Antimicrobial Activity and Gas Chromatography-Mass Spectrometry (GC-MS) Analysis of Saudi Arabian Ocimum basilicum Leaves Extracts

Ibtisam Mohammed Ababutain

Department of Biology, College of Science, Imam Abdulrahman Bin Faisal University, P.O. Box 1982-31441, Dammam, Saudi Arabia.

Abstract

The present study evaluates the antimicrobial activity of Ocimum basilicum leaves extracts using well diffusion assay. Microbicidal or Microbiostatic activities were determined using (MBC or MFC) /MIC ratio. All O. basilicum extracts ethanol, methanol, and water possess antimicrobial activity. Methanol was the best solvent with greater inhibitory activity followed by ethanol then water against bacteria. However, all three solvents showed no difference in their inhibitory activity against yeast. The MIC and MBC values were in decreasing order methanol, ethanol then water against bacteria whereas Candida albicans was more sensitive at MIC 12.5µg/mL than C. tropicalis at MIC 25µg/mL and MFC values were lower against C. albicans than C. tropicalis at 25µg/mL and 50µg/mL, respectively in all type of solvents. The ratio of (MBC or MFC) /MIC were one to three-folds. The GC-MS result showed the presence of several important chemical compounds like terpene, steroids, phenols, esters, and fatty acids most of these compounds were reported to have an antimicrobial activity. The study indicates the importance of O. basilicum extracts as microbicidal agent with wide spectrum and high inhibitory properties in low concentrations. Therefore, O. basilicum leaves extracts may be important in the field of antimicrobial production as alternatives to antibiotics.

Keywords: Antimicrobial activity, GC-MS Analysis, Ocimum basilicum, Antibiotics.
INTRODUCTION

The discovery of antibiotics in the mid-nineties appears to have solved most of the common problems in microbial infections. But the risk lies in the pathological cases in which the microbes are resistant to antibiotics or develop antibiotic resistance\(^1\). The massive use of antibiotics in the past 80 years both appropriate and inappropriate has led to fast antibiotic resistance. Bacteria are able to resist various antibiotics through horizontal gene-transfer or mutation\(^1\). Furthermore, other bacteria are intrinsically resistant to antibiotic, for example not having antibiotics target sites or having low permeability to antibiotics\(^2,3\). The resistance mechanisms for antibiotics occur by enzymatic inactivation, site target modification, active elimination, or absorption inhibition\(^4\). Estimated report indicate that the resistance of bacteria to antibiotics and their loss of ability to treat many bacterial infections will be the first killer in year 2050, where deaths are expected to reach 10 million per year, which means they are higher than deaths due to cancer\(^5\).

In fact antibiotic resistance has become the third threat to public health in the 21st century\(^6\). Moreover, antimicrobial resistance causes high economic burden including high therapeutic expenses and longer hospital stay\(^7,8\). Accordingly, it is necessary to develop anti-microbial agents as an alternative to treat infectious diseases. Several studies showed that plants substances are a promising source for the discovery of novel antimicrobial agents\(^9\).

Lamiaceae is one of most famous medicinal family plants, contains 236 genera and about 6000 species\(^1\). *Ocimum* sp. is one of the important genuses in this family; it contains about 150 species that greatly differ in their morphology, aromatic composition, essential oil content, and chemical composition\(^2\). *Ocimum basilicum* is an annual herb grows in different regions of the world\(^3\) and is known as Basil or Sweet Basil also named as king of the herbs\(^4,5\). This aromatic plant traditionally used as fresh or dried leaves as food flavoring, food preservative, medicinal plant and perfumery\(^6\). Several studies reported that Sweet Basil leave extract were able to cure various illnesses and symptoms\(^7,8\). Furthermore, Sweet Basil has activity against inflammation, viruses, bacteria and fungi\(^9,10\). It has pharmacological effects against several diseases, with great antioxidant, anticancer and anti-aging properties\(^11,12\). Moreover, basil leaves essential oils and extracts were found to be a rich source of phytochemical compounds such as chavicol, linalool, methyl ether, estagole, eugenol, methyl eugenol, and methyl chavicol\(^13\).

There are no previous studies involving this microbial group in a single study using alcoholic and aqueous *O. basilicum* extracts and the antimicrobial efficiency (Microbicidal or Microbiostatic). It is also noteworthy that most previous studies have highlighted the study of essential oil of *O. basilicum* and their anti-microbial activity while the *O. basilicum* extract received less attention. Therefore, the aim of this study was to compare the antimicrobial activity of three solvents of *O. basilicum* leaves extracts; ethanol, methanol and water, determine the antimicrobial efficiency and their phytochemical components.

MATERIALS AND METHODS

Plant material

Ocimum basilicum L. (sweet basil) plant were purchased from a vegetable market in Dammam, Saudi Arabia. The plant was identified by Department of Biology, College of science, Imam Abdulrahman Bin Faisal University using The Herb Society of America\(^4\).

Preparation of plant extracts

Plant leaves were washed thoroughly with tap water and dried at room temperature. Dried leaves were ground to fine powder using a blender. Sixty grams of the powder plant was transferred one by one to three Erlenmeyer flasks containing 300 mL of distilled water, ethanol (80%), and methanol (80%) to obtain a final concentration of 20% g/mL. The mixtures were placed in a shaker at 300 rpm/min for 72 hours at 20°C to allow extraction of active compounds. The extract solutions were filtered with Whatman No. 1 filter paper then bacterial filters and filtrates were concentrated using an oven at 80°C. Dimethyl Sulfoxide (DMSO) was used to re-suspend the residues to a final concentration of 20% and the flasks were sealed and kept at 4°C for further use\(^5\).

