On weighted Hardy inequality with two-dimensional rectangular operator – extension of the E. Sawyer theorem

V. D. Stepanov1 and E. P. Ushakova2

Abstract: A characterization is obtained for those pairs of weights \(v \) and \(w \) on \(\mathbb{R}_+^2 \), for which the two-dimensional rectangular integration operator is bounded from a weighted Lebesgue space \(L^p_w(\mathbb{R}_+^2) \) to \(L^q_w(\mathbb{R}_+^2) \) for \(1 < p \neq q < \infty \), which is an essential complement to E. Sawyer’s result \cite{14} given for \(1 < p \leq q < \infty \). Besides, we declare that the E. Sawyer theorem is actual if \(p = q \) only, for \(p < q \) the criterion is less complicated. The case \(q < p \) is new.

Key words: Rectangular integration operator; Hardy inequality; weighted Lebesgue space.

MSC: 26D10, 47G10

1 Introduction

Let \(n \in \mathbb{N} \). For Lebesgue measurable functions \(f(y_1, \ldots, y_n) \) on \(\mathbb{R}_+^n := (0, \infty)^n \) the \(n \)-dimensional rectangular integration operator \(I_n \) is given by the formula

\[
I_n f(x_1, \ldots, x_n) := \int_0^{x_1} \cdots \int_0^{x_n} f(y_1, \ldots, y_n) \, dy_1 \cdots dy_n \quad (x_1, \ldots, x_n > 0).
\]

The dual transformation \(I_n^* \) has the form

\[
I_n^* f(x_1, \ldots, x_n) := \int_{x_1}^{\infty} \cdots \int_{x_n}^{\infty} f(y_1, \ldots, y_n) \, dy_1 \cdots dy_n \quad (x_1, \ldots, x_n > 0).
\]

Let \(1 < p, q < \infty \) and \(v, w \geq 0 \) be weight functions on \(\mathbb{R}_+^n \). Consider Hardy’s inequality

\[
\left(\int_{\mathbb{R}_+^n} (I_n f)^q w \right)^{\frac{1}{q}} \leq C_n \left(\int_{\mathbb{R}_+^n} f^p v \right)^{\frac{1}{p}} \quad (f \geq 0) \tag{1}
\]

on the cone of non-negative functions in weighted Lebesgue space \(L^p_w(\mathbb{R}_+^n) \). The constant \(C_n > 0 \) in (1) is assumed to be the least possible and independent of \(f \). For a fixed weight \(v \) and a parameter \(p > 1 \) the space \(L^p_w(\mathbb{R}_+^n) \) consists of all measurable on \(\mathbb{R}_+^n \) functions \(f \) such that \(\int_{\mathbb{R}_+^n} |f|^p v < \infty \).

The problem of characterizing the inequality (1) is well known and has been considered by many authors (see \cite{14} and references therein). The one-dimensional case of this inequality has been completely studied (see \cite{5, 7, 13}). However, for \(n > 1 \) difficulties arise, preventing characterizing (1) without additional restrictions on \(v \) and \(w \). Nevertheless, E. Sawyer’s result is well known for arbitrary \(v, w \) in the case \(1 < p \leq q < \infty \).

To formulate it we denote \(p' := p/(p-1) \) and \(\sigma := v^{1-p'} \).

Theorem 1.1. \cite{14} Theorem 1A] Let \(n = 2 \) and \(1 < p \leq q < \infty \). The inequality (1) holds for all measurable non-negative functions \(f \) on \(\mathbb{R}_+^2 \) if and only if

\[
A_1 := A_1(p, q) := \sup_{(t_1, t_2) \in \mathbb{R}_+^2} \left[I^*_2 w(t_1, t_2) \right]^{\frac{1}{2}} \left[I^*_2 \sigma(t_1, t_2) \right]^{\frac{1}{2}} \frac{1}{p} < \infty, \tag{2}
\]

1Computing Center of FEB RAS, Khabarovsk 680000, Russia; E-mail: stepanov@mi-ras.ru.

2V. A. Trapeznikov Institute of Control Sciences of RAS, Moscow 117997, Russia; E-mail: elenau@inbox.ru.
\begin{align}
A_2 & := A_2(p, q) := \sup_{(t_1, t_2) \in \mathbb{R}^2_+} \left(\int_0^{t_1} \int_0^{t_2} (I_2 \sigma(t_1, t_2))^{q} w \, dt_1 \right)^{\frac{1}{q}} \left[I_2 \sigma(t_1, t_2) \right]^{-\frac{1}{p'}} < \infty, \\
A_3 & := A_3(p, q) := \sup_{(t_1, t_2) \in \mathbb{R}^2_+} \left(\int_0^{\infty} \int_0^{\infty} (I_2^* \sigma \sigma)^{p'} \, dt_1 \right)^{\frac{1}{p'}} \left[I_2^* \sigma(t_1, t_2) \right]^{-\frac{1}{p}} < \infty,
\end{align}
and \(C_2 \approx A_1 + A_2 + A_3 \) with equivalence constants depending on parameters \(p \) and \(q \).

Note that in one–dimensional case the analogs of the conditions \((2)–(4)\) are equivalent to each other \([2]\). For \(n = 2 \) this, generally speaking, is not true. Moreover, as shown in \([14], \S \ 4\) for \(p = q = 2 \), no two of the conditions \((2)–(4)\) guarantee \((1)\). However, the construction of the second counterexample in \([14], \S \ 4\) is unexpandable to the case \(p < q \).

The purpose of this paper is to obtain new criteria for the fulfillment of Hardy’s inequality \((1)\) for \(n = 2 \) and \(1 < p \neq q < \infty \). The solution to this problem is contained in Theorem \(2.1 \) (see \(\S \ 2 \)). In \(\S \ 3 \) an alternative sufficient condition is found for \(v \) and \(w \), when \((1)\) is true for \(n = 2 \) and \(1 < q < p < \infty \). Recall that the criterion for \((1)\) when \(n = 2 \) and \(1 < p \leq q < \infty \), established in \([14]\), is that the sum of three independent functionals is bounded (see Theorem \(1.1 \)). It is proven in Theorem \(2.1 \) that for \(1 < p \neq q < \infty \) the inequality \((1)\) is characterized by only one functional.

Analogs of Theorem \(2.1 \) are also valid for the dual operator \(I_2^* \) and mixed Hardy operators (see \([14], \text{Remark 1}\) for details).

In \(\S \ 4 \), for completeness, we present known results about the operator \(I_n \) for arbitrary \(n \), provided that at least one of the two weight functions in \((1)\) is factorizable, that is, can be represented as a product of \(n \) one–dimensional functions.

Since \(A_1 \leq C_2 \), we may and shall assume that \(I_2 \sigma(x, y) < \infty \) and \(I_2^* w(x, y) < \infty \) for any \((x, y) \in \mathbb{B}_R^2 \). In particular, \(\sigma, w \in L^1_{\text{loc}}(\mathbb{B}_R^2) \).

Throughout the work, the notation of the form \(\Phi \lesssim \Psi \) means that the relation \(\Phi \leq c \Psi \) holds with some constant \(c > 0 \), independent of \(\Phi \) and \(\Psi \). We write \(\Phi \approx \Psi \) in the case of \(\Phi \lesssim \Psi \lesssim \Phi \). The symbols \(\mathbb{Z} \) and \(\mathbb{N} \) are used for denoting the sets of integers and natural numbers, respectively. The characteristic function of the subset \(E \subset \mathbb{R}_+^n \) is denoted by \(\chi_E \). Symbols := and :=: are used to define new values.

2 Main result

Denote
\[
\alpha(p, q) := \frac{p^2(q - 1)}{q - p}, \quad p < q;
\]
\[
\beta(p, q) := \frac{2^{q+1}}{2^q - 1} \cdot \begin{cases}
2^{\frac{q+1}{2}}, & \frac{r}{p} \geq 1, \\
1, & \frac{r}{p} < 1,
\end{cases} \quad q < p,
\]
where \(1/r := 1/q - 1/p; A := A_1 \).

\[
B := B_1 := B_1(p, q) := \left(\int_{\mathbb{B}_R^2} d_y \left[I_2 \sigma(x, y) \right]^{\frac{q}{p}} d_x \left[- I_2^* w(x, y) \right]^{\frac{q}{p}} \right)^{\frac{1}{q}} = \left(\int_{\mathbb{B}_R^2} \left[I_2 \sigma(x, y) \right]^{\frac{q}{p}} d_x d_y \left[I_2^* w(x, y) \right]^{\frac{q}{p}} \right)^{\frac{1}{q}},
\]
where the last two equalities follow by integration by parts; also
\[
B_2 := B_2(p, q) := \left(\int_{\mathbb{R}^d_+} [I_2 \sigma(x, y)]^{-\frac{2}{p'}} d_x d_y \left(\int_0^x \int_0^y (I_2 \sigma)^q w \right)^{\frac{1}{p'}} \right),
\]
\[
B_3 := B_3(p, q) := \left(\int_{\mathbb{R}^d_+} [I_2^* w(x, y)]^{-\frac{2}{p'}} d_x d_y \left(\int_0^\infty \int_y^\infty (I_2^* w)^{q'} \sigma \right)^{\frac{1}{q'}} \right).
\]
Notice that
\[
\lim_{q \to p} B_i(p, q) = A_i(p, p), \quad i = 1, 2, 3.
\]
Let us recall the result we need in what follows from the work [3].

Proposition 2.1. [3, Proposition 2.1] Let \(0 < \gamma < \infty\) and let \(\{a_k\}_{k \in \mathbb{Z}}, \{\rho_k\}_{k \in \mathbb{Z}}, \{\tau_k\}_{k \in \mathbb{Z}}\) be non-negative sequences.

(a) If \(\rho := \inf_{k \in \mathbb{Z}} \rho_{k+1}/\rho_k > 1\) then
\[
\sum_{k \in \mathbb{Z}} \left(\sum_{m \geq k} a_m \right)^\gamma \rho_k \leq \sum_{m \in \mathbb{Z}} a_m^{\gamma} \rho_m \gamma \frac{\rho_{\gamma}}{\rho^{\gamma - 1} \rho^{\gamma - 1}}, \quad 0 < \gamma \leq 1, \quad \gamma > 1.
\]

(b) If \(\tau := \sup_{k \in \mathbb{Z}} \tau_{k+1}/\tau_k < 1\) then
\[
\sum_{k \in \mathbb{Z}} \left(\sum_{m \leq k} a_m \right)^\gamma \tau_k \leq \sum_{m \in \mathbb{Z}} a_m^{\gamma} \tau_m \gamma \frac{\tau_{\gamma}}{(\tau^{\gamma - 1} (1 - \tau^{\gamma - 1}))}, \quad 0 < \gamma \leq 1, \quad \gamma > 1.
\]

We start with some auxiliary technical statements.

