Folded Polynomial Codes for Coded Distributed AA^\top-Type Matrix Multiplication

Jingke Xu†, Yaqian Zhang†, and Libo Wang†

Abstract—In this paper, due to the important value in practical applications, we consider the coded distributed matrix multiplication problem of computing AA^\top in a distributed computing system with N worker nodes and a master node, where the input matrices A and A^\top are partitioned into m-by-p and p-by-m blocks of equal-size sub-matrices respectively. For effective straggler mitigation, we propose a novel computation strategy, named folded polynomial code, which is obtained by modifying the entangled polynomial codes. Moreover, we characterize a lower bound on the optimal recovery threshold among all linear computation strategies when the underlying field is the real number field, and our folded polynomial codes can achieve this bound in the case of $m = 1$. Compared with all known computation strategies for coded distributed matrix multiplication, our folded polynomial codes outperform them in terms of recovery threshold, download cost, and decoding complexity.

Index Terms—Coded distributed computing, matrix multiplication, recovery threshold, folded polynomials.

I. INTRODUCTION

As THE era of big data advances, coded distributed computing has emerged as an important approach to speed up large-scale data analysis tasks, such as machine learning, principal component analysis and graph processing. However, this may engender additional communication overhead, or lead to a computational bottleneck that arises due to the unpredictable latency in waiting for the slowest servers to finish their computations, referred to as straggler effect [7], [30]. It has been demonstrated in [26] and [30] that stragglers may run 5 to 8 times slower than the typical worker on Amazon EC2 and thus cause significant delay in calculation. To mitigate straggler, researchers inject redundancy by using error-correcting codes and design many coded computation strategies [10], [19], [20], [28]. The issue of straggling has become a hot topic in area of coded distributed computation [2], [3], [11], [21], [26].

As a fundamental building block of many computing applications, large scale distributed matrix multiplication has been used to process massive data in distributed computing frameworks, such as MapReduce [8] and Apache Spark [35]. The problem of coded distributed matrix multiplication (CDMM) can be formulated as a user wants to compute the product $C = AB$ of two large data matrices A and B through a distributed computing system that consists of a master node and N worker servers. The master node evenly divides A and B into block matrices and encodes them. Then, the master node assigns the encoded sub-matrices to the corresponding worker servers, who compute the product of encoded sub-matrices and return them to the master. After receiving the results from the worker servers, the master node can easily obtain the product C.

To characterize the robustness against stragglers effects of a computation strategy, the recovery threshold [33] is defined as the minimum number of successful (non-delayed, non-faulty) worker servers that the master node needs to wait for completing the task.

Recently, straggler mitigation in CDMM has been deeply studied in the literature. The problem of CDMM was considered in [19] and [20] by using maximum distance separable codes to encode the input matrices. In [33], Yu et al. designed a novel coded matrix-multiplication computation strategy, Polynomial codes, that outperformed classical works [14], [16] in algorithm-based fault tolerance (ABFT) with respect to the recovery threshold. Polynomial codes have the recovery threshold mn, where the input matrix A is vertically divided into m row block sub-matrices and B is horizontally divided into n row block sub-matrices. While Dutta et al. in [12] constructed MatDot codes which reduced the recovery threshold to $2p + 1$ for p-column-wise partitioning of matrix A and p-row-wise partitioning of B at the cost of increasing the computational complexity and download cost from each worker server [23]. Entangled polynomial (EP) codes [34] and generalized PolyDot codes [9] were independently constructed to build the general tradeoff between recovery threshold and download cost by arbitrarily partitioning the two data matrices
into \(m \)-by-\(p \) and \(p \)-by-\(n \) blocks of equal-size sub-matrices respectively, which bridged the gap between Polynomial codes [33] and MatDot codes [12]. Moreover, Yu et al. in [34] also discussed the lower bound of the recovery threshold for linear coded strategies, and determined an entangled polynomial code achieving the optimal recovery threshold among all linear coded strategies in the cases of \(m \)-by-\(n \) matrix, which implies that it is particularly important to determine an entangled polynomial code achieving the optimal recovery threshold among all possible linear coded strategies, and determined an entangled polynomial code achieving the optimal recovery threshold among all possible linear coded strategies. Comparisons between folded polynomial codes and previous schemes, and some numerical experiments are given in Section V. Finally, Section VI concludes the paper.

II. PROBLEM STATEMENT AND PRELIMINARIES

A. Notations and Problem Formulation

Let \(F \) be a field and \(\text{char} F \) be the characteristic of \(F \). Denote the set of all polynomials with \(n \) variables over \(F \) by \(F[x_1, x_2, \ldots, x_n] \). For \(n_1 < n_2 \in \mathbb{N} \), denote \([n_1 : n_2] = \{n_1, n_1 + 1, \ldots, n_2\} \). The cardinality of a set \(S \) is denoted by \(|S| \). We usually use capital letters to denote matrices (e.g., \(A, B \)) and bold lowercase letters to represent vectors (e.g., \(a, b \)), and \(A^\top \), \(a^\top \) denote the transpose of matrix \(A \) and vector \(a \), respectively. The \(i \)-th element of a vector \(a \) is denoted by \(a_i \) and \([A]_{i,j} \) represents the \((i, j)\)-th entry of a matrix \(A \). For \(X = \{ \beta_i \in F : i \in [1 : n] \} \) and \(G = \{g_i(x) \in F[x] : i \in [1 : k]\} \), define a matrix \(M(\beta, X) = (g_i(\beta_j))_{i,j \in [1 : n]} \in \mathbb{F}^n \) whose \((i, j)\)-entry is \(g_i(\beta_j) \). Define \(\text{Span}(G) = \{\sum_{i=1}^n a_i g_i(x) : a_i \in F, i \in [1 : k]\} \), which is a linear space over \(F \).

We consider the matrix product \(C = AA^\top \), which is computed in a distributed computing system consisting of a master node and \(N \) worker nodes. We assume that each worker node only connects to the master node and all the connected links are error-free and secure.

Formally, the master node first encodes its matrices for the \(i \)-th worker node as \(A_i \) and \(B_i \) according to the functions \(f = (f_1, f_2, \ldots, f_N) \) and \(g = (g_1, g_2, \ldots, g_N) \), where \(A_i = f_i(A) \) and \(B_i = g_i(A^\top) \) for \(1 \leq i \leq N \). After receiving the encoded matrices \(\tilde{A}_i, \tilde{B}_i \), the \(i \)-th worker node computes \(\tilde{C}_i = \tilde{A}_i \tilde{B}_i \) and returns it to the master. Some workers may fail to respond or respond after the master recovers the product, we call such workers as stragglers. For effective straggler mitigation, the master only receives the answers from some subset of workers to recover the product \(AA^\top \) by using a class of decoding functions \(d = \{d_R : R \subseteq [N]\} \), i.e., \(AA^\top = d_R(\tilde{C}_i : i \in R) \) for some \(R \).

The recovery threshold of a computation strategy \((f, g, d)\), denoted by \(R(f, g, d) \), is defined as the minimum integer \(k \) such that the master node can recover the product \(AA^\top \) through any \(k \) workers’ answers for all possible data matrix \(A \). Note that the recovery threshold represents the least number of answers that the master needs to collect for recovering the product \(AA^\top \), so the recovery threshold is an important metric to measure the performance of a computation strategy and it is desired to be as small as possible.

In this paper, we aim to design a computation strategy with the minimum possible recovery threshold for the above mentioned computing problem. Since linear codes have low complexity in the encoding and decoding process with respect to the size of the input matrices among all possible computation strategies, we are interested in linear codes in the following.
Definition 1: For the distributed matrix multiplication problem of computing $A A^T$ using N workers, we say that a computation strategy is a linear code with parameters m, p, if there is a partitioning of the input matrices $A \in \mathbb{F}^{p \times p}$ and $A^T \in \mathbb{F}^{q \times q}$, where each matrix is evenly divided into the following sub-matrices of equal sizes:

$$A = \begin{pmatrix}
A_{0,0} & A_{0,1} & \cdots & A_{0,p-1} \\
A_{1,0} & A_{1,1} & \cdots & A_{1,p-1} \\
\vdots & \vdots & \ddots & \vdots \\
A_{m-1,0} & A_{m-1,1} & \cdots & A_{m-1,p-1}
\end{pmatrix},$$

$$A^T = \begin{pmatrix}
A_{0,0}^T & A_{1,0}^T & \cdots & A_{m-1,0}^T \\
A_{0,1}^T & A_{1,1}^T & \cdots & A_{m-1,1}^T \\
\vdots & \vdots & \ddots & \vdots \\
A_{0,p-1}^T & A_{1,p-1}^T & \cdots & A_{m-1,p-1}^T
\end{pmatrix},$$

such that the encoding functions $f_i, g_i, 1 \leq i \leq N$, have the following form:

$$f_i(A) = \sum_{s=0}^{m-1} \sum_{k=0}^{p-1} a_{i,s,k} A_{s,k}, \quad g_i(A^T) = \sum_{s=0}^{m-1} \sum_{k=0}^{p-1} b_{i,s,k} A_{s,k},$$

for some tensors $a, b \in \mathbb{F}^{N \times m \times p}$, and the decoding function for each recovery subset R can be written as:

$$C_{j,k} = \sum_{l=0}^{p-1} A_{j,l} A_{k,l} = \sum_{i \in R} \tilde{C}_{i,j,k}$$

for some tensor $c \in \mathbb{F}^{R|\times|m \times p}$, where $A_{j,l}, A_{k,l} \in \mathbb{F}^{m \times p}$, $0 \leq j, k \leq m - 1$ and $0 \leq l \leq p - 1$.

Definition 2: For the distributed matrix multiplication problem of computing $A A^T$ using N worker nodes with matrix partitioning parameters m, p, the optimal linear recovery threshold, denoted by R_{linear}, is defined as the minimum achievable recovery threshold among all linear codes. That is, $R_{\text{linear}} = \min_{f,g,d} \text{EESULTS} \in \mathbb{L}(f,g,d)$, where \mathbb{L} is the set of all linear codes for general matrix partitioning with parameters m and p.

The goal of this paper is to design computation strategies with a low recovery threshold and to characterize the linear optimal recovery threshold R_{linear}.

