Interference effect between ϕ and $\Lambda(1520)$ production channels in the $\gamma p \to K^+K^-p$ reaction near threshold

S. Y. Ryu,1 J. K. Ahn,2 T. Nakano,1 D. S. Ahn,3 S. Ajimura,1 H. Akimune,4 Y. Asano,5 W. C. Chang,6 J. Y. Chen,7 S. Daté,8 H. Ejiri,1 H. Fujimura,9 M. Fujiwara,1 S. Fukui,1 S. Hasegawa,1 K. Hicks,10 K. Horie,11 T. Hotta,1 S. H. Hwang,12 K. Imai,13 T. Ishikawa,14 T. Iwata,15 Y. Kato,16 H. Kawai,17 K. Kino,1 H. Kohri,1 Y. Kon,1 N. Kumagai,8 P. J. Lin,6 Y. Maeda,18 S. Makino,9 T. Matsuda,19 N. Matsukawa,1 T. Mibe,20 M. Miyabe,14 M. Miyachi,21 Y. Morino,20 N. Muramatsu,14 R. Murayama,11 Y. Nakatsugawa,20 S. i. Nam,22 M. Niiyama,23 M. Nomachi,1 Y. Ohashi,8 H. Okhuma,8 T. Ohta,1 T. Ooba,17 D. S. Oshiev,6 J. D. Parker,23 C. Rangacharyulu,24 A. Sakaguchi,11 T. Sawada,6 P. M. Shagin,25 Y. Shino,17 H. Shimizu,14 E. A. Stromkovsky,26 Y. Sugaya,1 M. Sumihama,27 A. O. Tokiyasu,14 Y. Toi,19 H. Toyokawa,8 T. Tsumeni,8 M. Uchida,23 M. Ungaro,29 A. Wakai,29 C. W. Wang,6 S. C. Wang,6 K. Yonehara,4 T. Yorita,1 M. Yoshimura,30 M. Yosoi,1 and R. G. T. Zegers31
(The LEPS Collaboration)

1Research Center for Nuclear Physics, Osaka University, Ibaraki, Osaka 567-0047, Japan
2Department of Physics, Korea University, Seoul 02841, Republic of Korea
3RIKEN, The Institute of Physical and Chemical Research, Wako, Saitama 351-0198, Japan
4Department of Physics, Konan University, Kobe, Hyogo 658-8501, Japan
5XFEL Project Head Office, RIKEN, Saito, Hyogo 679-5143, Japan
6Institute of Physics, Academia Sinica, Taipei 11529, Taiwan
7Light Source Division, National Synchrotron Radiation Research Center, Hsinchu, 30076, Taiwan
8Japan Synchrotron Radiation Research Institute, Saito, Hyogo 679-5143, Japan
9Wakayama Medical College, Wakayama, 641-8509, Japan
10Department of Physics and Astronomy, Ohio University, Athens, Ohio 45701, USA
11Department of Physics, Osaka University, Toyonaka, Osaka 560-0043, Japan
12Korea Research Institute of Standards and Science (KRISS), Daejeon 34113, Republic of Korea
13Advanced Science Research Center, Japan Atomic Energy Agency, Tokai, Ibaraki 319-1195, Japan
14Research Center for Electron Photon Science, Tohoku University, Sendai, Miyagi 982-0826, Japan
15Department of Physics, Yamagata University, Yamagata 990-8560, Japan
16Kobayashi-Maskawa Institute, Nagoya University, Nagoya, Aichi 464-8602, Japan
17Department of Physics, Chiba University, Chiba 263-8522, Japan
18Proton Therapy Center, Fukui Prefectural Hospital, Fukui 910-8526, Japan
19Department of Applied Physics, Miyazaki University, Miyazaki 889-2192, Japan
20High Energy Accelerator Organization (KEK), Tsukuba, Ibaraki 305-0801, Japan
21Department of Physics, Tokyo Institute of Technology, Tokyo 152-8551, Japan
22Department of Physics, Pukyong National University, Busan 48513, Republic of Korea
23Department of Physics, Kyushu University, Fukuoka 812-8581, Japan
24Department of Physics and Engineering Physics, University of Saskatchewan, Saskatoon, SK S7N 5E2, Canada
25School of Physics and Astronomy, University of Minnesota, Minneapolis, MN 55455, USA
26Joint Institute for Nuclear Research, Dubna, Moscow Region, 141980, Russia
27Department of Education, Gifu University, Gifu 501-1193, Japan
28Department of Physics, University of Connecticut, Storrs, CT 06269-3046, USA
29Akita Research Institute of Brain and Blood Vessels, Akita 010-0871, Japan
30Institute for Protein Research, Osaka University, Suita, Osaka 565-0871, Japan
31National Superconducting Cyclotron Laboratory, Michigan State University, East Lansing, MI 48824, USA

