Black TiO\textsubscript{2}: What are exact functions of disorder layer

Sungsoon Kim | Yoonjun Cho | Ryan Rhee | Jong Hyeok Park

Department of Chemical and Biomolecular Engineering, Yonsei University, Seoul, Republic of Korea

Correspondence
Jong Hyeok Park, Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea.
Email: lttts@yonsei.ac.kr

Funding information
National Research Foundation of Korea, Grant/Award Numbers: 2015M1A2A2074663, NRF-2019M1A2A2065612, 2019R1A4A1029237; Korea Institute of Energy Technology Evaluation and Planning, Grant/Award Number: 20163010012450

Abstract
Among the substantial amount of photocatalyst materials, TiO\textsubscript{2} has been enthusiastically studied for a few decades due to its outstanding photocatalytic activity and stability. Recently, black TiO\textsubscript{2} consisting of approximately 2 nm of thin disorder layer around the surface showed surprisingly high solar hydrogen generation ability. The disorder layer of TiO\textsubscript{2} can enhance its light absorption, charge separation, and surface reaction abilities, however exact fundamentals of photocatalytic water-splitting pathways are still ambiguous. Herein, recent progress and investigations on exact functions of disorder layer and its application in photocatalytic CO\textsubscript{2} reduction will be discussed. Throughout the comprehensive studies on disorder layer of TiO\textsubscript{2}, disorder engineering on photocatalyst materials will suggest the further extension of developing solar-fuel production technologies.

KEYWORDS
black TiO\textsubscript{2}, disorder layer, photocatalysis

1 | INTRODUCTION

Since Fujishima and Honda’s photoelectrochemical water splitting from TiO\textsubscript{2}, various kinds of metal oxides with p-type or n-type semiconductors have been focused for high solar-to-hydrogen conversion efficiency.1 TiO\textsubscript{2} is the most popular photocatalyst in terms of not only outstanding photocatalytic activities including water splitting for hydrogen and removal of organic pollutants for environmental applications but also excellent photocorrosion stability.2–4 However, the photoconversion efficiency of TiO\textsubscript{2} has been hampered by its large bandgap energy around 3.2 eV, which means that only ~4% of solar light can be harvested.4,5 To solve this drawback, doping strategies with transition metal ions (eg, Fe, Mn, Cr, V, and Cu) or nonmetal atoms (eg, N, C, and S) have been employed to extend light absorption to visible light.4,6 More recently, disorder engineering of the TiO\textsubscript{2} surface was reported by Chen et al7 in 2011. Since then, many follow-up research proved that very thin, approximately 2 nm, disorder layer (DL) on crystalline TiO\textsubscript{2} surface can induce strong visible light absorption and their absorption tail is approaching to near-infrared region.7 The TiO\textsubscript{2} with DL surface absolutely looks very dark, sometimes black, and their photocatalytic activity for H\textsubscript{2} production is much higher than that of pure TiO\textsubscript{2}. The defective crystal, named DL, with high visible light absorption, has been described as the main reason for high solar hydrogen conversion, but visible light harvesting from the DL could not contribute to hydrogen production seriously so far. Nevertheless, metal oxide photoanodes or photocatalyst powders with various DLs not only from hydrogenated TiO\textsubscript{2} but also reduced by chemicals (eg, Li-ethylenediamine) or metals (eg, Mg) have shown superior hydrogen evolution from solar
light. Various methodologies of preparing black TiO$_2$ and its applications are summarized in Table 1.

In general, solar water splitting or CO$_2$ conversion from photocatalyst or photoelectrochemical cell consists of three consecutive steps: (a) solar light absorption, (b) hole-electron separation and transport, (c) surface reaction. Because visible light harvesting by DL could not contribute to hydrogen evolution, the main positive effects of DL might be from enhanced hole-electron separation and transport and/or enhanced surface oxidation or reduction reaction. Herein, we will discuss current progress and investigations on functionalities of black TiO$_2$ and its applications in photocatalytic CO$_2$ reduction to give thorough understanding and insights on the DL and further extend beyond the intrinsic properties.

