Prey selection and food habits of the Tiger *Panthera tigris* (Mammalia: Carnivora: Felidae) in Kalakkad-Mundanthurai Tiger Reserve, southern Western Ghats, India

Bawa Mothilal Krishnakumar, Rajarathinavelu Nagarajan & Kanagaraj Muthamizh Selvan

26 April 2020 | Vol. 12 | No. 5 | Pages: 15535–15546
DOI: 10.11609/jott.5607.12.5.15535-15546
Prey selection and food habits of the Tiger *Panthera tigris* (Mammalia: Carnivora: Felidae) in Kalakkad-Mundanthurai Tiger Reserve, southern Western Ghats, India

Bawa Mothilal Krishnakumar1,2, Rajarathinavelu Nagarajan1 & Kanagaraj Muthamizh Selvan1,3

1,2 PG and Research Department of Zoology and Wildlife Biology, A.V.C. College (Autonomous), (Affiliated to Bharathidasan University, Tiruchirappalli), Mannampandal, Mayiladuthurai, Tamil Nadu 609305, India.

1Department of Ecology & Environmental Sciences, School of Life Sciences, Pondicherry University, R.V. Nagar, Kalapet, Puducherry 605014, India.

2Centre for Research in Animal Behaviour (CRAB), Department of Psychology, Washington Singer Laboratories, University of Exeter, Perry Road, Exeter, EX4 4QG, UK.

3Scientist D/Joint Director, Project Elephant, Ministry of Environment Forest and Climate Change, Indira Paryavaran Bhawan, New Delhi, 110003, India.

1maduraisauf@gmail.com, 2oystercatcher@rediffmail.com, 3tamildove@gmail.com (corresponding author)

Abstract: The Endangered Tiger *Panthera tigris* is the largest felid, distributed over 1.1 million km² globally. Conservation of Tigers largely depends on the preservation of its natural prey base and habitats. Therefore, the availability of prey and its selection play a major role in the sustainable future of Tigers in the given landscape. The current study assesses the prey selection patterns by Tigers in tropical evergreen forest of the Kalakkad-Mundanthurai Tiger Reserve (KMTR), southern Western Ghats, India. Density of ungulates was assessed by distance sampling (line transect, N = 21) and diet composition of Tigers was evaluated by analysing their faecal samples (N = 66). The study estimated very low ungulate density (26.87 ± 7.41 individuals km⁻²) with highest density of Gaur *Bos gaurus* (9.04 individuals km⁻²) followed by Wild Boar *Sus scrofa* (8.79 ± 2.73 individuals km⁻²), whereas, primate density was quite high (45.89 ± 12.48 individuals km⁻²), with Nilgiri Langur *Semnopithecus johnii* having the highest density (38.05 ± 10.22 individuals km⁻²). About 74.62% of the biomass of Gaur constituted in the Tiger’s diet, consumed lesser than its availability, whereas Sambar constituted 16.73% of the Tiger diet consumed proportionally to its availability. Chital *Axis axis*, Muntjac *Muntiacus muntjak*, and Indian Chevrotain *Moschiola indica* were not represented in the Tiger’s diet. The current study is the first scientific information on prey selection of the Tiger in KMTR landscape, which will serve as a baseline for its conservation planning and management.

Keywords: Faecal analysis, food habits, line transect, prey abundance, prey selection.
INTRODUCTION

The Tiger *Panthera tigris*, is the largest among five big cats in the genus (Sunquist 2010), distributed across the heterogeneous habitats of Asia (Hayward et al. 2012). Globally, Tiger population has precipitously declined, and its range has extensively diminished over the past century (Kerley et al. 2015). Poaching for Tiger body parts, habitat loss, and degradation and depletion of prey base have been the major causes for its decline (Karanth et al. 2004; Miquelle et al. 2010). Despite existence of large tracts of suitable habitats across Asia, Tigers are absent in many of the areas, probably due to lack of adequate prey base (Rabinowitz 1993; Check 2006), however, previous studies have emphasised that Tigers are flexible and recover when their habitat and adequate prey species are well protected (O’Brien et al. 2003).

Tigers are obligate terrestrial carnivores, generally preying upon ungulates (Seidensticker 1997), including diverse ranges of species that differ in size such as cervids, bovids, and suids (Andheria et al. 2007; Miquelle et al. 2010; Hayward et al. 2012). Prey availability, season, topography, and forest types are some of the significant ecological variables that influence the dietary habits of Tigers (Sunquist & Sunquist 1999). Studies have also suggested that predators play a major role in regulating the abundance of herbivore population in an environment of tropical forest (Karanth et al. 2004), which further results in the cascading effect at each trophic level (Polis & Strong 1996). Therefore, understanding of the dietary habits of the Tiger in relation to its prey base availability is essential for efficient management of wildlife and natural habitats (Biswas & Sankar 2002; Bagchi et al. 2003). Most of the information on prey selection of Tiger comes from studies carried out in semi-arid dry thorn and dry deciduous forests of central India (Bagchi et al. 2003; Biswas & Sankar 2002; Sankar et al. 2010) and tropical moist deciduous forests of southern India (Karanth & Suquist 1995; Ramesh et al. 2012a; Kumaraguru et al. 2011). In those areas, Chital was the dominant prey species in the Tiger’s diet (Johnsingh 1992; Karanth & Sunquist 1995; Venkataraman et al. 1995; Andheria et al. 2007), however, no comprehensive study has been conducted to estimate the abundance of prey and its selection by Tigers in their distribution range in the southern Western Ghats. There is scanty information about predator-prey selection at Kalakkad-Mundanthurai Tiger Reserve (KMTR) and the lack of such information can be a major limitation in designing and implementing site-specific conservation measures (Karanth et al. 2003). Understanding the principal constituents of the Tiger diet is essential for planning effective conservation policies (Kerley et al. 2015). Thus, the current research aims to assess the prey selection patterns by the Tiger in the tropical evergreen forest of KMTR.

STUDY AREA

The current study was carried out between July 2015 and May 2018 in four administrative ranges, namely, Mundanthurai, Papanasam, Ambasamudram, and Upper Kodhayar (Intensive study area, henceforth ISA) of 588km² in KMTR (900km²), located in the southern Western Ghats (8.357–8.883 °N & 77.169–77.574 °E) in Tamil Nadu, India (Figure 1). The terrain KMTR is mountainous (the elevation ranges 100–1,866 m), and the vegetation ranges from dry thorn scrub to montane wet tropical forest and grassland at high altitudes (Ramesh et al. 2012b). KMTR receives rainfall from both the south-west (June to September) and the north-east (October to January) monsoons (Sarkar 2012). The annual rainfall is about 3,000mm, and the temperature fluctuates between 17°C and 37°C during the year. This reserve is bordered by agricultural lands with human settlements (about 145 villages) in the east (Arjunan et al. 2006), and with forest tracts of the Neyyar, Peppara, and Shendurni wildlife sanctuaries in the Ashambu Hill range (Naniwadekar & Vasudevan 2006) in the west. The rivers Peyar, Karaiyar, Kavuthalaiyar, Servalar, Chithar, and Pambar and their tributaries drain into a perennial river called Tamiraparani. The sympatric carnivore species found here are the Tiger, the Leopard *Panthera pardus*, and the Wild Dog *Cuon alpinus*. Sambar, Gaur, Chital, Wild Boar, Barking Deer, and Indian Chevrotain are some of the major prey species that occur in this reserve. In addition, Asian Elephant *Elephas maximus*, Indian Hare *Lepus nigricollis*, Bonnet Macaque *Macaca radiata*, Tufted Grey Langur *Semnopithecus priam*, Lion-tailed Macaque *Macaca silenus*, Nilgiri Tahr *Hemitragus hylocrius*, Indian Crested Porcupine *Hystrix indica*, Indian Giant Squirrel *Ratufa indica*, Grey Jungle Fowl *Gallus sonnerati*, Red Spurfowl *Galloperdix spadicea*, and Indian Peafowl *Pavo cristatus* are also found in the reserve.
FIELD METHODS

