Effective “Penetration Depth” in the Vortex State of a d-wave Superconductor

M. H. S. Amin11 M. Franz2 and Ian Affleck3,4

1Department of Physics, Simon Fraser University, Burnaby, BC, V5A 1S6, Canada,
2Department of Physics and Astronomy, Johns Hopkins University, Baltimore, MD 21218, USA,
3Department of Physics and Astronomy and Canadian Institute for Advanced Research,
University of British Columbia, Vancouver, BC, V6T 1Z1, Canada
4Institute for Theoretical Physics, University of California, Santa Barbara, CA93106-4030, USA

(March 24, 2022)

The temperature and field dependence of the effective magnetic penetration depth (λ_{eff}) in the vortex state of a d-wave superconductor, as measured by muon spin rotation (μSR) experiments, is calculated using a nonlocal London model. We show that at temperatures below $T^* \propto \sqrt{B}$, the linear T-dependence of λ_{eff} crosses over to a T^2-dependence. This could provide an explanation for the low temperature flattening of the $\lambda_{\text{eff}}^{-2}$ curve observed in a recent μSR experiment.

Recent experiments on quasiparticle response in the vortex state of the cuprate superconductors have indicated quite unexpected behavior. Krishana et al. discovered an anomalous plateau in the longitudinal thermal conductivity κ_{xx} of Bi$_2$Sr$_2$CaCu$_2$O$_{8+\delta}$ (BSCCO) and YBa$_2$Cu$_3$O$_{7-\delta}$ (YBCO) at high magnetic fields which they attributed to the opening of a second gap of d_{xy} symmetry. Scanning tunneling spectroscopy (STS) on YBCO compounds lent support to this scenario by suggesting the existence of localized quasiparticles in the vortex core regions which is possible only for a gapped excitation spectrum. Subsequent measurements of Aubin et al. discovered hysteretic behavior in the thermal conductivity which is a signature of the influence of the vortex lattice and impurities on κ_{xx}. Furthermore, at temperatures below 1K they detected an increase of κ_{xx} with the magnetic field instead of decrease. This is actually in agreement with the existence of nodes in the superconducting gap and in contradiction with $d_{x^2-y^2} + id_{xy}$ symmetry scenario. Theoretically, the possibility of a field induced d_{xy} gap was discussed by Laughlin and others, and attempts have been made to explain the observed strange behavior of κ_{xx} without invoking mixed order parameter symmetry.

The question of the existence of the second order parameter was recently raised once again by Sonier et al. in their μSR experiment. At high magnetic fields, they observed a flattening of $\lambda_{\text{eff}}^{-2}$ (defined in these experiments as the width of magnetic field distribution) at low temperatures in contrast to the T-linear behavior expected in a d-wave superconductor. If one assumes that $\lambda_{\text{eff}}^{-2}$ is proportional to the superfluid density ρ_s, then such a flattening could be indicative of opening of a gap in the quasiparticle excitation spectrum, which would result in exponentially activated behavior of $\rho_s(T)$. On the other hand, experiment finds strong dependence of $\lambda_{\text{eff}}(T \to 0)$ on the magnetic field. This argues against the gap since within conventional BCS type models opening of a gap should not affect the value of $\rho_s(T \to 0)$. In this letter we argue that the simple relation $\lambda_{\text{eff}}^{-2} \propto \rho_s$ is not valid for the penetration depth extracted in these experiments at finite fields and that with proper definition the observed behavior of $\lambda_{\text{eff}}^{-2}(T)$ can be explained very naturally by a nonlocal London model for a d-wave superconductor in which the superfluid density ρ_s remains linear in temperature.

High T_c materials are extremely type II superconductors in the sense that their coherence length ξ is much smaller than their penetration depth λ. Thus naively one would expect that the local London model well describes their magnetic behavior. However, in order to study the electromagnetic response of a d-wave superconductor it is necessary to define a momentum dependent coherence length, $\xi_p = v_F/\pi\Delta_p$, which diverges along the node directions. This divergence gives rise to nonlocal dependence between the supercurrent and the vector potential. Kosztin and Leggett showed that in the Meissner state, this nonlocal relation can produce a T^2-dependence of the penetration depth, instead of linear T-dependence, below some crossover temperature given by $T^*_{KL} = \Delta_0(\xi_0/\lambda_0)$ where Δ_0 is the maximum gap, $\xi_0 = v_F/\pi\Delta_0$ and λ_0 is the London penetration depth. Such an effect is field independent and can only occur at very low temperatures. Therefore, it cannot directly explain the μSR observation assuming that λ_{eff} is the same as the Meissner penetration depth. We will show below that an analogous calculation with a new definition for the penetration depth which is similar to its definition in μSR experiments gives $\lambda_{\text{eff}} \sim T^3$ for $T < T^*$. Here $T^* = \Delta_0(\xi_0/d)$, and $d = \sqrt{\Phi_0/\mu B}$ is the distance between vortices, with Φ_0 being the flux quantum. T^* is now field dependent and could be much larger than T^*_{KL}.