Table 1 Phase, treatment strategy, and its applications of black TiO$_2$

Year	Phase	Treatment strategy	Application	Ref
2011	Rutile	Low-pressure H$_2$ gas treatment	PEC	Wang et al11
2012	Anatase	H$_2$ gas treatment	PCH	Zheng et al12
2013	Anatase	Hydrogen plasma	PCH	Wang et al13
2013	Anatase, rutile	Molten Al and H$_2$S treatment	PCH	Yang et al14
2014	Anatase	H$_2$-Ar gas treatment	PCH	Liu et al15
2014	Mixed (anatase + rutile)	NaBH$_4$ solution treatment	PCH	Tan et al16
2014	Mixed (anatase + rutile)	Pulsed UV laser irradiation	PEC	Nakajima et al17
2015	Anatase	High energy proton implantation	PCH	Liu et al18
2015	Mixed (anatase + rutile)	Hydrothermal method	PCR	Qingli et al19
2016	TiO$_2$-B	Hydrogen plasma-assisted reduction	PEC	Tian et al20
2016	Mixed (anatase + rutile)	Li-EDA treatment	PCH	Zhang et al8
2016	Anatase	Cu treatment-H$_2$ flow	PCR	Zhao et al21
2016	Brookite	Hydrothermal method combined with postannealing under N$_2$ flow	PCR	Xin et al22
2017	Anatase + rutile	Hydrothermal method with chemical reduction	PCH	Liu et al23
2017	Pure or mixed anatase and rutile	Magnesium reduction of P25	PEC	Xu et al24
2017	P25	Al reduction	PCH	Song et al25
2018	Mixed (anatase + rutile)	Li-EDA treatment and thermal annealing	PCH	Cho et al26
2018	Anatase	Annealing at H$_2$-Ar gas	PCR	Billo et al27
2018	Rutile	Annealing at H$_2$-Ar gas	PEC	Wang et al28
2019	Mixed (anatase + rutile)	Annealing at H$_2$ gas	PCR	Ye et al29
2019	Rutile	Atomic layer deposition	PEC	Ali-Löytty et al30
2019	Anatase	Magnesiothermal reduction	PCH	Li et al31

Abbreviations: Li-EDA, lithium-ethylenediamine; PCR, photocatalytic CO$_2$ reduction; PCH, photocatalytic H$_2$ generation; PEC, photoelectrochemical water splitting.

2. Charge Separations in Black TiO$_2$

Within the limited range and amount of light absorption, the separated charge utilization is a critical factor in the solar water-splitting process. Efficient charge separation is promoted by an internal electromagnetic field formed within the electronic structure of a material. Typically, well-matched band alignment between unitidical semiconductors such as metal oxides or chalcogenides, so-called heterojunction, provides an energetically favorable structure for charge separation. Black TiO$_2$ has been reported to possess significantly altered electronic structure and surface properties, even it originates from crystalline polymorph of itself. Liu et al37 suggested that Ti and O sublattice distortions
could largely blueshift the valence band maximum (VBM), leading to bandgap reduction of black TiO$_2$. As illustrated in Figure 1A,B, Ti and O sublattice distortion of anatase TiO$_2$ supercell showed blueshifted VBM, accompanied by redshift or no change in conduction band minimum (CBM) level. Along with the VBM shift, additionally created intermediate mid-gap energy levels serve as trapping or sinking sites for photogenerated charge carriers.8,37 Zhang et al also reported significantly blueshifted valence band energy state (Figure 1C) along with additionally generated intermediate defect states by Perdew-Burke-Ernzerhof calculation (Figure 1D,E). In this regard, when black TiO$_2$ or DL is formed on the surface of pristine TiO$_2$ by disorder engineering (core-shell structure or linear-junctioned), the well-matched heterojunction can drive the efficient separation of electron-hole pairs through type-II band alignment.8,40 In other words, the photogenerated holes will be more favorably driven to the surface DL due to higher VBM energy to participate in the photocatalytic surface reaction.

Cho et al9 have successfully localized DL within a commercial P25 (composed of both anatase and rutile TiO$_2$) and formed order/disorder multiple heterojunctions within a single TiO$_2$ nanoparticle. As shown in Figure 2A-D, THE potential and charge distribution across the order/disorder multiple heterojunctions exhibited interfacial polarization across the region, where it can form energy band cascade (Figure 2E), exceeding H$_2$ production rate of commercial Pt/TiO$_2$ system without novel metal cocatalyst.9 Also, Xia et al41 proposed that due to collective movements of interfacial dipoles present at the crystalline/disordered interfaces of TiO$_2$, the built-up charge at the boundary induces interfacial polarization.

Furthermore, since charge recombination is also influenced by surface adsorption (between absorbate and associated derivate), oxygen vacancy can serve as carrier

FIGURE 1 A, 2 × 2 × 1 Anatase supercell, where the sky blue and red balls represent Ti and O atoms, respectively. Reproduced with permission from Reference,37 Copyright 2013, American Physical Society. B, The variations of VBM (represented by squares), CBM (circles), and total energy (triangles) calculated by PBE (colored in black) and by the hybrid functional (red) as a function of the distortion of (B) the O sublattice and the Ti sublattice. Reproduced with permission from Reference,8 Copyright 2016, The Royal Society of Chemistry. C, Valence band XPS spectra of A-TiO$_2$ and R-TiO$_2$, and the Li-EDA treated materials. Reproduced with permission from Reference,8 Copyright 2016, The Royal Society of Chemistry. D, Calculated bandgap diagrams; left: A-TiO$_2$/R-TiO$_2$, right: Li-EDA-treated A-TiO$_2$/black R-TiO$_2$. Reproduced with permission from Reference,8 Copyright 2016, The Royal Society of Chemistry. E, Comparison of the electronic structure in pristine (blue) and reduced (red) TiO$_2$ surfaces calculated using the PBE + U approach ($U = 3.2$ eV for the 3d orbitals of Ti). A magnified image for close inspection of the band alignment and defect states is shown on the right. The shaded regions indicate the conduction band and the valence band in each polymorph. The energy values in each structure are aligned by comparing the deep-lying Ti 3p orbital levels and are shown with reference to the vacuum energy level. Reproduced with permission from Reference,8 Copyright 2016, The Royal Society of Chemistry. CBM, conduction band minimum; DOS, density of state; Li-EDA, lithium-ethylenediamine; XPS, X-ray photoelectron spectroscopy; PBE, Perdew-Burke-Ernzerhof [Color figure can be viewed at wileyonlinelibrary.com]
scavenger. At the disordered surface, adsorbed molecular oxygens (O$_2^-$ or O$^-$) to the defect sites can induce hole trapping at the surface.

