Neural mechanisms of rapid natural scene categorization in human visual cortex

Marius V. Peelen1,2,4, Li Fei-Fei1,3, and Sabine Kastner1,2,4

1 Department of Psychology, Princeton University, Princeton, New Jersey 08540, USA
2 Center for the Study of Brain, Mind, and Behavior, Princeton University, Princeton, New Jersey 08540, USA
3 Department of Computer Science, Princeton University, Princeton, New Jersey 08540, USA
4 Princeton Neuroscience Institute, Princeton University, Princeton, New Jersey 08540, USA

Abstract

The visual system has an extraordinary capability to extract categorical information from complex natural scenes. For example, subjects are able to rapidly detect the presence of object categories such as animals or vehicles in novel scenes that are presented very briefly1,2. This is even true when subjects do not pay attention to the scenes and simultaneously perform an unrelated attentionally demanding task3, a stark contrast to the capacity limitations predicted by most theories of visual attention4,5. Here, we use functional magnetic resonance imaging and an object categorization task, in which subjects detected the presence of people or cars in briefly presented natural scenes, to provide a neural basis for rapid natural scene categorization in visual cortex. The pattern of neural activity in object-selective cortex evoked by the natural scenes contained information regarding the target category, even in scenes that were task-irrelevant and presented outside the focus of spatial attention. These findings suggest that the rapid detection of categorical information in natural scenes is mediated through a category-specific biasing mechanism in object-selective cortex that operates in parallel across the visual field and biases information processing in favour of objects belonging to the target object category.

In daily life we often look for particular object categories in our environment that are relevant for ongoing behaviour. For example, before crossing a street we look whether cars are near, perhaps not noticing other objects in the visual scene present at the same time, such as people walking on the other side of the street. Behavioural experiments have shown that such detection of familiar object categories in natural scenes is extremely rapid1,2, and can...
be done even without focal attention. These results imply the existence of selection mechanisms for familiar object categories that operate independently of spatial attention.

In the present study, using functional magnetic resonance imaging (fMRI), we investigated neural mechanisms for extracting object category information from complex natural scenes. We hypothesized that the rapid detection of categorical information may be mediated by top-down mechanisms that bias processing in favour of the searched-for object category. These biasing mechanisms may lead to a filtering of the scene that effectively limits the visual representation of the scene to objects belonging to the task-relevant object category, thereby facilitating the rapid detection of the target category. To probe this hypothesis, we measured the influence of a category detection task (detecting either people or cars) on fMRI activity evoked by pictures of real-world scenes. Furthermore, given that behavioural studies have found evidence for parallel processing in rapid scene categorization, we asked whether such influences can be observed both inside and outside the focus of spatial attention.

A large (>2000 pictures) set of photographs of outdoor scenes (cityscapes and landscapes; Supplementary Fig. 1) was selected for the experiment. A subset of these scenes contained people or cars in natural, daily-life situations. As in natural vision, the visual appearances and spatial locations of the people and cars in these scenes were highly variable. For example, a scene could show a single person sitting on a bench in a park close to the camera, or could show a group of people walking on a street at a distance (Supplementary Fig. 1). On each trial, subjects briefly (~130 ms, see Methods) viewed 4 different simultaneously presented pictures (2 along the vertical axis, and 2 along the horizontal axis), followed immediately by perceptual masks presented at the same locations (Fig. 1). The task was to report the presence of either people (“body task”) or cars (“car task”) in either the horizontally or the vertically presented pictures, resulting in 4 different task combinations. These 4 combinations were always performed in separate functional runs to prevent confusion regarding the target category and task-relevant picture locations. We will refer to the task-relevant pictures as “attended” pictures and the task-irrelevant pictures as “unattended” pictures. A separate analysis confirmed that subjects spatially attended the task-relevant pictures more than the task-irrelevant pictures, by showing spatially-specific attentional modulation in retinotopic visual cortex (see Supplementary Fig. 2). The content of the attended pictures was manipulated independently from the content of the unattended pictures, such that all possible pairings of scene types were equally likely. This design allowed us to measure brain responses to attended and unattended pictures separately by means of selective averaging.

