Multi-organ point-of-care ultrasound for COVID-19 (PoCUS4COVID): international expert consensus

Hussain, Arif; Via, Gabriele; Melniker, Lawrence; Goffi, Alberto; Tavazzi, Guido; Neri, Luca; Villen, Tomas; Hoppmann, Richard; Mojoli, Francesco; Noble, Vicki; Ziesekiewicz, Laurent; Blanco, Pablo; Ma, Irene W Y; Wahab, Mahathar Abd; Alsaawi, Abdulmohsen; Al Salamah, Majid; Balik, Martin; Barca, Diego; Bendjeldid, Karim; Bouhemad, Belaid; Bravo-Figueroa, Pablo; Breitkreutz, Raoul; Calderon, Juan; Connolly, Jim; Copetti, Roberto; Corradi, Francesco; Dean, Anthony J; Denault, André; Govil, Deepak; Graci, Carmela; et al

Abstract: COVID-19 has caused great devastation in the past year. Multi-organ point-of-care ultrasound (PoCUS) including lung ultrasound (LUS) and focused cardiac ultrasound (FoCUS) as a clinical adjunct has played a significant role in triaging, diagnosis and medical management of COVID-19 patients. The expert panel from 27 countries and 6 continents with considerable experience of direct application of PoCUS on COVID-19 patients presents evidence-based consensus using GRADE methodology for the quality of evidence and an expedited, modified-Delphi process for the strength of expert consensus. The use of ultrasound is suggested in many clinical situations related to respiratory, cardiovascular and thromboembolic aspects of COVID-19, comparing well with other imaging modalities. The limitations due to insufficient data are highlighted as opportunities for future research.

DOI: https://doi.org/10.1186/s13054-020-03369-5

Originally published at: Hussain, Arif; Via, Gabriele; Melniker, Lawrence; Goffi, Alberto; Tavazzi, Guido; Neri, Luca; Villen, Tomas; Hoppmann, Richard; Mojoli, Francesco; Noble, Vicki; Ziesekiewicz, Laurent; Blanco, Pablo; Ma, Irene W Y; Wahab, Mahathar Abd; Alsaawi, Abdulmohsen; Al Salamah, Majid; Balik, Martin; Barca, Diego; Bendjeldid, Karim; Bouhemad, Belaid; Bravo-Figueroa, Pablo; Breitkreutz, Raoul; Calderon, Juan; Connolly, Jim; Copetti, Roberto; Corradi, Francesco; Dean, Anthony J; Denault, André; Govil, Deepak; Graci, Carmela; et al (2020). Multi-organ point-of-care ultrasound for COVID-19 (PoCUS4COVID): international expert consensus. Critical Care, 24(1):702.

DOI: https://doi.org/10.1186/s13054-020-03369-5
Multi-organ point-of-care ultrasound for COVID-19 (PoCUS4COVID): international expert consensus

Arif Hussain1†, Gabriele Via2†, Lawrence Melniker3, Alberto Goffi4, Guido Tavazzi5,6, Luca Neri7, Tomas Villen9, Richard Hoppmann9, Francesco Mojoli10, Vicki Noble11, Laurent Zieleskiewicz12, Pablo Blanco13, Irene W. Y. Ma14, Mahathar Abd. Wahab15, Abdulmohsen Alsaaawi16, Majid Al Salamah17, Martin Balik18, Diego Barca19, Karim Bendjelid20, Belaid Bouhemad21, Pablo Bravo-Figueroa22, Raoul Breitkreutz23, Juan Calderon24, Jim Connolly25, Roberto Copetti26, Francesco Corradi27, Anthony J. Dean28, André Denault29, Deepak Govil30, Carmela Graci31, Young-Rock Ha32, Laura Hurtado33, Toru Kameda34, Michael Lanspa35, Christian B. Laursen36, Francis Lee37, Rachel Liu38, Massimiliano Meineri39, Miguel Montorfano40, Peiman Nazerian41, Bret P. Nelson42, Aleksandar N. Neskovic43, Ramon Nogue44, Adi Osman45, José Pazeli46, Elmo Pereira-Junior47, Tomislav Petrovic48, Emanuele Pivetta49, Jan Poelaert50, Susanna Price51, Gregor Prosen52, Shalim Rodriguez53, Philippe Rola54, Colin Royse55,56, Yale Tung Chen57, Mike Wells58, Adrian Wong59, Wang Xiaoting60, Wang Zhen61 and Yaseen Arabi62

Abstract
COVID-19 has caused great devastation in the past year. Multi-organ point-of-care ultrasound (PoCUS) including lung ultrasound (LUS) and focused cardiac ultrasound (FoCUS) as a clinical adjunct has played a significant role in triaging, diagnosis and medical management of COVID-19 patients. The expert panel from 27 countries and 6 continents with considerable experience of direct application of PoCUS on COVID-19 patients presents evidence-based consensus using GRADE methodology for the quality of evidence and an expedited, modified-Delphi process for the strength of expert consensus. The use of ultrasound is suggested in many clinical situations related to respiratory, cardiovascular and thromboembolic aspects of COVID-19, comparing well with other imaging modalities. The limitations due to insufficient data are highlighted as opportunities for future research.

Keywords: COVID-19, SARS-CoV-2, Point-of-care ultrasound (PoCUS), Focused cardiac ultrasound (FoCUS), Lung ultrasound (LUS), Echocardiography

Introduction
Since the first reports from China [1], SARS-CoV-2 has caused considerable morbidity and mortality from COVID-19 globally [1]. Although respiratory signs and symptoms are the most common manifestations, other systems may be involved [2]. Clinical presentations range from mild (80%) to life-threatening (5%), usually as acute respiratory distress syndrome (ARDS). Paucity of evidence, and urgency to adjust to evolving clinical scenarios have prompted adoption of approaches based on institutional experience [3], limited evidence, or extrapolation from other conditions [4, 5].

© The Author(s) 2020. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.
Point-of-care ultrasound (PoCUS) is a rapid, bedside, goal-oriented, diagnostic test that is used to answer specific clinical questions [6]. These distinctive features are appealing and address concerns of environmental contamination and disinfection of larger devices such as chest X-ray (CXR) and computed tomography (CT). Thus, multi-organ PoCUS could enhance the management of COVID-19 (Fig. 1).

Methods
We searched Medline, Pubmed Central, Embase, Cochrane, Scopus and online pre-print databases from 01/01/2020 to 01/08/2020, and collected all English language publications on PoCUS in adult COVID-19 patients, using the MeSH query: ["lung" AND "ultrasound"] OR “echocardiography” OR “Focused cardiac ultrasound” OR “point-of-care ultrasound” OR “venous ultrasound” AND [“COVID-19” OR “SARS-CoV2”]. This systematic search strategy (Fig. 2) [Additional file 1A] identified 214 records.

The available evidence for PoCUS in COVID-19 was considered. Where such evidence was not available, non-COVID-19 data were used. We then applied an expedited 2-round modified Delphi process to elicit a consensus from an expert panel [Additional file 1A], who voted on PICO statements in 9 distinct domains (Table 1) [Additional file 1B] and approved the final recommendations. Consistent literature was GRADEd. Summary recommendations were generated based on voting results, literature evidence and experts’ input presented with Level of Quality of Evidence (LQE: I, II-A, II-B, III) and Level of Agreement (Very Good, Good, Some, None) [Additional file 1C]. Lastly, we identified limitations of PoCUS and areas of future research.

DOMAINS 1—Diagnosis of SARS-CoV-2 infection, 2—Triage/disposition and 3—Diagnosis of COVID-19 pneumonia
COVID-19 almost invariably involves the respiratory system [2]. Approximately 5% of patients require critical care and mechanical ventilation, usually due to viral pneumonia and/or ARDS [7]. The diagnosis of COVID-19 pneumonia is challenging:

- Although CT has the best diagnostic yield [8], access is limited by patient volume, resources and risk of environmental contamination.
- Pre-existing conditions [9], and acute exacerbations of these diseases are common.
- Instability may preclude intra-hospital transportation.
- Delays or unreliability of reverse-transcriptase polymerase-chain-reaction (RT-PCR) results complicate infection control [10].
- Several algorithms/approaches developed for triage [11–20] are perceived as helpful, but remain unvalidated.

Evidence
LUS is more accurate than CXR for diagnosing respiratory conditions [21], including interstitial diseases [22], pneumonia [23] and COVID-19 pneumonia [24]. The diagnostic accuracy of addition of LUS outperforms standard emergency department tests for dyspnea [25, 26]. LUS can diagnose COVID-19 pneumonia in patients with normal vital signs [27] and distinguish viral and bacterial pneumonias [28].

