Characterization of 19 Microsatellite Loci in the Clonal Monkshood Aconitum kusnezoffii (Ranunculaceae)

Authors: Ge, Xing-Yue, Tian, Hao, and Liao, Wan-Jin

Source: Applications in Plant Sciences, 4(6)

Published By: Botanical Society of America

URL: https://doi.org/10.3732/apps.1500141
CHARACTERIZATION OF 19 MICROSATELITE LOCI IN THE CLONAL MONKSHOOD *Aconitum kusnezoffii* (Ranunculaceae)\(^1\)

XING-YUE GE\(^2,3,4\), HAO TIAN\(^2,3,4\), AND WAN-JIN LIAO\(^2,3,5\)

\(^2\)State Key Laboratory of Earth Surface Processes and Resource Ecology, College of Life Sciences, Beijing Normal University, Beijing 100875, People’s Republic of China; and \(^3\)Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, College of Life Sciences, Beijing Normal University, Beijing 100875, People’s Republic of China

Primer Note

Key words: *Aconitum kusnezoffii*; clonal growth; genomic enrichment cloning; microsatellite; Ranunculaceae; reproductive success

Clonal growth typically results in plants concurrently exhibiting sexual and asexual reproduction. This type of clonal growth is thought to have mixed effects on sexual fitness (Vallejo-Marín et al., 2010; Liao and Harder, 2014; Barrett, 2015; Van Drunen et al., 2015). *Aconitum kusnezoffii* Rchb. (Ranunculaceae), a hermaphroditic and self-compatible perennial herb, grows clonally via root tubers to form a clumped clonal architecture and therefore provides an ideal system for evaluating the effects of clonality on plant sexual reproduction (Liao et al., 2009; Hu et al., 2015). Moreover, *A. kusnezoffii* and many Delphinieae species have attracted a great deal of research attention that has focused on the molecular bases and evolution of floral zygomorphy, perianths, and nectar spurs (Jabbour and Renner, 2012).

To gain a better understanding of the potential effects of clonality on sexual reproduction, male and female fitness with respect to sexual reproduction should be thoroughly evaluated. The most common approach for evaluating male and female reproductive success is to conduct paternity analyses in isolated populations based on molecular markers (e.g., this approach has been used for *Juglans mandshurica* Maxim. [Bai et al., 2007]). Due to their high degree of polymorphisms and codominance, microsatellites have been widely used in various plants to estimate mating systems and quantify male and female reproductive success. Here, we characterize the first set of 13 polymorphic microsatellite loci in three populations of *A. kusnezoffii*. We also test cross-amplification in two related species, *A. barbatum* Pers. var. *puberulum* Ledeb. and *A. alboviolaceum* Kom., because these three *Aconitum* L. species are sympatric in western Beijing and exhibit different floral colors. This set of microsatellite markers will facilitate further studies that estimate reproductive success and evaluate the effects of clonality on sexual reproduction.

METHODS AND RESULTS

Aconitum kusnezoffii reproduces clonally through root tubers, resulting in a clumped architecture. Therefore, each clone is separately distributed in populations and can be easily identified. We randomly sampled more than 24 clones with a distance of more than 3 m among sampled clones from each of the three *A. kusnezoffii* populations (Appendix 1) and collected one leaf from each clone for the molecular experiments.

We applied a genomic enrichment approach to identify microsatellite loci from the genome of *A. kusnezoffii*, using a protocol based on procedures described by Zane et al. (2002). Genomic DNA of nine individuals was extracted from dried leaves using a Plant Genomic Purification Kit (TIANGEN, Beijing, China). Approximately 250 ng of genomic DNA was digested with 5 units of *Mse*I (New England Biolabs, Ipswich, Massachusetts, USA), and the digested fragments were ligated with *Mse*I adapters and amplified with adapter-specific primers. Purified PCR products were hybridized with probes consisting of 15 repetitive sequences of AT, AC, AG, CAG, GAC, and GATA (Sangon Biotech, Shanghai, China). Streptavidin-coated magnetic beads (Promega Corporation, Madison, Wisconsin, USA) were used to capture fragments hybridized to the probes. Enriched microsatellite fragments were sequenced by DNA cloning. A total of 356 sequences ranging from 300 to 800 bp in length were obtained; 127 primer pairs for these sequences were designed using Primer Premier 5.0 (PREMIER Biosoft International, Palo Alto, California, USA). We chose primers with lengths of 15–30 bp and similar annealing temperatures between forward and reverse primers. The annealing temperatures for all the isolated microsatellite loci ranged from 47°C to 60°C.

