Time to treatment for rifampicin-resistant tuberculosis: systematic review and meta-analysis

R. Boyd,*† N. Ford,‡ P. Padgen,§ H. Cox*¶

*Division of Medical Microbiology, University of Cape Town, Cape Town, South Africa; †Division of Tuberculosis Elimination, Centers for Disease Control and Prevention, Atlanta, Georgia, USA; ‡Centre for Infectious Disease Research, University of Cape Town, Cape Town, South Africa; §College of Global Public Health, New York University, New York, New York, USA; ¶Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa

SUMMARY

BACKGROUND: To reduce transmission and improve patient outcomes, rapid diagnosis and treatment of rifampicin-resistant tuberculosis (RR-TB) is required.

OBJECTIVE: To conduct a systematic review and meta-analysis assessing time to treatment for RR-TB and variability using diagnostic testing methods and treatment delivery approach.

DESIGN: Studies from 2000 to 2015 reporting time to second-line treatment initiation were selected from PubMed and published conference abstracts.

RESULTS: From 53 studies, 83 cohorts (13,034 patients) were included. Overall weighted mean time to treatment from specimen collection was 81 days (95%CI 70–91), and was shorter with ambulatory (57 days, 95%CI 40–74) than hospital-based treatment (86 days, 95%CI 71–102). Time to treatment was shorter with genotypic susceptibility testing (38 days, 95%CI 27–49) than phenotypic testing (108 days, 95%CI 98–117). The mean percentage of diagnosed patients initiating treatment was 76% (95%CI 70–83, range 25–100).

CONCLUSION: Time to second-line anti-tuberculosis treatment initiation is extremely variable across studies, and often unnecessarily long. Reduced delays are associated with genotypic testing and ambulatory treatment settings. Routine monitoring of the proportion of diagnosed patients initiating treatment and time to treatment are necessary to identify areas for intervention.

KEY WORDS: rifampicin-resistant; tuberculosis; time to treatment

MULTIDRUG-RESISTANT TUBERCULOSIS (MDR-TB, defined as TB resistant to both isoniazid and rifampicin [RMP]) is a global health threat.1 The World Health Organization (WHO) estimates that 580,000 people developed RMP-resistant TB (RR-TB) globally in 2015, accounting for 250,000 deaths.2 RR-TB, including MDR-TB, is more difficult to diagnose and treat than drug-susceptible TB, requiring longer courses of treatment. Globally, less than 30% of estimated RR-TB patients are diagnosed, and fewer are started on appropriate second-line treatment.3

For the minority of RR-TB patients who are appropriately diagnosed and receive second-line treatment, delays to treatment initiation are often many months in some settings.4–9 Such delays are likely to increase mortality and loss to follow-up while awaiting treatment,10,11 in addition to potentially poorer treatment outcomes among those who do start treatment.12 Long delays to treatment are also likely to contribute substantially to transmission in both community and nosocomial settings.13–15 Given that the majority of RR-TB patients in high-burden settings are likely due to direct transmission,16 scale-up of diagnosis and rapid initiation of effective treatment are required to improve patient outcomes and reduce ongoing transmission.17

A range of health system factors may influence time from first presentation at a health service to treatment initiation, including access to diagnostic services, complicated referral processes and availability of second-line treatment. Before the availability of genotypic drug susceptibility testing (DST), resistance testing relied on culture-based (phenotypic) methods, often taking months to receive results. Increased use of polymerase chain reaction based tests such as line-probe assays (LPAs) and Xpert® MTB/RIF (Cepheid, Sunnyvale, CA, USA) have reduced the laboratory time needed to reach a diagnosis of RR-TB, and therefore should theoretically reduce delays in treatment initiation. Similarly, the provision of community-based treatment, without mandatory admission to hospital, as recommended by the World Health Organization (WHO),18 should both increase access to treatment and reduce delays.
We aimed to conduct a systematic review and meta-analysis to assess time to second-line treatment among RR-TB patients and to assess delay in terms of DST methods, access to ambulatory treatment compared to hospital-based treatment, and the proportion of patients who start treatment.

METHODS

Search strategy

We followed the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. Using a sensitive search strategy comprised of a combination of MeSH terms and other key terms, we searched PubMed (including Medline) and Scopus for relevant articles published from 1 January 2000 to 15 July 2015, without language restrictions. We reviewed abstract books from the Union World Conference on Lung Health from 2010 to 2014 for studies that may have been completed but not yet published. Additional articles were identified from bibliographies of articles that underwent full-text review.

Study selection

We included studies reporting time to second-line treatment initiation in RR-TB patients, including MDR-TB and extensively drug-resistant TB (XDR-TB, defined as MDR-TB plus resistance to any fluoroquinolone and at least one of the three second-line anti-tuberculosis injectable drugs, capreomycin, kanamycin, or amikacin). Only studies reporting mean or median times to treatment and standard deviations (SDs) (or with available data allowing calculation of these figures) were eligible to be included in the meta-analysis. Case reports and studies with small sample size (<10 persons) were excluded. Our intention was not to perform a traditional quality assessment, but to set inclusion and exclusion criteria to identify as many comparable studies as possible while also avoiding low-quality studies. Two authors (RB, HC) independently reviewed titles and abstracts to identify potentially eligible articles, which then underwent full review to determine final eligibility status, with the same two authors dividing this effort with overlap. Any discrepancy or uncertainty was resolved by consensus. Abstracts and/or articles in languages other than English were translated. Additional articles published after the defined dates were included only if identified through abstracts published during the initial defined time period.

