Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
Hypothesis Paper

Heme oxygenase-1 modulation: A potential therapeutic target for COVID-19 and associated complications

Devendra Singh, Himika Wasan, K.H. Reeta *

Department of Pharmacology, All India Institute of Medical Sciences, New Delhi, India

ARTICLE INFO

Keywords:
SARS-CoV-2
COVID-19
Heme Oxygenase-1
Antiviral activity
Type-1 IFNs
Inflammation
HO-1 promoter polymorphism
Coagulopathy

ABSTRACT

Coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) continues to infect hundred thousands of people every day worldwide. Since it is a novel virus, research continues to update the possible therapeutic targets when new evidence regarding COVID-19 are gathered. This article presents an evidence-based hypothesis that activating the heme oxygenase-1 (HO-1) pathway is a potential target for COVID-19. Interferons (IFNs) have broad-spectrum antiviral activity including against SARS-CoV-2. Induction of HO-1 and increase in the heme catabolism end-product confer antiviral activity. IFN activation results in inhibition of viral replication in various viral infections. COVID-19 induced inflammation as well as acute respiratory distress syndrome (ARDS), and coagulopathies are now known major causes of mortality. A protective role of HO-1 induction in inflammation, inflammation-induced coagulation, and ARDS has been reported. Based on an association of HO-1 promoter polymorphisms and disease severity, we propose an evaluation of the status of these polymorphisms in COVID-19 patients who become severely ill. If an association is established, it might be helpful in identifying patients at high risk. Hence, we hypothesize that HO-1 pathway activation could be a therapeutic strategy against COVID-19 and associated complications.

1. Introduction

The novel coronavirus SARS-CoV-2-related pneumonia called COVID-19 has brought enormous personnel and economic loss in recent times [1]. According to the World Health Organization, approximately 27 million people have been infected and more than 0.89 million have died since writing of this manuscript (September 10, 2020). At present, despite tireless efforts, no definitive therapies or vaccines are available. Hence, there is an urgent need to explore new therapeutic options. In this review, based on published data, we hypothesize that targeting the heme oxygenase pathway (HO) could be beneficial in COVID-19 and related complications.

HO, an evolutionary conserved ubiquitous enzyme, has recently gained a lot of attention in different disease conditions due to its pleiotropic effects [2]. HO exists as two main isoforms, HO-1 and HO-2. Although, a splice-variant of HO-2 identified as HO-3 (third isoform) also exists, but is elusive and poorly understood [3,4]. HO-1, the well characterized inducible isoform also known as heat shock protein-32, is encoded by a gene called HMOX1, which is transcriptionally upregulated up to 100-fold in the presence of stimuli like infections, radiation, toxins and injuries such as ischemia/reperfusion injury, acute lung injury, etc [2,5]. HO-1 oxidatively catabolizes heme to ferrous iron, carbon monoxide (CO), and biliverdin (BV). BV is then converted to bilirubin (BR) in an energy consuming reaction by biliverdin reductase. This process makes BR more electrophilic than BV, thereby comparatively increasing affinity of BR towards Keap1-Nrf2, which in turn facilitates Nrf2-dependant antioxidant gene induction [6]. Under oxidative stress condition, BR again is converted to BV, which further regenerates back to BR and this cycle goes on and affords significant protection to endothelial cells [7]. The end-products, CO and BV/BR are known for their antioxidant, anti-inflammatory, anti-apoptotic effects, etc [8,9]. In the last decade, HO-1 and heme metabolism end-products like ferrous iron, CO, BV, and BR have been explored extensively and successfully for antiviral effects against wide range of viruses like HIV, HCV, HBV, influenza, dengue, Ebola, respiratory syncytial virus, enterovirus 71, pseudorabies, human herpes simplex virus, porcine reproductive and respiratory syndrome virus, etc [10–15].

Currently, there is no direct pre-clinical or clinical evidence to confirm the therapeutic role of HO-1 modulation in COVID-19. We propose the beneficial role of HO-1 induction or administration of heme

* Corresponding author.
E-mail address: reetakh@gmail.com (K.H. Reeta).

https://doi.org/10.1016/j.freeradbiomed.2020.10.016
Received 11 September 2020; Received in revised form 14 October 2020; Accepted 15 October 2020
Available online 19 October 2020
0891-5849/© 2020 Elsevier Inc. All rights reserved.
degradation end-products in combating SARS-CoV-2 infection. Our hypothesis is based on an established role of interferons (IFNs) in inhibiting replication of various viruses including coronaviruses, along with the well-documented role of HO-1 in inducing type-1 IFN expression. We also discuss the possible association between HO-1 promoter polymorphisms and severity in individuals with COVID-19. Additionally, to support our hypotheses with available evidences, we reviewed the beneficial role of HO-1 modulation in various inflammatory conditions and coagulation disorders similar to what is observed in COVID-19 infection with a focus on the lungs which is the prime organ affected.

