Comparison of Laboratory Profiles of Cerebrospinal Fluid among Bacterial and Viral Meningitis Patients

Umme Habiba¹, Md. Akram Hossain², Md. Chand Mahmud³, Md. Sirajul Islam Bhuiyan⁴, Md. Ali Abdullah Rafique⁵, Safia Sultana⁶

¹Assistant Professor, Department of Microbiology, Shaheed Suhrawardy Medical College, Dhaka, Bangladesh; ²Senior Consultant (Microbiology), Imperial Hospital Limited, Chattogram, Bangladesh; ³Professor & Head, Department of Microbiology, President Abdul Hamid Medical College, Kishoreganj, Bangladesh; ⁴Assistant Professor (Pediatrics), Mugda Medical College, Dhaka, Bangladesh; ⁵Senior Consultant and Head, Department of Clinical Pathology, Uttara Adhunik Medical College and Hospital, Dhaka, Bangladesh; ⁶Associate Professor, Department of Microbiology, Shaheed Syed Nazrul Islam Medical College, Kishoreganj, Bangladesh

[Received on: 22 November 2020; Accepted on: 12 December 2020; Published: 1 January 2021]

Abstract

Background: Laboratory profiles are important markers for the detection of meningitis. Objective: The purpose of the present study was to compare of laboratory profiles of cerebrospinal fluid among bacterial and viral meningitis patients. Methodology: This cross sectional study was carried out in the Department of Microbiology at Mymensingh Medical College, Mymensingh, Bangladesh from July 2010 to January 2012 for around 2 years. Clinically suspected patients with meningitis from paediatrics wards of MMCH, Mymensingh, Bangladesh were included in this study. On the basis of cytological tests and biochemical tests of CSF the study subjects were categorized into three groups, which were identified as bacterial meningitis, viral meningitis and normal CSF. After collection of CSF, physical examination, routine bedside culture and appropriate biochemical tests were performed. Tests for protein and glucose of CSF specimens were performed. Result: A total 115 clinically and laboratory confirmed meningitis patients were enrolled in this study. The most of the cases of study population were in the age group 1 month to 5 years (84.3%) cases. Regarding the physical findings of CSF, purulent was found 21(60.0%) cases in bacterial meningitis and 14 (40.0%) cases were slightly turbid. The mean with SD of total count of WBC was higher in bacterial meningitis (1623.1±1708.06/mm3) than viral meningitis (56.0±73.83/mm3) (p=<0.001). Again the mean with SD of glucose was lowest in bacterial meningitis which was 21.0±9.77 mg/dL followed by viral meningitis which was 63.6±20.22 mg/dL. (p<0.001). Considering protein of CSF the mean with SD was highest in bacterial meningitis which was 242.77±188.08 mg/dL followed by viral meningitis which was 69.6±84.67mg/dL (p<0.001). Conclusion: In conclusion the WBC count, CSF glucose and protein are significantly differ in bacterial and viral meningitis. [Journal of National Institute of Neurosciences Bangladesh, January 2021;7(1): 69-74]

Keywords: Comparison; laboratory profiles; cerebrospinal fluid; bacterial meningitis; viral meningitis; meningitis

Introduction

The high mortality and morbidity is resulting from bacterial meningitis; thus, rapid and accurate diagnosis is needed to increase the survival rate and decrease complications¹. Therefore delay in diagnosis and initiation of proper antimicrobial therapy can result a

http://www.banglajol.info/index.php/JNINB

DOI: https://doi.org/10.3329/jnib.v7i.54757

Journal of National Institute of Neurosciences Bangladesh,
January 2021, Vol. 7, No. 1, pp. 69-74
poor outcome. Bacterial meningitis cannot always be diagnosed on the basis of clinical sign and symptoms. Therefore, laboratory support is essential for the rapid diagnosis of meningitis.