Test microorganisms

Eight microorganisms were used three Gram positive bacteria (*Staphylococcus aureus*...
ATCC24213, *S. aureus* and *Bacillus subtilis*), three Gram negative bacteria (*Escherichia coli* ATCC25922, *E. coli* and *Pseudomonas aeruginosa*) and two yeasts (*Candida albicans* and *Candida tropicalis*). Most microorganisms were obtained from King Fahd Hospital, AlKhobar, Saudi Arabia. Except *B. subtilis* was obtained from the Biology Department, College of Science, Imam Abdulrahman Bin Faisal University.

Agar well diffusion technique

Antimicrobial activity was carried out using agar well diffusion technique. One mL of microorganisms cultures age 18-24 h (standard inoculums 1-2x10⁸ CFU/mL 0.5 McFarland standard) were transfer to Petri plates, and 15 mL of nutrient agar was poured into the plates. After the cultures solidified, wells sizes 5 mm were punched using a sterile cork borer. Each well was filled with 50 µL of plant extracts; DMSO was used as a negative control, erythromycin (E15 mcg) as a positive control for the bacteria and nystatin (100mg) as a positive control for the yeasts. Treated plates were placed in a refrigerator for about one hour to allow diffusion of the plant extract and controls. Then plates were incubated for 48 hours at 37°C. Antimicrobial activity was recorded in millimeters by measuring the zones of inhibition around the wells. All experiments were performed with five replicates.

Determination of Minimum Inhibitory Concentration (MIC)

Method of Omura et al. was preformed to determine the Minimum Inhibitory Concentration (MIC) of the plant extracts. Two- fold dilution of the plant extracts was made with nutrient broth media using 96 well microtitre plates. Standard bacterial inoculums at the concentration of 1-2x10⁹ CFU/mL were added to the wells to a final concentration of 50%. Well number 11 left as positive control contain growth media and bacterial inoculum and well number 12 left as negative control contain growth media and plant extract. The MICs were read after overnight incubation at 37°C using a microtitre plate’s reader at a wavelength of 630 nm. All experiments were performed in three replicate.

Determination of Minimum Bactericidal and Fungicidal Concentration (MBC and MFC)

Pour plate method was used to determine the MBC and MFC. From the MIC experiment concentrations that showed no bacterial growth were sub-cultured using Petri plates, and then 12 mL of melted nutrient agar media was poured over it and gently mixed and left to solidify. The inoculated plates were incubated at 37°C for 48 hours. The lowest concentration that showed no visible colonies were recorded as MBC. All experiments were performed in three replicate.

Gas Chromatography-Mass Spectrometry (GC-MS)

Gas Chromatography-Mass Spectrometer Model QP2010 SE (Shimadzu-Japan) with 5 Sil MS 5% diphenyl/95% dimethyl polysiloxane capillary column (30 meter, 0.25 mmID, 0.25-µm df) was used to screen the bioactive compounds of Sweet Basil plant extracts. Hundred micro- milliliters of plant sample were diluted using 1400µl of DMSO. One µL of diluted sample (100/1400, V/V in DMSO) was injected in the split mode with a split ratio 1:10. For GC-MS detection, electron impact ionization system with ionization energy of 70eV was used. Carrier gas was pure helium (99.999%) at a constant column flow 0.7ml/min and total flow was 10.4 ml/min. Flow control mode was linear velocity of 29.6cm/sec. Injector temperature was set at 250°C and ion-source temperature 250°C. The oven temperature was programmed from 50°C to 300°C, hold time was 3 min, and total run time was 29 min. ACQ Mode Scan range from 35 m/z to 500 m/z with scan speed 2500. Chemical compounds were identified by National Institute of Standards and Technology (NIST 08) library match.

Statistical analysis

The antimicrobial activities of *O. basilicum* leaves extracts between the solvents and the microbes were analyzed using SPSS Version 23.0 at significance *p* < 0.01.

RESULTS

The antimicrobial activity of *O. basilicum* extracts (ethanol, methanol and water) was tested through the presence or absence of clear growth zones around the well. The results clarify that
solvent type affect the inhibitory activity (Table 1). In general, the methanol extract showed the highest inhibitory activity against Gram positive bacteria and Gram negative bacteria follow by ethanol extract then water extract. However, all solvents were equal in their impact on the yeasts. The results showed that *S. aureus* and *E. coli* were resistant to the Erythromycin (E15 mcg) antibiotic.

Table 1. Antimicrobial activity of *O. basilicum* leaves extracts at concentration of 20% g/mL using agar well diffusion technique

Micro-organisms	Ethanol extract	Methanol extract	Water extract	Significance (p≤0.01)*	Positive control**	Negative control***
Gram positive bacteria						
S. aureus ATCC24213	10.7±0.6	12.4±0.6	7.5±0.9	0.001	14±1.0	R
S. aureus	11.5±0.5	11.8±0.3	11.3±0.3	0.003	R	R
B. subtilis	10.7±0.6	13.7±0.6	10.5±0.5	0.001	20±1.0	R
Gram negative bacteria						
E. coli ATCC25922	11.5±0.3	12.3±0.6	10.8±0.3	0.001	9.0±1.0	R
E. coli	11.8±0.3	12.8±0.3	11.3±0.3	0.001	R	R
P. aeruginosa	11.8±0.3	12.3±0.3	11.4±0.5	0.002	10.8±0.3	R
Yeasts						
C. albicans	12.6±0.3	12.5±0.6	12.6±0.5	0.1	19.2±0.8	R
C. tropicalis	11.8±0.3	11.9±0.3	11.7±0.5	0.006	17.3±1.0	R

p values are less than 0.01 which means that there is a significant difference between the tested microbes or between the used solvents.

