Supplemental Digital Content

Supplemental digital content has been provided by the authors to give readers additional information about their work.

Supplement to: Remdesivir for Severe COVID-19 versus a Cohort Receiving Standard of Care

Susan A. Olender, Division of Infectious Diseases, Department of Internal Medicine, Columbia University Irving Medical Center, New York, USA;
Katherine K. Perez, Houston Methodist, Houston, TX, USA;
Alan S. Go, Division of Research, Kaiser Permanente Northern California, Oakland, CA, USA;
Bindu Balani, Hackensack University Medical Center, Hackensack, USA;
Eboni G. Price-Haywood, Ochsner Health System and Ochsner Clinical School, New Orleans, USA;
Nirav S. Shah, MD, NorthShore University HealthSystem, Evanston, USA;
Su Wang, Saint Barnabas Medical Center, RWJBarnabas Medical Group, Livingston, USA;
Theresa L. Walunas, Northwestern University Feinberg School of Medicine, Chicago, USA;
Shobha Swaminathan, Rutgers New Jersey Medical School, Newark, USA;
Jihad Slim, Prime Healthcare Services, St Michael’s LLC, Newark, USA;
BumSik Chin, National Medical Center, Seoul, South Korea;
Stéphane De Wit, NEAT ID Foundation, CHU Saint Pierre, Brussels, Belgium;
Shamim M. Ali, NEAT ID Foundation, Chelsea and Westminster Hospital, London, UK; and School of Medicine, Moi University, Eldoret, Kenya;
Alex Soriano Viladomiu, Hospital Clinic de Barcelona, IDIBAPS, University of Barcelona, Barcelona, Spain;
Philip Robinson, Hoag Memorial Hospital Presbyterian, Newport Beach, USA;
Robert L. Gottlieb, Baylor University Medical Center Dallas, Dallas, USA; and Baylor Scott and White Health, Dallas, USA;

Tak Yin Owen Tsang, Princess Margaret Hospital, Kwai Chung, Hong Kong;

I-Heng Lee, Gilead Sciences, Foster City, USA;

Hao Hu, Gilead Sciences, Causeway Bay, Hong Kong;

Richard H. Haubrich, Gilead Sciences, Foster City, USA;

Anand P. Chokkalingam, Gilead Sciences, Foster City, USA;

Lanjia Lin, Gilead Sciences, Foster City, USA;

Lijie Zhong, Gilead Sciences, Foster City, USA;

B. Nebiyou Bekele, Gilead Sciences, Foster City, USA;

Robertino Mera-Giler, Gilead Sciences, Foster City, USA;

Chloé Phulpin, Gilead Sciences, Stockley Park, Uxbridge, UK;

Holly Edgar, Gilead Sciences, Stockley Park, Uxbridge, UK;

Joel Gallant, Gilead Sciences, Foster City, USA;

Helena Diaz-Cuervo, Gilead Sciences, Madrid, Spain;

Lindsey E. Smith, Gilead Sciences, Foster City, USA;

Anu O. Osinusi, Gilead Sciences, Foster City, USA;

Diana M. Brainard, Gilead Sciences, Foster City, USA;

Jose I Bernardino, Hospital La Paz, IdiPAZ, Madrid, Spain

For the GS-US-540-5773 and GS-US-540-5807 Investigators
Contents

Supplemental Digital Content 1. List of investigators... 4
 Investigators from GS-US-540-5773 ... 4
 Investigators from GS-US-540-5807 .. 8
Supplemental Digital Content 2. Additional methods of the GS-US-540-5807 study 11
 Primary endpoint (use of the ordinal scale) .. 11
 Secondary endpoints ... 11
 Data collection, missing data, abstraction, and management 11
Supplemental Digital Content 3. Description of full analysis set 14
Supplemental Digital Content 4. Exclusion of Italian patients .. 15
Supplemental Digital Content 5. Distribution balance for propensity score without
 (Figure A) and with hydroxychloroquine (Figure B) ... 16
Supplemental Digital Content 6. Summary of potential medications for COVID-19
 treatment.. 18
Supplemental Digital Content 7. Inverse probability of treatment weighting (IPTW)
 method and weighted sample size .. 19
Supplemental Digital Content 8. Distribution of patients by country and mortality
 outcome... 21
References.. 22
Supplemental Digital Content 1. List of investigators

