Research Article

Geospatial technology with the integration of MCDA to identify potential irrigation sites for agricultural land management in Wanka watershed, Northwestern Ethiopia

Endalkachew Sisay Yegizaw*, Mulualem Asfaw Ejegu

Debre Tabor University, Department of Geography and Environmental Studies, Debre Tabor, Ethiopia.
*corresponding author: endalkea@dtu.edu.et

Abstract

Irrigation improves the productivity of agriculture in any country. Irrigation is viewed as a fundamental approach to ensure food security, improve crop productivity, income of smallholder farmers, ensure food security, alleviate poverty and improve the economy of the farming community by generating additional income. As a result, the goal of this study was to identify prospective irrigated lands for agricultural land management in the Wanka watershed in northwestern Ethiopia using geospatial technology and multi-criteria decision-making analysis. Identifying sites for surface irrigation for agricultural land management is not a simple task, which needs consideration of many criteria such as slope, soil texture, soil depth, soil drainage, land use/land cover and distance from the water supply were used to determine the best possible location. Each factor was categorized into highly suitable, moderately suitable, marginally suitable and currently not suitable. The final result showed that the watershed had a high opportunity for surface irrigation. About 498 km² of the watershed's total area is potentially suitable for surface irrigation, whereas the remaining 443 km² is not. In the research area, there is sufficient land area accessible for surface irrigation development if those locations with highly suitable to marginally suitable areas are properly utilized.

Keywords:
agriculture
GIS
irrigation
MCDA
Wanka

Introduction

Water is recognized as the most significant factor in transforming low-productivity rainfed agriculture into the most efficient irrigated agriculture (FAO, 1996; Melak, 2007; Tesfaye et al., 2008; Teka et al., 2010). Surface irrigation is a system that delivers water to crops using gravity. It is the most common form of irrigation and has been practiced for thousands of years throughout the world (Worqlul et al., 2017; Ahmed, 2019; Nasir et al., 2019). Irrigation development has great potential to advance productivity and minimizes vulnerability to climate volatility (Awulachew et al., 2007; Eshetu and Young, 2017). Water resource management receives particular attention due to a lack of water storage and wide spatial and temporal fluctuations in rainfall, declining landholding size, increasing landlessness, environmental degradation, subsistence and rainfed agriculture, and environmental degradation (Eshetu and Young, 2017; Taghvaeian et al., 2018). Agriculture is Ethiopia's most important economic activity (Hailu and Quraishi, 2017; Tefera and Cho,
Evaluating and appraising irrigation site potential and suitability ensures the long-term economic feasibility and sustainability of water resource development (Kebede and Ademe, 2016). Ethiopia has a large irrigation potential based on accessible land and water resources (122 billion m3 surface water and 40 billion m3 groundwater source and 3.7 million hectares (Negash and Seleshi 2004; Awulachew et al., 2007). Only roughly 190,000 hectares (5.3 percent of the potential) are irrigated, and irrigation development in the country is still in its infancy (MoWE, 2012; Sultan, 2013; Kebede and Ademe, 2016). The per capita irrigated area of Ethiopia is about 30m2. This value is very small compared to the 450m2 global average (Awulachew et al., 2007). As a result, it is important that significant attention be given to enhance irrigated agriculture and bring food security (Awulachew et al., 2007), and stimulating economic growth and rural development (MoWR 2002).

Evaluating and appraising irrigation site potential and suitability ensures the long-term economic feasibility and sustainability of water resource development (Kebede and Ademe, 2016). Wanka watershed is located in Amhara National Regional State of Ethiopia. Geographically, it is located between 11° 12’ - 11° 43’ N and 37° 54’ - 38° 15’ E. The elevation varies from 1296 to 4104 meters above sea level and the peak point is found in Mount Guna, which is the source of numerous rivers. The total area of the watershed is 941 km2. The mean annual precipitation of the study area over the last 30 years (1990 to 2019) is 1400 mm. The watershed is the tributaries of the Blue Nile (Figure 1).

