Mining Multi-word Named Entity Equivalents from Comparable Corpora

Abhijit Bhole
Microsoft Research India
Bangalore, India
v-abbhol@microsoft.com

Goutham Tholpadi
Indian Institute of Science
Bangalore, India
gtholpadi@gmail.com

Raghavendra Udupa
Microsoft Research India
Bangalore, India
raghavu@microsoft.com

Abstract

Named entity (NE) equivalents are useful in many multilingual tasks including MT, transliteration, cross-language IR, etc. Recently, several works have addressed the problem of mining NE equivalents from comparable corpora. These methods usually focus only on single-word NE equivalents whereas, in practice, most NEs are multi-word. In this work, we present a generative model for extracting equivalents of multi-word NEs (MWNEs) from a comparable corpus, given a NE tagger in only one of the languages. We show that our method is highly effective on three language pairs, and provide a detailed error analysis for one of them.

1 Introduction

NEs are important for many applications in natural language processing and information retrieval. In particular, NE equivalents, i.e. the same NE expressed in multiple languages, are used in several cross-language tasks such as machine translation, machine transliteration, cross-language information retrieval, cross-language news aggregation, etc. Recently, the problem of automatically constructing a table of NE equivalents in multiple languages has received considerable attention from the research community. One approach to solving this problem is to leverage the abundantly available comparable corpora in many different languages of the world (Udupa et al., 2008; Udupa et al., 2009a; Udupa et al., 2009b). While considerable progress has been made in improving both recall and precision of mining of NE equivalents from comparable corpora, most approaches in the literature are applicable only to single-word NEs, and particularly to transliterations (e.g. Tendulkar and तेंदुल्कर). In this work, we consider the more general problem of MWNE equivalents from comparable corpora.

In the MWNE equivalents mining problem, a NE in the source language could be related to a NE in the target language by, not just transliteration, but a combination of transliteration, translation, acronyms, deletion/addition of terms, etc. To give an example, Figure 1 shows a pair of comparable articles in English and Hindi. ‘Sachin Tendulkar’ and ‘सचिन तेंदुलकर’ are MWNE equivalents, and both words have been transliterated. Another example is the pair ‘Siddhivinayak Temple Trust’ and ‘सिद्धिविनायक मंदिर siddhivinayak mandir’. Here, the first word has been transliterated, the second one translated, and the third omitted in Hindi. The task is to (a) identify these MWNEs as equivalents, (b) infer the word correspondence between the MWNE equivalents, and (c) identify the type of correspondence (transliteration, translation, etc.).

Such NE equivalents would not be mined correctly by the previously mentioned approaches as they would mine only the pair (Siddhivinayak, सिद्धिविनायक). In practice, most NEs are multi-word and hence it makes sense to address the problem of mining MWNE equivalents.

To the best of our knowledge, this is the first work on mining MWNEs in a language-neutral manner. In this work, we make the following contributions:

- We perform an empirical study of MWNE occurrences, and the issues involved in mining (Section 2).
- We define a two-tier generative model for MWNE equivalents in a comparable corpus (Section 4).
- We propose a modified Viterbi algorithm for identifying MWNE equivalents, and
Mumbai, July 29: Sachin Tendulkar will make his Bollywood debut with a cameo role in a film about the miracles of Lord Siddhivinayak. Tendulkar, widely regarded as one of the world’s best batsmen, will play himself in Siddhivinayak Temple Trust, a film about the god, who is sometimes referred to as Siddhivinayak. “He will play a small role, as himself, either in a song sequence or in an actual scene,” said Rajiv Sanghvi, whose company is handling the film’s production. Tendulkar’s office confirmed the cricketer would be shooting for the film after he returns from Sri Lanka where India is touring at the moment. Tendulkar, a devotee of Ganesh, had offered to be a part of the project and will not be charging for the role. The film is being produced by the Siddhivinayak Temple Trust, which looks after a famous temple dedicated to Ganesh in Mumbai.

Figure 1: An example of MWNE mining.

for inferring correspondence information (Section 4.3).

- We evaluate the method on three language pairs (involving English (En), Arabic (Ar), Hindi (Hi) and Tamil (Ta)) (Section 6).

In our method, we assume the existence of the following linguistic resources: a NE tagger, a translation model, a transliteration model, and a language model. We show good mining performance for En-Hi and En-Ta. We perform error analysis for En-Ar, and identify sources of error (Section 6.5).

