PICONE’S IDENTITY FOR \(p \)-BIHARMONIC OPERATOR AND ITS APPLICATIONS

G. DWIVEDI

Abstract. In this article we prove the nonlinear analogue of Picone’s identity for \(p \)-biharmonic operator. As an application of our result we show that the Morse index of the zero solution to a \(p \)-biharmonic boundary value problem is 0. We also prove a Hardy type inequality and Sturmian comparison principle. We also show the strict monotonicity of the principle eigenvalue and linear relationship between the solutions of a system of singular \(p \)-biharmonic system.

1. Introduction

The classical Picone’s identity says that for differentiable functions \(v > 0 \) and \(u \geq 0 \),
\[
|\nabla u|^2 + \frac{u^2}{v^2} |\nabla v|^2 - 2 \frac{u}{v} \nabla u \nabla v = |\nabla u|^2 - \nabla \left(\frac{u^2}{v} \right) \nabla v \geq 0.
\]
(1.1) has an enormous applications to second-order elliptic equations and systems, see for instance, [1, 2, 3, 12] and the references therein. Nonlinear analogue of (1.1) is established by J. Tyagi [13]. In order to apply (1.1) to \(p \)-Laplace equations, (1.1) is extended by W. Allegretto and Y.X.Huang [4]. Nonlinear analogue of Picone’s type identity for \(p \)-Laplace equations is established by K. Bal [5].

In [6], D.R.Dunninger established a Picone identity for a class of fourth order elliptic differential inequalities. This identity says that if \(u, v, a \Delta u, A \Delta v \) are twice continuously differentiable functions with \(v(x) \neq 0 \) and \(a \) and \(A \) are positive weights, then
\[
\text{div} \left[u \nabla (a \Delta u) - a \Delta u \nabla u - \frac{u^2}{v} \nabla (A \Delta v) + A \Delta v \nabla \left(\frac{u^2}{v} \right) \right] = -\frac{u^2}{v} \Delta (A \Delta v) + u \Delta (a \Delta u) + (A - a)(\Delta u)^2
\]
(1.2)
\[
- A \left(\Delta u - \frac{u}{v} \Delta v \right)^2 + A \frac{2 \Delta v}{v} \left(\nabla u - \frac{u}{v} \nabla v \right)^2.
\]

With some simplifications in (1.2), we obtain the following identity:

Let \(u \) and \(v \) be twice continuously differentiable functions in \(\Omega \) such that \(v > 0, -\Delta v > 0 \) in \(\Omega \). Denote
\[
L(u, v) = \left(\Delta u - \frac{u}{v} \Delta v \right)^2 - \frac{2 \Delta v}{v} \left(\nabla u - \frac{u}{v} \nabla v \right)^2.
\]
(1.3)

2010 Mathematics Subject Classification. Primary 35J91; Secondary 35B60.
Key words and phrases. \(p \)-biharmonic, Picone’s identity, Morse index.
Submitted 19–03–2015. Published—–.
\[R(u, v) = |\Delta u|^2 - \Delta \left(\frac{u^2}{v} \right) \Delta v. \]

Then (i) \(L(u, v) = R(u, v) \) (ii) \(L(u, v) \geq 0 \) and (iii) \(L(u, v) = 0 \) in \(\Omega \) if and only if \(u = \alpha v \) for some \(\alpha \in \mathbb{R} \).

Nonlinear analogue of (1.3) is established by G. Dwivedi and J. Tyagi [7]. Picone’s identity for \(p \)-biharmonic operator is established by J. Jaróš [10]. Picone’s identity for elliptic differential operators are discussed by N. Yoshida [14] and J. Jaróš [11].

In this article we establish the nonlinear analogue of Picone’s identity for \(p \)-biharmonic operator. We also discuss some qualitative results in the spirit of W. Allegretto and Y.X. Huang [4] and J. Tyagi [13].

The plan of the paper is as follows: Section 2 deals with nonlinear analogue of Picone’s identity. In section 3, we give several application of Picone’s identity to \(p \)-biharmonic equations.

2. Main Results

Throughout this article, we assume the following hypotheses, unless otherwise stated.

(i) \(\Delta^2_p := \Delta(|\Delta u|^{p-2} \Delta u) \), denotes \(p \)-biharmonic operator.
(ii) \(\Omega \) denotes any domain in \(\mathbb{R}^n \).
(iii) \(1 < p < \infty \).
(iv) \(f : \mathbb{R} \rightarrow (0, \infty) \) be a \(C^2 \) function.

