Materials Research Express

PAPER

Effect of B$_2$O$_3$ addition on thermal and optical properties of TeO$_2$–ZnO–Bi$_2$O$_3$–TiO$_2$ glasses

Ahmad Marzuki, Fausta Devara Ega and Azmi Saraswati

Department of Physics, Sebelas Maret University, Surakarta 57126, Indonesia
E-mail: amarzuki@mipa.uns.ac.id

Keywords: band gap energy, tellurite glass, density, thermal analysis, refractive index, raman spectroscopy

Abstract
New tellurite glasses with composition (in mol%): 60TeO$_2$–(30–x)ZnO–5Bi$_2$O$_3$–5TiO$_2$–xB$_2$O$_3$ (where x = 0, 2.5, 5.0, 7.5 and 10.0) were fabricated using conventional melt quenching method. Compositional dependence of the glasses on their density, thermal, refractive index and optical properties were investigated. X-Ray Diffraction analysis was carried out to confirm the nature of the thus formed glasses. Density, refractive index, and absorption spectra were measured at room temperature from which other glass characteristics such as polaron radius, oxygen packing density, field strength, B$^{3+}$ interatomic distance, band gap energy, and Urbach tail were determined. Thermal characterisation to determine the change in glass transition temperature, glass crystallisation, melting point, and glass stability was carried out using Differential Scanning Calorimetry. A discussion was made in order to understand the results in terms of the ratio of bridging oxygen to non-bridging oxygen ions (BO/NBO). It was found that the addition of B$_2$O$_3$ results in increasing oxygen packing density, glass transition temperature, BO/NBO ratio and band gap energy, while decreasing density, refractive index, field strength, glass stability and Urbach tail energy. With increasing B$_2$O$_3$ concentration density changed from 5.879 to 5.646 g cm$^{-3}$, refractive index 1.875 to 1.741, working temperature range ($\Delta T = 66$ °C) and phonon energy within the range of 736–740 cm$^{-1}$.

1. Introduction
In the last few decades, tellurite glasses have been studied mainly because of their excellent properties in terms of high refractive index, wide transmission window, a high solubility of rare-earth ions, broad range absorption in the infrared region, low phonon energy, low melting point and stability against crystallisation [1, 2]. Making use of these properties, various compositions of tellurite glasses have been extensively researched for broad applications such as optical amplifiers, optical fibre, laser, sensors, ultrafast optical switches, and gamma radiation shielding [3, 4].

To be a good glass matrix used for efficient fibre laser, several important glass features are needed. Two of them are stability against crystallization and low phonon energy. Tellurite glasses are researched partly to seek the right glass composition possessing low phonon energy and high thermal stability. It has been reported that TeO$_2$–ZnO system shows good glass forming ability [5] and therefore has been used as a based glass and developed for various applications [6–10]. However, it was reported that TeO$_2$–ZnO system also shows low thermal stability [8–10]. For this reason, we have developed new glasses by adding Bi$_2$O$_3$, B$_2$O$_3$ and TiO$_2$ into TeO$_2$–ZnO system with expectation to have glasses having properties suitable for fibre laser. Generally, ZnO is added into a glass structure because of dual role it might play. As a network former, Zn$^{2+}$ ions come into the network in the form of ZnO$_4$ structural unit, while as network modifier, these ions are present in octahedral coordination similar to other conventional alkali oxides [11, 12]. Yao et al. [13] reported that addition of ZnO into borate glasses improve the network structure. It is known that B$_2$O$_3$ is a good glass former. It can form a glass by itself. It has been shown that incorporating B$_2$O$_3$ into tellurite glass changes the glass structural unit from TeO$_4$ into TeO$_3$ and TeO$_2$, as well as improving the glass forming ability, transparency, hardness, and rare-
earth ions solubility [14–16]. Incorporating B$_2$O$_3$ into tellurite glass improves glass stability against crystallisation [14–16]. It was reported that incorporation of Bi$_2$O$_3$ into a glass can decrease phonon energy and therefore improve fluorescent efficiency [17, 18].

The objective of this work is to develop novel boro-tellurite glasses as a potential host for rare earth ions used in fibre laser and optical amplifiers. These new glasses were studied in term of the effect of B$_2$O$_3$ addition to partially substitute ZnO on their physical, structural, thermal and optical properties.

1.1. Experimental work

A mixture with molar composition: 60TeO$_2$–(30-x)ZnO–5Bi$_2$O$_3$–5TiO$_2$–xB$_2$O$_3$ (where x = 0, 2.5, 5.0, 7.5 and 10.0, hereafter, named as TZBT B0, TZBT B2.5, TZBT B5, TZBT B7.5 and TZBT B10 glasses, respectively) of about 10 grams was prepared and weighed in a glove box. Homogenisation was carried out by grinding the mixture in a mortar for about 20 min. Melting was carried out in a platinum crucible heated in an electrical furnace at a temperature of 900 °C for about 60 min. The melt was stirred periodically in order to obtain a homogeneous glass. Casting was carried out by pouring the melt into a 285 °C pre-heated mould and holding at that temperature for 6 h followed by cooling to room temperature at a cooling rate 1 °C min$^{-1}$. For the purpose of optical characterisation, all samples were polished down to optical quality.

