Urinary excretion of prostacyclin and thromboxane degradation products in patients with ovarian malignancy: effect of cytostatic treatment

A. Aitokallio-Tallberg\(^1\), L. Viunikka\(^2\) & O. Ylikorkala\(^1\)

\(^1\)First and Second Department of Obstetrics and Gynaecology and \(^2\)Children’s Hospital, University of Helsinki, Haartmaninkatu 2, SF-00290, Helsinki, Finland.

Summary We studied the effect of ovarian cancer and its chemotherapy on the urinary excretion of prostacyclin (PGI\(_2\)) and thromboxane A\(_2\) (TXA\(_2\)) and measured 6-keto-PGF\(_{1\alpha}\) and 2,3-dinor-6-keto-PGF\(_{1\alpha}\) (PGI\(_2\) metabolites) and thromboxane B\(_2\) (TXB\(_2\)) and 2,3-dinor-TXB\(_2\) (TXA\(_2\) products) by HPLC followed by radioimmunoassay before, during and after the combined infusion of cisplatin, 4’epi-adiamycin and cyclophosphamide. Before the first cytostatic infusion, the urinary excretion of prostanoids was on average 4.4-5.8 times higher than in patients with ovarian endometriosis (n=19). The infusion of cytostatics led to a 50-120% rise in the excretion of prostanoids during the first post-infusion 9 hours, but in the subsequent 10 hours their output was 25-45% below the initial value and remained low for at least 2 weeks. Following repetitive courses of cytostatics (2-4 per patient), prostanoid excretion tended to normalise. These data suggest that ovarian cancer is associated with increased production of PGI\(_2\) and TXA\(_2\), and that cytostatics suppress this production. This may be of biological significance in tumour behaviour and in the effect of cytostatics.

Arachidonic acid metabolites can modulate cancer promotion, growth, and spread (Karmali, 1983, 1987; Bennett, 1984; Dehontostaminos, 1987). Prostaglandins and prostanoids may be of significance for tumour behaviour gains support from the data that prostaglandin synthesis inhibitors increase the survival time of mice transplanted with mammary carcinoma (Bennett et al., 1982). Ovarian cancer grows aggressively, sends out metastases early and is often accompanied by deep vein thrombosis (Fox, 1985); the latter phenomenon may well be a sign of disturbed PGI\(_2\)/TXA\(_2\) balance. We showed recently that this cancer, as compared with healthy ovarian tissue, produces in vitro an 11-fold excess of 6-keto-prostaglandin F\(_{1\alpha}\) (6-keto-PGF\(_{1\alpha}\), the hydration product of PGI\(_2\)) and a 30-fold excess of thromboxane B\(_2\) (TXB\(_2\), the hydration product of TXA\(_2\)) (Aitokallio-Tallberg et al., 1988), and that patients with ovarian cancer excrete increased amounts of 6-keto-PGF\(_{1\alpha}\) in their urine (Aitokallio-Tallberg et al., 1987).

A combination of cisplatin, 4’epi-adiamycin and cyclophosphamide is most often used for treating advanced ovarian malignancy (Hainsworth et al., 1988). These agents inhibit the division of cancer cells by disturbing DNA double-helix formation (Chabner, 1982). Prostanoids can influence cell growth and division, perhaps through cyclic AMP (Gorman et al., 1977; Thaler-Dao et al., 1984).

It is well established that cytostatics can release various classic prostaglandins in vitro (Berstock et al., 1979; Bennett et al., 1982), but there are only a few data on the effect of cytostatics on PGI\(_2\) and TXA\(_2\) production. High circulating levels of 6-keto-PGF\(_{1\alpha}\) and TXB\(_2\) in patients with gynaecological malignancies (Ylikorkala et al., 1981; Alam et al., 1982; Sundvall et al., 1986) decreased following administration of cytostatics by 30-40% (Ylikorkala et al., 1981) or by 52% (Alam et al., 1982).

Currently, PGI\(_2\) and TXA\(_2\) production in vivo is best assessed by measuring their urinary degradation products (FitzGerald et al., 1983; Fischer et al., 1986; Ylikorkala et al., 1986). The present study was designed to study the effect of cisplatin, 4’epi-adiamycin and cyclophosphamide in combination on the urinary output of PGI\(_2\) and TXA\(_2\) degradation products in patients with ovarian cancer.

