Purinergic Signaling in Mast Cell Degranulation and Asthma

Zhan-Guo Gao* and Kenneth A. Jacobson*

Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, United States

Mast cells are responsible for the majority of allergic conditions. It was originally thought that almost all allergic events were mediated directly only via the high-affinity immunoglobulin E receptors. However, recent evidence showed that many other receptors, such as G protein-coupled receptors and ligand-gated ion channels, are also directly involved in mast cell degranulation, the release of inflammatory mediators such as histamine, serine proteases, leukotrienes, heparin, and serotonin. These mediators are responsible for the symptoms in allergic conditions such as allergic asthma. In recent years, it has been realized that purinergic signaling, induced via the activation of G protein-coupled adenosine receptors and P2Y nucleotide receptors, as well as by ATP-gated P2X receptors, plays a significant role in mast cell degranulation. Both adenosine and ATP can induce degranulation and bronchoconstriction on their own and synergistically with allergens. All three classes of receptors, adenosine, P2X and P2Y are involved in tracheal mucus secretion. This review will summarize the currently available knowledge on the role of purinergic signaling in mast cell degranulation and its most relevant disease, asthma.

Keywords: purinergic signaling, adenosine receptors, P2Y receptors, P2X receptors, mast cell degranulation, asthma, allergy, bronchoconstriction

INTRODUCTION

It is known that purinergic signaling is involved in various immune responses (Cekic and Linden, 2016; Cronstein and Sitkovsky, 2017). However, its role in mast cell degranulation, which leads to hypersensitivity reactions in response to environmental factors, is not fully understood. There are three subfamilies of receptors, 7 P2X receptor (P2XR) subunits (combined into functional trimeric channels), 8 P2Y receptors (P2YRs) and 4 adenosine receptors (ARs), that respond to purine nucleosides and purine (or pyrimidine) nucleotides (Jacobson and Gao, 2006; Chen et al., 2013; Burnstock and Boeynaems, 2014). Adenosine 5′-triphosphate (ATP, compound 3 in Figure 1) is abundant in mast cells, stored in granules and secreted upon activation. ATP acts via P2X receptors (P2XRs), which are ligand-gated cation channels, to induce mast cell degranulation (Bulanova and Bulfone-Paus, 2010). In general, ATP is considered a major damage-associated molecular pattern molecule (DAMP) in the immune system, and one of its principle mechanisms is by activating the P2X7R (Di Virgilio and Vuerich, 2015). Other nucleotides, such as adenosine 5′-diphosphate (ADP) 2, uridine 5′-diphosphate (UDP) 5, uridine 5′-triphosphate (UTP) 6, Up4A 7 and UDP-glucose (UDP-G) 8, act mainly via P2Y receptors which are coupled to G proteins (Jacobson et al., 2013; Gao et al., 2013). Purine nucleosides, especially adenosine 9, released under stress conditions, are demonstrated to be involved in many allergic conditions, particularly,
the pathogenesis of asthma and the subsequent chronic obstructive pulmonary diseases (COPD) (Adriaensen and Timmermans, 2004; Barnes, 2011). Both adenosine and allergens can cause bronchoconstriction (Cushley et al., 1984; Rafferty et al., 1987; Fozard, 2003; Hua et al., 2013b). Adenosine 5′-monophosphate (AMP) 1 also induces bronchoconstriction in asthmatic patients, and this compound, which forms adenosine in situ, is used in inhalation challenge testing (Isogai et al., 2017). Additionally, adenosine, ATP, and allergens can induce mast cell degranulation independently or synergistically (Nanomura et al., 2010; Hua et al., 2013a).

AR antagonists, theophylline 21 and enprofylline 25, have long been used in the clinic, particularly for asthma (Schultze-Werninghaus and Meier-Sydow, 1982). The mechanism of action of these xanthines was initially thought to be via the inhibition of phosphodiesterases (PDEs), and they are now considered to also act via the antagonism of one or several subtypes of ARs (Marquardt et al., 1978; Pauwels and Joos, 1995; Fozard, 2003; Barnes, 2011). It should be noted that adenosine-induced bronchodilation is possibly mediated via the A$_2B$AR, whereas bronchoconstriction occurs via the A$_1$AR. Antagonism of the A$_1$AR causes bronchodilation, while blockade of the A$_2B$AR causes bronchoconstriction (which will be discussed later). The simple methylxanthines, e.g., theophylline, often antagonize both A$_1$ and A$_2B$ARs thus producing a mixed effect, although the overall effect is bronchodilation in most cases. It should also be kept in mind that inhibition of PDE3 and PDE4 should produce a net effect similar to that of activation of the A$_2B$AR, i.e., elevation of 3′,5′-cyclic adenosine monophosphate (cAMP) levels in smooth muscle cells. However, upon examination of the dose response curves for action of simple xanthines, the antagonism of ARs begins to occur at lower concentrations than PDE inhibition (Daly and Fredholm, 1998). An increase in cAMP leads to activation of protein kinase A (PKA) and exchange protein directly activated by cAMP (EPAC), which phosphorylate target proteins, leading to the modulation of myosin activity and eventually relaxation of smooth muscle. The A$_2B$AR is also known to induce intracellular Ca$^{2+}$ mobilization in many types of cells including smooth muscle cells leading to the relaxation of tracheal smooth muscle, which is often independent of Gs-protein and cAMP. It is important to understand the physiological roles and the signaling mechanisms involved in order to develop purinergic agonists and antagonists with appropriate selectivity and efficacy. Several P2YRs, e.g., P2Y$_{13}$ and P2Y$_{14}$, (Gao et al., 2010a,b, 2013) and P2XRs, e.g., P2X$_4$ and P2X$_7$ (Yoshida et al., 2017), are also recently demonstrated to be mediators and/or potentiators of mast cell degranulation.

This review will first summarize the currently available knowledge related to the role of adenosine, P2Y and P2X receptors in mast cell degranulation. We will then analyze the therapeutic rationale and potential mechanisms of AR, P2Y, and P2X receptor ligands in asthma, particularly in bronchoconstriction and tracheal mucus secretion. Methylxanthines, e.g., theophylline 21, enprofylline 25, and

FIGURE 1 | Structure of native agonists of the purinergic receptors, including both P2Rs (1–8) and ARs (9), and structures of agonist (10–20) and antagonist (21–37) ligands developed for the ARs, as described in the text. Compounds 24 – 26 inhibit PDEs, but are weaker in inhibiting ARs.
doxofylline 24 are used in asthmatics for the alleviation of bronchoconstriction and trachea mucus secretion (Barnes, 2011). Two inhaled, selective AR ligands with anti-inflammatory actions, i.e., A\textsubscript{2A} AR agonist UK432097 16 (for COPD) and mixed A\textsubscript{2A} AR agonist/A\textsubscript{3} AR antagonist GW328267X 17 (for asthma and allergic rhinitis) failed to show efficacy in clinical trials, but there were complicating pharmacokinetic factors (Mantell et al., 2010). Selective A\textsubscript{2B} AR antagonist CVT-6883 34 was under development for asthma (Zablocki et al., 2005). P2Y\textsubscript{2}R agonists uridine 5′-triphosphate 6 (UTP) and INS365 (compound 39 in Figure 2) have been in clinical trials for patients with cough due to its potential in airway mucus clearance (Noone et al., 1999; Kellerman, 2002). Orally active P2X3R antagonist MK-7264 49 (gefapixant, AF-219) is under clinical investigation for the treatment of idiopathic chronic cough, asthma, pulmonary fibrosis and other conditions (clinicaltrials.gov) [accessed October 15, 2017]. Thus, all three sub-families of receptors activated by purine nucleosides or nucleotides, are potential targets for asthma and some other allergic conditions.

