Partial Dynamical Symmetries in the $f_{7/2}$ and $g_{9/2}$ Shells

Larry Zamick

Department of Physics and Astronomy, Rutgers University, Piscataway, New Jersey 08854

Abstract

Previous work on partial dynamical symmetries in the $f_{7/2}$ shell is extended to other shells e.g. $g_{9/2}$. The nuclei involved are 43Sc, 43Ti, 44Ti, 52Fe, 53Fe, 54Co, 96Cd, 97Cd and 97In.

Previously we found partial dynamical symmetries (PDS) in the $f_{7/2}$ shell when, in a single j shell model calculation we set all $T=0$ two body matrix elements to zero[1,2,3,4,5]. We found that for selected angular momenta J_p and J_n were separately good quantum numbers—not just total J. Further states with a given (J_p,J_n) were all degenerate in energy for these selected states.

It took a while but it was finally realized that the selected states were those with angular momenta that could not occur for a system of identical particles. For example in 43Ca there are no states in the $f_{7/2}$ model space with angular momenta $J=1/2$ and $J=13/2$. Therefore states in 43Sc with these total J values are degenerate and have as good quantum numbers $(J_p=4, J_n=7/2)$. A similar story for $J=17/2$ and $19/2$. Here the good quantum numbers are $(J_p=6, J_n=7/2)$. In 44Ca there are no states in the $f_{7/2}$ configuration with $J=3,7,9,10,11,12$. States in 44Ti and 52Fe with $J_p=4, J_n=6$ and $J_p=6, J_n=4$ with angular momenta $J=3,7,9,11,10_1$ are all degenerate. Also $J_n=6, J_p=6$ $J=10_2$ and 12_1. The 12_+ state is isomeric in 44Ti but even more so in 52Fe. In the later nucleus the 12_+ state is at a lower energy than the 10_+ state. In 44Ti it is a bit above.

We can carry over the arguments to the $9/2$ shell. Starting from a core with $Z=50, N=50$ the obvious analogs to nuclei in the $f_{7/2}$ shell are 97Cd (97In) and 96Cd, three holes and four holes respectively. We stay away from particles added to an $N=40, Z=40$ core because 88Zr is not a good closed shell.

In our previous papers we actually gave formulas for general j, not just $j=7/2$.

There are two conditions which lead to a PDS. The off diagonal condition insures that J_p and J_n are separately good quantum numbers—not just total J. Then there is the diagonal condition that explains why states with the same (J_p,J_n) are degenerate.

Three particles-off diagonal condition:
\[
\begin{align*}
\left\{ \begin{array}{ccc}
j & j & (2j - 3) \\
(3j - 4) & j & (2j - 1) \\
\end{array} \right\} = 0
\end{align*}
\]

Three particles diagonal condition:
\[
\begin{align*}
\left\{ \begin{array}{ccc}
j & j & (2j - 1) \\
j & J & (2j - 1) \\
\end{array} \right\} = (-1)^{(J+j)}/(8j-2) \text{ for } J= (3j-1), (3j-2) \text{ and } (3j-4).
\end{align*}
\]

Four particles off-diagonal condition:
\[
\begin{align*}
\left\{ \begin{array}{ccc}
j & j & (2j - 1) \\
j & j & (2j - 1) \\
(2j - 1) & (2j - 3) & (4j - 4) \\
\end{array} \right\} = 0
\end{align*}
\]

Four particles diagonal condition:
\[
\begin{align*}
\left\{ \begin{array}{ccc}
j & j & (2j - 3) \\
j & j & (2j - 1) \\
(2j - 3) & (2j - 1) & J \\
\end{array} \right\} = 1/[4(4j-5) (4j-1)] \text{ for selected } J \text{ values.}
\end{align*}
\]

This topic is also of interest in terms of what we call companion problems[6].

