Powerfree Values of Polynomials

D.R. Heath-Brown
Mathematical Institute, Oxford

1 Introduction

Let \(f(X) \in \mathbb{Z}[X] \) be an irreducible polynomial of degree \(d \). It is conjectured that, for any integer \(k \geq 2 \), the polynomial \(f(n) \) takes infinitely many \(k \)-th power free values, providing that \(f \) satisfies the obviously necessary congruence conditions. Thus for every prime \(p \) we need to assume that there is at least one integer \(n_p \) for which \(p^k \nmid f(n_p) \). This problem appears to become harder as the degree \(d \) increases, but easier as \(k \) increases. Thus in 1933 Ricci [10] handled the case \(k \geq d \), and even proved an asymptotic formula

\[
N_{f,k}(x) \sim A(f,k)x \quad (x \to \infty)
\]

where

\[
N_{f,k}(x) := \#\{ n \in \mathbb{N} : n \leq x, f(n) \text{ k-free} \}
\]

Here the constant \(C(f,k) \) is given as

\[
C(f,k) := \prod_p (1 - \rho_f(p^k)p^{-k})
\]

where

\[
\rho_f(d) := \#\{ n \mod d : d \mid f(n) \}
\]

Further progress was made twenty years later by Erdős [2] who showed that one could obtain \(k \)-free values for \(k = d - 1 \), as soon as \(d \geq 3 \). For such \(k \) the asymptotic formula (1) was later obtained by Hooley [8].

The next development was due to Nair [9] who established (1) for \(k \geq (\sqrt{2} - \frac{1}{2})d \). In particular Nair’s result shows that \(k = d - 2 \) is admissible for \(d \geq 24 \). The author [4, Theorem 16] then showed how the “determinant method” could be applied to the problem, and demonstrated that the asymptotic formula remained valid for \(k \geq (3d + 2)/4 \), so that one may take \(k = d - 2 \) providing only that \(d \geq 10 \). Indeed using methods of Salberger (to appear) one can replace these inequalities by \(k \geq (3d + 1)/4 \) and \(d \geq 9 \) respectively.
In this paper we show that further progress is possible for irreducible polynomials of the form $f(X) = X^d + c$. For these we establish the following result.

Theorem 1 Let $f(X) = X^d + c \in \mathbb{Z}[X]$ be an irreducible polynomial, and suppose that $k \geq (5d + 3)/9$. Then there is a constant $\delta(d)$ such that

$$N_{f,k}(x) = C(f, k)x + O(x^{1-\delta(d)}).$$

The implied constant may depend on f and k.

For comparison with the earlier results we point out that this will allow $k = d - 2$ as soon as $d \geq 6$. The result of Erdős handles the case of cubic polynomials taking square-free values, and the most interesting open question then concerns quartic polynomials taking square-free values. We would therefore like to handle $k = d - 2$ for $d = 4$, and one can track our progress towards this goal through the historical discussion above.

There is a related question concerning powerfree values of f at prime arguments. Here there is a natural condition that for every prime p there should be an integer n_p, coprime to p, and such that $p^k \nmid f(n_p)$. With this in mind one defines

$$N'_{f,k}(x) := \# \{ p \text{ prime} : p \leq x, f(p) \text{ k-free} \}$$

and

$$C'(f, k) := \prod_p (1 - \rho'_f(p^k)\phi(p^k)^{-1})$$

where

$$\rho'_f(d) := \# \{ n \text{ mod } d : \gcd(n, d) = 1, d \mid f(n) \}. $$

The corresponding asymptotic formula

$$N'_{f,k}(x) \sim C'(f, k)\pi(x) \quad (x \to \infty)$$

has been proved for $k = d$ by Uchiyama [11], by a method that also handles the case $k > d$. However it remains an open problem to establish this in the case $k = d - 1$ considered for the previous problem by Erdős and Hooley. None the less, important progress has been made by Helfgott [6] and [7], showing in particular that the asymptotic formula holds in the case $k = 2$ and $d = 3$.

