Human neutrophils express two unique antibody receptors for IgG, the FcγRIIa and the FcγRIIIb. FcγRIIa contains an immunoreceptor tyrosine-based activation motif (ITAM) sequence within its cytoplasmic tail, which is important for initiating signaling. In contrast, FcγRIIIb is a glycosylphosphatidylinositol (GPI)-linked receptor with no cytoplasmic tail. Although, the initial signaling mechanism for FcγRIIIb remains unknown, it is clear that both receptors are capable of initiating distinct neutrophil cellular functions. For example, FcγRIIa is known to induce an increase in L-selectin expression and efficient phagocytosis, while FcγRIIIb does not promote these responses. In contrast, FcγRIIIb has been reported to induce actin polymerization, activation of β1 integrins, and formation of neutrophils extracellular traps (NET) much more efficiently than FcγRIIa. Another function where these receptors seem to act differently is the increase of cytoplasmic calcium concentration. It has been known for a long time that FcγRIIa induces production of inositol triphosphate (IP3) to release calcium from intracellular stores, while FcγRIIIb does not use this phospholipid. Thus, the mechanism for FcγRIIIb-mediated calcium rise remains unknown. Transient Receptor Potential Melastatin 2 (TRPM2) is a calcium permeable channel expressed in many cell types including vascular smooth cells, endothelial cells and leukocytes. TRPM2 can be activated by protein kinase C (PKC) and by oxidative stress. Because we previously found that FcγRIIIb stimulation leading to NET formation involves PKC activation and reactive oxygen species (ROS) production, in this report we explored whether TRPM2 is activated via FcγRIIIb and mediates calcium rise in human neutrophils. Calcium rise was monitored after Fcγ receptors were stimulated by specific monoclonal antibodies in Fura-2-loaded neutrophils. The bacterial peptide fMLF and FcγRIIa induced a calcium rise coming initially from internal pools. In contrast, FcγRIIIb caused a calcium rise by inducing calcium entry from the extracellular medium. In addition, in the presence of 2-aminoethoxydiphenyl borate (2-APB) or of clotrimazole, two inhibitors of TRPM2, FcγRIIIb-induced calcium rise was blocked. fMLF- or FcγRIIa-induced calcium rise was not affected by these inhibitors. These data suggest for the first time that FcγRIIIb
aggregation activates TRPM2, to induce an increase in cytoplasmic calcium concentration through calcium internalization in human neutrophils.

Keywords: neutrophil, Fc gamma receptor, calcium, reactive oxygen species, PKC (protein kinase C), TRPM2 cation channel

INTRODUCTION

Neutrophils, the most abundant leukocytes in peripheral blood, are considered the first line of defense because these cells arrive first at sites of inflammation or infection (1, 2). Once there, neutrophils display a variety of antimicrobial functions including phagocytosis (3, 4), degranulation, and formation of neutrophil extracellular traps (NET) (5). These functions can be initiated or enhanced by antibodies, in the form of immune complexes, binding to their cognate Fc receptors on the surface of the neutrophil (6). Human neutrophils express constitutively two Fc receptors for IgG, the FcγRIIa (CD32a) and the FcγRIIib (CD16b). FcγRIIa contains an ITAM (immunoreceptor tyrosine-based activation motif) sequence in its cytoplasmic tail (7), while FcγRIIib is a glycosylphosphatidylinositol (GPI)-linked receptor, lacking a cytoplasmic tail (8). These two neutrophil antibody receptors are not only structurally different but also have been shown to induce unique cellular responses (9). FcγRIIa is the predominant Fcγ receptor mediating phagocytosis, while the contribution of FcγRIIib to this response is minimal (10). In contrast, FcγRIIib signaling to the neutrophil nucleus for nuclear factor activation is more efficient than FcγRIIa signaling (11). In addition, FcγRIIib is the only Fcγ receptor capable of inducing NET formation (12, 13). Although, these reports indicate that FcγRIIib leading to NET formation (18), it is possible that TRPM2 is used by FcγRIIib to induce an increase in [Ca^{2+}]_i. In order to test this hypothesis, both FcγRIIa and FcγRIIib were stimulated by specific monoclonal antibodies, and the increase in [Ca^{2+}]_i, was measured in the presence or absence of pharmacological inhibitors. The neutrophil chemoattractant fMLF (N-formyl-methionyl-leucyl-phenylalanine), and also FcγRIIa-induced a rapid increase in [Ca^{2+}]_i. FcγRIIib aggregation also induced an increase in [Ca^{2+}]_i, but this increase was delayed by several seconds. Despite both, FcγRIIa and FcγRIIib aggregation-induced ROS production, in the presence of diphenyleuoridium chloride (DPI), an inhibitor of the NADPH-oxidase complex (30), only the FcγRIIib-induced increase in [Ca^{2+}]_i, was reduced. Similarly, in the presence of G60976, an inhibitor of PKC (31, 32), only FcγRIIib-induced increase in [Ca^{2+}]_i, was reduced. In addition, 2-amino ethoxydiphenyl borate (2-APB) (33-35) and clotrimazole (36–39), inhibitors of TRPM2, reduced FcγRIIib-induced, but not FcγRIIa-induced increase in [Ca^{2+}]_i. These data show for the first time that FcγRIIib aggregation activates TRPM2 via PKC and ROS for inducing an increase in [Ca^{2+}]_i, in human neutrophils.

MATERIALS AND METHODS

Neutrophils

Neutrophils were purified from heparinized peripheral blood collected from adult healthy volunteers following a protocol previously approved by the Bioethics Committee at Instituto de Investigaciones Biomédicas – Universidad Nacional Autónoma de México (UNAM). Neutrophils were purified exactly as previously described (40).
Reagents
Bovine serum albumin (BSA) was from F. Hoffmann-La Roche Ltd. (Mannheim, Germany). Gö6976, a PKC inhibitor (catalog number sc-221684); antibiotic (5Z)-7-Oxozeaenol (LLZ 1640-2), a TAK1 inhibitor (catalog number sc-202055); and 2-aminoethoxydiphenyl borate (2-APB), a TRPM2 inhibitor (catalog number sc-201487) were from Santa Cruz Biotechnology (Santa Cruz, CA, USA). 3-(1-methyl-1H-indol-3-yl-methylene)-2-oxo-2,3-dihydro-1H-indole-5-sulfonamide (iSyk), a spleen tyrosine kinase (Syk) inhibitor (catalog number 574711); and fura-2-AM, a calcium indicator (catalog number 344905) were from Calbiochem/EMD Millipore (Billerica, MA, USA). UO126, a MEK inhibitor (catalog number V112A), was from Promega (Madison, WI, USA). Dihydrorhodamine123 (DHR-123) is a ROS indicator (catalog number AS-85711), was from AnaSpec, Inc (Fremont, CA, USA). The Complete™ protease inhibitor cocktail (catalog no. 11697498001) and PhosSTOP™ phosphatase inhibitor cocktail (catalog no. 04906845001) were from Roche Diagnostics (Basel, Switzerland). Diphenylethioniodium chloride (DPI), an NADPH-oxidase inhibitor (catalog number 300260); phorbolester 12-myristate 13-acetate (PMA), a PKC activator (catalog number P8139); N-formyl-Met-Leu-Phe (fMLF), a potent chemotactic peptide (catalog number F6632); pertussis toxin, a G protein-coupled receptor inhibitor (41, 42) (catalog number 516560), clotrimazole, a TRPM2 inhibitor (catalog number C6019), and all other chemicals were from Sigma Aldrich (St. Louis, MO, USA).

