Abstract

We define a cup product on the cochain complex of a multisimplicial set, that is compatible with the classical cup product on the cochain complex of the diagonal simplicial set via the Eilenberg-Zilber map. This helps to speed up cochain level computations for multisimplicial complexes.

1 Introduction

The cochain complex $C^*(K)$ of a simplicial set K is equipped with the classical Alexander-Whitney cup product that makes into a differential graded algebra. Our primary goal is to extend this product to the case of multisimplicial sets. Let us consider a k-fold simplicial set X, that is a contravariant functor from $(\Delta)^k$ to the category of sets. The restriction to the diagonal $\Delta \subset (\Delta)^k$ defines a simplicial set X^D. There is a notion of geometric realization $|X|$ of a k-fold simplicial set X, that is a CW complex with a cell e_x for each non-degenerate multisimplex x, with a characteristic map from a product of simplexes

$$\Delta_{i_1} \times \cdots \times \Delta_{i_k} \to e_x$$

This extends the classical case where the characteristic map has a single simplex as domain. Quillen proved in [4] that there is a natural homeomorphism of realizations $|X| \cong |X^D|$. Under this homeomorphism the cells of $|X^D|$ arise from those of $|X|$ by subdividing k-fold products of simplexes into simplexes. This procedure is described combinatorially by the Eilenberg-Zilber quasi-isomorphism

$$EZ : C_*(X) \to C_*(X^D)$$

that induces a quasi-isomorphism on normalized chains $N_*(X) \to N_*(X^D)$ after quotienting out degenerate chains. As in the classical simplicial case, the projection $C_*(X) \to N_*(X)$ onto normalized chains is a quasi-isomorphism.

We prove in Theorem 4.8 that the cochain complex $C^*(X)$ is equipped with a differential graded algebra structure. The product is the natural extension to the multisimplicial case of the cup product defined by the Alexander-Whitney formula, by evaluating cochains on front and rear faces in all multisimplicial directions. We prove in section 6 that the dual Eilenberg-Zilber map

$$EZ^* : C^*(X^D) \to C^*(X)$$

This work was partially supported by the MIUR Excellence Department Project MATH@TOV CUP E83C18000100006
is a quasi-isomorphism of differential graded algebras, where the source is equipped with the classical cup product. Furthermore the Eilenberg-Zilber map restricts to a quasi-isomorphism

\[N^\ast(X^D) \to N^\ast(X) \]

of sub-algebras of normalized cochains. Our result is very useful for computations, since multisimplicial models of spaces have a significantly smaller number of non-degenerate cells than their simplicial models. So \(N^\ast(X) \) is much smaller than \(N^\ast(X^D) \), but it contains the same information up to homotopy, allowing for example to calculate Massey products, and to detect its formality. As an example we consider a family of multisimplicial sets \(Sur(k) \) defined by McClure and Smith, see [5], modelling euclidean configuration spaces. The proof by the second author of the non-formality of the cochain algebra of planar configuration spaces in [6] used the Barratt-Eccles simplicial model and the classical cup product. Our new product on the multisimplicial McClure-Smith models makes the computation much simpler and faster, paving the way for an extension to higher dimensions.

The results of this paper appeared first in the B.Sc. thesis of the first author, University of Rome Tor Vergata (2019), written under the guidance of the second author.

2 Normalized complexes of multisimplicial modules

We always consider modules over a commutative ring \(R \) that will be usually be dropped from the notation.

Definition 2.1. Let \(X \) be a simplicial module, i.e. a contravariant functor from \(\Delta \) to the category of \(R \)-modules. The chain complex associated to \(X \) is \(C^\ast(X) = X^\ast \) with differential \(\partial_n : C_n(X) \to C_{n-1}(X) \) given by the formula

\[\partial_n = \sum_{i=0}^{n} (-1)^i d_i \]

where each \(d_i : X_n \to X_{n-1} \) is a face map, the image of \(\delta_i : [n-1] \to [n] \) via \(X \).

Definition 2.2. A multisimplicial (or \(k \)-fold simplicial) module (resp. set) \(X \) is a functor from \((\Delta)^k\) to the category of \(R \)-modules (resp. sets), for some positive integer \(k \). An element \(x \in X_{i_1, \ldots, i_k} \) is called a \((i_1, \ldots, i_k)\)-multisimplex. The face map

\[d_j^i : X_{i_1, \ldots, i_{j-1}, i_j, \ldots, i_k} \to X_{i_1, \ldots, i_{j-1}, i_j-1, \ldots, i_k} \]

in direction \(j \) for \(1 \leq j \leq k \) and \(0 \leq i_j \leq j \), is the image via \(X \) of \((id, \ldots, id, \delta_{i_j}, id, \ldots, id)\). The degeneracy map

\[s_l^i : X_{i_1, \ldots, i_{j-1}, i_j, \ldots, i_k} \to X_{i_1, \ldots, i_{j-1}, i_j+1, \ldots, i_k} \]

in direction \(l \) is the image via \(X \) of \((id, \ldots, id, \sigma_l, id, \ldots, id)\).