Our methods are sufficiently robust that they apply immediately to powerfree values of $f(p)$. We have the following result.
Theorem 2 Let $f(X) = X^d + c \in \mathbb{Z}[X]$ be an irreducible polynomial, and suppose that $k \geq \frac{5d + 3}{9}$. Suppose that for every prime p there is an integer n_p, coprime to p, and such that $p^k \nmid f(n_p)$. Then for any fixed $A > 0$ we have

$$N'_{f,k}(x) = C'(f,k)\pi(x) + O_A(x(\log x)^{-A}).$$

In particular this holds for $k = d - 1$ and every $d \geq 3$.

The preliminary manoeuvres for these problems are straightforward. We shall fix the polynomial f (and hence also d) throughout, so that all order constants may depend tacitly on f and d. The key fact we shall use is that

$$\sum_{b^k \mid f(n)} \mu(b) = \begin{cases} 1, & f(n) \text{ is } k\text{-free,} \\ 0, & \text{otherwise.} \end{cases}$$

It follows that

$$N_{f,k}(x) = \sum_b \mu(b)N(b, x)$$

with

$$N(b, x) = \#\{n \leq x : b^k \mid f(n)\},$$

and similarly that

$$N'_{f,k}(x) = \sum_b \mu(b)N'(b, x)$$

with

$$N'(b, x) = \#\{p \leq x : b^k \mid f(p)\}.$$

Clearly $N'(b, x) = N(b, x) = 0$ for $b \gg x^{d/k}$. If we denote the solutions to $f(n) \equiv 0 \mod b^k$ by n_1, \ldots, n_r, where $r = \rho_f(b^k)$, then

$$N(b, x) = \sum_{i \leq r} \#\{n \leq x : n \equiv n_i \mod b^k\}$$

$$= \sum_{i \leq r} (xb^{-k} + O(1))$$

$$= x b^{-k} \rho_f(b^k) + O(\rho_f(b^k)),$$

and similarly, providing that $b \leq (\log x)^{2A}$ we have

$$N'(b, x) = \sum_{i \leq r} \#\{p \leq x : p \equiv n_i \mod b^k\}$$

$$= \sum_{i \leq r, (n_i, b) = 1} \pi(x; b^k, n_i)$$

$$= \frac{\pi(x)}{\phi(b^k)} \rho_f'(b^k) + O_A(\rho_f(b^k)x(\log x)^{-4A}),$$

where ρ_f is the irrationality measure of any root of f. If f is of degree 3 we may take $\rho_f \approx 2.4$, and if f is of degree 4 we may take $\rho_f \approx 2.5$. It follows that

$$\rho_f = \frac{1}{2} \log 2 + O_{f,k}(x(\log x)^{-\epsilon})$$

for any $\epsilon > 0$.
by the Siegel-Walfisz Theorem. Now, for any $\xi > 0$ we find that

$$\sum_{b \leq \xi} \mu(b)N(b, x) = x \sum_{b \leq \xi} \frac{\mu(b)\rho_f(b^k)}{b^k} + O(\sum_{b \leq \xi} \rho_f(b^k)).$$

The function ρ_f is multiplicative, with $\rho(p^k) \ll 1$, whence

$$\rho(b^k) \ll \varepsilon b^\varepsilon$$

for any $\varepsilon > 0$ and any square-free b. If $k \geq 2$ it follows on taking $\varepsilon = 1/2$ that

$$\sum_{b \leq \xi} \frac{\mu(b)\rho_f(b^k)}{b^k} = \sum_{b=1}^\infty \frac{\mu(b)\rho_f(b^k)}{b^k} + O(\sum_{b > \xi} b^{1/2-k}) = C(f, k) + O(\xi^{-1/2})$$

and

$$\sum_{b \leq \xi} \rho_f(b^k) \ll \xi^{3/2}.$$

In particular if we set $\xi = x^{1/2}$ we see that

$$\sum_{b \leq \xi} \mu(b)N(b, x) = C(f, k)x + O(x^{3/4}).$$

In precisely the same way, if we take $\xi = (\log x)^{2A}$, then

$$\sum_{b \leq \xi} \mu(b)N'(b, x) = C'(f, k)\pi(x) + O_A(x(\log x)^{-A}).$$

We now consider the range $\xi < b \leq x^{1-\eta}$, where η is a small positive constant. Here we have

$$\sum_{\xi < b \leq x^{1-\eta}} \mu(b)N(b, x) \ll \sum_{\xi < b \leq x^{1-\eta}} N(b, x) \ll \sum_{\xi < b \leq x^{1-\eta}} \left(\frac{x}{b^k} + O(1)\right) \rho_f(b^k).$$

