Materials Research Express

PAPER

Efficient CO$_2$ adsorption using mesoporous carbons from biowastes

Ganesan Sriram1, Supriya S1,2, Mahaveer Kurkuri1 and Gurumurthy Hegde2

1 Centre for Nano and Material Sciences, Jain University, Jain Global Campus, Bengaluru, 562112, Karnataka, India
2 Centre for Nano-Materials & Displays, B M S College of Engineering, Bull Temple Road, Bengaluru—560 019, Karnataka, India
3 Department of Chemistry, B M S College of Engineering, Bull Temple Road, Bengaluru—560 019, Karnataka, India

E-mail: murthyhegde@gmail.com

Keywords: biowastes, allium cepa peels, CO$_2$ adsorption, pore size

Supplementary material for this article is available online

Abstract

The mesoporous carbon nanomaterials obtained from waste onion peels confirmed the formation of mesoporous carbon nanospheres (CNSs) with an average pore diameter of 2 nm. The as obtained CNSs were studied to demonstrate their ability to adsorb the greenhouse gas CO$_2$ at different temperatures, 30, 40 and 50 °C. The results showed that the CNSs have high potential to adsorb CO$_2$ at these temperatures. Present work demonstrates the formation of sustainable, porous adsorbents by a simple waste to wealth based approach that is effective for the adsorption of CO$_2$.

Introduction

An uncontrolled, exponential increase in the level of CO$_2$ is considered to be the most serious potential threat as it creates severe environmental damages [1]. Currently, the prime priority of entire scientific community is to alleviate the unfettered release of CO$_2$ and to balance its concentration in atmosphere. This has evoked an interest in the scientific community to undertake all possible efforts to separate and capture the greenhouse gas using various techniques [2–4]. The usual techniques involve membrane separation [5], liquid solvent absorption/ionic liquids [6, 7], cryogenic approaches [8, 9], and adsorption on solid sorbents [10, 11].

Of various separation techniques, adsorption of CO$_2$ over solid sorbents, especially porous adsorbents has received considerable attention in terms of energy efficiency and cost effectiveness. Accordingly, the porous materials zeolites, silica, carbonaceous materials, molecular sieves, metal organic frameworks, nanoporous polymers, etc [12–14] have been investigated for their efficiency as potential CO$_2$ adsorbents. In recent years, the carbon-based materials having porous nature are extensively recommended as they exhibit diverse attractive features as listed; the pores in carbon materials ensure faster diffusion and extremely high permeability gas molecules compared to other solid sorbents [15]; possess inherent affinity towards CO$_2$ [16]; provide structural stability over a large number of cycles with insensitive to moisture [17]; require less energy for regeneration [18]; display tunable textural properties [17, 19]; and ensure low cost [20, 21].

Though, the porous carbon structures synthesized from chemical substrates have been earlier used as sorbents, the major challenge encountered is cost. Therefore, a low cost, stable and environmentally benign material is in quest. In this regard, the recent focus is driven on valorization of biomass/bio–waste materials to sustainable carbon nanomaterials that can serve the purpose [22–28]. It proposes an inexpensive method due to abundant availability of precursors and a simple procedure (one-step pyrolysis) of carbon nanomaterial synthesis such as carbonization [23], ammoxidation [24], hydrothermal [25, 26, 29], KOH activation [27], calcination [28], and pyrolysis [30]. Moreover, they offer large surface area and high pore volume which facilitates gas adsorption. Few reports are available, in this regard, where bio-derived carbonaceous materials have shown excellent ability to uptake CO$_2$, and the results are comparable with that of commercial adsorbents. Elisa et al reported the preparation of carbon materials from biomass. The sorption studies evaluated 1.3 mmol g$^{-1}$ of CO$_2$ at 25 °C [31]. In a similar study, the activated carbon produced from waste oil fly ash was used as CO$_2$ adsorbent by Saad et al [32]. The carbon material was used to capture CO$_2$ (74.5 mg g$^{-1}$) from a mixture of N$_2$ and CO$_2$, and the chemisorbed amount of the gas increased over a temperature range, 0–40 °C. Further, nitrogen doped carbon materials have been used as excellent
CO₂ sorbents [33–36] because the hydrogen bonding between the surface of carbon and CO₂ molecule is considered to facilitate adsorption process. A nitrogen doped activated carbon material is synthesized by Xing et al [37], using bean dreg of soya bean milk. These activated carbon materials were capable of adsorbing CO₂ up to 4.24 mmol g⁻¹. Similarly, the KOH activated porous carbon material obtained from celtuce leaves had an adsorption capacity of 6.04 and 4.36 mmol g⁻¹ at 0 and 25 °C, respectively [38].

