Bandgap Tuning of High Mobility Magnetron Sputtered Copper (I) Oxide Thin Films for Perovskite Solar Cell Applications

M.I. Hossain1, B. Aissa1,2,*, A. Bentouaf3,4, S. Mansour1

1Qatar Environment and Energy Research Institute (QERI), Hamad Bin Khalifa University (HBKU), Qatar Foundation, P.O. Box 5825, Doha, Qatar.
2MPB Communications Inc., Space & Photonics Division, 151 Hymus Boulevard, Pointe Claire, Quebec, Canada.
3Faculty of Technology, University of Doctor Moulay Tahar, Saida, 20000, Algeria.
4Laboratory of Physical Chemistry of Advanced Materials, University of Djillali Liabes, BP 89, Sidi-Bel-Abbes 22000, Algeria.

1. Introduction

Cuprous oxide (Cu2O) is a well-established p-type material and its conductivity is directly correlated with the oxygen rich or poor layers due to the variation in growth processes [1]. Such growth processes usually result in copper (I) oxide Cu2O and copper (II) oxide CuO (i.e. cupric oxide) [2,3] films mainly due to the oxidation process of copper films. The optical properties vary for both Cu2O and CuO as reported previously [4-7] mainly due to the growth process resulting in rich or poor oxygen bonding. It has been reported that Cu2O confirms an optical bandgap between 2.10 and 2.60 eV [4,5], whereas for CuO, it is between 1.3 and 2.1 eV [6,7]. Such optical properties open the path to use such layers as a buffer for energy conversion devices. In general, copper oxide films show high transparency with light absorbing capability at wavelengths below 600 nm, whereas metal rich oxide films absorbs strongly in the visible spectrum range [2].

As reported by Richardson [8], such oxide films can be used for architectural and aerospace applications because of the capability to tune the optical properties. In addition, their high light transmission along with their lower electrical resistivity makes these films suitable for a light window layer for optoelectronic devices, where their carrier transportation helps to generate electricity using energy conversion devices. However, it has been found that cuprous oxide can result in higher electrical resistivity due to growth conditions and/or post-oxidization effect [1,9].

Previously, Hossain et al. numerically confirmed Cu2O as an alternative hole transport material (HTM) with a power conversion efficiency of 24% [10]. Later, some experimental studies also confirmed the usage of this material to replace the expensive Spiro-OMeTAD layer [11-16] as a HTM. Due to the perfectly aligned valance band, carrier injection becomes ideal from the absorber layer. Many attempts have been conducted to fabricate Schottky junction, hetero-junction, and homo-junction devices using Cu2O as a light harvesting layer [17]. However, the limitation arises mainly from the high bandgap (>2 eV) which results in poor light absorption capability in longer range with a very low short circuit current (Jsc) [17].

Various techniques have been used to fabricate Cu2O thin films, including magnetron sputtering [18], copper oxidation [19], and atomic layer deposition (ALD) [20]. Unintentionally doped Cu2O films are naturally p-type due to the native defects identified as negatively charged copper vacancies (V'Cu) rather than interstitial oxygen (O'). Also, nitrogen doping has been used to prepare samples containing high density of holes of about 1018 cm-3 [1,2,4].

The aim of our work is to optimize the DC-reactive magnetron sputtering growth of Cu2O films at different temperatures by probing their structural, morphological, and electrical properties. The main focus was put on the evolution of preferred crystalline orientation as a function of the process temperatures.

