Beneficial influence of Hf and Zr additions to Nb4at%Ta on the vortex pinning of Nb3Sn with and without an O source

Shreyas Balachandran1, Chiara Tarantini1, Peter J Lee1, Fumitake Kametani1,2, Yi-Feng Su1, Benjamin Walker1,2, William L Starch1 and David C Larbalestier1,2

1 National High Magnetic Field Laboratory, Tallahassee, FL 32310, United States of America
2 FAMU/FSU College of Engineering, Tallahassee, FL 32310, United States of America

E-mail: shreyasb@asc.magnet.fsu.edu

Received 20 November 2018, revised 21 December 2018
Accepted for publication 16 January 2019
Published 27 February 2019

Abstract
Here we show that addition of Hf to Nb4Ta can significantly improve the high field performance of Nb3Sn, making it suitable for dipole magnets for a machine like the 100 TeV Future Circular Collider (FCC). A big challenge of the FCC is that the desired non-Cu critical current density (J_c) target of 1500 $A \; mm^{-2}$ (16 T, 4.2 K) is substantially above the best present Nb3Sn conductors doped with Ti or Ta (\sim1300 $A \; mm^{-2}$ in the very best sample of the very best commercial wire). Recent success with internal oxidation of Nb–Zr precursor has shown significant improvement in the layer J_c of Nb3Sn wires, albeit with the complication of providing an internal oxygen diffusion pathway and avoiding degradation of the irreversibility field H_{Irr}. We here extend the Nb1Zr oxidation approach by comparing Zr and Hf additions to the standard Nb4Ta alloy of maximum H_{c2} and H_{Irr}. Nb4Ta rods with 1Zr or 1Hf were made into monofilament wires with and without SnO2 and their properties measured over the entire superconducting range at fields up to 31 T. We found that Group IV alloying of Nb4Ta does raise H_{Irr}, though O2 addition still slightly degrades it. As noted in earlier Nb1Zr work with an O source, the pinning force density F_p is strongly enhanced and its peak value shifted to higher field by internal oxidation. A surprising result of this work is that we found better properties in Nb4Ta1Hf without SnO2, F_p Max achieving 2.35 times that of the standard Nb4Ta alloy, while the oxidized Nb4Ta1Zr alloy achieved 1.54 times that of the Nb4Ta alloy. The highest layer J_c of 3700 $A \; mm^{-2}$ was found in the SnO2-free wire made with Nb4Ta1Hf alloy. Using a standard A15 cross-section fraction of 60% for modern powder-in-tube and rod restack process wires, we estimated that a non-Cu J_c of 2200 $A \; mm^{-2}$ is obtainable in modern conductors, well above the 1500 $A \; mm^{-2}$ FCC specification. Moreover, since the best properties were obtained without SnO2, the Nb4Ta1Hf alloy opens a straightforward route to enhanced properties in Nb3Sn wires manufactured by virtually all the presently used commercial routes employed today.

Keywords: Nb3Sn, future circular collider, alloying, high field critical current density

(Some figures may appear in colour only in the online journal)
simultaneously maintaining a high Cu stabilizer residual resistivity ratio (RRR) ≥ 100 and a large strand diameter of order 1 mm [7]. Recent rethinking of the heat treatment of commercial rod restack process (RRP®) conductors has shown that a better optimized Sn mixing heat treatment can allow J_c (16 T, 4.2 K) as high as 1300 A mm$^{-2}$ in specially selected 0.8 mm diameter wires, a significant 20% increase over the best prior standard heat treatment [8]. However, real conductor production has significant spread so there is little hope to achieve FCC specification by this route alone. Powder-in-tube (PIT) conductor studies indicate generally similar properties to RRP® conductors but with slightly lower performance [9]. The present optimization focus of RRP® and PIT commercial conductors is primarily to improve the quality and quantity of the Nb$_3$Sn in the reaction pack while maintaining high RRR. In summary, there is little expectation that present RRP® or PIT conductors can achieve the very challenging 1500 A mm$^{-2}$ at 16 T, 4.2 K FCC specification.

