THE DERIVED CATEGORY OF A LOCALLY COMPLETE INTERSECTION RING

JOSH POLLITZ

Abstract. In this paper, we answer a question of Dwyer, Greenlees, and Iyengar by proving a local ring R is a complete intersection if and only if every complex of R-modules with finitely generated homology is proxy small. Moreover, we establish that a commutative noetherian ring R is locally a complete intersection if and only if every complex of R-modules with finitely generated homology is virtually small.

1. Introduction

The relation of the structure of a commutative noetherian ring R and that of its category of modules has long been a major topic of study in commutative algebra. More recently, it has been extended to studying the relations between the structure of R and that of its derived category $\mathcal{D}(R)$. Working in this setting allows one to use ideas from algebraic topology and triangulated categories to gain insight into properties of R.

Basic information on $\mathcal{D}(R)$ is contained in its full subcategory consisting of complexes with finitely generated homology, denoted $\mathcal{D}^{f}(R)$. A complex of R-modules is said to be perfect if it is quasi-isomorphic to a bounded complex of finitely generated projective R-modules. The following homotopical characterization of regular rings is well known: a commutative noetherian ring R is regular if and only if every object of $\mathcal{D}^{f}(R)$ is a perfect complex.

In many respects, the local rings that are closest to being regular are complete intersections. We characterize of complete intersections in terms of how each object of $\mathcal{D}^{f}(R)$ relates to the perfect complexes. Moreover, this yields a homotopical characterization of a locally complete intersection ring. Following [10] and [11], we say that a complex of R-modules M finitely builds a complex of R-modules N provided that N can be obtained by taking finitely many cones and retracts starting from M. More precisely, M finitely builds N provided N is in $\text{Thick}_{\mathcal{D}(R)} M$ (see Section 2.5). The main result of the paper is the following:

Theorem. A commutative noetherian ring R is locally a complete intersection if and only if every nontrivial object of $\mathcal{D}^{f}(R)$ finitely builds a nontrivial perfect complex.

Date: March 16, 2022.

2010 Mathematics Subject Classification. 13D09, 13D07 (primary); 18G55, 18E30 (secondary).

Key words and phrases. local ring, complete intersection, derived category, DG algebra, thick subcategory, support variety.

The author was partly supported through NSF grant DMS 1103176.
Acknowledgements. I thank my advisors Luchezar Avramov and Mark Walker for their support and interesting conversations on this project. I would also like to thank Srikanth Iyengar for several useful discussions regarding this work.

2. Preliminaries

2.1. Differential Graded Algebra. Fix a commutative noetherian ring Q. Let $A = \{A_i\}_{i \in \mathbb{Z}}$ denote a DG Q-algebra. We only consider left DG A-modules.

2.1.1. Let M and N be DG A-modules. We say that $\varphi : M \to N$ is a morphism of DG A-modules provided φ is a morphism of the underlying complexes of Q-modules such that $\varphi(am) = a\varphi(m)$ for all $a \in A$ and $m \in M$. We write $\varphi : M \cong N$ when φ is a quasi-isomorphism.

2.1.2. Let M be a DG A-module. The differential of M is denoted by ∂M. For each $i \in \mathbb{Z}$, $\Sigma^i M$ is the DG A-module given by $(\Sigma^i M)_n := M_{n-i}$, $\partial \Sigma^i M := (-1)^i \partial M$, and $a \cdot m := (-1)^{|a||i|} am$.

2.1.3. A DG A-module P is semiprojective if for every morphism of DG A-modules $\alpha : P \to N$ and each surjective quasi-isomorphism of DG A-modules $\gamma : M \to N$ there exists a unique up to homotopy morphism of DG A-modules $\beta : P \to M$ such that $\alpha = \gamma \beta$.

2.1.4. A semiprojective resolution of a DG A-module M is a surjective quasi-isomorphism of DG A-modules $\epsilon : P \to M$ where P is a semiprojective DG A-module. Semiprojective resolutions exist and any two semiprojective resolutions of M are unique up to homotopy equivalence [12, 6.6].

2.1.5. For DG A-modules M and N, define

$$\text{Ext}_A^*(M, N) := H(\text{Hom}_A(P, N))$$

where P is a semiprojective resolution of M over A. Since any two semiprojective resolutions of M are homotopy equivalent, $\text{Ext}_A^*(M, N)$ is independent of choice of M. An element $[\alpha]$ of $\text{Ext}_A^*(M, N)$ is the class of a morphism of DG A-modules $\alpha : P \to \Sigma^{|\alpha|} N$.

Moreover, given $[\alpha]$ and $[\beta]$ in $\text{Ext}_A^*(M, N)$, then $[\alpha] = [\beta]$ if and only if α and β are homotopic morphisms of DG A-modules.

2.1.6. Let $D(A)$ denote the derived category of A (see [15] for an explicit construction). Recall that $D(A)$, equipped with Σ, is a triangulated category. Define $D^f(A)$ to be the full subcategory of $D(A)$ consisting of all M such that $H(M)$ is a finitely generated graded module over $H(A)$. We use \cong to denote isomorphisms in $D(A)$ and reserve \simeq for isomorphisms of DG A-modules.
2.2. Koszul Complexes. Fix a commutative noetherian ring Q. Let $f = f_1, \ldots, f_n$ be a list of elements in Q. Define $\text{Kos}^Q(f)$ to be the DG Q-algebra with $\text{Kos}^Q(f)$ the exterior algebra on a free Q-module with basis ξ_1, \ldots, ξ_n of homological degree 1, and differential $\partial \xi_i = f_i$. We write $\text{Kos}^Q(f) = Q\langle \xi_1, \ldots, \xi_n | \partial \xi_i = f_i \rangle$.

2.2.1. Let $f' = f'_1, \ldots, f'_m$ be in Q. Assume there exists $a_{ij} \in Q$ such that $f_i = \sum_{j=1}^m a_{ij} f'_j$.

There exists a unique morphism of DG Q-algebras $\text{Kos}^Q(f) \to \text{Kos}^Q(f')$ satisfying $\xi_i \mapsto \sum_{j=1}^m a_{ij} \xi'_j$.

Therefore, $\text{Kos}^Q(f')$ is a DG $\text{Kos}^Q(f)$-module where the action is given by $\xi_i \cdot e' = \sum_{j=1}^m a_{ij} \xi'_j e'$ for all $e' \in E'$.

