4. One is often obliged to combine the use of iodine with syphilization, in order to obtain a complete cure.
5. Relapses are not unfrequent after syphilization in individuals previously mercurialised.
6. These relapses, however, will never have a form worse than that which existed before the syphilization: they will always, so to speak, be a fraction of the earlier affection.
7. The state of health always improves during the syphilization.

It will be seen from the above mentioned details, that, although it is often impossible to do everything with syphilization in those who have been previously treated with mercury, yet even in such cases we obtain very much better results than by any other treatment whatever. It is a duty, therefore, in these cases also to use this treatment. But it is not, as some persons have believed, especially in these circumstances that syphilization ought to be employed—only when all other remedies have failed. Syphilization is the remedy against syphilis, but not against depraved syphilis—that produced by improper and pernicious remedies, especially mercury. It is the first and not the last remedy in constitutional syphilis; this point we must insist on, in order that it may be understood that it is not necessary to empoison our patients with mercury before proceeding to cure them.

Perhaps I ought to demonstrate more fully my assertion as to the insufficient and pernicious effect of mercury on syphilis; but in an Edinburgh journal it will be unnecessary, as I know that my opinion of this remedy is approved in Scotland.

Part Second.

REVIEWS, ETC.

1. The Physiological Anatomy and Physiology of Man. By Robert B. Todd, M.D., and William Bowman, F.R.S., King’s College, London.

2. Demonstrations of Anatomy. By George Viner Ellis, Professor of Anatomy, University College, London.

3. Quain’s Elements of Anatomy. Sixth Edition. By William Sharpey, M.D., and George V. Ellis, Professors of Anatomy and Physiology, University College, London.

4. Handbuch der Systematischen Anatomie des Menschen. Von Dr J. Henle, Professor der Anatomie in Göttingen.

The differences of opinion, so frequently heard, on the merits of the various anatomical text-books of the day, arise in part from the con-
founding of execution and plan. As to plan, they may be referred to three orders—the mere manual, the idealess heap of facts, the favourite of the indifferent and refuge of the cramming student; the cyclopædia, containing all that is known or worth knowing, the work for consultation and special study; and, somewhere between these extremes, the legitimate text-book, not easily defined but well understood, giving facts but not too many details, principles and views but not too many theories, in short the science rendered by one of its masters, with due regard to the exigencies of time and space, approving itself alike to teacher and pupil as the right kind of book for the average student.

The work of Messrs Todd and Bowman is now concluded after a periodical appearance over thirteen years. We readily sympathise with the apology of the authors in the distractions of a life divided between teaching, research, and the many calls of an active professional life. This work has been carried through as it began, combining judicious selection and clear statement of known facts with much original matter. We have no hesitation in recommending "The Physiological Anatomy and Physiology of Man" to the student as a trustworthy guide in his physiological studies. We would likewise hold up this work as a model for a course of lectures on physiology, embracing as we think it ought, the three great divisions—Histology, Biology, and Embryology. It is of course not easy to draw a definite border, whether in books or lectures, between anatomy and physiology, but we think that Messrs Todd and Bowman have occasionally stepped backwards too far into anatomical description,—as in giving the forms and classification of the joints; the mechanism of the skeleton, the cartilages and muscles of the nostrils, external ear, and larynx; the characters of the different teeth, as their position, size, and number of cusps and fangs; the elementary facts about the valves of the heart; the lengths of the stages of the urethra, etc. All of this assuredly belongs to systematic anatomy, with its inseparable teleology, and the student is already familiar with it before his second session and proper physiological studies come. What we mean is, that description of such parts is waste repetition in physiology, that reference to them is enough. But repetition matters less in books than in lectures, and we look on the sound anatomical basis as one of the excellent features of this work.

The concluding part of the work contains a well illustrated account of the development of the embryo. The general scheme is well outlined, but we think this large and interesting subject deserving of greater space and time than is usually allotted to it in works and lectures on physiology. We would desire a systematic account of the development of the special systems and organs, of course not too detailed, but more filling up the gap between the early stages and the attainment of the fully developed and specialized forms. No part of anatomy and physiology possesses more inherent in-
terest, or is more calculated to enlarge the mind and imbue it with the philosophical spirit. Not forgetting time and space, and the utilitarian, we beg to urge this view on physiological writers and teachers.

