Spurious memory in non-equilibrium stochastic models of imitative behavior

Vygin Gontis 1,‡, Aleksejus Kononovicius 1,‡ and Firstname Lastname 2,*

1 Institute of Theoretical Physics and Astronomy, Vilnius University, Saulėtekio al. 3, 10257 Vilnius, Lithuania; vygintas@gontis.eu
2 Institute of Theoretical Physics and Astronomy, Vilnius University, Saulėtekio al. 3, 10257 Vilnius, Lithuania; aleksejus.kononovicius@tfai.vu.lt
* Correspondence: vygintas@gontis.eu; Tel.: +370-698-12384
‡ Current address: Affiliation 3
¶ These authors contributed equally to this work.

Abstract: The origin of the long-range memory in the non-equilibrium systems is still an open problem as the phenomenon is reproduced using Markov processes. In these cases a notion of spurious memory is introduced. A good example of Markov processes with spurious memory is stochastic process driven by non-linear stochastic differential equations (SDE). This example is at odds with models built using fractional Brownian motion (fBm). We analyze differences between these two cases seeking to establish possible empirical tests of the origin of the observed long-range memory. We investigate probability density functions (PDF) of burst and inter-burst duration in numerically obtained, while solving non-linear SDE, time series and compare with the results of fBm. Our analysis confirms that the characteristic feature of the processes described by the one-dimensional stochastic differential equations is the power-law exponent 3/2 of the burst or inter-burst duration PDF. This property of stochastic processes might be used to detect spurious memory in various non-equilibrium systems, where observed macroscopic behavior can be derived from the imitative interactions of agents.

Keywords: spurious memory; non-equilibrium systems; agent-based and stochastic modelling; Markov processes; first passage times

1. Introduction

The application of statistical physics to divers fields such as social sciences and economics, biology and population genetics, medicine, information technology, computer science, etc. [1?] is making this interdisciplinary research very universal. Though the number of agents is usually incomparable with number of particles in physical systems, the understanding of macroscopic behavior of social and biological systems naturally invokes methods of statistical physics with very simplified interactions of individuals. Humans and biological entities are itself complex systems with unknown detailed behavior and any attempt to reproduce microscopic interactions of agents might look unrealistic. Thus the probabilistic description of agent interactions in social systems looks the most appropriate and natural. Even in very simplified models of agent interactions the collective behavior may lead to the ordered or disordered states. How the disordered interactions of agents create order in macroscopic behavior is very interesting question, nevertheless, the cases when non-equilibrium fluctuations do not disappear in the system are of high importance as well.

There is a limited number of solvable, mathematically transparent many-body systems and Ising model with its Glauber dynamics is among the most fundamental examples [2]. Being a very popular
tool for the investigation of transition from order and disorder states, Ising model is solvable only in
one-dimensional case and local interactions of spins [17]. Nevertheless, Ising model is useful to the
modeling of opinion and population dynamics and gives motivation to many other applications of
statistical mechanics [18]. It is possible to simplify pairwise interactions of agents in the way, which
leads to the solvable cases of many body systems in any dimension. The voter model is a good example
of such social system widely used in modeling of opinion dynamics and population genetics [3–5].
In one-dimensional case the voter model coincides with one-dimensional Glauber dynamics and can
be considered in other dimensions and various topologies of agent interactions. The standard voter
model converges to the consensus of opinions and this is related with two circumstances: local nature
of interactions and imitation of neighbor opinion without idiosyncratic decision making. From our
point of view, the case of global agent interactions or system running on the randomly generated
network, including idiosyncratic switching of opinions, is of great importance as exhibits continuing
stochastic fluctuations in collective behavior [19]. The evolution of such system can be written as the
Focker-Planck equation or as a non-linear SDE for population evolutions and can be seen as a special
case of voter model [6,7], of Moran model [1] or of Kirman’s model [8,9]. The continuing fluctuations
in such a non-equilibrium system with imitative behavior of agents exhibit very general power-law
scaling properties including spurious memory applicable to social [10], financial [11–13] or biological
systems.