REVIEW CONTENTS: ROLES OF FOUR AR SUBTYPES IN MAST CELL DEGRANULATION, MUCUS SECRETION AND BRONCHOCONSTRICION

It has been known for decades that inhaled adenosine induces bronchoconstriction in asthmatics and COPD patients, but not in non-asthmatics (Cushley et al., 1984). Exercise-induced asthma is often accompanied by increases in plasma adenosine (Fozard, 2003). Both adenosine deaminase (ADA) and AR antagonist theophylline 21 can block adenosine-induced bronchial hyperresponsiveness (Rothstein, 1980). However, it is still not fully understood which AR subtype is actually involved in the antiasthmatic effects of methylxanthines (Barnes, 2011). It is important to establish the precise roles of adenosine and AR subtypes in mast cell degranulation, bronchoconstriction and mucus secretion, and develop appropriate AR subtype-selective agonists/antagonists for asthma and COPD.

IN VITRO STUDIES OF DEGRANULATION USING MAST CELL LINES

RBL-2H3 Cells

RBL-2H3 rat basophilic cells are a useful model for studies of degranulation. Ali et al. (1990) have shown that a non-selective adenosine agonist, NECA 12, acts synergistically with antigen in RBL-2H3 mast-like cells via a novel AR in a pertussis toxin (PTX)-sensitive manner. This novel AR was later cloned and defined as A\textsubscript{3} AR (Zhou et al., 1992). Collado-Escobar et al. (1990) reported that the widely used glucocorticoid dexamethasone down-regulates IgE-receptor-mediated signals but up-regulates A\textsubscript{3} AR-mediated signals in RBL-2H3 cells, suggesting A\textsubscript{3} AR involvement in inflammation and mast cell function. Ramkumar et al. (1995) showed later that dexamethasone increases the expression of both A\textsubscript{3} AR and G proteins in RBL-2H3 cells which contributes to the enhanced response to adenosine. Jin et al. (1997) reported that, in addition to adenosine, inosine, which was known to bind to the rat A\textsubscript{3} AR (Jacobson et al., 2017), also stimulates degranulation in RBL-2H3 cells. Thus, results from these earlier studies suggest that adenosine and its analogs, acting via the A\textsubscript{3} AR, can stimulate degranulation on their own, enhance the effect of antigen to stimulate degranulation via FcεRI receptor, and may offset the anti-inflammatory effects of glucocorticoids, such as dexamethasone, suggesting the anti-allergic potential of the A\textsubscript{3} AR antagonists.

However, unlike the results from studies using RBL-2H3 cells, Auchampach et al. (1997) showed that in canine mast cells which express A\textsubscript{1} AR, A\textsubscript{2B} AR, and A\textsubscript{3} AR, degranulation is mediated by the A\textsubscript{2B} AR, rather than the A\textsubscript{3} or A\textsubscript{1} ARs. NECA-stimulated degranulation is not PTX-sensitive and is blocked by enprofylline 25, a slightly A\textsubscript{2B} AR selective antagonist (K\textsubscript{i} = 7 or 4.7 or 19.8 \textmu M at human A\textsubscript{3} AR), with weaker effects on human A\textsubscript{1} AR (42 \textmu M), A\textsubscript{2A} AR (32 \textmu M), and A\textsubscript{3} AR (65 \textmu M) (Müller and Jacobson, 2011). Auchampach et al. (1997) suggest that A\textsubscript{1} AR and A\textsubscript{3} AR might involve a mast cell function other than degranulation in this specific cell type. However, there was no further report since then on the role of the A\textsubscript{2B} AR in canine mast cell degranulation.

HMC-1 and LAD2 Human Mast Cell Lines

Two human mast cell lines, HMC-1 (Butterfield et al., 1988) and LAD2 (Kirshenbaum et al., 2003), have been used for the study of mast cell function. HMC-1 cell line is often not considered as a good model for studying mast cell degranulation due to the low expression level of high-affinity IgE receptor (Guhl et al., 2010), but it has some other mast cell functions. Feoktistov and Biaggioni (1995) demonstrated that HMC-1 cells express both A\textsubscript{2A} and A\textsubscript{2B} ARs. NECA 12, but not A\textsubscript{2A} AR-selective agonist CGS21680 13, induced interleukin (IL)-8 production in HMC-1 mast cells in an enprofylline-sensitive manner, suggesting a possible role of the A\textsubscript{2B} AR in mast cell function. In the simulated tumor microenvironment, contact with cancer cells induces HMC-1 cells to upregulate IL-8 secretion, and this effect is dependent on released adenosine activating the A\textsubscript{3} AR (Gorzalczany et al., 2017).

The LAD2 cell line can be used as a model for the study of mast cell degranulation. LAD2 cells highly express FcεRI\textalpha and FcεRIβ, and antigens can induce a robust release of histamine (Guhl et al., 2010). It is suggested that connective tissue-type and mucosal-type mast cells are developed via distinct pathways, and tryptase/chymase expression can be considered as an indication of the maturity of mast cells (Ma et al., 2008; Guhl et al., 2010). Guhl et al. (2010) reported that tryptase and chymase expression is low in LAD2 cells in comparison to that in the primary skin mast cells, although much higher than in HMC-1 cells. Nevertheless, Leung et al. (2014) were able to examine the role of ARs in degranulation of human LAD2 mast cells, which express A\textsubscript{2A}, A\textsubscript{2B}, and A\textsubscript{3} but not A\textsubscript{1} ARs. The non-selective agonist NECA alone induced a small but significant stimulation of β-hexosaminidase (β-hex) release. Further, NECA increased both antigen and C3a-stimulated degranulation. The authors suggested that more than one AR subtype is involved...
in degranulation. Thus, there is a difference in AR expression profile and roles of ARs in various types of mast cells. Receptor expression level may play a critical role in mast cell activation and release of both newly synthesized cytokines and chemokines and stored mediators that are implicated in mast cell mediated allergic and inflammatory reactions in asthma. It seems that the differences between LAD2 and HMC-1 in terms of degranulation are mainly related to the expression level of FCεRI, tryptase and chymase, and to a much lesser extent related to histamine content or c-Kit expression (Guhl et al., 2010). The role of adenosine to induce or enhance degranulation may also be related to the AR expression in various types of mast cells. The use of primary mast cells is needed for the characterization of the roles of various ARs.

IN VITRO STUDIES OF DEGRANULATION USING PRIMARY MAST CELLS

Murine Primary Mast Cells
The role of adenosine receptors in mast cell degranulation was first reported in primary rat mast cells (Marquardt et al., 1978). Both adenosine and inosine were found to potentiate degranulation (Marquardt et al., 1978). Theophylline, at concentrations of 1–100 µM, blocks the potentiating effect of adenosine without affecting other mast cell functions (Marquardt et al., 1978), suggesting that the beneficial effects of theophylline in bronchial asthma is possibly via an AR subtype, but it is not clear if the A3AR is involved, as methylxanthines are weak at the rat or mouse A3AR (Jacobson and Gao, 2006). Möller et al. (2003) reported that activation of bone marrow derived mouse mast cells (BMMC) with NECA caused the release of β-hex, although to a lesser extent than antigen-induced release via FcεRI. The specific AR subtype involved in degranulation was not reported in that study, although A1AR expression and survival was found enhanced upon FcεRI activation. Nunomura et al. (2010) suggested a mechanism of synergistic degranulation response in BMMC is via FcεRI and ARs. The FcεRI beta-chain (FcRbeta) is found to be a critical element in a synergistic mast cell degranulation response through FcεRI and ARs. Furthermore, phosphoinositide 3-kinase (PI3K)-signaling through FcRbeta immunoreceptor tyrosine-based activation motifs (ITAM) is a crucial participant in augmentation of FcεRI-mediated degranulation by adenosine, although the specific AR subtype involved in degranulation was not investigated. Leung et al. (2014) also found that NECA enhanced antigen-induced degranulation in BMMC. Zhong et al. (2003) established primary murine lung mast cell cultures and demonstrated the expression of A2A, A2B, and A3 ARs on murine lung mast cells. The authors suggest that the A3AR plays an important role in adenosine-mediated murine lung mast cell degranulation. Thus, adenosine or its analogs are clearly demonstrated to induce and/or enhance degranulation in primary murine mast cells, although it remains to be established if one AR or multiple AR subtypes are involved.