The following antibodies were used: anti-human FcγRIIα (CD32a) mAb IV.3 (43) (ATCC® HB-217) was from American Type Culture Collection (Manassas, VA, USA). Anti-human FcγRIIIb (CD16b) mAb 3G8 (44) was donated by Dr. Eric J. Brown (University of California in San Francisco, San Francisco, CA, USA). F(ab')2 goat anti-mouse IgG (catalog number 115-006-003) was from Jackson Immunoresearch Laboratories, Inc. (West Grove, PA, USA).

Fluorescent Calcium Measurements
Increase of cytosolic calcium concentration was measured by detecting fluorescence changes in neutrophils loaded with Fura 2-AM as previously described (45, 46). Briefly, neutrophils were loaded with 10 μM Fura-2, washed, and resuspended (1.5 x 10^6 cell/ml) in PBS with 1.5 mM Ca^{2+} and 1.5 mM Mg^{2+} and kept on ice. Then, fluorescence changes of a 2-ml stirred neutrophil suspension kept at 37°C were measured at 345 nm (excitation) and 510 nm (emission) using an Attune NxT Flow Cytometer (Thermo Fisher Scientific), with the 485 nm (excitation) and 520 nm (emission) filters. Neutrophils were gated by dot-plot analysis and 10,000 cells were acquired per sample. Data analysis was performed using the FlowJo X software (Tree Star Inc., Ashland, OR, USA).

Measurement of Reactive Oxygen Species (ROS)
ROS production was assessed by detecting fluorescence changes in neutrophils loaded with dihydrorhodamine 123 (DHR-123). Neutrophils (1 x 10^6) were resuspended in 100 μl of 15 μM DHR-123 in PBS and incubated for 15 min at 37°C in the dark. Neutrophils were washed with 1 ml PBS, and then resuspended in 100 μl of PBS with the corresponding stimulus as follows. For PMA, neutrophils were resuspended in PBS containing 20 nM of PMA, and then incubated at 37°C in the dark for 45 min. For FcγR stimulation, neutrophils were resuspended in PBS containing 10 μg/ml of the corresponding anti-FcγR antibody, and incubated on ice for 20 min. Next, neutrophils were washed in cold PBS, resuspended in 100 μl of PBS containing 10 μg/ml F(ab')2 goat anti-mouse IgG, and incubated at 37°C in the dark for 45 min. After incubation, 250 μl cold PBS were added and cells kept on ice for 2 min. Finally, neutrophils were centrifuged and resuspended in 1% paraformaldehyde in PBS at 4°C. Neutrophils were stored cold in the dark until analyzed by flow cytometry using an Attune NxT Flow Cytometer (Thermo Fisher Scientific), with the 485 nm (excitation) and 520 nm (emission) filters. Neutrophils were gated by dot-plot analysis and 10,000 cells were acquired per sample. Data analysis was performed using the FlowJo X software. Quantitative data were expressed as mean ± standard error of the mean (SEM). Single variable data were compared by paired-sampled Student’s t-tests using the computer program KaleidaGraph® version 4.5.2 for Mac (Synergy Software; Reading, PA, USA). Also, multiple pair-comparisons were performed using Tukey’s test after ordinary one-way analysis of variance (ANOVA). Post hoc differences were considered statistically different at a value p < 0.05.
RESULTS

Fcγ Receptors Induce an Increase in Cytoplasmic Ca²⁺ Concentration

Neutrophils, the most abundant leukocytes in blood, display important functions for controlling infections, inflammation, and immune responses (2, 48). Several of these functions are initiated by antibodies binding to Fc receptors (6). Although, both Fcγ receptors on human neutrophils (FcγRIIa and FcγRIIIb) are known to activate particular cell responses, the signaling capabilities of each receptor are still incompletely understood (9). About 30 years ago, it was already known that both neutrophil

![Figure 1](image-url)

FIGURE 1 Fcγ receptors induce an increase in [Ca²⁺]. (A–D) Fura-2-loaded human neutrophils in PBS with Ca²⁺ and Mg²⁺ were stimulated with 10 nM fMLF (A), or were stimulated by aggregating FcγRIIa on the cell membrane with mAb IV.3 (B), or by aggregating FcγRIIIb on the cell membrane with mAb 3G8 (C). (E–H) Fura-2-loaded neutrophils were resuspended in PBS containing 1 mM of EGTA and fluorescence changes detected after stimulating with 10 nM fMLF (E), or by aggregating FcγRIIa (F), or by aggregating FcγRIIIb (G). After 300 seconds, 4 mM Ca²⁺ was added and measurements continued until 450 seconds. Arrow indicates the moment when the stimulus was added. Changes in cytosolic calcium concentration ([Ca²⁺]i) were assessed by measuring the variations in fluorescence. Tracings are representative of three experiments with similar results. (D) Increments in [Ca²⁺]i were calculated by subtracting the baseline value from the maximum value after stimulation. (H) The initial rise in [Ca²⁺]i represents Ca²⁺ from intracellular stores, while the rise in [Ca²⁺]i after addition of 4 mM Ca²⁺ represents Ca²⁺ from extracellular medium. Data are mean ± SEM of three independent experiments. Asterisks denote conditions that were statistically different from untreated cells (p < 0.01).
Fcγ receptors induce an increase in cytoplasmic Ca^{2+} concentration ([Ca^{2+}]_i) (15), but important differences were noted. FcγRIIA used the second messenger IP_3 to induce release of Ca^{2+} from an internal pool (15), while the increase in [Ca^{2+}]_i induced by FcγRIIIb did not involve IP_3 (15). Despite these early studies, the mechanism used by FcγRIIIb to mobilize calcium is still unknown. Thus, in order to further explore the mechanisms of [Ca^{2+}]_i increase induced by Fcγ receptors, Fura-2-loaded neutrophils were first stimulated with the chemoattractant fMLF. In response to fMLF a rapid almost immediate increase in [Ca^{2+}]_i, was observed (Figure 1A). After this rise, the [Ca^{2+}]_i then returned to basal levels (Figure 1A). Similarly, aggregation of the FcγRIIa with specific monoclonal antibodies also induced a rapid increase in [Ca^{2+}]_i (Figure 1B). Also, aggregation of the FcγRIIIb with specific monoclonal antibodies resulted in an increase in [Ca^{2+}]_i (Figure 1C). Although, the magnitude of the [Ca^{2+}]_i rise was similar with all three stimuli (Figure 1D), the FcγRIIIb-mediated increase in [Ca^{2+}]_i, was delayed for about 10 to 20 seconds (Figure 1C), suggesting again that the mechanism for calcium mobilization was different between the two Fcγ receptors.

