Regeneration – eine neue therapeutische Dimension in der Hals-Nasen-Ohrenheilkunde

Regeneration – A New Therapeutic Dimension in Otorhinolaryngology

Autoren
Nicole Rotter¹, Marcy Zenobi-Wong²

Institute
1 Klinik für Hals-Nasen-Ohrenheilkunde, Universitätsmedizin Mannheim, Universitätsklinikum Mannheim
2 ETH Zürich, Gewebetechnologie und Biofabrikation, CH-Zürich

Schlüsselwörter
Regeneration, Regenerative Medizin, Tissue Engineering, HNO-Heilkunde

Key words
Regeneration, Regenerative Medicine, Tissue Engineering, Otorhinolaryngology

ZUSAMMENFASSUNG
Die Regeneration als therapeutisches Prinzip und damit die Regenerative Medizin ist ein vielversprechender Ansatz künftig die therapeutischen Optionen der Hals-Nasen-Ohrenheilkunde um eine weitere Dimension zu erweitern. Während heute rekonstruktive chirurgische Verfahren, Medikamente und Prothesen wie bspw. das Cochlea Implantat die Funktionen defekter Gewebe im Kopf-Hals-Bereich ersetzen, sollen durch die Regenerative Medizin die defekten Gewebe und deren Funktion selbst wiederhergestellt werden. In dieser Übersichtsarbeit werden neue Entwicklungen wie das 3D-Bioprinting und dezellularisierte, natürliche Biomaterialien für regenerative Ansätze vorgestellt und durch eine Zusammenstellung aktueller präklinischer und klinischer Studien im Bereich der Regenerativen Medizin in der Hals-Nasen-Ohrenheilkunde ergänzt.

SUMMARY
Regeneration as a therapeutic principle and regenerative medicine in general are promising new strategies to add new therapeutic dimensions to our current treatment options. Today, reconstructive surgery, drugs and implants such as the cochlear implant can replace the functions of damaged tissues. In contrast, regenerative therapies aim at the replacement of the damaged tissues themselves while at the same time replacing their lost tissue function. In this review article new technologies such as 3D-bioprinting and the application of decellularised tissues as biomaterials are introduced and explained. A summary of current preclinical and clinical regenerative studies in otorhinolaryngology is complementing these basic aspects.
1. Regenerative Medizin

1.1 Prinzipien der Regeneration

Regeneration bezeichnet die Fähigkeit eines Organismus verlorengegangene Gewebe und Organe zu ersetzen und sollte begrifflich auf Mechanismen beschränkt werden, die die Vorgänge während der Embryogenese und der Fetonogenese rekapitulieren [1]. Während diese Fähigkeit beim Menschen und den meisten Säugetieren weitgehend verlorengegangen ist und nur in bestimmten Geweben wie dem Knochenmark, der gastrointestinalen Mukosa, der Leber und der Haut vorkommt [1], sind bspw. Axolotl, mexikanische Salamander in der Lage ganze Gliedmaßen zu regenerieren. Erst kürzlich konnten wesentliche Mechanismen dieser Regeneration aufgedeckt werden [2]. Man geht heute davon aus, dass verschiedene Progenitorzellen mit definierter Regenerationspotenzial gemeinsam für diese Regeneration verantwortlich sind [3], dass aber auch Makrophagen eine wesentliche Rolle bei diesem Prozess spielen [4].

Naher Verletzung beim Menschen laufen entzündliche Prozesse ab und eine Narbe wird gebildet. Im Allgemeinen geht dabei die ursprüngliche Gewebefunktion zumindest teilweise verloren, da das Narbangewebe nicht dem ursprünglichen Gewebe entspricht. Auch das Immunsystem und die Remodellierung der extrazellulären Matrix spielen eine wesentliche Rolle für die Regeneration in anderen Organismen wie z. B. dem Axolotl. Es ist wahrscheinlich, dass die zunehmenden und besseren Kenntnisse dieser Abläufe die Entwicklung regenerativer Strategien zukünftig wesentlich beeinflussen werden [5].

1.2 Einführung in die Regenerative Medizin

Der Begriff Regenerative Medizin und mit ihm die Verwendung der Regeneration als therapeutisches Prinzip ist heute allgemein akzeptiert und wird als einer der vielversprechendsten Bereiche der modernen Biomedizin angesehen. Dennoch existiert bislang keine einheitliche Definition. Die NIH definiert Regenerative Medizin als die Herstellung lebenswichtiger, funktionaler Gewebe mit dem Ziel Gewebe- oder Organfunktionen wiederherzustellen, die aufgrund von Krankheit, Trauma, kongenitalen Defekten oder Alter verloren gegangen sind (https://report.nih.gov/NIHfactsheets/ViewFactSheet.aspx?csid=62). Die Regenerative Medizin hat das Potenzial, die Funktion defekter Haarzellen zu ersetzen, indem sie den Hörnerven direkt elektrisch stimuliert. Das Cochlea Implantat ersetzt also die Funktion des Innenohrs aber nicht das Innenohr selbst. Eine regenerative Therapie für die Innenohrschwerhörigkeit und Taubheit würde im Gegensatz dazu die defekten oder verloren gegangenen Haarzellen ersetzen, sei es durch die Verwendung gentherapeutischer Ansätze, durch Induktion regenerativer Mechanismen oder durch die Differenzierung noch vorhandener oder von extern applizierten Zellen in Haarzellen.

Auch in der Hals-Nasen-Ohrenheilkunde müssen Gewebedefekte nach Trauma, Tumorresektionen oder auch im Rahmen kongenitaler Defekte wiederhergestellt werden. Auch der natürliche Altersprozess führt zu Veränderungen, wie z. B. einer Abnahme der Hörschwelle, die behandelt werden müssen. Bisher stehen uns neben chirurgischen und medikamentösen Therapien v. a. im Bereich der Otologie Hörgeräte und Prothesen zur Verfügung, die diese Veränderungen therapieren können. Nahezu alle Bereiche der HNO-Heilkunde können auch das Ziel regenerativer therapeutischer Ansätze sein. Diese reichen von der Otologie, in der gegenwärtig Prothesen sehr erfolgreich für die Wiederherstellung der Hörens verwendet werden bis zur rekonstruktiven Gesichtschirurgie, in der derzeit v. a. komplexe chirurgische Verfahren für die Wiederherstellung verwendet werden. Diese reichen wiederum von der Verwendung lokaler Lappenplastiken und Grafts über die Verwendung gestielter Lappen und mikrovaskulärer Transplantate bis hin zur Transplantation [7], die erstmals 2005 erfolgreich durchgeführt wurde. Seither finden sich lediglich 35 weitere in der Literatur beschriebene Fälle von Gesichtstransplantationen [8]. Neue Methoden auf der Basis dezellulärisierter Gewebe und regenerativer Therapiestrategien könnten auch hier eine Alternative darstellen [9].

Im Folgenden sollen 2 wesentliche aktuelle Technologien aus dem Bereich der Regenerativen Medizin und ihre Anwendungen, das 3D-Bioprinting und dezellulärisierte natürliche Materialien vorgestellt werden.

2. 3D-Bio-Druck (3D-Bioprinting)

Die Regenerative Medizin hat sich mit der Identifikation neuer Stammzellquellen, durch Geneditierungstechnologien sowie durch die Entwicklung von intelligenten, adaptiven und zellinstruierenden Materialien technologisch enorm weiterentwickelt. Die wahrscheinlich größten Fortschritte werden dabei durch Kombinationen dieser Technologien mit der Hilfe von neuen Herstellungsmethoden wie dem Bio-Druck erreicht (Abb. 1) [10]. Mithilfe des 3D-Bio-Drucks können Zellkulturen schichtweise auf oder mit Biomaterialien gedruckt werden und so hochkomplexe dreidimensionale Strukturen hergestellt werden [11]. Die möglichen Vorteile von Bio-Druck Verfahren für die rekonstruktive Chirurgie sind unter anderem die reduzierte Hebermorbidität, verkürzte OP-Zeit und ein verbessertes ästhetisches Ergebnis.
2.1 Bio-Druck Techniken und Bio-Tinten

Der 3D-Bio-Druck unterscheidet sich vom konventionellen 3D-Druck durch die Verwendung von sog. Bio-Tinten, die Lösungen aus hydratisierten Polymeren sind, die unter physiologischen Bedingungen in der Gegenwart von Zellen quervernetzt werden können. Das zu druckende 3-dimensionale Gewebe kann z. B. aus MRT- oder CT-Daten oder auch aus Daten von Oberflächenscans von Patienten hergestellt werden. Verschiedene Firmen, wie z. B. Materialise (http://www.materialise.com) haben sich auf die Produktion von exakten 3D-Modellen für die chirurgische Planung und für individualisierte Implantate und Prothesen spezialisiert. 3D-Modelle können mit drei unterschiedlichen Bio-Druckverfahren hergestellt werden (Abb. 2). Beim laser-assistierten Bio-Druck (Abb. 2 Mitte) wird ein pulssierender Laser über eine Energie-absorbierende Schicht platziert, was dann dazu führt, dass Tropfen der zellhaltigen Bio-Tinte auf einem Substrat platziert werden können. In ähnlicher Weise werden beim Tintenstrahl-Druck (Abb. 2 links) Tropfen aus Hydrogelen und Zellen durch thermische oder akustische Pulsationen auf ein Substrat aufgetropft. Bei der am häufigsten verwendeten Druckmethode um größere, klinisch-relevante Strukturen herzustellen wird die Mikroextrusionsmethode (Abb. 2 rechts) verwendet. Dabei werden Fäden aus Bio-Tinte auf ein Substrat aufgebracht, wobei der Tintenfluss durch den Druck oder die Bewegung einer mechanischen Schraube kontrolliert wird (Abb. 2). Die Eigenschaften der Bio-Tinten, die für die unterschiedlichen Verfahren verwendet werden, variieren erheblich. Materialien für das Tintenstrahl-Drucken und für den laser-induzierten Druck besitzen im Allgemeinen eine niedrige Viskosität und einen niedrigen Zellgehalt, während Bio-Tinten beim Mikroextrusionsverfahren eine höhere Viskosität aufweisen müssen aber auch höhere Zellzahlen enthalten können [12].