We have studied the effect of nonlocality and nonlinearity due to the field induced excitations at the gap nodes, in the vortex state of a d-wave superconductor using a generalized London model. In Ref. we defined an effective penetration depth λ_{eff} so as to closely correspond to the quantity measured in μSR experiments. Fig. presents the result of nonlinear-nonlocal calculation of λ_{eff} based on the theory developed in Refs. The effect of the nonlinear corrections on λ_{eff}, as shown in Fig., saturates at high fields and stays effectively field independent for $B > 1T$. Most of the field dependence of λ_{eff}, especially at high
The effect of the nonlinear corrections is just to shift the value of λ_{eff} by a constant, which can be compensated by rescaling λ_0. In Fig. 1, we compare our theory with the μSR data reported in Ref. [9]. We find that it is possible to fit the experimental data to both nonlinear-nonlocal and nonlocal-only curves, with fairly good agreement, by just changing the scale. At high fields both curves provide good fits. Even below 1T the agreement between the experimental data and the nonlocal-only curve is fairly good; although including nonlinear corrections enhances the agreement especially at 0.1T. The excellent agreement between our theory and the experimental data suggests that the same effects might be important for the temperature dependence of λ_{eff}, and might be in fact responsible for the μSR observation.

The effective penetration depth in the vortex state has been also studied numerically by Wang and MacDonald [17] within a lattice model of a d-wave superconductor. This approach is capable of correctly accounting for the vortex core physics, which is beyond the scope of our London model. On the flip side, because of the system size limitations, the approach of Ref. [17] is limited to relatively high fields $B \gtrsim 10$T. The present approach is well suited to address the low-field regime ($0.1T \lesssim B \lesssim 10$T) which is of greatest experimental interest in cuprates.

We now present a brief discussion of analytical and numerical calculations leading to the temperature and field dependence of λ_{eff}. In order to avoid unnecessary complications we only explicitly consider the nonlocal effects. Nonlinear corrections are included only by rescaling the value of λ_0, as discussed above. A more detailed description of the theory is given in Refs. [14][13]. To linear order, the relation between the supercurrent \mathbf{j} and the vector potential \mathbf{A} in a superconductor can be written in Fourier space as

$$\mathbf{j}_k = -(c/4\pi)\hat{Q}(k)\mathbf{A}_k.$$

where $\hat{Q}(k)$ is the electromagnetic response tensor. Applying the linear response treatment of Gorkov equations generalized for an anisotropic gap, one can calculate the kernel $\hat{Q}(k)$ in weak coupling limit. One finds [14]

$$Q_{ij}(k) = \frac{4\pi T}{\lambda_0^2} \sum_{n>0} \left(\frac{\Delta_0^2 \delta_{Fi} \delta_{Fj}}{\omega_n^2 + \Delta_0^2 (\omega_n^2 + \Delta_0^2 + \gamma_k^2)} \right),$$

where $\gamma_k = v_F \cdot k/2$, $\lambda_0 = \sqrt{\varepsilon_0^2/4\pi e^2 v_F^2 N_F}$ is the London penetration depth, $\omega_n = \pi T(2n-1)$ are the Matsubara frequencies and the angular bracket means Fermi surface averaging. Eq. (2) is valid for an arbitrary Fermi surface and gap function.

Besides the temperature dependence contained in the Matsubara frequencies in (2), the gap itself has temperature dependence which becomes important at temperatures approaching T_c. Assuming an isotropic Fermi surface, we use the simple form $\Delta_0(T) = \Delta(T) \cos \theta$, for the gap where θ is the angle between the internal momentum \mathbf{p} and the x-direction. In weak coupling limit and in the absence of magnetic field, the function $\Delta(T)$ can be obtained by solving the ordinary BCS gap equation which in d-wave case is

$$\frac{1}{V} = T \sum_{\mathbf{p},\omega_n} \cos^2 \theta \frac{\omega_n^2 + \varepsilon_p^2 + \Delta(T)^2 \cos^2 \theta}{\omega_n^2 + \varepsilon_p^2 + \Delta(T)^2 \cos^2 \theta^2},$$

where V is the interaction potential in the d-wave channel and ε_p is the dispersion relation. At finite magnetic fields this equation will change and a full self consistent calculation will be necessary to obtain $\Delta(T)$. However, since the magnetic fields of our interest are far below the upper critical field H_{c2}, and since we focus only on the regions outside the vortex cores, we can assume (to a good approximation) that Eq. (3) holds even in the presence of a weak magnetic field.

