Endoplasmic Reticulum Stress Responses in Mouse Models of Alzheimer’s Disease: Overexpression Paradigm versus Knock-in Paradigm

Shoko Hashimoto1#*, Ayano Ishii1,2#, Naoko Kamano1, Naoto Watamura1,3, Takashi Saito1,4, Toshio Ohshima3, Makoto Yokosuka2, and Takaomi C. Saido1*

1 Laboratory for Proteolytic Neuroscience, RIKEN Brain Science Institute
2-1 Hirosawa, Wako-City, Saitama 351-0198, Japan
2 Laboratory of Comparative Medicine, Nippon Veterinary and Life Science University, 1–7–1 Kyonancho, Musashino-City, Tokyo 180–8602, Japan
3 Laboratory for Molecular Brain Science, Department of Life Science and Medical Bioscience, Waseda University, Tokyo, Japan
4 Department of Neuroscience and Pathobiology, Research Institute of Environmental Medicine, Nagoya University, Nagoya, Aichi 464-8601, Japan

Running title: ER stress in AD mouse models

#Equal contribution
*Corresponding Authors: Shoko-Hashimoto@brain.riken.jp and saido@brain.riken.jp
+81-48-467-7612

Key words
Alzheimer’s disease, endoplasmic reticulum stress, App-knockin mice

ABSTRACT
Endoplasmic reticulum (ER) stress is believed to play an important role in the etiology of Alzheimer’s disease (AD). The accumulation of misfolded proteins and perturbation of intracellular calcium homeostasis are thought to underlie the induction of ER stress, resulting in neuronal dysfunction and cell death. Several reports have shown an increased ER stress response in amyloid precursor protein (APP) and presenilin1 (PS1) double transgenic (Tg) AD mouse models. However, it remains unclear whether the ER stress observed in these mouse models is actually caused by AD pathology. APP and PS1 contain one and nine transmembrane domains, respectively, for which it has been postulated that overexpressed membrane proteins can become wedged in a misfolded configuration in ER membranes, thereby inducing non-specific ER stress. Here, we used an App-knockin (KI) AD mouse model that accumulates Aβ without overexpressing APP.
to investigate whether the ER stress response is heightened because of amyloid β peptide (Aβ) pathology. Thorough examinations indicated that no ER stress responses arose in App-KI or single APP-Tg mice. These results suggest that PS1 overexpression or mutation induced a non-specific ER stress response that was independent of Aβ pathology in the double Tg mice. Moreover, we observed no ER stress in a mouse model of tauopathy (P301S Tau-Tg mice) at various ages, suggesting that ER stress is also not essential in tau pathology-induced neurodegeneration. We conclude that the role of ER stress in AD pathogenesis needs to be carefully addressed in future studies.

INTRODUCTION
Alzheimer’s disease (AD) is the most common neurodegenerative disease and the main cause of dementia. The neuropathological hallmarks of AD include extracellular deposits of amyloid-β (Aβ) as the major component of senile plaques, and neurofibrillary tangles composed of hyperphosphorylated tau protein (1). Aβ is generated from amyloid precursor protein (APP), a type I membrane protein, through sequential proteolytic cleavages mediated by the β- and γ-secretases. γ-Secretase is a membrane-associated complex consisting of four different proteins: presenilin1/2 (PS1/2), nicastrin, Aph1, and Pen2. PS1/2 is a catalytic subunit (1).

For around two decades, APP and/or PS1-overexpressing (transgenic, Tg) mice have been used widely as AD mouse models for basic and clinical studies. However, the underlying processes of Aβ overproduction in conventional mouse models differ greatly from that in AD patients. APP overexpression in animal models overproduces in an unphysiological manner fragments other than Aβ, such as soluble amyloid precursor protein (sAPP), C- terminus fragment of APP (CTF) and APP intracellular domain (AICD). Moreover, APP and/or PS1 overexpression can induce an artificial endoplasmic reticulum (ER) stress response due to increased cytoplasmic calcium concentrations (2). To overcome these drawbacks of the overexpression paradigm, we recently developed mouse models utilizing an App-knockin (KI) strategy. The App-KI mice, which express humanized Aβ with familial AD mutations at endogenous levels, exhibit AD-associated pathologies including pronounced Aβ amyloidosis and gliosis (3) (4). In contrast, App-KI failed to reproduce some of the observations made using conventional mouse models (3-5). For example, the early lethality of Calpastatin-knockout (KO) X APP23 mice, which contradicted the chronic nature of AD, was not reproduced in Calpastatin-KO X App-KI (3,6). Moreover, with App-KI mice, we detected no calpain-dependent conversion of p35 to p25, which upregulates CDK5 activity. Although calpain activation is generally considered to play an important role in AD progression due to its involvement in caspase-dependent neuronal cell death and

2
CDK5-mediated hyper-phosphorylation of tau, our observations indicate that the role of calpain may have been overestimated.