Lemma 2.1. Let \(0 \leq a < b < c < d < \infty\) and \(0 \leq c < d < \infty\). If \(1 < p < q < \infty\) then
\[
V_{(a, b) \times (c, d)} := \int_a^b \int_c^d w(x, y) \left(\int_a^x \int_c^y \sigma \right)^q dy dx \leq \alpha(p, q) \left(\int_a^b \int_c^d \sigma \right)^q A^q.
\]
For \(1 < q < p < \infty\) the following inequality holds:
\[
V_{(a, b) \times (c, d)} \leq \beta(p, q) \left(\int_a^b \int_c^d \sigma \right)^q \times \left[\int_a^b \int_c^d \chi_{\text{supp } w(x, y)} dy \left(I_2 \sigma(x, y) \right)^\frac{q}{p'} dx \left(\int_0^\infty \int_y^\infty \left(I_2^* w(x, y) \right)^{q'} \sigma \right)^{\frac{1}{q'}} \right]^{\frac{1}{q'}}.
\]
Proof. Assume \(1 < p < q < \infty\) and write
\[
V_{(a, b) \times (c, d)} = \int_a^b \int_c^d \left(\int_a^x \int_c^y \sigma \right)^q dy \left[\int_y^d w(x, t) dt \right] dx
\]
\[
= q \int_a^b \int_c^d \left(\int_a^x \int_c^y \sigma \right)^q \left(\int_a^x \sigma(s, y) ds \right) \left(\int_y^d w(x, t) dt \right) dy dx
\]
\[
= q \int_c^d \int_a^b \left(\int_a^x \int_c^y \sigma \right)^q \left(\int_a^x \sigma(s, y) ds \right) dx \left[\int_x^d \int_y^d w \right] dy
\]
\[
= q \int_a^b \int_c^d \left(\int_a^x \int_c^y \sigma \right)^q \left(\int_a^x \sigma(s, y) ds \right) \left(\int_c^y \sigma(x, t) dt \right)
\]
\[
+ q \left(\int_a^x \int_c^y \sigma \right)^q \left(\int_a^x \sigma(x, t) dt \right) \left(\int_c^y \sigma(x, t) dt \right) dx dy.
\]
Then
\[
V_{(a,b) \times (c,d)} \leq q A^q \int_a^b \int_c^d \left\{ (q - 1) \left(\int_a^x \int_c^y \sigma \right)^{\frac{q}{p} - 2} \left(\int_a^x \sigma(s, y) \, ds \right) \left(\int_c^y \sigma(x, t) \, dt \right) \right. \\
\left. + \left(\int_a^x \int_c^y \sigma \right)^{\frac{q}{p} - 1} \sigma(x, y) \right) \, dx \, dy.
\]

The assertion of the lemma for the case \(p < q \) follows from the chain of inequalities:
\[
q \int_a^b \int_c^d \left\{ (q - 1) \left(\int_a^x \int_c^y \sigma \right)^{\frac{q}{p} - 2} \left(\int_a^x \sigma(s, y) \, ds \right) \left(\int_c^y \sigma(x, t) \, dt \right) \\
\left. + \left(\int_a^x \int_c^y \sigma \right)^{\frac{q}{p} - 1} \sigma(x, y) \right) \right\} \, dx \, dy \]
\[
= p \int_a^b \int_c^d \left\{ q \left(\frac{q}{p} - 1 \right) \left(\int_a^x \int_c^y \sigma \right)^{\frac{q}{p} - 2} \left(\int_a^x \sigma(s, y) \, ds \right) \left(\int_c^y \sigma(x, t) \, dt \right) \\
\left. + \frac{q}{p} \left(\int_a^x \int_c^y \sigma \right)^{\frac{q}{p} - 1} \sigma(x, y) \right) \right\} \, dx \, dy \]
\[
\leq p \int_a^b \int_c^d \left\{ \frac{q}{p} \left(\frac{q}{p} - 1 \right) \left(\int_a^x \int_c^y \sigma \right)^{\frac{q}{p} - 2} \left(\int_a^x \sigma(s, y) \, ds \right) \left(\int_c^y \sigma(x, t) \, dt \right) \\
\left. + \frac{q}{p} \left(\int_a^x \int_c^y \sigma \right)^{\frac{q}{p} - 1} \sigma(x, y) \right) \right\} \, dx \, dy \]
\[
= \left[p + \frac{pq(p - 1)}{q - p} \right] \int_a^b \int_c^d \left\{ \frac{q}{p} \left(\frac{q}{p} - 1 \right) \left(\int_a^x \int_c^y \sigma \right)^{\frac{q}{p} - 2} \left(\int_a^x \sigma(s, y) \, ds \right) \left(\int_c^y \sigma(x, t) \, dt \right) \\
\left. + \frac{q}{p} \left(\int_a^x \int_c^y \sigma \right)^{\frac{q}{p} - 1} \sigma(x, y) \right) \right\} \, dx \, dy
\]
\[
= \alpha(p, q) \int_a^b \int_c^d \left\{ \frac{q}{p} \left(\frac{q}{p} - 1 \right) \left(\int_a^x \int_c^y \sigma \right)^{\frac{q}{p} - 2} \left(\int_a^x \sigma(s, y) \, ds \right) \left(\int_c^y \sigma(x, t) \, dt \right) \\
\left. + \frac{q}{p} \left(\int_a^x \int_c^y \sigma \right)^{\frac{q}{p} - 1} \sigma(x, y) \right) \right\} \, dx \, dy = \alpha(p, q) \left(\int_a^b \int_c^d \sigma \right)^{\frac{q}{p}}.
\]

Now suppose that \(q < p \). By analogy with the proof of [14 Theorem 1A] we define the domains
\[
\omega_k := \left\{ (x, y) \in (a, b) \times (c, d) : \int_a^x \int_c^y \sigma > 2^k \right\}, \quad -\infty < k \leq K_{\sigma}.
\]
The restriction \(K_{\sigma} < \infty \) follows from the condition [14 (1.6)], which is necessary for any relations between \(p \) and \(q \). Then
\[
V_{(a,b) \times (c,d)} = \sum_{k \leq K_{\sigma}} \int_{\omega_k \setminus \omega_{k+1}} w(x, y) \left(\int_a^x \int_c^y \sigma \right)^q \, dy \, dx \]
\[
\leq 2^q \sum_{k \leq K_{\sigma}} 2^{kq} \left| \omega_k \setminus \omega_{k+1} \right| w \leq 2^q \sum_{k \leq K_{\sigma}} 2^{kq} \left| \omega_k \right| w.
\]
Using Hölder’s inequality with exponents r/q, it follows from Proposition 2.1(a) with analogously, \[\left| \omega_k \right|_w = \left(\int_{\alpha_k}^{b} \int_{b}^{d} w \chi_{\omega_k} = \left(\int_{\alpha_k}^{b} d_y \left[- \left(\int_{\alpha_k}^{b} \int_{y}^{d} w \chi_{\omega_k} \right) \right] \right) ^{\frac{r}{q}} \right) . \]

Since \[\left[- \left(\int_{x}^{b} \int_{y}^{d} w \chi_{\omega_k} \right) ^{r/q} \right]_{x} = 0 \] out of the set $\omega_k \cap \text{supp} \; w$ for each fixed $y \geq \beta_k$ and, analogously, \[\left[- \left(\int_{x}^{b} \int_{y}^{d} w \chi_{\omega_k} \right) ^{r/q} \right]_{y} = 0 \] outside $\omega_k \cap \text{supp} \; w$ for all $x \geq \alpha_k$, then

\[\left| \omega_k \right|_w = \left(\int_{\omega_k} \chi_{\text{supp} \; w} (x, y) d_x d_y \left(\int_{x}^{b} \int_{y}^{d} w \right) ^{\frac{r}{q}} \right) ^{\frac{q}{r}} \]

Due to the choice of ω_k, \[2^{2 \alpha} \left| \omega_k \right|_w = 2^{2 \alpha} \left(\int_{\omega_k} \chi_{\text{supp} \; w} (x, y) d_x d_y \left(\int_{x}^{b} \int_{y}^{d} w \right) ^{\frac{r}{q}} \right) ^{\frac{q}{r}} \]

It follows from Proposition 2.1(a) with $\rho = 2$ and $\gamma = q/r < 1$ that

\[\sum_{k \leq K_\sigma} 2^{2 \alpha} \left(\int_{\omega_k} \chi_{\text{supp} \; w} (x, y) d_x d_y \left(\int_{x}^{b} \int_{y}^{d} w \right) ^{\frac{r}{q}} \right) ^{\frac{q}{r}} \]

\[= \sum_{k \leq K_\sigma} 2^{2 \alpha} \left(\int_{\omega_k \cap \omega_{m+1}} \chi_{\text{supp} \; w} (x, y) d_x d_y \left(\int_{x}^{b} \int_{y}^{d} w \right) ^{\frac{r}{q}} \right) ^{\frac{q}{r}} \]

\[\leq \frac{2^{2 \alpha}}{2^{2 \beta}} \beta (p, q) \sum_{k \leq K_\sigma} 2^{2 \alpha} \left(\int_{\omega_k \cap \omega_{m+1}} \chi_{\text{supp} \; w} (x, y) d_x d_y \left(\int_{x}^{b} \int_{y}^{d} w \right) ^{\frac{r}{q}} \right) ^{\frac{q}{r}} \]

Using Hölder’s inequality with exponents r/q and p/q, we obtain

\[\sum_{k \leq K_\sigma} 2^{2 \alpha} \left(\int_{\omega_k \cap \omega_{m+1}} \chi_{\text{supp} \; w} (x, y) d_x d_y \left(\int_{x}^{b} \int_{y}^{d} w \right) ^{\frac{r}{q}} \right) ^{\frac{q}{r}} \]

\[\leq 2^{2 \alpha} 2^{2 \alpha} \sum_{k \leq K_\sigma} \left(\int_{\omega_k \cap \omega_{m+1}} \chi_{\text{supp} \; w} (x, y) d_x d_y \left(\int_{x}^{b} \int_{y}^{d} w \right) ^{\frac{r}{q}} \right) ^{\frac{q}{r}} \]
Since \(r/q > 1 \) and \(r/p' > 1 \), then integrating by parts over the variable \(y \) yields

\[
\int_a^b \int_c^d \chi_{\text{supp}w}(x, y) \left(\int_x^y \int_y^\sigma \tilde{y} \, dy \, dx \right)^{\frac{q}{q'}} d_x \left(\int_x^y w \right)^{\frac{r}{r'}} d_y \int_y^\sigma \tilde{y} \, d_x \left(\int_x^y w \right)^{\frac{r}{r'}} d_y \leq \int_a^b \int_c^d \chi_{\text{supp}w}(x, y) d_y \left[I_2 \sigma(x, y) \right]^{\frac{r}{r'}} d_x \left(-[I_2^* w(x, y)]^{\frac{r}{r'}} \right). \]

A similar statement holds with the (inner) integral of \(w \).

Lemma 2.2. Let \(0 \leq a < b < \infty \) and \(0 \leq c < d < \infty \). If \(1 < p < q < \infty \) then

\[
W_{(a,b) \times (c,d)} := \int_a^b \int_c^d \sigma(x, y) \left(\int_x^y d_y \right)^{\frac{q}{q'}} d_x \leq \alpha(q', p') \left(\int_a^b \int_c^d w \right)^{\frac{q'}{q'} A'}. \]

In the case \(1 < q < p < \infty \)

\[
W_{(a,b) \times (c,d)} \leq \beta(q', p') \left(\int_a^b \int_c^d w \right)^{\frac{q'}{q'}} \times \left[\int_a^b \int_c^d \chi_{\text{supp} \sigma(x, y)} d_y \left[I_2 \sigma(x, y) \right]^{\frac{r}{r'}} d_x \left(-[I_2^* w(x, y)]^{\frac{r}{r'}} \right) \right]^{\frac{r}{r'}}. \]

Introduce notations: \(\alpha := \alpha(p, q), \beta := \beta(p, q), \alpha' := \alpha(q', p'), \beta' := \beta(q', p') \),

\[
C_{\alpha, \alpha'} := 3^q \left[\left(\frac{2}{3} \right)^q \max \left\{ \alpha, 2q(q')^{\frac{q}{q'}} \right\} \left(\frac{2^p - 1}{2^{p-1} - 1} \right)^{\frac{r}{r'}} + 3^{\frac{q}{q'}} \left(\frac{3^{q-1} - 1}{3^{q-1} - 1} \right)^{\frac{r}{r'}} \right],
\]

\[
C_{\beta, \beta'} := 3^q \left[\left(\frac{2}{3} \right)^q \max \left\{ \beta, 2q(p')^{q-1} \left(\frac{q}{p'} \right)^\frac{q}{q'} \right\} \left(\frac{2^{p-1} - 1}{2^{p-1} - 1} \right)^{\frac{r}{r'}} + 3^{\frac{q}{q'}} \left(\frac{3^{q-1} - 1}{3^{q-1} - 1} \right)^{\frac{r}{r'}} \right].
\]

The main result of the work is the following statement.

