Objectives

The goal of the Graduate Program in Physics is to develop individual creativity and expertise in the fields of physics. In pursuit of this objective, study in the program is strongly focused on research. Students are encouraged to begin participating in ongoing research activities from the beginning of their graduate studies. The research experience culminates with the doctoral dissertation, the essential element of the PhD program that prepares students for careers in academia, government laboratories, or industry. A Master of Science degree is offered to those seeking to acquire or maintain technical mastery of both fundamentals and current applications.

Admission Requirements

The University's general admission requirements are discussed on the Graduate Admission page (catalog.utdallas.edu/2013/graduate/admission).

The Graduate Physics Program seeks students who have a BS degree in Physics or closely related subjects from an accredited university or college, and who have superior skills in quantitative and deductive analysis. Decisions on admission are made on an individual basis. However, as a guide, a combined score on the verbal and quantitative parts of the GRE of 308, with at least 155 on the quantitative part, is advisable based on past experience with student success in the program. In addition, an official score on the GRE Subject Test in Physics is required.

For graduate work it is assumed that the student has an undergraduate background that includes the following courses at the level indicated by texts referred to: mechanics at the level of Symon, Mechanics; electromagnetism at the level of Reitz and Milford, Foundations of Electromagnetic Theory; thermodynamics at the level of Kittel, Thermal Physics; quantum mechanics at the level of Griffiths, Introduction to Quantum Mechanics (chapters 1-4), some upper-division course(s) in modern physics, and atomic physics. Students who lack this foundation may be required to take one or more
undergraduate courses to complete their preparation for graduate work.

Financial Support

A limited number of teaching assistantships (TAs) are awarded to those students displaying the most promise in teaching or research. Specific decisions regarding TA awards are made on an individual basis. Students who wish to be considered for financial support are encouraged to submit completed applications by February 1st for admission in the fall semester. Admission for the spring term is possible, but opportunities for financial support in such cases are extremely limited and not guaranteed. Teaching assistantship awardees are required to complete 12 graduate physics courses approved by the graduate advisor during the first 24 months in residence. Continuation of support is evaluated yearly and requires achievement of a minimum GPA of 3.0, and a satisfactory record in teaching or research assignments. Financial support is preferentially provided to students in the PhD track.

Specializations

The central principle in the structure of the graduate program is that a student's progress and ultimate success is best served by early and varied research experiences coupled with individually tailored course sequences. Current areas of research specialization in the physics program are: Atmospheric and Space Physics; Astrophysics/Cosmology/Relativity; Condensed Matter Physics/Materials Science; and High Energy Physics. Further details on the current research topics in these areas are provided below.

Astrophysics, Cosmology and Relativity

This research group studies fundamental problems in theoretical astrophysics, contemporary cosmology, and relativity. These research efforts typically involve analytical, numerical, and cosmological-data related projects. The group is instrumental in organizing the biennial Texas Symposia on Relativistic Astrophysics, beginning in Dallas in 1963 and recurring regularly all over the world since then. Current areas of research include: gravitational lensing (lenses) and its applications to cosmology; the acceleration of the expansion of the universe (cosmological constant, dark energy); fitting cosmological models to observational data (e.g. CMB, lensing, supernovae); dark matter; the structure of the big bang; the role of inflation; computer algebra systems applied to general relativity and cosmology; space-time junction conditions and wormholes; cosmological models of wider generality than the classical homogeneous models and their possible observational signatures. More specific information is available at: www.utdallas.edu/~mishak/relativitycosmology.html.

Atmospheric and Space Physics

Research in Atmospheric and Space Physics encompasses both theory and experiment, with emphasis on aeronomy, ionospheric physics, planetary atmospheres, atmospheric electricity and its effects on weather and climate, and space instrumentation. Much of the research occurs in the William B. Hanson Center for Space Sciences, which includes laboratory facilities for instrument design, fabrication, and testing. Faculty and students participate in ongoing satellite missions sponsored by NASA and DoD, and suborbital sounding rockets. Most students participate in analysis of large data sets from previous missions, and from ground-based optical and radar instruments at locations ranging
from Greenland to South America. Particular areas of interest include large and small
scale dynamics and electrodynamics, numerical modeling of the thermosphere and
ionosphere, characteristics of the near earth plasma environment, the effects of solar
variability on atmospheric electricity, cloud microphysics and tropospheric dynamics,
plasma instabilities and irregularities, and development and testing of innovative space
flight instrumentation. Computer facilities include a network of dedicated workstations
and access to supercomputers. For further details see www.utdallas.edu/research/spac
esciences.

High Energy Physics and Elementary Particles
The UT Dallas High Energy Physics Group collaborates on the Atlas experiment at the
CERN Large Hadron Collider (LHC) and the BaBar experiment, at the PEP-II asymmetric
b factory located at the Stanford Linear Accelerator Center (SLAC). Atlas will search for
the Higgs boson, believed to be responsible for electroweak symmetry breaking, for
new physics beyond the standard model such as supersymmetric partners to known
particles, and for new hadrons. Atlas data-taking will begin in 2009. BaBar measures CP
violation in the decays of bottom mesons and is exploring whether the origin of this CP
violation lies within the Standard Model. BaBar data is fertile ground for precision and
rare decays of bottom and charm particles, and tau lepton. The group explores both
charmonia and a class of unexpected particles with charm-anticharm quark content
with properties that are quite different from conventional charmonium. BaBar has
completed data-taking and is analyzing its data. The group's research is funded by the
U.S. Department of Energy. The UT Dallas High Energy Physics group specializes in high
performance computing, simulation production, and data analysis while contributing to
the commissioning and operation of experiments. Additional information can be found
at: www.utdallas.edu/~joe/hepweb/utdhep.html