(Dated: February 23, 2018)

The ϕ-$\Lambda(1520)$ interference effect in the $\gamma p \to K^+K^-p$ reaction has been measured for the first time in the energy range from 1.673 to 2.173 GeV. The relative phases between ϕ and $\Lambda(1520)$ production amplitudes were obtained in the kinematic region where the two resonances overlap. The measurement results support strong constructive interference when K^+K^- pairs are observed at forward angles, but destructive interference for proton emission at forward angles. Furthermore, the observed interference effect does not account for the $\sqrt{s} = 2.1$ GeV bump structure in forward differential cross sections for ϕ photoproduction. This fact suggests possible exotic structures such as a hidden-strangeness pentaquark state, a new Pomeron exchange and rescattering processes via other hyperon states.

PACS numbers: 13.60.Rj, 13.88.+e, 24.70.+s, 25.20.Lj

The ϕ-meson production has the unique feature of gluon dynamics as a result of OZI suppression due to the dominant $s\bar{s}$ structure of the ϕ meson, which is predicted to proceed via the Pomeron trajectory with $J^{PC} = 0^{++}$
Cross sections for diffractive ϕ photoproduction are then predicted to increase smoothly with photon energy. However, a bump structure at $\sqrt{s} = 2.1$ GeV in forward differential cross sections was first reported by the LEPS collaboration.\cite{Kiswandhi:2008ki}. Despite extensive experimental efforts devoted for the photoproduction of ϕ mesons near the threshold, the nature of the bump structure has not yet been explained in detail.\cite{Kiswandhi:2008ku, Kawanami:2011zz}. Kiswandhi et al.\cite{Kiswandhi:2008ku} suggested that the bump structure is the result of an excitation of missing nucleon resonances. However, the bump structure observed from CLAS appears only at forward angles; thus, a conventional resonance interpretation seems less likely.\cite{Kawanami:2011zz}. Very recently, the LHCb collaboration\cite{Aaij:2020jir} claimed to have observed two $J/\psi p$ resonances referred to as hidden-charm pentaquark states ($c\bar{u}ud$) from Λ_0^p decays. In ϕ photoproduction, a hidden-strangeness pentaquark state could also be searched for as a candidate for the forward bump structure. Recent theoretical studies further relate this to a coupling between the ϕp and $K^+\Lambda(1520)$ channels, because the bump structure occurs very close to the threshold of $\Lambda(1520)$ production.\cite{Kiswandhi:2008ku, Fuchs:2011zz}. The $\phi\Lambda(1520)$ interference could also account for the bump structure, but it has not yet been measured in K^+K^-p photoproduction. The interference may be either positive (constructive) or negative (destructive), depending on the relative phase between the production amplitudes of ϕ and $\Lambda(1520)$.

Here, we report the measurement of the forward differential cross sections for ϕ and $\Lambda(1520)$ photoproduction and the relative phase angles between their photoproduction amplitudes. The importance of this analysis includes the event selection for $\gamma p \rightarrow K^+K^-p$, which was based on a kinematic fit. Furthermore, the yields of ϕ and $\Lambda(1520)$ were obtained from a simultaneous fit of the $m_{K^+K^-}$- and m_{K^-p}-invariant masses with lineshapes from a Monte-Carlo simulation. This self-consistent analysis enables the investigation of a potential interference effect between ϕ and $\Lambda(1520)$. To our knowledge, no interference measurement for this reaction has previously been reported in the literature.

The experiment was carried out using the LEPS detector at the SPring-8 facility in Japan. Linearly polarized photons with the energy from 1.5 to 2.4 GeV was produced using a laser backscattering technique with UV lasers. The photon beam was incident on a 15-cm liquid-hydrogen target, in which K^+, K^-, and p particles were produced and then passed through the LEPS spectrometer with the standard configuration.