Here we investigate the long-range memory property, which might originate from the true
long-range memory process with correlated increments such as the fractional Brownian motion (fBm)
[14–16] or from the stochastic processes with non-stationary uncorrelated increments [15–18]. There
is a fundamental problem to find out which of the possible alternatives, fBm or diffusive processes
with non-stationary increments, is in the origin of observed long-range memory. Here we employ
the dependence of first passage time PDF on Hurst parameter H for the fBm [19,20] and apparently
different behavior for non-linear diffusive processes [21]. This explains that the long-range memory
present in social, financial and biological systems can arise from non-linear agent interactions and
non-linear transformations of the population time series.

In Section ?? we present the short theoretical background for our empirical investigation, in
Section ?? we deal with empirical data from Forex and in Section ?? we discuss and conclude results.

2. Non-equilibrium stochastic fluctuations arising from the imitative behavior of agents

One agent (particle) jump Markov processes have become an efficient tool in modeling of physical,
biological and social systems [1,10,22]. The microscopic behavior of agent is replaced by continuous
time Markov processes with specified transition rates. In the system with large number of agents N
and two choices of opinion or state, for example (0,1), there are two possible one step (birth-death)
changes of system macroscopic state: a) the number of agents n in state 1 increases or b) decreases.
Such a simple but general enough definition of opinion or population dynamics can be specified by
two transition rates

$$p(n \rightarrow n+1) = (N-n)\mu_1(n,N) \equiv p^+(n,N),$$ \hspace{1cm} (1)

$$p(n \rightarrow n-1) = n\mu_2(n,N) \equiv p^-(n,N).$$ \hspace{1cm} (2)

These rates define the master equation for PDF of macroscopic state evolution $P(n,t)$

$$\frac{\partial P(n,t)}{\partial t} = p^+(n-1,N)P(n-1,t) + p^-(n+1,N)P(n+1,t) - (p^+(n,N) + p^-(n,N))P(n,t).$$ \hspace{1cm} (3)

In the limit of high N values one can introduce normalized variable $x = \frac{n}{N}$ and write Fokker-Planck
equation for PDF evolution

$$\frac{\partial P(x,t)}{\partial t} = \frac{\partial}{\partial x} [x\mu_2 - (1-x)\mu_1] P(x,t) + \frac{1}{2N} \frac{\partial^2}{\partial x^2} [(1-x)\mu_1 + x\mu_2] P(x,t),$$ \hspace{1cm} (4)
which can be associated with Ito stochastic differential equation for x

$$dx = ((1-x)\mu_1 - x\mu_2)\,dt + \sqrt{(1-x)\mu_1 + x\mu_2}\,dW, \quad (5)$$

where W is the Wiener noise. One gets very well known result Kirman’s model with global coupling of agents or interaction defined on the random Erdos-Renyi network, when rates are defined as follows [8, 23]

$$\mu_1(n,N) = \sigma_1 + Nhx, \quad \mu_2(n,N) = \sigma_2 + Nh(x-1). \quad (6)$$

The same equations of macroscopic modeling can be attributed to the voter model with idiosyncratic power-law PDF. In many publications it was justified that this class of SDE generates the time series of evolution in the limit $N \to \infty$. This is ensured by the same form of herding (imitation) term in both transition rates $Nhx(1-x)$ and its linear dependence on N. The relaxation term in SDE does not depend on herding and idiosyncratic terms vanish in diffusion part of SDE. Model can be generalized introducing non-linear dependence of time scale on macroscopic variable x, as was proposed in the modeling of finance to account variable trading activity [23]. Such additional non-linearity of the system probably is a common feature of the real world. From our point of view this might be considered as a source of spurious memory, which has to be identified from the empirical data of real social, biological or physical systems. Let’s generalize Kirman’s transition rates retaining some mathematical symmetry and adding some additional non-linearity quantified by parameter α

$$\mu_1(n,N) = (\sigma_1 + Nhx)x^{-\alpha}(1-x)^{-\alpha}, \quad (8)$$

$$\mu_2(n,N) = (\sigma_2 + Nh(x-1))x^{-\alpha}(1-x)^{-\alpha}. \quad (9)$$

Certainly, there are other choices how to introduce additional non-linearity into transition rates, but this one is very well suited for our needs in this contribution. This generalization assumes that activity of agents to interact can depend on the macroscopic state x of the whole system.

