A Wick-rotatable metric is purely electric

Christer Helleland and Sigbjørn Hervik

Faculty of Science and Technology,
University of Stavanger,
N-4036 Stavanger, Norway

ch.helleland@stud.uis.no, sigbjorn.hervik@uis.no

April 7, 2015

Abstract

We show that a metric of arbitrary dimension and signature which allows for a Wick rotation to a Riemannian metric necessarily has a purely electric Riemann and Weyl tensor.

1 Introduction

In quantum theories a Wick rotation is a mathematical trick to relate Minkowski space to Euclidean space by a complex analytic extension to imaginary time. This enables us to relate a quantum mechanical problem to a statistical mechanical one relating time to the inverse temperature. This trick is highly successful and is used in a wide area of physics, from statistical and quantum mechanics to Euclidean gravity and exact solutions.

In spite of its success, there is a question about its range of applicability. A question we can ask is: Given a spacetime, does there exist a Wick rotation to transform the metric to a Euclidean one?

Here we will give a partial answer to this question and will give a necessary condition for a Wick rotation (as defined below) to exist. However, before we prove our main theorem, we need to be a bit more precise with what we mean by a Wick rotation. Consider a pseudo-Riemannian metric (of arbitrary dimension and signature). We need to allow for more general coordinate transformations than the real diffeomorphisms preserving the metric signature – namely to complex analytic continuations of the real metric [1,2].

Consider a point p and a neighbourhood, U, of p. Assume this neighbourhood is an analytic neighbourhood and that x^μ are coordinates on U so that $x^\mu \in \mathbb{R}^n$. We will adapt the coordinates to the point p so that p is at the origin of this coordinate system. Consider now the complexification of $x^\mu \mapsto x^\mu + iy^\nu = z^\mu \in \mathbb{C}^n$. This complexification enables us to consider the complex analytic neighbourhood U^C of p.

Furthermore, let $g^C_{\mu\nu}$ be a complex bilinear form induced by the analytic extension of the metric:

$$g^C_{\mu\nu}(x^\rho)dx^\mu dx^\nu \mapsto g^C_{\mu\nu}(z^\rho)dz^\mu dz^\nu.$$
Next, consider a real analytic submanifold containing p: $U \subset U^C$. The imbedding $\iota : \bar{U} \mapsto U^C$ enables us to pull back the complexified metric g^C onto \bar{U}:

$$g \equiv \iota^* g^C.$$ \hfill (1)

In terms of the coordinates \bar{x}^μ: $g = g_{\mu\nu}(\bar{x}^\rho) d\bar{x}^\mu d\bar{x}^\nu$. This bilinear form may or may not be real. However, if the bilinear form $\bar{g}_{\mu\nu}(\bar{x}^\rho) d\bar{x}^\mu d\bar{x}^\nu$ is real (and non-degenerate) then we will call it an analytic extension of $g_{\mu\nu}(x^\rho) d\rho^\mu d\rho^\nu$ with respect to p, or simply a Wick rotation of the real metric $g_{\mu\nu}(x^\rho) d\rho^\mu d\rho^\nu$. This clearly generalises the concept of Wick rotations from the standard Minkowskian setting to a more general setting $[10]$.

In the following, let us call the Wick rotation, in the sense above, for ϕ; i.e., $\phi : U \mapsto \bar{U}$. We note that this transformation is complex, and we can assume, since U is real analytic, that ϕ is analytic.

The Wick rotation in the sense above, leaves the point p stationary. It therefore induces a linear transformation, M, between the tangent spaces $T_p U$ and $T_{\phi(p)} \bar{U}$. The transformation M is complex and therefore may change the metric signature; consequently, even if the metric $\bar{g}_{\mu\nu}$ is real, it does not necessarily need to have the same signature of $g_{\mu\nu}$.

