Pueraria tuberosa: A Review on Traditional Uses, Pharmacology, and Phytochemistry

Ram Bharti1,2, Bhupinder Singh Chopra1,2, Sachin Raut1,2 and Neeraj Khatri1,2*

1IMTECH Centre for Animal Resources & Experimentation (ICARE), Council of Scientific and Industrial Research-Institute of Microbial Technology (CSIR-IMTECH), Chandigarh, India, 2Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India

Pueraria tuberosa (Roxb. ex Willd.) DC. (Fabaceae), also known as Indian Kudzu (vidari kand), is a perennial herb distributed throughout India and other Asian countries. Traditionally, tuber and leaves of this plant have extensively been reported for nutritional and medicinal properties in Ayurveda as well as in Chinese traditional practices. The objective of the present review is to compile and update the published data on traditional uses, pharmacological potential, and phytochemistry of compounds isolated from the plant Pueraria tuberosa. P. tuberosa extracts and its purified compounds possess multiple activities such as anticancer, anticonvulsant, antidiabetic, antifertility, anti-inflammatory, antioxidant, anti-stress, antiulcerogenic, cardioprotective, hypolipidemic, hepatoprotective, immunomodulatory, nephroprotective, nootropic, neuroprotective, and wound healing. Tuber and leaf extracts of P. tuberosa contain several bioactive constituents such as puerarin, daidzein, genistein, quercetin, iridoidone, biochanin A, biochanin B, isoorientin, and mangiferin, which possess an extensive range of pharmacological activities. The extensive range of pharmacological properties of P. tuberosa provides opportunities for further investigation and presents a new approach for the treatment of ailments. Many phytochemicals have been identified and characterized from P. tuberosa; however, some of them are still unexplored, and there is no supporting data for their activities and exact mechanisms of action. Therefore, further investigations are warranted to unravel the mechanisms of action of individual constituents of this plant.

Keywords: in vivo studies, pharmacological properties, phytochemical constituents, traditional uses, Pueraria tuberosa

INTRODUCTION

As per the World Health Organization (WHO) estimation, about 65–80% of people all over the world seek herbal therapies to cure primary health conditions (Robinson and Zhang, 2011). Surprisingly, only 15% of the global flora has been assessed for pharmacological potential (De Luca et al., 2012). WHO has published four volumes of the monographs on selected medicinal plants to support the research in the field of herbal medicine (WHO, 2009). In India, Ayurveda, Unani, Siddha, Homeopathy, and Folk medicine are commonly used as traditional alternative medicine practices for treating different ailments. Among the modern civilizations, India has long been known for its rich treasure of medicinal plants, and about more than 7,000 plant remedies have been categorized and documented by the AYUSH system of medicine (National Medicinal Plants Board,
One of the medicinally important plants discussed in this review is *Pueraria tuberosa* (Roxb. ex Willd.) DC. (Fabaceae), also known as Indian Kudzu (vidari kand). It is a rapidly growing large perennial climber with big tuberous roots (Figures 1–4) (Indian Medicinal Plant Database) and is distributed throughout India, Pakistan, and Nepal (Keung, 2002). Liana of *P. tuberosa* has also been found to grow at 4,000 feet in the Himalayan mountain series (Pueraria tuberosa—Vikaspedia, 2020). In Ayurveda, it is known as vidari (vidari kand). The tuber of this plant is sweet (Ayurvedic pharmacopoeia of India, 2001) and is widely used in the treatment of fever, menorrhagia, skin diseases, wounds, bronchial asthma, and jaundice. Apart from the traditional uses of this plant as mentioned in ancient literature like Sushruta Samhita (Sanskrit: सुश्रुत संहिता), several studies have been reported on different pharmacological activities of *P. tuberosa* extracts and its purified compounds, viz., anticancer (Adedapo et al., 2017), anticonvulsant (Basavaraj et al., 2011), antiulcerogenic (Gindi et al., 2010), cardioprotective (Patel, 2005), hepatoprotective (Xia et al., 2013), immunomodulatory (Patel et al., 2016), cardioprotective (Patel et al., 2018), hypolipidemic (Tanwar et al., 2008), hepatoprotective (Xi et al., 2013), antidiabetic (Oza and Kulkarni, 2018a), antifertility (Gupta et al., 2005), anti-inflammatoriy (Tripathi et al., 2013), antioxidant (Shukla et al., 2018a), anti-stress (Verma et al., 2012), antioxidant (Gindi et al., 2010), cardioprotective (Patel et al., 2018), hypolipidemic (Tanwar et al., 2008), hepatoprotective (Xi et al., 2013), immunomodulatory (Patel et al., 2016), and neuroprotective (Shukla et al., 2018b), nootropic (Rao et al., 2008), and wound healing activities (Kambhoja and Murthy, 2007). Previously, Maji et al. (2014) broadly highlighted the phytochemical and therapeutical potential of *P. tuberosa* in various pharmacological activities. However, the information about the doses of plant extracts used and the models implied for the studies (in vitro or in vivo) in different pharmacological activities was missing. In addition, chemical structures of only few phytoconstituents isolated from *P. tuberosa* have been given. Therefore, this review is aimed to provide an up-to-date summary of the literature on traditional uses, doses, and types of studies used to confirm pharmacological activities and phytochemical constituents isolated from *P. tuberosa* plant with their chemical structures and IUPAC names.

METHODOLOGY

Relevant literature for this review on *P. tuberosa* has been sourced from PubMed, ScienceDirect, Web of Science, PubChem, Google Scholar, SciFinder, and Scopus database. The articles published in English before September 2020 on traditional uses, pharmacology of extracts, and various phytoconstituents isolated from different parts of *P. tuberosa* were included in this review. The keywords used for retrieving relevant studies were *Pueraria tuberosa* plant, Indian Kudzu, vidari kand, tuber extract, traditional uses, phytochemical constituents, pharmacological activity, and *in silico*, *in vitro*, and *in vivo* studies.

Data inclusion criteria included (a) published/peer-reviewed scientific manuscripts; (b) ethnopharmacological studies; (c) tuber extracts with different solvents; (d) studies on the mechanism of actions of plant extracts and their phytoconstituents; (e) *in silico*, *in vitro*, and *in vivo* studies. Exclusion criteria included (a) repetitive studies and information not meeting the inclusion criteria; (b) studies performed with extracts of other *Pueraria* species; (c) opinion to the editors, case studies, abstracts of the conferences, any unpublished data, and reports.

Synonyms (Ayurvedic pharmacopoeia of India, 2001)

Assamese: Bhedeleton, Bhuiikumra
Bengali: Bhuinkumra, Bhumikusmanda, Vidari
English: Indian kudzu
Gujrati: Bhoikolu, Bhonykoru, Eagio, Sakharvel, Vidarikanta,
Hindi: विदारीकंद (Vidarikanda), बनकुमड़ा (Bankumara)
Kannada: Gumadi belli, Gumadigida, Nelagumbala Gudde,
Nelagumela, Nelagumbula
Malayalam: Mudakku
Marathi: Bhuihkohala, Ghodvel
Oriya: Bhuianakakharu
Punjabi: Siali, Surala
Sanskrit: बनकुमड़ा (Bhumikusmanda), गजवाजपिया (Gajavajipriya), कन्दपलाश (Kandapalash), सुश्रुतसंहिता (Sushruta Samhita), विदारीकंद (Vidarikanda), इंडियन कुड़ु (Indian kudzu)
Telugu: Darigummadi, Nelagummuda

Scientific Classification (Rawtal et al., 2019)

Kingdom: Plantae
Subkingdom: Trachebionta
Superdivision: Spermatophyta
Division: Magnoliophyta
Subclass: Rosidae
Order: Fabales
Family: Fabaceae
Genus: *Pueraria* DC.
Species: *Pueraria tuberosa*

Traditional Uses

In Ayurveda, vidari kand (*Pueraria tuberosa*) has been described as a plant having good nutritional value. Besides, the plant also possesses aphrodisiac, diuretic, galactagogue (Kirtikar and Basu, 1935), energizing (Maji et al., 2014), and spermatogenic (Chauhan et al., 2013) properties. It has been prescribed for treatment for all three doshas (i.e., for the complications of three different energies, viz., Vata, Kapha, and Pitta) of human body (Ayurvedic pharmacopoeia of India, 1999; Dalal et al., 2013). The powdered form of tuber is primarily used in combination with cow’s milk as a galactagogue agent to abrogate lack of milk production after childbirth and also as an anabolic agent along with *Piper longum* L. (Piperaceae) powder to cure malnutrition in children. For relieving excessive menstruation, the powder is used with honey. A mixture of powdered *P. tuberosa* and wheat or barley fried in ghee (clarified butter) with milk has been advised for sexual enervation and strength. For spermatorrhoea, fresh tuber juice of this plant with cumin seeds and sugar has been used therapeutically (Puri, 2003).
Traditionally, *P. tuberosa* has been used along with other medicinal plants in different combinations to prepare therapeutic Ayurvedic formulation. Some of the important Ayurvedic formulations utilizing *P. tuberosa* are “Ashwagandharishta”, a traditional remedy for epilepsy (Tanna et al., 2012), “Maha visagarbha taila”, a traditional remedy for sciatica and joint disorders (Kumawat et al., 2017), and “Nityananda rasa”, “Sarasvatarista”, “Satavaryadi ghrita” (Ayurvedic pharmacopoeia of India, 2001), “Marma gutika” (Kumar, 2016), and “Vidaryadi ghrita” (Sharma et al., 2018).