Human Primary Mast Cells
Gomez et al. (2011) reported FcεRI-induced degranulation is different in primary human lung and skin mast cells after exposure to adenosine. Human lung mast cells were found to express the A3AR threefold higher than human skin mast cells. Low concentrations of adenosine or an A3AR agonist was found to potentiate FcεRI-induced degranulation of human lung mast cells. Receptor expression level may play a critical role in mast cell activation and release of both newly synthesized cytokines and chemokines and stored mediators that are implicated in mast cell mediated allergic and inflammatory reactions in asthma.
mast cells but not that of skin mast cells, in a PTX-dependent way. The authors suggest that A3AR, as a potentiator of FceRI-induced degranulation, may involve a bronchoconstrictive response to adenosine in asthmatics, but not dermatologic allergy responses. The results also suggested that the AR expression level is related to the extent of AR-mediated degranulation. The authors suggested that human A3AR can activate intracellular Ca2+ mobilization but not the mouse PI3K-γ signaling pathway. Antigen-dependent degranulation was not potentiated by the A3AR agonist in the mast cells from A3AR-humanized mice, suggesting the complexity of the A3AR signaling and function in mast cells and in different species. The use of A3AR agonists 19 and 20 in clinical trials has not revealed any serious adverse effects (Jacobson et al., 2017).

The role of the A3AR in mast cell degranulation and inflammation has been explored using A3AR knockout (KO) mice. Salvatore et al. (2000) demonstrated that adenosine and the A3AR agonist, CI-IB-MECA 20, potentiate antigen-dependent degranulation of BMMCs from wild-type (WT) but not A3AR(−/−) mice, as measured by β2-hex release. The authors also showed that A3AR plays a role in both pro- and anti-inflammatory responses. Tilley et al. (2003) identified A3AR-and mast cell-dependent and -independent components of adenosine-mediated airway responsiveness in mice. The authors indicate that mouse airway responses to aerosolized adenosine are largely dependent on A3AR activation with a significant contribution from mast cells, and that activation of additional ARs on other cell types may also contribute to adenosine-induced airway responsiveness in vivo. Tilley et al. (2000) showed that both adenosine and inosine increase cutaneous vasopermeability by activating A3AR on mast cells. Using mice deficient in the A3AR, the authors showed that increases in cutaneous vascular permeability induced by adenosine or its metabolite inosine are mediated through the A3AR. Also, adenosine does not increase vascular permeability in mast cell-deficient mice. This response is independent of activation of FceRI, by antigen, as adenosine is also increases permeability in FceRI beta-chain-deficient mice. Highly specific A3AR agonists caused hypothermia in mice via peripheral mast cell degranulation, although the body temperature reduction was dependent on a central histamine H1 receptor (Carlin et al., 2016). This study made use of AR KO mice (A1AR, A2AR and combined A1AR/A2AR), a non-brain-penetrant A3AR agonist and mast cell depletion. Thus, in vivo studies suggest a role of the A3AR in degranulation, independent of antigen activation of the high-affinity IgE receptor. In addition to using A3AR KO mice, Zhong et al. (2003) showed that lung mast cells in ADA-deficient mice degranulated robustly with the elevated adenosine present. ADA prevented the accumulation of lung adenosine as well as mast cell degranulation, suggesting that this process was dependent on elevated lung adenosine levels. Consistent with this, treatment of ADA-deficient mice with non-selective AR antagonists attenuated degranulation by 30–40%. These studies are consistent with the ability of adenosine generated in vivo to activate ARs and thereby enhance lung mast cell degranulation. Thus, the role of the A3AR in mast

IN VIVO STUDIES OF DEGRANULATION

In addition to the studies from mast cell lines and primary mast cells described above, by studying vasoconstriction of hamster cheek pouch arterioles, Shepherd et al. (1996) showed that both adenosine and its metabolite, inosine, can cause vasoconstriction in vivo by stimulation of mast cell degranulation via the hamster A3AR. Reeves et al. (1997) reported that A3AR promotes degranulation of rat mast cells both in vitro and in vivo. Fozard et al. (1996) studied A3AR activation in anesthetized Sprague-Dawley rats (using SPT 23 at a dose that blocks rat A1, A2A and A2B ARs, but not A3). The authors suggest that the A3AR activation results in rapid mast cell degranulation, which plays a key role in A3AR-mediated hypotension in rat. Thus, the role of the A3AR in mast cell degranulation in vivo is consistent with findings from RBL-2H3 cells and primary murine mast cells. However, concerning the effects of dexamethasone, Hannon et al. (2002) reported that adenosine-induced mast cell degranulation in rat in vivo is suppressed by dexamethasone, which is in contrast to the findings by using RBL-2H3 cells (Collado-Escobar et al., 1990), suggesting potentially both pro- and anti-inflammatory roles of the A3AR.
cell degranulation has been well established. However, there has not been any report about the role of the A3AR in asthmatic patients, although in vitro studies in human mast cells have suggested a role. This could be partly due to the fact that other events beyond degranulation, such as bronchoconstriction and tracheal mucus secretion need more immediate attention for patients with asthma and are possibly more related to the A1 and A2B AR mechanisms, which will be discussed later in this manuscript.

Concerning the role of AR subtypes other than the A2B AR in mast cell degranulation, the A2B AR is the most studied. In a variety of studies including in primary human or mouse mast cells and in receptor KO mice, the A2B AR has been demonstrated to inhibit rather than mediate mast cell degranulation. Yip et al. (2011) reported that activation of the human mast cell A2B AR inhibits anti-IgE induced release of histamine, while A1 AR agonists potentiated mast cell activation. Hua et al. (2007) reported that mice deficient in the A2B AR showed enhanced mast cell activation. Basal levels of cAMP were reduced in BMMCs from A2B KO mice and the influx of extracellular calcium through store-operated calcium channels following antigen activation was increased. A2B AR KO mice also are more sensitive to IgE-mediated anaphylaxis. The authors suggest that the A2B AR can act in concert to attenuate mast cell responsiveness following antigen exposure. Thus, A2B AR agonists rather than antagonists can be considered as a therapy for asthma. Hua et al. (2013a) reported that the two Gs-coupled A2A and A2B ARs differentially limit antigen-induced mast cell activation. By comparing mast cell responses of mice with various combinations of AR KOs, they showed that AR agonists can modulate mast cell degranulation and induction of cytokine production both in vitro and in vivo. A2B AR was identified as the principal subtype attenuating mast cell degranulation; however, both A2A and A2B AR need to be activated to inhibit cytokine synthesis.

Zaynagetdinov et al. (2010) reported that, unlike the role of the A2B AR in acute inflammation, genetic deletion of A2B AR reduced allergen-induced chronic pulmonary inflammation, accompanied by fewer bronchoalveolar lavage eosinophils and lower peribronchial eosinophilic infiltration. Allergen-induced IL-4 release in airways was observed in WT, but not in A2B AR KO mice. Ryzhov et al. (2008b) demonstrated that BMMCs in A2B AR KO mice display two distinct phenotypes. One effect is enhanced antigen-induced degranulation, consistent with an inhibitory role of A2B AR in degranulation as reported by Hua et al. (2013a). The other effect observed in A2B AR KO mice is loss of NECA-induced increases of IL-13 leading to vascular endothelial growth factor (VEGF) secretion. However, Ryzhov et al. (2008a), by using A2B AR KO mice, demonstrated that A2B AR upregulates the proinflammatory cytokine IL-6. Thus, it seems A2B AR activation can induce secretion of several proinflammatory cytokines, which apparently contradicts an anti-inflammatory role for the A2B AR. Indeed, it has been proposed that an A2B AR antagonist rather than agonist would be suitable for potential use in asthma, based on the findings that A2B AR induced IL-8 secretion by an enprofylline-sensitive mechanism in HMC-1 cells (Feoktistov and Biaggioni, 1995), a mast cell line that does not degranulate but has some other mast cell functions. The A2B AR is involved in degranulation of canine BR mastocytoma cells which can be blocked by enprofylline (Auchampach et al., 1997). However, this conclusion needs to be examined more carefully, considering the fact that A2B AR activation inhibits degranulation in primary human and murine mast cells. Inhibition of PDEs (Barnes, 2011) and activation of histone deacetylase (HDAC) (Barnes, 2011) are often described as a major mechanism for methylxanthines in the treatment of asthma. The inhibition of the A2B AR probably produces side effects rather than a desired therapeutic effect.

