INTRODUCTION

Solitary fibrous tumor (SFT) is a spindle cell neoplasm that occurs commonly in the pleural space. One-third of SFTs arising from an extrathoracic organ are found in the head and neck region, and they arise rarely in the sinonasal tract. Most of these tumors are benign, but malignant tumors are identified in some cases. Here we report a rare sinonasal SFT arising from the frontal recess. A 32-year-old male patient with chief complaint of headache and left facial pain visited the outpatient clinic. He had suffered from paranasal pain and nasal obstruction for several months, and symptoms became more severe in the previous three months. The mass rapidly increased in size and was protruding from the left nostril when he visited the hospital. After computed tomography and magnetic resonance imaging scans, transnasal endoscopic resection of the tumor was performed, and gross total tumor removal was successfully achieved. We believe this case will be helpful for providing information regarding management of such uncommon huge sinonasal tumors originating from the frontal recess.

KEY WORDS: Solitary fibrous tumor · Sinonasal tumor · Endoscopic resection.
gressively, but otherwise he was in good general condition without other medical issues. A smooth, round, and pale mass occupying the entire left nasal cavity and nasopharynx was found in rigid nasal endoscopy (Fig. 1). The laboratory findings and ophthalmological examination were also conducted, and there were no significant clinical findings, except mild left exophthalmos. He was further evaluated with CT and MRI of paranasal sinuses. The image findings revealed a huge, expansile, and heterogeneously enhancing mass with highly vascular nature in left nasal cavity, maxillary sinus, ethmoid sinus and both frontal sinuses, and it was extended to left orbit (Fig. 2).

Incisional biopsy in operating room under general anesthesia revealed spindle cell proliferated tumor with moderate cellularity, mild pleomorphism, and increased capillaries. The pathologic reports were consistent with low grade mesenchymal tumor, such as SFT, and there was no evidence of malignancy. After the reports were confirmed, the 2nd operation, tumor removal via transnasal endoscopic approach under a general anesthesia, was performed at a week after the primary incisional biopsy. Highly fibrotic and hemorrhagic tumor adhesive to diffuse nasal cavity mucosa was found, and a focal hyperostosis in the frontal recess was suspicious for the origin site (Fig. 2B). Several arterial bleedings occurred during the surgery, but they were successfully controlled by electrocoagulation. Gross total tumor removal was established without additional external incision or exposure of crucial structures around the lesion (e.g., skull base and the orbit).

Preoperative and postoperative CT images revealed successful excision of the tumor by transnasal endoscopic surgery (Fig. 3). The pathology results of main tumor were consistent with SFT; the spindle cells were stained positively for CD34 and negatively for both S-100 protein (neural marker) and smooth muscle actin. One mitosis per 10
high-power fields (HPFs) was found in the excised specimen (Fig. 4). Upon follow-up, the postoperative course was uneventful with no evidence of recurrence for 6 months.

DISCUSSION

SFTs are relatively rare tumors originating from mesenchymal spindle cells.1-3 They most commonly occur from the pleura, but various extra-pleural sites of tumor origin have been reported. SFTs in the head and neck area are well described in several studies, but involvement of the nasal cavity and paranasal sinuses have been still rarely reported.12 Up to 20% of SFTs have been reported as malignant neoplasms, and SFTs found in extra-pleural sites including nasal cavity and paranasal sinus tend to be predominantly benign while pleural tumors are more aggressive.67 Patients with sinonasal SFTs generally visit clinics for not only slowly growing, painless mass lesion but also nasal obstruction, rhinorrhea, and intermittent epistaxis, if symptomatic.5

In terms of the morphologic characteristics, SFTs are usually encapsulated and fibrous mass with rich vascularities, as found in this case.5 Ahn et al.9 reported that preoperative angiographic embolization could be helpful for treating sinonasal SFT due to their high vascularity and bleeding risk. Through consultation with the radiologic specialist with the contrast enhanced and high-resolution CT, we planned the surgery without embolization as there was no dominant, single, and targetable feeding artery of the tumor.

For the diagnostic process, radiologic examinations with CT and MRI are important.8 The tumors usually show homogeneous density compared with gray matter in non-contrast CT, while they are well enhanced in contrast enhanced CT and MRI.6 Also, they show the iso to hypo signal intensity on T2-weighted MRI that is useful finding to make a diagnosis of SFTs.8 It is very important to differentiate SFTs through the radiologic images from other spindle-cell neoplasms including angiofibroma, fibrous histiocytoma, schwannoma and fibromatosis, since punch biopsy of the SFTs might be very dangerous due to their rich vascularity.9

Histologically, the tumor is composed of spindle cells arranged without typical patterns in collagenous background.1011 In the aspect of immunohistochemical staining, the majority of SFTs are positive for CD34, CD99, and Bcl-2 protein while they are negative for S-100 protein (neural marker), epithelial membrane antigen, and keratin.1213 Even though CD34, a type of transmembrane phosphoglycoprotein, is not entirely specific for SFTs, the expression of CD34

Fig. 3. (A) Preoperative and (B) postoperative paranasal CT image finding (coronal plane) of the patient with paranasal SFT. The tumor was successfully excised by transnasal endoscopic approach.