In this study, we focused our attention on ER stress. The accumulation of unfolded/misfolded proteins within the ER lumen along with the disruption of calcium homeostasis leads to ER dysfunction, known as ER stress. Under ER stress conditions, cells escape from serious damage by activating adaptive response pathways known as the unfolded protein response (UPR). UPR restores proteostasis in the ER by arresting protein synthesis, degrading unfolded/misfolded proteins, and increasing molecular chaperone concentrations. On the other hand, UPR induces cell death signaling upon prolonged stress or serious damage. Several reports have suggested that ER stress induced by Aβ accumulation is involved in neurodegeneration in AD (7-9). To this end, exposure of hippocampal brain slices, primary neurons, or cell lines to oligomerized or fibrilized Aβ has been shown to induce ER stress (10,11). Moreover, UPR upregulation has been detected in several AD mouse models such as APP/PS1, 5XFAD, and 3XTg (10-12). However, to the present time it has been difficult to clarify whether ER stress is triggered by Aβ pathology in vivo. To answer this important question, i.e. which abnormally overexpressed membrane proteins or Aβ deposition triggers ER stress, we evaluated the ER stress response in several AD mouse models, including App-KI.

RESULTS

UPR regulates three key pathways via three ER binding proteins (13): pancreatic ER kinase (PERK), activating transcription factor-6 (ATF-6), and inositol-requiring enzyme-1 (IRE-1). The first pathway, triggered by PERK phosphorylation, arrests protein synthesis via abrogating the activity of eukaryotic translation initiation factor 2α (eIF2α) by phosphorylation, and activates ATF4-mediated gene expression of ER chaperones. The second pathway, initiated by ATF-6, induces the expression of ER molecular chaperones such as GRP78/BiP and GRP94, and protein-folding enzymes such as protein disulfide isomerases (PDIs), to prevent protein misfolding. In the third pathway, phosphorylated IRE-1 induces the expression of genes related to protein folding, autophagy, and apoptosis (such as C/EBP homologous protein (CHOP)) by activating transcription factor XBP1. Under normal conditions, PERK, ATF6, and IRE1 remain in an inactive state due to GRP78 binding. In response to ER stress, however, misfolded proteins interrupt GRP78 and sensor protein interactions, thereby initiating UPR signaling.

Several reports have described activation of the ER stress response in AD mouse models. For instance, in the 5XFAD model, which overexpresses familial AD-linked APP and PS1 mutants, phosphorylated eIF2α and XBP-1 mRNA levels are elevated (14,15). The APP/PS1 mouse shows age-dependent increases of
GRP78, phospho-PERK, phospho-eIF2α, and CHOP (12). Moreover, increased GRP78 is also detected in the 3XTg mouse, which expresses mutant APP, PS1, and tau (16). However, in contrast to these findings, Lee et al. (17) observed no UPR signals in Tg2576 mice. Accordingly, it remains controversial whether Aβ pathology is an essential trigger of ER stress.

GRP78 acts as an important sensor of ER stress, and its expression is upregulated by UPR to prevent protein misfolding. GRP78 also appears to be the most sensitive and earliest ER stress marker in APP/PS1-Tg mice (13). Based on this evidence, we first analyzed GRP78 as an ER stress marker. We also examined levels of several ER stress markers: CHOP, PDI, phosphorylated-eIF2α (p-eIF2α) and spliced-Xbp1. To examine whether Aβ deposition induces ER stress, we quantified levels of ER stress markers in the cortices of young and older AppNL-G-F mice (Fig.1a, b, c). In AppNL-G-F mice, Aβ accumulation begins at 2 months (M), and occupies the entire cortex and hippocampus by around 9M (3). Western blot analysis showed no significant upregulation in any of the ER stress markers tested at 6M and 14M in AppNL-G-F mice compared to wild-type (WT), suggesting that increased Aβ deposition is not correlated with the ER stress response (Fig.1a, c). Given that we detected elevation of ER stress markers except for PDI in thapsigargin-treated primary cultured cortical neuron or Neuro2A cells (Fig. 1a, b), our observations are not due to failure to specifically detect ER stress markers. PDI was increased in primary cortical neuron cells even under more severe conditions (data not shown).

