Childhood Physical Abnormalities Following Paternal Exposure to Sulfur Mustard Gas in Iran: A Case-control Study

Citation
Abolghasemi, Hassan, Mohammad H. Radfar, Mehdi Rambod, Parvin Salehi, Hossein Ghofrani, Mohammad R. Soroush, Farahnaz Falahaty, et al. 2010. Childhood physical abnormalities following paternal exposure to sulfur mustard gas in Iran: a case-control study. Conflict and Health 4:13.

Published Version
doi:10.1186/1752-1505-4-13

Permanent link
http://nrs.harvard.edu/urn-3:HUL.InstRepos:4595153

Terms of Use
This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA

Share Your Story
The Harvard community has made this article openly available. Please share how this access benefits you. Submit a story.
Childhood physical abnormalities following paternal exposure to sulfur mustard gas in Iran: a case-control study

Hassan Abolghasemi¹, Mohammad H Radfar²*, Mehdi Rambod³, Parvin Salehi¹, Hossein Ghofrani¹, Mohammad R Soroush⁴, Farahnaz Falahaty¹, Yousef Tavakolifar¹, Ali Sadaghianifar¹, Seyyed M Khademolhosseini¹, Zohreh Kavehmanesh¹, Michel Joffres⁵, Frederick M Burkle Jr⁶, Edward J Mills⁷

Abstract

Background: Mustard gas, a known chemical weapon, was used during the Iran-Iraq war of 1980-1988. We aimed to determine if exposure to mustard gas among men was significantly associated with abnormalities and disorders among progenies.

Methods: Using a case-control design, we identified all progenies of Sardasht men (exposed group, n = 498), who were born at least nine months after the exposure, compared to age-matched controls in Rabat, a nearby city (non-exposed group, n = 689). We conducted a thorough medical history, physical examination, and appropriate paraclinical studies to detect any physical abnormality and/or disorder. Given the presence of correlated data, we applied Generalized Estimating Equation (GEE) multivariable models to determine associations.

Results: The overall frequency of detected physical abnormalities and disorders was significantly higher in the exposed group (19% vs. 11%, Odds Ratio [OR] 1.93, 95% Confidence Interval [CI], 1.37-2.72, P = 0.0002). This was consistent across sexes. Congenital anomalies (OR 3.54, 95% CI, 1.58-7.93, P = 0.002) and asthma (OR, 3.12, 95% CI, 1.43-6.80, P = 0.004) were most commonly associated with exposure. No single abnormality was associated with paternal exposure to mustard gas.

Conclusion: Our study demonstrates a generational effect of exposure to mustard gas. The lasting effects of mustard gas exposure in parents effects fertility and may impact child health and development in the long-term.

Introduction

Sulfur mustard gas [bis(2-chloroethyl)sulfide], first synthesized in early 1800 s, has been used in several major wars, and is a common chemical warfare agent [1]. Iraqi forces used it against civilian populations during the 1980-1988 Iran-Iraq war [2,3].

Although mustard gas can have severe systemic effects on humans [1], it is best known as a skin vesicant. In a series of approximately 34,000 Iranian patients exposed to mustard gas, the lungs, eye, and skin were the most common sites of injury, in order of the greatest prevalence [4,5].

Beside its acute effects, mustard gas has a number of known long-term effects on various body organs such as lung, stomach, bone marrow, and gonads [6-11]. In addition, sulfur mustard has been shown to influence the reproductive function in both animals and human beings [9,12-14]. It is a potent carcinogen and mutagen [15]. However, there is little information about parental exposure to sulfur mustard and congenital anomalies in the offspring.

We aimed to estimate the frequency of physical abnormalities and disorders among the progenies of men in a major urban setting (Sardasht City) exposed to sulfur mustard gas. We aimed to compare the prevalence of observed abnormalities and disorders with those of a non-exposed population.
Methods

Subjects and setting

We began this study in 2004, about 17 years after the chemical attack in Sardasht. We followed children up to March 2009. Sardasht is a western Iranian city that was chemically bombarded with sulfur mustard gas (HD) by Iraqi forces on June 28, 1987. Documents maintained by military and civil authorities in Sardasht region confirm that approximately 8025 inhabitants were exposed to mustard gas and approximately 4500 people received medical treatment. Of these, records confirming early clinical manifestations of exposure and subsequent medical complications were available for 735 male survivors [9].

