Templation and Concentration Drive Conversion Between a FeII \textsubscript{12}L\textsubscript{12} Pseudoicosahedron, a FeII \textsubscript{4}L\textsubscript{4} Tetrahedron, and a FeII \textsubscript{2}L\textsubscript{3} Helicate

Dawei Zhang, Quan Gan, Alex J. Plajer, Roy Lavendonne, Tanya K. Ronson, Zifei Lu, Jesper D. Jensen, Bo W. Laursen, and Jonathan R. Nitschke*

ABSTRACT: We report the construction of three structurally distinct self-assembled architectures: FeII \textsubscript{12}L\textsubscript{12} pseudoicosahedron 1, FeII \textsubscript{3}L\textsubscript{3} helicate 2, and FeII \textsubscript{4}L\textsubscript{4} tetrahedron 3, formed from a single triazaatriangulenium subcomponent A under different reaction conditions. Pseudoicosahedral capsule 1 is the largest formed through subcomponent self-assembly to date, with an outer-sphere diameter of 5.4 nm and a cavity volume of 15 nm3. The outcome of self-assembly depended upon concentration, where the formation of pseudoicosahedral 1 was favored at higher concentrations, while helicate 2 exclusively formed at lower concentrations. The conversion of pseudoicosahedral 1 or helicate 2 into tetrahedron 3 occurred following the addition of a CB\textsubscript{11}H\textsubscript{12}− or B\textsubscript{12}F\textsubscript{12}2− template.

Coordination-driven self-assembly is an efficient tool for the construction of polyhedral metal–organic complexes,1 the cavities of which have proven useful in a range of applications, including molecular recognition,2 stereochemical sensing,3 chemical separation,4 stabilization of reactive species,5 and catalysis.6 The strategy of subcomponent self-assembly,7 involving the formation of structures containing multiple N-metal and C-N linkages during the same overall process, allows the preparation of a variety of capsules with different shapes and cavity sizes, which bind many different guests.7a

An attractive goal is the construction of large self-assembled architectures8 that resemble the icosa/hedral structures adopted by some protein cages.9 As in the cases of icosa/hedral viral capsids assembled from multiple copies of a single protein subunit, self-assembly can allow the construction of larger architectures from much smaller components. The large internal voids of capsules with a sufficient degree of cavity enclosure may be suitable for binding large substrates,10 enabling synthetic encapsulants to approach the complex functions exhibited by biological systems.

In analogy to the structural changes of biological molecules,11 designing stimuli-responsive transformations within systems of discrete self-assembled container molecules is an important challenge in supramolecular chemistry.12 Such transformations may lead to functions that include guest uptake and release,13 chemical purification,14 reagent storage,15 and drug delivery.16 Various stimuli, such as light,17 pH,18 temperature,19 solvent,20 concentration,21 or additional chemical signals,22 have been employed to trigger transformation processes that lead to structural conversions. Supramolecular transformations involving multiple different structure types based upon a single ligand and metal ion remain rare,23 however.

Here, we report the preparation of three different architectures, a FeII \textsubscript{12}L\textsubscript{12} pseudoicosahedral, a FeII \textsubscript{2}L\textsubscript{3} helicate, and a FeII \textsubscript{4}L\textsubscript{4} tetrahedral, assembled from the same triazaatriangulenium (TATA) subcomponent under different reaction conditions. Changes in ligand concentration or the addition of template anions triggered complete conversions between these assemblies.

Subcomponent A (Figure 1) was prepared following our previously reported procedure.24 We first explored its self-assembly at a concentration of 4.4 mM in acetonitrile. The reaction of subcomponents A (1 equiv) and p-anisidine (3 equiv) with Fe(BF\textsubscript{4})\textsubscript{2} (1 equiv) in acetonitrile at 70 °C resulted in the formation of the very large architecture I. ESI-MS showed a series of sharp peaks (Figure 2b), corresponding to charge states from 18+ to 11+, all of which were consistent with a FeII \textsubscript{12}L\textsubscript{12} composition.