Data extraction

Two authors (RB, HC) extracted data for each cohort described in the included articles. The following information was sought: study year(s), country, sample size, study design, time to treatment definition, mean and median time to treatment, DST method, model of treatment provision and proportion of patients starting treatment. Attempts were made to contact authors of eligible or potentially eligible studies to provide missing data or clarifications. Study quality and potential bias were assessed by reviewing study design, primary outcomes and availability of adequate time to treatment data.

Definitions

Studies were grouped according to definition of time to treatment. The main categories were defined as either time from date of specimen collection or date of diagnosis. Date of diagnosis included a range of definitions given, including date of result available or received by clinician, or defined simply as date of diagnosis (unclear definition). Studies that used other definitions of time to treatment are listed in the Appendix Table 4–6,8,11,20–65†, but were not included in grouped analyses. Diagnostic methods were defined as phenotypic if DST methods included liquid or solid culture methods, and genotypic if based on any genotypic method, such as LPA or Xpert, even if conducted after a positive culture. The model of treatment provision was defined as hospital-based if patients were hospitalized or relocated close to a hospital to initiate treatment, and was defined as ambulatory if patients were able to receive treatment on an ambulatory basis during the full course of treatment.

Data analysis

The primary outcome was mean time to treatment. Where this was not reported, means and SDs were included based on methods described in Wan et al.† We performed both within-study comparative meta-analysis as well as analyses across studies to describe the impact of varying DST methods and models of treatment provision. For within-study analysis, any study was eligible to be included, irrespective of definition of time to treatment used, provided they included two cohorts comparing at least one variable of interest. Weighted mean differences (WMDs) and corresponding 95% confidence intervals (95%CIs) were calculated to standardize the results of the studies to a uniform scale and to indicate the size of the intervention effect in each study relative to the variability observed in that study. For the across-study analyses, pooled data were stratified by time from specimen collection or from diagnosis; weighted means and corresponding 95%CIs were calculated. Because statistical tests for heterogeneity are not

† The appendix is available in the online version of this article, at http://www.ingentaconnect.com/content/iuatld/ijtld/2017/00000021/00000011/arr00014
reliable for pooled proportions, heterogeneity was assessed by visual inspection of forest plots, and changes in mean time to treatment over time assessed through meta-regression. All analyses were conducted using STATA version 13.0 (StataCorp, College Station, TX, USA).

RESULTS
From a screen of 1768 articles and 2356 conference abstracts, a total of 48 published studies and 5 abstracts were included in the systematic review (Figure 1). Many studies included more than one patient cohort; these are reported separately. The Appendix Table describes study characteristics, time to treatment definitions, mean and median time to treatment and the proportion of diagnosed patients who initiated treatment was reported for 31 cohorts. Study design was prospective for 19 (23%) cohorts and retrospective for 64 (77%) cohorts. Time to treatment was a primary outcome for 26/53 (49%) studies, representing 47/83 (57%) cohorts.

Time to treatment
Mean time to treatment was reported for 30 cohorts and calculated for the remaining 53 cohorts. There were insufficient data available to calculate SDs for seven cohorts; these are listed in the Table but not included in the analyses. Time to treatment was most commonly reported as time from specimen collection (38 cohorts), followed by time from diagnosis (28 cohorts; Appendix Table).

Mean and median times to treatment from specimen collection ranged from respectively 9 days to 10 months and 8 days to 9 months. Among the 38 cohorts with time to treatment measured from specimen collection, the weighted mean time to treatment was 81 days (95%CI 70–91, range 9–301). Among the 24 cohorts with time to treatment measured from diagnosis, the weighted mean time to treatment was 59 days (95%CI 50–68, range 2–909).

Figure 1. Study selection process flowchart. RR = rifampicin-resistant; TTT = time to treatment.
Model of treatment provision

Five studies were included in the within-study comparison of ambulatory vs. hospital-based treatment provision (Figure 2). All five studies reported faster time to treatment for patients under ambulatory treatment compared to hospital-based treatment; the pooled difference across all studies was significantly in favor of ambulatory treatment (WMD 1.26, 95%CI 0.46–2.05).

There were seven (1763 patients) cohorts treated under ambulatory-based models of care and 29 (4250 patients) under hospital-based treatment with time to treatment from specimen collection. Mean time to treatment with ambulatory treatment was 57 days (95%CI 40–74, range 17–122) compared to 86 days (95%CI 71–102, range 9–301).

Drug susceptibility testing methods

Twelve studies were included in the within-study comparison of DST methods (Figure 3). All studies consistently reported a shorter time to treatment with genotypic vs. phenotypic DST; the pooled difference across all studies was significantly in favor of genotypic DST (WMD 1.17, 95%CI 0.83–1.51). There were 14 (3842 patients) cohorts using genotypic DST and 23 (2460 patients) cohorts with phenotypic DST reporting time to treatment from specimen collection. Mean time to treatment was significantly lower with genotypic DST: 38 days (95%CI 26–49, range 9–94) vs. 108 days (95%CI 98–117, range 52–301) for phenotypic DST.