Materials and Methods

Study area

Wanka watershed is located in Amhara National Regional State of Ethiopia. Geographically, it is located between 11° 12’ - 11° 43’ N and 37° 54’ - 38° 15’ E. The elevation varies from 1296 to 4104 meters above sea level and the peak point is found in Mount Guna, which is the source of numerous rivers. The total area of the watershed is 941 km2. The mean annual precipitation of the study area over the last 30 years (1990 to 2019) is 1400 mm. The watershed is the tributaries of the Blue Nile (Figure 1).

Dataset

Identifying potential sites of surface irrigation for agricultural land management using geospatial technology with the integration of MCDA is the main strategy to minimize poverty, ensure food security and improve the community economy. Both primary and secondary data sources were used to achieve the objective of the study. Sentinel-2 satellite image of 2020 with a resolution of 10 meters blue, green, red and NIR bands were used to prepare land use/land cover map and ASTER DEM was used to generate a slope map through ERDAS imagine 2015. River and soil data from the Ethiopia Ministry of Water Resource were extracted and pre-processed using geospatial software packages. All layers are projected into UTM zone 37N and converted into a raster data structure.

Criteria for surface irrigation identification

Site selection is a complex process that requires taking many contradictory criteria into account at the same time. Factors that determine the location of the surface irrigation were identified based on literature, slope, soil depth, soil texture, soil drainage, land use/land cover and distance from water supply were used to identify the best possible location and each factor was classified as highly suitable, moderately suitable, marginally suitable and not suitable (FAO, 1997; Tekela et al., 2010; Kebede and Ademe, 2016; Muema, 2016; Hailu and Quaraishi, 2017; Worqul et al., 2017; Girma et al., 2019; Nasir et al., 2019) (Table 1).

Multi-criteria decision analysis for surface irrigation

To determine suitable site for surface irrigation areas in Wanka watershed, a Multi-Criteria Decision Analysis (MCDA) was used. The first issue in MCDA is how to combine the data from several sources (Wale et al., 2013). MCDA is a tool that allows people to choose the best option from many criteria (Muema, 2016).
The importance of each variable in the irrigation potential was used to calculate the weighting of the decision criteria (Melak, 2007). The percentage influence and rating of suitability class were calculated by pairwise weighting according to Satty (1977). Pairwise comparison, which was applied as in the analytical hierarchy process technique, was used to determine the values of each of these criteria. The consistency ratio (CR) was calculated to control the consistency of the predicted weight values, and the CR values of all comparisons were 0.03, indicating that the weights were appropriate.
Results and Discussion

Slope

Based on (FAO, 1997; Girma et al., 2020) classification system, the results presented in Figure 2a revealed that 275.34 km² (29.26%) are highly suitable, 195.46 km² (20.77%) moderately suitable, 194.37 km² (20.65%) marginally suitable and 275.83 km² (29.32%) is not recommended for the implementation of surface irrigation. The slope is one of the main important aspects in evaluating a land property for irrigation since it influences production and development costs (Hailu and Quraishi, 2017). It has influenced runoff, drainage, erosion, and irrigation type selection, which is crucial for soil development and management (FAO, 1997; Fasina, 2008; Nasir et al., 2019). Low slope areas have a greater opportunity for irrigation because the flat surface is easier to build canals (Fasina, 2008). The risk of soil loss due to erosion increases with slope (Muema, 2016; Hailu and Quraishi, 2017). Furthermore, as the terrain becomes steeper, a greater percentage of water is lost as runoff and climb water to the higher slope is also difficult (Girma et al., 2020).

