Geophysical Investigation of Groundwater Using Vertical Electrical Sounding in Mubi and Maiha Local Government Areas of Adamawa State, North Eastern Nigeria

S. Kasidi* and V. Victor2

1Department of Geology, Adamawa State University, Mubi, Nigeria.
2Department of Geology, University of Maiduguri, Nigeria.

Authors' contributions

This work was carried out in collaboration between both authors. Both authors read and approved the final manuscript.

Article Information

DOI: 10.9734/JGEESI/2021/v25i930309

Editors:
(1) Dr. Wen-Cheng Liu, National United University, China.
(2) Rena Denya Agustina, Indonesia.
(2) Orhan Polat, Dokuz Eylul University, Turkey.

Reviewers:
(1) Rena Denya Agustina, Indonesia.

Complete Peer review History: https://www.sdiarticle4.com/review-history/74532

Received 01 August 2021
Accepted 08 October 2021
Published 12 October 2021

ABSTRACT

This research work is aimed electrical resistivity survey for groundwater development conducted in Mubi and Maiha local government area of Adamawa State, in order to delineate the groundwater potential zones and determining the depth and thickness of sediments layers, and recommend suitable depth for drilling. Fourteen vertical electrical soundings (VES) were carried out within the study area using Schlumberger electrodes configuration was used for the field data acquisition. The field data obtained was analyzed using IX1D computer software and, VES1-14 resistivity model indicate 3-4 layered earth models. The interpretation shows positive inference in terms of a well-defined weathered basement and as such, it is likely to possess requisite hydro-geological characteristics that could supply underground water in fair quantity to well when drilled. Therefore, VES number denoted (R) are recommended for drilling at approximate depths of 40±5 to 50±5 meters.
Keywords: Groundwater; resistivity; IX1D; lithology; aquifer; basement.

1. INTRODUCTION

Water is the primary need of every living thing on this planet earth which is essential for sustaining life. Hence, the need for the search of groundwater must be pursued. The availability of quality water resources has always been the primary concern of governments and societies in basement complex areas, even in areas of more abundant rainfall. Several methods employed in groundwater exploration include electrical resistivity, gravity, seismic, magnetic, remote sensing, electromagnetic, among others. Vertical Electrical Sounding (VES) technique provide information on the vertical variation in the resistivity of the ground with depth. A lot of geophysical investigations have been carried out in different parts of the world for groundwater investigation. Among the various geophysical methods of groundwater investigation, the electrical resistivity method has the widest adoption in groundwater exploration in basement complex rock [1,2]. The area under study is located in Mubi and Maiha local government area of Adamawa State, north -eastern Nigeria it is accessible through the trunk ‘Hong’ - Gombi federal road. The road leading to the vertical electrical sounding (VES) location is accessible throughout the year except the road leading to Wuro Hammagu, Wuro Nange, Girji and Kabur Communities in the south-western part of the area which is inaccessible during rainy season.

1.1 Location and Accessibility

The area under study is located in Mubi and Maiha Local Government Area. It is situated within latitudes 10° 11' 00" N – 10° 17' 00" N and longitudes 13° 15' 00" - 13° 21' 00" E and covers an area of 121km², has a population of about 129,956 (NPC, 2006) (Fig. 1). The area is accessible by Trunk ‘A’ Gombi – Mararaba and Michika - Mararaba Federal road, and is about 172km Northwest of Yola and about 25km from the Nigerian – Cameroun border. It borders Mubi North LGA to the North, Hong LGA to West, Maiha LGA to the South-west and Cameroun Republic to the East and South-east. The untarred roads leading to most of the villages within the area is accessible throughout the year except the road leading to Wuro Hammagu, Wuro Nange, Girji and Kabur Communities in the south-western part of the area which is inaccessible during rainy season.

Fig. 1. Regional geological map of Nigeria showing the location of the study area (modified [3])
1.2 Geology of the Study Area

