On the $|K^\lambda|$-summability of Fourier series and its conjugate series

Sanghamitra Beuria · G. Das · B. K. Ray

Abstract The K^λ-means were first introduced by Karamata. Vučković first studied the K^λ-summability of a Fourier series and later on Lal studied the K^λ-summability of a conjugate series. In the present paper, we have studied the $|K^\lambda|$-summability of Fourier series and conjugate series.

Mathematics Subject Classification 42A28

1 Definitions and notations

For $n = 0, 1, 2, \ldots$, define the numbers $[n \atop k]$ for $0 \leq k \leq n$ by

$$ \Pi_{v=0}^{n-1}(x + v) = \sum_{k=0}^{n} [n \atop k] x^k, \quad x > 0 $$

(1.1)

where $\prod_{v=0}^{n-1}(x + v) = x(x + 1) \cdots (x + n - 1) = \frac{\Gamma(x+n)}{\Gamma(x)}$. Clearly, $[n \atop k] = 0$ when $k < 1$ and $k > n$. We shall use the convention that $[0 \atop 0] = 1$. The numbers of $[n \atop k]$ are known as Stirling’s number of first kind. We know [8, p. 43] the following recursion formula

$$ [n \atop k] = [n-1 \atop k-1] + (n-1)[n-1 \atop k]. $$

(1.2)
Let $\sum_{n=0}^{\infty} u_n$ be an infinite series with sequence of partial sums $\{s_n\}$ i.e., $s_n = \sum_{k=0}^{n} u_k$. Let $\lambda > 0$, the K^λ-mean (t_n) of the sequence $\{s_n\}$ is defined by [2,5]

$$t_n = \frac{\Gamma(\lambda)}{\Gamma(n + \lambda)} \sum_{k=0}^{n} \binom{n}{k} \lambda^k s_k. \quad (1.3)$$

If $\lim_{n \to \infty} t_n = s$, then we say that sequence $\{s_n\}$ (or the series $\sum u_n$) is summable K^λ to s.

The series $\sum u_n$ (or the sequence $\{s_n\}$) is said to be absolutely K^λ-summable if $\{t_n\} \in BV$; i.e.,

$$\sum_{n=1}^{\infty} |t_n - t_{n-1}| < \infty. \quad (1.4)$$

Using (1.2) and (1.3), we obtain

$$t_n = \frac{\Gamma(\lambda)}{\Gamma(n + \lambda)} \sum_{k=0}^{n} \binom{n}{k} \lambda^k s_k + (n - 1) \sum_{k=0}^{n-1} \binom{n-1}{k} \lambda^k s_k$$

$$= \frac{\Gamma(\lambda)}{\Gamma(n + \lambda)} \sum_{k=1}^{n} \binom{n-1}{k-1} \lambda^k s_k + (n - 1) \sum_{k=0}^{n-1} \binom{n-1}{k} \lambda^k s_k$$

$$= \frac{\Gamma(\lambda)}{\Gamma(n + \lambda)} \left[\sum_{k=0}^{n-1} \binom{n-1}{k} \lambda^{k+1} s_{k+1} + (n - 1) \sum_{k=0}^{n-1} \binom{n-1}{k} \lambda^k s_k \right], \quad (1.5)$$

and

$$t_{n-1} = \frac{\Gamma(\lambda)}{\Gamma(n - 1 + \lambda)} \sum_{k=0}^{n-1} \binom{n-1}{k} \lambda^k s_k$$

$$= \frac{\Gamma(\lambda)}{\Gamma(n + \lambda)} \left[\sum_{k=0}^{n-1} \binom{n-1}{k} \lambda^{k+1} s_{k+1} + (n - 1) \sum_{k=0}^{n-1} \binom{n-1}{k} \lambda^k s_k \right]. \quad (1.6)$$

From (1.5) and (1.6), it follows that

$$t_n - t_{n-1} = \frac{\Gamma(\lambda)}{\Gamma(n + \lambda)} \sum_{k=0}^{n-1} \binom{n-1}{k} \lambda^{k+1} (s_{k+1} - s_k)$$

$$= \frac{\lambda}{n - 1 + \lambda} \left[\frac{\Gamma(\lambda)}{\Gamma(n + \lambda - 1)} \sum_{k=0}^{n-1} \binom{n-1}{k} \lambda^k u_{k+1} \right]$$

$$= \frac{\lambda \xi_{n-1}(u)}{n - 1 + \lambda}. \quad (1.7)$$

We may derive the following useful identity (Proposition 1.1) which is similar to the Kogbetliantz identity [3] for the Cesàro mean, namely,

$$n(\sigma_n^\alpha - \sigma_{n-1}^\alpha) = \tau_n^\alpha,$$

where σ_n^α is the (C, α) mean of $\sum a_n$ and τ_n is the (C, α) mean of $\{na_n\}$.

Proposition 1.1

$$(n - 1 + \lambda)(t_n - t_{n-1}) = \xi_{n-1}(u)$$

where t_n is the K^λ mean of $\sum u_n$ and ξ_n is the K^λ mean of $\{u_{n+1}\}$; i.e.,

$$\xi_n(u) = \frac{\Gamma(\lambda)}{\Gamma(n + \lambda)} \sum_{k=0}^{n} \binom{n}{k} \lambda^k u_{k+1}. \quad (1.8)$$
From Proposition 1.1, it follows that \(\sum u_n \) is the \(|K^\lambda| \)-summable if and only if

\[
\sum_{n=1}^{\infty} \frac{|x_{n-1}(u)|}{n} < \infty.
\] (1.9)

Proposition 1.2 The \(K^\lambda \)-method is absolutely conservative; that is \(|C, 0| \subset |K^\lambda| \).