Investigators from GS-US-540-5773

PI Name	Institution Name	City	Country	
Spinner, Christoph	University Hospital rechts der Isar, Technical University of Munich	Munich	Germany	
Hui, David Shu Cheong	Prince of Wales Hospital	Hong Kong	Hong Kong	
Tsang, Owen Tak Yin	Princess Margaret Hospital	Hong Kong	Hong Kong	
Castelli, Francesco	ASST Spedali Civili di Brescia	Brescia	Italy	
Pan, Angelo	Azienda Sanitaria Cremona	Cremona	Italy	
Galli, Massimo	ASST Fatebenefratelli Sacco, Dipartimento di Scienze Biomediche e Cliniche "L. Sacco"	Milan	Italy	
Cattelan, Anna Maria	Azienda Ospedaliera di Padova Dipartimento di Medicina	Padova	Italy	
Missale, Gabriele	Azienda Ospedaliero-Universitaria di Parma	Parma	Italy	
Bruno, Raffaele	Fondazione IRCCS Policlinico "San Matteo"	Pavia	Italy	
Lye, David Chien Boon	National Centre for Infectious Diseases	Singapore	Singapore	
Name	Affiliation	City	Country	
-----------------------------	---	---------------	-------------	
Chai, Louis Yi Ann	National University Health System	Singapore	Singapore	
Kalimuddin, Shirin	Singapore General Hospital	Singapore	Singapore	
Chin, BumSik	National Medical Center	Seoul	South Korea	
Ahn, MiYoung	Seoul Medical Center	Seoul	South Korea	
Goikoetxea, Ane Josune	Hospital Universitario Cruces. Unidad enfermedades infecciosas	Barakaldo	Spain	
Soriano Viladomiu, Alex	Hospital Clinic de Barcelona	Barcelona	Spain	
Arribas, José Ramón	Hospital La Paz	Madrid	Spain	
Chen, Yao-Shen	Kaohsiung Veterans General Hospital	Kaohsiung City	Taiwan	
Marty, Francisco	Brigham and Women’s Hospital	Boston	USA	
Stephenson, Kathryn E.	Beth Israel Deaconess Medical Center	Boston	USA	
Mullane, Kathleen	University of Chicago	Chicago	USA	
Hojat, Leila	UH Clinical Research Center/University Hospital Case Western	Cleveland	USA	
Gottlieb, Robert L.	Baylor University Medical Center Dallas and Baylor Scott and White Health	Dallas	USA	
Nee, Paul	Danbury Hospital	Danbury	USA	
Diaz, George	Providence Regional Medical Center Everett	Everett	USA	
Name	Hospital & Location	City	Country	
-----------------------	---	----------	---------	
Balani, Bindu	Hackensack University Medical Center	Hackensack	USA	
Nahass, Ronald	Robert Wood Johnson University Hospital Somerset	Hillsborough	USA	
Grimes, Kevin	Houston Methodist Hospital	Houston	USA	
Robinson, Philip	Hoag Hospital Irvine	Irvine	USA	
Bagheri, Farshad	Jamaica Hospital Medical Center	Jamaica	USA	
Zuckerman, Richard	Dartmouth-Hitchcock Medical Center	Lebanon	USA	
Towner, William J.	Kaiser Permanente Los Angeles Medical Center	Los Angeles	USA	
Marks, Kristen	NewYork Presbyterian Hospital/Weill Cornell Medical Center	New York	USA	
Brau, Norbert	James J Peters VA Medical Center	New York	USA	
Robinson, Philip	Hoag Memorial Hospital Presbyterian	Newport Beach	USA	
Criner, Gerard	Temple University Hospital	Philadelphia	USA	
Pusch, Tobias	Providence St. Vincent Medical Center	Portland	USA	
Tashima, Karen	The Miriam Hospital	Rhode Island	USA	
Sanyal, Arun	VCU Health Medical Center	Richmond	USA	
Rizza, Stacey	Mayo Clinic	Rochester	USA	
Name	Institution	City	Country	
-----------------------	--	------------	---------	
Hammond, Teresa	Providence Saint John's Health Center	Santa Monica	USA	
Malhotra, Uma	Benaroya Research Institute at Virginia Mason	Seattle	USA	
Goldman, Jason	Swedish Medical Center First Hill	Seattle	USA	
Subramanian, Aruna	Stanford Hospital	Stanford	USA	
Malhotra, Vinay	MultiCare Tacoma General Hospital	Tacoma	USA	
PI Name	Institution Name	City	Country	
-------------------------	---	-----------	-------------	
Andry, Leslie	NEAT ID, CHU Saint Pierre	Brussels	Belgium	
De wit, Stéphane	NEAT ID, CHU Saint Pierre	Brussels	Belgium	
Necsoi, Coca	NEAT ID, CHU Saint Pierre	Brussels	Belgium	
Steiner, Birthe	NEAT ID, CHU Saint Pierre	Brussels	Belgium	
Van Hauwermeiren, Celine	NEAT ID, CHU Saint Pierre	Brussels	Belgium	
Vandenheede, Laure	NEAT ID, CHU Saint Pierre	Brussels	Belgium	
Lye, David Chien Boon	National Centre for Infectious Diseases	Singapore	Singapore	
Chin, BumSik	National Medical Center	Seoul	South Korea	
Ali, Shamim M.	NEAT ID, Chelsea and Westminster Hospital	London	UK	
Boffito, Marta	NEAT ID, Chelsea and Westminster Hospital	London	UK	
Gidwani, Shweta	NEAT ID, Chelsea and Westminster Hospital	London	UK	
Pozniak, Anton	NEAT ID, Chelsea and Westminster Hospital	London	UK	
Bakhai, Ameer
NEAT ID, Royal Free Hospital
London, UK