2 Empirical Study of Multi Word NE Equivalents

To understand the various issues in mining MWNE equivalents from comparable corpora, we took a random sample of 100 comparable En-Hi news article pairs from the Indian news portal WebDunia.

1. Each word in the Hindi MWNE is a transliteration of some word in the English MWNE.

E.g. (Mahatma Gandhi, महात्मा गांधी) where (Mahatma, महात्मा) and (Gandhi, गांधी) are transliterations.

2. At least one word in the Hindi MWNE is a translation of some word in the English MWNE while the remaining words are transliterations. E.g. (New Delhi, नई दिल्ली) where (New, नई) is a translation and (Delhi, दिल्ली) is a transliteration.

3. MWNEs contain abbreviations (initials). E.g. (M. K. Gandhi, आप. के. गांधी) where (M, आप) and (K, के) are initials.

4. One-to-one correspondence between the words in the English and Hindi MWNEs. E.g. (New Delhi, नई दिल्ली)

5. One-to-many correspondence between the words in the English and Hindi MWNEs. E.g. (Card, प्रमुख तपशी प्रशस्ति पत्र)

6. Many-to-one correspondence between the words in the two MWNEs. E.g. (Air force, वायुसेना वायुसेना)

7. Sequential correspondence between words in the two MWNEs. E.g. (High Court, उच्च न्यायालय uchhatam nyayalay) where (High, उच्चम) and (Court, न्यायालय) are equivalents.

8. Non-sequential correspondence between words in the two MWNEs. E.g. (Battle Honour Gurai, पृथुश्च मूर्ति सम्मान gurais

1http://www.webdunia.com
4 Mining algorithm

4.1 Key idea

We model the problem of finding NE equivalents in the target sentence T using source NEs as a generative model. Each word t in the target sentence is hypothesized to be either part of a NE, or generated from a target language model (LM). Thus, in the generative model, the source NEs N's plus the target language model constitute the set of hidden states. The t's are the observations. We want to align states and observations, i.e., determine which state generated which observation, and choose the alignment that maximizes the probability of the observations. The probability of generating a target word t from a source NE state N is dependent on

- whether N is itself multi-word; if so, each word in N acts as a substate and can generate t.
- the context (the words preceding t in T); note that the length of the context window for t depends on the length of the source NE generating t, and is not a fixed parameter.
- the relationship (transliteration or translation) the state/substate and the target word.\(^2\)

Dynamic programming (DP) approaches are usually used to compute the best alignment, but it fails here as the context size varies for each NE. Hence, we posit the generative model at two levels:

1. A sentence-level generative model (SGeM), where each word in the target sentence is generated either by the target LM or by one of the source NEs.

2. A generative model for the NE (NEGeM), where each word in the target NE is generated by one of the substates of the source NE.

This is illustrated by the example in Figure 2. The portions 'मंगलवार को' and 'के छात्रों ने अपने' of the Hindi sentence is generated by the language model. 'साउथम्पटन यूनिवर्सिटी' is generated by the English NE 'University of Southampton'. Note that without using the language model, 'के' would have been incorrectly aligned with 'of'. Another example is 'एम के'

\(^2\)We also use another relationship for letters in acronyms that are transliterated.
To model the relationship between the source and target terms, we introduce variables in a fashion similar to the introduction of B in (2). Let $R = r_{1}, \ldots, r_{i}$ where $r_{p} \in \{\text{transliteration, translation, acronym, none}\}$ such that t_{p} and $n_{jb_{p}}$ have the relationship r_{p}. Then

$$P\left(t_{j} | n_{a_{i}b_{i}}, r_{j} \right) = \begin{cases} m_{i} & \text{if } r_{j} = \text{translation} \\ m_{i} & \text{if } r_{j} = \text{transliteration} \\ \delta \left[t_{j} \equiv n_{a_{i}b_{j}} \right] & \text{if } r_{j} = \text{acronym} \\ P_{\text{lm}} \left(t_{j} \right) & \text{if } r_{j} = \text{none} \end{cases}$$

The four probability terms on the right are obtained, respectively, from a translation model, a transliteration model 4, an acronym model 5, and a language model.