LUS findings associated with COVID-19 pneumonia are reported to be similar to previously described viral pneumonias [12, 22]. Frequently observed are heterogeneous B-lines clusters, separated or confluent (corresponding to ground glass opacities on CT), large band-like longitudinal artifacts arising from normal pleural line (characterized as “light beam” [12]), pleural line irregularities, subpleural consolidations and areas with decreased lung sliding due to poor ventilation. Large consolidations with air bronchograms may be present, more commonly in patients requiring mechanical ventilation, possibly representing progression to ARDS or superimposed bacterial infection. At presentation, the distribution, although bilateral, is usually asymmetrical and patchy [29–31]. Lung involvement may be limited to dorsal/basal areas in milder COVID-19 pneumonia [32]. LUS shows good agreement with CT in recognizing lung pathology and its severity [33, 34] thus, identifying patients at higher risk of clinical deterioration, ICU admission, mechanical ventilation and mortality [34–36]. B-line count, consolidations and thickened pleural lines are associated with positive RT-PCR tests and clinical severity [37, 38]. Coupled with pretest probability, bilateral B-lines [single and/or confluent], irregular pleural line and subpleural consolidations increase the likelihood of diagnosing COVID-19 [39, 40], while non-specific, bilateral heterogeneous patterns [Additional file 6], combined with a typical clinical presentation, strongly suggest viral pneumonia. Conversely, if pre-test probability is low [41], a bilateral A-pattern on LUS may exclude COVID-19 pneumonia owing to its high negative predictive value for pneumonia [12, 30].

Multi-organ PoCUS yields a better diagnostic performance for causes of respiratory failure than LUS alone [42]. As a rapid, accurate diagnostic approach to acute dyspnea [43–45], it outperforms standard tests
Fig. 1 Graphical synopsis of potentially useful applications of point-of-care ultrasound (PoCUS) in COVID-19 patients. ABD, abdominal ultrasound; ACP, acute cor pulmonale; AKI, acute kidney injury; DUS, diaphragmatic ultrasound; DVT, ultrasound for deep venous thrombosis screening; ECHO, echocardiography; FoCUS, focused cardiac ultrasound; LUS, lung ultrasound; MUS, parasternal intercostal muscles ultrasound; ONSD, optic nerve sheath diameter; PEEP, positive end expiratory pressure; PoCUS, point-of-care ultrasound; TCD, transcranial Doppler; VASC, ultrasound for venous and arterial access.
Similar results have been reported in undifferentiated shock [46]. PoCUS is recommended as a first-line diagnostic test for investigating respiratory failure and/or hypotension [22, 47]. PoCUS may raise suspicions of falsely negative RT-PCR and/or alternate diagnoses [48]. Recognition of comorbidities (chronic RV or LV dysfunction) and COVID-19-associated complications (DVT and RV failure) may influence patient disposition, and PoCUS can change their management [40].

We present a conceptual framework for triage of respiratory failure [Additional file 7]. Without more data, triage protocols cannot be developed that are universally applicable.

Recommendations

1. We suggest using PoCUS, and especially LUS (presence of heterogeneous B-line clusters, pleural line irregularities, subpleural consolidations), and appropriately integrate the information with clinical assessment to diagnose COVID-19 pneumonia (LQE II-B, Very Good Agreement).
Table 1 PoCUS domains considered for consensus recommendations

Domain 1	PoCUS for Sars-Cov-2 infection diagnosis
Domain 2	PoCUS as a tool for triage/disposition
Domain 3	PoCUS for diagnosis of COVID-19 pneumonia
Domain 4	PoCUS for cardiovascular diagnosis
Domain 5	PoCUS for screening and diagnosis of thromboembolic disease
Domain 6	PoCUS and respiratory support strategies
Domain 7	PoCUS for management of fluid administration
Domain 8	PoCUS for monitoring of COVID-19 patients
Domain 9	PoCUS and infection control, techniques, technology and protocols

2. When CT-scan is not accessible or appropriate, we suggest using LUS to aid the diagnosis of COVID-19 pneumonia in suspected cases (LQE II-B, Good Agreement).

3. In patients with high pre-test probability for COVID-19 and LUS findings suggestive of pneumonia, a negative nasal/oropharyngeal RT-PCR may not be used to exclude COVID-19, and LUS findings, further raising suspicion, should prompt repeat testing with better yield (LQE II-B, Good Agreement).

4. We do not recommend using PoCUS and LUS alone to rule out SARS-CoV-2 infection in suspected COVID-19 (LQE II-B, Good Agreement).

5. After thorough examination of all lung fields and intercostal spaces, a bilateral A-pattern suggests absence of pneumonia in suspected or confirmed SARS-CoV-2 infection (LQE II-B, Good Agreement).

6. We suggest multi-organ PoCUS integrated with other clinical information for triaging and risk stratification of suspected COVID-19 at initial presentation (LQE II-B, Good Agreement).

Limitations and future research

More data are required to establish the accuracy of LUS findings for the diagnosis of COVID-19 pneumonia versus other viral pneumonias. PoCUS use for risk stratification, outcome prediction, and its impact on management of COVID-19 needs study.

DOMAIN 4—Cardiovascular diagnosis in COVID-19

Numerous cardiovascular issues are associated with COVID-19:

- Patients with cardiovascular comorbidities seem to develop more severe COVID-19 [49].

- Up to 17% of hospitalized COVID-19 patients sustain acute cardiac injury (ACI) that increases mortality [50, 51–53]. Besides the inflammatory and direct cellular injury, other possible mechanisms for ACI include hypoxemia and result in oxygen supply/demand imbalance [54]. A close association of acute and fulminant myocarditis with COVID-19 is not established. However, if present, it will result in low output syndrome or cardio-circulatory collapse [55]. Though high-sensitivity troponin assays allow detection of myocardial injury, no cutoff values reliably distinguish myocardial infarction (MI) from other ACI [56]. Elevation of cardiac biomarkers, ECG changes, LV and RV dysfunction [57, 58] have been reported in myocarditis and AMI [55, 59].

- It is difficult to distinguish the effects of pneumonia from superimposed congestive heart failure [59].

- Respiratory acidosis, alveolar inflammatory edema and microvascular alterations may increase pulmonary vascular resistance [60], and positive pressure ventilation may further increase RV afterload, precipitating RV failure [61].

- Various cardiac manifestations [62] have been described, and some critically ill COVID-19 patients exhibit shock states [51].

Evidence

Echocardiography and FoCUS are established tools for diagnosing cardiovascular disease [47, 63, 64]. FoCUS can detect pre-existing cardiac disease [Additional file 8] and acute RV and/or LV dysfunction [47]. Echocardiography [65] and FoCUS are recommended by American and European Echocardiography societies as diagnostic/monitoring tools in COVID-19 [66, 67]. FoCUS can guide decisions on coronary angiography [68] and inotropic/mechanical circulatory support [59, 69, 70]. Overt symptoms of myocardial ischemia, raised cardiac biomarkers, ECG changes and new LV regional wall motion abnormalities should be carefully evaluated so that myocardial infarction [Additional file 9] diagnostic/therapeutic pathways are followed expediently [54, 67, 68]. Low voltage QRS complexes, myocardial hyper-echogenicity, diffuse hypokinesia or regional wall motion abnormalities suggest myocarditis [71] [Additional file 11]. Acute cor-pulmonale can occur in COVID-19 [58, 72], and FoCUS can detect RV dilatation, paradoxical septal motion and RV longitudinal dysfunction [47] [Additional file 10]. Thus, FoCUS/echocardiography together with clinical and biochemical indices can enhance management of cardiovascular compromise.
Recommendations

7. We suggest FoCUS and/or echocardiography assessment in moderate-severe COVID-19 as it may change clinical management or provide information that could be lifesaving (LQE II-B, Very Good Agreement).

8. We suggest FoCUS and/or echocardiography for assessment of hemodynamic instability in moderate-severe COVID-19 (LQE II-B, Very Good Agreement).

9. We recommend FoCUS and echocardiography to diagnose RV and LV systolic dysfunction and cardiac tamponade as etiologies of hemodynamic instability in COVID-19 (LQE II-B, Very Good Agreement).

10. We suggest using FoCUS/echocardiography to guide hemodynamic management in severe COVID-19 (LQE II-B, Very Good Agreement).

Limitations and future research
Whether subtypes of COVID-19 exist with more severe cardiovascular involvement and worse prognosis, requires investigation. Study of diastolic function may be of interest in COVID-19.

DOMAIN 5—Screening and diagnosis of venous thromboembolic disease (VTE)
The risk of VTE in COVID-19 is high:

- Due to high incidence of DVT [73, 74] [Additional file 13].
- Pulmonary embolism (PE) [75, 76] [Additional file 10] and clotting in renal replacement circuits [75] in COVID-19 ICU patients are early and late complications.
- COVID-19 is associated with immunothrombotic dysregulation [77]. This manifests with high D-dimer [78], high C-reactive protein levels, anti-phospholipid antibodies [75] and sepsis-induced coagulopathy [79], and is likely to increase mortality [79].
- Screening for coagulopathy can risk stratify patients and may determine the need for anticoagulation [80]. However, higher D-dimer cutoffs may be needed to improve its specificity for DVT in COVID-19 [81].
- Whether DVT detection at hospital admission suggests more severe COVID-19 remains unknown.
- Despite standard thromboprophylaxis DVT is common in COVID-19 [81, 82].

Evidence
Ultrasound is the mainstay of DVT diagnosis [83]. Screening is advised, when feasible, in the general management of COVID-19 patients [84]. Many factors limit access to formal duplex venous sonography [85]. Although routine screening is not widely recommended [86], twice weekly ultrasound surveillance can detect DVT, avert PE and reduce mortality in ICU patients [87].