Table 2. Determination of Minimal Inhibitory Concentration (MIC) µg/ml, Minimal Bactericidal Concentration (MBC), Minimal Fungicidal Concentration (MFC) µg/ml and their ratio of *O. basilicum* extracts

Micro-organisms	MIC, MBC and MFC (µg/ml) of Sweet Basil extract								
	Ethanol extract	Methanol extract	Water extract						
	MIC	MBC or MFC	Ratio*	MIC	MBC or MFC	ratio	MIC	MBC or MFC	Ratio*
Gram positive bacteria									
S. aureus ATCC24213	12.5	50	2	12.5	25	1	25	50	1
S. aureus	12.5	50	2	12.5	25	1	25	100	2
B. subtilis	6.25	12.5	1	3.125	6.25	1	25	50	1
Gram negative bacteria									
E. coli ATCC25922	12.5	50	2	12.5	25	1	25	50	1
E. coli	12.5	100	3	12.5	50	1	25	100	2
P. aeruginosa	12.5	50	2	12.5	25	1	25	50	1
Yeasts									
C. albicans	12.5	25	1	12.5	25	1	25	25	1
C. tropicalis	25	50	1	25	50	1	25	50	1

Ratio* (MBC or MFC)/MIC
Table 3. GC-MS analysis of *O. basilicum* extracts and their biological activities

No	Compound name	Peak Area% EL	ML	WL	Molecular Formula	Compound Nature and Biological activities
1	9,12,15-Octadecatrienoic acid, (Z,Z,Z)-	19.26	10.47	1.28	C₂₀H₃₄O₂	Linolenic Omega-3 polyunsaturated fatty acid, Anti-inflammatory, Cancer preventive, Antieczemic and Nematicide³⁹.
2	n-Hexadecanoic acid	9.68	3.54	1.14	C₁₆H₃₂O₂	Palmitic saturated Fatty acid ester, Antioxidant, Nematicide, Hypcholesterolemi and Antiandrogenic, pesticide^{39,40}.
3	9,12,15-Octadecatrienoic acid, ethyl ester, (Z)	8.59	3.81	0.3	C₂₂H₃₆O₂	Linolenic acid, ethyl ester No activity was reported.
4	Phytol	4.96	1.17	0.2	C₂₀H₃₄O	Diterpene, Antimicrobial, Cancer preventive, Anticancer and Anti-inflammatory^{39,40}.
5	Phytol, acetate	2.69	0.5	0.27	C₂₁H₄₂O₂	Anti-inflammatory, antileishmanial and antitrypanosomal⁴³.
6	Methyleugenol	2.42	2.25	0.3	C₂₀H₃₄O₂	Phenolic compounds, Anti-inflammatory, Antioxidant, Antimicrobial, Nematicide and insecticide⁴².
7	3,7,11,15-Tetramethyl-2-hexadecen-1-ol	2.04	0.81	0.27	C₂₀H₄₀O	Terpene Alcohol, Antimicrobial, Antioxidant, Anti-inflammatory and flavoring agent^{39,43,44}.
8	Eugenol	0.67	0.72	0.19	C₁₀H₁₄O₂	Phenolic compounds, Antimicrobial, Nematicide, insecticide and food additive^{42,45}.
9	Hexadecanoic acid, methyl ester	0.32	2.56	0.2	C₁₈H₃₆O₂	Palmitic saturated fatty acids ester, Antioxidant, Flavor, Hypcholesterolemic Pesticide and 5-Alpha reductase inhibitor³⁹.
10	S-Methyl methanethiosulphonate	0.28	0.21	1.03	CH₃S=OCH₃	Ester and Antimutagenic agent⁴⁶.
11	Benzeneacetic acid	0.15	0.27	0.78	C₉H₈BrNO₂	No activity was reported.
12	Vitamin E	0.79	0.29	-	C₂₄H₄₀O₂	Lapid, Anti-Alzheimer, Antiaging, Antioxidant and Anti-inflammatory^{45,47,48}.
13	Resorcinol	0.21	0.13	-	C₉H₆O₂	1,3-isomer of dihydroxyphenol, not a bacterial mutagen^{49,50}.
14	Propane, 3-chloro-1,1,1-trifluoro	19.84	-	4.26	C₃H₄ClF	No activity was reported.
15	Hexadecanoic acid, ethyl ester	4.9	-	0.22	C₂₂H₃₆O₂	Palmitic saturated fatty acids, Antioxidant, Flavor, Anti-androgenic, Nematicide, Hemolytic and Hypcholesterolemic³⁹.
16	9,12-Octadecadienoic acid (Z,Z)-	0.11	-	0.22	C₂₀H₃₂O₂	Article I. Linoleic acid polyunsaturated fatty acid, Anti-inflammatory, Anticancer, Antiacne and Nematicide³⁹.
	Name	Mass	Purity	Molecular Formula	Properties	
---	--	--------	----------	-------------------	---	
17	Benzoic acid, 4-hydroxy-	2.05	-	C₇H₆O₃	Phenolic compounds and No activity reported⁵¹.	
18	Salicylic acid	0.12	-	C₇H₆O₃	Phenolic compounds, Bacteriostatic, Fungicidal, Anti-inflammatory and Antibacterial⁵².	
19	4,5-Dichloro-1,3-dioxolan-2-one	-	24.23	C₉H₇ClO₃	No activity reported	
20	gamma-Sitosterol	-	11.52	C₉H₂₀O	Steroid and Antidiabetic drug⁵³.	
21	9,12,15-Octadecatrienoic acid, methyl ester, (Z,Z,Z)	-	6.3	C₁₀H₁₆O₂	Linolenic polyunsaturated fatty acid methyl ester, Antimicrobial, Antiarthritic, Antiasthma⁵⁹.	
22	stigmasterol	-	4.94	C₉H₁₄O	Steroid, Antioxidant, Antimicrobial, Anticancer, Antiarthritic, Antiasthma⁵⁹, Antidiabetic drug⁵⁵.	
23	9,12-Octadecadienoic acid (Z,Z), methyl ester	-	2.12	C₁₀H₁₄O₂	Methyl linoleate, Analgesic, Anti-inflammatory and Ulcerogenic⁵⁶.	
24	Octadecanoic acid	-	0.67	C₁₈H₃₅CO₂H	Stearic saturated fatty acid No activity reported	
25	Lupeol	-	0.23	C₂₀H₂₅O₃	Article II. Triterpenoid, Antimicrobial, Anti-inflammatory, Anticancer, and Antioxidant³⁴.	
26	Benzoic acid	-	0.22	C₇H₆O₃	Phenolic compounds and food additives⁵⁷.	
27	beta-Amyrin	-	1.19	C₉H₂₀O	Triterpenes, Anti-inflammatory⁵⁸.	
28	1-Heptatriacotanol	-	0.64	C₁₇H₃₄O	Alcoholic compound, Antioxidant, Anticancer, Antimicrobial, Anti inflammatory⁵⁵, Anti inflammatory⁵⁵.	
29	Phenol	-	6.22	C₆H₅OH	Phenolic compound and Antioxidant⁶⁰.	
and sensitive to all *O. basilicum* extracts.