Clearly faces and/or degeneracies in different directions commute with each other.
Definition 2.3. The associated chain complex $C_*(X)$ of a multisimplicial module is defined by

$$C_n(X) = \bigoplus_{i_1, \ldots, i_k} X_{i_1, \ldots, i_k}$$

If we define

$$\partial_{i_j} = \sum_{t=0}^{i_j} (-1)^{t+i_1+\cdots+i_{j-1}} d_{i_j}^t : X_{i_1, \ldots, i_j, \ldots, i_k} \to X_{i_1, \ldots, i_{j-1}, i_j, \ldots, i_k}$$

then the multisimplicial differential on $C_*(X)$ is defined on the summand $X_{i_1, \ldots, i_j, \ldots, i_k}$ by the formula

$$\partial = \partial_{i_1} + \cdots + \partial_{i_k}$$

As usual the cochain complex $C^*(X)$ of a (multi)simplicial module X is the linear dual of $C_*(X)$. A standard example of multisimplicial R-module is $X = RK$, with K multisimplicial set, and X_{i_1, \ldots, i_k} the free R-module on K_{i_1, \ldots, i_k}.

The following definition extends the standard definition of the simplicial case.

Definition 2.4. A multisimplex of a multisimplicial module (or multisimplicial set) is said to be degenerate if it is in the image of a degeneracy.

We define next the normalized chain complex of a multisimplicial module.

Definition 2.5. Let X a multisimplicial module. We define $D_*(X)$ to be the subcomplex of $C_*(X)$ generated by all degenerate elements, in each dimension n, i.e. $D_0(X) = 0$ and:

$$D_n(X) = \sum_{0 \leq i_1 \leq \cdots \leq i_k \leq n - 1} s^l_{i_1} X_{i_1, \ldots, i_k}$$

By the multisimplicial identities $D_*(X)$ is closed under the differential ∂, so it is actually a subcomplex of $C_*(X)$. The quotient $C_*(X)/D_*(X) = N_*(X)$ is called the normalized chain complex of X.

A classical result is the following normalization theorem.

Theorem 2.6. *(Normalization Theorem 6.1, Chap. 8 in [3])* For each simplicial module X the canonical projection $\pi : C_*(X) \to N_*(X)$ is a chain equivalence.

The result extends to multisimplicial modules.

Theorem 2.7. *(Generalized Normalization Theorem)* For each multisimplicial module X the canonical projection $\pi : C_*(X) \to N_*(X)$ is a chain equivalence.

Proof. The proof is a slight variation of the proof in [2]. Consider the degree one map $t^l_j : C_*(X) \to C_{*+1}(X)$ given by $t^l_j(x) = (-1)^{j+i_1+\cdots+i_{l-1}} s^l_{i_1} x$ for a multisimplex $x \in X_{i_1, \ldots, i_k}$, $1 \leq l \leq k$ and $0 \leq j \leq i_l$. Then

$$h^l_j = 1 - \partial t^l_j - t^l_j \partial : C_*(X) \to C_*(X)$$

is a chain map, and t^l_j a homotopy between h^l_j and the identity. We set $h^l = h^l_0 \circ h^l_1 \circ \ldots$ for $l = 1, \ldots, k$. Then we set $h = h^1 \circ \cdots \circ h^k$. Notice that the chain maps h^1, \ldots, h^k commute with each other. We conclude following the proof by Mac Lane. 🅽
3 Eilenberg-Zilber maps

We define first the classical Eilenberg-Zilber map, and then the multisimplicial version. Let us recall the definition of shuffle.

Definition 3.1. Let \(a_1, \ldots, a_k \in \mathbb{N} \). A permutation \(\sigma \in S_{a_1 + \cdots + a_k} \) such that

\[
\sigma(1) < \cdots < \sigma(a_1), \quad \sigma(a_1 + 1) < \cdots < \sigma(a_1 + a_2) \cdots \sigma(a_1 + \cdots + a_{k-1} + 1) < \cdots < \sigma(a_1 + \cdots + a_k)
\]

is called an \((a_1, \ldots, a_k)\)-shuffle.

Equivalently an \((a_1, \ldots, a_k)\)-shuffle corresponds to a collection of monotone maps

\[
\pi_i : [a_1 + \cdots + a_k] \to [a_i]
\]

for \(i = 1, \ldots, k \) such that for each \(j = 0, \ldots, a_1 + \cdots + a_k - 1 \) there is exactly one index \(l \in \{1 \ldots k\} \) satisfying \(\pi_i(j + 1) = \pi_l(j + 1) \) and \(\pi_i(j + 1) = \pi_l(j) \) for all \(i \neq l \).

Geometrically this collection \((\pi_1, \ldots, \pi_k)\) represents a sequence of \((a_1 + \cdots + a_k)\) moves in a lattice of integral points with \((k+1)\)-coordinates, starting at the origin, and moving in a single direction at each stage, until the point \((a_1, \ldots, a_k)\) is reached.

The associated permutation sends \(j + 1 \) to \(a_1 + \cdots + a_{i-1} + \pi_i(j + 1) \). We denote the set of \((a_1, \ldots, a_k)\)-shuffles by \(sh(a_1, \ldots, a_k) \).