All Sardasht men that had a confirmed history of mustard gas exposure were selected and their progenies, who were born at least nine months after the exposure were considered as the exposed group. However, children whose both parents had confirmed history of exposure to mustard gas were not included in this study.

Since Iraqi forces attacked Iranian soldiers and civilians with various chemical agents several times, a special commission was assigned by Veteran Affairs Organization to confirm the chemical exposure and to determine the severity of injury. This commission consisted of a pulmonologist, a dermatologist, a neurologist, and an ophthalmologist that based their decision on hospital documents, mustard gas exposure stigmata, and clinical signs and symptoms of chronic complications of exposure, and appropriate paraclinical studies as required for diagnostic confirmation. All Sardasht men studied had official confirmation of chemical exposure from this commission. These patients were contacted using the Veteran Affairs Organization’s database and by placing signposts and billboards across the city.

Control population

Rabat is a nearby city that has ethnic, cultural, and geographical characteristics similar to Sardasht but was not exposed to chemical attack. Rabat is 20 Km from Sardasht, and according to governmental reports, no proven traces of chemical agents were found in the Rabat region. There is no difference in access to medical care between the two regions. In this study, 164 couples from Sardasht were frequency matched by age with 136 couples from an existing cohort from Rabat. The initial groups were larger due to differences in the age distribution, we used a random number table to remove randomly several cases and controls to obtain a similar distribution of individuals in each age group.

Data Collection

We developed an interview sheet and a checklist as data-gathering tools. Our data collection included demographic data of all chemically injured males and their spouses in the exposed (Sardasht) group, age, occupation, educational level, date of marriage; close relative marriage, and any history of chemical injury. The same data was also gathered from the non-exposed (Rabat) group.

Trained general practitioners (GPs) evaluated medical histories from all progenies born at least nine months after the date of the chemical exposure in both exposed and non-exposed groups. In addition, the GPs performed a complete physical examination. If any physical abnormality or special disorder was suspected, the progeny was referred to a pediatrician to confirm the diagnosis. If the pediatrician considered additional diagnostic tools necessary for confirmation, paraclinical studies (e.g. echocardiography, spirometry, various imaging techniques) were performed.

Based on these examinations and confirmatory paraclinical studies, various abnormalities were identified and recorded. All abnormality entities were coded based on International Classification of Diseases, revision 10 (ICD-10) and/or disorders were classified as follows: diseases of the blood; endocrine, nutritional and metabolic diseases; mental and behavioral disorders; diseases of the nervous system and epilepsy; diseases of the eye, adnexa, ear and mastoid process; diseases of the circulatory system; diseases of the respiratory system; diseases of the digestive system; diseases of the musculoskeletal system; diseases of the genitourinary system; and congenital malformations. Whenever any disagreement occurred between the diagnostic opinion of GPs and the pediatrician, the pediatric diagnosis was accepted. In addition, if a progeny had a history of physical abnormality and disorder based on medical records but had normal physical exam at the time of the present study, due to previous medical treatment or surgical management, they were included as an event. Physical abnormalities or disorders were defined as any abnormality that can be detected by medical history, physical exam, or paraclinical studies.

Our sample size estimation was based on 95% power, a two-sided alpha (0.01), and an expected difference of 10% with a continuity correction. We provide descriptive statistics on the populations as groups. To take into account the correlation between families, we used SAS GENMOD procedure (SAS 9.2 SAS, Gary, NC), assumed a binomial distribution, logit link function and an exchangeable correlation matrix type. We provide point estimates as Odds Ratios (ORs) with 95% Confidence Intervals (CIs). We used 2-sided P-values.