Solid State/Condensed Matter Physics/Materials Science
Materials Science is at the interface of many disciplines and involves a collaborative
approach with colleagues in chemistry, and electrical engineering. Our research
facilities are distributed over the physics laboratories, the Alan G. MacDiarmid
NanoTech Institute (nanotech.utdallas.edu) and Electrical Engineering Clean Room.
Research in Materials Science involves both experiment and theory with emphasis on
the physical aspects of solid state materials, optical properties of solids, Raman
scattering, physical properties of thin films, and carbon nanotubes. Various nanoscale
and synthetic materials are being studied for their optical, electronic, magnetic and
transport properties, as well as applications in photonics, spintronics and
(opto)electronics. The materials of interest include nanostructures (quantum dots and
wires, fullerenes and carbon nanotubes) and low-dimensional systems, photonic band
gap crystals and "left-handed" electromagnetic meta-materials, organic and polymeric
materials. Unconventional superconductivity and superconducting nanostructures are
also under investigation.
The interaction of nanoscale materials, such as carbon nanotubes, with biological
entities are being investigated for prospective biomedical and electronic applications.
For example, chemically functionalized carbon nanotubes are being studied as building
blocks in transistor and sensor applications.

Degree Requirements
The University's general degree requirements are discussed on the Graduate Policies an
All candidates for graduate degrees in physics must satisfy general University degree requirements. Well prepared students may demonstrate by examination adequate knowledge of the core and basic course material. In addition to the general university graduation requirements, graduation in physics requires achieving a grade of B or better in each core course in the MS and PhD programs.

Master of Science in Physics

30 hours minimum

A minimum total of 30 graduate credit hours is required, including the core courses listed below.

Core Courses: 12 hours

- PHYS 5301 Mathematical Methods of Physics I
- PHYS 5311 Classical Mechanics
- PHYS 5320 Electromagnetism I
- PHYS 6300 Quantum Mechanics I

Elective courses: 18 hours

In addition to the core courses, 18 hours of additional graduate level physics or related field courses must be successfully completed by MS candidates in physics, with prior approval from the graduate advisor. Up to 6 hours of elective credit may be satisfied through approved industrial internships, supervised research, or the satisfactory completion of an MS thesis. Prior approval for these options must be obtained from the graduate advisor.

Doctor of Philosophy in Physics

75 hours minimum beyond the baccalaureate degree

Core Courses

A minimum of 24 credit hours in the graduate core sequence are required for the PhD degree, plus additional courses specified by the student’s thesis committee chair. The required core courses must include

- PHYS 5301 Mathematical Methods of Physics I
- PHYS 5302 Mathematical Methods of Physics II
- PHYS 5311 Classical Mechanics
- PHYS 5313 Statistical Physics
- PHYS 5320 Electromagnetism I
- PHYS 5322 Electromagnetism II
Students in space sciences must also take

PHYS 6383 Plasma Science

A candidate must also take a minimum of 3 elective courses, 1 from within his/her area of specialization and 2 selected from outside the student's specialty area. Additional courses may be required to satisfy the particular degree requirements and/or to ensure sufficient grounding in physical principles. The graduate advisor and the student's supervisory committee must approve course selections. A minimum of one year residency after admission to the doctoral program is required.

Students are required to take and pass a qualifying examination during their first year in the PhD program. The qualifying examination is normally given in January of the first year of graduate study. At the discretion of the Physics Qualifying Exam Committee, a student may pass the exam, fail the exam, or be offered a second attempt at the qualifying examination. A second attempt, if offered, will normally be given before the end of the summer semester of the first year of graduate study. A student taking the second attempt will either pass or fail the exam; under no circumstances will a third attempt be given.

Students who fail the qualifying examination will be ineligible to continue enrollment in the physics graduate program after the completion of their first full year in residence. After a student has completed the required coursework with a minimum grade of B in each core course and a minimum GPA of 3.0 for all courses, passed the qualifying examination, and decided upon his/her field of specialization, the student is required to identify a dissertation topic and form a Supervising Committee to guide the student's dissertation work. The student must submit a proposal that outlines the present state of knowledge of the field and presents the research program the student expects to accomplish for the dissertation. This proposal must be approved by the Supervising Committee and the Department Head. A seminar on the dissertation proposal must be presented, followed by an oral examination conducted by the faculty on the proposed area of research and related topics. The Supervising Committee shall determine by means of the exam and any ancillary information whether the student is adequately prepared and has the ability to conduct independent research. The approved dissertation proposal is then filed with the Dean of Graduate Studies. An approved dissertation proposal is normally expected no later than the end of the first semester of the student's third year.

A manuscript embodying a substantial portion of the dissertation research accomplished by the student must be submitted to a suitable professional refereed journal prior to the public seminar and dissertation defense. A public seminar, successful defense of the dissertation, and its acceptance by the supervising committee conclude the requirements for the PhD In lieu of the traditional dissertation, and at the discretion of the supervising professor, a manuscript dissertation following the guidelines published by the Graduate Dean's Office may be substituted.

Core Course listing for Doctor of Philosophy

24 credit hours required, 27 semester credit hours for Space Science

PHYS 5311 Classical Mechanics
PHYS 5313 Statistical Physics
PHYS 5320 Electromagnetism I
PHYS 5322 Electromagnetism II
PHYS 5301 Mathematical Methods of Physics I
PHYS 5302 Mathematical Methods of Physics II
PHYS 6300 Quantum Mechanics I
PHYS 6301 Quantum Mechanics II
PHYS 6383 Plasma Science (required core course for Space Science students)

Updated: 2019-08-09 13:08:17 v2.51d0c9