
Qu [57] 2009	30 (17/3)/30 (18/2)	RCT/no blind	CDGPATGBNBICMA-2005	A	BT	45–75	5–45 d	WST
Chen and Lin [58] 2016	60 (38/22)/60 (41/19)	RCT/no blind	CDGPATGBNBICMA-2005	A	RT	65/63	9–40 d/10–38 d	WST
Gao et al. [59] 2015	50 (30/30)	RCT/no blind	CDGPATGBNBICMA-2005	A	BT	45–75	5–45 d	WST
Gao et al. [60] 2014	36 (22/4)/36 (25/1)	RCT/no blind	CDGPATGBNBICMA-2005	A	BT	57.6 ± 8.2/58.5 ± 8.7	35.4 ± 6.5/34.8 ± 7.1	WST
Zhang [61] 2014	50 (20/22)/46 (26/20)	RCT/no blind	CDGPATGBNBICMA-2005	A	RT	63/62	35/36	WST
Reference	Simple size T/C/M/F	Design/blind	Diagnostic criteria	Intervention	Control	Mean age (T/C)	Treatment course	Outcome measures
--------------------------	---------------------	--------------------	----------------------	--------------	---------	----------------	------------------	------------------
Li et al. [63] 2014	20 (11/9)/20 (12/8)	RCT/no blind	FNCOCD-1995	A + BT + ST + BT + ST	60.4 ± 4.6/61.3 ± 4.2	15.3 ± 2.7/14.7 ± 2.1	WST + OFS	
Wang and Yang [64] 2013	45 (20/25)/45 (2/4)	RCT/no blind	FNCOCD-1995	A + ST + ST + BT	61.33 ± 4.19/61.61 ± 5.34	29.12 ± 7.09/31.41 ± 6.32	WST	
Ding and Zhang [65] 2013	30 (17/13)/30 (19/11)	RCT/no blind	FNCOCD-1994	A + BT	63.14 ± 7.28/62.47 ± 6.98	272 ± 75/28.6 ± 7.9	WST	
Fang [66] 2014	30 (16/4)/30 (15/5)	RCT/no blind	FNCOCD-1996	A + BT + CMPPS + BT + ST	52.8 ± 6.9/53.9 ± 6.0	34.1 ± 15.3/31.4 ± 12.6	WST	
Qin [67] 2013	30 (26/4)/30 (21/9)	RCT/no blind	RNCOCD-1995	A + BT	61.42 ± 13.65/63.86 ± 10.83	34.99 ± 8.75/31.38 ± 7.21	WST + SSA + ADL	
S. Zhang and G. M. Zhang [68] 2014	87 (64/23)/87 (5/29)	RCT/no blind	CCNPATGBNBCMA-2007	A + RT	63.86 ± 10.55/64.61 ± 9.70	28.45 ± 23.42/31.48 ± 27.80	WST + IFRS	
Zhu and Zhao [69] 2015	30 (18/12)/30 (16/4)	RCT/no blind	TEETSTCMDFS-1996	A + BT	53.60 ± 12.96/56.10 ± 10.81	6.83 ± 16.07/0.05 ± 1.33	WST	
Fu [70] 2016	110 (67/43)/110 (62/48)	RCT/no blind	FNCOCD-2007	A + RT + BT	52.8 ± 10.4/55.4 ± 13.8	6.8 ± 2.3/8.5 ± 3.1	WST	
Zhang et al. [71] 2007	50 (3/46)/50 (56/44)	RCT/no blind	FNCOCD-1995	A + RT	53.16 ± 6.84/51.37 ± 8.63	45.8 ± 10.17/62.51 ± 10.17	SSA + SWAL-QOL	
Wei and An [72] 2012	57 (32/25/56/30)	RCT/no blind	RNCOCD-1995	A + BT + RT	57/57	3/45/4/46	WST	
Yi [73] 2013	28 (16/12)/28 (13/15)	RCT/no blind	FNCOCD-1995	A + RT	38 ± 75/38/73	15 ± 6 m/18/15 m	WST	
Chen et al. [75] 2011	32 (12/26/28)	RCT/no blind	FNCOCD-1995	A + RT	57.71 ± 9.17/59.50 ± 8.79	50.21 ± 21.39/49.14 ± 20.76	WST	
Wang and Cui [76] 2011	70 (49/12)/70 (52/18)	RCT/no blind	FNCOCD-1996	A + LFTP + BT	66.12/64.87	65.4/711	WST	
Li [77] 2016	30 (23/13)/36 (24/12)	RCT/no blind	FNCOCD-1997	A + BT + AM	52.98 ± 4.93/53.61 ± 4.81	13.65 ± 5.25/12.33 ± 6.16	WST	
Yu [78] 2014	30 (19/11)/30 (18/12)	RCT/no blind	CCNPATGBNBCMA-2010	A + SUMM	62.03 ± 10.16/63.90 ± 8.64	66.23 ± 47.94/70.23 ± 44.36	SSA + ADL	
Jia et al. [79] 2014	30 (23/7)/30 (21/9)	RCT/no blind	FNCOCD-1995	A + ST + NEST	58.30 ± 7.8/56.47 ± 8.43	<6 M	WST	
Huang et al. [80] 2013	30 (17/13)/30 (16/4)	RCT/no blind	FNCOCD-1995	A + ST + NEST	65 ± 3/67 ± 2	109 ± 4/108/9	WST	
Feng and Sun [81] 2016	30/30	RCT/no blind	FNCOCD-1996	A + BT	NR	NR	WST	
Chen et al. [82] 2015	30/30	RCT/no blind	FNCOCD-1995	A + BT + ST	BT + ST	NR	NR	IFRS
Feng et al. [83] 2015	45 (32/13)/45 (29/16)	RCT/no blind	FNCOCD-1995	A + BT + ST + BT	63.12/52.36	56.52/45.12	WST	
Yu and Hu [84] 2012	40 (25/17)/38 (20/18)	RCT/no blind	FNCOCD-1995	A + BT + LFES	62.51 ± 10.17/62.51 ± 10.17	13.78 ± 26.4/16.34 ± 2.48	WST	
Zhao and Zhang [85] 2012	94 (48/46)/92 (47/45)	RCT/no blind	FNCOCD-1995	A + STA	59.78/60.03	NR	WST	
Yu et al. [86] 2012	30 (19/11)/30 (13/7)	RCT/no blind	FNCOCD-1995	A + ST	54.30 ± 11.5/55.50 ± 10.7	30.25 ± 10.53/31.12 ± 8.92	WST	
Zhang [87] 2014	30 (21/9)/30 (23/7)	RCT/no blind	FNCOCD-1994	A + ST	68.3 ± 13.8/70.26 ± 11.97	43.37 ± 24.37/44.30 ± 22.52	CTR7 + SSA + ADL	

