Structure biology of selective autophagy receptors

Byeong-Won Kim, Do Hoon Kwon & Hyun Kyu Song*
Department of Life Sciences, Korea University, Seoul 02841, Korea

Autophagy is a process tightly regulated by various autophagy-related proteins. It is generally classified into non-selective and selective autophagy. Whereas non-selective autophagy is triggered when the cell is under starvation, selective autophagy is involved in eliminating dysfunctional organelles, misfolded and/or ubiquitylated proteins, and intracellular pathogens. These components are recognized by autophagy receptors and delivered to phagophores. Several selective autophagy receptors have been identified and characterized. They usually have some common domains, such as LC3-interacting-region (LIR) motif, a specific cargo interacting (ubiquitin-dependent or ubiquitin-independent) domain. Recently, structural data of these autophagy receptors has been described, which provides an insight of their function in the selective autophagic process. In this review, we summarize the most up-to-date findings about the structure-function of autophagy receptors that regulates selective autophagy. [BMB Reports 2016; 49(2): 73-80]

INTRODUCTION

The term ‘autophagy’ comes from the Greek words ‘auto’ and ‘phagy’ which means ‘self’ and ‘eating’, respectively. The name was coined by Dr. Christian de Duve for the first time in 1963 (1, 2). For several decades, there were few publications on autophagy. However, the identification of autophagy-related genes (atg) in yeast by Dr. Oshumi’s group in the late 1990s invoked an interest in this field (3). The core machinery involved in the major steps of autophagy, such as autophagy initiation, autophagosome elongation and maturation, and lysosomal fusion, have been extensively studied for the last 10 years (2, 4-16). Initially, autophagy was thought to be the non-selective and bulk degradation process, which is a main pathway induced in response to starvation. However, it is obvious that the elimination of pathogen or starvation?

Keywords: Autophagy, LIR motif, Receptor, Selective autophagy, Ubiquitin binding domain

*Corresponding author. Tel: +82-2-3290-3457; Fax: +82-2-3290-3628; E-mail: hksong@korea.ac.kr

http://dx.doi.org/10.5483/BMBRep.2016.49.2.265

Received 18 December 2015

Copyright © 2016 by the The Korean Society for Biochemistry and Molecular Biology. This is an open-access article distributed under the terms of the Creative Commons Attribution NonCommercial License (http://creativecommons.org/licenses/by-nc/4.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.
Structures of autophagy receptors
Byeong-Won Kim, et al.

Fig. 1. Domain structures of autophagy receptor proteins. LC3-interacting motifs (LIR) and ubiquitin binding domains (UBA, UBZ, and UBAN) are distinguished by red and green color, respectively. The other unique domains represent different colors. The following abbreviations are used for each domain: PB1, Phox and Bem1p; ZZ, ZZ-type zinc finger; LIR, LC3-interacting region; KIR, Keap1-interacting region, UBA, ubiquitin-associated; SKICH, skeletal muscle and kidney-enriched inositol phosphatase carboxyl homology; CLIR, non-canonical LIR; CC, coiled-coil; Galbi, galectin-8 binding region; UBZ, ubiquitin-binding zinc finger; UBAN, ubiquitin-binding in ABIN and NEMO; ZnF, Zn-finger; BH3, Bcl-2 homology region 3; TM, transmembrane.

Table 1. Summary of the determined structures of autophagy receptors

Name	Domain/motif	Functions	PDB IDs	References
SQSTM1	PB1	Oligomerization and binding to PKCζ	2KKC, 4UF8, 4UF9, 2KTR, 4MJ5	(82-84, 96)
	ZZ	Interaction with RIPK1 and R-Bip	-	(86)
	LIR	LC3 binding	2K6Q, 2ZID	(71)
	KIR	Keap1 binding	3ADE, 3WDZ	(53, 90)
	UBA	Ubiquitin binding	1Q02, 2RRU, 3B0F, 2KOB, 2KNV, 2JY7	(76, 78, 97, 98)
NBR1	LIR	Oligomerization	1WJ6, 2BKF, 2G4S	(85, 99)
	ZZ	Unknown	-	-
	UBA	Ubiquitin binding	2CP8, 2MJ5, 2MGW	(79)
NDP52	SKICH	Unknown	3VVV	(58)
	CLIR	LC3C binding	3VVW	(58)
	Coiled-Coil	Homo-dimerization	-	(60)
	Galbi	Galectin-8 binding	4GXL, 4HAN	(60, 93)
	UBZ	Ubiquitin binding	2MXP, 4XL	(59)
OPTN	Coiled-Coil	Oligomerization and binding to protein aggregates	-	(23)
	LIR	LC3 binding	2LUE, 3VTW, 3VTW	(73)
	UBA	Ubiquitin binding	-	(66)
NIX	LIR	GABARAP binding	2L04	-
	BH3	Cell death and autophagy pathway	4WAA	(28)
	TM	Membrane insertion	-	(67)

Due to a PB1 domain, NBR1 oligomerizes itself or with SQSTM1, and acts independently or cooperatively to degrade the cargos (56).

