Multiparticle correlation studies
in pPb collisions at $\sqrt{S_{NN}}=8.16$ TeV

The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters.

Citation	CMS Collaboration (Sirunyan, A., et al.), "Multiparticle correlation studies in pPb collisions at $\sqrt{S_{NN}}=8.16$ TeV." Physical Review C 101 (Jan. 2020): no. 014912 doi http://dx.doi.org/10.1103/PhysRevC.101.014912 ©2020 Author[s]
As Published	http://dx.doi.org/10.1103/PhysRevC.101.014912
Publisher	American Physical Society
Version	Author’s final manuscript
Citable link	https://hdl.handle.net/1721.1/125754
Terms of Use	Creative Commons Attribution 3.0 unported license
Detailed Terms	http://creativecommons.org/licenses/by/3.0
Multiparticle correlation studies in pPb collisions at $\sqrt{s_{NN}} = 8.16$ TeV

A. M. Sirunyan et al.*
(CMS Collaboration)

(Received 25 April 2019; revised manuscript received 3 November 2019; published 23 January 2020)

The second- and third-order azimuthal anisotropy Fourier harmonics of charged particles produced in pPb collisions, at $\sqrt{s_{NN}} = 8.16$ TeV, are studied over a wide range of event multiplicities. Multiparticle correlations are used to isolate global properties stemming from the collision overlap geometry. The second-order “elliptic” harmonic moment is obtained with high precision through four-, six-, and eight-particle correlations and, for the first time, the third-order “triangular” harmonic moment is studied using four-particle correlations. A sample of peripheral PbPb collisions at $\sqrt{s_{NN}} = 5.02$ TeV that covers a similar range of event multiplicities as the pPb results is also analyzed. Model calculations of initial-state fluctuations in pPb and PbPb collisions can be directly compared to the high-precision experimental results. This work provides new insight into the fluctuation-driven origin of the v_3 coefficients in pPb and PbPb collisions, and into the dominating overall collision geometry in PbPb collisions at the earliest stages of heavy ion interactions.

DOI: 10.1103/PhysRevC.101.014912

I. INTRODUCTION

In collisions of ultrarelativistic heavy ions, two-particle azimuthal correlations between the large number of particles created over a broad range in pseudorapidity were first observed in gold-gold and copper-copper collisions at the BNL Relativistic Heavy Ion Collider (RHIC) [1–4], and have subsequently been studied in lead-lead (PbPb) collisions at the CERN Large Hadron Collider (LHC) [5–11]. These correlations are thought to reflect the collective motion of a strongly interacting and expanding medium with quark and gluon degrees of freedom, namely, the quark-gluon plasma [12]. The observed azimuthal correlation structure can be characterized by Fourier harmonics, with the second (v_2) and third (v_3) harmonics referred to as “elliptic” and “triangular” flow, respectively. Within a hydrodynamic picture, the Fourier harmonics are related to the initial geometry of the colliding system and provide insight into the transport properties of the produced medium [13–15]. Fluctuations can also arise from the discrete substructure of the interaction region at the parton level [16,17] and can have a significant effect on the observed higher-order harmonic coefficients.

Two-particle azimuthal correlations, which are long range in pseudorapidity, are also found in small systems for collisions leading to high final-state particle densities. At the LHC, long-range correlations have been observed in proton-proton (pp) [18–20] and proton-lead (pPb) [21–24] collisions. Similar results have been obtained at RHIC in studies of deuteron-gold, proton-gold, and helium-3-gold collisions [25–28]. The origin of the long-range correlations in systems involving only a small number of participating nucleons is still under active discussion [29]. One possibility is that fluctuation-driven asymmetries in the initial-state nucleon locations within the overlap region are transferred to the final-state particle distributions through the hydrodynamic evolution of an expanding plasma [30–32]. Alternatively, it has been proposed that the observed behavior arises from the transfer of initial-state gluon correlations to the produced particles [33–35].

Studies of azimuthal correlations in small systems using two or more particles, as achieved through the use of a multiparticle cumulant expansion [36], show that the pp [37] and pPb [38] systems develop similar collective behavior to that found in heavier systems [39]. The cumulants quantify an nth-order contribution of the azimuthal correlation that is irreducible to lower-order correlations. By requiring correlations among multiple particles, correlations that are not related to a bulk property of the medium, such as back-to-back jet correlations and resonance decays, are strongly suppressed [40]. The v_n harmonics based on different orders of the multiparticle expansion provide information on the event-by-event fluctuation of the observed anisotropy [41]. Previous v_2 multiparticle cumulant results for pPb collisions at a nucleon-nucleon center-of-mass energy of $\sqrt{s_{NN}} = 5.02$ TeV suggest a direct correlation of the final-state asymmetry with the initial-state eccentricity of the participating nucleons [38,42]. The v_3 harmonic is expected to be dominated by fluctuations in the initial-state geometry. The multiparticle correlations of the v_3 harmonic are then expected to reflect these fluctuations. An earlier multiparticle correlation measurement by the ATLAS Collaboration found evidence for a finite v_3 harmonic amplitude in the pPb system [43]. With precise measurements of
the v_2 and v_3 multiparticle cumulants, it becomes possible to make direct comparison of calculations based on eccentricity fluctuations in the initial-state geometry to the higher-order moments of the fluctuation distributions. The measurements provide key input for models that explore the hydrodynamic expansion of the medium \cite{44,45}, as well as for models that propose that final-state asymmetries in light systems arise from partons scattering off localized domains of color charge in the initial state \cite{34}. In the hydrodynamic picture, the v_2 and v_3 values are dominated by fluctuations in $p\Pb$ collisions. In $\Pb\Pb$ collisions, the v_2 value is dominated by the lenticular shape of the overlap geometry, while the v_3 value is dominated by initial-state fluctuations of the nucleon locations \cite{16}.

