PTFE-Doped CeO₂ Films: Synthesis, Characterization and Properties

Y. Taga, K. Nishimura and Y. Hisamatsu

Thin-film Research Center, Chubu University, Kasugai, Japan

Abstract: Multi-functional hybrid films were developed by doping PTFE into CeO₂ by co-sputtering of CeO₂ and PTFE targets. The hybrid films formed on borosilicate glass substrate containing from 5 to 15 vol. % PTFE in CeO₂ showed UV shielding, high indentation hardness, hydrophobicity, optical transmittance in visible light, and high bending crack resistance. Optical properties of 100 nm thick CeO₂-5 vol. % PTFE film revealed UV light shielding of more than 80 % at 380 nm and visible light transmittance higher than 80 %. Indentation hardness measured under the load of 0.001mN was more than 16,000N/mm² of 2.7 times higher than the glass substrate. No crack in the film was observed by bending 1.5 cm in diameter. Furthermore, the hydrophobic surface property was evaluated by the water contact angle to be higher than 90 degrees. Preliminary characterization of the CeO₂-PTFE film using XPS and XMA revealed that chemical states of F in sputter doped PTFE in CeO₂ can be considered to exist as C-F and Ce-F compounds. On the other hand, chemical states of Ce changed partially from Ce⁴⁺ (CeO₂) to Ce³⁺ (Ce₂O₃ or CeF₃) with increasing doped PTFE in the film.

In this rapid communication, we preliminary described the optical, mechanical and chemical properties of newly developed hybrid CeO₂-PTFE films prepared by sputtering.

Cubic bulk material of CeO₂ has been attracting great attention as one of the most promising materials from the viewpoints of optical and heat-resisting properties, toughness against mechanical abrasion, and even chemical attack. CeO₂ was inevitably micronized into nanoparticles to develop for a wide range of catalytic applications [1]. Furthermore, film formation of CeO₂ was soon carried out by various methods and tried to apply optical coatings [2], heterogeneous catalysts [3-7]. As is well known, thin film properties are strongly influenced by their structure, composition and chemical bonding states of the constituent elements arising from preparation methods such as chemical vapour, physical vapour, and sol-gel depositions. Further improvement of the film properties was carried out by hybridization of the film with other elements by adjusting the structure and composition of starting material in chemical methods [8] or by doping in the physical process of thin-film formation [9].

To widen the application range of CeO₂ films, doping technology of other elements is one of the most useful methods not only for materials search of CeO₂-based hybrid thin film but also for basic research of materials science. Until today, various metal cations have been doped into CeO₂ with a special interest in catalysis [10-12] but there exist only a few reports of anion doping [13-15] in spite of their interesting applications such as oxygen barrier coatings for food package and water repellent coating [16, 17]. Ce is also well known to exist +4 in the oxidation state of CeO₂, but the valence changes to +3 in fluoride state of CeF₃, where highly electronegative fluoride ions were formed. Therefore, CeO₂ can incorporate fluoride ion, resulting in a change of Ce³⁺/Ce⁴⁺ redox couple. In spite of many basic research reports of CeO₂-based hybrid thin films, there exists no report on thin-film performances such as optical, mechanical and chemical properties for practical applications. We described first of all the optical, mechanical and chemical properties of PTFE doped CeO₂ films prepared by co-sputtering of CeO₂ and PTFE targets.

Doping of PTFE into CeO₂ was carried out by radio-frequency magnetron sputtering method under the conditions shown in Table 1. Composition of doped PTFE was determined by the concentration of F in the film determined by EPMA (Electron Probe Micro Analyzer JXA-8530F), where concentration ratio F/ (Ce + F) in vol. % in hybrid film was used in this paper.

Figure 1 showed the optical transmittance of CeO₂-PTFE films with 80 -100 nm thick with the light wavelength from...
PTFE-Doped CeO₂ Films

Table 1: Sputter Doping Conditions of PTFE into CeO₂ Films

Parameters	Conditions
Targets	Sintered CeO₂, PTFE
Dimension of targets	76.2 mm in diameter and 5 mm in thickness
Substrate	0.7 mm thick borosilicate glass
Working gas and pressure	Argon at 1Pa
RF magnetron power	200W for CeO₂ and 20-50W for PTFE
Deposition rate	4~5 nm/min
Deposition time	20 min
Film thickness	80 - 100 nm
Distance between target to substrate	5 cm

