Research Article

Investigating the floristic diversity indices of plant species in district Charsadda, Khyber Pakhtunkhwa, Pakistan

Sulaiman Shah1, Yaseen Khan2*, Shariat Ullah1, Tabassum Yaseen3, Shakir Ullah4 and Mian Fazli Basit 3

1. Department of Botany, University of Malakand, Chakdara Dir Lower, 18800, Khyber Pakhtunkhwa-Pakistan
2. Key Laboratory of Plant Nutrition and Agri-environment in Northwest China, Ministry of Agriculture, College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi-China
3. Department of Botany, Bacha Khan University, Charsadda, 24420, Khyber Pakhtunkhwa-Pakistan
4. Key Laboratory of Plant Ecology, Northeast Forestry University, Harbin, 150040-China

*Corresponding author’s email: Yaseenkhan3444@gmail.com

Abstract

The floristic study carried out during 2017-2019 revealed that, district Charsadda comprised total of 146 plant species belonging to 58 families and 127 genera. The leading families were Asteraceae with 14 species (9.58%), Poaceae 12 species (8.21%), Solanaceae 8 species (5.47%) and Cucurbitaceae 7 species (4.79%). Apiaceae, Brassicaceae, Lamiaceae, Moraceae, Papilionaceae contribute by 5 species each (3.42%), Chenopodiaceae, Rosaceae having 4 species each (2.73%), Amaranthaceae, Euphorbiaceae, Malvaceae, Polygonaceae, Pteridaceae contributed by 3 species each (2.05%), Alliaceae, Areaceae, Asclepiadaceae, Cyperaceae, Ebinaceae, Equisetaceae, Fabaceae, Genetaceae, Geraniaceae, Mimosaceae, Myrtaceae, Oleaceae, Pinaceae, Rhamnaceae, Rutaceae contributed by 2 species each (1.36%). The rest of the 27 families contributed by 1 species each (0.68%). The most dominant life form was therophytes having 66 species (45.20%), Microphanerophytes 22 species (15.06%), and Chaemophytes 18 species (12.32%). Hemicyrptophyte 14 species (9.58%) Nanophanerophytes 10 species (6.84%), Geophytes 9 species (6.16%), Megaphanerophytes 4 species (2.75%) followed by Mesophanerophytes having 2 species (1.36%). Leaf size spectra of the flora showed that the most dominant leaf size class were microphyll having 54 species (36.98%), nanophyll 32 species (21.91%), mesophyll 29 species (19.86%), leptophylls 17 species (11.64%), megaphyll contributed by 8 species (5.47%) followed by macrophyll which represent 5 species (3.04%) and the one species is aphyllus. The dominant therophytic life form showed that the flora of the area is under severe anthropogenic activity. This study not only gives information about the flora of Charsadda but can provide a baseline for future studies and plantation of this area.

Keywords: Floristic diversity; Life forms; Leaf spectrum; District Charsadda

Introduction

A huge number of plant species are yet to be uncovered by the botanist. Therefore, the floristic report is the only source to get botanical information about the area and it may help in starting for detailed study [1]. The word floristic is derived from flora which means to list all types of plant species or plant taxa within specific geographical area [2]. To improve conservation stratagems for plants of any area, it is necessary to have a comprehensive floristic record of the area.
centred on collection and correct documentation [3]. Floristic study is a very important for ecological sustainability and conservation of plants for an area. Floristic research is one of the most effective method to manage proper and protection of plants [4]. The documentation of the local plants with the description of an area is very necessary, because it can provide information throughout the time about distribution, occupancy, growing season and species rigidity of the available plants [5]. Floristic study also provide information about new species in a specific area, so by that way we can also analysis about migrated plants species [5]. Furthermore, the documentation of the plant species of the specific area is play chief role in environmental science respect to climate change [6]. Respect to climate change, Life form spectrum may also provide information about plant species, population size and their distribution over the area [7]. The life forms of plants are different in every zone on the basis of altitude. Three types of climates can be seen on earth, which includes phanerophytic in tropic, therophytic in desert and hemicryptophytic in cold temperate zone [8]. This system of grouping of life forms is broadly accepted and it’s has been globally followed.

The present study was started to report the floristic composition and its ecological characteristics of district Charsadda. District Charsadda is located in the west of Khyber Pakhtunkhwa province of Pakistan. It is bounded by district Malakand on the north, district Mardan on the east, district Peshawar on the south and district Mohmand on the west. It is situated on Latitude of 34.150N and Longitude of 71.730E (Fig. 1) [9]. The district cover an area of 996 square kilometres and it is divided into 2 tehsils and 46 Union Councils. It is situated 282 meters above sea level in elevation. The predominant language is Pashto, spoken natively by 99.4% of the total population [10]. Temperature is variable from place to place, the coldest month of year is January, in which the average temperature is 5-10 °C, while June is the hottest month in which the temperature raised up to 44 °C. The average rainfall is 82 mm per year. The most precipitation fall in the month of August [11].