(1) Diagnosis: FNCOCD, the diagnostic criterion of the Fourth National Conference on cerebrovascular diseases in 1994 or the revised diagnostic criterion in 1995 or 1996; FNCOCD the revised diagnostic criterion in 1995 or 1996; CCNPATGBNBCMA, the "Chinese Cerebrovascular Disease Prevention And Treatment Guidelines (Try Out)" established by Neurology Branch of Chinese Medical Association according to the 2005 or 2007 Disease Control Division; GFDTAISC2010, the guidelines for diagnosis and treatment of acute ischemic stroke in China 2010 Edition; NIHSS, National Institutes of Health Stroke Scale; TEESTCMDFS, the therapeutic effect evaluation standard of TCM diagnosis for stroke; SOSNCOCD, summary of the Sixth National Conference on cerebrovascular diseases. (2) Measures: CTR7, Caiteng 7 Rank; MBSAT, medical bedade swallowing assessment scale; DRS, dysphagia rank scale; WST, Watian Swallowing Test; SSA, standard swallowing assessment; VFISS, videofluoroscopy; IFRS, Ichiro Fujishima Rating Scale; ADL, Activity of Daily Life; WALQOL, Swallowing-Related Quality of Life; DDS, dysphagia severity scale; OFS, oral function score. (3) Intervention: SM, swallowing mixture; A, acupuncture; RT, rehabilitation; BT, basic treatment; SUMM, stroke unit management model; ST, swallowing treatment; SUG, stroke unit group; ES, electrical stimulation; TCM, traditional Chinese medicine; WM, Western medicine; OPT, oral positioning therapy; AM, acupoint massage; NES, neuromuscular electrical stimulation; MS, muscle electrical stimulation; LPT, low frequency pulse electrotherapy; ES, electrical stimulation; SDTA, swallowing disorder therapeutic apparatus; CMPPS, cold medicine Popsicle pharyngeal stimulation; IS, ice stimulation; NR, no report.
Study or subgroup	Experimental Events	Control Events	Weight	Risk ratio	Risk ratio
	Total	Total			
Wei and An 2012	46	50	2.1	1.15	[0.98, 1.35]
Li 2016	33	36	1.8	1.14	[0.94, 1.37]
Zhu and Zhao 2015	25	30	0.8	1.39	[1.00, 1.94]
Li et al. 2013	29	30	2.2	1.12	[0.95, 1.30]
Li and Bai 2015	27	32	0.9	1.33	[0.98, 1.82]
Song 2012	26	30	1.0	1.30	[0.97, 1.74]
Chen et al. 2014	159	168	3.4	1.05	[0.99, 1.12]
Fan et al. 2007	26	30	0.0	2.89	[1.64, 5.08]
Liu 2014	30	34	1.2	1.30	[1.00, 1.70]
Ruan et al. 2015	24	25	1.8	1.14	[0.95, 1.38]
Liu 2014	42	45	1.8	1.23	[1.02, 1.48]
Yi 2014	26	30	1.3	1.13	[0.89, 1.44]
Liu et al. 2012	29	36	0.8	1.53	[1.08, 2.16]
Bai 2016	40	40	2.6	1.14	[1.01, 1.29]
Chen 2016	29	30	2.2	1.12	[0.95, 1.30]
Li et al. 2009	24	30	0.8	1.33	[0.95, 1.88]
Zhang et al. 2011	20	30	0.4	1.67	[1.00, 2.76]
Gu 2011	34	35	2.9	1.03	[0.93, 1.14]
Chang et al. 2014	38	38	3.5	1.00	[0.95, 1.05]
Chen and Zhang 2016	30	30	3.0	1.03	[0.94, 1.13]
Jia et al. 2014	29	30	1.6	1.26	[1.02, 1.55]
Yin 2013	49	57	1.7	1.23	[1.01, 1.51]
Huang 2011	27	28	1.3	1.35	[1.06, 1.72]
Chen et al. 2011	23	28	0.7	1.44	[1.00, 2.07]
Wang and Cui 2011	63	70	1.7	1.43	[1.18, 1.74]
Li et al. 2015	60	65	2.1	1.25	[1.06, 1.47]
Gao et al. 2014	48	52	2.6	1.03	[0.91, 1.16]
Wu et al. 2011	67	75	1.9	1.34	[1.12, 1.60]
Liu 2014	31	33	1.3	1.32	[1.04, 1.68]
Wang 2016	28	32	1.3	1.19	[0.93, 1.54]
Wang 2015	43	46	2.0	1.17	[0.99, 1.38]
Fu 2016	47	53	1.6	1.29	[1.04, 1.60]
Zhang and Yin 2012	60	62	2.3	1.23	[1.07, 1.42]
Zhang et al. 2014	30	31	1.4	1.34	[1.06, 1.69]
Dong et al. 2014	27	30	1.1	1.35	[1.02, 1.79]
Gao et al. 2016	39	40	2.9	1.05	[0.95, 1.17]
Zhen et al. 2012	29	30	1.8	1.21	[1.00, 1.46]
Feng et al. 2016	26	30	1.0	1.30	[0.97, 1.74]
S. Zhang and G. M. Zhang 2014	83	87	3.2	1.04	[0.96, 1.12]
Yu et al. 2012	28	30	1.5	1.22	[0.98, 1.52]
Deng et al. 2015	42	45	2.3	1.11	[0.95, 1.28]
Feng and Sun 2016	27	29	1.3	1.29	[1.01, 1.64]
Wu 2013	23	30	0.8	1.21	[0.86, 1.69]
Chen and Lin 2016	55	59	2.3	1.17	[1.01, 1.35]
Huang et al. 2013	27	30	1.4	1.17	[0.93, 1.48]
Wang 2011	28	30	1.8	1.12	[0.93, 1.35]
Duan 2014	37	40	1.7	1.23	[1.01, 1.51]
Bao and Zou 2015	25	30	0.0	3.13	[1.69, 5.78]
Wang and Yang 2013	45	45	2.8	1.12	[1.01, 1.25]
Guo and Li 2016	36	40	1.4	1.29	[1.02, 1.61]
Qin 2015	29	30	1.4	1.32	[1.05, 1.65]
Xie et al. 2011	37	65	0.0	1.85	[1.21, 2.82]
Zhao and Zhang 2012	90	94	2.9	1.16	[1.05, 1.28]
Zhang 2014	44	50	1.6	1.23	[1.00, 1.51]
Fang 2014	29	30	1.9	1.16	[0.98, 1.38]
Yu and Hu 2011	34	40	1.1	1.35	[1.02, 1.77]
Yin et al. 2011	15	18	0.9	1.11	[0.80, 1.54]
Mao et al. 2015	38	40	2.7	1.03	[0.92, 1.15]
Zhu et al. 2012	72	82	2.2	1.18	[1.02, 1.37]

