Heteractis magnifica Sea Anemone Population Dynamics at Village Reef, Perhentian Kecil, Malaysia: Monitoring of Growth, Formations, and Hosting Status.

Melissa Versteeg¹*, Alanah Campbell¹ & Hidayah Halid¹

¹ Perhentian Marine Research Station, Pulau Perhentian, Terengganu, Malaysia.

*Correspondence: mversteeg5@gmail.com

Keywords: Heteractis Magnifica, Population Dynamics, Sea Anemone Aggregates, Coral Reefs, Malaysia.

ABSTRACT: The coastal waters of Malaysia have been known to allow proliferation of sea anemone assemblages, which are resident species of tropical coral reefs. Along the Perhentian Islands of Terengganu, no efforts have been made thus far to investigate the presence and population dynamics of sea anemone assemblages locally. In this study, *Heteractis magnifica* assemblages at Village Reef at Perhentian Kecil were monitored during May, July, and August of 2020, thus providing a first assessment of their abundance. Sea anemone formation size, individual size, habitat location, and hosting status of anemonefish were assessed. Results demonstrate significantly larger counts of individuals within aggregated formations in the patch reef as compared to the fringe reef, without the presence of larger individual sizes. In addition, *Heteractis magnifica* specimens that were actively hosting anemonefish had significantly larger cover, larger individual sizes, and demonstrated higher individual counts within their aggregated formations compared to non-hosting specimens. There was no significant overall effect of time on sea anemone growth throughout the monitoring period, nor were there any significant changes in abundance levels regarding formation make-up throughout the monitoring phase. However, time related effects where present upon data inspection per assessment period. The restricted time frame of the monitoring period could play a role in explaining the absence of overall time related effects. A prolonged monitoring will help to further understand *Heteractis magnifica* population dynamics at this location, which can increase knowledge capacity for reef management and conservation strategies.
INTRODUCTION

The sea anemones’ (Actiniaria) ability to reproduce asexually, and their lack of skeletal structure allows rapid formation and community expansion in suitable environments (Steinberg et al. 2020). Sea anemones can continually produce viable nodules for colonisation of neighbouring patches, where, given favourable environmental factors, sexual reproduction is actively suppressed in favour of rapid, asexual colonisation (Brace & Quicke 1986). Environmental parameters that influence sea anemone abundance and growth include temperature, seasonal effects, radiance and nutrient loadings, pollutants, and depth (Brolund et al. 2004; Chomsky et al. 2004; Holbrook & Schmitt 2005; Muller-Parker & Davy 2001; Thomas et al. 2014). Furthermore, when in the presence of live coral, sea anemones have been found to demonstrate higher expansion rates and will utilize aggressive strategies towards neighbouring corals during competition over suitable substrate (Liu et al. 2009).

To the east of peninsular Malaysia, the coral reef habitats of the Perhentian Islands have undergone dramatic changes in previous years (Islam et al. 2013). Longitudinal monitoring demonstrates a profound drop in live coral cover, with the 2008 averages calculated at 50.74%, whilst a mere 35.50% of the reefs contained live coral cover by 2019 (Reef Check Malaysia 2008; Reef Check Malaysia 2018). Furthermore, a sharp rise in tourism (Department of Marine Park Malaysia 2016) with subsequent increases in infrastructure development, tourism impacts, and changes to water quality, are negatively influencing the environmental quality of the Perhentian Islands (Nasir et al. 2017; Kurniawam et al. 2016). Although research focusses on monitoring changes in coral states throughout the Perhentian Islands, no studies to date are monitoring changes in sea anemone distribution patterns.

To protect Perhentian coral reefs from degradation and to stimulate coral recovery, the Perhentian Islands were gazetted as a Marine Park (MP) in 1994 (Department of Marine Park Malaysia 2014). At the MP, regulations are designed to protect essential marine ecosystems so as to ensure sustainability of vital fish stocks and marine environments (Department of Marine Parks Malaysia 2016). Government departments, local businesses, and social enterprises alike engage in reef restorative activities such as coral planting projects, promotion of ‘reef friendly’ tourism techniques, removal of toxic or smothering materials, and educational outreach. Despite these efforts, large-scale effectiveness is significantly impacted by restraints in staff capacity, lack of adequate financial resources, and logistical limitations (Islam et al. 2013). At the Perhentian Islands, littering, overfishing, and discarded fishing gear are degrading the reef states and monitoring studies continue to present trends of declining coral health (Reef Check Malaysia 2008-2018). As sea anemones require environmental parameters similar to that of corals, the changing environment may influence the hosting sea anemones’ opportunity for colonisation and growth (Tkachencko et al 2007). In environments additionally
Heteractis Magnifica at Pulau Perhentian

marked by high sedimentation, and water temperatures outside the thermal ranges suited to algae proliferation, sea anemones increase growth rates, asexual reproductive rates, and increase aggressive attacks on neighbouring corals (Chomsky et al. 2004; Liu et al. 2009; Liu et al. 2015).

The clear shallow waters that serve as primary habitat to tropical corals and sea anemones are characteristically low in available nutrient levels (Hopley 2011; Mohamed et al. 2019; Schwartz 2005), with dependent species relying on high nutrient recycling adaptations, storage mechanisms, and a capacity for efficient nutrient capture in the water column (Ortega et al. 1988; Savage 2019). At low nutrient levels, corals, sea anemones, and algae coexist. Upon altering dissolved P and N levels however, imbalance between these three groups sets in (Liu et al. 2009). Initially, high nutrient levels are catalytic to higher chlorophyll densities, with increases in energy availability and growth rates for corals (Savage 2019). Further rises however are a determinant for increased algae and sea anemone abundance.