NDP52 (also known as CALCOCO2), expressed in all human tissues and cells, was originally found in nuclear promyelocytic leukemia bodies (57). It comprises an N-terminal skeletal muscle and kidney-enriched inositol phosphatase carboxyl homology (SKICH) domain, non-canonical LIR (CLIR) motif that can interact with the LC3C specifically, coiled-coil (CC) domain, galectin-8 binding region (Galbi), and ubiquitin-binding zinc finger (UBZ) domain (58-60). It is especially involved in xenophagy for clearing pathogens such as Salmonella, Listeria, Shigella, and Mycobacterium (42, 61, 62).

OPTN (optineurin) is the most recently identified autophagy receptor. It has LIR motif, MYO6 binding region, CC, ubiquitin-binding in ABIN and NEMO (UBAN) domain, and Zn-finger (ZnF) domain (23, 63-66). Interestingly, many other receptors have common LIR motif, but OPTN has a unique serine residue at the upstream LIR sequence, which is modified to phosphoserine by Ser/Thr TANK-binding kinase 1 (TBK1) (43).

NIX (also known as BNIP3L) protein, one of BH3-only members of the Bcl-2 family, has LIR motif, BH3 domain, and a transmembrane region (67, 68). As the sole mitophagy receptor, it has only an LIR motif, but no ubiquitin interacting domain (Fig. 1). Table 1 summarizes the function and structural information of each domain in different autophagy receptors.
Structures of autophagy receptors
Byeong-Won Kim, et al.

75

http://bmbreports.org

Fig. 2. Structures of LC3-LIR complex. (A) LC3B-SQSTM1-LIR peptide complex [PDB ID: 2ZJD], (B) NIX-LIR fused LC3B [4WAA], (C) GABARAPL1-NBR1-LIR peptide complex [2L8J], (D) LC3C-NDP52 SKICH-LIR region complex [3VVW], and (E) LC3B/OPTN-phospho-LIR peptide complex [2LUE]. Surface of LC3 or GABA-RAP protein is shown in dark gray color, and the ribbon of LIR motifs in green. The side chain of LC3 interacting residues is also shown in stick model, colored green, red, blue, and orange for carbon, oxygen, nitrogen, and phosphorous, respectively.

STRUCTURAL BASIS FOR THE RECOGNITION OF LIR-MOTIF

There are 6 mammalian homologs of Atg8 comprising the microtubule-associated protein (MAP) light chain 3 (LC3) and γ-aminobutyric acid (GABA)-receptor-associated proteins (GABARAP). Therefore, mammalian LIR motif is similar to AIM (Atg8-interacting motif) in yeast (69). These proteins are involved in the elongation and maturation of autophagosome, respectively (70). All autophagy receptors possess the LIR motif for interacting with LC3 (Fig. 1 and Table 1). A general definition of the LIR sequence is Ω-x-x-Ψ, where Ω and Ψ are aromatic and hydrophobic residues respectively, and the two residues in between are any other amino acids. Preferentially, one or more acidic residues are needed before the LIR sequence (69).

Thus far, detailed structural information of several LC3-LIR complexes has been reported. The first complex structure in mammals is LC3B-SQSTM1 LIR peptide [PDB ID: 2ZJD] (Fig. 2A) (71). This complex shows how canonical LIR motif (W-x-x-L) binds to LC3. The N-terminal aromatic tryptophan residue (Ω) of LIR sequence plugs into the hydrophobic pockets and the downstream hydrophobic leucine residue (Ψ) binds to another hydrophobic pocket of LC3B. The acidic residues prior to LIR sequence bind to the basic side chains of LC3B (21, 71). Structure of NIX LIR-fused LC3B [PDB ID: 4WAA] is quite similar to that of LC3B-SQSTM1 LIR (Fig. 2B). The LIR sequence of NBR1 is ‘Y-I-I-I’. The structure of GABARAPL1-NBR1 LIR peptide [PDB ID: 2L8J] shows that all four residues in the peptide interact with GABARAPL1, and the tyrosine and isoleucine residues are in the same Ω-x-x-Ψ manner as the LC3B-SQSTM1 LIR (Fig. 2C) (72).

Deviated LIR sequences have also been identified (43, 58). The NDP52 and OPTN of xenophagy receptors, especially those related to Salmonella, have unique and non-canonical LIR motif. The LIR sequence of NDP52 comprises the ‘I-L-V-V’ and lacks the aromatic residue. The crystal structure of LC3C-NDP52 complex [PDB ID: 3VVW] revealed that the non-canonical LIR (termed CLIR) binds to the β2 strand of LC3C, but does not reach the hydrophobic pocket that normally binds the tryptophan in a canonical LIR (Fig 2D). The Asp132 residue of NDP52 outside CLIR interacts with Lys57 of LC3C (58).

Another xenophagy receptor protein, OPTN, is activated by phosphorylation. The LIR sequence of OPTN is ‘F-V-E-I’ which is a canonical LIR motif, but the binding affinity of LC3B-OPTN LIR is only 64.5-40.6 μM, which is lower than that of LC3B-OPTN phospo-LIR (4 μM). The NMR structure of LC3B-OPTN phospo-LIR [PDB ID: 2LUE] revealed that phos- pho-Ser177 upstream of the LIR motif in OPTN tightly binds to Arg11 and Lys51 of LC3B (Fig. 2E) (43, 73). These results clearly show that the acidic residue or phosphorylation site upstream of the LIR region also needs to be taken into account.