Figure 5: The forest diagram of the clinical efficacy rate.
On the outcome indicator of the dysphagia, most of the studies used the Watian Swallowing Test, SSA, Fujishima Rating Scale, and so on. Only 5 studies [21, 38, 50, 72, 87] used the golden standard-videofluoroscopy (VFSFF) [91] as the assessment indicator. The Watian Swallowing Test was put forward by the Toshio Watian from Japan, which was used as preliminary screening for dysphagia. Meanwhile, it was dependent on the feeling of patients and susceptible to them, which made the inconsistencies with most results in clinical and laboratory inspection [92, 93]. However, it was classified clearly and simply to use.

So it was employed in many researches clinically [18, 21, 23]. Therefore, the choice of evaluation criteria needs to be more rigorous and scientific in the clinical trial design. In order to increase the reliability, high level evaluators should be chosen to evaluate the efficacy for dysphagia simultaneously.

However, there were several limitations of this review. Some research used the acupuncture combined with other interventions on the basic of the control group. And it was easily mixed with the effect of the acupuncture. Therefore, for experiment group, acupuncture alone or combined with

Study or subgroup	Experimental Events	Total	Control Events	Total	Weight	Risk ratio M-H, random, 95% CI	Risk ratio M-H, random, 95% CI
Liu 2014	30	34	23	34	11.0%	1.30 [1.00, 1.70]	
Zheng 2014	28	30	23	30	11.8%	1.22 [0.98, 1.52]	
Qu 2009	26	30	22	30	11.1%	1.18 [0.91, 1.53]	
Chen 2008	28	30	18	30	10.2%	1.56 [1.14, 2.12]	
Zhang et al. 2007	108	110	106	110	14.0%	1.02 [0.97, 1.07]	
Gao and Zhu 2015	30	30	25	30	12.7%	1.20 [1.01, 1.42]	
Xie et al. 2011	37	65	20	65	8.2%	1.85 [1.21, 2.82]	
Yin et al. 2011	15	18	20	25	10.6%	1.04 [0.78, 1.38]	
Zhou et al. 2014	25	30	20	30	10.3%	1.25 [0.93, 1.69]	
Total (95% CI)	377	384	100.0%			1.25 [1.03, 1.50]	

Heterogeneity: $r^2 = 0.06; \chi^2 = 32.15, df = 8 (P < 0.00001); I^2 = 87$

Test for overall effect: $Z = 2.31 (P = 0.02)$

Figure 6: The forest diagram of SSA effective rate.

Figure 7: The forest diagram of WST effective rate.
Table 1: Summary of results for WST subgroup analysis.

Study or subgroup	Experimental Mean	Control Mean	Weight	Weight difference IV, random, 95% CI	Subtotal (95% CI)							
	Mean	SD	Total		Mean	SD	Total		Mean difference	Heterogeneity: not applicable		
2.2.1. 28 d WST					2	1	46	3	1	45	7.1%	-1.00 [-1.41, -0.59]
	Subtotal	2	1	46	3	1	45	7.1%	-1.00 [-1.41, -0.59]			
Zhang and Yin 2012	1.6	1.06	62	2.2	1.15	56	7.1%	-0.60 [-1.00, -0.20]				
Duan et al. 2014	1.79	0.61	45	2.9	0.24	45	7.8%	-1.11 [-1.20, -0.92]				
Qin 2015	8.49	1.52	30	6.13	1.94	30	5.0%	2.36 [1.48, 3.24]				
Subtotal	182	27.9%	176					-0.39 [-0.97, 0.19]				
Heterogeneity:	2 = 0											
2.2.2. 20 d WST	1.58	0.25	45	2.73	0.22	45	8.00	-1.15 [-1.25, -1.05]				
Wang and Yang 2013	1.79	0.61	45	2.9	0.24	45	7.8%	-1.11 [-1.30, -0.92]				
Subtotal	182	27.9%	176									
2.2.3. 24 d WST	2.71	0.84	52	3.01	0.89	49	7.4%	-0.30 [-0.64, 0.04]				
Subtotal	170	33.8%	170									
2.2.4. 4 w WST	1.56	0.82	30	2.06	0.87	30	7.0%	-0.50 [-0.93, -0.07]				
Subtotal	170	33.8%	170									
2.2.5. 1 w WST	1.71	1.59	30	5.12	2.07	30	4.8%	-3.41 [-4.34, -2.48]				
Subtotal	170	33.8%	170									
2.2.6. 60 d WST	1.85	1.04	87	2.08	0.96	87	7.5%	-0.23 [-0.53, 0.07]				
Subtotal	87	100.0%	87									
2.2.7. 2 m WST	2.4	0.4	40	3.2	0.8	40	7.6%	-0.80 [-1.08, -0.52]				
Subtotal	40	100.0%	40									
2.2.8. 3 w WST	3.78	1.88	30	5.14	2.08	30	4.5%	-1.36 [-2.36, -0.36]				
Subtotal	30	100.0%	30									
Total	637	100.0%	627					-0.79 [-1.11, -0.47]				
Heterogeneity:	2 = 0											

Figure 8: The forest diagram of WST subgroup analysis.
Figure 9: The funnel of WST subgroup analysis.