Nutrient dispersal along Malaysia’s coastal waters is biologically managed through a suit of mechanisms including mixing, upwelling, currents, tides and drifts, terrestrial run-off and seasonal climatic patterns including monsoon events. Research on global nutrient flow mechanisms demonstrate that water movement allows deeper lying nutrients to be transported to shallow regions, via currents or drainage from terrestrial water systems (McPhee-Shaw et al. 2007; Mohamed et al. 2019; Powley et al. 2017; Sardessai et al. 2007). The supply of nutrients to the Perhentian Islands corresponds with water displacement events occurring during the seasonal cycles of the Northeast monsoon, and as such, marine species like hosting sea anemones, which rely on these nutrients for growth, may expand coverage in synchrony with the Northeast monsoon. Rivers draining into the South China Sea along Terengganu predominantly regulate nutrient supply to the Perhentian Islands, with highest concentrations found during the post monsoon phase (Adiana et al. 2014; Mohamed & Amil 2015). Along the Perhentian reefs, distributions of dissolved NO3 and PO4 are between 16 to 83 times higher during the post monsoon phase, with the greatest depletion levels located at depths of three meters, and a maximum concentration between three- and six-meters depth (Mohamed et al. 2019). Besides delivering required nutrients, discharge of pollutants into river systems can also occur and results in elevated values of trace metals in neighbouring coastal regions (Shazili et al. 2006).

Experiments also reveal high survival rates when sea anemone specimens are split into sections, demonstrating their capacity to propagate through axial thinning and tearing of tissue via longitudinal fission (Porat & Chadwick-Furman 2004; Scott et al. 2014). Their ability to reproduce via such mechanisms displays adaptivity to challenging environments and highlights mechanisms of competitive re-colonisation. In the case of clustered sea anemones, asexual reproductive techniques,
including longitudinal fissure, are proposed to underly aggregate formations as physically touching sea anemones are reported to constitute clones (Allen 1975; Dunn 1977).

Sea anemones with hosting capacity additionally undertake an obligatory symbiosis with anemonefish (Amphiprion spp.) for nutrient intake, including a direct transfer from symbiont to host (Cleveland et al. 2011; Norin et al. 2018; Porat & Chadwick-Furman 2004; Roopin & Chadwick 2009). As such, actively hosting sea anemones show increased growth rates and regeneration rates compared to their non-hosting counterparts (Holbrook & Schmitt 2005). Moreover, actively hosting sea anemones experience increased oxygenation, resulting in higher respiratory and growth rates compared to sea anemones without symbiotic anemonefish residents (Herbert et al. 2017; Szcezebak et al. 2013) and the distribution patterns of hosting sea anemones are tightly linked to successful recruitment of symbiotic anemonefish (Elliot & Mariscal 2001). Furthermore, their hosting capacity allows sea anemones increased odds for successful recovery following bleaching events (Norin et al. 2018). With increases in sea temperature and subsequent rises in bleaching risk, hosting sea anemones maintain a higher likelihood of adaptation and survival under adverse conditions (Pryor et al. 2020).

Within the Malaysian waters, large formations of sea anemone aggregates or clustered formations can be found naturally (Dunn 1977), including sea anemone species with hosting capacity. In Terengganu, on Perhentian Kecil, a reef site adjacent to the town village, called ‘Village Reef’ displays large aggregates of hosting sea anemones. Proximity of the reef site to the village indicates a possibility of anthropogenic effects, which have been found to decrease hard coral cover in addition to affecting coral community composition (Crehan et al. 2019). If the reefs of Perhentian Kecil experience environmental settings conducive to hosting sea anemone proliferation, we expect the local sea anemone aggregates to expand whilst favourable conditions remain in play.

As previously mentioned, at Village Reef, large assemblages of sea anemone species Heteractis magnifica are present (Figure 1). To date, no research has been conducted to investigate Heteractis magnifica population dynamics in this specific region via quantitative study. As such, the current study sought to monitor the assemblages of Heteractis magnifica at Village Reef so as to develop a baseline measurement of their abundance levels, formation patterns, and hosting status, in addition to examining Heteractis magnifica growth.

The current study expects to find time related effects on sea anemone size and cluster formations where formation cover, individual size, and clustered counts increase over time, by reasoning that synchrony with post Northeast monsoon nutrient availability will stimulate growth at the reef site. In addition, a significant difference between reef habitats is expected, with the patch reef deemed more
favourable for *Heteractis magnifica* proliferation based on depth parameters. In the patch region at Village Reef, we expect higher *Heteractis magnifica* abundance levels and increased formation size, individual size, and cluster counts over time, compared to the fringe reef. More so, as active hosting status is correlated to increased growth and reproduction rates (Holbrook & Schmitt 2005; Porat & Chadwick-Furman 2004), we also expect the actively hosting sea anemones at Village Reef to be significantly larger than their non-hosting counterparts, including larger individual sizes over time. Finally, with previous studies highlighting an important role for asexual reproduction under favourable conditions, (Scott *et al.* 2014; Brace & Quicke 1986) the current study expects increased clustered formations over time.