In addition, the DL provides a lower energy barrier for both adsorption and dissociation required under photocatalytic reaction, allowing efficient charge transport at the TiO$_2$ surface.

Apart from TiO$_2$-based photocatalyst materials, some metal oxide semiconductors such as WO$_3$ and BiVO$_4$ are also reported to form similar DL and exhibit enhancements in charge separation performance. The disordered crystal of WO$_3$, which can be expressed as W$_{1-x}$O$_{3-y}$, was confirmed to have altered local electronic structure at the atomic scale, dramatically enhancing charge transfer efficiency of DL/WO$_3$.

Also, a thin (2 nm thick) surface DL formed on monoclinic bismuth vanadate (BiVO$_4$) could improve charge separation and transfer efficiencies, leading to 2.1 times higher photocurrent than bare BiVO$_4$ photoelectrode.

Meanwhile, Yan et al. announced that the improved photoactivity of disordered rutile TiO$_2$ is not only owing to its increased charge separation efficiency but also due to the enhanced charge injection efficiency. The defects in DL provides the shallow states energy level at the surface, which results in facilitating transfer of minority charge carrier from TiO$_2$ to water. On the other hand, the previous investigation of Park's group regarding the electrochemical water splitting ability of TiO$_2$ with DL is shown in Figure 3A,B. In the case of disordered TiO$_2$, the over-potential of both oxygen and hydrogen evolution reaction is improved, which implies that the enhanced water-splitting reactivity certainly contributes to higher photocatalytic H$_2$ production performance.

Although there have been many reports that present enhanced reactivity of TiO$_2$ by the formation of a defect in DL, the role of a defect in hydrogen or oxygen evolution reaction mechanism is still ambiguous. In fact, atomic defects in TiO$_2$ are divided into oxygen and titanium vacancies and these vacancies are randomly distributed along DL of TiO$_2$. Moreover, TiO$_2$ has various crystal phases with many facets, each of which has different surface energy state, adsorption energy, and reactivity. Thus, the relationship among the defect, crystal phase, and exposed facet makes a complex understanding on reaction mechanism and the uncertainty of defect cannot suggest a clear answer of why disordered TiO$_2$ has higher reactivity. Nevertheless, the defect of TiO$_2$ obviously plays an important role in water-splitting reaction, following that there have been many efforts to discover how defect influences photocatalytic and photoelectrochemical reaction.

FIGURE 2 A, Potential map of disorder-engineered P25 (DE-P25) at rutile/disorder layer/anatase multiple heterojunctions. Reproduced with permission from Reference, Copyright 2018, American Chemical Society. B, Corresponding averaged potential vs distance plot of DE-P25 within a selected region. Reproduced with permission from Reference, Copyright 2018, American Chemical Society. C, Charge density map of DE-P25 derived from the potential map. Reproduced with permission from Reference, Copyright 2018, American Chemical Society. D, Charge density graph vs distance in the same region. Reproduced with permission from Reference, Copyright 2018, American Chemical Society. E, Proposed interfacial polarization across the multiple heterojunctions and their relative positions of the electronic band structure. Reproduced with permission from Reference, Copyright 2018, American Chemical Society. CBE, conduction band edge, VBE, valence band edge [Color figure can be viewed at wileyonlinelibrary.com]
Valdés et al.48 investigated the water oxidation and photo-oxidation reaction mechanism on the rutile TiO\textsubscript{2} (110) surface by using the density functional theory calculation (Figure 3C). The result showed that the rate-limiting step during the water oxidation reaction was step A, which is the formation of the adsorbed hydroxyl group at coordinatively unsaturated site. Adsorption of the hydroxyl group on the clean rutile (110) surface is difficult because water molecules rarely dissociate without any point defect. On the other hands, Li et al.49 investigated photocatalytic oxygen evolution on anatase TiO\textsubscript{2} surface (Figure 3D). In the case of anatase (101), (001), and (102) surfaces, the first proton removal step to form an adsorbed hydroxyl group requires high overpotential, same as (110) surface of rutile TiO\textsubscript{2}. Although the result from Valdés and Li could not suggest the direct correlation of defects on the reactivity of anatase and rutile TiO\textsubscript{2} by using a clean surface model, the rate-limiting step of either water oxidation or photo-oxidation reaction was confirmed to be the formation of the adsorbed hydroxyl group at the active site.