With a full data set of LH$_2$ runs, a new analysis on ϕ-$\Lambda(1520)$ photoproduction was performed using kinematic fits and simultaneous fits on the K^+K^- and K^-p mass spectra with Monte-Carlo lineshapes. To identify candidate events, at least two of the K^+, K^-, and p tracks were required to be reconstructed using standard particle identification methods.

Mass spectra, calculated from the measured four-vectors of the detected K^-, K^+, and p, are shown in Fig. 1. The solid lines represent the ϕ and $\Lambda(1520)$ mass bands, each corresponding to a 4 Γ_{ϕ} window for ϕ production and a 2 Γ_{Λ^0} window for $\Lambda(1520)$ production, respectively, where $\Gamma_{\phi} = 4.266$ MeV and $\Gamma_{\Lambda^0} = 15.6$ MeV. Forward particle pairs correspond to the pairs mostly in the range of $\cos \theta^* > 0.5$ in the production c.m. system.

The kinematic fit reconstructs three unmeasured parameters for a missing particle in the K^-K^+p final state. The energy and momentum conservation laws provide four constraints. Consequently, we have an overdetermined system with four constraints and three unknowns. When the χ^2-probability of the kinematic fit is required to be greater than 2%, clear ϕ and $\Lambda(1520)$ bands are seen in the $M(K^+K^-)$ versus the $M(K^-p)$ (see Fig. 1(b), 1(d) and 1(f)). For forward K^+p events (Fig. 1(e)),

![FIG. 1: Two-dimensional plot of the invariant mass of the K^+K^- system versus that of the K^-p system for forward K^-K^+ events (a) before and (b) after a kinematic fit; (c), (d) and (e), (f) are same as (a), (b) but with forward K^-p events and K^+p events, respectively. Projections onto each mass axis are displayed at the upper and right sides.](image-url)
the background primarily represents a $K^*\Sigma^+$ production channel with a small amount of $K^+\Lambda(1520)$ channel, followed by the $\Lambda(1520) \rightarrow \Sigma^+\pi^-$ decay. However, very little K^* background remains after a kinematic fit is applied (as shown by the histogram in Fig. 1(f)).

The measured K^+K^- and K^-p mass spectra for the selected K^+K^-p events were fitted with the lineshapes of the simulated processes, ϕ [13], $\Lambda(1520)K^+$ [19], and non-resonant K^+K^-p. For events in which K^+p is detected, these mass spectra are fitted with the three processes as well as $K^*\Sigma^+$ [20] and $K^+(\Lambda(1520) \rightarrow \Sigma^+\pi^-)$. The best-fit lineshapes for ϕ, $\Lambda(1520)$ and non-resonant K^+K^-p reproduce well both the K^+K^- and the K^-p mass spectra, as shown in Fig. 2. The χ^2 probability $P(\chi^2; ndf)$ is quoted in each of the fitted K^+K^- and K^-p mass spectra, where ndf represents the number of degrees of freedom. The fits with Monte-Carlo lineshapes were based on the events beyond the $\phi(\Lambda(1520)$ interference region in which the two resonances appear. The fit results were then interpolated into the interference region, keeping the strengths of the Monte-Carlo lineshapes determined from the fit [21]. This simultaneous fit with Monte-Carlo lineshapes is a self-consistent method to reproduce the measured K^+K^- and K^-p mass spectra, which pertains to the further study of interference effects.

Forward differential cross sections for ϕ and $\Lambda(1520)$ production channels were measured using the best-fit results with Monte-Carlo lineshapes in the ϕ and $\Lambda(1520)$ mass bands except for the interference region. The forward differential cross sections $(d\sigma/dt$ at $t = t_{\text{min}}$ for ϕ photoproduction are compared with previous results from LEPS [8] near the threshold, as shown in Figure 3(left). Thus, we confirmed the existence of the bump structure around $E_\gamma = 2.0$ GeV. The structure appears consistently even with different ϕ-mass bands, different slope parameters, and the exclusion of the interference region in which ϕ and $\Lambda(1520)$ mass bands overlap. The slope parameters of the $|t - t_{\text{min}}|$ distributions decreased as the photon energy increased. The forward cross sections were obtained from the fit with linearly energy-dependent slope parameters $(d\sigma/dt = d\sigma/dt|_{t = t_{\text{min}}}(e^{-b|t - t_{\text{min}}|}))$, where $b = -11.47 - 3.47 E$ GeV$^{-2}$) and E is a dimensionless quantity taken from the value of the photon energy in GeV.