UBIQUITIN BINDING DOMAIN OF AUTOPHAGY RECEPTORS

According to recent papers, modification of targets with ubiquitin relates not only to proteasome degradation systems, but also degradation signals in selective autophagy (19, 74). When invaded pathogens in cytosol are decorated by a poly-ubiquitin, like K48- or K63-linked chain, they are recognized by
Structures of autophagy receptors
Byeong-Won Kim, et al.

The solution and crystal structure of UBA domain of SQSTM1 were determined in 2003 and 2011, respectively (Fig. 3A) (76, 77). Although the complex structure between SQSTM1 UBA and ubiquitin is still unknown, conformational changes such as α3 helix extension and side chain flipping at Gln434 and Tyr435 upon ubiquitin binding are revealed through NMR titration (77). Interestingly, SQSTM1 UBA domain prefers to bind K48- or K63-linked di-ubiquitin rather than mono-ubiquitin (78). The structure of NBR1 UBA domain is very similar to that of UBA domain of SQSTM1 (Fig. 3B). Although NBR1 UBA domain also consists of three helices, the main difference is in the position of helix-3, which encloses a larger angle with helix-2 (16° difference) and is extended by approximately one turn (4 residues) in NBR1 as compared with SQSTM1 (79). The alanine mutation of Phe929 and Leu954 could completely abolish ubiquitin interaction. Substitution of Glu926 for alanine decreases the affinity to ubiquitin about 3-fold, thereby highlighting the contribution of the electrostatic interaction with ubiquitin. The overall structures of UBA domain of SQSTM1-Ub and NBR1-Ub complex resemble the well-known canonical UBA domain of DSK2 and ubiquitin complex, in which the UBA helices adopt a similar geometry, and interfacial residues are involved in forming similar hydrophobic contacts (80).

The structures of NDP52 UBZ domain with or without ubiquitin [PDB IDs: 2MXP and 4XKL] have recently been determined (Fig. 3C) (59). The UBZ domain has two zinc-finger domains, a dynamic unconventional zinc finger (ZF1) and a canonical C2H2-type zinc finger (ZF2). Surprisingly, only one of two zinc-fingers, ZF2, can interact with 3 types of poly-ubiquitin chains (K48- and K63-linked as well as M1 (methionine 1)-linked) (59).

UBIQUITIN-INDEPENDENT INTERACTION DOMAINS OF AUTOPHAGY RECEPTORS

PB1 domain is a scaffold module that interacts with each other in a front-to-back mode to arrange heterodimers or homooligomers. PB1-containing proteins display the topology of an ubiquitin-like β-grasp fold, including six-stranded β-sheets and two α-helices (Fig. 4A) (81). The folding pattern of PB1 domain of SQSTM1 is quite similar with that of other PB1-containing proteins. The p62 dimer or oligomers are formed by the electrostatic interaction of two opposite charged surface patches with conserved acidic and basic residues (Fig. 4A) (82). The PB1 (residues 1-122) domain of SQSTM1 assembles to form flexible helical polymers (83). On interacting with K63-linked octa-ubiquitin chain (but not with mono- and di-ubiquitin, or LC3), the SQSTM1 helical filament could dissociate by induced conformational changes (83, 84). The structure of the PB1 domain of NBR1 is also similar and reminiscent of those from previously characterized PB1 domains, including SQSTM1 (85).

ZZ-type zinc finger (ZZ domain, residue 122-167) is a mysterious domain in SQSTM1 (Fig. 1 and Table 1). The ZZ domain is related to NF-kB signaling and glucose regulation. This domain could associate with RIPK1. Recently, some studies reveal that the ZZ domain of SQSTM1 could link autophagy to N-end rule pathway (86, 87). However, the mechanism between SQSTM1 and N-end rule is still unclear due to lack of structural information of ZZ domain.

TRAF6 binding (TB) domain of SQSTM1 interacts with TRAF6, an E3 ubiquitin ligase that regulates mTORC1 activity by K63-ubiquitination in a SQSTM1-interaction dependent manner. Through this TB domain, SQSTM1 could function as
Structures of autophagy receptors
Byeong-Won Kim, et al.

Fig. 4. Structures of ubiquitin-independent binding domains in autophagy receptors. (A) PB1 domains of SQSTM1 (magenta) and NBR1 (yellow) are superposed. Basic side chains of Lys7, Arg21, Arg22, and Arg94 residues and acidic side chains of Asp67, Glu68, Asp69, Asp71, and Glu80 residues involved in the oligomerization are shown in stick model. (B) Complex of Keap1 (orange) and SQSTM1-KIR peptide (green). The β-propeller structure of Keap1 recognizes KIR peptide containing phosphorylated Ser351. (C) NDP52 SKICH domain (slate) [3VVV], and (D) Complex between galectin-8 (salmon) and NDP52 Galbi peptide (green) [4HAN]. N-terminal carbohydrate binding domain (N-CRD) and C-terminal carbohydrate binding domain (C-CRD) are labeled. Ribbon diagram of overall structure and stick model of bound peptides are shown.

a crucial mediator for mTORC1 activity regulation (88).