2. Role of HO-1 as an antiviral agent

After a viral infection, type 1 IFNs are among the first cytokines produced by the host cells to inhibit viral replication. However, like other viruses, SARS-CoV-2 suppresses type 1 IFN induction as well as translation and also suppresses IFN stimulated genes in order to survive and replicate [16–19]. IFNs act by inhibiting viral replication [20] and produce immunomodulatory effects by increasing natural killer cell cytotoxicity and proliferation, and expression of major histocompatibility complex-1 [21]. Furthermore, IFNs have been reported to possess broad-spectrum antiviral activity including against SARS-CoV [22, 23].

Apart from type 1 IFN-dependent viral replication inhibition, HO-1 pathway end-products, iron (Fe$^{2+}$), BV, BR, and CO also produce direct antiviral effects via inhibition of RNA-dependent RNA polymerase and viral proteases. Fe$^{2+}$ inhibits viral replication in HCV-transfected hepatoma cell lines via high affinity binding with Mg$^{2+}$ binding sites present on a HCV RNA polymerase, thereby inhibiting the enzymatic activity and viral replication [38]. In another experiment, treatment of HCV-infected hepatoma cell lines with an iron donor at the time of infection, but not when pre-treated, significantly decreased the expression of viral proteins (core and non-structural protein 3) and viral RNA [39]. HCV infection also decreases cellular Fe$^{2+}$ levels to bypass iron-dependent inhibition of viral replication [40]. In in vitro studies, BR inhibited the viral replication of human herpesvirus-6, herpes simplex virus type-1, and the enterovirus [15, 41]. BV inhibits viral replication in HCV-infected hepatoma cell line by inhibiting NS3/4A protease [42]. Since, these viral proteases show high homology with coronavirus proteases [43], there is a strong possibility that BV or HO-1 inducers may inhibit coronavirus proteases as well. CO-releasing molecule-2, an exogenous CO donor, inhibits viral replication of enterovirus 71 and bovine viral diarrhea virus [44]. HO-1 activation has also been reported to produce antiviral effects in other viral infections like hepatitis B [45], HIV [46], dengue [47], Ebola [48], and Zika [49].

Furthermore, IFNs act by inhibiting viral replication [20] and produce immunomodulatory effects by increasing natural killer cell cytotoxicity and proliferation, and expression of major histocompatibility complex-1 [21]. Additionally, various other pharmacological agents have also been reported to induce HO-1 expression, including rapamycin [50], resveratrol [51], proton pump inhibitors [52, 53], statins [54], niacin [55] and aspirin [56], etc. Thus, based on the evidences discussed above, there is a strong possibility that HO-1 inducers or HO-1 pathway by-products could play decisive roles in controlling SARS-CoV-2 infections via either restoration of IFN production or inhibition of viral proteases and RNA polymerases.

3. Effect of HO-1 activation on inflammation and coagulation

3.1. Mechanism of inflammation-induced coagulation after viral infection

In general, infection initiates inflammation by releasing various pathogen-associated molecular patterns, triggering resident macrophages or immune cells to release various cytokines like IL-6, TNF-α, etc. These events cause disturbance in epithelial-endothelial barrier integrity by recruiting circulating neutrophils and macrophages to the site of injury [57, 58]. Pro-inflammatory cytokines expose and upregulate the expression of tissue factor (TF) present on alveolar epithelial cells, macrophages, endothelial cells and fibroblasts present in blood vessels adventitia and platelets [59]. Exposed TF initiates the coagulation cascade by activating and forming complexes with factors VII, Xa, converting pro-thrombin to thrombin and further fibrinogen to fibrin; ultimately leading to the formation of clots [59, 60]. Thrombin, in turn, activates the inflammatory cascade by binding to thrombin receptors (protease activated receptor, PAR 1/3/4) on mast cells causing mast cell degranulation, on endothelial cells/microcytes/macrophages causing release of various chemokines, cytokines, adhesion molecules and on platelets causing further formation of thrombin [61]. Moreover, TF/factor VIIa and TF/factor VIIa/Xa complex activate PAR 2 receptors and cause upregulation of adhesion molecules, further affecting endothelial cell integrity by increasing inflammatory cell infiltration [61, 62].