In this work, the results from $p\Pb$ collisions at $\sqrt{s_{\text{NN}}} = 8.16 \text{TeV}$ are studied with a significant improvement in the precision of the v_2 results compared to the earlier measurements at $\sqrt{s_{\text{NN}}} = 5.02 \text{TeV}$. For the first time, the v_3 harmonic is determined by multiparticle correlations. The $p\Pb$ results are also compared to those found for PbPb collisions at $\sqrt{s_{\text{NN}}} = 5.02 \text{TeV}$ to explore the dependence on the overlap geometry. The ratios between the four-particle and two-particle v_n values provide information on the relative importance of the global geometry and the fluctuation-driven asymmetries \cite{46}. These ratios are explored for both the v_2 and v_3 harmonics and are compared between the $p\Pb$ and PbPb systems.

II. EXPERIMENTAL SETUP AND DATA SAMPLE

The CMS detector comprises a number of subsystems \cite{47}. The results in this paper are mainly based on the silicon tracker information. The silicon tracker, located in the 3.8 T field of a superconducting solenoid, consists of 1 440 silicon pixel and 15 148 silicon strip detector modules. The silicon tracker measures charged particles within the laboratory pseudorapidity range $|\eta| < 2.5$, and provides an impact parameter resolution of $\approx 15 \mu \text{m}$ and a transverse momentum (p_T) resolution better than 1.5% up to 100 GeV/c \cite{47}. The electromagnetic (ECAL) and hadron (HCAL) calorimeters are also located inside the solenoid and cover the pseudorapidity range $|\eta| < 3.0$. The HCAL barrel and endcaps are sampling calorimeters composed of brass and scintillator plates. The ECAL consists of lead tungstate crystals arranged in a quasiprojective geometry. Iron and quartz-fiber Čerenkov hadron forward (HF) calorimeters cover the range $3.0 < |\eta| < 5.2$ on either side of the interaction region. These HF calorimeters are azimuthally subdivided into 20° modular wedges and further segmented to form $0.175 \times 0.175 \text{rad} (\Delta\eta \times \Delta\phi)$ cells. The ECAL and HCAL cells are grouped to form “towers.” The detailed Monte Carlo (MC) simulation of the CMS detector response is based on GEANT4 \cite{48}.

The analysis is performed using data recorded by CMS during the LHC $p\Pb$ run in 2016 and corresponds to an integrated luminosity of 186 nb^{-1} \cite{49}. The beam energies were 6.5 TeV for protons and 2.56 TeV per nucleon for lead nuclei, resulting in $\sqrt{s_{\text{NN}}} = 8.16 \text{TeV}$. The beam directions were reversed during the run, allowing a check of potential detector related systematic uncertainties. No significant differences were detected and the merged results are reported.

The nucleon-nucleon center-of-mass in the $p\Pb$ collisions is not at rest with respect to the laboratory frame because of the energy difference between the colliding particles. Massless particles emitted at $\eta = 0$ in the nucleon-nucleon center-of-mass frame will be detected at $\eta = -0.465$ (clockwise proton beam) or 0.465 (counterclockwise proton beam) in the laboratory frame. In this paper, an unsubscripted η symbol is used to denote the laboratory frame pseudorapidity. A sample of $\sqrt{s_{\text{NN}}} = 5.02 \text{TeV} \Pb Pb$ data collected during the 2015 LHC heavy ion run, corresponding to an integrated luminosity of 1.2 μb^{-1}, is also analyzed for comparison purposes. The triggers and event selection, as well as track reconstruction and selection, are identical to those used in Ref. \cite{50} and are summarized below.

Minimum bias (MB) $p\Pb$ events were triggered by requiring at least one track with $p_T > 0.4 \text{GeV}/c$ in the pixel tracker during a $p\Pb$ bunch crossing and the presence of at least one tower in one of the two HF detectors having an energy above 1 GeV. To select high-multiplicity $p\Pb$ collisions, a dedicated high-multiplicity trigger was implemented using the CMS level-1 (L1) and high-level trigger (HLT) systems \cite{51}. At L1, the total number of ECAL and HCAL towers with the transverse energies above a threshold of 0.5 GeV is required to exceed 120 and 150 in ECAL and HCAL, respectively. The events which pass the L1 trigger are then subsequently filtered in the HLT. The track reconstruction that is performed online, as part of the HLT trigger, uses the identical reconstruction algorithm as employed in the offline processing \cite{52}. For each event, the vertex reconstructed with the highest number of pixel detector tracks was selected. The number (multiplicity) of pixel tracks ($N_{\text{track}}^{\text{online}}$) with $|\eta| < 2.4$, $p_T > 0.4 \text{GeV}/c$, and a distance of closest approach to this vertex of 0.4 cm or less, was determined for each event. Several multiplicity ranges were defined with prescale factors that were reduced with increasing particle multiplicity until, for the highest-multiplicity events, no prescale was applied.

In the offline analysis, hadronic collisions are selected by the requirement of a coincidence of at least one HF calorimeter tower containing more than 3 GeV of total energy in each of the HF detectors within $3.0 < |\eta| < 5.2$. Events are also required to contain at least one reconstructed primary vertex within 15 cm from the nominal interaction point along the beam axis and within 0.15 cm transverse to the beam trajectory. At least two reconstructed tracks are required to be associated with the primary vertex. Beam-related background is suppressed by rejecting events for which less than 25% of all reconstructed tracks pass the track selection criteria.

Tracks are used that pass the high-purity selection criteria described in Ref. \cite{52}. In addition, a reconstructed track is only considered as a candidate track from the primary vertex if the separation along the beam axis (z) between the track and the best vertex, and the track-vertex impact parameter measured transverse to the beam, are each less than three times their respective uncertainties. The relative uncertainty in the p_T measurement is required to be less than 10%. To restrict the analysis to a kinematic region of high tracking efficiency and a low rate of incorrectly reconstructed tracks, only tracks with $|\eta| < 2.4$ and $0.3 < p_T < 3.0 \text{GeV}/c$ are used.

