Genetic analysis of rust resistance genes in global wheat cultivars: an overview

Md Aktar-Uz-Zaman, Mst Tuhina-Khatuna, Mohamed Musa Hana and Mahbod Sahebi

ABSTRACT
Rust is the most devastating fungal disease in wheat. Three rust diseases, namely, leaf or brown rust caused by Puccinia triticina Eriks, stem or black rust caused by Puccinia graminis f. sp. tritici West, and stripe or yellow rust caused by Puccinia striformis f. Triticum Eriks, are the most economically significant and common diseases among global wheat cultivars. Growing cultivars resistant to rust is the most sustainable, cost-effective and environmentally friendly approach for controlling rust diseases. To date, more than 187 rust resistance genes (80 leaf rust, 58 stem rust and 49 stripe rust) have been derived from diverse wheat or durum wheat cultivars and the related wild species using different molecular methods. This review provides a detailed discussion of the different aspects of rust resistance genes, their primitive sources, their distribution in global wheat cultivars and the importance of durable resistant varieties for controlling rust diseases. This information will serve as a foundation for plant breeders and geneticists to develop durable rust-resistant wheat varieties through marker-assisted breeding or gene pyramiding.

Introduction
Wheat cultivation represents approximately 19% of global major cereal crop production [1]. Rust diseases are among the most economically important diseases affecting wheat because they cause significant yield losses worldwide. Among the rust diseases, leaf rusts are very common in global wheat production, and yield losses greater than 50% have been recorded in susceptible cultivars [2]. Yield losses of approximately 20%–30% caused by stem or black rust were recorded in the mid-twentieth century in Eastern and Central Europe [3], and notable losses have also been reported in many other countries, including Australia, China and India [4]. The most virulent stem rust race, Ug99, emerged first in Uganda in 1999, then in Kenya, Ethiopia, Yemen, the Middle East and South Asia, and the associated losses were estimated at USD 3 billion.

Two methods have been used for controlling rust diseases: chemical and genetic control. Genetic control, or the growing of resistant cultivars or varieties, is the most effective, economically safe and environmentally friendly approach, as this method eliminates the need to use fungicides and reduces the cost of production. Farmers in the developing world prefer the use of resistant cultivars to fungicides due to the possibility that rust pathogens might develop resistance to fungicides [5]. Using variety to prevent or avoid rust diseases at early stages or to minimize disease impact is known as varietal resistance [1].

To ensure genetic resistance, identification of new or effective resistance genes in different germplasms of global wheat cultivars or wheat relative species is essential [6]. Identification of Lr genes by multipathotype testing or gene postulation is labour-intensive and time-consuming. Furthermore, appropriate pathotype(s) may not be available to identify the resistance genes present in a genotype, or a pathotype may not have the ability to detect rust resistance genes [7]. Therefore, it can be difficult to detect a single gene of interest within a complex background of other resistance genes [8]. In addition, the use of cultivars with single-gene resistance permits the rapid selection of mutations that reduce resistance at an individual resistance locus. Moreover, due to evolution and the loss of variation and selection pressure, new virulent races of fungus have appeared, increasing the need to develop durable resistance [1]. Hence, using combinations of resistance genes is the best method for achieving adequate genetic control of diseases affecting wheat, including rust diseases [9]. Consequently, plant pathologists and breeders have
prioritized the development of disease-resistant varieties with high-yielding capacity through pyramiding effective resistance genes with durable resistance [10] because the expression of individual resistance genes is difficult to monitor in the field [1]. This gene pyramiding strategy, also known as multigenic resistance, has been used to enhance the durability of resistance [10]. In this method, a cultivar with a combination of several effective genes, especially those from wild relatives and related species, is developed [11]. Durable rust resistance is a mechanism conferring resistance to a cultivar for a long period of time during its widespread cultivation within environments that harbour favourable conditions for disease spread [12]. This type of resistance is mainly associated with minor genes, which are also known as slow rusting genes. However, introgression of different resistance genes to a single variety and monitoring in the field are very difficult to accomplish using traditional phenotypic methods. In addition, this approach is limited because screening for one resistance gene interferes with the ability to screen for another, which is a frequent problem in breeding for disease resistance [13].

Recent advances in molecular marker technology have created effective tools for solving such complex problems. For example, the use of polymerase chain reaction (PCR)-based DNA molecular markers has several advantages over traditional phenotype trait selection [1]. Marker-assisted selection (MAS) breeding has also been widely used to target rust resistance genes. These techniques can improve selection efficiency in plant breeding, especially by providing pathways to overcome some of the problems associated with classical phenotypic screening approaches [14,15]. For example, to facilitate breeding for durable resistance to stem rust, molecular markers are useful for developing resistant cultivars, especially in addition to the pyramiding of several disease-resistance genes [14]. MAS can be used at an early stage of plant development, with multiple DNA markers being used to screen several genes simultaneously [16]. In addition, neutral markers, such as iso-enzymes, can also be used to characterize and compare rust populations.

The aim of the present review is to describe the most recently developed approaches for introducing rust resistance genes into bread and durum wheat cultivars and their related species. To accomplish this, we collected current information on rust disease-resistance genes (leaf, stem and stripe), including their primitive sources and their chromosomal positions, and discuss their potential applications for developing durable resistant wheat varieties through MAS.

Leaf rust fungus characteristics and behaviour

Wheat leaf rust (caused by *Puccinia triticina* Eriks) is the most destructive and prevalent rust disease [17] and has adapted to a wide range of environments, allowing it to coexist with wheat in all growing environments [18]. The disease continuously evolves and forms novel virulent races [17,19], causing direct yield losses and decreased yield quality. Therefore, management of the disease, such as through the application of chemical fungicides, is necessary to ensure that wheat cultivation remains a profitable endeavour [20]. Yield losses of up to 70% have been recorded in durum wheat fields subject to a severe epidemic of wheat leaf rust [21].

Wheat leaf rust fungus can easily spread thousands of kilometers from the initial infection site through its dikaryotic urediniospores, which have been documented to spread both within and between continents [22]. This widespread dispersal has led to the occurrence of epidemics on a continental scale [9]. Therefore, it is essential to document genetic changes that occur in rust populations over large geographic areas to facilitate the development of rational strategies for achieving durable resistance.

Genetic characterization of leaf rust resistance genes

Approximately 100 years ago, the wheat cultivars Malakof and Webster were submitted to genetic studies of leaf rust resistance [23]. It was discovered that these cultivars possessed genes, later designated *Lr1* and *Lr2*, that confer resistance to leaf rust [24]. Following these studies, Soliman et al. [25] identified the chromosomes that carry the leaf rust resistance genes *Lr1*, *Lr3*, and *Lr11*. Approximately 80 leaf rust resistance genes or alleles [26], designated *Lr1* to *Lr78*, *Lrac104* and *Lrac124*, have been identified and characterized in bread wheat, durum wheat and diploid wheat species [27] using different enzymatic, PCR-based DNA molecular and microsatellite markers. These genes are located on 20 of the 21 chromosomes found in hexaploid wheat [26-28]. The genetic resistance conferred by rust resistance genes has been characterized in the seedling and adult stages of plants. Seedling resistance is monogenic, race-specific, vertically controlled by major genes and hypersensitive in nature. Conversely, adult plant resistance (APR) is polygenic, race-nonspecific, horizontally controlled by minor genes and non-hypersensitive, slow rusting or partial and durable in nature. However, most *Lr* genes confer major, seedling or race-specific resistance and follow the gene-for-gene concept, leading to a hypersensitive response (HR) or programmed cell death [29-31]. A
small number of APR genes, such as Lr34 and Lr46, are very important for breeding because they have been shown to confer durable, long-term resistance in different environments and against diverse fungus pathotypes [32].

Genetic analysis of leaf rust resistance genes derived from Triticum aestivum

More than 81 leaf rust resistance genes, including Lr1 [33], Lr2, Lr2a to Lr2c, Lr3 to Lr6, Lr8, [34] Lr7 [35], Lr10 to Lr13, Lr14a, Lr15 to Lr18 [34], Lr20 [34,36], Lr22b, Lr23, Lr27, Lr30 [37], Lr31, Lr33, Lr40, [34] Lr46, [35] Lr48 [34], Lr49, Lr52, Lr67, Lr68, [38] trp1, trp29 [39], Lract104, and Lract124 [40], have been derived directly from common wheat (Triticum aestivum) cultivars. Their chromosomal locations, resistance types and presence in cultivars around the world are presented in Table 1.

Genetic analysis of leaf rust resistance genes originating from wild species

Some wild cultivars of wheat or wild grasses, such as Aegilops tauschii Coss., Aegilops squarrosa L. and Triticum tauschii, are major sources of many resistance genes to major wheat diseases [53]. Leaf rust resistance genes were initially introduced into common wheat cultivars from these wild accessions. One gene (Lr9) was derived from the wild species Aegilops umbellulata, three (Lr19, Lr24, and Lr29) from Aegilops elongatum, five (Lr28, Lr35, Lr36, Lr47, and Lr51) from Aegilops speltoides, one (L37) from Aegilops ventricosa [1], one (Lr37) from Agropyron intermedium, seven (Lr21, Lr22a, Lr32, Lr35, Lr36, Lr47, and Lr51) from Aegilops speltoides, one (L37) from Triticum monococcum [50,59], one (Lr33) from Triticum dicoccoides [50] and one

Table 1. List of identified leaf rust (Lr) resistance genes originating from Triticum aestivum and their chromosomal locations, resistance types and presence in existing cultivars in global germplasms.