Figure 3(right) shows differential cross sections for $\Lambda(1520)$ photoproduction in the angular regions of $0 < \cos\theta^*_K < 1.0$, which are compared with the previous LEPS results by Kohri et al. [22]. While the previous analysis was based on events with a single K^+ track, this measurement required at least two tracks among K^-, K^+, and p. As a result, event statistics in this measurement at forward K^+ angles is smaller than that from previous measurements. Though the statistics was low, both results are in good agreement with each other, indicating the bump structure near $E_\gamma = 2$ GeV. Interestingly, the two cross-section results show the bump structure at the same E_γ, which could indicate a strong correlation between ϕ and $\Lambda(1520)$. However, the difference between the cross sections obtained with and without the interference region is not large enough to account for the bump structure.

The differential cross sections for the $\gamma p \rightarrow K^+K^-p$ process.
reaction can be decomposed into

$$
\frac{d^2\sigma}{dm_{K^+K^-} dm_{K^-p}} \propto |M_\phi + M_{\Lambda(1520)} + M_{nr}|^2,
$$

where M_ϕ and $M_{\Lambda(1520)}$ are the complex amplitudes for ϕ and $\Lambda(1520)$ production processes, respectively. M_{nr} represents non-resonant K^+K^-p production. Each complex amplitude includes individual amplitudes for all possible sub-processes, such as Pomeron-exchange and pseudoscalar meson-exchange processes for ϕ photoproduction. However, log-likelihood fits of the data in ϕ and $\Lambda(1520)$ bands excluding the ϕ and $\Lambda(1520)$ interference

$$
\frac{d^2\sigma}{dm_{K^+K^-} dm_{K^-p}} \bigg|_{\phi,\Lambda(1520)} \propto |M_\phi + M_{\Lambda(1520)}|^2 = \frac{a e^{i\psi_a}}{m_\phi^2 - m^2 + im_\phi \Gamma_\phi} + \frac{b e^{i\psi_b}}{m_{\Lambda^*}^2 - m_{K^-p}^2 + im_{\Lambda^*} \Gamma_{\Lambda^*}},
$$

where a and b denote the magnitudes of the Breit-Wigner amplitudes for ϕ and $\Lambda(1520)$, respectively. ψ_a and ψ_b represent phases for ϕ and $\Lambda(1520)$ production amplitudes, respectively. Here, we integrate the differential cross sections over the K^-p mass interval in the ϕ-$\Lambda(1520)$ interference region, assuming that the phase ψ_b is constant in the interference region for each energy interval. The integrated cross sections can then be given by

$$
\frac{d\sigma}{dm} \propto \left| \frac{a e^{i\psi_a}}{m_\phi^2 - m^2 + im_\phi \Gamma_\phi} + B(m)e^{i\psi_b} \right|^2,
$$

where m denotes $m_{K^+K^-}$. $|B(m)|^2$ corresponds to the Breit-Wigner lineshape of $\Lambda(1520)$ projected onto the K^+K^- mass axis in the interference region. The interference term $I(m)$ between the two amplitude terms can be obtained as

$$
I(m) = 2|aB(m)| \frac{(m_\phi^2 - m^2) \cos \psi + \Gamma_\phi m_\phi \sin \psi}{(m_\phi^2 - m^2)^2 + m_\phi^4 \Gamma_\phi^2},
$$

where $\psi = |\psi_a - \psi_b|$ is the relative phase between the phases, ψ_a and ψ_b.

