The proboscipedia locus of the Antennapedia Complex: a molecular and genetic analysis

Mary Anne Pultz,1 Robert J. Diederich, David L. Cribbs, and Thomas C. Kaufman

Programs in Genetics and in Molecular, Cellular, and Developmental Biology, and Institute for Molecular and Cellular Biology, Indiana University, Bloomington, Indiana 47405 USA

The homeotic proboscipedia (pb) locus of the Antennapedia Complex (ANT-C) directs the differentiation of adult labial and maxillary structures. Loss-of-function pb alleles show a transformation of adult mouth parts to legs and affect maxillary palp morphology. We have identified the pb transcription unit by inducing and analyzing a series of pb null chromosomal breakpoints. In addition, we describe a variegating pb phenotype associated with two rearrangement breakpoints. Having identified the pb locus, we describe the expression of its RNA and protein products. Unlike the other homeotic genes of the ANT-C, pb has no obvious role in embryonic development. Nevertheless, pb protein is detected during embryogenesis in nuclei of the labial and maxillary lobes and in part of the mandibular segment. In this respect, pb expression parallels the early segment-specific expression of neighboring, embryonically essential homeotic genes. Accumulation of pb protein is also detected in mesodermal cells and in a unique subset of nuclei throughout the central nervous system. We also describe a transcription unit very close to pb, which is expressed dorsally during embryogenesis in a pattern resembling that of the nearby zygotic lethal zerknüllt (zen) locus. This transcription unit has been shown to contain a homeo box and has been designated z2. Surprisingly, we find that individuals deleted for both the pb and z2 transcription units survive to adulthood and produce normal larval cuticular structures. Thus, pb and z2 show similarities to neighboring ANT-C genes in their expression patterns, yet these similarities are not manifested in comparable loss-of-function embryonic phenotypes.

[Key Words: proboscipedia; z2; Drosophila; homeotic; Antennapedia Complex]

Received November 2, 1987; revised version accepted May 16, 1988.

The unique pattern of each body segment in Drosophila is controlled by homeotic genes. Many of these genes are clustered in two homeotic gene complexes: the Bithorax Complex (BX-C) (Lewis 1978; Sánchez-Herrero et al. 1985) and the Antennapedia Complex (ANT-C) (Denell 1973; Kaufman et al. 1980). The genes of the BX-C direct development of thoracic and abdominal segments, whereas several ANT-C homeotic genes direct development of head and thoracic segments. The roles of homeotic genes have been demonstrated through classical genetic studies: When the function of a homeotic gene is either eliminated or expressed inappropriately, specific segments of the fly develop inappropriate structures characteristic of other segments (for review, see Owuoneke 1976; Gehring and Hiromi 1986; Akam 1987; Scott and Carroll 1987; Kaufman and Olsen 1988).

The ANT-C has been defined genetically as a set of tightly linked genes [Fig. 1A] that control segment identity or other aspects of pattern formation [Duncan and Kaufman 1975; Kaufman et al. 1980; Lewis et al. 1980a,b, Denell et al. 1981; Wakimoto and Kaufman 1981]. Five of these genes—Antennapedia (Antp), Sex combs reduced (Scr), Deformed (Dfd), proboscipedia (pb), and labial (lab)—are homeotic in character and play essential roles in adult development [Kaufman 1978; Struhl 1981, 1982; Hazelrigg and Kaufman 1983; Schneuwly and Gehring 1985; Abbott and Kaufman 1986; Merrill et al. 1987, and in prep.]. Lack-of-function mutations at all of these homeotic loci, except pb, also result in larval segmental transformations and/or gross disruptions in larval head development [Wakimoto and Kaufman 1981; Struhl 1983; Sato et al. 1985; Martinez-Arias 1986; Merrill et al. 1987, and in prep.; Regulski et al. 1987] In addition to homeotic genes, the ANT-C contains other genes with essential roles in pattern formation, such as the pair-rule fushi tarazu (ftz) gene [Wakimoto et al. 1984], the maternal-effect bicoid (bcd) gene [Frohnhofer and Nüsslein-Volhard 1986], and the zerknüllt (zen) gene, which is required for dorsal embryonic development [Wakimoto et al. 1984].

The pb locus directs the development of adult labial and maxillary structures [Bridges and Dobzhansky 1933]. Complete loss of pb function results in a transformation of the labial palps to prothoracic legs; in addi-
A. Genetic map of the Antennapedia Complex

| proximal | lab | pb | zen | bcd | Dfd | Scr | ftz | Antp | distal |
|----------|-----|----|-----|-----|-----|-----|-----|-----|--------|

B. Alignment of complementation groups on the molecular map

| proximal | lab | pb | zen | bcd | Dfd | Scr | ftz | Antp | distal |
|----------|-----|----|-----|-----|-----|-----|-----|-----|--------|

-150 -100 -50 0 +50 +100 +150 +200

C. Molecular map of the proboscipedia region

| proximal | λ A63A | λ A639 | λ A644 |
|----------|--------|--------|--------|
| -110     | -100   | -90    | -80    |
| -70      | -60    | -50    |        |

 Restriction map of the pb region, including numerical designations of genomic λ phage isolated in the chromosomal walk through this region. Restriction fragments under 0.3 kb in size are not included. Phage λ 589 and phage located further distally overlap the restriction map of Scott et al. (1983).

Figure 1. The location of pb within the ANT-C. (A) The genetic map of the ANT-C, showing the position of pb. (B) Position of pb on the molecular map of the ANT-C. Coordinates (in kb) are as in Scott et al. (1983). In(3R)lab a76 and Df(3R)LIN provide proximal and distal genetic limits, respectively, on sequences required for pb function. (C) Restriction map of the pb region, including numerical designations of genomic λ phage isolated in the chromosomal walk through this region. Restriction fragments under 0.3 kb in size are not included. Phage λ 589 and phage located further distally overlap the restriction map of Scott et al. (1983).
The proboscipedia locus

rivatives (Merrill et al. 1987; Regulski et al. 1987), Dfd transcripts and protein products are expressed primarily in the corresponding embryonic segments (Chadwick and McGinnis 1987; Martinez-Arias et al. 1987; R. Diederich, unpubl.).

We have extended the molecular analysis of the ANT-C to include the pb locus. We have identified the pb transcription unit by analyzing pb null chromosomal rearrangements, and we describe the expression patterns of pb RNA and protein products. In the course of this analysis, we found that an embryonically expressed transcription unit resides in the interval between the designated pb transcription unit and two rearrangement breakpoints associated with pb variegating phenotypes. This neighboring transcription unit does not correspond to any known ANT-C complementation group. We therefore extended our analysis to inquire about the potential function of this additional transcription unit using both molecular and genetic approaches.

Results

Identification of the pb locus

Genetically, pb is known to lie between lab and zen, as determined by recombination mapping (Lewis et al. 1980a,b). A proximal genetic boundary for pb function is provided by In(3R)lab^76, which complements pb but fails to complement lab. Figure 1B shows that the ANT-C breakpoint of this inversion is located within the lab transcription unit, between coordinates -126 and -119 (R. Diederich et al., in prep.). A distal genetic boundary for pb function is provided by Df(3R)LIN, which complements pb but fails to complement zen and loci distal to zen. The proximal end of this deficiency is located within the zen transcription unit, at approximately -42 (Fig. 1B). The entire pb functional unit therefore must lie between these two breakpoints.

To identify the position of the pb locus more precisely within this 84-kb interval, we have induced a series of pb null rearrangements. The locations of these breakpoints on the molecular map have been determined using the X genomic clones illustrated in Figure IC. Table 1 summarizes the polytene cytology, molecular mapping methods, parent chromosomes, and sources for all chromosomes discussed in this paper. Breakpoints for all pb-associated inversions and deficiency endpoints place pb cytologically at 84A4,5. The positions of breakpoints on the molecular map were originally determined using whole-genome Southern blots probed with X genomic clones from this region. Additional methods have been used to refine and verify the locations of many of the breakpoints, as reported in Table 1 and detailed in

Table 1. Chromosomal rearrangements analyzed

| Chromosome     | Cytology             | Molecular mapping* | Parent chromosome | Source     |
|---------------|----------------------|--------------------|-------------------|------------|
| pb null rearrangements |                      |                    |                    |            |
| In(3R)pb^76    | 84A4.5–87AB          | A,B                | Ki roe p^p         | Kaufman    |
| In(3R)pb^76    | 84A4.5–66B           | A,B                | To^+(Ki roe p^p)   | Kaufman    |
| In(3R)pb^76    | 84A4.5–84D           | A                  | Ore R             | Pultz      |
| In(3R)pb^76    | 84A4.5–85D           | A                  | P(S38ry^+ jry^+6) | Pultz      |
| In(3R)pb^76    | 84A4.5–80,81b        | A,B                | Ki roe p^p         | Pultz      |
| pb null molecular deletions |                  |                    |                    |            |
| pb^76          | normal, pseudopoint  | A,B,C1             | P(S38ry^+ jry^+6) | Pultz      |
| pb^76          | multiply rearranged  | A,B,C1,C2          | Ore R             | Pultz      |
| pb null cytological deficiencies |                |                    |                    |            |
| Df(3R)MAP2     | 84A1.2–84A4,5        | A,B,C1,C2          | Ore R             | Pultz      |
| Df(3R)ScxW^+  | 84A4.5–84C1,2        | A,B,D              | ScxW^+(red e)     | Hazelrigg^c|
| Df(3R)WIN3     | 84A4.5–84C1,2        | A,B,C2             | Ki roe p^p         | Kaufman    |
| Df(3R)X2       | 84A4.5–84B1,2        | A                  | ri p^p            | Kaufman    |
| Df(3R)WIN1     | 84A4.5–84B1,2        | A                  | Ki roe p^p         | Kaufman    |
| pb variegating chromosomes |                |                    |                    |            |
| In(3R)MAP17    | 84A4.5–80,81b        | A,B,E              | p^p                | Pultz      |
| Df(3R)SCB^12   | 84A4.5–84B1,2        | A,B,C1             |                    | Jürgens^d  |
| Other chromosomes |                    |                    | red e             | Abbott^e   |
| In(3R)lab^76   | 84A–84E              | A                  |                    | Frohnhofer^d|
| Df(3R)LIN     | 84A4.5–84B           | A,B                |                    |            |

All lesions were induced with X-rays except Df(3R)LIN, which was induced with ethylmethane sulfonate (EMS).