The amorphous nature of TeO$_2$–ZnO–Bi$_2$O$_3$–TiO$_2$–B$_2$O$_3$ glasses was confirmed using XRD with Cu-Kα radiation source with wavelength 1.544 Å, anode current value 35mA and accelerating potential of 40 kV. The scan step was 1° min$^{-1}$ and the scan range for all the glasses were 10° to 80°. Density measurement was carried out at room temperature using a pycnometer employing Archimedes principle, with distilled water as an immersion fluid according to the following equation:

$$\rho_g = \rho_w \frac{m_{pg} - m_p}{(m_{pg} - m_p) - (m_{pgw} - m_{pw})}$$ \hspace{1cm} (1)

where m_p, m_{pg}, m_{pgw} and m_{pw} are mass of empty pycnometer, mass of pycnometer containing glass, mass of pycnometer containing glass and water, and mass of pycnometer containing water, respectively. Based on the density data, other physical properties such as molar volume (V_m), oxygen packing density (OPD), concentration of B$^{3+}$ ions ($C_{B^{3+}}$), polaron radius (r_p), inter ionic distance (d) and field strength (F) can be calculated using the following equations [19–21]:

$$V_m = \frac{\sum x_i M_i}{\rho_g}$$ \hspace{1cm} (2)

$$\text{OPD} = \frac{1000 N_O \rho_g}{M_g}$$ \hspace{1cm} (3)

where N_O is the number of oxygen atoms inside the glass composition, ρ_g, density of each glass sample, and M is the molecular weight of the glass.

$$C_{B^{3+}} = \frac{2n_{B_2O_3}N_A\rho_g}{M_g}$$ \hspace{1cm} (4)

Where $n_{B_2O_3}$, N_A, ρ_g and M_g are mol fraction of B$_2$O$_3$, Avogadro’s number, density, and average molecular weight of glass, respectively.

$$r_p = \frac{1}{2} \left(\frac{\pi}{6N_{B^{3+}}} \right)^{\frac{1}{3}}$$ \hspace{1cm} (5)

where $N_{B^{3+}}$ is the number of Borate ions per unit volume.

$$d = \frac{1}{2} \left(\frac{1}{N_{B^{3+}}} \right)^{\frac{1}{3}}$$ \hspace{1cm} (6)

$$F = \frac{Z}{r_p}$$ \hspace{1cm} (7)

where, Z is atomic number.

Refractive indices of all samples were measured at room temperature using Brewster’s angle method at wavelength of 632.9 nm while their absorption spectra were recorded at room temperature using UV-Visible Spectrophotometer (Perkin Elmer Lambda 25) at wavelength range 200–1100 nm. Room temperature Raman spectra of all glasses were recorded in the 100–1000 cm$^{-1}$ range using laser working at 632 nm. Thermal characteristics of all TZBTB glasses were determined using DTA (Linseiss type STA PT 1600). In order to obtain
the glass transition temperature (T_g), onset of crystallisation temperature (T_x), crystallisation temperature (T_c), and melting temperature (T_m), a scan was recorded at a heating rate of $10^\circ\text{C min}^{-1}$ from 150 $^\circ\text{C}$ to 900 $^\circ\text{C}$.

2. Results and discussion

2.1. Amorphous nature

Five clear glass samples fabricated in this work are shown in figure 1 and their amorphous natures are confirmed with the help of XRD patterns (figure 2). Two broad humps observed around $2\theta = 29^\circ$ and 52° along with the absence of sharp peaks as shown in figure 2 confirm the absence of long-range order of atomic arrangement, an atomic arrangement characterising a non-crystalline solid.
more B$_2$O$_3$ is added, the value of tellurite glasses decreases. The decreasing trend of inter B$_3$ concentration, that is from 0.59533 to 2.32249 amu by B$_3$ might be attributed to the decreasing average glass molecular weight, i.e., substitution of Zn$^{2+}$ with Ar = 65.38 amu by B$^{3+}$ with Ar 10.81 amu. Further from figure 3, the molar volume of glass increases with increasing the content of B$_2$O$_3$. The decreasing trend of inter B$_3$ atomic distance is a direct impact of increasing B$_2$O$_3$ concentration, that is from 0.59533 to 2.32249 \times 1021 ions cm$^{-3}$ which corresponds to B$_2$O$_3$ concentrations of 2.5 mol% and 10%, respectively. Considering that a crystalline phase has higher density and less molar volume than the corresponding amorphous phase, this result clearly indicates that this substitution results in formation of a highly dense glass structure [22].

Figure 4 is DSC curves obtained for all the investigated glasses recorded at a heating rate of 10 °C min$^{-1}$. Two exothermic crystallization peaks and two melting endothermic peaks caused by melting are clearly seen in glasses containing 2.5 and 5.0 mol% of B$_2$O$_3$ indicating that two crystalline phases were formed upon heating. The first exothermic crystallization peak may due to nucleation process followed by formation of a crystalline phase possessing lower temperature minimum Gibbs free energy while the second peak is due to the formation of higher Gibbs free energy crystalline phase [23].

The values of T_p, T_o, T_{c-1}, T_{c-2}, T_m-1 and T_m-2 for sample containing 2.5 mol% of B$_2$O$_3$ are 349 °C, 415 °C, 429 °C, 480 °C, 705 °C and 760 °C, respectively. The values of T_p, T_o, T_m, thermal stability ($\Delta T = T_m - T_p$) and glass forming tendency ($K_g = \Delta T_p/\Delta T_m$) of all samples are tabulated in table 2. For the cases that several crystallization peaks or melting peaks are observed, only the first peak is used [23]. For many applications requiring to reshape or process a glass at relatively low temperature without fearing the possible formation of a tiny crystalline phase, e.g., in optical fibre drawing, wider ΔT will provide a flexible choice in determining working temperature. For this purpose, $\Delta T \geq 100$ °C is expected. The value of ΔT for all samples containing B$_2$O$_3$ ranges from 48 °C to 66 °C which is comparable to that obtained in common fluoride glasses [24, 25], tellurite glasses [26, 27] and borate glasses [28, 29]. TZBTB-2.5 shows the highest ΔT, i.e., $\Delta T = 66$ °C. When more B$_2$O$_3$ is added, the value of ΔT decreases. ΔT values of TZBTB-5, TZBTB-7.5 and TZBTB-10 are 57 °C, 53 °C and 48 °C, respectively. These values are less than those reported in other works [30, 31]. In order to provide a flexible working temperature for fibre drawing, commonly accepted criterion for glass stability is $\Delta T \geq 100$ °C.