Genes	Chromosomal location	Resistance types	Cultivars/varieties with country of origin	References
Lr1	5DL	SR	Sonora 64, Pavon F 76 (Mexico), Dollarbird (Australia), American soft red wheat	[22,33,41,42]
Lr2	7BL	SR	–	[34]
Lr2a-c	2DS	SR	–	[34]
Lr3	6BL	SR	–	[34]
Lr4-6, Lr8		SR	–	[34]
Lr7	APR	–	–	[35]
Lr10	1AS	SR	Pavon F 76 (Mexico), Punjab (Pakistan, India), Dollarbird (North America), BIOINTA 1004, INIA Churrinche, INIA Torcaza, Cronox Buck Baqueano, Buck Ranquel (Argentina)	[22,34,43-45]
Lr11	2A	SR	–	[34]
Lr12	4B	SR	–	[34]
Lr13	2BS	SR	Giza164 (Egypt), Gemeaeza 7 (Europe), Ara (Argentina), Punjab 81 (Pakistan)	[46,47]
Lr14a-b	7BL	SR	Hope and its related lines (Argentina, France, Ethiopia)	[34]
Lr15	2DS	SR	–	[34]
Lr16+Sr23		SR	–	[34]
Lr17a-b	2AS	SR	–	[34]
Lr18	5BL	SR	–	[34]
Lr20 + Pm1*+Sr15		SR	Trizo (Ethiopia) British, Russia, Thatcher	[34]
Lr22b	2BS	SR	–	[34]
Lr23	2BS	APR	–	[37]
Lr27+Sr2 + Pm8	3BS,1BL/1RS	APR	Frontana (Mexico) ACA801 (Iran), Klein Castor (Argentina)	[34,37,49]
Lr30	4AL	SR	–	[34,37]
Lr31	4BL	SR	–	[34,37,48]
Lr33	1BL	SR	–	[34]
Lr34+Yr18+Pm38	7DS	APR	Frontana (Mexico) ACA801 (Iran), Klein Castor (Argentina)	[34,37,49]
Lr40	APR	–	–	[34]
Lr46+Yr29*	1B	APR	Pavon 76 (Mexico)	[35,48,50]
Lr48	4BL	–	–	[34]
Lr49	2AS	–	–	[34]
Lr52 or LrW	5B	APR	R6107 (North American)	[34]
Lr63+Yr46	4DL	SR	Toropi (Brazilian wheat cultivar)	[51]
Lr68	7BL	APR	Parula	[52]
trp-1	1A	APR	Toropi (Brazil)	[39]
trp-2	4D	APR	Toropi (Brazil)	[39]
Lract104	6B	APR	Emmer wheat (South Africa)	[40]
Lract124	4A	APR	Emmer wheat (South Africa)	[40]

Note: APR-adult plant resistance; SR-seedling resistance.
Genetic analysis of leaf rust resistance genes originating from wild species with their chromosomal locations, resistance types and presence in global wheat cultivars.

Table 2. List of leaf rust resistance genes originating from wild species with their chromosomal locations, resistance types and presence in global wheat cultivars.

Genes	Source	Chromosomal location	Resistance type	Cultivars/varieties with country of origin	References
Lr9	Aegilops umbellulata	6BL	SR	Biointa 1000 (Argentina), Europe, USA	[34]
Lr19+Sr25	Agropyron elongatum	7DL	SR	ProINTA Gaudo, Agrus, Sids 1, Sids 12 (Argentina), Egypt, Russia	[13,60,61]
Lr24	Agropyron elongatum	3DL	SR	BIONTA 1004, INIA Churrinche, INIA Torcaca, Cronox (Argentina), Australia	[43,60,62]
Lr29	Agropyron elongatum	7DL	APR		[60,63]
Lr28	Aegilops speltoides	4AL	SR	Russian cultivars	[13]
Lr35	Aegilops speltoides	2B	APR		[48,30]
Lr36	Aegilops speltoides	6BS	SR		[34]
Lr47	Aegilops speltoides	7AS	APR	BIONTA 2004 (Argentina)	[45,64]
Lr51	Aegilops speltoides	1BS	APR	Europe, USA	[65]
Lr37+Yr17+Sr38	Aegilops ventricosa	2AS	APR		[66]
Lr38	Agropyron intermedium	1DL /2AL/3DS/5AS/6DL	APR		[34]
Lr21	T. tauschii	1DS	APR	[56-58,67]	
Lr22a	T. tauschii	2D	SR	[55,58]	
Lr22	T. tauschii	3DS	APR	[57,58,67]	
Lr23	T. tauschii	2DS	APR	[48,50,59]	
Lr41	T. tauschii	1D	APR	[56-58,67]	
Lr42	T. tauschii	1D	APR	[57,58]	
Lr43	T. tauschii	7DS	APR	[57,58]	
Lr44	T. spelta	1B	APR	[34]	
Lr25+Pm7	Secale cereale Rosen	T1B:T1R	APR	Argentinia, Russia, BIONTA 1001, Buck Guapo, Klein Escudo, Klein Zorro (Argentina) Chinese, British, Iran	[50,59]
Lr26+Yr9+Sr31	Secale cereale Petkus	T2AS	APR		[34]
Lr45	Secale cereale	T2AS	APR	[50,59]	
Lr50	T. monococcum	2BL	APR	[50,59]	
Lr53+Yr35	T. turgidum subsp. dicoccoides	6BS	APR	Avocet ‘S’, Emmer wheat, (South African and Canadian, Chinese cultivars)	[68,69]
Lr54+Yr37	Aegilops kotschyi	2DL	APR	Northern Africa, and Mid-East and Western Asia (Chinese Spring wheat)	[69,70]
Lr56 +Yr38	Aegilops sharonensis	6AL	APR	Chinese spring wheat	[71,72]
Lr59	Aegilops peregrina	1AL	APR	Israel, Chinese spring wheat cultivars	[73,74]
Lr62+Yr42	Aegilops neglecta	6AS	APR	California wheat cultivars	[75,76]

Note: APR-adult plant resistance; SR-seedling resistance.

(Lr54) from Aegilops kotschyi. Their chromosomal locations, resistance types and presence in wheat cultivars around the world are presented in Table 2.

Genetic analysis of leaf rust resistance genes originating from durum wheat

The leaf rust resistance genes Lr14a (on 7BL) and Lr23 (on 2BS) were transferred to common wheat from the durum wheat cultivar ‘Hope’ and the related line ‘Gaza’, respectively, and their detailed information is presented in Table 3. A characteristic feature of durum wheat leaf rust races is virulence to most durum wheat lines and avirulence to most Lr genes present in common wheat lines [77,78]. Thus, the resistance genes that are effective in durum wheat germplasms could be widely ineffective in common wheat lines [79]. In addition, the seedling resistance genes Lr23, Lr10, and Lr33 are not considered effective due to frequent virulence among P. triticina races [78].

Genetic analysis of stem rust resistance genes

Among the fungal diseases that affect wheat, stem rust caused by Puccinia graminis Pers. f. sp. tritici (Pgt) is a major biotic constraint in most of the wheat-growing areas in the world and causes yield losses of up to 100% during epidemic outbreaks [85]. Ug99, a new virulent stem rust race, was first identified in Uganda in 1999 [86] and then spread to Kenya in 2001 and to Ethiopia in 2003, following the migration path suggested by Singh et al. [87]. Currently, it is a major threat to global wheat cultivation. According to the Farm and Ranch Guide report, 50% of winter wheat and 70%–80% of spring wheat varieties currently grown in the USA are susceptible to Ug99. Furthermore, 75%–80% of breeding
materials are susceptible to Ug99, and most stem rust resistance genes deployed in breeding programmes have been overcome by this new fungus [1]. For this reason, current research on stem rust has focused on identifying additional resistance genes to control Ug99. To date, approximately 58 stem rust resistance (Sr) genes have been identified [88,89] and numerically designated as Sr1 to Sr58 as part of the International Wheat Genetics Symposium Gene Catalog [26,90]. Among these genes, at least 27 genes, including Sr2 (Yr30), Sr13, Sr21, Sr22, Sr24, Sr25, Sr26, Sr27, Sr28, Sr32, Sr33, Sr35, Sr36, Sr37, Sr39, Sr40, Sr42, Sr44, Sr45, Sr46, Sr47, Sr51, Sr52, Sr53, Sr55 (Lr67/Yr46/ Pm46), Sr57 (Lr34/Yr18/Pm38), and Sr58 (Lr46/Yr29/Pm39), are effective or partially effective against the Ug99 race group [91-100]. Among these 27 genes, Sr2, Sr13, Sr22, Sr25, Sr26, Sr35, Sr39 and Sr40 were reported to be the most effective against Ug99 [87,101-103]. A brief description of the details of these genes is given in Table 4.

Understanding the genetic basis for durable resistance to stem rust disease is necessary for improving the efficiency of wheat breeding [88]. Detailed genetic characteristics of the above-described stem rust resistance genes are shown in Table 4. One of the more effective stem rust resistance genes Sr2 is a catalogued adult plant stem rust resistance gene in wheat [34] and has been shown using SSR markers to be located in a region on the short arm of chromosome 3B [125] that is derived from the variety ‘Hope’ and commonly known as the ‘Sr2-complex’ (Sr2+Yr30+Lr27+Pbc) [87,126]. Due to its ability to confer durable and broad-spectrum resistance, the Sr2 gene has been used to improve resistance against stem rust diseases in several popular International Maize and Wheat Improvement Centre (CIMMYT) varieties cultivated worldwide [129]. Generally, Sr2 confers moderate levels of resistance against Ug99 (generating an approximate 30% reduction in disease severity); however, strong resistance can be achieved when it is combined with other unknown genes, such as the Yr30, Lr27 and Pbc genes of the Sr2-complex. These Sr2-complex resistance genes are currently effective against all isolates of Pgt throughout the wheat-growing regions of the world [130].

Stem rust resistance gene Sr13 was first identified in the germplasm of Triticum dicoccon (emmer or Khapli wheat) but is also present in several Triticum durum cultivars [77]. Sr13 is located on the long arm of chromosome 6A. Sr22 is located on the long arm of chromosome 7A [106]. Hexaploid lines with Sr22 are partially effective in producing resistance to Ug99 [107]. The stem rust resistance genes Sr25 and Sr26 were derived from the common wheat Agropyron elongatum and are located on chromosome segments 7DL and 6AL, respectively [34,109]. The resistance gene Sr35 was originally

Table 4. List of stem rust resistance genes effective against Ug99 race (P. graminis f. p. tritici) with their sources, chromosomal locations and presence in existing cultivars worldwide.

