IL-17A/IL-17F Double KO Mice Are Resistant to Lipopolysaccharide Induced Endotoxic Shock

Anwarul Haque1,2, Chiaki Kajiwara3, Tetsuya Matsumoto1, Yoshikazu Ishii2 and Kazuhiro Tateda2

1Department of Microbiology, Tokyo Medical University, Tokyo, Japan
2Department of Microbiology and Infectious Diseases, Toho University School of Medicine, Tokyo, Japan

Corresponding author: Anwarul Haque, Department of Microbiology, Tokyo Medical University, Tokyo, Japan

Received Date: April 26, 2017; Accepted Date: May 03, 2017; Published Date: May 15, 2017

Abstract

Aim: IL-17 family members, IL-17A and -17F are pro-inflammatory cytokines important for host immune modulation in infection and inflammatory diseases conditions. IL-17A has been shown playing a critical role in defense against bacterial infections and IL-17AF deficient mice (DKO) reported less protective. However, the role of IL-17 in endotoxic shock is largely undefined.

Materials and Methods: Wild and DKO mice were intraperitoneally lipopolysaccharide (LPS) administered and their survival status was recorded. Neutrophil, T cells in peritoneal fluids and pro- and anti-inflammatory cytokines, chemokines in serum in endotoxic wild and DKO mice were evaluated.

Results: In this study, we observed a higher mortality rate in wild than DKO, in intraperitoneal LPS induced shock. Mortality was observed in correlation with increased pro-inflammatory cytokines and chemokines. We also observed a significant rise of -T cells in peritoneal cavity by LPS in wild, which is known to be a most potent source for IL-17 release and neutrophil recruitment at the site of infection. Neutrophil recruitment was shown as a protective phenomenon in murine in bacterial infection, but the same phenomenon was not observed in LPS induced sepsis.

Conclusions: These findings suggest that neutrophil recruitment at infection site may be beneficial in case of direct bacterial exposure, but not in endotoxic exposure to host tissue. This study sheds a comprehensive understanding of IL-17A/F functions in acute peritonitis followed by endotoxic shock that could be beneficial for selection of infection for IL-17 directed therapy.

Keywords: IL-17A; IL-17F; Endotoxic shock; Neutrophils; T cells; Cytokines

Introduction

In recent years, IL-17 probably the most discussed cytokine in infectious disease field. This pro-inflammatory cytokine is regulated by the differentiation of naïve T cells to Th17 cells implied by receiving signals from a wide variety of inflammatory conditions like autoimmune diseases, chronic inflammatory diseases and pathogenic infections [1]. IL-17 cytokine family comprises of six members including signatory IL-17A. And IL-17F is the most closely homologue with IL-17A by structure, source and functions. These two cytokines share same receptors and are usually discussed together in disease conditions. Studies revealed that upon release of cytokine IL-17A, it individually or in conjunction with IL-17F exerts protective functions for host against certain pathogens at epithelial and mucosal barriers [2-4]. They are important for the recruitment of neutrophils at the site of infection that ultimately limits spreading of bacteria and clear it off from the site of infection. Neutrophil dependent immune modulating properties of IL-17A and IL-17F are evident in both extracellular and intracellular bacterial infections [5-10]. On the contrary, a defect in IL-17A or in IL-17A/F induction in response to infection results increased bacterial dissemination, correlating with reduced inflammatory mediators and neutrophil recruitment in hosts [11]. Same study also focused on existence of functionally diverse pathogenic and non-pathogenic subpopulations of Th17 cells under specific clinical conditions. IL-17F functions widely investigated in lung infections, but not in peritoneal infection, particularly in acute endotoxic peritonitis.

