Good IgA Bad IgG in SARS-CoV-2 Infection?

To the Editor—Having read with interest the paper recently published by Zhao et al [1] we would like to comment on 2 points.

First, the authors respectively assayed all severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) antibodies in a double-sandwich method or specifically detected immunoglobulin M (IgM) and immunoglobulin G (IgG). Of note, the first assay provided the best results, especially 100% positivity by day 8 in subjects with no viral RNA detectable any longer. The authors briefly suggest that this test also assessed immunoglobulin A (IgA) levels. This is corroborated by another recent study [2], where 92.7% of the subjects tested presented with anti-SARS-CoV-2 nuclear capsid IgA, whereas only 85.4% had IgM and 77.9% IgG. Data from both publications are consistent with what is known of mucosal immune responses, characterized first by the production of secretory IgA, systemic antibodies occurring later [3]. It is likely that SARS-CoV-2 behaves as other respiratory viruses [4], yielding the production of protective secretory IgA efficiently.

References

1. Smith RF, Dobson AP, McKenzie FE, Real LA, Smith DL, Wilson ML. Ecological theory to enhance infectious disease control and public health policy. Front Ecol Environ 2005; 3:29–37.
2. Mizumoto K, Kagaya K, Zarebski A, Chowell G. Estimating the asymptomatic proportion of coronavirus disease 2019 (COVID-19) cases on board the Diamond Princess cruise ship, Yokohama, Japan, 2020. Euro Surveill 2020; 25. doi:10.2807/1560-7917.ES.2020.25.10.2000180.
3. Wu Z, McGoogan JM. Characteristics of and important lessons from the coronavirus disease 2019 (COVID-19) outbreak in China: summary of a report of 72314 cases from the Chinese Center for Disease Control and Prevention. JAMA 2020. doi:10.1001/jama.2020.2648.
4. Ogden CL, Fakhouri TH, Carroll MD, et al. Prevalence of obesity among adults, by household income and education—United States, 2011–2014. MMWR Morb Mortal Wkly Rep 2017; 66:1369–73.
5. Onder G, Rezza G, Brusaferro S. Case-fatality rate and characteristics of patients dying in relation to COVID-19 in Italy. JAMA 2020. doi:10.1001/jama.2020.4683.

Correspondence: J. Lighter, New York University Langone Health, 545 First Ave Greenberg Hall, SCI-174, New York, NY 10016 (jennifer.lighter@nyumc.org).

Clinical Infectious Diseases® 2020;71(15):897
© The Author(s) 2020. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail: journals.permissions@oup.com. DOI: 10.1093/cid/ciaa417

Good IgA Bad IgG in SARS-CoV-2 Infection?

To the Editor—Having read with interest the paper recently published by Zhao et al [1] we would like to comment on 2 points.

First, the authors respectively assayed all severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) antibodies in a double-sandwich method or specifically detected immunoglobulin M (IgM) and immunoglobulin G (IgG). Of note, the first assay provided the best results, especially 100% positivity by day 8 in subjects with no viral RNA detectable any longer. The authors briefly suggest that this test also assessed immunoglobulin A (IgA) levels. This is corroborated by another recent study [2], where 92.7% of the subjects tested presented with anti-SARS-CoV-2 nuclear capsid IgA, whereas only 85.4% had IgM and 77.9% IgG. Data from both publications are consistent with what is known of mucosal immune responses, characterized first by the production of secretory IgA, systemic antibodies occurring later [3]. It is likely that SARS-CoV-2 behaves as other respiratory viruses [4], yielding the production of protective secretory IgA efficiently.

