XXVIIIth International Conference on Ultrarelativistic Nucleus-Nucleus Collisions
(Quark Matter 2019)

Anomalous magnetohydrodynamics with constant anisotropic electric conductivities

Ren-jie Wanga, Patrick Copingerb, Shi Pua

aDepartment of Modern Physics, University of Science and Technology of China, Hefei 230026, China
bDepartment of Physics, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan

Abstract

We study anomalous magnetohydrodynamics in a longitudinal boost invariant Bjorken flow with constant anisotropic electric conductivities as outlined in Ref. [1]. For simplicity, we consider a neutral fluid and a force-free magnetic field in the transverse direction. We derived analytic solutions of the electromagnetic fields in the laboratory frame, the chiral density, and the energy density as functions of proper time.

Keywords: Magnetohydrodynamics, chiral magnetic effect, anisotropic electric conductivities

1. Introduction

Recently, several novel quantum transport phenomena related to strong magnetic fields have been extensively studied. Some examples include the chiral magnetic effect and chiral separation effect [2, 3, 4]. Similarly, electric fields can also induce the chiral separation [5, 6, 7, 8] and chiral Hall separation effects [8]. There are also other non-linear chiral transport effects, such as are discussed in Refs. [9, 10, 11, 12] and the connection to Schwinger pair production [13] (also see the reference therein).

Anomalous magnetohydrodynamics (anomalous MHD), which is the relativistic magnetohydrodynamics in the presence of the chiral magnetic effect and chiral anomaly, is a framework in which to study the aforementioned chiral transport phenomena. In Refs. [14, 15] we derived analytic solutions for ideal MHD with longitudinal boost invariance and a transverse magnetic field. In the latter part of Ref. [14], we considered magnetization effects. Following this framework, the studies have been extended to 2+1 dimensional MHD with Bjorken flow [16, 17] and Gubser flow [18]. The numerical simulation of ideal MHD can be found in Ref. [19].

Very recently, we obtained analytic solutions for anomalous MHD with Bjorken flow [1]. In that work, we only consider anomalous MHD with a constant electric conductivity, σ. In a strong magnetic field, the electric conducting flow will be $j^\mu = \sigma^{\mu\nu}E^\nu$, where $\sigma^{\mu\nu}$ is the anisotropic electric conductivity tensor. The tensor $\sigma^{\mu\nu}$ includes the classical Hall conductivity, σ_H, and the electric conductivities parallel and perpendicular to the magnetic fields, i.e., σ_\parallel and σ_\perp, respectively. σ_\parallel and σ_\perp have been computed by a
sum over all Landau levels \[20\]. Since the magnetic fields are extremely strong in relativistic heavy ion collisions, we also need to consider anomalous MHD with anisotropic electric conductivities.

In Ref. \[20\], the authors have found that both \(\sigma_T\) and \(\sigma_L\) depend on the temperature and magnetic field strength. For simplicity, in the present work, we assume that \(\sigma_H, \sigma_T,\) and \(\sigma_L\) are all constants. We will present the results for a temperature and magnetic field dependent \(\sigma^{ij}\) somewhere else.

The structure of this work is as follows. In Sec. 2, we derive an analytic solution for anomalous MHD with constant anisotropic electric conductivities. We then summarize in Sec. 3. Throughout this work, we will use the metric \(g_{\mu\nu} = \text{diag}\{+,-,-,-\}\), and choose Levi-Civita tensor satisfying \(\epsilon^{0123} = -6_{0123} = +1\).

2. Anomalous magnetohydrodynamics with constant anisotropic electric conductivities

The main equations for MHD are the energy-momentum and currents conservation equations coupled with Maxwell’s equations. (See e.g., Ref. \[14, 18, 16, 17, 21\] and references therein for details). Here, we will neglect other dissipative effects, such as the bulk viscous pressure, shear viscous tensor, and heat conducting flow. We follow the framework and assumptions as used in our previous work \[1\]. The energy-momentum conservation equation without viscous effects reads

\[\partial_\mu T^{\mu\nu} = 0, \]

where \(T^{\mu\nu}\) is the full energy momentum tensor and can be decomposed as,

