Analytical approach to the nonlinear free vibration of a conservative oscillator

Junfeng Lu and Yan Liang

Abstract
This paper applies the VIM-Pade technique for solving a nonlinear free vibration of a conservative oscillator. It is a combined method based on the variational iteration method, Laplace transformation and the Pade approximation. An approximated solution with extremely high accuracy can be obtained with ease. Runge-Kutta method is adopted to verify the efficiency of the technique.

Keywords
Variational iteration method, Pade approximation, Laplace transformation, oscillator, approximation

Introduction
We consider the equation of motion

\[
(1 + 3ezu^2) \frac{d^2u}{dt^2} + 6ez\left(\frac{du}{dt} \right)^2 + \omega^2u + e\omega^2u^3 = 0
\]

(1)

with the following initial conditions

\[
u(0) = A, \quad \frac{du}{dt} = 0
\]

(2)

where \(e, z, \omega, \) and \(A\) are given constants. This nonlinear system results from a free vibration of a conservative oscillator.\(^1\) It can be used for modeling the motion of a mass grounded by linear and nonlinear springs in series connection over a frictionless contact surface as shown in Figure 1. Here, \(m\) is the mass, \(k_1\) is the stiffness of linear spring, \(k_2\) and \(\beta\) are the coefficients of linear and nonlinear parts of nonlinear spring, respectively. The parameters \(e, z, \) and \(\omega\) are, respectively, defined by

\[
e = \frac{\beta}{k_2}, \quad \nu = \frac{k_2}{k_1}, \quad z = \nu \frac{1}{1 + \nu}, \quad \omega = \sqrt{\frac{k_2}{m(1 + \nu)}}
\]

(3)

As shown in the literature,\(^1,2\) the deflection of linear spring is given by

\[
y_1 = \nu u + e\nu u^3
\]

(4)
The displacement of attached mass y_2 is constructed by the deflection of linear and nonlinear springs as follows

$$y_2 = u + y_1$$ \hspace{1cm} (5)

Recently, some numerical and analytical methods were proposed for solving this nonlinear oscillator, including Lindstedt method and harmonic balance method,\(^1\) the modified armonic balance method,\(^2\) the homotopy analysis method,\(^3\) He’s iteration perturbation method,\(^4\) the variational iteration method (VIM),\(^5\) Hamiltonian approach,\(^6\) the global residue harmonic balance method,\(^7\) He’s frequency formulation\(^8\) and other methods.\(^9\) As a classical method, the VIM has been paid much attention,\(^10–13\) due to its wide application for solving the linear and nonlinear differential equations. In order to reduce the computational cost of VIM, Abassy et al.\(^14\) and Lu\(^15\) proposed a modified VIM. Anjum and He applied Laplace transform to identify the Lagrange multiplier involved in the iteration algorithm.\(^16\) A reliable algorithm based upon the homotopy perturbation method was applied to the strongly nonlinear oscillators.\(^17–21\) Motivated by these improvements, we consider an analytical approach (VIM-Pade´) based on the VIM, Laplace transformation and the Pade´ approximation to solve the nonlinear oscillator (equation (1)). Two numerical examples will be presented to show its efficiency.

The VIM-Pade´ technique for nonlinear oscillator

We apply the VIM-Pade´ technique based on VIM, Laplace transformation and Padé approximation\(^22,23\) to the equation of motion (1). By VIM,\(^10–13\) a correct functional can be constructed as follows

$$u_{n+1}(t) = u_n(t) + \int_0^t \lambda \left(\frac{\partial^2 u_n}{\partial \zeta^2} + 3\varepsilon\varepsilon u_n(\zeta) \right)^2 + c_\varepsilon \frac{\partial^2 u_n}{\partial \zeta^2} + 6\varepsilon\varepsilon u_n(\zeta) \left(\frac{\partial u_n}{\partial \zeta} \right)^2 + \omega^2 u_n(\zeta) + \varepsilon(\omega^2 u_n(\zeta)^3) \right) \, d\zeta$$ \hspace{1cm} (6)