Controlling target NE length In the SGeM, $P \left(a_{i} | a_{i}^{i-1}, N_{ai} \right)$ is the probability that N_{ai} will generate t_{i}. To compute this, we first note that, for a given term t_{i}, either $a_{i} = a_{i+1}$ i.e. N_{ai} continues to generate beyond t_{i}, or $a_{i} \neq a_{i+1}$ i.e. N_{ai} terminates at t_{i}. The probability of continuation depends on the length L of N_{ai} and the length l of the target NE generated so far by N_{ai}. Based on empirical observations, we defined a function $f \left(l, L \right)$ as

$$f \left(l, L \right) = \begin{cases} 0 & \text{for } l \notin \{L - 2, L + 2\} \\ 1 - \epsilon & \text{for } l \in \{L - 1, L\} \\ \epsilon & \text{for } l \in \{L + 1, L + 2\} \end{cases}$$

where $f \left(l, L \right)$ is the probability of continuation, and $1 - f \left(l, L \right)$ is the probability of termination. ϵ is a very small number. We now define

$$P \left(a_{i} | a_{i}^{i-1}, N \right) = \begin{cases} p_{\text{NE}} & \text{if } a_{i-1} = 0 \\ f \left(i - k_{i}, l_{a_{i}} \right) & \text{if } a_{i-1} \neq 0, k_{j} < i \\ 1 - f \left(i - k_{i-1}, l_{a_{i-1}} \right) & \text{if } a_{i-1} \neq 0, k_{i} = i \end{cases}$$

where the probabilities on the right are for beginning an NE, continuing an NE, and terminating a previous NE, respectively.

3The probability of continuation

4A character-level extended HMM described in (Udupa et al., 2009a).

5A mapping from source language alphabets to target language transliterations of the alphabets.
4.3 Modified Viterbi algorithm

We use the dynamic programming framework to do the maximization in (1). For each target term \(t_i \), for each source NE \(N_j \), the subproblem is to find the best alignment \(a_1 \ldots a_l \) such that \(a_{i+1} \neq a_i \) i.e. \(t_i \) is the last term in the equivalent of \(N_j \).

\[
\text{subproblem}[i,j] = \max_{a_i} P (a_i = j \neq a_{i+1} | a_1^{i-1}, N_j) P (t_i | t_1^{i-1}, N_j)
\]

Let \(l \) be the length of the target NE ending at \(t_i \), based on the alignment so far. The first probability term becomes

\[
P (a_{i-1} \neq a_{i-1} = j \neq a_{i+1} | N_j) = \alpha \times f (l, L_j) (1 - f (l + 1, L_j))
\]

This is non-zero only for certain values of \(l \), for which we can construct the solution to subproblem \([i,j]\) using solutions for \(i = l \). Denote \(k = i - l \), then

\[
\text{subproblem}[i,j] = \max_{j \neq i} \text{subproblem}[k - 1, j] \times \text{negem}(P_k, N_i)
\]

where the procedure \text{negem} computes the probability that a given sequence of target words is an equivalent of the given source NE. This procedure solves a second (independent) DP problem (for the NEGeM), constructed in a similar fashion. It also models conditions such as “If a target term is a transliteration, it cannot map to more than one source substrate.”

The output of the system is a set of MWNE pairs. For each pair, we also give the internal alignment between the words of the two NEs.

5 Parameter Tuning

The MWNE model has five user-set parameters. These need to be tuned appropriately in order to be able to compare probabilities from different models. In the following, we describe the parameters and a systematic way to go about tuning them.

- \(p_{NE} \in (0, +\infty) \) specifies how likely are we to find an NE in a target sentence

- Given a probability \(p \) returned by the transliteration model, the probability value used for comparisons \(P_{tlit}' \) is calculated as \(P_{tlit}' = m_{tlit} \cdot P_{tlit} \) where \(r_{tlit} \in R, m_{tlit} \in (0, +\infty) \). \(r_{tlit} \) is tuned to boost/suppress \(p \); \(m_{tlit} \) is also used similarly, but to get more fine-grained control.

- Similarly, for a probability \(p \) given by the translation model, we calculate \(P_{tlit} = m_{tlit} \cdot P_{tlit} \) where \(r_{tlit} \in R, m_{tlit} \in (0, +\infty) \)

In our experiments, we found that transliteration probabilities were quite low compared to the others, followed by the translation probabilities. So, we used the following procedure to tune these parameters use a small hand-annotated set of document pairs.