This study offers a first examination of localised *Heteractis magnifica* formations. Insights serve to increase local distribution knowledge and informs reef management and conservation. In addition, resultant knowledge may aid coral planting strategies at the Perhentian Islands by expanding the ability with which to identify temporal environmental patterns that favour expansion of hosting sea anemones over that of local corals.
Figure 1. Images of Heteractis magnifica formations at research site Village Reef, including a schematic of study site area (bottom right).
Heteractis Magnifica at Pulau Perhentian

MATERIALS AND METHODS

Study Area and Study Population

Data was collected at the Village Reef survey site on the South East of Perhentian Kecil (central coordinates: 5°53’39.05”N, 102°43’37.61”E). Village Reef comprises of a fringing, coral dominant reef section located in the lower intertidal zone, and a deeper region of patch reef. Throughout the shallower fringing reef, the effects of the semi-diurnal tides can create partial exposure during low tides, making parts of this habitat unsuited to Heteractis magnifica (Fautin 1991; Muller-Parker & Davy 2001). The patch reef displays dead coral bommie structures which have since been recolonized by stony and soft corals, sponges, algae species, and sea anemones.

Within the site boundaries, two hosting sea anemone species were identified: Stichodactyla gigantea and Heteractis magnifica. Only two counts of Stichodactyla gigantea were present during August 2020, compared to 224 formations of the Heteractis magnifica at that time. Interspecies differences in reproductive strategies (Aubert 2014), habitat parameters (Elliot & Mariscal 2001), and size (Fautin & Allen 1992), determined for the exclusion of the Stichodactyla gigantea specimens to control for confounding effects.

Data Collection Method

Between May and August of 2020, abundance, size, hosting status, and formation markers of hosting sea anemone species Heteractis magnifica were monitored using SCUBA. All data collection sessions took place between 8.30am and 11.59am, and visibility had to be over five meters as a prerequisite to diving. Within the survey area, ten 20 meter transects were laid out in parallel using a 225° south-west bearing, in addition to cross-referencing from a stable landmark (see Figure 1). Distance between parallel transects was set at 4 meters to allow accurate monitoring without overlap. Following transect placement, two research divers regressed along the transect line, keeping a two-meter width perpendicular to the transect. Each Heteractis magnifica formation within the survey area was identified, measured, and observed to record the variables under study: reef habitat, hosting status, formation size and cluster counts.

Reef Habitat

Reef habitat was categorised as ‘patch’ or ‘fringe’ per 80m² transect, based on in-situ depth and reefscape observations. Fringing reef areas were marked by shallower depth <1.5m, absence of coral bommies, and significantly higher levels of live coral cover, where interconnected carpets of hard corals dominated the sea floor. Of the total survey site, 480m² was defined as fringing reef, which comprised of five transects measuring the shallowest regions of the research site. At Village Reef’s
fringing reef, 20 *Heteractis magnifica* formations were recorded during August 2020, with a cumulative cover of ~2.4m².

The shallowest three fringing reef transects contained three solitary *Heteractis magnifica* formations within 240m², representing 0.45% of the total abundance during August. As this area skewed the data distribution significantly, and literature indicated unfavourable habitat requirements, these transects were excluded as outliers from the final analysis. The remaining transects covered a survey area of 560m², of which 240m² contained fringing reef.

Patch reef was marked by depth >1.5m, with a maximum, tide-dependent depth between 5-6 meters. The patch reef housed coral bommie skeletal structures, interspersed with sandy areas, rocky substrates, and coral rubble. Four transects were located within the patch reef of the survey site at Village Reef, with a combined area of 320m². In August, 224 *Heteractis magnifica* formations were recorded on the patch reef, with a cumulative cover of ~34.5m².

Hosting Status

Actively hosting or non-hosting status was recorded, as previous results indicate effects of size and growth (Herbert *et al.* 2017; Elliot & Mariscal 2001). *Heteractis magnifica* specimens were coded as actively hosting if they were inhabited by symbiotic anemonefish. The temporal nature of symbiosis between hosting sea anemones and other fish species such as the *Dascyllus trimaculatus* (Fautin & Allen 1992), made that only anemonefish species were included in hosting assessments.

Upon encountering a *Heteractis magnifica* specimen, indicators of hosting status were observed, including clear presence of anemonefish, or indirect indicators such as irregular movements between tentacles plus partial observations of anemonefish. If during in-situ observations a given sea anemone appeared not to be actively hosting, they were inspected more closely to check for juvenile species. If active hosting was suspected but not confirmed, video footage was recorded and reviewed to inform hosting status ex-situ.

Heteractis Magnifica Formations

Formations were examined three times between May and August 2020. Sea anemones dwelling in clustered formations are found to have higher growth rates, higher reproductive success, and can harbour more symbiotic anemonefish species, which in turn promotes increased nutrient deposition, and higher levels of host oxygenation (Cleveland *et al.* 2011; Herbert *et al.* 2017; Holbrook & Schmitt 2005; Norin *et al.* 2018; Porat & Chadwick-Furman 2004). Specimens were marked as clustered
formations when a fully expanded individual’s tentacles could touch a neighbouring sea anemone (Allen 1975). In the event of ambiguity, video recordings were made for ex-situ examination by both researchers.

Sea Anemone Size and Clustered Individual Counts
To estimate size, a long and short axis measurement of the oral disc was taken, using a tailor’s tape, and subsequently used to conduct calculations (Hirose 1985). If the *Heteractis magnifica* was retracted, time was given for the animal to resume expansion before resuming measuring. For sea anemones present as clustered formations, the same method was applied, but using the centre of the cluster as a mid-point for axial measurements. In the event that clusters did not fully cover the substrate, or if clusters did not assume a circular or elliptical shape, an area cover estimate was recorded to adjust calculation (0-100%, estimated in increments of 10).

To calculate individual size estimates for clustered sea anemones, cluster categories were marked (Allen 1975). Categories include solitary, less than 5, less than 10, less than 15, with subsequent increments of 5 until less than 35, which was the largest cluster formation category encountered at Village Reef. The midpoint of each category was subsequently used to estimate a median number of individuals per cluster, with the minimum and maximum count per category used to determine ranges of individuals within a cluster.