* Molecular mapping methods A–E are explained in Materials and methods.

^ Segregation analysis confirms that the heterochromatic break is on the third chromosome.

^ Hazelrigg and Kaufman (1983).

^ Provided by C. Nüsslein-Volhard.

^ Recovery of mutant chromosome: Abbott (1984). Cytology: T. Kaufman.
Materials and methods. We have used the term 'deletion' to describe two chromosomes that are not identifiable as deficiencies cytologically or genetically but have been shown by molecular analysis to have sequences deleted.

As shown in Figure 2A, five pb null mutations are associated with inversion breakpoints, defining a 29-kb region that cannot be interrupted without totally abolishing pb function. The molecular lesions for these rearrangements fall in the interval from −83 to −54. In addition, Figure 2B shows that the cytologically normal pbmap13 null allele is associated with a deletion of ~5 kb, between −59 and −54, implying that the integrity of sequences within this 5-kb interval is essential for pb function. Together, these lesions define the minimum extent of the pb locus.

A larger deletion is associated with the pbmap8 chromosome. This deletion defines a 60-kb interval, from approximately −110 to −50, which can be deleted without inactivating lab, zen, or any identified genetic functions other than pb.

We have also recovered several cytologically visible deficiencies with end points in the pb region; these are illustrated in Figure 2C. The Df(3R)MAP2 chromosome

![Diagram of chromosomal rearrangements](https://example.com/diagram)

**Figure 2.** The positions of chromosomal rearrangements that define the pb locus and the pb region. (A) Five pb null inversions define the minimum size of the pb locus. (B) Deletions detected by molecular analysis of mutant chromosomes, including the pbmap8 deletion and the pbmap13 deletion. (C) The positions of pb null deficiency end points located within the pb region. (D) The locations of pb variegating breakpoints, which map distal to the pb null breakpoints. Stippling indicates the degree of uncertainty of breakpoint locations. For further description of these chromosomes, see Table 1.
complements zen and fails to complement pb, lab, and loci proximal to lab. The distal end point of Df(3R)MAP2 is located at about -54. Several deficiency chromosomes complement lab but fail to complement pb and loci distal to pb. These include Df(3R)Scx<sup>W<sup>+R<sup>Y</sup>], Df(3R)WIN1, Df(3R)X2, and Df(3R)WIN1. Each of these chromosomes allows survival to adulthood when heterozygous with Df(3R)MAP2, and each combination produces phenotypically pb<sup>-</sup> adults. These results are consistent with the analysis of the rearrangements described above, because each deficiency combination deletes at least part of the interval defined by pb null inversion breakpoints as essential for pb function. In addition, examination of cuticle preparations from genetically marked animals bearing overlapping deficiency combinations revealed no defects in larval cuticular structures (see Materials and methods).

Two rearrangements have a pb variegating phenotype

In addition to mapping chromosomal rearrangements that complement or completely fail to complement pb, we have also mapped lesions for two chromosomal rearrangements, In(3R)MAP17 and Df(3R)SCB<sup>XL2</sup>, which fail to complement pb in a partial and variegating fashion (Fig. 2D). Figure 3 contrasts the previously described pb null and pb hypomorphic phenotypes (Kaufman 1978) with the phenotypes of the pb variegating chromosomes. The pb null phenotype is exemplified by a Df(3R)MAP2/Df(3R)WIN3 female, which is deleted for the pb locus (Fig. 3B): the labial palps are extensively transformed to prothoracic legs, whereas the maxillary palps are small and malformed relative to those of wild-type individuals (cf. Fig. 3A and B). The ectopic legs in pb null individuals are of prothoracic identity, shown by the presence of sex combs in a pb<sup>-</sup> male (Fig. 3C). Figure 3, D and E, illustrate the range of phenotypes obtained with a pb hypomorphic allele, pb<sup>+</sup>, in heterozygous combination with pb<sup>-</sup> deficiencies. Transformations range from a predominantly antennal morphology (Fig. 3D, right), to a mixture of antenna-like and leg-like characteristics, illustrated by the presence of a claw on the ectopic aristalike appendage in Figure 3E. In contrast, the labial palp transformations of pb variegating individuals consist of limited patches of leg-like tissue, illustrated by claws emerging from the partially transformed labial palps of an In(3R)MAP17/pb<sup>-</sup> individual (Fig. 3F) and by a similar transformation in a Df(3R)SCB<sup>XL2</sup>/pb<sup>-</sup> individual (Fig. 3G). The labial palps of individuals carrying pb variegating chromosomes do not display antenna-like transformations, except when a pb variegating chromosome is in heterozygous combination with a hypomorphic pb<sup>-</sup> allele.

One of the pb variegating chromosomes, In(3R)MAP17, inverts sequences from -48 on our map into heterochromatin. At 22°C, In(3R)MAP17/pb<sup>-</sup> individuals have a highly penetrant reduction of maxillary palps similar to the maxillary palp phenotype observed in pb null flies, as well as a less penetrant labial palp phenotype. Many of the affected individuals show a phenotype like that illustrated in Figure 3F, with claws emerging from the labial palps, whereas other individuals have small patches of more proximal leg tissue, including sex combs, emerging from the labial palps. These transformations resemble patches of transformed tissue observed in mitotic recombination experiments using pb null alleles (V. Merrill, unpubl.). Thus, the In(3R)MAP17/pb<sup>-</sup> phenotype most likely represents a complete inactivation of pb function in a clone of cells, as expected for a typical V-type position effect (Spofford 1976). In(3R)MAP17/pb<sup>-</sup> individuals also show a temperature sensitivity typical for heterochromatic variegation position effects: The variegating phenotype is enhanced at 18°C and suppressed at 29°C.

A similar phenotype is also observed with Df(3R)SCB<sup>XL2</sup>, which is apparently an entirely euchromatic deficiency with a proximal breakpoint at about -51 (this chromosome and Df(3R)LIN were kindly provided by Dr. C. Nüsslein-Volhard). Df(3R)SCB<sup>XL2</sup>/pb<sup>-</sup> flies show a completely penetrant maxillary palp phenotype, as well as a labial palp phenotype (Fig. 3G) similar to that of In(3R)MAP17/pb<sup>-</sup> flies, although the labial palp phenotype is more penetrant and often transforms larger patches of tissue than is typical for In(3R)MAP17/pb<sup>-</sup> flies. In addition, we have not detected an effect of temperature on the Df(3R)SCB<sup>XL2</sup>/pb<sup>-</sup> phenotype.

Both pb variegating rearrangements map in the interval between the most distal pb null inversion breakpoints at approximately -54 and the pb<sup>+</sup> Df(3R)LIN breakpoint at -42. The pb transcriptional analysis described below indicates that these breakpoints lie 5' to the pb transcription unit.

The pb transcription unit

The transcriptional activity of the pb region was first characterized by probing developmental Northern blots with individual genomic λ phage encompassing the chromosomal walk through this region. This preliminary analysis divided the region into three transcribed intervals (Fig. 4A). First, sequences between -110 and -90 detected a series of small RNAs, ranging from 0.7 to 1.1 kb in size, expressed during late embryonic, larval, and pupal stages of development. Several cDNA clones corresponding to this interval were analyzed by restriction mapping and by preliminary DNA sequencing. This analysis indicated the presence of a family of genes that are structurally related to one another (Kaufman and Olsen 1988; Pultz 1988). The proximal portion of this transcript cluster was isolated independently in a screen for genes that have a profile of ecdysone-dependent expression similar to that of pupal cuticle protein genes (Fechtel et al. 1988). Because this cluster of transcripts maps entirely outside of the interval defined by the pb null breakpoints, we concluded that they were unlikely to be functionally related to pb, and they will not be considered further here. Second, sequences between -90 and -54 detected a 4.3-kb RNA size class that is expressed in embryos, larvae, and pupae. This RNA is implicated as the transcript of the pb locus, as described
Figure 3. [See facing page for legend.]
below. Finally, sequences between −54 and −50 hybridized to a 1.1-kb RNA size class expressed in early embryos, as described in the next section.

To localize the sequences encoding the 4.3-kb RNA size class, Northern blot strips of embryonic RNA were probed with subcloned genomic restriction fragments spanning the interval from −95 to −50. The 4.3-kb RNA is detected by genomic fragments from both ends of a 34-kb interval, from −88 to −83 and from −58 to −54 (fragments A–D, Fig. 4A). The genomic sequences that hybridize to the 4.3-kb RNA correspond well to the sequences defined genetically as essential for pb function. The 34-kb interval defined by this Northern analysis contains the 29-kb interval that was defined genetically as the minimum size of the pb locus. In addition, transcribed genomic sequences at the distal end of this interval, from −58 to −54, map within the 5-kb pbΔmap13 deletion (Fig. 4A). On this basis, we have designated this 4.3-kb RNA size class as the pb transcript. The direction of transcription of the 4.3-kb pb RNA is from distal to proximal on the chromosome and was determined using single-stranded probes from fragments A, B, and D (Fig. 4A), as described in Materials and methods.