Gene	Source	Chromosomal location	Cultivars with country of origin	Reference
A. Seedling resistance gene				
Sr13	Triticum dicoccon Triticum durum Triticum turgidum	6AL	K hapli	[89,104,105]
Sr22	Triticum monococcum	7AL	Sebatel, Boohai (Ethiopia)	[106-108]
Sr25	Agropyron elongatum	7DL		[34,47,109]
Sr26	Agropyron elongatum	6AL	Eagle (Australia)	[34,109,110,111]
Sr27	Secale cereale	3A		[112]
Sr28	Triticum aestivum	2BL		[95,100,113]
Sr32	Aegilops speltoides	2A, 2B, 2D		[87,95,114-116]
Sr33	Aegilops tauschii	1DS		[95,117,118]
Sr35	Triticum monococcum	3AL		[34,95]
Sr37	Triticum timopheevii	4BL		[118,119]
Sr39 +Lr35	Aegilops speltoides	2B	Canadian cultivars	[34,110,102,120,122]
Sr40	Triticum timopheevii ssp. araraticum	2BS		[34,95,121,122]
Sr42	Triticum aestivum	6DS		[92]
Sr44	Thinopyrum intermedium	7DS		[95,122]
Sr45	Aegilops tauschii	1DS		[112,117]
Sr46	Aegilops tauschii	2DS		[99,112]
Sr47	Aegilops speltoides	2BL		[91,123]
Sr51	Aegilops searsii	3A		[96]
Sr52	Dasyypyrum villosum	6AL		[124]
Sr53	Aegilops geniculata	5DL		[96]
B. Adult plant resistance genes				
Sr2+Lr27+Yr30	Triticum aestivum Triticum turgidum	3B	Hope, Sebatel (Ethiopia)	[87,113,125–127]
Sr25+Lr67+Yr46+Pm46		4DL	RL 6077	
Sr57+ Lr34+Yr18+Pm38		7DS	Parula	[128]
Sr58+ Lr46+Yr29+Pm39		18L	Pavon 76 (Mexico), Lalbahadur (India)	[88]
transferred from *Triticum monococcum* to hexaploid wheat [36] and is effective against the TTKSK (*Ug99*) race of *P. graminis* f. sp. *tritici* [64] and its variants. This gene was mapped to the long arm of chromosome 3AL. The *Sr40* gene, located on chromosome 2BS, was transferred from *Triticum timopheevii* ssp. *araraticum* to hexaploid wheat [34,96,121,122].

DNA markers and identification of rust resistance genes (Lr, Sr)

The MAS has produced very favourable results in facilitating new gene deployment and gene pyramiding for quick release of rust-resistant cultivars. In contrast, gene pyramiding using conventional methods is difficult, time-consuming and requires concurrent tests of the same wheat breeding materials with several different rust races before making a selection [131]. It is not feasible for a regular breeding programme to maintain all necessary rust races needed for this type of work [132]. However, with the advent of MAS, gene pyramiding, in which genes identified in different genotypes are deployed into a single cultivar that contains the desired alleles at more than one locus, has become efficient [133]. Selectively neutral markers, such as isozymes or more recently developed types of molecular markers, such as random amplified polymorphic DNA (RAPD), simple sequence repeat (SSR) markers and amplified fragment length polymorphism (AFLP), can also be used to characterize and compare rust populations [134]. Molecular markers such as STS or SCAR and CAPS are available for the leaf rust resistance genes *Lr1, Lr9, Lr10, Lr19, Lr21, Lr24, Lr25, Lr28, Lr29, Lr34, Lr37, Lr39, Lr47* and *Lr51* [1] (Table 5). An enzymatic marker (endopeptidase Ep-D1c) for *Lr19* has also been developed [135]. Microsatellite (SSR, single sequence repeats), restriction fragment length polymorphism (RFLP), and AFLP markers have been developed for *Lr* genes, including *Lr2, Lr22* [32], *Lr3bg, Lr18, Lr40, Lr46* and *Lr50* [136]. The STS marker was first developed by Schachermayer et al. [43] for the *Lr9* gene derived from *Aegilops umbellulata*. Currently, numerous leaf rust resistance genes, including *Lr1, Lr10, Lr13, Lr16, Lr19, Lr20, Lr21, Lr24, Lr25, Lr26, Lr28, Lr29, Lr35, Lr34, Lr37, Lr39, Lr46, Lr47, Lr50, Lr51* and *LrW*, have been identified using the STS, SCAR and CAPS markers (Table 5) [48,50,60,61,65,110,137-140]. The leaf rust resistance genes *Lr1* [141], *Lr10* [142] and *Lr21* [143] have been isolated by cloning and sequenced. Molecular markers are also available for stem rust resistance genes, such as *Sr2* [144], *Sr9a* [145], *Sr22* [146,147], *Sr24, Sr26, Sr31, Sr36* and *Sr39* [22] (Table 6). Several DNA markers linked to various stem rust resistance genes in wheat have been identified and developed. For example, STS, SSR, and CAPS molecular markers have been developed for the identification of the seedling resistance genes *Sr22* [107,108], *Sr24* [47,148], *Sr25* [102,128] *Sr26* [47,102], and *Sr46* [109] and the APR gene *Sr2* [111,144] (Table 6). Microsatellite markers are closely linked to the resistance genes *Sr6* [107,112] and *Sr40* [8]. The STS marker has been used to detect the stem rust resistance genes *Sr22* [106] and *Sr24* [148], and the SCAR markers have been used to detect the *Sr39* gene in Canadian wheat [149]. Improved DNA markers were identified for the stem rust resistance genes *Sr13, Sr21, Sr22, Sr28, Sr33, Sr35, Sr42, Sr44, Sr45, Sr55, and Sr56*. In addition to these, more markers have been developed to identify several stem rust resistance genes, such as *Sr9a* [145], *Sr35* [150], *Sr36* [151], *Sr38* [152], *Sr40* [153], *SrCad* [154], *SrWeb* [124], *Sr51* [97], *Sr52* [124], and *Sr53* [65] (Table 6).

Table 5. List of leaf rust resistance genes and molecular methods used to identify them.

Genes	Molecular methods	References
Lr1, Lr10, Lr13, Lr19, Lr20, Lr21, Lr24, Lr25, Lr28, Lr29, Lr34, Lr37, Lr39, Lr47, Lr51	RFLP, STS, SCAR and CAPS	[22,41,42,47,155,156-159]
Lr46	AFLP, STS, SCAR and CAPS	[48,50,65,140,160]
Lr27, Lr25	RAPD, SCAR, STS and CAPS	[50,63]
Lr16, Lr20, Lr35, Lr47, Lr51, Lr21, Lr39, Lr26, Lr50	STS, SCAR and CAPS	[34,36,48,45,50,56-59,65]
Lr7, Lr67, Lr3bg, Lr18, Lr40, Lr46, Lr50, Lr52 or LrW, and Lr53	Microsatellites (SSR), and AFLP	[51,146,136]
Lr9	RFLP cMW 684, STS, RAPD, RFLP PSR 546	[34]
Lr19	RFLP, RAPD, STS, SCAR and CAPS	[13,60,61]
Lr24	RFLP PSR 1205, PSR 1203, PSR 388, PSR 904, PSR 931, PSR 1067 RAPD	[43,62,60]
Lr29	RAPD, DGGE, STS, SCAR and CAPS	[61,63]
Lr28	RAPD OPJ-01, STS, SCAR and CAPS	[13]
Lr14	AFLP	[78]
Lr23, Lr27, Lr31, Lr34, Lr13, Lr35, Lr53	RFLP	[37,69,155]
Lr25, Lr29	RAPD, DGGE	[63]
Lr51	RFLP, STS	[43]
Lr59, Lr62	Microsatellites, SCAR	[74]
Lr68	SSR	[52]
trp-1, trp-2	SSR, AFLP	[39]
Lrac104, Lrac124		[40]
The concept of durable resistance was initially introduced by Johnson [165,166] and defined as 'resistance that remains effective when deployed over extensive acreage and time, in an environment favorable for the disease'. Therefore, durable resistance remains effective after widespread deployment over a considerable period of time. This type of resistance is mainly associated with minor genes, also known as slow rusting genes, and is generally controlled by more than one gene during the adult-plant stage rather than the seedling-resistant stage, and shows non-HRs to infection [22]. In wheat cultivars, the presence of a single resistance gene is generally less effective for controlling rust disease, whereas the combination of two or more genes enhances resistance durability. The genetic basis of durable resistance is the additive effect of partially resistant minor genes, and it is usually polygenic in nature and active in the adult-plant stage [22]. A group of CIMMYT germplasms involving 10–12 different genes were developed by pyramiding 4–5 minor genes; this resulted in a degree of resistance against rust that approaches immunity [22]. The Pakistani variety Lyalpur 73 and the South American wheat cultivar are good examples of durable resistance varieties that were developed over 50 years ago and remain rust resistant almost everywhere in the world.

Genetic studies of stripe rust resistance genes

Stripe or yellow rust caused by *Puccinia striiformis* f. *Tritici* Eriks is also a destructive disease of wheat and can cause significant yield losses during severe epidemics due to reductions in kernel number and size [164]. Yield losses of up to 100% have been recorded in severe epidemics; however, yield losses between 10 and 70% are more common [134]. The pathogen *Puccinia striiformis* f. *Tritici* Eriks is highly aggressive and variable, quickly evolving new races that overcome existing resistance [134]. Historically, stripe rust was widespread in the northwestern USA, and infection has typically been associated with cool weather conditions, although new races tolerant to higher temperatures were recently identified [134,165], which presents a great threat to spring wheat-production areas. Currently, more than 49 stripe rust resistance genes [26], designated Yr1 to Yr49, have been catalogued in different hexaploid bread, durum wheat, and wild species backgrounds. Most of the stripe rust resistance genes were derived from common wheat (*Triticum aestivum*), although some were derived from different wild species, such as *Triticum spelta album*, *Triticum dicoccoides*, *Triticum spelta*, *Secale cereale*, *Aegilops comosa*, *Aegilops ventricosa*, *Triticum tauschii* and *Haynaldia villosa* (Table 7).

