A complete Bethe ansatz solution for the open spin-s XXZ chain with general integrable boundary terms

Luc Frappat1, Rafael I Nepomechie2 and Eric Ragoucy1

1 Laboratoire d’Annecy-le-Vieux de Physique Théorique LAPTH, UMR 5108, CNRS and Université de Savoie, BP 110, F-74941 Annecy-le-Vieux Cedex, France
2 Physics Department, University of Miami, PO Box 248046, Coral Gables, FL 33124, USA
E-mail: frappat@lapp.in2p3.fr, nepomechie@physics.miami.edu and ragoucy@lapp.in2p3.fr

Received 10 July 2007
Accepted 23 August 2007
Published 12 September 2007

Abstract. We consider the open spin-s XXZ quantum spin chain with N sites and general integrable boundary terms for generic values of the bulk anisotropy parameter, and for values of the boundary parameters which satisfy a certain constraint. We derive two sets of Bethe ansatz equations, and find numerical evidence that together they give the complete set of $(2s+1)^N$ eigenvalues of the transfer matrix. For the case of $s = 1$, we explicitly determine the Hamiltonian, and find an expression for its eigenvalues in terms of Bethe roots.

Keywords: algebraic structures of integrable models, integrable spin chains (vertex models), quantum integrability (Bethe ansatz)

ArXiv ePrint: 0707.0653
1. Introduction

Much of the impetus for the development of the so-called quantum inverse scattering method and quantum groups came from the effort to formulate and solve higher-spin generalizations of the spin-1/2 XXZ (anisotropic Heisenberg) quantum spin chain with periodic boundary conditions [1]–[5]. (See also [6] and references therein.) For the open spin-1/2 XXZ chain [7], Sklyanin [8] discovered a commuting transfer matrix based on solutions of the boundary Yang–Baxter equation (BYBE) [9]. This made it possible to generalize some of the above works to open spin chains [10]–[16]. Although general (non-diagonal) solutions of the BYBE were eventually found [17,18,15], Bethe ansatz solutions were known only for open spin chains with diagonal boundary terms. Further progress was made in [19,20], where a solution was found for the open spin-1/2 XXZ chain with general integrable (i.e., including also non-diagonal) boundary terms, provided the boundary parameters satisfy a certain constraint. It was subsequently realized [21] that two sets of Bethe ansatz equations (BAEs) were generally needed in order to obtain the complete set of eigenvalues. (Recently, the second set of BAEs was derived within the generalized algebraic Bethe ansatz approach of [19] by constructing [22] a suitable second reference state. For other related work, see e.g. [23]–[31], and references therein.)

We present here a Bethe ansatz solution for the N-site open spin-s XXZ quantum spin chain with general integrable boundary terms, following an approach which was developed for the spin-1/2 XXZ chain in [34], and then generalized to the spin-1/2 XYZ chain in [35]. Doikou solved a special case of this model (among others) in [32] using the method in [20], and also computed some of its thermodynamical properties. She further investigated this model in [33] using the method in [19]. We find a generalization of Doikou’s constraint on the boundary parameters, as well as a second set of BAEs, which we argue is necessary to obtain the complete set of \((2s + 1)^N\) eigenvalues.

The outline of this paper is as follows. In section 2 we review the construction of the model’s transfer matrices, and the so-called fusion hierarchy which they satisfy. In section 3, we identify (as in [34]) the \(Q\) operator with a transfer matrix whose auxiliary-space spin tends to infinity, and obtain a \(T - Q\) equation for the model’s fundamental
(spin-1/2 auxiliary-space) transfer matrix. Using some additional properties of this transfer matrix, we arrive at a pair of expressions for its eigenvalues in terms of roots of corresponding BAEs, as well as a corresponding constraint on the boundary parameters. We provide numerical evidence of completeness of this solution for small values of \(s \) and \(N \). In section 4 we explicitly determine the Hamiltonian for the case \(s = 1 \), and find an expression for its eigenvalues in terms of Bethe roots. We end in section 5 with a brief further discussion of our results.

2. Transfer matrices and fusion hierarchy

Sklyanin [8] showed for an \(N \)-site open XXZ spin chain how to construct a commuting transfer matrix, which here we shall denote by \(t^{j,\frac{1}{2}}(u) \), whose auxiliary space as well as each of its \(N \) quantum spaces are spin-1/2 (i.e., two-dimensional). In a similar way, one can construct a transfer matrix \(t^{j,s}(u) \) whose auxiliary space is spin-\(j \) ((2\(j \) + 1)-dimensional) and each of its \(N \) quantum spaces are spin-\(s \) ((2\(s \) + 1)-dimensional), for any \(j, s \in \{ \frac{1}{2}, 1, \frac{3}{2}, \ldots \} \). The basic building blocks are so-called fused \(R \) and \(K^\pm \) matrices. The former are given by [36], [2]–[5] \(^3\)

\[
R^{(j,s)}_{\{a\}\{b\}}(u) = P^+_{\{a\}} P^+_{\{b\}} \prod_{k=1}^{2j} \prod_{l=1}^{2s} R^{(\frac{1}{2},\frac{j}{2})}_{a_k,b_l}(u + (k + l - j - s - 1)\eta) P^+_{\{a\}} P^+_{\{b\}},
\]

where \(\{a\} = \{a_1, \ldots, a_{2j}\}, \{b\} = \{b_1, \ldots, b_{2s}\}, \) and \(R^{(\frac{1}{2},\frac{j}{2})}(u) \) is given by

\[
R^{(\frac{1}{2},\frac{j}{2})}(u) = \begin{pmatrix}
\text{sh} (u + \eta) & 0 & 0 & 0 \\
0 & \text{sh} u & \text{sh} \eta & 0 \\
0 & \text{sh} \eta & \text{sh} u & 0 \\
0 & 0 & 0 & \text{sh} (u + \eta)
\end{pmatrix},
\]

where \(\eta \) is the bulk anisotropy parameter. The \(R \) matrices in the product (2.1) are ordered in the order of increasing \(k \) and \(l \). Moreover, \(P^+_{\{a\}} \) is the symmetric projector

\[
P^+_{\{a\}} = \frac{1}{(2j)!} \prod_{k=1}^{2j} \left(\sum_{\{a_{k}\}} \mathcal{P}_{a_{k},a_{k}} \right),
\]

where \(\mathcal{P} \) is the permutation operator, with \(\mathcal{P}_{a_k,a_k} \equiv 1 \); and similarly for \(P^+_{\{b\}} \). For example, for the simple case \((j, s) = (1, \frac{1}{2}) \),

\[
R^{(1,\frac{1}{2})}_{\{a_1,a_2\},\{b\}}(u) = P^+_{a_1,a_2} R^{(\frac{1}{2},\frac{1}{2})}_{a_1,b}(u - \frac{1}{2}\eta) R^{(\frac{1}{2},\frac{1}{2})}_{a_2,b}(u + \frac{1}{2}\eta) P^+_{a_1,a_2}.
\]

The fused \(R \) matrices satisfy the Yang–Baxter equations

\[
R^{(j,k)}_{\{a\}\{b\}}(u-v) R^{(j,s)}_{\{a\}\{c\}}(u) R^{(k,s)}_{\{b\}\{c\}}(v) = R^{(k,s)}_{\{b\}\{c\}}(v) R^{(j,s)}_{\{a\}\{c\}}(u) R^{(j,k)}_{\{a\}\{b\}}(u-v).
\]

We note here for later convenience that the fundamental \(R \) matrix satisfies the unitarity relation

\[
R^{(\frac{1}{2},\frac{1}{2})}(u) R^{(\frac{1}{2},\frac{1}{2})}(-u) = -\xi(u) 1, \quad \xi(u) = \text{sh} (u + \eta) \text{sh} (u - \eta).
\]

\(^3\) Our definitions of fused \(R \) and \(K^\pm \) matrices differ from those in [34] by certain shifts of the arguments.
The fused K^- matrices are given by [10, 11, 14]

$$K^{-(j)}_{\{a\}}(u) = P^+_{\{a\}} \prod_{k=1}^{2j} \left\{ \prod_{l=1}^{k-1} R^{(\frac{j}{2}, \frac{j}{2})}_{a_l a_k} (2u + (k + l - 2j - 1)\eta) \right\} \times K^{-\left(\frac{j}{2}\right)}_{a_k} (u + (k - j - \frac{1}{2})\eta) \right\} P^+_{\{a\}}, \quad (2.7)$$

where $K^{-\left(\frac{j}{2}\right)}(u)$ is the matrix [17, 18]

$$\left(\begin{array}{cc} 2(\alpha_- ch \beta_- ch u + ch \alpha_- sh \beta_- sh u) & e^{\theta_-} sh 2u \\ e^{-\theta_-} sh 2u & 2(\alpha_- ch \beta_- ch u - ch \alpha_- sh \beta_- sh u) \end{array} \right), \quad (2.8)$$

where α_-, β_- and θ_- are arbitrary boundary parameters. The products of braces $\{\ldots\}$ in (2.7) are ordered in the order of increasing k. For example, for the case $j = 1$,

$$K_{\{a_1, a_2\}}^{-(1)}(u) = P^+_{\{a_1, a_2\}} K_{a_1}^{-\left(\frac{1}{2}\right)}(u - \frac{1}{2}\eta) R^{\left(\frac{1}{2}, \frac{1}{2}\right)}_{a_1 a_2}(2u) K_{a_2}^{-\left(\frac{1}{2}\right)}(u + \frac{1}{2}\eta) P^+_{\{a_1, a_2\}}. \quad (2.9)$$

