On irreducibility of the family of ACM curves of degree 8 and genus 4 in \mathbb{P}_k^4

Elena Drozd

Abstract

Let C be an arithmetically Cohen-Macaulay curve of arithmetic genus 4. We prove that the family of such curves of degree 8 in \mathbb{P}_k^4 is irreducible.

Keywords: CI liaison, Gorenstein liaison, irreducible curves, ACM curves.

Liaison using complete intersection or Gorenstein schemes is widely used in algebraic geometry. An excellent reference book is [7]. We use the technique of resolving ideal sheaves of ACM curves by special type of sheaves (so called \mathcal{E}- and \mathcal{N}-type resolutions) to link the curve in question to a simpler curve. Using this technique we conclude that a family of $(8, 4)$ curves is irreducible. Also this paper demonstrates a usage of correspondance between ACM curves and ACM sheaves (as discussed in [3])

For convenience we recall here some definitions and results of liaison theory we will be using in this work. See [7] for reference.

Definition 1. A scheme X of \mathbb{P}_k^n is called arithmetically Cohen-Macaulay (ACM) if its homogeneous coordinate ring is a Cohen-Macaulay ring.

Definition 2. Let Z be a subscheme of \mathbb{P}_k^4. Let V_1, V_2 be equidimensional subschemes of \mathbb{P}_k^n of codimension r and without embedded components. We say that V_1 and V_2 are linked by Z if

1. $\mathcal{I}_Z \subset \mathcal{I}_{V_1} \cap \mathcal{I}_{V_2}$
2. $\mathcal{I}_{V_2}/\mathcal{I}_Z \cong \text{Hom}_{\mathcal{O}_{\mathbb{P}_k^n}}(\mathcal{O}_{V_1}, \mathcal{O}_Z)$
3. $\mathcal{I}_{V_1}/\mathcal{I}_Z \cong \text{Hom}_{\mathcal{O}_{\mathbb{P}_k^n}}(\mathcal{O}_{V_2}, \mathcal{O}_Z)$

If Z is AG, we say V_1 is G-linked to V_2; if Z is CI, we say V_1 is CI-linked to V_2.

1
Definition 3. On a nonsingular quadric hypersurface Q a locally free sheaf F with the property that $H^i_F(F) = 0$ for $i = 1, 2$ is called an ACM sheaf.

Proposition 4. Let C be an ACM curve of degree 8 and arithmetic genus 4 in \mathbb{P}^4. Then I_C is generated in degrees 2 and 3.

Proof. We need to compute the cohomology table of $I_C(n)$. From the Riemann-Roch theorem $h^0(\mathcal{O}_C(1)) - h^1(\mathcal{O}_C(1)) = 8 + 1 - 4 = 5$. Taking chomology in the exact sequence

$$0 \rightarrow I_C(n) \rightarrow \mathcal{O}_{\mathbb{P}^4}(n) \rightarrow \mathcal{O}_C(n) \rightarrow 0$$

we arrive at

$$0 \rightarrow H^0(I_C(n)) \rightarrow H^0(\mathcal{O}_{\mathbb{P}^4}(n)) \rightarrow H^0(\mathcal{O}_C(n)) \rightarrow$$

$$\rightarrow H^1(I_C(n)) \rightarrow H^1(\mathcal{O}_{\mathbb{P}^4}(n)) \rightarrow H^1(\mathcal{O}_C(n)) \rightarrow$$

$$\rightarrow H^2(I_C(n)) \rightarrow H^2(\mathcal{O}_{\mathbb{P}^4}(n)) \rightarrow H^2(\mathcal{O}_C(n)) \rightarrow H^3(I_C(n)) \rightarrow \ldots . \ (1)$$

$H^1(I_C(n)) = 0$ since C is ACM. Thus, map $H^0(\mathcal{O}_{\mathbb{P}^4}(n)) \rightarrow H^0(\mathcal{O}_C(n))$ is surjective and so, $h^0(\mathcal{O}_C(n)) \leq h^0(\mathcal{O}_{\mathbb{P}^4}(n))$. From the Riemann-Roch theorem we get $h^0(\mathcal{O}_C(1)) = 5 + h^1(\mathcal{O}_C(1))$ while $h^0(\mathcal{O}_{\mathbb{P}^4}(1)) = 5$. This implies that $h^1(\mathcal{O}_C(1)) = 0$ and $h^0(\mathcal{O}_C(1)) = 5$.

