Cutting Recursive Autoencoder Trees

Christian Scheible
Institute for Natural Language Processing
University of Stuttgart, Germany
scheibcn@ims.uni-stuttgart.de

Hinrich Schütze
Center for Information and Language Processing
University of Munich, Germany

Abstract

Deep Learning models enjoy considerable success in Natural Language Processing. While deep architectures produce useful representations that lead to improvements in various tasks, they are often difficult to interpret. This makes the analysis of learned structures particularly difficult. In this paper, we rely on empirical tests to see whether a particular structure makes sense. We present an analysis of the Semi-Supervised Recursive Autoencoder, a well-known model that produces structural representations of text. We show that for certain tasks, the structure of the autoencoder can be significantly reduced without loss of classification accuracy and we evaluate the produced structures using human judgment.

1 Introduction

Deep Learning (DL) approaches are gaining more and more attention in Natural Language Processing. Many NLP tasks have been addressed: syntactic parsing (Socher et al., 2010), semantic role labeling (Collobert et al., 2011), machine translation (Deselaers et al., 2009), and document classification (Glorot et al., 2011).

One important issue in applying DL lies in the structure of language. DL originated in image processing where the neighborhood of two entities, e.g. pixels, has a straightforward interpretation through spatial relations. In NLP, neighborhood relations are not always interpretable easily and don’t necessarily translate into a semantic relationship. Often, long distance dependencies hinder the use of locally sensitive models.

A frequently cited DL model for NLP tasks is a model introduced by (Socher et al., 2011), the Semi-Supervised Recursive Autoencoder (RAE). This model aims for a compositional approach, representing each word as a vector and recursively applying an autoencoder function to unify pairs of nodes, yielding a tree. One appealing property of RAEs is that the resulting structure lends itself to a syntactic or even semantic interpretation. However, so far no in-depth analysis of RAEs in terms of these structures has been performed.

Our main interest in this paper is to analyze the behavior of RAEs. We will investigate the following key questions: (i) Are the structures produced by RAEs interpretable syntactically or semantically? (ii) Can the structures be simplified?

We will analyze these issues empirically in a sentiment classification task that RAE has previously been used for (Socher et al., 2011). We introduce two methods for analysis. First, we try to simplify the RAE structures automatically and evaluate the resulting models on a classification task. Second, we let humans rate the structures according to syntactic and semantic criteria.
In Section 2, we describe RAEs, particularly highlighting some details regarding implementation. We then turn to different ways of structural simplification in Section 3. Section 4 introduces the task we use for evaluation. Section 5 contains error analysis of RAEs conducted by human annotators. In Section 6 we carry out the experiments on structural simplifications.

2 Semi-Supervised Recursive Autoencoders

The central model in this paper is the Semi-Supervised Recursive Autoencoder (RAE) (Socher et al., 2011). This section describes this model and discusses some important implementation details.

The RAE is a structural model. It recursively applies a neural network, the autoencoder, to construct a tree structure over the words in a sentence. Each word is represented as a vector which is independent of the context in which the word occurs. In addition to the usual autoencoder objective of reconstruction, the representation at each node is also used to predict the class of the whole sentence by applying a softmax neural network to the nodes.

The basic representations of words are randomly initialized vectors of dimensionality h, stored in a matrix W where every row represents one word. This representation is enhanced using an embedding matrix L which is optimized during training. The final representation of a word indexed by n is obtained by $W_n + L_n$. This representation serves as the base representation for tree construction.

First, we assume the words to be the leaf nodes of the tree. Trees are then constructed by iteratively joining two adjacent nodes using an autoencoder which consists of two layers. The encoding layer takes two nodes n_1 and n_2 and outputs a combined representation r:

$$ r = f(A_1[n_1; n_2] + b_1) $$

Subsequently, the reconstruction layer tries to reproduce the original inputs:

$$ [n_1, n_2] = A_2 r + b_2 $$

f is a non-linear function. A_x is the weight matrix, b_x the bias for the respective layer. Note that the dimensionality of r needs to be the same as of n_1 and n_2 so that the autoencoder can be applied recursively.

The resulting output of the autoencoder (again of dimensionality h) serves as the representation of a new node that has the two encoded nodes as its children. The combination operation is carried out greedily by autoencoding the pair of nodes first that has minimal reconstruction error E_{rec}.

Each node output is then used to predict the sentence label individually using a softmax layer:

$$ c = \text{softmax}(A_1 r), $$

where A_1 is a weight matrix and r the representation of a node.