Keap1 interacting region (KIR) is the most well studied domain of SQSTM1. KEAP1-NRF2 system is a response for oxidative stress (89). Under normal conditions, KEAP1 is dimerized and tightly interacts with NRF2. However, stress conditions induce the phosphorylation of S351 in KIR by mTORC1, and this causes the dissociation of KEAP1-NRF2 complex, leading to the formation of the KEAP1-SQSTM1 complex. The phosphorylated SQSTM1 KIR is recognized by β-propeller structure of Keap1 (Fig. 4B). In comparison to the non-phosphorylated state, two additional Keap1 residues (Arg483 and Ser508) were involved in the binding interaction with phosphorylated KIR (90). This phosphorylation of Ser351 in KIR is important for the antioxidant pathway as well as SQSTM1 mediated autophagy.

The SKICH domain of NDP52, which is responsible for the interaction with AZI2/NAP1 and its crystal structure, has been determined at 1.35 Å (Fig. 4C) (58). It shares the immunoglobulin-fold, and its closest structural homolog is the human C3 complement component (42, 91). Recently, the SKICH domain is reported to interact with phosphorylated tau and this suggests that NDP52 plays a role in autophagy-mediated degradation of phosphorylated tau (92).

NDP52 also interacts with galectin-8, a sugar receptor in the region between the CC and UBZ domain (Fig. 1) (44). The galectin-8 has two homologous carbohydrate-recognition domains (N- and C-CRD) linked by a single polypeptide chain. It serves as a danger receptor because it recruits NDP52 to the ruptured Salmonella-containing vesicles by recognizing carbohydrate moiety. The complex structures of galectin-8 and NDP52 peptide (Galbi region, residues 372-380) were determined by two independent groups (60, 93). Only C-CRD of galectin-8, through an opposing site of sugar recognition, directly binds to the Galbi region of NDP52 (Fig. 4D).

CONCLUDING REMARKS

Selective autophagy has attracted a great interest for understanding the autophagic process and the subsequent cellular homeostasis. Different autophagy receptors play a critical role for cargo selection using particular domains or motifs (Table 1). For clear understanding of their selectivity, the structural data of the complex between these recognition domains and target molecules are inevitable. Although many structures of the domain of autophagy receptors are now available, structural information of some domains is still unknown (Table 1). More importantly, it is critical to have the structures of full-length protein but not a domain structure, because the cooperative action of individual domains occurs for efficient process of selective autophagy. So far, there is no structural information of full-length autophagy receptors at high resolution and it would be necessary to tackle this problem using various other techniques, especially advanced cryo-electron microscopy (94), or using combined methods such as small-angle X-ray scattering with a high resolution structure of each domain (95). These structural works in combination with cell biology, and in vivo data will provide the groundwork for understanding...
the molecular mechanism of each autophagy receptors.

ACKNOWLEDGEMENTS

We apologize to the researchers who were not referenced due to space limitations and unintentional missing. This work was supported by grants from the National Research Foundation of Korea (NRF-2011-0028168 and BRL grant: No. 2015041919).