Theorem 2.1. Let \(1 < p \neq q < \infty \). If \(p < q \) then the inequality

\[
\left(\int_{\mathbb{R}_+^2} (I_2 f)^q \right)^{\frac{1}{q}} \leq C_2 \left(\int_{\mathbb{R}_+^2} f_{pv} \right)^{\frac{r}{r'}} \quad (f \geq 0)
\]

holds if and only if \(A < \infty \). Besides,

\[A \leq C_2 \leq C_{\alpha, \alpha'} A. \]

In the case \(q < p \) the inequality \((3)\) is true if and only if \(B < \infty \). Moreover,

\[2^{-\frac{q}{p}} \left(\frac{q}{p} \right)^{\frac{q}{q'}} \left(\frac{p}{r'} \right)^{\frac{r}{r'}} B \leq C_2 \leq C_{\beta, \beta'} B. \]

Proof. (Sufficiency) Similarly to how it was done in E. Sawyer’s paper [14] for the case \(1 < p \leq q < \infty \), we show that the conditions of the theorem are sufficient, limiting ourselves to proving the inequality \((3)\) on the subclass \(M \subset L^{p}_v(\mathbb{R}_+^2) \) of all functions
f \geq 0 \text{ bounded on } \mathbb{R}_+^2 \text{ with compact supports contained in the set } \{I_2 \sigma > 0\}. \text{ Then the inequality } \{5\} \text{ for arbitrary } 0 \leq f \in L_{k}^0(\mathbb{R}_+^2) \text{ follows by the standard arguments.}

Suppose \(A < \infty \) for \(p < q \) (or \(B < \infty \) in the case of \(q < p \)) and fix \(f \in M. \) By analogy with the proof of [14, Theorem 1A], we define the domains

\[
\Omega_k := \{I_2 f > 3^k\}, \quad k \in \mathbb{Z}.
\]

Then, by our assumptions on \(f \), there exists \(K \in \mathbb{Z} \) such that \(\Omega_k \neq \emptyset \) for \(k \leq K, \) \(\Omega_k = \emptyset \) for \(k > K, \) \(\bigcup_{k \in \mathbb{Z}} \Omega_k = \mathbb{R}_+^2 \) and

\[
3^k < I_2 f(x, y) \leq 3^{k+1}, \quad k \leq K, \quad (x, y) \in (\Omega_k \setminus \Omega_{k+1}).
\]

We can write down that

\[
\int_{\mathbb{R}_+^2} (I_2 f)^q w = \sum_{k \leq K-2} \int_{\Omega_{k+2} \setminus \Omega_{k+3}} (I_2 f)^q w \leq 3^{3q} \sum_{k \leq K-2} 3^{kq} |\Omega_{k+2} \setminus \Omega_{k+3}|_w,
\]

where \(|\Omega_{k+2} \setminus \Omega_{k+3}|_w := \int_{\Omega_{k+2} \setminus \Omega_{k+3}} w \) and \(\Omega_K \setminus \Omega_{K+1} = \Omega_K, \) since \(\Omega_{K+1} \) is empty.

Next, as in the proof of [14, Theorem 1A], we introduce rectangles. For this, we fix \(k \) such that \(\Omega_{k+1} \neq \emptyset, \) and choose points \((x_j^k, y_j^{k-1})\), \(1 \leq j \leq N = N_k, \) lying on the boundary \(\partial \Omega_k \) in such a way to have \((x_j^k, y_j^{k-1})\) belonging to \(\partial \Omega_{k+1} \) for \(2 \leq j \leq N \) and \(\Omega_{k+1} \subset \bigcup_{j=1}^{N} S_j^k, \) where \(S_j^k \) is a rectangle of the form \((x_j^k, \infty) \times (y_j^k, \infty)\). We also define rectangles \(S_j^k = (x_j^k, x_{j+1}^k) \times (y_j^k, y_{j+1}^k) \) for \(1 \leq j \leq N \) and \(R_j^k = (0, x_j^k) \times (0, y_j^k), \)

\(\tilde{R}_j^k = (x_j^k, x_{j+1}^k) \times (y_j^k, y_{j+1}^k) \) and \(T_j^k = (x_j^k, \infty) \times (y_j^k, \infty) \) for \(1 \leq j \leq N - 1. \) Put \(y_0^k = x_{N+1}^k = \infty (\text{see Figure 1}). \)

Now we choose the sets \(E_j^k \subset T_j^k \) so that \(E_j^k \cap E_i^k = \emptyset \) for \(j \neq i \) and \(\bigcup_j E_j^k = (\Omega_{k+2} \setminus \Omega_{k+3}) \cap \left(\bigcup_j T_j^k \right). \) Since \(\Omega_{k+2} \setminus \Omega_{k+3} \subset \Omega_{k+1} \subset \left(\bigcup_j T_j^k \right) \cup \left(\bigcup_j S_j^k \right), \) then

\[
3^{-3q} \int_{\mathbb{R}_+^2} (I_2 f)^q w \leq \sum_{k,j} 3^{kq} |E_j^k|_w + \sum_{k,j} 3^{kq} |\tilde{S}_j^k \cap (\Omega_{k+2} - \Omega_{k+3})|_w =: I + II.
\]

Fig. 1

\[\begin{align*}
\text{Fig. 1} \quad \Omega_k \quad \Omega_{k+1} \\
S_j^k \\
\tilde{R}_j^k \\
\tilde{T}_j^k \\
x_1^k \quad x_2^k \quad x_3^k
\end{align*}\]
To estimate II we denote $D^k_j := \mathcal{S}^k_j \setminus \Omega_{k+3}$ and turn to the reasoning of E. Sawyer on page 6 in [14], from which it follows that

$$I_2(\chi_{D^k_j} f)(x, y) > 3^k \text{ if } (x, y) \in \mathcal{S}^k_j \cap (\Omega_{k+2} \setminus \Omega_{k+3}).$$

Further, according to [14] p. 6,

$$|\mathcal{S}^k_j \cap (\Omega_{k+2} \setminus \Omega_{k+3})| \leq 3^{-k} \int_{\mathcal{S}^k_j \cap (\Omega_{k+2} \setminus \Omega_{k+3})} I_2(\chi_{D^k_j} f)(x, y) \, dx \, dy$$

$$\leq 3^{-k} \int_{D^k_j} \left(\int_{x}^{y} \int_{y}^{f} w(x, y) \, dx \, dy \right)$$

$$= 3^{-k} \int_{D^k_j} f(s, t) \left(\int_{s}^{\infty} \int_{t}^{\infty} w(\chi_{D^k_j}) \, ds \, dt \right)$$

$$\leq 3^{-k} \left(\int_{D^k_j} f^p \right)^{\frac{1}{p}} \left(\int_{D^k_j} \sigma(s, t) \left(\int_{s}^{\infty} \int_{t}^{\infty} w(\chi_{D^k_j}) \right)^{\frac{q}{p}} \, ds \, dt \right)^{\frac{1}{q}}. \quad (8)$$

By applying Lemma 2.2 to $(a, b) \times (c, d) = \mathcal{S}^k_j$, we obtain for $p < q$ that

$$\mathcal{W}_{\mathcal{S}^k_j} = \int_{D^k_j} \sigma(s, t) \left(\int_{s}^{\infty} \int_{t}^{\infty} w(\chi_{D^k_j}) \right)^{\frac{q}{p}} \, ds \, dt \leq \alpha' \mathcal{W}^p \mathcal{S}^k_j \mathcal{W}^q \quad (9)$$

and in the case $q < p$

$$\mathcal{W}_{\mathcal{S}^k_j} \leq \beta' \mathcal{S}^k_j \mathcal{W}^q \left(\int_{D^k_j} d_y [I_2 \sigma(x, y)] \mathcal{W}^q \, dx \left(-[I_2 w(x, y)] \mathcal{W}^q \right) \right)^{\frac{p}{q}}.$$

For $q < p$, from this and Hölder’s inequality with q and q',

$$(\beta')^{-\frac{q}{p}} \cdot II \leq \sum_{k, j} 3^{k(q-1)} \left(\int_{D^k_j} f^p \right)^{\frac{1}{p}} \left(\int_{D^k_j} d_y [I_2 \sigma(x, y)] \mathcal{W}^q \, dx \left(-[I_2 w(x, y)] \mathcal{W}^q \right) \right)^{\frac{q}{p}} \mathcal{S}^k_j \mathcal{W}^q \left(\sum_{k, j} \left(\int_{D^k_j} f^p \right)^{\frac{q}{p}} \left(\int_{D^k_j} d_y [I_2 \sigma(x, y)] \mathcal{W}^q \, dx \left(-[I_2 w(x, y)] \mathcal{W}^q \right) \right)^{\frac{q}{p}} \right)^{\frac{p}{q}} \mathcal{S}^k_j \mathcal{W}^q.$$

On the strength of [14] (2.6)

$$\sum_{j=1}^{N_k} \chi_{s^k_j} \leq 3^{-k} \chi_{\Omega_k} I_2 f \text{ for all } k.$$

Then

$$\sum_{k, j} 3^{kq} \mathcal{S}^k_j \mathcal{W} \sum_{k} 3^{kq} \chi_{s^k_j} \mathcal{W} = \sum_{k} 3^{kq} \int_{R^2_+} \chi_{s^k_j} \mathcal{W} \leq \sum_{k} 3^{k(q-1)} \int_{R^2_+} \chi_{\Omega_k} (I_2 f) \mathcal{W}$$

$$= \sum_{k} 3^{k(q-1)} \int_{R^2_+} \chi_{\Omega_k \setminus \Omega_{k+1}} (I_2 f) \mathcal{W} = \sum_{m} 3^{m(q-1)} \int_{R^2_+} \chi_{\Omega_m \setminus \Omega_{m+1}} (I_2 f) \mathcal{W} \sum_{m \geq k} 3^{(k-m)(q-1)}$$

$$\leq 3^{q-1} \sum_{m} 3^{m(q-1)} \int_{R^2_+} \chi_{\Omega_m \setminus \Omega_{m+1}} (I_2 f) \mathcal{W}$$

8
and, therefore,
\[\sum_{k,j} 3^{kq} |S^k_j|_w \leq \frac{3^{q-1}}{3^{q-1} - 1} \sum_{m} \int_{\Omega_m \setminus \Omega_{m+1}} (I_2f)^q w = \frac{3^{q-1}}{3^{q-1} - 1} \int_{\mathbb{R}^2_+} (I_2f)^q w. \]

Further, Hölder’s inequality with \(p/q, r/q \) and the estimate \(\sum_{k,j} \chi_{D^k_j} \leq \sum_k \chi_{\Omega_k \setminus \Omega_{k+1}} \leq 3 \) entail
\[\sum_{k,j} \left(\int_{D^k_j} f^{p^*} v \right)^{\frac{q}{pq}} \left(\int_{D^k_j} d_y [I_2 \sigma(x,y)] \right)^{\frac{p}{pq}} \left(\int_{D^k_j} [I_2 w(x,y)] \right)^{\frac{q}{q}} \leq \left(\sum_{k,j} \int_{D^k_j} f^{p^*} v \right)^{\frac{q}{pq}} \left(\sum_{k,j} \int_{D^k_j} d_y [I_2 \sigma(x,y)] \right)^{\frac{p}{pq}} \left(\int_{D^k_j} [I_2 w(x,y)] \right)^{\frac{q}{q}} \leq 3 \left(\int_{\mathbb{R}^2_+} f^{p^*} v \right)^{\frac{q}{pq}} \left(\int_{\mathbb{R}^2_+} d_y [I_2 \sigma(x,y)] \right)^{\frac{p}{pq}} \left(\int_{\mathbb{R}^2_+} [I_2 w(x,y)] \right)^{\frac{q}{q}}. \]

Thus, for \(q < p \),
\[II \leq 3 (\beta')^{\frac{q}{p}} B \left(\frac{3^{q-1}}{3^{q-1} - 1} \right)^{\frac{1}{q}} \left(\int_{\mathbb{R}^2_+} f^{p^*} v \right)^{\frac{q}{pq}} \left(\int_{\mathbb{R}^2_+} (I_2f)^q w \right)^{\frac{1}{q}}. \tag{10} \]

In the case \(p < q \) a similar estimate of the form
\[II \leq 3 (\alpha')^{\frac{q}{p}} A \left(\frac{3^{q-1}}{3^{q-1} - 1} \right)^{\frac{1}{p}} \left(\int_{\mathbb{R}^2_+} f^{p^*} v \right)^{\frac{1}{p}} \left(\int_{\mathbb{R}^2_+} (I_2f)^q w \right)^{\frac{1}{q}}. \tag{11} \]

follows from \([3], [9]\) and the reasoning on pages 6–7 in \([14]\).