FcγRIIIb Aggregation Induces an Increase in [Ca^{2+}]_i via Ca^{2+} Entry From Extracellular Medium

It is well established that fMLF-induced increase in [Ca^{2+}]_i, has two components, one initial release of Ca^{2+} from internal stores followed by a subsequent influx of this cation from outside the cell by the mechanism known as store-operated calcium entry (SOCE) (49, 50). Similarly, it is believed that Fcγ receptors also display a similar mechanism for an increase in [Ca^{2+}]_i (51, 52). Thus, we sought to confirm these ideas by selectively stimulating each Fcγ receptor. Human neutrophils were placed in Ca^{2+}-free medium and then stimulated with fMLF. As expected an initial increase in [Ca^{2+}]_i was observed followed by a gradual return to basal levels around 90 seconds later (Figure 1E). At this time and excess of Ca^{2+} was added to the medium. This led to a second increase in [Ca^{2+}]_i which represents influx of Ca^{2+} from outside the cell (Figure 1E). Similarly, in Ca^{2+}-free medium aggregation of FcγRIIa induced an increase in [Ca^{2+}]_i from internal stores that returned to basal levels after about 90 seconds (Figure 1F). When Ca^{2+} was restored to the medium a second increase in [Ca^{2+}]_i, was also observed (Figure 1F), although this second rise was much smaller. This indicated that similarly to the fMLF, aggregation of FcγRIIIa induced a release of Ca^{2+} from internal stores and then an influx of Ca^{2+} from outside the cell. In sharp contrast, in Ca^{2+}-free medium aggregation of FcγRIIIb did not induce any increase in [Ca^{2+}]_i, (Figure 1G), suggesting that no Ca^{2+} was released from intracellular stores. When Ca^{2+} was restored to the medium an important increase in [Ca^{2+}]_i, was detected (Figure 1G). After fMLF stimulation, the magnitude of the [Ca^{2+}]_i rise from internal stores was very similar to the increase in [Ca^{2+}]_i, from outside the cell (Figure 1H). Each part was about half of the total increase in calcium observed in cells kept in Ca^{2+}-containing medium. For FcγRIIa stimulation, the magnitude of the [Ca^{2+}]_i rise from internal stores was similar to the increase in [Ca^{2+}]_i, induced by fMLF (Figure 1H). The [Ca^{2+}]_i rise from extracellular Ca^{2+} was smaller than the [Ca^{2+}]_i rise from internal stores (Figure 1H), suggesting that the major contribution to an increase in [Ca^{2+}]_i, rise after FcγRIIa engagement was from internal stores. In contrast, the FcγRIIIb-mediated increase in [Ca^{2+}]_i, was almost exclusively due to influx of extracellular Ca^{2+} (Figure 1H). These data suggested that contrary to other Fcγ receptors, FcγRIIIb induces only an influx of Ca^{2+} from outside the cell.

FcγRIIIb-Mediated Increase in [Ca^{2+}]_i Is Independent of TAK1 and MEK

After having shown that FcγRIIa and FcγRIIIb induce an increase in [Ca^{2+}]_i, very differently, we sought to explore the signaling mechanisms that could help explain these differences. Previously, we have reported that FcγRIIa signaling activates TAK1 and MEK in human neutrophils (18). Thus, we hypothesized that either TAK1 or MEK were required for the increase in [Ca^{2+}]_i, induced by either FcγRIIa (Figure 2A) or FcγRIIIb aggregation (Figure 2B). Similarly, U0126, a selective MEK inhibitor did not affect the increase in [Ca^{2+}]_i, induced by either FcγRIIa (Figure 2A) nor FcγRIIIb aggregation (Figure 2B). Additionally, as expected neither LLZ 1640-2 nor U0126 affected the increase in [Ca^{2+}]_i, induced by fMLF stimulation (Figure 2C). However, since the fMLF receptor is a GPCR (53) treatment with Pertussis toxin completely blocked the increase in [Ca^{2+}]_i, (Figures 2C, D), In contrast, Pertussis toxin did not affect the increase in [Ca^{2+}]_i, induced by either Fcγ receptor (Figure 2D). These data strongly suggested, that TAK1 and MEK were not involved in increasing [Ca^{2+}]_i after FcγRIIa or FcγRIIIb aggregation in human neutrophils.

Syk, PKC and NADPH-Oxidase Are Involved in FcγRIIIb-Mediated Increase in [Ca^{2+}]_i

In the past, we have reported that FcγRIIIb signaling involves Syk, PKC, and NADPH-oxidase (12, 18). Therefore, we explored the possible involvement of these signaling molecules in FcγRIIIb-mediated increase in [Ca^{2+}]_i. Treatment with iSyk, a selective Syk inhibitor, reduced the increase in [Ca^{2+}]_i, induced by either FcγRIIa (Figure 3A) or FcγRIIIb aggregation (Figure 3B). Additionally, Gö6976 a selective PKC inhibitor blocked the increase in [Ca^{2+}]_i, induced by FcγRIIIb but not by FcγRIIa (Figure 3). Similarly, DPI a selective NADPH-oxidase inhibitor reduced the increase in [Ca^{2+}]_i, induced by FcγRIIIb but not by FcγRIIa (Figure 3). These data showed that Syk was involved in both FcγRIIa- and FcγRIIIb-mediated increase in [Ca^{2+}]_i, and suggested for the first time that FcγRIIIb signaling, but not FcγRIIa signaling to increase [Ca^{2+}]_i, in human neutrophils involves both PKC and NADPH-oxidase.

FcγRIIIb-Induced ROS Production Involves Syk and PKC

It has also been shown that NADPH-oxidase is an enzymatic complex responsible for ROS production in human neutrophils.
and PKC is able to induce NADPH-oxidase activation (56, 57). Because, FcγRIIIb signaling involves both PKC and NADPH-oxidase activation (12, 18), we explored whether FcγRIIIb requires PKC to induce ROS production. Neutrophils stimulated with phorbol 12-myristate 13-acetate (PMA), a strong PKC activator, produced a robust amount of ROS (Figure 4). Similarly, activation of FcγRIIa or FcγRIIIb resulted in significant ROS production, although smaller than the one induced by PMA.
(Figure 4). When cells were pre-treated with iSyk, a selective Syk inhibitor, PMA-induced ROS production was not affected (Figure 4). In contrast, iSyk reduced ROS production induced by either FcγRIIa or FcγRIIIb (Figure 4). Also, in the presence of Gö6976, a selective PKC inhibitor, PMA-induced ROS production was blocked (Figure 4). Similarly, Gö6976 completely prevented ROS production after aggregation of FcγRIIa or FcγRIIIb (Figure 4). These data suggested that FcγRIIa and FcγRIIIb both activate Syk, leading to PKC activation and ROS production. However, only in FcγRIIIb signaling these molecules are connected to a rise in [Ca^{2+}], (Figure 3C).
Transient Potential Receptor Melastatin 2 (TRPM 2) Mediates FcγRIIIb-Induced Increase in [Ca^{2+}]

Results presented above suggested that FcγRIIIb induces PKC activation and ROS production, conducting to activation of a Ca^{2+} channel that allows Ca^{2+} influx into neutrophils. Several ion channels including different TRP family members (19, 21) could be involved in this response (58). In neutrophils several TRP channels were found to be expressed at the mRNA level by RT-PCR, including TRPC6, TRPM2, TRPV1, TRPV2, TRPV5 and TRPV6 (59). Of these channels, TRPM2 was demonstrated to
mobilize Ca\(^{2+}\) in granulocytes (60), and to be activated by ROS (24, 27, 61, 62) and by PKC (28, 29). Based on these observations, we then explored whether TRPM2 was involved in Fc\(\gamma\)RIIIb-mediated increase in \([\text{Ca}^{2+}]_{i}\). Fc\(\gamma\)RIIa receptor-mediated increase in \([\text{Ca}^{2+}]_{i}\) was evaluated in the presence of 2-APB (35) or clotrimazole (37), two different TRPM2 inhibitors. After Fc\(\gamma\)RIIa aggregation the increase in \([\text{Ca}^{2+}]_{i}\) was not affected by the presence of 2-APB (Figure 5). In contrast, 2-APB efficiently inhibited the Fc\(\gamma\)RIIIb-mediated increase in \([\text{Ca}^{2+}]_{i}\) (Figure 5). Similarly, the Fc\(\gamma\)RIIa-mediated \([\text{Ca}^{2+}]_{i}\) rise was not affected by the presence of clotrimazole (Figure 5). However, clotrimazole also efficiently inhibited the Fc\(\gamma\)RIIIb-mediated increase in \([\text{Ca}^{2+}]_{i}\) (Figure 5). Moreover, 2-APB could not inhibit ROS production induced by PMA (Figure 6) nor by Fc\(\gamma\)RIIa or

![Figure 5](image-url)
FcγRIIIb (Figure 6). These data positioned production of ROS up-stream of TRPM2 activation and suggested that PKC and ROS are required for FcγRIIIb-induced activation of TRPM2 to promote Ca²⁺ influx in neutrophils (Figure 7).