where λ is a general Lagrange multiplier, and $\delta u_n = 0$. The variational theory\(^24–28\) can be used to identify the Lagrange multiplier λ. We should specially point out that He and Wu presented a number of variational iteration formulae for solving various kinds of nonlinear equations.\(^10\) We make the correct functional (equation (6)) stationary, and obtain the following stationary conditions

$$\begin{align*}
\left. \frac{\partial^2 \lambda}{\partial \zeta^2} \right|_{\zeta = t} &= 0 \\
1 - \left. \frac{\partial \lambda}{\partial \zeta} \right|_{\zeta = t} &= 0 \\
\left. \lambda \right|_{\zeta = t} &= 0
\end{align*}$$

The multiplier λ can be easily obtained as $\lambda = \xi - t$. We then have the following iteration formula

$$u_{n+1}(t) = u_n(t) + \int_0^t (\xi - t) \left(1 + 3\varepsilon u_n(\xi)^2 \right) \frac{\partial^2 u_n}{\partial \zeta^2} + 6\varepsilon\varepsilon u_n(\xi) \left(\frac{\partial u_n}{\partial \zeta} \right)^2 + \omega^2 u_n(\xi) + \varepsilon(\omega^2 u_n(\xi)^3) \right) \, d\zeta$$ \hspace{1cm} (7)

To begin with an initial approximation $u_0(t) = A$, it is easy to obtain the VIM solution by equation (7). Obviously, the VIM solutions are expressed in series form,\(^29\) which may result in the deviation from the exact

Figure 1. Nonlinear system of a mass with serial linear and nonlinear springs over a frictionless contact surface.
solution of equation (1). For improving the accuracy of the VIM solutions, we use Laplace transformation and Padé approximation to \(u_{n+1}(t) \). Laplace transformation is used to transform the VIM solution and then Padé approximation is applied to the transformed solution, finally the approximated solution can be obtained by the inverse Laplace transformation. We briefly illustrate the idea of Padé approximation. Suppose that the transformed solution of \(u_{n+1}(t) \) is defined by a series solution \(v_{n+1}(t) = \sum_{k=0}^{\infty} q_k t^k \), we approximate it by a rational function as follows

\[
F[L, M] = \frac{P_L(t)}{Q_M(t)} \quad (8)
\]

where

\[
P_L(t) = p_0 + p_1 t + p_2 t^2 + \ldots + p_L t^L,
\]

\[
Q_M(t) = 1 + q_1 t + q_2 t^2 + \ldots + q_M t^M
\]

By using the normalization condition \(Q_M(0) = 1 \), the coefficients of \(P_L(t) \) and \(Q_M(t) \) can be given by linear equations with respect to \(p_0, p_1, \ldots, p_L \) and \(q_1, \ldots, q_M \). For clarity, the corresponding solution \(F[L, M] \) is called as \([L, M]\) Padé approximation to \(v_{n+1}(t) \).

Numerical example

In this section, we will consider two initial value problems of the nonlinear oscillator (equation (1)) to show the efficiency of VIM-Padé technique. We will compare it with Runge-Kutta method, and consider the sensitivity of the parameter \(A \). All the numerical computations are performed by a mathematical software on PC with an Intel Core 2 Duo CPU, 2.4 GHz, and 8 GB RAM.

We first consider the nonlinear oscillator (equation (1)) with \(m = 1, k_1 = 50, k_2 = 5, \beta = 2.5 \) and \(A = 1 \). By setting the initial approximation \(u_0(t) = A \), we have the following VIM iteration formula

\[
\begin{align*}
\frac{d^3 u_n}{dt^3} + \frac{2}{11} u_n(\xi) & + \frac{20}{11} u_n(\xi) \frac{d^2 u_n}{d\xi^2} + \frac{50}{11} u_n(\xi) \frac{du_n}{d\xi} + 25 u_n(\xi)^3 = 0 \\
\end{align*}
\]

(9)

