XMM-Newton large program on SN1006 - I. Methods and initial results of spatially resolved spectroscopy.

Li, J.T.; Decourchelle, A.; Miceli, M.; Vink, J.; Bocchino, F.

DOI
10.1093/mnras/stv1882

Publication date
2015

Document Version
Other version

Published in
Monthly Notices of the Royal Astronomical Society

Citation for published version (APA):
Li, J. T., Decourchelle, A., Miceli, M., Vink, J., & Bocchino, F. (2015). XMM-Newton large program on SN1006 - I. Methods and initial results of spatially resolved spectroscopy. Monthly Notices of the Royal Astronomical Society, 453(4), 3953-3974. https://doi.org/10.1093/mnras/stv1882
Erratum: XMM–Newton large program on SN1006 – I. Methods and initial results of spatially resolved spectroscopy

by Jiang-Tao Li,1,2* Anne Decourchelle,1 Marco Miceli,3,4 Jacco Vink5 and Fabrizio Bocchino4

1Service d’Astrophysique, CEA Saclay, F-91191 Gif-sur-Yvette Cedex, France
2Department of Astronomy, University of Michigan, 311 West Hall, 1085 S. University Ave, Ann Arbor, MI 48109-1107, USA
3Dipartimento di Fisica & Chimica, Università di Palermo, Piazza del Parlamento 1, I-90134 Palermo, Italy
4INAF-Osservatorio Astronomico di Palermo, Piazza del Parlamento, I-90134 Palermo, Italy
5Anton Pannekoek Institute/GRAPPA, University of Amsterdam, PO Box 94249, NL-1090 GE Amsterdam, the Netherlands

Key words: errata, addenda – acceleration of particles – shock waves – methods: data analysis – cosmic rays – ISM: supernova remnants – X-rays: ISM.

This is an erratum for the paper ‘XMM–Newton large program on SN1006 – I. Methods and initial results of spatially resolved spectroscopy’, published in MNRAS 453, 3953–3974 (2015). There are a few mistakes in the original scripts used to calculate the physical parameters of the hot gas from X-ray spectral analysis with a thermal plasma code, as discussed in Li & Huang (2020). We herein present erratum with the corrected text marked in red.

(i) Fig. 5 of Li et al. (2015) should be updated to Fig. 1 of this erratum. Only the scale of the vertical axis has been changed.

(ii) n_e in table 4 of Li et al. (2015) should be updated to those in Table 1 of this erratum.

(iii) Fig. 9(c) and (d) of Li et al. (2015) should be updated to the left and right panels of Fig. 2 of this erratum, respectively. While the n_e map (right panel) only has the scale of the colour bar changed, the t_{ion} map (left panel) is further slightly changed compared to the original version, assuming a shell thickness of 0.2 shell radius, consistent with other maps in fig. 9 (see section 3.2.2 of the text for details).

(iv) The following sentence in the 2nd from the last paragraph of section 3.2.2 should be changed to:

‘As will be discussed in section 4.2.1, the maximum value of t_{ion} in the SNR interior is typically ~ 1500 yr, consistent with the age of SN1006 ($\sim 10^3$ yr based on historical records; Stephenson 2010).’

(v) The following sentences in the last paragraph of section 4.2.1 should be changed to:

‘Except for the bright rim surrounding the SNR, which is artificial due to the low flux density of the surrounding regions, the whole SNR shell appears to have a low and smooth ionization age of $t_{ion} \lesssim 500$ year. In contrast, all the regions in the SNR interior have $t_{ion} > 500$ year, with the highest $t_{ion} \sim 1500$ year, consistent with the age of SN1006 of $\sim 10^3$ year.’

(vi) The following sentences in section 4.2.1 should be changed to:

‘Assuming no CR acceleration in this part so a compression ratio of 4, the ambient ISM density surrounding the “NW shell” should be $n_0 \sim 0.05$ cm$^{-3}$, significantly lower than the values from previous multi-wavelength estimates ($n_0 \sim 0.4$ cm$^{-3}$), which probably indicates the thickness of the SNR shell (0.2 times of the SNR radius) has been overestimated.’

‘The northern part of the ‘SNR Interior’ has a clearly lower density of $n_e \lesssim 0.1$ cm$^{-3}$, but “SNR Interior 03 and 04” may form a shell-like structure behind the SW non-thermal rim, apparently extending the ‘NW Shell’.’

‘The estimated mass of the shocked X-ray emitting plasma is $\sim 5f_1^2 M_0$, where f is the volume filling factor. As discussed in section 3.2.2, the swept up ambient ISM mass is $\sim 5 M_0$. Adding the mass of the shocked ejecta, which is quite uncertain but contribute only a small fraction to the mass budget, we could roughly constrain the volume filling factor to be $f \sim 1$ under the adopted geometric model (section 3.2.2).’

REFERENCES

Li J.-T., Huang R., 2020, preprint (arXiv:2009.02596)
Li J.-T., Decourchelle A., Miceli M., Vink J., Bocchino F., 2015, MNRAS, 453, 3953
Stephenson F. R., 2010, Astron. Geophys., 51, 27

* E-mail: pandataotao@gmail.com

© 2020 The Author(s)
Published by Oxford University Press on behalf of the Royal Astronomical Society
Figure 1. Derived post-shock electron number density in several outer regions versus the assumed thickness of the thermal X-ray emitting shell (in unit of the outer radius of the shell). Region names are denoted in fig. 7.

