Recent advances in the contribution of noncoding RNAs to cisplatin resistance in cervical cancer

Xin Wen, Shui Liu, Jiyao Sheng and Manhua Cui

The Second Hospital of Jilin University, Jilin University, Changchun, Jilin Province, China

ABSTRACT

Cervical cancer (CC) remains a major disease burden on the female population worldwide. Chemotherapy with cisplatin (cis-diamminedichloroplatinum (II); CDDP) and related drugs are the main treatment option for CC; however, their efficacy is limited by the development of drug resistance. Noncoding RNAs (ncRNAs) have been found to play critical roles in numerous physiological and pathological cellular processes, including drug resistance of cancer cells. In this review, we describe some of the ncRNAs, including miRNAs, lncRNAs and circRNAs, that are involved in the sensitivity/resistance of CC to CDDP-based chemotherapy and discuss their mechanisms of action. We also describe some ncRNAs that could be therapeutic targets to improve the sensitivity of CC to CDDP-based chemotherapy.

INTRODUCTION

There are 569,847 new cervical cancer (CC) diagnoses and 311,365 deaths from CC annually worldwide (Bray et al., 2018). Although the majority of CC patients with early stage disease can achieve a favorable prognosis with surgery and radiotherapy, patients with advanced or recurrent disease generally have poor outcomes (Pfaendler & Tewari, 2016; Waggoner, 2003). Nowadays, chemotherapy for CC is mainly used in three aspects: (1) neoadjuvant chemotherapy (NACT) to shrink the tumor before operation; (2) concurrent chemoradiotherapy (CCRT) for middle and advanced patients; (3) palliative chemotherapy for patients with recurrence or metastasis (Moore, 2008; Moore et al., 2010; Pfaendler & Tewari, 2016). Based on the guidelines of National Comprehensive Cancer Network (NCCN) for CC, Cisplatin (cis-diamminedichloroplatinum (II); CDDP) is considered as the first line drug of chemotherapy (National Comprehensive Cancer Network, 2020). However, the treatment response to CDDP varies, and the biggest obstacle to its efficacy is the development of drug resistance (Amable, 2016; Ko & Li, 2019). Thus, there is an urgent need to understand the underlying molecular mechanisms and identify strategies to overcome CDDP resistance in CC.

Noncoding RNAs (ncRNAs) make up the majority of the human transcriptome and are involved in many biological processes, including cell proliferation and differentiation,
metabolism, the stress response, and apoptosis. Not surprisingly, abnormal expression and/or activity of ncRNAs has a profound effect on normal physiology and is associated with a number of pathologies, including cancer (Aalijahan & Ghorbian, 2019; Anastasiadou, Jacob & Slack, 2018; Djebali et al., 2012). According to the structural property, ncRNAs can be generally divided into linear ncRNAs and circular ncRNAs (circRNAs). And based on the length of linear ncRNAs, they consist of short ncRNAs such as microRNAs (miRNAs), siRNAs, piwi-interacting RNAs (piRNAs), snoRNAs, snRNAs, as well as long non-coding RNA (lncRNAs), including long intergenic ncRNAs, antisense RNAs (Chan & Tay, 2018; Peng & Calin, 2018).

Deregulation of ncRNAs can also affect the outcome of cancer treatment and allow tumors to acquire drug-resistant phenotypes (Corrà et al., 2018; Wang et al., 2019). An increasing number of studies has shown that ncRNAs play an essential role in CC (Chaichian et al., 2020; He et al., 2016; Hosseini et al., 2017; Sharma, Dua & Agarwal, 2014), and several classes of ncRNAs, such as miRNAs, lncRNAs and circRNAs, have been associated with CDDP resistance, making them important potential therapeutic targets (Matsui & Corey, 2017).

In this review, we summarize the current literature on the contribution of ncRNAs to CDDP resistance in CC (Fig. 1). We focus on studies examining the mechanisms of action of ncRNAs and the potential applications of ncRNAs in predicting CDDP sensitivity and improving chemotherapy regimens in CC, which might provide new therapeutic strategies for patients with CDDP-resistant CC.

SURVEY METHODOLOGY

The authors conducted a systematic search with PubMed databases for articles published from their inception to April 8, 2020, to identify relevant studies published in English. The keywords for search include “cervical cancer”, “cisplatin”, “chemotherapy resistance”, “chemoresistance”, “chemosensitivity”, “chemotherapy sensitivity”, “microRNA”, “long noncoding RNA”, “non-coding RNA”, and “circular RNA”. Additional keywords, such as “carcinoma of uterine cervix”, “cervical neoplasia”, “cervix cancer”, “cervical carcinoma”, “carcinoma of cervix”, “circRNA”, “LncRNA”, “miRNA”, “ncRNA”, “noncoding RNA”, “cis-platinum”, “CDDP”, “DDP”, “drug-resistance”, “drug resistance”, and “sensitivity of chemotherapy”, were also used. Additional articles were identified by manual search of references found in the primary articles. The screened articles were used as references for this review.

MECHANISMS BY WHICH NCRNAS AFFECT CDDP RESISTANCE IN CC

Mechanisms of action of CDDP

In 1978, CDDP became the first platinum compound to be approved for cancer treatment in the United States (Kelland, 2007), and since then, CDDP has proven to be one of the most effective drugs for the treatment of advanced or recurrent CC (Small et al., 2017). CDDP enters cells mainly by passive diffusion, with contributions from active transport via copper transporters (Holzer, Manorek & Howell, 2006; Ishida et al., 2002).
While CDDP itself is inactive, it becomes chemically active in the cytoplasm when one or both of its chlorine atoms are displaced by water molecules (Fig. 2) (Galluzzi et al., 2014; Kelland, 2000). Hydrolyzed CDDP exerts its toxic effects by forming DNA-platinum adducts and by simultaneously initiating cellular self-defense systems through the activation or silencing of multiple genes (Eastman, 1987; Yang et al., 2006). DNA damage triggers a complex array of DNA damage response and repair pathways; however, if these processes cannot repair CDDP-induced DNA damage, replication and transcription is blocked, and the cells undergo cell cycle arrest and/or apoptosis (Brabec & Kasparkova, 2005; Dasari & Tchounwou, 2014). The diverse mechanisms by which cells respond to platinum-induced DNA damage provides a wealth of potential mechanisms for cancer cells to evade drug-induced death. Indeed, any factor that influences CDDP binding to DNA, the DNA damage response, or pathways leading to apoptosis could potentially lead to the emergence of drug resistance (Shen et al., 2012). The responsible mechanisms were summarized in Fig. 3.

Mechanisms by which miRNAs affect CDDP resistance in CC

MiRNAs are short ncRNAs (generally <30 nucleotides) that play roles in post-transcriptional regulation (Lu & Rothenberg, 2018). In most instances, miRNAs act by binding to the 3′-untranslated region (3′-UTR) of the target mRNA, resulting in mRNA destabilization, degradation, or inhibition of translation. Various studies have reported abnormal miRNA expression in CC compared with normal cervical tissue (Juan et al., 2014; Lee et al., 2008), that could affect the proliferation and invasiveness of CC cells and thus their sensitivity to CDDP. Yang et al. (2016c) examined the relative expression of
five miRNAs (miR-183, miR-182, miR-30a, miR-15b, and miR-16) and their potential targets mRNAs in CDDP-resistant HeLa cell lines compared with their parent HeLa cell line, and they found that miR-182 and miR-15b were upregulated, while miR-30a was

Figure 2 Activation of CDDP. CDDP can be passively diffused to tumor cells through the plasma membrane, and the transporter CTR1 is also responsible for CDDP uptake. The concentration of chloride in the blood is relatively high (approximately 100 mM), so the chemical properties of CDDP remain inactive. But the concentration of chloride in the cytoplasm is relatively low (approximately 4–20 mM), one or two of the chloride ligands are replaced by water ligands once CDDP enters into the cells. The hydrolyzed CDDP is highly reactive and mainly targets the nuclear DNA, then the DNA-platinum adducts cause DNA damages.