Analyzing the challenges of making the next generation of high field Nb$_3$Sn accelerator magnets it becomes clear that Nb$_3$Sn conductors requires minimal or no loss in upper critical field (H_{c2}) or the more practical irreversibility field (H_{Ir}). H_{c2} sets the thermodynamic upper limit of superconductivity: pure binary Nb$_3$Sn has a H_{c2} of 23.4 T (4.2 K), whereas doping with Group IV (Ti, Hf, Zr) or Group V (Mo, Ta) elements increases the H_{c2} up to \sim27 T [10–12], Ta [13, 14] and Ti [15] doping were adopted in PIT and RRP® wires and also increase high-field J_c [16]. However, stoichiometry variation across the A15 layer [17, 18] and disorder induced by dopants both broaden the H_{c2} distribution [19] and lower H_{Ir} [11]. Nb$_3$Sn conductor optimization involves multiple parameters and understanding of averaged property distributions, reasons why property improvement has somewhat stagnated in recent years. Since there is little sign that H_{c2} can be further enhanced beyond that possible with Ta or Ti [11, 20], the main issue for the present is clearly to maximize the uniformity of the A15 layer and to avoid any degradation of H_{Ir}.

A separate issue is the value of significant enhancement in the vortex pinning in the A15 layer. In the general absence of J_c measurements in the 20–25 T range up to H_{Ir}, an important indication of enhanced vortex pinning is an upward shift of the field at which the pinning force density $F_p = \mu_0 H J_c$ is maximum (H_{Max}), typically 4–5 T. The history of attempts to enhance vortex pinning in Nb$_3$Sn is quite lengthy. A common theme has been to try to reduce the A15 grain size and to introduce additional pinning centers into the Nb$_3$Sn. Ta [21] and Cu [22, 23] inclusions were tried without great benefit to J_c, although major effects on enhancing H_{Max} were reported by Rodrigues and Rodrigues. The most effective recent results are those observed by irradiation. Transport J_c of 2000 A mm$^{-2}$ at 16 T was achieved in Ti-doped RRP® strands after neutron irradiation [20], indicating that point pinning is a route to the FCC specification (though not in a practical conductor fabrication process). The most promising recent results are perhaps those obtained by insulating oxide nanoparticles created during the reaction heat treatment using a process first developed for a Nb–Zr alloy for a A15 tape substrate in 1994 at GE [24, 25] and also implemented more than a decade ago in experimental filamentary conductors [26–28]. In this route, Zr, originally in dilute solid solution in the Nb, is internally oxidized to insulating ZrO$_2$ point pins during the A15 reaction heat treatment. Oxygen can be introduced through an easily decomposable oxide such as SnO$_2$. Such particles increase the pinning force due to a combination of decreased A15 grain size below 50 nm and creation of insulating ZrO$_2$ point pins [29]. The encouraging results for high field performance are the shift of H_{Max} to higher fields [29, 30] and significantly enhanced A15 layer J_c [29, 31]. However, H_{Ir} of conductors made with binary Nb–Zr alloy was suppressed with respect to clean Nb$_3$Sn and was far below that of modern Ta/Ti-doped Nb$_3$Sn [8, 15]. Given this H_{Ir} degradation, ternary alloys like Nb4Ta1Zr are an obvious next step.

This impasse for the FCC conductor motivated the principal questions of this work:

(a) Is it possible to maintain the high H_{Ir} of present commercial Nb$_3$Sn conductors made with Nb4Ta/Ti alloys while increasing the pinning site density with ternary alloys based on Nb4Ta-X (X being Zr or Hf)?
(b) Does the introduction of oxygen in the system have detrimental effects on the irreversibility field?
(c) To what extent are A15 grain size refinement and point pinning effects of insulating ZrO$_2$ or HfO$_2$ pins individually separable and additive?

In the work reported below we show that Hf is an even more powerful additive to Nb4Ta than Zr and that an external oxidant is not necessary to greatly enhance the vortex pinning. We conclude that the FCC specification is attainable in present commercial Nb$_3$Sn conductor designs without internal oxygen sources.