Figure 1. Map of district Charsadda (study area)
The main crops of the area are wheat, sugarcane, maize, tobacco, rice and several weeds [12]. Most of the area contains sandy, loamy and salty soil [13]. The vegetation can be found i.e herb, shrub, trees, dense vegetation are the maximum in number in this area, where the most common plant species are Xanthium strumarium, Cannabis sativa, Euphorbia helioscopia, Medicago denticulata, Withania somnifera [14]. In tress, Acacia nilotica, Ailanthus altisima, Broussonetia papyrifera, Morus alba, Morus nigra and Ziziphus jujube can be seen [15]. The present study might be helpful for the future researchers in the field of plant taxonomy related to district Charsadda. The purpose of this study was to explore the floristic composition, life form and leaf size spectra of district Charsadda.

Materials and Methods
Floristic study of district Charsadda was carried out during session of 2018-2019. Regular trips were arranged in various seasons (spring, summer, autumn and winter) to collect plant species. The locality, sub locality, vegetation, plant stage and leaf size were recorded after collection followed by [8]. The tools used during this research work were: Map of the area, notebook, pencil, plant presser, old newspaper, polythene bags, knife, compass and digital camera. The plant specimens were dried after identification. The plant specimens were submitted to herbarium, Department of botany, University of Malakand, Pakistan. The identification was carried out with the help of available literature [8-14]. The voucher specimens were deposited in the Herbarium of Centre of Plant Biodiversity, University of Malakand, Pakistan. The plant species were classified into different classes according to [8] as follows:

Therophytes
Annual seed bearing plants, which complete their life cycle in one year and overwinter; the unfavourable season by means of seeds or spores

Geophytes
Perennating buds located below the surface of soil including plants with deep rhizomes, bulbs, tubers and corms

Hemicryptophytes
Herbaceous perennial plants, in which the aerial portion of the plant dies at the end of the growing season, leaving a Perennating bud at or just beneath the ground surface

Chamaephytes
Perennating buds located close to the ground surface (below the height of 25 cm). The plants include herbaceous, low woody trailing, low stem succulents and cushion plants.

Phanerophytes
Most of the species are shrubby and tree, whose perennating buds are borne on aerial shoot reaching a height of at least 25 cm or more above the ground surface.

Data analysis
The data is analysed with Microsoft excel 2019.

Results and Discussion
Floristic and ecological attributes
The flora of district Charsadda consisted of 146 plant species, which is belonging to 58 families. In this study, family Asteraceae was the dominating family having, 14 species including, Catharanthus roseus, Centaurea calcitropa, Hyphocharis radiate, Launaea nudicaulis, Onopordum acanthium, Silybum marianum, Taraxacum officinale and Xanthium strumarium. The subdominant families are Poaceae, Solanaceae and Cucurbitaceae with 7 species, followed by Apiaceae, Brassicaceae, Lamiaceae and Papilionaceae with 5 species. Chenopodiaceae, Rosaceae consisting 4 species, followed by Amaranthaceae, Euphorbiaceae, Malvaceae, Polygonaceae and Pteridaceae with 3 species. Alliaceae, Arecaceae, Asclepiadaceae, Cyperaceae, Ebinaceae, Equisetaceae, Fabaceae,
Genetaceae, Geraniaceae, Mimocaceae, Myrtaceae, Oleaceae, Pinaceae, Rhamnaceae and Rutaceae with 2 species. Each and the rest of 27 Families having single specie (Fig. 2). Our finding is similar with Jan et al., Khan, Ali et al. and Qureshi et al. [16-19], in which the Asteraceae and Poaceae were leading families in their study work. Seasonal variation of vegetation shows that highest numbers of species i.e. 126 species, were found in summer followed by spring i.e. 108 species and autumn 73 species. While, compare to summer, less number of species can be seen in winter season i.e. 64 species (Fig. 3). Most of the herbaceous flora has varied distribution pattern in different seasons. The summer and spring flora is high in number than autumn and winter [20-22].

Figure 2. Plant families’ percentage of vegetation conclusion

Figure 3. Percentage of number of species in different season
Biological spectrum
Raunkiaer (1934) proposed the term “Biological Spectrum” to express both life-form and distribution of flora and the phytoclimatic under which the prevailing life-forms evolved. The life-form study is thus an important part of vegetation description, ranking next to floristic composition. This study is an important part of the vegetation description, ranking next to floristic composition [23]. Life form and leaf size spectra indicate a climatic and human disturbance of a particular area [24]. The life form and leaf size spectra are beneficial attributes that have been broadly used in vegetation description. Furthermore, it is traditionally being used to describe world vegetation types at the community level [8].

