Some Statistics on Generalized Motzkin Paths with Vertical Steps

Yidong Sun¹ · Di Zhao¹ · Weichen Wang¹ · Wenle Shi¹

Received: 13 October 2021 / Revised: 22 October 2022 / Accepted: 6 November 2022
© The Author(s), under exclusive licence to Springer Japan KK, part of Springer Nature 2022

Abstract
Recently, several authors have considered lattice paths with various steps, including vertical steps permitted. In this paper, we consider a kind of generalized Motzkin paths, called G-Motzkin paths for short, that is lattice paths from $(0,0)$ to $(n,0)$ in the first quadrant of the XY-plane that consist of up steps $u = (1,1)$, down steps $d = (1,-1)$, horizontal steps $h = (1,0)$ and vertical steps $v = (0,-1)$. The main purpose of this paper is to count the number of G-Motzkin paths of length n with given number of z-steps for $z \in \{ u, h, v, d \}$, and to enumerate the statistics “number of z-steps” at given level in G-Motzkin paths for $z \in \{ u, h, v, d \}$. Some explicit formulas and combinatorial identities are given by bijective and algebraic methods, some enumerative results are linked with Riordan arrays according to the structure decompositions of G-Motzkin paths. We also discuss the statistics “number of z_1z_2-steps” in G-Motzkin paths for $z_1, z_2 \in \{ u, h, v, d \}$, the exact counting formulas except for $z_1z_2 = dd$ are obtained by the Lagrange inversion formula and their generating functions.

Keywords Dyck path · G-Motzkin path · Catalan number · Riordan array

Mathematics Subject Classification 05A15 · 05A05 · 05A19

¹ School of Science, Dalian Maritime University, 116026 Dalian, People’s Republic of China
1 Introduction

Lattice paths have been studied by many mathematicians and have produced numerous interesting and important results. Research in this area has resulted in well known classes of lattice paths such as those named after Dyck [14], Motzkin [4, 15], Schröder [9] and Delannoy [3]. They are used in physics [28], computer science [30, 50], biology [7, 16, 24, 38, 42, 52] and probability theory [12, 29, 32, 36, 37, 49]. We refer the reader to the wonderful survey by Humphreys [25] for additional historical information.

A Dyck path of length \(2n\) is a lattice path from \((0, 0)\) to \((2n, 0)\) in the first quadrant of the XY-plane that consists of up steps \(u = (1, 1)\) and down steps \(d = (1, -1)\). Let \(C_n\) be the set of Dyck paths of length \(2n\). It is well known [14, 47] that \(|C_n| = C_n = \frac{1}{n+1} \binom{2n}{n}\), the \(n\)th Catalan number, has the generating function

\[
C(x) = \sum_{n \geq 0} C_n x^n = \frac{1 - \sqrt{1 - 4x}}{2x} \tag{1.1}
\]

with the relation \(C(x) = 1 + xC(x)^2 = \frac{1}{1-xC(x)}\).

A Motzkin path of length \(n\) is a lattice path from \((0, 0)\) to \((n, 0)\) in the first quadrant of the XY-plane that consists of up steps \(u = (1, 1)\), down steps \(d = (1, -1)\) and horizontal steps \(h = (1, 0)\). Let \(M_n\) be the set of Motzkin paths of length \(n\). It is well known [4, 15, 45] that \(|M_n| = M_n\), the \(n\)th Motzkin number, has the generating function

\[
M(x) = \sum_{n \geq 0} M_n x^n = \frac{1 - x - \sqrt{1 - 2x - 3x^2}}{2x^2}
\]

with the relation \(M(x) = 1 + xM(x) + x^2M(x)^2 = \frac{1}{1-x}C\left(\frac{x^2}{(1-x)^2}\right)\). This implies the following relation between the Catalan numbers \(C_n\) and the Motzkin numbers \(M_n\) [15], i.e.,

\[
M_n = \sum_{k=0}^{\left\lfloor \frac{n}{2} \right\rfloor} \binom{n}{2k} C_k.
\]

In fact, the sequence \(M_{n,k} = \binom{n}{2k} C_k\) counts the number of Motzkin paths of length \(n\) with \(k\) \(d\)-steps. The first values of \(M_{n,k} = \binom{n}{2k} C_k\) are illustrated in Table 1.

A Schröder path of length \(2n\) is a path from \((0, 0)\) to \((2n, 0)\) in the first quadrant of the XY-plane that consists of up steps \(u = (1, 1)\), down steps \(d = (1, -1)\) and horizontal steps \(H = (2, 0)\). Let \(S_n\) be the set of Schröder paths of length \(2n\). It is well known [45] that \(|S_n| = R_n\), the \(n\)th large Schröder number, has the generating function

\[
R(x) = \sum_{n \geq 0} R_n x^n = \frac{1-x-\sqrt{1-6x+x^2}}{2x}
\]
Table 1 The first values of $M_{n,k}$

n/k	0	1	2	3	4	5
0	1					
1	1					
2	1	1				
3	1	3				
4	1	6	2			
5	1	10	10			
6	1	15	30	5		
7	1	21	70	35		
8	1	28	140	140	14	
9	1	36	252	420	126	
10	1	45	420	1050	630	42

with the relation $R(x) = 1 + xR(x) + xR(x)^2 = \frac{1}{1-x}C(\frac{x}{1-x})^2$. This shows the following relation between the Catalan numbers C_n and the large Schröder numbers R_n, i.e.,

$$R_n = \sum_{k \geq 0} M_{n+k,k} = \sum_{k=0}^{n} \binom{n + k}{2k} C_k.$$

In fact, the sequence $R_{n,k} = \binom{n+k}{2k} C_k$ counts the number of Schröder paths of length $2n$ with k d-steps.

Recently, several authors [18, 19, 26, 51] have considered lattice paths with various steps, including vertical steps permitted. Irvine, Melczer and Ruskey [26], inspired by a new mathematical model for bobbin lace, encountered lattice paths very similar to the Motzkin paths but with the addition of vertical steps, namely, they considered finite lattice paths formed from the step set $S = \{u = (1, 1), d = (1, -1), h = (1, 0), v_1 = (0, -1), v_2 = (0, 1)\}$ with the restriction that vertical steps $v_i v_j$ can not be consecutive for $i, j \in \{1, 2\}$. The significance of this constraint on vertical steps can be understood by looking at the role of the paths in bobbin lace tessellations. Dziemiańczuk [18] examined lattice paths generated by S without the vertical steps v_2. Yan and Zhang [51] proved a bijective relationship between the number of positive lattice paths and m-flawed lattice paths generated by S without the vertical steps v_2, a result analogous to the Chung–Feller theorems for Dyck paths [8] and for Schröder paths [22]. Dziemiańczuk [19] also studied non-simple directed lattice paths running between two fixed points and for which the set of allowed steps contains vertical step $v_1 = (0, -1)$ and forward steps $s_k = (1, k)$ for some integers k. In this paper, we consider a kind of generalized Motzkin paths, called G-Motzkin paths for short. That is, a G-Motzkin path of length n is a lattice path from $(0, 0)$ to $(n, 0)$ in the first quadrant of the XY-plane that consists of up steps $u = (1, 1)$, down steps $d = (1, -1)$, horizontal steps $h = (1, 0)$ and vertical steps $v = (0, -1)$. See Fig. 1 for a G-Motzkin path of length 24.
Fig. 1 A G-Motzkin path of length 24
Let ε be the empty path, that is a dot path. If P_1 and P_2 are G-Motzkin paths, then we define P_1P_2 as the concatenation of P_1 and P_2. For example, $P_1 = uuhduuvddh$ and $P_2 = uhuuhvuuudd$, then $P_1P_2 = uhuuuuvvhhuuuhvuuudd$.

A point of a G-Motzkin path with ordinate ℓ is said to be at level ℓ. A step of a G-Motzkin path is said to be at level ℓ if the ordinate of its endpoint is ℓ. A uv-peak (uv-peak) in a G-Motzkin path is an occurrence of ud (uv). A vu-valley (vu-valley) in a G-Motzkin path is an occurrence of du (vu). A peak (valley) in a G-Motzkin path is a ud-peak or uv-peak (du-valley or vu-valley). By the height of a peak (valley) we mean the level of the intersection point of its two steps. By a return step we mean a d-step or v-step at level 0. A matching step of a u-step at level $k \geq 1$ in a G-Motzkin path is the leftmost step among all d-steps and v-steps at level $k - 1$ right to the u-step. A G-Motzkin path P is said to be primitive if $P = uP'd$ or $P = uP've$ for certain G-Motzkin path P'.

In the present paper, we concentrate on several statistics in G-Motzkin paths. Precisely, the next section mainly counts the number of G-Motzkin paths of length n with given number of z-steps for $z \in \{u, h, v, d\}$, some explicit formulas and combinatorial identities are given by bijective and algebraic methods. The third section mainly focuses on the enumeration of statistics “number of z-steps” at given level in G-Motzkin paths for $z \in \{u, h, v, d\}$, the enumerative results are linked with Riordan arrays according to the structure decompositions of G-Motzkin paths. The last section discusses the statistics “number of z_1z_2-steps” in G-Motzkin paths for $z_1, z_2 \in \{u, h, v, d\}$, the exact counting formulas except for $z_1z_2 = dd$ are provided according to the method of the first return decomposition of G-Motzkin paths and the Lagrange inversion formula.

2 The Statistics “Number of z-Steps” in G-Motzkin Paths

In this section, we first consider the weighted G-Motzkin paths and then enumerate several statistics “number of z-steps” in G-Motzkin paths for $z \in \{u, h, v, d\}$. The weight of each step of a G-Motzkin path P is assigned as follows. The u-step, h-step, v-step and d-step are weighted respectively by 1, a, b and c. The weight of P, denoted by $w(P)$, is the product of the weight of each step of P. For example, $w(uuhduuvddh) = a^3b^2c^2$. The weight of a subset A of the set $G(a, b, c)$ of all weighted G-Motzkin paths, denoted by $w(A)$, is the sum of the total weights of all paths in A. Denoted by $w(G_n(a, b, c)) = G_n(a, b, c)$ the weight of the set $G_n(a, b, c)$ of all weighted G-Motzkin paths of length n. When $a = b = c = 1$, we write $G = G(1, 1, 1), G_n = G_n(1, 1, 1), G_n = G_n(1, 1, 1)$ for short.

Let $G(a, b; c; x) = \sum_{n=0}^{\infty} G_n(a, b, c)x^n$ be the generating function. According to the first return decomposition, a G-Motzkin path P can be decomposed as one of the following four forms:

$$P = \varepsilon, \quad P = hQ_1, \quad P = uQ_1vQ_2 \text{ or } P = uQ_1dQ_2,$$
where Q_1 and Q_2 are (possibly empty) G-Motzkin paths. Then we get the relation

$$G(a, b, c; x) = 1 + axG(a, b, c; x) + bxG(a, b, c; x)^2 + cx^2G(a, b, c; x)^2. \quad (2.1)$$

Solve this, we have

$$G(a, b, c; x) = \frac{1 - ax - \sqrt{(1 - ax)^2 - 4x(b + cx)}}{2x(b + cx)} = \frac{1}{1 - ax} C \left(\frac{x(b + cx)}{(1 - ax)^2} \right). \quad (2.2)$$

By (1.1), taking the coefficient of x^n in $G(a, b, c; x)$, we get the following result.

Proposition 2.1 For any integer $n \geq 0$, there holds

$$G_n(a, b, c) = \sum_{k=0}^{n} \sum_{j=0}^{n-k} \binom{n-k}{j} \binom{n+k-j}{2k} C_k a^{n-k-j} b^k c^j$$

$$= \sum_{k=0}^{n} \sum_{j=0}^{k} \binom{k}{j} \binom{n+j}{2k} C_k a^{n-2k+j} b^j c^{k-j}$$

$$= \sum_{k=0}^{n} \sum_{j=0}^{n-k} \binom{2k+j}{j} \binom{k}{n-k-j} C_k a^j b^{2k+j-n} c^{n-k-j}. \quad (2.1)$$

Set $T = xG(a, b, c; x)$, (2.1) produces

$$T = x \frac{1 + aT + cT^2}{1 - bT},$$

using the Lagrange inversion formula [23], taking the coefficient of x^{n+1} in T in three different ways, we derive the following proposition.

Proposition 2.2 For any integer $n \geq 0$, there holds

$$G_n(a, b, c) = \frac{1}{n+1} \sum_{k=0}^{\left\lfloor \frac{n}{2} \right\rfloor} \sum_{j=0}^{n-2k} \binom{n+1-k}{k} \binom{n+1-k-j}{n-2k-j} a^j b^{n-2k-j} c^k$$

$$= \frac{1}{n+1} \sum_{k=0}^{\left\lfloor \frac{n}{2} \right\rfloor} \sum_{j=0}^{2n-k-2j} \binom{n+k}{k} \binom{2n-k-j}{n-k-2j} a^k b^{n-k-2j} c^j$$

$$= \frac{1}{n+1} \sum_{k=0}^{n} \sum_{j=0}^{n-k} \binom{n+1-k}{k} \binom{2n-k-j}{n-k-j} a^k b^{n-k-j} c^j. \quad (2.3)$$
Clearly, $G_n = G_n(1, 1, 1)$ is the number of G-Motzkin paths of length n with the generating function

$$G(x) = \sum_{n=0}^{\infty} G_n x^n = \frac{1 - x - \sqrt{1 - 6x - 3x^2}}{2x(1 + x)} = \frac{1}{1 - x} C\left(\frac{x(1 + x)}{(1 - x)^2}\right). \quad (2.4)$$

The explicit form of $G(x)$ was given by Drake [17] by counting lattice paths without regard to area and by Dziemiańczuk [18] by counting special lattice paths with four types of steps. The sequence

$$(G_n)_{n \geq 0} = (1, 2, 7, 29, 133, 650, 3319, 17498, 94525, 520508, 2910895, \ldots)$$

is denoted by A064641 in OEIS [43], and has the formula [18]

$$G_n = \frac{1}{n + 1} \sum_{k=0}^{n} \sum_{j=0}^{k} \binom{n + 1}{j} \binom{j}{k - j} \binom{2n - k}{n}$$

which obeys the recurrence relation [43]

$$(n + 1)G_n = (5n - 4)G_{n-1} + 9(n - 1)G_{n-2} + 3(n - 2)G_{n-3}.$$

If setting $T = xG(1, 1, 1; x)$, (2.1) produces

$$T = x \frac{1 + T + T^2}{1 - T} = x \frac{1 - T^3}{(1 - T)^2},$$

using the Lagrange inversion formula, taking the coefficient of x^{n+1} in T, one has another simple formula for G_n, namely,

$$G_n = \frac{1}{n + 1} \sum_{k=0}^{\left[\frac{n}{2}\right]} (-1)^k \binom{n + 1}{k} \binom{3n - 3k + 1}{n - 3k}.$$

Let $G_{n,k} = \frac{1}{n + 1} \binom{n + 1}{k} \binom{3n - 3k + 1}{n - 3k}$, the first values of $G_{n,k}$ are illustrated in Table 2. The following is an interesting identity related to $G_{n,k}$, that is,

$$\sum_{k=0}^{\left[\frac{n}{2}\right]} G_{n+k,k} = \frac{1}{n + 1} \sum_{k=0}^{\left[\frac{n}{2}\right]} \binom{n + k}{k} \binom{3n + 1}{n - 2k} = 2^n C_n,$$

which can be proved as follows,
Table 2 The first values of \(G_{n,k} \)

n/k	0	1	2	3	4	5
0	1					
1	2					
2	7					
3	30	1				
4	143	10				
5	728	78				
6	3876	560	3			
7	21318	3876	56			
8	120175	26334	684			
9	690690	177100	6930	12		

where \([x^n] f(x) \) denotes the coefficient of \(x^n \) in \(f(x) \).

As is well known that the statistic enumerations of lattice paths have caught strong attention in the literature such as peaks, valleys [14], “number of ud’s” [48], strings in Dyck paths [39] and others [2, 10, 11, 13, 20, 21, 34]. In the following four subsections, we focus on several statistics “number of \(z \)-steps” in G-Motzkin paths for \(z \in \{u, h, v, d\} \). Let \(Z_{n,i} \) denote the number of G-Motzkin paths of length \(n \) with \(i \) \(z \)-steps for \(Z \in \{U, H, V, D\} \) and \(z \in \{u, h, v, d\} \). We not only derive the explicit formulas for \(Z_{n,i} \) in terms of Catalan numbers \(C_n \) by combinatorial methods, but also obtain several weighted alternating sums by bijective or algebraic methods. Specially, we build a relation between \(D_{n,i} \) and Narayana polynomials.