Bacterial peritonitis remains a serious complication, especially after abdominal surgery and continuous peritoneal dialysis, influencing patient’s expasses and mortality [12]. Peritoneum is the largest avascular organ in human body implicated for easy dissemination of peritoneal infection to general septicemia. However, published results about role of IL-17A/F in peritonitis are not constant. In cecum ligation and puncture (CLP) induced peritonitis, when a group showed IL-17 function is beneficial for survival [13], then other group showed that neutralization of peritoneal IL-17A bought successes to down mortality rate in their experimental mice [14]. Discrepancy in results in these studies may be related to the different level of inflammatory
status in experimental models, since severity of sepsis in CLP models are not constant. On the contrary, use of a single dose of endotoxin to induce peritonitis in murine models could be a better option to compromise the discrepancy about severity of inflammatory reactions in experimental models. Furthermore, since bacterium itself is not harmful, but its endotoxin, so the host immune mechanism mediated by bacterial toxin could be different than that of immunity induced by direct bacterial exposure in host. This understanding may provide new window for immune modulation and infection treatment. Here we created LPS induced peritonitis in wild and in IL-17AF KO (double KO, DKO) mice to understand the function of IL-17AF in murine endotoxic shock.

Materials and Methods

All the experiments were conducted according to Toho University School of Medicine ethical guidelines for animal experiments after an approval of protocol by the institutional animal care and use committee (approval number 14-52-220).

Animals and their survivals

Specific-pathogen-free 7- to 8-week-old female BALB/c mice (wild) were purchased from Charles River Laboratories (Kanagawa, Japan) and were housed with standard laboratory food, water ad libitum, under specific-pathogen-free conditions within the animal care facility in Toho University School of Medicine, Tokyo, until the end of experiments. A constant temperature (27°C), humidity (65%) and 12 hrs light/dark cycle was maintained in the facility. IL-17A/IL-17F double knockout (DKO) female mice (Il17a−/−Il17f−/−) on BALB/c genetic background were previously established at the Institute of Medical Science, University of Tokyo [15,16], were also being housed in our institute under same conditions. First, LD50 dose of lipopolysaccharide (LPS) was determined for experimental models. LPS that purified from Escherichia coli 055:B5 was purchased from Sigma–Aldrich Japan and was dissolved in sterile 0.9% NaCl solution (normal saline) at a required concentration. Wild mice were randomly divided in 5 groups where each group contained 8-10 mice. All mice were anaesthetized by exposing to isoflurane (1%) for short duration, weighted and each group intraperitoneally LPS administered at either dose of 4, 8, 10, 12 or 15 mg/kg bd. wt. Mice were monitored for signs of illness and/or unusual behavior every 12 hourly for 120 hrs. Endpoints of survival inspection were determined by existence of classical signs of distress such as anorexia, hunching, prostration, impaired motility, labored breathing and ruffled hair-coat and at endpoints, mice were humanely euthanized using isoflurane (5%) anesthesia followed by cervical dislocation. Endpoints were considered as ‘non-survivor’ and thus survival proportions in different wild groups were statistically calculated to determine their LD50 dose of LPS. Same endpoint criteria and animal sacrifice protocol were followed in all survival experiments in this study. Next, age matched wild and DKO mice were intraperitoneally LPS administered at a determined LD50 dose. Outcome of induced shock in models were observed and recorded 12 hourly for 120 hrs. Survival proportion in endotoxic shock models, following acute peritonitis, were examined by minimum three sets of individual experiments.

Biological samples from endotoxic shock models

A total of 5 mice from each wild and DKO mice were intraperitoneally 5 ml PBS administered and their peritoneal lavage were collected, as a control samples. Other groups of mice containing 5 wild and 5 DKO were induced peritonitis by intraperitoneally LPS administration at a dose of LD50 and peritoneal lavages were collected after 12 hrs of LPS administration following the same way. Immediately after obtaining the peritoneal fluid, samples were processed for flowcytometric analysis to count the number of neutrophils and T-cells in fluids.

As a separate set of experiments, wild and DKO mice were randomly selected and each group further divided into 6 subgroups, where each sub-group included 7 to 10 mice. These mice were challenged with LPS following same method, that of challenged for survival experiments. Mice were anesthetized by subcutaneous ketamine/xylazine (100: 10 mg kg−1 body weight) administration and blood samples were collected from these groups of mice by inferior-venecea (IV) puncture at 0, 3, 6, 12, 18 and 24 hrs of LPS administration. After collection, blood were allowed to clot and at 4°C centrifuged with 2400Xg for 15 min to obtain serum from blood samples, which were stored in aliquots at -80°C for later assays. All anesthetized mice were sacrificed by cervical dislocation.