250nm to 2500nm was evaluated by using Hitachi 4100 spectrometer and deposition rate and film thickness by a laser microscope (Keyence VK-X210/200) using a 408 nm visible light. Composition and structure of the hybrid films were analyzed by EPMA and thin-film XRD (Rigaku ATX-E), respectively. UV light-shielding properties were usually evaluated by the transmittance at the wavelength of 380 nm. CeO₂ film showed a typical UV shielding properties, where threshold wavelength 330 nm of UV shielding corresponds to band gap E₉ of 3.4 eV, which was large compared to bulk CeO₂ of 3.1-3.2 eV. This difference can be explained by the bandgap widening by the non-equilibrium state of as-sputtered film CeO₂-x film. Threshold wavelength of sputtered CeO₂-PTFE films remains unchanged up to 15 vol.% but drastic change can be seen over 20 vol.%, where UV shielding properties disappeared by the change of band structure of CeO₂. Characterization of CeO₂-PTFE films was carried out by X-ray photoelectron spectroscopy (XPS) to elucidate the chemical states of the films. At first, a typical XPS core-level spectrum of C₁s in PTFE film sputter-deposited by argon gas recorded using Mg radiation (photon energy = 1253.6 eV) as shown in Figure 2, where XPS spectrum of C₁s of thermally evaporated PTFE film is also shown in the figure by a dotted line for reference. The core-level spectra of the sputter-deposited film were fitted after adjusting the baseline relative to signal background. The chemically distinct species of functional groups were also resolved using Gaussian distribution fitting procedure with the peak positions and area were determined. The C₁s core-level spectra at binding energy E₉ at 284.6 eV were taken as reference for charge correction in the core-level spectra, and the peak position was calibrated with respect to it. Functional groups of C₁s spectra of PTFE film were assigned as follows [18]: C-C at 284.6 eV, C-CFₓ at 288.0 eV, CF at 290.0 eV, CF₂ at 292.7 eV and CF₃ at 294.5 eV.

Figure 1: Optical transmittance of CeO₂-PTFE hybrid films.

Figure 2: C₁s XPS spectra of sputtered PTFE films.

The core-level spectra of C₁s, Ce₃d, F₁s of CeO₂-PTFE hybrid films and sputtered CeF₃ film were shown in Figure 3. Functional groups [19] of C-O, C-O-H (Ether and alcohol), C=O (Carbonyl), C=O-H (Ester, Acid), C=O-O-O (Carbonate), C=O-O-H (Carboxyl) and small amount of functional groups of C-Fₓ increased by doping PTFE up to 15 vol.% but further addition of PTFE results in large emerging peaks of C-Fₓ functional groups appeared at E₉ from 290eV to 295eV [6, 8, 19]. These results indicated that sputter doped PTFE was found to exist in the forms of C-Fₓ, which may give hydrophobic surface properties [19, 20]. Typical Ce₃d spectra were observed from CeO₂ films with satellite
peak at 918 eV indicating Ce$^{+4}$ chemical state and of course, no fluorine was detected. With the increase in PTFE content in CeO$_2$ films, C$_{3d}$ spectra indicated a gradual change in chemical states of Ce from Ce$^{+4}$ to Ce$^{+3}$ as assigned in the figure and the satellite peak at 918 eV decreased accordingly. Besides, large functional groups at E$_s$ from 290eV to 295eV also indicated the formation of CeF$_2$ in hybrid films. However, F$_{1s}$ peaks remain unchanged even by doping PTFE up to 20 vol.% of PTFE, indicating that fluorine in CeO$_2$-PTFE hybrid films exists in the same chemical states of CeF$_3$ but not different from PTFE as shown in Figure 4 (F$_{1s}$ in PTFE at 689 eV and in CeF$_3$ at 685 eV).

Figure 3: Change in C1s spectra in CeO$_2$-PTFE hybrid films and bulk PTFE and CeF$_3$.

C-F$_x$ BONDS IN CHEMICAL COMPOUNDS

Based on the XPS analyses shown in Figures 3 and 4, we can conclude that chemical states of fluorine of sputter doped PTFE in CeO$_2$ can be considered to exist as CeF$_3$ and C-F$_x$ and the host element of Ce changed partially from Ce$^{+4}$ (CeO$_2$) to Ce$^{+3}$ indicating the formation of Ce$_2$O$_2$ or CeF$_3$.

According to the basic process of sputtering [21], the constituent elements of the targets made of metals and ceramics will leave target surface to the substrate in the form of the atomic particle by momentum transfer from sputtering working gas atoms to the target. Therefore, CeO$_2$ target was considered to be sputtered in atomic Ce and atomic O, but there exists no report on the form of sputtered particles of polymer target such as PTFE. Experimental results shown in Figure 2 revealed that PTFE was sputtered mainly in the form of C-F$_2$ from the target to deposit on the substrate as a physical mixture of C, F, CF, CF$_2$ and CF$_3$. As a result, film growth by sputtering of CeO$_2$-PTFE target can be considered by chemical reaction on the substrate among co-landing atomic Ce, O, C from CeO$_2$ target and C, F, CF, CF$_2$ and CF$_3$ from PTFE target.