2.1 The Statistic “Number of v-Steps”

Let \(V_{n,i} \) denote the number of G-Motzkin paths of length \(n \) with \(i \) v-steps, the first values of \(V_{n,i} \) are illustrated in Table 3.

This shows that there is a close relation between \(V_{n,i} \) and \(C_n \). Exactly, each Dyck path \(P \) of length \(2k \) can be extended to a G-Motzkin paths of length \(n \) with \(i \) v-steps for...
Table 3 The first values of $V_{n,i}$

n/i	0	1	2	3	4	5	6
0	1						
1	1	1					
2	2	3	2				
3	4	10	10	5			
4	9	30	45	35	14		
5	21	90	175	196	126	42	
6	51	266	644	924	840	462	132

Table 4 The first values of $H_{n,i}$

n/i	0	1	2	3	4	5	6
0	1						
1	1	1					
2	3	3	1				
3	9	13	6	1			
4	31	55	36	10	1		
5	113	241	200	80	15	1	
6	431	1071	1080	560	155	21	1

Let $H_{n,i}$ denote the number of G-Motzkin paths of length n with i h-steps, the first values of $H_{n,i}$ are illustrated in Table 4.

Note that there exist $2k+1$ points and k d-steps in P, so there are $\binom{k}{i}$ ways to replace i d-steps by v-steps and there are $\binom{2k+1}{n-2k+i} = \binom{n+i}{2k}$ ways to insert repeatedly $n-2k+i$ h-steps into $2k+1$ points of P to form a G-Motzkin path of length n with i v-steps. Summing over k, we have the following result.

Theorem 2.3 For any integers $n \geq i \geq 0$, there holds

$$V_{n,i} = \sum_{k=i}^{n} \binom{k}{i} \binom{n+i}{2k} C_k.$$

Note that $V_{n-i,i}$ also counts the set of G-Motzkin paths of length $n-i$ with n steps and $V_{n,i}$ is also the coefficient of b^i in $G_n(1, b, 1)$ in (2.3) which has another expression

$$V_{n,i} = \frac{1}{n+1} \binom{n+i}{i} \sum_{k=0}^{n-i} \binom{n+1}{k} \binom{k}{n-k-i}.$$

2.2 The Statistic “Number of h-Steps”

Let $H_{n,i}$ denote the number of G-Motzkin paths of length n with i h-steps, the first values of $H_{n,i}$ are illustrated in Table 4.

Note that each Dyck path P of length $2k$ can be extended to a G-Motzkin path of length n with i h-steps for $\left\lfloor \frac{n-i}{2} \right\rfloor \leq k \leq n-i$. Similarly, here are $\binom{k}{n-i-k}$ ways to
replace \(n - i - k \) d-steps by v-steps and there are \(\binom{2k + 1}{i} = \binom{2k + i}{2k} \) ways to insert repeatedly \(i \) h-steps into \(2k + 1 \) points of \(P \) to form a G-Motzkin path of length \(n \) with \(i \) h-steps. Summing over \(k \), we have the following result.

Theorem 2.4 For any integers \(n \geq i \geq 0 \), there holds

\[
H_{n,i} = \sum_{k=\lceil \frac{n-i}{2} \rceil}^{n-i} \binom{2k + i}{2k} \binom{k}{n-i-k} C_k.
\]

Note that \(H_{n,i} \) is also the coefficient of \(a^i \) in \(G_n(a, 1, 1) \) in (2.3) which has another expression

\[
H_{n,i} = \frac{1}{n+1} \binom{n+1}{i} \sum_{j=0}^{\lfloor \frac{n-i}{2} \rfloor} \binom{n+1-i}{j} \binom{2n-i-2j}{n-i-2j},
\]

and the special case \(G(-2, 1, 1; x) = \frac{1}{1+x} \) by (2.2) deduces the following identity whose combinatorial proof is also provided.

Theorem 2.5 For any integer \(n \geq 0 \), there holds

\[
\sum_{i=0}^{n} (-2)^i H_{n,i} = (-1)^n.
\]

Proof Let \(\mathcal{H}_n^e (\mathcal{H}_n^o) \) denote the set of weighted G-Motzkin paths of length \(n \) with even (odd) number of h-steps such that each h-step is weighted by 2 (regarded as \(h_1 \) and \(h_2 \) for convenience) and other steps are weighted by 1. Clearly,

\[
w(\mathcal{H}_n^e) = \sum_{i \text{ even}} 2^i H_{n,i} \quad \text{and} \quad w(\mathcal{H}_n^o) = \sum_{i \text{ odd}} 2^i H_{n,i}.
\]

So it is sufficient to give a bijection \(\phi \) between \(\mathcal{H}_n^e/\{h_1^n\} \) and \(\mathcal{H}_n^o/\{h_1^n\} \) for \(n \) even and between \(\mathcal{H}_n^e \) and \(\mathcal{H}_n^o/\{h_1^n\} \) for \(n \) odd. When \(n \geq 2 \), any \(P \in \mathcal{H}_n^e/\{h_1^n\} \) for \(n \) even or \(P \in \mathcal{H}_n^e \) for \(n \) odd has at least one of the four subpaths, \(\tilde{d}, h_1v, h_2 \) and \(uv \), find the last one, say \(x \), \(P \) can be partitioned uniquely into \(P = P_1x^k1P_2 \), where \(P_2 = h_1^{k_2} \) for certain \(k_1 \geq 0 \) and \(0 \leq k_2 \leq n-1 \). Then define \(\phi(P) = P_1x^{k_1'}P_2 \), where

\[
x' = \begin{cases} h_1v, & \text{if } x = d, \\ d, & \text{if } x = h_1v, \\ uv, & \text{if } x = h_2, \\ h_2, & \text{if } x = uv. \end{cases}
\]

This way ensures that the number of h-steps in \(\phi(P) \) is one more or less than that in \(P \in \mathcal{H}_n^e/\{h_1^n\} \) for \(n \) even or in \(P \in \mathcal{H}_n^e \) for \(n \) odd, so \(\phi(P) \in \mathcal{H}_n^o \) for \(n \) even and

\(\leq \) Springer
$\phi(P) \in \mathcal{H}_n^o/\{h_1^o\}$ for n odd. Moreover, x' in $\phi(P)$ is also the last one of the four subpaths, d, h_1v, h_2 and uv. The reverse procedure can be handled similarly. Hence, ϕ is a bijection between $\mathcal{H}_n^o/\{h_1^o\}$ and \mathcal{H}_n^o for n even and between \mathcal{H}_n^o and $\mathcal{H}_n^o/\{h_1^o\}$ for n odd. This completes the proof.

Theorem 2.6 For any integers $n, m \geq 0$, there holds

$$
\sum_{i=0}^{2n} (-1)^i \binom{2n}{i} H_{n+m+i, m+i} = C_n.
$$

Proof By Theorem 2.4, we have

$$
\sum_{i=0}^{2n} (-1)^i \binom{2n}{i} H_{n+m+i, m+i} = \sum_{i=0}^{2n} (-1)^i \binom{2n}{i} \sum_{k=[\frac{n}{2}]}^{n} \frac{2k + m + i}{2k} \binom{k}{n-k} C_k
$$

$$
= \sum_{k=[\frac{n}{2}]}^{n} \binom{k}{n-k} C_k \sum_{i=0}^{2n} (-1)^i \binom{2n}{i} \frac{2k + m + i}{2k}
$$

$$
= (-1)^m \sum_{k=[\frac{n}{2}]}^{n} \binom{k}{n-k} C_k \sum_{i=0}^{2n} (-1)^i \binom{2n}{i} \frac{2k + m + i}{2k}
$$

$$
= (-1)^m \sum_{k=[\frac{n}{2}]}^{n} \binom{k}{n-k} C_k \binom{2n - 2k - 1}{2n + m}
$$

$$
= (-1)^m \binom{n}{0} C_n \binom{-1}{2n + m} (k = n)
$$

$$
= C_n,
$$

where the fourth equality follows by the Chu–Vandermonde identity. This completes the proof. □

2.3 The Statistic “Number of d-Steps”

Let $D_{n,i}$ denote the number of G-Motzkin paths of length n with i d-steps, the first values of $D_{n,i}$ are illustrated in Table 5.

Similarly, each Dyck path P of length $2k$ can be extended to a G-Motzkin path of length n with i d-steps for $i \leq k \leq n - i$. Note that there are $\binom{k}{i}$ ways to replace $k - i$ d-steps by v-steps and there are $\binom{2k + 1}{n - k - i}$ ways to insert repeatedly $n - k - i$ h-steps into $2k + 1$ points of P to form a G-Motzkin path of length n with i d-steps. Summing over k, we have the following result.
Table 5 The first values of $D_{n,i}$

	0	1	2	3	4	5
0	1					
1	2					
2	6	1				
3	22	7				
4	90	41	2			
5	394	231	25			
6	1806	1289	219	5		
7	8558	7183	1666	91		
8	41586	40081	11780	1064	14	

Theorem 2.7 For any integers $n \geq i \geq 0$, there holds

$$D_{n,i} = \sum_{k=i}^{n-i} \binom{k}{i} \binom{n-i+k}{2k} C_k.$$

Note that $D_{n,i}$ is also the coefficient of c^i in $G_n(1, 1, c)$ in (2.3) which has another expression

$$D_{n,i} = \frac{1}{n+1} \binom{n+1}{i} \sum_{k=i}^{n-i} \binom{n+1-i}{k-i} \binom{2n-i-k}{n-i-k}.$$

Notice that $D_{2n,n}$ is the nth Catalan number C_n and $D_{n,0}$ is the nth large Schröder number R_n. Since any G-Motzkin path of length n with no d-steps can generate a Schröder path of length $2n$ by replacing each h-step by an H-step and each v-step by a d-step, and vice versa. The special cases $G(1, 1, -2; x) = \frac{1}{1-2x}$ and $G(1, 1, -1; x) = \frac{1}{1-x} C\left(\frac{x}{1-x}\right)$ by (2.2) deduce the following identities whose combinatorial proofs are also provided.

Theorem 2.8 For any integer $n \geq 0$, there holds

$$\sum_{i=0}^{n} (-2)^i D_{n,i} = 2^n,$$

$$\sum_{i=0}^{n} (-1)^i D_{n,i} = \sum_{k=0}^{n} \binom{n}{k} C_k.$$

Proof Let $D_n^e (D_n^o)$ denote the set of weighted G-Motzkin paths of length n with even (odd) number of d-steps such that each d-step is weighted by 2 (regarded as d_1 and d_2 for convenience) and other steps are weighted by 1. Let D_n^* be the subset of D_n^e such that each path in D_n^* has no d-steps and only consists of h-steps and uv-peaks.
Clearly,

\[w(\mathcal{D}_n^e) = \sum_{i \text{ even}} 2^i D_{n,i}, \quad w(\mathcal{D}_n^o) = \sum_{i \text{ odd}} 2^i D_{n,i} \quad \text{and} \quad w(\mathcal{D}_n^w) = 2^n. \]

To prove (2.5), it is sufficient to give a bijection \(\tau \) between \(\mathcal{D}_n^e / \mathcal{D}_n^w \) and \(\mathcal{D}_n^o \). It is trivial for \(n = 0, 1 \). For \(n \geq 2 \), any \(\mathbf{P} \in \mathcal{D}_n^e / \mathcal{D}_n^w \) has at least one of the four subpaths, \(\mathbf{d}_1, \mathbf{d}_2, \mathbf{uvv} \) and \(\mathbf{hv} \), find the last one, say \(\mathbf{z}, \mathbf{P} \) can be partitioned uniquely into \(\mathbf{P} = \mathbf{P}_1 z^k \mathbf{P}_2 \) for \(k_1 \geq 0 \), where \(\mathbf{P}_2 \in \mathcal{D}_m^+ \) for certain \(0 \leq m \leq n-2 \). Then define \(\tau(\mathbf{P}) = \mathbf{P}_1 z' z_1^{k_1} \mathbf{P}_2 \), where

\[
\begin{align*}
z' &= \left\{ \begin{array}{l}
\mathbf{uvv}, \text{ if } z = \mathbf{d}_1, \\
\mathbf{hv}, \text{ if } z = \mathbf{d}_2, \\
\mathbf{d}_1, \text{ if } z = \mathbf{uvv}, \\
\mathbf{d}_2, \text{ if } z = \mathbf{hv}.
\end{array} \right.
\end{align*}
\]

This way ensures that the number of \(\mathbf{d} \)-steps in \(\tau(\mathbf{P}) \) is one more or less than that in \(\mathbf{P} \in \mathcal{D}_n^e / \mathcal{D}_n^w \), so \(\tau(\mathbf{P}) \in \mathcal{D}_n^o \) and \(z' \) in \(\tau(\mathbf{P}) \) is also the last one of the four subpaths, \(\mathbf{d}_1, \mathbf{d}_2, \mathbf{uvv} \) and \(\mathbf{hv} \). The reverse procedure can be handled similarly. Hence, \(\tau \) is a bijection between \(\mathcal{D}_n^e / \mathcal{D}_n^w \) and \(\mathcal{D}_n^o \). This completes the proof of (2.5).

Let \(\mathcal{D}_n^e (\mathcal{D}_n^o) \) denote the set of weighted G-Motzkin paths of length \(n \) with even (odd) number of \(\mathbf{d} \)-steps such that each step is weighted by 1. Clearly,

\[
w(\mathcal{D}_n^e) = \sum_{i \text{ even}} D_{n,i} \quad \text{and} \quad w(\mathcal{D}_n^o) = \sum_{i \text{ odd}} D_{n,i}.
\]

Let \(\mathcal{D}_n^+ \) be the subset of \(\mathcal{D}_n^e \) such that each path \(\mathbf{Q} \in \mathcal{D}_n^+ \) has no \(\mathbf{d} \)-steps and no \(\mathbf{hv} \)-steps. Note that any \(\mathbf{Q} \in \mathcal{D}_n^+ \) with \(k \) \(\mathbf{u} \)-steps (with \(k \) \(\mathbf{v} \)-steps naturally) and \(n-k \) \(\mathbf{h} \)-steps can be obtained from Dyck paths \(\mathbf{Q}' \) of length \(2k \) for \(0 \leq k \leq n \) as follows. First replace each \(\mathbf{d} \)-step of \(\mathbf{Q}' \) by a \(\mathbf{v} \)-step to get a G-Motzkin path \(\mathbf{Q}'' \) with no \(\mathbf{h} \)-steps and no \(\mathbf{d} \)-steps, and there are \(\binom{k+1}{n-k} \) \(\binom{n}{k} \) ways to insert \(n-k \) \(\mathbf{h} \)-steps repeatedly into the \(k+1 \) positions exactly before \(k \) \(\mathbf{u} \)-steps and at the endpoint of the path \(\mathbf{Q}'' \) to get \(\mathbf{Q} \). This way can not produce \(\mathbf{d} \)-steps and \(\mathbf{hv} \)-steps in \(\mathbf{Q} \). Summing over \(k \), one has

\[
w(\mathcal{D}_n^+) = \sum_{k=0}^{n} \binom{n}{k} C_k.
\]

To prove (2.6), it is sufficient to give a bijection \(\bar{\tau} \) between \(\mathcal{D}_n^e / \mathcal{D}_n^+ \) and \(\mathcal{D}_n^o \). It is trivial for \(n = 0 \). For \(n \geq 1 \), any \(\mathbf{Q} \in \mathcal{D}_n^e / \mathcal{D}_n^+ \) has at least one of the two subpaths, \(\mathbf{d} \) and \(\mathbf{hv} \), find the last one, say \(\mathbf{z}, \mathbf{Q} \) can be partitioned uniquely into \(\mathbf{Q} = \mathbf{Q}_1 z \mathbf{Q}_2 \). Then define \(\bar{\tau}(\mathbf{Q}) = \mathbf{Q}_1 z' \mathbf{Q}_2 \), where

\[
z' = \left\{ \begin{array}{l}
\mathbf{hv}, \text{ if } z = \mathbf{d}, \\
\mathbf{d}, \text{ if } z = \mathbf{hv}.
\end{array} \right.
\]
This way ensures that the number of \(d \)-steps in \(\tau(Q) \) is one more or less than that in \(Q \in \bar{D}_n^e/\bar{D}_n^o \), so \(\tau(Q) \in \bar{D}_n^e \) and \(z' \) in \(\tau(Q) \) is also the last one of the two subpaths, \(d \) and \(hv \). The reverse procedure can be handled similarly. Hence, \(\bar{\tau} \) is a bijection between \(\bar{D}_n^e/\bar{D}_n^o \) and \(\bar{D}_n^o \). This completes the proof (2.6).