Results

Two hundred and eighty-three couples had official confirmation of exposure to Sulfur Mustard gas. Of these,
in 193 couples only the male partner was chemically injured at least nine months before conception. Nineteen of these men were infertile (primary infertility in 12 men); of the seven men with secondary infertility five men had become infertile after the exposure; one was infertile before exposure and the data of the last one was not available. Ten were older than 65 years at exposure. Therefore, this study included 164 couples as designated exposed group. The non-exposed group, also, consisted of 136 age-matched couples. General characteristics of exposed and non-exposed groups are summarized in Table 1.

Of a total number of 498 progenies born at least nine months after chemical attack in the exposed group, 291 (58%) were males (male/female ratio: 1:1.40). In Rabat, 689 children were born at least nine months after the date of Sardasht bombardment; 350 (50%) were males (male/female ratio: 1:1.03). Children in the non-exposed group were slightly older than their counterparts in the exposed group (10.6 standard deviation (SD) 4.7 years and 9.0 SD 4.7 years, respectively, P = < 0.0001). In both groups, the minimum child’s age was 0.1 year and maximum age 16 years.

Based on the medical history, physical examination, and paraclinical studies, a comparative listing of abnormalities was prepared between the exposed and non-exposed groups. This list and related ICD-10 coding is provided in Table 2. In addition, the numbers of progenies whose abnormality was confirmed by medical history but were partially or completely normal at the time of physical examination because of prior medical intervention were 32 (6.4%) and 20 (2.8%) in the exposed and non-exposed groups, respectively (P = 0.19).

In the exposed and non-exposed groups, 120 (24%) and 52 (7.5%) patients were referred to the pediatrician for further investigation and confirmation of diagnosis. After this second-level assessment, the overall frequency of evaluated abnormalities and disorders in the exposed group was significantly higher than the non-exposed group (95 [19%] vs. 77 [11%]; 1.93, 1.37-2.72, P < 0.001).

According to the ICD-10 coding, 20 (4%) patients in the exposed group had respiratory diseases ("J" group) and 21 (4%) congenital malformations ("Q" group), respectively; while both these figures were 9 (1%) in the non-exposed group. Frequency of respiratory diseases (OR, 3.12, 95% CI, 1.43-6.80, P = 0.004) and congenital malformations (OR 3.54, 1.58-7.93, P = 0.002) were significantly higher in the exposed group than in the non-exposed (See Table 2).

Discussion

Our study found that the overall frequency of physical abnormalities is significantly associated with children whose fathers were exposed to mustard gas. Furthermore, there was a significant association between paternal exposure to mustard gas and both respiratory diseases and congenital malformations. Given the widespread use of mustard gas in wartime, the lasting effects may potentially last generations.

Animal and human studies indicate that paternal exposure to certain agents can result in developmental

Table 1 General characteristics of exposed (Sardasht) and non-exposed (Rabat) couples at the time of the study
Exposed (Sardasht)

Age (years)
Males
Females
Duration of marriage
20.5 (8.0)
Close relative marriage
7.3% (N = 12)
Education level (female partner)
Illiterate
Elementary
High School
Some or more college
Number of Children
Males
Females
Total
Average number of children per father
3
Average number of brothers
1.7
Average number of sisters
1.6

Data are presented as mean standard deviation (SD) or proportion (%).
Several studies demonstrated that exposure of male rats and mice to cyclophosphamide can lead to congenital malformations in progenies [17,18]. In humans, paternal exposure to various agents such as acrylamide, lead, and solvents result in an increase in congenital malformations [19-21]. A mechanism suggested for the effect of paternal preconception exposure is the occurrence of transmissible genetic changes or an epigenetic mechanism [22-24].

Sulfur mustard is a cytotoxic agent with mutagenic and carcinogenic effects [15]. Its active intermediate, sulfonium ion, reacts rapidly with proteins and nucleic acids, alters chemical functional groups such as amines, carboxyls, phosphates, S-H, and O-H groups, and produces alklation products. This process may result in cross-linking between adjacent strands of DNA, which has been shown to be extremely lethal to cells [6]; Confirmed effects of sulfur mustard gas on spermato genesis may explain the observed overall increase in physical abnormalities among the progenies of chemical victims [2,12,25,26]. However, few studies, previously performed, were conclusive in determining a causal relationship. Pour-Jafari et al. [27] studied the rate of congenital malformations among progenies and their parents.