\(^1\)Manuscript received 16 December 2015; revision accepted 10 February 2016.

\(^2\)The authors thank the National Natural Science Foundation of China (31421063) for financial support.

\(^3\)These authors contributed equally to this work.

\(^4\)Author for correspondence: liaowj@bnu.edu.cn

doi:10.3732/apps.1500141

Applications in Plant Sciences 2016 4(6): 1500141; http://www.bioone.org/loi/apps © 2016 Ge et al. Published by the Botanical Society of America. This work is licensed under a Creative Commons Attribution License (CC-BY-NC-SA).
Table 1. Characteristics of 19 microsatellite loci identified in *Aconitum kusnezoffii*.

Locus	Primer sequences (5′–3′)	Repeat motif	Allele size range (bp)	T_a (°C)^a	GenBank accession no.
Ak1	F: GGACAAGTAATGCCGATGGA	(TC)₁₂	469–477	TD60–45	KU302084
	R: CTAGTGTTGATGAGCCAGTA	(GT)₁₀	390–420	57	KU302085
Ak3	F: CTTATTCAAGGCGGACTT	(CA)₈	280–340	53	KU302086
	R: TCTAGGGGACGATCGATAGT				
Ak4	F: TTCGTTGAGACGCTAGGAGG	(TA)_{TG}	210–250	49	KU302089
	R: ATCCATATGGCCGATTTTCCAG				
Ak7	F: AATCAAAGTCTACAGGG	(CA)₆	240–260	TD60–45	KU302090
	R: GAATAGGATGCGTCAGTT				
Ak8	F: CTTCTCACCATCACTGCGCA	(GAG)₃(GAA)₄(GAT)₃	281–289	51	KU302091
	R: GATGTCCATCATGTTCCCTC				
Ak9	F: TACGCTCTACATTGGACAGAGG	(AC)₁₁	164–190	50	KU302092
	R: TGGCAAGGTTGAGGTTGAGG				
Ak10	F: TGGTATTTGGTGGCGCAGCTG	(CA)₈	270–330	52	KU302094
	R: AATGACTGCTCCGATCGAAAC				
Ak11	F: TGTGAGCTGGACGCGCAT	(AC)₅	340–360	49	KU302095
	R: TCTGTCGCTGGCCACGCTTC				
Ak12	F: TCGCCGATACGGACGACGACG	(TG)₁₇	400–450	50	KU302088
	R: ATGAAACCTCCGACGACAG				
Ak13	F: TTCTTCATCCCTTCTC	(TG)₁₃	210–250	49	KU302089
	R: GGGTGGATTCGGTTATAGAGG				
Ak14	F: TGTGTAGACTGAGTGGCAGC	(TC)₈	212	50	KU302097
	R: GGGTCTGGAGGGTGAGGTG				
Ak15	F: AATACGTCGTCACGCAAGCCG	(AC)₅	420–480	49	KU302096
	R: TCTGTCGCTGGCCACGCTTC				
Ak16	F: AGGCTTCATCTTCACCGAC	(AG)₁₀	356	49	KU302098
	R: CCTCAAATCTCAAACGAGC				
Ak17	F: TGGTAGACGCTGGAGGAT	(CT)₁₅	247	49	KU302091
	R: GGGTGATTGCTGATAGAGGAGTTG				
Ak18	F: GCACCGCTACGCCACGAGAC	(CT)₁₅	247	49	KU302091
	R: GGGTCTGGAGGGTGAGGTG				
Ak19	F: CCTACCCGGCTTCCTTCTCTC	(CA)₅	309	50	KU302012
	R: CCATCCTCCTTCACCGCTTC				

Note: T_a = annealing temperature.