The study area lies within the Hawal Basement in the northeastern sector of Nigeria’s Basement Complex. [4] reported that the rocks within the Hawal Basement are characterized by high grade metamorphic rocks, pervasive Migmatization and extensive granite plutonism (Fig. 2). Most of the migmatization has been dated at 580 ± 10 Ma. It is bounded by the Tertiary – Quaternary Chad Basin northwards, the Yola arm of the Cretaceous Benue Basin southward and the Gongola Basin westwards. The area experienced Tertiary magmatism between 7 to 1 Ma [5], during which volcanic and sub-volcanic rocks were emplaced. These volcanic and sub-volcanic rocks are extensions of the Cameroun volcanic line into Nigeria [6]. Earlier during the Mesozoic, transitional alkali basalts were emplaced in Shani area 146 Ma ± 7.3 < age < 127 Ma ± [7]. [8] reported that the gneisses and Migmatites are the older rocks within the Hawal Basement occupying mainly low lying areas, or existing as residual hills. The gneisses are generally strongly foliated and banded, and in some places are commonly dissected by quartzo-feldspatic dykes and veins which impart them with Migmatitic characteristics. Good examples of these are found in Mubi. The gneisses have been subjected to series of folding, shearing and faulting and are extensively intruded by granitic rocks of the Pan African orogeny (600 ± 150 Ma). The granites consist of fine to coarse grained or porphyritic varieties with well-developed euhedral crystals. A variety exists as granite gneiss which has well defined foliation. Outcrops of the granite gneiss are found at Dumne, Song, Uba and Mubi. Granites in the area have experienced extensive faulting and shearing and are commonly intruded also by pegmatites. These are found in Hong, Mubi, Dumne, Song and Pirkasa areas. [9] presented a brief account of the geology of the Hawal Basement Complex. The earliest formed crustal materials observed in the area are mafic xenoliths or amphibolite’s fragments in gneisses and Migmatites of probably Proterozoic age [10]. The gneisses and Migmatites are the most widespread rocks and often occupy the low elevation areas. These metamorphic rocks are marked by NW-SE folds, foliation, shear zones and faults.

Fig. 2. Geologic setting of the study area (Modified after [11])
1.3 Hydrogeology of the Area

The groundwater prospects of the study area have mixed reviews in the literature. The igneous and metamorphic rocks consisting of the basement complex of Nigeria as a whole have an observed reputation as aquifers [13], [14]. Acknowledged the fact that crystalline rocks generally, could have low porosity and permeability. Results of the field studies indicate that substantial yield could be obtained from the basement aquifers with effective exploration and exploitation techniques to determine fractures [15]. The occurrence of groundwater is limited to the weathered and fractured zones in the basement complex area (Fig. 3). The weathered zones must have appreciable lithologic thickness to be productive source of water.

2. METHODOLOGY

The principle of resistivity surveys is based on introducing a direct current (DC) or very low frequency current into the ground via two electrodes. If the four electrodes are arranged in any several possible patterns, the current and the potential measurement may be used to calculate the resistivity. The array is the most widely used in electrical prospecting electrodes are placed in a straight line on the earth’s surface in the same order, AMNB, with AB<5MN. For any linear, symmetric array AMNB of electrodes, the equation can be written in the form below; [13]

\[\rho_a = \frac{(2\pi)}{l} \frac{1}{Am} \frac{1}{Bm} \frac{1}{AN} + \frac{1}{BN} \times A \Delta V \]

where \(\rho_a \) is the apparent resistivity, \(l \) is the single distance-variable (AB/2). In practice it is not possible to measure \(\rho_a \) according to the above equation, but only in approximate manner. The apparent resistivity \(\rho_a \) is usually calculated by using the equation above provided that AB≥5MN [16].

![Fig. 4. Schlumberger configuration adopted for the study area](image)

The electrodes are in a straight line and like the wenner array, the outer electrodes are the current electrodes and the inner electrodes are the potential electrodes. The potential electrodes usually designated M and N, should never be separated by more than one-fifth the separation between the current electrodes. The current electrodes are usually designated A and B. The apparent resistivity is given by:

\[\rho_a = \frac{2\pi V}{l} \left(\frac{1}{r_1} + \frac{1}{r_2} - \frac{1}{r_3} - \frac{1}{r_4} \right) \]

This technique is used to continue to examine the vertical changes in resistivity. The spacing between electrodes is progressively increased between measurements, while the center of the whole array is kept constant. As the electrode spacing increases, the current penetrates to greater depth and so a plot of apparent resistivity against electrode spacing provides a picture of the variation of resistivity with depth. The ABEM [17] (signal average system) SAS 4000
terrameter was used for the field data collection. This instrument measures and displays the resistance of the subsurface. Other instruments used includes; IXI-D software used for computer modeling, metal electrodes used to induce current into the ground and measures potential, measuring tape used to lay out electrodes, hammer used in driving the electrodes into the ground, car battery and roll wires. Geographical point system (GPS) used to determine altitude and position of VES points, compass clinometer used to measure river trends. The survey is started at a short distance of AB/2, which is then increased progressively as the survey continues, at a certain period the potential distance MN has to be increased especially when it becomes too small to give reliable reading of resistance. However, the condition of AB/2 ≥ 5MN has to be fulfilled. Measurement of distance is taken directly from the terrameter, which is multiplied by a (K factor) to calculate the apparent resistivity. This is then plotted on a bi-logarithmic paper, the distance AB/2 against resistivity values measured for further processing with the computer.

3. RESULTS AND DISCUSSION

Computer software program, the IXID was used to interpret the data collected. It is worth mentioning that the program used allows the user to center apparent resistivity data in a standard geo-soft format. It also smoothen the field curve through the process of filtering technique that involves single point correction, eccentricity correction and vertical curve segment shift. Interpretation of the layers parameters was also carried out and the root mean square (RMS) error display. The results are displayed on Tables 1-14 and the interpreted results on Figs. 5-14.