If we use the bound (2) with $\varepsilon = \frac{1}{2}\eta \leq \frac{1}{2}$ this yields

$$\sum_{\xi < b \leq x^{1-\eta}} \mu(b)N(b, x) \ll x^{\xi^{-1/2}} + x^{1-\eta/2} \ll x^{1-\eta/2}.$$
To complete the proof of the two theorems it will now be enough to show that

\[\sum_{x^{1-\eta} < b \leq x^{d/k}} N(b, x) \ll x^{1-\delta} \]

for some \(\delta > 0 \), providing that \(\eta \) is small enough. By a suitable dyadic subdivision we then see that it will suffice to establish the following estimate.

Lemma 1 Let \(f(X) = X^d + c \in \mathbb{Z}[X] \) be an irreducible polynomial. For any \(N, A, B \in \mathbb{N} \) define

\[
F(N; A, B) := \# \{ (n, a, b) \in \mathbb{N}^3 : f(n) = ab^k, N < n \leq 2N, A < a \leq 2A, B < b \leq 2B \}.
\]

Then if \((5d + 3)/9 \leq k \leq d - 1 \) there is a constant \(\delta \) depending on \(d \) such that

\[F(N; A, B) \ll_f N^{1-\delta} \]

for \(B \geq N^{1-\delta} \).

We have now reduced our problem to one of counting solutions to a Diophantine equation \(f(n) = ab^k \), inside a suitable box. A general procedure for such questions is provided by the “determinant method” developed in the author’s paper [3]. The efficiency of the method depends on the dimension of the associated algebraic variety. For \(f(n) = ab^k \) we are counting integer points on an affine surface. Thus far we have made no use of the special shape of the polynomial \(f \), but if we observe that \(f(n) = n^d + O(1) \) we see that \((n, a, b) \) lies close to the weighted projective curve \(X_0^d = X_1^k X_2^k \), where \(X_0 \) and \(X_2 \) are given weight 1, and \(X_1 \) has weight \(d - k \). Thus the particular form of the polynomial \(f \) allows us to consider points close to a curve, rather than points on a surface. Reducing the dimension in this way is the key to our saving. The procedure is discussed in more detail in the author’s work [5], to which the interested reader should be directed.

2 The Determinant Method

Since \(f(n) = n^d + O(1) \) we will have

\[N^d B^{-k} \ll A \ll N^d B^{-k} \tag{3} \]

for large \(N \). Moreover, since \(a \geq 1 \) we may assume that \(B^k \ll N^d \), and indeed we shall assume that

\[N^{1-\eta} \ll B \ll N^{d/k} \tag{4} \]
for some positive constant η. We will choose a parameter $K \geq 1$ having
\[
1 \ll \frac{\log K}{\log N} \ll 1,
\] (5)
and divide the available range for n/b into $O(K)$ subintervals
\[
I = (m_0N/BK, (m_0 + 1)N/BK]
\] with endpoints defined by integers m_0 in the range
\[
K \ll m_0 \ll K.
\] (6)
We use $F_I(N; A, B)$ to denote the corresponding contribution to $F(N; A, B)$. Since $f(n) = n^d + O(1)$ we have $n^d = ab^k + O(1)$ and
\[
(n/b)^d = a/b^{d-k} + O(B^{-d}).
\]
It will be convenient to put $k = d - j$ so that
\[
(n/b)^d = a/b^j + O(B^{-d}).
\] (7)
We now begin the determinant method by listing the points (n_r, a_r, b_r) contributing to $F_I(N; A, B)$. Thus the index r runs from 1 to
\[
R := F_I(N; A, B).
\]
We choose an integer parameter $D \geq 1$ and consider the monomials
\[
m(n, a, b) = n^u a^v b^w
\] for which $u + jv + w = D$. Thus we may consider D as the weighted degree of the monomial, where the variables (n, a, b) are given weights $(1, j, 1)$. The number of such monomials will be
\[
H := \sum_{v \leq D/j} (D - jv + 1) = \frac{D^2}{2j} + O(D)
\] (8)
and we label them as $m_1(n, a, b), \ldots, m_H(n, a, b)$. We now proceed to consider the $R \times H$ matrix M say, whose (r, h) entry is $m_h(n_r, a_r, b_r)$. The strategy of the determinant method is to show that M has rank strictly less than H, if the parameters K and D are suitably chosen. If this can be achieved, there will be a non-zero integer vector \bar{c} such that $M\bar{c} = 0$. This vector will
depend on the interval \(I \), that is to say it will depend on \(m_0 \). It provides the coefficients of a weighted homogeneous polynomial