First we state Young’s inequality, which will be used later.

Lemma 2.1. If \(a \) and \(b \) are two nonnegative real numbers and \(p \) and \(q \) are such that \(\frac{1}{p} + \frac{1}{q} = 1 \), then

\[ab \leq \frac{a^p}{p} + \frac{b^q}{q}, \]

equality holds if and only if \(a^p = b^q \).

Proof. For proof we refer to [5]. \(\square \)

Next we give Picone’s identity for \(p \)-biharmonic operator.

Lemma 2.2. Let \(u \geq 0, v > 0 \) be twice continuously differentiable functions in \(\Omega \) and \(-\Delta v > 0 \) in \(\Omega \). Denote

\[R(u, v) = |\Delta u|^p - \Delta \left(\frac{u^p}{v^{p-1}} \right) |\Delta v|^{p-2} \Delta v \]
\[L(u, v) = |\Delta u|^p + \frac{(p-1)}{v^p} |\Delta v|^p - \frac{p}{v^{p-1}} |\Delta v|^{p-2} \Delta u \Delta v \]
\[- \frac{p(p-1)}{v^{p-1}} |\Delta v|^{p-2} \left(\nabla u - \frac{u}{v} \nabla v \right)^2. \]

Then (i) \(L(u, v) = R(u, v) \), (ii) \(L(u, v) \geq 0 \), (iii) \(L(u, v) = 0 \) in \(\Omega \) if and only if \(u = \alpha v \) for some \(\alpha \in \mathbb{R} \).

Proof. Let us expand \(R(u, v) \):

\[R(u, v) = |\Delta u|^p - \Delta \left(\frac{u^p}{v^{p-1}} \right) |\Delta v|^{p-2} \Delta v \]
By Lemma 2.1, with $a \geq 0$. This proves that (I) holds.

Now consider (II): Since $|\Delta u| |\Delta v| \geq \Delta u \Delta v$, therefore, (II) holds.

Now consider (I):

\[
(I) = |\Delta u|^p + \frac{(p - 1)u^p}{v^p} |\Delta v|^p - \frac{pu^{p-1}}{v^{p-1}} |\Delta v|^{p-2} \Delta u \Delta v
\]

By Lemma 2.1 with $a = |\Delta u|$ and $b = \frac{|\Delta v|^{p-1}}{v^{p-1}}$, we get

\[
|\Delta u|^p + \frac{(p - 1)u^p}{v^p} |\Delta v|^p - \frac{pu^{p-1}}{v^{p-1}} |\Delta v|^{p-2} \Delta u \Delta v \geq 0.
\]

This proves that (I) holds. This proves the (ii), that is, $L(u, v) \geq 0$.

Now $L(u, v) = 0$ in Ω implies that $\nabla u - \frac{u}{v} \nabla v = 0$, provided $u(x_0) \neq 0$ for some $x_0 \in \Omega$. This gives $\nabla \left(\frac{u}{v} \right) = 0$, that is, $u = \alpha v$ for some $\alpha \in \mathbb{R}$. This completes the proof.

Now we establish the nonlinear analogue of Picone’s identity for p-biharmonic operator.
Lemma 2.3. Let \(u \) and \(v \) be twice continuously differentiable functions in \(\Omega \) such that \(u \geq 0 \) and \(-\Delta v > 0\) in \(\Omega \). Let \(f : \mathbb{R} \to (0, \infty) \) be a \(C^2 \) function such that \(f'(y) \geq (p - 1)|f(y)| \) for all \(y \in \mathbb{R} \) and \(f''(y) \leq 0 \), \(\forall y \in \mathbb{R} \). Denote

\[
L(u, v) = |\Delta u|^p - \frac{pu^{p-1}|\Delta v|^p \Delta u}{f} + \frac{u p f'(v)|\Delta v|^p}{f^2} \left(\frac{1}{2} \frac{|\Delta v|^{p-2}u^{p-2}}{f} \right) \left[\left(\frac{2u f'}{f} \nabla v - p \nabla u \right)^2 + p(p-1)|\nabla u|^2 \right].
\]

\[
R(u, v) = |\Delta u|^p - \Delta \left(\frac{u^p}{f(v)} \right) |\Delta v|^{p-2} \Delta v.
\]

Then (i) \(L(u, v) = R(u, v) \), (ii) \(L(u, v) \geq 0 \), (iii) \(L(u, v) = 0 \) in \(\Omega \) if and only if \(u = \alpha v \) for some \(\alpha \in \mathbb{R} \).