Figure 3 Schematic representation of intracellular and extracellular mechanisms of the development of CDDP resistance in CC. Inside the CC cells, decreased uptake of CDDP, increased efflux of CDDP, increased DNA damage repair, alterations in apoptosis-related signaling pathways, oxidative stress, autophagy and epigenetic changes including DNA methylation and ncRNAs are major mechanisms of cisplatin resistance. Outside the CC cells, EMT, cervical CSCs and TME like high cell density, hypoxia and acidity in tumor and the extracellular matrix interactions are also contribute to CDDP resistance. Abbreviation: TME: Tumor microenvironment; EMT: Epithelial-mesenchymal transition; GCL: Glutamate cysteine ligase; CSCs: Cancer stem cells.

DOI: 10.7717/peerj.9234/fig-2

DOI: 10.7717/peerj.9234/fig-3
significantly downregulated, in the CDDP-resistant cells. Moreover, the mRNA targets of all these miRNAs were shown to be related to drug resistance.

Multiple miRNAs have been shown to influence CC cell growth, survival, and CDDP sensitivity via binding to the target mRNA 3′-UTR (Huang et al., 2017; Li et al., 2015; Sathyanarayanan, Chandrasekaran & Karunagaran, 2017; Yang et al., 2015a). For example, miR-217 binds to KRAS mRNA and directly targets it to mitigate the aggressiveness of CC cells (Yin & Ren, 2019). MiR-181a negatively regulates the expression of the apoptosis-related protein kinase Cδ (PRKCD) by targeting its mRNA for inhibiting apoptosis in CC cells (Chen et al., 2014). MiR-125a binds to STAT3 mRNA and inhibits its translation, resulting in downregulation of CC cell apoptosis and promotion of CDDP resistance (Fan et al., 2016). Finally, miR-144 targeting of the mRNA of LHX2, an oncogenic transcriptional regulator, was found to reverse the CDDP resistance of CC cells (Shi et al., 2019). In addition to these examples, miRNAs may affect CDDP sensitivity through the following mechanisms.

Promotion of drug uptake

Active transport of CDDP into and out of cells occurs via copper transporters, especially copper transporter protein 1 (CTR1, encoded by SLC31A1) (Bompiani et al., 2016; Kalayda, Wagner & Jaehde, 2012; Larson et al., 2009). Accordingly, CDDP-resistant CC cells have been found to express lower levels of CTR1 compared with their CDDP-sensitive counterparts (Zisowsky et al., 2007). Similarly, CTR1 knockdown significantly promotes the proliferation of CC cells in the presence of CDDP, while miR-130a binds directly to SLC31A1 mRNA, thereby regulating CTR1 protein expression (Feng et al., 2018). These results indicate that miRNAs can influence the sensitivity of CC cells to CDDP via regulation of copper transporter expression.

DNA repair

Intrachain and interchain DNA adduct formation by CDDP initiates DNA repair pathways, but a failure to re-establish genomic integrity can lead to cell cycle arrest or apoptosis. DNA repair is mediated predominantly by two processes: nucleotide excision repair and mismatch repair (Shen et al., 2012). Mismatch repair is regulated by several miRNAs, particularly miR-21 and miR-155 (Svrcek et al., 2013). Zhang et al. (2018a) examined gene polymorphisms in 165 chemotherapy-sensitive/resistant CC patients and found that rs1292037 (A > G) locus AG, GG, AG + GG and G allele in miR-21 gene was associated with CDDP sensitivity. Moreover, miR-155 expression also correlates positively with chemosensitivity to CDDP in human CaSki CC cells (Lei et al., 2012). These results indicated a possible link between miRNAs and CDDP sensitivity through the regulation of mismatch repair. Poly (ADP-ribose) polymerase 1 (PARP-1) is an important regulator of DNA repair and is negatively regulated by miR-7-5p, suggesting another mechanism by which miRNAs could contribute to CDDP resistance (Yang et al., 2018). Indeed, the PARP inhibitor olaparib has been shown to enhance the sensitivity of CC cells to CDDP (Prasad et al., 2017), substantiating the potential for miRNAs to provide new therapeutic targets.
Regulation of apoptosis
CDDP can promote cell death through both the external death receptor pathway or the internal mitochondrial pathway, providing a number of mechanisms by which interference with apoptosis might contribute to CDDP resistance. For example, miRNAs could upregulate pro-survival factors such as Bcl-2 and inhibitor of apoptosis protein, or inhibit the expression of tumor suppressor genes such as the caspases. Ectopic expression of miR-214 reduces the expression of the protective Bcl2-like 2 protein and increases the expression of the pro-apoptotic proteins Bax, caspase-9, caspase-8, and caspase-3 in CC cells, leading to enhanced apoptosis and CDDP sensitivity (Wang et al., 2013). Similarly, miRNA-218 can reduce the expression of survivin both in mRNA and protein level, a member of the inhibitor of apoptosis protein family, thereby increasing CDDP sensitivity in CC cells (Yu et al., 2019).

Alterations in signaling pathways that promote cell death can also lead to CDDP resistance, and blockade of these pathways with pharmacological inhibitors and/or RNA interference may have therapeutic effects. A number of miRNAs have been shown to contribute to CDDP resistance in CC cells through such mechanisms. Downregulation of the LDLR–PTEN pathway by miR-92b leads to activation of the AKT pathway in CC cells, which inhibits apoptosis (Sun et al., 2019). Overexpression of miR-218 inhibits proliferation and induces apoptosis in HeLa cells through inhibiting the AKT–mTOR signaling pathway (Li, Ping & Ning, 2012). PKC signaling is another key pathway for the regulation of chemosensitivity in cancer cells (Clark et al., 2003; Mohanty, Huang & Basu, 2005; Yang et al., 2016b). As noted earlier, miR-181a is a negative regulator of PRKCD and inhibits apoptosis in CC cells, thereby enhancing CDDP resistance (Chen et al., 2014). Taken together, these observations identify a large number of miRNAs and related signaling pathways that could serve as novel therapeutic targets to overcome CDDP resistance in CC.

Epithelial-mesenchymal transition
Epithelial-mesenchymal transition (EMT) is the process by which epithelial cells acquire a mesenchymal phenotype and is a critical element in the behavior of cancer cells, including chemotherapy resistance in CC (Goto et al., 2017; Li et al., 2018; Xiong et al., 2017). The crucial role played by miRNAs in regulating the EMT is considered to be another potential mechanism by which CC cells acquire CDDP resistance (Xu et al., 2017). CDDP-resistant CC cells display more EMT characteristics and increased migration and invasion compared with CDDP-sensitive cells (Song & Li, 2017). MiR-25-3p and miR-31-3p reverse the mesenchymal phenotype of CC cells by directly targeting semaphorin 4C, thus increasing CDDP sensitivity (jing et al., 2019; Song & Li, 2017). MiR-20a mediates EMT that induced by protein phosphatase 1, regulatory subunit 13 like (PPP1R13L) and regulates CDDP resistance in HeLa cells (Xiong et al., 2017). In addition, CDDP sensitivity of CaSki cells is increased by treatment with epidermal growth factor, leading to upregulated miR-155 and reversal of the EMT (Lei et al., 2012). These results suggest that miRNAs regulating the EMT could be targets for reducing CDDP resistance in CC.
Targeting CSCs
As a rule, chemotherapy targets non-stem cell tumor cells, leaving an increased proportion of drug-resistant cancer stem cells (CSCs) in the tumor (Carnero et al., 2016; Leon et al., 2016; Nassar & Blanpain, 2016). Consequently, CSCs have become a potential target for therapeutic intervention for many cancers, including CC (Cao et al., 2017; Chhabra, 2015; Mendoza-Almanza et al., 2019). For example, miR-23b-mediated reduction of ALDH1A1 disturbs the homeostasis of cervical CSCs and promotes the CDDP sensitivity, overexpression of miR-23b re-sensitizes CC cells to CDDP treatment (Wang et al., 2017b).

Oxidative stress
The combination of CDDP and nucleophilic substances or thiol-containing proteins, such as glutathione and glutathione-S-transferase, can consume intracellular antioxidant reserves, thereby promoting oxidative stress, and excessive reactive oxygen species results in cell apoptosis or death (Lewis, Hayes & Wolf, 1988; Zhang et al., 2016). Thus, miR-497, which directly targets transketolase mRNA and promotes the generation of glutathione, reduces oxidant levels, and induces CDDP chemoresistance in CC cells (Yang et al., 2016a).

