Optimal tuning of fractional-order proportional, integral, derivative and tilt-integral-derivative based power system stabilizers using Runge Kutta optimizer

Mahmoud Abbas El-Dabah | Salah Kamel | Mohammad Ali Yousef Abido | Baseem Khan

Electrical Engineering Department, Faculty of Engineering, Al-Azhar University, Cairo, Egypt
Electrical Engineering Department, Faculty of Engineering, Aswan University, Aswan, Egypt
Electrical Engineering Department, King Fahd University of Petroleum & Minerals, Dhahran, Saudi Arabia
Department of Electrical and Computer Engineering, Hawassa University, Hawassa, Ethiopia

Correspondence
Baseem Khan, Department of Electrical and Computer Engineering, Hawassa University, Hawassa, Ethiopia. Email: baseem.khan04@ieee.org

Abstract
Low-frequency power system oscillation is of great concern as it may lead to power system instability. Moreover, this action will lead to the abate capability of electric power transfer. By introducing a stabilizing signal into the excitation system, it was possible to improve the damping in the system. The power system stabilizer (PSS) provides this signal. This manuscript aims to find the optimal tuning of three different PSS controllers using a recent optimization algorithm called Runge Kutta optimizer (RUN). Based on the obtained results, the RUN shows superiority and fast convergence over competitive algorithms. In addition, the fractional-order proportional, integral, derivative (FOPID) and tilt-integral-derivative (TID) based PSS shows great damping capability over the lead–lag, PI, and FOPID-based PSS. Also, the TID-based PSS achieves better performance indices in terms of the lowest maximum overshoot and minimum settling time. Hence, it is recommended for PSS based controller.

KEYWORDS
FOPID, power system stabilizer, Runge Kutta optimization algorithm, SMIB, TID

JEL CLASSIFICATION
Electrical and electronic engineering

1 | INTRODUCTION

Fulfilling the increased consumers’ demand for electrical energy and locations of power plants that are far away from the load center needs complicated transmission and distribution network. As per its complexity, the modern electric power system stability is crucial to preserve its safe and economic operations. Small signal power system stability is one of the power system stability categories. It can be defined as the ability of the power system to recover to a normal operational condition after being subjected to a few perturbations. Moreover, it is focusing on insufficient or inadequate damping of power system oscillations. Mechanical power fluctuation as a result of loading perturbation may lead to...
low-frequency oscillations which can be in local mode or interarea oscillations. These oscillations may cause the power system generators to lose synchronism. This problem invokes the need to provide a sufficient damping torque component which can be attained by adding a power system stabilizer (PSS).

Damping devices must be properly installed in order to dampen oscillations to preserve power system stability. This can be accomplished by using flexible alternating current transmission systems (FACTS), PSS, and coordination control between them. Utilizing FACTS enables damping of low-frequency oscillations thanks to proper reactive power injection or absorption.

As per literature, recently the use of metaheuristic algorithms for the optimal tuning of lead–lag-based PSS and coordination with a different type of FACTS is noteworthy. Numerous different metaheuristic algorithms are used like, particle swarm optimization, genetic algorithms, backtracking search algorithm, Jaya algorithm, gray wolf optimizer, a hybridization of bat algorithm, gravitational search algorithm and particle swarm optimization are used in Reference 13, farmland fertility algorithm, salp swarm algorithm, kidney-inspired algorithm, whale optimization algorithm, cuckoo search, Henry gas solubility optimization, collective decision optimization algorithm, slime mold algorithm, coyote optimization algorithm.

As per the literature, no optimization algorithm can reach the global optimum for all optimization problems as per the no-free lunch theorem. In this article, a new proposed optimization algorithm called Runge Kutta optimizer (RUN) will be investigated for the robust tuning of different types of PSS. It will be used for conventional lead–lag PSS, PI, proportional, integral, derivative (PID), FOPID, and tilt-integral-derivative (TID) based PSS. Moreover, four well-known used objective functions will be utilized to illustrate the optimum PSS selected parameters.