2.2.2. Assume that (Q, n, k) is a commutative noetherian local ring. Define K^Q to be the Koszul complex on some minimal generating set for n. Then K^Q is unique up to DG Q-algebra isomorphism.

2.3. Map on Ext. Let Q be a commutative noetherian ring. Fix a morphism of DG Q-algebras $\varphi : A' \to A$. Let M and N be DG A-modules, $\epsilon : P \to M$ be a semiprojective resolution of M over A, and $\epsilon' : P' \to M$ a semiprojective resolution of M over A'. There exists a unique up to homotopy morphism of DG A'-modules $\alpha : P' \to P$ such that $\epsilon' = \alpha \epsilon$. Define $\text{Hom}_{A'}(\alpha, N)$ to be the composition

\[
\text{Hom}_A(P, N) \xrightarrow{\text{Hom}_{A'}(P, N)} \text{Hom}_{A'}(P, N) \xrightarrow{\text{Hom}_{A'}(\alpha, N)} \text{Hom}_{A'}(P', N).
\]

This induces a map in cohomology

\[
\text{Ext}^*_A(M, N) : \text{Ext}^*_A(M, N) \to \text{Ext}^*_A(M, N)
\]

given by $\text{Ext}^*_A(M, N) = H(\text{Hom}_{A'}(\alpha, N))$; it is independent of choice of α, P, and P'.

2.3.1. Let $\varphi : A' \to A$ be a morphism of DG Q-algebras and let M and N be DG A-modules. If φ is a quasi-isomorphism, then $\text{Ext}^*_A(M, N)$ is an isomorphism [12, 6.10].

In the following theorem, the theory of DG Γ-algebras is used. See [2, Section 6] or [13, Chapter 1] as a reference for definitions and notation.

Theorem 2.3.2. Assume (Q, n, k) is a regular local ring. Let $R = Q/I$ where I is minimally generated by $f = f_1, \ldots, f_n \in n^2$. Let E be the Koszul complex on f over Q. Let $\varphi : E \to R$ denote the augmentation map. The canonical map

\[
\text{Ext}^*_E(k,k) : \text{Ext}^*_R(k,k) \to \text{Ext}^*_E(k,k)
\]

is surjective.
Proof. Write $E = Q(\xi_1, \ldots, \xi_n | \partial \xi_i = f_i)$. For an element $a \in Q$, let π denote the image of a in R. Let s_1, \ldots, s_e be a minimal generating set for n. Let $X = \{x_1, \ldots, x_e\}$ be a set of exterior variables of homological degree 1 and $Y = \{y_1, \ldots, y_n\}$ a set of divided power variables of homological degree 2. By [2, 7.2.10], the morphism of DG Γ-algebras $\varphi : E \to R$ extends to a morphism of DG Γ-algebras

$$\varphi(X) : E(X|\partial x_i = s_i) \to R(X|\partial x_i = \pi_i)$$

such that $\varphi(X)(x_i) = x_i$ for each $1 \leq i \leq e$.

Since $f_i \in n^2$, there exists $a_{ij} \in n$ such that

$$f_i = \sum_{j=1}^e a_{ij} s_j.$$

For each $1 \leq i \leq n$, we have degree 1 cycles

$$z_i := \sum_{j=1}^n a_{ij} x_j - \xi_i \quad \text{and} \quad \pi_i := \sum_{j=1}^n a_{ij} x_j$$

in $E(X)$ and $R(X)$, respectively, where $\varphi(X)(z_i) = \pi_i$. Applying [2, 7.2.10] yields a morphism of DG Γ-algebras

$$\varphi(X, Y) : E(X,Y|\partial y_i = z_i) \to R(X,Y|\partial y_i = \pi_i)$$

extending $\varphi(X)$ such that $\varphi(X, Y)(y_i) = y_i$ for each $1 \leq i \leq n$.

By [2, 6.3.2], $E(X, Y)$ is an acyclic closure of k over E. In particular, $E(X, Y)$ is a semiprojective resolution of k over E. Next, π_1, \ldots, π_n is a minimal generating set for the maximal ideal of R. Also, since f_1, \ldots, f_n minimally generates I, it follows that $[\pi_1], \ldots, [\pi_n]$ is a minimal generating set for $H_1(R(X))$ (see [18, Theorem 4] or [13, 1.5.4]). Thus, $R(X, Y)$ is the second step in forming an acyclic closure of k over R. Let $\iota : R(X, Y) \to R(X, Y, V)$ denote the inclusion of DG Γ-algebras where $R(X, Y, V)$ is an acyclic closure of k over R and V consists of Γ-variables of homological degree at least 3. Define $\alpha : E(X, Y) \to R(X, Y, V)$ to be the morphism of DG Γ-algebras given by $\alpha := \iota \circ \varphi(X, Y)$.

The following is a commutative diagram of Γ-algebras

$$
\begin{array}{ccc}
E(X, Y) \otimes_E k & \alpha \otimes k & R(X, Y, V) \otimes_R k \\
\cong & \cong & \\
\downarrow & \downarrow & \\
k<X,Y> & \subseteq & k<X,Y,V>
\end{array}
$$

Therefore, $\alpha \otimes k$ is an injective morphism of Γ-algebras. In particular, $\alpha \otimes k$ is injective as a map of graded k-vector spaces. Also, the following is a commutative diagram of graded k-vector spaces

$$
\begin{array}{ccc}
\Hom_k(R(X, Y, V) \otimes_R k, k) & (\alpha \otimes k)^* & \Hom_k(E(X, Y) \otimes_E k, k) \\
\cong & & \cong \\
\downarrow & \downarrow & \\
\Hom_R(R(X, Y, V), k) & \Hom_{\varphi}(\alpha, k) & \Hom_{E}(E(X, Y), k)
\end{array}
$$

Since $\alpha \otimes k$ is injective, $(\alpha \otimes k)^*$ is surjective. Thus, $\Hom_{\varphi}(\alpha, k)$ is surjective. Moreover, $\Hom_{\varphi}(E(X, Y), k)$ and $\Hom_R(R(X, Y, V), k)$ have trivial differential (see [2, 6.3.4]). Thus, $\Ext^*_\varphi(k, k) = \Hom_{\varphi}(\alpha, k)$, and so $\Ext^*_\varphi(k, k)$ is surjective. \qed
2.4. Support of a Complex of Modules. Let R be a commutative noetherian ring and $\text{Spec } R$ denote the set of prime ideals of R. For a complex of R-modules M, define the support of M to be
\[\text{Supp}_R M := \{ p \in \text{Spec } R : M_p \neq 0 \}. \]

