BTZ black holes with higher curvature corrections in the $3D$ Einstein-Lovelock theory

R. A. Konoplya*,† and A. Zhidenko*,⋄

*Institute of Physics and Research Centre of Theoretical Physics and Astrophysics,
Faculty of Philosophy and Science, Silesian University in Opava,
Bezručovo nám. 13, CZ-746 01 Opava, Czech Republic
†Peoples Friendship University of Russia (RUDN University),
6 Miklukho-Maklaya Street, Moscow 117198, Russian Federation
⋄Centro de Matemática, Computação e Cognição (CMCC),
Universidade Federal do ABC (UFABC),
Rua Abolição, CEP: 09210-180, Santo André, SP, Brazil

E-mail: roman.konoplya@gmail.com, olexandr.zhydenko@ufabc.edu.br

ABSTRACT: The regularization procedure for getting the four-dimensional non-trivial Einstein-Gauss-Bonnet theory and its Lovelock generalization (which bypasses the Lovelock’s theorem, and avoids the Ostrogradsky instability) has been recently developed. Here we propose the regularization for the three-dimensional gravity, which is based on the re-scaling of the coupling constants and, afterwards, taking the limit $D \to 3$. We obtain the generalization of the Bañados-Teitelboim-Zanelli solution in the presence of the higher curvature (Gauss-Bonnet and Lovelock) corrections of any order. The obtained general solution shows a peculiar behavior: the event horizon is allowed not only for asymptotically anti-de Sitter spacetimes, but also for the de-Sitter and flat cases, when the Gauss-Bonnet coupling constant is negative. The factor of the electric charge is analyzed as well for various branches of the solution and the Hawking temperature is obtained.
1 Introduction

Black holes in theories of gravity of lower than four dimensions play an important role for our understanding of properties of black holes as well as strongly coupled dual systems [1–4]. Analysis of various phenomena in the background of the lower dimensional black holes are sometimes remarkably simple in comparison with the full higher dimensional problem and, frequently, allows for an analytic solution. Probably the most successful black-hole solution of this kind is the (2 + 1)-dimensional asymptotically AdS black hole called the Bañados-Teitelboim-Zanelli (BTZ) solution [1]. Various properties of the BTZ black hole and its generalizations in modified theories of gravity were considered (see [5–14] and references therein). Within the three-dimensional Einstein-Maxwell theory the black-hole solutions exist only in the presence of a negative cosmological constant, that is, only asymptotically anti-de Sitter black holes are allowed.

Recently, an interesting formulation of the four-dimensional Einstein-Gauss-Bonnet theory was suggested in [15], which has diffeomorphism invariance, second order equations of motion and, at the same time, bypasses the Lovelock’s theorem. The latter means that the constructed theory is different from the pure Einstein theory of gravity even in (3 + 1)-dimensional spacetime\(^1\).

The approach is first formulated in \(D > 4\) dimensions, and then the four-dimensional theory is defined as the limit \(D \rightarrow 4\) of the higher-dimensional theory after the re-scaling of

\(^1\)Notice, that the Lovelock theorem states that only metric and Einstein tensors are divergence free, symmetric, and concomitant of the metric tensor and its derivatives in four dimensions [30]. Therefore, it was believed that the appropriate vacuum equations in \(D = 4\) are the Einstein equations (with the cosmological term).
the coupling constant. Notice, that the same regularized four-dimensional black-hole metrics with Gauss-Bonnet (GB) corrections were obtained earlier within different approaches [16–18], such as, for example, looking for quantum corrections to the black-hole entropy. The properties of black holes in this theory, such as (in)stability, quasinormal modes and shadows, were considered in [19], while the innermost circular orbits were analyzed in [20].

The generalization to the charged black holes and asymptotically anti-de Sitter cases in the 4D Einstein-Gauss-Bonnet theory was considered in [21] and to the higher curvature corrections in [22, 23]. Some further properties of black holes and stars for this novel theory, such as axial symmetry, thermodynamics and others, were considered in [24–29].

Here we suggest a similar regularization for the (2 + 1)-dimensional gravity allowing for an electric charge, cosmological constant (both, positive and negative) and Lovelock terms of any order. We find the generalization of the (2 + 1)-dimensional charged BTZ black hole in this approach, which includes higher curvature (Gauss-Bonnet and Lovelock) corrections.

We will show that the black hole metric has the following simple form for the 3D-Einstein-Gauss-Bonnet theory:

\[
f(r) = 1 - \frac{r^2}{2\tilde{\alpha}_2} \left(-1 \pm \sqrt{1 + 4\tilde{\alpha}_2 \Lambda (r^2 - r_H^2) + \frac{\tilde{\alpha}_2}{r^2 H} + 1} \right),
\]

where \(\tilde{\alpha}_2\) is the GB coupling constant, \(\Lambda\) is the cosmological constant, \(r_H\) is the radius of the event horizon, such that for the sign \("+\”) corresponds to the branch, perturbative in \(\tilde{\alpha}_2\), for which \(1 + 2\tilde{\alpha}_2/r_H^2 > 0\), while the sign \("–\”) appears for the non-perturbative branch and implies that \(1 + 2\tilde{\alpha}_2/r_H^2 < 0\). This simple metric is further generalized to the case of a charged black hole and black string, as well as to higher orders of the Lovelock theory. Unlike the classical BTZ metric, our general solution allows for an event horizon even for asymptotically de Sitter or flat black holes and strings, provided the GB coupling constant is negative. We consider some basic properties of these perturbative and nonperturbative solutions. The Hawking temperature and the horizon structure are discussed for these cases.