B. Folded Polynomials

In this subsection, we introduce the definition of folded polynomials and give a method to reconstruct such polynomials by using Alon’s combinatorial nullstellensatz theorem [1]. It’s worth noting that the definition of folded polynomials presented here are due to the special structure of $A A^T$-type matrix multiplication. Actually, the decoding of our code relies on reconstructing such folded polynomials, and this is why our code is called folded polynomial code.

Definition 3: For a given polynomial $f(x) \in \mathbb{F}[x]$ with degree n, and a given set $\mathbb{G} = \{g_i(x) : 1 \leq i \leq k\} \subseteq \mathbb{F}[x]$ of k linearly independent polynomials of degree $\leq n$, we say $f(x)$ is a k-terms folded polynomial with respect to \mathbb{G}, if there exist $a_i \in \mathbb{F}, i \in [1 : k]$ such that $f(x) = \sum_{i=1}^{k} a_i g_i(x)$. Moreover, we call $g_i(x) \in \mathbb{G}$ a term of $f(x)$ and k is called the number of terms of $f(x)$ with respect to \mathbb{G}.

Next we recall the Alon’s combinatorial nullstellensatz theorem [1].

Theorem 1 (Combinatorial Nullstellensatz [1]): Let \mathbb{F} be a field and let $f(x_1, x_2, \ldots, x_n) \in \mathbb{F}[x_1, x_2, \ldots, x_n]$ be a polynomial with $\deg(f) = \sum_{i=1}^{n} t_i$, and the coefficient of $\prod_{i=1}^{n} x_i^{t_i}$ in f is non-zero, where $t_i \geq 0$. Let $S_i \subseteq \mathbb{F}$, for $i \in [1 : n]$, be subsets such that $|S_i| > t_i$ and $S := S_1 \times S_2 \times \cdots \times S_n \subseteq \mathbb{F}^n$. Then, there exists $(r_1, r_2, \ldots, r_n) \in S$ such that $f(r_1, r_2, \ldots, r_n) \neq 0$.

Based on the above combinatorial nullstellensatz theorem, we can build the following lemma, which gives a method to reconstruct folded polynomials.

Lemma 1: For $j = 1, 2$, let $\mathbb{G}_j = \{g_{i,j}(x), i \in [1 : k_j]\}$ be a set of k_j linearly independent polynomials with degree $\leq n$. Suppose $f_j(x) = \sum_{i=1}^{k_j} a_{i,j} g_{i,j}(x)$ with degree n is a k_j-terms folded polynomial with respect to \mathbb{G}_j, $j \in [2]$.

Next we show the second result, which characterizes a lower bound of the recovery threshold for general matrix partitioning with parameters m and p, there exists a linear computation strategy, referred to as folded polynomial codes (FPC), achieving the recovery threshold

$$R_{\text{FP}} = \left(\frac{m + 1}{2}\right) + \frac{(p - 1)(2m^2 - m + 1) + \chi(m)\chi(p)}{2}$$

if $|\mathbb{F}| > \left(\frac{N - 1}{R_{\text{FP}} - 1}\right)\left(\frac{R_{\text{FP}} - 1}{N - 1}\right) + \left(\frac{R_{\text{FP}} - 1}{N - 1}\right)\left(\frac{R_{\text{FP}} - 1}{N - 1}\right)$, $\text{char}\mathbb{F} = 2$, or $|\mathbb{F}| > \left(\frac{N - 1}{R_{\text{FP}} - 1}\right)(m^2p + p - 2)$, $\text{char}\mathbb{F} = 2$, where $\chi(x) = \frac{1 + (x - 1)^2}{x}$ for $x \in \mathbb{N}$. In particular, for $m = 1$ such folded polynomial codes can be explicitly constructed as long as $|\mathbb{F}| > 2N$.

Remark 2: The proof of Theorem 2 will be given in Section IV after introducing FP codes. The key to reducing the recovery threshold is that folded polynomials can be reconstructed by using less successful worker servers when computing $A A^T$. It is noted that FP codes degenerate into EP codes when they perform the task of AB matrix multiplication.

Next we show the second result, which characterizes a lower bound of the recovery threshold for general matrix partitioning with parameters m and p. In particular, folded polynomial code is optimal for the case $m = 1$ in all linear codes over \mathbb{R}.

Theorem 3: For the distributed matrix multiplication problem of computing $A A^T$ over \mathbb{R} using N worker nodes with
general matrix partitioning parameters \(m \) and \(p \), we have
\[
R_{\text{linear}}^* \geq \min\{N, mp\}.
\] (2)
Moreover, if \(m = 1 \), then \(R_{\text{linear}}^* = R_{\FP}^* = p \).

Proof: Note that when \(m = 1 \), \(R_{\text{linear}}^* = R_{\FP}^* = p \) can be directly obtained by Theorem 2 and (2), so it is sufficient to prove (2), that is, if \(R_{\text{linear}}^* < N \), then \(R_{\text{linear}}^* \geq mp \).

Suppose \(\mathcal{L}^* \) is a linear computation strategy with the recovery threshold \(R_{\text{linear}}^* \) over \(\mathbb{R} \). By Definition 1, there exist tensors \(a, b \in \mathbb{R}^{N \times m \times p} \) and the decoding functions \(d \triangleq \{ d_k : k \in [1 : N], |k| = R_{\text{linear}}^* \} \) such that
\[
d_k(\{(\sum_{s',k'} a_{s',k'} A_{s',k'})(\sum_{s,k} b_{i,s,k} A_{i,s,k}^\top)\}_{i \in K}) = AA^\top
\] (3)
for any input matrix \(A \in \mathbb{R}^{m \times n} \) and any subset \(K \) of \(R_{\text{linear}}^* \) worker nodes.

For simplicity, we first introduce a vectorization operator \(\text{Vec} \), which maps a matrix \(M \in \mathbb{R}^{m \times n} \) to a row vector in \(\mathbb{R}^{mn} \) whose entries are successively drawn from the matrix row by row. Then choose \(A_{i,k} = \lambda_{i,k} A_{c} \) for all \(\Lambda = (\lambda_{i,k}) \in \mathbb{R}^{m \times p} \) in (3), where \(A_{c} \in \mathbb{R}^{n \times p} \) is some nonzero matrix. For \(i \in [1 : N] \), let \(a_i = \text{Vec}(A_{i,1}) \in \mathbb{R}^{mn} \) and \(\lambda = \text{Vec}(\Lambda) \). Using these notations, we rewrite (3) as \(d_k(\{(a_i \cdot \lambda^\top)(b_i \cdot \lambda^\top)A_{c}A_{c}^\top\}_{i \in K}) = AA^\top \). Now we prove that the rank of \(\{a_i : i \in K\} \) is \(mp \). Otherwise, there exists a non-zero matrix \(\Lambda_0 \in \mathbb{R}^{p \times m} \) such that for all \(i \in K \), \(a_i \cdot \text{Vec}(\Lambda_0)^\top = 0 \). Thus, for all \(\lambda \in \mathbb{R} \) and \(A = \Lambda_0 \otimes A_c \),
\[
AA^\top = d_k(\{(a_i \cdot \text{Vec}(\Lambda_0)^\top)(b_i \cdot \text{Vec}(\Lambda_0)^\top)A_{i,c}A_{c}^\top\}_{i \in K})
\]
\[= (\lambda^2 + \text{rank}(A))A_{c}A_{c}^\top
\]
where \((\lambda^2 + \text{rank}(A))A_{c}A_{c}^\top = 0 \).
Note that \(A = \Lambda_0 \otimes A_c \neq 0 \), i.e., \(\text{rank}(A) > 0 \). Moreover, \(\text{rank}(AA^\top) \) is \(\text{rank}(A) \) over \(\mathbb{R} \), then \(AA^\top \neq 0 \), which implies \(\lambda^2 = 1 \), a contradiction. Thus, \(R_{\text{linear}}^* = |K| \geq mp \).

IV. FOLDED POLYNOMIAL CODES
In this section, we prove Theorem 2 by giving the folded polynomial codes. We start with two illustrating examples, and then present the folded polynomial codes with general parameters \(m, p \) and use Lemma 1 to ensure the decodability of such codes. At last, the complexity analysis of folded polynomial codes is given.

A. Illustrating Examples

Example 1: FP codes for \(m = 1, p = 2 \) with \(R_{\FP} = 2 \). Formally, we give precise encoding and decoding processes of the FP code. Let \(|F| \geq 2N \) and \(\alpha_1, \alpha_2, \ldots, \alpha_N \) be \(N \) distinct elements in \(F \) with \(\alpha_i \neq 1 \) for \(1 \leq i, j \leq N \). The data matrices are divided into \(A = (A_0, A_1) \), \(A^\top = \begin{pmatrix} A_0^\top & A_1^\top \end{pmatrix} \), and then \(C = AA^\top = \sum_{i=0}^1 A_i A_i^\top \).

- **Encoding:** Define the encoding functions \(f_A(x) = A_0 + A_1 x \) and \(g_A(x) = A_0^\top x + A_1^\top \). The master node computes \(f_A(\alpha_i), g_A(\alpha_i) \) and sends them to the \(i \)th worker node for all \(i \in [1 : N] \).

- **Worker node:** After receiving the matrices \(f_A(\alpha_i), g_A(\alpha_i) \), the \(i \)th worker node computes the matrix product \(C_i = f_A(\alpha_i)g_A(\alpha_i) \) and returns it to the master node.

- **Decoding:** Now we show the master node can decode and get the desired product \(AA^\top \) when receiving answers from any 2 worker nodes. We explain this as follows.