The role of the A2A AR in mast cell degranulation was explored in a number of earlier studies. Hughes (1984) showed that adenosine and NECA can either inhibit or potentiate IgE-dependent histamine release by human lung mast cells in suspension, depending on the time sequence. However, the A2B AR and A1 AR had not yet been cloned or defined at that time, thus it is not clear which specific AR is involved in inhibition or enhancement. Lohse et al. (1987) showed that adenosine and its analogs enhance the release of histamine from rat peritoneal mast cells. The authors suggest that an A2 AR is involved in adenosine-induced enhancement of histamine release, but it is not clear if it is through the A2A AR or A2B AR, as the AR subtypes were not yet defined. Marquardt et al. (1994) showed that A2A AR is not involved in BMMC degranulation, as an A2A AR-specific agonist failed to enhance mast cell mediator release. Gomez et al. (2013) showed that adenosine specifically inhibited FcεRI but not through the A2A AR. Rork et al. (2008) reported that A2A AR activation in the isolated, perfused mouse heart inhibits degranulation of resident cardiac mast cells to limit the extent of infarction. The authors found that CGS21680 significantly reduced mast cell degranulation in WT but not in A2A AR KO mice. Suzuki et al. (1998) suggested that adenosine acts via the A2A AR to inhibit FcεRI-mediated release of tryptase from primary human mast cells, as this inhibitory effect can be mimicked by CGS21680 and blocked by A2A AR/A2B AR antagonist ZM241385 31.

In summary, of the 4 ARs in mast cell degranulation, it seems that A1 AR plays a minor role, and A2A AR, although overall anti-inflammatory, either does not have an effect or plays an inhibitory role in mast cell degranulation. However, A2B AR has prominent proinflammatory and anti-inflammatory roles depending what is measured. A2B AR may induce proinflammatory cytokines from some types of cells but inhibit mast cell degranulation both in human and murine mast cells, both in vitro and in vivo, although isolated studies of mast cell showed that it may also cause degranulation (e.g., in canine mast cells, Auchampach et al., 1997). The A3 AR has also been demonstrated to be both pro- and anti-inflammatory. However, in terms of its role in mast cell degranulation, most pieces of evidence suggest that A3 AR mediates mast cell degranulation, but in a species-dependent fashion (Carlin et al., 2016). Thus, A2B AR and A3 AR, which inhibits and stimulates, respectively, are the two major AR subtypes involved in mast cell degranulation. Additionally, ARs are also involved in the function of other granulocytes such as neutrophils, basophils, and eosinophils, which are also related to release of inflammatory mediators albeit to a lesser extent compared with mast cells (Barletta et al., 2012), but this is not the main focus of the current review.
Asthma and COPD are probably the most relevant conditions related to adenosine release and subsequent AR activation that are primarily initiated by mast cell degranulation, which is followed by bronchoconstriction and mucus secretion. We have mainly examined the role of ARs in mast cell degranulation in the above sections. We will then summarize and analyze the roles of 4 ARs in the mucus secretion and bronchoconstriction in the following sections.

ROLE OF ARs IN MUCUS SECRETION

Although the mechanisms of action are still debatable, methylxanthines, such as theophylline and enprofylline, have been used for asthma treatment for almost a century presumably due to their effect on mast cell degranulation, bronchoconstriction and airway mucus clearance. Mucus hypersecretion is an important contributor to airway obstruction. The action of methylxanthines on mucus secretion may complement their effects on mast cell degranulation and bronchoconstriction in asthmatic patients (Wanner, 1985; Ziment, 1987; Wang et al., 2016); the mechanism and bronchoconstriction in asthmatic patients (Wanner, 1985; Ziment, 1987; Wang et al., 2016); the mechanism of methylxanthines have been proposed to be via PDEs, HDAC, and ARs (Barnes, 2011). In an earlier study, Wagner et al. (1996) reported effects of several xanthines as PDE inhibitors, i.e., theophylline 21, enprofylline 25, and 3-isobutyl-1-methylxanthine 26 (IBMX), on tracheal mucus secretion in rat and found that they stimulate mucus secretion with EC50 values of 690, 400, and 46 µM, respectively. This may suggest a possible mechanism as mixed PDE inhibition and AR antagonism, or interpreted as the antagonism of multiple ARs, as methylxanthines are non-selective AR antagonists. As will be discussed in the following sections, blockade of the A1AR and A2BAR may have a respective positive and negative impact on trachea mucus clearance. Increasing attentions have been paid on the roles of ARs in mucus clearance in recent years including the use of KO animals, although the role of individual AR subtypes is still controversial. In the following section, we briefly summarize the roles of ARs in mucus clearance.

McNamara et al. (2004) showed that mucin 2 (MUC2) expression increased in response to adenosine in cultured airway epithelial cells. The authors suggest that adenosine in combination with inflammatory cytokines stimulates asthmatic airway mucin production. The results were consistent with suggested use of antagonists of A1AR, calcium-activated chloride channel regulator 1 (CLCA1), and epidermal growth factor receptor (EGFR) in asthma treatment. A1AR antagonists contribute to airway mucus clearance. Mohsenin et al. (2007) showed that genetic ablation of the A2AR in ADA-deficient mice enhanced pulmonary inflammation, mucin production, and angiogenesis. Thus, A2AR agonists should contribute to airway clearance. Rollins et al. (2008) demonstrated that activation of the A2BAR contributes to mucus clearance. Hua et al. (2013b) showed that adenosine increased mucus clearance via both A2A and A2B ARs. In both A3AR KO mice (Young et al., 2006) and ADA-deficient mice (Young et al., 2004), A3AR activation increases airway mucin secretion in response to allergen challenge. In summary, A2A and A2BAR agonists or A1 and A3AR antagonists may contribute to trachea mucus clearance.

ROLES OF ARs IN BRONCHOCONSTRICTION

As methylxanthines can inhibit PDEs, activate HDAC (i.e., theophylline), and activate ryanodine receptors, as well as antagonize ARs, many of their therapeutic effects in asthma, especially their use against bronchoconstriction, have often been ascribed to non-adenosine mechanisms, such as the inhibition of PDEs (Barnes, 2011). Theophylline's therapeutic effect has been suggested to be due to the activation of HDAC (Donnelly and Rogers, 2003).

Inhaled adenosine induces bronchoconstriction in asthmatic patients but not in healthy subjects (Cushley et al., 1984; Rorke and Holgate, 2002). Theophylline was found more potent in blocking adenosine-induced than histamine-induced bronchoconstriction suggesting most likely an AR- but not PDE-mediated mechanism. It seems that adenosine-induced bronchoconstriction of isolated sensitized lung tissues is via the release of three mediators, i.e., histamine, cyclooxygenase products and leukotrienes (Martin and Broadley, 2002), as none of the mediators alone is responsible for the constriction. Fozard (2010) summarized apparent contradictions about the role the A3AR in bronchoconstriction, using sensitized Brown Norway rats. Alfieri et al. (2012) found that A1AR agonist on smooth muscle cells is increased on bronchi of sensitized Wistar rats challenged with allergen, suggesting that the A1AR is responsible for bronchial hyperresponsiveness to adenosine. Hua et al. (2007) demonstrated that adenosine-induced bronchoconstriction in mice is mediated via the A1AR. Ponnath et al. (2010) demonstrated using allergic WT and A1AR KO mice that this receptor is systemically proinflammatory and increases airway hyperresponsiveness. Use of DNA antisense against the A1AR in a rabbit model of asthma suggested that receptor subtype may promote bronchoconstriction (Nyce and Metzger, 1997). Two A1AR antagonists, KF15372 28 and KW3902 29 significantly inhibited the NECA-induced bronchoconstriction in an in vivo rat model. Pauwels and Joos (1995) showed that the A1AR is possibly involved in adenosine-induced bronchoconstriction based on the order of bronchoconstrictor potency of adenosine analogs. Mikus et al. (2013) examined the effects of a novel A3AR antagonist, SSR161421 37 on bronchoconstriction. In ovalbumin presensitized guinea pigs, SSR161421 (IV or PO) inhibited antigen-induced contractions in isolated tracheal muscles that were enhanced by agonist AB-MECA 18 and also reduced bronchoconstriction in vivo. In addition to blocking AR agonist-induced enhancement, SSR161421 significantly decreased antigen-induced contraction. However, this compound has not been extensively evaluated in other models. Thus, antagonists of the A1AR and possibly the A3AR may be beneficial for treatment of bronchoconstriction.
Table 1: Roles of ARs, P2XRs and P2YRs in mast cell degranulation, bronchoconstriction and airway mucus secretion.