Table 1. Field data
MADANYA PS VES 01
Schlumberger Array

No.	Spacing (meters)	Data Resistivity	Synthetic Resistivity	DIFFERENCE	Layered Model:	Smooth Model:
	AB/2	MN				
1	1.00	0.300	89.88	84.47	6.00	
2	2.00	0.300	87.50	93.49	-7.07	
3	3.00	0.300	103.5	107.7	-4.15	
4	4.00	1.00	118.6	120.9	-1.93	
5	5.00	1.00	134.8	134.8	1.49	
6	8.00	1.00	134.5	133.3	0.006	
7	10.00	1.00	123.9	123.3	0.50	
8	12.00	1.00	189.7	189.7	4.23	
9	15.00	1.00	90.00	89.86	0.150	
10	20.00	5.00	64.33	66.41	-4.01	
11	25.00	5.00	54.22	57.29	-3.07	
12	30.00	5.00	57.89	56.48	1.41	
13	35.00	5.00	61.10	64.43	-3.33	
14	40.00	5.00	44.47	66.69	-2.22	
15	50.00	5.00	73.17	81.74	-8.57	
16	60.00	5.00	87.66	97.70	-11.46	
17	80.00	10.00	148.7	129.8	12.71	
18	100.0	10.00	184.5	161.8	12.29	

NO DATA ARE MASKED

Layered Model

L #	RESISTIVITY (ohm-m)	THICKNESS (meters)	DEPTH	ELEVATION (meters)	LONG. COND. TRANS. RES. (Siemens)	TRANS. RES. (Ohm-m°)
1	82.65	1.88	1.88	-1.88	0.0228	155.9
2	487.0	1.83	3.71	-3.71	0.00376	891.6
3	10.50	6.10	9.82	-9.82	0.581	64.19
4	10900.3					

ALL PARAMETERS ARE FREE
Fig. 5. Interpreted data

Table 2. Field data

No.	Spacing (meters)	Data Resistivity	Synthetic Resistivity	DIFFERENCE	Layered Model:	Smooth Model:
	AB/2	MN			Synthetic Resistivity	DIFFERENCE
1	1.00	0.300	12.88	12.88	0.592	
2	2.00	0.300	18.96	24.29	-24.16	
3	3.00	0.300	27.42	35.13	-23.13	
4	4.00	1.00	41.09	44.89	-3.12	
5	6.00	1.00	65.66	61.07	-3.99	
6	8.00	1.00	87.83	73.06	-2.47	
7	10.00	1.00	104.9	81.41	2.24	
8	12.00	1.00	114.2	86.77	24.03	
9	15.00	1.00	105.4	90.59	14.12	
10	20.00	5.00	77.70	89.98	-12.18	
11	25.00	5.00	73.13	85.67	-17.15	
12	30.00	5.00	71.65	81.06	-13.13	
13	35.00	5.00	77.23	77.73	-0.50	
14	40.00	5.00	76.42	76.24	0.23	
15	50.00	5.00	77.36	78.47	-0.53	
16	60.00	5.00	90.60	85.79	5.00	
17	80.00	10.00	109.7	107.8	1.77	
18	100.0	10.00	135.0	132.9	1.53	

NO DATA ARE MASKED

Layered Model

L #	RESISTIVITY (ohm-m)	THICKNESS (meters)	DEPTH (meters)	ELEVATION (meters)	LONG. COND. (Siemens)	TRANS. RES. (Ohm-m⁻²)
1	6.96	0.506	0.506	-0.506	0.0727	3.52
2	42.46	0.262	0.768	-0.768	0.00618	13.13
3	3876.3	0.357	1.12	-1.12	0.00	1387.2
4	5.89	3.87	5.00	-5.00	0.657	22.86
5	6029.6					

ALL PARAMETERS ARE FREE
Table 3. Field data

No.	Spacing (meters)	Data Resistivity	Synthetic Resistivity	Layered Model:	Elevation:	Smooth Model:	Difference
	AB/2	MN		DIFFERENCE	0.0	Synthetic Resistivity	DIFFERENCE
1	1.00	0.300	94.98	99.08	-4.22	0	
2	2.00	0.300	91.50	90.40	1.10	0	
3	3.00	0.300	79.70	76.80	3.60	0	
4	4.00	1.00	64.33	63.36	1.00	0	
5	6.00	1.00	44.84	45.15	0.69	0	
6	8.00	1.00	35.14	36.76	-1.62	0	
7	10.00	1.00	32.72	33.29	-0.57	0	
8	12.00	1.00	32.81	31.98	2.83	0	
9	15.00	1.00	32.66	31.72	0.84	0	
10	20.00	5.00	34.05	33.16	0.89	0	
11	25.00	5.00	35.43	35.74	-0.31	0	
12	30.00	5.00	37.12	38.94	-1.82	0	
13	35.00	5.00	42.09	42.48	-0.39	0	
14	40.00	5.00	46.66	46.69	0.02	0	
15	50.00	5.00	54.99	53.26	1.73	0	
16	60.00	5.00	59.86	59.98	-0.12	0	
17	80.00	10.00	71.85	71.69	0.16	0	
18	100.0	10.00	81.33	81.38	0.00	0	

