Myeloid nuclear differentiation antigen, neutrophil apoptosis and sepsis

Eric Milot1, Nasser Fotouhi-Ardakani1 and János G. Filep2

1 Department of Medicine, Maisonneuve-Rosemont Hospital Research Center, University of Montréal, Montréal, QC, Canada
2 Department of Pathology and Cell Biology, Maisonneuve-Rosemont Hospital Research Center, University of Montréal, Montréal, QC, Canada

INTRODUCTION

Different types of hematopoietic cells participate in the inflammatory response to microbial infection. Among them, circulating neutrophils are rapidly recruited into infected or injured tissues. They are the first line of defense against pathogens and are key regulators of the initial response to microbial infection. Effective removal of neutrophils from inflamed tissues is critical for timely resolution of inflammation. However, because of the disruption of neutrophil programmed cell death in inflammatory-related conditions, neutrophils persist in tissues and blood and portend poor prognosis. Here, we will discuss the recent discovery of a novel nuclear to mitochondrion circuit that is involved in the control of neutrophil apoptosis and disrupted during sepsis.

SEPSIS

Sepsis and septic shock (hereafter commonly referred as sepsis) are portent major medical challenges that result from a harmful host response to infection. Sepsis has a high prevalence and moribundity. At the beginning of this century, Angus et al. (2001) reported that, at the time, 9.3% of all cases of death in the USA was caused by sepsis. The incidence of sepsis was then evaluated as 3 cases per 1000 people, and 2.26 cases per 100 hospital-discharged patients. The mortality was estimated at 26.6% of all sepsis cases but, this percentage was significantly higher with elderly patients. The mortality was estimated at 26.6% of all sepsis cases and low blood neutrophil counts (neutrophilia and neutropenia, respectively) portend poor prognosis. Despite extensive efforts, specific molecular markers for identifying patients with high risk for sepsis or its more severe form, septic shock, have not been identified. Molecular markers with limited accuracy and specificity have been proposed for defining the stages of the disease. For instance, the prototypic acute-phase reactant C-reactive protein can be used as a marker of systemic inflammation during sepsis, whereas high-levels of procalcitonin are detectable at early stage of bacterial infection (Aalto et al., 2004).

NEUTROPHILS AND SEPSIS

Neutrophils are the first line of defense against pathogens. They generate different proteolytic enzymes as well as reactive oxygen species (ROS) and reactive nitrogen species (RNS) to destroy invading microorganisms following phagocytosis, or...
extracellularly by neutrophil extracellular trap (NET) formation (Papayannopoulos et al., 2010; Metzler et al., 2011).

Neutrophils have the shortest life span among leukocytes and undergo constitutive programmed cell death (apoptosis). This process is essential for regulation of neutrophil homeostasis. Constitutive apoptosis renders neutrophils unresponsive to extracellular stimuli and allows their recognition and removal by macrophages (Savill et al., 2002; Gilroy et al., 2004). This process is critical for termination of the inflammatory response and tissue repair. Following discharging their function, at the inflammatory locus, extravasated neutrophils are though to predominantly undergo apoptosis. However, signals from the inflammatory milieu can either accelerate or suppress the cell death program, thereby affecting the fate of neutrophils (Gilroy et al., 2004). Suppressed neutrophil apoptosis is often detected in patients with inflammatory pathologies, including sepsis and septic shock and portends poor prognosis (Reel et al., 1997; Manute-Bello et al., 1997; Tanja et al., 2004). Exposure of neutrophils to inflammatory mediators such as GM-CSF, IL-8 or to bacterial constituents results in delayed apoptosis (El Kebir and Filep, 2010; Geering and Simon, 2011). Preserving neutrophil activities at the sites of infection may be required for complete elimination of invading pathogens, but could also aggravate injury to the host, resulting in persistent tissue damage. Therefore, the regulation of neutrophil apoptosis is critical to control the balance between their antimicrobial effectiveness and potential deleterious effect on tissues.

Signaling pathways promoting survival of neutrophils during sepsis are converging to control expression and degradation of key factors influencing the programmed cell death. In mature neutrophils, the anti-apoptotic protein myeloid cell leukemia-1 (MCL-1) and the pro-apoptotic protein Bcl2-associated X (BAX) are critical for the regulation of mitochondrial transmembrane potential (∆Ψm), and hence, activation of effector caspases (El Kebir and Filep, 2010; Geering and Simon, 2011; Milot and Filep, 2011). Since the control of mitochondrial transmembrane potential is central to the intrinsic apoptotic pathway, these discoveries placed forth the intrinsic apoptotic pathway in regulation of neutrophil apoptosis.

