SEMA3D Plays a Critical Role in Peptic Ulcer Disease-Related Carcinogenesis Induced by H. pylori Infection

Zhiyu Wang, Yaning Wei, Lin An, Kunjie Wang, Dan Hong, Yan Shi, Aimin Zang, Shenyong Su, Wenwen Li

Department of Medical Oncology, Affiliated Hospital of Hebei University, Baoding, Hebei Province, People's Republic of China

Correspondence: Wenwen Li, Department of Medical Oncology, Affiliated Hospital of Hebei University, Baoding, 071000, Hebei Province, People's Republic of China, Email ww13663129901@yeah.net

Background: Immune cell infiltration plays a critical role in regulating peptic ulcer disease (PUD) and gastrointestinal cancer (GC). However, regulators of the cell signaling hubs remain unclear.

Aim: This study characterizes genes that are differentially expressed in PUD and GC tissue samples. Bioinformatics is used to define the immune-associated hub genes associated with the malignant transfer process of PUD to GC.

Methods: Total expression data from PUD and early-stage GC tissue samples were obtained from GEO and TCGA. Differentially expressed genes were assessed and immunological enrichment analysis was performed. Protein–protein interaction (PPI) and Cytoscape analysis were used together to identify the hub genes. CIBERSORT and COX analysis were used to analyze the differentially infiltrated immune cell landscapes and determine HR scores of the hub genes.

Results: Expression data identified 437 DEGs as common to both GC and PUD tissue. Of these, 49 immune-related DEGs were grouped by function, and seven hub genes were identified by PPI analysis. The NRP2 and SEMA3D genes were then selected for survival analysis. SEMA3D had a higher hazard ratio than NRP2 and was defined as the hub for PUD carcinogenesis.

Conclusion: SEMA3D was characterized as the hub gene for PUD carcinogenesis.

Keywords: SEMA3D, peptic ulcer disease, gastric cancer, H. pylori, immunological micro-environment

Introduction

Helicobacter pylori (HP) is a Gram-negative gastrointestinal bacterium that infects nearly half of the world population. HP infection is associated with the occurrence and progress of peptic ulcer disease (PUD) and gastrointestinal cancer (GC). The causes of GC, and its connection to PUD, remain poorly defined. Recently, HP-induced chronic inflammation has been shown to play an important role in GC occurrence and development. Prior studies defined several chemokines and cytokines involved in inflammation of the gastric epithelium.

The cell microenvironment is the environment where tumor cells originate and develop. This region also consists of stromal cells, the tumor vascular system, immune cells, the extracellular matrix (ECM), and the acidic and hypoxic environment of the tumor. Immune cells are the major cell types in the microenvironment and release many chemokines and cytokines that dictate disease outcomes in response to infection. During the development of peptic ulcers caused by HP infection, NF-kB signaling is activated by inflammatory factors like IL-8.

In recent years, bioinformatics tools and software have been developed to quickly explore differentially expressed target genes and identify hub genes that contribute to disease progression. The CIBERSORT algorithm is a newly developed tool to assess the association between immune cell landscapes in the cell microenvironment using the existing 22 immune cell signatures. This method has been successfully used to identify prognostic immune markers in lung, breast, and gastric cancer.
immune cells that infiltrate the ECM during PUD and GC, based on The Cancer Genome Atlas (TCGA) (for early-stage GC) and the Gene Expression Omnibus GEO (for PUD) databases. Inflammation and differentially expressed genes (DEGs) associated with tumors were also assessed and SEMA3D was shown to correlate with the development of peptic ulcers and the immune cell signatures. SEMA3D is a member of Class-3 semaphorins (SEMA3s), which are reported to play pivotal roles in immune response, angiogenesis, apoptosis, cell migration, and local and metastatic cancer spread in pan-cancer.14,15 SEMA3E, a gene in the same family as SEMA3D, is a lymph node metastasis-related gene expressed in gastric cancer.16 SEMA3E deficiency dysregulates many immune cell functions both directly and indirectly.17,18 Prior studies indicated that Semaphorin 3D and 3E have similar cellular functions, however, the exact role of SEMA3D in gastric cancer remains poorly understood.19,20 Inappropriately regulated gastric immune responses to HP in the cell microenvironment are critical to the development of gastroduodenal disease and responses to treatment.5 For example, CD4+T cell-derived IFN-\(\gamma\) provides the key stimulus for the development of gastric premalignant lesions that progress to GC.9 SEMA3D also contributes to CD4+T cell infiltration in osteoarthritis joints.21 Other immune cells, including macrophages, dendritic cells (DCs), B cells, and gastric epithelial cells (GECs) contribute to the mucosal response to HP infection.18,22 DCs affect the Treg/Th17 balance induced by HP infection and indirectly activate T cells.19,23 In the current study, SEMA3D expression was primarily found in DCs from PUD samples. Similarly, prior research indicates that SEMA3E regulates DC function.17,20 Thus, it was hypothesized that SEMA3D contributes to gastric epithelium carcinogenesis by regulating immune cell infiltration. He findings reported here indicate that SEMA3D may play an essential role in the cell microenvironment and could serve as a promising prognostic biomarker for the malignant transformation of peptic ulcers.

Materials and Methods

Data Preparation

Gene expression data from 118 early-stage GC samples and 32 PUD gastric mucosa (uninfected or HP-infected) were downloaded from TCGA and GEO databases, respectively (Table 1. GC patients who were diagnosed with stages I or II according to the 6th and 7th editions of the AJCC Cancer Staging Manual were included in this study. Clinical information for each patient was obtained from the TCGA database following TCGA publication guidelines and data access policies. Patients were excluded if they had recurrent GC, therapies performed before admission, other observed clinical disorders, or other GC clinical stages. PUD gene expression information was obtained from the GSE60427 dataset. The microarray platform for GSE60427 was GPL1707. Eight mucosa tissue samples were included in the normal group (GSM1479654, GSM1479655, GSM1479656, GSM1479657, GSM1479670, GSM1479671, GSM1479672 and GSM1479673) and 24 samples were included in the HP+ group (GSM1479658, GSM1479659, GSM1479660, GSM1479661, GSM1479662, GSM1479663, GSM1479664, GSM1479665, GSM1479666, GSM1479667, GSM1479668, GSM1479669, GSM1479674, GSM1479675, GSM1479676, GSM1479677, GSM1479678, GSM1479679, GSM1479680, GSM1479681, GSM1479682, GSM1479683, GSM1479684, GSM1479685 and GSM1479686). The 32 samples used for microarray analysis were selected from 293 patient subjects. All the patients provided written informed consent and the protocols were approved by the ethics committees of Oita University (Japan). Patients with PUD and GC were identified by endoscopy. Gastritis was defined as HP gastritis in the absence of peptic ulcers or gastric malignancy. Patients with a history of partial gastric resection or who had received HP eradication therapy or treatment with antibiotics, bismuth-containing compounds, H2-receptor blockers, or proton pump inhibitors within four weeks prior to the study were excluded. All the clinical information was obtained from the previous papers.14 The number of included and excluded subjects in the study was summarized in Flow Chart (Figure S1). The protocols described above were approved by the ethics committees of Affiliated Hospital of Hebei University (AHUU20211029).