To calculate individual size, the total cluster size was divided by the median number of individuals, based on methods used by other researchers (Holbrook & Schmitt 2005). For example, in a cluster of <15 individuals with a collective size estimate of 0.150m2, the mean individual size was calculated by taking the mid-point of the cluster category, in this case 12 (cluster category <15 indicates 10-14 individuals) making the individual size estimate 0.0130m2 for all individuals.

Statistical Analysis
Data descriptive statistics and statistical analyses were run using Statistical Package for Social Sciences (SPSS) version 27.0. Time logs, depth readings, date stamps, and database inputs were all completed immediately following dives, and an interobserver analysis revealed a recording accuracy of 96.7% on all monitored variables.

For all significance tests, a threshold of .05 or was used to determine rejection or acceptance of the null hypothesis. Exploration of the dataset in SPSS showed nonnormal data distribution, thus requiring non-parametric testing of our hypotheses. In addition, as fringe reef and patch reef demonstrated
substantial habitat differences, the analyses pertaining to hosting status and clustered formations were run exclusively for the patch reef.

RESULTS

In total, 560m² of the reefscape at Village Reef was monitored and analysed, and 640 *Heteractis magnifica* formations were recorded. In the fringe reef area 65 formations were analysed, with 575 formations analysed within the patch reef. Of the sea anemones, 77.03% were actively hosting symbiotic *Amphiprion* spp. (N=493). Of these, 65.8% had resident *Amphiprion ocellaris* (N=421), 10.9% were hosting *Amphiprion perideraion* (N=70), and two formations were hosting both anemonefish species. On average, over the entire monitoring period, 48.91% of the analysed specimens regarded solitary formations of *Heteractis magnifica*, with the remainder concerning clustered formations.

Throughout the research site, an average of 3.79 individual sea anemones were clustered together (SD=4.75), with a maximum of 32 individuals clustered within a formation. During May, the collective cover of the *Heteractis magnifica* population was 31.84m², reaching 37.63m² by July, and reducing to 36.88m² by August. Further descriptive statistics for the study area at Village Reef are presented in Table 1.

In the fringe reef, 73.8% of the formations contained actively hosting *Heteractis magnifica* formations (N=65). In addition, 54.48% of the sea anemones presented as solitary formations, with clustered formations containing 2.51 individuals on average.

The maximum clustered formation within this reef region consisted of 12 individuals. During May, the collective cover of the sea anemones located in the fringing region at Village Reef was 1.80m², which increased to 3.64m² by July, and came to 2.39m² by August. Table 2 displays further descriptive statistics for Village Reef’s fringe reef.

At Village Reef’s patch reef, just under half of the 575 formations contained solitary formations, at 48.35%. Of the clustered formations, the average count per cluster was 3.93 specimens, with a maximum of 32 individuals within one formation. 77.39% of sea anemones were actively hosting anemonefish. The cumulative *Heteractis magnifica* sea anemone coverage on the patch reef was 30.05m² in May, 33.99m² in July, and 34.49m² by August. Other descriptive statistics for this reef region are presented in Table 3.

To test for significant effects of time on *Heteractis magnifica* abundance levels at Village Reef, Kruskal-Wallis analyses were run for formation size differences, individual sea anemone size
Heteractis Magnifica at Pulau Perhentian

differences, and cluster make-up differences over time. Results indicate no significant effect of time on
sea anemone growth, including formation size, individual size and the counts of individuals clustered
within a formation (p = .095, p = .290, and p = .309 respectively).

Moreover, to test for differences in formation size, individual size, and cluster makeup between the
two reef habitats at Village Reef, Mann-Whitney U tests were performed. Results indicate that
throughout the entire period of monitoring, a significant difference exists in the number of clustered
individuals present within a formation between fringe and patch reef regions, where clustered
formations contained significantly more individual specimens in the patch reef (see Table 4). No
significant results were found for formation or individual sea anemone size throughout the monitoring
period. Results did reveal a significant difference in cluster counts for May between the patch and
fringe reef, with a mean count of 1.80 specimens per formation at the fringe reef, and a mean count of
3.71 in the patch reef (see Table 4). Formation cover was significantly different between reef habitats
in July (see Table 4), with an average formation cover of .151m² in the fringe reef, and .174m² in the
patch reef. The results provide partial support for our hypothesis of significant differences in
Heteractis magnifica cover, size, and cluster make-up over time, as formation cove, and cluster counts
did differ significantly between reef habitats within specific monitoring periods, although individual
size estimates did not.

Mann-Whitney U tests were performed to examine effects of hosting status on sea anemone formation
cover, individual size, and cluster counts within the patch reef. Throughout the entire monitoring
period, those Heteractis magnifica formations actively hosting anemonefish were larger than their
non-hosting counterparts in formation cover, individual size, and cluster counts: $U = 37181.500, p < .001$ for formation cover; $U = 31776.500, p = .044$ for individual size; and $U = 36596.500, p < .001$ for
cluster counts. When testing these effects for the individual monitoring periods, results remained
significant for May: $U = 5061.000, p < .001$ for formation cover; $U = 4208.000, p < .001$ for
individual size; and $U = 4627.500, p < .001$ for cluster counts. In July, only cluster counts had
significant differences in hosting status: $U = 3558.000, p = .040$.