Proof We need the following result [8, p. 43 problem 200]:

\[
\sum_{n=k}^{\infty} \left(\frac{n}{k} \right) \frac{(1-u)^n}{n!} = \frac{1}{k!} \left(\log \frac{1}{u} \right)^k.
\] (1.10)

From (1.7), it follows that

\[
t_n - t_{n-1} = \sum_{k=0}^{\infty} a_{n,k} u_k
\]

where

\[
a_{n,k} = \begin{cases}
\frac{\Gamma(\lambda)}{\Gamma(n+\lambda)} [n-1]^{\lambda} & 0 \leq k \leq n, \\
0 & k > n.
\end{cases}
\]

The \(K^\lambda \)-method is absolutely conservative if and only if

\[
\sum_{n=k}^{\infty} |a_{n,k}| < \infty;
\]

i.e.,

\[
\sum_{n=k}^{\infty} \frac{\Gamma(\lambda)}{\Gamma(n+\lambda)} [n-1]^{\lambda} < \infty.
\]

We have

\[
\sum_{n=k}^{\infty} \frac{1}{(n-1)!} \int_0^{1} u^{\lambda-1} (1-u)^{n-1} [\frac{n-1}{k-1}] \, du
\]

\[
= \lambda^k \int_0^{1} u^{\lambda-1} \left(\sum_{n=k-1}^{\infty} \frac{(1-u)^n}{n!} \right) \, du
\]

\[
= \lambda^k \int_0^{1} u^{\lambda-1} \frac{1}{(k-1)!} \left(\log \frac{1}{u} \right)^{k-1} \, du \quad \text{using (1.10)},
\]

\[
= \lambda^k \int_0^{\infty} \theta^{k-1} e^{-\lambda \theta} \, d\theta = 1,
\]

which shows that the \(K^\lambda \)-method is absolutely conservative.

\[\square\]
2 Application to trigonometric Fourier series

Let \(f \) be a \(2\pi \)-periodic function and integrable in the sense of Lebesgue over \((-\pi, \pi)\). Let the trigonometric Fourier series of \(f \) at \(x \) be given by

\[
\frac{1}{2}a_0 + \sum_{n=1}^{\infty} (a_n \cos nx + b_n \sin nx) \equiv \sum_{n=0}^{\infty} A_n(x).
\] (2.1)

The conjugate series of (2.1) is given by

\[
\sum_{n=1}^{\infty} (b_n \cos nx - a_n \sin nx) \equiv \sum_{n=1}^{\infty} B_n(x),
\]

\[
\phi_x(t) = \frac{1}{2} \{ f(x + t) + f(x - t) - 2f(x) \},
\]

\[
\psi_x(t) = \frac{1}{2} \{ f(x + t) - f(x - t) \},
\]

\[
\tilde{f}(x; \epsilon) = \frac{2}{\pi} \int_{\epsilon}^{\pi} \psi_x(t) \left(\frac{1}{2} \cot \frac{1}{2} t \right) dt,
\]

and

\[
\tilde{f}(x) = \lim_{\epsilon \to 0^+} \tilde{f}(x; \epsilon), \quad \text{whenever the limit exists.}
\] (2.2)

The \(K^\lambda \)-means were first introduced by Karamata [2]. Lototsky [5] reintroduced the special case \(\lambda = 1 \). Vučković [10] was the first to study the \(K^\lambda \)-summability of Fourier series and his result reads as follows.

Theorem 2.1 If

\[
(f(x + t) + f(x - t) - 2f(x)) \log \frac{1}{t} = o(1) \quad \text{as } t \to 0^+,
\]

then the trigonometric Fourier series of \(f \) at \(x = t \) is \(K^\lambda \)-summable to \(f(x) \).

Later Lal [4] obtained the following result for the conjugate series.

Theorem 2.2 If \(\int_{0}^{t} |\psi_x(u)| \, du = o\left(\frac{1}{\log t^{-1}} \right) \) as \(t \to 0^+ \), then \(\sum_{n=1}^{\infty} B_n(x) \) is \(K^\lambda \)-summable to \(\tilde{f}(x) \), whenever it exists.

In the present paper, we study the absolute \(K^\lambda \)-summability of a Fourier series and its conjugate series. We prove

Theorem 2.3 Let \(0 < \delta < e^{-2} \). Then \(\phi(t) \log t^{-1} \in BV(0, \delta) \Rightarrow \sum A_n(x) \in |K^\lambda| \).

Theorem 2.4 Let \(0 < \delta < e^{-2} \). Then \(\psi(t) \log t^{-1} \in BV(0, \delta) \), and \(\frac{\psi(t)}{t} \in L(0, \delta) \Rightarrow \sum B_n(x) \in |K^\lambda| \).

3 Notations and lemmas

For the proofs of the theorems, we need the following additional notations:

\[
K^\lambda_n(t) = \frac{\Gamma(\lambda)}{\Gamma(n - 1 + \lambda)} \sum_{k=0}^{n-1} [^{n-1}\kappa_k \lambda^k \sin(k+1)t],
\]

\[
\tilde{K}^\lambda_n(t) = \frac{\Gamma(\lambda)}{\Gamma(n - 1 + \lambda)} \sum_{k=0}^{n-1} [^{n-1}\kappa_k \lambda^k \cos(k+1)t],
\]

\[
P_k(t) = (\lambda^2 + 2\lambda \cos t + k^2)^{\frac{1}{2}},
\]
\[R(n, t) = \frac{\Gamma(\lambda)}{\Gamma(n - 1 + \lambda)} \prod_{k=0}^{n-2} P_k(t), \]
\[\theta_k(t) = \tan^{-1} \left(\frac{\lambda \sin t}{\lambda \cos t + k} \right), \]
\[l(n) = 2 + \lambda \sum_{k=1}^{n-2} \frac{1}{\lambda + k} \sim \log n, \]
\[g(n, t) = \int_0^t \frac{\tilde{K}_n^\lambda(u)}{\log u} du, \]
\[h(n, t) = \int_t^\delta \frac{\tilde{K}_n^\lambda(u)}{\log u} du, \]
\[G(n, t) = \int_t^\delta \frac{u}{\log u} e^{-Au^2\log n} du, \]
\[H(n, t) = \int_t^\delta \frac{u^3}{\log u} e^{-Au^2\log n} du, \]
\[L(n, t) = \int_t^\delta \frac{e^{-Au^2\log n}}{u(\log u)^2} du. \]

We need the following lemmas to prove our theorems:

Lemma 3.1 Let \(\theta_k(t), R(n, t), K_n^\lambda(t) \) and \(\tilde{K}_n^\lambda(t) \) be defined as above. Then

(i) \(K_n^\lambda(t) = R(n, t) \sin \left(2t + \sum_{k=1}^{n-2} \theta_k(t) \right) \),

(ii) \(\tilde{K}_n^\lambda(t) = R(n, t) \cos \left(2t + \sum_{k=1}^{n-2} \theta_k(t) \right) \).

