Clustering in light nuclei studied with 6He beam

Matko Milin
Physics Department, Faculty of Science, University of Zagreb, Zagreb, Croatia
E-mail: matko.milin@phy.hr

Abstract. Recent development of low-energy 6He radioactive beams led to extensive use of such a unusual projectile in studies of neutron-rich light nuclei. 6He induced elastic and inelastic scatterings, transfer reactions, quasi-free scattering and sequential decay processes were studied at the radioactive beams facility in Louvain-la-Neuve giving results on both cluster structure of different light nuclei and reactions mechanism involved.

1. Introduction
The 6He nucleus is known to have unusual Borromean structure [1] with two loosely bound neutrons orbiting around an α-particle core (both two-body subsystems, 5He and 2n, are unbound). The weak binding of the 6He “valent” neutrons implies a large radial extension of their wave function, as experimentally confirmed by measuring its interaction radius. It also causes a large breakup probability leading to an enhancement of the total reaction cross section.

Recent development of low-energy 6He radioactive beams resulted in a large number of experiments devoted to studies of the exotic 6He cluster structure. Special attention was given to correlation between the valence neutrons and the the influence that they have on reaction processes around Coulomb barrier. Contrary to some early predictions, a dominance of direct reactions over fusion was experimentally established, with the main part of cross-section being related to neutron transfers (see e.g. [2, 3, 4]).

On the other, having in mind the special structure of 6He, radioactive 6He beam seems also as a good choice for production of exotic states in other light nuclei. For example, it can be expected that adding another particle to a loose 6He would be an ideal way to produce a structure resembling a two-centre molecule [5]; the covalent binding of such “nuclear molecule” would be achieved by two loosely bound neutrons of 6He.

An important experimental advantage of 6He as a projectile is a fact that it has 0^+ ground state (contrary to 6Li, 7Li and 9Be, stable loosely bound light nuclei of similar structure), which is essential for performing angular correlation analysis for spin assignments in sequential decay reactions (see e.g. [6]). Furthermore, two loosely bound neutrons in 6He lead to reactions that usually have a rather positive Q-values for population of neutron-rich nuclei; that enables measurements at low beam energies which often give a cleaner observables of structure effects involved.

2. Experimental details
All experiments discussed here were performed at the radioactive beam facility at the UCL, Louvain-la-Neuve, Belgium [7]. It uses two cyclotrons to produce and accelerate 6He ions.
The 30 MeV proton beam of the first machine, CYCLONE 30, is used to produce 6He by the 7Li(p,2p) reaction in the LiF powder contained in graphite holder. It is then ionised in an on-line electron cyclotron resonance ion source and, after a magnetic separation, injected into the second cyclotron. After acceleration and extraction from the machine, the ions are directed into one of the experimental areas by help of a switching magnet. Typical beam intensities of the 6He$^+$ beam (energy range 5.3-18 MeV) were $\approx 5 \times 10^6$ pps, while the 6He$^{++}$ beam (30-73 MeV) had intensity of $\approx 3 \times 10^5$ pps. The beam purity was excellent in all experiments; the only impurity seen [8] were the exotic HeH$^+$ ions (easily removed in the off-line analysis).

Targets used in the campaign included 6,7LiF, 6Li$_2$O, CH$_2$, CD$_2$ etc. “Alpha-particle rich” target nuclei 6Li and 7Li were used for studied of alpha-particle pick-up by 6He and production of molecular states [6, 9, 10]. Several outgoing channels for the 12C target have also yielded interesting results [11, 12] while data obtained with the pure 9Be target are still under analysis [13]. The 14C target was also used, but due to the fact that it was very fragile, it was put in between two thin CH$_2$ foils which made the obtained results rather unclear [14]. Low energy 6He+4He scattering was also measured with a helium gas target [15, 16].