The life form differences in various societies make up the basis of their structure. Different classification of the life forms there, but among them, Raunkiaer system is used most. Plants are divided into six main groups: Phanerophyte, Chamaephyte, Hemicryptophyte, Cryptophyte, Therophyte, and Epiphyte [25]. The percentage of life form was calculated as follows:

\[
\% \text{Life-form} = \frac{\text{Numbers of species in any life form}}{\text{Total number of species of all life forms}} \times 100
\]

All the plant species are classified into life forms and their ratio is expressed in number or percentage [26]. Furthermore, the biological spectrum was formed which showed that therophytes (66 spp., 45.20%), microphanerophytes (22 spp., 15.06%) (Fig. 4), chamaephytes (18 spp., 12.32%), hemicryptophytes (14 spp., 9.58%), nanophanerophytes (10 spp., 18.5%), geophytes (9 spp., 6.16%), megaphanerophytes (4 spp., 2.75%), mesophanerophytes (2 spp., 1.36%) and parasite (1 spp., 0.68%) had occurrence in the studied area (Table 1). The therophytes and chaemophytes dominancy showed that our study is similar to Durrani et al. Cain et al. Cain & Castro [27-30] in which the therophytes, chaemophytes, hemicryptophytes were in dominant phase. The results of seasonal variation in different life classes revealed that in spring the therophytes (38 spp., 35.51%) were dominant followed by microphanerophytes (22 spp., 20.56%), chaemophytes (14 spp., 13.08%), nanophanerophytes (10 spp., 9.34%) and geophytes (9 spp., 8.41%). Similar to spring, the dominant in summer the maximum numbers of species (52 spp., 41.6%) were therophytes followed by Microphanerophytes (22 spp., 17.6%), chamaephytes and hemicryptophytes (14 spp., 11.2%), followed by nanophanerophytes (10 spp., 8%), while in autumn, the dominant species were microphanerophytes (22 spp., 30.55%) followed by therophytes (15 spp., 20.83%), nanophanerophytes (10 spp., 13.88%), chaemophytes (9 spp., 12.5%). The winter is the same as autumn the dominant species were microphanerophytes (22 spp., 34.37%) followed by therophytes (11 spp., 17.18%), nanophanerophytes (10 spp., 15.62%), chaemophytes (9 spp., 14.06%) (Fig. 5). Our result is similar regarding the dominancy of therophytes in spring and summer with Saxina et al. [31].
Figure 4(a, b). Microphanerophytes (MP)

Table 1. Seasonal variation in Life form spectra of vegetation of District Charsadda

Life form classes	Spring	Summer	Autumn	Winter				
	No	% age						
1 Therophytes	38	35.51	52	41.93	16	21.91	11	17.18
2 Hemicryptophytes	8	7.47	13	10.48	7	9.58	4	6.25
3 Geophytes	9	8.41	7	5.64	3	4.10	2	3.12
4 Chaemophytes	14	13.08	14	11.29	9	12.32	9	14.06
5 Nanophanerophytes	10	9.34	10	8.06	10	13.69	10	15.62
6 Microphanerophytes	22	20.56	22	17.74	22	30.13	22	34.37
7 Mesophanerophytes	2	1.86	2	1.61	2	2.73	2	3.12
8 Megaphanerophytes	4	3.73	4	3.22	4	5.47	4	6.25
sum	107	100	124	100	73	100	64	100

Figure 5. Seasonal variation in life form of vegetation
Leaf spectrum
Life form and leaf size spectra indicate climatic and creature fracas of a particular area [24]. Leaf size classes have been found to be very useful for plant associations. Leaf size plays an important role in the physiological processes of plant and plant community in any area. The plant is also classified on the basis of leaf sizes [32]. In our study the leaf area of the species was calculated according to Ilyas et al. [24]. In our study, the dominant plant as regards leaf spectra was microphylls (54 spp., 36.98%) followed by nanophylls (32 spp., 21.91%), mesophylls (29 spp., 19.86 %), leptophylls (17 spp., 11.64%), megaphylls (8 spp., 5.47%) and macrophyll (5 spp., 3.04%). While aphyllus represent only 1 species (Fig. 5, 6, 7 & 9; Table 2 & 3). Our present findings agreed with [33-42], in which microphylls and nanophylls were the dominant leaf-size classes.

Habitat
Habit is the general appearance, growth form and architecture of the plant species. In our study habit of species showed discrepancy, the main class was herbs having 95 species (65.06%), followed by tree and shrub with 32 species (21.91%) and 19 species (13.01%) respectively. Our result showed low percentage of shrubs and trees species, which indicate severe deforestation in the area.
Figure 8. Percentage of species Habit