Receptor	Mast cell degranulation	Bronchial contraction	Tracheal mucus secretion	Reference
A1	ND	+	+	McNamara et al., 2004; Ponnath et al., 2010
A2A	ND (−)	ND	−	Rollins et al., 2008
A2B	−	−	−	Breschi et al., 2007; Hua et al., 2007, 2013b; Yip et al., 2011
A3	+	+	+	Young et al., 2006; Gomez et al., 2011
P2Y2	ND	ND	+	Kellerman, 2002; Donnelly and Rogers, 2003
P2Y13	+	ND	ND	Gao et al., 2010a
P2Y14	+	ND	ND	Gao et al., 2010b; Gao et al., 2013
P2X4	+	+	+	Nagaoka et al., 2009; Chen et al., 2016; Yoshida et al., 2017
P2X7	+	ND	ND	Wareham and Seward, 2016; Yoshida et al., 2017

+, induce; −, inhibit. ND, not clearly demonstrated (see complete reference list for more information). ATP can induce mast cell degranulation, mucus secretion, and bronchoconstriction, which are reported in many publications, but the roles of specific receptor subtypes involved have not yet been unambiguously demonstrated. ND, not clearly demonstrated (see complete reference list for more information). ATP can induce mast cell degranulation, mucus secretion, and bronchoconstriction, which are reported in many publications, but the roles of specific receptor subtypes involved have not yet been unambiguously demonstrated.

Pauwels and Joos (1995) demonstrated the lack of bronchoconstriction activity of CGS21680 13, and suggested that the A2AR is not involved in adenosine-induced bronchoconstriction. Regadenoson 15 has been demonstrated to be safe to use in patients with mild to moderate COPD and asthma, although it is recommended that Regadenoson should be avoided in patients with severe bronchial asthma at this time (Golzar and Doukky, 2014). A2AR agonist Binodenoson (structure not shown) was also shown to be well tolerated in humans without significant bronchoconstriction or pulmonary consequences (Murray et al., 2009). Thus, A2AR does not seem to play a major role in adenosine-induced bronchoconstriction. Breschi et al. (2007) characterized the role of ARs in the contractility modulation of guinea-pig airway smooth muscle in normal and pathological settings. The authors found that the non-selective agonist NECA 12, relaxed tracheal muscles in preparations from normal and sensitized animals that were pre-exposed to histamine to induce contraction, and this effect was completely blocked by an A2AR agonist, MRS1706 33. Administration of NECA or adenosine to normal animals inhibited histamine-mediated bronchoconstriction.

Adenosine plasma levels were demonstrated significantly higher in sensitized than normal animals. The authors suggest that the A2BAR is responsible for the relaxing effects of adenosine on guinea-pig airways. A2BAR, but not A2AR activation contributes to the relaxing of adenosine-induced bronchoconstriction. Thus, development of selective A2BAR agonists are a potential future direction for the treatment of asthma.

In summary, all four AR subtypes are to some extent involved in three aspects related to asthma, mast cell degranulation, trachea mucus secretion, and bronchoconstriction. To develop drugs for asthma and COPD, it is important to consider ligands with appropriate agonist or antagonist activity and subtype selectivity at certain AR subtypes, e.g., compounds with A2BAR agonist and A1AR antagonist activity. Although not yet available, allosteric A2BAR agonist modulators in theory could be potentially be a novel attractive therapy for asthma, due to the site- or event-specific nature of allosteric modulators.

P2YRs

P2YRs in Mast Cell Degranulation

Several P2Y receptor subtypes have recently been demonstrated to be mediators of mast cell degranulation. Jaffar and Pearce (1990) showed that ATP-induced release of prostaglandin D2 and histamine from rat serosal mast cells was inhibited by antagonists of both P2X and P2Y receptors. Schulman et al. (1999) suggested that ATP-enhanced histamine release from human lung mast cells are possibly via the P2Y1 and P2Y2 receptors. However, Lee et al. (2001) suggested that ATP-induced histamine release in rat peritoneal mast cells is via a P2X receptor rather than a P2Y subtype. UDPG 8, a glycosyl donor in the biosynthesis of carbohydrates, acting at the P2Y14R was first identified as a mediator of degranulation in RBL-2H3 mast cells as indicated by β-hex release (Gao et al., 2010b), suggesting a potential novel
therapeutic target for allergic conditions. The role of P2Y₁₄R was further confirmed using human LAD2 mast cells (Gao et al., 2013). All eight P2YRs were expressed at variable levels in LAD2 cells. Gene expression levels of ADP receptors, P2Y₁, P2Y₁₂, and P2Y₁₃Rs, are similar, but it seems only P2Y₁₃ plays a major role in degranulation. Although P2Y₁₁ and P2Y₆Rs are highly expressed (three–fivefold of P2Y₁₃), they do not seem to have a role in degranulation. Both UDPG 8 and MRS2690 40, enhanced C3a-induced β-hex release, which was inhibited by a P2Y₁₃ antagonist, specific P2Y₁₃R siRNA and PTX, suggesting a role of P2Y₁₃R activation in promoting human mast cell degranulation. The involvement of P2Y₁ and P2Y₆Rs in degranulation is negligible. The enhancement by ADP and ATP appears mediated via multiple receptors. In a separate study using RBL-2H3 cells it was demonstrated that, both P2Y₁ and P2Y₁₃Rs are highly expressed. Native agonist ADP was two orders of magnitude less potent than the P2Y₁-selective agonist MRS2365 38 in inducing intracellular Ca²⁺ mobilization; however, ADP reached the same maximal efficacy as MRS2365. ADP-induced β-hex release was PTX-sensitive and antagonized by a selective antagonist of the P2Y₁₃R, i.e., MRS2211 45, but not by MRS2500 42. This pharmacological profile suggested a mechanism dependent on Gi-coupled P2Y₁₃R but not a Gq-coupled P2Y₁R. ADP-mediated intracellular calcium mobilization and β-hex release were found to be via P2Y₁ and P2Y₁₃Rs, respectively, indicating selective P2Y₁₃R antagonists might be useful as therapeutic agents for various allergic conditions. (Gao et al., 2010a). Gendaszewska-Darmach et al. (2016) recently showed that nucleoside 5′-O-monophosphorothioates are weak antagonists of the P2Y₁₄R and blocked antigen-induced RBL-2H3 mast cell degranulation enhanced by UDPG. Hundreds of genetic variants are thought to contribute to asthma risk by modulating gene expression. Ferreira et al. (2017), using gene-based analysis, identifies four putative novel asthma risk genes, two of which are P2Y receptors, P2Y₁₃R and P2Y₁₄R, highlighted the importance of these two receptors. In a recent study, although not the focus of the present review and not in mast cells, Nakano et al. (2017) showed that uridine 5′-diphosphate (UDP) promoted IgE-dependent degranulation, blocked by antagonist MRS2578 43, suggesting inhibition of P2Y₆R may also be a potential anti-asthma therapy.