In concluding our notice of Messrs Todd and Bowman's work, we should not omit to commend the style as well as the plan and selection of matter. It is clear calm and readable, with a solidity and thoughtfulness, well calculated not merely to afford sound information, but to stimulate the student to weigh and consider for himself,—not merely to teach but to train.

Mr Ellis's work has been already more than once commended and recommended in our pages. This edition, the fourth, is revised with various improvements. The addition of sixty pages we rather regret. Good and true anatomists are in constant danger of overloading, and feel the cutting down process a painful one, but the average student must be considered, and it is the only way of keeping the illegitimate manuals out of the field. A work such as Mr Ellis's, on the regional method, is and should be used only as a supplement or addition to a systematic work, to be used in and in connection with the dissecting room. Microscopical anatomy seems out of place in it, especially without diagrams; and the anatomy of the organs of the senses seems an unnecessary repetition. The descriptions in the systematic work, which every student possesses besides, will suit as well or better. What the dissector really wants is admirably supplied in Mr Ellis's work. Every teacher who is much in the practical rooms must have noticed the helplessness of the dissector who uses only a systematic book. He may turn from chapter to chapter for the different systems, and still does not find his attention called to the relations before him. The regional we hold to be the true method of dissection even from the beginning. The systems are understood from systematic reading lectures and diagrams, and are readily followed in idea while they are being examined relationally in the regional dissection. While systematic views represent nature's physiological ideas, the regional method of examination displays the body as it is, and therefore as the surgeon requires to know it. Mr Ellis has written a true regional anatomy. This is not to be done by using the scissors on a systematic book. The systematic within the regions is not the regional. The first edition went rather far in the other direction, cutting the systems too much up, which implies repetitions confusing to the ordinary student; but such a work was a new experiment in this country, and Mr Ellis has now, to our mind, struck about the right medium. We speak from a long experience by the dissecting tables in saying that a text-book on this plan, in addition to the systematic work, is of the highest service to the student. We do not mean, however, as a substitute for the demonstrator. With subjects and books only, the average student will make little progress. He must be taught, must have the frequent and always available assistance of the ready demonstrator, directing,
naming, calling attention to important points, and examining before he allows a new region to be broken up.

Quain's Anatomy, a well-known and favourite work, has already received the highest recommendation of our pen, as a systematic treatise. This new edition has been revised and cast in a more convenient form and type. While assigning to this work the first place and the highest general praise, it may be doubted whether the contents are well apportioned, and whether it has not overshot the mark as a student's text-book. The first three hundred pages are devoted to general histology, including physiological chemistry, while a large part of the third volume consists of special histology, embracing chemical analyses and special embryology. If the work was intended to serve also as a physiological text-book, it fails from the almost total exclusion of action and function, while the student has to purchase and carry a work swollen with histology and embryology, which he must again purchase in his physiological text-book.

The Bones and Joints complete the first volume, and together occupy less space than the histology. As a descriptive anatomy of these systems, this part of the work is bare and uninteresting, we have the common facts put down systematically but without principles or explanations of purpose, in short without teleology. The descriptions of the bones, with some exceptions, seem to stand much as in the early editions. The shaft of the humerus, we observe, is described as presenting only two surfaces; so that we need not look for the enunciation of the prismatic law of the long bones of the limbs, as well as of the metacarpals and metatarsals, much less for the explanation which fixes it on the mind of the student in contrast to the shape of the phalanges. What, again, could be of greater interest, or surgical importance, than an account of the motions of each joint, with the purpose served by each ligament, and definitions of the principles of construction. In these respects this work is far behind that of Cruveilhier as a system of descriptive anatomy. The development of the bones, however, is admirably given and illustrated, though perhaps with too little regard to space. Would it not be an improvement to throw this into a separate section, admitting more of generalisation and simplification especially as regards the periods. We are glad to observe that Mr Ellis has given Homology and its nomenclature a footing in this edition. We may ask, will this nomenclature, as introduced by Mr Owen, ever become the familiar language of anatomy. The great terms neural and haemal soon will; but will, for instance, fractured pleurapophysis, ever become the language of surgery. When we recollect the past changes this may not be too much to expect; yet there is great advantage in the use of the short specific terms. There is difficulty too in our non-agreement as to the nature of certain elements. For instance, is the anterior element of a cervical transverse process a pleurapophysis or parapophysis, or is the parapophysis of Owen not altogether a mistake. Meantime the best plan is to
introduce these terms as synonyms with those in familiar use. By-the-bye is that horrible termination *apophysis* inevitable? Would *os*, either as Latin or part Greek, not do. We suspect "apophysis" as the chief enemy to the use of Owen's otherwise very excellent nomenclature, by its length want of meaning and absorption of the prefix, the true part of the term.