INTRINSIC APOPTOSIS PATHWAY AND MCL-1 IN NEUTROPHILS

MCL-1 is an anti-apoptotic factor of the Bcl-2 family. MCL-1 accumulation protects against formation of the BAK-BAX heterodimer on the external mitochondrial membrane and subsequent release of cytochrome c along with other molecules influencing apoptosis like SMAC/DIABLO, endonuclease G, and AIF (apoptosis-inducing factor), from the mitochondrial inner membrane. Hence, MCL-1 protects ∆Ψm and thus regulates the internal apoptotic pathway.

Unlike other members of the Bcl-2 family, MCL-1 protein has a short half-life and its levels of expression change substantially as neutrophils age and upon exposure of neutrophils to inflammatory mediators (Moulding et al., 2001; Craig, 2002). Indeed, MCL-1 protein expression inversely correlates with the degree of neutrophil apoptosis in both experimental models and clinical settings. Rapid loss in MCL-1 corresponds to development of apoptosis and MCL-1 knockdown results in dramatic decreases in the neutrophil lifespan (Moulding et al., 1998; Dehagulov et al., 2007). Modification in MCL-1 expression observed upon stress conditions (Dong et al., 2011). At the transcription level, MCL-1 is regulated by different transcription factors including MYC, NF-κB (RelA/p65), STAT3, and HIF-1α (Akgul et al., 2000; Negrotto et al., 2006; Bevlin and Varma, 2009; Thomas et al., 2010). RNA processing and protein accumulation/turnover are also important for regulation of MCL-1 expression (Bae et al., 2005). The turnover of MCL-1 results primarily from the proteasomal activity (Zhong et al., 2005). This activity can be counteredbalanced by the activity of the deubiquitase USP9X which was demonstrated to deubiquitate and thereby, to stabilize MCL-1 (Schwickart et al., 2010). However, surprisingly little is known about regulation of MCL-1. We have identified myeloid nuclear differentiation antigen (MNDFA) as a regulator of the proteasomal degradation of MCL-1 (Fotouhi-Ardakani et al., 2010 and see below).

ROLE OF MITOCHONDRIA IN NEUTROPHIL APOPTOSIS

In neutrophils, mitochondria have an atypical function and their role seems to be restricted to apoptosis (van Raam and Kuipers, 2009). This view has been nourished by the observation that neutrophils rely on glycolysis for energy formation and even for a long time mitochondria could not be detected in these cells. The electron transport chain is inefficient to transport electrons from complexes III to IV in neutrophils (van Raam et al., 2008). However, it is not to say that it exerts no activity in neutrophils since, inhibitors of the mitochondrial respiratory chain complex I can modulate the severity of lung injury evoked by LPS (Zmijewski et al., 2009). Enhanced production of H2O2 by neutrophils results in inhibition of bcl-2 a degradation hence preventing the activation of NF-κB, a key regulator of inflammatory gene expression in neutrophils (Zmijewski et al., 2008). Thus, the mitochondrial respiratory chain appears to be only partially active in neutrophils.

MNDFA: A KEY COMPONENT OF A NOVEL NUCLEUS TO MITOCHONDRION CIRCUIT

Different factors exerting their activity in the nucleus have been reported to participate in and influence the internal apoptosis pathway. While some nuclear proteins including E2F1, STAT3, HIF-1α, and NF-κB are well known to regulate expression of genes encoding pro- or anti-apoptotic factors, other nuclear proteins like MNDFA, p53, p21/WAF1, proliferating cell nuclear antigen (PCNA), nur77, SHP, and possibly p73, have been reported or proposed to act as nuclear signals (transducers) to influence the intrinsic apoptotic pathway upon relocation or specific cytoplasmic accumulation (Chipuk et al., 2003; Dumont et al., 2003; Mihara et al., 2003; Wang, 2005; Fotouhi-Ardakani et al., 2010; Wüthke-Saraz et al., 2010; Milot and Filep, 2011). Some of these factors have been reported to directly affect pro- or anti-apoptotic factors and hence, apoptosis. MNDFA is one of them.