The results of MIC test showed that the widest MIC range was methanol extract from 3.125 to 25µg/mL then the range became progressively narrower with ethanol extract from 6.25 to 25µg/mL and water extract from 12.5 to 25µg/mL (Table 2). *B. subtilis* was the most sensitive microbe to both alcoholic extracts, methanol extract with MIC 3.125µg/mL and ethanol extract with MIC 6.25µg/mL. All three *O. basilicum* extracts had inhibitory effect on both yeasts. *C. albicans* was more sensitive at MIC 12.5µg/mL than *C. tropicalis* with MIC 25µg/mL. MBC results showed that the ethanol extract have the highest value at 100µg/mL against *E. coli* also water extract against *E. coli* and *S. aureus*. The highest MFC value was 50µg/mL against *C. tropicalis* in all types of solvent compared to 25µg/mL against *C. albicans*. The result showed that the maximum ratio between MIC and MBC or MFC was three-fold (Table 2).

GC-MS analysis of *O. basilicum* extracts showed total components in ethanol extract, methanol extract and water extract were 18, 23 and 23 respectively (Table 3). The compounds higher than 4.0% were Propane, 3-chloro-1,1,1-trifluoro (19.84%), 9,12,15-Octadecatrienoic acid, (Z,Z,Z)- (19.26), n-Hexadecanoic acid (9.68%), 9,12,15-Octadecatrienoic acid, ethyl ester, (8.59%) and phytol (4.96%) in ethanol extract. In the methanol extract the compounds found were 4,5-Dichloro-1,3-dioxolan-2-one (24.23%), 9,12,15-Octadecatrienoic acid, (Z,Z,Z)- (10.47), gamma – Sitosterol (11,52%), 9,12,15-Octadecatrienoic acid, methyl ester, (Z,Z,Z) (6.30%), and stigmasterol (4.94%). And compounds found in water extract were 4,5-Dichloro-1,3-dioxolan-2-one (49.87%), phenol (6.22%), Propane, 3-chloro-1,1,1-trifluoro (4.26%) and gamma–Sitosterol (4.19%).

DISCUSSION

Lamiaceae family contains natural bioactive components that may be considered a promising field in the discovery of new antimicrobial agents. The present study showed that all tested bacteria and yeasts exhibit sensitivities towards *O. basilicum* extracts shown by the size of inhibition zone. The results of the statistical analysis showed significant differences between the three solvents (p-values < 0.01), except for the effect of the solvents on *C. albicans*, which did not have significant differences (p-value > 0.01. There are also significant differences among the microbes.

This result is in regard with a previous study who found that water extract of *O. basilicum* inhibit the growth of both Gram positive and Gram negative bacteria. Moreover, Khalil reported that ethanolic extract of *O. basilicum* inhibit the growth of *E. coli* and *S. aureus*. Also, our study partly agrees with another study found that aqueous extract of *O. basilicum* have stronger inhibitory activity comparing to ethyl acetate, methanol, and n-hexane extracts against Gram positive and Gram negative bacteria. It is worth noting that the *O. basilicum* extracts showed inhibitory activity against *E. coli* and *S. aureus* that were resistance to the Erythromycin (E15 mcg), indicating the superiority of the *O. basilicum* extracts on Erythromycin.