Degree of indentation hardness (IH) of bulk substrates and CeO$_2$-PTFE hybrid films was evaluated using Nano Indenter (Nanomechanics I Micro) under the load of 0.001mN. As shown in Figure 5, IH of borosilicate glass substrate about 6,364 N/mm2 increased steeply to over 20,876 N/mm2 by sputter deposition of 100 nm thick CeO$_2$ film and then decreased gradually by doping of PTFE in CeO$_2$ up to 20 vol.%. IH of CeO$_2$-PTFE hybrid films on borosilicate glass substrate was found to be over 10,000 N/mm2 even up to 20 vol.%PTFE in CeO$_2$. It can be understood that IH of CeO$_2$ film is a reflection of the hardness of bulk CeO$_2$ which is widely known as a grinding abrasive. Furthermore, IH of over 820 N/mm2 of sputtered PTFE films compared to IH of 33 N/mm2 of bulk PTFE substrate can be explained in terms of sputter induced polymerization of PTFE films [18]. It is very interesting to note that CeO$_2$-PTFE hybrid films containing PTFE from 0 to 15vol.% showing excellent UV shielding properties showed super IH from 15,000 to 20,000 N/mm2 at the same time.

Hydrophilic/hydrophilic property was evaluated by contact angle measurement of water droplet of 1 µL using Drop master 500 System of Kyowa Interface Science. All samples were found to be more than 90 degrees after annealing at 100°C shown in Figure 6. Film surfaces showed water repellent properties and the contact angle of more than 90 degrees in composition range from 5 to 30 vol. %PTFE in CeO$_2$. Hydrophobic properties of CeO$_2$-PTFE films thus obtained may be due to the effect of the hydrophobic additive of PTFE and spontaneous water repellency of sputtered CeO$_2$ films [22].

In conclusion, multi-functional hybrid films were developed by doping PTFE into CeO$_2$ by sputter deposition using CeO$_2$ and PTFE targets. Hybrid films containing from 5 to 15 vol.% PTFE in CeO$_2$ showed 4 functions of UV shielding, super indentation hardness, hydrophobicity and optical transmittance in visible light. Detailed investigation of surface properties using XPS and EPMA revealed that chemical states of F of sputter doped PTFE in CeO$_2$ can be considered to exist as C-F$_x$ and the host element of Ce changed correspondingly from Ce$^{+4}$ (CeO$_2$) to Ce$^{+3}$ indicating the formation of Ce$_2$O$_2$ or CeF$_3$. Furthermore, hydrophobic surface properties can be also explained in terms of surface
Figure 4: Change in Ce3d and F1s spectra in CeO2-PTFE hybrid films and bulk PTFE and CeF3.

Figure 5: Changes in indentation hardness of CeO2-PTFE hybrid films on borosilicate glass and PTFE.

PTFE-Doped CeO2 Films
concentration of F of CeO$_2$-PTFE films evaluated by XPS analyses.

Figure 6: Changes in contact angle with film composition.

REFERENCES

[1] Montini T, Melchionna M, Monai M, Fornesiero P. Fundamentals and catalytic applications of CeO$_2$-based materials. Chem Rev 2016; 116: 5967-6041. https://doi.org/10.1021/acs.chemrev.6b00603

[2] Netterfield R.P, Sainty WC, Martin PJ, Siew SH. Properties of CeO$_2$ thin films prepared by oxygen-ion-assisted deposition. Appl Optics 1985; 24: 2267-2272. https://doi.org/10.1364/AO.24.002267

[3] Toro RG, Meladridno G, Fragala IL, Nigro RL, Losurdo M, Buruno G. Relationship between the nanostructures and the optical properties of CeO$_2$ thin films. J Phys Chem B 2004; 108: 16357-16364. https://doi.org/10.1021/jp048063j

[4] Murray EP, Tsai T, Barnett SA. A direct-methane fuel cell with a ceria-based anode. Nature 1999; 400: 649-651. https://doi.org/10.1038/23220

[5] Fu Q, Saltsburg H, Flytzani-Stephanopoulos M. Active nonmetallic Au and Pt species on ceria-based water-gas shift catalysts. Science 2003; 301: 935-938. https://doi.org/10.1126/science.1085721

[6] Singh P, Hegde MS. Controlled synthesis of nanocrystalline CeO$_2$ and Ce$_{1-x}$M$_x$O$_2$-γ (M=Zr, Y, Ti, Pr and Fe) solid solutions by the hydrothermal method: Structure and oxygen storage capacity. J Solid State Chem 2006; 181: 3248-3256. https://doi.org/10.1016/j.jssc.2006.08.018