Conventional methods for diagnosis of bacterial meningitis is based on examination of CSF including physical, biochemical, cytological, Gram’s staining and culture. Though Gram’s stain is simple, rapid and less expensive method for detecting bacteria but it has some limitations. Its sensitivity and specificity depends on skill hands with appropriate techniques. Gray and Fedorko mentioned that in Gram’s stains, concentrations less than 10^5 CFU/ml of CSF are associated with positive findings in 25.0% whereas concentrations of bacteria more than 10^5 CFU/ml of CSF lead to positive results in up to 97.0% of cases. The “gold standard” for diagnosis of any infection including meningitis is the isolation and identification of the causative agent. However, it requires a day or more for growth and can also give false result if not properly transported and stored as they are fastidious organisms. Alamgir et al from Bangladesh mentioned that positivity of Gram’s stain and culture may decrease to 40.0 to 60.0% and less than 50.0% respectively in patients who have received prior anti-microbial therapy. Das et al reported that the sensitivity of Gram’s stain and CSF culture were 18% and 0% respectively in patients who have received antimicrobial therapy. Antibiotic therapy may cause alteration of CSF cytology, biochemical findings and also failure of detection of causative organism, so the diagnosis may be delayed. Moreover, in primary level hospital culture facility is not available.

An alternative method for the diagnosis of bacterial meningitis is required which is rapid, reliable, less time consuming, easy to perform, sensitive and specific. Latex agglutination test (LAT) may be an important diagnostic tool which fulfills the above criteria. LAT is sensitive and specific for Streptococcus pneumoniae, Haemophilus influenzae type b, group B Streptococcus, Neisseria meningitidis group A, C, Y, W135, Neisseria meningitidis B and Escherichia coli k1 antigen. LAT has been proven to be useful but are not entirely satisfactory because of inadequate sensitivity and specificity. Reliable results are obtained only for samples containing more than 10^5 CFU per ml, but approximately 45.0% of patients with meningitis have less than 105 CFU per ml.

Polymerase chain reaction (PCR) is also highly sensitive and specific technique for diagnosis of bacterial meningitis. Reller et al from New Zealand found sensitivity and specificity of PCR to detect pneumococcal meningitis 92.0% to 100% and 100.0% respectively in their study. PCR now can detect low number of pathogens in clinical specimens which does not require the presence of viable organisms. Detection of LytA gene by PCR may be the alternate method to diagnose pneumococcal meningitis. The purpose of the present study was to compare of laboratory profiles of cerebrospinal fluid among bacterial and viral meningitis patients.

Methodology
This cross-sectional study was carried out in the Department of Microbiology at Mymensingh Medical College, Mymensingh, Bangladesh. This study was conducted during the period of July 2010 to January 2012 for around 2 years. Clinically suspected patients with meningitis from paediatrics wards of MMCH, Mymensingh, Bangladesh were included in this study, due to limitation of budget, time and resource. Clinically suspected patients of meningitis with 0 to 18 years of age, high body temperature, feeding problems, vomiting, irritability, seizures or sluggishness, high pitched crying were included in this study. Patients treated with antibiotics after admission, patients above 18 years of age or with brain hypoxia and brain trauma were excluded from this study. Study population were divided into categories according to the criteria of CSF. On the basis of cytological tests and biochemical tests of CSF the study subjects were categorized into three groups, which were identified as bacterial meningitis, viral meningitis and normal CSF.

The protocol was approved by ethical review committee of Mymensingh Medical College Hospital. Informed written consent was taken from each patient or from their parents before his or her entry into the study after counseling the whole procedure in Bengali. After collection of CSF, physical examination, routine bed side culture in Blood agar, Chocolate agar medium and MacConkey agar media were performed. Tests for protein and glucose of CSF specimens were performed. The tests were done using by commercially available colorimetric reagent methods. It was done as per manufactures instructions. Protein estimation of CSF (DiaSys Diagnostic Systems GmbH & Co. KG, Germany). C-reactive protein (High sensitivity C-reactive protein Enzyme Immunoassay Test Kit (LumiQuick Diagnostics, Inc. U.S.A). Detection of bacterial antigen by latex agglutination test (LAT): (Remel Europe Ltd. UK). Statistical analysis of the study was done by computer software device as the Statistical Package for Social Science (SPSS) version
22.0. Confidence interval was considered at 95% level. The qualitative variables were expressed as frequency and percentage and the quantitative variables were expressed as mean with standard deviation. During analysis chi-square test was done to estimate the relationship or association between qualitative variables. P value less than 0.05 was considered statistically significant.

Results
A total number of eighty (80) patients of traumatic head A total 115 clinically and laboratory confirmed meningitis patients were enrolled in this study and the following tests were done from CSF includes cytology test, biochemical test, Gram’s stain, culture, LAT, PCR and level of C-reactive protein. The most of the cases of study population were in the age group 1 month to 5 years 97(84.3%) cases. The age distribution among the bacterial meningitis (35) shows the maximum 17(48.5%) cases in the age group 1 month to 1 year followed by 11(31.4%) cases in the age of more than 1 year to 5 years (Table 1).