The biomass derived carbon structures used as potential adsorbents, reported so far, demanded surface activation subsequent to their synthesis. In recent years, many reports were emphasizing the catalyst free, non-activated mesoporous carbons from various biowastes [39–43].

In this work, we have investigated the CO₂ adsorption capacity of CNSs derived from commonly produced bio-waste, onion peels. The detailed procedure of CNSs synthesis from onion peels by one-step pyrolysis has been reported earlier [17].

Methods

Sample preparation

Biowaste onion peel, the precursor used in this work was collected from market areas nearby. The waste material was washed thoroughly under tap water and completely dried in oven at 80 °C for 2 days. The parched waste was ground to fine powder and carried further for pyrolysis at different temperatures from 500 °C to 900 °C for one hour. The set temperature value was reached at a rate of 10 °C min⁻¹ and this process was carried out under nitrogen atmosphere at gas flow rate of 150 ml cm⁻². After pyrolysis, the carbonized material was rinsed with dil. HCl, followed by washing with distilled water and dried at 80 °C in oven for overnight [17]. The technique involved no usage of catalysts and activation agents, thereby producing CNSs by one-pot, environmental friendly procedure. Detail procedure is given in our earlier reports [17].

Characterization

As mentioned all the characterizations concerning mesoporous shape and size were already reported in our earlier paper [17] and here we repeat some experiments for the sake of clarity. The pyrolyzed products were analyzed by various characterization techniques. The spherical morphology of CNSs were captured using field emission scanning electron microscopy (FESEM, JEOL JSM-7100F) operated at 15 kV and elemental composition was demonstrated by energy dispersive x-ray spectroscopy (EDS). X-Ray diffraction (XRD) patterns were studied from 10° to 60° using PANalytical-x-ray. The Raman spectroscopic analyses of CNSs were performed by New Xplora Plus V1.2 multiline, HORIBA Jobin Yvon confocal Raman spectroscope. N₂ adsorption-desorption experiments were performed to study the textural properties of CNSs surface area and porosity were demonstrated using BELSORP-max, Microtrac, Japan. CO₂ studies were also carried out using BELSORP-max, Microtrac, Japan. CO₂ adsorption and N₂ adsorption values were compared for the better understanding of the structures.

Results and discussion

Bio-waste derived CNSs

The biowaste was pyrolyzed at different temperatures such as 500, 600, 700, 800 and 900 °C; the corresponding products were coded as AC5, AC6, AC7, AC8, and AC9. The features of carbonized products were studied in detail by various characterization techniques. [17]. The outcome of the analyses have been discussed in supplementary (figures S1–S4 is available online at stacks.iop.org/MRX/7/015605/mmedia). The results of CNSs obtained by pyrolysis at 900 °C are mentioned here for illustration purpose.

The pyrolysis temperature was found to have an impact on overall features of the products formed. For the sake of understanding, the SEM and TEM images of AC9 are given in figures 1(a) and (b), respectively and figure 1(c) indicates corresponding histogram. The two prominent peaks appeared in Raman spectroscopic plot (figure 1(d)) at 1350 cm⁻¹ (G band) and 1396 cm⁻¹ (D band) indicated graphitic nature of AC9 CNSs with some extent of disorderness, respectively. The XRD analysis graph in figure 1(e) corroborated with Raman spectroscopic result. The sharp peaks at ~29° and ~44° stipulated crystalline/graphitic feature of AC9. Other peaks correspond to traces of metals present in the carbon matrix. The figure 1(f) is BET plot showing large surface area of AC9 with impressive pore size distribution curve inset.

The graph, figure 2(a), illustrated a direct relationship between carbon content of CNSs with pyrolysis temperature. The volatile matters in bio-material were removed to maximum extent when heated at higher temperatures; as a result, percentage of carbon in CNSs increased in parallel with temperature. The graph also showed reduction in the size of particles from AC5 to AC9 (figure 2(a)). The surface properties of onion peel derived CNSs were analysed using BET technique. The N₂ adsorptio-desorption curves of AC5-AC9 material has been given in figure 2(b). The graph, figure 2(c) variation of surface area and pore volume in parallel with temperature.
Therefore, in the series, AC5 exhibited the lowest value, whereas AC9 showed the highest surface area and pore volume. Further, BET also confirmed the formation of mesoporous structures with a pore diameter ~2 nm.