For August, no significant differences related to hosting status were detected. Table 5 displays
descriptive statistics for actively hosting and non-hosting Heteractis magnifica. As displayed in this
table, sea anemones were larger when hosting, with a mean formation size difference of .159m².
Individual sizes were larger for actively hosting by .015m² compared to non-hosting sea anemones.
Moreover, cluster counts were larger for actively hosting formations, with 4.52 specimens on average
in actively hosting formations, and 1.39 in non-hosting formations. These results are in keeping with
the hypothesis of the study, although not all the expected effects regarding time and size estimates were found in the current study.

Finally, to test for time effects on clustered versus solitary sea anemones, a ChiSquare test was run. Results revealed no significant effects of formation make-up over time, indicating that abundance levels of solitary or clustered formations did not differ significantly between the monitoring periods ($p = .130$), a result that contrasts our study hypothesis.
Table 1. Descriptive statistics for *Heteractis magnifica* monitored within the entire research site at Village Reef, including formation and individual size, individual counts, and hosting status.

Monitoring period	N	Formation size (m²)	Individuals per cluster (count)	Individual size (m²)	Actively hosting (%)	Solitary formations (%)	Minimum number of individuals (count)	Maximum number of individuals (count)
May	197	.162	3.51	.049	74.11	47.72	548	836
July	219	.172	4.11	.044	79.45	47.95	729	1073
Aug	224	.164	3.73	.047	77.23	50.89	676	992
Total	640	.166	3.79	.046	77.03	48.91	1953	2901

Table 2. Descriptive statistics for *Heteractis magnifica* monitored within the fringing reef region of the research site at Village Reef, Perhentian Kecil, including formation and individual size, individual counts, and hosting status.

Monitoring period	N	Formation size (m²)	Individuals per cluster (count)	Individual size (m²)	Actively hosting (%)	Solitary formations (%)
May	20	.090	.056	1.80	75.00	70.00
July	24	.151	.060	2.96	75.00	45.83
Aug	21	.114	.047	2.67	71.43	47.62
Total	65	.118	.054	2.48	73.81	54.48
Table 3. Descriptive statistics for *Heteractis magnifica* monitored within the patch reef region of the research site at Village Reef, including formation and individual size, individual counts, and hosting status.

Monitoring period	N	Formation size (m²)	Individuals per cluster (count)	Individual size (m²)	Actively hosting (%)	Solitary formations (%)		
	Mean	SD	Mean	SD	Mean	SD		
May	177	.170	.220	3.71	.048	.029	74.01	45.20
July	195	.174	.251	4.25	.041	.023	80.00	48.21
Aug	203	.170	.258	3.84	.047	.037	77.83	51.23
Total	575	.171	.243	3.93	.045	.030	77.39	48.35
Table 4. Mann-Whitney U results for differences in *Heteractis magnifica* formation cover, size, and cluster make-up between the fringe and patch reef regions at Village Reef.

Monitoring period	N	Test statistic	Stand. test statistic	p-value	S.E.
Entire monitoring period	640	19511.500	0.583	.074	1412.950
		16637.500	-1.451	.280	1412.950
		20873.000	1.670	.048*	1309.020
May	197	2145.500	1.556	.356	241.680
		1680.500	-0.370	.060	241.680
		2287.000	2.310	.011*	223.770
July	219	2179.000	-0.550	.048*	292.910
		1852.000	-1.666	.292	292.910
		2464.500	0.456	.325	273.170
August	224	2185.500	0.177	.430	282.718
		2045.500	-0.304	.381	282.719
		2211.000	0.306	.380	259.920

Table 5. Descriptives for active- and non-hosting formations of *Heteractis magnifica* at the patch reef region at Village Reef.

Monitoring period	Active Hosting	Non-Hosting				
	N	MEAN	SD	N	MEAN	SD
Entire period	445	.191	.262	130	.105	.150
Formation cover (m²)	.046	.31	.042	.29		
Individual size (m²)	4.32	5.17	2.63	3.70		
Cluster counts	.211	.241	.052	.047		
May	131	.052	.029	.037	.028	
Formation cover (m²)	4.52	4.87	1.39	.800		
Individual size (m²)	.185	.268	.133	.161		
Cluster counts	.040	.023	.046	.022		
July	156	.454	5.45	3.08	3.85	
Formation cover (m²)	.180	.274	.135	.193		
August	158	.454	5.45	3.08	3.85	
Formation cover (m²)	.180	.274	.135	.193		
The current study provided the first quantitative assessment of assemblages of *Heteractis magnifica* sea anemones located at Village Reef, Perhentian Kecil. As corals and sea anemones have been found to directly compete for suitable substrate and nutrients (Liu et al. 2009), understanding when and where sea anemones may outcompete corals when reef disturbances have occurred will help inform reef management and conservation programs around the Perhentian Islands. This study revealed several significant results, which provide preliminary insight into the population dynamics of the local distributions of *Heteractis magnifica*.

The study yielded several significant effects of time on sea anemone formation cover, individual size, and cluster counts for the entire assemblage of *Heteractis magnifica* at Village Reef, with differential results depending on reef habitat and monitoring period. Within the deeper patch reef, larger cluster counts were found during May, and larger formation cover was seen during July. These findings are in support of literature on habitat requirements for sea anemones growth indicating seasonal and depth effects on sea anemone growth and asexual reproduction (Brolund et al. 2004; Elliot & Mariscal 2001; Holbrook & Schmitt 2005). Deeper regions and specific monitoring periods are associated with larger clusters containing more individuals at Village Reef.

