Supplementary materials

Supplementary Text 1: algorithm for detection of pCFMs

Here we present a complete description of the algorithm we used to infer compensatory frameshifting mutations from a nucleotide multiple alignment of a set of orthologous protein-coding sequences. The main steps are reflected in Supplementary figures 1 and 2.

1. All unique “holes” in the alignment are determined and the list of them is formed. The hole is defined as a row of successive gaps, which may further be classified as an insertion or a deletion. If multiple species have a row of successive gaps of the same length and in the same position they share a hole.

2. While the list of holes is not empty, paragraphs 2.1-2.4 are executed (holes are classified into insertions or deletions).

 2.1. The shortest hole is chosen, further referred to as the target hole; if multiple holes of the same minimum length are available, a random one of them is chosen.

 2.2. Two lists of species are formed. The first one includes species sharing the target hole. The second one includes species not sharing the target hole. Only species with non-gap symbols in all the positions of the hole are added to this group. Note that a species carrying a longer hole in the same region is not considered to share the target hole.

 2.3. For the two lists of species formed in paragraph 2.2, it is determined which of them form a clade (one of them, both or neither of them).

 2.3.1. If only the first group (with the target hole) forms a clade, the target hole is classified as a deletion in the species sharing it.

 2.3.2. If only the second group (without the target hole) forms a clade, the target hole is classified as an insertion in the species sharing it.

 2.3.2.a. If the target hole is classified as an insertion and there are other holes in the alignment overlapping with the target hole, the overlapping positions are removed from these holes. This step assumes that all gaps in the species without an insertion at positions of this insertion are “insertion-induced” - they are there only because of the presence of species with insertion in the alignment. However, it may be not true, if a deletion appeared after the insertion and some of the inserted nucleotides got deleted as a result. In this case gaps may represent their own deletion instead of being insertion-induced. As far as we are concerned there is no way to know if gaps on the overlapping positions are insertion-induced or not. Therefore, such gaps were still considered insertion-induced, but were recorded as “uncertain cases”. Unfortunately, we failed to find any use for such marking in our further analysis, but if one wants to use our code on Github, we think s/he should be aware of such feature.

 2.3.3. If they both form a clade, or they both do not form a clade, the hole remains
The target hole is removed from the holes list, and a new iteration through paragraphs 2.1-2.4 is initiated.

3. After all the insertions and deletions are classified, species undergo filtering. Species with genes (1) with nucleotide number not divisible by 3 or (2) without a start and/or an end or (3) having an inner stop are removed. The reason this step is not performed at the start is that species with such unreliable and possibly erroneously sequenced genes could still help us to determine insertions and deletions in species with trustworthy genes.

4. For every species in the alignment that is left (hereafter, target species), paragraphs 4.1-4.6 are executed (insertions and deletions of that species are or are not classified as pCFM).

4.1. A list of insertions and deletions (indels) this species carries is formed. Indels of length divisible by 3 are dropped from this list (i.e. further steps assume they never existed). This step is performed because such indels are not of any interest in the search for pCFMs, and the number of pCFMs candidates will matter in paragraph 4.3.

4.2. Indels, which are long (>20 nucleotides) and common for target species and all the descendants of this species’s parent node are also dropped from the list. This is a mechanism for not considering long unaligned regions in basal species to be indicators of insertions in other species (suppose, for example, a hole of length 100 in a couple of basal species, which is most probably a defect of exon alignment. The algorithm will define sequences in all other species as insertions, which would not be appropriate. This procedure is taken in order to get rid of such abnormal “insertions”). This step is not crucial for general understanding of an algorithm, but if one wants to use our code on GitHub, we think s/he should be aware of that feature as well.

4.3. If more than 2 indels are left in the list, the species is dropped (i.e. paragraphs 4.4-4.5 are not executed). The reasoning behind this step is that such species are likely to be somewhat ill-sequenced or ill-aligned. However, handling species with multiple pCFMs was implemented, but wasn’t used (the parameter brutal_conditions in the script results in bypassing this step).