The representations have an influence on both reconstruction and classification. Therefore, there are two objectives to be minimized: the reconstruction error E_{rec} that specifies how well the resulting node represents the two children, and a classification error E_{cl} that measures how well the correct label of the sentence can be predicted from the information at the node. E_{rec} is the Euclidean distance between the original and reconstructed nodes. E_{cl} is the cross-entropy error between the correct label and the output of a softmax layer that is trained. In particular, the embedding matrix L is optimized by calculating the classification errors over all words in the training set. For batch optimization arithmetic means of the errors E_{rec} and E_{cl} and the corresponding gradients are calculated over all nodes. Higher-order nodes are penalized in favor of leaf nodes with a factor β. E_{rec} and E_{cl} are added with weight $\alpha, 1 - \alpha$. The model parameters are optimized with L-BFGS.

After the autoencoder is trained, a feature extraction step follows. Following Socher et al. (2011), we performed this step differently from the way the autoencoder is optimized. First, we recursively

1 Some of these details are best described in the RAE implementation available at http://www.socher.org.
apply the aforementioned greedy autoencoder to build a tree for each sentence. In contrast to the RAE training, where the errors of individual nodes are averaged, we first calculate the arithmetic mean of all node features to get a single feature for the tree. Let \(f_1 \ldots + f_n \) be the features of the \(n \) nodes in a tree. Feature extraction returns \(\bar{f} = \sum_{i} f_i \) as the tree’s representation. Finally, a softmax neural network is trained on this representation. Taking the mean of all nodes resembles convolution operations which have been successfully applied in NLP previously, e.g. by Collobert et al. (2011) who calculate the maximum over the dimensions of their representation vectors. The original implementation (Socher et al., 2011) also uses the top feature separately. We leave this feature out in our experiments as it did not improve the results significantly.

The RAE has several parameters that need to be set. First, the weighting of reconstruction and classification error \(\alpha \). Second, the penalty of higher-order node errors versus leaf-level errors \(\beta \). In addition, all activation matrices vectors are regularized with the \(L_2 \) norm. We adopt the parameter settings used in (Socher et al., 2011).

3 Structural simplifications

In a complex model like the RAE it is difficult to see which components are responsible for the results it achieves. In order to analyze these structures, we try to simplify them automatically. Evaluating the model on a task will then show us whether the structure omitted made a contribution. In the following sections we will present three ways of structural simplification which we will apply to the RAE trees.

3.1 Tree level cuts

As a first, simple approach to determine the influence of higher level nodes in the tree, we simply remove nodes from the representation. One straightforward operation that achieves this is a level cut.

We count levels starting at the leaves, the basic units for the RAE. All terminal nodes \(t \) are defined to have level \(l(t) = 1 \), and each non-terminal \(n \) with children \(\langle c_1, c_2 \rangle \) has the level \(l(n) = \max(l(c_1), l(c_2)) \). In practice, we compute the full tree and then prune away all nodes that have a level higher than \(l_{\text{max}} \). We call this a (tree) level cut.

3.2 Subtree selection

Another approach to simplification follows from the idea that not every word is important for sentiment classification, but rather that there is a region in the sentence that is sufficient to recognize sentiment (cf. (Tu et al., 2012)). A good example is the tree in Figure 1(b). In order to predict the correct sentiment of the sentence, it is sufficient to analyze the second clause (“it never took off and always seemed static”). This way of simplification is orthogonal to level cuts. Level cuts reduce the amount of structure induced by the autoencoder but keep the complete input. Subtree selection reduces the input, but it makes use of and is based on the full tree representation.

In order to select a region, we greedily select a central word: We apply the softmax function of the autoencoder to each word in the sequence and pick the one with the lowest \(E_{\text{cl}} \) as the central word. For training examples, we compute the error for the gold class. For testing examples, we compute the score for all classes and select the word with the overall minimal error. Starting from this point, we select the largest subtree of the tree produced by the RAE whose top node \(n \) has a level of at most \(l_{\text{max}} \).