The simplest interpretation of the combined genetic and Northern data is that the 4.3-kb pb RNA is spliced from a primary transcript that spans the interval from approximately −54 to −88. If this hypothesis is correct, pb null breakpoints located at one end of the pb locus should eliminate the 4.3-kb RNA recognized by genomic fragments from the other end. To test this prediction, RNA was prepared from genetically marked Df(3R)WIN1/Df(3R)MAP2 pupae. Df(3R)MAP2 deletes the proximal (3') component of the pb locus, whereas Df(3R)WIN1 deletes only the distal (5') 2–4 kb of the pb locus; thus, the proximal part of the pb locus is present in one copy in the deficiency-bearing animals. A Northern blot of RNA from wild-type pupae and from the deficiency-bearing pupae was probed with the sequences between −88 and −87 (the proximal 1.0 kb of fragment A, Fig. 4A); the results demonstrate that the 4.3-kb RNA is present in wild-type pupae (Fig. 4B, lane 1) but absent in the deficiency-bearing pupae (Fig. 4B, lane 2). These results are consistent with the interpretation that sequences from the proximal and distal portions of the pb locus hybridize to the same 4.3-kb transcript.

The temporal profile of pb expression during development was determined by preparing poly(A)+ RNA from developmentally staged embryos, larvae, pupae, and adults, a Northern blot containing these RNAs was hybridized with a genomic fragment from the distal (5') end of the pb locus (fragment E, Fig. 4A; see also Fig. 5A). Figure 4C illustrates that the 4.3-kb pb transcript is first detected at 2–4 hr of embryogenesis, and maximal accumulation is observed at 6–8 hr of embryogenesis. The abundance of the pb transcript diminishes toward the end of embryogenesis. During the larval period, pb expression is most evident in second instar larvae. Another peak in pb transcript abundance is seen during the second 12 hr of pupal development, when a minor band of −4 kb is also detected. By the end of the pupal period, accumulation of the pb transcript has diminished again, and the pb transcript is not detected in adults.

The embryonically expressed transcription unit distal to pb

Immediately distal to the pb transcription unit, between −54 and −51 on our map, there is an early embryonic transcription unit that produces a 1.1-kb transcript. Because of the close proximity of this transcription unit to the pb transcription unit, it was important to determine more precisely the relative locations of the genomic sequences encoding these two RNAs. Data presented in Figure 4A show that no hybridization to the 1.1-kb RNA is detected with sequences proximal to −54. Furthermore, Figure 4C shows that the 1.1-kb RNA is not detected with sequences extending further distally to the PstI site at −53.3 (fragment E, Figs. 4A and 5A). However, Figure 5 shows that sequences extending from −54 to −52 do hybridize to the 1.1-kb RNA (fragments F and G, Fig. 5A,B). These sequences do not detect the 4.3-kb pb RNA. Neither transcript is detected with sequences distal to −52 (data not shown). These results indicate that all hybridization to the 1.1-kb embryonic transcript is detected with sequences located distal to the PstI site at −53.3. Moreover, all detectable hybridization to the pb RNA is located proximal to the KpnI site at −54. Thus, there is apparently no overlap between the genomic sequences that hybridize to these two transcripts. The direction of transcription of the 1.1-kb RNA is the same as that for the 4.3-kb pb RNA, from distal to proximal on the chromosome, and was determined using single-stranded RNA probes (see Materials and methods). Figure 5C shows that a peak of accumulation of this transcript is observed at 2–4 hr of development, with lesser amounts at 0–2 and 4–6 hr. No significant accumulation of the 1.1-kb RNA is observed at postembryonic stages of the life cycle (data not shown).

The position of the early embryonic transcription unit relative to the pb-related breakpoints is enigmatic. As illustrated in Figure 5A, this transcription unit is located

---

**Figure 3.** Scanning electron micrographs of pb phenotypes. [A] Head of an OreR wild-type individual; (mp) maxillary palp; (lp) labial palp. [B] Head of a Df(3R)MAP2/Df(3R)WIN3, Kt roe p′ female. This genotype is completely deleted for the pb locus. [C] Transformed leg of a Df(3R)MAP2/Df(3R)WIN1, Kt roe p′ male; arrowhead indicates sex comb, diagnostic of transformation to prothoracic leg. [D] Hypomorphic labial-to-antennal transformation of a Kt pbΔp′/ScxΔ′ individual. (E) Labial-to-mixed-antennal/leg transformation of a Kt pbΔp′/Df(3R)WIN3, Kt roe p′ individual. [F] Partial labial-to-leg transformation of a pb variegating In(3R)MAP17/Df(3R)WIN1, Kt roe p′ individual. Arrowhead indicates claw. (G) Partial labial-to-leg transformation of a pb variegating Df(3R)SCBΔ12/pbΔmap13 individual. Arrowhead indicates claw; note similarity to E.
Figure 4. (See facing page for legend.)
in the interval between the most distal pb null inversion breakpoint and the most proximal pb variegating breakpoint. In addition, the 1.1-kb embryonic transcription unit is located within the \( pb^{m\text{an}} \) deletion and thus can be deleted with pb, without revealing any phenotypic consequences other than the pb null phenotype. The location of the early embryonic transcription unit relative to existing pb region breakpoints leaves an open question: Does this transcription unit have a pb-related function? To determine whether the early embryonic transcription unit is expressed in a pattern that would suggest a pb-related function, the spatial distribution of the 1.1-kb RNA was examined by in situ hybridization, using genomic sequences from \(-52.7\) to \(-52\) [fragment G, Fig. 5A].

Figure 4 illustrates the spatial expression pattern of the 1.1-kb early embryonic RNA. During the late cleavage stages and before cellular blastoderm, the early embryonic RNA is localized along the dorsal surface of the embryo and extends ventrally around the anterior and posterior ends (Fig. 6A). The localization of this RNA then becomes more restricted along the anterior--posterior axis and is limited to the region of the dorsal folds as gastrulation proceeds (Fig. 6B). A similar spatial restriction also occurs in the lateral distribution of transcripts. The cross-section in Figure 6C illustrates that transcripts are distributed in a precellular embryo over \(-30\%\) of the circumference, but by the time cellularization takes place (Fig. 6D), transcript distribution has narrowed markedly, to \(-10\%\) of the circumference of the embryo. In later embryos, transcript distribution remains limited to a narrow dorsal strip as gastrulation proceeds (Fig. 6E,F). As the germ band extends, transcript accumulation is concentrated in the region of the dorsal folds, as seen in two serial sections of the same embryo (Fig. 6G,H).

Expression of pb protein during embryogenesis

The characterization of pb transcript accumulation described above showed that embryogenesis is a major period of pb expression. Given the lack of any known pb embryonic function, this raised the question of whether embryonic pb expression might represent gratuitous accumulation of transcripts or whether the transcripts actually function to direct the synthesis of pb protein. This question was pursued using polyclonal rabbit antibodies raised against a \( \beta \)-galactosidase fusion protein containing a segment of genomic protein-coding pb sequences (see Materials and methods).

Localized staining was observed when embryos were incubated with antibodies raised against the fusion protein (see Materials and methods). First, it was important to determine whether all aspects of the putative anti-pb staining are eliminated when pb function is abolished, to address the possibility that the observed staining patterns might be due to spurious antibody reactivity. Embryos from a balanced stock of the amorphic pb\(^{\ast} \) allele were analyzed, as expected, \(-25\%\) of the embryos from this stock failed to exhibit any of the anti-pb staining patterns described below, whereas all embryos of a similarly balanced pb\(^{\ast} \) stock were stained. Therefore, the antibody staining is dependent on pb-gene function, and indicates the presence of pb protein (or the presence of a gene product that is dependent on pb function).

Expression of pb protein is observed throughout much of embryogenesis, the approximate ages of the embryos

Figure 4. Transcription of pb. (A) An EcoRI [R] plus KpnI [K] restriction map of the \(-50\) to \(-90\) interval; horizontal arrows and letters A--D indicate EcoRI or EcoRI--KpnI restriction fragments, which hybridize to the 4.3-kb pb RNA. Shown above the restriction map are Northern blot lanes of embryonic poly(A\(^{\text{+}} \)) RNA (10 \( \mu \)g/lane) that have been probed with subcloned genomic fragments spanning the interval from \(-88\) to \(-54\) [results of Northern blot analysis of the \(-55\) to \(-50\) interval are presented in Fig. 5]. All probes contained approximately equal cpm/\( \mu \)g, and each probe was mixed with an aliquot of a probe that recognizes the 3.0-kb I\( \text{ab} \) message [R. Diederich et al., in prep.] to monitor the presence of equal amounts of RNA in each lane. All lanes contain RNA from 4- to 8-hr old embryos, except lanes 3 and 10, which contain 8- to 12-hr embryonic RNA. The probes used were the proximal 1.0 kb [EcoRI--PstI] of fragment A [2.7 kb EcoRI] [1], the distal 1.7 kb [PstI--EcoRI] of fragment A [2], fragment B [1.7 kb EcoRI] [3], a 13-kb fragment spanning from a genomic EcoRI site at about \(-83\) to a phage EcoRI linker site, including sequences to \(-70\) [4], a 4.7-kb EcoRI fragment that spans from a phage linker site to the genomic EcoRI site at \(-66\), including sequences from \(-70\) to \(-66\) [5], the 1.3-kb EcoRI fragment [6], the 4.7-kb genomic EcoRI fragment [7], the proximal 1.6-kb EcoRI fragment [8], fragment C, the distal 1.6-kb EcoRI fragment [9], and fragment D, a 2.6-kb EcoRI--KpnI fragment [10]. Fragments proximal and distal to these 10 probes did not yield a detectable signal for the 4.3-kb RNA. Sequences between \(-87\) and \(-85\) hybridize to a background of other RNAs in addition to the 4.3-kb RNA; this is presumably due to the presence of repetitive CAX sequences [D. Cribs, unpubl.].

