1. INTRODUCTION AND SURVEY

Dyson-Schwinger (DS) equations provide a prominent approach to physics of strong interactions. One of its aspects, reviewed, consists of \textit{ab initio} studies of DS equations for Green’s functions of QCD, typically in the Landau gauge (LG). The other aspect consists of phenomenological DS studies (also typically in LG) of hadrons as quark bound states, but relying more on modeling; e.g., see a recent review. Such phenomenological studies have mostly been relying on the rainbow-ladder approximation (RLA), where generation of dynamical chiral symmetry breaking (D\textchi SB) is well-understood. Pseudoscalar mesons are the most notable among those channels because of the correct chiral QCD behavior due to D\textchi SB and Goldstone theorem, since (almost) massless pseudoscalar mesons are reproduced in the (vicinity of) chiral limit not only by the exact QCD treatment but also by all consistent truncations such as RLA.

Consistent RLA implies that \textit{Ansätze} of the form

\[[K(p)]_{gf}^{hg} = -4\pi\alpha_{\text{eff}}(p^2) D_{\mu\nu}(p) a_0 \left[\frac{\lambda^a}{2} \gamma_\mu \right] c g \left[\frac{\lambda^b}{2} \gamma_\nu \right] h_f \]

must be used in the DS equations. In the full quark propagator \(S \), \(S_0 \) is the free one and the Bethe-Salpeter (BS) equation for the meson (M) bound-state vertex \(\Gamma_M \); i.e.,

\[[\Sigma]_{ef} = \int S_{gh} [K_{gf}]_{eh}^{hg} , \quad [\Gamma_M]_{ef} = \int [-\Sigma_{\mu} S_{gh} [K_{gf}]_{eh}^{hg} , \]

where, writing \textit{schematically}, integrations are meant over loop momenta while \(e, f, g, h \) in Eqs. represent spinor, color and flavor indices. In LG, the free gluon propagator \(D_{\mu\nu}(p) \equiv \delta_{\mu\nu} \left(p_{\mu} p_\nu / p^2 \right) / p^2 \).

In Eq. (1), \(\alpha_{\text{eff}}(p^2) \) is an effective running coupling. It is only partially known from the fact that at large spacelike momenta (our convention is \(p^2 > 0 \) for spacelike \(p \)), \(\alpha_{\text{eff}}(p^2) \) must reduce to \(\alpha_s(p^2) \), the well-known running coupling of perturbative QCD. However, for \(p^2 \lesssim 1 \) GeV\(^2 \), where nonperturbative QCD applies, the interaction is still not known. Thus, in phenomenological DS studies, \(\alpha_{\text{eff}}(p^2) \) must be modeled for \(p^2 \lesssim 1 \) GeV\(^2 \) - e.g., see Refs. There one can see that phenomenologically most successful of those modeled interactions have a rather large bump at intermediate momenta, around \(p^2 \sim 0.5 \) GeV\(^2 \) (e.g., in Fig. 1 see \(\alpha_{\text{eff}}(p^2) \) used by Jain and Munczek (JM) and by Maris, Roberts and Tandy (MRT)). In any case, successful DS phenomenology demands that the modeled part of the interaction be fairly strong; regardless of details of the form of the interaction, its \textit{integrated strength} (for \(p^2 \lesssim 1 \) GeV\(^2 \)) must be fairly high to achieve acceptable description of hadrons, notably mass spectra and D\textchi SB. Theoretical explanations of the origin of so strong nonperturbative part of the phenomenologically required interaction are obviously much needed, either from the \textit{ab initio} DS studies or from somewhere outside the DS approach. This is the main motivation for the present paper.

The \textit{ab initio} DS studies showed that, in LG, the effects of ghosts are crucial for the intermediate-momenta enhancement of the effective quark-gluon interaction. This is obvious in the expression for the strong running coupling \(\alpha_s(p^2) \) in these LG studies, where \(\alpha_s(p^2) = \alpha_s(\mu^2) G(p^2)^2 \)

\begin{equation}
\alpha_s(p^2) = \alpha_s(\mu^2) Z(p^2) G(p^2)^2 , \tag{3}
\end{equation}

where \(\alpha_s(\mu^2) = g^2 / 4\pi \) and \(Z(\mu^2)G(\mu^2)^2 = 1 \) at the renormalization point \(p^2 = \mu^2 \). The ghost and gluon renormalization functions \(G(p^2) \) and \(Z(p^2) \) define the full ghost propagator \(D^{ab}_G(p) = -\delta^{ab}(p^2) / p^2 \) and the full LG gluon propagator \(D^{ab}_{\mu\nu}(p) = Z(p^2) D^{ab}_{\mu\nu}(p) \).

While the \textit{ab initio} DS studies do find significant enhancement of \(\alpha_s(p^2) \), Eq. (3), until recently this seemed still not enough to yield a sufficiently strong D\textchi SB (e.g., see Sec. 5.3 in Ref. and a successful phe-
nomenclature. Nevertheless, going beyond the ladder truncation and so getting additional interaction strength from dressed vertices, for carefully constructed dressed quark-ghost vertex Ansätze, Fischer and Alkofer [8] have recently obtained good results for constituent quark masses and pion decay constant $\langle \pi \rangle$ proposed and analyzed in the present paper is depicted by the solid curve, and $\alpha_s(p^2)$ of Fischer and Alkofer [8] by the dotted curve. The long-dashed curve is the fit (extrapolated all the way to $p^2 = 0$) of the lattice results of Ref. [4].