Figure 9. Leaf types in selected area

Table 2. Leaf size Spectra in a different type of Season of District Charsadda

Leaf size classes	Spring	Summer	Autumn	Winter				
	No	%age	No	%age	No	%age	No	%age
1 Microphyll	37	34.57	44	35.48	22	30.13	20	31.25
2 Leptophyll	14	13.08	16	12.90	7	9.58	8	12.5
3 Nanophyll	25	23.36	29	23.38	18	24.65	14	21.87
4 Mesophyll	24	22.42	24	19.35	17	23.28	16	25
5 Megaphyll	4	3.73	8	6.45	6	8.21	3	4.68
6 Macrophyll	3	2.80	3	2.41	3	4.10	3	4.68
sum	107	100	124	100	73	100	64	100
Plant species	Family	Local name	Habit	Leaf size	Life form	Seasonality		
-------------------------------	--------------	------------	-------	-----------	-----------	-------------		
Allium sativa L.	Alliaceae	Ooga	Herb	mic	Th	+		
Allium cepa L.	Alliaceae	Piyaz	Herb	mes	Geo	+		
Amaranthus viridis L.	Amaranthaceae	Ghanhar	Herb	Nan	Th	-		
Achyranthus aspera L.	Amaranthaceae	Not known	Herb	mic	Hem	-		
Alternanthera sessilis (L.) RBr	Amaranthaceae	Not known	Herb	mic	Th	-		
Mangifera indica L.	Anacardiaceae	Aam	Tree	mes	Mesp	+		
Coriandrum sativm L.	Apiaceae	Danya	Herb	Lep	Th	+		
Capsicum fruticosens L.	Apiaceae	Tour mrach	Tree	mic	Mp	+		
Ammi visnaga (L.) Lam.	Apiaceae	sperkaye	Shrub	Lep	Cha	+		
Daucus carrota L.	Apiaceae	Ghajar	Herb	Mes	Geo	+		
Ammi visnaga (L.) Lam.	Apiaceae	sperkaye	Shrub	Lep	Cha	+		
Nannorrhops richiana (Griff.) Aitch.	Areceae	Not known	Tree	Mg	Mp	+		
Phoenix dactylifera L.	Areceae	Kajora	Tree	Mg	Mp	+		
Calotropis procera (Aiton)w.t	Asclepiadaceae	Speen ponakay	Shrub	Mes	Cha	+		
Caralluma taberculata N.E Brown	Asclepiadaceae	Pammankay	Herb	Nan	Th	+		
Agave sisalana perrineex Engelm	Asparagusaceae	Unknown	Shrub	Meg	Np	+		
Hypocaris radiata Falk	Asteraceae	Shodapay	Herb	mes	Th	+		
Conyza stricta wildl	Asteraceae	Kharboty	Herb	Mic	Cha	+		
Launaea nudicaulis (L) Hook .f.	Asteraceae	Gora shodapay	Herb	Mes	Th	+		
Filago hardwaria (wall. exDc) wagenitz	Asteraceae	Warkharay	Herb	Lep	Th	-		
Xanthium strumarium L.	Asteraceae	Ghashay	Herb	Mac	Th	+		
Sonchus aspher L.	Asteraceae	Shodapay	Herb	Nan	Hem	+		
Silybum marianum (L) Gaertn.	Asteraceae	Unknown	Herb	Mes	Th	+		
Catharanthus roseus (L.) G.Don	Asteraceae	Chaman gull	Herb	Mic	Th	-		
Calendula arvensis L.	Asteraceae	Zyar gully	Herb	Mic	Th	+		
Carthamus oxyacantha M.Bieb	Asteraceae	Ghana shodapay	Shrub	Mic	Th	-		
No	Scientific Name	Family	Common Name	Type	Life Form	Natural Range	Habitat	
----	-------------------------------------	-----------	-------------	--------	-----------	---------------	---------	
27	Centaurea calcitropa L.	Asteraceae	Unknown	Herb	Mes	Th	-	
28	Onopordum acanthium L.	Asteraceae	Ghana	Herb	Nan	Cha	+	
29	Parthenium hysterophorus L.	Asteraceae	Leuway botay	Herb	Mes	Th	+	
30	Taraxacum officinale weber	Asteraceae	Zyargul shadap	Herb	Mic	Th	+	
31	Coronopus didymus (L) Sm	Brassicaceae	Sqahtobit	Herb	Lep	Th	+	
32	Raphanus raphanistrum L.	Brassicaceae	Tapermoly	Herb	Mes	Th	+	
33	Eruca sativa L.	Brassicaceae	Teparge	Herb	Mic	Th	+	
34	Capsella bursa-pastoris medic	Brassicaceae	Tour sharsham	Herb	Mic	Th	-	
35	Brassica compestris L.	Brassicaceae	Shashtraim	Herb	Mic	Th	+	
36	Opuntia littoralis (engl.)	Cactaceae	Zuqam	Shrub	Lep	Np	+	
37	Cannabis sativa L.	Cannabaceae	Bang	Herb	Mic	Th	+	
38	Helianthus annuus (L) cry	Cryophyllaceae	Unknown	Herb	Nan	Th	+	
39	Chenopodium album L.	Chenopodiaceae	Spensag	Herb	Mic	Th	-	
40	Spinacea oleracea L.	Chenopodiaceae	Pakak	Herb	Mic	Th	+	
41	Kochia indica wight	Chenopodiaceae	Sqaayaga	Shrub	Nan	Cha	+	
42	Convolvulus arvensis L.	Convolvulaceae	Unknown	Herb	Nan	Th	-	
43	Citrus colocynthis (L) schrad	Cucurbitaceae	Unknown	Herb	Mic	Th	-	
44	Citrus lanatus (thum.)mats	Cucurbitaceae	Hindwana	Herb	Mes	Th	-	
45	Cucurbita maxima Duchesne	Cucurbitaceae	Kado	Herb	Mg	Th	-	
46	Luffa cylindrica (L) Roem	Cucurbitaceae	Tori	Herb	Mg	Th	-	
47	Momordica charantia L.	Cucurbitaceae	Karela	Herb	Mes	Th	-	
48	Cucumis melo L.	Cucurbitaceae	Harboza	Herb	Mac	Th	-	
49	Cucurbita pepo L.	Cucurbitaceae	Harbaza	Herb	Mg	Th	-	
50	Cuscuta reflexa Roxb	Cuscutaceae	Unknown	Herb	Lep	P	+	
51	Cyperus niveus Retz	Cyperaceae	Unknown	Herb	Nan	Hem	-	
52	Cyperus rotundus L.	Cyperaceae	Unknown	Herb	Nan	Th	-	
53	Diospyros kaki L.	Ebinaceae	Amlaok	Tree	Mes	Mp	+	
54	Diospyros lotus L.	Ebinaceae	Amlaok	Tree	Mic	megp	+	
55	Equisetum ramosiusis Desf	Equisetaceae	Banakdya	Herb	Ap	Geo	+	
56	Equisetum arvensis L.	Equisetaceae	Banakdya	Herb	Lep	Hem	+	