Traditional uses of *Pueraria* species, namely, *Pueraria montana* var. *thomsonii* (Benth.) (Fabaceae) and *Pueraria montana* var. *lobata* (Willd.) (Fabaceae), have been reported for their medicinal properties such as antiemetic, antitoxic, cold, countering the effect of alcohol abuse, anti-stress agent, neck stiffness, hypohidrosis, migraines, hypoglycemia, and certain cardiovascular diseases in the Chinese Medicinal Herbs, a book written by Li Shih Chen (Li, 2003; Croom, 2004).

Pharmacology

In phytopharmacological/ethnopharmacological research, scientific community should follow best practices in designing and conducting studies and reporting the results of analyzing pharmacological properties of the plant extracts and compounds of natural origin (Heinrich et al., 2020). Therefore, while reporting biological activities of any plant/herbal product, detailed information about the characterization of the plant extracts, their phytoconstituents, doses, duration of treatment, type of models used in the studies, toxicological data, and so forth should be clearly presented for the benefit of research community (Heinrich et al., 2020). Various pharmacological activities of the tuber extracts of *P. tuberosa* have been explored, and a graphical summary of these activities is shown in Figure 5 and Table 1.

Nephroprotective Activity

Several studies have shown that *P. tuberosa* plant possesses nephroprotective activities. Oral administration of methanolic tuber extract to cisplatin- (8 mg/kg body weight) induced kidney damaged rats showed a dose-dependent protective effect (Nagwani and Tripathi, 2010). Tuber extract significantly reduced blood urea nitrogen, serum creatinine, glutathione, and superoxide dismutase (SOD) levels. The extract could control deoxyribonucleic acid (DNA) damage and catalase activities, cellular necrosis, and tubular swelling and prevent coagulation of proteins, in contrast to the control group. The nephroprotection of tuber extract of the plant has been attributed to its free radical scavenging activity (Nagwani and Tripathi, 2010). Feeding of biscuits made up of powder of *P. tuberosa* tuber
for 10 days showed significant recovery in cisplatin-induced nephrotoxicity in Swiss mice. However, at higher dose, aspartate aminotransferase and alanine aminotransferase levels were temporarily elevated, so monitoring of liver functions, periodically, is imperative when continuing this regimen for longer periods such as a food supplement for cancer patients undertaking cisplatin chemotherapy (Tripathi et al., 2012). The methanolic extract of *P. tuberosa* ameliorated glycerol-induced acute kidney injury in rats by affecting the lipid peroxidation, SOD, and catalase activity with a lesser accumulation of hyaline casts and a lesser degree of tubular necrosis on histology of the kidney (Yadav et al., 2016a). Water decoction of *P. tuberosa* has also been reported to significantly reverse cisplatin-induced nephrotoxicity in rats (Yadav et al., 2016b). Hydroalcoholic tuber extracts of *P. tuberosa* showed nephroprotective activity in sodium arsenate- (1 mg/kg body weight) induced oxidative kidney tissue damage in rats (Rani et al., 2017). The nephroprotective effect through free radical scavenging activity
was supported in a study, where streptozotocin- (STZ-) induced diabetic nephropathic rats, treated with aqueous tuber extract of *P. tuberosa*, exhibited an upsurge in activity of antioxidant enzymes, lowered oxidative stress, apoptosis, and urinary albumin excretion in a concentration-dependent manner (Shukla et al., 2018a). Methanolic tuber extract of the plant showed substantial protection in diabetic nephropathy induced by the administration of alloxan in rats (120 mg/kg body weight) by decreasing urea and creatinine and improving physiology of the kidney (Yadav et al., 2019). The supplementation of tuber extract of the *P. tuberosa* showed protection of kidney from oxidative stress and cellular injury. It also improved kidney physiology and parameters of kidney function test by reducing cellular apoptosis. These studies indicate that *P. tuberosa* extracts have nephron-protective potential and might lead to promising therapeutic agents for treating kidney diseases.

Antioxidant Activity

Methanolic and hexane tuber extract of *P. tuberosa* exhibited a strong free radical scavenging activity in a concentration-dependent fashion. These results showed that the methanolic extract of this plant exhibited better activity than the hexane extract in trapping hydroxyl radicals and inhibited lipid peroxidation, which indicated potent antioxidant property (Pandey et al., 2007). Hot water tuber extract of the plant *P. tuberosa*, supplemented with milk in Swiss mice, showed potent antioxidant activities in liver and red blood cells. Besides, a remarkable difference in glutathione levels was also observed in the control (172 µg/ml) and supplemented groups (*P. tuberosa*: 1,212 µg/ml and *P. tuberosa* + milk: 1,308.2 µg/ml). *P. tuberosa* along with milk has antioxidant property as evidenced by higher phagocytic activity, increased immunoglobulin levels, and reduced glutathione and lipid peroxidation (Sawale et al., 2013). *P. tuberosa* extracted with chloroform, acetone, methanol, and hot water was used to determine its antioxidant potential by using ferric reducing antioxidant power (FRAP) assay, metal chelating, phosphomolybdenum, and free radical scavenging using DPPH (2,2'-diphenyl-1-picrylhydrazyl radical) and ABTS (3-ethylbenzothiazoline-6-sulfonic acid) assay. The results showed that acetone extract of *P. tuberosa* has potent antioxidant activity (Viji and Paulsamy, 2015).

Antidiabetic Activity

Oral gavage of ethyl acetate tuber extract of *P. tuberosa* (250 mg/kg body weight) to alloxan-induced diabetic rats for seven days showed a pronounced decrease in blood glucose levels (Raghuwanshi and Jain, 2011). Studies suggested that chloroform, petroleum ether, ethanol, and aqueous tuber extracts of *P. tuberosa* confer significant antidiabetic activity in STZ- (50 mg/kg body weight) induced diabetic rats by a single intraperitoneal injection (Tripathi and Kohli, 2013). Water extract of root of *P. tuberosa* showed significant inhibition of dipeptidyl peptidase-4 (DPP-IV) that causes an enhanced half-life of active glucagon-like peptide-1 hormone. This hormone regulates glucose-dependent insulin release from β-cells of the pancreas in rats (Srivastava et al., 2015). In Srivastava et al.’s next study, they found that *P. tuberosa* water extract increased the glucose homeostatic potential through DPP-IV inhibitory pathway.

Reference

TABLE 1 | Pharmacological activities of tuber extract of Pueraria tuberosa.

Extract	Dose tested	Pharmacological activity	Model used for study (in vivo or in vitro)	Reference
Aqueous	50 mg/100 g b/w for 35 days	Antidiabetic	In vivo	Srivastava et al. (2015); Srivastava et al. (2017); Srivastava et al. (2018); Srivastava et al. (2019)
Ethanol	50 mg/100 g b/w for 10 days	Antioxidant	In vitro	Patel et al. (2016)
Tuber powder	250 mg/kg b/w	Immunomodulatory	In vivo	Shilpashree et al. (2015)
Aqueous	250 mg/ml given orally to rats for 14 days	Hepatoprotective	In vivo	Pandey et al. (2019)
Ethanol and methanol	125, 250, 500, and 1,000 µg/ml	Antioxidant	In vitro	Likhitkar and Pande (2017)
Aqueous	200, 400, and 700 µg/ml for 24, 48, and 72 h	Anticancer	In vitro	Adedapo et al. (2017)
Hydroalcoholic	64 and 128 µg/ml for 24 h	Anticancer	In vitro	Aruna et al. (2018)
Ethyl acetate	31.5–600 µg/ml for 72 h	Anticancer	In vitro	Salpathy et al. (2020)
Aqueous	50–100 mg/100 g b/w for 20 days	Antidiabetic nephropathy	In vivo	Shukla et al. (2017); (2018a); (2018b)
Hydroalcoholic	20–40 mg/100 g b/w for 14 days	Antidiabetic nephropathy	In vivo	Tripathi et al. (2017)
Methanolic	20 mg/kg b/w for 14 days	Antidiabetic nephropathy	In vivo	Yadav et al. (2019)
Methanolic	20 and 40 mg/100 g b/w for 2 days	Antidiabetic nephropathy	In vivo	Yadav et al. (2016a)
Butanol and ethyl acetate	50 mg/100 g b/w for 5 days	Nephroprotective	In vivo	Yadav et al. (2016a)
Methanolic	200 mg/ml	Antibacterial	In vitro	Pandya et al. (2019)
Hydroalcoholic	50, 100, and 200 mg/kg b/w for 30 days	Neuroprotective	In vivo	Umarani et al. (2016)

b/w: body weight.
and the bioactive components robinin and puerarone, and this inhibitory activity was also confirmed by in silico molecular docking (Srivastava et al., 2017). Aqueous extract of tuber of P. tuberosa has further been reported to act as incretin receptor agonist and downregulated β-cells apoptosis and protected STZ-induced diabetes in rats (Srivastava et al., 2018). Aqueous tuber extract of the plant showed an elevated expression of nphrin and SOD and a declined expression of cysteinyl aspartyl specific proteinase 3 (caspase-3), interleukin 6 (IL-6), nuclear factor kappa B (NF-kB), protein kinase C epsilon type (PKCe), tumor necrosis factor alpha (TNF-α), vascular endothelial growth factor (VEGF), matrix metalloproteinase-9 (MMP-9), and hypoxia-inducible factor 1-alpha in STZ-induced diabetic rats (Srivastava et al., 2019). In another experiment, it has been shown that administration of P. tuberosa water extract in alloxan-induced rat diabetic model resulted in decrease in SGOT (serum glutamic oxaloacetic transaminase), SGPT (serum glutamic pyruvic transaminase), and alkaline phosphates level and improved deformed hepatocytes and significant decrease in blood glucose levels as well as apoptosis (Pandey et al., 2019). The tuber extract contains different bioactive compounds that may act as agonists on glucagon-like peptide-1 hormone released from intestine and can also protect β-cells of the pancreas. It also resulted in decreased expression of different inflammatory and apoptotic markers during hypoxic injury to β-cells as evidenced by decreased apoptosis of β-cells. The extract also inhibited DPP-IV enzyme as an incretins receptor agonist, and hence it is emanating from the above studies that P. tuberosa has antidiabetic potential.