Proof. Let us expand the \(R(u, v) \):

\[
R(u, v) = |\Delta u|^p - \Delta \left(\frac{u^p}{f(v)} \right) |\Delta v|^{p-2} \Delta v
\]

\[
= |\Delta u|^p + \frac{u p f'(v)|\Delta v|^p}{f^2} - \frac{pu^{p-1}|\Delta v|^p \Delta u}{f^2} \left(\frac{1}{2} \frac{|\Delta v|^{p-2}u^{p-2}}{f} \right) \left[\left(\frac{2u f'}{f} \nabla v - p \nabla u \right)^2 + p(p-1)|\nabla u|^2 \right],
\]

\[
= \left(\frac{\Delta v|\Delta v|^{p-2}p^{p-2}}{f} \right) \left(p(p-1)|\nabla u|^2 + \frac{2u^2 f^2}{f^2} |\nabla v|^2 - \frac{2pf'u(\nabla u, \nabla v)}{f} \right),
\]

\[
R(u, v) = \left(\frac{\Delta v|\Delta v|^{p-2}p^{p-2}}{f} \right) \left(p(p-1)|\nabla u|^2 + \frac{2u^2 f^2}{f^2} |\nabla v|^2 - \frac{2pf'u(\nabla u, \nabla v)}{f} \right).
\]

First we consider (ii).

\[
(\text{ii}) = -\frac{\Delta v|\Delta v|^{p-2}p^{p-2}}{f} \left[p(p-1)|\nabla u|^2 + \frac{2u^2 f^2}{f^2} |\nabla v|^2 - \frac{2pf'u(\nabla u, \nabla v)}{f} \right]
\]

\[
+ \left(\frac{p\nabla u}{\sqrt{2}} \right)^2 - \left(\frac{p\nabla u}{\sqrt{2}} \right)^2
\]

\[
= -\frac{1}{2} \frac{\Delta v|\Delta v|^{p-2}p^{p-2}}{f} \left[\left(\frac{2uf'}{f} \nabla v - p \nabla u \right)^2 + p(p-1)|\nabla u|^2 \right].
\]
This completes (i), that is, \(L(u, v) = R(u, v) \). Also (II) \(\geq 0 \), since \(-\Delta v > 0\).

Next consider (I).

\[
\text{(I)} = \left(|\Delta u|^p + \frac{u^p f'(v) |\Delta v|^p}{f^2} - \frac{p u^{p-1} |\Delta v|^{p-2} |\Delta u| |\Delta v|}{f(v)} \right) \\
+ \frac{p u^{p-1} |\Delta v|^{p-2}}{f} (|\Delta u| |\Delta v| - \Delta u \Delta v),
\]

clearly second term of above equation is nonnegative. So on using Young’s inequality (Lemma 2.1) with \(a = |\Delta u|, b = \frac{(u|\Delta v|)^{p-1}}{f} \), we get

\[
\frac{|\Delta u|^{p-1}|\Delta v|^{p-1}}{f} \leq \frac{|\Delta u|^p}{p} + \frac{(u|\Delta v|)^{(p-1)q}}{q f^q}
\]

\[
p \frac{|\Delta u|^{p-1}|\Delta v|^{p-1}}{f} \leq |\Delta u|^p + (p-1) \frac{(u|\Delta v|)^{(p-1)q}}{f^q},
\]

equality holds when

\[
(2.2) \quad |\Delta u| = \frac{u|\Delta v|}{(f(v))^\frac{p}{q}}.
\]

Now on using \(f'(y) \geq (p-1)[f(y)]^{\frac{p-2}{p}} \), we get

\[
|\Delta u|^p + \frac{(u^p f'(v) |\Delta v|^p)}{f^2} - \frac{p u^{p-1} |\Delta v|^{p-1}}{f} \geq 0
\]

and equality holds when

\[
(2.3) \quad f'(y) = (p-1)[f(y)]^{\frac{p-2}{p}}
\]

This gives (I) \(\geq 0 \).

Now (III) \(\geq 0 \), since \(-\Delta v > 0\) and \(f''(v) \leq 0 \). This proves (ii). \(\square \)

3. Applications

In this section we will give some applications of nonlinear Picone’s identity following the spirit of [4].