014912-2
The entire pPb data set is divided into classes of reconstructed track multiplicity, $N_{\text{off}}^{\text{track}}$, where primary tracks passing the high-purity criteria and with $|\eta| < 2.4$ and $p_T > 0.4 \text{ GeV}/c$ are counted. The HLT p_T cutoff, which is only applied on determination of $N_{\text{off}}^{\text{track}}$, is higher than that used for the analysis because of online processing time constraints. The absence of the time constraints in the offline process allows extending the p_T coverage down to $0.3 \text{ GeV}/c$ in the cumulant calculation. The multiplicity classification in this analysis is identical to that used in Ref. [40], where more details are provided, including a table relating N_{off} to the fraction of MB triggered events. The PbPb sample is reprocessed using the same event selection and track reconstruction as for the present pPb analysis. A description of the analysis of 2015 PbPb data can be found in Ref. [50].

III. ANALYSIS TECHNIQUES

The analysis is done using the Q-cumulant method [41]. Here it is possible to determine the nth harmonic moment based on correlations among all possible grouping of m particles, where m also corresponds to the cumulant order. The multiparticle correlations for cumulant orders 2 through 8 can be expressed as

$$
\langle\langle 2 \rangle\rangle \equiv \langle e^{i\phi_1 - \phi_2} \rangle,
\langle\langle 4 \rangle\rangle \equiv \langle e^{i(\phi_1 + \phi_2 - \phi_3 - \phi_4)} \rangle,
\langle\langle 6 \rangle\rangle \equiv \langle e^{i(\phi_1 + \phi_2 + \phi_3 - \phi_4 - \phi_5 + \phi_6)} \rangle,
\langle\langle 8 \rangle\rangle \equiv \langle e^{i(\phi_1 + \phi_2 + \phi_3 + \phi_4 - \phi_5 - \phi_6 - \phi_7 + \phi_8)} \rangle,
$$

where ϕ_i ($i = 1, \ldots, m$) are the azimuthal angles of one unique combination of m particles in an event, n is the harmonic number (2 for elliptic and 3 for triangular flow, respectively), and $\langle\langle \cdot \cdot \cdot \rangle\rangle$ represents the average over all combinations from all events within a given N_{off} range. The higher-order cumulants, $c_n\{m\}$, are calculated as [41]

$$
c_n\{4\} = \langle\langle 4 \rangle\rangle - 2\langle\langle 2 \rangle\rangle^2,
$$

$$
c_n\{6\} = \langle\langle 6 \rangle\rangle - 9\langle\langle 4 \rangle\rangle\langle\langle 2 \rangle\rangle + 12\langle\langle 2 \rangle\rangle^3,
$$

$$
c_n\{8\} = \langle\langle 8 \rangle\rangle - 16\langle\langle 6 \rangle\rangle\langle\langle 2 \rangle\rangle - 18\langle\langle 4 \rangle\rangle^2 + 144\langle\langle 4 \rangle\rangle\langle\langle 2 \rangle\rangle^2 - 144\langle\langle 2 \rangle\rangle^4.
$$

The Fourier harmonics $v_n\{m\}$ that characterize the global azimuthal behavior can be related to the m-particle correlations using a generic framework discussed in Ref. [53], with

$$
v_n\{4\} = \sqrt{-c_n\{4\}},
v_n\{6\} = \sqrt{\frac{1}{4} c_n\{6\}},
v_n\{8\} = \sqrt{\frac{1}{33} c_n\{8\}}.
$$

Each reconstructed track is weighted by a correction factor to account for the reconstruction efficiency, the detector acceptance, and the fraction of misreconstructed tracks. This factor is based on HIJING 1.383 [54] MC simulations, and is determined as a function of p_T, η, and ϕ, as described in Refs. [5,8]. The $c_n\{4\}$ and $c_n\{8\}$ values need to be negative, and the $c_n\{6\}$ value needs to be positive, in order to have real values for the $v_n\{m\}$ coefficients. The same method was used in previous CMS analyses [38,40,55]. The two-particle correlation $v_n\{2\}$ can be measured as described in Ref. [50]. Increasing the numbers of particles used to determine the correlations for a given harmonic reduces the sensitivity of the results to few-particle correlations that are not related to a global behavior. The ratios between v_n harmonics involving different numbers of particles can be used to test the system independence of fluctuation-driven initial-state anisotropies in the hydrodynamic picture. In particular, the triangular flow ratio $v_3\{4\}/v_3\{2\}$, which is dominated by fluctuations, can be used to confirm this expectation.

A number of potential sources of systematic uncertainties affecting the experimental $v_n\{m\}$ values are considered. The sensitivity of the results to the selection criteria for valid tracks was studied by varying the criteria. The sensitivity to the primary vertex position was explored by performing the analysis for different vertex z ranges. The potential for an HLT trigger bias was investigated by changing the trigger thresholds. Pileup effects, where two or more interactions occur in the same bunch crossing, were studied by comparing results obtained during different beam differential luminosity periods. For the pPb results, the beam directions were reversed, allowing for potential detector acceptance effects to be explored. No evident N_{off}-dependent systematic effects are observed. The total systematic uncertainties, obtained by combining the individual uncertainties in quadrature, are found to be 1–2.4% for the v_2 coefficients for both pPb and PbPb collisions and 5% (2.6%) for the pPb (PbPb) v_3 results. The pPb (PbPb) $v_n\{4\}/v_n\{2\}$ ratios systematic uncertainties are found to be 3% (1%). The pPb $v_2\{6\}/v_2\{4\}$ and $v_2\{8\}/v_2\{6\}$ ratio systematic uncertainties are found to be 3%.