The main contribution of this research can be summarized as follows:

1. Application for one of the latest promising optimization algorithms (RUN) in optimum tuning of power system stabilizer of SMIB.
2. Investigation of the capability of the fractional calculus-based controllers namely fractional order PID (FOPID) controller and tilt-integral-derivative (TID) for enhanced performance of PSS.
3. Inspect the use of the most common objective functions for the optimum tuning of PSS and their interaction with the investigated controllers.
4. Compare the RUN optimized parameters with previously used optimization algorithms to show the superiority of the RUN algorithm.

This article can be organized as follows, the mathematical modeling and formulation for the optimization problem will be introduced in Section 2. Section 3 will present an overview for RUN while simulation results with discussion are reported in Section 4. The main outcomes from this research will be highlighted in Section 5.

2 | MATHEMATICAL MODELING AND FORMULATION

The fourth order state-space model of the synchronous generator connected to an infinite bus (SMIB) and accompanied by the conventional PSS as indicated in Figure 1 is presented in Equations (1) and (2). Also, the SMIB linearized model given by Heffron–Philips that can be used for small signal stability examination is depicted in Figure 2.

\[
\begin{bmatrix}
\Delta \delta \\
\Delta \omega \\
\Delta E'_q \\
\Delta E'_{fd} \\
\Delta V'_{o} \\
\Delta V'_{s}
\end{bmatrix} =
\begin{bmatrix}
0 & \omega_b & 0 & 0 & 0 & 0 \\
-\frac{K_1}{2H} & \frac{D}{2H} & -\frac{K_2}{2H} & 0 & 0 & 0 \\
\frac{K_4}{T_a} & 0 & -\frac{T_a}{K_5} & 1 & 0 & 0 \\
-\frac{K_4}{T_a} & 0 & -\frac{T_a}{K_6} & 1 & 0 & 0 \\
-\frac{K_{pSS}}{2H} & 0 & -\frac{T_aK_{pSS}}{2H} & 0 & -\frac{1}{T_w} & 0 \\
-\frac{T_aK_{pSS}}{2H} & 0 & -\frac{T_aK_{pSS}}{2H} & 0 & \frac{1}{T_z} & -\frac{1}{T_z} & -\frac{1}{T_z} & \frac{1}{T_z} & 0 & 0 \\
\end{bmatrix}
\begin{bmatrix}
\Delta \delta \\
\Delta \omega \\
\Delta E'_q \\
\Delta E'_{fd} \\
\Delta V'_{o} \\
\Delta V'_{s}
\end{bmatrix} +
\begin{bmatrix}
0 \\
0 \\
0 \\
0 \\
0 \\
0
\end{bmatrix}
\begin{bmatrix}
1 \\
\frac{1}{2H} \\
\frac{1}{T_a} \\
\frac{1}{T_a} \\
\frac{1}{T_w} \\
\frac{1}{T_z}
\end{bmatrix}
\begin{bmatrix}
\Delta T_m \\
\Delta V_{ref}
\end{bmatrix},
\]
The cost function of this optimization problem aims at minimizing the overshoot of the error signal, its settling time and, damping power system oscillation. The integral of absolute error (IAE), integral of time-weighted absolute error (ITAE), integral of square error (ISE), and the integral time square error (ITSE) as an indicator of performance will be utilized as an objective function to find the optimum tuning of used PSS.

The cost function of this optimization problem aims at minimizing the overshoot of the error signal, its settling time and, damping power system oscillation. The integral of absolute error (IAE), integral of time-weighted absolute error (ITAE), integral of square error (ISE), and the integral time square error (ITSE) as an indicator of performance will be utilized as an objective function to find the optimum tuning of used PSS.
As the compensation of the phase delay between the excitation system and synchronous generator is the main function of PSS, the conventional simplified structure of lead–lag compensator is depicted in Figure 3.

The performance of PSS will be investigated in this research with the utilization of the famous fractional order calculus based controllers namely, FOPID and TID thanks to their enhanced capability of disturbance rejection and superior sensitivity to fluctuations of model parameters. The transfer function of PID, FOPID, and TID controllers can be expressed as follows:

$$\text{PID} = K_P + \frac{K_i}{s} + K_Ds,$$

$$\text{FOPID} = K_P + \frac{K_i}{s^\lambda} + K_Ds^\mu,$$

$$\text{TID} = \frac{K_i}{s^{(1/2)}} + \frac{K_i}{s} + K_Ds.$$

3 | RUNGE KUTTA OPTIMIZER: AN OVERVIEW

Optimization algorithms aim at preserving the balance between exploration and exploitation seeking algorithm performance enhancement that solves various optimization problems. The Runge Kutta optimizer (RUN) is one of the recently proposed optimization algorithms by Iman Ahmadianfar et al. RUN employs a unique search mechanism based on the Runge Kutta technique which is one of the main parts of this algorithm. The second part is solution quality enhancement which aims at increasing the quality of obtained solutions for the investigated optimization problem besides avoiding local optima trapping. The illustration of RUN mathematical formulation will be introduced in the following subsection and supported by the flowchart in Figure 4.