Myeloid nuclear differentiation antigen is a human hematopoietic specific factor of the HIN-200 family. This family of factors is composed of the functionally related proteins IFI16, AIM2, IFIH,
and MNDa (Choubey and Panchanathan, 2008). MNDa localizes predominantly to the nucleus and is expressed mainly in myeloid cells. It has been suggested that MNDa may function as a master regulator of monocytic and granulocytic lineages (NovereBerrin et al., 2011). Recently, MNDa has been proposed to be a transcription factor (Suzuki et al., 2012). Like other members of the HIN-200 family, MNDa contains a pyrin/PAAD/DAPIN domain that mediates binding between proteins involved in apoptotic and inflammatory signaling pathways (Fairbrother et al., 2001). It also contains a HIN-200 domain, which is thought to promote protein–protein interaction (Dawson and Trapani, 1996; Choubey and Panchanathan, 2008) and protein–DNA interactions (Jin et al., 2012). MNDa gene regulation is influenced by interferons (Choubey and Panchanathan, 2008). MNDa was initially proposed to regulate myeloid cell differentiation as well as development of sporadic myelodysplastic syndrome (Briggs et al., 2006).

The potential implication of MNDa in regulation of apoptosis in myeloid cells and in inflammation has been directly assessed in neutrophil granulocytes (Fotouhi-Ardakani et al., 2010). In bone marrow-derived and mature neutrophils, MNDa is predominantly located in the nucleus. In neutrophils undergoing apoptosis, MNDa is cleared by caspases, presumably caspase-3, and relocated to the cytoplasm. However, the cleavage of MNDa is likely not required for its cytoplasmic accumulation since the full-length MNDa could also be detected in the cytoplasm. Culture of human neutrophils with inflammatory mediators, like bacterial constituents and platelet-activating factor, promotes their survival and indicates a clear correlation between the degree of neutrophil apoptosis and MNDa cleavage as well as cytoplasmic accumulation. These findings suggest that MNDa could participate in regulation of apoptosis in neutrophils. A causal relationship between MNDa and apoptosis has been established in a model cell line, the promyelocytic leukemia cell line HL-60, which expresses endogenous MNDa (Dahl et al., 1989; Savli et al., 2002). We created two MNDa-deficient HL-60 cell lines by the stable genomic integration of vectors encoding specific small hairpin RNA (shRNA). In these engineered model cell lines, knockdown of MNDa partially protected HL-60 cells against genotoxic stress-induced apoptosis, markedly attenuated activation of caspase-3, but not caspase-8, and prevented mitochondrial dysfunction (Fotouhi-Ardakani et al., 2010). These observations identify MNDa as a modulator of the intrinsic (mitochondrial) pathway of apoptosis.

The importance of the anti-apoptotic factor MCL-1 in control of ΔΨm and neutrophil apoptosis (Moulding et al., 1998; Dzhagulov et al., 2007) led us to interrogate whether MNDa could influence the internal pathway of apoptosis via MCL-1. Interestingly, we found that: (i) MNDa co-immunoprecipitates with MCL-1; and (ii) after induction of apoptosis, MCL-1 accumulation was greatly enhanced in MNDa-deficient HL-60 cells compared to MNDa proficient HL-60 cells (Fotouhi-Ardakani et al., 2010). Similar results were obtained in the presence of the protein synthesis inhibitor cycloheximide, suggesting that MNDa influences the turnover of MCL-1 protein. Since MCL-1 turnover is mainly regulated by proteasomal degradation (Zhong et al., 2005), we blocked the proteasome activity with MG132 and found that under such condition, MNDa failed to affect MCL-1 accumulation. These findings confirm that the rapid fall in MCL-1 expression is due to proteasomal degradation and indicate that, when present, MNDa promotes proteasomal degradation of MCL-1. By contrast, MNDa knockdown slowed down MCL-1 turnover and rendered HL-60 cells resistant to genotoxic stress-induced apoptosis, indicating that MNDa regulation of MCL-1 degradation is required for the execution of the constitutive cell death program. Collectively these findings indicate that cytoplasmic accumulation of MNDa is not merely a consequence, but rather an important mechanism promoting apoptosis in HL-60 cells and likely, in mature human neutrophils (Figure 1).

It is not known whether co-immunoprecipitation of MNDa and MCL-1 resulted from direct protein–protein interaction or which region(s) of MNDa is(are) required for this association. However, the MNDa PAAD/DAPIN/Pyrin domain, which is common to different proteins involved in apoptosis and inflammation, and/or the HIN-200 domain that mediates protein–protein interactions (Asafa et al., 2004) could be critical for the MNDa interaction with MCL-1. Indeed, the PAAD/DAPIN/Pyrin domain was shown to promote self-association of MNDa (Xie et al., 1997), and might also mediate association with other proteins. For instance, IF16, which contains a PAAD/DAPIN/Pyrin domain, interacts with p53, thereby modulating senescence and apoptosis (Song et al., 2008). In mice, members of the HIN-200 family were shown to promote inflammation through interacting with NF-κB (Min et al., 1996). These results demonstrate that a member of the HIN-200 family or a protein with the PAAD/DAPIN/Pyrin domain co-immunoprecipitates with an anti-apoptotic protein of the Bcl-2 family to regulate apoptosis. It remains to be investigated whether this mechanism is common to all MNDa expressing cells including hematopoietic progenitors (Briggs et al., 2006).

