LOWER Bounds of Martingale Measure Densities in the Dalang-Morton-Willinger Theorem

Dmitry B. Rokhlin

Abstract. For a d-dimensional stochastic process $(S_n)_{n=0}^N$ we obtain criteria for the existence of an equivalent martingale measure, whose density z, up to a normalizing constant, is bounded from below by a given random variable f. We consider the case of one-period model $(N = 1)$ under the assumptions $S \in L^p$; $f, z \in L^q$, $1/p + 1/q = 1$, where $p \in [1, \infty]$, and the case of N-period model for $p = \infty$. The mentioned criteria are expressed in terms of the conditional distributions of the increments of S, as well as in terms of the boundedness from above of an utility function related to some optimal investment problem under the loss constraints. Several examples are presented.

Introduction

Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a probability space, endowed with a discrete-time filtration $\mathbb{F} = (\mathcal{F}_n)_{n=0}^N$, $\mathcal{F}_N = \mathcal{F}$. Consider a d-dimensional stochastic process $S = (S_n)_{n=0}^N$, adapted to the filtration \mathbb{F}, and a d-dimensional \mathbb{F}-predictable process $\gamma = (\gamma_n)_{n=1}^N$. In the customary securities market model S^i_n describes the discounted price of ith stock and γ^i_n corresponds to the number of stock units in investor’s portfolio at time moment n. The gain process is given by

$$G_n^\gamma = \sum_{k=1}^n (\gamma_k, \Delta S_k), \quad \Delta S_k = S_k - S_{k-1}, \quad n = 1, \ldots, N,$$ \hspace{1cm} (0.1)

where (a, b) is the scalar product of $a, b \in \mathbb{R}^d$.

Let’s recall the classical Dalang-Morton-Willinger theorem [3], [13] (ch.V, §2e). As usual, we say that the No Arbitrage (NA) condition is satisfied if the inequality $G_N^\gamma \geq 0$ a.s. (with respect to the measure \mathbb{P}) implies that $G_N^\gamma = 0$ a.s. A probability measure Q on \mathcal{F} is called a martingale measure if the process S is a Q-martingale. The measures \mathbb{P} and Q are called equivalent if their null sets are the same. Denote by $\kappa_{n-1}(\omega)$ the support of the regular conditional distribution $P_{n-1}(\omega, dx)$ of the random vector ΔS_n with respect to \mathcal{F}_{n-1}. Theorem 0.1 (Dalang-Morton-Willinger). The following conditions are equivalent:

(i) NA;

\[\text{2000 Mathematics Subject Classification.} \text{ 60G42, 91B24, 91B28.} \]
\[\text{Key words and phrases.} \text{ Martingale measure density, regular conditional distribution, measurable set-valued mapping, duality, expected gain maximization, loss constraints.} \]
(ii) there exists an equivalent to P martingale measure Q with a.s. bounded density $z = dQ/dP$;
(iii) the relative interior of the convex hull of z_{n-1} contains the origin a.s., $n = 1, \ldots, N$.

The question concerning the existence of an equivalent martingale measure Q, whose density z satisfies the lower bound $z \geq c$ (where c is a positive constant) was posed in [8] (Remark 7.5), [4] (Remark 6.5.2). In general, the answer to this question is negative. An evident necessary condition is the integrability of S with respect to P. Moreover, the example of [4] shows that a measure Q with the above properties need not exist even for a uniformly bounded process S. A sufficient condition was obtained in [8]. In particular it is satisfied for a process S with independent increments, if the random vectors ΔS_n have finite moments.

Following [12], let us formulate the problem concerning the existence of an equivalent martingale measure, whose density (up to a normalization constant) is bounded from below by a random variable f, in a more general context. Denote by $E X$ the expectation with respect to P, by $L^p = L^p(\mathcal{F}) = L^p(\Omega, \mathcal{F}, P)$, $p \in [1, \infty)$ the Banach spaces of equivalence classes of \mathcal{F}-measurable functions with the norms $\|X\|_p = E |X|^p$ and by L^∞ the Banach space of essentially bounded functions with the norm $\|X\|_\infty = \text{ess sup} |X|$. The cone L^p_+ of non-negative elements induces the partial order on L^p.

