Contrasted release of insoluble elements (Fe, Al, REE, Th, Pa) after dust deposition in seawater: a tank experiment approach
Matthieu Roy-Barman, Lorna Folio, Eric Douville, Nathalie Leblond, Frédéric Gazeau, Matthieu Bressac, Thibaut Wagener, Céline Ridame, Karine Desboeufs, Cécile Guieu

Electronic Supplement

Submitted to Biogeosciences (July 28th, 2020)
Tab. ES1: REE and Th GEOTRACES standard analyses

	light REE	medium REE	heavy REE	Thorium												
	La	Ce	Pr	Nd	Sm	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu	232Th	230Th	
BATS 2000 m_1	17.9	5.37	3.84	0.12	17.2	0.5	3.56	0.2	0.89	0.05	4.9	0.2	0.79	0.03	5.57	0.2
BATS 2000 m_2	16.9	4.86	3.77	0.12	17.22	0.4	3.57	0.2	0.91	0.06	4.7	0.2	0.79	0.03	5.65	0.2
BATS 2000 m_3	16.4	4.94	3.72	0.12	16.96	0.5	3.58	0.2	0.89	0.04	4.5	0.2	0.76	0.03	5.53	0.2
average	17.1	5.06	3.77	0.08	17.12	0.2	3.57	0.02	0.97	0.01	4.7	0.3	0.76	0.01	5.57	0.1
consensual value	23	5.0	3.9	16.9	3.4	0.9	4.7	0.8	5.7	1.5	4.9	0.7	4.6	0.8	208	38
	2.7	2.2	0.3	1.2	0.3	0.1	0.5	0.1	0.4	0.1	0.2	0.0	0.2	0.0	42	6
Tab. ES2: Dissolved Fe and Al data

Station	tank	time (h)	DFe (nM)	DAI (nM)	Station	tank	time (h)	DFe (nM)	DAI (nM)	Station	tank	time (h)	DFe (nM)	DAI (nM)		
TYR	C1	0	1.54	46.3	ION	C1	0	2.49	69.6	FAST	C1	0	1.73	24.1		
	C1	24	1.11	47.4		C1	24	1.60	80.3		C1	24	1.34	23.5		
	C1	72	1.60	47.8		C1	72	1.37	81.1		C1	72	0.88	27.4		
	C2	0	1.53	50.3		C2	0	2.49	79.6		C2	0	1.94	24		
	C2	24	0.67	42.8		C2	24	1.78	80.2		C2	24	1.80	23.5		
	C2	72	1.41	46.1		C2	72	1.55	71		C2	72	0.99	27.7		
D1	0	1.46	43.9		D1	0	2.84	70.7		D1	0	6.68	49			
	24	1.45	79			24	1.64	115.7			24	2.66	61			
	72	1.35	102.2			72	1.64	138.4			96	9.69	107.4			
D2	0	1.61	44.1		D2	0	NA	70.7		D2	0	6.14	22.4			
	24	0.53	81.2			24	1.52	113.4			24	3.93	62.7			
	72	0.87	98.7			72	1.36	135.6			96	2.01	99.3			
G1	0	1.73	45.4		G1	0	5.10	83		G1	0	3.05	25.4			
	24	0.71	86.6			24	2.52	112.7			24	2.29	62.7			
	72	3.21	109.9			72	3.53	136.4			96	2.85	107.7			
G2	0	1.13	48.8		G2	0	2.04	79.3		G2	0	1.59	23.6			
	24	1.05	76			24	1.53	112.5			24	3.89	60.5			
	72	0.90	101.3			72	1.45	144.2			96	1.16	104.3			
Rank	time	Ba	Ce	Ce	Eu	Gd	Gd	Ho	Ho	Tb	Tb	Yb	Yb	Zr	Zr	
------	------	----	----	----	----	----	----	----	----	----	----	----	----	----	----	
ION C1	7.4	119	1	1	0.4	0.4	0.3	0.1	0.4	0.4	0.3	0.1	0.4	0.4	0.3	0.1
ION C2	7.4	119	1	1	0.4	0.4	0.3	0.1	0.4	0.4	0.3	0.1	0.4	0.4	0.3	0.1
ION C3	7.4	119	1	1	0.4	0.4	0.3	0.1	0.4	0.4	0.3	0.1	0.4	0.4	0.3	0.1
ION C4	7.4	119	1	1	0.4	0.4	0.3	0.1	0.4	0.4	0.3	0.1	0.4	0.4	0.3	0.1
ION C5	7.4	119	1	1	0.4	0.4	0.3	0.1	0.4	0.4	0.3	0.1	0.4	0.4	0.3	0.1
ION C6	7.4	119	1	1	0.4	0.4	0.3	0.1	0.4	0.4	0.3	0.1	0.4	0.4	0.3	0.1
ION C7	7.4	119	1	1	0.4	0.4	0.3	0.1	0.4	0.4	0.3	0.1	0.4	0.4	0.3	0.1
ION C8	7.4	119	1	1	0.4	0.4	0.3	0.1	0.4	0.4	0.3	0.1	0.4	0.4	0.3	0.1
ION C9	7.4	119	1	1	0.4	0.4	0.3	0.1	0.4	0.4	0.3	0.1	0.4	0.4	0.3	0.1
Tab. ES4: Major elements in the sediment traps

Sample	sampling period	Particulate mass flux	POC flux	total Al flux	total Fe flux	BSi flux	BioFe flux	Delta Fe	BioAl flux	DeltaAl	fraction of seeded Al in the trap
Tyr C1	3 day	mg/m²/d	mg/m²/d	mg/m²/d	mg/m²/d	mg/m²/d	mg/m²/d	nmol/L	mg/m²/d	nmol/L	
Tyr C2	3 day	0.8	0.3	ND	ND	ND	0.0001	0.01	62%		
Tyr D1	3 day	1.5	0.5	ND	ND	ND	0.0003	0.02	ND		
Tyr D2	3 day	1.652	22.7	78	42	34	0.0106	0.68	57%		
Tyr G1	3 day	1.841	24.4	87	48	40	0.0113	0.73	64%		
Tyr G2	3 day	1.805	27.2	89	47	41	0.0126	0.82	65%		

Bio-Fe-flux calculated based on a Fe/C ratio of 100 μmol/mol. Bio-Al-flux calculated based on an Al/Si ratio of 8000 μmol/mol.
Fig. ES1: Transect of the PEACETIME cruise. 10 short stations are numbered from St.1 to St.10. Stars named TYR, ION, and FAST indicate the 3 long stations where tank experiments were conducted. This map was drawn with General Mapping Tool (Wessel et al., 2019) using the General Bathymetric Chart of the Oceans data (https://www.gebco.net/).
Fig. ES2: Shale-normalized concentrations of filtered seawater and trapped particles. Note the scale break in the middle of the graph.
Reference:
Wessel, P., Luis, J. F., Uieda, L., Scharroo, R., Wobbe, F., Smith, W. H. F., & Tian, D. (2019). The Generic Mapping Tools version 6. *Geochemistry, Geophysics, Geosystems*, 20, 5556–5564. https://doi.org/10.1029/2019GC008515