Time to treatment by year of cohort

Among cohorts with time to treatment measured from specimen collection, the mean time to treatment decreased over time (β-coefficient −3.13, 95%CI −5.09 to −1.18, P = 0.002; Appendix Figure A.1). The weighted mean time to treatment from specimen collection before 2010 was 98 days (95%CI 85–111, range 9–301) compared to 39 days (95%CI 28–50, range 12–87) for 2010 or later.

Time to treatment by proportion initiating treatment

The mean percentage of diagnosed patients initiating treatment (reported for 31/83 cohorts) was 76% (95%CI 70–83, range 25–100; Appendix Table). Appendix Figure A.2 compares mean time to treatment to the proportion initiating treatment for the 19 cohorts reporting time to treatment from specimen collection. The upper-left shaded portion represents cohorts with a mean time to treatment of ≤30 days and at least 80% of diagnosed patients initiating treatment to represent best practice; only four cohorts,4,30,32,33 representing 458/3286 (14%) patients included in the analysis, fell into this category. All four cohorts used genotypic DST; model of treatment provision was ambulatory for two cohorts, hospital-based for one and not reported for one.

DISCUSSION

Delays in initiation of second-line treatment can negatively impact clinical and public health outcomes. Even reductions of several weeks or months...
are likely to significantly impact community transmission and are likely to improve patient outcomes. This systematic review and meta-analysis has shown that time to treatment is extremely variable and often lengthy. Overall, the average time to treatment from specimen collection was 2.5 months, with a trend towards reduction in delay in more recent years. This is consistent with advances in RR-TB diagnosis and treatment, and potentially reflects greater recognition of the need to initiate treatment sooner to improve patient outcomes and reduce ongoing risk of transmission. Genotypic DST methods and ambulatory-based models of care both contributed to shorter times to treatment.

Molecular testing methods result in more rapid laboratory turnaround times, and are therefore likely to reduce time to treatment. This was confirmed in our analysis, with genotypic testing resulting in significantly shorter time to treatment than phenotypic methods; our findings are consistent with the results of a randomized trial and a retrospective cohort study published after our search was concluded. Xpert is of particular interest due to the feasibility of testing in peripheral laboratories, potentially reducing reliance on transport and resulting in more rapid communication of results. Studies that have implemented faster molecular DST show lower mortality and loss to follow-up, and therefore a higher proportion of patients starting treatment. Rapid DST has also been shown to reduce treatment failure and result in higher treatment success. However, currently available genotypic methods are restricted by the number of drugs than can be tested, often resulting in continued reliance on phenotypic DST for second-line drugs.

Ambulatory second-line treatment can result in treatment outcomes similar to those of hospital-based treatment, and can lead to higher proportions of patients initiating treatment. Our review complements these positive findings, providing evidence that ambulatory treatment results in shorter time to treatment than hospital-based treatment. Patients receiving treatment in hospital-based settings may experience further delays due to the preparation needed to be admitted to the hospital; these may include referral processes, informing family and work, making arrangements for the care of children and other home responsibilities, and actually traveling to the hospital.

We identified a wide range in delay across studies, particularly among cohorts with hospital-based models of care as well as cohorts with phenotypic DST. The authors of the main studies with lengthy times to treatment refer to prolonged referral processes and the use of phenotypic DST methods. Although reduced delays are seen with both genotypic DST and ambulatory treatment provision, several more recent studies show times to treatment of 1.5 months. Studies report delays in reporting results to clinics and in contacting patients as potential contributing factors. Programmatic factors such as sample transport and results communication could be improved.

Time to initiation of second-line treatment needs to be considered in terms of the proportion of diagnosed...
patients who actually start treatment. Several studies reported relatively rapid times to treatment (<30 days), but with <70% of diagnosed patients starting on treatment.21,37,51 These studies highlight the need to assess areas of improvement along the entire diagnosis and treatment cascade for RR-TB, from diagnosis of TB, to identification of drug resistance, to treatment initiation and finally, to treatment success. Our systematic review has identified several limitations in the current evidence base. First, the definitions of time to treatment were not reported clearly or consistently across several studies, and were grouped into categories described in the Table for ease of analysis. Studies reporting time to treatment from specimen collection can provide a clearer picture of delays caused by various elements in health care systems, including specimen transport, diagnostic delays, reporting of results, patient notification and referral. However, several delays could have occurred before sending a specimen for DST, including patient-level delays in seeking treatment and restricted access to DST. Without universal access to DST, patients may be treated first for drug-susceptible TB and only be offered DST upon failure of treatment. Second, neither time to treatment nor the proportion of diagnosed patients initiating treatment were primary outcomes for many of the studies in this analysis. This contributes to unclear definitions and also uncertainty introduced through calculation of means and SDs. The inconsistency in reporting the proportion of patients initiating treatment (only reported for <40% of cohorts) may also skew the time to treatment data. Third, there may be other factors influencing time to treatment that were not reported by the studies and could not be assessed in our analyses, including decentralized laboratory services, availability and accessibility of treatment services, and inclusion of migratory populations. Fourth, due to lack of data, authors were not able to stratify analysis by Xpert and LPA. Another important limitation to the conduct of this review is the limited number of databases that were searched. One study in this analysis is a randomized control trial, and we acknowledge that this may introduce bias, as additional delays may be caused by the randomization process; it is important to note that this study is not included in the majority of analyses for this review, i.e., those that measure time to treatment from sputum collection, and it therefore has little impact on the primary findings. Furthermore, 77% of the cohorts in this review are from retrospective studies, and we acknowledge risk of bias with retrospective study design. Finally, as with any systematic review, there may be publication bias.