Step A: $\text{2H}_2\text{O} + * \rightarrow \text{H}_2\text{O} + \text{HO}^* + \text{H}^+ + e^-$.

Step B: $\text{H}_2\text{O} + \text{HO}^* + \text{H}^+ + e^- \rightarrow \text{H}_2\text{O} + \text{O}^* + 2(\text{H}^+ + e^-)$.

Step C: $\text{H}_2\text{O} + \text{O}^* + 2(\text{H}^+ + e^-) \rightarrow \text{HOO}^* + 3(\text{H}^+ + e^-)$.

Step D: $\text{HOO}^* + 3(\text{H}^+ + e^-) \rightarrow \text{O}_2 + * + 4(\text{H}^+ + e^-)$.

Apart from the mechanistic study on the water oxidation reaction of TiO\textsubscript{2}, the behavior of water molecules nearby the defect on the TiO\textsubscript{2} surface has been widely studied. Interestingly, many reports announced that oxygen vacancy at the bridging oxygen site on both anatase (101) and rutile (110) surface can strongly induce the hydroxyl group adsorption with much smaller free-energy change of water dissociation than the clean surface (Figure 3E).50,52,53 In other words, the absence of oxygen atom at the bridging oxygen site is energetically very unstable, so the oxygen vacancy prefers to be filled with hydroxyl group from the dissociation of the nearby water. Considering that the rate-limiting step of water-splitting reaction on rutile TiO\textsubscript{2} is the formation of adsorbed hydroxyl group, as reported by Valdés et al.,48 the water dissociation ability of defect may help to provide hydroxyl group, which in turn reducing overpotential for the water oxidation reaction. However, the significant deviation arises that the water oxidation reaction starts
with the adsorption of the hydroxyl group at five-coordinated titanium ion, while the hydroxyl group adsorption induced by defect occurs at the bridging oxygen site.48,49 Moreover, defect in TiO\textsubscript{2} is not only located at the surface but also able to exist at the subsurface, resulting in increasing huge complexity of expecting the role of defect.54–56 Thus, intensive and extensive mechanism studies on defects in DL of TiO\textsubscript{2} are necessary to elucidate how defects improve photocatalytic or photoelectrochemical water-splitting reaction.

\section*{APPLICATIONS IN PHOTOCATALYTIC CO\textsubscript{2} REDUCTION}

The utilization of carbon dioxide into valuable products has been recently spotlighted due to the worldwide environmental crisis. It is notable that one of the fascinating strategies to remove carbon dioxide is the photocatalytic reduction of CO\textsubscript{2} into \textit{C\textsubscript{1}} products, such as methane, methanol, carbon monoxide, and so forth.57–59 However, photocatalytic CO\textsubscript{2} reduction is not energetically favorable because it is generally operated in aqueous media containing carbonate ions. In detail, hydrogen production reaction and CO\textsubscript{2} conversion reaction compete together at the same catalyst surface because the standard reduction potential of CO\textsubscript{2} into \textit{C\textsubscript{1}} products is closely located at the reduction potential of water (Figure 4A).60 Moreover, the negative energy level of the standard reduction potentials of CO\textsubscript{2} makes it harder to chose appropriate photocatalyst materials. Among the limited candidates for photocatalytic CO\textsubscript{2} reduction, TiO\textsubscript{2} is known as the best photocatalyst for CO\textsubscript{2} reduction because of its large bandgap energy with highly negative energy levels of CBM, long charge carrier lifetime, and fast water oxidation kinetics.57,61 Interestingly, it is reported several times that DL of black TiO\textsubscript{2} can improve photocatalytic CO\textsubscript{2} reduction.62,63 As mentioned above, fast charge separation and good surface reactivity of DL may utilize photoexcited electron-hole pairs, which results in a higher photocatalytic CO\textsubscript{2} conversion rate. In this chapter, recent reports in photocatalytic CO\textsubscript{2} reduction by disordered TiO\textsubscript{2} are introduced in detail.