![Figure 1. Schematic of a typical experimental setup.](image-url)

In all performed experiments the detector setup consisted of highly segmented silicon strip detector arrays covering a total solid angle higher than several sr (a typical setup is given in Fig. 1). The forward detector array (LEDA) used in every experiment consisted of 8 sectors each containing 16 strips, 300 μm thick [17]. Different geometrical arrangement of same kind of sectors (six of them) were used at higher angles, closer to target position (LAMP in Fig. 1). In several experiments the CD/PAD telescope [18] was placed at polar angles 10°-50°; the thin ΔE part of the telescope (“CD”) was segmented into 4 sectors with 16 strips each with a thickness of ≈ 40 μm. The remaining energy of the detected particles was collected in PAD, 500 μm thick and segmented only into 4 sectors.

The time of flight (ToF) method was used to obtain the information on the mass of detected particles with LEDA and LAMP detectors with detector and cyclotron RF-pulses used as start and stop signals. The final mass resolution in the LEDA detector array was good enough to mainly separate α-particles from 6He nuclei (Fig. 2), whereas in the LAMP detectors the small distance to the target resulted in a poor mass separation. In CD/PAD telescope particle identification was done with a convenient $\Delta E/E$ technique with an excellent separation of alpha-particles and 6He nuclei.

3. Elastic and inelastic scatterings

Comparison of the 6He and 6Li scatterings on the same targets was used to study structure differences of these two nuclei. Measured 6He+6,7Li and 6He+12C elastic scattering data are found [10] to be in fair agreement with the optical model predictions, using the potentials obtained for the 6Li scatterings (though better agreement for the 6,7Li targets can be obtained e.g. using a larger radius of imaginary part of optical potential). More sophisticated calculation
Figure 2. ToF vs energy for the nuclei detected in the LEDA array during the $^6\text{He}+^6\text{Li}$ measurement at 18 MeV [6, 10].

in the framework of four-body continuum-discretised coupled-channel method gives [19] further better fit and shows that the $^6\text{He}+^{12}\text{C}$ total cross section is enhanced for 15% compared to the $^6\text{Li}+^{12}\text{C}$ one and that half of this enhancement is due to the Borromean structure of ^6He.

Inelastic scattering was found to weaker compared to the inelastic scattering of ^6Li on the same targets; the only states clearly observed to be populated by the ^6He inelastic scattering were the 2^+ state at $E_x= 4.44$ MeV in ^{12}C and the $5/2^-$ state at $E_x= 2.43$ MeV in ^9Be.

4. Transfer reactions

Pronounced cluster structure of all target nuclei used is well suited for transfer reaction studies, even at rather low beam energies. Different pick-up reactions (of deuteron, two protons, triton and α-particle) have been observed for the first time with the ^6He beam. Two-neutron stripping reaction ($^6\text{He},\alpha$) was also studied on $^6.7\text{Li}$ and ^{12}C (and also on ^{19}F present in both lithium targets). For example, the measured angular distribution [20] of the $^6\text{Li}(^6\text{He},\alpha)^8\text{Li}$ reaction was analysed within the framework of the finite-range DWBA, assuming one-step two-mode transfers (di-neutron from ^6He to ^6Li and deuteron from ^6Li to ^6He); the product of spectroscopic amplitudes was found to be: $S_a(^6\text{He}=\alpha+2n)\cdot S_a(^8\text{Li}=^6\text{Li}+2n) = 1.1 \cdot S_a(^6\text{Li}=\alpha+d)\cdot S_a(^8\text{Li}=^6\text{He}+d)$.

Extracted angular distributions for the $^6.7\text{Li}(^6\text{He},^{10}\text{Be})$ reactions could not be completely described with the FRDWBA calculations assuming simple α-particle transfers [9] using different potentials found in the literature; however large relative α-spectroscopic factor was found for the ^{10}Be doublet at $E_x= 7.5$ MeV indicating that at least one of the states has pronounced α-cluster structure.