\[\square \]

Theorem 2.9 For any integer \(n \geq 0 \), there hold

\[\sum_{i=0}^{n} (-1)^i D_{n+i,i} = 1, \quad (2.7) \]
\[\sum_{i=0}^{n} (-2)^i D_{n+i,i} = \begin{cases} 1, & \text{if } n = 0, \\ 0, & \text{otherwise}. \end{cases} \quad (2.8) \]

Proof Let \(D_{n+i,i} \) denote the set of weighted G-Motzkin paths of length \(n+i \) with \(i \) \(d \)-steps such that all steps are weighted by 1. Set

\[\bar{A}_n^e = \bigcup_{i=0, i \text{ even}}^n D_{n+i,i}, \quad \bar{A}_n^o = \bigcup_{i=0, i \text{ odd}}^n D_{n+i,i}. \]

Clearly,

\[w(\bar{A}_n^e) = \sum_{i \text{ even}} D_{n+i,i} \quad \text{and} \quad w(\bar{A}_n^o) = \sum_{i \text{ odd}} D_{n+i,i}. \]

To prove (2.7), it is sufficient to give a bijection \(\phi \) between \(\bar{A}_n^e/\{h^n\} \) and \(\bar{A}_n^o \). It is trivial for \(n = 0 \). For \(n \geq 1 \), any \(P \in \bar{A}_n^e/\{h^n\} \) has at least a \(u \)-step, so there exist \(d \)-steps or \(v \)-steps in \(P \). Find the last return step \(z \), \(P \) can be partitioned uniquely into \(P = P_1zh^k \) for certain \(0 \leq k < n \). Then define \(\phi(P) \) as follows:

\[\phi(P) = \begin{cases} P_1dh^k, & \text{if } z = v, \\ P_1vh^k, & \text{if } z = d. \end{cases} \]

This way ensures that the number of \(d \)-steps in \(\phi(P) \) is one more or less than that in \(P \in \bar{A}_n^e/\{h^n\} \), so \(\phi(P) \in \bar{A}_n^o \). The reverse procedure can be handled similarly. Hence, \(\phi \) is a bijection between \(\bar{A}_n^e/\{h^n\} \) and \(\bar{A}_n^o \). This completes the proof of (2.7).

Let \(\bar{D}_{n+i,i} \) denote the set of weighted G-Motzkin paths of length \(n+i \) with \(i \) \(d \)-steps such that each \(d \)-step is weighted by 2 (regarded as \(d_1 \) and \(d_2 \) for convenience) and other steps are weighted by 1. Set

\[\bar{\bar{A}}_n^e = \bigcup_{i=0, i \text{ even}}^n \bar{D}_{n+i,i}, \quad \bar{\bar{A}}_n^o = \bigcup_{i=0, i \text{ odd}}^n \bar{D}_{n+i,i}. \]

Clearly,

\[w(\bar{\bar{A}}_n^e) = \sum_{i \text{ even}} 2^i D_{n+i,i} \quad \text{and} \quad w(\bar{\bar{A}}_n^o) = \sum_{i \text{ odd}} 2^i D_{n+i,i}. \]
It is trivial for \(n = 0 \) in (2.8). To prove (2.8), it is sufficient to give a bijection \(\tilde{\varphi} \) between \(\hat{A}_n^c \) and \(\hat{A}_n^o \) for \(n \geq 1 \). Note that any \(Q \in \hat{A}_n^c \) for \(n \geq 1 \) has at least one of the four subpaths, \(h, ud_1, d_2 \) and \(v \), find the last one, say \(z \), \(Q \) can be partitioned uniquely into \(Q = Q_1 z d_1^k \) for certain \(0 \leq k < n \). Then define \(\tilde{\varphi}(Q) = Q_1 z d_1^k \), where

\[
Q = \begin{cases}
 ud_1, & \text{if } z = h, \\
 u, & \text{if } z = ud_1, \\
 v, & \text{if } z = d_2, \\
 d_2, & \text{if } z = v.
\end{cases}
\]

This way ensures that the number of \(d \)-steps in \(\tilde{\varphi}(Q) \) is one more or less than that in \(Q \in \hat{A}_n^c \), so \(\tilde{\varphi}(Q) \in \hat{A}_n^o \) and \(z' \) in \(\tilde{\varphi}(Q) \) is also the last one of the four subpaths, \(h, ud_1, d_2 \) and \(v \). The reverse procedure can be handled similarly. Hence, \(\tilde{\varphi} \) is a bijection between \(\hat{A}_n^c \) and \(\hat{A}_n^o \). This completes the proof of (2.8). \(\square \)

Theorem 2.10 For any integer \(n \geq 0 \), there hold

\[
\sum_{i=0}^{n} y^i D_{n+i,i} = (y + 1)^n N_n \left(\frac{y + 2}{y + 1} \right), \tag{2.9}
\]

where \(N_n(y) = \sum_{k=1}^{n} \frac{1}{n} \binom{n}{k-1} y^k = y^{n+1} N_n(y^{-1}) \) with \(N_0(y) = 1 \) is the Narayana polynomial.

Proof Let \(\hat{D}_{n+i,i} \) denote the set of weighted G-Motzkin paths of length \(n + i \) with \(i \) \(d \)-steps such that each \(d \)-step is weighted by \(y \) (regarded as \(d_y \) for convenience) and other steps are weighted by 1. Let \(\hat{C}_{n,k} \) denote the set of weighted Dyck paths of length \(2n \) with \(k \) \(ud \)-peaks such that each \(ud \)-step is weighted by \(y + 2 \) (regarded as \(d_y \) and \(d_2 \) for convenience) and other \(d \)-steps are weighted by \(y + 1 \) (regarded as \(d_y \) and \(d_1 \) for convenience). Set \(\hat{D}_n = \bigcup_{i=0}^{n} \hat{D}_{n+i,i} \) and \(\hat{C}_n = \bigcup_{k=0}^{n} \hat{C}_{n,k} \). Since the Narayana number \(N_{n,k} = \frac{1}{n} \binom{n}{k-1} \binom{n}{k} \) counts the number of Dyck paths of length \(2n \) with \(k \) \(ud \)-peaks, it is clear that

\[
|\hat{C}_{n,k}| = N_{n,k}(y + 2)^k (y + 1)^{n-k}.
\]

So it is sufficient to give a bijection \(\hat{\varphi} \) between \(\hat{C}_n \) and \(\hat{D}_n \) for \(n \geq 1 \). For any \(Q \in \hat{C}_n \) for \(n \geq 1 \) with \(k_0 d_1 \)-steps, \(k_1 d_1 \)-steps and \(k_2 d_2 \)-steps, note that \(k_0 + k_1 + k_2 = n \) and each \(d_2 \)-step must in a \(ud_2 \)-peak, replace each \(d_1 \)-step by \(v \)-step and each \(ud_2 \)-peak by \(h \)-step, we obtain a weighted G-Motzkin path \(Q' \in \hat{D}_{n+k_0,k_0} \). Then define \(\hat{\varphi}(Q) = Q' \). It is not difficult to verify that \(\hat{\varphi} \) is a bijection \(\hat{C}_n \) and \(\hat{D}_n \). This completes the proof of (2.9). \(\square \)

In order to give a more intuitive view on the bijection \(\hat{\varphi} \), a pictorial description of \(\hat{\varphi} \) is presented for \(Q = ud_y uud_2 uuud, d_1 d_y uuuud_2 ud_1 d_y d_1 d_1 d_1 uud_2 uuud, d_1 d_1 \), we have

\[
\hat{\varphi}(Q) = ud_y uhuuuud_y vd_y uuuhuvd_y dvvvhuuud_y vv.
\]
See Fig. 2 for detailed illustrations.

Note that the cases $y = -1$ and $y = -2$ in (2.9) lead to (2.7) and (2.8) respectively. When $y = -3$ in (2.9), by the relation $R_{n} = N_{n}(2) = 2r_{n}$ for $n \geq 1$, one can derive that the following identity which is asked for a direct combinatorial proof similar to that of Theorem 2.9.

Corollary 2.11 For any integer $n \geq 0$, there holds

$$\sum_{i=0}^{n} (-3)^{i} D_{n+i,i} = (-1)^{n} r_{n},$$

where r_{n} is the little Schröder number.

2.4 The Statistic “Number of u-Steps”

Let $U_{n,i}$ denote the number of G-Motzkin paths of length n with i u-steps, the first values of $U_{n,i}$ are illustrated in Table 6.

Note that each Dyck path P of length $2i$ can be extended to a G-Motzkin path of length n with i u-steps for $0 \leq i \leq n$. For $0 \leq k \leq i$ there are $\binom{i}{k}$ ways to replace k d-steps by v-steps and $\left(\binom{2i+1}{n-2i+k}\right) = \binom{n+k}{2i}$ ways to insert repeatedly $n-2i+k$ h-steps into $2i+1$ points of P to form a G-Motzkin path of length n with i u-steps. Summing over k, we have the following result.

Theorem 2.12 For any integers $n \geq i \geq 0$, there holds

$$U_{n,i} = \sum_{k=0}^{i} \binom{i}{k} \binom{n+k}{2i} C_{i}.$$

Note that $U_{n,i}$ is also the coefficient of b^i in $G_n(1, b, b)$ in (2.3) which has another expression

$$U_{n,i} = \frac{1}{n+1} \binom{n+1}{i+1} \sum_{j=0}^{i} \binom{n-i}{j} \binom{n+i-j}{i-j},$$

and $U_{n,n}$ is the nth Catalan number C_{n}. By (2.2), the special case $G(1, -2, -2; x) = \frac{1}{1+x}$ deduces the following identity. We provide a combinatorial proof for this identity.

Theorem 2.13 For any integer $n \geq 0$, there holds

$$\sum_{i=0}^{n} (-2)^{i} U_{n,i} = (-1)^{n}.$$
Fig. 2 An example of the bijection \(\hat{\phi} \) described in the proof of Theorem 2.10.

\[
Q = ud_yuudd_yuuud_yd_yuuudd_yud_1d_yd_yd_1ud_2uuud_yd_1d_1
\]

\[
\hat{\phi}(Q) = ud_yuhuuudd_yvd_yuuuhuvd_yd_yvvhuudd_yvv
\]
Table 6 The first values of $U_{n,i}$

n/i	0	1	2	3	4	5	6
0	1						
1	1	1					
2	1	4	2				
3	1	9	14	5			
4	1	16	52	50	14		
5	1	25	140	260	182	42	
6	1	36	310	950	1218	462	132

Proof Let U^e_n (U^o_n) denote the set of weighted G-Motzkin paths of length n with even (odd) number of u-steps such that the matching step of each u-step, that is each of d-steps and v-steps is weighted by 2 (regarded respectively as d_1 and d_2, v_1 and v_2 for convenience) and other steps are weighted by 1. Clearly,

$$w(U^e_n) = \sum_{i \text{ even}} 2^i U_{n,i} \quad \text{and} \quad w(U^o_n) = \sum_{i \text{ odd}} 2^i U_{n,i}.$$

So it is sufficient to give a bijection θ between $U^e_n/\{(uv_1)^n\}$ and U^o_n for n even and between U^e_n and $U^o_n/\{(uv_1)^n\}$ for n odd. When $n \geq 1$, any $P \in U^e_n/\{(uv_1)^n\}$ for n even or $P \in U^e_n$ for n odd has at least one of the six subpaths, h, uv_2, d_1, uv_1^2, d_2 and uv_1v_2, find the last one, say s, P can be partitioned uniquely into $P = P_1sP_2$, where $P_2 = t_1 \cdots t_k$ and $t_j \in \{v_1, v_2\}$ for $0 \leq j \leq k < n$. Then define $\theta(P) = P_1s'P_2$, where

$$s' = \begin{cases}
 uv_2, & \text{if } s = h, \\
 h, & \text{if } s = uv_2, \\
 uv_1^2, & \text{if } s = d_1, \\
 d_1, & \text{if } s = uv_1^2, \\
 uv_1v_2, & \text{if } s = d_2, \\
 d_2, & \text{if } s = uv_1v_2.
\end{cases}$$

This way ensures that the number of u-steps in $\theta(P)$ is one more or less than that in $P \in U^e_n/\{(uv_1)^n\}$ for n even or in $P \in U^e_n$ for n odd, so $\theta(P) \in U^o_n$ for n even and $\theta(P) \in U^o_n/\{(uv_1)^n\}$ for n odd. Moreover, s' is also the last one of the six subpaths, h, uv_2, d_1, uv_1^2, d_2 and uv_1v_2. The reverse procedure can be handled similarly. Hence, θ is a bijection between $U^e_n/\{(uv_1)^n\}$ and U^o_n for n even and between U^e_n and $U^o_n/\{(uv_1)^n\}$ for n odd. This completes the proof. \hfill \square
Table 7 The first values of $B_{n,i}$

n/i	0	1	2	3	4	5	6
0	1						
1	3	1					
2	9	5	1				
3	28	20	7	1			
4	90	75	35	9	1		
5	297	275	154	54	11	1	
6	1001	1001	637	273	77	13	1

Table 8 The first values of $C_{n,i}$

n/i	0	1	2	3	4	5	6
0	1						
1	2	1					
2	5	4	1				
3	14	14	6	1			
4	42	48	27	8	1		
5	132	165	110	44	10	1	
6	429	572	429	208	65	12	1

3 The Statistics “Number of z-Steps” at Given Level in G-Motzkin Paths

In the literature, there are several statistics considered at given level in Dyck paths, such as “number of u-steps”, “number of ud-peaks” and “number of points” [6], strings at height j [33] and Dyck paths with peaks and valleys avoiding an arbitrary set of heights [31]. Precisely, let $B_{n,i}$ be the number of u-steps” at level $i+1$ in all Dyck paths in C_{n+1} and $C_{n,i}$ be the number of points at level i in all Dyck paths in C_n. It is known that $B_{n,i} = \frac{2i+3}{2n+3} \binom{2n+3}{n-i}$ is the bollat number and $C_{n,i} = \frac{i+1}{n+1} \binom{2n+1}{n-i}$ also enumerates the number of ud-peaks at level $i+1$ in all Dyck paths in C_{n+1}. The first values of $B_{n,i}$ and $C_{n,i}$ are illustrated respectively in Tables 7 and 8.

Actually, the matrices $(C_{n,i})_{n\geq i \geq 0}$ and $(B_{n,i})_{n\geq i \geq 0}$ form Riordan arrays $(C(x)^2, xC(x)^2)$ and $(C(x)^3, xC(x)^2)$ respectively. Recall that a Riordan array [40, 41, 44] is an infinite lower triangular matrix $\mathcal{D} = (d_{n,i})_{n,i\in\mathbb{N}}$ such that its i-th column has generating function $d(x)h(x)^i$, where $d(x)$ and $h(x)$ are formal power series with $d(0) = 1$ and $h(0) = 0$. That is, the general term of \mathcal{D} is $d_{n,i} = [x^n]d(x)h(x)^i$, where $[x^n]$ is the coefficient operator. The matrix \mathcal{D} corresponding to the pair $d(x)$ and $h(x)$ is denoted by $(d(x), h(x))$. The product of a Riordan array $(d(x), h(x))$ and a formal power series $A(x) = \sum_{n\geq 0} a_n x^n$ is given by $(d(x), h(x))A(x) = d(x)A(h(x))$, this implies that

$$\sum_{i=0}^{n} d_{n,i}a_i = [x^n]d(x)A(h(x)).$$ \hfill (3.1)
Table 9 The first values of $\alpha_{n,i}$

n/i	0	1	2	3	4	5	6
0	1						
1	7	1					
2	39	12	1				
3	212	96	17	1			
4	1157	665	178	22	1		
5	6384	4320	1513	285	27	1	
6	35,647	27,177	11,522	2881	417	32	1

In the following four subsections, we focus on the enumeration of statistics “number of z-steps” for $z \in \{u, h, v, d\}$, “number of return steps” and “number of points” at given level in G-Motzkin paths. Some counting results are linked with Riordan arrays, and some weighted alternating sum identities related to these counting formulas are also derived by using Riordan arrays.