57	Euphorbia helioscopia L.	Euphorbiaceae	Mandaro	Herb	Nan	Th	-	
58	Euphorbia prostrata Aiton	Euphorbiaceae	Unknown	Herb	Lep	Th	+	
No.	Species Name	Family	Use	Height	Habit	Synonym	Type	
-----	--	----------------------	-----------	--------	--------	---------	--------	
60	*Ricinus communis* L.	Euphorbiaceae	Pomba	Shrub	Nan	Megp	+	
61	*Medicago denticulata* Wild	Fabaceae	Peshataray	Herb	Nan	Th	+	
62	*Trifolium alexandrium* L.	Fabaceae	Riksha	Herb	Nan	Th	+	
63	*Fumaria indica* Pugsley	Fumariaceae	Unknown	Herb	Lep	Th	-	
64	*Centaurium pulchellum* (Sw.) Druce	Gentianaceae	Kargha mewa	Herb	Mic	Th	-	
65	*Swertia ciliate* (G. Don) B.L Bur	Gentianaceae	Unknown	Herb	Mes	Th	-	
66	*Erodium cicutarium* (L.) L. Heritx	Geraniaceae	Unknown	Herb	Mac	Cha	+	
67	*Geranium winum* sweet	Geraniaceae	Unknown	Herb	Mic	Hem	-	
68	*Juglans regia* L.	Juglandaceae	Ghoz	Tree	Mic	Mp	+	
69	*Ocimum basilicum* L.	Lamiaceae	Kashmaly	Shrub	Nan	Cha	+	
70	*Mentha arvensis* L.	Lamiaceae	Venally	Herb	Nan	Geo	+	
71	*Mentha sylvestris* L.	Lamiaceae	Venally	Herb	Nan	Th	+	
72	*Mentha longifolia* L.	Lamiaceae	Venally	Herb	Mic	Geo	+	
73	*Salvia lanata* Roxb	Lamiaceae	Unknown	Herb	Mes	Th	-	
74	*Malva neglecta* Wallr	Malvaceae	Panderak	Herb	Mic	Th	+	
75	*Ablemoschus esculentus* L.	Malvaceae	Unknown	Herb	Mic	Th	-	
76	*Malvastrum coromandelianum* (L.) Garcke	Malvaceae	Ghanta boly	Herb	Mic	Th	+	
77	*Melia azedarach* L.	Meliaceae	Bakyana	Tree	Nan	Mp	+	
78	*Ficus palmate* Forssk	Moraceae	Waroki inzar	Tree	Mes	Mp	+	
79	*Ficus carica* L.	Moraceae	Ghat inzar	Tree	Mes	Np	+	
80	*Morus alba* L.	Moraceae	Speen tot	Tree	Mes	Mp	+	
81	*Morus nigra* L.	Moraceae	Tor tot	Tree	Mes	Mp	+	
82	*Broussonetia papyrifera* (L.) Vent	Moraceae	Shahtot	Tree	Mac	Megp	+	
83	*Acacia nilotica* (L.) Delile	Mimosaceae	Kikar	Tree	Lep	Mp	+	
84	*Acacia farnesiana* (L.) wild	Mimosaceae	Ghana	Tree	Lep	Mp	+	
85	*Eucalyptus lanceolatus* –Honey	Myrtaceae	Lachi	Tree	Mic	Cha	+	
86	*Psidium guajava* L.	Myrtaceae	Amrod	Tree	Mes	Mp	+	
87	*Olea ferruginea* Royle	Oleaceae	Jaman	Tree	Mic	Mp	+	
88	*Jasminum officinale* L.	Oleaceae	Unknown	Tree	Nan	Np	+	
89	*Oxalis corniculata* L.	Oxalidaceae	Trewaky	Herb	Nan	Th	+	
90	*Phaseolus vulgaris* L.	Papilionaceae	Unknown	Shrub	Mes	Cha	-	
91	*Papaver somniferum* L.	Papaveraceae	Bang	Herb	Mes	Th	+	
92	*Abizia lebeck* (L.) Benth	Papilionaceae	Emli	Tree	Lep	Mp	+	
93	*Pisum sativum* L.	Papilionaceae	Matar	Herb	Mic	Th	+	
No.	Scientific Name	Family	Common Name	Type	Habitat	Characteristics		
-----	---	-------------------	-------------	---------	---------	-----------------		
94	*Astragulus hamosus* (L) Boiss	Papilionaceae	Jamdar	Herb	Mic	Th		
95	*Delbegia sesso* Roxb. ExDc	Papilionaceae	Shawa	Tree	Nan	Mp		
96	*Vicia hirsuta* (L). Gray	Papilionaceae	Mompa	Herb	Nan	Th		
97	*Pinus roxburghii* Sargent	Pinaceae	Nakhtir	Tree	Lep	Mesp		
98	*Pinus wellichiana* A.B.Jackson	Poaceae	Deyar	Tree	Lep	Megp		
99	*Cynodon dactylon* (L) Pers	Poaceae	Kabal	Herb	Nan	Hem		
100	*Aristida adscensions* L.	Poaceae	WakhA	Herb	Mic	Hem		
101	*Bromus japonicus* Houtt	Poaceae	Jaodar	Herb	Mic	Hem		
102	*Secale cereal* L.	Poaceae	Warbashi	Herb	Mic	Th		
103	*Phragmites australis* (cav) Trinex steud	Poaceae	Makay	Shrub	Mes	Geo		
104	*Avena sativa* L.	Poaceae	Koray	Herb	Nan	Hem		
105	*Zea mays* L.	Poaceae	Jowar	Herb	Th			
106	*Phalaris minor* Retz	Poaceae	Jowar	Herb	Mg	Th		
107	*Triticum aestivum* L.	Poaceae	Ghanam	Herb	Mic	Th		
108	*Echinochola colona* L.	Poaceae	Roji	Herb	Mic	Geo		
109	*Rumex hastatus* L.	Polygonaceae	Shalkhy	Herb	Mes	Th		
110	*Homalocladium platycleidum* (F.Muell.)	Polygonaceae	Unknown	Shrub	Mes	Cha		
111	*Polygonum baratum* L.	Polygonaceae	Unknown	Herb	Mic	Cha		
112	*Portulaca oleracea* L.	Portulaceae	Warkhary	Herb	Nan	Th		
113	*Pteris vitata* L.	Pteridaceae	Unknown	Herb	Mic	Hem		
114	*Pteris cretica* L.	Pteridaceae	Unknown	Herb	Mic	Hem		
115	*Adiantum-capillus-veneris* L.	Pteridaceae	Unknown	Herb	Nan	Hem		
116	*Punica granatum* L.	Punicaeae	Anar	Tree	Nan	Np		
117	*Ranunculus muricatus* L.	Ranunculaceae	Jaghagha	Herb	Mic	Geo		
118	*Rosa indica* L.	Rosaceae	Gulab	Shrub	Mic	Np		
119	*Rosa webiana* L.	Rosaceae	Gulab	Shrub	Mic	Np		
120	*Eriobotrya japonica* (Thunb) Lindl	Rosaceae	Loakat	Tree	Mac	Mp		
121	*Ziziphus mauritana* Jam.	Rhamnaceae	Sara bera	Tree	Nan	Mp		
122	*Galium aparine* L.	Rubiaceae	Kotriboty	Herb	Lep	Th		
123	*Prunus armeniaca* L.	Rosaceae	Khubany	Tree	Nan	Mp		
124	*Citrus indica* L.	Rutaceae	Naranj	Shrub	Mic	Micp		