DEG Identification

Gene expression profiles were screened using the R package, and DEGs were identified in both groups. Based on PUD and GC integrated analysis, a common gene set was identified for the two groups. DEGs were determined based on an absolute value of log2 fold change (\(|\log2FC|\) >1 and a false discovery rate (FDR) <0.05. Heatmaps of DEGs were drawn...
Term Name (KEGG Pathway Data Base)	Database	ID	Input Number	Background Number	P-value	Corrected P-value	Input	Hyperlink							
Cytokine-cytokine receptor interaction	KEGG PATHWAY	hsa04060	7	294	9.42E-08	1.39E-05	AMH	IL20RB	CCL14	BMP6	IFNG	TNFRSF10A	CXCL10	http://www.genome.jp/kegg-bin/show_pathway?hsa04060/hsa:5383%09red/hsa:654%09red/hsa:3627%09red/hsa:8797%09red/hsa:3458%09red/hsa:268%09red/hsa:6358%09red	
Neuroactive ligand-receptor interaction	KEGG PATHWAY	hsa04080	7	338	2.37E-07	1.39E-05	PTH1R	TRH	TRHBP	VIPR2	PENK	TACR1	CYSLTR1	http://www.genome.jp/kegg-bin/show_pathway?hsa04080/hsa:6865%09red/hsa:7068%09red/hsa:7200%09red/hsa:5745%09red/hsa:5179%09red/hsa:7434%09red/hsa:10000%09red/hsa:332%09red	
Rap1 signaling pathway	KEGG PATHWAY	hsa04015	6	210	2.96E-07	1.39E-05	VAV2	AKT3	VEGFA	FGF5	FGF20	FGF21	http://www.genome.jp/kegg-bin/show_pathway?hsa04015/hsa:10000%09red/hsa:7422%09red/hsa:2250%09red/hsa:26291%09red/hsa:26281%09red/hsa:7410%09red		
Pathways in cancer	KEGG PATHWAY	hsa05200	8	530	3.23E-07	1.39E-05	IFNG	BID	AKT3	VEGFA	FGF5	BIRC5	FGF20	FGF21	http://www.genome.jp/kegg-bin/show_pathway?hsa05200/hsa:637%09red/hsa:3458%09red/hsa:10000%09red/hsa:7422%09red/hsa:10000%09red/hsa:26291%09red/hsa:7410%09red
Influenza A	KEGG PATHWAY	hsa05164	5	167	2.47E-06	7.35E-05	IFNG	CXCL10	TNFRSF10A	AKT3	BID		http://www.genome.jp/kegg-bin/show_pathway?hsa05164/hsa:3627%09red/hsa:10000%09red/hsa:3458%09red/hsa:268%09red/hsa:7434%09red/hsa:4881%09red		
Melanoma	KEGG PATHWAY	hsa05218	4	72	2.56E-06	7.35E-05	FGF5	AKT3	FGF20	FGF2			http://www.genome.jp/kegg-bin/show_pathway?hsa05218/hsa:268%09red/hsa:26291%09red/hsa:3458%09red/hsa:7434%09red/hsa:8797%09red		
Axon guidance	KEGG PATHWAY	hsa04360	5	181	3.63E-06	8.91E-05	SEMA3A	PLXNB3	SEMA6D	SEMA5B	SEMA3D			http://www.genome.jp/kegg-bin/show_pathway?hsa04360/hsa:5443%09red/hsa:7410%09red/hsa:8797%09red/hsa:3458%09red/hsa:7434%09red	
cAMP signaling pathway	KEGG PATHWAY	hsa04024	5	214	8.02E-06	0.000171075	AKT3	AMH	VAV2	VIPR2	NPR1			http://www.genome.jp/kegg-bin/show_pathway?hsa04024/hsa:268%09red/hsa:7434%09red/hsa:8797%09red/hsa:3458%09red/hsa:4881%09red	
Viral protein interaction with cytokine and cytokine receptor	KEGG PATHWAY	hsa04061	4	100	8.95E-06	0.000171075	CXCL10	TNFRSF10A	IL20RB	CCL14			http://www.genome.jp/kegg-bin/show_pathway?hsa04061/hsa:6358%09red/hsa:3627%09red/hsa:8797%09red/hsa:3458%09red/hsa:7434%09red		
Ras signaling pathway	KEGG PATHWAY	hsa04014	5	232	1.18E-05	0.00020148	FGF5	AKT3	VEGFA	FGF20	FGF2			http://www.genome.jp/kegg-bin/show_pathway?hsa04014/hsa:268%09red/hsa:7434%09red/hsa:8797%09red/hsa:3458%09red/hsa:4881%09red	
Natural killer cell mediated cytotoxicity	KEGG PATHWAY	hsa04650	4	131	2.50E-05	0.00039155	IFNG	TNFRSF10A	VAV2	BID			http://www.genome.jp/kegg-bin/show_pathway?hsa04650/hsa:637%09red/hsa:3458%09red/hsa:8797%09red/hsa:3458%09red/hsa:7434%09red/hsa:8797%09red/hsa:10000%09red/hsa:332%09red		
Apoptosis	KEGG PATHWAY	hsa04210	4	136	2.89E-05	0.000413901	TNFRSF10A	AKT3	BID	BIRC5			http://www.genome.jp/kegg-bin/show_pathway?hsa04210/hsa:637%09red/hsa:8797%09red/hsa:10000%09red/hsa:332%09red/hsa:3458%09red/hsa:7434%09red/hsa:8797%09red/hsa:10000%09red/hsa:332%09red		
Term Name (KEGG Pathway Data Base)	Database ID	Input Number	Background Number	P-value	Corrected P-value	Input	Hyperlink								
-----------------------------------	-------------	--------------	-------------------	---------	-------------------	-------	-----------								
MAPK signaling pathway	KEGG PATHWAY	hs04010	5	295	3.63E-05	FG5	AKT3	VEGFA	FG20	FG21	http://www.genome.jp/kegg-bin/show_pathway?hsa04010/hsa:26291%09red/hsa:26281%09red/hsa:2250%09red/hsa:10000%09red/hsa:7422%09red				
Breast cancer	KEGG PATHWAY	hs05224	4	147	3.88E-05	FG5	AKT3	FGF20	FGF21	http://www.genome.jp/kegg-bin/show_pathway?hsa05224/hsa:26281%09red/hsa:2250%09red/hsa:10000%09red/hsa:26291%09red					
Gastric cancer	KEGG PATHWAY	hs05226	4	149	4.09E-05	FG5	AKT3	FGF20	FGF21	http://www.genome.jp/kegg-bin/show_pathway?hsa05226/hsa:26281%09red/hsa:2250%09red/hsa:10000%09red/hsa:26291%09red					
Hepatitis C	KEGG PATHWAY	hs05160	4	155	4.75E-05	IFNG	CXCL10	BID	AKT3	http://www.genome.jp/kegg-bin/show_pathway?hsa05160/hsa:637%09red/hsa:3627%09red/hsa:10000%09red/hsa:3458%09red					
PI3K-Akt signaling pathway	KEGG PATHWAY	hs04151	5	354	8.49E-05	FG5	AKT3	VEGFA	FG20	FGF21	http://www.genome.jp/kegg-bin/show_pathway?hsa04151/hsa:26291%09red/hsa:26281%09red/hsa:2250%09red/hsa:10000%09red/hsa:7422%09red				
Chemokine signaling pathway	KEGG PATHWAY	hs04062	4	190	0.00010258	AKT3	CXCL10	VAV2	CCL14	http://www.genome.jp/kegg-bin/show_pathway?hsa04062/hsa:6358%09red/hsa:7410%09red/hsa:3627%09red/hsa:10000%09red					
Platinum drug resistance	KEGG PATHWAY	hs01524	3	73	0.000120162	BID	AKT3	BIRC5	http://www.genome.jp/kegg-bin/show_pathway?hsa01524/hsa:637%09red/hsa:10000%09red/hsa:332%09red						
Regulation of actin cytoskeleton	KEGG PATHWAY	hs04810	4	214	0.000160568	IFNG	CXCL10	S100A8	http://www.genome.jp/kegg-bin/show_pathway?hsa04810/hsa:26291%09red/hsa:26281%09red/hsa:2250%09red/hsa:10000%09red/hsa:7422%09red						
IL-17 signaling pathway	KEGG PATHWAY	hs04657	3	93	0.000239981	IFNG	CXCL10	S100A8	http://www.genome.jp/kegg-bin/show_pathway?hsa04657/hsa:3458%09red/hsa:6358%09red/hsa:3627%09red/hsa:10000%09red						
TGF-beta signaling pathway	KEGG PATHWAY	hs04350	3	94	0.000247423	IFNG	AMH	BMP6	http://www.genome.jp/kegg-bin/show_pathway?hsa04350/hsa:268%09red/hsa:654%09red/hsa:3458%09red/hsa:627%09red/hsa:3627%09red						
T cell receptor signaling pathway	KEGG PATHWAY	hs04660	3	103	0.000321205	AKT3	IFNG	VAV2	http://www.genome.jp/kegg-bin/show_pathway?hsa04660/hsa:3458%09red/hsa:6358%09red/hsa:3627%09red/hsa:10000%09red/hsa:7422%09red						
HIF-1 signaling pathway	KEGG PATHWAY	hs04066	3	109	0.000377492	IFNG	AKT3	VEGFA	http://www.genome.jp/kegg-bin/show_pathway?hsa04066/hsa:3458%09red/hsa:6358%09red/hsa:3627%09red/hsa:10000%09red/hsa:7422%09red						
Fluid shear stress and atherosclerosis	KEGG PATHWAY	hs05418	3	139	0.000753736	IFNG	AKT3	VEGFA	http://www.genome.jp/kegg-bin/show_pathway?hsa05418/hsa:3458%09red/hsa:6358%09red/hsa:3627%09red/hsa:10000%09red/hsa:7422%09red						
Apoptosis - multiple species	KEGG PATHWAY	hs04215	2	33	0.000882909	BID	BIRC5	http://www.genome.jp/kegg-bin/show_pathway?hsa04215/hsa:637%09red/hsa:332%09red/hsa:3458%09red/hsa:6358%09red/hsa:3627%09red							
Hippo signaling pathway	KEGG PATHWAY	hs04390	3	154	0.001007511	AMH	BIRC5	BMP6	http://www.genome.jp/kegg-bin/show_pathway?hsa04390/hsa:268%09red/hsa:654%09red/hsa:3458%09red/hsa:6358%09red/hsa:3627%09red						