1. Initially set \(p_{NE} = +\infty \), and all other parameters to zero.
2. Tune \(r_{tlit} \) to find as many of the transliterations as possible. Then, use \(m_{tlit} \) to fine-tune it to improve precision without losing too much on recall.
3. Next, tune \(r_{tlit} \) to find as many of the transliterations as possible. Then, use \(m_{tlit} \) to fine-tune it to improve precision without losing too much on recall.
4. The system is now finding as many NEs as possible, but it is also finding noise. Keep lowering \(p_{NE} \) to allow the language model LM to absorb more and more noise. Do this until NEs also begin to get absorbed by LM.

6 Empirical Evaluation

In this section, we study the overall precision and recall of our algorithm for three different language pairs. English (En) is the source language, and Hindi (Hi), Tamil (Ta) and Arabic (Ar) are the target languages. Hindi belongs to the Indo-Aryan family, Tamil belongs to Dravidian family, and Arabic belongs to the Semitic family of languages. The results show that the method is applicable for a wide spectrum of languages.

6.1 Linguistic Resources

Models We need four models (translation, transliteration, language, and acronym) in order to run the proposed algorithm. For a language pair, we learnt these models using the following kinds of data, which was available to us:

- A set of pairs of NEs that are transliterations, to train the transliteration model
- A set of parallel sentences, to learn a translation model
Table 1: Training data for the models.

Lang. pairs	Translit. pairs	Word pairs	Monolin. corpus
En-Hi	15K	634K	23M words
En-Ta	17K	509K	27M words
En-Ar	30K	8.2M	47M words

(1K = 1 thousand, 1M = 1 million)

- A monolingual corpus in the target language, to train a language model
- A dictionary mapping English alphabets to their transliterations in the target language.

One can get an idea of the scale of linguistic resources used by looking at Table 1.

Source language NER The Stanford NER tool (Finkel et al., 2005) was used for obtaining a list of English NEs from the source document.

6.2 Corpus for MWNE mining

For each language pair, a set of comparable article pairs is required. The article pairs each for En-Hi and En-Ta were obtained from news websites⁶, where the article correspondence was obtained using a method described in (Udupa et al., 2009b). En-Ar article pairs were extracted from Wikipedia using inter-language links.

Preprocessing The Stanford NER tags each word in the source document as a person, location, organization or other. A continuous sequence of identical tags was treated as a single MWNE. Completely capitalized NEs were treated as acronyms. For each acronym (e.g. “FIFA”), both the acronym version (“FIFA”) as well as the abbreviation version (“F I F A’”) were included in the list of source NEs. Each target document was sentence-separated and tokenized using simple rules based on the presence of newlines, punctuation, and blank spaces. If a word can be constructed by concatenating strings from the acronym model, it is treated as an acronym, and the acronym strings are separated out (e.g. ‘एमके’ emke is changed to ‘एम के’ em ke).

6.3 Experimental Setup

Annotation Given an article pair, a human annotator looks through the list of source NEs, and identifies transliterations in the target document. For MWNEs, the annotator also marks which word in the source corresponds to each word in the target MWNE. This constitutes gold standard data that can be used to measure performance. 120 article pairs were annotated for En-Hi, 120 for En-Ta, and 36 for En-Ar.

Evaluation The NEs mined from one article pair are compared with the gold standard for that pair, and one of three possible judgements is made:

- Fully matched (if it fully matches some annotated NE (both source and target)).
- Partially matched (if source NEs match, and the mined target NE is a subset of the gold target NE).
- Incorrect match (in all other cases).

The algorithm is agnostic of the type of the NE (Person, Organization, etc.). So, reporting the precision and recall for each NE type does not provide much insight into the performance of the method. Instead, we report at different levels of match—full or partial, and for different categories of MWNEs—single word transliteration equivalents (SW), multi word transliteration equivalents (including acronyms) (MW-Translit) and multi word NEs having at least one translation equivalent (MW-Mixed). We compute the numbers for each article pair and then average over all pairs.

Parameter Tuning Parameter tuning was done following the procedure described in Section 5. For En-Hi and En-Ta, the following values were used: $p_{NE} = 1$, $m_{tlit} = 100$, $r_{tlit} = 7$, $m_{tlat} = 1$, $r_{tlat} = 1$. For En-Ar, $m_{tlit} = 1$, $r_{tlit} = 14$ was used, the other parameters remaining the same. For the tuning exercise, 40 annotated article pairs were used for En-Hi, 40 pairs for En-Ta, and 26 pairs for En-Ar.