Example 3.2. The permutation \(\pi = (1, 2, 5, 3, 4, 6) \) is a \((4, 2)\)-shuffle. Indeed we have that \(\pi(1) = 1 < \pi(2) = 2 < \pi(3) = 4 < \pi(4) = 5 < \pi(5) = 3 < \pi(6) = 6 \). The corresponding monotone maps are

\[
\pi_1 : [0, 6] \to [0, 4] \quad \text{such that} \quad \pi_1(0) = 0, \pi_1(1) = 1, \pi_1(2) = 2 = \pi_1(3), \pi_1(4) = 3, \pi_1(5) = 4 = \pi_1(6) \quad \text{and} \quad \pi_2 : [0, 6] \to [0, 2] \quad \text{such that} \quad \pi_2(0) = 0 = \pi_2(1) = \pi_2(2), \pi_2(3) = 1 = \pi_2(4) = \pi_2(5), \pi_2(6) = 2.
\]

The corresponding path is indicated in red in the figure.

![Figure 1: (4,2)-shuffle of example 3.2](image)

Definition 3.3. For simplicial modules \(X \) and \(Y \) the classical Eilenberg-Zilber map

\[
EZ : C_\ast(X) \otimes C_\ast(Y) \to C_\ast(X \otimes Y)
\]

is defined by

\[
EZ(x \otimes y) = \sum_{\pi \in sh(p,q)} sgn(\pi)X(\pi_1)(x) \otimes X(\pi_2)(y)
\]

for \(x \in X_p \) and \(y \in Y_q \).
Theorem 3.4. (Classic Eilenberg-Zilber Theorem) For simplicial modules X and Y

$$EZ : C_\ast(X) \otimes C_\ast(Y) \to C_\ast(X \otimes Y)$$

is a natural chain equivalence, inducing on the quotient a chain equivalence

$$N_\ast(X) \otimes N_\ast(Y) \to N_\ast(X \otimes Y)$$

One can choose as natural inverse equivalence the Alexander-Whitney map that we will introduce later.

Definition 3.5. For simplicial modules X_1, \ldots, X_k the multivariable Eilenberg-Zilber chain map $EZ : C_\ast(X_1) \otimes \cdots \otimes C_\ast(X_k) \to C_\ast(X_1 \otimes \cdots \otimes X_k)$ is defined by

$$EZ(x_1 \otimes \cdots \otimes x_k) = \sum_{\pi \in sh(a_1, \ldots, a_k)} sgn(\pi)X_1(\pi_1)(x_1) \otimes \cdots \otimes X_k(\pi_k)(x_k)$$

It is easy to verify that this chain map can also be obtained by iterating the classical map. In particular EZ induces a map on normalized cochains. By applying repeatedly theorem 3.4 and using the normalization theorem 2.6 we obtain the following corollary.

Corollary 3.6. (Extension of Eilenberg-Zilber Theorem) For simplicial modules X_1, \ldots, X_k

$$EZ : C_\ast(X_1) \otimes \cdots \otimes C_\ast(X_k) \to C_\ast(X_1 \otimes \cdots \otimes X_k)$$

is a natural chain equivalence, and so is the induced chain map

$$EZ : N_\ast(X_1) \otimes \cdots \otimes N_\ast(X_k) \to N_\ast(X_1 \otimes \cdots \otimes X_k)$$

Similarly as before, a natural inverse equivalence can be chosen to be an iterated Alexander-Whitney map.

For the multisimplicial version we need the following definition.

Definition 3.7. Given a multisimplicial module (or set) $X : \Delta^k \to \text{Set}$ its diagonal $X^D : \Delta \to \text{Set}$ is the simplicial module (or set) that is the restriction of X to the diagonal copy $\Delta \subset \Delta^k$.

Observe now that if X is a multisimplicial module, π an (a_1, \ldots, a_k)-shuffle, and $x \in X_{a_1, \ldots, a_k}$ a multisimplex, then

$$X(\pi_1, \ldots, \pi_k)(x) \in X_{a_1 + \cdots + a_k}^D$$

is in the diagonal. We can now define the multisimplicial Eilenberg-Zilber map.

Definition 3.8. Let X be a multisimplicial module. The multisimplicial Eilenberg-Zilber map, $EZ : C_\ast(X) \to C_\ast(X^D)$, is defined as follows: For a given (a_1, \ldots, a_k)-multisimplex x

$$EZ(x) = \sum_{\pi \in sh(a_1, \ldots, a_k)} sgn(\pi)X(\pi_1, \ldots, \pi_k)(x)$$

We can extend Theorem 2.5, chap. 4 in [2], that is about bisimplicial modules, to the general multisimplicial case as follows:
Theorem 3.9. Let X be a multisimplicial module. Then $EZ : C_*(X) \rightarrow C_*(X^D)$ is a natural chain equivalence.

Proof. The proof is similar to that of Theorem 2.5, chap.4 in [2] adapted to multisimplicial modules, using corollary 3.6. Consider the standard multisimplicial set

$$\Delta_{i_1,\ldots,i_k} := \text{Hom}(_,[i_1],\ldots,[i_k])$$

Corollary 3.6 proves the theorem for the standard multisimplicial module $X = R\Delta_{i_1,\ldots,i_k}$. Namely the simplicial set $\Delta_{i_1} \times \cdots \times \Delta_{i_k}$ is isomorphic to the diagonal $R\Delta_{i_1,\ldots,i_k}$, and $R\Delta_{i_1} \otimes \cdots \otimes R\Delta_{i_k}$ is isomorphic to the diagonal $R\Delta_{i_1,\ldots,i_k}$, so it is sufficient to choose $X_l = R\Delta_{i_l}$ for $l = 1,\ldots,k$. The remainder of the proof follows [2], writing a generic multisimplicial module as colimit of standard multisimplicial modules.