The fused K^+ matrices satisfy the boundary Yang–Baxter equations [9]

$$R^{(j,s)}_{\{a\} \{b\}}(u - v) K^{-(j)}_{\{a\}}(u) R^{(j,s)}_{\{a\} \{b\}}(u + v) K^{-\left(\frac{j}{2}\right)}_{\{a\}}(u) = K^{-(j)}_{\{a\}}(u) R^{(j,s)}_{\{a\} \{b\}}(u + v) K^{-(j)}_{\{a\}}(u) R^{(j,s)}_{\{a\} \{b\}}(u - v). \quad (2.10)$$

The fused K^+ matrices are given by

$$K^{+(j)}_{\{a\}}(u) = \frac{1}{f^{(j)}(u)} K^{-(j)}_{\{a\}}(-u - \eta) \bigg|_{(\alpha_-, \beta_- \theta_-) \rightarrow (-\alpha_+, \beta_+ \theta_+)} \quad (2.11)$$

where the normalization factor

$$f^{(j)}(u) = \prod_{l=1}^{2j-1} \prod_{k=1}^{l} [-\xi(2u + (l + k + 1 - 2j)\eta)] \quad (2.12)$$

is chosen to simplify the form of the fusion hierarchy, see below (2.17).

The transfer matrix $t^{(j,s)}(u)$ is given by

$$t^{(j,s)}(u) = tr_{\{a\}} K^{+(j)}_{\{a\}}(u) t^{(j,s)}_{\{a\}}(u) K^{-\left(\frac{j}{2}\right)}_{\{a\}}(u) \tilde{T}^{(j,s)}_{\{a\}}(u), \quad (2.13)$$

where the monodromy matrices are given by products of N fused R matrices,

$$T^{(j,s)}_{\{a\}}(u) = R^{(j,s)}_{\{a\}, \{b_1\}}(u) \ldots R^{(j,s)}_{\{a\}, \{b_N\}}(u), \quad \tilde{T}^{(j,s)}_{\{a\}}(u) = R^{(j,s)}_{\{a\}, \{b_1\}}(u) \ldots R^{(j,s)}_{\{a\}, \{b_N\}}(u). \quad (2.14)$$

These transfer matrices commute for different values of spectral parameter for any $j, j' \in \{\frac{1}{2}, 1, \frac{3}{2}, \ldots\}$ and any $s \in \{\frac{1}{2}, 1, \frac{3}{2}, \ldots\}$,

$$[t^{(j,s)}(u), t^{(j',s)}(u')] = 0. \quad (2.15)$$

doi:10.1088/1742-5468/2007/09/P09009

J. Stat. Mech. (2007) P09009

4
These transfer matrices also obey the fusion hierarchy \cite{10,11,14}^4
\begin{equation}
t^{(j,s)}(u - j \eta) t^{(s)}(u) = t^{(j,s)}(u - (j - \frac{1}{2}) \eta) + \delta^{(s)}(u) t^{(j-1,s)}(u - (j + \frac{1}{2}) \eta),
\end{equation}
j = 1, \frac{3}{2}, \ldots, \text{where } t^{(0,s)} = 1, \text{and } \delta^{(s)}(u) \text{ is a product of various quantum determinants,}
and is given by
\begin{equation}
\delta^{(s)}(u) = 2^4 \prod_{k=0}^{2s-1} \xi \left(u + \left(s - k - \frac{1}{2} \right) \eta \right)^{2N} \frac{\text{sh} (2u - 2\eta) \text{sh} (2u + 2\eta)}{\text{sh} (2u - \eta) \text{sh} (2u + \eta)} \times \text{sh} (u + \alpha_-) \text{sh} (u - \alpha_-) \text{ch} (u + \beta_-) \text{ch} (u - \beta_-) \times \text{sh} (u + \alpha_+) \text{sh} (u - \alpha_+) \text{ch} (u + \beta_+) \text{ch} (u - \beta_+).
\end{equation}
We remark that the normalization factor \(f^{(j)}(u) \) (2.12) has been chosen so that the LHS of (2.16) has coefficient 1.

In the remainder of this section we list some important further properties of the ‘fundamental’ transfer matrix \(t^{(\frac{1}{2},s)}(u) \), which we shall subsequently use to help determine its eigenvalues. However, it is more convenient to work with a rescaled transfer matrix \(\tilde{t}^{(\frac{1}{2},s)}(u) \) defined by
\begin{equation}
\tilde{t}^{(\frac{1}{2},s)}(u) = \frac{1}{g^{(\frac{1}{2},s)}(u)^{2N}} t^{(\frac{1}{2},s)}(u),
\end{equation}
where
\begin{equation}
g^{(\frac{1}{2},s)}(u) = \prod_{k=1}^{2s-1} \text{sh} (u + (s - k + \frac{1}{2}) \eta)
\end{equation}
(which has the crossing symmetry \(g^{(\frac{1}{2},s)}(-u - \eta) = \pm g^{(\frac{1}{2},s)}(u) \)) is an overall scalar factor of the fused \(R \) matrix \(R^{(\frac{1}{2},s)}(u) \). In particular, the rescaled transfer matrix does not vanish at \(u = 0 \) when \(s \) is a half-odd integer.

This transfer matrix has the following properties:
\begin{equation}
\tilde{t}^{(\frac{1}{2},s)}(u + i\pi) = \tilde{t}^{(\frac{1}{2},s)}(u) \quad \text{\((i\pi\text{-periodicity)}\)}
\end{equation}
\begin{equation}
\tilde{t}^{(\frac{1}{2},s)}(-u - \eta) = \tilde{t}^{(\frac{1}{2},s)}(u) \quad \text{\((\text{crossing)}\)}
\end{equation}
\begin{equation}
\tilde{t}^{(\frac{1}{2},s)}(0) = -2^3 \text{sh}^{2N} ((s + \frac{1}{2}) \eta) \text{ch} \eta \text{sh} \alpha_- \text{ch} \beta_- \text{sh} \alpha_+ \text{ch} \beta_+ \text{ch} \eta \quad \text{\((\text{initial condition)}\)}
\end{equation}
\begin{equation}
\tilde{t}^{(\frac{1}{2},s)}(u) \bigg|_{\eta=0} = 2^3 \text{sh}^{2N} u [-\text{sh} \alpha_- \text{ch} \beta_- \text{sh} \alpha_+ \text{ch} \beta_+ \text{ch}^2 u
\text{+ ch} \alpha_- \text{ch} \beta_- \text{ch} \alpha_+ \text{ch} \beta_+ \text{sh}^2 u
\text{- ch} (\theta_- - \theta_+) \text{sh}^2 u \text{ch}^2 u] 1 \quad \text{\((\text{semi-classical limit)}\)}
\end{equation}
\begin{equation}
\tilde{t}^{(\frac{1}{2},s)}(u) \sim -\frac{1}{2^{2N+1}} e^{(2N+4)u + (N+2)\eta} \text{ch} (\theta_- - \theta_+) \text{ch} \eta \quad \text{\((\text{asymptotic behavior)}\)}
\end{equation}
As is well known, due to the commutativity property (2.15), the corresponding simultaneous eigenvectors are independent of the spectral parameter. Hence, the above properties (2.20)–(2.24) hold also for the corresponding eigenvalues \(\Lambda^{(\frac{1}{2},s)}(u) \).