2. Experimental methods

We prepared custom alloys with composition Nb4Ta1X, using Hf, not just Zr, because they both have high oxygen affinity and can create O$_2$ precipitates in the presence of SnO$_2$. The quality of the custom alloys was verified by SQUID magnetometer characterizations: both Nb4Ta1Zr and Nb4Ta1Hf have sharp transitions ($\Delta T_c \leq 0.35$ K) with T_c onsets of \sim9.23 K and \sim9.35 K for the Zr and Hf alloys, respectively. Our Nb$_3$Sn reaction package is a mixture of Cu–Sn powder mixed in the weight ratio to form Cu$_x$Sn$_y$ surrounding the alley rod inside a Ta/Cu tube shown in figure 1. Monofilaments were made with and without SnO$_2$ mixed into the Cu–Sn powder. The molar volume ratio of SnO$_2$ was based on the calculation that 3% of the alloy rod would transform to A15 during heat treatment producing a reaction layer of about 3000–4000 μm2. The monofilament wires were drawn down to a final diameter of 2 mm and underwent a two-step heat treatment at 550 °C/100 h and 670 °C/100 h. The 550 °C hold has the intent to potentially facilitate the oxygen diffusion into the alloy after SnO$_2$ decomposition in the wires containing the oxide [32], whereas the 670 °C hold is within the typical temperature range employed for the A15 reaction. For direct comparison, the same
heat treatment was performed on all the wires (both with and without SnO2). Vibrating-sample magnetometer (VSM) characteristics were performed up to 31 T at the National High Magnetic Field Laboratory to obtain the entire hysteresis loop from which the pinning force and irreversibility fields were calculated. The microstructures were evaluated in a Zeiss 1540 ESB scanning electron microscope (SEM) and a JEOL ARM200cF transmission electron microscope (TEM). Transverse wire cross-sections were prepared by metallographic polishing and then imaged with a solid-state back-scattered electron (BSE) detector, followed by digital image analysis. The TEM specimens were prepared by mechanical polishing on diamond lapping films, followed by Ar ion milling. In the following we will refer to the samples according to the additions with respect to the binary compound (e.g. Ta–Hf is the wire made with Nb4Ta1Hf alloy, while Ta–Zr–SnO2 refers to the wire prepared with Nb4Ta1Zr alloy and SnO2 powder).

3. Results

3.1. Microstructural characterizations

The in-lens secondary electron SEM images of fractured wire surfaces of figures 2(a), (b) reveal a typical Nb3Sn grain structure of the Ta and Ta–Hf wires. The Nb3Sn grain size of the Ta wire is ~110 nm, comparable to commercial wires. By adding Hf, the A15 grain size noticeably decreases to 68 ± 25 nm and 55 ± 10 nm for Ta–Hf and Ta–Hf–SnO2, respectively. The average grain size for all samples was estimated by the mean lineal intercept method and values are summarized in table 1.

Figure 2. Representative fractographs of the Nb3Sn/alloy–rod interface in Ta (a), (c) and Ta–Hf (b), (d) monofilaments after reaction heat treatment at $550^\circ C/100$ h + $670^\circ C/100$ h. Significantly smaller Nb3Sn grain sizes are obtained in the Ta–Hf sample (b) than in the Ta sample (a). Electron channeling contrast in the corresponding back-scattered electron images shows a recrystallized microstructure in the Nb–Ta alloy rod after reaction heat treatment (c) whereas the unreacted Nb–Ta–Hf alloy rod retains a cold worked microstructure (d).

After the A15 reaction heat treatment, significant Nb alloy rod remains unreacted, leaving a clear microstructural contrast between the alloy rod and the Nb3Sn as seen in figures 2(c), (d). The channeling contrast in the BSE images highlights evident recrystallization in the Nb4Ta alloy after the A15 reaction heat treatment (figure 2(c)), while, in strong contrast, showing that the cold worked deformation structure was retained in the Nb4Ta1Hf rod (figure 2(d)). The grain size of the unreacted rod was $3.8 \pm 2.3 \mu m$ in the Nb4Ta but only $0.17 \pm 0.08 \mu m$ in the Nb4Ta1Hf rod. For comparison, we also measured the grain size of the unreacted alloy rod in the other alloy samples after the A15 reaction heat treatment at $670^\circ C/100$ h. The grain size of the unreacted alloy rod was $0.29 \pm 0.11 \mu m$ and $0.310 \pm 0.090 \mu m$ in Ta–Zr and Ta–Zr–SnO2 samples, respectively. Overall the alloys with SnO2 have slightly smaller grain size than their SnO2-free counterparts.

Figure 3 shows a TEM bright field image of the Nb3Sn layer close to the interface with the unreacted Ta–Hf alloy rod, which confirms the very small A15 grain sizes (60–70 nm) of the SEM fractograph of figure 2(b). In addition to the A15 diffraction grain contrast, there are also dark dots within the Nb3Sn grains that correspond to nanoparticle precipitation not visible in the fractograph of figure 2(b). No visible precipitates were spotted in the TEM images of the unreacted Nb4Ta1Hf rod regions. Quantification and chemical analysis of the precipitates are in progress. Preliminary electron energy loss spectroscopy indicated that the precipitates are Sn deficient without detectable oxygen.