Die Qualität von Organen, die mittels Bio-Druck hergestellt wurden, hängt ganz entscheidend von den biologischen und rheologischen Eigenschaften der Bio-Tinte ab. Eine Bio-Tinte muss sowohl eine exzellente Biokompatibilität als auch gleichzeitig eine gute Aufklärung beim Drucken besitzen. Diese Eigenschaften, die idealerweise im sogenannten „Bio-Druck Fenster“ („biofabrication window“) liegen sollten, sind nur sehr schwer zu erreichen [13] (Abb. 3).

Hydrogelen mit hohem Wassergehalt sind exzellent geeignet um die native Knorpelmatrix nachzuzahmen, gleichzeitig sind Chondroziten in der Lage in Hydrogelen große Mengen extrazellulärer Matrixproteine zu produzieren. Nachteilig ist jedoch, dass Hydrogelen nicht mit guter Formgenauigkeit gedruckt werden und zudem sehr weich und mechanisch instabil sind. Andererseits erhalten viele Materialien mit guten Druckeigenschaften diese durch einen hohen Polymerehalt und/oder durch viele Quervernetzungsstellen, die die Diffusion von Nährstoffen behindern und zu einer niedrigen Zellvi talität führen [13] (Abb. 3).

▶ Abb. 1 Wichtige Entwicklungen, die den Fortschritt in der Regenerativen Medizin vorantreiben. Nachdruck mit Erlaubnis aus [10].
Ein vielversprechender Ansatz zur Auflösung dieser Gegensätze ist, die mechanischen Eigenschaften von Hydrogelen durch die gleichzeitige Extrusion eines thermoplastischen, stabileren Materials zu verstärken [14, 15]. Zusätzlich wird in großem Stil an der Entwicklung besserer Bio-Tinten gearbeitet. So können die biologischen Eigenschaften von Bio-Tinten bspw. durch die Zugabe von dezellulargierten Matrixpartikeln verbessert werden [16]. Ebenso können Partikel durch ihre Wirkung als Quervernetzer die mechanischen Eigenschaften der Bio-Tinten verbessern [13].

2.2 Bio-Druck Techniken für den Kopf-Hals-Bereich

Moderne Fertigungstechnologien und 3D-Drucktechniken finden bereits Anwendung im Bereich der knöchernen Gesichtsschädelrekonstruktionen und als Planungsinstrumente für komplexe chirurgische Eingriffe [17], darüber hinaus wird der Bio-Druck jedoch vorwiegend im Rahmen experimenteller Untersuchungen eingesetzt [18]. Aufgrund ihrer einzigartigen und komplexen Form, die für das ästhetische Erscheinungsbild essentiell ist, ist die humane Ohrmuschel ein beliebtes Ziel von 3D-Bio-Druckverfahren. Dabei wurde der 3D-Druck bereits als chirurgisches Planungsinstrument für die Ohrmuschelrekonstruktion verwendet [141]. Verschiedene Bio-Druck Ansätze die unterschiedliche Zelltypen wie aurikuläre Chondrozyten [19], mesenchymale Stammzellen [20], induzierte pluripotente Stammzellen [21] und unterschiedliche Materialien wie Nanocellulose und Alginat (Abb. 4 unten [22, 23]) verwenden wurden bereits publiziert. Konstrukte die nur aus Hydrogelen hergestellt wurden, sind nach dem Bio-Druck sehr weich und erfordern die weitere Ausreifung in-vitro um ausreichende biomechanische Eigenschaften zu gewährleisten. Thermoplastisch verstärkte Materialien ermöglichen die Herstellung von Konstrukten mit ausreichender biomechanischer Stabilität um den mechanischen Anforderungen durch den Druck der Haut nach der Implantation standzuhalten. Diese Verstärkungen können für die gesamte Ohrmuschel verwendet werden oder um einzelne Teile der Ohrmuschel wie das Cavum conchae, Helix, Tragus oder den Antitragus zu verstärken (Abb. 4 oben [142]).

Zusammenfassend ist der Bio-Druck eine äußerst vielversprechende Technologie für Rekonstruktionen im Kopf-Hals-Bereich, mit der vitale und funktionelle, patientenspezifische und individualisierte Transplantate für verbesserte klinische Ergebnisse hergestellt werden können. Gegenwärtig sind jedoch noch keine Produkte auf dem Markt die mit Bio-Druck Verfahren hergestellt werden, auch nur wenige andere tissuengineerte Produkte sind klinisch einsetzbar und erfolgreich. Dies liegt unter anderem an den regulatorischen und finanziellen Hürden die bei der Herstellung derart komplexer Medizinprodukte adressiert werden müssen [24].
3. Dezellularisierte Trägermaterialien

Trägermaterialien sind ein wesentlicher Bestandteil von in-vitro und in-situ Tissue Engineering Techniken und der Regenerativen Medizin im Allgemeinen. Sie stellen mechanische Stabilität und die spezifische Form des zu ersetzenden Gewebes bzw. Organs bereit. Gleichzeitig sollen sie eine Differenzierung der Zellen erlauben und den Nährstofftransport fördern. Die Anforderungen an Trägermaterialien sind äußerst vielfältig und von der spezifischen Anwendung abhängig [25, 26]. Grundsätzlich werden künstliche von natürlichen Biomaterialien unterschieden [27–29]. In den letzten Jahren wurden biologische Trägermaterialien auf Basis dezellularisierter Gewebe, auch Bioscaffolds genannt, sehr erfolgreich weiterentwickelt und sowohl präklinisch als auch klinisch eingesetzt [30]. Der entscheidende Vorteil dezellularisierter Gewebe ist, dass sie einerseits den natürlichen, komplexen Aufbau der extrazellulären Matrix der Ursprungsgewebe behalten und somit eine exzellente Basis für die in-vivo Besiedelung mit ortständigen differenzierten und Vorläuferzellen darstellen, andererseits enthalten sie auch noch eine Vielzahl an Signalmolekülen, die eine funktionelle Geweberemodellierung induzieren können [30]. Diese Materialien und ihre Modifikationen haben somit und aufgrund ihrer spezifischen Interaktion mit dem Immunsystem [31, 32] (siehe auch 3.2.) das Potenzial die bisherigen Strategien der Geweberegeneration vollständig zu verändern.

3.1. Grundlagen und Dezellularisierung

Die extrazelluläre Matrix (ECM) besteht aus strukturellen und funktionellen Molekülen, die von den ortständigen Zellen produziert und sezerniert werden [1]. Man weiß mittlerweile, dass die ECM nicht nur strukturelle Voraussetzungen schafft sondern auch eine Vielzahl biologischer Informationen enthält [33] und selbst aktiv für strukturelle und funktionelle Veränderungen der Zellen der ECM verantwortlich ist. Während der Entwicklung und während des Wachstums aber auch als Antwort auf Gewebeverletzungen werden diese Prozesse aktiviert [30]. Die ECM enthält unter anderem Kollagene, Glykoproteine, Glykosaminoglykane, Proteoglykane, Adhäsionsmoleküle, Wachstumsfaktoren, Chemokine und Zytokine [30]. Die essentielle Rolle dieser Proteine wird durch die Tatsache verdeutlicht, dass Mutationen, die die Funktion einzelner Proteine wie z. B. Laminin oder Kollagen inaktivieren häufig letal sind [34]. Die Proteine der ECM als wichtiger Teil des sog. Mikromilieus („microenvironment“) sind in der Lage die Differenzierung von Zellen, darunter insbesondere auch Stammzellen zu beeinflussen [35]. In diesem Zusammenhang wird auch von Stammzellinvasion gesprochen [35]. Darüber hinaus beeinflusst dieses Mikromilieu aber auch das Immunsystem und hier die Aktivität und Funktion von Makrophagen wie erst kürzlich gezeigt werden konnte [31]. Somit können auf Basis dieser Erkenntnisse neue Biomaterial-basierte Therapien entwickelt werden, die pro-regenerative Immunantworten und somit die gewünschte Geweberegeneration induzieren können [31].
Durch verschiedene chemische, physikalische und enzymatische Methoden können aus Geweben und Organen die ortsständigen Zellen entfernt werden, ein Prozess der Dezellularisierung genannt wird [30]. Es ist heute möglich fast alle Gewebe und Organe zu dezellularisieren und somit gewebespezifische Trägermaterialien herzustellen [36]. Badylak prägte 2011 den Begriff (re-)konstruktive Gewebe- modellierung als Entstehung funktionellen lokalisationspezifischen Gewebes unter Zuhilfenahme dezellularisierter Materialien [37].