\footnote{The derivation of this hierarchy relies on some relations which, to our knowledge, have not been proved. See the appendix for further details.}

doi:10.1088/1742-5468/2007/09/P09009
3. Eigenvalues and Bethe ansatz equations

We now proceed to determine the eigenvalues of the fundamental transfer matrix. Following [34], we assume that the limit

$$\bar{Q}(u) = \lim_{j \to \infty} t^{(j-\frac{1}{2}, s)}(u-j\eta)$$

exists\(^5\). We then immediately obtain from the fusion hierarchy (2.16) an equation of the $T - Q$ form for the fundamental transfer matrix $t^{(\frac{j}{2}, s)}(u)$,

$$\bar{Q}(u)t^{(\frac{j}{2}, s)}(u) = \bar{Q}(u+\eta) + \delta(s)(u)\bar{Q}(u-\eta).$$

We further assume that the eigenvalues of $\bar{Q}(u)$ (which we denote by the same symbol) have the decomposition $\bar{Q}(u) = f(u)Q(u)$ with

$$Q(u) = \prod_{j=1}^{M} \text{sh}(u-v_j)\text{sh}(u+v_j+\eta),$$

which has the crossing symmetry $Q(-u-\eta) = Q(u)$. Here M is some non-negative integer. It follows that the eigenvalues $\Lambda^{(\frac{j}{2}, s)}(u)\text{ of } t^{(\frac{j}{2}, s)}(u)$ are given by

$$\Lambda^{(\frac{j}{2}, s)}(u) = H_1(u)\frac{Q(u+\eta)}{Q(u)} + H_2(u)\frac{Q(u-\eta)}{Q(u)},$$

where $H_1(u) = f(u+\eta)/f(u)$ and $H_2(u) = \delta(s)(u)f(u-\eta)/f(u)$; and therefore,

$$H_1(u-\eta)H_2(u) = \delta(s)(u).$$

The crossing symmetry (2.21) together with (3.4) imply that

$$H_2(u) = H_1(-u-\eta).$$

We conclude that $H_1(u)$ must satisfy

$$H_1(u-\eta)H_1(-u-\eta) = \delta(s)(u),$$

where $\delta(s)(u)$ is given by (2.17).

A set of solutions of (3.7) for $H_1(u)$ is given by

$$H_1^{(\pm)}(u|\epsilon_1, \epsilon_2, \epsilon_3) = -2^2 \epsilon_2 \left[\prod_{k=0}^{2s-1} \text{sh} \left(u + \left(s - k - \frac{1}{2} \right) \eta \right) \right]^{2N} \frac{\text{sh}(2u+\eta)}{\text{sh}(2u)} \times \text{sh}(u + \pm \alpha_+ + \eta)\text{ch}(u + \pm \epsilon_1 \beta_+ + \eta)\text{sh}(u + \pm \epsilon_2 \alpha_+ + \eta)\text{ch}(u + \pm \epsilon_3 \beta_+ + \eta),$$

where $\epsilon_1, \epsilon_2, \epsilon_3$ can independently take the values ± 1. It follows from (3.6) that the corresponding $H_2(u)$ functions are given by

$$H_2^{(\pm)}(u|\epsilon_1, \epsilon_2, \epsilon_3) = -2^2 \epsilon_2 \left[\prod_{k=0}^{2s-1} \text{sh} \left(u + \left(s - k + \frac{1}{2} \right) \eta \right) \right]^{2N} \frac{\text{sh}(2u+2\eta)}{\text{sh}(2u)} \times \text{sh}(u + \pm \alpha_+ - \eta)\text{ch}(u + \pm \epsilon_1 \beta_- + \eta)\text{sh}(u + \pm \epsilon_2 \alpha_+ + \eta)\text{ch}(u + \pm \epsilon_3 \beta_+).$$

\(^5\)For a more rigorous and extensive discussion of Q operators for the six- and eight-vertex models with periodic boundary conditions, as well numerous earlier references, see [37].
An argument from [34] (which makes use of the periodicity (2.20)) can again be used to conclude that the eigenvalues can be uniquely expressed as

\[\Lambda^{(\frac{1}{2},s)}(u) = aH_1^{(\pm)}(u|\epsilon_1, \epsilon_2, \epsilon_3) \frac{Q(u + \eta)}{Q(u)} + aH_2^{(\pm)}(u|\epsilon_1, \epsilon_2, \epsilon_3) \frac{Q(u - \eta)}{Q(u)}, \]

(3.10)

up to an overall sign \(a = \pm 1 \). Noting that the functions \(H_1 \) (3.8) and \(H_2 \) (3.9) have the factor \(g^{(\frac{1}{2},s)}(u)2^N \) (2.19) in common, we conclude that the eigenvalues of \(\tilde{\Lambda}^{(\frac{1}{2},s)}(u) \) (2.18) are given by

\[\tilde{\Lambda}^{(\frac{1}{2},s)}(u) = \tilde{H}_1^{(\pm)}(u|\epsilon_1, \epsilon_2, \epsilon_3) \frac{Q(u + \eta)}{Q(u)} + \tilde{H}_2^{(\pm)}(u|\epsilon_1, \epsilon_2, \epsilon_3) \frac{Q(u - \eta)}{Q(u)}, \]

(3.11)

where

\[\tilde{H}_1^{(\pm)}(u|\epsilon_1, \epsilon_2, \epsilon_3) = -2^2 \epsilon_3 \text{sh}^2 2N \left(u - \left(s - \frac{1}{2} \right) \eta \right) \frac{\text{sh}(2u)}{\text{sh}(2u + \eta)} \text{sh}(u \pm \alpha_+ + \eta) \]
\[\times \text{ch}(u \pm \epsilon_1 \beta_- + \eta) \text{sh}(u \pm \epsilon_2 \alpha_- + \eta) \text{ch}(u \pm \epsilon_3 \beta_+ + \eta), \]

(3.12)

\[\tilde{H}_2^{(\pm)}(u|\epsilon_1, \epsilon_2, \epsilon_3) = -2^2 \epsilon_3 \text{sh}^2 2N \left(u + \left(s + \frac{1}{2} \right) \eta \right) \frac{\text{sh}(2u + 2\eta)}{\text{sh}(2u + \eta)} \text{sh}(u \mp \alpha_-) \]
\[\times \text{ch}(u \mp \epsilon_1 \beta_-) \text{sh}(u \mp \epsilon_2 \alpha_+) \text{ch}(u \mp \epsilon_3 \beta_+). \]

(3.13)

We have fixed the overall sign \(a = +1 \) in (3.11) using the initial condition (2.22).

The expression (3.11) for \(\tilde{\Lambda}^{(\frac{1}{2},s)}(u) \) is also consistent with the asymptotic behavior (2.24) if the boundary parameters satisfy the constraint

\[\alpha_- + \epsilon_1 \beta_- + \epsilon_2 \alpha_- + \epsilon_3 \beta_+ = \epsilon_0(\theta_- - \theta_+) + \eta k + \frac{1}{2}(1 - \epsilon_2)i\pi \mod (2i\pi), \]

(3.14)

where also \(\epsilon_0 = \pm 1 \); and if \(M \) (appearing in the expression (3.3) for \(Q(u) \)) is given by

\[M = sN - \frac{1}{2} \mp \frac{k}{2}. \]

(3.15)

The requirement that \(M \) be an integer evidently implies that

\[sN - \frac{1}{2} \mp \frac{k}{2} = \text{integer}. \]

(3.16)

In particular, for \(s \) an integer, \(k \) is an odd integer; and for \(s \) a half-odd integer, \(k \) is odd (even) if \(N \) is even (odd), respectively.

Finally, the expression (3.11) for \(\tilde{\Lambda}^{(\frac{1}{2},s)}(u) \) is also consistent with the semi-classical limit (2.23) if the \(\{\epsilon_i\} \) satisfy the constraint

\[\epsilon_1 \epsilon_2 \epsilon_3 = +1. \]

(3.17)

To summarize: if the boundary parameters \((\alpha_\pm, \beta_\pm, \theta_\pm) \) satisfy the constraints (3.14), (3.16) and (3.17) for some choice \((\pm) \) of \(\{\epsilon_i\} \) and for some appropriate value of \(k \), then the eigenvalues of \(\tilde{\Lambda}^{(\frac{1}{2},s)}(u) \) (2.18) are given by

\[\tilde{\Lambda}^{(\frac{1}{2},s)}(u) = \tilde{H}_1^{(\pm)}(u|\epsilon_1, \epsilon_2, \epsilon_3) \frac{Q^{(\pm)}(u + \eta)}{Q^{(\pm)}(u)} + \tilde{H}_2^{(\pm)}(u|\epsilon_1, \epsilon_2, \epsilon_3) \frac{Q^{(\pm)}(u - \eta)}{Q^{(\pm)}(u)}, \]

(3.18)

doi:10.1088/1742-5468/2007/09/P09009
where $\tilde{H}_1^{(\pm)}(u|\epsilon_1, \epsilon_2, \epsilon_3)$ and $\tilde{H}_2^{(\pm)}(u|\epsilon_1, \epsilon_2, \epsilon_3)$ are given by (3.12), (3.13), and
\[
Q^{(\pm)}(u) = \prod_{j=1}^{M^{(\pm)}} \text{sh} \left(u - v_j^{(\pm)} \right) \text{sh} \left(u + v_j^{(\pm)} + \eta \right), \quad M^{(\pm)} = sN - \frac{1}{2} \mp \frac{k}{2}.
\]
(3.19)