[7] Paier J, Penschke C, Sauer J. Oxygen defects and surface chemistry of ceria: quantum chemical studies compared to experiment. Chem Rev 2013; 113: 3949-3985. https://doi.org/10.1021/cr3004949

[8] Mullins DR. The surface chemistry of cerium oxide. Surf Sci Rep 2015; 70: 42. https://doi.org/10.1016/j.surfrep.2014.12.001

[9] Asahi R, Morikawa T, Ohwaki T, Aoki K, Taga Y. Visible-light photocatalysis in nitrogen-doped titanium oxides Science 2001; 293: 269-271. https://doi.org/10.1126/science.1061051

[10] Mogensen M, Linegaaard T, Hansen UR, Mogensen G. Physical properties of mixed conductor solid oxide fuel cell anodes of doped CeO$_2$. J Electrochem Soc 1994; 141: 2122-2128. https://doi.org/10.1149/1.2055072

[11] Yashiro H, Eguchi Y, Eguchi K, Ariai H. Oxygen ion conductivity of the ceria-samarium oxide system with fluoride structure. J Appl Electrochem 1988; 18: 527-531. https://doi.org/10.1007/BF01022246

[12] Wang DY, Park DS, Griffith J, Nowick AS. Oxygen-ion conductivity and defect interactions in yttria-doped ceria. Solid State Ionics 1981; 2: 95-105. https://doi.org/10.1016/0167-2738(81)90005-9

[13] Jorge AB, Sakatani Y, Boisier C, Laberty-Roberts C, Saithier G, Fraxedas J, Sanchez C, Fuertes A. Nanocrystalline N-doped ceria porous thin films as efficient visible-active photocatalysts. J Mater Chem 2012; 22: 3220-3226. https://doi.org/10.1039/c2jm215230d

[14] Sun D, Gu M, Li R, Yin S, Song X, Zhao B, Li C, Feng Z, Sato T. Effects of nitrogen content in monocrystalline nano-CeO$_2$ on the degradation of dye in indoor lighting. Appl Surf Sci 2013; 280: 693-697. https://doi.org/10.1016/j.apsusc.2013.05.044

[15] Mao C, Zhao Y, Qiu X, Zhu J, Burda C. Synthesis, characterization and computational study of nitrogen-doped CeO$_2$ nanoparticles with visible-light activity. Phys Chem Chem Phys 2008; 10: 5633-5638. https://doi.org/10.1039/b805915b

[16] Yabe S, Sato T. Cerium oxide for sunscreen cosmetics. J Solid State Chem Mater 2003; 171: 7-11. https://doi.org/10.1016/S0022-3697(02)00139-1

[17] Zholobak NM, Ivanov VK, Shcherbakov AB, Shaporev AF, Polezhaeva OS, Baranchikov AY, Spivak NY, Tretyakov YD. UV-shielding property, photocatalytic activity and photocytotoxicity of ceria colloid solutions. J Photochem Photobiol B 2011; 102: 32-38. https://doi.org/10.1016/j.jphotobiol.2010.06.002

[18] Choukourou A, Piilosh Y, Stelmashuk V, Biederman H, Slavinska D, Kormund M, Zajickova L. Rf sputtering of composite SiO$_2$/plasma polymer films and their basic properties. Surface and Coatings Technology 2002; 151-152: 214-217. https://doi.org/10.1016/S0257-8972(01)01422-X

[19] Wolf MJ, Kullgren J, Boroquist P, Hermanson K. Fluorine impurities at CeO$_2$(111): Effects on oxygen vacancy formation, molecular adsorption, and surface re-oxidation. J Chem Phys 2017; 146: 044703. https://doi.org/10.1063/1.4973239

[20] Kettner M, Sevcikova K, Homola P, Matolin V, Nehasil V. Influence of the Ce–F interaction on cerium photoelectron spectra in CeO$_2$F$_x$ layers. Chem Phys Lett 2015; 639: 126. https://doi.org/10.1016/j.cplett.2015.09.018

[21] Taga Y, Takahashi R. Role of kinetic energy of sputtered particles in thin film formation. Surface Sci 1997; 386: 231-240. https://doi.org/10.1016/S0039-6028(97)00313-0

[22] Taga Y, Ohwaki T. Hydrophobic surface treatment of metal oxides. Surface Technology 1996; 47: 571-574. https://doi.org/10.4139/sj.47.571

© 2019 Taga et al.; Licensee Lifescience Global. This is an open access article licensed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0/) which permits unrestricted, non-commercial use, distribution and reproduction in any medium, provided the work is properly cited.