The remaining parts of the work, except the muscles, are we think overwritten, especially the varieties of the arteries, the spinal nerves, and the nervous centres; the latter without sufficient distinction between important and unimportant, without, in fact, any apparent attempt to teach. The third volume contains a very excellent description of the organs of the senses and the viscera. The account of the foetal circulation is bare and without principles, and the illustrative diagram is incorrect especially about the liver. The account of the development of the various organs is well epitomised, and if thrown together would form a useful addition to the too general history of embryology of the physiological text-books.

We beg to notice an omission touching the oblique muscles of the eye. While various writers have had their share in establishing the view that these muscles rotate the eye on its axis, we submit that this view was placed on its true and broad basis by facts in comparative anatomy, set forth, as the result of an extensive series of dissections, in this journal in 1849.1 We are surprised that Messrs Todd and Bowman, generally availing themselves so well of the evidence of comparative anatomy, should have omitted it here, besides the matter of justice to the author of the demonstration.

In concluding our notice of Quain's Anatomy, we would suggest to the editors a division of their very excellent treatise into two. If Dr Sharpey would add function to the histology and embryology, here so ably written, and favour us with them together as a work on physiology, Mr Ellis would have space to give us, besides the outlines of histology, a true work on descriptive anatomy.

As far as we can judge from the two first parts of Henle's Anatomy, embracing the Bones and Joints, which alone have yet reached us, this treatise bids fair to take the first place among works on systematic anatomy. It is at once exact and philosophical, truly German and true to nature. The illustrations are very numerous and instructive, both diagramatic and truthful. The author has evidently observed and thought carefully, comprehending and setting forth the essential principles in the particular as well as the general. While the facets of each carpal and tarsal bone are carefully demonstrated, their homology is not overlooked. The work, in short, contains not merely details but ideas, and in Henle's hands anatomy is what it ought to be. Fig. 1 is the most eloquent diagram we ever saw; at once ideal and real, it tells the great and simple idea

---

1 On the Oblique Muscles of the Eye in Man and Vertebrate Animals, by John Struthers, M.D. Edinburgh, 1849. Republished in "Anatomical and Physiological Observations," Edinburgh, 1854.
of the vertebrate body. The learned Göttingen professor has long enjoyed a high reputation in this country, to which he now adds a new reputation as descriptive anatomist.

How is it that the German anatomists, generally, excel us in precision and thought. Does science alone afford them sufficient remuneration, or are their teaching duties less laborious than ours. Putting England Scotland and Ireland together, we have probably a greater number of teachers of anatomy and physiology than in all Germany, but how few comparatively are devoted to the science, are systematic cultivators or even permanent teachers. Most use it as the ladder to surgery; nor is this to be regretted, for the utilitarian is the main support of the science, is the highest aim, is in fact the purpose of medicine; and the mass of students must be taught, while the future surgeon gets that easy acquaintance with the human frame which years of the demonstratorship can alone supply, as one of the requisites. It is to be regretted however that in this country greater encouragement is not given to those who would willingly devote themselves to the sciences. Every large school should have its master anatomist and physiologist, besides its demonstrators. Physiology especially is unprovided for. Our physiological chairs should be handsomely endowed, so that their occupants might devote themselves to investigation as well as to the thorough teaching of this finest of all our sciences. It is a low view to take of our teachers, that they should be only teachers, mere retailers of knowledge. Discovery in science is closely associated with the progress of a nation, and there is no worse economy than refusing encouragement to observing and thinking men. It has been asked what Cuvier would have accomplished had he been born in this country. Had it been the lot of our own Owen to engage in the professional scramble, or to fag all day as a teacher for three-fourths of the year, where would the teeth and the vertebrate skeleton have now been.