As we can see from Eqs. (2-9) agent-based models with non-linear interactions can lead to the macroscopic description by a non-linear SDEs, which represent the class of Markov processes. After some additional transformation of the signal such Markov series can be represented by following or a similar form[24,25]

$$dx = \left(\eta - \frac{\lambda}{2}\right)x^{2\eta-1}dt + x^\eta dW. \quad (10)$$

This Eq. has just two parameters: η as exponent of noise multiplicativity and λ as exponent of power-law PDF. In many publications it was justified that this class of SDE generates the time series with the power-law behavior of stationary PDF and PSD [25],

$$p(x) \sim x^{-\lambda}, \quad S(f) \sim \frac{1}{f^\beta}, \quad \beta = 1 + \frac{\lambda - 3}{2\eta - 2} = 2H + 1. \quad (11)$$

It was demonstrated by many authors [1] that Kirman’s model is suitable to model return in financial markets defined as proportional to $y = \frac{x}{x^2}$. This is the reason we are more interested in series generated by such transformation of agent population. Though other non-linear transformations of x leading to very big fluctuations of the signal might be responsible for the appearance of spurious memory as well. We can write SDE for y, when x is generated by SDE (5) with rates η defined by Eq. (9)

$$dy = \left(\varepsilon_1y^{-\alpha} + (2 - \varepsilon_2)y^{1-\alpha}\right)(y+1)2^{\alpha+1}dt + \sqrt{2y^{1-\alpha}(y+1)^\alpha+1}dW, \quad (12)$$
Figure 1. Fragment of time series (a), obtained by solving SDE (5) with μ given by Eq. (9), (b) PDF and (c) PSD of the same time series (red curves). Black curves in (b) and (c) represent theoretical fits: (b) Be(ε1, ε2) PDF and (c) 1/f² trend line. Parameter set used in numerical simulation: α = 2, ε1 = ε2 = 0.

Figure 2. Fragment of the transformed time series (a), same as in Fig. 1, (b) PDF and (c) PSD of the same transformed time series (red curves). Black curves in (b) and (c) represent theoretical fits: (b) \((x_1 - x_2)^{-3}\) trend line and (c) 1/f trend line.

Note that we scaled time here replacing \(ε_1 = σ_1/h\) and \(ε_2 = σ_2/h\). Eq. (12) has a unique symmetry regarding definition of \(y\) or its transformation \(y \rightarrow 1/y\). This is important as we seek to retain the symmetry in burst and inter-burst duration statistics. It is worth to note, that Eq. (12) for high values of variable \(y \gg 1\) belongs to class of non-linear SDEs (10) and parameters are related as follows

\[
η = \frac{3 + α}{2},
\]

\[
λ = 2(η + ε_2 - 2) = ε_2 + α + 1.
\]

Given description of imitative behavior in agent systems can prove that non-linear functions of agent population exhibit power-law statistics, including long-range memory, which we consider as a case of spurious memory. Derived power-law properties can be confirmed by numerical calculations, see elsewhere about methods we use to solve numerically non-linear SDEs [1]. In Fig. 1 we demonstrate excerpt of the imitative behavior signal \(x(t)\) (a), its stationary PDF (b) and PSD (c). Note that diffusion here is restricted in the region \(0 < x < 1\) and PSD is \(S_x \sim 1/f^2\). Only after non-linear transformation of the stochastic signal \(y = \frac{1}{1-x}\), see Fig. 2, PSD becomes \(1/f\) like and stationary PDF has power-law tail as given by Eq. (14). From our point of view such spurious long-range memory might originate in many social systems with imitative behavior of agents and continuing stochastic agent population or opinion dynamics. First of all such approach has to be considered as an explanation of observed long-range memory in finance [1]. In the next section we investigate the PDF of first passage times seeking to demonstrate that such long-range memory property is different from the case of fBm.