Patients and methods

Five patients with ovarian serous adenocarcinoma and one with ovarian endometrioid adenocarcinoma were studied. They were between 15 and 73 years of age (mean 51); three were premenopausal and three post-menopausal. In two women cancer was limited to the ovaries, but it had spread to stage III–IV in four patients. Five patients had an elevated (>65 IU ml\(^{-1}\)) cancer antigen 125 (CA-125) concentration, measured immunoradiometrically (Centocor Inc., Malvern, PA, USA). The endometrioid cancer patient with normal CA-125 had an increased (>3 μg l\(^{-1}\)) serum carcinoembryonic antigen concentration (CEA), measured immunoradiometrically (Abbott Laboratories, North Chicago, IL, USA). As the control group we studied 19 women with laparoscopically confirmed endometriosis affecting the ovaries. They were between 22 and 43 years of age (mean 33), and otherwise were healthy. The severity of endometriosis was scored in the range from 5 to 80 points (mean 28.9, American Fertility Society classification).

All cancer patients underwent laparotomy. Surgery was radical (total hysterectomy with bilateral oophorectomy, omental resection) only in the patient with endometrioid cancer. In three patients most of the cancer tissue was removed, but no resection was possible in the other two cases.

All cancer patients received the same treatment, beginning two weeks after surgery, with intravenous injection of cyclophosphamide (500 mg m\(^{-2}\)) and 4’epi-adiamycin (40 mg m\(^{-2}\)). Physiological saline (1000 ml) was infused concomitantly to guarantee adequate diuresis. Two or three hours later cisplatin (50 mg m\(^{-2}\)) was started as an intravenous infusion over 5-7 hours; mannitol (150%, 500 ml i.v.) and furosemide (20 mg i.m.) were also given. This regimen was repeated on two to four occasions at 4-week intervals, and altogether 19 courses were studied.

Urines were collected for: (1) 4–6 hours before the start of cytostatics; (2) 5 hours from the start of the treatment; (3) 4 hours after the second sample; (4) 10 hours after the third sample; (5) 4–6 hours 2 weeks later. In addition we collected samples from four patients 4 weeks after the last cytostatic treatment.
The non-malignant control group collected their 24-hour urines the day before laparoscopy. During the study no subject took any drug (except for cytostatics) known to affect prostanoid synthesis.

A 100 ml sample of each urine was frozen and stored at −25°C for 2–5 months until assayed for products of PGI

(6-keto-PGF1α and 2,3-dinor-6-keto-PGF1α) and TXA2 (TxB2 and 2,3-dinor-TxB2). This storage does not affect the prostanoids (Aitokallio-Tallberg et al., 1988). In brief, 10 ml of acidified urine (pH 3.0, 1M HCl) were passed through Sep Pak C18 cartridges (Waters Association, Milford, USA). Retained prostanoids were eluted with ethyl acetate, evaporated to dryness, and put through HPLC (water/ acetonitrile/acetic acid, 69:95:0.05, 2 ml min−1). After 2 min the first fraction (I) was collected over 1.5 min; this contained 6-keto-PGF1α and dinor-TXB2. The second fraction (II), collected for 3.5 min starting 0.25 min after the first one, contained dinor-6-keto-PGF1α and TxB2. Fraction I was assayed for 6-keto-PGF1α using 3H-6-keto-PGF1α as the tracer, 6-keto-PGF1α as the standard, and an antibody raised against 6-keto-PGF1α in rabbits (Ylikorkala & Viinkka, 1981). For dinor-TXB2, 3H-TXB2 was used as the tracer, dinor-TXB2 as the standard and rabbit TxB2 as the antibody (Viinkka & Ylikorkala, 1980). This antibody has approximately 40% cross-reactivity with 2,3-dinor-TXB2.

Fraction II was assayed for TxB2 using 3H-TXB2 as the tracer, TxB2 as the standard and TxA2 antibody (Viinkka & Ylikorkala, 1980). For dinor-6-keto-PGF1α we used 3H-6-keto-PGF1α as the tracer, dinor-6-keto-PGF1α as the standard and 6-keto-PGF1α antibody (Ylikorkala & Viinkka, 1981) because this antibody has approximately 20% cross-reactivity with 2,3-dinor-6-keto-PGF1α. The details of the methods are given elsewhere (Ylikorkala et al., 1987). Prostanoid excretion is expressed as pg min−1.