By the above iteration (9), it follows the following approximations

\[
\begin{align*}
u_1 &= 1 - 3.4090909091 t^2, \\
u_2 &= 1 - 3.007607062 t^2 + 1.381913765 t^4 + 0.001726814 t^6 + 1.607959272 t^8, \\
u_3 &= 1 - 3.007607062 t^2 + 1.381913765 t^4 + 0.001726814 t^6 - 0.820536178 t^8 + 1.883873915 t^{10} - 2.609787903 t^{12} + \ldots, \\
u_4 &= 1 - 2.998962673 t^2 + 1.426165384 t^4 - 0.209372553 t^6 + 0.264159459 t^8 - 1.136788349 t^{10} + 2.983021729 t^{12} + \ldots
\end{align*}
\]

To improve the accuracy of the approximation \(u_4 \), the [4,4] Padé approximation will be constructed by the VIM-Padé technique. For simplicity, we denote \(u_4 \) by

\[
u_4 = 1 - 2.998962673 t^2 + 1.426165384 t^4 - 0.209372553 t^6 + 0.264159459 t^8 + O(t^{10})
\]

The Laplace transformation is applied to the fourth-order approximation \(u_4 \), which results in

\[
L[u_4] = \frac{1}{s} - \frac{5.997925347}{s^3} + \frac{34.22796214}{s^5} - \frac{150.74823817}{s^7} + \frac{10650.909372317}{s^9} + \ldots
\]
Letting \(t = \frac{1}{3} \), it follows the transformed solution

\[
L[\mu_4] = t - 5.997925347t^3 + 34.227969214t^5 - 150.74823817t^7 + 10650.909372317t^9 + \ldots
\]

The [4/4] Padé approximation to \(L[\mu_4] \) can be given by

\[
\left[\frac{4}{4} \right] = \frac{t + 25.223722248t^3}{1 + 31.221647595t^2 + 153.037142258t^4}
\]

We rewrite the [4/4] diagonal approximation as

\[
\left[\frac{4}{4} \right] = \frac{s^3 + 25.223722248s}{s^4 + 31.221647595s^2 + 153.037142258}
\]

By using the inverse Laplace transformation to the [4/4] Padé approximation, we obtain the following VIM-Padé solution

\[
u_{[4/4]}(t) = 1.004794808\cos(2.467637277t) - 0.004794808\cos(5.013223899t)
\]

Figure 2. Numerical results of VIM-Padé solutions and Runge-Kutta solutions with \(\beta = 1 \), (a) \(u(t) \), (b) \(y_1 \) and (c) \(y_2 \).
Similarly, the rest VIM-Padé solutions can be given by the previous procedure. Based on the approximation u_4, the [6/6] VIM-Padé solution reads as

$$u_{[6/6]}(t) = 1.00100528\cos(2.457914597t) - 0.001007615\cos(7.055489902t) - 2.336921219 \cdot 10^{-6}\cos(16.893834096t)$$

In order to show the efficiency of the VIM-Padé method, we provide the numerical comparisons of the VIM-Padé method and Runge-Kutta method for solving nonlinear oscillator (equation (1)). Figure 2(a) to (c) shows the numerical behaviors of the approximations to $u(t)$, y_1 and y_2, respectively. The VIM-Padé method works well for this initial value problem. The VIM-Padé solutions agree well with the approximated solutions given by Runge-Kutta method. We remark that the accuracy of [4/4] or [6/6] VIM-Padé solutions can be improved further by considering the diagonal Padé approximation of higher order.

We then consider the sensitivity of the parameter A. We will further consider the initial value problem associated with the nonlinear system (equation (1)) with a different $A = 0.5$. The VIM iteration formula can be represented as

$$u_{n+1}(t) = u_n(t) + \int_0^t (\xi - t) \left\{ \left(1 + \frac{3}{22}u_n(\xi)^2\right) \frac{d^2u_n}{d\xi^2} + \frac{3}{11}u_n(\xi)\left(\frac{du_n}{d\xi}\right)^2 + \frac{50}{11}u_n(\xi) + 25u_n(\xi)^3 \right\} d\xi$$

with an initial approximation $u_0(t) = 0.5$.