A relationship of hosting status was present among the sea anemones at Village Reef. Actively hosting *Heteractis magnifica* were generally larger, contained more individuals within a cluster, and displayed increased formation cover compared to non-hosting sea anemones. This finding corroborates research proposing increased growth and asexual reproductive rates for actively hosting sea anemones and highlights the benefit of hosting (Brolund et al. 2004; Cleveland et al. 2011; Holbrook & Schmitt 2005; Porat & Chadwick-Furman 2004). However, significance of hosting and non-hosting formations changed throughout the monitoring period, with no significant differences found towards the pre-monsoon period of August. This result highlights potential influences from seasonal changes including nutrient and temperature fluctuations and is supported by previous research indicating differential effects of cover, growth, and asexual reproduction related to seasonal effects (Holbrook & Schmitt 2005). Future research should focus on further detailing hostsymbiont dynamics to establish direct effects of hosting status on sea anemone growth.

In addition, with literature proposing a prominent effect of nutrient dynamics following the Northeast monsoon cycle, this topic deserves future attention. At the Perhentian Islands, nutrients levels reach peak concentrations in depth range 3-6 meters during the post monsoon phase in April (Mohamed et al. 2004).
Heteractis Magnifica at Pulau Perhentian

al. 2019). As such, expanding the monitoring period will enhance understanding of time related effects that remained outside the scope of the current study design. With both significant and insignificant effects, this study provides evidence of a dynamic change, including growth as the season approaches pre monsoon phase, and shrinkage in Heteractis magnifica size and cluster make-up between July and August. Future research should examine nutrient and temperature fluctuations at Village Reef, to establish how these are implicated in sea anemone growth. Such future directions are in line with studies on hosting sea anemones at other locations (Chomsky et al. 2004; Liu et al. 2009).

Despite our best efforts, there are some limitations to this study. Due to the limited monitoring period, assessment of time effects on the Heteractis magnifica population at Village Reef have limited applicability and would be strengthened by expanding the monitoring period. Ensuring the inclusion of more pre and post monsoon measurement will help to improve collective understanding of the impact of time relative to the monsoon on this specific assemblage of sea anemones. More so, indicators of nutrient level and temperature were not included in the current study due to a lack of reliable measuring instruments on location. As such, subsequent research would be enriched by additionally assessing these variables. More so, since solid evidence exists which highlights the influence of these variables on sea anemone distribution and growth (Adiana et al. 2014; Chomsky et al. 2004; Mohamed et al. 2019; Muller-Parker & Davy 2001), this aspect would be especially relevant as a future research direction.

Within this quantitative study of Heteractis magnifica abundance and assemblage dynamics at Village Reef, Perhentian Kecil, a first step has been made in better understanding Heteractis magnifica growth patterns locally. The current study adds insight to dynamics of aggregated sea anemones distributions and can play a valuable role in informing reef management and reef conservation programs. Restabilising the reefs on the Perhentian Islands is a critical task to ensure sustained viability of these reefs.

CONCLUSION

In conclusion, the present study provided a first quantitative analyses of the local population of Heteractis magnifica sea anemones, including inspection of their aggregate forms, individual size, clustered counts, and hosting status at Village Reef, Perhentian Kecil, Malaysia throughout May, July, and August. Non-parametric testing revealed significant differences in cluster size per reef habitat region, and demonstrated the presence of larger sea anemone coverage, individual size estimates and cluster counts in actively hosting Heteractis magnifica. This study therefore contributes a first examination of the population of sea anemones present at Village Reef and helps to inform local reef
management and conservation programs by providing valuable insight on *Heteractis magnifica*

population dynamics.
REFERENCES

Adiana G, Shazili NAM, Marinah MA and Bidai J. (2014). Effects of northeast monsoon on trace metal distribution in the South China Sea off Peninsular Malaysia. *Environ. Monit. Assess.* 186:421-431.

doi: 10.1007/s10661-013-3387-9

Allen GR. (1975). Anemonefishes and their amazing partnership. *J. Nat. Hist.* 18(8):274-277.

Retrieved via: https://museum-publications.australian.museum/aus-nat-hist-1975-v18-iss8/

Aubert RG. (2014). Fine-scale population structure of two anemones (Stichodactyla gigantea and Heteractis magnifica) in Kimbe Bay, Papua New Gineau. [Thesis]. King Abdulla University, Thuwal, Saudi Arabia: 58 pages.

Brace RC and Quicke DLJ. (1986). Dynamics of Colonization by the Beadlet Anemone, *Actinia Equina*. *J. Mar. Biol. Ass. U.K.* 66(01): 21.

doi: 10.1017/S002531540003962X

Brolund TM, Tychsen A, Nielsen LE and Arvedlund M. (2004). An assemblage of the host anemone Heteractis magnifica in the northern Red Sea, and distribution of the resident anemonefish. *J. Mar. Biol. Ass. U.K.* 84:671-674.

doi: 10.1017/S0025315404009737h

Chomsky O, Kamenir Y, Hyams M, Dubinsky Z and Chadwick-Furman NE. (2004). Effects of temperature on growth rate and body size in the Mediterranean sea anemone *Actinia Equina*. *J. Exp. Mar. Bio. Ecol.* 313(1), 63-73.

doi: 10.1016/j.jembe.2004.07.017

Cleveland A, Verde EA and Lee RW. (2011). Nutritional exchange in a tropical tripartite symbiosis: Direct evidence for the transfer of nutrients from anemonefish to host anemone and zooxanthellae. *Mar. Biol.* 158(3): 589-602.

doi: 10.1007/s00227-010-1583-5

Crehan O, Mair J, Hii Yii S, Safuan CDM and Bachok Z. (2019). Effect of tourism and sedimentation on coral cover and community structure. *Trop. Life Sci. Res.* 30(2): 149–165.

doi: 10.21315/tlsr2019.30.2.11
Department of Marine Park Malaysia (2014, September). Marine Park Management in Malaysia.