Consider the subspace $K \subset L^p$, $p \in [1, \infty)$ of investor’s gains (discounted wealth increments). Denote by q the conjugate exponent, that is, $1/p + 1/q = 1$. The condition $K \cap L^p_+ = \{0\}$ corresponds to NA. An element $f \in L^q_+$ induces the functional on L^p by the formula $\langle X, f \rangle = E(Xf)$, $X \in L^p$. It turns out that the existence of an element g, satisfying the conditions

$$\langle X, g \rangle = 0, \quad X \in K; \quad g \geq f, \quad g \in L^q$$

is equivalent to the boundedness of f form above on a certain subset K_1 of the subspace K:

$$v_p := \sup_{X \in K_1} \langle X, f \rangle < \infty, \quad K_1 = \{X \in K : \|X^-\|_p \leq 1\},$$

where $X^- = \max\{-X, 0\}$. For $p = \infty$, $q = 1$ this statement is not true in general, see [12], Examples 1 and 3. It becomes true under the assumption that f is bounded from above on the subset $\{X \in K : X^- \in V\}$, where V is a neighborhood of zero in the Mackey topology $\tau(L^\infty, L^1)$, or if L^1 is replaced by the topological dual space $(L^\infty)^*$ of L^∞. These results are contained in Theorem 1 of [12].

It should be mentioned that the problems, equivalent to (0.3) when $f = 1$, were considered in the recent paper [6]. From the financial point of view they correspond to the maximization of expected gain under the loss constraint, if the loss value is measured either by pth moment $E |X^-|^p$ for $p \in [1, \infty)$ or by $\text{ess sup} |X^-|$ for $p = \infty$. The equivalence of (0.2) and (0.3) for $p \in (1, \infty)$ follows from the results of the cited paper as well ([6], Theorem 4.1). Unfortunately, the
related statement for \(p = \infty \) ([6], Theorem 6.1) is incorrect: a counterexample is, in fact, contained in [12] (Example 3) and its another version is given below (Example 5.4).

Turning back to the finite securities market model, assume that \(S \in L^p \) and denote by \(K \) the set of random variables \(G^\gamma_N \), where \(\gamma \) is a bounded predictable process. Then the elements \(g \), satisfying (0.2), up to a normalization constant, coincide with the \(P \)-densities of martingale measures: \(dQ/dP = g/Eg \).

The aim of the present paper is to establish effective criteria for the fulfilment of (0.2), (0.3) for a market model with finite discrete time and a finite collection of stocks. Such criteria, expressed in terms of the regular conditional distributions of the increments \(\Delta_{\omega} \), are obtained for a one-period model under the assumptions \(S \in L^p, f, g \in L^q, p \in [1, \infty] \) (Theorem 1.3), as well as for \(N \)-period model in the case \(p = \infty \) (Theorem 4.1). These results show also that in the case under consideration the equivalence of (0.2) and (0.3) for \(p = \infty \) is nevertheless true! Thereby, we give the negative answer to the question, raised in the end of the paper [12].

In the last part of the paper we give some examples, illustrating the effectiveness of the obtained criteria, and a counterexample to the mentioned statement of [6]. Also, it is interesting to note that the case \(p = 1 \) of Theorem 1.2 leads to a new proof of the key implication (iii) \(\implies \) (ii) of the Dalang-Morton-Willinger theorem (Remark 1.5).

1. One-period model

Let \((\Omega, \mathcal{F}, P)\) be a probability space and let \(\mathcal{H} \) be a sub-\(\sigma \)-algebra of \(\mathcal{F} \). A set-valued mapping \(F \), assigning some set \(F(\omega) \subset \mathbb{R}^d \) to each \(\omega \in \Omega \), is called \(\mathcal{H} \)-measurable, if \(\{ \omega : F(\omega) \cap V \neq \emptyset \} \in \mathcal{H} \) for any open set \(V \subset \mathbb{R}^d \). A function \(\eta : \Omega \mapsto \mathbb{R}^d \) is called a selector of \(F \), if \(\eta(\omega) \in F(\omega) \) for all \(\omega \in \text{dom} F := \{ \omega' : F(\omega') \neq \emptyset \} \). An \(\mathcal{H} \)-measurable set-valued mapping \(F \) with non-empty closed values \(F(\omega) \) is measurable if and only if there exists a sequence \((\eta_i)_{i=1}^\infty \) of \(\mathcal{H} \)-measurable selectors of \(F \) such that the sets \(\{ \eta_i(\omega) \}_{i=1}^\infty \) are dense in \(F(\omega) \) for all \(\omega \) ([10], Theorem 1B). Such a sequence is called a Castaing representation of \(F(\omega) \).