Study or subgroup	Experimental Mean (SD)	Control Mean (SD)	Weight	Mean difference IV, random, 95% CI
Chang et al. 2014	8.01 (1.25) 38	6.73 (1.36) 36	11.2%	1.28 [0.68, 1.88]
Gao et al. 2014	5.58 (1.25) 52	4.76 (1.12) 49	13.6%	0.82 [0.36, 1.28]
Chen et al. 2015	7.85 (0.7) 30	5.86 (0.72) 30	15.5%	1.99 [1.63, 2.35]
Zhang and Yin 2012	6.73 (1.16) 62	5.25 (1.25) 56	14.1%	1.48 [1.04, 1.92]
Chen and Lin 2016	7.38 (1.35) 30	5.72 (1.06) 30	10.9%	1.66 [1.05, 2.27]
Qin 2015	7.38 (1.72) 30	5.74 (1.35) 30	8.5%	1.64 [0.86, 2.42]
Zhang 2014	7.13 (1.25) 50	5.97 (1.09) 46	13.5%	1.16 [0.69, 1.63]
Yu and Hu 2011	8.97 (1.04) 40	7.13 (1.25) 38	12.7%	1.84 [1.33, 2.35]

Total (95% CI) 332 315 100.0% 1.48 [1.18, 1.79]

Heterogeneity: $r^2 = 0.12$; $\chi^2 = 20.08$, df = 7 ($P = 0.005$); $I^2 = 65$

Test for overall effect: Z = 9.59 ($P < 0.00001$)

Figure 10: The forest diagram of swallowing function.

the interventions of the control group might increase the reliability.

Some studies [94, 95] showed that acupuncture seemed to be safe in the subacute phase of ischemic stroke and cardiac arrhythmia. Others [96] indicated that the safety of acupuncture needs further evidence. And some researches [97, 98] show that the occurrence of the adverse events during acupuncture was closely related to the competency of the practitioners and the safety system of acupuncture. However, in the process of literature retrieval, we found that most of the literatures included in this paper paid too much attention to the validity of acupuncture and ignored the influence of adverse event during acupuncture. Therefore, we should consider the security issues in the research design. The unfinished trials caused by the security issues should be reported perfectly according to international standard [99] to ensure the data’s integrity.

5. Conclusion

In conclusion, acupuncture for dysphagia after stroke has therapeutic efficacy. And the acupuncture is safe and reliable within a certain range. More strict evaluation standard and high-quality RCT design are necessary for further exploration on the acupuncture for treatment of dysphagia after stroke.
Study or subgroup	Experimental Mean	SD	Total	Control Mean	SD	Total	Weight	Mean difference	IV, random, 95% CI	Mean difference	IV, random, 95% CI
Liu et al. 2012	2.96	0.55	36	3.24	0.57	36	22.5%	-0.28 [-0.54, -0.02]			
Bai 2016	1.8	0.84	40	2.75	1.06	40	19.1%	-0.95 [-1.37, -0.53]			
Jia et al. 2014	1.83	1.05	30	2.47	1.17	30	16.1%	-0.64 [-1.20, -0.08]			
Wang and Cui 2011	2.2	0.35	70	3.25	0.53	70	24.2%	-1.05 [-1.20, -0.90]			
Ding and Zhang 2013	2.26	0.87	30	2.85	0.96	30	18.2%	-0.59 [-1.05, -0.13]			

Figure 2: The forest diagram of swallowing disorder integral.

Study or subgroup	Experimental Mean	SD	Total	Control Mean	SD	Total	Weight	Mean difference	IV, fixed, 95% CI	Mean difference	IV, fixed, 95% CI
Yi 2014	49.67	14.56	30	48	13.49	30	7.9%	1.67 [-5.43, 8.77]			
Wang 2015	70.33	19.79	46	58.22	20.37	45	5.9%	12.11 [3.86, 20.36]			
Qin 2015	64.69	10.64	30	58.44	11.91	30	12.3%	6.25 [0.54, 11.96]			
Zhu et al. 2012	48.65	8.63	82	40.26	7.67	82	64.1%	8.39 [5.89, 10.89]			
Zhou et al. 2014	90.16	14.71	30	85.33	10.16	30	9.8%	4.83 [-1.57, 11.23]			

Figure 12: The forest diagram of SWAL-QOL.

Study or subgroup	Experimental Events	Control Events	Weight	Risk ratio M-H, fixed, 95% CI	Risk ratio M-H, fixed, 95% CI
Zheng 2014	28	30	50.0%	1.22 [0.98, 1.52]	
Wang 2011	28	30	50.0%	1.22 [0.98, 1.52]	

Figure 13: The forest diagram of ADL.