The same blot shown in C has been reprobed with ribosomal protein 49 [O'Connell and Rosbash 1984] to show the relative quantities of RNA that were loaded in each lane.
Figure 5. The early embryonic transcription unit ([z2]) immediately distal to pb. (A) Structure of the −55 to −50 interval. Horizontal arrows indicate restriction fragments that hybridize to the early embryonic transcript or to the pb transcript. Restriction fragments designated D–G refer to probes used for Northern blot experiments; D and E are identical to fragments D and E in Fig. 4. On the restriction map: (H) HindIII, (K) KpnI, (P) PstI, (R) EcoRI, and (X) XbaI. The position of the ln(3R)pb^w12 breakpoint is indicated by a vertical arrow; open bars indicate the DNA deleted by Df(3R)SCB XL2 and by the pb^map8 deletion. Stippling indicates the extent of the uncertainty of these breakpoints. (B) Poly(A)^+ RNA [10 μg] from 4- to 8-hr embryos was size-fractionated, blotted, and probed with the 1.3-kb KpnI–EcoRI restriction fragment immediately distal to −54 (fragment F) and with the adjacent 0.7-kb EcoRI–XbaI fragment (fragment G). More distal genomic sequences did not hybridize detectably to the 1.1-kb RNA. The early embryonic transcript had not been detected with sequences proximal to the PstI site at −53.3 (fragment E; see Fig. 4), indicating that all observable homology to the early transcript is between the −53.3 PstI site and the XbaI site. (C) Poly(A)^+ RNA [10 μg] from staged embryos and adults was size fractionated, blotted, and probed with the 0.7-kb EcoRI–XbaI restriction fragment (fragment G), then reprobed for rp49 as indicated in the legend to Figure 4.
described here are estimated from the description of embryogenesis by Hartenstein and Campos-Ortega [1985]. No evidence of pb protein accumulation is observed during the blastoderm stage of embryogenesis or during gastrulation and germ-band elongation. However, just as the gnathal buds are beginning to form, between ~5.5 and 6 hr, detectable pb protein first appears quite abruptly in a group of nuclei in the region of the presumptive mesoderm directly behind the stomodeum [Fig. 7A,B]. This relatively abrupt appearance of pb protein in cells of the mesodermal region contrasts with the gradual accumulation observed for subsequent pb protein expression in the ectoderm and in the central nervous system. The early pb staining pattern in the mesodermal region is dynamic: Cells expressing the pb protein appear to migrate away from the ventral midline as the maxillary and labial buds take shape, separating bilaterally into two groups [Fig. 7C,D]. This staining pattern dissipates toward the beginning of germ-band retraction, after 7 hr [Fig. 7E,F], leaving about six to eight cells with large and strongly staining nuclei internal to each mandibular lobe. Mesodermal staining can be followed subsequently in a group of cells with very small nuclei that migrate dorsally and posteriorly, taking their places along the walls of the foregut [see below]. Figure 7, C–F also shows the appearance of weak pb staining in the labial and maxillary lobes. Figure 7, G and H, shows that as the germ band retracts, pb protein becomes more concentrated in the ectodermal nuclei of the labial and maxillary lobes. In addition, pb staining is observed in a group of cells in a ventral, or stemal, location, which originate between the posterior mandibular and anterior maxillary lobes. The accumulation of pb protein in the labial and maxillary lobes progresses in an uneven fashion.

At the end of germ-band retraction, at ~9.5 hr, staining in the labial lobes and the stemal region has become quite intense [Fig. 8A]. Staining in the maxillary lobes has also become intense; in addition, the nuclei internal to the mandibular lobes still stain very strongly [Fig. 8B]. As the labial lobes fuse at the ventral midline and involute into the stomodeum, between ~10 and 12 hr, pb protein in the nuclei of these cells approaches its maximal accumulation; thus, the peak of pb protein accumulation occurs several hours after the embryonic peak of pb message accumulation [see Fig. 4C]. By about 10 hr, pb protein expression appears to be excluded from a small region of each labial lobe [Fig. 8C], probably cor-
Figure 7. Early expression patterns of pb protein during embryogenesis. (A) The onset of pb protein expression is observed in the mesodermal layer (mes) directly behind the stomodeum (sto), seen in a sagittal view. (B) Horizontal view of the earliest detectable pb protein expression, between 5.5 and 6 hr. The pb+ nuclei correspond to the mesodermal cells seen in A. Maxillary (mx) and labial (lb) buds are just beginning to form. (C,D) Sagittal and horizontal views of an embryo at ~6.5 hr. The pb+ cells of the mesodermal region no longer span the midline and now appear in two clusters. A gradual onset of pb protein accumulation is seen in the labial and maxillary buds, which are becoming morphologically distinct. (E,F) Sagittal and horizontal views of an embryo between 7 and 7.5 hr. The morphogenetic rearrangements of the maxillary and labial lobes are beginning. The mesodermal staining pattern is dissipating, and the strongest staining is becoming restricted at this point to two small clusters of cells internal to the mandibular lobes (mn). (G,H) Lateral and ventral horizontal views of an embryo, nearing the end of germ-band retraction, at ~9 hr. The maxillary lobes are now situated dorsal to the labial lobes. The accumulation of pb protein in the maxillary and labial lobes is becoming prominent by this stage.

responding to the labial sensory anlagen described by Turner and Mahowald (1979). The original pb+ cells internal to the mandibular lobes are still staining strongly; in addition, a cluster of pb+ cells is detected internal to the maxillary lobes [Fig. 8D]. The maxillary lobes have undergone considerable dorsal displacement; these cells are expressing pb protein at high levels [Fig. 8E]. At this point, pb protein is also observed in a group of cells with very small nuclei, which have migrated to the vicinity of the posterior foregut [Fig. 8F]. These cells will later be
The proboscipedia locus

Figure 8. Expression of *pb* protein at mid-embryogenesis. 
(A and B) Two different views of the same embryo, which is 
~9.5 hr in age. (A) Horizontal view, ventral aspect. Localization 
of *pb* protein is seen in the labial lobes (lb) and in the 
stenral region (st). (B) Horizontal view, dorsal to A. Localization 
of *pb* protein is seen in the maxillary lobes (mx); in 
addition, a cluster of *pb*+ cells with relatively large nuclei 
are located internal to each mandibular lobe (mn). (C–F) 
Four different views of the same embryo, which is 
~10–10.5 hr in age. (C) Horizontal view, ventral aspect, 
showing the labial lobes. As the labial lobes move toward 
the ventral midline, a small region appears on each labial 
lobe, which is free of detectable *pb* protein expression. 
These appear to correspond to the labial lobe indentations 
observed in scanning electron micrographs, which repre­ 
sent anlagen of the labial sense organs (Turner and Maho­ 
wald 1979). (D) Horizontal view, dorsal to the view shown in 
C. Staining is visible in the ectoderm of the maxillary lobes 
and in clusters of cells internal to the mandibular and max­ 
illary lobes. (E) Lateral view, showing *pb*+ nuclei in the la­ 
bial (lb) and maxillary (mx) lobes. The internal mandibular 
cells (mn) and the sternal region (st) are out of the plane of 
focus. (F) Medial view, showing one labial lobe and the 
stenral region in focus. In addition, a cluster of *pb*+ meso­ 
dermal cells with very small nuclei are seen in the posterior 
region of the foregut.

found around the esophagus and proventriculus (not 
shown).

During head involution, staining in the gnathal seg­ 
ments remains strong, and expression of *pb* protein in 
the central nervous system is also detected, in a pattern 
that becomes increasingly complex [Fig. 9]. At first, 
evidence of *pb* protein expression in the nervous system 
is limited to a very small subset of cells in the supraeso­ 
phageal ganglion [Fig. 9B], in the subesophageal ganglion 
[Fig. 9A,C], and in the region of the ventral nerve cord 
derived from the first three thoracic segments [Fig. 9A,D]. Subsequently, *pb* protein also appears in a subset of 
cells in the abdominal region of the ventral nerve cord 
[Fig. 9E]. The first six abdominal segments show an ex­ 
pression pattern distinct from that observed in the tho­ 
racic segments, whereas the more posterior abdominal 
segments appear to express only the peripheral compo­ 
nents of the anterior abdominal pattern. Expression of 
*pb* protein in the central nervous system becomes more 
prominent as the nerve cord shortens, after ~16 hr [Fig. 
9F,G]. However, the set of cells expressing *pb* protein 
ever constitutes more than a very small proportion of 
central nervous system cells in any given segment.

In contrast to the gnathal ectoderm and the central 
nervous system, note that there is no evidence of *pb* ex­ 
pression in the region of the dorsal fold [Fig. 9A]. Pre­ 
cursors of the eye—antennal discs are invaginating into 
the frontal sac in this region. These cells ultimately will 
give rise to much of the head, including the maxillary 
palps [Haynie and Bryant 1986].

Discussion

We have identified the *pb* locus in the proximal ANT-C 
through the analysis of *pb* null chromosomal rearrange­
ments. Transcriptional analysis reveals that a 4.3-kb 
RNA size class is detected with genomic restriction 
fragments from both ends of a 34-kb interval, which 
closely corresponds to the interval defined genetically as 
essential for *pb* function. On this basis, we have desig­ 
nated the 4.3-kb RNA as the *pb* RNA. Immediately 
distal and 5' to the *pb* transcription unit, there is an ad­ 
ditional transcription unit, *z2*, which is expressed dor­ 
sally during embryogenesis in a pattern resembling that 
of the *zen* locus.