Table 1. Density, molar volume, OPD, ionic concentration, polaron radius, inter-ionic distances, and field strength values of B$_2$O$_3$ doped TZBT doped glasses.

Physical properties	TZBT	TZBTB-2.5	TZBTB-5.0	TZBTB-7.5	TZBTB-10
Density (g cm$^{-3}$)	5.879	5.819	5.780	5.665	5.646
Molar Volume (cm3)	25.083	25.293	25.409	25.877	25.909
OPD (mol$^{-1}$)	69.77	71.17	72.81	73.42	75.26
B$_3$ Ionic concentration (1021 ions cm$^{-3}$)	0.595	1.185	1.746	2.322	
Inter B$_3$ Ionic Distance (Å)	5.599	2.813	1.909	1.434	
Field Strength (× 10$^{-15}$ cm$^{-2}$)	1.113	0.281	0.129	0.073	

2.2. Density and thermal properties

Table 1 tabulates density and several properties derived from density by following equations (2)–(7). The way the density and molar volume change with B$_2$O$_3$ contents is shown in figure 3. It can be seen that incorporating B$_2$O$_3$ into the glass to partially substitute ZnO results in decreasing density from 5.8791 to 5.6463 g cm$^{-3}$. This result might be attributed to the decreasing average glass molecular weight, i.e., substitution of Zn$^{2+}$ with Ar = 65.38 amu by B$^{3+}$ with Ar 10.81 amu. Further from figure 3, the molar volume of glass increases with increasing the content of B$_2$O$_3$. The decreasing trend of inter B$_3$ atomic distance is a direct impact of increasing B$_2$O$_3$ concentration, that is from 0.59533 to 2.32249 \times 1021 ions cm$^{-3}$ which corresponds to B$_2$O$_3$ concentrations of 2.5 mol% and 10%, respectively. Considering that a crystalline phase has higher density and less molar volume than the corresponding amorphous phase, this result clearly indicates that this substitution results in formation of a highly dense glass structure [22].

Figure 4 is DSC curves obtained for all the investigated glasses recorded at a heating rate of 10 °C min$^{-1}$. Two exothermic crystallization peaks and two melting endothermic peaks caused by melting are clearly seen in glasses containing 2.5 and 5.0 mol% of B$_2$O$_3$ indicating that two crystalline phases were formed upon heating. The first exothermic crystallization peak may due to nucleation process followed by formation of a crystalline phase possessing lower temperature minimum Gibbs free energy while the second peak is due to the formation of higher Gibbs free energy crystalline phase [23].

The values of T_p, T_o, T_{c-1}, T_{c-2}, T_m-1 and T_m-2 for sample containing 2.5 mol% of B$_2$O$_3$ are 349 °C, 415 °C, 429 °C, 480 °C, 705 °C and 760 °C, respectively. The values of T_p, T_o, T_m, thermal stability ($\Delta T = T_m - T_p$) and glass forming tendency ($K_g = \Delta T_p/\Delta T_m$) of all samples are tabulated in table 2. For the cases that several crystallization peaks or melting peaks are observed, only the first peak is used [23]. For many applications requiring to reshape or process a glass at relatively low temperature without fearing the possible formation of a tiny crystalline phase, e.g., in optical fibre drawing, wider ΔT will provide a flexible choice in determining working temperature. For this purpose, $\Delta T \geq 100$ °C is expected. The value of ΔT for all samples containing B$_2$O$_3$ ranges from 48 °C to 66 °C which is comparable to that obtained in common fluoride glasses [24, 25], tellurite glasses [26, 27] and borate glasses [28, 29]. TZBTB-2.5 shows the highest ΔT, i.e., $\Delta T = 66$ °C. When more B$_2$O$_3$ is added, the value of ΔT decreases. ΔT values of TZBTB-5, TZBTB-7.5 and TZBTB-10 are 57 °C, 53 °C and 48 °C, respectively. These values are less than those reported in other works [30, 31]. In order to provide a flexible working temperature for fibre drawing, commonly accepted criterion for glass stability is $\Delta T \geq 100$ °C.
Even though ΔT of all TZBTB glasses falls below this criterion, re-shaping these glasses into a particular shape at temperature below crystallization temperature, e.g., fibre drawing process, still can be done.

Further from table 2, it can also be seen that T_g increases with increasing B$_2$O$_3$ content. The value of T_g for the base glass (TZBTB-0) is 336 °C. Their values for TZBTB-2.5, TZBTB-5.0, TZBTB-7.5 and TZBTB-10 are 349 °C, 353 °C, 370 °C and 373 °C, respectively. It is known that T_g relates to the minimum energy required to stretch the interatomic bond from a rigid state to a rubbery state where a glass can undergo a relatively large elongation as a relatively small load is applied. It is reported that T_g is linearly proportional to the average bond energy which also means to the average coordination number [32–35] and can be linked to the high network connectivity [36], with network connectivity being defined as the average number of bridging oxygen (BO) atoms connected to a network-forming cation [37]. In such a network, a BO atom is connected to two network polyhedrons. From table 2, it can therefore be expected that glass sample containing higher B$_2$O$_3$ concentration may have higher portion of BO. For this purpose, we have calculated a structural–chemical parameter (NBO/T) defined as the ratio between the number of gram-ions of NBO and the total number of gram-ions of network formers expressed using equation [38, 39]:

Figure 5. Relationship between Oxygen Packing density with variation of B$_2$O$_3$ concentration in TZBTB glasses.

Figure 6. Trend of decreasing refractive index and density as function of B$_2$O$_3$ concentration.