DISCUSSION

Neutrophils represent the most abundant leukocytes in blood and are considered the first line of defense against invading microorganisms because they are the first leukocytes to arrive at sites of inflammation and infection (63–65). At affected sites neutrophils display several antimicrobial functions (66) including degranulation, production of reactive oxygen species (ROS) (67, 68), phagocytosis (4) and the formation of neutrophil extracellular traps (NET) (5). In addition to these innate immune functions, neutrophils also participate in modulating the adaptive immune response (2). Initiation of these multiple cellular functions involves numerous receptors triggering a myriad of intracellular signaling pathways (52). In many of these pathways, changes in intracellular Ca²⁺ concentration ([Ca²⁺]i) are a prerequisite for neutrophil activation (52, 69). However, how changes in [Ca²⁺]i, induced by the multitude of receptors expressed on these cells, control neutrophil activation and function remains only partially understood (58, 70, 71). In the case of antibody-mediated neutrophil responses (8, 9), it has been found that both human Fcγ receptors, FcγRIIa and FcγRIIIb, are capable of inducing an increase in [Ca²⁺]i (45, 72, 73). However, important differences on how each receptor mobilizes Ca²⁺ were reported since almost 30 years ago. While, FcγRIIa requires 1,4,5-inositol triphosphate (IP₃) production for an increase in [Ca²⁺]i, the FcγRIIIb-mediated increase in [Ca²⁺]i is independent of IP₃ (15). Now in this report, we show for the first time, that in human neutrophils stimulation of FcγRIIIb leads to TRPM2 activation to mediate an increase in [Ca²⁺]i.

Changes in [Ca²⁺]i are fundamental for the activation process of neutrophils (52, 69), and consequently Ca²⁺ fluxes for neutrophil responses are finely regulated in terms of temporal and spatial organization (58). In resting conditions, [Ca²⁺]i in neutrophils is around 100 nM, a level 10 000-fold lower than the concentration in the extracellular medium (74). Upon stimulation of neutrophils via various receptors such as G-protein coupled receptors (GPCRs) (75), integrins (76), or Fcγ receptors (45, 72) there is a rapid increase in [Ca²⁺]i, caused by the release of Ca²⁺ from intracellular stores and/or by influx of extracellular Ca²⁺. Engagement of these receptors leads to activation of phospholipase C (PLC). GPCRs mainly activate the PLCβ2 and PLCβ3 (75), while integrins and Fcγ receptors...
activate PLCγ1 and PLCγ2 (52, 76). PLC in turn act on phosphatidylinositol 4,5 bisphosphate (PIP2) to generate diacylglycerol (DAG) and IP3. Binding of IP3 to its cognate receptor (IP3R), which also functions as a nonselective Ca2+ channel, localized on the membrane of the endoplasmic reticulum (ER), leads to a release of Ca2+ into the cytoplasm (41, 77). The initial rapid release of Ca2+ from the ER is followed by influx of Ca2+ across the plasma membrane. This influx is induced by the drop in Ca2+ levels inside the ER in a process that is known as store-operated calcium entry (SOCE) (78, 79). The mechanism for SOCE involves [Ca2+]i sensing proteins such as stromal interaction molecule 1 (STIM1), which migrates from the ER to the plasma membrane when intracellular stores are discharged (78). At the plasma membrane STIM1 gets together with the Ca2+ channel protein Orai1 (71, 80), which allows influx of extracellular Ca2+. In addition, it has been observed that after receptor stimulation there is also a Ca2+ influx that is dependent on receptor occupation by agonists and relatively store independent. This other mechanism of Ca2+ entry is known as receptor-operated calcium entry (ROCE) (81, 82). The molecular mechanisms controlling these two components of Ca2+ influx are still not resolved (83, 84).

Although the main mechanism for increasing [Ca2+]i in neutrophils is primarily mediated via IP3-dependent Ca2+ release from intracellular stores followed by SOCE activation of Orai1 channels (16), there is evidence that additional ion channels via ROCE are also involved in calcium influx into these cells (58). This has been clearly demonstrated for fMLF stimulation. After the initial increase in [Ca2+]i, a second influx of extracellular Ca2+ is observed. This influx is composed predominantly by Orai1 channels which are selective for Ca2+, and also by other non-selective channels that allow entry of both Ca2+ and strontium cations (Sr2+) (50). In phagocytes, the nature of Ca2+ channels mediating ROCE is just beginning to be identified.

An interesting group of nonselective ion channels that may participate in ROCE mechanisms in phagocytes is the superfamily of transient receptor potential (TRP) channels (85). TRP channels are expressed in many cell types and participate in multitude of physiological and pathological processes, such as cell proliferation, differentiation, and death (21). They are particularly important as biosensors of environmental and cellular stimuli including heat, mechanical force (pressure), oxidative (redox) status, and pH (21, 22, 86). The family of TRP channels is divided in six subfamilies: the ankyrin (TRPA), the canonical (TRPC), the

![Diagram](image-url)
S1P was found to mediate Ca\(^{2+}\) entry into the cells and not that S1P mediates release of Ca\(^{2+}\) from intracellular stores. An increase in [Ca\(^{2+}\)]\(_i\) has been more complicated, since this transmembrane and cytoplasmic domains (8, 9). Despite that, S1P is a glycosylphosphatidylinositol (GPI)-linked receptor, lacking a cytoplasmic or associated \(\gamma\) chains (6, 8). The phosphorylated ITAM becomes a docking site for Syk, which in turn activates PLC\(_\gamma\)1 to produce IP\(_3\) (17, 52). This pathway is certainly the one used by Fc\(\gamma\)RIIa to induce Ca\(^{2+}\) release from the ER (15). Then, a SOCE mechanism composed by STIM1 and Orai1 proteins is activated to generate a further influx of Ca\(^{2+}\) from outside the cell (16, 71). This influx of extracellular Ca\(^{2+}\) was found to be important for the intraphagosomal production of ROS during phagocytosis of opsonized yeast particles (51). We indeed found that selective aggregation of Fc\(\gamma\)RIIa produces an increase in [Ca\(^{2+}\)], resulting from release of Ca\(^{2+}\) from intracellular stores (Figure 1). For Fc\(\gamma\)RIIa it is clear that increases in [Ca\(^{2+}\)]\(_i\) involve IP\(_3\)-mediated Ca\(^{2+}\) release from intracellular stores, followed by a SOCE mechanism that allows Ca\(^{2+}\) entry from outside the cell (71, 88).