Soil depth

The result shown in Figure 2b indicates that 590.56 km² (62.76%) of the total area of Wanka watershed is highly suitable and the remaining parts of 218.24 km² (23.19%) are moderately suitable and 132.20 km² (14.05%) are not suitable. A soil depth controls the germination and growth of plants and also determines the amount of water in the soil and the supply of nutrients available to the plants (Napier and Hill, 2012; Hailu and Quraishi, 2017).

Soil texture

As shown in Figure 2c, 846.37 km² (89.94%) of land is ideal for surface irrigation, while 94.63 km² (10.06%) is moderately suitable, which indicates that soil texture is not the major problem for surface irrigation. Soil texture determines the pore spaces in the soil that influence soil permeability, infiltration rate, water holding capacity, and as a result, its value for surface irrigation (Alberta, 2004; Ahmadi et al., 2011).

Soil drainage

As the results show (Figure 3a), about 552.51 km² (58.71%) of Wanka watershed is highly suitable, 344.30 km² (36.59%) is moderately suitable, 33.23 km² (3.53%) is marginally suitable and 10.96 km² (1.17%) is not suitable for surface irrigation. One of the most essential soil features that influences plant growth, water transfer, and solute transport in soils is soil drainage (Kiliccedil, 2009). It is significant because it regulates the flow of water and salt through the soil profile (Hailu and Quraishi, 2017). Without this, salt levels could rise to the point where they are damaging to plants (Alberta, 2004).
Land use/land cover

As shown in Figure 3b, cultivated land covers 623 km2 (66.21%) of the watershed. Grassland is classified as moderately suitable for irrigation and covers 35 km2 (3.72%). 23 km2 (2.44%) is classified as marginally suitable. While forest land, built up and water bodies are categorized as not suitable for irrigation and they represent 260 km2 (27.63%) of the total area of the study area. According to Meron (2007), Hailu and Quraishi (2017), Girma et al. (2019), cultivated land was rated as highly appropriate for surface irrigation with the idea that these types of land cover could be irrigated without limitation.

Distances to the water source

Irrigated land should be located as close as to rivers to economically develop the irrigation canal (Muema, 2016; Girma et al., 2020). The result shown in Figure 3c indicates that 548.75 km2/58.32% of the land is found at a distance of 1 km from water sources, while 201.04 km2 (21.36%) categorized as moderately suitable, 171.63 km2 (18.24%) marginally suitable and 19.58 km2 (2.08) of land are not suitable for surface irrigation.

Weighted overlay analysis

Weighted overlay analysis is applied to solve the multi-criteria problem and identify the most suitable site for the development of surface irrigation. The criteria were river proximity, LULC, slope, soil drainage and soil texture are applied weighted in AHP 30%, 20%, 19%,14%, 10%, and 7%, respectively.

Suitable site

The study area’s final map revealed that the watershed had a vast area suitable for surface irrigation. About 52.92 percent of the watershed’s total area was possibly suitable for surface irrigation. Of potentially suitable land for irrigation, 7.01% was very suitable, 19.87% was moderately suitable, while 26.04% of the Wanka watershed is considered marginally suitable. The remaining 47.08% was not suitable. (Figure 4 and Table 2).

![Figure 3: Suitability classes of (a) soil drainage, (b) LULC and (c) water source.](image)
Figure 4. Suitable site in the Wanka basin.

Table 2. Suitability classes and land areas for surface irrigation.

No	Suitability Class	Area (km2)	Percent (%)
1	Highly suitable	66	7.01
2	Moderately suitable	187	19.87
3	Marginally suitable	245	26.04
4	Not suitable	443	47.08
	Total	941	100

Conclusion

The global water crisis has got worldwide attention to achieving more efficient use of water resources for agriculture to increase food production and achieve food security. Irrigation provides farmers with sustained livelihoods, improve their nutritional outcomes and general well-being through increased productivity and availability of food supplies. The application of MCDA with GIS for surface water irrigation site selection in Wanka watershed, Northwestern Ethiopia, by taking soil texture, soil drainage, soil depth, slope, land use/land cover, and distance from water sources can solve large and conflicting criteria in surface irrigation site selection processes and sufficient land area available for surface irrigation development in the study area.