We analyzed multi-voxel patterns of activation across object-selective visual cortex, as these have been shown to be sensitive to object-category information. Object-selective visual cortex, often referred to as the lateral-occipital complex (LOC), was localized in each subject by contrasting responses to intact versus scrambled objects in a separate localizer scan. The analysis approach was to correlate response patterns evoked by the two scene types (containing either people or cars) in the main experiment with response patterns evoked by a different set of pictures of human bodies and cars presented in a separate experiment (Fig. 2; Methods summary). Unlike the stimuli in the main experiment, this
second set of stimuli consisted of isolated objects without scene context that were centrally presented. We expected to find, in the case of the car stimuli for example, a higher correlation between response patterns evoked by scenes containing cars with response patterns evoked by isolated car pictures (within-category comparison) than with response patterns evoked by isolated body pictures (between-category comparison). We found that response patterns indeed correlated more strongly for within-category comparisons than between-category comparisons ($T(9) = 4.1, P < 0.005$; Fig. 3a), a difference that tended to be stronger for the attended than the unattended pictures (main effect of Attention: $F(1,9) = 3.9, P = 0.08$). This suggests a high-level representation of object category information that is invariant to the different viewing conditions, many of which are typically encountered in daily life.

Of central interest to the present study was the effect of search task on this category information. Strikingly, category information depended fully on search task ($\text{Category} \times \text{Task}: F(1,9) = 13.5, P < 0.01$; Fig. 3a). During the body task, patterns of activation carried significant category information about bodies ($T(9) = 5.0, P < 0.001$), but not cars ($T(9) = -0.5$). Conversely, during the car task significant category information was present for cars ($T(9) = 2.9, P < 0.05$), but not for bodies ($T(9) = -1.8$). Furthermore, the Category \times Task interaction was independent of spatial attention ($\text{Category} \times \text{Task} \times \text{Attention}: F(1,9) = 0.1, P = 0.79$), and significant for both the attended ($F(1,9) = 11.7, P < 0.01$) and the unattended pictures ($F(1,9) = 10.5, P < 0.05$). In the above analyses we sorted trials based either on the content of the attended or the content of the unattended pictures. Because the content of these two picture pairs was fully independent, the content of one picture pair was effectively “averaged out” when measuring responses to the other picture pair, and vice versa. To further ensure that the results described above were not related to the simultaneously presented other picture pair, we calculated the Category \times Task interaction separately for the different simultaneously presented conditions. As expected, the Category \times Task interaction for the attended pictures did not depend on the content of the unattended pictures, and vice versa ($P > 0.1$, for both tests). Finally, to test whether these results were specific to higher-level visual cortex, we performed the same analyses in retinotopically defined visual areas V1, V2, and V3. None of these regions contained category information, and there were no significant effects of Task or Category ($P > 0.1$, for all tests).

These results indicate that body and car stimuli embedded in natural scenes were visually processed to a high level only when they were actively searched for. Objects belonging to the target category were processed up to the category level, even when they were presented outside the focus of attention. By contrast, objects belonging to the irrelevant category were not represented at the category level, even when they were presented inside the focus of attention.

To investigate whether other regions in the brain may show similar effects to those observed in object-selective visual cortex, we employed an information-based functional brain mapping approach, measuring patterns of activation throughout the brain by means of a moving spherical searchlight. Within a given sphere, we correlated patterns of activation to the conditions in the main experiment with patterns of activation to the separately presented isolated body and car stimuli, identical to the analysis described above. Individual
subject data were spatially normalized, which allowed us to use a random-effects group analysis to test where in the brain search task influenced category information. The most significant Category \times Task interaction was found in ventral temporal cortex, overlapping object-selective visual cortex (Fig. 3b). The correlation values in the sphere surrounding the peak voxel of this cluster were very similar to those of the \textit{a priori} defined object-selective region (Fig. 3). As expected (based on how the sphere was defined), category information (within- versus between-category comparison) depended strongly on search task (Category \times Task; \(F(1,9) = 34.9, P < 0.0005\); Fig. 3b). During the body task, patterns of activation carried significant information about bodies \((T(9) = 8.9, P < 0.00001)\), but not cars \((T(9) = -0.6)\), whereas, for the car task, significant information was present for cars \((T(9) = 5.8, P < 0.0005)\), but not (or negative) for bodies \((T(9) = -2.6)\). The Category \times Task interaction was independent of attention (Category \times Task \times Attention: \(F(1,9) = 0.1, P = 0.81\)), and significant for both the attended \((F(1,9) = 16.6, P < 0.005)\) and the unattended pictures \((F(1,9) = 35.6, P < 0.0005)\). This analysis demonstrated that the effect of search task on category information was strongest in ventral temporal cortex, and could be observed in a group-average analysis without defining individual \textit{a priori} regions-of-interest.