\[
C_I(n, a, b) = \sum_h c_h m_h(n, a, b)
\]
such that

\[
C_I(n_r, a_r, b_r) = 0, \quad (r \leq R).
\] (9)

If \(R < H \) the matrix \(M \) automatically has rank less than \(H \). Otherwise it suffices to show that any \(H \times H \) sub-determinant vanishes, and it will be enough to consider the determinant formed from the first \(H \) rows of \(M \), which we shall denote by \(\Delta \). Clearly \(\Delta \) is an integer, and our strategy is to show that \(|\Delta| < 1 \) so that \(\Delta \) must vanish.

We proceed to divide the \(r \)-th row of \(\Delta \) by \(b_r^D B^{-D} \) for each \(r \leq D \), and similarly to divide the column corresponding to the monomial \(n^u a^v b^w \) by \(N^u A^v B^w \). Since

\[
n^u a^v b^w = \left(\frac{b}{B} \right)^D \left(\frac{nB}{bN} \right)^u \left(\frac{aB^j}{b^j A} \right)^v N^u A^v B^w
\]

for \(u + jv + w = D \), this produces a new determinant \(\Delta_1 \) whose entries are of the form \(m_h(nB/bN, aB^j/b^j A, 1) \). Moreover we have

\[
|\Delta| = |\Delta_1| \prod_{r \leq H} \left(\frac{b_r}{B} \right)^D \prod_{u,v,w} N^u A^v B^w \leq 2^{HD} P |\Delta_1|,
\] (10)

where

\[
P = \prod_{u+jv+w=D} N^u A^v B^w.
\]

If we write \(B = N^\beta \) then we have \(\log A = (d - k\beta) \log N + O(1) \), by (3). It follows that

\[
\log P = (\log N) \sum_{u+jv+w=D} (u + v(d - k\beta) + w\beta) + O_D(1)
\]

\[
= (\log N) \left\{ \frac{D^3}{6j} (1 + (d - k\beta)j^{-1} + \beta) + O(D^2) \right\} + O_D(1). \quad (11)
\]

We now write

\[
\frac{n_r B}{b_r N} = \frac{m_0}{K} + s_r, \quad \text{and} \quad \frac{a_r B^j}{b_r^j A} = \frac{N^d}{AB^x} \left(\frac{m_0}{K} + s_r \right)^d + t_r.
\]

Since \(n_r/b_r \in (m_0 N/BK, (m_0 + 1)N/BK) \) it follows that

\[s_r \ll K^{-1}. \]
Moreover (3) and (7) yield
\[\frac{a_r B^j}{b_r A} = \frac{N^d}{AB^k} \left(\frac{n_r B}{b_r N} \right)^d + O(N^{-d}), \]
and hence
\[t_r \ll N^{-d}. \]
Thus the \((r, h)\) entry of \(\Delta_1\) will be a polynomial
\[f_h(s_r, t_r) = (m_0 K^{-1} + s_r)^n \left(N^d A^{-1} B^{-k} (m_0 K^{-1} + s_r)^d + t_r \right)^v. \]
Clearly \(f_h\) may depend on \(h, m_0, K, D\) and \(d\), but it is independent of \(r\).
Moreover the degree of \(f_h\) will be at most \(dD\). It follows from (3) and (6) that \(N^d A^{-1} B^{-k} \ll 1\) and \(m_0 K^{-1} \ll 1\), whence we have the bound \(||f_h|| \ll D^{-1}\) for the height of \(f_h\).

