Original Research Article

Effect of CO₂ Concentration, Temperature and Light on Macro Biomolecules Accumulation in *Chlorella protothecoides*

Savita Rani¹, Sumer Singh¹ and Baljeet Singh Saharan²*

¹Singhania University, Pacheri Bari, Jhunjhunu - 333 515, Rajasthan, India
²Department of Microbiology, CCS Haryana Agricultural University, Hisar 125 004, India

*Corresponding author

Keywords
Carbohydrate, Protein, Lipids, Biomolecules

Abstract

The content of chlorophyll, carbohydrate, proteins and lipids in *Chlorella protothecoides* was observed in treated as well as untreated cells of *C. protothecoides* using different concentration of carbon dioxide with time period i.e. 30min, 12hr and 30min and 12hr at culture room conditions. The content of chlorophyll, carbohydrate, protein and lipids varied with the temperature and time period.

Introduction

The environment is going to rapid change due to human activities like industrialization, deforestation etc. and undergoes global warming due to increasing CO₂ concentration in atmosphere.

The temperature on our planet increased due to increase in green house gases i.e. CO₂, Methane, nitrous oxide etc.

To remove effect of carbon and storage of carbon from atmosphere the carbon sequestration through bio-logical methods play most important role in green growth i.e. algae which fix carbon present in water and through photosynthesis. *Chlorella species* play an important role as it contains chlorophyll pigment.

In fresh cultures protein content is high but as the culture grows older fat and carbohydrates content increases and become a rich source of food for mankind.

In *Chlorella*, carbohydrates source i.e. starch and sucrose is present and multiply rapidly in the presence of CO₂, sunlight and nutrients. It can be used as food supplement and in spacecrafts. *Chlorella* is also used as drug i.e. antibiotic chlorellin against bacterial disease. It can also be used in sewage disposal plant to fix CO₂.

Materials and Methods
Isolation of *Chlorella* sp.

The algal field sampling was done. Further screening of predators, debris removal, filtration, Centrifugation, pellet suspended in sterilized media, agar streaks, micropipette isolation and serial dilution were performed to get the single axenic culture of the algae.

Preparation of Bold Basal (BBM) Medium

About 10 ml (Each Macronutrients) +1ml (EDTA sol., Iron sol., Boron sol. and macronutrients) were taken and total volume was made upto one litre by using sterilized distilled water. The pH of medium was adjusted to 6.5 for the ideal development of culture. Autoclaved was done at 121.5 °C for 15 min at 15lbs.

Streaking cells across agar plates

Specimen was spread with the loop over the BBM medium containing 1.4% agar (Heaney and Jaworski, 1977) and process was repeated to get the pure culture (Richmond, 2004).

Raising of mass culture of algae

The pure cultures were exchanged to fluid and solid medium to grow at small scale in laboratory conditions. Culture attained slack stage and became light green which showed the exponential development stage. After 24 days dull green shading was observed.

Biochemical analysis

Chlorophyll Content was detected using the standard available method (Mackinney, 1941; Jaffery and Humphrey, 1975); Carbohydrate content by using Dubois *et al.*, (1951 &1956); Protein content by Lowry *et al.*, (1951); Lipid extraction and determination of total lipid content was detected by using Takagi *et al.*, (2006) and Bligh and Dyer (1959).

Results and Discussion

Total chlorophyll content

The content of chlorophyll in *Chlorella protothecoides* varied with temperature, CO₂, treatment time, hatching temperature, photoperiod and light force. The chlorophyll content of *C. protothecoides* with 30 min CO₂ treatment was most elevated in 12% CO₂ at 30 °C (7.84±.35mgL⁻¹) (Table 1 and Fig. 1).

On the other side, During 12hr CO₂ treatment, the chlorophyll content was observed as 18.2±0.08mgL⁻¹ (Table 2 and Fig. 2).

CO₂ treatment for 30min and 12hr at culture room condition

In *C. protothecoides*, the aggregate chlorophyll substance was most elevated in case of 550 ppm (9.15±0.15mgL⁻¹) and 4% (13.97±0.09mgL⁻¹) in 30 min and 12h CO₂ treatment, respectively (Fig. 3).