To counteract coagulation, a physiological anti-coagulation cascade is activated releasing fibrinolysis activators and increasing the levels of fibrin degradation products (FDPs) [63]. FDPs themselves induce the release of inflammatory cytokines from peripheral monocytes and thus increase the expression of adhesion molecules, again inducing the vicious cycle of inflammation and coagulation [63, 64]. In later stages of sepsis, pro-inflammatory cytokines induce a long-lasting release of plasminogen-activation inhibitors (PAI) from endothelium thereby decreasing fibrin degradation and causing multi-organ damage [61]. Thus, the balance between coagulants and anticoagulants get disturbed with increasing severity of inflammation.
All these events lead to narrowing of the blood vessels due to platelet aggregation and adhesion as well as activation of white blood cells on endothelial surfaces. Free radicals are released, causing lipid peroxidation of the circulating RBC membranes, decreasing their deformability, ultimately leading to aggregation, entrapment, and rupture of RBCs causing hemolysis [65,66]. Hemolysis leads to release of free hemoglobin (Hb), a potential source of free radicals and known to further aggravate inflammation [67]. Increased free Hb is scavenged either by soluble plasma proteins like haptoglobin (Hp), hemopexin (HpB), albumin or, microglobulin via cell surface receptors like CD163/LDL receptor-related protein 1 for Hb/heme-Hpx complexes present on the surface of circulating monocytes or macrophages. Lysosomal proteases degrade Hb to liberate a potent pro-inflammatory and pro-oxidant molecule known as heme. Heme is finally degraded by HO-1 to CO, BV, and ferrous ions [68,69]. Two-fold increase in the free Hb levels were found in the broncho-alveolar lavage of ARDS patients compared to plasma indicating erythrocytes egress and hemolysis inside alveoli due to a compromised epithelial endothelial barrier [70]. Therefore, the inflammatory and prothrombotic state in ARDS, along with decrease in Hb scavengers lead to increase in cell free Hb. This aggravates the secondary endothelial damage, oxidative stress, and inflammation and the cycle goes on [66,71].

Hence, inflammation-induced activation of the coagulation cascade along with a reduction in activity of fibrinolytic system can trigger changes in coagulation parameters ranging from mild disturbances to overt microvascular thrombosis depending upon the severity of inflammation. Examples of inflammation-induced coagulation disturbances include sepsis-induced disseminated intravascular coagulation (DIC), ruptured atherosclerotic plaque, ARDS, etc [59,61].

3.2. COVID-19 induced inflammation and coagulopathy

Briefly, SARS-CoV-2 enters the body through angiotensin-converting enzyme 2 (ACE-2) receptors on granular pneumocytes known as type-II alveolar epithelial cells (AEC-II) [72,73]. AEC-II, an immunologically active cell, secretes a variety of cytokines and chemokines in response to infections, thereby activating resident alveolar macrophages and T cells [72] (Fig. 1). Infection-induced inflammatory responses activate both innate and adaptive immunity, triggering apoptosis of lymphocytes causing lymphocytopenia, a consistent finding present in hospitalized COVID-19 patients. In later stages, with increase in replication rates, the virus infects endothelial cells of the pulmonary vasculature through ACE-2 receptors, thereby aggravating the inflammatory response with apoptosis of the endothelial cells [74,75]. In fact, the damaged endothelial cells, by exposing tissue factors and adhesion molecules, activate platelets, causing platelet degranulation followed by platelet aggregation ultimately leading to the formation of microthrombi [76]. Break in epithelial-endothelial integrity causes an increase in capillary permeability and subsequent infiltration with inflammatory cells (monocytes and neutrophils) and RBCs into alveolar space leading to pulmonary edema, alveolar hemorrhages, and hyalinization of respiratory epithelium, thus inclining the disease towards ARDS [72,77]. Further evidence has shown that SARS-CoV-2 infection can cause ARDS and subsequent hemolysis in critically ill patients with raised cell-free hemoglobin [78].