From the exact sequence (1) we obtain $h^2(I_C(n)) = h^1(\mathcal{O}_C(n))$ since $H^i(\mathcal{O}_{\mathbb{P}^4}(n)) = 0$ for $i = 1, 2$ \[III.5.1\]. Wherefrom $h^2(I_C(1)) = h^1(\mathcal{O}_C(1)) = 0$. Note also that $H^3(I_C) = 0$. Thus, the cohomology table is:

Thus, $h^i(I_C(3-i)) = 0$ for all $i > 0$. By definition 1.1.4 of [7] this implies that I_C is 3-regular. This, in turn, by Castelnuovo-Mumford regularity [7] 1.1.5.(1), implies that $h^i(I_C(k)) = 0$ for $i > 0$, $k + i \geq 3$. Equivalently, $h^2(I_C(n)) = 0$ for $n \geq 1$. Thus, $h^1(\mathcal{O}_C(n)) = 0$ for all $n \geq 1$. Therefore, $I_C(k)$ is generated as $\mathcal{O}_{\mathbb{P}^4}$-module by its global sections for all $k \geq 3$ (by [7] theorem 1.1.5.(3)). \[\square\]
Corollary 5. Any ACM curve C of degree 8 and genus 4 in \mathbb{P}^4_k is contained in a quadric hypersurface.

Proof. Proposition above implies that $h^0(\mathcal{O}_C(n)) = nd + 1 - g$ for $n \geq 1$, or

n	0	1	2	3	4
$h^0(\mathcal{O}_C(n))$	1	5	13	21	29.

Recall that we have

n	0	1	2	3	4
$h^0(\mathcal{O}_Q(n))$	1	5	15	35	70,

wherefrom we obtain

n	0	1	2	3	4
$h^0(\mathcal{I}_C(n))$	0	0	2	14	41.

Thus $h^0(\mathcal{I}_C(2)) = 2$, which implies that there is at least one quadric hypersurface containing C.

Proposition 6. There is no ACM curve of degree 8 and genus 4 in \mathbb{P}^3_k.

Proof. Assume C is an ACM curve of degree 8 and genus 4 in \mathbb{P}^3_k. Taking cohomology in the exact sequence

$$0 \to \mathcal{I}_C(1) \to \mathcal{O}_{\mathbb{P}^3_k}(1) \to \mathcal{O}_C(1) \to 0$$

we obtain:

$$0 \to H^0(\mathcal{I}_C(1)) \to H^0(\mathcal{O}_{\mathbb{P}^3_k}(1)) \to H^0(\mathcal{O}_C(1)) \to H^1(\mathcal{I}_C(1)) \to 0.$$

Thus $h^0(\mathcal{I}_C(1)) = h^0(\mathcal{O}_{\mathbb{P}^3_k}(1)) - h^0(\mathcal{O}_C(1))$ since $h^1(\mathcal{I}_C(1)) = 0$ for an ACM curve C. However $h^0(\mathcal{O}_{\mathbb{P}^3_k}(1)) = 4$ and $h^0(\mathcal{O}_C(1)) = 5 + h^1(\mathcal{O}_C(1)) \geq 5$. This would give $h^0(\mathcal{I}_C(1)) < 0$, which is impossible. Thus $h^1(\mathcal{I}_C(1)) \neq 0$, and C is not an ACM curve.

Corollary 7. Any ACM curve of degree 8 and genus 4 in \mathbb{P}^4_k is nondegenerate.

Proposition 8. Let C be an ACM curve of degree 8 and genus 4 on a nonsingular quadric hypersurface Q. Then, there is an \mathcal{E}-type resolution of \mathcal{I}_C of the form

$$0 \to \mathcal{E}_0^2(-2) \to \mathcal{O}_Q(-2) \oplus \mathcal{O}_Q^4(-3) \to \mathcal{I}_C \to 0$$

(2)

Proof. Since $0 \to \mathcal{I}_C(n) \to \mathcal{O}_Q(n) \to \mathcal{O}_C(n) \to 0$ is exact we obtain

n	0	1	2	3	4	5	6
$h^0(\mathcal{I}_C(n))$	0	0	1	9	26	54	95.
We know that \mathcal{I}_C is generated in degrees 2 and 3 and also the generator of \mathcal{I}_C in degree 2 multiplied by linear functions gives a 5-dimensional subspace of $H^0(Q, \mathcal{I}_C(3))$. Therefore we need 4 generators in degree 3, which are not products of linear form and the degree two generator. Thus, there is an \mathcal{E}-type resolution of \mathcal{I}_C of the form

$$0 \rightarrow \mathcal{E} \rightarrow \mathcal{O}_Q(-2) \oplus \mathcal{O}_Q^4(-3) \rightarrow \mathcal{I}_C \rightarrow 0 \quad (3)$$

where \mathcal{E} is ACM sheaf by [3, Theorem 2] and rank $\mathcal{E} = 4$.