No.	Species Name	Family	Type	Leaf Type	Pubescence	Height	Flowering	Fruit Type	Notes
128	Zanthoxylum armatum Dc	Rutaceae	Tree	Mic	Np	+	+	+	
129	Dodonea viscosa (L.) Jacq	Sapindaceae	Tree	Nan	Np	+	+	+	
130	Manilkara zapota (L.) P.Royen	Sapotaceae	Tree	Mic	Mp	+	+	+	
131	Verbenas sp Thapsus L.	Scrophulariaceae	Herb	Meg	Th	+	-	-	
132	Ailanthus altissima (mill)	Simarubaceae	Tree	Mic	Mp	+	+	+	
133	Solanum nigrum L.	Solanaceae	Herb	Mic	Th	+	+	-	-
134	Datura metel L.	Solanaceae	Shrub	Mic	Th	+	+	-	-
135	Withania somnifera (L.) Dunal	Solanaceae	Shrub	Mic	Cha	-	+	-	-
136	Withania coagulans (stocks)	Solanaceae	Shrub	Mic	Cha	-	+	-	-
137	Solanum surrattense Burn. f.	Solanaceae	Herb	Nan	Hem	+	+	-	+
138	Physalis minima L.	Solanaceae	Herb	Mic	Cha	-	+	-	+
139	Lycopersicum esculentum Mill.	Solanaceae	Tamatar	Mic	Th	+	+	-	-
140	Cestrum nocturnum L.	Solanaceae	Rat ke rani	Mic	Cha	+	+	+	+
141	Uritica dioica L.	Urticaceae	Unknown	Herb	Mic	Th	+	-	+
142	Verbena officinalis L.	Verbinaceae	Unknown	Herb	Mic	Th	+	+	+
143	Vitis vinifera L.	Vitaceae	Angur	Root climber	Mes	Mp	+	+	+
144	Aloe vera (L.) Burm.f,Fl.	Xanthorrhoeaceae	Alovera	Mes	Cha	+	+	+	+
145	Cucuma longa L.	Zingiberaceae	Korkaman	Mes	Geo	+	+	+	+
146	Peganum harmala L.	Zygophyllaceae	Spekany	Shrub	Mic	Cha	+	-	-