https://doi.org/10.2147/IJGM.S343635

Dove Press

International Journal of General Medicine 2022:15

1242

Wang et al

Dove Press

Powered by TCPDF (www.tcpdf.org)
Disorder	KEGG Pathway	ID	P-value	E-value	Gene(s)	KEGG Pathway Link			
Necroptosis	hsa04217	3	0.00162455	0.006781484	IFNG[TNFRSF10A] BID	http://www.genome.jp/kegg-bin/show_pathway?hsa04217/hsa:637%09red/hsa:879%09red			
Jak-STAT signaling pathway	hsa04630	3	0.00162455	0.006781484	IFNG[AKT3][L20RB]	http://www.genome.jp/kegg-bin/show_pathway?hsa04630/hsa:5383%09red/hsa:1000%09red			
Hepatitis B	hsa05161	3	0.00182817	0.006781484	BID[AKT3][BIRC5]	http://www.genome.jp/kegg-bin/show_pathway?hsa05161/hsa:637%09red/hsa:332%09red			
Bladder cancer	hsa05219	2	0.001313445	0.007387374	TYMP[VEGFA]	http://www.genome.jp/kegg-bin/show_pathway?hsa05219/hsa:1890%09red/hsa:7422%09red			
Tuberculosis	hsa05152	3	0.001539718	0.008275984	BID[AKT3][VAV2][VEGFA]	http://www.genome.jp/kegg-bin/show_pathway?hsa05152/hsa:637%09red/hsa:1000%09red			
Kaposis sarcoma-associated herpesvirus infection	hsa05167	3	0.00171486	0.008938059	BID[AKT3][VAV2][VEGFA]	http://www.genome.jp/kegg-bin/show_pathway?hsa05167/hsa:637%09red/hsa:1000%09red			
Focal adhesion	hsa04510	3	0.002072159	0.010466682	AKT3[VAV2][VEGFA]	http://www.genome.jp/kegg-bin/show_pathway?hsa04510/hsa:7410%09red/hsa:7422%09red			
Epstein-Barr virus infection	hsa05169	3	0.002130916	0.010466682	CXCL10[AKT3][BID][VEGFA]	http://www.genome.jp/kegg-bin/show_pathway?hsa05169/hsa:637%09red/hsa:3627%09red/hsa:1000%09red			
Proteoglycans in cancer	hsa05205	3	0.002190701	0.010466682	AKT3[VAV2][VEGFA]	http://www.genome.jp/kegg-bin/show_pathway?hsa05205/hsa:7410%09red/hsa:7422%09red			
Regulation of lipolysis in adipocytes	hsa04923	2	0.002332715	0.010818406	NPR1[AKT3]	http://www.genome.jp/kegg-bin/show_pathway?hsa04923/hsa:1000%09red/hsa:4881%09red			
VEGF signaling pathway	hsa04370	2	0.002659961	0.012039822	AKT3[VEGFA]	http://www.genome.jp/kegg-bin/show_pathway?hsa04370/hsa:1000%09red/hsa:7422%09red			
Human cytomegalovirus infection	hsa05163	3	0.00291796	0.012547229	BID[AKT3][VEGFA]	http://www.genome.jp/kegg-bin/show_pathway?hsa05163/hsa:637%09red/hsa:7422%09red			
Inflammatory bowel disease (IBD)	hsa05321	2	0.003198486	0.013418038	IFNG[ORF]	http://www.genome.jp/kegg-bin/show_pathway?hsa05321/hsa:3458%09red/hsa:6095%09red			
Fc epsilon RI signaling pathway	hsa04664	2	0.003485291	0.014273095	AKT3[VAV2]	http://www.genome.jp/kegg-bin/show_pathway?hsa04664/hsa:7410%09red/hsa:1000%09red			
Renal cell carcinoma	hsa05211	2	0.003583469	0.014333878	AKT3[VEGFA]	http://www.genome.jp/kegg-bin/show_pathway?hsa05211/hsa:1000%09red/hsa:7422%09red			
Term Name (KEGG Pathway Data Base)	Database	ID	Input Number	Background Number	P-value	Corrected P-value	Input	Hyperlink	
-----------------------------------	----------	----	--------------	-------------------	---------	------------------	-------	-----------	
Pancreatic cancer	KEGG PATHWAY	hsa05212	2	75	0.004199377	0.016415748	AKT3	VEGFA	http://www.genome.jp/kegg-bin/show_pathway?hsa05212/hsa:10000%09red/hsa:7422%09red
EGFR tyrosine kinase inhibitor resistance	KEGG PATHWAY	hsa01521	2	79	0.004635305	0.017717168	AKT3	VEGFA	http://www.genome.jp/kegg-bin/show_pathway?hsa01521/hsa:10000%09red/hsa:7422%09red
B cell receptor signaling pathway	KEGG PATHWAY	hsa04662	2	82	0.004975401	0.018603674	AKT3	VAV2	http://www.genome.jp/kegg-bin/show_pathway?hsa04662/hsa:7410%09red/hsa:10000%09red
Colorectal cancer	KEGG PATHWAY	hsa05210	2	86	0.005446233	0.019515668	BIRC5	AKT3	http://www.genome.jp/kegg-bin/show_pathway?hsa05210/hsa:332%09red/hsa:10000%09red
PD-L1 expression and PD-1 checkpoint pathway in cancer	KEGG PATHWAY	hsa05235	2	89	0.005812275	0.020402271	IFNG	AKT3	http://www.genome.jp/kegg-bin/show_pathway?hsa05235/hsa:3458%09red/hsa:10000%09red
Rheumatoid arthritis	KEGG PATHWAY	hsa05323	2	91	0.006062408	0.020854683	IFNG	VEGFA	http://www.genome.jp/kegg-bin/show_pathway?hsa05323/hsa:3458%09red/hsa:7422%09red
Fc gamma R-mediated phagocytosis	KEGG PATHWAY	hsa04666	2	94	0.006446702	0.021323707	AKT3	VAV2	http://www.genome.jp/kegg-bin/show_pathway?hsa04666/hsa:7410%09red/hsa:10000%09red
AGE-RAGE signaling pathway in diabetic complications	KEGG PATHWAY	hsa04933	2	100	0.007247728	0.023520929	AKT3	VEGFA	http://www.genome.jp/kegg-bin/show_pathway?hsa04933/hsa:10000%09red/hsa:7422%09red
Chagas disease (American trypanosomiasis)	KEGG PATHWAY	hsa05142	2	103	0.007664294	0.023968338	IFNG	AKT3	http://www.genome.jp/kegg-bin/show_pathway?hsa05142/hsa:3458%09red/hsa:10000%09red
Toll-like receptor signaling pathway	KEGG PATHWAY	hsa04620	2	104	0.007805507	0.023974059	CXCL10	AKT3	http://www.genome.jp/kegg-bin/show_pathway?hsa04620/hsa:3627%09red/hsa:10000%09red
Th17 cell differentiation	KEGG PATHWAY	hsa04659	2	107	0.008236179	0.02485303	IFNG	RORA	http://www.genome.jp/kegg-bin/show_pathway?hsa04659/hsa:3458%09red/hsa:6095%09red
TNF signaling pathway	KEGG PATHWAY	hsa04668	2	112	0.008977221	0.02531282	CXCL10	AKT3	http://www.genome.jp/kegg-bin/show_pathway?hsa04668/hsa:3627%09red/hsa:10000%09red
Toxoplasmosis	KEGG PATHWAY	hsa05145	2	113	0.009128891	0.02532531	IFNG	AKT3	http://www.genome.jp/kegg-bin/show_pathway?hsa05145/hsa:3458%09red/hsa:10000%09red
Pathway Description	KEGG Pathway	ID	Score	p-Value	q-Value	Gene(s)	URL		
---	--------------	-----	-------	---------	---------	----------	--		
Thyroid hormone signaling pathway	KEGG PATHWAY	hsa04919	2	0.010062892	0.027044022	AKT3	THR B	http://www.genome.jp/kegg-bin/show_pathway?hsa04919/hsa:7068%09red/hsa:10000%09red	
Sphingolipid signaling pathway	KEGG PATHWAY	hsa04071	2	0.010062892	0.027044022	BID	AKT3	http://www.genome.jp/kegg-bin/show_pathway?hsa04071/hsa:637%09red/hsa:10000%09red	
Yersinia infection	KEGG PATHWAY	hsa05135	2	0.01038329	0.030073711	AKT3	VAV2	http://www.genome.jp/kegg-bin/show_pathway?hsa05135/hsa:7410%09red/hsa:10000%09red	
Osteoclast differentiation	KEGG PATHWAY	hsa04380	2	0.011880345	0.030498796	IFNG	AKT3	http://www.genome.jp/kegg-bin/show_pathway?hsa04380/hsa:3458%09red/hsa:10000%09red	
Relaxin signaling pathway	KEGG PATHWAY	hsa04926	2	0.01880345	0.03498796	AKT3	VEGFA	http://www.genome.jp/kegg-bin/show_pathway?hsa04926/hsa:10000%09red/hsa:7422%09red	
Measles	KEGG PATHWAY	hsa05162	2	0.013285727	0.033605074	BID	AKT3	http://www.genome.jp/kegg-bin/show_pathway?hsa05162/hsa:637%09red/hsa:10000%09red	
Non-alcoholic fatty liver disease (NAFLD)	KEGG PATHWAY	hsa04932	2	0.015330079	0.037668195	BID	AKT3	http://www.genome.jp/kegg-bin/show_pathway?hsa04932/hsa:637%09red/hsa:10000%09red	
cGMP-PKG signaling pathway	KEGG PATHWAY	hsa04022	2	0.018945968	0.045259811	NPR1	AKT3	http://www.genome.jp/kegg-bin/show_pathway?hsa04022/hsa:10000%09red/hsa:4881%09red	
Herpes simplex virus 1 infection	KEGG PATHWAY	hsa05168	3	0.023869016	0.055248506	IFNG	BID	AKT3	http://www.genome.jp/kegg-bin/show_pathway?hsa05168/hsa:637%09red/hsa:3458%09red/hsa:10000%09red
Calcium signaling pathway	KEGG PATHWAY	hsa04020	2	0.024733343	0.055248506	TACR1	CYSLTR1	http://www.genome.jp/kegg-bin/show_pathway?hsa04020/hsa:6869%09red/hsa:10800%09red	
Human immunodeficiency virus 1 infection	KEGG PATHWAY	hsa05170	2	0.029360767	0.063451227	BID	AKT3	http://www.genome.jp/kegg-bin/show_pathway?hsa05170/hsa:637%09red/hsa:10000%09red	
Renin-angiotensin system	KEGG PATHWAY	hsa04614	1	0.029512198	0.063451227	CMA1	http://www.genome.jp/kegg-bin/show_pathway?hsa04614/hsa:1215%09red		
Thermogenesis	KEGG PATHWAY	hsa04714	2	0.034304903	0.072844979	NPR1	FGF21	http://www.genome.jp/kegg-bin/show_pathway?hsa04714/hsa:26291%09red/hsa:4881%09red	
Circadian rhythm	KEGG PATHWAY	hsa04710	1	0.039158676	0.08018205	RORA	http://www.genome.jp/kegg-bin/show_pathway?hsa04710/hsa:6095%09red		
Asthma	KEGG PATHWAY	hsa05310	1	0.039158676	0.08018205	EPO	http://www.genome.jp/kegg-bin/show_pathway?hsa05310/hsa:8288%09red		