Samples	T_g (°C)	T_x (°C)	T_c (°C)	T_m (°C)	ΔT (°C)	K_g	BO/NBO
TZBTB-0	336	394	451	756	58	0.377	0.1
TZBTB-2.5	349	415	429	705	66	0.297	0.25
TZBTB-5.0	353	410	422	746	57	0.213	0.5
TZBTB-7.5	370	423	436	659	53	0.296	1
TZBTB-10.0	373	421	445	726	48	0.256	2.5

Table 2. Glass transformation temperature (T_g), Onset crystallisation temperature (T_x), Crystallisation temperature (T_c), Melting temperature (T_m), thermal stability (ΔT) and Glass forming tendency (K_g) of all TZBTB glasses with variation of B$_2$O$_3$ concentration.
Where T is total number of gram-ions of network formers, while N_{MO_i} and X_{MO_i} are the number and mol fraction of oxide M_iO_j in glass composition, respectively. Expressed in terms of BO/NBO, the results are given in Table 2. BO/NBO ratio increases with the increase of B_2O_3 content which is in a good agreement with the increase trend of OPD as the B_2O_3 content is increased (Figure 5). Furthermore, the decreases of field strength as shown in Table 1 supports this result. A BO atom carries less negative charge than that of an NBO atom. Consequently, increasing the BO portion in glass results in a decreasing field strength.

2.3. Optical properties

2.3.1. Refractive index

Table 1 gives refractive indices of the studied glasses. Their values decrease with the increase of B_2O_3 concentration (the increase of glass density) (Figure 6). Such a density-refractive index relation, which is also reported in other papers [41], can be easily understood from electromagnetic theory. It is known that refractive index (n) at an angular frequency ω can be expressed by the following equation:

$$n^2 = 1 + \chi$$

with

$$\chi = \frac{Ne^2}{m_e\varepsilon_0(\omega_0^2 - \omega^2) + 2\gamma \omega}$$

In this equation, N is electron density, which is the number of electrons bounded by N atomic nuclei per unit volume, e is electric charge, m_e is electron mass, γ is damping coefficient, and ε_0 is free space permittivity. Partial substitution of a heavier ion Zn^{2+} (Ar = 65.4 amu) by a lighter ion B^{3+} (Ar = 10.8 amu) means reduction of glass density and thus of N resulting in creating a glass with low refractive index.
Figure 7 depicts how refractive index of the studied glasses relate to \(\text{BO}/\text{NBO} \) ratio. Adding \(\text{B}^{3+} \) with an ionic polarisability 0.002 to partially substitute \(\text{Zn}^{2+} \) with an ionic polarisability of 0.283 causes decreasing glass polarisability. Since a glass having higher \(\text{BO}/\text{NBO} \) ratio is less polarisable than that which has lower \(\text{BO}/\text{NBO} \) ratio [41], any glass compositional changes resulting in increasing this ratio decrease the glass refractive index.

2.3.2. Optical absorption

Figure 8 is the absorption spectra of the studied glasses within the range of 200 nm–1100 nm recorded at room temperature. The absorption edges for all the studied glasses are in position within the range of 436.04 nm–444.45 nm (table 3); covering almost all UV regions, i.e., UVC (100–280 nm), UVB (280–315 nm) and UVA (315–400 nm); suggesting that these glasses could be used as good UV-shielding materials [42, 43]. As shown in the inset, the absorption edges are red shifted as \(\text{B}_2\text{O}_3 \) concentration is increased from 2.5 mol% to 10 mol%.

The energy gap values for all samples can be calculated using the Davis and Mott equation [44]:

\[
\alpha h\nu = B(h\nu - E_g)^m
\]

where \(\alpha \) is absorption coefficient, \(B \) is a constant called the tail band parameter, \(h \) is Planck’s constant, \(\nu \) is frequency of light, and \(m \) can take the values of 1/3, 1/2, 2 or 3 which is determined by the type of electronic

Sample Code	\(\lambda_c \) (nm)	\(E_{gap} \) (eV)	\(E_u \) (eV)	\(n \)
TZBTB 0	436.04	2.657	0.365	1.875 ± 0.015
TZBTB 2.5	437.48	2.669	0.370	1.766 ± 0.020
TZBTB 5	439.12	2.674	0.368	1.758 ± 0.017
TZBTB 7.5	441.79	2.701	0.367	1.751 ± 0.011
TZBTB 10	444.45	2.725	0.366	1.741 ± 0.021

Figure 9. Optical band gap of TZBTB Glass sample with variation the \(\text{B}_2\text{O}_3 \) content.

Figure 10. Refractive index of all the investigated glasses as function of band gap energy.
transition. For amorphous materials, the suggested value of m for the allowed transition is 2 while that for the prohibited transition is $2/3$. The value of E_{gap} is obtained by extrapolating the linear portion of $(\alpha h\nu)^{1/2}$ versus $h\nu$ as shown in figure 9 and the results are tabulated in table 3. E_{gap} increases with the increases of B$_2$O$_3$ concentration and thus to the ratio of BO/NBO (figure 7). Similar results have also been reported in other works [45, 46]. Increasing the amount of BO portion creates a more compact network and this leads to the lowering of the top of the valence band resulting in the increase of E_g [46, 47].