3. PDFs of burst and inter-burst duration in stochastic model of imitative behavior

The class of SDEs (10) describes multifractal stochastic processes [26] with non-stationary increments [15,16], power-law auto-correlation and PSD (11) and unlike for processes with correlated
Figure 3. Exemplary fragment of a generic time series. Three threshold, h_x, passage events, t_i, are shown. Thus burst duration T can be defined as $T = t_2 - t_1$ and inter-burst duration θ can be defined as $\theta = t_3 - t_2$.

The Hurst parameter H, defining the exponent of power-law PDF $H - 2$, coincides with the corresponding exponent for other one-dimensional Markov processes only when $H = 1/2$ [5,27–29]. It was demonstrated in [21] that burst and inter-burst duration can be defined through the first passage problem with initial value x_0 infinitesimally near the threshold h. There the burst duration for the non-linear SDEs (10) was considered. The asymptotic behavior of time T PDF can be written in rather transparent form

$$p(T) \sim T^{H-2},$$

(15)

$$p^{(v)}_{h_x}(T) \sim T^{-3/2}, \quad \text{for} \quad 0 < T \ll \frac{2}{(\eta - 1)^2 h_x^{2(\eta-1)} j_{\nu,1}^2},$$

(16)

$$p^{(v)}_{h_x}(T) \sim \frac{1}{T} \exp \left(- \frac{(\eta - 1)^2 h_x^{2(\eta-1)} j_{\nu,1}^2}{2} T \right), \quad \text{for} \quad T \gg \frac{2}{(\eta - 1)^2 h_x^{2(\eta-1)} j_{\nu,1}^2}. $$

(17)

Here, $\nu = \frac{1}{2(\eta-1)}$, and $j_{\nu,1}$ is a first zero of a Bessel function of the first kind. The power-law behavior with exponent 3/2 in Eq. (16) is consistent with the general theory of the first passage times in one-dimensional stochastic processes [5,28].

It is obvious from Eqs (11) that power-law statistical properties such as PDF or PSD for time series generated by SDE directly depend on non-linear transformations of the series. On the other hand these series retain some invariant property defined as PDF of first passage times T and Θ. This may serve for us as an criteria how to identify from empirical data which model of time series is better suited to describe real system having observed long-range memory properties, as any deviation of the PDF exponent from 3/2 other than cutoff in the region of long duration has to signal that real
long-range memory is present. Thus we investigate here statistical properties of time series generated by non-linear transformations of SDE (5) with transition rates Eq. (9), giving SDE (12). We demonstrate in Fig 4 this clear distinction of fBM and SDE by numerical comparison of PSD and PDF of T. Thus the statistical analyses of burst and inter-burst duration in empirical time series has to reveal whether signal contains real long-range memory property or such spurious property originates from non-linear memory less stochastic processes.

It is worth to define more precisely statistical properties of burst and inter-burst duration in described agent system with imitative behavior as potentially recoverable in real social systems [13]. In Fig. 5 we present numerical calculations of PDF for burst T and inter-burst θ durations with variable values of the threshold h_x. Our numerical calculations confirm the symmetry of the model for the statistics of burst and inter-burst durations regarding values of threshold h_x on both sides of mid-point $h_x = 0.5$, where PDFs of T and θ coincide. Note that fundamental power-law $3/2$ is retained for all values of threshold but burst and inter-burst durations have different positions of power-law cut off.

More precise analyses confirms that cut off of PDF for burst duration T is well described by previously derived exponential form Eq. (15). The cut off of inter-burst duration has the similar exponential form, but location is shifted proportionally to the h_x deviation from the mid point.