CO₂ adsorption studies
The CNSs obtained by one-pot pyrolysis of onion peel waste showed excellent surface area and mesoporous nature. Therefore, they were predicted to have the capacity to capture greenhouse gas, CO₂ effectively, at their
surface. CO₂ adsorption was studied using all the materials (AC5-AC9) in series at different temperatures, 30, 40 and 50 °C under absolute pressure from 0 to 1 atm.

Initially, CO₂ adsorption study using biowaste derived CNSs was conducted at 30 °C. The amount of gas captured by each material has been shown in figure 3. As expected, at low temperature (30 °C) CNSs had not shown remarkable adsorption (0.74 mmol g⁻¹ for AC5), because of their poor morphology, order, and surface properties (surface area 5.4 m²g⁻¹; pore volume 0.00 cm³g⁻¹). With high surface area (207 m²g⁻¹ and 550 m²g⁻¹) and pore volume (0.2 cm³g⁻¹ and 0.4 cm³g⁻¹), AC6 and AC7 were found to be efficient sorbents for CO₂ with captured amount 1.43 mmol g⁻¹ and 1.68 mmol g⁻¹, respectively. This result is higher than the amount of CO₂ adsorbed (1.42 mmol g⁻¹) by mesoporous organosilica nanotubes prepared by Wei et al [44]. An unexpected decrease in the adsorption of CO₂ (1.59 mmol g⁻¹ to 1.57 mmol g⁻¹) was observed for AC8 to AC9 materials. Though, AC9 had the largest surface area (929.9 m²g⁻¹) and maximum pore volume (2.3 cm³g⁻¹) in the series, it exhibited less efficiency to capture CO₂ compared to AC7 and AC8 (table 1).

The CNSs, AC5–AC9 were subjected to CO₂ capture studies at slightly elevated temperature. A similar trend was observed at 40 °C, where the carbonized materials formed at lower temperature (500 °C) possessed less capacity to hold CO₂ (0.91 mmol g⁻¹) at their surface; and AC6-AC9 exhibited 1.00 mmol g⁻¹—1.40 mmol g⁻¹. In the series, AC7 exhibited the highest amount (table 1) of as adsorbed with a value of 1.53 mmol g⁻¹. CO₂ adsorption at 50 °C followed the same trend as that of 30 and 40 °C; from AC5 to AC7, the CNSs showed increment in CO₂ capture (0.79—1.34 mmol g⁻¹), which later decreased from AC8 to AC9 (1.32—1.17 mmol g⁻¹). The CO₂ adsorption studies at different temperatures (30, 40 and 50 °C) put light upon the effect of structural and textural properties of onion peel waste derived CNSs on the greenhouse gas adsorption capacity. The plots (figure 3) were evident that CO₂ adsorption increased from AC5 to AC7 and then followed a reduction trend, at all the three temperatures. When relooked at the Raman spectroscopic plot, the intensity of D band (correspond to disorder) and value of I_D/I_G ratio was increased ≥800 °C. Therefore, the increment in the disorder in CNS matrix could be claimed reason for this trend as structural disorder causes distortion of pore channels resulting in hindrance to CO₂ molecules to permeate through [45].

Moreover, during adsorption process, the gas molecules interact with the surface of solid materials; both the walls in small pores influence adsorption. Therefore, in porous CNSs (AC8–AC9) as pore diameter decreased, interactions between pore walls and gas molecules would be lesser resulting in low adsorption of CO₂. Further,
lower amount of CO₂ was adsorbed at 50 °C compared to that at 30 and 40 °C. The result indicated effect of system temperature on the sorption process. When temperature was raised, kinetic energy of the gas molecules elevated, resulting in their escape to bulk free space; consequently, density of the adsorbed phase decreases with increase in temperature [46–48].

Conclusions

Novel mesoporous CNSs synthesized from onion peel waste at a series of temperatures, 500 °C–900 °C by a catalyst free, one-step pyrolysis technique showed the ability to adsorb CO₂ efficiently. The BET studies were evident for the large surface area and mesoporous nature of the carbonized products; the study also showed optimization of surface properties with the increment in pyrolysis temperature. The as-obtained porous CNSs were tested for their efficiency as adsorbents for CO₂ at ambient and elevated temperatures. The isotherms determined the highest amount of gas adsorbed at 30 °C (1.68 mmol g⁻¹) and with the elevation in temperature (40 °C and 50 °C), the gas sorption decreased (1.53 and 1.34 mmol g⁻¹, respectively). Therefore, the study confirmed suitability of bio-waste derived porous CNSs as potential adsorbents for CO₂.