To estimate \(I \) in \((7)\), in full accordance with the proof of \([14] \) Theorem 1A, pp. 8–9], we put \(g \sigma := f \) and write:
\[3^q I = \sum_{k,j} 3^{(k+1)q} |E^k_j|_w = \sum_{k,j} |E^k_j|_w \left(\int_{R^k_j} f \right)^q = \sum_{k,j} |E^k_j|_w \|R^k_j\|_{\sigma}^{q} \left(\frac{1}{|R^k_j|_{\sigma}} \int_{R^k_j} g \sigma \right)^q. \tag{12} \]

For an integer \(l \), by \(\Gamma_l \) we denote the set of pairs \((k,j)\) such that \(|E^k_j|_w > 0 \) and
\[2^l < \frac{1}{|R^k_j|_{\sigma}} \int_{R^k_j} g \sigma \leq 2^{l+1}, \quad (k,j) \in \Gamma_l \]
and observe that \(\Gamma_l \cap \Gamma_{l'} = \emptyset, l' \neq l'' \).

For fixed \(l \) the family \(\{U^l_{i}\}_{i=1}^{i(l)} \) consists of maximal rectangles from the collection \(\{R^k_j\}_{(k,j) \in \Gamma_l} \), that is, each \(R^k_j \) with \((k,j) \in \Gamma_l \) is contained in some \(U^l_{i} \) (or coincides with it). In \([14]\) p. 8 it is shown that \(\tilde{U}^l_{i} \) are disjoint for fixed \(l \), where we denote \(\tilde{U}^l_{i} = \tilde{R}^l_{i} \) if \(U^l_{i} = R^k_j \).

Let \(\chi^l_{i} \) be the characteristic function of the union of the sets \(E^k_j \) over all \((k,j) \in \Gamma_l \) such that \(R^k_j \subset U^l_{i} \). Further, following \([14] \) (2.13)], we arrive to
\[\sum_{(k,j) \in \Gamma_l} |E^k_j|_w |R^k_j|_{\sigma}^{q} = \sum_{i=1}^{i(l)} \sum_{R^k_j \subset U^l_{i}} \int_{E^k_j} w [I_2(\chi_{U^l_{i}})(x^k_j, y^k_j)]^{q} \leq \sum_{i=1}^{i(l)} \int_{\mathbb{R}^2_+} \chi^l_{i} w [I_2(\chi_{U^l_{i}})]^{q}. \tag{13} \]
By analogy with \([14, (2.8)]\), let us first show the validity of the estimate
\[
\int_{\mathbb{R}_+^n} \chi_i^l w [I_2(\chi_i^l \sigma)]^q \leq \max \left\{ \beta, 2q(p')^{q-1} \left(\frac{q}{r} \right) \right\} (B_i^l)^q |U_i^l|_\sigma^\frac{q}{p}
\]
for \(U_i^l = (0, a) \times (0, b)\) in the case \(q < p\), where
\[
(B_i^l)^r = \int_{\mathbb{R}_+^n} \chi_i^l(x, y) dy [I_2\sigma(x, y)]^\frac{1}{p'} \int_{\mathbb{R}_+^n} \left(-[I_2^l w(x, y)]^\frac{1}{q} \right) \cdot
\]
On \((0, a) \times (0, b) = U_i^l\), in view of Lemma 2.1,
\[
\mathbf{V}_{U_i^l} = \int_{U_i^l} \chi_i^l w (I_2\sigma)^q \leq \beta \left(\int_{U_i^l} \chi_i^l(x, y) dy [I_2\sigma(x, y)]^\frac{1}{p'} \int_{\mathbb{R}_+^n} \left(-[I_2^l w(x, y)]^\frac{1}{q} \right) \right) \cdot
\]
On the rectangle \((a, \infty) \times (b, \infty)\) we obtain the estimate:
\[
\int_{(a, \infty) \times (b, \infty)} \chi_i^l w |U_i^l|_\sigma^\frac{q}{p} = \left(\int_{(a, \infty) \times (b, \infty)} \chi_i^l(x, y) dx dy [I_2^l w \chi_i^l(x, y)]^\frac{1}{q} \right) \cdot
\]
whence by integration by parts
\[
\int_{\mathbb{R}_+^n} \chi_i^l(x, y) [I_2\sigma(x, y)]^\frac{1}{p'} \int_{\mathbb{R}_+^n} \left(-[I_2^l w \chi_i^l(x, y)]^\frac{1}{q} \right) \cdot
\]
In the first of the two mixed cases — \((0, a) \times (b, \infty)\) and \((a, \infty) \times (0, b)\) — we obtain, using the criteria for the fulfillment of the one-dimensional weighted Hardy inequality for \(f^p(x) = \int_0^b \sigma(x, y) dy\) (see \([11, \text{§ 1.3.2}]\)):
\[
\int_{(a, \infty) \times (b, \infty)} \chi_i^l(x, y) w(x, y) \left(\int_0^x \int_0^b \sigma(s, t) dt \right) \cdot
\]

10
\[\leq (p')^{q-1} \left(\frac{q}{r} \right)^{\frac{q}{p}} \left(\int_0^a \int_b^c \chi_L^* (s,t) \left[I_2 \sigma(s,t) \right] \frac{d_s d_t}{t} \left(\int_s^t \int_t^c \chi_L^* w \right)^{\frac{q}{r}} \right)^{\frac{q}{r}} | U|^\frac{q}{r}_\sigma \]

\[\leq q(p')^{q-1} \left(\frac{q}{r} \right)^{\frac{q}{p}} \left(\int_{R^*} \chi_L^* (s,t) \left[I_2 \sigma(s,t) \right] \frac{d_s d_t}{t} \left(\int_s^t \int_t^c \chi_L^* w \right)^{\frac{q}{r}} \right)^{\frac{q}{r}} | U|^\frac{q}{r}_\sigma \]

\[\leq q(p')^{q-1} \left(\frac{q}{r} \right)^{\frac{q}{p}} \left(\int_{R^*} \chi_L^* (s,t) d_t \left[I_2 \sigma(s,t) \right] \frac{d_s}{t} \left(- \left[I^*_w (s,t) \right]^{\frac{q}{r}} \right) \right)^{\frac{q}{r}} | U|^\frac{q}{r}_\sigma, \quad (15) \]

The second mixed case is estimated in a similar way. So, (14) is proven. Continuing (13), we obtain, using (14) (2.11)] and H"older's inequality with $r/q, p/q$:

\[\sum_{(k,j) \in \Gamma_1} | E_j^k |_{\sigma} R^k_{\sigma} \leq \max \left\{ \beta, 2q(p')^{q-1} \left(\frac{q}{r} \right)^{\frac{q}{p}} \right\} \sum_i (B_i^r) \left(\frac{2^{-l} \int_{U_{[g \in 2^{l-3}]}} g \sigma}{g} \right)^{\frac{q}{p}} \]

\[\leq \max \left\{ \beta, 2q(p')^{q-1} \left(\frac{q}{r} \right)^{\frac{q}{p}} \right\} \left(\sum_i (B_i^r) \right)^{\frac{q}{p}} \left(\sum_i 2^{-l} \int_{U_{[g \in 2^{l-3}]}} g \sigma \right)^{\frac{q}{p}} \]

\[\leq \max \left\{ \beta, 2q(p')^{q-1} \left(\frac{q}{r} \right)^{\frac{q}{p}} \right\} 2^{-lq/p} (B_i) q \left(\int_{g \in 2^{l-3}} g \sigma \right)^{\frac{q}{p}}. \]

The last estimate is valid with

\[(B_i) := \int_{U_{[u(k,j) \in \Gamma_1} E_j^k (x,y) d_y \left[I_2 \sigma(x,y) \left[\chi_{\geq 1} \right] \frac{d_x}{t} \left(- \left[I^*_w (x,y) \right]^{\frac{q}{r}} \right) \right] \sum_{l \in (p-1)} 2^{l(p-1)} \chi_{\geq 2^{l-3}} \leq \frac{2^{q-1}}{2^{p-1}} \frac{q}{r} \quad (16) \]

due to the fact that for fixed l the rectangles U^l_i do not intersect (see [14, p. 8]). Combining it with (12), we obtain, taking into account the relation

\[\sum_l 2^{l(p-1)} \chi_{\geq 2^{l-3}} \leq \frac{2^{q-1}}{2^{p-1}} \frac{q}{r} \quad (16) \]

\[H"older's \ inequality \ with \ r/q \ and \ p/q \ and \ the \ fact \ that \ all \ E_j^k \ are \ disjoint: \]

\[I \leq \left(\frac{2}{3} \right)^q \sum_l 2^{lq} \sum_{(k,j) \in \Gamma_1} | E_j^k |_{\sigma} R^k_{\sigma} \]

\[\leq \left(\frac{2}{3} \right)^q \max \left\{ \beta, 2q(p')^{q-1} \left(\frac{q}{r} \right)^{\frac{q}{p}} \right\} \sum_l 2^{lq} (B_i) q \left(\int_{g \in 2^{l-3}} g \sigma \right)^{\frac{q}{p}} \]

\[\leq \left(\frac{2}{3} \right)^q \max \left\{ \beta, 2q(p')^{q-1} \left(\frac{q}{r} \right)^{\frac{q}{p}} \right\} \left(\sum_l (B_i) \right)^{\frac{q}{p}} \left(\int_{g \in 2^{l-3}} g \sigma \right)^{\frac{q}{p}} \]

\[\leq \left(\frac{2}{3} \right)^q \max \left\{ \beta, 2q(p')^{q-1} \left(\frac{q}{r} \right)^{\frac{q}{p}} \right\} 2^{q-1} \frac{q}{r} B^q \left(\frac{2^{q-1}}{2^{q-1}} \frac{q}{r} \right)^{\frac{q}{p}} \]

Combining (16) with (10) we arrive at the required upper bound for $q < p$.

For $p < q$, the term I is estimated identically to the case $p \leq q$ in (14) p. 9, i.e.

\[I \leq \left(\frac{2}{3} \right)^q \max \left\{ \alpha, 2q(p')^{q-1} \right\} \left(\frac{2^{q-1}}{2^{p-1}} \frac{q}{r} \right)^{\frac{q}{p}} A^q \left(\int_{R^*} f^p \right)^{\frac{q}{p}}, \quad (17) \]
relying on an analog of the inequality (14) of the form

\[\int_{\mathbb{R}^2_+} \chi_1^i w I_2^i (\chi_{U^i})^q \leq \max \{ \alpha, 2q(2q')^{\frac{1}{2}} \} A^q \left| U^i_{\sigma} \right|^\frac{q}{q'} \text{ for } U^i = (0, a) \times (0, b). \]

Note that in this case, unlike (2.8), to perform the estimate on the rectangle \((0, a) \times (0, b) = U^i\) one should apply the statement of Lemma 2.1, from which it follows that

\[V_{U^i} \leq \alpha \left| U^i_{\sigma} \right|^\frac{q}{q'} A^q. \]

The final upper estimate

\[\int_{\mathbb{R}^2_+} (f_2 f)^q w \leq C \left(\int_{\mathbb{R}^2_+} f P_v \right)^{\frac{1}{2}} \left(\int_{\mathbb{R}^2_+} (f_2 f)^q w \right)^{\frac{1}{2}} + C^q \left(\int_{\mathbb{R}^2_+} f P_v \right)^{\frac{q}{q'}} \]

follows from (7) combined with (11) and (17) for \(p < q\) (or (10) and (16) if \(q < p\)) with

\(C = A \cdot C_{\alpha, \alpha'}\) in case \(p < q\) and \(C = B \cdot C_{\beta, \beta'}\) for \(q < p\).