Table 2 List of physical abnormalities and disorders and their ICD-10 coding found in the progenies of males exposed and non-exposed to mustard gas (Continued)

Condition*	ICD Group	Exposed (Sardasht) (n = 498)	Non-exposed (Rabat) (n = 689)	Congenital Malformations	Q group	
Endocrine, Nutritional and Metabolic Diseases	E Group			Microcephaly	Q 02	
Hyperthyroidism	E 05	1	0	Congenital cardiac disease	Q 21	
Addison's disease	E 27.1	1	1	Ventricular septal defect	Q 21.0	
Total				Tetralogy of Fallot	Q 21.3	
Mental and Behavioral Disorders	F Group			Aortic stenosis	Q 23.0	
Mental retardation	F 70	4	0	Cleft palate	Q 35	
Diseases of the Nervous System	G Group			Bicornuate uterus	Q51	
Epilepsy	G 40	0	1	Retractile/Undescended testis	Q 55.2	
Muscular dystrophy	G 71.0	0	1	Congenital dislocation of hip	Q 65.0	
Cerebral Palsy	G80	6	3	Club foot	Q 66.0	
Total				Flat foot	Q 66.5	
Diseases of the Eye, Adnexa, Ear and Mastoid Process	H Group			Congenital musculoskeletal deformities of head, face, spine and chest	Q 67	
Ambliopia	H 53.0	0	1	Pectus excavatum	Q 67.6	
Strabismus	H 50	1	3	Phocomelia	Q73	
Ptosis	H 02.4	0	2	Congenital malformation of knee	Q74.1	
Congenital nistagmus	H 55	1	0	Total	23	8
Hearing loss	H 90	1	1	Total	99	67

*Children may present with more than one condition
of Iranian victims before and after chemical warfare exposure and found that the rate of major malformations has increased from 33 per 1000 to 258 per 1000. Although they had used his cases as their own controls, and thus reduced selection bias, they did not adjust for the effect of parents’ increasing age on malformation occurrence. Taher et al.[28] claimed that the use of mustard gas in the Iran-Iraq conflict might have increased the number of cleft lip and cleft palate in children, however, they were not able to establish any causal effect between these two events, nor could they exclude the effects of other possible causes.

Strengths & Limitations
Strengths of our study include its sample size and locally relevant controls. Sardasht is one of the rare instances in the world with a large population of mustard gas victims. Despite initial resistance to studying the effects of exposure, overtime, initial politico-ethical resistance has faded. No similar study has yet been performed with this population. Furthermore, presence of an unexposed population in a nearby city (Rabat) with characteristics similar to the exposed group provided a unique opportunity to further strengthen this analysis. An inherent limitation of studies like this, where the participants may consider probable benefits by over-reporting adverse outcomes, and also where a long time is passed from the date of the event under investigation, is the possibility of recall bias. We aimed to minimize these biases by an inclusive physical exam and appropriate paraclinical studies of live birth children to determine disorders and malformations. It is possible that karyotyping and other genetic studies could have revealed more problems [25,29]. It is also possible that miscarriages or abortions would have yielded differing effects. Finally, it is possible that our control population differs importantly from the exposed population that we have not recognized. This issue exists with any non-randomized comparison and we are unable to overcome this concern.

Our study found a significant association between exposure to mustard gas and common disorders and malformations. We did not find that any specific disorder or malformation was associated with exposure. We expected this as, with anencephaly, for example, there is a prevalence rate of about one in 1000 live births [1], thus, even with a doubling of risk rates, a much greater population would need to be studied to reveal strong association with chemical exposure. Considering the high number of chemical victims in Iran, this study may catalyze further comprehensive assessments with larger study populations. Using a post hoc sample size calculation, we find that our study had greater than 95% power to detect malformations and greater than 99% power to detect malformations/disorders.