Observed power-law properties of this model of imitative behavior arise from the power-law properties of non-linear SDEs Eq. (10) extensively studied elsewhere [1]. Note that these properties are in close relation with rapidly developing ideas of non-extensive statistical mechanics and generalized concept of entropy [1].
4. Conclusions

It is widely excepted that fluctuations of volatility and trading activity in the financial markets exhibit slowly decaying auto-correlation and 1/f noise [? ? ? ?]. The discussion whether this slow decay corresponds to long-range memory is still ongoing. The statistical analysis in general is not able to provide a definite answer concerning the presence or absence of long-range memory in finance [? ? ? ?]. From our point of view, the heterogeneous agent dynamics has to be employed seeking to explain statistical properties of financial time series [12?,13]. Certainly, such complex system as finance [13] is not the best starting point for conceptual consideration of the long-range memory problem in other social systems. Thus in this contribution we consider much more abstract definition of agent system with imitative behavior leading to the continuing non-equilibrium stochastic fluctuations. Derived SDEs driven by Wiener noise describe Markov processes and can’t be treated as suitable to model long-range memory with correlated stochastic increments. Such modeling by stochastic agent systems becomes as an alternative to the stochastic processes driven by fBm. Thus the choice between these two possibilities is the fundamental question for understanding of the observed long-range memory property in many other complex systems.

The model we investigate here is the generalized version of Kirman’s herding model with pairwise global interaction of agents and is directly related to the voter model as well. The introduced additional feedback of macroscopic state on the time scale of interactions lets us to increase the non-linear multiplicativity η of SDE, defining properties of PSD for the ratio $y = x_1 - x$. The retained symmetry of generalized equations makes this choice as preferable among other possible alternatives. From our point of view such modeling first of all is applicable to the financial systems, but is general enough and analytically tractable for other systems with heterogeneous agents.

Here we prove analytically and numerically that PDF of burst and inter-burst duration of stochastic variable y is a power-law 3/2 with exponential cut off for high values of durations. We consider this property as very valuable being very different from fBm process, where PDF of first passage time is dependent on H, $p(T) \sim T^{H-2}$ [19,20]. Thus the detailed empirical analyzes of burst and inter-burst durations may serve as a criteria to distinguish two different origins of 1/f noise and long-range memory property. Empirical evidence of the power-law exponent 3/ should be considered as a case of spurious memory, when deviations from this exponent should witness presence of real long-range correlations. From our point of view the financial markets have to be considered as the social system with imitative behavior and spurious memory arising from the non-linear agent stochastic dynamics [12,13].

Figure 5. PDFs of burst (red circles) and inter-burst (blue squares) durations of time series, obtained by solving SDE (5) with μ given by Eq. (9), for various thresholds: $h_x = 0.6$ (a), 0.7 (b), 0.8 (c), 0.9 (d), 0.4 (e), 0.3 (f), 0.2 (g) and 0.1 (h). Parameter set used in numerical simulation: $\alpha = 2, \varepsilon_1 = \varepsilon_2 = 0$.
Author Contributions: V.G. designed and wrote the draft text of paper; A.K. performed all calculations and prepared illustrations; VG and A.K. discussed and prepared the final version to the paper.

Conflicts of Interest: The authors declare no conflict of interest. The founding sponsors had no role in the design of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, and in the decision to publish the results.

Abbreviations
The following abbreviations are used in this manuscript:

- PDF Probability density function
- SDE Stochastic differential equation
- PSD Power spectral density