The parameters $\{v_j^{(\pm)}\}$ are roots of the corresponding Bethe ansatz equations,
\[
\frac{\tilde{H}_2^{(\pm)}(v_j^{(\pm)}|\epsilon_1, \epsilon_2, \epsilon_3)}{\tilde{H}_2^{(\pm)}(-v_j^{(\mp)} - \eta|\epsilon_1, \epsilon_2, \epsilon_3)} = \frac{Q^{(\pm)}(v_j^{(\pm)} + \eta)}{Q^{(\pm)}(v_j^{(\pm)} - \eta)}, \quad j = 1, \ldots, M^{(\pm)};
\]
(3.20)
or, more explicitly,
\[
\left(\frac{\text{sh} \left(\tilde{v}_j^{(\pm)} + s\eta \right)}{\text{sh} \left(\tilde{v}_j^{(\pm)} - s\eta \right)} \right)^{2N} \frac{\text{sh} \left(2\tilde{v}_j^{(\pm)} + \eta \right) \text{sh} \left(\tilde{v}_j^{(\pm)} \mp \alpha_\pm - \frac{\eta}{2} \right) \text{ch} \left(\tilde{v}_j^{(\pm)} \mp \epsilon_\pm \beta_\pm - \frac{\eta}{2} \right)}{\text{sh} \left(2\tilde{v}_j^{(\pm)} - \eta \right) \text{sh} \left(\tilde{v}_j^{(\pm)} \pm \alpha_\pm + \frac{\eta}{2} \right) \text{ch} \left(\tilde{v}_j^{(\pm)} \pm \epsilon_\pm \beta_\pm + \frac{\eta}{2} \right)}
\times \frac{\text{sh} \left(\tilde{v}_j^{(\pm)} \mp \epsilon_2 \alpha_\pm - \frac{\eta}{2} \right) \text{ch} \left(\tilde{v}_j^{(\pm)} \mp \epsilon_\pm \beta_\pm - \frac{\eta}{2} \right)}{\text{sh} \left(\tilde{v}_j^{(\pm)} \pm \epsilon_2 \alpha_\pm + \frac{\eta}{2} \right) \text{ch} \left(\tilde{v}_j^{(\pm)} \pm \epsilon_\pm \beta_\pm + \frac{\eta}{2} \right)}
= - \prod_{k=1}^{M^{(\pm)}} \text{sh} \left(\tilde{v}_j^{(\pm)} - \tilde{v}_k^{(\mp)} + \eta \right) \text{sh} \left(\tilde{v}_j^{(\pm)} + \tilde{v}_k^{(\mp)} + \eta \right), \quad j = 1, \ldots, M^{(\pm)},
\]
(3.21)

where $\tilde{v}_j^{(\pm)} = v_j^{(\pm)} + \eta/2$.

We have investigated the completeness of this solution for small values of s and N numerically using a method developed by McCoy and his collaborators (see, e.g., [38]), and further explained in [21]. We find that, for $k \geq 2sN + 1$ (and therefore $M^{(\pm)} \leq -1$), all the eigenvalues of $\tilde{t}^{(\pm)}(u)$ are given by $\tilde{\Lambda}^{(\pm)}(\pm)(u)$. Similarly, for $k \leq -(2sN + 1)$ (and therefore $M^{(\pm)} \geq 1$), all the eigenvalues are given by $\tilde{\Lambda}^{(\pm)}(\pm)(u)$. Moreover, for $|k| \leq 2sN - 1$ (and therefore both $M^{(\pm)}$ are non-negative), both $\tilde{\Lambda}^{(\pm)}(\pm)(u)$ and $\tilde{\Lambda}^{(\pm)}(\pm)(u)$ are needed to obtain all the eigenvalues.\(^6\)

Some sample results are summarized in tables 1–4. For example, let us consider table 1, which is for the case $N = 2$, $s = 1$. According to (3.16), k must be odd for this case. For such values of k, the number of eigenvalues of $\tilde{t}^{(\pm)}(u)$ which we found are given by $\tilde{\Lambda}^{(\pm)}(\pm)(u)$ and $\tilde{\Lambda}^{(\pm)}(\pm)(u)$ in (3.18) are listed in the second and third columns, respectively. Notice that, for each row of the table, the sum of these two entries is 9, which coincides with the total number of eigenvalues (3\(^2\)). A similar result can be readily seen in the other tables.\(^7\) These results strongly support the conjecture that $\tilde{\Lambda}^{(\pm)}(\pm)(u)$ and $\tilde{\Lambda}^{(\pm)}(\pm)(u)$ in (3.18) together give the complete set of $(2s + 1)^N$ eigenvalues of the transfer matrix $\tilde{t}^{(\pm)}(u)$ for $|k| \leq 2sN - 1$.

It may be worth noting that for $|k| = 2sN - 1$ (and, therefore, either $M^{(\pm)}$ or $M^{(\pm)}$ vanishes), the Bethe ansatz with vanishing M still gives 1 eigenvalue. (See again

\(^6\) For the conventional situation that the boundary parameters $(\alpha_\pm, \beta_\pm, \theta_\pm)$ are finite and independent of N, the constraint (3.14) requires that also k be finite and independent of N, in which case $|k| \leq 2sN - 1$ for $N \to \infty$.

\(^7\) It would be interesting to find a formula that would generate the entries in these tables for general values of N, s and k. (See again
The open spin-s XXZ chain

Table 1. Number of eigenvalues of $\tilde{\mathcal{L}}(\frac{1}{2},s)(u)$ given by $\tilde{\mathcal{L}}(\frac{1}{2},s)(\pm)(u)$ for $N = 2$, $s = 1$. The total number of eigenvalues is $(2s + 1)^N = 3^2 = 9$.

k	No. given by $\tilde{\mathcal{L}}(\frac{1}{2},1)(-)(u)$	No. given by $\tilde{\mathcal{L}}(\frac{1}{2},1)(+)(u)$
5	9	0
3	8	1
1	6	3
−1	3	6
−3	1	8
−5	0	9

Table 2. Number of eigenvalues of $\tilde{\mathcal{L}}(\frac{1}{2},s)(u)$ given by $\tilde{\mathcal{L}}(\frac{1}{2},s)(\pm)(u)$ for $N = 3$, $s = 1$. The total number of eigenvalues is $(2s + 1)^N = 3^3 = 27$.

k	No. given by $\tilde{\mathcal{L}}(\frac{1}{2},1)(-)(u)$	No. given by $\tilde{\mathcal{L}}(\frac{1}{2},1)(+)(u)$
7	27	0
5	26	1
3	23	4
1	17	10
−1	10	17
−3	4	23
−5	1	26
−7	0	27

Table 3. Number of eigenvalues of $\tilde{\mathcal{L}}(\frac{3}{2},s)(u)$ given by $\tilde{\mathcal{L}}(\frac{3}{2},s)(\pm)(u)$ for $N = 2$, $s = 3/2$. The total number of eigenvalues is $(2s + 1)^N = 4^2 = 16$.

k	No. given by $\tilde{\mathcal{L}}(\frac{3}{2},1)(-)(u)$	No. given by $\tilde{\mathcal{L}}(\frac{3}{2},1)(+)(u)$
7	16	0
5	15	1
3	13	3
1	10	6
−1	6	10
−3	3	13
−5	1	15
−7	0	16

tables 1–4.) In the algebraic Bethe ansatz approach, the corresponding eigenvector would presumably be a ‘bare’ reference state.

We observe that for $s = 1/2$, our solution coincides with the one in [34]. Our solution is similar to the one given by Doikou [23,32,33], but with a more explicit and general constraint on the boundary parameters, and with a second set of BAEs which is necessary for completeness. This model has various interesting special cases, some of which have already been studied (see, e.g., [10,16,23]).

doi:10.1088/1742-5468/2007/09/P09009
Table 4. Number of eigenvalues of $\tilde{t}(1,s)(u)$ given by $\tilde{\Lambda}(1,s)(\pm)(u)$ for $N = 3$, $s = 3/2$. The total number of eigenvalues is $(2s + 1)^N = 4^3 = 64.$

k	No. given by $\tilde{\Lambda}(1,s)(-)(u)$	No. given by $\tilde{\Lambda}(1,s)(+)(u)$
10	64	0
8	63	1
6	60	4
4	54	10
2	44	20
0	32	32
-2	20	44
-4	10	54
-6	4	60
-8	1	63
-10	0	64

4. Hamiltonian for $s = 1$

In this section we give an explicit expression for the spin-1 Hamiltonian, its relation to the transfer matrix, and its eigenvalues in terms of Bethe roots. In order to construct the integrable Hamiltonian for the case $s = 1$, we need the transfer matrix with spin 1 in both auxiliary and quantum spaces, i.e., $t^{(1,1)}(u)$. Since we seek an explicit expression for the Hamiltonian in terms of spin-1 generators of $su(2)$ (which are 3×3 matrices), we now perform similarity transformations on the fused R and K matrices which bring them to row-reduced form, and then remove all null rows and columns. That is,

$$R_{\text{reduced}}^{(1,1)}(u) = A_{a_1,a_2} R_{a_1,a_2}^{(1,1)}(u) A_{a_1,a_2}^{-1} A_{b_1,b_2}^{-1},$$

$$K_{\text{reduced}}^{(1)}(u) = A_{a_1,a_2} K_{a_1,a_2}^{(1)}(u) A_{a_1,a_2}^{-1},$$

where

$$A = \begin{pmatrix}
1 & 0 & 0 & 0 \\
0 & \frac{1}{2} & \frac{1}{2} & 0 \\
0 & \frac{1}{2} & -\frac{1}{2} & 0 \\
0 & 0 & 0 & 1
\end{pmatrix}.$$ \hspace{1cm} (4.2)