Density and biomass estimation of prey species

The densities of wild prey were estimated by using the line transect sampling technique (Burnham et al. 1980; Buckland et al. 1993, 2001). The line transect method has been extensively applied to estimate animal densities in the tropical forests of southern Asia (Karanth & Sunquist 1992, 1995; Biswas & Sankar 2002; Jathanna et al. 2003; Bagchi et al. 2003; Edgaonkar 2008; Paliwal 2008; Malla 2009). Permanent transect lines (n=21) were randomly laid across different habitat types of KMTR by the Tamil Nadu Forest Department. The transect length vary from 1.5 (n=3) to 2 (n=18) km. The total length and sampling effort was 40.50 and 243km, respectively. Six replicates of 21 transects were walked at dawn (06.30–08.30 h) between January and May 2016 and at dusk (16.30–18.30 h) between January and May 2017 within the ISA area. Data were collected by a researcher and two trained observers on every transect walk. For each detection, the animal bearings were recorded using a look through compass (KB 20, SUNNTO, Vantaa, Finland), while angular sighting distance were recorded using a laser range finder (Yardage Pro 850, Bushnell, Overland Park, Kansas USA). Group size was also recorded during the transect sampling. Necessary care was taken while walking on transects to maximize detectability of animals before they disappeared from sight.

Faecal sample collection

As cryptic and nocturnal behaviour of the carnivores limit the direct observation of their predatory behaviour in the wild, faecal samples were collected to determine their food habits. Large carnivores generally prefer to travel along forest roads and trails, and as they travel they deject to mark their presence and passage (Sunquist 1981; Johnsingh 1983; Smith et al. 1989; Karanth & Sunquist 2000). Therefore, faecal samples of Tiger were collected by intensively searching along such trails, river beds, and open glades from July 2015 to May 2017. All trails were revisited after about two months for consecutive collection. Faeces of Tigers were collected only when they were associated with scraps and tracks. We distinguished faecal samples between Leopard and Tiger by their diameter and supplementary evidence such as pugmarks and scrapes (Karanth & Sunquist...
Prey selection and food habits of Tiger in Kalakkad-Mundanthurai TR

K rishnakumar et al.

Density and biomass estimation of prey species

The density of major prey species of Tiger was estimated using the program ‘DISTANCE’ version 7.2 (Thomas et al. 2010). To maximise the number of the sighting, the temporal replicates of each of the line transects were pooled together and were considered as a single spatial sample (n=21). Different detection functions were fitted to the observed data and the appropriate model was selected based on the lowest Akaike information criterion (AIC) values (Burnham et al. 1980; Buckland et al. 1996). Parameters such as effective strip width (ESW), cluster density (Dc), cluster size (G), and animal prey individual density (Di) were also estimated using program DISTANCE 7.2 (Burnham et al. 1980; Buckland et al. 1993).

The density of ungulate commonly represented as the biomass of ungulates available in the ecosystem. The biomass (kg km⁻²) of major prey species was calculated by multiplying the individual density (Di) of prey species by its average estimated unit weight (Tamang 1982; Wegge et al. 2009) from the available information for major prey species (Karanth & Sunquist 1992, 1995) (see Appendix 1).

Identification of prey species

Examination of indigestible parts of animals and plants found in a predator’s faeces is the primary source of information about its food habits (Andheria et al. 2007). The prey species were identified by microscopic examination of the medullary pattern (colour, length, and thickness of the medulla) in 20 hairs, collected randomly from each faecal sample (Mukherjee et al. 1994), and later corroborated with reference guides of Bahuguna et al. (2010) and Chakraborty & De (2010).

Estimation of frequency of occurrence and relative biomass of prey consumed

A most commonly used measure of frequency of occurrence (henceforth FO) for each prey type was to estimate the prey intake and composition (Andheria et al. 2007). The FO, however, does not provide the best approximation of the true dietary patterns of a predator, as the biomass consumed to faeces excreted is not alike for all prey species due to their variation in surface area: volume ratio, described by Floyd et al. (1978) and Ackerman et al. (1984). To preclude such bias, we have used the biomass calculation model recently developed for obligate carnivores by Chakrabarti et al. (2016).

\[Y = \left((0.033 - (0.025 \times \exp (-4.284(X/PBM))) \right) \times PBM \]

Where, Y is the mass of prey consumed per collectable faecal sample, X is the prey body mass, and PBM is the predator body mass. The mean body weight of each prey consumed by Tiger was based on Karanth & Sunquist (1995).

The adequacy of the sample size was calculated using the Brillouin diversity index (Brillouin 1956).

\[HB = \ln N! - \sum \ln ni/N \]

Where HB is diversity, N is the number of the prey taxa in all the samples, and ni is the number of individual prey taxa in the ith category.

Analysis of prey selection

To assess the prey selection patterns of Tigers for different prey species in KMTR, Jacobs’ index (1974) of preference (D) was used:

\[D = (ri-pi) / (ri + pi - 2ripi) \]

Where, ri is the proportion of a prey remains in faecal sample, and pi is the proportional density of prey species in the population. The resulting values ranges from +1 (strongly selected) to -1 (strongly avoided).

Prey selection assessment was restricted to those prey species whose density information was available.

RESULTS

Density and biomass of prey species

The overall densities of ungulates and primates were 26.87± 7.41 km⁻² and 45.89 ± 12.48 km⁻², respectively, whereas, densities of Indian Giant Squirrel and Grey Jungle Fowl were 3.20 ± 1.32 km⁻² and 25.32 ± 5.09 km⁻², respectively. The estimated individual and cluster density for potential prey species of a large carnivore is given in Table 1 along with cluster size and their percentage of the coefficient variation, and effective stripe width (Appendix 2). Half-normal-cosine was the
Prey selection and food habits of Tiger in Kalakkad-Mundanthurai TR

Table 1. Estimated density of major prey species of large carnivore in Kalakkad-Mundanthurai Tiger Reserve. Total sampling effort was 243km.