3.1 | INITIALIZATION

Starting of the optimization process in RUN is accomplished by randomly initializing decision variables x_n of the optimization problem by:

$$x_{n,d} = Var_{\text{min}} + \text{rand.}(Var_{\text{max}} - Var_{\text{min}}),$$

where, $Var_{\text{max}}, Var_{\text{min}}$ are a maximum and minimum range of decision variable d of dimension $1,2 \ldots, D$ respectively.
3.2 | SOLUTIONS UPDATE

The well-known Runge Kutta method is used to update solutions x_{n+1} at each iteration using the following equations:

\[
\text{if } \text{rand} < 0.5 \\
\quad x_{n+1} = (x_c + r.SF.g.x_c) + SF.SM + \mu.\text{randn.}(x_m - x_c) \\
\text{else} \\
\quad x_{n+1} = (x_m + r.SF.g.x_m) + SF.SM + \mu.\text{randn.}(x_{r1} - x_{r2})
\]

(11)

where, μ is a normally distributed random number and x_{r1}, x_{r2} are randomly selected solutions. Also, SF is an adaptive factor and SM is RUN guiding search mechanism which can be calculated using Runge Kutta coefficients, $k_1 \ldots k_6$ using the following equation:

\[
SM = \frac{\Delta x}{6} x_{RK} = k_1 + 2 \times k_2 + 2 \times k_3 + k_4.
\]

(12)
3.3 | ENHANCED SOLUTION QUALITY (ESQ)

Improving solution quality, escaping from the local optima, and ensuring fast convergence are incorporated in RUN using the ESQ scheme. To employ this scheme, three new solutions will be generated namely \(x_{\text{new}1} \), \(x_{\text{new}2} \), and \(x_{\text{new}3} \) based on the following equation:

\[
x_{\text{new}1} = \beta \times x_{\text{avg}} + (1 - \beta) \times x_{\text{best}}, \quad x_{\text{avg}} = \frac{x_{r1} + x_{r2} + x_{r3}}{3}
\]

if \(\text{rand} < 0.5 \)

\[
x_{\text{new}2} = x_{\text{new}1} + r \times w \times |(x_{\text{new}1} - x_{\text{avg}}) + \text{randn}|
\]

else

\[
x_{\text{new}2} = (x_{\text{new}1} - x_{\text{avg}}) + r \times w \times |(u \times x_{\text{new}1} - x_{\text{avg}}) + \text{randn}|
\]

end

if \(\text{rand} < w \)

\[
x_{\text{new}3} = (x_{\text{new}2} - \text{rand} \times x_{\text{new}2}) + SF \times (\text{rand} \times x_{\text{RK}} + (v \times x_b - x_{\text{new}2}))
\]

end

Table 1: Optimum parameters of investigated PSS with the corresponding objective function value

Criteria\Param	\(IAE \)	\(ITAE \)	\(ISE \)	\(ITSE \)
\(K_{\text{PSS}} \)	8.1884	14.956	15	1.2527
\(T_1 \)	0.74052	0.368345	4.80577	6.7784
\(T_2 \)	0.026641	0.019081	0.001145	0.030515
Obj. func. value	3.87E-05	8.25E-06	1.75E-09	6.78E-10
\(K_P \)	15	15	15	15
\(K_I \)	2.13297	1.44756	15	15
\(K_D \)	5.91439	5.23791	15	8.68461
Obj. func. value	3.50E-05	8.55E-06	2.23E-09	4.46E-10
\(K_P \)	14.7586	13.9354	15	14.1667
\(K_I \)	14.9381	14.922	14.9999	7.41183
\(K_D \)	6.63056	6.49527	15	14.4336
\(\lambda \)	0.1	0.211581	0.1	0.58425
\(\mu \)	0.964213	9.38E-01	1.00E+00	8.11E-01
Obj. func. value	2.89E-05	8.11E-06	1.87E-09	3.59E-10
\(K_P \)	49.9999	42.589	50	50
\(K_I \)	49.9826	3.78423	50	50
\(K_D \)	7.61703	6.49965	50	11.0807
\(n \)	50	50	50	49.9998
Obj. func. value	2.5172e-05	4.7802e-06	1.01e-09	2.1321e-10
Where, x_b, and x_{best} are the best solution per iteration and the global best-obtained solution throughout iterations. Also, w is a random number which can be calculated using iteration counter (i) and the maximum number of iterations (Max_{iter}) as in Equation (16)