The reduced R and K matrices are 9×9 (instead of 16×16) and 3×3 (instead of 4×4) matrices, respectively. It is convenient to make a further similarity ('gauge') transformation which brings these matrices to a more symmetric form,

$$R_{\text{reduced}}^{(1,1)}(u) = (B \otimes B) R_{\text{reduced}}^{(1,1)}(u) (B^{-1} \otimes B^{-1}),$$

$$K_{\text{reduced}}^{(1)}(u) = B K_{\text{reduced}}^{(1)}(u) B^{-1},$$

where B is the 3×3 diagonal matrix

$$B = \text{diag}(1, -\sqrt{2} \text{ch } \eta, 1).$$ \hspace{1cm} (4.4)

We define $t^{(1,1)}(u)$ to be the transfer matrix constructed with these R and K matrices, i.e.,

$$t^{(1,1)}(u) = tr_0 K_{\text{reduced}}^{(1)}(u) T^{(1,1)}(u) K^{(1)}(u) R_{\text{reduced}}^{(1,1)}(u) R_{\text{reduced}}^{(1)}(u),$$

\hspace{1cm} (4.5)
where the monodromy matrices are constructed as usual from the $R^{(1,1)}_{\text{reduced}}(u)$'s, and the auxiliary space is now denoted by ‘0’. Since $t^{(1,1)}(u)$ and $t^{(1,1)}(u)$ are related by a similarity transformation, they have the same eigenvalues. Finally, it is again more convenient to work with a rescaled transfer matrix,

$$\tilde{t}^{(1,1)}(u) = \frac{\text{sh}(2u)\text{sh}(2u+2\eta)\Gamma^{(1,1)}(u)}{[\text{sh} u \text{sh}(u+\eta)]^{2N}} \Gamma^{(1,1)}(u),$$

(4.6)

which, in particular, does not vanish at $u = 0$.

As noted by Sklyanin [8], the Hamiltonian H is proportional to the first derivative of the transfer matrix

$$H = c_1 \frac{d}{du} \tilde{t}^{(1,1)}(u) \bigg|_{u=0} + c_0 1,$$

(4.7)

where

$$c_1 = -\text{ch} \eta \left\{ 16[\text{sh} 2\eta \text{sh}\eta]^{2N} \text{sh} 3\eta \text{sh} \left(\alpha_- + \frac{\eta}{2} \right) \text{ch} \left(\alpha_- + \frac{\eta}{2} \right) \text{ch} \left(\beta_- + \frac{\eta}{2} \right) \right\}^{-1}.$$

(4.8)

We choose c_1 so that the bulk terms of the Hamiltonian have a conventional normalization (see (4.10)), and we choose c_0 so that there is no additive constant term in the expression (4.9) for the Hamiltonian,

$$H = \sum_{n=1}^{N-1} H_{n,n+1} + H_b.$$

(4.9)

The bulk terms $H_{n,n+1}$ are given by [1]

$$H_{n,n+1} = \sigma_n - (\sigma_n)^2 + 2 \text{sh} \eta [\sigma_n \sigma^z_n + (S^z_n)^2 + (S^z_{n+1})^2 - (\sigma_n^z)^2]$$

$$- 4 \text{sh} \eta \left(\frac{\eta}{2} \right) (\sigma_n^p \sigma_n^z + \sigma_n^z \sigma_n^p),$$

(4.10)

where

$$\sigma_n = \vec{S}_n \cdot \vec{S}_{n+1}, \quad \sigma_n^p = S_n^x S_{n+1}^x + S_n^y S_{n+1}^y, \quad \sigma_n^z = S_n^z S_{n+1}^z,$$

(4.11)

and \vec{S} are the standard spin-1 generators of $su(2)$. The boundary terms H_b have the form [15]

$$H_b = a_1(S_1^-)^2 + a_2 S_1^+ + a_3 (S_1^+)^2 + a_4 (S_1^-)^2 + a_5 S_1^+ S_1^- + a_6 S_1^- S_1^+$$

$$+ a_7 S_1^z S_1^z + a_8 S_1^z S_1^- + (a_j \leftrightarrow b_j \text{ and } 1 \leftrightarrow N),$$

(4.12)

doi:10.1088/1742-5468/2007/09/P09009

11
where $S^\pm = S^x \pm iS^y$. The coefficients $\{a_i\}$ of the boundary terms at site 1 are given in terms of the boundary parameters (α, β, θ) by

$$
a_1 = \frac{1}{4} a_0 \left(\text{ch} 2\alpha - \text{ch} 2\beta + \text{ch} \eta \right) \text{sh} 2\eta \text{sh} \eta, \nabla a_2 = \frac{1}{4} a_0 \text{sh} 2\alpha - \text{sh} 2\beta + 2\eta, \nabla a_3 = -\frac{1}{8} a_0 e^{2\theta} - \text{sh} 2\eta \text{sh} \eta, \nabla a_4 = -\frac{1}{8} a_0 e^{-2\theta} - \text{sh} 2\eta \text{sh} \eta, \nabla a_5 = a_0 e^{\theta} - \left(\text{ch} \beta \text{sh} \alpha \text{ch} \frac{\eta}{2} + \text{ch} \alpha \text{sh} \beta \text{sh} \frac{\eta}{2} \right) \text{sh} \eta \text{ch} \frac{\eta}{2}, \nabla a_6 = a_0 e^{-\theta} - \left(\text{ch} \beta \text{sh} \alpha \text{ch} \frac{\eta}{2} + \text{ch} \alpha \text{sh} \beta \text{sh} \frac{\eta}{2} \right) \text{sh} \eta \text{ch} \frac{\eta}{2}, \nabla a_7 = -a_0 e^{\theta} - \left(\text{ch} \beta \text{sh} \alpha \text{ch} \frac{\eta}{2} - \text{ch} \alpha \text{sh} \beta \text{sh} \frac{\eta}{2} \right) \text{sh} \eta \text{ch} \frac{\eta}{2}, \nabla a_8 = -a_0 e^{-\theta} - \left(\text{ch} \beta \text{sh} \alpha \text{ch} \frac{\eta}{2} - \text{ch} \alpha \text{sh} \beta \text{sh} \frac{\eta}{2} \right) \text{sh} \eta \text{ch} \frac{\eta}{2},
\tag{4.13}
$$

where

$$
a_0 = \left[\text{sh} \left(\alpha - \frac{\eta}{2} \right) \text{sh} \left(\alpha + \frac{\eta}{2} \right) \text{ch} \left(\beta - \frac{\eta}{2} \right) \text{ch} \left(\beta + \frac{\eta}{2} \right) \right]^{-1}. \tag{4.14}
$$

Moreover, the coefficients $\{b_i\}$ of the boundary terms at site N are given in terms of the boundary parameters $(\alpha_+, \beta_+, \theta_+)$ by

$$
b_i = a_i |_{\alpha = -\alpha_+, \beta = -\beta_+, \theta = \theta_+}. \tag{4.15}
$$

We now proceed to find an expression for the energies in terms of the Bethe roots. It follows from (4.7) that the eigenvalues of the Hamiltonian are given by

$$
E = c_1 \frac{d}{du} \tilde{\Lambda}^{(1,1)} g^J(u) \bigg|_{u=0} + c_0. \tag{4.16}
$$

Furthermore,

$$
\tilde{\Lambda}^{(1,1)} g^J(u) = \frac{\text{sh} (2u) \text{sh} (2u + 2\eta)}{[\text{sh} (u) \text{sh} (u + \eta)]^{2N}} \Lambda^{(1,1)}(u), \tag{4.17}
$$

where we have used (4.6) and the fact that $\Lambda^{(1,1)} g^J(u) = \Lambda^{(1,1)}(u)$. From the fusion hierarchy (2.16) with $j = s = 1$, we obtain (after performing the shift $u \rightarrow u + \eta/2$) the following relation between $\Lambda^{(1,1)}(u)$ and $\Lambda^{(1,1)}(u)$:

$$
\Lambda^{(1,1)}(u) = \Lambda^{(1,1)} \left(u - \frac{\eta}{2} \right) \Lambda^{(1,1)} \left(u + \frac{\eta}{2} \right) - \delta^{(1)} \left(u + \frac{\eta}{2} \right).
\tag{4.18}
$$

Recalling (2.18)

$$
\Lambda^{(1,1)}(u) = g^{(1,1)}(u) 2N \tilde{\Lambda}^{(1,1)}(u), \tag{4.19}
$$

and also our result (3.18) for $\tilde{\Lambda}^{(1,1)}(u)$, we finally arrive at an expression for the energies in terms of the Bethe roots

$$
E = \text{sh}^2(2\eta) \sum_{J=1}^{M(\pm)} \frac{1}{\text{sh}(\delta_j^{(\pm)} - \eta) \text{sh}(\delta_j^{(\pm)} + \eta)} + \text{N} \left(\text{sh} \frac{3\eta}{\text{sh} \eta} - 3 \right) + c^{(\pm)}, \tag{4.20}
$$

doi:10.1088/1742-5468/2007/09/P09009
Further support for the validity of the identification (3.1) of the Q operator as a transfer matrix for the case $s > 1$ is obtained with Λ whose auxiliary-space spin tends to infinity. The apparent correctness of this solution provides additional support for the validity of the identification (3.1) of the Q operator as a transfer matrix whose auxiliary-space spin tends to infinity.