To compare ER stress response between APPNL-G-F and APP-Tg mice, we analyzed ER stress markers using cortical and hippocampal samples (Fig.1a, b, d, e). As APP is a membrane binding protein, we expected that APP overexpression would induce chronic ER stress. However, we observed no significant increase of ER stress markers in two APP-overexpressing mouse models: APP23 and Tg2576 (Fig.1d, e). These results indicate that neither Aβ deposition nor APP overexpression induces detectable ER stress. As such, our observations contradict previous reports describing the ER stress induced in double transgenic mice overexpressing mutant APP and PS1 (10-12). Consistently with previous reports, we detected activation of ER stress in APP/PS1 and 3XTg-AD mice. In contrast to APPNL-G-F and single APP-Tg mice, APP/PS1 mice showed an increased ER stress marker, p-eIF2α in hippocampus (6 and 14M) and cortex (6M), and 3XTg-AD showed higher levels of GRP78 and CHOP in hippocampus compared to age-matched wild-type controls (Fig1a). These results indicate that this effect could be a non-specific artifact caused by the genetic modification of PS1 or double modifications of APP and PS1. We confirmed overexpression of PS1(ΔE9) in APP/PS1 mice using antibodies and protocols that had
been fully validated. (18,19). We must, however, indicate that we did not detect other ER stress markers in the APP/PS1 mouse brains, in a manner distinct from the previous report (12), due presumably to the reasons described in DISCUSSION.

Under prolonged ER stress conditions, cells cease to protect themselves, and turn on cell death signals. In AD and other neurodegenerative diseases, tau pathology correlates well with neurodegeneration (20). We therefore hypothesized that ER stress might mediate tau-induced neuronal cell death. To investigate this further, we analyzed ER stress markers in cortices (3-15 months (M)) and hippocampi (12M) of P301S-Tau-Tg mice on a C57BL/6 background (Fig.2). In these mice, brain atrophy associated with neuronal cell death starts from around 9-12M (unpublished data); however, we observed no changes in all stress markers between 3M and 15M (Fig.2a, b). These results suggest that tau pathology does not accompany ER stress, and that the ER stress response is unrelated to tau-induced neurodegeneration.

DISCUSSION

In the present study, we found an absence of ER stress responses in App-KI and single APP-overexpressing mice. We thus conclude that neither Aβ nor APP overproduction triggers ER stress. Lee et al.(17) have consistently shown that ER stress does not occur in Tg2576 mice. The elevated UPR detected in several lines of APP and PS1 double transgenic mouse is thus likely to be a non-specific artifact. As presenilins are polytopic membrane proteins containing nine transmembrane domains, we suggest that mutant PS1 overexpression impacts specifically on ER membranes in which presenilins are enriched (21,22).

A number of studies have reported that PS1 plays a role in the regulation of ER calcium homeostasis (reviewed in Honarnejad et al. 2012, and Zhang et al. 2010) (23,24). PS1 modulates not only the function of sarco/endoplasmic reticulum Ca2+-ATPase (SERCA), which transfers calcium from the cytosol to the lumen, but also of ER-associated calcium channels such as the inositol trisphosphate receptor and ryanodine receptor (25-29). In addition, familial AD (FAD)-linked mutations of PS1 alter its activity in calcium transfer (reviewed in Honarnejad et al. 2012, and Zhang et al. 2010) (23,24). Alteration of the ER cytosolic calcium concentration is a strong inducer of ER stress, as seen in cells treated with the SERCA inhibitor thapsigargin (Fig.1)(30). Based on these findings, the genetic modification of PS1 is very likely to affect the ER stress response. Indeed, FAD-linked PS1 mutation results in the delayed activation of UPR in fibroblasts and primary cultured neurons of mutant PS1-KI mice (31,32). Moreover, deletion or overexpression of PS1 in primary neurons also alters the ER stress response (33,34). Taken together, the ER stress responses observed in APP/PS1 double mutant mice are not causally associated with
AD etiology. Artificial ER stress responses induce artificial cellular responses and cell death. We therefore suggest that the results obtained with APP/PS1 double mutant mice should be further validated.

In this study, however, we did not detect marked activation of ER stress in APP/PS1 mice even though we utilized the strain identical to the one used by Barbero-Camps et al., (12,35). We presume that partial reproducibility was due to reduced expression levels of APP and PS1 in the APP/PS1 mice (Fig. 1a) after a number of passages.

In addition to the above, we detected no ER stress response in a mouse model of tauopathy, suggesting that ER stress does not contribute to tau-induced neurodegeneration. It is plausible that tau overexpression will not induce ER stress because tau is basically a cytosolic protein.

Several groups have reported that the ER stress response is upregulated in postmortem human AD brains (14,36,37). In contrast, Katayama et al. (31) showed a significant decrease of GRP78 in the brains of AD patients. The postmortem degradation of mRNA and protein may be different between control and AD patients because neurons in AD brain had undergone degeneration, which would accompany destruction of lysosomes and mitochondria, before sampling. We thus need to be careful when we analyze and discuss mRNA and protein levels in postmortem samples. In addition, since calcium concentrations and calcium-related responses might be altered by postmortem conditions, ER stresses in postmortem samples require careful interpretation. To this end, we have shown an unphysiological activation of the calcium-dependent protease calpain in postmortem mouse brains (5).

Our observations raise serious concerns surrounding efforts to translate basic findings obtained using APP/PS1-gene modified mice to clinical applications. If pharmacological candidates that improve the pathological and neurological parameters of the APP/PS1-gene modified mice exert their effects via the modification of non-specific ER stress, then these candidates may not be effective in a preclinical setting or in clinically defined AD patients. Choosing appropriate models is thus extremely important if the mechanisms underlying AD are to be fully elucidated (4).