At the end of each urine collection, serum and urine creatinine were measured and the creatinine clearance determined. The prostanoid excretion data are given as means ± s.e. The significances of the differences were analysed by Student’s t test for paired and unpaired data as appropriate. To illustrate better the effect of cytostatics, the values, during their administration are given as percentages of the pretreatment levels.

Results

Before cytostatics were given, the prostanoid excretion in cancer patients was clearly higher than in the patients with endometriosis (Table I). The increases were: 6-keto-PGF1α 4.9-fold (P < 0.0025), dinor-6-keto-PGF1α 4.4-fold (P < 0.0025), TxB2 5.8-fold (P < 0.0125) and dinor-TxB2 4.5-fold (P < 0.0005).

The cytostatic infusions were accompanied by a 50–120% rise in the 5-h excretion of PGI1 and TXA2 products (Figure 1). This stimulation was strongest for 6-keto-PGF1α and TxA2 excretion. Between 9 and 19 h after the start of infusion the excretion for all prostanoids was 35–45% below the pretreatment levels. This reduction persisted for at least 2 weeks (Figure 1). The pattern of urinary prostanoid excretion during infusion of cytostatics was constant from one course to another.

Overall the amounts of PGI1 products fell after repetitive courses with chemotherapy (Table I). This was not the case in the output of TxA2 products which on average did not change when the data following all cytostatic courses were considered as a whole (Table I). However, when only the last cytostatic course was considered, the excretion of TxA2 products decreased in four patients who responded favourably to cytostatics, but remained high in two patients who showed no response to treatment. There was also a good correlation between decreases in serum CA-125 or CEA levels and in urinary excretion of TxA2 products (Table II).

The mean creatinine clearance was approximately 20 ± 5% lower 9 and 19 h after giving the cytostatics (P < 0.006, Figure 1). No significant relationship was seen between individual prostanoid excretion and creatinine clearance, occurrence of side-effects, or counts of leucocytes and platelets.

Table 1 Urinary excretion of prostacyclin (PG1) and thromboxane (TXA2) hydration and metabolic products (pg min−1), mean ± s.e.m. in patients with ovarian cancer and endometriosis.

Subjects	No. of samples	6-keto-PGF1α	Dinor-6-keto-PGF1α	TxB2	Dinor-TXB2
Patients with ovarian cancer (n = 6)	6	157.3 ± 73.3b	185.7 ± 81.5c	80.2 ± 54.0d	263.0 ± 102.0f
before 1st cytostatic course					
before 2nd – 5th cytostatic courses	17	42.9 ± 8.9c	58.2 ± 7.9c	81.2 ± 60.0d	259.0 ± 99.0f
Patients with endometriosis (n = 19)	19	32.4 ± 4.5b	42.4 ± 3.1c	13.8 ± 3.5c	57.9 ± 8.6f

Cancer patients excreted more urinary PGI1 and TXA2 products than did patients with endometriosis. Overall the amount of PGI1 products fell after repetitive courses with chemotherapy (all data following cytostatic courses are lumped together), but lower 9 and 19 h after giving the cytostatics (P < 0.0025, Table I).

*p < 0.0025, **p < 0.009, ***p < 0.002, *p < 0.008, &p < 0.0125, †p < 0.0005.
Discussion

Through their effects on vascular wall–platelet interaction, PGI₂ and TXA₂ may be important in cancer metastasis and spread. It is generally thought that PGI₂ or its dominance over TXA₂ should prevent metastasis (Honn et al., 1981; 1983b), but this theory has also been disputed (Stamford et al., 1986). The picture may be partly unclear due to difficulties in assessing PGI₂ and TXA₂ production in vivo. Currently, in vivo PGI₂ and TXA₂ synthesis is usually studied by measuring their urinary products (FitzGerald et al., 1983; Fischer et al., 1986; Ylikorkala et al., 1986). Urinary 2,3-dinor-6-keto-PGF₁α is considered the best index of systemic PGI₂ production (Rosenkranz et al., 1980; Brash et al., 1983), whereas urinary 6-keto-PGF₁α may originate primarily from the kidneys (Patrono et al., 1982). Circulating platelets are the main source of urinary TXB₂ and 2,3-dinor-TXB₂ (Roberts et al., 1981), although renal tissue may also produce them, particularly TXB₂ (Patrono et al., 1983). In the present work we measured all four of these prostanooids.