3.2. Rolle von Makrophagen

Die Rolle von Makrophagen als wesentliche zelluläre Komponente regenerativer Mechanismen wurde in den letzten Jahren unter anderem bei der Gliedmaßenregeneration des Axolotl aufgedeckt [4]. Auch bei der Regeneration der Schwanzflosse im Zebrafisch spielen Makrophagen eine wichtige Rolle [38]. Die Rolle der Makrophagen im Rahmen der menschlichen Wundheilung ist seit langem bekannt. Makrophagen migrieren zur Stelle der Verletzung, reinigen die Wunde durch Phagocytose und initiieren die Vernarbung.

Dennoch wird die Rolle von Makrophagen auch zunehmend im Rahmen der Integration von Biomaterialien aus dezellularisierten Geweben analysiert und als wesentlich für die Regenerative Medizin angesehen [39]. Insbesondere werden seit einiger Zeit die positiven Aspekte der Makrophagenaktivierung erkannt, wobei die Verschiebung des pro-inflammatorischen M1-Phänotyp hin zum anti-inflammatorischen oder remodelierenden M2-Phänotyp einen wesentlichen Aspekt bei der funktionellen Geweberegeneration im Gegensatz zur Narbenbildung darstellt [39]. Diese Erkenntnisse dienen der Herstellung von Biomaterialien, die anstelle einer langdauern den Entzündung einen regenerierenden Phänotyp induzieren können. Insofern sind sie wesentlich für die weitere Entwicklung und Modifikation von Biomaterialien, die insbesondere für die Regeneration von Stützgeweben wie Sehnen, Knochen oder Knorpel essentiell sind.

4. Regenerative Medizin auf dem Weg in der Klinik

4.1. Überblick

Regenerative Verfahren werden zunehmend im Rahmen klinischer Studien eingesetzt, jedoch sind sie bisher lediglich selten in der klinischen Routine zu finden [40].

Die Herstellung von Knorpelgewebe mithilfe von Tissue Engineering Verfahren ist einer der am weitesten entwickelten Bereiche der Regenerativen Medizin. In der Orthopädie findet die autologe Chondrozytenimplantation (ACI) und die matrixbasierte autologe Chondrozytenimplantation (MACI) bereits Anwendung in der klinischen Routine. Das erstmals 1994 von Brittberg et al. im New England Journal of Medicine publizierte Verfahren hat sich in den letzten 20 Jahren zu einer eindeutigen klinischen Option entwickelt [41–44]. Es wird als Alternative insbesondere bei jüngeren Patienten mit traumatischen Defekten angesehen. Da die Verwendung von Chondrozyten aus dem Gelenkbereich ein erheblicher Nachteil ist, der sekundäre Probleme im Bereich der Hebestelle hervorrufen kann stehen gegenwärtig nasale Chondrozyten im Fokus des Interesses [45]. Nasale Chondrozyten entstammen der Neuralleiste [46]. Es konnte in verschiedenen Untersuchungen gezeigt werden, dass nasale Chondrozyten auch an anderer Lokalisation wie z. B. dem Kniegelenk in der Lage sind ihre Wirkung, d. h. insbesondere die Synthese extrazel lularer Knorpelmatrix zu entfalten und somit als mögliche Zellquelle für die Transplantation geeignet sind [46, 47]. Es wurde bereits eine klinische Phase I Studie [45] durchgeführt, die diese Erkenntnisse auch in der Klinik bestätigt. Aktuell wird eine größere Phase III Studie in Basel durchgeführt, die diese Ergebnisse an einem größeren Patientenkollektiv bestätigen soll und die Effektivität der Therapie belegen soll. Nasale Chondrozyten wurden auch für die Rekonstruktion des Flügelknorpels in einer klinischen Phase I Studie eingesetzt [48]. In dieser Untersuchung wurden nasale Septumbochondrozyten auf einem Kollagenvlies aus Typ I Kollagen präkultiviert und dann für die Rekonstruktion des Nasenflügels als Flügelknorpeltransplantat in Verbindung mit einem Stirnlappen eingesetzt. Da für die Durchtrennung des Stirnlappens sowie die Verfeinerung und Optimierung des Erscheinungsbildes in jedem Fall ein zweiter und meist auch ein dritter Eingriff erforderlich ist konnte dieser genutzt werden um Gewebe aus dem rekonstruierten Areal zu gewinnen und zu analysieren und hierdurch eine Geweberegeneration auch histologisch nachgewiesen werden.

4.2. Wieso sind bisher so wenige regenerative Therapien in der klinischen Routine einsetzbar?

Ein Vergleich der wissenschaftlichen Publikationen mit unserer klinischen Praxis zeigt klar, dass eine Vielzahl experimenteller und präklinischer Studien zu den unterschiedlichsten Themen publiziert werden die jedoch nicht in der klinischen Praxis anwendbar sind. Eine sinnvolle Anzahl von Übersichtsarbeiten beschäftigt sich mit der Frage, weshalb die Kommerzialisierung dieser Therapien so schwierig ist [40, 49, 50]. Im Allgemeinen sind die Hürden sowohl im präklinischen, als auch im klinischen, im kommerziellen und regulatorischen Sektor zu suchen [50]. Aus präklinischen Daten kann häufig nur unzureichend auf den Menschen geschlossen werden [50]. Studiendesign, ethische und Sicherheitsbedenken stehen in der Klinik im Vordergrund [51, 52], während die Kommerzialisierung durch steigende Kosten und ein hohes Produktentwicklungsrisiko behindert wird [53]. Ständig wachsender Bedarf an Sicherheit und Effizienz einer Therapie sowie unterschiedliche Regulierungen in unterschiedlichen Ländern sind wesentliche Probleme im regulatorischen Sektor [54]. Wichtige weitere spezifische Faktoren, die identifiziert wurden beinhalten die unzureichende Förderung von präklinischen und klinischen Studien, das häufig bei Grundlagen- und auch bei klinischen Wissenschaftlern nicht ausreichende Wissen über regulatorische Aspekte, die bei der Durchführung von Studien zur Kommerzialisierung beachtet werden müssen, die fragliche Kostenerstattung neuer Therapien, und die Produktions- und Upscaling Aspekte die für die Kommerzialisierung essentiell sind [40, 49]. Ein entscheidender Erfolgsfaktor ist somit für alle Akteure sich diese Hindernisse bewusst zu machen und sie spezifisch bereits in sehr frühen Forschungs- und Entwicklungsphasen zu adressieren. Dies ist nur durch die enge interdisziplinäre Arbeit und Kooperation mit der Industrie und den regulatorischen Behörden möglich.

Neben den oben genannten Faktoren wird heute ein Umdenken für die gesamte Regenerative Medizin gefordert [55]. Bei vielen experimentellen Untersuchungen wurde die grundlegende vaskuläre, nervale und lymphatische Versorgung nicht oder kaum in die Untersuchungen mit einbezogen, auch das lokale Mikromilieu wurde häufig
fig nicht ausreichend bedacht [55]. Darüber hinaus sind die immunologischen Faktoren häufig durch die Verwendung immunokompetenter Tiere umgangen worden, die aber für die klinische Anwendung unumgänglich und von entscheidender Bedeutung sind. Es ist somit zukünftig wesentlich die Regenerative Medizin noch interdisziplinärer auszulegen, als das bisher vielfach der Fall war. Entwicklungsbio logisches und immunologisches Wissen, etwa um die Rolle von Makrophagen bei der Gliedmaßenregeneration im Salamander [2, 4] sind hier nur als Beispiele zu nennen. Die enge Kooperation mit Entwicklungsbiologie und Immunologie wird für die Regenerative Medizin zukünftig unabdingbar und für ihr Überleben wesentlich sein.

5. Regenerative Verfahren in der Hals-Nasen-Ohrenheilkunde – aktueller Stand

Im Folgenden soll der Schwerpunkt auf die Bereiche gelegt werden, in denen tatsächlich schon klinische Anwendungen der regenerativen Therapien publiziert wurden oder die präklinischen Versuche sich weit an die Klinik annähern. Zudem soll auf die oben näher dargestellten Verfahren des 3D-Bioprintings und der dezellularisierten Trägermaterialien eingegangen werden sofern diese für die jeweiligen Bereiche relevant sind. Eine Übersicht über klinische Studien der genannten klinischen Anwendungen findet sich in Tab. 1.