Since the Nb3Sn layers formed by Sn diffusion develop compositional and/or microstructural gradients away from the Sn source, we also examined the Nb3Sn layer close to the
Table 1. Summary of Nb$_3$Sn properties in monofilament wires prepared with Ta–Zr/Hf-based ternary alloys after a 670 °C/100 h heat treatment. Results are compared to a 108/127 Ta-doped RRP® conductor heat treated at 666 °C.

Wire description	Grain size	Electromagnetic properties at 4.2 K							
		μ_0H_{Max} (T)	$F_{\text{Max}}/F_{\text{Nb}_{3}\text{Sn}}$	μ_0H_{Ir} (T)	Layer J_c(12 T) (A mm$^{-2}$)	Layer J_c(16 T) (A mm$^{-2}$)	Eq. RRP® non-Cu J_c(16 T) (A mm$^{-2}$)		
Sample name	Alloy	SnO$_2$	Nb$_3$Sn (nm)	Alloy rod (μm)					
Ta	Nb–Ta	No	107 ± 19	3.8 ± 2.3	4.70	1	3210 ± 920	1250 ± 360	750 ± 210
Ta–SnO$_2$	Nb–Ta	Yes	100 ± 25	2.6 ± 1.9	5.10	0.65	2240 ± 640	1000 ± 290	600 ± 170
Ta–Zr	Nb–Ta	No	86 ± 27	0.29 ± 0.11	5.23	1.01	3550 ± 1010	1280 ± 370	770 ± 220
Ta–Zr–SnO$_2$	Nb–Ta–Zr	Yes	70 ± 33	0.31 ± 0.09	5.30	1.54	5020 ± 1430	1680 ± 480	1010 ± 290
Ta–Hf	Nb–Ta–Hf	No	68 ± 25	0.17 ± 0.08	5.81	2.35	9610 ± 2740	3710 ± 1060	2230 ± 640
Ta–Hf–SnO$_2$	Nb–Ta–Hf	Yes	55 ± 10	0.13 ± 0.06	5.47	2.25	8520 ± 2430	3090 ± 880	1860 ± 530

Ta-RRP Nb–Ta — 4.60 23.2
in the Ta to the alloy below 100 nm. 100 h and the inner Nb3Sn layer Cu also produced in this rod-in-powder-in-tube design. Figure 3. Representative TEM bright field image of Nb3Sn grains close to the alloy–rod interface. White arrows indicate intragranular precipitates in the Ta–Hf sample reacted at 550 °C/100 h + 670 °C/100 h. Figure 4. Representative TEM bright field image of the Nb3Sn–Nb6Sn5 interface in the Ta–Hf sample reacted at 550 °C/ 100 h + 670 °C/100 h. Grain sizes of both Nb6Sn5 and Nb3Sn are below 100 nm.

Cu–Sn region, confirming that the Sn-rich Nb6Sn5 phase was also produced in this rod-in-powder-in-tube design. Figure 4 is a TEM image of the interface between the outer Nb6Sn5 and the inner Nb3Sn layer (the unreacted Nb4Ta1Hf rod lies inside these layers). An interesting observation is the presence of very small equiaxed Nb6Sn5 grains of less than 100 nm diameter. This is one of the first observations of sub-micron Nb6Sn5, whose grain size is normally several microns in commercial PIT conductors [14].

3.2. Magnetization characterizations

Magnetization measurements were performed in the 1.3–14 K temperature range on all the monofilament wires and, for comparison, a Ta-doped RR® conductor which was similarly heat treated (666 °C/50 h). The 35 T magnet allowed us to evaluate the entire hysteresis loops so as to accurately estimate the temperature dependence of \(H_{Ir} \). The layer \(J_c \) and \(F_p \) were estimated using the Bean model [33] combined with the cross-sectional dimensions determined by SEM image analysis and the relation \(F_p = |J_c \times \mu_0 H| \). The A15 thickness and area fraction was identified based on BSE contrast differences. Because of the simple wire design and some non-uniform deformation of the Nb alloy rods during wire drawing, a noticeable variation in the residual rod cross-section was found within each wire, affecting the calculation of Nb3Sn cross-sectional area. To estimate the layer \(J_c \), we analyzed ten different wire cross-sections to determine the average rod and Nb3Sn cross-sectional areas and their respective standard deviations.