The 1H NMR spectrum of FeII \textsubscript{12}L\textsubscript{12} I displayed a complex pattern of signals, consistent with desymmetrization of the ligand (Figures 2a and S4). Three magnetically distinct chemical environments for the protons on the initially C\textsubscript{3v} symmetric ligand were observed, with the imine and methoxy signals each exhibiting three sharp peaks with a 1:1:1 integration ratio. The 1H DOSY spectrum confirmed that all 1H signals belonged to a single species in solution (Figures 2a and S10).

These NMR and MS data were consistent with the formation of a FeII \textsubscript{12}L\textsubscript{12} pseudoicosahedral capsule with meridional (mer) coordination geometry at all iron(II) vertices (Figure 1a). The 1H NMR spectrum of I was fully assigned through 2D NMR (Figures S7–S9). This type of assembly has

Received: November 1, 2021
Published: January 11, 2022
been observed for a smaller C₃-symmetric triamine subcomponent, where a mixture of pseudoicosahedron and tetrahedron was obtained.²⁵ We infer the formation of the larger capsule, rather than a FeII₄L₄ tetrahedral cage, to result from the Coulombic repulsions between the cationic triazatriangulenium panels, which would be stronger in a tetrahedron where these panels are spatially closer together.

After many unsuccessful attempts at growing crystals of 1 suitable for X-ray diffraction, energy minimization of a pseudoicosahedral structure for 1 at the PM7 level of theory was carried out (Figure 1b and Table S2). The 12 iron(II) centers describe the vertices of an icosahedron, with the tris(bidentate) ligands capping 12 of the 20 icosahedral faces. All iron(II) centers in 1 display mer coordination around the metal centers, where two ligand arms extend above a triangular face of the “icosahedron” (Figure 1b, cyan and orange) and the third extends from below (Figure 1b, green). The longest Fe···Fe distance between antipodal vertices within this model of 1 is 4.1 nm, and the longest distance between the outermost methoxy groups is approximately 5.4 nm.

The PM7 model also indicates the capsule to be porous, with C₃-symmetric openings, having diameters of as large as 17 Å, each surrounded by three TATA ligands (one type of opening is shown in Figure 1c). Pseudoicosahedron 1 encloses a cavity volume of 15095 Å³, as determined by VOIDOO calculations (Table S1).²⁶ Capsule 1 thus represents the largest architecture prepared to date, to the best of our knowledge, using subcomponent self-assembly.⁷⁻²⁵,²⁷

As the cavity of pseudoicosahedron 1 is large and positively charged, we tested the binding of a series of large anionic and neutral prospective guests. None of these prospective guests, listed in Scheme S3, gave any evidence of guest encapsulation. We infer that they are not large enough to provide a good fit

Figure 1. (a) Subcomponent self-assembly of Fe₁²,L₁² pseudoicosahedron 1, with cutout showing the meridional metal coordination geometry. (b) PM7-optimized molecular model of pseudoicosahedron 1. Carbon atoms for the three distinct ligand arms about one of the mer-vertices have been colored cyan, green, and orange, respectively. (c) Model of 1 in space-filling mode, to show the porosity. Carbon atoms of the three triazatriangulenium ligands surrounding a large pore of 1 have been colored cyan, green, and orange, respectively.
for the cation, as most have been reported to be encapsulated within smaller capsules.28

In contrast, when A (1 equiv) reacted with p-aminidine (3 equiv) and Fe(BF4)2 (either 0.67 or 1 equiv gave the same result) in acetonitrile at the lower A concentration of 2.2 mM, helicate 2 was formed instead of 1 (Scheme S4 and Figures S11–S16). An overall 7+ charge for 2 was confirmed by ESI-MS (Figure S17). The 1H NMR spectrum of 2 displayed signals corresponding to a C3-symmetric bis-bidentate ligand, with one pyridyl-imine arm remaining uncoordinated (Figure S11). Both the imine and methoxy 1H NMR signals of 2 exhibited a 2:1 integral ratio, consistent with the formation of a helicate with one pyridyl-imine arm remaining uncoordinated (Figure 1a). (b) ESI-mass spectrum of 2.

The formation of smaller assembly 2 at a lower concentration is expected on the basis of Le Chatelier’s principle.30 The electrostatic interactions between the small BF4− anion and the small cavities of the cationic assembly may also render BF4− a suitable template for helicate formation.