6.4 Results and Analysis

We evaluated the algorithm on 80 article pairs for En-Hi, 80 pairs for En-Ta, and 11 pairs for En-Ar. The results are given in Table 2.

We observe that the results for both types of precision (and recall) are nearly identical. This is so because, in most cases, the system is able to mine the entire NE. This validates our intuition of using

⁶En-Hi from Webdunia, En-Ta from The New Indian Express.
Table 2: Precision and recall of the system

Lang Pair	Prec. (full)	Prec. (part.)	Recall (full)	Recall (part.)
En-Hi	0.84	0.86	0.89	0.89
En-Ta	0.78	0.80	0.61	0.63
En-Ar*	0.42	0.44	0.63	0.66
En-Ar	0.43	0.44	0.60	0.62

* Including the data used for tuning

Table 3: Category-wise recall of the system

Category	En-Hi	En-Ta	En-Ar
SW	0.90	0.82	0.69
MW - Translit	0.91	0.64	0.63
MW - Mixed	0.77	0.40	0.66

We also report recall of the system for various categories of NEs in Table 3. Note that the MW cases and the SW case are mutually exclusive.

6.5 Error Analysis for Arabic

The system performed relatively poorly in Arabic than in the other languages. Detailed error analysis revealed the following sources of error.

Source NER The text of the English articles automatically extracted from Wikipedia was not very clean, as compared to the newswire text used for En-Hi and En-Ta. As a result, the source NER wrongly identified many words as NEs, which were mapped to words on the target side, affecting precision. E.g. words such as “best”, “foxe” were marked as NEs, and words with similar meaning or sound were found in the target. But since the annotator had ignored these words, the evaluation marked them as false positives.

Translation model Many words were ignored by the translation model because of the presence of diacritics, or affixes (e.g. ‘ال’ ‘ال’ al in Arabic is frequently prefixed to words; also, in Arabic, different sources of text may have different levels of diacritization for the same words). E.g. The target document contained al-jamhooriyah “republic”; the dictionary contained al-jamhooriyat, which has a different suffix, and hence was not found.

Transliteration model The non-uniform usage of diacritics and affixes (across training and test data) as mentioned above affected the performance of transliteration too. E.g. The model is trained on data where the ‘ن’ prefix usually occurs in the Arabic NE, but not in the English NE. As a result, it maps the ‘new’ in ‘new york’ to al-nyoo. The annotator had mapped ‘new’ to nyoo (i.e. without the prefix), causing the evaluation program to mark the system’s output as a false positive.

Generative Model Some errors occurred due to deficiencies in the generative model. The model requires every word in the source NE to be mapped to a unique word in the target NE. This causes problems when there are function words in the source NE, or when two source words are mapped to the same target word. E.g. ‘yale school of management’ corresponds to the 3-word NE al-adareh مدريسيه where ‘of’ has no Arabic counterpart. ‘الازهر al-azhar’ corresponds to the single word ان azhar (which can be split as الزهر al azhar, but is never done in practice).

7 Related work

Automatic learning of translation lexicons has been studied in many works. Pirkola et al. (Pirkola et al., 2003) suggest learning transformation rules from dictionaries and applying the rules to find cross lingual spelling variants. Several works (Fung, 1995; Al-Onaizan and Knight, 2001; Koehn and Knight, 2002; Rapp, 1999) suggest approaches to learn translation lexicons from monolingual corpora. Apart from single word approaches, some works (Munteanu and Marcu, 2006; Chris Quirk, 2007) focus on mining parallel sentences and fragments from ‘near parallel’ corpora.

On the other hand, out-of-vocabulary words are transliterated to the target language. Approaches have been suggested for automatically learning transliteration equivalents. Klementiev et al. (Klementiev and Roth, 2006) proposed the use of similarity of temporal distributions for identifying NEs
from comparable corpora. Tao et al. (Tao et al., 2006) used phonetic mappings for mining NEs from comparable corpora, but their approach requires language specific knowledge which limits it to specific languages. Udupa et al. (Udupa et al., 2008; Udupa et al., 2009b) proposed a language-independent mining technique for mining single-word NE transliteration equivalents from comparable corpora. In this work, we extend this approach for mining NE equivalents from comparable corpora.