2. Experimental Methods

All chemicals were purchased from Sigma Aldrich™ and used as received. Fluorine doped tin oxide (FTO) coated commercial borosilicate glass substrates with dimensions of 3 cm × 3 cm × 1.5 mm were used in the present work. The pre-coated FTO with a 100 nm thick layer has led to a very low sheet resistance of about ~10 Ω/square. Prior to the deposition, the substrates were systematically cleaned up inside an ultrasonic bath for 5 min using acetone, isopropanol, and deionized water. Samples were then dried with nitrogen blow and used immediately for deposition. Cu2O films were deposited by DC magnetron sputtering (Torr International’s MagSput™ series CRC 600) with a power density of 1.5 W/cm², using Cu target (99.999% purity), at various temperatures ranging from 100 °C to 250 °C under oxygen and nitrogen flow, with a background pressure of about 10 mTorr. The chamber base pressure was about 10⁻² Torr as pumped down by the turbo molecular pump. Cu2O films of a typical thickness of 100 nm were thus grown, and their structural and morphological characterizations show that the deposited film quality is...
rather homogeneous over the entire sample surface with an optimized optical and structural property. The deposition time was kept at 30 min, the relative oxygen to total flow ratio \((r(O_2) = O_2/Ar\) flows) at 11.5\% (namely 15 sccm of \(O_2\) vs. 120 sccm of \(Ar\) and 10 sccm of \(N_2\)) while the temperature deposition (TD) was varied from 100 to 250 °C in step of 50 °C (i.e., four TDs, namely 100, 150, 200 and 250 °C). Perovskite layer was formed on the top of the by thermal evaporation technique from the source powder of \(PbI_2\) (Sigma-Aldrich) and CH\(_3\)NH\(_3\) (Diyesol) by changing the ratio. The estimated thickness was checked using the crystal monitor of the system by changing the density and z-factor. It varied between 300 to 500 nm based on the ration of source powders.

3. Results and Discussion

3.1 XRD Analysis

The structural analysis of the sputtered thin films was performed by X-ray diffractometer (XRD, Rigaku XRD™) at diffraction angles 2θ, ranging from 10° to 80°. Fig. 1 shows the XRD pattern obtained for four as-deposited films, at temperatures of 100 °C, 150 °C, 200 °C and 250 °C (no annealing treatment was performed on these films after the deposition). XRD signal is shown after smoothing the signal with OriginLab™ software. The analysis shows a clear preferential growth tendency of the films along the (111) direction of \(CuO\) phase. For the samples grown at higher temperature, the (111) peak becomes more intense and starting from 200 °C. The (211) phase orientation takes place (peak located at 42 degree). The (211) peak becomes then more intense with respect to the deposition temperature. These crystalline changes could be attributed to the coalescence induced grain growth during the temperature process where unlike the larger nuclei, the smaller ones can easily rotate in order to minimize the interfacial energy. Indeed, with increasing temperature, the atoms gain sufficient energy to be structurally reoriented within the crystal lattice leading thereby to a more stable structure with enhanced crystalline quality.

![Fig. 1 Representative X-ray diffraction patterns of the CuO films grown at 100, 150, 200 and 250 °C without any post annealing process](https://doi.org/10.30799/jtfr.026.21050101)

The average crystallite size for each different orientation was estimated by the well-known Debye-Scherrer equation and summarized the crystalline sizes in Table 1. All the calculated values are found in the range of 45-50 nm.

Table 1 Crystallite size calculations
2θ

28
36

3.2 XPS Analysis

Surface analysis by X-ray photoelectron spectroscopy is performed on series of metal oxides using Escalab 250Xi (Thermo Fisher Scientific). The spectra analysis and fitting was conducted using Avantage software. The source is monochromatic A1K alpha and its energy is 1486.68 eV. The pass energy is 20 eV for all narrow scans and 100 eV for survey scans. Number of scans for each spectrum is 10 for high resolution spectra and 1 for survey spectra. The survey spectra showed a good quality metal oxide with some reduced presence of elements and carbon species contamination. Regarding the oxygen chemical states analysis, the carbon spectra fitting has been used to identify the amount of oxygen related to carbon species which can be deducted from the total oxygen to conclude the oxide related oxygen. The amounts of oxide related oxygen using Biesenger et al. [23]