Denote by \(\mathcal{B}(\mathbb{R}^d) \) the Borel \(\sigma \)-algebra of \(\mathbb{R}^d \). A function \(\varphi : \Omega \times \mathbb{R}^d \mapsto \mathbb{R} \) called a Carathéodory function if (a) \(\varphi(\cdot, x) : \Omega \mapsto \mathbb{R} \) is \((\mathcal{H}, \mathcal{B}(\mathbb{R})) \)-measurable for all \(x \in \mathbb{R}^d \), (b) \(\varphi(\omega, \cdot) : \mathbb{R}^d \mapsto \mathbb{R} \) is continuous for all \(\omega \in \Omega \).

Denote by \(L^p(\mathcal{H}, F) \), \(1 \leq p < \infty \) the set of equivalence classes of \(\mathcal{H} \)-measurable functions \(\eta \) satisfying the conditions \(\int |\eta|^p \, dP < \infty, \eta \in F \text{ a.s.} \), where \(|x| = (x, x)^{1/2} \). We introduce also the sets of equivalence classes of essentially bounded functions \(L^\infty(\mathcal{H}, F) \) and of all \(\mathcal{H} \)-measurable functions \(L^0(\mathcal{H}, F) \), taking values in \(F \) a.s. In accordance with the above notation we put \(L^p(\mathcal{H}) = L^p(\mathcal{H}, \mathbb{R}) \). By \(L^p_+(\mathcal{H}) \) and \(L^p_{++}(\mathcal{H}) \) we denote the sets of non-negative and strictly positive elements of \(L^p(\mathcal{H}) \) respectively. Let \(\|X\|_p \) be the norm of an element \(X \) of the Banach space \(L^p(\mathcal{H}) \), \(1 \leq p \leq \infty \).
The completion of the σ-algebra \mathcal{H} with respect to the measure P is denoted by \mathcal{H}^P. Note that $L^p(\mathcal{H}^P) = L^p(\mathcal{H})$ in the sense that any \mathcal{H}^P-measurable function possesses an \mathcal{H}-measurable modification.

In the sequel we use the customary notation of convex analysis for the polar $A^o = \{x \in \mathbb{R}^d : (x, y) \leq 1, y \in A\}$ of a set $A \subset \mathbb{R}^d$ and also for its Minkowski function and the support function:

$$\mu(x|A) = \inf\{\lambda > 0 : x \in \lambda A\}, \quad s(x|A) = \sup_{y \in A}(x, y).$$

Denote by $\text{conv} A$, $\text{ri} A$ the convex hull and the relative interior of A.

Consider the one-period model (0.1) (that is, $N = 1$). Put $\xi = \Delta S_1$, $\mathcal{H} = \mathcal{F}_0$. Let $P_\xi(\omega, dx)$ be the regular conditional distribution of ξ with respect to \mathcal{H} and let $\kappa_\xi(\omega)$ be the support of the measure $P_\xi(\omega, \cdot)$. By $D_\xi(\omega) \subset \mathbb{R}^d$ we denote the linear span of $\kappa_\xi(\omega)$. Define the functions

$$\psi_p(\omega, h) = \left(\int_{\mathbb{R}^d} [(h, x)^-]^p P_\xi(\omega, dx)\right)^{1/p}, \quad p \in [1, \infty);$$

$$\psi_\infty(\omega, h) = s(-h|\kappa_\xi(\omega))$$

from $\Omega \times \mathbb{R}^d$ to $[0, \infty]$, and the set-valued mappings

$$\omega \mapsto T_p(\omega) = \{h \in D_\xi(\omega) : \psi_p(\omega, h) \leq 1\}.$$ \hspace{1cm} (1.1)

Lemma 1.1. Assume that $0 \in \text{ri} (\text{conv} \kappa_\xi(\omega))$ a.s. Then T_p is an \mathcal{H}^P-measurable set-valued mapping with a.s. compact values, $p \in [1, \infty]$.