Study or subgroup	Experimental Events	Control Events	Weight	Risk ratio M-H, fixed, 95% CI	Risk ratio M-H, fixed, 95% CI
Total (95% CI)	60	60	100.0%	1.22 [1.04, 1.42]	
Total events	56				

Heterogeneity: $r^2 = 0.00, df = 1 (P = 0.00); I^2 = 0%
Test for overall effect: $Z = 2.49 (P = 0.01)$

Figure 14: The forest diagram of Caiteng 7 Rank.
Table 1: Study or subgroup

Study or subgroup	Experimental	Control	Weight	Mean difference IV, random, 95% CI	Mean difference IV, random, 95% CI
	Mean SD Total	Mean SD Total			
Song 2012	8.53 1.8 30	7.93 1.62 30	52.4%	0.60 [−0.27, 1.47]	
Ruan et al. 2015	9.32 0.79 25	7.51 2.45 25	47.6%	1.81 [0.80, 2.82]	
Total (95% CI)	**55**	**55**	**100.0%**	**1.18 [−0.01, 2.36]**	

Test for overall effect: $Z = 1.95$ ($P = 0.05$)

Figure 15: The forest diagram of IFRS.

Table 2: Study or subgroup

Study or subgroup	Experimental	Control	Weight	Odds ratio M-H, fixed, 95% CI	Odds ratio M-H, fixed, 95% CI
	Events Total	Events Total			
Li and Bai 2015	27 32	19 30	12.6%	3.13 [0.93, 10.47]	
Li et al. 2009	24 30	18 30	14.8%	2.67 [0.84, 8.46]	
Wang 2016	28 32	22 30	11.7%	2.55 [0.68, 9.56]	
Zhang et al. 2014	30 31	21 29	2.9%	11.43 [1.33, 98.34]	
Subtotal (95% CI)	**125**	**119**	**42.0%**	**3.37 [1.75, 6.51]**	
Total events	**109**	**80**			

Heterogeneity: $\chi^2 = 5.02$, $df = 3$ ($P = 0.22$); $I^2 = 59$

Test for overall effect: $Z = 3.62$ ($P = 0.0003$)

Figure 16: The forest diagram of single blind clinical efficacy rate.

Abbreviations

- NIHSS: National Institutes of Health Stroke Scale
- CT: Computerized tomographic scanning
- MRI: Magnetic resonance imaging
- SCI: Science Citation Index
- CNKI: Chinese National Knowledge Infrastructure
- CSJID: Chinese Scientific Journals Database
- CBM: Chinese Biomedical Literature Database
- CT7R: Caiteng 7 Rank
- WST: Watian Swallowing Test
- VFSS: Videofluoroscopy
- ADL: Activity of Daily Life
- IFRS: Ichiro Fujishima Rating Scale
- WALQOL: Swallowing-Related Quality of Life

Disclosure

Qiuping Ye is the first author. The funding agency was not involved in data collection, data analysis, data interpretation, or manuscript development.

Conflicts of Interest

The authors have no conflicts of interest to disclose.
Study or subgroup	**Experimental**	**Control**	**Weight**	**Mean difference**	**Mean difference**
Hang et al. 2014	18.95	15.87	39	23.79	2.6
Luo et al. 2015	21.7	3.1	33	23.45	3.25
Wang 2016	23.05	2.559	32	27.93	6.648
Xia et al. 2015	27.5	7.33	62	30.25	6.39

Total (95% CI) | 133 | 131 | 100.0% | -4.47 [-5.59, -3.36] |

Test for overall effect: $Z = 7.85$ ($P < 0.00001$)

Figure 17: The forest diagram of single blind SSA.

Acknowledgments

The study was supported by the National Natural Science Foundation of China (no. 81373800) and The Key Project of National Natural Science Foundation of China (no. 81230088).

References

1. M. Arnold, K. Liesiérova, A. Broeg-Morvay et al., “Dysphagia in patients with brainstem stroke, incidence and outcome,” PLOS ONE, vol. 79, no. 2, pp. 170–175, 2000.

2. D. G. Smithard, P. A. O’Neill, C. Park et al., “Complications and outcome after acute stroke: does dysphagia matter?” Stroke, vol. 27, no. 7, pp. 1200–1204, 1996.

3. M. González-Fernández, L. Ottenstein, L. Atanelov, and A. B. Christian, “Dysphagia after stroke: an overview,” Current Physical Medicine and Rehabilitation Reports, vol. 1, no. 3, pp. 187–196, 2013.

4. H. Chang, Y. D. Kwon, and S. S. Yoon, “Use of acupuncture therapy as a supplement to conventional medical treatments for acute ischaemic stroke patients in an academic medical center in Korea,” Complementary Therapies in Medicine, vol. 19, no. 5, pp. 256–263, 2011.

5. Z. Li F, “Research progress on acupuncture for dysphagia after stroke,” Journal of Liaoning University of Traditional Chinese Medicine, vol. 17, no. 8, pp. 210–212, 2015.

6. J. He and Q. C. He, “The discussion of clinical acupuncture chosen rule and thorn moxibustion methods for acupuncture for dysphagia after stroke,” Chinese Journal of Rehabilitation Medicine, vol. 23, no. 6, pp. 550–551, 2008.

7. Z. W. Li, “The influence of acupuncture on the swallowing function of patients with apoplexy,” China’s Traditional Chinese Medicine Emergency, vol. 19, pp. 1609–01, 2010 (Croatian).

8. A. Raglio, A. Zaliani, P. Biaardi et al., “Active music therapy approach for stroke patients in the post-acute rehabilitation,” Neurological Sciences, vol. 38, no. 5, pp. 893–897, 2017.

9. A. E. Arch, D. C. Weissman, S. Coca, K. V. Nystrom, C. R. Wira, and J. L. Schindler, “Erratum: Missed ischemic stroke diagnosis in the emergency department by emergency medicine and neurology services,” Stroke, vol. 47, no. 3, pp. 668–673, 2016.

10. Q. Sachiko and Q. Sun, PracTical Technique for Rehabilitation of Feeding and Swallowing Disorders [M], vol. 43, Chinese medical science and Technology Press, Beijing, China, 2000.

11. J. B. Palmer, K. V. Kuhlemeier, D. C. Tippett, and C. Lynch, “A protocol for the videofluorographic swallowing study,” Dysphagia, vol. 8, no. 3, pp. 209–214, 1993.