4.4. The indels are classified as pCFM if one of two conditions are met: (1) indels have the same name (insertion-insertion or deletion-deletion) and sum of their lengths is divisible by 3 or (2) indels have different names (insertion-deletion or deletion-insertion) and the difference of their lengths is divisible by 3.

4.5. If pCFMs are detected, previously dropped species with the same indels (paragraph 3) are added into consideration. The reasoning here is that if they carry the same indels as trustworthy species, they are probably also trustworthy. This step is performed to gain more support in our analysis: we consider the cases where multiple species carry the pCFM to be more reliable.

4.6. If pCFMs are detected, it is checked, if both frameshifting indels from the pair happened simultaneously or not. For that two last common ancestors are compared: the last common ancestor of the species carrying the first frameshifting mutation of the pair and the last common ancestor of the species carrying the second. If these common ancestors are the same, frameshifting mutations happened simultaneously, else they did
5. After the iteration through all the species, for each pCFM the following information is added to the output: species in which pCFM was found, the names of mutations it is comprised of (insertion/deletion), lengths, positions, and simultaneity of their happening. An output is given in a form of two tsv tables: one for the simultaneous mutations, another for non-simultaneous.

Supplementary Figure 1. A schematic representation of the first part of the algorithm of search for indels in the alignment: classification of indels. A fragment of an alignment is shown, with letters a-h denoting different species. Red frames correspond to distinct holes. Green check marks flag species sharing the considered hole, and red crosses, those not sharing it. Blue circles flag the rest of the species (for which the presence of the hole is not unequivocal). The numbers correspond to the paragraphs in the algorithm description.
Supplementary Figure 2. A schematic representation of the second part of the algorithm of search for indels in the alignment: filtering and identification of pCFM. Species are denoted as sp1-sp7. The numbers correspond to the paragraphs in the algorithm description.

Supplementary Table 1

Supplementary Table 1. The list of species in which the pCFMs were detected for each of the 11 high-confidence pCFM-carrying genes.

Gene	Species carrying the pCFM
RAB36	calJac3, papHam1, panTro4, chlSab1, saiBo1, rheMac3, gorGor3, ponAbe2, hg19, nomLeu3, macFas5
ARHGAP6	panTro4, macFas5, papHam1, ponAbe2, nomLeu3, hg19,
Supplementary Table 2

Supplementary Table 2. Support from NCBI and Uniprot databases obtained for each of the 11 pCFM-carrying genes. The columns “evidence” and “source” indicate the type of evidence (protein or mRNA or predicted gene) and the database this evidence was obtained from. In the last column, the ID for the corresponding database (RefSeq ID or UniProt ID) is presented. For each gene and for each of the variants (with and without the pCFM), the evidence of type “mRNA” or “protein” is listed for all species for which such evidence is available. The evidence of the type “predicted gene” is listed only if no “mRNA” or “protein”-level evidence is available, and just for one of the species.

Gene	Species	Evidence	Source	ID
RAB36	**With pCFM:**	mRNA	NCBI	**NM_004914.4**
	hg19			
	Without pCFM:	mRNA	NCBI	**NM_001359270.1**
	mm10			
ARHGAP6	**With pCFM:**	mRNA	NCBI	**NM_013427.2**
Gene	With pCFM:			Without pCFM:
----------	------------	-----------------	-------------	----------------
INSL6	panTro4	mRNA	UniProt	H2QYA3
	mm10	mRNA	NCBI	NM_009707.4
NCR3LG1		mRNA	NCBI	NM_001077521.2
		protein	UniProt	Q68D85
		predicted gene	NCBI	XM_003254281.4
		mRNA	UniProt	A0A2I3FX64
SPATA24		predicted gene	NCBI	XP_003477496.1
		protein	UniProt	Q6P926
RASSF4		predicted gene	NCBI	XM_006761419.2
		predicted gene	NCBI	XM_007516816.2
Supplementary Table 3

Functional annotation of the 6 high-confidence pCFM-carrying genes. The annotations are copied from uniprot (cited in the main text). Annotation for Osi10 is copied from FlyBase (Drysdale and FlyBase Consortium 2008).