Anatomy cannot be taught satisfactorily, much less cultivated, without much time and devotion. There are first the facts, large and small, the basis, but which of themselves have been well called dry details, and with which alone it is too much the custom of the British text-book to deal, as a reaction, perhaps, from the many fanciful speculations of former writers who did not follow the inductive method. To the mere facts, two kinds of interest are to be added—the utilitarian and the scientific. The utilitarian, or the professional interest, surgical anatomy in the wide sense, must be added, otherwise the student misses largely what he came for. The scientific interest is in two directions,—the teleological, use and adaptation, that part of physiology which cannot be separated from anatomy, demanding careful observation and thought,—and the homological, the fruit of the study of comparative anatomy, the law of type, traced through its modifications in the specialized adults and in the evolution of the embryo, in its application to man. It is only
when so studied, and when so taught and written, that anatomy becomes what it ought to be, a great and profoundly interesting science, as well as a scientific foundation for the art of medicine.

With regard, however, to the teaching we must ever recollect two things—what the student of medicine comes for, and that his time is limited. The lecturer, like the text-book writer, must select and compress. It is in the cyclopædia and the special treatise, that the science, as above defined, or its departments, can be fully treated. We cannot say that it is so treated in this country. Our cyclopædia of anatomy and physiology is without doubt a most valuable collection of essays in anatomy physiology and pathology, rich especially in comparative anatomy and physiology; but may be likened to a bag filled with gold and copper, the essays in human anatomy, with certain marked exceptions, being represented by the baser metal. We greatly want a cyclopædia of human anatomy in this country. Why should we be dependant on our continental brethren. What are our anatomists about; who has been writing on anatomy during the last ten years; is British anatomy to find its highest expression in the mere respectable textbook. Have we no Henle, Bischoff, Huschke, Theile, Valentin, Weber, Wagner, Meyer, or Kölliker, devoted and enterprising enough to lay their heads together, to apportion the labour, to take five or ten years to work at it, and at last produce a cyclopædia of systematic anatomy, including histology and embryology. If this is too much to expect, we may still hope that individual anatomists may become self-constituted authors in sections of their own choosing, and give us an osteology, myology, neurology, etc., worthy of our country; although, of course, in a commercial sense it would not pay. Mr R. Quain’s work on the arteries, as far as varieties, surgical bearings, and descriptive details, are concerned, may take its place as one of such a series. Then Mr Swan has written the Nervous System, Mr Solly the Brain, and Mr Ward the Bones, all first class, but limited by space, not in the comprehensive style of the cyclopædia.

We would beg the attention of teachers of physiology and anatomy to the question whether our arrangements for teaching of these sciences in this country do not admit of improvement. What should the course of physiology embrace, and how can anatomy be best taught as to lectures.