Walunas, Theresa
Northwestern University Feinberg School of Medicine
Chicago, USA

Brar, Indra
Henry Ford Hospital
Detroit, USA

Shah, Nirav
NorthShore University Healthsystem
Evanston, USA

Wang, Su
Saint Barnabas Medical Center, RWJBarnabas Medical Group
Livingston, USA

Balani, Bindu
Hackensack University Medical Center
Hackensack, USA

Perez, Katherine
Houston Methodist
Houston, USA

Bourgi, Kassem
Indiana University
Indianapolis, USA

Slim, Jihad
Prime Healthcare Services – St Michael’s LLC d/b/a Saint Michael’s Medical Center
Newark, USA

Swaminathan, Shobha
Rutgers New Jersey Medical School
Newark, USA

Price-Haywood, Eboni
Ochsner Health System
New Orleans, USA

Burton, Jeffrey
Ochsner Health System
New Orleans, USA

Olender, Susan
Columbia University Medical Center
New York, USA
Name	Institution	City	Country
Go, Alan	Kaiser Permanente Northern California	Oakland	USA
Wortmann, Glenn	MedStar Washington Hospital Center	Washington	USA
Supplemental Digital Content 2. Additional methods of the GS-US-540-5807 study

Primary endpoint (use of the ordinal scale)

The ordinal scale methodology was selected for the primary endpoint as it prioritizes patient recovery and survival outcomes, and is recommended by the National Institute for Health and Care Excellence Guide for COVID-19 evidence collection [1] and the WHO R&D Blueprint expert group [2]. The scale was a modified version of that used by Cao et al. in the study of lopinavir–ritonavir in severe COVID-19 [3], and that proposed by the draft WHO R&D Blueprint COVID-19 Therapeutic Trial Synopsis [2]. Variations of the ordinal scale have been used previously in influenza trials [4, 5] and are being implemented into other ongoing COVID-19 studies (e.g. NCT04315948, NCT04280705, and NCT04332991).