Proof. The set-valued mapping $\omega \mapsto \kappa_\xi(\omega)$ is \mathcal{H}-measurable:

$$\{\omega : \kappa_\xi(\omega) \cap V \neq \emptyset\} = \{\omega : P_\xi(\omega, V) > 0\} \in \mathcal{H}$$

for any open set $V \subset \mathbb{R}^d$. Its values $\kappa_\xi(\omega)$ are closed. It follows from the formula

$$\psi_\infty(\omega, h) = \sup_{i \geq 1} (-h, \eta_i(\omega)),$$

where $(\eta_i)_{i=1}^\infty$ is a Cauchy representation of κ_ξ, that the function $\omega \mapsto \psi_\infty(\omega, h)$ is \mathcal{H}-measurable. The same property of ψ_p for $p \in [1, \infty)$ is evident.

Put $\Omega_p = \{\omega : \int |x|^p \, dP_\xi(\omega, dx) < \infty\}$ for $p \in [1, \infty)$ and let Ω_∞ be the set of ω, for which the set $\kappa_\xi(\omega)$ is compact. Note that $\Omega_\infty = \{\omega : \sup_{h \in \mathbb{D}} \psi_\infty(\omega, h) < \infty\}$, where \mathbb{D} is a countable dense subset of \mathbb{R}^d. Consequently, $\Omega_p \in \mathcal{H}$, $p \in [1, \infty]$ and $P(\Omega_p) = 1$. Put $\Omega_p' = \Omega_p \cap \{\omega : 0 \in \text{ri} (\text{conv} \kappa_\xi(\omega))\}$. Clearly, $\Omega_p' \in \mathcal{H}^P$ and $P(\Omega_p') = 1$.

Assume that $\omega \in \Omega_p'$. It follows from continuity of ψ_p with respect to h that the set $T_p(\omega)$ is closed. From the codition $0 \in \text{ri} (\text{conv} \kappa_\xi(\omega))$ we see that for $h \in D_\xi(\omega)\backslash 0$ the set $\kappa_\xi(\omega)$ is not contained in the half-space $\{x \in D_\xi(\omega) : (h, x) \geq 0\}$. Therefore, $\psi_p(\omega, h) > 0$, $p \in [1, \infty]$ and the set $T_p(\omega)$ is compact, because $\psi_p(\omega, h) \to \infty$ when $|h| \to \infty$, $h \in D_\xi(\omega)$.

Consider the trace of the σ-algebra \mathcal{H} on Ω_p': $\mathcal{H}_p = \{A \cap \Omega_p' : A \in \mathcal{H}\}$. To complete the proof it is sufficient to check that the set-valued mappings $\omega \mapsto T_p(\omega)$, $\omega \in \Omega_p'$ are \mathcal{H}_p-measurable. We make use of the representation
Proposition 1H of [10], and the measurability of T of set-valued mappings, whose intersection is T.

Theorem 1.3. □

Let us recall the "measurable maximum theorem" ([1], Theorem 18.19).

Lemma 1.2. Let F be an \mathcal{H}-measurable set-valued mapping with non-empty compact values $F(\omega) \subset \mathbb{R}^d$, and let $\varphi : \Omega \times \mathbb{R}^d \mapsto \mathbb{R}$ be a Carathéodory function. Put

$$ m(\omega) = \max_{x \in F(\omega)} \varphi(\omega, x), \quad G(\omega) = \{ x \in F(\omega) : \varphi(\omega, x) = m(\omega) \}. $$

Then (a) the function m and the set-valued mapping G are \mathcal{H}-measurable; (b) there exists an \mathcal{H}-measurable selector η^* of G.

Our first main result is the following.

