Response of Wheat (*Triticum aestivum*) to Exogenously Applied Chromium: Effect on Growth, Chlorophyll and Mineral Composition

Abdul Ghani¹**, Imran Khan¹, Sabahat Umer¹, Iftikhar Ahmed¹, Irfan Mustafa² and Noor Mohammad³

¹Department of Botany, University of Sargodha, Sargodha, Pakistan
²Department of Zoology, University of Sargodha, Sargodha, Pakistan
³Ayub Agricultural Research Institute Faisalabad, Pakistan

Corresponding author: Abdul Ghani, Department of Botany, University of Sargodha, Sargodha, Pakistan. Tel: 92 48 9230811; E-mail: Ghanialiff@gmail.com

Received December 16, 2014; Accepted January 27, 2015; Published February 03, 2015

Citation: Ghani A, Khan I, Umer S, Ahmed I, Mustafa I, et al. (2015) Response of Wheat (*Triticum aestivum*) to Exogenously Applied Chromium: Effect on Growth, Chlorophyll and Mineral Composition. J Environ Anal Toxicol 5: 273. doi:10.4172/2161-0525.1000273

Copyright: © 2015 Ghani A, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Abstract

Heavy metals are very dangerous to environment and harm to all living organisms e.g. plants and animals etc. They enter the plant through soil and damage the internal mechanisms of plants. Chromium is very toxic to plants as well as animals. It has negative influences on plant growth, mineral nutrients and chlorophyll content.

Increasing its concentration causes reduction in plant growth, Chlorophyll contents and mineral nutrients in Wheat (*Triticum aestivum* L.). All the parameters were found to be reduced if increase in the concentration of chromium.

Keywords: Plant growth; Chlorophyll; Mineral nutrients; Wheat (*Triticum aestivum* L.) mechanism.

Introduction

Chromium is very toxic Heavy metal to living bodies and dangerous to human health and plant vegetation’s. Pollution of the environment is increasing with increase in the world population. Plant material consumes the chromium and it enters the food chain in this way. High concentrations of chromium were found to be very toxic to vegetation. Sometime excess concentration of chromium cause barren land but on the other hand in different countries, chromium is used on large scale including chemical Production, paper and pulp production, tanning, wood preservation, electroplating, production of pigments and in metallurgy [1]. These industries [2] have a major role in the spreading of Cr pollution which create serious threats to living creature both animals and plants. Chromium phytotoxicity has adverse effects on the growth parameters of plants such as stoppage of early seedling development, decrease in biomass, reduction in root growth and chlorosis (1995). There were many studies were concluded on chromium toxicity in crop plants. All the mechanisms of plants such as photosynthesis, respiration and defensive mechanisms etc were significantly affected by Chromium [3].

There are two sources through which chromium becomes available to the environment, natural and anthropogenic, burning of oil and coal, fertilizers, oxidants, metal plating tanneries, chromium steel and oil well drilling [4]. It is highly toxic metal to plants and microorganisms [5]. Different types of enzymes such as catalases, peroxidases, reductases are affected by chromium.

Lose of chlorophyll and accidental death of plant tissues and organs occur by chromium toxicity [5]. When there is direct contact of metal with cellular components then variety of metabolic responses leading to shift in the growth of plants [6]. Soil quality decreases due to accumulation of chromium in the soil and soil unable to produce yielding in normal quantity. Most of the soil nutrients are not easily available to plants for the development of new organs and production of yield. Toxic material transfer from one place to other through discharging from factories into water streaming and damage the water life including algae, fungi, phytoplankton’s and other microorganisms [7].

Material and Method

The seeds of Wheat (*Triticum aestivum* L.) were sown in earthen pots which were filled with loamy soil. Eight (08) seeds were sown in each pot and five plants were kept after germination in each pot for thinning process. Soil water applied to the plants when required. Completely randomizing designs were made for the experiment with three replicates. To eliminate the experimental bias the treatments were randomized. Eight levels of chromium 3, 6, 9, 12, 15, 18, 21, 24 ppm per kg soil with distilled water and applied to wheat 15 days old seedlings which were grown in the soil with pH 8. No plant survived beyond 24 ppm because chromium level selected for this study were 0 (control) 6, 12, 18 and 24 ppm. Normal growth conditions were provided to plants for their germination. These levels of chromium were applied to Wheat (*Triticum aestivum* L.) seedlings and plants were grown for 15 days after treatment application before harvest. The composition of nutrients follows: as Ca (NO3)3.4 mM; KNO3 5 mM; MgSO4 2 mM, KH2PO4 1.02 mM; as ppm–H3BO3 92.2 µM; MnSO4 2.19 µM, ZnCl2 1.62 µM CuSO4 0.69 µM, Na2MoO4; 0.29 µM Na-Fe-EDTA 0.15 µM each. All the salts were dissolved and mixed after autoclaving separately. Final pH of the solution was adjusted as 6.7.