Fig. 1. Hypothetical mechanism of HO-1 induction and heme degradation end-products such as CO, BV, and BR in COVID-19. SARS-CoV-2 virus infects nasal, bronchial epithelial cells and alveolar epithelial cell type II (AEC-II) via angiotensin converting enzyme-2 (ACE-2) receptors. In AEC-II, SARS-CoV-2 replicates and interferes with interferon induction and signaling, thereby stimulating infected cells to release inflammatory signaling molecules like cytokines and chemokines. These molecules in turn stimulate resident alveolar macrophages, and T-cells to release inflammatory mediators like TNF-α, IL-1β and IL-6. With further disease progression, these inflammatory mediators activate endothelial cells (EC) in pulmonary capillaries thereby inducing the expression of adhesion molecules. Adhesion molecules, in turn cause activation and recruitment of activated monocytes to alveoli where they release various inflammatory mediators, thus altering the balance between pro-inflammatory and anti-inflammatory cytokines. All these events ultimately affect epithelial-endothelial integrity, thereby further increasing the egress of monocytes and red blood cells. Pro-inflammatory cytokines also induce expression of tissue factor (TF) on ECs which when comes in contact with platelets; activate coagulation cascade forming a fibrin rich clot. In later stages, virus affects EC directly causing apoptosis, loss of barrier integrity thereby activating further inflammation and coagulation. Increased heme released after hemolysis as observed in the COVID-19 patients with ARDS, increases pro-inflammatory cytokines. We hypothesize that HO-1 induction may provide protection in the initial stage of COVID-19 by targeting viral replication by upregulating the transcription of type 1 IFNs and in later stages by targeting inflammation and coagulation. ISG – Interferon-stimulated genes. Green arrows indicate activation and red arrows indicate inhibition. (For interpretation of the references to colour in this figure legend, the reader is referred to the Web version of this article.)
However, a controversial preliminary report suggests that COVID-19 attacks RBCs at later stages, denatures Hb and inhibits heme metabolism [79]. Similar to SARS-CoV, COVID-19 patients with ARDS also have altered pro-coagulants (increase in D-dimers and fibrinogen) and anti-coagulants (increase in plasminogen activator inhibitor, which prevents fibrin degradation) levels [80,81]. This imbalance between pro and anti-coagulant levels leads to the formation of thrombi and may cause complications like deep vein thrombosis, stroke, myocardial infarction, DIC, and multi-organ failure.

Laboratory findings of COVID-19 infected hospitalized patients have significant increase in the levels of inflammatory markers mainly IL-6 (>50% patients), ferritin (>70% patients), total bilirubin (>18% patients), erythrocyte sedimentation rate (>85% patients), anemia (>11% patients), and lymphopenia (>35% patients) [77,82,83]. Approximately, 17–40% of patients presenting with ARDS during or at the time of hospitalization have significantly increased pro-thrombin time and D-dimer levels [82,84]. Among critically ill patients and non-survivors, ARDS was present in approximately 50–90% of patients and raised D-dimer levels and fibrin degradation products in 80–100% of patients [77,83,84]. A study conducted by Tang and co-workers [85], 71.6% of the non-survivors and only 0.6% of survivors met the criteria of DIC, indicating DIC to be an important cause of death. Additional evidence suggests that approximately 42% of hospitalized ARDS patients developed thrombotic complications with pulmonary embolism being the most common [86]. Except for thromboembolic complications, there is no significant difference in the ARDS disease pattern among COVID-19 and non-COVID-19 patients [86]. Looking at the currently available data, ARDS and thromboembolic complications are the major causes of severity and mortality in COVID-19 patients.

3.3. HO-1 as an anti-inflammatory agent

HO-1 and its downstream end-products confer cell survival by providing protection against oxidative stress, inflammation, and acts as a chaperone to remove degraded proteins as demonstrated by many in vitro and in vivo models of inflammation and acute lung injury. In response to oxidative stress and inflammation, HO-1 is upregulated in many cells including endothelial cells, basophils, monocytes, macrophages, neutrophils, and vascular smooth muscle cells [87]. This section focuses mainly on the anti-inflammatory role of HO-1 in different lung disease models (Fig. 1).

In a carrageenan-induced lung inflammation model, at 48 h, the mononuclear cells of inflammatory lesion expressed 8-fold higher HO-1 expression when compared to peripheral mononuclear cells. This increase correlated with a reduction in inflammation. Pre-treatment with HO-1 inhibitor aggravated inflammation, whereas, with HO-1 inducer, a decrease in inflammation was reported [88]. Furthermore, HO-1 transfection or pre-treatment with HO-1 inducers reduced LPS-induced pro-inflammatory cytokine production and high-mobility group box 1 (HMGB1) release from macrophages through CO generation. Also, HO-1 induction or CO supplementation decreased mortality in in vivo model of septic shock induced by LPS or cecal ligation and puncture along with decrease in plasma levels of HMGB1 as well as serum levels of TNF-α and IL-1β [89].