Theorem 1.3. Let $\xi \in L^p(\mathcal{F}, \mathbb{R}^d)$, $f \in L^q(\mathcal{F})$, where $p \in [1, \infty]$ and $1/p + 1/q = 1$. If $0 \in \text{ri} (\text{conv} \, \mathcal{X}_\xi)$ a.s., then the following conditions are equivalent:

(i) $v_p := \sup \{ E(fX) : \|X^{-}\|_p \leq 1, \, X \in K \} < \infty$, where

$$ K = \{ (\gamma, \xi) : \gamma \in L^\infty(\mathcal{H}, D_\xi) \}; $$(1.2)

(ii) there exists a random variable $g \in L^q(\mathcal{F})$, satisfying the conditions

$$ E(g \xi | \mathcal{H}) = 0, \quad g \geq f; $$ (1.3)

(iii) $s(a | T_p) \in L^q(\mathcal{H})$, where $a = E(f \xi | \mathcal{H})$ and T_p is defined by the formula (1.1).

Let us make some remarks before the proof of this theorem (sect. 2 and 3).

Remark 1.4. If $0 \in \text{ri} (\text{conv} \, \mathcal{X}_\xi)$ and $\xi \in L^1(\mathcal{F}, \mathbb{R}^d)$ does not depend on \mathcal{H}, then there exists $g \in L^\infty(\mathcal{F})$:

$$ E(g \xi | \mathcal{H}) = 0, \quad g \geq 1. $$

Actually, in this case $s(a | T_1) = s(E \xi | T_1)$ does not depend on ω and thus belongs to $L^\infty(\mathcal{H})$.

Remark 1.5. If $0 \in \text{ri} (\text{conv} \, \mathcal{X}_\xi)$ and $\xi \in L^1(\mathcal{F}, \mathbb{R}^d)$, then there exists $g \in L^\infty_{++}(\mathcal{F})$:

$$ E(g \xi | \mathcal{H}) = 0. $$

To prove this statement it is sufficient to note that there exists an \mathcal{H}-measurable function $f \in L^\infty_{++}(\mathcal{H})$ such that

$$ s(E(f \xi | \mathcal{H}) | T_1) = s(E(\xi | \mathcal{H}) | T_1) f \in L^\infty(\mathcal{H}). $$

A function $g \in L^\infty(\mathcal{F})$, satisfying (1.3), is the desired one.

In fact, this proves the implication (iii) \implies (ii) of Theorem 0.1 for $N = 1$ and $S \in L^1$. As is known, this is the key point of the proof of the Dalang-Morton-Willinger theorem.
Remark 1.6. Note that
\[a = E\{E(f | \mathcal{H} \vee \sigma(\xi)) | \mathcal{H}\} = \int b(\omega, x) x P_\xi(\omega, dx) \in D_\xi(\omega) \text{ a.s.} \quad (1.4) \]

The existence of an \(\mathcal{H} \otimes \mathcal{B}(\mathbb{R}^d) \)-measurable function \(b(\omega, x) \), satisfying the condition \(E(f | \mathcal{H} \vee \sigma(\xi)) = b(\omega, \xi) \), follows from the fact that the \(\sigma \)-algebra \(\mathcal{H} \vee \sigma(\xi) \) is generated by the mapping \(\omega \mapsto (\omega, \xi(\omega)) \) from \(\Omega \) to the measurable space \((\Omega \otimes \mathbb{R}^d, \mathcal{H} \otimes \mathcal{B}(\mathbb{R}^d)) \).

Remark 1.7. We have the following convenient representation of the random variable \(s(a(\omega)|T_\omega(\omega)) \) for \(a \in D_\xi \) a.s.:
\[
s(a|T_\infty) = \sup\{(h, a) : h \in D_\xi \setminus \varepsilon_0^\circ = s(-a|\varepsilon_0^\circ) = \mu(-a|\text{conv } \varepsilon_0) \text{ a.s.} \}
\]

It the last equality we have used the formula
\[
\mu(x|A^\circ) = \inf\{\lambda > 0 : \lambda^{-1}x \in A^\circ\} = \inf\{\lambda > 0 : s(\lambda^{-1}x|A) \leq 1\} = s(x|A),
\]

which is true under the assumption \(0 \in A \). We have also used the bipolar theorem: \(A^\circ = \text{cl}(\text{conv } A) \) and the compactness property of the convex hull of a compact set.