Linked to refractive index as discussed in previous sub-section, it is clearly seen that refractive index and E_{gap} respond conversely to the change of BO/NBO ratio. For all the investigated glasses, such relation is shown in figure 10 and is best fitted using equation:

$$n = n_0 + A_1 \exp \left(-\frac{E_{gap} - E_{gap,0}}{t_1} \right)$$

(12)

Where n_0, $E_{gap,0}$, A_1, and t_1 are constants. For the investigated samples, their values are 1.74615, 2.65687, 0.13139 and 0.00667, respectively. This typical change of refractive index versus band gap energy has also been reported in other papers but expressed in different approaches [48–53]. Moss’s formulation [52] for this relation is expressed as:

$$n^4E_{gap} = 95 \text{ eV}$$

(13)

This equation was then modified by Reddy and Ahamed [53] as:

$$n^4(E_{gap} - 0.365) = 154$$

(14)

A refractive index-energy bandgap relationship similar to that obtained in this work (equation (12)) was proposed by Kumar et al [51]:

$$n = K_1 e^{-K_2E_{gap}}$$

(15)

where K_1 and K_2 are constant. Whatever the approach [51–53], it can be seen that refractive index decreases with the increase of band gap energy. Applying equations (14) and (16) to the refractive index and band gap energy data available in [48–53], it suggests that constant values apply only to a glass host experiencing compositional change and not to relate refractive index and band gap energy values taken from combined different glass hosts.

2.3.3. Urbach energy

Further from figure 8, it can be seen that the spectral absorption near the UV absorption edge dropped exponentially with the increase of wavelength. Expressing the absorption coefficient (α) in terms of phonon energy ($h\nu$), it was shown that such change follows the empirical Urbach’s rule [54] expressed by

$$\alpha(\nu) = \alpha_0 \exp \left(\frac{h\nu}{E_u} \right)$$

(16)

where α_0 is a constant and E_u is the width of Urbach energy, the width of the band tail energy near the fundamental absorption edge arising from static disorder of glass structure or the extent of band tail in electronic density state in the region of the forbidden energy gap [47, 55, 56]. Figure 11 presents the plot of Inα as function of photon energy ($h\nu$). Urbach energy value can be calculated by finding the gradient (slope) from the linear region on the curve at lower phonon energy values. The Urbach energy of the glass containing 0 mol% of B$_2$O$_3$ is 0.365 eV. As 2.5 mol% of B$_2$O$_3$ is added, its value becomes 0.370 eV. Its value then decreases as the B$_2$O$_3$ concentration is increased, opposite to the way the band gap energy (E_{gap}) change as B$_2$O$_3$ concentration is
increased. These two results (increasing band gap and decreasing Urbach energy) suggest that adding B$_2$O$_3$ into the glass creates a more compact network and the glass structure becomes less disordered [57]. This result is consistent to the finding that the BO/NBO ratio increases with the increase of B$_2$O$_3$ concentration.

2.3.4. Raman spectra

Figure 12(a) is Raman spectra of the studied glasses in the range of 100–1000 cm$^{-1}$. The broad band observed in all spectra is attributed to the amorphous nature of glass. In all glasses, four distinctive bands located around 415 cm$^{-1}$, 440 cm$^{-1}$, 650 cm$^{-1}$ and 725 cm$^{-1}$ are observed. As shown by red arrow, the peak of the second hump shifts to higher wave number as B$_2$O$_3$ concentration increase. To discuss the effect of increasing B$_2$O$_3$ concentration on structural unit composing the glasses further, deconvolution of all bands into component bands was carried out for all Raman spectra (figures 12(b)–(f)). Deconvolution was carried out by varying the number of peaks until the maximum value of R^2 is obtained. For each spectrum, eight component bands are obtained.

The component band with peak in the range of 736–740 cm$^{-1}$ may be attributed to the stretching vibrations in TeO$_3$ and TeO$_{3+1}$ groups [58, 59], that is stretching vibration between Te and non-bridging oxygen ions in
TeO$_{3+x}$ unit [60]. The band located around 651–642 cm$^{-1}$ may be attributed to symmetric and anti-symmetric stretching vibration modes of TeO$_4$ units that form a continuous network [60, 61]. The band located at around 598–630 cm$^{-1}$ may be attributed to Te–O stretching vibrations mode in TeO$_4$ [62]. The fourth band located around 466–481 cm$^{-1}$ may be assigned as symmetric stretching and bending vibrational mode of Te–O–Te linkages [59, 63]. The fifth around 446–406 cm$^{-1}$ is assigned as symmetrical stretching or bending vibration of Te–O–Te linkages at corner sharing sites [64]. The sixth band at around 366–334 cm$^{-1}$ may be attributed to symmetric stretching vibration of Bi–O atoms or stretching vibration of Bi–O–Bi [1, 65]. The last two bands 287–250 cm$^{-1}$ and 212–206 cm$^{-1}$ may be attributed to vibrational mode of Te$_2$ based nanoclusters [66, 67], respectively.

Finally, it can be seen from figure 12 that the maximum phonon energy [68–71] of all the examined glasses are nearly the same, which are in the range of 736–740 cm$^{-1}$. These values are slightly lower than most of tellurite glasses [63, 72] but significantly lower than silicate glasses [73, 74], borate glasses [75], phosphate glasses [76]. Having such low phonon energy, doping rare earth ions in the examined glasses can result in low multi-phonon relaxation rate and therefore increase luminescence efficiency [69, 71]. These glasses can therefore be considered as a good glass matrix for fluorescent ions like Nd$^{3+}$, Tm$^{3+}$, etc.

3. Conclusions

Clear and free crystalline glasses with compositions of 60TeO$_2$–(30–x) ZnO–5Bi$_2$O$_3$–5TiO$_2$–xB$_2$O$_3$ with x = 0, 2.5, 5.0, 7.5 and 10.0 mol% have been successfully fabricated. The effect of addition of B$_2$O$_3$ on density, oxygen packing density, glass transition temperature, glass stability, BO/NBO ratio, band gap energy, refractive index, field strength, Urbach tail energy and phonon energy have been studied. As B$_2$O$_3$ increased from 0 to 10 mol%, density changed from 5.879 to 5.646 g cm$^{-3}$, field strength 1.113 to 0.072 (10$^{-13}$ cm$^{-2}$), oxygen packing density 69.77 to 75.26 mol$^{-1}$, BO/NBO ratio 0.1 to 2.5, refractive index 1.875 to 1.741 and band gap energy 2.657 to 2.725. Glass containing 2.5% of B$_2$O$_3$ shows the highest glass thermal stability ($\Delta T = 66 ^\circ C$), which still below commonly accepted criterion for glass stability ($\Delta T \geq 100 ^\circ C$). By carefully control the operating temperature of fibre drawing process, fabricating fibre optic from TZBTTB glass is still affordable and very challenging especially if it is related to their low phonon energy which is in the range of 736–740 cm$^{-1}$.