The deduced layer \(F_p \) and \(J_c \) values are plotted in figure 5. For the standard Nb4Ta alloy (without SnO2) \(F_p \) peaks at \(H_{Max} \sim 4.7 \) T, close to the value for Ta-doped RR® wire (see table 1). Adding SnO2 to the Ta-doped wire shifts \(H_{Max} \) above 5 T but clearly suppresses \(F_p\text{Max} \) by 35%. The Nb4Ta1Zr alloy shifts \(H_{Max} \) to \(\sim 5.2–5.3 \) T with \(F_p\text{Max} \) for the wire without SnO2 being comparable to that of the standard Nb4Ta alloy, whereas the wire with SnO2 addition has a more than 50% larger \(F_p\text{Max} \). These two curves however cross at high field due to some \(H_{Ir} \) degradation when SnO2 is present. The Nb4Ta1Hf alloy is clearly the most effective in changing the pinning force, having \(H_{Max} \) peaking at \(\sim 5.5 \) and \(\sim 5.8 \) T for the wires with and without SnO2, respectively. \(F_p\text{Max} \) values in these cases are comparable and both more than 2.2 times larger than for the standard Nb4Ta alloy.

The temperature dependence of \(H_{Ir} \) is shown in figure 6. Comparing the 4.2 K values, we found that Ta–Zr, and Ta–Hf without SnO2 have \(H_{Ir} \) values of 22.8 and 23.6 T, respectively, similar to \(H_{Ir} \) of 23.2 T obtained for the RR® conductor. The SnO2 addition to the Ta–Zr sample suppresses \(H_{Ir}(4.2 \text{ K}) \) to 20.9 T, whereas in the Ta–Hf case \(H_{Ir} \) had a smaller drop from 23.6 to 23.1 T. Overall, oxygen appears to degrade both Hf and Zr-doped conductors but the effect is larger for the Nb4Ta1Zr alloy.

Figure 7 and table 1 summarize the layer \(J_c(4.2 \text{ K}) \) at 12 and 16 T of our monoconductor designs and compare them to commercial conductors: the gray shaded areas represent the range of variation for high-\(J_c \) Ta-doped RR® from [34], while the orange dashed lines are for the best Ti-doped RR® after the optimized Cu–Sn mixing heat treatment of [8]. Our Nb4Ta wire has a layer \(J_c \) of 3210 ± 920 A mm⁻² at 12 T and 1250 ± 360 A mm⁻² at 16 T, values typical of those found for Ta-doped RR® conductors, which range between 3190 and 5250 A mm⁻² at 12 T and 1400–1880 A mm⁻² at 16 T. The Ti-doped RR®
A new result of this work is that H_{Irr} suppression is no longer an issue for conductors fabricated with Nb4Ta alloy with 1Zr or 1Hf additions. The A15 $H_{Irr}(4.2 \text{ K})$ now reaches 23.6 T in the O-free Hf alloy without any degradation compared to commercial wires made with Nb4Ta and Nb–Ti. The beneficial effects of Zr added to Nb4Ta in a PIT wire have also been recently reported by Xu et al [35]. However, in this comparison of properties with and without SnO2, we note that we do still see a small H_{Irr} degradation in the presence of O, the effect being significantly worse in the Zr alloy. Although showing an improved H_{Max} of 5.3 T, the Nb4Ta1Zr alloy with SnO2 has $H_{Irr}(4.2 \text{ K})$ of only 20.85 T, ~2 T lower than Nb4Ta1Zr without SnO2.

Perhaps the most surprising result of the present study is that the Nb3Sn grain size can be reduced to much less than 100 nm without SnO2 and its internal oxidation potential when Nb4Ta1Hf alloy is used, perhaps because some nano-precipitates form in the A15 layer even without internal oxidation by SnO2. The explanation may lie in another unexpected observation, namely that neither the Nb4Ta1Zr nor the Nb4Ta1Hf alloys recrystallized during the A15 reaction heat treatment, quite unlike the case with Nb4Ta (or pure Nb) rods. As seen in figure 2 and table 1, the grain structure of the Nb4Ta1Zr and Nb4Ta1Hf rods after A15 reaction heat treatment is one order of magnitude smaller than in the recrystallized Nb4Ta alloy. Since penetration of Sn into the alloy must occur preferentially by grain boundary diffusion [36], the much denser diffusion paths available to the unrecrystallized ternary alloys must contribute significantly to denser A15 nucleation and a finer A15 grain size in the growing reaction layer. Indeed we propose that a high A15 nucleation frequency in the cold worked alloy nanostructure of its high GB density is the dominant factor to significantly reduce the Nb3Sn grain size in our Ta−Zr and Ta−Hf samples. Our observation of 100 nm grains in the intermediate Nb4TaSn3 phase which forms between the Sn source and the A15 layer is also consistent with this same Sn diffusion mechanism along the Nb alloy GBs. SnO2 addition does appear to produce a small decrease in A15 grain size (from 68 to 55 nm), perhaps by providing some precipitation that retards A15 grain growth. In this respect the 1Hf alloy appears better than the 1Zr alloy precisely because it can strongly enhance vortex pinning without need for SnO2 and without the H_{Irr} degradation that O brings in these wires.