REFERENCES

1. Klionsky DJ (2008) Autophagy revisited: a conversation with Christian de Duve. Autophagy 4, 740-743
2. Ohsumi Y (2014) Historical landmarks of autophagy research. Cell Res 24, 9-23
3. Mizushima N, Noda T, Yoshimori T et al. (1998) A protein conjugation system essential for autophagy. Nature 395, 395-396
4. Nakatogawa H, Suzuki K, Kamada Y and Ohsumi Y (2009) Dynamics and diversity in autophagy mechanisms: lessons from yeast. Nat Rev Mol Cell Biol 10, 458-467
5. Ohsumi Y (2001) Molecular dissection of autophagy: two ubiquitin-like systems. Nat Rev Mol Cell Biol 2, 211-216
6. Hong SB, Kim BW, Lee KE et al. (2011) Insights into non-canonical E1 enzyme activation from the structure of autophagic E1 Atg7 with Atg8. Nat Struct Mol Biol 18, 1323-1330
7. Suzuki H, Kaizuka T, Mizushima N and Noda NN (2015) Structure of the Atg101-Atg13 complex reveals essential roles of Atg101 in autophagy initiation. Nat Struct Mol Biol 22, 572-580
8. Fujikawa S, Suzuki SW, Yamamoto H et al. (2014) Structural basis of starvation-induced assembly of the autophagy initiation complex. Nat Struct Mol Biol 21, 513-521
9. Hong SB, Kim BW, Kim JH and Song HK (2012) Structure of the autophagic E2 enzyme Atg10. Acta Crystallogr D Biol Crystallogr 68, 1409-1417
10. Hurley JH and Schuman BA (2014) Atomatic autophagy: the structures of the cellular self-digestion. Cell 157, 300-311
11. Klionsky DJ and Schuman BA (2014) Dynamic regulation of macroautophagy by distinctive ubiquitin-like proteins. Nat Struct Mol Biol 21, 336-345
12. Kaiser SE, Mao K, Taherihosey AM et al. (2012) Noncanonical E2 recruitment by the autophagy E1 revealed by Atg7-Atg3 and Atg7-Atg10 structures. Nat Struct Mol Biol 19, 1242-1249
13. Kaiser SE, Qiu Y, Coats JE, Mao K, Klionsky DJ and Schuman BA (2013) Structures of Atg7-Atg3 and Atg7-Atg10 reveal noncanonical mechanisms of E2 recruitment by the autophagy E1. Autophagy 9, 778-780
14. Kim JH, Hong SB, Lee JK et al. (2015) Insights into autophagosome maturation revealed by the structures of ATG5 with its interacting partners. Autophagy 11, 75-87
15. Popelka H and Klionsky DJ (2015) Post-translationally-modified structures in the autophagy machinery: an integrative perspective. FEBS J 282, 3474-3488
16. Kim JH and Song HK (2015) Swapping of interaction partners with ATG5 for autophagosome maturation. BMB Rep 48, 129-130
17. Levine B, Mizushima N and Virgin HW (2011) Autophagy in immunity and inflammation. Nature 469, 323-335
18. Yang Z and Klionsky DJ (2010) Eaten alive: a history of macroautophagy. Nat Cell Biol 12, 814-822
19. Kirkin V, McEwan DG, Novak I and Dikic I (2009) A role for ubiquitin in selective autophagy. Mol Cell 34, 259-269
20. Krafft C, Peter M and Hofmann K (2010) Selective autophagy: ubiquitin-mediated recognition and beyond. Nat Cell Biol 12, 836-841
21. Pankiv S, Clausen TH, Lamark T et al. (2007) P62/SQSTM1 binds directly to Atg8/LC3 to facilitate degradation of ubiquitinated protein aggregates by autophagy. J Biol Chem 282, 24131-24145
22. Kirkin V, Lamark T, Sou YS et al. (2009) A role for NBR1 in autophagosomal degradation of ubiquitinated substrates. Mol Cell 33, 505-516
23. Korac J, Schaeffer V, Kovacevic I et al (2013) Ubiquitin-independent function of optineurin in autophagic clearance of protein aggregates. J Cell Sci 126, 580-592
24. Lu K, Psakhie S and Jentsch S (2014) Autophagic clearance of poly-Q proteins mediated by ubiquitin-Atg8 adaptors of the conserved CUET protein family. Cell 158, 549-563
25. Sarraf SA, Raman M, Guarani-Pereira V et al. (2013) Landscape of the PARKIN-dependent ubiquitylome in response to mitochondrial depolarization. Nature 496, 372-376
26. Wong YC and Holzbaul ER (2014) Optineurin is an autophagy receptor for damaged mitochondria in parkin-mediated mitophagy that is disrupted by an ALS-linked mutation. Proc Natl Acad Sci U S A 111, E4439-E4448
27. Lazaro M, Sliter DA, Kane LA et al. (2015) The ubiquitin kinase PINK1 recruits autophagy receptors to induce mitophagy. Nature 524, 309-314
28. Novak I, Kirkin V, McEwan DG et al. (2010) Nix is a selective autophagy receptor for mitochondrial clearance. EMBO Rep 11, 45-51
29. Quinsay MN, Thomas RL, Lee Y and Gustafsson AB (2010) Bnip3-mediated mitochondrial autophagy is independent of the mitochondrial permeability transition pore. Autophagy 6, 855-862
30. Kanki T, Wang K, Cao Y, Baba M and Klionsky DJ (2009) Atg32 is a mitochondrial protein that confers selectivity during mitophagy. Dev Cell 17, 98-109
31. Okamoto K, Kondo-Okamoto N and Ohsumi Y (2009) Mitochondria-anchored receptor Atg32 mediates degradation of mitochondria via selective autophagy. Dev Cell 17, 87-97
32. Hanna RA, Quinsay MN, Orego AM, Giang K, Rikka S and Gustafsson AB (2012) Microtubule-associated protein 1 light chain 3 (LC3) interacts with Bnip3 protein to selectively remove endoplasmic reticulum and mitochondria via autophagy. J Biol Chem 287, 19094-19104
33. Deosaran E, Larsen KB, Hua R et al. (2013) NBR1 acts as an autophagy receptor for peroxisomes. J Cell Sci 126, 939-952
34. Motley AM, Nuttall JM and Hettema EH (2012) Pex3-anchored Atg36 tags peroxisomes for degradation in Saccharomyces cerevisiae. EMBO J 31, 2852-2868
35. Jiang S, Wells CD and Roach PJ (2011) Starch-binding do-
main-containing protein 1 (Stbd1) and glycogen metabolism: Identification of the Atg8 family interacting motif (AIM) in Stbd1 required for interaction with GABARAPL1. Biochim Biophys Acta 1844, 1212-1221

36. Kraft C, Deplazes A, Sohmann M and Peter M (2008) Nature ribosomes are selectively degraded upon starvation by an autophagy pathway requiring the Ubp3p/Bre5p ubiquitin protease. Nat Cell Biol 10, 602-610

37. Khaminets A, Heinrich T, Mari M et al (2015) Regulation of endoplasmic reticulum turnover by selective autophagy. Nature 522, 354-358