For Fc\(\gamma\)RIIIB, elucidating the mechanism for initiating an increase in [Ca\(^{2+}\)], has been more complicated, since this receptor is expressed exclusively on human neutrophils, and it is a glycosylphosphatidylinositol (GPI)-linked receptor, lacking transmembrane and cytoplasmic domains (8, 9). Despite that initial steps in signaling for this receptor remain a mystery, it is clear that it can trigger signaling pathways leading to different neutrophil responses including activation of integrins (89), activation of transcription factors (11), and induction of NET formation (12, 13). In addition, Fc\(\gamma\)RIIIB induces an increase in [Ca\(^{2+}\)], (14, 45, 90), which is independent of IP\(_3\) (15). For a long time, it has been assumed that the initial rise in [Ca\(^{2+}\)]\(_i\) must be due to release of Ca\(^{2+}\) from intracellular stores by another mechanism that is independent of IP\(_3\). However, no such mechanism has yet been found. Phosphorylase 1 (SIP), the product of phosphoglycerate kinase (SK) is considered to be a mediator for changes in [Ca\(^{2+}\)]. In neutrophils, SIP formation was dependent on ER store depletion, and inhibition of SK resulted in a reduction of Ca\(^{2+}\) influx (91). Also, in glioblastoma cells it was reported that SIP could activate the TRP channel TRPC1, leading to Ca\(^{2+}\) influx (92). In both cases, SIP was found to mediate Ca\(^{2+}\) entry into the cells and not release of Ca\(^{2+}\) from intracellular stores. Therefore, it is unlikely that SIP mediates release of Ca\(^{2+}\) from intracellular stores in neutrophils.

Now, we report that when neutrophils were in Ca\(^{2+}\)-free medium selective aggregation of Fc\(\gamma\)RIIIB did not cause any increase in [Ca\(^{2+}\)]\(_i\) (Figure 1). This result implied that the increase in [Ca\(^{2+}\)]\(_i\) was due to an influx of Ca\(^{2+}\) from outside the cell. This idea was confirmed when Ca\(^{2+}\) was restored in to the medium (Figure 1). This finding is in complete agreement with the lack of IP\(_3\) production when Fc\(\gamma\)RIIIB is engaged on neutrophils (15). It also pointed to the idea that a membrane ion channel was activated in response to Fc\(\gamma\)RIIIB aggregation. In previous reports, we described that Fc\(\gamma\)RIIIB triggers a signaling cascade that involves Syk, TAK1, MEK-ERK for induction of NETosis (18). In addition, we also reported that activation of PKC and production of ROS are important for NET formation (12). Thus, we explored whether these molecules could be involved in Fc\(\gamma\)RIIIB-mediated increase in [Ca\(^{2+}\)]. Indeed, we found that PKC and ROS are required for the influx of Ca\(^{2+}\) induced by Fc\(\gamma\)RIIIB (Figure 3).

Based on this, we turned our attention to TRP channels which are non-selective ion channels allowing transport of Ca\(^{2+}\) (85, 93), and capable (some of them) to sense the redox status in the cell (86, 94). Human neutrophils express the TRP channels: TRPC1, TRPC3, TRPC4, TRPC6, TRPM2, TRPV1, TRPV2, TRPV4, TRPV5, and TRPV6 (58, 59). Among these receptors, only TRPM2 (transient receptor potential melastatin type 2 channel) (86, 94) is also known to be activated by PKC (28, 29), and ROS (24, 95). In addition, TRPM2 has been found to be involved in several immune functions, including clearance of bacteria (96–98), NET formation by murine neutrophils (99), activation of NLRP3 inflammasome and secretion of interleukin-1\(\beta\) (100, 101), and dendritic cell maturation and chemotaxis (102). We confirmed that TRPM2 is responsible for Fc\(\gamma\)RIIIB-mediated rise in [Ca\(^{2+}\)], when two inhibitors, 2-APB (33–35, 95) and clotrimazole (36–39) completely blocked Fc\(\gamma\)RIIIB-mediated rise in [Ca\(^{2+}\)]\(_i\) (Figure 5). Both inhibitors 2-APB and clotrimazole have been used to block TRPM2 in many cell systems, however they are not specific inhibitors of this channel. Therefore, the possibility remains that other TRP channels may be involved in Fc\(\gamma\)RIIIB-mediated Ca\(^{2+}\) influx. Recently, novel and potentially more specific TRPM2 inhibitors have been reported (103, 104). It would be interesting to use these novel inhibitors to confirm our conclusions. However, we feel confident that TRPM2 is in fact the channel involved because it is the only TRP channel member on human neutrophils that is activated by PKC and ROS. In fact, the mechanism of activation involves adenosine diphosphate ribose (ADPR) binding to the C-terminal domain of the receptor, which presents strong homology to the human nucleotide diphosphate linked moiety X type (Nudix) hydrolase motif 9 (NUDT9) (23, 105). The NADPH-oxidase, like the mitochondrial oxidase, is a molecular complexes vectorially arranged on a membrane such that it accepts an electron from NADPH in the cytosol and transfers it across the membrane reducing oxygen to an oxygen radical (55, 68). The NADPH-oxidase is usually assembled on the phagosomal membrane, to generate ROS into the phagosome, or on the plasma membrane to generate...
extracellular of ADPR it would also be interesting to confirm that aggregation of FcγRIIIb indeed causes an accumulation of ADPR. It is also important to establish whether ADPR is indeed coming from activation of the NADPH-oxidase or from mitochondria in response to oxidative stress. TRPM2 gating requires in addition to ADPR, binding of Ca^{2+} (61, 106, 107). This requirement for full opening of the channel has been very nicely revealed through analysis of cryo-electron microscopy structures of human and zebrafish TRPM2 [reviewed in (108, 109)]. In the case, of FcγRIIIb-mediated TRPM2 activation, we do not know if the basal [Ca^{2+}], is sufficient to support the full opening of the channel. In future experiments, we will eliminate intracellular calcium with BAPTA to further explore the mechanism for Ca^{2+} entry in neutrophils after FcγRIIIb engagement. Also, we will look at the functional consequence of the calcium rise on particular FcγRIIIb-mediated neutrophil responses.

The involvement of PKC for inducing activation of TRPM2 comes from indirect studies using PMA (28, 29). In this report, we also demonstrated that indeed PKC is involved in FcγRIIIb-mediated TRPM2 activation using the specific PKC inhibitor G6976 (Figure 3). However, the particular isoform of PKC that is required for this function remains undetermined. Human neutrophils expressed PKC isoforms from each group of PKC enzymes (110). The inhibitor G6976 has specificity for Ca^{2+}-dependent PKC isozymes alpha and beta (31). The most likely PKC isoform involved in this response may be PKCB, since this isoform is an upstream mediator of NADPH-oxidase activation and was reported to be involved in NET formation (111); and we have also reported that FcγRIIIb is the main Fc receptor involved in NETosis (12). Future experiments will determine whether PKCB is actually required for FcγRIIIb-mediated TRPM2 activation. Tremendous advances have taken place in the field of Ca^{2+} signaling in neutrophils in recent years. However, the literature in this area of research is rather controversial, as there are still many open questions on how calcium signals regulate neutrophil functions (70).

In conclusion, we have found that FcγRIIIb does not induce Ca^{2+} release from intracellular stores but it does activate, via PKC and ROS, the TRPM2 channel on the plasma membrane for inducing an influx of extracellular Ca^{2+} into human neutrophils (Figure 7).

DATA AVAILABILITY STATEMENT

The raw data supporting the conclusions of this article will be made available by the authors, without undue reservation.