We observe that for each \(\alpha \in \{\alpha_1, \alpha_2, \ldots, \alpha_N\} \),
\[
f_A(\alpha)g_A(\alpha) = B_1 + AA^\top \alpha + B_1^\top \alpha^2,
\]
where \(B_1 = A_0A_0^\top \).
Consider the \((i,j) \)-entry and \((j,i)\)-entry of \(f_A(\alpha)g_A(\alpha) \), then
\[
[f_A(\alpha)g_A(\alpha)]_{i,j} = [B_1]_{i,j} + [AA^\top]_{i,j} \alpha + [B_1]_{j,i}^\top \alpha^2,
\]
and \([f_A(\alpha)g_A(\alpha)]_{j,i} = [B_1]_{j,i} + [AA^\top]_{j,i} \alpha + [B_1]_{i,j}^\top \alpha^2 \).
(4)
According to (4), it has \([f_A(\alpha)g_A(\alpha)]_{i,i} = [B_1]_{i,i}(1 + \alpha^2) + [AA^\top]_{i,i} \alpha \).
For any 2-subset \(\{\alpha_{s_1}, \alpha_{s_2}\} \),
\[
det(\alpha_{s_1} + \alpha_{s_2}^2) = \alpha_{s_2} - \alpha_{s_1} \neq 0 \quad \text{for} \quad m = 1, p = 2.
\]
Remark 3: Note that the recovery threshold of MatDot codes with the same matrix partitioning in example 1 is 3, which is larger than that of our FPC. This implies that there exists a more efficient computation strategy in the case \(m = 1, p = 2 \).

Remark 4: In fact, when \(\text{char} F \neq 2 \), according to (5), one can easily recover \([AA^\top]_{i,i} \) for \(i \neq j \) by using two evaluations of the folded polynomial \(f_A(x)g_A(x)_{i,j} + [f_A(x)g_A(x)]_{i,j} = ([B_1]_{i,j} + [B_1]_{j,i})1 + \alpha^2 \) and \([B_1]_{i,j} + [B_1]_{j,i}^\top \alpha^2 \).
In the following, we present another example for \(m = 2 \).

Example 2: FP codes for \(m = 2, p = 2 \), \(\text{char} F = 2 \) with \(R_{\FP} = 7 \).

In this case, suppose \(|F| > 8^{N-1} \). Let \(\alpha_1, \alpha_2, \ldots, \alpha_N \) be \(N \) distinct undetermined evaluation points in \(F \), which are specified later. The data matrices are evenly divided as follows:
\[
A = \begin{pmatrix} A_{0,0} & A_{0,1} \\ A_{1,0} & A_{1,1} \end{pmatrix}, \quad A^\top = \begin{pmatrix} A_{0,0}^\top & A_{1,0}^\top \\ A_{0,1}^\top & A_{1,1}^\top \end{pmatrix}.
\]
Then \(C = AA^\top = (C_{i,j})_{i,j=0,1} \). The master node needs to compute \(C_{i,j} = \sum_{k=0}^1 A_{i,k} A_{j,k} \) for all \(i, j \in [0 : 1] \). Note \(C_{1,0} = C_{0,1} \) by the symmetry of \(A \).
Encoding: Let \(f_A(x) = \sum_{i=0}^{1} \sum_{j=0}^{1} A_{i,j} x^{2i+j} \) and \(g_A(x) = \sum_{i=0}^{1} \sum_{j=0}^{1} A_{i,j} x^{2i+j+1} \). Then the master node sends \(f_A(\alpha_i) \) and \(g_A(\alpha_i) \) to the ith worker node.

Worker node: The ith worker node computes \(\tilde{C}_i = f_A(\alpha_i) g_A(\alpha_i) \) and returns the result to the master node.

Decoding: Now we show that the master node can recover the desired matrix \(A A^T \) by using answers from any 7 worker nodes. We explain this as follows.

At first, by a precise computation, one can get

\[
f_A(x) g_A(x) = C_0.0 x + C_{1,1} x^2 + (A_{1,1} A_{0,0}^T + A_{0,0} A_{1,1}^T) x^4 + C_{1,0} x^5 + A_{0,0} A_{1,1}^T + A_{1,1} A_{0,0}^T x^2 + A_{0,1} A_{1,0}^T x^6 + A_{1,0} A_{0,1}^T x^8.
\]

Then consider the \((i, j)\)-entry of \(f_A(x) g_A(x) \), it has

\[
[f_A(x) g_A(x)]_{i,j} = \begin{cases} C_{0,0} x + C_{1,1} x^2 + (C_{1,0} x^3 + C_{0,1} x^5) & \text{if } i = j, \\ \begin{array}{c} + \left[(A_{1,1} A_{0,0}^T + A_{0,0} A_{1,1}^T) x^4 + (A_{0,0} A_{1,1}^T) x^2 \\ + A_{0,1} A_{1,0}^T x^6 + A_{1,0} A_{0,1}^T x^8 \end{array} & \text{if } i \neq j. \end{cases}
\]

Moreover, the \(i\)th diagonal entry of \(f_A(x) g_A(x) \) is

\[
[f_A(x) g_A(x)]_{i,i} = \begin{cases} C_{0,0} x + C_{1,1} x^2 + (C_{1,0} x^3 + C_{0,1} x^5) & \text{if } i = j, \\ \begin{array}{c} + \left[A_{0,0} A_{1,1}^T x^4 + A_{0,1} A_{1,0}^T x^6 + A_{1,0} A_{0,1}^T x^8 \end{array} & \text{if } i \neq j. \end{cases}
\]

where the term of \(x^4 \) is eliminated because \(A_{0,0} A_{1,1}^T \) and \(A_{1,1} A_{0,0}^T \) are symmetric, then sum up the \((i, j)\)-entry and \((j, i)\)-entry of \(f_A(x) g_A(x) \), it has

\[
[f_A(x) g_A(x)]_{i,j} + [f_A(x) g_A(x)]_{j,i} = \begin{cases} (C_{1,1} x + [C_{0,1} x^5] + ([A_{0,0} A_{1,1}^T] x^4 + [A_{0,0} A_{1,1}^T] x^2) + (A_{1,0} A_{0,1}^T x^6 + A_{1,0} A_{0,1}^T x^8) & \text{if } i \neq j, \\ (C_{0,0} x + C_{1,1} x^2 + C_{0,1} x^5 + C_{1,0} x^3) & \text{if } i = j. \end{cases}
\]

Define \(\Omega = \{ x, x^2, x^3 + x^5, 1 + x^2, x^2 + x^6, x^6 + x^8 \} \). It is easy to verify that all polynomials of \(\Omega \) are linearly independent over \(\mathbb{F} \), so \([f_A(x) g_A(x)]_{i,j} \) is a 6-terms folded polynomial with respect to \(\Omega \) and \([f_A(x) g_A(x)]_{i,j} + [f_A(x) g_A(x)]_{j,i} \) is a 4-terms folded polynomial with respect to \(\Omega \setminus \{ x, x^2 \} \), respectively.

To recover the diagonal elements \(\{ [C_{s,t}]_{i,j} : 0 \leq s \leq t \leq 1 \} \), the master needs to reconstruct the 6-terms folded polynomial \([f_A(x) g_A(x)]_{i,i} \). As to the off-diagonal elements \(\{ [C_{s,t}]_{i,j} : 0 \leq s, t \leq 1 \} \setminus \{ i = j \} \), suppose the master node can recover the folded polynomial \([f_A(x) g_A(x)]_{i,j} + [f_A(x) g_A(x)]_{j,i} \), then as in example 1, it uses all coefficients of \([f_A(x) g_A(x)]_{i,j} + [f_A(x) g_A(x)]_{j,i} \) to construct an auxiliary polynomial \([h(x)]_{i,j} \). That is, let

\[
[h(x)]_{i,j} = \begin{cases} (C_{1,1} x + [C_{0,1} x^5] + ([A_{0,0} A_{1,1}^T] x^4 + [A_{0,0} A_{1,1}^T] x^2) + (A_{1,0} A_{0,1}^T x^6 + A_{1,0} A_{0,1}^T x^8) & \text{if } i \neq j, \\ (C_{0,0} x + C_{1,1} x^2 + C_{0,1} x^5 + C_{1,0} x^3) & \text{if } i = j. \end{cases}
\]

Then, we use \([h(x)]_{i,j} \) to build a folded polynomial whose coefficients contain the non-diagonal entries \(\{ [C_{s,t}]_{i,j} : 0 \leq s, t \leq 1 \} \).

Hence, for decoding the matrix \(A A^T \), the master node needs to recover three folded polynomials \([f_A(x) g_A(x)]_{i,i} + [f_A(x) g_A(x)]_{i,j} \), \([f_A(x) g_A(x)]_{i,j} + [f_A(x) g_A(x)]_{j,i} \), and \([f_A(x) g_A(x)]_{j,i} + [h(x)]_{i,j} \) by using 7 evaluations of them. Moreover, one can find that every term of \([f_A(x) g_A(x)]_{i,j} + [f_A(x) g_A(x)]_{j,i} \) is also a term of \([f_A(x) g_A(x)]_{i,j} + [h(x)]_{i,j} \), which implies that if \([f_A(x) g_A(x)]_{i,j} + [h(x)]_{i,j} \) can be recovered by using answers from any 7 worker nodes, so do \([f_A(x) g_A(x)]_{i,i} + [f_A(x) g_A(x)]_{j,i} \) and \([f_A(x) g_A(x)]_{i,j} + [f_A(x) g_A(x)]_{j,i} \). A sufficient condition of decoding the matrix \(A A^T \) is that there are \(N \) points \(\{ \alpha_j : j \in [1 : N] \} \) such that the folded polynomial \([f_A(x) g_A(x)]_{i,j} + [h(x)]_{i,j} \) can be reconstructed by any 7 evaluations of it. By Lemma 1 and \(|\mathbb{F}| > 8 (N^2 - 1) \), the above condition holds. Thus, \(R_{FP} = 7 \).

Remark 5: In Example 2, our FP codes also work when \(\text{char} \mathbb{F} = 2 \). That is, the diagonal elements of \(\{ [C_{s,t}]_{i,j} : 1 \leq s, t \leq 2 \} \) can be recovered by using the 7-terms folded polynomial \([f_A(x) g_A(x)]_{i,i} \) and the off-diagonal elements of \(\{ [C_{s,t}]_{i,j} : 1 \leq s \leq t \leq 2 \} \) can be recovered by using the 7-terms folded polynomial \([f_A(x) g_A(x)]_{i,j} \) and the 4-terms folded polynomial \([f_A(x) g_A(x)]_{i,j} - [f_A(x) g_A(x)]_{j,i} \).