2.4.1. Let M be in $D^f(R)$ and let x generate an ideal I of R. It follows from Nakayama’s lemma that x generates a maximal ideal m of R with $m \in \text{Supp}_R M$, then
\[\text{Supp}_R (M \otimes_R \text{Kos}^R(x)) = \text{Supp}_R M \cap \text{Supp}_R (R/I). \]

In particular, if x generates a maximal ideal m of R with $m \in \text{Supp}_R M$, then
\[\text{Supp}_R (M \otimes_R \text{Kos}^R(x)) = \{ m \}. \]

Lemma 2.4.2. Let n be a nonzero integer and let M be in $D^f(R)$. If $\alpha : M \to \Sigma^n M$ is a morphism in $D(R)$, then
\[\text{Supp}_R M = \text{Supp}_R (\text{cone}(\alpha)). \]

Proof. Let $C := \text{cone}(\alpha)$. We have an exact triangle
\[M \to \Sigma^n M \to C \to \]

in $D(R)$. For each $p \in \text{Spec } R$, there is an exact triangle
\[M_p \to \Sigma^n M_p \to C_p \to \]

in $D(R_p)$. It follows that $\text{Supp}_R C \subseteq \text{Supp}_R M$.

If $p \notin \text{Supp}_R C$, then $M_p \cong \Sigma^n M_p$ in $D(R_p)$. Since $M_p \cong \Sigma^n M_p$, M_p is in $D^f(R_p)$, and $n \neq 0$, it follows that $M_p \cong 0$. Thus, $p \notin \text{Supp}_R M$. \(\square\)

2.5. Thick Subcategories. Let \mathcal{T} denote a triangulated category. A full subcategory \mathcal{T}' of \mathcal{T} is called thick if it is closed under suspension, has the two out of three property on exact triangles, and is closed under direct summands. For an object X of \mathcal{T}, define the thick closure of X in \mathcal{T}, denoted $\text{Thick}_\mathcal{T} X$, to be the intersection of all thick subcategories of \mathcal{T} containing X. Since an intersection of thick subcategories is a thick subcategory, $\text{Thick}_\mathcal{T} X$ is the smallest thick subcategory of \mathcal{T} containing X. See [5, Section 2] for an inductive construction of $\text{Thick}_\mathcal{T} X$ and a discussion of the related concept of levels. If Y is an object of $\text{Thick}_\mathcal{T} X$, then we say that X finitely builds Y.

2.5.1. Let R be a commutative ring. Recall that a complex of R-modules M is perfect if it is quasi-isomorphic to a bounded complex of finitely generated projective R-modules. By [11, 3.7], $\text{Thick}_{D(R)} R$ consists exactly of the perfect complexes.

2.5.2. Let R be a commutative ring and let m be a maximal ideal of R. By [11, 3.10], $\text{Thick}_{D(R)} (R/m)$ consists of all objects M of $D^f(R)$ such that $\text{Supp}_R M = \{ m \}$.

2.5.3. Let $F : \mathcal{T} \to \mathcal{T}'$ be an exact functor between triangulated categories with right adjoint exact functor G. Let $\epsilon : FG \to \text{id}_{\mathcal{T}'}$ and $\eta : \text{id}_{\mathcal{T}} \to GF$ be the co-unit and unit transformations.

The full subcategory of \mathcal{T} consisting of all objects X such that the natural map $\eta_X : X \to GF(X)$ is an isomorphism is a thick subcategory of \mathcal{T}. For each X in \mathcal{T}, the composition
\[F(X) \xrightarrow{F(\eta_X)} FGF(X) \xrightarrow{\epsilon_{F(X)}} F(X) \]
is an isomorphism. Therefore, if \(\eta_X \) is an isomorphism in \(T \) then \(\epsilon_F(X) \) is an isomorphism in \(T' \) and \(F \) induces an equivalence of categories

\[
\text{Thick}_T X \xrightarrow{\sim} \text{Thick}_{T'} F(X).
\]

Lemma 2.5.4. Let \(\varphi : R \to S \) be flat morphism of commutative rings. Suppose \(M \) is in \(D(R) \) and the natural map \(M \to M \otimes_R S \) is an isomorphism in \(D(R) \). Then the functor \(- \otimes_R S : D(R) \to D(S) \) induces an equivalence of categories

\[
\text{Thick}_{D(R)} M \xrightarrow{\sim} \text{Thick}_{D(S)} (M \otimes_R S).
\]

In particular, for each \(N \) in \(\text{Thick}_{D(R)} M \) the natural map \(N \to N \otimes_R S \) is an isomorphism in \(D(R) \).

Proof. The restriction of scalar functor \(G : D(S) \to D(R) \) is a right adjoint to \(- \otimes_R S : D(R) \to D(S) \). By assumption, the natural map

\[
M \to G(M \otimes_R S)
\]

is an isomorphism in \(D(R) \). Hence, (2.5.3) completes the proof. \(\square \)

2.6. **Support of Cohomology Graded Modules.** Let \(\mathcal{A} = \{A^i\}_{i \geq 0} \) be a cohomologically graded, commutative noetherian ring. Recall that \(\text{Proj} \mathcal{A} \) denotes the set of homogeneous prime ideals of \(\mathcal{A} \) not containing \(\mathcal{A}^{>0} := \{A^i\}_{i>0} \). For homogeneous elements \(a_1, \ldots, a_m \in \mathcal{A} \) define

\[
\mathcal{V}(a_1, \ldots, a_m) = \{ p \in \text{Proj} \mathcal{A} : a_i \in p \text{ for each } i \}.
\]

For a (cohomologically) graded \(\mathcal{A} \)-module \(X \), set

\[
\text{Supp}_\mathcal{A}^+ X := \{ p \in \text{Proj} \mathcal{A} : X_p \neq 0 \}.
\]

The following properties of (cohomologically) graded \(\mathcal{A} \)-modules follow easily from the definition of support; see [6, 2.2]

Proposition 2.6.1. Let \(\mathcal{A} = \{A^i\}_{i \geq 0} \) be a cohomologically graded, commutative noetherian ring.