$$w = rand(0, 2).\exp\left(-c\left(\frac{i}{Max_{\text{iter}}}
ight)\right).$$ \hspace{1cm} (16)

Figure 5 Change in generator angular frequency with IAE used as a cost function

Figure 6 Change in $\Delta\omega$ with ITAE used as a cost function
Validation of the proposed use of RUN optimizer to attain the optimum parameters of lead–lag, PID, and FOPID based PSS is investigated using the Heffron–Philips model in Figure 2. The system response for a change of 0.1 p.u. in T_m. The parameters of the simulated model are listed in Reference 26.

The optimum parameters of investigated PSS controllers are arranged in Table 1. It is obvious from Figure 5 if the IAE performance indicator is considered, that the FOPID based PSS offers a lower maximum overshoot and reduced settling

FIGURE 7 Generator angular frequency response curves with ISE objective function

FIGURE 8 Change in $\Delta\omega$ with ITSE utilized as a cost function
time if compare with lead–lag and PI-based PSS. This can be also clarified from Figure 6 which used the ITAE as a cost function for the PSS tuning problem. The FOPID based PSS is capable of damping power oscillations faster than the lead–lag and PI PSS when the ISE cost function is utilized as shown in Figure 7. Also, the excellence of FOPID PSS is proven in Figure 8 if the ITSE is employed as an objective function.

It can be clarified clearly from Figures 5–8, that the TID-based PSS attains qualified performance indices. It reduces the maximum overshoot and settling time in comparison with PID, FOPID, and lead–lag compensators.

The superiority of the RUN optimizer in tuning FOPID and TID based PSS over the recent optimization algorithms like artificial ecosystem optimizer (AEO), gradient-based optimizer (GBO), gray wolf-cuckoo search (GWCS), and improved gray wolf optimizer (IGWO) is indicated in Figures 9 and 10 respectively. Also, Tables 2 and 3 show a comparison between investigated algorithms for tuning FOPID and TID-based PSS parameters with ITSE cost function considered which also shows the lead of the RUN optimizer.
TABLE 2
Comparison of RUN with corresponding recent optimization algorithms for FOPID based PSS

Optimizer\Param	RUN	AEO	GBO	GWCS	IGWO	JAYA	GWO
K_p	15	14.9532	15	14.692	14.9871	1	50
K_i	15	14.9177	15	14.5504	14.9846	1	11.5867
K_d	14.3695	14.736	14.9996	14.2122	14.5472	14.611	7.09
λ	0.1	0.10419	0.1	0.19202	0.12481	0.3033	0.85
μ	0.85931	0.8617	0.8513	0.86447	0.8479	0.4495	0.932
Cost (ITSE) (*1e-10)	3.1269	3.1346	3.1284	3.182	3.1337	—	—

TABLE 3
Comparison of RUN with corresponding recent optimization algorithms for TID based PSS

Optimizer\Param	RUN	AEO	GBO	GWCS	IGWO	
K_t	50	49.9689	50	50	49.9965	
K_i	50	49.9331	50	20.0894	49.5237	49.9995
K_d	11.0808	11.1029	10.8215	11.2048	10.9484	
n	49.9998	49.8542	49.0968	38.4335	49.9081	
Cost (ITSE) (*1e-10)	2.1321	2.1333	2.3234	2.1395	2.1324	

5 Conclusion

The optimum tuning of different PSS parameters using RUN as one of the recently introduced optimization algorithms is investigated in this research manuscript. Various cost functions are utilized to explore the capability of RUN to get the optimum parameters with minimum overshooting and settling time considered. It was shown that the use of FOPID and TID-based PSS are capable of damping low-frequency oscillation in comparison with conventional lead-lag and PID-based PSS. The TID-based PSS achieves better performance indices in terms of the lowest maximum overshoot and minimum settling time. Hence, it is a better choice for PSS controllers if compared with FOPID, PID, and conventional lead–lag compensator. The performance of TID-based PSS in a multimachine power system will be investigated in the upcoming research work.

