Effect of the Congenital Heart Disease on Growth and Nutritional State of Children

Muhammad K. Shuker Alghanimi (FICMS), Adeebah A Alyasiri (CABP) and Russul F Musa (CABP)

Abstract

Background: This study will show the most likely congenital heart disease that affect on growth parameters which re-arrange our information for rapid referring of such patient to solving their problems and maintains the life of child and decrease burden on salary of family.

Objective: To assess nutritional status and factors that predicts nutritional changes in children with congenital heart disease.

Patients and Methods: Cross-sectional study, of 110 patients with congenital heart diseases, performed in Al-Hilla and Baghdad cities in Iraq. Children were divided into three groups according to the age. Cardiac diagnosis was made on basis of clinical history, examination, electrocardiography and echocardiography. acute malnutrition assessed by weight/length ratio, chronic malnutrition assessed by length/age ratio, while poor nutritional status and acute deterioration of health status assessed by weight/age ratio.

Results: 110 patient; Wasted or severely wasted (60.9%) according to weight/length, and Stunted or severely stunted (61.8%) according to length for age measure; and wasted or severely wasted was (42.7%) according to BMI. There was significant association between acute malnutrition and child age, p value <0.002. Acute malnutrition (Wasted or severely wasted) more with left side volume overload (62.7%) and (60.2%) those with chronic malnutrition (Stunted or severely stunted) have complex heart disease. There was significant association between malnutrition assessed by weight for height and presence of mild, moderate and Severe PHT, absence or presence of treatment, type of feeding and syndromatic type of CHD. There was significant association between chronic malnutrition assessed by height for age and cyanosis, pulmonary hypertension and type of feeding. There was significant association between acute malnutrition assessed by BMI for age and pulmonary hypertension, absence or presence of treatment and type of feeding. There was significant association between malnutrition assessed by Weight for height and history of abortion.

Conclusion: Congenital heart disease can affect the growth of children so need resolve these problems by correcting the cardiac abnormality whether by cardiac catheterization or surgical intervention.

Key words: Congenital heart disease, Acute, Chronic malnutrition.

Corresponding Author: drmuhannadalghanimi@gmail.com

Accepted: 18th September 2018

https://doi.org/10.26505/DJM

Introduction

One of the most common congenital anomaly is congenital heart disease, affecting about 8 in 1000 children [1]. Regardless of the nature of the cardiac defect and the
presence or not of cyanosis, malnutrition is a common feature among children with congenital heart disease [2]. Those children are susceptible to malnutrition for different reasons including low energy intake, greater energy requirements, or both[3].

The growth is the most important functional index of nutritional status in children. Weight, length and weight/length ratio are very important in assessment of adequate nutrition. Precise assessment may necessitate other measurements such as mid-upper arm circumference. Growth failure is more significant in cases with congestive heart failure (CHF), pulmonary hypertension, and cyanotic congenital heart disease [4].

Accompanying hypoxia in patient with cyanosis, increased pulmonary blood flow and pulmonary hypertension worse the condition[5]. Patients with cyanotic CHD and those with congestive HF are associated with more than percent of Acute or chronic malnutrition, while the less percent of the malnutrition patients are without these two conditions[6]. The hypoxemia which result from the right-to-left shunting of blood flow at the ventricular level in congenital heart disease with Cyanotic defects are often producing disturbances in both weight gain and attainment of stature. On the other hand, the left-to-right shunting of blood at the atrial or ventricular level in acyanotic congenital heart disease affects weight rather than stature[7]. This study shows the most likely congenital heart disease which effect on growth parameters which re- arrange our information for rapid referring of such patient to solving their problems and maintains the life of child and decrease burden on salary of family.

The aim of this study is to assess nutritional status and factors that predict nutritional changes in children with congenital heart disease.

**Patients and Methods**

**Study design**

This cross-sectional study, 110 patients (66 males and 44 females) aged between 2 months to 12 years admitted to Babylon Gynecology and Pediatrics Teaching Hospital, Al-Hilla and Iraqi-center for cardiac disease, Baghdad. For the period from January 2015 to June 2015.

Children were grouped into three groups according to the age. The first group below one year, the second group one to two years old, third group more than two years old. Patients with other medical diseases that affect anthropometric measurement were excluded these include; generalized oedema, persistent diarrhea or vomiting, dehydration, chronic renal failure and neurological disability. Cardiac diagnosis was made on basis of clinical history, examination, electrocardiography and echocardiography.

