ANALYSIS OF POSITIVE SOLUTIONS FOR A CLASS OF SEMIPOSITONE p-LAPLACIAN PROBLEMS WITH NONLINEAR BOUNDARY CONDITIONS

EUN KYOUNG LEE
Department of Mathematics Education
Pusan National University, Busan 46241, Korea

R. SHIVAJI
Department of Mathematics and Statistics
University of North Carolina at Greensboro, Greensboro, NC 27412, USA

INBO SIM*
Department of Mathematics
University of Ulsan, Ulsan 44610, Korea

BYUNGJAE SON
Department of Mathematics
Wayne State University, Detroit, MI 48202, USA

(Communicated by Luc Nguyen)

Abstract. We study positive solutions to (singular) boundary value problems of the form:

\[\begin{cases}
- (\varphi_p(u'))' = \lambda h(t) \frac{f(u)}{u^\alpha}, & t \in (0, 1), \\
 u'(1) + c(u(1))u(1) = 0, \\
 u(0) = 0,
\end{cases} \]

where $\varphi_p(u) := |u|^{p-2}u$ with $p > 1$ is the p-Laplacian operator of u, $\lambda > 0$, $0 < \alpha < 1$, $c : [0, \infty) \to (0, \infty)$ is continuous and integrable, and $h : (0, 1) \to (0, \infty)$ is continuous and integrable. We assume that $f \in C[0, \infty)$ is such that $f(0) < 0$, $\lim s \to \infty f(s) = \infty$ and $\frac{f(s)}{s^{p-1}}$ has a p-sublinear growth at infinity, namely, $\lim s \to \infty \frac{f(s)}{s^{p-1}} = 0$. We will discuss nonexistence results for $\lambda \approx 0$, and existence and uniqueness results for $\lambda \gg 1$. We establish the existence result by a method of sub-supersolutions and the uniqueness result by establishing growth estimates for solutions.

2000 Mathematics Subject Classification. Primary: 34B16, 34B18; Secondary: 35J57.

Key words and phrases. Semipositone, p-Laplacian, p-sublinear growth at infinity, nonlinear boundary conditions, positive solutions, existence, uniqueness.

The third author is supported by the National Research Foundation of Korea Grant funded by the Korea Government (MEST) (NRF-2018R1D1A3A03000678).

* Corresponding author: Inbo Sim.

1139
1. Introduction. We study positive solutions to (singular) boundary value problems of the form:

\[
\begin{cases}
 - (\varphi_p(u'))' = \lambda h(t) \frac{f(u)}{u^\alpha}, & t \in (0, 1), \\
 u'(1) + c(u(1))u(1) = 0, \\
 u(0) = 0,
\end{cases}
\]

where \(\varphi_p(u) := |u|^{p-2}u \) with \(p > 1 \) is the \(p \)-Laplacian operator of \(u \), \(\lambda > 0 \), \(0 < \alpha < 1 \), \(c : [0, \infty) \to (0, \infty) \) is continuous and \(h : (0, 1) \to (0, \infty) \) is continuous and integrable. We assume that \(f \in C[0, \infty) \) is such that \(f(0) < 0 \), \(\lim_{s \to \infty} f(s) = \infty \) and \(\frac{f(s)}{s^p} \) has a \(p \)-sublinear growth at infinity, namely, \(\lim_{s \to \infty} \frac{f(s)}{s^p} = 0 \).

In the case when \(f(0) < 0 \) and \(\alpha = 0 \), (1) is referred to as a semipositone problem. In the case when \(f(0) < 0 \) and \(\alpha \neq 0 \), (1) is referred to as an infinite semipositone problem. The study of positive solutions to these problems is very challenging since ranges of positive solutions must include regions where \(f \) is negative as well as where \(f \) is positive.

The boundary value problem (1) arises in the study for radially symmetric steady states of reaction diffusion equations of the form:

\[
\begin{cases}
 - \Delta_p u = \lambda K(|x|) \frac{f(u)}{u^\alpha}, & \text{in } \Omega, \\
 \frac{\partial u}{\partial \eta} + c(u)u = 0, & |x| = r_0, \\
 u(x) \to 0, & |x| \to \infty,
\end{cases}
\]

where \(\Delta_p := \text{div}(\nabla |\nabla u|^{p-2}) \), \(1 < p < N \), \(\Omega = \{x \in \mathbb{R}^N \mid |x| > r_0 > 0\} \) and \(\frac{\partial u}{\partial \eta} \) is the outward normal derivative of \(u \) on \(|x| = r_0 \). Here for the case when \(c(u) \) is a positive constant (Robin boundary condition case) there is a rich history of results (see [1], [5] and [11]), while this is not the case when \(c(u) \) is not a constant. The case when \(c(u) \) is not a constant occurs naturally in various applications, see [6], [16] where they discuss models arising in chemical reaction theory, and see [3], [4] and [7] where they discuss models arising in population dynamics. In particular, in population dynamics, the case where \(c(u) \) is not a constant occurs when species exhibit strong density dependent behavior at habitat boundaries. Restricting the analysis to positive radial solutions, by a Kelvin type transformation, namely the change of variable \(r = |x| \) and \(t = \left(\frac{x}{r_0} \right)^{\frac{N-p}{p}} \), (2) reduces to analyzing the two point boundary value problem (1).

In [13], the author studied (1) when the solution satisfies Dirichlet boundary conditions both at \(t = 0 \) and at \(t = 1 \). Here we consider positive solutions \(u \) such that \(u \in \mathcal{C}[0, 1] \cap \mathcal{C}^1(0, 1) \) and \(u(t) > 0 \) for \(t \in (0, 1) \). However, for such a \(u \), \(u'(t) \) is strictly increasing for \(t \approx 0 \) since \(f(0) < 0 \). Thus \(u'(0) := \lim_{t \to 0^+} u'(t) \) is well-defined and finite, so \(u \in \mathcal{C}^1(0, 1) \). Hence, in this paper, we will study positive solutions \(u \) of (1) such that \(u \in \mathcal{C}^1[0, 1] \) and \(u(t) > 0 \) for \(t \in (0, 1) \).

We first establish the following nonexistence result:

Theorem 1.1. There exists no positive solution of (1) for \(\lambda \approx 0 \).
Finally, we assume:

\(H_4\) \(h\) is a strictly decreasing \(C^1\) function on \((0,1)\) and \(h := \inf_{t \in (0,1)} h(t) > 0\),
and establish the following existence result:

Theorem 1.2. Let \((H_1) - (H_4)\) hold. Then (1) has a positive solution \(u\) for \(\lambda \gg 1\) such that \(\|u\|_\infty \to \infty\) as \(\lambda \to \infty\). In fact, \(\inf_{t \in [a_0,1]} u(t) \to \infty\) as \(\lambda \to \infty\) for any given \(a_0 \in (0,1)\).

Finally, we assume:

\((H_5)\) \(f \in C^1(0,\infty)\) such that \(\limsup_{s \to 0+} s f'(s) < \infty\),
\((H_6)\) there exist \(q \in (0,p - 1)\) and \(b_0 > 0\) such that \(\frac{f(s)}{s^q}\) is nonincreasing for \(s \in [0,b_0,\infty)\),
\((H_7)\) there exists \(c_0 > 0\) such that \(c(s)\) is nondecreasing for \(s > c_0\),

and establish the following uniqueness result:

Theorem 1.3. Let \(\alpha = 0\) and \((H_1) - (H_7)\) hold. Then (1) has a unique positive solution for \(\lambda \gg 1\).

When \(p = 2\) and \(\alpha = 0\), the authors in [2] established the nonexistence of a positive solution for \(\lambda = 0\) and the existence result for \(\lambda \gg 1\). In [10], the authors extended these results to the case when \(p = 2\) and \(\alpha \neq 0\). Theorems 1.1 - 1.2 are extensions of these results in [2] and [10] to the case \(p > 1\). Further, in [9], the uniqueness result for \(\lambda \gg 1\) was established when \(p = 2\) and \(\alpha = 0\). Theorem 1.3 is the extension of this uniqueness result to the case when \(p > 1\) and \(\alpha = 0\). These extensions to the case \(p \neq 2\) are nontrivial and very challenging due to the presence of the nonlinear \(p\)-Laplacian operator. Further, we do not require the concavity assumption on \(f\) as in [9], instead, we use the weaker condition \((H_6)\).

We establish the existence result by introducing a method of sub-supersolutions for (1). In particular, we impose additional assumptions on subsolutions, namely, by a subsolution of (1), we mean a function \(\psi \in C^1[0,1]\) that satisfies \(\psi(t) \geq D d(t, \partial [0,1]) \kappa^*\) for some \(D > 0\) and \(\kappa^* > 0\) such that \(\alpha \kappa^* + \eta < 1\), and

\[
\begin{aligned}
- (\varphi_p(\psi'))' &\leq \lambda h(t) \frac{f(\psi)}{\psi^\alpha}, \ t \in (0,1), \\
\psi'(1) &+ c(\psi(1)) \psi(1) \leq 0, \\
\psi(0) &= 0.
\end{aligned}
\]

Here \(d(t, \partial S) := \min_{x \in \partial S} |t - x|\). By a supersolution of (1), we mean a function \(\phi \in C^1[0,1]\) that satisfies \(\phi(t) > 0\) for \(t \in (0,1)\) and

\[
\begin{aligned}
- (\varphi_p(\phi'))' &\geq \lambda h(t) \frac{f(\phi)}{\phi^\alpha}, \ t \in (0,1), \\
\phi'(1) &+ c(\phi(1)) \phi(1) \geq 0, \\
\phi(0) &= 0.
\end{aligned}
\]

We establish:

Lemma 1.4. Let \((H_3)\) hold. Assume that there exist a subsolution \(\psi\) and a supersolution \(\phi\) of (1) such that \(\psi \leq \phi\) on \([0,1]\). Then (1) has at least one solution \(u \in C^1[0,1]\) satisfying \(\psi \leq u \leq \phi\) on \([0,1]\).