FIG. 1: The momentum dependence of various strong running couplings mentioned in the text. JM [4] and MRT [4, 5] $\alpha_s(p^2)$ are depicted, respectively, dashed and dash-dotted curves. The effective coupling [15] proposed and analyzed in the present paper is depicted by the solid curve, and $\alpha_s(p^2)$ of Fischer and Alkofer [8] (fit A) by the dotted curve. The long-dashed curve is the fit (extrapolated all the way to $p^2 = 0$) of the lattice results of Ref. [4].

2. CONDENSATES IN GLUON AND GHOST PROPAGATORS

Already a long time ago Refs. [18, 19, 20, 21] found in the operator product expansion (OPE) the $\langle A^2 \rangle$-contributions to QCD propagators, recently confirmed by Kondo [17]. For LG (adopted throughout this paper), number of colors $N_c = 3$ and space-time dimensions $D = 4$, their results for gluon and ghost propagators amount to

$$G(p^2) = \frac{1}{1 + \frac{m_A^2}{p^2} + \frac{\sigma_G(1/p^2)}{p^2}},$$ (5)

$$m_A^2 = \frac{3}{32} g^2 \langle A^2 \rangle = -m_G^2,$$ (6)

where m_A and m_G are, respectively, dynamically generated effective gluon (A) and ghost (G) mass. The later references [22, 28] also worked out the perturbative QCD corrections inducing the logarithmic p^2-dependence of these dynamically generated masses, i.e. $m_A^2(p^2)$, to which we will return and comment on in the next section.

These now well-established propagator contributions [14-16] then suggest the importance of $\langle A^2 \rangle$ for the DS approach to hadrons, where propagators, usually in LG, are used to get solutions for quark bound states and calculate observable quantities. Notably, see Ref. [10] for gauge-parameter independent expressions for f_π and a generalization of the Gell-Mann-Oakes-Renner relation (GMOR) that demonstrates gauge-parameter independence of the meson mass. Still, how can $\langle A^2 \rangle$ influence these observable quantities, since this condensate is not gauge-invariant? It turns out [14, 17, 24] that in LG, $\langle A^2 \rangle$ equals a non-local, but gauge-invariant quantity: the minimal (with respect to the choice of gauge) value of $\langle A^2 \rangle$ integrated over the space-time, indicating that $\langle A^2 \rangle$ in LG may have a physical meaning. Outside LG, besides $\langle A^2 \rangle$ other (ghost) condensates of dimension 2 appear [14]. They very likely cancel the variation which $\langle A^2 \rangle$ suffers in going to another gauge, since the physics behind all these different dimension 2 condensates in different gauges must be the same: gluon-ghost condensation lowers the QCD vacuum energy E, which is a physical, gauge-invariant quantity, to a stable ("$E < 0$") vacuum [24].

For $g^2\langle A^2 \rangle$, LG lattice studies of Boucaud et al. [16] yield the value 2.76 GeV2, compatible with the bound resulting from the discussions of Gubarev et al. [14, 15] on the physical meaning of $\langle A^2 \rangle$ and its importance for confinement. This value gives $m_A = 0.845$ GeV, which will turn out to be a very good initial estimate for $m_{A,G}$.

As for the contributions $\sigma_A(1/p^2)$ and $\sigma_G(1/p^2)$ in Eqs. (4) and (5), one expects a prominent role of the dimension 4 gluon condensate $\langle F_{\mu\nu}^g F^{\mu\nu} \rangle \equiv \langle F^2 \rangle$, which, contrary to $\langle A^2 \rangle$, is gauge invariant [25]. Refs. [19, 20] showed that the OPE contributions of dimension 4 condensates were far more complicated [21] than found previously [18]: not only many kinds of condensates contributed to terms $\propto 1/p^2$, but for many of them (gluon-dependent gluon, ghost and mixed ones) there has been no assignments of any kind of values yet. Terms $\propto (1/p^2)^n$ ($n > 1$) were not considered at all. Thus, at this point, the only practical approach is that the contributions $\sigma_A(1/p^2)$ and $\sigma_G(1/p^2)$ in Eqs. (4) and (5) are approximated by the terms $\propto 1/p^2$ and parametrized,
malization functions are parametrized by the coefficients C and G in Eqs. (4), (5) and (7), gluon and ghost renormalization functions are respectively given by Eqs. (12) and (13) and also (14) in Ref. [29] (for the gluon propagator) and Kondo and collaborators [22, 23] (for both the gluon and ghost propagators), and since they imply that

$$r_0^A(p^2) = r_0^G(p^2) = m_A^2(p^2) = -m_G^2(p^2) ,$$

where γ and δ are, respectively, gluon and ghost anomalous dimensions. The perturbative corrections for the Wilson coefficients of dimension 2 have also been calculated for the pure Yang-Mills case by Boucaud et al. [28] (for the gluon propagator) and Kondo and collaborators [22, 23] (for both the gluon and ghost propagators), and since they imply that

$$G(p^2) = \left(\frac{\alpha_{pe}(p^2)}{\alpha_{pe}(\mu^2)} \right)^{-\delta - \frac{9}{2}} \left(1 - \frac{m_A^2(p^2)}{p^2} + \frac{C_G(p^2)}{p^4} + \ldots \right) .$$

The perturbative corrections for the Wilson coefficients of dimension four and higher have not been calculated yet, but we introduced also the notation

$$\frac{r_0^A(p^2)}{r_0^A(p^2)} = C_A(p^2) , \quad \frac{r_0^G(p^2)}{r_0^G(p^2)} = C_G(p^2) ,$$

to point out the correspondence of Eqs. (14) and (15) with the relations (14) and (15). The latter differ from the former just by the absence of the slowly varying logarithmic p^2-dependence in $m_A(p^2)$, $C_A(p^2)$, $C_G(p^2)$, and $\alpha_{pe}(p^2)$, and of the dots denoting terms of dimension larger than four.