Species	Model (AIC)	Cluster size (SE)	ESW in meter (SE)	DJkm⁻² (SE)	%CV (D) (km⁻¹)	95% CI	Dg km⁻² (SE)	Biomass kg km⁻²	
Bonnet Macaque	Half-normal / Cosine	15.913	7.88 (2.79)	48.77 (8.46)	1.70 (0.53)	21.15	0.50 – 5.81	0.22 (0.11)	6.8
Tufted Grey Langur	Half-normal / Cosine	9.272	30.74 (10.22)	31.52 (6.77)	6.14 (1.73)	23.34	1.12 – 33.74	0.20 (0.01)	55.26
Nilgiri Langur	Half-normal / Cosine	212.77	7.82 (0.97)	34.93 (2.86)	38.05 (10.22)	26.82	22.33 – 64.87	4.86 (1.15)	342.45
Total primates								45.89	
Chital	Half-normal / Cosine	15.982	2.65 (0.70)	15.61 (4.37)	2.50 (0.92)	18.44	0.65 – 9.60	0.94 (0.32)	117.5
Sambar	Half-normal / Cosine	40.157	1.72 (0.24)	15.03 (2.50)	4.80 (1.04)	21.70	2.06 – 11.17	2.80 (0.57)	643.2
Mouse Deer	Half-normal / Cosine	7.79	*	(8.42) (2.65)	1.74 (0.69)	19.82	0.42 – 7.35	*	5.22
Gaur	Half-normal / Cosine	37.98	4.79 (1.31)	25.55 (4.08)	9.04 (2.03)	28.55	3.08 – 26.52	1.88 (0.47)	4068
Wild Boar	Half-normal / Cosine	33.95	2.70 (0.43)	12.87 (2.18)	8.79 (2.73)	31.07	2.72 – 28.42	3.26 (1.29)	281.28
Total ungulates								26.87	
Indian Giant Squirrel	Half-normal / Cosine	46.82	1.57 (0.19)	19.33 (3.27)	3.19 (1.32)	20.8	1.42 – 7.20	2.03 (0.81)	5115.20
Grey Jungle Fowl	Half-normal / Cosine	201.98	1.6 (0.43)	15.38 (0.79)	25.32 (5.09)	20.12	16.82 – 38.11	15.82 (3.07)	

CV—Coefficient of Variation | Dg—Density of cluster size | D—Density of individuals | ESW—Effective Stripe Width | Min AIC—Minimum Akaike information criterion | SE—Standard Error | CI—95% Confident Interval | *—data not analysed.

best fit model that had resulted in the lowest AIC value for all the species. The major prey species of Tigers are classified into groups such as ungulates (Chital, Sambar, Mouse Deer, Gaur, Wild Boar) and primates (Tufted Grey Langur, Nilgiri Langur, Bonnet Macaque), while Grey Jungle Fowl was also consumed by them. In terms of density of clusters in ungulates, Wild Boar (3.26 ± 1.29 km⁻²) were most abundant, followed by Sambar (2.79 ± 0.57km⁻²), Gaur (1.88 ± 0.47 km⁻²), and Chital (0.94 ± 0.32 km⁻²), whereas density of individual Gaur (9.04 ± 2.03 km⁻²) was the highest among all the ungulates, followed by Wild Boar (8.79 ± 2.73 km⁻²), Sambar (4.80 ± 1.04 km⁻²), Chital (2.50 ± 0.92 km⁻²), and Mouse Deer (1.74 ± 0.69 km⁻²). The number of detections for elephants was too substantial observations of Indian Giant Squirrel (3.20 ± 1.32 km⁻²) and Grey Jungle Fowl (25.32 ± 0.09 km⁻²) were obtained on transects during the study period.

Prey composition and selection

After excluding faecal samples (n = 6) which had an unidentifiable object and were loose/viscous in consistency, we had a total of 66 Tiger faecal samples. The Brillouin diversity index value for the estimation of adequacy of the sample size reached 15th faecal, indicating that we had sampled adequately (Figure 2). Four species of mammals were identified in the Tiger faecal sample (Table 2). All faecal samples contained single prey items. Out of the prey species identified in the Tiger faeces, Gaur constituted 74.2% followed by Sambar (16.6%), Sloth Bear (6.06%), and Nilgiri Tahr (3.0%). No remains of Chital, Muntjac, Mouse Deer, Wild Boar, and primates were found in the Tiger faeces.

The prey selectivity of a Tiger was tested by comparing with the individual density of the prey species. Prey selection analysis was restricted to seven prey species (Gaur, Sambar, Chital, Mouse Deer, Wild Boar, Nilgiri Langur, and Tufted Grey Langur), whose density information was available. The Jacobs' index value showed that Tigers displayed strongest selection of Gaur followed by Sambar (Figure 3) and apparently avoided other prey in KMTR.
DISCUSSION

Density and prey biomass

Comparative account of total ungulate densities estimated in the present study (Table 3) with that of other tropical forests in southern Asia revealed that KMTR harboured lower density of ungulates than most of them but higher than the Tiger reserves such as Bori-Satpura, Pakke, and Bhadra. The possible reason for the low density of ungulates might be the majority rocky outcrops and highly precipitous terrain. Mid-elevation forest is dry in most of the place coupled with contiguous tracts (c. 440 km²) of tropical rainforest in KMTR which is unfavourable for ungulates (Johnsingh 2001). Gaur was found to be most abundant species in the ISA and was comparable with other Tiger reserves of Western Ghats such as Mudumalai (Ramesh 2010) and Nagarahole (Karanth & Sunquist 1992). Nevertheless, most observation of Gaur was in grassland due to increased visibility compared to heavily vegetated habitat types in KMTR which is unfavourable for ungulates (Johnsingh 2001). Gaur was found to be most abundant species in the ISA and was comparable with other Tiger reserves of Western Ghats such as Mudumalai (Ramesh 2010) and Nagarahole (Karanth & Sunquist 1992). Nevertheless, most observation of Gaur was in grassland due to increased visibility compared to heavily vegetated habitat types in KMTR, therefore, we presume that this might have influenced the overall density of Gaur. Therefore, we speculated that true density of Gaur would be closer to the lower confidence limit of 3.08 km² and it is similar to the previous study in KMTR by Ramesh et al. (2012b). Gaur was mostly recorded in the morning within the wet grasslands of higher altitude, whilst they were observed in the dry thorn and teak forest during the dusk hours. The density of Wild Boar appears to be closely comparable to Ranthambore (Bagchi et al. 2003), Barida (Stoen & Wegge 1996), and Katka-Kochikahali of Sundarbans (Reza et al. 2002) but different from Anamalai Tiger Reserve (Kumaraguru et al. 2011). Estimated density of Sambar in the current study was comparable to tropical dry moist deciduous (Bori-Satpura, Badhra, Nagarahole) and tropical dry thorn, dry deciduous, and evergreen forest habitat of Mudumalai and Bandipur (Table 3). Sambar density, however, was quite low compared to Anamalai (Kumaraguru et al. 2011) and Pench (Acharya 2007).