The mechanisms by which IncRNAs affect CDDP resistance in CC
LncRNAs (>200 nucleotides) play important roles in gene transcription, protein translation, and chromatin remodeling (Kornienko et al., 2013). Not surprisingly, IncRNAs have been shown to be involved in many of the pathological behaviors of CC cells, including aberrant proliferation, migration, and invasion (Dong et al., 2017; Liang et al., 2019; Liu et al., 2018b; Zhu et al., 2018). Recent evidence has confirmed the roles of IncRNAs in CDDP resistance in CC (Iden et al., 2016; Wang et al., 2018).

LncRNAs can act as competitive endogenous RNAs (ceRNAs) by inhibiting the ability of miRNAs to interact with the same target mRNAs (Wilusz, Sunwoo & Spector, 2009; Yamamura et al., 2018; Yoon, Abdelmohsen & Gorospe, 2014). Alterations in critical interactions of the ceRNA regulatory network may thus affect CDDP resistance in CC. HOXD antisense growth-associated lncRNA (HAGLR) has been shown to act as a ceRNA for miR-130a-3p, thereby upregulating the expression of the miR-130a-3p target mRNA zinc finger E-box binding homebox 1 (Chi et al., 2018). Similarly, crosstalk between the lncRNA NCK1-DT, miR-134-5p, and MutS protein homolog 2 has been shown to play a role in CDDP resistance (Zhang et al., 2019). The IncRNAs cancer susceptibility candidate 2 (CASC2) and growth arrest-specific 5 (GAS5) both act as ceRNAs for miR-21. CASC2 binding to miR-21 upregulates PTEN expression, reducing the phosphorylation of AKT (Feng et al., 2017); whereas GAS5 binding to miR-21 decreases CC cell apoptosis via STAT3 mRNA (Yao et al., 2019). LncRNA DANCR functions as a ceRNA for miR-665, which regulates ERK–SMAD signaling in CC cells (Cao et al., 2019).

LncRNAs also affect CDDP resistance by direct regulation of signaling pathway components. Knockdown of the lncRNA plasmacytoma variant translocation 1 (PVT1) in the human CC cell line SiHa upregulates the level of active caspase-3, which increases
CDDP-induced apoptosis (Iden et al., 2016). Similarly, IncRNA taurine-upregulated gene 1 (TUG 1) promotes CDDP resistance in the disease progression of CC through activating the MAPK pathway (Wei et al., 2019). Besides, upregulation of IncRNA MALAT1 increases the expression of phosphorylated PI3K and AKT in HeLa and C-33A cells and promotes their CDDP resistance (Wang et al., 2018).

Many other ceRNA–miRNA–mRNA regulatory networks that contribute to CDDP resistance undoubtedly exist, and expanding our understanding of those mechanisms will provide more therapeutic opportunities for overcoming CDDP resistance.

The mechanisms by which circRNAs affect CDDP resistance in CC

CircRNAs are endogenous ncRNAs which characterized by covalently closed loop without any 5′-3′ polarity or a polyadenylated tail (Chen & Yang, 2015). In recent years, increasing studies have found that circRNAs widespread expressed and played critical roles in biological processes such as tumor cell proliferation, apoptosis, invasion, and migration (Guo et al., 2014; Liu et al., 2018a; Memczak et al., 2013; Zhong et al., 2018). A study revealed 45 significantly highly expressed circRNAs in CC tissue through microarray analysis (Gao et al., 2017). Several studies have indicated that circRNAs were involved in CC development and progression by sponging miRNAs (Cai et al., 2019; Mao, Zhang & Li, 2019; Tang et al., 2019; Zhang et al., 2018b).

Since circRNAs can interact with miRNAs and modulate their expressions, they may also regulate the chemosensitivity of CDDP in CC. A study demonstrated that circMTO1 (mitochondrial translation optimization 1 homologue, ID: hsa_circ_0007874) could promote CC cell tumorigenesis and CDDP resistance through sponging miR-6893 (Chen et al., 2019). Another study identified hsa_circ_0023404 directly interacted with miR-5047 and inhibited autophagy-induced apoptosis to confer CDDP resistance of CC cells (Guo et al., 2019). CircRNAs play a significant role in chemoresistance of CC and may serve as future therapeutic biomarkers.

In addition to miRNAs, IncRNAs and circRNAs, piRNAs, as a new class of ncRNAs, have also shown a potential role in regulating CDDP resistance in CC. The upregulated expression of piR-651 was confirmed in HeLa cells, suggested that piRNAs may be involved in the development of CC (Cheng et al., 2011). Moreover, Hiwi, as a human homologue of the Piwi family and interacting with piRNAs, was found to be involved in the resistance of CC cells to CDDP (Liu et al., 2014). For most ncRNAs, our knowledge regarding their biological function is still limited, but their potential roles in pathogenesis and chemotherapy resistance of CC will be recognized in the future.

PERSPECTIVES

CDDP effectively prolongs the survival of CC patients, but its efficacy and clinical application are limited by frequent emergence of drug resistance. As noted above, several ncRNAs associated with CDDP sensitivity/resistance of CC have been identified and are potential drug targets based on results of CC cell experiments (Cheng et al., 2018; Ping et al., 2018; Shih et al., 2019; Vella et al., 2015). Such ncRNAs may also be useful
NcRNA ID	Target	Effect on DDP sensitivity in CC	References
miR-584	GLI1	increase	Wang, Feng & Zhang (2020)
miR-708	Timeless	increase	Zou et al. (2020)
miRNA-499a	SOX6	decrease	Chen et al. (2020)
miRNA-138	H2AX	increase	Yuan et al. (2020)
miR-21	SMAD7 unknown	decrease	Liu, Liu & Wang (2020) and Zhang et al. (2018a)
miR-574-5p	QKI	increase	Tong et al. (2019)
miR-218	Survivin, AKT-mTOR signaling pathway	increase	Yu et al. (2019) and Li, Ping & Ning (2012)
miR-217	KRAS	increase	Yin & Ren (2019)
miR-31-3p	Sema4C	increase	Jing et al. (2019)
miR-92b	LDLR, PTEN	decrease	Sun et al. (2019)
miR-144	LHX2	increase	Shi et al. (2019)
miR-1284	HMGBl	increase	Chen & Li (2018)
miR-7-5p	PARP-1, BCL2	decrease	Yang et al. (2018)
miR-130a	CTIR	decrease	Feng et al. (2018)
miR-20a	iASPP	decrease	Xiong et al. (2017)
miR-29b	STAT3 signaling pathway	increase	Li et al. (2017)
miR-23b	ALDH1A1	increase	Wang et al. (2017b)
miR-106a/b	SIRT1	decrease	Raji et al. (2017)
miR-139-3p	Unknown	increase	Samnigraihi et al. (2017)
miR-25-3p	Sema4C	increase	Song & Li (2017)
miR-125a	STAT3	decrease	Fan et al. (2016)
miR-497	TKT	decrease	Yang et al. (2016a)
miR-182	PI3K/PTEN/AKT, PDCD4	decrease	Yang et al. (2016c)
miR-183	KIAA1199, BAX	increase	Yang et al. (2016c)
miR-30a	Beclin1	increase	Yang et al. (2016c)
miR-664	E-Cadherin	increase	Yang et al. (2015b)
miR-181a	PRKCD	decrease	Chen et al. (2014)
miR-214	TFAM	increase	Wen et al. (2014) and Wang et al. (2013)
miR-155	TP53, SMAD2	increase	Lei et al. (2012)
miR-199a	Unknown	decrease	Lee et al. (2008)
PCAT6	miR-543/ZEBl	decrease	Ma et al. (2020)
HNF1A-AS1	microRNA-34b/TUFT1	decrease	Luo et al. (2019)
DANCR	miR-665/TGFBR1, ERK/SMAD	decrease	Cao et al. (2019)
TUG1	RFX7, MAPK pathway	decrease	Wei et al. (2019)
ZFAS1	unknown	decrease	Feng et al. (2019)
NCK1-AS1	miR-134-5p/MSH2	decrease	Zhang et al. (2019)
GAS5	miR-21/STAT3	decrease	Yao et al. (2019) and Wen et al. (2017)

(Continued)
biomarkers to predict chemosensitivity and thus improve treatment regimens in this patient population.