Our paper is organized as follows. In Sec. 2 we briefly describe the generic static maximally symmetric solution in the 3D Einstein-Lovelock theory, allowing for an electric charge and the \(\Lambda\)-term. In Sec. 3 we go over to the units of the radius of the event horizon, consider the basic properties of the general black-hole solution, and calculate the Hawking temperature. In Sec. 4 we discuss different branches of the 3D-Einstein-Gauss-Bonnet solution and show that, in addition to the nonperturbative branch, there is the perturbative branch which is a generalization of the charged BTZ solution. In Sec. 5 we consider the general solution for a particular case of the third-order Einstein-Lovelock theory. Finally, in Conclusions, we summarize the obtained results and discuss some open questions.

2 Static solutions in the three-dimensional Lovelock theory

The Lagrangian density of the Lovelock-Maxwell theory has the form [30, 31]:

\[
\mathcal{L} = -2\Lambda + \sum_{m=1}^{m} \frac{1}{2m} \frac{\alpha_m}{m} \delta_{\lambda_1\nu_1...\lambda_m\nu_m} R_{\mu_1\nu_1}...R_{\mu_m\nu_m} + \frac{1}{4} F^{\mu\nu} F_{\mu\nu},
\]

\[(2.1)\]
where
\[
\delta_{\nu_1 \nu_2 \ldots \nu_p}^{\mu_1 \mu_2 \ldots \mu_p} = \det \begin{pmatrix}
\delta_{\nu_1}^{\mu_1} & \delta_{\nu_2}^{\mu_1} & \cdots & \delta_{\nu_p}^{\mu_1} \\
\delta_{\nu_1}^{\mu_2} & \delta_{\nu_2}^{\mu_2} & \cdots & \delta_{\nu_p}^{\mu_2} \\
\vdots & \vdots & \ddots & \vdots \\
\delta_{\nu_1}^{\mu_p} & \delta_{\nu_2}^{\mu_p} & \cdots & \delta_{\nu_p}^{\mu_p}
\end{pmatrix}
\]
is the generalized totally antisymmetric Kronecker delta, \(R_{\mu \nu}^{\lambda \sigma} \) is the Riemann tensor, \(\alpha_1 = 1/8\pi G = 1 \) and \(\alpha_2, \alpha_3, \alpha_4, \ldots \) are arbitrary constants of the theory.

The Euler-Lagrange equations, corresponding to the Lagrangian density (2.1) read [36]:
\[
\Lambda \delta_{\nu}^{\mu} - \sum_{m=1}^{\overline{m}} \frac{1}{2m+1} \frac{\alpha_m}{m} \delta_{\nu_1 \nu_2 \ldots \nu_m}^{\mu_1 \mu_2 \ldots \mu_m} R_{\mu_1 \nu_1} \ldots R_{\mu_m \nu_m} \lambda_{\mu \sigma} = \frac{1}{2} F^{\mu \sigma} F_{\nu \sigma} - \frac{1}{8} F^{\lambda \sigma} F_{\lambda \sigma} \delta_{\nu}^{\mu},
\]
\[
F_{\mu \nu} = \frac{1}{\sqrt{-g}} \partial_\mu \sqrt{-g} F^{\mu \nu} = 0. \tag{2.2}
\]

The antisymmetric tensor is nonzero only when the indices \(\mu, \mu_1, \nu_1, \nu_2, \ldots \mu_m, \nu_m \) are all distinct. Thus, the general Lovelock theory is such that \(2m < D \). In particular, for \(D = 4 \) and \(D = 3 \), we have \(\overline{m} = 1 \), which corresponds to the Einstein theory [30].

We consider the general static solution, described by the metric
\[
ds^2 = -f(r) dt^2 + \frac{1}{f(r)} dr^2 + r^2 \gamma_{ij} dx^i dx^j, \quad f(r) = \kappa - r^2 \psi(r), \tag{2.3}
\]
where \(d\Omega_n^2 \) is a \((n = D - 2) \)-dimensional space with a constant curvature \(\kappa = -1, 0, 1 \), and the only nonzero components of the electromagnetic strength tensor are
\[
F^{tr} = -F^{rt} = E(r). \tag{2.4}
\]

Then equations (2.2) can be reduced to the following form [36]
\[
- \frac{D-2}{2r^{D-2}} \frac{d}{dr} r^{D-1} \left(P[\psi(r)] - \frac{2\Lambda}{(D-1)(D-2)} \right) = - \frac{E(r)^2}{4}, \tag{2.5}
\]
\[
- \frac{1}{2r^{D-3}} \frac{d^2}{dr^2} r^{D-1} \left(P[\psi(r)] - \frac{2\Lambda}{(D-1)(D-2)} \right) = \frac{E(r)^2}{4}, \tag{2.6}
\]
where the function \(P[\psi] \) is defined as follows,
\[
P[\psi] = \psi + \sum_{m=2}^{\overline{m}} \frac{\alpha_m}{m} (D-3)! (D-2m-1)! = \psi + \sum_{m=2}^{\overline{m}} \tilde{\alpha}_m \psi^m. \tag{2.8}
\]
Notice that Eq. (2.7) is not independent and follows from (2.5) and (2.6).