Concept and genetic basis of durable resistance genes

The concept of durable resistance was first introduced by Johnson [165,166] and defined as 'resistance that remains effective when deployed over extensive acreage and time, in an environment favorable for the disease'. Therefore, durable resistance remains effective after widespread deployment over a considerable period of time. This type of resistance is mainly associated with minor genes, also known as slow rusting genes, and is generally controlled by more than one gene during the adult-plant stage rather than the seedling-resistant stage, and shows non-HRs to infection [22]. In wheat cultivars, the presence of a single resistance gene is generally less effective for controlling rust disease, whereas the combination of two or more genes enhances resistance durability. The genetic basis of durable resistance is the additive effect of partially resistant minor genes, and it is usually polygenic in nature and active in the adult-plant stage [22]. A group of CIMMYT germplasms involving 10–12 different genes were developed by pyramiding 4–5 minor genes; this resulted in a degree of resistance against rust that approaches immunity [22]. The Pakistani variety Lyalpur 73 and the South American wheat cultivar are good examples of durable resistance varieties that were developed over 50 years ago and remain rust resistant almost everywhere in the world.

Durable resistance breeding for the development of rust-resistant wheat cultivars

The APR genes *Lr12* [167], *Lr13* [156,168], *Lr22a*, *Lr22b* [169], *Lr34* [170,168], *Lr35* [171], *Lr37* [172], *Lr46* [173], *Lr67* [51,154], *Lr68* [52], *trp-1* and *trp-2* [40] are considered durable resistance genes. Among these genes, *Lr13* and *Lr34* appear to be the main source of durable leaf rust resistance [168]. The combined effects of the adult resistance genes *Lr11*, *Lr12*, *Lr13*, *Lr22b*, *Lr35*, and *Lr37* have been reported in 55% of European wheat cultivars [18]. The combined effects of seedling resistance genes, such as *Lr16*, *Lr47*, *Lr19*, *Lr41*, *Lr21*, *Lr25* and *Lr29*, with APR genes, such as *Lr34*, *SV2*, *Lr46*, might explain the highly durable and effective leaf rust control that has been achieved in Argentinean wheat cultivars [45]. The combination of *Lr35* with seedling and/or other adult-plant leaf rust resistance genes should facilitate more efficient breeding for durable resistance [155]. Genes *Lr34*, *Lr46* and *Lr67* provide partial or slow resistance to

Table 6. List of stem rust resistance genes and different molecular approaches used to identify them.

Genes	Molecular markers	References
S52, S22, S24, S25, S26, S26, S26 and S46	STS, SSR, CAPS	[47,107,108,109,110,111,114,148,150,161]
Sr31	STS, SCAR	[59,162]
Sr29	SCAR	[8]
Sr6, Sr40	Microsatellite	[110,148,163]
Sr57+ Lr67+Yr46+ Pm46	SNP	
Sr58+ Lr46+Yr29+Pm39	STS, SNP	[128]
Sr48+ Lr67+Yr28+Pm46	CAPS	[88]

Table 7. List of stripe rust resistance genes with their source species and chromosomal locations [34].

Source	Genes with their chromosomal locations
Triticum aestivum	Yr1(2AL), Yr2(7B), Yr3a<1(B), Yr4a<6(6B), Yr6(7BS), Yr7(2BL), Yr11,Yr12, Yr13, Yr14, Yr16(2D), Yr18 (7DS), Yr19(3B), Yr20(6D), Yr21(1B), Yr22(4D), Yr23(6D), Yr24(1BS), Yr25(1D), Yr27+Lr13(2BS), Yr29+Lr46(1BL), Yr30+Sr2+Lr27(3BS), Yr31(2BS), Yr32 (2BS), Yr41(2B)
Triticum spelta album	Yr5(2BL)
Aegilops comosa	Yr8(2D = T2DS-2M#1L2M#1S)
Secale cereale	Yr9(1RL. 1BS)
Triticum spelta	Yr10(1BL)
Triticum dicoccoides	Yr15(1BS)
Aegilops ventricosa	Yr17(2AS)
Haynaldia villosa	Yr26(6AS) (6AL.6VS)
Triticum tauschii	Yr28(4DS)
leaf rust and are considered more durable than seedling resistance genes [173]. The mode of action of these genes is characterized by a longer latent period, lower infection frequency, smaller uredinia size, shorter period of sporulation and lower spore density [46]. Among these genes, Lr34 has been shown as not only durable but also capable of acting synergistically with other leaf rust resistance genes [174] in addition to having a pleiotropic effect on other diseases [157,161]. The combined effect of the leaf rust resistance gene Lr19 with the stem rust resistance gene Sr25 causes wheat flour to appear yellow and enhances the durability of leaf rust resistance in wheat cultivars [26]. When Sr2 is present alone, it does not provide a sufficient level of resistance; however, in combination with the Lr27 gene, it provides a desirable level of stem rust resistance in tall Kenyan cultivars such as Kenya plume and semi-dwarf CIMMYT cultivars Pavon F76, Parula, Kingbird, and Dollarbird [22]. Similarly, the combined effect of Lr34 and Yr18 in the Italian varieties Mentana and Ardito [175] has lead to effective durable resistance to stem rust. The combination of the leaf rust resistance gene Lr46 and the yellow rust resistance gene Yr29 is tightly linked and pleiotropic [160], producing durable and effective control for leaf rust [164].

Distribution of Lr genes in global wheat cultivars

Among the leaf rust resistance genes, Lr1, Lr3, Lr10 and Lr20 have been the most frequently identified and widely distributed genes in global wheat cultivars. The Lr1 and Lr2 are the most common leaf rust resistance genes in American soft red winter wheat [33,41]. The Lr20 gene dominates in African germplasms, followed by South American and Asian germplasms [176]. It is also very frequent in Ethiopian wheat germplasm [177] but is found at a very low frequency in North American and British wheat germplasms [178]. The Lr1, Lr10 and Lr20 genes are the most frequent in Europe, while Lr1, Lr3, Lr10 and Lr20 are found at higher frequencies in Oceania [176]. The Lr20 gene is very rare in Australian germplasm, American soft red winter wheat, and Argentinian germplasm [41,122]. The Lr1 gene has been most frequently recorded in Australian wheat cultivars, American hard red spring wheat, Mexican bread wheat, Chinese cultivars, and Indian and Pakistani wheat cultivars [122,179,180-182], while this gene is rare in Argentinian germplasm [45]. The Lr10 is very common in international winter wheat nurseries, Indian and Pakistani wheat cultivars, Mexican bread wheat, and Brazilian and Argentinian wheat cultivars [44,45,181–183]. Soft red winter wheat cultivars from the southeastern USA bearing the leaf rust resistance genes Lr9, Lr11, Lr18, Lr24 and Lr26 can be infected by selected races with virulence against these genes [184]. Similarly, the leaf rust resistance genes Lr3ka, Lr11, Lr24, and Lr26 have been recorded in hard red winter wheat cultivars from the southern Great Plains region of Texas, Oklahoma, and Kansas since the late 1980s. [185,186]. However, the Lr17 gene is most commonly identified in southeastern US, Great Plains, Ohio Valley, and California wheat cultivars in the USA, while the Lr16 gene is common in the north-central states in the USA, where spring wheat cultivars are grown. Lr16 is more effective than Lr17 against various virulent races of leaf rust disease [187]. Conversely, Lr24 is widely ineffective in North and South America and in South Africa but is effective in Australia and the Indian sub-continent [188] as well as in European wheat cultivars. The resistance genes Lr3a, Lr10, Lr13, Lr14a, Lr20, Lr26 and Lr37 are the most common in the modern European winter wheat germplasm [18]; specifically, eastern European wheat cultivars carrying Lr26 show good resistance against leaf rust disease and are therefore popular options [189]. The Lr3, Lr3ka, Lr3bg, and Lr26 genes are most frequently found in Western European wheat cultivars [190]. The Lr26 is most commonly found in Argentinean germplasm [45], British cultivars [178] and Chinese wheat germplasm. Due to its durable resistance ability, Lr13 is the most widely distributed Lr gene in world wheat cultivars [26]. The Lr13 was recorded in approximately 58% of European wheat genotypes either alone or in combination with other genes, and it is now ineffective in several countries, including Mexico [142]; however, it is still considered effective in cultivars from Australia [9,26], India [178], Brazil, Argentina and the United States [9] and also in cultivars derived from CIMMYT germplasms [182].

The genes Lr13, Lr24, Lr34, and Lr36 are the most common resistance genes among all Egyptian wheat cultivars [191]. Of the non-specific genes, the Lr34/Yr18 complex [192], Lr46 [130] and Lr67 [131] are the most commonly introduced genes in global wheat. The Lr34 gene has been present in Chinese, Italian, and South American varieties for much longer than the others [193]. The juvenile genes Lr25, Lr29, and Lr39 and APR genes Lr21, Lr35, and Lr37 (http://maswheat.ucdavis.edu/protocols) are not found in Russian varieties. However, more than 15% of winter and 40% of spring varieties in Russia are protected from leaf rust disease by the Lr10 gene [137]. Moreover, only one spring wheat, Trizo, was found to carry the Lr20 gene and was recommended for release as a variety in the Northwestern, Central, and Central Chernozem regions of Russia [39,194]. Lr53 [68], Lr54 [69], and Lr56 [161] have been recorded in spring wheat cultivars from Chinese origin and are closely linked with Yr35, Yr37, and Yr38, respectively, and Lr62 [162] was recorded in California wheat cultivars linked with the stripe rust resistance gene Yr42. The adult-plant leaf rust resistance genes Lr34,
Global distribution of wheat cultivars containing the Sr gene

The *Sr2* is present in approximately 60% of current CIMMYT spring wheat germplasms [101], including some high-yielding wheat varieties that also have high levels of resistance to leaf rust and stripe rust, as well as desirable end-use quality characteristics. Similarly, more than 50% of International Centre for Agriculture Research in the Dry Areas (ICARDA) and South African wheat germplasms have shown an SSR haplotype association with the durable stem rust resistance gene *Sr2* [195]. The combination of *Sr2* with the uncharacterized slow-rusting genes commonly known as the *Sr2*-complex has provided the foundation for durable resistance to stem rust in most parts of the world [126,196]. The stem rust resistance gene *Sr24* has effectively conferred resistance against most races of *Pgt* and is present in most commercial wheat cultivars worldwide [148,197]. More than 20% of the germplasms and elite lines of South African wheat carry *Sr24* as a major resistance gene [198]. The stem rust resistance genes *Sr25* and *Sr26* are effective against variants of *Ug99*, TTKST and TTTSK [87,95]. The stem rust resistance gene *Sr31* is very common in world wheat varieties. Before the emergence of *Ug99*, stem rust resistance was maintained mainly by *Sr31* in most countries around the world, except for Australia [101].