![Figure 3. Comparisons of VIM-Padé solutions and Runge-Kutta solutions with $A = 0.5$. (a) $u(t)$, (b) y_1 and (c) y_2.](image-url)
By iteration (10), it follows the fourth-order approximation
\[
 u_4 = 0.5 - 1.236262066t^2 + 0.521962409t^4 - 0.104835325t^6 + 0.021499521t^8 - 0.003561883t^{10} + 0.000041529t^{12} + \ldots
\]

We can obtain the \([4/4]\) and \([6/6]\) VIM-Padé solutions as follows
\[
 u_{[4/4]}(t) = 0.499775768\cos(2.219904941t) + 0.000242432\cos(6.335170804t),
\]
\[
 u_{[6/6]}(t) = 0.499776346\cos(2.220040632t) + 0.000223879\cos(6.469422276t) - 2.256027449 \cdot 10^{-7}\cos(12.258017653t)
\]

We show the numerical comparisons of the VIM-Padé solutions and the Runge-Kutta solutions in Figure 3(a) to (c), respectively. The numerical results show that the VIM-Padé technique also performs well for the oscillator (equation (1)) with a different \(A\). The approximated solutions obtained by VIM-Padé technique are expressed by a series of cosine functions. We note that the two frequencies are approximately multiplied, and the multiplier relationship will be improved further by considering more iteration steps of the VIM. In sum, the VIM-Padé technique can be seen as an efficient method for solving this nonlinear oscillator.

Conclusions
In this paper, we focused on the nonlinear free vibration of a conservative oscillator by a combined VIM-Padé technique. Numerical examples associated with two initial value problems were considered to illustrate the effectiveness of this method. Comparisons of the VIM-Padé technique and Runge-Kutta method were provided, showing that the VIM-Padé method performs well without linearization or perturbation. However, there are also two open problems, one is that how to obtain the approximated period solutions given by a series of cosine functions with a frequency and its multiples, the other is that how to choose the order of VIM-Padé approximation and the initial approximation such that the total computational cost can be optimal. We will focus on these two topics in our future work and extend the VIM and its modification to the nonlinear systems with fractal or fractional derivatives.29–37

Declaration of conflicting interests
The author(s) declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

Funding
The author(s) disclosed receipt of the following financial support for the research, authorship, and/or publication of this article: The work was supported by the Natural Science Foundation of Zhejiang Province (LY17A010001).