Chlorophyll (a, b, and total) analysis

By using the formula of the pigment contents of 15 days old plants were extracted. The leaves were cut into small pieces that were extracted with 70% acetone. The absorbance was measured at 643 nm and 665 nm for chlorophyll a, b and total chlorophyll respectively by using spectrophotometer.

Chlorophyll a, b and total chlorophyll were calculated according to the Lichtenthaler and Wellburn (1983) formulae.

\[
\text{Chl a (mg g}^{-1}\text{ leaf fresh weight)} = \left[12.7(O663) - 2.69 (O645)\right] \times \frac{V}{1000}\times W. \\
\text{Chl b (mg g}^{-1}\text{ leaf fresh weight)} = \left[22.9(O645) - 4.68 (O663)\right] \times \frac{V}{1000}\times W.
\]
Table 1: Effect of different concentrations of chromium on growth and chlorophyll contents of Wheat (Triticum aestivum L.).

Elements	Control	6 ppm	12 ppm	18 ppm	24 ppm	C.D at 5%			
N	0	2.09 ± 3	2.26 ± 0.6	2.89 ± 1**	1.86 ± 2***	3.32 ± 3	465 ± 5	244 ± 3	239 ± 3
P	0	2.32 ± 0.05	2.09 ± 0.05	1.46 ± 0.06	5.6 ± 0.3	524 ± 5	239 ± 3		
K	0	4.98 ± 0.3	2.89 ± 1**	1.86 ± 2***	3.32 ± 3	465 ± 5	244 ± 3	239 ± 3	
Na	0	1.46 ± 0.06	5.6 ± 0.3	524 ± 5	239 ± 3	244 ± 3	239 ± 3		
Ca	0	5.6 ± 0.3	524 ± 5	239 ± 3	244 ± 3	239 ± 3	244 ± 3	239 ± 3	
Fe	0	5.6 ± 0.3	524 ± 5	239 ± 3	244 ± 3	239 ± 3	244 ± 3	239 ± 3	
Zn	0	5.6 ± 0.3	524 ± 5	239 ± 3	244 ± 3	239 ± 3	244 ± 3	239 ± 3	

Statistical significant: *= P ≤ 0.1 **= P ≤ 0.05 ***= P ≤ 0.01

Table 2: Effect of different chromium concentrations on mineral contents of Wheat (Triticum aestivum L.).

Treatments Chromium Concentrations	Control	6 ppm	12 ppm	18 ppm	24 ppm	
shoot Length(cm)	11.50 ± 0.286	10.370 ± 0.366	9.750 ± 0.07	9.350 ± 0.215	8.390 ± 0.212	1.14
Root length (cm)	10.745 ± 0.024	8.92 ± 0.082	7.950 ± 0.022	6.190 ± 0.089	5.980 ± 0.078	0.21
Root dry weight (g)	2.90 ± 0.023	2.20 ± 0.025	2.11 ± 0.022	1.13 ± 0.027	1.09 ± 0.024	0.11
Shoot dry weight (g)	4.80 ± 0.024	4.01 ± 0.022	4.01 ± 0.024	2.97 ± 0.025	2.01 ± 0.028	0.13
Chlorophyll concentration (mg/g F.W)	2.950 ± 0.000	2.650 ± 0.000	2.660 ± 0.000	2.520 ± 0.000	2.470 ± 0.000	0.03

Value represented in mean ± SD with three replicates.