1. Let \(X \) be a graded \(\mathcal{A} \)-module and \(n \in \mathbb{Z} \). Then \(\text{Supp}_\mathcal{A}^+ X = \text{Supp}_\mathcal{A}^+(\Sigma^n X) \).

2. Given an exact sequence of graded \(\mathcal{A} \)-modules \(0 \to X' \to X \to X'' \to 0 \) then

\[
\text{Supp}_\mathcal{A}^+ X = \text{Supp}_\mathcal{A}^+ X' \cup \text{Supp}_\mathcal{A}^+ X''.
\]

3. If \(X \) is a finitely generated graded \(\mathcal{A} \)-module, then \(\text{Supp}_\mathcal{A}^+ X = \emptyset \) if and only if \(X^{>0} = 0 \).

3. **Cohomology Operators and Support Varieties**

3.1. **Fixed Notation.** Throughout this section, let \(Q \) be a commutative noetherian ring. When \(Q \) is local, we will let \(n \) denote its maximal ideal and \(k \) its residue field.

Let \(I \) be an ideal of \(Q \) and fix a generating set \(f = f_1, \ldots, f_n \) for \(I \). Set \(R := Q/I \) and \(E := Q[\xi_1, \ldots, \xi_n] / \partial_\xi_i = f_i \). The augmentation map \(E \to R \) is a map of DG \(Q \)-algebras. Hence, we consider DG \(R \)-modules as DG \(E \)-modules via restriction of scalars along \(E \to R \).

Let \(S := Q[\chi_1, \ldots, \chi_n] \) be a graded polynomial ring where each \(\chi_i \) has cohomological degree 2. When \(Q \) is local, set

\[
\mathcal{A} := S \otimes_Q k = k[\chi_1, \ldots, \chi_n].
\]
Define Γ to be the graded Q-linear dual of S, i.e., Γ is the graded Q-module with

$$
\Gamma_i := \text{Hom}_Q(S^i, Q).
$$

Let $\{y^{(H)}\}_{H \in \mathbb{N}^n}$ be the Q-basis of Γ dual to $\{\chi^H := \chi_1^{h_1} \cdots \chi_n^{h_n}\}_{H \in \mathbb{N}^n}$ the standard Q-basis of S. Then Γ is a graded S-module via the action

$$
\chi_i \cdot y^{(H)} := \begin{cases}
y^{(h_1, \ldots, h_{i-1}, h_i, h_{i+1}, \ldots, h_n)} & h_i \geq 1 \\
0 & h_i = 0
\end{cases}
$$

3.2. Cohomology Operators. Let M be a DG E-module. A semiprojective resolution $\epsilon : P \xrightarrow{\sim} M$ over Q such that P has the structure of a DG E-module and ϵ is a morphism of DG E-modules is called a Koszul resolution of M. A semiprojective resolution of M over E is a Koszul resolution of M, and hence Koszul resolutions exist.

Let $\epsilon : P \xrightarrow{\sim} M$ be a Koszul resolution of M. Define $U_E(P)$ to be the DG E-module with

$$
U_E(P)^\mathbb{Z} \cong (E \otimes_Q \Gamma \otimes_Q P)^\mathbb{Z}
$$

and differential given by the formula

$$
\partial = \partial^E \otimes 1 \otimes 1 + 1 \otimes 1 \otimes \partial^P + \sum_{i=1}^n (1 \otimes \chi_i \otimes \lambda_i - \lambda_i \otimes \chi_i \otimes 1)
$$

where λ_i denotes left multiplication by ξ_i. By [4, 2.4], $U_E(P) \to M$ is a semiprojective resolution over E where the augmentation map is given by

$$
a \otimes y^{(H)} \otimes x \mapsto \begin{cases}
\alpha(x) & |H| = 0 \\
0 & |H| > 1
\end{cases}
$$

Notice that $U_E(P)$ has a DG S-module structure where S acts on $U_E(P)$ via its action on Γ. For a DG E-module N, $\text{Hom}_E(U_E(P), N)$ is a DG S-module and hence,

$$
\text{Ext}^*_E(M, N) = \text{H}(\text{Hom}_E(U_E(P), N))
$$

is a graded module over S.

Remark 3.2.1. Let M and M' be DG E-modules and assume that $\alpha : M \to M'$ is a morphism of DG E-modules. Let F and F' be semiprojective resolutions of M and M' over E, respectively. Since F is semiprojective over E, there exists a morphism of DG E-modules $\hat{\alpha} : F \to F'$ lifting α that is unique up to homotopy. Moreover, $\hat{\alpha}$ induces a morphism of DG E-modules $1 \otimes 1 \otimes \hat{\alpha} : U_E(F) \to U_E(F')$ that is S-linear and unique up to homotopy.

In particular, if F and F' are both semiprojective resolutions of a DG E-module M, then there exists a DG E-module homotopy equivalence $U_E(F) \to U_E(F')$ that is S-linear and unique up to homotopy. Thus, the S-module structures of $\text{H}(\text{Hom}_E(U_E(F), N))$ and $\text{H}(\text{Hom}_E(U_E(F'), N))$ coincide when F and F' are both semiprojective resolutions of M over E.

Proposition 3.2.2. Let M and N be in $D(E)$. Then the S-module structure on $\text{Ext}^*_E(M, N)$ is independent of choice of Koszul resolution for M. Moreover, the S-module action on $\text{Ext}^*_E(M, N)$ is functorial in M and given an exact triangle $M' \to M \to M'' \to$ in $D(E)$, there exists an exact sequence of graded S-modules

$$
\Sigma^{-1} \text{Ext}^*_E(M', N) \to \text{Ext}^*_E(M'', N) \to \text{Ext}^*_E(M, N) \to \text{Ext}^*_E(M', N).
$$
Proof. Let P be a Koszul resolution of M and F a semiprojective resolution of M over E. There exists a morphism of DG E-modules $\tilde{\alpha} : F \to P$ lifting the identity on M which is unique up to homotopy. This induces a DG E-module homotopy equivalence $1 \otimes 1 \otimes \tilde{\alpha} : U_E(F) \to U_E(P)$ that is S-linear and unique up to homotopy. Thus, F and P determine the same S-module structure on $\text{Ext}^*_E(M, N)$. From Remark 3.2.1, it follows that the S-module structure on $\text{Ext}^*_E(M, N)$ is independent of choice of Koszul resolution for M.