The density of chital estimated (2.5 individuals km²) was very low compared to other tropical forests in southern Asia. In ISA Chital distribution was restricted to 60 km² of the Mundanthurai plateau (Sathyakumar 2000), which was covered with dry thorny and deciduous vegetation interspersed with the overgrown teak plantation. Plateau is dominated by unpalatable tall-grass species Cymbopogon flexuosus (Sankaran 2005) and invasive thickets, such as Lantana Lantana camara and Eupatorium Eupatorium glandulosum (Uma et al. 1999). Though cattle grazing has been prohibited in KMTR since 2000 (Venkatesh et al. 2017), there were substantial number of cattle grazing in the reservoir (Karaiyar and Manimuthar) and Mundanthurai Plateau.

Table 2. Food habit of the Tiger in Kalakkad-Mundanthurai Tiger Reserve based on faecal analysis (n=66).

Prey species	Relative frequency of occurrence % (RFO)	Mean body weight (kg)	Biomass consumed/ faeces	Biomass consumed (kg)	Relative biomass consumed
Gaur	74.24	287 (Karanth & Sunquist 1995)	4.95	242.50	74.62
Sambar	16.67	212 (Karanth & Sunquist 1995)	4.94	54.35	16.73
Nilgiri Tahr	3.03	100 (Kumaraguru et al. 2011)	4.73	9.47	2.91
Sloth Bear	6.03	90 (Biswas & Sankar 2002)	4.66	18.65	5.74

Figure 2. Cumulative diversity, H(k), of Tiger prey items with increased sample size (k).

Figure 3. Prey selectivity index of Tiger in Kalakkad-Mundanthurai Tiger Reserve, as assessed by Jacob’s index.
Thus, the cattle grazing and lack of suitable grassland might be a potential factor explaining the low density of Chital. Despite being nocturnal in nature, we sighted Mouse Deer on transect line, however, no further analysis could be done as it was a solitary sighting.

We compared the density of Bonnet Macaque with the estimates available from other tropical forests in India (Table 4). The density of Bonnet Macaque was available only for Mudumalai (Ramesh 2010), Nagarahole (Karanth & Sunquist 1992), Bilgiri Rangaswamy Tiger Reserve (Kumara et al. 2012), and Srisi-Honnavar (Babureddy et al. 2015). Bonnet Macaque density in KMTR was lower than that of the aforesaid parks. The specialist folivore Tufted Grey Langur was in low densities but their density was found to be comparable with Bilgiri Rangasamy Tiger Reserve. In terms of density amongst ungulates and primates, Nilgiri Langur was found in high density (38.05 individuals km⁻²) in ISA. The present study has reported that the densities have increased as compared to a previous study (Ramesh et al. 2012b).

Table 3. Comparison of ungulate densities and their biomass (Individuals km⁻²) from different protected areas in southern Asia.

Study area	Chital	Gaur	Sambar	Wild Boar	Muntjac	Mouse Deer	Nilgiri Tahr	Total ungulate density	Total ungulate biomass
Current Study	2.5	9.04	4.8	8.79	...	1.74	-	26.87	5115.20
Mudumalai Tiger Reserve	25.4	9.4	4.8	1.3	1.2	...	NP	42.1	6133.8
Keoladeo National Park	52.37	0.32	3.21	NP	-	NP	NP	69.58	5069.39
Nagarahole National Park	50.6	9.6	5.5	4.2	4.2	...	NP	74.1	7657.8
Anamalai Tiger Reserve	20.54	12.34	6.54	20.61	0.28	...	13.67	73.98	9181.08
Bilgiri Rangasamy Tiger Reserve	13.96	5.08	6.01	5.33	3.7	...	NP	34.08	3995.72
Kalakkad-Mundanthurai Tiger Reserve	...	3.6	7.0	1.3	...	-	NP	11.9	2599.6
Bandipur Tiger Reserve	20.1	7	5.6	...	0.7	...	NP	33.4	4859.8
Bhadra Tiger Reserve	8.88	3.86	4.4	2.46	4.35	...	NP	23.95	2914.03
Pench National Park	115.6	0.4	12.2	20.3	...	-	NP	149.4	8059.6
Kanha National Park	469.7	...	1.5	2.5	0.6	...	NP	57.3	3103.5
Bardia National Park	77.7	NP	...	8.8	1.7	NP	NP	99.2	4786.5
Bon-Satpura Tiger Reserve	5.4	...	1.8	0.8	...	NP	NP	13.6	1152.2
Ranthambore National Park	31	...	17.1	9.7	...	NP	NP	74.8	6228.4
Gir National Park	50.8	NP	2	NP	NP	56.2	2819.22
Sariska Tiger Reserve	33.88	NP	26.38	54.12	NP	NP	NP	157.1	14548.72
Chitwan National Park	61.8	...	3.6	NP	NP	85.4	5699.8
Kaziranga National Park	NP	...	2.6	NP	NP	58.1	4815.6
Rajaji National Park	49.9	NP	14.6	1.9	NP	NP	NP	68.8	4794.5
Pakke Tiger Reserve	NP	3.5	3.8	6.7	3.9	NP	NP	17.9	2380.5
Sundarbans	70.4	NP	NP	7.9	NP	NP	NP	78.3	3561.6

Notes: NP - The respective species was not found in the respective area; ... - Data were not reported

Prey composition and selection of tiger

In the current study, the Tiger preyed on three large ungulates, including Gaur, Sambar, and Nilgiri Tahr. We did not find multiple prey species in a single sample which is contrary to the prediction of Bekoff et al. (1984). Gaur accounted for 74.6% of the Tiger diet by biomass. Such selective predation towards large body mass was also reported in Anamalai Tiger Reserve (Kumaraguru et al. 2011), Nagarahole (Karanth & Sunquist 1992), and Pakke Tiger Reserve (Andheria et al. 2007). Carnivores tend to prefer the most abundant prey (Breuer 2005). Tiger’s selective predation for Gaur in the present study area indicates...
selection for a large ungulate. Thus, in ISA of KMTR, Gaur occurred in higher densities (9.04 km⁻²) at wet grassland in high altitudes interspersed with reed brakes (Ochlandra sp.), majority of collected faecal samples were found from such habitat, which suggests that the Tiger prefers habitat where Gaur occur more commonly. Such spatial correlation might have increased their encounter with the predator. Crepuscular and poor eyesight of Gaur could have enabled the Tiger to stalk Gaur easily (Karanth 1993). On the other hand, this selective predation could also be related to optimal foraging theory (Stephens & Krebs 1987), which suggests that the selected prey could provide higher benefits in terms of net biomass intake whilst reduce the cost of handling (stalking, subduing, and disemboweling prey) and injury risks (Scheel 1993). Hence, the predator must shift to profitable species, which may be either medium-size or high density that make them easier to be captured (Lamichhane & Jha 2015).