Anti-Stress Activity

Adult male Wistar rats subjected to cold immobilization stress, pretreated with 70% hydroethanolic tuber extract of P. tuberosa (200 and 400 mg/kg body weight) for 5 days, showed significant protection from gastric mucosal damage, reduced corticosterone level in the blood, and no enlargement of spleen and adrenals as compared to Withania somnifera (L.) Dunal (Solanaceae) rhizome extract (100 mg/kg body weight). These studies established the anti-stress effect of P. tuberosa (Pramanik et al., 2011). In a human trial, hypertensive patients were divided into two groups: group 1 was given capsules with 0.75 g tuber powder, whereas group 2 was given placebo capsules with lactose powder administered for 12 weeks. Group 1, treated with 1.5 g (twice a day) tuber powder of P. tuberosa for 12 weeks, showed a gradual decrease in systolic, diastolic, and mean blood pressure as well as a tolerant decrease in fibrinogen and increased plasma fibrinolytic activity (Verma et al., 2012). In stress-mediated disorders, the hypothalamic-pituitary-adrenal (HPA) axis is dysregulated which changes the levels of corticosteroids in plasma and monoamine in the brain. The extract of this plant might act on mucosal layer of the gastrointestinal, cardiovascular, and nervous (HPA) system, suggestive of anti-stress activity by a reduction in stress hormones.

Antidiabetic Nephropathic Activity

STZ-induced diabetic rats with nephropathy were given tuber extract of P. tuberosa (30 mg/100 g, body weight) for 20 days and exhibited a significant reduced severity of diabetic nephropathy by enhanced expression and activity of MMP-9 and degrading the accumulation of extracellular matrix in kidney tissue (Tripathi et al., 2017). Levels of nphrin, a biomarker of early glomerular injury, in the kidney of diabetic nephropathic rats were restored after treatment with tuber extract of P. tuberosa (Shukla et al., 2017). The diabetic nephropathic inflammatory response is mediated by NF-κB and its activated phosphorylated derivative (pNF-κB). Improved levels of these transcription factors and inflammatory cytokines (IL-6 and TNF-α) in the kidney of STZ-induced (55 mg/kg body weight) diabetic nephropathic rats were observed, and treatment with extracts from the tuber of P. tuberosa significantly negated these changes in a dose-dependent manner (Shukla et al., 2018b). Amelioration of renal damage was evaluated by renal functional tests, histopathology, and oxidative stress in alloxan-induced diabetic nephropathy. P. tuberosa methanolic extract showed renal protection by decreasing urea and creatinine and improved kidney physiology and histopathology changes through antioxidant mechanisms (Yadav et al., 2019). These studies are indicative of nephro-protection offered by P. tuberosa in diabetic nephropathy; however, this protective effect needs to be further explored, including studies on the protection of renal and glomerular cells mediated by different signaling pathway in the antidiabetic nephropathy.

Anti-Inflammatory Activity

The ethyl acetate and methanolic tuber extracts of P. tuberosa showed considerable anti-inflammatory potential compared to the control and standard drugs, ibuprofen, and nitrofurazone ointment in the rat paw edema method (Kambhoja and Murthy, 2007). The methanolic tuber extract of the plant significantly prevented the carrageenan-induced inflammation by lowering the glutathione content, catalase, SOD activity, and enhancing lipid peroxidation and C-reactive proteins in rats in a sequential manner (Tripathi et al., 2013). Isoorientin, isolated from the tuber of P. tuberosa plant, showed significant anti-inflammatory activity in LPS-treated mouse macrophage (RAW 264.7) cell line. It was also effective against carrageenan-induced inflammation on paw edema and air pouch mouse models. These studies revealed the downregulation in the expression of proinflammatory genes such as inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), TNF-α, and inactivation of NF-κB. Moreover, there was activation of antioxidant enzymes, catalase and glutathione-S-transferase (Anilkumar et al., 2017). The anti-inflammatory property of extracts of P. tuberosa in these studies appears to be mediated by lipid peroxidation, inactivation of the NF-κB pathway, and downregulation of proinflammatory cytokines.

Immunomodulatory Activity

Immunomodulatory activities of plant extract (0.4%) with milk as a carrier given to Swiss mice for 28 days were evaluated. The result showed a significantly higher phagocytic activity and immunoglobulin concentration, reduced glutathione content, and thiobarbituric acid reactive substances level compared to the control (Sawale et al., 2013). Reversed phase high-performance
liquid chromatography (RP-HPLC) analysis of ethanolic tuber extract of the plant revealed that bioactive compounds involved in the immunomodulatory activities are genistein (1.37%), daidzein (1.70%), and puerarin (8.31%). Oral administration of these extracts builds up innate and humoral immune responses against sheep red blood cells challenged rats (Maji et al., 2014). The immunomodulatory activity of petroleum ether extract of P. tuberosa was evaluated by carbon clearance assay (Granulopectic index). The extract and Withania somnifera (L.) Dunal (Solanaceae) at 250 mg/kg body weight (Medicinal Plant Names Services, e) exhibited enhanced phagocytic activity of peritoneal macrophages to clear the carbon particles (Shilpashree et al., 2015). The ethanolic extract of tuber increased the phagocytic activity of macrophages in the mice model. The extract also inhibited both the cell mediated and humoral immunity, which supports its potent immunomodulatory activity (Patel et al., 2016).

Anticancer Activity
There is no significant toxicity of mangiferin isolated from tuber of P. tuberosa on normal cell lines (mouse fibroblast NIH-3T3, RAW 264.7, HEK293, and mouse lymphocytes) in cell viability assay in vitro; however, it is cytotoxic to various cancer cell lines like K562, MCF7, HEPG2, Jurkat cells, and A549 (Bulugonda et al., 2017). Furthermore, the anticancer and apoptotic potential of the hydroalcoholic tuber extract of P. tuberosa was investigated by cell viability assay. The extract showed a 50% inhibition of cell viability against human colon carcinoma (HT-29) cells at a concentration of 63.91 µg/ml. Cells also exhibited DNA fragmentation that is the hallmark of apoptosis, apoptotic cell death, and increased expression of certain proapoptotic genes (Aruna et al., 2018). The silver nanoparticles biosynthesized with aqueous extract of the P. tuberosa showed in vitro anticancer potential on different cancer cell lines (breast MCF-7 and MDA-MB-231; ovarian SKOV-3; brain U-87 cancer). However, the mechanism behind this activity needs exploration for therapeutic use (Satpathy et al., 2018). Antioxidant-enriched fraction also exhibited in vitro cytotoxicity in the breast (MCF-7 and MDA-MB-231) and ovarian (SKOV-3) cancer cells (Satpathy et al., 2020).

Other Pharmacological Properties
P. tuberosa has been attributed as one of the most sought plants that proved to be effective against multiple diseases and ailments. Alcoholic and aqueous extracts of P. tuberosa tuber were studied for nootropic effect in mice and rat models of amnesia induced by scopolamine and diazepam. The inflexion ratio observed was considerably high and comparable with piracetam, the standard drug in an elevated plus-maze experiment. Flavonoids present in the P. tuberosa tuber extracts have been reported for nootropic effect by interacting with cholinergic, adrenergic, serotonergic, and GABAergic system (Rao et al., 2008). The neuroprotective properties of this plant were also studied in chronic foot-shock stressed rat model showing unpredictable and inescapable nature of physiological malfunctions, increase in anxiety level, decrease in male sexual indices, and behavioral changes. All these symptoms were abolished by this plant's tuber extract (Pramanik et al., 2010). Neurotoxicity induced by sodium arsenate was ameliorated by hydroalcoholic extract which strengthens its memory and restores muscle strength and locomotor activity. Biochemical and histopathological changes are suggestive of the protective property of the extract in maintaining normal functional status of the brain in arsenate neurotoxicity (Umarni et al., 2016).