References

1. Zayed AM, Terry N (2003) Chromium in the environment: factors affecting biological remediation. Plant and soil 249: 139-156.
2. Ghafoor A, Rauf A, Arif M, Muzafar W (1994) Chemical composition of effluents from different industries of the Faisalabad city. Pak J Agri Sci 31: 367-369.
3. ALI NA, Ater M, Sunahara GI, Robidoux PY (2004). Phytoxicity and bioaccumulation of copper and chromium using barley (Hordeum Vulgare L.) in spiked artificial and natural forest soils. Ecotoxicology and environmental safety 57: 363-374.
4. Abbassi SS, Abbassi N, Soni R (1998) Heavy metals in the environment. Mittal Publication, New Delhi, India.
5. Cervantes C, Campos-Garcia, J Debars S, Gutierrez-Corona F, Loza-Tavares H, et all. (2001) Interaction of chromium with Microgenesis and plants. FEMS Microbiol Rev 25: 335-347.
6. Assche FV, Clijsbers H (1990) Effects of metals on enzyme activity in plants. Plant Cell Environ 13:195-206.
7. Giller KE, Witter E, McGrath SP (1998) Toxicity of heavy metals to microorganisms and microbial processes in agricultural soils: A review. Soil Biol Biochem 30: 350-365.
8. Dubois M, Gollens KA, Hamilton JK, Rebers PA, Smith F (1956) Spectrophotometric method for determination of sugar and related substances. Anal Chem 28: 350-365.
9. Lowry OH, Rosenbrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the folin phenol reagent. J Biol Chem 193: 265-275.
10. Lepp NW (1981) Effect of heavy metal pollution on plants. Applied Science Publishers London Vol 2.
11. Woolhouse HW (1983) Toxicity and tolerance in the responses of plant metals. In: Encyclopedia of plant physiology. Vol 12C (Eds: Lange H, et al.) Springer Berlin-Heidelberg, Germany 245-300.
12. Moral R, Pedreno N, Gomez I, Matrix J (1995) Effect of chromium on nutrient element content and morphology of tomato. J Plant Nutrition 18: 175-183.
13. Chatterjee J, Chatterjee C (2000) Phytoxicity of cobalt, chromium and copper in Cauliflower. Environ Pollut 109: 69-74.
14. Baszynski T L, Wajda MK, Danuta WZK, Tukendorf A (1980) Photosynthetic activity of cadmium treated tomato plants. Physiologia Plantarum 48: 365-370.
15. Prasad DDK, Prasad RK (1987) Altered δ-aminolaevulinic acid metabolisms by lead and mercury in germinating seedlings of bajra (Pennisetum typhoides). J Plant Physiol 127: 241-249.
16. Vazquez MD, Poschenrieder CH, Barcelo J (1987) Chromium VI induced structural and ultrastructural changes in Bush bean plants. Annals of Bot 59: 427-438.
17. Freeman JL, Persans MW, Nieman K, Albrecht C, Peer W, et al. (2004) Increased glutathione biosynthesis plays a role in nickel tolerance in Thlaspi nickel hyperaccumulators. Plant Cell 16: 2176-2191.
18. Abbassi SS, Soni R (1985) Environmental management and treatment of chromium. J Inst Eng 65:113-117.
19. Agarwala SC, Sharma CP, Kumar A (1962) The effect of heavy metals and bicarbonate excess on sun flower plants grown in sand culture with special reference to catalase peroxidase. J Ind Bot Soc 41:72-77.
20. Bisht SS, Sharma CP, Kumar A (1976) Plant response to excess concentration of heavy metals. Geophytol 6: 296-307.
21. Defillippis LF, Palaghy CK (1976) The effect sub-lethal concentration of zinc and mercury on chlorella. II photosynthesis and pigment composition. Zeitschrift für Pflanzenphysiologie 101: 37-47.
22. Euler HV, Josephson K (1927) Uber katalase. Leibigs Ann 452: 158-184.
23. Dube BK, Tewari K, Chatterjee J, Chatterjee C (2003) Excess chromium alters uptake and translocation of certain nutrients in citrullus. Chemosphere 53: 1147-1153.
24. Fayiga AO, Ma LQ, Cao X, Rathinasabapathi B (2004) Effects of heavy metals on growth and arsenic accumulation in the arsenic hyperaccumulator Pteris vittata L. Environ Poll 2: 289-296.
25. Han HS, Lee KD (2005) Physiological response of soybean inoculation of Bradyrhizobium japonicum with PGPR in saline conditions. Res J Agri Bio Sci 3: 216-221.
26. Hao XZ, Zhou DM, Si YB (2004) Revegetation of copper mine tailings with ryegrass and willow. Pedosphere 14: 283-288.
27. Kozdroj J, van Elsas JD (2001) Structural diversity of microbial communities in arable soils of a heavily industrialized area determined by PCR-DGGE finger printing and FAME profiling. Appl Soil Ecol 17: 31-42.
28. de Filippis LF, Hump R, Ziegler H (1981) The effects of sublethal concentration of zinc, cadmium and mercury on Euglena. Growth and pigments. Zeichrift für Pflanzenphysiologie 101: 37-47.
29. Krishnamurthy S, Wilikens MM (1994) Environmental chemistry of Cr. Northeasteren geology 16: 14-17.
30. Luck H (1963) Peroxidase. In: Method in enzymatic analysis. (Ed: H.U. Bergmeyer) Academic Press, New York and London. 895-897.
31. Peter Roberts (1992) Beyond the limits Donella Meadows, Dennis Meadows and Jorgen Ronders Earthscan Publications Ltd London.
32. Pillay AE, Williams JR, EL Mardi MO, Al-Lawati SMH, Al-Hadabbi MH, et al. (2003) Risk assessment of chromium and arsenic in date palm leaves used as livestock feed. Environ Int 29: 541-545.
33. Rai UN, Tripathi RD, Kumar N (1992) Bioaccumulation of chromium and toxicity on growth, photosynthetic pigments, photosynthesis, in vivo nitrate reductase activity and protein content in chlorococcaceal green alga, Glaucocystis nostochinearnum Itzigsohn. Chromosome 25: 721-732.
34. Sharma DC, Pant RC (1994) Chromium uptake its effects on certain plant nutrients in maize (Zea mays L. CV Ganga 5) Journal of environmental science and health Part A 29: 941-948
35. Tandon PK, Srivastava M, Gupta S (2000) Response of moong (Phaseolus radiatus L.) seeds to excess concentration of certain heavy metals. J Biol chem Research 26: 56-61.
36. Zayed A, Lytle CM, Qian JH, Terry N (1998) Chromium accumulation, translocation and chemical speciation in vegetable crops. planta 206: 293-299.