Total Carbohydrate Content

Sugar content in CO₂ treated cell was higher than the untreated cell. Further it was observed that sugar content also depended on light intensity and CO₂ concentration.

CO₂ treatment up to 30 min

The sugar content of *C. protothecoides* expanded with increasing temperature with CO₂ concentrations. The starch content in control was 4.82±0.74mg/L but it increased with CO₂ concentration 7.59±0.35mg/L at 4% CO₂ and 6.48±0.54mg/L, respectively.

In case of 4% and 12% CO₂ at 30°C the starch content was observed as maximum (Table 3 and Fig. 4).

Effect of CO₂ treatment upto 12 hr
The starch content increased in *Chlorella protothecoides* when the cell treated with 15% CO$_2$ at 25°C i.e. 14.746 ± 0.53mg/L as compared to untreated cell (4.087±0.6mg/L).

In case of 4% CO$_2$ the starch content increased with temperature from 6.762±0.2mg/L at 25°C to 12.496±0.27mg/L at 35°C (Fig. 5).

CO$_2$ treatment for 30 min 12 hour in culture room conditions

The aggregate sugar substance of *C.protothecoides* were most noteworthy in 1% CO$_2$ (5.756±0.89mg/L), 12% CO$_2$ (6.19±0.89mg/L) and 15% (5.98±0.72mg/L) CO$_2$ for 30min in comparison to control (2.109±0.5 mg/L) (Table 4).

Total protein content in the cell

The total protein content varied with the temperature, CO$_2$ treatment time, photoperiod and light intensity.

The content was reported lower after treating the cells with CO$_2$ but also depended on the temperature and concentration of CO$_2$.

Treatment up to 30 min

Maximum protein was observed in case of 15% CO$_2$ at 30°C (15.56±0.32mg/L) in comparison to control condition (15±1.5mg/L) and lower at 25°C and 30°C at 1%, 4% and 12% (Table 5 and Fig. 6).

At 25°C the protein content was reported higher at 15% CO$_2$ (16.1±0.2mg/L as compared to controlled condition (14.5±1.8mg/L).

The cells treated with 12% CO$_2$ showed lower concentration of protein at 30°C and at 35°C in case of 1%, 4%, 12% and 15% CO$_2$ as compared to untreated cell (Fig. 7).

CO$_2$ treatment for 30min and 12hr in culture room condition

When *C. protothecoides* treated with different CO$_2$ conc. the protein content was higher in 1% CO$_2$ (15.1±0.26mg/L) and in 12% CO$_2$ (15.12±0.56mg/L) at 25°C in 30 min. expanded in protein content than the control (13.2±0.2mg/L) when treated for 12 hr. in other concentration of CO$_2$ concentration protein content decreases in 30 min and 12hr treatment (Table 6).

Total lipid content in the cells of *C.protothecoides*

Presence of lipid in microalgae was tested by Nile red stain which is lipophilic in nature. In *C. protothecoides* the lipid content varied with temperature and CO$_2$ concentration.

During 30min treatment time, *Chlorella protothecoides* showed more lipid content in all the CO$_2$ concentrations i.e. 550ppm, 1%, 4%, 12% and 15% at all temperature as compared with control room condition.

At 25°C, indicate lipid substance were 41.7±1.7%, 38.25±1.33%, 37.23±1.67%, 41.36±0.9% and 40.24±1.15% in 550ppm, 1%, 4%, 12% and 15% CO$_2$ treatment when diverged from control (33.28±1.3%) while at 30°C, mean lipid substance were most prominent in 550ppm (34.08±0.9%), 4% (39.87±1.1%) and 12% (43.49±1.74%) trailed by 15% (37.83±0.18%) and 1% (38.26±0.93%) CO$_2$ treatment appeared differently in relation to control (34.08±0.37%). Strikingly at 35°C the lipid substance was higher in 1% (42.22±1.51%), 4% (43.26±1.1%), 12% (44.38±1.4%) and 15% (46.33±1.34%) with 38.42±0.7% lipid in control (Table 7).
Table 1 Comparison of total chlorophyll content accumulation up to 30 min in *C. protothecoides*