The present results provide evidence for a neural mechanism of attentional selection at the level of object category. Remarkably, this mechanism in high-level visual cortex appears to operate across the visual field independent of spatial attention, similar to attentional selection mechanisms for simple features (e.g. for colour or motion direction) in lower-level visual cortex13–15. As such, it provides a neural basis for recent behavioural findings reporting an extraordinary capability of the human visual system to rapidly extract object category information from natural scenes, even outside the focus of spatial attention3. The selection mechanism described here may operate through the pre-activation of neurons representing the target category that subsequently biases the processing of the scene in favour of the target category16. Such an account of our data is in line with parallel models of visual search, in which a “search template” biases the processing of a scene across the visual field in favour of objects that match the template17,18. Given the variability in the visual characteristics and spatial locations of individual category exemplars in natural scenes, such search templates would need to be rather abstract, invariant to geometric and photometric changes, and spatially unspecific. Furthermore, successful performance in our task required additional, space-based, selection mechanisms to prevent responses to the task-irrelevant pictures (see Supplementary Table 1 and Supplementary Discussion). Our results suggest that these additional selection mechanisms (e.g., the retinotopically-specific spatial attention effects observed in retinotopic visual cortex; see Supplementary Fig. 2) operate mostly independently from the object-category mechanism observed in activity patterns in object-selective cortex.

Finally, the finding that objects belonging to the irrelevant object category were poorly represented in high-level visual cortex, even when they were spatially attended, is consistent with the phenomenon of “change blindness”, the finding that we are mostly unaware of large changes to objects in natural scenes when the identity of the changed object is unknown in advance19–21. Indeed, our results provide evidence that, contrary to our subjective experience of a complete internal representation of the external world, the neural...
representation of real-world scenes is limited to those objects that are directly relevant for ongoing behavior. Together, the present results provide a possible neural basis for both the limitations in our perception of real-world scenes and our remarkable ability for categorizing such scenes inside and outside the focus of spatial attention.

METHODS SUMMARY

Ten healthy adults (three females) participated in 8 runs of the main experiment across two scanning sessions. In different runs, subjects performed one of two detection tasks on either the horizontal or the vertical pairs of pictures, resulting in 4 different run types. Within a scanning session each of the presented pictures was unique. The same set of pictures was used in both sessions, such that across the two sessions the same pictures were presented in both detection tasks.

Activity patterns to the body and car conditions in the category localizer were correlated with activity patterns to the body and car scenes in the main experiment. This resulted in four correlations (e.g., between body scenes in the main experiment and bodies in the localizer: \(r_{\text{body(main)}_\text{body(localizer)}} \)). Within-category correlations are the correlations where categories matched (e.g., \(r_{\text{car(main)}_\text{car(localizer)}} \)), whereas between-category correlations are the correlations between non-matching categories (e.g., \(r_{\text{car(main)}_\text{body(localizer)}} \)). Category information was defined as the difference between within-category and between-category correlations. For example, category information (\(\Delta r \)) for the body stimuli (left two bars in Fig. 3) was calculated by:

\[
[r_{\text{body(main)}_\text{body(localizer)}}] - [r_{\text{body(main)}_\text{car(localizer)}}].
\]

Functional [EPI sequence; 34 slices per volume; resolution = 3 x 3 x 3 mm with 1 mm gap; TR = 2.0 s; TE = 30 ms; flip angle = 90°] and anatomical [MPRAGE sequence; 256 matrix; TR, 2.5 s; TE, 4.38 ms; flip angle, 8°; 1 x 1 x 1 mm resolution] images were acquired with a 3T Allegra MRI scanner (Siemens, Erlangen, Germany). Functional data were slice-time corrected, motion corrected, and low-frequency drifts were removed with a temporal high-pass filter (cutoff of 0.006 Hz). No spatial smoothing was applied.