To achieve the uniqueness result, we first adapt ideas in [15] to derive useful growth estimations, derivative estimations and that \(u(t) \geq \lambda^{\frac{1}{p-1}} d(t, \partial [0,1])\) for \(\lambda \gg 1\).
Remark 1. A simple example of (1) satisfying our hypotheses is \(f(s) = s^{q^*} - 1, \) \(h(t) = \frac{1}{p^*} \) and \(c(s) = e^s \) where \(0 < q^* < p - 1 \) and \(0 < \alpha + \eta < 1. \)

In Section 2, we prove our method of sub-supersolutions (Lemma 1.4). In Section 3, we establish our nonexistence and existence results (Theorems 1.1 - 1.2). In Section 4, we establish the uniqueness result (Theorem 1.3).

2. The method of sub-supersolutions. For a subsolution \(\psi \) and a supersolution \(\phi \) such that \(\psi \leq \phi, \) we define the operator \(T : C[0, 1] \rightarrow C[0, 1] \) related to (1) by

\[
Tw(t) := \int_0^t \varphi_p^{-1} \left(\lambda \int_s^t h(r) \frac{f(\gamma(r, w))}{\gamma(r, w)^{\alpha}} dr - \varphi_p(c(w(1))) \right) ds, \tag{5}
\]

where \(\gamma : [0, 1] \times \mathbb{R} \rightarrow \mathbb{R} \) and \(\overline{c} : \mathbb{R} \rightarrow \mathbb{R} \) are defined by

\[
\gamma(t, s) := \begin{cases}
\phi(t), & s > \phi(t), \\
\phi(t), & s \leq \phi(t), \quad \text{and} \\
\psi(t), & s < \psi(t),
\end{cases}
\]

and \(\overline{c}(t, s) := \begin{cases}
c(\phi(1))\phi(1), & s > \phi(1), \\
c(s), & s \leq \phi(1), \quad \text{and} \\
c(\psi(1))\psi(1), & s < \psi(1),
\end{cases} \)

It follows that \(T \) satisfies the following properties:

Lemma 2.1. Let \((H_3)\) hold. Then \(T \) is completely continuous.

Proof. Let \(\{v_n\} \) be a bounded sequence in \(C[0, 1]. \) Let \(f^*(s) := \max_{0 \leq s \leq s} |f(r)| \) and \(c^*(s) := \max_{0 \leq s \leq s} c(r). \) Then we have

\[
|(Tv_n)'(t)| \leq \varphi_p^{-1} \left(\lambda \int_0^1 h(s) \frac{|f(\gamma(s, v_n))|}{\gamma(s, v_n)^{\alpha}} ds + \varphi_p(\overline{c}(v_n(1))) \right)
\]

\[
\leq \varphi_p^{-1} \left(\lambda f^*(\|\phi\|_{\infty}) \int_0^1 h(s) \frac{1}{\gamma^\alpha} ds + \varphi_p(c^*(\|\phi\|_{\infty})) \right)
\]

\[
\leq \varphi_p^{-1} \left(\lambda M_1 f^*(\|\phi\|_{\infty}) + \varphi_p(c^*(\|\phi\|_{\infty})) \right),
\]

where \(M_1 := \frac{1}{\|\phi\|_{\infty}} \left(\frac{1}{2} \int_0^1 h(s) \frac{1}{\gamma^\alpha} ds + \int_1^\infty \frac{h(s)}{1-\gamma^\alpha} ds \right) \) and \(\|\phi\|_{\infty} := \max_{t \in [0, 1]} |\phi(t)|. \) This implies that \(\|Tv_n\|_{\infty} \) is uniformly bounded, and hence \(\{Tv_n\} \) is uniformly bounded. By the Arzela-Ascoli Theorem, \(\{T(v_n)\} \) has a convergent subsequence in \(C[0, 1]. \)

Next we show that \(T \) is continuous. Let \(\{w_n\} \subset C[0, 1] \) be such that \(w_n \rightarrow w \) as \(n \rightarrow \infty \) for some \(w \in C[0, 1]. \) Since \(\overline{c} \) is continuous, \(\varphi_p(\overline{c}(w_n(1))) \) converges to \(\varphi_p(\overline{c}(w(1))) \) as \(n \rightarrow \infty. \) We also have

\[
\int_0^1 h(s) \left| \frac{f(\gamma(s, w_n))}{\gamma(s, w_n)^{\alpha}} - \frac{f(\gamma(s, w))}{\gamma(s, w)^{\alpha}} \right| ds
\]

\[
\leq \int_0^1 h(s) \left| \frac{f(\gamma(s, w_n)) - f(\gamma(s, w))}{\gamma(s, w_n)^{\alpha}} \right| ds + \int_0^1 h(s) \left| \frac{f(\gamma(s, w))}{\gamma(s, w_n)^{\alpha}} - \frac{f(\gamma(s, w))}{\gamma(s, w)^{\alpha}} \right| ds
\]

\[
\leq M_1 \|f(\gamma, w_n) - f(\gamma, w)\|_{\infty} + f^*(\|\phi\|_{\infty}) \int_0^1 h(s) \left| \frac{1}{\gamma(s, w_n)^{\alpha}} - \frac{1}{\gamma(s, w)^{\alpha}} \right| ds.
\]

Since the last term converges to 0 as \(n \rightarrow \infty \) by the Lebesgue Dominated Convergence Theorem, \(\int_0^1 h(s) \frac{f(\gamma(s, w_n))}{\gamma(s, w_n)^{\alpha}} ds \) converges uniformly to \(\int_0^1 h(s) \frac{f(\gamma(s, w))}{\gamma(s, w)^{\alpha}} ds \) as \(n \rightarrow \infty. \) For each \(n \) and \(t \in [0, 1], \) we have

\[
\varphi_p(\overline{c}(w_n(1))) \leq \varphi_p(c^*(\|\phi\|_{\infty})) \quad \text{and} \quad \int_0^1 h(s) \frac{f(\gamma(s, w_n))}{\gamma(s, w_n)^{\alpha}} ds \leq M_1 f^*(\|\phi\|_{\infty}).
\]
3. Proof of Lemma 1.4

3.1. Proof of Theorem 1.1. Let $\|\cdot\|_\infty$.

For $t \in [0, 1]$, we also have
\[
\varphi_p(c'(w(1))) \leq \varphi_p(c^*(\|\cdot\|_\infty)) \quad \text{and} \quad \int_t^1 h(s) \frac{f(\gamma(s, w))}{\gamma(s, w)^\alpha} \, ds \leq M_1 f^*(\|\phi\|_\infty).
\]

Let $M_2 := 2(\lambda M_1 f^*(\|\phi\|_\infty) + \varphi_p(c^*(\|\phi\|_\infty)))$. Since φ_p^{-1} is uniformly continuous on $[-M_2, M_2]$, we obtain that $T w_n(t)$ converges uniformly to $T w(t)$ as $n \to \infty$. This implies that $\|T w_n - T w\|_\infty \to 0$ as $n \to \infty$, so T is continuous. Hence Lemma 2.1 is proven.

Proof of Lemma 1.4. Note that T defined by (5) is bounded on $C[0, 1]$ since
\[
|T w(t)| \leq \int_0^t \varphi_p^{-1} \left(\lambda \int_s^1 h(r) \frac{|f(\gamma(r, w))|}{\gamma(r, w)^\alpha} \, dr + \varphi_p(c(1)) \right) \, ds \leq \varphi_p^{-1}(M_2).
\]

This implies that there exists $M^* \gg 1$ such that $(I - T)(w) \neq 0$ for any $w \in C[0, 1]$ satisfying $\|w\|_\infty = M^*$. Then, by the Homotopy Invariance Theorem, we have
\[
\deg(I - T, B_{M^*}(0), 0) = \deg(I, B_{M^*}(0), 0) = 1,
\]
and there exists $w_0 \in C[0, 1]$ such that $T(w_0) = w_0$. It is easy to show $w_0 \in C^1[0, 1]$.

Now we claim that $w_0(t) \in [\psi(t), \phi(t)]$ for $t \in [0, 1]$. If our claim is true, then $\gamma(t, w_0(t)) = w_0(t)$ for $t \in [0, 1]$. This implies that w_0 is a positive solution of (1), and hence Lemma 1.4 is proven. To show $w_0(t) \geq \psi(t)$ for $t \in [0, 1]$, assume that there exists $t_0 \in (0, 1)$ such that $\psi(t_0) > w_0(t_0)$. Then two cases are followed:

(I) there exists $(a, b) \subset (0, 1)$ such that $\psi(t) > w_0(t)$ in (a, b) and $\psi(a) = w_0(a)$ and $\psi(b) = w_0(b)$, or

(II) there exists $a \in (0, 1)$ such that $\psi(t) > w_0(t)$ in $(a, 1]$ and $\psi(a) = w_0(a)$.