IV. RESULTS

The second- and third-order harmonic multiparticle cumulant results v_2 and v_3 for charged particles with $0.3 < p_T < 3.0 \text{ GeV}/c$ and $|\eta| < 2.4$ are shown in Fig. 1 for pPb collisions at $\sqrt{s_{NN}} = 8.16 \text{ TeV}$ and for PbPb collisions at $\sqrt{s_{NN}} = 5.02 \text{ TeV}$. The two-particle correlation results $v_{2+3}\{2\}(|\Delta \eta| > 2)$ and $v_{2+3}\{2\}(|\Delta \phi| > 2)$, with low-multiplicity subtraction to remove jet correlations, are taken from Ref. [50]. The multiparticle elliptic flow harmonics $v_2\{4\}$, $v_2\{6\}$, and $v_2\{8\}$ are found to be real and of similar magnitude. The four-particle triangular flow harmonic, $v_3\{4\}$, is also found to be real, with an amplitude consistent with the earlier ATLAS $c_3\{4\}$ results [43]. These results indicate collective behavior in high-multiplicity pPb collisions at $\sqrt{s_{NN}} = 8.16 \text{ TeV}$ [44,45]. Comparing the different systems, the v_2 values for PbPb collisions are higher than those for pPb collisions, which is consistent with the lenticular-shaped overlap geometry dominating this harmonic for PbPb collisions. The two-particle correlation v_2 and v_3 results are systematically higher than the multiparticle results for both pPb and PbPb collision. This
is expected if there is a significant fluctuation component, which is expected to increase the two-particle correlation results and decrease the multiparticle correlation results, as compared to cases where fluctuations are absent [46]. With increasing $N_{\text{coll}}^\text{offline}$, the $v_2[4]$, $v_2[6]$, and $v_2[8]$ values all rise in PbPb collisions, while they fall slightly in pPb collisions. This might suggest that the fluctuation-driven component of the eccentricity, as compared to the component arising from the lenticular overlap geometry, is decreasing with increasing multiplicity in the PbPb system. The v_3 values are comparable for both systems, as expected if this higher-order harmonic is dominated by fluctuation behavior. A (3+1)-dimensional event-by-event viscous hydrodynamic calculation of the four-particle cumulant $v_{3}[4]$ for PbPb collisions at $\sqrt{s_{NN}} = 5.02$ TeV [56] is also shown in Fig. 1 as a gray band. This calculation, with an entropy distribution taken as a two-dimensional Gaussian of width $\sigma = 0.4$ fm and having a shear viscosity-to-entropy ratio of $\eta/s = 0.08$, is found to be consistent with the data.

Figure 2 shows the ratios $v_{2}[4]/v_{2}[2]$ and $v_{3}[4]/v_{3}[2]$ for both the pPb and PbPb systems. For pPb collisions, the ratios for v_2 and v_3 are similar within uncertainties, which is consistent with having both the second- and third-order harmonics arising from the same initial-state fluctuation mechanism. Comparing the pPb and PbPb systems, the v_3 ratios are comparable for both systems, while the v_2 ratios are higher in PbPb than in pPb for higher $N_{\text{coll}}^\text{offline}$ values, again reflecting the larger geometric contribution for the heavier system collisions. The v_2 ratio for PbPb collisions saturates at large multiplicity while, for pPb collisions, the ratio continues to decrease as the multiplicity increases.

Cumulants can also be constructed for the eccentricities of the matter distribution in the initial state, $\varepsilon_{n}[m]$. In the hydrodynamic picture, the $v_n[m]$ values are proportional to $\varepsilon_{n}[m]$ with $v_n[m] = k_n\varepsilon_{n}[m]$, where k_n reflects the medium properties and does not depend on the order of the cumulant. Therefore, ratios of different cumulant v_n values can directly probe properties of initial-state eccentricity. This is shown in Fig. 2 based on a Glauber model initial condition simulated using the TRGEnTo framework [57], and assuming a width $\sigma = 0.3$ fm of the source associated with each nucleon [45]. The calculations were done for pPb collisions at $\sqrt{s_{NN}} = 5.02$ TeV by varying the geometric overlap of the colliding nuclei. It should be noted that the two-particle correlation results were obtained with a large pseudorapidity gap of $|\Delta\eta| > 2$. Earlier experimental pPb results at $\sqrt{s_{NN}} = 5.02$ TeV have shown that this gap can lead to a reduction in the observed $v_2[2]| |\Delta\eta| > 2$ values by 10% resulting from event-plane fluctuations [58]. This gap dependence is not directly determined in the current measurement and, consequently, the reported values are not corrected for this effect. However, assuming a 10% gap-related reduction in the two-particle $v_2[2]$ values with, in the absence of a gap, the $v_2[4]$ values not being similarly affected, the reported values of $v_2[4]/v_2[2]$ might be too high by 10%.

In Fig. 3, the ratios $v_{2}[6]/v_{2}[4]$ and $v_{2}[8]/v_{2}[6]$ are shown as a function of the ratio $v_{3}[4]/v_{3}[2]$ for pPb collisions at $\sqrt{s_{NN}} = 8.16$ TeV and compared to calculations based on fluctuation-driven eccentricities [42] with a universal power law distribution assumed for the eccentricities instead of a two-dimensional Gaussian distribution. These results are similar to those previously reported in Ref. [38] for pPb at $\sqrt{s_{NN}} = 5.02$ TeV, as shown in the figure, but with greatly reduced statistical uncertainties. Within the uncertainties, the model calculations for both the $v_2[6]/v_2[4]$ and $v_2[8]/v_2[6]$ ratios agree with the experimental results. The agreement improves if the reduced correlation resulting from the $v_2^{\text{sub}}[2]| |\Delta\eta| > 2$ pseudorapidity gap is also considered. The agreement of the calculations with the data shows that the differences found among the multiparticle cumulant results for the v_2 harmonic can be described by non-Gaussian initial-state fluctuations. The precise measurement of the ratio results confirms the hypothesis that the multiparticle correlations originate from the product of single-particle
correlations arising from source fluctuations with respect to overall collision geometry. This is a fundamental assumption of both the hydrodynamic [45] and the color glass condensate model calculations [34].

V. SUMMARY

In summary, the azimuthal anisotropies for pPb collisions at $\sqrt{s_{NN}} = 8.16$ TeV and PbPb collisions at $\sqrt{s_{NN}} = 5.02$ TeV are studied as a function of the final-state particle multiplicities with the CMS experiment. The v_2 Fourier coefficient is determined using cumulants obtained with four-, six-, and eight-particle correlations with greatly increased precision compared to previous measurements. The higher-order $v_3(4)$ coefficient is reported for the first time for a small system. For pPb collisions, the ratios $v_2(4)/v_2(2)$ and $v_3(4)/v_3(2)$ are comparable, consistent with a purely fluctuation-driven origin for the azimuthal asymmetry. Both the pPb and PbPb systems have very similar v_3 coefficients for the cumulant orders studied, indicating a similar, fluctuation-driven initial-state geometry. In contrast, both the magnitude of the v_2 coefficients and the $v_2(4)/v_2(2)$ ratio are larger for PbPb collisions, as expected if the overall collision geometry dominates. The v_2 cumulant ratios for pPb collisions are consistent with a collective flow behavior that originates from and is proportional to the initial-state anisotropy.