![Fig. 2 Typical XPS spectra of CuO films grown at various temperatures, showing the stoichiometry of CuO material](https://doi.org/10.30799/jtfr.026.21050101)

3.3 Surface Morphology Analysis by SEM

The representative SEM micrographs of the as-deposited CuO films are displayed in Fig. 3. First, the films are shown to cover homogeneously the entire surface of the glass substrates. For films grown at 100 °C, small grains sizes of about 60 nm in diameter were the most observed ones, which is in good agreement with the XRD analysis. The grains are then found to be smaller with respect to the deposition temperatures, and are in the range of 50 nm, 40 nm, and 30 nm, for deposition temperatures of 150 °C, 200 °C and 250 °C, respectively.

![Fig. 3 Typical SEM micrographs of the copper oxide layers prepared on glass substrates, as deposited at (a) 100 °C and (b) 250 °C](https://doi.org/10.30799/jtfr.026.21050101)

3.4 Surface Topology Analysis by AFM

The surface roughness of the as-deposited CuO films at 250 °C has been investigated by means of atomic force microscopy. Clear change in the surface morphology was systematically observed with respect to the growth temperature, in agreement with SEM analysis. Fig. 4 shows the contact-mode AFM image of the CuO film as-deposited at 250 °C on glass substrate, showing an average RMS of 30.54 nm.

![Fig. 4 Contacting mode AFM image of the CuO layer prepared on glass at 250 °C](https://doi.org/10.30799/jtfr.026.21050101)
3.5 Optical Characterization

The optical properties of the as-deposited Cu$_2$O films were also investigated through the UV-Vis spectroscopy [Jaccy V100™], in the range of 380-890 nm wavelengths. The obtained spectra are summarized in Fig. 5(a-d). As known, copper oxide is a direct bandgap semiconductor material [10]. We have found that the band gap is 2.56 eV at 100 °C and decreased then to 2.50 eV (and is stable at this value) for DT ≥ 150 °C is stable regardless to the temperature.

The Cu$_2$O band gap was found to vary from 2.56 eV for films deposited at 100 °C to 2.50 eV for those deposited at DT ≥ 150 °C. This bandgap variation is believed to be due to the strong dependence of electronic states on the effective exciton mass, in addition to the bandwidth changes, dielectric confinement, and possible quantum confinement [24].

![Fig. 5 Bandgap estimation of the various copper oxide films deposited on glass substrates at (a) 100 °C, (b) 150 °C, (c) 200 °C, and (d) 250 °C](https://doi.org/10.30799/jtfr.026.21050101)

Generally, in polycrystalline semiconductors films, the optical absorption can be affected by many parameters, including the stoichiometric deviation such as the metal to oxygen ratio, grain size. Yet, the illustrated graphs displays rather continuous optical spectra, which could in fact happen due to the stability of the measured films during the characterization process (i.e. films degrade slowly) [24-26].

![Fig. 6 J-V measurement of Cu$_2$O based perovskite solar cells](https://doi.org/10.30799/jtfr.026.21050101)

3.6 Electrical Characterization

Four-point measurements were conducted on the Cu$_2$O films to measure their electrical surface conductivity, which was about 100 S/cm for films grown at 100 °C. Electrical conductivity was found to be less affected by the deposition-temperature. This average value is estimated somehow lower due most probably to the oxidation of the samples through their exposition to an open air for a long time. However, while a nitrogen doping was carried out during the reactive plasma sputtering of the films, electrical conductivity was improved by 100% and reached 200 S/cm. Table 2 summarizes the electrical properties of the deposited films at various temperatures. The I-V characteristics of the cells were performed by photo electrochemical set. This is the most fundamental characterization tool to measure the conversion efficiency of a cell. The measured structure as shown in Figs. 6 and 7 is for FTO/Cu$_2$O/CH$_3$NH$_3$PbI$_3$/Au. All the structures showed a diode-like behavior for dark and under light. For this type of ETM free structure, current generation under illumination can be observed. Although the feasibility of such films for perovskite solar cell is clearly demonstrated in this work, an optimization step is highly needed to obtain higher photo conversion efficiency.