The proportion of diagnosed RR-TB patients who initiate treatment and the time to second-line treatment are important indicators of programmatic performance. While the proportion of the estimated global burden of RR-TB that receives treatment is gradually increasing, there is still much room for improvement.2 The WHO End TB Strategy calls for integrated patient-centered care and prevention, including universal DST and treatment of all people with RR-TB; bold policies and supportive systems, including political commitment and engagement of communities; and intensified research and innovation.77 Such interventions and commitment should contribute to reducing the diagnostic and treatment gaps, and treatment delays. Routine monitoring and reporting of the proportion of patients initiating treatment and time to treatment, ideally measured from specimen collection to highlight most delays, are needed to identify gaps and areas for intervention.

Acknowledgements

The authors thank colleagues at the Division of Tuberculosis Elimination, Centers of Disease Control and Prevention, Atlanta, GA, USA, for providing valuable input and editing, and I Payton for support in the literature search.

HC is supported by a Wellcome Trust Fellowship.

Conflicts of interest: none declared.

This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

References

1 World Health Organization. Anti-tuberculosis drug resistance in the world. Report No. 4. WHO/ IUATLD global project on anti-tuberculosis drug resistance surveillance. WHO/HTM/TB/ 2008.394. Geneva, Switzerland: WHO, 2008.

2 World Health Organization Global tuberculosis report, 2016. WHO/HTM/TB/2016.13. Geneva, Switzerland: WHO, 2016.

3 World Health Organization. Global tuberculosis report, 2015. WHO/HTM/TB/2015.22. Geneva, Switzerland: WHO, 2015.

4 Co H S, Daniels J F, Muller O, et al. Impact of decentralized care and the Xpert MTB/RIF Test on rifampicin-resistant tuberculosis treatment initiation in Khayelitsha, South Africa. Open Forum Infect Dis 2015; 2: ofv014.

5 Fairlie I, Belyis N C, Reubenson G, Moore D P, Madhi S A. High prevalence of childhood multi-drug resistant tuberculosis in Johannesburg, South Africa: a cross sectional study. BMC Infect Dis 2011; 11: 28.

6 Heller T, Lessells R J, Wallrauch C G, et al. Community-based treatment for multidrug-resistant tuberculosis in rural KwaZulu-Natal, South Africa. Int J Tuberc Lung Dis 2010; 14: 420–426.

7 Mpagama S G, Heysell S, K Nduwul, N D, et al. Diagnosis and interim treatment outcomes from the first cohort of multidrug-resistant tuberculosis patients in Tanzania. PLoS ONE 2013; 8: e62034.

8 Munsiff S S, Abuja S D, Li J, Driver C R. Public-private collaboration for multidrug-resistant tuberculosis control in New York City. Int J Tuberc Lung Dis 2006; 10: 639–648.

9 Rodriguez M, Monedero I, Caminero J A, et al. Successful management of multidrug-resistant tuberculosis under programme conditions in the Dominican Republic. Int J Tuberc Lung Dis 2013; 17: 520–525.

10 Quelapio M I. The Phillipine Case Study. Bull World Health Organ 2007; 85: 392–393.

11 Natt N K, Nagpal M, Chawla N, Singh T, Deepika, Singh H. Prevalence patterns characteristics and challenges in management of multi-drug resistant tuberculosis cases under DOTS-PLUS. Indian J Tuberc 2014; 61: 207–212.
12 Nair D, Navneethapandian P D, Tripathy J P, et al. Impact of rapid molecular diagnostic tests on time to treatment initiation and outcomes in patients with multidrug-resistant tuberculosis Tamil Nadu India. Trans R Soc Trop Med Hyg 2016; 110: 534–541.

13 Davies G R, Pillay M, Sturm A W, Wilkinson D. Emergence of multidrug-resistant tuberculosis in a community-based directly observed treatment programme in rural South Africa. Int J Tuberc Lung Dis 1999; 3: 799–804.

14 Laserson K F, Osorio L, Sheppard J D, et al. Clinical and programmatic mismanagement rather than community outreach as the cause of chronic drug-resistant tuberculosis in Buenaventura Colombia 1998. Int J Tuberc Lung Dis 2000; 4: 673–683.

15 Rizdon R, Kent J H, Walway S, et al. Outbreak of drug-resistant tuberculosis with second-generation transmission in a high school in California. J Pediatr 1997; 131: 863–868.

16 Kendall F A, Fofana M O, Dowdy D W. Burden of transmitted multidrug resistance in epidemiics of tuberculosis: a transmission modelling analysis. Lancet Respir Med 2015; 3: 963–972.

17 van Catsen G, Isaakidis P, Farley J, Nardell E, Volchenkov G, Cox H. Infection control for drug-resistant tuberculosis: early diagnosis and treatment is the key. Clin Infect Dis 2016; 62 (Suppl 3): S328–S343.

18 World Health Organization. WHO guidelines for the programmatic management of drug-resistant tuberculosis: 2011 update. WHO/HTM/TB/2011.6. Geneva, Switzerland: WHO, 2011.