The main purpose of this study was to evaluate the effects of cytostatics on PGI₂ and TXA₂ production. Because inter-individual variations in prostanooid excretion are large (Fischer et al., 1986), we studied the effect of repetitive courses of cytostatics. Previously we found increased urinary excretion of 6-keto-PGF₁α in patients with ovarian malignancy (Altokallo-Talberg et al., 1987). We now show that in these patients 2,3-dinor-6-keto-PGF₁α, TXB₂ and 2,3-dinor-TXB₂ are also excreted excessively into urine. These rises are probably in part related to the cancer, because they are higher than those in the control group of patients with endometriosis who may also have increased PGI₂ and TXA₂ production (Dawood et al., 1984; Ylikorkala et al., 1984). We assume that the excess prostanooids arise either from the cancer cells (Altokallo-Talberg et al., 1988), or possibly in part elsewhere in the body as a result of paraneoplastic changes. The question of the role of prostanooid stimulation in the growth and spread of ovarian cancer remains open.

Cytostatic therapy of ovarian cancer, applied in clinical routine (Hainsworth et al., 1986), led similarly to a rise and then a fall in the urinary output of PGI₂ and TXA₂ products. Because the treatment did not alter renal function significantly, the changes in urinary prostanooids presumably reflect altered synthesis and/or release of PGI₂ and TXA₂ during cytostatic infusion. Cytostatics damage and/or kill both cancerous and healthy cells, which may explain the initial rise in prostanooid output in our work. Perhaps cell death was so marked that it was reflected in later suppression of prostanooid output. In the case of TXA₂ suppression, a decrease in platelet count induced by the cytostatics might be a factor, although individual excretion and platelet counts did not correlate. Furthermore, prostanooid excretion started to decrease sooner than did platelet numbers, suggesting that thrombopenia does not explain the suppression of TXA₂ products.

We do not know which of the cytostatics caused prostanooid changes. Although cytostatics, especially cisplatin, affect renal tissue and function (Van Hoff & Rosemeinck, 1979), creatinine clearance in our patients showed little or no change. Furosemide could also have been a factor, because it was reported to increase the output of PGI₂ and TXA₂ products (Wilson et al., 1983), but this was not confirmed by others (Mackay et al., 1984; Franchi et al., 1987).

The most important finding of the present work was the decrease in excretion of PGI₂ and TXA₂ products in patients responding well to cytostatics, and the normalisation of excretion in many patients concomitantly with reduction in tumour mass. This supports the role of prostanooids in cancer (Honn & Meyer, 1981; Bennett, 1984). Of the two prostanooids studied, TXA₂ may be more important for the progress of ovarian cancer, since it remained unchanged in patients who did not respond to chemotherapy.

In conclusion, patients with ovarian cancer excreted more urinary PGI₂ and TXA₂ products than did patients with endometriosis. A combination of cisplatin, cyclophosphamide and 4'-epi-adriamycin initially stimulated these outputs, but after repetitive courses caused a constant suppression.

This study was supported by grants from The Cancer Research Foundation and Sigrid Juselius Foundation.

References

ALAM, M., JOGEE, M., MACGREGOR, W.G., DOWDELL, J.W., ELDER, M.G. & MYATT, L. (1982). Peripheral plasma immunoreactive 6-oxo prostaglandin F₁α and gynaecological tumours. Br. J. Cancer, 45, 384.

AMERICAN FERTILITY SOCIETY (1985). Revised American Fertility Society classification of endometriosis. Fert. Steril., 43, 351.

Table II Individual urinary prostanooid excretion (pg min⁻¹) and serum Ca-125 (IU ml⁻¹) or CEA (µg l⁻¹) levels before the first and after the last cytostatic course, and the clinical response to treatment.