Regarding the perturbatively generated prefactors $\zeta_{pe}(p^2)/\zeta_{pe}(\mu^2)$ to the powers of $-\gamma$ and $-\delta$, the forms (14) and (15) are consistent with the corresponding forms given by Eqs. (12) and (13) and also (14) in Ref. [26] and by Eqs. (41) in Ref. [2]. For N_c colors and N_f quark flavors, the anomalous dimensions of the gluon and ghost propagator are respectively given by $\gamma = (-13N_c + 4N_f)/(22N_c - 4N_f)$ and $\delta = -9N_c/(44N_c - 8N_f)$ (see, e.g., Ref. [2]). This ensures $\gamma + 2\delta = -1$. The definition of the strong running coupling constant, Eq. (3), together

$$O_A(1/p^2) \approx \frac{C_A}{p^2} , \quad O_G(1/p^2) \approx \frac{C_G}{p^2} ,$$

where both C_A and C_G are in principle free parameters to be fixed by phenomenology. Still, we should mention that the effective gluon propagator advocated by Lavelle [20] would indicate $C_A \approx (0.640 \text{ GeV})^4$ for the following reason: for L and $D = 4$, the contribution which this gluon propagator receives from the so-called "pinch diagrams" vanishes, and its $\hat{\Pi}_A^{(p^2)}$ contribution

$$\Pi_A^{(p^2)} = \frac{34 N_c \alpha_s \hat{F}^A}{9(N_c^2 - 1)p^2} \approx \frac{(0.640 \text{ GeV})^4}{p^2} \text{ (8)}$$

stems entirely from the gluon polarization function in Ref. [19], provided one invokes some fairly plausible assumptions, like using equations of motion, to eliminate all condensates except $\langle F^2 \rangle$. The quark condensate $\langle \bar{q}q \rangle$ could also be neglected [20, 21]. Since Ref. [27] indicates that the true value of $\alpha_s(F^2)$ is still rather uncertain, and since Refs. [20, 21] make clear that Lavelle’s [20] propagator misses some (unknown) three- and four-gluon contributions, we do not attach too much importance to the precise value $C_A = (0.640 \text{ GeV})^4$ in Eq. (8), but just use it as an inspired initial estimate. Fortunately, the corresponding variations of C_A still permit good phenomenological fits, since we will find below that our results are not very sensitive to C_A.

There is no similar estimate for C_G, but one may suppose that it would not differ from C_A by orders of magnitude. We thus try $C_G = C_A = (0.640 \text{ GeV})^4$ as an initial guess. It will turn out, a posteriori, that this value of C_G leads to a remarkably good fit to phenomenology.

3. COUPLING ENHANCED BY THE GLUON CONDENSATES

Having set the stage, we are now ready to propose that $m_A^2 = -m_G^2 = \gamma \zeta_{pe}(p^2)$ leads to the enhancement of $\alpha_{pe}(p^2)$ at intermediate p^2. To derive the running coupling exhibiting this property, let us first recall the aforementioned perturbative corrections to OPE results (1), (9) and (10). In Eqs. (4), (5) and (7), gluon and ghost renormalization functions are parametrized by the coefficients m_A, C_A, and C_G, which are constants at the tree level but develop momentum dependence through the perturbative corrections. To see this, we note that the generic forms of the ghost and gluon renormalization functions including OPE contributions and perturbative QCD corrections (22, 23, 28) can be written as

$$Z(p^2) = \frac{1}{r_0^A(p^2) + \frac{r_1^A(p^2)}{p^2} + \frac{r_2^A(p^2)}{p^4} + \ldots} ,$$

$$G(p^2) = \frac{1}{r_0^G(p^2) + \frac{r_1^G(p^2)}{p^2} + \frac{r_2^G(p^2)}{p^4} + \ldots} .$$

where $r_0^A(p^2)$, $r_1^A(p^2)$, $r_2^A(p^2)$, etc., are the terms of mass-dimension 0, 2, 4, etc., for the gluon case, and $r_0^G(p^2)$, $r_1^G(p^2)$, $r_2^G(p^2)$, etc., are the terms of mass-dimension 0, 2, 4, etc., for the ghost case. For example, the terms of the dimension zero, up to one loop, are

$$r_0^A(p^2) = \left(\frac{\alpha_{pe}(p^2)}{\alpha_{pe}(\mu^2)} \right)^\gamma ,$$

$$r_0^G(p^2) = \left(\frac{\alpha_{pe}(p^2)}{\alpha_{pe}(\mu^2)} \right)^\delta ,$$

where γ and δ are, respectively, gluon and ghost anomalous dimensions. The perturbative corrections for the Wilson coefficients of dimension 2 have also been calculated for the pure Yang-Mills case by Boucaud et al. [28] (for the gluon propagator) and Kondo and collaborators [22, 23] (for both the gluon and ghost propagators), and since they imply that

$$r_2^A(p^2) = -r_2^G(p^2) = m_A^2(p^2) = -m_G^2(p^2) ,$$

we write the renormalization functions as

$$Z(p^2) = \left(\frac{\alpha_{pe}(p^2)}{\alpha_{pe}(\mu^2)} \right)^{-\gamma} \frac{1}{1 + \frac{m_A^2(p^2)}{p^2} + \frac{C_A(p^2)}{p^4} + \ldots} ,$$

$$G(p^2) = \left(\frac{\alpha_{pe}(p^2)}{\alpha_{pe}(\mu^2)} \right)^{-\delta} \frac{1}{1 - \frac{m_A^2(p^2)}{p^2} + \frac{C_G(p^2)}{p^4} + \ldots} .$$

The perturbative corrections for the Wilson coefficients of dimension four and higher have not been calculated yet, but we introduced also the notation

$$r_4^A(p^2) = C_A(p^2) , \quad r_4^G(p^2) = C_G(p^2) ,$$

to point out the correspondence of Eqs. (14) and (15) with the relations (14) and (15). The latter differ from the former just by the absence of the slowly varying logarithmic p^2-dependence in $m_A(p^2)$, $C_A(p^2)$, $C_G(p^2)$, and $\alpha_{pe}(p^2)$, and of the dots denoting terms of dimension larger than four.