Alcoholic tuber extract of P. tuberosa was studied for anticonvulsant activity in pentalene tetrazole, strychnine, and maximal electroshock-induced convulsions in animals. Different doses of the extract (50, 100, and 200 mg/kg body weight) were compared with the standard drug, diazepam (5 mg/kg body weight). The medium and high doses exhibited potent anticonvulsant activity as compared to the control group (Basavaraj et al., 2011). The ethanolic and methanolic extract of leaf, stem, and tuber of P. tuberosa showed a wide range of antimicrobial activity against bacteria, Escherichia coli, Bacillus cereus, Salmonella paratyphi, and Staphylococcus aureus, as well as fungi, Candida albicans, Aspergillus fumigates, and Alternaria solani, on agar diffusion assay (Sadguna et al., 2015). The tuber extracts of P. tuberosa with different solvents exhibited a wide range of antimicrobial activity on selected bacterial and fungal pathogens (Aruna et al., 2016). The chloroform and water extracts of tuber of P. tuberosa showed significant antibacterial activity against Klebsiella pneumoniae and Staphylococcus aureus and methanol extract on Staphylococcus aureus and Streptococcus agalactiae (Pandya et al., 2019). The metabolites in P. tuberosa extracts may be behind the mechanism involved in the antimicrobial action, which may interact with the microbial cell membrane resulting in microbial cell death. The antiulcerogenic activity of aqueous leaf extract of P. tuberosa on cold restraint stress, pyloric ligation, and ethanol-induced gastric ulcer rat models was observed. There was significant inhibition in gastric lesions by 76.6% in cold restraint stress, 80.1% in pyloric ligation, and 70.6% in ethanol-induced rat models (Gindi et al., 2010).

In metabolic disorders also, P. tuberosa extracts exhibited a hypolipidemic effect. Oral administration of butanol tuber extract of P. tuberosa at a dose of 150 mg/kg body weight showed a pronounced protective effect against CCl4-induced hepatotoxicity in adult male rats (Shukla et al., 1996). Rats maintained on high cholesterol diet upon the treatment demonstrated a substantial reduction in serum cholesterol, triglycerides (TG), low-density lipoproteins (LDL), and very-low-density lipoproteins (VLDL) levels (Tanwar et al., 2008). These results were corroborated in another study where nonalcoholic fatty liver disease (NAFLD), induced in rats by feeding a high fat diet, was treated with water extract of this plant. Antioxidant activity with reduced lipid peroxidation and enhanced activities of SOD and catalase enzymes were observed. A similar finding was observed by Tripathi et al. in the NAFLD rats model which also showed a reduction in serum TG and cholesterol values (Tripathi and Aditi, 2020). The ethanolic extract of P. tuberosa showed a dose-dependent immunosuppressant activity as evident by a decrease in antibody titer and also a reduction in hematological
Purified compound studied	Model used for study	Dose tested	Pharmacological activity	Conclusion	References
Puerarin (C_{21}H_{20}O_{9})	In vivo	10 mg/kg b/w for 7 days	Nephroprotective	Suppression of oxidative stress production and 5-nitroxylation of proteins in the diabetic kidneys and MMP-9	Zheng et al. (2014)
	In vivo	20, 40, and 80 mg/kg b/w/day for 8 weeks	Antidiabetic	Hypoglycemic effect which supports its antidiabetic property and renal protective effects via the mechanism of attenuating SIRT1/FOXO1 pathway	Xu et al. (2016)
	In vivo	2.5 mg/kg b/w/day for 2 weeks	Antioxidant	Suppressed mRNA expression and activity of Bcl-2, Bcl-xL, and p38 activity and active caspase-3 production	Tanaka et al. (2016)
	In vivo	10 and 50 μM	Anticancer	Suppressed NO and MMP-9	Liu et al. (2017)
Daidzein (C_{15}H_{10}O_{4})	In vivo	0.01, 0.1, 1, 10, and 100 μmol/L	Antidiabetic	Improved insulin sensitivity and reduced diabetic foot ulcers	Yu et al. (2017)
	In vitro	0.78–200 μM; in vivo: 0.5–50 μM	Antioxidant	Suppressed macrophage activation by inhibiting IκB, ERK, and p38 activity and reactive oxygen species production	Liu et al. (2017)
	In vitro	12.50–50 μM	Anticancer	Reduced the cell viability and colony formation in a concentration-dependent manner and inhibited tumor growth	Zheng et al. (2017)
	In vitro	2.5–20 mg/kg b/w for 27 days	Anticancer	Induced G2/M cell cycle arrest and suppressed the ovarian tumor growth	Hua et al. (2018)
Genistin (C_{21}H_{20}O_{10})	In vivo	10 and 20 mg/kg b/w 3 times a week for 30 weeks	Anti-stress	Reduced hippocampal LTP and reduced oxidative stress through an estrogenic pathway and reduced oxidative stress	Palanisamy and Venkataraman (2013)

(Continued on following page)
Purified compound studied	Model used for study (in silico/in vitro/in vivo)	Dose tested	Pharmacological activity	Conclusion	References
Lupinoside PA4 [5]	In vitro/in vivo	20 ng/ml; in vivo: 1.5 mg/200 g b.w. for 12 days	Antidiabetic	Stimulated IR-β and akt phosphorylation	Dey et al. (2007)
Tuberosin [6] (C20H18O5)	In vitro	50, 100, 300, and 600 ng/ml	Antioxidant	Inhibited LPS-induced NO production in a concentration-dependent manner, expression of iNOS proteins	Pandey and Tripathi (2010)
3-O-methylanhydrotuberosin [7] (C21H18O4)	In vitro		Pharmacological activity not reported		
Puerarostan [8] (C21H18O6)	In vitro		Pharmacological activity not reported		

(Continued on following page)
TABLE 2 | (Continued) Pharmacological activities of phytoconstituents of Pueraria tuberosa.

Purified compound studied	Model used for study	Dose tested	Pharmacological activity	Conclusion	References
25, 50, and 100 mg/kg b/w for 8 days	Anti-diabetic	Reduced insulin resistance and attenuated hyperglycemia in type II diabetes, which could be due to increased expression of SIRT1 in pancreatic tissues	Wang et al. (2015)		
30 µM for 24 h	Anti-inflammatory	Inhibited βT3-induced CCK-2 expression and PGS2 production via MAPKs pathway including ERK, p38, and JNK	Kim et al. (2016)		
150 and 300 µM	Cardioprotective	Pretreatment with formononetin reduced myocardial tissue injury, improved cardiac function, and decreased apoptosis in heart tissue	Huang et al. (2018)		
5 mM	Cardioprotective	Formononetin-treated cells were morphologically normal compared to the cells undergoing childhood induced death (cd) and were protected against apoptosis induced by formononetin treatment	Huang et al. (2018)		
20–100 µM for 24 h	Nephroprotective	Formonoetin-treated cells were morphologically normal compared to the cells undergoing childhood induced death (cd) and were protected against apoptosis induced by formononetin treatment	Lee et al. (2018)		
25, 50, and 100 mg/kg b/w for 8 days	Antibacterial	Inhibited HMGB1 release by increased HMGB1 acetylation via upregulating SIRT1 in a PARP-dependent manner	Wang et al. (2018)		
150 µM for 12, 24, and 48 h; in vivo 50 mg/kg b/w for 4 weeks	Anthocyanin	Inhibited MUP/MB489 cell survival in a dose- and time-dependent manner, and tumor volume shrinkage from 472.7 to 253.6 mm³ on day 30 in xenograft model	Zhou et al. (2019)		
15 mg/kg b/w	Anticancer	The tumor inhibition rate was 50.17% in the mice treated with formononetin by oral gavage.	Zhang et al. (2019)		
100 mg/kg b/w for 14 weeks	Hepatoprotective	Promoted the lysis of some bioluminescent and autophagy hypersensitive fusion, relieving the kidney damage in autophagic flux and further inducible autophagy	Wang et al. (2019)		
40–60 mg/kg b/w for 10 days	Hepatoprotective	Ameliorated hepatic cholestasis by upregulating expression of SIRT1 and activating PPARs	Yang et al. (2019)		
20 and 40 mg/kg b/w for 10 weeks	Neuroprotective	Reduced the levels of inflammatory cytokines IL-1β and TNF-α and tau hyperphosphorylation in mice hippocampus	Fu et al. (2019)		