We have also analyzed two chromosomal rearrange­
Figure 9. Localization of pb protein in the embryonic central nervous system. Optical sections of embryos stained with anti-pb antibodies. [A–D] Sagittal view and three horizontal optical sections of an embryo undergoing head involution. [A] Sagittal view, showing pb protein localization in the involuting labial lobes and in a few cells in the anterior portion of the ventral nerve cord, including the subesophageal ganglion (sb). No pb staining is apparent in the dorsal fold (df). [Note that the ‘dorsal fold’, derived from the dorsal ridge, is distinct from the dorsal folds in which z2 expression was observed earlier in embryogenesis.] [B] Horizontal view, showing pb protein localization in cells derived from the labial lobes (now mostly internal) and maxillary lobes (still external), in addition, pb protein is localized in a few nuclei in the supraesophageal ganglion (sp). [C] Horizontal view ventral to the view shown in B. pb protein is seen in a few nuclei in the subesophageal ganglion (sb). [D] Ventral horizontal view, showing pb protein localization in a few cells in the anterior portion of the ventral nerve cord. [E,F] Ventral horizontal views of sequentially older embryos. After initial expression is detected in the anterior portion of the nerve cord, as in D above, pb protein expression is subsequently detected in a small subset of cells extending throughout most of the length of the ventral nerve cord. Note that the expression pattern of pb protein in the posterior central nervous system differs both temporally and spatially from the expression observed more anteriorly. [G] Sagittal view of an embryo that is approximately the same age as the embryo shown in F.

ments that partially complement pb in a variegating fashion. These two chromosomes have breakpoints distal and 5' to both the pb and z2 transcription units. One chromosome, In(3R)MAP17, is an inversion of ANT-C sequences into heterochromatin; the other, Df(3R)SCP3LZ, appears to be an entirely euchromatic deficiency. The effects of these breakpoints on pb function may be due entirely to heterochromatic and euchromatic position effects, respectively (Spofford 1976; Levis et al. 1985). Alternatively, some of the regulatory sequences necessary for wild-type pb function may be removed in one or both of these chromosomal rearrangements, which have breakpoints mapping between 2 and 7 kb upstream of the pb transcription unit. Whatever the mechanism(s) responsible for the pb variegating phenotypes, it is notable that the labial palp transformations of pb variegating/pb− individuals always consist of leg-like structures. Thus, the affected cells follow a developmental pathway indicative of a complete loss of pb function, this pathway is distinct from the labial-to-arista transformations observed in previously described hypomorphic pb alleles (Kaufman 1978).

Expression of pb-gene products during embryogenesis

The function of pb is similar to the functions of other ANT-C homeotic genes, such as Scr, Dfd, and lab in that pb plays an essential determinative role in adult head development. However, pb is unique among ANT-C homeotic genes in that it lacks an obvious role in embryonic development. We examined the temporal expression profile of pb transcripts with the expectation that the adult-specific nature of pb developmental effects might well be reflected in a preponderance of pb expression at the pupal stage of the life cycle. However, pb transcripts are expressed as prominently during embryogenesis as during the pupal period. In addition, these transcripts direct the synthesis of embryonic pb protein, as determined by raising antibodies against a β-galactosidase fusion protein containing pb protein-coding sequences.
Embryonic pb protein is observed in most ectodermal cells of the labial and maxillary lobes, as well as in more anterior ventral ectoderm. In addition, pb protein is observed in cells of the mesoderm and central nervous system. The pb protein is localized to nuclei, like the protein products of other homeotic genes of the BX-C and ANT-C (Beachy et al. 1985; White and Wilcox 1985; Carroll et al. 1986; Wirz et al. 1986; Mahaffey and Kaufman 1987; Riley et al. 1987; R. Diederich, unpubl.). No evidence of pb protein expression has been observed in late third instar imaginal discs using this anti-pb antibody; however, the major peaks of pb transcript accumulation occur during the second day of larval life and during the second day of pupation.

The pattern of pb protein expression during embryogenesis shares many general features with the expression of other ANT-C genes such as Antp, Scr, and Dfd: A segmentally restricted pattern is observed in the ectoderm, and expression extends to a discrete subset of cells in the mesoderm and central nervous system. However, the pattern of pb protein expression in the central nervous system differs strikingly from the patterns of transcript and/or protein expression in the central nervous system observed for the other ANT-C homeotic genes (Carroll et al. 1986; Wirz et al. 1986; Mahaffey and Kaufman 1987; Riley et al. 1987; Chadwick and McGinnis 1987; Martinez-Arias et al. 1987; R. Diederich, unpubl.). Each of the other ANT-C genes shows extensive expression in at least one segmental division of the central nervous system. In contrast, pb protein is expressed in only a small subset of central nervous system cells in any given segment. In addition, the terminal pattern of pb protein expression is unusual in that it extends throughout the length of the central nervous system.

Many homeotic genes are required and expressed in parasegmental rather than segmental domains, such that the boundaries of a gene's function and expression lie within segments rather than between segments (Martinez-Arias and Lawrence 1985; for review, see Akam 1987). The expression of pb protein in the ectoderm does not conform to this generalization. The posterior limit of pb expression lies at the posterior edge of the labial lobe, which appears to be a segmental structure, as judged by the position of cells expressing the engrailed protein (DiNardo et al. 1985). In this regard, pb expression parallels the expression of Dfd, which extends from the mandibular segment to the posterior margin of the segmental maxillary lobe (Chadwick and McGinnis 1987; Martinez-Arias et al. 1987).

The spatial expression of embryonic pb protein overlaps the expression of Scr and Dfd transcripts and protein products. Scr transcripts and protein products are expressed primarily in the labial and first thoracic segments (Kuroiwa et al. 1985; Levine et al. 1985; Mahaffey and Kaufman 1987; Martinez-Arias et al. 1987; Riley et al. 1987), thereby overlapping pb expression in the labial lobe. Dfd transcripts and protein products are expressed in the maxillary and mandibular segments (Chadwick and McGinnis 1987; Martinez-Arias et al. 1987; R. Diederich, unpubl.), overlapping pb expression in the maxillary lobe and in the sternal region. The expression of Scr in the labial lobe correlates with pheno- typic defects in labially derived larval cuticular structures of Scr embryos. These embryos lack the hypos- tomal sclerite and the H-piece bridge (V. Merrill, unpubl.), which are derived from the labial portion of the blastoderm according to fate-mapping studies (Jürgens et al. 1986). In addition, Scr embryos show a duplication of the maxillary sense organ (Struhl 1983; Sato et al. 1985), which may represent a labial-to-maxillary transfor- mation. Similarly, expression of Dfd transcripts in the maxillary and mandibular segments correlates with defects in cuticular structures of maxillary and mandibular origin in Dfd embryos. In these embryos, the maxillary cirri, maxillary sense organs, mouth hooks, and H-piece lateral bars are defective (Merrill et al. 1987; Regulski et al. 1987). In contrast, genetically marked pb larvae show no obvious cuticular defects corresponding to the labial, maxillary, and mandibular domains of pb expression in embryos.

There are several possible explanations for the discrepancy between the embryonic pb expression pattern and the apparently adult-specific nature of the pb phenotype. One possibility is that the embryonic pb expression pattern may be without function, e.g., such expression might be an evolutionary vestige. Interestingly, there is evidence that a potential pb homolog in a more primi- tive insect plays an essential role in larval as well as adult development: A loss-of-function mutation at the maxillopedia locus in Tribolium results in labial-to-leg transformations both in the larva and in the adult (Beeman 1987).

Alternatively, the embryonic pattern of ectodermal pb expression might be an inelegant mechanism to ensure the segmental identities of those few cells that will ultimately give rise to adult cuticular structures. The temperature-shift experiments of Villee (1944) demonstrate that pb function is required during larval and early pupal development. However, these experiments were not designed to assess the role of pb during embryogenesis and do not exclude the possibility that pb function might play an additional determinative role during embryogenesis.

Though embryonic pb expression in the labial lobe might influence subsequent development of the labial palps, there is no reason to believe that pb expression in the embryonic maxillary lobe influences maxillary palp development. Due to the complex rearrangements that take place during head development in Drosophila, the maxillary palps do not develop from separate maxillary imaginal anlagen as in more primitive dipterans; instead, they develop from the eye–antennal discs (Haynie and Bryant 1986; Jürgens et al. 1986). We have detected no evidence of embryonic pb protein expression in cells of the dorsal ridge or frontal sac, which give rise to the eye–antennal disc [in contrast, products of the Dfd and lab loci are clearly expressed in the dorsal ridge (Chadwick and McGinnis 1987; R. Diederich, unpubl.)]. In addition, observations of sequentially older embryos reveal
no evidence that there is any migration of pb+ cells from the maxillary lobes to the region of frontal sac formation. Thus, there appears to be no direct connection between the observed embryonic pattern of pb protein expression and determination of the adult maxillary palps. It is also possible that pb may have very subtle functions in Drosophila embryogenesis, in addition to its functions in adult development. For example, pb may influence aspects of cellular identities that are not discernible through analysis of larval cuticular structures. Alternatively, embryonic pb gene products may have stabilizing or ‘buffering’ effects on the expression of other homeotic genes, rather than carrying out directly determinative functions. Another possibility is that the functions of pb gene products might not be revealed in pb− individuals because they can be supplied redundantly by other genes, e.g., the Dfd and/or Scr loci discussed above.

Whether pb-gene products have developmental functions in the embryonic mesoderm or central nervous system is an open question, though such possible functions are clearly not critical for larval survival. However, it is known that pb plays a role in the development of the adult peripheral nervous system: Stocker (1982) showed that the loss of pb function affects the pathways chosen by the axons of sensory neurons in the ectopic antenna-like or leg-like appendages.

The z2 locus
The z2 locus is located between the pb transcription unit and the pb variegating breakpoints, yet the spatial pattern of z2 transcript expression appears totally unrelated to that of pb. Instead, z2 is expressed in a pattern very similar to that of its distal neighbor, the zen locus. For a detailed comparison of z2 and zen expression and structure, see Rushlow et al. (1987); these investigators report that the z2 transcription unit contains a homeo box very similar in structure to that of the zen homeo box but that DNA sequence similarity between the two genes does not extend outside of their homeo box sequences.