One can write the London equation purely in terms of magnetic field, by eliminating \mathbf{j} from (1) and using Ampère’s law $\mathbf{j} = (c/4\pi)\nabla \times \mathbf{B}$.
\[\mathbf{B}_k - \mathbf{k} \times [\hat{\mathbf{Q}}^{-1}(\mathbf{k}) (\mathbf{k} \times \mathbf{B}_k)] = 0. \]

(4)

In the vortex state it is furthermore necessary to insert a source term \(F(\mathbf{k}) \) on the right-hand side of the Eq. (4) which accounts for the phase winding around the vortex cores. We use a source term with the usual Gaussian cutoff \(F(\mathbf{k}) = e^{-\frac{1}{2}k^2} \) [12].

As in Ref. [12], we define \(\lambda_{\text{eff}} \) by

\[\lambda_{\text{eff}}^{-4} = \lambda_0^{-4} \left(\frac{\delta B^2}{\delta B_0^2} \right), \]

(5)

where \(\delta B^2 \) is the second moment of the field distribution in the vortex lattice and \(\delta B_0^2 \) is the same quantity for the magnetic field \(B_0(\mathbf{r}) \) obtained by solving the ordinary London model on a triangular lattice with the same \(\lambda_0 \).

We emphasize that this way of defining \(\lambda_{\text{eff}} \) is roughly equivalent to the way it is computed from the \(\mu \)SR data. Using (4) and (5) we get

\[\frac{\delta \lambda_{\text{eff}}}{\lambda_0} = \left(\frac{C}{\lambda_0^2} \right) \sum_{q \neq 0} e^{-\frac{1}{2}q^2} q^2 \approx \left(\frac{C}{\lambda_0^2} \right) \sum_{q \neq 0} e^{-\frac{1}{2}q^2} \left(e_{ij} \hat{L}_{ij}(\mathbf{k}) \right)^2. \]

(6)

where \(\mathbf{k} \) are the reciprocal lattice wave vectors and

\[\lambda_{\text{eff}}^{-4} = C \sum_{\mathbf{k} \neq 0} e^{-\frac{1}{2}q^2} \left(\frac{e_{ij} \hat{L}_{ij}(\mathbf{k})}{k^4} \right)^2, \]

(7)

where \(e_{ij} = \text{det} \mathbf{Q}(\mathbf{k}) \).

Notice that only wave-vectors of \(\text{O}(d^{-1}) \) and larger contribute to the vortex lattice field distribution and the response to a magnetic field at these wave-vectors can be much different than at zero wave-vector in a superconductor with gap nodes. At low \(T \), only the regions near the gap nodes are important in the calculation of \(Q_{ij}(\mathbf{k}) \). We can therefore linearize the gap as \(\Delta_\rho \approx \Delta_0 = 2\Delta(T)\theta \) where \(\theta \) is the angle measured from the node, and let \(\mathbf{n}_F \) in Eq. (3) only take the node directions. As a result, \(Q_{ij} \) will be diagonal in the \(45^\circ \) rotated frame.

Defining \(q_{1,2} = (k_x \pm k_y)/\sqrt{2} \) we can write \(Q_{ij} = \lambda_0^{-2}[1 + K(q_1, T)] \delta_{ij} \). Then we have

\[\hat{L}_{11}(\mathbf{q}) = \lambda_0^2 \left[1 - K(q_2, T) \right], \]
\[\hat{L}_{22}(\mathbf{q}) = \lambda_0^{-2} \left[1 - K(q_1, T) \right], \]
\[\hat{L}_{12}(\mathbf{q}) = \hat{L}_{21}(\mathbf{q}) = 0. \]

(8)

This is actually a Taylor expansion in \(K \) which is small at low \(B \) and \(T \). Substituting into (6) we get

\[\frac{\delta \lambda_{\text{eff}}}{\lambda_0} = \left(\frac{C}{\lambda_0^2} \right) \sum_{q \neq 0} \left[\tilde{K}(\mathbf{q}_1, T) q_1^2 + \tilde{K}(\mathbf{q}_2, T) q_2^2 \right], \]

(9)

where \(\mathbf{q} = q_d, \tilde{C} = C_d d^4 \) and \(\tilde{K}(x, T) = K(x/d, T) \). We have also taken the upper cutoff \(\zeta_d^{-1} d/\xi_0 \) to infinity since it does not affect our calculations (we keep \(\zeta_d \) finite in our numerical calculation but our results are insensitive to its exact value).