Acknowledgments

This work was financially supported by Sebelas Maret University under Mandatory Research Scheme (grant no: 718/UN27.21/PP/2019).

Data availability statement

The data generated and/or analysed during the current study are not publicly available for legal/ethical reasons but are available from the corresponding author on reasonable request.

ORCID iDs

Ahmad Marzuki https://orcid.org/0000-0001-8515-7522

References

[1] Gupta N, Kaur A, Khanna A, Gonzalez F, Pesquera C, Iordanova R and Chen B 2017 Structure–property correlations in TiO$_2$–Bi$_2$O$_3$–ZnO–Te$_2$O$_3$ glasses J. Non-Cryst. Solids 470 168–77
[2] Ahmad S K, Kondaule E and Rahman S 2015 Effect of F ions on physical and optical properties of fluorine substituted zinc arsenic tellurite glasses IOP Conf. Ser.: Mater. Sci. Eng. 73 012080
[3] Tijani S A, Kanal S M, Al-Hadeethi Y, Arib M, Hussein M A, Wageh S and Dim L A 2018 Radiation shielding properties of transparent erbium zinc tellurite glass system determined at medical diagnostic energies J. Alloys Compd. 741 293–9
[4] Usman A, Halimah M K, Latiff A A, Muhammad F D and Abubakar A I 2018 Influence of Ho$_{3+}$ ions on structural and optical properties of zinc borotellurite glass system J. Non-Cryst. Solids 483 18–25
[5] El-Mallawy R 2011 Tellurite Glasses Handbook: Physical Properties and Data 2nd edn (Boca Raton, FL: CRC Press)
[6] Marzuki A, Wahyudi and Pramuda A 2017 Spectroscopic properties of TeO$_2$–Bi$_2$O$_3$–ZnO–PhO based tellurite glasses Mater. Sci. Forum 904 98–101
[7] Marzuki A, Wahyudi, Pramuda A and Nurmalasari I 2016 Optical and physical properties of PbO-modified TeO$_2$–ZnO–Bi$_2$O$_3$ glasses AIP Conf. Proc. 1725, 020044–1–020044–5
[8] Muravyev S V, Anashkina E A, Andrianov A V, Dorofeev V V, Motorin S E, Koptev M Y and Kim A V 2018 Dual-band Tm$^{3+}$-doped tellurite fiber amplifier and laser at 1.9 µm and 2.3 µm Sci. Rep. 8 16164
[9] O’Donnell M D et al 2007 Tellurite and fluorotellurite glasses for fiber optic raman amplifiers: glass characterization, optical properties, raman gain, preliminary fiberization, and fiber characterization J. Am. Ceram. Soc. 90 1448–57
[10] Feng X, Shi J, Segura M, White N M, Kannan P, Calvez L, Zhang X, Brilland L and Loh W H 2013 Towards water–free tellurite glass fiber for 2–5 μm nonlinear applications Fibers 1 70–81
[11] Gaafar M S, Abd El-Aal, Gerges N S O W and El-Amir G 2009 Elastic properties and structural studies on some zinc–borate glasses derived from ultrasonic, FT-IR and x-ray techniques, J. Alloys Compd. 475 535–42
[12] Rao T R, Venkata Reddy Ch, Ch. Rama Krishna Ch, Thampy U S U, Raju R R, Rao P S and Ravikumar V S S N 2011 Correlation between physical and structural properties of Co3+– doped alkali zinc borate glasses J. Non-Cryst. Solids 357 3773–80
[13] Yao Z Y, Möncke D, Kamitsos E I, Houizot P, Celarie F, Rouxel T and Wondraczek L 2016 Structure and mechanical properties of copper–lead and copper–zinc borate glasses J. Non-Cryst. Solids 435 55–68
[14] Nagendra B and Narasimhulu K 2018 Physical and optical properties of sodium borotellurite glasses J. Sci. Res. Phys. Appl. Sci. 6 105–10
[15] Umar S A, Halimah M K, Chan K T and Latif A A 2017 Physical, structural and optical properties of erbium doped rice husk silicate borate glasses (Er-doped RBSBT) glasses J. Non-Cryst. Solids 472 31–8
[16] Yang Y, Liu, Y, Cai, P, Maalej R and Seo H J 2015 Thermal stability and spectroscopic properties of Ho3+ doped tellurite–borate glasses J. Rare Earths 33 939–45
[17] Srivastava P, Rai P S B and Rai D K 2003 Optical properties of Dy3+ doped calio glass on addition of lead oxide, Spectrochim. Acta A 59 3303–11
[18] Li X, Nie Q, Dai S, Xu T, Lu L and Zhang X 2008 Energy transfer and frequency upconversion in Ho3+/Yb3+ co-doped bismuth germanate glasses J. Alloys Compd. 454 510–4
[19] Marzuki A, Pramuda A and Fausta D E 2020 Effect of Nd2O3 and Na2O concentration on physical and spectroscopic properties of TeO2–Bi2O3–ZnO–Na2O–Nd2O3 glasses Mater. Res. Express 7 065201
[20] Aryal P, Kesarvulu C R, Kim H J, Lee S W, Kang S J, Kaewkhoj J, Chanthima N and Damedee B 2018 Optical and luminescence characteristics of Eu3+ doped B2O3:SiO2:Y2O3:CaO glasses for visible red laser and scintillation material applications J. Rare Earth 36 482–91
[21] Marzuki A, Djkisadipura W M S, Suryanty V and Fausta D E 1912 Saraswati A, Singh G R 2010 Compositional dependence of density and refractive index in borotellurite glass J. Phys. Conf. Ser. 1012 012026