Proof We have

\[
\tilde{K}_n^\lambda(t) + iK_n^\lambda(t) = \frac{\Gamma(\lambda)}{\Gamma(n - 1 + \lambda)} \sum_{k=0}^{n-1} \lambda^k e^{(k+1)t} \]
\[= \frac{\Gamma(\lambda)}{\Gamma(n - 1 + \lambda)} e^{it} \sum_{k=0}^{n-1} (\lambda e^{it})^k \]
\[= \frac{\Gamma(\lambda) e^{it}}{\Gamma(n - 1 + \lambda)} \prod_{k=0}^{n-2} (\lambda e^{it} + k) \]
\[= \frac{\Gamma(\lambda) e^{it}}{\Gamma(n - 1 + \lambda)} e^{it} \prod_{k=0}^{n-2} P_k(t) \exp(i\theta_k(t)) \]
\[= \frac{\Gamma(\lambda)}{\Gamma(n - 1 + \lambda)} \left(\prod_{k=0}^{n-2} P_k(t) \right) \exp \left\{ i \left(2t + \sum_{k=1}^{n-2} \theta_k(t) \right) \right\} \]
\[= R(n, t) \exp \left\{ i \left(2t + \sum_{k=1}^{n-2} \theta_k(t) \right) \right\}, \]

from which the lemma follows. \(\square \)
Lemma 3.2 [9, Chapter 5, Lemma 5.5] Let \(R(n, t), K_\lambda^i(n) \), and \(\tilde{K}_\lambda^i(n) \) be defined as in Sect. 3. Then for some positive constant \(A \) and all \(t \in (0, \pi) \)

\[
\begin{align*}
(i) \quad R(n, t) &= \begin{cases} 0(1) & \text{if } t = 0, \\
0(1) e^{-At^2 \log n}, & \text{if } t > 0,
\end{cases} \\
(ii) \quad K_\lambda^i(n) &= \begin{cases} 0(1) & \text{if } t = 0, \\
0(1) e^{-At^2 \log n}, & \text{if } t > 0,
\end{cases} \\
(iii) \quad \tilde{K}_\lambda^i(n) &= \begin{cases} 0(1) & \text{if } t = 0, \\
0(1) e^{-At^2 \log n}. & \text{if } t > 0,
\end{cases}
\end{align*}
\]

and

\[
\begin{align*}
(i) \quad R(n, t) &= \Gamma(\lambda) \prod_{k=0}^{n-2} \left(\lambda^2 + 2\lambda k \cos t + k^2 \right)^{\frac{1}{2}} \\
&= \frac{\Gamma(\lambda)}{\Gamma(n-1+\lambda)} \prod_{k=0}^{n-2} \left(\lambda^2 + 2\lambda k \cos t + k^2 \right)^{\frac{1}{2}} \\
&= \prod_{k=0}^{n-2} \left[1 - \frac{4\lambda k \sin^2 \frac{1}{2} t}{(\lambda + k)^2} \right]^{\frac{1}{2}} \\
&= \exp \left[-\frac{1}{2} \sum_{k=0}^{n-2} \log \left(1 - \frac{4\lambda k \sin^2 \frac{1}{2} t}{(\lambda + k)^2} \right) \right]. \quad (3.1)
\end{align*}
\]

We observe that

\[
0 < \frac{4\lambda k \sin^2 \frac{1}{2} t}{(\lambda + k)^2} < 1
\]

for \(k = 1, 2, 3, \ldots \) and \(0 < t < \pi \). As \(\log(1-\theta)^{-1} \geq \theta \) for \(0 < \theta < 1 \) and \(\sin x \geq \frac{2x}{\pi} \), \(0 \leq x \leq \frac{\pi}{2} \), we have

\[
\sum_{k=0}^{n-2} \log \left(1 - \frac{4\lambda k \sin^2 \frac{1}{2} t}{(\lambda + k)^2} \right) \leq \sum_{k=0}^{n-2} \frac{4\lambda k \sin^2 \frac{1}{2} t}{(\lambda + k)^2} \geq \frac{4\lambda t^2 \sum_{k=0}^{n-2} k}{\pi^2 \sum_{k=0}^{n-2} (\lambda + k)^2} \geq \frac{4A t^2 \log n}{(\lambda + k)^2} \quad (3.2)
\]

where \(A \) is a positive constant. Using (3.2) in (3.1), we obtain the second estimate of Lemma 3.2 (i). The proof of Lemma 3.2(ii) and (iii) follows from Lemma 3.2(i).

Lemma 3.3 [9, Chapter 5, Lemma 5.6] Let \(0 < t \leq \frac{\pi}{4} \). Then

\[
\begin{align*}
(i) \quad \sin \left(2t + \sum_{k=1}^{n-2} \theta_k(t) \right) - \sin l(n)t &= O(t^3 \log n), \\
(ii) \quad \cos \left(2t + \sum_{k=1}^{n-2} \theta_k(t) \right) - \cos l(n)t &= O(t^3 \log n).
\end{align*}
\]
Proof We have

\[
\left| \sin \left(2t + \sum_{k=1}^{n-2} \theta_k(t) \right) - \sin l(n)t \right| \leq \left| 2t + \sum_{k=1}^{n-2} \theta_k - l(n)t \right|. \tag{3.3}
\]

Next, we note that

\[
0 < \frac{\lambda \sin t}{\lambda \cos t + k} < 1
\]

whenever \(0 < t \leq \frac{\pi}{4}\) and \(k \geq 1\). Thus for \(0 < t \leq \frac{\pi}{4}\)

\[
\theta_k = \left[\tan^{-1} \frac{\lambda \sin t}{\lambda \cos t + k} - \frac{\lambda \sin t}{\lambda \cos t + k} \right] + \left[\frac{\lambda \sin t}{\lambda \cos t + k} - \frac{\lambda t}{\lambda + k} \right]
\]

\[
= O \left(\left(\frac{\lambda \sin t}{\lambda \cos t + k} \right)^3 \right) + O \left(\frac{t^3}{\lambda \cos t + k} \right) + O \left[\frac{t^3}{(\lambda \cos t + k)(\lambda + k)} \right] + \frac{\lambda t}{\lambda + k}
\]

\[
= O \left(\frac{t^3}{k^3} \right) + O \left(\frac{t^3}{k^2} \right) + O \left(\frac{t^3}{k} \right), \quad 1 \leq k \leq n - 2. \tag{3.4}
\]