Even in this case a natural inverse equivalence can be constructed in terms of Alexander-Whitney maps, by naturality of the chain homotopies in the proof [2] and theorem 2.7.

Corollary 3.10. The multisimplicial Eilenberg-Zilber map induces a natural chain map of normalized chain complexes $EZ^N : N_*(X) \rightarrow N_*(X^D)$.

We state next an important result by Quillen about realizations of multisimplicial sets, that is a companion of theorem 3.9. We need first to define the realization of a multisimplicial set X, that is the natural generalization of the realization of a simplicial set. Let us denote the standard topological i-simplex by Δ_i, and the face and degeneracy maps between topological simplexes respectively by δ_i and σ_i.

Definition 3.11. The realization $|X|$ of a k-fold simplicial set X is the CW complex

$$\prod X_{i_1,\ldots,i_k} \times \Delta_{i_1} \times \cdots \times \Delta_{i_k} / \sim$$

where

$$(d^i_l(x), y_1, \ldots, y_l, \ldots, y_k) \sim (x, y_1, \ldots, \delta_i(y_l), \ldots, y_k),$$

$$(s^i_l(x), y_1, \ldots, y_l, \ldots, y_k) \sim (x, y_1, \ldots, \sigma_i(y_l), \ldots, y_k)$$

Theorem 3.12. (Quillen) [7] For a multisimplicial set X there is a natural homeomorphism $|X| \cong |X^D|$.

The theorem is proved similarly as Theorem 3.9 first when $X = \Delta_{i_1,\ldots,i_k}$. In this case the multisimplicial realization is $\Delta_{i_1} \times \cdots \times \Delta_{i_k}$, and the realization of the diagonal X^D provides a subdivision of this product of simplexes into various simplexes. The general case is then obtained via colimits. Notice that the (non-degenerate) simplices of $|X^D|$ correspond to the summands appearing in the formula of the normalized Eilenberg-Zilber map applied to the (non-degenerate) multisimplices of X.

4 The multisimplicial Alexander-Whitney map

The task of this section is to define the Alexander-Whitney map for multisimplicial modules, that will allow us to define a cup product on the multisimplicial cochain
level, yielding a differential graded algebra structure that generalizes the classical cup product.

We recall that for a simplicial module X and a simplex $x \in X_n$, its front i-face is $x \lfloor_i := X(F_i)(x) \in X_i$, with $F_i : [i] \to [n]$, $F_i(l) = l$, and the back j-face of x is $j \lfloor x := X(B_j)(x) \in X_j$, with $B_j : [j] \to [n]$, $B_j(l) = l + n - j$.

The classical Alexander-Whitney map is defined as follows.

Definition 4.1. (Simplicial Alexander-Whitney map) Let X be a simplicial module. The Alexander-Whitney map is a chain map:

$$ \text{AW} : C_\ast(X) \to C_\ast(X) \otimes C_\ast(X) $$

which acts on n-simplexes x according to the formula

$$ \text{AW}_n(x) = \sum_{i=0}^{n} x \lfloor_i \otimes n-i \lfloor x $$

Lemma 4.2. (8.6 Chap. 8 in [3]) The Alexander-Whitney map induces a chain transformation on the normalized chain complexes

$$ N_\ast(X) \to N_\ast(X) \otimes N_\ast(X) $$

The key point for the definition of the multisimplicial Alexander-Whitney map is to extend what 'front' and 'back' faces mean, because a multisimplicial set has more coordinates (or directions) to manage. We can do this by picking front and back faces independently in each coordinate as follows.

Definition 4.3. Let X be a multisimplicial module and $x \in X_{a_1, \ldots, a_n}$. Given indices $i_l \in \{0, \ldots, a_l\}$ for $l = 1, \ldots, k$ the front (i_1, \ldots, i_k)-face of x is the multisimplex

$$ x \lfloor_{(i_1, \ldots, i_k)} := X(F_{i_1}, \ldots, F_{i_k})(x) \in X_{i_1, \ldots, i_k} $$

and the back (i_1, \ldots, i_k)-face of x is the multisimplex

$$ (i_1, \ldots, i_k) \lfloor x := X(B_{i_1}, \ldots, B_{i_k})(x) \in X_{i_1, \ldots, i_k} $$

Proceeding from here, emulating the process used to obtain the simplicial Alexander-Whitney map, we have the following definition.

Definition 4.4. The Alexander-Whitney of a multisimplicial module X is the chain map

$$ \text{AW}_{msimp} : C_\ast(X) \to C_\ast(X) \otimes C_\ast(X) $$

which assigns to any (a_1, \ldots, a_k)-simplex x

$$ \text{AW}_{msimp}(x) = \sum_{i_j=0, \ldots, a_j}^{a_j} \sum_{j=1, \ldots, k} \left(\sum_{l<h} (-1)^{\sum_{i_h=a_h-i_h}^{a_h}} x \lfloor_{(i_1, \ldots, i_h)} \otimes (a_1-i_1, \ldots, a_k-i_k) \right) $$

The following properties can be verified similarly as in the classical simplicial case.