3.1 The Statistic “Number of u-Steps” at Level $i + 1$

Let $\alpha_{n,i}$ denote the number of u-steps at level $i + 1$ in all G-Motzkin paths of length $n + 1$, the first values of $\alpha_{n,i}$ are illustrated in Table 9.

Theorem 3.1 For any integers $n \geq i \geq 0$, there holds

$$
\alpha_{n,i} = \sum_{j=i}^{n} B_{j,i} \sum_{k=0}^{n-j} \binom{j+1}{k} \binom{n+j-k+2}{n-j-k}.
$$

Moreover, $\alpha_{n,i}$ is the (n, i)-entry of the Riordan array

$$
\left(\frac{1 + x}{(1 - x)^3} C \left(\frac{x(1+x)}{(1-x)^2}\right)^3, \frac{x(1+x)}{(1-x)^2} C \left(\frac{x(1+x)}{(1-x)^2}\right)^2\right).
$$

Proof For each Dyck path P of length $2j + 2$, it can be extended to G-Motzkin paths Q of length $n + 1$ for $i \leq j \leq n$ such that P and Q have the same number of u-steps at level $i + 1$. First replace $j + 1 - k$ d-steps in P by v-steps to get P', there are $\binom{j+1}{k}$ ways, and insert repeatedly $n - j - k$ h-steps into $2j + 3$ points of P' to form G-Motzkin paths Q of length $n + 1$, there $\binom{2j+3}{n-j-k}$ ways. Note that there are totally $B_{j,i}$ u-steps at level $i + 1$ in all $P \in C_{j+1}$, summing over k and j, we obtain the desired result.

On the other hand, for any G-Motzkin path $G \in G$ with at least one u-step at level $i + 1$, given such a u-step, marked as u^*, G can be partitioned uniquely into

$$
G = G_0 uG_1 \ldots uG_{i+1}z_1G_1z_2G_2 \ldots z_{i+1}G_{i+1},
$$

\Box Springer
where $G_0, \ldots, G_{i+1}, \tilde{G}_0, \ldots, \tilde{G}_{i+1} \in \mathcal{G}$ and $z_1, \ldots, z_{i+1} \in [d, v]$. Since each of G_k and \tilde{G}_k has the generating function $G(x)$, each of u and d produces an x and each v leads to a 1, this makes $z_1 z_2 \ldots z_{i+1}$ generate $(1 + x)^{i+1}$, so according to the length of G, all $G \in \mathcal{G}$ produce the generating function $x^{i+1} (1 + x)^{i+1} G(x)^{2i+3}$. Hence, the total number $\alpha_{n,i}$ of u^*-steps in all G-Motzkin paths $G \in \mathcal{G}_{n+1}$ is the coefficient of x^{n+1} in $x^{i+1} (1 + x)^{i+1} G(x)^{2i+3}$, namely,

$$\alpha_{n,i} = [x^{n+1}] x^{i+1} (1 + x)^{i+1} G(x)^{2i+3} = [x^n] (1 + x) G(x)^3 \left(x (1 + x) G(x)^2 \right)^i.$$

By (2.4), $\alpha_{n,i}$ is the (n, i)-entry of the Riordan array

$$((1 + x) G(x)^3, x(1 + x) G(x))^2 = \left(\frac{1 + x}{1 - x} \right)^3 C \left(\frac{x(1 + x)}{(1 - x)^2} \right)^3, \frac{x(1 + x)}{(1 - x)^2} \right)^2 C \left(\frac{x(1 + x)}{(1 - x)^2} \right)^2.$$

This completes the proof of Theorem 3.1. \square

Theorem 3.2 For any integers $n, m \geq 0$, there holds

$$\sum_{i=0}^{n} (-1)^{n-i} \binom{n}{i} \alpha_{n+m+i, m+i} = 5^n. \quad (3.2)$$

Proof By Theorem 3.1, using the relation $G(x) = 1 + x G(x) + x G(x)^2 + x^2 G(x)^2$, we have

$$\sum_{i=0}^{n} (-1)^{n-i} \binom{n}{i} \alpha_{n+m+i, m+i}$$

$$= \sum_{i=0}^{n} (-1)^{n-i} \binom{n}{i} [x^{n+m+i}] (1 + x) G(x)^3 \left(x (1 + x) G(x)^2 \right)^m$$

$$= [x^n] (1 + x)^{m+1} G(x)^{2m+3} \sum_{i=0}^{n} (-1)^{n-i} \binom{n}{i} (1 + x) G(x)^2^i$$

$$= [x^n] (1 + x)^{m+1} G(x)^{2m+3} \left((1 + x) G(x)^2 - 1 \right)^n$$

$$= [x^n] (1 + x)^{m+1} G(x)^{2m+3} \left(\frac{G(x) - x G(x) - 1}{x} \right)^n$$

$$= [x^n] (1 + x)^{m+1} G(x)^{2m+3} \left(\sum_{k=0}^{\infty} (G_{k+1} - G_k) x^k - 1 \right)^n$$

$$= [x^n] (1 + x)^{m+1} G(x)^{2m+3} \left(5 x + \sum_{k=2}^{\infty} (G_{k+1} - G_k) x^k \right)^n$$

$$= [x^n] (1 + x)^{m+1} G(x)^{2m+3} \left(5 + \sum_{k=2}^{\infty} (G_{k+1} - G_k) x^{k-1} \right)^n$$

$$= 5^n.$$
Table 10 The first values of $\beta_{n,i}$ and $\gamma_{n,i}$

n/i	0	1	2	3	4	5	6
0	1						
1	6	1					
2	33	11	1				
3	179	85	16	1			
4	978	580	162	21	1		
5	5406	3740	1351	264	26	1	
6	30,241	23,437	10,171	2617	391	31	1

This completes the proof.

Theorem 3.3 For any integer $n \geq 0$, there holds

$$\sum_{i=0}^{n} (-1)^i \binom{i+2}{2} \alpha_{n,i} = (n+1)^2.$$

(3.3)

Proof By (3.1) and Theorem 3.2, together with the relation $C(x) = 1 + xC(x)^2$, we have

$$\sum_{i=0}^{n} (-1)^i \binom{i+2}{2} \alpha_{n,i} = [x^n] \frac{1+x}{(1-x)^3} \frac{\left(\frac{x(1+x)}{1-x}\right)^3}{\left(\frac{x(1+x)}{1-x}\right)^2} \frac{1}{1+x}.$$

$$= [x^n] \frac{1+x}{(1-x)^3} = (n+1)^2.$$

This completes the proof.

One can be asked for combinatorial proofs of these two identities (3.2) and (3.3).

3.2 The Statistics “Number of v-Steps” and “Number of d-Steps” at Level i

Let $\beta_{n,i}$ denote the number of v-steps at level i in all G-Motzkin paths of length $n + 1$ and let $\gamma_{n,i}$ denote the number of d-steps at level i in all G-Motzkin paths of length $n + 2$, the first values of $\beta_{n,i}$ and $\gamma_{n,i}$ are illustrated in Table 10.

Lemma 3.4 For any integers $n \geq i \geq 0$, there holds

$$\beta_{n,i} = \gamma_{n,i}.$$

Proof Given a v-step counted at level i in a G-Motzkin path P of length $n + 1$, replace it by a d-step, one get a G-Motzkin path P' of length $n + 2$ with a d-step counted at level i and vice versa. This implies that $\beta_{n,i} = \gamma_{n,i}$.

\square
Theorem 3.5 For any integers \(n \geq i \geq 0 \), there holds

\[
\beta_{n,i} = \gamma_{n,i} = \sum_{j=i}^{n} B_{j,i} \sum_{k=0}^{j} \binom{j}{k} \left(\frac{n + j + 2 - k}{n - j - k} \right).
\]

Moreover, \(\beta_{n,i} \) is the \((n, i)\)-entry of the Riordan array

\[
\left(\frac{1}{(1-x)^3} C \left(\frac{x(1+x)}{(1-x)^2} \right)^3, \frac{x(1+x)}{(1-x)^2} C \left(\frac{x(1+x)}{(1-x)^2} \right)^2 \right).
\]

Proof For any G-Motzkin path \(G \in \mathcal{G} \) with at least one \(v \)-step at level \(i \), given such a \(v \)-step, marked as \(v^* \), \(G \) can be partitioned uniquely into

\[
G = G_0 u G_1 \ldots u G_i u G_{i+1} v^* G_0 \bar{G}_1 \ldots \bar{G}_i.
\]

where \(G_0, \ldots, G_{i+1}, \bar{G}_0, \ldots, \bar{G}_i \in \mathcal{G} \) and \(z_1, \ldots, z_i \in \{d, v\} \). Similar to the proof of Theorem 3.1, according to the length of \(G \), all \(G \in \mathcal{G} \) produce the generating function \(x^{i+1} (1+x)^i G(x)^{2i+3} \). Hence, the total number \(\beta_{n,i} \) of \(v^* \)-steps in all G-Motzkin paths \(G \in \mathcal{G}_{n+1} \) is the coefficient of \(x^{n+1} \) in \(x^{i+1} (1+x)^i G(x)^{2i+3} \), namely,

\[
\beta_{n,i} = [x^{n+1}] x^{i+1} (1+x)^i G(x)^{2i+3} = [x^n] G(x)^3 (x(1+x)G(x))^2 \big|_{x^i}.
\]

By (2.4), \(\beta_{n,i} \) is the \((n, i)\)-entry of the Riordan array

\[
\left(G(x)^3, x(1+x)G(x)^2 \right) = \left(\frac{1}{(1-x)^3} C \left(\frac{x(1+x)}{(1-x)^2} \right)^3, \frac{x(1+x)}{(1-x)^2} C \left(\frac{x(1+x)}{(1-x)^2} \right)^2 \right).
\]

By the relation \(B_{j,i} = [x^j] C(x)^3 (x C(x)^2)^i \) and by Lemma 3.4, we have

\[
\gamma_{n,i} = \beta_{n,i} = x^n \frac{1}{(1-x)^3} C \left(\frac{x(1+x)}{(1-x)^2} \right)^3 \left(\frac{x(1+x)}{(1-x)^2} C \left(\frac{x(1+x)}{(1-x)^2} \right)^2 \right)^i
\]

\[
= x^n \sum_{j=0}^{\infty} B_{j,i} x^j (1+x)^j (1-x)^{2j} = x^n \sum_{j=i}^{\infty} B_{j,i} x^j (1+x)^j (1-x)^{2j+3}
\]

\[
= \sum_{j=i}^{n} B_{j,i} \sum_{k=0}^{n-j} \binom{j}{k} \left(\frac{n + j + 2 - k}{n - j - k} \right).
\]

This completes the proof of Theorem 3.5. \(\square \)

By Theorem 3.5, similar to the proofs of Theorem 3.2 and 3.3, we have the following result.
Theorem 3.6 For any integers \(n, m \geq 0 \), there holds

\[
\sum_{i=0}^{n} (-1)^{n-i} \binom{n}{i} \beta_{n+m+i, m+i} = 5^n, \tag{3.4}
\]

\[
\sum_{i=0}^{n} (-1)^i \binom{i+2}{2} \beta_{n,i} = \binom{n+2}{2}. \tag{3.5}
\]

One can be asked for combinatorial proofs for these two identities (3.4) and (3.5).

Note that any \(u \)-step at level \(i + 1 \) in a G-Motzkin path \(P \) of length \(n + 1 \) has a matching step, it is a \(v \)-step or \(d \)-step at level \(i \), together with Lemma 3.4, we have the following result.

Corollary 3.7 For any integers \(n \geq i \geq 0 \), there holds

\[
\alpha_{n,i} = \beta_{n,i} + \beta_{n-1,i}.
\]

3.3 The Statistics “Number of h-Steps” and “Number of Points” at Level \(i \)

Let \(\mu_{n,i} \) denote the number of \(h \)-steps at level \(i \) in all G-Motzkin paths of length \(n + 1 \) and let \(\lambda_{n,i} \) denote the number of points at level \(i \) in all G-Motzkin paths of length \(n \), the first values of \(\mu_{n,i} \) and \(\lambda_{n,i} \) are illustrated in Table 11.

\(n/i \)	0	1	2	3	4	5	6
0	1						
1	4	1					
2	18	9	1				
3	86	60	14	1			
4	431	368	127	19	1		
5	2238	2190	970	219	24	1	
6	11,941	12,894	6803	2017	336	29	1

Lemma 3.8 For any integers \(n \geq i \geq 0 \), there holds

\[
\lambda_{n,i} = \mu_{n,i}.
\]

Proof Given a point at level \(i \) in a G-Motzkin path \(P \) of length \(n \), insert an \(h \)-step into the point, one get a G-Motzkin path \(P' \) of length \(n + 1 \) with an \(h \)-step counted at level \(i \). Conversely, given an \(h \)-step at level \(i \) in a G-Motzkin path \(P' \) of length \(n + 1 \), remove the \(h \)-step, one get a G-Motzkin path \(P \) of length \(n \) with a point counted at level \(i \). This one-to-one mapping implies that \(\lambda_{n,i} = \mu_{n,i} \). \qed
Theorem 3.9 For any integers \(n \geq i \geq 0 \), there holds

\[
\mu_{n,i} = \lambda_{n,i} = \sum_{j=i}^{n} C_{j,i} \sum_{k=0}^{n-j} \binom{n+j-k+1}{n-j-k}.
\]

Moreover, \(\mu_{n,i} \) is the \((n, i)\)-entry of the Riordan array

\[
\left(\frac{1}{(1-x)^2} C \left(\frac{x(1+x)}{(1-x)^2} \right)^2, \frac{x(1+x)}{(1-x)^2} C \left(\frac{x(1+x)}{(1-x)^2} \right)^2 \right).
\]

Proof For any G-Motzkin path \(G \in \mathcal{G} \) with at least one \(h \)-step at level \(i \), given such an \(h \)-step, marked as \(h^* \), \(G \) can be partitioned uniquely into

\[G = G_0 u G_1 \ldots u G_i h^* G_0 z_1 \bar{G}_1 \ldots z_i \bar{G}_i, \]

where \(G_0, \ldots, G_i, \bar{G}_0, \ldots, \bar{G}_i \in \mathcal{G} \) and \(z_1, \ldots, z_i \in \{ d, v \} \). Similar to the proof of Theorem 3.1, according to the length of \(G \), all \(G \in \mathcal{G} \) produce the generating function \(x^{i+1} (1+x)^i G(x)^{2i+2} \). Hence, the total number \(\mu_{n,i} \) of \(h^* \)-steps in all G-Motzkin paths \(G \in \mathcal{G}_{n+1} \) is the coefficient of \(x^{n+1} \) in \(x^{i+1} (1+x)^i G(x)^{2i+2} \), namely,

\[\mu_{n,i} = [x^{n+1}] x^{i+1} (1+x)^i G(x)^{2i+2} = [x^n] G(x)^2 \left(x(1+x) G(x)^2 \right)^i. \]

By (2.4), \(\mu_{n,i} \) is the \((n, i)\)-entry of the Riordan array

\[
\left(G(x)^2, x(1+x) G(x)^2 \right) = \left(\frac{1}{(1-x)^2} C \left(\frac{x(1+x)}{(1-x)^2} \right)^2, \frac{x(1+x)}{(1-x)^2} C \left(\frac{x(1+x)}{(1-x)^2} \right)^2 \right).
\]

By the relation \(C_{j,i} = [x^j] C(x)^2 (x C(x)^2)^i \) and by Lemma 3.8, we have

\[
\lambda_{n,i} = \mu_{n,i} = [x^n] \frac{1}{(1-x)^2} C \left(\frac{x(1+x)}{(1-x)^2} \right)^2 \left(\frac{x(1+x)}{(1-x)^2} C \left(\frac{x(1+x)}{(1-x)^2} \right)^2 \right)^i \]

\[
= [x^n] \frac{1}{(1-x)^2} \sum_{j=0}^{\infty} C_{j,i} \frac{x^j (1+x)^j}{(1-x)^{2j}} = [x^n] \sum_{j=0}^{\infty} C_{j,i} \frac{x^j (1+x)^j}{(1-x)^{2j+2}} \]

\[
= \sum_{j=i}^{n} C_{j,i} \sum_{k=0}^{n-j} \binom{n+j-k+1}{n-j-k}.
\]

This completes the proof of Theorem 3.9. \(\square\)

By Theorem 3.9, similar to the proofs of Theorem 3.2 and 3.3, we have the following result.
Theorem 3.10 For any integers $n, m \geq 0$, there holds

$$\sum_{i=0}^{n} (-1)^{n-i} \binom{n}{i} \mu_{n+m+i,m+i} = \delta^n, \quad (3.6)$$

$$\sum_{i=0}^{n} (-1)^{i}(i + 1)\mu_{n,i} = n + 1. \quad (3.7)$$

One can be asked for combinatorial proofs of these two identities (3.6) and (3.7).