CO showed anti-inflammatory and anti-apoptotic effects in in vivo and in vitro models of ischemia/reperfusion injury in lungs by modulating P38-MAPK pathway [90]. The anti-inflammatory effects of CO were also evident by a decrease in LPS-induced reactive oxygen species-dependent toll-like receptor 4 (TLR4) recruitment to the lipid raft, thereby initiating immune cell-mediated inflammatory signaling [91]. In an in vivo model of acute lung injury induced by LPS, BV pre-treatment decreased alveolitis, pulmonary edema, and reduced inflammatory cells in bronchoalveolar lavage. BV also decreased the levels of NF-KB expression, a transcription factor, responsible for LPS-induced cytokine production and inflammation [92]. Recent evidence revealed that moderate increase in plasma levels of BR via HO-1 pathway provide protection against inflammation and endothelial dysfunction [6]. BR showed antioxidant and anti-inflammatory effects by scavenging nitric oxide and reactive oxygen species [93,94].

ARDS in COVID-19 patients often require external ventilator support which itself can cause lung injury [95]. Edema, endothelial and epithelial damage followed by a release of cytokines and chemokines, activation, recruitment and extravasation of leukocytes are the characteristic features of ventilator-induced lung injury (VILI) [96]. There has been extensive evidence to support a protective role of HO-1 activation in VILI by decreased pro-inflammatory cytokine expression including TNF-α, IL-8, decreased neutrophil, etc., and increased expression of anti-inflammatory cytokines like IL-10 [97,98].

Although, HO-1 expression has beneficial effects, its overexpression may be deleterious. Excess release of CO may blunt the anti-inflammatory response by either activating prostaglandin-endoperoxide synthase enzyme thereby increasing the production of pro-inflammatory cytokines [99] or inhibiting stress induced inflammatory response by suppressing hypothalamus pituitary adrenal axis and release of vasopressin [100]. Similarly, high serum BR levels may cause central nervous system toxicity like bilirubin encephalopathy [101]. Studies have also shown horneric effect of HO-1 inducer, curcumin. Prolonged supplementation with curcumin (1 g–4 g/day for 6 months) was responsible for an increase in cholesterol levels which was opposite to effects observed with short-term treatment [102,103]. Therefore, hormeric response should be considered while targeting induction of HO-1 system.

3.4. HO-1 as an anti-thrombotic agent

Increasing evidences support the anti-thrombotic role of HO-1 induction during arterial or venous injury. Two independent groups have shown inhibition of thrombus formation in a ferric chloride-induced model of microvascular or platelet thrombosis in mice by induction of HO-1 [104,105]. Fujita and co-workers [106] showed that CO protected against the development of fibrin clots in the microvasculature by inhibiting the expression of gene encoding PAI-1, thereby derepressing fibrinolysis, when administered in HO-1-deficient mice model of ischemic lung injury. Furthermore, HO-1 gene induction or CO administration exhibited anti-inflammatory and anti-thrombotic effects in a model of arterial thrombosis produced in apoE-deficient hypercholes terolemic mice [107]. Moreover, Hmxox1-/- mice had increased endothelial cell injury with high levels of TF and von Willebrand factor causing formation of platelet-rich micro-thrombi and apoptosis. Exogenous administration of CO and BV rescued thrombotic events and pro-thrombotic state indicating their role in formation of arterial thrombosis [108]. Another study reported that HO-1 activation significantly decreased exaggerated inflammatory responses as depicted by significant reduction in expression of inflammatory markers like E-selectin, P-selectin, IL-6, and MCP-1 along with decrease in clot size and inferior vena cava wall thickness in comparison to HO-1-deficient mice [109].