For the case (I), there exists $\hat{t} \in (a, b)$ such that $\psi'(\hat{t}) = w_0'(\hat{t})$ and $\psi'(t) > w_0'(t)$ for $t \in (a, \hat{t})$. However, for $t \in (a, \hat{t})$ we have
\[
\varphi_p(\psi'(t)) - \varphi_p(w_0'(t)) \leq \lambda \int_t^{\hat{t}} h(s) \left(\frac{f(\psi)}{\psi^{\alpha}} - \frac{f(\gamma(s, w_0))}{\gamma(s, w_0)^\alpha} \right) \, ds = 0.
\]

Since φ_p is increasing, we obtain $\psi'(t) \leq w_0'(t)$ for $t \in (a, \hat{t})$. This is a contradiction. For the case (II), we have $\psi'(1) - w_0'(1) \leq -c(\psi(1))\psi'(1) + c(w_0(1)) = 0$ since $\psi(1) = w_0(1)$. Thus there exists $\hat{t} \in (a, 1]$ such that $\psi'(\hat{t}) = w_0'(\hat{t})$ and $\psi'(t) > w_0'(t)$ for $t \in (a, \hat{t})$. This is a contradiction by the same argument of the case (I). Hence $w_0(t) \geq \psi(t)$ for $t \in [0, 1]$. By a similar argument, we can show that $w_0(t) \leq \phi(t)$ for $t \in [0, 1]$. \qed

3. Proofs of Theorems 1.1 - 1.2.

3.1. Proof of Theorem 1.1. Since $f(0) < 0$ and $\lim_{s \to \infty} \frac{f(s)}{s^{q+1}} = 0$, there exists $K_1 > 0$ such that $\frac{f(s)}{s^\alpha} \leq K_1 s^{p-1}$ for $s \in (0, \infty)$. Assume that u is a positive solution of (1). Then we have
\[
u(t) = \int_t^1 \varphi_p^{-1} \left(\lambda \int_s^1 h(r) \frac{f(u)}{u^{\alpha}} \, dr - \varphi_p(c(u(1))u(1)) \right) \, ds \leq \int_t^1 \varphi_p^{-1} \left(\lambda K_1 \int_s^1 h(r) u(r)^{p-1} \, dr \right) \, ds \leq \varphi_p^{-1} \left(\lambda K_1 H \|u\|_\infty^{-1} \right),
\]
where \(H := \int_1^h h(s)ds \). This implies that \(1 \leq \varphi_p^{-1}(\lambda K_1 H) \). This is a contradiction for \(\lambda \approx 0 \). Hence there exists no positive solution of (1) for \(\lambda \approx 0 \).

3.2. Proof of Theorem 1.2. We first construct a subsolution of (1). We consider the eigenvalue problem:

\[
\begin{aligned}
-(\varphi_p(\xi'))' &= \lambda \varphi_p(\xi), \quad t \in (0, 1), \\
\xi(0) &= 0 = \xi(1).
\end{aligned}
\]

(6)

It is well-known that (6) has a spectrum \(0 < \lambda_1 < \lambda_2 < \lambda_3 \to \infty \) and the principal eigenvalue \(\lambda_1 \) is simple and isolated (see [12]). Let \(\xi \in C^1[0,1] \) be the corresponding eigenfunction satisfying \(||\xi||_\infty = 1 \) and \(e > 0 \) on (0, 1). Then there exist \(K_2 > 0 \) and \(K_3 > 0 \) such that \(K_2 d(t, \partial[0,1]) \leq \xi(t) \leq K_3 d(t, \partial[0,1]) \). Let \(\kappa = \frac{\mu - \eta}{p - \mu} \). Note that \(\kappa > 1 \). Thus there exist \(m > 0 \), \(e > 0 \) and \(\mu > 0 \) such that \(\lambda_1|\xi(t)|^p - (\kappa - 1)(p - 1)|\xi(t)|^{p-1} \leq -m \) for \(t \in (0, \epsilon) \cup (1 - \epsilon, 1) \) and \(\xi(t) \geq \mu \) in \([\epsilon, 1-\epsilon] \). Choose \(A^* > 0 \) and \(l \in (0, p - 1 + \alpha) \) such that \(f(s) \geq A^* s^l \) for \(s > 1 \) from (H1). Let \(\psi := \lambda \varphi \alpha \) where \(\sigma \in (\frac{1}{p - 1 + \alpha}, \frac{1}{p - 1 + \alpha - 1}) \). Then we have

\[
-(\varphi_p(\psi'))' = \frac{\lambda^{\sigma(p-1)} K^{(p-1)}_p}{e^{\alpha + \eta}} \left((\lambda e^{\alpha} \kappa^{p-1}) - (\kappa - 1)(p - 1)|e^{\alpha} \kappa^{p-1}|\psi' \right)
= \frac{\lambda^{\sigma(p-1)} K^{(p-1)}_p}{e^{\alpha + \eta}} \left((\lambda e^{\alpha} \kappa^{p-1} - (\kappa - 1)(p - 1)|e^{\alpha} \kappa^{p-1}|\psi' \right).
\]

(7)

Since \(\sigma > \frac{1}{p - 1 + \alpha} \), we obtain that \(\frac{dK^\alpha }{m} \leq \lambda^{\sigma(p-1)+\alpha} \) for \(\lambda \gg 1 \) where \(f_s := \min_{s \in (0, 1)} f(s) \). For \(t \in (0, \epsilon) \) and \(\lambda \gg 1 \), we have

\[
-(\varphi_p(\psi'))' \leq \frac{-\lambda^{\sigma(p-1)} K^{(p-1)}_p}{e^{\alpha + \eta}} \leq \frac{-\lambda^{\sigma(p-1)} K^{(p-1)}_p}{(K_3 t)^{\eta} e^{\alpha}} \leq \frac{\lambda^{\sigma(p-1)} K^{(p-1)}_p}{t^{\eta} (\lambda e^{\alpha})^\alpha} \leq \lambda h(t) \frac{f_0}{\psi_\sigma}.
\]

By a similar argument for \(t \in (1 - \epsilon, 1) \) and \(\lambda \gg 1 \), we have

\[
-(\varphi_p(\psi'))' \leq \frac{-\lambda^{\sigma(p-1)} K^{(p-1)}_p}{e^{\alpha + \eta}} \leq \frac{-\lambda^{\sigma(p-1)} K^{(p-1)}_p}{(1-t)^{\eta} e^{\alpha}} \leq \frac{\lambda h}{1 - \epsilon} \frac{f_0}{\psi_\sigma}.
\]

Since \(\sigma < \frac{1}{p - 1 + \alpha} \), we have \(\lambda^{\sigma(p-1)} K^{(p-1)}_p \leq \lambda^{1-\sigma(p-1)+\alpha} \) for \(\lambda \gg 1 \). For \(\lambda \gg 1 \), we also have \(A^*(\lambda e^{\alpha} \kappa^{p-1}) \leq f(\kappa e^{\alpha} \kappa^{p-1}) \) for \(t \in [\epsilon, 1-\epsilon] \). Then for \(t \in [\epsilon, 1-\epsilon] \) and \(\lambda \gg 1 \) we have

\[
-(\varphi_p(\psi'))' \leq \frac{\lambda^{\sigma(p-1)} K^{(p-1)}_p}{e^{\alpha}} \leq \frac{\lambda^{\sigma(p-1)} K^{(p-1)}_p}{(1-t)^{\eta} e^{\alpha}} \leq \frac{\lambda h A^* (\lambda e^{\alpha})^\alpha}{1 - \epsilon} \leq \lambda h(t) \frac{f_0}{\psi_\sigma}.
\]

We also have \(f'(1) + c f(1) = 0 \) and \(\lambda > 1 \). Further, \(\psi(t) \geq \lambda^{\sigma(p-1)} K^{(p-1)}_p d(t, \partial[0,1]) \) for \(t \in [0, 1] \) and \(\lambda \) satisfies \(\alpha \kappa \eta < 1 \) since \(\kappa = \frac{\mu - \eta}{p - \mu} \). Thus \(\psi \) is a subsolution of (1) for \(\lambda \gg 1 \).

Next we construct a supersolution of (1). Let \(\tilde{z} \in C^1[0, 1] \) be the solution of the boundary value problem:

\[
\begin{aligned}
-(\varphi_p(\xi'))' &= \frac{h(t)}{p}, \quad t \in (0, 1), \\
\xi(0) &= 0 = \xi(1).
\end{aligned}
\]

(7)

Then there exists \(K_4 > 0 \) such that \(\tilde{z}(t) \geq K_4 t \) for \(t \in [0, 1] \). Since \(f'(s) = \frac{f'_{s}(s)}{p - \alpha} \to 0 \) as \(s \to \infty \). Thus there
exists \(K_\lambda \gg 1 \) such that \(\psi(t) \leq K_\lambda \tilde{z}(t) \) for \(t \in [0,1] \) and \(f^*(K_\lambda \|\tilde{z}\|_\infty) \leq \frac{K_\lambda^2}{\|\tilde{z}\|_\infty^{p-1}} \).

Let \(\phi := K_\lambda \tilde{z} \). Then we have

\[
-(\varphi_p(\phi')') = \frac{K_\lambda^{p-1} h(t)}{t^\alpha} \geq \lambda h(t) \frac{f^*(K_\lambda \|\tilde{z}\|_\infty)}{(K_\lambda \|\tilde{z}\|_\infty)^\alpha} \geq \lambda h(t) \frac{f(K_\lambda \tilde{z})}{(K_\lambda \|\tilde{z}\|_\infty)^\alpha} = \lambda h(t) \frac{f(\phi)}{\phi^\alpha}.
\]

We also have \(\phi'(1) + c(\phi(1))\phi(1) = 0 \) since \(\tilde{z}(1) = 0 = \tilde{z}'(1) \). Thus \(\phi \) is a supersolution of (1) such that \(\psi(t) \leq \phi(t) \) for \(t \in [0,1] \). By Lemma 1.4, there exists a positive solution \(u \) of (1) such that \(\psi(t) \leq u(t) \) for \(t \in [0,1] \). Further, \(\|u\|_\infty \to \infty \) as \(\lambda \to \infty \) since \(\|\psi\|_\infty \to \infty \) as \(\lambda \to \infty \).