38. Kurth I, Pamminger T, Hennings J et al (2009) Mutations in FAM134B, encoding a newly identified Golgi protein, cause severe sensory and autonomic neuropathy. Nat Genet 41, 1179-1181

39. Mochida K, Oikawa Y, Kimura Y et al (2015) Receptor-mediated selective autophagy degrades the endoplasmic reticulum and the nucleus. Nature 522, 359-362

40. Singh R, Kashik S, Wang Y et al (2009) Autophagy regulates lipid metabolism. Nature 458, 1131-1135

41. Zheng YT, Shahnazari S, Brech A, Lamark T, Johansen T and Brunell JH (2009) The adaptor protein p62/SQSTM1 targets invading bacteria to the autophagy pathway. J Immunol 183, 5909-5916

42. Thurston TL, Ryzhakov G, Broo S, von Muhlinen N and Randow F (2009) The TBK1 adaptor and autophagy receptor NDP52 restricts the proliferation of ubiquitin-coated bacteria. Nat Immunol 10, 1213-1221

43. Wild P, Farhan H, McEwan DG et al (2011) Phosphorylation of the autophagy receptor optineurin restricts Salmonella growth. Science 333, 228-233

44. Thurston TL, Wandel MP, von Muhlinen N, Foeglein A and Randow F (2012) Galectin 8 targets damaged vesicles for autophagy to defend cells against bacterial invasion. Nature 482, 414-418

45. Behrends C, Sowa ME, Gygi SP and Harper JW (2010) Network organization of the human autophagy system. Nature 466, 68-76

46. Wild P, McEwan DG and Dikic I (2014) The LC3 interactome at a glance. J Cell Sci 127, 3-9

47. Xu Z, Yang L, Xu S, Zhang Z and Cao Y (2015) The receptor binding protein p62 is a common component of cytolytic inclusions in protein aggregation diseases. Am J Pathol 160, 253-263

48. Slobodkin MR and Elazar Z (2013) The Atg8 family: multiscale protein aggregates degraded by autophagy and has a protective effect on huntingtin-induced cell death. J Cell Biol 171, 603-614

49. Moscat J, Diaz-Meco MT and Wootten MW (2007) Signal integration and diversification through the p62 scaffold protein. Trends Biochem Sci 32, 95-100

50. Kuwisto E, Salminen A and Alafuzoff I (2001) Ubiquitin-binding protein p62 is present in neuronal and glial inclusions in human tauopathies and synucleinopathies. Neuroreport 12, 2085-2090

51. Zatloukal K, Stumpnner C, Fuchsbiicher A et al (2002) p62 is a common component of cytolytic inclusions in protein aggregation diseases. Am J Pathol 160, 253-263

52. Komatsu M, Kurokawa H, Wargu S et al (2010) The selective autophagy substrate p62 activates the stress-responsive transcription factor Nrf2 through inactivation of Keap1. Nat Cell Biol 12, 213-223

53. Noda NN, Kumeta H, Nakatogawa H et al (2008) Structural basis of target recognition by Atg8/LC3 during selective autophagy. Genes Cells 13, 1211-1218

54. Campbell IG, Nicolai HM, Foulkes WdE et al (1994) A novel gene encoding a B-box protein within the BRCA1 region at 17q21.1. Hum Mol Genet 3, 589-594

55. Lamark T, Kirkin V, Dicik I and Johansen T (2009) NBR1 and p62 as cargo receptors for selective autophagy of ubiquitinated targets. Cell Cycle 8, 1986-1990

56. Korioth F, Giefers C, Maul GG and Frey J (1995) Molecular characterization of NDP52, a novel protein of the nuclear domain 10, which is redistributed upon virus infection and interferon treatment. J Cell Biol 130, 1-13

57. von Muhlinen N, Akutsu M, Ravenhill BJ et al (2012) LC3C, bound selectively by a noncanonical LIR motif in NDP52, is required for antibacterial autophagy. Mol Cell 48, 329-342

58. Xie X, Li F, Wang Y et al (2013) Molecular basis of ubiquitin recognition by the autophagy receptor CALCOCO2. Autophagy 11, 1775-1789

59. Kim BW, Hong SB, Kim JH, Kwon do H and Song HK (2013) Structural basis for recognition of autophagic receptor NDP52 by the sugar receptor galectin-8. Nat Commun 4, 1613

60. Watson RO, Manzanillo PS and Cox JS (2012) Extracellular M. tuberculosis DNA targets bacteria for autophagy by activating the host DNA-sensing pathway. Cell 150, 803-815

61. Mostowy S, Sancho-Shimizu V, Hamon MA et al (2011) p62 and NDP52 proteins target intracytosolic Shigella and Listeria to different autophagy pathways. J Biol Chem 286, 26987-26995

62. Majcher V, Goode A, James V and Layfield R (2015) Autophagy receptor defects and ALS-FTLD. Mol Cell 66, 43-52

63. Weidberg H and Elazar Z (2011) TBK1 mediates crosstalk between the innate immune response and autophagy. Sci Signal 4, pe39