[3] gives the following table of cohomology:

n	$h^0(\mathcal{E}(n))$	$h^0(\mathcal{O}_Q(-2 + n) \oplus \mathcal{O}_Q^4(-3 + n))$	$h^0(\mathcal{I}_C(n))$
0	0	0	0
1	0	0	0
2	0	1	1
3	0	9	9
4	8	34	26
5	32	86	54
6	80	175	95

Thus, by [3, Corollary 3] \mathcal{E} must be one of the following:

1. $\mathcal{E}_0(a) \oplus \mathcal{O}(b) \oplus \mathcal{O}(c)$, or
2. $\mathcal{E}_0(a) \oplus \mathcal{E}_0(b)$, or
3. $\bigoplus_{i=1}^4 \mathcal{O}(a_i)$,

where the sheaf \mathcal{E}_0 is given by cite[Definition 5]drozd1 .

Comparing

$$\begin{array}{c|ccccccc}
 n & 0 & 1 & 2 & 3 & 4 & 5 & 6 \\
 h^0(\mathcal{E}(n)) & 0 & 0 & 0 & 8 & 32 & 80 \\
\end{array}$$

with cohomology tables for $\mathcal{E}_0(n)$ and $\mathcal{O}(n)$ we obtain $\mathcal{E} = \mathcal{E}_0^2(-2)$. This gives us

$$0 \rightarrow \mathcal{E}_0^2(-2) \rightarrow \mathcal{O}_Q(-2) \oplus \mathcal{O}_Q^4(-3) \rightarrow \mathcal{I}_C \rightarrow 0$$

as an \mathcal{E}-type resolution of \mathcal{I}_C.

Proposition 9. Let C be an ACM curve of degree 8 and genus 4 on Q. Then C is CI-linked to an ACM curve C' of degree 4 and genus 0 (possibly reducible).

Proof. Let C be an ACM curve of degree 8 and genus 4 on a quadric hypersurface Q in \mathbb{P}_k^4.

Then by $\square C$ is nondegenerate. Note that $h^0(P_k^4, \mathcal{I}_C(2)) = 2$, therefore $h^0(Q, \mathcal{I}_C(2)) = 1$. Thus the generator of \mathcal{I}_C in degree 2 cuts out a surface Y of degree 4 on Q. We claim
that \(Y \) is irreducible. To prove this let \(Y \) be a union of two surfaces \(Q_1 \) and \(Q_2 \). Then
\[
\deg Q_1 = \deg Q_2 = 2 \text{ since } Y \text{ is a degree } 4 \text{ surface on a nonsingular quadric hypersurface and thus Klein’s theorem [5, ex.II.6.4.(d)] implies that } \deg Q_i, \ i = 1,2 \text{ must be even. However a quadric surface lies in } \mathbb{P}^3_k, \text{ which contradicts } C \text{ is nondegenerate. Thus } Y \text{ is irreducible.}
\]

Let \(F \) be a hypersurface of degree 3 containing \(C \), but not containing \(Y \) completely. Such a hypersurface exists since \(h^0(Q, \mathcal{I}_C(3)) - \dim V = 14 - 5 = 9 \), where \(V \) is a subspace of \(H^0(Q, \mathcal{I}_C(3)) \) generated by elements of the form \(l \cdot s \), where \(l \) is a linear form and \(s \in H^0(Q, \mathcal{I}_C(2)) \). Let \(Z \) be a complete intersection of \(Y \) and \(F \). Then \(Z \) has degree 12 and it contains \(C \). Let curve \(C' \) be CI-linked to \(C \) via \(Z \).

Note that \(C' \) is ACM since so is \(C \). To complete the proof we need to compute degree and genus of \(C' \): \(\deg C' = \deg Z - \deg C = 4 \). By [7] corollary 5.2.14, \[g(C) - g(C') = \frac{1}{2} (\deg F + \deg Y - 5) \cdot (\deg C - \deg C') \]. Thus, \(g(C') = g(C) - 4 = 0 \), wherefrom \(C' \) is an ACM curve of degree 4 and genus 0.