Regarding the physical findings of CSF, purulent was found 21(60.0%) cases in bacterial meningitis and 14 (40.0%) cases were slightly turbid. Clear CSF were found in 57(83.8%) cases in viral meningitis and 12(100.0%) cases in normal CSF (Table 2).

The mean with SD of total count of WBC was highest in bacterial meningitis which was 1623.1±1708.06/mm3 followed by viral meningitis which was 56.0±73.83/mm3. However, the mean with SD of total count of WBC in normal CSF was 0.25±0.87/ mm3. The difference of mean with SD of total count of WBC among bacterial and viral meningitis with normal CSF values were statistically significant (p<0.001). Again the mean with SD of glucose was lowest in bacterial meningitis which was 21.0±9.77 mg/dL followed by viral meningitis which was 63.6±20.22 mg/dL. However, the mean with SD of glucose in normal CSF was 74.2±20.80 mg/dL. The difference of mean with SD of glucose among bacterial and viral meningitis with normal CSF values were statistically significant (p<=0.001). Considering protein of CSF the mean with SD was highest in bacterial meningitis which was 242.8±188.09 mg/dL followed by viral meningitis which was 69.6±84.67mg/dL. However, the mean with SD of protein in normal CSF was 22.9±21.58 mg/dL. The difference of mean with

Table 1: Age distribution of the study population (n=115)

Age Group	Bacterial Meningitis	Viral Meningitis	Normal CSF	Total
Neonates (0-28 days)	2(5.7%)	4 (05.8%)	0(0.0%)	6(05.2%)
1 month to 1 Year	17(48.5%)	26(35.2%)	6 (50.0%)	49(42.6%)
1 to 5 Years	11(31.4%)	33(48.5%)	4 (33.3%)	48(41.7%)
5 to 10 Years	5(14.2%)	5 (07.3%)	2 (08.3%)	12(10.4%)
10 to 18 Years	0(0.0%)	0 (0.0%)	0(0.0%)	0(0.0%)
Total	35(100.0%)	68(100.0%)	12(100.0%)	115(100.0%)

Table 2: Physical findings of CSF in the study population (n=115)

Physical Appearance of CSF	Bacterial Meningitis	Viral Meningitis	Normal CSF	P value
Purulent	21(60.0%)	0(0.0%)	0(0.0%)	
Slighty Turbid	14(40.0%)	11(16.1%)	0(0.0%)	
Clear	0(0.0%)	57(83.8%)	12(100.0%)	<0.05
Total	35(100.0%)	68(100.0%)	12(100.0%)	

Table 3: Comparison of Cytological and Biochemical Examination of CSF of the Study Population (Mean±SD)

Tests of CSF	Bacterial Meningitis	Viral Meningitis	Normal CSF	P value
TC WBC/mm3	1623.1±1708.06	56.0±73.83	0.25±0.87	<0.001
Glucose (mg/dL)	21.0±9.77	63.6±20.22	74.2±20.80	<0.001
Protein (mg/dL)	242.8±188.09	69.6±84.67	22.9±21.58	<0.001
Discussion

A total of 115 clinically suspected meningitis patients age ranging from 0 day to 18 years were included in the study, CSF samples were collected and analyzed by the above mentioned tests for detection of bacterial meningitis during the period from July 2010 to January 2012.

In this study, on the basis of cytological and biochemical examination of CSF, the study population was categorized into three groups. It has found bacterial meningitis 35 (30.4%) cases, viral meningitis 68 (59.1%) cases and normal CSF 12 (10.4%) cases. Alamgir et al⁹ from Bangladesh and Nussinovitch et al¹⁶ from Israel also observed similar categories of the study populations in their study. Alamgir et al⁹ in Bangladesh had observed identical categories of the patients having clinically suspected meningitis where they had observed bacterial meningitis 38 (25.34%), aseptic meningitis 94 (62.66%) and non-meningitis 18 (12.0%). This finding is consistent with the present study. Similarly, Narchi¹⁷ in Saudi Arabia observed in his study that 35 (35.7%) were bacterial meningitis and 63 (64.3%) were aseptic meningitis, which are comparable with the present study. Similar findings were also reported by Nussinovitch et al¹⁶ from Israel, Gurley et al¹⁸ and Chowdhury et al¹⁹ from Bangladesh, where they found 19.74%, 24.0% and 20.0% of bacterial meningitis cases respectively.