2. Proof of Theorem 1 for \(p \in [1, \infty) \)

Denote by \(U^p \) the unit ball of the space \(L^p = L^p(\Omega, \mathcal{F}, P) \) and put \(U^p_+ = \{X \in L^p_+ : X \in U^p\} \).

Lemma 2.1. For any element \(X \in L^p, p \in [1, \infty] \) we have
\[
\|X^+\|_p = \sup\{\langle X, z \rangle : z \in U^q_+\}, \quad \frac{1}{p} + \frac{1}{q} = 1.
\]

Proof. Consider the elements
\[
\zeta_q = \frac{(X^+)^{p/q}}{\|X^+\|^p_{L^p}} \in U^q_+, \quad q \in (1, \infty); \quad \zeta_\infty = I_{\{X \geq 0\}} \in U^\infty_+; \quad \zeta_1^n = \frac{I_{A_n}}{P(A_n)} \in U^1_+,
\]

where \(A_n = \{\omega : X(\omega) \geq \|X^+\|_\infty - 1/n\} \). If \(X \in L^p \) and \(q \) is the conjugate exponent, then
\[
\langle X, \zeta_q \rangle = \|X^+\|_p, \quad q \in (1, \infty]; \quad \langle X, \zeta_1^n \rangle \geq \|X^+\|_\infty - \frac{1}{n}.
\]

On the other hand,
\[
\langle X, z \rangle \leq \langle X^+, z \rangle \leq \|X^+\|_p, \quad z \in U^q_+ \quad \Box
\]

Though the next result follows from Theorem 1 of \cite{12}, it seems convenient to give its direct proof. The idea of this proof is contained also in the paper \cite{11} (Lemma 2.5).

Recall that the closure of a convex set \(A \subset L^p, p \in [1, \infty) \) in the weak topology \(\sigma(L^p, L^q) \), \(1/p + 1/q = 1 \) coincides with its norm closure in \(L^p \).

Lemma 2.2. For a subspace \(K \subset L^p, p \in [1, \infty) \) and an element \(f \in L^q_+, 1/p + 1/q = 1 \) the following conditions are equivalent:
(a) \[\sup_{X \in K_1} \langle X, f \rangle < \infty, \] where \(K_1 = \{X \in K : \|X^-\|_p \leq 1\} \);
(b) there exists \(g \in L^q \), satisfying the conditions
\[\langle X, g \rangle = 0, \ X \in K; \ g \geq f. \] (2.1)

Proof. (b) \(\implies\) (a). If \(X \in K_1 \) then
\[\langle X, f \rangle = \langle X, g \rangle + \langle X, f - g \rangle = -\langle X, g - f \rangle \leq \|g - f\|_q. \]
(a) \(\implies\) (b). Put \(\lambda = \sup_{X \in K_1} \langle X, f \rangle \). If the assertion (b) is false then
\[(f + \lambda U^q_2) \cap K^o = \emptyset, \ K^o = \{z \in L^q : \langle X, z \rangle \leq 0, \ X \in K\}. \]

By applying the separation theorem ([P], Theorem 5.79) to the \(\sigma(L^q, L^p)\)-compact set \(f + \lambda U^q_2 \) and to the \(\sigma(L^q, L^p)\)-closed set \(K^o \), we conclude that there exists \(Y \in L^p \) such that
\[\sup_{z \in K^o} \langle Y, z \rangle < \inf \{\langle Y, \zeta \rangle : \zeta \in f + \lambda U^q_2 \}. \]

Since \(K \) is a subspace it follows that \(\langle Y, z \rangle = 0, \ z \in K^o \) and \(Y \in K^{oo} = \text{cl}_pK \) by the bipolar theorem ([P], Theorem 5.103), where \(\text{cl}_pK \) is the closure of \(K \) in the norm topology of \(L^p \). Moreover,
\[\langle Y, f \rangle + \lambda \inf \{\langle Y, \eta \rangle : \eta \in U^q_2 \} > 0. \] (2.2)