Through observing the above examples, one can find that the key to decoding the FP codes is to recover some folded polynomials, say \([f_A(x) g_A(x)]_{i,i} \), \([f_A(x) g_A(x)]_{i,j} \), \([f_A(x) g_A(x)]_{j,i} \), and \([f_A(x) g_A(x)]_{i,j} + [h(x)]_{i,j} \), where \([h(x)]_{i,j} \) is an auxiliary polynomial if necessary. The recovery threshold is determined by the number of terms of these folded polynomials. Next, we construct the FP codes for general matrix partitioning, and give an explicit construction for the case \(m = 1 \).

B. Folded Polynomial Codes for General \(m \geq 1 \)

Now we describe a general folded polynomial code that achieves a recovery threshold \(R_{FP} = \binom{m+1}{2} \).
(p−1)(2m^2−m+1)+x(m)x(p) for all possible m ≥ 1, p ≥ 1. First, the matrices A and A^T are evenly divided into m × p and p × m sub-matrices according to (1). Then the master needs to compute AA^T = \{(C_{k,s})_{k,s}\} where C_{k,s} = \sum_{i=0}^{p-1} A_{k,i}A_{s,t} for k, s ∈ [0 : m−1]. Suppose f_A(x) = \sum_{j=0}^{m−1} \sum_{k=0}^{p−1} A_{k,j}x^{kp+j}, g_A(x) = \sum_{k=0}^{p−1} \sum_{j=0}^{m−1} A_{j,k}x^{jmp+p−1−i}, and α_1, …, α_N are N distinct evaluation points in \(\mathbb{F}\), which are specified later. Then, f_A(x)g_A(x) can be written as the form in (9), shown at the bottom of the next page, where C_{k,s}^T = C_{s,k} and B_{k,s,t} = \sum_{i=0}^{p−1−t} A_{k,i+t}A_{s,t} for all 0 ≤ k, s ≤ m−1 and 1 ≤ t ≤ p−1. FP codes are described as follows.

- **Encoding:** The master node computes f_A(α_i), g_A(α_i) and sends them to the i'th worker for all i ∈ [1 : N].

- **Worker node:** After receiving the matrices f_A(α_i), g_A(α_i), the i'th worker node computes the matrix product f_A(α_i)g_A(α_i) and returns it to the master node.

- **Decoding:** Upon receiving the answers from any \(\binom{n+1}{2} + (p−1)(2m^2−m+1)+x(m)x(p)\) worker nodes, the master must decode the desired product AA^T.

The feasibility of decoding process will be shown in the proof of Theorem 2 in the next subsection.

C. The Proof of Theorem 2

Before presenting the proof of Theorem 2, we first recall the definition of folded polynomials by a toy example. Let f(x) = (x^2 + 1) + 3(x + x^3) + 2x^2 ∈ \(\mathbb{F}[x]\). Since \(\{x^4 + 1, x + x^3, x^2\}\) are linearly independent over \(\mathbb{F}\), f(x) is a 3-terms folded polynomial with respect to them. In general, for a polynomial f(x) with the form f(x) = \(\sum_{i=0}^{k} a_i g_i(x)\), where g_i(x), i ∈ [1 : k] are linearly independent over \(\mathbb{F}\), we just call it a k-tcr arms folded polynomial, if the polynomial set \{g_i(x) : 1 ≤ i ≤ k\} is clear from the context.

In the following, we give some intuition and ideas about how to perform the decoding process of FP codes and then present the details of the proof of Theorem 2.

To recover C_{k,s} in (9), we use the symmetry of AA^T to construct some folded polynomials, i.e., [f_A(x)g_A(x)]_{i,j}, [f_A(x)g_A(x)]_{j,i} ± [f_A(x)g_A(x)]_{i,j} and [f_A(x)g_A(x)]_{i,j} + [h_A(x)]_{i,j}, just as in Example 1 and Example 2. Specifically, considering the (i,j)-entry and (j,i)-entry of f_A(x)g_A(x), one can obtain (10) and (11), shown at the bottom of the next page, where g_{k,s,t}(x) = x^{smp+kp+p−1−t} + (−1)^{−j}x^{kmp+sp+p−1−t} for 0 ≤ s, k ≤ m−1, 0 ≤ t ≤ p−1, j = 1, 2.

For simplicity, define Ω_1 = \{g_{k,s,t}(x) : (k, s, t) ∈ [0 : m−1] × [0 : m−1] × [1 : p−1]\} and Ω_2 = \{g_{k,s,t}(x) : (k, s, t) ∈ [0 : m−1] × [0 : m−1] × [1 : p−1]\}. Then [f_A(x)g_A(x)]_{i,j} + [f_A(x)g_A(x)]_{j,i} in (10) is a folded polynomial with respect to \{g_{k,s,t}(x) : k ∈ [0 : m−1] \cup \{g_{k,s,0}(x) : 0 ≤ s < k ≤ m−1\} \cup \Gamma_1, and [f_A(x)g_A(x)]_{i,j} − [f_A(x)g_A(x)]_{j,i} in (11) is a folded polynomial with respect to \{g_{k,s,0}(x) : 0 ≤ s < k ≤ m−1\} \cup \Gamma_2, where Γ_1 is a basis of Span(Ω_1) for i = 1, 2.
appears only once if exists. Removing the repetitions of loops, we can obtain the set \(D \) of all pairs \((s, t)\) inducing different loops \(\mathcal{Y}_{s, i} \). That is,

\[
D = \begin{cases}
\{(s, t) : 0 \leq s \leq \frac{m-3}{2}, t \in [1 : p-1]\}, & \text{if } m \text{ is odd}, \\
\{(s, t) : 0 \leq s \leq \frac{m-4}{2}, t \in [1 : p-1]\} \cup \\
\{(\frac{m-2}{2}, t) : t \in \left[1 : \frac{p-1+\chi(p)}{2}\right]\}, & \text{Otherwise}.
\end{cases}
\]

Next we present all the single chains of \(\Omega_1 \) and \(\Omega_2 \). Define \(\mathcal{Y}_{0,0,t} = \{0\} \) for \(t \in [1 : p-1] \). Since \(\phi(0,0,t) = (m-1, m-1, t) \) and \(\phi(m-1, m-1, t) \) is not defined, then \(\mathcal{Y}_{0,0,t} \) is a single chain. Note the single chains \(\mathcal{Y}_{0,0,t}, t \in [1 : p-1] \) are all disjoint. Let \(\mathcal{Y}_{n,0,t} = \bigcup_{t \in [1 : p-1]} \mathcal{Y}_{n,0,t} \). One can verify that \(\bigcup_{t \in [1 : p-1]} \mathcal{Y}_{n,0,t} \) is all the single chains.

In the following, we determine the dimensions of \(\text{Span}(\Omega_1) \) and \(\text{Span}(\Omega_2) \) by calculating the dimension of subspace spanned by polynomials in each loop and single chain. This is illustrated in Lemma 2.

Lemma 2: Using above notations, then

(i) For \((a, b) \in \mathcal{D}' \setminus \{(\frac{m}{2}-1, \frac{m}{2})\} \), \(\dim \text{Span}\{g_{k,s,t}^{(a)}(x) : (k, s, t) \in \mathcal{Y}_{a, b}\} = \left|\mathcal{Y}_{a, b}\right| - 1, j \in [1 : 2] \), and

\[
g_{m-1,a,b}(x) = \sum_{j=1}^{2m-3} (-1)^{j-1} g_{\phi^{\prime}(m-1,a,b)}^{(1)}(x). \tag{12}
\]

(ii) If \((\frac{m}{2} - 1, \frac{m}{2}) \in \mathcal{D} \), then \(\dim \text{Span}\{g_{k,s,t}^{(1)}(x) : (k, s, t) \in \mathcal{Y}_{\frac{m}{2}-1, \frac{m}{2}}\} = |\mathcal{Y}_{\frac{m}{2}-1, \frac{m}{2}}| - \delta_2(\text{char}F) \), and \(\dim \text{Span}\{g_{k,s,t}^{(2)}(x) : (k, s, t) \in \mathcal{Y}_{\frac{m}{2}-1, \frac{m}{2}}\} = m - 2 \). Moreover, when \(\text{char}F = 2 \),

\[
g_{m-1,\frac{m}{2}-1, \frac{m}{2}}^{(1)} = \sum_{j=1}^{m-2} g_{\phi^{\prime}(m-1,\frac{m}{2}-1, \frac{m}{2})}^{(1)}(x). \tag{14}
\]

(iii) For \(j \in [1 : 2] \),

\[
\text{Span}(\Omega_j) = \bigoplus_{(a,b)\in \mathcal{D}\cup\{(0,0)\}} \text{Span}\{g_{k,s,t}^{(j)}(x) : (k, s, t) \in \mathcal{Y}_{a, b}\}. \tag{15}
\]

Moreover, \(\dim \text{Span}(\Omega_1) = \frac{(p-1)(2m^2-m-1) + \chi(m)\chi(p)(1-2\delta_2(\text{char}F))}{2} \), and \(\dim \text{Span}(\Omega_2) = \frac{(p-1)(2m^2-m-1) - \chi(m)\chi(p)}{2} \), where \(\delta_2(\cdot) \) is a function from \(\mathbb{N} \) onto \{0, 1\} and \(\delta_2(x) = 1 \) if and only if \(x = 2 \).

Proof: To maintain the fluency of this paper, the proof is given in Appendix B. \(\square \)
The proof of Theorem 2: The proof is divided into two cases.

Case 1: $\text{char}\mathbb{F} \neq 2$ and $R_{FP} = (m+1)$.