ETHICS STATEMENT

The studies involving human participants were reviewed and approved by Bioethics Committee at Instituto de Investigaciones Biomédicas – Universidad Nacional Autónoma de México (UNAM). The participants provided their written informed consent to participate in this study.

AUTHOR CONTRIBUTIONS

OA performed most of the experiments and analyzed data. NM performed calcium measurements. CR designed the research, mentored other authors, performed statistical analysis, prepared figures, organized the references, and wrote the paper. All authors contributed to the article and approved the submitted version.

FUNDING

Research was supported by grant 254434 from Consejo Nacional de Ciencia y Tecnología (CONACyT), Mexico, and by grant PAPIIT IN202520 from Dirección General de Asuntos del Personal Académico, Universidad Nacional Autónoma de México (UNAM), Mexico.

REFERENCES

1. Liew PX, Kubes P. The Neutrophil’s Role During Health and Disease. *Physiol Rev* (2019) 99:1223–48. doi: 10.1152/physrev.00012.2018
2. Rosales C. Neutrophils At the Crossroads of Innate and Adaptive Immunity. *J Leukoc Biol* (2020) 108:377–96. doi: 10.1002/jlb.4MIR0220-574RR
3. Rosales C, Uribe-Querol E. Phagocytosis: A Fundamental Process in Immunity. *Biomed Res Int* (2017) 2017:9042851. doi: 10.1155/2017/9042851
4. Uribe-Querol E, Rosales C. Phagocytosis: Our Current Understanding of a Universal Biological Process. *Front Immunol* (2020) 11:1066. doi: 10.3389/fimmu.2020.01066
5. Papayannopoulos V. Neutrophil Extracellular Traps in Immunity and Disease. *Nat Rev Immunol* (2018) 18:134–47. doi: 10.1038/tnri.2017.15
6. Rosales C, Uribe-Querol E. Antibody - Fc Receptor Interactions in Antimicrobial Functions. *Curr Immunol Rev* (2013) 9:44–55. doi: 10.2174/157339551309010006
7. Underhill DM, Goodridge HS. The Many Faces of ITAMs. *Trends Immunol* (2007) 28:66–73. doi: 10.1016/j.it.2006.12.004
8. Rosales C, Uribe-Querol E. Fc Receptors: Cell Activators of Antibody Functions. *Adv Biosci Biotechnol* (2013) 4:21–33. doi: 10.4236/abb.2013.44A004
9. Rosales C. Fcγ Receptor Heterogeneity in Leukocyte Functional Responses. *Front Immunol* (2017) 8:280. doi: 10.3389/fimmu.2017.00280
10. Rivas-Fuentes S, García-García E, Nieto-Castañeda G, Rosales C. Fcγ Receptors Exhibit Different Phagocytosis Potential in Human Neutrophils. *Cell Immunol* (2010) 263:114–21. doi: 10.1016/j.cellimm.2010.03.006
11. García-García E, Nieto-Castañeda G, Ruiz-Saldaña M, Mora N, Rosales C. FcγRIIA and FcγRIIB Mediate Nuclear Factor Activation Through Separate Signaling Pathways in Human Neutrophils. *J Immunol* (2009) 182:4547–56. doi: 10.4049/jimmunol.0801468
12. Alemán OR, Mora N, Cortes-Vieyra R, Uribe-Querol E, Rosales C. Differential Use of Human Neutrophil Fcγ Receptors for Inducing
Alema

15. Rosales C, Brown EJ. Signal Transduction by Neutrophil IgG Fc Receptors: Dissociation of [Ca⁺²] Rise from FcγR. J Biol Chem (1999) 273:8071-9. doi: 10.1074/jbc.273.14.8071

16. Clemens RA, Lowell CA. Store-Operated Calcium Signaling in Neutrophils. Mol Cell 2013; 589:1515–25. doi: 10.1113/jphysiol.2010.201855

21. Flockerzi V, Nilius B. TRPs: Truly Remarkable Proteins.

25. Du J, Xie J, Yue L. Modulation of TRPM2 by Acidic pH and the Underlying Transients. J Biol Chem (2013) 288:5022-6. doi: 10.1074/jbc.M112.384911

27. Hara Y, Wakamori M, Ishii M, Maeno E, Nishida M, Yoshida T, et al. Inhibiton of TRPM2 Channels by the Antifungal Agents Clotrimazole and Econazole. Naunyn Schmiedebergs Arch Pharmacol (2004) 370:227–37. doi: 10.1007/s00210-004-0981-y

35. Roberge S, Roussel J, Andersson DC, Meli AC, Bidal F, et al. TNF-α-Mediated Caspase-8 Activation Induces ROS Production and TRPM2 Activation in Adult Ventricular Myocytes. Cardiovasc Res (2014) 103:90–9. doi: 10.1093/cvr/cvu112

39. Ham HY, Hong CW, Lee SN, Kwon MS, Kim YJ, Song DK. Sulfur Mustard Primed Human Neutrophils for Increased Degranulation and Stimulates Cytokine Release Via TRPM2/p38 MAPK Signaling. Toxicol Appl Pharmacol (2012) 258:82–8. doi: 10.1016/j.taap.2011.10.010

40. García-García E, Uribe-Querol E, Rosales C. A Simple and Efficient Method to Detect Nuclear Factor Activation in Human Neutrophils by Flow Cytometry. J Vis Exp (2013) 7/4:e50410. doi: 10.3791/50410

41. Fruman DA, Gamache DA, Ernest M, Changes in Inositol 1,4,5-Trisphosphate Mass in Agonist-Stimulated Human Neutrophils. Agents Actions (1991) 34:16–9. doi: 10.1007/BF01993225

42. Krause KH, Schlegel W, Wollheim CB, Andersson T, Waldvogel FA, Lew PD. Chemotactic Peptide Activation of Human Neutrophils and HL-60 Cells. Pertussis Toxin Reveals Correlation Between Inositol Trisphosphate Generation, Calcium Ion Transients, and Cellular Activation. J Clin Invest (1985) 76:1348–54. doi: 10.1172/JCI12109

43. Trkova K, Fodor S, Molnar A. Neutrophil Cell Surface Receptors and Their Function. Annu Rev Immunol 1991; 9:231–62. doi: 10.1146/annurev.im.09.020191.001213

44. Steinbach PJ, Schumacher J, Beck B, Bick A, Tschirhart EJ. An Essential Role of STIM1, Orai1, and STIM2 in Neutrophil Activation and FcR-Mediated Phagosomal Oxidative Activity. J Immunol (2011) 186:2182–91. doi: 10.4049/jimmunol.1001338

45. Kelsall BL, Fodor S, Mócsai A. Neutrophil Cell Surface Receptors and Their Intracellular Signal Transduction Pathways. Int Immunopharmacol (2013) 13:768–80. doi: 10.1016/j.intimp.2013.06.034

46. Schepetkin IA, Khlebnikov AI, Kirpotina LN, Quinn MT. Antagonism of Human Formyl Peptide Receptor 1 With Natural Compounds and Their Chemokin in Rat Trigrinal Ganglia. Neuroscience (2015) 297:160–9. doi: 10.1016/j.neuroscience.2015.03.067

47. Över I, Naziroglu M. Homocysteine-Induced Cytosolic GSH Depletion Induce Apoptosis and Oxidative Toxicity Through Cytosolic Calcium Overload in the Hippocampus of Aged Mice: Involvement of TRPM2 and TRPV1 Channels. Neuroscience (2015) 284:225–33. doi: 10.1016/j.neuroscience.2014.09.078