Remark 3.11 Note that if replacing the marked h-step h^* by marked uv-peak, one can derive that the number of uv-peaks at level $i + 1$ in all G-Motzkin paths of length $n + 1$ is $\mu_{n,i}$. Similarly, if replacing the marked h-step h^* by marked ud-peak, one can derive that the number of ud-peaks at level $i + 1$ in all G-Motzkin paths of length $n + 2$ is also $\mu_{n,i}$.

3.4 The Statistic “Number of Return Steps”

Let $r_{n,i}$ denote the number of G-Motzkin paths of length n with i return steps, the first values of $r_{n,i}$ are illustrated in Table 12.

n/i	0	1	2	3	4	5	6
0	1						
1	1	1					
2	1	5	1				
3	1	18	9	1			
4	1	67	51	13	1		
5	1	278	253	100	17	1	
6	1	1272	1236	623	165	21	1

Theorem 3.12 For any integers $n \geq i \geq 0$, there holds

$$r_{n,i} = \sum_{j=i}^{n} \frac{i}{2j-i} \binom{2j-i}{j} \sum_{k=0}^{n-j} \binom{j}{k} \binom{n+j-k}{n-j-k}.$$

Moreover, $r_{n,i}$ is the (n, i)-entry of the Riordan array

$$\left(\frac{1}{1-x}, \frac{x(1+x)}{(1-x)^2} C\left(\frac{x(1+x)}{(1-x)^2}\right)\right).$$

Proof For any G-Motzkin path $G \in \mathcal{G}$ with i return steps, G can be partitioned uniquely into

$$G = h^k_0 uG_1 z_1 h^k_1 uG_2 z_2 h^k_2 \ldots uG_i z_i h^k_i.$$
where \(G_1, \ldots, G_i \in \mathcal{G}, z_1, \ldots, z_i \in \{d, v\} \) and \(k_0, k_1, \ldots, k_i \geq 0 \). Similar to the proof of Theorem 3.1, according to the length of \(G \), all \(G \in \mathcal{G} \) produce the generating function \(\frac{1}{(1-x)^{i+1}} x^i (1+x)^i G(x)^i \). Hence, the total number \(r_{n,i} \) of return steps in all G-Motzkin paths \(G \in \mathcal{G}_n \) is the coefficient of \(x^n \) in \(\frac{1}{(1-x)^{i+1}} x^i (1+x)^i G(x)^i \), namely,

\[
r_{n,i} = [x^n] \frac{1}{(1-x)^{i+1}} x^i (1+x)^i G(x)^i = [x^n] \frac{1}{1-x} \left(\frac{x(1+x)}{1-x} G(x) \right)^i.
\]

By (2.4), \(r_{n,i} \) is the \((n, i)\)-entry of the Riordan array

\[
\left(\frac{1}{1-x}, \frac{x(1+x)}{1-x} G(x) \right) = \left(\frac{1}{1-x}, \frac{x(1+x)}{1-x} C \left(\frac{x(1+x)}{(1-x)^2} \right) \right).
\]

By the relation \(\frac{i}{2j-i} \binom{2j-i}{j} = [x^j](xC(x))^i \), we have

\[
r_{n,i} = [x^n] \frac{1}{1-x} \left(\frac{x(1+x)}{1-x} C \left(\frac{x(1+x)}{(1-x)^2} \right) \right)^i
= [x^n] \frac{1}{1-x} \sum_{j=i}^{\infty} \frac{i}{2j-i} \binom{2j-i}{j} x^j (1+x)^j \left(\frac{x(1+x)}{(1-x)^2} \right)^j
= \sum_{j=i}^{n} \frac{i}{2j-i} \binom{2j-i}{j} \sum_{k=0}^{n-j} \binom{j}{k} \frac{n-j-k}{n-j-k}.
\]

This completes the proof of Theorem 3.12. \(\square \)

By Theorem 3.12, similar to the proof of Theorem 3.2, we have the following result.

Theorem 3.13 For any integers \(n, m \geq 0 \), there holds

\[
\sum_{i=0}^{n} (-1)^{n-i} \binom{n}{i} r_{n+m+i, m+i} = 4^n.
\] \hspace{1cm} (3.8)

One can be asked for a combinatorial proof of this identity (3.8).

4 The Statistics “Number of \(z_1z_2\)-Steps” in G-Motzkin Paths

In this section, similar to the second section, we discuss the statistics “number of \(z_1z_2\)-steps” in G-Motzkin paths for \(z_1, z_2 \in \{u, h, v, d\} \). Despite that there are 16 cases to be considered, but in fact it only needs to study 10 cases in the set \(\{ud, uh, uu, hh, hd, vu, vv, du, dd, dv\} \). Let \(L_{n,i}^{z_1z_2} \) denote the number of G-Motzkin paths of length \(n \) with \(i \) \(z_1z_2 \)-steps, it is not difficult to verify that

\[
L_{n,i}^{uv} = H_{n,i}, \quad L_{n,i}^{hv} = L_{n,i}^{vh} = D_{n,i}, \quad L_{n,i}^{hu} = L_{n,i}^{uh} = L_{n,i}^{hd} = L_{n,i}^{dh}, \quad L_{n,i}^{dv} = L_{n,i}^{vd}.
\]
The results, $L_{n,i}^{uv} = H_{n,i}, L_{n,i}^{hv} = L_{n,i}^{vh} = D_{n,i},$ can be easily obtained respectively by replacing all the uv-steps (hv-steps, vh-steps) by new h-steps (d-steps) and replacing the original h-steps (d-steps) by uv-steps (hv-steps, vh-steps) in each G-Motzkin paths of length n and vice versa. The results, $L_{n,i}^{uh} = L_{n,i}^{du} = L_{n,i}^{hd} = L_{n,i}^{dv} = L_{n,i}^{vd},$ can be easily obtained respectively by replacing all the uh-steps (hd-steps, dv-steps) by new uh-steps (hd-steps, dv-steps) and replacing the original uh-steps (hd-steps, dv-steps) (if exist) by hu-steps (hd-steps, dv-steps) in each G-Motzkin paths of length n and vice versa.

In the following 10 subsections, we derive the explicit formulas for $L_{n,i}^{z_1z_2}$ in terms of Catalan numbers C_n by generating functions, and obtain several difference identities and weighted sum identities in the cases $z_1z_2 \in \{ud, vu, vv\}.$ What’s more interesting is that we provide combinatorial interpretations for weighted sums related to $L_{n,i}^{vu}$ by G-Motzkin paths.

4.1 The Statistic “Number of ud-Peaks”

Let $L_{n,i}^{ud}(x, y) = \sum_{i=0}^{\infty} \sum_{j=0}^{\infty} t_{n,i}^{ud} x^i y^j$ be the generating function of $L_{n,i}^{ud},$ the number of G-Motzkin paths of length n with i ud-peaks. According to the first return decomposition, a G-Motzkin path P can be decomposed as one of the following five forms:

$$P = \varepsilon, \ P = hQ_1, \ P = uQ_1vQ_2, \ P = udQ_2, \ or \ P = uP_1dQ_2,$$

where Q_1 and Q_2 are (possibly empty) G-Motzkin paths and P_1 are nonempty. Then we get the relation

$$L_{n,i}^{ud}(x, y) = 1 + xL_{n,i}^{ud}(x, y) + xL_{n,i}^{ud}(x, y)^2 + x^2yL_{n,i}^{ud}(x, y) + x^2(L_{n,i}^{ud}(x, y) - 1)L_{n,i}^{ud}(x, y)$$

$$= 1 + x(1-x+xy)L_{n,i}^{ud}(x, y) + x(1+x)L_{n,i}^{ud}(x, y)^2.$$

Solve this, we have

$$L_{n,i}^{ud}(x, y) = \frac{1 - x + x^2 - x^2y - \sqrt{(1-x+x^2-x^2y)^2 - 4x(1+x)}}{2x(1+x)}$$

$$= \frac{1}{1 - x + x^2 - x^2y} \frac{x(1+x)}{(1-x+x^2-x^2y)^2}. \quad (4.1)$$

By (1.1) and (4.1), taking the coefficient of x^ny^j in $L_{n,i}^{ud}(x, y),$ we derive the result as follows.

Theorem 4.1 For any integers $n \geq i \geq 0,$ there holds

$$L_{n,i}^{ud} = \sum_{k=0}^{n-2i} \sum_{j=0}^{\left\lfloor \frac{n-k-2i}{2} \right\rfloor} (-1)^j \binom{2k+i}{i} \binom{2k+i+j}{j} \binom{3k+i+1}{n-k-2i-3j} C_k.$$
The first values of $L_{n,i}^{ud}$ are illustrated in Table 13.

Theorem 4.2 For any integers $n, m \geq 0$, there holds

$$\sum_{i=0}^{2n} (-1)^i \binom{2n}{i} L_{n+2m+2i,m+i}^{ud} = C_n.$$

Proof Note that

$$L_{n+2m+2i,m+i}^{ud} = \sum_{k=0}^{n} \sum_{j=0}^{n-k} (-1)^j \binom{2k+m+i}{2k} \binom{2k+m+i+j}{j} \binom{3k+m+i+1}{n-k-3j} C_k,$$

each inner term in $L_{n+2m+2i,m+i}^{ud}$, denoted by $h_{n,m,k,j}(i)$, is a polynomial on i with degree

$$\partial h_{n,m,k,j}(i) = 2k + j + (n - k - 3j) = n + k - 2j \leq 2n$$

such that $\partial h_{n,m,k,j}(i) = 2n$ if and only if $k = n$ and $j = 0$. Clearly, the leading term in

$$h_{n,m,n,0}(i) = \binom{2n+m+i}{2n} C_n$$

is $\frac{C_n}{(2n)!} i^{2n}$. So $L_{n+2m+2i,m+i}^{ud}$ is also a polynomial on i with degree $2n$ such that the leading term is $\frac{C_n}{(2n)!} i^{2n}$. By the Euler difference identity

$$\sum_{i=0}^{n} (-1)^i \binom{n}{i} i^r = \begin{cases} 0, & \text{if } 0 \leq r < n, \\ (-1)^n n!, & \text{if } r = n, \end{cases}$$

\[\triangledown \] Springer
we have
\[
 \sum_{i=0}^{2n} (-1)^i \binom{2n}{i} L_{n+2m+2i,m+i}^{ud} = \sum_{i=0}^{2n} (-1)^i \binom{2n}{i} 2n \frac{C_n}{(2n)!} = C_n.
\]

This completes the proof. \qed

By (1.1) and (4.1), taking the coefficient of \(x^n\) in \(L_{n}^{ud}(x, -\frac{3}{x})\), we derive the following result.

Theorem 4.3 For any integer \(n \geq 0\), there holds
\[
 \sum_{i=0}^{n} (-3)^i L_{n+i,i}^{ud} = \sum_{i=0}^{n} (-1)^{n-k} \binom{n+2k+1}{n-k} C_k.
\]

4.2 The Statistic "Number of uh-Steps"

Let \(L_{n,i}^{uh}(x, y) = \sum_{n=0}^{\infty} \sum_{i=0}^{\infty} L_{n,i}^{uh} x^n y^i\) be the generating function of \(L_{n,i}^{uh}\), the number of G-Motzkin paths of length \(n\) with \(i\) uh-steps. According to the first return decomposition, a G-Motzkin path \(P\) can be decomposed as one of the following four forms:
\[
P = \varepsilon, \quad P = hQ, \quad P = uP_1vQ, \quad \text{or} \quad P = uP_1dQ_2,
\]
where \(P_1\) and \(Q_2\) are (possibly empty) G-Motzkin paths. If \(P_1\) begins with an \(h\)-step, \(uP_1\) contributes at least one uh-step. Then we get the relation
\[
L_{n,i}^{uh}(x, y) = 1 + xL_{n,i}^{uh}(x, y) + x(1 - x)L_{n,i}^{uh}(x, y)^2 + x^2 yL_{n,i}^{uh}(x, y)^2 + x^2(1 - x)L_{n,i}^{uh}(x, y)^2 + x^3 yL_{n,i}^{uh}(x, y)^2
\]
\[
= 1 + xL_{n,i}^{uh}(x, y) + x(1 + x)(1 - x + xy)L_{n,i}^{uh}(x, y)^2.
\]

Solve this, we have
\[
L_{n,i}^{uh}(x, y) = \frac{1 - x - \sqrt{(1 - x)^2 - 4x(1 + x)(1 - x + xy)}}{2x(1 + x)(1 - x + xy)}
\]
\[
= \frac{1}{1 - x} C \left(\frac{x(1 + x)(1 - x + xy)}{(1 - x)^2} \right). \quad (4.2)
\]

By (1.1) and (4.2), taking the coefficient of \(x^n y^i\) in \(L_{n,i}^{uh}(x, y)\), we derive the following result.

Theorem 4.4 For any integers \(n \geq i \geq 0\), there holds
\[
L_{n,i}^{uh} = \sum_{k=i}^{n-i} \sum_{j=0}^{n-k-i} \binom{k}{i} \binom{k}{j} \binom{n-j}{n-k-i-j} C_k.
\]
The first values of $L_{uh}^{n,i}$ are illustrated in Table 14. Note that $L_{2n,n}^{uh} = C_n$, since any Dyck paths of length $2n$ can be obtained by replacing each uh-step in any G-Motzkin paths of length $2n$ with n uh-steps (no d-steps implied) by a u-step and each v-step by a d-step, and vice versa.

4.3 The Statistic “Number of uu-Steps”

Let $L^{uu}(x, y) = \sum_{n=0}^{\infty} \sum_{i=0}^{\infty} L_{n,i}^{uu} x^n y^i$ be the generating function of $L_{n,i}^{uu}$, the number of G-Motzkin paths of length n with i uu-steps. According to the first return decomposition, a G-Motzkin path P can be decomposed as one of the following four forms:

$$P = \epsilon, \quad P = hP_0, \quad P = u^k hP_0 z_1 P_1 z_2 P_2 \ldots z_k P_k, \text{ or } P = u^k z_1 P_1 z_2 P_2 \ldots z_k P_k,$$

where P_0, P_1, \ldots, P_k are (possibly empty) G-Motzkin paths for certain $k \geq 1$ and $z_1, \ldots, z_k \in \{d, v\}$. Note that the last two cases contribute at least $k - 1$ uu-steps. Then we get the relation

$$L^{uu}(x, y) = 1 + xL^{uu}(x, y) + \sum_{k=1}^{\infty} x^{k+1}(1 + x)^k y^{k-1} L^{uu}(x, y)^{k+1}$$

$$+ \sum_{k=1}^{\infty} x^k (1 + x)^k y^{k-1} L^{uu}(x, y)^k$$

$$= 1 + xL^{uu}(x, y) + \frac{x^2(1 + x)L^{uu}(x, y)^2}{1 - x(1 + x)yL^{uu}(x, y)} + \frac{x(1 + x)L^{uu}(x, y)}{1 - x(1 + x)yL^{uu}(x, y)}$$

$$= (1 + xL^{uu}(x, y)) \left(1 + \frac{x(1 + x)L^{uu}(x, y)}{1 - x(1 + x)yL^{uu}(x, y)}\right).$$
Solve this, we have

\[
L^{uu}(x, y) = \frac{1 - 2x - x^2 + x(1 + x)y - \sqrt{(1 - 2x - x^2 + x(1 + x)y)^2 - 4x(1 + x)(x + y - xy)}}{2x(1 + x)(x + y - xy)}
\]

By (1.1) and (4.3), taking the coefficient of \(x^n y^i\) in \(L^{uu}(x, y)\) by two different means, we have the following result.