Conclusions

Knowledge regarding the characteristics and distribution of rust resistance genes is essential for developing new wheat varieties with resistance. Gene pyramiding through MAS and the use of different molecular approaches is essential for ensuring the sustainability of long-term resistance in wheat cultivars and for controlling these widespread and dangerous wheat diseases. Consolidating information on durable resistance varieties and their mechanisms for controlling rust disease, which is the focus of this paper, is also important for the development of new disease-resistant varieties with high-yielding capabilities. Overall, this work aims to support wheat researchers, students, academics, plant breeders and pathologists by enhancing understanding of the current state of the field of wheat research.

Acknowledgments

The author, Md Aktar Uz Zaman, sincerely acknowledges the Biotechnology unit, Central Laboratory, the Institute of Tropical Agriculture and Food Security (ITA FoS), and the Universiti Putra Malaysia (UPM) for permission to access their research facilities as well as the Bangladesh Agricultural Research Institute for providing deputation during the training period.

Disclosure statement

No potential conflict of interest was reported by the authors.

References

[1] Todorovska E, Christov N, Slavov S, et al. Biotic stress resistance in wheat breeding and genomic selection implications. Biotechnol Biotech Eq. 2009;23(4):417–1426.
[2] Draz IS, Abou-Elseoud MS, Kamara, A-EM, et al. Screening of wheat genotypes for leaf rust resistance along with grain yield. Ann Agric Sci. 2015;60(1):29–39.
[3] Zadoks JC. Epidemiology of wheat rust in Europe. FAO Plant Prod Bull. 1963;13:97–108.
[4] Leonard KJ, Szabo LJ. Stem rust of small grains and grasses caused by *Puccinia graminis*. Mol Plant Pathol. 2005;6(2):99–111. doi:10.1111/j.1364-3703.2005.00273.
[5] Oliver RP. A reassessment of the risk of rust fungi developing resistance to fungicides. Pest Manag Sci. 2014;70(11):1641–1645.
[6] Sumikova T, Hanzalova A. Multiplex PCR assay to detect rust resistance genes *Lr26* and *Lr37* in wheat, Czech. Genet Plant Breed. 2010;46:85–89.
[7] Kadkhodaei M, Dadkhodaie A, Assad MT, et al. Identification of the leaf rust resistance genes *Lr9*, *Lr26*, *Lr28*, *Lr34*, and *Lr35* in a collection of Iranian wheat genotypes using STS and SCAR markers. J Crop Sci Biotechnol. 2012;15(4):267–274. doi:10.1007/s12892-012-0035-9.
[8] Gold J, Harder D, Townsley-Smith F, et al. Development of a molecular marker for rust resistancegenes *Sr39* and *Lr35* in wheat breeding lines. Electron J Biotechnol. 1999;2:1–6.
[9] Roelfs AP. Epidemiology of the cereal rusts in North America. Can J Plant Pathol. 1989;11:86–90. doi:10.1080/07060668909501153.
[10] Pedersen WL, Leath S. Pyramiding major genes for resistance to maintain residual effects. Annu Rev Phytopathol. 1988;26:369–378.
[11] Jiang J, Friebe B, Gill BS. Recent advances in alien gene transfer in wheat. Euphytica. 1994;73:199–212.
[12] Johnson R, Law CN. Genetic control of durable resistance to yellow rust (*Puccinia striiformis*) in the wheat cultivar Hybride de Bersee. Ann Appl Biol. 1975;81:385–391.
[13] Naik S, Gill KS, Prakasa RVS, et al. Identification of a STS marker linked to the *Aegilops speltoides*-derived leaf rust resistance gene *Lr28* in wheat. Theor Appl Genet. 1998;97:535–540.
[14] Anderson JA. Plant genomics and its impact on wheat breeding. Plant Mol Breed. 2003;184–215.
[15] Mohan M, Nai S, Bhagwat A, et al. Genome mapping, molecular markers and marker-assisted selection in crop plants. Mol Breed. 1997;3:87–103.
[16] Babar M, Mashhadi AF, Mehvish A, et al. Identification of rust resistance genes *Lr10* and *Sr9a* in Pakistani wheat germplasm using PCR based molecular markers. Afr J Biotechnol. 2010;9(8):1144–1150. doi:10.5897/AJB10.1551.
[17] Kolmer JA. Tracking wheat rust on a continental scale. Curr Opin Plant Biol. 2005;8:441–449.
[18] Winzeler M, Mesterhazy A, Park RF, et al. Resistance of European winter wheat germplasm to leaf rust. Agronomie. 2000;20:783–792.
[19] Bolton MD, Kolmer JA, Garvin DF. Wheat leaf rust caused by Puccinia triticina. Mol Plant Pathol. 2008;9:563–575.
[20] German S, Barcellos A, Chaves M, et al. The situation of common wheat rusts in the Southern Cone of America and perspectives for control. J Agric Res. 2007;58:620–630.
[21] Herrera-Foessel SA, Singh RP, Huerta-Espino J, et al. Wheat leaf rust. In: Sharma I, editor. Disease resistance in wheat. Wallingford: CAB International; 2012. p. 33–62.
[22] Khan MH, Bukhari A, Dar ZA, et al. Status and strategies in breeding for rust resistance in wheat. Agric Sci. 2013;4:292–301.
[23] Mains EB, Leighty CE, Johnston CO. Inheritance of resistance to leaf rust Puccinia triticinaErikss. in crosses in common wheat Triticum vulgare VII. J Agric Res. 1926;32:931–971.
[24] Ausemus ER, Harrington JB, Reitz LP, Worzella WW. A summary of genetic studies in hexaploid wheats. J Am Soc Agron. 1946;38:1082–1099.
[25] Soliman AS, Heyne EG, Johnston CO. Genetic analysis for leaf rust resistance in the eight differential varieties of wheat. Crop Sci. 1964;4:246–248.
[26] McIntosh RA, Wellings CR, Park RF. Wheat rusts: an atlas of resistance genes. Dordrecht: Kluwer Academic Publishers; 1995.
[27] McIntosh RA, Devos KM, Dubcovsky J et al., Catalogue of gene symbols for wheat. 2007; Available from supplement: http://www.shigen.nig.ac.jp/wheat/komugi/geneSymbols/macogene/supplement2007.pdf.
[28] McCallum BD, Hiebert C, Huerta-Espino J, Cloutier S. Wheat leaf rust. In: Sharma I, editor. Disease resistance in wheat. Wallingford: CAB International; 2012. p. 33–62.
[29] Flor HH. Inheritance of pathogenicity in Melampsora lini. Phytopathology. 1942;32:653–669.
[30] McIntosh RA, Devos KM, Dubcovsky YJ, et al. Catalogue of gene symbols for wheat: 2008 supplement. Ann Wheat Newslett. 2008;54:209–225.
[31] Samsapour D, Maleki Zanjani B, Pallavi JK, et al. Identification of molecular markers linked to adult plant leaf rust resistance gene Lr48 in wheat and detection of Lr48 in the Thatcher near-isogenic line with gene Lr25. Euphytica. 2010;174(3):337–342.
[32] Schnurbusch T, Paillard S, Schori A, et al. Dissection of quantitative and durable leaf rust resistance in Swiss winter wheat reveals a major resistance QTL in the Lr34 chromosomal region. Theor Appl Genet. 2004;108:477–484.
[33] Roelfs AP, Hughes ME, Long DL. Rust resistance genes in wheat lines and cultivars. U.S. Department of Agricultural Research Services, Cereal Division Lab; 2000. Online, Publication CDL–EP #006 (2000) Accessed 7 Nov 2002. Available from: http://www.ars.usda.gov/Main/docs.htm?docid=10103.
[34] McIntosh RA, Yamazaki Y, Devos KM, et al. Catalogue of gene symbols for wheat. In: Pogna NE Romano M Pogna A Galterio G, editors. Proceedings of the 10th International Wheat Genetics Symposium; 2003 Sep 1–6; Istituto Sperimentale per la Cerealicoltura; Paestum, Italy.
[35] Wisniewska H, Stepień L, Kowalczyk K. Resistance of spring wheat cultivars and lines to leaf rust. J Appl Genet. 2003;44(3):361–368.
[36] Neu C, Stein N, Keller B. Genetic mapping of the Lr20–Pm1 resistance locus reveals suppressed recombination on chromosome arm 7AL in hexaploid wheat. Genome. 2002;45(4):737–744.
[37] Nelson JC, Singh RP, Autrique JE, et al. Mapping genes conferring and suppressing leaf rust resistance in wheat. Crop Sci. 1997;37:1928–1935.
[38] Shahin SI, El-Oraby WM. Relationship between partial resistance and inheritance of adult plant resistance gene Lr46 of leaf rust in six bread wheat varieties. Adv Crop Sci Technol. 2015;3(1):1–6.
[39] Da-Silva PR, Brammer SP, Guerra D, et al. Monosomic and molecular mapping of adult plant leaf rust resistance genes in the Brazilian wheat cultivar Toropi. Genet Mol Res. 2012;11(3):2823–2834.
[40] Hussein S, Spies JJ, Pretorius ZA, et al. Chromosome locations of leaf rust resistance genes in selected tetraploid wheat through substitution lines. Euphytica. 2005;141:209–216.
[41] Wamishe YA, Milus EA. Seedling resistance genes to leaf rust in soft red winter wheat. Plant Dis. 2004;88(2):136–146.
[42] Feuillet C, Messmer M, Schachermayr G, et al. Genetical and physical characterization of the Lr1 leaf rust resistance locus in wheat (Triticum aestivum L.). Mol Geno Genet. 1995;248:553–562.
[43] Schachermayr G, Siedler H, Gale MD, et al. Identification and localization of molecular markers linked to the Lr19 leaf rust resistance gene of wheat. Theor Appl Genet. 1994;88:110–115.
[44] McVey DV. Genes for rust resistance in international winter wheat nurseries XII through XVII. Crop Sci. 1992;32:891–895.
[45] Vanzetti LS, Campose P, Demichelis M, et al. Identification of leaf rust resistance genes in selected Argentinian bread wheat cultivars by gene postulation and molecular markers. Electron J Biotechnol. 2011;14(3):1–17.
[46] Shepherd KW, Finley KW, editors. Breeding for general and/or specific plant disease resistance. Proceedings of the Third International Wheat Genetics Symposium; 1968 Aug 5–9; Canberra: Butterworths Australian Academy of Sciences; p. 263–272.
[47] Prins R, Groenewald JZ, Maars I, et al. AFLP and STS tagging of Lr19, a gene conferring resistance to leaf rust in wheat. Theor Appl Genet. 2001;103(4):618–624.
[48] Prabhu KV, Gupta SK, Charpe A, et al. SCAR marker tagged to the alien leaf rust resistance gene Lr19 uniquely marking the Agropyron elongatum-derived gene Lr24 in wheat: a revision. Plant Breed. 2004;123:417–420.
[49] Lagudah ES, McFadden H, Singh RP, et al. Molecular characterization of the Lr34/Yr18 slow rusting gene region in wheat. Theor Appl Genet. 2006;114:21–30.
[50] Blaszczzyk L, Chelkowski J, Korzun V, et al. Verification of STS markers or leaf rust resistance genes of wheat by seven European laboratories. Cell Mol Biol Lett. 2004;9:805–817.
Herrera-Foessel SA, Ladugad ES, Huerta-Espino J, et al. New slow-rusting leaf rust and stripe rust resistance genes Lr67 and Yr46 in wheat are pleiotropic or closely linked. Theor Appl Genet. 2011;122:239–249.