Using (3.4), we have

\[
2t + \sum_{k=1}^{n-2} \theta_k(t) = t \left[2 + \lambda \sum_{k=1}^{n-2} \frac{1}{\lambda + k} \right] + O(t^3) \sum_{k=1}^{n-2} \frac{1}{k}
\]

\[
= tl(n) + O(t^3 \log n). \tag{3.5}
\]

Using (3.5) in (3.3), we obtain Lemma 3.3(i). The proof of Lemma 3.3(ii) is similar to that of Lemma 3.3(i).

\[\square\]

Lemma 3.4 [9, Chapter 5, Lemma 5.7] Let \(0 < t \leq \frac{\pi}{2}\). Then \(R'(n, t) = O(1) t \log n R(n, t)\).

Proof We have

\[
R(n, t) = \frac{\Gamma(\lambda)}{\Gamma(n - 1 + \lambda)} \prod_{k=0}^{n-2} P_k(t),
\]

and so, by logarithmic differentiation, since \(P_k(t) \geq k\)

\[
R'(n, t) = R(n, t) \sum_{k=0}^{n-2} \frac{P_k'(t)}{P_k(t)}
\]

\[
= R(n, t) \sum_{k=1}^{n-2} \frac{(-\lambda k \sin t)}{(P_k(t))^2}
\]

\[
= O(1) t R(n, t) \sum_{k=1}^{n-2} \frac{1}{k}
\]

\[
= O(1) t \log n R(n, t),
\]

from which the lemma follows. \[\square\]

Lemma 3.5 Let \(\alpha_n = \int_0^\delta \frac{\cos n u}{\log u + \pi} \, du\). Then the series \(\sum \alpha_n \in |K^\lambda|\); i.e., the series \(\sum \frac{|g(n, \delta)|}{n}\) is convergent.
\textbf{Proof} Integrating by parts, we have
\[\alpha_n = \int_0^\delta \frac{\cos nu}{\log u^{-1}} \, du \]
\[= \sin n\delta - \frac{1}{n} \int_0^\delta \frac{\sin nu}{u(\log u^{-1})^2} \, du \]
\[= -\frac{1}{\log \delta - 1} \int_\delta^\pi \cos nu \, du - \frac{1}{n} \int_0^\delta \frac{\sin nu}{u(\log u^{-1})^2} \, du \]
\[= -(\alpha_{n,1} + \alpha_{n,2}), \quad \text{say}. \]

It is known [1] that
\[\int_0^\delta \frac{\sin nu}{u(\log 1/u)^2} \, du = O\left(\frac{1}{(\log n)^2}\right) \]
and hence \(\sum \alpha_{n,2} \) is absolutely convergent. And, since \(|K^\lambda| \)-method is absolutely conservative
\[\sum \alpha_{n,2} \in |K^\lambda|. \]

It remains to show that \(\sum \alpha_{n,1} \in |K^\lambda| \).

By definition the series \(\sum \alpha_{n,1} \in |K^\lambda| \) if
\[\sum \equiv \sum_{n=1}^\infty \frac{1}{n} \left| \frac{\Gamma(\lambda)}{\Gamma(n-1+\lambda)} \sum_{k=0}^{n-1} \lambda^k \int_\delta^\pi \cos(k+1)u \, du \right| < \infty. \]

Using the notation of Sect. 3 and Lemma 3.2(iii), we get
\[\sum \equiv \sum_{n=1}^\infty \frac{1}{n} \left| \int_\delta^\pi \tilde{K}_n^\lambda(t) \, dt \right| \]
\[\leq \sum_{n=1}^\infty \frac{1}{n} \int_\delta^\pi |\tilde{K}_n^\lambda(t)| \, dt \]
\[\leq O(1) \sum_{n=1}^\infty \frac{1}{n} \int_\delta^\pi e^{-A\delta^2 \log n} \, dt \]
\[= O(1) \sum_{n=1}^\infty \frac{e^{-A\delta^2 \log n}}{n^{1+A\delta^2}} = O(1), \]
which implies that \(\sum \alpha_{n,1} \in |K^\lambda| \).

As \(\sum \alpha_n \in |K^\lambda| \), and collecting the above results, it follows that
\[\sum_{n=1}^\infty \frac{1}{n} \left| \frac{\Gamma(\lambda)}{\Gamma(n+\lambda-1)} \sum_{k=0}^{n-1} \lambda^k \int_0^\delta \frac{\cos(k+1)u}{\log u^{-1}} \, du \right| < \infty; \]
that is
\[\sum_{n=1}^\infty \frac{1}{n} \left| \int_0^\delta \frac{du}{\log u^{-1}} \frac{\Gamma(\lambda)}{\Gamma(n+\lambda-1)} \sum_{k=0}^{n-1} \lambda^k \cos(k+1)u \, du \right| < \infty; \]
that is,
\[\sum_{n=1}^{\infty} \frac{1}{n} \left| \int_{0}^{\delta} \frac{K_n(u)}{\log u^{-1}} \, du \right| < \infty; \]
that is, \(\sum \frac{|g(n, \delta)|}{n} < \infty. \)
This completes the proof of the lemma. \(\square \)

Lemma 3.6 For every positive \(\Delta, \) however large,

(i) \(G(n, t) = O \left(\frac{e^{-A\delta^2 \log n}}{\log n \log t^{-1}} \right) + \frac{L(n, t)}{2A \log n}, \)

(ii) \(H(n, t) = O \left(\frac{t^2 e^{-A\delta^2 \log n}}{\log t^{-1} \log n} \right) + O(1) \frac{G(n, t)}{\log n}. \)