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{figure4.png}
\caption{A, Schematic illustration of photocatalytic CO\textsubscript{2} reduction mechanism and the standard reduction potentials of CO\textsubscript{2} reduction reactions. Reproduced with permission from Reference,60 Copyright 2017, American Chemical Society. B, Correlation curve between space-time yield of CH\textsubscript{4} and CO\textsubscript{2} band from diffuse reflectance infrared Fourier transform spectroscopy results. Reproduced with permission from Reference,64 Copyright 2018, American Chemical Society. C, Comparison graph of CO gas production rate of black TiO\textsubscript{2} nanotube arrays with different thermal treatments. Reproduced with permission from Reference,65 Copyright 2020, Elsevier. D, Schematic illustration of photocatalytic CO\textsubscript{2} reduction mechanism in Ni-loaded inverse opal structured TiO\textsubscript{2}. Reproduced with permission from Reference,28 Copyright 2019, Elsevier. E, Comparison graph of selectivity between CH\textsubscript{4} and CO production from reduced TiO\textsubscript{2} with different facet exposure. Reproduced with permission from Reference,66 Copyright 2017, The Royal Society of Chemistry. F, Schematic illustration of electron-hole separation in facet engineered reduced TiO\textsubscript{2}. Reproduced with permission from Reference,66 Copyright 2017, The Royal Society of Chemistry [Color figure can be viewed at wileyonlinelibrary.com].}
\end{figure}
Energetic study of photocatalytic CO2 reduction on defective TiO2 was reported by Ji et al.67 They found that oxygen vacancy at the anatase TiO2 (101) surface has much higher activity on CO2 reduction than Ti atom in the perfect surface. Also, Liu et al68 found that oxygen vacancy can either improve the binding of CO2, activation, and dissociation or stabilize the reaction intermediates. In line with the theoretical investigations, Yin et al64 announced that disordered hydrogenated blue TiO2 prepared by low-temperature lithium-ethylenediamine solvothermal reaction outperforms pristine TiO2 in CH4 formation rate and the selectivity. In Figure 4B, in situ diffuse reflectance infrared Fourier transform spectroscopy results of blue TiO2 during photocatalytic CO2 reduction showed a proportional relationship between the amount of CO2 band and the space-time yield of CH4. These results demonstrated that improved photocatalytic performance of hydrogenated blue TiO2 is originated from the existence of key intermediate CO2 species, which is produced from oxygen vacancy of the disordered surface. On the other hand, Gao et al65 reported that black TiO2 nanotube prepared via aluminothermic reduction showed the remarkable ability of photocatalytic CO2 reduction into CO compare to pristine TiO2 nanotube (Figure 4C). Even though the results from Yin et al64 and Gao et al65 showed different C1 products from each TiO2, it is notable that black TiO2 greatly increased its photocatalytic reduction performance from its oxygen vacancy around the surface.

The photocatalytic performance of black TiO2 can be further enhanced by introducing cocatalyst or active facet exposure. Ye et al28 synthesized inverse opal structured Ni-loaded black TiO2 and applied in photocatalytic CO2 reduction and the introduction of nickel on black titania improved twice of its photocatalytic performance (Figure 4D). Moreover, Fang et al66 prepared a high Ti3+ concentration of reduced TiO2 with active (001) facet exposure. Interestingly, reduced TiO2 with (001) facet exposure showed higher CH4 and CO production rate than normally reduced TiO2, while the selectivity of methane production, reached 83.4% (Figure 4E). The author suggested that the pristine anatase (101) facet cannot overcome electron-hole recombination at the adjacent trapping sites while the exposure of (001) and (101) facets can separate electron-hole pairs into each facet thereby enhancing photocatalytic performance (Figure 4F).

5 CONCLUSION

Although the true functionalities of black TiO2 still have somewhat counterintuitive explanations, it is clear that black TiO2 outperforms its crystalline polymorph with significantly modified photoelectrochemical properties beyond their intrinsic states. However, regardless of disorder-engineering methods, the position of DL must be selectively localized on the surface or within the heterogeneous interface, since recombination process in black TiO2 is dominantly governed by trap-assisted nonradiative charge recombination. As mentioned throughout the text; (a) the suggested VBM blueshift of black TiO2 reinforcing charge transfer and transport at the order/disorder interface cannot fully attribute for overall enhancements in separation efficiencies and its recombination pathways, (b) the kinetic properties of DL during water-splitting pathways is still unclear whether the actual redox reaction takes places on the very surface or the subsurface between the DL and the core. More advanced theoretical studies and experiments to define the nature of black TiO2 will further complete the overall comprehension of designing semiconductor materials to a selective and optimal state. Such thorough investigations will boost photocatalytic and photoelectrochemical efficiencies without the employment of novel metal cocatalysts, thereby contributing practical applications in overall energy and environmental technologies.

ACKNOWLEDGMENTS

Sungsoon Kim and Yoonjun Cho contributed equally to this study. This study was supported by the National Research Foundation of Korea (2015M1A2A2074663, NRF-2019M1A2A2065612, and 2019R1A4A1029237). This study was also supported by the Korea Institute of Energy Technology Evaluation and Planning and the Ministry of Trade, Industry & Energy of the Republic of Korea (No. 20163010012450).