Next we show that \(\inf_{t \in [a_0,1]} u(t) \to \infty \) as \(\lambda \to \infty \) for any constant \(a_0 \in (0,1) \). Let \(t_m \in (0,1) \) be the first point satisfying \(u(t) = 0 \). Let \(F_{\alpha}(s) := \int_0^s f(\varphi)^{\frac{1}{p}} \varphi \). By \((H_1) - (H_2) \), there exist unique constants \(\beta \) and \(\theta \) such that \(0 < \beta < \theta \), \(f(\beta) = 0 \) and \(F_{\alpha}(\beta) = 0 \). We first recall the results in Lemmas 2.1 - 2.3 from [15] which we restate as Lemmas 3.1 - 3.2 below:

Lemma 3.1 ([15]). Let \((H_2) - (H_4) \) hold. If \(u \) is a positive solution of (1), then \(u \) has a unique interior maximum at \(t_m \) and \(u(t_m) > \theta \).

Lemma 3.2 ([15]). Let \((H_2) - (H_4) \) hold. Let \(u \) be a positive solution of (1). If \(t_\beta \) and \(t_{\frac{1}{\alpha}+\theta} \) are the first points in \((0,1) \) such that \(u(t_\beta) = \beta \) and \(u(t_{\frac{1}{\alpha}+\theta}) = \frac{\beta+\theta}{2} \), then \(t_\beta \leq O(\lambda^{-\frac{1}{p}}) \) and \(t_{\frac{1}{\alpha}+\theta} \leq O(\lambda^{-\frac{1}{p}}) \).

Next we establish the following property of \(u \) at \(t = 1 \) when \(\lambda \gg 1 \):

Lemma 3.3. Let \((H_2)-(H_4) \) hold. If \(u \) is a positive solution of (1), then \(u(1) \to \infty \) as \(\lambda \to \infty \).

Proof. We first show that \(u(1) \geq \frac{\beta+\theta}{2} \) for \(\lambda \gg 1 \). Assume \(u(1) < \frac{\beta+\theta}{2} \). By Lemma 3.1, there exists \(\tilde{t}_\theta \in (t_m,1) \) such that \(u(\tilde{t}_\theta) = \theta \) and \(u'(\tilde{t}_\theta) < 0 \). Define \(E(t) := \lambda F_{\alpha}(u(t))h(t) + \frac{p-1}{p}|u'(t)|^p \). Then \(E(\tilde{t}_\theta) = \frac{p-1}{p}|u'(\tilde{t}_\theta)|^p > 0 \). Thus we obtain that \(E(1) > 0 \) since \(E(t) \) is strictly increasing for \(t \in (\tilde{t}_\theta,1) \). This implies that \(u(1) > 0 \). Since \(E(1) = \lambda F_{\alpha}(u(1))h(1) + \frac{p-1}{p}|u'(1)|^p \), we have

\[
c(u(1))u(1) = -u'(1) > \left(-\lambda \frac{p}{p-1} F_{\alpha}(u(1))h(1)\right)^{\frac{1}{p}}.
\]

This implies that \(u(1) \approx 0 \) for \(\lambda \gg 1 \) since \(u(1) < \frac{\beta+\theta}{2} \). Thus \(\frac{F_{\alpha}(u(1))}{u(1)} \approx -\infty \) for \(\lambda \gg 1 \), and hence \(\left(-\lambda \frac{p}{p-1} F_{\alpha}(u(1))h(1)\right)^{\frac{1}{p}} \gg 1 \) for \(\lambda \gg 1 \). Therefore \(c(u(1))u(1)^{\frac{p-1}{p}} \gg 1 \) for \(\lambda \gg 1 \). This is a contradiction since \(u(1) \approx 0 \) for \(\lambda \gg 1 \). Hence \(u(1) \geq \frac{\beta+\theta}{2} \) for \(\lambda \gg 1 \).
Next, let \(a_0 \in (0, 1) \) be any constant, that is independent of \(\lambda \). First we assume \(t_m > \frac{a_0 + 1}{2} \). By Lemma 3.2, for \(\lambda \gg 1 \) we have

\[
\begin{align*}
 u(a_0) &= \beta + \int_{t \beta}^{a_0} \varphi^{-1}_p \left(\lambda \int_{\frac{s}{a_0}}^{t_m} h(r) \frac{f(u)}{u^\alpha} \, dr \right) \, ds \\
 &\geq \int_{\frac{s}{a_0}}^{a_0} \varphi^{-1}_p \left(\lambda \int_{\frac{s}{a_0}}^{a_0} h(r) \frac{f(u)}{u^\alpha} \, dr \right) \, ds \\
 &\geq \int_{\frac{s}{a_0}}^{a_0} \varphi^{-1}_p \left(\lambda \frac{1 - a_0}{2} \frac{h}{\|u\|_{\infty}} f \left(\frac{\beta + \theta}{2} \right) \right) \, ds \\
 &\geq \frac{\lambda^{p-1}}{\|u\|_{\infty}^{\frac{p-1+a}{2}}} K_5,
\end{align*}
\]

where \(K_5 := \frac{a_0}{2} \varphi^{-1}_p \left(\frac{1-a_0}{2} h f \left(\frac{\beta + \theta}{2} \right) \right) \). Thus \(\|u\|_{\infty}^{\frac{p-1+a}{2}} \geq \lambda^{p-1} K_5 \). By the Mean Value Theorem, we have

\[
u(t_m) - u(1) = -u'(\tilde{t})(1-t_m) \leq -u'(1) = c(u(1))u(1),
\]

where \(\tilde{t} \in (t_m, 1) \). Thus we have \((c(u(1)) + 1)u(1) \geq \|u\|_{\infty} \geq \lambda^{\frac{1}{p-1+a}} K_5^{\frac{p-1}{p-1+a}} \) if \(t_m > \frac{a_0 + 1}{2} \). Next we assume \(t_m \leq \frac{a_0 + 1}{2} \). Since \(u(1) \geq \frac{\beta + \theta}{2} \), we have

\[
c(u(1))u(1) = -u'(1) = \varphi^{-1}_p \left(\lambda \int_{t_m}^{1} h(s) \frac{f(u)}{u^\alpha} \, ds \right) \geq \lambda^{\frac{1}{p-1}} \frac{K_6}{\|u\|_{\infty}^{\frac{p-1+a}{2}}},
\]

where \(K_6 := \varphi^{-1}_p \left(\frac{1-a_0}{2} h f \left(\frac{\beta + \theta}{2} \right) \right) \). From (8), we have

\[
\lambda^{\frac{1}{p-1}} K_6 \leq c(u(1))u(1) \|u\|_{\infty}^{\frac{a}{2}} \leq (c(u(1)) + 1)u(1) \|u\|_{\infty}^{\frac{p-1+a}{2}}.
\]

Thus we obtain \((c(u(1)) + 1)u(1) \geq \lambda^{\frac{1}{p-1+a}} K_6^{\frac{p-1}{p-1+a}} \) if \(t_m \leq \frac{a_0 + 1}{2} \). Hence \((c(u(1)) + 1)u(1) \geq \lambda^{\frac{1}{p-1+a}} K^\frac{p-1}{p-1+a} \) where \(K^7 := \min\{K_5, K_6\} \). Thus \(u(1) \to \infty \) as \(\lambda \to \infty \).

Now we show that \(\inf_{\varepsilon \in [a_0, 1]} u(t) \to \infty \) as \(\lambda \to \infty \). Let \(\lambda \gg 1 \) be such that \(t_\beta < \frac{a_0}{2} \) and \(t_{a_0} < \frac{a_0}{2} \). If \(t_m > a_0 \), then we have

\[
\begin{align*}
 u \left(\frac{a_0}{2} \right) &= \beta + \int_{t \beta}^{a_0} \varphi^{-1}_p \left(\lambda \int_{\frac{s}{a_0}}^{t_m} h(r) \frac{f(u)}{u^\alpha} \, dr \right) \, ds \\
 &\geq \int_{\frac{s}{a_0}}^{a_0} \varphi^{-1}_p \left(\lambda \int_{\frac{s}{a_0}}^{a_0} h(r) \frac{f(u)}{u^\alpha} \, dr \right) \, ds \\
 &\geq \lambda^{\frac{1}{p-1}} K_8 \frac{K_8}{u(a_0)^{\frac{p-1+a}{2}}},
\end{align*}
\]

where \(K_8 := \frac{a_0}{2} \varphi^{-1}_p \left(\frac{a_0}{2} h f \left(\frac{\beta + \theta}{2} \right) \right) \). Since \(u \) is increasing on \([\frac{a_0}{2}, a_0]\), we have \(u(a_0) \geq u \left(\frac{a_0}{2} \right) \geq \lambda^{\frac{1}{p-1}} K_8 \frac{K_8}{u(a_0)^{\frac{p-1+a}{2}}} \). Thus \(u(a_0) \geq \lambda^{\frac{1}{p-1+a}} K_8^{\frac{p-1}{p-1+a}} \). If \(t_m \leq a_0 \), then \(u(a_0) \geq u(1) \) since \(u \) is decreasing on \([a_0, 1]\). Therefore \(u(a_0) \geq \min \{ \lambda^{\frac{1}{p-1+a}} K_8^{\frac{p-1+a}{p-1+a}}, u(1) \} \). Since \(u \) is concave on \([a_0, 1]\), we obtain that \(\inf_{\varepsilon \in [a_0, 1]} u(t) \geq \min \{ u(a_0), u(1) \} \geq \min \{ \lambda^{\frac{1}{p-1+a}} K_8^{\frac{p-1+a}{p-1+a}}, u(1) \} \). Hence \(\inf_{\varepsilon \in [a_0, 1]} u(t) \to \infty \) as \(\lambda \to \infty \). \(\)
4. Proof of Theorem 1.3. Here $\alpha = 0$. Without loss of generality, we assume $b_0 > \frac{4+6}{2}$ in (H_0). Define $G : [b_0, \infty) \to \mathbb{R}$ by $G(s) := \frac{s^4}{(f(s))^{\frac{4}{p-1}}}$. Then G is strictly increasing and $\lim_{s \to \infty} G(s) = \infty$ since (H_0) and $\lim_{s \to \infty} \frac{f(s)}{s^{p-1}} = 0$. Further, G^{-1} satisfies:

Lemma 4.1 ([8]). Let (H_0) hold. For each $C > 0$, there exist positive constants L_1, L_2 (independent of λ) and $\tilde{\lambda} > 0$ such that

$$L_1 G^{-1}(\lambda^\frac{1}{p-1}) \leq G^{-1}(\lambda^\frac{1}{p-1} C) \leq L_2 G^{-1}(\lambda^\frac{1}{p-1})$$

for $\lambda > \tilde{\lambda}$ where $L_1 := \min \left\{ 1, C \right\}$, $L_2 := \max \left\{ 1, C \right\}$ and $\tilde{\lambda} := \left(\frac{G(b_0)}{\min(1, C)} \right)^{\frac{1}{p-1}}$.

Next we establish the following result by arguments similar to Lemma 2.8 in [15].

Lemma 4.2. Let (H_1) – (H_4) and (H_6) hold. For $\lambda \gg 1$ there exist positive constants C_1 and C_2 (independent of λ) such that if u is a positive solution of (1) then

$$C_1 G^{-1}(\lambda^\frac{1}{p-1}) d(t, \partial[0,1]) \leq u(t) \leq C_2 G^{-1}(\lambda^\frac{1}{p-1}) d(t, \partial[0,1])$$

Proof. First we show that for $\lambda \gg 1$ there exists $C_1 > 0$ such that

$$u(t) \geq C_1 G^{-1}(\lambda^\frac{1}{p-1}) d(t, \partial[0,1])$$

Consider the boundary value problem:

$$\begin{cases} - (\phi_p(z'(t)))' = h(t) (f(M) \chi_{[\frac{1}{4}, \frac{3}{4}]}(t) + f(0) \chi_{[\frac{3}{4}, 1)}(t)), & t \in (0, 1), \\ z(0) = 0 = z(1), \end{cases} \tag{10}$$

where $\chi_{S}(t) = 1$ for $t \in S$ and $\chi_{S}(t) = 0$ for $t \in [0,1] \setminus S$. Choosing $M_\lambda \gg 1$, (10) has a unique positive solution z such that $z(t) \geq d(t, \partial[0,1])$ (see [15]). Since $\inf_{t \in [a, b]} u(t) \to \infty$ as $\lambda \to \infty$, for $\lambda \gg 1$ we have $- (\phi_p(u') - \lambda \phi_p(z'))' = \lambda h(t) f(u) - \lambda h(t) (f(M) \chi_{[\frac{1}{4}, \frac{3}{4}]}(t) + f(0) \chi_{[\frac{3}{4}, 1)}(t))(t)) \geq 0$. Then $u(t) \geq \lambda^\frac{1}{p-1} d(t, \partial[0,1])$ for $\lambda \gg 1$ by the comparison principle. Let $M_\lambda : (\geq 1)$ be the largest constant such that $u(t) \geq \lambda^\frac{1}{p-1} M_\lambda d(t, \partial[0,1])$. Then $u(t) \geq M_\lambda := \frac{\lambda^\frac{1}{p-1} M_\lambda}{4}$ on $[\frac{1}{4}, \frac{3}{4}]$. For $t \in [\frac{1}{4}, \frac{3}{4}]$ and $\lambda \gg 1$, we have

$$- f(M) (\phi_p(u'))' + \lambda f(M_\lambda) (\phi_p(z'))' = \lambda f(M) h(t) f(u) - \lambda f(M_\lambda) h(t) (f(M) \chi_{[\frac{1}{4}, \frac{3}{4}]} + f(0) \chi_{[\frac{3}{4}, 1)}(t)) \geq 0.$$

For $t \in [\frac{1}{4}, \frac{3}{4}]$ and $\lambda \gg 1$, we have

$$- f(M) (\phi_p(u'))' + \lambda f(M_\lambda) (\phi_p(z'))' = \lambda f(M) h(t) f(u) - \lambda f(M_\lambda) h(t) (f(M) \chi_{[\frac{1}{4}, \frac{3}{4}]}(t) + f(0) \chi_{[\frac{3}{4}, 1)}(t)) \geq 0.$$

Then $[f(M)]^\frac{1}{p-1} u(t) \geq \lambda^\frac{1}{p-1} [f(M_\lambda)]^\frac{1}{p-1} z(t)$ for $t \in [0,1]$ and $\lambda \gg 1$ by the comparison principle. Hence we have

$$u(t) \geq \lambda^\frac{1}{p-1} \frac{[f(M_\lambda)]^\frac{1}{p-1}}{[f(M)]^\frac{1}{p-1}} z(t).$$
This implies that $M_{\lambda} \geq \frac{[f(M)]^\frac{1}{p-1}}{[f(M)]^\frac{1}{p-1}}$ for $\lambda \gg 1$. Thus we obtain

$$
\frac{\lambda^\frac{1}{p-1} M_{\lambda}}{4} = G^{-1} \left(\frac{M_{\lambda}}{[f(M)]^\frac{1}{p-1}} \right) \geq G^{-1} \left(\frac{\lambda^\frac{1}{p-1}}{4[f(M)]^\frac{1}{p-1}} \right).
$$

By Lemma 4.1, for $\lambda \gg 1$ there exists $C_1 > 0$ such that

$$
4G^{-1} \left(\frac{\lambda^\frac{1}{p-1}}{4[f(M)]^\frac{1}{p-1}} \right) \geq C_1 G^{-1}(\lambda^\frac{1}{p-1}).
$$

Hence, for $\lambda \gg 1$ we have

$$
u \geq \lambda^\frac{1}{p-1} M_{\lambda} z \geq C_1 G^{-1}(\lambda^\frac{1}{p-1}) z \geq C_1 G^{-1}(\lambda^\frac{1}{p-1}) d(t, \partial[0, 1]).$$

Next we show that there exists $C_2 > 0$ such that $u(t) \leq C_2 G^{-1}(\lambda^\frac{1}{p-1}) t$ for $t \in [0, 1]$ and $\lambda \gg 1$. For $\lambda > \frac{2b_0}{\lambda^\frac{1}{p-1}}$, we have $\|u\|_\infty \geq b_0$. Hence $b_0 \leq \|u\|_1 \leq 2\lambda^\frac{1}{p-1} [f(\|u\|_1)]^\frac{1}{p-1} \varphi_p^{-1}(H)$. This implies that

$$
\|u\|_\infty \leq G^{-1} \left(\frac{\|u\|_1}{[f(\|u\|_1)]^\frac{1}{p-1}} \right) \leq G^{-1} \left(2\lambda^\frac{1}{p-1} \varphi_p^{-1}(H) \right),
$$

where $\|u\|_1 := \|u\|_\infty + \|u\|_\infty$. By Lemma 4.1, for $\lambda \gg 1$ there exists $C_2 > 0$ such that

$$
G^{-1} \left(2\lambda^\frac{1}{p-1} \varphi_p^{-1}(H) \right) \leq C_2 G^{-1}(\lambda^\frac{1}{p-1}).
$$

Thus we have $u(t) \leq \|u\|_\infty t \leq C_2 G^{-1}(\lambda^\frac{1}{p-1}) t$ for $\lambda \gg 1$. Hence the proof is complete.

Now we recall Lemma 2.9 in [15] which we restate as Lemma 4.3 below. We also provide a proof since there was an error in the arguments in [15].

Lemma 4.3 ([15]). Let $(H_1)-(H_4)$ and (H_6) hold. Let $\gamma_0 \leq \gamma < 1$ where $\gamma_0 := \frac{C_1}{C_2}$. For $\lambda \gg 1$ there exists $\delta > 0$ (independent of λ) such that if u and v are positive solutions of (1) then $\frac{C_1 \gamma_0 G^{-1}(\lambda^\frac{1}{p-1})}{2} \leq |sv'(t) + (1 - s)\gamma u'(t)| \leq C_2 G^{-1}(\lambda^\frac{1}{p-1})$ for $s \in [0, 1]$ and $t \in [0, \delta]$.

Proof. Let $s \in [0, 1]$ and $y(t) := sv'(t) + (1 - s)\gamma u'(t)$. By (11) and (12), we have $|y(t)| \leq s\|u\|_\infty + (1 - s)\|u\|_\infty \leq C_2 G^{-1}(\lambda^\frac{1}{p-1})$.