Acknowledgments

G H thanks the Department of Science and Technology-Nanomission Division, Government of India for providing the project grant (File number: SR/NM/NT–1026/2017). The authors would like to thank Dr Kavitha, B M S. Institute of Technology for providing Raman spectroscopic data.

ORCID iDs

Gurumurthy Hegde https://orcid.org/0000-0002-1200-5664

References

[1] Wang J, Huang L, Yang R, Zhang Z, Wu j, Gao Y, Wang Q, O’Hare D and Zhong Z 2014 Recent advances in solid sorbents for CO₂ capture and new development trends Energy Environ. Sci. 7 3478–518
[2] Bae Y S and Snurr R Q 2011 Development and evaluation of porous materials for carbon dioxide separation and capture Angew. Chem. Int. Ed. 50 11586–96
[3] Yang H, Xu Z, Fan M, Gupta R, Slimane R B, Bland A E and Wright I 2008 Progress in carbon dioxide separation and capture: a review J. Environ. Sci. Int. Ed. 27 994–1017
[4] Kenarsari S D, Yang D, Jiang G, Zhang S, Wang J, Russell A G, Wei Q and Fan M 2013 Review of recent advances in carbon dioxide separation and capture J. Membr. Sci. 46 22739–73
[5] Cersosimo M, Bruatti A, Drioli E, Fiorino F, Dong G, Woo K T, Lee J, Lee Y M and Barbieri G 2015 Separation of CO₂ from humidified ternary gas mixtures using thermally rearranged polymeric membranes J. Membr. Sci. 492 257–62
[6] Zeng S, Zhang X, Bai L, Zhang X, Wang H, Wang J, Bao D, Li M, Liu X and Zhang S 2017 Ionic-liquid-based CO₂ capture systems: structure, interaction and process Chem. Rev. 117 9625–73
[7] de Riva J, Suarez-Reyes J, Moreno D, Diaz I, Ferro V and Palomar J 2017 Ionic liquids for post-combustion CO₂ capture by physical adsorption: thermodynamic, kinetic and process analysis Int. J. Greenhouse Gas Control 61 61–70
[8] Song C, Liu Q, Ji N, Deng S, Zhao J and Kitamura Y 2017 Advanced cryogenic CO₂ capture process based on Stirling coolers by heat integration Appl. Therm. Eng. 114 887–95
[9] Song C, Liu Q, Deng S, Li H and Kitamura Y 2019 Cryogenic-based CO₂ capture technologies: State-of-the-art developments and current challenges Renewable Sustainable Energy Rev. 101 265–78
[10] Numaguchi R, Fujiki J, Yamada H, Firoz, Chowdhury A, Kida K, Goto K, Okumura T, Yoshizawa K and Yogo K 2017 Development of post-combustion CO₂ capture system using amine-impregnated solid sorbent Energy Procedia 114 2304–12

Table 1. N₂ adsorption–desorption values and amount of CO₂ adsorbed by AC CNSs at different temperatures, 30, 40 and 50 °C.

Samples	BET (m² g⁻¹)	dₚ (nm)	Vₚ (cm³ g⁻¹)	30 °C	40 °C	50 °C
AC 5	5.4	2.0	0.00	0.74	0.91	0.79
AC 6	207.0	3.1	0.16	1.43	1.00	1.07
AC 7	550.0	2.6	0.37	1.68	1.53	1.34
AC 8	692.0	2.5	0.43	1.59	1.40	1.32
AC 9	929.9	2.3	0.54	1.57	1.40	1.17

dₚ—average pore diameter; Vₚ—total pore volume.
Zhao Y, Zhao L, Yao K X, Yang Y, Zhang Q and Han Y 2012 Novel porous carbon materials with ultrahigh nitrogen contents for selective CO2 capture J. Mater. Chem. 22 19726–31

Supriya S, Sriman G, Ngaieni Z, Kaviitha C, Kurkuri M, De Padova I P and Hegde G 2019 The role of temperature on physical-chemical properties of green synthesized porous carbon nanoparticles Waste Biomass Valor. 1–11

Xia Y, Mokaya R, Walker G S and Zhu Y 2011 Superior CO2 adsorption capacity on N-doped, high-surface-area, microporous carbons templated from zeolite Adv. Energy Mater. 1 678–83