EXPERIMENTAL PROCEDURES

Animals

All animal experiments were carried out in accordance with RIKEN Brain Science Institute guidelines. We previously produced AppNL-G-F/NL-G-F-knock-in (AppNL-G-F) mice using genomic DNA containing introns 15 to 17 of mouse App with the humanized Aβ sequence into which KM670/671NL (Swedish), I716F (Iberian) or E693G (Arctic) mutations (3) had been introduced. APP23 mice (38), which overexpress Swedish mutation-containing APP751, were maintained on a C57BL/6J background. Tg2576 mice (39), which overexpress
Swedish mutation-containing APP695, were maintained on a mixed B6-SJL background. APP/PS1 (APPswe/PSEN1dE9) mice, which overexpress APP695 (Swedish) and PS1 (deltaE9), and 3XTg-AD mice, which are APP695 (Swedish)-transgenic/ Tau (P301L)-transgenic/ PS1 (M146V)-knockin were maintained on a C57BL/6J background. Tau P301S transgenic (Line PS19) mice, were created on a B6C3H/F1 background (40). PS19 mice were back-crossed onto a C57BL/6 background.

Cell culture
Primary cultured cells were prepared as below. Cortices and hippocampi were separated from E16-18 embryos of WT mice and move to Neurobasal medium (Thermo Fisher Scientific, Waltham, MA USA). Tissues were chopped by scalpels and treated with 5mL of 0.25% trypsin at 37°C for 15min with rotation. Then, 0.125mL of 1% DNaseI was added and mixed by pipetting. After centrifuge of the tissues at 1500rpm for 3min, 5mL of HBSS containing 0.125mL of 1% DNaseI was added to the pellet, and incubated at 37 °C for 5min moving slightly in water bath. Tissues were again centrifuged at 1500rpm for 3 min, and resulting pellet were suspended in 15mL Neurobasal medium containing 2% B27 and 0.5mM glutamate. Cells were filtrated by Falcon 2360 Cell Strainer 100μm Nylon, and seeded in cell culture plates with Neurobasal medium containing B27 and glutamate. Prepared cells at DIV7 were used for experiments. Neuro2A cells were maintained in Dulbecco's Modified Eagle's Medium (DMEM) containing 10% fetal bovine serum and incubated at 37 °C in a humidified atmosphere of 5% CO2. To induce ER stress, cells were treated with thapsigargin (final 2 μM for 8 hours for primaty cells, final 5μM for 18 hours for Neuro2A cells).

Western Blotting
Extripated brains were immediately frozen in liquid nitrogen, and stored at -80°C. The cortices were homogenized in 400 μL of Tris-HCl (50 mM Tris-HCl pH7.5, 150 mM NaCl, and 1% Triton-X 100) containing a protease inhibitor cocktail and a phosphatase inhibitor cocktail (Sigma-Aldrich, St Louis, MO, USA). The homogenates were centrifuged at 15,000 x g for 20 min at 4 °C. Resulting supernatants were used for subsequent analyses. Protein concentrations were determined using a BCA protein assay kit (Pierce, Rockford, IL). An equivalent amount of protein from each animal was mixed with 4x sample buffer with 2-mercaptoethanol, separated by SDS-polyacrylamide gel electrophoresis, and transferred electrophoretically to a 0.22 μm PVDF membrane (Merck Millipore, MA, USA). The membrane was treated with the ECL Prime blocking agent (GE Healthcare, Little Chalfont, UK), and reacted with each primary antibody (Table I) diluted in Tris-buffered saline containing 0.05% Tween20 (TBST), pH7.5, overnight at 4°C. The membrane was washed three times in
TBST for 5 min, and treated with horse radish peroxidase-conjugated anti-rabbit or mouse IgG (GE Healthcare) for 1 hour. Immunoreactive bands on the membrane were visualized with ECL Select (GE Healthcare) and scanned with a LAS-3000mini LuminoImage analyzer (Fuji Film, Japan). The Neuro2A lysates were analyzed in a similar manner at an identical protein concentration.