It seems to us, after numerous inquiries, that the course called “anatomy and physiology” in England and Ireland differs in different schools, though it seems gradually coming nearer to the “Physiology” course of the Scotch schools. A glance at the students’ number of our medical periodicals will show how confusingly the terms “anatomy and physiology,” “general anatomy” “surgical” or even “practical” are used; and we would submit to our brethren in England and Ireland that the two courses should simply be distinguished as “physiology” and “anatomy,” while
"practical anatomy" should signify dissection, and "demonstrations" the assistance given to the student in the dissecting room. We do not wonder that the London boards should have been so long in (very rightly) recognising the Scotch course of physiology, as the equivalent for the English "anatomy and physiology," as it used to be, and still occasionally is, called by the decayed meaningless and delusive title "Institutes of Medicine;" while on the other hand, the course of systematic anatomy continued to be called "anatomy and physiology" long after physiology had been erected into an independent course. Are we, notwithstanding, to continue to teach anatomy in Scotland in two separate courses, two daily lectures on the same science, generally by the same teacher? Is it necessary, is it advantageous, is it advisable. These courses are known to us, the one as the lecture, the other the demonstration; both are lectures, the one systematic, bones, joints, muscles, viscera, blood-vessels, brain, senses, and nerves, or as much of these as can be overtaken, in that style,—the other regional, everything in each successive region, regionally considered; both courses attended alike by junior and senior students. The term "demonstration" is merely one of convenience. The English boards certainly did not mean a course of lecture room demonstrations, when they put dissections and "demonstrations" in their curriculum, but the more useful lessons and directions in the dissecting room which our students so constantly receive, and which, as well as dissection, are implied in the Scotch curriculum phrase "practical anatomy." Every honest teacher will admit this. We have good reason to believe that the London, like the Edinburgh schedules, will soon be purged of the term "demonstrations," so that its continuance in the schools will be purely voluntary. Every teacher, of course, knows that anatomy is too wide to be taught through in a six months' course, some 110 or 120 lectures. Surely no teacher who is worth listening to could tell all he knows even in many more than the two lectures a day over six months. The cyclopedia is the place for that. The question, however, is, what is the best way of occupying the students' very limited time. Is there not overmuch lecturing; are some subjects, and parts of some subjects, suited for the lecture room; is the student, with plenty of good text-books, now, as formerly, dependant on lectures for his information; is it necessary therefore that everything in a science should be gone through in lectures; even in demonstrative sciences, like anatomy, are there not many details, of no particular physiological import, which are unsuited for the lecture room, being attainable only in the dissecting room; and is the system of lecturing on details and mere information giving, not an encouragement to the human nature tendency to the memory and taking on trust system, as opposed to the true system of training the student to observe and think for himself.—These questions are too large to be discussed here. We will only add, on the other hand, that the
recent or present outcry against lecturing is a reaction, which is very likely to go too far. There should be thorough education in the principles of the art and the sciences on which it is founded; and lectures by masters of these sciences are vital towards such education. The best one course of anatomy would perhaps be a combination of the systematic and the regional, first the bones systematically, and then the rest regionally, being systematic within the regions when advisable. If there is to be an additional course, we consider three months sufficient, not for exhausting the science, but as giving ample scope for what a thorough course of anatomy in a medical school should be. The lecture room is the place for the demonstration and discussion of great facts and principles, the dissecting room is the true field in which alone a knowledge of anatomy in all its detail can be gained. We invite our brethren of the lecture room, to consider and come to an understanding on this matter as well as the respective limits of the physiology and anatomy courses. The teacher of anatomy must give the outlines of histology, sufficient to explain the nature of the material with the masses of which he has to deal, and the special histology of the viscera, without which splanchnology would be very bare; but the thorough discussion of this now great science, histology, cannot be separated from physiology, and to attempt more of it in the anatomy course than we have above indicated, is to occupy much of the given time to the exclusion of that anatomy, which it is the first office of the anatomist to teach. For the latter reason, we have to leave embryology (the systematic teaching of it) to the physiological lecturer. These limits seem to us natural and easily drawn, each lecturer occasionally, as in anatomy and surgery, crossing the border. We do not think any lecturer should be tied down too absolutely; let him understand what his province is, and, recollecting his limited time, and the necessity of selection, and what the student has come for, let him make the best of it in his own way. The division of the anatomy course into junior and senior has been talked of, but does not seem practicable when the remuneration and labour questions are considered; and, apart from these, is perhaps not advisable. This difficulty may be in part met by assembling the junior students, who are always the minority of the class, separately for an elementary lesson by the demonstrator, on the subject of lecture, which has long been the practice in Edinburgh.

We shall only add, to prevent misapprehension, in concluding these hurried and already too lengthened remarks, that there is one thing the teacher must never forget, that the students he is addressing are there, as future practitioners, to learn the plain facts of human anatomy, and that it is his first and main business to teach these, without which all his homology and profound teleology are so much wasted time and labour in vain.
A Sketch of the Principles and Practice of Subcutaneous Surgery. 
By W. Adams, F.R.C.S. London: 1857.

The members of the Medical Society of London meet once a-year to listen to an address from one of their number, who is elected annually for the purpose. The orator for 1857 was Mr W. Adams, who, being surgeon to the Orthopaedic Hospital, “improved the occasion” by a lecture on Subcutaneous Surgery. The advantages of excluding air from cut surfaces has been so long acknowledged by all healers of wounds, that after reading the first few pages, one is inclined to exclaim with the Preacher, “That which is done is that which shall be done, and there is no new thing under the sun.” In some of our oldest works on surgery we are directed to “keep out the cold air,” and even the meddlesome surgeons of the 17th century had a dread of its admission. Salmon, in his Synopsis Medicinae, published in 1681, speaking of wounds into joints, says they are to be treated by “drawing the lips together, and by defending them from the injuries of air.” Again, “All fractures with wounds are more dangerous than those without, as in this case there is danger of apostemation.” And he distinguishes between injuries to tendons and nerves when the skin remains whole, and when it suffers “ a solution of unity.” It is quite clear, therefore, that long before the birth of John Hunter it had been observed that injuries which do not communicate externally “are less liable to inflame and suppurate” (apostemat) than those which have an external wound.