* A touchdown (TD) protocol was applied. Annealing started at the highest temperature and decreased by 0.5°C each PCR cycle.

PCR amplification with these primer pairs was conducted as follows, using Veriti thermal cyclers (Applied Biosystems, Grand Island, New York, USA). Each PCR amplification included approximately 50 ng genomic DNA, 2.5 mM Mg₂₊, 0.5 mM forward and reverse primers, 0.2 mM dNTPs, and 1 unit Taq polymerase (TaKaRa Biotechnology Co., Dalian, Liaoning, China) in a final volume of 20 μL. Gradient PCRs were performed as follows: 95°C for 5 min; 30 cycles of 95°C for 30 s, 49–57°C for 45 s, and 72°C for 45 s; and a final extension at 72°C for 7 min. The PCR products of another eight individuals were run on 1.5% agarose gel.

Table 2. Genetic diversity in three *Aconitum kusnezoffii* populations based on the 13 newly developed polymorphic microsatellite loci.

Locus	A	DLS (n = 33)	NLY (n = 24)	WMG (n = 24)					
		H_e	H_o	H_e	H_o	H_e	H_o		
Ak1	4	0.222	0.330	4	0.125	0.498	4	0.044	0.125
Ak2	6	0.444	0.667	5	0.500	0.639	4	0.417	0.554
Ak3	3	0.261	0.584	4	0.286	0.505	4	0.609	0.660
Ak4	2	0.483	0.373	2	0.500	0.383	2	0.583	0.422
Ak5	2	0.433	0.481	2	0.417	0.422	2	0.500	0.507
Ak6	8	0.325	0.801	7	0.125	0.813	8	0.333	0.784
Ak7	3	0.054	0.341	2	0.250	0.223	2	0.083	0.082
Ak8	2	0.750	0.476	2	0.583	0.479	2	0.333	0.337
Ak9	2	0.107	0.223	3	0.083	0.231	3	0.381	0.508
Ak10	2	0.897	0.508	2	0.478	0.476	2	0.522	0.510
Ak11	2	0.368	0.462	2	0.353	0.513	3	0.191	0.441
Ak12	2	0.800	0.488	2	0.792	0.489	2	0.667	0.479
Ak13	3	0.625	0.446	3	0.542	0.414	4	0.667	0.520

Note: A = number of alleles; H_e = expected heterozygosity; H_o = observed heterozygosity; n = number of individuals sampled.

Voucher and locality information are provided in Appendix 1.

http://www.bioone.org/loi/apps
Table 3. Genetic properties of the microsatellite loci developed for Aconitum kusnezoffii in single populations^a of A. barbatum var. puberulum and A. alboviolaceum.

Locus	A. barbatum var. puberulum (n = 24)	A. alboviolaceum (n = 24)
	Allele size range (bp)	Allele size range (bp)
Ak2	320–340	379
Ak3	350–390	2
Ak4	—	340–390
Ak6	160–220	2
Ak7	282	2
Ak9	345–370	2
Ak10	—	300–320
Ak11	360–380	2
Ak12	360–380	2

Note: — = not amplified; n = number of alleles; N = number of individuals sampled.

^aVoucher and locality information are provided in Appendix 1.

Nineteen primer pairs revealed unambiguously observable fragments in the expected size range. Forward primers for the 19 successfully amplified loci were labeled with FAM and used for amplifications with the same protocol. The loci Ak1 and Ak7 were amplified using the following touchdown protocol: 95°C for 5 min; 30 cycles of 95°C for 30 s, 60°C with a decrease of 0.5°C cycle for 45 s, and 72°C for 45 s; and a final extension at 72°C for 7 min (Table 1). The labeled PCR products were analyzed on an Applied Biosystems 3730 Genetic Analyzer with a GeneScan 500 LIZ Size Standard (Applied Biosystems), and the genotyping was scored using GeneMapper version 3.2 (Applied Biosystems).