19 Moher D, Liberati A, Tetzlaff J, Altman D G, PRISMA Group. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS Med 2009; 6: e1000097.

20 Brust J G, Lyzimos M, Chaiyachati K, et al. Culture conversion among HIV co-infected multidrug-resistant tuberculosis patients in Tugela Ferry South Africa. PLoS ONE 2011; 6: e15841.

21 Dlamini-Mvelase N R, Werner L, Phili R, Cele L P, Mislana K P. Effects of introducing Xpert MTB/RIF test on multi-drug resistant tuberculosis diagnosis in KwaZulu-Natal South Africa. BMC Infect Dis 2014; 14: 442.

22 Dramowski A, Morshemer M M, Jordaan A M, Victor T C, Donal P R, Schaff H S. Rifampicin-nonresistant Mycobacterium tuberculosis disease among children in Cape Town South Africa. Int J Tuberc Lung Dis 2012; 16: 76–81.

23 Francis J R, Blyth C C, Colby S, Fagan J M, Waring J. Multidrug-resistant tuberculosis in Western Australia 1998–2012. Med J Aust 2014; 200: 328–332.

24 Gandhi N R, Shah N S, Andrews J R, et al. HIV coinfection with drug-resistant tuberculosis in South Africa: an observational cohort study. PLoS ONE 2013; 8: e59: 1559–1566.

25 Hanrahan C F, Dormain S E, Erasmus L, Koornhof H, Coetzee G, Gohul J E. The impact of expanded testing for multidrug resistant tuberculosis using genotype [correction of genotype] MTBDRplus in South Africa: an observational cohort study. PLoS ONE 2012; 7: e49898.

26 Jacobson K R, Theron D, Kendall E A, et al. Implementation of genotype MTBDRplus reduces time to multidrug-resistant tuberculosis therapy initiation in South Africa. Clin Infect Dis 2013; 56: 503–508.

27 Kipiani M, Mirtschkulava V, Tukvdze N, Magee M, Blumberg H M, Kempter R R. Significant clinical impact of a rapid molecular diagnostic test (Genotype MTBDRplus assay) to detect multidrug-resistant tuberculosis. Clin Infect Dis 2014; 59: 1599–1566.

28 Li R, Ruan Y, Sun Q, et al. Effect of a comprehensive programme to provide universal access to care for spum smear-positive multidrug-resistant tuberculosis in China: a before-and-after study. Lancet Glob Health 2015; 3: e217–228.

29 Loveday M, Wallengren K, Brust J, et al. Community-based care vs centralised hospitalisation for MDR-TB patients KwaZulu-Natal South Africa. Int J Tuberc Lung Dis 2015; 19: 163–171.

30 Naidoo P, du Toit E, Dunbar R, et al. A comparison of multidrug-resistant tuberculosis treatment commencement times in MDRTRPlus line-probe assay and Xpert® MTB/RIF-based algorithms in a routine operational setting in Cape Town. PLoS ONE 2014; 9: e103328.

31 Narasingamooloo R, Ross A. Delay in commencing treatment for MDR TB at a specialised TB treatment centre in KwaZulu-Natal. S Afr Med J 2012; 102: 360–362.

32 O’Riordan P, Schwab U, Logan S, et al. Rapid molecular detection of rifampicin resistance facilitates early diagnosis and treatment of multi-drug resistant tuberculosis: case control study. PLoS ONE 2008; 3: e3173.

33 Page A L, Ardizzoni E, Lassovsky M, et al. Routine use of Xpert® MTB/RIF in areas with different prevalences of HIV and drug-resistant tuberculosis. Int J Tuberc Lung Dis 2015; 19: 1078–1083, i–iii.

34 Shean K, Upadhya D, Swendu S, et al. Treatment outcomes in community versus inpatient initiation of multidrug-resistant tuberculosis treatment in a rural area of South Africa. 43rd World Conference on Lung Health of the International Union Against Tuberculosis and Lung Disease, Kuala Lumpur, Malaysia, 13–17 November 2012. Int J Tuberc Lung Dis 2012; 16 (Suppl 1): S183. [Abstract no PC-793-15]

35 Sheni S V, Brooks R P, Barboue R, et al. Survival from XDR-TB is associated with modifiable clinical characteristics in rural South Africa. PLoS ONE 2012; 7: e31786.

36 Smith J, Seethal S, Reddy T, et al. Is there an association between delayed MDR-TB initiation and distance to treatment initiation sites in KwaZulu-Natal South Africa? 44th World Conference on Lung Health of the International Union Against Tuberculosis and Lung Disease, Paris, France, 30 October–3 November 2013. Int J Tuberc Lung Dis 2013; 17 (Suppl 2): 5489. [Abstract no PC-909-03]

37 van Kampen S C, Susanto N H, Simon S, et al. Effects of introducing Xpert MTB/RIF on diagnosis and treatment of drug-resistant tuberculosis patients in Indonesia: a pre-post intervention study. PLoS ONE 2015; 10: e0123536.

38 Charles M, Vilbrun S C, Koenig S P, et al. Treatment outcomes for patients with multidrug-resistant tuberculosis in post-earthquake Port-au-Prince Haiti. Am J Trop Med Hyg 2014; 91: 715–721.