Herrera-Foessel SA, Singh RP, Huerta-Espino J, et al. Lr68: a new gene conferring slow rusting resistance to leaf rust in wheat. Theor Appl Genet. 2012;124(8):1475–1486.

Gill BS, Sharma HC, Raupp WJ, et al. Resistance in Aegilops squarrosa to wheat leaf rust, wheat powdery mildew, greenbug, and Hessian fly. Plant Dis. 1986;70:553–556.

Rowland GG, Kerber ER. Telocentric mapping in hexaploid wheat of genes for leaf rust resistance and other characters derived from Aegilops squarrosa. Can J Genet Cytol. 1974;16:137–144.

Kerber ER. Resistance to leaf rust in hexaploid wheat: Lr32, a third gene derived from Triticum tauschii. Crop Sci. 1987;27:204–206.

Cox TS, Raupp WJ, Gill BS. Leaf rust resistance genes Lr41, Lr42 and Lr43 transferred from Triticum tauschii to common wheat. Crop Sci. 1994;34:339–343.

Hussein T, Bowden RL, Gill BS, et al. Chromosomal location of leaf rust resistance gene Lr43 from Aegilops tauschii in common wheat. Crop Sci. 1997;37:1764–1766.

Mago R, Spelmeyer W, Lawrence GJ, et al. Identification and mapping of molecular markers linked to rust resistance genes located on chromosome 1RS of rye using and mapping of molecular markers linked to rust resistance gene Lr36 and Yr37 transferred to wheat from Aegilops kotschyi. Plant Breed. 2005;124(4):538–541.

Clayton WD, Vorontsova MS, Harman KT, et al. GrassBase - The online world grass flora. 2006. [Online] Available from: http://www.kew.org/data/grasses-db/www/imp00042.htm Accessed: 4 June 2013.

Marais GF, McCallum B, Marais AS. Leaf rust and stripe rust resistance genes derived from Aegilops sharonensis. Euphytica 2006;149:373–380.

Marais GF, Badenhorst PE, Eksteen A, et al. Reduction of Aegilops sharonensis chromatin associated with resistance genes Lr56 and Yr38 in wheat. Euphytica 2010a;171:15–22.

Marais GF, McCallum B, Marais AS. Wheat leaf rust resistance gene Lr59 derived from Aegilops peregrine. Plant Breed. 2008;127:340–345.

Kotze L. Verkorting van die A. peregrina-verhaaldeletS9 translokasie van koring [MSc thesis]. South Africa: Stellenbosch University; 2009.

Marais F, Marais A, McCallum B, et al. Transfer of leaf rust and stripe rust resistance genes Lr62 and Yr42 from Aegilops neglecta Req. ex Bertol. to common wheat. Crop Sci. 2009;49(3):871–879.

Marais GF, Marais AS, Eksteen A, et al. Modification of the Aegilops neglecta-common wheat LR62/YR42 translocation through allosyndetic pairing induction. S Afr J Plant Soil. 2010b;27(2):142–151.

Huerta-Espino J, Roelfs AP. Leaf rust on durum wheats. Vortr Pflanzenzuechtg. 1992;24:100–102.

Ordóñez ME, Kolmer JA. Virulence phenotypes of a worldwide collection of Puccinia triticina from durum wheat. Phytopathology. 2007;97:344–351.

Herrera-Foessel SA, Singh RP, Huerta-Espino J, et al. Identification and molecular characterization of leaf rust resistance gene Lr14a in durum wheat. Plant Dis. 2008;92:469–473.

Law CN. The location of genetic factors controlling a number of quantitative characters in wheat. Genetics. 1967;56:445–461.

Law CN, Johnson R. A genetic study of leaf rust resistance in wheat. Can J Genet Cytol. 1967;9:805–822.

Law CN, Wolfe MS. Location of genetic factors for mildew resistance and ear emergence time on chromosome 7B of wheat. Can J Genet Cytol. 1966;8:462–470.

McIntosh RA, Luig NH, Baker EP. Genetic and cytogenetic studies of stem rust, leaf rust, and powdery mildew resistance in Hope and related wheat cultivars. Aust J Biol Sci. 1967;20:1181–1192.

McIntosh RA, Dyck PL. Cytogenetical studies in wheat VII. gene Lr23 for reaction to Puccinia recondita in Gabo and related cultivars. Aust J Biol Sci. 1975;28:201–211.

Admassu B, Embet F, Zerihiun K. Physiological races and virulence diversity of Puccinia graminis f. sp. tritici on wheat in Ethiopia. Kinyua MG Kamwaga J Owuoche JO Ndiema AC Nj au PN Friesen DK Ouya D, editors.
[86] Pretorius ZA, Singh RP, Wagoire WW, et al. Detection of virulence to wheat stem rust resistance gene Sr31 in Puccinia graminis f. sp. tritici in Uganda. Phytopathology. 2000;84(2):203.

[87] Singh RP, Hodson DP, Jin Y, et al. Current status, likely migration and strategies to mitigate the threat to wheat production from race Ug99 (TTKTS) of stem rust pathogen. Perspect Agric Veter Sci Nutr Nat Resour. 2006;1:1–13.

[88] Long-Xi Y, Babier H, Rouse NM, et al. A consensus map for Ug99 stem rust loci in wheat. Theor Appl Genet. 2014;127:1561–1581.

[89] Haile JK, Hammer K, Badebo A, et al. Haplotype analysis of molecular markers linked to stem rust resistance genes in Ethiopian improved durum wheat varieties and tetraploid wheat landraces. Genet Resour Crop Ev. 2013;60:853–864.

[90] McIntosh RA, Dubcovsky J, Rogers WJ, et al. Catalogue of gene symbols for wheat: 2011 Catalogue of gene symbols for wheat: 2011 supplement. Ann Wheat Newslett. 2011;56:273–282. Available from: http://www.shigen.nig.ac.jp/wheat/komugi/genes/symbolClassList.jsp.

[91] Faris JD, Xu SS, Cai X, et al. Molecular and cytogenetic characterization of a durum wheat–Aegilops speltoides chromosome translocation conferring resistance to stem rust. Chromosome Res. 2008;16:1097–1105.

[92] Ghazvini H, Hiebert CW, Zegeye T, et al. Inheritance of resistance to Ug99 stem rust in wheat cultivar Norin 40 and genetic mapping of Sr42. Theor Appl Genet. 2012;125:817–824.

[93] Kolmer JA, Garvin, DF, Jin Y. Expression of a Thatcher wheat adult plant stem rust resistance QTL on chromosome arm 2BL is enhanced by Lr34. Crop Sci. 2011;51:526–533.

[94] Jin Y, Singh RP. Resistance in U.S. wheat to recent Eastern African isolates of Puccinia graminis f. sp. tritici with virulence to resistance gene Sr31. Plant Dis. 2006;90:476–480.

[95] Jin Y, Singh RP, Ward RW, et al. Characterization of seedling infection types and adult plant infection responses of monogenic Sr gene lines to race TTKTS of Puccinia graminis f. sp. tritici. Plant Dis. 2007;91:1096–1099.

[96] Liu WX, Rouse M, Friebe B, et al. Discovery and molecular mapping of a new gene conferring resistance to stem rust, Sr53, derived from Aegilops geniculata and characterization of spontaneous translocation stocks with reduced alien chromatin. Chromosome Res. 2011;19:669–682.

[97] Liu WX, Jin Y, Rouse M, et al. Development and characterization of wheat Ae. searsii Robertsonian translocations and a recombinant chromosome conferring stem rust to wheat. Theor Appl Genet. 2011;122:1537–1545.

[98] McIntosh RA, Dubcovsky J, Rogers WJ et al., 2012. Catalogue of gene symbols for wheat: 2012 supplement. Available from: http://www.shigen.nig.ac.jp/wheat/komugi/genes/symbolClassList.jsp.

[99] Rouse MN, Olson EL, Gill BS, et al. Stem rust resistance in Aegilops tauschii germplasm. Crop Sci. 2011;51:2074–2078.