Proof of (i) Integrating by parts we have,

\[
G(n, t) = -\frac{1}{2A \log n} \int_{t}^{\delta} \frac{d}{du} \left(e^{-Au^2 \log n} \right) \frac{du}{\log u^{-1}} \\
= \frac{1}{2A \log n} \left[\frac{e^{-A\delta^2 \log n}}{\log t^{-1}} - \frac{e^{-A\delta^2 \log n}}{\log \delta^{-1}} \right] \\
+ \frac{1}{2A \log n} \int_{t}^{\delta} \frac{e^{-Au^2 \log n}}{u(\log u^{-1})^2} \frac{du}{\log u^{-1}} \\
\leq \frac{e^{-A\delta^2 \log n}}{2A(\log n) \log t^{-1}} + \frac{L(n, t)}{2A \log n},
\]
from which (i) follows. \(\square \)

Proof of (ii) Integrating by parts, we get

\[
H(n, t) = -\frac{1}{2A \log n} \int_{t}^{\delta} \frac{u^2}{(\log u^{-1})} \frac{d}{du} \left(e^{-Au^2 \log n} \right) \, du \\
= \frac{1}{2A \log n} \left[\frac{t^2 e^{-A\delta^2 \log n}}{\log t^{-1}} - \frac{\delta^2 e^{-A\delta^2 \log n}}{\log \delta^{-1}} \right] \\
+ \frac{1}{2A \log n} \int_{t}^{\delta} e^{-Au^2 \log n} \frac{d}{du} \left(\frac{u^2}{\log u^{-1}} \right) \, du \\
\leq \frac{t^2 e^{-A\delta^2 \log n}}{2A \log n} + \frac{1}{A \log n} \left[\int_{t}^{\delta} \frac{ue^{-Au^2 \log n}}{\log u^{-1}} \, du + \frac{1}{2} \int_{t}^{\delta} \frac{ue^{-Au^2 \log n}}{(\log u^{-1})^2} \, du \right] \\
\leq \frac{t^2 e^{-A\delta^2 \log n}}{2A \log n} + \frac{1}{A \log n} \left[\int_{t}^{\delta} \frac{ue^{-Au^2 \log n}}{\log u^{-1}} \, du + \frac{1}{2} \int_{t}^{\delta} \frac{ue^{-Au^2 \log n}}{\log u^{-1}} \, du \right] \\
= \frac{t^2 e^{-A\delta^2 \log n}}{2A \log n} + O(1) \frac{1}{\log n} \int_{t}^{\delta} \frac{ue^{-Au^2 \log n}}{\log u^{-1}} \, du,
\]
from which the result follows. \(\square \)

Lemma 3.7 Let \(0 < t < \delta < e^{-2}. \) Then

(i) \(L(n, t) = O \left(\frac{1}{t^2 (\log t^{-1})^2 \log n} \right), \)

(ii) \(L(n, t) = O \left(\frac{1}{\log n} \right). \)
Proof of (i) Integrating by parts, we get

\[
L(n, t) = -\frac{1}{2A \log n} \int_t^1 \frac{d}{du} \left(e^{-Au^2 \log n} \right) \frac{du}{u^2 (\log u^{-1})^2}
\]

\[
= \frac{1}{2A \log n} \left[e^{-Ar^2 \log n} - e^{-A\delta^2 \log n} \right]
\]

\[
+ \frac{1}{2A \log n} \int_t^1 \frac{d}{du} \left(\frac{1}{u^2 (\log u^{-1})^2} \right) e^{-Au \log n} du
\]

< \frac{1}{2A \log n} \left[e^{-A \delta^2 \log n} \right],
\]

since the last integral is negative, and this completes the proof of (i).

Proof of (ii) Let \(0 < \beta < 2\). By the simple computation, we get

\[
\frac{d}{du} \left(\frac{e^{-Au^2 \log n}}{(\log 1/u)^2} \right) = \frac{2e^{-Au^2 \log n}}{(\log 1/u)^3} \left[1 - Au^2 \log \frac{1}{u} \log n \right].
\]

The expression \(\frac{e^{-Au^2 \log n}}{(\log 1/u)^2}\) is monotonic decreasing in \(u\) whenever \(1 - Au^2 \log \frac{1}{u} \log n < 0\). It is easy to see that

\[
\left(\frac{1}{u} \right)^{\frac{1-2\beta}{\beta}} \log \frac{1}{u} > 1,
\]

that is,

\[
u^2 \log \frac{1}{u} - u^{\frac{1}{\beta}} > 0.
\]

In view of this inequality, we get

\[
1 - Au^2 \log \frac{1}{u} \log n = 1 - Au^\frac{1}{\beta} \log n - A \left(u^2 \log \frac{1}{u} - u^{\frac{1}{\beta}} \right) \log n
\]

\[
< 1 - Au^\frac{1}{\beta} \log n < 0,
\]

which holds for \(u > (A \log n)^{-\beta}\). This ensures that \(\frac{e^{-Au^2 \log n}}{(\log 1/u)^2}\) is monotonic decreasing for \(u > (A \log n)^{-\beta}\).

We shall consider the cases \((A \log n)^{-\beta} < \delta\) and \((A \log n)^{-\beta} \geq \delta\) separately. In case \((A \log n)^{-\beta} < \delta\) writing

\[
L(n, t) = \left(\int_t^{1/(A \log n)^{\beta}} + \int_{1/(A \log n)^{\beta}}^{\delta} \right) \frac{e^{-Au^2 \log n}}{u (\log u^{-1})^2} du
\]

and using the monotonicity of \(\frac{e^{-Au^2 \log n}}{(\log u^{-1})^2}\) for the second integral, we get

\[
L(n, t) \leq e^{-Ar^2 \log n} \int_t^{1/(A \log n)^{\beta}} \frac{du}{u (\log u^{-1})^2} + e^{-A^{1-2\beta}/(\beta \log (A \log n))^{1-2\beta}} \int_{1/(A \log n)^{\beta}}^{\delta} \frac{du}{u}
\]

\[
= O \left(\frac{e^{-Ar^2 \log n}}{\beta \log (A \log n)} \right) + O \left(\frac{1}{(\log n)^{\Delta}} \right), \quad \Delta > 1
\]

\[
= O \left(\frac{1}{\log \log n} \right).
\]
In case \((A \log n)^{-\beta} \geq \delta\), we have
\[
I(n, t) = \int_{1}^{\delta} \frac{e^{-A u^2 \log n}}{u \left(\log \frac{1}{u}\right)^2} \, du,
\]
\[
\leq \int_{1}^{(A \log n)^{-\beta}} \frac{e^{-A u^2 \log n}}{u \left(\log \frac{1}{u}\right)^2} \, du,
\]
which is same as the first integral in the first case discussed above. Lastly, in case \((A \log n)^{-\beta} < t\), \(I(n, t)\) is majorized by the second integral \(\int_{(A \log n)^{-\beta}}^{\delta} \frac{e^{-A u^2 \log n}}{u \left(\log \frac{1}{u}\right)^2} \, du\), in the first case and this completes the proof of (ii).