RNA Isolation and Polymerase Chain Reactions (PCR)
The cortex samples were homogenized in 1 mL of RNAiso Plus total RNA extraction reagent (Takara). Neuro2A cells and primary cultured cortical neuron cells (1 X 10⁷ cells/1 sample) were dissolved in 500 µM of RNAiso Plus. Total RNA from each samples were isolated according to the manufacture’s instruction. To obtain complementary DNA, a reaction mixture containing 2 µg of RNA and Primerscript reverse transcriptase (Takara) was reacted according to the manufacturer’s directions as follows: 60 min at 42 °C, then 10 min at 70 °C to stop the reaction. The semi-quantified polymerase chain reaction (PCR) was performed using KOD fx neo (Toyobo, Osaka, Japan) for Xbp1, or Takara Ex-Taq (Takara) for CHOP and β-actin. PCR was conducted at; 94 °C for 2 min, and then 40 cycles of 98 °C for 10 sec, 50 °C for 30 sec and 68°C for 1 min, using primers 5’-agaggagccagggcaaagagttcaacg-3’ (sense) and 5’-tcggagacagacaggatgtgcca-3’ (antisense) for Xbp1; 95 °C for 2 min, and then 40 cycles of 95 °C for 30 sec, 50 °C for 30 sec and 72°C for 1 min, using primers 5’-gggtcagaaggattctgtg-3’ (sense) and 5’-ggctcaacatgtctggg-3’ (antisense) for β-actin.

Statistical Analysis
All data are shown as means ± SEM. Differences between groups were examined for statistical significance with one-way or two-way ANOVA.

ACKNOWLEDGEMENTS
The authors thank Yukio Matsuba and Naomi Mihira (RIKEN BSI) for technical assistance. The authors are grateful to Karen Hsiao-Ashe (University of Minnesota) for providing Tg2576 mice, to Virginia M. -Y. Lee (University of Pennsylvania) for providing P301S-Tau-Tg mice, to Taisuke Tomita (University of Tokyo) for providing PS1 antibody), and to Susumu Imaoka (Kwansei Gakuin University) for providing PDI antibody. This work was supported by a Grant-in-Aid for Young Scientists (B) (a Ministry of Education, Culture, Sports, Science and Technology (MEXT) grant) (SH), and research grants from the RIKEN Special Postdoctoral Research program (SH). Support was also received in part via
Grant-in-Aid for Scientific Research (B) (a MEXT grant) (TS), and by the Brain Mapping by Integrated Neurotechnologies for Disease Studies (Brain/MINDS) from the Japan Agency for Medical Research and Development (AMED) (TCS), and research grant from RIKEN BSI.

CONFLICTS OF INTEREST
SH, TS and TCS serve as a member, an advisor and a CEO, respectively, for RIKEN BIO Co. Ltd.

AUTHOR CONTRIBUTIONS
SH, AI, TS and TCS made research plans. SH, AI, NK and NW performed experiments. SH and TCS wrote the manuscript. SH, TO, MY and TCS supervised the entire research.
REFERENCES

1. Hardy, J., and Selkoe, D. J. (2002) The amyloid hypothesis of Alzheimer's disease: progress and problems on the road to therapeutics. *Science* **297**, 353-356

2. Chaudhari, N., Talwar, P., Parimisetty, A., Lefebvre d'Hellencourt, C., and Ravanan, P. (2014) A molecular web: endoplasmic reticulum stress, inflammation, and oxidative stress. *Front. Cell. Neurosci.* **8**, 213

3. Saito, T., Matsuba, Y., Mihira, N., Takano, J., Nilsson, P., Itohara, S., Iwata, N., and Saido, T. C. (2014) Single App knock-in mouse models of Alzheimer's disease. *Nat. Neurosci.* **17**, 661-663

4. Sasaguri, H., Nilsson, P., Hashimoto, S., Nagata, K., Saito, T., De Strooper, B., Hardy, J., Vassar, R., Winblad, B., and Saido, T. C. (2017) APP mouse models for Alzheimer's disease preclinical studies. *EMBO J.* in press

5. Saito, T., Matsuba, Y., Yamazaki, N., Hashimoto, S., and Saido, T. C. (2016) Calpain Activation in Alzheimer's Model Mice Is an Artifact of APP and Presenilin Overexpression. *J. Neurosci.* **36**, 9933-9936

6. Higuchi, M., Iwata, N., Matsuba, Y., Takano, J., Suemoto, T., Maeda, J., Ji, B., Ono, M., Staufenbiel, M., Suhara, T., and Saido, T. C. (2012) Mechanistic involvement of the calpain-calpastatin system in Alzheimer neuropathology. *FASEB J.* **26**, 1204-1217

7. Hitomi, J., Katayama, T., Eguchi, Y., Kudo, T., Taniguchi, M., Koyama, Y., Manabe, T., Yamagishi, S., Bando, Y., Imaizumi, K., Tsujimoto, Y., and Tohyama, M. (2004) Involvement of caspase-4 in endoplasmic reticulum stress-induced apoptosis and Abeta-induced cell death. *J. Cell Biol.* **165**, 347-356

8. Kang, E. B., Kwon, I. S., Koo, J. H., Kim, E. J., Kim, C. H., Lee, J., Yang, C. H., Lee, Y. I., Cho, I. H., and Cho, J. Y. (2013) Treadmill exercise represses neuronal cell death and inflammation during Abeta-induced ER stress by regulating unfolded protein response in aged presenilin 2 mutant mice. *Apoptosis* **18**, 1332-1347