Note: Lep = Leptophyll, Nan = Nanophyll, Mic = Microphyll, Mes = Mesophyll, Mac = Macrophyll, Meg = Megaphyll, Ap = Aphyllus, Th = Therophytes, Geo = Geophytes, Cha = Chaemophytes, Hem = Hemicyryptophytes, Nan = Nanophanerophytes, Micp = Microphanerophyts, Mesp = Mesophanerophytes, Megp = Megaphanerophytes, P = Parasite, Sp = Spring, Sm = Summer, W = Winter, Au = Autumn
Conclusion
From the present study it was concluded that flora of the area is diverse and consisted of 146 plants species distributed among 58 families and 127 genera. The dominant life form was therophytes with 66 species (45.20%) followed by Microphanerophytes having 22 species (15.06%). While, microphyll dominating the leaf size spectra. In district Charsadda harsh winter creates unfavourable conditions which resulted in the abundance of these life forms. The locality also confronting a number of threats in the form of overgrazing, soil erosion, construction and agricultural extension. These factors combined with anthropogenic pressures are a serious threat to local biodiversity. Therefore, proper conservation strategies are the need of the hour to conserve this natural wealth for the generation to come.

Authors’ contributions
Conceived and designed the experiments: S Shah & S Ullah. Performed the experiments: S Shah. Analyzed the data: Y Khan & T Yaseen. Contributed reagents/materials/analysis tools: S Ullah, MF Basit. Wrote & revised the paper: Y Khan & T Yaseen.

References
1. Keith DA (1988). Floristic lists of New South Wales (III). Cunninghamia 2(1): 39–73.
2. Ali SI (2008). The significance of flora with special reference to Pakistan. Pak J Bot 40(3): 967–971.
3. Khan SM & Ahmad H (2014). Role of Indigenous Arqiyat distillery in conservation of Rosa species. Int J of Phytomedicine 6(2): 162.
4. Akbarinia MO, Zare H, Hoseini SM & Ejehadi H (2004). Study on vegetation structure, floristic composition and chorology of silver birch communities at Sangedh, forest of Hyrcanian region. In Natural Resources.
5. Ali SI (2008). Significance of flora with special reference to Pakistan. Pak J Bot 40(3): 967–971.
6. Stace CA (1989). Plant taxonomy and biosystematics. Edward Arnold, London.
7. Sarmiento G & Monasterio M (1983). Life forms and phenology. Ecosystems of the World. 13:79–108.
8. Raunkiaer C (1934). The life form at plants and statistical geography. Darendon Press, Oxford 23.
9. Anonymous (1998). District Census Report of Charsadda, PCO, Govt. of Pakistan.
10. Khan S, Shahnaz M, Jehan N, Rehman S, Shah MT & Din I (2013). Drinking water quality and human health risk in Charsadda district, Pakistan. J Clean Prod 60: 93–101.
11. Nasir E & Ali SI (1970–1989). Flora of Pakistan, Islamabad, Karachi.
12. Anonymous (2018). Population and household detail from block to district level: Khyber Pakhtunkhwa, Govt. of Pakistan.
13. Ali SI & Nasir YJ (1991–1993). Flora of Pakistan Nos. 191-193. Department of Botany, Karachi University, Karachi Pakistan.
14. Ali SI & Qaiser M (1993–2018). Flora of Pakistan, Department of Botany, University of Karachi.
15. Noor A, Anwar H, Sidra A & Shumaila B (2013). Accumulation of heavy metals in edible parts of vegetables irrigated with waste water and their daily intake to adults and children, district Mardan, Pakistan. Food Chem 136: 1515–1523.
16. Jan RU, Khan RU, Rehman HU, Khan AZ, Waheed MA & Khan IU (2016). Ethnobotanically important flora of Tehsil Tangi, District Charsadda. Pak J Pham Sci 8(3): 108–116.
17. Khan MN, Hadi F, Razaq A & Shah SM (2017). Utilitarian aspects of weeds and their ecological characteristics in Ochawala valley, District Charsadda, Pakistan. APRN J Agric and Biol Sci 12(5): 182–189.
18. Ali SI & Qaiser M (1993–2012). Flora of Pakistan. Nos. 194-221. Department of Botany, Karachi University, Karachi Pakistan.
19. Qureshi MA & Khan SA (1965-67). Flora of Peshawar District and Khyber Agency. Pak J For 15: 364-393.
20. Qureshi MA & Khan KA (1971). An illustrated Flora of Peshawar District and Khyber Agency. Ranunculaceae to Moringaceae. Pak J For 1: 212.
21. Khan M, Hussain F & Musharaf S (2013). Floristic composition and biological characteristics of the vegetation of Sheikh Maltoon Town District Mardan, Pakistan. *Annu Res Rev* 6: 31–41.