[22] Shaaban K S and Yousef E S 2020 Optical properties of Bi2O3 doped boro tellurite glasses and glass ceramics Optik 203 163976
[23] Elkhoshkany N, Abbas R, El-Mallawy R and Hautoth S F 2017 Optical properties and crystallization of bismuth boro-tellurite glasses J. Non-Cryst. Solids 476 15–24
[24] Hager I Z, Othman H A and Talev D T 2017 Compositional dependence of thermal, optical and mechanical properties of oxidofluoride glass J. Phys. Conf. Ser. 183 012125
[25] Lakshminarayana G, Weis E M, Bennert B L, Labouriau A, Williams D J, Duque J G, Sheik-Bahae M and Hehlen M P 2012 Structural, thermal, and luminescence properties of cerium–fluoride–rich oxidofluoride glasses Opt. Mater. 35 117–25
[26] Tang W, Tian Y, Li B, Xu Y, Liu Q, Zhang J and Xu S 2019 Effect of introduction of TiO2 and GeO2 oxides on thermal stability and 2 μm luminescence properties of tellurite glasses Ceram. Int. 45 16411–6
[27] Leal J J, Narro-Garcia R, Flores-De los Rios J P, Gutierrez-Mendez N, Ramos–Sánchez V H, González-Castillo J R and Rodríguez E 2019 Effect of TiO2 on the thermal and optical properties of Er3+/Yb3+ co-doped tellurite glasses for optical sensor. J. Lumines. 208 342–9
[28] Ahmad A U, Hashim S and Ghoshal S K 2020 Physical, thermal and absorption traits of lithium strontium zinc borate glasses: Sensitiveness on Dy3+ doping J. Alloys Compd. 844 156176
[29] Thakur S, Thakur V, Kaur A and Singh L 2019 Structural, optical and thermal properties of nickel doped bismuth borate glasses J. Non-Cryst. Solids 512 60–71
[30] Kaur A, Khanna A, González F, Pesquera C and Chen B 2016 Structural, optical, dielectric and thermal properties of molybdenum tellurite and borotellurite glasses J. Non-Cryst. Solids 444 1–10
[31] Kilic G, Ilik E, Issa S A M, Issa B, Al-Buraihi M S, Gokhan Issever, U, Zakaly H M H and Tekin H O 2020 Ytterbium (Yb) doped mixed alkali zirconium borate glasses: Structural studies of ZnO
[32] Sharma P, Rangia V S, Natrajaswamy P and Sharma P 2007 Compositional dependence of physical parameters in Ge17Si83–xSbx based chalcogenide glasses J. Non-Cryst. Solids 357 3773–80
[33] Saxena M and Gupta S 2016 Influence of Bi concentration on major physical parameters of Ge14Bi3Se67–xTe10 based chalcogenide glasses J. Manag. Sci. Eng. Manag. 2 622–7
[34] Kumar A, Barman P and Sharma R 2010 Study of the physical properties with compositional dependence of bi content in Te–Se–Bi glassy system Adv. Appl. Sci. Res. 1 47–57
[35] Gu X J, Poon J S, Shiflet G J and Widom M 2008 Mechanical properties, glass transition temperature, and bond enthalpy trends of high metalloid Fe-based bulk metallic glasses Appl. Phys. Lett. 92 161910
[36] Coon E, Whittier A M, Abel B M, Stapleton E L, Miller R and Fu Q 2021 Viscosity and crystallization of bioactive glasses from 4555 to 13–93 Int. J. Appl. Glass Sci. 12 65–77
[37] Christie J K, Ainsworth R I and de Leeuw N H 2016 Investigating structural features which control the dissolution of bioactive phosphate glasses: Beyond the network connectivity J. Non-Cryst. Solids 432 31–4
[38] Mills K C, Karagadde S, Lee, Yuan P D L and Shabbazian F 2016 Calculation of physical properties for use in models of continuous casting process. I. Mould slags ISIJ Int. 56 274–81
[39] Kuryaeva R G 2006 Degree of polymerization of the CaA12Si2O8 aluminosilicate glass J. Non-Cryst. Solids 325 503–10
[40] Sreenivasan H, Kinnunen P, Adivasina E, Pattenan M, Kantola A M, Tellki V V, Huttula M, Cao W, Provis J L and Ilkkanen M 2020 Field strength of network-modifying cation dictates the structure of (Na–Mg) aluminosilicate glasses front Mater. 7 267
[41] Kuryaeva R G, Halimah M K, Taihil Z A, Sidek H A A, Daad W M, Zaidan A W and Khamiraul A M 2011 Optical properties of ternary TeO2–Bi2O3–ZnO glass system IOP Conf. Ser.: Mater. Sci. Eng. 77 2 622–7
[42] Jiang Y, Wang L, Zhang W, Teng L, Hu F and Guo H 2020 Dual-valence Ce doped UV-shielding glasses with high transparency and stability Ceram. Int. 46 16032–7
[43] Rammah Y S, Abouhawa A S, Sayed M I, Tekin H O and El-Mallawy R 2019 Structural, UV and shielding properties of ZBPC glasses J. Non-Cryst. Solids 509 99–105
[44] Mott N F and Davis E A 2012 Electronic Processes in Noncrystalline Materials (Oxford: Oxford University Press)
[45] Saritha D, Markandeya Y, Salagram M, Vithal M, Singh A K and Bhikshamaniah G 2008 Effect of Bi2O3 on physical, optical and structural studies of ZnO–Bi2O3–B2O3 glasses J. Non-Cryst. Solids 354 5573–9