Acknowledgments
The authors acknowledge the support and cooperation of their respective departments and universities.

Peer Review
The peer review history for this article is available at https://publons.com/publon/10.1002/eng2.12492.

Data Availability Statement
Research data are not shared.

Conflict of Interest
The authors declare no potential conflict of interest.

Author Contributions
Mahmoud Abbas El-Dabah: Conceptualization (equal); data curation (equal); formal analysis (equal); investigation (equal); methodology (equal); resources (equal); software (equal); validation (equal); visualization (equal); writing – original draft (equal). Salah Kamel: Resources (equal); software (equal); supervision (equal); validation (equal); visualization (equal); writing – original draft (equal); writing – review and editing (equal). Mohammed A Abido: Resources (equal); software (equal); supervision (equal); validation (equal); visualization (equal); writing – review and
editing (equal). **Baseem Khan:** Resources (equal); software (equal); supervision (equal); validation (equal); visualization (equal); writing – original draft (equal); writing – review and editing (equal).

ORCID

Mahmoud Abbas El-Dabah https://orcid.org/0000-0002-1392-6270
Salah Kamel https://orcid.org/0000-0001-9505-5386
Baseem Khan https://orcid.org/0000-0002-0562-0933

REFERENCES

1. Kundur P. Definition and classification of power system stability IEEE/CIGRE joint task force on stability terms and definitions. *IEEE Trans Power Syst*. 2004;19(3):1387-1401.
2. Kundur P. *Power system stability and control*. McGraw-Hill Education; 1994.
3. Ellithy K, Said S, Kahlout O. Design of power system stabilizers based on μ-controller for power system stability enhancement. *Int J Electr Power Energy Syst*. 2014;63:933-939. doi: 10.1016/j.ijepes.2014.06.055
4. Khawaja AW, Kamari NAM, Zainuri MAAM. Design of a damping controller using the ssa optimization technique for the improvement of small signal stability of a single machine connected to an infinite bus system. *Energies*. 2021;14(11):1–20. doi:10.3390/en14112996
5. Safari A. A PSO procedure for a coordinated tuning of power system stabilizers for multiple operating conditions. *J Appl Res Technol*. 2013;11(5):665-673.
6. Shafiullah M, Rana MJ, Coelho LS, Abido MA. Power system stability enhancement by designing optimal PSS employing backtracking search algorithm. Proceedings of the 2017 6th International Conference on Clean Electrical Power: Renewable Energy Resources Impact ICCEP 2017; 2017:712-719. doi: 10.1109/ICCEP.2017.8004769
7. Dasu B, Siva Kumar M, Srinivasa Rao R. Design of robust modified power system stabilizer for dynamic stability improvement using particle swarm optimization technique. * Ain Shams Eng J*. 2019;10(4):769-783. doi:10.1016/j.asej.2019.07.002
8. Guessi T, Farah A, Abdullah HH, Ouali A. Robust design of multimachine power system stabilizers based on improved non-dominated sorting genetic algorithms. *Electr Eng*. 2018;100(3):1351-1363. doi: 10.1007/s00202-017-0589-0
9. Mustapha H, Buhari M, Ahmad AS. An improved genetic algorithm based power system stabilizer for power system stabilization. *IEEE Africon*. 2019;2019:1-5. doi:10.1109/AFRICON46755.2019.9134024
10. Shafiullah M, Rana MJ, Coelho LS, Abido MA. Power system stability enhancement through optimal design of PSS employing PSO. Proceedings of the 4th International Conference on Advanced Electrical Engineering ICAEE 2017; January 2018;26-31. doi: 10.1109/ICAEE.2017.8255321
11. Shayeghi H, Shayanfar HA, Asefi S, Younesi A. Optimal tuning and comparison of different power system stabilizers using different performance indices via Jaya algorithm. Proceedings of the International Conference on Scientific Computing (CSC); 2016; Las Vegas.