Acknowledgement

Special thanks to the USGS and ASTER for making satellite imagery available for free.
References

Ahmadi, S.H., Plauborg, F., Andersen, M.N., Sepaskhah, A.R., Jensen, C.R. and Hansen, S. 2011. Effects of irrigation strategies and soils on field grown potatoes: Root distribution. *Agricultural Water Management* 98(8):1280-1290, doi:10.1016/j.agwat.2011.03.013.

Ahmed, J. 2019. The role of small scale irrigation to household food security in Ethiopia: a review paper. *Journal of Resources Development and Management* 60:20–25, doi:10.7176/jrdm/60-03.

Alberta. 2004. *Standards for the Classification of Land for Irrigation in the Province of Alberta* Alberta Agriculture, Lethbridge, Alberta.

Anwarzai, M.A. and Nagasaka, K. 2017. Utility-scale implementable potential of wind and solar energies for Afghanistan using GIS multi-criteria decision analysis. *Renewable and Sustainable Energy Reviews* 71:150-160, doi:10.1016/j.rser.2016.12.048.

Araya, A. and Stroosnijder, L. 2011. Assessing drought risk and irrigation need in northern Ethiopia. *Agricultural and Forest Meteorology* 151(4):425-436, doi:10.1016/j.agrformet.2010.11.014.

Awulachew, S.B., Yilma, A.D., Louiseged, M., Loiskandl, W., Ayana, M. and Alamirew, T. 2007. Water resources and irrigation development in Ethiopia. Colombo, Sri Lanka: International Water Management Institute (IWMI). 66p. (IWMI Working Paper 123, doi:10.3910/2009.305.

Babalola, A. and Busu, I. 2011. Selection of landfill sites for solid waste treatment in Damaturu Town-using GIS techniques. *Journal of Environmental Protection* 2(01):1-10, doi:10.4236/jep.2011.21001.

Bagheri Bodaghabadi, M., Martinez-Casasnovas, J.A., Khakili, P., Masihabadi, M.H. and Gandomkar, A. 2015. Assessment of the FAQ traditional land evaluation methods, A case study: Iranian Land Classification method. *Soil Use and Management* 31(3):384-396, doi:10.1111/sum.12191.

Baseer, M.A., Meyer, J.P., Rehan, S. and Alam, M. 2017. Wind power characteristics of seven data collection parameters. *Renewable Energy* 102:35-49, doi:10.1016/j.renene.2016.10.040.

Domènech, L. 2015. Improving irrigation access to combat food insecurity and undernutrition: A review. *Global Food Security* 6:24-33, doi:10.1016/j.gfs.2015.09.001.

Ejegu, M.A. and Yegizaw, E.S. 2020. Potential rainwater harvesting suitable land selection and management by using GIS with MCDA in Ebenat District, Northwestern Ethiopia. *Journal of Degraded and Mining Lands Management* 8(1):2537-2549, doi:10.15243/jdmlm.2020.081.2537.

El Maguiri, A., Kissi, B., Idrissi, L., and Souabi, S. (2016). Landfill site selection using GIS, remote sensing and multicriteria decision analysis: case of the city of Mohammedia, Morocco. *Bulletin of Engineering Geology and the Environment* 75(3):1301-1309, doi:10.1007/s10064-016-0889-z.

Eshetu, T. and Young-Bohk, C. 2017. Contribution of small scale irrigation to households income and food security: evidence from Keta irrigation scheme, Arsi Zone, Oromiya Region, Ethiopia. *African Journal of Business Management* 11(3):57-68, doi:10.5897/ajbm2016.8175.

FAO. 1996. An Interactive Multi-Criteria Analysis for Land Resource Appraisal. Rome, Italy.