(Necessity) The validity of \(A \leq C_2\) follows by substituting \(f = \chi_{(0, a) \times (0, b)}\) into the initial inequality (6). To establish \(B \leq C_2\) in the case \(q < p\), we apply the test function

\[f(s, y) = \sigma(s, y) \left[\int_s^\infty \left[I_2 \sigma(x, y) \right] \hat{\psi} \left[I_2^* w(x, y) \right] \hat{\psi} \left(\int_y^\infty w(x, t) \, dt \right) \, dx \right]^{\frac{q}{q'}} = : \sigma(s, y) J(s, y) \]

into (13). Then

\[\int_{\mathbb{R}^2_+} f P_v = \int_{\mathbb{R}^2_+} \sigma(s, y) [J(s, y)]^p \, ds \, dy \]

\[= \int_{\mathbb{R}^2_+} \left[I_2 \sigma(x, y) \right] \hat{\psi} \left[I_2^* w(x, y) \right] \hat{\psi} \left(\int_y^\infty w(x, t) \, dt \right) \left(\int_0^x \sigma(s, y) \, ds \right) \, dx \, dy \]

\[= \frac{p^q}{r^2} \int_{\mathbb{R}^2_+} d_y \left[I_2 \sigma(x, y) \right] \hat{\psi} \left[I_2^* w(x, y) \right] \hat{\psi} \left(\int_y^\infty w(x, t) \, dt \right) \left(\int_0^x \sigma(s, y) \, ds \right) \, dx \]

\[= : \frac{q}{r} [J_1(s, y)]^p + \frac{q}{q'} [J_2(s, y)]^p. \quad (18) \]

To estimate the left-hand side of the inequality (6), we write

\[[J(s, y)]^p = \frac{q}{r} \left[I_2 \sigma(s, y) \right] \hat{\psi} \left[I_2^* w(s, y) \right] \hat{\psi} \]

\[+ \frac{q}{q'} \int_s^\infty \left[I_2 \sigma(x, y) \right] \hat{\psi}^{-1} \left[I_2^* w(x, y) \right] \hat{\psi} \left(\int_x^\infty \sigma(x, t) \, dt \right) \, dx \]

\[= : \frac{q}{r} [J_1(s, y)]^p + \frac{q}{q'} [J_2(s, y)]^p. \quad (19) \]

Then, for our chosen \(f\),

\[F(u, z) := \int_0^u \int_0^z f = \int_0^u \int_0^z \sigma(s, y) J(s, y) \, dy \, ds \]

\[\geq 2^{\frac{1}{q'}} \left(\frac{q}{r} \right)^{\frac{1}{2}} \int_0^u \int_0^z \sigma(s, y) J_1(s, y) \, dy \, ds + \left(\frac{q}{q'} \right)^{\frac{1}{2}} \int_0^u \int_0^z \sigma(s, y) J_2(s, y) \, dy \, ds \]

\[= : 2^{\frac{1}{q'}} (F_1 + F_2). \quad (12) \]
To estimate F_2, we observe that
\[
\left(\frac{q'}{q}\right)^\frac{1}{\gamma} F_2 = \int_0^u \int_0^z \sigma(s, y) J_2(s, y) dy ds \\
\geq \left[I^*_2 w(u, z) \right] \frac{\sigma}{\gamma'} \int_0^u \int_0^z \sigma(s, y) \left[\int_s^u [I_2 \sigma(x, y)] \frac{1}{\sigma_x} \left(\int_0^y \sigma(x, t) dt \right) dx \right] \frac{1}{\gamma'} dy ds.
\]
Since
\[
\int_s^u [I_2 \sigma(x, y)] \frac{1}{\sigma_x} \left(\int_0^y \sigma(x, t) dt \right) dx \leq \frac{q'}{r'} \left[I_2 \sigma(u, y) \right] \frac{1}{\gamma'},
\]
then
\[
\int_0^u \int_0^z \sigma(s, y) \left[\int_s^u [I_2 \sigma(x, y)] \frac{1}{\sigma_x} \left(\int_0^y \sigma(x, t) dt \right) dx \right] \frac{1}{\gamma'} dy ds \\
\geq \left(\frac{q'}{r'} \right)^\frac{1}{\gamma'} \int_0^u \int_0^z \sigma(s, y) [I_2 \sigma(u, y)] \frac{1}{\gamma'} \int_s^u [I_2 \sigma(x, y)] \frac{1}{\sigma_x} \left(\int_0^y \sigma(x, t) dt \right) dx dy ds \\
\geq \left(\frac{q'}{r'} \right)^\frac{1}{\gamma'} [I_2 \sigma(u, z)] \frac{1}{\gamma'} \int_0^u \int_0^z \sigma(s, y) \left[[I_2 \sigma(x, y)] \frac{1}{\sigma_x} \left(\int_0^y \sigma(x, t) dt \right) dx \right] dy dx \\
= \left(\frac{q'}{r'} \right)^\frac{1}{\gamma'} [I_2 \sigma(u, z)] \frac{1}{\gamma'} \int_0^u \int_0^z \left[[I_2 \sigma(x, y)] \frac{1}{\sigma_x} \left(\int_0^y \sigma(x, t) dt \right) dx \right] dy dx.
\]
and, therefore,
\[
F_2 \geq \left(\frac{q}{q'} \right)^\frac{1}{\gamma} \left(\frac{r}{q' q} \right)^\frac{1}{\gamma'} [I_2 \sigma(u, z)] \frac{1}{\gamma'} \left[[I_2 \sigma(u, z)] \frac{1}{\gamma'} \int_0^u \int_0^z [I_2 \sigma(x, y)] \frac{1}{\sigma_x} \left(\int_0^y \sigma(x, t) dt \right) dx dy ds \\
\times \int_0^u \int_0^z [I_2 \sigma(x, y)] \frac{1}{\sigma_x} \left(\int_0^y \sigma(x, t) dt \right) dx dy \\
= : \left(\frac{q}{q'} \right)^\frac{1}{\gamma} \left(\frac{r}{q' q} \right)^\frac{1}{\gamma'} [I_2 \sigma(u, z)] \frac{1}{\gamma'} \left[[I_2 \sigma(u, z)] \frac{1}{\gamma'} \int_0^u \int_0^z [I_2 \sigma(x, y)] \frac{1}{\sigma_x} \left(\int_0^y \sigma(x, t) dt \right) dx dy ds.
\]

For F_1 we obtain:
\[
F_1 = \left(\frac{q}{q'} \right)^\frac{1}{\gamma} \int_0^u \int_0^z \sigma(s, y) [I_2 \sigma(s, y)] \frac{1}{\gamma'} [I_2 \sigma(u, z)] \frac{1}{\gamma'} \int_0^u \int_0^z [I_2 \sigma(x, y)] \frac{1}{\sigma_x} \left(\int_0^y \sigma(x, t) dt \right) dx dy ds \\
\geq \left(\frac{q}{q'} \right)^\frac{1}{\gamma} [I_2 \sigma(u, z)] [I_2 \sigma(u, z)] \frac{1}{\gamma'} \int_0^u \int_0^z \sigma(s, y) [I_2 \sigma(s, y)] \frac{1}{\gamma'} \int_0^u \int_0^z [I_2 \sigma(x, y)] \frac{1}{\sigma_x} \left(\int_0^y \sigma(x, t) dt \right) dx dy ds \\
= : \left(\frac{q}{q'} \right)^\frac{1}{\gamma} [I_2 \sigma(u, z)] [I_2 \sigma(u, z)] \frac{1}{\gamma'} \int_0^u \int_0^z [I_2 \sigma(x, y)] \frac{1}{\sigma_x} \left(\int_0^y \sigma(x, t) dt \right) dx dy ds.
\]

It holds that
\[
F(u, z) \geq 2^{-\frac{1}{\gamma}} \left(\frac{q}{q'} \right)^\frac{1}{\gamma} [I_2 \sigma(u, z)] [I_2 \sigma(u, z)] \frac{1}{\gamma'} \left[[I_2 \sigma(u, z)] [I_2 \sigma(u, z)] \frac{1}{\gamma'} \int_0^u \int_0^z [I_2 \sigma(x, y)] \frac{1}{\sigma_x} \left(\int_0^y \sigma(x, t) dt \right) dx dy ds \\
+ \frac{r}{q'} \int_0^u \int_0^z \sigma(s, y) \left[[I_2 \sigma(x, y)] \frac{1}{\sigma_x} \left(\int_0^y \sigma(x, t) dt \right) dx \right] dy dx \\
= \left(\frac{q'}{r} \right)^\frac{1}{\gamma} \int_0^u \int_0^z \sigma(s, y) \left[[I_2 \sigma(x, y)] \frac{1}{\sigma_x} \left(\int_0^y \sigma(x, t) dt \right) dx \right] dy dx \\
- \frac{q'}{r} \int_0^u \int_0^z \sigma(s, y) \left[[I_2 \sigma(x, y)] \frac{1}{\sigma_x} \left(\int_0^y \sigma(x, t) dt \right) dx \right] dy dx.
\]

Integrating by parts we find:
\[
[I_2 \sigma(u, z)] \frac{1}{\gamma} \left(\int_0^y \sigma(x, t) dt \right) dx dy \\
= \left(\frac{q'}{r} \right)^\frac{1}{\gamma} \int_0^u \int_0^z \sigma(s, y) \left[[I_2 \sigma(x, y)] \frac{1}{\sigma_x} \left(\int_0^y \sigma(x, t) dt \right) dx \right] dy dx \\
- \frac{q'}{r} \int_0^u \int_0^z \sigma(s, y) \left[[I_2 \sigma(x, y)] \frac{1}{\sigma_x} \left(\int_0^y \sigma(x, t) dt \right) dx \right] dy dx.
\]

13
Hence,

\[F(u, z) \geq 2^{-\frac{1}{q'}} \left(\frac{q}{r} \right)^{\frac{1}{p'}} \frac{p'}{r} [I_2 \sigma(u, z)] \frac{q}{\sigma} [I_2^* w(u, z)] \frac{q}{\sigma}. \]

(21)

We write making use of (19):

\[
\int_{\mathbb{R}_+^2} (I_2 f)^q w = \int_{\mathbb{R}_+^2} f(x, y) \left(\int_x^\infty \int_y^\infty w(u, z) [F(u, z)]^{q-1} dz \right) dxdy \\
\geq 2^{-\frac{1}{q'}} \frac{p'}{r} \int_{\mathbb{R}_+^2} \sigma(x, y) \left(\int_x^\infty \int_y^\infty w F^{q-1} \right) \left\{ \left(\frac{q}{r} \right)^{\frac{1}{p'}} [I_2 \sigma(x, y)] \frac{q}{\sigma} [I_2^* w(x, y)] \frac{q}{\sigma} \right\} dxdy \\
+ \left(\frac{q}{q'} \right) \int_x^\infty \left[[I_2 \sigma(s, y)] \frac{q}{\sigma}^{-1} [I_2^* w(s, y)] \frac{q}{\sigma} \left(\int_0^y \sigma(s, t) \frac{dt}{ds} \right) \right] dxdy \\
= : 2^{-\frac{1}{q'}} (G_1 + G_2).
\]

(22)

\[G_1 = \left(\frac{q}{q'} \right) \int_{\mathbb{R}_+^2} \sigma(x, y) [I_2 \sigma(x, y)] \frac{q}{\sigma}^{-1} [I_2^* w(x, y)] \frac{q}{\sigma} \left(\int_0^y \sigma(s, t) \frac{dt}{ds} \right) dxdy \]