Theorem 4.5 For any integers \(n \geq i \geq 0\), there holds

\[
L_{n,i}^{uu} = \sum_{k=0}^{n} \sum_{j=0}^{k} \sum_{r=0}^{n-k-j} \sum_{\ell=0}^{k+r} (-1)^{i+j-k} \binom{k}{j} \binom{2k+r}{r} \binom{j+r}{i+j-k} \binom{k+r}{r} \binom{n+k-j-\ell}{n-k-j-r-\ell} C_k
\]

The first values of \(L_{n,i}^{uu}\) are illustrated in Table 15.

Specially, when \(i = n \geq 1\), it implies that \(j = 0, r = n-k, \ell = 0\), so \(L_{0,0}^{uu} = 1\) and \(L_{n,0}^{uu} = 0\) for \(n \geq 1\) produce that

\[
\sum_{k=0}^{n} (-1)^{n-k} \binom{n+k}{n-k} C_k = \begin{cases} 0, & \text{if } n \geq 1, \\ 1, & \text{if } n = 0. \end{cases}
\]
which has been derived by Chen and Pang [5] and is a special case of the identity [5, 35]

\[\sum_{k=0}^{n} \binom{n+k}{n-k} C_k (x-1)^{n-k} = \sum_{k=0}^{n} \frac{1}{n} \binom{n}{k-1} \binom{n}{k} x^k. \]

4.4 The Statistic “Number of hh-Steps”

Let \(L_{hh}(x, y) = \sum_{n=0}^\infty \sum_{i=0}^\infty L_{n,i} x^n y^i \) be the generating function of \(L_{n,i} \), the number of G-Motzkin paths of length \(n \) with \(i \) hh-steps. According to the first return decomposition, a G-Motzkin path \(P \) can be decomposed as one of the following six forms:

\[
P = \varepsilon, \quad P = h_k, \quad P = h_k uP_1 vP_2, \quad P = h_k uP_1 dP_2, \quad P = uP_1 vP_2, \quad \text{or} \quad P = uP_1 dP_2
\]

for certain \(k \geq 1 \), where \(P_1 \) and \(P_2 \) are (possibly empty) G-Motzkin paths. Note that the \(h_k u \) part contributes \(k - 1 \) hh-steps. Then we get the relation

\[
L_{hh}(x, y) = 1 + \sum_{k=1}^{\infty} x^k y^{k-1} + \sum_{k=1}^{\infty} x^{k+1} y^{k-1} L_{hh}(x, y)^2 + \sum_{k=1}^{\infty} x^{k+2} y^{k-1} L_{hh}(x, y)^2 \\
+ x L_{hh}(x, y)^2 + x^2 L_{hh}(x, y)^2 \\
= \left(1 + \frac{x}{1-xy} \right) \left(1 + x(1+x) L_{hh}(x, y)^2 \right).
\]

Solve this, we have

\[
L_{hh}(x, y) = \frac{1 - xy - \sqrt{(1-xy)^2 - 4x(1+x)(1+x-xy)^2}}{2x(1+x)(1+x-xy)} \\
= \frac{1 - x - xy}{1 - xy} C \left(\frac{x(1+x)(1+x-xy)^2}{(1-xy)^2} \right) \\
= \left(1 + \frac{x}{1-xy} \right) C \left(x(1+x)(1 + \frac{x}{1-xy})^2 \right). \tag{4.4}
\]

By (1.1) and (4.4), taking the coefficient of \(x^n y^i \) in \(L_{hh}(x, y) \), we derive the following result.

Theorem 4.6 For any integers \(n \geq i \geq 0 \), there holds

\[
L_{hh}(x, y) = \sum_{k=0}^{n-i} \sum_{j=0}^{n-k-i} \binom{2k+1}{j} \binom{i+j-1}{i} \binom{k}{n-k-i-j} C_k.
\]

The first values of \(L_{n,i}^{hh} \) are illustrated in Table 16.
Table 16 The first values of $L_{n,i}^{hh}$

n/i	0	1	2	3	4	5
0	1					
1		2				
2		6	1			
3		25	3	1		
4		110	19	3	1	
5		520	104	22	3	1
6		2566	594	130	25	3

4.5 The Statistic “Number of hd-Steps”

Let $L_{hd}(x, y) = \sum_{n=0}^{\infty} \sum_{i=0}^{\infty} L_{n,i}^{hd} x^n y^i$ be the generating function of $L_{n,i}^{hd}$, the number of G-Motzkin paths of length n with i hd-steps. According to the first return decomposition, a G-Motzkin path P can be decomposed as one of the following four forms:

\[P = \varepsilon, \quad P = hP_2, \quad P = uP_1 vP_2, \quad \text{or} \quad P = uP_1 dP_2, \]

where P_1 and P_2 are (possibly empty) G-Motzkin paths. If P_1 ends with an h-step, $P_1 d$ contributes at least one hd-step. Then we get the relation

\[
L_{hd}(x, y) = 1 + xL_{hd}(x, y) + xL_{hd}(x, y)^2 + x^2 (1 - x)L_{hd}(x, y)^2 + x^3 yL_{hd}(x, y)^2
= 1 + xL_{hd}(x, y) + x(1 + x - x^2 + x^2 y)L_{hd}(x, y)^2.
\]

Solve this, we have

\[
L_{hd}(x, y) = \frac{1 - x - \sqrt{(1 - x)^2 - 4x(1 + x - x^2 + x^2 y)}}{2x(1 + x - x^2 + x^2 y)}
= \frac{1}{1 - x} C \left(\frac{x(1 + x - x^2 + x^2 y)}{(1 - x)^2} \right).
\] (4.5)

By (1.1) and (4.5), taking the coefficient of $x^n y^i$ in $L_{hd}(x, y)$, we have the following result.

Theorem 4.7 For any integers $n \geq i \geq 0$, there holds

\[L_{n,i}^{hd} = \sum_{k=i}^{n-2i} \sum_{j=0}^{k-i} \binom{k}{i} \binom{k-i}{j} \binom{n+k-2i-2j}{n-k-2i-j} C_k. \]

The first values of $L_{n,i}^{hd}$ are illustrated in Table 17. Note that $L_{3n,n}^{hd} = C_n$, since any Dyck paths of length $2n$ can be obtained by replacing each hd-step in any G-Motzkin paths of length $3n$ with n hd-steps (n u-steps and no v-steps implied) by a d-step, and vice versa.
Table 17 The first values of \(L_{n,i}^{hd} \)

\(n/i \)	0	1	2	3	4	5
0	0	1				
1	1	2				
2	2	7				
3	28	1				
4	126	7				
5	605	45				
6	3040	277	2			
7	15,781	1692	25			
8	83,971	10,320	234			
9	455,553	63,026	1924	5		

4.6 The Statistic “Number of \(vu \)-Valleys”

Let \(L^{vu}(x, y) = \sum_{n=0}^{\infty} \sum_{i=0}^{\infty} L_{n,i}^{vu} x^n y^i \) be the generating function of \(L_{n,i}^{vu} \), the number of G-Motzkin paths of length \(n \) with \(i \) \(vu \)-valleys. According to the first return decomposition, a G-Motzkin path \(P \) can be decomposed as one of the following four forms:

\[
P = \varepsilon, \quad P = hP_1, \quad P = uP_1v \ldots uP_kvP_{k+1}dP_{k+2}, \quad \text{or} \quad P = uP_1v \ldots uP_kvP_{k+1}vQ
\]

for certain \(k \geq 0 \), where \(P_1, \ldots, P_{k+1} \) are (possibly empty) G-Motzkin paths and \(Q \) is empty or begins with an \(h \)-step. Note that the last two cases contribute at least \(k \) \(vu \)-valleys. Then we get the relation

\[
L^{vu}(x, y) = 1 + xL^{vu}(x, y) + \sum_{k=0}^{\infty} x^{k+2} y^k L^{vu}(x, y) L^{vu}(x, y) L^{vu}(x, y) + \sum_{k=0}^{\infty} x^{k+1} y^k L^{vu}(x, y) L^{vu}(x, y) + \sum_{k=0}^{\infty} x^{k} y^{k+1} L^{vu}(x, y) L^{vu}(x, y)
\]

\[
= 1 + xL^{vu}(x, y) + \frac{xL^{vu}(x, y)^2}{1 - xyL^{vu}(x, y)} + \frac{xL^{vu}(x, y)(1 + xL^{vu}(x, y))}{1 - xyL^{vu}(x, y)}. \tag{4.6}
\]

Solve this, we have

\[
L^{vu}(x, y) = \frac{1 - 2x + xy - \sqrt{(1 - 2x + xy)^2 - 4x(2x + y - xy)}}{2x(2x + y - xy)} = \frac{1}{1 - 2x + xy} C \left(\frac{x(2x + y - xy)}{(1 - 2x + xy)^2} \right). \tag{4.7}
\]
Let $T = xL^{vu}(x, y)$, using the Lagrange inversion formula in (4.6), taking the coefficient of $x^{n+1}y^i$ in $xL^{vu}(x, y)$, we derive that

$$L_{n,i}^{vu} = \binom{n+1}{i} T = \binom{y^i}{n+1} T = \binom{\frac{1}{n+1}[T^n]}{y^i} \left(1 + T + \frac{T(1 + 2T)}{1 - yT}\right)^{n+1}$$

$$= \frac{1}{n+1}[T^n][y^i] \left(1 + T + \frac{T(1 + 2T)}{1 - yT}\right)^{n+1}$$

$$= \frac{1}{n+1}[T^n][y^i] \sum_{k=0}^{n+1} \binom{n+1}{k} \frac{1}{(1 - yT)^k} T^k (1 + 2T)^k (1 + T)^{n+1-k}$$

$$= \frac{1}{n+1}[T^n] \sum_{k=0}^{n+1} \binom{n+1}{k} \binom{k+i-1}{i} T^{k+i} (1 + 2T)^k (1 + T)^{n+1-k}$$

$$= \frac{1}{n+1} \sum_{k=0}^{n-i} \sum_{j=0}^{k} \binom{n+1}{k} \binom{k+i-1}{i} \binom{k}{j} \binom{n+1-k}{n-k-i-j} 2^j. \quad (4.8)$$

Hence, we obtain the following result.

Theorem 4.8 For any integers $n \geq i \geq 0$, there holds

$$L_{n,i}^{vu} = \frac{1}{n+1} \sum_{k=0}^{n-i} \sum_{j=0}^{k} \binom{n+1}{k} \binom{k+i-1}{i} \binom{k}{j} \binom{n+1-k}{n-k-i-j} 2^j.$$

Remark 4.9 If expanding $(1 + 2T)^k = \sum_{j=0}^{k} \binom{k}{j} T^j (1 + T)^{k-j} = \sum_{j=0}^{k} (-1)^j \binom{k}{j} 2^{k-j}$ in (4.8), we have another two formulas for $L_{n,i}^{vu}$, i.e.,

$$L_{n,i}^{vu} = \frac{1}{n+1} \sum_{k=0}^{n-i} \sum_{j=0}^{k} (-1)^j \binom{n+1}{k} \binom{k+i-1}{i} \binom{k}{j} \binom{n+1-j}{n-k-i-j} 2^{k-j}.$$

The first values of $L_{n,i}^{vu}$ are illustrated in Table 18.

By (1.1) and (4.7), taking the coefficient of $x^n y^i$ in $L^{vu}(x, 2y)$, we derive the following identity and provide a combinatorial proof for it.

Theorem 4.10 For any integer $n \geq 0$, there holds

$$\sum_{i=0}^{n} 2^i L_{n,i}^{vu} = 2^n C_n.$$

Proof Let $L_{n,i}^{vu}$ denote the set of weighted G-Motzkin paths of length n with i number of vu-steps such that each vu-step is weighted by 2 (regarded as $v_1 u$ and $v_2 u$ for

© Springer
Table 18 The first values of $L_{n,i}^{\text{vu}}$

n/i	0	1	2	3	4	5
0	1					
1		2				
2	6	1				
3	20	8	1			
4	72	48	12	1		
5	272	260	100	17	1	
6	1064	1340	706	185	23	1

convenience) and other steps are weighted by 1. Let $L_{n,i}^{\text{h}}$ denote the set of weighted G-Motzkin paths of length n with i number of h-steps at high level (level not less than 1) such that each h-step at high level is weighted by 2 (regarded as h_1 and h_2 for convenience) and other steps are weighted by 1. For convenience, the h-steps at level zero of the weighted G-Motzkin paths in $L_{n,i}^{\text{h}}$ are also written as h. Let C_{n}^{d} denote the weighted Dyck paths of length $2n$ such that each u-step is weighted by 1 and each d-step is weighted by 2 (regarded as d_1 and d_2 for convenience). Set $L_{n,i}^{\text{vu}} = \bigcup_{i=0}^{n} L_{n,i}^{\text{vu}}$ and $L_{n}^{\text{h}} = \bigcup_{n=0}^{\infty} L_{n,i}^{\text{h}}$.

Clearly,

$$w(L_{n}^{\text{vu}}) = \sum_{i=0}^{n} w(L_{n,i}^{\text{vu}}) = \sum_{i=0}^{n} 2^i L_{n,i}^{\text{vu}}$$

and $w(C_{n}^{\text{d}}) = 2^n C_{n}$.

Firstly, there exists a simple bijection χ_1 between $L_{n,i}^{\text{h}}$ and $L_{n,i}^{\text{vu}}$ for $n \geq i \geq 0$. For any $P \in L_{n,i}^{\text{h}}$, χ_1 can be easily obtained by replacing all the h-steps (at high level) weighted by 2 in P by new vu-steps with weight 2 (regarded as $h_1 \leftrightarrow v_1 u$ and $h_2 \leftrightarrow v_2 u$ for convenience) and replacing the old vu-steps in P by h-steps (at high level), then $\chi_1(P) \in L_{n,i}^{\text{vu}}$. The inverse procedure can be handled similarly.

Secondly, there exists a recursive bijection χ_2 between C_{n}^{d} and L_{n}^{h}. For $n = 0, 1$, we define

$$\chi_2(\varepsilon) = \varepsilon, \quad \chi_2(ud_1) = h_1, \quad \chi_2(ud_2) = uv.$$

For any $Q \in C_{n}^{\text{d}}$, Q can be uniquely partitioned into $Q = Q_1 Q_2 \ldots Q_k$ for $n \geq 2$ and certain $k \geq 1$, where Q_1, Q_2, \ldots, Q_k are primitive. Then χ_2 can be recursively defined by

$$\chi_2(Q) = \chi_2(Q_1) \chi_2(Q_2) \ldots \chi_2(Q_k).$$

So it suffices to discuss the cases when $Q \in C_{n}^{\text{d}}$ are primitive. There are four cases for such Q to be considered.
Case 1.

When \(Q = uQ'd_2 \), we define \(\chi_2(Q) = u\chi_2(Q')v \).

Case 2.

When \(Q = uQ'd_1 \), where \(Q' = uQ_1d_1uQ_2d_1 \ldots uQ_kd_1 \) for certain \(k \geq 1 \), namely, each return step of \(Q' \) is a \(d_1 \)-step, we define

\[
\chi_2(Q) = u\chi_2(Q_1)h_2\chi_2(Q_2) \ldots h_2\chi_2(Q_k)d.
\]

Case 3.

When \(Q = uQ''Q'd_1 \), where the last return step of \(Q'' \) is a \(d_2 \)-step and \(Q' = uQ_1d_1uQ_2d_1 \ldots uQ_kd_1 \) for certain \(k \geq 1 \), i.e., each return step of \(Q' \) is a \(d_1 \)-step, we define

\[
\chi_2(Q) = u\chi_2(Q'')h_2\chi_2(Q_1)h_2\chi_2(Q_2) \ldots h_2\chi_2(Q_k)v.
\]

Case 4.

