Rework Reduction and Quality Cost Analysis of Furniture Production Processes Using the House of Risk (HOR)

Kukuh Winarso¹, Moh. Jufriyanto²

¹Industrial Engineering, University of Trunjoyo Madura, Bangkalan, East Java, Indonesia.
²Industrial Engineering, University of Muhammadiyah Gresik, Gresik, East Java, Indonesia.

¹kukuhutm@gmail.com, ²mohammadjufriyanto.95@gmail.com

Abstract. — Quality is one of the important factors that makes a company survive in the industrial world. PT. X maintains the quality of its products by conducting quality tests on all products that will be sent to consumers. Although the quality test has been carried out on products, there are still consumers who receive defective products. To reduce product defects, a risk management approach is carried out. Risk management is a method in which organizations can identify problems with a comprehensive and systematic management approach. The method used in this study is Seven tools and House of Risk (HOR). Phase 1 of the House of Risk (HOR) method used to search for risk agents must be prioritized by looking at the value of Aggregate Risk Potential (ARP). Furthermore, the ARP value is used as input for House Of Risk phase 2 to find mitigation strategies that can be applied in the company. Based on the identification of risk events there are 24 risk events in the production process and there are 21 causes of risk (risk agents). The causes of risk that must be prioritized are 10 causes of risk with the highest ARP value of 2699, i.e. the operator ignores the SOP. So that the causes of risk must be prioritized for improvement. Based on the analysis of the quality costs is repair product costs or rework product cost, it is focused on two products is Crb 10123-31 and Crb 01143-79 Ns.

Keywords : Risk Management, Inventory, Aggregate Risk Potential (ARP), House Of Risk (HOR), Mitigation Strategy, Risk Agent, Risk Event, Quality Costs.

1. Introduction

The development of the furniture industry, the companies are required to compete with other companies so that they can survive in the industrial world. One important factor that makes a company able to survive is maintaining product quality so that consumers are satisfied with the products produced by the company.

Remanufacturing as well as quality improvement innovations are important activities to improve sustainability. However, when living side by side in one company, their interactions are not clear. On the one hand, past research found[1]. On the supply-side, a firm carries out advertising to promote its product and product innovation policies that improves product quality. On the demand-side, consumers are sensitive to product price, product quality, and advertising expenditure[2].

Rework is the repeating of an activity (design) at the same scope and abstraction level or the unplanned allocation of resources to fix problems discovered late in a product's development cycle[3]. Rework is redoing tasks in a similar way because inputs or assumptions changed[4]. in reducing
product defects and reworking of course a process is needed. In the process sometimes there are uncertainties that pose a risk.

Risk known uncertainties while uncertainties are unknown risks[5]. Risks can be reduced by the existence of risk management. Risk management refers to a structured process involving actions or activities for the purpose of reducing the chances of the occurrence of such undesirable events and mitigating the effects[6].

In previous research regarding risk management about risk management strategies and residual risk perception in the wine industry. The research was conducted in northeastern Italy. the results of the study state that investment in risk management strategies focuses on managing wine production which has a direct impact [7]. in this research reduce the reworking and cost quality analysis with risk management strategies and the House of risk.

PT. X is a company engaged in manufacturing. The product made by this company is furniture. Furniture products produced by this company are various such as chairs, tables, drawers, beds, sofa beds, wall hangings, and others. Each product produced has different specifications from each other because the company implements the Make to order system, which means the company receives orders from buyers in the production process.

The production process in this company consists of five main parts, namely the inventory section, Central Part Preparation(CPP), white wood and rattan, glass, finishing, packaging. In the production process, products sent to buyers are products that have passed the quality test. Even though the production process has been tested for quality but there are still defective products, it needs to be repaired in the form of reworking. Product defects can be categorized as risks that can disrupt the company.

This research was conducted to help overcome these problems with a risk management approach using the House of Risk (HOR) method. After taking a risk management approach with the HOR method, the next thing to do is to identify the quality costs that must be incurred by the company in terms of this risk.