[100] Rouse MN, Jin Y. Stem rust resistance in A-genome diploid relatives of wheat. Plant Dis. 2011;95:941–944.

[101] Singh RP, Hodson DP, Huerta-Espino J, et al. Will stem rust destroy the world’s wheat crop? Adv Agron. 2008;98:271–309.

[102] Yu LX, Liu S, Anderson JA, et al. Haplotype diversity of stem rust resistance loci in uncharacterized wheat lines. Mol Breed. 2010;26:667–680.

[103] Yu LX, Lorenz A, Rutkoski J, et al. Association mapping and gene–gene interaction for stem rust resistance in CIMMYT spring wheat germplasm. Theor Appl Genet. 2011;123:1257–1268.

[104] Klindworth D, Miller J, Jin Y, et al. Chromosomal locations of genes for stem rust resistance in monogenic lines derived from tetraploid wheat accession STS464. Crop Sci. 2007;47:1441–1450.

[105] Olivera PD, Jin Y, Rouse M, et al. Races of Puccinia graminis f. sp. tritici with combined virulence to Sr13 and Sr9 in a field stem rust screening nursery in Ethiopia. Plant Dis. 2012;96:623–628.

[106] Khan R, Bariana H, Dholakia B, et al. Molecular mapping of stem and leaf rust resistance in wheat. Theor Appl Genet. 2005;111:846–850.

[107] Olson EL, Brown-Guedira G, Marshall D, et al. Development of wheat lines having a small introgressed segment carrying stem rust resistance gene Sr22. Crop Sci. 2010;50:1823–1830.

[108] Periyannan KS, Bansal UK, Bariana HS, et al. A robust molecular marker for the detection of shortened introgressed segment carrying the stem rust resistance gene Sr22. Crop Sci. 2005;11:496–504.

[109] Martin RH. Eagle; a new wheat variety. Agric Gaz NSW. 1971;82:206–207.

[110] Singh RP, Hodson DP, Huerta-Espino J, et al. The emergence of Ug99 races of the stem rust fungus is a threat to world wheat production. Annu Rev Phytopathol. 2011;49:465–481.

[111] Rouse MN, Nava IC, Chao SJ, et al. Identification of markers linked to the race Ug99 effective stem rust resistance gene Sr28 in wheat (Triticum aestivum L.). Theor Appl Genet. 2010;122:1–7.

[112] Liu SX, Yu LX, Singh RP, et al. Diagnostic and co-dominant PCR markers for wheat stem rust resistance genes Sr25 and Sr26. Theor Appl Genet. 2010;120:691–697.

[113] Mago R, Bariana H5, Dundas IS, et al. Development of PCR markers for the selection of wheat stem rust resistance genes Sr24 and Sr26 in diverse wheat germplasm. Theor Appl Genet. 2005;111:496–504.

[114] Bariana HS, Hayden MJ, Ahmad NU, et al. Mapping of durable adult plant and seedling resistance to stripe and stem rust disease in wheat. Aust J Agric Res. 2001;52:1247–1255.

[115] Dundas IS, Anugrahwati DR, Verlin DC, et al. New sources of rust resistance from alien species: meliorating linked defects and discovery. Aust J Agric Res. 2007;58:545–549.

[116] Yu LX, Abate Z, Anderson JA, et al. Developing and optimizing markers for stem rust resistance in wheat. McIntosh R editor. Proceedings oral pairs of Borlaug global rust initiative technical workshop; 2009 Mar 17-20; Sonora; Mexico p. 117–130.

[117] Sambasivam PK, Bansal UK, Hayden MJ, Dvorak J, Luda-dah ES, Bariana HS. Identification of markers linked with
stem rust resistance genes Sr33 and Sr45, In: Appels R, Eastwood R, Lagudah E, Langridge P, Mackay M, McIntyre L, Sharp P, editors. Proceedings of the 11th International Wheat Genet Symposium. 2008 Aug 24-29; Canberra, Australia: CSIRO Plant Industry. p. 351–353.

[118] McIntosh RA. Alien sources of disease resistance in bread wheats. In: Sasakuma T, Kinoshita T, editors. Proceedings of the Kihara Memorial International Symposium on Cytoplasmic Engineering in Wheat. 1991 Jul 3–6; Hokkaido University; Sapporo; Japan. p. 320–332.

[119] Zhang Q, Klindworth DL, Friesen TL, et al. Development and characterization of wheat lines with Sr37 for stem rust resistance derived from wild T. timopheevi. Meeting Abstract, 2012 Jan 14; Fargo, North Dakota. p. 316.

[120] Niu Z, Klindworth DL, Friesen TL, et al. Targeted introgression of a wheat stem rust resistance gene by DNA marker-assisted chromosome engineering. Theor Appl Genet. 2011;123:159–167.

[121] Dyck PL. Transfer of a gene for stem rust resistance from Triticum araraticum to hexaploid wheat. Genome. 1992;35:788–792.

[122] Singh RP, Kinyua MG, Wanyera R, et al. Spread of a highly virulent race of Puccinia graminis tritici in Eastern Africa: challenges and opportunities. In: Buck HT, Nisi JE, Salomón N, editors. Wheat production in stressed environments. Proceedings of the 7th International Wheat Conference; 2005 27 Nov–2 Dec, Mar del Plata, Argentina: Springer; 2007. p. 51–57.

[123] Hare RA, McIntosh RA. Genetics and cytogenetics studies of durable adult-plant resistance in ‘Hope’ and related cultivars to wheat rusts. Z Pflanzenzüchtung. 1979;83:350–367.

[124] Qi LL, Pumphrey MO, Friebe B, et al. A novel Robertsonian event leads to transfer of a stem rust resistance gene (Sr52) effective against race Ug99 from Dasypyrum villosum into wheat. Theor Appl Genet. 2011;123:159–167.

[125] McIntosh RA. The role of specific genes in breeding for durable stem rust resistance in wheat and triticale. In: Simmons NW, Rajaram S, editors. Breeding strategies for resistance to the rusts of wheat. Mexico: CIMMYT; 1988. p. 1–9.

[126] Mago R, Guedira, GB, Dreisigacker S, et al. An accurate DNA marker assay for stem rust resistance gene Sr2 in wheat. Theor Appl Genet. 2011;122:735–744.

[127] Lagudah E, Krattinger SG, Herrera-Foessel S, et al. Gene-specific markers for the wheat gene Lr34/Yr18/Pm38 which confers resistance to multiple fungal pathogens. TAG Theor Appl Genet. 2009;119(5):889–898.

[128] Singh RP, Huerta-Espino J, Bhavani S, et al. Breeding for minor gene-based resistance to stem rust of wheat. Proceedings of the Borlaug Global Rust Initiative; 2009 Mar 17–20; Sonora, Mexico.

[129] Sunderland SD, Roelfs AP. Greenhouse evaluation of the adult plant resistance of Sr2 to wheat stem rust. Phytopathology. 1980;70:634–637.

[130] Hale JK, Roder MS. Status of genetic research for resistance to Ug99 race of Puccinia graminis f. sp. tritici; a review of current research and implications. Afr J Agric Res. 2013;8:6670–6680.

[131] Wu S. Molecular mapping of stem rust resistance genes in wheat [M Sc thesis]. Manhattan (KS): Kansas State University; 2008.

[132] Joshi RK, Nayak S. Gene pyramiding—a broad spectrum technique for developing durable stress resistance in crops. Biotechnol Mol Biol Rev. 2010;5(3):51–60.

[133] Chen X. Epidemiology and control of stripe rust on wheat. Can J Plant Pathol. 2005;27:314–337.

[134] Zhang Q, Klindworth DL, Friesen TL, et al. Development and validation of molecular markers linked to an Aegilops umbellulata-derived leaf rust resistance gene, Lr9, for marker-assisted selection in bread wheat. Genome. 2005;48(5):823–830.

[135] Gupta SK, Charpe A, Koul S, et al. Development and validation of molecular markers linked to the leaf rust resistance gene Lr19 in wheat. Theor Appl Genet. 2006;113:1027–1036.

[136] Hiebert C, Thomas J, McCallum B. Locating the broad-spectrum wheat leaf rust resistance gene Lr52 (LrW) to chromosome 5B by a new cytogenetic method. Theor Appl Genet. 2005;110(8):1453–1457.

[137] Cloutier S, McCallum BD, Loutre C, et al. Leaf rust resistance gene Lr1, isolated from bread wheat (Triticum aestivum L.) is a member of the large psr567 gene family. Plant Mol Biol. 2007;65:93–106.

[138] Feuillet C, Travella S, Stein N, et al. Map-based isolation of the leaf rust disease resistance gene Lr10 from the hexaploid wheat (Triticum aestivum L.) genome. Proc Natl Acad Sci USA. 2003;100(25):15253–15258.

[139] Huang L, Brooks SA, Li W, et al. Map-based cloning of leaf rust resistance gene Lr21 from the large and polyploid genome of bread wheat. Genetics. 2003;164:655–664.

[140] Hayden MJ, Kuchel H, Chalmers KJ. Sequence tagged site markers for the wheat leaf rust resistance gene Lr34/Yr18/Pm38 which confers resistance to multiple fungal pathogens. TAG Theor Appl Genet. 2009;119(5):889–898.

[141] Singh RP, Huerta-Espino J, Bhavani S, et al. Breeding for minor gene-based resistance to stem rust of wheat. Proceeding of the Borlaug Global Rust Initiative; 2009 Mar 17–20; Sonora, Mexico.

[142] Familia D, Hare RA, McIntosh RA. The role of specific genes in breeding for durable stem rust resistance in wheat and triticale. In: Simmons NW, Rajaram S, editors. Breeding strategies for resistance to the rusts of wheat. Mexico: CIMMYT; 1988. p. 1–9.
of bread wheat and the diploid species *Triticum boeoticum*. Theor Appl Genet. 1994;89:1039–1045.

[148] Ejaiz M, Iqbal M, Shahzad A, et al. Genetic Variation for Markers Linked to Stem Rust Resistance Genes in Pakistani Wheat Varieties. Crop Sci. 2012;52:2638–2648.