Lower extremity ultrasound is recommended in COVID-19 patients with unexplained RV dysfunction, unexplained/refractory hypoxemia, or in patients with suspected PE who are too unstable for intra-hospital transport [86].

Recommendations

11. Because critically ill COVID-19 patients have high risk for VTE, we suggest regular screening for DVT, including central vessels with catheters, independent of oxygenation and coagulation (LQE II-A, Very Good Agreement).

12. In moderate-severe COVID-19 with hemodynamic worsening or sudden instability, we suggest FoCUS for prompt investigation of acute cor-pulmonale (LQE II-B, Very Good Agreement).

13. In moderate-severe COVID-19, we suggest that echocardiographic indices of worsening RV function and/or increased pulmonary artery pressure may indicate PE (LQE II-A, Very Good Agreement).

Limitations and future research
DVT prevalence and its role in risk stratification in mild COVID-19 are not known. Correlation of DVT with different COVID-pneumonia phenotypes needs study.

DOMAIN 6—PoCUS and respiratory support strategies [including mechanical ventilation]
Phenotypes of COVID-19 pneumonia associated with similar degrees of hypoxemia but different lung weight, aerated volume and compliance have been described [88]. These range from “classic” ARDS (Phenotype-H) that responds to higher PEEP, to the better aerated low elastance (Phenotype-L) that often requires lower PEEP [89]. Future studies may clarify whether phenotyping COVID-19 pneumonia can guide respiratory support, mechanical ventilation settings, and minimize ventilator-induced lung injury [89].

“Classic” ARDS commonly involves dependent lung regions [90]; the same areas are typically involved in
advanced COVID-19 pneumonia [89, 91]. Localizing consolidated lung is important to maximize benefit from prone positioning. Prone positioning is preferable when dorsal consolidation is severe with spared ventral zones [92]. Prone positioning in non-intubated patients may rapidly improve oxygenation [93, 94].

Evidence
Like CT, LUS accurately characterizes regional lung pathology and identifies ARDS in COVID-19 pneumonia [33, 34, 40, 95]. LUS may discriminate mild-moderate from moderate-severe aeration loss, distinguishing different ARDS phenotypes [96] (Fig. 3).

Importantly, LUS may facilitate identification of patients with greater hypoxemia than expected for their alveolar lung injury (Fig. 3), in whom the pathophysiology may involve deranged perfusion (PE, micro-thrombosis, loss of pulmonary vasoconstriction, extrapulmonary shunt).

Global LUS score is strongly associated with lung tissue density/aeration measured with CT [97]. Using LUS to guide mechanical ventilation has been recommended [98] (Fig. 4). However, recruitment demonstrated by LUS correlates with recruitment estimated by pressure–volume curves [99], but not CT [97]. Although LUS may not predict oxygenation response to prone positioning, it does predict re-aeration of dorsal zones [100] (Fig. 5). LUS findings also correlate with extravascular lung water in ARDS [101, 102] and can monitor changes in aeration [103]. This has also been suggested in COVID-19 [104–106].

Recommendations

14. We suggest multi-organ PoCUS including LUS over no imaging to guide respiratory support in COVID-19 with respiratory failure (i.e. ventilation, prone positioning, PEEP, recruitment maneuvers) (LQE II-A, Good Agreement).

15. In addition to standard respiratory monitoring, we suggest LUS over CXR and equally to CT, to guide clinical decisions on respiratory support in COVID-19 with respiratory failure (LQE II-B, Good Agreement).

Limitations and future research
The benefit of LUS in ventilated COVID-19 patients is only theoretical. Studies to predict response to prone positioning, PEEP titration and other interventions are awaited. Role of LUS to decide invasive mechanical ventilation is unknown.

DOMAIN 7—Management of fluid administration in COVID-19 patients
Fluid management is fundamentally important and often challenging in critically ill patients [107]. In COVID-19 patients, fluid overload can exacerbate lung dysfunction. Recent recommendations stress the need for conservative fluid strategies [4].

Evidence
A large international survey found that PoCUS was the most frequently used approach to assess fluid responsiveness in critically ill COVID-19 patients [108]. While PoCUS can detect early signs of severe central hypoxemia [47] [Additional file 12], interpretation of inferior and superior vena cava collapsibility/distensibility indices is difficult when a variety of ventilation modalities are employed [18, 109]. Transthoracic echocardiography has inherent risks and limitations related to manpower and infection control [110].

Dynamic indices based on stroke volume variation, passive leg raising and mini-bolus administration techniques are good predictors of fluid responsiveness [111, 112] and can be assessed with transthoracic echocardiography.

In non-COVID-19 pneumonia patients, LUS has been shown to provide information on fluid tolerance and detect the consequences on the lung of overzealous fluid
COVID-19 PNEUMONIA LUS, consistent with “Phenotype L”

LUS Score = 11

Male, 64y, hypertension
Crs 44 ml/cmH20, P/F 105
(final PEEP set at 10cmH20)

COVID-19 PNEUMONIA LUS, consistent with “Phenotype H”

LUS Score = 27

Male, 74y, hypertension, CAD, chronic kidney failure
Crs 28 ml/cmH20, P/F 82,
(final PEEP set at 14cmH20)
resuscitation [113, 114]. Resolution of B-lines during hemodialysis has been described [115] and also observed in COVID-19 patients [116, 117].

Recommendations

17. We suggest FoCUS to screen for severe hypovolemia in moderate-severe COVID-19 at presentation, while Doppler-based fluid-responsiveness indices may be used for subsequent management (LQE II-A, Very Good Agreement).

18. We suggest that LUS alone is not sufficient as a screening tool for pulmonary congestion in moderate-severe COVID-19 (LQE III, Very Good Agreement).

19. We suggest that LUS alone is not sufficient to judge the appropriateness of fluid administration in moderate-severe COVID-19 (LQE II-B, Very Good Agreement).

20. In moderate-severe COVID-19, we suggest multi-organ PoCUS to monitor efficacy of fluid removal, by not only LUS findings of reduction of B-pattern areas, but also echocardiographic signs of resolution of volume overload and decreasing LV filling pressures (LQE II-B, Very Good Agreement).

Limitations and future research

In COVID-19 pneumonia, the severity of the bilateral interstitial manifestations may either be due to variations in the inflammatory condition of the lung or changes due to pulmonary congestion. Simplified PoCUS-guided fluid management could be beneficial in resource-limited settings and needs further studies.

DOMAIN 8—Monitoring patients with COVID-19

PoCUS FOR RESPIRATORY MONITORING: COVID-19 pneumonia is characterized by a wide spectrum of clinical presentations, from mild-moderate hypoxia to severe manifestations requiring life-sustaining measures [118]. In situations where large numbers of patients are admitted to areas with limited monitoring and staffing, disease progression may go unrecognized. Moreover, rapid progression to respiratory arrest has been reported [119]. Severe COVID-19 pneumonia is characterized by severe respiratory failure [120], but not necessarily as ARDS.

Evidence

Evolution of LUS findings and their quantification using scoring systems are effective in monitoring progression...
or resolution of lung injury, especially in terms of variations in aeration and extravascular water content [22, 98, 103, 121, 122]. LUS is very sensitive, but is not specific enough to identify all causes of respiratory deterioration [22]. A comprehensive semi-quantitative LUS approach [97] can assess severity of lung injury and distribution patterns.

In patients with COVID-19 pneumonia, progression of LUS findings has been correlated with clinical and radiological deterioration. Thus, it can accurately monitor the evolution throughout its spectrum of severity, from mechanically ventilated [104, 105, 123] or veno-venous-ECMO patients [106], to milder cases [124, 125, 126]. LUS has helped in identifying superimposed bacterial infections [127], and the response to antibiotic treatment [128]. LUS Monitoring has reduced use of CT and CXR in critically ill and COVID-19 populations [129, 130].

Recommendations

21. We suggest serial LUS for respiratory monitoring in moderate-severe COVID-19 (LQE II-B, Very Good Agreement).

22. We suggest multi-organ PoCUS integrated with other clinical and biochemical variables, in preference to CXR for investigation of respiratory deterioration in moderate-severe COVID-19 (LQE II-A, Very Good Agreement).

23. We suggest multi-organ PoCUS over LUS alone to detect respiratory deterioration and guide treatment in moderate-severe COVID-19 (LQE II-B, Very Good Agreement).

Limitations and future research

LUS has limitations and requires further research in early identification of patients who are more likely to progress to severe respiratory failure with inflammation, their pneumonia phenotype, and separate them from those with congestion.

DETECTION OF MECHANICAL VENTILATION-RELATED COMPLICATIONS: Approximately 2.5% of all COVID-19 patients [118] and up 88% of those admitted to ICU [9] require invasive mechanical ventilation, which may often last for weeks. The diagnosis of complications associated with prolonged ventilation requires imaging that may be limited due to risk of exposure to healthcare workers and environmental contamination. Thus, PoCUS, performed at the beside by the treating physician, may provide an accurate alternative.