ORCID

Jong Hyeok Park http://orcid.org/0000-0002-6629-3147

REFERENCES

1. Fujishima A, Honda K. Electrochemical photolysis of water at a semiconductor electrode. Nature. 1972;238:37-38.
2. Diebold U. The surface science of titanium dioxide. Surf Sci Rep. 2008;48:53-229.
3. Akpan UG, Hammed BH. Parameters affecting the photocatalytic degradation of dyes using TiO2-based photocatalysts: a review. J Hazard Mater. 2009;170:520-529.
4. Chen X, Mao SS. Titanium dioxide nanomaterials: synthesis, properties, modifications, and applications. Chem Rev. 2007;107:2891-2959.
5. Naldoni A, Altimare M, Zoppellaro G, et al. Photocatalysis with reduced TiO2: from black TiO2 to cocatalyst-free hydrogen production. ACS Catal. 2019;9:345-364.
6. Daghiri R, Drogui P, Robert D. Modified TiO2 for environmental photocatalytic applications: a review. Ind Eng Chem Res. 2016;52:3581-3599.
7. Chen X, Liu L, Yu PY, Mao SS. Increasing solar absorption for photocatalysis with black hydrogenated titanium dioxide nanocrystals. Science. 2011;331:746-750.
21. Zhao J, Li Y, Zhu Y, Wang Y, Wang C. Enhanced CO2 photocatalytic activity. *Energy Environ. Sci.* 2016;9:499-503.

20. Tian Z, Cui H, Zhu G, et al. Hydrogen plasma reduced black TiO2 nanowire arrays for photoelectrochemical water splitting. *Nano Lett.* 2011;11:3026-3033.

Zheng Z, Huang B, Lu J, et al. Hydrogenated titania: synergy of surface modification and morphology improvement for enhanced photocatalytic activity. *Chem. Commun.* 2012;48:5733-5735.

18. Zhang Z, Yang C, Lin T, et al. H-doped black titania with very high solar absorption and excellent photocatalysis enhanced by localized surface plasmon resonance. *Adv. Funct. Mater.* 2013;23:5444-5450.

17. Yang C, Wang Z, Lin T, et al. Core-shell nanostructured “Black” rutile titania as excellent catalyst for hydrogen production enhanced by sulfur doping. *J. Am. Chem. Soc.* 2013;135:17831-17838.

16. Liu N, Schneider C, Freitag D, et al. Black TiO2 nanotubes: cocatalyst-free open-circuit hydrogen generation. *Nano Lett.* 2014;14:3309-3313.

15. Liu H, Zhao Z, Niu M, et al. A facile and versatile method for preparation of colored TiO2 with enhanced solar-driven photocatalytic activity. *Nanoscale.* 2014;6:10216-10223.

14. Nakajima T, Nakamura T, Shinoda K, Tsuchiya T. Rapid formation of black titania photoanodes: pulsed laser-induced oxygen release and enhanced solar water splitting efficiency. *J. Mater. Chem. A.* 2014;2:6762-6771.

13. Liu N, Hübklein V, Zhou X, et al. “Black” TiO2 nanotubes formed by high-energy proton implantation show noble-metal-cocatalyst free photocatalytic H2-evolution. *Nano Lett.* 2015;15:6815-6820.

12. Qingli W, Zhaoguo Z, Xudong C, et al. Photoreduction of CO2 using black TiO2 films under solar light. *J. CO2 Util.* 2015;12:7-11.

11. Tian Z, Cui H, Zhu G, et al. Hydrogen plasma reduced black TiO2-B nanowires for enhanced photoelectrochemical water-splitting. *J. Power Sources.* 2016;325:697-705.

10. Zhao J, Li Y, Zhu Y, Wang Y, Wang C. Enhanced CO2 photoreduction activity of black TiO2-coated Cu nanoparticles under visible light irradiation: Role of metallic Cu. *Appl. Catal. A: Gen.* 2016;510:34-41.

9. Xin X, Xu T, Wang L, Wang C. Ti3+-self doped brookite TiO2 single-crystalline nanosheets with high solar absorption and excellent photocatalytic CO2 reduction. *Sci. Rep.* 2016;6:23684.

8. Liu X, Xing Z, Zhang Y, et al. Fabrication of 3D flower-like black N-TiO2-x@MoS2 for unprecedented-high visible-light-driven photocatalytic performance. *Appl. Catal. B.* 2017;201:119-127.

7. Xu J, Tian Z, Yin G, Lin T, Huang F. Controllable reduced black titania with enhanced photoelectrochemical water splitting performance. *Dalton Trans.* 2017;46:1047-1051.

6. Song H, Li C, Lou Z, Ye Z, Zhu L. Effective formation of oxygen vacancies in black TiO2 nanostructures with efficient solar-driven water splitting. *ACS Sustainable Chem. Eng.* 2017;5:8982-8987.

5. Billo T, Fu FY, Raghunath P, et al. Ni-nanocluster modified black TiO2 with dual active sites for selective photocatalytic CO2 reduction. *Small.* 2018;14:1702928.

4. Wang CC, Chou PH, Yu YH, Kei CC. Deposition of Ni nanoparticles on black TiO2 nanowire arrays for photoelectrochemical water splitting by atomic layer deposition. *Electrochim. Acta.* 2018;284:211-219.

3. Ye J, He J, Wang S, et al. Nickel-loaded black TiO2 with inverse opal structure for photocatalytic reduction of CO2 under visible light. *Sep. Purif. Technol.* 2019;220:8-15.