39 Elseve P, Balantcev G, Nikishova E, et al. The impact of a line probe assay based diagnostic algorithm on time to treatment initiation and treatment outcomes for multidrug resistant TB patients in Arkhangels Region Russia. PLoS ONE 2016; 11: e0152761.

40 Farley J E, Ram M, Pan W, et al. Outcomes of multi-drug resistant tuberculosis (MDR-TB) among a cohort of South African patients with high HIV prevalence. PLoS ONE 2011; 6: e20436.

41 Gegia M, Jenkins H E, Kalandadze I, Furin J. Outcomes of children treated for tuberculosis with second-line medications in Georgia 2009–2011. Int J Tuberc Lung Dis 2013; 17: 624–629.

42 Hoa N B, Khanh P H, Chinh N V, Hennig C M. Prescription patterns and treatment outcomes of MDR-TB patients treated within and outside the National Tuberculosis Programme in Pham Ngoc Thach hospital Viet Nam. Trop Med Int Health 2014; 19: 1076–1081.

43 Isaakidis P, Payami R, Khan S, et al. Poor outcomes in a cohort of HIV-infected adolescents undergoing treatment for multidrug-resistant tuberculosis in Mumbai India. PLoS ONE 2013; 8: e68869.
44 Mitnick C, Bayona J, Palacios E, et al. Community-based therapy for multidrug-resistant tuberculosis in Lima Peru. N Engl J Med 2003; 348: 119–128.
45 Olendral A, Lancaster J, Brand J, Van Der Walt M. Obstacles hindering successful treatment of multidrug-resistant tuberculosis in rural high HIV-prevalent settings in South Africa. 43rd World Conference on Lung Health of the International Union Against Tuberculosis and Lung Disease, Kuala Lumpur, Malaysia, 13–17 November 2012. Int J Tuberc Lung Dis 2012; 16 (Suppl 1): S324. [Abstract no PC-817-16]
46 Shao E, Mollel E, Mpagama S. Impact of molecular diagnostic tests in the referral of MDR-TB patients with HIV at Kibong’oto Infectious Disease Hospital Tanzania. 44th World Conference on Lung Health of the International Union Against Tuberculosis and Lung Disease, Paris, France, 30 October–3 November 2013. Int J Tuberc Lung Dis 2013; 17 (Suppl 2): S70. [Abstract no OP-105-01]
47 Singla R, Sarin R, Khalid U K, et al. Seven-year DOTS-Plus pilot experience in India: results constraints and issues. Int J Tuberc Lung Dis 2009; 13: 976–981.
48 Toshniwal M, Toshniwal J, Deshmukh D, et al. Does diagnostic technology and travel distance reduces delays in treatment initiation of MDR-TB patients in India? 45th World Conference on Lung Health of the International Union Against Tuberculosis and Lung Disease, Barcelona, Spain, 28 October–1 November 2014. Int J Tuberc Lung Dis 2014; 18 (Suppl 1): S493. [Abstract no PD-1161-01]
49 Blaya J A, Shin S S, Yagui M, et al. Reducing communication delays and improving quality of care with a tuberculosis laboratory information system in resource poor environments: a cluster randomized controlled trial. PLoS ONE 2014; 9: e90110.
50 Cavanaugh J S, Kazenny B Y, Nguyen M L, et al. Outcomes and follow-up of patients treated for multidrug-resistant tuberculosis in Orel Russia 2002–2005. Int J Tuberc Lung Dis 2012; 16: 1069–1074.
51 Ebonwu J I, Tint K S, Ihekweazu C. Low treatment initiation rates among multidrug-resistant tuberculosis patients in Gauteng South Africa 2011. Int J Tuberc Lung Dis 2013; 17: 1043–1048.
52 Gler M T, Guilatco R S, Guray C V, Tupasi T E. Screening outcomes from patients with suspected multidrug-resistant tuberculosis: lessons learned in the Philippines. Int J Tuberc Lung Dis 2012; 16: 1326–1330.
53 Hossain S T, Isaakidis P, Sagili K D et al. The multi-drug resistant tuberculosis diagnosis and treatment cascade in Bangladesh. PLoS ONE 2015; 10: e0129155.
54 Narita M, Alonso P, Lauzardo M, Hollender E S, Pitchenik A E, Ashkin D. Treatment experience of multidrug-resistant tuberculosis in Florida 1994–1997. Chest 2001; 120: 343–348.
55 van Kampen S C, Tursynbayeva A, Koptleuova A, et al. Implementation of the INNO-LiPA Rif TB line probe assay shortens time to diagnosis of multidrug-resistant tuberculosis in Latvia. Implementation of the INNO-LiPA Rif TB line-probe assay in rapid detection of multidrug-resistant tuberculosis in Latvia. Int J Tuberc Lung Dis 2011; 15: 1546–1552, i.
56 Ashkin D. Treatment experience of multidrug-resistant tuberculosis in Florida 1994–1997. Chest 2001; 120: 343–348.
57 Bassili A, Fitzpatrick C, Qadeer E, Fatima R, Floyd K, Jaramillo E. A systematic review of the effectiveness of hospital- and ambulatory-based management of multidrug-resistant tuberculosis. Am J Trop Med Hyg 2013; 89: 271–280.
58 Yagui M, Perales M T, Asencios L, et al. Timely diagnosis of MDR-TB under program conditions: is rapid drug susceptibility testing sufficient? Int J Tuberc Lung Dis 2006; 10: 838–843.
59 World Health Organization. End TB Strategy. Geneva, Switzerland: WHO, 2014.
APPENDIX

Figure A.1 Trends in mean time to treatment initiation over time.