It is also noteworthy that the HO-1 inducer, hemin, increased the expression of IL-10, levels of anti-coagulant-activated protein C, pro-thrombin time, and activated partial thromboplastin time in a model of sepsis via HO-1 activation. Histopathological analysis revealed decreased number of thrombi along with decrease in inflammatory changes in liver and lungs [110]. Further, HO-1 gene transfection or induction by hemin or administration of HO-1 end-products, CO and BV, reported decreased clot size in a venous thrombosis model of mice. Hemin-induced HO-1 upregulation also decreased clot formation and levels of PAI along with a decrease in the levels of heme suggesting anti-thrombotic effects either directly by HO-1 or through CO and BV [111]. Treatment of HO-1-deficient mice with CO-releasing agent in an allogenic aortic transplant model markedly improved survival rates along with significant reductions in platelet aggregation and arterial thrombosis [112]. Gabre and co-workers [113] also demonstrated...
infarction in patients suffering from peripheral artery disease carrying either the heterozygous or homozygous S allele in comparison to non-carriers [132]. Furthermore, a strong association between the presence of L allele and progressive atherosclerosis with increase in the levels of oxidized lipoprotein and decreased antioxidant defense mechanism was observed in high risk patients [133]. Mustafa and co-workers [134] reported a two-fold increase in the risk of venous thromboembolism recurrence in patients carrying the heterozygous/homozygous L allele in comparison with the other two alleles.

With regard to the viral infections, recent data showed a lower risk of HIV-induced neuroencephalitis and neurocognitive impairment in patients with S allele [46,135]. Seu et al. [136] reported high viral loads and soluble CD14 in HIV-infected patients on antiretroviral therapy having the L allele. Also, decreased hepatitis-C viral replication was associated with increased HO-1 expression in humanized mice carrying the S allele [137]. Ethnic differences in the GT repeat lengths and disease severity has also been reported with high risk of recurrent and provoked venous thromboembolism in black patients carrying the L allele GT ≥ 35. Similarly, positive correlations between a decline in lung functions, risk of coronary artery disease, and atherosclerosis with the L allele were more prominent in Japanese and European populations [129,130,133,138]. Meta-analysis in various diseases revealed positive associations between the presence of L allele and susceptibility of developing type 2 diabetes, coronary artery disease, restenosis after percutaneous coronary intervention, and squamous cell carcinoma [139–141].

Considering the above findings, presence of these polymorphisms may also be associated with COVID-19-affected patients becoming severely ill and being at high risk of acute lung injury as well as thromboembolism.

5. Conclusion

Abundant literature emphasizes the important role of IFNs in countering various viral infections including SARS-CoV-2. Similarly, significant data are available demonstrating antiviral effects of various HO-1 inducers acting through stimulation of IFNs. In this article, we presented evidence showing a beneficial role of HO-1 induction in inflammation-induced coagulation as seen in COVID-19 patients. Considering the association between promoter polymorphism and disease severity, we propose the need to identify the GT repeat lengths in severe COVID-19 patients. Based on the evidence presented above, we believe that there is a need to test the potential role of inducing HO-1, as a therapeutic approach not only as an antiviral strategy, but also as a treatment for COVID-19 associated complications like inflammation and coagulopathy.

References

[1] J. Torres, M. O’Higgins, J.M. Castañedilla-Maia, A. Ventriglio, The outbreak of COVID-19 coronavirus and its impact on global mental health, Int. J. Soc. Psychiatr. 66 (2020) 317–320, https://doi.org/10.1177/0264070420951212.
[2] S.W. Ryter, A.M.K. Choi, Targeting heme oxygenase-1 and carbon monoxide for therapeutic modulation of inflammation, Transl. Res. 167 (2016) 7–34, https://doi.org/10.1016/j.trsl.2015.06.011.
[3] S. Hayashi, Y. Ohata, H. Sakamoto, Y. Higashimoto, T. Haru, Y. Sagara, M. Noguchi, Characterization of rat heme oxygenase-3 gene. Implication of processed pseudogenes derived from heme oxygenase-2 gene, Gene 336 (2004) 241–250, https://doi.org/10.1016/j.gene.2004.04.002.
[4] W.K. McCoubrey, T.J. Huang, M.D. Maines, Isolation and characterization of a cDNA from the rat brain that encodes hemeoxygenase-3 gene, Eur. J. Biochem. 247 (1997) 725–732, https://doi.org/10.1111/j.1432-1033.1997.00725.x.
[5] D. Morse, A.M.K. Choi, Heme oxygenase-1: from bench to bedside, Am. J. Respir. Crit. Care Med. 172 (2005) 660–670, https://doi.org/10.1164/rccm.2004-46505C.
[6] M. Nitti, A.L. Furfaro, G.E. Mann, Heme oxygenase dependent bilirubin generation in vascular cells: a role in preventing endothelial dysfunction in local tissue microenvironment? Front. Physiol. 11 (2020) https://doi.org/10.3389/fphys.2020.00023.
[7] T. Jansen, M. Hortmann, M. Oelzel, B. Opitz, S. Steven, R. Schell, M. Knorr, S. Karbach, S. Schuhmacher, P. Wenzel, T. Münzel, A. Daiber, Conversion of 267
D. Singh et al.