Information on socio-demographic aspect was taken about (age, Gender, family member, and child order in the family) also history taken for birth weight of patient, type of feeding, frequency of admission to the hospital and medical treatment. Maternal histories include age of mother at time of pregnancy, number of abortions and maternal risk factors during pregnancy were taken.
Anthropometric measurement (weight, length, head, and mid upper-arm circumference were carried for all patients. The body weight was taken when the child undressed by scale according to their age (The weight of infants, and those > 2 years but unable to stand was taken with a Wunder beam balance table top weighing scale which measures to the close to 100gm to a maximum of 13 kg, while for those above 2 years who could stand, it was taken with the Wunder beam balance floor top weighing scale).

The child length was taken using scientific anthropometre when patient was lying in supine position flat or rigid surface, while the height was measured for those above the age of 2 years with Wunder scale stadiometer. Measurement of head circumference and mid-upper arm circumference was taken by numbered soft tape measure.

The anthropometric analysis was achieved by calculation of percentiles and Z score with the support of the Anthro 2007© software. Head and mid-arm circumference were in percentile. Z score was calculated for the following rate (length /age, weight/age, Weight/ length, and body mass index). The cut-off points for the Z values: normal values; 0,+1,+2 and +3. Values;-1,-2,-3 and -4 units of standard deviation constituted the zone of risk. In all cases, a Z score of less than -2 was considered as the cut-off point for malnutrition. And below -3 considered severe malnutrition[8]. The type of malnutrition was classified according to the value of calculation of Z score, acute malnutrition assessed by weight/length ratio, chronic malnutrition assessed by length/age ratio, while poor nutritional status and acute deterioration of health status assessed by weight/age ratio.

**Statistical analysis**

Statistical analysis was carried out using SPSS version 17. Pearson’s chi square (X2) and fisher-exact test were used to find the association between categorical variables. A p-value of ≤ 0.05 was considered as significant.

**Results**

We have 110 patients, all admitted with congenital heart disease. Predominant were male (60%) and majority their age below one year (54.5%). And usually child order in family was 2nd or third one (27%, 28 %). Figure (1) shows the distribution of patients with CHD according to type. 46.4% of them presented with isolated left side volume overload. (61.8%) their birth weight was acceptable 2.5-3 kg. With no pulmonary hypertension, absent cyanosis, asyndromatic and on treatment were (60.0%, 53.6%, 81.2%, and 52.7%) respectively Table (2).

Regarding maternal age, (80%) their ages less than 35 year, absent maternal risk factors in (84.5%) and there is no history of abortion in (74.5).Table 3. from 110 patient; Wasted or severely wasted (60.9%), and Stunted or severely stunted (61.8%); and wasted or severely wasted was (42.7%) according to BMI Table (4).

Regarding maternal age, (80%) their ages less than 35 year, absent maternal risk factors in (84.5%) and there is no history of abortion in (74.5).Table 3. from 110 patient; Wasted or severely wasted (60.9%), and Stunted or severely stunted (61.8%); and wasted or severely wasted was (42.7%) according to BMI Table (4).

Table (5) shows the relation between acute malnutrition assessed by weight for length and variables including age, gender, number
Effect of the Congenital Heart Disease on Growth and Nutritional State of Children

Muhannad K. Shaker Alghanimi

Table (6) shows the association between chronic malnutrition assessed by length for age and gender, age, number of family members, child order in family variables. There was significant association between chronic malnutrition assessed by length for age and child age, child order within family, while there was no significant relation between chronic malnutrition and gender, number of family members, child order in family variables.

Table (6) shows the association between chronic malnutrition assessed by length for age and gender, age, number of family and order of child within family (socio-demographic variables). There was significant association between chronic malnutrition assessed by length for age and child age, child order within family, while there was no significant relation between chronic malnutrition and gender and number of family. Acute malnutrition (Wasted or severely wasted) more in with isolated left side volume overload (62.7%) Table(7). (41/68) (60.2%) those with chronic malnutrition (Stunted or severely stunted) have complex heart disease. Table 8. Table 9: shows the association between malnutrition assessed by Weight for height and study variables including (Birth weight, pulmonary hypertension, cyanosis, presence of syndrome, treatment, type of feeding and frequency of hospital admissions). There was significant association between chronic malnutrition assessed by BMI for age and pulmonary hypertension, treatment and type of feeding, while there was no significant association between chronic malnutrition assessed by height for age and other study variables.

Table (10) shows the association between chronic malnutrition assessed by height for age and study variables including (Birth weight, pulmonary hypertension, cyanosis, presence of syndrome, treatment, type of feeding and frequency of hospital admissions). There was significant association between chronic malnutrition assessed by height for age and cyanosis, pulmonary hypertension and type of feeding, while there was no significant association between chronic malnutrition assessed by height for age and other study variables.

Table (11) shows the association between acute malnutrition assessed by BMI for age and study variables including (Birth weight, pulmonary hypertension, cyanosis, presence of syndrome, treatment, type of feeding and frequency of hospital admissions). There was significant association between acute malnutrition assessed by BMI for age and pulmonary hypertension, treatment and type of feeding, while there was no significant association between acute malnutrition assessed by BMI for age and other study variables.