ACKNOWLEDGMENTS

We congratulate our colleagues in the CERN accelerator departments for the excellent performance of the LHC and thank the technical and administrative staffs at CERN and at other CMS institutes for their contributions to the success of the CMS effort. In addition, we gratefully acknowledge the computing centers and personnel of the Worldwide LHC Computing Grid for delivering so effectively the computing infrastructure essential to our analyses. Finally, we acknowledge the enduring support for the construction and operation of the LHC and the CMS detector provided by the following funding agencies: BMBWF and FWF (Austria); FNRS and FWO (Belgium); CNPq, CAPES, FAPERJ, FAPERGS, and FAPESP (Brazil); MES (Bulgaria); CERN; CAS, MoST, and NSFC (China); COLCIENCIAS (Colombia); MSES and CSF (Croatia); RPF (Cyprus); SENESCYT (Ecuador); MoER, ERC IUT, and ERDF (Estonia); Academy of Finland, MEC, and HIP (Finland); CEA and CNRS/IN2P3 (France); BMBF, DFG, and HGF (Germany); INFN (Italy); INFN (Italy); MSIP and NRF (Republic of Korea); MES (Latvia); LAS (Lithuania); MOE and UM (Malaysia); BUAP, CINVESTAV, CONACYT, LNS, SEP, and UASLP-FAI (Mexico); MOS (Montenegro); MBIE (New Zealand); PAEC (Pakistan); MSHE and NSC (Poland); FCT (Portugal); JINR (Dubna); MON, RosAtom, RAS, RFBR, and NRC KI (Russia); MESTD (Serbia); SEIDI, CPAN, PCTI, and FEDER (Spain); MOSTR (Sri Lanka); Swiss Funding Agencies (Switzerland); MST (Taipei); ThEPCenter, IPST, STAR, and NSTDA (Thailand); TUBITAK and TAEK (Turkey); NASU and SFFR (Ukraine); STFC (United Kingdom); DOE and NSF (USA). Individuals have received support from the Marie-Curie program and the European Research Council and Horizon 2020 Grant, Contracts No. 675440 and No. 765710 (European Union); the Leventis Foundation; the A.P. Sloan Foundation; the Alexander von Humboldt Foundation; the Belgian Federal Science Policy Office; the Fonds pour la Formation à la Recherche dans l’Industrie et dans l’Agriculture (FRIA-Belgium); the Agentschap voor Innovatie door Wetenschap en Technologie (IWT-Belgium); the F.R.S.-FNRS and FWO (Belgium) under the “Excellence of Science–EOS” be.h Project No. 30820817; the Beijing Municipal Science & Technology Commission, No. Z181100004218003; the Ministry of Education, Youth and Sports (MEYS) of the Czech Republic; the Lendület ("Momentum") Program and the János Bolyai Research Scholarship of the Hungarian Academy of Sciences, the New National Excellence Program UNKP, the NKFIa Research Grants No. 123842, No. 123959, No. 124845, No. 124850, No. 125105, No. 128713, No. 128786, and No. 129058 (Hungary); the Council of Science and Industrial Research, India; the HOMING PLUS program of the Foundation for Polish Science, cofinanced from European Union, Regional Development Fund, the Mobility Plus program of the Ministry of Science and Higher Educa-
tion, the National Science Center (Poland), contracts Har-
monia 2014/14/M/ST2/00428, Opus 2014/13/B/ST2/02543,
2014/15/B/ST2/03998, and 2015/19/B/ST2/02861, and
Sonata-bis 2012/07/E/ST2/01406; the National Priorities
Research Program by Qatar National Research Fund; the
Programma Estatal de Fomento de la Investigación Científica y
Técnica de Excelencia María de Maeztu, Grant No. MDM-
2015-0509 and the Programa Severo Ochoa del Principado
de Asturias; the Thaïs and Ariesteia programs cofinanced by
EU-ESF and the Greek NSRF; the Rachadapisek Sompot
Fund for Postdoctoral Fellowship, Chulalongkorn University
and the Chulalongkorn Academic into Its 2nd Century Project
Advancement Project (Thailand); the Welch Foundation, Con-
tract No. C-1845; and the Weston Havens Foundation (USA).

[1] B. Alver et al. (PHOBOS Collaboration), System size de-
dependence of cluster properties from two-particle angular
correlations in Cu+Cu and Au+Au collisions at $\sqrt{s_{NN}} = 200$ GeV,
Phys. Rev. C 81, 064912 (2010).

[2] J. Adams et al. (STAR Collaboration), Distributions of Charged
Hadrons Associated with High Transverse Momentum Particles
in pp and Au+Au Collisions at $\sqrt{s_{NN}} = 200$ GeV, Phys. Rev.
Lett. 95, 152301 (2005).

[3] B. I. Abelev et al. (STAR Collaboration), Long range rapidity
correlations and jet production in high energy nuclear collis-
ions, Phys. Rev. C 80, 064912 (2009).

[4] B. Alver et al. (PHOBOS Collaboration), High Transverse
Momentum Triggered Correlations over a Large Pseudorap-
idity Acceptance in Au+Au Collisions at $\sqrt{s_{NN}} = 200$ GeV,
Phys. Rev. Lett. 104, 062304 (2010).

[5] S. Chatrchyan et al. (CMS Collaboration), Long-range and
short-range dihadron angular correlations in central PbPb col-
lisions at a nucleon-nucleon center of mass energy of 2.76 TeV,
J. High Energy Phys. 07 (2011) 076.