By (10), (11), and (iii) in Lemma 2, $\left[f_A(x)g_A(x)\right]_{i,j} \pm \left[f_A(x)g_A(x)\right]_{j,i}$ can be rewritten as follows,

$$[f_A(x)g_A(x)]_{i,j} + [f_A(x)g_A(x)]_{j,i} = \sum_{k=0}^{m-1} [C,k]_{i,j}g_{k,0}^{(1)}(x) + \sum_{0 \leq s < k \leq m-1} \alpha_{g}(x) + \sum_{0 \leq s < k \leq m-1} ^{(1)}[C,k]_{i,j} + [C,k]_{j,i}g_{k,0}^{(1)}(x),$$

(16)

(17)

where Γ_i is a basis of $\text{Span}(\Omega_i)$ for $i \in \{1, 2\}$, α_{g} and β_{g} are some elements in \mathbb{F}, and $\{g_{k,0}^{(j)}(x) : 0 \leq k \leq s \leq m-1 \}$ are linearly independent over \mathbb{F}. Hence, the numbers of terms of $\left[f_A(x)g_A(x)\right]_{i,j} + \left[f_A(x)g_A(x)\right]_{j,i}$ and $\left[f_A(x)g_A(x)\right]_{i,j} - \left[f_A(x)g_A(x)\right]_{j,i}$ are $(m+1) + \dim \text{Span}(\Omega_i)$ and $(\frac{m}{2}) + \dim \text{Span}(\Omega_i)$, respectively. Since $\text{char}\mathbb{F} \neq 2$, $\{C,k\}_{i,j}, \{C,k\}_{j,i}$ can be recovered from $\{C,k\}_{i,j} + \{C,k\}_{j,i}$ and $\{C,k\}_{i,j} - \{C,k\}_{j,i}$. Similarly, the diagonal entries $[C,k]_{i,i}$ can be recovered by reconstructing the folded polynomial $\left[f_A(x)g_A(x)\right]_{i,i}$, which can be verified to have the same terms as $\left[f_A(x)g_A(x)\right]_{i,j} + \left[f_A(x)g_A(x)\right]_{j,i}$. By Lemma 1 and $|\{0:\frac{(m^2+1)}{2}\}| > m^2 + 2m - 2$, there always exist N points in \mathbb{F} such that the folded polynomials $\left[f_A(x)g_A(x)\right]_{i,j} \pm \left[f_A(x)g_A(x)\right]_{j,i}$ and $\left[f_A(x)g_A(x)\right]_{i,j}$ can be recovered from any $(m+1) + \dim \text{Span}(\Omega_i)$ worker nodes' answers. Hence, $R_{FP} = (\frac{m}{2}) + \dim \text{Span}(\Omega_i) = (m+1) + \frac{m-1}{2}(2m^2 + 1)(\chi(x))\frac{(m^2+1)}{2} + \chi(x)$.

Case 2: $\text{char}\mathbb{F} = 2$ and $R_{FP} = (m+1)$.

In this case, $\Omega_1 = \Omega_2$. By (15) in Lemma 2, polynomials in $\bigcup_{(a,b) \in \mathbb{D} \setminus \{(0,0)\}} \{g_{k,0}^{(1)}(x) : (k,s,t) \in \mathbb{Y}_{a,b}\}$ form a basis of $\text{Span}(\Omega_1)$, where $\mathbb{Y}_{a,b} = \mathbb{Y}_{a,b} \setminus \{(m-1, a, b)\}$. According to (12) and (14),

$$\sum_{0 \leq k \leq s \leq m-1} \sum_{0 \leq l \leq m-1} \sum_{0 \leq t \leq m-1} \sum_{0 \leq s \leq m-1} \left[B_k(s,t)_{i,j} + B_k(s,t)_{j,i}\right]g_{k,s,t}^{(1)}(x) + \sum_{(a,b) \in \mathbb{D} \setminus \{(0,0)\}} \sum_{(k,s,t) \in \mathbb{Y}_{a,b}} \left[B_k(s,t)_{i,j} + B_k(s,t)_{j,i} + B_k(s,t)_{j,i}\right]g_{k,s,t}^{(1)}(x).$$

Then (10) can be rewritten as (18), shown at the bottom of the next page, hence $\left[f_A(x)g_A(x)\right]_{i,j} + \left[f_A(x)g_A(x)\right]_{j,i}$ is a $(m+1) + \frac{(m-1)(2m^2 + 1)}{2}(\chi(x))\frac{(m^2+1)}{2}$-terms folded polynomial.

Once recovered this folded polynomial, the master node can build an auxiliary polynomial

$$[h(x)]_{i,j} = \sum_{0 \leq k \leq m-1} \left[C,k\right]_{i,j} g_{k,0}^{(1)}(x) + \sum_{(a,b) \in \mathbb{D} \setminus \{(0,0)\}} \sum_{(k,s,t) \in \mathbb{Y}_{a,b}} \left[B_k(s,t)_{i,j} + B_k(s,t)_{j,i} + B_k(s,t)_{j,i}\right]g_{k,s,t}^{(1)}(x),$$

According to (9), it has

$$[f_A(x)g_A(x)]_{i,j} + [h(x)]_{i,j} = \sum_{0 \leq k \leq m-1} [C,k]_{i,j} x^{kmp+sp+p-1} + \sum_{0 \leq k \leq m-1} \left[B_m-1, a, b\right]_{i,j} g_{k,0}^{(1)}(x) + \sum_{(a,b) \in \mathbb{D} \setminus \{(0,0)\}} \sum_{(k,s,t) \in \mathbb{Y}_{a,b}} \left[B_k(s,t)_{i,j} + B_k(s,t)_{j,i} + B_k(s,t)_{j,i}\right]g_{k,s,t}^{(1)}(x),$$

(19)

where $b_{k,s,t}$ are some coefficients in \mathbb{F} for all $(k, s, t) \in \bigcup_{(a,b) \in \mathbb{D} \setminus \{(0,0)\}} \mathbb{Y}_{a,b}$, and (a) comes from the facts that

$$\sum_{(k,s,t) \in \mathbb{Y}_{a,b}} x^{kmp+sp+p-1-t} \in \mathbb{F},$$

$$x^{m^2+1} - 1 = \sum_{j=0}^{m-2} x^{jp(m+1)} = x^{m^2+p-1} \sum_{j=0}^{m-2} x^{jp(m+1)},$$

and for $(a,b) \in \mathbb{D} \setminus \{(0,0)\}$,

$$\sum_{(k,s,t) \in \mathbb{Y}_{a,b}} x^{kmp+sp+p-1-t} \in \mathbb{F},$$

$$x^{m^2+p-1} = \sum_{i=0}^{m-2} \sum_{i=0}^{m-2} g_{i,i,i,i}^{(1)}(x),$$

and $\mathbb{Y}_{a,b} = \{(m-1, a, b), (a+1, 0, p-b) \} \cup \{(m-1-a, 2a)\}$. According to

$$\sum_{0 \leq k \leq m-1} \sum_{0 \leq l \leq m-1} \sum_{0 \leq t \leq m-1} \sum_{0 \leq s \leq m-1} \left[B_k(s,t)_{i,j} + B_k(s,t)_{j,i}\right]g_{k,s,t}^{(1)}(x).$$

(18)
By (18) and (19), one can find that every term of $[f_A(x)g_A(x)]_{i,j} + [f_A(x)g_A(x)]_{j,i}$ is also a term of $[f_A(x)g_A(x)]_{i,j} + [h(x)]_{i,j}$, which implies that if $[f_A(x)g_A(x)]_{i,j} + [h(x)]_{i,j}$ can be recovered by some t evaluation points, so does $[f_A(x)g_A(x)]_{i,j} + [f_A(x)g_A(x)]_{j,i}$.

Then, a sufficient condition of decoding AA$^\top$ for the case $|\mathcal{F}| = 2$ is that there exist N points $\alpha_1, \ldots, \alpha_N \in \mathcal{F}$ such that the master node can reconstruct the folded polynomials $[f_A(x)g_A(x)]_{i,j} + [h(x)]_{i,j}$ from any $(m+1) + \binom{m+1}{2}$ worker nodes’ answers. Actually, this condition is guaranteed by Lemma 1 and $|\mathcal{F}| > (pm^2 + p - 2)(\binom{m+1}{2} + (p-1)(2m^2-m+1)+\chi(m)(p-2))$. Hence, $R_{FP} = (m+1)^{-1} + \binom{m+1}{2} + (p-1)(2m^2-m+1)+\chi(m)(p-2)$.

According to the decoding process in Theorem 2, the field size required in the folded polynomial code is

$$O\left((pm^2 + p - 2)\left(\binom{N - 1}{R_{FP} - 1} + \binom{N - 1}{R_{FP} - m - 1}\right)\right) = O((pm^2 + p - 2)N^{R_{FP} - p}).$$

To reduce the field size, we present an explicit folded polynomial code with $|\mathcal{F}| > 2N$ for the case of $m = 1$ by Corollary 1 in the next subsection.

D. Folded Polynomial Codes for $m = 1$

In this subsection, we first give two lemmas and then use them to present an explicit folded polynomial code for the case $m = 1$, which has a recovery threshold $R_{FP} = p$ with $|\mathcal{F}| > 2N$.

Lemma 3: Suppose $\beta_1, \beta_2, \ldots, \beta_n$ are n distinct elements in \mathcal{F} and $\beta_1 \beta_2 \neq 1$ for all $1 \leq i, j \leq n$. Assume $g_1(x) = x^{n-1}$ and $g_i(x) = x^{n-1} + x^{n-2+i}$ for $i \in [2 : n]$. Then, det $M(\Omega, \Gamma) = \prod_{1 \leq i < j \leq n}(\beta_j - \beta_i)(\beta_j - 1)$, where $\Omega = \{g_i(x) : i \in [1 : n]\}$ and $\Gamma = \{\beta_j : j \in [1 : n]\}$.

Lemma 4: Suppose $\beta_1, \beta_2, \ldots, \beta_n$ are n distinct elements in \mathcal{F} and $\beta_1 \beta_2 \neq 1$ for all $1 \leq i, j \leq n$. Then, det $M(\Omega, \Gamma) = \prod_{1 \leq i < j \leq n}(\beta_j - \beta_i)(\beta_j - 1)$, where $\Omega = \{x^{n+i} - x^{n-i} : i \in [1 : n]\}$ and $\Gamma = \{\beta_j : j \in [1 : n]\}$.

We prove Lemma 3 and Lemma 4 in Appendix C and Appendix D, respectively.

According to Lemma 3 and Lemma 4, we are able to determine N points $\alpha_1, \ldots, \alpha_N \in \mathcal{F}$ that are needed in the decoding process in IV-B, and an explicit folded polynomial code for $m = 1$ can be constructed as illustrated in the following corollary.