When \(Q = uQ''Q'd_1 \), where \(Q'' \) is empty or the last return step of \(Q'' \) is a \(d_1 \)-step, and \(Q' = uQ_1d_2uQ_2d_2 \ldots uQ_kd_2 \) for certain \(k \geq 1 \), i.e., each return step of \(Q' \) is a \(d_2 \)-step, we define

\[
\chi_2(Q) = u\chi_2(Q'')h_2\chi_2(Q_1)h_2\chi_2(Q_2) \ldots h_2\chi_2(Q_k)v.
\]

Note that according to the definition of \(\chi_2 \), \(\chi_2(Q) \) has no \(h_2 \)-steps at level zero for any \(Q \in C_n^d \) with \(n \geq 0 \), and \(\chi_2(Q) \) in the above four cases are always primitive for \(Q = ud_2 \) or \(Q \) being primitive with length at least 4. Moreover, in the first case \(\chi_2(Q) \) has no \(h_2 \)-steps at level one; In the third case \(\chi_2(Q'') \) must proceed exactly to the leftmost \(h_2 \)-step at level one in \(\chi_2(Q) \) and end with a \(v \)-step, and the last primitive part of \(\chi_2(Q'') \) has no \(h_2 \)-steps at level one by the first case. In the forth case \(\chi_2(Q'') \) must proceed exactly to the leftmost \(h_2 \)-step at level one in \(\chi_2(Q) \), once \(\chi_2(Q'') \) ends with a \(v \)-step, there must exist \(h_2 \)-steps at level one in the last primitive part of \(\chi_2(Q'') \) recursively by the third or the fourth cases; In the second case \(\chi_2(Q) \) is obviously distinguished from the other three cases in the last step.

From the above observation, one can handle the inverse procedure as follows. For any \(P \in \mathcal{L}_n^h \), since \(P \) has no \(h_2 \)-steps at level zero, \(P \) can be uniquely partitioned into \(P = h_1^jP_1h_1^jP_2 \ldots h_1^jP_kh_1^j \) for \(n \geq k \geq 1 \) and \(j_1, \ldots, j_{k+1} \geq 0 \), where \(P_1, P_2, \ldots, P_k \in \mathcal{L}_n^h \) are primitive. Then \(\chi_2^{-1}(P) \) can be recursively defined by

\[
\chi_2^{-1}(P) = (ud_1)^{j_1}\chi_2^{-1}(P_1)(ud_1)^{j_2}\chi_2^{-1}(P_2) \ldots (ud_1)^{j_k}\chi_2^{-1}(P_k)(ud_1)^{j_{k+1}}
\]
such that $\chi^{-1}_2(\epsilon) = \epsilon$, $\chi^{-1}_2(h_1) = u d_1$ and $\chi^{-1}_2(u v) = u d_2$. Naturally, it suffices to consider the cases when $P \in \mathcal{L}_n^h$ are primitive. There are four cases for such P to be considered.

Case 1.

When $P = u P' v$ and P has no h_2-steps at level one, i.e., $P' \in \mathcal{L}_{n-1}^h$ has no h_2-steps at level zero, in this case we define $\chi^{-1}_2(P) = u \chi^{-1}_2(P') d_2$.

Case 2.

When $P = u P' d$ and P has exactly $k - 1$ h_2-steps at level one, where $P' = P_1 h_2 P_2 h_2 \ldots h_2 P_k$ with $P_1, \ldots, P_k \in \mathcal{L}^h$ for $k \geq 1$, in this case we define

$$\chi^{-1}_2(P) = uu \chi^{-1}_2(P_1) d_1 u \chi^{-1}_2(P_2) d_1 \ldots u \chi^{-1}_2(P_k) d_1 d_1.$$

Case 3.

When $P = u P'' P' v$ and P has exactly k h_2-steps at level one for $k \geq 1$, where $P' = h_2 P_1 h_2 P_2 \ldots h_2 P_k$ with $P_1, \ldots, P_k \in \mathcal{L}^h$, and $P'' \in \mathcal{L}^h$ is nonempty and ends with a v-step such that the last primitive part of P'' also has no h_2-steps at level one, in this case we define

$$\chi^{-1}_2(P) = u \chi^{-1}_2(P'') u \chi^{-1}_2(P_1) d_1 u \chi^{-1}_2(P_2) d_1 \ldots u \chi^{-1}_2(P_k) d_1 d_1.$$

Case 4.

When $P = u P'' P' v$ and P has exactly k h_2-steps at level one for $k \geq 1$, where $P' = h_2 P_1 h_2 P_2 \ldots h_2 P_k$ with $P_1, \ldots, P_k \in \mathcal{L}^h$, $P'' \in \mathcal{L}^h$ is possibly empty or ends with a z-step for $z \in \{h_1, h_2, d, v\}$ such that once P'' ends with a v-step, then there exist h_2-steps at level one in the last primitive part of P'', in this case we define

$$\chi^{-1}_2(P) = u \chi^{-1}_2(P'') u \chi^{-1}_2(P_1) d_2 u \chi^{-1}_2(P_2) d_2 \ldots u \chi^{-1}_2(P_k) d_2 d_1.$$

The above two procedures verify that χ_2 is indeed a bijection between \mathcal{C}_n^d and \mathcal{L}_n^h. Hence $\chi_1 \chi_2$ is a desired bijection between \mathcal{C}_n^d and \mathcal{L}_n^{vu}.

In order to give a more intuitive view on the bijection χ_1 and χ_2, a pictorial description of χ_1 and χ_2 is presented for $Q = u d_2 u u d_2 u u d_1 d_1 u u u d_2 u d_1 d_1 d_1 u d_1 u u d_1 d_1 d_2 \in \mathcal{C}_n^d$, we have

$$\chi_2(Q) = uvuv(h_2) u(h_2) v(h_2) uvv(h_1) dvh_1 u d v \in \mathcal{L}_{15}^h$$

and

$$\chi_1 \chi_2(Q) = uhuv(v_2 u) u(v_2 u) v(v_2 u) u u v(v_1 u) dvhuudv \in \mathcal{L}_{15}^{vu}.$$

See Fig. 3 for detailed illustrations.
Fig. 3 An example of the bijections \(\chi_1 \) and \(\chi_2 \) described in the proof of Theorem 4.10
By (1.1) and (4.7), taking the coefficient of x^n in $L^{vu}(x, -1)$, we deduce the following result.

Theorem 4.11 For any integer $n \geq 0$, there holds

$$
\sum_{i=0}^{n} (-1)^i L_{n,i}^{vu} = \sum_{i=0}^{n} (-1)^i \binom{n}{i} 3^{n-i} C_i.
$$

By (4.7), taking the coefficient of x^n in $L^{vu}(x, -2) = \frac{1}{1-2x}$, we derive the following identity whose combinatorial proof is also provided.

Theorem 4.12 For any integer $n \geq 0$, there holds

$$
\sum_{i=0}^{n} (-2)^i L_{n,i}^{vu} = 2^n.
$$

Proof Set $\mathcal{L}_n^{h,e} = \bigcup_{i=0}^{\lfloor \frac{n}{2} \rfloor} \mathcal{L}_n^{h,i}$ and $\mathcal{L}_n^{h,o} = \bigcup_{i=0}^{\lfloor \frac{n-1}{2} \rfloor} \mathcal{L}_n^{h,i+1}$. Note that χ_1 in Theorem 4.10 is a bijection between $\mathcal{L}_n^{h,i}$ and $\mathcal{L}_n^{vu,i}$ for $n \geq i \geq 0$, together with the definition of \mathcal{D}_n^* in the proof of (2.5), in order to prove Theorem 4.12, it is sufficient to establish a bijection between $\mathcal{L}_n^{h,e}/\mathcal{D}_n^*$ and $\mathcal{L}_n^{h,o}$ for $n \geq 0$.

It is trivial for $n = 0, 1$. For $n \geq 2$, any $P \in \mathcal{L}_n^{h,e}/\mathcal{D}_n^*$ has at least one of the four subpaths, $h_1 v, h_2 v, d$ and uvv, find the last one, say z, P can be partitioned uniquely into $P = P_1 z P_2$, where $P_2 \in \mathcal{D}_k^*$ for certain $0 \leq k \leq n - 2$. Then define $\varphi(P) = P_1 z' P_2$, where

$$
z' = \begin{cases}
 uvv, & \text{if } z = h_1 v, \\
 d, & \text{if } z = h_2 v, \\
 h_2 v, & \text{if } z = d, \\
 h_1 v, & \text{if } z = uvv.
\end{cases}
$$

This way ensures that the number of h-steps at height level in $\varphi(P)$ is one more or less than that in $P \in \mathcal{L}_n^{h,e}/\mathcal{D}_n^*$, so $\varphi(P) \in \mathcal{L}_n^{h,o}$ and z' in $\varphi(P)$ is also the last one of the four subpaths, $h_1 v, h_2 v, d$ and uvv. The reverse procedure can be handled similarly. Hence, φ is a bijection between $\mathcal{L}_n^{h,e}/\mathcal{D}_n^*$ and $\mathcal{L}_n^{h,o}$. This completes the proof. \(\square\)

Theorem 4.13 For any integers $n, m \geq 0$, there holds

$$
\sum_{i=0}^{2n} (-1)^i \binom{2n}{i} L_{n+m+i+2, n+i+1}^{vu} = C_n.
$$

Proof Set $N = n + m + i + 3$, one has

$$
L_{n+m+i+2, n+i+1}^{vu} = \sum_{k=0}^{n+1} \sum_{j=0}^{k} \frac{1}{N} \binom{N}{k} \binom{k+m+i}{j} \binom{k}{k-1} \binom{N-k-j}{n+1-k-j} 2^j.
$$
each inner term in $L_{n+m+i+2,m+i+1}^{vu}$, denoted by $g_{n,m,k,j}(i)$, is a polynomial on i with degree

$$\partial g_{n,m,k,j}(i) = -1 + k + (k - 1) + (n + 1 - k - j) = n + k - 1 - j \leq 2n$$

such that $\partial g_{n,m,k,j}(i) = 2n$ if and only if $k = n + 1$ and $j = 0$. Clearly, the leading term in

$$g_{n,m,n+1,0}(i) = \frac{1}{N} \binom{N}{n+1} \binom{n+m+i+1}{n} = \frac{1}{n+1} \binom{n+m+i+2}{n} \binom{n+m+i+1}{n}$$

is $\frac{i^{2n}}{(n+1)!n!}$. So $L_{n+m+i+2,m+i+1}^{vu}$ is also a polynomial on i with degree $2n$ such that the leading term is $\frac{i^{2n}}{(n+1)!n!}$. Similar to the proof of Theorem 4.2, one can have the result. \hfill \Box

4.7 The Statistic “Number of vv-Steps”

Let $L_{n,i}^{vy}(x,y) = \sum_{n=0}^{\infty} \sum_{i=0}^{\infty} L_{n,i}^{vy} x^n y^i$ be the generating function of $L_{n,i}^{vy}$, the number of G-Motzkin paths of length n with i vy-steps. According to the first return decomposition, a G-Motzkin path P can be decomposed as one of the following six forms:

$$P = \varepsilon, \ P = hP_1, \ P = uP_1dP_2, \ P = uP_1uP_2 \ldots uP_kuP_{k+1}dv^kP_{k+2}, \ P = uP_1uP_2 \ldots uP_khv^kP_{k+1} \text{ or } P = uP_1uP_2 \ldots uP_{k-1}uv^kP_k$$

for certain $k \geq 1$, where P_1, \ldots, P_{k+2} are (possibly empty) G-Motzkin paths. Note that the last three cases contribute at least $k - 1$ vy-steps. Then we get the relation

$$L_{n,i}^{vy}(x,y) = 1 + xL_{n,i}^{vy}(x,y) + x^2L_{n,i}^{vy}(x,y)^2 + \sum_{k=1}^{\infty} x^{k+2}y^{k-1}L_{n,i}^{vy}(x,y)^{k+2}$$

$$+ \sum_{k=1}^{\infty} x^{k+1}y^{k-1}L_{n,i}^{vy}(x,y)^{k+1} + \sum_{k=1}^{\infty} x^ky^{k-1}L_{n,i}^{vy}(x,y)^k$$

$$= \left(1 + xL_{n,i}^{vy}(x,y) + x^2L_{n,i}^{vy}(x,y)^2\right) \left(1 + \frac{xL_{n,i}^{vy}(x,y)}{1 - xyL_{n,i}^{vy}(x,y)}\right). \quad (4.9)$$

Let $T = xL_{n,i}^{vy}(x,y)$, using the Lagrange inversion formula in (4.9), taking the coefficient of $x^{n+1}y^i$ in $xL_{n,i}^{vy}(x,y)$, we get the following result.
Table 19 The first values of $L_{n,i}^{vv}$

n/i	0	1	2	3	4	5
0	1					
1	2					
2	6	1				
3	21	7	1			
4	80	41	11	1		
5	322	225	86	16	1	
6	1347	1198	589	162	22	1

Theorem 4.14 For any integers $n \geq i \geq 0$, there holds

$$L_{n,i}^{vv} = \frac{1}{n+1} \sum_{k=0}^{n-i} \sum_{j=0}^{\lfloor \frac{n-i}{2} \rfloor} \binom{n+1}{k} \binom{n+1}{j} \binom{k+i}{i} \binom{n-j+1}{n-k-i-2j}.$$

The first values of $L_{n,i}^{vv}$ are illustrated in Table 19.

Theorem 4.15 For any integers $n, m \geq 0$, there holds

$$\sum_{i=0}^{2n} (-1)^i \binom{2n}{i} L_{n+m+i+2,m+i+1}^{vv} = C_n.$$

Proof Set $N = n + m + i + 3$, one has

$$L_{n+m+i+2,m+i+1}^{vv} = \sum_{k=0}^{n+1} \sum_{j=0}^{\lfloor \frac{n-k+1}{2} \rfloor} \frac{1}{N} \binom{N}{k} \binom{N}{j} \binom{k+m+i}{k-1} \binom{N-j}{n-1-k-2j};$$

each inner term in $L_{n+m+i+2,m+i+1}^{vv}$, denoted by $f_{n,m,k,j}(i)$, is a polynomial on i with degree

$$\partial f_{n,m,k,j}(i) = -1 + k + j + (k-1) + (n + 1 - k - 2j) = n + k - 1 - j \leq 2n$$

such that $\partial f_{n,m,k,j}(i) = 2n$ if and only if $k = n + 1$ and $j = 0$. Clearly, the leading term in

$$f_{n,m,n+1,0}(i) = \frac{1}{n+1} \binom{N}{n+1} \binom{n+m+i+1}{n}$$

$$= \frac{1}{n+1} \binom{n+m+i+2}{n} \binom{n+m+i+1}{n}$$
\[
\binom{i+2n}{(n+1)i} \cdot i^{2n} \quad \text{for } n \geq i \geq 0.
\]
So \(L_{n+m+i+2,m+i+1}^{yy} \) is also a polynomial on \(i\) with degree \(2n\) such that the leading term is \(\frac{i^{2n}}{(n+1)i!} \cdot i^{2n} \). Similar to the proof of Theorem 4.2, one can have the result.

\[\square\]

4.8 The Statistic “Number of du-Valleys”

Let \(L_{du}^{x,y} = \sum_{n=0}^{\infty} \sum_{i=0}^{\infty} L_{n,i}^{du} x^n y^i\) be the generating function of \(L_{n,i}^{du}\), the number of G-Motzkin paths of length \(n\) with \(i\) du-valleys. According to the first return decomposition, a G-Motzkin path \(P\) can be decomposed as one of the following four forms:

\[
P = \varepsilon, \quad P = hP_1, \quad P = uP_1 duP_2 d \ldots \quad uP_k duP_{k+1} vP_{k+2} \quad \text{or} \quad P = uP_1 duP_2 d \ldots \quad uP_k duP_{k+1} dQ
\]

for certain \(k \geq 0\), where \(P_1, \ldots, P_{k+2}\) are (possibly empty) G-Motzkin paths and \(Q\) is empty or begins with an \(h\)-step. Note that the last two cases contribute at least \(k\) du-valleys. Then we get the relation

\[
L_{du}^{x,y} = 1 + xL_{du}^{x,y} + \sum_{k=0}^{\infty} x^{2k+1} y^k L_{du}^{x,y} + \sum_{k=0}^{\infty} x^{2k+2} y^k L_{du}^{x,y} (1 + xL_{du}^{x,y})
\]

\[
= 1 + xL_{du}^{x,y} + \frac{xL_{du}^{x,y}}{1 - x^2 y} \frac{1 + xL_{du}^{x,y}}{1 - x^2 y L_{du}^{x,y}}.
\]

Solve this, we have

\[
L_{du}^{x,y} = \frac{1 - x - x^2 + x^2 y - \sqrt{(1 - x - x^2 + x^2 y)^2 - 4x(1 + x^2 + xy - x^2 y)}}{2x(1 + x^2 + xy - x^2 y)}
\]

\[
= \frac{1}{1 - x - x^2 + x^2 y} C \left(\frac{x(1 + x^2 + xy - x^2 y)}{(1 - x - x^2 + x^2 y)^2} \right).
\]

By (1.1) and (4.10), taking the coefficient of \(x^n y^i\) in \(L_{du}^{x,y}\), we obtain the following result.