22. Khan M, Hussain F & Musharaf S (2014). Floristic Composition and Ecological Characteristics of Shahbaz Garhi, District Mardan, Pakistan. *GJSFR* 1: 17.

23. Amjad MS, Arshad M, Sadaf HM, Akrim F & Arshad A (2016). Floristic composition, biological spectrum and conservation status of the vegetation in Nikyal valley, Azad Jammu and Kashmir. *Asian Pac J Trop Dis* 6(1): 63–9.

24. Ilyas M, Qureshi R, Arshad M & Mirza SN (2013). A Preliminary checklist of the vascular flora of Kabal Valley, Swat, Pakistan. *Pak J Bot* 45(2): 605–615.

25. Hussain F, Shah SM, Badshah L & Durrani MJ (2015). Diversity and ecological characteristics of flora of mastuj Valley, District Chitral, Hindukush Range, Pakistan. *Pak J Bot* 47(2): 495–510.

26. Badshah L, Hussain F & Sher Z (2013). Floristic inventory, ecological characteristics and biological spectrum of rangeland, District Tank, Pakistan. *Pak J Bot* 45(4): 1159–1168.

27. Durrani MJ, Razaq A, Muhammad SG & Hussain F (2010). Floristic diversity, ecological, characteristics and ethnobotanical profile of plants of Aghbergrange lands, Balochistan, Pakistan. *Pak J Pl Sci* 16(1): 29–36.

28. Cain SA (1950). Life-forms and phytoclimate. *Bot Res* 16(1): 21–32.

29. Cain SA & Castro GM (1959). Manual of vegetation analysis. Harper & Brother Publ, New York, 325.

30. Asri Y (1999). Ecological study of arid zone plant communities (Case study: biosphere reservoir, province). Ph.D. Thesis. Islamic Azad University, Science and Research Campus.

31. Saxina AK, Pandey TP & Singh JS (1987). Altitudinal variation in the vegetation of Kaumaua Himalaya. *Perspective in Environ Bot* 44–66.

32. Al-Sherif EA, Ayesh AM & Rawi SM (2013). Floristic composition, life form and chorology of plant life at Khulais region, Western Saudi Arabia. *Pak J Bot* 45(1): 29–38.

33. Wariss HM, Mukhtar M, Anjum S, Bhatti GR, Pirzada SA & Alam K (2013). Floristic composition of the plants of the Cholistan Desert, Pakistan. *Am J Plant Sci* 412–419.

34. Sher Z, Hussain F & Badshah L (2014). Biodiversity and ecological characterization of the flora of Gadoon rangeland, district Swabi, Khyber Pakhtunkhwa, Pakistan. *Iran J Bot* 20(1): 96–108.

35. Ali S, Shuaib M, Ali H, Ullah S, Ali K & Hussain S (2017). Floristic list and their ecological characteristics, of plants at village Sherpao District Charsadda, KP-Pakistan. *J of Med P* 5(5): 295–309.

36. Seraj SS, Jrâis RN & Ayyad SK (2014). Floristic composition, life form and chorology of plant life at Al-Saoda, Asir Region, South-Western Saudi Arabia. *J Biol Agr & Hc* 4(26): 60–68.

37. Sâlama FM, Sayed SA & Abd el AA (2014). Plant communities and floristic composition of the vegetation of Wadi Al-Assiuty and Wadi Habib in the Eastern Desert, Egypt. *Not Sci Biol* 6(2): 196–206.

38. Ali A, Badshah L, Hussain F & Shinwari ZK (2016). Floristic composition and ecological characteristics of plants of chail valley, district Swat, Pakistan. *Pak J Bot* 48(3): 1013–1026.

39. Oosting HJ (1956). The Study of Plant Communities, WH Freeman and Co., San Francisco, 2nd edition, pp 69–78.

40. Ullah S & Badshah L (2017). Floristic structure and ecological attributes of Jelar valley flora, district Upper Dir, Pakistan. *JBES* 10(5): 89–105.

41. Khan M, Hussain F & Musharaf S (2012). Biological characteristics of plant species in Tehsil Takh-e-Nasrati Pakistan. *J Biol Environ Sci* 2(3): 42–47.

42. Malik ZH, Hussain F & Malik NZ (2007). Life form and leaf size spectra of plant communities Harbouring Ganga Chotti and Bedori Hills during 1999–2000. *Int J Agric Biol* 9(6): 833–848.