Among other studied transfer reactions, the first time observed ($^6\text{He},^{8}\text{Be}$) reaction [11] is found to be a potentially very useful spectroscopic tool as a rather simple reaction with respect to both experimental method and reaction dynamics. It is observed on ^{12}C, ^{16}O and ^{19}F nuclei; the measured angular distributions for the $^{12}\text{C}(^6\text{He},^8\text{Be})^{10}\text{Be}$ (g.s.) and $^{12}\text{C}(^6\text{He},^8\text{Be})^{10}\text{Be}^*(3.37$ MeV) reactions show a clear signature of a direct process. Although the contributions from the $^6\text{Li}(^6\text{He},^8\text{Be})^4\text{H}$ reaction were observed, no clear extraction of the ^4H data was possible (for details see [11]).
5. Sequential decay reactions
The reactions with three or more particles in the exit channel have been studied through the triple coincidences; they were detected with considerable efficiency due to large total solid angle covered by the detector system. The sequential decay reactions $^6\text{He} + ^6\text{Li} \rightarrow ^6\text{He} + \alpha + d$, $^6\text{He} + ^6\text{Li} \rightarrow 2\alpha + t + n$, $^6\text{He} + ^7\text{Li} \rightarrow ^6\text{He} + \alpha + t$ and $^6\text{He} + ^{12}\text{C} \rightarrow ^{10}\text{Be} + 2\alpha$ have been clearly observed and analysed and new results on cluster structure of some states in ^9Be, ^{10}Be and ^{14}C have been obtained [6, 12].

For ^9Be it is confirmed [6] that the 5/2$^+$ state at $E_x = 3.05$ MeV decays mainly through the $^8\text{He}(g.s.) + n$ channel, while the 5/2$^-$ state at $E_x = 2.43$ MeV does not. This latter state is shown [6] to be responsible for the “ghost peak” appearing in the ^8Be excitation spectrum at $E_x \approx 0.5$ MeV (at least, for a large fraction of its full intensity).

A very strong population and α-decay of the states at $E_x = 7.54$ and 10.15 MeV, have been observed [6] through the $^4\text{He} + ^6\text{Li} \rightarrow ^6\text{He} + \alpha + d$ reaction. The determined branching ratio for the decay of the 2$^+$ state at $E_x = 7.54$ MeV, $\Gamma_{2^+}/\Gamma > (2.0 \pm 0.6) \times 10^{-3}$, indicating that this state belongs to the rotational band based on the intruder 0^+_2 state at $E_x = 6.18$ MeV. For the state at $E_x = 10.15$ MeV the performed angular correlation studies [6] favour the $J^\pi = 4^+$ assignment.

The $^6\text{He} + ^{12}\text{C} \rightarrow ^{10}\text{Be} + 2\alpha$ reaction was used to obtain information on α-cluster states in ^{14}C [10]; those were found to agree with a recently performed systematic study of ^{14}C states [21].

6. Resonant elastic scattering
A gas target was employed [16] with a experimental setup similar to the one in Fig. 1 to probe the 10.15 MeV resonance in ^{10}Be via resonant $^6\text{He} + ^4\text{He}$ elastic scattering. Thick target resonant elastic scattering is a powerful technique to study partial widths and spin/parities of the resonances in a model independent way. The measurements demonstrated [16] that the resonance has a very large α-particle component and $J^\pi = 4^+$, in agreement with the results for the $^6\text{Li}(^6\text{He},^6\text{He}o)^2\text{H}$ reaction [6]. Search for another strong resonances in $^6\text{He} + ^4\text{He}$ elastic scattering is being performed.

7. Results for ^{10}Be
The most important results in the series of experiments reviewed in the present paper are related to unusual states in ^{10}Be. A crucial role which ^{10}Be may have in understanding neutron rich nuclei makes all the new experimental information on its states very valuable. With the ^6He beam, the states in ^{10}Be are probed in three ways: by α-particle transfer reactions, by sequential decay reactions $^6\text{Li}(^6\text{He},^6\text{He}o)^2\text{H}$ and by resonant elastic scattering $^6\text{He} + \alpha$. In short, the results for ^{10}Be are the following: (i) the 2$^+$ state at $E_x = 7.54$ MeV is found to have a well-pronounced alpha-particle structure; (ii) the state at $E_x = 10.15$ MeV is clearly assigned $J^\pi = 4^+$ and found to have a very large alpha-particle component too.