48. Reetz B, Schepetkin IA, Kelsall BL, Fodor S, Mócsai A. Neutrophil Cell Surface Receptors and Their Intracellular Signal Transduction Pathways. Int Immunopharmacol (2013) 13:768–80. doi: 10.1016/j.intimp.2013.06.034

49. Schepetkin IA, Khlebnikov A, Kirpotina L, Quinn M. Antagonism of Human Formyl Peptide Receptor 1 With Natural Compounds and Their Chemokin in Rat Trigrinal Ganglia. Neuroscience (2015) 297:160–9. doi: 10.1016/j.neuroscience.2015.03.067

50. Över I, Naziroglu M. Homocysteine-Induced Cytosolic GSH Depletion Induce Apoptosis and Oxidative Toxicity Through Cytosolic Calcium Overload in the Hippocampus of Aged Mice: Involvement of TRPM2 and TRPV1 Channels. Neuroscience (2015) 284:225–33. doi: 10.1016/j.neuroscience.2014.09.078

51. Steinbach PJ, Schumacher J, Beck B, Bick A, Tschirhart EJ. An Essential Role of STIM1, Orai1, and STIM2 in Neutrophil Activation and FcR-Mediated Phagosomal Oxidative Activity. J Immunol (2011) 186:2182–91. doi: 10.4049/jimmunol.1001338

52. Futuri K, Fodor S, Mócsai A. Neutrophil Cell Surface Receptors and Their Intracellular Signal Transduction Pathways. Int Immunopharmacol (2013) 13:768–80. doi: 10.1016/j.intimp.2013.06.034

53. Schepetkin IA, Khlebnikov AI, Kirpotina LN, Quinn MT. Antagonism of Human Formyl Peptide Receptor 1 With Natural Compounds and Their Chemokin in Rat Trigrinal Ganglia. Neuroscience (2015) 297:160–9. doi: 10.1016/j.neuroscience.2015.03.067

54. Över I, Naziroglu M. Homocysteine-Induced Cytosolic GSH Depletion Induce Apoptosis and Oxidative Toxicity Through Cytosolic Calcium Overload in the Hippocampus of Aged Mice: Involvement of TRPM2 and TRPV1 Channels. Neuroscience (2015) 284:225–33. doi: 10.1016/j.neuroscience.2014.09.078
Synthetic Derivatives. *Int Immunopharmacol* (2016) 37:43–58. doi: 10.1016/j.intimp.2015.08.036

54. Nauseef WM. Identification and Quantitation of Superoxide Anion: Essential Steps in Elucidation of the Phagocyte "Respiratory Burst". *J Immunol* (2014) 193:5357–8. doi: 10.4049/jimmunol.1402580

55. Nguyen GT, Green ER, Mecsas J. Neutrophils to the ROScue: Mechanisms of NADPH Oxidase Activation and Bacterial Resistance. Front Cell Infect Microbiol (2017) 7:737. doi: 10.3389/fcimb.2017.00373

56. Heiner I, Eisfeld J, Lückhoff A. Role and Regulation of TRP Channels in Neutrophil Recruitment and Function. *Int Immunopharmacol* (2019) 77:57. doi: 10.1016/j.intimp.2019.06.011

57. Verhoeven AJ, Leusen JH, Kessels GC, Hilarius PM, de Bont DB, Liskamp R. Calcium Signalling and Related Ion Channels in Neutrophil Recruitment and Function. *Eur J Clin Invest* (2018) 48:e12964. doi: 10.1111/eci.12964

58. Immler R, Simon SI, Sperandio M. Calcium Signalling and Related Ion Channels in Neutrophil Functions: Still a Long Way to Go. *Int Immunopharmacol* (2017) 66:780. doi: 10.1016/j.intimp.2016.02.009

59. Heiner I, Eisfeld J, Halaszovich CR, Wehage E, Jüngling E, Zitt C, et al. Expression Profile of the Transient Receptor Potential (TRP) Family in Neutrophil Granulocytes: Evidence for Currents Through Long TRP Channel 2 Induced by ADP-ribose and NAD. *Biochem J* (2003) 371:1045–53. doi: 10.1042/BJ20021975

60. Niaziroglu M. New Molecular Mechanisms on the Activation of TRPM2 Channels by Oxidative Stress and ADP-Ribose. *Neurochem Res* (2007) 32:1990–2001. doi: 10.1007/s11064-007-9386-x

61. Li J, Gao Y, Bao X, Li F, Yao W, Feng Z, et al. TRPM2: A Potential Drug Target to Retard Oxidative Stress. *Front Biosci (Landmark Ed)* (2017) 22:1427–38. doi: 10.2741/g551

62. Borregaard N. Neutrophils. From Marrow to Microbes. *Immunity* (2010) 33:657–70. doi: 10.1016/j.immuni.2010.11.011

63. Mayadas TN, Cullere X, Lowell CA. The Multifaceted Functions of Neutrophils. *Annu Rev Pathol* (2014) 9:181–218. doi: 10.1146/annurev-pathol-020712-164023

64. Fine N, Tasevski N, McCulloch CA, Tenenbaum HC, Glogauer M. The Neutrophil: Constant Defender and First Responder. *Cell Calcium* (2010) 48:e12964. doi: 10.1111/eci.12964

65. Dupré-Crochet S, Erard M, Nüchky G. Intracellular Ca2+ Sensing: Its Role in Calcium Homeostasis and Signaling. *Mol Oral Microbiol* (2019) 34:237–8. doi: 10.1097/jmoc.2017.05.028

66. Nauseef WM, Borregaard N. Neutrophils At Work. *Nat Immunol* (2003) 4:333–40. doi: 10.1038/nnimm.2019.05.005

67. Heiner I, Eisfeld J, Halaszovich CR, Wehage E, Jüngling E, Zitt C, et al. Expression Profile of the Transient Receptor Potential (TRP) Family in Neutrophil Granulocytes: Evidence for Currents Through Long TRP Channel 2 Induced by ADP-ribose and NAD. *Biochem J* (2003) 371:1045–53. doi: 10.1042/BJ20021975

68. Dupré-Crochet S, Erard M, Nüchky G. Intracellular Ca2+ Sensing: Its Role in Calcium Homeostasis and Signaling. *Mol Oral Microbiol* (2019) 34:237–8. doi: 10.1097/jmoc.2017.05.028

69. Nunes P, Demaurex N. The Role of Calcium Signaling in Phagocytosis. *Annu Rev Pathol* (2010) 5:227–58. doi: 10.1146/annurev-pathol-020712-164023

70. Putney JW, Steinckwich-Besançon N, Numaga-Tomita T, Davis FM, Desai PN, D’Agostin DM, et al. The Functions of Store-Operated Calcium Channels. *Biochem Biophys Acta Mol Cell Res* (2017) 1864:900–6. doi: 10.1016/j.bbamcr.2016.11.028

71. Lopez JJ, Jardin I, Albarrán L, Sanchez-Collado J, Cantonacci C, Salido GM, et al. Molecular Basis and Regulation of Store-Operated Calcium Entry. *Adv Exp Med Biol* (2020) 1131:445–65. doi: 10.1007/978-3-030-12489-9

72. Nishida M, Hara Y, Yoshida T, Inoue R, Mori Y. TRP Channels: Molecular Diversity and Physiological Function. *Microcirculation* (2006) 13:535–50. doi: 10.1080/1078986080085111