Patient	6-keto-PGF₁α	Dinor-6-keto-PGF₁α	TXB₂	Dinor-TXB₂	Ca-125/CEA	Clinical response	
	Before the 1st cytostatic course	After the last cytostatic course	Before the 1st cytostatic course	After the last cytostatic course	Before the 1st cytostatic course	After the last cytostatic course	
1	63	27	94	82	160	169	80% reduction in tumour size
2	135	45	150	68	19	24	no response
3	88	5	112	6	35	4	tumour disappeared
4	86	66	79	67	25	35	no response
5	519	18	590	10	350	8	tumour disappeared
6	53	40	89	43	21	8	CEA 12

The excretion of prostacyclin products decreased in all patients, but the excretion of thromboxane products decreased only in patients who responded favourably to treatment (patients 1, 3, 5 and 6).
AITOKALLIO-TALLBERG, A., VIINIKKA, L. & YLIKORKALA, O. (1988). Increased synthesis of prostaglandin and thromboxane in human ovarian malignancy. Cancer Res., 48, 2396.

AITOKALLIO-TALLBERG, A., VIINIKKA, L. & YLIKORKALA, O. (1987). Urinary 6-keto-prostaglandin F1α in patients with gynaecological tumors. Cancer Lett., 34, 201.

BENNETT, A., BERSTOCK, D.A. & CARROLL, M.A. (1982). Increased survival of cancer-bearing mice treated with inhibitors of prostaglandin synthesis alone or with chemotherapy. Br. J. Cancer, 45, 762.

BENNETT, A. (1984). Prostaglandins and cancer. Ann. Clin. Res., 16, 314.

BERSTOCK, D.A., HOUTJEN, J. & BENNETT, A. (1979). Improved anti-cancer effect by combining cytotoxic drugs with an inhibitor of prostaglandin synthesis. Cancer Treat. Rev., 6, (suppl.), 69.

BRASH, A.R., JACKSON, E.K., SAGGESE, C., LAWSON, J.A., OATES, J.A. & FITZGERALD, G.A. (1983). The metabolic disposition of prostacyclin in humans. J. Pharmacol. Exp. Ther., 226, 78.

CHARBON, B. (1982). Pharmacologic Principles of Cancer Treatment. W.B. Saunders: Philadelphia.

DAWOOD, M.Y., KHAN-DAWOOD, F.S. & WILSON, L. (1984). Peritoneal fluid prostaglandins and prostanooids in women with endometriosis, chronic pelvic inflammatory disease and pelvic pain. Am. J. Obstet. Gynecol., 148, 391.

DELICCONSTANTINOS, G. (1987). Physiological aspects of membrane lipid fluidity in malignancy. Anticancer Res., 7, 1011.

FISCHER, S., BERNUTZ, C., MEIER, H. & WEBER, P.C. (1986). Formation of prostacyclin and thromboxane in man as measured by the main urinary metabolites. Biochim. Biophys. Acta, 876, 194.

FITZGERALD, G.A., PEDERSEN, K. & PATRONO, C. (1983). Analysis of prostacyclin and thromboxane biosynthesis in cardiovascular disease. Circulation, 67, 1174.

FOX, H. (1985). In Ovarian Cancer, Hudson, C.N. (ed.) p. 82. Oxford University Press: New York.

FRANCHI, F., LO SAPIO, P., STRAZZULLA, G. & 5 others (1987). Acute effect of furosemide on renal kallikrein and prostaglandin systems in mild to moderate essential hypertension. Int. J. Clin. Pharmacol. Ther. Toxicol., 25, 44.

GORMAN, R.R., BUNTING, S. & MILLER, O.V. (1977). Modulation of human platelet adenylate cyclase by prostacyclin (PGX). Prostaglandins, 13, 377.

HAINSWORTH, J.D., GROSH, W.W., BURNETT, L.S. & 3 others (1988). Advanced ovarian cancer: long-term results of treatment with intensive cisplatin-based chemotherapy of brief duration. Ann. Intern. Med., 108, 165.

HONN, K.V., BUCKMAN, R.S. & MARNETT, L.J. (1983a). Prostaglandins and cancer: a review of tumor initiation through tumor metastasis. Prostaglandins, 21, 833.

