Hydrogen Bond Networks in Binary Mixtures of Water and Organic Solvent SI

Simon Stehle‡§ and Andreas Siegfried Braeuer‡,*

‡ Institute of Thermal-, Environmental- and Resources’ Process Engineering (ITUN), Technische Universität Bergakademie Freiberg (TUBAF), Leipziger Strasse 28, 09599 Freiberg, Germany

§ Erlangen Graduate School in Advanced Optical Technologies (SAOT), Friedrich-Alexander-Universitaet Erlangen-Nuernberg (FAU), Paul-Gordan-Straße 6, 91052 Erlangen, Germany

*andreas.braeuer@tu-freiberg.de

1 Spectra processing

1.1 Baseline correction

The raw experimental spectra are baseline corrected by subtracting an underground spectrum from the raw experimental spectrum. The underground spectrum is generated by fitting a spline function through points in the spectrum at which the Raman signal intensity, due to the absence of Raman peaks at these positions, is known to be zero. For further details we refer to reference.¹

1.2 Isolation of the OH stretching vibration

In the baseline corrected Raman spectra $S_{\text{mix}}^{\text{EXP}}$ of binary mixtures of water and organic solvent the CH stretching vibration of the organic solvent spectrally overlaps between 3000 cm$^{-1}$ and 3200 cm$^{-1}$ with the OH stretching vibration of water or of the alcohol. Therefore, we subtract according to equations (1) and (2) the CH signal from the mixture spectra. On this purpose the
mixture spectrum $S_{\text{mix}}(\bar{v}_S)$ is represented by a modelled mixture spectrum $S_{\text{mix,mod}}(\bar{v}_S)$ that, using a partial least squares minimization, is fitted to the experimental one $S_{\text{mix}}(\bar{v}_S)$. The modelled spectrum

$$S_{\text{mix,mod}}(\bar{v}_S) = S_{\text{mod}}^{CH1,4}(\bar{v}_S) + S_{\text{mod}}^{OH1,6}(\bar{v}_S),$$

is composed of 4 pseudo Voigt profile peaks $S_{\text{mod}}^{CH1,4}$ that represent the CH Raman signal (dotted orange in Figure S1) and of six Gaussian profile peaks $S_{\text{mod}}^{OH1,6}$ (dotted blue in Figure S1) that represent the OH stretching vibration of the alcohol and water. In order to obtain the isolated OH Raman spectrum of the mixture

$$S_{\text{mix}}^{OH}(\bar{v}_S) = S_{\text{mix}}(\bar{v}_S) - S_{\text{mod}}^{CH1,4}(\bar{v}_S),$$

we subtract the modelled $S_{\text{mod}}^{CH1,4}$ CH Raman signal from the mixture spectrum S_{mix}.

During the fitting procedure of the modelled spectrum to the experimental spectrum each of the four pseudo Voigt profile peaks for the CH Raman signal and the six Gaussian profile peaks for the OH Raman signal have certain degrees of freedom. Their central peak position can be fitted within certain ranges (Table S1), whereas the peak height and their width have no restraints.

Table S1: List of restraints for the peak centers for the fit of the four pseudo Voigt profile peaks for the CH Raman signal and the six Gaussian profile peaks for the OH Raman signal. For acetonitrile $S_{\text{mod}}^{CH1,4}$ has been replaced by the pure Acn CH spectrum peak, without fitting a model spectrum.

Peak	Peak center / cm$^{-1}$ Methanol	Peak center / cm$^{-1}$ Ethanol
CH1	2550-2650	2710-2730
CH2	2835-2845	2870-2890
CH3	2942-2952	2920-2940
CH4	2950-3050	2960-2980
OH1	3165-3250	
OH2	3250-3300	
OH3	3320-3450	
OH4	3450-3560	
OH5	3560-3700	
OH6	3700-3500	

Additionally the shape of the pseudo Voigt profile peaks can be fitted by varying the fractions of Gaussian and Lorentzian shares. Due to the many fit parameters the partial least squares
optimization algorithm requires quite some computational effort. The computational effort can be reduced, if the modelled CH Raman signal $S_{\text{mod}}^{\text{CH}}$, is once fitted to the pure compound spectrum of the organic solvent, as it is shown in Figure S1, and then considered as fixed peak assemble, where all fit parameters except the intensity of the peak assemble are kept constant.

Figure S1: Raman spectra of pure methanol (a) and pure ethanol (b) at 0.4 MPa and 308 K (bold black line) with the partial least square fit of 4 pseudo Voigt profiles for the CH stretching vibration (dotted orange lines) and 6 Gaussian profiles for the OH stretching vibration (dotted blue lines). The green line shows the sum of the four pseudo Voigt profile peaks. Grey line: difference between the best fit and the pure compound spectra.