(23)

It is true for \(G_2 \):

\[
\left(\frac{q}{q'} \right)^{\frac{1}{p'}} G_2 = \int_{\mathbb{R}_+^2} \sigma(x, y) \left[\int_x^\infty [I_2 \sigma(s, y)] \frac{q}{\sigma}^{-1} [I_2^* w(s, y)] \frac{q}{\sigma} \left(\int_0^y \sigma(s, t) \frac{dt}{ds} \right) \right] dxdy \\
\times \left(\int_x^\infty \int_y^\infty w(u, z) [F(u, z)]^{q-1} dz \right) dxdy \\
= \int_{\mathbb{R}_+^2} \int_0^u \sigma(x, y) \left[\int_x^\infty [I_2 \sigma(s, y)] \frac{q}{\sigma}^{-1} [I_2^* w(s, y)] \frac{q}{\sigma} \left(\int_0^y \sigma(s, t) \frac{dt}{ds} \right) \right] dxdy \\
\times \left(\int_y^\infty w(u, z) [F(u, z)]^{q-1} dz \right) dudy \\
\geq \int_{\mathbb{R}_+^2} \int_0^u \sigma(x, y) \left[\int_x^u [I_2 \sigma(s, y)] \frac{q}{\sigma}^{-1} [I_2^* w(s, y)] \frac{q}{\sigma} \left(\int_0^y \sigma(s, t) \frac{dt}{ds} \right) \right] dxdy \\
\times \left(\int_y^\infty w(u, z) [F(u, z)]^{q-1} dz \right) dudy \\
\geq \int_{\mathbb{R}_+^2} [I_2^* w(u, y)] \frac{q}{\sigma} \int_0^u \sigma(x, y) \left[\int_x^u [I_2 \sigma(s, y)] \frac{q}{\sigma}^{-1} \left(\int_0^y \sigma(s, t) \frac{dt}{ds} \right) \right] dxdy \\
\times \left(\int_y^\infty w(u, z) [F(u, z)]^{q-1} dz \right) dudy \\
\geq \left(\frac{r}{q'} \right)^{\frac{1}{p'}} \int_{\mathbb{R}_+^2} [I_2 \sigma(u, y)] \frac{1}{\sigma} [I_2^* w(u, y)] \frac{1}{\sigma} \\
\times \left(\int_0^u \sigma(x, y) \left[\int_x^u [I_2 \sigma(s, y)] \frac{1}{\sigma}^{-1} \left(\int_0^y \sigma(s, t) \frac{dt}{ds} \right) \right] dxdy \right)
\]
\[\times \left(\int_y^\infty w(u,z)[F(u,z)]^{q-1} \, dz \right) \, du dy \]
\[\geq \left(\frac{q'}{q} \right)^{\frac{r}{q'}} \int_{R^2_+} [I_2 \sigma(u,y)]^{-\frac{q'}{r}} [I_2^* w(u,y)]^{\frac{r}{q'}} \left(\int_y^\infty w(u,z) \, dz \right) [F(u,y)]^{q-1} \]
\[\times \left[\int_0^u [I_2 \sigma(s,y)]^{\frac{r}{q'}} \left(\int_0^s \sigma(x,y) \, dx \right) \left(\int_0^y \sigma(s,t) \, dt \right) \right] \, du dy. \]

Integrating by parts we find
\[
\int_0^u [I_2 \sigma(s,y)]^{\frac{r}{q'}} \left(\int_0^s \sigma(x,y) \, dx \right) \left(\int_0^y \sigma(s,t) \, dt \right) \, ds
= \frac{q'}{r} \int_0^u [I_2 \sigma(s,y)]^{\frac{r}{q'}} \left(\int_0^s \sigma(x,y) \, dx \right) \, ds - \frac{q'}{r} \int_0^u [I_2 \sigma(s,y)]^{\frac{r}{q'}} \sigma(s,y) \, ds.
\]

Hence, continuing the reasoning, we obtain for \(G_2 \) using (21):
\[
\left(\frac{q'}{q} \right)^{\frac{r}{q'}} G_2 \geq 2^{-\frac{q'}{r}} \left(\frac{q'}{q} \right)^{\frac{r}{q'}} \left(\frac{q'}{r} \right)^{\frac{r}{q'}} \left(\frac{q'}{r} \right)^{\frac{r}{q'}} \int_{R^2_+} [I_2^* w(u,y)]^{\frac{r}{q'}} \left(\int_y^\infty w(u,z) \, dz \right) \]
\[\times \left[[I_2 \sigma(u,y)]^{\frac{r}{q'}} \int_0^u \sigma(x,y) \, dx - \int_0^u [I_2 \sigma(s,y)]^{\frac{r}{q'}} \sigma(s,y) \, ds \right] \, du dy. \quad (24) \]

Since
\[
\int_{R^2_+} [I_2^* w(u,y)]^{\frac{r}{q'}} \left(\int_y^\infty w(u,z) \, dz \right) \left[\int_0^u [I_2 \sigma(s,y)]^{\frac{r}{q'}} \sigma(s,y) \, ds \right] \, du dy
= \frac{q'}{r} \int_{R^2_+} [I_2^* w(u,y)]^{\frac{r}{q'}} [I_2 \sigma(u,y)]^{\frac{r}{q'}} \sigma(u,y) \, du dy
\]
then from (23) we obtain, applying (23) and (24),
\[
2^{\frac{r}{q'}} \int_{R^2_+} (I_2 f)^q w \geq \left(\frac{q'}{q} \right)^{\frac{r}{q'}} \left(\frac{p'}{r} \right)^{q-1} \int_{R^2_+} \sigma(x,y) [I_2 \sigma(x,y)]^{\frac{r}{q'}} [I_2^* w(x,y)]^{\frac{r}{q'}} \, dxdy
+ \left(\frac{q'}{q} \right)^{\frac{r}{q'}} \left(\frac{p'}{r} \right)^{q-1} \int_{R^2_+} [I_2^* w(u,y)]^{\frac{r}{q'}} \left(\int_y^\infty w(u,z) \, dz \right) [I_2 \sigma(u,y)]^{\frac{r}{q'}} \left(\int_0^u \sigma(x,y) \, dx \right) \, du dy
- \left(\frac{q'}{q} \right)^{\frac{r}{q'}} \left(\frac{p'}{r} \right)^{q-1} \frac{q'}{r} \int_{R^2_+} \sigma(x,y) [I_2 \sigma(x,y)]^{\frac{r}{q'}} [I_2^* w(x,y)]^{\frac{r}{q'}} \, dxdy
= \left(\frac{q'}{q} \right)^{\frac{r}{q'}} \left(\frac{p'}{r} \right)^{q-1} \frac{q'}{p} \int_{R^2_+} \sigma(x,y) [I_2 \sigma(x,y)]^{\frac{r}{q'}} [I_2^* w(x,y)]^{\frac{r}{q'}} \, dxdy
+ \left(\frac{q'}{q} \right)^{\frac{r}{q'}} \left(\frac{p'}{r} \right)^{q-1} \frac{q'}{r} \int_{R^2_+} d_u \left(- [I_2^* w(u,y)]^{\frac{r}{q'}} \right) \, du [I_2 \sigma(u,y)]^{\frac{r}{q'}} \, dxdy
\geq \left(\frac{q'}{q} \right)^{\frac{r}{q'}} \left(\frac{p'}{r} \right)^{q-1} \left(\frac{q'}{r} \right)^{q-1} B^r.
\]

In view of (13), the required lower bound for \(C_2 \) in the case \(q < p \) is proven. \(\square \)

Recall that in the case \(p \leq q \) the best constant \(C_2 \) of the two–dimensional inequality (13) is equivalent to \(\sum_{i=1}^3 A_i \) (see Theorem 11). However, by virtue of the statements of Lemmas 2.1 and 2.2 for \(p < q \) the following inequalities take place:
\[
A_1 \leq C_2 \leq C_{1,1} \left[A_1 + A_2 + A_3 \right] \leq C_{1,1} \left[1 + \alpha(p,q)^{\frac{r}{q'}} + \alpha(q',p')^{\frac{r}{q'}} \right] A_1. \quad (25)
\]
Moreover,
\[\lim_{p \uparrow q} [\alpha(p, q) + \alpha(q', p')] = \infty. \]

Thus, the last estimate in (25) and the upper bound in the main theorem have blow-up for \(p \uparrow q \).

Estimates similar to (25) hold also in the case \(q < p \) if conditions \(r/p \geq 1 \) and \(r/q' \geq 1 \) are simultaneously satisfied, namely,
\[
\left(\frac{q}{r}\right)^{\frac{1}{p'}} \left(\frac{p'}{2r}\right)^{\frac{1}{q'}} B_1 \leq C_2 \leq C_{1,1} \left[B_1 + B_2 + B_3 \right] \leq C_{1,1} \left[1 + \beta(p, q) + \beta(q', p') \right] B_1,
\]
(26)

where
\[\beta(p, q) = \frac{2^{1/q+1}}{(2r-q)/r - 1)^{1/r} (2q/r - 1)^{1/p}}. \]

Observe that
\[\lim_{q \uparrow p} [\beta(p, q) + \beta(q', p')] = \infty. \]

In the rest cases, the following inequalities take place for \(q < p \):
\[
\left(\frac{q}{r}\right)^{\frac{1}{p'}} \left(\frac{p'}{2r}\right)^{\frac{1}{q'}} B_1 \leq C_2 \leq \begin{cases}
C_{1,\beta'} \left[B_1 + B_2 \right] \leq C_{1,\beta'} \left[1 + \beta(p, q) \right] B_1, & \frac{r}{p} \geq 1 & \text{and} & \frac{r}{q} < 1, \\
C_{\beta,1} \left[B_1 + B_3 \right] \leq C_{\beta,1} \left[1 + \beta(q', p') \right] B_1, & \frac{r}{p} < 1 & \text{and} & \frac{r}{q} \geq 1, \\
C_{\beta,\beta'} B_1, & \frac{r}{p} < 1 & \text{and} & \frac{r}{q} < 1.
\end{cases}
\]
(27)

On the strength of the restrictions on the parameters \(p \) and \(q \), all coefficients in (27) are finite. In the first zone \(r \to \infty \) only if \(p, q \to \infty \); similarly, in the second zone \(r \to \infty \) only if \(p, q \to 1 \); and in the third zone \(r \) cannot approach \(\infty \). In addition, \(C_{1,1} \) in (20) does not diverge for \(q \uparrow p \), and, therefore, the second inequality gives an upper bound in Sawyer’s theorem for \(p = q \), since \(\lim B_i = A_i, i = 1, 2, 3 \) (see (23)).