NO DATA ARE MASKED

Layered Model

Layer	Resistivity (ohm-m)	Thickness (meters)	Depth (meters)	Elevation (S)	Long. Cond. Trans. Res. (S/m²)	
1	100.8	1.91	1.91	0.0	0.0189	192.6
2	28.18	18.87	20.79	-1.91	0.669	532.1
3	152.9	152.9	20.79	-20.79	0.669	532.1

ALL PARAMETERS ARE FREE
Table 4. Field data

No.	Spacing (meters)	Data Resistivity (ohm-m)	Synthetic Resistivity (ohm-m)	DIFFERENCE	Smooth Model: Synthetic Resistivity (ohm-m)	DIFFERENCE
	AB/2	MN				
1	1.00	0.300	174.4	181.6	-4.14	
2	2.00	0.300	148.0	139.0	6.08	
3	3.00	0.300	89.39	91.57	-2.18	
4	4.00	1.00	59.23	58.78	0.45	
5	6.00	1.00	30.60	30.99	-0.39	
6	8.00	1.00	24.33	24.51	-0.18	
7	10.00	1.00	21.41	23.65	-2.24	
8	12.00	1.00	24.25	24.38	-0.13	
9	15.00	1.00	26.92	26.54	0.38	
10	20.00	5.00	31.29	31.27	0.02	
11	25.00	5.00	35.25	36.39	-1.14	
12	30.00	5.00	40.71	41.41	-0.70	
13	35.00	5.00	46.35	46.13	0.22	
14	40.00	5.00	51.55	50.45	1.10	
15	50.00	5.00	59.23	58.47	0.76	
16	60.00	5.00	66.84	65.34	1.50	
17	80.00	10.00	76.63	76.63	0.00	
18	100.00	10.00	84.59	85.45	-0.86	

NO DATA ARE MASKED

Layered Model

L #	RESISTIVITY (ohm-m)	THICKNESS (meters)	DEPTH (meters)	ELEVATION (m)	LONG. COND. TRANS. RES. (Siemens)	OHM-m^2
1	192.3	1.40	1.40	-1.40	0.00730	270.2
2	19.52	10.57	11.98	-11.98	0.541	206.5
3	135.8					

ALL PARAMETERS ARE FREE

Fig. 8. Interpreted data
Table 5. Field data

No.	Spacing (meters)	Data Resistivity (ohm-m)	Synthetic Resistivity (ohm-m)	DIFFERENCE	Layered Model	Smooth Model
AB/2	MN					
1	1.00	0.300	165.2	157.0	4.93	
2	2.00	0.300	161.5	168.2	-6.7	
3	3.00	0.300	168.6	180.7	-12.1	
4	4.00	1.00	183.4	186.0	-2.6	
5	6.00	1.00	183.4	171.8	11.6	
6	8.00	1.00	146.7	141.1	5.6	
7	10.00	1.00	113.1	109.4	3.7	
8	12.00	1.00	84.30	83.35	0.95	
9	15.00	1.00	50.83	56.49	-5.66	
10	20.00	5.00	36.25	35.53	0.72	
11	25.00	5.00	30.20	29.36	0.84	
12	30.00	5.00	28.98	28.80	0.18	
13	35.00	5.00	30.24	30.37	-0.13	
14	40.00	5.00	32.95	32.88	0.07	
15	50.00	5.00	37.93	39.12	-1.19	
16	60.00	5.00	46.14	46.09	0.05	
17	80.00	10.00	63.91	69.62	-5.71	
18	100.00	10.00	73.62	75.20	-1.58	

Table 6. Field data

RESISTIVITY (ohm-m)	THICKNESS (meters)	DEPTH (meters)	ELEVATION (Siemens)	LONG. COND. TRANS. RES. (Ohm-m°2)		
L #						
1	154.5	1.72	1.72	-1.72	0.0111	266.3
2	490.5	1.41	3.14	-3.14	0.00289	695.2
3	20.20	25.65	28.79	-28.79	1.27	518.2
4	2167.8					