Regarding the perturbatively generated prefactors $\zeta_{pe}(p^2)/\zeta_{pe}(\mu^2)$ to the powers of $-\gamma$ and $-\delta$, the forms (14) and (15) are consistent with the corresponding forms given by Eqs. (12) and (13) and also (14) in Ref. [26] and by Eqs. (41) in Ref. [2]. For N_c colors and N_f quark flavors, the anomalous dimensions of the gluon and ghost propagator are respectively given by $\gamma = (-13N_c + 4N_f)/(22N_c - 4N_f)$ and $\delta = -9N_c/(44N_c - 8N_f)$ (see, e.g., Ref. [2]). This ensures $\gamma + 2\delta = -1$. The definition of the strong running coupling constant, Eq. (3), together
with Eqs. (14) and (15), thus gives
\[
\alpha_s(p^2) = \alpha_{pe}(p^2) \frac{1}{1 + \frac{m_A^2(p^2)}{p^2} + \frac{C_A(p^2)}{p^2} + \ldots} \times \left(\frac{1}{1 - \frac{m_A^2(p^2)}{p^2} + \frac{C_A(p^2)}{p^2} + \ldots} \right)^2.
\] (17)

Neglecting the p^2-dependence in the coefficients m_A, C_A, and C_G, as well as the higher terms in the denominators, we finally get
\[
\alpha_s(p^2) \approx \alpha_{pe}(p^2) \frac{1}{1 + \frac{m_A^2}{p^2} + \frac{C_A}{p^2} \left(1 - \frac{m_A^2}{p^2} + \frac{C_A}{p^2} \right)^2}.
\] (18)

\[\equiv \alpha_{eff}(p^2) = \alpha_{pe}(p^2) Z^{N_{pe}}(p^2) G^{N_{pe}}(p^2)^2,\]
depicted in Fig. 1 by the solid line [for the parameter values (26), discussed below]. The suggestive abbreviations
\[
Z^{N_{pe}}(p^2) = \frac{1}{1 + \frac{m_A^2}{p^2} + \frac{C_A}{p^2}},
\] (19)
and
\[
G^{N_{pe}}(p^2) = \frac{1}{1 - \frac{m_A^2}{p^2} + \frac{C_G}{p^2}},
\] (20)
for the factors giving the deviation of Eq. (18) from the perturbative coupling $\alpha_{pe}(p^2)$, stress that our approximations amount to assuming that nonperturbative (N_{pe}) effects are given by the OPE-based results of Refs. (16, 18, 20, 21), which in our present case boil down to Eqs. (14) and (15), and by the parametrization (17).

Our final expression (18) for the running coupling, to be used in phenomenological calculations below, does not depend on the renormalization scale μ^2 explicitly, although $Z(p^2)$ and $G(p^2)$, appearing in the intermediate steps, still do. Namely, the same approximation applied to the gluon and ghost renormalization functions (14) and (15), gives
\[
Z(p^2) = \left(\frac{\alpha_{pe}(p^2)}{\alpha_{pe}(\mu^2)} \right)^{-\gamma} \frac{1}{1 + \frac{m_A^2}{p^2} + \frac{C_A}{p^2}},
\] (21)
\[
G(p^2) = \left(\frac{\alpha_{pe}(p^2)}{\alpha_{pe}(\mu^2)} \right)^{-\delta} \frac{1}{1 - \frac{m_A^2}{p^2} + \frac{C_G}{p^2}},
\] (22)
plotted in Figs. 2 and 3 as our $G(p^2)$ and $Z(p^2)$ [again for the parameter values (26)].

In our figures we also plot some results of lattice and ab initio DS studies. Namely, before we turn to our main goal, i.e., exploring whether our running coupling (18) leads to successful phenomenology when used in quark gap DS and bound-state BS equations through Eq. (1), we will first comment on the comparison of our gluon and ghost renormalization functions with some other results. In particular, recent Tübingen results of SU(2) lattice gauge simulations (12, 34, 35) and of ab initio DS studies (2, 37) agree with each other well for $G(p^2)$ and quite reasonably for $Z(p^2)$. This is seen in Figs. 2 and 3 (Also, the results in most recent Tübingen lattice reference (35), which however does not give the corresponding fitting formulas, are after proper renormalization somewhat lower than the results of Ref. (12) plotted in Figs. 2 and 3 and thus agree somewhat better with the displayed ab initio DS results (2, 31).) As can be seen in Fig. 3 there are some other lattice results (31, 32, 33) for the gluon renormalization function which agree with $Z(p^2)$ from DS approach (2, 30) even better, but they do not give the ghost renormalization function. Thus, Tübingen lattice results (12, 34, 35) are presently of particular interest, because they give both $Z(p^2)$ and $G(p^2)$. Admittedly, there is a caveat: while the ab initio DS studies (2, 37) do not have problems with reaching low momenta and in fact make strong statements about the asymptotic behavior in the $p^2 \rightarrow 0$ limit, the lattice data (12) do not reach very low momenta. The lowest data point for $G(p)$ as well as $\alpha(p)$ in Ref. (12) is at $p^2 \sim 0.36$ GeV2, so that one must keep in mind that for lower p^2, the corresponding lattice-data-fitting curves in Figs. 2 and 3 and therefore also in Fig. 1 are just extrapolations. Nevertheless, presently most important is that comparing the long-dashed and dotted curves in Fig. 1 shows that the respective running couplings (18) follow-

