HIV infection of thymocytes inhibits IL-7 activity without altering CD127 expression

Charlene D Young1,2 and Jonathan B Angel1,2,3*

Abstract

Background: Thymic function is altered in HIV infection and characterized by dysregulation of the thymic epithelial network, reduced thymic output and ultimately an impaired naïve T-cell pool. The IL-7/IL-7 receptor (IL-7R) signalling pathway is critical for the maturation and differentiation of thymocytes. HIV infection is associated with a decrease in IL-7Rα (CD127) expression and impaired CD127 signalling in circulating CD8+ T-cells; however, little is known about the effect of HIV on CD127 expression and IL-7 activity in the thymus. Therefore, the effect of in vitro HIV infection on CD127 expression and IL-7-mediated function in thymocytes was investigated.

Findings: In vitro HIV infection of thymocytes did not affect CD127 expression on either total thymocytes or on single positive CD4 or single positive CD8 subsets. However, HIV infection resulted in a decrease in the level of IL-7-induced STAT-5 phosphorylation and Bcl-2 expression in unfractionated thymocytes.

Conclusion: These findings indicate that HIV infection alters IL-7 responsiveness of thymocytes by a mechanism other than CD127 downregulation and potentially explain the disruption in thymopoiesis observed in HIV infection.

Findings

Human immunodeficiency virus (HIV) infection is characterized by a loss of CD4+ T-cells and a progressive loss in cytotoxic T-cell lymphocyte (CTL) function resulting in immunodeficiency. HIV infection has also been associated with impaired thymic output [1]. Examination of the thymus of HIV-infected pediatric patients reveals selective thymocyte depletion and disruption of the thymic microenvironment, which is thought to contribute to more rapid progression to AIDS [2-4]. In HIV-1 infected SCID-hu Thy/Liv mouse models, there is a depletion of intrathymic progenitor T-cells which precedes the loss of infected CD4+CD8+ thymocytes, suggesting that HIV infection interrupts thymocyte development at an early stage [5]. However, the mechanisms of disrupted thymic development by HIV have yet to be fully elucidated.

Interleukin-7 (IL-7) is a pleiotropic cytokine that is critical for several stages of thymopoiesis, maintains mature T-cell homeostasis, enhances CTL function and increases T-cell survival [6-14]. IL-7 signals through the IL-7 receptor complex (IL-7R), which is composed of two subunits: the IL-7Rα chain (CD127), that is also shared by TSLP [15], and the IL-2Rγ chain which is shared by a number of other cytokines including IL-2, IL-4, IL-9, IL-15 and IL-21 [7,8]. The role of IL-7 in thymopoiesis is multifaceted, as it is critical for early stages of T-cell development in allowing chromatin accessibility to enable T-cell receptor VDJ gene rearrangement, inducing thymocyte proliferation and maintaining thymocyte survival by upregulating the anti-apoptotic protein Bcl-2 and downregulating the pro-apoptotic protein Bax [12,16-18]. Disrupting IL-7 signalling can result in profoundly impaired immunity as seen in patients with T–B–NK– Severe Combined Immunodeficiency (SCID), a genetic defect that results in inactivation of the IL-7Rα signalling pathway [19]. The importance of the IL-7 signalling complex in thymic development was confirmed in knock-out mice for both IL-7 and IL-7R. IL-7−/− mice have a 20 fold decrease in thymic cellularity and an increase in triple negative (TN) cells, indicative of a developmental block at the TN stage [20]. The phenotype with IL-7R−/− knock-out mice is much more severe with a 90-99.99% decrease in thymic cellularity [13].

We and others have previously demonstrated that HIV infection is associated with decreased CD127 expression on circulating CD8+ T-cells, and with effective antiretroviral therapy CD127 expression on T-cells is partially...
remained unchanged over a 96 hour culture period. The thymic subsets may have been masked. We, therefore, Although HIV infection did not alter CD127 expression in CD127 expression on unfractionated thymocytes following + or CD8+ cells. The gating strategy for phenotype analysis was depicted in Figure 1A. There was no change in CD3-CD4+CD8-, (DP) CD3+/CD4+CD8+ and (SP) CD4+ or CD8+ cells. The gating strategy for phenotype analysis was depicted in Figure 1A. There was no change in the level of STAT-5 phosphorylation was not due to changes in cell viability, since there was no significant difference in viability between HIV infected and mock infected cultures after 96 hours of culture (data not shown). In vitro HIVcs204 infection did not alter CD127 expression on immature thymic subsets (i.e. TN, ISP4 and DP subsets; data not shown) or on the more mature single positive CD4+ (SP4) or single positive CD8+ (SP8) thymocytes (Figure 1B-C).