Lemma 3.8 Let \(0 < \delta < e^{-2}\) and \(\Delta > 1\), however large. Then

(i) \(g(n, t) = O\left(\frac{t}{\log t^{-1}}\right)\),

(ii) \(h(n, t) = O\left(\frac{1}{n A^2}\right) + O(1) \frac{e^{-A t^2 \log n}}{\log t^{-1}} + O(1) \frac{t^2 e^{-A t \log n}}{\log t^{-1}} + \frac{L(n, t)}{\log n}\).

Proof of (i) As \(\tilde{K}_n^1(u) = O(1)\) by Lemma 3.2(iii), the result follows.

Proof of (ii) First using Lemma 3.1(ii) and thereafter applying Lemma 3.3(ii), we obtain
\[
h(n, t) = \int_{1}^{\delta} \frac{\tilde{K}_n^1(u)}{\log u^{-1}} \, du
\]
\[
= \int_{1}^{\delta} \frac{R(n, u)}{\log u^{-1}} \cos \left\{ 2u + \sum_{k=1}^{n-2} \theta_k(u) \right\} \, du
\]
\[
= \int_{1}^{\delta} \frac{1}{\log u^{-1}} R(n, u) \cos (l(n)u) \, du + \int_{1}^{\delta} \frac{R(n, u)}{\log u^{-1}} \left[\cos \left\{ 2u + \sum_{k=1}^{n-2} \theta_k(u) \right\} - \cos l(n)u \right] \, du
\]
\[
= \int_{1}^{\delta} \frac{R(n, u)}{\log u^{-1}} \cos \{l(n)u\} \, du + O(1) \log n \int_{1}^{\delta} \frac{R(n, u) u^2 \, du}{\log u^{-1}}
\]
\[
= I_1 + O(1) I_2, \quad \text{say.} \tag{3.6}
\]

Integrating by parts and using Lemma 3.4 and Lemma 3.2(i), we get
\[
I_1 = \left[\frac{R(n, u) \cos l(n)u}{\log u^{-1} l(n)} \right]_{1}^{\delta} - \int_{1}^{\delta} \left[\frac{R'(n, u)}{\log u^{-1}} + \frac{R(n, u)}{u \left(\log u^{-1}\right)^2} \right] \frac{\sin l(n)u \, du}{l(n)}
\]
\[
= O\left(\frac{e^{-A \delta^2 \log n}}{\log n}\right) + O\left(\frac{e^{-A \delta^2 \log n}}{\log t^{-1} \log n}\right) + O(1) \int_{1}^{\delta} \frac{e^{-A u^2 \log n}}{u \left(\log u^{-1}\right)^2} \, du
\]
\[
+ O(1) \frac{1}{\log n} \int_{1}^{\delta} \frac{e^{-A u^2 \log n}}{u \left(\log u^{-1}\right)^2} \, du
\]
\[
= O\left(\frac{1}{(n A^2)}\right) + O\left(\frac{e^{-A \delta^2 \log n}}{\log n \log t^{-1}}\right) + O(1) G(n, t) + \frac{O(1) L(n, t)}{\log n}. \tag{3.7}
\]

Using Lemma 3.2 and Lemma 3.6(ii), we have
\[
I_2 = \log n H(n, t)
\]
\[
= O(1) \frac{t^2 e^{-A t^2 \log n}}{\log t^{-1}} + O(1) G(n, t). \tag{3.8}
\]

Collecting the results from (3.6) to (3.8) and using the estimate for \(G(n, t)\) from Lemma 3.6(i), we obtain the desired estimate for \(h(n, t)\). □
4 Proof of Theorem 2.3 Using [6]

For $n \geq 1$ and $0 < \delta < e^{-2}$, we write

\[A_n(x) = \frac{2}{\pi} \left(\int_0^{\delta} + \int_{\delta}^{\pi} \right) \phi(t) \cos nt \, dt \]

\[= \frac{2}{\pi} (P_n + Q_n), \text{ say.} \tag{4.1} \]

Let $\xi_n(Q)$ be the nth K^λ-mean of the sequence $\{Q_{n+1}\}$.

The series $\sum Q_n \in |K^\lambda|$, if and only if

\[\sum \frac{|\xi_{n-1}(Q)|}{n} < \infty. \tag{4.2} \]

By simple computation and an appeal to Lemma 3.2(iii)

\[\xi_{n-1}(Q) = \int_{\delta}^{\pi} \phi(t) \left[\frac{\Gamma(\lambda)}{\Gamma(n - 1 + \lambda)} \sum_{k=0}^{n-1} \frac{\Gamma^k}{k!} \cos(k+1)t \right] \, dt \]

\[= \int_{\delta}^{\pi} \phi(t) \tilde{K}_n(t) \, dt \]

\[= O(1) \int_{\delta}^{\pi} |\phi(t)| e^{-A\delta^2 \log n} \, dt \]

\[= O(1) e^{-A\delta^2 \log n}. \]

This ensures (4.2) and consequently vindicates that the $|K^\lambda|$-summability of trigonometric Fourier series is a local property. Writing $g(t) = \phi(t) \log t^{-1}$, $\alpha_n = \int_0^{\delta} g(u) \frac{\cos nu}{\log u^{-1}} \, du$ and integrating by parts, we obtain

\[P_n = g(\delta) \alpha_n - \int_0^{\delta} dg(t) \int_0^{t} \frac{\cos nu}{\log u^{-1}} \, du \]

\[= g(\delta) \alpha_n - \beta_n, \text{ say.} \tag{4.3} \]