Moreover, by Remark 3.2.1 the S-module structure on $\text{Ext}^*_E(M, N)$ is functorial in M. Thus, $\text{Ext}^*_E(-, N)$ sends exact triangles in $D(E)$ to exact sequences of graded S-modules. \hfill \Box

3.2.3. Assume that (Q, n, k) is a local ring and recall that $A = S \otimes_Q k$. Let M be in $D(E)$. The S-action on $\text{Ext}^*_E(M, k)$ factors through $S \to A$, and hence, $\text{Ext}^*_E(M, k)$ is a graded A-module. Therefore, by Proposition 3.2.2, for any exact triangle $M' \to M \to M'' \to$ in $D(E)$, we get an exact sequence of graded A-modules

$$\Sigma^{-1} \text{Ext}^*_E(M', k) \to \text{Ext}^*_E(M'', k) \to \text{Ext}^*_E(M, k) \to \text{Ext}^*_E(M', k).$$

Lemma 3.2.4. Assume that (Q, n, k) is a local ring and M is in $D(E)$. For any $x \in n$, there exists an exact sequence of graded A-modules

$$0 \to \Sigma^{-1} \text{Ext}^*_E(M, k) \to \text{Ext}^*_E(M \otimes_Q \text{Kos}^Q(x), k) \to \text{Ext}^*_E(M, k) \to 0.$$

Proof. By (3.2.3), applying $\text{Ext}^*_E(-, k)$ to the exact triangle $M \to M \to M \otimes_Q \text{Kos}^Q(x) \to$ in $D(E)$ gives us an exact sequences of graded A-modules

$$\Sigma^{-1} \text{Ext}^*_E(M, k) \to \text{Ext}^*_E(M \otimes_Q \text{Kos}^Q(x), k) \to \text{Ext}^*_E(M, k) \to \text{Ext}^*_E(M, k).$$

Since x is in n, we obtain the desired result. \hfill \Box

Proposition 3.2.5. Assume that (Q, n, k) is a regular local ring. For each M in $D^f(E)$, $\text{Ext}^*_E(M, k)$ is a finitely generated graded A-module.

Proof. As $H(M)$ is finitely generated over Q and Q is regular, there exists a Koszul resolution $P \xrightarrow{\sim} M$ such that P is a bounded complex of finitely generated free Q-modules (see [4, 2.1]). Also, we have an isomorphism of graded A-modules

$$\text{Hom}_E(U_E(P), k) \cong A \otimes_k \text{Hom}_Q(P, k)^2.$$ Thus, $\text{Hom}_E(U_E(P), k)$ is a noetherian graded A-module. As A is a noetherian graded ring and $\text{Ext}^*_E(M, k)$ is a graded subquotient of $\text{Hom}_E(U_E(P), k)$, it follows that $\text{Ext}^*_E(M, k)$ is a noetherian graded A-module. \hfill \Box

Remark 3.2.6. Suppose the local ring (Q, n, k) is regular. By (2.2.1), K^Q is a DG E-module. Assume that $I \subseteq n^2$. Left multiplication by ξ_i on K^Q is zero modulo n. Thus, we have an isomorphism of DG A-modules

$$\text{Hom}_E(U_E(K^Q), k) \cong A \otimes_k \text{Hom}_Q(K^Q, k).$$

where both DG A-modules have trivial differential (see (2.2.1)). Therefore, there is an isomorphism of graded A-modules

$$\text{Ext}^*_E(k, k) \cong A \otimes_k \text{Hom}_Q(K^Q, k).$$

In particular,

$$\text{Supp}^+_A(\text{Ext}^*_E(k, k)) = \text{Proj} A.$$
3.3. Support Varieties. For the rest of the section, further assume that \((Q, n, k)\) is a regular local ring, \(f\) minimally generates \(I\), and \(I \subseteq n\). Recall that

\[A = S \otimes_Q k = k[\chi_1, \ldots, \chi_n]. \]

By Proposition 3.2.5, \(\text{Ext}^*_{E}(M, k)\) is a finitely generated graded \(A\)-module for each \(M\) in \(\mathcal{D}^f(E)\). This leads to the following definition which recovers the support varieties of Avramov in \([3]\) in the case that \(f\) is a \(Q\)-regular sequence. The varieties, defined below, are investigated and further developed in \([17]\).

Definition 3.3.1. Let \(M\) be in \(\mathcal{D}^f(E)\). Define the support variety of \(M\) over \(E\) to be

\[V_E(M) := \text{Supp}_A^+(\text{Ext}^*_{E}(M, k)). \]

Theorem 3.3.2. With the assumptions above, the following hold.

1. Let \(M\) and \(N\) be in \(\mathcal{D}^f(E)\). If \(N\) is in \(\text{Thick}_{\mathcal{D}(E)} M\), then \(V_E(N) \subseteq V_E(M)\).
2. For any \(M\) in \(\mathcal{D}^f(E)\), \(V_E(M) = V_E(M \otimes_Q K^Q)\).
3. \(f\) is a \(Q\)-regular sequence if and only if \(V_E(R) = \emptyset\).

Proof. Using (3.2.3) and Proposition 2.6.1, it follows that the full subcategory of \(\mathcal{D}^f(E)\) consisting of objects \(L\) such that \(V_E(L) \subseteq V_E(M)\) is a thick subcategory of \(\mathcal{D}^f(E)\). Therefore, (1) holds.

Iteratively applying Lemma 3.2.4 and Proposition 2.6.1(2), establishes (2).

For (3), first assume that \(f\) is a \(Q\)-regular sequence. Hence, the augmentation map \(E \to R\) is a quasi-isomorphism. Therefore, (2.3.1) yields an isomorphism

\[\text{Ext}^*_{E}(R, k) \cong \text{Ext}^*_{R}(R, k) = k. \]

Thus, \(V_E(R) = \text{Supp}_R^+ k = \emptyset\).