Free Radical Biology and Medicine 161 (2020) 263–271

W. Vranickaun, Subversion of the heme oxygenase-1 antiviral activity by zika virus, Viruses 11 (2019), https://doi.org/10.3390/v111011002.

G.A. Vinner, F. Li, H. Zhou, J. Liu, K. Kerenfors, A. Agarwal, Ramipredy induces heme oxygenase-1 in human pulmonary vascular cells: implications in the antiproliferative response to ramipredy, Circulation 107 (2003) 911–916, https://doi.org/10.1161/01.CIR.0000067413.20225.0F.

C.Y. Chen, J.H. Jan, M.H.J. Y.J. Suh, Reversatrol upregulates heme oxygenase-1 expression via activation of NF-E2-related factor 2 in PC12 cells, Biochem. Biophys. Res. Commun. 331 (2005) 993–1000, https://doi.org/10.1016/j.bbrc.2005.04.170.

J.C. Becker, N. Grosser, C. Walkte, S. Schulz, K. Erdmann, W. Domschke, H. Schroder, T. Pohle, Beyond gastric acid reduction: proton pump inhibitors induce heme oxygenase-1 in gastric and endothelial cells, Biochem. Biophys. Res. Commun. 345 (2006) 344–349, https://doi.org/10.1016/j.bbrc.2006.05.180.

Y.T. Ghebremariam, J.P. Cooke, W. Gerhart, C. Griego, J.B. Brower, M. Doyle-10.1089/ars.2009.2792.

F. Ali, M. Zakkar, K. Karu, E.A. Lidington, S.S. Hamdulay, J.J. Boyle, M. Zloh, L. Rawlins, A. Regev, P.A. Reyfman, O. Rozenblatt-Rosen, K. Saeb-Parsy, M. Kuhnemund, M. Lako, H. Lee, S. Leroy, S. Linnarson, J. Lundeberg, K.B. Meyer, P. Horvath, N. Hubner, D. Hung, N. Kaminski, M. Krasnow, J.A. Kropski, T.E. Duong, O. Eickelberg, C. Falk, M. Farzan, I. Glass, R.K. Gupta, M. Haniffa, T. van der Poll, Tissue factor as an initiator of coagulation and inflammation in pulmonary disease, Am. J. Respir. Cell Mol. Biol. 36 (2007) 158–165, https://doi.org/10.1165/rcmb.2006-0331TR.

T. Pohle, Beyond gastric acid reduction: proton pump inhibitors improve survival of mice in LPS- and cecal ligation and puncture-induced sepsis and versatility of thrombolytic drugs to treat COVID-19, J. Thromb. Haemostasis 18 (2020) 1548–1555, https://doi.org/10.1111/jth.14872.

D.M. Monroe, N.S. Key, The tissue factor factor Vila complex: procoagulant activity, regulation, and implications, Thromb. Haemostase 5 (2009) 1097–1105, https://doi.org/10.1586/07387836.2009.204215.x.

Z. Jiao, S. Zeng, C. Li, P. Wang, Y. Liu, J. Wang, J. Yang, L. Li, H. Wang, L. Jiao, Z. Liu, Y. Gao, Y. Zhao, M. Chen, M. Dong, J. Zhang, W. Xiong, Y. Wei, J. Xia, T. Yu, X. Zhang, L. Zhang, Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a retrospective cohort study, Lancet 395 (2020) 1054–1062, https://doi.org/10.1016/S0140-6736(20)30566-3.

M. Lako, H. Lee, S. Leroy, S. Linnarson, J. Lundeberg, K.B. Meyer, P. Horvath, N. Hubner, D. Hung, N. Kaminski, M. Krasnow, J.A. Kropski, T.E. Duong, O. Eickelberg, C. Falk, M. Farzan, I. Glass, R.K. Gupta, M. Haniffa, T. van der Poll, Tissue factor as an initiator of coagulation and inflammation in pulmonary disease, Am. J. Respir. Cell Mol. Biol. 36 (2007) 158–165, https://doi.org/10.1165/rcmb.2006-0331TR.

L. Guan, Y. Wei, H. Li, J. Xu, S. Yu, Y. Zhang, H. Cao, Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study, Lancet 395 (2020) 1046–1054, https://doi.org/10.1016/S0140-6736(20)30565-6.