In order to estimate the size of \(\Delta_1\) we will use Lemma 3 of the author’s work [5]. For each of the monomials \(s^u t^v\) we write
\[\|s^u t^v\| = K^{-u} N^{-dc}, \]
and we list them in order as \(m_1, \ldots, m_H\) with \(\|m_1\| \geq \|m_2\| \geq \ldots\). Then according to [5, Lemma 3] we have
\[\Delta_1 \ll D \left(\max_{h=1}^H \|f_h\| \right)^H \prod_{h=1}^H \|m_h\| \ll D \prod_{h=1}^H \|m_h\|. \tag{12} \]
To proceed further we shall write \(K = N^{\kappa}\), and note that \(1 \ll \kappa \ll 1\), by [5]. If we now write \(m(\lambda)\), say, for the number of monomials \(m_r = s^u t^v\) with \(\|m_r\| \geq N^{-\lambda}\), then
\[m(\lambda) = \# \{(u, v) \in \mathbb{Z}^2 : u, v \geq 0, \kappa u + dv \leq \lambda\} = \frac{\lambda^2}{2kd} + O(\lambda) + O(1). \]
If \(\|m_H\| = N^{-\lambda_0}\) then \(m(\lambda_0) \geq H\), while for any \(\varepsilon > 0\) we will have
\[m(\lambda_0 - \varepsilon) \leq H - 1. \]
We may therefore deduce that
\[\lambda_0 = \sqrt{2kdH} + O(1). \]
We then find that
\[\prod_{h=1}^H \|m_h\| = N^{-\mu}. \]
with
\[
\mu = \sum_{\kappa u + dv \leq \lambda_0} (\kappa u + dv) + O(\lambda_0^2) + O(1) \\
= \frac{\lambda_0^3}{3kd} + O(\lambda_0^2) + O(1) \\
= \frac{2^{3/2}}{3} (kd)^{1/2} H^{3/2} + O(H).
\]

In view of (8), (10), (11) and (12) we may now conclude that
\[
\log |\Delta|/\log N \leq \frac{D^3}{6j} (1 + (d-k\beta)j^{-1} + \beta) - \frac{2^{3/2}}{3} (kd)^{1/2} H^{3/2} + O_D((\log N)^{-1}) + O(D^2).
\]

Thus (8) yields
\[
\frac{\log |\Delta|}{D^3 \log N} \leq \frac{1}{6j} (1 + (d-k\beta)j^{-1} + \beta) - \frac{2^{3/2}}{3} (kd)^{1/2} (2j)^{-3/2} \\
+ O_D((\log N)^{-1}) + O(D^{-1}).
\]

We therefore choose
\[
\kappa = \frac{j}{4d} \left(1 + \frac{d-k\beta}{j} + \beta \right)^2 + \eta,
\]
with the same small constant \(\eta\) as in (11). Then (5) will be satisfied, and we will have
\[
\frac{\log |\Delta|}{D^3 \log N} < 0
\]
providing that we first choose \(D = D(f,d,\eta)\) sufficiently large, and then ensure that \(N\) is sufficiently large in terms of \(f, d\) and \(\eta\).

We therefore deduce that \(\Delta = 0\) when \(K = N^\kappa\). With this choice the matrix \(M\) introduced at the beginning of the section will have rank strictly less than \(H\), so that all solutions \((n_r, a_r, b_r)\) counted by \(F_I(N; A, B)\) satisfy the auxiliary equation (9).

3 Completion of the Proof

We now complete our estimation of \(F_I(N; A, B)\) by considering how many triples \((n,a,b)\) can satisfy both the original equation \(f(n) = ab^k\) and the additional equation (9). The procedure here will follow precisely that used in the author’s paper [4, §5.3]. Since \(C_I\) is homogeneous with exponent weights
(1, j, 1) any factor would have to be similarly weighted-homogeneous. It follows in particular that \(C_I(x, y, z) \) cannot have a factor in common with \(f(x) - yz^k \). As in [4, pages 84 and 85] we find that either

\[
F_I(N, A, B) \ll \varepsilon (1 + N/B) N^\varepsilon
\]

or that there is an irreducible polynomial \(G_I(X, Y) \in \mathbb{Z}[X, Y] \), with degree bounded in terms of \(d \) and \(\varepsilon \), but at least \(d \), such that

\[
G_I(n, b) = 0
\]

for every triple \((n, a, b)\) counted by \(F_I(N, A, B) \).