Next we show that $|y(t)| \geq \frac{C_1 \gamma_0 G^{-1}(\lambda^\frac{1}{p-1})}{2}$ for $t \in [0, \delta]$. Clearly, $|y(0)| \geq C_1 \gamma_0 G^{-1}(\lambda^\frac{1}{p-1})$ by Lemma 4.2. We note that u' is differentiable on $(0, 1)$ for the case $1 < p \leq 2$. By the Mean Value Theorem, we have

$$
|u'(t_2) - u'(t_1)| = \left| \varphi_p^{-1} \left(\int_{t_1}^{t_2} h(s)f(u)ds \right) - \varphi_p^{-1} \left(\int_{t_1}^{t_2} h(s)f(u)ds \right) \right| \\
\leq \frac{1}{p-1} \lambda^\frac{1}{p-1} [f(\|u\|_\infty)]^\frac{1}{p-1} \left(\int_{t_1}^{t_2} h(s)ds \right)^{\frac{2-p}{p-1}} \left(\int_{t_1}^{t_2} h(s)ds \right) \quad (13)
$$

\begin{align*}
&\leq N_1 \lambda^\frac{1}{p-1} [f(\|u\|_\infty)]^\frac{1}{p-1} |t_2 - t_1|^{1-\eta} - |t_1 - \eta| \\
&\leq N_1 \lambda^\frac{1}{p-1} [f(\|u\|_\infty)]^\frac{1}{p-1} |t_2 - t_1|^{1-\eta}
\end{align*}
for any t_1 and $t_2 \in [0, 1]$ where $f^*(s) := \max_{0 \leq r \leq s} |f(r)|$ and $N_1 := \frac{d\eta}{(p-1)(1-\eta)}$. Hence $u \in C^2(0,1) \cap C^{1,\alpha^*}[0,1]$ where $\alpha^* = 1 - \eta$. For the case $p > 2$, noting that
\[|\phi_p^{-1}(b) - \phi_p^{-1}(a)| \leq 2^{\frac{p-2}{p}}|\phi_p^{-1}(b-a)| \quad \text{for } a, b \in \mathbb{R}, \]
we have
\[|u'(t_2) - u'(t_1)| = |\phi_p^{-1}\left(\lambda \int_{t_1}^{t_2} h(s)f(u)ds \right) - \phi_p^{-1}\left(\lambda \int_{t_1}^{t_2} h(s)f(u)ds \right) | \leq 2^{\frac{p-2}{p}} \lambda \int_{t_1}^{t_2} h(s)f(u)ds \geq (14)
\]
for any t_1 and $t_2 \in [0, 1]$ where $N_2 := \left(\frac{d^{p-2}}{1-\eta} \right)^{\frac{1}{p}}$. This implies that $u \in C^{1,\alpha^*}[0,1]$ with $\alpha^* = \frac{1-\eta}{p-1}$. Hence for $p > 1$, any positive solution u of (1) belongs to $C^{1,\alpha^*}[0,1]$ for some $\alpha^* \in (0,1)$. Indeed, noting that $f^*(s) = f(s)$ for $s \gg 1$, it follows from (13) and (14) that we have $\|u\|_{1,\alpha^*} \leq \lambda \frac{1}{\beta} \|f\|_{1,\alpha^*} M_p$ for some $M_p > 0$ when $\lambda \gg 1$ where $\|u\|_{1,\alpha^*} := \|u\|_1 + \|u'\|_{\alpha^*}$ and $\|u\|_{\alpha^*} := \sup_{a \neq b \in (0,1)} \frac{|u(b) - u(a)|}{|b-a|^{\alpha^*}}$. Thus we have
\[\|u\|_{1,\alpha^*} = G^{-1}\left(\frac{\|u\|_{1,\alpha^*}}{f(\|u\|_{1,\alpha^*})} \right) \leq G^{-1}\left(\lambda^{\frac{1}{\alpha^*}} M_p \right).
\]
Without loss of generality, we obtain $\|u\|_{1,\alpha^*} \leq C_2 G^{-1}(\lambda^{\frac{1}{\alpha^*}})$ by Lemma 4.1. Hence $y \in C^\alpha[0,1]$ and $\|y\|_{\alpha^*} \leq C_2 G^{-1}(\lambda^{\frac{1}{\alpha^*}})$. Let $\delta > 0$ be such that $\delta^{\alpha^*} \leq \frac{C_1\gamma_0}{2C_2}$. Since $y \in C^\alpha[0,1]$, we have
\[|y(t) - y(0)| \leq C_2 G^{-1}(\lambda^{\frac{1}{\alpha^*}}) \|t\|^{\alpha^*} \leq C_2 G^{-1}(\lambda^{\frac{1}{\alpha^*}}) \delta^{\alpha^*}
\]
for $t \in [0,\delta]$. This implies that
\[|y(t)| \geq |y(0)| - |y(t) - y(0)| \geq \frac{C_1\gamma_0}{2} G^{-1}(\lambda^{\frac{1}{\alpha^*}}).
\]
Hence the proof is complete.

Next we recall Lemma 2.10 and Lemma 2.12 in [15] which we restate below as Lemmas 4.4 - 4.5. For the convenience to the reader, we also provide the proofs of these lemmas. To state these results, let u and v be positive solutions of (1). We define $a_\lambda: [0, \delta] \rightarrow \mathbb{R}$ by
\[a_\lambda(t) := (p-1) \int_0^1 |s\ddot{u}'(t) + (1-s)\gamma \ddot{u}'(t)|^{p-2} ds,
\]
where $\ddot{u} := \frac{u}{G^{-1}(\lambda^{\frac{1}{\alpha^*}})}$ and $\ddot{v} := \frac{v}{G^{-1}(\lambda^{\frac{1}{\alpha^*}})}$. By Lemma 4.3, $a_\lambda(t) \in [C_\ast, C^\ast^*]$ where $C_\ast := (p-1) \min \left\{ \left(\frac{C_1\gamma_0}{2} \right)^{p-2}, C_2^{-2} \right\}$ and $C^\ast := (p-1) \max \left\{ \left(\frac{C_1\gamma_0}{2} \right)^{p-2}, C_2^{-2} \right\}$.

Lemma 4.4 ([15]). Let κ_0 be the solution of the boundary value problem:
\[-(a_\lambda(t)\kappa_0')(t)' = \begin{cases} 0, & t \in (0, a_\lambda], \\ h(t), & t \in (a_\lambda, \delta), \end{cases}\]

\[\]
\[\kappa_0(0) = 0 = \kappa_0(\delta), \]

where \(t_\lambda \to 0 \) as \(\lambda \to \infty \). Then there exists a positive constant \(D \) (independent of \(\lambda \)) such that \(\kappa_0(t) \geq Dd(t, \partial[0, \delta]) \) for \(\lambda \gg 1 \).

Proof. Let \(t_m \in [0, \delta] \) be such that \(\|\kappa_0\|_\infty = \kappa_0(t_m) \). Then \(t_m \in (t_\lambda, \delta) \) and \(\kappa_0 \) can be written as

\[
\kappa_0(t) = \begin{cases}
\int_0^t \frac{1}{a_\lambda(s)} \int_s^{t_m} h(r) \chi_{[t_\lambda, t_m]} dr ds, & t \in [0, t_m], \\
\int_t^\delta \frac{1}{a_\lambda(s)} \int_{t_m}^s h(r) dr ds, & t \in (t_m, \delta].
\end{cases}
\tag{15}
\]

By upper and lower estimates of \(\kappa_0(t_m) \), we obtain \(\frac{b}{\kappa_0} (\delta - t_m)^2 \leq \frac{b}{\kappa_0} t_m \) and \(\frac{b}{\kappa_0} s^2 \leq \frac{b}{\kappa_0} (\delta - t_m) \). This implies that there exist \(N_3 \in (0, \frac{\delta}{2}) \) and \(N_4 \in (0, \frac{\delta}{2}) \) (independent of \(\lambda \)) such that \(N_3 \leq t_m \leq \delta - N_4 \). Then for \(t \in (0, \frac{N_3}{2}) \) and \(\lambda \gg 1 \) we obtain

\[
\kappa_0^*(t) = \frac{1}{a_\lambda(t)} \int_t^{t_m} h(s) \chi_{[t_\lambda, t_m]} ds \geq \frac{h_N_3}{2C^*},
\]

and

\[
\kappa_0 \left(\delta - \frac{N_4}{2} \right) \geq \int_{\delta - N_4}^\delta \frac{1}{a_\lambda(s)} \int_{\delta - N_4}^{s - \frac{N_4}{2}} h(r) dr ds \geq \frac{hN_4^2}{4C^*}.
\]

Thus \(\kappa_0(t) \geq D \) for \(t \in \left[\frac{\delta}{2}, \delta \right] \) and \(\lambda \gg 1 \) where \(D := \frac{h}{4C^*} \min\{N_3^2, N_4^2\} \). Similarly, for \(t \in (\delta - \frac{N_4}{2}, \delta) \) and \(\lambda \gg 1 \) we deduce

\[
\kappa_0^*(t) = -\frac{1}{a_\lambda(t)} \int_{t_m}^{t} h(s) ds \leq -\frac{hN_4}{2C^*},
\]

and

\[
\kappa_0 \left(\frac{N_3}{2} \right) \geq \int_0^{\frac{N_3}{2}} \frac{1}{a_\lambda(s)} \int_{\frac{N_3}{2}}^s h(r) dr ds \geq \frac{hN_3^2}{4C^*}.
\]

Thus \(\kappa_0(t) \geq D (\delta - t) \) for \(t \in \left[\frac{\delta}{2}, \delta \right] \) and \(\lambda \gg 1 \). Hence we obtain \(\kappa_0(t) \geq Dd(t, \partial[0, \delta]) \) for \(t \in [0, \delta] \) and \(\lambda \gg 1 \).