The new constants \(\tilde{\alpha}_m \) are introduced as in [37],
\[
\tilde{\alpha}_m = \frac{\alpha_m}{m} \frac{(D-3)!}{(D-2m-1)!} = \frac{\alpha_m}{m} \prod_{p=1}^{2m-2} (D-2-p). \tag{2.9}
\]
Considering finite values of $\tilde{\alpha}_m$, one can see that (2.6) and (2.7) are finite for any $D \geq 3$. In this way we can perform dimensional regularization of the generic static solution (2.3) in the Einstein-Lovelock theory for $D \leq 2\tilde{m}$.

By integrating (2.5) we find that

$$E(r) = \frac{Q}{r^{D-2}},$$

(2.10)

where the integration constant Q is the electric charge.

After integration of (2.5) we obtain the algebraic equation for $\psi(r)$,

$$P[\psi(r)] = \frac{2M}{r^{D-1}} - \frac{Q^2}{r^{2(D-2)}} + \frac{2\Lambda}{(D-1)(D-2)},$$

(2.11)

where the arbitrary constant M defines the asymptotic mass [32],

$$M = \frac{(D-2)\pi^{D/2-3/2}}{4\Gamma(D/2-1/2)}M,$$

(2.12)

and

$$Q = Q\sqrt{\frac{2}{(D-2)(D-3)}}.$$

(2.13)

When considering the limit $D \to 3$, one can use two approaches to deal with the electromagnetic field. One approach, inferred in [23], is to take the limit $Q \to 0$ as $D \to 3$ such that Q remains finite. In this case equation (2.11) for $\psi(r)$ reads

$$P[\psi(r)] = \frac{2M}{r^2} - \frac{Q^2}{r^2} + \Lambda = \frac{8M - Q^2}{r^2} + \Lambda.$$

(2.14)

Although the electric charge vanishes, the quantity Q leads to an additional term, which is subtracted from the asymptotic mass in the metric function. As a result the constant (effective mass) is not necessary positive. Within this regularization of the higher-dimensional electrodynamics, the three-dimensional electrodynamics leads to the re-definition of mass and is, thereby, trivial.

A more natural approach is first to formulate the regularization of the gravitational sector and then to impose a three-dimensional electromagnetic field. In this way we consider the solution to (2.6) for a finite value of $\tilde{\alpha}_m$ and Q, which reads

$$P[\psi(r)] = \frac{Q^2 \ln(r/r_0)}{2r^2} + \Lambda,$$

(2.15)

where r_0 is an arbitrary constant. In the next section we shall see that, in the limit $Q \to 0$, eq. (2.15) can be reduced to (2.14), so that one can consider eq. (2.15) for any value of the electric charge Q without loss of generality. Thus, we will follow the second approach to inclusion of the electromagnetic field. This approach also reproduces the charged BTZ black hole [1] in the limit $\tilde{\alpha}_m \to 0$.

3 Description of the general metric and Hawking temperature

Unlike the higher-dimensional case, when \(D = 3 \), the arbitrary constant \(r_0 \) in (2.15) cannot be simply related with the black-hole mass. Therefore, as for the BTZ solution, we shall measure all dimensional quantities in units of the horizon radius. Since \(f(r_H) = 0 \), owing to (2.3) we have \(\psi(r_H) = \kappa r_H^{-2} \). Therefore, we find that

\[
\frac{\kappa}{r_H^2} + \sum_{m=2}^{\infty} \tilde{\alpha}_m \kappa^m \frac{r_H^{2m-2}}{r_H^{2m} - \tilde{\alpha}_m \kappa^m r_H^{2-2m}} = \frac{Q^2 \ln(r_H/r_0)}{2r_H^2} + \Lambda, \tag{3.1}
\]

what allows us to express \(r_0 \) in terms of the event horizon radius \(r_H \).

Substituting (3.1) into (2.15), we obtain the equation for \(\psi(r) \) in terms of the event horizon radius,

\[
P[\psi(r)] = \frac{1}{r^2} \left(\kappa + \sum_{m=2}^{\infty} \tilde{\alpha}_m \kappa^m \frac{r_H^{2m-2}}{r_H^{2m} - \tilde{\alpha}_m \kappa^m r_H^{2-2m}} \right) + \frac{Q^2 \ln(r/r_H)}{2r^2} + \Lambda \left(1 - \frac{r_H^2}{r^2} \right), \tag{3.2}
\]

Notice that if one substitutes the expression for mass in terms of \(r_H \) in (2.14), then it coincides with (3.2) in the limit \(Q \to 0 \). Therefore, we conclude that (3.2) or, equivalently, (2.15) describes the general static maximally symmetric solution in the three-dimensional Lovelock theory with the electric charge \(Q \).

Let us start from the assumption that there is a kind of three-dimensional analogue of the cosmological horizon \(r_C > r_H \), such that \(f(r_C) = 0 \). Then, we have \(\psi(r_C) = \kappa r_C^{-2} \), and one can express \(\Lambda \) as follows,

\[
\Lambda = \sum_{m=2}^{\infty} \tilde{\alpha}_m \kappa^m \frac{r_H^{2m-2} - r_C^{2m}}{r_H^{2m} - r_C^{2m}} - \frac{Q^2 \ln(r_C/r_H)}{2(r_C^2 - r_H^2)}. \tag{3.3}
\]

If \(\tilde{\alpha}_m = 0 \) then \(\Lambda < 0 \), which means that the solution with positive \(\Lambda \) cannot have a horizon. The interval \(r_H < r < r_C \) corresponds to the region inside the inner horizon of the charged BTZ black hole, and the solution is asymptotically AdS.