Figure S2 shows the isolated OH Raman spectra $S_{\text{mix}}^{\text{OH}}(\tilde{\nu}_S)$ of the three analyzed mixtures of water and organic solvent for mixture compositions between pure water and pure organic solvent. The up-and-down course of the spectra $S_{\text{mix}}^{\text{OH}}(\tilde{\nu}_S)$ at the left margin of the Raman-shift scale is an artifact of the subtraction of the CH-Raman signal according to equation (2) above. This range of Raman shifts is not considered for the computation of the centroid of the OH Raman signal.
Figure S2: Isolated OH Raman spectra of the mixture \(s_{\text{mix}}^{OH}(\bar{\nu}_S) \) for the mixtures a) water/methanol, b) water/ethanol and c) water/acetonitrile at 0.4 MPa and 308 K over the whole composition range. Pure water spectra show the largest intensity. The small black oval in (c) marks minimal negative intensity values resulting from the acetonitrile subtraction. We will discuss this at the calculation of the molar spectra where this effect becomes more visible. The mixture compositions for all Raman spectra are listed in Table S2.

1.3 Computation of molar Raman spectra

The Raman spectra \(s_{\text{mix}}^{OH}(\bar{\nu}_S) \) are converted into molar Raman spectra \(s_{\text{mix}}^{OH}(\bar{\nu}_S) \) by multiplication with the molar volume of the mixture \(v_m^{\text{mix}} \). The molar volume of each mixture

\[
v_m^{\text{mix}} = \frac{M_{\text{mix}}}{\rho_{\text{mix}}} = \frac{x_1M_1^0 + x_2M_2^0}{\rho_{\text{mix}}} \tag{4}\]

is computed from the density of the mixture \(\rho_{\text{mix}} \) which is determined with the Coriolis densitometer, the respective molar fractions \(x_i \) of the compounds in the mixture, which are known from the amounts of the compounds fed via the syringe pumps, and their molar masses \(M \). The molar Raman spectra \(s_{\text{mix}}^{OH}(\bar{\nu}_S) \) of mixtures water/organic solvent are presented in Figure S3. The centroid is computed from portion of \(s_{\text{mix}}^{OH} \) inside the blue background rectangle.
Figure S3: Molar OH Raman spectra $s^{OH}_{mix}(\tilde{v}_S)$ of the mixtures a) water/methanol, b) water/ethanol and c) water/acetonitrile at 0.4 MPa and 308 K over the whole composition range. The blue background illustrates the area from which the centroid is calculated. The small black oval in (c) marks minimal negative intensity values resulting from the acetonitrile subtraction. The mixture compositions for the all Raman spectra are listed in Table S2.

1.4 Computation of partial molar spectra

The partial molar Raman spectra of compound i in the mixture with compound j

$$s^{OH}_{i(j)}(\tilde{v}_S) = s^{OH}_{mix}(\tilde{v}_S) + (1 - x_i) \left(\frac{\partial s^{OH}_{mix}(\tilde{v}_S)}{\partial x_i} \right)_{T,p}$$

(5)

and of compound j in the mixture with compound i

$$s^{OH}_{j(i)}(\tilde{v}_S) = s^{OH}_{mix}(\tilde{v}_S) - x_i \left(\frac{\partial s^{OH}_{mix}(\tilde{v}_S)}{\partial x_i} \right)_{T,p}$$

(6)

are computed from the molar mixture spectra $s^{OH}_{mix}(\tilde{v}_S)$ in accordance to the computation of thermodynamic partial molar properties. In order to achieve an accurate description of the derivatives $\left(\frac{\partial s^{OH}_{mix}(\tilde{v}_S)}{\partial x_i} \right)_{T,p}$, high quality Raman spectra have to be recorded in rather small increments with respect to the composition x_i.
In practice, we apply equation (5) and (6) pixel by pixel or Raman shift by Raman shift. For example, for a Raman shift of 3300 cm\(^{-1}\) the evolution of signal intensity \(s_{\text{OH}}^{\text{mix}}(3300)\) is considered as a function of the mixture composition and thereafter derived. Once this has been done for each pixel or for each Raman shift, the partial molar Raman spectrum can be reassembled for all Raman shifts.

Figure S4 shows in the upper row partial molar Raman spectra of water and in the bottom row the partial molar Raman spectra of the organic solvent.

![Graphs of partial molar OH Raman spectra](image)

Figure S4: Partial molar OH Raman spectra of the three analyzed mixtures water/methanol, water/ethanol and water/acetonitrile (left to right) at 0.4 MPa, 308 K and different water molar fractions. The upper row presents the partial molar spectra of water and the lower row the ones of the organic solvents. The blue background illustrates the area from which the centroid is calculated.