(Continued on following page)
Purified compound studied	Model used for study (in silico/in vitro/in vivo)	Dose tested	Pharmacological activity	Conclusion	References
In vitro	31.25 μg/ml	Anti-inflammatory	LPS-induced inflammation in zebrafish was attenuated by formononetin mainly by restraining the MyD88 or TRIF MAPK/ERK and MAPK/JNK pathways	Luo et al. (2019)	
In vivo	25 mg/kg b/w for 10 days	Anti-stress	Reduced the neural excitability and the protective upregulation of GABA receptors	Wang et al. (2019)	
In vivo	10, 20, and 40 mg/kg b/w for 16 weeks	Nephroprotective	Enhanced creatinine clearance and reduced oxidative stress burden along with increased SIRT1 expression in kidney tissues	Oza and Kulkarni (2019)	
In vivo	10 mg/kg b/w	Anticancer	Inhibited EGFR-Akt axis and promoted FBW7-mediated Mcl-1 ubiquitination	Yu et al. (2020)	
In vitro	5–100 μM	Antioxidant	Stimulated catalase and total superoxide dismutase (CuZn- and Mn-SOD) activity, and mRNA and protein expression	Choi and Kim (2014)	
In vitro/in vivo	1, 5, and 10 μM for 12 h; in vivo: 50, 100, and 200 mg/kg b/w for 30 days	Anti-ischemia	In vitro, increased cell viability and attenuated apoptosis; in vivo, inhibited mitochondrial membrane potential (MMP) and increased total ATPase activity	Yin et al. (2016)	
In vitro/in vivo	5 or 10 μM for 90 min; in vivo: 20–50 mg/kg for 4 days	Anti-gastric	Pretreatment with irisolidone increased the area of hemorrhagic ulcerative lesions caused by ethanol and suppressed stomach myeloperoxidase activity, CXCL4 secretion, and NF-κB activation	Kang et al. (2017)	
In vivo	20 mg/kg b/w	Anticolitic	Alleviated colon shortening and myeloperoxidase activity in mice with TNBS-induced colitis	Jang et al. (2019)	
In vivo	20 μg/kg b/w	Anticoagulant	Glycosylation of 4′-methoxypuerarin, caused steric hindrance to weaken the DNA binding affinity and had no significant inhibition on DNA amplification	Chen et al. (2020)	
Puerarone	In silico	Antidiabetic	Strong affinity to VEGFR-1 and VEGFR-2 along with 93.881% human intestinal absorption	Srivastava et al. (2017)	
Purified compound studied	Model used for study	Dose tested	Pharmacological activity	Conclusion	References
---------------------------	----------------------	-------------	--------------------------	------------	-------------
Quercetin (C15H10O7)	In vivo	15 mg/kg b/w for 7 days	Hepatoprotective	Accelerated the regeneration after partial hepatectomy	Kantor et al. (2016)
	In vitro/in vivo	5–100 µM intraperitoneal for 30 days	Neuroprotective	Protected neuronal cells from amyloid beta induced oxidative stress	Li et al. (2017)
	In vivo	100 mg/kg b/w for 6 days	Intestinal damage repair	Increased intestinal and mucosal weight and prevented methotrexate-induced intestinal damage	Sukhotnik et al. (2018)
Tectoridin (C22H22O11)	In vivo	25–400 mg/kg b/w	Anti-alcoholism	Strongest clearance rate of ethanol	Zhang et al. (2019)
	In vivo	100 mg/kg b/w for 7 days	Immunomodulatory	Decreased the expression of inflammatory mediator TNF-α and circulating immune complexes	Phagawat et al. (2013)
	In vivo	8 mg/kg b/w for 7 days	Cardioprotective	Prevented cardiac hypertrophy by virtue of its antihypertrophic, antilipidemic, and anti-radical scavenging	Roy and Prince (2013)
	In vivo	100 mg/kg b/w for 3 weeks	Neuroprotective	Cardiac mitochondrial chelating activity	Narasaiah and Rassol (2014)
	In vivo	100 mg/kg b/w	Anti-diabetic	Modulated glucose and lipid metabolism via GLUT2 activation in the pancreas	Amalan et al. (2016)
	In vivo	30 mg/kg b/w	Neuroprotective	Increased the total activity of fEPSP dose-dependently after high frequency stimulation and attenuated scopolamine-induced block of fEPSP in the hippocampal CA1 long-term potentiation area	Kim et al. (2017)
	In vivo	100 mg/kg b/w for 26 days	Anti-arthritic	Suppressed the paw edema, body weight loss and inflammatory cytokines and chemokines levels (TNF-α, IL-6, IL-1β and MCP-1) in serum and ankle joint of arthritic rats	Nego et al. (2017)
	In vivo	50 mg/kg b/w	Hepatoprotective	Suppressed hepatic apoptosis via ROS-mediated DNA damage and inflammation by modulating the mitogen-activated protein kinase (MAPK) signaling axis in an ROS-dependent manner	Ghant et al. (2018)
	In vivo	100 mg/kg b/w for 2 weeks	Neuroprotective	Protected with p-coumaric acid significantly reduced malondialdehyde (MDA) levels, whole-brain infarct volume and hippocampal neuronal death together and increased vascularity and supersede dilatation activities	Sakamura and Thong-asa (2019)
	In vitro/in vivo	2–4,000 µM, for 24 and 72 hr	Antioxidant	Downregulated Gpr78 and activated UPR mediated apoptosis both in vitro and in vivo models of colon cancer	Sharma et al. (2019)
	In vivo	60 and 100 µg/mL	Antioxidant	Significantly increased the survival rate of Caenorhabditis elegans under the oxidative stress condition and increased lifespan by 20% for both 60 and 100 µg/mL, compared to the control	Yui et al. (2019)
	In vivo	50 mg/kg b/w for 6 weeks	Anti-diabetic	Enhanced anti-inflammatory, anti-extremophagic, and antioxidant defense systems in streptozotocin-treated mice	Shabani et al. (2019)
	In vivo	10–100 µM, for 90, 100, and 200 mg/kg b/w	Hepatoprotective	No effect on cell viability up to 60–80 µM concentrations on HepG2 cells in vitro, p-coumaric acid at 200 mg/kg exhibited higher protection on ethanol-induced hepatic injury in rats	Sabitha et al. (2020)

(Continued on following page)
Purified compound studied	Model used for study	Dose tested	Pharmacological activity	Conclusion	References
Hydrotuberosone [19] (C20H18O6)	In vivo	Topical application	Wound healing	Excision and incision wound model	Kambhoja and Murthy (2007)
Puetuberosanol [20] (C21H18O4)	In vivo	50 mg/kg b/w for 10 days	Cardioprotective	Modulation of TGF-β1 signaling pathway in doxorubicin-induced cardiac toxicity in Sprague Dawley rats	Janeesh and Abraham (2014)
	In vitro	6 μg/ml	Immunomodulatory	Inhibited TLR4-NF-κB signaling pathway	Janeesh et al. (2014)
	In vitro	0.125–0.50 mg/ml	Antioxidant	The total antioxidant capacity (TAC) in robinin was significantly higher and best maintained the follicular morphology	Dos Santos Morais et al. (2019)
Tuberostan [22] (C21H16O5)	In silico	—	Anti-diabetic	In molecular docking study, tuberostan showed best interaction for GLP-1R with binding energy at 8.15 kcal/mol and dissociation constant at 1061624.125 pM	Srivastava et al. (2018)

Pharmacological activity not reported.
TABLE 2 | (Continued) Pharmacological activities of phytoconstituents of Pueraria tuberosa.

Purified compound studied	Model used for study (in silico/in vitro/in vivo)	Dose tested	Pharmacological activity	Conclusion	References
Isoorientin (C_{21}H_{20}O_{11})	In vitro	0.1–100 µM	Anti-inflammatory	Inhibited COX-2 activity by 64%	Sumalatha et al. (2015)
IUPAC name: 2-(2,3-dihydroxyphenyl)-5,7-dihydroxy-6-[(2S,3R,4R,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]chromen-4-one					
	In vitro/in vivo	10 μM	Anti-inflammatory	Inhibited the expression of COX-2 in vitro and decreased the expression of COX-2, TNF-α, iNOS, and 5-LOX in dose-dependent manner in carrageenan-induced inflammation in mice	Anilkumar et al. (2017)
Mangiferin (C_{19}H_{18}O_{11})	In vitro	100 µM	Anti-inflammatory	Inhibited COX-1 and COX-2 activity by 79.4% and 45.9%, respectively	Sumalatha et al. (2015)
IUPAC name: 1,3,6,7-tetrahydroxy-2-[(2S,3R,4R,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]xanthen-9-one					Bulugonda et al. (2017)
Stigmasterol (C_{29}H_{48}O)	In vivo	200 mg/kg and 400 mg/kg b/w	Chemo-preventive	Induced a significant decrease in 7,12-dimethylbenz(a)anthracene (DMBA)-induced skin tumor	Ali et al. (2015)
IUPAC name: [(3S,8S,9S,10R,13R,14S,17R)-17-[(E,2R,5S)-5-ethyl-6-methylhept-3-en-2-yl]-10,13-dimethyl-2,3,4,7,8,9,11,12,14,16,17-dodecahydro-1H-cyclopenta[a]phenanthren-3-ol]					

In vivo: body weight.
parameters in the drug-induced myelosuppression model (Babu et al., 2016). Crude powder (3 g daily) of *P. tuberosa* tuber was given to a human patient with ischemic heart disease for twelve months. The case study demonstrated an overall significant cardioprotective effect; resting mean blood pressure was reduced from 96.66 to 90.00 mm Hg without affecting the resting heart rate, and the heart rate at peak exercise was also reduced, indicating better exercise tolerance (Verma et al., 2009).

P. tuberosa root extract, given to male Wistar rats (100 mg/rat per day) for 60 days, affected the fertility of rats as shown by a reduction in weight of testes, epididymis, prostate, and the seminal vesicle. Studies also showed a considerable decrease in the quantity of mature Leydig cells, cauda epididymis, and sperm motility (Gupta et al., 2005). The antioxidant-enriched fraction from the tuber extract of *P. tuberosa* against menopausal osteoporosis in ovariectomy-induced osteoporosis in rats was studied and found that it improved biochemical parameters, controlled the increased body weight, and decreased uterus weight following ovariectomy as well as restoration of typical bone structure and trabecular width of the femur (Satpathy et al., 2020). Incision and excision wounds were treated with methanolic and ethyl acetate tuber extract of *P. tuberosa*. The extracts showed potent wound healing property in comparison to ibuprofen, and nitrofurazone ointment (Kambhoja and Murthy, 2007).