Evidence

Pneumothorax. LUS has significantly higher sensitivity than CXR for the diagnosis of pneumothorax [79% versus 40%], whereas specificity is equally excellent [131]. However, most of these data are from trauma and post-procedural studies and may overestimate diagnostic performance of LUS in COVID-19. The negative predictive value of LUS for pneumothorax is approximately 100% (if pleural sliding, lung pulse and B or C patterns are observed) [132].

Ventilator-associated pneumonia. In the appropriate context, large consolidations not responsive to recruitment maneuvers or suction [133] are highly suggestive of secondary bacterial infection [127, 134].

Diaphragmatic dysfunction, and weaning failure from mechanical ventilation. Ventilation-induced diaphragmatic injury can be reliably assessed with ultrasound [135]. Combining LUS score with the evaluation of LV and diaphragm function may improve the success of weaning trials [136–139]. Assessment of parasternal intercostal muscles thickening fraction seems promising for predicting weaning failure [140]. Detection and treatment of unresolved pulmonary conditions can facilitate weaning [141, 142].
Acute cor-pulmonale. The effects of mechanical ventilation on RV function have been well-described. Acute cor-pulmonale becomes an important factor to be considered in the ventilation strategy [61, 143].

Recommendations

24. We suggest a prompt assessment of clinical deterioration with LUS for a timely and accurate bedside diagnosis of pneumothorax in severe COVID-19 (LQE II-B, Very Good Agreement).
25. We suggest LUS for early identification of ventilator-associated pneumonia in severe COVID-19 (LQE II-B, Very Good Agreement).
26. We suggest multi-organ PoCUS over CXR and CT to assess readiness for weaning, predict success and diagnose the cause(s) of weaning failure in COVID-19 (LQE II-B, Very Good Agreement).

Limitations and future research

The safety and cost-saving impact of LUS in diagnosing complications of mechanical ventilation is yet to be demonstrated. A decision process based on PoCUS for tracheal extubation vs. tracheostomy mandates validation.

PoCUS FOR HEMODYNAMIC MONITORING

Evidence

FoCUS and echocardiography are recommended for hemodynamic monitoring in critical care [47, 63, 64]. A recent survey found that ultrasound is the most frequently used monitoring tool to assess cardiac output and pulmonary artery pressures in critical COVID-19 patients [108].

Recommendations

27. We suggest FoCUS and/or echocardiography for hemodynamic monitoring in moderate-severe COVID-19 (LQE II-A, Very Good Agreement).
28. We suggest integrating PoCUS-derived information with data from other devices used for hemodynamic monitoring in severe COVID-19 (LQE II-B, Very Good Agreement).

Limitations and future research

Validated PoCUS-driven hemodynamic management protocols in COVID-19 are needed.

PoCUS FOR MONITORING OF OTHER ORGANS:

Many critically ill COVID-19 patients develop secondary organ dysfunction, including acute kidney injury (AKI), liver injury, rhabdomyolysis and gastrointestinal complications [118, 144]. Hemodynamic factors and viral tropism for tubular cells may contribute to AKI [145]. Gastrointestinal complications may result from sepsis, deranged hemodynamics, or microvascular thrombosis [75]. Neurological complications are also not infrequent in COVID-19 [146].

Evidence

PoCUS can exclude post- and pre-renal causes of AKI (by assessing volume status and hemodynamics). It can detect systemic and renal venous congestion, important factors in AKI [147, 148], acute gastrointestinal complications [149, 150] including cholestasis and bowel ischemia in COVID-19 patients [151]. The use of PoCUS for the diagnosis and management of neurological conditions is acknowledged [152] and may be applicable in COVID-19.

Recommendations

29. We suggest PoCUS assessment for pre-renal causes of AKI, including hemodynamics and venous congestion in COVID-19 (LQE II-B, Very Good Agreement).

Limitations and future research

Expertise and data on PoCUS applications to detect organ dysfunction in COVID-19 especially AKI and acute abdomen are limited and need further study.

DOMAIN 9—Infection control, PoCUS technique, technology, and protocols

In the context of COVID-19:

- Interest in PoCUS has increased.
- Choice of machines is limited.
- Infection transmission to operators and environmental viral dissemination are serious concerns that may impact the quality of ultrasound examination and the choice of equipment.
- A systematic scanning approach is required to avoid missing or misinterpreting important findings.

Evidence

Laptop/tablet/pocket-sized machines provide reasonable compromise between portability and capability [153] (Fig. 6). Multi-frequency probes may be preferable to visualize both deep and superficial structures. While a
single phased-array probe is suitable for FoCUS and LUS [154], a convex probe has been recommended by some experts [22]. Topographic zones and scanning techniques require standardization [12, 22, 30]. There is also a growing interest in telemedicine technology including robotic examinations [155] for remote guidance of minimally trained operators [156, 157] [Additional file 14].

To protect healthcare workers and patients, stringent infection control practices are crucial. Available guidance deals with environmental transmission and spread to personnel [158]. Recommendations on disinfectants [159] and information on SARS-CoV-2 survival on fomites [160] are also available.

Recommendations

30. We suggest using laptop/tablet/pocket-sized devices with adequate imaging capabilities that are easier to protect from viral contamination in COVID-19 (LQE II-B, Good Agreement).

31. For diagnostic accuracy, quality control and obtaining second opinions, we suggest performance of standardized PoCUS examinations in COVID-19 (LQE II-B, Good Agreement).

32. We recommend reporting PoCUS studies and recording, storage and archiving of diagnostic images and cine-clips (LQE II-B, Good Agreement).

33. We suggest using tele-ultrasound for remote guidance and consultations in COVID-19. Simple audio-visual communication devices (e.g. smartphones) can facilitate this (LQE II-B, Good Agreement).

34. We suggest PoCUS over CXR and CT, where appropriate, to reduce environmental spread of infection and risk of infection to healthcare workers in COVID-19 (LQE II-A, Good Agreement).

35. We recommend strict adherence to manufacturers’ guidance for cleaning and disinfection of equipment used for COVID-19 (LQE II-A, Good Agreement).

36. We suggest using tele-ultrasound for remote guidance and consultations in COVID-19. Simple audio-visual communication devices (e.g. smartphones) can facilitate this (LQE II-A, Good Agreement).

37. We suggest PoCUS over CXR and CT, where appropriate, to reduce environmental spread of infection and risk of infection to healthcare workers in COVID-19 (LQE II-A, Good Agreement).

Limitations and future research

Information on quality, safety, remote mentoring/monitoring and archiving in COVID-19 is limited. Evidence for safety and efficacy of different disinfectants and methods of cleaning contaminated equipment is needed to make robust infection control policies.

Conclusion

This consensus document based on the available evidence and expert opinion should encourage the use of PoCUS to improve patient outcomes during the current pandemic and development of meaningful protocols and practices to overcome COVID-19 and prepare for future challenges.

Supplementary information

is available for this paper at https://doi.org/10.1186/s13054-020-03369-5.

Additonal file 1A. Panel Composition, Literature search
Additonal file 1B. Consensus Methodology
Additonal file 1C. Consensus Results and Summary Recommendations
Additonal file 2. (Video 1) Lung ultrasound (LUS) findings in COVID-19 Pneumonia. Clusters of B-lines. These usually have a patchy distribution
Additonal file 3. (Video 2) Lung ultrasound (LUS) findings in COVID-19 Pneumonia. Longitudinal bright, band-like, large artifacts
Additonal file 4. (Video 3) Lung ultrasound findings (LUS) in COVID-19 Pneumonia. Subpleural consolidations and spared areas
Additonal file 5. (Video 4) Lung ultrasound (LUS) findings in COVID-19 Pneumonia. Lung consolidations in dorsal areas
Additonal file 6. (Video 5). Cumulative lung ultrasound pattern in a patient with COVID-19 pneumonia. The exam was performed considering
3 regions per hemithorax (anterior, lateral and posterior, with the ster-
num, the anterior axillary line and the posterior axillary line as landmarks) and an upper and a lower quadrant for each one of them. The resulting 6 areas per hemithorax are labelled with numbers from 1 to 6, and with L for left side and R for the right side.

Additional file 7. PoCUS-empowered triage in respiratory failure during COVID-19 Pandemic. Conceptual framework of point-of-care ultrasound (PoCUS) use for the triage of dyspneic and/or hypoxemic patients, during the SARS-CoV-2 pandemic: the diagram does not represent an algorithm but rather a framework for potentially developing protocols according to local/institutional clinical practices, policies and regulations. It does not either provide a list of conclusive diagnosis or specific treatments, but suggests how to integrate at best PoCUS in the workflow of this specific setting.

Additional file 8. (Video 6). Focused cardiac ultrasound (FoCUS) findings in a patient with COVID-19 Pneumonia and pre-existing cardiac disease. First panel shows a videoclip with findings consistent with chronic right ventricular dysfunction. Second panel shows videoscops with evidence of chronic left ventricular failure.

Additional file 9. (Video 7). Focused cardiac ultrasound (FoCUS) findings in a patient with COVID-19 pneumonia and acute myocardial infarction.