Figure A.2 Time to treatment initiation by proportion initiating treatment. Dotted lines at 80% and 30 days highlight four cohorts with both high proportion initiating treatment and short time to treatment, to represent best practice.4,31–33
Author, year, reference	Year of cohort	Location	Laboratory method	Model of care	Sample size	Median TTT	Mean ± SD*	Percent treated (of diagnosed) %
From date of specimen collection								
Brust, 2011	2008	South Africa	Phenotypic	Hospital	45	74	75 ± 47	NR
Cox, 2015	2012	South Africa	Genotypic	Ambulatory	280	12	27 ± 47	90
Cox, 2015	2007	South Africa	Phenotypic	Ambulatory	95	76	122 ± 196	NR
Cox, 2015	2003	South Africa	Phenotypic	Hospital	158	71	147 ± 208	NR
Dlamini-Mvelase, 2014	2011	South Africa	Genotypic	Hospital	170	20	26 ± 16	64
Dramowski, 2012	2003	South Africa	Phenotypic	Hospital	18	70	94 ± 133	NR
Fairlie, 2011	2008	South Africa	Phenotypic	Hospital	10	76	154 ± 134	77
Francis, 2014	1998	Australia	Phenotypic	Hospital	13	45	52 ± 42	81
Gandhi, 2010	2005	South Africa	Phenotypic	Hospital	46	69	72 ± 31	37
Ganemhi, 2012	2007	South Africa	Phenotypic	Hospital	26	78	74 ± 32	NR
Narita, 2001	2005	USA	Phenotypic	Hospital	39	157	50	156
Charles, 2014	2013	Haiti	Genotypic	Hospital	110	46	76 ± 42	NR
Eliseev, 2016	2009	Russia	Phenotypic	Hospital	132	51	53 ± 45	NR
Farley, 2011	2000	South Africa	Phenotypic	Hospital	287	50	64 ± 34	NR
Farley, 2011	2010	South Africa	Phenotypic	Hospital	470	54	70 ± 36	NR
Gegia, 2013	2009	Georgia	Phenotypic	Hospital	45	16	86 ± 71	NR
Hoa, 2014	2010	Vietnam	Genotypic	Ambulatory	203	NR	2 ± 12	NR
Hoa, 2014	2010	Vietnam	Genotypic	Hospital	79	NR	13 ± 47	NR
Isakidis, 2013	2007	India	Genotypic	Ambulatory	16	7	8 ± 3	100
Isakidis, 2013	2007	India	Phenotypic	Ambulatory	21	8	15 ± 38	88
Mitnick, 2009	2006	Peru	Genotypic	Hospital	75	246	909 ± 654	NR
Odendaal, 2012	2005	South Africa	Phenotypic	Hospital	224	10	13 ± 10	NR
Odendaal, 2012	2005	South Africa	Phenotypic	Hospital	197	37	42 ± 34	NR
Shao, 2013	2011	Tanzania	Genotypic	Hospital	44	NR	59 ± 97	NR
Shao, 2013	2011	Tanzania	Phenotypic	Hospital	19	NR	230 ± 186	NR
Sinha, 2009	2002	India	Phenotypic	Hospital	126	NR	18 ± 80	NR
Toshniwal, 2014	2009	India	Genotypic	Hospital	71	NR	17 ± NR	NR
Toshniwal, 2014	2009	India	Phenotypic	Ambulatory	157	NR	44 ± NR	NR
Toshniwal, 2014	2009	India	Phenotypic	Ambulatory	134	88	88 ± 73	NR
Blaya, 2014	2006	Peru	Phenotypic	Hospital	198	NR	466 ± NR	NR
Blaya, 2014	2005	Peru	Genotypic	Ambulatory	31	15	50 ± 93	100
Ebonwu, 2013	2011	South Africa	Genotypic	Hospital	593	10	12 ± 10	63
Gler, 2012	2003	Philippines	Genotypic	Hospital	1063	76	150 ± 216	57
Hossain, 2012	2012	Bangladesh	Genotypic	Hospital	145	5	7 ± 10	90
Narita, 2001	1994	USA	Phenotypic	Ambulatory	39	177	696 ± 568	100
Narita, 2001	1994	USA	Genotypic	Hospital	471	7	9 ± 9	84
van Kampen, 2015	2012	Kazakhstan	Genotypic	Hospital	548	10	12 ± 10	63
Table (continued)