Consider now the curvature tensors, R and $\nabla^{(k)} R$ for $g_{\mu\nu}$, and \bar{R} and $\bar{\nabla}^{(k)} \bar{R}$ for $\bar{g}_{\mu\nu}$. Since both metrics are real, their curvature tensors also have to be real. The analytic continuation, in the sense above, induces a linear transformation of the tangent spaces; consequently, this would relate the Riemann tensors R and \bar{R} through a complex linear transformation. It is useful to introduce an orthonormal frame e_μ. The orthonormal frames e_μ and \bar{e}_μ are related through their complexified frame \bar{e}^C_μ. We can define a complex orthonormal frame requiring the inner product $\bar{g}^{\mu\nu}(\bar{e}^C_\mu, \bar{e}^C_\nu) = \delta_{\mu\nu}$. This inner product is invariant under the complex orthogonal transformations, $O(n, \mathbb{C})$. The real frames e_μ and \bar{e}_μ are obtained by restricting the complex frame to real frames; hence, we consider the real vector spaces $T_p U$ and $T_{\phi(p)} \bar{U}$ as embedded in the complexified vector space $(T_p U)^C \cong (T_{\phi(p)} \bar{U})^C$. The real frames are thus related through a restriction of a complex frame having an $O(n, \mathbb{C})$ structure group.

By using ϕ we can relate the metrics $g = \phi^* \bar{g}$. Since the map is analytic (albeit complex), the curvature tensors are also related via ϕ. If R and \bar{R} are the Riemann curvature tensors for U and \bar{U} respectively, then these are related, using an orthonormal frame, via an $O(n, \mathbb{C})$ transformation. Considering the components of the Riemann tensor as a vector in some $\mathbb{R}^N \subset \mathbb{C}^N$, then if there exists a Wick rotation of the metric at p, then the (real) Riemann curvature tensors of U and \bar{U} must lie in the same $O(n, \mathbb{C})$ orbit in \mathbb{C}^N.

Note: This definition of a Wick rotation does not include the more general analytic continuations defined by Lozanovski $[1]$. In particular, we consider one particular metric (thus not a family of them) and we require that the point p is fixed and is therefore more of a complex rotation.

In the following we will utilise the study of real orbits of semi-simple groups, see e.g. $[5, 6]$. In particular, the considerations made in $[5]$ will be useful. For a

1 This is a not really a proper inner product since it is not positive definite, but rather a \mathbb{C}-bilinear non-degenerate form.
more general introduction to the structure of Lie algebras including the Cartan involution, see, for example [7, 8].

2 The electric/magnetic parts of a tensor

Following [3], we can introduce the electric and magnetic parts of a tensor by considering the eigenvalue decomposition of the tensor under the Cartan involution θ of the real Lie algebras $\mathfrak{o}(p, q)$. This involution can be extended to all tensors, and to vectors $v \in T_p M$ in particular. Considering an orthonormal frame, so that:

$g(e_\mu, e_\mu) = \begin{cases} -1, & 1 \leq \mu \leq p \\ +1, & p + 1 \leq \mu \leq p + q = n, \end{cases}$

then the $\theta : T_p M \to T_p M$, can be defined as the linear operator:

$$\theta(e_\mu) = \begin{cases} -e_\mu, & 1 \leq \mu \leq p \\ +e_\mu, & p + 1 \leq \mu \leq p + q = n. \end{cases}$$

Clearly, this implies that the bilinear map:

$$(X, Y)_\theta := g(\theta(X), Y), \quad X, Y \in T_p M$$

defines a positive definite inner-product on $T_p M$. This Cartan involution can be extended to arbitrary tensor products.

Given a Cartan involution θ, then since $\theta^2 = \text{Id}$, its eigenvalues are ± 1 and any tensor T has an eigenvalue decomposition:

$$T = T_+ + T_-, \quad \text{where } \theta(T_\pm) = \pm T_\pm.$$

A space is called purely electric (PE) if there exists a Cartan involution so that the Weyl tensor decomposes as $C = C_+$. Furthermore, a space is called purely magnetic (PM) if the Weyl tensor decomposes as $C = C_-$. If this property occurs also for the Riemann tensor, we call the space Riemann purely electric (RPE) or magnetic (RPM), respectively. Clearly, RPE implies PE.