For a given interval \(I \) we will have

\[
\frac{n}{b} \in I = (m_0 N/BK, (m_0 + 1) N/BK]
\]

It therefore follows that

\[
\left| \frac{n - m_0 N}{BK} b \right| \leq \frac{2N}{K}, \quad B < b \leq 2B.
\]

It will be convenient to define a linear mapping \(T : \mathbb{R}^2 \rightarrow \mathbb{R}^2 \) by

\[
Tx := \begin{pmatrix} K(2N)^{-1}x_1 - (2B)^{-1}m_0 x_2 \\ (2B)^{-1}x_2 \end{pmatrix}
\]

and to consider the lattice

\[
\Lambda = \{ Tx : x \in \mathbb{Z}^2 \}
\]

of determinant \(K(4NB)^{-1} \). Then if \(x = (n, b) \) satisfies (16) we produce a point \(Tn = (\alpha_1, \alpha_2) \in \Lambda \) falling in the square

\[
S = \{ (\alpha_1, \alpha_2) : \max(|\alpha_1|, |\alpha_2|) \leq 1 \}.
\]

Let \(g^{(1)} \) be the shortest non-zero vector in the lattice and \(g^{(2)} \) the shortest vector not parallel to \(g^{(1)} \). These vectors will form a basis for \(\Lambda \). Moreover we have \(\lambda_1 g^{(1)} + \lambda_2 g^{(2)} \in S \) only when \(|\lambda_1| \ll |g^{(1)}|^{-1} \) and \(|\lambda_2| \ll |g^{(2)}|^{-1} \). These constraints may be written in the form \(|\lambda_i| \leq L_i \), for appropriate bounds \(L_1, L_2 \). Since \(|g^{(2)}| \geq |g^{(1)}| \) and \(|g^{(1)}|, |g^{(2)}| \ll \det(\Lambda) \ll K(4NB)^{-1} \) we will have \(L_1 \gg L_2 \) and \(L_1 L_2 \gg NBK^{-1} \). We now write \(h^{(i)} = T^{-1} g^{(i)} \) for \(i = 1, 2 \). These vectors will then be a basis for \(\mathbb{Z}^2 \), and if \(x = \lambda_1 h^{(1)} + \lambda_2 h^{(2)} \) is in the region (16) then we will have \(|\lambda_i| \leq L_i \) for \(i = 1, 2 \). This allows us to make a
change of basis, replacing \((x_1, x_2)\) by \((\lambda_1, \lambda_2)\) so that our constraints on \(n, b\) are replaced by the conditions \(|\lambda_i| \leq L_i\).

We therefore proceed to substitute \(\lambda_1, \lambda_2\) for \(n, b\) in (15). We may then use the bound of Bombieri and Pila [1, Theorem 5] to show that the number of possible pairs \(\lambda_1, \lambda_2\) is \(\ll \varepsilon \max(L_1, L_2)^{1/d + \varepsilon} \ll \varepsilon L_1^{1/d + \varepsilon}\), since the degree of \(G\) is at least \(d\). Thus

\[
F_1(N, A, B) \ll \varepsilon L_1^{1/d + \varepsilon}.
\]

The number \(L_1\) depends on the interval \(I\), which is determined by \(m_0\). We therefore write \(L_1 = L_1(m_0)\) accordingly. In view of the alternative (14) we then see that

\[
F(N, A, B) \ll \varepsilon K \left(1 + N/B\right) N^\varepsilon + \sum_{K \ll m_0 \ll K} L_1(m_0)^{1/d + \varepsilon},
\]

(17)

the range for \(m_0\) being given by (16).