Lemma 4.5. Let \(\kappa_0^* \) be the solution of the boundary value problem:

\[
-\left(a_\lambda(t) \kappa_0^{*'}(t) \right)' = \begin{cases}
h(t), & t \in (0, t_\lambda], \\
0, & t \in (t_\lambda, \delta),
\end{cases}
\]

\[
\kappa_0^*(0) = 0 = \kappa_0^*(\delta).
\]

Then there exists a positive constant \(D^* \) (independent of \(\lambda \)) such that \(\kappa_0^*(t) \leq D^*t^1-\eta d(t, \partial[0, \delta]) \) for \(\lambda \gg 1 \).

Proof. Let \(t_m \in [0, \delta] \) be such that \(\|\kappa_0^*\|_\infty = \kappa_0^*(t_m) \). Then \(t_m \in (0, t_\lambda) \) and \(\kappa^*_0 \) can be written as

\[
\kappa_0^*(t) = \begin{cases}
\int_0^t \frac{1}{a_\lambda(s)} \int_s^{t_m} h(r) dr ds, & t \in [0, t_m], \\
\int_t^\delta \frac{1}{a_\lambda(s)} \int_{t_m}^s h(r) dr ds, & t \in (t_m, \delta].
\end{cases}
\tag{16}
\]

For \(t \in [0, t_m] \) we have

\[
\kappa_0^*(t) = \int_0^t \frac{1}{a_\lambda(s)} \int_s^{t_m} h(r) dr ds \leq \frac{1}{C^*} \int_0^t \int_s^{t_m} \frac{d}{r^\eta} dr ds \leq \frac{dt^1-\eta t}{C^*(1-\eta)}.
\]
Since κ_0^* has a maximum at t_m we have

$$\kappa_0^*(t) \leq D^* t \gamma^{-\eta} for t \in \left[0, \frac{\delta}{2}\right],$$

where $D^* := \frac{d}{C^* (1 - \eta)}$. For $t \in [t_m, \delta]$ we have

$$\kappa_0^*(t) = \int_t^\delta \frac{1}{a_0(s)} \int_{t_m}^s h(r) \chi(t, t_m) dr ds \leq \frac{1}{C^*} \int_t^\delta \int_{t_m}^s \frac{d}{r^n} dr ds \leq \frac{dt^{1-\eta}(\delta - t)}{C^*(1 - \eta)}.$$

This implies

$$\kappa_0^*(t) \leq D^* t^{1-\eta}(\delta - t) for t \in \left[\frac{\delta}{2}, \delta\right].$$

Hence $\kappa_0^*(t) \leq D^* t^{1-\eta}d(t, \partial[0, \delta])$ for $\lambda \gg 1$. \qed

Now we establish the proof of Theorem 1.3. Let $\lambda \gg 1$ satisfying Theorem 1.2, Lemmas 4.1 - 4.3 and $\inf_{t \in (\frac{1}{2}, 1]} u(t) \geq \max\{c_0, k_0\}$ for any positive solution of (1). Let u and v be positive solutions of (1). By Lemma 4.2, we obtain that $v \geq \gamma_0 u$ on $[0, \frac{1}{2}]$ where $\gamma_0 := \frac{c_1}{c_2}$. Let $\gamma = (\gamma_0 \lambda)$ be the largest constant such that $v \geq \gamma u$ on $[0, 1]$.

First we show that $\gamma \geq \gamma_0$ when $\lambda \gg 1$. Assume that $\gamma < \gamma_0$ for $\lambda \gg 1$. Then $v(t) > \gamma u(t)$ for $t \in (0, \frac{1}{2}]$, and there exists $t_3 \in (\frac{1}{2}, 1]$ such that $v(t_3) - \gamma u(t_3) = 0$ since γ is the largest constant such that $v \geq \gamma u$ on $[0, 1]$. Let $t_4 \in (\frac{1}{2}, 1]$ be the first point such that $v(t_4) - \gamma u(t_4) = 0$. If $t_4 = 1$, then $v'(1) - \gamma u'(1) = -c(v(1))v(1) + c(u(1))u(1) \geq 0$ by $\gamma (H_2)$. This implies that $v'(1) - \gamma u'(1) = 0$. Let $t_5 \in (0, 1)$ be the largest point such that $v(t_5) - \gamma u(t_5) > 0$ and $v'(t_5) - \gamma u'(t_5) = 0$. We can also choose $t_{b_0} \in (0, 1)$ such that $\gamma u(t_{b_0}) = b_0$ since $v(1) = \gamma u(1)$ and $v(1) > 1$ for $\lambda \gg 1$. Let $t_6 := \max\{t_5, t_{b_0}\}$. By (H_6), we have

$$0 \geq -\varphi_p(v'(1)) + \varphi_p(\gamma u'(1)) - (-\varphi_p(v'(t_6)) + \varphi_p(\gamma u'(t_6)))$$

$$= \lambda \int_{t_6}^1 h(s) \left(f(v) - \gamma^{-1} f(u)\right) ds$$

$$\geq \lambda \int_{t_6}^1 h(s) \left(f(\gamma u) - \gamma^{-1} f(u)\right) ds$$

$$\geq \lambda (\gamma^{-\eta} - \gamma^{-1}) \int_{t_6}^1 h(s) f(u) ds.$$

This is a contradiction since $\int_{t_6}^1 h(s) f(u) ds > 0$. Hence $t_4 \in (\frac{1}{2}, 1)$. Then $v(t_4) - \gamma u(t_4) = 0$ and $v'(t_4) - \gamma u'(t_4) = 0$. By the above argument, we again get a contradiction. Hence $\gamma \geq \gamma_0$.

Next we show that $\gamma \geq 1$. Assume that $\gamma < 1$. Let $\bar{u} = \frac{u}{G^{-1}(\lambda \frac{p}{p - 1})}$ and $\bar{v} = \frac{v}{G^{-1}(\lambda \frac{p}{p - 1})}$. Since $G^{-1}(\lambda \frac{p}{p - 1}) = \lambda \frac{p}{p - 1} f(\lambda \frac{p}{p - 1}) (G^{-1}(\lambda \frac{p}{p - 1}))$, we have

$$-(\varphi_p(\bar{v}))' = h(t) \frac{f(u)}{f(G^{-1}(\lambda \frac{p}{p - 1}))} \text{ and } -(\varphi_p(\bar{u}))' = h(t) \frac{f(v)}{f(G^{-1}(\lambda \frac{p}{p - 1}))}.$$
Thus we have

Without loss of generality, we assume $b_0 > \frac{\beta + \theta}{\beta}$ and $f\left(\frac{b_0}{\gamma_0}\right) \geq |f(0)|$ hold. Let $I := \{t \in (0, \delta) \mid u(t) \geq \frac{b_0}{\gamma_0}\}$ and $J := (0, \delta) \setminus I$. Then $I = \{t_1, \delta\}$ and $J = (0, t_1)$ where $t_1 := \min\{t \in (0, \delta) \mid u(t) \geq \frac{b_0}{\gamma_0}\}$. On I, it follows from (H$_0$) that

$$f(\gamma u) - \gamma^{p-1}f(u) \geq (\gamma^q - \gamma^{p-1})f(u) \geq m_1(1 - \gamma),$$

where $m_1 := (p - 1 - q)\gamma_0 f\left(\frac{b_0}{\gamma_0}\right) \min\{1, \gamma_0^{p-2-q}\}$. On J, we have

$$|f(\gamma u) - \gamma^{p-1}f(u)| \leq |f(\gamma u) - f(u)| + (1 - \gamma^{p-1})|f(u)| \leq (1 - \gamma)|u'| + (1 - \gamma)(p - 1)\max\{1, \gamma_0^{p-2}\}f\left(\frac{b_0}{\gamma_0}\right) \leq \frac{1 - \gamma}{\gamma_0}f'(\zeta) + (1 - \gamma)(p - 1)\max\{1, \gamma_0^{p-2}\}f\left(\frac{b_0}{\gamma_0}\right) \leq m_2(1 - \gamma),$$

where $\zeta \in (\gamma u, u)$ and $m_2 := \frac{1}{\gamma_0}\sup_{s \in (0, \gamma_0)} sf'(s) + (p - 1)\max\{1, \gamma_0^{p-2}\}f\left(\frac{b_0}{\gamma_0}\right)$. Thus we have

$$-\left(\frac{f(G^{-1}\frac{1}{\lambda}t)}{1 - \gamma}a_\lambda(t)(\tilde{v}' - \gamma\tilde{u}')\right)' \geq \begin{cases} m_1h(t), & t \in I, \\ -m_2h(t), & t \in J. \end{cases}$$

We note that for $\tilde{h}(t) = m_1h(t)\chi_I(t)$, the function $U : [0, \delta) \rightarrow \mathbb{R}$ defined by $U(t) := \int_0^t \frac{1}{a_\lambda(s)} \int_s^\delta \tilde{h}(r)drds - \int_0^t \frac{1}{a_\lambda(s)} \int_0^s \tilde{h}(r)drds$ is continuous on $[0, \delta]$ and satisfies $U(0) < 0 < U(\delta)$. Thus there exists $t^* \in I$ such that $U(t^*) = 0$. Then

$$\kappa(t) = \begin{cases} \int_0^t \frac{1}{a_\lambda(s)} \int_s^\delta \tilde{h}(r)drds, & t \in (0, t^*), \\ \int_t^\delta \frac{1}{a_\lambda(s)} \int_0^s \tilde{h}(r)drds, & t \in (t^*, \delta), \end{cases}$$

is the solution of the boundary value problem:

$$\begin{cases} - (a_\lambda(t)\kappa'(t))' = \tilde{h}(t), & t \in (0, \delta), \\ \kappa(0) = 0 = \kappa(\delta). \end{cases} \tag{17}$$