References

1. Smith RF, Dobson AP, McKenzie FE, Real LA, Smith DL, Wilson ML. Ecological theory to enhance infectious disease control and public health policy. Front Ecol Environ 2005; 3:29–37.
2. Mizumoto K, Kagaya K, Zarebski A, Chowell G. Estimating the asymptomatic proportion of coronavirus disease 2019 (COVID-19) cases on board the Diamond Princess cruise ship, Yokohama, Japan, 2020. Euro Surveill 2020; 25. doi:10.2807/1560-7917.ES.2020.25.10.2000180.
3. Wu Z, McGoogan JM. Characteristics of and important lessons from the coronavirus disease 2019 (COVID-19) outbreak in China: summary of a report of 72314 cases from the Chinese Center for Disease Control and Prevention. JAMA 2020. doi:10.1001/jama.2020.2648.
4. Ogden CL, Fakhouri TH, Carroll MD, et al. Prevalence of obesity among adults, by household income and education—United States, 2011–2014. MMWR Morb Mortal Wkly Rep 2017; 66:1369–73.
5. Onder G, Rezza G, Brusaferro S. Case-fatality rate and characteristics of patients dying in relation to COVID-19 in Italy. JAMA 2020. doi:10.1001/jama.2020.4683.

Correspondence: J. Lighter, New York University Langone Health, 545 First Ave Greenberg Hall, SCI-174, New York, NY 10016 (jennifer.lighter@nyumc.org).

Clinical Infectious Diseases® 2020;71(15):897
© The Author(s) 2020. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail: journals.permissions@oup.com. DOI: 10.1093/cid/ciaa417

Good IgA Bad IgG in SARS-CoV-2 Infection?

To the Editor—Having read with interest the paper recently published by Zhao et al [1] we would like to comment on 2 points.

First, the authors respectively assayed all severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) antibodies in a double-sandwich method or specifically detected immunoglobulin M (IgM) and immunoglobulin G (IgG). Of note, the first assay provided the best results, especially 100% positivity by day 8 in subjects with no viral RNA detectable any longer. The authors briefly suggest that this test also assessed immunoglobulin A (IgA) levels. This is corroborated by another recent study [2], where 92.7% of the subjects tested presented with anti-SARS-CoV-2 nuclear capsid IgA, whereas only 85.4% had IgM and 77.9% IgG. Data from both publications are consistent with what is known of mucosal immune responses, characterized first by the production of secretory IgA, systemic antibodies occurring later [3]. It is likely that SARS-CoV-2 behaves as other respiratory viruses [4], yielding the production of protective secretory IgA efficiently.

References

1. Smith RF, Dobson AP, McKenzie FE, Real LA, Smith DL, Wilson ML. Ecological theory to enhance infectious disease control and public health policy. Front Ecol Environ 2005; 3:29–37.
2. Mizumoto K, Kagaya K, Zarebski A, Chowell G. Estimating the asymptomatic proportion of coronavirus disease 2019 (COVID-19) cases on board the Diamond Princess cruise ship, Yokohama, Japan, 2020. Euro Surveill 2020; 25. doi:10.2807/1560-7917.ES.2020.25.10.2000180.
3. Wu Z, McGoogan JM. Characteristics of and important lessons from the coronavirus disease 2019 (COVID-19) outbreak in China: summary of a report of 72314 cases from the Chinese Center for Disease Control and Prevention. JAMA 2020. doi:10.1001/jama.2020.2648.
4. Ogden CL, Fakhouri TH, Carroll MD, et al. Prevalence of obesity among adults, by household income and education—United States, 2011–2014. MMWR Morb Mortal Wkly Rep 2017; 66:1369–73.
5. Onder G, Rezza G, Brusaferro S. Case-fatality rate and characteristics of patients dying in relation to COVID-19 in Italy. JAMA 2020. doi:10.1001/jama.2020.4683.
in asymptomatic or mild infections. We suggest that it would thus perhaps prove interesting to investigate for the presence of such antibodies in the saliva of large cohorts of individuals to better appreciate the prevalence of this new infection.