We proceed to investigate the number of choices for \(m_0\) which produce a value \(L_1(m_0)\) lying in a given dyadic interval \((L, 2L]\) say. In the notation above, if \((n, b) = (x_1, x_2)\) corresponds to \(g^{(1)}\) then

\[
L_1 \left(x_1 - \frac{m_0 N}{BK} x_2\right) \ll \frac{N}{K}
\]

and \(L_1 x_2 \ll B\). Moreover we will have \(\gcd(x_1, x_2) = 1\). Thus the number of intervals \(I\) for which \(L < L_1 \leq 2L\) is at most the number of triples \((x_1, x_2, m_0) \in \mathbb{Z}^3\) with \(\gcd(x_1, x_2) = 1\), for which

\[
L \left(x_1 - \frac{m_0 N}{BK} x_2\right) \ll \frac{N}{K}, \quad L x_2 \ll B, \quad \text{and} \quad K \ll m_0 \ll K.
\]

(18)

We proceed to consider whether the value \(x_2 = 0\) can occur. If \(x_2 = 0\) the first of the conditions above would yield \(L x_1 \ll N/K\). However we cannot have \(x_1 = x_2 = 0\), so that we must have \(L \ll N/K\) whenever \(x_2 = 0\). We now recall that \(L_1 \gg L_2\) and that \(L_1 L_2 \gg NBK^{-1}\), whence

\[
L^2 \gg NBK^{-1}.
\]

(19)

It follows that if \(x_2 = 0\) then \((N/K)^2 \gg L^2 \gg NBK^{-1}\) and hence that \(BK \ll N\). However, since \(K = N^\kappa\) with \(\kappa\) given by (13), we see from (4) that \(BK/N\) tends to infinity with \(N\), which ensures that the case \(x_2 = 0\) cannot arise.

We now see in particular that the second condition of (18) yields \(L \ll B\). If we rewrite the first of the conditions (18) to say that

\[
m_0 x_2 = N^{-1} BK x_1 + O(BL^{-1})
\]
we then see that each choice for x_1 restricts the product m_0x_2 to an interval of length $\ll B/L$, with $B/L \gg 1$. Moreover m_0x_2 is never zero. Thus a divisor function estimate shows that there are $O_\varepsilon(N^\varepsilon BL^{-1})$ possible pairs (x_2, m_0) for each value of x_1. The conditions (18) show that $x_1 \ll N/L$, so that x_1 takes $O(1+N/L)$ values. This allows us to conclude that the number of integers for m_0 which produce a value $L_1(m_0)$ in the range $L < L_1 \leq 2L$ is $O_\varepsilon((1+N/L)N^\varepsilon BL^{-1})$.

We can now feed this information into (17), using a dyadic subdivision for the values of $L_1(m_0)$ to obtain

$$F(N, A, B) \ll \varepsilon K(1+N/B)N^\varepsilon + \sum_L L^{1/d+\varepsilon}(1+N/L)N^\varepsilon BL^{-1},$$

in which L runs over powers of 2, subject to the condition $L \gg (NBK^{-1})^{1/2}$ given by (19). It then follows that

$$F(N, A, B) \ll \varepsilon K(1+N/B)N^\varepsilon + L_0^{1/d+\varepsilon}(1+N/L_0)N^\varepsilon BL_0^{-1},$$

where $L_0 := \max\{1, (NBK^{-1})^{1/2}\}$. On taking $\varepsilon = \eta$ we deduce from (4) that

$$F(N, A, B) \ll \eta N^{2\eta}\{K + L_0^{1/d+\eta}(1+N/L_0)BL_0^{-1}\}.$$

We proceed to analyse our estimate for $F(N, A, B)$ by defining

$$\rho(t) = \frac{j}{4d} \left(1 + \frac{d - kt}{j} + t\right)^2$$

and $q(t) = \rho(t) + 1 - t$. Then

$$q'(t) = \frac{j}{d} \left(1 + \frac{d - kt}{j} + t\right) \left(1 - \frac{k}{j}\right) - 1.$$

This is clearly negative if $k \geq j$ and $0 \leq t \leq d/k$. Hence if $k \geq d/2$ we have

$$q(t) \geq q(d/k) = \frac{j^3}{4dk^2} \geq 0$$

for $0 \leq t \leq d/k$. It therefore follows that $KN \leq B$, and hence that $L_0 \leq N$ for the relevant range of B. Our estimate now simplifies to give

$$F(N, A, B) \ll \eta N^{2\eta}\{K + L_0^{-2+1/d+\eta}NB\}.$$

This will be of order $N^{1-\eta}$ if $\eta > 0$ is sufficiently small, and

$$\sup_{1 \leq t \leq d/k} \rho(t) < 1 \quad \text{and} \quad \sup_{1 \leq t \leq d/k} Q(t) < 0$$