However, from (3.3) we see that, when \(\tilde{\alpha}_m \neq 0 \) the family of solutions to (3.2) can include asymptotically de Sitter black holes as well, with \(\Lambda \to 0 \) as \(r_C \to \infty \). The extreme value of \(\Lambda \) is given by

\[
\bar{\Lambda} = \lim_{r_H \to r_C} \Lambda = -\sum_{m=2}^{\infty} \tilde{\alpha}_m \kappa^m (m - 1) r_H^{2m-2} \frac{Q^2}{4 r_H^2}. \tag{3.4}
\]

In units of the event horizon we can also obtain a closed form for the Hawking temperature,

\[
T_H = \frac{f'(r_H)}{4 \pi} = \frac{r_H (\bar{\Lambda} - \Lambda)}{2 \pi P[\kappa r_H^{-2}]} = \frac{-4 \Delta r_H^2 - Q^2 - 4 \sum_{m=2}^{\infty} (m - 1) \tilde{\alpha}_m \kappa^m r_H^{2-2m}}{8 \pi r_H (1 + \sum_{m=2}^{\infty} m \tilde{\alpha}_m \kappa^m r_H^{2-2m}).} \tag{3.5}
\]

When the denominator of (3.5) is positive, that is, \(P[\kappa r_H^{-2}] > 0 \), then the temperature decreases as the electric charge \(Q \) grows until its extreme value, \(\bar{Q} \), corresponding to \(T_H = 0 \).
Thus, the extreme charge \overline{Q} is given by the relation

$$\overline{Q}^2 = -4\Lambda r_H^2 - 4 \sum_{m=2}^{\infty} (m-1)\tilde{\alpha}_m k^m r_H^{2-2m} = -4\Lambda r_H^2 - 4\tilde{\alpha}_2 \frac{\kappa^2}{r_H^4} - 8\tilde{\alpha}_3 \frac{\kappa^3}{r_H^6} \ldots \geq 0. \quad (3.6)$$

Inequality (3.6) imposes the upper limit on Λ for which the event horizon still exists,

$$\Lambda < -\sum_{m=2}^{\infty} (m-1)\tilde{\alpha}_m k^m r_H^{2-2m} = -\frac{\tilde{\alpha}_2 \kappa^2}{r_H^4} - \frac{2\tilde{\alpha}_3 \kappa^3}{r_H^6} - \frac{3\tilde{\alpha}_4 \kappa^4}{r_H^8} \ldots. \quad (3.7)$$

Solutions of the fields equations (2.5), satisfying the following inequality,

$$P'[\kappa r_H^{-2}] \equiv 1 + \sum_{m=2}^{\infty} m\tilde{\alpha}_m k^{m-1} r_H^{2-2m} = 1 + \frac{2\kappa \tilde{\alpha}_2}{r_H^2} + \frac{3\kappa^2 \tilde{\alpha}_2}{r_H^4} + \ldots > 0, \quad (3.8)$$

will here be called perturbative, because in the limit $\tilde{\alpha}_m \to 0$, they go over into the charged BTZ black hole $(\kappa = 1)$ or black string $(\kappa = 0, -1)$. Notice that eq. (3.7) implies that the cosmological constant must be negative, if $\kappa = 0$.

When $P'[\kappa r_H^{-2}] < 0$, owing to eq. (3.5), T_H grows when Q is increased, so that, if eq. (3.7) is satisfied, then $Q = \overline{Q}$ is the minimal charge, corresponding to $T_H = 0$. Otherwise, if the value of Λ is larger than the limit (3.7), the uncharged black hole has nonzero Hawking temperature, and solutions can possess any electric charge.

Notice that, in the same way as for the higher-dimensional solutions [37], $P'[\psi(r)]$ cannot change its sign for $r \geq r_H$, because $\psi'(r)$ is divergent in the point $P'[\psi(r)] = 0$, which leads to a singularity there. Therefore, if we study only regular black holes, we must choose values of $\tilde{\alpha}_m$ in such a way that $P'[\psi(r)]$ is either positive or negative for any $r \geq r_H$.

4 Three-dimensional Gauss-Bonnet black hole

In the regularized 3D Einstein-Gauss-Bonnet theory ($\overline{m} = 2$) eq. (3.2) has two solutions,

$$f(r) = \kappa - \frac{r^2}{2\tilde{\alpha}_2} \left(-1 \pm \sqrt{1 + 2\tilde{\alpha}_2 \frac{2\Lambda (r^2 - r_H^2) + 2\kappa + 2\kappa^2 \tilde{\alpha}_2 / r_H^2 + Q^2 \ln(r/r_H)}{r^2}} \right). \quad (4.1)$$

4.1 Perturbative branch

The sign “+” corresponds to the perturbative branch, for which (3.8) reads,

$$P'[\kappa r_H^{-2}] = 1 + \frac{2\tilde{\alpha}_2 \kappa}{r_H^2} > 0.$$

It is useful to rewrite this solution in the alternative form,

$$f(r) = \kappa - \frac{2\Lambda (r^2 - r_H^2) + 2\kappa + 2\kappa^2 \tilde{\alpha}_2 / r_H^2 + Q^2 \ln(r/r_H)}{1 + \sqrt{1 + 2\tilde{\alpha}_2 \left(2\Lambda r^2 - 2\Lambda r_H^2 + 2\kappa + 2\kappa^2 \tilde{\alpha}_2 / r_H^2 + Q^2 \ln(r/r_H) \right) / r^2}}. \quad (4.2)$$
The constrain for the cosmological constant (3.7) has the form,
\[\Lambda < -\frac{\tilde{\alpha}_2 \kappa^2}{r_H^4}, \]
implying that for \(\tilde{\alpha}_2 \geq 0 \) or \(\kappa = 0 \) only the asymptotically AdS space allows for an event horizon. The electric charge \(Q \) must satisfy the inequality,
\[Q^2 \leq \mathcal{Q}^2 = -4 \left(\Lambda + \frac{\tilde{\alpha}_2 \kappa^2}{r_H^4} \right). \]