Assessment by flowcytometry and ELISA

The antibodies for detection of neutrophils and -T cells were purchased from Biolegend Inc., Japan. Neutrophils and T-cells in peritoneal lavage were counted after erythrocyte lysis and were stained with PerCP/Cy5.5-conjugated anti-mouse Ly6G (clone: 1A8) and FITC-conjugated anti-mouse TCR (clone:GL3), respectively. Cell numbers were calculated in percentage by BD FACS Canto II analyzer. Serum cytokine’s (TNF-α, IL-12p70, IL-6, IFN-γ, C-GSF and IL-10) levels in mice were quantitatively measured using the Cytometric Bead Array (CBA) Mouse Inflammation Kit (BD Biosciences, Japan) according to the manufacturer’s instructions. Serum chemokines (CXCL-1 and CXCL-2) levels were quantified using ELISA kits (R&D Systems) according to manufacturer’s instructions.

Statistical analysis

Data were analyzed using GraphPad Software, version 5. Survival curves were constructed by the Kaplan–Meier method and were analyzed using log-rank tests. All other assay data are presented as the mean ± standard deviation (SD). Statistical significance was determined using the unpaired t test. For all tests, differences were considered to be statistically significant at either P<0.01 or P<0.05.

Results

Intra-peritoneal administration of LPS at different doses in BALB/c mice revealed that 6 mg LPS/kg bd. wt. is the LD50 dose...
for this mouse (Figure 1A). In different sets of experiments where LD50 dose of LPS was exposed to wild and DKO mice peritoneum, as a consequence of peritonitis, 15 out of 22 wild and 2 out of 19 DKO (survival percentage in wild 31.8% vs. 89.5% in DKO group, P=0.001) mice died (Figure 1B).

Majority of death events occurred within 48 hrs. of LPS administration. Particularly, 12 to 30 hrs duration after commencement of peritonitis seems crucial, since before or after this duration mortality rate was low. It indicates that in LPS induced shock event, interactions between inflammatory mediators and host immunity occur within this duration and the interaction of this period ultimately reflects the prognosis of shock. Therefore, we measured various inflammatory parameters at different time points between 0 to 24 hrs of peritonitis. Neutrophils and γδ-T cells in peritoneal lavage in wild control (non-infected) accounted as 1.14%+0.6% cells/ml and 0.36%+0.04% cells/ml, respectively. Neutrophils and γδ-T cells in peritoneal lavage accounted as 3.59%+1.2% cells/ml and 0.81%+0.03% cells/ml, respectively at 12 hrs of post endotoxic shock (Figure 2). In DKO mice, neutrophils and γδ-T cells in peritoneal lavage accounted as 0.96%+0.9% cells/ml and 0.81%+0.05% cells/ml, respectively in control and accounted as 3.77%+1.3% cells/ml (P<0.05) and 0.64%+0.1% cells/ml, respectively after 12 hrs of peritonitis (Figure 2). In both wild and DKO mice, after intraperitoneal LPS challenge all cytokines, except IL-10, and chemokines were peaked and declined towards the base line within 24 hrs of infection course. There was a further increase of IL-10 level after 18 hrs of infection in both groups (Figure 3). Serum cytokines and chemokines levels changes by infection in wild and DKO was compared and revealed that changes in IL-6 at 6, and 12 hrs, IFN-γ at 12 and 18 hrs, CXCL-1 at 24 hrs and CXCL-2 at 3, 6, 12 and 18 hrs of peritonitis were significant (Figure 3).

Discussion

IL-17 response in inflammatory condition was first studied more than 15 years ago [17] and since then its protective function during pathogenic infection and chronic inflammation received priority to study as an emerging therapeutic target in clinical trials. It is generally accepted that IL-17 family are an important modulator of inflammation and protective against invaded pathogens. In current study we prepared LPS induced septic peritonitis in wild and DKO murine and found a higher mortality rate in wild than DKO. The higher mortality was observed in correlation with increased level of serum pro-inflammatory cytokines and chemokine. There was a significant rise of γδ-T cell number in peritoneal cavity by LPS in wild models, which is the most potent source for IL-17 release and neutrophil recruitment at the site of infections [18].