In order to find an \(\mathcal{N} \)-type resolution of a nondegenerate ACM (8,4) curve, we will determine an \(\mathcal{E} \)-type resolution of a linked (4,0) ACM curve.

Now we compute an \(\mathcal{E} \)-type resolution of a nondegenerate ACM (4,0) curve \(C' \).

Proposition 10. There exists an \(\mathcal{E} \)-type resolution of any ACM (4,0) curve on a nonsingular quadric hypersurface \(Q \) of the form

\[
0 \longrightarrow \mathcal{E}^2_0(-1) \longrightarrow \mathcal{O}^5_Q(-2) \longrightarrow \mathcal{I}_C \longrightarrow 0.
\]

Proof. We claim that \(\mathcal{I}_C \) is generated in degree 2 and \(h^1(\mathcal{O}_C(n)) = 0 \) for \(n \geq 1 \).

To prove this we need to compute the cohomology table. From the Riemann-Roch theorem
\[
h^0(\mathcal{O}_C(1)) - h^1(\mathcal{O}_C(1)) = 4 + 1 - 0 = 5. \text{ Thus } h^3(\mathcal{O}_C(1)) \geq 5. \text{ Taking cohomology in the short exact sequence}
\]

\[
0 \longrightarrow \mathcal{I}_C(n) \longrightarrow \mathcal{O}_Q(n) \longrightarrow \mathcal{O}_C(n) \longrightarrow 0
\]

we obtain:

\[
0 \longrightarrow h^0(\mathcal{I}_C(n)) \longrightarrow h^0(\mathcal{O}_Q(n)) \longrightarrow h^0(\mathcal{O}_C(n)) \longrightarrow \\
\longrightarrow h^1(\mathcal{I}_C(n)) \longrightarrow h^1(\mathcal{O}_Q(n)) \longrightarrow h^1(\mathcal{O}_C(n)) \longrightarrow \\
\longrightarrow h^2(\mathcal{I}_C(n)) \longrightarrow h^2(\mathcal{O}_Q(n)) \longrightarrow h^2(\mathcal{O}_C(n)) \longrightarrow h^3(\mathcal{I}_C(n)) \longrightarrow \ldots \ldots (4)
\]

Note that \(h^1(\mathcal{I}_C(n)) = 0 \) since \(C \) is ACM. Thus the map \(h^0(\mathcal{O}_Q(n)) \longrightarrow h^0(\mathcal{O}_C(n)) \) is surjective, and \(h^0(\mathcal{O}_C(n)) \leq h^0(\mathcal{O}_Q(n)) \). For \(n = 0 \) this means that \(h^0(\mathcal{O}_C) \leq h^0(\mathcal{O}_Q) = 1 \). However, \(h^0(\mathcal{O}_C) - h^1(\mathcal{O}_C) = 1 \), thus \(h^0(\mathcal{O}_C) = 1 \) and \(h^1(\mathcal{O}_C) = 0 \).

Also, since \(h^1(\mathcal{O}_Q(n)) = h^2(\mathcal{O}_Q(n)) = 0 \) [5, Ex.II.5.5(c)] we have \(h^1(\mathcal{O}_C(n)) = h^2(\mathcal{I}_C(n)) \). Thus \(h^2(\mathcal{I}_C) = h^1(\mathcal{O}_C) = 0 \). We obtain the following cohomology table:
Thus, by Castelnuovo-Mumford regularity \mathcal{I}_C is generated in degree 2 and $\mathcal{O}_C(n)$ is nonspecial for $n \geq 1$.

Thus $h^0(\mathcal{O}_C(n)) = nd + 1 - g = 4n + 1$ for $n \geq 1$ or

\[
\begin{array}{c|cccccc}
 n & 0 & 1 & 2 & 3 & 4 & 5 & 6 \\
 h^0(\mathcal{O}_C(n)) & 1 & 5 & 9 & 13 & 21 & 25 \\
\end{array}
\]

and

\[
\begin{array}{c|cccccc}
 n & 0 & 1 & 2 & 3 & 4 & 5 & 6 \\
 h^0(\mathcal{O}_Q(n)) & 1 & 5 & 14 & 30 & 55 & 91 & 140 \\
\end{array}
\]

which implies the following table

\[
\begin{array}{c|cccccc}
 n & 0 & 1 & 2 & 3 & 4 & 5 & 6 \\
 h^0(\mathcal{I}_C(n)) & 0 & 0 & 5 & 17 & 38 & 70 & 115 \\
\end{array}
\]

since $0 \to \mathcal{I}_C(n) \to \mathcal{O}_Q(n) \to \mathcal{O}_C(n) \to 0$ is exact.