ROLE FOR MNDa DURING SEPSIS

It is well established that neutrophils isolated from the peripheral blood of healthy volunteers undergo apoptosis when cultured for 24–48 h in vitro. By contrast, under the same conditions of culture, neutrophils of patients with sepsis exhibit markedly prolonged survival due to suppressed apoptosis (Keel et al., 1997; Matsuura-Bello et al., 1997; Fotouhi-Ardakani et al., 2010; Paunel-Gorgulu et al., 2012). The enhanced neutrophil longevity is associated with preserved ΔΨm and inversely correlates with cytoplasmic accumulation of MNDa (Fotouhi-Ardakani et al., 2010). As predicted from the comprehensive study on MNDa in model cell lines (see above), during neutrophil apoptosis MNDa is relocated from the nucleus to the cytoplasm whereby it directly interacts with MCL-1 and promotes its proteasomal degradation (Figure 1). Although the signaling pathways involved in these events have not been elucidated, MNDa remains sequestered in the nucleus of neutrophils of patients in sepsis (Fotouhi-Ardakani et al., 2010). Consistently, culture of neutrophils from healthy volunteers with LPS, bacterial DNA, or platelet-activating factor partially replicated the abnormalities seen in the clinical samples, including the sequestration of MNDa to the nucleus (Fotouhi-Ardakani et al., 2010). Most interestingly, similar results were obtained when neutrophils of healthy donors were cultured in presence of serum from sepsis patient (Fotouhi-Ardakani et al., 2010). These findings suggest that neutrophils integrate yet unidentified cues
from the inflammatory milieu, which would prevent the cytoplasmic relocation and/or accumulation of MNDa, events that favor neutrophil apoptosis. Although our pilot clinical study was not powered to assess outcome, we noted that patients who had died exhibited markedly suppressed neutrophil apoptosis with minimal or complete absence of MNDa translocation and/or cleavage in neutrophils. Suppressed apoptosis in circulating neutrophils may contribute to neutrophilia, which predicts a poor prognosis, whereas delayed apoptosis in emigrated or trapped neutrophils contributes to aggravation of tissue injury, in particular damage to the airways (Marante-Bello et al., 1997; Hotchkiss and Nicholson, 2006). Apoptotic neutrophils sequester cytokines during endotoxin shock in mice (Ren et al., 2008) and thus may contribute to resolution of sepsis. Conversely, failure of neutrophils to undergo timely apoptosis would likely impair this pro-resolution effect. Clearly, additional studies are required to assess the precise role of MNDa in facilitating resolution of inflammation.

In conclusion, cytoplasmic accumulation of MNDa plays an important role in the progression of apoptosis. This represents a novel mechanism whereby MNDa, which predominantly localizes to the nucleus, regulate MCL-1 degradation and consequently mitochondrial function following its accumulation in the cytoplasm. The investigation of MNDa in neutrophils demonstrates that prevention of cytoplasmic MNDa accumulation likely contributes to suppressed apoptosis of neutrophils in patients with sepsis. Therefore, targeting MNDa may have a therapeutic potential for the treatment of sepsis and other inflammatory disorders.

ACKNOWLEDGMENTS

This work was supported by grants from the Lymphoma and Leukemia Society of Canada (to Eric Milot) and MOP-67054 and MOP-97742 from the Canadian Institutes of Health Research (to János G. Filep). Eric Milot is scholar of the FRQS.

REFERENCES

Aalto, H., Takala, A., Karttunen, H., and Repo, P. (2004). Laboratory markers of systemic inflammation as predictors of bloodstream infection in acutely ill patients admitted to hospital in medical emergency. Eur. J. Clin. Microbiol. Infect. Dis. 23, 699–704.

Akgül, C., Turner, P. C., White, M. R., and Edwards, S. W. (2000). Functional analysis of the human MCL-1 gene. Cell. Mol. Life Sci. 57, 684–695.

Angulo, D. C., Linde-estévez, W. T., Lédeczky, J.,克莱尔蒙特, G., 卡斯托利, J., and Panulo, M. B. (2001). Epidemiology of severe sepsis in the United States: analysis of incidence, outcome, and associated costs of care. Crit. Care Med. 29, 1503–1510.