METHODS

Stimuli

2056 natural scene pictures were selected from an online database. 512 pictures contained one or more people (but no cars), 512 pictures contained one or more cars (but no people), and 1024 pictures contained no cars and no people. The pictures were mostly photographs of city streets. The position, viewpoint, and size of the people and cars in the pictures were highly variable, mimicking real-world viewing conditions (see Supplementary Fig. 1 for sample pictures). 12 different perceptual masks were created. Each was a coloured picture of a mixture of white noise at different spatial frequencies on which a naturalistic texture was superimposed.
All pictures were full-colour photographs reduced to 480 (vertical) × 640 (horizontal) pixels. The pictures along the horizontal axis (size: 7.9° × 10.5°) were presented with an offset of 3.5° to the right or left of the central fixation cross. The pictures along the vertical axis (size: 4.5° × 6°) were presented with an offset of 0.5° above or below the central fixation cross.

General procedure

Each subject participated in one practice session and four scanning sessions. The first scanning session was used for mapping retinotopic visual areas. The second and third session consisted of four runs of the main experiment, two runs of the category pattern localizer, and two runs of the object-selective cortex localizer. The fourth session consisted of a position localizer to measure retinotopic representations corresponding to the picture positions in the main experiment. See Supplementary Methods for details of the localizer experiments. Data were analyzed using the AFNI software package and MATLAB (The MathWorks, Natick, MA).

Main experiment

Each run started and ended with a fixation-only block of 14 s. The average trial duration was 2.2 s. Each trial started with a 500 ms presentation of four placeholders at the location of the to-be-presented pictures. The placeholders of the relevant locations (either the two horizontal, or the two vertical locations) were highlighted during this time, by increasing the width of the placeholder outline by 2 pixels (~0.05°). This was followed by the presentation of the 4 pictures for 130 ms on average. The presentation time of the pictures was individually determined based on the performance in a separate session, and was held constant within a scanning session (see Supplementary Methods). A presentation of perceptual masks directly followed the picture presentations. The combined duration of picture and mask presentations was always 400 ms. A screen with the four placeholders followed the presentation of the masks for a duration of 950 to 1650 ms (pseudo-randomly chosen, with intervals of 100 ms), with a mean duration of 1300 ms.

On 20% of the trials (32 trials per run) only the masks (but no pictures) were presented, for 270 ms on average. On the remaining 128 trials, 4 simultaneously presented pictures were presented followed by 4 masks (each randomly selected from the total set of 12 masks). Each of the 4 scenes could contain either: people but no cars (“body”), cars but no people (“cars”); or no people and no cars (“none”). Within each pair of pictures (horizontal and vertical) there were 8 possible combinations of these scene types: body-none; none-body; cars-none; none-cars; body-cars; cars-body; none-none; none-none. Each of these combinations was presented equally often. Trial order was randomized (without replacement).

Our research questions focused on the scene combinations that contained either people but no cars, or cars but no people. The other scene combinations were included in the design so that the irrelevant object category did not predict the presence or absence of the relevant object category.

In different runs, subjects performed one of two detection tasks (“body task” or “car task”) on either the horizontal or the vertical pairs of pictures, resulting in 4 different run types.
The task was to press one button for the presence, and another button for the absence of the target category in the relevant picture pair. The mapping of the two buttons (index and middle finger) to present and absent responses was counterbalanced across sessions and subjects. Subjects always performed two runs of the same task in a row, to prevent frequent switching from one target category to another. The order of the tasks was counterbalanced across sessions and subjects. In different runs, subjects performed the tasks on either the horizontal or vertical picture pairs, the order of which was held constant within a session, and which was counterbalanced across the two sessions.