The upper estimates in (26)–(27) can be proven similarly to the upper bound for \(C_2 \) in the case \(q < p \) in the main theorem. The only difference is that for \(r/p \geq 1 \), instead of Lemma 2.1 one should use the inequality
\[
\text{V}_{(a,b) \times (c,d)} \leq \left[I_2 \sigma(b, d) \right]^{\frac{1}{p'}} \left[\int_a^b \int_c^d \frac{\chi_{\text{supp } w(x, y)}}{[I_2 \sigma(x, y)]^{1/p}} \, dx \, dy \left(\int_0^\infty \int_0^\infty (I_2 \sigma)^q w \right)^{\frac{1}{q'}} \right]^\frac{1}{p'}.
\]

Similarly, for \(r/q' \geq 1 \), instead of Lemma 2.2, the following estimate should be applied:
\[
\text{W}_{(a,b) \times (c,d)} \leq \left[I_2^* w(a, c) \right]^{\frac{1}{p'}} \left[\int_a^b \int_c^d \frac{\chi_{\text{supp } w(x, y)}}{[I_2^* w(x, y)]^{1/p'}} \, dx \, dy \left(\int_0^\infty \int_0^\infty (I_2^* w)^{q'} \sigma \right)^{\frac{1}{q'}} \right]^\frac{1}{p'}.
\]

To establish \(B_2 \leq \beta(p, q) B_1 \) we split \(\mathbb{R}_2^+ \) into domains \(\omega_k \) (as in Lemma 2.1). Then
\[
\int_{\mathbb{R}_2^+} [I_2 \sigma(x, y)]^{-\frac{1}{q'}} \, dx \, dy \left(\int_0^x \int_0^y (I_2 \sigma)^q w \right)^{\frac{1}{q'}} = \sum_{k \leq K} \int_{\omega_k \setminus \omega_{k+1}} [I_2 \sigma(x, y)]^{-\frac{1}{q'}} \, dx \, dy \left(\int_0^x \int_0^y (I_2 \sigma)^q w \right)^{\frac{1}{q'}}.
\]
From Proposition 2.1(b) with $\tau = \frac{q}{\gamma}$ and $\gamma = r/q$, we have:

$$\sum_{k \leq K_{\sigma}} 2^{-kr/p} \int_{\mathbb{R}^2_+ \setminus \omega_{k+1}} d_x d_y \left(\int_0^x \int_0^y (I_2\sigma)^q w \right)^{\frac{r}{q}} \leq \sum_{k \leq K_{\sigma}} 2^{-kr/p} \int_{\mathbb{R}^2_+ \setminus \omega_{k+1}} d_x d_y \left(\int_0^x \int_0^y (I_2\sigma)^q w \right)^{\frac{r}{q}}.$$

Since

$$\int_{\mathbb{R}^2_+ \setminus \omega_{k+1}} d_x d_y \left(\int_0^x \int_0^y (I_2\sigma)^q w \right)^{\frac{r}{q}} = \int_{\mathbb{R}^2_+ \setminus \omega_{k+1}} \chi_{\mathbb{R}^2_+ \setminus \omega_{k+1}}(x, y) \ d_x d_y \left(\int_0^x \int_0^y (I_2\sigma)^q w \right)^{\frac{r}{q}} = \left(\int_{\mathbb{R}^2_+ \setminus \omega_{k+1}} (I_2\sigma)^q w \right)^{\frac{r}{q}},$$

then we have

$$\sum_{k \leq K_{\sigma}} 2^{-kr/p} \int_{\mathbb{R}^2_+ \setminus \omega_{k+1}} d_x d_y \left(\int_0^x \int_0^y (I_2\sigma)^q w \right)^{\frac{r}{q}} = \sum_{k \leq K_{\sigma}} 2^{-kr/p} \left(\int_{\mathbb{R}^2_+ \setminus \omega_{k+1}} (I_2\sigma)^q w \right)^{\frac{r}{q}}.$$

From Proposition 2.1(b) with $\tau = \frac{q}{\gamma}$ and $\gamma = r/q$, we get:

$$\sum_{k \leq K_{\sigma}} 2^{-kr/p} \left(\int_{\mathbb{R}^2_+ \setminus \omega_{k+1}} (I_2\sigma)^q w \right)^{\frac{r}{q}} \leq \sum_{k \leq K_{\sigma}} 2^{-kr/p} \left(\sum_{m \leq k} \int_{\omega_m \setminus \omega_{m+1}} (I_2\sigma)^q w \right)^{\frac{r}{q}} \leq \frac{2r/p}{(2(r-q)/p - 1)(2q/r - 1)^{r/p}} \sum_{k \leq K_{\sigma}} 2^{-kr/p} \left(\int_{\omega_k \setminus \omega_{k+1}} (I_2\sigma)^q w \right)^{\frac{r}{q}} \leq \frac{2^{r/p+r}}{(2(r-q)/p - 1)(2q/r - 1)^{r/p}} \sum_{k \leq K_{\sigma}} 2^{kr/p'} \left(\int_{\omega_k \setminus \omega_{k+1}} w \right)^{\frac{r}{q}}.$$

By analogy with the proof of Lemma 2.1, we can write

$$|\omega_k \setminus \omega_{k+1}|^{\frac{r}{q}} w \leq |\omega_k|^{\frac{r}{q}} w = \int_{\omega_k \setminus \omega_{k+1}} d_x d_y [I^*_2 (\chi_{\omega_k} w)(x, y)]^{\frac{r}{q}} = \int_{\omega_k} d_x d_y [I^*_2 w(x, y)]^{\frac{r}{q}}.$$

Hence (see Proposition 2.1(a)),

$$\sum_{k \leq K_{\sigma}} 2^{kr/p'} \left(\int_{\omega_k \setminus \omega_{k+1}} w \right)^{\frac{r}{q}} \leq \sum_{k \leq K_{\sigma}} 2^{kr/p'} \int_{\omega_k} d_x d_y [I^*_2 w(x, y)]^{\frac{r}{q}} \leq \sum_{k \leq K_{\sigma}} 2^k \int_{\omega_k} [I_2\sigma(x, y)]^{\frac{r}{q'}} d_x d_y [I^*_2 w(x, y)]^{\frac{r}{q}} \leq 2 \sum_{k \leq K_{\sigma}} \int_{\omega_k \setminus \omega_{k+1}} [I_2\sigma(x, y)]^{\frac{r}{q'}} d_x d_y [I^*_2 w(x, y)]^{\frac{r}{q}} = B_1.$$

Similarly, one can show that $B_3 \leq \beta(q', p')B_1$. Thus, (26) and (27) are valid.
3 Sufficient condition

The one–dimensional analog of the condition (2) is the boundedness of the Muckenhoupt constant \(B \), of the condition (3) — the boundedness of the Tomaselli functional \(B \) in definition (11), and the analogs of the constants \(B_1 \), \(B_2 \) are the Maz’ya–Rozin [7, § 1.3.2] and Persson–Stepanov [10, Theorem 3] functionals, respectively. The constants have been generalized to the scales of equivalent conditions in [11] (see also [2] for the case of the Persson–Stepanov functional). The constants have been generalized to the scales of equivalent conditions in [11] (see also [2] for the case \(p \leq q \)). In the following theorem we find a sufficient condition for the inequality (3) to hold, having the form (28), where \(B_v \) is a two–dimensional analog of the constant \(B_{\text{MR}}(1/r) \) from [11] in the one–dimensional case.

Theorem 3.1. Let \(1 < q < p < \infty \). The inequality (6) holds if

\[
B_v := \left(\int_{\mathbb{R}_+^2} \sigma(u, z) \left(\int_u^\infty \left(\int_z^\infty (I_2\sigma)^{q-1} w \right)^{\frac{r}{q}} du \right)^{\frac{1}{r}} \right)^{\frac{1}{q}} < \infty,
\]

where \(C_2 \lesssim B_v \).

Proof. We apply Sawyer’s scheme of partitioning \(\mathbb{R}_+^2 \) into rectangles from the proof of the sufficiency in Theorem 2.1. Compared to Figure 1, Figure 2 below has a rectangle \(Q^k_j = (0, x_j^k) \times (0, y_j^k) \) added.

Denote \(\widetilde{E}_j^k := E_j^k \cup (\tilde{S}_j^k \cap (\Omega_{k+2} - \Omega_{k+3})) \). Then (see [11])

\[
\int_{\mathbb{R}_+^2} (I_2 f)^q w \approx \sum_{k,j} 3^{kq} |\widetilde{E}_j^k|_w.
\]

Put \(g\sigma := f \) and write

\[
\sum_{k,j} 3^{kq}|\widetilde{E}_j^k|_w = \sum_{k,j} |\widetilde{E}_j^k|_w \left(\int_{Q_j^k} f \right)^q = \sum_{k,j} |\widetilde{E}_j^k|_w |Q_j^k|^q \left(\frac{1}{|Q_j^k|_\sigma} \int_{Q_j^k} g\sigma \right)^q.
\]
For an integer \(l \) by \(\Gamma_l \) we denote the set of pairs \((k, j)\) such that \(|\tilde{E}^k_j|_w > 0\) and
\[
2^l < \frac{1}{|Q^k_j|_\sigma} \int_{Q^k_j} g \sigma \leq 2^{l+1}, \quad (k, j) \in \Gamma_l.
\]

By analogy with how it was done in the proof of \cite{14, Theorem 1A}, we show that
\[
2^{l-1} < \frac{1}{|Q^k_j|_\sigma} \int_{Q^k_j} g \sigma \chi_{\{g > 2^{l-1}\}}, \quad \text{for all } j, k.
\]

Indeed, this follows from the fact that
\[
2^l < \frac{1}{|Q^k_j|_\sigma} \int_{Q^k_j} g \sigma = \frac{1}{|Q^k_j|_\sigma} \left[\int_{Q^k_j \cap \{g > 2^{l-1}\}} g \sigma + \int_{Q^k_j \cap \{g \leq 2^{l-1}\}} g \sigma \right] \leq \frac{1}{|Q^k_j|_\sigma} \int_{Q^k_j \cap \{g > 2^{l-1}\}} g \sigma + 2^{l-1}.
\]

Further, we write for fixed \(l \):
\[
\sum_{(k, j) \in \Gamma_l} |\tilde{E}^k_j|_w |Q^k_j|_\sigma \overset{\text{(31)}}{\leq} 2^{-l} \sum_{(k, j) \in \Gamma_l} |\tilde{E}^k_j|_w |Q^k_j|_\sigma \int_{Q^k_j} g \sigma \chi_{\{g > 2^{l-1}\}}
\]
\[
\overset{\text{Combining the last estimate and (30), we obtain}}{=} 2^{-l} \sum_{(k, j) \in \Gamma_l} \int_{\tilde{E}^k_j} w(x, y) \left[I_2 \sigma(x, y)\right]^{q-1} \left(\int_0^x \int_0^y g \sigma \chi_{\{g > 2^{l-1}\}} \right) dx dy.
\]

Since \(2^{l_0-1} < g(s, t) \leq 2^{l_0} \) almost everywhere for fixed \((s, t)\) then \(g(s, t) > 2^{l-1} \) for \(l \leq l_0 \) and, therefore,
\[
\sum_{l \leq l_0} 2^{(q-1)} \chi_{\{g > 2^{l-1}\}} = \sum_{l \leq l_0} 2^{(q-1)} = 2^{l_0(q-1)} \sum_{l \leq l_0} 2^{(l-l_0)(q-1)} \approx 2^{l_0(q-1)}.
\]

From this and Hölder’s inequalities with exponents \(p/q \) and \(r/q \), we find that
\[
\sum_{k, j} 3^{kq} |\tilde{E}^k_j|_w \overset{\text{by}}{\leq} \sum_{k, j} \int_{E^k_j} w(x, y) \left[I_2 \sigma(x, y)\right]^{q-1} \left(\int_0^x \int_0^y g^q(s, t) \sigma(s, t) ds dt \right) dx dy
\]
\[
= \int_{\mathbb{R}^2_+} w(x, y) \left[I_2 \sigma(x, y)\right]^{q-1} \left(\int_0^x \int_0^y g^q(s, t) \sigma(s, t) ds dt \right) dx dy
\]
\[
= \int_{\mathbb{R}^2_+} g^q(s, t) \sigma(s, t) \left(\int_{t}^{\infty} \int_{s}^{\infty} w(x, y) \left[I_2 \sigma(x, y)\right]^{q-1} dx dy \right) ds dt
\]
\[
\leq \left(\int_{\mathbb{R}_+^2} g^p \sigma \right)^{\frac{1}{p}} \left(\int_{\mathbb{R}_+^2} \sigma(s,t) \left(\int_t^\infty \int_s^\infty (I_2 \sigma)^{q-1} w \right)^{\frac{1}{q}} ds \, dt \right)^{\frac{1}{p}}
= B_v^p \left(\int_{\mathbb{R}_+^2} g^p \sigma \right)^{\frac{1}{p}},
\]
(31)
since the sets \(E_j \) are disjoint and \(g^p \sigma = f^p \nu \). The estimates \(\text{(29)} \) and \(\text{(31)} \) imply the validity of \(\text{(28)} \) for all \(f \) from the subclass \(M \).