The anion binding ability of helicate 2 was confirmed by carrying out 1H NMR titrations. The progressive addition of tetrabutylammonium perchlorate to a solution of 2 in CD3CN resulted in displacement of BF4− by ClO4−, as indicated by shifts in the helicate 1H signals, consistent with binding in fast exchange on the NMR chemical shift time scale (Figure S18). The addition of excess ReO4−, PF6−, or I− led to similar NMR observations, but Tf2N− did not (Figure S19). The lack of shifts in the 1H signals of 2 (<0.02 ppm at most) after adding excess Tf2N− indicated negligible interactions of this anion with helicate 2 relative to BF4−.

Although numerous attempts to obtain the crystal structure of a host–guest complex of 2 were unsuccessful, we were able to obtain the crystal structure of a host–guest complex of its structural analogue 2′, which assembled from a similar subcomponent (B) bearing only two pyridine-aldehyde functionalities (Figures 3a and S20–S26). Helicate 2′ bound anions in solution in similar fashion to 2 (Figure S27).

Slow vapor diffusion of diethyl ether into an acetonitrile solution of 2′ in the presence of ReO4− yielded crystals of (ReO4−)2C2′ suitable for X-ray diffraction. Two ReO4− anions were found within two distinct cavities of helicate 2′, separated by the three converging TATA moieties (Figure 3b). Each of the two cavities is surrounded by three phenyl rings, giving cavity volumes of 76 and 77 Å3 (Table S1). The two iron(II) centers of 2′, separated by 20.0 Å, have the same handedness, generating a structure with D3 symmetry, consistent with solution NMR spectra.

When larger anions were added to helicate 2 in solution, such as carba-closo-dodecaborate (CB11H12)− or dodecafluoro-closo-dodecaborate (B12F12−), full conversion into tetrahedron 3 was observed after 12 h, resulting in a set of ligand 1H NMR signals consistent with a T-symmetric tetrahedral cage (Figures 4 and S28–S37). The Fe11I4 composition of 3 was confirmed by ESI-MS (Figures S30 and S35). These results suggested that CB11H12− and B12F12− could serve as templates to bring four cationic ligands together into the tetrahedral framework of 3, overcoming interligand Columbic repulsions.31 A cavity volume of 371 Å3 was calculated based on a PM7 model of 3 (Table S4), substantially smaller than that of pseudoicosahedron 1 (15095 Å3) and larger than the twin cavities of 2 (55 Å3 each when calculated from a PM7 model of 2 in the absence of bound anions, see Table S3) (Table S1). Conversion of pseudoicosahedron 1 into tetrahedron 3 also occurred following the addition of either of the template anions CB11H12− or B12F12− (Figure 4).

In summary, we have demonstrated the construction of a series of distinct capsules under different reaction conditions from TATA-containing subcomponent A, from large pseudoicosahedron 1, to medium-sized tetrahedron 3 and smaller helicate 2. These structures have drastically different cavity volumes, shapes, and sizes. Pseudoicosahedron 1 encloses a cavity volume that may allow the encapsulation of guests with diameters in the range of 3–4 nm.32 Prior studies of smaller TATA-based metal–organic assemblies have shown binding to...
small biological anions in water,24 suggesting that water-soluble versions32 of pseudoicosahedron 1 may prove useful for binding larger and more complex biomolecules, such as proteins and nucleic acids.

ASSOCIATED CONTENT

Supporting Information

The Supporting Information is available free of charge at https://pubs.acs.org/doi/10.1021/jacs.1c11536.

Complete experimental details X-ray data for (ReO$_4^-$)$_2$C$_2$- (CCDC 2071272) (PDF)

Accession Codes

CCDC 2071272 contains the supplementary crystallographic data for this paper. These data can be obtained free of charge via www.ccdc.cam.ac.uk/data_request/cif, or by emailing data_request@ccdc.cam.ac.uk, or by contacting The Cambridge Crystallographic Data Centre, 12 Union Road, Cambridge CB2 1EZ, UK; fax: +44 1223 336033.