Conversely, assume that \(V_E(R) = \emptyset\). Hence, by Proposition 3.2.5 and Proposition 2.6.1(3),

\[\text{Ext}_{E}^{\geq 0}(R, k) = 0. \]

Next, let \(g = g_1, \ldots, g_n\) be a minimal generating set for \(I\) such that \(g' = g_1, \ldots, g_c\) is a maximal \(Q\)-regular sequence in \(I\) for some \(c \leq g\). Set \(\overline{Q} := Q/\langle g' \rangle\), \(\overline{g}\) to be the image of \(g_{c+1}, \ldots, g_n\) in \(\overline{Q}\), and \(\overline{E} := \text{Kos}^Q(\overline{g})\). Since \(g'\) is a \(Q\)-regular sequence, we have a quasi-isomorphism of DG \(Q\)-algebras \(E \xrightarrow{\sim} \overline{E}\). Hence, (2.3.1) yields an isomorphism of graded \(k\)-vector spaces

\[\text{Ext}^*_{E}(R, k) \cong \text{Ext}^*_{E}(R, k). \]

In particular, \(\text{Ext}^*_{E}^{\geq 0}(R, k) = 0\) by (1). Therefore, \(pd_{\overline{Q}} R < \infty\) (c.f. \([7, B.10]\)). Since \(R = \overline{Q} / I\overline{Q}\) where \(I\overline{Q}\) contains no \(Q\)-regular element, it follows that \(I\overline{Q} = 0\) (see \([9, 1.4.7]\)). Thus, \(g = g'\), that is, \(I\) is generated by a \(Q\)-regular sequence. Therefore, by \([9, 1.6.19]\), \(f\) is \(Q\)-regular sequence. \(\square\)

Remark 3.3.3. In \([17]\), a different argument is used to establish Theorem 3.3.2(c). In fact, the following is shown: \(f\) is a \(Q\)-regular sequence if and only if \(V_E(M) = \emptyset\) for some nonzero finitely generated \(R\)-module \(M\).

Theorem 3.3.4. Assume \((Q, n, k)\) is a regular local ring. Let \(R = Q/I\) where \(I\) is minimally generated by \(f = f_1, \ldots, f_n \in n^2\). Let \(E\) be the Koszul complex on
Let f over Q and set $A = k[\chi_1, \ldots, \chi_n]$. For each homogeneous element $g \in A$, there exists a complex of R-modules $C(g)$ in $\text{Thick}_{D(R)} k$ such that

$$V_E(C(g)) = V(g).$$

Proof. As Q is regular, the Koszul complex K^Q is a free resolution of k over Q. Moreover, (2.2.1) says that K^Q is a Koszul resolution of k. By (3.2), there exists a semiprojective resolution $\epsilon : U \to k$ over E where $U := U_E(K^Q)$. Let d denote the degree of g. Define

$$\tilde{C}(g) := \text{cone}(U \xrightarrow{g} \Sigma^dU).$$

The same proof of [6, 3.10] and Remark 3.2.6 yields

(2) $V_E(\tilde{C}(g)) = V(g)$.

Fix a projective resolution $\delta : P \to k$ over R. Since U is a semiprojective DG E-module there exists a morphism of DG E-modules $\alpha : U \to P$ such that $\delta \alpha = \epsilon$. Note that α is a quasi-isomorphism.

By Theorem 2.3.2 and (2.1.5), there exists a morphism of complexes of R-modules $\gamma : P \to \Sigma^d k$ such that

(3) $U \xrightarrow{g} \Sigma^dU \xrightarrow{\gamma} \Sigma^d k$

is a diagram of DG E-modules that commutes up to homotopy. Define

$$C(g) := \text{cone}(\gamma).$$

Since $P \simeq k$ and γ is a morphism of complexes of R-modules, it follows that $C(g)$ is in $\text{Thick}_{D(R)} k$. Also, as α are $\Sigma^d \epsilon$ quasi-isomorphisms and (3) commutes up to homotopy, we get an isomorphism

$$C(g) \simeq \tilde{C}(g)$$

in $D(E)$. Therefore, Equation (2) yields

$$V_E(C(g)) = V_E(\tilde{C}(g)) = V(g).$$

□

4. **Virtually Small Complexes**

Let R be a commutative noetherian ring. A complex of R-modules M is **virtually small** if $M \simeq 0$ or there exists a nontrivial object P in $\text{Thick}_{D(R)} M \cap \text{Thick}_{D(R)} R$. If in addition P can be chosen with $\text{Supp}_R M = \text{Supp}_R P$, we say M is **proxy small**. These notions were introduced by Dwyer, Greenlees, and Iyengar in [10] and [11], where the authors apply methods from commutative algebra to homotopy theory and vice versa.

Remark 4.1. In [10] and [11], the objects of $\text{Thick}_{D(R)} R$ are called the **small objects** of $D(R)$. With this terminology, the nontrivial virtually small objects of $D(R)$ are the complexes that finitely build a nontrivial small object.

4.2. A nontrivial object M of $D^f(R)$ is virtually small if and only if there exists a maximal ideal $m = (x)$ of R such that $\text{Kos}^R(x)$ is in $\text{Thick}_{D(R)} M$. In particular, if R is local, a nontrivial complex M in $D^f(R)$ is virtually small if and only if K^R is in $\text{Thick}_{D(R)} M$. This was observed in [11, 4.5], and is a consequence of a theorem of M. Hopkins [14] and Neeman [16].

As a matter of notation, let $\mathcal{VS}(R)$ to be the full subcategory of $\mathcal{D}^f(R)$ consisting of all virtually small complexes. In the following lemma, the argument for “(1) implies (2)” is abstracted from the proof of [11, 9.4].

Lemma 4.3. Let R be a commutative noetherian ring. The following are equivalent:

1. Thick$_{\mathcal{D}(R)}(R/\mathfrak{m})$ is a subcategory of $\mathcal{VS}(R)$ for each maximal ideal \mathfrak{m} of R.
2. $\mathcal{D}^f(R) = \mathcal{VS}(R)$.
3. $\mathcal{VS}(R)$ is a thick subcategory of $\mathcal{D}(R)$.

Proof. (1) \implies (2): Let M be a nontrivial object of $\mathcal{D}^f(R)$. Since M is nontrivial, there exists a maximal ideal \mathfrak{m} in $\text{Supp}_R M$. Let x generate \mathfrak{m} and set

$$N := M \otimes_R \text{Kos}^R(x).$$

By (2.4.1), $\text{Supp}_R N = \{\mathfrak{m}\}$ and hence, N is in Thick$_{\mathcal{D}(R)}(R/\mathfrak{m})$ (see (2.5.2)). By assumption, there exists a nontrivial object P in Thick$_{\mathcal{D}(R)}(R) \cap$Thick$_{\mathcal{D}(R)}(R)$. Finally, since N is in Thick$_{\mathcal{D}(R)}(R)$, Thick$_{\mathcal{D}(R)}(R)$ is a subcategory of Thick$_{\mathcal{D}(R)}(R)$. Thus, P is in Thick$_{\mathcal{D}(R)}(R)$. That is, M is virtually small.