Table (12) shows the association between malnutrition assessed by Weight for height and maternal factors including (maternal age, maternal risk factors and number of abortions). There was significant association between malnutrition assessed by Weight for height and history of abortion, while there was no significant association between malnutrition assessed by Weight for height and other maternal factors.
Table (13) shows the association between chronic malnutrition assessed by height for age and maternal factors including (maternal age, maternal risk factors and number of abortions). There was no significant association between chronic malnutrition assessed by height for age and maternal factors.

Table (14) shows the association between upper mid arm and occipito-frontal circumferences and type of CHD. There was no significant association between these growth parameter and type of CHD.

**Table (1): Distribution of patients according to socio-demographic variables.**

| Socio-demographic variables | Number | %   |
|----------------------------|--------|-----|
| Age (years)                |        |     |
| < 1 year                   | 60     | 54.5%|
| (1-2) years                | 18     | 16.4%|
| ≥ 2 years                  | 32     | 29.1%|
| Total                      | 110    | 100.0%|
| Gender                     |        |     |
| Male                       | 66     | 60.0%|
| Female                     | 44     | 40.0%|
| Total                      | 110    | 100.0%|
| No of family members       |        |     |
| < 3                        | 57     | 51.8%|
| (4-6)                      | 38     | 34.6%|
| (7-10)                     | 15     | 13.6%|
| Total                      | 110    | 100.0%|
| Child order                |        |     |
| First                      | 11     | 10.0%|
| Second                     | 30     | 27.3%|
| Third                      | 31     | 28.2%|
Effect of the Congenital Heart Disease on Growth and Nutritional State of Children

Muhannad K Shaker Alghanimi

| Type             | Number | %    |
|------------------|--------|------|
| Fourth           | 14     | 12.7%|
| Fifth            | 8      | 7.3% |
| Sixth or more    | 16     | 14.5%|
| Total            | 110    | 100.0%|

Figure (1): Distribution of patients according to type of CHD.

Table (2): Distribution of patients according to study variables.

| Study variables          | Number | %    |
|--------------------------|--------|------|
| Birth weight             |        |      |
| (1-2.5) kg               | 28     | 25.5%|
| (2.5-3) kg               | 68     | 61.8%|
| ≥ 3 Kg                   | 14     | 12.7%|
| Total                    | 110    | 100.0%|
| Pulmonary hypertension   |        |      |
| No pulmonary HT          | 66     | 60.0%|
| Mild pulmonary HT        | 16     | 14.5%|
Effect of the Congenital Heart Disease on Growth and Nutritional State of Children

Muhannad K. Shaker Alghanimi

| Classification                      | Number | Percentage |
|-------------------------------------|--------|------------|
| Moderate pulmonary HT               | 10     | 9.1%       |
| Severe pulmonary HT                 | 18     | 16.4%      |
| Total                               | 110    | 100.0%     |
| Cyanosis                            |        |            |
| Present                             | 51     | 46.4%      |
| Absent                              | 59     | 53.6%      |
| Total                               | 110    | 100.0%     |
| Syndrome                            |        |            |
| Syndromatic                         | 20     | 18.2%      |
| A syndromatic                       | 90     | 81.8%      |
| Total                               | 110    | 100.0%     |
| Treatment                           |        |            |
| Present                             | 58     | 52.7%      |
| Absent                              | 52     | 47.3%      |
| Total                               | 110    | 100.0%     |
| Type of feeding                     |        |            |
| Breast feeding                      | 25     | 22.7%      |
| Bottle feeding                      | 43     | 39.1%      |
| High calories feeding               | 1      | 0.9%       |
| Usual family feeding                | 41     | 37.3%      |
| Total                               | 110    | 100.0%     |
| Frequency of hospital admissions    |        |            |
| Less than 3 admissions              | 75     | 68.2%      |
| (4-6) admissions                    | 20     | 18.2%      |
| (7-10) admissions                   | 15     | 13.6%      |
| Total                               | 110    | 100.0%     |
**Table (3):** Distribution of patients according to study variables (maternal age, maternal risk factors and number of abortions).

| Study variables | Number | %    |
|-----------------|--------|------|
| **Age of mother** |        |      |
| (15-25) years   | 40     | 36.4%|
| (26-35) years   | 48     | 43.6%|
| (36-45) years   | 22     | 20.0%|
| Total           | 110    | 100.0%|
| **Maternal risk factors** |        |      |
| Present         | 17     | 15.5%|
| Absent          | 93     | 84.5%|
| Total           | 110    | 100.0%|
| **Number of abortions** |        |      |
| No history of abortion | 82     | 74.6%|
| History of (1-2)abortions | 23     | 20.9%|
| History of (3 or more) abortions | 5      | 4.5% |
| Total           | 110    | 100.0%|