The open spin-s XXZ chain

Table 5. The 17 energies and corresponding Bethe roots given by $\Lambda^{(\pm,1)}(-)(u)$ for $N=3$, $s=1$, $k=1$, $\eta=0.3i$, $\alpha_- = 0.7i$, $\beta_- = 0.2$, $\theta_- = 0.5i$, $\alpha_+ = 1.2i$, $\beta_+ = -0.2$, $\theta_+ = -1.1i$, $\{\epsilon_i\} = +1$.

E	Bethe roots $\tilde{v}_j^{(\pm)}$
−8.78796	0.078 1924 ± 0.150 582i, 0.573709
−7.99601	0.377 364 + 1.5708i, 0.0718 753 ± 0.150 316i
−5.5443	0.191 917 ± 0.145 165i, 0.529 223
−5.07143	0.375 505 + 1.5708i, 0.164 075 ± 0.148 506i
−4.31229	0.158 193 ± 0.299 905i, 0.158 448
−3.36195	0.166 008, 0.717 455 ± 0.259 354i
−2.87198	0.358 903 + 1.5708i, 0.156 172, 0.784 233
−2.86245	0.334 66 ± 0.286 332i, 0.337 633
−2.69332	0.371 101 + 1.5708i, 0.292 713 ± 0.157 296i
−2.31742	0.290 731 + 1.5708i, 0.617 492 + 1.5708i, 0.146 609
−1.52379	0.484 424, 0.621 449 ± 0.318 594
−1.18428	0.356 639 + 1.5708i, 0.464 322, 0.659 312
−0.780678	0.288 176 + 1.5708i, 0.610 874 + 1.5708i, 0.368 261
−0.379026	0.879 352 ± 0.483 137i, 0.944 398
−0.0249248	0.337 585 + 1.5708i, 0.934 391 ± 0.266 345i
0.389221	0.277 491 + 1.5708i, 0.580 415 + 1.5708i, 0.973 89
0.838 091	0.245 314 + 1.5708i, 0.477 481 + 1.5708i, 0.814 847 + 1.5708i

where $\tilde{v}_j^{(\pm)} = v_j^{(\pm)} + \eta/2$ as in (3.21), and $c^{(\pm)}$ are constants whose cumbersome expressions we refrain from presenting here. (These constants are independent of N, but do depend on the bulk and boundary parameters and on $\{\epsilon_i\}$.)

We have verified that the energies given by the Bethe ansatz (4.20) coincide with those obtained by direct diagonalization of the Hamiltonian (4.9) for values of N up to 4. For the case $N=3$, some sample results are presented in tables 5 and 6, for boundary parameter values corresponding to $k=1$. Hence, as already noted in table 2, 17 levels are obtained with $\Lambda^{(\pm,1)}(-)(u)$ and are listed in table 5; and 10 levels are obtained with $\Lambda^{(\pm,1)}(+)(u)$ and are listed in table 6. Together, they give all 27 energies obtained by direct diagonalization of the Hamiltonian.

For $s > 1$, it is in principle possible to proceed in a similar way. However, the computations become significantly more cumbersome, and we shall not pursue them further.

5. Discussion

We have found a Bethe ansatz solution for the open spin-s XXZ chain with general integrable boundary terms (3.18)–(3.21), which is valid for generic values of the bulk anisotropy parameter η, provided that the boundary parameters satisfy the constraints (3.14), (3.16) and (3.17). We have presented numerical evidence that this solution is complete, and we have explicitly exhibited the Hamiltonian and its relation to the transfer matrix for the case $s=1$. The apparent correctness of this solution provides further support for the validity of the identification (3.1) of the Q operator as a transfer matrix whose auxiliary-space spin tends to infinity.

doi:10.1088/1742-5468/2007/09/P09009 13
Table 6. The 10 energies and corresponding Bethe roots given by \(\tilde{\Lambda}^{(1/2,s)}(\pm)(u) \) for \(N = 3, s = 1, k = 1, \eta = 0.3i, \alpha_- = 0.7i, \beta_- = 0.2, \theta_- = 0.5i, \alpha_+ = 1.2i, \beta_+ = -0.2, \theta_+ = -1.1i, \{ \epsilon_i \} = +1 \).

\(E \)	Bethe roots \(\tilde{v}^{(+)}_j \)
-9.55066	0.090 0396 ± 0.151 265i
-5.71507	0.244 797 ± 0.132 886i
4.09573	1.500 13i, 0.182 899
-3.74447	0.786 256i, 0.174 481
-3.02558	0.514 399 ± 0.220 939i
-2.07231	1.485 15i, 0.620 007
-1.79241	0.805 71i, 0.568 604
-1.1462	0.350 408 + 1.5708i, 1.384 63i
-0.791024	0.093 628 + 1.5708i, 0.842 728i
-0.634944	0.979 155i, 0.863 041i

A drawback of this solution is that for \(|k| \leq 2sN - 1 \), one does not know \textit{a priori} in which of the two ‘sectors’ (i.e., \(\tilde{\Lambda}^{(1/2,s)}(-)(u) \) or \(\tilde{\Lambda}^{(1/2,s)}(+)(u) \)) a given level—such as the ground state—will be. For the case \(s = 1/2 \), alternative Bethe ansatz-type solutions have been found [31] which do not suffer from this difficulty, and for which the boundary parameters do not need to obey the constraints (3.14), (3.16) and (3.17). However, those solutions hold only for values of bulk anisotropy corresponding to roots of unity. (For yet another approach to this problem, see [28].) Perhaps such solutions can also be generalized to higher values of \(s \).

Part of our motivation for considering this problem comes from the relation of the \(s = 1 \) case to the supersymmetric sine-Gordon (SSG) model [39], in particular, its boundary version [40]. Indeed, Bethe ansatz solutions of the spin-1 \textit{XXZ} chain have been used to derive non-linear integral equations (NLIEs) for the SSG model on a circle [41] and on an interval with Dirichlet boundary conditions [42]. With our solution in hand, one can now try to derive an NLIE for the SSG model on an interval with general integrable boundary conditions, and try to make contact with previously proposed boundary actions and boundary \(S \) matrices [40].

Acknowledgments

RN gratefully acknowledges the hospitality and support extended to him at LAPTH, and discussions with V Bazhanov and M Wachs. This work was supported in part by the National Science Foundation under Grants PHY-0244261 and PHY-0554821.

Appendix. Conjectured relations for the fusion hierarchy

One way to derive the fusion hierarchy (2.16) relies on the existence of the relations

\[
P^{+}_{12...2j-1}P^{-}_{12...2j}P^{+}_{12...2j-1} = P^{+}_{12...2j-2}P^{-}_{2j-1,2j} + \sum_{k=1}^{2j-1} P^{+}_{k,k+1}X^{(k)}P^{-}_{k,k+1}, \quad j = \frac{3}{2}, 2, \ldots, (A.1)
\]

doi:10.1088/1742-5468/2007/09/P09009 14
where \(P_{12...n}^- \equiv 1 - P_{12...n}^+ \), for some set of matrices \(\{X^{(1)}, \ldots, X^{(j-1)}\} \). To our knowledge, these relations have not been proved for general values of \(j \). However, we have verified them up to \(j = 3 \). In particular, for \(j = 3/2 \),

\[
X^{(1)} = \frac{1}{2}(P_{23} - P_{13}), \quad X^{(2)} = \frac{1}{3}(P_{12} - P_{13}).
\] (A.2)

This result is equivalent to an identity found by Kulish and Sklyanin, see equation (4.15) in the second reference of [2]. For \(j = 2 \), we find

\[
X^{(1)} = \frac{1}{12}(P_{23} - P_{13} + P_{24} - P_{14} + 2P_{13}P_{24} - 2P_{14}P_{23}),
\]

\[
X^{(2)} = \frac{1}{6}(P_{13} - P_{12} + P_{34} - P_{24} + 2P_{12}P_{34} - 2P_{13}P_{24}),
\] (A.3)