8 Conclusion

Through an empirical study, we motivated the importance and non-triviality of mining multi-word NE equivalents in comparable corpora. We proposed a two-tier generative model for mining such equivalents, which is independent of the length of NE. We developed a variant of the Viterbi algorithm for finding the best alignment in our generative model. We evaluated our approach for three language pairs, and discussed the error analysis for English-Arabic.

Currently, unigram approaches are popular for most tasks in NLP, CLIR, MT, topic modeling, etc. tasks. Phrase-based approaches are limited by their efficiency and complexity, and also show limited improvement. We hope that this work will motivate researchers to explore principled methods that make use of NE phrases to significantly improve the state-of-the-art in these areas. The two-tier generative model is applicable to any problem where the context of an observed variable does not depend on a fixed number of past observed variables.

References

Yaser Al-Onaizan and Kevin Knight. 2001. Translating named entities using monolingual and bilingual resources. In *ACL ’02: Proceedings of the 40th Annual Meeting on Association for Computational Linguistics*, pages 400–408, Morristown, NJ, USA. Association for Computational Linguistics.

Arul Menezes Chris Quirk, Raghavendra Udupa U. 2007. Generative models of noisy translations with applications to parallel fragments extraction. In *MT Summit XI*, pages 377–284. European Association for Machine Translation.

Jenny Rose Finkel, Trond Grenager, and Christopher Manning. 2005. Incorporating non-local information into information extraction systems by gibbs sampling. In *ACL ’05: Proceedings of the 43rd Annual Meeting on Association for Computational Linguistics*, pages 363–370, Morristown, NJ, USA. Association for Computational Linguistics.

Pascale Fung. 1995. A pattern matching method for finding noun and proper noun translations from noisy parallel corpora. In *IN PROCEEDINGS OF THE 33RD ANNUAL CONFERENCE OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS*, pages 236–243.

Alexandre Klementiev and Dan Roth. 2006. Weakly supervised named entity transliteration and discovery from multilingual comparable corpora. In *ACL-44: Proceedings of the 21st International Conference on Computational Linguistics and the 44th annual meeting of the Association for Computational Linguistics*, pages 817–824, Morristown, NJ, USA. Association for Computational Linguistics.

Philipp Koehn and Kevin Knight. 2002. Learning a translation lexicon from monolingual corpora. In *Proceedings of the ACL-02 workshop on Unsupervised lexical acquisition*, pages 9–16, Morristown, NJ, USA. Association for Computational Linguistics.

Dragos Stefan Munteanu and Daniel Marcu. 2006. Extracting parallel sub-sentential fragments from non-parallel corpora. In *ACL-44: Proceedings of the 21st International Conference on Computational Linguistics and the 44th annual meeting of the Association for Computational Linguistics*, pages 81–88, Morristown, NJ, USA. Association for Computational Linguistics.

Ari Pirkola, Jarmo Toivonen, Heikki Keskustalo, Kari Visala, and Kalervo Järvelin. 2003. Fuzzy translation of cross-lingual spelling variants. In *SIGIR ’03*, pages 345–352, New York, NY, USA. ACM.

Reinhard Rapp. 1999. Automatic identification of word translations from unrelated english and german corpora. In *ACL*, pages 519–526.

Tao Tao, Su youn Yoon, Andrew Fister, Richard Sproat, and Chengxiang Zhai. 2006. Unsupervised named entity transliteration using temporal and phonetic correlation.

Raghavendra Udupa, K. Saravanan, A. Kumaran, and Jagadeesh Jagarlamudi. 2008. Mining named entity transliteration equivalents from comparable corpora. In *CIKM ’08*, pages 1423–1424. ACM.

Raghavendra Udupa, K. Saravanan, Anton Bakalov, and Abhijit Bhole. 2009a. "they are out there, if you know where to look": Mining transliterations of oov query terms for cross-language information retrieval. In *ECIR*, volume 5478, pages 437–448. Springer.

Raghavendra Udupa, K. Saravanan, A. Kumaran, and Jagadeesh Jagarlamudi. 2009b. Mint: A method for effective and scalable mining of named entity transliterations from large comparable corpora. In *EACL*, pages 799–807.