The ncRNAs known to be differentially expressed in drug-resistant CC compared with normal tissues include miR-7-5p (Yang et al., 2018), miR-21 (Feng et al., 2017), miR-130a (Feng et al., 2018), miR-181a (Chen et al., 2014), which are upregulated, and lncRNA CACS2, which is downregulated in CDDP-resistant CC (Feng et al., 2017). Analysis of the expression of ncRNAs in CC patients in combination with other molecular markers may predict the patient’s response and thus identify those who would most benefit from CDDP. The development of high-throughput technology makes the identification of molecular characteristics and genotypes more accurate and efficient, and will help to identify other differentially expressed ncRNAs with the potential to be predictive biomarkers.

The ncRNAs listed in Table 1 are associated with differential CDDP sensitivity, suggesting that ncRNA analogs or inhibitors may increase CDDP activity in humans, as has been demonstrated in cultured cells. Treatment of CDDP-resistant CC cells with a miR-25-3p mimic significantly sensitized them to growth inhibition by CDDP (Song & Li, 2017). Conversely, blockade of miR-7-5p with antisense oligonucleotide -miR-7-5p increased the apoptosis rate of CDDP-resistant CC cells (Yang et al., 2018). However, there have been no clinical trials or clinically relevant animal trials of these agents for CC to date. Adjuvant therapy with ncRNA-based agents may have advantages over other anti-cancer mechanisms, given that a single ncRNA can not only target multiple genes but also modulate resistance to multiple drugs. Nevertheless, there are also many challenges associated with the use of ncRNA-based agents as therapeutic drugs, including their stability in body fluids and tissues, drug delivery issues, and potential off-target effects that might result in an unfavorable safety profile.

In order to solve the non-specific distributions of CDDP and the instability of miRNA in the systemic circulation, Wang and Liang used a liposome carrier to co-deliver two different therapeutics (miRNA-1284 and CDDP) into CC cells, and the carrier was specific towards its receptor overexpressed in CC cells, which resulted in enhanced accumulation of liposomes and increased chemosensitivity of CDDP (Wang & Liang, 2020).

NcRNA ID	Target	Effect on DDP sensitivity in CC	References
LncRNA MALAT1	BRWD1, PI3K/AKT pathway	decrease	Wang et al. (2018)
LncRNA HAGLR	miR-130a-3p, ZEB1	decrease	Chi et al. (2018)
LncRNA UCA1	caspase-3, CKD2, surviving, p21	decrease	Wang et al. (2017a)
LncRNA CASC2	miR-21, PTEN	increase	Feng et al. (2017)
LncRNA PVT1	caspase-3	decrease	Iden et al. (2016)
CircRNA circMT01	miR-6893/S100A1	decrease	Chen et al. (2019)
CircRNA circ_002304	miR-5047/VEGFA and autophagy signaling pathway	decrease	Guo et al. (2019)
This study provides a new insight for ncRNA-based cancer therapy, and there are still many potential hurdles that need to be overcome before it can be tested clinically.

CONCLUSIONS

In this review, we have summarized some of our current understanding of ncRNAs that affect CDDP sensitivity in CC. These studies have improved our understanding of the involvement of ncRNAs in drug resistance and provide a starting point for the development of agents to improve the efficacy of CDDP-based chemotherapy regimens and thus the quality of life and prognosis of CC patients.

ADDITIONAL INFORMATION AND DECLARATIONS

Funding

This work was supported by grants from Natural Science Foundation of China (No. 81902484) and Medical and Health Talents Project of Jilin Province (2019SCZT003). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Grant Disclosures

The following grant information was disclosed by the authors:
Natural Science Foundation of China: 81902484.
Medical and Health Talents Project of Jilin Province: 2019SCZT003.

Competing Interests

The authors declare that they have no competing interests.

Author Contributions

- Xin Wen conceived and designed the experiments, performed the experiments, analyzed the data, prepared figures and/or tables, and approved the final draft.
- Shui Liu conceived and designed the experiments, prepared figures and/or tables, and approved the final draft.
- Jiyao Sheng analyzed the data, prepared figures and/or tables, and approved the final draft.
- Manhua Cui conceived and designed the experiments, authored or reviewed drafts of the paper, and approved the final draft.

Data Availability

The following information was supplied regarding data availability:

- This is a literature review, and the research in this article did not generate any data or code.

REFERENCES

Aalijahan H, Ghorbían S. 2019. Long non-coding RNAs and cervical cancer. *Experimental and Molecular Pathology* 106:7–16 DOI 10.1016/j.yexmp.2018.11.010.
Amable L. 2016. Cisplatin resistance and opportunities for precision medicine. *Pharmacological Research* **106**:27–36 DOI 10.1016/j.phrs.2016.01.001.

Anastasiadou E, Jacob LS, Slack FJ. 2018. Non-coding RNA networks in cancer. *Nature Reviews Cancer* **18**(1):5–18 DOI 10.1038/nrc.2017.99.

Bompiani KM, Tsai C-Y, Achatz FP, Liebig JK, Howell SB. 2016. Copper transporters and chaperones CTR1, CTR2, ATOX1, and CCS as determinants of cisplatin sensitivity. *Metallomics: Integrated Biometal Science* **8**(9):951–962 DOI 10.1039/C6MT00076B.

Brabec V, Kasparkova J. 2005. Modifications of DNA by platinum complexes: relation to resistance of tumors to platinum antitumor drugs. *Drug Resistance Updates* **8**(3):131–146 DOI 10.1016/j.drup.2005.04.006.

Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. 2018. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: *A Cancer Journal for Clinicians* **68**(6):394–424 DOI 10.3322/caac.21492.

Cai H, Zhang P, Xu M, Yan L, Liu N, Wu X. 2019. Circular RNA hsa_circ_0000263 participates in cervical cancer development by regulating target gene of miR-150-5p. *Journal of Cellular Physiology* **234**(7):11391–11400 DOI 10.1002/jcp.27796.

Cao H-Z, Liu X-F, Yang W-T, Chen Q, Zheng P-S. 2017. LGR5 promotes cancer stem cell traits and chemoresistance in cervical cancer. *Cell Death & Disease* **8**(9):e3039 DOI 10.1038/cddis.2017.393.

Cao L, Jin H, Zheng Y, Mao Y, Fu Z, Li X, Dong L. 2019. DANCR-mediated microRNA-665 regulates proliferation and metastasis of cervical cancer through the ERK/SMAD pathway. *Cancer Science* **110**(3):913–925 DOI 10.1111/cas.13921.

Carnero A, Garcia-Mayea Y, Mir C, Lorente J, Rubio IT, Lleonart ME. 2016. The cancer stem-cell signaling network and resistance to therapy. *Cancer Treatment Reviews* **49**:25–36 DOI 10.1016/j.ctrv.2016.07.001.

Chaichian S, Shafabakhsh R, Mirhashemi SM, Moazzami B, Asemi Z. 2020. Circular RNAs: a novel biomarker for cervical cancer. *Journal of Cellular Physiology* **235**(2):718–724 DOI 10.1002/jcp.29009.

Chen LL, Yang L. 2015. Regulation of circRNA biogenesis. *RNA Biology* **12**(4):381–388 DOI 10.1080/15476286.2015.1020271.

Chen M, Ai G, Zhou J, Mao W, Li H, Guo J. 2019. circMTO1 promotes tumorigenesis and chemoresistance of cervical cancer via regulating miR-6893. *Biomedicine & Pharmacotherapy* **107**:997–1003 DOI 10.1016/j.biopha.2018.08.059.

Chen Y, Ke G, Han D, Liang S, Yang G, Wu X. 2014. MicroRNA-181a enhances the chemoresistance of human cervical squamous cell carcinoma to cisplatin by targeting PRKCD. *Experimental Cell Research* **320**(1):12–20 DOI 10.1016/j.yexcr.2013.10.014.

Chen Y, Song Y, Mi Y, Jin H, Cao J, Li H, Han L, Huang T, Zhang X, Ren S, Ma Q, Zou Z. 2020. microRNA-499a promotes the progression and chemoresistance of cervical cancer cells by targeting SOX6. *Apoptosis* **25**(3–4):205–216 DOI 10.1007/s10495-019-01588-y.