![FIG. 2: The momentum dependence of the ghost renormalization function $G(p^2)$. The solid curve is our result (22). The dotted curve is a result of the ab initio DS study (2). Concretely, it depicts the fit A in Eq. (41) of Ref. (2) evaluated at $\mu = 5$ GeV, for which value the dotted curve agrees rather well (in the displayed momentum range) with the long-dashed curve, representing Eq. (4) of the lattice Ref. (12), renormalized at $\mu = 5$ GeV. Our result (22) is therefore plotted for the same value of μ.](image)
ing from these “lattice”12, 34, 35 and “ab initio” DS2, 30 renormalization functions typically do not differ by more than the factor of two. Thus, in spite of the mentioned caveat, these lattice results12, 31, 32, 33 and the aforementioned D\textsubscript{3}SB scenario of Fischer and Alkofer2 support each other. Still, the behavior of QCD propagators, especially the ghost ones, and the resulting running coupling, is not a closed issue yet, so that the presently proposed scenario should also be considered although it is not supported by lattice results.

The examples36, 37, 38, 39 of lattice results differing from the Tübingen lattice12, 34 and “ab initio” DS2, 30 results are not only the relatively old ones such as those of Suman and Schilling on the ghost renormalization function (which abruptly falls for the very smallest probed momenta, possibly indicating the infrared vanishing behavior)36, 37, but also some of the most recent ones, such as Ref.38, where Landau gauge lattice calculations give the strong running coupling which, supposedly due to instanton effects, decreases1 at small momentum roughly as $p^4$38, 39.

Some other, quite independent methods, also give the QCD running coupling vanishing at small $p^2$10 although not so fast as our form15. Now, we want to make clear that we do not argue that our results are another indication that the running coupling indeed vanishes as $p^2 \to 0$, because we are aware (as we comment in more detail below) that the behavior of our running coupling at very small p^2 is just an artifact of the way Eq.18 was derived. Fortunately however, it turns out that the small-p^2 behavior does not influence much our final, observable results (in contradistinction to intermediate p^2’s). To see all this, let us discuss in detail the behavior of our form18 and especially the possible objections to it. The first, less serious one is that $\alpha_{\text{eff}}(p^2)$ ultimately hits the Landau pole as p^2 gets lower. However, we handle this as in other phenomenological DS studies4, 5, 6, 11, 12, 13, 14, 15, where this pole is shifted to timelike momenta in all logarithms: $\ln(p^2/\Lambda_{\text{QCD}}^2) \to \ln(x_0 + p^2/\Lambda_{\text{QCD}}^2)$. (Dynamical gluon mass can provide the physical reason for this16, i.e., $x_0 \propto m_0^2/\Lambda_{\text{QCD}}^2 \sim 10$.) For $\alpha_{\text{eff}}(p^2)$ we use the two-loop expression used before by JM4 and our earlier DS studies, e.g., Refs.11, 12, 13, 14, 15. This means the infrared (IR) regulator (to which all results are almost totally insensitive) is $x_0 = 10$, and $\Lambda_{\text{QCD}} = 0.228$ GeV. The parameters of $\alpha_{\text{eff}}(p^2)$ are thereby fixed and do not belong among variable parameters such as C_A and C_G.

Back to the possible objections: the second, in the present context the more serious one is that we cannot in advance give an argument that the factor $Z_{\text{Npe}}(p^2) G_{\text{Npe}}(p^2)^2$ in the proposed $\alpha_{\text{eff}}(p^2)$15 indeed approximates well nonperturbative contributions at low p^2 (say, $p^2 < 1$ GeV2), but can only hope that our results to be calculated will provide an a \textit{posteriori} justification for using it as low as $p^2 \sim 0.3$ GeV2 [since Eq.18 takes appreciable values down to about $p^2 \sim 0.3$ GeV2]. Of course, $Z_{\text{Npe}}(p^2)$ and $G_{\text{Npe}}(p^2)$ must be wrong in the limit $p^2 \to 0$, as the OPE-based results16, 18, 19, 20, 21 of Refs.16, 18, 19, 20, 21 certainly fail in that limit. Thus, the extreme suppression for small p^2 is an unrealistic artifact of the proposed form18 when applied down to the $p^2 \to 0$ limit. Nevertheless, because of the integration measure in the integral equations in DS calculations, integrands at these small p^2 do not contribute much, at least not to the quantities (such as $\langle \bar{q}q \rangle$ condensate, meson masses, decay constants and amplitudes) calculated in phenomenological DS analyses. Hence, the form of $\alpha_{\text{eff}}(p^2)$ at p^2 close to zero is not very important for the outcome of these phenomenological DS calculations.2 This is because the most important for the

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{fig3}
\caption{The momentum dependence of the gluon renormalization function $Z(p^2)$. The solid curve is our result21. The densely-dotted curve is the ab initio DS result (fit A) from Refs.2, 30. As in Fig.2 both the ab initio DS result and our Eq.24 are plotted for $\mu = 5$ GeV. The other curves pertain to some recent lattice results12, 31, 32, 33. The ones that agree with the ab initio DS result2, 30 very well, are those of Leinweber et al.31 (their Eq. (5.14), depicted here by the sparsely-dotted curve), and Eq. (3) of Iida et al.32 (dash-dotted curve) fitting the lattice data of Refs.33. The third lattice result for $Z(p^2)$ is displayed by the long-dashed curve. It corresponds to Eq. (3) of Ref.12, which is the fit (extrapolated all the way to $p^2 = 0$) to the lattice data of Ref.12. For all lattice results, the renormalization condition $Z(p^2) = 1$ is imposed at $\mu = 5$ GeV.}
\end{figure}

\footnotesize
1 Their strong running coupling becomes roughly 0.1 or smaller at $p^2 \sim 0.16$ GeV2, below which p^2 the lattice evaluation was found unreliable38.