Phytocchemistry

The crude tuber extracts of *P. tuberosa* are known to contain alkaloids, anthracene, anthocyanidins, anthraquinone, glycosides, carbohydrates, catecholic compounds, coumarins, flavonoids, glycosides, hexose sugars, saponins, steroids, terpenoids, and volatile oils (Ratnam and Venkata Raju, 2009; Rawtal et al., 2019). Therefore, many studies have been undertaken to individually analyze and characterize the activities of different phytoconstituents of the plant. Vaishnav et al. could grow a callus culture of *P. tuberosa* and identified four isoflavonoids, viz., puerarin [1], daidzein [2], genistin [3], and genistein[4] (Vaishnav et al., 2006; Satpathy et al., 2017). Lupinopside PA4 [5] was isolated from methanolic extract of *P. tuberosa* using HPLC, and its structure was determined by 1D, 2D NMR, and Q-TOF-MS (Dey et al., 2007). Pandey and Tripathi extracted tuberosin [6], 3-O-methylhydrotuberosin [7], and puerarostan [8] from ethanolic tuber extract; the same was confirmed by UV, IR, and NMR spectral data (Pandey and Tripathi, 2010). β-Sitosterol [9] was quantified in the methanolic root extract of *P. tuberosa* by high-performance thin layer chromatography (HPTLC) method (Mhaske et al., 2009). Liquid chromatography–mass spectrometry (LC–MS) analysis of ethanolic extract was found to contain puerarin, daidzein, biochanin A [10], and biochanin B [11] (formononetin) (Chauhan et al., 2013). Daidzin [12], irisinolide [13], 4-methoxypuerarin [14], puerarone [15], quercetin [16], and tectoridin [17] are the flavonoid compounds and p-coumaric acid [18], which have been reported to be isolated from tuber of *P. tuberosa* (Majju et al., 2014) and aqueous tuber decoction shown to contain daidzein, genistin, hydroxytuberosone [19], puerarin, puertuberosanol [20], robinin [21], tuberosin, and tuberostan [22] (Shukla et al., 2017). Mass spectrometry and 2D-NMR techniques were used to isolate isoorientin [23] and mangiferin [24] from methanolic extract from *P. tuberosa* (Sumalatha et al., 2015). Phytochemical analysis of *P. tuberosa* extract using HPTLC revealed the presence of carbohydrates, proteins, alkaloids, flavonoids, saponins, phenols, and tannins (Viji and Paulsamy, 2018). Satpathy et al. showed the presence of 23 bioactive molecules including stigmasterol [25], β-sitosterol, and stigmasta-3,5-dien-7-one by gas chromatography–mass spectrometry analysis of antioxidant-enriched fraction prepared from *P. tuberosa* (Satpathy et al., 2020). We have listed various phytoconstituents isolated from *P. tuberosa* and provided detailed information about their chemical structures, IUPAC names, and pharmacological activities, as well as associated references, in Table 2. The chemical structures of phytochemical compounds from *P. tuberosa* were drawn using “ChemDraw JS 19.0”; https://chemdrawdirect.perkinelmer. cloud/js. IUPAC (International Union of Pure and Applied Chemistry) names have been taken from PubChem database.

Toxicology of Pueraria tuberosa

The acute (single dose of 2,000 and 5,000 mg/kg body weight) and repeated dose (250, 500, 1,000, and 2,000 mg/kg body weight for 28 days) toxicity studies with water extract of the tuber of *P. tuberosa* were conducted in rats as per OECD (Organization for Economic Co-Operation and Development) guidelines. The survival rate and biochemical and histological changes were studied. No adverse effect was reported in single-dose acute toxicity, but in repeated dose toxicity studies, 100% mortality was observed on day 21 at 2,000 mg/kg body weight, and histological examination of the visceral organs showed that this mortality could be due to hepatotoxicity (Pandey et al., 2018). However, histological evaluation of different organs using hematoxylin and eosin staining did not observe any morphological alterations in the spleen, adrenal glands, and heart. The size and shapes in crypts and villi of the intestine and seminiferous tubules were intact with normal spermatozoa count in testis (Pandey et al., 2019). In another experiment on acute toxicity study of poly-herbal formulation (containing *P. tubrosa*), “Dhatryadi Ghrita” methanolic extract did not show any untoward effects in mice (Pal and Mishra, 2019).

CONCLUSION AND FUTURE DIRECTIONS

The scientific community worldwide has shown an interest in discovering the disease combating potential of natural flora and bioactive compounds therein. A wide pool of literature suggests that these phytochemicals hold the immense potential of eliminating diseases, and many such plant-based drugs have long been used in many parts of the world. Markedly, the tuber and leaf of *P. tuberosa* plant have been used from ancient times in the traditional practices. Previous literature has shown that leaf and tuber extracts of the plant contain several bioactive
constituents that possess an extensive range of pharmacological activities. Some of the isolated compounds, namely, puerarin, irsosidione, genistein, daidzein, biochanin A, biochanin B, isoerocitrin, and mangiferin, have been studied for various medicinal purposes and demonstrated several pharmacological activities like anticancerous, antidiabetic, anti-inflammatory, antioxidant, antiviral, cardioprotective, fibrinolytic, hepatoprotective, hypolipidemic, immunomodulatory, neuroprotective, nephroprotective, nootropic, vasodilatory, and wound healing. The bioactive constituents of *P. tuberosa* can individually or synergistically exert their therapeutic effects. Apart from puerarin, daidzein, genistein, irsosidione, and biochanin, many more compounds have been identified from *P. tuberosa*; however, underlying mechanisms of action of compounds isolated from this plant are not completely known. Thus, exploration of pharmacological mechanisms of individual bioactive constituents and their toxicity/clinical studies shall be the focus of future investigations. The extensive range of pharmacological properties of *P. tuberosa* could provide us a new interesting path for future research and may present new perspectives for the disease management.

REFERENCES

Adedapo, A. A., Fagboun, O. A., Dawurung, C., Oyagbemi, A. A., Omobowale, T. O., and Yakubu, M. A. (2017). The aqueous tuber extract of Pueraria tuberosa (Willd.) D.C. caused cytotoxic effect on HT 29 cell lines with down regulation of nuclear factor-kappa B (NF-kB). *J. Compl. Integr. Med.* 16 (4), 1–8. doi:10.1515/jcim-2016-0119

Ali, H., Dixit, S., Ali, D., Alqahtani, S. M., Alkahtani, S., and Alarifi, S. (2015). Isolation and evaluation of anticancer efficacy of stigmastanol in a mouse model of DMBA-induced skin carcinoma. *Drug Des. Dev. Ther.* 9, 2793–2800. doi:10.2147/DDDT.S83514

Amalan, V., Vijayakumar, N., Indumathi, D., and Ramakrishnan, A. (2016). Antidiabetic and antihyperlipidemic activity of p-coumaric acid in diabetic rats, role of pancreatic GLUT 2: in vivo approach. *Biomed. Pharmacother.* 84, 230–236. doi:10.1016/j.biopha.2016.09.039

Anilkumar, K., Reddy, G. V., Azad, R., Sastry Yarla, N., Dharmpuri, G., Srivastava, A., et al. (2017). Evaluation of anti-inflammatory properties of isoorientin isolated from tubers of pueraria tuberosa. *Oxid. Med. Cell. Longev.* 2017, 1–7. doi:10.1155/2017/5498054

Aruna, M. R., Kumar, D. J. M., Senbagam, D., and Senthilkumar, B. (2016). Investigation on phytochemical and antimicrobial properties of tuber extracts of pueraria tuberosa linn. *J. Pure Appl. Microb.* 10 (2), 1573–1578.

Aruna, M. R., Mukesh Kumar, D. J. P., Palani, P., Senbagam, D., and Senthilkumar, B. (2018). Effects of pueraria tuberosa linn hydroalcoholic tuber extract on expression of apoptosis associated proteins in HT-29 human colon carcinoma cell line. *Int. J. Curr. Microbiol. Appl. Sci.* 7 (6), 3863–3873. doi:10.20546/ijcmas.2018.706.455

Ayurvedic pharmacopoeia of India (1999). *Ayurvedic pharmacopoeia of India. Part-1*, 2. New Delhi: Ministry of Health and Family Planning, Department of Health, Government of India, 1–190.

Ayurvedic pharmacopoeia of India (2001). *Ayurvedic pharmacopoeia of India Part-1*, 2. New Delhi: Ministry of Health and Family Planning, Department of Health, Government of India, 183–184.

Babu, P. V., Bandi, S., Raju, M., and Tiwari, V. K. (2016). Antioxidant and immunosuppressant activity of pueraria tuberosa. *IJPBR.* 8 (1), 23–34.