At \(T = 0 \) for \(\tilde{q} \zeta_d \ll 1 \) one can write \(\tilde{K}(\tilde{q}, 0) \approx -\frac{\pi^2}{8} \zeta_d \tilde{q} \). Substituting back into (6) we get

\[\delta \lambda_{\text{eff}}(T = 0) \propto \zeta_d \sim \sqrt{B}. \]

(10)

This is in complete agreement with our numerical calculation and \(\mu \)SR data. Using (4) and (5) we get

\[\frac{\delta \lambda_{\text{eff}}}{\lambda_0} = \frac{C}{2} \sum_{q \neq 0} \left[\tilde{K}(\mathbf{q}_1, T) q_1^2 + \tilde{K}(\mathbf{q}_2, T) q_2^2 \right], \]

(11)

where \(\delta \lambda_{\text{eff}} = \lambda(B, T) - \lambda(B, 0) \) and \(\tilde{K}(\mathbf{q}, T) = \tilde{K}(\mathbf{q}, T) - \tilde{K}(\mathbf{q}, 0) \). We follow Ref. [12] by writing

\[\delta \tilde{K}(\mathbf{q}, T) = \tilde{K}(0, T) F \left(\frac{\tilde{q}}{t} \right), \]

(12)

where \(t = T/T^* \). \(\tilde{K}(0, T) \approx -2(\ln 2)\Delta_0 \) is the kernel obtained in local approximation, and \(F(z) \) is a universal function which can be approximated by

\[F(z) \approx 1 - c_1 z \quad \text{for} \quad z < 2, \]
\[F(z) \approx c_0 z^2 \quad \text{for} \quad z > 2. \]

(13)

Here, \(c_0 \) and \(c_1 \) are constants. Substituting (12) and (13) into (11) we find that for \(t \ll 1 \), \(F(z) \) falls into \(z > 2 \) regime for all reciprocal lattice vectors \(\tilde{q} \). This immediately gives \(\delta \lambda_{\text{eff}} \propto T^3 \). At higher temperatures on the other hand, there will exist significant number of points with \(z < 2 \) which would give linear \(T \) behavior. Thus in general

\[\delta \lambda_{\text{eff}} \propto T^3 \quad \text{for} \quad T \ll T^*, \]
\[\delta \lambda_{\text{eff}} \propto T \quad \text{for} \quad T^* \ll T \ll T_c. \]

(14)

Fig. 3 shows the results of our numerical calculation of \(\lambda_{\text{eff}} \) as a function of temperature. We take \(\lambda_0 = 1078 \Delta \),
which is the value that produces the best fit to the experimental data (cf. Fig. 3), and \(\kappa = \lambda_0 / \xi_0 = 68 \). We also assume a triangular vortex lattice aligned with \(x \) and \(y \) (\(a \) and \(b \)) directions. We have tried changing the core size as well as the shape of the vortex lattice and our results remained unchanged. The penetration depth is no longer linear at low temperatures; unlike the superfluid density (the upper curve). The deviation from linearity is stronger at higher fields in complete agreement with the \(\mu \)SR observation \[2\] and previous theoretical work \[3\]. At high enough fields, the \(T \) dependence is in complete agreement with the \(T^3 \)-form obtained analytically. The curves for different fields join to a single curve at higher temperatures. This is essentially because the nonlocal corrections are most pronounced for the quasiparticles close to the gap nodes. At higher temperatures the response becomes dominated by the quasiparticles far from the nodes which feel much weaker nonlocal effects.

Fig. 3 presents a comparison between our results and the experimental data. In order to get a good fit, we set \(\Delta_0 \equiv \Delta(0) = 2.65T \), which is also what one obtains from the gap equation \[3\]. We have normalized both experimental and theoretical data with \(\lambda_0 = 1078 \, \text{Å} \). The agreement between our theory and the data is good at \(B = 4\, \text{T} \) and \(6\, \text{T} \), but at \(B = 0.5\, \text{T} \) the theory shows less linearity at low temperatures compared to the experimental data, although they agree fairly well at \(T = 0 \) and high \(T \).