73. Sakaguchi R, Mori Y. Transient Receptor Potential (TRP) Channels: Biosensors for Redox Environmental Stimuli and Cellular Status. *Free Radic Biol Med* (2020) 146:33–44. doi: 10.1016/j.freeradbiomed.2019.10.415

74. Ma HT, Peng Z, Hiragun T, Iwaki S, Gillam AM, Beaver MA. Canonical Transient Receptor Potential 5 Channel in Conjunction With Orai and STIM1 Allows Sr2+ Entry, Optimal Influx of Ca2+, and Degranulation in a Rat Mast Cell Line. *J Immunol* (2008) 180:2233–9. doi: 10.4049/jimmunol.180.4.2233

75. Demaurex N, Saul S. The Role of STIM Proteins in Neutrophil Functions. *J Physiol* (2011) 586:2699–708. doi: 10.1113/jphysiol.2011.275639

76. Ortiz-Stern A, Rosales C. FcγRIIB Stimulation Promotes β1 Integrin Activation in Human Neutrophils. *J Leukoc Biol* (2005) 77:787–99. doi: 10.1189/jlb.0704310

77. Marois L, Paré G, Vaillancourt M, Rollet-Labelle E, Naccache PH. FcγRIIB Triggers Raff-Dependent Calcium Influx in IgG-medicated Responses in Human Neutrophils. *J Biol Chem* (2011) 286:3509–19. doi: 10.1074/jbc.M110.169516

78. Itagaki K, Hauser CJ. Sphingosine 1-Phosphate, a Diffusible Calcium Influx Factor Mediating Store-Operated Calcium Entry. *J Biol Chem* (2003) 278:27540–7. doi: 10.1074/jbc.M307632000

79. Lepanetier S, Zanou N, Yerna X, Emeriau N, Dufour I, Masquelier J, et al. Sphingosine-1-Phosphate-Activated TRPC1 Channel Controls Chemotaxis of Glioblastoma Cells. *Cell Calcium* (2016) 60:373–83. doi: 10.1016/j.cam.2016.09.002

80. Gamberucci A, Giurisato E, Pizzo P, Tassi M, Giunti R, McIntosh DP, et al. Molecular Basis and Regulation of Store-Operated Calcium Channels. *J Leukoc Biol* (2020) 107:285–9. doi: 10.1189/jlb.3RU0719-241R

81. Bagur R, Hajnoczky G. Intracellular Ca2+ Sensing: Its Role in Calcium Homeostasis and Signaling. *Mol Cell* (2017) 66:780–8. doi: 10.1016/j.molcel.2017.05.028
95. Naziroğlu M. TRPM2 Cation Channels, Oxidative Stress and Neurological Diseases: Where are We Now? Neurochem Res (2011) 36:355–66. doi: 10.1007/s11064-010-0347-4

96. Knowles H, Heizer JW, Li Y, Chapman K, Ogden CA, Andreassen K, et al. Transient Receptor Potential Melastatin 2 (TRPM2) Ion Channel is Required for Innate Immunity Against Listeria Monocytogenes. Proc Natl Acad Sci USA (2011) 108:11578–83. doi: 10.1073/pnas.100678108

97. Qian X, Zhao H, Chen X, Li J. Disruption of Transient Receptor Potential Melastatin 2 Decreases Elastase Release and Bacterial Clearance in Neutrophils. Innate Immun (2018) 24:122–30. doi: 10.1177/175342 91879181

98. Zhang Z, Cui P, Zhang K, Chen Q, Fang X. Transient Receptor Potential Melastatin 2 Regulates Phagosome Maturation and is Required for Bacterial Clearance in Escherichia coli sepsis. Anesthesiology (2017) 126:128–39. doi: 10.1097/ALN.0000000000001430

99. Tripathi JK, Sharma A, Sukumaran P, Sun Y, Mishra BB, Singh BB, et al. Oxidant Sensor Cation Channel TRPM2 Regulates Neutrophil Extracellular Trap Formation and Protects Against Pneumoseptic Bacterial Infection. FASEB J (2018) 32:6848–59. doi: 10.1096/fj.201800605

100. Wang L, Negro R, Wu H. TRPM2, Linking Oxidative Stress and Ca2+ Permeation to NLRP3 Inflammasome Activation. Curr Opin Immunol (2020) 62:131–5. doi: 10.1016/j.coi.2020.01.005

101. Zhong Z, Zhai Y, Liang S, Mori Y, Han R, Sutterwala FS, et al. TRPM2 Links Oxidative Stress to NLRP3 Inflammasome Activation. Nat Commun (2013) 4:1611. doi: 10.1038/ncomms2608

102. Sumoza-Toledo A, Lange I, Cortado H, Bhagat H, Mori Y, Fleig A, et al. Dendritic Cell Maturation and Chemotaxis is Regulated by TRPM2-mediated Lysosomal Ca2+ Release. FASEB J (2011) 25:3529–42. doi: 10.1096/fj.10-178483

103. Cruz-Torres I, Backos DS, Heron PS. Characterization and Optimization of the Novel Transient Receptor Potential Melastatin 2 Antagonist TatM2NX. Mol Pharmacol (2020) 97:102–11. doi: 10.1124/mol.119.117549

104. Luo X, Li M, Zhan K, Yang W, Zhang L, Wang K, et al. Selective Inhibition of TRPM2 Channel by Two Novel Synthesized ADPR Analogues. Chem Biol Drug Des (2018) 91:552–66. doi: 10.1111/cbddd.13119

105. Perraud AL, Takaniishi CL, Shen B, Kang S, Smith MK, Schmitz C, et al. Accumulation of Free ADP-ribose From Mitochondria Mediates Oxidative Stress-Induced Gating of TRPM2 Cation Channels. J Biol Chem (2005) 280:6138–48. doi: 10.1074/jbc.M411446200

106. Fleigert R, Bauche A, Wolf Pérez AM, Watt JM, Rozewitz MD, Winzer R, et al. 2’-Deoxyadenosine 5’-Diphosphoribose is an Endogenous TRPM2 Superagonist. Nat Chem Biol (2017) 13:1036–44. doi: 10.1038/ nchembio.2415

107. Yu P, Xue X, Zhang J, Hu X, Wu Y, Jiang LH, et al. Identification of the ADPR Binding Pocket in the NUDT9 Homology Domain of TRPM2. J Gen Physiol (2017) 149:219–35. doi: 10.1085/jgp.201611675

108. Kuhn FJP. Structure-Function Relationship of TRPM2: Recent Advances, Contradictions, and Open Questions. Int J Mol Sci (2020) 21:6481. doi: 10.3390/ijms21186481

109. Xia S, Wang L, Fu TM, Wu H. Mechanism of TRPM2 Channel Gating Revealed by Cryo-EM. FERS J (2019) 286:3333–9. doi: 10.1111/fibs.14939

110. Balasubramanian N, Advani SH, Zingde SM. Protein Kinase C Isoforms in Normal and Leukemic Neutrophils: Altered Levels in Leukemic Neutrophils and Changes During Myeloid Maturation in Chronic Myeloid Leukemia. Leuk Res (2002) 26:67–81. doi: 10.1016/s0145-2126(01)00098-4

111. Gray RD, Lucas CD, MacKellar A, Li F, Hiersemenzel K, Haslett C, et al. Activation of Conventional Protein Kinase C (PKC) is Critical in the Generation of Human Neutrophil Extracellular Traps. J Inflamm (Lond) (2013) 10:12. doi: 10.1186/1476-9255-10-12

Conflict of Interest: The authors declare that this research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2021 Aleman, Mora and Rosales. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.