ALL PARAMETERS ARE FREE

Fig. 9. Interpreted data
Table 6. Field data

No.	Spacing (meters) AB/2	MN	Data Resistivity	Synthetic Resistivity	DIFFERENCE	Synthetic Resistivity	DIFFERENCE
1	1.00	0.300	82.83	81.62	1.45	-	-
2	2.00	0.300	81.36	82.61	-1.53	-	-
3	2.00	0.300	85.53	84.39	1.33	-	-
4	4.00	1.00	85.00	86.23	-1.45	-	-
5	6.00	1.00	85.56	87.27	-2.00	-	-
6	8.00	1.00	84.98	83.52	1.70	-	-
7	10.00	1.00	75.40	76.66	-1.68	-	-
8	12.00	1.00	71.97	69.86	2.31	-	-
9	15.00	1.00	57.49	58.29	-0.80	-	-
10	20.00	5.00	46.53	46.94	-0.81	-	-
11	25.00	5.00	41.77	42.18	-0.41	-	-
12	30.00	5.00	40.89	41.06	-0.17	-	-
13	35.00	5.00	42.03	41.55	0.48	-	-
14	40.00	5.00	44.93	42.62	2.31	-	-
15	50.00	5.00	45.56	44.96	0.60	-	-
16	60.00	5.00	45.02	46.93	-1.91	-	-
17	80.00	10.00	48.04	49.66	-1.62	-	-
18	100.00	10.00	53.12	51.37	1.75	-	-

NO DATA ARE MASKED

Layered Model

L #	RESISTIVITY (ohm-m)	THICKNESS (meters)	DEPTH	ELEVATION (meters)	LONG. COND.TRANS. RES. (Siemens)	LONG. COND.TRANS. RES. (Ohm-m^-2)
1	81.47	2.91	2.91	0.0	0.0358	237.6
2	173.8	2.20	5.12	-5.12	0.0126	383.6

Fig. 10. Interpreted data
Table 7. Field data

DOMAYO COMMUNITY VES 02

No.	Spacing (meters)	Data Resistivity	Synthetic Resistivity	DIFFERENCE	Smooth Model: Synthetic Resistivity	DIFFERENCE
	AB/2 MN					
1	1.00 0.300	11.77	11.95	-1.53		
2	2.00 0.300	12.88	12.12	5.84		
3	3.00 0.300	13.39	12.68	5.26		
4	4.00 1.00	12.40	13.65	-9.95		
5	6.00 1.00	15.35	16.51	-7.60		
6	8.00 1.00	20.12	20.17	-0.290		
7	10.00 1.00	24.94	24.09	3.38		
8	12.00 1.00	29.14	28.00	3.90		
9	15.00 1.00	34.73	33.62	3.17		
10	20.00 5.00	40.14	42.26	-5.29		
11	25.00 5.00	51.78	50.07	3.30		
12	30.00 5.00	57.63	57.17	0.790		
13	35.00 5.00	62.47	63.69	-1.95		
14	40.00 5.00	71.23	69.71	2.12		
15	50.00 5.00	78.90	80.57	-2.11		
16	60.00 5.00	89.12	90.21	-1.23		
17	80.00 10.00	106.9	107.0	-0.0735		
18	100.0 10.00	122.7	121.7	0.756		

NO DATA ARE MASKED

Layered Model

L #	RESISTIVITY (ohm-m)	THICKNESS (meters)	DEPTH (m)	ELEVATION (m)	LONG. COND. TRANS. RES. (Siemens)	LONG. COND. TRANS. RES. (Ohm-m^2)
1	12.19	0.223	0.223	0.0	0.0183	2.72
2	11.83	4.10	4.32	-4.32	0.346	48.58
3	157.5	57.85	62.18	-62.18	0.367	9117.3
4	361.7					

ALL PARAMETERS ARE FREE

Fig. 11. Interpreted data
No.	Spacing (meters)	Data Resistivity	Synthetic Resistivity	DIFFERENCE	Smooth Model: Synthetic Resistivity	DIFFERENCE
	AB/2	MN				
1	1.00	0.300	68.49	70.34	-2.71	
2	2.00	0.300	66.77	66.68	0.128	
3	3.00	0.300	62.59	59.78	4.47	
4	4.00	1.00	50.32	51.47	-2.29	
5	6.00	1.00	36.94	36.91	0.0768	
6	8.00	1.00	28.39	28.04	0.25	
7	10.00	1.00	23.55	23.53	0.0482	
8	12.00	1.00	21.11	21.50	-1.87	
9	15.00	1.00	20.23	20.70	-2.32	
10	20.00	5.00	21.56	21.85	-1.34	
11	25.00	5.00	24.69	24.35	1.34	
12	30.00	5.00	29.01	27.59	6.79	
13	35.00	5.00	33.37	31.27	2.10	
14	40.00	5.00	36.10	35.21	2.44	
15	50.00	5.00	39.94	43.47	-8.85	
16	60.00	5.00	47.85	51.89	-13.65	
17	80.00	10.00	66.59	68.73	-3.21	
18	100.0	10.00	91.43	85.40	6.08	

NO DATA ARE MASKED

Layered Model

L #	RESISTIVITY (ohm-m)	THICKNESS (meters)	DEPTH (m)	ELEVATION (m)	LONG. COND. TRANS. RES. (Siemens)	RES. (Ohm-m²)
1	71.00	2.28	2.28	489.7	0.0321	162.0
2	161.7	0.0705	2.35	489.6	4.359E-04	11.40
3	16.92	18.64	20.99	471.0	1.10	315.6
4	2724.8					