Hardy type result. We start with establishing a Hardy type inequality for p-biharmonic operator.

Theorem 3.1. Let there be a \(v \in C_\infty^c(\Omega) \) such that

\[
\Delta(|\Delta u|^{p-2} \Delta v) \geq \lambda g f(v), \quad v > 0 \text{ in } \Omega, \quad -\Delta v > 0 \text{ in } \Omega,
\]

for some \(\lambda > 0 \) and a nonnegative continuous function \(g \) then for any \(u \in C_\infty^c(\Omega) \); \(u \geq 0 \) it holds that

\[
(3.1) \quad \int_\Omega |\Delta u|^p dx \geq \lambda \int_\Omega g |u|^p dx,
\]

where \(f \) satisfies \(f'(y) \geq (p-1)[f(y)]^{\frac{p-2}{p}} \).

Proof. Take \(\phi \in C_\infty^c(\Omega), \phi > 0 \). By Lemma 2.3 we have

\[
0 \leq \int_\Omega L(\phi, v) dx
\]

\[
= \int_\Omega R(\phi, v) dx = \int_\Omega \left(|\Delta \phi|^p - \Delta \left(\frac{\phi^p}{f(v)} \right) |\Delta v|^{p-2} \Delta v \right) dx
\]
\[\int_\Omega |\Delta \phi|^p dx - \int_\Omega \frac{\phi^p}{f(v)} |\Delta^2 \phi|^{p-2} \Delta \phi dx \]

\[\leq \int_\Omega |\Delta \phi|^p dx - \lambda \int_\Omega \phi^p g dx \]

letting \(\phi \to u \), we get

\[\int_\Omega |\Delta u|^p dx \geq \lambda \int_\Omega g |u|^p dx. \]

\[\square \]

Strumium comparison principle. Comparison principles play vital role in study of partial differential equations. Here, we establish nonlinear version of Sturmium comparison principle for p-biharmonic operator.

Theorem 3.2. Let \(f_1 \) and \(f_2 \) are two weight functions such that \(f_1 < f_2 \) and \(f \) satisfies \(f'(y) \geq (p-1)[f(y)]^{\frac{p-2}{p}} \). If there is a positive solution \(u \) satisfying

\[\Delta^2_p v = f_1(x)|u|^{p-2} u \text{ in } \Omega \]

\[u = 0 = \Delta u \text{ on } \partial \Omega. \]

\[(3.2) \]

Then any nontrivial solution \(v \) of

\[\Delta^2_p v = f_2(x)f(v) \text{ in } \Omega \]

\[u = 0 = \Delta u \text{ on } \partial \Omega, \]

\[(3.3) \]

must change sign.

Proof. Let us assume that there exists a solution \(v > 0 \) of \((3.3) \) in \(\Omega \). Then by Picone’s identity we have

\[0 \leq \int_\Omega L(u,v) dx = \int_\Omega R(u,v) dx \]

\[= \int_\Omega |\Delta u|^p - \Delta \left(\frac{u^p}{f(v)}\right) |\Delta^2 u|^{p-2} \Delta v dx \]

\[= \int_\Omega \left(f_1(x)u^p - f_2(x)u^p \right) dx \]

\[= \int_\Omega (f_1 - f_2) u^p dx < 0, \]

which is a contradiction. Hence, \(v \) changes sign. \[\square \]

Strict Monotonicity of principle eigenvalue in domain. Consider the indefinite eigenvalue problem

\[\Delta^2_p u = \lambda g, \text{ in } \Omega, \]

\[u = 0 = \Delta u \text{ on } \partial \Omega, \]

\[(3.4) \]

where \(g(x) \) is indefinite weight function.

Theorem 3.3. Let \(\lambda_1^+ (\Omega) > 0 \) be the principle eigenvalue of \((3.4) \), then suppose \(\Omega_1 \subset \Omega_2 \) and \(\Omega_1 \neq \Omega_2 \). Then \(\lambda_1^+ (\Omega_1) > \lambda_1^+ (\Omega_2) \), if both exist.