Corollary 1: Assume $|\mathcal{F}| > 2N$, $\alpha_1, \alpha_2, \ldots, \alpha_N$ are N distinct elements in \mathcal{F} and $\alpha_i \alpha_j \neq 1$, $1 \leq i, j \leq N$. Then, a folded polynomial code can be explicitly constructed over \mathcal{F} for $m = 1$, and its recovery threshold achieves p.

Proof: In the case of $m = 1$, (9) can be rewritten as

$$f_A(x)g_A(x) = B_0x^{p-1} + \sum_{\ell=0}^{p-1}(B_\ell x^{p-1+\ell} + B_{\ell+1} x^{p-1-\ell}),$$

where $B_0 = AA^\top$ and $B_\ell = \sum_{k=0}^{\ell-\ell} A_k x^{k+1} x^{\ell-1}, 1 \leq \ell \leq p - 1$.

In the following, we state that the master node can reconstruct AA$^\top$ from any p worker nodes. We first recover the diagonal elements $[AA^\top]_{i,i} = [B_0]_{i,i}$.

According to (20), $[f_A(x)g_A(x)]_{i,j} = [B_0]_{i,j} x^{p-1} + \sum_{\ell=1}^{p-1}(B_\ell_{i,j} x^{p-1+\ell} + x^{p-1-\ell})$. By Lemma 3, $M(\Omega_1, \Gamma)$ is invertible, where $\Omega_1 = \{x^{p-1-\ell} : \ell \in [1 : p - 1]\} \cup \{x^{p-1}\}$ and Γ is a p-subset of $\{\alpha_i : i \in [1 : N]\}$. Hence, $[AA^\top]_{i,i}$ can be easily recovered from any p evaluations of $\{[f_A(\alpha_i)g_A(\alpha_i)]_{i,i} : s \in [1 : p]\}$.

Next we decode the off-diagonal elements $[AA^\top]_{i,j}$ with $i < j$. It follows from (20) that $[f_A(x)g_A(x)]_{i,j} - [f_A(x)g_A(x)]_{j,i} = \sum_{\ell=1}^{p-1}([B_\ell]_{i,j} - [B_\ell]_{j,i}) x^{p-1+\ell} + x^{p-1-\ell}$, which is a $(p-1)$-terms folded polynomial.

Define $h(x)_{i,j} = \sum_{\ell=1}^{p-1}([B_\ell]_{i,j} - [B_\ell]_{j,i}) x^{p-1+\ell}$, then the master node can compute evaluations of the following p-terms folded polynomial

$$[f_A(x)g_A(x)]_{i,j} + [h(x)]_{i,j} = [B_0]_{i,j} x^{p-1} + \sum_{\ell=1}^{p-1}([B_\ell]_{i,j} x^{p-1+\ell} + x^{p-1-\ell})$$

at points $\alpha_{i1}, \alpha_{i2}, \ldots, \alpha_{in}$. Hence, $[AA^\top]_{i,j}$ can be recovered by the invertibility of $M(\Omega_1, \Gamma)$. Thus, $R_{FP} = p$ for $m = 1$. ■

E. Complexity Analysis of Folded Polynomial Codes

In this subsection, we present the computational complexity and communication cost for folded polynomial codes.

1) Encoding: The master encodes sub-matrices of sizes $\frac{n}{p} \times \frac{n}{p}$ and $\frac{n}{p} \times \frac{n}{p}$ and sends them to each worker node. Hence, the encoding process for matrices A, A^\top can be viewed as evaluating two polynomials $f_A(x)$ and $g_A(x)$ of
respective degrees \(pm - 1 \) and \((m^2 - m + 1)p - 1\) at \(N \) points for \(\mu_{mp} \) times. By using the fast polynomial evaluation algorithms [37], the computational complexity of the encoding process is \(O(N \mu_{2m} \log^3(m^2p) \log \log (m^2p)) \).

2) Each Worker’s Computational Cost: Each worker computes the product of two matrices of size \(\frac{m}{p} \times \frac{m}{p} \) and \(\frac{m}{m - p} \times \frac{m}{m} \), which requires \(\mu_{mp} \) operations by using standard matrix multiplication algorithms. Hence, the computational complexity of each worker is \(O(\mu_{mp}) \).

3) Decoding: After receiving the fastest \(R_{FP} \) answers from workers \(\Gamma = \{\alpha_i : s \in [1 : R_{FP}]\} \), the master reconstructs the desired matrix \(AA^\top \). When \(\text{char} \mathbb{F} \neq 2 \), the decoding process can be viewed as solving two linear systems whose equations have form (17) and (16) respectively. Hence, the computational complexity in the decoding process is

\[
O\left(\frac{m}{2} \left(\frac{\mu}{2} (R_{FP} - m) + \left(\frac{m + 1}{2}\right) \mu_{FP}\right) + (R_{FP} - m)^3 + R_{FP}^3\right) = O\left(\frac{\mu + 1}{2} R_{FP} + R_{FP}^3\right).
\]

When \(\text{char} \mathbb{F} = 2 \), compared with the case of \(\text{char} \mathbb{F} \neq 2 \), the master has to additionally compute the evaluations of \(\{h(x)\}_{i,j} : 1 \leq i < j \leq \frac{m}{mp} \} \) at \(R_{FP} \) points, which requires \(O((\frac{m}{2})^2 R_{FP}) \) operations. Thus, the computational complexity in decoding process is

\[
O\left(\frac{\mu + 1}{2} R_{FP} + R_{FP}^3 + \delta_{2}(\alpha_{pi})\left(\frac{m}{2}\right) R_{FP}^2\right).
\]

4) Communication Cost: The communication cost consists of upload cost and download cost at the master node. In our scheme, the master node uploads a total of \(2N \frac{\mu}{mp} \) symbols to all \(N \) worker nodes, and downloads \(R_{FP} \frac{\mu}{mp} \) symbols from the fastest \(R_{FP} \) successful worker nodes. That is, the upload cost is \(O(N \frac{\mu}{mp}) \), and the download cost is \(O(R_{FP} \frac{\mu}{mp}) \). Thus, the total amount of communication cost is \(O\left(N \frac{\mu}{mp} + R_{FP} \frac{\mu}{mp}\right)\).

V. COMPARISONS AND NUMERICAL EXPERIMENTS

A. Comparisons With Previous Works

To the best of our knowledge, EP codes can be regarded as the state of art of previous works with respect to CDMM, because it bridges the extremes of Polynomial codes [33], MatDot codes, and PolyDot codes [12]. Moreover, generalized PolyDot (GPD) codes [9] and EP codes have similar performance, but the former reduced the recovery threshold of PolyDot codes by a factor of 2. Since our strategy is designed to perform the task of computing \(AA^\top \) for matrix partitioning with parameters \(m, p \), we will compare our code with previous ones under the same task and the same parameters \(m, p \). The comparisons are listed in Table I and Table II. For matrix partitioning with \(m = 1 \) in Table I, we have the following observations. Compared with the MatDot codes in [12], FP codes reduce the recovery threshold from \(2p - 1 \) to \(p \), reduce the download cost by a factor of 2, and preserve the other performance unchanged. In particular, to ensure the decodability, we need the field size \(|\mathbb{F}| \geq 2N \), which is almost the same as the requirement in MatDot codes.

Table II is for general parameters \(m, p \). It can be seen that compared with EP codes, FP codes are better in terms of recovery threshold, download cost and decoding complexity for all parameters \(m, p \) on condition that the underlying fields of the two code schemes are the same, while encoding complexity and woker computation complexity do not change. Particularly, when \(p = 1 \), our FP code has the recovery threshold \(\left(\frac{m+1}{2}\right) \), which reduces that of EP codes by a factor of 2. Furthermore, it should be pointed out that the field size required in FP codes is \(O((pm^2 + p - 2)N^3) \) for some \(t \), which is larger than the field size \(O(N) \) in EP codes. This may lead to higher upload and download cost for FP codes when defining over a large field. However, we claim that the field size condition given in this paper is just a sufficient condition to ensure the decoding process of FP codes. Actually, there is evidence that the field size can be further reduced. Therefore, building FP codes over a small field is an interesting problem and we leave it as a future work.

When \(\mathbb{F} = \mathbb{R} \), there are also many efficient approaches [4], [5], [6], [13], [22] for CDMM. Compared with our approach, the methods, designed for sparse matrices multiplication and partial stragglers in [4] and [5], have a lower worker computation complexity. To keep numerical robustness, two methods are designed in [13] and [22] with respect to different matrix partitioning, both of which give an upper bound on the condition number of the decoding matrices in the worst case.

B. Numerical Experiments

In this subsection, since FP codes for \(m = 1 \) have an optimal linear recovery threshold over \(\mathbb{R} \), we do experiments using MatDot codes [12], OrthMatDot codes [13] and our FP codes for matrix partitioning parameter \(m = 1 \), and give comparisons on performance of these codes via
exhaustive numerical experiments in a computing node of MAGIC CUBE-III cluster (HPCPlus Platform in Shanghai Supercomputer Center, [25]) that is equipped with 2 Intel Xeon Gold 6142 CPUs (2.6 GHz, 16 cores), 192 GB DDR4 memory, and 240 GB local SSD hard disk. One can find the codes of all numerical experiments in [15].

1) Worker Computation Time & Decoding Time: In our simulation, the input matrix \(A \) has size 12000 \times 15000, whose entries are chosen independently according to the standard Gaussian distribution \(N(0, 1) \). The matrix \(A \) is divided into 8 column blocks, i.e., \(m = 1, p = 8 \). The output matrix \(AA^\top \) is obtained by decoding all entries of it. In Table III, worker computation time is measured by the average of computation time over all non-straggler worker nodes, and decoding time is the time spent by the master node performing calculations during the decoding process. Moreover, the computation complexity in worker nodes and master node are determined by the number of multiplication operations.

From Table III, we have the following observations. Worker computation time in our FP codes is almost the same as that of MatDot codes, but is longer than that of OrthMatDot codes, which is because that each worker node in OrthMatDot codes computes a \(\tilde{A}_i \tilde{A}_i^\top \)-type multiplication. As to decoding time at the master node, compared with OrthMatDot codes [13], our FP codes still reduce the decoding time despite the distributed computing system has more straggler nodes. This coincides with the analysis on decoding complexity of the master node, which is \(O(\mu^2 R^2) = O(3.24 \times 10^{10}) \) in OrthMatDot codes and \(O(1.15 \times 10^9) \) in FP codes. Compared with MatDot codes [12], the master node in FP codes additionally needs to perform some addition operations (3.55 seconds), which is the reason why the decoding time of FP codes is a litter longer than that of MatDot codes.