The metric function \(f(r) \) has the following asymptotic:
\[f(r) \to -\frac{2\Lambda}{1 + \sqrt{1 + 4\tilde{\alpha}_2 \kappa^2}} r^2, \quad r \to \infty, \tag{4.3} \]
so that, considering the factor in front of \(r^2 \) as an effective cosmological constant, we can see that the latter has the same sign as \(\Lambda \), i.e., if \(\Lambda < 0 \), the solution is asymptotically AdS, while for \(\Lambda > 0 \), we have an asymptotically de Sitter black hole.

When \(0 \leq \Lambda < -\tilde{\alpha}_2 \kappa^2 r_H^{-4} \), using eq. (3.3), we can express the cosmological constant in terms of the cosmological horizon \(r_C \) as follows
\[\Lambda = -\frac{\tilde{\alpha}_2 \kappa^2}{r_H^2 r_C} - \frac{Q^2 \ln(r_C/r_H)}{2(r_C^2 - r_H^2)}. \tag{4.4} \]

It is interesting to note that when \(r_C \to \infty \) (\(\Lambda \to 0 \)), the solution is not asymptotically flat, unless \(Q = 0 \). The latter reads
\[f(r) = \frac{-2\tilde{\alpha}_2 \kappa^2 / r_H^2 - \kappa + \kappa \sqrt{1 + \frac{4\tilde{\alpha}_2 \kappa^2 + 4\tilde{\alpha}_2 \kappa^2}{r_H^2}}}{1 + \sqrt{1 + \frac{4\tilde{\alpha}_2 \kappa^2 + 4\tilde{\alpha}_2 \kappa^2}{r_H^2}}} = -\frac{\tilde{\alpha}_2 \kappa^2}{r_H^2} \left(1 - \frac{(\tilde{\alpha}_2 \kappa + r_H^2)^2}{r_H^2} \right) + O \left(\frac{1}{r^2} \right). \tag{4.5} \]

This is a remarkable particular case of the general solution, when \(\tilde{\alpha}_2 < 0 \), representing the \((2 + 1) \)-dimensional asymptotically flat black hole \((\kappa = 1) \) or string \((\kappa = -1) \). When \(\tilde{\alpha}_2 \to 0 \), the metric function \(f(r) \) vanishes and the solution does not exist, what agrees with the existence of only asymptotically AdS BTZ black holes at zero \(\tilde{\alpha}_2 \).

Eq. (4.3) imposes an additional constraint: In order to have real solutions the Gauss-Bonnet parameter must obey
\[1 + 4\tilde{\alpha}_2 \Lambda \geq 0. \tag{4.6} \]

When \(\Lambda < 0 \) the condition (4.6) gives the upper bound for \(\tilde{\alpha}_2 \leq -1/4\Lambda \). When \(\Lambda > 0 \), in addition to the lower bound for \(\tilde{\alpha}_2 \geq -1/4\Lambda \), there is a bound for the black-hole charge \(Q \), requiring that the solution be real.

When \(\tilde{\alpha}_2 \) is sufficiently small, the solution is real, and can be thought as a Gauss-Bonnet corrected BTZ solution,
\[f(r) = -\Lambda (r^2 - r_H^2) - \frac{Q^2 \ln(r/r_H)}{2} - \frac{\tilde{\alpha}_2 \kappa^2}{r_H^2} \]
\[+ \frac{\tilde{\alpha}_2}{r_H^2} \left(\kappa + (r^2 - r_H^2) \Lambda + \frac{Q^2 \ln(r/r_H)}{2} \right)^2 + O(\tilde{\alpha}_2^2). \tag{4.7} \]
4.2 Nonperturbative branch

The sign “-“ in (4.1) corresponds to the nonperturbative branch, for which

\[1 + \frac{2\tilde{\alpha}^2\kappa}{r_H^2} < 0. \] (4.8)

These solutions correspond to small black holes, when \(\tilde{\alpha}^2 \kappa < 0 \), because \(r_H \) must be smaller than \(\sqrt{2\tilde{\alpha}^2\kappa} \).

Since the metric function \(f(r) \) has the following asymptotic

\[f(r) \rightarrow \frac{1}{\tilde{\alpha}^2} \frac{1 + \sqrt{1 + 4\tilde{\alpha}^2\Lambda}}{2}, \quad r \rightarrow \infty, \] (4.9)

the effective cosmological constant and \(\tilde{\alpha}^2 \) have opposite signs. In this case the value of \(\Lambda \) can be considered as a small correction to the effective cosmological constant.