5.1. Rhinologie und plastisch-rekonstruktive Chirurgie

5.1.1. Nase

Defekte im Bereich der Nase können kongenitaler, traumatischer und iatrogener Natur sein. In der Rhinologie und plastisch-rekonstruktiven Chirurgie des Kopf-Hals-Bereichs wurden bereits eine Reihe klinischer Studien, die regenerative Verfahren zur Wiederherstellung von Knorpelgewebe der Nase verwenden durchgeführt und publiziert. Diese beginnen bei der Verwendung autologer Chondrozyten für die Nasenrückenaugmentation [56], die Yanaga et al. erstmals 2004 publizierten. Im Rahmen dieser Publikation wurden acht Patienten beschrieben, bei denen autologe Chondrozyten aus dem Knorpel des Cavum conchae isoliert und amplifiziert wurden sowie anschließend als gelartige Suspension in den Nasenrücken injiziert bzw. einmal als Kinnaugmentation verwendet wurden. Die Bewertung der Ergebnisse erfolgte im Wesentlichen makroskopisch, bzw. einmal auch unter Zuhilfenahme der Magnetresonanztomografie. In einer weiteren Studie aus dem Jahr 2006 [57] wurden weitere Ergebnisse dieser Methode publiziert. Bei 32 Patienten wurde erneut die Suspension aus amplifizierten aurikulären Chondrozyten für die Augmentation der Nase und für weitere Lokalisationen verwendet. Auch hier wurden die Ergebnisse v. a. makroskopisch bewertet. Bei 8 Patienten wurde eine Biopsie aus dem transplantierten Gewebe gewonnen, die Anhalt für die Anwesenheit von Knorpelgewebe ergab. Die wesentlichen Limitationen dieser Studien sind zum einen das unzureichende Studiendesign ohne Kontrollgruppe oder standardisierte Auswertung, zum anderen die fehlende Beschreibung der Zellkulturtechniken, die eine Wiederholung dieser Untersuchungen unmöglich machen. Somit ist es schlicht unmöglich weitergehende Schlussfolgerungen aus diesen Untersuchungen zu ziehen, auch wenn 2013 in einer weiteren Studie der Gruppe von Yanaga [58] die Technik in einer modifizierten Weise erneut bei 18 Patienten angewandt wurde. Diesmal wurde eine leichte Veränderung der Zellkulturmethoden vorgenommen und das Gewebe zunächst in die Bauchwand transplantiert. Nach etwa 6 Monaten wurde das nun von Fettgewebe umgebene transplantierte Gewebe für die Augmentation des Nasenrückens und des Kinns in speziellen Fällen mit besonders dünner Haut verwendet. Es finden sich jedoch bis heute keine Publikationen anderer Autoren, die diese Technik verwendet hätten. Yanaga und Mitarbeiter verwendeten diese Technik jedoch in weiteren Publikationen unter anderem auch zur Herstellung von Ohrkno kel [2] für die Behandlung der Mikrotie (siehe 5.1.2.). 2017 wurde ein Fallbericht von Cecarelli et al. publiziert [59], die eine Mikrografting-Technik, die für die Versorgung chronischer Wunden patentiert wurde „Rigenera®“ [60] im Rahmen einer offenen Septorhinoplastik, die den Einsatz von Spreadergrafts erforderte, einsetzten. Leider bleiben auch bei dieser Publikation Methodik und Rationale völlig unklar.

Einen wesentlichen Fortschritt und insofern eine bahnbrechende Neuerung stellt die Publikation von Fulco et al. aus dem Jahr 2014 [48] im Lancet dar. Ziel dieser Phase I Studie waren die Sicherheit und Machbarkeit der Methode zu untersuchen. In dieser Studie wurde der Flügelnorpel bei 5 Patienten nach Tumorresektionen mit in-vitro hergestelltem Knorpelgewebe rekonstruiert. Zusätzlich wurde ein Stirnlappen oder ein Nasolabiallappen für die Rekonstruktion der äußeren Haut verwendet. Das Knorpelgewebe wurde dabei aus Nasenseptumknorpel gewonnen, Chondrozyten isoliert und in-vitro vermehrt und dann auf ein Kollagen I Trägervlies (Chondro-Gide, Geistlich Pharma, Wullhusen, Schweiz) aufgebracht. Dieses Trägermaterial wurde bereits für die Verwendung im Gelenkbereich erprobt und zugelassen. Parallel wurden jeweils 2 Scaffolds kultiviert, und ein Scaffold für die Transplantation, das zweite für die Analyse der in-vit ro Chondrogenese verwendet, sodass eine Überprüfung der in-vit ro Chondrogenese vorgenommen werden konnte. Sechs Monate nach der Rekonstruktion wurde jeweils eine Verfeinerung der Rekonstruktion vorgenommen und dabei auch Gewebe für die Histologie aus dem transplantierten Areal gewonnen. Die Studie wies die Sicherheit und Machbarkeit der Methode nach, zudem ergaben sich erste Hinweise, dass in-vitro hergestelltes Knorpelgewebe noch vor Ort zu finden war, wenn auch in sehr variablen Ausmaß. Die sekundären Outcome-Parameter Patientenzufriedenheit und Stabilität des Flügelknorpels, die anhand des Nasendurchflusses bestimmt wurde, gaben ebenfalls Anhalt zur Annahme, dass diese Technik eine Alternative zur klassischen Transplantation von Septum- oder Ohrknorpel für die Rekonstruktion des lateralen Flügelknorpels darstellt. Eine kontrollierte Studie, die diese Ergebnisse verifiziert und verfeinert steht gegenwärtig noch aus.

5.1.2. Ohroschdel

Defekte der Ohraumhülle treten sowohl kongenital als auch nach Trauma und Tumorresektionen auf. Trotz einer Vielzahl von in-vitro und tierexperimenteller Studien, die belegen, dass es möglich ist Knorpel in der Form einer menschlichen Ohraumhülle herzustellen [61–65] existieren gegenwärtig keine qualitativ hochwertigen Studien, die diese Technik in der Klinik anwenden. Lediglich Yanaga et al. verwendeten die bereits oben (5.1.1.) beschriebene Technik, die auch für die Nasenaugmentation verwendet wurde in modifizierter Weise auch für die Rekonstruktion der Ohraumhülle [66, 67]. Die Autoren isolierten Chondrozyten aus den mikrotischen Ohraumhüllen
Tab. 1: Verschiedene Entwicklungsstadien der Regenerativen Medizin im Kopf-Hals-Bereich.

Fallberichte und Fallserien	Phase I	Phase II/III	Kommerzielles Produkt	Routine
Knorpel - Nase	Nasenrückenaugmentation (n = 8; n = 32) Yanaga, Japan [57]	Nasenflügelknorpelrekonstruktion (n = 5) Fulco, Schweiz [48]	–	–
Knorpel - Ohrmuschel	Partielle und totale Ohrmuschelrekonstruktion (n = 12) Yanaga, Japan [66–67]	–	–	–
Nervus facialis	– N. facialis; Läsion bis 3 cm Länge Navissano, Italien (n = 7) – NeuroTube [75] – N. facialis Gunn, USA (n = 1) – Avance [79] – N. facialis – Stirnast Inada, Japan (n = 2) – PGA-Kollagen-Röhre, kein kommerzielles Produkt [77] – Chorda tympani Yamanaka, Japan (n = 3) – PGA-Kollagen-Röhre, kein kommerzielles Produkt [78]	–	–	z. B. – PGA: NeuroTube® – Kollagen I: NeuraGen® NeuroMatrix® NeuroFlex® – NeuralWrap® NeuroMend® – Dezell. humanes Allograft Avance®
Stimmlippen	–	–	–	–
Larynx	–	–	–	–
Trachea	12-jähriges Kind, Heilversuch, Hamilton, UK [101–102]	–	–	–
Trommelfell	Gelatine + b-FGF, (n = 53) Kanemaru, Japan [104]	Gelatine + b-FGF, (n = 11) Kanemaru, Japan [106] Gelatine + b-FGF; laufend nach [106]	Alloderm® Tutopatch® Audiomesh® Surgisis®	–
Mastoid	Kanemaru, Japan (n = 10) [115] Kanemaru, Japan (n = 26) [117]	–	–	–
Speicheldrüsen	PRP + ADSC + SVF intraglandulär Comella, Italien (n = 1) [138]	Phase I/II Studienprotokoll Mesenchymale Stammzellen (n = 30), Gronhøj, Dänemark [139]	–	–
von 4 Patienten und verwendeten diese Zellen zur Herstellung eines Knorpelblocks, der nach subkutaner Injektion der Zellen im Bereich des Abdomens nach 6 Monaten entstand. Aus diesem Knorpelblock wurde dann ohne exakte Beschreibung der Technik ein Ohrmuschelgerüst [68, 69] hergestellt und in das Ohrmuschelareal transplantiert. Nach Angaben der Autoren wurden bisher 12 Patienten behandelt und es kam nach bis zu 6 Jahren postoperativ nicht zu relevanten Resorptionen des so hergestellten Ohrmuschelgerüstes [67].