2) Overall Computation Time: We compare the above three approaches in terms of overall computation time to recover \(AA^\top \) by carrying out some simulations for different number of straggler nodes, where the computing system has 18 worker nodes. Note that overall computation time is the time required by the master node to receive the first \(R \) answers, where \(R \) is the recovery threshold. The results are presented in Fig. 1. One can find that our proposed approach is significantly faster in terms of overall computation time in comparison to the other two coded approaches for different number of straggler workers. This is because that our method has a smaller recovery threshold for the same matrix partitioning and can tolerate more straggler nodes as shown in Table I.

Nr. of Stragglers \(s \)	MatDot Code [12]	OrthMatDot Code [13]	FP Code
Worker Computation Complexity	\(O(2.7 \times 10^{11}) \)	\(O(3.15 \times 10^{11}) \)	\(O(2.7 \times 10^{12}) \)
Decoding Complexity	\(O(4.57) \)	\(O(3.26 \times 10^9) \)	\(O(1.15 \times 10^9) \)
Decoding Error	**1.80**	**12.86**	**4.55 \approx 10 \approx 3.55**

*Decoding time in FP code consists of two parts: multiplication (1.10 sec.) and addition (3.55 sec.).

![Fig. 1](image1.jpg)

Fig. 1. Comparison among three coded approaches in terms of overall computation time for different number of straggler nodes \(s \). The computing system has 18 worker nodes and the input matrix \(A \) is evenly divided into 8 column blocks and \(A^\top \) is evenly divided into 8 row blocks, so \(R_{FP} = 8 \), and the recovery threshold of both MatDot codes and OrthMatDot codes is 15. The straggler workers are simulated in such a way so that they have one-fifth of the speed of the non-straggling workers.

![Fig. 2](image2.jpg)

Fig. 2. Comparison among three coded approaches in terms of worst condition number for \(m = 1 \), different partitioning parameter \(p \) and fixed number of straggler nodes \((s = 1, 2) \).

3) Numerical Stability: We know that the condition number of the associated decoding matrix is an important metric to measure the numerical stability of a linear computing strategy for CDMM, where the condition number of a matrix is defined by the ratio of maximum and minimum singular values. Compared with OrthMatDot codes in Fig. 2, both our codes and MatDot codes have very high worst condition number, which implies they are numerically instable for fixed \(s \) and different \(p \). Here evaluation points in OrthMatDot codes and MatDot codes are the corresponding Chebyshev points, and evaluation points in our codes are given in the following manner: we randomly choose the evaluation points from the interval \((-1, 1)\) and compute the worst condition number for 20 times, then choose those that have the minimum worst condition number. Due to the numerical instability of FP codes, it will be a future work to design an FP code which is numerically more stable.

VI. CONCLUSION

In this paper, we investigate the distributed matrix multiplication problem of computing \(AA^\top \) using \(N \) worker nodes with parameters \(m \) and \(p \). We first design a linear computation strategy for general \(m \geq 1, p \geq 1 \), i.e., folded polynomial code over \(\mathbb{F} \), which has a recovery threshold \(R_{FP} = \binom{m+1}{2} + \frac{(p-1)(2m^2-m+1)+\chi(m)\chi(p)}{2} \), where \(\chi(x) = \frac{1+(-1)^x}{2} \) for \(x \in \mathbb{N} \). Then we derive a lower bound \(R_{linear} \geq \min\{N, mp\} \) on the recovery threshold for all linear computation strategies over \(\mathbb{R} \). In particular, our code for \(m = 1 \) is explicitly...
constructed and has a recovery threshold \(p \), achieving the lower bound. For general partitioning parameters \(m \geq 2 \), our strategy is constructed over a larger underlying field. Therefore, it is an interesting problem to construct folded polynomial codes for general \(m \geq 2 \) over a small field. Besides, the folded polynomial code over \(\mathbb{F} \) is not numerically stable for larger number of worker nodes. A future work is to design a numerically stable scheme with the same recovery threshold as FP codes over \(\mathbb{F} \).

APPENDIX A

PROOF OF LEMMA 1

To complete the proof of Lemma 1, we first prove the following claim.

Claim: If polynomials in \(G = \{ g_i(x) \in \mathbb{F}[x] : \deg(g_i(x)) \leq n, i \in [1 : s] \} \) are linearly independent over \(\mathbb{F} \) and \(|\mathbb{F}| > n \), then there exist \(s \) elements \(\Gamma = \{ \beta_j : j \in [1 : s] \} \) in \(\mathbb{F} \) such that \(\det(M(\Gamma, \Gamma)) \neq 0 \).

Proof: This claim is proved by induction on \(s \). For \(s = 1 \), it is obviously true. Now let \(s > 1 \) and suppose that the claim is true for \(s - 1 \). By the induction hypothesis, there are \(s - 1 \) elements \(\Gamma_1 = \{ \beta_j : j \in [1 : s - 1] \} \) in \(\mathbb{F} \) such that \(\det(M(\mathbb{F} \setminus \{ g_s(x) \}, \Gamma_1)) \neq 0 \). Then we prove that there exists an element \(\beta_s \in \mathbb{F} \) such that \(\det(M(\mathbb{F} \setminus \{ g_s(x) \}, \Gamma_1 \cup \{ \beta_s \})) \neq 0 \). Otherwise, for every \(\alpha \in \mathbb{F} \), \(\det(M(\mathbb{F} \setminus \{ g_s(x) \}, \Gamma_1 \cup \{ \alpha \})) = 0 \). Expand by the last column, \(\det(M(\mathbb{F} \setminus \{ g_s(x) \}, \Gamma_1 \cup \{ \alpha \})) = \sum_{i=1}^s c_i g_i(\alpha) = 0 \) for all \(\alpha \in \mathbb{F} \), where \(c_i = (\alpha^{i-1})^{s-1} \det(M(\mathbb{F} \setminus \{ g_s(x) \}, \Gamma_1)) \) for \(i \in [1 : s] \). Combining with \(|\mathbb{F}| > n \), \(\sum_{i=1}^s c_i g_i(x) = 0 \). Note that \(c_s = \det(M(\mathbb{F} \setminus \{ g_s(x) \}, \Gamma_1)) \neq 0 \), which implies that polynomials in \(G \) are linearly dependent over \(\mathbb{F} \), a contradiction.

\[\Box \]

A. Proof of Lemma 1

In order to uniquely determine \(a_{i,j} \)'s, it is sufficient to show that the matrix \(M(\mathcal{G}_j, \mathcal{X}_j) \) is invertible over \(\mathbb{F} \), \(j \in [1 : 2] \), for each \(k_j \)-subset \(\mathcal{X}_j \) of \(\{ \alpha_i : i \in [1 : N] \} \). Set

\[
G(x_1, x_2, \ldots, x_N) = \prod_{\Gamma_1 \subseteq \mathcal{G}_1} \det(M(\mathcal{G}_1, \Gamma_1)) \cdot \prod_{\Gamma_2 \subseteq \mathcal{G}_2} \det(M(\mathcal{G}_2, \Gamma_2)).
\]

Combined the fact that \(g_{1,j}(x), \ldots, g_{k_j,j}(x) \) are linearly independent in \(\mathbb{F}[x] \) for each \(j \in [1 : 2] \) and the above **Claim**, we conclude that \(\det(M(\mathcal{G}_j, \mathcal{X}_j)) \) is a nonzero polynomial for each \(\mathcal{X}_j \) and the degree of each variable in \(\det(M(\mathcal{G}_j, \mathcal{X}_j)) \) is at most \(n \), which implies that \(G(x_1, x_2, \ldots, x_N) \) is also a nonzero polynomial in \(\mathbb{F}[x_1, x_2, \ldots, x_N] \). Moreover, the variable \(x_i \) actually appears in \((N-1) + \frac{(N-1)}{2} + \cdots + \frac{(N-1)}{k_i-1}) \) factors of \(G(x_1, x_2, \ldots, x_N) \) for each \(i \in [1 : N] \), hence the degree of each variable in \(G(x_1, x_2, \ldots, x_N) \) is at most \(\sum_{i=1}^N \frac{(N-1)}{k_i-1} n \). By Theorem 1 and \(|\mathbb{F}| > \sum_{j=1}^N \frac{(N-1)}{k_j-1} n \), there are \(N \) points \(\{ \alpha_i : i \in [1 : N] \} \) in \(\mathbb{F} \) such that \(G(\alpha_1, \alpha_2, \ldots, \alpha_N) \neq 0 \).
By recursively using such equation, it leads to
\[\det M(\Omega) = \det M(\Omega') \] and \(\Omega' = \{ \beta_i : i \in [1 : j] \} \) for \(j \in [1 : n] \). Then \(\Omega(n) = \Omega \) and \(\Gamma(n) = \Gamma \). Let \(G(x) = \det M(\Omega, \Gamma \cup \{ \beta_i \}) \), hence \(\deg G(x) = 2n \cdot l.c.(G(x)) = \prod_{i=1}^{n-1} \beta_i \cdot \det M(\Omega(n), \Gamma(n)) \).

W.L.O.G., we may assume that \(0 \notin \{ \beta_1, \beta_2, \cdots, \beta_{n-1} \} \). According to the definition of \(G(x) \), one can easily verify that \(G(\beta_i) = 0 \) for \(1 \leq i \leq n-1 \). Hence, for \(1 \leq i \leq n-1, x - \beta_i \mid G(x) \) and \(x \beta_i - 1 \mid G(x) \).