Additional file 10. (Video 8). Focused Cardiac Ultrasound (FoCUS) find-

ings in a patient with COVID-19 Pneumonia and acute cor pulmonale, due to both mechanical ventilation and submassive pulmonary embolism.

Additional file 11. (Video 9). Focused cardiac ultrasound (FoCUS) findings in a patient with COVID-19 pneumonia and myocarditis.

Additional file 12. (Video 10) Focused cardiac ultrasound (FoCUS) find-

ings in a patient with COVID-19 pneumonia and severe hypovolemia.

Additional file 13. (Video 11). Focused cardiac ultrasound (FoCUS) find-

ings in a patient with COVID-19 pneumonia and diffuse deep venous thrombosis. (Courtesy of Dr. Scopigni Francesca)

Additional file 14. (Video 12). Remote guidance with tele-ultrasound in the COVID-ICU. Operators within the isolation room perform lung and cardiac ultrasound exam in a COVID-19 pneumonia patient, with guid-

ance and second opinion from a colleague in the non-COVID zone of the hospital. Guidance is provided verbally and with remote control of the ultrasound settings. (Courtesy of Dr. Bruno Capelli)

Abbreviations
ACI: Acute cardiac injury; ARDS: Acute respiratory distress syndrome; AKI: Acute kidney injury; COVID-19: Corona virus disease 19; CT: Computerized tomography; CXR: Chest radiography; DVT: Deep venous thrombosis; ECG: Electro-cardiogram; FoCUS: Focused cardiac ultrasound; ICU: Intensive care unit; LQE: Level of quality of evidence; LUS: Lung ultrasound; LV: Left ventricle; PE: Pulmonary embolism; PEEP: Positive end expiratory pressure; PICO: Patient intervention comparator outcome; PLR: Passive leg raising; PoCUS: Point-of-care ultrasound; RT-PCR: Reverse-transcriptase polymerase-chain-reaction; RV: Right ventricle; SARS-CoV-2: Severe acute respiratory syndrome coronavirus-2; SVV: Stroke volume variation; TAPSE: Tricuspid annular plane systolic excursion; VTE: Venous thromboembolic disease.

Acknowledgements
The authors wish to acknowledge Mr. Steve Wilson, Medical Librarian, Univer-

sity of South Carolina School of Medicine, Columbia, SC, USA, for his valuable assistance with the online survey for the Delphi process and Dr Rajendram Rajkumar, King Abdulaziz Medical City, Riyadh, for assisting with editing of the manuscript.

Authors’ contributions
AH and GV contributed equally as authors in conceiving the contents, gather-

ing the relevant material, preparing the manuscript and chairing the steering committee of the process, LM GRAĐEđ the evidence and supervised the Delphi consensus process as methodologist and reviewed the manuscript, AG conceived the evidence presentation and edited, GT contributed to the cardiovascular and hematological sections, LN contributed to concepts of triaging, TV contributed to LUS, FC and FM contributed to the ventilation section, RH and VN contributed to the manuscript, and YA conceived the idea of this work, provided guidance and edited the manuscript. All the authors participated in the Delphi process, provided input for drafting recommenda-

tions and reviewed the manuscript.

Funding
There were no financial disclosures specific to this work.*

Availability of data and materials
The data and other material can be made available to the Journal.

Ethics approval and consent to participate
There was no ethics approval required or applicable for this work.

Consent for publication
No material has been borrowed/reproduced from any other authors or publications.

Competing interests
Except for the following authors, none have declared any disclosures with respect to the present work: A Hussain: Currently serving President of WINFO-

CUS—G Tavazzi: Received fees for lectures from GE Healthcare unrelated to this work—R Hoppmann: EchoNous Advisory Board—F Mojoli: Received fees for lectures from Hamilton Medical; GE Healthcare, Seda Spa and institutional relationship between University of Pavia and Hamilton Medical—G Via: eMedi-

cal Academy co-founder—B Nelson: Echonomous and DiA Advisory Board.

Author details
1 Department of Cardiac Sciences, King Abdullah Medical City and King Abdulaziz International Medical Research Center, Riyadh, Saudi Arabia. 2 Car-

diac Anesthesia and Intensive Care, Cardiocentro Ticino, Lugano, Switzerland.

3 New York Presbyterian Brooklyn Methodist Hospital, New York, NY, USA. 4 Department of Medicine and Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, Canada. 5 Department of Clinical-Sur-

gical, Diagnostic and Paediatric Sciences, Unit of Anaesthesia and Intensive Care, University of Pavia, Pavia, Italy. 6 Anaesthesia and Intensive Care, Fondazi-

one Istituto Di Ricovero E Cura a Carattere Scientifico, Policlinico San Matteo Foundation, Pavia, Italy. 7 Emergency Medicine and Critical Care Consultant, King Fahad Specialist Hospital –Dammam, Dammam, Saudi Arabia. 8 School of Medicine, Francisco de Vitoria University, Madrid, Spain. 9 University of South Carolina School of Medicine, Columbia, SC, USA. 10 Anesthesia and Intensive Care, Fondazione IRCCS Policlinico San Matteo, Universita Degli Studi Di Pavia, Pavia, Italy. 11 University Hospitals Cleveland Medical Center, Cleveland, OH, USA. 12 Service D'Anesthésie Réanimation Hôpital Nord, APHM, Chemin des Bourrely, 13015 Marseille, France. 13 Department of Teaching and Research, Hospital“Dr Emilio Ferreyra”, Necocchea, Argentina. 14 Division of General Internal Medicine, Department of Medicine, University of Calgary, Calgary, Canada. 15 Emergency and Trauma Department, Hospital Kuala Lumpur, 50586 Kuala Lumpur, Malaysia. 16 King Abdulaziz Medical City, King Abdullah International Medical Research Center, Ministry of National Guard Health Affairs, Riyadh, Saudi Arabia. 17 College of Public Health and Health Informat-

ics, King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia. 18 Dept of Anaesthesiology and Intensive Care, First Medical Faculty, Charles University, Prague, Czechia. 19 Medico Ecografista IDAT, Buenos Aires, Argentina. 20 Intensive Care Division, Geneva University Hospitals, Geneva, Switzerland. 21 Department of Anaesthesiology and Intensive Care, CHU DIjon and Université Bourgogne Franche-Comté, LNC UMR8866, 21000 DIjon, France. 22 PICU Hospital San Juan de Dios, Santiago, Chile. 23 FOM University of Economy & Management, Frankfurt Campus, Frankfurt, Germany. 24 Hospital General, Instituto Mexicano del Seguro Social, De Zona 4 Monterrey, Nuevo Leon, Mexico. 25 Great North Trauma and Emergency Care Newcastle, New-

castle upon Tyne, UK. 26 Emergency Department, Latisana General Hospital, LATISANA, Italy. 27 Department of Surgical, Medical and Molecular Pathology and Critical Care Medicine, University of Pisa, Pisa, Italy. 28 University of Penn-

sylvania, Philadelphia, PA, USA. 29 Montreal Heart Institute, Montreal, Canada. 30 Medanta, The Medicity, Gurugao, India. 31 Ospedale Niguarda C’Grande, Milan, Italy. 32 Dept of Emergency Medicine, Bundang Jasaeng Hospital, Sorok, Korea. 33 WINFOCUS Medical, GE Healthcare, Seda Spa and institutional affiliation between University of Pavia and Hamilton Medical—G Via: eMedi-
cal Academy co-founder—B Nelson: Echonomous and DiA Advisory Board.

*Some of the authors contributed to a previous version of this document and have been involved in previous work on this topic.
of Clinical Research, Odense University Hospital, University of Southern Denmark, Odense, Denmark. 42 Khoo Teck Puat Hospital, Singapore, Singapore. 43 Dept. of Emergency Medicine, Yale School of Medicine, New Haven, CT, USA. 44 Herzzentrum Leipzig, Leipzig, Germany. 45 Department of Ultrasound & Doppler Hospital De Emergencias “Dr. Clemente Alvarez”, Rosario, Santa Fe, Argentina. 46 Department of Emergency Medicine, Careggi University Hospital, Firenze, Italy. 47 Department of Emergency Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA. 48 Clinical Hospital Zemun, Faculty of Medicine, University of Belgrade, Belgrade, Serbia. 49 Faculty of Medicine, University of Lleida, Lleida, Spain. 50 Hospital Raja Permaisuri Bainun, Ipoh, Perak, Malaysia. 51 FAME - Medicine School of Barbacena - MG-Brasil, Barbacena, Brazil. 52 Arbo Education, Rio de Janeiro, Brazil. 53 SAMU 93 - Hôpital Avicenne, Paris, France. 54 Città Della Salute E Della Scienza Di Torino Hospital, University of Turin, Turin, Italy. 55 Faculty of Medicine and Pharmacy VUB, Univ Hospital Brussels, Brussels, Belgium. 56 Royal Brompton Hospital, London, UK. 57 Emergency Department, University Clinical Centre Maribor, Maribor, Slovenia. 58 Hospital Nacional Edgardo Rebagliati Martins, Lima, Peru. 59 Santa Cabrini Hospital, Montreal, Canada. 60 Department of Surgery, The University of Melbourne, Melbourne, VIC, Australia. 61 Outcomes Research Consortium, Cleveland Clinic, Cleveland, OH, USA. 62 Department of Emergency Medicine, Hospital Universitario La Paz, Madrid, Spain. 63 Division of Emergency Medicine, University of the Witswatersrand, Johannesburg, South Africa. 64 King’s College Hospital, London, UK. 65 Department of Critical Care Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100730, China. 66 The Fourth Military Medical University, Xi’an 710032, China. 67 King Abdulaziz Medical City, King Saud Bin Abdulaziz University for Health Sciences, King Abdullah International Medical Research Center, Riyadh, Saudi Arabia.