![Table 2 Electrical properties of the Cu$_2$O films as a function of the growth temperature and annealing process](https://doi.org/10.30799/jtfr.026.21050101)

TD (°C)	Electrical conductivity (S/cm) Before annealing in N$_2$	After annealing in N$_2$
100	104	185
150	106	189
200	109	191
250	115	200

Electrical conductivity and Hall mobility (\(\mu_{Hall} \)) of the Cu$_2$O films deposited at 250 °C after annealing in nitrogen were measured at room temperature with appropriate ohmic contacts. Van der Pauw technique [27,28] was used to minimize the contact effects. The films were found to be p-type and the values of electrical conductivity, mobility of the charge carriers and carrier density measured were 216 S/cm, 286 cm2/Vs and 4.72 x 1019 cm$^{-3}$, respectively. The carrier concentration values obtained from these measurements agree well with those reported so far [29-36] by DC magnetron sputtering techniques used in this study with minimal controlling deposition parameters is recorded. The enhancement of carrier concentration was due to the presence of copper vacancies in our films. Fig. 8 shows the corresponding PL measurement of different structures. Excitation wavelength at 680 nm was used to irradiate the films with an equal intensity. For PL measurement, FTO glass substrates were used to mimic the real device structure. A strong quenching of the PL intensity has been observed once integrating Cu$_2$O as a hole transfer material, which is attributed to the better charge transport material quality.

![Fig. 8 PL measurement with clear quenching for Cu$_2$O/perovskite layers](https://doi.org/10.30799/jtfr.026.21050101)

4. Conclusion

The synthesis of cuprous oxides (Cu$_2$O) thin films by a direct current (DC) reactive magnetron sputtering technique has been demonstrated at various temperatures and their structural properties were systematically investigated, including crystal orientation, grain size and lattice parameters. Only two primary peaks corresponding to $\{111\}$ and $\{200\}$ orientiations indicating polycrystalline nature were found for all the deposited films. The relative peak intensity was found to be higher for increased deposition temperatures indicating thereby a better...
crystallinity. SEM analysis demonstrated that the films were compact throughout the entire sample surface, with no observed pinholes. The surface morphology of the films was strongly dependent on the deposition temperatures as a function of the film-thickness and changes from rough surface (grains of about 60 nm in diameter were measured at 100 °C) to much smoother surface observed at higher deposition temperatures. This variation in DT can play a vital role in forming CuO thin films, which can be directly implemented as energy application layer (e.g. hole transport material) with no further fine-tuning. Although a photovoltaic effect was clearly observed; showing a short current of 2.61 x 10^-4 A and an open circuit voltage of 100 mV, the efficiency is quite small and further optimizations are needed to optimize the whole device. However, the films were found to be p-type, with extremely high electronic properties, such as an electrical conductivity above 2 x 10^4 S/cm, a hole mobility of about 30 cm^2/Vs and a charge carrier density around 5 x 10^19 cm^-3.

Acknowledgement

The authors gratefully acknowledge Qatar National Research Fund (QNRF), member of Qatar Foundation, for funding this work through the grant NPRP11-0117-180330. Also, our thanks are due to QEERI Core Labs team for materials characterizations.