3 The Riemann curvature operator

The Riemann curvature tensor can (pointwise) be seen as a bivector operator:

$$\text{Riem} : \bigwedge^2 \Omega_p(M) \to \bigwedge^2 \Omega_p(M).$$

In a pseudo-Riemannian space of signature (p, q) the metric g will provide an isomorphism between the space of bivectors, $\bigwedge^2 \Omega_p(M)$, and the Lie algebra $\mathfrak{g} = \mathfrak{o}(p, q)$. Consequently, the Riemann curvature operator can also be viewed as an endomorphism of $V := \mathfrak{g}$ as a vector space. Consider therefore any $R \in \text{End}(V)$:

$$R : V \to V.$$
This endomorphism can be split in a symmetric and anti-symmetric part, \(R = S + A \), with respect to the metric induced by \(g \) (proportional to the Killing form \(\kappa \) on \(V \)):

\[
g(S(x), y) = g(S(y), x), \quad g(A(x), y) = -g(A(y), x) \quad \forall x, y \in g.
\]

This metric is invariant under the Lie group action of \(G = O(p, q) \):

\[
g(h \cdot x, h \cdot y) = g(x, y),
\]

where \(h \cdot x \) is the natural Lie group action on the Lie algebra given by the adjoint: \(h \cdot x := Ad_h(x) = h^{-1}xh \).

Consider now a Cartan involution \(\theta : g \to g \). Then we define the inner-product on \(V = g \) as follows:

\[
\langle x, y \rangle_\theta = g(\theta(x), y),
\]

which is just proportional to \(\kappa_\theta (-, -) := -\kappa(-, \theta(-)) \). We can now, similarly, split any \(R \in \text{End}(V) \) in a symmetric and anti-symmetric part, \(R = R_+ + R_- \), with respect to the inner-product \((-, -)_\theta \):

\[
\langle R_+(x), y \rangle_\theta = \langle R_+(y), x \rangle_\theta, \quad \langle R_-(x), y \rangle_\theta = -\langle R_-(y), x \rangle_\theta, \quad \forall x, y \in g.
\]

Let now \(\tilde{\theta} \) be a Cartan involution of another real form of \(\mathfrak{o}(n, \mathbb{C}) \). Assume the real form is \(\tilde{\mathfrak{g}} = \mathfrak{o}(\bar{\tilde{\theta}}, \bar{\tilde{\theta}}) \), with corresponding metric \(\tilde{g} \). We note that the Lie algebras \(g \) and \(\tilde{g} \) are isomorphic as vector spaces (let us call them \(V \) and \(\tilde{V} \), respectively) and both are subspaces of \(V^\mathbb{C} \); i.e., \(V, \tilde{V} \subset V^\mathbb{C} \).

As the space of endomorphisms, \(\text{End}(V) \), is also a vector space with the group action given by conjugation, we can thus define \(\mathcal{V} := \text{End}(V) \), and extend the Cartan involution, \(\theta \), as well as \(g \) tensorially to \(\mathcal{V} \). We define analogously an inner product on \(\mathcal{V} \):

\[
\langle \langle X, Y \rangle \rangle_\theta = g(\theta(X), Y), \quad X, Y \in \mathcal{V}.
\]

Defining \(\tilde{\mathcal{V}} \) similarly, we again have \(\mathcal{V}, \tilde{\mathcal{V}} \subset V^\mathbb{C} \).

Assume now that \(g = \mathfrak{o}(p, q) \) and \(\tilde{V} = \mathfrak{o}(n) \) (the compact real form of \(V^\mathbb{C} = \mathfrak{o}(n, \mathbb{C}) \)). Let \(\theta \) be a Cartan involution of \(\mathfrak{g} \) with Cartan decomposition \(\mathfrak{g} = T_0 \oplus P_0 \). Set \(C = T_0 \oplus iP_0 \) to be the compact real form of \(g^\mathbb{C} \). We will assume that \(\tilde{g} \) is embedded as a Lie algebra in \(\tilde{V}^\mathbb{C} \) by identifying the compact real forms \(C \) and \(\tilde{V} \) together. Define \(\tilde{V} \) to be the vector space copy of \(\tilde{g} \) in \(\tilde{V}^\mathbb{C} \). It follows that we can choose a Cartan involution:

\[
\theta : \tilde{V}^\mathbb{C} \to \tilde{V}^\mathbb{C}
\]

of \(V \) such that \(\theta_{|_V} = 1_V \). Let now \(\mathfrak{o}(p, q) \) be equipped with the metric \(\langle -, - \rangle_\theta \) as described earlier.