(2) \implies (3): Whenever R is noetherian, $\mathcal{D}^f(R)$ is a thick subcategory of $\mathcal{D}(R)$.

(3) \implies (1): By (2.5.2), $\text{Kos}^R(x)$ is in Thick$_{\mathcal{D}(R)}(R/\mathfrak{m})$. Thus, R/\mathfrak{m} is in $\mathcal{VS}(R)$. Since $\mathcal{VS}(R)$ is a thick subcategory of $\mathcal{D}(R)$, it follows that Thick$_{\mathcal{D}(R)}(R/\mathfrak{m})$ is contained in $\mathcal{VS}(R)$. \square

Lemma 4.4. Let $\varphi : R \to S$ be a flat morphism of commutative noetherian rings. Suppose \mathfrak{m} is a maximal ideal of R such that $\mathfrak{m}S$ is a maximal ideal of S and the canonical map $R/\mathfrak{m} \to S/\mathfrak{m}S$ is an isomorphism. Then Thick$_{\mathcal{D}(R)}(R/\mathfrak{m})$ is a subcategory of $\mathcal{VS}(R)$ if and only if Thick$_{\mathcal{D}(S)}(S/\mathfrak{m}S)$ is a subcategory of $\mathcal{VS}(S)$.

Proof. Set $K := \text{Kos}^R(x)$ where x generates \mathfrak{m}. Let x' denote the image of x under φ and set $K' := \text{Kos}^S(x')$. Hence, we have an isomorphism of DG S-algebras $K' \cong K \otimes_R S$.

Assume Thick$_{\mathcal{D}(R)}(R/\mathfrak{m})$ is a subcategory of $\mathcal{VS}(R)$. Let N be a nontrivial object of Thick$_{\mathcal{D}(S)}(S/\mathfrak{m}S)$. By Lemma 2.5.4, there exists a nontrivial complex M in Thick$_{\mathcal{D}(R)}(R/\mathfrak{m})$ such that $M \otimes_R S \cong N$ in $\mathcal{D}(S)$. By assumption and (4.2), K is in Thick$_{\mathcal{D}(S)}(S/\mathfrak{m}S)$. Hence, $K \otimes_R S$ is in Thick$_{\mathcal{D}(R)}(M \otimes_R S)$ and $N \cong M \otimes_R S$. Since $K' \cong K \otimes_R S$ and $N \cong M \otimes_R S$, we conclude that K' is in Thick$_{\mathcal{D}(S)}(S/\mathfrak{m}S)$. Thus, N is in $\mathcal{VS}(S)$.

Let M be a nontrivial object of Thick$_{\mathcal{D}(R)}(R/\mathfrak{m})$. Thus, $M \otimes_R S$ is a nontrivial object of Thick$_{\mathcal{D}(S)}(S/\mathfrak{m}S)$. By assumption and (4.2), K' is in Thick$_{\mathcal{D}(S)}(M \otimes_R S)$. Therefore,

$$K' \in \text{Thick}_{\mathcal{D}(R)}(M \otimes_R S).$$

Since the natural map $R/\mathfrak{m} \to S/\mathfrak{m}S$ is an isomorphism and K and M are in Thick$_{\mathcal{D}(R)}(R/\mathfrak{m})$, by applying Lemma 2.5.4 we obtain the following isomorphisms in $\mathcal{D}(R)$

$$K \xrightarrow{\cong} K \otimes_R S \cong K' \text{ and } M \xrightarrow{\cong} M \otimes_R S.$$

These isomorphisms and (4) imply that K is in Thick$_{\mathcal{D}(R)}(R)$. That is, M is in $\mathcal{VS}(R)$. \square

Proposition 4.5. Let R be a commutative noetherian ring.
(1) Then $D^f(R) = VS(R)$ if and only if $D^f(R_m) = VS(R_m)$ for every maximal ideal m of R.

(2) In addition, assume (R, m, k) is local and let \hat{R} denote its m-adic completion. Then $D^f(R) = VS(R)$ if and only if $D^f(\hat{R}) = VS(\hat{R})$.

Proof. By Lemma 4.3, $D^f(R) = VS(R)$ if and only if $\text{Thick}_{D(R)}(R/m)$ is a subcategory of $VS(R)$ for each maximal ideal of m of R. By Lemma 4.4, the latter holds if and only if $\text{Thick}_{D(R_m)}(\kappa(m))$ is a subcategory of $VS(R_m)$ for each maximal ideal m of R where $\kappa(m) = R_m/mR_m$. Equivalently, $D^f(R_m) = VS(R_m)$ for each maximal ideal m of R by Lemma 4.3. Thus, (1) holds.

Next, Lemma 4.4 yields that $\text{Thick}_{D(\hat{R})}k$ is a subcategory of $VS(R)$ if and only if $\text{Thick}_{D(\hat{R})}k$ is a subcategory of $VS(\hat{R})$. Applying Lemma 4.3, finishes the proof of (2). □

5. The Main Results

Let (R, m) be a commutative noetherian local ring and let \hat{R} denote its m-adic completion. The local ring R is said to be a complete intersection provided

$\hat{R} \cong Q/(f_1, \ldots, f_c)$

where Q is a regular local ring and f_1, \ldots, f_c is a Q-regular sequence. In [11, 9.4], the following was established: if R is a complete intersection every object of $D^f(R)$ virtually small. If in addition R is a quotient of a regular local ring, every object of $D^f(R)$ is proxy small. Moreover, the authors posed the following question:

Question 5.1. [11, 9.4] If every object of $D^f(R)$ is virtually small, is R a complete intersection?

Theorem 5.2, below, answers Question 5.1 in the affirmative. Much of the work in establishing “(1) implies (3)” is done in the proof of a theorem of Bergh [8, 3.2]. The theory of support varieties developed in Section 3.3 is the key ingredient used to prove “(2) implies (1).”

Theorem 5.2. Let R be a commutative noetherian local ring. The following are equivalent.

(1) R is a complete intersection.
(2) Every object of $D^f(R)$ is virtually small.
(3) Every object of $D^f(R)$ is proxy small.