For the relative phase between the ϕ and $\Lambda(1520)$ amplitudes, we fitted data in the interference region with Eq. (4). Here, the relative amplitudes of a and $B(m)$ for each energy interval are fixed from a simultaneous fit utilizing Monte-Carlo lineshapes in the ϕ and $\Lambda(1520)$ mass bands except for the interference region. Consequently, only a single parameter, the relative phase ψ, exists in the fit. The best-fit results for relative phase are shown as solid curves in Fig. 4. To verify the reliability of this approach, the fit results are compared with theoretical estimates based on the effective Lagrangian approach 20, taking the two ϕ and $\Lambda(1520)$ production amplitudes into account. The reaction dynamics is represented by the invariant amplitudes and form factors in this theoretical approach. The phase $\psi = \pi/2$ was chosen for simplicity. The theoretical estimates for the maximum constructive ϕ-$\Lambda(1520)$ interference appear as dashed curves in Fig. 4 which are consistent with those theoretical estimates.
predicted by Eq. [4].

\[\phi = 2 \pi \]

FIG. 5: (Left) Phase angles for \(K^+K^- \) (circles), \(K^-p \) (squares), and \(K^+p \) (triangles) events. (Right) Integrated yields (when \(K^+K^- \) pairs are detected at forward angles) in the interference region (circles) compared to the predicted levels for the maximum and minimum bounds (solid lines). The dashed line indicates the predicted levels for no \(\phi-\Lambda(1520) \) interference.

The fit results for relative phase are represented in Fig. [4] (left). The \(\chi^2 \) probability was required to exceed 0.1%. For forward \(K^-p \) and \(K^+p \) events, the energy regions between 1.673 GeV and 2.073 GeV are explored. The maximum constructive interference has \(\psi = \pi/2 \), while the maximum destructive interference is represented by \(\psi = -\pi/2 \). For \(K^+K^- \) events detected in the forward directions, the resulting relative phases are in most cases constructive, while those for forward \(K^+p \) events are destructive.

For forward \(K^+K^- \) events in the energy region of \(1.973 < E_\gamma < 2.073 \) GeV, the integrated event yield in the interference region approaches close to the maximum bound for the \(\phi-\Lambda \) interference, as shown in Fig. [4] (right), which is consistent with the relative phase \(\psi = 1.69 \pm 0.12 \) rad. Moreover, the relative phase flips its sign as a function of photon energy \(E_\gamma \). For \(K^-p \) events, the relative phase in the energy region of \(1.973 < E_\gamma < 2.073 \) GeV firmly stays at a positive value, while in other energy regions it supports destructive interference. Thus, it could be inferred that a change in interference patterns would occur when \(K^-p \) moves to a forward angle. For the \(K^+p \) events, only in the lowest-energy region the phase appears in the positive side, but it remains close to \(\pi \), which corresponds to zero interference.

Different phases for the event mode (forward \(K^+K^- \), \(K^-p \) and \(K^+p \) events) may arise from differing kinematic coverages for the photoproduction of \(\phi \) and \(\Lambda(1520) \). We could relate the phases near \(\pi/2 \) for forward \(K^+K^- \) events to the interference between Pomeron exchange amplitude for \(\phi \) and \(K \)-exchange amplitude for \(\Lambda(1520) \) photoproduction. For forward proton events (\(K^-p \) and \(K^+p \)), unnatural-parity exchange processes become important in \(\phi \) photoproduction. However, it is worth noting that \(\phi-\Lambda(1520) \) interference effect does not account for a 2.1-GeV bump structure in forward differential cross sections for \(\phi \) photoproduction. This result is consistent with a recent report from CLAS regarding the \(\Lambda(1520) \) effect [10]. The energy dependence of the phase could indicate nontrivial rescattering contributions from other hyperon resonances. The bump structure could potentially be due to either rescattering processes due to kinematic overlap in phase space or exotic structures involving a hidden-strangeness pentaquark state and the exchange of a new Pomeron. Alternatively, they could be due to a combination of both factors.