Proof. Let \(u_i \) be a positive eigenfunction associated with \(\lambda_i^+ (\Omega_i), i = 1, 2 \). Evidently for \(\phi \in C_0^\infty (\Omega_i) \), we have

\[0 \leq \int_{\Omega_i} L(\phi_1, u_2) dx \]
PICONE’S IDENTITY

\[\int_{\Omega_1} |\Delta \phi|^p dx - \int_{\Omega_1} \phi p \int_{\Omega_1} \Delta (|\Delta u_2|^{p-2} \Delta u_2) dx \]

\[= \int_{\Omega_1} |\Delta \phi|^p dx - \lambda^+_1(\Omega_2) \int_{\Omega_1} g(x) \phi^p dx.\]

Letting \(\phi \to u_1\), we get

\[0 \leq \int_{\Omega} L(u_1, u_2) dx = (\lambda^+_1(\Omega_1) - \lambda^+_1(\Omega_2)) \int_{\Omega_1} g \phi^p dx,\]

this gives \(\lambda^+_1(\Omega_1) - \lambda^+_1(\Omega_2) > 0\), as if \(\lambda^+_1(\Omega_1) = \lambda^+_1(\Omega_2)\), we conclude that \(u_1 = ku_2\), which is not possible as \(\Omega_1 \subset \Omega_2\) and \(\Omega_1 \nsubseteq \Omega_2\). This completes the proof. \(\square\)

Quasilinear System with Singular nonlinearity. We will use Picone’s identity to establish a linear relationship between solutions of a quasilinear system with singular nonlinearity. Consider the singular system of elliptic equations

\[\Delta^2 p u = f(v), \text{ in } \Omega,\]

\[\Delta^2 p v = (f(v))^2, \text{ in } \Omega,\]

\[u > 0, v > 0 \text{ in } \Omega,\]

\[u = 0 = v \text{ on } \partial \Omega,\]

\[\Delta u = 0 = \Delta v \text{ on } \partial \Omega,\]

where \(f\) satisfies \(f'(y) \geq (p - 1)|f(y)|^{\frac{p-2}{2}}\).

Theorem 3.4. Let \((u, v)\) be a weak solution of \((3.5)\) and \(f\) satisfy \(f'(y) \geq (p - 1)|f(y)|^{\frac{p-2}{2}}\), then \(u = c_1 v\), where \(c_1\) is a constant.

Proof. Let \((u, v)\) be weak solution of \((3.5)\). Then for any \(\phi_1, \phi_2 \in H^2(\Omega) \cap H_0^1(\Omega)\), we have

\[\int_{\Omega} |\Delta u|^p \Delta \phi_1 dx = \int_{\Omega} f(v) \phi_1 dx \]

\[\int_{\Omega} |\Delta v|^p \Delta \phi_2 dx = \int_{\Omega} \frac{f^2(v)}{u^{p-2}} \phi_2 dx.\]

Choosing \(\phi_1 = u\) and \(\phi_2 = \frac{u^2}{f(v)}\) in \((3.6)\) and \((3.7)\) respectively, we get

\[\int_{\Omega} |\Delta u|^p dx = \int_{\Omega} u f(v) dx\]

\[= \int_{\Omega} |\Delta v|^p \Delta u \left(\frac{u^2}{f(v)}\right) dx,\]

which gives

\[\int_{\Omega} \left(|\Delta u|^p - |\Delta v|^p |\Delta u|^{p-2} \right) \left(\frac{u^2}{f(v)}\right) dx = 0,\]

or

\[\int_{\Omega} R(u, v) dx = 0,\]

this gives \(R(u, v) = 0\), which in turn implies that \(u = c_1 v\). \(\square\)
Morse Index. Let us consider the problem
\[(3.8)\]
\[
\Delta^2 u = a(x)f(u), \quad \text{in } \Omega, \\
u = 0 = \Delta u, \quad \text{on } \partial \Omega.
\]
The morse index of the solution of the \((3.8)\) is the number of negative eigenvalues of the linearized operator
\[
\Delta^2 - a(x)f'(u)
\]
acting on \(H^2(\Omega) \cap H_0^1(\Omega)\), that is, the number of eigenvalue \(\lambda\) such that \(\lambda < 0\) and the boundary value problem
\[(3.9)\]
\[
\Delta^2 w - a(x)f'(u)w = \lambda w, \quad \text{in } \Omega, \\
w = 0 = \Delta w, \quad \text{on } \partial \Omega
\]
has a nontrivial solution \(w\) in \(H^2(\Omega) \cap H_0^1(\Omega)\).