(Continued)
Term Name (KEGG Pathway Data Base)	Database ID	Input Number	Background Number	P-value	Corrected P-value	Input	Hyperlink	
African trypanosomiasis KEGG PATHWAY	hsa05143	1	37	0.046331832	0.093753825	IFNG	[Link](http://www.genome.jp/kegg-bin/show_pathway?hsa05143/hsa:3458%09red)	
Allograft rejection KEGG PATHWAY	hsa05330	1	38	0.047522247	0.095044494	IFNG	[Link](http://www.genome.jp/kegg-bin/show_pathway?hsa05330/hsa:3458%09red)	
Graft-versus-host disease KEGG PATHWAY	hsa05332	1	41	0.051084765	0.100995168	IFNG	[Link](http://www.genome.jp/kegg-bin/show_pathway?hsa05332/hsa:3458%09red)	
Type I diabetes mellitus KEGG PATHWAY	hsa04940	1	43	0.053452522	0.104475384	IFNG	[Link](http://www.genome.jp/kegg-bin/show_pathway?hsa04940/hsa:3458%09red)	
Carbohydrate digestion and absorption KEGG PATHWAY	hsa04973	1	44	0.054634229	0.105495522	AKT3	[Link](http://www.genome.jp/kegg-bin/show_pathway?hsa04973/hsa:10000%09red)	
Proteasome KEGG PATHWAY	hsa03050	1	45	0.055814491	0.105495522	IFNG	[Link](http://www.genome.jp/kegg-bin/show_pathway?hsa03050/hsa:3458%09red)	
Ovarian steroidogenesis KEGG PATHWAY	hsa04913	1	49	0.060521122	0.109395872	BMP6	[Link](http://www.genome.jp/kegg-bin/show_pathway?hsa04913/hsa:654%09red)	
Malaria KEGG PATHWAY	hsa05144	1	49	0.060521122	0.109395872	IFNG	[Link](http://www.genome.jp/kegg-bin/show_pathway?hsa05144/hsa:3458%09red)	
Cholesterol metabolism KEGG PATHWAY	hsa04979	1	50	0.061694183	0.109395872	ANGPTL4	[Link](http://www.genome.jp/kegg-bin/show_pathway?hsa04979/hsa:51129%09red)	
Endocrine and other factor-regulated calcium reabsorption KEGG PATHWAY	hsa04961	1	50	0.061694183	0.109395872	PTH1R	[Link](http://www.genome.jp/kegg-bin/show_pathway?hsa04961/hsa:5745%09red)	
Amyotrophic lateral sclerosis (ALS) KEGG PATHWAY	hsa05014	1	51	0.06286581	0.110335912	BID	[Link](http://www.genome.jp/kegg-bin/show_pathway?hsa05014/hsa:637%09red)	
Human papillomavirus infection KEGG PATHWAY	hsa05165	2	330	0.064563214	0.112170433	AKT3	VEGFA	[Link](http://www.genome.jp/kegg-bin/show_pathway?hsa05165/hsa:10000%09red/hsa:7422%09red)
Pyrimidine metabolism KEGG PATHWAY	hsa00240	1	57	0.069865336	0.120168722	TYMP	[Link](http://www.genome.jp/kegg-bin/show_pathway?hsa00240/hsa:1890%09red)	
Endometrial cancer KEGG PATHWAY	hsa05213	1	58	0.071027167	0.120957156	AKT3	[Link](http://www.genome.jp/kegg-bin/show_pathway?hsa05213/hsa:10000%09red)	
Viral myocarditis KEGG PATHWAY	hsa05416	1	60	0.073346167	0.122480978	BID	[Link](http://www.genome.jp/kegg-bin/show_pathway?hsa05416/hsa:637%09red)	
Pathway Description	KEGG PATHWAY	ID	Score	p-Value	Genes	Pathway Link		
--	--------------	----	-------	---------	----------------	--		
Longevity regulating pathway - multiple species	hsa04213	I	62	0.075659496	0.125129166 AKT3	http://www.genome.jp/kegg-bin/show_pathway?hsa04213/hsa:10000%09red		
Cytosolic DNA-sensing pathway	hsa04623	I	63	0.076814038	0.12582871 CXCL10	http://www.genome.jp/kegg-bin/show_pathway?hsa04623/hsa:3627%09red		
Non-small cell lung cancer	hsa05223	I	66	0.080269195	0.128028912 AKT3	http://www.genome.jp/kegg-bin/show_pathway?hsa05223/hsa:10000%09red		
Acute myeloid leukemia	hsa05221	I	66	0.080269195	0.128028912 AKT3	http://www.genome.jp/kegg-bin/show_pathway?hsa05221/hsa:10000%09red		
Central carbon metabolism in cancer	hsa05230	I	69	0.083711683	0.128028912 AKT3	http://www.genome.jp/kegg-bin/show_pathway?hsa05230/hsa:10000%09red		
Adipocytokine signaling pathway	hsa04920	I	69	0.083711683	0.128028912 AKT3	http://www.genome.jp/kegg-bin/show_pathway?hsa04920/hsa:10000%09red		
Renin secretion	hsa04924	I	69	0.083711683	0.128028912 NPR1	http://www.genome.jp/kegg-bin/show_pathway?hsa04924/hsa:4881%09red		
Prolactin signaling pathway	hsa04917	I	70	0.084856372	0.128028912 AKT3	http://www.genome.jp/kegg-bin/show_pathway?hsa04917/hsa:10000%09red		
RIG-I-like receptor signaling pathway	hsa04622	I	70	0.084856372	0.128028912 CXCL10	http://www.genome.jp/kegg-bin/show_pathway?hsa04622/hsa:3627%09red		
p53 signaling pathway	hsa04115	I	72	0.087141549	0.130333446 BID	http://www.genome.jp/kegg-bin/show_pathway?hsa04115/hsa:637%09red		
Leishmaniasis	hsa05140	I	74	0.089421135	0.132534159 IFNG	http://www.genome.jp/kegg-bin/show_pathway?hsa05140/hsa:3458%09red		
Glioma	hsa05214	I	75	0.090558836	0.132534159 AKT3	http://www.genome.jp/kegg-bin/show_pathway?hsa05214/hsa:10000%09red		
Chronic myeloid leukemia	hsa05220	I	76	0.091695145	0.132534159 AKT3	http://www.genome.jp/kegg-bin/show_pathway?hsa05220/hsa:10000%09red		
PPAR signaling pathway	hsa03320	I	76	0.091695145	0.132534159 ANGPTL4	http://www.genome.jp/kegg-bin/show_pathway?hsa03320/hsa:51129%09red		
Antigen processing and presentation	hsa04612	I	77	0.092830063	0.13306423 IFNG	http://www.genome.jp/kegg-bin/show_pathway?hsa04612/hsa:3458%09red		