2. Ali-Löytty H, Hannula M, Saari J, et al. Diversity of TiO2: controlling the molecular and electronic structure of atomic-layer-deposited black TiO2. *ACS Appl. Mater. Interfaces.* 2019;11:2758-2762.

1. Li Y, Fu R, Gao M, Wang X. B-N co-doped black TiO2 synthesized via magnesiothermic reduction for enhanced photocatalytic hydrogen production. *Int. J. Hydrogen Energy.* 2019;44:28629-28637.

Pan X, Yang MQ, Fu X, Zhang N, Xu YJ. Defective TiO2 with oxygen vacancies: synthesis, properties and photocatalytic applications. *Nanoscale.* 2013;5:3601-3614.

Dahl M, Liu Y, Yin Y. Composite titanium dioxide nanomaterials. *Chem. Rev.* 2014;114:9853-9898.

Qu Y, Duan X. Progress, challenge and perspective of heterogeneous photocatalysis. *Chem. Soc. Rev.* 2013;42:2568-2580.

Moniz SIA, Shevlin SA, Martin DJ, Guo ZX, Tang J. Visible-light driven heterojunction photocatalysts for water splitting—a critical review. *Energy Environ. Sci.* 2015;8:731-759.

Naldoni A, Allieta M, Santangelo S, et al. Effect of nature and location of defects on bandgap narrowing in black TiO2 nanoparticles. *J. Am. Chem. Soc.* 2012;134:7600-7603.

Wang Z, Yang C, Lin T, et al. Visible-light photocatalytic, solar thermal and photoelectrochemical properties of aluminium-reduced black titania. *Energy Environ. Sci.* 2013;6:3007-3014.

Liu L, Yu PY, Chen X, Mao SS, Shen DZ. Hydrogenation and disorder in engineered black TiO2. *Phys. Rev. Lett.* 2013;111:065505.

Fan C, Chen C, Wang J, et al. Black hydrosolylated titanium dioxide prepared via ultrasonication with enhanced photocatalytic activity. *Sci. Rep.* 2015;5:11712.

Mo LB, Bai Y, Xiang QY, et al. Band gap engineering of TiO2 through hydrogenation. *Appl. Phys. Lett.* 2014;105:202114.

Cai J, Wang Y, Zhu Y, et al. In situ formation of disorder-engineered TiO2(B)–ananate heterophase junction for enhanced photocatalytic hydrogen evolution. *ACS Appl. Mater. Interfaces.* 2015;7:24987-24992.

Xia T, Zhang C, Oyler NA, Chen X. Hydrogenated TiO2 nanocrystals: a novel microwave absorbing material. *Adv. Mater.* 2013;25:6905-6910.

Thompson TL, Yates JT. Surface science studies of the photoactivation of TiO2–new photochemical processes. *Chem. Rev.* 2006;106:4428-4453.

Jiang X, Zhang Y, Jiang J, et al. Characterization of oxygen vacancy associates within hydrogenated TiO2: a positron annihilation study. *J. Phys. Chem. C.* 2012;116:22619-22624.

Liu L, Liu Q, Zheng Y, Wang Z, Pan C, Ziao W. O2 adsorption and dissociation on a hydrogenated anatase (101) surface. *J. Phys. Chem. C.* 2014;118:3471-3482.
45. Ma M, Zhang K, Li P, Jung MS, Jeong MJ, Park JH. Dual oxygen and tungsten vacancies on a WO3 photoanode for enhanced water oxidation. Angew Chem Int Ed. 2016;55:11819-11823.

46. Kim JK, Cho Y, Jeong MJ, et al. Rapid formation of a disordered layer on monoclinic BiVO4: co-catalyst-free photovoltaic photoelectrochemical solar water splitting. ChemSusChem. 2018;11:933-940.

47. Yan P, Liu G, Ding C, et al. Photoelectrochemical water splitting promoted with a disordered surface layer created by electrochemical reduction. ACS Appl Mater Interfaces. 2015;7:3791-3796.

48. Valdés Á, Qu ZW, Kroes GJ, Rossmeisl J, Nørskov JK. Oxidation and photo-oxidation of water on TiO2 surface. J Phys Chem C. 2008;112:9872-9879.

49. Li YF, Liu ZP, Liu LL, Gao W. Mechanism and activity of photocatalytic oxygen evolution on titania anatase in aqueous surroundings. J Am Chem Soc. 2010;132:13008-13015.

50. Schaub R, Thostrup P, Lopez N, et al. Oxygen vacancies as active sites for water dissociation on rutile TiO2 (110). Phys Rev Lett. 2001;87:266104.

51. Liu G, Yang HG, Pan J, Yang YQ, Lu GQ, Cheng HM. Titanium dioxide crystals with tailored facets. Chem Rev. 2014;114:9559-9612.

52. Wen B, Yin WJ, Selloni A, Liu LM. Defects, adsorbates, and photoactivity of rutile TiO2 (110): insight by first-principles calculations. J Phys Chem Lett. 2018;9:5281-5287.

