MODELING OBSERVATIONAL CONSTRAINTS FOR DARK MATTER HALOS

F. D. A. Hartwick
Department of Physics and Astronomy, University of Victoria, Victoria, BC V8W 3P6, Canada

Received 2012 July 23; accepted 2012 October 10; published 2012 November 8

ABSTRACT

Observations show that the underlying rotation curves at intermediate radii in spiral and low-surface-brightness galaxies are nearly universal. Further, in these same galaxies, the product of the central density and the core radius ($\rho_0 r_0$) is constant. An empirically motivated model for dark matter halos that incorporates these observational constraints is presented and shown to be in accord with the observations. A model fit to the observations of the galaxy cluster A611 shows that $\rho_0 r_0$ for the dark matter halo in this more massive structure is larger by a factor of ~ 20 over that assumed for the galaxies. The model maintains the successful Navarro–Frenk–White form in the outer regions, although the well-defined differences in the inner regions suggest that modifications to the standard cold dark matter picture are required.

Key word: dark matter

1. INTRODUCTION

Recent observations suggest that many spiral galaxies possess constant density cores whose central densities are related to their core radii. In addition, these same galaxies possess nearly universal rotation curves at intermediate radii after removal of the baryonic component. These observations are used to construct a simple empirical model for the density distribution of dark matter halos. This is done without prejudice for any specific model of structure formation, although the model is designed to retain the successful Navarro–Frenk–White (NFW) form (Navarro et al. 1997) in the outer regions.

For many years, we have relied on sophisticated cosmological simulations to provide guidance on the distribution of dark matter (hence the NFW profile). Only relatively recently has observational data on the distribution of dark matter over a large range in radius become available (e.g., the data on the galaxy cluster A611 from Newman et al. 2009). If the empirical model derived from the galaxy sample above is to describe all dark matter halos and, hence, to provide constraints on the properties of the dark matter particle itself, then it is important to test it on as many scales and morphologies as possible. For this reason, we include an application of our model to the observations of the galaxy cluster A611.

2. THE MODEL

The model is motivated by two independent observational results. The first is from Donato et al. (2009) who showed that the product of the central dark matter density and its core radius (the radius within which the density remains approximately constant) is a constant with a value of ~ 120 M_{\odot} pc$^{-2}$. Salucci et al. (2012) emphasize that this result extends to the dwarf spheroidal galaxies as well. This result builds upon earlier work by Kormendy & Freeman (2004). The second observational result is from the work of McGaugh et al. (2007). Here, an apparently universal relation between rotational velocity and radius at intermediate radii in 60 spiral galaxies is found after removal of the contributions from the stars and gas. Walker et al. (2010) then extend the same relation to dwarf spheroidal and low-surface-brightness (LSB) galaxies.

In order to account for the above observational results the following density profile is proposed:

$$\rho(r) = \rho_0 / (1 + r/r_c) (1 + r/r_s)^2,$$ (1)

where ρ_0 is the constant central density, r_c is a scale factor, and r_s is a second scale factor and is defined as $f \times r_c$, where $f > 1$. The core radius (r_c) is defined as that radius where the density has fallen to $\rho_0/4$. (This is the definition of core radius from the Burkert 1995 profile). The observations show that $\rho_0 r_c$ is a constant so that for a given assumed value of ρ_0 and f, r_c found from a solution of the following cubic equation will satisfy this constraint:

$$r_c^3 - ((2/f + 1)r_0/3)r_c^2 - ((2/f + 1/f^2)r_0^2/3)r_c - r_0^3/3 f^2 = 0.$$ (2)

Note that with $\rho_0 r_c$ given by the observations, the problem contains only the two free parameters ρ_0 and f.

The mass enclosed within radius r is given by

$$M(r, a, b) = 4\pi \rho_0 (1/(b a - b)(b + 1))$$
$$+ ((a - 2b) \ln(b + 1)/(b (a - b))^2$$
$$+ \ln(a + 1)/(a (a - b)^2 - 1/(b^2 (a - b)))$$
$$= M_b(r_c) c^{1.4} / (M_\odot h^{-3} V_\odot^3),$$ (3)

where $a = 1/r_c$ and $b = 1/r_s$.

The outer boundary of the model occurs when $M/((4\pi r^3)/3) = 200 \rho_{crit} (h = 0.7$ assumed). Given that this boundary condition is the same as that assumed for standard cold dark matter (CDM), the predicted baryonic Tully–Fisher relation here is also the same (i.e., $M_b \propto V_\odot^3$; e.g., Steinmetz & Navarro 1999).