\[T^{\mu\nu} = (\varepsilon + p + E^2 + B^2)u^\mu u^\nu - (p + \frac{1}{2}E^2 + \frac{1}{2}B^2)\delta^{\mu\nu} - E^\mu E^\nu - B^\mu \dot{B}^\nu - u^\mu \varepsilon e^{\lambda\mu\nu\beta} E_\lambda B_\beta - u^\nu \varepsilon e^{\lambda\mu\nu\beta} E_\lambda B_\beta , \]

where \(\varepsilon\) and \(p\) are energy density and pressure, respectively. Here, we have introduced the four-vector form of electromagnetic fields in a co-moving frame of a fluid cell,

\[E^\mu = F^{\mu\nu}u_\nu, \quad B^\mu = \frac{1}{2} \varepsilon^{\mu\nu\alpha\beta} u_\nu F_{\alpha\beta}, \quad E'^\mu E_\mu = -E^2, \quad B'^\mu B_\mu = -B^2. \]

The conservation equations for the currents are

\[\partial_\mu j_\mu^e = 0, \quad \partial_\mu j_5^e = -e^2 CE \cdot B, \]

where \(j_\mu^e\) and \(j_5^e\) are the electric and chiral (axial) current, respectively, and \(C = 1/(2\pi^2)\) refers to the chiral anomaly. These currents can be decomposed as

\[j_\mu^e = n_e u^\mu + \sigma^{e\mu} E^\nu + \xi B^\nu, \quad j_5^e = n_5 u^\mu + \sigma_5 E^\mu + \xi_5 B^\mu, \]

where \(n_e\) and \(n_5\) are the electric and chiral charge densities, respectively, and \(\sigma_5\) is the chiral electric conductivity \[5, 8, 8\]. The coefficients \(\xi = e\mu_5\) and \(\xi_5 = e\mu_5\) are associated with the chiral magnetic and separation effects \[8, 22, 23\], with \(\mu_e\) and \(\mu_5\) being the electric and chiral chemical potential, respectively.

The anisotropic electric conductivity tensor can be written as \[20\],

\[\sigma^{e\mu\nu} = \sigma_H \varepsilon^{\mu\nu\beta\alpha} u_\alpha \frac{B_\beta}{B} - \sigma_T \frac{B^\mu B^\nu}{B^2} + \sigma_L \left(\varepsilon^{\mu\nu\beta\alpha} \frac{B_\alpha}{B} + \frac{B^\mu B^\nu}{B^2} \right), \]

where \(\sigma_H, \sigma_T,\) and \(\sigma_L\) denote the classical Hall, longitudinal, and transverse conductivity, respectively. We use the covariant form for Maxwell’s equations,

\[\partial_\mu F^{\mu\nu} = j_\nu, \quad \partial_\mu (\varepsilon^{\mu\nu\beta\alpha} F_{\alpha\beta}) = 0. \]

We also choose the equation of state in a hot fireball limit,

\[\varepsilon = c_s^2 p, \quad n_e = a_{\mu_5} T^2, \quad n_5 = a_{\mu_5} T^2, \]

where \(a_{\mu_5} \approx 0.25\).
where a is again a dimensionless constant and T is the temperature. For an ideal fluid, we have $a = 1/3$ \cite{22,24}.

In our previous work \cite{1}, we derived a self-consistent analytic solution for anomalous MHD in a Bjorken flow. For simplicity, we assume the fluid is charge neutral, i.e., $\mu_e = n_e = 0$. This is applicable since the chiral electric conductivity, σ_5, is proportional to μ_e as $\sigma_5 \propto \mu_e \mu_5$ in the small μ_e and μ_5 limits \cite{3,4,5}. Therefore, in this case, $\sigma_5 \approx 0$. Similarly, $\xi_5 \propto \mu_e$ also vanishes. We also assume that the system is longitudinally boost invariant and that the electromagnetic fields in the longitudinal direction are negligible. The fluid velocity in a Bjorken flow reads,

$$u^\rho = (\cos \eta, 0, 0, \sinh \eta) = \gamma (1, 0, 0, z/t),$$

with $\gamma = \sqrt{1 - z^2}$ and $\eta = \frac{1}{2} \ln [(t + z)/(t - z)]$ being the proper time and the space-time rapidity, respectively.