By Lemma 2.1 we have
\[\inf \{\langle Y, \eta \rangle : \eta \in U^q_2 \} = -\sup \{-\langle Y, \eta \rangle : \eta \in U^q_2 \} = -\|Y^-\|_p. \] (2.3)

If \(Y^- = 0 \) then \(\langle Y, f \rangle > 0 \) and \(\alpha Y \in L^p_+ \cap \text{cl}_pK \) for any \(\alpha > 0 \). Hence, the functional \(X \mapsto \langle X, f \rangle \) is unbounded from above on the ray \(\{\alpha Y : \alpha > 0\} \), which lies in the set
\[\text{cl}_pK_1 \supset \text{cl}_p \left(\{X : \|X^-\|_p < 1\} \cap K \right) \supset \{X : \|X^-\|_p < 1\} \cap \text{cl}_pK. \]

Here we have used the elementary inclusion \(\text{cl}_p(A \cap B) \supset A \cap \text{cl}_pB \), which holds true when the set \(A \) is open ([2], chap.1, §1, Proposition 5).

Thus, \(\|Y^-\|_p > 0 \). It follows from (2.2), (2.3) that
\[\langle Y/\|Y^-\|_p, f \rangle > \lambda \]
in contradiction with the definition of \(\lambda \) since \(Y/\|Y^-\|_p \in K_1 \). \(\square\)

Lemma 2.2 implies that the conditions (i) and (ii) of Theorem 1.3 are equivalent. Indeed, for the subspace (1.2) condition \(\langle X, g \rangle = 0, \ X \in K \) means that
\[E[g(\gamma, \xi)] = E(\gamma, E(g(\xi|\mathcal{H})) = 0, \ \gamma \in L^\infty(\mathcal{H}, D_\xi). \] (2.4)

In turn, (2.4) is reduced to the equality \(E(g(\xi|\mathcal{H}) = 0 \): putting
\[\gamma = E(g(\xi|\mathcal{H}) I_{\{|E(g(\xi|\mathcal{H})| \leq M\}} \in L^\infty(\mathcal{H}, D_\xi) \]
and passing in (2.4) to the limit as \(M \to \infty \) we conclude that \(E(g\xi|\mathcal{H}) = 0 \) by the monotone convergence theorem.

The equivalence of the conditions (i) and (iii) for all \(p \in [1, \infty] \) follows from the equality \(v_p = \|s(a|T_p)|\|_q \), which is proved in Lemma 2.4 below.
Lemma 2.3. Let $\xi \in L^0(\mathcal{F}, \mathbb{R}^d)$ and $0 \in \mathfrak{H}(\mathfrak{X})$. If $(\gamma, \xi) \geq 0$ a.s. for some $\gamma \in L^0(\mathcal{H}, D_\xi)$, then $\gamma = 0$ a.s.

Proof. Put $A = \{\gamma \neq 0\}$. For any $\omega \in A$ there exists $y \in \mathfrak{X}(\omega)$ such that $(\gamma(\omega), y) < 0$ and hence $\int (\gamma(\omega), x)^- P_\xi(\omega, dx) > 0$. If $P(A) > 0$ then we obtain the contradiction:

$$E(\gamma, \xi)^- \geq EE(I_A(\gamma, \xi)^- | \mathcal{H}) = E \left(I_A \int_{\mathbb{R}^d} (\gamma(\omega), x)^- P_\xi(\omega, dx) \right) > 0. \square$$

Lemma 1.1 together with the measurable maximum theorem (Lemma 1.2) imply the existence of an element $h_\gamma^\ast \in L^0(\mathcal{H}, T_p)$ such that

$$s(a(\omega)|T_p(\omega)) = (h_\gamma^\ast(\omega), a(\omega)) \text{ a.s.}$$

Lemma 2.4. Under the assumptions of Theorem 1.3 we have

$$v_p = \sup_{\gamma} \{E(\gamma, a) : \|(\gamma, \xi)^-\|_p \leq 1, \gamma \in L^\infty(\mathcal{H}, D_\xi) \} = \|s(a|T_p)\|_q, \quad p \in [1, \infty].$$