ORCID iD
Junfeng Lu https://orcid.org/0000-0001-5857-3686

References
1. Telli S and Kopmaz O. Free vibrations of a mass grounded by linear and nonlinear springs in series. J Sound Vib 2006; 289: 689–710.
2. Lai SK and Lim CW. Accurate approximate analytical solutions for nonlinear free vibration of systems with serial linear and nonlinear stiffness. J Sound Vib 2007; 307: 720–736.
3. Hoseini SH, Pirbadaghi T, Asghari M, et al. Nonlinear free vibration of conservative oscillators with inertia and static type cubic nonlinearities using homotopy analysis method. J Sound Vib 2008; 316: 263–273.
4. Ganji DD, Karimpour S and Ganji SS. He’s iteration perturbation method to nonlinear oscillations of mechanical systems with single degree-of freedom. Int J Mod Phys B 2009; 23: 2469–2477.
5. Baghani M, Fattahi M and Amjadian A. Application of the variational iteration method for nonlinear free vibration of conservative oscillators. Sci Iranica 2012; 19: 513–518.
6. Bayat M, Pakar I and Cveticanin L. Nonlinear free vibration of systems with inertia and static type cubic nonlinearities: an analytical approach. *Mech Mach Theory* 2014; 77: 50–58.
7. Mohammadian M and Shariati M. Approximate analytical solutions to a conservative oscillator using global residue harmonic balance method. *Chinese J Phys* 2017; 55: 47–58.
8. He JH. The simplest approach to nonlinear oscillators. *Results Phys* 2019; 15: 102546.
9. He JH. Some asymptotic methods for strongly nonlinear equations. *Int J Mod Phys B* 2006; 20: 1141–1199.
10. He JH and Wu XH. Variational iteration method: new development and applications. *Comput Math Appl* 2007; 54: 881–894.
11. He JH. Variational iteration method – a kind of non-linear analytical technique: some examples. *Int J Non-Linear Mech* 1999; 34: 699–708.
12. He JH. Variational iteration method – some recent results and new interpretations. *J Comput Appl Math* 2007; 207: 3–17.
13. He JH, Kong HY, Chen RX, et al. Variational iteration method for Bratu-like equation arising in electrospinning. *Carbohydr Polym* 2014; 105: 229–230.
14. Abassy TA, Magdy AE and Zoheiry HE. Toward a modified variational iteration method. *J Comput Appl Math* 2007; 207: 137–147.
15. Lu JF. Modified variational iteration method for variant Bousinesq equation. *Therm Sci* 2015; 19: 1197–1201.
16. Anjum N and He JH. Laplace transform: making the variational iteration method easier. *Appl Math Lett* 2019; 92: 134–138.
17. Wu Y and He JH. Homotopy perturbation method for nonlinear oscillators with coordinate-dependent mass. *Results Phys* 2018; 10: 270–271.
18. Momani S, Erjaee GH and Alnasr MH. The modified homotopy perturbation method for solving strongly nonlinear oscillators. *Comput Math Appl* 2009; 58: 2209–2220.
19. He JH. Homotopy perturbation method with two expanding parameters. *Indian J Phys* 2014; 88: 193–196.
20. Liu ZJ, Adamu MY, Suleiman E, et al. Hybridization of homotopy perturbation method and Laplace transformation for the partial differential equations. *Therm Sci* 2017; 21: 1843–1846.
21. He JH. Homotopy perturbation method with an auxiliary term. *Abstr Appl Anal* 2012; 857612 Article ID.
22. Baker GA. *Essential of Pade´ approximants*. London: Academic Press, 1975.
23. Baker GA and Graves-Morris P. *Encyclopedia of mathematics and its application 13, parts I and II: Padé approximants*. New York: Addison-Wesley Publishing Company, 1981.
24. He JH. Variational approach for nonlinear oscillators. *Chaos Soliton Fract* 2007; 34: 1430–1439.
25. He JH. A modified Li-He’s variational principle for plasma. *Int J Heat Fluid Flow* 2019; DOI: 10.1108/HFF-06-2019-0523.
26. He JH. Lagrange crisis and generalized variational principle for 3D unsteady flow. *Int J Heat Fluid Flow* 2019; DOI: 10.1108/HFF-07-2019-0577.
27. He JH and Sun C. A variational principle for a thin film equation. *J Math Chem* 2019. DOI: 10.1007/s10910-019-01063-8.
28. He JH. Variational principles for some nonlinear partial differential equations with variable coefficients. *Chaos Soliton Fract* 2004; 19: 847–851.
29. He JH and Ji FY. Taylor series solution for Lane-Emden equation. *J Math Chem* 2019; 57: 1932–1934.
30. Hu Y and He JH. On fractal space-time and fractional calculus. *Therm Sci* 2016; 20: 773–777.
31. He JH and Ji FY. Two-scale mathematics and fractional calculus for thermodynamics. *Therm Sci* 2019; 23: 2131–2133.
32. Ain QT and He JH. On two-scale dimension and its applications. *Therm Sci* 2019; 23: 1707–1712.
33. He JH. Fractal calculus and its geometrical explanation. *Results Phys* 2018; 10: 272–276.
34. Wang Y. Fractal derivative model for tsunami travelling. *Fractals* 2019; 27: 1950017.
35. He JH. A tutorial review on fractal space time and fractional calculus. *Int J Theor Phys* 2014; 53: 3698–3718.
36. Qiu YY. Numerical approach to the time-fractional reaction-diffusion equation. *Therm Sci* 2019; 23: 2245–2251.
37. Wang KL and Yao SW. Numerical method for fractional Zakharov-Kuznetsov equations with He’s fractional derivative. *Therm Sci* 2019; 23: 2163–2170.