(Continued)
Term Name (KEGG Pathway Data Base)	Database	ID	Input Number	Background Number	P-value	Corrected P-value	Input	Hyperlink
Drug metabolism - other enzymes	KEGG PATHWAY	hsa00983	I	79	0.095095733	0.135177405	TYMP	http://www.genome.jp/kegg-bin/show_pathway?hsa00983/hsa:1890%09red
Salmonella infection	KEGG PATHWAY	hsa05132	I	83	0.099610456	0.139292669	IFNG	http://www.genome.jp/kegg-bin/show_pathway?hsa05132/hsa:3458%09red
ErbB signaling pathway	KEGG PATHWAY	hsa04012	I	85	0.101859535	0.141265897	AKT3	http://www.genome.jp/kegg-bin/show_pathway?hsa04012/hsa:10000%09red
Longevity regulating pathway	KEGG PATHWAY	hsa04211	I	89	0.106341197	0.145164173	AKT3	http://www.genome.jp/kegg-bin/show_pathway?hsa04211/hsa:10000%09red
Th1 and Th2 cell differentiation	KEGG PATHWAY	hsa04658	I	92	0.109688059	0.148553907	IFNG	http://www.genome.jp/kegg-bin/show_pathway?hsa04658/hsa:3458%09red
Small cell lung cancer	KEGG PATHWAY	hsa05222	I	93	0.110800949	0.148888776	AKT3	http://www.genome.jp/kegg-bin/show_pathway?hsa05222/hsa:10000%09red
Amoebiasis	KEGG PATHWAY	hsa05146	I	95	0.113022643	0.150696857	IFNG	http://www.genome.jp/kegg-bin/show_pathway?hsa05146/hsa:3458%09red
Prostate cancer	KEGG PATHWAY	hsa05215	I	97	0.115238898	0.150756368	AKT3	http://www.genome.jp/kegg-bin/show_pathway?hsa05215/hsa:10000%09red
Aldosterone synthesis and secretion	KEGG PATHWAY	hsa04925	I	98	0.11634499	0.150756368	NPR1	http://www.genome.jp/kegg-bin/show_pathway?hsa04925/hsa:4881%09red
Endocrine resistance	KEGG PATHWAY	hsa01522	I	98	0.11634499	0.150756368	AKT3	http://www.genome.jp/kegg-bin/show_pathway?hsa01522/hsa:10000%09red
Progesterone-mediated oocyte maturation	KEGG PATHWAY	hsa04914	I	99	0.117449728	0.150756368	AKT3	http://www.genome.jp/kegg-bin/show_pathway?hsa04914/hsa:10000%09red
Choline metabolism in cancer	KEGG PATHWAY	hsa05231	I	99	0.117449728	0.150756368	AKT3	http://www.genome.jp/kegg-bin/show_pathway?hsa05231/hsa:10000%09red
C-type lectin receptor signaling pathway	KEGG PATHWAY	hsa04625	I	104	0.122953155	0.154364545	AKT3	http://www.genome.jp/kegg-bin/show_pathway?hsa04625/hsa:10000%09red
Parathyroid hormone synthesis, secretion and action	KEGG PATHWAY	hsa04928	I	106	0.1251451	0.154855808	PTH1R	http://www.genome.jp/kegg-bin/show_pathway?hsa04928/hsa:5745%09red
Pathway	KEGG PATHWAY	ID	Value	p-value	Gene(s)	Pathway Link		
--	--------------	----	-------	---------	---------	--		
Glucagon signaling pathway	hsa04922	1	106	0.1251451	AKT3	http://www.genome.jp/kegg-bin/show_pathway?hsa04922/hsa:10000%09red		
Insulin resistance	hsa04931	1	108	0.127331679	AKT3	http://www.genome.jp/kegg-bin/show_pathway?hsa04931/hsa:10000%09red		
Cholinergic synapse	hsa04725	1	112	0.131688788	AKT3	http://www.genome.jp/kegg-bin/show_pathway?hsa04725/hsa:10000%09red		
Leukocyte transendothelial migration	hsa04670	1	112	0.131688788	VAV2	http://www.genome.jp/kegg-bin/show_pathway?hsa04670/hsa:7410%09red		
Neurotrophin signaling pathway	hsa04722	1	119	0.139262506	AKT3	http://www.genome.jp/kegg-bin/show_pathway?hsa04722/hsa:10000%09red		
AMPK signaling pathway	hsa04152	1	120	0.140339169	AKT3	http://www.genome.jp/kegg-bin/show_pathway?hsa04152/hsa:10000%09red		
Platelet activation	hsa04611	1	124	0.144632646	AKT3	http://www.genome.jp/kegg-bin/show_pathway?hsa04611/hsa:10000%09red		
Autophagy - animal	hsa04140	1	128	0.148905114	AKT3	http://www.genome.jp/kegg-bin/show_pathway?hsa04140/hsa:10000%09red		
Purine metabolism	hsa00230	1	130	0.151033502	NPR1	http://www.genome.jp/kegg-bin/show_pathway?hsa00230/hsa:4881%09red		
Dopaminergic synapse	hsa04728	1	131	0.15209574	AKT3	http://www.genome.jp/kegg-bin/show_pathway?hsa04728/hsa:10000%09red		
Vascular smooth muscle contraction	hsa04270	1	132	0.153156676	NPR1	http://www.genome.jp/kegg-bin/show_pathway?hsa04270/hsa:4881%09red		
FoxO signaling pathway	hsa04068	1	132	0.153156676	AKT3	http://www.genome.jp/kegg-bin/show_pathway?hsa04068/hsa:10000%09red		
Systemic lupus erythematosus	hsa05322	1	133	0.154216311	IFNG	http://www.genome.jp/kegg-bin/show_pathway?hsa05322/hsa:3458%09red		
Insulin signaling pathway	hsa04910	1	137	0.15844188	AKT3	http://www.genome.jp/kegg-bin/show_pathway?hsa04910/hsa:10000%09red		
Apelin signaling pathway	hsa04371	1	137	0.15844188	AKT3	http://www.genome.jp/kegg-bin/show_pathway?hsa04371/hsa:10000%09red		

(Continued)
Table 1 (Continued).

Term Name (KEGG Pathway Data Base)	Database ID	Input Number	Background Number	P-value	Corrected P-value	Input	Hyperlink	
Estrogen signaling pathway	KEGG PATHWAY hsa04915	1	138	0.159495037	0.178137314	AKT3	http://www.genome.jp/kegg-bin/show_pathway?hsa04915/hsa:10000%09red	
Signaling pathways regulating pluripotency of stem cells	KEGG PATHWAY hsa04550	1	140	0.161597478	0.179321073	AKT3	http://www.genome.jp/kegg-bin/show_pathway?hsa04550/hsa:10000%09red	
Phospholipase D signaling pathway	KEGG PATHWAY hsa04072	1	148	0.169955848	0.18731979	AKT3	http://www.genome.jp/kegg-bin/show_pathway?hsa04072/hsa:10000%09red	
Adrenergic signaling in cardiomyocytes	KEGG PATHWAY hsa04261	1	149	0.170994887	0.18731979	AKT3	http://www.genome.jp/kegg-bin/show_pathway?hsa04261/hsa:10000%09red	
Oxytocin signaling pathway	KEGG PATHWAY hsa04921	1	153	0.175138319	0.189457805	NPR1	http://www.genome.jp/kegg-bin/show_pathway?hsa04921/hsa:4881%09red	
mTOR signaling pathway	KEGG PATHWAY hsa04150	1	153	0.175138319	0.189457805	AKT3	http://www.genome.jp/kegg-bin/show_pathway?hsa04150/hsa:10000%09red	
Cellular senescence	KEGG PATHWAY hsa04218	1	160	0.182340564	0.194798615	AKT3	http://www.genome.jp/kegg-bin/show_pathway?hsa04218/hsa:10000%09red	
Hepatocellular carcinoma	KEGG PATHWAY hsa05225	1	168	0.190496286	0.201014486	AKT3	http://www.genome.jp/kegg-bin/show_pathway?hsa05225/hsa:10000%09red	
Alzheimer disease	KEGG PATHWAY hsa05010	1	171	0.193534092	0.202974779	BID	http://www.genome.jp/kegg-bin/show_pathway?hsa05010/hsa:637%09red	
Human T-cell leukemia virus 1 infection	KEGG PATHWAY hsa05166	1	219	0.240647125	0.247852129	AKT3	http://www.genome.jp/kegg-bin/show_pathway?hsa05166/hsa:10000%09red	
MicroRNAs in cancer	KEGG PATHWAY hsa05206	1	299	0.313245477	0.320703702	VEGFA	http://www.genome.jp/kegg-bin/show_pathway?hsa05206/hsa:7422%09red	
Metabolic pathways	KEGG PATHWAY hsa01100	2	1433	0.538567906	0.541717426	NPR1	TYMP	http://www.genome.jp/kegg-bin/show_pathway?hsa01100/hsa:1890%09red/hsa:4881%09red