FAO. 1997. Irrigation Potential in Africa. A Basin Approach. *FAO Land and Water Bulletin*, 4.

Fasina A.S. 2008. Irrigation suitability evaluation of Asu River basin soils, South Eastern Nigeria. *International Journal of Soil Science* 3(1):35–41.

Feizizadeh, B. and Kiemberger, S. 2017. Spatially explicit sensitivity and uncertainty analysis for multicriteria-based vulnerability assessment. *Journal of Environmental Planning and Management* 60(11):2013-2035, doi:10.1080/09640568.2016.1269643.

Gheshlaghi, H.A. and Feizizadeh, B. 2017. An integrated approach of analytical network process and fuzzy based spatial decision-making systems applied to landslide risk mapping. *Journal of African Earth Sciences* 133:15-24, doi:10.1016/j.jafresci.2017.05.007.

Girma F., Getahun, K. and Babu A. 2019. Assessment of physical land suitability for surface irrigation by using GIS and RS, in case of Loma District, South Western Ethiopia. *International Journal of Current Research and Academic Review* 7(1):32-45, doi:10.20546/ijrar.2019.701.004.

Girma, R., Gebre, E. and Tadesse, T. 2020. Land suitability evaluation for surface irrigation using spatial information technology in Omo-Gibe River basin, Southern Ethiopia. *Irrigation & Drainage Systems Engineering* 9(5), doi:10.37421/idse.2020.9.245.

Hailu, T. and Quraishi S. 2017. GIS Based Surface Irrigation Suitability Assessment and Development of Map for the Low Land Gilo Sub-Basin of Gambella, Ethiopia. *Civil and Environmental Research* 9(5):21-27.

Kebede, T. and Ademe, Y. 2016. Evaluating land suitability for irrigation purpose in Abaya district, Borena zone, Ethiopia. *African Journal of Agricultural Research* 11(46):4754-4761, doi:10.5897/ajar2016.11438.

Kiliccedil, Ş. 2009. Mapping soil drainage classes of Amik Plain using Landsat images. *African Journal of Agricultural Research* 4(9):847-851.

Makombe, G., Kelemework, D. and Aredo, D. 2007. A comparative analysis of rainfed and irrigated agricultural production in Ethiopia. *Irrigation and Drainage Systems Engineering* 21(1):35-44, doi:10.1017/s10795-007-9018-2.

Maleki, F., Kazemi, H., Shiahmarguee, A. and Kamkar, B. 2017. Development of a land use suitability model for saffron (*Crocus sativus*) cultivation by multi-criteria evaluation and spatial analysis. *Ecological Engineering* 106:140-153, doi:10.1016/j.ecoleng.2017.05.050.

Melak S. 2007. Land capability . Irrigation Potential and crop suitability analysis using GIS and Remote Sensing in Upper Kesem (Awash Basin). Addis Ababa University Repository July, 1–73.

Meron, T. 2007. Surface irrigation suitability analysis of Southern Abbay Basin by implementing GIS techniques. MSc thesis, Addis Ababa University.

MoFED. 2012. Performance and Challenges on the Five Year Strategic Plan of Growth and Transformation: Annual Report of MoFED, Addis Ababa, Ethiopia. Retrieved from (http://www.mofed.gov.et).

MoWE. 2012. Water Resources Management and Irrigation Policy: Annual Report of MOWE, Addis Ababa, Ethiopia. Retrieved from (http://www.mowr.gov.et).
MoWR. 2002. Water Sector Development Programme 2002–2016. Irrigation Development Program, Main Report, pp. 142. MoWR, Addis Ababa, Ethiopia.

Muema, V. W. 2016. GIS based Multi Criteria Analysis in Mapping Potential for Irrigated Agriculture. Case study: Machakos County. Doctoral dissertation, University of Nairobi.

Napier, D.E. and Hill, J.V. 2012. Land resources of the Victoria River District. Department of Natural Resources, Environment, the Arts and Sport, Northern Territory.