Bagheri, M., Joghataei, M. T., Mohseni, S., and Roghani, M. (2011). Genistein ameliorates learning and memory deficits in amyloid β1-40 rat model of Alzheimer’s disease. *Neurobiol. Learn. Mem.* 95 (3), 270–276. doi:10.1016/j.learnerm.2010.12.001

Bhattarai, G., Min, C. K., Jeon, Y. M., Bashyal, R., Poudel, S. B., Kook, S. H., et al. (2019). Oral supplementation with p-coumaric acid protects mice against diabetes-associated spontaneous destruction of periodontal tissue. *J. Periodontol. Res.* 54 (6), 690–701. doi:10.1111/jper.12675

Bulugonda, R. K., Kumar, K. A., Gangappa, D., Beeda, H., Philip, G. H., Muralidhara Rao, D., et al. (2017). Mangiferin from Pueraria tuberosa reduces inflammation via inactivation of NLRP3 inflammasome. *Sci. Rep.* 7, 42683–42714. doi:10.1038/srep42683

Cha, H., Lee, S., Lee, J. H., and Park, J. W. (2018). Protective effects of p-coumaric acid against acetaminophen-induced hepatotoxicity in mice. *Food Chem. Toxicol.* 121, 131–139. doi:10.1016/j.fct.2018.08.060

Chauhan, N. S., Sharma, V., Thakur, M., Christine Helena Frankland Sawaya, A., and Dixit, V. K. (2013). *Pueraria tuberosa* DC extract improves androgenesis and sexual behavior via FSH LH cascade. *Sci. World J.* 2013, 1–10. doi:10.1155/2013/780659

Chen, X., He, Z., Wu, X., Mao, D., Feng, C., Zhang, J., et al. (2020). Comprehensive study of the interaction between Puerariae Radix flavonoids and DNA: from theoretical simulation to structural analysis to functional analysis. *Spectrochim. Acta Mol. Biomol. Spectrosc.* 231. doi:10.1016/j.sab.2020.118109

Choi, E. J., and Kim, G. H. (2014). The antioxidant activity of daidzein metabolites, O-desmethylangolensin and equol, in HepG2 cells. *Mol. Med. Rep.* 9 (1), 328–332. doi:10.3892/mmr.2013.1752

Choi, E. M., Suh, K. S., Park, S. Y., Chin, S. O., Rhee, S. Y., and Chon, S. (2019). Biochanin A prevents 2,3,7,8-tetrachlorodibenzo-p-dioxin-induced adipocyte dysfunctions in cultured 3T3-L1 cells. *J. Environ. Sci. Heal.* 54 (9), 865–873. doi:10.1080/10994532.2019.1603746

Choi, Y. R., Shim, J., and Kim, M. J. (2020). Genistin: a novel potent anti-adipogenic and anti-hipopgenic agent. *Molecules* 25 (9). doi:10.3390/molecules25092042

AUTHOR CONTRIBUTIONS

RB was responsible for the methodology, writing the original draft, and data curation. BC and SR were responsible for data curation and reviewing and editing the manuscript. NK was responsible for conceptualization, data curation, writing, reviewing, and editing the manuscript.

FUNDING

RB was supported by CSIR-JRF fellowship, and NK lab was supported by grants from CSIR-IMTECH.

ACKNOWLEDGMENTS

The authors gratefully acknowledge the Foundation for Revitalization of Local Health Traditions and the University of TransDisciplinary Health Sciences and Technology (FRLHT-TDU) for providing the permission to use images of *P. tuberosa* plant from Indian Medicinal Plants database.
Park, C. E., Yun, H., Lee, E. B., Min, B. I., Bae, H., Choe, W., et al. (2010). The
Pandey, N., Chaurasia, J. K., Tiwari, O. P., and Tripathi, Y. B. (2007). Antioxidant
Pandey, N., and Tripathi, Y. B. (2010). Antioxidant activity of tuberosin
Frontiers in Pharmacology | www.frontiersin.org January 2021 | Volume 11 | Article 582506
Pal, R. S., and Mishra, A. (2019). Evaluation of acute toxicity of the methanolic
Pandit, S., Banerji, P., and Banerjee, D. (2014). Malignant melanoma study of different organs of charles foster strain rat under the exposure of
Maji, A. K., Pandit, S., Banerji, P., and Banerjee, D. (2014). Pharmacological Potentials of
Mladný, M., Mladná, J., and Benes, V. (2012). Therapeutic potential of quercetin as a cardiovascular agent. Eur. J. Med. Chem. 155, 889–904. doi:10.1016/j.ejmech.2018.06.053
Pragasam, S. J., Venkatesan, V., and Rasool, M. (2013). Immunomodulatory and anti-inflammatory effect of p-coumaric acid, a common dietary polyphenol on experimental inflammation in rats. Inflammation 36 (1), 169–176. doi:10.1007/s10753-012-9532-8
Pramanik, S. S., Sur, T. K., Debnath, P. K., and Bhattacharyya, D. (2010). Effect of Pueraria tuberosa tuber extract on chronic foot shock stress in Wistar rats, Nepal Med. Coll. J. 12 (4), 234–238.
Pramanik, S. S., Sur, T. K., Debnath, P. K., Pramanik, T., and Bhattacharyya, D. (2011). Effect of Pueraria tuberosa on cold immobilization stress induced changes in plasma corticosterone and brain monoamines in rats. J. Nat. Remedies. 11 (1), 69–75. doi:10.18311/jnr/2011/52
Pueraria tuberosa-Vikaspedia Available at: https://vikaspedia.in/agriculture/crop-production/package-of-practices/medicinal-and-aromatic-plants/pueraria-tuberosa. (Retrieved from September 21 2020)
Puri, H. S. (2003). Basayan: Ayurvedic Herbs for Longevity and Rejuvenation. 3 (2), (Hoboken, NJ: CRC Press). 303–307.
Qian, Y., Guo, T., Huang, M., Cao, L., Li, Y., Cheng, H., et al. (2012). Neuroprotection by the soy isoflavone, genistein, via inhibition of mitochondria-dependent apoptosis pathways and reactive oxygen induced-NF-kB activation in a cerebral ischemia mouse model. Neurochem. Int. 60 (8), 759–767. doi:10.1016/j.neuint.2012.03.011
Qu, G., Tian, W., Huan, M., Chen, J., and Fu, H. (2017). Formononetin exhibits anti-hyperglycemic activity in alloxan-induced type 1 diabetic mice. Exp. Biol. Med. 242 (2), 223–230. doi:10.1177/1535370216657445
Raghuvanshi, R., and Jain, B. (2011). Hypoglycemic effect of Pueraria tuberosa tubers in healthy and alloxan diabetic rats. J. Chem. Biol. Phys. Sci. 2 (1), 270–272.
Rani, V. U., Sudhakar, M., and Ramesh, A. (2017). Protective effect of Pueraria tuberosa Linn. in arsenic induced nephrotoxicity in rats. Asian J. Pharmaceut. Res. 7 (1), 15. doi:10.5958/2231-5691.2017.00003.x
Rao, N. V., Pujar, B., Nimbal, S. K., Shantakumar, S. M., and Satyanarayana, S. (2008). Nootropic activity of tuber extract of Pueraria tuberosa (roxb). Indian J. Exp. Biol. 46 (8), 591–598.
Ratnam, V., and Venkata Raju, R. R. (2009). Preliminary phytochemical and antimicrobial properties of Pueraria tuberosa (Willd.) DC. A potential medicinal plant. Ethnobotanical Leaflets. 13, 1051–1059.
Rawtal, B., Sahatpure, N., and Sakharwade, S. (2019). Pueraria tuberosa (virdakarna): an emerging cosmeceutical herb. Int. J. Sci. 4 (7), 130–137.
Robinson, M. M., and Zhang, X. (2011). The world medicines situation 2011, traditional Medicines : global situation , issues and challenges. 3rd Edn. (Geneva, Switzerland: World Health Organization), 1–14.
Roy, A. J., and Stanely Mainzen Prince, P. (2013). Preventive effects of p-coumaric acid on cardiac hypertrophy and alterations in electrocardiogram, lipids, and lipoproteins in experimentally induced myocardial infarcted rats. Food Chem. Toxicol. 60, 348–354. doi:10.1016/j.fct.2013.04.052
Sabitha, R., Nishi, K., Gunasekaran, V. P., Agilan, B., David, E., Annamalai, G., et al. (2019). Pueraria tuberosa– an Adjuvant to treatment of osteoarthritis in rats: An Ethnomedicinal plant. Indian J. Pharm. Sci. 81 (6), 1059. Available at: https://www.ijpms.com/vol-4-5.
Sabitha, R., Nishi, K., Gunasekaran, V. P., Agilan, B., David, E., Annamalai, G., et al. (2019). Pueraria tuberosa– an Adjuvant to treatment of osteoarthritis in rats: An Ethnomedicinal plant. Indian J. Pharm. Sci. 81 (6), 1059. Available at: https://www.ijpms.com/vol-4-5.
Sakamoto, Y., Naka, A., Okura, N., Kondo, K., and Iida, K. (2014). Daidzein regulates proinflammatory adipoines thereby improving obesity-related inflammation through PPARy. Mol. Nutr. Food Res. 58 (4), 718–726. doi:10.1002/mnr.213000482
Sakamura, R., and Thong-as, W. (2018). Neuroprotective effect of p-coumaric acid in mice with cerebral ischemia reperfusion injuries. Metab. Brain Dis. 33 (3), 765–773. doi:10.1007/s11011-018-0185-7
Satpathy, S., Patra, A., Ahirwar, B., and Hussain, M. D. (2018). Antioxidant and anticancer activities of green synthesized silver nanoparticles using aqueous extract of tubers of Pueraria tuberosa. Artificial Cells. Nanomed. and Biotechnol. 46 (Suppl. 3), S71–S85. doi:10.1080/21691401.2018.1489265

Satpathy, S., Patra, A., Hussain, M. D., and Ahirwar, B. (2017). Simultaneous estimation of genin and daidzein in Pueraria tuberosa (Willd.) DC by validated high-performance thin-layer chromatography (HPTLC) densitometry method. J. Liq. Chromatogr. Relat. Technol. 40 (10), 499–505. doi:10.1080/10982004.2017.1329794

Satpathy, S., Patra, A., Hussain, M. D., and Kazi, M. (2020). Antioxidant enriched fraction from Pueraria tuberosa alleviates ovarioctomized-induced osteoporosis in rats, and inhibits growth of breast and ovarian cancer cell lines in vitro. BioRxiv. doi:10.1101/2020.09.21.365953

Sawale, P. D., Singh, R. R. B., Kapila, S., Arora, S., Rastogi, S., and Rawat, A. K. S. (2013). Immunomodulatory and antioxidative potential of herb (Pueraria tuberosa) in mice using milk as the carrier. Int. J. Dairy Technol. 66 (2), 202–206. doi:10.1111/1471-0307.12101

Sharma, A., Agrawal, M., and Lal, M. (2018). Cultivation of “vidarikan” (Pueraria tuberosa dc): a drug of potential importance. Int. J. Inf. Retr. Res. (IJIRR). 5 (5), 5460–5462.