2. Literature Review

2.1. Risk

Risk is present everywhere, in every aspect of our lives. One example of an industry that poses risks is the construction industry. risk is an inherent element. An effective risk management process does not mean eliminating risk, it is an easier analysis choice[8]. A risk must be identified and analyzed so that it can be minimized and not adversely affect a process[9].

2.2. Risk Management

Risk management is concerned with planning, identifying, analyzing, responding, monitoring and controlling risk management in an activity [10][11]. Risk management is a process used to identify, measure, ensure, and develop strategies to be used to manage risk[12]. Risk management is able to evaluate and to decide whether a project is worth to carry out with attention to the organizational structure, level of technology, the ability of human resources, financial conditions, the level of production and the level of marketing[13][14]. A risk management activity allows an organization to identify and reduce risks that threaten the achievement of objectives and are part of an effective quality management system[15].

2.3. Quality Risk Management

Quality risk management is a systematic process for the assessment, control, communication and review of risks to the quality of product. Further, QRM concept depends upon the understanding of terms ‘Quality’ and ‘Risk’[16]. Quality risk management is a systematic process for the assessment, control, communication and review of risks towards the quality of product across the product lifecycle[17].

3. Methods
The method used in this study uses a quality risk management approach and the solution is to use the seven tools approach and the House of Risk (HOR) method. The following are the steps in resolving problems with the seven tools and House of Risk (HOR) methods:

3.1 Seven Tools Approach

The seven tools approach used in this study are two, namely histogram and pareto diagram. In this study, the histogram presents data about the frequency of defects in furniture products in each production process. Pareto diagram used to know things that are priorities in quality control [10]. The Pareto chart is a bar graph that shows the data based on the greatest frequency to the smallest. The first bar graph shows the most data as well as its placement is in the far left and so on until the right most data means the least amount [18]. The histogram is called also with frequency distribution diagram. This diagram shows the frequency distribution data are quantitative or qualitative data in the form of a succinct and clear [19][20].

3.2 House of risk

House Of Risk (HOR) is a method developed from the two methods, namely the method of QFD (Quality Function Deployment) and FMEA (Failure Modes and Effects Analysis) that is used to design a framework in managing risk. This method was developed by Geraldin Laudine and Nyoman Pujawan[21]. FMEA (Failure Modes and Effects Analysis) is an effective way to resolve the problem, besides that FMEA is used to determine the potential modes and effect analysis of failure[22][23]. QFD (Quality Function Deployment) is one of the methods successfully used in the process of product design; using the House of quality (HOQ), capable of translating the customer's requirements into design specifications[24].

Data that has been processed using the seven tools approach, the histogram will then be analyzed using the House Of Risk (HOR) method. This method is used to identify the risk of production processes in furniture products to reduce rework products. The following are the stages of House Of Risk (HOR) [21]:

1. Phase 1 HOR
a. Identify risk events (Ei) and risk agents (Aj) in the production process
b. Identify the impact on each Ei variable
c. Determine the rating of the severity value
d. Identify risk factors for each variable Ai
e. Determine the rank of the amount of occurrence
f. Make a matrix of variable correlation relationships Ei and Ai provided that:
0: no correlation, 1: weak correlation, 3: moderate correlation and 9: strong correlation

g. Calculate the value of ARP (Aggregate Risk Potential) from Aj using the formula below:

\[ARP_j = O_j \times \sum S_i \times R_{ij} \] (1)

h. Determine ARP ratings from each Ai
i. Make a Pareto Aj diagram for priority selection.