When \(\tilde{\alpha}^2 < -r_H^2/2 \) (\(\kappa = 1 \)) the solution corresponds to an asymptotically de Sitter black hole. Using (4.4), one can express \(\tilde{\alpha}^2 \) in terms of the cosmological horizon \(r_C \) as follows

\[-\frac{\tilde{\alpha}^2}{r_H^2} = \Lambda r_C^2 + \frac{Q^2 \ln(r_C/r_H)r_C^2}{2(r_C^2 - r_H^2)}. \] (4.10)

We see that \(\tilde{\alpha} \rightarrow -\infty \) as \(r_C \rightarrow \infty \), so that eq. (4.8) holds. However, there is no black-hole solution in this limit, because the Hawking temperature

\[T_H = -\frac{4\Lambda r_H^2 + Q^2 + 4\tilde{\alpha}^2/r_H^2}{8\pi r_H(1 + 2\tilde{\alpha}^2/r_H^2)} \] (4.11)

becomes negative. The reason for this is that the nonperturbative asymptotically de Sitter black hole has the minimal charge, given by eq. (3.6),

\[Q^2 \geq \overline{Q}^2 = -4\Lambda r_H^2 - 4\tilde{\alpha}^2/r_H^2. \]

One cannot consider the limit \(r_C \rightarrow \infty \) holding constant value of \(\overline{Q} \) or \(\Lambda \) as well, because the expression in the square root in eq. (4.1) becomes negative. We conclude therefore that the nonperturbative asymptotically de Sitter solution does not have flat limit.

When \(\tilde{\alpha}^2 > r_H^2/2 \) (\(\kappa = -1 \)) the solution corresponds to the AdS black string. For small \(\Lambda \) it reads

\[f(r) = -1 + \frac{r^2}{2\tilde{\alpha}^2} \left(1 + \frac{\Lambda(r^2 - r_H^2)}{2(1 - 4\tilde{\alpha}^2/r^2 + 4\tilde{\alpha}^2/r_H^2)} + \frac{2\tilde{\alpha}^2 Q^2 \ln(r/r_H)}{r^2} + O(\Lambda^2) \right). \] (4.12)

Finally we notice that, when \(\kappa\tilde{\alpha}^2 < 0 \), we cannot continuously decrease \(r_H \) in order to go from perturbative to nonperturbative branch, because \(T_H \) diverges in the limit \(1 + \kappa\tilde{\alpha}^2/r_H^2 \rightarrow 0 \), which means that \(r_H \) becomes a singular point of the solution.
5 Third-order Lovelock theory

In the regularized third-order Lovelock theory ($\mathcal{m} = 3$) Eq. (3.2) has generally three solutions. When $\tilde{\alpha}_3 \geq \tilde{\alpha}_2^2/3$, only one solution is real,

$$f(r) = \kappa - \frac{\tilde{\alpha}_2 r^2}{3 \tilde{\alpha}_3} (A_+(r) - A_-(r) - 1), \quad (5.1)$$

where

$$A_{\pm}(r) = \frac{3}{2} \sqrt{F(r)^2 + \left(\frac{3 \tilde{\alpha}_3}{\tilde{\alpha}_2^2} - 1\right)^3 \pm F(r)},$$

$$F(r) = \frac{27 \tilde{\alpha}_3^2}{2 \tilde{\alpha}_2^4 r^2} \left(\Lambda r^2 - \Lambda r_H^2 + \kappa + \frac{\kappa^2 \tilde{\alpha}_2}{r_H^2} + \frac{\kappa^3 \tilde{\alpha}_3}{r_H^4} + \frac{Q^2 \ln(r/r_H)}{2} \right) + \frac{9 \tilde{\alpha}_3}{2 \tilde{\alpha}_2^2} - 1.$$

In this case, for any $\psi(r)$ we have

$$P'(\psi(r)) = 1 + 2 \tilde{\alpha}_2 \psi(r) + 3 \tilde{\alpha}_3 \psi^2(r) \geq (1 + \tilde{\alpha}_2 \psi(r))^2 \geq 0,$$

so that all solutions are perturbative.

The event horizon exists when (3.7),

$$\Lambda < -\frac{\tilde{\alpha}_2 \kappa^2}{r_H^4} - \frac{2 \tilde{\alpha}_3 \kappa^3}{r_H^6}.$$

Yet, the sign of the effective cosmological constant can be different from the sign of Λ. We notice that, when $\tilde{\alpha}_2 < 0$, the asymptotically de Sitter solutions always exist for sufficiently large black holes ($\kappa = 1$).

The extreme charge is given by the relation (3.6),

$$Q^2 \leq Q_c^2 = -4 \left(\Lambda r_H^2 + \tilde{\alpha}_2 \frac{\kappa^2}{r_H^2} + 2 \tilde{\alpha}_3 \frac{\kappa^3}{r_H^4} \right).$$

For $\tilde{\alpha}_2 < \tilde{\alpha}_3^2/3$ there are three real solutions to Eq. (3.2). In principle, for each set of the values of r_H, $\tilde{\alpha}_2$, and $\tilde{\alpha}_3$, the solution can be given in a closed, but cumbersome form. Yet, such an analysis, as well as the analysis of solutions in higher-order Lovelock theory, is beyond the scope of the present paper. We believe that, for practical purposes, in higher-order Lovelock theory it is easier to work with numerical solutions of (3.2) rather than to derive the lengthy expressions with various branches in their closed forms.

6 Conclusions

Black hole in the $D > 4$ Einstein-Gauss-Bonnet gravity and its Lovelock generalization were extensively studied and a number of interesting properties were observed. For example, the life-time of only a slightly Gauss-Bonnet corrected black hole is characterized by a few orders longer lifetime and a smaller evaporation rate [33]. The eikonal quasinormal modes break down the correspondence between the eikonal quasinormal modes and null geodesics.
[34, 35]. Apparently, one of the interesting properties of higher curvature corrected black holes is the gravitational instability: When the coupling constants are not small enough, the black holes are unstable and the instability develops at high multipoles numbers [36–44].