P2YRs in Mucus Secretion

In asthma and COPD, airway mucus hypersecretion typically leads to mucostasis and plugging of the airways by mucus. ATP release in the airways is known to be elevated in COPD, and has been demonstrated to exacerbate inflammation by activating P2Y or P2X receptors. Sabater et al. (1999) showed that inhaled P2Y₂R agonists can increase lung mucus clearance in sheep. The purinoceptor P2Y₂R agonist diquafosol (INS365 39) has been in clinical trials to increase mucus clearance (Kellerman, 2002; Donnelly and Rogers, 2003). Button et al. (2013) reported that changes in mechanical strain is regulated by ATP and adenosine acting via P2YRs or ARs proportional to mucus hydration in airway epithelia. Shishikura et al. (2016) showed that the extracellular ATP increases MUC5AC expression and release, mainly as an autocrine agonist of the P2Y₂R. Shirasaki et al. (2015) used MRS2395 46, an uncharged P2Y₁₃R antagonist, to partially inhibit the LTE4-induced release of MUC5AC protein in the airway. The authors suggest that role of LTE4 in allergic mucus secretion partially might involve activation of P2Y₁₂R. P2Y₂R immunoreactivity was found within the respiratory epithelium and submucosal glandular tissue. P2Y₂R immunoreactivity was localized to the mucous-secreting cells within the vomeronasal organ (VNO) (Payle and Burnstock, 2005). Lau et al. (2011) showed that three leukotriene antagonists, i.e., montelukast, pranlukast, and zafirlukast, inhibit P2Y₂R agonist UDP-induced ion transport in human bronchial epithelia. Thus, several P2YR subtypes play a role in mucus secretion.

In summary, multiple subtypes of P2YRs are potentially involved in degranulation, bronchoconstriction and mucus secretion. It is important to develop appropriate P2YR-selective ligands targeting all three functions related to asthma.

P2XRs

P2XRs in Degranulation

Rossi et al. (1992) reported interactions between high-affinity IgE receptors and ATP receptors on immature murine mast cells. Both antigen and ATP had significant effects on intracellular calcium in cells. Wareham et al. (2009) demonstrated that three subtypes of ATP receptors, P2X₁, P2X₄, and P2X₇Rs, were identified in both the LAD2 human mast cell line and in primary human lung mast cells. Yoshida et al. (2017) studied the role of ATP in degranulation using BMMC cells, and found that both P2X₄ and P2X₇Rs are involved in the regulation of BMMC degranulation. P2X₇R but not P2X₄ activation induced degranulation on its own. Activation of the P2X₄R significantly potentiated the degranulation induced by antigen, although it does not induce degranulation on its own. Interestingly, ATP synergistically enhanced A₃AR mediated degranulation. Thus, ATP and adenosine may induce or enhance degranulation via multiple targets synergistically. It is suggested that P2X₇R antagonists are potentially attractive anti-allergic agent (Yoshida et al., 2015). Interestingly, the antihistamine oxatomide 45 has been reported to act as a P2X₇R antagonist (Yoshida et al., 2015), suggesting potentially dual antagonism.
and Burnstock, 2005). ATP signaling has been demonstrated to be critical in maintaining proper mucus hydration of airways (Button et al., 2013). Excessive sodium salt is known to exacerbate chronic coughing. Ma et al. (1999) show that, in airway ciliated cells, extracellular sodium ions specifically and competitively inhibit an ATP-gated channel that is permeable to calcium ions, and thereby attenuate ATP-induced ciliary motility. The authors suggest that mucus clearance might be improved in chronic bronchitis and asthma by decreasing the sodium concentration of the airway surface. Chen et al. (2016) investigated the effects of P2X4R in a murine experimental asthma model, and suggested that ATP-P2X4R signaling may not only contribute to airway inflammation, but it may also contribute to airway remodeling in allergic asthma. ATP was found to enhance the allergic reaction, which was attenuated by the P2X4R antagonist, 5-BDBD 50 (Chen et al., 2016).

Thus, several P2XRs are involved in mast cell degranulation, mucus secretion, and bronchoconstriction. ATP, acting at the P2X7R may induce degranulation its own, and synergize with adenosine and allergen, suggesting a critical role in asthma.

The roles of adenosine, P2X and P2Y receptors have been extensively investigated in both immune and non-immune cells (Jacobson and Gao, 2006; Chen et al., 2013; Burnstock and Boeynaems, 2014; Jacobson et al., 2015). Interactions among receptors for nucleosides, nucleotides, and other allergic mediators in immune and non-immune cells have been explored. For example, Pinheiro et al. (2013) showed that histamine induced release of ATP from human subcutaneous fibroblasts. Oguma et al. (2007) showed that ATP enhanced the methacholine-induced contractile response in airway smooth muscle. Montaño et al. (2013) found that ATP-induced tracheal contraction was potentiated by histamine and blocked by inhibitors of COX-1 and COX-2.

Although asthma is the major disease most relevant to the purinergic signaling, other allergic conditions have also been reported to be related to purinergic signaling. For example, Weber et al. (2010) demonstrated that the P2X7R is essential for extracellular ATP release in the response of skin to allergen exposure. Thus, P2X7R antagonists might be considered for the prevention of allergic contact dermatitis.

CONCLUSION

Despite the many current asthma and COPD therapies, all drugs have some drawbacks. For example, long acting β-adrenergic agonists were suggested not to be used alone in patients with asthma (Billington et al., 2017). In addition, asthma in a significant proportion of patients remains uncontrolled; thus, more novel and newer drugs are needed for its treatment. All four AR subtypes, and several P2XR and P2YR subtypes are involved in mast cell degranulation, bronchoconstriction, and tracheal mucus secretion (Table 1). There are opportunities to develop appropriate ligands for the treatment of asthma by targeting one or several of these three classes of receptors. Adenosine and ATP both can induce degranulation by themselves and enhance antigen-induced degranulation, suggesting a critical role in asthmatics. Compounds with A2BR AR agonist activity or...
A2AR and A3AR antagonist activity, and agonists of P2Y2R or antagonists of P2Y13R, P2Y14R, P2X3R, P2X4R, and P2X7R should be beneficial for the treatment of asthma. Also, in addition to receptors, targeting purinergic degradation cascade, such as ADA, AK and nucleotidases, could also be an attractive approach to controlling mast cell degranulation, mucus secretion, and bronchodilation. Finally, considering the mechanisms of action, it seems that selective A2B2AR agonists, A2AR and/or possibly A3AR antagonists, methylxanthines that lack A2A and A2B antagonist activity, and P2X7R antagonists should be particularly useful for the treatment of asthma.

REFERENCES

Adraien, D., and Timmermans, J. P. (2004). Purinergic signalling in the lung: important in asthma and COPD? Curr. Opin. Pharmacol. 4, 207–214. doi: 10.1016/j.coph.2004.01.010

Altieri, A., Parisi, A., Maione, F., Grassia, G., Morello, S., Talenti, A., et al. (2012). Hyperresponsiveness to adenosine in sensitized Wistar rats over-expressing A1 receptor. Eur. J. Pharmacol. 695, 120–125. doi: 10.1016/j.ejphar.2012.09.002

Ali, H., Cunha-Melo, J. R., Saul, W. F., and Beaven, M. A. (1990). Activation of phospholipase C via adenosine receptors provides synergistic signals for secretion in antigen-stimulated RBL-2H3 cells. Evidence for a novel adenosine receptor. J. Biol. Chem. 265, 745–753.