HONN, K.V., BUSSE, W.O. & SLOANE, B.F. (1983b). Prostaglandin and thromboxanes. Implications for their role in tumor cell metastasis. Biochem. Pharmacol., 32, 1.

HONN, K.V., CICONE, B. & SKOFF, A. (1981). Prostaglandin: a potent anti-metastatic agent. Science, 212, 1270.

HONN, K.V. & MEYER, J. (1981). Thromboxane and prostacyclin: positive and negative modulators of growth. Biochem. Biophys. Res. Commun., 102, 1122.

KARMALI, R.A. (1983). Prostaglandins in cancer. Cancer, 33, 322.

KARMALI, R.A. (1987). Eicosanoids in neoplasia. Prev. Med., 16, 493.

MACKAY, G., MUIR, A.L. & WATSON, M.L. (1984). Contribution of prostaglandins to the systemic and renal vascular response to furosemide in normal man. Br. J. Clin. Pharmacol., 17, 513.

PATRONO, C., PUGLIESE, B., CINOTTI, G.A., SIMONETTI, B.M. & PIERUCCI, A. (1982). Evidence for a direct stimulatory effect of prostacyclin on renin release in man. J. Clin. Invest., 69, 231.

ROBERTS, J.L., SWEETMAN, B.J. & OATES, J.A. (1981). Metabolism of thromboxane B2 in man. Identification of twenty urinary metabolites. J. Biol. Chem., 256, 8384.

ROSENKRANZ, B., FISHER, C., WEIMER, K.E. & FRÖLICH, J.D. (1980). Metabolism of prostacyclin and 6-keto-prostaglandin F1α in man. J. Biol. Chem., 255, 10194.

STAMFORD, I.F., MELHUIS, P.B., CARROLL, M.A., CORRIGAN, C.J., PATEL, S. & BENNETT, A. (1986). Survival of mice with NC carcinoma is unchanged by drugs that are thought to inhibit thromboxane synthesis or increase prostaglandin formation. Br. J. Cancer, 54, 257.

SUNDSTRÖM, H., YLIKORKALA, O. & KAUPPIA, A. (1986). Serum selenium and thromboxane in patients with gynaecological cancer. Carcinogenesis, 7, 1051.

THALER-DAO, H., CRATES DE PAULET, A. & PAOLETTI, R. (eds) (1984). Icosanoids and Cancer. Raven Press: New York.

VIINIKKA, L. & YLIKORKALA, O. (1980). Measurement of thromboxane B2 in human plasma or serum using radioimmuno-assay. Prostaglandins, 20, 759.

VON HOFF, D.D. & ROSENCWEIG, M. (1979). Cis-diaminedichloro-platinum: a metal complex with significant anticancer activity. Adv. Pharmacol. Chemother, 16, 273.

WILSON, T.W. (1983). Response to furosemide in normotensive and hypertensive subjects. Clin. Pharmacol. Ther., 34, 590.

YLIKORKALA, O., KAUPPILA, A. & VIINIKKA, L. (1981). Effect of cytostatics on prostacyclin and thromboxane in patients with gynaecological malignancies. Obstet. Gynecol., 58, 483.

YLIKORKALA, O., KOSKIMIES, A., LAATIKANEN, T., TENHUNEN, A. & VIINIKKA, L. (1984). Peritoneal fluid prostaglandins in endometriosis, tubal disorders, and unexplained infertility. Obstet. Gynecol., 63, 616.

YLIKORKALA, O., KUUSI, T., TIKKANEN, M.J. & VIINIKKA, L. (1987). Desogesterol-and levonorgestrel-containing oral contraceptives have different effects on urinary excretion of prostaglandin metabolites and serum high density lipoproteins. J. Clin. Endocrinol. Metab., 65, 1238.

YLIKORKALA, O., PEKONEN, F. & VIINIKKA, L. (1986). Renal prostaglandin and thromboxane in normotensive and preeclamptic pregnant women and their infants. J. Clin. Endocrinol. Metab., 63, 1307.

YLIKORKALA, O. & VIINIKKA, L. (1981). Measurement of 6-keto-prostaglandin F1α in human plasma with radiolmmunoassay: effect of prostacyclin infusion. Prostaglandin Med., 6, 427.