All 19 successfully amplified microsatellite loci were used to estimate the genetic diversities in three populations of A. kusnezoffii. GENEPOP version 4.2 (Rousset, 2008) was used to calculate the number of alleles per locus and the observed and expected heterozygosity. Among the 19 loci, there were six monomorphic loci and 13 polymorphic loci in all three populations. The number of alleles per locus ranged from two to eight, with allele sizes ranging from 140 to 477 bp. Observed heterozygosity was 0.491 ± 0.251 (mean ± SD), ranging from 0.035–0.897 in the DLS population; 0.387 ± 0.208, ranging from 0.083–0.792 in the NLY population; and 0.410 ± 0.209, ranging from 0.044–0.667 in the WMG population. The expected heterozygosities were 0.475 ± 0.150, 0.468 ± 0.153, and 0.456 ± 0.191 in the DLS, NLY, and WMG populations, respectively (Table 2). Cross-amplifications demonstrated that the PCR products showed fragments of the expected size in six and seven microsatellite loci in A. barbatum var. puberulum and A. alboviolaceum, respectively (Table 3). Five of the six amplified loci in A. barbatum var. puberulum were polymorphic, with two to four alleles per locus, whereas six of the seven amplified loci in A. alboviolaceum were polymorphic, with two alleles per locus.

CONCLUSIONS

A total of 57 alleles were identified for 13 polymorphic loci in three A. kusnezoffii populations. This set of microsatellite loci will be a valuable tool for future studies on estimating reproductive success and evaluating the effects of clonality on sexual reproduction.

LITERATURE CITED

Bai, W. N., Y. F. Zeng, and D. Y. Zhang. 2007. Mating patterns and pollen dispersal in a heterodichogamous tree, Juglans mandshurica (Juglandaceae). New Phytologist 176: 699–707.

Barrett, S. H. 2015. Influences of clonality on plant sexual reproduction. Proceedings of the National Academy of Sciences, USA 112: 8859–8866.

Hu, Y., S. C. H. Barrett, D. Y. Zhang, and W. J. Liao. 2015. Experimental analysis of mating patterns in a clonal plant reveals contrasting modes of self-pollination. Ecology and Evolution 5: 5423–5431.

Jabbour, F., and S. S. Renner. 2012. Spurs in a spur: Perianth evolution in the Delphinieae (Ranunculaceae), International Journal of Plant Sciences 173: 1036–1054.

Liao, W. J., and L. D. Harder. 2014. Consequences of multiple inflorescences and clonality for pollinator behavior and plant mating. American Naturalist 184: 580–592.

Liao, W. J., Y. Hu, B. R. Zhu, X. Q. Zhao, Y. F. Zeng, and D. Y. Zhang. 2009. Female reproductive success decreases with display size in monkshood, Aconitum kusnezoffii (Ranunculaceae). Annals of Botany 104: 1405–1412.

Rousset, F. 2008. GENEPOP’007: A complete re-implementation of the GENEPO software for Windows and Linux. Molecular Ecology Resources 8: 103–106.

Vallejo-Marín, M., M. E. Dorken, and S. C. H. Barrett. 2010. The ecological and evolutionary consequences of clonality for plant mating. Annual Review of Ecology, Evolution, and Systematics 41: 193–213.

Van Duren, W. E., M. Van Kleunen, and M. E. Dorken. 2015. Consequences of clonality for sexual fitness: Clonal expansion enhances fitness under spatially restricted dispersal. Proceedings of the National Academy of Sciences, USA 112: 8929–8936.

Zani, L., L. Bargelloni, and T. Patarnello. 2002. Strategies for microsatellite isolation: A review. Molecular Ecology 11: 1–16.