Author, year, reference	Year of cohort	Location	Laboratory method	Model of care	Sample size	Median TTT	TTT Mean ± SD*	Percent treated (of diagnosed) %
Drobac, 200656	1999	Peru	Phenotypic	Ambulatory	38	198	448 ± 327	NR
Mendoza-Ticona, 201257	2007	Peru	Phenotypic	Ambulatory	11	173	181 ± 92	NR
Mendoza-Ticona, 201257	2009	Peru	Phenotypic	Ambulatory	13	76	69 ± 42	NR
Otero, 201458	2008	Peru	Phenotypic	Ambulatory	37	25	31 ± 19	NR
Belkina, 201459	2013	Uzbekistan	Genotypic†	Hospital	243	8	30 ± 37	NR
Banerjee, 201060	2004	USA	Phenotypic	Ambulatory	100	79	84 ± 50	NR
Banerjee, 201060	2004	USA	Phenotypic	Ambulatory	27	38	42 ± 32	NR
Mirasaeidi, 200561	2000	Iran	Phenotypic	Hospital	17	NR	848 ± 638	NR
Natt, 201111	2011	India	Phenotypic	Hospital	67	NR	67 ± NR‡	82
Seddon, 201362	2003	South Africa	Phenotypic	Hospital	105	91	103 ± 86	95
Singla, 201463	2009	India	Phenotypic	Hospital	51	157	161 ± 56‡	61
Singla, 201463	2009	India	Genotypic	Hospital	83	38	49 ± 37‡	88
Skenders, 201164	2003	Latvia	Phenotypic	Hospital	48	40	43 ± 34	NR
Skenders, 201164	2003	Latvia	Genotypic	Hospital	23	14	14 ± 12	NR
Otero, 201458	2008	Peru	Phenotypic	Ambulatory	90	25	28 ± 25	NR
Saravia, 200565	1997	Peru	Phenotypic	Ambulatory	73	268	404 ± 199	NR
Saravia, 200565	1997	Peru	Phenotypic	Ambulatory	52	55	109 ± 72	NR

* Figures calculated based on formulas provided in Wan et al.66
† Includes Xpert MTB/RIF
‡ Figures not calculated on the basis of formulas provided in Wan et al.66
§ Union World Conference Abstract.

TTT = time to treatment; SD = standard deviation; NR = not reported.
CONTEXTE : Pour réduire la transmission et améliorer le devenir des patients, un diagnostic et un traitement rapides de la tuberculose résistante à la rifampicine (TB-RR) sont requis.

OBJECTIF : Réaliser une revue systématique et une méta-analyse évaluant le délai de traitement de la TB-RR et la variabilité en fonction de la méthode de test de diagnostic et du mode de prestation du traitement.

SCHEMA : Les études (2000–2015) rapportant des délais de mise en route du traitement de deuxième ligne ont été sélectionnées sur PubMed et dans des résumés de conférences publiés.

RESULTATS : A partir de 53 études, 83 cohortes (13 034 patients) ont été incluses. Dans l'ensemble, le délai moyen pondéré du traitement depuis le recueil d'échantillons a été de 81 jours (IC95% 70–91), plus court en traitement ambulatoire (57 jours, IC95% 40–74) qu'hospitalier (86 jours, IC95% 71–102). Le délai de traitement a été plus court avec le test de sensibilité génotypique (38 jours, IC95% 27–49) plutôt que phénotypique (108 jours, IC95% 98–117). Le pourcentage moyen de patients diagnostiqués mis sous traitement a été de 76% (IC95% 70–83%, fourchette 25–100%).

CONCLUSION : Le délai de mise en route du traitement de deuxième ligne de TB est extrêmement variable selon les études, et souvent inutilement long. Une réduction des délais est associée à l'utilisation d'un test génotypique et à un traitement ambulatoire. Le suivi de routine de la proportion de patients diagnostiqués mis sous traitement et du délai de traitement est nécessaire pour identifier des domaines d'intervention.

RESUMEN

MARCO DE REFERENCIA: Con el propósito de disminuir la transmisión de la tuberculosis resistente a rifampicina (TB-RR) y mejorar los desenlaces de los pacientes que la padecen, es preciso procurar un diagnóstico temprano y el comienzo rápido del tratamiento.

OBJETIVO: Se llevó a cabo una revisión sistemática con metanalísis de las publicaciones científicas que evaluaban el lapso hasta iniciar el tratamiento de la TB-RR y su variabilidad en función de los métodos diagnósticos y la estrategia de suministro del tratamiento.

MÉTODO: De la base de datos PubMed y los resúmenes de conferencias se escogieron los estudios (publicados del 2000 al 2015) que notificaban el lapso hasta el comienzo del tratamiento antituberculoso de segunda línea.

RESULTADOS: De los 53 estudios examinados, se incluyeron 83 cohortes (13 034 pacientes). La media ponderada global del lapso entre la recogida de la muestra y el comienzo del tratamiento fue 81 días (IC95% de 70 a 91) y el intervalo fue más corto con el tratamiento ambulatorio (57 días; IC95% de 40 a 74) que con el tratamiento hospitalario (86 días; IC95% de 71 a 102). El lapso hasta el comienzo del tratamiento fue menor cuando se practicaron pruebas genotípicas de sensibilidad a los medicamentos (38 días; IC95% de 27 a 49) que con las pruebas fenotípicas (108 días; IC95% de 98 a 117). El promedio de los pacientes diagnosticados que iniciaron tratamiento fue 76% (IC95% de 70 a 83; amplitud de 25% a 100%).

CONCLUSIÓN: El lapso hasta el comienzo del tratamiento antituberculoso de segunda línea es extremadamente variable en los diferentes estudios y con frecuencia se prolonga sin necesidad. La disminución del retraso se asoció con los entornos donde se practican las pruebas genotípicas de sensibilidad y el tratamiento ambulatorio. La supervisión sistemática de la proporción de pacientes diagnosticados que comienzan el tratamiento y del lapso hasta su iniciación es primordial con miras a reconocer las actividades que precisan intervención.