Gerade für eine so komplexe 3-dimensional Struktur wie die menschliche Ohrmuschel scheint das 3D-Bioprinting ideal zur Herstellung geeignet. Das Prinzip konnte in ersten Publikationen auch eindrucksvoll gezeigt werden [23]. Ein wesentliches Problem ist jedoch neben der 3-dimensionalen Formgebung auch die umgebende Haut, die häufig ein Problem im Rahmen der klinischen Ohrmuschelrekonstruktion darstellt, da die zur Verfügung stehende Haut meist deutlich dicker ist als die Haut der Ohrmuschel. Ein wichtiges Ziel ist somit die Herstellung eines vaskularisierten Composite Grafts aus Knorpel, einer Verschiebeschicht und Haut.

Auch die Dezellularisierung von Ohrknorpel könnte eine wegweisende Neuerung im Bereich der Ohrmuschelrekonstruktion darstellen. Utomo et al. haben dezellulisierten humanen Ohrknorpel bereits ausführlich charakterisiert [70]. Eigene unveröffentlichte Untersuchungen zeigten jedoch eine unzureichende mechanische Stabilität dezellulisierten Ohrmuscheln nach der Implantation in Kaninchen.

5.1.3. Nervus facialis

Nervenschäden im Kopf-Hals-Bereich können traumatisch, tumöös oder auch iatrogen natur sein, häufig ist der Nervus facialis betroffen. Die Therapie umfasst End-zu-End-Anastomosen bei geringer Defektstrecke, während bei längeren Defekten, die nicht spannungsfrei adaptiert werden können, die Verwendung autologer Nervenplastik heute heute den Goldstandard darstellt [71]. Die Hebung von autologen Nervenplastik ist mit einer Hebermorbidität, wie sensiblen Defiziten verbunden, auch stehen nicht immer in Länge und Durchmesser passende Transplantate zur Verfügung [72]. Aus diesen Gründen werden auch für die Nervenregeneration regenerative Verfahren als vielversprechende Alternativen angesehen [73]. In den letzten Jahren wurden eine Vielzahl neuer Techniken zur Überbrückung von Nervendefekten („Nervenschienen“) entwickelt. Einige von ihnen haben aber auch die Klinik erreicht, ohne sich jedoch bislang weiter in die klinische Routine zu verbreiten. Diese Verfahren verfolgen unter anderem das Prinzip einer geeigneten Schiene für das Auswachsen der Axone bereitzustellen und gleichzeitig das Einwachsen von Fibroblasten aus der Umgebung zu verhindern [74]. Als Nervenschienen wurden auch z.B. autologe Venen erfolgreich verwendet, jedoch stehen auch diese nicht immer zur Verfügung. Somit sind synthetische Nervenschienen in den Fokus der Forschung gerückt. Resorbierbare Materialien sind vorteilhaft, da Sekundäreingriffe zur Entfernung der nicht-resorbierbaren Materialien vermieden werden können. Polyglykolsäure, die als Bestandteil von chirurgischem Nahtmaterial seit vielen Jahren in der Klinik verwendet wird, wurde als erste resorbierbare Nervenschiene zugelassen (NeuroTube, Synovis, Birmingham). Unter anderem Navissano et al. [75] berichteten über die erfolgreiche klinische Verwendung von NeuroTube bei Läsionen des Nervus facialis bis 3cm. Als negativ werden der Preis, die möglicherweise zur rasche Resorptionsrate und die Gefahr toxischer Abbauprodukte angesehen [73]. Auch Schienen aus Kollagen I wurden in vielen pränklinischen Untersuchungen und auch in klinischen Studien verwendet und werden für Defekte bis zu einer Länge von etwa 1,5–2cm als autologen Nerventransplantaten ebeneben angesehen [73]. Derzeit stehen 5 Kollagen Nervenschienen (NeuraGen, NeuroMatrix, NeuroFlex, NeuroWrap, and NeuroMend) für die klinische Anwendung zur Verfügung. Dennoch hat auch ihre Verwendung noch keinen festen Platz im klinischen Alltag, da sie sich zwar bei kurzen Defekten als ebeneben zum Nerventransplantat erweisen haben, dies jedoch insbesondere bei längeren Defekten (größer als 1,5 cm) noch unklar ist, da die veröffentlichten Studien keine einheitlichen Ergebnisse lieferten [76]. 2007 verwendeten Inada et al. zur Rekonstruktion des Stirnastes des Nervus facialis bei 2 Patienten eine Nervenschiene aus PGA und Kollagen I [77]. Es findet sich auch eine kleine Fallserie (n = 3) von Yamanaka et al., die die Chorda tympani mit einer ähnlichen Nervenschiene aus PGA und Kollagen I erfolgreich rekonstruierten [78]. Beide Präparate sind nicht kommerziell erhältlich oder in Deutschland zugelassen. Gunn et al. beschrieben in einem Fallbericht die Rekonstruktion des tympanalen und mastoidalen N. facialis mit einem dezellulisierten humanem Implantat „Advance“ [79].

Dezellulisierte Nerventransplantate werden derzeit genauer in pränklinischen Studien evaluiert, wobei erste Ergebnisse auf vergleichbare Ergebnisse mit autologen Nervenplastiken hindeuten [80, 81]. 3D-Bioprinting Techniken für die Nervenregeneration wurden aufgrund der hervorragenden Möglichkeit zur Herstellung von klar definierten Kanälen auch für diese Anwendung vorgeschlagen [82].

5.2. Laryngologie und Trachealchirurgie

5.2.1. Stimmlippen

Die Stimmlippen sind als schwingungsfähiger und komplex in mehreren Schichten aufgebauter Teil des Larynx für die Respiration und die Phonation verantwortlich. Mechanische Fehlbelastungen, Rachen, Entzündungen, Bestrahlung oder Intubationen können beispielsweise die Funktion der Stimmlippen erheblich stören und zu einer Fehlsteuerung der Stimme führen [83]. Die Stimmtetherapie der verschiedenen Störungen ist nicht immer ausreichend, die chirurgische Therapie ist dagegen stets mit dem Risiko einer zusätzlichen Vernarbung und weiterer Verschlechterung der Stimme vergesellschaftet [84]. Somit ist auch die Behandlung von Funktionsstörungen und Defekten der Stimmlippen ein wichtiges Ziel regenerativer Therapiestrategien. Die Forschung konzentrierte sich bisher schwerpunktmäßig auf die Applikation von bioaktiven Faktoren, Biomaterialien und die Anwendung von Stammzellen [85–87]. Dabei sind die Anforderungen an geeignete Biomaterialien extrem komplex, da einerseits eine ausreichende mechanische Stabilität zur Platzierung im Larynx notwendig ist und andererseits die Schwingungsfähigkeit der Stimmlippen eine sehr große Flexibilität erfordert. Vielfach wurden Hydrogеле zur Injektion in die Stimmlippen untersucht [88]. Hierbei spielen natürliche Materialien wie Kollagen und Elastin als Trägermaterial eine wesentliche Rolle sowie ihre Kombination mit Stammzellen oder patienteneigenen Stimmlippentissue [89]. Die Applikation von Stammzellen kann dabei durch Injektion oder durch Mobilisation endogener Stammzellen erfolgen [87] und wurde bereits vielfach in Tiermodellen, insbesondere jedoch bei akuten Schädigungen der Stimmlippen untersucht. Klinische Studien stehen in diesem Bereich noch aus.
3D-Bioprinting wurde ebenso wie die Verwendung von dezellularisierten Stimmlipten nur im Rahmen des 3D-Bioprintings und der Dezellularisierung des gesamten Larynx beschrieben [90, 91].

5.2.2. Larynx

Die Herstellung eines artifiziellen Larynx ist aufgrund der Vielfalt der im Larynx vorhandenen Gewebe und der komplexen Funktion des Larynx für die Stimmbildung aber auch für den Schluckvorgang eine große Herausforderung. Andererseits ist derzeit die Wiederherstellung der laryngealen Funktionen nach partieller und totaler Laryngektomie nur partiell möglich und mit großen Einschränkungen für die betroffenen Patienten verbunden. Hamilton und Birchall gehen in einer aktuellen Übersicht davon aus, dass die Therapie des Larynxkarzinoms in den kommenden 10 Jahren durch die Entwicklungen im Bereich der Larynxregeneration entscheidend beeinflusst werden wird [92]. Die Dezellularisation des gesamten Larynx beschrieben [90, 91].

Es kann derzeit lediglich ein Fall einer erfolgreichen Anwendung einer dezellularisierten und in-vivo mit autologen Zellen besiedelten Trachea zitiert werden [101]. In diesem Fall wurde ein 12-jähriges Kind, das unter einer kongenitalen langstreckigen Trachealstenose litt mit einer dezellularisierten Trachea behandelt [102]. Das Kind hat nach dieser Behandlung bisher 4 Jahre überlebt, auch wenn multiple Revisionseingriffe erforderlich waren [101]. Auch wenn die Dezellularisierung und auch das 3D-Printing für die Trachea vielversprechende Ansätze bieten sind insbesondere im Bereich der Trachealchirurgie zunächst umfangreiche und sorgfältige experimentelle und präklinische Daten vor weiteren klinischen Anwendungen unabdingbar.