A number of cells in both the innate and adaptive immune systems and in non-immune cells [19] produce IL-17A and IL-17F. Both IL-17A and IL-17F have pro-inflammatory properties and act on a broad range of cell types to induce the expression of cytokines, like TGF-β, TNF-α, IL-1β, IL-6, IL-21, IL-23, GM-CSF, G-
Acute bacterial peritonitis rapidly commences signs of general septicemia. Besides physical sign-symptoms of systemic sepsis, like lethargy, piloerection, loos bowel, fever, etc., presence of proinflammatory cytokines, chemokines in circulation are the best evidences to determine the status of sepsis condition in a host. In general, increased level of these mediators in blood correlates with the poor outcome of sepsis. Unlike this evidence, we found release of inflammatory cytokines and chemokines in mice circulation in response to LPS induced peritonitis. Among those mediators, several cytokines such as, serum IL-6 and IFN-γ and chemokine CXCL-2 (also called MIP-2) level in wild were at significantly higher levels than DKO mice at different time points of shock. It clearly states that comparatively there was low severity of inflammatory reactions in DKO mice than wild, which in consequence showed higher survival rate of DKO mice with peritonitis. On other hand, there was a striking 180 fold rise of serum IFN-γ by peritonitis in wild proves that IFN-γ production and functions are mainly IL-17AF dependent and this extreme high level may be crucial to determine the shock outcome.

In this study we didn’t measure IL-17A, IL-17F or IL-17AF in peritoneum and serum could be considered as limitations. So we can’t give a comment whether recruited neutrophils and γδ-T cells in endotoxin induced peritonitis are capable to produce IL-17 cytokines or not. Rather we described that the control of IL-17AF release is a useful tool for promising outcome in LPS induced peritonitis, at least in mice model. A recent experiment also showed increased survival rate in DKO mice [25], but the investigators used a wide range of LPS dose to introduce peritonitis and we used a single LD50 dose, what is more useful for understanding a specific mechanism in comparative sepsis models. This study provides a comprehensive understanding about the role of IL-17AF functions in specific clinical condition that would be useful for future therapeutic development.

References

1. Miossec P, Korn T, Kuchroo VK (2009) Interleukin-17 and type 17 helper T cells. N Engl J Med 361: 848-898.
2. Cho JS, Pietras EM, Garcia NC, Ramos RI, Farzam DM, et al. (2010) IL-17 is essential for host defense against cutaneous Staphylococcus aureus infection in mice. J Clin Invest 120: 1762-1773.
3. Ishigame H, Kakuta S, Nagai T, Kadoki M, Nambu A, et al. (2009) Differential roles of interleukin-17A and -17F in host defense against mucocutaneous bacterial infection and allergic responses. Immunity 30: 108-119.
4. Iwakura Y, Nakae S, Saijo S, Ishigame H (2008) The roles of IL-17A in inflammatory immune responses and host defense against pathogens. Immunol Rev 226: 57-79.
5. Kimizuka Y, Kimura S, Saga T, Ishii M, Hasegawa N, et al. (2012) Roles of interleukin-17 in an experimental Legionella pneumophila pneumonia model. Infect Immun 80:1121-1127.
6. Zhou X, Chen Q, Moore J, Kolls JK, Halperin S, et al. (2009) Critical role of the interleukin-17/interleukin-17 receptor axis in regulating host susceptibility to respiratory infection with Chlamydia species. Infect Immun 77: 5059-5070.
7. Wu Q, Martin RJ, Rino JG, Breed R, Torres RM, et al. (2007) IL-23-dependent IL-17 production is essential in neutrophil recruitment
and activity in mouse lung defense against respiratory Mycoplasma pneumoniae infection. Microbes Infect 9: 78-86.