Negative intensity values within the partial molar Raman spectra are meaningful. They imply that for example the addition of acetonitrile to the mixture with water causes a reduction of the molar OH Raman spectrum \(s_{\text{mix}}^{\text{OH}}(\nu_S)\) at Raman shifts, where \(s_{\text{Acn}(W)}^{\text{OH}}(\nu_S)\) is negative and an increase where \(s_{\text{Acn}(W)}^{\text{OH}}(\nu_S)\) is positive.
Analyzed mixture compositions and densities

Table S2: List of all investigated compositions and measured densities for the three binary mixtures W/Acn, W/MeOH and W/EtOH

\dot{V}_{Acn} / µl min⁻¹	\dot{V}_{W} / µl min⁻¹	x_{Acn}	x_{W}	ρ_{mix}^{308K} / kg m⁻³	ρ_{mix}^{318K} / kg m⁻³	ρ_{mix}^{328K} / kg m⁻³
0	200	0.00	1.00	999	998	997
11	190	0.02	0.98	990	988	990
22	180	0.04	0.96	985	980	980
31	168	0.06	0.94	977	972	968
41	162	0.08	0.92	968	963	959
50	155	0.10	0.90	957	953	951
58	147	0.12	0.88	951	946	940
67	142	0.14	0.86	944	937	935
72	130	0.16	0.84	936	929	927
77	121	0.18	0.82	927	921	918
84	116	0.20	0.80	919	914	908
112	90	0.30	0.70	887	880	874
128	66	0.40	0.60	861	853	847
145	50	0.50	0.50	838	830	823
161	37	0.60	0.40	819	811	804
176	26	0.70	0.30	803	794	787
186	16	0.80	0.20	789	780	773
195	15	0.82	0.18	786	778	771
200	13	0.84	0.16	784	775	768
200	11	0.86	0.14	781	773	766
170	8	0.88	0.12	779	771	764
182	7	0.90	0.10	777	769	762
210	6	0.92	0.08	774	766	758
190	4	0.94	0.06	773	764	756
230	3	0.96	0.04	771	762	754
230	2	0.98	0.02	769	761	753
200	0	1.00	0.00	768	759	752

\dot{V}_{MeOH} / µl min⁻¹	\dot{V}_{W} / µl min⁻¹	x_{MeOH}	x_{W}	ρ_{mix}^{308K} / kg m⁻³	ρ_{mix}^{318K} / kg m⁻³	ρ_{mix}^{328K} / kg m⁻³
0	200	0.00	1.00	999	998	997
9	200	0.02	0.98	991	991	990
18	190	0.04	0.96	985	985	984
\(\dot{V}_{\text{E}} \) / µl min\(^{-1} \)	\(\dot{V}_{W} \) / µl min\(^{-1} \)	\(x_{\text{E}} \)	\(x_{W} \)	\(\rho_{\text{mix}}^{30\text{K}} \) / kg m\(^{-3} \)	\(\rho_{\text{mix}}^{31\text{K}} \) / kg m\(^{-3} \)	\(\rho_{\text{mix}}^{32\text{K}} \) / kg m\(^{-3} \)
---	---	---	---	---	---	---
0	200	0.00	1.00			
12	185	0.02	0.98			
24	180	0.04	0.96			
34	165	0.06	0.94			
45	160	0.08	0.92			
53	148	0.10	0.90			
61	138	0.12	0.88			
67	127	0.14	0.86			
75	122	0.16	0.84			
82	115	0.18	0.82			
90	111	0.20	0.80			
115	83	0.30	0.70			
138	64	0.40	0.60			
152	47	0.50	0.50			

water / ethanol
165	34	0.60	0.40	833	826	821									
174	23	0.70	0.30	816	810	805									
194	15	0.80	0.20	802	796	790									
192	13	0.82	0.18	799	793	788									
187	11	0.84	0.16	797	791	785									
199	10	0.86	0.14	794	788	782									
190	8	0.88	0.12	792	786	780									
204	7	0.90	0.10	790	782	778									
186	5	0.92	0.08	787	780	775									
203	4	0.94	0.06	784	779	772									
233	3	0.96	0.04	781	774	770									
159	1	0.98	0.02	779	772	768									
200	0	1.00	0.00	777	771	766									
3 References

(1) Pelletier, M. J. Quantitative analysis using Raman spectrometry. Appl. Spectrosc. 2003, 57, 20A-42A, DOI: 10.1366/000370203321165133.

(2) Gmehling, J.; Kolbe, B.; Kleiber, M.; Rarey, J. R. Chemical thermodynamics for process simulation; Wiley-VCH-Verl.: Weinheim, 2012.