Moreover, when \(x^2 = 1 \), the last row of \(M(\Omega, \Gamma \cup \{ \beta_i \}) \) is a zero vector, that is, \(x^2 - 1 \mid G(x) \). Since \(\beta_i \beta_{j} \neq 1 \) for \(1 \leq i < j \leq n \), one has \(G(x) = \prod_{i=1}^{n-1} (x - \beta_i)(x \beta_i - 1) \), which implies that
\[G(x) = (x^2 - 1) \cdot \prod_{1 \leq i < j \leq n} (x - \beta_i)(x \beta_i - 1), \]

where \(\ell(x) \in F[x] \). Considering the both sides of equation (22), it has \(\deg \ell(x) = 0 \) and \(\ell(x) \cdot l.c.(\prod_{i=1}^{n-1} (x - \beta_i)(x \beta_i - 1)) = \prod_{i=1}^{n-1} \beta_i \cdot \det M(\Omega(n), \Gamma(n)), \) that is,
\[\ell(x) = \det M(\Omega(n), \Gamma(n)). \]

Then, \(\det M(\Omega(n), \Gamma(n)) = \det M(\Omega(n-1), \Gamma(n-1)) \cdot \prod_{i=1}^{n-1} (\beta_i - \beta_j)(\beta_i \beta_j - 1). \]

By recursively using such equation, we get \(\det M(\Omega, \Gamma) = \prod_{i=1}^{n-1} (\beta_i - \beta_j)(\beta_i \beta_j - 1). \)

ACKNOWLEDGMENT

The authors are grateful to the editor and the anonymous reviewers for their valuable comments which have highly improved the manuscript.

REFERENCES

[1] N. Alon, “Combinatorial nullstellensatz,” *Combinatorics, Probab. Comput.*, vol. 8, nos. 1–2, pp. 7–29, Jan. 1999.

[2] F. Aktas, P. Peng, and E. Soljanin, “Effective straggler mitigation: Which clones should attack and when?” *ACM SIGMETRICS Perform. Eval. Rev.*, vol. 45, no. 2, pp. 12–14, Oct. 2017.

[3] A. B. Das and A. Ramamoorthy, “A unified treatment of partial stragglers and sparse matrices in coded matrix computation,” *IEEE J. Sel. Areas Inf. Theory*, vol. 3, no. 2, pp. 241–256, Jun. 2022.

[4] A. B. Das and A. Ramamoorthy, “Coded sparse matrix computation schemes that leverage partial stragglers,” *IEEE Trans. Inf. Theory*, vol. 68, no. 6, pp. 4156–4181, Jun. 2022.

[5] A. B. Das, A. Ramamoorthy, and N. Vaswani, “Efficient and robust distributed matrix computations via convolutional coding,” *IEEE Trans. Inf. Theory*, vol. 67, no. 9, pp. 6266–6282, Sep. 2021.

[6] J. Dean and L. A. Barroso, “The tail at scale,” *Commun. ACM*, vol. 56, no. 2, pp. 74–80, Feb. 2013.

[7] J. Dean and S. Ghemawat, “MapReduce: Simplified data processing on large clusters,” in *Proc. 6th USENIX Symp. Operating Syst. Design Implement.*, Dec. 2004, pp. 1–13.

[8] S. Dutta, Z. Bai, H. Jeong, T. M. Low, and P. Grover, “A unified coded deep neural network training strategy based on generalized PolyDot codes for matrix multiplication,” in *Proc. IEEE Int. Symp. Inf. Theory(ISIT)*, Jun. 2018, pp. 1585–1589.
S. Dutta, V. Cadambe, and P. Grover, “Short-Dot”: Computing large linear transforms distributedly using coded short dot products, in Proc. 29th Int. Conf. Neural Inf. Process. Syst. (NIPS), Barcelona, Spain, Dec. 2016, pp. 2100–2108.

S. Dutta, V. Cadambe, and P. Grover, “Short-Dot”: Computing large linear transforms distributedly using coded short dot products, IEEE Trans. Inf. Theory, vol. 65, no. 10, pp. 6171–6193, Oct. 2019.

S. Dutta, M. Fahim, F. Haddadpour, H. Jeong, V. Cadambe, and P. Grover, “On the optimal recovery threshold of coded matrix multiplication,” IEEE Trans. Inf. Theory, vol. 66, no. 1, pp. 278–301, Jan. 2020.

M. Fahim and V. R. Cadambe, “Numerically stable polynomially coded computing,” IEEE Trans. Inf. Theory, vol. 67, no. 5, pp. 2758–2785, May 2021.

K.-H. Huang and J. A. Abraham, “Algorithm-based fault tolerance for matrix operations,” IEEE Trans. Comput., vol. C-33, no. 6, pp. 518–528, Jun. 1984.

Folded Polynomial Codes. [Online]. Available: https://github.com/Shine29/FoldedPolynomialCodes

T. Herault and Y. Robert, Fault-Tolerance Techniques for High Performance Computing. Berlin, Germany: Springer, 2015.

H. Jeong, A. Devulapalli, V. R. Cadambe, and F. P. Calmon, “ε-approximate coded matrix multiplication is nearly twice as efficient as exact multiplication,” IEEE J. Sel. Areas Inf. Theory, vol. 2, no. 3, pp. 845–854, Sep. 2021.

Z. Jia and S. A. Jafar, “Cross subspace alignment codes for coded distributed batch computation,” IEEE Trans. Inf. Theory, vol. 67, no. 5, pp. 2821–2846, May 2021.

K. Lee, M. Lam, R. Pedarsani, D. Papailiopoulos, and K. Ramchandran, “Speeding up distributed machine learning using codes,” IEEE Trans. Inf. Theory, vol. 64, no. 3, pp. 1514–1529, Mar. 2018.

K. Lee, C. Suh, and K. Ramchandran, “High-dimensional coded matrix multiplication,” in Proc. IEEE Int. Symp. Inf. Theory (ISIT), Aachen, Germany, Jun. 2017, pp. 2418–2422.

S. Li, M. A. Maddah-Ali, and A. S. Avestimehr, “Coded distributed computing: Straggling servers and multistage dataflows,” in Proc. 54th Annu. Allerton Conf. Commun., Control, Comput. (Allerton), Sep. 2016, pp. 164–171.

A. Ramamoorthy and L. Tang, “Numerically stable coded matrix computations via circulant and rotation matrix embeddings,” IEEE Trans. Inf. Theory, vol. 68, no. 4, pp. 2684–2703, Apr. 2022.

A. Ramamoorthy, A. B. Das, and L. Tang, “Straggler-resistant distributed matrix computation via coding theory: Removing a bottleneck in large-scale data processing,” IEEE Signal Process. Mag., vol. 37, no. 3, pp. 136–145, May 2020.

R. A. Sadek, “SVD based image processing applications: State of the art, contributions and research challenges,” Int. J. Adv. Comput. Sci. Appl., vol. 3, no. 7, pp. 26–34, 2012.

HPCPlus Platform in Shanghai Supercomputer Center. [Online]. Available: https://www.hpcplus.net/science-portal-cloud/index

R. Tandon, Q. Lei, A. G. Dimakis, and N. Karampatziakis, “Gradient coding: Avoiding stragglers in distributed learning,” in Proc. 34th Int. Conf. Mach. Learn., 2017, pp. 3368–3376.

L. Tauz and L. Doleck, “Variable coded batch matrix multiplication,” IEEE J. Sel. Areas Inf. Theory, vol. 3, no. 2, pp. 306–320, Jun. 2022.

D. Wang, G. Joshi, and G. Wornell, “Using straggler replication to reduce latency in large-scale parallel computing,” ACM SIGMETRICS Perform. Eval. Rev., vol. 43, no. 3, pp. 7–11, Nov. 2015.

S. Wang, Q. Yan, J. Zhang, J. Wang, and L. Song, “Coded alternating least squares for straggler mitigation in distributed recommendations,” in Proc. IEEE Int. Symp. Inf. Theory (ISIT), Jul. 2021, pp. 1058–1063.

N. J. Yadwadkar, B. Harirhan, J. E. Gonzalez, and R. Katz, “Multi-task learning for straggler avoiding predictive job scheduling,” J. Mach. Learn. Res., vol. 17, no. 1, pp. 3692–3728, 2016.

Q. Yu and A. S. Avestimehr, “Entangled polynomial codes for secure, private, and batch distributed matrix multiplication: Breaking the ‘cubic’ barrier,” in Proc. IEEE Int. Symp. Inf. Theory (ISIT), Jun. 2020, pp. 245–250.

Q. Yu, S. Li, N. Raviv, S. M. M. Kalan, M. Soltanolkotabi, and S. A. Avestimehr, “Lagrange coded computing: Optimal design for resiliency, security, and privacy,” in Proc. 22nd Int. Conf. Artif. Intell. Statist., 2019, pp. 1215–1225.

Q. Yu, M. Maddah-Ali, and S. Avestimehr, “Polynomial codes: An optimal design for high-dimensional coded matrix multiplication,” in Proc. 31st Int. Conf. Neural Inf. Process. Syst. (NIPS), 2017, pp. 4406–4416.

Q. Yu, M. A. Maddah-Ali, and A. S. Avestimehr, “Straggler mitigation in distributed matrix multiplication: Fundamental limits and optimal coding,” IEEE Trans. Inf. Theory, vol. 66, no. 3, pp. 1920–1933, Mar. 2020.

M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, and I. Stoica, “Spark: Cluster computing with working sets,” in Proc. 2nd USENIX HotCloud, vol. 10, p. 10, Jun. 2010.

J. Zhu and X. Tang, “Secure batch matrix multiplication from grouping Lagrange encoding,” IEEE Commun. Lett., vol. 25, no. 4, pp. 1119–1123, Apr. 2021.

J. Von Zur Gathen and J. Gerhard, Modern Computer Algebra. Cambridge, U.K.: Cambridge Univ. Press, 2013.

Jingke Xu received the B.S. degree in information and computational science from Shandong Agricultural University, Tai’an, China, in 2014, and the Ph.D. degree in applied mathematics from the Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing, China, in 2019. Currently, he is a Lecturer with the Mathematics Department, Shandong Agricultural University. His current research interests include distributed storage coding theory and coded computing theory, with a current focus on private information retrieval.

Yaqian Zhang received the Ph.D. degree in applied mathematics from the Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing, China, in 2020. She is currently a Post-Doctoral Researcher with the School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, China. Her current research interests include coding theory, coding for distributed storage, and coded computing theory.

Libo Wang received the Ph.D. degree from the Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing, China, in 2017. He is currently working with Jinan University, Guangzhou, China, and the University of Hyogo, Kobe, Japan. His current research interests include cryptography and coding theory.