Thus we have the following exact sequence:

\[
0 \to \mathcal{E} \to \mathcal{O}_Q^*(-2) \to \mathcal{I}_C \to 0
\]

with \mathcal{E} ACM sheaf of rank 4. Thus, by [3, Corollary 3] \mathcal{E} is one of the following:

1. $\mathcal{E}_0(a) \oplus \mathcal{O}(b) \oplus \mathcal{O}(c)$, or
2. $\mathcal{E}_0(a) \oplus \mathcal{E}_0(b)$, or
3. $\bigoplus_{i=1}^4 \mathcal{O}(a_i)$.

$h^0(\mathcal{E}(n)) = h^0(\mathcal{O}_Q(n-2)) - h^0(\mathcal{I}_C(n))$ since $h^1(\mathcal{E}) = 0$. Comparing cohomology table:

\[
\begin{array}{c|cccccc}
 n & 0 & 1 & 2 & 3 & 4 & 5 & 6 \\
 h^0(\mathcal{E}(n)) & 0 & 0 & 8 & 32 & 80 & 160 & \\
\end{array}
\]

with cohomology tables $\mathcal{E}_0(n)$ and $\mathcal{O}(n)$ we obtain $\mathcal{E} = \mathcal{E}_0^2(-1)$, proving the proposition. \qed
This proposition together with [3, Corollary 1] give us the following

Corollary 11. All ACM (4,0) curves on a nonsingular quadric hypersurface Q form an irreducible family.

Proposition 12. There exists an \(N \)-type resolution of an ACM (8,4) curve \(C \) on a nonsingular quadric hypersurface \(Q \) in \(\mathbb{P}^4_k \) of the form

\[
0 \longrightarrow \mathcal{O}_Q^5(-5) \longrightarrow \mathcal{O}_Q(-4) \oplus \mathcal{O}_Q(-3) \oplus \mathcal{E}_0^2(-3) \longrightarrow \mathcal{I}_C \longrightarrow 0.
\]

Proof. By proposition [3] an ACM curve of degree 8 and genus 4 on a nonsingular quadric hypersurface \(Q \) in \(\mathbb{P}^4_k \) can be CI-linked to an ACM curve \(C' \) of degree 4 and genus 0 by a complete intersection curve \(Z \) formed by two divisors \(\mathcal{O}_Q(4) \) and \(\mathcal{O}_Q(3) \). By proposition [10] there exists an \(\mathcal{E} \)-type resolution of \(\mathcal{I}_{C'} \) of the form:

\[
0 \longrightarrow \mathcal{E}_0^2(-1) \longrightarrow \mathcal{O}_Q^5(-2) \longrightarrow \mathcal{I}_{C'} \longrightarrow 0.
\]

However, by [3, Proposition 2],

\[
(\mathcal{E}_0^2(-1))^\vee = (\mathcal{E}_0^2(1))^2 = \mathcal{E}_0^2(4).
\]

Thus, there exists an \(N \)-type resolution of \(\mathcal{I}_C \) of the form:

\[
0 \longrightarrow \mathcal{O}_Q^5(-5) \longrightarrow \mathcal{O}_Q(-4) \oplus \mathcal{O}_Q(-3) \oplus \mathcal{E}_0^2(-3) \longrightarrow \mathcal{I}_C \longrightarrow 0.
\]

\(\Box \)

The above proposition together with [2, Corollary 1] imply

Corollary 13. All ACM (8,4) curves on a nonsingular quadric hypersurface \(Q \) form an irreducible family.

We note here that any nonsingular curve of degree 8 and genus 4 on \(Q \) is ACM.

Proposition 14. Let \(C \) be a nonsingular curve of degree 8 and genus 4 on a nonsingular quadric hypersurface \(Q \) in \(\mathbb{P}^4_k \). Then \(C \) is ACM.