In higher dimensions, as well as when considering $D = 4$ Einstein-Gauss-Bonnet black holes coupled to a dilaton or other scalar field, all the effects due to the higher curvature corrections are analyzed numerically (see, for example, [45–54] and references therein). The model of the three dimensional Gauss-Bonnet and Lovelock corrected black holes and strings considered in this paper could be a much simpler model for analysis of various effects in the black hole background, which could, possibly, be analyzed analytically and, thereby, give a clearer understanding of various phenomena in the presence of the higher curvature corrections. Existence of the asymptotical flat black-hole solution in the $(2+1)$-dimensional spacetime gives addition advantages for this. One of the possible nearest future aims could be the analysis of the quasinormal spectra [55] of the above black holes.

Acknowledgments

The authors acknowledge the support of the grant 19-03950S of Czech Science Foundation (GAČR). This publication has been prepared with partial support of the “RUDN University Program 5-100” (R. K.).

References

[1] M. Banados, C. Teitelboim and J. Zanelli, Phys. Rev. Lett. 69, 1849 (1992) doi:10.1103/PhysRevLett.69.1849 [hep-th/9204099].
[2] D. Birmingham, I. Sachs and S. N. Solodukhin, Phys. Rev. Lett. 88, 151301 (2002) doi:10.1103/PhysRevLett.88.151301 [hep-th/0112055].
[3] D. Grumiller, W. Kummer and D. V. Vassilevich, Phys. Rept. 369, 327 (2002) doi:10.1016/S0370-1573(02)00267-3 [hep-th/0204253].
[4] X. H. Ge, S. J. Sin, Y. Tian, S. F. Wu and S. Y. Wu, JHEP 1801, 068 (2018) doi:10.1007/JHEP01(2018)068 [arXiv:1712.00705 [hep-th]].
[5] V. Cardoso and J. P. S. Lemos, Phys. Rev. D 63, 124015 (2001) doi:10.1103/PhysRevD.63.124015 [gr-qc/0101052].
[6] R. A. Konoplya, Phys. Rev. D 70, 047503 (2004) doi:10.1103/PhysRevD.70.047503 [hep-th/0406100].
[7] M. Eune, W. Kim and S. H. Yi, JHEP 1303, 020 (2013) doi:10.1007/JHEP03(2013)020 [arXiv:1301.0395 [gr-qc]].
[8] F. W. Shu, K. Lin, A. Wang and Q. Wu, JHEP 1404, 056 (2014) doi:10.1007/JHEP04(2014)056 [arXiv:1403.0946 [hep-th]].
[9] K. S. Gupta, E. Harikumar, T. Jurić, S. Meljanac and A. Samsarov, JHEP 1509, 025 (2015) doi:10.1007/JHEP09(2015)025 [arXiv:1505.04068 [hep-th]].
[10] S. H. Hendi, B. Eslam Panah and S. Panahiyan, JHEP 1605, 029 (2016) doi:10.1007/JHEP05(2016)029 [arXiv:1604.00370 [hep-th]].
[11] K. S. Gupta, T. Jurić and A. Samsarov, JHEP 1706, 107 (2017) doi:10.1007/JHEP06(2017)107 [arXiv:1703.00514 [hep-th]].
[12] A. Štikonas, JHEP 1902, 054 (2019) doi:10.1007/JHEP02(2019)054 [arXiv:1810.06110 [hep-th]].
[13] S. Hirano, Y. Lei and S. van Leuven, JHEP 1909, 070 (2019) doi:10.1007/JHEP09(2019)070 [arXiv:1906.10715 [hep-th]].
[14] W. Cong and R. B. Mann, JHEP 1911, 004 (2019) doi:10.1007/JHEP11(2019)004 [arXiv:1908.01254 [gr-qc]].
[15] D. Glavan and C. Lin, Phys. Rev. Lett. 124, no. 8, 081301 (2020) doi:10.1103/PhysRevLett.124.081301 [arXiv:1905.03601 [gr-qc]].
[16] Y. Tomozawa, arXiv:1107.1424 [gr-qc].
[17] G. Cognola, R. Myrzakulov, L. Sebastiani and S. Zerbini, Phys. Rev. D 88, no. 2, 024006 (2013) doi:10.1103/PhysRevD.88.024006 [arXiv:1304.1878 [gr-qc]].
[18] R. G. Cai, L. M. Cao and N. Ohta, JHEP 1004, 082 (2010) doi:10.1007/JHEP04(2010)082 [arXiv:0911.4379 [hep-th]].
[19] R. A. Konoplya and A. F. Zinhaiilo, arXiv:2003.01188 [gr-qc].
[20] M. Guo and P. C. Li, arXiv:2003.02523 [gr-qc].
[21] P. G. S. Fernandes, arXiv:2003.05491 [gr-qc].
[22] A. Casalino, A. Colleaux, M. Rinaldi and S. Vicentini, arXiv:2003.07068 [gr-qc].
[23] R. A. Konoplya and A. Zhidenko, arXiv:2003.07788 [gr-qc].
[24] S. W. Wei and Y. X. Liu, arXiv:2003.07769 [gr-qc].
[25] R. Kumar, S. G. Ghosh, arXiv:2003.0892 [cond-mat.soft].
[26] K. Hegde, A. N. Kumara, C. L. A. Rizwan, A. K. M. and M. S. Ali, arXiv:2003.08778 [gr-qc].
[27] S. G. Ghosh and S. D. Maharaj, arXiv:2003.09841 [gr-qc].
[28] D. D. Doneva and S. S. Yazadjiev, arXiv:2003.10284 [gr-qc].
[29] Y. P. Zhang, S. W. Wei and Y. X. Liu, arXiv:2003.10960 [gr-qc].
[30] D. Lovelock, J. Math. Phys. 12, 498 (1971) doi:10.1063/1.1665613; J. Math. Phys. 13, 874 (1972) doi:10.1063/1.1666069.
[31] G. Kofinas and R. Olen, JHEP 0711, 069 (2007) doi:10.1088/1126-6708/2007/11/069 [arXiv:0708.0782 [hep-th]].
[32] R. C. Myers and J. Z. Simon, Phys. Rev. D 38, 2434 (1988) doi:10.1103/PhysRevD.38.2434.
[33] R. A. Konoplya and A. Zhidenko, Phys. Rev. D 82, 084003 (2010) doi:10.1103/PhysRevD.82.084003 [arXiv:1004.3772 [hep-th]].
[34] V. Cardoso, A. S. Miranda, E. Berti, H. Witek and V. T. Zanchin, Phys. Rev. D 79, 064016 (2009) doi:10.1103/PhysRevD.79.064016 [arXiv:0812.1806 [hep-th]].
[35] R. A. Konoplya and Z. Stuchlík, Phys. Lett. B 771, 597 (2017) doi:10.1016/j.physletb.2017.06.015 [arXiv:1705.05928 [gr-qc]].
[36] T. Takahashi, PTEP 2013, 013E02 (2013) [arXiv:1209.2867 [gr-qc]].
[37] R. A. Konoplya and A. Zhidenko, JCAP 1705, 050 (2017)
doi:10.1088/1475-7516/2017/05/050 [arXiv:1705.01656 [hep-th]].