References

[1] R. Padayath, J. Seth, S.V. Babu, Deposition of copper oxide films by reactive laser ablation of copper formate in an rf. oxygen plasma ambient, Thin Solid Films 239 (1994) 8-15.
[2] T.J. Richardson, J.L. Slad, M.D. Rubin, Electrochromism of copper oxide thin films, Proceedings of the 4th International meeting on Electrochromism, Building Systems and Materials Division of the US Department of Energy, Uppsala, Sweden, 2000.
[3] H. Derin, K. Kantarli, Optical characterization of thin thermal oxide films on copper by ellipsometry, Appl. Phys. A 75 (2002) 391-395.
[4] J.F. Piersons, T.A. Hofer-Kock, A. Billard, Caprite, paramelacnite and tenorite films deposited by reactive magnetron sputtering, Appl. Surf. Sci. 210 (2003) 359-367.
[5] L. Kleinam, K. Mudrnick, Nitrogen states in GaAs(P) and the long-range, short-range model: A systematic study, Physica Rev. B 21(0) (1980) 3478-3490.
[6] S.C. Ray, Preparation of copper oxide thin film by the sol-gel-like dip technique and study of their structural and optical properties, Sol. Energy Mater. Sol. Cells 61(3-4) (2001) 307-312.
[7] B. Balamurugan, B.R. Mehta, Optical and structural properties of nanocrystalline copper oxide thin films prepared by activated reactive evaporation, Thin Solid Films 396 (2001) 90-96.
[8] T.J. Richardson, New electrochromic mirror systems, Solid State Ionics 165 (2003) 305-308.
[9] V.F. Drobny, D.L. Pulfrey, Properties of reactivity-sputtered copper oxide thin films, Thin Solid Films 64 (1979) 89-98.
[10] F. Laquai, Materials for lasers: all-round perovskites, Nat. Mater. 13 (2014) 429-430.
[11] T. Leijtens, G.E. Eperon, S.A. Pathak, A. Abe, M.M. Lee, H.J. Snith, Overcoming ultraviolet light instability of sensitized TiO2 with meso-structured organometal tri-halide perovskite solar cells, Nat. Commun. 4 (2013) 2985-1-8.
[12] M.I. Hossain, F.H. Alharbi, N. Tabet, Copper oxide as inorganic hole transport material for lead halide perovskite based solar cells, Solar Energy 120 (2015) 370-380.
[13] C. Zuo, L. Ding, Solution-processed CuO and CuO as hole transport materials for efficient perovskite solar cells, Small 11(41) (2015) 5528-5532.
[14] S. Chatterjee, A.J. Pal, Introducing CuO thin films as a hole-transport layer in efficient planar perovskite solar cell structures, J. Phys. Chem. C 120(3) (2016) 1428-1437.
[15] B.A. Nejand, V. Ahmadi, S. Gharibzadeh, H.R. Shahrverdi, Cuprous oxide as a potential low-cost hole-transport material for perovskite solar cells, Chem. Soc. Chem. 9(3) (2016) 302-313.
[16] W. Yu, F. Li, H. Wang, E. Alarousu, Y. Chen, et al., Ultrathin CuOx as an efficient inorganic hole transporting material for perovskite solar cells, Nanoscale 8(11) (2016) 6173-6179.
[17] M.I. Hossain, F.H. Alharbi, Recent advances in alternative material photovoltaics, Mater. Technol.: Adv. Perform. Mater. 28 (2013) 98-97.
[18] T. Minami, T. Miya, Y. Nishi, CuO-based heterojunction solar cells with an Al-doped ZnO/oxide semiconductor/thermally oxidized CuOx sheet structure, Sol. Energy 105 (2014) 206-217.
[19] Y.S. Lee, J. Heo, M.T. Winkler, S.C. Siah, S.B. Kim, et al., Nitrogen-doped cuprous oxide as a p-type hole transporting layer in thin-film solar cells, J. Mater. Chem. A 1 (2013) 15416-15422.
[20] F. Bicari, Defects and doping in CuOx, A thesis submitted in partial fulfillment of the requirements for the degree of doctor of philosophy in physics, Sapienza Universita di Roma, Italy, 2009.