Sevilla M, Macia–Aguiló J A and Fuertes A B 2011 Hydrothermal carbonization of biomass as a route for the sequestration of CO2: chemical and structural properties of the carbonized products Biomass Bioenergy 35 3152–9

Yong Z, Mata V and Rodrigues A R E 2002 Adsorption of carbon dioxide at high temperature-a review Sep. Purif. Technol. 26 195–205

Chen Z, Deng S, Wei H, Wang B, Huang J and Yu G 2013 Activated carbons and amine-modified materials for carbon dioxide capture: a review Front. Environ. Sci. Eng. 7 326–40

Ali G A, Divyashree A, Supriya S, Chong K F, Ethiraj A S, Reddy M V and Hegde G 2017 Carbon nanospheres derived from Lablab purpureus for high performance supercapacitor electrodes: a green approach Dalton Trans. 46 14034–44

Xia Y, Mokaya R, Walker G S and Zhu Y 2011 Superior CO2 adsorption capacity on N-doped, high-surface-area, microporous carbons templated from zeolite Adv. Energy Mater. 1 678–83

Supriya S, Sriman G, Ngaieni Z, Kaviitha C, Kurkuri M, De Padova I P and Hegde G 2019 The role of temperature on physical-chemical properties of green synthesized porous carbon nanoparticles Waste Biomass Valor. 1–11

Xia Y, Mokaya R, Walker G S and Zhu Y 2011 Superior CO2 adsorption capacity on N-doped, high-surface-area, microporous carbons templated from zeolite Adv. Energy Mater. 1 678–83

Sevilla M, Macia–Aguiló J A and Fuertes A B 2011 Hydrothermal carbonization of biomass as a route for the sequestration of CO2: chemical and structural properties of the carbonized products Biomass Bioenergy 35 3152–9

Yong Z, Mata V and Rodrigues A R E 2002 Adsorption of carbon dioxide at high temperature-a review Sep. Purif. Technol. 26 195–205

Chen Z, Deng S, Wei H, Wang B, Huang J and Yu G 2013 Activated carbons and amine-modified materials for carbon dioxide capture: a review Front. Environ. Sci. Eng. 7 326–40

Parshetti G K, Chowdhury S and Balasubramanian R 2015 Biomass derived low-cost microporous adsorbents for efficient CO2 capture Fuel 148 246–54

Serafin J, Narkiewicz U, Morawski A W, Wrobel R J and Michalkiewicz B 2017 Highly microporous activated carbons from biomass for CO2 capture and effective micropores at different conditions J. CO2 Util. 18 73–9

Wang P, Gao Y, Zhao C, Yan J and Lu P 2017 Biomass derived wood ash with amine modification for post-combustion CO2 capture Appl. Energy 201 34–44

Lakshmi S D, Avti P K and Hegde G 2018 Activated carbon nanoparticles from biowaste as new generation antimicrobial agents: a review Nano–Struct. Nano–Objects 16 306–21

Yallappa S, Shivakumar M, Nagashree K L, Dharmaparakash M S, Vinu A and Hegde G 2018 Electrochemical determination of nitrite using catalyst free mesoporous carbon nanoparticles from bio renewable area nut seeds J. Electrochem. Soc. 165 H161–9

Calvo–Muñoz E M, García–Mateos F J, Rosas J M, Rodríguez–Mirasol J and Cordero T 2016 Biomass waste carbon materials as adsorbents for CO2 capture under post-combustion conditions Front. Mater. 3 23

Saad M A, Al-Marri M J, Yaumi A L, Hussein I A and Shawabkeh R 2016 An experimental and kinetic study of the sorption of carbon dioxide onto amine-treated oil fly ash J. Chem. 2016

Ren X, Li H, Chen J, Wei L, Modak A, Yang H and Yang Q 2017 N-doped porous carbons with exceptionally high CO2 selectivity for CO2 capture Carbon 114 473–81

Xue L, Xia Q, Wang L, Wang L, DaCosta H, Yang J and Hu X 2018 CO2 adsorption at nitrogen-doped carbons prepared by K2CO3 activation of urea-modified coconut shell J. Colloid Interface Sci. 511 259–67

Xu J, Shi J, Cui H, Yan N and Liu Y 2018 Preparation of nitrogen doped carbon from tree leaves as efficient CO2 absorbent Chem. Phys. Lett. 711 107–12