Lemma 4.5. The homomorphism $\text{AW}_{msimp} : C_\ast(X) \to C_\ast(X) \otimes C_\ast(X)$ is a chain map
Lemma 4.6. The homomorphism $AW = AW_{msimp}$ satisfies coassociativity, in the sense that

$$(AW \otimes id)AW = (id \otimes AW)AW : C_*(X) \to C_*(X) \otimes C_*(X) \otimes C_*(X).$$

Lemma 4.7. The multisimplicial Alexander-Whitney map induces a chain transformation on the associated normalized chain complexes

$$N_*(X) \to N_*(X) \otimes N_*(X).$$

The dual homomorphism of AW_{msimp} gives a pairing $C_*(X) \otimes C_*(X) \to C_*(X)$ that we call multisimplicial cup product.

Theorem 4.8. For a multisimplicial module X, the cup product defines a graded differential algebra structure on $C_*(X)$, inducing a graded algebra structure on $H_*(X)$. Furthermore the quasi-isomorphic subcomplex of normalized cochains $N_*(X) \subset C_*(X)$ is a subalgebra.

Proof. By lemma 4.6 Alexander-Whitney map is coassociative, and so its dual is associative. The compatibility with the differential follows from lemma 4.5. The second statement follows from lemma 4.7. \qed

5 Surjection and Barratt-Eccles complexes

We study an important example that will help us to understand how to prove our main theorem.

Definition 5.1. We recall the definition of the surjection multisimplicial set $\text{Sur}(k)$ by McClure and Smith [5]. $\text{Sur}(k)_{i_1,\ldots,i_k}$ is the set of surjective maps $f : \{1, \ldots, i_1 + \cdots + i_k + k\} \to \{1, \ldots, k\}$ such that the cardinality of $f^{-1}(l)$ is i_l, for $l = 1, \ldots, k$. We represent such maps by the sequence $f(1) \ldots f(i_1 + \cdots + i_k + k)$

The multisimplicial structure is defined as follows: d_j removes the $(j + 1)$-th occurrence of l in a sequence, and s_j doubles the $(j + 1)$-th occurrence of l in a sequence. So for example

$$d_0(12321) = 1321, \quad d_2(12321) = 1231, \quad s_0(121) = 1121$$

Degenerate multisimplices are exactly the sequences containing two equal adjacent terms.

The front (resp. back) (i_1, \ldots, i_k)-face of a sequence is the subsequence containing only the first (resp. last) $(i_l + 1)$-values of l, for each $l = 1, \ldots, k$.

There is an interesting connection between Sur and the Barratt-Eccles simplicial sets $W\Sigma_k$. Here Σ_k is the symmetric group of permutations of $\{1, \ldots, k\}$, $(W\Sigma_k)_i = (\Sigma_k)^i$, a face d_j removes the $(j + 1)$-st permutation, and a degeneracy s_j doubles the $(j + 1)$-st permutation. The normalized chain complex of $W\Sigma_k$ is the Barratt-Eccles chain complex

$$BE(k) := N_*(W\Sigma_k).$$
Similarly the normalized chain complex of Sur is the surjection chain complex

$\chi(k) := N_*(\text{Sur}(k))$

The collections of these complexes over all k are operads bearing the same name. Berger and Fresse construct in [1] chain maps $T_C : \chi(k) \rightarrow BE(k)$ (respecting the operad structures). We claim that T_C is induced by a map of simplicial sets

$tc : \text{Sur}(k)^D \rightarrow W\Sigma_k$

that we define.

Definition 5.2. Let s be an i-simplex of the diagonal $\text{Sur}(k)^D$, i.e. a sequence containing any value in $\{1, \ldots, k\}$ exactly $i + 1$ times. Then $tc(s) := (\sigma_0, \ldots, \sigma_i)$ is a sequence of permutations where each σ_j is the subsequence of s containing the $(j + 1)$-st occurrence of each value in $\{1, \ldots, k\}$.

For example

$tc(122333112) = (123, 231, 312)$

Proposition 5.3. The homomorphism T_C by Berger-Fresse satisfies

$T_C = N_*(tc) \circ EZ$

where

$EZ : \chi(k) = N_*(\text{Sur}(k)) \rightarrow N_*(\text{Sur}(k)^D)$

and

$N_*(tc) : N_*(\text{Sur}(k)^D) \rightarrow N_*(W\Sigma_k) = BE(k)$

Both W and Sur are filtered [1], i.e. there is a family of nested simplicial sets

$W_1\Sigma_k \subset W_2\Sigma_k \subset \ldots$

such that $W\Sigma_k = \text{colim} d W_d\Sigma_k$, and a family of nested k-fold simplicial sets

$\text{Sur}_1(k) \subset \text{Sur}_2(k) \subset \ldots$

such that $\text{Sur}(k) = \text{colim}_d \text{Sur}_d(k)$. The normalized chain functor defines

$BE_d(k) := N_*(W_d\Sigma_k)$

so that BE_d is a suboperad of BE for each d, and similarly

$\chi_d(k) := N_*(\text{Sur}_d(k))$

so that χ_d is a suboperad of χ for each c. We observe that the simplicial map tc respects the filtration, sending $W_d\Sigma_k$ to $\text{Sur}_d(k)^D$. The geometric realizations satisfy