Initially Shadow Robinson and I used

Regge 6j symmetries to show why certain 6j symbols vanished [7]. But there are no Regge relations for 9j symbols. But then we found that Talmi [8] had shown for a completely different reason why the same 6j vanished. He constructed a coefficient of fractional parentage for a state with an angular momentum which did not exist for a system of three identical particles(J=13/2 in 43Ca). The vanishing of the cfp was carried by the same 6j symbol we needed to explain the vanishing of off diagonal coupling for our PDS. We then used these ideas for 9j symbols. For a 4 nucleon system we calculate cfp’s for states that do not exist.

In another direction with regards to companion problems Zhao and Arima [9] obtained the same 9j relations that we had by considering J pairing Hamiltonian. They are quite fascinating that quite different physical problems lead to the same mathematical relations.

Let us look at proceed systematically. For three identical particles in a j shell the maximum J is $j + (j-1) + (j-2) = (3j-3)$. For one proton and 2 neutrons the maximum value is $(2j-1) + j = (3j-1)$.. Hence states with $J=3j-2$ and $3j-1$ are part of the PDS These have high spins and so the single j model might work better. Also belonging to the PDS are states with $J=1/2$ and $3j-4$ The last one belongs because there are no states with $J=J(\text{max})-1$ for identical fermions (also true for identical bosons).

For 4 nucleons (or holes) the maximum J is $j + (j-1) + (j-2) + (j-3) = 4j-6$. However for two protons and 2 neutrons the maximum J is $(2j-1) + (2j-1) = 4j-2$. Hence states with $J= (4j-5)$, $(4j-4)$, $(4j-3)$ and $(4j-2)$ belong to the PDS. These are high spin states. The single j shell might work fairly well for these. There might be other states with PDS. e.g. as noted above . $J=3$ and 7 in the $f_{7/2}$ shell and $J=11$ in the $g_{9/2}$ shell.

Consider first 3 nucleons in the $g_{9/2}$ shell. If they are identical $J_{\text{max}}= 21/2$. For one proton and 2 neutrons and/or

2 protons and one neutron $J_{\text{max}}= 25/2$. We get a degenerate set $J_p=8$ $J_n=9/2$ $J=19/2$, 23/2 and 25/2 (all T=1/2).
Consider four nucleons in the g9/2 shell. If they are identical J_{max} = 12. For 2 protons and 2 neutrons J_{max} = 16. Here are selected sets of degenerate states for four nucleons in the g9/2 shell.

J_p	J_n	J	T
8	8	J=14,16	T=0
8	6	J=11, 13, 14	T=0

There are more. In the above (8,6) is an abbreviation for (8,6) + (-1)^{(J+T)} (6,8). (For the (8,6) configuration there is also a degeneracy of J=8 and J=9. The above considerations do not explain this.)

The T=0 = 0 calculation is a good starting point to see the effects of putting back the T=0 matrix elements. In the f7/2 shell. There was some striking behavior for T=1/2 states of a three particle system. In a complete fp calculation we considered the difference E(full) − E(T=0=0). The behavior for J < 7/2 was different from that for J > 7/2. In the former case for deceasing J the above quantity became increasingly and linearly negatively. For the higher spins these was as staggering effect with the alternate spins J=9/2, 13/2 ad 17/2 going up in energy when both T=0 and T=1 matrix elements were included while J=7/2 , J=11/2 , 15/2 and 19/2 hardly changed. We should expect similar behaviour in higher j shells. For T=0 states of a four nucleon system we found that the odd spin states were pushed up significantly more than even spin when the full interaction was reintroduced. Thus with only the E(T=0=0) interaction there were several odd spin states close to or below the lowest J=12+ state. These were pushed up by the full interaction.

There have been several shell model calculations in the g9/2 region including early calculations by Auerbach and Talmi [10], Serduke, Lawson and Gloeckner [11] and Ogawa [12]. The phrase “spin gap isomers is used” and Ogawa predicted many such isomers in this region 95Pd, 95Ag, 96Cd,97Cd. Reintroducing the T=0 two-body matrix elements clearly helps to create these spin gaps.

At this workshop (Nuclear Physics in Astrophysics V) new results on 96Cd have been presented. In particular his York group found a J=16+ isomeric state. For this state to be isomeric the J=14+ state should be at a higher energy than the J=16+ state. As note above without the T=0 interaction in the single j shell calculation these two states would be degenerate in energy. The T=0 interaction is required to remove the degeneracy and push the J=14+ state above the J=16+ state.