We report that the z2 transcription unit can be deleted without conferring embryonic lethality or larval pattern defects. In contrast, homozygous zen− individuals die as embryos with a variety of cuticular defects, including a characteristic failure to undergo proper head involution (Wakimoto and Kaufman 1981). It is clear from our breakpoint analysis that the zen locus is distal to z2, as zen point mutants complement the pbmap8 deletion. Moreover, Rushlow et al. (1987) have demonstrated by germ-line transformation experiments that the more distal zen transcription unit rescues the embryonic lethality of the zen−/map8 null allele

There are several possible explanations for the lack of an apparent phenotype in individuals deleted for the z2 homeo box gene. First, there may be a subtle phenotype that has escaped our detection. We have examined the cuticular pattern of genetically marked first instar larvae and of pharate adults, however, embryonic phenotypes have been difficult to evaluate due to an inseparable 2;3 translocation associated with the pbmap8 chromosome. It is unlikely that our inability to detect a phenotype in z2− animals is due to a significant maternal contribution of z2 gene products, as the peak of localized z2 expression in embryos is clearly of zygotic origin and no z2 transcripts are detected in adult females. Second, z2 may have no function in Drosophila melanogaster. A third possibility is that z2 may have a developmental function similar or identical to that of some other gene(s) such that compensating function is supplied in z2− embryos by other gene(s). If such functional equivalents exist, they must be sufficiently divergent structurally as to go undetected on whole genome Southern blot experiments: z2 protein-coding sequences (excluding the z2 homeo box) do not detect additional related sequences at low stringencies (D. Cribbs, unpubl.). Conceivably, such a function could be supplied by the zen locus.

An example of probable functional redundancy involving homeo box genes has been reported in the gooseberry region. There, two adjacent transcription units show a related spatial expression pattern suggestive of gooseberry function, yet the embryonic lethal gooseberry phenotype is obtained only if both transcription units are removed (or significantly reduced in expression) (Bopp et al. 1986; Côté et al. 1987). Another example of adjacent homeo box genes that are very similar to one another in their expression patterns is found in the engrailed region (Coleman et al. 1987). In this case, the genetically essential engrailed transcription unit is closely linked to the related invected transcription unit, for which no detectable genetic function has been reported.

Conclusions
We have identified the homeotic pb locus in the proximal ANT-C and report that the pb transcription unit corresponds closely to the interval defined by a series of pb null rearrangement breakpoints. The z2 homeo box gene (Rushlow et al. 1987) lies immediately distal to the pb transcription unit. Distal and ‘5’ to both transcription units, we have mapped two chromosomal breakpoints that affect pb function in a variegating fashion. When both the pb and z2 transcription units are deleted, no effects on the development of larval cuticular structures are detected, yet both pb and z2 are expressed in spatially localized patterns during embryogenesis. The expression of pb protein throughout the ectoderm of the labial and maxillary lobes parallels the segmentally restricted expression of the embryonically essential ANT-C homeotic loci. Like other homeotic genes, pb is also expressed in the mesoderm and in the central nervous system, though the pattern of pb expression in the nervous system is atypical. On the other hand, the z2 locus is expressed in a pattern that resembles the expression of the neighboring zen locus. Thus, the molecular expression patterns of pb and z2 during embryogenesis reveal similarities to other ANT-C genes, although these similarities are not reflected in comparable phenotypic consequences.
Materials and methods

Isolation of mutant chromosomes

All of the pb null chromosomes isolated by M.A.P. and T.C.K. were obtained in a standard F2 screen for loss of pb function. Males [see Table 1 for parent stocks] were irradiated with X-rays at 3500-4000 rads and mated to homozygous pb+ [P. Formilli and T. Kaufman, unpubl.] or pb+pb+ [Kaufman 1978] females. F2 progeny, which had antennal structures emerging from the labial palps, were selected and used to establish balanced stocks, which were then tested for their ability to complement ANT-C loci. The In(3R)MAP17 chromosome was isolated in a standard F2 screen for lethal and visible mutations, as described by V. Merrill et al. [in prep].

Breakpoint mapping

Table 1 notes which of the following procedures were used for breakpoint mapping and confirmation for each of the mutant chromosomes.

A Genomic DNA was prepared from balanced stocks of the mutant chromosomes, from stocks of the parent chromosomes, and from balanced stocks of deficiency chromosomes, which served as controls for balancer chromosome sequences. Each genotyope was restricted with four restriction enzymes and probed with radiolabeled λ phage DNA containing genomic inserts from the pb region.

B Same as A, except that purified restriction fragments or plasmid subclones were used as probes to refine the location of the breakpoints.

C To confirm deleted sequences, DNA was prepared from individuals bearing overlapping deficiency chromosomes and from balanced stocks of deficiency chromosomes, which were deleted as controls for balancer chromosome sequences. Each genotyope was restricted with four restriction enzymes and probed with radiolabeled λ phage DNA containing genomic inserts from the pb region.

D To confirm deleted sequences, DNA was prepared from individuals bearing overlapping deficiency chromosomes and therefore completely deleted for a given interval, and either (1) this genomic DNA was used on genomic Southern blots, with appropriate controls, as in A or B above, or (2) the genomic DNA was labeled by nick translation or oligo priming (Feinberg and Vogelstein 1983) and used to probe clones of cloned sequences from the pb region to determine which sequences were deleted.

E For In(3R)MAP17, the lesion at -48 was implicated as the inversion breakpoint by recovering an X-ray-induced distal deficiency derivative of this chromosome and comparing DNA from the two lines on genomic Southern blots.

Examination of pb− larvae for cuticular defects

To examine pb− larvae for possible cuticular defects, the TM3 y+ chromosome (Lindsley and Grell 1968) was used to allow unambiguous identification of individuals deleted for the pb locus. y1 w, Df(3R)MAP2/TM3 y+ virgins were crossed to y1 w, pb+pb+TM3 y+ males or to y1 w, Df(3R)/WIN3/TM3 y+ males, and 12 hr collections of embryos were obtained in egg-laying containers. First instar larvae with yellow mouthparts were moved from the plates, mounted in polyvinyl lactophenol (PVL) [Garr}, and left to clear for 24 hr at 56°C. Larvae were examined with phase optics at 40× for the presence of labial sense organs, labial black dots, ventral organs, maxillary sense organs, and hypopharyngeal organs [Jürgens et al. 1986]. Each of these sense organs was present and appeared normal in these animals; in addition, no duplications of sense organs were detected. Components of the cephalopharyngeal skeleton and maxillary cirit also appeared normal.

Examination of pb− z2− larvae

To determine whether any larval defects resulted from deletion of the z2 transcription unit in addition to the pb transcription unit, y1 w, Df(3R)/MAP11/pb+pb+ embryos were collected and examined as described for pb− embryos in the previous section (Df(3R)/MAP11 is a deficiency that fails to complement all loci from lab through Dfd in the ANT-C). In addition to examining the structures described above, larvae were examined for defects in the setal belts and in posterior structures, but no such defects were detected.

Northern blot analysis and in situ hybridization

Total RNA was isolated from staged Oregon R (OreR) pb, pb+ pb, and pupae [raised at 25°C] by the guanidine isothiocyanate/cesium chloride method (Chirgwin et al. 1979) from adult OreR pb flies was extracted by the phenol/SDS method (Spadling and Mahowald 1979). poly(A)+ RNA was prepared by passage of total RNA through an oligo(dT) [Collaborative Research, Inc.] column [Aviv and Leder 1972]. poly(A)+ RNA was eluted in water and selected a second time. poly(A)+ RNA [10 μg/ lane] was size-fractionated on a 1% agarose/formaldehyde gel. The gel was stained with ethidium bromide; visual examination confirmed that each lane contained approximately an equal amount of RNA. The fractionated RNA was electrophoreted onto Nytran [Schleicher and Schuell] and UV-irradiated according to Khandjian (1987). Hybridization was carried out at 42°C for 18 hr at a stringency of 50% formamide, 5 x SSC. The final wash was for 1 hr at 65°C in 0.5 x SSC, 0.5% SDS. The DNA probe was labeled with [α-32P]dATP using Klenow fragment of Escherichia coli DNA polymerase I [Boehringer Mannheim] and random oligonucleotides [Molecular Biology Institute, Indiana University] as primer [Feinberg and Vogelstein 1983]. Approximately 6 × 10^7 cpn of the 32P-labeled DNA probes [sp. act. = 6 x 10^6 cpn/μg] were used for each experiment. Hybridization of Northern blots under these conditions often results in the presence of a band at 1.9 kb, regardless of the sequences used in the probe. We have seen this band using almost all probes from the pb and lab regions of the ANT-C; in addition, the intensity of this band diminishes relative to pb or lab transcripts when extremely high stringencies are used. Thus, we do not believe that the 1.9-kb band represents specific hybridization.

The direction of transcription for the pb transcription unit was determined by hybridizing strand-specific RNA probes to Northern blots. Three EcoRI restriction fragments [fragments A, B, and D, Fig. 4] were subcloned into pGEM2 (Promega Biotec). RNA transcripts were synthesized in vitro using either SP6 or T7 polymerase [Promega Biotec] and [α-35S]UTP. Hybridization was carried out at 65°C in 65% formamide and 2 x SSC. A final wash of 5 mM Tris [pH 8], 0.2 mM EDTA, 0.05% sodium pyrophosphate, and 0.1 x Denhardt’s solution at 70°C was necessary to eliminate nonspecific hybridization of the RNA probes. The direction of transcription of z2 was determined by the same method, using the 700-bp EcoRI-Xbal restriction fragment [fragment G, Fig. 5] as the probe.

In situ hybridizations were performed using [35S]UTP-labeled single-stranded RNA probes, by the method of Ingham et al. [1985].

Expression of the β-galactosidase− pb fusion protein

DNA sequence analysis revealed putative pb protein-coding sequences in the 1.7-kb genomic EcoRI fragment [fragment B, Fig. 4]; a restriction map of this EcoRI fragment is shown in Figure
protein was expressed in JM83 cells grown in LB, 50 |xg/ml ampicillin; these cells have a defective Accl into the

The p-galactosidase-pb fusion protein was prepared for injection by excising the appropriate band from a 6.5% SDS-polyacrylamide gel, grinding the gel slice to a powder in liquid nitrogen, and mixing the powder 1 : 3 in Freund’s adjuvant. Complete adjuvant was used for the first boosts, and incomplete adjuvant was used thereafter. Dutch belted rabbits were injected biweekly for the first four boost and monthly thereafter, with about 300 |xg of protein per injection. Serum collected after the sixth boost. Serum from two different rabbits was collected after the third boost contained no detectable anti-pb antibodies. The serum used to stain embryos in Figures 7 and 8 was collected after the sixth boost. Serum from two different rabbits was repeatedly through a p-galactosidase affinity column to deplete antibodies were affinity-purified by passing the serum repeatedly through a pb-p-galactosidase fusion protein affinity column, made by coupling the fusion protein to Affigel 10 matrix (Bio-Rad). Antibodies were eluted from this column with 0.1 M glycine (pH 2.5), then neutralized with one-tenth volume of 2.0 M Tris (pH 7.6). Sodium azide was added to 0.025%, and the antibodies were stored at 4°C.