[6] K. Aamodt et al. (ALICE Collaboration), Higher Harmonic
Anisotropic Flow Measurements of Charged Particles in PbPb
Collisions at $\sqrt{s_{NN}} = 2.76$ TeV, Phys. Rev. Lett. 107, 032301
(2011).

[7] K. Aamodt et al. (ALICE Collaboration), Harmonic de-
composition of two-particle angular correlations in PbPb col-
lections at $\sqrt{s_{NN}} = 2.76$ TeV, Phys. Lett. B 708, 249
(2012).

[8] S. Chatrchyan et al. (CMS Collaboration), Centrality de-
dpendence of dihadron correlations and azimuthal anisotropy
harmonics in PbPb collisions at $\sqrt{s_{NN}} = 2.76$ TeV, Eur. Phys. J. C
72, 2012 (2012).

[9] K. Aamodt et al. (ALICE Collaboration), Elliptic Flow of
Charged Particles in PbPb Collisions at 2.76 TeV, Phys. Rev.
Lett. 105, 252302 (2010).

[10] G. Aad et al. (ATLAS Collaboration), Measurement of the
azimuthal anisotropy for charged particle production in $\sqrt{s_{NN}} =
2.76$ TeV lead-lead collisions with the ATLAS detector,
Phys. Rev. C 86, 014907 (2012).

[11] S. Chatrchyan et al. (CMS Collaboration), Measurement of
the elliptic anisotropy of charged particles produced in PbPb
collisions at $\sqrt{s_{NN}} = 2.76$ TeV, Phys. Rev. C 87, 014902
(2013).

[12] W. Busza, K. Rajagopal, and W. van der Schee, Heavy ion
collisions: The big picture, and the big questions, Annu. Rev.
Nucl. Part. Sci. 68, 339 (2018).

[13] B. H. Alver, C. Gombeaud, M. Luzum, and J.-Y. Ollitrault,
Triangular flow in hydrodynamics and transport theory,
Phys. Rev. C 82, 034913 (2010).

[14] B. Schenke, S. Jeon, and C. Gale, Elliptic and Triangular
Flow in Event-By-Event $D = 3 + 1$ Viscous Hydrodynamics,
Phys. Rev. Lett. 106, 042301 (2011).

[15] Z. Qiu, C. Shen, and U. Heinz, Hydrodynamic elliptic and
triangular flow in Pb-Pb collisions at $\sqrt{s_{NN}} = 2.76$A TeV, Phys.
Lett. B 707, 151 (2012).

[16] B. Alver and G. Roland, Collision geometry fluctuations and
triangular flow in heavy-ion collisions, Phys. Rev. C 81, 054905
(2010); 82, 039903 (2010).

[17] M. L. Miller, K. Reygers, S. J. Sanders, and P. Steinberg,
Glauber modeling in high energy nuclear collisions, Annu. Rev.
Nucl. Part. Sci. 57, 205 (2007).

[18] S. Chatrchyan et al. (CMS Collaboration), Observation of long-
range near-side angular correlations in proton-proton collisions
at the LHC, J. High Energy Phys. 09 (2010) 091.

[19] G. Aad et al. (ATLAS Collaboration), Observation of Long-
Range Elliptic Azimuthal Anisotropies in $\sqrt{s} = 13$ and
2.76 TeV pp Collisions with the ATLAS Detector, Phys. Rev.
Lett. 116, 172301 (2016).

[20] V. Khachatryan et al. (CMS Collaboration), Measurement of
Long-Range Near-Side Two-Particle Angular Correlations in
pp Collisions at $\sqrt{s} = 13$ TeV, Phys. Rev. Lett. 116, 172302
(2016).

[21] S. Chatrchyan et al. (CMS Collaboration), Observation of long-
range near-side angular correlations in proton-lead collisions
at the LHC, Phys. Lett. B 718, 795 (2013).

[22] B. Abelev et al. (ALICE Collaboration), Long-range angular
correlations on the near and away side in p-Pb collisions at
$\sqrt{s_{NN}} = 5.02$ TeV, Phys. Lett. B 719, 29 (2013).

[23] G. Aad et al. (ATLAS Collaboration), Observation of Associ-
ated Near-Side and Away-Side Long-Range Correlations in
$\sqrt{s_{NN}} = 5.02$ TeV Proton-Lead Collisions with the ATLAS
Detector, Phys. Rev. Lett. 110, 182302 (2013).

[24] R. Aaij et al. (LHCb Collaboration), Measurements of long-
range near-side angular correlations in $\sqrt{s_{NN}} = 5$ TeV proton-
lead collisions in the forward region, Phys. Lett. B 762, 473
(2016).

[25] C. Aidala et al. (PHENIX Collaboration), Measurements of
Multiparticle Correlations in $d + Au$ Collisions at 200, 62.4,
39, and 19.6 GeV and $p + Au$ Collisions at 200 GeV and
Implications for Collective Behavior, Phys. Rev. Lett. 120,
062302 (2018).

[26] C. Aidala et al. (PHENIX Collaboration), Measurement of long-
range angular correlations and azimuthal anisotropies in high-
multiplicity $p + Au$ collisions at $\sqrt{s_{NN}} = 200$ GeV, Phys. Rev.
C 95, 034910 (2017).

[27] A. Adare et al. (PHENIX Collaboration), Measurements of
Elliptic and Triangular Flow in High-Multiplicity 3He +Au
Collisions at $\sqrt{s_{NN}} = 200$ GeV, Phys. Rev. Lett. 115, 142301 (2015).

[28] C. Aidala et al. (PHENIX Collaboration), Creation of quark-gluon plasma droplets with three distinct geometries, Nat. Phys. 15, 214 (2019).

[29] J. L. Nagle and W. A. Zajc, Small system collectivity in relativistic hadronic and nuclear collisions, Annu. Rev. Nucl. Part. Sci. 68, 211 (2018).

[30] B. Schenke and R. Venugopalan, Eccentric Protons? Sensitivity of Flow to System Size and Shape in $p+p$, $p+Pb$, and Pb+Pb Collisions, Phys. Rev. Lett. 113, 102301 (2014).