In considering the practical implications of these experiments, we note that the highest non-Cu $J_c(4.2 \text{ K}, 16 \text{ T})$ obtained by optimized heat treatment of state-of-the-art commercial Ti-doped RRP® conductor is so far only \sim1300 A mm$^{-2}$. This new record for an RRP® conductor emerged from a detailed study of a wide range of RRP® billets made available through the US Magnet Development Program and Oxford Superconducting for study by Sanabria et al [8], most of which were of lower J_c due to the inherent distribution of properties seen in large production runs. The present results are particularly exciting because the highest J_c was obtained in the Nb4Ta1Hf alloy without SnO2.

Figure 5. Critical current density (a) and pinning force density (b) of the A15 layer as a function of magnetic field showing significant enhancement for the Nb−Ta−Zr and Nb−Ta−Hf conductors.

4. Discussion

Despite the observation of a upward shift in F_{pMax} towards higher field, earlier Nb1Zr PIT conductors showed degraded H_{Irr} of \sim20 T or less, lower than binary Nb$_3$Sn, thus depressing the high field J_c properties significantly below standard Ta or Ti-doped conductors [8, 15].
suggesting that conventional RRP® or PIT architectures are possible with a minimum perturbation to present billet designs. The RRP® version might thus create <100 nm Nb3Sn grains with a layer \(J_c \) (4.2 K, 16 T) of \(\sim 3700 \) A mm\(^{-2}\). Considering that the Nb3Sn layer occupies about 60% of the non-Cu area in RRP® wires, this is equivalent to a non-Cu \(J_c \) (4.2 K, 16 T) of \(\sim 2200 \) A mm\(^{-2}\), well above the FCC requirement of 1500 A mm\(^{-2}\). Moreover, the Nb1Ta4Hf alloy could also be beneficial for PIT conductors presently made with Nb4Ta tubes. Detailed studies of the A15 reaction in present PIT conductors by Segal et al. show that \(J_c \) is in fact limited by the fact that about one quarter of the \(\sim 55\% \) A15 (formed by decomposition of large grain Nb6Sn5) is >1 \(\mu \)m in size \([13, 14, 37]\). This large grain A15 does not contribute to current transport, thus degrading the overall \(J_c \) of PIT conductors with respect to RRP® conductors. Segal’s studies showed that the large grain A15 could be partially suppressed in favor of fine-grain A15 at higher reaction temperatures. \(J_c \) did not benefit however due to the larger A15 grain size of higher temperature reactions, presumably associated with grain growth in the recrystallized Nb4Ta. Given the ability of Nb4Ta1Hf to avoid recrystallization, it may be that the inverted higher-lower temperature A15 reactions studied by Segal now become feasible.

In summary we have shown that 1Hf additions to Nb4Ta show many benefits and suggest straightforward routes to much higher \(J_c \) Nb3Sn conductors made by all of the present commercial routes, bronze, internal Sn and other variants. A potential concern may be that both Zr and Hf additions to Nb4Ta degrade alloy drawability, but, so far, after a true strain of 8, no problems of work hardening and filament breakage have been encountered. Further studies to higher strains are in progress as well as a more extended heat treatment optimizations.

Figure 6. Irreversibility field versus temperature determined from the magnetization hysteresis of the various monofilaments compared with a Ta-doped RRP® conductor. \(H_{irr} \) of the Ta–Hf doped monofilament is the highest and both Zr and Hf monofilaments with SnO2 show degraded \(H_{irr} \).