In the current study, Sambar biomass constituted relatively lesser (16.73%) proportion in the Tiger diet than other tropical forests of India such as Nagarhole (Karanth & Sunquist 1992), Sariska (Sankar & Johnsingh 2002), Ranthambhore (Bagchi et al. 2003), Bandipur (Andheria et al. 2007), Satpura (Edgaonkar 2008), and Mudumalai (Ramesh 2010). This may be due to spatial distance from the Tiger, as Sambar mostly forage around tea plantation (personal observations), near human habitation, and dry deciduous and thorn forest of low elevation. Such spatial segregation between them might have strengthened the predation on Gaur. Chital, being a common prey for the Tiger in other protected areas (McDougal 1977; Sunquist 1981; Johnsingh 1983; Karanth & Sunquist 1995; Stoen & Wegge 1996; Biswas & Sankar 2002) was absent in the faecal samples of Tigers in KMTR. This is due to scarce and restricted distribution of Chital in Mundanthurai Plateau with low density (Selvan et al. 2013b). This spatial segregation has compelled the Tiger to depend on Gaur. During the current study, we did not see any sign of Tigers in Mundanthurai Plateau, which also corroborates a previous study by Uma et al. (1999).

Presence of Sloth Bear remains in the Tiger’s faeces reflected the occasional predation on this species. Predation on bear is not a new phenomenon, as other investigators also reported the same (Biswas & Sankar 2002; Swaminathan et al. 2002; Harsha et al. 2004; Andheria et al. 2007). Though the bear remains a relatively minor component of the Tiger diet relative to Gaur and Sambar, this was more than Nilgiri Tahr in the current study. One possible explanation is the density of Sloth Bear and Nilgiri Tahr in the study area. In addition,

Table 4. Comparison of arboreal prey densities (individuals km⁻²) and biomass from protected areas in Indian subcontinent.

Study area	Tufted Grey Langur (previously known as common langur)	Nilgiri Langur	Bonnet Macaque	Total primate density	Total primate biomass	Reference
KMTR (Present study)	6.14	38.05	1.7	45.89	404.51	Ramesh (2010)
Mudumalai Tiger Reserve	35.4	...	1.9	37.3	340.6	Karanth & Sunquist (1992)
Nagarhole National Park	23.8	...	5.5	29.3	236.2	Kumara et al. (2012)
Biligiri Rangasamy Tiger reserve	6.34	NP	6.56	12.9	83.3	Acharya (2007)
Kalakkad-Mundanthurai Tiger Reserve	...	9.9	...	9.9	89.1	Babureddy et al. (2015)
Sirsi-Honnavar	25.06	NP	12.4	37.46	275.14	Acharya (2007)
Badhra Tiger Reserve	22.6	NP	...	22.6	203.4	Jathanna et al. (2003)
Pench Tiger Reserve	65.8	NP	...	65.8	592.2	Acharya (2007)
Bori – Satpura	28.3	NP	NP	28.3	254.7	Edganokar (2008)
Melghat	42.92	NP	NP	42.92	386.28	Narasimmarajan et al. (2014)
Bandhavgarh National Park	2.3	NP	NP	2.3	20.7	Stoen & Wegge (1996)
Ranthambore National Park	21.75	NP	NP	21.75	195.75	Bagchi et al. (2004)
Sariska Tiger Reserve	50.67	NP	NP	50.67	456.03	Mondal et al. (2011)
Chitwan National Park	3.6	NP	NP	3.6	32.4	Sunquist (1981)
Chilika range of Rajaji National Park	14.1	NP	NP	14.1	126.9	Harihar et al. (2009)

Notes: NP - The respective species was not found in the respective area; ... - Data were not reported
Nilgiri Tahr occur only in restricted cliffs in the present study area (Hopeland et al. 2016). Conversely, bears are spread across the study area and are mostly nocturnal and crepuscular (Chauhan et al. 2004; Yoganand et al. 2005). Such spatial segregation between the Tiger and the Nilgiri Tahr, while spatial and temporal overlap between the Tiger and the Sloth Bear, could have increased encounter rate and led to high predation on Sloth Bear compared to Nilgiri Tahr in our study area. Unfortunately, we could not determine density of Sloth Bear, Nilgiri Tahr, and their activity pattern on our study site; therefore, future research is needed to confirm the relationships among density, prey selection, spatial, and temporal overlap.

The present study revealed that the moderate prey availability is enough to preserve the Tiger in the long run in this landscape. Management of relatively few ungulates, primarily Gaur may be critical for Tiger conservation in this region.

REFERENCES

Aakrithi, S., A. Mukherjee, S. Dookia & H.N. Kumara (2017). An updated account of mammal species and population status of ungulates in Keoladeo National Park, Bharatpur, Rajasthan. Current Science 113: 103–111.

Ackerman, B.B., F.G. Lindzey & T.P. Hemker (1984). Cougar food habits in southern Utah. Journal of Wildlife Management 1: 147–155.

Acharya, B.B. (2007). The ecology of the Dhole or Asiatic wild dog (Cuon alpinus) in Pench Tiger Reserve, Madhya Pradesh. Ph.D. Thesis, Saurashtra University, xvii+115pp.

Andheria, A.P., K.U. Karanth & N.S. Kumar (2007). Diet and prey profiles of three sympatric large carnivores in Bandipur Tiger Reserve, India. Journal of Zoology 273: 169–175. https://doi.org/10.1111/j.1469-7998.2007.00310.x

Arjunan, M., H. Christopher, J.P. Puyravaud & P. Davidar (2006). Do developmental initiatives influence local attitudes toward conservation? A case study from the Kalakkad-Mundanthurai Tiger Reserve, India. Environmental Management 79: 188–197. https://doi.org/10.1016/j.envman.2005.06.007

Bagchi, S.P. Goyal & K. Sankar (2003). Prey abundance and prey selection by tigers (Panthera tigris) in a semi-arid, dry deciduous forest in western India. Journal of Zoology 260: 285–290. https://doi.org/10.1017/S0952836903003763

Bahuguna, A., V. Sahajpal, S.P. Goyal, S.K. Mukherjee & V. Thakur (2010). Species Identification from Guard Hair of Selected Indian Mammals: A Reference Guide. Wildlife Institute of India, Dehradun, India, 447pp.

Baburedgy, G., S. Kumar, S. Jayakumar & H.N. Kumara (2015). Estimate of primate density using distance sampling in the evergreen forests of the central Western Ghats. Current Science 108: 118–123.

Bekoff, M., T.J. Daniel & G.L. Gittleman (1984). Life history patterns and the comparative social ecology of carnivores. Annual Review of Ecology and Systematics 15: 191–232.

Biswas, S. & K. Sankar (2002). Prey abundance and food habit of tigers (Panthera tigris tigris) in Pench National Park, Madhya Pradesh, India. Journal of Zoology 256: 411–420. https://doi.org/10.1017/S0952836902000456

Brillouin, L. (1956). Science and Information Theory. Academic Press, New York, 320pp.

Breuer, T. (2005). Diet choice of large carnivores in northern Cameroon. African Journal of Ecology 43: 97–106. https://doi.org/10.1111/j.1365-2028.2005.00551.x

Buckland, S.T., D.R. Anderson, K.P. Burnham & J.L. Laake (1993). Distance Sampling: Estimating Abundance of Biological Populations. Chapman and Hall, London, 446pp.