Presented at the 7th Cooperation Forum under the Cooperative Mechanism on the Safety of Navigation and Environmental Protection in the Straits of Malacca Environmental Protection in the Straits of Malacca and Singapore.

Retrieved via http://www.cm-soms.com/uploads/2/7/CF7-8-3%20Management%20of%20Marine%20Protected%20UMT.pdf

Department of Marine Park (2016). Tourist arrivals and receipts to Malaysia -facts & figures.

Retrieved via http://www.dmpm.nre.gov.my/data_pelawat.html?uweb=jtl

Dunn DF. (1977). Dynamics of external brooding in sea anemone Eptictic Epiactis prolifera. Mar. Biol. 39:41-49.

doi: 10.2307/1540543

Elliott JK and Mariscal RN. (2001). Coexistence of nine anemonefish species: differential host and habitat utilization, size and recruitment. Mar. Biol. 138:23-36.

doi: 10.1007/s002270000441

Fautin DG. (1991). The anemonefish symbiosis: what is known and what is not. Symbiosis 10:23–46.

http://hdl.handle.net/1808/6134

Fautin DG and Allen GR (1992). Field Guide to Anemonefishes and Their Host Sea Anemones. Converted for electronic publication by Humpries J, Sherman D; The MUSE project. Perth: Western Australian Museum. 65p.

https://eqzotica.ucoz.ru/_ld/0/9_ANEMONES.pdf

Herbert NA, Bröhl S, Springer K and Kunzmann A. (2017). Clownfish in hypoxic anemones replenish host O2 at only localised scales. Sci. Rep. 7(1): 1-10.

doi: 10.1038/s41598-017-06695-x

Hirose Y. (1985). Habitat, distribution and abundance of coral reef sea-anemones (Actiniidae and Stichodactylidae) in Sesoko Island, Okinawa, with notes on expansion and contraction behavior. Galaxea, JCRS 4:113-127.
Holbrook SJ and Schmitt RJ. (2005). Growth, reproduction, and survival of a tropical sea anemone (Actiniaria): benefits of hosting anemonefish. *Coral Reefs* 24:67-73. doi: 10.1007/s00338-004-0432-8

Islam G, Noh K, Yew T and Noh A. (2013). Assessing Environmental Damage to Marine Protected Area: A Case of Perhentian Marine Park in Malaysia. *J. Agric. Sci.* 5(10): doi:.5539/jas.v5n8p132

doi: 10.5539/jas.v5n8p132

Hopley D. (ed) (2011). Encyclopaedia of modern coral reefs. Dordrecht: Springer. 1234p.

Kurniawan F, Adrianto L, Bengen DG and Prasetyo LB. (2016). Vulnerability assessment of small islands to tourism: The case of the Marine Tourism Park of the Gili Matra Islands, Indonesia. *Glob. Ecol.* 6:308-326.

doi: 10.1016/j.gecco.2016.04.001

Liu P-J, Hsin M-C, Huang Y-H, Fan T-Y, Meng P-J, Lu C-C and Lin H-J. (2015). Nutrient enrichment coupled with sedimentation favors sea anemones over corals. *PLoS One* 10(4): e0125175.

doi: 10.1371/journal.pone.0125175

Liu P-J, Lin S-M, Fan T-Y, Meng P-J, Shao K-T and Lin H-J. (2009). Rates of overgrowth by macroalgae and attack by sea anemones are greater for live coral than dead coral under conditions of nutrient enrichment. *Limnol. Oceanogr.* 54(4):11671175.

doi: 10.4319/LO.2009.54.4.1167

McPhee-Shaw EE, Siegel DA, Washburn L, Brezesinski MA, Jones JL, Leydecker A and Melack J. (2007). Mechanisms for Nutrient Delivery to the Inner Shelf: Observations from the Santa Barbara Channel. *Limnol. Oceanogr.* 52:1748-1766.

doi: 10.4319/lo.2007.52.5.1748

Mohamed KN and Amil R. (2015). Nutrients Enrichment Experiment on Seawater Samples at Pulau Perhentian, Terengganu. *Procedia Environ. Sci.* 30:262-267.

doi: 10.1016/j.proenv.2015.10.047

Mohamed KN, Zainuddin M and Godon E. (2019). Study of Dissolved Nutrient Condition at Pulau Perhentian, Terengganu. *Pertanika J. Sci. Technol.* 27: 601-617.

Retrieved via http://psasir.upm.edu.my/id/eprint/68689/1/04%20JST%28S%29-0492-2019.pdf
Muller-Parker G and Davy SK. (2001). Temperate and tropical algal-sea anemone symbioses. *Invertebr. Biol.* 120:104-123. doi: 10.1111/j.1744-7410.2001.tb00115.x

Nasir N, Ibrahim M, Mahamod L and Othman R. (2017). Challenges to implement carrying capacity framework: A case study of Pulau Perhentian Marine Park institutional framework. *Plan. Malaysia. J.* 15: 10.21837/pmjournal.v15.i6.231. doi: 10.21837/pm.v15i1.231

Norin T, Mills SC, Crespel A, Cortese D, Killen SS and Beldade R. (2018). Anemone bleaching increases the metabolic demands of symbiont anemonefish. *Proc. R. Soc. B.* 285: 20180282. doi: 10.1098/rspb.2018.0282

Ortega M, Pariza J and Navarro E. (1988). Seasonal changes in the biochemical composition and oxygen consumption of the sea anemone *Actinia equina* as related to body size and shore level. *Mar. Biol.* 97: 137-143. doi: 10.1007/BF00391253.