12. C.-H. Zhang, J.-L. Bian, Z.-H. Meng et al., “Tongguan Liqiao acupuncture therapy improves dysphagia after brainstem stroke,” Neural Regeneration Research, vol. 11, no. 2, pp. 285–291, 2016.

13. Saito, “Eiichi the treatment of strategic about ingestion and dysphagia,” J n. C G on the Mission of Medical, vol. 41, no. 6, pp. 404–408, 2004.

14. B. Martin-Harris and B. Jones, “The videofluorographic swallowing study,” Physical Medicine and Rehabilitation Clinics of North America, vol. 19, no. 4, pp. 769–785, 2008.

15. C. Kuo, C. T. Allen, C. Huang, and C. Lee, “Murray secretion scale and fiberoptic endoscopic evaluation of swallowing in predicting aspiration in dysphagic patients,” European Archives of Oto-Rhino-Laryngology, vol. 274, no. 6, pp. 2513–2519, 2017.

16. P. Chung and J. Ishii, “Jas. Cerebrovascular handicap of acute stage,” Research of C, vol. 28, no. 5, pp. 415–421, 2000.

17. J. Luo, Z. L. Gu, and Z. H. Xu, “The effect observation of ‘Tiao Shen li Yan’ acupuncture for dysphagia after stroke,” Chinese Journal of Physical and rehabilitation, vol. 37, no. 12, pp. 940–942, 2015.

18. W. Xia, C. Zheng, S. Zhu, and Z. Tang, “Does the addition of specific acupuncture to standard swallowing training improve outcomes in patients with dysphagia after stroke? a randomized controlled trial,” A randomized controlled trial Clinical Rehabilitation, vol. 30, no. 3, pp. 237–246, 2015.

19. Y. Xie, H. Liu, W. Zhou et al., “Effect of acupuncture on dysphagia of convalescent stroke patients,” Chinese Journal of Integrated Traditional and Western Medicine, vol. 31, no. 6, pp. 736–740, 2011.

20. Z. L. Yin, Z. X. Meng, and Y. J. Xie, “Swallowing training combined acupuncture and electrical stimulation treatment on stroke recovery excessie dysphagia,” Chinese Journal of Physical and rehabilitation, vol. 33, no. 12, pp. 916–919, 2011.

21. R. Zhang, T. Li, and H. X. Chen, “Rev pharynx soup with acupuncture—rehabilitation treatment for dysphagia after ischemic stroke, a randomized controlled study,” Xinjiang Journal of Traditional Chinese Medicine, vol. 32, no. 5, pp. 09-10, 2014.

22. Q. L. Wang, Tongue Three-Needle Combined with Neuromuscular Electrical Stimulation Treat Dysphagia after Stroke A Clinical Research, Fujian University of Traditional Chinese Medicine, 2016.
[23] B. D. Li and J. Bai, "Clinical observation of 62 cases of post—cerebral hemorrhagic dysphagia treated with cortex—throat—tongue root sequence acupuncture therapy," *World Journal of Integrated Traditional and Western Medicine*, vol. 10, no. 6, pp. 812–815, 2015.

[24] C. F. Liu, *A study on the Effect of Acupuncture Combined with Rehabilitation for Stroke Patients with Swallowing Dysfunction in Acute Period*, Chengdu University of Traditional Chinese Medicine, 2014.

[25] F. Hang, X. Fu, and T. Wang, "The effect of oral placement therapy combined with acupuncture of specific points on dysphagia after stroke," *Chinese Journal of Rehabilitation Medicine*, vol. 29, no. 12, pp. 1129–1133, 2014.

[26] H. X. Li, G. R. Qiu, and D. P. Liu, "Clinical observation of acupuncture combined with rehabilitation training on dysphagia after stroke," *Journal of Shaanxi Acupuncture and Moxibustion*, vol. 28, no. 7, pp. 388–389, 2009.

[27] Z. Q. Zhu, G. G. Xu, and Y. L. Guo, "Effect of acupuncture combined with stroke unit model for dysphagia after stroke," *Medical Journal of the Chinese People Armed Forces*, vol. 02, no. 10, pp. 144–149, 2012.

[28] L. Chen and G. M. Zhang, "Efficacy observation acupuncture and comprehensive rehabilitation project for treatment of dysphagia after stroke," *Journal of Emergency in Traditional Chinese Medicine*, vol. 26, no. 6, pp. 812–815, 2015.

[29] Z. N. Mao, T. Y. He, and L. Y. Mao, "Clinical study on aspiration pneumonia caused by dysphagia after stroke in stroke patients with dysphagia and aspiration pneumonia," *Journal of Emergency in Traditional Chinese Medicine*, vol. 6, no. 6, pp. 649, 2008.

[30] B. J. Song, *Chinese Academy of Chinese medical science*, China Academy of Chinese Medical Science, 2012.

[31] X. Wang, "30 cases of scalp acupuncture combined with body acupuncture treatment of dysphagia after stroke," *Journal of Tongguanliqiao Acupuncture*, vol. 10, no. 12, pp. 31–32, 2015.

[32] S. Gao, H. Z. Huang, and S. F. Li, "Effect of swallowing function training combined with acupuncture on dysphagia after stroke," *Hainan Medical Journal*, vol. 27, no. 15, pp. 5231–5233, 2016.

[33] H. Bai, "Effect of swallowing therapy combined with acupuncture on dysphagia after stroke," *Chinese Journal of Geriatric Care*, vol. 14, no. 1, pp. 102–103, 2016.

[34] B. J. Song, *China Academy of Chinese medical science*, China Academy of Chinese Medical Science, 2012.

[35] Z. Zhou, Y. L. Zhang, and H. Yuan, "Clinical observation of 60 cases of oral and body acupuncture treatment for dysphagia after stroke," *Lishizhen Medicine and Materia Medica Research*, vol. 24, no. 9, pp. 2160–2162, 2014.