Multi-voxel pattern analysis

For each subject, general linear models were created for the main experiment and the category pattern localizer experiment. One predictor (convolved with a standard model of the hemodynamic response function) modelled each condition. Regressors of no interest were also included to account for differences in the mean MR signal across scans and for head motion within scans. Two separate regression analyses were run for the main experiment; with trials grouped based either on the task-relevant or task-irrelevant pairs of scene pictures. These regression analyses resulted, for each voxel, in a t-value for each condition in the main experiment and for each condition in the localizer. The t-values of conditions in the main experiment were correlated, across the voxels of an ROI, with t-values of the body and car conditions in the localizer. The analyses were repeated using parameter estimates instead of t-values, which yielded highly similar results. The analysis was done for each subject and session separately. Correlations were Fisher transformed \((0.5 \cdot \log_e((1+r)/(1−r)))\) before statistical testing. Correlations of the two sessions were averaged.

For each subject, ROI and localizer condition, the average correlation across conditions in the main experiment was subtracted out to remove overall differences in correlations that were not of interest. Differences between the resulting voxelwise correlations were then tested using repeated-measures ANOVAs and t-tests (two-tailed) with subject \((N = 10)\) as random factor. All trials (correct and incorrect) were included in the analyses. We repeated all analyses on correct trials only, which yielded qualitatively similar but slightly less significant results (due to the smaller number of trials).

Searchlight analysis

A whole-brain pattern analysis was performed using a spherical searchlight\(^{12}\). For each voxel in the brain we computed voxelwise correlations in a sphere of 10-mm radius (corresponding to 121 voxels) around this voxel. The voxelwise correlations were computed as described above. The correlation values from each sphere were Fisher transformed and assigned to the centre voxel of this sphere. The correlations were computed for each subject and session separately. Results were transformed into Talairach space, the correlations of the two sessions were averaged for each subject, and random-effects group analyses were performed.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
Acknowledgments

We thank P. Downing, U. Hasson, S. McMains, K. Norman, T. Stein, and A. Treisman for suggestions on earlier versions of the manuscript, members of the Kastner lab for help with retinotopic mapping, and N. Oosterhof for help with data analysis. This work was supported by grants from NIH (2R01 MH64043, 1R01 EY017699, 2P50 MH 62196) to S.K., and a Microsoft Research New Faculty Fellowship and the F. Moss gift to L.F.F.

References

1. Potter MC. Meaning in visual search. Science. 1975; 187:965–6. [PubMed: 1145183]
2. Thorpe S, Fize D, Marlot C. Speed of processing in the human visual system. Nature. 1996; 381:520–2. [PubMed: 8632824]
3. Li FF, VanRullen R, Koch C, Perona P. Rapid natural scene categorization in the near absence of attention. Proc Natl Acad Sci U S A. 2002; 99:9596–601. [PubMed: 12077298]
4. Broadbent, DE. Perception and communication. Oxford University Press; New York: 1958.
5. Treisman AM, Gelade G. A feature-integration theory of attention. Cognit Psychol. 1980; 12:97–136. [PubMed: 7351125]
6. Fei-Fei L, VanRullen R, Koch C, Perona P. Why does natural scene categorization require little attention? Exploring attentional requirements for natural and synthetic stimuli. Vis cogn. 2005; 12:893–924.
7. Rousselet GA, Fabre-Thorpe M, Thorpe SJ. Parallel processing in high-level categorization of natural images. Nat Neurosci. 2002; 5:629–30. [PubMed: 12032544]
8. Wojciulik E, Kanwisher N, Driver J. Covert visual attention modulates face-specific activity in the human fusiform gyrus: fMRI study. J Neurophysiol. 1998; 79:1574–8. [PubMed: 9497433]
9. Cox DD, Savoy RL. Functional magnetic resonance imaging (fMRI) “brain reading”: detecting and classifying distributed patterns of fMRI activity in human visual cortex. Neuroimage. 2003; 19:261–70. [PubMed: 12814577]
10. Haxby JV, et al. Distributed and overlapping representations of faces and objects in ventral temporal cortex. Science. 2001; 293:2425–30. [PubMed: 11577229]
11. Malach R, et al. Object-related activity revealed by functional magnetic resonance imaging in human occipital cortex. Proc Natl Acad Sci U S A. 1995; 92:8135–9. [PubMed: 7667258]
12. Kriegeskorte N, Goebel R, Bandettini P. Information-based functional brain mapping. Proc Natl Acad Sci U S A. 2006; 103:3863–8. [PubMed: 16537458]
13. Maunsell JH, Treue S. Feature-based attention in visual cortex. Trends Neurosci. 2006; 29:317–22. [PubMed: 16697058]
14. Motter BC. Neural correlates of attentive selection for color or luminance in extrastriate area V4. J Neurosci. 1994; 14:2178–89. [PubMed: 8158264]
15. Saenz M, Buracas GT, Boynton GM. Global effects of feature-based attention in human visual cortex. Nat Neurosci. 2002; 5:631–2. [PubMed: 12068304]
16. Chelazzi L, Miller EK, Duncan J, Desimone R. A neural basis for visual search in inferior temporal cortex. Nature. 1993; 363:345–7. [PubMed: 8497317]
17. Duncan J. EPS Mid-Career Award 2004: brain mechanisms of attention. Q J Exp Psychol (Colchester). 2006; 59:2–27.
18. Duncan J, Humphreys GW. Visual search and stimulus similarity. Psychol Rev. 1989; 96:433–58. [PubMed: 2756067]
19. O’Regan JK, Rensink RA, Clark JJ. Change-blindness as a result of ‘mudsplashes’. Nature. 1999; 398:34. [PubMed: 10078528]
20. Rensink RA, O’Regan JK, Clark JJ. To see or not to see: the need for attention to perceive changes in scenes. Psychol Sci. 1997; 8:368–373.
21. Simons DJ, Rensink RA. Change blindness: past, present, and future. Trends Cogn Sci. 2005; 9:16–20. [PubMed: 15639436]
22. O’Regan JK. Solving the “real” mysteries of visual perception: the world as an outside memory. Can J Psychol. 1992; 46:461–88. [PubMed: 1486554]
23. Russell BC, Torralba A, Murphy KP, Freeman WT. LabelMe: a database and web-based tool for image annotation. International Journal of Computer Vision. 2008; 77:157–173.