As $\sum \alpha_n \in |K^\lambda|$ by Lemma 3.5 it remains to prove that $\sum \beta_n \in |K^\lambda|$. Let $\xi_n(\beta)$ be the nth K^λ-mean of the sequence $\{\beta_{n+1}\}$. It is easily seen that

\[\xi_{n-1}(\beta) = \frac{\Gamma(\lambda)}{\Gamma(n - 1 + \lambda)} \sum_{k=0}^{n-1} \frac{\Gamma^k}{k!} \left[\int_0^{\delta} \frac{dg(t)}{\log u^{-1}} \, du \right] \]

\[= \int_0^{\delta} g(n, t) \, dg(t). \]

By definition $\sum \beta_n \in |K^\lambda|$, if and only if

\[\sum \frac{|\xi_{n-1}(\beta)|}{n} < \infty; \]

that is,

\[\sum_{n=1}^{\infty} \int_0^{\delta} g(n, t) \, dg(t) < \infty. \tag{4.4} \]

As $\int_0^{\delta} |dg(t)|$ is finite, for the validity of (4.4), it is enough to show that uniformly in $0 < t \leq \delta$.

\[\sum = \sum_{n=1}^{\infty} \frac{|g(n, t)|}{n} = O(1). \tag{4.5} \]
Putting \(T_1 = \exp(t^{-1}) \) and \(T_2 = \exp(t^{-2}) \), we write
\[
\sum = \left(\sum_{n=1}^{T_1} + \sum_{n=T_1+1}^{\infty} \right) \frac{|g(n, t)|}{n}.
\]
(4.6)

By Lemma 3.8(i)
\[
\sum_{n=1}^{T_1} = O \left(\frac{t}{\log t^{-1}} \right) \sum_{n=1}^{T_1} \frac{1}{n} = O(1).
\]
(4.7)

By Lemma 3.5 and Lemma 3.8(ii)
\[
\sum_{n=T_1+1}^{\infty} \frac{|g(n, t)|}{n} \leq \sum_{n=T_1+1}^{\infty} \frac{|g(n, \delta)|}{n} + \sum_{n=T_1+1}^{\infty} \frac{|h(n, t)|}{n}
\]
\[
= O(1) + O(1) \sum_{n=T_1+1}^{\infty} \frac{1}{n^{1+Ad^2}} + O(1) \sum_{n=T_1+1}^{\infty} \frac{1}{(\log t^{-1}) n} \sum_{n=T_1+1}^{\infty} e^{-Ar^2 \log n}
\]
\[
+ O(1) \frac{t^2}{\log t^{-1}} \sum_{n=T_1+1}^{\infty} \frac{e^{-Ar^2 \log n}}{n} + O(1) \sum_{n=T_1+1}^{\infty} \frac{L(n, t)}{n \log n}
\]
\[
= O(1) + O(1) \sum_{n=T_1+1}^{\infty} \frac{L(n, t)}{n \log n}
\]
(4.8)

since \(\int_{T_1}^{\infty} e^{-Ar^2 \log x} \frac{dx}{x \log x} = \int_{t}^{\infty} e^{-Ad^2} \frac{d\theta}{\log \theta} = O(\log t^{-1}) \) and \(\int_{T_1}^{\infty} e^{-Ar^2 \log x} \frac{dx}{x \log x} = t^{-2} \int_{T_1}^{\infty} e^{-Ad^2} d\theta = O(t^{-2}) \).

Now writing \(\sum_{n=T_1+1}^{\infty} \frac{L(n, t)}{n \log n} = \left(\sum_{n=T_1+1}^{T_2} \frac{L(n, t)}{n \log n} + \sum_{n=T_2+1}^{\infty} \frac{L(n, t)}{n \log n} \right) \) and employing Lemma 3.7(ii) and Lemma 3.7(i), respectively, for the first and second sums, we get
\[
\sum_{n=T_1+1}^{\infty} \frac{L(n, t)}{n \log n} = O(1) \sum_{n=T_1+1}^{T_2} \frac{1}{n \log n} \log \log T_2 + O(1) \frac{1}{t^2 (\log t^{-1})^2} \sum_{n=T_2+1}^{\infty} \frac{1}{n (\log n)^2}
\]
\[
= O(1) \log \log T_1 + O(1) \frac{1}{t^2 (\log t^{-1})^2 \log T_2}
\]
\[
= O(1).
\]
(4.9)

Collecting the results from (4.6)–(4.9), we get (4.5) and this completes the proof of Theorem 2.3.

5 Proof of Theorem 2.4

We need the following additional lemmas for the proof of Theorem 2.4.

Lemma 5.1 [7, p. 314, Lemma 10] \(\psi(t) \log t^{-1} \in BV(0, \delta) \), and \(\frac{\psi(t)}{t} \in L(0, \delta) \) if and only if \(\psi(+0) = 0 \) and \(\int_0^1 \log t^{-1} |d\psi(t)| < \infty \).
Lemma 5.2 Let \(T_1 = \exp(t^{-1}) \). Then

\[
\begin{align*}
(i) \quad & \int_t^\delta K^\lambda_n(u) \, du = e^{-At^2 \log n} \left[O(t^2) + O\left(\frac{1}{\log n} \right) \right], \\
(ii) \quad & \int_t^\delta K^\lambda_n(u) \, du = O\left(\frac{1}{\log n} \right), \quad \text{when } n \leq T_1.
\end{align*}
\]

Proof By Lemma 3.3(i) and Lemma 3.2(i)

\[
\int_t^\delta K^\lambda_n(u) \, du = \int_t^\delta R(n, u) \sin l(n) u \, du + O(1) \log n \int_t^\delta u^3 R(n, u) \, du
\]

\[
= \int_t^\delta R(n, u) \sin l(n) u \, du + O(1) \log n \int_t^\delta u^3 e^{-At^2 \log n} \, du
\]

\[
= J_1 + O(1)J_2, \quad \text{say (5.1)}
\]