Production Process	Risk Agents (Aj)	A1	A2	A3	Am
	Severity of risk events (Si)	\(R_{11} \)	\(R_{12} \)	\(R_{13} \)	\(R_{1m} \)
		E1	E2	E3
		\(S_1 \)
		\(R_{21} \)	\(R_{22} \)	\(R_{23} \)	\(R_{2m} \)
		E2	E3	\(S_2 \)
		\(R_{31} \)	\(R_{32} \)	\(R_{33} \)	\(S_3 \)
		E3
	
		\(R_{n1} \)	\(R_{n2} \)	\(R_{n3} \)	\(R_{nm} \)
		En
	Occurrence of agent j	O1	O2	O3	On
	Aggregate Risk Potential j	ARP1	ARP2	ARP3	ARPm
	Priority Rank of Agent j	ARP1	ARP2	ARP3	ARPm

Table 1. Phase 1 HOR (Risk Identification).
2. Phase 2 HOR
 a. Arrange mitigation or preventive action (PAk) based on Aj’s priorities
 b. Determine the correlation between Aj and PAk with the following conditions:
 0: no correlation, 1: weak correlation, 3: moderate correlation and 9: strong correlation
 c. Calculate the total effectiveness value of each PAk using the formula below:
 \[TE_k = \sum (ARP_j \times E_{jk}) \]
 d. Measuring the level of difficulty in applying PAk with the following scales and conditions:
 3: low
 4: medium
 5: high
 e. Calculate the effectiveness for the difficulty ratio (ETDk) using the formula below:
 \[ETD_k = \frac{TE_k}{D_k} \]
 f. Determine PAk priorities based on ETDk values

Table 2. Stage 2 HOR (Risk Management)
Preventive action (PAk)
To be treated risk agents (Aj)
Relationship between mitigation actions and to be treated risk agent
ARP1
A1
A2
A3
A4
A5
Effectiveness of action k
TE1
Degree of difficulty performing action k
D1
Effectiveness to difficulty ratio
ETD1
Rank of priority
R1

Si = level of impact of a risk (risk severity) Oj = risk insurance event rate
Rij = risk event correlation relationship with risk agent j ARPj = Aggregate Potential risks from risk agents j
TEk = the value of the effectiveness of each mitigation action k
Ejk = Relationship between risk agent correlation j and risk mitigation k ETDk = effectiveness against the ratio of difficulties
TEk = The total effectiveness of the action k Dk = The level of difficulty taking action

3.3 Analysis of Pareto’s Chart
In this study, Pareto diagram is used to indicate the classification of data from left to right based on the percentage order of the value of ARP (Aggregate Risk Potential) in House Of Risk (HOR). The biggest percentage will be improved by conducting phase 2 HOR, which is looking for strategies for the proposed risk mitigation steps.

3.4 Quality Cost Analysis
In the analysis of the cost of this quality that will be calculated is the cost of failure from within (internal), namely the cost of rework (reprocessing). Costs to be calculated include material costs, direct labor costs and overhead costs.

4. Result
Process at PT. X. Based on observations there are some defects produced during the production process in the period 2017. The following is a breakdown of data on furniture products ordered by Braxton during the 2017 period:
Figure 1 shows the defects in furniture ordered by Braxton buyers during the 2017 period. Of the several types of disability, the most common disability was poor sanding from 51 defective findings and too much glue or putty from 44 defective findings. Based on this problem it is necessary to take action so that defective products are reduced so as to satisfy customers and can reduce complaints from customers. To overcome this problem will be done by identifying risks in each production process that can lead to defective products.

This risk identification is done by interviewing companies, namely the quality control division and the production department. The following are risks that can interfere with the furniture manufacturing production process:

Table 3. Account of Risk Events

Section	Activity	Risk Event
Central Part Preparation	Kiln Dry	There is a broken wooden
		There is a curved wood
	Sizing	There is a wooden eye
		the dimensions of the wood that does not comply with the specification
		There is a difference in color while the joining of wood
		wood cracked when the process of connecting a wood
Rotan Process	Bending	There are variations in color rattan
		results of untidy matting
		There are nails that look on the outcome of the Assembly
Glass Process	Shaping	the surface of the glass edges uneven
		Series of glass not precision
	Assembling	the results of the assembly that is not strong
		the results of the assembly which is not presentable
		There is material which breaks
		the connection is not flat and legs shake
	Assembling	There are uneven surfaces
		installation of components that are wrong so the way it works is problematic
		components not aligned
		the color of the wood is not the same
Wood Process	Assembling	the product surface is rough
		the brightness of colors exceeds or is less than the specifications
	Sanding	there are irregularities of color
	Colouring	There are a variety of colors on one piece