Table 1. Average value of parameters for individual regions.

Region	Method	kT	n_e	log n_e	O VII K\(\delta - \zeta\) EW	O VII EW	O VIII EW	O solar	Ne solar	Mg solar	Si solar	Fe solar
NW Shell	Average	2.25	0.16	9.56	0.18, 23.3	0.52, 12.0	0.33, 51.9	1.13	0.85	2.20	11.06	0.23
	Fit	1.58	0.12	9.32	--	--	--	0.92	0.64	1.05	4.84	0.05
SNR Interior 01	Average	2.10	0.082	9.50	0.15, 33.1	0.57, 15.3	0.33, 61.9	1.77	0.49	3.81	32.38	0.18
	Fit	2.22	0.076	9.37	--	--	--	0.90	0.27	1.14	7.85	0.39
SNR Interior 02	Average	1.63	0.104	9.51	0.21, 38.3	0.64, 17.8	0.41, 74.9	2.07	0.98	5.11	30.71	0.52
	Fit	1.56	0.098	9.35	--	--	--	1.05	0.44	1.69	12.36	0.83
SNR Interior 03	Average	2.47	0.108	9.40	0.17, 23.8	0.60, 13.2	0.36, 51.5	1.44	0.50	3.42	6.95	0.25
	Fit	4.59	0.089	9.35	--	--	--	1.23	0.32	1.46	5.31	0.05
SNR Interior 04	Average	2.87	0.12	9.48	0.19, 27.0	0.60, 10.6	0.44, 52.3	1.26	0.36	1.97	9.83	0.40
	Fit	2.30	0.11	9.40	--	--	--	1.01	0.28	1.53	7.36	0.36
SNR Interior 05	Average	1.30	0.13	9.65	0.21, 34.8	0.43, 10.8	0.37, 59.3	1.53	0.62	3.16	20.23	0.18
	Fit	1.12	0.11	9.60	--	--	--	0.80	0.35	1.26	9.31	0.28
Dark Belt	Average	2.06	0.14	9.49	0.17, 25.1	0.46, 8.99	0.33, 44.7	1.06	0.39	1.10	15.33	0.73
	Fit	2.54	0.10	9.41	--	--	--	0.87	0.32	0.94	9.30	0.68
Interior Shell 01	Average	2.41	0.17	9.58	0.22, 35.9	0.40, 8.43	0.37, 50.5	1.06	0.42	0.86	9.61	0.99
	Fit	2.20	0.14	9.53	--	--	--	0.97	0.38	0.82	8.86	0.96
Interior Shell 02	Average	2.36	0.17	9.59	0.20, 31.1	0.37, 8.85	0.37, 53.0	1.23	0.35	1.62	13.41	0.34
	Fit	1.61	0.16	9.54	--	--	--	0.77	0.26	1.01	8.67	0.44
O hole	Average	1.70	0.16	9.61	0.16, 31.1	0.28, 5.74	0.27, 38.7	0.81	0.30	0.84	13.93	1.04
	Fit	1.65	0.17	9.61	--	--	--	0.43	0.21	0.47	5.48	0.63
SE Shell 01	Average	1.89	0.17	9.53	0.17, 28.3	0.40, 8.38	0.37, 47.5	1.10	0.27	1.44	16.56	0.69
	Fit	2.32	0.13	9.45	--	--	--	0.99	0.24	1.32	12.90	0.76
SE Shell 02	Average	1.39	0.15	9.52	0.16, 27.5	0.51, 10.0	0.39, 53.2	1.33	0.34	2.65	22.06	0.28
	Fit	1.07	0.13	9.58	--	--	--	1.23	0.31	1.82	17.61	0.18
SE Shell 03	Average	1.65	0.101	9.54	0.22, 27.4	0.64, 9.63	0.60, 55.0	1.45	0.28	3.21	15.85	0.10
	Fit	1.66	0.095	9.48	--	--	--	1.15	0.22	2.24	11.52	0.05

Notes. Average parameters of large regions enclosing some interesting features as denoted in fig. 7. For each region, the average parameters are calculated in two ways: a direct average based on the parameter images (“Average”) and the parameters obtained by fitting the MOS-1+MOS-2+PN spectra extracted from each region (e.g. fig. 8) using the model described in section 3.2.1 (“Fit”). For the former method, kT, log n_e, and n_e are calculated from figs 9(a), (b), and (d). O VII, O VIII, and O VII K\(\delta - \zeta\) EWs are calculated from the linear EW maps presented in figs 12(a)–(c) (former numbers) and the 2D Spec EW maps presented in figs 12(d)–(f) (latter numbers). O, Ne, Mg, Si, and Fe abundances are calculated from the abundance maps in figs 12(g), 13(c), 14(c), 15(c) and 17(b).
Figure 2. Updated version of figs 9(c) and (d) of Li et al. (2015).