5.3. Otologie

5.3.1. Trommelfell

Trommelfelldefekte können im Rahmen der akuten und chronischen Otitis media, aber auch posttraumatisch oder iatrogen auftreten. Während akute Trommelfelldefekte eine sehr gute Spontanheilungsrate aufweisen, müssen chronische Defekte in der Regel chirurgisch behandelt werden. Obwohl die Behandlung von Trommelfelddefekten durch Knorpel-Perichondrium-Inseltransplantate, Perichondrium-Transplantate oder Muskelfaszie transplantate häufig mit geringer Hebemorbidität und gutem Erfolg möglich ist, ist dennoch ein chirurgischer Eingriff in Lokalanästhesie oder Vollnarkose erforderlich und gelingt nicht immer. Somit ist auch das Trommelfell Ziel der Forschung in der Regenerativen Medizin und es wird nach kosteneffektiven und nicht-chirurgischen Therapieoptionen gesucht [103].

Kanemaru et al. berichteten bereits 2011 über den erfolgreichen klinischen Verschluss von Trommelfellperforationen im Rahmen von chronischen Otitten in über 98 % der behandlten Patienten [104]. In dieser Studie wurde das Trommelfell chirurgisch angefrischt und dann ein an den Defekt angepasster kleiner Block aus Gelatine mit oder ohne basic fibroblast growth factor (b-FGF) appliziert und anschließend mit Fibrinkleber fixiert. Nur der Zusatz von b-FGF ergab diese hohen Verschlussraten, während bei der Kontrollgruppe lediglich eine von 10 Perforationen verschlossen worden war. Von Jackler wurde diese Entwicklung als der möglicherweise größte Fortschritt in der Otologie seit dem Cochlea Implant bezeichnet [105]. Die Ergebnisse der ersten Studie von Kanemaru et al. wurden in einer Folgestudie 2017 bestätigt [106]. In dieser Studie wurden jedoch nur 11 Patienten behandelt und zusätzlich im Sinne einer Phase I Studie die Sicherheit dieser Therapie analysiert ohne dass dabei Therapie-induzierte Nebenwirkungen festgestellt worden wären. Langzeitergebnisse wurden leider bisher nicht publiziert, weiterhin entspricht das Studiendesign insbesondere der Studie aus dem Jahr 2011 nicht den aktuellen Anforderungen an eine Phase I klinische Studie. Dennoch geben beide klinische Studien erste Hinweise darauf, dass eine regenerative Therapie auch für den Verschluss von Trommelfellperforationen sinnvoll sein könnte. Weiterhin wurde eine größere prospektive randomisierte klinische Studie initiiert, die nach Angaben der Autoren derzeit Patienten rekruitiert [106]. Die Technik der Applikation von Gelatine mit b-FGF wurde von den Autoren auch bereits für die Therapie von Gehörgangsdefekten bei 54 Patienten eingesetzt [107]. Leider bleiben auch hier die präklinische Rationale und das Studiendesign ungenau. In der präklinischen Forschung wird auch für die Regeneration des Trommelfells das 3D-Bioprinting verwendet [108] und konnte an Chinchillas für den Verschluss von Trommelfelldetekten verwendet werden. Auch dezellularisierte Gewebe wurden bereits für die Tymanoplastik in präklinischen Untersuchungen und auch einigen klinischen Studien analysiert.
siert [109, 110]. Insbesondere AlloDerm (LifeCell Corp., USA), ein Produkt aus dezellularisierter menschlicher Haut hat sich als gleichwertig zur Temporalisfaszie im Hinblick auf die Verschlussraten gezeigt [109, 110] bei gleichzeitig kürzerer OP-Zeit [111]. Jedoch ist AlloDerm gegenwärtig in Deutschland nicht für die Tympanoplastik erhältlich. In einer Übersicht von Kaftan werden weitere dezellularisierte Materialien ausführlich dargestellt [112]. Gegenwärtig werden derartige Materialien in Deutschland nicht in größerem Umfang für die Tympanoplastik verwendet. In eigenen Untersuchungen erwiesen sich die akustischen Eigenschaften von dezellularisiertem Knorpelgewebe als vergleichbar mit dem menschlichen Trommelfell oder mit dünnen Knorpeltransplantaten [113]. Jedoch steht das Material noch nicht für klinische Studien zur Verfügung.

5.3.2. Mastoid

Auch das Mastoid ist Ziel der Regenerativen Medizin in der Hals-Nasen-Ohrheilkunde [114, 115]. Belüftete Mastoidzellen spielen neben der Eustachischen Röhre eine wichtige Rolle für den Druckausgleich im Mittelohr [116]. Ihr Vorhandensein und ihre Funktion können das Entstehen von Cholesteatomen und anderen chronischen Mittelohrerkrankungen verhindern [115]. In einer klinischen Studie wurde 3-dimensionales Hydroxyapatit (3D-HA) bei 10 Patienten zur Rekonstruktion der Mastoidzellen verwendet. Nach 12 Monaten wurden im Rahmen von Second Look Operationen in bis zu 60% wieder epithelialisierte Mastoidzellen gefunden [115]. Die Autoren postulieren, dass so auch Fälle sonst nicht optimal behandelbarer chronischer Otitiden behandelt werden könnten. In einer weiteren Studie publizierten Kanemaru et al. 2013 eine positive Wirkung dieser Therapie auch auf die Funktion der Eustachischen Röhre [117]. Bei 26 Patienten wurden neben einer konventionellen Cholesteatom-Sanierung und Tympanoplastik erneut 3D-HA zur Regeneration von Mastoidzellen verwendet. Bei den so behandelten Patienten ließ sich intraoperativ in etwa 70% der Fälle eine verbesserte Tubenfunktion im Vergleich zum Zeitpunkt vor der Operation nachweisen, während dies nur bei etwa 13% der konventionell behandelten Patienten der Fall war. Darüber hinaus existieren einige weitere präklinische Studien, die andere Materialien wie Poly-DL-Lactid-Poly-Glycol säure/Polyethylenglycol (PLGA/PEG) [118] oder Polycaprolacton/β-Tricalciumphosphat (PCL/β-TCP) [119] für die Rekonstruktion der Mastoidzellen verwenden. 3D-Bioprinting oder dezellularisierte Gewebe wurden bislang nicht für die Mastoidrekonstruktion verwendet.

Zum Thema Regeneration und Erhalt von Haarzellen werden aktuell eine erhebliche Anzahl experimenteller Untersuchungen durchgeführt. Es sind kürzlich wegweisende Untersuchungen zur Innenohrregeneration publiziert worden [120, 121] die zeigen, dass die Regeneration von menschlichen Haarzellen für die Therapie möglich sein könnte. Da ein weiteres Referat zu neuen Therapieformen im Bereich der Innenohr in diesem Band erscheint wird an dieser Stelle nicht weiter auf die Thematik eingegangen, sondern auf den Artikel „Molekulare Verstehen des Hörens – Was ändert sich für den Patienten?“ von lares Verstehen des Hörens – Was ändert sich für den Patienten?“ von

ter auf die Thematik eingegangen, sondern auf den Artikel “Moleku-
Fazit
Während bspw. in der Orthopädie regenerative Therapien in klinischen Studien aber auch in der klinischen Routine eingesetzt werden sind in der Hals-Nasen-Ohrenchirurgie trotz einer Vielzahl potentieller Anwendung und einer ebenso großen Vielfalt präklinischer Studien bisher nur wenige Ansätze in klinische Phase I Studien gelangt. Hierzu zählen bisher die Verwendung von künstlichen Knorpelgeweben für die Rekonstruktion der Nase sowie die Anwendung von Stammzellen für die Speicheldrüsenregeneration nach Radiatio.

Wesentliche Hürden der klinischen Translation und der anschließenden Verbreitung in den klinischen Alltag sind die hohen Kosten die mit derartigen individualisierten regenerativen Therapien verbunden sind. Auch die regulatorischen Voraussetzungen können bisher vielfach noch nicht ausreichend für die klinische Anwendung erfüllt werden. Trotz aller Hindernisse wird die Regenerative Medizin als neue Technologie alle Bereiche der Medizin, so auch die Hals-Nasen-Ohrenheilkunde in den nächsten Jahren und Jahrzehnten entscheidend verändern. Unabhängig hierfür ist es die nicht erfolgreichen Strategien zu verlassen und neue gemeinsame Erkenntnisse aus der Zell- und Entwicklungsbiochemie mit den Fortschritten der Immunologie und den neuen Technologien wie dem Bioprinting zu verbinden [55].

Danksagung
NR und MZW werden durch eine Förderung des Schweizer Nationalfonds, Nr. CRSII5_173868 gefördert.

Interessenkonflikt
Prof. Dr. Marcy Zenobi-Wong is a founder and consultant for Auregen Biotherapeutics SA.