[31] P. Bozek, Collective flow in p-Pb and d-Pb collisions at TeV energies, Phys. Rev. C 85, 014911 (2012).

[32] P. Bozek and W. Broniowski, Correlations from hydrodynamic flow in p-Pb collisions, Phys. Lett. B 718, 1557 (2013).

[33] K. Dusling and R. Venugopalan, Explanation of systematics of CMS p+Pb high multiplicity di-hadron data at $\sqrt{s_{NN}} = 5.02$ TeV, Phys. Rev. D 87, 054014 (2013).

[34] K. Dusling, M. Mace, and R. Venugopalan, Multiparticle Collectivity from Initial State Correlations in High Energy Proton-Nucleus Collisions, Phys. Rev. Lett. 120, 042002 (2018).

[35] K. Dusling, M. Mace, and R. Venugopalan, Parton model description of multiparticule azimuthal correlations in pA collisions, Phys. Rev. D 97, 016014 (2018).

[36] N. Borghini, P. M. Dinh, and J.-Y. Ollitrault, A new method for measuring azimuthal distributions in nucleus-nucleus collisions, Phys. Rev. C 63, 054906 (2001).

[37] V. Khachatryan et al. (CMS Collaboration), Evidence for collectivity in pp collisions at the LHC, Phys. Lett. B 765, 193 (2017).

[38] V. Khachatryan et al. (CMS Collaboration), Evidence for Collective Multiparticle Correlations in p-Pb Collisions, Phys. Rev. Lett. 115, 012301 (2015).

[39] S. Chatrchyan et al. (CMS Collaboration), Measurement of higher-order harmonic azimuthal anisotropy in PbPb collisions at $\sqrt{s_{NN}} = 2.76$ TeV, Phys. Rev. C 89, 044906 (2014).

[40] S. Chatrchyan et al. (CMS Collaboration), Multiplicity and transverse momentum dependence of two- and four-particle correlations in pPb and PbPb collisions, Phys. Lett. B 724, 213 (2013).

[41] A. Bilandzic, R. Snellings, and S. Voloshin, Flow analysis with cumulants: Direct calculations, Phys. Rev. C 83, 044913 (2011).

[42] L. Yan and J.-Y. Ollitrault, Universal Fluctuation-Driven Eccentricities in Proton-Proton, Proton-Nucleus and Nucleus-Nucleus Collisions, Phys. Rev. Lett. 112, 082301 (2014).

[43] M. Aaboud et al. (ATLAS Collaboration), Measurement of long-range multiparticle azimuthal correlations with the subevent cumulant method in pp and $p+Pb$ collisions with the ATLAS detector at the CERN Large Hadron Collider, Phys. Rev. C 97, 024904 (2018).

[44] U. Heinz and R. Snellings, Collective flow and viscosity in relativistic heavy-ion collisions, Annu. Rev. Nucl. Part. Sci. 63, 123 (2013).

[45] G. Giacalone, J. Noronha-Hostler, and J.-Y. Ollitrault, Relative flow fluctuations as a probe of initial state fluctuations, Phys. Rev. C 95, 054910 (2017).

[46] J.-Y. Ollitrault, A. M. Poskanzer, and S. A. Voloshin, Effect of flow fluctuations and nonflow on elliptic flow methods, Phys. Rev. C 89, 014904 (2009).

[47] S. Chatrchyan et al. (CMS Collaboration), The CMS experiment at the CERN LHC, J. Instrum. 3, S08004 (2008).

[48] S. Agostinelli et al., Geant4—a simulation toolkit, Nucl. Instrum. Meth. A 506, 250 (2003).

[49] CMS Collaboration, CMS luminosity measurement using 2016 proton-nucleus collisions at nucleon-nucleon center-of-mass energy of 8.16 TeV, CMS Physics Analysis Summary, Technical Report No. CMS-PAS-LUM-17-002, CERN, Geneva, 2018, http://cds.cern.ch/record/2628652.

[50] A. M. Sirunyan et al. (CMS Collaboration), Observation of Correlated Azimuthal Anisotropy Fourier Harmonics in pp and $p+$Pb Collisions at the LHC, Phys. Rev. Lett. 120, 092301 (2018).

[51] CMS Collaboration, The CMS trigger system, J. Instrum. 12, P01020 (2017).

[52] CMS Collaboration, Description and performance of track and primary-vertex reconstruction with the CMS tracker, J. Instrum. 9, P10009 (2014).

[53] A. Bilandzic, C. H. Christensen, K. Gulbrandsen, A. Hansen, and Y. Zhou, Generic framework for anisotropic flow analyses with multi-particle azimuthal correlations, Phys. Rev. C 89, 064904 (2014).

[54] M. Gyulassy and X.-N. Wang, HIJING 1.0: A Monte Carlo program for parton and particle production in high-energy hadronic and nuclear collisions, Comput. Phys. Commun. 83, 307 (1994).

[55] A. M. Sirunyan et al. (CMS Collaboration), Pseudorapidity and transverse momentum dependence of flow harmonics in pPb and PbPb collisions, Phys. Rev. C 98, 044902 (2018).

[56] I. Kozlov, M. Luzum, G. Denicol, S. Jeon, and C. Gale, Transverse momentum structure of pair correlations as a signature of collective behavior in small collision systems, arXiv:1405.3976.

[57] J. E. Bernhard, J. S. Moreland, S. A. Bass, J. Liu, and U. Heinz, Applying Bayesian parameter estimation to relativistic heavy-ion collisions: Simultaneous characterization of the initial state and quark-gluon plasma medium, Phys. Rev. C 94, 024907 (2016).

[58] V. Khachatryan et al. (CMS Collaboration), Evidence for transverse momentum and pseudorapidity dependent event plane fluctuations in PbPb and pPb collisions, Phys. Rev. C 92, 034911 (2015).
A. M. Sirunyan et al.