In order to tie the above density distribution to a solution of the Jeans equation we use the pseudo-phase-space density $Q = \rho/\sigma_r^2$ as the second variable. This variable has interesting properties which could be relevant to the structure formation problem (Hogan & Dalcanton 2000; Dalcanton & Hogan 2001). Q was shown by Taylor & Navarro (2001) to vary with radius as $r^{-1.875}$ in the NFW model. In order to maintain this behavior in the outer region of the above model and to keep the problem simple, we assume the following form for the radial dependence of Q:

$$Q = Q_0 / (1 + (r/r_Q)^{1.875}).$$ (4)
With the spherical Jeans equation written in terms of ρ and Q (Hartwick 2008) and the above differentiable analytical expressions for both variables, the solution is the run of the anisotropy parameter β (Binney & Tremaine 1987), i.e.,

$$1.2\beta = -0.6 \frac{GM_r}{r} (\frac{Q}{\rho})^{2/3} - \frac{d\log \rho}{d\log r} + 0.4 \frac{d\log Q}{d\log r},$$

with Q_0 and r_0 as free parameters (for fixed ρ_0 and f). By choosing $r_0 = r_0$ and varying Q_0 until $\beta \sim 0$ at r_200 solutions were found where β rose smoothly from zero at the center to a maximum of -0.35 followed by a not-so-smooth descent to zero at the outer boundary (e.g., Navarro et al. 2010, Figure 10). Adding an extra parameter to Equation (4) (e.g., Equation (1) of Hartwick 2008) results in some smoothing and changes Q_0 by $\sim \pm 20\%$ even if Q is allowed to remain at or higher than its maximum value at the outer boundary. Ultimately, the observations must show the true behavior of the run of β. Q_0 was determined by iteration using the secant method.

Under the assumption that $\rho_0 r_0 = 120 M_\odot$ pc$^{-2}$ as f approaches unity, a minimum mass is found for each value of ρ_0 assumed. In the case of $\rho_0 = 5.0 M_\odot$ pc$^{-3}$, for example, this minimum is log $M_200 = 7.15 M_\odot$ with $Q_0 = 9.8 \times 10^{-3} M_\odot$ pc$^{-3}$ (km s$^{-1}$)$^{-3}$. As the mass is increased at a fixed central density (by increasing f) Q_0 slowly decreases. At $\rho_0 = 0.01 M_\odot$ pc$^{-3}$ this minimum mass increases to log $M_200 = 12.08 M_\odot$ with $Q_0 = 2.4 \times 10^{-3} M_\odot$ pc$^{-3}$ (km s$^{-1}$)$^{-3}$. More solutions are shown in the next section where they are compared to the observations.

3. COMPARISON WITH THE OBSERVATIONS

In this section, we show a comparison between the model and a sample of observations. Unless otherwise stated, the models were computed assuming that $\rho_0 r_0 = 120 M_\odot$ pc$^{-2}$.

3.1. The Fornax Dwarf Spheroidal

Figure 1 shows the results of several analyses of the stellar kinematics of Fornax. In the log $M - \log R$ plane results from Strigari et al. (2007, 2008), Walker et al. (2010), and Amorisco & Evans (2011) are plotted as filled circles. The two open circles are from the work of Walker & Peñarrubia (2011) whose analysis makes use of two independent stellar populations within the galaxy. The parameters of the model shown (solid line) are $\rho_0 = 0.24 M_\odot$ pc$^{-3}$, $f = 2.0$, $Q_0 = 5.3 \times 10^{-6} M_\odot$ pc$^{-3}$ (km s$^{-1}$)$^{-3}$ and log $M_200 = 9.66 M_\odot$.

3.2. Spiral and LSB Galaxies

Figures 2 and 3 show the models superimposed on the observations of McGaugh et al. (2007) of spiral galaxies (open circles) and a sample of LSB galaxies (crosses; Kuzio de Naray et al. 2010). The spiral galaxy sample has had the mass in stars and gas removed. Figure 2 shows four models with density $\rho_0 = 0.3 M_\odot$ pc$^{-3}$ and values of V_{200} (km s$^{-1}$) indicated. This is to be compared to the upper portion of Figure 3 of McGaugh et al. (2007) where NFW models are superimposed on the same data. Note how the relation between concentration index (c) and mass cause each NFW solution to be separated from the other, whereas the solutions here are approximately asymptotic near the solid black line. This line, shown extended in Figure 3, is a least-squares fit to the spiral data alone and has a logarithmic slope of 0.5 (McGaugh et al. 2007). Figure 3 shows the same data superimposed by three models all with $M_200 = 3 \times 10^{12} M_\odot$ but different central densities (red, 5.0; green, 0.1; and blue, 0.01 M_\odot pc$^{-3}$) which illustrates the point that models with the same mass can have different dark matter distributions.