Other recent results show [22] that the 10.15 states decays into $^6\text{He} + \alpha$ channel (and not into $n + ^9\text{Be}$) and that it also decays into $^6\text{He}(2^+) + \alpha$ channel [23]; it is interesting to note that its energy coincides with the $^5\text{He} + ^5\text{He}$ decay threshold. Furthermore, the observed alpha-decay width of the 7.54 MeV state is in agreement with the one measured via the $^7\text{Li}(^7\text{Li},^6\text{He}o)^4\text{He}$ reaction [24]. Together with the known 0$^+$ “intruder” state at $E_x = 6.18$ MeV, the states at $E_x = 7.54$ and 10.15 MeV form a rotational band with the slope parameter $k = h^2/2I \approx 0.20$ MeV. This should be compared with the ground-state bands of ^8Be, ^9Be and ^{10}Be which have slopes of 0.57, 0.53 and 0.56 MeV, respectively (bands are compared in Fig. 3). In other words, the separation of the two α-clusters in the $^{10}\text{Be} 0^+_2$ band is greatly enhanced and arises from the presence of the molecular neutrons between two cores.

Many recent cluster model calculations (e.g. [25, 26, 27, 28, 29, 30, 31, 32]) do reproduce all experimentally observed features of the ^{10}Be structure (including molecular states), though they differ in many details. Standard shell model calculations (e.g. [33]), on the other hand,
cannot explain such molecular states even when they contain mixture of highly excited ($\hbar\omega$) components in their wave function, showing that clustering is indeed essential and fundamental in description of light nuclei.

When combined with the other results, especially the recent measurement of the 12C(12C,14O)10Be reaction [34], systematic grouping of all 10Be states can be obtained as given in Fig. 3. The 4$^+$ member of the ground state band is identified [34] as the 11.8 MeV state; identification of the 6$^+$ members of both 0$^+$ bands would further confirm the proposed interpretation.

Finally, the 10Be states at $E_x = 7.5 - 12$ MeV might be astrophysically important through the sequence of reactions 4He(2n,γ)6He(α,n)9Be which may compete with the triple-alpha process or other three-particle reactions. This was studied in Ref. [35] and though it was found that such a scenario is very unlikely, it should be noted that for several states (those at $E_x = 10.15$, 10.57 and 11.76 MeV) resonance level parameters used were later experimentally shown to be wrong.

8. Quasi-free reactions
Although quasi-free scattering have been observed in different reactions using stable beams of low energies, observation in the 6He+6Li reaction in an experiment with radioactive beams of relatively low intensity may come as a surprise [36]. A strong contribution to the 6He-d coincident spectrum was found to correspond to the 6He quasi-free scattering off the deuteron in the 6Li nucleus and this [36] is the first observation of the quasi-free scattering of fragile radioactive nuclei on clusters in target nuclei.

9. Summary and outlook
Elastic, inelastic and quasi-free scatterings and different transfer and sequential decay reactions were measured with a 18 MeV radioactive 6He beam on the 4He, 6Li, 7Li, 9Be, 12C and 14C targets and results concerning both nuclear structure and reaction mechanism were reported. The 6He beam is found to be a good choice for production of exotic structures in light nuclei.

A rotational band based on the 0^+_2 state at $E_x = 6.18$ MeV is identified in 10Be and its very large moment of inertia indicates that its states have strongly deformed molecular structure (definitely one of the highest axis ratios of all known nuclei). A next step would be identification

Figure 3. Rotational bands in 8Be (green, full circles), 9Be (blue, open circles) and 10Be (red, open squares).
of analog states in 10B and 10C, which e.g. might be accomplished with another radioactive beam, 7Be. Experimental efforts in that direction are already under way in Louvain-la-Neuve.