Moreover, for \(j = 5/2 \),

\[
X^{(1)} = \frac{2}{5}P_{15}P_{14} + \frac{1}{5}P_{15}P_{24} - \frac{2}{5}P_{15}P_{34} + \frac{1}{2}P_{35}P_{14} - \frac{1}{10}P_{35}P_{13} - \frac{1}{10}P_{35}P_{14} - \frac{1}{6}P_{45}P_{13} - \frac{4}{15}P_{14}P_{13},
\]

\[
X^{(2)} = \frac{1}{5}P_{15}P_{24} + \frac{1}{15}P_{15}P_{13} - \frac{2}{5}P_{25}P_{14} + \frac{2}{5}P_{25}P_{24} + \frac{4}{15}P_{25}P_{34} - \frac{2}{15}P_{25}P_{13} - \frac{7}{15}P_{45}P_{24} - \frac{1}{15}P_{45}P_{13} + \frac{2}{15}P_{14}P_{13},
\]

\[
X^{(3)} = \frac{2}{5}P_{15}P_{14} - \frac{3}{10}P_{15}P_{24} + \frac{1}{10}P_{25}P_{14} + \frac{3}{10}P_{25}P_{24} - \frac{2}{5}P_{35}P_{14} - \frac{1}{5}P_{35}P_{13} - \frac{2}{5}P_{35}P_{12} - \frac{2}{5}P_{55}P_{14} - \frac{2}{5}P_{55}P_{13} - \frac{2}{5}P_{55}P_{12},
\]

\[
X^{(4)} = -\frac{4}{5}P_{15}P_{14} + \frac{2}{5}P_{15}P_{24} + \frac{2}{5}P_{35}P_{14} - \frac{2}{5}P_{55}P_{14}.
\] (A.4)

We omit our lengthy results for \(j = 3 \). We emphasize that the matrices \(\{X^{(k)}\} \) are by no means unique: for instance, only the antisymmetric part \(X_{1...k,k+1...2j}^{(k)} - X_{1...k+1,k...2j}^{(k)} \) matters in the expression of \(X^{(k)} \). In fact, for the purpose of deriving the fusion hierarchy, the explicit matrices are not important, as the terms \(\sum_k P_{k,k+1}^{(k)} X^{(k)} P_{k,k+1}^{-1} \) in (A.1) do not contribute. What is important is only the fact that such matrices exist.

We also observe that the symmetrizer \(P_{1...n}^+ \) (2.3) can be expressed as a sum of products of commuting permutations:

\[
P_{1...n}^+ = a_0^{(n)} + \sum_{\ell=1}^{[n/2]} a_{\ell}^{(n)} \sum_{\sigma \in S_n} \prod_{\sigma(1)<\sigma(2)} \cdots \prod_{\sigma(2\ell-1)<\sigma(2\ell)} P_{\sigma(1)\sigma(2)} \cdots P_{\sigma(2\ell-1)\sigma(2\ell)},
\] (A.5)

where \(S_n \) is the permutation group of \(n \) indices. The coefficients \(a_{\ell}^{(n)} \) are given by the recursion relations

\[
a_0^{(n+1)} = \frac{1}{n+1} \left(a_0^{(n)} - n!a_1^{(n)} \right),
\] (A.6)

\[
a_1^{(n+1)} = \frac{1}{(n+1)^2} \left(\frac{1}{(n-1)!} a_0^{(n)} + 4a_1^{(n)} - 2a_2^{(n)} \right),
\] (A.7)

\[
a_{\ell}^{(n+1)} = \frac{3\ell + 1}{(n+1)^2} a_{\ell}^{(n)} - \frac{\ell + 1}{(n+1)^2} a_{\ell+1}^{(n)} + \frac{n + 2 - 2\ell}{(n+1)^2} a_{\ell-1}^{(n)}, \quad 2 \leq \ell \leq [n/2],
\] (A.8)

\[
a_{[n/2]+1}^{(n+1)} = \frac{n - 2[n/2]}{(n+1)^2} a_{[n/2]}^{(n)}.
\] (A.9)
with \(a_0^{(1)} = 1 \) and the convention \(a_i^{(n)} = 0 \) when \(n > [n/2] \). Above, \([\]\) denotes the integer part. Note that \(a_0^{(1)} = 1 \) is consistent with our previous convention \(\mathcal{P}_{11} = 1 \), which implies \(P_1^+ = 1 \) and \(P_1^- = 0 \). From the recursion, one then finds e.g. \(a_0^{(2)} = \frac{1}{2} \) and \(a_1^{(2)} = \frac{1}{2} \), which reproduces the result \(P_{12}^+ = \frac{1}{2} (1 + \mathcal{P}_{12}) \). Let us stress that, because of the sum on all permutations in \(S_n \), a term containing \(\ell \) permutations has a multiplicity \(\ell! (n - 2\ell)! 2^\ell \) with respect to a ‘reduced’ expression, where all the terms appear just once. Identity \((A.5)\) may help in the proof of the conjecture \((A.1)\).

One can prove relation \((A.5)\) by recursion. Starting from the relation at level \(n \), the recursion relation

\[
(n + 1)P^+_{1...n+1} = \left(1 + \sum_{\ell=1}^{n} \mathcal{P}_{\ell,n+1}\right) P^+_{1...n} = P^+_{1...n} \left(1 + \sum_{\ell=1}^{n} \mathcal{P}_{n+1}\right)
\]

and the identity (valid for any spaces \(a, b, c \))

\[
\mathcal{P}_{ab}(\mathcal{P}_{ab} + \mathcal{P}_{ac} + \mathcal{P}_{bc}) = \mathcal{P}_{ab} + \mathcal{P}_{ac} + \mathcal{P}_{bc}
\]

show that the relation is also obeyed at level \(n + 1 \). A careful analysis of the different terms leads to the relations \((A.6)-(A.9)\).

References

[1] Zamolodchikov A B and Fateev V A, Model factorized \(S \) matrix and an integrable Heisenberg chain with spin 1, 1980 Sov. J. Nucl. Phys. 32 298
[2] Kulish P P, Reshetikhin N Yu and Sklyanin E K, Yang–Baxter equation and representation theory. I, 1981 Lett. Math. Phys. 5 393
Kulish P P and Sklyanin E K, Quantum spectral transform method, recent developments, 1982 Lecture Notes in Physics vol 151 (Berlin: Springer) p 61
[3] Kulish P P and Reshetikhin N Yu, Quantum linear problem for the sine–Gordon equation and higher representation, 1983 J. Sov. Math. 23 2435
[4] Babujian H M, Exact solution of the isotropic Heisenberg chain with arbitrary spins: thermodynamics of the model, 1983 Nucl. Phys. B 215 317
Takhtajan L A, The picture of low-lying excitations in the isotropic Heisenberg chain of arbitrary spins, 1982 Phys. Lett. A 87 479
[5] Sogo K, Ground state and low-lying excitations in the Heisenberg XXZ chain of arbitrary spin \(S \), 1984 Phys. Lett. A 104 51
Babujian H M and Tsvelick A M, Heisenberg magnet with an arbitrary spin and anisotropic chiral field, 1986 Nucl. Phys. B 265 24 [FS15]
Kirillov A N and Reshetikhin N Yu, Exact solution of the Heisenberg XXZ model of spin \(s \), 1986 J. Sov. Math. 35 2627
Kirillov A N and Reshetikhin N Yu, Exact solution of the integrable XXZ Heisenberg model with arbitrary spin. I. The ground state and the excitation spectrum, 1987 J. Phys. A: Math. Gen. 20 1565
[6] Baxter R J and Pearce P A, Hard hexagons: interfacial tension and correlation length, 1982 J. Phys. A: Math. Gen. 15 897
Bazhanov V V and Reshetikhin N Yu, Critical RSOS models and conformal field theory, 1989 Int. J. Mod. Phys. A 4 115
[7] Gaudin M, Boundary energy of a Bose gas in one dimension, 1971 Phys. Rev. A 4 386
Gaudin M, 1983 La Fonction d’onde de Bethe (Paris: Masson)
Alcaraz F C, Barber M N, Batchelor M T, Baxter R J and Quispel G R W, Surface exponents of the quantum XXZ, Ashkin–Teller and Potts models, 1987 J. Phys. A: Math. Gen. 20 6397
[8] Sklyanin E K, Boundary conditions for integrable quantum systems, 1988 J. Phys. A: Math. Gen. 21 2375
[9] Cherednik I V, Factorizing particles on a half line and root systems, 1984 Theor. Math. Phys. 61 977
[10] Mezincescu L, Nepomechie R I and Rittenberg V, Bethe ansatz solution of the Fateev–Zamolodchikov quantum spin chain with boundary terms, 1990 Phys. Lett. A 147 70