The present study showed that both yeasts were inhibited by ethanol, methanol and water extracts of *O. basilicum* this result are not consistent with a study conducted by Kaya et al. where they found that acetone, chloroform and methanol extracts of *O. basilicum* did not show inhibitory activity against yeasts. These differences may be due to microbial strains, growth conditions, secondary metabolites, or extraction methods. The present result indicated that methanolic, ethanolic and water extracts of *O. basilicum* posses an antifungal activity.

The present results showed differences in inhibitory capability depending on the type of solvent in which the inhibitory activity for methanol extract was higher than ethanol and water against bacteria. This result is consistent with previous studies that confirm the effect of the solvent on the inhibitory capability of plant extracts and may return to solvent polarity, although the solvents used in this study are polar but vary in their strength in descending order water, methanol then ethanol. In this study polar solvents have been chosen due to the ability of extracting many active compounds such as polyphenolic compounds.

The determination of MIC and MBC or MFC is important to measure the efficiency of the plant extract as antimicrobial agents. The
MIC and MBC result showed that *O. basilicum* methanol extract had the lowest values of 3.125µg/mL and 6.25µg/mL against *B. subtilis*, respectively. In general, the present result showed that the MIC and MBC values of methanol extract are lower than those of the ethanol extract and the later are lower than the values of the water extract on the tested bacteria. This result supports the conclusion that antibacterial agents with low antibacterial activity have higher MIC and MBC values compared with more effective antibacterial agents. However, the result showed that yeasts respond differently to inhibitory activity of *O. basilicum* extracts where the *C. albicans* was more sensitive than *C. tropicalis* in all the extracts. Where, the values of MIC and MFC required to inhibit the *C. albicans* are higher than the *C. tropicalis*.

Antimicrobial agents are considered as Microbicidal agents if the MBC or MFC is less than four times the MIC and Microbiostatic agent if the MBC or MFC is more or equal than four times the MIC. Calculation of the ratio between MIC and (MBC or MFC) is shown to be less than three-fold. Accordingly inhibiting activity of *O. basilicum* extracts may be considered as Microbicidal agent.

The current result of GC-MS analysis of *O. basilicum* extracts showed the presence of several important chemical compounds like terpene, steroids, phenols, esters, and fatty acid. These entire compounds were reported to have a variety of biological activities (Table 3). This result is consistent with other studies reported that *O. basilicum* is rich in polyphenols like Phenolic acids. It is interesting that the current study is not consistent with Murali and Prabakaran whom found that *O. basilicum* methanol extract contains 13 compounds that did not resemble the chemical compounds found in this study. This may be due to the difference in the environment in which the plant is grown, the age of the plant or the extraction method.

The current study showed that the alcoholic and water extracts of *O. basilicum* were able to inhibit the growth of bacteria and yeast alike, and this may be due to the richness of *O. basilicum* with Phenolic compounds like Eugenol, Methyleneugenol, Benzoic acid, Benzoic acid 4-hydroxy-, Salicylic acid, and Phenol. Phenolic compounds were reported to have several mechanisms of action against microbes, including changing the permeability of microbial cell membrane through accumulation of hydrophobic groups in the phospholipids bilayer disrupting the membrane integrity and leading to leakage of intracellular components and finally cell death. Also Phenolic compounds can bind to the enzymes inhibiting their functions like proteins, DNA and RNA synthesis. Also the results showed that the *O. basilicum* extract contains terpene compounds like Phytol, 3,7,11,15-Tetramethyl-2-hexadecen-1-ol, Lupeol and beta-Amyrin that have an effect on microbial cell membranes by disrupting membrane efficiency.

Additionally, the antimicrobial activity may be related to the presence of fatty acids. The current result showed that *O. basilicum* extract were rich in saturated fatty acid and unsaturated fatty acid both are with long carbon chain 16 and more (Table 3). McGaw et al. reported that Gram negative bacteria are less susceptible to fatty acids than Gram positive bacteria. Moreover, they reported that fatty acids carbon chain lengths play a very important role in their antimicrobial activity. Fatty acids containing 6 and less carbons inhibit Gram negative bacteria whereas Gram positive bacteria is inhibited by fatty acids with carbon chains longer than 12 and yeasts inhibited by fatty acids containing between 10 to 12 carbons. Several studies reported that unsaturated fatty acids with long carbon chains like linolenic acid, linoleic acid, and oleic acid have bactericidal effect on Methicillin-resistant *Staphylococcus aureus*, *Helicobacter pylori*, and *Mycobacteria*, while saturated fatty acids with long carbon chain like stearic acid and palmitic acid, are less active. However, the primary molecular target of fatty acid is still unknown.

CONCLUSIONS

The current study showed that *O. basilicum* extracts have a broad inhibitory spectrum against Gram negative bacteria, Gram positive bacteria and yeast. The results showed that the *O. basilicum* extracts were able to inhibit *E. coli* and *S. aureus* that were resistant to Erythromycin (E15 mcg). Moreover, the results of the determination of the inhibitory efficiency showed that *O. basilicum* extracts possesses microbicidal properties. The results also showed
that the type of solvent is important in increasing the inhibitory capacity especially against the bacteria. The results of GC-MS showed that \textit{O. basilicum} extracts are rich in compounds like Phenolic acids, fatty acid and terpene with inhibitory properties against wide range of microorganisms. The results of this study may provide new information on the importance of \textit{O. basilicum} extracts in the production of broad-spectrum anti-microbial agents with micro-bicidal properties that are environmentally friendly, have no side effects compared to antibiotics and low cost.