Secondary endpoints

The secondary endpoints of GS-US-540-5807 are: proportion of oxygen saturation >94% on room air on day 14; proportion of negative SARS-CoV-2 polymerase chain reaction test on day 14; proportion of subjects on room air on day 14; proportion of clinical improvement from day 1 on a 7-point ordinal scale on day 14; proportion of ≥1-point improvement in clinical status on day 14; proportion of the use of mechanical ventilation/ECMO (extracorporeal membrane oxygenation); and duration of hospitalization (days).

Data collection, missing data, abstraction, and management

Data collection

On days 1, 7 (±1) and 14 (±2) and at discharge, data on vital signs, radiographic findings, laboratory testing, oxygenation status, clinical status on the 7-point ordinal scale, and COVID-19 treatments were collected. On day 28, oxygenation and imaging were collected (where available). Date of death and presumed cause of death were recorded up to day 28.
	Day 1	Day 7 (±1) and 14 (±2) or last observation
Medical history	X	
Pregnancy test	X	
Vital signs (SpO\textsubscript{2}, temperature)	X (plus body weight and height)	X
Laboratory testing (includes white blood cell count, creatinine, total bilirubin, AST, ALT, SARS-CoV-2 testing)	X (plus radiographic findings)	X
Oxygenation (includes oxygen supplementation)	X	X
Ordinal scale	X	X
Treatments for CovidCOVID-19	X	X

ALT, alanine transferase; AST, aspartate transferase; COVID-19, coronavirus disease 2019; SARS-CoV-2, severe acute respiratory syndrome coronavirus 2

Outliers

Outliers were identified during the data management and data analysis process, but no sensitivity analyses were done to evaluate the impact of outliers on efficacy or safety outcomes.

Data abstraction

Pseudonymised data were retrospectively abstracted from electronic and non-electronic medical records and entered into a secure electronic care report form or transferred via secure server.
Data management

Electronic Case Report Forms (eCRFs) were developed by Gilead Clinical Data Management and Electronic Data Capture (EDC) Programmers using the Medidata Rave EDC System to capture data generated at the sites. The eCRFs were reviewed by study team members and validated by Gilead Clinical Data Management and EDC Programming prior to use. CRF Completion Guidelines containing data entry and data handling instructions were provided to each site. An alternative data collection method was utilized for some sites which entailed transferring data from sites’ clinical data records (electronic medical record systems) to Gilead via a secure server. A Data Transfer Guide was provided to the sites detailing the data elements to be included in the transfer and instructions for securely transferring the data. Data validation checks and listings were developed and reviewed by Gilead, focusing on key data elements impacting the study endpoints defined in the protocol to ensure data quality. Any data discrepancies were queried, tracked, and documented until they were resolved.
Supplemental Digital Content 3. Description of full analysis set

The primary analysis set for the efficacy comparison of the remdesivir-cohort compared with standard-of-care treated patients (non-remdesivir-cohort) is the full analysis set (FAS). The FAS consists of: ex-Italy patients in the FAS from GS-US-540-5773 with non-missing day 1 and day 14 clinical status (7-point ordinal scale) after applying imputation rules; and patients in the All Enrolled Analysis Set from Study GS-US-540-5807 with non-missing day 1 and day 14 clinical status (7-point ordinal scale) after applying the analysis visit window and imputation rules, with a stabilized weight after the inverse probability treatment weighting (IPTW) was applied.

Patients in the FAS from GS-US-540-5773 are defined as those who are randomized into Part A of the study (first 400 patients) and have received at least 1 dose of remdesivir. The All Enrolled Analysis Set for Study GS-US-540-5807 includes all patients from Study GS-US-540-5807 who meet the study inclusion criteria and the exclusion criteria listed below that match the exclusion criteria from Study GS-US-540-5773. If data for an exclusion criterion listed below is missing or unknown for a patient, this patient will be considered not meeting that exclusion criterion:

- On venous-arterial ECMO at day 1 visit
- ALT or AST greater than 5 x upper limit of normal at day 1 visit
- Creatinine clearance less than 50 mL/min using the Cockcroft-Gault formula at day 1 visit
- Pregnancy
- Breastfeeding
Supplemental Digital Content 4. Exclusion of Italian patients