doi:10.1088/1742-5468/2007/09/P09009
The open spin-\(s\) XXZ chain

[11] Mezincescu L and Nepomechie R I, Fusion procedure for open chains, 1992 J. Phys. A: Math. Gen. 25 2533
[12] Yung C M and Batchelor M T, Integrable vertex and loop models on the square lattice with open boundaries via reflection matrices, 1995 Nucl. Phys. B 435 430 [hep-th/9410042]
[13] Behrend R E, Pearce P A and O’Brien D L, Interaction-round-a-face models with fixed boundary conditions: the ABF fusion hierarchy, 1996 J. Stat. Phys. 84 1 [hep-th/9507148]
[14] Zhou Y-K, Row transfer matrix functional relations for Baxter’s eight-vertex and six-vertex models with open boundaries via more general reflection matrices, 1996 Nucl. Phys. B 458 504 [hep-th/9510095]
[15] Inami T, Odake S and Zhang Y-Z, Reflection K matrices of the 19 vertex model and XXZ spin 1 chain with general boundary terms, 1996 Nucl. Phys. B 470 419 [hep-th/9610049]
[16] Fireman E C, Lima-Santos A and Utiel W, Bethe ansatz solution for quantum spin-1 chains with boundary terms, 2002 Nucl. Phys. B 626 435 [nlin/0110048]
[17] de Vega H J and González-Ruiz A, Boundary K-matrices for the six vertex and the \(n(2n - 1)A_{n-1}\) vertex models, 1993 J. Phys. A: Math. Gen. 26 L519 [hep-th/9211114]
[18] Ghoshal S and Zamolodchikov A B, Boundary S-matrix and boundary state in two-dimensional integrable quantum field theory, 1994 Int. J. Mod. Phys. A 9 3841 [hep-th/9306002]
[19] Cao J, Lin H-Q, Shi K-J and Wang Y, Exact solutions and elementary excitations in the XXZ spin chain with unparallel boundary fields, 2002 Preprint cond-mat/0212163
Cao J, Lin H-Q, Shi K-J and Wang Y, Exact solution of XXZ spin chain with unparallel boundary fields, 2003 Nucl. Phys. B 663 487
[20] Nepomechie R I, Functional relations and Bethe ansatz for the XXZ chain, 2003 J. Stat. Phys. 111 1363 [hep-th/0211001]
Nepomechie R I, Bethe ansatz solution of the open XXZ chain with nondiagonal boundary terms, 2004 J. Phys. A: Math. Gen. 37 343 [hep-th/0304092]
[21] Nepomechie R I and Ravanini F, Completeness of the Bethe ansatz solution of the open XXZ chain with nondiagonal boundary terms, 2003 J. Phys. A: Math. Gen. 36 11391 [hep-th/0307065]
Nepomechie R I and Ravanini F, 2004 J. Phys. A: Math. Gen. 37 1945 (addendum)
[22] Yang W-L and Zhang Y-Z, On the second reference state and complete eigenstates of the open XXZ chain, 2007 J. High Energy Phys. JHEP04(2007)044 [hep-th/0703222]
[23] Doikou A and Martin P P, On quantum group symmetry and Bethe ansatz for the asymmetric twin spin chain with integrable boundary, 2006 J. Stat. Mech. P06004 [hep-th/0503019]
Doikou A, The open XXZ and associated models at \(q\) root of unity, 2006 J. Stat. Mech. P09010 [hep-th/0603112]
[24] de Gier J and Pyatov P, Bethe ansatz for the Temperley-Lieb loop model with open boundaries, 2004 J. Stat. Mech. P03002 [hep-th/0312235]
Nichols A, Rittenberg V and de Gier J, One-boundary Temperley-Lieb algebras in the XXZ and loop models, 2005 J. Stat. Mech. P05003 [cond-mat/0411512]
de Gier J, Nichols A, Pyatov P and Rittenberg V, Magic in the spectra of the XXZ quantum chain with boundaries at \(\Delta = 0\) and \(\Delta = -1/2\), 2005 Nucl. Phys. B 729 387 [hep-th/0505062]
de Gier J and Essler F H L, Bethe ansatz solution of the asymmetric exclusion process with open boundaries, 2005 Phys. Rev. Lett. 95 240601 [cond-mat/0508707]
de Gier J and Essler F H L, Exact spectral gaps of the asymmetric exclusion process with open boundaries, 2006 J. Stat. Mech. P12011 [cond-mat/0609645]
[25] Arnaudon D, Avan J, Crampe N, Doikou A, Frappat L and Ragoucy E, General boundary conditions for the sl(4) and sl(M|N) open spin chains, 2004 J. Stat. Mech. P08005 [math-ph/0406021]
[26] Galleas W and Martins M J, Solution of the SU(N) vertex model with non-diagonal open boundaries, 2005 Phys. Lett. A 335 167 [nlin.SI/0407027]
Melo C S, Ribeiro G A P and Martins M J, Bethe ansatz for the XXX-S chain with non-diagonal open boundaries, 2005 Nucl. Phys. B 711 565 [nlin.SI/0411038]
[27] Yang W-L, Zhang Y-Z and Gould M, Exact solution of the XXZ Gaudin model with generic open boundaries, 2004 Nucl. Phys. B 698 503 [hep-th/0411048]
Yang W-L and Zhang Y-Z, Exact solution of the \(A_{n-1}^{(2)}\) trigonometric vertex model with non-diagonal open boundaries, 2005 J. High Energy Phys. JHEP01(2005)021 [hep-th/0411190]
Yang W-L, Zhang Y-Z and Sasa k R, \(A_{n-1}\) Gaudin model with open boundaries, 2005 Nucl. Phys. B 729 594 [hep-th/0507148]
[28] Basileihaec P and Koizumi K, A deformed analogue of Onsager’s symmetry in the XXZ open spin chain, 2005 J. Stat. Mech. P10005 [hep-th/0507053]
Basileihaec P, The \(q\)-deformed analogue of the Onsager algebra: beyond the Bethe ansatz approach, 2006 Nucl. Phys. B 754 309 [math-ph/0604036]
doi:10.1088/1742-5468/2007/09/P09009
Inami T, Odake S and Zhang Y-Z, Supersymmetric extension of the sine–Gordon theory with integrable
Finite size effects in the spin-1

Ahn C, Nepomechie R I and Suzuki J, Bethe ansatz derived from the functional relations of the open XXZ chain
for new special cases, 2005 J. Stat. Mech. P05007 [hep-th/0504124]
Murgan R and Nepomechie R I, Generalized T–Q relations and the open XXZ chain, 2005 J. Stat. Mech. P08002 [hep-th/0507139]
Murgan R, Nepomechie R I and Shi C, Exact solution of the open XXZ chain with general integrable
boundary terms at roots of unity, 2006 J. Stat. Mech. P08006 [hep-th/0605223]

Doikou A, Fused integrable lattice models with quantum impurities and open boundaries, 2003 Nucl. Phys. B 668 447 [hep-th/0303205]

Di Vecchia P and Ferrara S, Classical solutions in two-dimensional supersymmetric field theories, 1977 Nucl. Phys. B 130 93
Hruby J, On the supersymmetric sine–Gordon model and a two-dimensional ‘bag’, 1977 Nucl. Phys. B 131 275
Ferrara S, Girardello L and Scinto S, An infinite set of conservation laws of the supersymmetric
sine–Gordon theory, 1978 Phys. Lett. B 76 303

Shankar R and Witten E, The S matrix of the supersymmetric nonlinear sigma model, 1978 Phys. Rev. D 17 2134

Ahn C, Bernard D and LeClair A, Fractional supersymmetries in perturbed coset CFTs and integrable
soliton theory, 1990 Nucl. Phys. B 346 409
Ahn C, Complete S matrices of supersymmetric sine–Gordon theory and perturbed superconformal minimal
model, 1991 Nucl. Phys. B 354 57

Inami T, Odake S and Zhang Y-Z, Supersymmetric extension of the sine–Gordon theory with integrable
boundary interactions, 1995 Phys. Lett. B 359 118 [hep-th/9506157]
Nepomechie R I, The boundary supersymmetric sine–Gordon model revisited, 2001 Phys. Lett. B 509 183 [hep-th/0103029]
Bajnok Z, Pallà L and Takács G, Spectrum of boundary states in N = 1 SUSY sine–Gordon theory, 2002 Nucl. Phys. B 644 509 [hep-th/0207099]

Dunning C, Finite size effects and the supersymmetric sine–Gordon models, 2003 J. Phys. A: Math. Gen. 36 5463 [hep-th/0210225]
Suzuki J, Excited states nonlinear integral equations for an integrable anisotropic spin 1 chain, 2004 J. Phys. A: Math. Gen. 37 11957 [hep-th/0410243]
Hegedűs Á, Ravanini F and Suzuki J, Exact finite size spectrum in super sine–Gordon model, 2007 Nucl. Phys. B 763 330 [hep-th/0610012]
Ahn C, Nepomechie R I and Suzuki J, Finite size effects in the spin-1 XXZ and supersymmetric
sine–Gordon models with Dirichlet boundary conditions, 2007 Nucl. Phys. B 767 250 [hep-th/0611136]