Cheng C, Qin Y, Zhi Q, Wang J, Qin C. 2018. Knockdown of long non-coding RNA HOTAIR inhibits cisplatin resistance of gastric cancer cells through inhibiting the PI3K/Akt and
Wnt/β-catenin signaling pathways by up-regulating miR-34a. International Journal of Biological Macromolecules 107:2620–2629 DOI 10.1016/j.ijbiomac.2017.10.154.

Cheng J, Guo JM, Xiao BX, Miao Y, Jiang Z, Zhou H, Li QN. 2011. piRNA, the new non-coding RNA, is aberrantly expressed in human cancer cells. Clinica Chimica Acta 412(17–18):1621–1625 DOI 10.1016/j.cca.2011.05.015.

Chhabra R. 2015. Cervical cancer stem cells: opportunities and challenges. Journal of Cancer Research and Clinical Oncology 141(11):1889–1897 DOI 10.1007/s00432-014-1905-y.

Chi C, Mao M, Shen Z, Chen Y, Chen J, Hou W. 2018. HOXD-AS1 exerts oncogenic functions and promotes chemoresistance in cisplatin-resistant cervical cancer cells. Human Gene Therapy 29(12):1438–1448 DOI 10.1089/hum.2017.256.

Clark AS, West KA, Blumberg PM, Dennis PA. 2003. Altered protein kinase C (PKC) isoforms in non-small cell lung cancer cells: PKCdelta promotes cellular survival and chemotherapeutic resistance. Cancer Research 63:780–786.

Corrà F, Agnoletto C, Minotti L, Baldassari F, Volinia S. 2018. The network of non-coding RNAs in cancer drug resistance. Frontiers in Oncology 8:327 DOI 10.3389/onc.2018.00327.

Dasari S, Tchounwou PB. 2014. Cisplatin in cancer therapy: molecular mechanisms of action. European Journal of Pharmacology 740:364–378 DOI 10.1016/j.ejphar.2014.07.025.

Djebali S, Davis CA, Merkel A, Dobin A, Lassmann T, Mortazavi A, Weng X, Snyder M, streletzky C, Kim T, Rozowsky J, Röder M, Gilmour M, Guigo R, Gingeras TR. 2012. Landscape of transcription in human cells. Nature 489(7414):101–108 DOI 10.1038/nature11233.

Dong J, Su M, Chang W, Zhang K, Wu S, Xu T. 2017. Long non-coding RNAs on the stage of cervical cancer (Review). Oncology Reports 38(4):1923–1931 DOI 10.3892/or.2017.5905.

Eastman A. 1987. The formation, isolation and characterization of DNA adducts produced by anticancer platinum complexes. Pharmacology & Therapeutics 34(2):155–166 DOI 10.1016/0163-7258(87)90009-X.

Fan Z, Cui H, Yu H, Ji Q, Kang L, Han B, Wang J, Dong Q, Li Y, Yan Z, Yan X, Zhang X, Lin Z, Hu Y, Jiao S. 2016. MiR-125a promotes paclitaxel sensitivity in cervical cancer through altering STAT3 expression. Oncogenesis 5(2):e197 DOI 10.1038/oncsis.2016.1.

Feng C, Ma F, Hu C, Ma J-A, Wang J, Zhang Y, Wu F, Hou T, Jiang S, Wang Y, Feng Y. 2018. SOX9/miR-130a/CTR1 axis modulates DDP-resistance of cervical cancer cell. Cell Cycle 17(4):448–458 DOI 10.1080/15384101.2017.1395533.

Feng LL, Shen FR, Zhou JH, Chen YG. 2019. Expression of the lncRNA ZFAS1 in cervical cancer and its correlation with prognosis and chemosensitivity. Gene 696:105–112 DOI 10.1016/j.gene.2019.01.025.

Feng Y, Zou W, Hu C, Li G, Zhou S, He Y, Ma F, Deng C, Sun L. 2017. Modulation of CASC2/miR-21/PTEN pathway sensitizes cervical cancer to cisplatin. Archives of Biochemistry and Biophysics 623-624:20–30 DOI 10.1016/j.abb.2017.05.001.
Galluzzi L, Vitale I, Michels J, Brenner C, Szabadkai G, Harel-Bellan A, Castedo M, Kroemer G. 2014. Systems biology of cisplatin resistance: past, present and future. Cell Death & Disease 5(5):e1257 DOI 10.1038/cddis.2013.428.

Gao YL, Zhang MY, Xu B, Han LJ, Lan SF, Chen J, Dong YJ, Cao LL. 2017. Circular RNA expression profiles reveal that hsa_circ_0018289 is up-regulated in cervical cancer and promotes the tumorigenesis. Oncotarget 8(49):86625–86633 DOI 10.18632/oncotarget.21257.

Goto M, Osada S, Imagawa M, Nishizuka M. 2017. FAD104, a regulator of adipogenesis, is a novel suppressor of TGF-β-mediated EMT in cervical cancer cells. Scientific Reports 7(1):16365 DOI 10.1038/s41598-017-16555-3.

Guo J, Chen M, Ai G, Mao W, Li H, Zhou J. 2019. Hsa_circ_0023404 enhances cervical cancer metastasis and chemoresistance through VEGFA and autophagy signaling by sponging miR-5047. Biomedicine & Pharmacotherapy 115:108957 DOI 10.1016/j.biopha.2019.108957.

Guo JU, Agarwal V, Guo H, Bartel DP. 2014. Expanded identification and characterization of mammalian circular RNAs. Genome Biology 15(7):409 DOI 10.1186/s13059-014-0409-z.

He Y, Lin J, Ding Y, Liu G, Luo Y, Huang M, Xu C, Kim T-K, Etheridge A, Lin M, Kong D, Wang K. 2016. A systematic study on dysregulated microRNAs in cervical cancer development. International Journal of Cancer 138(6):1312–1327 DOI 10.1002/ijc.29618.

Holzer AK, Manorek GH, Howell SB. 2006. Contribution of the major copper influx transporter CTR1 to the cellular accumulation of cisplatin, carboplatin, and oxaliplatin. Molecular Pharmacology 70(4):1390–1394 DOI 10.1124/mol.106.022624.

Hosseini ES, Meryet-Figuiere M, Sabzalipoor H, Kashani HH, Nikzad H, Asemi Z. 2017. Dysregulated expression of long noncoding RNAs in gynecologic cancers. Molecular Cancer 16(1):107 DOI 10.1186/s12943-017-0671-2.

Huang Y, Huang H, Li M, Zhang X, Liu Y, Wang Y. 2017. MicroRNA-374c-5p regulates the invasion and migration of cervical cancer by acting on the Foxc1/snail pathway. Biomedicine & Pharmacotherapy 94:1038–1047 DOI 10.1016/j.biopha.2017.07.150.

Iden M, Fye S, Li K, Chowdhury T, Ramchandran R, Rader JS. 2016. The lncRNA PVT1 contributes to the cervical cancer phenotype and associates with poor patient prognosis. PLOS ONE 11(5):e0156274 DOI 10.1371/journal.pone.0156274.

Ishida S, Lee J, Thiele DJ, Herskowitz I. 2002. Uptake of the anticancer drug cisplatin mediated by the copper transporter Ctr1 in yeast and mammals. Proceedings of the National Academy of Sciences of the United States of America 99(22):14298–14302 DOI 10.1073/pnas.162491399.

Jing L, Bo W, Yourong F, Tian W, Shixuan W, Mingfu W. 2019. Sema4C mediates EMT inducing chemotherapeutic resistance of miR-31-3p in cervical cancer cells. Scientific Reports 9(1):87 DOI 10.1038/s41598-019-54177-z.

Juan L, Tong HL, Zhang P, Guo G, Wang Z, Wen X, Dong Z, Tian YP. 2014. Identification and characterization of novel serum microRNA candidates from deep sequencing in cervical cancer patients. Scientific Reports 4(1):6277 DOI 10.1038/srep06277.

Kalayda GV, Wagner CH, Jaehde U. 2012. Relevance of copper transporter 1 for cisplatin resistance in human ovarian carcinoma cells. Journal of Inorganic Biochemistry 116:1–10 DOI 10.1016/j.jinorgbio.2012.07.010.

Kelland L. 2007. The resurgence of platinum-based cancer chemotherapy. Nature Reviews Cancer 7(8):573–584 DOI 10.1038/nrc2167.