Auchampach, J. A., Jin, X., Wan, T. C., Caughey, G. H., and Linden, J. (1997). Canine mast cell adenosine receptors: cloning and expression of the A3 receptor and evidence that degranulation is mediated by the A2B receptor. Mol. Pharmacol. 52, 846–860. doi: 10.1124/mol.52.5.846

Barletta, K. E., Ley, K., and Mehrad, B. (2012). Regulation of neutrophil function by adenosine. Arterioscler. Thromb. Vasc. Biol. 32, 856–864. doi: 10.1161/ATVBAHA.111.226845

Barnes, P. J. (2011). Biochemical basis of asthma therapy. J. Biol. Chem. 286, 32899–32905. doi: 10.1074/jbc.R110.206466

Basoglu, O. K., Pelleg, A., Essilfie-Quaye, S., Brindicci, C., Barnes, P. J., and Kharitonov, S. A. (2005). Effects of aerosolized adenosine 5'-triphosphate vs adenosine 5'-monophosphate on dyspnea and airway caliber in healthy nonsmokers and patients with asthma. Chest 128, 1905–1909. doi: 10.1378/chest.128.4.1905

Breschi, M. C., Blandizzi, C., Fogli, S., Martinelli, C., Adinolfi, B., Calderone, V., et al. (2007). In vivo adenosine A2B receptor desensitization in guinea-pig airway smooth muscle: implications for asthma. Eur. J. Pharmacol. 575, 149–157. doi: 10.1016/j.ejphar.2007.07.051

Carlin, J. L., Tosh, D. K., Xiao, C., Piñol, R. A., Chen, Z., Salvemini, D., et al. (2016). Peripheral adenosine A3 receptor activation causes regulated hypothermia in mice that is dependent on central histamine H1 receptors. J. Pharmacol. Exp. Ther. 356, 474–482. doi: 10.1124/jpet.115.229872

Collado-Escobar, D., Cunha-Melo, J. R., and Beaven, M. A. (1990). Treatment with dexamethasone down-regulates IgE-receptor-mediated signals and up-regulates adenosine-receptor-mediated signals in a rat mast cell (RBL-2H3) line. J. Immunol. 144, 244–250.

Cunha-Melo, J. R., and Beaven, M. A. (1990). Activation of phospholipase C via adenosine receptors provides synergistic signals for secretion in antigen-stimulated RBL-2H3 cells. Evidence for a novel adenosine receptor. J. Biol. Chem. 265, 745–753.

Cunha-Melo, J. R., and Beaven, M. A. (1990). Treatment with dexamethasone down-regulates IgE-receptor-mediated signals and up-regulates adenosine-receptor-mediated signals in a rat mast cell (RBL-2H3) line. J. Immunol. 144, 244–250.

Daly, J. W., and Fredholm, B. B. (1998). Caffeine—an atypical drug of dependence. Drug Alcohol Depend. 51, 199–206. doi: 10.1016/S0376-8718(98)00077-5

Donnelly, L. E., and Rogers, D. F. (2003). Therapy for chronic obstructive pulmonary disease in the 21st century. Drugs 63, 1973–1998. doi: 10.2165/00000349-20036319-00000

Erdmann, A. E., Gao, Z. G., Jung, U., Foley, J., Borenstein, T., Jacobson, K. A., et al. (2017). Prostaglandin E2 glyceryl ester is an endogenous agonist of the nAChR and/or possibly P2Y14R, P2X3R, P2X4R, and P2X7R

Feoktistov, I., and Biaggioni, I. (1995). Adenosine A2b receptors evoke interleukin-8 secretion in human mast cells. An enprofylline-sensitive mechanism with implications for asthma. J. Clin. Invest. 96, 1979–1986. doi: 10.1172/JCI118245

Fozard, J. R. (2003). The case for a role for adenosine in asthma: almost convincing? Curr. Opin. Pharmacol. 3, 264–269. doi: 10.1016/S1471-4892(03)00039-0

Fozard, J. R. (2010). “From hypertension (+) to asthma: interactions with the adenosine A3 receptor from a personal perspective,” in A3 Adenosine Receptors from Cell Biology to Pharmacology and Therapeutics, ed. P. A. Borea (Dordrecht: Springer Science+Business Media BV), 3–26. doi: 10.1007/978-90-481-3144-0_1

AUTHOR CONTRIBUTIONS

Both authors listed have made a substantial, direct and intellectual contribution to the work, and approved it for publication.

ACKNOWLEDGMENT

We acknowledge funding from the NIDDK Intramural Research Program (No. ZIADK031117).
Gao, J., and Jacobson, P. (2017). Purinergic Signaling in Mast Cells.
Mikus, E. G., Szeredi, J., Boer, K., Tímári, G., Finet, M., Aranyi, P., et al. (2013). Activation of mast cells. Mol. Immunol. 52, 1770–1772.

Nyce, J. W., and Metzger, W. J. (1997). DNA antisense therapy for asthma in an animal model. Nat. Medicine 3, 785–790.

Pauwels, R. A., and Joos, G. F. (1995). Characterization of the adenosine receptors on immature murine mast cells. J. Immunol. 154, 180–184. doi: 10.1016/0021-9975(95)80249-6

Rafferty, P., Beasley, R., Southgate, P., and Holgate, S. (1987). The role of histamine in allergen and adenosine-induced bronchoconstriction. Int. Arch. Allergy Immunol. 82, 292–294. doi: 10.1159/000234210

Ramakumar, V., Wilson, M., Dhanraj, D. N., Gettys, T. W., and Ali, H. (1995). Dexamethasone up-regulates A3 adenosine receptors in rat basophilic leukemia (RBL-2H3) cells. J. Immunol. 154, 5436–5443.

Reeves, J. J., Jones, C. A., Sheehan, M. J., Vardey, C. J., and Whelan, C. J. (1997). Adenosine A3 receptors promote degranulation of rat mast cells both in vitro and in vivo. Inflamm. Res. 46, 180–184. doi: 10.1007/s000110050169

Rollins, B. M., Burn, M., Cockley, R. D., Chambers, L. A., Hirsh, A. J., Clunes, M. T., et al. (2008). A2B adenosine receptors regulate the mucus clearance component of the lung's innate defense system. J. Investig. Med. Cell Biol. 39, 190–197. doi: 10.1152/jcmlb.2007.04500C

Rork, T. H., Wallace, K. L., Kennedy, D. P., Marshall, M. A., Lankford, A. R., and Linden, J. (2008). Adenosine A2A receptor activation reduces infarct size in the isolated, perfused mouse heart by inhibiting resident cardiac mast cell degranulation. Am. J. Physiol. Heart Circ. Physiol. 295, H1825–H1833. doi: 10.1152/ajpheart.495.2008

Rorke, S., and Holgate, S. T. (2002). Targeting adenosine receptors: novel therapeutic targets in asthma and chronic obstructive pulmonary disease. Am. J. Respir. Med. 1, 99–105. doi: 10.1007/BF03365599

Rosi, G. L., Yen, A., and Barrett, K. E. (1992). IgE and adenosine 5′-triphosphate receptors on immature murine mast cells are functionally linked to signal transduction mechanisms. J. Allergy Clin. Immunol. 90, 765–771. doi: 10.1016/0091-6749(92)00100-G

Rothstein, R. J. (1980). Intravenous theophylline therapy in asthma: a clinical update. Ann. Emerg. Med. 9, 327–330. doi: 10.1016/S0196-0644(80)80070-9

Ryzhov, S., Zaynagetdinov, R., Goldstein, A. E., Novitskiy, S. V., Blackburn, M. R., Braggioni, I., et al. (2008a). Effect of A2B adenosine receptor gene ablation on adenosine-dependent regulation of proinflammatory cytokines. J. Pharmacol. Exp. Ther. 324, 694–700.

Ryzhov, S., Zaynagetdinov, R., Goldstein, A. E., Novitskiy, S. V., Dikov, M. M., Blackburn, M. R., et al. (2008b). Effect of A2B adenosine receptor gene ablation on proinflammatory adenosine signaling in mast cells. J. Immunol. 180, 7122–7120.

Sabater, J. R., Mao, Y. M., Shaffer, C., James, M. K., O’Riordan, T. G., and Abraham, W. M. (1999). Aerosolization of P2Y2-receptor agonists enhances mucociliary clearance in sheep. J. Appl. Physiol. 87, 2191–2196.