In what follows, we will consider the real orbits, \(\mathcal{O}(R) \) and its complexified orbit \(\mathcal{O}_C(R) \), defined by the action of the group on \(R \) as follows:

\[
\mathcal{O}(R) := \{ h \cdot R \mid h \in O(p, q) \} \subset \mathcal{V}
\]

\[
\mathcal{O}_C(R) := \{ h \cdot R \mid h \in O(n, \mathbb{C}) \} \subset \mathcal{V}^\mathbb{C}.
\]
There are many examples of purely electric spaces (see [3, 4] and references therein). In particular, a purely electric Lorentzian spacetime is of type G.

\[\text{Corollary 3.2. A metric (of arbitrary dimension and signature) allowing for a Wick rotation at a point } p, \text{ has a purely electric Riemann tensor, and is consequently purely electric at } p. \]

4 Discussion

Using techniques from real invariant theory we have considered a class of metrics allowing for a complex Wick-rotation to a Riemannian space. We have showed that these necessarily are restricted, in particular, they are purely electric. The result is independent of dimension and signature and shows that if such a Wick rotation is allowable, then we necessarily restrict ourselves to classes of spaces where the "magnetic" degrees of freedom have to vanish (at the point \(p \)).

There are many examples of purely electric spaces (see [3, 4] and references therein). In particular, a purely electric Lorentzian spacetime is of type G,
Thus spacetimes not of these types provide with examples of spaces where such a Wick rotation is disallowed. Non-Wick-rotatable metrics include the classes of Kundt metrics [9] in Lorentzian geometry, and the Walker metrics [11] of more general signature. Also the metrics considered in [12] are in general non-Wick-rotatable metrics. Note that the plane-wave metrics are non-Wick-rotatable metrics.

It is clear that these results have profound consequences for quantum theories where such Wick-rotation is widely used. This result gives a clear restriction of the class of metrics that allows for such a Wick rotation. Clearly, also in the context of quantum gravity, the (real) gravitational degrees of freedom will be restricted by assuming the existence of such a Wick-rotation.

References

[1] C. B.G. McIntosh, M.S. Hickman Gen.Rel.Grav., 17, 111-132 (1985); G.S. Hall, M.S. Hickman, C.B.G. McIntosh, Gen.Rel.Grav., 17, 475-491 (1985); M.S. Hickman, C.B.G. McIntosh, Gen.Rel.Grav., 18, 107-136 (1986); M.S. Hickman, C.B.G. McIntosh, Gen.Rel.Grav., 18, 1275-1290 (1986); C.B.G. McIntosh, M.S. Hickman, A.W.-C. Lun, Gen.Rel.Grav., 20, 647-657 (1988)

[2] H. Stephani, D. Kramer, M. MacCallum, C. Hoenselaers, E. Herlt, Exact solutions of Einsteins field equations, Cambridge University Press (2003).

[3] S. Hervik, M. Ortaggio and L. Wylleman, Class. Quant. Grav. 30, 165014 (2013) [arXiv:1208.3563 [gr-qc]].

[4] C. Lozanovski, Gen. Rel. Grav. 46, 1716 (2014).

[5] R.W. Richardson and P.J. Slodowy, 1990, J. London Math. Soc. (2) 42: 409-429.

[6] P. Eberlein, M. Jablonski, Contemp. Math. 491: 283 (2009).

[7] S. Helgason, Differential Geometry, Lie Groups and Symmetric Spaces, AMS, 1978.

[8] A.W. Knapp, Lie groups beyond an introduction, Birkhauser, 2005.

[9] A. Coley, S. Hervik, G. Papadopoulos and N. Pelavas, 2009, Class. Quant. Grav. 26, 105016 [arXiv:0901.0394];

[10] S Hervik and A. Coley, 2010, Class. Quant. Grav. 27, 095014 [arXiv:1002.0505]; A. Coley and S. Hervik, 2009, Class. Quant. Grav. 27, 015002 [arXiv:0909.1160].

[11] A.G. Walker, 1949, Quart. J. Math. (Oxford), 20, 135-45; A.G. Walker, 1950, Quart. J. Math. (Oxford) (2), 1, 69-79

[12] S. Hervik, A. Haarr and K. Yamamoto, arXiv:1410.4347 [math-ph].