Arai, R., Kleinmann, K. D., Copeland, N. A., Gilbert, D. J., Jenkins, N. A., and Keller, J. R. (2004). The interferon-inducible p200 family of proteins: a perspective on their roles in cell cycle regulation and differentiation. Blood Cells Mol. Dis. 32, 159–165.

Bae, J., Leo, C. P., Hsu, S. Y., and Hsu, H. J. (2001). MCL-15, a splice variant of the antiapoptotic BCL-2 family member MCL-1, encodes a proapoptotic protein possessing only the BH1 domain. J. Biol. Chem. 275, 25253–25261.

Beverly, L. J., and Varma, H. E. (2005). MYC-induced myeloid leukemogenesis is accelerated by all six members of the antiapoptotic BCL family. Oncogene 24, 1274–1279.

Borg, R. C., Shiota, K. E., Hsu, I. A., McLintock-troup, S. A., Ijagia, M. H., Goodman, S. A., et al. (2008). Dysregulated human myeloid nuclear differentiation antigen expression in myeloproliferative syndromes evidence for a role in apoptosis. Cancer Res. 66, 4605–4611.

Chapuis, J. E., Maurer, U., Green, D. R., and Schuler, M. (2003). Pharmacologic activation of p53-eclate Bax-dependent apoptosis in the absence of transcription. Cancer Cell 4, 573–581.

Cheuky, D., and Panchanathan, B. (2008). Interferon-inducible BH30-family proteins in systemic lupus erythematosus. Immunol. Lett. 119, 32–41.

Craig, R. W. (2002). MCL-2 provides a window on the role of the BCL2 family in cell proliferation, differentiation and tumorigenesis. Leukemia 16, 444–454.

Dawson, M. J., and Trautman, J. A. (1996). HIN-203: a novel family of IFN-inducible nuclear proteins expressed in leukocytes. J. Leukoc. Biol. 60, 310–318.

Dong, L., Jiang, C. C., Thorne, R. F., Croft, A., Yang, F., Liu, H., et al. (2000). Myeloid nuclear differentiation antigen: a novel family of IFN-inducible nuclear proteins. J. Biol. Chem. 275, 25249–25258.

FIGURE 1 | Proposed model for MNDa regulation of neutrophil apoptosis. Cytoplasmic accumulation of MNDa plays an important role in the progression of apoptosis. This represents a novel mechanism whereby MNDa, which predominantly localizes to the nucleus, regulate MCL-1 degradation and consequently mitochondrial function following its accumulation in the cytoplasm. The investigation of MNDa in neutrophils demonstrates that prevention of cytoplasmic MNDa accumulation likely contributes to suppressed apoptosis of neutrophils in patients with sepsis. Therefore, targeting MNDa may have a therapeutic potential for the treatment of sepsis and other inflammatory disorders.
Mold et al. (2011). “MNDA controls neutrophil apoptosis.” *J. Physiol.* 561, 561–571.

Negrotto, S., Malaver, E., Alvarez, D., Kelemen, J. M., Perotti, D. P., Zannini, C., et al. (2008). Participation of mitochondrial respiration complex III in neutrophil activation and severity of lung injury. *Am. J. Physiol. Lung Cell Mol. Physiol.* 296, L634–L639.

Zhong, Q., Gao, W. D., Fu, F., and Wang, X. (2005). Mcl-1; the molecular regulation of mitochondrial membrane potential and reduced caspase-9 activity. *Cytogenet. Cell Genet.* 109, 1400–1408.

Thomas, L. W., Lam, C., and Edwards, S. W. (2010). Mcl-1; the molecular regulation of mitochondrial membrane potential in human leukocytes. *FEBS Lett.* 584, 2981–2989.

van Raam, B. J., and Kuijpers, T. W. (2009). Mitochondrial defects lie at the basis of neutropenia in Barth syndrome. *Cave Open. Heart* 16, 14–19.

van Raam, B. J., Shlomot, D., De Wit, E., Ross, D., Veltbro, I., and Kuijpers, T. W. (2008). Mitochondrial membrane potential in human neutrophils is maintained by complex III activity in the absence of supercomplex organization. *PLoS ONE* 3:e3015. doi: 10.1371/journal.pone.003015.

Wang, Y. J. (2013). Nuclear-cytoplasmic communication in apoptosis response to genotoxic and inflammatory stress. *Cell Res.* 23, 45–48.

Widjojanto, S., and Geelen, P. (2012). Peculiarities of cell death mechanisms in neutrophils. *Cell Death Dis.* 3:e33474. doi: 10.1371/journal.pcd.0033474.

Conflict of Interest Statement: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.