As of April 10, 2020 (the interim analysis data cut-off), data from Study GS-US-540-5807 were mainly from US sites and did not include any data from patients in Italy. At the time of the cut-off, the epidemiological data coming from Italy suggested a considerably higher mortality rate than that seen in other countries [6], possibly due to an overwhelmed healthcare system or for another unknown reason. Additionally, data from the remdesivir compassionate use cohort suggested an unexplained higher mortality from Italian than non-Italian sites (Gilead data on file). Thus, there was a concern at the time of data cut-off that the inclusion of Italian patients from GS-US-540-5773 in the remdesivir-cohort, in the absence of Italian patients in the non-remdesivir-cohort, could potentially have introduced a severe bias to the analysis, which the inverse probability treatment weighting would not be able to balance. Therefore, an *a priori* decision was made to exclude patients from Italy from the interim analysis. However, it is planned to include Italian patients from both studies in a future analysis, after Italian patients have been recruited into GS-US-540-5807.
Supplemental Digital Content 5. Distribution balance for propensity score without (Figure A) and with hydroxychloroquine (Figure B)

Balance diagnostic plot illustrating the standardized difference between patients in Studies 5807 and 5773 (x-axis) for each variable included in IPTW analysis (y-axis). The plot demonstrates balance between cohorts before and after weighting.

Based on the propensity score calculated for each subject, subjects with their propensity score outside of the common support region (overlap in the range of propensity scores across the remdesivir-and non-remdesivir-cohorts) were trimmed and not included in the analysis. After the stabilized IPTW (using propensity score) was applied, all the baseline factors included in the propensity score model were well balanced with the absolute standardized difference <0.1 except for chronic obstructive pulmonary disease (absolute standardized difference=0.2, Figure A). For the sensitivity analysis, that included hydroxychloroquine in the propensity score, the standardized difference for hydroxychloroquine was improved, but other important factors were further imbalanced (Figure B).

Figure A: Balanced diagnostic plot of baseline factors before and after IPTW - without hydroxychloroquine in the propensity score
Figure B: Balanced diagnostic plot of baseline factors before and after IPTW - with hydroxychloroquine in the propensity score.
Supplemental Digital Content 6. Summary of potential medications for COVID-19 treatment

Group	Medication
Azithromycin	Azithromycin
	Azithromycin dihydrate
Biologic	Interferon
	Interferon beta
	Investigational drug
	Plasma
	Sarilumab
	Siltuximab
	Tocilizumab
HIV protease inhibitor	Atazanavir sulfate
	Cobicistat
	Cobicistat; darunavir
	Cobicistat; darunavir ethanolate
	Cobicistat; elvitegravir; emtricitabine; tenofovir
	Cobicistat; elvitegravir; emtricitabine; tenofovir alafenamide fumarate
	Darunavir
	Lopinavir; ritonavir
Hydroxychloroquine group	Aminoquinolines
	Chloroquine
	Hydroxychloroquine
	Hydroxychloroquine sulfate
Ribavirin	Ribavirin
Supplemental Digital Content 7. Inverse probability of treatment weighting (IPTW) method and weighted sample size

To balance the baseline characteristics of the remdesivir and non-remdesivir cohorts and to minimise losses in sample size and thus statistical power, the inverse probability of treatment weighting (IPTW) method was applied to form a synthetic sample in which the distribution of baseline characteristics was independent of treatment. The IPTW used to estimate the average treatment effect (ATE) for the i^{th} patient was calculated as follows:

$$w_i = \frac{T_i}{PS_i} + \frac{1 - T_i}{1 - PS_i}$$

where T_i is the treatment indicator for the i^{th} subject which is 1 for subjects from the remdesivir cohort, 0 for subjects from the non-remdesivir cohort, PS_i is the propensity score for the i^{th} subject, the probability that the i^{th} subject is assigned to the remdesivir cohort. However, one concern with IPTW is that if a subject from the treatment group has a propensity score close to 0 or a subject from the control group has a propensity score close to 1, the IPTW ATE weight can be large, which may lead to the estimate of treatment effect with a large variance. As a result, in order to reduce the potential large variance, stabilized IPTW ATE weight for the i^{th} subject was used in the analysis, which is defined as:

$$w_{i,\text{stabilized}} = \frac{T_i}{PS_i} \cdot p_t + \frac{1 - T_i}{1 - PS_i} \cdot (1 - p_t)$$

where p_t is the proportion of subjects in the treatment group, which is equal to the number of subjects in the treatment group divided by the sum of the number of subjects in the treatment and control groups.