Usually, the electromagnetic fields can accelerate the fluid velocity through the Lorentz force. In our case, however, we have found a special field configuration fields that keeps the fluid force-free,

$$E^\rho = (0, 0, \chi E(\tau), 0), \quad B^\rho = (0, 0, B(\tau), 0),$$

where $\chi = \pm 1$, and without loss of generality, we only consider fields in the τ direction. From Eq. (1), we have checked that $(g_{\mu\nu} - u_\mu u_\nu) (\partial_\tau T^{\mu \nu}_{\text{Matter}} - J^\mu J^\nu) = 0$, where $T^{\mu \nu}_{\text{Matter}} = T^{\mu \nu}_{\text{Elec}} = 0$, is automatically satisfied according our assumptions, i.e., the electromagnetic fields will not accelerate the fluid.

Our main equations are $u_\nu \partial_\nu T^{\mu \nu} = 0$ from Eq. (1), coupled with Maxwell’s equations, (2), and their corresponding constitution equations, (3, 5, 6, 10). After some calculations, those coupled equations reduce to

$$\frac{d}{d\tau} E + \frac{1}{\tau} E + \sigma_\parallel E + \chi \xi B = 0, \quad \frac{d}{d\tau} B + \frac{B}{\tau} = 0,$$

$$\frac{d}{d\tau} \epsilon + (\epsilon + \rho) \frac{1}{\tau} - \sigma_\parallel E^2 - \chi \xi EB = 0, \quad \frac{d}{d\tau} n_5 + \frac{n_5}{\tau} = e^2 C_\chi EB.$$

We notice that Eqs. (12) are similar to the Eqs. (23, 24, 25, 27) in Ref. \cite{1} by replacing σ with σ_0, a reasonable replacement: For the electromagnetic field configuration in Eq. (10), the electric field is parallel to the magnetic field. Therefore, from Eq. (6), only σ_0 will contribute to our final result.

Using the non-conserved charges method \cite{25,26}, we obtain analytic solutions for Eqs. (12) with the EoS, Eq. (8), in a small μ_5 / T limit,

$$E(\tau) = E_0 \left(\frac{T_0}{\tau} \right)^{1/2} \left\{ e^{-\sigma_0(\tau - \tau_0)} - a_1 e^{-\sigma_0 \tau} \left[E_{1-2\xi / \tau_0}(-\sigma_0 \tau) - \left(\frac{\tau}{\tau_0} \right)^{1/2} E_{1-2\xi / \tau_0}(-\sigma_0 \tau) \right] + O(a^2) \right\},$$

$$n_5(\tau) = n_{5,0} \left(\frac{T_0}{\tau} \right)^{1/2} \left\{ 1 + a_2 e^{\sigma_0 \tau} \left[E_{1-2\xi / \tau_0}(\sigma_0 \tau) - E_{1-2\xi / \tau_0}(\sigma_0 \tau) \right] + O(a^2) \right\},$$

$$\epsilon(\tau) = \epsilon_0 \left(\frac{T_0}{\tau} \right)^{1/2} \left\{ 1 + \sigma_\parallel E_0 \left[e^{2\sigma_0 \tau} \left[E_{0+2\xi / \tau_0}(2\sigma_0 \tau) - \left(\frac{\tau}{\tau_0} \right)^{1/2} E_{0+2\xi / \tau_0}(2\sigma_0 \tau) \right] \right] \right\} + a_3$$

$$\times \left[e^{2\sigma_0 \tau} \left[E_{0-2\xi / \tau_0}(\sigma_0 \tau) - \tau \left(\frac{\tau}{\tau_0} \right)^{1/2} E_{0-2\xi / \tau_0}(\sigma_0 \tau) \right] \right] + O(a^2, a E_0 / \epsilon_0),$$

where $E_\alpha(\xi) \equiv \int_0^\infty dt e^{-t} e^{-\tau t}$ is the generated exponential integral. The coefficients a_1, a_2 and a_3 are dimensionless constants determined by the initial conditions,

$$a_1 = e C_\chi B_0 n_{5,0} E_0, \quad a_2 = e^2 C_\chi E_0 B_0, \quad a_3 = e C_\chi n_{5,0} E_0 B_0 / \epsilon_0 T_0 \tau_0,$$

where the lower index 0 denotes the quantity at the initial proper time, τ_0.