To confirm HIV infection of thymocytes, genomic DNA was isolated from infected thymocytes as early as 24 hours and up to 96 hours p.i. Viral DNA was detectable by nested PCR targeting the gag region of HIV (Figure 2). Briefly, genomic DNA was isolated from infected thymocytes using the QIAGEN DNeasy blood and tissue kit (Qiagen, Mississauga, ON,). In the first round of PCR, DNA (1/10) was amplified with outer P24 primers (400 nm) forward (fwd): 5’-ATAGAGGAAGAAGCAAAAA-CAAA-3’; reverse (rsv): 5’-GTTCTGAAAGGTTAC-TAGTAGT-3’. The second round PCR used 5 μl of the product from the first round of PCR with inner p24 primers (400 nm) fwd 5’-CAAAAATTACCTATAGTGCA-3’ and rsv 5’-ATGTCACTTCCCCGTGGTTCT-3’. Amplification conditions were as follows: 2 minutes at 95°C, (94°C for 60 s, 55°C for 60 s and 72°C for 60 s) for 30 cycles and 7 minutes at 72°C. While in vitro HIV infection did not affect surface CD127 expression on thymocytes, it remains possible that in vitro HIV infection is associated with altered IL-7 signalling as has been reported in CD8+ T-cells from HIV-infected individuals [26-28]. This was, therefore, evaluated by measuring IL-7 responsiveness of thymocytes following HIV infection. Thymocytes were infected as described above, co-cultured with TEC for up to 96 hours and stimulated with IL-7 (1 ng/ml) for 15 minutes as previously described [32]. Cells were then fixed, permeabilized, stained with Alexa Fluor® 488 mouse anti-human STAT5 pY694 (BD Biosciences, San Jose, CA, USA) and analysed by flow cytometry. Thymocytes were cultured with HIV for 24 hours in order to allow sufficient time to establish infection. HIV had no impact on IL-7-induced pSTAT-5 expression when evaluated 24 p.i. (Figure 3A). However, thymocytes that were infected with HIV and cultured for longer periods of time (96 hours) had lower levels of IL-7-induced pSTAT-5 compared to mock-infected controls (Figure 3B). The change in the level of STAT-5 phosphorylation was not due to changes in cell viability, since there was no significant difference in viability between HIV infected and mock infected cultures after 96 hours of culture (data not shown).

IL-7 signalling is known induce Bcl-2 expression in thymocytes [33]. In order to further determine if in vitro HIV infection alters IL-7 function, the level of IL-7-induced Bcl-2 expression in HIV-infected thymocyte cultures was measured. Twenty-four hours p.i., cells
Figure 1 HIV infection does not alter CD127 expression on thymocytes. A) Unfractionated thymocytes (gate 1) were identified based on the forward scatter/side scatter profiles of live cells. The cells were then gated on either CD3<sup>-</sup> (gate 2) or CD3<sup>+</sup> (gate 3) in a single parameter histogram. The cells in gate 2 and gate 3 were then analysed for CD4 and CD8 expression. The expression of CD127-PE (Beckman Coulter) was measured on the various subsets. Thymocytes were incubated with HIV<sub>CS204</sub> or mock infected and co-cultured with thymic epithelial cells for up to 96 hours. Light grey lines represent isotype control, mock infected (black line) and HIV infected (dark grey line). B) SP4 subset C) SP8 subset. Summary data of CD127 expression on thymocyte measured as the proportion of cells expressing CD127 relative to mock infected cultures on D) unfractionated thymocytes, E) SP4, and F) SP8 thymic subsets.
were washed and stimulated with IL-7 (0-10 ng/ml) for 48 hours as previously established for optimal Bcl-2 induction by IL-7 [34]. Cells were then fixed, permeabilized, stained with Bcl-2-FITC (BD Bioscience) and analysed by flow cytometry. As expected, 48 hours of stimulation with IL-7 resulted in increased Bcl-2 expression in unfractionated thymocytes. *In vitro* HIV infection resulted in a small but non-significant decrease of constitutive Bcl-2 expression. Consistent with what was seen with the effect on STAT-5 activation, infection with HIVcs204 inhibited the ability of IL-7 to induce Bcl-2 expression in thymocytes (Figure 4).