Theorem 4.16 For any integers \(n \geq i \geq 0\), there holds

\[
L_{n,i}^{du} = \sum_{k=0}^{n} \sum_{r=0}^{i} \sum_{j=0}^{k-r} \sum_{\ell=0}^{[n+r-k]-i-j} (-1)^{i-r} \binom{2k + i - r}{i - r} \binom{k}{r} \binom{k - r}{j}.
\]
\[
\binom{2k + i + \ell - r}{\ell} \binom{n + k - r - i - 2j - \ell}{n + r - k - 2i - 2j - 2\ell} C_k.
\]

Specially,
\[
L_{n,0}^{du} = \sum_{k=0}^{n} \sum_{j=0}^{\left\lfloor \frac{n-k}{2} \right\rfloor} \sum_{\ell=0}^{j} \binom{2k + \ell}{j} \binom{n + k - 2j - \ell}{n - k - 2j - 2\ell} C_k.
\]

The first values of \(L_{n,i}^{du}\) are illustrated in Table 20.

4.9 The Statistic “Number of dd-Steps”

Let \(L_{dd}^{dd}(x, y) = \sum_{n=0}^{\infty} \sum_{i=0}^{\infty} L_{n,i}^{dd} x^n y^i\) be the generating function of \(L_{n,i}^{dd}\), the number of G-Motzkin paths of length \(n\) with \(i\) \(dd\)-steps. According to the first return decomposition, a G-Motzkin path \(P\) can be decomposed as one of the following six forms:

\[
P = \varepsilon, P = hP_1, \quad P = uP_1vP_2, \quad P = uP_1uP_2 \ldots uP_kuP_{k+1}vP_{k+2},
\]

\[
P = uP_1uP_2 \ldots uP_khdP_{k+1} \text{ or } P = uP_1uP_2 \ldots uP_{k-1}udP_k
\]

for certain \(k \geq 1\), where \(P_1, \ldots, P_{k+2}\) are (possibly empty) G-Motzkin paths. Note that the last three cases contribute at least \(k - 1\) \(dd\)-steps. Then we get the relation

\[
L_{dd}^{dd}(x, y) = 1 + xL_{dd}^{dd}(x, y) + xL_{dd}^{dd}(x, y)^2 + \sum_{k=1}^{\infty} x^{2k+1} y^{k-1} L_{dd}^{dd}(x, y)^{k+2}
\]

\[
+ \sum_{k=1}^{\infty} x^{2k+1} y^{k-1} L_{dd}^{dd}(x, y)^{k+1} + \sum_{k=1}^{\infty} x^{2k} y^{k-1} L_{dd}^{dd}(x, y)^k
\]

\(n/i\)	0	1	2	3	4	5
0	1					
1	2					
2	7					
3	28	1				
4	123	10				
5	576	73	1			
6	2819	485	15			
7	14, 250	3093	154	1		
8	73, 833	19, 325	1346	21		
9	390, 048	119, 418	10, 758	283	1	

Table 20 The first values of \(L_{n,i}^{du}\)
\[= 1 + xL^{dd}(x, y) + xL^{dd}(x, y)^2 + x^2 L^{dd}(x, y) \left(\frac{1 + xL^{dd}(x, y) + xL^{dd}(x, y)^2}{1 - x^2yL^{dd}(x, y)} \right).\]

However, the exact formula for \(L^{dd}_{n,i}\) is still unknown. Here we give the array \(L^{dd}_{n,i}\) for \(0 \leq n \leq 9\) and \(0 \leq i \leq 5\), see Table 21.

4.10 The Statistic “Number of dv-Steps”

Let \(L^{dv}(x, y) = \sum_{n=0}^{\infty} \sum_{i=0}^{\infty} L^{dv}_{n,i} x^n y^i\) be the generating function of \(L^{dv}_{n,i}\), the number of G-Motzkin paths of length \(n\) with \(i\) dv-steps. According to the first return decomposition, a G-Motzkin path \(P\) can be decomposed as one of the following six forms:

\[
P = \varepsilon, \ P = hP_1, \ P = uP_1dP_2, \ P = uP_1uP_2 \ldots uP_{k-1}uv^kP_k, \ P = uP_1uP_2 \ldots uP_khv^kP_{k+1} \text{ or } P = uP_1uP_2 \ldots uP_kuP_{k+1}dv^kP_{k+2}
\]

for certain \(k \geq 1\), where \(P_1, \ldots, P_{k+2}\) are (possibly empty) G-Motzkin paths. Note that the last case contributes at least one dv-step. Then we get the relation

\[
L^{dv}(x, y) = 1 + xL^{dv}(x, y) + x^2 L^{dv}(x, y)^2 + \sum_{k=1}^{\infty} x^k L^{dv}(x, y)^k + \sum_{k=1}^{\infty} x^{k+1} L^{dv}(x, y)^{k+1} + y \sum_{k=1}^{\infty} x^{k+2} L^{dv}(x, y)^{k+2}
= 1 + xL^{dv}(x, y) + x^2 L^{dv}(x, y)^2 + \frac{xL^{dv}(x, y)(1 + xL^{dv}(x, y) + yx^2 L^{dv}(x, y)^2)}{1 - xL^{dv}(x, y)}.
\]

(4.11)

| Table 21: The first values of \(L^{dd}_{n,i}\) |
|---|---|---|---|---|---|---|
| \(n/i\) | 0 | 1 | 2 | 3 | 4 | 5 |
| 0 | 1 | | | | | |
| 1 | 2 | | | | | |
| 2 | 7 | | | | | |
| 3 | 29 | | | | | |
| 4 | 132 | 1 | | | | |
| 5 | 641 | 9 | | | | |
| 6 | 3254 | 64 | 1 | | | |
| 7 | 17,060 | 427 | 11 | | | |
| 8 | 91,663 | 2770 | 91 | 1 | | |
| 9 | 499,569 | 20,219 | 707 | 13 | | |
Let \(T = x L_{n}^{d}(x, y) \), using the Lagrange inversion formula in (4.11), taking the coefficient of \(x^{n+1} y^{i} \) in \(x L_{n}^{d}(x, y) \) in two different ways, we have the following result.

Theorem 4.17 For any integers \(n \geq i \geq 0 \), there holds

\[
L_{n,i}^{d} = \frac{1}{n+1} \left(\begin{array}{c} n+1 \\ i \end{array} \right) \sum_{k=0}^{[n/3] - i} \sum_{j=0}^{[n/3] - i - k} (-1)^{k+j} \left(\begin{array}{c} n+1-i \\ k \end{array} \right) \left(\begin{array}{c} n+1-i-k \\ j \end{array} \right) \left(\begin{array}{c} 2n-3i-3k-j \\ n-3i-2k-j \end{array} \right)
\]

The first values of \(L_{n,i}^{d} \) are illustrated in Table 22. Clearly, \(L_{3n,n}^{d} = \frac{1}{3n+1} \binom{3n+1}{n} \) is the Fuss–Catalan numbers \(C_{k}(n) = \frac{1}{kn+1} \binom{kn+1}{n} \) of the third order \((k = 3) \) which also counts the ternary trees with \(n \) internal vertices and counts the number of lattice paths from \((0, 0)\) to \((2n, 0)\) in the first quadrant of the XY-plane using an up-steps \(u = (1, 1) \) and a down-steps \(d_{2} = (0, -2) \) [43, A001764]. This kind of lattice paths of length \(2n \) can be easily corresponded bijectively to G-Motzkin paths of length \(3n \) with \(n \) \(d_{2} \)-steps by replacing \(d_{2} \)-steps by \(d_{1} \)-steps and vice versa.

5 Concluding Remarks and Further Works

The main objective of this paper has been achieved in Sects. 2, 3 and 4, where we enumerate “number of \(z \)-steps”, “number of \(z \)-steps” at given level, “number of \(z_1 z_2 \)-...
steps” in G-Motzkin paths for $z, z_1, z_2 \in \{u, h, v, d\}$. Some explicit formulas are obtained by bijective and algebraic methods, including generating functions and the Lagrange inversion formula.

Despite that several identities are proved by algebraic methods, we naturally expect their combinatorial proofs, especially for Theorem 2.6, Theorem 3.2, Theorem 3.3, Theorem 3.6, Theorem 3.10, Theorem 3.13, Theorem 4.2, Theorem 4.11, Theorem 4.13 and Theorem 4.15.

In two forthcoming papers, we further consider the statistics “number of occurrences of Γ” for an arbitrary string Γ with at least three steps and the statistics “number of occurrences of Γ” at given height, including even or odd height, just as done in [33, 39, 48]. Moreover, we also discuss the generalized Shröder paths with steps in $\{H, u, v_i (i \geq 1), d\}$ analogous to G-Motzkin paths studied in this paper, where $v_i = (0, -i)$.

Acknowledgements The authors are grateful to the referees for the helpful suggestions and comments. The Project is sponsored by “Liaoning BaiQianWan Talents Program”.

Declarations

Conflict of interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

References

1. Aigner, M.: Motzkin numbers. Europ. J. Combin. 19, 663–675 (1998)
2. Asakly, W.: Enumerating symmetric and non-symmetric peaks in words. J. Anal. Comb. 13, 7 (2018)
3. Banderier, C., Schwer, S.: Why Delannoy numbers. J. Statist. Plann. Inference 135, 40–54 (2005)
4. Barcucci, E., Pinzani, R., Sprugnoli, R.: The Motzkin family. Pure Math. Appl. Ser. A 2(3–4), 249–279 (1992)
5. Chen, W.Y.C., Pang, S.X.M.: On the combinatorics of the Pfaff identity. Disc. Math. 309, 2190–2196 (2009)
6. Cheng, W.P.: The three kinds of statistics of lattice paths. Master’s Thesis, Dalian Maritime University (2018)
7. Choi, S. K.: Motzkin path on RNA abstract shapes. arXiv:1907.07334v1 [math.CO] 17 (2019)
8. Chung, K.L., Feller, W.: On fluctuations in coin-tossing. Proc. Natl. Acad. Sci. USA 35, 605–608 (1949)
9. Comtet, L.: Advanced Combinatorics. D. Reidel, Dordrecht (1974)
10. Czabarka, E., Flórez, R., Junes, L.: Some enumerations on non-decreasing Dyck paths. Electron. J. Combin. 22, 1–22 (2015). (Paper no. 1.3)
11. Czabarka, E., Flórez, R., Junes, L., Ramírez, J.: Enumerations of peaks and valleys on non-decreasing Dyck paths. Disc. Math. 341, 2789–2807 (2018)
12. Defant, C.: Troupes, cumulants, and stack-sorting. arXiv:2004.11367 [math.CO] (2020)
13. Denise, A., Simion, R.: Two combinatorial statistics on Dyck paths. Disc. Math. 137(1–3), 155–176 (1995)
14. Deutsch, E.: Dyck path enumeration. Disc. Math. 204, 167–202 (1999)
15. Donaghey, R., Shapiro, L.W.: Motzkin numbers. J. Combin. Theory Ser. A 23(3), 291–301 (1977)
16. Došlić, T., Svrtan, D., Veljan, D.: Enumerative aspects of secondary structures. Disc. Math. 285(1–3), 67–82 (2004)
17. Drake, B.: Limits of areas under lattice paths. Disc. Math. 309(12), 3936–3953 (2009)
18. Dziemiańczuk, M.: Counting lattice paths with four types of steps. Graphs Combin. 30(6), 1427–1452 (2014)
19. Dziemianczuk, M.: On directed lattice paths with additional vertical steps. Disc. Math. 339(3), 1116–1139 (2016)
20. Elizalde, S.: Symmetric peaks and symmetric valleys in Dyck paths. Disc. Math. 344, 112364 (2021)
21. Elizalde, S., Rubey, M.: Symmetries of statistics on lattice paths between two boundaries. Adv. Math. 287, 347–388 (2016)
22. Eu, S.-P., Fu, T.-S., Yeh, Y.-N.: Refined Chung–Feller theorems for lattice paths. J. Combin. Theory Ser. A 112, 143–162 (2005)
23. Gessel, I.M.: Lagrange inversion. J. Combin. Theory Ser. A 144, 212–249 (2016)
24. Hofacker, I.L., Schuster, P., Stadler, P.F.: Combinatorics of RNA secondary structures. Disc. Appl. Math. 88, 207–237 (1998)
25. Humphreys, K.: A history and a survey of lattice path enumeration. J. Statist. Plann. Inference 140(8), 2237–2254 (2010)
26. Irvine, V., Melczer, S., Ruskey, F.: Vertically constrained Motzkin-like paths inspired by bobbin lace. Electron. J. Combin. 26(2), Paper no. 2.16 (2019)
27. Irvine, V., Ruskey, F.: Developing a mathematical model for bobbin lace. J. Math. Arts 8(3–4), 95–110 (2014)
28. Janse van Rensburg, E.J.: The Statistical Mechanics of Interacting Walks, Polygons, Animals and Vesicles. Oxford University Press, Oxford (2000)
29. Koshy, T.: Discrete Mathematics with Applications, pp. 343–436. Academic Press, Cambridge (2004)
30. Knuth, D.E.: The Art of Computer Programming. Sorting and Searching, vol. 3, 2nd edn. Addison-Wesley, MA (1998)
31. Liu, S.C., Ma, J., Yeh, Y.N.: Dyck paths with peak- and valley-avoiding sets. Stud. Appl. Math. 121(3), 263–289 (2008)
32. Mandelshtam, O.: A determinantal formula for Catalan tableaux and TASEP probabilities. J. Combin. Theory Ser. A 132, 120–141 (2015)
33. Manes, K., Sapounakis, A., Tasoulas, I., Tsikouras, P.: Counting strings at height in Dyck paths. J. Statist. Plann. Inference 141, 2100–2107 (2011)
34. Mansour, T., Sun, Y.: The statistic “number of udu’s” in Dyck paths. Disc. Math. 307, 4079–4088 (2009)
35. Mohanty, S.G.: Lattice Path Counting and Applications. Academic Press, New York (1979)
36. Narayana, T.V.: Lattice path combinatorics with statistical applications, In: Math. Expositions, vol.23, Univ. of Toronto Press, Toronto (1979)
37. Rieger, R.: Algebraic and Discrete Mathematical Methods for Modern Biology. Academic Press, New York (2015)
38. Sapounakis, A., Tasoulas, I., Tsikouras, P.P.: Counting strings in Dyck paths. Disc. Math. 307, 2909–2924 (2007)
39. Shapiro, L.W.: Bijections and the Riordan group. Theoret. Comput. Sci. 307, 403–413 (2003)
30. Shapiro, L.W., Getu, S., Woan, W.-J., Woodson, L.C.: The Riordan group. Disc. Appl. Math. 34, 229–239 (1991)
31. Shelah, S., Strüngmann, L.: Infinite combinatorics in mathematical biology. Biosystems 204, 104392 (2021)
32. Sloane, N.J.A.: On-line encyclopedia of integer sequences. https://www.oeis.org
33. Sprugnoli, R.: Riordan arrays and combinatorial sums. Disc. Math. 132, 267–290 (1994)
34. Stanley, R.P.: Enumerative Combinatorics, vol. 2. Cambridge University Press, Cambridge (1999)
35. Stanley, R.P.: Enumerative combinatorics, vol. 1, 2nd edn. Cambridge University Press, Cambridge (2012)
36. Stanley, R.P.: Catalan addendum. http://www-math.mit.edu/~rstan/ec/cataadd.pdf, a version of 25 (2013)
37. Sun, Y.: The statistic “number of udu’s” in Dyck paths. Disc. Math. 287(1–3), 177–186 (2004)
38. Takács, L.: On the ballot theorems. In: Advances in Combinatorial Methods and Applications to Probability and Statistics. Birkhäuser (1997)
39. Viennot, X.G.: Enumerative Combinatorics and Computer Science. Springer, Berlin, Heidelberg (2005)
40. Yan, S.H.F., Zhang, Y.: On lattice paths with four types of steps. Graphs Combin. 31, 1077–1084 (2015)
52. Zuker, M., Sankoff, D.: RNA secondary structures and their prediction. Bull. Math. Biol. 46(4), 591–621 (1984)

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.