64. Tumbarello DA, Wasse BJ, Arden SD, Bright NA, Kendrick-Jones J and Buss F (2012) Autophagy receptors link myosin VI to autophagosomes to mediate Tom1-dependent autophagosome maturation and fusion with the lysosome. Nat Cell Biol 14, 1024-1035

65. Heo JM, Ordureau A, Paulo JA, Rinehart J and Harper JW (2015) The PINK1-PARKIN Mitochondrial Ubiquitylation Pathway Drives a Program of OPTN/NDP52 Recruitment and NDP52 proteins target intracytosolic Shigella and Listeria to different autophagy pathways. J Biol Chem 286, 26987-26995

66. Majcher V, Goode A, James V and Layfield R (2015) Autophagy receptor defects and ALS-FTLD. Mol Cell Neurosci 66, 43-52

67. Weidberg H and Elazar Z (2011) TBK1 mediates crosstalk between the innate immune response and autophagy. Sci Signal 4, pe39

68. Tumbarello DA, Wasse BJ, Arden SD, Bright NA, Kendrick-Jones J and Buss F (2012) Autophagy receptors link myosin VI to autophagosomes to mediate Tom1-dependent autophagosome maturation and fusion with the lysosome. Nat Cell Biol 14, 1024-1035

69. Heo JM, Ordureau A, Paulo JA, Rinehart J and Harper JW (2015) The PINK1-PARKIN Mitochondrial Ubiquitylation Pathway Drives a Program of OPTN/NDP52 Recruitment and TBK1 Activation to Promote Mitophagy. Mol Cell 60, 7-20

70. Zhang J and Ney PA (2009) Role of BNI3 and NIX in cell death, autophagy, and mitophagy. Cell Death Differ 16, 939-946

71. Kanki T (2010) Nix, a receptor protein for mitophagy in mammals. Autophagy 6, 433-435

72. Noda NN, Ohsumi Y and Inagaki F (2010) Atg8-family interacting motif crucial for selective autophagy. FEBS Lett 584, 1379-1385