**Table (4):** Distribution of patients according to growth indicators.

| Growth indicators | Number | %    |
|-------------------|--------|------|
| **Weight for height** |        |      |
| Normal            | 36     | 32.7%|
| Wasted or severely wasted | 67     | 60.9%|
| Overweight or obese | 7      | 6.4% |
| Total             | 110    | 100.0%|
| **Height for age** |        |      |
| Normal            | 42     | 38.2%|
| Stunted or severely stunted | 68     | 61.8%|
| Total             | 110    | 100.0%|
Effect of the Congenital Heart Disease on Growth and Nutritional State of Children

Muhannad K. Shaker Alghanimi

| BMI for age                  |       |       |
|------------------------------|-------|-------|
| Normal                       | 41    | 37.3% |
| Wasted or severely wasted    | 47    | 42.7% |
| Overweight or obese          | 22    | 20.0% |
| Total                        | 110   | 100.0%|

Table (5): Relation of malnutrition to age, gender, number of family and order in family.

| Socio-demographic characteristics | Weight for height | P-value |
|----------------------------------|-------------------|---------|
|                                  | Wasted or severely wasted | Normal | Overweight or obese |
| Age                              |                    |        |                    |
| < 1 year                         | 46 (68.7)          | 12 (33.4) | 2 (28.6) |
| (1-2) years                      | 9 (13.4)           | 7 (19.4)  | 2 (28.6) |
| ≥ 2 years                        | 12 (17.9)          | 17 (47.2) | 3 (42.8) |
| Gender                           |                    |        |                    |
| Male                             | 39 (58.2)          | 24 (66.7) | 3 (42.9) |
| Female                           | 28 (41.8)          | 12 (33.3) | 4 (57.1) |
| Number of family                 |                    |        |                    |
| < 3                              | 35 (52.2)          | 18 (50.0) | 4 (57.1) |
| (4-6)                            | 25 (37.3)          | 11 (30.6) | 2 (28.6) |
| (7-10)                           | 7 (10.5)           | 7 (19.4)  | 1 (14.3) |
| Child order in family            |                    |        |                    |
| First                            | 7 (10.4)           | 3 (8.3)   | 1 (14.3) |
| Second                           | 14 (20.9)          | 14 (38.9) | 2 (28.6) |
| Third                            | 21 (31.4)          | 9 (25.0)  | 1 (14.3) |
| Fourth                           | 10 (14.9)          | 2 (5.6)   | 2 (28.6) |
| Fifth or more                    | 15 (22.4)          | 8 (22.2)  | 1 (14.3) |

*p value ≤ 0.05 was significant

Table (6): Association between malnutrition and type of CHD.

| Study variable                  | Weight for height | P-value |
|---------------------------------|-------------------|---------|
|                                 | Wasted or severely wasted | Normal | Overweight or obese |
| Type of CHD                     |                    |        |                    |
| Isolated pressure overload (left or right) | 8 (11.9) | 11 (30.6) | 1 (14.2) |
| Isolated volume overload (left or right) | 42 (62.7) | 13 (36.1) | 3 (42.9) |
| Complex CHD                     | 17 (25.4)          | 12 (33.3) | 3 (42.9) |
| Total                           | 67 (100.0)         | 36 (100.0) | 7 (100.0) |

*p value ≤ 0.05 was significant

*p value ≤ 0.05 was significant
Table (7): Relation of chronic malnutrition to age, gender, number of family and order of child in family.

| Socio-demographic characteristics | Height for age |     |     |     |
|----------------------------------|----------------|-----|-----|-----|
|                                  | Stunted or severely stunted | Normal |     |     |
| Age                              | 17 (40.5)       | 43 (63.2) | 6.895 | 0.032 |
| < 1 year                         | 11 (16.2)       | 7 (16.7)   |       |       |
| (1-2) years                      | 20 (62.5)       | 12(37.5)  |       |       |
| ≥ 2 years                        | 38 (55.9)       | 28 (66.7) | 1.258 | 0.262 |
| Gender                           | 30 (44.1)       | 14 (33.3) |       |       |
| Male                             | 17 (40.5)       | 43 (63.2) | 6.895 | 0.032 |
| Female                           | 20 (62.5)       | 12 (37.5)|       |       |
| Number of family members         | 30 (44.1)       | 27 (64.3) | 4.841 | 0.089 |
| < 3                              | 17 (40.5)       | 43 (63.2) |       |       |
| (4-6)                            | 20 (62.5)       | 12 (37.5)|       |       |
| (7-10)                           | 38 (55.9)       | 28 (66.7) | 1.258 | 0.262 |
| Child order in family            | 30 (44.1)       | 27 (64.3) | 4.841 | 0.089 |
| First                            | 4 (5.9)         | 7 (16.7)  | 9.892 | 0.042*|
| Second                           | 19 (27.9)       | 11 (26.2) |       |       |
| Third                            | 19 (27.9)       | 12 (28.6) |       |       |
| Fourth                           | 6 (8.8)         | 8 (19.0)  |       |       |
| Fifth or more                    | 20 (29.5)       | 4 (9.5)   |       |       |