S.No.	Temp. °C	Control 550ppm	1% CO2	4% CO2	12% CO2	15% CO2	
1	25 °C	4.087	4.765	3.998	6.762	7.242	6.813
2	30 °C	5.513	3.948	6.242	5.934	7.848	3.838
3	35 °C	5.231	4.388	6.192	4.291	7.675	5.485

Table 2 Total chlorophyll content accumulation up to 12hr in *C. protothecoides*

S.NO.	Temp. °C	Control 550ppm	1% CO2	4% CO2	12% CO2	15% CO2	
1	25 °C	13.929	17.637	13.288	17.271	18.023	16.019
2	30 °C	14.011	15.382	12.299	17.593	17.627	16.291
3	35 °C	14.118	12.12	13.928	18.11	18.229	15.273

Table 3 Carbohydrate content accumulation up to 30 min in *C. protothecoides*

S.NO.	Temp. °C	Control 550ppm	1% CO2	4% CO2	12% CO2	15% CO2	
1	25 °C	4.82	5.66	5.24	7.59	5.38	6.485
2	30 °C	13.7	15.8	14.751	17.6	17.5	15.7
3	35 °C	14.2	12.4	13.301	12.851	13.756	13.978

Table 4 Carbohydrate content accumulation up to 30 min & 12 hr in *C. protothecoides*

S.NO.	Temp. °C	Control 550ppm	1% CO2	4% CO2	12% CO2	15% CO2	
1	25 °C	2.193	9.193	5.756	9.092	6.192	5.988
2	30 °C	2.109	11.192	10.234	14.832	13.874	12.038

Table 5 Protein content accumulation up to 30 min

S.NO.	Temp. °C	Control 550ppm	1% CO2	4% CO2	12% CO2	15% CO2	
1	25 °C	13.49	14.42	13.34	8.32	9.9	10.55
2	30 °C	15	5.95	10.95	11.76	14.6	15.36
3	35 °C	14.24	10.18	12.145	10.04	12.25	12.955

Table 6 Pattern of protein content accumulation up to 30min & 12 hr in *C. protothecoides*

S.NO.	Temp. °C	Control 550ppm	1% CO2	4% CO2	12% CO2	15% CO2	
1	25 °C	13.2	14.15	15.1	11.172	15.12	14.41
2	30 °C	13.675	12.41	13.36	11.015	9.98	8.83

11
Table 7 Total lipid content accumulation up to 30 min in *C. protothecoides*

S.NO.	Temp. °C	Control	550ppm	1% CO₂	4% CO₂	12% CO₂	15% CO₂
1.	25°C	33.28	41.7	38.25	37.23	41.36	40.24
2.	30°C	34.08	44.26	38.26	39.87	43.39	37.83
3.	35°C	38.42	39.87	42.22	43.26	44.38	46.36

Fig. 1 Pattern of chlorophyll content accumulation up to 30 min in *C. protothecoides*

Fig. 2 Total chlorophyll content accumulation up to 30 min and 12 hr
Fig. 3 Comparison of total carbohydrate content accumulation up to 30 min

![Comparison of total carbohydrate content accumulation up to 30 min](image)

Temp. °C

Fig. 4 Comparison of total carbohydrate content accumulation up to 12 hr

![Comparison of total carbohydrate content accumulation up to 12 hr](image)

Temp. °C
Fig. 5 Comparison of total protein content accumulation up to 30 min

![Bar graph showing comparison of total protein content accumulation up to 30 min.](image)

Temp. °C

Protein

Fig. 6 Comparison of total protein content accumulation up to 12 hr

![Bar graph showing comparison of total protein content accumulation up to 12 hr.](image)

Temp. °C

Protein
The lipid substance was higher than the control (34.36±1.3%) for *Chlorella protothecoides* in 550ppm (40±0.84%), 1% (38.32±0.8%), 4% (32.09±1.06%), 12% (36.7±1.08%) and 15% (41.2±1.1%) CO$_2$ treatment at 25°C. At 30°C, it was watched that *C. protothecoides* treated cells with 4%, 12% and 15% CO$_2$ extended in lipid content and at 35°C only 4% (46.6±1.21%) CO$_2$ showed an extension in lipid content diverged from control while other CO$_2$ centers demonstrated cut down lipid content (Fig. 8).