The electromagnetic fields in the laboratory frame are given by,

$$E_{\text{lab}} = (\gamma \gamma^2 B(\tau), \chi \gamma E(\tau), 0), \quad B_{\text{lab}} = (-\gamma \gamma^2 \chi E(\tau), \gamma B(\tau), 0),$$

where $B(\tau) = B_0(\tau_0 / \tau)$, $\chi = \pm 1$, and $E(\tau)$ is given by Eq. (13). We find that $B^+_{\text{lab}} \propto 1/\tau$ and $B^-_{\text{lab}} \propto \exp(-\sigma_0 \tau) / \tau$, i.e., the magnetic field decays much slower in this case than in the vacuum \cite{3}.
3. Summary

In this work, we have studied anomalous MHD with anisotropic electric conductivities. The fluid expands along the longitudinal direction with the Bjorken boost invariant. For simplicity, we consider a charge neutral fluid and a particular force-free electromagnetic field configuration, i.e., one that does not accelerate the fluid velocity. We have derived an analytic solution for anomalous MHD in our cases in a small neutral fluid and a particular force-free electromagnetic field configuration, i.e., one that does not accelerate. In the future, we plan to extend the discussion to cases with temperature and magnetic field dependent anisotropic electric conductivities.

References

[1] I. Siddique, R.-j. Wang, S. Pu, Q. Wang, Anomalous magnetohydrodynamics with longitudinal boost invariance and chiral magnetic effect, Phys. Rev. D99 (11) (2019) 114029. arXiv:1904.01807 doi:10.1103/PhysRevD.99.114029

[2] A. Vilenkin, EQUILIBRIUM PARITY VIOLATING CURRENT IN A MAGNETIC FIELD, Phys. Rev. D22 (1980) 3080–3084. doi:10.1103/PhysRevD.22.3080

[3] D. E. Kharzeev, L. D. McLerran, H. J. Warringa, The Effects of topological charge change in heavy ion collisions: 'Event by event and CP violation', Nuclear Physics A803 (2008) 227–253. arXiv:0711.0950 doi:10.1016/j.nuclphysa.2008.02.298

[4] K. Fukushima, D. E. Kharzeev, H. J. Warringa, The Chiral Magnetic Effect, Phys. Rev. D78 (2008) 074033. arXiv:0808.3382 doi:10.1103/PhysRevD.78.074033

[5] X.-G. Huang, J. Luo, Axial Current Generation from Electric Field: Chiral Electric Separation Effect, Phys. Rev. Lett. 110 (2013) 232302. arXiv:1303.7192 doi:10.1103/PhysRevLett.110.232302

[6] S. Pu, S.-Y. Wu, D.-L. Yang, Holographic Chiral Electric Separation Effect, Phys. Rev. D89 (8) (2014) 085024. arXiv:1401.0972 doi:10.1103/PhysRevD.89.085024

[7] Y. Jiang, X.-G. Huang, J. Luo, Chiral electric separation effect in the quark–gluon plasma, Phys. Rev. D91 (4) (2015) 045001. arXiv:1409.6395 doi:10.1103/PhysRevD.91.045001

[8] S. Pu, S.-Y. Wu, D.-L. Yang, Chiral Hall Effect and Chiral Electric Waves, Phys. Rev. D91 (2) (2015) 025011. arXiv:1407.3168 doi:10.1103/PhysRevD.91.025011

[9] J.-W. Chen, T. Ishii, S. Pu, Non-Abelian Berry phase, Phys. Rev. D89 (9) (2014) 094003. arXiv:1312.2032 doi:10.1103/PhysRevD.89.094003

[10] S. Ebihara, K. Fukushima, S. Pu, Boost invariant formulation of the chiral kinetic theory, Phys. Rev. D96 (1) (2017) 016016. arXiv:1705.08611 doi:10.1103/PhysRevD.96.016016