Cyp6a23	**With pCFM:**	**predicted**	**NCBI**	**XM_018936230.1**
Bactrocera_latifrons	gene			
Without pCFM:	dm6	mRNA	UniProt	Q9V771
Diap1	**With pCFM:**	**predicted**	**NCBI**	**XM_026989947.1**
droPer1	gene			
Without pCFM:	dm6	protein	UniProt	Q2430
Osi10	**With pCFM:**	**predicted**	**NCBI**	**XM_001999204.2**
droMoj3	gene			
Without pCFM:	DroVir3	predicted gene	NCBI	XM_002058517.2
wds	**With pCFM:**	**predicted**	**NCBI**	**XM_020947031.1**
Dserrata	gene			
Without pCFM:	droAna3	predicted gene	NCBI	XM_001966487.3
CG31530-RA	**With pCFM:**	**predicted**	**NCBI**	**XM_017175617.1**
droKik2	gene			
Without pCFM:	dm6	mRNA	UniProt	D2NUL5
Gene	Function			
------------	--			
RASSF4	Potential tumor suppressor. May act as a KRAS effector protein. May promote apoptosis and cell cycle arrest.			
ARHGAP6	GTPase activator for the Rho-type GTPases. Works by converting them to an inactive GDP-bound state. Could regulate the interactions of signaling molecules with the actin cytoskeleton. Promotes continuous elongation of cytoplasmic processes during cell motility and simultaneous retraction of the cell body changing the cell morphology.			
NCR3LG1	Triggers NCR3-dependent natural killer cell activation.			
RAB36	Protein transport. Probably involved in vesicular traffic (By similarity).			
SPATA24	Binds DNA with high affinity but does not bind to TATA boxes. Synergises with GMNN and TBP in activation of TATA box-containing promoters and with GMNN and TBPL1 in activation of the NF1 TATA-less promoter. May play a role in cytoplasm movement and removal during spermiogenesis (By similarity).			
wds	Contributes to histone modification. May position the N-terminus of histone H3 for efficient trimethylation at 'Lys-4'.			

Supplementary Table 4

Gene age	Gene presence	Gene sequence conservation	Region conservation										
Metric	Distanc e to root	# of good species	ω	phastcons	entropy								
-------------------------	-------------------	-------------------	-------------------	-----------	---------								
Setting	-	-	All	Only good	Two species								
Low confidence dataset	Wilcoxon signed-rank test	0.004	5.4e-9	0.225	0.025	0.472	Kolmogorov-Smirnov test for uniform distribution of individual p-values	0.66	0.037	4.8e-37	0.0005	0.194	2.7e-6
p-value													
High confidence dataset	Kolmogorov-Smirnov test for uniform distribution of individual p-values	0.028	0.277	0.04	0.248	-	Kolmogorov-Smirnov test for uniform distribution of individual p-values	0.0004	0.001	-	0.033	0.012	-
p-value													

See Methods for definitions of approaches for picking species for calculation of conservation metrics. Red, p>0.05; green, p<0.05.
Supplementary Figure 3

Supplementary Figure 3. The effect of pCFM on hydropathy of the encoded amino acid sequence. The notation is the same as in Figure 5.

Supplementary Figure 4
Supplementary Figure 4. Effects of pCFM and amino acid substitutions occurring on the same phylogenetic branch as pCFM on the physico-chemical properties of the encoded protein, according to the Miyata difference between the encoded amino acid sequences. The notation is the same as in Figure 6.

Supplementary Figure 5. Effects of amino acid substitutions occurring on the phylogenetic branches descendant to pCFM-branch on the physico-chemical properties of the encoded protein, according to the difference in hydropathy of the encoded amino acid sequence. The notation is as in Figure 7.

Literature

Drysdale R, FlyBase Consortium. 2008. FlyBase: a database for the Drosophila research community. Methods Mol. Biol. 420:45–59.

UniProt Consortium. 2008. The universal protein resource (UniProt). Nucleic Acids Res. 36:D190-5. doi: 10.1093/nar/gkm895.