3.3. Clusters of Galaxies

Up to this point, all model results have been obtained by assuming $\rho_0 r_0 = 120 M_\odot$ pc$^{-2}$. This assumption appears to break down when attempting to fit the model to the observations of the galaxy cluster A611 (Newman et al. 2009). These authors used a combination of weak and strong lensing along with spectroscopy of the central galaxy to obtain the dark matter distribution over a very large range in radius. In order to obtain a reasonable fit to the above observations, the model required that $\rho_0 r_0 = 2350 \pm 200 M_\odot$ pc$^{-2}$ (i.e., roughly 20 times the value assumed for the galaxies).

Recently, Newman et al. (2012) presented the results of a similar analysis for seven massive clusters including A611. The authors fit to each cluster a density profile similar to Equation (1) but with a different parameterization. Their paper does not contain enough information to compute individual values of $\rho_0 r_0$. However, from their Figure 3, we estimate that the central densities are $\sim 0.1-0.2 M_\odot$ pc$^{-3}$ and with mean core sizes (their r_c generally will be less than our r_0) of ~ 13 kpc $\rho_0 r_0$ appears to be at least 10 times higher than the galaxy value. Observations of intermediate-mass structures are needed to determine whether the relation between $\rho_0 r_0$ and dark halo mass is continuous.

Our model fit to A611 is shown in Figure 4 as the red line. The model parameters are $\rho_0 = 0.1 M_\odot$ pc$^{-3}$, $f = 9.0$, $Q_0 = 9.66 M_\odot$, and log $M_200 = 9.66 M_\odot$. The black line is the solid model and the solid line with dots is the model shown in Figure 1.
et al. (2007). All models have variations continuously between the masses of the dark matter halos and baryons in other types of galaxies such as the galaxies and those of the galaxy clusters. Should the observational constraints that define the model be shown to be compatible with other galaxy types (e.g., the ellipticals), then accounting for them will strengthen the need for major modifications to the standard CDM picture. One way to modify CDM is to invoke the idea that the dark matter particles are self-interacting (e.g., Spergel & Steinhardt 2000). If the mean free path of the particles is of the order of the core size \(r_0\), then the scattering coefficient will be \(\rho_0 r_0^{-1}\). In the case of A611, this quantity in cgs units is \(2\times10^{-3}\). However, to be consistent with the value for the galaxies, \(\sim 40.0\ \text{cm}^2\ \text{gm}^{-1}\), the scattering coefficient could be energy-dependent given the difference in mass between the galaxies and the clusters. Such an energy-dependent scattering coefficient has been investigated by Loeb \& Weiner (2011). A further consideration is that if the coefficient is sufficiently large, then the halo is subject to core collapse within a Hubble time (e.g., Burkert 2000). Clearly, many uncertainties with this scheme remain.

The self-interacting dark matter picture mentioned above is but one of several that have been proposed to explain the presence of cores in dark matter halos. An up-to-date list is discussed in the paper by Newman et al. (2012). The challenge for any theory is to predict the observed relation between \(\rho_0\) and \(r_0\). The continuing observational program of separating the baryons and dark matter on all scales and for all morphological structures should eventually lead to the correct scenario.

The author thanks Andrew Newman and Richard Ellis for kindly providing the data from Newman et al. (2009) on the

Figure 2. Four models superimposed on the data from Figure 3 of McGaugh et al. (2007). All models have \(\rho_0 = 0.3\) but with \(V_{200} = 300, Q_0 = 7.1 \times 10^{-7}\) (red); \(V_{200} = 200, Q_0 = 1.1 \times 10^{-6}\) (yellow); \(V_{200} = 100, Q_0 = 2.2 \times 10^{-6}\) (green); and \(V_{200} = 50, Q_0 = 4.3 \times 10^{-6}\) (blue).

\[
Q_0 = 6.7 \times 10^{-11} M_\odot \ \text{pc}^{-3} \ (\text{km s}^{-1})^{-3}, \ \text{and a mass log } M_{200} = 14.57 M_\odot.
\]

Figure 3. Three models superimposed on the data from Figure 3 of McGaugh et al. (2007) extended to include data for LSB galaxies from Kuzio de Naray et al. (2010) shown as crosses. All three models have the same \(M_{200} = 3 \times 10^{12} M_\odot\) but different central densities; \(\rho_0 = 5.0, Q_0 = 2.1 \times 10^{-4}\) (red); \(\rho_0 = 0.1, Q_0 = 1.4 \times 10^{-7}\) (green); \(\rho_0 = 0.01, Q_0 = 1.8 \times 10^{-9}\) (blue).