\footnotesize
2 This is supported by, e.g., Fischer15, who found that nearly all dynamically generated mass is produced by the integration strength above $p^2 = 0.25$ GeV2.}
success of phenomenological DS calculations seems the enhancement at somewhat higher values of \(p^2 \) - e.g., see the humps at \(p^2 \approx 0.4 \) to 0.6 GeV\(^2 \) in the JM [4] or MRT interaction [5, 6] in Fig. 1. Our \(\alpha_{\text{eff}}(p^2) \) [18], the solid curve in Fig. 4, exhibits such an enhancement centered around \(p^2 \approx m_A^2/2 \). This enhancement is readily understood when one notices that Eq. (18) has four poles,

\[
(p^2)_{1,2} = \frac{1}{2} \left(m_A^2 \pm \sqrt{4C_G - m_A^2} \right), \quad (p^2)_{3,4} = \frac{1}{2} \left(-m_A^2 \pm \sqrt{4C_A - m_A^2} \right),
\]

in the complex \(p^2 \) plane. For \(\min\{C_G, C_A\} > m_A^2/4 \) there are no poles on the real axis, but saddles between two complex conjugated poles. For the DS studies, which are almost exclusively carried out in Euclidean space, space-like \(p^2 \), i.e., \(p^2 > 0 \) is the relevant domain and is thus pictured in Fig. 4. There, the maximum of \(\alpha_{\text{eff}}(p^2) \) [18] at the real axis is at \(p^2 \approx m_A^2/2 \), i.e., the real part of its double poles \((p^2)_{1,2} \) coming from \(G^{\text{NS}}(p^2)^2 \). The height and the width of the peak is influenced by both \(C_G \) and \(m_A \). The enhancement of \(\alpha_{\text{eff}}(p^2) \) [18] is thus determined by \(\langle A^2 \rangle \) through Eq. (4), and by the manner this condensate contributes to the ghost renormalization function.

We are thus motivated to use this form [18] of \(\alpha_{\text{eff}}(p^2) \) for all \(p^2 \) to test its success in DS calculations. We are aware of the shortcomings due to its oversimplified character, but its study helps to answer whether the \(\langle A^2 \rangle \) condensate, which has recently attracted so much attention, may be important for the enhancement of the effective interaction needed for successful DS phenomenology. The results presented below indicate that the \(\langle A^2 \rangle \) condensate may indeed provide an important mechanism not considered so far.

4. END RESULTS WITH DISCUSSION AND CONCLUSION

We solved the gap and BS equations [2] for quark propagators

\[
S(p) = \frac{1}{i\gamma \cdot p A(p^2) + B(p^2)} = \frac{A(p^2)^{-1}}{i\gamma \cdot p + M(p^2)}
\]

and for pseudoscalar meson \(q\bar{q} \) (\(q = u, d, s \)) bound-state vertices (\(\Gamma_q \)) in the same way as in our previous phenomenological DS studies, e.g., Refs. [11, 12, 13, 14, 15]. This essentially means as in the JM approach [4], except that instead of JM’s \(\alpha_{\text{eff}}(p^2) \), Eq. (18) is employed in the RLA interaction [10]. We can thus immediately present the results because we can refer to Refs. [1, 11, 12, 13, 14, 15] for all calculational details, such as procedures for solving DS and BS equations, all model details, as well as explicit expressions for calculated quantities and inputs such as the aforementioned IR-regularized \(\alpha_{\text{eff}}(p^2) \).

These calculations show that the initial \(m_A, C_A \) and \(C_G \) estimates motivated and given above, need only slight (a few %) modifications to provide a very good description of the light pseudoscalar sector. Concretely, now we will [both in the chiral limit (\(\chi \) limit) and realistically away from it] quote only results obtained for the parameter set

\[
C_A = (0.6060 \text{ GeV})^4 = C_G, \quad m_A = 0.8402 \text{ GeV},
\]

while a broader investigation of parameter dependence shows the following. i) The results are only weakly sensitive to moderate variations (up to the factors of 2 to 1/2) of \(C_A \). ii) Contrary to that, the results are very sensitive to \(m_A \) and \(C_G \), since they determine the peak of our \(\alpha_{\text{eff}}(p^2) \) [18]. However, between \(C_G^{\min} \sim (0.6 \text{ GeV})^4 \) and \(C_G^{\max} \sim (0.9 \text{ GeV})^4 \) there are many pairs of these quantities which give fits comparable (within a percent) to that resulting from the values [20], as long as they approximately satisfy the linear relation

\[
(C_G)^{1/4} = 0.7742 m_A - 0.0442 \text{ GeV}.
\]

Thus, the two parameters ruling the strength of \(\alpha_{\text{eff}}(p^2) \) are not independent.