AUTHOR INFORMATION

Corresponding Author

Jonathan R. Nitschke – Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, United Kingdom; Email: jrn34@cam.ac.uk

Authors

Dawei Zhang – Shanghai Key Laboratory of Green Chemistry and Chemical Engineering, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, People’s Republic of China; Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, United Kingdom; orcid.org/0000-0002-0898-9795

Quan Gan – Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, United Kingdom; Hubei Key Laboratory of Bioinorganic Chemistry & Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan

\textbf{Figure 4.} Interconversion between pseudoicosahedron 1, helicate 2, and tetrahedron 3, showing PM7-optimized molecular models of each with the cavity volumes outlined in green mesh. Pseudoicosahedron 1 and helicate 2 interconverted following a change in ligand concentration. Addition of CB$_{11}$H$_{12}$ or B$_{12}$F$_{12}$ to assembly 1 or 2 drove the formation of tetrahedron 3, with the template anion bound inside the cavity.
REFERENCES

(1) Burke, B. P.; Grantham, W.; Burke, M. J.; Nichol, G. S.; Roberts, D.; Renard, I.; Hargreaves, R.; Cawthorne, C.; Archibald, S. J.; Lusby, P. J. Visualizing kinetically robust CoIII prisms for heterogeneous catalysis in water. J. Am. Chem. Soc. 2016, 138, 13750–13755. (2) Galli, M.; Lewis, G. W. Multiaddressable molecular rectangles with reversible host-guest interactions: modulation of pH-controlled guest release and capture. Proc. Natl. Acad. Sci. U.S.A. 2015, 112, 690–695. (3) Bruns, D.; Abe, Y.; Holstein, J. J.; Wandtke, C. M.; Dittrich, B.; Clever, G. H. Geometric complementarity in assembly and guest recognition of a bent heteroleptic cis-[Pd2L3]+ coordination cage. J. Am. Chem. Soc. 2016, 138, 13750–13755. (4) Galli, M.; Lewis, G. W. Multidextrassible molecular rectangles with reversible host-guest interactions: modulation of pH-controlled guest release and capture. Proc. Natl. Acad. Sci. U.S.A. 2015, 112, 690–695. (5) Bloch, W. M.; Abe, Y.; Holstein, J. J.; Wandtke, C. M.; Dittrich, B.; Clever, G. H. Geometric complementarity in assembly and guest recognition of a bent heteroleptic cis-[Pd2L3]+ coordination cage. J. Am. Chem. Soc. 2016, 138, 13750–13755. (6) Fang, Y.; Powell, J. A.; Li, E.; Wang, Q.; Perry, Z.; Kirchon, A.; Yang, X.; Xiao, Z.; Zhu, C.; Zhang, L.; Huang, F.; Zhou, H. C. Catalytic reactions within the cavity of coordination cages. J. Am. Chem. Soc. 2018, 140, 18183–18191. (b) Chen, L. J.; Yang, H. B.; Shionoya, M. Chiral metallosupramolecular architectures. Chem. Soc. Rev. 2017, 46, 2555–2576. (a) You, L.; Berman, J. S.; Ansky, E. V. Dynamic multi-component covalent assembly for the reversible binding of secondary alcohols and chirality sensing. Nat. Chem. 2011, 3, 943–948. (b) Albrecht, M.; Issak, E.; Baumert, M.; Gossen, V.; Raabe, G.; Fröhlich, R. “Induced fit” in chiral recognition: epimerization upon dimerization in the hierarchical self-assembly of helicate-type titanium(IV) complexes. Angew. Chem., Int. Ed. 2011, 50, 2850–2853. (4) Bruns, D.; Ronson, T. K.; Zou, Y.-Q.; Nitschke, J. R. Metal–organic cages for molecular separations. Nat. Rev. Chem. 2021, 5, 168–182. (b) Fuertes-Espinosa, C.; Gomez-Torres, A.; Morales-Martinez, R.; Rodriguez-Fortea, A.; Garcia-Simon, C.; Gandara, F.; Imaiz, I.; Juanhuix, J.; Maspoch, D.; Poblet, J. M.; Echegoyen, L.; Ribas, X. Purification of uranium-based endohedral metallofullerenes (EMFs) by selective supramolecular encapsulation and release. Angew. Chem., Int. Ed. 2018, 57, 11294–11299. (4) Catti, L.; Zhang, Q.; Tiefenbacher, K. Advantages of catalysis in self-assembled molecular capsules. Chem.—Eur. J. 2016, 22, 9060–9066. (5) Mal, P.; Breiner, B.; Rissanen, K.; Nitschke, J. R. White phosphorus is air-stable within a self-assembled tetrahedral capsule. Science 2009, 324, 1697–1699. (6) Yoshizawa, M.; Tamura, M.; Fujita, M. Diels-alder in aqueous molecular hosts: Unusual regioselectivity and efficient catalysis. Science 2006, 312, 251–254. (b) Kaphan, D. M.; Levin, M. D.; Bergman, R. G.; Raymond, K. N.; Toste, F. D. A supramolecular microenvironment strategy for transition metal catalysis. Science 2015, 350, 1235–1238. (c) Omegari, T.; Suzuki, A.; Akita, M.; Yoshizawa, M. Efficient catalytic epoxidation in water by axial N-ligand-free Mn-porphyrins within a micellar capsule. J. Am. Chem. Soc. 2016, 138, 499–502. (d) Cullen, W.; Misuraca, M. C.; Hunter, C. A.; Williams, N. H.; Ward, M. D. Highly efficient catalytic strategy for the Kemp elimination in the cavity of a cubic coordination cage. Nat. Chem. 2016, 8, 231–236. (e) Howlader, P.; Das, P.; Zangrando, E.; Mukherjee, P. S. Urea-functionalized self-assembled molecular prism for heterogeneous catalysis in water. J. Am. Chem. Soc. 2016, 138, 1668–1676. (f) Fang, Y.; Powell, J. A.; Li, E.; Wang, Q.; Perry, Z.; Kirchon, A.; Yang, X.; Xiao, Z.; Zhu, C.; Zhang, L.; Huang, F.; Zhou, H. C. Catalytic reactions within the cavity of coordination cages. Chem. Soc. Rev. 2019, 48, 4707–4730. (g) Zhao, L.; Jing, X.; Li, X.; Guo, X.; Zeng, L.; He, C.; Duan, C. Catalytic properties of chemical transformation within the confined pockets of Werner-type capsules. Coord. Chem. Rev. 2019, 378, 151–187. (b) Galli, M.; Lewis, J. E.; Goldup, S. M. A stimuli-responsive rotaxane-gold catalyst:
regulation of activity and diasteroselectivity. Angew. Chem., Int. Ed. 2015, 54, 13545–13549.