Proof. (1) \implies (3): Let M be in $D^f(R)$. In the proof of [8, 3.2], it is shown there exist positive integers n_1, \ldots, n_t and exact triangles in $D(R)$

$M \to \Sigma^{n_1}M \to M(1) \to$
$M(1) \to \Sigma^{n_2}M(1) \to M(2) \to$
$\vdots \quad \vdots \quad \vdots \quad \vdots$
$M(t-1) \to \Sigma^{n_t}M(t-1) \to M(t) \to$

such that $M(t)$ is in $\text{Thick}_{D(R)} R$. Also, it is clear that $M(t)$ is in $\text{Thick}_{D(R)} M$. Since each $n_i \neq 0$, Lemma 2.4.2 yields

$\text{Supp}_R M = \text{Supp}_R(M(1)) = \ldots = \text{Supp}_R(M(t))$.

12
Thus, M is proxy small.

(3) \Rightarrow (2): Clear from the definitions.

(2) \Rightarrow (1): By Proposition 4.5(2), we may assume that R is complete. Write $R = Q/I$ where (Q, n, k) is a regular local ring. Assume I is minimally generated by $f = f_1, \ldots, f_n \in n^2$ and let E be the Koszul complex on f.

Fix $1 \leq i \leq n$. By Theorem 3.3.4, there exists $C(i)$ in $\text{Thick}_{D(R)} k$ with

$$V_E(C(i)) = V(\chi_i).$$

By assumption, each $C(i)$ is virtually small. Therefore, (4.2) implies that K^R is in $\text{Thick}_{D(R)} C(i)$. Hence,

$$V_E(K^R) \subseteq V_E(C(i)) = V(\chi_i),$$

by Theorem 3.3.2(1). Applying Theorem 3.3.2(2) with $M = R$ yields

$$V_E(R) = V_E(K^R),$$

and hence, $V_E(R) \subseteq V(\chi_i)$. Therefore,

$$V_E(R) \subseteq V(\chi_1) \cap \ldots \cap V(\chi_n).$$

That is, $V_E(R) = \emptyset$ and so by Theorem 3.3.2(3), f is a Q-regular sequence. Thus, R is a complete intersection. □

This structural characterization of a complete intersection’s derived category yields the following corollary which was first established by Avramov in [1].

Corollary 5.3. Assume a commutative noetherian local ring R is a complete intersection. For any $p \in \text{Spec } R$, R_p is a complete intersection.

Proof. For any $p \in \text{Spec } R$, the functor $- \otimes_R R_p : D^f(R) \to D^f(R_p)$ is essentially surjective. Also, the property of proxy smallness localizes. These observations and Theorem 5.2 complete the proof. □

Let R be a commutative noetherian ring. We say that R is **locally a complete intersection** if R_p is a complete intersection for each $p \in \text{Spec } R$. By Corollary 5.3, R is locally a complete intersection if and only if R_m is a complete intersection for every maximal ideal m of R. We obtain the following homotopical characterization of rings that are locally complete intersections.

Theorem 5.4. A commutative noetherian ring R is locally a complete intersection if and only if every object of $D^f(R)$ is virtually small.

Proof. As remarked above, R is locally a complete intersection if and only if R_m is a complete intersection for each maximal ideal m of R. By Theorem 5.2, the latter holds if and only if $D^f(R_m) = \text{VS}(R_m)$ for each maximal ideal m of R. Equivalently, $D^f(R) = \text{VS}(R)$ by Proposition 4.5(1). □

References

[1] L. L. Avramov, *Flat morphisms of complete intersections*, Soviet Math. Dokl. 16 (1975), 1413–1417

[2] L. L. Avramov, *Infinite free resolutions*, Six Lectures on Commutative Algebra (Bellaterra, 1996), Progr. Math. 166, Birkhäuser, Basel, 1998; pp. 1–118

[3] L. L. Avramov, *Modules of finite virtual projective dimension*, Inventiones mathematicae 96 (1989), 71–101
[4] L. L. Avramov, R.-O. Buchweitz, Homological algebra modulo a regular sequence with special attention to codimension two, Journal of Algebra 230 (2000), 24–67
[5] L. L. Avramov, R.-O. Buchweitz, S. Iyengar, C. Miller, Homology of perfect complexes, Advances in Mathematics 223 (2010), 1731–1781
[6] L. L. Avramov, S. Iyengar, Constructing modules with prescribed cohomological support, Illinois Journal of Mathematics 51.1 (2007), 1–20
[7] L. L. Avramov, S. Iyengar, S. Nasseh, S. Sather-Wagstaff, Homology over trivial extensions of commutative dga algebras, (2015), arXiv:1508.00748v1 [math.AC]
[8] P. A. Bergh, On complexes of finite complete intersection dimension, Homology, Homotopy, and Applications 11.2 (2009), 49–54
[9] W. Bruns and J. Herzog, Cohen-Macaulay rings, volume 39 of Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge, 1993
[10] W. G. Dwyer, J. P. C. Greenlees, S. Iyengar, Duality in algebra and topology, Advances in Mathematics 200.2 (2006): 357–402
[11] W. G. Dwyer, J. P. C. Greenlees, S. Iyengar, Finiteness in derived categories of local rings, Commentarii Mathematici Helvetici 81.2 (2006), 383–432
[12] Y. Felix, S. Halperin, J. C. Thomas, Rational homotopy theory, Graduate Texts Math. 205, Springer-Verlag, New York, 2001
[13] T. H. Gulliksen, G. Levin, Homology of Local Rings, Queen’s Papers Pure Appl. Math. 20, Queen’s Univ., Kingston, ON, 1969
[14] M. Hopkins, Global methods in homotopy theory, in: Homotopy theory (Durham, 1985), London Math. Soc. Lect. Note Ser. 117, Cambridge Univ. Press, Cambridge, (1987), 73–96
[15] B. Keller, Deriving DG categories, Ann. Sci. École Norm. Sup. (4), 27 (1994), 63-102
[16] A. Neeman, The chromatic tower of D(R), Topology 31 (1992), 519–532.
[17] J. Pollitz, Support varieties over Koszul complexes, (in preparation)
[18] J. Tate, Homology of Noetherian rings and local rings, Illinois Journal of Mathematics 1 (1957), 14–27

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF NEBRASKA, LINCOLN, NE 68588, U.S.A.
E-mail address: jpollitz@huskers.unl.edu