[21] S.W. Lee, Y.S. Lee, J. Heo, S.C. Siah, D. Chua, Improved CuOx-based solar cells using atomic layer deposition to control the Cu oxidation state at the p-n junction, Adv. Energy Mater. 4(11) (2014) 1301916:1-7.
[22] D.O. Scanlon, B.J. Morgan, G.W. Watson, Modulating the polaronic nature of p-type defects in CuO: the failure of GGA and GGA+U, J. Chem. Phys. 131 (2009) 124703:1-8.
[23] M.C. Biesinger, P.B. Payne, Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydrides: Cr, Mn, Fe, Co and Ni, Appl. Surf. Sci. 257 (2011) 2717-2730.
[24] A.M. Smith, S.Nie, Semiconductor nanocrystals: structure, properties, and band gap engineering, Acc. Chem. Res. 43 (2010) 190-206.
[25] S.C. Siah, Y.S. Lee, Y. Segal, T. Buonassisi, Low contact resistivity of metals on nitrogen-doped cuprous oxide (CuOx) thinfilms, J. Appl. Phys. 112 (2012) 084508:1-5.
[26] C. Malerba, C.L. Riccardo, M. D’Incau, F. Bicari, P. Scardi, A. Mittiga, Nitrogen-doped CuO2: a possible material for intermediate band solar cells?, Sol. Energy Mater. Sol. Cells 105 (2012) 192-195.
[27] L.J. Van der Pauw, A method of measuring specific resistivity and hall effect of discs of arbitrary shape, in: Semiconductor devices: Pioneering papers, World Scientific, World Scientific Publishing Co., Inc., NJ, USA, 1991, pp.174-182.
[28] G.D. Mey, X. Burvich, M. De, Molder influence of sample geometry on magnetoresistance measurements, Phys. Stat. Sol. 23 (1974) 1045-1048.
[29] K. Matsuzaki, K. Nomura, H. Yanagi, T. Kamyia, H. Hirano, Epitaxial growth of high mobility CuO thin films and application to p-channel thin film transistor, Appl. Phys. Lett. 93(20) (2008) 221071:1-3.
[30] D.S. Darwin, H.A. Atwater, Epitaxial growth of CuO and ZnO/CuOx thin films on MgO by plasma-assisted molecular beam epitaxy, J. Cryst. Growth 319 (2011) 39-43.
[31] J. Li, Z. Mei, L. Liu, H. Liang, A. Azarov, et al., Probing defects in nitrogen-doped CuOx, Sci. Rep. 4 (2014) 7240:1-6.
[32] T. Minami, Y. Nishi, T. Miya, Impact of incorporating sodium into polycrystalline p-type CuO for heterojunction solar cell applications, Appl. Phys. Lett. 105 (2014) 212104:1-4.
[33] T. Bordjiba, M. Mohamedi, L.H. Doo, B. Aïssa, M.A. El Khakani, Enhanced physical and electrochemical properties of nanocrystalline carbon nanotubes coated microlithic carbon paper, Chem. Phys. Lett. 441 (2007) 89-93.
[34] B. Aïssa, M.A. El Khakani, The channel length effect on the electrical performance of suspended-single-wall-carbon-nanotubes-based field effect transistors, Nanotechnology 20 (2009) 175203:1-9.
[35] V. Le Borgne, P. Castrucci, S. Del Gobbo, M. Scarcelli, M. De Crescenzi, et al., Enhanced photocurrent generation from UV-laser-synthesized-single-wall-carbon-nanotubes/n-silicon hybrid planar devices, Appl. Phys. Lett. 97 (2010) 193105:1-3.
[36] B. Aïssa, Z. Hamoudi, H. Takahashi, K. Tojih, M. Mohamedi, M.A. El Khakani, Carbon nanohorns-coated microfibers for use as free-standing electrodes for electrochemical power sources, Electrochem. Commun. 11(4) (2009) 862-866.

https://doi.org/10.30799/jtf.026.21050101

Cite this Article as: M.I. Hossain, B. Aïssa, A. Bentouaf, S. Mansour, Bandgap tuning of high mobility magnetron sputtered copper (I) oxide thin films for perovskite solar cell applications, J. Thin Films Res. 5(2) (2021) 51-54.