3.3 Window selection

Related to this is the window approach. Here, we again identify a central word as shown before and take the representations of all words within a window \(w \) to either side as input to the classifier, where the central word is the left- or rightmost word, respectively. All other words are ignored. For example \(w = 3 \) means that we take the two words to the left and to the right of the central word and drop everything else; and \(w = 1 \) only uses the central word and no context. In this approach, no tree structures are used, only the embeddings.
4 Task

We use the same task and data set for our RAE investigation as (Socher et al., 2011): sentiment classification for the sentence polarity dataset by Pang and Lee (2005). It contains 10,662 sentences from movie reviews that were manually labeled as expressing positive or negative sentiment towards the movie. We use the implementation provided at http://www.socher.org. We set the hidden layer dimensionality to $h = 50$. All experiments are carried out on a random 90/10 training-testing split. Accuracy is used as the evaluation measure since the class distribution in the dataset is balanced.

5 Error Analysis

Error analysis proves to be difficult for automatically generated representations. In general, the dimensions produced by autoencoding in NLP applications cannot be interpreted easily. Therefore, we resort to empirical evaluation in the context of our task. In this section, we will provide analyses conducted by human annotators of two properties of the trees: syntactic and semantic compositionality.

5.1 Syntactic Coherence

Naturally, it is tempting to think of RAE tree structures in terms of syntactic analysis. In this section, we will show that there is a large divergence between traditional syntactic trees as most theories of grammar would posit and the trees produced by RAE. We analyze two phenomena: coordinating conjunctions and negation. While coordinations are notoriously difficult even in supervised problems, negations are less problematic (Collins, 1999; McDonald, 2006). We asked 2 humans to judge whether the parse of 10 randomly selected examples for each of the phenomena was correct with respect to the phenomenon. None of the 20 parses (10 for each of the two phenomena) were unanimously determined to be correct by the human judges.

The example trees in Figure 1 illustrate these results. We will first take a look at examples for negation. In sentence 1(a), the autoencoder used not at a low level in the tree, constituting a modification of a. Their joint representation is itself joined with bad. The correct analysis would use not as a modifier to a joint structure a bad journey where bad and journey are combined directly. Sentences 1(b) and 1(c) represent cases where the autoencoder introduced long distances between the negating and the negated phrase (never to took off and not to describe).

We now turn to coordinations. In sentence 1(b), we find an instance of a coordination of two clauses. The clause always seemed static should receive a joint analysis and should then be modified by and. Instead, and is put in a subtree containing two words from each of the coordinated clauses.

The underlying reason for the resulting structures may actually arise through the property of greediness. As RAEs are trained greedily by joining the least error-prone combinations first, pairings of frequent words are common. For example, in sentence 1(a) frequent words are joined first (not to a, and all to). The most uncommon words are added last (bad and journey). In around 75% of all occurrences, periods are adjoined directly to their neighbors, which is not desirable from a syntactic point of view.

5.2 Semantic Coherence

We will now analyze the behavior of RAEs from a semantic point of view. Sentiment analysis, our example task, relies heavily on semantic composition.

Usually, sentiment is only carried by a small number of expressions, for example adjectives like great or awful in combination with their close syntactic environment (Tu et al., 2012). The sentiment of an expression can then be modified by applying an intensifying or reversing construction. A simple check for whether RAEs are able to learn compositionality is to check the produced trees for instances of these modifiers and see whether they behave as expected.

Intensifiers such as very or little are difficult to analyze as there is no straightforwardly quantifiable result that one would expect to occur, especially in the case of discrete labels as opposed to continu-
(a) Sentence 1: *not a bad journey at all*.

(b) Sentence 2: *though everything might be literate and smart, it never took off and always seemed static*.

(c) Sentence 3: *the *UNKNOWN* elaborate continuation of “the lord of the rings” trilogy is so huge that a column of words can not adequately describe *UNKNOWN* peter *UNKNOWN*’s expanded vision of *UNKNOWN*. r. r. *UNKNOWN*’s *UNKNOWN*.

Figure 1: Example trees. Leaf nodes contain the word that is encoded by them. All nodes contain the sentiment predicted using softmax, 1 being positive and 0 negative sentiment. We follow (Socher et al., 2011) and replace words for which no embedding is available by “*UNKNOWN*”.

5
ous sentiment scores. Therefore, we only consider reversers in this analysis. There is no consensus as to which words constitute the set of reversers. Often, reversing properties are context-dependent (Polanyi and Zaenen, 2006). We therefore picked a small set of reversers with general applicability: not/n’t, no, and never.

To check whether reversal occurs in a tree, we first calculate the classification decision by evaluating the softmax decision function at each node. We search the trees for occurrences of any reverser and check whether its sibling and its parent node are assigned opposite classes, which should be the case if the reverser was correctly applied. We find that reversal happens only in around 31% of all reverser occurrences.