But Mr Adams considers that John Hunter, when making the observation just quoted, first laid down the law upon which modern surgeons have founded their subcutaneous operations, and was the first to announce “the discovery of a law in nature relating to the exposure and non-exposure of wounds to the influence of the air,” thereby attributing to Hunter the idea, that air was the cause of excessive inflammation of raw surfaces exposed to it; but did Hunter think thus? Are not the sentences quoted by Mr Adams, and so familiar to us all, but the more philosophical expression of the same observation as we found in old Salmon’s compilation? And does not Everard Home, Hunter’s brother-in-law, write, in the memoir which is appended to the very treatise Mr Adams alludes to, that “he (John Hunter) ascertained by experiments and observations that exposure to atmospheric air, simply, can neither produce nor increase inflammation.” And where, in the treatise Mr Adams quotes from, is there any statement about air producing inflammation? There are but the ordinary remarks, that raw surfaces, if accurately brought together and left alone, will heal by first intention, but if not, and they are left exposed, they must heal by suppuration. Secrets which the sympathetic surgeons were well aware of; and no doubt, also,
the author of the *Novum Lumen Chirurgieum* (1698), who, however, to serve his private ends, gave all the glory to "a pair of medicines—the one internal, the other external" (the latter giving "no more pain than spring water!") But Hunter distinctly states his belief, that the mere presence of air does not influence inflammation; and if he had had a clear idea of the great benefits of subcutaneous division of parts, it is unlikely that, with his large opportunities and love of experiment, he would not have practically applied it to the division of tendons, whereas they were always cut transversely with the skin, until Delpech made the first intelligible approach to the subcutaneous section of the tendo Achillis. And although, in those days of attributing all scientific discoveries to foreign research, we admire Mr Adams for standing up manfully and telling the world, as represented by the Medical Society of London, that Hunter knew all about subcutaneous surgery, we cannot shut our eyes to the fact, that it is to Delpech, Stromeyer, and M. Guerin we owe its rise and progress on the Continent, while to Dr Little is due, in a great measure, the introduction of Stromeyer's views into this country. It is worthy of observation, that Hunter had his attention directed to the reunion of tendons by the rupture of his own tendo Achillis, and divided that tendon in dogs subcutaneously with a couching needle; and that Dr Little, as is well known, after wandering from surgeon to surgeon, had his club-foot rectified by Stromeyer, and subsequently studied under that distinguished surgeon.

Mr Adams makes the not very original remark, that simple fractures are generally less serious than compound, which is also remarked, as we have seen, by W. Salmon, Professor of Physic, who performed cures "Astrologically, Galenically, and Chemically, at the Red Balls, Fleet Street, in 1681." The boy whose hand Mr Hancock succeeded in saving, is probably under considerable obligation to the tendency the bones have at an early age to squeeze flat, and not to fracture sharply as those more advanced in life. We quite agree with Mr Adams, that wounds should be covered up and meddled with as little as possible; and who knows but we may find the next orator to the Medical Society of London extolling the virtues of some "vulnerary balsam," which will dry as varnish over the wound, and be left on till union is complete! Mr Adams says, there is a tendency at present to ignore the unfavourable influence of exposure to the air. We suppose he alludes to the practice of Liston and others, of leaving flaps open till all bleeding has ceased; but a raw wound is seldom exposed to the air except during the necessary changes of the dressings. We have heard that M. Langenbeck sometimes keeps stumps after amputation constantly under water, which is said to prevent pain in the flaps; and an American gentleman has performed sub-aqueous ovariotomy.