Literatur
[1] Londono R, Badyak SF. Biologic scaffolds for regenerative medicine: mechanisms of in vivo remodeling. Ann Biomed Eng 2015; 43: 577–592
[2] Kragl M, Knapp D, Nacu E et al. Cells keep a memory of their tissue origin during axolotl limb regeneration. Nature 2009; 460: 60–65
[3] Voss SR, Epperlein HH, Tanaka EM. Ambystoma mexicanum, the axolotl: a versatile amphibian model for regeneration, development, and evolution studies. Cold Spring Harb Protoc 2009; 2009: pdb emo128
[4] Godwin JW, Pinto AR, Rosenthal NA. Macrophages are required for adult salamander limb regeneration. Proc Natl Acad Sci U S A 2013; 110: 9415–9420
[5] Atala A, Irvine DJ, Moses M et al. Wound Healing Versus Regeneration: Role of the Tissue Environment in Regenerative Medicine. MRS Bull 2010; 35: 8
[6] Orlando G, Soker S, Stratta RJ et al. Will regenerative medicine replace transplantation? Cold Spring Harb Perspect Med 2013; 3:
[7] Devauchelle B, Badet L, Lengele B et al. First human face allograft: early report. Lancet 2006; 368: 203–209
[8] Devauchelle BL, Testelin SR, Davrou J et al. Face graft? Extrapolation of facial allotransplantation to children. J Cranio maxillofac Surg 2016; 44: 925–933
[9] Duist J, Maistriaux L, Taddeo A et al. Bioengineering a Human Face Graft: The Matrix of Identity. Ann Surg 2017; 266: 754–764
[10] Khademhosseini A, Langer R. A decade of progress in tissue engineering. Nat Protocols 2016; 11: 1775–1781
[11] Murphy SV, Atala A. 3D bioprinting of tissues and organs. Nat Biotechnol 2014; 32: 773–785
[12] Höld K, Lin S, Tygat L et al. Bioink properties before, during and after 3D bioprinting. Biofabrication 2016; 8: 032002
[13] Chimene D, Lennox KK, Kaunas RR et al. Advanced Bioinks for 3D Printing: A Materials Science Perspective. Annals of Biomedical Engineering 2016; 44: 2090–2102
[14] Melchels FPW, Blokzijl MM, Levato R et al. Hydrogel-based reinforcement of 3D bioprinted constructs. Biofabrication 2016; 8: 035004
[15] Visser J, Melchels FP, Jeon JE et al. Reinforcement of hydrogels using three-dimensionally printed microfibres. Nat Commun 2015; 6: 6933
[16] Pati F, Jang J, Ha DH et al. Printing three-dimensional tissue analogues with decellularized extracellular matrix bioink. Nat Commun. 2014
[17] Louvrier A, Marty P, Barrabe A et al. How useful is 3D printing in maxillofacial surgery? J Stomatol Oral Maxillofac Surg 2017; 118: 206–212
[18] Visscher DO, Farre-Guasch E, Helder MN et al. Advances in bioprinting technologies for craniofacial reconstruction. Trends Biotechnol 2016; 34: 700–710
[19] Kesti M, Eberhardt C, Pagliccia G et al. Bioprinting complex cartilaginous structures with clinically compliant biomaterials. Advanced Functional Materials 2015; 25: 7406–7417
[20] Daly A, Critchley S, Rencsok E et al. A comparison of different bioinks for 3D bioprinting of fibrocartilage and hyaline cartilage. Biofabrication 2016; 8: 045002
[21] Nguyen D, Hägg DA, Forsman A et al. Cartilage tissue engineering by the 3D Bioprinting of iPSC cells in a nanocellulose/alginic acid scaffold. Scientific Reports 2017; 7: 658
[22] Müller M, Öztürk E, Arlov Ø et al. Alginate sulfate–nanocellulose bioinks for cartilage bioprinting applications. Annals of Biomedical Engineering 2016; doi:10.1007/s10439-016-1704-5 1–14
[23] Markstedt K, Mantas A, Tournier I et al. 3D bioprinting human chondrocytes with Nanocellulose-Alginate bioink for cartilage tissue engineering applications. Biomacromolecules 2015; 16: 1489–1496
[24] Hourd P, Medcalf N, Segal J et al. A 3D bioprinting exemplar of the consequences of the regulatory requirements on customized prostheses. Regenerative Medicine 2015; 10: 863–883
[25] Kiyotake EA, Beck EC, Detamore MS. Cartilage extracellular matrix as a biomaterial for cartilage regeneration. Ann N Y Acad Sci 2016; 1383: 139–159
[26] Smith BD, Grande DA. The current state of scaffolds for musculoskeletal engineering applications. Biomacromolecules 2015; 16: 1489–1496
[27] Hiew VV, Simat SFB, Teoh PL. The Advancement of Biomaterials in Regulating Stem Cell Fate. Stem Cell Rev 2017, doi:10.1007/ s12015-017-9764-y
[28] Sampath U, Ching YC, Chuah CH et al. Fabrication of porous materials from natural/synthetic Biopolymers and Their Composites. Materials (Basel) 2016; 9: 12
[29] Edgar L, McNamara K, Wong T et al. Heterogeneity of scaffold biomaterials in tissue engineering. Materials (Basel) 2016; 9: 5
[30] Swinehart IT, Badyak SF. Extracellular matrix bioscaffolds in tissue remodeling and morphogenesis. Dev Dyn 2016; 245: 351–360
[31] Sadler K, Estrellas K, Allen BW et al. Developing a pro-regenerative biomaterial scaffold microenvironment requires T helper 2 cells. Science 2016; 352: 366–370
[32] Badyak SF. TISSUE REGENERATION. A scaffold immune microenvironment. Science 2016; 352: 298
[33] Bissell MJ, Aggelis J. Dynamic reciprocity: how do extracellular matrix and hormones direct gene expression? Prog Clin Biol Res 1987; 249: 251–262
[34] Rozario T, DeSimone DW. The extracellular matrix in development and morphogenesis: a dynamic view. Dev Biol 2010; 341: 126–140
[35] Gattazzo F, Urciuolo A, Bonaldo P. Extracellular matrix: a dynamic microenvironment for stem cell niche. Biochim Biophys Acta 2014; 1840: 2506–2519
[36] Cravedi P, Farouk S, Angeletti A et al. Regenerative immunology: the immunological reaction to biomaterials. Transpl Int 2017, doi:10.1111/tri.13068
[37] Badyak SF, Brown BN, Gilbert TW et al. Biologic scaffolds for constructive tissue remodeling. Biomaterials 2011; 32: 316–319
[38] Petrie TA, Strand NS, Yang CT et al. Macrophages modulate adult zebrafish tail fin regeneration. Development 2014; 141: 2581–2591
[39] Brown BN, Sicari BM, Badyak SF. Rethinking regenerative medicine: a macrophage-centered approach. Front Immunol 2014; 5: 510
[40] Pettitt D, Arshad Z, Davies B et al. An assessment of the factors affecting the commercialization of cell-based therapeutics: a systematic review protocol. Syst Rev 2017; 6: 120
[41] Brittberg M, Lindahl A, Nilsson A et al. Treatment of deep cartilage defects in the knee with autologous chondrocyte transplantation. N Engl J Med 1994; 331: 889–895
[42] Peterson L, Minas T, Brittberg M et al. Two- to 9-year outcome after autologous chondrocyte transplantation of the knee. Clin Orthop Relat Res 2000, doi:10.1183/09034996.700325
[43] Lindahl A, Brittberg M, Peterson L. Health economics benefits following autologous chondrocyte transplantation for patients with focal chondral lesions of the patella. Knee Surg Sports Traumatol Arthrosc 2001; 9: 358–363
[44] Schuette HB, Kraeutler MJ, McCarty EC. Matrix-Assisted Autologous Chondrocyte Transplantation in the Knee: A Systematic Review of Mid- to Long-Term Clinical Outcomes. Orthop J Sports Med 2017; 5: 2325967117709250
[45] Mumme M, Barbero A, Miot S et al. Nasal cartilage-based engineered autologous cartilage tissue for repair of articular cartilage defects: an observational first-in-human trial. Lancet 2016; 388: 1985–1994
[46] Pelttari K, Pippenger B, Mumme M et al. Adult human neural crest-derived cells for articular cartilage repair. Sci Transl Med 2014; 6: 251ra119
[47] Pelttari K, Mumme M, Barbero A et al. Nasal cartilage as a neural crest-derived cell source for regenerative medicine. Curr Opin Biotechnol 2017; 47: 1–6
[48] Fulco I, Miot S, Haug MD et al. Engineered autologous cartilage tissue for nasal reconstruction after tumour resection: an observational first-in-human trial. Lancet 2014; 384: 337–346
[49] Dodson BP, Levine AD. Challenges in the translation and commercialization of cell therapies. BMC Biotechnol 2015; 15: 70
[50] Stace ET, Dakin SG, Mouthuy PA et al. Translating Regenerative Biomaterials Into Clinical Practice. J Cell Physiol 2016; 231: 36–49
[51] McLaren A. Ethical and social considerations of stem cell research. Nature 2001; 414: 129–131