Acknowledgments

This work is based on experiments done in collaborations between groups from Zagreb, Louvain-la-Neuve, Catania, Edinburgh, Huelva, Santiago de Compostela, Sevilla, Caen, Guildford, Leuven and Birmingham. Thanks are due to all the collaborators, but especially to Đuro Miljanić, Neven Soić, Mile Zadro, Alessia Di Pietro, Pierpaolo Figuera, Carmen Angulo and Martin Freer. I would also like to thank the technicians and workshop in Louvain-la-Neuve for their support during the experiments.

References

[1] Zhukov MV, Danilin BV, Fedorov DV, Bang JM, Thompson IJ and Vaagen JS 1993 Phys. Rep. 231 151
[2] Di Pietro A et al 2004 Phys. Rev. C 69 044613
[3] Raabe R et al 2004 Nature 431 823
[4] Keeley N, Raabe R, Alamanos N and Sida JL 2007 Prog. Part. Nucl. Phys. 59 579
[5] von Oertzen W, Freer M and Kanada-En'yo Y 2006 Phys. Rep. 432 43
[6] Milin M et al 2005 Nucl. Phys. A 753 263
[7] Darquennes D et al 1990 Phys. Rev. C 42 R804
[8] Miljanić Đ et al 2000 Nucl. Instrum. Methods Phys. Res. A 447 544
[9] Milin M et al 1999 Europhys. Lett. 48 616
[10] Milin M et al 2004 Nucl. Phys. A 746 183c
[11] Milin M et al 2004 Phys. Rev. C 70 044603
[12] Milin M et al 2004 Nucl. Phys. A 730 285
[13] Raabe R et al. 2002 proposal for an experiment at CRC LLN
[14] Milin M et al 2007 Eur. Phys. J., accepted for publication
[15] Freer M et al 2006 Phys. Rev. Lett. 96 042501
[16] Davinson T et al 2000 Nucl. Instrum. Methods Phys. Res. A 454 350
[17] Ostrowski AN et al. 2002 Nucl. Instrum. Methods Phys. Res. A 480 448
[18] Matsumoto T et al. 2004 Phys. Rev. C 70 061601
[19] Milin M et al. 2006 Phys. Atom. Nucl. 69 1360
[20] von Oertzen W et al. 2004 Eur. Phys. J. A 21 193
[21] Soić N et al. 1996 Europhys. Lett. 34 7
[22] Miljanić Đ et al. 2001 Fizika (Zagreb) B 10 235
[23] Liendo JA, Curtis N, Caussyn DD, Fletcher NR and Kurtukian Nieto T 2002 Phys. Rev. C 65 034317
[24] Kanada-En'yo Y, Hor炊chi H and Dote A 1999 Phys. Rev. C 60 064304
[25] Itagaki N and Okabe S 2000 Phys. Rev. C 61 044306
[26] Ogawa Y, Arai K, Suzuki Y and Varga K 2000 Nucl. Phys. A 673 122
[27] Fujimura J, Baye D, Desouvremont P, Suzuki Y and Varga K 1999 Phys. Rev. C 59 817
[28] Ito M, Kato K and Ikeda K 2004 Phys. Lett. B 588 43
[29] Al-Khalili JS and Araï K 2006 Phys. Rev. C 74 034312
[30] Pei JC and Xu FR 2007 Phys. Lett. B 650 224
[31] Warburton EK and Brown BA 1992 Phys. Rev. C 46 923
[32] Bohlen HG, Dorsch T, Kokalova Tz, von Oertzen W, Schulz Ch and Wheldon C 2007 Phys. Rev. C 75 054604
[33] Bartlett A, Görres J, Mathews GJ, Otsuki K, Wiesher M, Frekers D, Mengoni A and Tostevin J 2006 Phys. Rev. C 74 015802
[34] Miljanić Đ et al. 2006 Europhys. Lett. 76 801