ALL PARAMETERS ARE FREE

Prepared for Hillwater Resources Ltd, Nigeria

Fig. 12. Interpreted data
Table 9. Field data

WURO ALHAJI VES 2

Schlumberger Array

No.	Spacing (meters)	Data Resistivity	Synthetic Resistivity	DIFFERENCE	Smooth Model: Synthetic Resistivity	DIFFERENCE
	AB/2 MN					
1	1.00 0.300	110.4	104.7	5.15		
2	2.00 0.300	100.2	101.1	-0.93		
3	3.00 0.300	92.83	93.87	-1.02		
4	4.00 1.00	81.73	84.10	-2.37		
5	6.00 1.00	62.82	64.15	-1.33		
6	8.00 1.00	49.15	49.41	-0.26		
7	10.00 1.00	41.09	40.39	0.70		
8	12.00 1.00	35.62	35.27	0.95		
9	15.00 1.00	32.48	31.61	0.88		
10	20.00 5.00	31.54	29.96	1.58		
11	25.00 5.00	29.00	30.31	-1.31		
12	30.00 5.00	30.53	31.54	-1.02		
13	35.00 5.00	34.30	33.55	0.75		
14	40.00 5.00	34.76	35.60	-0.84		
15	50.00 5.00	38.80	41.13	-2.33		
16	60.00 5.00	45.81	47.55	-1.74		
17	80.00 10.00	60.68	61.69	-1.01		
18	100.0 10.00	84.82	76.40	8.42		

No data are masked

Layered Model

L #	Resistivity (ohm-m)	Thickness (meters)	Depth (meters)	Elevation (meters)	Long. Cond. Trans. Res. (Siemens)	Trans. Res. (Ohm-m²)
1	105.3	2.77	2.77	221.2	0.0263	292.5
2	144.2	0.8636	2.84	221.1	4.413E-04	9.17
3	26.55	33.16	36.00	187.9	1.24	880.9

All parameters are free

Prepared for Hillwater Resources Ltd, Nigeria

Fig. 13. Interpreted data
Table 10. Field data

OMBEL PRI. SCH. VES 1

Schlumberger Array

No.	Spacing (m)	Data Resistivity	Synthetic Resistivity	DIFFERENCE	Smooth Model: Synthetic Resistivity	DIFFERENCE
AB/2	MN					
1	1.00	0.300	123.2	116.0	5.85	
2	2.00	0.300	98.55	96.14	2.44	
3	3.00	0.300	65.94	68.83	-4.39	
4	4.00	1.00	40.33	45.64	-5.31	
5	6.00	1.00	21.78	20.62	1.16	
6	8.00	1.00	13.98	12.71	1.27	
7	10.00	1.00	10.87	10.83	0.29	
8	12.00	1.00	10.34	10.84	-0.49	
9	15.00	1.00	11.00	11.96	-0.96	
10	20.00	5.00	14.18	14.79	-0.61	
11	25.00	5.00	17.39	18.10	-0.71	
12	30.00	5.00	20.88	21.59	-0.71	
13	35.00	5.00	23.67	25.13	-1.46	
14	40.00	5.00	28.21	28.69	-0.48	
15	50.00	5.00	35.86	35.80	0.04	
16	60.00	5.00	45.09	42.90	2.19	
17	80.00	10.00	61.92	57.04	4.88	
18	100.00	10.00	79.46	71.10	8.36	

NO DATA ARE MASKED

Layered Model

L #	RESISTIVITY (ohm-m)	THICKNESS (m)	DEPTH (m)	ELEVATION (m)	LONG. COND. TRANS. RES. (Siemens)	OHM-m RES. (m²)
1	120.3	1.63	1.63	375.3	0.0136	196.9
2	129.4	0.0565	1.69	375.3	4.368E-04	7.31
3	7.97	10.92	12.62	364.3	1.36	87.19
4	4854.6					

Fig. 14. Interpreted data

Kasidi and Victor; JGEESI, 25(9): 58-76, 2021; Article no.JGEESI.74532
Table 11. Field data

No.	Spacing (meters)	Data Resistivity	Synthetic Resistivity	DIFFERENCE	Smooth Model: Synthetic Resistivity	DIFFERENCE
	AB/2 MN					
1	1.00	0.300	170.3	172.3	-1.18	
2	2.00	0.300	162.4	165.0	-1.58	
3	3.00	0.300	156.6	149.9	-4.19	
4	4.00	1.00	123.7	129.3	-3.21	
5	6.00	1.00	90.58	86.54	4.04	
6	8.00	1.00	55.51	54.93	0.58	
7	10.00	1.00	34.94	36.23	-1.29	
8	12.00	1.00	26.09	26.45	-0.36	
9	15.00	1.00	21.31	20.63	3.16	
10	20.00	5.00	19.91	19.85	0.276	
11	25.00	5.00	21.51	22.25	-3.48	
12	30.00	5.00	27.12	25.60	1.52	
13	35.00	5.00	28.48	29.34	-0.86	
14	40.00	5.00	31.75	33.26	-1.51	
15	50.00	5.00	38.99	41.31	-2.32	
16	60.00	5.00	51.82	49.42	2.40	
17	80.00	10.00	66.19	65.55	0.54	
18	100.00	10.00	85.12	81.54	3.58	