Figure 7. Layer \(J_c \) (4.2 K) of Nb3Sn in monofilament wires at 12 and 16 T (4.2 K) showing significantly better performance in the Ta–Hf based conductors with respect to the standard Ta and Ta–Zr based wires by about a factor of three. The gray shaded areas represent the range of variation for high-\(J_c \) Ta-doped RRP® \([31]\); the orange dash lines are for the best Ti-doped RRP® wire after optimized heat treatment \([8]\). The 16 T data for the Ta and Ta–SnO2 samples and the Ta–RRP® conductors were estimated from 14 T measurements.
5. Conclusions

We have demonstrated that adding 1Hf or 1Zr to Nb4Ta greatly reduces the H_{Ir} suppression encountered in Nb5Sn wires made from Nb1Zr wires previously examined at OSU and SupraMagnetics/FSU [29–31]. The highest H_{Ir} and the best vortex pinning performance were obtained with a Nb4Ta1Hf alloy without SnO2, which reached a maximum pinning force more than twice that obtained with standard Nb4Ta alloy and with slightly better H_{Ir}. Initial evaluations of the layer J_c lead to $\sim 3700 \pm 1100$ A mm$^{-2}$ at 16 T, 4.2 K corresponding to a non-Cu J_c of $\sim 2200 \pm 600$ A mm$^{-2}$ in an RRP® architecture. These results indicate that the quickest pathway to a high J_c for FCC conductor may be to avoid internal oxidation and to just use the A15 grain refinement properties of Hf or similar additions to Nb4Ta in either internal-tin or PIT conductors.

Acknowledgments

The authors would like to thank to J Parrell (Bruker OST, LLC) for providing Nb7.5 Ta slabs used for the special alloys melted here, Eun Sang Choi (NHMFL) for his support during high field VSM characterization, and James Gillman (ASC, NHMFL) for fabrication support. The authors would like to acknowledge the TEM sample preparation work of undergraduate students T Shelby and J Boyd (NHMFL-ASC). Discussions with Chris Segal (now at CERN) are gratefully acknowledged. This work is funded by the US Department of Energy, Office of Science, and Office of High Energy Physics under Award Number DE-SC0012083, and performed under the purview of the US-Magnet Development Program. Discussions of parallel work being performed by Xingchen Xu (Fermilab) are greatly acknowledged. This work was performed at the National High Magnetic Field Laboratory, which is supported by National Science Foundation Cooperative Agreements NSF-DMR-1157490 and DMR-1644779 and by the State of Florida.

ORCID iDs

Shreyas Balachandran https://orcid.org/0000-0002-0077-8504
Chiara Tarantini https://orcid.org/0000-0002-3314-5906
Peter J Lee https://orcid.org/0000-0002-8849-8995
David C Larbalestier https://orcid.org/0000-0001-7098-7208