$|\text{Sur}_d(k)| \simeq |W_d\Sigma_k| \simeq F_k(R^d)$

where $F_k(R^d)$ is the ordered configuration space of k-tuples of points in \mathbb{R}^d. We stress that the number of generators in $\chi_d(k)$, corresponding to non-degenerate surjections,
is much smaller than the corresponding number of generators in $BE_d(k)$. Let us consider the generating polynomial functions counting the generators

$$PB_d^k(x) = \sum_i \text{rank}(BE_d(k)_i) x^i$$

$$P\chi_d^k(x) = \sum_i \text{rank}(\chi_d(k)_i) x^i$$

Then for example

$$PB_d^4(x) = 24(1 + 23x + 104x^2 + 196x^3 + 184x^4 + 86x^5 + 16x^6)$$

$$PB_d^4(x) = 24(1 + 6x + 10x^2 + 5x^3)$$

$$PB_d^3(x) = 6(1 + 5x + 25x^2 + 60x^3 + 70x^4 + 38x^5 + 8x^6)$$

$$PB_d^3(x) = 6(1 + 3x + 7x^2 + 9x^3 + 6x^4 + x^5)$$

Therefore the multisimplicial approach using χ is much more efficient than the simplicial approach using BE, when performing computations as in [6].

6 Compatibility of the multisimplicial cup product

The aim of this section is to compare the multisimplicial cup product on $C^*(X)$ for a multisimplicial module X with the classical cup product on $C^*(X^D)$, where X^D is the diagonal simplicial module, by showing that the (dual) Eilenberg-Zilber map $EZ^*: C^*(X^D) \rightarrow C^*(X)$ is a homomorphism of differential graded algebras. This happens if and only if the following diagram of chain maps is commutative.

$$\begin{array}{ccc}
C_*(X) & \xrightarrow{EZ} & C_*(X^D) \\
\downarrow AW_{msimp} \quad & & \quad \downarrow AW_{simp} \\
C_*(X) \otimes C_*(X) & \xrightarrow{EZ \otimes EZ} & C_*(X^D) \otimes C_*(X^D)
\end{array}$$

Example 6.1. Let us consider the multisimplicial module $X = \mathbb{Z}_2 \text{Sur}(3)$. The $(1,1,0)$-multisimplex 12321 of $\text{Sur}(3)$ represents a generator of $C_2(X)$.

\[\begin{array}{c}
1 \\
\Delta^1 \\
\downarrow \\
2 \\
\times \\
\Delta^1 \\
\downarrow \\
3 \\
\times \\
\Delta^0 \\
\downarrow \\
2 \\
\times \\
1
\end{array} \]
Let us calculate \(AW_{simp}(EZ(12321)) \) and \((EZ \otimes EZ)(AW_{msimp}(12321))\).

\[
EZ(12321) = 11233221 + 12233211 \in C_3(X^D).
\]

\[
AW_{simp}(EZ(12321)) = AW_{simp}(11233221) + AW_{simp}(12233211) =
\]
\[
= 123 \otimes EZ(12321) + EZ(12321) \otimes 321 +
+ 112332 \otimes 133221 + 122331 \otimes 233211.
\]

\[
AW_{msimp}(12321) = 123 \otimes 12321 + 1231 \otimes 2321 +
+ 1232 \otimes 1321 + 12321 \otimes 321.
\]

\[
(EZ \otimes EZ)(AW_{msimp}(12321)) = 123 \otimes EZ(12321) + 122331 \otimes 233211 +
+ 112332 \otimes 133221 + EZ(12321) \otimes 321.
\]

So the arrows of diagram \(\Delta \) commute when evaluated on 12321.

Example 6.2. Consider the \((2,1)\)-multisimplex 12121 of \(X = \mathbb{Z}_2 Sur(2) \), that is a generator of \(C_3(X) \).

Let us compute \(AW_{simp}(EZ(12121)) \) and \((EZ \otimes EZ)(AW_{msimp}(12121))\). We draw the grids used to calculate \(EZ \) and write down the indices in \(AW \). We have

\[
EZ(12121) = 12221211 \underbrace{+ 12211221}_{A} + 11212221 \underbrace{+ 11212221}_{C}
\]

where \(A, B \) and \(C \) are obtained respectively through shuffles associated to the following paths in the associated grids.

![Figure 2: Grids representing shuffles respectively of \(A, B \) and \(C \).](image)

We compute the summands of \(AW_{simp}(EZ(12121)) \) by indicating the index \(i \) of the front face for each of the 3-simplexes \(A, B, C \).
\begin{align*}
AW_{simp}(A) & \quad i = 0 \quad 12 \otimes 1221211 \\
& \quad i = 1 \quad 1221 \otimes 22111 \\
& \quad i = 2 \quad 122211 \otimes 22111 \quad \text{degenerate by } s_0 \\
& \quad i = 3 \quad 122211 \otimes 21 \\
AW_{simp}(B) & \quad i = 0 \quad 12 \otimes 12211221 \\
& \quad i = 1 \quad 1221 \otimes 211221 \\
& \quad i = 2 \quad 122112 \otimes 1221 \\
& \quad i = 3 \quad 12211221 \otimes 21 \\
AW_{simp}(C) & \quad i = 0 \quad 12 \otimes 11212221 \\
& \quad i = 1 \quad 1122 \otimes 112221 \quad \text{degenerate by } s_0 \\
& \quad i = 2 \quad 112122 \otimes 1221 \\
& \quad i = 3 \quad 11212221 \otimes 21
\end{align*}

So we have twelve summands, and two of these have a degenerate factor.