Received: 29 April 2020 Accepted: 3 November 2020 Published online: 24 December 2020

References

1. Coronavirus disease 2019 (COVID-19) Situation Report – 92 [https://www.who.int/docs/default-source/coronaviruse/situation-reports/20200801-covid-19-street-194.pdf?sfvrsn=401287f3_2]
2. Wu Z, McGoogan JM. Characteristics of and Important Lessons From the Coronavirus Disease 2019 (COVID-19) Outbreak in China: Summary of a Report of 72314 Cases From the Chinese Center for Disease Control and Prevention. JAMA. 2020.
3. Mojoli F, Mongodi S, Orlando A, Arisi E, Pozzi M, Ciardi L, Tavazzi G, Baldanti F, Bruno R, Iotti GA, et al. Our recommendations for acute management of COVID-19: Crit Care. 2020;24(1):207.
4. Alhazzani W, Moller MH, Arabi YM, Loeb M, Gong MN, Fan E, Oczkowski S, Levy MM, Derde L, Dzierba A et al. Surviving Sepsis Campaign: 2020 Update: Clinical management of severe acute respiratory infection when novel coronavirus (ncov) infection is suspected. Intensive Care Med. 2020;46(7):1445–8.
5. Antunez-Montes OY, Buonsenso D. Routine use of Point-of-Care lung ultrasound during the COVID-19 pandemic. Med Intensiva. 2020.
6. Bhebi S, Sahu AK, Mathew R, Sinha TP. Point-of-care ultrasound in COVID-19 pandemic. Postgrad Med J. 2020.
7. Dong D, Tang Z, Wang S, Hui H, Gong L, Lu Y, Xue Z, Liao H, Chen F, Yang F et al. The role of imaging in the detection and management of COVID-19: a review. IEEE Rev Biomed Eng. 2020, PP.
8. Duggan N, Litepolo AS, Shokohi A, Goldsmith AJ. Using lung point-of-care ultrasound in suspected COVID-19: case series and proposed triage algorithm. Clin Pract Cases Emerg Med. 2020:289–294.
9. Guaracino F, Vetrugno L, Forfori F, Corradi F, Orso D, Bertini P, Orlanda A, Federici N, Copetti R, Bove T. Lung, heart, vascular, and diaphragm ultrasound examination of COVID-19 patients: a comprehensive approach. J Cardiothoracic Vasc Anesth. 2020.
10. Pileggi C, Strumia A, Stone MB, Pascalella G. The ultrasound guided triage: a new tool for prehospital management of COVID-19 pandemic. Anesth Analg. 2020.
11. Erika P, Andrea V, Cillis MG, Ioannilli E, Iannicelli T, Andrea M. Triage decision-making at the time of COVID-19 infection: the Piacenza strategy. Intern Emerg Med. 2020;15(5):879–82.
12. Smargiassi A, Soldati G, Bonghetti A, Scoppettuolo G, Tamburini E, Testa A A R, Koro F, Natali L, Lanza AR, Buonsenso D et al. Lung ultrasonography for early management of patients with respiratory symptoms during COVID-19. J Ultrasound. 2020.
13. Tierney DM, Huelster JS, Overgaard JD, Plunkett MB, Boland LL, St Hill CA, Agboto VK, Smith CS, Mikel BE, Weise BE, et al. Comparative performance of pulmonary ultrasound, chest radiograph, and CT among patients with acute respiratory failure. Crit Care Med. 2020;48(2):151–7.
14. Volpicelli G, Elbarbary M, Blaivas M, Lichtenstein DA, Mathis G, Kirkpatrick AW, Melniker L, Gargani L, Noble VE, Via G, et al. International evidence-based recommendations for point-of-care lung ultrasound. Intensive Care Med. 2020;38(4):577–91.
15. Ye X, Xiao H, Chen B, Zhang S. Accuracy of lung ultrasonography versus chest radiography for the diagnosis of adult community-acquired pneumonia: review of the literature and meta-analysis. PLoS ONE. 2015;10(6):e0130066.
16. Pare JR, Carmelo I, Mayo KC, Leo MM, Dugas JN, Nelson KP, Baker WE, Shareef F, Mitchell PM, Schechter-Perkins EM. Point-of-care Lung Ultrasound Is More Sensitive than Chest Radiograph for Evaluation of COVID-19. West J Emerg Med. 2020;21(4):771–8.
17. Pizzuta E, Goffi A, Lupia E, Tizzani M, Porrino G, Ferretti E, Volpicelli G, Balzaretti P, Banderali I, Iacobucci A, et al. Lung ultrasound-implemented diagnosis of acute decompensated heart failure in the ED: A SMEU multicenter study. Chest. 2015;148(1):202–10.
18. Laursen CB, Sloth E, Lassen AT, Christensen R, Lambrechtshjen J, Madsen PH, Henriksen DP, Davidsen JR, Rasmussen F. Point-of-care ultrasonography in patients admitted with respiratory symptoms: a single-blind, randomised controlled trial. Lancet Respir Med. 2014;2(6):638–46.
19. Hankins A, Bang H, Walsh P. Point of care lung ultrasound is useful when screening for CoVid-19 in Emergency Department patients. medRxiv 2020.
20. Tan G, Liu X, Zhu Z, Wang Z, Huang F, Zhang Y, Zhao Y, He S, Wang X, Shen H et al. Use of Lung Ultrasound to Differentiate Coronavirus Disease 2019 (COVID-19) Pneumonia From Community-Acquired Pneumonia. Ultrasound Med Biol 2020.
21. Peng QY, Wang XT, Zhang LN. Chinese Critical Care Ultrasound Study G. Findings of lung ultrasonography of novel coronavirus pneumonia during the 2019–2020 epidemic. Intensive Care Med 2020.
22. Soldati G, Smargiassi A, Inchingolo R, Buonsenso D, Perrone T, Braginti DF, Perlini S, Torri E, Marianii A, Mossolani EE et al. Proposal for international standardization of the use of lung ultrasound for COVID-19 patients; a simple, quantitative, reproducible method. J Ultrasound Med 2020.
23. Volpicelli G, Gargani L. Sonographic signs and patterns of COVID-19 pneumonia. Ultrasound J. 2020;12(1):63–68.
Nouvenne A, Zani MD, Milanese G, Parise A, Baciarello M, Bignami EG, Odone A, Sverzulli N, Meschi T, Ticinesi A. Lung ultrasound in COVID-19 pneumonia: correlations with chest CT on hospital admission. Respiration 2020:1–8.

Zielinskiwicz L, Markarian T, Lopez A, Taguer C, Mohammendi N, Boucekine M, Baumstark K, Besch G, Mathon G, Duclos G et al. Comparative study of lung ultrasound and chest computed tomography scan in the assessment of severity of confirmed COVID-19 pneumonia. Intensive Care Med 2020.

Bonadza NC, Piano A, Buonsenso D, Gilardi E, Torelli R, Petrucci M, Di Maurizio L, Biasucci DG, Fuorlo M, Forte A, Zaccaria R. Fraccesi F. Lung ultrasound findings are associated with mortality and need of intensive care admission in COVID-19 patients evaluated in the Emergency Department. Ultrasound Med Biol 2020.

Lichter Y, Topilsky Y, Taib P, Banai A, Hochstadt A, Merdler I, Gal Oz A, Viner J, Goreen O, Cohen B et al. Lung ultrasound predicts clinical course and outcomes in COVID-19 patients. Intensive Care Med 2020.

Bar S, Lecourtis A, Douf M, Goldberg E, Bourbon C, Arnaud E, Domisse L, Dupont H, Gossot P. The association of lung ultrasound images with COVID-19 infection in an emergency room cohort. Anaesthesia 2020.

Benouchi MB, Chauvin A, Dion E, Baranne ML, Levan F, Vicaut E, Bourrier P. Lung injury in patients with or suspected COVID-19: a comparison between lung ultrasound and chest CT-scanner severity assessment: an observational study. In: medRxiv preprint. 2020.

Peony R, Marbeuf-Guye C, Truong V, Giroud M, Riviere C, Khennissi K, Legay L, Simonetta M, Elezi A, Princepe A et al. Accuracy of Emergency Department Clinical Findings for Diagnosis of Coronavirus Disease 2019. Ann Emerg Med 2020.

Tung Chen YLFR, Rodriguez Fuertes P. The role of point-of-care ultrasound in the initial characterization of COVID-19 patients: Results from a prospective multicentric study. medRxiv 2020.

Llamas-Alvarez AM, Tenza-Lozano EM, Latour-Perez J. Accuracy of lung ultrasonography in the diagnosis of pneumonia in adults: systematic review and meta-analysis. Chest. 2017;151(2):374–82.