Buckland, S.T., D.R. Anderson, K.P. Burnham, J.L. Laake, D.L. Borchers & L. Thomas (2001). Introduction to Distance Sampling: Estimating Abundance of Biological Populations. Oxford University Press, UK, 448pp.

Buckland, S.T., D.A. Elston & S.J. Beachey (1996). Predicting distributional change, with application to bird distributions in northeast, Scotland. Global Ecology and Biogeography Letters 5(2): 66–84.

Burnham, K.P., D.R. Anderson & J.L. Laake (1980). Estimation of density from line transect sampling of biological populations. Wildlife Monograph 72: 1–202.

Chakraborty, R. & J.K. De (2010). Atlas of Hairs of Indian Mammals. Part 1: Carnivora. Zoological Survey of India, Kolkata, 144pp.

Chakraborti, S., Y.V. Jhala, S. Dutta, Q. Qureshi, R.V. Kadivar & V.J. Rana (2016). Adding constraints to predation through allometric relation of scats to consumption. Journal of Animal Ecology 85: 660–670. https://doi.org/10.1111/1365-2656.12508

Chauhan, N.P.S., H.S. Bargali & N. Akhtar (2004). Activity patterns of Sloth Bear in fragmented and disturbed areas of Bilaspur Forest Division, Chhattisgarh, India. Presented in the 15th International Conference on Bear Research and Management, San Diego, CA, U.S.A.

Check, E. (2006). The tiger’s retreat. Nature 441: 927–930. https://doi.org/10.1038/441927a

Edgaonkar, A. (2008). Ecology of the leopard (Panthera pardus) in Bori Wildlife Sanctuary and Satpura National Park, India. PhD Thesis, University of Florida, 134pp.

Floyd, T.J., L.D. Mech & P.J. Jordan (1978). Relating wolf scat contents to prey consumed. Journal of Wildlife Management 42: 528–532.

Gopalswamy, A.M., K.U. Karanth, N.S. Kumar & D.W. Macdonald (2012). Estimating tropical forest ungulate densities from sign surveys using abundance models of occupancy. Animal Conservation 1–11. https://doi.org/10.1111/j.1469-1795.2012.00565.x

Harsha, S.R., C. Srinivasulu & K.T. Rao (2004). Prey selection by the Indian Tiger (Panthera tigris tigris) in Nagajunasagar Srisailam Tiger Reserve, India. Mammalian Biology 69: 384–391.

Harihar, A., B. Pandav & S.P. Goyal (2009). Responses of tiger (Panthera tigris) and their prey to removal of anthropogenic influences in Rajaji National Park, India. European Journal of Wildlife Research 55: 97–105. https://doi.org/10.1007/s10344-008-0219-2

Hopeland, P., J.P. Puyravaud & P. Davidar (2016). The Nilgiri Tahr (Mammalia: Cetartiodactyla: Bovidae: Nilgiritragus hylocrius Ogilvy, 1838) in the Agasthyamalai Range, Western Ghats, India: population status and threats. Journal of Threatened Taxa 8(6): 8877–8882. https://doi.org/10.11609/jott.2542.8.6.8877-8882

Hayward, M.W., W. Jedrzejewska & B. Jedrzejewska (2012). Prey preference of the tiger Panthera tigris. Journal of Zoology 286: 221–231. https://doi.org/10.1111/j.1469-7998.2011.00871.x

Jacobs, J. (1974). Quantitative measurement of food selection - a modification of the forage ratio and Ivlev’s electivity index. Oecologia 14: 413–417.

Jathanna, D., K.U. Karanth & A.J.T. Johnsingh (2003). Estimation of large herbivore densities in the tropical forests of southern India using distance sampling. Journal of Zoology 261: 285–290. https://doi.org/10.1017/S0952836903004278

Johnsingh, A.J.T. (1983). Large mammalian prey-predators in Bandipur. Journal of the Bombay Natural History Society 80: 1–57.

Johnsingh, A.J.T. (1992). Prey selection in three large sympatric carnivores in Bandipur. Mammalia 56: 517–526. https://doi.org/10.1515/mamm.1992.56.4.517

Johnsingh, A.J.T. (2001). The Kalakkad-Mundanthurai Tiger Reserve: A global heritage of biological diversity. Current Science 80: 378–388.

Kanthar, K.U. (1993). Predator-prey relationships among large carnivores in the Kalakkad-Mundanthurai Tiger Reserve, India. Wildlife Preservation 7: 41–66.
mammals of Nagarhole National Park, (India). PhD Thesis, Department of Bioiscience,Mangalore University, 180pp.

Karanth, K.U., J.D. Nichols, N. Samba Kumar, W.A. Link & J.E. Hines (2004). Tigers and their prey: predicting carnivore densities from prey abundance. Proceedings of National Academy of Sciences of the United States of America 101: 4853–4858.

Karanth, K.U., J.D. Nichols, J. Seidensticker, J.L. Dinerstein, D. Smith, C. McDougal, A.J.T. Johnsingh, R.S.V. Chundawat & V. Thapar (2003). Science deficiency in conservation practice: the monitoring of tiger populations in India. Animal Conservation 6: 141–146. https://doi.org/10.1017/S1367943003003184

Karanth, K.U. & M.E. Sunquist (2000). Behavioral correlates of predation by tiger (Panthera tigris), leopard (Panthera pardus) and dhole (Cuon alpinus) in Nagarhole, India. Journal of Zoology 250: 255–265. https://doi.org/10.1111/j.1365-763X.2000.tb01076.x

Karanth, K.U. & J.D. Nichols (1998). Estimation of tiger densities in India using photographic captures and recaptures. Ecology 79: 2852–2862. https://doi.org/10.1890/0012-9658(1998)079[2852:ETITDI]2.0.CO;2

Karanth, K.U. & M.E. Sunquist (1995). Prey selection by tiger, leopard and dhole in tropical forests. Journal of Animal Ecology 64: 439–450.

Karanth, K.U. & M.E. Sunquist (1992). Population structure, density and biomass of large herbivores in the tropical dry forests of Nagarhole, India. Journal of Tropical Ecology 8: 21–35. https://doi.org/10.1017/S0266467400006040

Khan, J.A., R. Chellam, W.A. Rodgers & A.J.T. Johnsingh (1996). Ungulates densities and biomass in the tropical dry forests of Gir, Gujarat, India. Journal of Tropical Ecology 12: 149–162. https://doi.org/10.1017/S0266467400009366

Kumaraguru, A., R. Saravanamuthu, K. Brinda & S. Asokan (2011). Prey preference of large carnivores in Anamalai Tiger. European Journal of Wildlife Research 57: 627–637. https://doi.org/10.1007/s10344-010-0479-y

Kumara, H.N., S. Rathnakumar, R. Sasi & M. Singh (2012). Conservation status of wild mammals in Biligiri Rangaswamy Temple Wildlife Sanctuary, the Western Ghats, India. Current Science 103: 933–940.