IL-7 also signals through the PI3K pathway leading to cell proliferation and glucose uptake [35]. Thymocytes were infected for up to 96 hours, serum starved for 2 hours and stimulated with IL-7 (10 ng/ml) for 1 hour. Cells were lysed, and proteins were separated on an 8% SDS-polyacrylamide gel and transferred to a nitrocellulose membrane. Activation of the PI3K pathway was visualised by probing the membranes with antibodies for phosphorylated AKT (Cell Signalling, Danvers, MA). In contrast to its effect on STAT-5 and Bcl-2, HIV infection did not affect the ability of IL-7 to induce PI3K phosphorylation (data not shown).

The importance of IL-7 and its effect on thymopoiesis are unequivocal. Disrupting this pathway leads to a block in thymopoiesis and the arrest of T-cell development. IL-7 signals through both the JAK/STAT and PI3K pathways to mediate cell survival, proliferation and differentiation [35,36]. HIV infection both *in vitro* and *in vivo* is associated with reduced CD127 on CD4+ T-cells and CD8+ T cells [21-25]. We have, however, demonstrated that *in vitro* HIV infection of thymocytes does not affect the surface expression of CD127 on thymocytes. The decreased CD127 expression on CD8+ T-cells following

---

**Figure 2** Thymocytes are infected by HIV. Thymocytes were incubated with HIVcs204 or mock infected and co-cultured with thymic epithelial cells. DNA was isolated from the cells following 24 hours or 96 hours p.i and the presence of HIV-1 was measured by nested PCR. As a positive control, DNA was isolated from ACH2 cells, and water was used as a negative control in the PCR reaction. Results are representative of 3 separate experiments.

**Figure 3** The effect of *in vitro* HIV infection on IL-7-induced STAT-5 phosphorylation in thymocytes. Thymocytes were incubated with HIVcs204 or mock infected and co-cultured with thymic epithelial cells. Following co-culture for A) 24 hours or B) 96 hours, thymocytes were stimulated with IL-7, and STAT-5 phosphorylation in the total thymocyte population was measured by intracellular flow cytometry.

**Figure 4** The effect of HIV infection on the ability of IL-7 to induced Bcl-2 expression in thymocytes. Thymocytes were incubated with HIVcs204 or mock infected and co-cultured with thymic epithelial cells for 24 hours. After 24 hours of culture, thymocytes were stimulated with IL-7 for 48 hours, and Bcl-2 expression was measured by intracellular flow cytometry.
in vitro HIV infection appears to be due to soluble factors released in the culture microenvironment by PBMCs [29]. Any such factors present in PBMC cultures may not be present in thymocyte/TEC co-cultures, potentially accounting for the differential effect of HIV on CD127 expression.

Although decreased IL-7 activity can result from decreased receptor expression, a block in the IL-7 signalling pathway may also result in altered IL-7 activity. This phenomenon has been reported for IL-2 activity where CD4+ T-cells and CD8+ T-cells from HIV+ individuals are less responsive to IL-2 compared to those from healthy controls which has been attributed to a block in the JAK/STAT pathway [37,38]. The results in this report indicate that IL-7-induced STAT-5 phosphorylation and Bcl-2 expression are impaired in thymocyte cultures infected with HIV, while no effect on CD127 expression was observed. This suggests that HIV infection results in a block in the IL-7 pathway that occurs independent of its effect on CD127 expression. These data support the findings by Vranjakovic et al., which demonstrated reduced IL-7 responsiveness in CD127-expressing CD8+ T-cells from HIV+ patients. In that study, isolated CD8+CD127+ cells from HIV+ individuals had lower levels of STAT-5 phosphorylation following IL-7 stimulation when compared to those from uninfected controls [26]. Such a block in IL-7 signalling has also been observed in other disease states. For example, CD4+ and CD8+ T-cells isolated from breast cancer patients are less responsive to IL-7, as measured by STAT-5 phosphorylation [39].

HIV may affect thymocyte function by altering the viability of the cells, consequently lowering the output of functional T-cells from the thymus [2,3,40,41]. In support of this hypothesis, our data show that HIV infection interferes with the ability of IL-7 to induce Bcl-2 expression. A similar block in the ability of IL-7 to upregulate Bcl-2 expression was reported in a study in which CD4+ T-cells from HIV+ individuals had lower levels of Bcl-2 expression following IL-7 stimulation when compared to those from healthy controls. That study found no correlation between CD127 expression of CD4+ T-cells and IL-7 responsiveness, suggesting that the block in IL-7 activity was independent of the level of CD127 expression [42].