References

[1] Todesco E et al 2018 Progress on HL-LHC Nb5Sn magnets IEEE Trans. Appl. Supercond. 28 4008809
[2] Tommasini D et al 2018 Status of the 16 T dipole development program for a future hadron collider IEEE Trans. Appl. Supercond. 28 4001305
[3] Schoerling D et al 2017 Considerations on a cost model for high-field dipole arc magnets for FCC IEEE Trans. Appl. Supercond. 27 4003105
[4] Bottura L, de Rijk G, Rossi L and Todesco E 2012 Advanced accelerator magnets for upgrading the LHC IEEE Trans. Appl. Supercond. 22 4002008
[5] Pan H et al 2016 Assembly tests of the first Nb5Sn low-beta quadrupole short model for the Hi-Lumi LHC IEEE Trans. Appl. Supercond. 26 4001705
[6] Savary F et al 2017 Progress on the development of the Nb5Sn 11T dipole for the high luminosity upgrade of LHC IEEE Trans. Appl. Supercond. 27 4003505
[7] Tommasini D et al 2017 The 16 T dipole development program for FCC IEEE Trans. Appl. Supercond. 27 4000405
[8] Sanabria C et al 2018 Controlling Cu–Sn mixing so as to enable higher critical current densities in RRP® Nb5Sn wires Supercond. Sci. Technol. 31 064001
[9] Bordini B et al 2017 The bundle-barrier PIT wire developed for the HiLumi LHC project IEEE Trans. Appl. Supercond. 27 6000706
[10] Suenaga M 1985 Optimization of Nb5Sn IEEE Trans. Magn. 21 1122–8
[11] Suenaga M, Welch D O, Sahatini R L, Kammerer O F and Okuda S 1986 Superconducting critical temperatures, critical magnetic fields, lattice parameters, and chemical compositions of ‘bulk’ pure and alloyed Nb5Sn produced by the bronze process J. Appl. Phys. 59 840–53
[12] Sekine H, Takeuchi T and Tachikawa K 1981 Studies on the composite processed Nb–Hf/Cu–Sn–Ga high-field superconductors IEEE Trans. Magn. 17 383
[13] Tarantini C et al 2015 Composition and connectivity variability of the A15 phase in PIT Nb5Sn wires Supercond. Sci. Technol. 28 095001
[14] Segal C et al 2016 Evaluation of critical current density and residual resistance ratio limits in powder in tube Nb5Sn conductors Supercond. Sci. Technol. 29 085003
[15] Tarantini C, Sung Z H, Lee P J, Ghosh A K and Larbalestier D C 2016 Significant enhancement of compositional and superconducting homogeneity in Ti rather than Ta-doped Nb5Sn Appl. Phys. Lett. 108 042603
[16] Field M B, Zhang Y, Miao H, Gerace M and Parrell J A 2014 Optimizing Nb5Sn conductors for high field applications IEEE Trans. Appl. Supercond. 24 6001105
[17] Godeke A et al 2005 The upper critical field of filamentary Nb5Sn conductors J. Appl. Phys. 97 093909
[18] Fischer C M, Lee P J and Larbalestier D C 2002 Irreversibility field and critical current density as a function of heat treatment time and temperature for a pure niobium powder-in-tube Nb5Sn conductor AIP Conf. Proc. 614 1008–15
[19] Heald S M et al 2018 Evidence from EXAFS for different Ta/Ti site occupancy in high critical current density Nb5Sn superconductor wires Sci. Rep. 8 4798
[20] Baumgartner T et al 2015 Performance boost in industrial multifilamentary Nb5Sn wires due to radiation induced pinning centers Sci. Rep. 5 10236
[21] Klemm M, Seibt E, Specking W, Xu J Q and Flukiger E 1990 Supercond. Sci. Technol. 3 249
[22] Zhou B R, Hong S and Kear B H 1994 Improver pinning in Nb and Nb5Sn superconductors Phil. Mag. B 71 427–36
[23] Rodrigues C A and Rodrigues D J 2007 Flux pinning behavior of Nb5Sn superconductors with nanostructured pinning centers IEEE Trans. Appl. Supercond. 17 2627–30
[24] Rumaner L E and Benz M G 1994 Effect of oxygen and zirconium on the growth and superconducting properties of Nb5Sn Metall. Mater. Trans. A 25 203–12
[25] Rumaner L E, Benz M G and Hall E L 1994 The role of oxygen and zirconium in the formation and growth of Nb5Sn grains Metall. Mater. Trans. A 25 213–9
Zeitlin B A, Marte J S, Ellis D, Benz M and Gregory E 2004 Some effects of the addition of 1 at% Zr to Nb on the properties and ease of manufacture of internal-Tin Nb3Sn AIP Conf. Proc. 711 395–402

Zeitlin B A et al 2005 Results on mono element internal tin Nb3Sn conductors (MEIT) with Nb7.5 Ta and Nb(1Zr+Ox) filaments IEEE Trans. Appl. Supercond. 15 3393–8

Zeitlin B A et al 2006 The effect on the superconducting properties of the addition of oxygen and titanium to (Nb-1Zr)3Sn mono element internal Tin (MEIT) conductors AIP Conf. Proc. 824 513–9

Xu X, Sumption M, Peng X and Collings E W 2014 Refinement of Nb3Sn grain size by the generation of ZrO2 precipitates in Nb3Sn wires Appl. Phys. Lett. 104 082602

Motowidlo L R et al 2018 An intermetallic powder-in-tube approach to increased flux-pinning in Nb3Sn by internal oxidation of Zr Supercond. Sci. Technol. 31 014002

Xu X, Sumption M D and Peng X 2015 Internally oxidized Nb3Sn strands with fine grain size and high critical current density Adv. Mater. 27 1346–50

Sumption M D 2018 Private communication

Bean C P 1964 Magnetization of high-field superconductors Rev. Mod. Phys. 36 31

Tarantini C et al 2014 Examination of the trade-off between intrinsic and extrinsic properties in the optimization of a modern internal tin Nb3Sn conductor Supercond. Sci. Technol. 27 065013

Xu X, Rochester J, Peng X, Sumption M and Tomsic M 2019 Ternary Nb3Sn superconductors with artificial pinning centers and high upper critical fields Supercond. Sci. Technol. 32 02LT01

Smathers D B 1982 PhD Thesis University of Wisconsin Madison

Segal C et al 2017 Improvement of small to large grain A15 ratio in Nb3Sn PIT wires by inverted multistage heat treatments IOP Conf. Ser.: Mater. Sci. Eng. 279 012019