24. Walther DB, Caddigan E, Fei-Fei L, Beck DM. Natural scene categories revealed in distributed patterns of activity in the human brain. J Neurosci. (in press).

25. Cox RW, Hyde JS. AFNI: software for analysis and visualization of functional magnetic resonance neuroimages. Comput Biomed Res. 1996; 29:162–73. [PubMed: 8812068]
Figure 1. Schematic overview of trial layout
Each trial started with a spatial cue indicating the relevant stimulus locations (which were held constant within a run). This was followed by the four pictures presented for, on average, 130 ms. Presentation time of the pictures was adjusted for each subject to arrive at ~80% accuracy. The pictures were followed by perceptual masks (270 ms). The next trial started, on average, 1300 ms after the offset of the masks.
Figure 2. Schematic overview of analysis approach
The approach of the multi-voxel pattern analysis was to correlate patterns of activation to conditions in the main experiment (depicted on the left) with patterns of activation to conditions in the category localizer (depicted on the right). The thickness of the lines between patterns indicates the hypothesized strengths of the correlations. For example, higher correlations were expected between patterns evoked by scenes containing people and isolated body pictures (within-category comparison) than with isolated car pictures (between-category comparison). This approach allowed us to measure the influence of search task and spatial attention on category information in visual cortex.
Figure 3. Results of multi-voxel pattern analysis

a, The top panel shows the ventral cluster of object-selective cortex (intact vs. scrambled objects) in a group-average analysis at $P < 0.005$ (Talairach coordinates of peak: $x = 35, y = -41, z = -18$). The lower panel shows category information as a function of Category, Task and Attention in individually-defined object-selective cortex. Category information was calculated by taking the difference between within-category comparisons and between-category comparisons, and reflects the amount of category information in multi-voxel patterns of activation (see Fig. 2 and Methods summary). Error bars indicate ± s.e.m. b, The top panel shows the result of the Category × Task contrast in the group-average searchlight analysis at $P < 0.005$ (uncorrected). The lower panel shows category information as a
function of Category, Task and Attention in the sphere surrounding the peak voxel of the activation from the group-average searchlight analysis (Talairach coordinates of peak: x = 35, y = −44, z = −18). Error bars indicate ± s.e.m.