Salvatore, C. A., Tilley, S. L., Latour, A. M., Fletcher, D. S., Koller, B. H., and Jacobson, M. A. (2000). Disruption of the A3 adenosine receptor gene in mice and its effect on stimulated inflammatory cells. J. Biol. Chem. 275, 4429–4434. doi: 10.1074/jbc.275.6.4429

Schulman, E. S., Glau, M. C., Post, T., Wang, Y., Raible, D. G., Mohanty, J., et al. (1999). ATP modulates anti-IgE-induced release of histamine from human lung mast cells. J. Am. Respir. Cell Mol. Biol. 20, 530–537. doi: 10.1165/rcmb.2003-033877

Schulze-Wirtzhausing, G., and Meier-Sydow, J. (1982). The clinical and pharmacological history of theophylline: first report on the bronchospasmolytic action in man by S. R. Hirsch in Frankfurt (Main) 1922. Clin. Allergy 12, 211–215. doi: 10.1111/j.1365-2222.1982.tb01641.x

Shepherd, R. K., Linden, J., and Duling, B. R. (1996). Adenosine-induced vasocconstriction in vivo. Role of the mast cell and A3 adenosine receptor. Circ. Res. 78, 627–634. doi: 10.1161/01.RES.78.6.627

Shirasaki, H., Kanazuzumi, E., Seki, N., and Himi, T. (2015). Leukotriene E4 induces MUC5AC release from human airway epithelial NCI-H292 cells. Allergol. Int. 64, 169–174. doi: 10.1016/j.alli.2014.11.002

Shishikura, Y., Koarai, A., Aizawa, H., Yamaya, M., Sugira, H., Watanabe, M., et al. (2016). Extracellular ATP is involved in dsRNA-induced MUC5AC production via P2Y2R in human airway epithelium. Respir. Res. 17:121. doi: 10.1186/s12931-016-0458-0

Suzuki, H., Takei, M., Nakahata, T., and Fukamachi, H. (1998). Inhibitory effect of adenosine on degranulation of human cultured mast cells upon cross-linking...
of Fc epsilon RI. *Biochem. Biophys. Res. Commun.* 242, 697–702. doi: 10.1006/bbrc.1997.8040

Tilley, S. L., Tsai, M., Williams, C. M., Wang, Z. S., Erikson, C. J., Galli, S. J., et al. (2003). Identification of A3 receptor- and mast cell-dependent and -independent components of adenosine-mediated airway responsiveness in mice. *J. Immunol.* 171, 331–337. doi: 10.4049/jimmunol.171.1.331

Tilley, S. L., Wagoner, V. A., Salvatore, C. A., Jacobson, M. A., and Koller, B. H. (2000). Adenosine and inosine increase cutaneous vasopermeability by activating A3 receptors on mast cells. *J. Clin. Invest.* 105, 361–367. doi: 10.1172/JCI8253

Wagner, U., Breidenbroeker, D., Fehmarn, H. C., Schwarz, F., Schudt, C., and Von Wichert, P. (1996). Effects of selective and non-selective phosphodiesterase inhibitors on tracheal mucus secretion in the rat. *Eur. J. Pharmacol.* 298, 265–270. doi: 10.1016/0014-2999(95)00794-6

Wang, S., Xiong, L., Deng, X., Zhou, Q., Li, C., Ren, W., et al. (2016). Effect of aminophylline and simvastatin on airway inflammation and mucus hypersecretion in rats with chronic obstructive pulmonary disease. *Zhong Nan Da Xue Xue Bao Yi Xue Ban* 41, 37–43. doi: 10.11817/j.issn.1672-7347.2016.01.006

Wanner, A. (1985). Effects of methylxanthines on airway mucociliary function. *Am. J. Med.* 79, 16–21. doi: 10.1016/0002-9343(85)90082-8

Wareham, K., Vial, C., Wykes, R. C., Bradding, P., and Seward, E. P. (2009). Functional evidence for the expression of P2X1, P2X4 and P2X7 receptors in human lung mast cells. *Br. J. Pharmacol.* 157, 1215–1224. doi: 10.1111/j.1476-5381.2009.00287.x

Wareham, K. J., and Seward, E. P. (2016). P2X7 receptors induce degranulation in human mast cells. *Purinergic Signaling* 12, 235–246. doi: 10.1007/s11302-016-9497-4

Weber, F. C., Esser, P. R., Müller, T., Ganesan, J., Pellegatti, P., Simon, M. M., et al. (2010). Lack of the purinergic receptor P2X7 results in resistance to contact hypersensitivity. *J. Exp. Med.* 207, 2609–2619. doi: 10.1084/jem.20092489

Weigand, L. A., Ford, A. P., and Undem, B. J. (2012). A role for ATP in bronchoconstriction-induced activation of guinea pig vagal intrapulmonary C-fibres. *J. Physiol.* 590, 4109–4120. doi: 10.1113/jphysiol.2012.233460

Yamano, K., Inoue, M., Masaki, S., Saki, M., Ichimura, M., and Satoh, M. (2005). Human adenosine A3 receptor leads to intracellular Ca\(^{2+}\) mobilization but is insufficient to activate the signaling pathway via phosphoinositide 3-kinase gamma in mice. *Biochem. Pharmacol.* 70, 1487–1496. doi: 10.1016/j.bcp.2005.08.003

Yip, K. H., Lau, H. Y., and Wise, H. (2011). Reciprocal modulation of anti-IgE induced histamine release from human mast cells by A1 and A2B adenosine receptors. *Br. J. Pharmacol.* 164, 807–819. doi: 10.1111/j.1476-5381.2011.01446.x

Yoshida, K., Ito, M., and Matsuoka, I. (2015). P2X7 receptor antagonist activity of the anti-allergic agent oxatomide. *Eur. J. Pharmacol.* 767, 41–51. doi: 10.1016/j.ejphar.2015.10.002

Yoshida, K., Ito, M., and Matsuoka, I. (2017). Divergent regulatory roles of extracellular ATP in the degranulation response of mouse bone marrow-derived mast cells. *Int. Immunopharmacol.* 43, 99–107. doi: 10.1016/j.intimp.2016.12.014

Young, H. W., Molina, J. G., Dimina, D., Zhong, H., Jacobson, M., Chan, L. N., et al. (2004). A3 adenosine receptor signaling contributes to airway inflammation and mucus production in adenosine deaminase-deficient mice. *J. Immunol.* 173, 1380–1389. doi: 10.4049/jimmunol.173.2.1380

Young, H. W., Sun, C. X., Evans, C. M., Dickey, B. F., and Blackburn, M. R. (2006). A3 adenosine receptor signaling contributes to airway mucin secretion after allergen challenge. *Am. J. Respir. Cell Mol. Biol.* 35, 549–558. doi: 10.1165/rcmb.2006-086OC

Zablocki, J., Kalla, R., Perry, T., Palle, V., Varkhadkar, V., Xiao, D., et al. (2005). The discovery of a selective, high affinity A2B adenosine receptor antagonist for the potential treatment of asthma. *Bioorg. Med. Chem.* 15, 609–612. doi: 10.1016/j.bmcc.2017.04.014

Zaynagedinov, R., Ryzhov, S., Goldstein, A. E., Yin, H., Novitskiy, S. V., Goleniewska, K., et al. (2010). Attenuation of chronic pulmonary inflammation in A2B Adenosine receptor knockout mice. *Am. J. Respir. Cell Mol. Biol.* 42, 564–571. doi: 10.1165/rcmb.2008-0391OC

Zhong, H., Shlykov, S. G., Molina, J. G., Sanborn, B. M., Jacobson, M. A., Tilley, S. L., et al. (2003). Activation of murine lung mast cells by the adenosine A3 receptor. *J. Immunol.* 171, 338–345. doi: 10.4049/jimmunol.171.1.338

Zhou, Q. Y., Li, C., Olah, M. E., Johnson, R. A., Stiles, G. L., and Civelli, O. (1992). Molecular cloning and characterization of an adenosine receptor: the A3 adenosine receptor. *Proc. Natl. Acad. Sci. U.S.A.* 89, 7432–7436. doi: 10.1073/pnas.89.16.7432

Ziment, I. (1987). Theophylline and mucociliary clearance. *Chest* 92(Suppl. 1), 38S–43S. doi: 10.1378/chest.92.1.Supplement.38S

Conflict of Interest Statement: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2017 Gao and Jacobson. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.