Of course, since reversing is context-dependent, we need human input to verify this result. From all trees containing reversers, we randomly selected 3 trees in which the reverser reverses sentiment and 7 trees in which the reverser does not reverse sentiment (the goal being to mimic the 31% rate of reversals). We asked 2 human judges to check the examples for correct reversal. The judges unanimously found that only 3 out of 10 candidates are behaving correctly, confirming that reversal is very likely not a property captured correctly by the RAE model.

We again turn to Figure 1 for examples of errors. In sentence 1(a), not does not reverse the polarity of a – which is correct. However, modifying bad with the resulting structure still does not reverse. The polarity of the whole sentence seems to be determined by the polarity of journey which gets reversed at the top node, leading to misclassification. In sentence 1(b), never should reverse took off, yielding a negative sentiment overall. However at the point where the two phrases are joined, the topmost node depicted, positive sentiment is predicted.

We reiterate that the effect of reversers is quite complex and in many contexts – e.g., “not awesome, but pretty good” – they do not simply reverse sentiment. However, the examples seem to show that the syntactic and semantic role of reversers is not modeled well in those cases where they act as simple reversers.

6 Automatic structural simplification

In the previous section we showed that the structures produced by RAEs cannot be easily interpreted in terms of traditional linguistic categories from syntax and semantics. We will now turn to empirically evaluating the contributions of these structures in a practical classification task.

6.1 Level cuts during feature extraction

In the first experiment, we train the autoencoders to produce full trees and only apply level cuts in the feature extraction. We report accuracies in Table 1 column extract for different values of l_{max}.

The trees produced by the RAE on the whole dataset have a mean height of 10 and a maximum height of 23.
First note that the best accuracy is achieved by cutting directly above the leaves, i.e. using no trees at all. Increasing the maximum level lowers accuracy significantly; e.g. using \(l_{\text{max}} = 5 \), we lose over 2 percentage points compared to \(l_{\text{max}} = 0 \). Only when \(l_{\text{max}} \) is increased further, accuracy recovers. This result suggests that the leaf representations – the embeddings – carry great weight in classification.

In order to demonstrate the significance of the embeddings, we again train full RAE trees but resort to the random representations during feature extraction. The results of this run are shown in Table 1, column noembed.

Naturally, using random representations only we achieve low accuracy. Note that the results are still over chance level, an effect which may be caused by the random representations being similar to low-dimensional random indexing (Kanerva et al., 2000). Nevertheless, using higher-level tree representations successively increases accuracy to a similar level as observed in the previous experiment.

Our interpretation of this experiment is that while the trees seem to be able to create useful representations of the underlying words, these representations are redundant with respect to the embeddings. Combining both does not lead to improved classification accuracy.

6.2 Level cuts during training

One could argue that using a fully-trained RAE to extract pruned trees is unfair since the model is still able to use the full information induced during training. Taking the level cut approach one step further, we also cut the trees during training, using the same maximum level. Column train+extract in Table 1 shows the results for this experiment.

First, we observe that we get a well-performing model if the maximum level is 1 in both RAE training and feature extraction. This is not surprising as we are not using the node-combining part of the RAE at all which makes this particular model equal to the one with maximum level 1 in the previous experiment. Next, we can see that accuracy drops quickly as we introduce more levels and only recovers after raising the threshold to \(\infty \), using full trees. A possible explanation for this phenomenon is that when enforcing low levels there are also fewer training instances for the RAE and thus the resulting models are worse. Another possibility is that when full trees are constructed, all applications of the RAE depend on each other since errors are propagated through the structure. Thus, inconsistencies should be optimized away. However, there are fewer inconsistencies in lower-level cuts since the resulting subtrees are likely to be disconnected.

These experiments show that the best accuracy is achieved by a model that does not use the tree structures at all. Our conclusion from this evidence is that the strength of the RAE lies in the embeddings, not in the induced tree structure.

6.3 Subtree selection

We now turn to subtree selection. As stated previously, sentiment is a local phenomenon, so it might be sufficient to use part of a sentence to classify the data. Table 1, column sub shows the results for this experiment.

We observe low accuracies for low \(l_{\text{max}} \). Only when using large contexts (recall that the maximum number of levels is around 23), the results become competitive. From this experiment, it is not clear whether the height of the trees or the size of the contexts – which grows with the height – is responsible for the gain. We will investigate this issue in the following section.

6.4 Window selection

As a last experiment, we concentrate on the embeddings as they seem to be sufficient to achieve high accuracies on this task. This will also show whether subtrees or embedded words were responsible for the improvements with increasing tree height in the previous section.