In summary, the photoproduction of the \(\gamma p \rightarrow K^+K^-p \) reaction was measured using the LEPS detector at energies from 1.57 to 2.40 GeV. The \(\phi-\Lambda(1520) \) interference measurement could be a good probe to study the origin of enhanced production cross sections for \(\phi \) and \(\Lambda(1520) \) near \(\sqrt{s} = 2.1 \) GeV. In this Letter, we presented relative phases between \(\phi \) and \(\Lambda(1520) \) production amplitudes by using a two-dimensional mass fit with Monte-Carlo lineshapes. We reconfirmed the bump structure in the analysis without the \(\phi-\Lambda(1520) \) interference region. On the other hand, we observed clear \(\phi-\Lambda(1520) \) interference effects in the energy range from 1.673 to 2.173 GeV. The data obtained in the present study provide the first-ever experimental evidence for the \(\phi-\Lambda(1520) \) interference effect in \(\phi \) photoproduction. The relative phase results suggest strong constructive interference in most cases for \(K^+K^- \) pairs observed at forward angles, while destructive interference results from the emission of protons at forward angles. The nature of the bump structure could originate from interesting exotic structures such as a hidden-strangeness pentaquark state, a new Pomeron exchange and rescattering processes via other hyperon states.

The authors gratefully acknowledge the contributions of the staff of the SPRing-8 facility. Thanks are due to A. Hosaka for invaluable theoretical discussions. This research was supported in part by the US National Science Foundation, the Ministry of Education, Science, Sports and Culture of Japan, the National Science Council of the Republic of China, the National Research Foundation of Korea, Korea University and Pukyong National University.

[1] A. I. Titov, T.-S. H. Lee, H. Toki, and O. Streltsova, Phys. Rev. C 60, 035205 (1999).
[2] A. I. Titov, T. Nakano, S. Daté and Y. Ohashi, Mod. Phys. Lett. A 23, 2301 (2008).
[3] D. Schildknecht, Acta Physica Polonica B 37, 595 (2006).
[4] A. Sibirtsev, H. W. Hammer, U. G. Meissner, and A.W. Thomas, Eur. Phys. J. A 29, 209 (2006).
[5] J.-M. Laget, Phys. Lett. B 489, 313 (2000).
[6] A. Donnachie, H. G. Dosch, P. V. Landshoff and O.
Natchmann, Pomeron Physics and QCD, Cambridge University Press (2002).

[7] A. Donnachie and P. V. Landshoff, Nucl. Phys. B 244, 322 (1984).

[8] T. Mihe et al. (LEPS Collaboration), Phys. Rev. Lett. 95, 182001 (2005).

[9] H. Seraydaryan et al. (CLAS Collaboration), Phys. Rev. C 89, 055206 (2014).

[10] B. Dey et al. (CLAS Collaboration), Phys. Rev. C 89, 055208 (2014).

[11] A. Kishwandhi et al., Phys. Lett. B 691, 214 (2010).

[12] R. Aaij et al. (LHCb Collaboration), Phys. Rev. Lett. 115, 072001 (2015).

[13] S. Ozaki, A. Hosaka, H. Nagahiro, and O. Scholten, Phys. Rev. C 80, 035201 (2009).

[14] H-Y. Ryu, A. I. Titov, A. Hosaka, and H-Ch. Kim, Prog. Theor. Exp. Phys. 2014, 023D03 (2014).

[15] N. Muramatsu et al., Nucl. Instrum. Methods A 737, 184 (2014).

[16] T. Nakano et al., Nucl. Phys. A 670, 332 (2000); ibid, A 721, 112 (2003).

[17] K. A. Olive et al. (Particle Data Group), Chin. Phys. C, 38, 090001 (2014).

[18] W. C. Chang et al., Phys. Rev. C 82, 015205 (2010).

[19] J. Y. Chen, Ph.D. thesis, National Sun Yat-sen University, 2009.

[20] S. H. Hwang et al. (LEPS Collaboration), Phys. Rev. Lett. 108, 092001 (2012).

[21] S. Y. Ryu, Ph.D. thesis, Osaka University, 2015.

[22] H. Kohri et al. (LEPS Collaboration), Phys. Rev. Lett. 104, 172001 (2010).

[23] D. C. Fries et al., Nucl. Phys. B 143, 408 (1978).

[24] H. Ejiri et al., Phys. Rev. Lett. 21, 373 (1968); H. Ejiri and J. P. Bondorf, Phys. Lett. B 28, 304 (1968); H. Ejiri et al., Nucl. Phys. A 128, 388 (1969).

[25] Y. Azimov, J. Phys. G: Nucl. Part. Phys. 37, 023001 (2010).

[26] S. i. Nam et al., the theoretical calculation approach will be published elsewhere.