In this study, the age of the study population ranges from 20 days to 10 years in case of bacterial meningitis, 14 days to 10 years in case of viral meningitis and 3 months to 8 years in case of normal CSF findings. Das et al⁴ also observed parallel age range among the total study population, where they found the age ranges from 3 months to 13 years of age in their study. In the present study, majority of study population 42.6% were in the age range from 1 year to 5 years. Chowdhury et al¹⁹ from Bangladesh also found 49.6% in the age ranges from 1 month to 1 year and 41.7% were in the age range from 1 year to 5 years. Similar findings were also reported by Das et al⁴ in India.

In this present study, among the bacterial meningitis, the male and female ratio was 65:7:34.2, in viral meningitis 54.4:45.5 and in normal CSF 58.3:41.6. As regards to the incidence of meningitis in male and female, Taskin et al²⁰ observed in their study, male and female ratio was 59.1:40.9 in bacterial meningitis, 72.7:27.3 in viral meningitis and 60:40 in normal CSF findings which are comparable with the present study. Similar findings were reported by Das et al⁴ in India. The results of the present study closely resemble with the above mentioned study. No significant difference was found among the three groups regarding the sex incident in this study. The higher rate of positivity of bacterial meningitis in male subjects may be due to inclusion of higher number of male patients in this study population.

In the present study, all the cases of study population were presented with fever (100%). In the present study, 7 (20.0%) cases yielded positive by culture, 6 (17.1%) cases positive in Gram’s stain, increased WBC count in 35 (100.0%) cases with neutrophilia, with low glucose contents and elevated protein level were in all cases (100%) of the bacterial meningitis. These findings of culture, Gram’s stain and biochemical test in bacterial meningitis patients are almost similar to a study by Chowdhury et al¹⁹ in Bangladesh. Ceyhan et al²¹ in Turkey had observed similar findings in their study where cultures were positive in 10.0% of cases. Begum et al²⁰ in Bangladesh also found Gram’s stain positive 13.3% in their study which were almost similar with this study. Alam et al²² in Bangladesh and Das et al²³ in India reported in their research 13.7% and 06.0% bacterial isolation among bacterial meningitis cases respectively which are similar with this study.
Among the 68 viral meningitis cases it was observed that WBC count were more than 5 / mm³ in all cases with predominant lymphocyte in all the cases 68(100.0%), protein level were less than 45 mg/dl in 42(61.7%) cases and glucose contents were less than 45 mg/dl in 10(14.7%) cases. It was observed that culture, Gram’s stain, cytology and biochemical test were comparable with Saha et al¹³ from Bangladesh, where they found negative CSF culture and Gram’s stain with cell count 06-99 / mm³ with lymphocytosis, normal protein and glucose level.

Among the 12 normal CSF cases it was observed that WBC count was ≤5 / mm³ in all cases, where all the cells are lymphocytes 12 (100.0%), protein level were <45 mg/dl in 9 (75.0%) cases and glucose contents were more than 45 mg/dl in 11 (91.6%) cases. It was observed that culture, Gram’s stain, cytology and biochemical test were analogous with Alamgir et al in Bangladesh, where they found culture and Gram’s stain negative with normal CSF cytology and normal protein and glucose level.

In this study, the total count of WBC (per cubic mm) was increased (1623.06±1708.06), the level of glucose (mg/dl) was reduced (21.04±9.77) and the level of protein (mg/dl) was elevated (242.77±188.08) in bacterial meningitis. Therefore, these findings proved that the conventional methods may also be a useful tool for categorizing the meningitis as bacterial meningitis, even in the absence of facilities for doing other methods. In this study it was observed that among the 35 bacterial meningitis cases Gram’s stain, culture and LAT positive were in 15 (42.8%). Gram’s stain negative, culture negative and LAT positive were in 9 (25.7%) cases. Gram’s stain’s negative, culture positive and LAT positive were in 1(02.8%) cases. The rate of detection of 35 bacterial meningitis cases by different methods showed that culture positive were in 7 (20.0%) cases, Gram’s stain positive 6 (17.1%) cases and LAT positive were in 15 (42.8%) cases. In this study culture positive cases were more than gram’s stain cases it may be due to less bacterial load in this CSF specimen. The results of the present study resemble with the Abro et al¹ and Alamgir et al where they also found gram’s stain positivity was less than culture in their study. Alamgir et al from Bangladesh also mentioned that Gram’s stain and culture may decrease to 40.0 to 60.0% and less than 50% respectively in patients who have received prior anti-microbial therapy. In Gram’s stains, concentrations less than 10⁷ CFU/ml of CSF are associated with positive findings in 25% whereas concentrations of bacteria more than 10⁵ CFU/ml of CSF lead to positive results in up to 97% of cases. The low frequency of Gram’s staining positive and culture positive in this study may be due to antibiotic intake in higher number of cases prior to CSF collection.