By a similar argument, we obtain the solution $\tilde{\kappa}$ of (17) when $\tilde{h}(t) = m_2h(t)\chi_J(t)$. Using the linearity of the equation (17), we conclude that (17) has the unique solution $\pi = \kappa - \tilde{\kappa}$ for $\tilde{h}(t) = m_1h(t)\chi_I(t) - m_2h(t)\chi_J(t)$. By the comparison principle, we have

$$\tilde{v}(t) - \gamma\tilde{u}(t) \geq \frac{1 - \gamma}{f(G^{-1}\frac{1}{\lambda}t)}\pi(t)$$

for $t \in (0, \delta)$. We also note that $t_1 \to 0$ and $|J| \to 0$ as $\lambda \to \infty$ by Lemma 4.2 where $|J|$ is the length of J. Then by Lemmas 4.4 - 4.5, we obtain that $\kappa(t) \geq Dd(t, \partial\{0, \delta\})$ and $|\kappa(t) - \pi(t)| \leq D^*|J|^{1-\eta}d(t, \partial\{0, \delta\})$ for $\lambda \gg 1$. Thus we have

$$\pi(t) \geq \kappa(t) - |\kappa(t) - \pi(t)| \geq (D - D^*|J|^{1-\eta})d(t, \partial\{0, \delta\}) \geq \frac{D}{2}d(t, \partial\{0, \delta\})$$

for $t \in [0, \delta]$ and $\lambda \gg 1$. Since $d(t, \partial\{0, \delta\}) = t$ for $t \in [0, \frac{\delta}{2}]$, we have

$$\pi(t) \geq \frac{D}{2}d(t, \partial\{0, 1\})$$
for $t \in [0, \frac{4}{2}]$. This implies that

$$v(t) - \gamma u(t) \leq \frac{1 - \gamma}{f(G^{-1}(\lambda \overline{r}))} \gamma u(t) \leq \frac{\overline{D}(1 - \gamma)}{2f(G^{-1}(\lambda \overline{r}))} t$$

for $t \in [0, \frac{4}{2}]$. Then we obtain

$$v(t) \geq (\gamma + \epsilon) u(t)$$

for $t \in [0, \frac{4}{2}]$ by Lemma 4.2 where $\epsilon_\lambda := \frac{\overline{D}(1 - \gamma)}{2C_2 f(G^{-1}(\lambda \overline{r}))}$. Then we have $v \left(\frac{4}{2}\right) \geq \gamma u \left(\frac{4}{2}\right) + \hat{\epsilon}_\lambda$ where $\hat{\epsilon}_\lambda := \epsilon_\lambda \lambda_1 G^{-1}(\lambda \overline{r}) \frac{\delta}{2}$. Now we claim that $v(1) > \gamma u(1)$. If not, $v(1) = \gamma u(1)$. By (H_λ), we have $v' = -\gamma u + \epsilon u + \epsilon(u) u + c v(1) v \geq 0$. This implies that $v'(1) = \gamma u(1)$ since $v \geq \gamma u$. Let $t^* \in (0, 1)$ be the largest critical point such that $v'(t^*) - \gamma u'(t^*) = 0$, $v(t^*) - \gamma u(t^*) > 0$ and $v'(t) - \gamma u'(t) \leq 0$ for $t \in [t^*, 1]$. If $t^* \geq t_1$, then by (H_δ) we have

$$0 = -\varphi_p(v'(1)) + \varphi_p(\gamma u'(1))$$

$$= \lambda \int_{t^*}^1 h(s) \left(f(v) - \gamma^{p-1} f(u) \right) ds$$

$$\geq \lambda \int_{t^*}^1 h(s) \left(f(\gamma u) - \gamma^{p-1} f(u) \right) ds$$

$$\geq \lambda (\gamma^{p-1} - \gamma^{p-1}) \int_{t^*}^1 h(s) f(u) ds.$$

This implies that $\int_{t^*}^1 h(s) f(u) ds = 0$. This is a contradiction. Thus $t^* < t_1$. Then we have

$$0 \leq -\varphi_p(v'(t_1)) + \varphi_p(\gamma u'(t_1)) = \lambda \int_{t_1}^{t_1} h(s) \left(f(v) - \gamma^{p-1} f(u) \right) ds.$$

Thus we obtain

$$0 = -\varphi_p(v'(1)) + \varphi_p(\gamma u'(1))$$

$$= \lambda \int_{t}^{t_1} h(s) \left(f(v) - \gamma^{p-1} f(u) \right) ds + \lambda \int_{t_1}^1 h(s) \left(f(v) - \gamma^{p-1} f(u) \right) ds$$

$$\geq \lambda (\gamma^{p-1} - \gamma^{p-1}) \int_{t_1}^1 h(s) f(u) ds.$$

This implies that $\int_{t_1}^1 h(s) f(u) ds = 0$. This is a contradiction. Hence $v(1) > \gamma u(1)$. Let $\hat{\epsilon}_\lambda := v(1) - \gamma u(1)$. On $(\frac{4}{2}, 1]$, by (H_δ) we have

$$-(\varphi_p(v'))' = \lambda h(t) f(v) \geq \lambda h(t) f(\gamma u) \geq \lambda \gamma^{p-1} h(t) f(u).$$

But

$$-(\varphi_p((\gamma u + \epsilon_\lambda'))') = \lambda \gamma^{p-1} h(t) f(u),$$

where $\epsilon_\lambda := \min\{\hat{\epsilon}_\lambda, \hat{\epsilon}_\lambda\}$. Thus $v \geq \gamma u + \epsilon_\lambda$ on $(\frac{4}{2}, 1]$ by the comparison principle. By Lemma 4.2, we have

$$v \geq \gamma u + \epsilon_\lambda \geq \left(\gamma + \epsilon_\lambda \frac{1}{C_2 G^{-1}(\lambda \overline{r})} \right) u.$$
Thus \(v \geq (\gamma + \epsilon^\#) u \) on \([0, 1]\) where \(\epsilon^\# := \min \{ \epsilon_\lambda, \frac{\epsilon_0}{C_G G^{-1}(\lambda+1)} \} \). This is a contradiction for the maximality of \(\gamma \). Hence \(\gamma \geq 1 \). This implies that \(v \equiv u \) on \([0, 1]\).

REFERENCES

[1] H. Amann, *Fixed point equations and nonlinear eigenvalue problems in ordered Banach spaces*, SIAM Rev., **18** (1976), 620–709.

[2] D. Butler, E. Ko, E. K. Lee and R. Shivaji, *Positive radial solutions for elliptic equations on exterior domains with nonlinear boundary conditions*, Commun. Pure Appl. Anal., **13** (2014), 2713–2731.

[3] R. S. Cantrell and C. Cosner, *Density dependent behavior at habitat boundaries and the allee effect*, Bull. Math. Biol., **69** (2007), 2339–2360.

[4] R. S. Cantrell and C. Cosner, *Spatial ecology via reaction-diffusion equations*, John Wiley & Sons, Chichester, 2004.

[5] D. Daners, *Robin boundary value problems on arbitrary domains*, Trans. Amer. Math. Soc., **352** (2000), 4207–4236.

[6] D. A. Frank-Kamenetskii, *Diffusion and Heat Transfer in Chemical Kinetics*, Plenum Press, New York, 1969.

[7] J. Goddard II, E. K. Lee and R. Shivaji, *Population models with diffusion, strong allee effect, and nonlinear boundary conditions*, Nonlinear Anal., **74** (2011), 6202–6208.

[8] D. D. Hai, *Uniqueness of positive solutions for a class of quasilinear problems*, Nonlinear Anal., **69** (2008), 2720–2732.

[9] E. Ko, M. Ramaswamy and R. Shivaji, *Uniqueness of positive radial solutions for a class of semipositone problems on the exterior of a ball*, J. Math. Anal. Appl., **423** (2015), 399–409.

[10] E. K. Lee, R. Shivaji and B. Son, *Positive radial solutions to classes of singular problems on the exterior domain of a ball*, J. Math. Anal. Appl., **423** (2015), 399–409.

[11] P. Drábek, *Topological and Variational Methods for Nonlinear Boundary Value Problems*, 1st edition, Addison Wesley Longman Limited, Harlow, 1997.

[12] M. D. Pino, M. Elgueta and R. Manásevich, *A homotopic deformation along p of a Leray-Schauder degree result and existence for \(|u'|^{p-2}u' + f(t,u) = 0, u(0) = u(T) = 0, p > 1\), J. Differential Equations, **80** (1989), 1–13.

[13] L. Sankar, *Classes of Singular Nonlinear Eigenvalue Problems with Semipositone Structure*, Ph.D. thesis, Mississippi State University, 2013.

[14] N. N. Semenov, *Chemical Kinetics and Chain Reactions*, Oxford University Press, London, 1935.

[15] R. Shivaji, I. Sim and B. Son, *A uniqueness result for a semipositone p-Laplacian problem on the exterior of a ball*, J. Math. Anal. Appl., **445** (2017), 459–475.

[16] Y. B. Zeldovich, G. I. Barenblatt, Y. B. Librovich and G. M. Makhlviladze, *The Mathematical Theory of Combustion and Explosions*, Consultants Bureau, New York, 1985.