*p value ≤ 0.05 was significant

Table (8): Association between chronic malnutrition and type of CHD.

| Study variable | Height for age |     |     |     |
|----------------|----------------|-----|-----|-----|
|                | Stunted or severely stunted | Normal |     |     |
| Type of CHD    | 17 (40.5)       | 43 (63.2) | 6.895 | 0.032 |
| Isolated pressure overload (left or right) | 11 (16.2) | 7 (16.7) | 1.258 | 0.262 |
| Isolated volume overload (left or right)   | 20 (62.5)       | 12(37.5)  |       |       |
| Complex CHD   | 38 (55.9)       | 28 (66.7) | 1.258 | 0.262 |
| Total          | 30 (44.1)       | 14 (33.3) |       |       |

*p value ≤ 0.05 was significant

Table (9): Association between malnutrition and study variables.

| Study variables | Weight for height |     |     |     |
|-----------------|-------------------|-----|-----|-----|
|                 | Wasted or severely wasted | Normal | Overweight or obese |     |
| Birth weight    | 17 (25.4)         | 8 (22.2) | 3 (42.9) | 0.829*|
| (1-2 Kg)        | 41 (61.2)         | 23 (63.9) | 4 (57.1) |       |
| (2.1-3 Kg)      | 9 (13.4)          | 5 (13.9)  | 0 (0.0)   |       |
| PHT             | 40 (60.0)         | 4 (9.09)  | 0 (0.0)   | 4.843 | 0.004 |
| Mild, moderate, and Severe PHT absent | 27(40.0) | 39(90.7) | 7(100.0) |       |

*p value ≤ 0.05 was significant
Table (10): Association between chronic malnutrition and study variables.

| Study variables                | Height for age                  | Stunted or severely stunted | Normal     | $\chi^2$ | P-value |
|--------------------------------|--------------------------------|-----------------------------|------------|---------|---------|
| Birth weight                   |                               |                             |            |---------|---------|
| (1-2 Kg)                       | 20 (29.4)                      | 8 (19.0)                    | 1.484      | 0.476   |
| (2.1-3 Kg)                     | 40 (58.8)                      | 28 (66.7)                   |            |         |
| (> 3 Kg)                       | 8 (11.8)                       | 6 (14.3)                    |            |         |
| PHT                            |                               |                             |            |---------|---------|
| mild, moderate                 | 38 (55.88)                     | 30 (44.11)                  | 0.214      | 0.04    |
| Severe PHT                     | 36 (55.7)                      | 36 (44.3)                   |            |         |
| absent                         | 6 (14.3)                       | 6 (14.3)                    |            |         |
| Cyanosis                       |                               |                             |            |---------|---------|
| Present                        | 49 (72.05)                     | 2 (4.76)                    | 0.947      | 0.033   |
| Absent                         | 19 (27.94)                     | 40 (95.23)                  |            |         |
| Syndrome                       |                               |                             |            |---------|---------|
| Syndromatic                    | 14 (20.6)                      | 6 (14.3)                    | 0.693      | 0.405   |
| Asyndromatic                   | 54 (79.4)                      | 36 (85.7)                   |            |         |
| Treatment                      |                               |                             |            |---------|---------|
| Present                        | 39 (57.4)                      | 19 (45.2)                   | 1.529      | 0.216   |
| Absent                         | 29 (42.6)                      | 23 (54.8)                   |            |         |
| Frequency of hospital admissions|                               |                             |            |---------|---------|
| < 3                            | 47 (69.1)                      | 28 (66.6)                   | 0.566      | 0.753   |
| (4-6)                          | 13 (19.1)                      | 7 (16.7)                    |            |         |
| (7-10)                         | 8 (11.8)                       | 7 (16.7)                    |            |         |
| Type of feeding                |                               |                             |            |---------|---------|
| Bottle feeding                 | 29 (42.7)                      | 14 (33.3)                   | 6.294      | 0.043   |
| Breast feeding                 | 19 (27.9)                      | 6 (14.3)                    |            |         |
| Usual family food              | 33 (48.5)                      | 9 (21.42)                   |            |         |

*p value ≤ 0.05 was significant
Table (11): Association between acute malnutrition and study variables.