We evaluated all clinical disorders and malformations, regardless of hypothesis driven associations with chemical exposure. Our reasoning for this is that the link between genetic disorders and resulting illnesses is not yet completely understood. So, for example, while rheumatic fever with congenital involvement may be most often associated with communicable disease genesis, we cannot rule out that parental chemical exposure may be associated with predispositions to certain illnesses [30].

Interpretation
Our study found a significant association between overall frequency of physical abnormalities and disorders and paternal exposure to mustard gas. Given the considerable victims of mustard gas among Iranian civilians and military personnel, as well as civilians and military in other conflicts, the effects of war may have a lasting and important effect on generations to come.

Ethical statement
The Board of Research Ethics in the Janbazan Medical and Engineering Research Center (JMERC) and Shahed University approved this study. Informed written consent was obtained from all the parents and caregivers involved in this study.

Author details
1Research Center for Chemical Injuries, Baqiyatollah Medical Sciences University, Vanak Square, Tehran, Iran. 2Urology & Nephrology Research Center, Shahid Beheshti University of Medical Sciences 9th Boosstant Street, Pasdaran Avenue, Tehran, Iran. 3Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Velenjak, Tehran, Iran. 4Janbazan Medical and Engineering Research Center (JMERC), Chemical Warfare Victims Research Unit, Velenjak, Tehran, Iran. 5Faculty of Health Sciences, Simon Fraser University, Burnaby, Canada. 6Harvard Humanitarian Initiative, Harvard School of Public Health, Harvard University, Boston, USA. 7Interdisciplinary School of Health Sciences, Faculty of Health Sciences, University of Ottawa, Ottawa, Canada.

Authors’ contributions
HA, MHR, MR, PS, HG, MRS, FF, YT, AS, SMK, ZK conceived the study. HA, MHR, MR, PS, HG, MRS, FF, YT, AS, SMK, ZK designed and conducted the data collection. HA, MHR, MR, PS, HG, MRS, FF, YT, AS, SMK, ZK, MJ, FMB, EJM conducted data analysis. HA, MHR, MR, PS, HG, MRS, FF, YT, AS, SMK, ZK, MJ, FMB, EJM wrote the drafts of the manuscript and approved the final submitted version.

Competing interests
The authors declare that they have no competing interests.

Received: 28 May 2010 Accepted: 14 July 2010 Published: 14 July 2010
References

1. Aguini MJ, Campos AS, Aguilar RA, Lana AM, Magalhaes RL, Babeto LT: Neural tube defects and associated factors in liveborn and stillborn infants. J Perinatol 2003, 23:129-34.

2. Azizi F, Keshavarz A, Roshanzamir F, Nafarabadi M: Reproductive function in men following exposure to chemical warfare with sulphur mustard. Med War 1995, 11:34-44.

3. United Nations Security Council: Report of the mission dispatched by the secretary-general to investigate allegations of the use of chemical weapons in the conflict between the Islamic Republic of Iran and Iraq. New York: United Nations 1987.

4. Donovan JW, MacLennan R, Adena M: Vietnam service and the risk of congenital anomalies. A case-control study. Med J Aust 1984, 140:394-7.

5. Cowan DN, DeFrates RF, Gray GC, Goldenbaum MB, Wishik SM: The risk of birth defects among children of Persian Gulf War veterans. N Engl J Med 1997, 336:1650-6.

6. Balali-Mood M, Navaeian A: Clinical and practical findings in 233 patients with sulfur mustard poisoning. Proceedings of the 2nd World Congress on New Compounds in Biological and Chemical Warfare: Toxicological Evaluation, Industrial Chemical Disasters, Civil Protection and Treatment Ghent, Belgium, State University of Ghent 1986.

7. Erickson JD, Mulinare J, McClain PW, et al: Vietnam veterans’ risks for fathering babies with birth defects. JAMA 1984, 252:905-12.