Sharma, S. H., Rajamanickam, V., and Nagarajan, S. (2018). Antiproliferative effect of p-Coumaric acids targets UPR activation by downregulating Grp78 in colon cancer. Chem. Biol. Interact. 291, 16–28. doi:10.1016/j.cbi.2018.06.001

Sharmila, R., Sindhu, G., and Arockianathan, P. M. (2016). Nephroprotective effect of β-sitosterol on N-diethylthiourea intoxicated and ferric nitrolactate promoted acute nephrotoxicity in Wistar rats. J. Basic Clin. Physiol. Pharmacol. 27 (5), 473–482. doi:10.1515/jbcpp-2015-0085

Shilpashare, V. K., Dang, R., and Das, K. (2015). Evaluation of phytochemical investigation and immunomodulatory activity of four different plant species of videhari by carbon clearance test on wistar rats. Ann. Phytochem. 4 (1), 94–98.

Shukla, R., Banerjee, S., and Tripathi, Y. B. (2018a). Antioxidant and Antipaptotic effect of aqueous extract of Pueraria tuberosa (Roxb. Ex Willd.) DC on streptozotocin-induced diabetic nephropathy in rats. BMC Compl. Alternative Med. 18 (1), 156. doi:10.1186/s12906-018-2221-x

Shukla, R., Banerjee, S., and Tripathi, Y. B. (2018b). Pueraria tuberosa extract inhibits iNOS and IL-6 through suppression of PKC-α and NF-κB pathway in diabetes-induced nephropathy. J. Pharm. Pharmacol. 70 (8), 1102–1112. doi:10.1111/jphp.12931

Shukla, R., Pandey, N., Banerjee, S., Tripathi, Y. B., and Tripathi, Y. B. (2017). Effect of extract of Pueraria tuberosa on expression of hypoxia inducible factor-1α and vascular endothelial growth factor in kidney of diabetic rats. Biomed. Pharmacother. 93, 276. doi:10.1016/j.biopha.2017.06.045

Shukla, S., Jonathan, S., and Sharma, A. (1996). Protective action of butanolic fraction from Pueraria tuberosa alleviates ovariectomized-induced osteoporosis in rats, and inhibits growth of breast and ovarian cancer cell lines in vitro. J. Nutr. Biochem. 7 (9), 279–281. doi:10.1016/S0955-2863(96)09008-4

Shukla, R., Banerjee, S., and Tripathi, Y. B. (2016). Protective effect of hydroalcoholic extract of Pueraria tuberosa against arsenic induced neurotoxicity in rats. Int. J. Res. Pharm. Chem. 6 (2), 350–362.

Viji, Z., and Paulsamy, S. (2012). Preclinical phytochemical screening and HPTLC finger printing analysis of traditional medicinal plant Pueraria tuberosa (Roxb. ex Willd.) DC. Kong. Res. J. 5 (1), 56–59. doi:10.26524/kjr254

Viji, Z., and Paulsamy, S. (2015). In-Vitro antioxidant properties and total phenolic, flavonoid and tannin contents of Pueraria tuberosa (Roxb. ex Willd.) DC. RJPBCS. 7 (2428), 2428–2438.

Vang, H., Zhang, D., Ge, M., Li, Z., Jiang, J., and Li, Y. (2015). Formononetin inhibits enterovirus 71 replication by regulating COX-2/PGE2 expression. Virol. J. 12 (1), 26. doi:10.1186/s12985-015-0264-4

Xia, D., Zhang, P. H., Fu, Y., Yu, W. F., and Ju, M. T. (2013). Hepatoprotective activity of puerarin against carbon tetrachloride-induced injuries in rats: a randomized controlled trial. Food Chem. Toxicol. 59, 90–95. doi:10.1016/j.fct.2013.05.055
Xing, G., Dong, M., Li, X., Zou, Y., Fan, L., Wang, X., et al. (2011). Neuroprotective effects of puerarin against beta-amyloid-induced neurotoxicity in PC12 cells via a PI3K-dependent signaling pathway. *Brain Res. Bull.* 85 (3–4), 212–218. doi:10.1016/j.brainresbull.2011.03.024

Xu, X., Zheng, N., Chen, Z., Huang, W., Liang, T., and Kuang, H. (2016). Puerarin, isolated from Pueraria lobata (Willd.), protects against diabetic nephropathy by attenuating oxidative stress. *Gene* 591 (2), 411–416. doi:10.1016/j.gene.2016.06.032

Yadav, D., Sharma, A., Srivastava, S., and Tripathi, Y. B. (2016a). Methanolic extract of Pueraria tuberosa Linn. ameliorates renal injury and oxidative stress in rats with alloxan-induced diabetes. *J. Chem. Pharmaceut. Res.* 8 (8), 133–139.

Yadav, D., Pandey, V., Srivastava, S., Tripathi, Y. B., and Kumar, M. (2019). Methanolic extract of Pueraria tuberosa Linn ameliorates renal injury and oxidative stress in rats with alloxan-induced diabetes. *J. Emerg. Technol.* 6, 557–574.

Yang, S., Wei, L., Xia, R., Liu, L., Chen, Y., Zhang, W., et al. (2019). Formononetin ameliorates cholestasis by regulating hepatic SIRT1 and PPARα. *Biochem. Biophys. Res. Commun.* 512 (4), 770–778. doi:10.1016/j.bbrc.2019.03.131

Yin, M. S., Xu, S. H., Wang, Y., Lie, L., Zhang, Q., Zheng, W. M., et al. (2016). Methylamine irisolidone, a novel compound, increases total ATPase activity and inhibits apoptosis in vivo and in vitro. *J. Asian Nat. Prod. Res.* 18 (6), 562–575. doi:10.1080/10286020.2015.1133610

Yu, Q., Han, W., Zhu, Y., and Zhai, H. (2017). Effect of puerarin on type II diabetes mellitus with orthopaedic footwear. *Pak. J. Pharm. Sci.* 30 (5), 1899–1903.

Yu, X., Gao, F., Li, W., Zhou, L., Liu, W., and Li, M. (2020). Formononetin inhibits tumor growth by suppression of EGFR-Akt-Mcl-1 axis in non-small cell lung cancer. *J. Exp. Clin. Canc. Res.* 39 (1). doi:10.1186/s13046-020-01566-2

Yue, Y., Shen, P., Xu, Y., and Park, Y. (2019). p-Coumaric acid improves oxidative and osmosis stress responses in *Caenorhabditis elegans*. *J. Sci. Food Agric.* 99 (3), 1190–1197. doi:10.1002/jsfa.9288

Zhang, J., Liu, L., Wang, J., Ren, B., Zhang, L., and Li, W. (2018). Formononetin, an isoflavone from Astragalus membranaceus inhibits proliferation and metastasis of ovarian cancer cells. *J. Ethnopharmacol.* 221, 91–99. doi:10.1016/j.jep.2018.04.014

Zhang, Q.-Y., Zheng, W., Gul Khaskheli, S., and Huang, W. (2019). *In Vivo* evaluation of tectoridin from puerariae flos on anti-alcoholism property in rats. *Journal of Food and Nutrition Research* 7 (6), 458–464. doi:10.12691/jfnr-7-6-8

Zhang, Y., Chen, C., and Zhang, J. (2019). Effects and significance of formononetin on expression levels of HIF-1α and VEGF in mouse cervical cancer tissue. *Oncol. Lett.* 18 (3), 2248–2253. doi:10.3892/ol.2019.10567

Zheng, W., Sun, R., Yang, L., Zeng, X., Xue, Y., and An, R. (2017). Daidzein inhibits choriocarcinoma proliferation by arresting cell cycle at G1 phase through suppressing ERK pathway in vitro and in vivo. *Oncol. Rep.* 38 (4), 2518–2524. doi:10.14348/or.2017.5928

Zhong, Y., Zhang, X., Cai, X., Wang, K., Chen, Y., and Deng, Y. (2014). Puerarin attenuated early diabetic kidney injury through down-regulation of matrix metalloproteinase 9 in streptozotocin-induced diabetic rats. *PLoS One* 9 (1). doi:10.1371/journal.pone.0085690

Zhou, Q., Zhang, W., Li, T., Tang, R., Li, C., Yuan, S., et al. (2019). Formononetin enhances the tumoricidal effect of everolimus in breast cancer MDA-MB-468 cells by suppressing the mTOR pathway. *Evid. base Compl. Alternative Med.* 2019, 1–8. doi:10.1155/2019/9610629

Conflict of Interest: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2021 Bharti, Chopra, Raut and Khatri. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.