(7) (a) Zhang, D.; Ronson, T. K.; Nitschke, J. R. Functional capsules via subcomponent self-assembly. Acc. Chem. Res. 2018, 51, 2423–2436. (b) Zhou, X.-P.; Wu, Y.; Li, D. Polyhedral metal-imidoazolate cages: control of self-assembly and cage to cage transformation. J. Am. Chem. Soc. 2013, 135, 16062–16065. (c) Shim, K. C.; Yiu, S. M.; Kwong, H. L. Dodecanuclear hexagonal-prismatic M₃L₆ coordination cages by subcomponent self-assembly. Inorg. Chem. 2013, 52, 5648–5650. (d) Young, M. C.; Holloway, L. R.; Johnson, A. M.; Hooley, R. J. A supramolecular sorting hat: stereocontrol in metal-ligand self-assembly by complementary hydrogen bonding. Angew. Chem., Int. Ed. 2014, 53, 9832–9836. (e) Ren, D. H.; Qiu, D.; Pang, C. Y.; Li, Z.; Gu, Z. G. Chiral tetrahedral iron(II) cages: diasteroselective subcomponent self-assembly, structure interconversion and spin–crossover properties. Chem. Commun. 2015, 51, 788–791. (f) Yi, S.; Brega, V.; Captain, B.; Kaifer, A. E. Sulfate-templated self-assembly of new M₃L₆ tetrahedral metal organic cages. Chem. Commun. 2012, 48, 10295–10297. (g) Domer, J.; Stoolweg, J. C.; Hupka, F.; Lammertsma, K.; Hahn, F. E. Subcomponent assembly and transmutation of dinuclear helicates. Angew. Chem., Int. Ed. 2010, 49, 6430–6433. (h) Lewing, D.; Koppetz, H.; Hahn, F. E. Reversible formation and transmutation of Schiff-base complexes in subcomponent self-assembly reactions. Inorg. Chem. 2014, 53, 7653–7659. (i) Frischmann, P. D.; Kunz, V.; Wurthner, F. Bright fluorescence and host-guest sensing with a nanoscale M₃L₆ tetrahedron accessed by self-assembly of zinc-imine chelate vertes and pyrene bisamide edges. Angew. Chem., Int. Ed. 2015, 54, 7285–7289. (j) Roukala, J.; Zhu, J.; Giri, C.; Rissanen, K.; Lantto, P.; Tellkki, V. V. Encapsulation of xenon by a self-assembled Fe₄L₄ metallosupramolecular cage. J. Am. Chem. Soc. 2015, 137, 2464–2467. (k) Howson, S. E.; Bolhuis, A.; Brabec, V.; Clarkson, G. J.; Malina, J.; Rodger, A.; Scott, P. Optically pure, water-stable metallo-helical ‘flexicate’ assemblies with antibiotic activity. Nat. Chem. 2012, 4, 31–36.