After identifying risk events, then identifying the causes of risk is done by interviewing the company, namely the head of the QC department. The following identifies the causes of risk in all risk events which will be explained in table 2 below:
Table 4. End of risk Recap (Risk Agent)

Risk Agents	Code
Negligence of the operator	B1
Don’t pay attention to the arrangement of wood and kiln dry	B2
Raise the temperature too fast	B3
The position of the assembly which is not payed	B4
The operator ignores the SOP	B5
The lack of communication when revision pictures	B6
Repeated checking is not done	B7
Pressure does not correspond to the type of wood	B8
Don’t pay attention to the kind of hard or soft wood	B9
The blade on the aus cut machine	B10
Types of rattan which is not the same	B11
Size per part part no precision	B12
The size of the dowel is not appropriate	B13
The awarding of the glue less many	B14
The lack of communication with revision pictures	B15
Pressure on the engine claim is too large	B16
Less expert operators	B17
Wind pressure down on the spray tool	B18
Spray the dirty tool	B19
Mixing colors	B20
Existence of step color skipped	B21

Each risk event will be assessed for its severity. The severity shows how big the impact is. While each cause of risk will be assessed based on the criteria for the occurrence or how often these failures occur. Furthermore, an assessment of the correlation between the incidence of risk and the cause of risk is carried out. The three assessments will be used as input to find the value of the Aggregate Risk Potential (ARP). The result of Risk Aggregate Potential Value (ARP) is:

Table 5. The order of ARP from the largest to the smallest

No	Code	Risk Agents	ARP	ARP
1	B5	The operator ignores the SOP	2699	ARP5
2	B1	Negligence of the operator	1909	ARP1
3	B4	The position of the assembly which is not payed	979	ARP4
4	B2	Don’t pay attention to the arrangement of wood and kiln dry	272	ARP2
5	B7	Repeated checking is not done	602	ARP7
6	B10	The blade on the aus cut machine	552	ARP10
7	B12	Size per part part no precision	472	ARP12
8	B14	The awarding of the glue less many	379	ARP14
9	B17	Less expert operators	323	ARP17
10	B20	Mixing colors	308	ARP20
11	B13	The size of the dowel is not appropriate	285	ARP13
12	B16	Pressure on the engine claim is too large	238	ARP16
13	B9	Don’t pay attention to the kind of hard or soft wood	218	ARP9
14	B21	Existence of step color skipped	207	ARP21
15	B6	The lack of communication when revision pictures	204	ARP6
16	B8	Pressure does not correspond to the type of wood	190	ARP8
17	B3	Raise the temperature too fast	184	ARP3
18	B11	Types of rattan which is not the same	132	ARP11
19	B19	Spray the dirty tool	130	ARP19
20	B18	Wind pressure down on the spray tool	144	ARP18
21	B15	The grant is too much glue	125	ARP15

6
Based on table 5, it can be seen that the ARP value from highest to lowest. The risk cause of the operator ignoring the SOP has the highest ARP value of 2699 while giving too much glue has the lowest ARP value of 125.

![Figure 2. Pareto ARP diagram](image)

Based on Figure 4, it can be seen which causes of risk should be prioritized based on the Pareto diagram concept. If the company wants to overcome the problem by 80%, there are 10 types of risk causes that must be prioritized, namely the operator ignores the SOP, operator negligence (human factor), assembly position is not considered, does not pay attention to the wood arrangement in the dry kiln, no longer checked, the knife cut using, the size of each part is not right, less glue, the operator is less skilled and mixes the wrong color.