Kelland LR. 2000. Preclinical perspectives on platinum resistance. Drugs 59(Suppl. 4):1–8.

Ko T, Li S. 2019. Genome-wide screening identifies novel genes and biological processes implicated in cisplatin resistance. FASEB Journal 33(6):7143–7154 DOI 10.1096/fj.201801534RR.
Kornienko AE, Guenzl PM, Barlow DP, Pauler FM. 2013. Gene regulation by the act of long non-coding RNA transcription. *BMC Biology* 11(1):59 DOI 10.1186/1741-7007-11-59.

Larson CA, Blair BG, Safaei R, Howell SB. 2009. The role of the mammalian copper transporter 1 in the cellular accumulation of platinum-based drugs. *Molecular Pharmacology* 75(2):324–330 DOI 10.1124/mol.108.052381.

Lee JW, Choi CH, Choi JJ, Park YA, Kim Sj, Hwang SY, Kim WY, Kim TJ, Lee JH, Kim BG, Bae DS. 2008. Altered MicroRNA expression in cervical carcinomas. *Clinical Cancer Research* 14(9):2535–2542 DOI 10.1158/1078-0432.CCR-07-1231.

Lei C, Wang Y, Huang Y, Yu H, Huang Y, Wu L, Huang L. 2012. Up-regulated miR155 reverses the epithelial-mesenchymal transition induced by EGF and increases chemo-sensitivity to cisplatin in human Caski cervical cancer cells. *PLOS ONE* 7(12):e52310 DOI 10.1371/journal.pone.0052310.

Leon G, MacDonagh L, Finn SP, Cuffe S, Barr MP. 2016. Cancer stem cells in drug resistant lung cancer: targeting cell surface markers and signaling pathways. *Pharmacology & Therapeutics* 158:71–90 DOI 10.1016/j.pharmthera.2015.12.001.

Lewis AD, Hayes JD, Wolf CR. 1988. Glutathione and glutathione-dependent enzymes in ovarian adenocarcinoma cell lines derived from a patient before and after the onset of drug resistance: intrinsic differences and cell cycle effects. *Carcinogenesis* 9(7):1283–1287 DOI 10.1093/carcin/9.7.1283.

Li J, Hu L, Tian C, Lu F, Wu J, Liu L. 2015. microRNA-150 promotes cervical cancer cell growth and survival by targeting FOXO4. *BMC Molecular Biology* 16(1):24 DOI 10.1186/s12867-015-0052-6.

Li J, Ping Z, Ning H. 2012. MiR-218 impairs tumor growth and increases chemo-sensitivity to cisplatin in cervical cancer. *International Journal of Molecular Sciences* 13(12):16053–16064 DOI 10.3390/ijms131216053.

Li RM, Nai MM, Duan SJ, Li SX, Yin BN, An F, Zhai YQ, Liu J, Chu YR, Yu Y, Song WY. 2018. Down-expression of GOLM1 enhances the chemo-sensitivity of cervical cancer to methotrexate through modulation of the MMP13/EMT axis. *American Journal of Cancer Research* 8:964–980.

Li Y, Zhang Z, Xiao Z, Lin Y, Luo T, Zhou Q, Zhang X. 2017. Chemotherapy-mediated miR-29b expression inhibits the invasion and angiogenesis of cervical cancer. *Oncotarget* 8(9):14655–14665 DOI 10.18632/oncotarget.14738.

Liang H, Zhang C, Guan H, Liu J, Cui Y. 2019. LncRNA DANCR promotes cervical cancer progression by upregulating ROCK1 via sponging miR-335-5p. *Journal of Cellular Physiology* 234(5):7266–7278 DOI 10.1002/jcp.27484.

Liu H, Chen D, Bi J, Han J, Yang M, Dong W, Lin T, Huang J. 2018a. Circular RNA circUBXN7 represses cell growth and invasion by sponging miR-1247-3p to enhance B4GALT3 expression in bladder cancer. *Aging* 10(10):2606–2623 DOI 10.1002/aging.101573.

Liu Q, Liu S, Wang D. 2020. Overexpression of microRNA-21 decreased the sensitivity of advanced cervical cancer to chemoradiotherapy through SMAD7. *Anticancer Drugs* 31(3):272–281 DOI 10.1097/CAD.0000000000000871.

Liu W, Gao Q, Chen K, Xue X, Li M, Chen Q, Zhu G, Gao Y. 2014. Hiwi facilitates chemoresistance as a cancer stem cell marker in cervical cancer. *Oncology Reports* 32(5):1853–1860 DOI 10.3892/or.2014.3401.

Liu Y, Yang Y, Li L, Liu Y, Geng P, Li G, Song H. 2018b. LncRNA SNHG1 enhances cell proliferation, migration, and invasion in cervical cancer. *Biochemistry and Cell Biology* 96(1):38–43 DOI 10.1139/bcb-2017-0188.
Lu TX, Rothenberg ME. 2018. MicroRNA. *Journal of Allergy and Clinical Immunology* 141(4):1202–1207 DOI 10.1016/j.jaci.2017.08.034.

Luo X, Wei J, Yang FL, Pang XX, Shi F, Wei YX, Liao BY, Wang JL. 2019. Exosomal lncRNA HNF1A-AS1 affects cisplatin resistance in cervical cancer cells through regulating microRNA-34b/TUFT1 axis. *Cancer Cell International* 19(1):323 DOI 10.1186/s12935-019-1042-4.

Ma Z, Gu G, Pan W, Chen X. 2020. LncRNA PCAT6 accelerates the progression and chemoresistance of cervical cancer through up-regulating ZEB1 by sponging miR-543. *Oncotargets and Therapy* 13:1159–1170 DOI 10.2147/ott.S232354.

Mao Y, Zhang L, Li Y. 2019. circEIF4G2 modulates the malignant features of cervical cancer via the miR218/HOXA1 pathway. *Molecular Medicine Reports* 19:3714–3722 DOI 10.3892/mmr.2019.10032.

Matsui M, Corey DR. 2017. Non-coding RNAs as drug targets. *Nature Reviews Drug Discovery* 16(3):167–179 DOI 10.1038/nrd.2016.117.

Memczak S, Jens M, Elefsinioti A, Torti F, Krueger J, Rybak A, Maier L, Mackowiak SD, Gregersen LH, Munschauer M, Loewer A, Ziebold U, Landthaler M, Kocks C, Le Noble F, Rajewsky N. 2013. Circular RNAs are a large class of animal RNAs with regulatory potency. *Nature* 495(7441):333–338 DOI 10.1038/nature11928.

Mendoza-Almanza G, Ortiz-Sánchez E, Rocha-Zavaleta L, Rivas-Santiago C, Esparza-Ibarra E, Olmos J. 2019. Cervical cancer stem cells and other leading factors associated with cervical cancer development. *Oncology Letters* 18:3423–3432 DOI 10.3892/ol.2019.10718.

Mohanty S, Huang J, Basu A. 2005. Enhancement of cisplatin sensitivity of cisplatin-resistant human cervical carcinoma cells by bryostatin 1. *Clinical Cancer Research* 11(18):6730–6737 DOI 10.1158/1078-0432.CCR-05-0450.

Moor DH. 2008. Chemotherapy for advanced, recurrent, and metastatic cervical cancer. *Journal of the National Comprehensive Cancer Network* 6(1):53–57 DOI 10.6004/jnccn.2008.0006.

Moor DH, Tian C, Monk BJ, Long HJ, Omura GA, Bloss JD. 2010. Prognostic factors for response to cisplatin-based chemotherapy in advanced cervical carcinoma: a gynecologic oncology group study. *Gynecologic Oncology* 116(1):44–49 DOI 10.1016/j.ygyno.2009.09.006.

Nassar D, Blanpain C. 2016. Cancer stem cells: basic concepts and therapeutic implications. *Annual Review of Pathology* 11(1):47–76 DOI 10.1146/annurev-pathol-012615-044438.

National Comprehensive Cancer Network. 2020. *NCCN Clinical Practice Guidelines in Oncology, Cervical Cancer*, Version 1. Available at https://www.nccn.org/professionals/physician_gls/pdf/cervical.pdf.