We calculate now \((EZ \otimes EZ)(AW_{simp}(1212121))\). Starting from a \((2, 1)\)-multisimplex, to calculate \(AW_{simp}\) we need two indices, \(k = 0, 1, 2 \) e \(j = 0, 1 \). We outline couples of indices associated to each summand of \(AW_{simp}(1212121)\).

\begin{itemize}
\item \((k = 0, j = 0)\) \quad 12 \otimes 12121 \quad \text{risp. (0, 0) and (2, 1) multisimplex}
\item \((k = 0, j = 1)\) \quad 122 \otimes 12121 \quad \text{risp. (0, 1) and (2, 0) multisimplex}
\item \((k = 1, j = 0)\) \quad 121 \otimes 2121 \quad \text{risp. (1, 0) and (1, 1) multisimplex}
\item \((k = 1, j = 1)\) \quad 1212 \otimes 121 \quad \text{risp. (1, 1) and (1, 0) multisimplex}
\item \((k = 2, j = 0)\) \quad 1211 \otimes 221 \quad \text{risp. (2, 0) and (0, 1) multisimplex}
\item \((k = 2, j = 1)\) \quad 12121 \otimes 21 \quad \text{risp. (2, 1) and (0, 0) multisimplex}
\end{itemize}

Now, for each couple of indices, we write down all the shuffles we need for \(EZ \otimes EZ\): for \((k = 0, j = 0)\) the shuffles determining \((EZ \otimes EZ)(12 \otimes 12121)\) are given by:

\begin{itemize}
\item \(id \otimes \) \quad \Rightarrow \quad 12 \otimes 1221211
\item \(id \otimes \) \quad \Rightarrow \quad 12 \otimes 12211221
\end{itemize}
for \((k = 0, j = 1)\) the shuffles determining \((EZ \otimes EZ)(122 \otimes 1121)\) are given by:

\[
\begin{array}{c}
1 \\
\otimes \\
0 \\
\end{array} \Rightarrow
\begin{array}{c}
0 \\
1 \\
2 \\
\end{array}
\]

\[
\begin{array}{c}
12 \\
\otimes \\
112122 \\
\end{array}
\]

for \((k = 1, j = 0)\) the shuffles determining \((EZ \otimes EZ)(121 \otimes 2121)\) are given by:

\[
\begin{array}{c}
0 \\
1 \\
\otimes \\
0 \\
1 \\
\end{array} \Rightarrow
\begin{array}{c}
0 \\
1 \\
2 \\
\end{array}
\]

\[
\begin{array}{c}
1221 \\
\otimes \\
212121 \\
\end{array}
\]

for \((k = 1, j = 1)\) the shuffles determining \((EZ \otimes EZ)(1212 \otimes 121)\) are given by:

\[
\begin{array}{c}
1 \\
\otimes \\
0 \\
1 \\
\end{array} \Rightarrow
\begin{array}{c}
0 \\
1 \\
2 \\
\end{array}
\]

\[
\begin{array}{c}
122112 \\
\otimes \\
1221 \\
\end{array}
\]

for \((k = 2, j = 0)\) the shuffles determining \((EZ \otimes EZ)(1211 \otimes 221)\) are given by:

\[
\begin{array}{c}
0 \\
1 \\
2 \\
\otimes \\
0 \\
1 \\
\end{array} \Rightarrow
\begin{array}{c}
1 \\
0 \\
\end{array}
\]

\[
\begin{array}{c}
122111 \\
\otimes \\
221 \\
\end{array}
\]
finally for \((k = 2, j = 1)\) the shuffles determining \((EZ \otimes EZ)(12121 \otimes 21)\) are given by:

\[
\begin{array}{ccc}
1 & \otimes & id \\
0 & 0 & 1 \\
& & 2 \\
\end{array} \Rightarrow \begin{array}{c}
12221211 \otimes 21 \\
\end{array}
\]

\[
\begin{array}{ccc}
1 & \otimes & id \\
0 & 0 & 1 \\
& & 2 \\
\end{array} \Rightarrow \begin{array}{c}
12211221 \otimes 21 \\
\end{array}
\]

\[
\begin{array}{ccc}
1 & \otimes & id \\
0 & 0 & 1 \\
& & 2 \\
\end{array} \Rightarrow \begin{array}{c}
11212221 \otimes 21 \\
\end{array}
\]

So \((EZ \otimes EZ) \circ AW_{\text{msimp}}(12121)\) has the same summands as \(AW_{\text{simp}} \circ EZ(12121)\) (and two of them have a degenerate factor). Therefore the arrows of diagram \((\Pi)\) commute when evaluated on 12121.

From this examples we can see that each summand of \(AW_{\text{simp}} \circ EZ\) in a diagram like \((\Pi)\) is indexed by a path on a grid

\[
\begin{array}{cccccccc}
3 & | & | & | & | & | & 6 \\
\hline
2 & | & | & | & | & | & 5 \\
\hline
1 & | & | & | & | & | & 4 \\
\hline
0 & | & | & | & | & | & 3 \\
\hline
0 & | & | & | & | & | & 2 \\
\hline
0 & | & | & | & | & | & 1 \\
\hline
0 & | & | & | & | & | & 0 \\
\hline
\end{array}
\]

together with a splitting of this path as concatenation of two paths. The corresponding summand of \((EZ \otimes EZ) \circ AW_{\text{msimp}}\) is indexed by the two maximal sub-grids containing respectively these two paths
We formalize this fact in order to prove the commutativity of diagram (1).