There are other PDS in a single j shell calculation for 96Cd. In general seniority is not a good quantum number in the g9/2 shell. However we previously found [10] that for a system of four identical particles (holes) with configuration (g9/2)^4 there is a certain J=4 v=4 (also J=6) state that does not mix with the other two states, the latter having seniorities v=2 and 4. In other words there is one eigenfunction for J=4 v=4 which emerges no matter what interaction is used. This problem has been studied in
several references [13],[14],[15], and [16]. Different, and very wide ranging topics involving partial dynamical symmetries have been developed and reviewed by A. Leviatan [17].

As seen in the references these works were done with several collaborators: Shadow Robinson (PhD thesis), Alberto Escuderos, Ben Bayman and Piet Van Isacker[1,2,3,4,5,15]. They were strongly influenced by works of Igal Talmi[8].

This work was stimulated in part by reports at the Weizmann Institute workshop following the Eilat conference of relevant experiments in the $g_{9/2}$ shell by the York group [19]. As reported by B.S. Nara Singh A J=16+ isomer was found in 96Cd which decayed to a J=15+ isomer in 96Ag [19]. In the light of his comments I re-examined work I had done with Escuderos [13] where the main thrust was not isomerism but symmetries. But as a residual we did obtain an isomerism of J=15+ in 96Ag in a single j-shell calculation - $g_{9/2}$ - with a Q,Q interaction. The energies of the J=15+,14+,13+,12+,11+ states relative to a J=1+ ground state are respectively 2.48, 3.09, 2.53, 2.59 and 1.96 MeV. Thus the J=12+,13+,and 14+ are higher in energy than J=15+. The latter state can only decay to J=11+ via an E(4) and/or M(5) transition. Amusingly we find that the J=8+ state is also isomeric in this model space.

Thanks go to the Weizmann Institute for my support via a Morris Belkin visiting professor appointment. Help from Justin Farischo is greatly acknowledged.

[1] S.J.Q. Robinson and L. Zamick, Phys. Rev. C 63, 064316 (2001)
[2] S.J.Q. Robinson and L. Zamick, Phys. Rev. C 64, 057302 (2001)
[3] S.J.Q. Robinson, A. Escuderos and L.Zamick, Phys.Rev. C 72, 034314 (2005)
[4] A. Escuderos, B.F. Bayman and L. Zamick, Phys.Rev. C 72, 054361 (2005)
[5] A. Escuderos, S.J.Q Robinson and L. Zamick, Phys.Rev. C 73, 027301 (2006)
[6] L. Zamick@ A. Escuderos, Phys. Rev. C 71, 014315 (2005)
[7] T. Regge, Il Nuovo Cimento. Vol XI, N.1 (1959) 298
[8] Talmi, Simple Models of Complex Nuclei,Harwood Academic Publishing Switzerland (1993)
[9] Y.M. Zhao and A. Arima, Phys. Rev. C 72, 054307 (2005)
[10] N. Auerbach and I. Talmi, Phys. Let. 10, 297 (1964)
[11] F.J.D. Serduke,R.D. Lawson and D.H. Gloeckner, Nucl. Phys. A256,45 (1976)
[12] K. Ogawa, Phys. Rev C 28, 958 (1983)
[13] A. Escuderos and L. Zamick Phys. Rev. C73, 044302 (2006)
[14] L. Zamick Phys. Rev. C75, 064305 (2007)
[15] P. Van Isacker and S. Heinze, Phys. Rev. Lett 100, 052501 (2008)
[16] L. Zamick and P. Van Isacker, Phys. Rev. C 78, 044327 (2008).
[17] Chong Qi, Phys. Rev. C 83,014307 (2011)
[18] A. Leviatan, Prog. Part. Nucl. Phys. 66,93-143 (2011)
[19] B.S. Nara Singh, N 27 Physics Around A~100,Nuclear Physics in Astrophysics V-post conference workshop,