References
1. Blythe, R.A.; McKane, A.J. Stochastic models of evolution in genetics, ecology and linguistics. J. Stat. Mech. 2007, P07018, 1–58.
2. Glauber, R.J. Time-Dependent Statistics of the Ising Model. Journal of Mathematical Physics 1963, 4, 294–307.
3. Clifford, P.; Sudbury, A. A model for spatial conflict. Biometrika 1973, 60, 581–588.
4. Holley, R.A.; Liggett, T.M. Ergodic theorems for weakly interacting infinite systems and the voter model. The Annals of Probability 1975, 3, 643–663.
5. Redner, S. A guide to first-passage processes; Cambridge University Press, 2001.
6. Liggett, T. Stochastic Interacting Systems: Contact, Voter, and Exclusion Processes; Springer, 1999.
7. Fernandez-Gracia, J.; Suchecki, K.; Ramasco, J.J.; San Miguel, M.; Eguiluz, V.M. Is the voter model a model for voters? Phys.Rev.Lett. 2014, p. 158701.
8. Kirman, A.P. Ants, rationality and recruitment. Quarterly Journal of Economics 1993, 108, 137–156.
9. Alfarano, S.; Milakovic, M. Network structure and N-dependence in agent-based herding models. Journal of Economic Dynamics and Control 2009, 33, 78–92.
10. Aoki, M.; Yoshikawa, H. Reconstructing Macroeconomics: A Perspektive from Statistical Physics and Combinatorial Stochastic Processes; Cambridge University Press, 2007.
11. Alfarano, S.; Lux, T.; Wagner, F. Estimation of Agent-Based Models: The Case of an Asymmetric Herding Model. Computational Economics 2005, 26, 19–49.
12. Gontis, V.; Kononovicius, A. Consentaneous agent-based and stochastic model of the financial markets. PLoS ONE 2014, 9, e102201.
13. Gontis, V.; Havlin, S.; Kononvicius, A.; Podobnik, B.; Stanley, E. Stochastic model of financial markets reproducing scaling and memory in volatility return intervals. Physica A 2016, 462, 1091–1102.
14. Mandelbrot, B.; Ness, V. Fractional Brownian motions, fractional noises and applications. SIAM Review 1968, pp. 10:422–437.
15. Bassler, K.; G., G.; McCauley. Markov processes, Hurst exponents, and nonlinear diffusion equations: With application to finance. Physica 2006, 369, 343–353.
16. McCauley, J.; Gunaratne, G.; Bassler, K. Hurst exponents, Markov processes, and fractional Brownian motion. Physica A 2007, 379, 1–9.
17. Gontis, V.; Kaulakys, B. Modeling financial markets by the multiplicative sequence of trades. Physica A 2004, 344, 128–133.
18. Ruseckas, J.; Kaulakys, B. Tsallis distributions and $1/t$ noise from nonlinear stochastic differential equations. Phys.Rev.E 2011, p. 051125.
19. Ding, M.; Yang, W. Distribution of the first return time in fractional Brownian motion and its application to the study of on-off intermittency. Physical Review E 1995, 52, 207–213.
20. In First-Passage Phenomena and Their Applications; Metzler, R.; Oshanin, G.; Redner, S., Eds.; Springer, 2014; p. 608.
21. Gontis, V.; Kononovicius, A.; Reimann, S. The class of nonlinear stochastic models as a background for the bursty behavior in financial markets. Advances in Complex Systems 2012, 15, 1250071.
22. Risken, H. The Fokker–Planck Equation: Methods of Solutions and Applications, 3 ed.; Springer, 1996.
23. Gontis, V.; Kaulakys, B. Modeling long-range memory trading activity by stochastic differential equations. *Physica A* **2007**, *382*, 114–120.

24. Kaulakys, B.; Gontis, V.; Alaburda, M. Point process model of 1/f noise vs a sum of Lorentzians. *Physical Review E* **2005**, *71*, 1–11.

25. Ruseckas, J.; Kaulakys, B. Scaling properties of signals as origin of 1/f noise. *Journal of Statistical Mechanics* **2014**, *2014*, P06004.

26. Kononovicius, A.; Gontis, V. Agent based reasoning for the non-linear stochastic models of long-range memory. *Physica A* **2012**, *391*, 1309–1314.

27. Borodin, A.N.; Salminen, P. *Handbook of Brownian Motion*, 2 ed.; Birkhauser: Basel, Switzerland, 2002.

28. Jeanblanc, M.; Yor, M.; Chesney, M. *Mathematical Methods for Financial Markets*; Springer: Berlin, 2009.

29. Gardiner, C.W. *Handbook of Stochastic Methods*; Springer: Berlin, 2009.

Sample Availability: Samples of the compounds are available from the authors.