9. Costa, R. O., Ferreiro, E., Oliveira, C. R., and Pereira, C. M. (2013) Inhibition of mitochondrial cytochrome c oxidase potentiates Abeta-induced ER stress and cell death in cortical neurons. *Mol. Cell. Neurosci.* **52**, 1-8

10. Cornejo, V. H., and Hetz, C. (2013) The unfolded protein response in Alzheimer's disease. *Semin. Immunopathol.* **35**, 277-292

11. Endres, K., and Reinhardt, S. (2013) ER-stress in Alzheimer's disease: turning the scale? *Am J Neurodegener Dis* **2**, 247-265

12. Barbero-Camps, E., Fernandez, A., Baulies, A., Martinez, L., Fernandez-Checa, J. C., and Colell, A. (2014) Endoplasmic reticulum stress mediates amyloid beta
neurotoxicity via mitochondrial cholesterol trafficking. Am. J. Pathol. 184, 2066-2081

13. Ron, D., and Walter, P. (2007) Signal integration in the endoplasmic reticulum unfolded protein response. Nat. Rev. Mol. Cell Biol. 8, 519-529

14. O’Connor, T., Sadleir, K. R., Maus, E., Velliquette, R. A., Zhao, J., Cole, S. L., Eimer, W. A., Hitt, B., Bembinster, L. A., Lammich, S., Lichtenhalter, S. F., Hebert, S. S., De Strooper, B., Haass, C., Bennett, D. A., and Vassar, R. (2008) Phosphorylation of the translation initiation factor eIF2alpha increases BACE1 levels and promotes amyloidogenesis. Neuron 60, 988-1009

15. Reinhardt, S., Schuck, F., Groschen, S., Riemenschneider, M., Hartmann, T., Postina, R., Grimm, M., and Endres, K. (2014) Unfolded protein response signaling by transcription factor XBP-1 regulates ADAM10 and is affected in Alzheimer’s disease. FASEB J. 28, 978-997

16. Soejima, N., Ohyagi, Y., Nakamura, N., Himeno, E., Iinuma, K. M., Sakae, N., Yamasaki, R., Tabira, T., Murakami, K., Irie, K., Kinoshita, N., LaFerla, F. M., Kiyohara, Y., Iwaki, T., and Kira, J. (2013) Intracellular accumulation of toxic turn amyloid-beta is associated with endoplasmic reticulum stress in Alzheimer’s disease. Curr Alzheimer Res 10, 11-20

17. Lee, J. H., Won, S. M., Suh, J., Son, S. J., Moon, G. J., Park, U. J., and Gwag, B. J. (2010) Induction of the unfolded protein response and cell death pathway in Alzheimer’s disease, but not in aged Tg2576 mice. Exp. Mol. Med. 42, 386-394

18. Tomita, T., Takikawa, R., Koyama, A., Morohashi, Y., Takasugi, N., Saito, T. C., Maruyama, K., and Iwatsubo, T. (1999) C terminus of presenilin is required for overproduction of amyloidogenic Abeta42 through stabilization and endoproteolysis of presenilin. J. Neurosci. 19, 10627-10634

19. Sato, C., Takagi, S., Tomita, T., and Iwatsubo, T. (2008) The C-terminal PAL motif and transmembrane domain 9 of presenilin 1 are involved in the formation of the catalytic pore of the gamma-secretase. J. Neurosci. 28, 6264-6271

20. Ballatore, C., Lee, V. M., and Trojanowski, J. Q. (2007) Tau-mediated neurodegeneration in Alzheimer’s disease and related disorders. Nat. Rev. Neurosci. 8, 663-672

21. Annaert, W. G., Levesque, L., Craessaerts, K., Dierinck, I., Snellings, G., Westaway, D., George-Hyslop, P. S., Cordell, B., Fraser, P., and De Strooper, B. (1999) Presenilin 1 controls gamma-secretase processing of amyloid precursor protein in pre-golgi compartments of hippocampal neurons. J. Cell Biol. 147, 277-294

22. Area-Gomez, E., de Groof, A. J., Boldogh, I., Bird, T. D., Gibson, G. E., Koehler, C. M.,
Yu, W. H., Duff, K. E., Yaffe, M. P., Pon, L. A., and Schon, E. A. (2009) Presenilins are enriched in endoplasmic reticulum membranes associated with mitochondria. *Am. J. Pathol.* **175**, 1810-1816

23. Honarnejad, K., and Herms, J. (2012) Presenilins: role in calcium homeostasis. *Int. J. Biochem. Cell Biol.* **44**, 1983-1986

24. Zhang, H., Sun, S., Herreman, A., De Strooper, B., and Bezprozvanny, I. (2010) Role of presenilins in neuronal calcium homeostasis. *J. Neurosci.* **30**, 8566-8580