Nasir, G., Tamane, A. and Tolera, A. 2019. Irrigation potential assessment on Shaya River sub-basin in Bale Zone, Ethiopia. *Irrigation & Drainage Systems Engineering* 8(1):1-7, doi:10.4172/2168-9768.1000225.

Negash, W. and Seleshi, B. 2004. GIS based irrigation suitability analysis. *Journal of Water Science and Technology* 8:55-61.

Saaty, T.L. 1977. A scaling method for priorities in hierarchical structures. *Journal of Mathematical Psychology* 15(3):234-281.

Sema, B., Azage, M. and Tirfie, M. 2020. Childhood stunting and associated factors among irrigation and non-irrigation user kebeles in Mecha district, northwest, Ethiopia: a comparative cross-sectional study. *Research Square*, doi:10.21203/rs.3.rs-66889/v2.

Sultan, D. 2013. Assessment of irrigation land suitability and development of map for the Fogera catchment using GIS, South Gondar. *Asian Journal of Agriculture and Rural Development* 3(93-2016-23817):7-17.

Taghvaeian, S., Neale, C.M.U., Osterberg, J.C., Sritharan, S.I. and Watts, D.R. 2018. Remote sensing and GIS techniques for assessing irrigation performance: Case study in southern California. *Journal of Irrigation and Drainage Engineering* 144(6):1–10, doi:10.1061/(ASCE)IR.1943-4774.0001306.

Teka, K., Van Rompaey, A. and Poesen, J. 2010. Land suitability assessment for different irrigation methods in Korir Watershed, Northern Ethiopia. *Journal of the Drylands* 3(2):214-219.

Tesfaye, A., Bogale, A., Namara, R.E. and Bacha, D. 2008. The impact of small-scale irrigation on household food security: The case of Filutino and Godino irrigation schemes in Ethiopia. *Irrigation and Drainage Systems* 22(2):145–158, doi:10.1007/s10795-008-9047-5.

Tukura, N.G. and Feyissa, T.A. 2020. GIS-based irrigation potential assessment on Shaya River sub-basin in Bale Zone, Oromia region, Ethiopia. *Journal of Degraded and Mining Lands Management* 7(2):2075-2084, doi:10.15243/jdmlm. 2020.072.2075.

Uyan, M. 2013. GIS-based solar farms site selection using analytic hierarchy process (AHP) in Karapinar region, Konya/Turkey. *Renewable and Sustainable Energy Reviews* 28:11-17, doi:10.1016/j.rser.2013.07.042.

Wakeyo, M.B. and Gardebroek, C. 2017. Share of irrigated land and farm size in rainwater harvesting irrigation in Ethiopia. *Journal of Arid Environments* 139:85-94, doi:10.1016/j.jaridenv.2017.01.002.

Wale, A., Collick, A.S., Rossiter, D.G., Langan, S. and Steenhuis, T.S. 2013. Realistic assessment of irrigation potential in the Lake Tana basin, Ethiopia. In: Wolde, M. (ed). 2013, Rainwater management for resilient livelihoods in Ethiopia: *Proceedings of the Nile Basin Development Challenge Science Meeting*, Addis Ababa, 9–10 July 2013. NBDC Technical Report 5. Nairobi, Kenya: ILRI.

Watson, J.J. and Hudson, M.D. 2015. Regional scale wind farm and solar farm suitability assessment using GIS-assisted multi-criteria evaluation. *Landscape and Urban Planning* 138:20-31, doi: 10.1016/j.landurbplan. 2015.02.001.

Worqlul, A.W., Jeong, J., Dile, Y.T., Osorio, J., Schmitter, P., Gerik, T., Srinivasan, R. and Clark, N. 2017. Assessing potential land suitable for surface irrigation using groundwater in Ethiopia. *Applied Geography* 85:1–13, doi:10.1016/j.apgeog.2017.05.010.