Production and purification of antibodies

The β-galactosidase–pb fusion protein was prepared for injection by excising the appropriate band from a 6.5% SDS–polyacrylamide gel, grinding the gel slice to a powder in liquid nitrogen, and mixing the powder 1 : 3 in Freund’s adjuvant. Complete adjuvant was used for the first boosts, and incomplete adjuvant was used thereafter. Dutch belted rabbits were injected biweekly for the first four boost and monthly thereafter, with about 300 |xg of protein per injection. Serum collected after the third boost contained no detectable anti-pb antibodies. The serum used to stain embryos in Figures 7 and 8 was collected after the sixth boost. Serum from two different rabbits gave identical results.

Antibodies were affinity-purified by passing the serum repeatedly through a β-galactosidase affinity column to deplete the serum of antibodies raised against the β-galactosidase portion of the fusion protein. The flowthrough material from this column was then passed repeatedly through a pb–β-galactosidase fusion protein affinity column, made by coupling the fusion protein to Affigel 10 matrix (Bio-Rad). Antibodies were eluted from this column with 0.1 M glycine (pH 2.5), then neutralized with one-tenth volume of 2.0 M Tris (pH 7.6). Sodium azide was added to 0.025%, and the antibodies were stored at 4°C.

Immunological staining

Embryos were collected, fixed, and stained as described in Mahaffey and Kaufman [1987], using the horseradish peroxidase (HRP) staining procedure, with the following substitution: In stead of incubation with HRP-labeled secondary antibodies, embryos were incubated with biotin-labeled anti-rabbit secondary antibodies for 2 hr, washed for 1 hr, and then incubated with HRP-labeled avidin–biotin complex (Vector Labs) for 1 hr. Embryos were photographed using Nomarski optics, except for the embryo in Figure 7A, which was photographed using phase-contrast optics. To verify that the punctate pattern of pb staining is nuclear, the pb staining pattern was observed using FITC-labeled secondary antibodies, and this staining pattern was compared to the nuclear staining pattern observed by counterstaining the embryos with DAPI (15 ng/ml). In addition, the pb staining is coincident with staining of other nuclear proteins, such as the engrailed and invected proteins [J. Mahaffey et al., in prep].

Acknowledgments

M.A.P. thanks Matt Scott and Amy Weiner for advice and encouragement in the early stages of this work and beyond. We thank F. Rudolf Turner for the scanning electron micrographs and for providing the sectioned material for in situ hybridization. Dave Leaf and Carol Ruppe provided assistance with raising antibodies, and Sandy Horikami provided the staged embryonic RNAs used in the developmental Northern blots. We are grateful to Allen Laughon, Matt Scott, Christine Rushlow, Michael Levine, Kim Fechtel, and James Fristrom for sharing unpublished information about the genes immediately proximal and distal to pb. We thank Christiane Nüsslein-Volhard for providing Dh(3R)/SCB12 and Dh(3R)LIN. Bruce Baker, Tom Blumenthal, Dave Leaf, and Beth Raff provided helpful comments on earlier forms of the manuscript. Finally, we thank Dee Verostko for secretarial assistance. This work was supported by National Institutes of Health (NIH) grant GM-24299 to T.C.K.; M.A.P. was supported by a predoctoral NIH Genetics training grant and by a graduate fellowship from the Indiana University Institute for Molecular and Cellular Biology, R.J.D. was supported by a predoctoral NIH Molecular, Cellular, and Developmental training grant, D.L.C. was supported by an Indiana University Graduate Research and Development fellowship.

References

Abbott, M.K. 1984. “The relationship between the structure and function of the Antennapedia locus of Drosophila melanogaster.” PhD. dissertation, Indiana University Bloomington, Indiana.

Abbott, M.K. and T.C. Kaufman. 1986. The relationship between the functional complexity and the molecular organization of the Antennapedia locus of Drosophila melanogaster. Genetics 114: 919–942.

Akam, M. 1987. The molecular basis for metameric pattern in the Drosophila embryo. Development 101: 1–22.

Aviv, H. and P. Leder. 1972. Purification of biologically active globin messenger RNA by chromatography on oligothymidylic acid cellulose. Proc. Nat. Acad. Sci. 69: 1408–1412.

Beachy, P.A., S.L. Helfand, D.S. Hogness. 1985. Segmental distribution of bithorax complex proteins during Drosophila development. Nature 313: 545–551.

Beeman, R.W. 1987. A homeotic gene cluster in the red flour beetle. Nature 327: 247–249.

Bopp, D., M. Burri, S. Baumgartner, G. Frigerio, and M. Noll. 1986. Conservation of a large protein domain in the segmentation gene paired and in functionally related genes of Drosophila. Cell 47: 1033–1040.
Bridges, C. and T. Dobzhansky. 1933. The mutant ‘proboscipedia’ in Drosophila melanogaster—A case of hereditary homosis. Wilhelm Roux’s Arch. Dev. Biol. 127: 575–590.

Carroll, S.B. and M.P. Scott. 1985. Localization of the fushi tarazu protein during Drosophila embryogenesis. Cell 43: 47–57.

Carroll, S.B., R.A. Laymon, M.A. McCutcheon, P.D. Riley, and M.P. Scott. 1986. The localization and regulation of Antennapedia protein expression in Drosophila embryos. Cell 47: 113-122.

Chadwick, R. and W. McGinnis. 1987. Temporal and spatial distribution of transcripts from the Deformed gene of Drosophila. EMBO J. 6: 779–789.

Chirgwin, J.M., A.E. Przybyla, R.J. MacDonald, and W.J. Rutter. 1979. Isolation of biologically active ribonucleic acid from sources enriched in ribonuclease. Biochemistry 18: 5294–5299.

Coleman, K., S.J. Poole, M.P. Weir, W.C. Soeller, and T. Kornberg. 1987. The injected gene of Drosophila: Sequence analysis and expression studies reveal a close kinship to the engrailed gene. Genes Dev. 1: 19–28.

Côté, S., A. Preiss, J. Haller, R. Schul, A. Kienlin, E. Seifert, and H. Jäckle. The gooseberry-zipper region of Drosophila: Five genes encode different spatially restricted transcripts in the embryo. EMBO J. 6: 2793–2801.

Denell, R.E. 1973. Homoeosis in Drosophila. Complementation studies with revertants of Nasobemia. Genetics 75: 279–297.

Denell, R.E., K.R. Hummels, B.T. Wakimoto, and T.C. Kaufman. 1981. Developmental studies of lethality associated with the Antennapedia gene complex in Drosophila melanogaster. Dev. Biol. 81: 43–50.

Dittrich, R., S.M. Koger, J. Theis, and P.H. O’Farrell. 1985. Development of embryonic pattern in D. melanogaster as revealed by accumulation of the nuclear engrafted protein. Cell 43: 59–69.

Doyle, H., K. Harding, T. Hoey, and M. Levine. 1986. Transcripts encoded by a homeo box gene are restricted to dorsal tissues of Drosophila embryos. Nature 323: 76–79.

Duncan, I.W. and T.C. Kaufman. 1975. Cyto genetic analysis of chromosome 3 in Drosophila melanogaster. Mapping of the proximal portion of the right arm. Genetics 80: 733–752.

Fechtel, K., E.E. Natzle, E.E. Brown, and J.W. Fristrom. 1988. Preupal differentiation of Drosophila imaginal discs: Identification of four genes whose transcripts accumulate in response to a pulse of 20-Hydroxyecdysone. Genetics, [in press].

Feinberg, A.P. and B. Vogelstein. 1983. A technique for radiolabeling DNA restriction endonuclease fragments to high specific activity. Anal. Biochem. 132: 6–13.

Frigerio, G., M. Burri, D. Bopp, S. Baumgartner, and M. Nol. 1986. Structure of the segmentation gene paired and the Drosophila PRD gene set as part of a gene network. Cell 47: 735–746.

Frohnföhrer, H. and C. Nüsslein-Volhard. 1986. Organization of anterior pattern in the Drosophila embryo by the maternal gene bicoid. Nature 324: 120–125.

Gehring, W.J. and Y. Hiromi. 1986. Homeotic genes and the homeobox. Annu. Rev. Genet. 20: 147–173.

Guo, L.-H., P. Stephen, J.Y. Tso, R. Drouseaux, S. Narang, D.Y. Thomas, and R. Wu. 1984. Synthesis of human insulin gene. VIII. Construction of expression vectors for fused proinsulin production in Escherichia coli. Gene 29: 251–254.

Hafen, E., A. Kuroiwa, and W. Gehring. 1984. Spatial distribution of transcripts from the segmentation gene fushi tarazu during Drosophila embryogenesis. Cell 37: 833–841.

Hartenstein, V. and J.A. Campos-Ortega. 1985. Fate-mapping in wild-type Drosophila melanogaster. I. The spatio-temporal pattern of embryonic cell divisions. Wilhelm Roux’s Arch. Dev. Biol. 194: 181–195.

Haynie, J.L. and P.J. Bryant. 1986. Development of the eye-antenna imaginal disc and morphogenesis of the adult head in Drosophila melanogaster. J. Exp. Zool. 237: 293-308.

Hazelrigg, T. and T.C. Kaufman. 1983. Revertants of dominant mutations associated with the Antennapedia gene complex of Drosophila melanogaster. Genetics 105: 581–600.