Definition 6.3. For $0 \leq i_l \leq a_l, l = 1, \ldots, k$ there is a concatenation product of shuffles

$$sh(i_1, \ldots, i_k) \times sh(a_1 - i_1, \ldots, a_k - i_k) \to sh(a_1, \ldots, a_k)$$

sending a pair $(\pi], [\pi)$ to $\pi := \pi] * [\pi$ such that

$$(\pi)]_l(j) = \pi_l(j)$$

for $j \in \{0, \ldots, i_1 + \cdots + i_k\}$, and

$$([\pi)_l(j) = \pi_l(j + i_1 + \cdots + i_k) - i_l$$

for $j \in \{0, \ldots, a_1 - i_1 + \cdots + a_k - i_k\}$

It is easy to see the following.

Lemma 6.4. There is a bijection

$$\prod_{0 \leq i_l \leq a_l, \atop 1 \leq l \leq k} (sh(i_1, \ldots, i_k) \times sh(a_1 - i_1, \ldots, a_k - i_k)) \cong sh(a_1, \ldots, a_k)$$

induced by the concatenation product.

We are now ready to prove the commutativity of diagram (1) in full generality.

Proposition 6.5. Let X be a multisimplicial module. Then the following diagram commutes

$$\begin{array}{ccc}
C_*(X) & \xrightarrow{EZ} & C_*(XD) \\
\downarrow AW_{msimp} & & \downarrow AW_{simp} \\
C_*(X) \otimes C_*(X) & \xrightarrow{EZ \otimes EZ} & C_*(XD) \otimes C_*(XD)
\end{array}$$

Proof. Suppose that X is a k-fold simplicial module, and pick $x \in X_{a_1, \ldots, a_k}$.

For $x \in X_{a_1, \ldots, a_k}, EZ(x)$ is a sum over the (a_1, \ldots, a_k)-shuffles π of $X(\pi_1, \ldots, \pi_k)(x)$. The summands of $(EZ \otimes EZ)(AW_{msimp}(x))$ are indexed over pairs $(\pi], [\pi)$ with $\pi] \in sh(i_1, \ldots, i_k)$ and $[\pi \in sh(a_1 - i_1, \ldots, a_k - i_k)$. The summand corresponding to a pair, up to sign, is

$$X(\pi], [\pi)(x)_{i_1, \ldots, i_k} \otimes X(\pi_{[1, \ldots, [\pi)(x)_{a_1 - i_1, \ldots, a_k - i_k}) =$$
but this is a summand, up to sign, of $AW_{simp}(EZ(x))$, and it is easy to see that there is a bijective correspondence between such summands by lemma \[6.3\]. By careful tracking signs of corresponding summands it turns out that they agree. This concludes the proof.

Corollary 6.6. The following diagram commutes

\[
\begin{array}{c}
N_*(X) \xrightarrow{EZ} N_*(X^D) \\
\downarrow AW_{simp} \quad \quad \quad \quad \quad \quad \quad \quad \downarrow AW_{simp} \\
N_*(X) \otimes N_*(X) \xrightarrow{EZ \otimes EZ} N_*(X^D) \otimes N_*(X^D)
\end{array}
\]

Proof. It is a direct consequence of theorem \[2.6\], corollary \[3.10\] and lemmas \[4.2\] and \[4.7\].

We can finally prove the compatibility theorem.

Theorem 6.7. The dual Eilenberg-Zilber map $EZ^*: C^*(X^D) \rightarrow C^*(X)$ and its restriction $EZ^*: N^*(X^D) \rightarrow N^*(X)$ are homomorphisms of differential graded algebras inducing in cohomology an isomorphism of graded algebras

\[H^*(X^D) \cong H^*(X) \]

Proof. The fact that EZ^* induces homomorphisms of differential graded algebras follows by dualizing the diagrams of proposition \[6.5\] and corollary \[6.6\]. The fact that they induce isomorphism in cohomology follows from theorem \[3.9\].
References

[1] C. Berger, B. Fresse, Une decomposition prismatique de l’operade de Barratt-Eccles, C. R. Acad. Sci. Paris Ser. I 335 (2002), 365-370
[2] P. Goerss, J. Jardine. Simplicial Homotopy Theory, 1999, Birkhäuser
[3] S. Mac Lane. Homology, 1963, Springer-Verlag
[4] Daniel Quillen, Higher algebraic K-theory: I, Lecture Notes in Mathematics 341.
[5] J. McClure, J. Smith, Cosimplicial objects and little n-cubes. I. Amer. J. Math. 126 (2004), no. 5, 1109-1153.
[6] P. Salvatore, Non-formality of planar configuration spaces in characteristic two, Int.Math.Res.Not. 2020 n.10 (2020) 3100-3129

Dipartimento di Matematica
Università di Torino
Via Carlo Alberto 10
10124 Torino, Italy

Dipartimento di Matematica
Università di Roma Tor Vergata
Via della Ricerca Scientifica
00133 Roma, Italy