[46] Mohamed E A, Ahmad F and Aly K A 2012 Effect of lithium addition on thermal and optical properties of zinc–tellurite glass J. Alloys Compd. 538 230–6
[47] Japari S, Sayed M I, Yahya A K, Anis A L, Iskandar S M, Zaid M H M, Azlan M N and Hisam R 2021 Effects of Na2O on optical and radiation shielding properties of xNa2O·(20−x)K2O·30V2O5·50TeO2 mixed alkali glasses Results Phys. 22 103946
[48] Mallur SB, Czarnecki T, Adhikari A and Babu P K 2015 Compositional dependence of optical band gap and refractive index in lead and bismuth borate glasses Mater. Res. Bull. 68 27–34
[49] Eraiah B 2010 Optical properties of lead–tellurite glasses doped with samarium Trioxide Bull. Mater. Sci. 33 391–4
[50] Marzouk S Y, Hammad A H, Elshahier H M, Abbas W and Zidan N A 2017 The correlation between the structural, optical, and electrical properties in mixed alkali fluoroborate glasses containing vanadium ions J. Non-Cryst. Solids 476 30–5
[51] Kumar V, Sinha A, Singh B P, Sinha A P and Jha V 2015 Refractive index and electronic polarizability of ternary chalcopryte semiconductors chiense Phys. Lett. 32 127701
[52] Moss T S 1985 Relations between the Refractive Index and Energy Gap of Semiconductors Phys. Status Solidi b 131 415–27
[53] Reddy R R and Ahammed Y N 1995 A study on the Moss relation Infrared Phys. Technol. 36 825–30
[54] Ikhamayes J and Ahmad-Bitar R N 2013 A study of the optical bandgap energy and Urbach tail of spray–deposited CdS thin films J. Mater. Res. Technol. 2 221–7
[55] Vainshtein I A, Zatsepin A F, Kortov V S and Shchapova Y V 2000 The urbach rule for the PbO–SiO2 glasses Phys. Solid State 42 230–5
[56] Ahmad J 2009 Effect of Ca-substitution on the optical band gap and urbach energy of BaTi2O5 bulk glass J. Non-Cryst. Solids 351 853–7
[57] Zawada K P, Lesniak M, Filipecka K, Golis E, Yousef E S, Pawlik P, Dorosz D, Sitarz M and Filipecki J 2021 Structural studies of tellurite glasses J. Non-Cryst. Solids 582 902503
[58] Jaba N, Mermet A, Duval F and Champagne P 2005 Spectroscopic properties of Eu3+ ions codoped silicate glasses and opaque glass J. Non-Cryst. Solids 358 3829
[59] He J, Zhang H and Lin A 2019 Structural property of bismuth–doped tellurite glasses for nonlinear and Raman fiber applications Opt. Mater. 96 109280
[60] Kundu R S, Dhankar S, Punia R, Dultz M and Kishore N 2016 Thermal and structural properties of zinc modified tellurite based glasses J. Non-Cryst. Solids 398 9–7
[61] Moiner P, Vosejpková K, Koudelka L, Montagne L and Revel B 2011 Structure and properties of glasses in ZnO–P2O5–TeO2 mixed alkali glasses J. Non-Cryst. Solids 357 2648–52
[62] Elisa M et al 2020 A new zinc phosphate–tellurite glass for magneto–optical applications Nanomaterials 10 1875
[63] Chen F, Xu S, Wei T, Wang F, Cai M, Tian Y and Xu S 2015 Mid-infrared emission and Raman spectra analysis of Er3+-doped oxyfluorotellurite glasses Appl. Opt. 54 3345–52
[64] Maouli A, Haouari M, Bulou A, Boudard B and Kenouden H 2018 Effect of BaF2 on the structural and spectroscopic properties of Er3+ /Yb3+ ions codoped Tellurite glasses J. Lumin. 196 1–10
[65] Zhou D, Bai X and Zhou H 2017 Preparation of Ho3+ /Tm3+ co-doped lanthanum tungsten germanium tellurium glass fiber and its laser performance for 2.0 μm Sci. Rep. 7 44747
[66] Zhang M, Wen H, Yu J, Ai F, Yu H, Pan X, Shao H, Ta M and Gai L 2017 Investigation of upconversion luminescence in Er3+ /Yb3+ co-doped Nb2O5-based glasses prepared by aerodynamic levitation method Opt. Express 7 3222
[67] Alves R T, Silva A C A, Dantas N O and Gouveia-Neto A S 2020 Raman and optical spectroscopy studies in Tm3+ /Yb3+–codoped zinc tellurite glasses J. Lumin. 230 117738
[68] Cao R, Lu Y, Tian Y, Huang F, Guo Y, Xu S and Zhang Z 2016 2 μm emission properties and nonresonant energy transfer of Er3+ and Ho3+ co-doped silicate glasses Sci. Rep. 6 37873
[69] Zhao Q, Guerette M, Scannell G and Huang L 2012 In-situ high temperature Raman and Brillouin light scattering studies of sodium silicate glasses J. Non-Cryst. Solids 358 3418–26
[70] James I T, Jose J K, Manjunatha M, Suresh K and Madhu A 2020 Structural, luminescence and NMR studies on Nd3+–doped sodium–calcium–borate glasses for lasing applications Ceram. Int. 46 27099–27109
[71] Naro-Garcia R, Doistena H, Lobo-Luke T, Guerrero-Contreras J, Jayasekaran C K, Quintero-Torres R and De la Rosa E 2015 Spectroscopic properties of Eu3+ /Nd3+ co-doped phosphate glasses and opaque glass–ceramics Opt. Mater. 46 54–9