[36] C. Liu, "The curative effect of acupuncture combined with swallowing training on pharyngeal phase of dysphagia after stroke," *Chinese Journal of Medical Rehabilitation*, vol. 33, no. 1, pp. 31–32, 2013.

[37] X. Wang, "30 cases of scalp acupuncture combined with body acupuncture treatment of dysphagia after stroke," *China's Naturopathy*, vol. 19, no. 5, pp. 14–15, 2011.

[38] Q. L. Li and H. D. Zheng, "Clinical observation standard on Tongue three needles of Jinjin and Yuye point for treatment of dysphagia after stroke," *Clinical Observation of the Effect of Three Needles in The Treatment of Dysphagia after Stroke*, Gongzhou University of Chinese Medicine, 2011.

[39] N. Gao, H. P. Ma, and X. Z. Zhang, "Clinical observation of treatment of dysphagia after stroke by Tongue acupuncture and Swallowing therapy instrument," *Journal of Emergency in Traditional Chinese Medicine*, vol. 23, no. 2, pp. 265–267, 2014.

[40] H. H. Chen, "The Observation of Curative Effect of Tongue Acupuncture for Treatment of Dysphagia after Stroke," Zhejiang University of Chinese Medicine, 2016.

[41] C. L. Ruan, C. J. Zhuang, and Z. Q. Huang, "25 cases of dysphagia after stroke treated by Tongguanliqiao acupuncture," *Fujian Journal of Traditional Chinese Medicine*, vol. 41, no. 1, pp. 31–32, 2015.
Y.H. Wang and H.Y. Yang, “The clinical observation of Tongnaohuoluo acupuncture combined with swallowing training for treatment of dysphagia after stroke,” Journal of Liaoning University of Traditional Chinese Medicine, vol. 13, no. 12, pp. 188–191, 2011.

F. Qu, “The curative effect observation of Jin Three-needle combined with rehabilitation training for treatment of dysphagia after stroke,” Guangzhou University of Chinese Medicine, 2009.

Z. Fang, “The effect of acupuncture combined with Chinese medicinal treatment for dysphagia after stroke in 59 cases,” Jiangxi Journal of Traditional Chinese Medicine, vol. 8, no. 47, pp. 71–73, 2016.

X. M. Chen and H. J. Lin, “Xingnaokaiqiao acupuncture therapy for dysphagia after stroke,” Journal of Acupuncture and Tuina Science, vol. 10, no. 1, pp. 44–48, 2012.

S. Dong, H. B. Lv, and J. Q. Liu, “Clinical observation of acupuncture combined with swallowing function training on dysphagia (pharyngeal phase) after stroke,” Chinese Journal of traditional Chinese Medicine, vol. 42, no. 2, pp. 129–131, 2014.

Y. Zhang, “Effect of acupuncture combined with neuromuscular electrical stimulation on dysphagia after cerebral infarction,” Journal of Sichuan of Traditional Chinese Medicine, vol. 32, no. 10, pp. 168–170, 2014.

S. Li, J. S. E, and Y. Qin, “The effect of acupuncture combined with buccal muscle electrical stimulation on oral phase of dysphagia after stroke,” Chinese Journal of Rehabilitation Theory and Practice, vol. 20, no. 3, pp. 221–223, 2014.

Y. H. Wang and H. Y. Yang, “Study on the clinical curative effect of acupuncture on choke point combined with Kaiqiao liyan stick and swallowing function training for dysphagia after stroke,” Clinical Journal of Chinese Medicine, vol. 5, no. 9, pp. 41–43, 2013.

D. Dong and S. Zhang, “Effect of nape acupuncture on swallowing function and TCD in patients with pseudobulbar palsy after ischemic stroke,” Medicine Information, vol. 26, no. 5, 2013.

Z. Fang, “The effect of acupuncture combined with Chinese medicine ice stimulation on swallowing function of patients with dysphagia after stroke,” Journal of Traditional Chinese Medicine, vol. 55, no. 11, pp. 931–934, 2014.

Y. Qin, “Clinical study on acupuncture of eight extra-meridians based treatment of dysphagia after stroke,” Yunnan University of Traditional, 2015.

S. Zhang and G. M. Zhang, “Treatment of 87 cases of dysphagia after stroke by acupuncture combined with swallowing rehabilitation training,” Anhui University of Chinese Medicine, vol. 33, no. 5, pp. 56–59, 2014.

B. B. Zhu and C. Y. Zhao, “Randomized parallel controlled study of acupuncture combined with swallowing training in the treatment of dysphagia after stroke,” Journal of Practical Traditional Chinese Medicine, vol. 29, no. 11, pp. 152–153, 2001.

R. T. Fu, “Treatment of 53 cases of dysphagia after stroke by acupuncture combined with routine treatment of cerebrovascular disease and rehabilitation therapy,” Traditional Chinese Medicinal Research, vol. 29, no. 2, pp. 56–58, 2016.

W. M. Zhang, P. Zheng, and W. Q. Zhang, “Standardization of acupuncture combined with rehabilitation training in the treatment of dysphagia after stroke,” World Journal of Integrated Traditional and Western Medicine, vol. 2, no. 11, pp. 659–661, 2007.

A. X. Wei and Y. L. An, “Clinical observation on 50 cases of dysphagia after stroke treated by acupuncture combined with swallowing function training,” World Journal of Integrated Traditional and Western Medicine, vol. 7, no. 5, 2012.

L. L. Yin, “Clinical study on acupuncture combined with rehabilitation therapy for 57 cases of dysphagia after stroke,” Journal of Traditional Chinese Medicine, vol. 54, no. 9, pp. 766–768, 2013.

L. P. Huang, L. L. Sun, and X. X. Zhang, “Clinical observation of acupuncture combined with rehabilitation training on dysphagia after stroke,” Shaanxi Journal of Traditional Chinese Medicine, vol. 32, no. 3, pp. 329–330, 2011.

L. R. Chen, Q. Lin, and L. Lin, “Therapeutic effect of acupuncture combined with neuromuscular electrical stimulation on dysphagia after stroke: a report of 28 cases,” Journal of Fujian University of TCM, vol. 21, no. 6, pp. 54–55, 2011.