53. Petrik NG, Kimmel GA. Reaction kinetics of water molecules with oxygen vacancies on rutile TiO2(110). J Phys Chem C. 2015;119:23059-23067.

54. Cao Y, Chen S, Li Y, et al. Evolution of anatase surface active sites probed by in situ sum-frequency phonon spectroscopy. Sci Adv. 2016;2:e1601162.

55. Setvin M, Aschauer U, Scheier P, et al. Reaction of O2 with subsurface oxygen vacancies on TiO2 anatase (101). Science. 2013;341:988-991.

56. Li H, Guo Y, Robertson J. Calculation of TiO2 surface and subsurface oxygen vacancy by the screened exchange functional. J Phys Chem C. 2015;119:18160-18166.

57. Khalil M, Gunlazuardi J, Lavandini TA, Umar A. Photocatalytic conversion of CO2 using earth-abundant catalysts: a review on mechanism and catalytic performance. Renew Sust Energ Rev. 2019;113:109246.

58. Low J, Cheng B, Yu J. Surface modification and enhanced photocatalytic CO2 reduction performance of TiO2: a review. Appl Surf Sci. 2017;392:658-686.

59. Sun Z, Wang H, Wu Z, Wang L. g-C3N4 based composite photocatalysts for photocalytic CO2 reduction. Catal Today. 2018;300:160-172.

60. Lingampalli SR, Ayub MM, Rao CNR. Recent progress in the photocatalytic reduction of carbon dioxide. ACS Omega. 2017;2:2740-2748.

61. Shehzad N, Tahir M, Johari K, Murugesan T, Hussain M. A critical review on TiO2 based photocatalytic CO2 reduction system: strategies to improve efficiency. J CO2 Util. 2018;26:98-122.

62. Chatzitakis A, Sartori S. Recent advances in the use of black TiO2 for production of hydrogen and other solar fuels. ChemPhysChem. 2019;20:1272-1281.

63. Razzaq A, In SI. TiO2 based nanostructures for photocatalytic CO2 conversion to valuable chemicals. Micromachines. 2019;10:326.

64. Yin G, Huang X, Chen T, et al. Hydrogenated blue titania for efficient solar to chemical conversions: preparation, characterization, and reaction mechanism of CO2 reduction. ACS Catal. 2018;8:1009-1017.

65. Gao J, Shen Q, Guan R, et al. Oxygen vacancy self-doped black TiO2 nanotube arrays by aluminothermic reduction for photocatalytic CO2 reduction under visible light illumination. J CO2 Util. 2020;35:205-215.

66. Fang W, Khrouz L, Zhou Y, et al. Reduced [001]-TiO2-x photocatalysts: noble-metal-free CO2 photoreduction for selective CH4 evolution. Phys Chem Chem Phys. 2017;19:13875-13881.

67. Ji Y, Luo Y. New mechanism for photocatalytic reduction of CO2 on the anatase TiO2(101) surface: the essential role of oxygen vacancy. J Am Chem Soc. 2016;138:15896-15902.

68. Liu JY, Gong XQ, Alexandrova AN. Mechanism of CO2 photocatalytic reduction to methane and methanol on defected anatase TiO2 (101): a density functional theory study. J Phys Chem C. 2019;123:3505-3511.

AUTHOR BIOGRAPHIES

Sungsoon Kim is currently a PhD candidate under the supervision of Prof Jong Hyeok Park at the Department of Chemical and Biomolecular Engineering in Yonsei University, Republic of Korea. His research interests focus on the surface and interface engineering of nanomaterials for electrochemical and photoelectrochemical water splitting.

Yoonjun Cho is currently a PhD candidate under the supervision of Prof Jong Hyeok Park at Department of Chemical and Biomolecular Engineering in Yonsei University, Republic of Korea. His research interests focus on the surface and interface engineering of nanomaterials for electrochemical and photoelectrochemical water splitting.

Ryan Rhee is currently a PhD candidate under the supervision of Prof Jong Hyeok Park at the Department of Chemical and Biomolecular Engineering in Yonsei University, Republic of Korea. His research interests focus on metamaterials and structure, halide perovskite-based PV materials and devices.

Jong Hyeok Park is a Prof at the Department of Chemical and Biomolecular Engineering at Yonsei University, Republic of Korea. He received his PhD in chemical engineering from KAIST, Republic of Korea, in August 2004. Then, he joined...
the University of Texas at Austin, as a postdoctoral researcher in 2004 (under Prof Allen J. Bard). From March 2007 to February 2008, he worked at ETRI. He is an author and a co-author of 297 papers and 50 patents. His research focuses on solar-to-hydrogen conversion devices, Li and Na ion batteries, perovskite solar cells.

How to cite this article: Kim S, Cho Y, Rhee R, Park JH. Black TiO$_2$: What are exact functions of disorder layer. Carbon Energy. 2020;1–10. https://doi.org/10.1002/cey2.32