(8) (a) Wang, H.; Liu, C. H.; Wang, K.; Wang, M.; Yu, H.; Kandapal, D.; Brzozowski, R.; Xu, B.; Wang, M.; Lu, S.; Hao, X. Q.; Esvara, P.; Nieh, M. P.; Cai, J.; Li, X. Assembling pentatopic terpyridine ligands with three types of coordination moieties into a giant supramolecular hexagonal prism: synthesis, self-assembly, characterization, and antimicrobial study. J. Am. Chem. Soc. 2019, 141, 16108–16116. (b) Fujita, D.; Udęa, Y.; Sato, Y.; Yokoyama, H.; Mizuno, N.; Kumasaka, T.; Fujita, M. Self-assembly of M₃L₆ octaisododecahedron. Chem. 2016, 1, 91–101. (c) Wang, G.; Chen, M.; Wang, J.; Jiang, Z.; Liu, D.; Dou, D.; Zhao, H.; Li, K.; Li, S.; Wu, T.; Jiang, Z.; Sun, X.; Wang, P. Reinforced topological nano-assemblies: 2D hexagon-fused wheel to 3D prismatic metallo-lamellar cages with molecular weight of 119 K daltons. J. Am. Chem. Soc. 2020, 142, 7690–7698. (d) Pasquale, S.; Sattin, S.; Escudero-Adán, E. C.; Martínez-Belmonte, M.; de Mendoza, J. Giant regular polyhedra from calixarene carboxylates and uranyl. Nat. Commun. 2012, 3, 785. (e) Chen, Y. S.; Solei, E.; Huang, Y. F.; Wang, C. L.; Tu, T. H.; Keinan, E.; Chan, Y. T. Chemical mimicry of viral capsid self-assembly via corannulene-based pentatopic tectons. Nat. Commun. 2019, 10, 3443.

(9) (a) Douglas, T.; Young, M. Host–guest encapsulation of materials by assembled virus protein cages. Nature 1998, 393, 152–155. (b) Stagg, S. M.; LaPointe, P.; Razvi, A.; Gurkan, C.; Potter, C. S.; Carragher, B.; Balch, W. E. Structural basis for cargo regulation of COPII coat assembly. Cell 2008, 134, 474–484. (c) Prasad, B. V.; Hardy, M. E.; Dokland, T.; Bella, J.; Rossmann, M. G.; Estes, M. K. X-ray crystallographic structure of the Norwalk virus capsid. Science 1999, 286, 287–290. (10) (a) Fujita, D. Challenges to large molecular encapsulation. Pur. Appl. Chem. 2014, 86, 3–11. (b) Fujita, D.; Suzuki, K.; Sato, S.; Yagi-Utsumi, M.; Yamanouchi, Y.; Mizuno, N.; Kumasaka, T.; Takata, M.; Noda, M.; Uchiyama, S.; Kato, K.; Fujita, M. Protein encapsulation within synthetic molecular hosts. Nat. Commun. 2012, 3, 1093.
J. Am. Chem. Soc. 2019, 141, 14534–14538. (c) Chan, M. H.; Leung, S. Y.; Yam, V. W. Rational design of multi-stimuli-responsive scaffolds: synthesis of luminescent oligo(ethynylpyridine)-containing alkynylplatinum(II) polymeric foldamers stabilized by Pt–Pt interactions. J. Am. Chem. Soc. 2019, 141, 12312–12321.