There is also a dual statement of the last theorem with the functional

\[
B_w := \left(\int_{\mathbb{R}_+^2} w(u,z) \left(\int_0^u \int_0^z (I_2^w \sigma)^{p'-1} \right)^{\frac{1}{p'}} du \, dz \right)^{\frac{1}{p}}
\]
instead of \(B_v \). The proof of this fact is similar and can be carried out through the operator \(I_2^w \).

If the weights \(v \) and \(w \) are factorizable, then the condition \(B_v < \infty \) (or \(B_w < \infty \)) is necessary and sufficient for the \(\text{(II)} \) to be true in the case of \(1 < q < p < \infty \), moreover \(C_2 \approx B_v \approx B_w \).

4 Multidimensional case with factorizable weights

It was established by A. Wedestig in [16] (see also [17]) for the case \(n = 2 \) that if the weight function \(v \) in \(\text{(I)} \) is factorizable, that is, \(v(x_1, x_2) = v_1(x_1)v_2(x_2) \), then it is possible to characterize the inequality \(\text{(I)} \) by only one functional for all \(1 < p \leq q < \infty \).

Theorem 4.1. [17] Theorem 1.1 Let \(n = 2 \), \(1 < p \leq q < \infty \), \(s_1, s_2 \in (1, p) \) and \(v(x_1, x_2) = v_1(x_1)v_2(x_2) \). Then the inequality \(\text{(I)} \) holds for all \(f \geq 0 \) if and only if

\[
A_W(s_1, s_2) := \sup_{(t_1, t_2) \in \mathbb{R}_+^2} \left[I_1 \sigma_1(t_1) \right]^\frac{1}{p} \left[I_1 \sigma_2(t_2) \right]^\frac{1}{p} \\
\times \left(\int_t^\infty \int_t^\infty \left(I_1 \sigma_1 \right)^{\frac{q(p-s_1)}{p}} \left(I_1 \sigma_2 \right)^{\frac{q(p-s_2)}{p}} w \right)^{\frac{1}{q}} < \infty,
\]

where \(\sigma_i := v_i^{1-p'} \), \(i = 1, 2 \). Moreover, \(C_2 \approx A_W(s_1, s_2) \) with equivalence constants dependent on parameters \(p, q \) and \(s_1, s_2 \) only.

The result of this theorem can be generalized to \(n > 2 \).

A number of statements similar to [17] Theorem 1.1 were obtained in [12] under the condition that weight functions \(v \) or \(w \) satisfy

\[
v(y_1, \ldots, y_n) = v_1(y_1) \ldots v_n(y_n)
\]
(32)
or

\[
w(x_1, \ldots, x_n) = w_1(x_1) \ldots w_n(x_n).
\]
(33)

Theorem 4.2. [12] Theorems 2.1, 2.2 Let \(1 < p \leq q < \infty \) and the weight function \(v \) satisfy the condition \(\text{(II)} \). Then the inequality \(\text{(I)} \) holds for all \(f \geq 0 \)

(i) if and only if \(A_{M_n} < \infty \), where

\[
A_{M_n} := \sup_{(t_1, \ldots, t_n) \in \mathbb{R}_+^n} \left[I_1^w w(t_1, \ldots, t_n) \right]^\frac{1}{q} \left[I_1 \sigma_1(t_1) \right]^\frac{1}{p} \ldots \left[I_1 \sigma_n(t_n) \right]^\frac{1}{p};
\]

20
(ii) if and only if \(A_{T_n} < \infty \), where

\[
A_{T_n} = \sup_{(t_1, \ldots, t_n) \in \mathbb{R}_+^n} \left[I_1 \sigma_1(t_1) \right]^{-\frac{1}{q}} \cdots \left[I_1 \sigma_n(t_n) \right]^{-\frac{1}{q}} \left(\int_0^{t_1} \cdots \int_0^{t_n} (I_1 \sigma_1)^{q} \cdots (I_1 \sigma_n)^{q} w \right)^{\frac{1}{q}}.
\]

Besides, \(C_n \approx A_{M_n} \approx A_{T_n} \) with equivalence constants depending on \(p, q \) and \(n \).

Theorem 4.3. [12] Theorems 2.4, 2.5 Let \(1 < p \leq q < \infty \) and the weight \(w \) satisfy the condition (33). Then the inequality (1) is true

(i) if and only if \(A_{M_n}^* < \infty \), where with \(\sigma := v^{1-p'} \)

\[
A_{M_n}^* := \sup_{(t_1, \ldots, t_n) \in \mathbb{R}_+^n} \left[I_1^* \sigma_1(t_1) \right]^{\frac{1}{p'}} \cdots \left[I_1^* \sigma_n(t_n) \right]^{\frac{1}{p'}} \left(\int_0^{t_1} \cdots \int_0^{t_n} (I_1^* \sigma_1)^{p'} \cdots (I_1^* \sigma_n)^{p'} \right)^{\frac{1}{p'}}.
\]

(ii) if and only if \(A_{T_n}^* < \infty \), where

\[
A_{T_n}^* = \sup_{(t_1, \ldots, t_n) \in \mathbb{R}_+^n} \left[I_1^* w_1(t_1) \right]^{-\frac{1}{p}} \cdots \left[I_1^* w_n(t_n) \right]^{-\frac{1}{p}} \left(\int_0^{t_1} \cdots \int_0^{t_n} (I_1^* w_1)^{p'} \cdots (I_1^* w_n)^{p'} \right)^{\frac{1}{p'}}.
\]

Besides, \(C_n \approx A_{M_n}^* \approx A_{T_n}^* \) with equivalence constants depending on \(p, q \) and \(n \).

Theorem 4.4. [12] Theorems 3.1, 3.2 Let \(1 < q < p < \infty \). Suppose that the weight function \(v \) in (1) satisfies the condition (32) and \(I_1 \sigma_1(\infty) = \ldots = I_1 \sigma_n(\infty) = \infty \). Then (1) is valid for all \(f \geq 0 \) on \(\mathbb{R}_+^n \) with \(C_n < \infty \) independent of functions \(f \)

(i) if and only if \(B_{MR_n} < \infty \), where

\[
B_{MR_n} := \left(\int_{\mathbb{R}_+^n} \left[I_1^* w(t_1, \ldots, t_n) \right]^{\frac{1}{p}} \left[I_1 \sigma_1(t_1) \right]^{\frac{1}{q}} \cdots \left[I_1 \sigma_n(t_n) \right]^{\frac{1}{q}} \right)^{\frac{1}{q}} dt_1 \cdots dt_n;
\]

(ii) if and only if \(B_{PS_n} < \infty \), where

\[
B_{PS_n} := \left(\int_{\mathbb{R}_+^n} \left(\int_0^{t_1} \cdots \int_0^{t_n} [I_1 \sigma_1(t_1)]^q \cdots [I_1 \sigma_n(t_n)]^q w(x_1, \ldots, x_n) dx_1 \cdots dx_n \right)^{\frac{1}{q}} \right)^{\frac{1}{p}} dt_1 \cdots dt_n.
\]

Moreover, \(C_n \approx B_{MR_n} \approx B_{PS_n} \) with equivalence constants dependent on \(p, q \) and \(n \).

Theorem 4.5. [12] Theorems 3.3, 3.4 Let \(1 < q < p < \infty \). Assume that \(w \) in (1) satisfies (33) and \(I_1^* w_1(0) = \ldots = I_1^* w_n(0) = \infty \). Then (1) is valid for all \(f \geq 0 \) on \(\mathbb{R}_+^n \) with \(C_n < \infty \) independent of functions \(f \)

(i) if and only if \(B_{MR_n}^* < \infty \), where

\[
B_{MR_n}^* := \left(\int_{\mathbb{R}_+^n} \left[I_n \sigma(t_1, \ldots, t_n) \right]^{\frac{1}{p'}} \left[I_1^* w_1(t_1) \right]^{\frac{1}{q'}} \cdots \left[I_1^* w_n(t_n) \right]^{\frac{1}{q'}} \right)^{\frac{1}{q'}} dt_1 \cdots dt_n;
\]

(ii) if and only if \(B_{PS_n}^* < \infty \), where

\[
B_{PS_n}^* := \left(\int_{\mathbb{R}_+^n} \left(\int_0^{t_1} \cdots \int_0^{t_n} (I_1^* w_1)^{p'} \cdots (I_1^* w_n)^{p'} \right)^{\frac{1}{p'}} \cdots \left[I_1 \sigma_n(t_n) \right]^{\frac{1}{q'}} \right)^{\frac{1}{p'}} dt_1 \cdots dt_n.
\]

Moreover, \(C_n \approx B_{MR_n}^* \approx B_{PS_n}^* \) with equivalence constants dependent on \(p, q \) and \(n \).
Bibliography

[1] Barza S. Weighted multidimensional integral inequalities and applications: Doctoral Thesis. — Luleå University of Technology, Department of Mathematics. — 1999. — N 1999:30. — 134 pp.

[2] Gogatishvili A., Kufner A., L.–E. Persson, Wedestig A. An equivalence theorem for integral conditions related to Hardy’s inequality // Real Anal. Exchange — 2003/04. — Vol. 29, N 2. — P. 867–880.

[3] Goldman M.L., Heinig H.P., Stepanov V.D. On the principle of duality in Lorentz spaces // Can. J. Math. — 1996. — Vol. 48. — P. 959–979.

[4] Kokilashvili V., Meskhi A., Persson L.–E. Weighted norm inequalities for integral transforms with product kernels. — Nova Science Publishers, New–York, 2009.

[5] Kufner A., Maligranda L., Persson L.–E. The Hardy inequality. About its history and some related results. — Vydavatelský Servis, Plzeň, 2007.

[6] Kufner A., Persson L.–E., Samko N. Weighted inequalities of Hardy-type. World Scientific Publishing Co. Inc. New Jersey, 2017.

[7] Maz’ja V. G. Sobolev spaces. — Berlin: Springer Series in Soviet Mathematics. Springer-Verlag, 1985.

[8] Meskhi A. A note on two-weight inequalities for multiple Hardy-type operators // J. Funct. Spaces Appl. — 2005. — Vol. 3, N 3. — P. 223–237.

[9] Muckenhoupt B. Hardy inequalities with weights // Studia Math. — 1972. — Vol. 44. — P. 31–38.

[10] Persson, L.–E., Stepanov, V. D. Weighted integral inequalities with the geometric mean operator // J. Inequal. Appl. — 2002. — Vol. 7. — P. 727–746.

[11] Persson L.–E., Stepanov V., Wall P. Some scales of equivalent weight characterizations of Hardy’s inequality: the case $q<p$ // Math. Inequal. Appl. — 2007. — Vol. 10, N 2. — P. 267–279.

[12] Persson L.–E., Ushakova E.P. Some multi–dimensional Hardy type integral inequalities // J. Math. Inequal. — 2007. — Vol. 1, N 3. — 301–319.

[13] Prokhorov D. V., Stepanov V. D. and Ushakova E. P. Hardy–Steklov integral operators: Part I // Proc. Steklov Inst. Math. — 2016. — Vol. 300, N 2. — P. 1–112.

[14] Sawyer E. Weighted inequalities for two–dimensional Hardy operator // Studia Math. — 1985. — Vol. 82, N 1. — P. 1–16.

[15] Tomaselli, G. A class of inequalities // Boll. Unione Mat. Ital. — 1969. — Vol. 2. — 622–631.

[16] Wedestig A. Weighted inequalities of Hardy–type and their limiting inequalities: Doctoral Thesis. — Luleå University of Technology, Department of Mathematics. — 2003. — N 2003:17. — 106 pp.

[17] Wedestig A. Weighted inequalities for the Sawyer two–dimensional Hardy operator and its limiting geometric mean operator // J. Inequal. Appl. — 2005. — Vol. 4. — P. 387–394.