25. Green, K. N., Demuro, A., Akbari, Y., Hitt, B. D., Smith, I. F., Parker, I., and LaFerla, F. M. (2008) SERCA pump activity is physiologically regulated by presenilin and regulates amyloid beta production. *J. Cell Biol.* **181**, 1107-1116

26. Guo, Q., Furukawa, K., Sopher, B. L., Pham, D. G., Xie, J., Robinson, N., Martin, G. M., and Mattson, M. P. (1996) Alzheimer's PS-1 mutation perturbs calcium homeostasis and sensitizes PC12 cells to death induced by amyloid beta-peptide. *Neuroreport* **8**, 379-383

27. Stutzmann, G. E., Caccamo, A., LaFerla, F. M., and Parker, I. (2004) Dysregulated IP3 signaling in cortical neurons of knock-in mice expressing an Alzheimer's-linked mutation in presenilin1 results in exaggerated Ca2+ signals and altered membrane excitability. *J. Neurosci.* **24**, 508-513

28. Chan, S. L., Mayne, M., Holden, C. P., Geiger, J. D., and Mattson, M. P. (2000) Presenilin-1 mutations increase levels of ryanodine receptors and calcium release in PC12 cells and cortical neurons. *J. Biol. Chem.* **275**, 18195-18200

29. Stutzmann, G. E., Smith, I., Caccamo, A., Oddo, S., Laferla, F. M., and Parker, I. (2006) Enhanced ryanodine receptor recruitment contributes to Ca2+ disruptions in young, adult, and aged Alzheimer's disease mice. *J. Neurosci.* **26**, 5180-5189

30. Rogers, T. B., Inesi, G., Wade, R., and Lederer, W. J. (1995) Use of thapsigargin to study Ca2+ homeostasis in cardiac cells. *Biosci. Rep.* **15**, 341-349

31. Katayama, T., Imaizumi, K., Sato, N., Miyoshi, K., Kudo, T., Hitomi, J., Morihara, T., Yoneda, T., Gomi, F., Mori, Y., Nakano, Y., Takeda, J., Tsuda, T., Itoyama, Y., Murayama, O., Takashima, A., St George-Hyslop, P., Takeda, M., and Tohyama, M. (1999) Presenilin-1 mutations downregulate the signalling pathway of the unfolded-protein response. *Nat. Cell Biol.* **1**, 479-485

32. Katayama, T., Imaizumi, K., Honda, A., Yoneda, T., Kudo, T., Takeda, M., Mori, K., Rozmahel, R., Fraser, P., George-Hyslop, P. S., and Tohyama, M. (2001) Disturbed activation of endoplasmic reticulum stress transducers by familial Alzheimer's disease-linked presenilin-1 mutations. *J. Biol. Chem.* **276**, 43446-43454

33. Sato, N., Urano, F., Yoon Leem, J., Kim, S. H., Li, M., Donoviel, D., Bernstein, A., Lee,
A. S., Ron, D., Veselits, M. L., Sisodia, S. S., and Thinakaran, G. (2000) Upregulation of BiP and CHOP by the unfolded-protein response is independent of presenilin expression. Nat. Cell Biol. 2, 863-870

34. Terro, F., Czech, C., Esclaire, F., Elyaman, W., Yardin, C., Baclet, M. C., Touchet, N., Tremp, G., Pradier, L., and Hugon, J. (2002) Neurons overexpressing mutant presenilin-1 are more sensitive to apoptosis induced by endoplasmic reticulum-Golgi stress. J. Neurosci. Res. 69, 530-539

35. Jankowsky, J. L., Fadale, D. J., Anderson, J., Xu, G. M., Gonzales, V., Jenkins, N. A., Copeland, N. G., Lee, M. K., Younkin, L. H., Wagner, S. L., Younkin, S. G., and Borchelt, D. R. (2004) Mutant presenilins specifically elevate the levels of the 42 residue beta-amyloid peptide in vivo: evidence for augmentation of a 42-specific gamma secretase. Hum. Mol. Genet. 13, 159-170

36. Nijholt, D. A., de Graaf, T. R., van Haaster, E. S., Oliveira, A. O., Berkers, C. R., Zwart, R., Ovaa, H., Baas, F., Hoozemans, J. J., and Scheper, W. (2011) Endoplasmic reticulum stress activates autophagy but not the proteasome in neuronal cells: implications for Alzheimer's disease. Cell Death Differ. 18, 1071-1081

37. Chang, R. C., Wong, A. K., Ng, H. K., and Hugon, J. (2002) Phosphorylation of eukaryotic initiation factor-2alpha (eIF2alpha) is associated with neuronal degeneration in Alzheimer's disease. Neuroreport 13, 2429-2432

38. Sturchler-Pierrat, C., Abramowski, D., Duke, M., Wiederhold, K. H., Mistl, C., Rothacher, S., Ledermann, B., Burki, K., Frey, P., Paganetti, P. A., Waridel, C., Calhoun, M. E., Jucker, M., Probst, A., Staufenbiel, M., and Sommer, B. (1997) Two amyloid precursor protein transgenic mouse models with Alzheimer disease-like pathology. Proc. Natl. Acad. Sci. U. S. A. 94, 13287-13292