The second point that we found intriguing is the relationship reported between high plasmatic total antibody levels and severe disease [1]. The authors merely propose this observation as a biomarker of severity but also cite a publication by Liu et al. [5], of a model of SARS-CoV in macaques and of macrophage cultures with patients’ serum samples. One may consider that high titers of antibodies could lead to their alveolar transudation and the formation of immune complexes (IC) with viral particles. Such IC would activate the complement system, which has been shown to play a role in lung injury in sepsis, through the activation of neutrophils [6]. Lung macrophages would also phagocytose such IC via Fc receptors and trigger the inflammatory responses of severe respiratory failure, especially in a context of anoxia [7]. However, elevated levels of tumor necrosis factor α (TNFα), interleukin (IL)-6, but also IL-10 have been reported in severe cases [8]. It can thus be considered that after a pro-inflammatory phase, IgG-IC in the lower respiratory tract [3] induce the polarization of macrophages into type-2 non-inflammatory macrophages, producing IL-10, expressing PD-L1 and triggering regulatory T cells (Tregs) [9]. Thus, an initially efficient (if somehow overwhelming in severe cases) cellular immune response of antiviral T-lymphocytes would be dampened by apoptosis through PD-1/PD-L1 interactions (partly explaining lymphopenia) and by an increase in Tregs. Other effects of transducing IgG would be antibody-dependent cellular cytotoxicity destroying the infected cells and causing lung damage. In the fragile anatomic environment of the lung, IC and the recruitment of polymorphonuclears could lead to vascular endothelium damage via an uncontrolled activation cascade translating in multiple organ failure with thromboembolic disorders leading to death [10]. We thus propose that a concomitant monitoring of antiviral secretory IgA, IC and specific T cells could provide mechanistic insights in the pathophysiology of SARS-CoV-2 infection and provide prognostic and therapeutic guidelines.

Note

Potential conflicts of interest. The authors: No reported conflicts of interest. All authors have submitted the ICMJE Form for Disclosure of Potential Conflicts of Interest.

Marie C Béné,1,2 Marcelo de Carvalho Bittencourt,2 Marion Evellard,1 and Yannick Le Bris1

1Hematology Biology, Nantes University Hospital & CRONA, Nantes, France, and 2Immunology Laboratory, Nancy University Hospital & IOPA UMR7365, Nancy, France

References

1. Zhao J, Yuan Q, Wang H, et al. Antibody responses to SARS-CoV-2 in patients of novel coronavirus disease. Clin Infect Dis 2020. 2020 Mar 28. Epub ahead of print.
2. Guo L, Ren L, Yang S, et al. Profiling early humoral response to diagnose novel coronavirus disease (COVID-19). Clin Infect Dis 2020 Mar 21. Epub ahead of print.
3. Krammer F. The human antibody response to influenza A virus infection and vaccination. Nat Rev Immunol 2019; 19:383–97.
4. Renegar KB, Small PA Jr, Boykins LG, Wright PF. Role of IgA versus IgG in the control of influenza viral infection in the murine respiratory tract. J Immunol 2004; 173:1978–86.
5. Liu L, Wei Q, Lin Q, et al. Anti-spike IgG causes severe acute lung injury by skewing macrophage responses during acute SARS-CoV infection. JCI Insight 2019; 4:e123158.
6. Bossmann M, Ward PA. Role of C3, C5 and anaphylatoxin receptors in acute lung injury and in sepsis. Adv Exp Med Biol 2012; 946:147–59.
7. Albina JE, Henry WL Jr, Mastrofrancesco B, Martin BA, Reichner JS. Macrophage activation by culture in an anoxic environment. J Immunol 1995; 155:4391–6.
8. Chen G, Wu D, Gao W, et al. Clinical and immunologic features in severe and moderate Coronavirus Disease 2019. J Clin Invest 2020 Mar 27. Epub ahead of print.
9. Mantovani A, Sica A, Sozzani S, Allavena P, Vecchi A, Locati M. The chemokine system in diverse forms of macrophage activation and polarization. Trends Immunol 2004; 25:677–86.
10. Zhou F, Yu T, Du R, et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. Lancet 2020; 395:1054–62.