Porat D and Chadwick-Furman NE. (2004). Effects of anemonefish on giant sea anemones: Expansion behavior, growth, and survival. Hydrobiologia: 530(1), 513520. doi:10.1007/s10750-004-2688-y

Powley H, Van Cappellen P and Krom M. (2017). Nutrient Cycling in the Mediterranean Sea: The Key to Understanding How the Unique Marine Ecosystem Functions and Responds to Anthropogenic Pressures. doi: 10.5772/intechopen.70878.

Pryor SH, Hill R, Dixson DL, Fraser NJ, Kelaher BP and Scott A. (2020). Anemonefish facilitate bleaching recovery in a host sea anemone. *Sci. Rep.* 10:18586. doi: 10.1038/s41598-020-75585-6

Sardessai S, Ramaiah N, Prasanna Kumar S and de Sousa SN. (2007). Influence of environmental forcings on the seasonality of dissolved oxygen and nutrients in the Bay of Bengal. *J. Mar. Res.* 65: 301-316. Retrieved via http://drs.nio.org/drs/handle/2264/623
Heteractis Magnifica at Pulau Perhentian

Savage, C. (2019). Seabird nutrients are assimilated by corals and enhance coral growth rates. *Sci. Rep.* 9(1): 4284. doi: 10.1038/s41598-01941030-6

Schwartz ML. (ed) (2005). Encyclopaedia of Coastal Science. Berlin: Springer. 1213p.

Scott A, Hardefeldt JM and Hall KC. (2014). Asexual propagation of sea anemones that host anemonefishes: Implications for the marine ornamental aquarium trade and restocking programs. *PloS One* 9(10): e109566. doi: 10.1371/journal.pone.0109566

Shariful F, Sedrati M, Ariffin EH, Shubri SM and Akhir MF. (2020). Impact of 2019 tropical storm (Pabuk) on beach morphology, Terengganu coast (Malaysia). *J. Coast. Res.* 95(1) 346. doi: 10.2112/SI95-067.1

Shazili NAM, Yunus K, Ahmad AS, Abdullah N and Rashid MKA. (2006). Heavy metal pollution status in the Malaysian aquatic environment. *Aquat. Ecosyst. Health. Manag.* 9:137-145. doi: 10.1080/14634980600724023

Steinberg RK, Dafforn KA, Ainsworth T and Johnston EL. (2020). Know thy anemone: A review of threats to octocorals and anemones and opportunities for their restoration. *Front. Mar. Sci.* 7:590. doi: 10.3389/fmars.2020.00590

Szczechak JT, Henry RP, Al-Horani FA and Chadwick NE. (2013). Anemonefish oxygenate their anemone hosts at night. *J. Exp. Biol.* 216: 970-976. doi: 10.1242/jeb.075648

Thomas L, Stat M, Kendrick GA and Hobbs JA. (2015). Severe loss of anemones and anemonefishes from a premier tourist attraction at the Houtman Abrolhos Islands, Western Australia. *Mar. Biodivers.* 45:143-144. doi: 10.1007%2Fs12526-014-0242-3

Reef Check Malaysia. 2007 Annual Survey Report [Internet]:25 pages. Available from: https://static1.squarespace.com/static/5c9c815e348cd94acf3b352e/t/5e2724378ecd/a6054e753719/1579623503322/RCMSUR+2007.pdf
Heteractis Magnifica at Pulau Perhentian

Available from:
https://static1.squarespace.com/static/5c9c815e348cd94acfc3b352e/t/5d03584dfbd71

Reef Check Malaysia. Status of Coral Reefs in Malaysia, 2016 [Internet]:92 pages.
Available from:
https://static1.squarespace.com/static/5c9c815e348cd94acfc3b352e/t/5d035875fbd71
00001ea1714/1560500363157/2016+Annual+Survey+Report.pdf

Reef Check Malaysia. Status of Coral Reefs in Malaysia, 2017 [Internet]:98 pages.
Available from:
https://static1.squarespace.com/static/5c9c815e348cd94acfc3b352e/t/5d0358913864
a6000181d6ce/1560500399102/2017+Annual+Survey+Report.pdf

Reef Check Malaysia. Status of Coral Reefs in Malaysia, 2018 [Internet]:94 pages.
Available from:
https://static1.squarespace.com/static/5c9c815e348cd94acfc3b352e/t/5d0358b67240
8300016b83e3/1560500436686/2018+Annual+Survey+Report.pdf

Reef Check Malaysia. Status of Coral Reefs in Malaysia, 2019 [Internet]:87 pages.
Available from:
https://static1.squarespace.com/static/5c9c815e348cd94acfc3b352e/t/5e4e461750bc
066ba303bbec5/1582188086832/2019+Annual+Survey+Report.pdf

Reef Check Malaysia. Reef Check Malaysia Annual Survey Report 2010 (Internet):44 pages.
Retrieved via:
https://static1.squarespace.com/static/5c9c815e348cd94acfc3b352e/t/5e27238ccc229
c6d83af33da/1579623348093/RCMSUR+2010.pdf

Tkachenko KS, Wu B-J, Fang L-S and Fan T-Y. (2007). Dynamics of a coral reef community after mass mortality of branching Acropora corals and an outbreak of anemones. Mar. Biol. 151:185-194.
doi: 10.1007/s00227-006-0467-1

Roopin M and Chadwick NE. (2009). Benefits to host sea anemones from ammonia contributions of resident anemonefish. J. Exp. Mar. Biol. Ecol. 370: 27-34.
doi: 10.1016/j.jembe.2008.11.006