(20) (a) Heo, J.; Jeon, Y. M.; Mirkin, C. A. Reversible interconversion of homochiral triangular macrocycles and helical coordination polymers. J. Am. Chem. Soc. 2007, 129, 7712–7713. (b) Baxter, P. N. W.; Khoury, R. G.; Lehn, J.-M.; Baum, G.; Fenske, D. Adaptive self-assembly: environment-induced formation and reversible switching of polynuclear metalloecyclophanes. Chem.–Eur. J. 2000, 6, 4140–4148. (c) Kilbas, B.; Mirtschin, S.; Scoppelitti, R.; Severin, K. A solvent-responsive coordination cage. Chem. Sci. 2012, 3, 701–704. (d) Gdiron, O.; Jirasek, M.; Trapp, N.; Ebert, M. O.; Zhang, X.; Diederich, F. Homochiral [2]catenane and bis[2]catenane from alleno-acetylenic helicates - a highly selective narcissistic self-sorting process. J. Am. Chem. Soc. 2015, 137, 12502–12505.

(21) (a) Frischmann, P. D.; Kunz, V.; Stepanken, V.; Wurthen, F. Subcomponent self-assembly of a 4 nm M4L6 tetrahedron with Zn(II) vertices and perylene bisimide dye edges. Chem.–Eur. J. 2015, 21, 2766–2769. (b) Weilandt, T.; Troff, R. W.; Saxell, H.; Rissanen, K.; Schalley, C. A. Metallo-supramolecular self-assembly: the case of triangle-square equilibria. Inorg. Chem. 2008, 47, 7588–7598. (c) Lu, X.; Li, X.; Guo, K.; Xie, T. Z.; Moorefield, C. N.; Wesdemiotis, C.; Newkome, G. R. Probing a hidden world of molecular self-assembly: concentration-dependent, three-dimensional supramolecular interconversions. J. Am. Chem. Soc. 2014, 136, 18149–18155. (d) Yamamoto, T.; Arif, A. M.; Stang, J. P. Dynamic equilibrium of a supramolecular dimeric rhomboid and trimeric hexagon and determination of its thermodynamic constants. J. Am. Chem. Soc. 2003, 125, 12309–12317.

(22) Zhang, D.; Ronson, T. K.; Xu, L.; Nitschke, J. R. Transformation network culminating in a heteroleptic Cd6L6L12 twisted trigonal prism. J. Am. Chem. Soc. 2020, 142, 9152–9157.

(23) (a) Li, B.; Zhang, W.; Lu, S.; Zheng, B.; Zhang, D.; Li, A.; Li, X.; Yang, X. J.; Wu, B. Multiple transformations among anion-based A3L2n assemblies: bicapped trigonal antiprism A3L12 tetrahedron A1L3, and triple helicate A1L3 (A = Anion). J. Am. Chem. Soc. 2020, 142, 21160–21168. (b) Zhang, T.; Zhou, L. P.; Guo, X. Q.; Cai, L. X.; Sun, Q. F. Adaptive self-assembly and induced-fit transformations of anion-binding metal-organic macrocycles. Nat. Commun. 2017, 8, 15898. (c) Riddell, I. A.; Ronson, T. K.; Clegg, J. K.; Wood, C. S.; Bilbeisi, R. A.; Nitschke, J. R. Cation- and anion-exchanges induce multiple distinct rearrangements within metallo-supramolecular architectures. J. Am. Chem. Soc. 2014, 136, 9491–9498. (d) Cullen, W.; Hunter, C. A.; Ward, M. D. An interconverting family of coordination cages and a meso-helicate; effects of temperature, concentration, and solvent on the product distribution of a self-assembly process. Inorg. Chem. 2015, 54, 2626–2637.