![Figure 4: The momentum dependence of the dynamically generated quark mass \(M(p^2) \) for \(u \) and \(d \) quarks. The solid curve is our result for the parameters giving the second line of Table 1, but our \(M(p^2) \) depends in fact very little on the small explicit chiral symmetry breaking mass parameters \(\tilde{m}_u \) and \(\tilde{m}_d \) of the very light \(u \) and \(d \) quarks as long as their values are at all realistic. The dotted curve is the \(ab \text{ initio} \) DS result [2, 27]. The short-dashed curve is the \(M(p^2) \)-fit of Ref. [18] to the extrapolation of their lattice data to the chiral limit. The dash-dotted curve is the similar result from another lattice calculation, namely the fit of \(M(p^2) \) from Fig. 14 of Ref. [40].](image)

\[
\frac{f_q}{f_{\pi}} = f_{\pi^0} \approx 90.5 \text{ MeV}, \quad \pi^0 \to \gamma\gamma \text{ chiral-limit amplitude } T_{\pi^0\gamma}(\chi \text{ limit}) \approx \frac{1}{4(4\pi^2 f_{\pi})} = 0.280 \text{ GeV}^{-1}
\]

and the chiral condensate \(\langle q\bar{q} \rangle \) \(= \approx \frac{217 \text{ MeV}^3}{} \). We also get the correct QCD chiral-limit behavior: massless \(q\bar{q} \) pseudoscalars and satisfied (within \(\sim 4\% \)) GMOR.
In the chiral limit, where the quark mass is purely dynamically generated since the bare (and current) quark masses vanish, the only parameters are m_A, C_A and C_G. Away from the chiral limit, chiral symmetry is explicitly broken by the nonvanishing bare mass parameters \tilde{m}_u of light quarks ($q = u, d, s$) entering the quark-propagator gap equation and the $q\bar{q}$ BS equation. For the very light quarks u and d, the dynamically generated quark masses of u- and d-quarks away from the chiral limit are practically the same as in the chiral limit. In Fig. 4 the solid curve depicts our results for the momentum dependence of these dynamical masses $M(p^2) \equiv B(p^2)/A(p^2)$ of u- and d-quarks in the isosymmetric limit. Fig. 4 also presents the lattice results for the u- and d-quark dynamical masses of Refs. $[10, 11]$ which give their fits to \tilde{m}_u and the lattice results $[48, 49]$. Away from the chiral limit, chiral symmetry is explicitly generated since the bare (and current) quark masses vanish, the only parameters are $\alpha_{\text{eff}}(p^2)$ and our results for the masses and decay constants of pions and kaons. The second line shows that just a slight re-adjustment of the quark masses, to $\tilde{m}_u = \tilde{m}_d = 3.046$ MeV, $\tilde{m}_s = 67.70$ MeV, is enough to get an almost perfect fit to the pion and kaon masses.

The presented results allow us to conclude that the dimension 2 gluon condensate $\langle A^2 \rangle$ provides an enhanced effective interaction $\alpha_{\text{eff}}(p^2)$ which leads to a sufficiently strong $D_2\Sigma B$, pions and kaons as (quasi-)Goldstone bosons of QCD, and successful DS phenomenology at least in the light sector of pseudoscalar mesons. This opens the possibility that instead of modeling $\alpha_{\text{eff}}(p^2)$, its enhancement at intermediate p^2 may be understood in terms of gluon condensates.

M_{ϕ^0}	f_{π^+}	M_{K^+}	f_{K^+}	$T_{\gamma\gamma}^{\pi^0} [\text{GeV}^{-1}]$
136.17	93.0	516.28	112.5	0.256
134.96	92.9	494.92	111.5	0.256
134.98	92.4 ± 0.3	493.68	113.0 ± 1.0	0.274 ± 0.010

TABLE I: The masses and decay constants of pions and kaons and $\pi^0 \to \gamma \gamma$ decay amplitude $T_{\gamma\gamma}^{\pi^0}$, for the parameter values $[10]$ and our $\alpha_{\text{eff}}(p^2)$ $[11]$. The DM quark bare masses $m_u = m_d = 3.1$ MeV, $m_s = 73$ MeV give the first line. The second line are the results obtained with $m_u = m_d = 3.046$ MeV, $m_s = 67.70$ MeV. The last line gives the experimental values. (The distinction between neutral and charged mesons applies only to this line, as we calculate in the isosymmetric limit.) Everything is in MeV except $T_{\gamma\gamma}^{\pi^0}$.

Acknowledgment

The authors gratefully acknowledge the support of the Croatian Ministry of Science and Technology contracts 0119261 and 0098011.