The exact mechanism by which HIV interferes with the IL-7 signalling pathway has yet to be determined, however our results indicate that binding of HIV to the cell surface is likely insufficient to mediate this effect since there was no impact of HIV on IL-7 activity within the first 24 hours of infection. Rather, our data demonstrated that the cells need to be infected for longer periods of time (72-96 hours) for the effect of HIV to be observed, suggesting that the mechanism of inhibition might require the production of specific cellular or viral factors.

In summary, we demonstrated that HIV infection alters IL-7 activity in thymocytes independent of CD127 expression suggesting a potential mechanism by which HIV infection interrupts thymic output and contributes to immune deficiency.

Acknowledgements

We appreciate the contributions of Dr. G. Maharajh and staff at the Children's Hospital of Eastern Ontario for providing the thymus samples. We are grateful to Dr. Angela Cawley for critical review of the manuscript. This research was supported by grants to J.B.A from the Ontario HIV Treatment Network (Grant #ORG131), the Canadian Institutes of Health Research (Grant #HOP84649) and the Canadian Foundation for AIDS Research (Grant # 019014). C.Y. is a recipient of a CIHR studentship and J.B.A. is an OHTN Career Scientist.

Competing interests

The authors declare that they have no competing interests.

Received: 15 March 2011 Accepted: 16 September 2011 Published: 16 September 2011

References

1. Gaulton GN: Viral pathogenesis and immunity within the thymus. Immunol Res 1998, 17:75-82.
2. Kourtis AP, Ibegbú C, Nahmias AJ, Lee FK, Clark WS, Sawyer MK, Neshiem S: Early progression of disease in HIV-infected infants with thymus dysfunction. N Engl J Med 1996, 335:1431-1436.
3. Rosenzweig M, Clark DP, Gaulton GN: Selective thymocyte depletion in neonatal HIV-1 thymic infection. AIDS 1993, 7:1601-1605.
4. Joshi W, Oleske JM, Saad S, Gadol C, Connor E, Bobila R, Minnefer AB: Thymus biopsy in children with acquired immunodeficiency syndrome. Arch Pathol Lab Med 1986, 110:837-842.
5. Stanley SK, McCune JM, Kaneshima H, Justement JS, Sullivan M, Boone E, Baseler M, Adelsberger J, Bonayidi M, Orenstein J, et al: Human immunodeficiency virus infection of the human thymus and disruption of the thymic microenvironment in the SCID-hu mouse. J Exp Med 1993, 178:1151-1163.
6. Fry TJ, Connick E, Falloon J, Lederman MM, Liewehr DJ, Spitzler J, Steinberg SM, Wood LV, Yachooan R, Zuckerman J, et al: A potential role for interleukin-7 in T-cell homeostasis. Blood 2001, 97:2983-2990.
7. Fry TJ, Mackall CL: Interleukin-7: from bench to clinic. Blood 2002, 99:3892-3904.
8. Hofmeister R, Khaled AR, Benbennou N, Ragnvaldyri E, Muegge K, Durum SK: Interleukin-7: physiological roles and mechanisms of action. Cytokine Growth Factor Rev 1999, 10:41-60.
9. Tan JT, Dudi E, LeRoy E, Murray R, Sprent J, Weinberg KJ, Suri CD: IL-7 is critical for homeostatic proliferation and survival of naive T cells. Proc Natl Acad Sci USA 2001, 98:8732-8737.
10. Okazaki H, Io M, Sudo T, Harttoli M, Kano S, Katsuura Y, Minato N: IL-7 promotes thymocyte proliferation and maintains immunocompetent thymocytes bearing alpha beta or gamma delta T-cell receptors in vitro: synergism with IL-2. J Immunol 1989, 143:2917-2922.
11. Schluns KS, Kieper WC, Jameson SC, Lefrancois L: Interleukin-7 mediates the homeostasis of naive and memory CD8 T cells in vivo. Nat Immunol 2000, 1:426-432.
12. Hare KJ, Jenkinson EJ, Anderson G: An essential role for the IL-7 receptor during intrathymic expansion of the positively selected neonatal T-cell repertoire. J Immunol 2000, 165:2410-2414.
31. Chene L, Nugeyre MT, Guillemard E, Moulian N, Barre-Sinoussi F, Israel N: Active cellular infection of myeloid