8. Zhang X, Gao L, Lei L, Zhong Y, Dube P, et al. (2009) A MyD88-dependent early IL-17 production protects mice against airway infection with the obligate intracellular pathogen Chlamydia muridarum. J Immunol 183: 1291-1300.

9. Ye P, Garvey PB, Zhang P, Nelson S, Bagby G, et al. (2001) Interleukin-17 and lung host defense against Klebsiella pneumoniae infection. Am J Respir Cell Mol Biol 25: 335-340.

10. Kudva A, Scheller EV, Robinson KM, Crowe CR, Choi SM, et al. (2011) Influenza A inhibits Th17-mediated host defense against bacterial pneumonia in mice. J Immunol 186:1666-1674.

11. Jin W, Dong C (2013) IL-17 cytokines in immunity and inflammation. Emerg Microbes Infect 2: e60.

12. Barretti P, Doles JV, Pinotti DG, EI Dib R (2014) Efficacy of antibiotic therapy for peritoneal dialysis-associated peritonitis: a proportional meta-analysis. BMC Infect Dis 14: 445.

13. Ogiku M, Kono H, Hara M, Tsuchiya M, Fujii H (2012) Interleukin-17A plays a pivotal role in polymicrobial sepsis according to studies using IL-17A knockout mice. J Surg Res 174: 142-149.

14. Li J, Zhang Y, Lou J, Zhu J, He M, et al. (2012) Neutralization of peritoneal IL-17A markedly improves the prognosis of severe septic mice by decreasing neutrophil infiltration and proinflammatory cytokines. PLoS One 7: e46506.

15. Horai R, Nakajima A, Habiro K, Kotani M, Nakae S, et al. (2004) TNF-α is crucial for the development of autoimmune arthritis in IL-1 receptor antagonist-deficient mice. J Clin Invest 114: 1603-1611.

16. Nakae S, Komiyama Y, Nambu A, Sudo K, Iwase M, et al. (2002) Antigen-specific T cell sensitization is impaired in IL-17-deficient mice, causing suppression of allergic cellular and humoral responses. Immunity 17: 375-387.

17. Miossec P (2007) Interleukin-17 in fashion, at last: ten years after its description, its cellular source has been identified. Arthritis Rheum 56: 2111-2115.

18. Sabbione F, Gabelloni ML, Ernst G, Gori MS, Salamone G, et al. (2014) Neutrophils suppress γδ T-cell function. Eur J Immunol 44: 819-830.

19. Yamada H (2010) Current perspectives on the role of IL-17 in autoimmune disease. J Inflamm Res 3: 33-44.

20. Maddur MS, Miossec P, Kaveri SV, Bayry J (2012) Th17 cells: biology, pathogenesis of autoimmune and inflammatory diseases, and therapeutic strategies. Am J Pathol 181: 8-18.

21. Caccamo N, Mendola CL, Orlando V, Meraviglia S, Todaro M, et al. (2011) Differentiation, phenotype and function of interleukin-17-producing human Vγ9Vδ2 T cells. Blood 118: 129-138.

22. Tsai HC, Velichko S, Hung LV, Wu R (2013) IL-17A and Th17 cells in lung inflammation: an update on the role of Th17 cell differentiation and IL-17R signaling in host defense against infection. Clin Dev Immunol 2013: 267971.

23. Miyamoto M, Prause O, Sjöstrand M, Laan M, Lötvall J, Lindén A (2003) Endogenous IL-17 as a mediator of neutrophil recruitment caused by endotoxin exposure in mouse airways. J Immunol 170: 4665-4672.

24. Shibata K, Yamada H, Hara H, Kishihara K, Yoshikai Y (2008) Resident Vδ1+ γδ T Cells Control Early Infiltration of Neutrophils after Escherichia coli Infection via IL-17 Production. J Immunol 181: 2071-2075.

25. Shimura E, Shibui A, Narushima S, Nambu A, Yamaguchi S, et al. (2014) Potential role of myeloid cell/eosinophil-derived IL-17 in LPS-induced endotoxin shock. Biochem Biophys Res Commun 453: 1-6.