Reply to comment by T. Terashima et al. on “Quantum criticality and nodal superconductivity in the FeAs-based superconductor KFe$_2$As$_2$”

J. K. Dong,1 S. Y. Zhou,1 T. Y. Guan,1 H. Zhang,1 Y. F. Dai,1 X. Qiu,1 X. F. Wang,2 Y. He,2 X. H. Chen,2 S. Y. Li1,*

1Department of Physics, Surface Physics Laboratory (National Key Laboratory), and Laboratory of Advanced Materials, Fudan University, Shanghai 200433, China

2Hefei National Laboratory for Physical Science at Microscale and Department of Physics, University of Science and Technology of China, Hefei, Anhui 230026, China

(Dated: May 21, 2010)

PACS numbers: 74.70.Xa, 74.20.Rp, 74.25.fc, 74.40.Kb

In our recent Letter,1 we report the demonstration of a field-induced antiferromagnetic quantum critical point (QCP) and nodal superconductivity in KFe$_2$As$_2$. The evidences for a QCP include non-Fermi-liquid $\rho(T) \sim T^{1.5}$ at the upper critical field $H_{c2} = 5$ T and the development of a Fermi liquid state with $\rho(T) \sim T^2$ when further increasing the field. The coefficient A of the T^2 term also tends to diverge towards $H_{c2} = 5$ T.

Terashima et al.2 point out that our H_{c2}(onset) = 5 T, determined from the onset of the resistive transition, is much higher than their $H_{c2} = 1.25$ T, determined from the midpoint of the resistive transition. They attribute this large difference in H_{c2} to the broad resistive transition of our sample, which indicates inhomogeneity in the sample. Therefore, they doubt if the $\rho(T) \sim T^{1.5}$ behavior of resistivity at H_{c2}(onset) = 5 T relates to quantum criticality. Their recent de Haas-van Alphen (dHvA) results3 also do not support our proposed QCP at H_{c2}(onset) = 5 T in KFe$_2$As$_2$.

Recently, we have measured another KFe$_2$As$_2$ single crystal (S2). As seen in Fig. 1(a), the 10-90% transition width of S2 is 0.32 K, much smaller than 1.35 K of previous reported sample (S1) in Ref. [1]. This suggests that S2 is more homogeneous than S1. The sample S2 also has lower residual resistivity $\rho_0 = 1.49 \, \mu\Omega$ cm, and higher residual resistivity ratio (RRR) $\rho(290 \, K)/\rho(3 \, T) = 265$. In Fig. 1(b), $\rho(T)$ of S2 manifests $T^{1.5}$ dependence from T_c(onset) up to 11 K in zero field. From Fig. 1(c), H_{c2}(onset) = 3 T is obtained for S2, where $\rho(T) \sim T^{1.5}$ persists down to 50 mK. When further increasing the field, the $\rho(T) \sim T^2$ Fermi-liquid behavior is observed at lowest temperature for S2.

Since H_{c2}(onset) of S2 is significantly smaller than that of S1, we realize that the non-Fermi-liquid behavior of $\rho(T)$ at H_{c2}(onset) does not determine a QCP at H_{c2}(onset) for KFe$_2$As$_2$. In fact, for CeCoIn$_5$, while specific heat data demonstrated a QCP at the bulk $H_{c2} = 5$ T, non-Fermi-liquid $\rho(T) \sim T$ down to lowest temperature was found at higher field $H = 6$ T4. We attribute this misfit to the inhomogeneity of the sample. At the QCP $H_{c2} = 5$ T, while the bulk of the CeCoIn$_5$ sample obeys $\rho(T) \sim T$, the rest of the sample still shows resistive transition, thus one can not observe $\rho(T) \sim T$ at the QCP. With increasing field, at $H = 6$ T, the bulk of the sample slightly develops $\rho(T) \sim T^2$ behavior, which balances the remaining resistive drop of the rest part of the sample, and gives an accidental $\rho(T) \sim T$ behavior. Only for extremely homogeneous sample with nearly zero resistive transition width, one may not notice this misfit since H_{c2}(onset) is almost equal to the bulk H_{c2}. We believe that this is also the case for KFe$_2$As$_2$, and the QCP, if exists, may locate at the bulk H_{c2} as in CeCoIn$_5$.

Since the bulk of KFe$_2$As$_2$ have developed Fermi liquid state at $H = 5$ T, it is not surprising that dHvA oscillations were observed in a field range near 5 T3. For our high-quality sample S2, we also find that the coefficient $A (= 0.0649, 0.0533$, and $0.0508 \, \mu\Omega \, cm/K^2$ for 5, 8, and 12 T, respectively) shows a slower field dependence than that of sample S1. This is consistent with the near constant effective mass m^* in the field range $7 < H < 17.65$ T3, which is far away from the QCP (if exists) near the bulk $H_{c2} \approx 1.25$ T.

In summary, we agree with Terashima et al.2 that H_{c2}(onset) = 5 T is not a QCP for KFe$_2$As$_2$. The non-Fermi-liquid $\rho(T) \sim T^{1.5}$ at H_{c2}(onset) and the development of a Fermi liquid state with $\rho(T) \sim T^2$ when further increasing the field only suggest a QCP at the bulk H_{c2}. Bulk measurements, such as specific heat, are needed to confirm this field-induced QCP at H_{c2} in KFe$_2$As$_2$.

* E-mail: shiyan_li@fudan.edu.cn

[1] J. K. Dong et al., Phys. Rev. Lett. 104, 087005 (2010).
[2] T. Terashima et al., proceeding Comment, Phys. Rev. Lett. xxx, xxxxxx (2010).
[3] T. Terashima et al., J. Phy. Soc. Jpn. 79, 0537002 (2010).
[4] A. Bianchi et al., Phys. Rev. Lett. 91, 257001 (2003).
FIG. 1: (Color online). (a) Low-temperature resistivity of KFe$_2$As$_2$ single crystals S1 and S2 in zero magnetic field. (b) The same data in (a) plotted as ρ vs $T^{1.5}$. The solid lines are fits to $\rho = \rho_0 + AT^{1.5}$. (c) ρ vs $T^{1.5}$ for sample S2 in $H = 2, 3, 4, 5,$ and 8 T (data sets are offset for clarity). The solid line is a fit of the $H = 3$ T data between 50 mK and 4 K. The dash lines are guides to the eye for the deviation from the $T^{1.5}$ dependence.