(24) Plajer, A. J.; Percastegui, E. G.; Santella, M.; Rizzuto, F. J.; Gan, Q.; Laursen, B. W.; Nitschke, J. R. Fluorometric recognition of nucleotides within a water-soluble tetrahedral capsule. Angew. Chem., Int. Ed. 2019, 58, 4200–4204.

(25) Bilbeisi, R. A.; Ronson, T. K.; Nitschke, J. R. A self-assembled [Fe4C2E6] capsule with an icosaedral framework. Angew. Chem., Int. Ed. 2013, 52, 9027–9030.

(26) Kleywegt, G. J.; Jones, T. A. Detection, delineation, measurement and display of cavities in macromolecular structures. Acta Crystallogr. 1994, D50, 178–185.

(27) (a) Ruzzo, F. J.; Nitschke, J. R. Stereoregional plasticity modulates cooperative binding in a Co11L4 cuboctahedron. Nat. Chem. 2017, 9, 903–908. (b) Ramsay, W. J.; Szczypinski, F. T.; Weissman, H.; Ronson, T. K.; Smulders, M. M.; Rybtchinski, B.; Nitschke, J. R. Designed enclosure enables guest binding within the 4200 A³ cavity of a self-assembled cube. Angew. Chem., Int. Ed. 2015, 54, 5636–5640.

(28) (a) Zhang, D.; Ronson, T. K.; Greenfield, J. L.; Brotn, T.; Berthault, P.; Leonce, E.; Zhu, J. L.; Xu, L.; Nitschke, J. R. Enantiopure [Cv/XeCryptophane]CF6L4 hierarchical superstructures. J. Am. Chem. Soc. 2019, 141, 8339–8345. (b) Ronson, T. K.; League, A. B.; Gagliardi, L.; Cramer, C. J.; Nitschke, J. R. Pyrene- and orange-emitting Eu12L6 capsules adaptively reconfigure during guest binding. J. Am. Chem. Soc. 2014, 136, 15615–15624.

(29) Bilbeisi, R. A.; Clegg, J. K.; Elgrishi, N.; de Hatten, X.; Devillard, M.; Breiner, B.; Mal, P.; Nitschke, J. R. Subcomponent self-assembly and guest-binding properties of face-capped Fe4L4 capsules. J. Am. Chem. Soc. 2012, 134, 5110–5119.

(30) Bai, X.; Jia, C.; Zhao, Y.; Yang, D.; Wang, S. C.; Li, A.; Chan, Y. T.; Wang, Y. Y.; Yang, X. J.; Wu, B. Peripheral templation-modulated interconversion between an A4L6 tetrahedral anion cage and A3L5 triple helicate with guest capture/release. Angew. Chem., Int. Ed. 2018, 57, 1851–1855.

(31) Zhang, D.; Ronson, T. K.; Mosquera, J.; Martinez, A.; Guy, L.; Nitschke, J. R. Anion binding in water drives structural adaptation in an azaphosphatrane-functionalized Fe11L4 tetrahedron. J. Am. Chem. Soc. 2017, 139, 6574–6577.

(32) Percastegui, E. G.; Ronson, T. K.; Nitschke, J. R. Design and applications of water-soluble coordination cages. Chem. Rev. 2020, 120, 13480–13544.

Recommended by ACS

Selective Separation of Polyaromatic Hydrocarbons by Phase Transfer of Coordination Cages
Dawei Zhang, Jonathan R. Nitschke, et al.
November 15, 2019
Journal of the American Chemical Society

Bottom-Up Solid-State Molecular Assembly via Guest-Induced Intermolecular Interactions
Jia-Rui Wu, Ying-Wei Yang, et al.
November 24, 2021
Journal of the American Chemical Society

Redox-Responsive Host–Guest Chemistry of a Flexible Cage with Naphthalene Walls
Fei Jia, Christoph A. Schalley, et al.
February 04, 2020
Journal of the American Chemical Society

A Hexapodal Capsule for the Recognition of Anions
Han Xie, Jovica D. Badjić, et al.
March 03, 2021
Journal of the American Chemical Society

Get More Suggestions >