Theorem 3.5. Let us consider \((3.8)\). Suppose \(f'(0) \leq 1 \leq f'(s), \forall s \in (0, \infty)\) and \(f(0) = 0\). Let \(a(x)\) be a positive continuous function in \(\bar{\Omega}\). Then the trivial solution of \((3.8)\) has morse index 0.

Proof. Let \(v \in H^2(\Omega) \cap H_0^1(\Omega)\) be a positive solution of \((3.8)\). Then
\[(3.10)\]
\[
\int_\Omega |\Delta v|^p - 2 \Delta v \Delta \psi dx = \int_\Omega a(x)f(v) \psi dx, \quad \forall \psi \in H^2(\Omega) \cap H_0^1(\Omega).
\]
For any \(0 \neq w \in H^2(\Omega) \cap H_0^1(\Omega)\), let us take \(\psi = \frac{w^2}{f(v)}\) as a test function in \((3.10)\), we get
\[(3.11)\]
\[
\int_\Omega |\Delta v|^p - 2 \Delta v \Delta \left(\frac{w^2}{f(v)} \right) dx = \int_\Omega a(x)f(v) \frac{w^2}{f(v)} dx,
\]
on using \(R(u, v) \geq 0\), we get
\[(3.12)\]
\[
\int_\Omega |\Delta w|^p dx \geq \int_\Omega a(x)w^2 dx \geq \int_\Omega a(x)f'(0)w^2 dx.
\]
Consider the eigenvalue problem associated with the linearization of \((3.8)\) at 0, which is nothing but
\[(3.13)\]
\[
\Delta^2 w - a(x)f'(0)w = \lambda w, \quad \text{in } \Omega, \\
w = 0 = \Delta w, \quad \text{on } \partial \Omega
\]
By variational characterization of the eigenvalue in \((3.13)\), from \((3.12)\), we get that \(\lambda \geq 0\) and corresponding eigenfunction is positive. Which proves the claim. \(\square\)

References
[1] W. Allegretto, Positive solutions and spectral properties of weakly coupled elliptic systems, J. Math. Anal. Appl. 120 (1986), no. 2, 723–729.
[2] W. Allegretto, On the principal eigenvalues of indefinite elliptic problems, Math. Z. 195 (1987), no. 1, 29–35.
[3] W. Allegretto, Sturmian theorems for second order systems. Proc. Amer. Math. Soc. 94 (1985), no. 2, 291–296.
[4] W. Allegretto and Y.X.Huang, A Picone’s identity for the p-Laplacian and applications, Nonlinear Anal., 32(7) (1998), pp. 819–830.
[5] K.Bal, Generalized Picone’s identity and its applications, Electron. J. Diff. Equations., no. 243 (2013), pp. 1–6.
[6] D.R.Dunninger, A Picone integral identity for a class of fourth order elliptic differential inequalities, Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. 50(8) (1971), 630–641.
[7] G. Dwivedi and J. Tyagi, Some remarks on the qualitative questions for biharmonic equations, arXiv preprint [arXiv:1312.0210] (2013).
[8] L.C. Evans, Partial Differential Equations, First Indian Edition, American Mathematical Society, 2009.
[9] J. Jaros, The higher-order Picone identity and comparison of half-linear differential equations of even order, Nonlinear Anal., 74(18) (2011), pp. 7513–7518.
[10] J. Jaros, Picones identity for the p-biharmonic operator with applications, Electronic J. Diff. Equations., (2011): 1-6.
[11] J. Jaros, Picone-type identity and comparison results for a class of partial differential equations of order 4m. Opuscula Math 33(4) (2013): 701-711.
[12] A. Manes, A.M. Micheletti, Un’estensione della teoria variazionale classica degli autovalori per operatori ellittici del secondo ordine. Bollettino U.M.I., 7, 1973, 285–301.
[13] J. Tyagi, A nonlinear picone’s identity and its applications, Applied Mathematics Letters, 26, (2013), 624–626.
[14] N. Yoshida, A Picone identity for elliptic differential operators of order 4m with applications, Atti Accad. Naz. Lincei Rend. Cl. ci. Fis. Mat. Natur 58 (1975): 306-317.

G. Dwivedi
Indian Institute of Technology Gandhinagar
Vishwakarma Government Engineering College Complex
Chandkheda, Visat-Gandhinagar Highway, Ahmedabad
Gujarat, India - 382424
E-mail address: dwivedi.gaurav@iitgn.ac.in