During present investigations, it was observed that *C. protothecioides* fix the CO$_2$ and the content of chlorophyll, carbohydrate, protein and lipid which vary according to CO$_2$, temperature and environmental conditions. The micro algae hsg theotential to control the increasing levels of CO$_2$ and can ultimately decrease the global warming which is the demand of the hour.

References

Aizpurua-Olaizola, Oier; Ormazabal, Markel; Vallejo, Asier; Olivares, Maitane; Navarro, Patricia; Etxebarria, Nestor; Usobiaga, Aresatz (2015). "Optimization of Supercritical Fluid Consecutive Extractions of Fatty Acids and Polyphenols from Vitis Vinifera Grape Wastes". *Journal of Food Science* 80 (1): E101–E107. doi:10.1111/1750-3841.12715.

Araújo, S.C. and Garcia, V.M.T. (2005) Growth biochemical composition of the diatom *Chaetoceros* cf. *Wighamii* brightwell under different temperature, salinity and carbon dioxide levels. I. Protein, carbohydrates and lipids. *Aquaculture*. 246: 405-412.

Axelsson, M. and Gentill, F. (2014), “A single-step method for rapid extraction of total lipids from green microalgae”. www.plosone.org, volume 9, issue 2, e89643.
Beardall, J. and Raven, J.A. (2004), “The potential effects of global climate change on micro algal photosynthesis, growth and ecology”. Phycologia. 43: 26-40.

Bigogono, C; I Khozin-Goldberg; S Boussiba; AVonshak; Z Cohen (2002). “Lipid and fatty acid composition of the green oleaginous alga Parietochlorisincise, the richest plant source of arachidonic acid”.

Bligh, E.G. and Dyer, W.J. (1959) A rapid method of total lipid extraction and purification. Can. J. Biochem. Physiol. 37: 911-917.

Brown, L.M. (1996) Uptake of carbon dioxide from flue gas by microalgae. Energy. Convers. Manage. 37: 1363-1367.

Espinoza, E.V., Millán-N ñez, R. and N ñez-Cebredo, F. (2002) Protein, carbohydrate, lipid and chlorophyll a content in Isochrysisaff. Galbana (clone T-Iso) cultured with a low cost alternative to the f/2 medium. Aquacult. Eng. 25:207-216.

Gao, K., Aruga, Y. and Asada, K. (1993) Influence of enhanced CO₂ on growth and photosynthesis of the red algae Gracilaria sp. and G. chilensis. J. Appl. Phycol. 5:563-571

Griffiths, M.J. and Harrison, T.L. (2009) Lipid productivity as a key characteristic for choosing algal species for biodiesel production. J. Appl. Phycol. 21: 493-507.

Hanagata, N., Takeuchi, T., Fukuju, Y., Barnes, D.J. and Karube, I. (1992) Tolerance of microalgae to high CO₂ and high temperature. Phytochemistry. 31: 3345-8.

Heaney, S.I. and Jaworski, G.H.M. (1977) A simple separation technique for purifying microalgae. Euro. J. Phycol.12 (2): 171-174.

Herzog, H.E., Drake, E. and Tester, J. (1993) A Research Needs Assessment for the Capture, Utilization and Disposal of Carbon Dioxide from Fossil Fuel-Fired Power Plants, Report for DOE (Dept. of Energy) Grant No. DE-FG02-92ER30194.A000.

Hongjin, Q. and Guangce, W. (2009) Effect of carbon source on growth and lipid accumulation in Chlorella sorokiniana GXNN01. Chinese J. Oceanol. Limnol. 27(4):762-768.

Izumo, A., Fujiwara, S., Oyama, Y., Satoh, A., Fujita, N., Nakamura, Y. and Tsuzuki, M. (2007) Physicochemical properties of starch in Chlorella change depending on the CO₂ concentration during growth: Comparison of structure and properties of pyrenoid and stroma starch. Plant Science.172: 1138-1147.

Kallarackal, J. (1974) A modified Schiff-reagent for the use in Feulgen reaction.