As we mentioned earlier, a complete calculation should include nonlinear corrections \[15\, 17\] in addition to the nonlocal corrections considered here. However, as apparent from Fig. 3 at \(T = 0 \) the main source of the field dependence of \(\lambda_{\text{eff}} \) is the nonlocal effect. Since this field dependence is closely related to the flattening of the curves at low \(T \), it is reasonable to assume that nonlocal effects also dominate the \(T \)-dependence. The main discrepancy between the theory and experiment in Fig. 3 is the lack of linearity at \(0.5\, \text{T} \); however it is difficult to envision how nonlinear corrections could cure this. Given the inherent uncertainties in the extraction of \(\lambda \) from the \(\mu \)SR data we consider the overall agreement to be reasonable even without inclusion of the nonlinear effects.

In summary, we have calculated the field and temperature dependence of the effective penetration depth \(\lambda_{\text{eff}} \) from a nonlocal London model of a d-wave superconductor. We used a definition of \(\lambda_{\text{eff}} \) which permits a direct comparison to the \(\mu \)SR experimental data. Our results exhibit a \(T^4 \)-dependence in the \(\lambda_{\text{eff}}^2 \) curve below \(T^* = \Delta_0 (\xi_0 / \lambda_0) \sim \sqrt{B} \), quantitatively consistent with the experimental data on YBCO \[3\]. This flattening has nothing to do with the reduction of the superfluid density or opening a true gap at high magnetic fields. Rather, it is a consequence of the nonlocal response of a d-wave superconductor which modifies the magnetic field distribution in the vortex lattice as compared to an ordinary London model. Thus, as pointed out previously \[3, 17\], it is essential to make a distinction between the London penetration depth \(\lambda_L \) (as measured e.g. in the microwave experiment \[10\]) and the effective penetration depth \(\lambda_{\text{eff}} \) deduced from the magnetic field profile in a \(\mu \)SR experiment. In the present model \(\lambda_{\text{eff}} \) flattens at low temperatures and finite field while \(\lambda_L \) remains linear in \(T \).

The authors are indebted to J. E. Sonier for supplying the data and frequent discussions and also to I. Herbut for stimulating conversations. The work was supported in part by NSERC, the CIAR, and NSF grants DMR-9415549 (M.F.) and PHY-94-07194 (I.A.).

\[\lambda \quad \text{Present address: D-Wave Systems Inc., 119-1600 West 6th Ave., Vancouver, BC V6J 1R3, Canada.}\]

[1] K. Krishana et al., Science 277, 83 (1997).
[2] N. P. Ong et al., preprint [cond-mat/9904167].
[3] I. Maggio-April et al., Phys. Rev. Lett. 75, 2754 (1995).
[4] M. Franz and Z. Tešanović, Phys. Rev. Lett. 80, 4763 (1998).
[5] H. Aubin et al., Science 280, 9a (1998).
[6] H. Aubin et al., Phys. Rev. Lett. 82, 624 (1999).
[7] R. B. Laughlin, Phys. Rev. Lett. 80, 4963 (1998); A. V. Balatsky, preprint [cond-mat/9903271].
[8] C. Kübert and P. J. Hirschfeld, Phys. Rev. Lett. 80, 4963 (1998); M. Franz, Phys. Rev. Lett. 82, 1760 (1999); I. Vekhter and A. Houghton, Phys. Rev. Lett. 83, 4626 (1999).
[9] J.E. Sonier et al., Phys. Rev. Lett. 83, 4156 (1999); our experimental data at \(B = 0.5\, \text{T} \) in Fig. 3 is slightly different from the data presented in Fig. 3 of this paper based on private communication with J. Sonier.
[10] W. N. Hardy et al., Phys. Rev. Lett. 70, 3999 (1993).
[11] D. J. Scalapino, Phys. Rep. 250, 329 (1995).
[12] I. Kosztin and A. J. Leggett, Phys. Rev. Lett. 79, 135 (1997).
[13] I. Affleck, M. Franz and M. H. S. Amin, Phys. Rev. B 55, R704 (1996).
[14] M. Franz, I. Affleck and M. H. S. Amin, Phys. Rev. Lett. 79, 1555 (1997).
[15] M. H. S. Amin, I. Affleck, M. Franz, Phys. Rev. B 58, 5848 (1998).
[16] S. K. Yip and J. A. Sauls, Phys. Rev. Lett. 69, 2264 (1992); D. Xu, S. K. Yip and J. A. Sauls, Phys. Rev. B 51, 16233 (1995).
[17] Y. Wang and A. H. MacDonald, Solid State Commun. 109, 289 (1999).
[18] E. H. Brandt, J. Low. Temp. Phys. 24, 709 (1977); 73, 355 (1988); and Phys. Rev. B 37, 2349 (1988).
[19] I. Vekhter, J.P. Carbotte and E.J. Nicole, Phys. Rev. B 59, 1417 (1999).