ACKNOWLEDGMENTS

The author would like to thank the research units at Al Rayyan campus – College of Science-Imam Abdulrahman Bin Faisal University for providing place and devices which were required for this experiment. And also like to thank Dr. Ahmed Alsayyah, Dr. Reem AIJindan, and Msr. Nouf Alromaihi for providing us with the tested microorganisms. Finally, we also like to thank Dr. Mariem Zouch for her assistant in the Statistical analysis.

FUNDING

None

DATA AVAILABILITY

All datasets generated or analyzed during this study are included in the manuscript.

ETHICS STATEMENT

This article does not contain any studies with human participants or animals performed by any of the authors.

REFERENCES

1. Lockhart S.R., Iqbal N., Cleveland A.A., Farley M.M., Harrison L.H., Bolden C.B., et al. Species identification and antifungal susceptibility testing of \textit{Candida} bloodstream isolates from population-based surveillance studies in two U.S. cities from 2008 to 2011. \textit{J. Clin. Microbiol.}, 2012; 50(11): 3435-42.
2. Fankam A.G., Kulate J.R., Kuete V. Antibacterial activities of \textit{Beilschmiedia obscura} and six other Cameroonian medicinal plants against multi-drug resistant Gram-negative phenotypes. \textit{BMC Complement Altern. Med.}, 2014; 14: 241.
3. Toma A., Deyno S. Overview on Mechanisms of Antibacterial Resistance. \textit{Int. J. Res. Pharma. and Bio. Sci.}, 2015; 2(1): 27-36.
4. Yoneyama H., Katsumara R., Antibiotic resistance in bacteria and its future for novel antibiotic development. \textit{Biosci. Biotechnol. Biochem.}, 2006; 70: 1060-75.
5. Wise R.A review of the mechanisms of action and resistance of antimicrobial agents. \textit{Can. Respir. J.}, 1999; 6: S20-2.
6. Soares G.M.S., Figueiredo L.C., Faveri M., Cortelli S.C., Duarte P.M., Feres M. Mechanisms of action of systemic antibiotics used in periodontal treatment and mechanisms of bacterial resistance to these drugs. \textit{J. Appl. Oral Sci.}, 2012; 20(3): 295-309.
7. O’Neill J. Review on antimicrobial resistance. Tackling Drug-Resistant Infections Globally: Final report and recommendations. https://amr-review.org/sites/default/files/160518_Fina%20paper_with%20cover.pdf, 2016.
8. World Health Organization; Antimicrobial resistance: global report on surveillance 2014. http://www.who.int/drugresistance/documents/surveillancererport/en/2014.
9. Founou R.C., Founou L.L., Essack S.Y. Clinical and economic impact of antibiotic resistance in developing countries: a systematic review and meta-analysis. \textit{PLoS One}, 2017; 12(12): 1-18.
10. Morgan J., Meltzer M.I., Plikaytis B.D., Sofair A.N., Huie-White S., Wilcox S., et al. Excess mortality, hospital stay, and cost due to candidemia: a case-control study using data from population-based candidemia surveillance. \textit{Infect. Control. Hosp. Epidemiol.}, 2005; 26(6): 540-7.
11. Bereksi M.S., Hassajne H., Bekhechi C., Abdelouahid D.E. Evaluation of Antibacterial Activity of Some Medicinal Plants Extracts Commonly Used in Algerian Traditional Medicine against Some Pathogenic Bacteria. \textit{Pharmacog J.}, 2018; 10(3): S20-2.
12. Janta K., Thaharn W. Antibacterial activity of medicinal plant extracts against some pathogenic bacteria causing skin diseases. \textit{RMUTT Journal}, 2018; 8(1): 141-51.
13. Yunana B.T., Bukar B.B., Aguiyi J.C. In vitro and in vivo evaluation of antibacterial activity of Bridelia ferruginea extracts on some clinical isolates. \textit{J. Phytopharmacol.}, 2018; 7(4): 392-8.
14. Caroviti-Stanko K., Petek M., Grdi a M., Pintar J., Bedekovit D., Custic M.H., Satovic Z. Medicinal Plants of the Family Lamiaceae as Functional Foods – a Review. \textit{Czech J. Food Sci.}, 2016; 34(5): 377–90.
15. Makri O., Kintzios S. ‘Ocimum sp. (Basil): Botany, Cultivation, Pharmaceutical Properties, and Biotechnology’, \textit{Journal of Herbs, Spices & Medicinal Plants}, 2008; 13(3): 123-50.
16. Cardoso N.N., Alviano C.S., Blank A.F., Romanos M.T., Fonseca B.B., Rozental S., et al. Synergism effect of the essential oil from \textit{Ocimum basilicum} var. \textit{Maria Bonita} and its major components with fluconazole and its influence on ergosterol biosynthesis. \textit{Evid Based Complement Alternat Med.}, 2016; 123(11): e65–e66.
17. Filip S. Basil (\textit{Ocimum basilicum} L.) a Source of Valuable Phytonutrients. \textit{Int. J. Clin. Nutr. Diet.}, 2017; 3: 118-22.
18. Mohammad A., Moghaddam D. Shayegh J. Anti-microbial activity of essential oil extract of \textit{Ocimum basilicum} L. leaves on a variety of pathogenic bacteria.
Aristolochia krysagathra

19. Ko K.Y., Geonaras I., Paik H., Kim K., Sofos J.N. Effects of plant-derived extracts, other anti-microbials and their combinations against Escherichia coli O157:H7 in beef systems. *J. Food Prot.*, 2015; **78**(6): 1090-7.