Mr Adams inquires as to how the air acts in exciting inflammation, and he, with Dr Snow, repeated some of Ingenhousz's experiments, which scarcely seem very à-propos to the question,
merely going to illustrate the pain-producing powers of the various gases. Dr Snow will find the information he requires in Professor Simpson’s paper on carbonic acid gas as a local anaesthetic, where there is a reference to part ii. of Beddoes, and Watt’s Essay, and Ingenhousz’s Miscellanea for 1795. We are surprised at such an indefatigable “anaesthetic agent” as Dr Snow not having read Dr Simpson’s paper, and suggest its instant perusal; as also Dr Ewart’s pamphlet, published 1794, where he remarks that “the oxygen of the atmosphere is known to be highly stimulant to the living solid,” and suggests that the soothing effects of carbonic acid gas may be due merely to the exclusion of the oxygen. Then Mr Adams may find his second question answered by Hunter himself, at p. 311, on adhesive inflammation, where he says that air simply has no power to excite inflammation, when the cavity is otherwise healthy.

We would gladly continue to discuss Mr Adams’ book, which contains many very suggestive passages on what we are deeply interested in, viz., the improvement of operative surgery. The very nicety of these subcutaneous operations, the exact anatomical knowledge, amounting almost to an instinct, and, above all, that the list of irremediate deformities is, thanks in a great measure to the orthopaedic surgeons, growing less day by day, all indicate a nearer approach to perfection in surgery than our fathers ever dreamt of; and so we earnestly hope there may be coming a time when the physiological chemists will dissipate cancer and tubercle—when calculus will be soluble by some agent harmless to the coats of the bladder—and when cutting operations will be performed painlessly upon patients, conscious and concurring, under some local anaesthetic which will supersede even the “πτυμα λήθη” of chloroform.

Clinical Lectures on the Principles and Practice of Medicine. By John Hughes Bennett, M.D., F.R.S.E., Professor of the Institutes of Medicine, and Senior Professor of Clinical Medicine in the University of Edinburgh. Second Edition, Illustrated. A. and C. Black, Edinburgh, 1858.

This new edition of Dr Bennett’s Clinical Lectures has long been expected, as the original work has now for many years been out of print. The author has not, however, given us a mere reprint of a former publication; the work is a new one, the old matter having been entirely recast and much valuable information having been added, so as to constitute it a complete treatise on clinical medicine. To Dr Bennett, the Edinburgh School of Medicine has been indebted for the introduction of the more important means of diagnosis which have been used on the Continent with such effect in the teaching of clinical medicine; and there is no doubt that, in conse-
quence of his exertions, a great impetus has been communicated to practical tuition in Edinburgh. From time to time, in this Journal, and in separate publications, Dr Bennett has laid before the profession his method of teaching, and illustrated it by details of cases of all the leading varieties of disease; and in the present treatise, everything he has published bearing on the practice of medicine is presented in its proper relation, in a system of clinical prelections. The work impresses us with the remarkable activity and devotion with which Dr B. has studied his profession; there being hardly a subject in the whole range of medicine which we do not find to have engaged his attention, and to have received practical illustration at his hands. Dr B. has been no dilettante inquirer, trusting to chance for the selection of objects of investigation; he has evidently for many years had the publication of this work in view, and keeping this before him with constancy of purpose, he has been enabled to direct his inquiries into every department of medicine, and to produce, at his comparatively early age, a truly practical treatise on the healing art. To the student as well as to the practitioner, it is calculated to prove of great service, stimulating to fresh inquiries, and, by its continued reference to actual cases, carefully detailed, enabling him at once to test the soundness of the opinions advanced. We have no intention, on the present occasion, of criticising the work in detail, the greater portion of which has either appeared in our own pages or has been separately published and already received notice at our hands. Suffice it to say, that the reader will here find, in a portable and accessible form, Dr Bennett's treatise on Clinical Instruction and the Use of the Microscope, his researches on Morbid Growths, on Inflammation, on the Effects of Blood-Letting in Internal Inflammations, on Phthisis Pulmonalis, on the Pathology of Fever, on Skin Diseases, etc., etc., etc., all carefully revised and brought down to the requirements of the present day.

The publishers have produced the work in a manner worthy of their late publications. Nearly five hundred woodcuts illustrate the different subjects, all of which are so carefully printed that they tend materially to explain the text, as well as add value and interest to a volume of so much importance to the medical profession.