Han J, Zhang L, Zhao B, Qin L, Wang Y and Xing F 2019 The N–doped activated carbon derived from sugarcane bagasse for CO2 adsorption Ind. Crops Prod. 128 290–302

Xing W, Liu C, Zhou Z, Zhang L, Zhou J, Zhao S, Yan Z, Gao H, Wang G and Qiao S Z 2012 Superior CO2 uptake of N-doped activated carbon dioxide onto amine-treated oil fly ash J. Chem. 2016

Calvo–Muñoz E M, García–Mateos F J, Rosas J M, Rodríguez–Mirasol J and Cordero T 2016 Biomass waste carbon materials as adsorbents for CO2 capture under post-combustion conditions Front. Mater. 3 23

Saad M A, Al-Marri M J, Yaumi A L, Hussein I A and Shawabkeh R 2016 An experimental and kinetic study of the sorption of carbon dioxide onto amine-treated oil fly ash J. Chem. 2016

Ren X, Li H, Chen J, Wei L, Modak A, Yang H and Yang Q 2017 N-doped porous carbons with exceptionally high CO2 selectivity for CO2 capture Carbon 114 473–81

Yue L, Xia Q, Wang L, Wang L, DaCosta H, Yang J and Hu X 2018 CO2 adsorption at nitrogen-doped carbons prepared by K2CO3 activation of urea-modified coconut shell J. Colloid Interface Sci. 511 259–67

Xu J, Shi J, Cui H, Yan N and Liu Y 2018 Preparation of nitrogen doped carbon from tree leaves as efficient CO2 absorbent Chem. Phys. Lett. 711 107–12

Han J, Zhang L, Zhao B, Qin L, Wang Y and Xing F 2019 The N–doped activated carbon derived from sugarcane bagasse for CO2 adsorption Ind. Crops Prod. 128 290–302

Xing W, Liu C, Zhou Z, Zhang L, Zhou J, Zhao S, Yan Z, Gao H, Wang G and Qiao S Z 2012 Superior CO2 uptake of N-doped activated carbon dioxide through hydrogen-bonding interaction Energy Environ. Sci. 5 7323–7

Wang R, Wang P, Yan X, Lang J, Peng C and Xue Q 2012 Promising porous carbon derived from celtuce leaves with outstanding supercapacitance and CO2 capture performance ACS Appl. Mater. Interfaces 4 5800–6

Yallappa S, Manal S A A and Hegde G 2018 Synthesis of a biocompatible nanoporous carbon and its conjugation with florescent dye for cellular imaging and targeted drug delivery to cancer cells New Carbon Mater. 33 162–72

Ali G A, Divyashree A, Supriya S, Chong K F, Ethiraj A S, Reddy M V and Hegde G 2017 Nanoporous carbons derived from Lablab purpureus for high performance supercapacitor electrodes: a green approach Dalton Trans. 46 14034–44

Hegde G, Abdul Manaf S A, Kumar A, Ali G A, Chong K F, Ngaiini Z and Sharma K V 2015 Biowaste sago bark based catalyst free carbon nanofibers: waste to wealth approach ACS Sustainable Chemistry & Engineering 3 2247–53

Manal S A A, Roy P, Sharma K V, Ngaiini Z, Malgras V, Aldalibah A and Hegde G 2015 Catalyst-free synthesis of carbon nanofibers for potential biomedical applications: waste to wealth approach RSC Adv. 5 24328–33

Wei Y, Li X, Zhang R, Liu Y, Wang W, Ling Y, El-Toni A M and Zhao D 2016 Periodic mesoporous organosilicon nanocubes with ultrahigh surface areas for Efficient CO2 adsorption Sci. Rep. 6 20769

Wang S, Wei Z, Zhang J, Jiang L, Liu D, Jiang J, Si R and Su C Y 2019 Framework disorder and its effect on selective hysteretic sorption of a T-shaped azole-based metal–organic framework JICrCe 6 85–95

Liu Y, Zha Y, Liu S, Li W and Tang X 2018 Temperature effect on gas adsorption capacity in different sized pores of coal: experimental and numerical modeling J. Pet. Sci. Eng. 165 821–30

Chen S, Jin L and Chen X 2011 The effect and prediction of temperature on adsorption capability of coal/CH4 Procedia Eng. 26 126–31

Huang H, Zhang W, Liu D, Liu B, Chen G and Zhong C 2011 Effect of temperature on gas adsorption and separation in ZIF–8: a combined experimental and molecular simulation study Chem. Eng. Sci. 66 6297–305