Peng Y, Calin GA. 2018. Crucial role of non-coding RNAs in disease. *Cancer Letters* 420:127–128 DOI 10.1016/j.canlet.2018.02.001.

Pfaendler KS, Tewari KS. 2016. Changing paradigms in the systemic treatment of advanced cervical cancer. *American Journal of Obstetrics and Gynecology* 214(1):22–30 DOI 10.1016/j.ajog.2015.07.022.

Ping G, Xiong W, Zhang L, Li Y, Zhang Y, Zhao Y. 2018. Silencing long noncoding RNA PVT1 inhibits tumorigenesis and cisplatin resistance of colorectal cancer. *American Journal of Translational Research* 10:138–149.

Prasad CB, Prasad SB, Yadav SS, Pandey LK, Singh S, Pradhan S, Narayan G. 2017. Olaparib modulates DNA repair efficiency, sensitizes cervical cancer cells to cisplatin and exhibits anti-metastatic property. *Scientific Reports* 7(1):12876 DOI 10.1038/s41598-017-13232-3.

Raji GR, Sruthi TV, Edatt L, Haritha K, Sharath Shankar S, Sameer Kumar VB. 2017. Horizontal transfer of miR-106a/b from cisplatin resistant hepatocarcinoma cells can alter the
sensitivity of cervical cancer cells to cisplatin. *Cellular Signalling* **38**:146–158
DOI 10.1016/j.cellsig.2017.07.005.

Sannigrahi MK, Sharma R, Singh V, Panda NK, Rattan V, Khullar M. 2017. Role of Host miRNA Hsa-miR-139-3p in HPV-16-Induced Carcinomas. *Clinical Cancer Research* **23**(14):3884–3895 DOI 10.1158/1078-0432.CCR-16-2936.

Sathyanarayanan A, Chandrasekaran KS, Karunagaran D. 2017. microRNA-145 modulates epithelial-mesenchymal transition and suppresses proliferation, migration and invasion by targeting SIP1 in human cervical cancer cells. *Cellular Oncology* **40**(2):119–131 DOI 10.1007/s13402-016-0307-3.

Sharma G, Dua P, Agarwal SM. 2014. A comprehensive review of dysregulated miRNAs involved in cervical cancer. *Current Genomics* **15**(4):310–323 DOI 10.2174/1389202915666140528003249.

Shen DW, Pouliot LM, Hall MD, Gottesman MM. 2012. Cisplatin resistance: a cellular self-defense mechanism resulting from multiple epigenetic and genetic changes. *Pharmacological Reviews* **64**(3):706–721 DOI 10.1124/pr.111.005637.

Shi F, Su J, Liu Z, Wang J, Wang T. 2019. miR-144 reverses cisplatin resistance in cervical cancer via targeting LHX2. *Journal of Cellular Biochemistry* **120**(9):15018–15026 DOI 10.1002/jcb.28763.

Shih J-H, Chen H-Y, Lin S-C, Yeh Y-C, Shen R, Lang Y-D, Wu D-C, Chen C-Y, Chen R-H, Chou T-Y, Jou Y-S. 2019. Integrative analyses of noncoding RNAs reveal the potential mechanisms augmenting tumor malignancy in lung adenocarcinoma. *Nucleic Acids Research* **48**(3):1175–1191 DOI 10.1093/nar/gkz1149.

Small W, Bacon MA, Bajaj A, Chuang LT, Fisher BJ, Harkenrider MM, Jhingran A, Kitchener HC, Mileskkin LR, Viswanathan AN, Gaffney DK. 2017. Cervical cancer: a global health crisis. *Cancer* **123**(13):2404–2412 DOI 10.1002/cncr.30667.

Song J, Li Y. 2017. miR-25-3p reverses epithelial-mesenchymal transition via targeting Sema4C in cisplatin-resistance cervical cancer cells. *Cancer Science* **108**(1):23–31 DOI 10.1111/cas.13104.

Sun Y, Feng Y, Zhang G, Xu Y. 2019. The endonuclease APE1 processes miR-92b formation, thereby regulating expression of the tumor suppressor LDLR in cervical cancer cells. *Therapeutic Advances in Medical Oncology* **11**:1758835919855859 DOI 10.1177/1758835919855859.

Svrcek M, El-Murr N, Wanherdrick K, Dumont S, Beaugerie L, Cosnes J, Colombel JF, Tiret E, Fléjou JF, Duval A. 2013. Overexpression of microRNAs-155 and 21 targeting mismatch repair proteins in inflammatory bowel diseases. *Carcinogenesis* **34**(4):828–834 DOI 10.1093/carcin/bgs408.

Tang Q, Chen Z, Zhao L, Xu H. 2019. Circular RNA hsa_circ_0000515 acts as a miR-326 sponge to promote cervical cancer progression through up-regulation of ELK1. *Aging* **11**(22):9982–9999 DOI 10.18632/aging.102356.

Tong R, Zhang J, Wang C, Li Q, Wang L, Ju M. 2019. Inhibition of miR-574-5p suppresses cell growth and metastasis and enhances chemosensitivity by targeting RNA binding protein QKI in cervical cancer cells. *Naunyn-Schmiedeberg's Archives of Pharmacology* **118**(10):3028 DOI 10.1007/s00210-019-01772-6.

Vella S, Penna I, Longo I, Pioggia G, Garbatii P, Florio T, Rossi F, Pagano A. 2015. Perhexiline maleate enhances antitumor efficacy of cisplatin in neuroblastoma by inducing over-expression of NDM29 ncRNA. *Scientific Reports* **5**(1):18144 DOI 10.1038/srep18144.

Waggoner SE. 2003. Cervical cancer. *Lancet* **361**(9376):2217–2225 DOI 10.1016/S0140-6736(03)13778-6.
Wang B, Huang Z, Gao R, Zeng Z, Yang W, Sun Y, Wei W, Wu Z, Yu L, Li Q, Zhang S, Li F, Liu G, Liu B, Leng L, Zhan W, Yu Y, Yang G, Zhou S. 2017a. Expression of long noncoding RNA urothelial cancer associated 1 promotes cisplatin resistance in cervical cancer. *Cancer Biotherapy and Radiopharmaceuticals* 32:101–110 DOI 10.1089/cbr.2016.2156.

Wang F, Liu M, Li X, Tang H. 2013. MiR-214 reduces cell survival and enhances cisplatin-induced cytotoxicity via down-regulation of Bcl2l2 in cervical cancer cells. *FEBS Letters* 587(5):488–495 DOI 10.1016/j.febslet.2013.01.016.

Wang I, Liang TT. 2020. CD59 receptor targeted delivery of miRNA-1284 and cisplatin-loaded liposomes for effective therapeutic efficacy against cervical cancer cells. *AMB Express* 10(1):54 DOI 10.1186/s13568-020-00990-z.

Wang N, Hou MS, Zhan Y, Shen XB, Xue HY. 2018. MALAT1 promotes cisplatin resistance in cervical cancer by activating the PI3K/AKT pathway. *European Review for Medical and Pharmacological Sciences* 22:7653–7659 DOI 10.26355/eurrev_201811_16382.

Wang T, Feng J, Zhang A. 2020. miR-584 inhibits cell proliferation, migration and invasion in vitro and enhances the sensitivity to cisplatin in human cervical cancer by negatively targeting GLI1. *Experimental and Therapeutic Medicine* 19:2059–2066 DOI 10.3892/etm.2020.8449.

Wang W-T, Han C, Sun Y-M, Chen T-Q, Chen Y-Q. 2019. Noncoding RNAs in cancer therapy resistance and targeted drug development. *Journal of Hematology & Oncology* 12(1):55 DOI 10.1186/s13045-019-0748-z.

Wang W, Li Y, Liu N, Gao Y, Li L. 2017b. MiR-23b controls ALDH1A1 expression in cervical cancer stem cells. *BMC Cancer* 17(1):292 DOI 10.1186/s12885-017-3192-x.

Wei X, Zhou Y, Qiu J, Wang X, Xia Y, Sui L. 2019. Low expression of TUG1 promotes cisplatin sensitivity in cervical cancer by activating the MAPK pathway. *Journal of Buon* 24:1020–1026.