L. Wang and Y. Cui, “Clinical observation on 70 cases of dysphagia after stroke treated by acupuncture combined with pulse electrotherapy,” Journal of Traditional Chinese Medicine, vol. 52, no. 24, pp. 2112–2114, 2011.

A. Y. Li, “The curative effect observation of Quan point acupuncture combined with acupoint massage for treatment of dysphagia after stroke which was complicated by pulmonary infection,” Journal of Emergency in Traditional Chinese Medicine, vol. 25, no. 9, pp. 1783–1785, 2016.

C. X. Yi, “The clinical efficacy observation of Rendu meridian acupoints combined with the stroke unit for treatment of dysphagia after stroke,” Hunan University of Chinese Medicine, 2014.

L. Jia, D. Liu, and J. Bai, “Effect analysis of four-choke acupuncture combined with rehabilitation therapy for dysphagia after stroke,” Contemporary Medicine, vol. 20, no. 36, pp. 1–2, 2014.

X. S. Huang, Q. Tian, and R. Y. Mo, “A randomized parallel controlled study of acupuncture for treatment of moderate to severe dysphagia in stroke patients,” Journal of Practical Traditional Chinese Internal Medicine, vol. 27, no. 2, pp. 143–144, 2013.

X. E. Feng and L. Sun, “Observation on therapeutic effect of acupuncture on dysphagia after stroke: a report of 30 cases,” China Health Standard Management, vol. 7, pp. 149–151, 2016.

Q. Chen, W. G. Xia, and B. G. Chen, “Clinical study on acupuncture treatment of dysphagia caused by pseudobulbar palsy after stroke,” Nei Mongol Journal of Traditional Chinese Medicine, vol. 05, no. 11, pp. 118–119, 2015.

W. X. Feng, P. Li, and Y. M. Min, “Acupuncture treatment of dysphagia after stroke: a report of 45 cases,” Shandong Journal of Traditional Chinese Medicine, vol. 36, no. 1, pp. 91–92, 2015.

Z. H. Yu and J. F. Hu, “78 Cases of Acupuncture Combined with Rehabilitation Training in The Treatment of Dysphagia after Stroke,” in Proceedings of The 2011 Annual Meeting of The Chinese Society for Acupuncture And Moxibustion, pp. 55–58, 2011.

Y. Z. Zhao and H. Zhang, “Observation on therapeutic effect of acupuncture combined with swallowing therapy on dysphagia after stroke,” Shaanxi Journal of Traditional Chinese Medicine, vol. 28, no. 5, pp. 29–30, 2012.

W. J. Yu, M. X. Zhang, and C. M. Sun, “Acupuncture for dysphagia after stroke: a report of 30 cases,” Journal of Clinical Acupuncture and Moxibustion, vol. 28, no. 12, pp. 21–23, 2012.
[87] D. Zheng, *Clinical Study of Scalp Acupuncture Combined with Rehabilitation Training for Treatment of Dysphagia after Stroke*, Gungzhou University of Chinese Medicine, 2014.

[88] L. P. Wang and Y. Xie, "Systematic evaluation on acupuncture for treatment of dysphagia after stroke," *Chinese Acupuncture*, vol. 26, no. 2, pp. 141–146, 2006.

[89] D. Meng, Y. B. Shang, Y. F. Fu et al., "Clinical literature study of acupuncture and moxibustion in the treatment of post-stroke dysphagia based on meta analysis," *Chinese Medicine Modern Distance Education of China*, vol. 16, no. 64, pp. 148–153, 2016.

[90] Y.-B. Long and X.-P. Wu, "A meta-analysis of the efficacy of acupuncture in treating dysphagia in patients with a stroke," *Acupuncture in Medicine*, vol. 30, no. 4, pp. 291–297, 2012.

[91] M. M. B. Costa, "Videofluoroscopy: The gold standard exam for studying swallowing and its dysfunction," *Arquivos de Gastroenterologia*, vol. 47, no. 4, pp. 327-328, 2010.

[92] J. Zhang, Y.-J. Wang, and T. Cui, "Reliability and validity of nine rating scales for dysphagia following stroke," *Chinese Journal of Clinical Rehabilitation*, vol. 8, no. 7, pp. 1201–1203, 2004.

[93] J. W. Wu, X. Bi, and L. Song, "Value of applying water swallowing test for patients with dysphagia after acute stroke," *Journal of Shanghai Jiao Tong University (Medical Science)*, vol. 36, no. 7, pp. 1049–1053, 2016.

[94] S. Zhang, B. Wu, M. Liu et al., "Acupuncture efficacy on ischemic stroke recovery: multicenter randomized controlled trial in China," *Stroke*, vol. 46, no. 5, pp. 1301–1306, 2015.

[95] J. Liu, S. N. Li, L. Liu et al., "Conventional acupuncture for cardiac arrhythmia: A systematic review of randomized controlled trials," *Chinese Journal of Integrative Medicine*, pp. 1–9, 2017.

[96] Y. Cai, C. S. Zhang, S. Liu et al., "Electro-acupuncture for post-stroke spasticity: a systematic review and meta-analysis," *Archives of Physical Medicine and Rehabilitation*, 2017.

[97] H. J. Lee, Y. Kim, and W. Y. Kim, "Safety concerns with thoracoabdominal acupuncture: experience at a tertiary-care emergency department," *Pain Medicine*, 2017.

[98] Q. Y. Li, Y. Y. Liu, J. Zhang et al., "Analysis of the adverse reactions of acupuncture and acupuncture accidents," *Chinese Acupuncture and Moxibustion*, vol. 8, no. 31, pp. 0255–0930, 2011.

[99] D. Moher, K. F. Schulz, D. G. Altman, and L. Lepage, “The CONSORT statement: revised recommendations for improving the quality of reports of parallel-group randomized trials,” *Annals of Internal Medicine*, vol. 134, no. 8, pp. 657–662, 2001.