Term (KEGG disease data base)	Database ID	Input Number	Background Number	P-value	Corrected P-value	Input	Hyperlink		
Endocrine and metabolic diseases	KEGG DISEASE	3	220	0.002741264	0.012089679	SEMA3A	THRB	VEGFA	None
Immune system diseases	KEGG DISEASE	3	278	0.005229537	0.01937882	IFNG	CXCL10	EPO	None
Condition	KEGG	Disease	Score	Significance	Genes	Links			
--	------	---------	-------	--------------	-------	-------			
Allergies and autoimmune diseases			2	93	0.006317396	IFNG	CXCL10 None		
Avascular necrosis of femoral head	H01529	Disease	1	5	0.007459434	VEGFA None			
Potter syndrome	H01728	Disease	1	6	0.008697362	FGF20 None			
Metaphyseal dysplasias	H00479	Disease	1	6	0.008697362	PTH1R None			
Glucocorticoid-induced osteonecrosis	H01709	Disease	1	6	0.008697362	VEGFA None			
Allograft rejection	H00083	Disease	1	11	0.014864352	IFNG None			
Graft-versus-host disease	H00084	Disease	1	12	0.016093232	IFNG None			
Mitochondrial DNA depletion syndrome	H00469	Disease	1	15	0.01977087	TYMP None			
Thyroid gland diseases	H00479	Disease	1	19	0.024653448	THRB None			
Allergic rhinitis	H01360	Disease	1	19	0.024653448	CXCL10 None			
Hypogonadotropic hypogonadism	H00255	Disease	1	23	0.029512198	SEMA3A None			
Mouth and dental diseases	H00429	Disease	1	31	0.039158676	PTH1R None			
Other immune system diseases			1	45	0.055814491	EPO None			
Skeletal diseases			1	48	0.059346623	VEGFA None			
Congenital malformations of the urinary system			1	49	0.060521122	FGF20 None			
Hypothalamus and pituitary gland diseases			1	60	0.073346167	SEMA3A None			
Term Name (KEGG Pathway Data Base)	Database	ID	Input Number	Background Number	P-value	Corrected P-value	Input	Hyperlink	
-----------------------------------	----------	----	--------------	-------------------	---------	-------------------	-------	-----------	
Diabetes	KEGG	1	67		0.081418096	0.128028912	VEGFA	None	
Reproductive system diseases	KEGG	1	68		0.08256592	0.128028912	AMH	None	
Digestive system diseases	KEGG	1	81		0.097355859	0.137255801	PTH1R	None	
Congenital malformations	KEGG	3	900		0.102664169	0.141265897	PTH1R AKT3 FGF20	None	
Skin and soft tissue diseases	KEGG	1	103		0.121855166	0.154110945	FGF5	None	
Skin diseases	KEGG	1	103		0.121855166	0.154110945	FGF5	None	
Musculoskeletal diseases	KEGG	1	156		0.178232574	0.191600017	VEGFA	None	
Mitochondrial diseases	KEGG	1	164		0.186428436	0.197936365	TYMP	None	
Hematologic diseases	KEGG	1	181		0.203579678	0.212216391	IFNG	None	
Congenital malformations of the musculoskeletal system	KEGG	1	201		0.22330449	0.231375736	PTH1R	None	
Cardiovascular diseases	KEGG	1	342		0.349410788	0.355613346	IFNG	None	
Other congenital malformations	KEGG	1	357		0.361582275	0.365836184	AKT3	None	
Congenital disorders of metabolism	KEGG	1	695		0.583662873	0.583662873	TYMP	None	
using the “pheatmap” package in R and the common differentially expressed genes between the two datasets were determined using the “Venn diagrams” in R. Immune-related genes were extracted from the DEGs after KEGG enrichment analysis. Immune-related genes were downloaded from the IMMPORT database (https://www.immport.org/home).

Pathway Enrichment and Annotation

Enrichment analysis of the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway for DEGs was performed using the KOBAS online tool (http://kobas.cbi.pku.edu.cn/index.php). KEGG analysis showed DEG enrichment in the signaling pathways.

PPI Network Analysis

The immune-associated DEGs were then used for PPI analysis. The DEG PPI network was constructed using the STRING database. Nodes with the confidence of interactive relationship > 0.7 were defined as the threshold. Subsequently, CytoHubba was utilized to identify the top ten hub genes and Venn diagrams were used to visualize common genes between the top 20 hub genes from GC and PUD patients, respectively.

Gene Set Enrichment Analysis (GSEA) and CIBERSORT Algorithm

To explore the role of the ten hub genes in regulating the cell immunological micro-environment, the CIBERSORT algorithm was applied to assess the proportion of immune cells that infiltrated the ECM using the LM22 signature. The LM22 signature consisting of 547 genes was used to identify 22 types of infiltrating immune cells. The cell fraction of the PUD and GC datasets was identified. Difference and correlation analyses were performed to explore the correlation between SMA3D expression and the types of immune cells that infiltrated the GC and PUD microenvironment (P < 0.05).

Clinicopathological Characteristics Analysis and Survival Analysis

GC patients were classified into a high- and low-group based on SMA3D and NRP2 expression levels. The association between clinicopathological characteristics and SMA3D and NRP2 expression was evaluated. K-M plotter was used to plot survival curves, which were compared using the Log rank test. Univariate and multivariate analyses were performed using the Cox proportional hazards model to investigate the influence of genotypes on cancer risk. P<0.05 was regarded as statistically significant.

Statistical Analysis

Statistical analyses were performed using R software (version 4.0.2) and GraphPad Prism. All statistical methods and appropriate R packages were described throughout the study. Hypergeometric test/Fisher’s exact test was employed to perform KEGG enrichment analysis. Method proposed by Benjamini & Hochberg was used to control for the false discovery rate (FDR). ANOVA (one-way) and the Tukey’s test were used to compare multiple groups. Chi-square was used to analyze the correlation between SEMA3D and NRP2 expression in GC tissues and the patient clinical data. P and q<0.05 were considered statistically significant.

Results

DEGs Identification and Enrichment Analysis

Differential analysis was performed to determine immune-related DEGs. Heatmaps showed the differential gene expression profiles of GC and PUD patients (Figure 1A and B). A total of 6032 and 2032 DEGs were identified between the stromal low-score and high-score groups in each data set, respectively. The threshold of difference was |log2FC| >1 and FDR <0.05. In both the GC and PUD groups, 437 DEGs were identified as common DEGs using Venn diagrams (Figure 1C). The common DEGs were overlapped with immune-related gene sets from the IMMPORT database and 49 immune-related DEGs were grouped to identify their primary functions (Figure 1D). The top three KEGG enrichment scores indicated that these DEGs were enriched in the cytokine-cytokine receptor interaction, neuroactive ligand-receptor
Figure 1 DEGs commonly expressed in three datasets. (A and B) Hierarchical clustering heatmap of upregulated and downregulated DEGs in the PUD or GC groups from each dataset (green points) and genes without significance (black points). The differences threshold was set as |log2FC| >1.0 and adjusted P-value <0.05. The Venn diagram shows 437 DEGs (C) and 49 immune-related DEG (D) commonly expressed across the two datasets. (E) KEGG enrichment analysis of immune-related DEGs.
interaction, and Rap1 signaling pathway pathways (Figure 1E). The complete pathways list of the KEGG enrichment is shown in Table 1.

PPI Network Construction

The STRINGs database was used to assess the interaction between immune-associated DEGs (Figure 2A). A PPI network was then constructed with a confidence of interactive relationship >0.7 as the threshold. CytoHubba, a plugin of the Cytoscape software, was used to screen the hub gene through three terms of degrees, closeness, and betweenness. Seven hub genes were identified as described in the methods (Figure 2B and C).

Correlation of the Survival and Clinicopathological Characteristics with Hub Gene Expression

Of the seven hub genes, VEGFA, EPO, SPP1, IFNG, and PLXNB3 were closely related to GC progression. NRP2 and SEMA3D were selected for survival comparative analysis in the GC group. The Kaplan-Meier survival curve showed that GC patients with low expression of SEMA3Dlow had a better overall survival rate than those with high expression (Figure 3; P<0.05; adjust HR=2.446, 95% CI 1.225–4.882). In contrast, differences in NRP2 expression did not have much effect on overall survival (Figure 3B). The correlation between SEMA3D expression and clinical characteristics was assessed using COX analysis. SEMA3D expression was closely correlated with advanced disease stages but not with TNM classification, indicating that SEMASD merits a higher clinical prognostic value (Table 2, *p<0.05).