[38] G. Dotti and R. J. Gleiser, Phys. Rev. D 72, 044018 (2005)
doi:10.1103/PhysRevD.72.044018 [gr-qc/0503117].

[39] R. J. Gleiser and G. Dotti, Phys. Rev. D 72, 124002 (2005)
doi:10.1103/PhysRevD.72.124002 [gr-qc/0510069].

[40] R. A. Konoplya and A. Zhidenko, JHEP 1709, 139 (2017)
doi:10.1007/JHEP09(2017)139 [arXiv:1705.07732 [hep-th]].

[41] D. Yoshida and J. Soda, Phys. Rev. D 93, no. 4, 044024 (2016)
doi:10.1103/PhysRevD.93.044024 [arXiv:1512.05865 [gr-qc]].

[42] T. Takahashi, Prog. Theor. Phys. 125, 1289 (2011)
doi:10.1143/PTP.125.1289 [arXiv:1102.1785 [gr-qc]].

[43] R. A. Konoplya and A. Zhidenko, Phys. Rev. D 77, 104004 (2008)
doi:10.1103/PhysRevD.77.104004 [arXiv:0802.0267 [hep-th]].

[44] M. A. Cuyubamba, R. A. Konoplya and A. Zhidenko, Phys. Rev. D 93, no. 10, 104053 (2016)
doi:10.1103/PhysRevD.93.104053 [arXiv:1604.03604 [gr-qc]].

[45] T. Takahashi and J. Soda, Prog. Theor. Phys. 124, 711 (2010)
doi:10.1143/PTP.124.711 [arXiv:1008.1618 [gr-qc]]; Prog. Theor. Phys. 124, 911 (2010)
doi:10.1143/PTP.124.911 [arXiv:1008.1385 [gr-qc]].

[46] A. Maselli, L. Gualtieri, P. Pani, L. Stella and V. Ferrari, Astrophys. J. 801, no. 2, 115 (2015)
doi:10.1088/0004-637X/801/2/115 [arXiv:1412.3473 [astro-ph.HE]].

[47] S. Nampalliwar, C. Bambi, K. Kokkotas and R. Konoplya, Phys. Lett. B 781, 626 (2018)
doi:10.1016/j.physletb.2018.04.053 [arXiv:1803.10819 [gr-qc]].

[48] R. A. Konoplya, A. F. Zinhailo and Z. Stuchlík, Phys. Rev. D 99, no. 12, 124042 (2019)
doi:10.1103/PhysRevD.99.124042 [arXiv:1903.03483 [gr-qc]].

[49] H. Xu and M. H. Yung, Phys. Lett. B 794, 77 (2019)
doi:10.1016/j.physletb.2019.05.031 [arXiv:1904.06503 [gr-qc]].

[50] A. F. Zinhailo, Eur. Phys. J. C 79, no. 11, 912 (2019)
doi:10.1140/epjc/s10052-019-7425-9 [arXiv:1909.12664 [gr-qc]].

[51] M. S. Churilova and Z. Stuchlík, arXiv:1910.12660 [gr-qc].

[52] A. K. Mishra and S. Chakraborty, Phys. Rev. D 101, no. 6, 064041 (2020)
doi:10.1103/PhysRevD.101.064041 [arXiv:1911.09855 [gr-qc]].

[53] M. A. Cuyubamba Espinoza, arXiv:1912.08382 [hep-th].

[54] J. L. Blázquez-Salcedo, D. D. Doneva, S. Kahlen, J. Kunz, P. Nedkova and S. S. Yazadjiev,
arXiv:2003.02862 [gr-qc].

[55] R. A. Konoplya and A. Zhidenko, Rev. Mod. Phys. 83, 793 (2011)
doi:10.1103/RevModPhys.83.793 [arXiv:1102.4014 [gr-qc]].