J.C. Becker, N. Grosser, C. Walkte, S. Schulz, K. Erdmann, W. Domschke, H. Schroder, T. Pohle, Beyond gastric acid reduction: proton pump inhibitors induce heme oxygenase-1 in gastric and endothelial cells, Biochem. Biophys. Res. Commun. 345 (2006) 344–349, https://doi.org/10.1016/j.bbrc.2006.05.180.
genotype and cardiovascular adverse events in patients with peripheral artery disease, Eur. J. Clin. Invest. 35 (2005) 731–737, https://doi.org/10.1111/j.1365-2362.2005.01580.x.

[133] R. Pechlaner, P. Willeit, M. Summerer, P. Santer, G. Egger, F. Kronenberg, E. Demetz, G. Weiss, S. Tsmitkis, J.L. Witztum, K. Willeit, B. Igleider, B. Paulweber, L. Kedenko, M. Haun, C. Meisinger, C. Gieger, M. Müller-Nurasyid, A. Peters, J. Willeit, S. Kiechl, Heme oxygenase-1 gene promoter microsatellite polymorphism is associated with progressive atherosclerosis and incident cardiovascular disease, Arterioscler. Thromb. Vasc. Biol. 35 (2015) 229–236, https://doi.org/10.1161/atvbaha.114.304729.

[134] S. Mustafa, A. Weltermann, R. Fritsche, C. Marsik, O. Wagner, P.A. Kyrle, S. Eichinger, Genetic variation in heme oxygenase 1 (HMOX1) and the risk of recurrent venous thromboembolism, J. Vasc. Surg. 47 (2008) 566–570, https://doi.org/10.1016/j.jvs.2007.09.060.

[135] R. Garza, A.J. Gill, B.L. Bastien, Y. Garcia-Mesa, A.L. Gruenewald, B.B. Gelman, B. Tsima, R. Gross, S.L. Letendre, D.L. Kolson, Heme oxygenase-1 promoter (GT) n polymorphism associates with HIV neurocognitive impairment, Neurol. Neuroimmunol. Neuroinflammation. 7 (2020) 710, https://doi.org/10.1212/NXI.0000000000000710.

[136] L. Seu, T.D. Burt, J.S. Witte, J.N. Martin, S.G. Deeks, J.M. Mccune, Variations in the heme oxygenase-1 microsatellite polymorphism are associated with plasma CD14 and viral load in HIV-infected African-Americans, Gene Immun. 13 (2012) 258–267, https://doi.org/10.1038/gene.2011.70.

[137] J. Kah, T. Volz, M. Lütgehetmann, A. Grooth, A.W. Iohse, G. Tiegts, G. Sass, M. Dandri, Haem oxygenase-1 polymorphisms can affect HCV replication and treatment responses with different efficacy in humanized mice, Liver Int. 37 (2017) 1128–1137, https://doi.org/10.1111/liv.13347.

[138] H. Kaneda, M. Ohno, J. Taguchi, M. Togo, H. Hashimoto, K. Ogasawara, T. Aizawa, N. Ishizaka, R. Nagai, Heme oxygenase-1 gene promoter polymorphism is associated with coronary artery disease in Japanese patients with coronary risk factors, Arterioscler. Thromb. Vasc. Biol. 22 (2002) 1680–1685, https://doi.org/10.1161/01.ATV.0000035515.96747.6f.

[139] W. Bao, F. Song, X. Li, S. Rong, W. Yang, D. Wang, J. Xu, J. Fu, Y. Zhao, L. Liu, Association between heme oxygenase-1 gene promoter polymorphisms and type 2 diabetes mellitus: a HuGE review and meta-analysis, Am. J. Epidemiol. 172 (2010) 651–656, https://doi.org/10.1093/aje/kqv162.

[140] M.M. Zhang, Y.Y. Zheng, Y. Gao, J.Z. Zhang, F. Liu, Y.N. Yang, X.M. Li, Y.T. Ma, X. Xie, Heme oxygenase-1 gene promoter polymorphisms are associated with coronary heart disease and restenosis after percutaneous coronary intervention: a meta-analysis, Oncotarget 7 (2016) 83437–83450, https://doi.org/10.18632/oncotarget.13118.

[141] H. Qiao, X. Sai, L. Gai, G. Huang, X. Chen, X. Tu, Z. Ding, Association between heme oxygenase 1 gene promoter polymorphisms and susceptibility to coronary artery disease: a HuGE review and meta-analysis, Am. J. Epidemiol. 179 (2014) 1039–1048, https://doi.org/10.1093/aje/kwu024.