8. Ghanei M, Fatih H, Mohammad MM, Aslani J, Nematzadeh F: Long-term respiratory disorders of claimers with subclinical exposure to chemical warfare agents. Inhal Toxicol 2004, 16:491-5.

9. Ghanei M, Rajaei M, Khatari S, Aledhini F, Haines D: Assessment of fertility among mustard-exposed residents of Sardasht, Iran: a historical cohort study. Reprod Toxicol 2004, 18:65-9.

10. Heston W: Induction of pulmonary tumors in strain A mice with methyl bis (beta-chloroethyl) amine hydrochloride. J Natl Cancer Inst 1949, 10:125-30.

11. Zachi K, Akbar A, Naeni KH: Long-term pulmonary complications in combatants exposed to mustard gas: a historical cohort study. Int J Epidemiol 2004, 33:57-91.

12. Karalleddle L, Wheeler H, Maclehole R, Murray V: Possible immediate and long-term health effects following exposure to chemical warfare agents. Public Health 2000, 114:238-48.

13. Khateri S, Ghanei M, Rajaee M, Alaeddini F, Haines D: Incidence of lung, eye, and skin lesions as late complications in 34,000 Iranians with wartime exposure to mustard agent. J Occup Environ Med 2003, 45:136-43.

14. Sasser LB, Cushing JA, Dacre JC: Two-generation reproduction study of sulfur mustard in rats. Reprod Toxicol 1996, 10:311-9.

15. Gross CL, Nealley EW, Nipwoda MT, Smith WJ: Possible immediate and long-term health effects following exposure to chemical warfare agents. Public Health 2000, 114:238-48.

16. Anderson D: Male-mediated developmental toxicity. Toxicol Appl Pharmacol 2005, 207:506-13.

17. Jenkinson PC, Anderson D: Malformed foetuses and karyotypic abnormalities in the offspring of cyclophosphamide and allyl alcohol-treated male rats. Mutat Res 1990, 229:173-84.

18. Jenkinson PC, Anderson D, Gangolli SD: Increased incidence of abnormal foetuses in the offspring of cyclophosphamide-treated male mice. Mutat Res 1987, 188:57-62.

19. Tomquist MD, et al: Chem Res Toxicol 2002, 13:517-22.

20. Uzych L: Teratogenesis and mutagenesis associated with the exposure of human males to lead: a review. Yale J Biol Med 1985, 58:9-17.

21. Breder JD, Suarez L: Paternal occupation and anencephaly. Am J Epidemiol 1980, 131:517-21.

22. Mageryo N, Mollerloken OJ, Riese T, Koefoed V, Moen BE: A higher risk of congenital anomalies in the offspring of personnel who served aboard a Norwegian missile torpedo boat. Occup Environ Med 2006, 63:92-7.

23. Kircher M, Brendel M: DNA alkylation by mustard gas in yeast strains of different repair capacity. Chem Biol Interact 1983, 44:27-39.

24. Wormser U, Israel M, Van der Zee EA, Brodsky B, Yanai J: A chick model for the mechanisms of mustard gas neurobehavioral teratogenicity. Neurotoxicol Teratol 2005, 27:65-71.

25. Rall DP, Pechura CM: Effects on health of mustard gas. Nature 1993, 366:398-9.

26. Safarnejad MR: Testicular effect of mustard gas. Urology 2001, 58:90-4.

27. Pour-Jafari H: Congenital malformations in the progeny of Iranian chemical victims. Vet Hum Toxicol 1994, 36:562-3.

28. Taher AA: Clef lip and palate in Tehran. Clef Palate Cleft Palate 1992, 29:15-6.

29. Watson AP, Jones TD, Griffin GO: Sulfur mustard as a carcinogen: application of relative potency analysis to the chemical warfare agents H, HD, and HT. Regul Toxicol Pharmacol 1989, 10:1-25.

30. Nayar S, Nayar PG, Cherian KM: Heart valve structure: a predisposing factor for rheumatic heart disease. Heart 2006, 92:1151-2.