39. Hsiao, K., Chapman, P., Nilsen, S., Eckman, C., Harigaya, Y., Younkin, S., Yang, F., and Cole, G. (1996) Correlative memory deficits, Abeta elevation, and amyloid plaques in transgenic mice. Science 274, 99-102

40. Yoshiyama, Y., Higuchi, M., Zhang, B., Huang, S. M., Iwata, N., Saito, T. C., Maeda, J., Suhara, T., Trojanowski, J. Q., and Lee, V. M. (2007) Synapse loss and microglial activation precede tangles in a P301S tauopathy mouse model. Neuron 53, 337-351
FIGURE LEGENDS

Figure 1. Expression of ER stress markers in App^{NL-G-F} and APP-Tg mice.
(a) Representative western blot shows expression levels of ER stress markers in the cortices and hippocampi of 6-month-old (M) or 14M WT, App^{NL-G-F}, APP23 and Tg2576 mice. The expressions in 6 and 15M APP/PS1, and 23M 3XTg-AD mice were also determined. Values shown in figures are band intensity of each band which is divided by intensity of β-actin (for GRP78, CHOP, and PDI) or total eIF2α (for p-eIF2α). As a positive control, ER stress markers in thapsigargin-treated primary cultured cortical neuronal cells or Neuro2a cells were confirmed. Arrowhead shows bands of CHOP or p-eIF2α, and asterisk shows nonspecific bands. (b) mRNA levels of unspliced/spliced Xbp1 and CHOP were determined. XBP1 mRNA was detected by semi-quantified reverse transcription-PCR. Unspliced/spliced-XBP1 was observed as a 152/126-bp band respectively. (c-e) Expression levels of ER stress markers in cortices (c,d) or hippocampi (e) were normalized to that of β-actin (for GRP78, CHOP, and PDI) or total level of eIF2α (for p-eIF2α), and reported as relative levels compared to expression in 6M WT mice. Expression level of spliced-Xbp1 mRNA was divided by that of unspliced-Xbp1 mRNA. Positive control is thapsigargin-treated primary cultured cells. Data are shown as means ± SEM (n=3). Differences between groups were examined for statistical significance with one-way ANOVA. n.s.: no significant difference.

Figure 2. Expression of ER stress markers in P301S-Tau-Tg mice.
(a) Expression levels of ER stress markers in the cortices (3-15M) and hippocampi (12M) of WT and P301S-Tau-Tg mice were determined. Arrowhead shows bands of CHOP or p-eIF2α and asterisks show nonspecific bands. (b) XBp1 mRNA was detected by semi-quantified reverse transcription-PCR. (c, d) Shown are mean levels ± SEM of relative expression of ER stress markers (n=3). Differences between groups were examined for statistical significance via two-way ANOVA. n.s.: no significant difference.
Table 1. Antibodies used for western blot analyses. The following antibodies were used at the indicated dilutions to detect ER stress markers.

Protein	Antibody	Dilution				
APP	Merck Millipore #MAB348 (clone 22c11)	1:2500				
Tau	Thermo #AHB0042 (Tau5)	1:2500				
GRP78	abcam #ab21685	1:5000				
CHOP	abcam #ab11419	1:2500				
Phospho-eIF2α	Cell Signaling #3398	1:1000				
eIF2α	Cell Signaling #9722	1:1000				
PDI	Hiroi et al, Endocrinol., 2006	1:5000				
PS1	Tomita et al, J. Neurosci., 1999	1:5000				
	Sato et al, J. Neurosci., 2008	1:5000				
β-actin	SIGMA #A5441	1:5000				
	Cortex	Hippocampus				
----------	--------	-------------				
	6M	14M	6M	6M	15M	23M
WT			WT	APP	PS1	
App EGF						
App23						
Tg2576						
APP			1.00	1.16	1.17	
GRP78			1.00	1.04	0.70	
CHOP			1.00	1.24	1.35	
PDI			1.00	1.24	1.35	
p-eIF2α			1.00	1.44	0.70	
eIF2α						
β-actin						

Fig. 1
Fig. 1
Fig. 1
Endoplasmic reticulum stress responses in mouse models of Alzheimer disease: overexpression paradigm versus knock-in paradigm
Shoko Hashimoto, Ayano Ishii, Naoko Kamano, Naoto Watamura, Takashi Saito, Toshio Oshima, Makoto Yokosuka and Takaomi C Saido

J. Biol. Chem. published online January 3, 2018

Access the most updated version of this article at doi: 10.1074/jbc.M117.811315

Alerts:
• When this article is cited
• When a correction for this article is posted

Click here to choose from all of JBC's e-mail alerts