| Study variables | BMI for age |  |  |  |  |  |
|-----------------|-------------|-----------------|-----------------|-----------------|-----------------|-----------------|
|                 | Wasted or severely wasted | Normal | Overweight or obese |  |  |  |
| Birth weight    | 12 (25.5) | 10 (24.4) | 6 (27.3) | 3.352 | 0.501 |
| (1-2 Kg)        | 26 (55.3) | 28 (68.3) | 14 (63.6) |  |  |  |
| (2.1-3 Kg)      | 9 (19.2) | 3 (7.3) | 2 (9.1) |  |  |  |
| (>3Kg)          |  |  |  |  |  |  |
| PHT             | 13 (27.7) | 4 (9.8) | 1 (4.5) | 7.935 | 0.019 |
| Severe PHT      | 34 (72.3) | 37 (90.2) | 21 (95.5) |  |  |  |
| Mild, moderate or absent |  |  |  |  |  |  |
| Cyanosis        | 11 (23.4) | 7 (17.1) | 2 (9.1) | 2.118 | 0.347 |
| Present         | 36 (76.6) | 34 (82.9) | 20 (90.9) |  |  |  |
| Absent          |  |  |  |  |  |  |
| Syndrome        | 25 (53.2) | 19 (46.3) | 7 (31.8) | 2.753 | 0.252 |
| Syndromatic     | 22 (46.8) | 22 (53.7) | 15 (68.2) |  |  |  |
| Asyndromatic    |  |  |  |  |  |  |
| Treatment       | 34 (72.3) | 19 (46.3) | 5 (22.7) | 15.868 | <0.001 |
| Present         | 13 (27.7) | 22 (53.7) | 17 (77.3) |  |  |  |
| Absent          |  |  |  |  |  |  |
| Frequency of hospital admissions |  |  |  |  |  |  |
| < 3             | 29 (61.7) | 29 (70.8) | 17 (77.3) | 0.756 | 0.557 |
| (4-6)           | 11 (23.4) | 6 (14.6) | 3 (13.6) |  |  |  |
| (7-10)          | 7 (14.9) | 6 (14.6) | 2 (9.1) |  |  |  |
| Type of feeding | 27 (57.4) | 7 (17.1) | 9 (40.9) | 17.234 | 0.002 |
| Bottle feeding  | 10 (21.3) | 10 (24.4) | 5 (22.7) |  |  |  |
| Breast feeding  | 10 (21.3) | 24 (58.5) | 8 (36.4) |  |  |  |
| Usual family food |  |  |  |  |  |  |

*p value ≤ 0.05 was significant

Table (12): Association between acute malnutrition and maternal factors.

| Study variables | Weight for height |  |  |  |  |  |  |
|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|-----------------|
|                 | Wasted or severely wasted | Normal | Obese or overweight |  |  |  |
| Maternal age    | 22 (32.8) | 16 (44.4) | 2 (28.6) | 3.00 | 0.307 | 0.307 |
| (15-25) years   | 30 (44.8) | 16 (44.4) | 2 (28.6) |  |  |  |
| (26-35) years   | 15 (22.4) | 4 (11.2) | 3 (42.8) |  |  |  |
| (36-45) years   | 58 (86.6) | 30 (83.3) | 5 (71.4) |  |  |  |
| Maternal risk   | 9 (13.4) | 6 (16.7) | 2 (28.6) | 1.172 | 0.557 |
| Present         | 58 (86.6) | 30 (83.3) | 5 (71.4) |  |  |  |
| Absent          |  |  |  |  |  |  |
| History of abortion | 21 (31.3) | 4 (11.1) | 3 (42.9) | 6.245 | 0.044 |
| Present         | 46 (68.7) | 32 (88.9) | 4 (57.1) |  |  |  |
| Absent          |  |  |  |  |  |  |

*p value ≤ 0.05 was significant
Table (13): Association between chronic malnutrition and maternal factors.

| Study variables | Height for age | χ² | P-value |
|-----------------|---------------|----|--------|
|                 | Stunted or severely stunted | Normal |        |
| Maternal age    |               |     |        |
| (15-25) years   | 23 (33.9)     | 17 (40.5) | 1.465 | 0.481 |
| (26-35) years   | 29 (42.6)     | 19(45.2) |        |
| (36-45) years   | 16 (23.5)     | 6 (14.3)  |        |
| Maternal risk   |               |     |        |
| Present         | 12 (17.6)     | 5 (11.9) | 0.655 | 0.418 |
| Absent          | 56 (82.4)     | 37(88.1) |        |
| History of abortion |         |     |        |
| Present         | 16 (23.5)     | 12 (28.6) | 0.348 | 0.555 |
| Absent          | 52 (76.5)     | 30(71.4)  |        |

*p value ≤ 0.05 was significant.