73. Weidberg H, Shvets E, Shpilka T, Shimron F, Shinder V and Elazar Z (2010) LC3 and GATE-16/GABARAP subfamilies of autophagy receptors. Byeong-Won Kim, et al.
are both essential yet act differently in autophagosomal biogenesis. EMBO J 29, 1792-1802
71. Ichimura Y, Kumanomidou T, Sou YS et al (2008) Structural basis for sorting mechanism of p62 in selective autophagy. J Biol Chem 283, 22847-22857
72. Rozenknop A, Rogov VV, Rogova NY et al (2011) Characterization of the interaction of GABARAPL-1 with the LIR motif of NBR1. J Mol Biol 410, 477-487
73. Rogov VV, Suzuki H, Fiskin E et al (2013) Structural basis for phosphorylation-triggered autophagic clearance of Salmonella. Biochem J 454, 459-466
74. Shaid S, Brandts CH, Serve H and Dikic I (2014) A designed arginylation targets endoplasmic reticulum chaperone BIP for autophagy through p62 binding. Nat Cell Biol 17, 917-929
75. Cha-Molstad H, Kwon YT and Kim BY (2015) Amino-terminal arginylation as a degradation signal for selective autophagy. BMB Rep 48, 487-488
76. Katsuragi Y, Ichimura Y and Komatsu M (2015) p62/SQSTM1 functions as a signaling hub and an autophagy adaptor. FEBS J 282, 4672-4678
77. Jain A, Lamark T, Sjøttem E et al (2010) p62/SQSTM1 is a target gene for transcription factor NRF2 and creates a positive feedback loop by inducing antioxidant response element-driven gene transcription. J Biol Chem 285, 22576-22591
78. Ichimura Y, Waguiri S, Sou YS et al (2013) Phosphorylation of p62 activates the Keap1-Nrf2 pathway during selective autophagy. Mol Cell 51, 618-631
79. Janssen BJ, Huizinga EG, Raaijmakers HC et al (2005) Structures of complement component C3 provide insights into the function and evolution of immunity. Nature 437, 505-511
80. Isogai S, Morimoto D, Arita K et al (2011) Crystal structure of the p62 PB1 domain, a key protein in autophagy and disease of bone. J Biol Chem 286, 31864-31874
81. Moscat J, Diaz-Meco MT, Albert A and Campuzano S (2003) Cell signaling and function organized by PB1 domains. Annu Rev Biophys 42, 415-441
82. Cha-Molstad H, Kwon YT and Kim BY (2015) Amino-terminal arginylation targets endoplasmic reticulum chaperone BIP for autophagy through p62 binding. Nat Cell Biol 17, 917-929
83. II. Molnar H, Kwon YT and Kim BY (2015) Amino-terminal arginylation as a degradation signal for selective autophagy. BMB Rep 48, 487-488
84. Katsuragi Y, Ichimura Y and Komatsu M (2015) p62/SQSTM1 functions as a signaling hub and an autophagy adaptor. FEBS J 282, 4672-4678
85. Jain A, Lamark T, Sjøttem E et al (2010) p62/SQSTM1 is a target gene for transcription factor NRF2 and creates a positive feedback loop by inducing antioxidant response element-driven gene transcription. J Biol Chem 285, 22576-22591
86. Cha-Molstad H, Sung KS, Hwang J et al (2015) Amino-terminal arginylation targets endoplasmic reticulum chaperone BIP for autophagy through p62 binding. Nat Cell Biol 17, 917-929
87. Cha-Molstad H, Kwon YT and Kim BY (2015) Amino-terminal arginylation as a degradation signal for selective autophagy. BMB Rep 48, 487-488
88. Katsuragi Y, Ichimura Y and Komatsu M (2015) p62/SQSTM1 functions as a signaling hub and an autophagy adaptor. FEBS J 282, 4672-4678
89. Jain A, Lamark T, Sjøttem E et al (2010) p62/SQSTM1 is a target gene for transcription factor NRF2 and creates a positive feedback loop by inducing antioxidant response element-driven gene transcription. J Biol Chem 285, 22576-22591
90. Ichimura Y, Waguiri S, Sou YS et al (2013) Phosphorylation of p62 activates the Keap1-Nrf2 pathway during selective autophagy. Mol Cell 51, 618-631
91. Janssen BJ, Huizinga EG, Raaijmakers HC et al (2005) Structures of complement component C3 provide insights into the function and evolution of immunity. Nature 437, 505-511
92. Isogai S, Morimoto D, Arita K et al (2011) Crystal structure of the p62 PB1 domain, a key protein in autophagy and disease of bone. J Biol Chem 286, 31864-31874
93. Moscat J, Diaz-Meco MT, Albert A and Campuzano S (2003) Cell signaling and function organized by PB1 domains. Annu Rev Biophys 42, 415-441
94. Cha-Molstad H, Kwon YT and Kim BY (2015) Amino-terminal arginylation targets endoplasmic reticulum chaperone BIP for autophagy through p62 binding. Nat Cell Biol 17, 917-929
95. II. Molnar H, Kwon YT and Kim BY (2015) Amino-terminal arginylation as a degradation signal for selective autophagy. BMB Rep 48, 487-488
96. Katsuragi Y, Ichimura Y and Komatsu M (2015) p62/SQSTM1 functions as a signaling hub and an autophagy adaptor. FEBS J 282, 4672-4678
97. Jain A, Lamark T, Sjøttem E et al (2010) p62/SQSTM1 is a target gene for transcription factor NRF2 and creates a positive feedback loop by inducing antioxidant response element-driven gene transcription. J Biol Chem 285, 22576-22591
98. Katsuragi Y, Ichimura Y and Komatsu M (2015) p62/SQSTM1 functions as a signaling hub and an autophagy adaptor. FEBS J 282, 4672-4678
99. Jain A, Lamark T, Sjøttem E et al (2010) p62/SQSTM1 is a target gene for transcription factor NRF2 and creates a positive feedback loop by inducing antioxidant response element-driven gene transcription. J Biol Chem 285, 22576-22591
100. Ichimura Y, Waguiri S, Sou YS et al (2013) Phosphorylation of p62 activates the Keap1-Nrf2 pathway during selective autophagy. Mol Cell 51, 618-631
101. Janssen BJ, Huizinga EG, Raaijmakers HC et al (2005) Structures of complement component C3 provide insights into the function and evolution of immunity. Nature 437, 505-511
102. Isogai S, Morimoto D, Arita K et al (2011) Crystal structure of the p62 PB1 domain, a key protein in autophagy and disease of bone. J Biol Chem 286, 31864-31874
103. Moscat J, Diaz-Meco MT, Albert A and Campuzano S (2003) Cell signaling and function organized by PB1 domains. Annu Rev Biophys 42, 415-441
104. Cha-Molstad H, Kwon YT and Kim BY (2015) Amino-terminal arginylation targets endoplasmic reticulum chaperone BIP for autophagy through p62 binding. Nat Cell Biol 17, 917-929
105. II. Molnar H, Kwon YT and Kim BY (2015) Amino-terminal arginylation as a degradation signal for selective autophagy. BMB Rep 48, 487-488
106. Katsuragi Y, Ichimura Y and Komatsu M (2015) p62/SQSTM1 functions as a signaling hub and an autophagy adaptor. FEBS J 282, 4672-4678
107. Jain A, Lamark T, Sjøttem E et al (2010) p62/SQSTM1 is a target gene for transcription factor NRF2 and creates a positive feedback loop by inducing antioxidant response element-driven gene transcription. J Biol Chem 285, 22576-22591
108. Katsuragi Y, Ichimura Y and Komatsu M (2015) p62/SQSTM1 functions as a signaling hub and an autophagy adaptor. FEBS J 282, 4672-4678
109. Jain A, Lamark T, Sjøttem E et al (2010) p62/SQSTM1 is a target gene for transcription factor NRF2 and creates a positive feedback loop by inducing antioxidant response element-driven gene transcription. J Biol Chem 285, 22576-22591
110. Ichimura Y, Waguiri S, Sou YS et al (2013) Phosphorylation of p62 activates the Keap1-Nrf2 pathway during selective autophagy. Mol Cell 51, 618-631
111. Janssen BJ, Huizinga EG, Raaijmakers HC et al (2005) Structures of complement component C3 provide insights into the function and evolution of immunity. Nature 437, 505-511