12. Shayeghi H, Asefi S, Younesi A. Tuning and comparing different power system stabilizers using different performance indices applying GWO algorithm. Proceedings of the International Comprehensive Competition Conference on Engineering Sciences; 2016; Iran, Anzali.
13. Peres W, Silva Júnior IC, Passos Filho JA. Gradient based hybrid metaheuristics for robust tuning of power system stabilizers. *Int J Electr Power Energy Syst*. 2018;95:47-72. doi:10.1016/j.ijepes.2017.08.014
14. Sabo A, Abdul Wahab NI, Othman ML, Mohd Jaffar MZA, Beiranvand H. Optimal design of power system stabilizer for multimachine power system using farmland fertility algorithm. *Int J Electr Power Energy Syst*. 2020;30(12):1-33.
15. Ekinci S, Hekimoğlu B. Parameter optimization of power system stabilizer via Salp swarm algorithm. Proceedings of the 2018 5th International Conference on Electrical Engineering ICEEE; 2018:143-147. doi:10.1109/ICEEE2.2018.8391318
16. Ekinci S, Demeiroren A, Hekimoğlu B. Parameter optimization of power system stabilizers via kidney-inspired algorithm. *Trans Inst Meas Control*. 2019;41(5):1405-1417. doi:10.1177/0142331218780947
17. Chesnokovsky M, Srinivasarao R. Interconnected multi-machine power system stabilizer design using whale optimization algorithm. *Prot Control Mod Power Syst*. 2019;4(1):1–11. doi:10.1109/s41601-019-00116-6
18. Chiara D, Nizzi KR, Swarnkar A, Gupta N. Cuckoo search optimization algorithm for designing of a multimachine power system stabilizer. *IEEE Trans Ind Appl*. 2018;54(4):3056-3065. doi:10.1109/TIA.2018.2817725
19. Ekinci S, İzci D, Hekimoğlu B. Implementing the Henry gas solubility optimization algorithm for optimal power system stabilizer design. *Electrica*. 2021;21(2):250-258.
20. Dey P, Bhattacharya A, Das P. Tuning of power system stabilizer for small signal stability improvement of interconnected power system. *Appl Comput Inform*. 2017;16(1/2):3-28.
21. Ekinci S, İzci D, Zeynelgil HL, Orenc S. An application of slime Mould algorithm for optimizing parameters of power system stabilizer. Proceedings of the 2020 4th International Symposium on Multidisciplinary Studies and Innovative Technologies (ISMSIT); 2020:1-5. doi: 10.1109/ISMSIT50672.2020.9254597
22. Guessi T, Alshammari BM, Almalay Y, Alateeq A, Alqunun K. New coordinated tuning of SVC and PSSs in multimachine power system using coyote optimization algorithm. *Sustainability*. 2021;13:3131. doi:10.3390/su13063131
23. Wolpert DH, Macready WG. No free lunch theorems for optimization. *IEEE Trans Evol Comput*. 1997;1(1):67-82. doi:10.1109/4235.585893
24. Mondal D, Chakrabarti A, Sengupta A. Small-signal stability analysis in SMIB power system. In: Mondal D, Chakrabarti A, Sengupta A, eds. *Power System Small Signal Stability Analysis and Control*. 2nd ed. Academic Press; 2020.
25. Ahmadianfar I, Heidari AA, Gandomi AH, Chu X, Chen H. RUN beyond the metaphor: an efficient optimization algorithm based on Runge Kutta method. Expert Syst Appl. 2021;181(April):115079. doi:10.1016/j.eswa.2021.115079

26. Hassan M, Abido MA, Aliyu A. Design of power system stabilizer using phase based objective function and heuristic algorithm. Proceedings of the 2019 8th Conference on Modeling Simulation and Applied Optimization, ICMSAO; 2019:1-6. doi: 10.1109/ICMSAO.2019.8880343

How to cite this article: El-Dabah MA, Kamel S, Abido MAY, Khan B. Optimal tuning of fractional-order proportional, integral, derivative and tilt-integral-derivative based power system stabilizers using Runge Kutta optimizer. Engineering Reports. 2022;4(6):e12492. doi: 10.1002/eng2.12492