[149] Zhang Q, Klindworth DL, Friesen TL, et al. Development and characterization of wheat lines with Sr37 for stem rust resistance derived from wild *Timopheev’s* wheat. Meeting Abstract. 2012 Jan 14, Fargo, North Dakota. p. 316.

[150] Tsio TJ, Jin Y, Anderson JA. Diagnostic microsatellite markers for the detection of stem rust resistance gene Sr36 in diverse genetic backgrounds of wheat. Crop Sci. 2008;48:253–261.

[151] Helguera M, Khan AI, Kolmer J, PCR assays for the *Lr37-Yr17-Sr38* cluster of rust resistance genes and their use to develop isogenic hard red spring wheat lines. Crop Sci. 2003;43:1839–1847.

[152] Shuangye W, Pumphrey M, Bai G. Molecular mapping of stem-rust resistance gene *Sr40* in wheat. Crop Sci. 2009;49:1681–1686.

[153] Hiebert CW, Fetch TG, Zegeye T, et al. Genetics and mapping of seedling resistance to *Ug99* stem rust in Canadian wheat cultivars ‘Peace’ and ‘AC Cadillac’. Theor Appl Genet. 2011;122:143–149.

[154] Hiebert CW, Thomas JB, McCallum BD, et al. A new gene, *Lr67*, from the wheat accession PI250413 confers resistance to leaf rust at the adult plant stage. Theor Appl Genet. 2010;12:1083–1091.

[155] Seyfarth R, Feuillet C, Schachermayr G, et al. Development of a molecular marker for the adult plant leaf rust resistance gene *Lr35* in wheat. Theor Appl Genet. 1999;99:554–560.

[156] Dyck PL, Samborski DJ, Anderson RG. Inheritance of adult-plant leaf rust resistance derived from the common wheat varieties exchange and frontana. Can J Genet Cytol. 1966;8:665–671.

[157] Singh RP. Association between gene *Lr34* for leaf rust resistance and leaf tip necrosis in wheat. Crop Sci. 1992;32(4):874–878.

[158] Lagudah ES, McFadden H, Singh RP, et al. Molecular characterization of the *Lr34-Yr18* slow rusting gene region in wheat. Theor Appl Genet. 2006;114:21–30.

[159] Lillemo M, Aslaf B, Singh RP, et al. The adult plant rust resistance loci *Lr34/Yr18* and *La46/Yr29* are important determinants of partial resistance to powdery mildew in bread wheat line saar. Theor Appl Genet. 2008;116(8):1155–1166.

[160] William HM, Singh RP, Huertaä–Espino J, et al. Molecular marker mapping of leaf rust resistance gene *Lr46* and its association with stripe rust gene *Yr29* in wheat. Phytopathology. 2003;93:153–159.

[161] Spielmeyer W, Sharp PJ, Lagudah ES. Identification and validation of markers linked to broad-spectrum stem rust resistance gene *Sr2* in wheat (*Triticum aestivum* L.). Crop Sci. 2003;43:333–336.

[162] Das KB, Saini A, Bhagwat SG, et al. Development of SCAR markers for identification of stem rust resistance gene *Sr31* in the homozygous or heterozygous condition in bread wheat. Plant Breed. 2006;125:544–549. doi:10.1111/j.1439-0523.2006.01282.x.

[163] Wu S. Molecular mapping of stem rust resistance genes in wheat [MS thesis]. Manhattan (KS): B. S., Kansas State University; 2003.

[164] Ma H, Singh RP. Contribution of adult plant resistant gene *Yr18* in protecting wheat from yellow rust. Plant Dis. 1996;80:66–69.

[165] Johnson R. Durable resistance to yellow (stripe) rust in wheat and its implications in plant breeding. In Simmonds NW, Rajaram S, editors. Breeding strategies for resistance to the rusts of wheat. Mexic: CIMMYT; 1988.

[166] Johnson R. A critical analysis of durable resistance. Annu Rev Phytopathol. 1984;22:309–330.

[167] McIntosh RA, Baker EP. In: Finlay KW Shepard KW, editors. 3rd International Wheat Genetics Symposium; 1968; Canberra; Australian Academy of Science; Australai: Butterworth; 1968. p. 305–308.

[168] Roelfs AP. Resistance to leaf and stem rusts in wheat. In Simmonds NW Rajaram S, editors. Breeding strategies for resistance to rust of wheat. Mexico, DF: International Maize and Wheat Improvement Center; 1988. p. 10–22.

[169] Dyck PL. Identification of the gene for adult-plant leaf rust resistance in Thatcher. Can J Plant Sci. 1979;59:499–501.

[170] Dyck PL. The association of a gene for leaf rust resistance with the chromosome 7D suppressor of stem rust resistance in common wheat. Genome. 1987;29:467–469.

[171] Kerber ER, Dyck PL. Transfer to hexaploid wheat of linked genes for adult-plant leaf rust and seedling stem rust resistance from an amphiploid of *Aegilops speltoides* x *Triticum monococcum*. Genome. 1990;33:530–537.

[172] Bariana HS, McIntosh RA. Cytogenetic studies in wheat. XV. Location of rust resistance genes in VPM1 and their genetic linkage with other disease resistance genes in chromosome 2A. Genome. 1993;36:476–482.

[173] Singh RP, Mujeebkazi A, Huerta-Espino J. *Lr46*: a gene conferring slow rusting resistance to leaf rust in wheat. Phytopathology. 1998;88(9):890–894.

[174] German SE, Kolmer JA. Effect of gene *Lr34* on the enhancement of resistance to leaf rust of wheat. Theor Appl Genet. 1992;84:97–105.

[175] Kolmer JA, Singh RP, Gravin DF, Analysis of *Lr34*/*Yr18* rust resistance region in wheat germplasm. Crop Sci. 2008;48:1841–1852.

[176] Dakoury AD, McCallum B, Radovanovic N, et al. Molecular and phenotypic characterization of seedling and adult plant leaf rust resistance in a world wheat collection. Mol Breed. 2013;32:663–677.

[177] Mebrate SA, Dehne HW, Pillen K, et al. Postulation of slow rusting leaf rust resistance genes in selected Ethiopian and German bread wheat cultivars. Crop Sci. 2008;48:507–516.

[178] Singh D, Park RF, McIntosh RA. Postulation of leaf (brown) rust resistance genes in 70 wheat cultivars grown in the United Kingdom. Euphytica. 2001;120(2):205–218.

[179] Singh RP, Chen WQ, He ZH. Leaf rust resistance of spring, facultative, and winter wheat cultivars from China. Plant Dis. 1999;83:644–651.

[180] Oelke LM, Kolmer JA. Characterization of leaf rust resistance in hard red spring wheat cultivars. Plant Dis. 2004;88(10):1127–1133.
Singh RP, Gupta AK. Genes for leaf rust resistance in Indian and Pakistani wheats tested with Mexican pathotypes of *Pucciniarecondita* f. sp. *tritici*. Euphytica 1991;57:27–36.

Singh RP, Rajaram S. Resistance to *Puccinia recondita* f. sp. *tritici* in 50 Mexican bread wheat cultivars. Crop Sci. 1991;31:1472–1479.

Zoldan SM, Barcellos AL. Postulation of genes (Lr) for resistance to leaf rust in Brazilian wheat cultivars. Fitopatol Bras. 2002;27:517–524.

Kolmer JA. Virulence phenotypes of *Puccinia triticina* in the South Atlantic States in 1999. Plant Dis. 2002;86:288–291.

Long DL, Leonard KJ, Roberts JJ. Virulence and diversity of wheat leaf rust in the United States in 1993–1995. Plant Dis. 1998;82:1391–1400.

Long DL, Leonard KJ, Hughes ME. Virulence of *Puccinia triticina* on wheat in the United States from 1996 to 1998. Plant Dis. 2000;84:1334–1341.

Kolmer JA, Long DL, Hughes ME. Physiological specialization of *Puccinia triticina* on wheat in the United States. Plant Dis. 2004;88:1079–1084.

Nagarajan S, Nayar SK, Bahadur P, et al. Wheat pathology and wheat improvement. Chandigarh: Azad Hind Stores; 1986.

Mesterhazy A, Bartos LP, Henriette G, et al. European virulence survey for leaf rust in wheat. Agronomie 2000;20:793–804.

Kolmer JA, Liu JQ. Virulence and molecular polymorphism in international collections of the wheat leaf rust fungus *Puccinia triticina*. Phytopathology. 2000;90:427–436.

Imbaby IA, Mahmoud MA, Hassan MEM, et al. Identification of leaf rust resistance genes in selected Egyptian wheat cultivars by molecular markers. Scientific World J. 2014;574285; p. 7.

Krattinger SG, Lagudah ES, Spielmeyer W, et al. Putative ABC transporter confers durable resistance to multiple fungal pathogens in wheat. Science. 2009;323(5919):1360–1363.

Dyck PL, Samborski DJ. The genetics of two alleles for leaf rust resistance at the Lr14 locus in wheat. Can J Genet Cytol. 1970;12:689–694.

Gul’tyaeva El, Kanyuka IA, Alpateva NV, et al. Approaches in identifying leaf rust resistance genes in Russian wheat varieties. Russ Agric Sci. 2009;35(5):316–319.

Ogbonnaya FC, Abdalla O, Nazari K, et al. Characterization of stem rust resistance in ICARDA/CWANA elite wheat germplasm using linked molecular markers. Proceedings of the 8th International Wheat Conference. 2010 Jun 1-4; Petersburg; Russia.

Rajaram S, Singh RP, Torres E. Current CIMMYT approaches in breeding for rust resistance. In: Simmonds NW Rajaram S, editors. Breeding strategies for resistance to the rusts of wheat. Mexico: CIMMYT; 1988. p. 101–118.

Jin Y, Szabo L, Pretorius ZA, et al. Detection of virulence to resistance gene Sr24 within race TTKS of *Puccinia graminis* f. sp. *tritici* race with virulence for Sr24. Plant Dis. 2008;92.

Roux L, Rijkenberg FH. Pathotypes of *Puccinia graminis* f. sp. *tritici* race with virulence for Sr24. Plant Dis. 1987;71:1115–1119.