Table (14)

| Study variables | Type of CHD |                  |                  | χ² | P-value |
|-----------------|-------------|------------------|------------------|----|--------|
|                 | Isolated pressure overload | Isolated volume overload | Complex with PS or PHT |    |        |
| Mid upper arm circumference |       |                  |                  |    |        |
| Failure to thrive | 10 (50.0) | 37 (63.8) | 18 (56.2) | 1.321 | 0.517 |
| Normal growth    | 10 (50.0) | 21 (36.2) | 14 (43.8) |        |
| Occipito-frontal circumference |    |                  |                  |    |        |
| Failure to thrive | 9 (45.0) | 38 (65.5) | 17 (53.1) | 3.047 | 0.218 |
| Normal growth    | 11 (55.0) | 20 (34.5) | 15 (46.9) |        |

*p value ≤ 0.05 was significant

Discussion
There is several studies of growth patterns in children with congenital heart disease (cyanotic and acyanotic), revealed the incidence of malnutrition and failure of growth in CHD to be fairly high [9].

In our study; there was significant association between malnutrition and child age, acute malnutrition (wasted or severely wasted) occur mostly in those below one year (68.7%), and chronic malnutrition assessed by height for age, stunted or severely stunted (62.5%) in those more than 2 year age, in R. Baaker et al study, they found that acute malnutrition was more obvious in infants (31.7%), while in 2nd year of age was (13%), but severe chronic malnutrition was (19.6%) for patients in first year of age and (34.7%) in patients in second year of age (10). While in other study by Daymont et al. show 80% of infants had acute malnutrition and 18% of patients of other ages (P < .001) (11). Our local result differed from results found in developed study by Venugopalon [12] who found that...
Effect of the Congenital Heart Disease on Growth and Nutritional State of Children

Muhannad K. Shaker Alghanimi

Older children were less affected than infants; this may be attributed to delay in surgical intervention of our patient in compares to their heart disease patients whom underwent early surgical intervention.

In Birgül Varan, et al, study showed chronic malnutrition, which disturbs both weight and length, is significant problem in congenital heart disease, 65% of the children were below the 5th centile for weight and 41% were below the 5th centile for both weight and height and (63%) were underweight for their length[14].

In our study there was significant association between acute malnutrition assessed by weight for height and presence of mild, moderate and Severe PHT(60%), absent of treatment(67.16%), type of feeding:(50%) were bottle feeding, and (91%) of Asyndromatic type of CHD have no malnutrition and 25% of syndromatic have acute malnutrition.

There was significant association between chronic malnutrition assessed by height for age and cyanosis (72.05%), pulmonary hypertension(55.88%) and (85%) of those of normal height have no pulmonary hypertension.(48.50%). In R. Baaker et al study, acute malnutrition was more in patients with an acyanotic congenital heart disease without heart failure or pulmonary hypertension (39.2%), while chronic malnutrition was more in patients with HF (25%) and (26.3%) for patients with PHT than other groups. and for severe chronic malnutrition was found more in patients with PHT (52.6%) and patients with HF (37.5%)[10]. Also De staebel study shows that patients with heart failure, cyanosis or both highly associated with chronic malnutrition[15].

In M. Dalili et al study, there is statistically a major difference was found in mean weight between cyanotic and acyanotic patients (p value = 0.035), cyanotic patients had lower body weight than those were acyanotic.

Borderline negative association was observed between height and cyanosis (P= 0.062)[9]. H. Al-Asyl study show that the cyanotic children had a more marked reduction in both weight and length than in the acyanotic children, and this reduction was more marked in those having evidences with heart failure[16].

Also we found that, (61.8%) their birth weight was acceptable 2-3 kg. that was explained by study of F. Monteiro, et al which show that the intrauterine growth are not affected by congenital heart disease even the more complex forms of heart disease don't usually bring signs of dysfunction during the intra-uterine period, and in early neonatal life we cannot expect cardiac distress in the immediate neonatal period (13). The Steltzer M, et al study mention that the occurrence of malnutrition in patients with congenital heart disease influenced by the type and severity of the disease (17). We found that acute malnutrition (Wasted or severely wasted) more in those with isolated left side volume overload (62.7%) while (60.2%) those with chronic malnutrition (Stunted or severely stunted) have complex heart disease.
In Daymont study they found that half of children with left sided heart obstruction had chronic malnutrition while 11% showed acute malnutrition. M.Dalili et al study found that cyanosis, intracardiac left to right shunts, and pulmonary hypertension, can affect body weight and stature in different degrees[9]. We found there was decrement in occipito-frontal circumferences in those with volume overload (65.5%).

**Conclusion**

1-Congenital heart disease can affect the growth of children so need to resolve these problems by correcting the cardiac abnormality whether by cardiac catheterization or surgical intervention.