Wen Q, Liu Y, Lyu H, Xu X, Wu Q, Liu N, Yin Q, Li J, Sheng X. 2017. Long noncoding RNA GAS5, which acts as a tumor suppressor via microRNA 21, regulates cisplatin resistance expression in cervical cancer. *International Journal of Gynecological Cancer* 27(6):1096–1108 DOI 10.1097/IGC.0000000000001028.

Wen Z, Lei Z, Jin-An M, Xue-Zhen L, Xing-Nan Z, Xi-Wen D. 2014. The inhibitory role of miR-214 in cervical cancer cells through directly targeting mitochondrial transcription factor A (TFAM). *European Journal of Gynaecological Oncology* 35:676–682.

Wilusz JE, Sunwoo H, Spector DL. 2009. Long noncoding RNAs: functional surprises from the RNA world. *Genes & Development* 23(13):1494–1504 DOI 10.1101/gad.1800909.

Xiong Y, Sun F, Dong P, Watari H, Yue J, Yu MF, Lan CY, Wang Y, Ma ZB. 2017. iASPP induces EMT and cisplatin resistance in human cervical cancer through miR-20a-FBXL5/BTG3 signaling. *Journal of Experimental & Clinical Cancer Research* 36(1):48 DOI 10.1186/s13046-017-0520-6.

Xu D, Liu S, Zhang L, Song L. 2017. MiR-211 inhibits invasion and epithelial-to-mesenchymal transition (EMT) of cervical cancer cells via targeting MUC4. *Biochemical and Biophysical Research Communications* 485(2):556–562 DOI 10.1016/j.bbrc.2016.12.020.

Yamamura S, Imai-Sumida M, Tanaka Y, Dahiya R. 2018. Interaction and cross-talk between non-coding RNAs. *Cellular and Molecular Life Sciences* 75(3):467–484 DOI 10.1007/s00018-017-2626-6.

Yang F, Guo L, Cao Y, Li S, Li J, Liu M. 2018. MicroRNA-7-5p promotes cisplatin resistance of cervical cancer cells and modulation of cellular energy homeostasis by regulating the expression of the PARP-1 and BCL2 genes. *Medical Science Monitor* 24:6506–6516 DOI 10.12659/MSM.910969.

Wen et al. (2020), *PeerJ*, DOI 10.7717/peerj.9234
Yang H, Wu XL, Wu KH, Zhang R, Ju LL, Ji Y, Zhang YW, Xue SL, Zhang YX, Yang YF, Yu MM. 2016a. MicroRNA-497 regulates cisplatin chemosensitivity of cervical cancer by targeting transketolase. *American Journal of Cancer Research* 6:2690–2699.

Yang J, Zhang K, Wu J, Shi J, Xue J, Li J, Chen J, Zhu Y, Wei J, He J, Liu X. 2016b. Wnt5a increases properties of lung cancer stem cells and resistance to cisplatin through activation of Wnt5a/PKC signaling pathway. *Stem Cells International* 2016:1690896.

Yang Y-K, Xi W-Y, Xi R-X, Li J-Y, Li Q, Gao Y-E. 2015a. MicroRNA-494 promotes cervical cancer proliferation through the regulation of PTEN. *Oncology Reports* 33(5):2393–2401 DOI 10.3892/or.2015.3821.

Yang Y, Dai C, Cai Z, Hou A, Cheng D, Wu G, Li J, Cui J, Xu D. 2016c. The pathway analysis of micrornas regulated drug-resistant responses in HeLa cells. *IEEE Transactions on NanoBioscience* 15(2):113–118 DOI 10.1109/TNB.2016.2539365.

Yang Y, Liu H, Wang X, Chen L. 2015b. Up-regulation of microRNA-664 inhibits cell growth and increases cisplatin sensitivity in cervical cancer. *International Journal of Clinical and Experimental Medicine* 8:18123–18129.

Yang Z, Schumaker LM, Egorin MJ, Zuhowski EG, Guo Z, Cullen KJ. 2006. Cisplatin preferentially binds mitochondrial DNA and voltage-dependent anion channel protein in the mitochondrial membrane of head and neck squamous cell carcinoma: possible role in apoptosis. *Clinical Cancer Research* 12(19):5817–5825 DOI 10.1158/1078-0432.CCR-06-1037.

Yao T, Lu R, Zhang J, Fang X, Fan L, Huang C, Lin R, Lin Z. 2019. Growth arrest-specific 5 attenuates cisplatin-induced apoptosis in cervical cancer by regulating STAT3 signaling via miR-21. *Journal of Cellular Physiology* 234(6):9605–9615 DOI 10.1002/jcp.27647.

Yin Z, Ren W. 2019. MicroRNA-217 acts as a tumor suppressor and correlates with the chemoresistance of cervical carcinoma to cisplatin. *OncoTargets and Therapy* 12:759–771 DOI 10.2147/ott.S176618.

Yoon JH, Abdelmohsen K, Gorospe M. 2014. Functional interactions among microRNAs and long noncoding RNAs. *Seminars in Cell & Developmental Biology* 34:9–14 DOI 10.1016/j.semcdb.2014.05.015.

Yu M, Xu B, Yang H, Xue S, Zhang R, Zhang H, Ying X, Dai Z. 2019. MicroRNA-218 regulates the chemo-sensitivity of cervical cancer cells through targeting survivin. *Cancer Management and Research* 11:6511–6519 DOI 10.2147/cmar.S199659.

Yuan M, Zhao S, Chen R, Wang G, Bie Y, Wu Q, Cheng J. 2020. MicroRNA-138 inhibits tumor growth and enhances chemosensitivity in human cervical cancer by targeting H2AX. *Experimental and Therapeutic Medicine* 19:630–638 DOI 10.3892/etm.2019.8238.

Zhang J, Li YH, Liu HL, Zhang Y, Zhang QS, Li SZ. 2018a. Correlations of MicroRNA-21 gene polymorphisms with chemosensitivity and prognosis of cervical cancer. *American Journal of the Medical Sciences* 356(6):544–551 DOI 10.1016/j.amjms.2018.08.014.

Zhang J, Zhao X, Zhang J, Zheng X, Li F. 2018b. Circular RNA hsa_circ_0023404 exerts an oncogenic role in cervical cancer through regulating miR-136/TFCP2/YAP pathway. *Biochemical and Biophysical Research Communications* 501(2):428–433 DOI 10.1016/j.bbrc.2018.05.006.

Zhang L, Li J, Zong L, Chen X, Chen K, Jiang Z, Nan L, Li X, Li W, Shan T, Ma Q, Ma Z. 2016. Reactive oxygen species and targeted therapy for pancreatic cancer. *Oxidative Medicine and Cellular Longevity* 2016:1616781 DOI 10.1155/2016/1616781.

Zhang WY, Liu YJ, He Y, Chen P. 2019. Suppression of long noncoding RNA NCK1-AS1 increases chemosensitivity to cisplatin in cervical cancer. *Journal of Cellular Physiology* 234(4):4302–4313 DOI 10.1002/jcp.27198.
Zhong Y, Du Y, Yang X, Mo Y, Fan C, Xiong F, Ren D, Ye X, Li C, Wang Y, Wei F, Guo C, Wu X, Li X, Li Y, Li G, Zeng Z, Xiong W. 2018. Circular RNAs function as ceRNAs to regulate and control human cancer progression. *Molecular Cancer* 17(1):79 DOI 10.1186/s12943-018-0827-8.

Zhu H, Zheng T, Yu J, Zhou L, Wang L. 2018. LncRNA XIST accelerates cervical cancer progression via upregulating Fus through competitively binding with miR-200a. *Biomedicine & Pharmacotherapy* 105:789–797 DOI 10.1016/j.biopha.2018.05.053.

Zisowsky J, Koegel S, Leyers S, Devarakonda K, Kassack MU, Osmak M, Jaehde U. 2007. Relevance of drug uptake and efflux for cisplatin sensitivity of tumor cells. *Biochemical Pharmacology* 73(2):298–307 DOI 10.1016/j.bcp.2006.10.003.

Zou X, Zhu C, Zhang L, Zhang Y, Fu F, Chen Y, Zhou J. 2020. MicroRNA-708 suppresses cell proliferation and enhances chemosensitivity of cervical cancer cells to cDDP by negatively targeting timeless. *OncoTargets and Therapy* 13:225–235 DOI 10.2147/ott.S227015.