Supplementary material on the three causality statistics

This appendix details the three applied pairwise causality statistics. Recall that DirectLiNGAM performs two Ordinary Least Squares regressions: one with \(x_d \) as independent/predicting variable and \(x_s \) as outcome, and another with \(x_s \) as independent and \(x_d \) as the outcome. Then the causal antecedence is determined based-on which one is statistically less dependent of its residuals, \(x_d \) or \(x_s \) (see Methods). If we denote by \(M(x_d, x_s) \) the mutual information between \(x_d \) and regression-residual of \(x_s \) and by \(M(x_s, x_d) \) the mutual information between the opposite configuration, then under the LiNGAM assumptions the inequality \(M(x_d, x_s) < M(x_s, x_d) \) implies that \(x_d \) is the causal antecedent and vice versa. Therefore, we can use the quantity

\[
T(x_d, x_s) = M(x_s, x_d) - M(x_d, x_s)
\]

as a causality statistic whose positive values indicate that \(x_d \) causes \(x_s \), whereas the negative values indicate the opposite causality. Since we use the exact same kernel-based pairwise quantity \(M(\cdot, \cdot) \) that the DirectLiNGAM-algorithm uses when deriving causal ordering of variables [2], we call this statistic \(T \) as the DirectLiNGAM-statistic; it aims to use general dependency information in variables. More restricted deviations from Gaussianity can also be used for the causality estimation.

The other statistics that function like \(T \) with respect to positive and negative values are the skewness- and kurtosis-based statistics. These use only some deviations from Gaussian distribution; namely, skewness and kurtosis. Let variables \(x_d \) and \(x_s \) be standardized (mean zero, variance one) and multiplied with the sign of their skewness (resulting in positive skewness), then the desired skewness-based statistics is
\[T_{\text{skew}}(x_d,x_s) = \rho(x_d,x_s)E[x_d^2 x_s - x_s^2 x_d], \]

where E is sample average or expectation, and \(\rho(\cdot,\cdot) \) is the correlation of input variables. The below theorem establishes that under LiNGAM assumptions, a positive value of \(T_{\text{skew}}(x_d,x_s) \) indicates that \(x_d \) is cause and a negative value indicates the antecedence of the second argument. The kurtosis-, or sparseness-based, statistic can also be derived, but it suffers from a lack of robustness and from sign-indeterminacy [3]. A hyperbolic tangent function (tanh) offers a more useful approximation [3, 32]. The explicit rationale is beyond present scope, but the ensuing statistic is

\[T_{\text{tanh}}(x_d,x_s) = \rho(x_d,x_s)E[x_d \tanh(x_s) - x_s \tanh(x_d)], \]

where the input variables must be standardized. We call this the Tanh-based causality statistic.

\(T_{\text{skew}} \) and \(T_{\text{tanh}} \) apply only to standardized variables, but DiractLiNGAM-based statistic \(T \) can be applied to standardized and non-standardized variables; when everything goes according to assumptions, \(T \) should be invariant with respect to standardization [2]. Therefore we sometimes also provide results for both standardized and original variables in order to directly evaluate the sensitivity for scaling. For standardized random variables \(X_1, X_2, \) and \(X_3 \) the third cumulant, \(\text{cum}(X_1, X_2, X_3) = E[X_1X_2X_3], \) is multilinear (i.e., linear in each argument). Skewness of a standardized variable \(X \) is \(\text{skew}(X) = \text{cum}(X, X, X) \) [3, 32]. The following theorem is re-stated from previous work [3], and it proves that \(T_{\text{skew}} \) has the desired properties; that is, its sign implies the correct causality under the LiNGAM assumptions.

\textbf{Theorem.} Let \(x \) and \(y \) be two standardized variables with positive skewness. If \(y = px + e, \) with independent variables \(x \) and \(e \) and a constant coefficient \(p, \) then
\[
T_{\text{skew}}(x,y) = \text{skew}(x)(\rho^2 - \rho^3), \quad (1)
\]

And if the causal direction is opposite, \(x = \rho y + e \), then
\[
T_{\text{skew}}(x,y) = \text{skew}(y)(\rho^3 - \rho^2). \quad (2)
\]

Before proving the theorem, notice that variances of one for \(x \) and \(y \) force \(|\rho| < 1 \), and therefore the theorem implies that \(T_{\text{skew}}(x,y) \) is positive when the first argument is cause and negative when the latter argument is the cause, provided the skewnesses of arguments are positive. If a variable \(x^* \) has a negative skewness, then the theorem can nonetheless be applied to \(x = \text{sign}(%(\text{skew}(x^*))%x^* \), which has a positive skewness. In practice, \(\rho \) is the usual correlation coefficient. Notice that \(\text{skew}(x) = 0 \) when \(x \) is a Gaussian variable.

Proof. Given the other assumptions and \(y = \rho x + e \), we have
\[
T_{\text{skew}}(x,y) = \rho(x,y)E[x^2y - xy^2]
\]
\[
= \rho[\text{cum}(x,x,\rho x + e) - \text{cum}(x,\rho x + e,\rho x + e)].
\]

Because of multilinearity of the third cumulant, we obtain that the latter quantity is
\[
\rho[\rho\text{cum}(x,x,x) + \text{cum}(x,x,e) - \rho^2\text{cum}(x,x,x) - 2 \rho\text{cum}(x,x,e) - \text{cum}(x,e,e)]
\]
\[
= \rho[\rho\text{skew}(x) - \rho^2\text{skew}(x)] = \text{skew}(x)(\rho^2 - \rho^3).
\]

This proves the equation 1, and equation 2 results from the symmetry \(T_{\text{skew}}(y,x) = -T_{\text{skew}}(x,y) \). The second identity applied the fact that \(\text{cum}(x,x,e) = E[x^2 e] = E[x^2]E[e] = \)
\[0 = E[x]E[e^2] = E[xe^2] = \text{cum}(x,x,e) \text{ for any square-integrable, standardized, and independent variables } x \text{ and } e. \]