In phase 2 of the HOR, the search for mitigation strategies or preventive measures is carried out. This strategy is used to reduce the occurrence of risk causes so that risk events will decrease as well. In determining mitigation strategies, this is adjusted for the identified risk causes. Based on interviews with production parties, 16 strategies for mitigation proposals were obtained, namely as follows:

Table 6. Summary of proposed mitigation strategies
Preventive action
Do the training or training to operator
Provide socialization SOP
Conduct performance assessment for the operator
Provide briefings to the operator every morning
Conduct evaluation work each work before it ends
Design a workplace that is comfortable and safe for the operator
Create work orders for each sheet of the operator
Do some checking every once an hour
Make the wood setup in the SOP kiln dry
Makes engine maintenance schedule daily, weekly and monthly
Create a work instruction to cut machines
Make archive documents maintenance
Improve the system of workers’ acceptance
Create a sample panel colors for finishing operator
Give instructions pengecetan each item products
Inline check periodically in the finishing area

Furthermore, an assessment of the correlation between the causes of risk and the proposed mitigation strategy is carried out. This assessment is carried out by the company, namely the head of the QC department. The ARP value of the 10 priority causes of risk and the correlation value between
the causes of risk and the proposed mitigation strategy is used as input to determine the value of total effectiveness.

Furthermore, an assessment is carried out to assess whether the strategy is difficult or not applied in the company by determining the value of the degree of difficulty. This assessment is done by giving a questionnaire to the company that is an expert in their field, namely the head of the QC department. The total effectiveness value and degree of difficulty are used to calculate effectiveness to difficulty ratio (ETD). The highest mitigation proposal strategy with effectiveness to difficulty ratio (ETD) is the output of phase 2 HOR, which means that the strategy can be applied in the company to be used to reduce the causes of risk. The following is a recapitulation of the results of ETD value calculations:

Table 7. Recapitulation of ETD values

Code	Proposed mitigation strategies	ETD
PA2	Provide socialization SOP	27035.07
PA4	Provide briefings to the operator every morning	27035.07
PA8	Do some checking every once an hour	27035.07
PA5	Conduct evaluation work each work before it ends	20276.3
PA3	Conduct performance assessment for the operator	19447.89
PA1	Do the training or training to operator	19282.88
PA10	Makes engine maintenance schedule daily, weekly and monthly	18885.06
PA9	Make the wood setup in the SOP kiln dry	17677.23
PA7	Create work orders for each sheet of the operator	16089.54
PA14	Create a sample panel colors for finishing operator	15717.83
PA15	Give instructions pengecetan each item products	15717.83
PA16	Inline check periodically in the finishing area	14856.39
PA13	Improve the system of workers’ acceptance	13055.08
PA12	Make archive documents maintenance	12543.13
PA11	Create a work instruction to cut machines	12391.5
PA6	Design a workplace that is comfortable and safe for the operator	3437.094

Table 7 shows the ETD value of all proposed mitigation strategies. Based on ETD calculations, it is known that the strategy that has the highest ETD value is three, namely providing socialization of SOPs and quality standards to operators, giving briefings to operators every morning and checking every hour with ETD values of 27035.07 meaning that these three strategies can be applied in the company to reduce the causes of risk.

Furthermore, an analysis of quality costs, costs are carried out. The quality costs to be analyzed in this study are internal failure costs, namely the cost of product repairs (product rework). In analyzing the cost of repairing this product based on the cost of the material used for product repairs, direct labor costs in accordance with the length of time worked on product repairs and factory overhead costs, namely the cost of electricity usage if the repair uses a machine. The following are the results of calculating quality costs for each type of disability:
Table 6. Results of calculation of quality costs