20. Gyawali R., Ibrahim S.A. Natural products as antimicrobial agents. *Food Control*, 2014; **46**: 412-29.

21. Talaat I.M., Balbaa L.K. Physiological response of sweet basil plants (*Ocimum basilicum* L.) to putrescine and trans cinnamic acid. *Am. Eurasian J. Agric. Environ. Sci.*, 2010; **8**(4): 438-45.

22. Umar A., Zhou W., Abdusalam E., Tursun A., Reyim N., Tohti I. *et al.* Effect of *Ocimum basilicum* L. on cyclooxygenase isoforms and prostaglandins involved in thrombosis. *J. Ethnopharmacol.*, 2014; **152**(1): 151-5.

23. Shafique M., Khan S.J., Khan N.H. Study of antioxidant and antimicrobial activity of sweet basil (*Ocimum basilicum*) essential oil. *Pharmacology Online*, 2011; **1**(1): 105-11.

24. Sani V.A., Cyril O., Yahaya Y., Hassan U., Ibrahim L.S. Phytochemical screening, *in vitro* anti-bacterial and partial TLC purification of different solvents extracts of *Ocimum basilicum* L. *GSC Biological and Pharmaceutical Sciences*, 2018; **8**(2): 132-8.

25. Purushothaman B., Srinivasan R.P., Suganthi P., Ranganathan B., Gim bun J., Shanmugam K.A. Comprehensive Review on *Ocimum basilicum*. *J. Nat. Remedies.*, 2018; **18**(3): 71-85.

26. Al-Ali KH, El-Beshbishy H.A., El-Badry A.A., Alkhalaif M. Cytotoxic activity of methanolic extract of *Mentha longifolia* and *Ocimum basilicum* against human breast cancer. *Pak. J. Biol. Sci.*, 2013; **16**(23): 1744-50.

27. Murali M., Prabakaran G. Effect of different solvents system on antioxidant activity and phytochemical screening in various habitats of *Ocimum basilicum* L. (Sweet basil) leavas. *Int. J. Zool. Appl. Biosci.*, 2018; **3**(5): 375-81.

28. Manrosri J., Dhumtanom P., Manrosri A. Anti-proliferative activity of essential oil extracted from Thai medicinal plants on KB and P388 cell lines. *Cancer Lett.*, 2006; **235**(1): 114-20.

29. Joshi R.K. Chemical composition and antimicrobial activity of the essential oil of *Ocimum basilicum* L. (sweet basil) from Western Ghats of North West Karnataka, India. *Anc. Sci. Life*, 2014; **33**(3): 151-6.

30. Shirazi M.T., Gholami H., Kavosi G., Rowshan V. Tafsiry A – Chemical composition, antioxidant, antimicrobial and cytotoxic activities of *Tagetes minuta* and *Ocimum basilicum* essential oils. *Food Sci. Nutr.*, 2014; **2**(2): 146-55.

31. Dev N., Das A.K., Hossain M.A., Rahman S.M.M. Chemical compositions of different extracts of *Ocimum basilicum* leaves. *J. Sci. Res.*, 2011; **3**(1): 197-206.

32. The Herb Society of America. Basil: an herb society of America guide. Kirtland, Ohio 44094; 2003.

33. Neycée M.A., Nematzadeh G.H.A., Dehestani A., Alavi M. Assessment of antifungal effects of shoot extracts in chinaberry (*Melia azedarach*) against 5 phytopathogenic fungi. *Intr. J. Agri. Crop. Sci.*, 2012; **4**(8): 474-77.

34. National Committee for Clinical Laboratory Standards (NCCLS). Performance Standards for Antimicrobial Disk Susceptibility Tests. Approved Standard, NCCLS Document M2-A6, National Committee for Clinical Laboratory Standards, Wayne, Pennsylvania, USA, 1993; **13**(24).

35. Omura S., Pyl D.V.D., Inokoshi J., Takahashi Y., Takushima Y. Peptidocellularisnnew farnesyl-protein transferase inhibitors produced by an actinomycete I. Producing strain, fermentation, isolation and biological activity. *J. Antibiott.*, 1993; **46**: 222-8.

36. National Committee for Clinical Laboratory Standards (NCCLS). Performance Standards for Antimicrobial Disk Susceptibility Tests. Approved Standard M2-A6. National Committee for Clinical Laboratory Standards, Wayne, Pennsylvania, USA, 1997; **17**(1).

37. Levison M.E., Levison J.H. Pharmacokinetics and pharmacodynamics of antibacterial agents. *Infect. Dis. Clin. North Am.*, 2009; **23**(4): 791-9.

38. IBM SPSS Statistics for Windows, Version 23.0. Armonk, NY: IBM Corp. Released 2015.

39. Sermakkani M., Thanagandian V. GC-MS Analysis of Cassia ialtica leaf methanol extract. *Asian J. Pharm. Clin. Res.*, 2012; **5**(2): 90-4.

40. Tyagi T., Agarwal M. Phytochemical screening and GC-MS analysis of bioactive constituents in the ethanolic extract of *Pistia stratiotes* L. and *Eichhornia crassipes* (Mart.) solms. *J. Pharmacogn. Phytochem.*, 2017; **6**(1): 195-206.

41. Al-Marzoqi A.H., Hadi M.Y., Hameed I.H. Determination of metabolites products by *Cassia angustifolia* and evaluate antimicrobial activity. *J. Pharmacognosy Phytother.*, 2016; **8**(2): 25-48.