Ingham, P.W., K.R. Howard, and D. Ish-Horowicz. 1985. Transcription pattern of the Drosophila segmentation gene hairy. Nature 318: 439–445.

Jürgens, G., R. Lehman, M. Schardin, and C. Nüsslein-Volhard. 1986. Segmental organisation of the head in the embryo of Drosophila melanogaster. Wilhelm Roux’s Arch. Dev. Biol. 195: 359–377.

Kaufman, T.C. 1978. Cyto genetic analysis of chromosome 3 in Drosophila melanogaster. Isolation and characterization of four new alleles of the proboscipedia (pb) locus. Genetics 90: 579–596.

Kaufman, T.C., R. Lewis, and B. Wakimoto. 1980. Cyto genetic analysis of chromosome 3 in Drosophila melanogaster. The homeotic gene complex in polytene interval 84A-B. Genetics 94: 115–133.

Kaufman, T.C. and G. Olsen. 1988. The homeotic genes of the Antennapedia gene complex of Drosophila melanogaster. Am. Nat. [in press].

Kuroiwa, A., U. Kloter, P. Baumgartner, and W.J. Gehring. 1985. Cloning of the homeotic Sex combs reduced gene in Drosophila and in situ localization of its transcripts. EMBO J. 4: 3757–3764.

Khandjian, E.W. 1987. Optimized hybridization of DNA blotted and fixed to nitrocellulose and nylon membranes. Biotechnology 5: 165–167.

Laughon, A., S.B. Carroll, F.A. Storfer, P.D. Riley, and M.P. Scott. 1985. Common properties of proteins encoded by Antennapedia complex genes of Drosophila melanogaster. Cold Spring Harbor Symp. Quant. Biol. 50: 253–262.

Leaf, D.S., J.A. Anstrom, J.E. Chin, M.A. Harkey, R.M. Showman, and R.A. Raff. 1987. Antibodies to a fusion protein identify a DNA clone encoding map30, a primary mesenchyme-specific cell surface protein of the sea urchin embryo. Dev. Biol. 121: 29–40.

Levine, M., E. Hafen, R. Carver, and W. Gehring. 1983. Spatial distribution of Antennapedia transcripts during Drosophila development. EMBO J. 2: 2037–2046.

Levine, M., K. Harding, C. Wedeen, H. Doyle, T. Hoey, and H. Radomska. 1985. Expression of the homeo box gene family in Drosophila. Cold Spring Harbor Symp. Quant. Biol. 50: 209–222.

Lewis, E.B. 1978. A gene complex controlling segmentation in Drosophila. Nature 276: 565–570.

Lewis, R., T. Hazelrigg, and G. Rubin. 1985. Effects of genomic positions on the expression of transduced copies of the white gene in Drosophila. Science 229: 558–561.

Lewis, R.A., T.C. Kaufman, R.E. Denell, and P. Tallerico. 1980a. Genetic analysis of the Antennapedia gene complex [ANT-C] and adjacent chromosomal regions of Drosophila melanogaster. I. Polytene chromosome segments 84B-D. Genetics 95: 367–381.

Lewis, R.A., B.T. Wakimoto, R.E. Denell, and T.C. Kaufman. 1980b. Genetic analysis of the Antennapedia gene complex [ANT-C] and adjacent chromosomal regions of Drosophila melanogaster. II. Polytene chromosome segments 84A-B. Genetics 95: 383–397.

GENES & DEVELOPMENT
Martinez-Arias, A. and P. Lawrence. 1985. Parasegments and compartments in the Drosophila embryo. Nature 313: 639–642.

Martinez-Arias, A., P. Ingham, M. Scott, and M. Akam. 1987. Antennapedia gene complexes. Development 100: 673–683.

McGinnis, W., R. Garber, J. Wirz, A. Kuroiwa, and W. Gehring. 1984a. A homologous protein-coding sequence in Drosophila homeotic genes and its conservation in other metazoans. Cell 37: 483–499.

McGinnis, W., M. Levine, E. Hafen, A. Kuroiwa, and W. Gehring. 1984b. A conserved DNA sequence found in homeotic genes of the Drosophila Antennapedia and bithorax complexes. Nature 308: 428–433.

Merrill, V., F.R. Turner, and T. Kaufman. 1987. A genetic and developmental analysis of mutations in the Deformed locus in Drosophila melanogaster. Dev. Biol. 122: 379–395.

O'Connell, P. and M. Rosbash. 1984. Sequence, structure, and codon preference of the Drosophila ribosomal protein 49 gene. Nucleic Acids Res. 12: 5495–5513.

Ouweneel, W.J. 1976. Developmental genetics of homeosis. Adv. Genet. 18: 179–248.

Poole, S.J., L.M. Kauvar, B. Drees, and T. Romberg. 1985. The Dfd bithorax complex. Nature 313: 673–683.

Pultz, M.A. 1988. "A molecular and genetic analysis of proboscipedia and flanking genes in the Antennapedia Complex of Drosophila melanogaster." Ph.D. dissertation, Indiana University, Bloomington, Indiana.

Regulski, M., N. McGinnis, R. Chadwick, and W. McGinnis. 1987. Developmental and molecular analysis of Deformed; a homeotic gene controlling Drosophila head development. EMBO J. 6: 676–777.

Regulski, M., K. Harding, R. Kostriken, F. Karch, M. Levine, and W. McGinnis. 1985. Homeo box genes of the Antennapedia and bithorax complexes of Drosophila. Cell 43: 71–80.

Riley, P.D., S.B. Carroll, and M.P. Scott. 1987. The expression and regulation of Sex combs reduced protein in Drosophila embryos. Genes Dev. 1: 716–730.

Rushlow, C., H. Doyle, T. Hoey, and M. Levine. 1987. Molecular characterization of the zerknullt region of the Antennapedia gene complex in Drosophila. Genes Dev. 1: 1268–1279.

Sánchez-Herrero, E., I. Vernós, R. Marco, and G. Morata. 1985. Genetic organization of Drosophila bithorax complex. Nature 313: 108–113.

Sato, T., P. Hayes, and R. Denell. 1985. Homoeosis in Drosophila: Roles and spatial patterns of expression of the Antennapedia and Sex combs reduced loci in embryogenesis. Dev. Biol. 111: 171–192.

Schnewly, S. and W.J. Gehring. 1985. Homeotic transformation of thorax into head: Developmental analysis of a new Antennapedia allele in Drosophila melanogaster. Dev. Biol. 108: 377–386.

Scott, M., A. Weiner, T. Hazelrigg, B. Polisky, V. Pirrotta, F. Scalenghe, and T. Kaufman. 1983. The molecular organization of the Antennapedia locus of Drosophila. Cell 35: 763–776.

Scott, M.P. and S.B. Carroll. 1987. The segmentation and homeotic gene network in early Drosophila development. Cell 51: 689–698.

Scott, M.P. and A.J. Weiner. 1984. Structural relationships among genes that control development: Sequence homology between the Antennapedia, Ultrabithorax, and jushi tarazu loci of Drosophila. Proc. Natl. Acad. Sci. 71: 4115–4119.

Spofford, J. 1976. Postion-effect variegation in Drosophila. In The genetics and biology of Drosophila 1c, [ed. M. Ashburner and E. Novitski], pp. 955–1018 Academic Press, London.

Spradling, A.C. and A.P. Mahowald. 1979. Identification and genetic localization of mRNAs from ovarian follicle cells of Drosophila melanogaster. Cell 16: 589–598.

Stocker, R.F. 1982. Genetically displaced sensory neurons in the head of Drosophila project via different pathways into the same specific brain regions. Dev. Biol. 94: 31–40.

Struhl, C. 1981. A homeotic mutation transforming leg to antenna in Drosophila. Nature 292: 635–638.

——. 1982. Genes controlling segmental specification in the Drosophila thorax. Proc. Natl. Acad. Sci. 79: 7380–7384.

——. 1983. Role of the esc+ gene product in ensuring selective expression of segment-specific homeotic genes in Drosophila. J. Embryol. Exp. Morphol. 76: 297–331.

Turner, F.R. and A.P. Mahowald. 1979. Scanning electron microscopy of Drosophila embryogenesis. III. Formation of the head and caudal segments. Dev. Biol. 68: 96–109.

Villee, C. 1944. Phenogenetic studies of the homeotic mutants of Drosophila melanogaster. II. The effects of temperature on the expression of proboscipedia. J. Exp. Zool. 96: 85–102.

Wakimoto, B.T. and T.C. Kaufman. 1981. Analysis of larval segmentation in lethal genotypes associated with the Antennapedia gene complex in Drosophila melanogaster Dev. Biol. 81: 51–64.

Wakimoto, B.T., F.R. Turner, and T.C. Kaufman. 1984. Defects in embryogenesis in mutants associated with the Antennapedia gene complex of Drosophila melanogaster. Dev. Biol. 102: 147–172.

Whatton, K., B. Yedovnick, V. Finnerty, and S. Artavanis-Tsakonas. 1985. opa: A novel family of transcribed repeats shared by the Notch locus and other developmentally regulated loci in D. melanogaster. Cell 40: 55–62.

White, R.A.H. and M. Wilcox. 1985. Protein products of the bithorax complex in Drosophila. Cell 39: 163–171.

Wirz, J., L.I. Fessler, and W.J. Gehring. 1986. Localization of the Antennapedia protein in Drosophila embryos and imaginal discs. EMBO J. 5: 3327–3334.
The proboscipedia locus of the Antennapedia complex: a molecular and genetic analysis.

M A Pultz, R J Diederich, D L Cribbs, et al.

Genes Dev. 1988, 2: Access the most recent version at doi:10.1101/gad.2.7.901

References This article cites 72 articles, 18 of which can be accessed free at: http://genesdev.cshlp.org/content/2/7/901.full.html#ref-list-1

License

Email Alerting Service Receive free email alerts when new articles cite this article - sign up in the box at the top right corner of the article or click here.