29. A Komsic-Vranjkovic EF, MacPherson P, Angel J: Positive Individuals with Highly Active Antiretroviral Therapy-Induced
28. Benoit A, Abdkader K, Sirskyj D, Alhetheel A, Sant N, Diaz-Mitoma F, Young and Angel
24. Koesters SA, Alimonti JB, Wachihi C, Matu L, Anzala O, Kimani J, Embree JE, Cloning of a receptor subunit required for
23. Paiardini M, Cervasi B, Albrecht H, Muthukumar A, Dunham R, Gordon S, Reducing numbers of IL-7 receptor (CD127) expressing immune cells and IL-7-signaling defects in peripheral blood from patients with breast cancer. J Exp Med 2007, 121:512-515
20. Moore TA, von Freeden-Jeffry U, Murray R, Zlotnik A: Regulatory dysfunction of the interleukin-2 receptor during HIV infection and the impact of triple combination therapy. Proc Natl Acad Sci USA 1998, 95:11348-11353
19. Puel A, Ziegler SF, Buckley RH, Leonard WJ: IL-7 recepto...r associated with alterations in CD4(+) T cell counts in HIV-infected patients. Aids 2007, 21:101-103
18. Huang J, Muegg K: Control of chromatin accessibility for V(D)J recombination by interleukin-7. J Leukoc Biol 2001, 69:907-911
17. Huang J, Muegg K: Control of chromatin accessibility for V(D)J recombination by interleukin-7. J Leukoc Biol 2001, 69:907-911
16. Puel A, Ziegler SF, Buckley RH, Leonard WJ: Defective IL7R expression in T cells of HIV-infected patients—reversal by highly active antiretroviral therapy (HAART). Clin Exp Immunol 2006, 143:398-403
15. Pandey A, Ozaki K, Baumann H, Levin SD, Puel A, Farr AG, Ziegler SF, Dupont B, Paloux G, These J: Defective interleukin-2-dependent STAT signaling in CD8 T lymphocytes from patients with breast cancer. J Exp Med 2007, 121:512-515
14. Sudo T, Nishikawa S, Ohno N, Akiyama N, Tamakoshi M, Yoshida H: Expression and function of the interleukin 7 receptor in murine lymphocytes. Proc Natl Acad Sci USA 1993, 90:9125-9129.
13. Peschon JJ, Morrisey PJ, Grabstein KH, Ramsdell FJ, Maraskovsky E, Giniak BC, Park LS, Ziegler SF, Williams DE, Wake CB, et al: Early lymphocyte expansion is severely impaired in interleukin 7 receptor-deficient mice. J Exp Med 1994, 180:1955-1960.
12. Sudo T, Nishikawa S, Ohno N, Akiyama N, Tamakoshi M, Yoshida H: Expression and function of the interleukin 7 receptor in murine lymphocytes. Proc Natl Acad Sci USA 1993, 90:9125-9129.
11. Panedy A, Ozaki K, Baumann H, Levin SD, Puel A, Farr AG, Ziegler SF, Leonard WJ: Cloning of a receptor subunit required for signaling by thymic stromal lymphopoitin. Nat Immunol 2000, 1:59-64.
10. Dukurum SK, Cerdas S, Nakajima H, Leonard WJ, Muegg K: Interleukin 7 receptor control of T cell receptor gamma gene rearrangement: role of receptor-associated chains and locus accessibility. J Exp Med 1998, 188:2233-2241.
9. Kang J, Dibeneditto B, Narayan K, Zhao H, Der SD, Chambers CA: STATS is required for thymopoiesis in a development stage-specific manner. J Immunol 2004, 173:2307-2314.
8. Puel A, Ziegler SF, Buckley RH, Leonard WJ: Defective IL7R expression in T (--)+ (NK+) severe combined immunodeficiency. Nat Genet 1998, 20:394-398.
7. Moore TA, van Freeden-Jeffy U, Murray R, Zlotnik A: Inhibition of gamma delta T cell development and early thymocyte maturation in IL-7 (-/-) mice. J Immunol 1996, 157:2366-2373.
6. Colle JH, Moreau JL, Fontanet A, Lambotte O, Joussemet M, Delfraissy JF, These J: CD127 expression and regulation are altered in the memory CD8 T cells of HIV-infected patients—reversal by highly active antiretroviral therapy (HAART). J Leukoc Biol 2001, 69:907-911.
5. Puel A, Ziegler SF, Buckley RH, Leonard WJ: Defective IL7R expression in T cells of HIV-infected patients—reversal by highly active antiretroviral therapy (HAART). Clin Exp Immunol 2006, 143:398-403.