42. Tan K.H., Nishida R. Methyl eugenol: Its occurrence, distribution, and role in nature, especially in relation to insect behavior and pollination. *J. Insect. Sci.*, 2012; **12**(1): 1-60.

43. Shibula K., Velavan S. Determination of phytoconstituents in methanolic extract of *Annona muricata* leaf using GC-MS technique. *Int. J. Pharmacog. Phytochem. Res.*, 2015; **7**: 1251-5.

44. Jegadeeswari P., Nishantini A., Muthukumaran P. Molecular view of the interaction of S-methyl methane-thiosulfonate with DPPC bilayer. *Biochim. Biophys. Acta Biomembr.*, 2016; **1858**(1): 38-46.

45. Shahina P., Shazad A., Upadhyaya P., Yadav V. Gas chromatography-mass spectrometry analysis of methanolic leaf extract of *Cassia angustifolia* Vahl. *Asian J. Pharm. Clin. Res.*, 2016; **9**: 111-6.

46. Kumaravel S., Muthukumaran P., Shanmugapiyaka K. Chemical composition of *Trigonella foenumgraecum* through gas chromatography mass spectrometry analysis. *J. Med. Plants Stud.*, 2017; **5**: 1-3.

47. SCCS (Scientific Committee on Consumer Safety), Opinion on resorcinol, 2010.
Resorcinol–Acetone copolymer. Molecules., 2009; 14(1): 364-77.

51. Eseyin O.A., Sattar M.A., Rathore H.A., Aigbe F., Aftzal S., Ahmad A., et al. GC-MS and HPLC profiles of phenolic fractions of the leaf of Telfairia occidentalis. Pak. J. Pharm. Sci., 2018; 31(1): 45-50.

52. Madan R.K., Levitt J. A review of toxicity from topical salicylic acid preparations. J. Am. Acad. Dermatol., 2014; 70(4): 788-92

53. Tripathi N., Kumar S., Singh R., Singh C.J., Singh P., Varshney V.K. Isolation and Identification of γ-sitosterol by GC-MS from Roots of Girardinia heterophylla. JIC, 2013; 29(2): 705-7.

54. Kumar R.N., Vasantha K., Mohan V.R. GC-MS Analysis of Bioactive Components of Tubers of Ruelia tuberosa L. (Acanthaceae). Am. J. Phytochem. Clin. Ther., 2014; 2(2): 209-16.

55. Hadi M.Y., Mohammed G.J., Hameed I.H. Analysis of bioactive chemical compounds of Nigella sativa using gas chromatography-mass spectrometry. J. Pharmacognosy Phytother., 2016; 8(2): 8-24.

56. Saleem M. Lupeol. A novel anti-inflammatory and anti-cancer dietary triterpene. Cancer Lett., 2009; 285(2): 109–15

57. El-Ziney M. GC-MS Analysis of Benzoate and Sorbate fractions of the leaf of Girardinia heterophylla. J Pure Appl Microbiol, 2013; 70(4): 788-92.

58. Okoye N.N., Ajaghaku D.L., Okeke H.N., Ilodigwe E.E., et al. Antimicrobial activity of some botanical extracts on Fusarium oxysporum. Open Life Sci., 2015; 10: 409-16.

59. Madhavan M. Phytochemical constituents of leaves and their extracts as feed Additives in Broiler diets on health indicators and productive performance. Tishreen University Journal Bio Sciences Series, 2014; 36(4): 49-67.

60. Shweash M., khashan A.A., Farhan Y.M., Nasser S.J. Antibacterial activity of ethanolic extract of leaves sweet basil (Ocimum basilicum) against diarrhea caused by Escherichia coli in vitro. Int. J. Sci. Nat., 2014; 5(4): 713-8.

61. G ez C.M., Souza R.O., Fischer P., Leto M.F.M., Duarte J.A., Boligon A.A.. Evaluation of basil extract (Ocimum basilicum L.) on oxidative, anti-genotoxic and anti-inflammatory effects in human leukocytes cell cultures exposed to challenging agents. Braz. J. Pharm. Sci., 2017; 53(1): e15098.

62. Wu Y., Bai J., Zhong K., Huang Y., Qi H., Jiang Y., et al. Antibacterial activity and membrane-disruptive mechanism of 3-p-trans-coumaroyl-2-hydroxyquinic acid, a Novel phenolic compound from Pine Needles of Cedrus deodara, against Staphylococcus aureus. Molecules, 2016; 21: 1084.

63. Cowan M.M. Plant products as antimicrobial agents. Clin. Microbial Rev., 1999;12(4): 564-82.

64. McGaw L.J., Janger A.K., van Staden J. Antibacterial actions of fatty acids and related compounds from plants (minireview). S. Afr. J. Bot., 2002; 68: 417-23.

65. Seidel V., Taylor PW. In vitro activity of extracts and constituents of Pelagonium against rapidly growing mycobacteria. Int. J. Antimicrob. Agents, 2004; 23: 613–9.

66. Sun C.Q., Connor C.J., Robertson A.M. Antibacterial actions of fatty acids and monoglycerides against Helicobacter pylori. FEBS Immunol. Med. Microbiol., 2003; 36: 9–17.

67. Farrington M., Breton L., Haines D., Walpole E. Resistance to desiccation and skin fatty acids in outbreak strains of meticillin-resistant Staphylococcus aureus. J. Med. Microbiol., 1992; 36: 56–60.