Bataille B, Riu B, Ferre F, Moussot PE, Mari A, Brunel E, Ruiz J, Mora M, Kajimoto K, Madeen K, Nakayama T, Tsudo H, Kuroda T, Abe T. Rapid evaluation by lung-cardiac inferior vena cava (LCI) integrated ultrasound for differentiating heart failure from pulmonary disease as the cause of acute dyspnea in the emergency setting. Cardiovasc ultrasound. 2012;10(1):49.

Naarzan P, Vanni S, Polvicipili G, Gigli C, Zanobetti M, Bartolucci M, Ciavattone A, Lamotte A, Velti A, Fabbi A et al. Accuracy of point-of-care multigate ultrasonography for the diagnosis of pulmonary embolism. Chest. 2014;145(5):950–7.

Zanobetti M, Scorpiniti M, Gigli C, Naarzan P, Vanni S, Innocenti F, Stefanone VT, Savinelli C, Coppa A, Bigarini S et al. Point-of-care ultrasonography for evaluation of acute dyspnea in the ED. Chest. 2017;151(6):1295–301.

Volpicelli G, Lamotte A, Tullio M, Cardinale L, Giurado M, Stefanone V, Boero E, Naarzan P, Pozzi R, Frascisco M. Point-of-care multigate ultrasonography for the evaluation of undifferentiated hypotension in the emergency department. Intensive Care Med. 2013;39(7):1290–8.

Via G, Husain A, Wells M, Reardon R; ElBarbary M, Noble VE, Tsung JW, Simbs DB, Thiene G, Vardeny O, et al. Recognition and initial management of fulminant myocarditis: a scientific statement from the american heart association. Circulation. 2020;141(6):e69–92.

McCarthy CF, Raber I, Chapman AR, Sandoval Y, Apple FS, Mills NL, Januzzi JL. Myocardial injury in the era of high-sensitivity cardiac troponin assays: a practical approach for clinicians. JAMA Cardiol 2019.

Churchill TW, Bertrand PB, Bernard S, Namasivayam M, Churchill J, Croussillat D, Davis EF, Hung J, Picard MH. Echocardiographic features of COVID-19 illness and association with cardiac biomarkers. J Am Soc Echocardiogr. 2020;33(3):253–60.

Dweck MR, Bularga A, Hahn RT, Bing R, Lee KK, Chapman AR, White A, Salvo GD, Sade LE, Pearce K et al. Global evaluation of echocardiography in patients with COVID-19. Eur Heart J Cardiovasc Imaging 2020.

Fried JA, Ramsabub K, Bhatt R, Topkara VK, Klein J, Horn E, Rabbani L, Brodie D, Jain SS, Kirtane A et al. The variety of cardiovascular presentations of COVID-19. Circulation 2020.

Price LC, McAuley DF, Marino PS, Finney SJ, Griffiths MJ, Wort SJ. Pathophysiology of pulmonary hypertension in acute lung injury. Am J Physiol Lung Cell Mol Physiol. 2012;302(8):L803-815.

Reppes X, Charron C, Vieillard-Baron A. Acute cor pulmonale in ARDS: rationale for protecting the right ventricle. Chest. 2015;147(1):259–65.

Kajimoto K, Madeen K, Nakayama T, Tsudo H, Kuroda T, Abe T. Rapid evaluation by lung-cardiac inferior vena cava (LCI) integrated ultrasound for differentiating heart failure from pulmonary disease as the cause of acute dyspnea in the emergency setting. Cardiovasc ultrasound. 2012;10(3):49.

Ehman SL, Simons DB, Thiene G, Vardeny O, et al. Recognition and initial management of fulminant myocarditis: a scientific statement from the American Heart Association. Circulation. 2017;136(1):e232–68.

Mehrabi Y, Kloner RA, Prager R, Hare SS. Dennie C. Imaging tests for the diagnosis of myocardial infarction (2018). Echocardiogr. 2020;33(7):683 e681–683 e633.

Thygesen K, Alpert JS, Jaffe AS, Chairman RF, Bank JJ, Morrow DA, White HD, Thygesen K, Alpert JS, Jaffe AS et al. Fourth universal definition of myocardial infarction (2018). Eur Heart J. 2019;40(3):237–69.

Kociol RD, Cooper LT, Fang JC, Mosleh JJ, Pang PS, Sahe MA, Shah RV, Sims DB, Thiene G, Vardeny O et al. Recognition and initial management of fulminant myocarditis: a scientific statement from the American heart association. Circulation. 2020;141(6):e69–92.

McKervey FP, Raber I, Chapman AR, Sandoval Y, Apple FS, Mills NL, Januzzi JL. Myocardial injury in the era of high-sensitivity cardiac troponin assays: a practical approach for clinicians. JAMA Cardiol 2019.

Churchill TW, Bertrand PB, Bernard S, Namasivayam M, Churchill J, Croussillat D, Davis EF, Hung J, Picard MH. Echocardiographic features of COVID-19 illness and association with cardiac biomarkers. J Am Soc Echocardiogr 2020;33(3):253–60.

Dweck MR, Bularga A, Hahn RT, Bing R, Lee KK, Chapman AR, White A, Salvo GD, Sade LE, Pearce K et al. Global evaluation of echocardiography in patients with COVID-19. Eur Heart J Cardiovasc Imaging 2020.

Fried JA, Ramsasub K, Bhatt R, Topkara VK, Klein J, Horn E, Rabbani L, Brodie D, Jain SS, Kirtane A et al. The variety of cardiovascular presentations of COVID-19. Circulation 2020.

Price LC, McAuley DF, Marino PS, Finney SJ, Griffiths MJ, Wort SJ. Pathophysiology of pulmonary hypertension in acute lung injury. Am J Physiol Lung Cell Mol Physiol. 2012;302(8):L803-815.

Reppes X, Charron C, Vieillard-Baron A. Acute cor pulmonale in ARDS: rationale for protecting the right ventricle. Chest. 2015;147(1):259–65.

Kajimoto K, Madeen K, Nakayama T, Tsudo H, Kuroda T, Abe T. Rapid evaluation by lung-cardiac inferior vena cava (LCI) integrated ultrasound for differentiating heart failure from pulmonary disease as the cause of acute dyspnea in the emergency setting. Cardiovasc ultrasound. 2012;10(3):49.

Ehman SL, Simons DB, Thiene G, Vardeny O, et al. Recognition and initial management of fulminant myocarditis: a scientific statement from the American Heart Association. Circulation. 2017;136(1):e232–68.
71. Skouri HN, Dec GW, Friedrich MG, Cooper LT. Noninvasive imaging in myocarditis. J Am Coll Cardiol. 2006;48(10):2085–93.

72. Szekely Y, Lichter Y, Taieb P, Banai A, Hochstadt A, Merdler I, Gal Oz A, Rothschild E, Baruch G, Peri Y, et al. Spectrum of cardiac manifestations in COVID-19: a systematic echocardiographic study. Circulation. 2020;142(4):342–53.

73. Tavazzi GCL, Caneva L, Mongodi S, Mojoli F. Thrombotic events in SARS-CoV-2 patients: an urgent call for ultrasound screening. Intensive Care Med 2020.

74. Ren B, Yan F, Deng Z, Zhang S, Xiao L, Wu M, Cai L. Extremely high incidence of lower extremity deep venous thrombosis in 48 patients with severe COVID-19 in Wuhan. Circulation. 2020;142(2):181–3.

75. Helms J, Tacquard J, Severac F, Lorant J, Ohana M, Delabranche X, AL E, Sepsi S. afTCTGCRsiCASTGGEArGI. High risk of thrombosis in patients in severe SARS-CoV-2 infection: a multicenter prospective cohort study. Intensive Care Med 2020, in press.

76. Klok FA, Kruip M, van der Meer A, Arbous MS, Gommers D, Kant KM, Kaptein FHJ, van Paassen J, Staals MAM, Huysman MV et al. Incidence of thrombotic complications in critically ill COVID-19 patients with COVID-19. Thromb Res 2020.

77. Frantzeskaki F, Armaganidis A, Orfanos SE. Immunothrombosis in acute myocarditis. J Am Coll Cardiol. 2006;48(10):2085–93.

78. Zhou F, Yu T, Du R, Fan G, Li Y, Liu X, Mei J, Wang Y, Song B, Gu X, et al. Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. Lancet. 2020;395(10229):1045–62.

79. Tang N, Bai H, Chen X, Gong J, Li D, Sun Z. Anticoagulant treatment is associated with decreased mortality in severe coronavirus disease 2019 patients with coagulopathy. J Thromb Haemost 2020.

80. Thachil J TN, Gando S, Falanga A, Cattaneo M, Levi M, Clark C, Iba T. ISTH interim guidance on recognition and management of coagulopathy in COVID-19. Thromb Haemost 2020, in press.

81. Demelo-Rodriguez P, Cervilla-Munoz E, Ordieres-Ortega L, Parra-Virto Trimaille A, Curtiaud A, Marchandot B, Matsushita K, Sato C, Leonard-Blais L. Whole lung lavage: a unique model for ultrastructural studies of acute lung injury in a non-intubated patient. Thorax. 2020;75(4):346–57.