Integrating by parts, we get

\[
J_2 = \frac{\log n}{2} \int_t^\delta v e^{-At^2 \log n} \, du
\]

\[
= \frac{1}{2A} \left(t^2 e^{-At^2 \log n} - \delta^2 e^{-A\delta^2 \log n} \right)
\]

\[
+ \frac{1}{2A^2 \log n} \left(e^{-At^2 \log n} - e^{-A\delta^2 \log n} \right)
\]

\[
\leq \frac{1}{2A} \left(t^2 + \frac{1}{2A \log n} \right) e^{-At^2 \log n}.
\]

As \(R(n, t) \) is monotonic non-increasing in \(t \), by second mean value theorem, we have for \(t < t' < \delta \).

\[
J_1 = R(n, t) \left[\cos l(n) t - \cos l(n) t' \right]
\]

\[
= O\left(\frac{e^{-At^2 \log n}}{\log n} \right),
\]

using Lemma 3.2(i). \(\square \)

Part (i) follows from (5.1), (5.2) and (5.3). When \(n \leq T_1 \), it is easily seen that \(t^2 \) is dominated by \((\log n)^{-1} \) and hence (ii) follows from (i).

By Lemma 5.1, Theorem 2.4 takes the following equivalent form:

Theorem 5.3 If \(\psi(+) = 0 \) and \(\int_0^\delta |\psi(t)||\log t^{-1} < \infty \), then \(\sum_{n=1}^{\infty} B_n(x) \in |K^\lambda| \).

Proof of Theorem 5.3 For \(n \geq 1 \), we write

\[
B_n(x) = \frac{2}{\pi} \left[\int_0^\delta + \int_\delta^\pi \right] \psi(t) \sin nt \, dt
\]

\[
= \frac{2}{\pi} (p_n + q_n), \quad \text{say}.
\]

By adopting the argument used in proving \(\sum Q_n \in |K^\lambda| \) (see the proof of Theorem 2.3) it can be shown that \(\sum q_n \in |K^\lambda| \). Integrating by parts and using the fact that \(\psi(+) = 0 \), we get

\[
p_n = \int_0^\delta d\psi(t) \int_t^\delta \sin nu \, du.
\]
Let \(\xi_n(p) \) denote the \(n \)th \(K^\lambda \)-mean of the sequence \(\{p_{n+1}\} \). By routine simplification, we have

\[
\xi_{n-1}(p) = \int_0^\delta d\psi(t) \int_t^\delta \frac{\Gamma(\lambda)}{\Gamma(n+\lambda-1)} \left(\sum_{k=0}^{n-1} [n-1]^k \sin(k+1) u \right) du \\
= \int_0^\delta d\psi(t) \int_t^\delta K_n^\lambda(u) du. \tag{5.5}
\]

By definition \(\sum p_n \in |K^\lambda| \), if and only if

\[
\sum_{n=1}^\infty \left| \frac{\xi_{n-1}(p)}{n} \right| < \infty;
\]

that is,

\[
\sum_{n=1}^\infty \frac{1}{n} \left| \int_0^\delta d\psi(t) \int_t^\delta K_n^\lambda(u) du \right| < \infty. \tag{5.6}
\]

As \(\int_0^\delta |d\psi(t)| \log t^{-1} \) is finite, for the validity of (5.6), it suffices to show that uniformly in \(0 < t \leq \delta \)

\[
\sum^* \equiv \sum_{n=1}^\infty \frac{1}{n} \left| \int_t^\delta K_n^\lambda(u) du \right| = O(\log t^{-1}). \tag{5.7}
\]

Writing \(\sum^* = \sum_{n=1}^{T_1} + \sum_{n=T_1+1}^\infty \) and using Lemma 5.2(ii) and Lemma 5.2(i), respectively, for the first sum and second sum, we get

\[
\sum^* = O(1) \sum_{n=1}^{T_1} \frac{1}{n \log n} + O(t^2) \sum_{n=T_1+1}^\infty \frac{e^{-At^2 \log n}}{n} \\
+ O(1) \sum_{n=T_1+1}^\infty \frac{e^{-At^2 \log n}}{n \log n} \\
= O(1) \log \log T_1 + O(t^2) \int_{T_1}^\infty \frac{e^{-At^2 \log x}}{x} dx \\
+ O(1) \int_{T_1}^\infty \frac{e^{-At^2 \log x}}{x \log x} dx \\
= O(\log t^{-1})
\]

which ensures (5.7) and this completes the proof of Theorem 5.3. \(\square \)

Acknowledgments The authors are thankful to the referee for his valuable suggestions and criticisms which led to the improvement of the paper.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

References

1. Chandra, P.: On the absolute Riesz summability of a Fourier series and its application to the absolute convergence of Fourier series. J. Lond. Math. Soc. 4(2), 611–617 (1972)
2. Karamata, J.: Théorèmes sur la sommabilité exponentielle et d’autres sommabilités s’y rattachant. Mathematica Cluj. 9, 164–178 (1935)
3. Kogbetliantz, E.: Sur les series absolument sommables par la methode des moyennes arithmetique. Bull. des. Sc Math. 49(2), 234–256 (1925)
4. Lal, S.: On K^2 summability of conjugate series of Fourier series. Bull. Calcutta Math. Soc. **89**, 97–104 (1997)
5. Lototsky, A.V.: On a linear transformation of sequences and series. Ivanov. Gos. Ped. Inst. Uc. Zap. Fiz-Mat. Nauki **4**, 61–91 (1953, Russian)
6. Mohanty, R.: A criterion for the absolute convergence of Fourier series. Proc. Lond. Math. Soc. **51**(2), 186–196 (1949)
7. Mohanty, R.: On the absolute Riesz summability of Fourier series and allied series. Proc. Lond. Math. Soc. **52**(2), 295–320 (1951)
8. Polya, G.; Szegö, G.: Problems and Theorems in Analysis, vol. I. Springer International Student Edition. Narosa Publishing House, New Delhi (1979)
9. Sadangi, P.: Some aspects of approximation theory. Ph.D. Thesis, Utkal University, Bhubaneswar, Orissa, India (2006)
10. Vučković, V.: The summability of Fourier series by Karamata methods. Math. Zeitschr. **89**, 192–195 (1965)