We vary the window size \(w \) starting from 0 which is only the word itself, to \(\infty \) which is the maximum number of words. The data has a mean sentence length of around 21 words and a maximum sentence length of 63 words. Results are shown in Table 1, column win.
While a small window size (0 or 1) produces bad results – which might be an effect of choosing the wrong most confident word resulting in strong overfitting – vast improvements are visible soon. Taking a window of 15 words (in each direction) is sufficient. There are around 16% of the data that have more than 31 words, so it seems that for sentences of that length, there are no context effects that the model can exploit.

6.5 Discussion

We presented multiple experiments in which we simplified the RAE tree structures. All of these experiments point towards the embedding having the most influence on the end result. If embeddings are not used, accuracy drops almost to chance level. Using full trees and no embeddings seem to have the same effect as using only embeddings. However, using both representations together does not yield any improvement. This suggests that there is a large overlap between what the trees model and what the embeddings model.

7 Conclusion

In this paper, we conducted two different experiments concerning the structures learned and generated by Semi-Supervised Recursive Autoencoders.

First, we automatically reduced the structure in different ways and showed that on our sentiment analysis task the embedded words were sufficient to achieve state-of-the-art accuracy. Our experiments on window selection suggest that a structure as simple as a well-chosen subset of the words in a sentence produces a good model.

In a human evaluation, we showed that there is no simple way to interpret the structures produced by RAEs in terms of traditional linguistic categories of syntax and semantics.

Overall, we conclude that structural simplifications are possible at least for a sentiment analysis task.

Acknowledgements

This work was supported by the Deutsche Forschungsgemeinschaft through the Sonderforschungsbereich 732.

References

Collins, M., 1999. Head-driven statistical models for natural language parsing. Ph.D. thesis, University of Pennsylvania.

Collobert, R., Weston, J., Bottou, L., Karlen, M., Kavukcuoglu, K., Kuksa, P., Nov. 2011. Natural language processing (almost) from scratch. J. Mach. Learn. Res. 999888, 2493–2537.

Deselaers, T., Hasan, S., Bender, O., Ney, H., 2009. A deep learning approach to machine transliteration. In: Proceedings of the Fourth Workshop on Statistical Machine Translation. StatMT ’09. Association for Computational Linguistics, Stroudsburg, PA, USA, pp. 233–241.

Glorot, X., Bordes, A., Bengio, Y., June 2011. Domain adaptation for large-scale sentiment classification: A deep learning approach. In: Getoor, L., Scheffer, T. (Eds.), Proceedings of the 28th International Conference on Machine Learning (ICML-11). ICML ’11. ACM, New York, NY, USA, pp. 513–520.

Kanerva, P., Kristoferson, J., Holst, A., 2000. Random indexing of text samples for latent semantic analysis. In: In Proceedings of the 22nd Annual Conference of the Cognitive Science Society. Erlbaum, pp. 103–6.

McDonald, R., 2006. Discriminative learning and spanning tree algorithms for dependency parsing. Ph.D. thesis, University of Pennsylvania.

Pang, B., Lee, L., June 2005. Seeing stars: Exploiting class relationships for sentiment categorization with respect to rating scales. In: Proceedings of the 43rd Annual Meeting of the Association for Computational Linguistics (ACL’05). Association for Computational Linguistics, Ann Arbor, Michigan, pp. 115–124.
Polanyi, L., Zaenen, A., 2006. Contextual valence shifters. Computing attitude and affect in text: Theory and applications, 1–10.

Socher, R., Manning, C., Ng, A., 2010. Learning continuous phrase representations and syntactic parsing with recursive neural networks. In: Proceedings of the NIPS-2010 Deep Learning and Unsupervised Feature Learning Workshop.

Socher, R., Pennington, J., Huang, E. H., Ng, A. Y., Manning, C. D., 2011. Semi-Supervised Recursive Autoencoders for Predicting Sentiment Distributions. In: Proceedings of the 2011 Conference on Empirical Methods in Natural Language Processing (EMNLP).

Tu, Z., He, Y., Foster, J., van Genabith, J., Liu, Q., Lin, S., 2012. Identifying high-impact substructures for convolution kernels in document-level sentiment classification. In: Proceedings of the 50th Annual Meeting of the Association for Computational Linguistics: Short Papers - Volume 2. ACL ’12. Association for Computational Linguistics, Stroudsburg, PA, USA, pp. 338–343.