[52] Leeper NJ, Hunter AL, Cooke JP. Stem cell therapy for vascular regeneration: adult, embryonic, and induced pluripotent stem cells. Circulation 2010; 122: 517–526
[53] Frantz S. Embryonic stem cell pioneer Geron exits field, cuts losses. Nat Biotechnol 2012; 30: 12–13
[54] Kirouac DC, Zandstra PW. The systematic production of cells for cell therapies. Cell Stem Cell 2008; 3: 369–381
[55] Badyak S. Perspective: Work with, not against, biology. Nature 2016; 540: 555
[56] Yanaga H, Koga M, Imai K et al. Clinical application of biotechnically cultured autologous chondrocytes as novel graft material for nasal augmentation. Aesthetic Plast Surg 2004; 28: 212–221
[57] Yanaga H, Yanaga K, Imai K et al. Clinical application of cultured autologous human auricular chondrocytes with autologous serum for craniofacial or nasal augmentation and repair. Plast Reconstr Surg 2006; 117: 2019–2030 discussion 2031-2012
[58] Yanaga H, Imai K, Tanaka Y et al. Two-stage transplantation of cell-engineered autologous auricular cartilages to regenerate chondrofat composite tissue: clinical application in regenerative surgery. Plast Reconstr Surg 2013; 132: 1467–1477
[59] Ceccarelli G, Gentile P, Marcarelli M et al. In Vitro and In Vivo Studies of Alar-Nasal Cartilage Using Autologous Micro-Grafts: The Use of the Rigenera(R) Protocol in the Treatment of an Osteochondral Lesion of the Nose. Pharmaceuticals (Basel) 2017; 10:
[60] Purpura V, Bondioli E, Graziano A et al. Tissue Characterization after a New Disaggregation Method for Skin Micro-Grafts Generation. J Vis Exp 2016; doi:10.3791/53579.e53579
[61] Zhou L, Pomerantseva I, Bassett EK et al. Engineering ear constructs with a composite scaffold to maintain dimensions. Tissue Eng Part A 2011; 17: 1573–1581
[62] Pomerantseva I, Bichara DA, Tseng A et al. Ear-Shaped Stable Auricular Cartilage Engineered from Extensively Expanded Chondrocytes in an Immunocompetent Experimental Animal Model. Tissue Eng Part A 2016; 22: 197–207
[63] Cervantes TM, Bassett EK, Tseng A et al. Design of composite scaffolds and three-dimensional shape analysis for tissue-engineered ear. J R Soc Interface 2013; 10: 20130413
[64] Cao Y, Vacanti JP, Paige KT et al. Transplantation of chondrocytes utilizing a polymer-cell construct to produce tissue-engineered cartilage in the shape of a human ear. Plast Reconstr Surg 1997; 100: 297–302 discussion 303-294
[65] Lee SJ, Broda C, Atala A et al. Engineered cartilage covered ear implants for auricular cartilage reconstruction. Biomacromolecules 2011; 12: 306–313
[66] Yanaga H, Imai K, Fujimoto T et al. Generating ears from cultured autologous chondrocytes by using two-stage implantation in treatment of microtia. Plast Reconstr Surg 2009; 124: 817–825
[67] Yanaga H, Imai K, Koga M et al. Cell-engineered human elastic chondrocytes regenerate natural scaffold in vitro and neocartilage with neoperichondrium in the human body post-transplantation. Tissue Eng Part A 2012; 18: 2020–2029
[68] Firmin F. Ear reconstruction in cases of typical microtia. Adv Otorhinolaryngol 2010; 68: 25–52
[69] Utomo L, Pleumeekers MM, Nimeskern L et al. Preparation and Characterization of a Decellularized Cartilage Scaffold for Ear Cartilage Reconstruction. Biomed Mater 2015; 10: 015010
[70] Ozmen OA, Falcioni M, Lauda L et al. Outcomes of facial nerve grafting in 135 cases: predictive value of history and preoperative function. Otol Neurotol 2011; 32: 1341–1346
S198
Kanemaru S, Umeda H, Yamashita M et al. Improvement of eustachian tube function by tissue-engineered regeneration of mastoid air cells. Laryngo-Rhino-Otol 2013; 123: 472–476

Gould TW, Bichall JP, Mallick AS et al. Development of a porous poly(DL-lactic acid-co-glycolic acid)-based scaffold for mastoid air-cell regeneration. Laryngo-Rhino-Otol 2013; 123: 3156–3161

Jang CH, Cho YB, Kim JS et al. Regeneration of mastoid air cells using polycaprolactone/beta-tricalcium phosphate biocomposites: an experimental study. Laryngo-Rhino-Otol 2012; 122: 660–664

Lyon J. Hearing Restoration: A Step Closer? JAMA 2017; 318: 319–320

McLean WJ, Yin X, Lu L et al. Clonal Expansion of Lgr5-Positive Cells from Mammalian Cochlea and High-Purity Generation of Sensory Hair Cells. Cell Rep 2017; 18: 1917–1929

Vergeer MR, Doornaert PA, Rietveld DH et al. Intensity-modulated radiotherapy reduces radiation-induced morbidity and improves health-related quality of life: results of a nonrandomized prospective study using a standardized follow-up program. Int J Radiat Oncol Biol Phys 2009; 74: 1–8

Scott-Brown M, Miah A, Harrington K et al. Evidence-based review: quality of life following head and neck intensity-modulated radiotherapy. Radiother Oncol 2010; 97: 249–257

Riley P, Glenny AM, Hua F et al. Pharmacological interventions for preventing dry mouth and salivary gland dysfunction following radiotherapy. Cochrane Database Syst Rev 2017; 7: CD012744

van Luik P, Pringle S, Deasy JO et al. Sparing the region of the salivary gland containing stem cells preserves saliva production after radiotherapy for head and neck cancer. Sci Transl Med 2015; 7: 305ra147

Lombaert I, Movahednia MM, Adine C et al. Concise Review: Salivary Gland Regeneration: Therapeutic Approaches from Stem Cells to Tissue Organoids. Stem Cells 2017; 35: 97–105

Nagler RM. The enigmatic mechanism of irradiation-induced damage to the major salivary glands. Oral Dis 2002; 8: 141–146

Nagler RM. Effects of head and neck radiotherapy on major salivary glands – animal studies and human implications. In Vivo 2003; 17: 369–375

Redman RS. On approaches to the functional restoration of salivary glands damaged by radiation therapy for head and neck cancer, with a review of related aspects of salivary gland morphology and development. Biotech Histochem 2008; 83: 103–130

Schwarz S, Huss R, Schulz-Siegmund M et al. Bone marrow-derived mesenchymal stem cells migrate to healthy and damaged salivary glands following stem cell infusion. Int J Oral Sci 2014; 6: 154–161

Lim JY, Yi T, Choi JS et al. Intraglandular transplantation of bone marrow-derived clonal mesenchymal stem cells for amelioration of post-irradiation salivary gland damage. Oral Oncol 2013; 49: 136–143

Lim JY, Ra JC, Shin IS et al. Systemic transplantation of human adipose tissue-derived mesenchymal stem cells for the regeneration of irradiation-induced salivary gland damage. PLoS One 2013; 8: e71167

Sumita Y, Liu Y, Khalili S et al. Bone marrow-derived cells rescue salivary gland function in mice with head and neck irradiation. Int J Biochem Cell Biol 2011; 43: 80–87

Pringle S, Nanduri LS, van der Zwaag M et al. Isolation of mouse salivary gland stem cells. J Vis Exp 2011, doi:10.3791/2484

Pringle S, Maimets M, van der Zwaag M et al. Human Salivary Gland Stem Cells Functionally Restore Radiation Damaged Salivary Glands. Stem Cells 2016; 34: 640–652

Nanduri LS, Maimets M, Pringle SA et al. Regeneration of irradiated salivary glands with stem cell marker expressing cells. Radiother Oncol 2011; 99: 367–372

Lombaert IM, Brunsting JF, Wierenga PK et al. Rescue of salivary gland function after stem cell transplantation in irradiated glands. PLoS One 2008; 3: e2063

Comella K, Bell W. First-in-man intraglandular implantation of stromal vascular fraction and adipose-derived stem cells plus platelet-rich plasma in irradiation-induced gland damage: a case study. Int Med Case Rep J 2017; 10: 295–299

Gronhøj C, Jensen DH, Clovinska PV et al. First-in-man mesenchymal stem cells for radiation-induced xerostomia (MESRIX): study protocol for a randomized controlled trial. Trials 2017; 18: 108

Ferreira JN, Rungarunlert S, Urkasemsin G et al. Three-Dimensional Bioprinting Nanotechnologies towards Clinical Application of Stem Cells and Their Secretome in Salivary Gland Regeneration. Stem Cells Int 2016: 2016: 756489

Flores RL, Liss H, Raffaelli S et al. The technique for 3D printing patient-specific models for auricular reconstruction. PlumX Metrics 2017; 6: 937–943

Otto IA, Melchels FPM, Randolph MA et al. Auricular reconstruction using biofabrication-based tissue engineering strategies. Biofabrication 2015; 7 (3)