Type of reject	Type of product	Crb 01143-79 Ns	CRB10123-31
Wood eye	Rp30,141	Rp26,694	
Discolouring	Rp46,967	Rp40,073	
Fingerpoint	Rp10,012	Rp10,357	
Laminate	Rp15,763	Rp13,956	
Dimention	Rp144,307	Rp144,997	
Material Split	Rp146,123	Rp144,136	
Poor Assembly	Rp106,181	Rp106,181	
Door/Drawer alignment	Rp42,842	Rp43,182	
Colour variation	Rp81,972	Rp83,465	
Rough finish	Rp124,169	Rp126,007	
Glossy top coat	Rp30,114	Rp30,114	
Color deviation	Rp247,958	Rp246,182	
Poor sanding	Rp11,692	Rp12,382	
Too much glue/putty	Rp19,788	Rp19,788	
Marking process	Rp15,283	Rp15,973	

5. Conclusion

Based on the Aggregate Risk Potential (ARP) calculation and analysis using the Pareto diagram, there are 10 causes of risk that must be prioritized for improvement and looking for mitigation strategies, namely the operator ignores the SOP with the largest ARP value, which is 2699, operator negligence (human factor), assembly position, do not pay attention to the arrangement of wood in the dry kiln, not checked again, the knife on the cutting machine is worn out, the size of each part is the wrong part, lack of glue, the operator is less skilled and mixing color is wrong. The mitigation proposal strategy used to minimize the occurrence of risk causes that can cause risk events there are 16 strategies proposed with 3 proposed strategies that have the highest ET_D value namely providing SOP socialization and quality standards to operators, providing operator briefings every morning, and checking every hour. Quality cost analysis is focused on two products, namely Crb 10123-31 and Crb 01143-79 Ns. For example, the total repair cost for Crb 10123-31 products caused by wood defects is Rp 26,694 while on Crb product is 01143-79 Ns, the total repair cost is Rp. 30,141. This research provides results not only in a qualitative calculation but also calculates the cost of each improvement process. this will help the company about the costs. this is different from previous research using only qualitative calculations.

Acknowledgments

Authors would like to thank PT. X has provided the opportunity to conduct research on the author. for further research should compare between the analysis of the cost of repair of the product and costs proposed mitigation strategy so it will be better known to do repair products or implement mitigation strategies. In addition, the focus is to analyze the risks in detail on one type of product.

References

[1] G. Li, M. Reimann, and W. Zhang, “When remanufacturing meets product quality improvement: The impact of production cost,” Eur. J. Oper. Res., vol. 271, no. 3, pp. 913–925, 2018.
[2] R. Y. Chenavaz and S. M. Jasimuddin, “An analytical model of the relationship between product quality and advertising,” Eur. J. Oper. Res., vol. 263, no. 1, pp. 295–307, 2017.
[3] S. Dullen, D. Verma, and M. Blackburn, “Review of Research into the Nature of Engineering and Development Rework: Need for a Systems Engineering Framework for Enabling Rapid Prototyping and Rapid Fielding,” Procedia Comput. Sci., vol. 153, pp. 118–125, 2019.
[4] D. C. Wynn and C. M. Eckert, Perspectives on iteration in design and development, vol. 28, no. 2. Springer London, 2017.
[5] F. Dayour, S. Park, and A. N. Kimbu, “Backpackers’ perceived risks towards smartphone
usage and risk reduction strategies: A mixed methods study,” *Tour. Manag.*, vol. 72, no. August 2018, pp. 52–68, 2019.

[6] R. B. Santos and U. R. de Oliveira, “Analysis of occupational risk management tools for the film and television industry,” *Int. J. Ind. Ergon.*, vol. 72, no. May, pp. 199–211, 2019.

[7] M. De Salvo, R. Capitello, B. Gaudenzi, and D. Begalli, “Risk management strategies and residual risk perception in the wine industry: A spatial analysis in Northeast Italy,” *Land use policy*, vol. 83, no. August 2018, pp. 47–62, 2019.

[8] P. Szmański, “Risk management in construction projects,” *Procedia Eng.*, vol. 208, pp. 174–182, 2017.

[9] K. Buganová and J. Šimičková, “Risk management in traditional and agile project management,” *Transp. Res. Procedia*, vol. 40, pp. 986–993, 2019.