12
for

\[Q(t) = \left(-2 + \frac{1}{d} \right) \frac{1 + t - k(t)}{2} + t. \]

To handle the condition on \(\rho(t) \) we note that the function attains its supremum at either \(t = 1 \) or \(t = d/k \). Moreover if \(v = k/d \) satisfies \(5/9 < v < 1 \) we find that \(\rho(1) = 9(1 - v)/4 < 1 \) and

\[\rho(d/k) = \frac{(1 + v)(1 - v^2)}{4v^2}. \]

This latter function is decreasing with respect to \(v \), and takes the value \(196/225 < 1 \) at \(v = 5/9 \). It follows that the supremum is strictly less that 1 if \(5/9 < k/d < 1 \).

To verify the condition on \(Q(t) \) we note that if \(1 \leq t \leq d/k \) then

\[
Q'(t) = \left(-2 + \frac{1}{d} \right) \frac{1}{2} \left\{ 1 - \frac{j}{2d} \left(1 + \frac{d - kt}{j} + t \right) \left(-\frac{k}{j} + 1 \right) \right\} + 1 \\
= \frac{1}{2d} - \left(1 - \frac{1}{2d} \right) \frac{2k - d}{2d} \left(1 + \frac{d - kt}{j} + t \right) \\
\leq \frac{1}{2d} - \left(1 - \frac{1}{2d} \right) \frac{2k - d}{2d} \left(1 + \frac{d}{k} \right) \\
< 0
\]

for \(k > d/2 \). Thus

\[Q(t) \leq Q(1) = \frac{9j}{4d} \left(1 - \frac{1}{2d} \right) - \left(1 - \frac{1}{d} \right), \]

which is strictly negative for

\[j < \frac{4d^2}{9d - 2}. \]

This condition is equivalent to

\[k > \frac{10d^2 - d}{18d - 9} = \frac{5d + 2}{9} + \frac{2}{18d - 9}. \]

Thus it is necessary and sufficient that

\[k \geq \frac{5d + 3}{9}. \]

This completes the proof of Lemma \(\square \) and hence also of our two theorems.
References

[1] E. Bombieri and J. Pila, The number of integral points on arcs and ovals, *Duke Math. J.*, 59 (1989), 337-357.

[2] P. Erdős, Arithmetical properties of polynomials, *J. Lond. Math. Soc.*, 28 (1953), 416–425.

[3] D.R. Heath-Brown, The density of rational points on curves and surfaces, *Ann. of Math. (2)*, 155 (2002), 553–595.

[4] D.R. Heath-Brown, Counting rational points on algebraic varieties, *Analytic number theory*, 51–95, Lecture Notes in Math., 1891, Springer, Berlin, 2006.

[5] D.R. Heath-Brown, Sums and differences of three kth powers, *J. Number Theory*, 129 (2009), 1579-1594.

[6] H.A. Helfgott, Power-free values, large deviations and integer points on irrational curves, *J. Théor. Nombres Bordeaux*, 19 (2007), no. 2, 433–472.

[7] H.A. Helfgott, Power-free values, repulsion between points, differing beliefs and the existence of error, *Anatomy of integers*, 81–88, CRM Proc. Lecture Notes, 46, (Amer. Math. Soc., Providence, RI, 2008).

[8] C. Hooley, On the power free values of polynomials, *Mathematika*, 14 (1967), 21–26.

[9] M. Nair, Power free values of polynomials, *Mathematika*, 23 (1976), 159–183.

[10] G. Ricci, Ricerche aritmetiche sui polinomi, *Rend. Circ. Mat. Palermo*, 57 (1933), 433–475.

[11] S. Uchiyama, On the power-free values of a polynomial, *Tensor (N.S.*), 24 (1972), 43–48.

Mathematical Institute,
24–29, St. Giles’,
Oxford
OX1 3LB
UK

rhb@maths.ox.ac.uk