No data are masked

Layered Model

L #	RESISTIVITY (ohm-m)	THICKNESS (meters)	DEPTH (meters)	ELEVATION (meters)	LONG. COND.	TRANS. RES. (Siemens)	(Ohm-m²)
1	173.5	2.92	2.92	390.0	0.0168	508.0	
2	168.2	0.0723	2.99	390.0	4.302E-04	12.17	
3	13.51	15.90	18.89	374.1	1.17	214.8	
4	3226.0						

Fig. 15. Interpreted data
Table 12. Field data

No.	Spacing (meters)	Data Resistivity	Synthetic Resistivity	DIFFERENCE	Data Resistivity	Synthetic Resistivity	DIFFERENCE
1	1.00	0.300	9.75	9.56	1.88		
2	2.00	0.300	9.94	10.45	-5.13		
3	3.00	0.300	11.64	11.28	3.03		
4	4.00	1.00	11.87	11.69	1.46		
5	6.00	1.00	11.60	11.73	-1.19		
6	8.00	1.00	11.54	11.63	-0.824		
7	10.00	1.00	11.63	11.78	-1.30		
8	12.00	1.00	12.45	12.23	1.74		
9	15.00	1.00	13.75	13.39	2.59		
10	20.00	5.00	15.30	16.18	-5.79		
11	25.00	5.00	19.85	19.53	1.60		
12	30.00	5.00	23.71	23.08	2.63		
13	35.00	5.00	26.78	26.69	0.318		
14	40.00	5.00	30.53	30.30	0.752		
15	50.00	5.00	37.74	37.41	0.848		
16	60.00	5.00	44.43	44.39	0.068		
17	80.00	10.00	55.67	57.89	-2.89		
18	100.00	10.00	71.40	70.84	0.773		

NO DATA ARE MASKED

Layered Model

L #	RESISTIVITY (ohm-m)	THICKNESS (meters)	DEPTH (meters)	ELEVATION (Siemens)	LONG, COND., TRANS. RES. (Ohm-m)²
0	321.0				
1	9.33	1.49	1.49	319.5	0.160
2	182.8	0.0802	1.57	319.4	4.388E-04
3	9.20	10.10	11.67	309.3	1.99
4	602.2				93.02

Fig. 16. Interpreted data
Table 13. Field data

No.	Spacing (m)	Data Resistivity (Ohm-m)	Synthetic Resistivity (Ohm-m)	DIFFERENCE	No.	Spacing (m)	Data Resistivity (Ohm-m)	Synthetic Resistivity (Ohm-m)	DIFFERENCE
1	1.00	0.300	8.32	8.10	2	2.00	0.300	9.13	8.87
2	2.00	0.300	9.13	8.87	3	3.00	0.300	9.45	10.38
3	3.00	1.00	12.09	12.36	4	4.00	1.00	12.09	12.36
4	4.00	1.00	16.23	16.58	5	5.00	1.00	20.13	20.33
5	5.00	1.00	20.13	20.33	6	6.00	1.00	24.94	23.47
6	6.00	1.00	28.80	26.11	7	7.00	1.00	33.61	38.59
7	7.00	1.00	35.61	38.59	8	8.00	1.00	39.78	38.25
8	8.00	1.00	41.78	43.25	9	9.00	1.00	47.80	48.23
9	9.00	1.00	54.18	53.53	10	10.00	1.00	70.06	64.77
10	10.00	1.00	81.34	76.43	11	11.00	1.00	94.42	99.89
11	11.00	1.00	121.3	122.8	12	12.00	1.00	145.79	148.30

Table 14. Summary of the results

S/N	Location	VES no.	Recomm. Depth	Latitude UTM	Longitude UTM	Elev.
1	Madanya Pri. Sch.	VES 1 (R)	40±5	10.26525	13.30965	592
2	Bawu Husare Sec.	VES 2	40±5	9.993583	13.354738	581
3	Duda Pri. Sch.	VES 1 (R)	40±5	9.9946083	13.134205	520
4	Domayo community	VES 1 (R)	40±5	9.9957946	13.134038	506
5	Wuro Alhaji community	VES 1 (R)	50±5	9.921965	13.23656	492
6	Ombel Pri. Sch.	VES 1 (R)	45±5	9.779357	13.22793	376
7	Masagala Pri. Sch.	VES 1 (R)	50±5	9.68064	13.17877	321

VES1-14 resistivity model indicate 3-4 layered earth models. The interpretation shows positive inference in terms of a well-defined weathered basement and as such, it is likely to possess requisite hydro-geological characteristics that could supply underground water in fair quantity to well when drilled. Therefore, VES number denoted (R) are recommended for drilling at approximate depths of 40±5 to 50±5 meters.