[11] Y. Hadaka, S. Pu, Y.-L. Yang, Nonlinear Responses of Chiral Fluids from Kinetic Theory, Phys. Rev. D97 (12) (2018) 125023. arXiv:1710.00278 doi:10.1103/PhysRevD.97.125023

[12] P. Copinger, K. Fukushima, S. Pu, Axial Ward identity and the Schwinger mechanism – Applications to the real-time chiral magnetic effect and condensates, Phys. Rev. Lett. 121 (26) (2018) 261602. arXiv:1807.04416 doi:10.1103/PhysRevLett.121.261602

[13] S. Pu, V. Roy, L. Rezzolla, D. H. Rischke, Bjorken flow in one-dimensional relativistic magnetohydrodynamics with magnetization, Phys. Rev. D93 (7) (2016) 074022. arXiv:1602.04953 doi:10.1103/PhysRevD.93.074022

[14] V. Roy, S. Pu, L. Rezzolla, D. Rischke, Analytic Bjorken flow in one-dimensional relativistic magnetohydrodynamics, arXiv:1505.06620

[15] S. Pu, D.-L. Yang, Transverse flow induced by inhomogeneous magnetic fields in the Bjorken expansion, Phys. Rev. D93 (5) (2016) 054042. arXiv:1602.04954 doi:10.1103/PhysRevD.93.054042

[16] S. Pu, D.-L. Yang, Analytic Solutions of Transverse Magnetohydrodynamics under Bjorken Expansion, EPJ Web Conf. 137 (2016) 13021. arXiv:1611.04840 doi:10.1051/epjconf/201713713021

[17] M. Shoiki, N. Sadoughi, Evolution of magnetic fields from the 3 + 1 dimensional self-similar and Gubser flows in ideal relativistic magnetohydrodynamics, JHEP 11 (2018) 181. arXiv:1807.09487 doi:10.1007/JHEP11(2018)181

[18] G. Inghirami, L. Del Zanna, A. Beraudo, M. H. Moghaddam, F. Becattini, M. Bleicher, Numeral hydrodynamics for relativistic nuclear collisions, Eur. Phys. J. C76 (12) (2016) 659. arXiv:1609.03042 doi:10.1140/epjc/s10052-016-4516-8

[19] K. Fukushima, Y. Hadaka, Electric conductivity of hot dense quark matter in a magnetic field with Landau level resummation via kinetic equations, Phys. Rev. Lett. 120 (16) (2018) 162301. arXiv:1711.01472 doi:10.1103/PhysRevLett.120.162301

[20] X.-G. Huang, M. Huang, D. H. Rischke, A. Sedrakian, Anisotropic Hydrodynamics, Bulk Viscosities and R-Modes of Strange Quark Stars with Strong Magnetic Fields, Phys. Rev. D81 (2010) 045015. arXiv:0910.3633 doi:10.1103/PhysRevD.81.045015

[21] J.-H. Gao, Z.-Y. Liang, S. Pu, Q. Wang, X.-N. Wang, Chiral Anomaly and Local Polarization Effect from Quantum Kinetic Approach, Phys. Rev. Lett. 109 (2012) 232301. arXiv:1203.0725 doi:10.1103/PhysRevLett.109.232301

[22] J.-W. Chen, S. Pu, Q. Wang, X.-N. Wang, Berry Curvature and Four-Dimensional Monopoles in the Relativistic Chiral Kinetic Equation, Phys. Rev. Lett. 110 (26) (2013) 262301. arXiv:1210.8312 doi:10.1103/PhysRevLett.110.262301

[23] S. Pu, Relativistic fluid dynamics in heavy ion collisions, arXiv:1108.5828
[25] T. Csorgo, F. Grassi, Y. Hama, T. Kodama, Simple solutions of relativistic hydrodynamics for longitudinally and cylindrically expanding systems, Phys. Lett. B565 (2003) 107–115. arXiv:nucl-th/0305059, doi:10.1016/S0370-2693(03)00747-0

[26] M. Shokri, N. Sadooghi, Novel self-similar rotating solutions of nonideal transverse magnetohydrodynamics, Phys. Rev. D96 (11) (2017) 116008. arXiv:1705.00536, doi:10.1103/PhysRevD.96.116008