After applying the IPTW method, the weighted sample size, as the sum of the weights, was expected to modestly change from the original sample size: some of the subjects’ weights were smaller than 1, e.g. the first 10 subjects in the example table below; whereas some of the subjects’ weights were larger than 1, e.g. last 10 subjects in the table below. In this example, the pre-weighted sample size was 20 patients from each study. After weighting, the sample size for study 5807 is 19.3 and for study 5773 is 20.05.

Patient Number*	Study 5773 patient weight	Study 5807 patient weight
1	0.83	0.79
2	0.83	0.79
3	0.84	0.79
4	0.84	0.79
5	0.84	0.79
6	0.85	0.79
	0.86	0.79
----	------	------
8	0.86	0.79
9	0.87	0.79
10	0.87	0.79
11	1.15	1.13
12	1.15	1.13
13	1.15	1.13
14	1.15	1.13
15	1.15	1.13
16	1.15	1.13
17	1.16	1.17
18	1.16	1.17
19	1.16	1.17
20	1.16	1.17

Total patient number	Patient number after weighting	Patient number after weighting
20	20.05	19.31

Patient numbers are for example purposes and do not represent any actual patient identification numbers.
Supplemental Digital Content 8. Distribution of patients by country and mortality outcome

In study 5807, there were no patients enrolled in Germany, Spain, Hongkong, and Taiwan and a higher proportion of patients from the US versus Study 5773. Conversely, in Study 5773, there were no patients from the UK. Although there are differences in recovery rate on day 14 between countries, the overall recovery rate was mainly driven by the US population, as the majority of patients were enrolled in the US for both cohorts. After weighting, 286/312 (91.7%) subjects for study 5773 and 745/818 (91.1%) for study 5807 were from the US.

Country	Remdesivir cohort (study 5773)	Non-remdesivir cohort (study 5807)		
	Total weighted sample size	Weighted recovery rate (%)	Total weighted sample size	Weighted recovery rate (%)
USA	286	75	745	60
Germany	1	100	0	NA
Spain	15	61	0	NA
UK	0	NA	58	52
Hong Kong	2	76	0	NA
Korea	5	49	7	0
Singapore	3	76	8	71
Taiwan	1	100	0	NA
Total	**312**	**74**	**818**	**59**

Numbers and percentages may not add up due to rounding
References

1. NICE. NICE scientific advice guide for COVID-19 evidence collection. Available at:
 https://www.nice.org.uk/Media/Default/About/what-we-do/Scientific-advice/COVID-19-scientific-
 advice-for-evidence-collection.pdf. Accessed 06 May 2020.

2. WHO. WHO R&D blueprint COVID-19 therapeutic trial synopsis. Available at:
 https://www.who.int/blueprint/priority-diseases/key-action/COVID-19_Treatment_Trial_Design_Master_Protocol_synopsis_Final_18022020.pdf. Accessed 6 May 2020.

3. Cao B, Wang Y, Wen D, et al. A trial of lopinavir-ritonavir in adults hospitalized with severe Covid-19. N Engl J Med 2020; 382: 1787–1799.

4. Wang Y, Fan G, Salam A, et al. Comparative effectiveness of combined favipiravir and oseltamivir therapy versus oseltamivir monotherapy in critically ill patients with influenza virus infection. J Infect Dis 2020; 221(10): 1688–1698.

5. Wang Y, Fan G, Horby P, et al. Comparative outcomes of adults hospitalized with seasonal influenza A or B virus infection: Application of the 7-category ordinal scale. Open Forum Infect Dis 2019; 6(3): ofz053.

6. Johns Hopkins University and Medicine. Coronavirus resource centre mortality analyses. Available at:
 https://coronavirus.jhu.edu/data/mortality. Accessed 06 May 2020.