4. CONCLUSION

The application of the electrical resistivity method for exploration of groundwater in Mubi, and Maiha local government area, North-Eastern Nigeria has been carried out in this study by...
interpreting acquired VES date via IX1D software. The study has demonstrated the importance of the VES method in the exploration of groundwater in the Basement Complex Terrain of North–eastern Nigeria.

The degree of success recorded after the construction of the seven boreholes and the statistical analysis showed that the VES could be relied upon in locating suitable points for boreholes in the basement complex terrain, particularly when data are carefully acquired and properly interpreted. Whenever VES is to be carried out, the Schlumberger array is recommended because of its several advantages over other array types.

DISCLAIMER

The products used for this research are commonly and predominantly use products in our area of research and country. There is absolutely no conflict of interest between the authors and producers of the products because we do not intend to use these products as an avenue for any litigation but for the advancement of knowledge. Also, the research was not funded by the producing company rather it was funded by personal efforts of the authors.

ACKNOWLEDGEMENT

The authors wish to thank Hillwater Resources Ltd. Nigeria for providing the IXD software which used for the data interpretation.

COMPETING INTERESTS

Authors have declared that no competing interests exist.

REFERENCES

1. Ariyo SO. Geoelectrical characterization of aquifers and geochemical Study of groundwater in the basement complex/sedimentary Transition Zone around Ishara, South-Western Nigeria. M. Phil. Thesis. University Of Ibadan, Nigeria; 2005.
2. Olufunmi MO. Hydrogeophysical evaluation of groundwater potentials of Akure Metropolis, South western Nigeria. Journ, Min, and Geol. 1999;35(2):207-228.
3. Obaje NG. Geology and Mineral resources of Nigeria. Springer, Dordrecht Heidelberg, London New York. 2009;221.
4. Ferre E, Deleers J, Bouchez JL, Lar AU, Peucat JJ. The Pan African reactivation of Eburnean and Achean Provinces in Nigeria; structural and isotopic data. J Geol. Soc. 1996;153(7):19-28.
5. Grant NT, Rex DC, Freeth SJ. Poatrasium argon ages and Strontium isotope ratio Measurement from volcanic rocks in NE Nigeria. Contrib. Mineral Petrol. 1972;35(4):227-229.
6. Fitton JG, Dunlop HM. The Cameroon line west Africa, and its bearing on the originof oceanic and continental alkali basalt. Earth and Planety Science Letters (ELSEVIER). 1985;72(1):23-38.
7. Baudin PH. Magmatisme Mesozoique du fosse dela Benoue (Nigeria). Caracteristiques petrologiqueset Geochemiques, significant geodynamique, unpublished D.E.A. Aix Marseille. 1986;76.
8. Bassey NE. Structural Geological Mapping and Interpretation of Landsat and Aeromagnetic Data over part of Hawal Basement Complex, Northeast Nigeria. Doctoral Thesis, Abubakar Tafawa Balewa University, Bauchi. 2006;32.
9. Bassey NE, Dike EFC, Likasson O. Digital filtering of aeromagnetic maps for Lineaments detection in Hawal Basement Complex of Hawal Area, N.E. Nigeria. Journal of Mining and Geology. 2012;48(1):1-11.
10. Dada SS. Crust forming ages and Proterozoic crustal evolution in Nigeria a reappraisal of current interpretation. Precamb. Res. 1998;87:65-74.
11. Maluski HC, Coulon MP, Baudin P. 40Ar/39Ar Chronology, Petrology and geodynamic setting of Mesozoic to early Cenozoic Magmatism from Benue Trough, Nigeria. Jpourn. Geol. Soc. 1995;152:311-326.
12. Richard WH. Estimating groundwater recharge, eds. 2004:250.
13. Artimes D, Ramin S, Nagaraju D. Hydrogeochemical and rock-water interaction studies in East of Kurdistan, N-W of Iran. International Journal of Environmental Sciences. 2011;1(1):16-22.
14. AL-Tabbar JA, AL-Zboon KK. Suitability assessment of groundwater for irrigation and drinking purpose in the northern region of Jordan. J. Environ. Sci. Technol. 2012; 5:274-290.
15. Benkalil MJ. Structure and Geodynamic evolution of the Intracontinental Benue Trough. Ph.D. Thesis, Univ. of Nice, Publ. by ELF Nigerian Ltd, SNEA (P). 1986; 176.

16. Kalenov EN. Interpretation of Vertical Electrical Sounding Curves, Moscow, Gostoptekhiz at, 1957;412.

17. Abem. Instruction manual; ABEM printed matter no. 93060. Sweden; 1989.

© 2021 Kasidi and Victor; This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Peer-review history:
The peer review history for this paper can be accessed here:
https://www.sdiarticle4.com/review-history/74532