Fig. 4. Immunohistochemical stainings of the paranasal sinus tumor were performed to diagnose solitary fibrous tumor: (A) positive for CD34, (B) negative for S100 and (C) SMA (100 × magnification).
in conjunction with the lack of other markers is definitely helpful to find SFTs.12,13 In our case, immunohistochemical assessment was positive for CD34 but negative for S-100 and smooth muscle actin. Additionally, there was only 1 mitosis per 10 HPFs in our specimen. For the diagnosis of the malignant SFT, more than 4 mitoses per 10 HPFs should be identified by pathologic exam.14

The treatment of choice of benign SFTs is complete surgical resection, even though radiotherapy and chemotherapy have been also adapted.15 A number of surgical methods such as lateral rhinotomy and maxillectomy have been reported, but transnasal endoscopic resection is widely performed these days to treat paranasal SFTs.14 It might be meaningful that our case of paranasal SFT, not only relatively large (7 × 7.5 cm in CT and MRI findings) but also destructing frontal sinus and orbit, was successfully treated by transnasal endoscopic resection without external approaches.

Therefore, transnasal endoscopic approach can be useful to completely resect large paranasal SFTs without additional external incision. However, cautious preoperative-assessment with radiologic images should be performed for evaluating the vascularity and location of the tumor.

REFERENCES

1) Klemperer P, Rabin C. Primary neoplasm of the pleura: a report of five cases. Archives of Pathology 1931;11:385-412.
2) Stout AP, Himadi GM. Solitary (localized) mesothelioma of the pleura. Ann Surg 1951;133:50-64.
3) Dunfee BL, Sakai O, Spiegel JH, Pistey R. Solitary fibrous tumor of the buccal space. AJNR Am J Neuroradiol 2005;26:2114-6.
4) Nielsen GP, O’Connell JX, Dickersin GR, Rosenberg AE. Solitary fibrous tumor of soft tissue: a report of 15 cases, including 5 malignant examples with light microscopic, immunohistochemical, and ultrastructural data. Mod Pathol 1997;10:1028-37.
5) Takasaki K, Watanabe T, Hayashi T, Kinoshita N, Kumagami H, Takahashi H. Solitary fibrous tumor arising from the sphenoid sinus. Case Rep Med 2009;2009:316042.
6) Mathew GA, Ashish G, Tyagi AK, Chandrashekharan R, Paul RR. Solitary Fibrous Tumor of Nasal Cavity: a case report. Iran J Otorhinolaryngol 2015;27:307-12.
7) Zeitler DM, Kanowitz SJ, Har-El G. Malignant solitary fibrous tumor of the nasal cavity. Skull Base 2007;17:239-46.
8) Zielinska-Kazmierska B, Grodecka J, Szyszkowski A. Solitary fibrous tumor of the nasal cavity and paranasal sinuses: a case report. J Oral Biol Craniofac Res 2015;5:112-6.
9) Ahn TJ, Bae WY, Kim SJ, Kang MJ. Solitary Fibrous Tumor in Nasal Cavity: Surgical Treatment after Angiographic Embolization. Korean J Otorhinolaryngol-Head Neck Surg 2009;52:258-61.
10) Kim JH, Yim JW, Kim HK, Lee JG. A Case of Solitary Fibrous Tumor of the Nasal Cavity. J Rhinol 2003;10:60-3.
11) Kodama S, Fujita K, Suzuki M. Solitary fibrous tumor in the maxillary sinus treated by endoscopic medial maxillectomy. Auris Nasus Larynx 2009;36:100-3.
12) Hasegawa T, Matsuno Y, Shimoda T, Hasegawa F, Sano T, Hirohashi S. Extrathoracic solitary fibrous tumors: their histological variability and potentially aggressive behavior. Hum Pathol 1999;30:1464-73.
13) Kohmura T, Nakashima T, Hasegawa Y, Matsuura H. Solitary fibrous tumor of the paranasal sinuses. Eur Arch Otorhinolaryngol 1999;256:233-6.
14) Thompson LDR, Lau SK. Sinonasal Tract Solitary Fibrous Tumor: A Clinico-pathologic Study of Six Cases with a Comprehensive Review of the Literature. Head Neck Pathol 2018;12:471-80.
15) Goodlad JR, Fletcher CD. Solitary fibrous tumour arising at unusual sites: analysis of a series. Histopathology 1991;19:515-22.