2- Any patient with failure to thrive and poor weight gain or unexplained recurrent respiratory tract infection should be sent for Echocardiography to exclude congenital heart diseases that cause failure to thrive or detect heart failure that caused by elements deficiency from malnutrition like Carnitine, Selenium, and Copper.

3- Improving the way of feeding in CHD child is one of the most important things in treatment of CHD.

**References**

[1] van der Linde D, Konings EEM, Slager MA, et al. Birth prevalence of congenital heart disease worldwide: a systematic review and meta-analysis. J Am Coll Cardiol. 2011; 58(21):2241–7.

[2] Ijeoma Arodiwe, Josepat Chinawa, Fortune Ujunwa, et al. Nutritional status of congenital heart disease (CHD) patients: Burden and determinant of malnutrition at university of Nigeria teaching hospital Ituku – Ozalla, Enugu. Pak J Med Sci. 2015 Sep-Oct; 31(5): 1140–1145.

[3] Arvat E, Di Vito L, Broglio F, et al. Preliminary evidence that Ghrelin, the natural GH secretagogue (GHS)-receptor ligand, strongly stimulates GH secretion in humans. Journal of Endocrinological Investigation. 2000; 23:493–5.

[4] Abad-Sinden A, Sutphen JL. Growth and nutrition. In: Allen HD, Gutgesell HP, Eclard EB, Clark EB, Driscoll DJ, editors. Moss and Adams' Heart Disease in Infants and Adolescents. 6th ed, Vol. 1. Philadelphia: Lippincott Williams & Wilkins; 2001. p. 325-32.

[5] Vaidyanathan B, Nair SB, Sundaram KR, Babu UK, Rao SG, et al. Malnutrition in children with congenital heart disease (CHD): determinants and short-term impact of corrective intervention. Indian Pediatr 2008; 45: 541-6.

[6] Nevin Mamdouh Habeeb, Marwa Moustapha Al-Fahham, Araf Abdel Fattah Tawfik et al. Nutritional Assessment of Children with Congenital Heart Disease – A Comparative Study in Relation to Type, Operative Intervention and Complications. EC Paediatrics6.4 (2017): 112-120.

[7] Irving, Sharon Y., "patterns of weight change in infant with congenital heart disease following neonatal surgery:potential predictors of growth failure" (2011). Publicly accessible Penn Dissertations.Paper 443:7.

[8] K. O. Isezuo, U. M. Waziri1, U. M. Sani, et al. Nutritional Status of Children with Congenital Heart Diseases at a University
Effect of the Congenital Heart Disease on Growth and Nutritional State of Children

Muhannad K Shaker Alghanimi

Teaching Hospital, North-Western Nigeria. ; IJTDH, 25(4): 1-8, 2017.

[9] Mohammad Dalili, Seyed Mahmood Meraji, Paridokht Davari, et al. Growth Status of Iranian Children with Hemodynamically Important Congenital Heart Disease. Acta Medica Iranica, Vol. 49, No. 2 (2011).

[10] Rabab Hasan Baaker, Areeghe Abdul-Abass, Ashraf Ahmad Kamel. Malnutrition and Growth Status in Patients with Congenital Heart Disease. The Iraqi Postgraduate Medical Journal. VOL.7, NO.2, 2008(p152-6).

[11] Carrie Daymont, Ashley Neal, Aaron Prosnitz, et al. Growth in Children With Congenital Heart Disease. PEDIATRICS Volume 131, Number 1, January 2013.

[12] Venugopalan, Akinbami Fo, Al- Hinai Km, Agarwal AK. Malnutrition in children with congenital heart defects. Saudi Med J. 2001; 22,964-7.

[13] Flávia Paula Magalhães Monteiro, Thelma Leite de Araujo, Marcos Venícios de Oliveira Lopes, et al. Nutritional status of children with congenital heart disease. Rev. Latino-Am. Enfermagem. 2012 Nov.- Dec.;20(6):1024-32.

[14] Birgül Varan, Kürşad Tokel, Gonca Yilmaz. Malnutrition and growth failure in cyanotic and acyanotic congenital heart disease with and without pulmonary hypertension. Arch Dis Child 1999;81:49–52.

[15] De Staebel O. Malnutrition in Belgian children with congenital heart disease on admission to hospital. J Clincal Nursing. 2000;9(5):784-91.

[16] Hassan M Al-Asyl, Amr A. Donia, Doaa M. El-Amrosy, et al. The Levels of Ghrelin in Children with Cyanotic and Acyanotic Congenital Heart Disease. J. of Pediatric Sciences 2014;6;e209:2-6.

[17] Steltzer M, Rudd N, Pick B. Nutrition care for newborns with congenital heart disease. Clin Perinatol. 2005;32:1017-30.