Proof. \(h^1(\mathcal{O}_C(n)) = 0 \) for all \(n \geq 1 \) since \(2g - 2 = 6 \leq \deg C \). By the Riemann-Roch theorem \(h^0(\mathcal{O}_C(1)) = 8 + 1 - 4 + h^1(\mathcal{O}_C(1)) \). Thus \(h^0(\mathcal{O}_C(1)) = 5 \). Taking cohomology in the exact sequence \(0 \longrightarrow \mathcal{I}_C(1) \longrightarrow \mathcal{O}_Q(1) \longrightarrow \mathcal{O}_C(1) \longrightarrow 0 \) we obtain

\[
0 \longrightarrow H^0(\mathcal{I}_C(1)) \longrightarrow H^0(\mathcal{O}_Q(1)) \longrightarrow H^0(\mathcal{O}_C(1)) \longrightarrow H^1(\mathcal{I}_C(1)) \longrightarrow 0
\]

If \(H^1(\mathcal{I}_C(1)) \neq 0 \) then \(H^0(\mathcal{I}_C(1)) \neq 0 \). Therefore there exists a hyperplane \(H \) such that \(C \subset H \cap Q \) and \(H \cap Q \) is a surface of degree 2 in \(\mathbb{P}^3_k \). Thus \(H \cap Q \) is one of the following:
• two planes, or
• double plane, or
• quadric cone, or
• nonsingular quadric surface.

Two planes and double plane are impossible since there is no (8,4) curve in \mathbb{P}^2_k (plane curve of degree 8 has genus 21). The set of possible pairs (d, g) on a quadric cone is a subset of the set of possible pairs (d, g) on a nonsingular quadric surface. But there is no (8,4) curve on a quadric surface in \mathbb{P}^3_k. Thus, $H^1(\mathcal{I}_C(1))$ must be zero. Similarly $H^1(\mathcal{I}_C(2)) = 0$. From the exact sequence

$$0 \to H^0(\mathcal{I}_C(2)) \to H^0(\mathcal{O}_Q(2)) \to H^0(\mathcal{O}_C(2)) \to H^2(\mathcal{I}_C(2)) \to 0$$

we obtain $h^0(\mathcal{O}_C(2)) = 13$ and $h^0(\mathcal{O}_Q(2)) = 14$. Thus $h^0(\mathcal{I}_C(2)) \geq 1$. We claim that $h^0(\mathcal{I}_C(2)) = 1$. If $h^0(\mathcal{I}_C(2)) \geq 2$ then $h^0(\mathbb{P}^3_k, \mathcal{I}_C(2)) \geq 3$. Thus C must be contained in the intersection Z of three quadric surfaces, wherefrom Z must be one of the following:

1. A curve. Then it is of degree 8 and genus 5, or
2. A surface of degree ≤ 4.

Neither of these is possible, therefore $h^1(\mathcal{I}_C(2)) = 0$. Note that for any curve C $h^0(\mathcal{O}_Q) \cong k \cong h^0(\mathcal{O}_C)$. Therefore $h^1(\mathcal{I}_C) = 0$. Also, $h^2(\mathcal{I}_C(1)) = h^1(\mathcal{O}_C(1)) = 0$ and $h^3(\mathcal{I}_C) = 0$. Thus we have the following cohomology table for $\mathcal{I}_C(n)$:

```
+-------+-------+-------+-------+-------+-------+-------+-------+-------+-------+-------+-------+-------+-------+-------+-------+-------+-------+-------+-------+-------+-------+-------+-------+-------+-------+
|       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |
|       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |
| 0     | 0     |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |
| 0     | 0     |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |
| 0     | 0     |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |
| 0     |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |       |
```

Thus \mathcal{I}_C is 2-regular and $h^1(\mathcal{I}_C(n)) = 0$ for $n \geq 2$ and for $n < 0$. However $h^1(\mathcal{I}_C) = h^1(\mathcal{I}_C(1)) = h^1(\mathcal{I}_C(2)) = 0$, therefore C is ACM.
References

[1] M. Casanellas, E. Droz, R. Hartshorne: *Gorenstein Liason and ACM Sheaves* accepted by Crelle’s Journal, (2004)

[2] E. Droz: *Curves on a nonsingular quadric hypersurface in \(\mathbb{P}^4_k \): existence and liaison theory*, Ph.D thesis, UC Berkeley, (2003).

[3] E. Droz: *ACM sheaves on a nonsingular Quadric hypersurface in \(\mathbb{P}^4_k \),* arXiv: math.AG/0409243 (2004)

[4] D. Eisenbud: *Commulative Algebra with a View Toward Algebraic Geometry*, Springer (1999).

[5] R. Hartshorne: *Algebraic Geometry*, Springer (1977).

[6] H. Knorrer: *Cohen-Macaulay modules on hypersurface singularities I*, Invent. Math. 88 (1987) 153-164.

[7] J.C. Migliore: *Gorenstein liaison theory and deficiency modules*, Progress in Mathematics 165 Birkhäuser(1998).