[1] R. Alkofer and L. von Smekal, Phys. Rept. 353, 281 (2001) [arXiv:hep-ph/0007355].
[2] C. S. Fischer and R. Alkofer, Phys. Rev. D 67, 094020 (2003) [arXiv:hep-ph/0301094].
[3] P. Maris and C. D. Roberts, Int. J. Mod. Phys. E 12, 297 (2003) [arXiv:nucl-th/0301049].
[4] P. Jain and H. J. Munczek, Phys. Rev. D 48, 5403 (1993) [arXiv:hep-ph/9307221].
[5] P. Maris and C. D. Roberts, Phys. Rev. C 56, 3369 (1997) [arXiv:nucl-th/9708029].
[6] P. Maris and P. C. Tandy, Phys. Rev. C 60, 055214 (1999) [arXiv:nucl-th/9905056].
[7] A. Holl, A. Krassnig and C. D. Roberts, arXiv:nucl-th/0311033.
[8] A. Bender, C. D. Roberts and L. Von Smekal, Phys. Lett. B 380, 7 (1996) [arXiv:hep-th/9602012].
[9] A. Bender, W. Detmold, C. D. Roberts and A. W. Thomas, Phys. Rev. C 65, 065203 (2002) [arXiv:nucl-th/0202082].
[10] P. Maris, C. D. Roberts and P. C. Tandy, Phys. Lett. B 420, 267 (1998) [arXiv:nucl-th/9707003].
[11] P. Maris, A. Raya, C. D. Roberts and S. M. Schmidt, Eur. Phys. J. A 18, 231 (2003) [arXiv:nucl-th/0208071].
[12] J. C. R. Bloch, A. Cucchiari, K. Langfeld and T. Mendes, Nucl. Phys. Proc. Suppl. 119, 736 (2003) [arXiv:hep-lat/0209040].
[13] P. Boucaud, A. Le Yaouanc, J. P. Leroy, J. Micheli, O. Pene and J. Rodriguez-Quintero, Phys. Lett. B 493, 315 (2000) [arXiv:hep-ph/0008043].
[14] F. V. Gubarev, L. Stodolsky and V. I. Zakharov, Phys. Rev. Lett. 86, 2220 (2001) [arXiv:hep-ph/0010057].
[15] F. V. Gubarev and V. I. Zakharov, Phys. Lett. B 501, 28 (2001) [arXiv:hep-ph/0010006].
[16] K. I. Kondo, Phys. Lett. B 514, 335 (2001) [arXiv:hep-th/0105299].
[17] A very early work considering the (A^2) gluon condensate seriously, is L. S. Celenza and C. M. Shakin, Phys. Rev. D 34, 1591 (1986).
[18] M. J. Lavelle and M. Schaden, Phys. Lett. B 208, 297 (1988).
[19] M. Lavelle and M. Schaden, Phys. Lett. B 246, 487 (1990).
[20] J. Ahlbach, M. Lavelle, M. Schaden and A. Streibl, Phys. Lett. B 275, 124 (1992).
[21] M. Lavelle and M. Oleczek, Mod. Phys. Lett. A 7, 3617 (1992).
[22] K. I. Kondo, T. Murakami, T. Shinozaka and T. Imai, Phys. Rev. D 65, 085034 (2002) [arXiv:hep-th/0111256].
[23] K. I. Kondo and T. Imai, arXiv:hep-th/0206173.
[24] D. Dudal and H. Verschelde, J. Phys. A 36, 8507 (2003) arXiv:hep-th/0209025.
[25] M. A. Shifman, A. I. Vainshtein and V. I. Zakharov, Nucl. Phys. B 147, 385 (1979); ibid. 448 (1979).
[26] M. Lavelle, Phys. Rev. D 44, 26 (1991).
[27] B. L. Ioffe and K. N. Zyablyuk, Eur. Phys. J. C 27, 229 (2003) arXiv:hep-ph/0207183.
[28] P. Boucaud, A. Le Yaouanc, J. P. Leroy, J. Micheli, O. Pene and J. Rodriguez-Quintero, Phys. Rev. D 63, 114003 (2001) arXiv:hep-ph/0101302.
[29] C. S. Fischer and R. Alkofer, Phys. Lett. B 536, 177 (2002) arXiv:hep-ph/0202202.
[30] R. Alkofer, C. S. Fischer and L. von Smekal, Eur. Phys. J. A 17, 773 (2003) arXiv:hep-ph/0209366.
[31] D. B. Leinweber, J. I. Skullerud, A. G. Williams and C. Parrinello [UKQCD Collaboration], Phys. Rev. D 60, 094507 (1999) [Erratum-ibid. D 61, 079901 (2000)] arXiv:hep-lat/9811027.
[32] H. Iida, M. Oka and H. Suganuma, arXiv:hep-ph/0312328.
[33] P. D. R. Bonnet, P. O. Bowman, D. B. Leinweber, A. G. Williams and C. Parrinello [UKQCD Collaboration], Phys. Rev. D 64, 034501 (2001) arXiv:hep-lat/0101013, F. D. R. Bonnet, P. O. Bowman, D. B. Leinweber and A. G. Williams, Phys. Rev. D 62, 051501 (2000) arXiv:hep-lat/0002020.
[34] Tubingen lattice data are also supported by Sao Carlos lattice data.
[35] J. C. R. Bloch, A. Cucchieri, K. Langfeld and T. Mendes, Nucl. Phys. B 687, 76 (2004) arXiv:hep-lat/0312036.
[36] H. Suman and K. Schilling, Phys. Lett. B 373, 314 (1996) arXiv:hep-lat/9512003.
[37] H. Suman and K. Schilling, Nucl. Phys. Proc. Suppl. 53, 850 (1997).
[38] P. Boucaud, F. De Soto, A. Le Yaouanc, J. P. Leroy, J. Micheli, O. Pene and J. Rodriguez-Quintero, arXiv:hep-ph/0312332.
[39] P. Boucaud, F. De Soto, A. Le Yaouanc, J. P. Leroy, J. Micheli, H. Moutarde, O. Pene and J. Rodriguez-Quintero, JHEP 0304, 005 (2003) arXiv:hep-ph/0212192.
[40] K. Van Acoleyen and H. Verschelde, Phys. Rev. D 66, 125012 (2002) arXiv:hep-ph/0203211.
[41] D. Kekez and D. Klabučar, Phys. Lett. B 387, 14 (1996) arXiv:hep-ph/9605219.
[42] D. Klabučar and D. Kekez, Phys. Rev. D 58, 096003 (1998) arXiv:hep-ph/9710206.
[43] D. Kekez, B. Bistrović and D. Klabučar, Int. J. Mod. Phys. A 14, 161 (1999) arXiv:hep-ph/9809245.
[44] D. Kekez and D. Klabučar, Phys. Lett. B 457, 359 (1999) arXiv:hep-ph/9812495.
[45] D. Kekez and D. Klabučar, Phys. Rev. D 65, 057901 (2002) arXiv:hep-ph/0110019.
[46] J. M. Cornwall, Phys. Rev. D 26, 1453 (1982).
[47] C. S. Fischer, arXiv:hep-ph/0304233.
[48] J. B. Zhang, P. O. Bowman, D. B. Leinweber, A. G. Williams and F. D. R. Bonnet [CSSM Lattice collaboration], Phys. Rev. D 70, 034505 (2004) arXiv:hep-lat/0301018.
[49] P. O. Bowman, U. M. Heller and A. G. Williams, Phys. Rev. D 66, 014505 (2002) arXiv:hep-lat/0203001.