Immune Cell Infiltration Analysis and Correlation Analysis

The CIBERSORT algorithm with 22 immune cells signature was employed to perform immune cell infiltration analysis using GC and PUD tissue samples. A higher fraction of active mast cells were found in the GC group than in the PUD group (Figure 4A). As shown in Figure 4B, SEMA3D expression and active mast cells showed a significant positive correlation in the GC group, but SEMA3D expression and DCs were positively correlated in the PUD group.

Discussion

The primary goal of this study was to explore significant hub genes associated with the malignant transformation of PUD into early GC. Seven significant hub genes were identified using bioinformatics. The SEMA3D gene was found to correlate with advanced clinicopathological stages of GC and patient survival.

KEGG pathway enrichment analysis showed that DEGs regulate many types of immune response in clinical tissue. SEMA3s always require additional neuropilin (NRP) receptors to bind VEGF, and the VEGF/SEMA3s balance is a prognostic marker of disease. Results from this study showed that high expression of SEMA3D and NRP2 correlated with activation of the non-canonical VEGF pathway, while VEGFA signaling was inhibited. Given the TLR4 was shown to mediate CD8+T cell activation during particular innate immune responses to disease, VEGF pathway was regarded as a critical regulator in pro-inflammatory responses.

SEMA3D, which encodes a semaphorin III family secreted protein, is a critical regulator of neuron development and diverse tumorigenic processes like proliferation, invasion, and angiogenesis. Abnormal SEMA3D expression is associated with a poor prognosis in many nervous system diseases and cancers. Decreased SEMA3D expression in gastrointestinal tumors correlates significantly with colorectal cancer progression while overexpression is a favorable prognostic factor for survival. SEMA3D is reported to participate in the recruitment of immune cells to the disease site. Results from this study showed that SEMA3D was significantly correlated with PUD patient outcomes. These findings imply that SMA3D could serve as a potential biomarker for early diagnosis of GC.

PPI and KEGG analyses showed that SEMA3D was involved in regulating immune-related pathways and the extracellular microenvironment of GC. The proportions of immune cells that infiltrated the cellular microenvironment were estimated using the CIBERSORT algorithm and NRP2 and SEMA3D were expressed in similar cell types. SEMA3D expression was primarily correlated with three infiltrating immune cell types, CD4+T cells, DCs, and mast cells. Interestingly, SEMA3D and NER2 expression were enriched in CD4+T cells and DCs from the PUD samples but...
Figure 2 PPI networks and hub gene analysis of commonly expressed DEGs in the immune-related dataset. (A) PPI networks constructed by the STRINGs. (B) Major PPI network analysis of the top 10 hub genes using Cytohubba software by three methods. The node color reflects the degree of connectivity. (C) The Venn diagram of the three methods.
primarily expressed in CD4+ T cells and mast cells from the GC samples. Different DC subsets can differentially regulate T cell function. In PUD samples, DCs primarily functioned to induce T and B cell activation. Mast cell function during cancer remains unclear, however. Recent studies show that mast cells promote gastric tumor cancer by releasing

Table 2 Cox Regression Analysis of Many Clinical-Pathological Characteristic in GC Dataset with SEMAD3

Variable	HR	CI (95%)	P
Univariate analysis (n =136)			
Age	2.190	1.325–3.652	0.067
Gender	0.882	0.157–2.127	0.149
T stage (T1–2/T3–4)	2.31	1.585–3.767	0.005*
N stage (N0/N1–X)	2.44	1.268–3.601	0.004*
M stage (M0/MX)	1.022	0.385–2.117	0.041*
Clinical stage (I/II)	1.688	1.512–5.786	0.003*
SEMAD3 (low/high)	2.031	1.232–2.879	0.013*
WHO histological classification	1.275	0.215–2.797	0.868
Multivariate analysis (n =136)			
Age	2.041	1.271–3.525	0.074
Clinical stage (I/II)	1.941	1.228–2.868	0.017*
SEMAD3 (low/high)	2.259	1.335–4.328	0.009*

Notes: The Chi-square and Fisher exact test were used to assess correlations between clinicopathologic features and expression of SEMA3d. The univariate and multivariate survival analysis were performed with Cox regression. All P-values reported are from two-sided tests and the threshold for significance was set at 0.05. *p<0.05.

Abbreviations: HR, hazard ratio; CI, confident interval.
Results from this study suggest that while SEMA3D expression in DCs from PUD tissue samples may help them to subvert the host immune response by activating T cells, SEMASD expression in mast cells may promote tumorigenesis. Similar heterogeneous functions of other SEMA3s are reported in other cancers.

A diagram that summarizes the findings of this study and hypothesizes how SEMA3D expression impacts DC and mast cell function is shown in Hypothetic Diagram (Figure S2). The detailed molecular mechanism of how this occurs requires additional study.

Results from this study defined seven hub genes associated with PUD-related carcinogenesis, provided strong evidence that SEMA3D correlates with tumor-related immune activation or dysfunction, and provided a new direction to study how hub gene functions during PUD and GC. However, this study does not describe the detailed mechanism by which hub genes participate in DC and mast cell function during PUD inflammation or the potential relationship between these genes and HP infection. HP-induced PUD is associated with gastric cancer, but there are few biomarkers that aid

angiogenic cytokines. Results from this study suggest that while SEMA3D expression in DCs from PUD tissue samples may help them to subvert the host immune response by activating T cells, SEMASD expression in mast cells may promote tumorigenesis. Similar heterogeneous functions of other SEMA3s are reported in other cancers. A diagram that summarizes the findings of this study and hypothesizes how SEMA3D expression impacts DC and mast cell function is shown in Hypothetic Diagram (Figure S2). The detailed molecular mechanism of how this occurs requires additional study.

Results from this study defined seven hub genes associated with PUD-related carcinogenesis, provided strong evidence that SEMA3D correlates with tumor-related immune activation or dysfunction, and provided a new direction to study how hub gene functions during PUD and GC. However, this study does not describe the detailed mechanism by which hub genes participate in DC and mast cell function during PUD inflammation or the potential relationship between these genes and HP infection. HP-induced PUD is associated with gastric cancer, but there are few biomarkers that aid

angiogenic cytokines. Results from this study suggest that while SEMA3D expression in DCs from PUD tissue samples may help them to subvert the host immune response by activating T cells, SEMASD expression in mast cells may promote tumorigenesis. Similar heterogeneous functions of other SEMA3s are reported in other cancers. A diagram that summarizes the findings of this study and hypothesizes how SEMA3D expression impacts DC and mast cell function is shown in Hypothetic Diagram (Figure S2). The detailed molecular mechanism of how this occurs requires additional study.

Results from this study defined seven hub genes associated with PUD-related carcinogenesis, provided strong evidence that SEMA3D correlates with tumor-related immune activation or dysfunction, and provided a new direction to study how hub gene functions during PUD and GC. However, this study does not describe the detailed mechanism by which hub genes participate in DC and mast cell function during PUD inflammation or the potential relationship between these genes and HP infection. HP-induced PUD is associated with gastric cancer, but there are few biomarkers that aid

Figure 4 Immune cell infiltration analysis and correlation analysis. (A) Violin plot showing significant changes in immune cell infiltration in GC compared with PUD groups (P-value <0.05). (B) Correlation between gene expression and the relative percentages of immune cells in PUD and GC tissue. (C) The expression value of the two hub genes in different immune cells.
disease prognosis in clinical practice. In this study, SEMASD was defined as a potential prognostic molecule for PUD and GC, though its mechanism of action and clinical value require further research.

Conclusions

Using comprehensive bioinformatics, this study found that the hub gene, SEMA3D, was associated with the infiltration of immune cells, in particular DCs and mast cells, into PUD and GC tissue samples. Additional research on how SEMASD impacts immune cell function in the PUD and GC dataset will help to elucidate the mechanism of malignant transformation during PUD.

Abbreviations

SEMA3s, Class-3 semaphorins; DC, dendritic cell; ECM, extracellular matrix; FDR, false discovery rate; GC, gastrointestinal cancer; GEO, Gene Expression Omnibus; HP, *Helicobacter pylori*; KEGG, Kyoto Encyclopedia of Genes and Genomes; PPI, Protein-protein interaction; PUD, Peptic ulcer disease; TCGA, The Cancer Genome Atlas.

Ethical Approval and Consent to Participate

This study was approved and conducted in compliance with the guidelines by the ethics committee of Affiliated Hospital of Hebei University (AHHU20211029). All the data used in the study was downloaded from TCGA and GEO database. Written informed consent was acquired from all enrolled patients. These original research has been carried out in accordance with the World Medical Association Declaration of Helsinki.

Author Contributions

All authors made a significant contribution to the work reported, whether that is in the conception, study design, execution, acquisition of data, analysis and interpretation, or in all these areas; took part in drafting, revising or critically reviewing the article; gave final approval of the version to be published; have agreed on the journal to which the article has been submitted; and agree to be accountable for all aspects of the work.