Kerley, LL, A.S. Mukhacheva, D.S. Maityukhina, E. Salmanova, G.P. Salkina & D.G. Miquéille (2015). A comparison of food habits and prey preference of Amur Tiger (Panthera tigris altaica) at three sites in the Russian Far East. Integrative Zoology 10: 354–364. https://doi.org/10.1111/1747-4877.12135

Lamichte, S. & B.R. Jha (2015). Prey selection by Bengal Tiger Panthera tigris (Mammalia: Carnivora: Felidae) of Chitwan National Park, Nepal. Journal of Threatened Taxa 7(14): 8081–8088. https://doi.org/10.11609/jott.2247.7.14.8081-8088

Malla, S. (2009). Estimating the Status and Impact of Hunting on Tiger Prey in Bardia National Park, Nepal. MSc Dissertation. Department of Wildlife Science, Saurashtra University.

McDougal, C. (1977). The Face of the Tiger. Rivington, London, 180pp.

Miquéille, D.G., J.M. Goodrich, E.N. Smirnov, P.A. Stephens, O.J. Zaumyslova, G. Chapron, L.L. Kerley, A.A. Murzin, M.G. Hornocker & H.B. Quigley (2010). The Amur Tiger: a case study of living on the edge, pp. 325–339. In: Loveridge, A.J. & D.W. MacDonald, (eds.). The Biology and Conservation of Wild Felids. Oxford University Press, UK, 762pp.

Mondal, K., S. Gupta, Q. Qureshi & K. Sarkar (2011). Prey selection and food habits of Leopard (Panthera pardus fusca) in Sariska Tiger Reserve, Rajasthan, India. Mammalia 75: 201–205. https://doi.org/10.1515/mamm.2011.011

Mukherjee, S.D., S.P. Goyal & R. Chellam (1994). Refined techniques for the analysis of Asiatic Lion Panthera leo persica scats. Acta Theriologica 39: 425–430. https://doi.org/10.4098/AT.arch.94-50

Naniwadekar, R. & K. Vasudevan (2006). Patterns in diversity of anurans along an elevational gradient in the Western Ghats, South India. Journal of Biogeography 34: 842–853. https://doi.org/10.1111/j.1365-2699.2006.01645.x

Narasimmaraj, K., S. Mahato & A. Parida (2014). Population density and biomass of the wild prey species in a tropical deciduous forest, central India. Taprobana 1: 1–6. http://dx.doi.org/10.4038/tapro.
Prey selection and food habits of Tiger in Kalakkad-Mundanthurai TR

Sunquist, M. (2010). What is a tiger? Ecology and behaviour, pp. 19–33. In: Tilson, R. & P.J. Nyhus (eds). Tigers of the World. The Science, Politics, and Conservation of Panthera tigris. 2nd edition. Academic Press, London, 552pp.

Sunquist, M.E. (1981). The social organization of tigers (Panthera tigris) in Royal Chitwan National Park, Nepal. Smithsonian Contribution to Zoology 336: 1–98. https://doi.org/10.5479/ni.00810282.336

Sunquist, M.E. & F.C. Sunquist (1999). Ecology, behaviour and resilience of the tiger and its conservation needs, pp. 5–18. In: Seidensticker, J., S. Christie & P. Jackson (eds.). Riding the Tiger: Tiger Conservation in Human - Dominated Landscapes. Cambridge University Press, Cambridge.

Swaminathan, S., A. Desai & J.C. Daniel (2002). Large Carnivores in Mudumalai Wildlife Sanctuary and National Park. Report submitted to Bombay Natural History Society, Bombay, 80pp.

Tamang, K.M. (1982). The status of the tiger (Panthera tigris) and its impact on principal prey population in the Royal Chitwan National Park, Nepal. PhD Thesis. Department of Fisheries and Wildlife, Michigan State University, iii+123pp.

Thomas, L., S.T. Buckland, E.A. Rexstad, J.L. Laake, S. Strindberg, S.H. Hedley, J.R.B. Bishop, T.A. Marques & K.P. Burnham (2010). Distance software: design and analysis of distance sampling surveys for estimating population size. Journal of Applied Ecology 47: 5–14. https://doi.org/10.1111/j.1365-2664.2009.01737.x

Uma, R., G.C. Richard & N.W. Pelkey (1999). Tiger decline caused by the reduction of large ungulate prey: evidence from a study of leopard diets in southern India. Biological Conservation 89: 113–120. https://doi.org/10.1016/S0006-3207(98)00159-1

Venkatesh, A., N. Sridharan, A.J. Pakiavathi & K.M. Selvan (2017). Abundance of large carnivore and its prey species after removal of cattle grazing in Mundanturai plateau of Kalakkad-Mundanthurai Tiger Reserve, Tamil Nadu, India. Journal of Biodiversity and Endangered Species 5: 178. https://doi.org/10.4172/2332-2543.1001078

Venkataraman, A.B., R. Arumugam & S. Sukumar (1995). The foraging ecology of dhole (Cuon alpinus) in Mudumalai Sanctuary, southern India. Journal of Zoology 237: 543–561. https://doi.org/10.1111/j.1469-7998.1995.tb05014.x

Yoganand, K., C.G. Rice & A.J.T. Johnsingh (2005). Evaluating Panna National Park with Special Reference to the Ecology of Sloth Bear. Final project report. Wildlife Institute of India, Dehradun, India, 280pp.

Wegge, P., M. Odd, C.P. Pokkareli & T. Storaas (2009). Predator–prey relationships and responses of ungulates and their predators to the establishment of protected areas: a case study of tigers, leopards and their prey in Bardia National Park, Nepal. Biological Conservation 142: 189–202. https://doi.org/10.1016/j.biocon.2008.10.020

Author details: B.M. KRISHNAKUMAR is a PhD student in PG and Research Department of Zoology & Wildlife Biology at A.V.C. College (Autonomous) (Affiliated to Bharathidasan University, Tiruchirappalli). He has previously worked in Department of Ecology and Environmental Sciences, Pondicherry University, under the DST-INSPIRE Project. Dr. K. MUTHAMIZH SELVAN graduated in MSc Wildlife Biology from Bharathidasan University, then entered India’s Wildlife Institute, where he worked on big sympathetic carnivores at Pakke Tiger Reserve, Arunachal Pradesh. He holds a PhD in wildlife sciences from the Saurashtra University, Gujarat. Upon completing his PhD, he received the DST-INSPIRE Faculty Award from the Science and Technology Department and joined in Department of Ecology and Environmental Sciences, Pondicherry University as a DST-INSPIRE Faculty Awardee. He has also guided several post-graduation students for their dissertation. He currently works at Project Elephant Cell, Ministry of Environment, Forest & Climate Change, New Delhi as Scientist D’ cum Joint Director. Dr. R. NAGARAJAN was Commonwealth Scholar and an Early Career Awardee of Leverhulme Trust, London, and currently is Principal in A.V.C. College (Autonomous) & Head, PG and Research Department of Zoology and Wildlife Biology, conducting research in behavioural ecology of wildlife pertaining to foraging and nesting and research theme includes factors influencing population of wildlife, nest-selection and life-history strategies of birds, role of Barn-Owl in rodent pest control. He has published more than 100 research articles in peer-reviewed national and international journals and also guided PhD scholars in Wildlife Biology.