Kurano, N. and Miyachi, S. (2005) Selection of microalgal growth model for describing specific growth rate-light response using extended information criterion. J. Biosci. Bioeng.100: 403-408.

Lee, J.Y., Yoo, C., Jun, S.Y., Ahn, C.Y. and Oh, H.M. (2010) Comparison of several methods for effective lipid extraction from microalgae. Biore. Technol. 101: S75-S77.

Makarevičienė, V., Andreulevičiūtė, V., Skorupskaitė, V. and Kasperovičienė, J. (2011), “Cultivation of Microalgae Chlorella sp. and Scenedesmus sp. as a Potentional Biofuel Feedstock Environ”. Research. Eng. Managt. 3(57): 21-27.
Meisch, H.U., Becker, L.J.M. and Schwab, D. (1980) Ultrastructural changes in Chlorella fusca during Iron deficiency and Vanadium treatment. Protoplasma.103:273-280
Miyachi, S., Iwasaki, I. and Shiraiwa, Y. (2003) Historical perspective on microalgal and cyanobacterial acclimation to low and extremely high CO₂ conditions. Photosynth. Res., 77: 139-153
Neechi Jr., O. (ed.) (2016). River Algae. Springer, (4).
Papazi, A., Makridis, P., Divanach, P. and Kotzabasis, K. (2008) Bioenergetic changes in the microalgal photosynthetic apparatus by extremely high CO₂ concentrations induce an intense biomass production. Physiol. Plant. 132: 338-349.
Prabakaran, P. and Ravindran A.D. (2011), “A comparative study on effective cell disruption methods for lipid extraction from microalgae” The society of Applied Microbiology: 150-154.
Rosen, B.H., Berliner, M.D. and Michael, J. (1986) Petro Analysis of Starch Content in Chlorella pyrenoidosa (Chlorophyta) by Morphological and Quantitative Techniques. American. J. Bot.73 (9): 1372-1375.
Saharan, B.S., Sharma, D.R., Sahin, O. and Warren, A.2013. Lipid extraction methods.
Sakai, N., Sakamoto, Y., Kishimoto, N., Chihara, M. and Karube, I. (1995) Chlorella strains from hot springs tolerant to high temperature and high CO₂. Energy. Convers. Manag. 36: 693-696.
Shiraiwa, Y. and Miyachi, S. (1985) Effects of temperature and CO₂ concentration on induction of carbonic anhydrase and changes in efficiency of photosynthesis in Chlorella vulgaris 11h. Plant. Cell. Physiol. 26: 543-549.
Thomas, D N (2002). Seaweeds. London: The Natural History Museum. ISBN 978-0-565-091750.
Wan Maznah Wan Omar (Dec 2010). “Perspectives on the use of Algae as Biological Indicators for Monitoring and Protecting Aquatic Environment, with Special Reference to Malaysian Freshwater Ecosystems”. Trop Life Sci Res. 21(2): 51-67. PMC 3819078.
Wang, B., Li, Y., Wu, Nan and Lan, C.Q. (2008), “CO₂ biomitigation using microalgae.” Appl. Microbiol. Biotechnol. 79: 707-718.
Widjaja, A., Chien, C.C. and Ju, Y.H. (2009) Study of increasing lipid production from fresh water microalgae Chlorella vulgaris. J. Taiwan. Inst. Chem. Eng.40: 13-20.
Yang, Y. and Gao, K. (2003) Effects of CO₂ concentrations on the freshwater microalgae, Chlamydomonas reinhardtii, Chlorella pyrenoidosa and Scenedesmus obliquus (Chlorophyta). J. Appl. Phycol. 15: 1-11.
Yoo, C., Jun, S.Y., Lee, J.Y., Ahn, C.Y. and Oh, H.M. (2010) Selection of microalgae for lipid production under high levels carbon dioxide. Biores. Technol. 101: S71-S74.

How to cite this article:
Savita Rani, Sumer Singh and Baljeet Singh Saharan. 2019. Effect of CO₂ Concentration, Temperature and Light on Macro Biomolecules Accumulation in Chlorella protothecoides. Int.J.Curr.Microbiol.App.Sci. 8(11): 8-17. doi: https://doi.org/10.20546/ijcmas.2019.811.002