82. Bataille B, Rao G, Cocquet P, Mora M, Masson B, Ginot J, Silva S, Moussut PE. Accuracy of ultrasound B-lines score and E/E′ ratio to estimate extravascular lung water and its variations in patients with acute respiratory distress syndrome. J Clin Monit Comput. 2015;32(5):419–26.

83. Zhang J, Jiang L, Li X, Jiang Q, Zhu B, Wang M, Xing J, Zhang D. Prognostic value of extravascular lung water assessed with lung ultrasound score by chest sonography in patients with acute respiratory distress syndrome. BMC Pulm Med. 2015;15:98.

84. Arshad Z, Almaani M, Hawa H, Mandourah Y, Almekhlafi GA, et al. Surfactant phenotypes? Intensive Care Med 2020.

85. Rouby JJ, Puybasset L, Nieszkowska A, Lu Q. Acute respiratory distress syndrome: lessons from computed tomography of the whole lung. Int Care Med. 2020;46(4):737–46.

86. Gattinoni LCD, Caironi P, Busana M, Romitti F, Braschi A. Whole lung lavage: a unique model for ultrastructural studies of acute lung injury in a non-intubated patient. Thorax. 2020;75(4):346–57.

87. Bataille B, Trinh H, Le-Guen M, Arbelot C, Lu Q, Rouby JJ. Bedside ultrasound assessment of positive end-expiratory pressure-induced lung recruitment. Am J Respir Crit Care Med. 2011;183(3):341–7.

88. Rouby JJ, Puybasset L, Nieszkowska A, Lu Q. Acute respiratory distress syndrome: lessons from computed tomography of the whole lung. Int Care Med. 2020;46(4):737–46.
110. ASE Statement on Protection of Patients and Echocardiography Service Providers During the 2019 Novel Coronavirus Outbreak [https://www.asecho.org/wp-content/uploads/2020/03/COVIDStatementFINAL4-1-2020_v2_website.pdf]

111. Boyd JH, Sirounis D, Mazel J, Slama M. Echocardiography as a guide for fluid management. Crit Care. 2016;20:274.

112. Monnet X, Marik PE, Teboul JL. Prediction of fluid responsiveness: an update. Ann Intensive Care. 2016;6(1):111.

113. Nair S, Sauthoff H: Assessing extravascular lung water with ultrasound: a tool to individualize fluid management? J Intensive Care Med. 2019;34(5):409–15.

114. Reisinger N, Kortalata A. Lung ultrasound: a valuable tool for the assessment of diaphoresis patients with COVID-19. Clin Exp Nephrol. 2020.

115. Veira ALS, Pazzeli JR, Bastos MG. Role of point-of-care ultrasound during the COVID-19 pandemic in the management of diaphoresis patients. Ultrasound J. 2020;12(1):130.

116. Guan WJ, Ni ZY, Hu Y, Liang WH, Ou CQ, He JX, Liu L, Shan H, Lei CL, Hui DS et al. Clinical Characteristics of Coronavirus Disease 2019 in China. N Engl J Med. 2020.

117. Xie J, Tong Z, Guan X, Du B, Qiu H, Slutsky AS. Critical care crisis and some recommendations during the COVID-19 epidemic in China. Crit Care Med. 2020.

118. Bouadma L, Lescure FX, Lucet JC, Yazdanpanah Y, Timsit JF. Severe SARS-CoV-2 infections: practical considerations and management strategy for intensivists. Intensive Care Med. 2020.

119. Mongodi S, Pozzi M, Orlando A, Bouhemad B, Stella A, Tavazzi G, Via G, Iotti GA, Mojoli F. Lung ultrasound for daily monitoring of ARDS patients on extracorporeal membrane oxygenation: preliminary experience. Intensive Care Med. 2018;44(1):123–4.

120. Enghard P, Rademacher S, Nee J, Hasper D, Engert U, Jorres A, Kruse JM. Simplified lung ultrasound protocol shows excellent prediction of extravascular lung water in ventilated intensive care patients. Crit Care. 2015;19:36.

121. Helderweg WM, Haaksma ME, Smit JM, Kraemer CVE, Tuinman PR. Lung ultrasound and computed tomography to monitor COVID-19 pneumonia in critically ill patients? a two-center prospective cohort study. In: RES SQUARE preprint. 2020.

122. Palmese F, Caroli B, Graziani A, Zanframundo G, Del Toro R, Sagrini E, Shokoohi H, Duggan NM, Garcia-de-Casasola Sanchez G, Torres-Ybarra JM. Simplified lung ultrasound protocol shows excellent prediction of extravascular lung water in ventilated intensive care patients. Crit Care Med. 2018;46(3):475–84.

123. Li C, Li X, Han H, Cui H, Wang G, Wang Z. Diaphragmatic ultrasound: a tool to individualize fluid management. Crit Care Med. 2015;18(12):1256–63.

124. Mekontso Dessap A, Roche-Campo F, Mastroeni P, Vazquez-Barquero JL, Tripepi G, Belghiti J, Bedneau G, Sonneville R, Cabello B, Jaber S, Azoulay E, Castanares-Zapatero D et al. Natriuretic peptide-driven fluid management during weaning from mechanical ventilation: a prospective observational multicenter study. Ann Intensive Care. 2018;8(1):103.

125. Geroth C, Wagner G, Pelosi P, Lukee R. Respiratory and haemodynamic changes during decerebration: a prospective observational study. Anaesthesia. 2020;75(12):1256–63.
149. Perez-Calatayud AA, Carrillo-Esper R, Anica-Malagon ED, Briones-Gar-
duno JC, Arch-Tirado E, Wise R, Malbrain M. Point-of-care gastrointes-
tinal and urinary tract sonography in daily evaluation of gastrointes-
tinal dysfunction in critically ill patients (GUTS Protocol). Anaesthesiol
Intensive Ther. 2018;50(1):40–8.

150. Hoffmann B, Nurnberg D, Westergaard MC. Focus on abnormal air:
diagnostic ultrasonography for the acute abdomen. Eur J Emerg Med.
2012;19(5):284–91.

151. Bhayana R, Som A, Li MD, Carey DE, Anderson MA, Blake MA, Catalano
O, Gee MS, Hahn PF, Harisinghani M et al: Abdominal Imaging Find-
ings in COVID-19: Preliminary Observations. Radiology. 2020;201908.

152. Robba C, Goffi A, Geeraerts T, Cardim D, Via G, Czosnyka M, Park S,
Sarwal A, Padayachy L, Rasulo F, et al. Brain ultrasonography: meth-
ology, basic and advanced principles and clinical applications A
narrative review. Intensive Care Med. 2019;45(7):913–27.

153. McMahon SR, De Francis G, Schwartz S, Duvall WL, Arora B, Silverman
D. Tablet-based limited echocardiography to reduce sonographer
scan and decontamination time during the COVID-19 Pandemic. J
Am Soc Echocardiogr. 2020;33(7):895–9.

154. Bobbia X, Chabannon M, Chevallier T, de La Coussaye JE, Lefrant JY,
Pujol S, Claret PG, Zieleskiewicz L, Roger C, Muller L. Assessment of
five different probes for lung ultrasound in critically ill patients: A
pilot study. Am J Emerg Med. 2018;36(7):1265–9.

155. Ye R, Zhou X, Shao F, Xiong L, Hong L, Huang H, Tong W, Wang J,
Chen S, Cui A et al. Feasibility of a 5G-based robot-assisted remote
ultrasound system for cardiopulmonary assessment of COVID-19
patients. Chest 2020.

156. Levine AR, McCurdy MT, Zubrow MT, Papali A, Mallemat HA, Verceles
AC. Tele-intensivists can instruct non-physicians to acquire high-
quality ultrasound images. J Crit Care. 2015;30(5):871–5.

157. Britton N, Miller MA, Safadi S, Siegel A, Levine AR, McCurdy MT. Tele-
ultrasound in resource-limited settings: a systematic review. Front
Public Health. 2019;7:244.

158. Ma IW, Somayaji R, Rennert-May E, Minardi J, Walsh MH, Wiskar K,
Smyth LM, Burgoyne S, Chan B, Haroon BA, Desy J. Canadian Internal
Medicine Ultrasound (CIMUS) Recommendations Regarding Internal
Medicine Point-of-Care Ultrasound (PoCUS) use during Coronavirus
(COVID-19) pandemic. Canadian Journal of General Internal Medi-
cine. 2020;15(2):8–11.

159. Guidelines for Cleaning and Preparing External- and Internal-Use
Ultrasound Transducers and Equipment Between Patients as well as
Safe Handling and Use of Ultrasound Coupling Gel [https://www.
aium.org/officialStatements/57]

160. van Doremalen N, Bushmaker T, Morris DH, Holbrook MG, Gamble A,
Williamson BN, Tamim A, Harcourt JL, Thornburg NJ, Gerber SI et al.
Aerosol and Surface Stability of SARS-CoV-2 as Compared with SARS-
CoV-1. N Engl J Med 2020.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.