Funding

This research received no specific grant from any funding agency in the public, commercial, or not-for-profit sectors.

Disclosure

The authors report no conflicts of interest in this work.

References

1. Suerbaum S, Michetti P. *Helicobacter pylori* infection. *N Engl J Med*. 2002;347(15):1175–1186. doi:10.1056/NEJMra020542
2. Uemura N, Okamato S, Yamamoto S, et al. *Helicobacter pylori* infection and the development of gastric cancer. *N Engl J Med*. 2001;345(11):784–789. doi:10.1056/NEJMoa001999
3. Camilo V, Sugiyama T, Touati E. Pathogenesis of Helicobacter pylori infection. *Helicobacter*. 2017;22(Suppl 1). PMID: 28891130. doi:10.1111/hel.12405.
4. Wessler S, Krisch LM, Elmer DP, Aberger F. From inflammation to gastric cancer - the importance of Hedgehog/GLI signaling in Helicobacter pylori-induced chronic inflammatory and neoplastic diseases. *Cell Commun Signal*. 2017;15(1):15.
5. Bagheri N, Azadegan-Dehkordi F, Rahimian G, Rafieian-Kopaei M, Shirzad H. Role of regulatory T-cells in different clinical expressions of helicobacter pylori infection. *Arch Med Res*. 2016;47(4):245–254. doi:10.1016/j.arcmed.2016.07.013
6. Valkenburg KC, de Groot AE, Pienta KJ. Targeting the tumour stroma to improve cancer therapy. *Nat Rev Clin Oncol*. 2018;15(6):366–381.
7. Chen Q, Liu G, Liu S, et al. Remodeling the tumor microenvironment with emerging nanotherapeutics. *Trends Pharmacol Sci*. 2018;39(1):59–74. doi:10.1016/j.tips.2017.10.009
8. Jiayi J, Zhang Q, Hu Y, et al. ImmunoScore signature: a prognostic and predictive tool in gastric cancer. *Ann Surg*. 2018;267(3):504–513. doi:10.1097/SLA.0000000000002116
9. Marta ZN, Agnieszka W, Jacek P, et al. NFkB2 gene expression in patients with peptic ulcer diseases and gastric cancer. *Mol Biol Rep*. 2020;47(3):2015–2021. doi:10.1007/s11033-020-05299-5
10. Zeng D, Li M, Zhou R, et al. Tumor microenvironment characterization in gastric cancer identifies prognostic and immunotherapeutically relevant gene signatures. *Cancer Immunol Res*. 2019;7(5):737–750. doi:10.1158/2326-6066.CIR-18-0436
11. Newman AM, Liu CL, Green MR, et al. Robust enumeration of cell subsets from tissue expression profiles. *Nat Methods*. 2015;12(5):453–457. doi:10.1038/nmeth.3337
12. Bense RD, Sotiriou C, Piccart-Gebhart MJ, et al. Relevance of tumor-infiltrating immune cell composition and functionality for disease outcome in breast cancer. *J Natl Cancer Inst* 2017;109(1):djw192. doi:10.1093/jnci/djw192

13. Chen B, Khodadoust MS, Liu CL, Newman AM, Alizadeh AA. Profiling tumor infiltrating immune cells with CIBERSORT. *Methods Mol Biol.* 2018;1711:243–259.

14. Angelopoulos E, Pipieri C. Emerging role of plexins signaling in glialia progression and therapy. *Cancer Letter.* 2018;414:81–87. doi:10.1016/j.canlet.2017.11.010

15. Toledano S, Nir-Zvi I, Engelman R, Kessler O, Neufeld G. Class-3 semaphorins and their receptors: potent multifunctional modulators of tumor progression. *Int J Mol Sci.* 2019;20(3):556. doi:10.3390/ijms20030556

16. Wu J, Xiao Y, Xia C, et al. Identification of biomarkers for predicting lymph node metastasis of stomach cancer using clinical DNA methylation data. *Dis Markers.* 2017;2017:5745724. doi:10.1155/2017/5745724

17. Movassagh H, Shan L, Koussih L, et al. Semaphorin 3E deficiency dysregulates dendritic cell functions: in vitro and in vivo evidence. *PLoS One.* 2021;16(6):e0252868. doi:10.1371/journal.pone.0252868

18. Choi YI, Duke-Cohan JS, Ahmed WB, et al. PlexinD1 glycoprotein controls migration of positively selected thymocytes into the medulla. *Immunity.* 2008;29(6):888–889. doi:10.1016/j.immuni.2008.10.008

19. Aghajanian H, Choi C, Ho VC, Gupta M, Singh MK, Epstein JA. Semaphorin 3d and semaphorin 3e direct endothelial motility through distinct molecular signaling pathways. *J Biol Chem.* 2014;289(26):17971–17979.

20. Kigel B, Varshavsky A, Kessler O, Neufeld G. Successful inhibition of tumor development by specific class-3 semaphorins is associated with expression of appropriate semaphorin receptors by tumor cells. *PLoS One.* 2008;3(9):e3287.

21. Gaddis DE, Padgett LE, Wu R, Hedrick CC. Neuripilin-1 expression on CD4 T cells is atherogenic and facilitates T cell migration to the aorta in atherosclerosis. *J Immunol.* 2019;203(12):3237–3246. doi:10.4049/jimmunol.1900245

22. Reyes VE, Peniche AG. Helicobacter pylori expression on CD4 T cells is atherogenic and facilitates T cell migration to the aorta in atherosclerosis. *J Immunol.* 2019;203(12):3237–3246. doi:10.4049/jimmunol.1900245

23. Kao JY, Zhang M, Miller MJ, et al. Helicobacter pylori-induced Treg skewing and Th17 suppression in mice. *Gastroenterology.* 2010;138(3):1046–1054. doi:10.1053/j.gastro.2009.11.043

24. Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. *J R Stat Soc Series B Stat Methodol.* 1995;57(1):289–300.

25. Karayan-Tapon L, Wager M, Guilhot J, et al. Semaphorin, neuropilin and VEGF expression in glial tumours: SEMA3G, a prognostic marker? *Can Lett.* 2017.11.010

26. Li S, Liu M, Do MH, et al. Cancer immunotherapy via targeted TGF-β signalling blockade in TH cells. *PLoS One.* 2017;12(6):e0252868. doi:10.1371/journal.pone.0252868

27. Bense RD, Sotiriou C, Piccart-Gebhart MJ, et al. Relevance of tumor-infiltrating immune cell composition and functionality for disease outcome in breast cancer. *J Natl Cancer Inst.* 2017;109(1):djw192. doi:10.1093/jnci/djw192

28. Berndt JD, Halloran MC. Semaphorin 3d promotes cell proliferation and neural crest cell development downstream of TCF in the zebrafish hindbrain. *Development.* 2006;133(20):3983–3992. doi:10.1242/dev.02583

29. Sabag AD, Bode J, Fink D, Kigel B, Kugler W, Neufeld G. Semaphorin-3D and semaphorin-3E inhibit the development of tumors from glioblastoma cells implanted in the cortex of the brain. *PLoS One.* 2012;7(8):e42912. doi:10.1371/journal.pone.0042912

30. Foley K, Rucki AA, Xiao Q, et al. Semaphorin 3D autocrine signaling mediates the metastatic role of annexin A2 in pancreatic cancer. *PLoS One.* 2013;8:e54800. doi:10.1371/journal.pone.0054800

31. Luzon-Toro B, Fernandez RM, Torroglosa A, et al. Mutational spectrum of semaphorin 3a and semaphorin 3D genes in Spanish Hirschsprung patients. *PLoS One.* 2013;8:e54800. doi:10.1371/journal.pone.0054800

32. Hu Z, Zhu D, Wang W, et al. Genome-wide profiling of HPV integration in cervical cancer identifies clustered genomic hot spots and a potential microhomology-mediated integration mechanism. *Nat Genet.* 2015;47(2):158–163. doi:10.1038/ng.3178

33. Wang Z, Ding M, Qian N, et al. Decreased expression of semaphorin 3D is associated with genesis and development in colorectal cancer. *World J Surg Oncol.* 2017;15(1):67. doi:10.1186/s12957-017-1128-1

34. McGeachie MJ, Wu AC, Tse SM, et al. CTNNA3 and SEMA3D: promising loci for asthma exacerbation identified through multiple genome-wide association studies. *Ann Rheum Dis.* 2015;74(4):614–621. doi:10.1136/annrheumdis-2014-206496

35. Sammarco G, Varricchi G, Ferraro V, et al. Mast cells, angiogenesis and lymphangiogenesis in human gastric cancer. *PLoS One.* 2015;10(8):e0136194. doi:10.1371/journal.pone.0136194

36. Zhang X, Klamer B, Li J, Fernandez S, Li L. A pan-cancer study of class-3 semaphorins as therapeutic targets in cancer. *BMC Med Genomics.* 2020;13(Suppl 5):45. doi:10.1186/s12920-020-0682-5