Can, Mahir Bilen; Houser, Hayden; Wolfe, Corey
On the Borel submonoid of a symplectic monoid. (English) Zbl 07242720
Adv. Appl. Math. 120, Article ID 102073, 25 p. (2020)

Summary: In this article, we study the Bruhat-Chevalley-Renner order on the complex symplectic monoid MSp_n. After showing that this order is completely determined by the Bruhat-Chevalley-Renner order on the linear algebraic monoid of $n \times n$ matrices M_n, we focus on the Borel submonoid of MSp_n. By using this submonoid, we introduce a new set of type B set partitions. We determine their count by using the “folding” and “unfolding” operators that we introduce. We show that the Borel submonoid of a rationally smooth reductive monoid with zero is rationally smooth. Finally, we analyze the nilpotent subsemigroups of the Borel semigroups of M_n and MSp_n. We show that, contrary to the case of MSp_n, the nilpotent subsemigroup of the Borel submonoid of M_n is irreducible.

MSC:
20M32 Algebraic monoids
20G99 Linear algebraic groups and related topics
06A99 Ordered sets

Keywords:
symplectic monoid; Renner monoid; Borel submonoid; rationally smooth; set partitions; (un)folding

Full Text: DOI arXiv

References:
[1] Bagno, Eli; Biagioli, Riccardo; Garber, David, Some identities involving second kind Stirling numbers of types B and D, Electron. J. Comb., 26, 3, Article 3.9 pp. (2019) · Zbl 1439.05031
[2] Björner, Anders; Brenti, Francesco, Combinatorics of Coxeter Groups, Graduate Texts in Mathematics, vol. 231 (2005), Springer: Springer New York · Zbl 1110.05001
[3] Bóna, Miklós, Combinatorics of Permutations, Discrete Mathematics and Its Applications (Boca Raton) (2005), CRC Press: CRC Press Boca Raton, FL, With a foreword by Richard Stanley · Zbl 1255.05001
[4] Bourbaki, Nicolas, Lie Groups and Lie Algebras. Chapters 4-6, Elements of Mathematics (Berlin) (2002), Springer-Verlag: Springer-Verlag Berlin, Translated from the 1968 French original by Andrew Pressley · Zbl 0983.14001
[5] Brion, M., Rational smoothness and fixed points of torus actions, Transform. Groups, 4, 2-3, 127-156 (1999), Dedicated to the memory of Claude Chevalley · Zbl 0953.14004
[6] Can, Mahir Bilen, The rook monoid is lexicographically shellable, Eur. J. Comb., 81, 265-275 (2019) · Zbl 07100032
[7] Can, Mahir Bilen; Cherniavsky, Yonah, Stirling posets, Isr. J. Math. (2020) · Zbl 07212842
[8] Can, Mahir Bilen; Renner, Lex E., Bruhat-Chevalley order on the rook monoid, Turk. J. Math., 36, 4, 499-519 (2012) · Zbl 1307.20059
[9] Cao, You’an; Lei, Jie; Li, Zhenheng, The symplectic monoid, Commun. Algebra, 42, 12, 5425-5453 (2014) · Zbl 1306.20066
[10] Doty, Stephen, Polynomial representations, algebraic monoids, and Schur algebras of classical type, J. Pure Appl. Algebra, 123, 1-3, 165-199 (1998) · Zbl 0912.20036
[11] Doty, Stephen, Representation theory of reductive normal algebraic monoids, Trans. Am. Math. Soc., 351, 6, 2539-2551 (1999) · Zbl 0920.20054
[12] Gonzales, Richard, Rational smoothness, cellular decompositions and GKM theory, Geom. Topol., 18, 1, 291-326 (2014) · Zbl 1284.14060
[13] Grigor’ev, D. Ju., An analogue of the Bruhat decomposition for the closure of the cone of a classical Chevalley group series, Dokl. Akad. Nauk SSSR, 257, 5, 1040-1044 (1981)
[14] Lakshmibai, Venkatramani; Raghavan, Komaranapuram N., Standard monomial theory, (Invariant Theoretic Approach, Invariant Theory and Algebraic Transformation Groups, 8. Invariant Theoretic Approach, Invariant Theory and Algebraic Transformation Groups, 8, Encyclopaedia of Mathematical Sciences, vol. 137 (2008), Springer-Verlag: Springer-Verlag Berlin) · Zbl 1137.14036
[15] Li, Zhenheng; Li, Zhuo; Cao, You’an, Algebraic monoids and Renner monoids, (Algebraic Monoids, Group Embeddings, and Algebraic Combinatorics. Algebraic Monoids, Group Embeddings, and Algebraic Combinatorics, Fields Inst. Commun., vol. 71 (2014), Springer: Springer New York), 141-187 · Zbl 1434.20047

Edited by FIZ Karlsruhe, the European Mathematical Society and the Heidelberg Academy of Sciences and Humanities
© 2022 FIZ Karlsruhe GmbH
16. Li, Zhenheng; Renner, Lex E., The Renner monoids and cell decompositions of the symplectic algebraic monoids, Int. J. Algebra Comput., 13, 2, 111-132 (2003) - Zbl 1054.20046
17. Pennell, Edwin A.; Putcha, Mohan S.; Renner, Lex E., Analogue of the Bruhat-Chevalley order for reductive monoids, J. Algebra, 196, 2, 339-368 (1997) - Zbl 0891.20039
18. Putcha, Mohan S., Linear Algebraic Monoids, London Mathematical Society Lecture Note Series, vol. 133 (1988), Cambridge University Press: Cambridge - Zbl 0647.20066
19. Reiner, Victor. Non-crossing partitions for classical reflection groups, Discrete Math., 177, 1-3, 195-222 (1997) - Zbl 0892.06001
20. Renner, Lex E., Classification of semisimple algebraic monoids, Trans. Am. Math. Soc., 292, 1, 193-223 (1985) - Zbl 0589.20039
21. Renner, Lex E., Analogue of the Bruhat decomposition for algebraic monoids, J. Algebra, 101, 2, 303-338 (1986) - Zbl 0595.20064
22. Renner, Lex E., The H-polynomial of a semisimple monoid, J. Algebra, 319, 1, 360-376 (2008) - Zbl 1142.200045
23. Renner, Lex E., Descent systems for Bruhat posets, J. Algebraic Comb., 29, 4, 413-435 (2009) - Zbl 1226.05263
24. Renner, Lex E., Rationally smooth algebraic monoids, Semigroup Forum, 78, 3, 384-395 (2009) - Zbl 1178.20055
25. Timashëv, D. A., Equivariant compactifications of reductive groups, Mat. Sb., 194, 4, 119-146 (2003) - Zbl 1074.14043

This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. It attempts to reflect the references listed in the original paper as accurately as possible without claiming the completeness or perfect precision of the matching.