Author contribution: Conceptualization – BMK, KMS and RN; methodology - KMS, and RN; formal analysis – BMK, KMS and RN; conducting field work – BMK; Preparing manuscript – All author contributed equally.

Acknowledgements: We are grateful to Tamil Nadu Forest Department for granting the permission to conduct the study at KMR. We are grateful to DST-INSPIRE faculty program for financial support. We give special thanks to Head of the Department of Ecology and Environmental Science, Pondicherry University. This research is part of first author’s PhD dissertation in Wildlife Biology and he extend his sincere thanks to the Management and Principal of A.V.C. College (Autonomous) for necessary support to this study. We thank the Chief Conservator of Forest and Field Director of Kalakkad-Mundanthurai Tiger Reserve for permission to carry out research at KMR. We are extremely thankful to all administrative staff in KMR, in particular, Mr. Velladurai, Mr. Ilango and Mr. Karthikeyan for all the support and hospitality during our stints in KMR. We extend a special word of thanks to Mr. M. Manikandan, Mr. P. Radhakrishnan, Mr. Jeyakumar, Mr.Madasami for assisting in the field and invaluable field expertise. Thanks are also due to Dr. Venkateswarra Sharma, Department of Biotechnology, Pondicherry University, for the use of his laboratory facilities. We would like to thank three anonymous reviewers for their constructive comments and suggestions on an earlier draft of this article that greatly improved our manuscript.

Appendix 1. Average estimated unit weight of prey species in Kalakkad-Mundanthurai Tiger Reserve.

Species	Weight (kg)	Source
Bonnet Macaque	4	Karanth & Sunquist
Tufted Grey Langur	9	Karanth & Sunquist
Nilgiri Langur	9	Karanth & Sunquist
Chital	47	Karanth & Sunquist
Sambar	134	Karanth & Sunquist
Mouse Deer	5	Karanth & Sunquist
Gaur	450	Karanth & Sunquist
Wild Boar	32	Karanth & Sunquist
Appendix 2. Detection distances for primates and ungulates in Kalakkad-Mundanthurai Tiger Reserve.
The Journal of Threatened Taxa (JoTT) is dedicated to building evidence for conservation globally by publishing peer-reviewed articles online every month at a reasonably rapid rate at www.threatenedtaxa.org. All articles published in JoTT are registered under Creative Commons Attribution 4.0 International License unless otherwise mentioned. JoTT allows unrestricted use, reproduction, and distribution of articles in any medium by providing adequate credit to the author(s) and the source of publication.

ISSN 0974-7907 (Online) | ISSN 0974-7893 (Print)

April 2020 | Vol. 12 | No. 5 | Pages: 15535–15674

Date of Publication: 26 April 2020 (Online & Print)

DOI: 10.11609/jott.2020.12.5.15535-15674

www.threatenedtaxa.org

Article

Prey selection and food habits of the Tiger Panthera tigris (Mammalia: Carnivora: Felidae) in Kalakkad-Mundanthurai Tiger Reserve, southern Western Ghats, India
– Bawa Mothilal Krishnakumar, Rajarathinavelu Nagarajan & Kanagaraj Muthamizh Selvan, Pp. 15535–15546

Communications

Community-based study to demonstrate the presence and local perspectives of the Critically Endangered Chinese Pangolin Manis pentadactyla in Zhejiang Wuyanling, China
– Hongying Li, Shusheng Zhang, Ji Zhang, Zupei Lei, Fangdong Zheng & Peter Daszak, Pp. 15547–15556

Field friendly method for wild feline semen cryopreservation
– Gediendson Ribeiro de Araujo, Thyara de Deco-Souza, Letícia Coelho Ferreira Bergo, Leanas Cruz da Silva, Ronaldo Gonçalves Morato, Pedro Nacib Jorge-Neto, Maitê Cardoso Coelho da Silva, Gustavo Guerino Macedo & Tarcízio Antônio Rego De Paula, Pp. 15557–15564

Habitat structure determines the abundance of the Endangered Sharpe’s Longclaw Macronyx sharpei (Aves: Passeriformes: Motacillidae) at Timau montane grasslands in central Kenya
– Dominic Kimani, Muchane Muchai, Johnstone Kimanzi, Joseph Mwangi, Wanyoike Wamiti, Samuel Bakari, Bernhard Walter & Peter Njoroge, Pp. 15565–15571

Avifaunal diversity of some selected water bodies of Khanapur Taluka, Belagavi District, Karnataka, India
– Harsha D. Neelgund & Girish Kadadevaru, Pp. 15572–15586

Herpetofauna of Shuklaphanta National Park, Nepal
– Yam Bahadur Rawat, Santosh Bhattarai, Laxman Prasad Poudyal & Naresh Subedi, Pp. 15587–15611

Varying colour pattern, yet genetically similar: Pebble Crab Seulocia vittata (Stimpson, 1858) (Brachyura: Leucosiidae) from the southeastern coast of India
– Sanjeevi Prakash & Amit Kumar, Pp. 15612–15618

Grasses of Kundadri Hills in the Western Ghats of Karnataka, India
– Hanchali Udayashankar Abhijit & Yelugere Linganaik Krishnamurthy, Pp. 15619–15630

Comparative phytosociological assessment of three terrestrial ecosystems of Wayanad Wildlife Sanctuary, Kerala, India
– M. Vishnu Chandran, S. Gopakumar & Anoopa Mathews, Pp. 15631–15645

Short Communications

Piroplasmosis in a captive Grant’s Zebra Equus quagga boehmi (Mammalia: Perissodactyla: Equidae) - a case study
– Sarat Kumar Sahu, Niranjana Sahoo, Bijayendranath Mohanty & Debabrata Mohapatra, Pp. 15646–15650

Eurylophella karelica Tiensuu, 1935 (Insecta: Ephemeroptera: Ephemerellidae) – an additional species to the mayfly fauna of Ukraine and notes on distribution of the family in the country
– Alexander V. Martynov, Pp. 15651–15654

Some new records of katydids (Orthoptera: Tettigoniidae) from Uttar Pradesh, India
– Ramesh Singh Yadav & Dharmendra Kumar, Pp. 15655–15660

Notes

On the occurrence of Honey Badger Mellivora capensis (Mammalia: Carnivora: Mustelidae) in the northern Eastern Ghats of Andhra Pradesh, India
– Vikram Aditya, Yogesh Pasul & Ganesh Thyagarajan, Pp. 15661–15663

Assamese Cat Snake Boiga quincunciata (Wall, 1908) (Reptilia: Squamata: Colubridae) - new country record for Bhutan
– Lekey Chaida, Abhijit Das, Ugyen Tshering & Dorji Wangdi, Pp. 15664–15667

Loss of Critically Endangered Hawksbill Turtle nesting beach at EGA facility, Abu Dhabi, UAE
– D. Adhavan, Pp. 15668–15670

Meliola elaeocarpicola sp. nov. (Ascomycetes, Meliolales) from Malabar Wildlife Sanctuary in Kerala State, India
– Lini K. Mathew & Jacob Thomas, Pp. 15671–15674