4. SUMMARY

The observations show that many spiral and LSB galaxies exhibit a nearly universal relation between the underlying rotational velocity and radius at intermediate radii and a relation between the central density and core radius such that their product is a constant. A model is constructed based on these constraints and the results are shown to be consistent with the observations and to differ in the inner region from predictions based on the NFW profile of CDM. Specifically, in addition to the galaxies possessing a dark matter core, the mass–concentration relation appears to be absent and for central densities above a mass-dependent threshold density, dark halos of the same total mass can have different internal structures, i.e., larger central densities and smaller core radii.

The model was also fit to the observations of the galaxy cluster A611. It was found that the central density–core radius relation had to be \(\sim 20\) times higher than that found for the galaxy sample. A recent study of the density profile of seven massive clusters by Newman et al. (2012) also suggests a significantly higher value. Additional observations are required to determine if \(\rho_0 r_0\) varies continuously between the masses of the dark matter halos of the galaxies and those of the galaxy clusters.

The model provides an empirically motivated cored template, which may be useful for disentangling the relative contributions of dark matter and baryons in other types of galaxies such as the ellipticals.
Figure 4. Model (red line) with $\rho_0 r_0 = 2350 M_\odot \text{pc}^{-2}$ fit to the observations of galaxy cluster A611 (Newman et al. 2009). The parameters are $\rho_0 = 0.1$, $f = 9$, $Q_0 = 6.7 \times 10^{-11}$ and $\log M_{200} = 14.57 M_\odot$.

Hartwick gratefully acknowledges support for this work from a discovery grant from NSERC (Canada).

REFERENCES

Amorisco, N. C., & Evans, N. W. 2011, MNRAS, 411, 2118
Binney, J., & Tremaine, S. 1987, Galactic Dynamics (Princeton: Princeton Univ. Press)
Burkert, A. 1995, ApJ, 447, L25
Burkert, A. 2000, ApJ, 534, L143
Dalcanton, J. J., & Hogan, C. J. 2001, ApJ, 561, 35
Donato, F., Gentile, G., Salucci, P., et al. 2009, MNRAS, 397, 1169
Hartwick, F. D. A. 2008, ApJ, 674, 220
Hogan, C. J., & Dalcanton, J. J. 2000, Phys. Rev. D, 62, 063511
Kormendy, J., & Freeman, K. C. 2004, in IAU Symp. 220, Scaling Laws for Dark Matter Halos in Late-Type and Dwarf Spheroidal Galaxies, ed. S. D. Ryder, D. J. Pisano, M. A. Walker, & K. C. Freeman (San Francisco, CA: ASP), 377
Kuzio de Naray, R., Martinez, G. D., Bullock, J. S., & Kaplinghat, M. 2010, ApJ, 710, L161
Loeb, A., & Weiner, N. 2011, Phys. Rev. Lett., 106, 171302
McGaugh, S. S., de Blok, W. J. G., Schombert, J. M., Kuzio de Naray, R., & Kim, J. H. 2007, ApJ, 659, 149
Navarro, J. F., Frenk, C. S., & White, S. D. M. 1997, ApJ, 490, 493
Navarro, J. F., Ludlow, A., Springel, V., et al. 2010, MNRAS, 402, 21
Newman, A. B., Treu, T., Ellis, R. S., et al. 2009, ApJ, 706, 1078
Newman, A. B., Treu, T., Ellis, R. S., & Sand, D. J. 2012, ApJ, submitted (arXiv:1209.1392v1)
Salucci, P., Wilkinson, M. I., Walker, M. G., et al. 2012, MNRAS, 420, 2034
Spergel, D. N., & Steinhardt, P. J. 2000, Phys. Rev. Lett., 84, 3760
Steinmetz, M., & Navarro, J. F. 1999, ApJ, 513, 555
Strigari, L. E., Bullock, J. S., Kaplinghat, M., et al. 2007, ApJ, 669, 676
Strigari, L. E., Bullock, J. S., Kaplinghat, M., et al. 2008, Nature, 454, 1096
Taylor, J. E., & Navarro, J. F. 2001, ApJ, 563, 483
Walker, M. G., Mateo, M., Olszewski, E. W., et al. 2010, ApJ, 710, 886
Walker, M. G., McGaugh, S. S., Mateo, M., Olszewski, E. W., & Kuzio de Naray, R. 2010, ApJ, 717, 187
Walker, M. G., & Peñarrubia, J. 2011, ApJ, 742, 20