[10] H. E. Hosny, A. H. Ibrahim, and R. F. Fraig, “Risk management framework for Continuous Flight Auger piles construction in Egypt,” *Alexandria Eng. J.*, vol. 57, no. 4, pp. 2667–2677, 2018.

[11] B. Bui, C. J. Cordery, and Z. Wang, “Risk management in local authorities: An application of Schatzki’s social site ontology,” *Br. Account. Rev.*, vol. 51, no. 3, pp. 299–315, 2019.

[12] O. Odimabo and C. F. Oduoza, “Guidelines to Aid Project Managers in Conceptualising and Implementing Risk Management in Building Projects,” *Procedia Manuf.*, vol. 17, pp. 515–522, 2018.

[13] D. S. Dewi, B. Syairuddin, and E. N. Nikmah, “Risk Management in New Product Development Process for Fashion Industry: Case Study in Hijab Industry,” *Procedia Manuf.*, vol. 4, no. Iss, pp. 383–391, 2015.

[14] D. Rios Insua, C. Alfaro, J. Gomez, P. Hernandez-Coronado, and F. Bernal, “A framework for risk management decisions in aviation safety at state level,” *Reliab. Eng. Syst. Saf.*, vol. 179, pp. 74–82, 2018.

[15] M. Suprin *et al.*, “Quality Risk Management Framework: Guidance for Successful Implementation of Risk Management in Clinical Development,” *Ther. Innov. Regul. Sci.*, vol. 53, no. 1, pp. 36–44, 2019.

[16] N. Kumar and A. Jha, “Quality risk management during pharmaceutical ‘good distribution practices’ – A plausible solution,” *Bull. Fac. Pharmacy. Cairo Univ.*, vol. 56, no. 1, pp. 18–25, 2018.

[17] A. Sivadasu, S. Kiran, Gangadharappa, H.V*; Jose, “Quality Risk Management: A Review,” *Int. J. Pharm. Sci. Rev. Res.*, vol. 44, no. 34, pp. 142–148, 2017.

[18] S. Muhammad, “Quality Improvement Of Fan Manufacturing Industry By Using Basic Seven Tools Of Quality : A Case Study,” *Int. J. Eng. Res. Appl.*, vol. 5, no. 4, pp. 30–35, 2015.

[19] A. Neyestani and B. Neyestani, “Seven Basic Tools of Quality Control: The Appropriate Techniques for Solving Quality Problems in the Organizations,” no. March, 2017.

[20] M. R. Suryoputro, M. Sugarindra, and H. Erfaisalsyah, “Quality Control System using Simple Implementation of Seven Tools for Batik Textile Manufacturing,” *IOP Conf. Ser. Mater. Sci. Eng.*, vol. 215, no. 1, pp. 0–10, 2017.

[21] Z. D. Cahyani, S. R. W. Pribadi, and I. Baihaqi, “Study the implementation of a Model House of Risk (HOR) for risk mitigation of delays in materials and Components Imported in the construction of new ships,” *J. Tek. ITS*, vol. 5, no. 2, pp. G52–G59, 2016.

[22] Q. Guo, K. Sheng, Z. Wang, X. Zhang, H. Yang, and R. Miao, “Research on Element Importance of Shafting Installation Based on QFD and FMEA,” *Procedia Eng.*, vol. 174, pp. 677–685, 2017.

[23] F. Ochrana, M. Pâček, and M. Plaček, “The Use of FMEA for the Analysis of Corruption: A Case Study from Bulgaria,” *Procedia Econ. Financ.*, vol. 30, no. 15, pp. 613–621, 2015.

[24] A. A. Bolar, S. Tesfamariam, and R. Sadiq, “Framework for prioritizing infrastructure user expectations using Quality Function Deployment (QFD),” *Int. J. Sustain. Built Environ.*, vol. 6, no. 1, pp. 16–29, 2017.