Conclusion

In conclusion highly significant difference is found laboratory profiles. The total count of WBC, glucose level and protein level in CSF are significantly different in bacterial, viral meningitis and normal CSF. A large scale study should be carried out in multi-centre basis to get the real scenario.

References

1. Abro AH, Abdou AS, Ali H, Ustadi AM, Hasab AA. Cerebrospinal fluid analysis acute bacterial versus viral meningitis. Pak J Med Sci. 2008;24(5):645-50
2. Brouwer MC, Tunkel AR, van de Beek D. Epidemiology, diagnosis, and antimicrobial treatment of acute bacterial meningitis. Clinical microbiology reviews. 2010;23(3):467-92
3. Mani R, Pradhan S, Nagarathna S, Wasiulla R, Chandramuki A. Bacteriological profile of community acquired acute bacterial meningitis: a ten-year retrospective study in a tertiary neurocare centre in South India. Indian journal of medical microbiology. 2007;25(2):108
4. Das BK, Gurubacharya RL, Mohapatra TM, Mishra OP. Bacterial antigen detection test in meningitis. The Indian Journal of Pediatrics. 2005;70(10):799-801
5. Gray LD, Fedorko DP. Laboratory diagnosis of bacterial meningitis. Clinical microbiology reviews. 1992;5(2):130-45
6. Hart CA. Bacterial Meningitis. In: MANSON’S Tropical Diseases. Medicine, 22nd edition, Saunders Elsevier, 2009;873-885
7. Johnson KS, Sexton DJ. Cerebrospinal fluid: physiology and utility of an examination in disease states. Ed. Calderwood SW. UpToDate. 2011;19
8. Silva LP, Cavalheiro LG, Queirós F, Nova CV, Lucena R. Prevalence of newborn bacterial meningitis and sepsis during the pregnancy period for public health care system participants in Salvador, Bahia, Brazil. Brazilian Journal of Infectious Diseases. 2007;11(2):272-6
9. Alamgir F, Miah RA, Saleh AA. Bacterial antigen detection and CRP estimation. Bangladesh Med J, 2008;13(1):17-20
10. Afifi S, Wasfy MO, Azab MA, Youssef FG, Pimentel G, Graham TW, Mansour H, Elsayed N, Earhart K, Hajjeh R, Mahoney F. Laboratory-based surveillance of patients with bacterial meningitis in Egypt (1998-2004). European Journal of Clinical Microbiology & Infectious Diseases. 2007;26(5):331-40
11. Begum N, Ahmed I, Salam MA, Begum S, Alam KC. Role of latex particle agglutination test in the diagnosis of meningitis. Bangladesh Journal of Medical Microbiology. 2007;1(1):10-2
12. du Plessis M, Smith AM, Klugman KP. Rapid detection of penicillin-resistant Streptococcus pneumoniae in cerebrospinal fluid by a semested-PCR strategy. Journal of Clinical Microbiology. 1998;36(2):453-7
13. Saha SK, Darmstadt GL, Yamanaka N, Billal DS, Nasreen T, Islam M, Hamer DH. Rapid diagnosis of pneumococcal meningitis: implications for treatment and measuring disease burden. The Pediatric infectious disease journal. 2005 Dec 1;24(12):1093-8
Introduction

bacterial meningitis; thus, rapid and accurate diagnosis is
Haemophilus influenzae type b, group B
diagnosis may be delayed 9. Moreover, in primary level
failure of detection of causative organism, so the
alteration of CSF cytology, biochemical findings and also
105 CFU/ml of CSF lead to positive results in up to
in 25.0% whereas concentrations of bacteria more than
in 103 CFU/ml of CSF are associated with positive findings
physical, biochemical, cytological, Gram’s staining and
the result if not properly transported and stored as they are
any infection including meningitis is the isolation and
vomiting, irritability, seizures or sluggishness, high