Institute of Nuclear Research ATOMKI, Debrecen, Hungary
Institute of Physics, University of Debrecen, Debrecen, Hungary
Indian Institute of Science (IISc), Bangalore, India
National Institute of Science Education and Research, HBNI, Bhubaneswar, India
Panjab University, Chandigarh, India
University of Delhi, Delhi, India
Saha Institute of Nuclear Physics, HBNI, Kolkata, India
Indian Institute of Technology Madras, Madras, India
Bhabha Atomic Research Centre, Mumbai, India
Tata Institute of Fundamental Research-A, Mumbai, India
Tata Institute of Fundamental Research-B, Mumbai, India
Indian Institute of Science Education and Research (IISER), Pune, India
Institute for Research in Fundamental Sciences (IPM), Tehran, Iran
University College Dublin, Dublin, Ireland
INFN Sezione di Bari, Bari, Italy
INFN Sezione di Bologna, Bologna, Italy
INFN Sezione di Catania, Catania, Italy
INFN Sezione di Firenze, Firenze, Italy
INFN Laboratori Nazionali di Frascati, Frascati, Italy
INFN Sezione di Genova, Genova, Italy
INFN Sezione di Milano-Bicocca, Milano, Italy
INFN Sezione di Napoli, Napoli, Italy
INFN Sezione di Padova, Padova, Italy
INFN Sezione di Pavia, Pavia, Italy
INFN Sezione di Perugia, Perugia, Italy
INFN Sezione di Pisa, Pisa, Italy
INFN Sezione di Roma, Rome, Italy
Sapienza Università di Roma, Rome, Italy
INFN Sezione di Torino, Torino, Italy
Università del Piemonte Orientale, Novara, Italy
INFN Sezione di Trieste, Trieste, Italy
Kyungpook National University, Daegu, Korea
Chonnam National University, Institute for Universe and Elementary Particles, Kwangju, Korea
Hanyang University, Seoul, Korea
Korea University, Seoul, Korea
Sejong University, Seoul, Korea
Seoul National University, Seoul, Korea
University of Seoul, Seoul, Korea
Sungkyunkwan University, Suwon, Korea
Riga Technical University, Riga, Latvia
Vilnius University, Vilnius, Lithuania
148 Cornell University, Ithaca, New York, USA
149 Fermi National Accelerator Laboratory, Batavia, Illinois, USA
150 University of Florida, Gainesville, Florida, USA
151 Florida International University, Miami, Florida, USA
152 Florida State University, Tallahassee, Florida, USA
153 Florida Institute of Technology, Melbourne, Florida, USA
154 University of Illinois at Chicago (UIC), Chicago, Illinois, USA
155 The University of Iowa, Iowa City, Iowa, USA
156 Johns Hopkins University, Baltimore, Maryland, USA
157 The University of Kansas, Lawrence, Kansas, USA
158 Kansas State University, Manhattan, Kansas, USA
159 Lawrence Livermore National Laboratory, Livermore, California, USA
160 University of Maryland, College Park, Maryland, USA
161 Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
162 University of Minnesota, Minneapolis, Minnesota, USA
163 University of Mississippi, Oxford, Mississippi, USA
164 University of Nebraska-Lincoln, Lincoln, Nebraska, USA
165 State University of New York at Buffalo, Buffalo, New York, USA
166 Northeastern University, Boston, Massachusetts, USA
167 Northwestern University, Evanston, Illinois, USA
168 University of Notre Dame, Notre Dame, Indiana, USA
169 The Ohio State University, Columbus, Ohio, USA
170 Princeton University, Princeton, New Jersey, USA
171 University of Puerto Rico, Mayaguez, Puerto Rico, USA
172 Purdue University, West Lafayette, Indiana, USA
173 Purdue University Northwest, Hammond, Indiana, USA
174 Rice University, Houston, Texas, USA
175 University of Rochester, Rochester, New York, USA
176 Rutgers, The State University of New Jersey, Piscataway, New Jersey, USA
177 University of Tennessee, Knoxville, Tennessee, USA
178 Texas A&M University, College Station, Texas, USA
179 Texas Tech University, Lubbock, Texas, USA
180 Vanderbilt University, Nashville, Tennessee, USA
181 University of Virginia, Charlottesville, Virginia, USA
182 Wayne State University, Detroit, Michigan, USA
183 University of Wisconsin - Madison, Madison, WI, Wisconsin, USA

\[a\] Vienna University of Technology, Vienna, Austria.
\[b\] IRFU, CEA, Université Paris-Saclay, Gif-sur-Yvette, France.
\[c\] Universidade Estadual de Campinas, Campinas, Brazil.
\[d\] Federal University of Rio Grande do Sul, Porto Alegre, Brazil.
\[e\] Université Libre de Bruxelles, Bruxelles, Belgium.
\[f\] University of Chinese Academy of Sciences, Beijing, China.
\[g\] Institute for Theoretical and Experimental Physics named by A.I. Alikhanov of NRC ‘Kurchatov Institute’, Moscow, Russia.
\[h\] Joint Institute for Nuclear Research, Dubna, Russia.
\[i\] Cairo University, Cairo, Egypt.
\[j\] Fayoum University, El-Fayoum, Egypt; British University in Egypt, Cairo, Egypt.
\[k\] British University in Egypt, Cairo, Egypt; Ain Shams University, Cairo, Egypt.
\[l\] Department of Physics, King Abdulaziz University, Jeddah, Saudi Arabia.
\[m\] Université de Haute Alsace, Mulhouse, France.
\[n\] Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, Moscow, Russia.
\[o\] Tbilisi State University, Tbilisi, Georgia.
\[p\] CERN, European Organization for Nuclear Research, Geneva, Switzerland.
\[q\] RWTH Aachen University, III. Physikalisches Institut A, Aachen, Germany.
\[r\] University of Hamburg, Hamburg, Germany.
\[s\] Brandenburg University of Technology, Cottbus, Germany.
\[t\] Institute of Physics, University of Debrecen, Debrecen, Hungary.
\[u\] Institute of Nuclear Research ATOMKI, Debrecen, Hungary.
\[v\] MTA-ELTE Lendület CMS Particle and Nuclear Physics Group, Eötvös Loránd University, Budapest, Hungary; Deceased.
\[w\] Indian Institute of Technology Bhubaneswar, Bhubaneswar, India.