An alternative method for the diagnosis of bacterial
anti-microbial therapy. Das et al4 reported that the
respectively in patients who have received prior

The “gold standard” for diagnosis of
meningitis patients were enrolled in this study and the

Results

viral meningitis which was 69.6±84.67mg/dL.
mean with SD was highest in bacterial

of WBC (p=0.001), the level of glucose (p=0.001) and

There was a highly significant difference in total count
of WBC (p<0.001) (Table 3).

significant (p<0.001). Again the mean with SD of

SD of protein among bacterial and viral meningitis with
(p<0.001) (Table 3).

concentrations of bacteria more than
in 25% whereas

On the basis of cytological tests and biochemical tests
which was 56.0±73.83//mm3. However, the mean with

in 22.0. Confidence interval was considered at 95% level.

mean with SD was lowest in bacterial meningitis which was
mean with SD of

worsens for categorizing the meningitis as bacterial meningitis,
for the above mentioned tests for detection of bacterial

In the present study, all the cases of study population

72.7:27.3 in viral meningitis and 60:40 in normal CSF
ranges from 1 month to 1 year and 26.2% cases in the

confidence interval was 42(61.7%) cases and glucose contents were less than 45
from 20 days to 10 years in case of bacterial meningitis, and 14 days to 10 years in case of viral meningitis and 3

A total of 115 clinically suspected meningitis patients
meningitis during the period from July 2010 to January
was taken from each patient or from their parents before

in 2010 to January

clinical suspected meningitis where they had observed

They found negative CSF culture and Gram’s stain with

mental meningitis: a ten-year retrospective study in a tertiary neurocare

al4 in India reported in their research 13.7% and 06.0%

5. Gray LD, Fedorko DP. Laboratory diagnosis of bacterial
meningitis. Pak J Med Sci. 2008;24(5):645-50

14. Reller LB, Weinstein MP, Werno AM, Murdoch DR. Laboratory diagnosis of invasive pneumococcal disease. Clinical infectious diseases. 2008;46(6):926-32
15. Cheesbrough M. Medical Laboratory Manual for tropical countries, vol.2, ELBS cambridgshire, England, 2000
16. Nussinovitch M, Finkelstein Y, Elishkevitz KP, Volovitz B, Harel D, Klinger G, Razon Y, Nussinovitch U, Nussinovitch N. Cerebrospinal fluid lactate dehydrogenase isoenzymes in children with bacterial and aseptic meningitis. Translational Research. 2009;154(4):214-8
17. Narchi H. CSF bacterial antigen detection testing in the diagnosis of meningitis. Annals of Saudi medicine. 1997;17(1):101-3
18. Gurley ES, Hossain MJ, Montgomery SP, Petersen LR, Sejvar JJ, Mayer LW, Whitney A, Dull P, Nahar N, Uddin AR, Rahman ME. Etiologies of bacterial meningitis in Bangladesh: results from a hospital-based study. The American journal of tropical medicine and hygiene. 2009 Sep 1;81(3):475-83
19. Chowdhury MZU, Rahman KM, Miah RA, Satter H, Hussain T. Bacterial meningitis in children. Bangladesh Medical Journal 1992;21:3-7
20. Taskin E, Turgut M, Kilic M, Akbulut H, Aygun AD. Serum procalcitonin and cerebrospinal fluid cytokines level in children with meningitis. Mediators of inflammation. 2004;13(4):269-73
21. Ceyhan M, Yildirim I, Balmer P, Borrow R, Dikici B, Turgut M, Kurt N, Aydogan A, Ecevit C, Anlar Y, Gulumser O. A prospective study of etiology of childhood acute bacterial meningitis, Turkey. Emerging infectious diseases. 2008 Jul;14(7):1089
22. Alam MR, Saha SK, Nasreen T, Latif F, Rahman SR, Gomes DJ. Detection, antimicrobial susceptibility and serotyping of Streptococcus pneumoniae from cerebrospinal fluid specimens from suspected meningitis patients. Bangladesh Journal of Microbiology. 2007;24(1):24-9.
23. Poppert S, Essig A, Stoehr B, Steingruber A, Wirths B, Juretschko S, Reischl U, Wellinghausen N. Rapid diagnosis of bacterial meningitis by real-time PCR and fluorescence in situ hybridization. Journal of clinical microbiology. 2005;43(7):3390-7