Proof. (a) The case $1 \leq p < \infty$. Put $U^p_+(\mathcal{H}) = \{g \in L^p_+(\mathcal{H}) : \|g\|_p \leq 1\}$. We have

$$U^p_+(\mathcal{F}) = \{g \in L^p_+(\mathcal{F}) : E(E(g^p|\mathcal{H})) \leq 1\}
\quad = \bigcup_{w \in U^p_+(\mathcal{H})} \{g \in L^p_+(\mathcal{F}) : (E(g^p|\mathcal{H}))^{1/p} \leq w\}.$$

Consequently,

$$v_p = \sup_{\gamma} \{E(\gamma, a) : (\gamma, \xi)^- \in U^p_+(\mathcal{F}), \gamma \in L^\infty(\mathcal{H}, D_\xi) \}
\quad = \sup_{w \in U^p_+(\mathcal{H})} \sup_{\gamma} \{E(\gamma, a) : (E([\gamma, \xi]^p|\mathcal{H}))^{1/p} \leq w, \gamma \in L^\infty(\mathcal{H}, D_\xi) \}.$$

On the set $\{w = 0\}$ we have the equality $E([\gamma, \xi]^p|\mathcal{H}) = 0$. Therefore,

$$E((\gamma I_{(w \neq 0)}, \xi)^-|\mathcal{H}) = 0$$

and $\gamma I_{(w = 0)} = 0$ by Lemma 2.3. Putting $\gamma = w\theta$, where θ is an \mathcal{H}-measurable vector, we obtain

$$v_p = \sup_{w \in U^p_+(\mathcal{H})} \sup_{\theta} \{Ew(\theta, a) : E((\theta I_{(w \neq 0)}, \xi)^-|\mathcal{H}) \leq 1, \theta \in L^\infty(\mathcal{H}, D_\xi) \}.$$

Since the values of θ on the set $\{w = 0\}$ do not affect $Ew(\theta, a)$, by the definition of T_p and the equality $E((\theta, \xi)^-|\mathcal{H}) = \psi_p(\omega, \theta(\omega))$ a.s., we get

$$v_p = \sup_{w \in U^p_+(\mathcal{H})} \sup_{\theta} \{Ew(\theta, a) : \theta \in L^0(\mathcal{H}, T_p), \theta \in L^\infty(\mathcal{H}, D_\xi) \}.$$

But $(\theta, a) \leq s(a|T_p)$ a.s. for $\theta \in L^0(\mathcal{H}, T_p)$. This yields that

$$v_p \leq \sup_{w \in U^p_+(\mathcal{H})} E(s(a|T_p)w) = \|s(a|T_p)\|_q. \quad (2.5)$$

We have used Lemma 2.1 in the last equality.
To obtain the inequality, converse to (2.5), put \(\theta = h_p^* I_{\{w|\|h_p^*|\leq M\}} \), \(M > 0 \). Clearly, \(w \theta \in L^\infty(\mathcal{H}, D_\xi) \) and

\[
v_p \geq \sup_{w \in U_p^r(\mathcal{H})} E[w(h_p^*, a)I_{\{w|\|h_p^*|\leq M\}}] = \sup_{w \in U_p^r(\mathcal{H})} E(s(a|T_p)wI_{\{w|\|h_p^*|\leq M\}})
\]

\[
= \|s(a|T_p)I_{\{w|\|h_p^*|\leq M\}}\|_q.
\]

By the monotone convergence theorem it follows that \(v_p \geq \|s(a|T_p)\|_q \).

(b) The case \(p = \infty \). It follows from

\[
P((\gamma, \xi) \geq -1) = EP((\gamma, \xi) \geq -1)|\mathcal{H}) = EP_\xi(\omega, \{x : (\gamma(\omega), x) \geq -1\})
\]

that the condition \(\|(\gamma, \xi)\|_\infty \leq 1 \), meaning that \(P((\gamma, \xi) \geq -1) = 1 \), can be represented in the form \(P_\xi(\omega, \{x : (\gamma, x) \geq -1\}) = 1 \) a.s. In other words, \(\gamma(\omega) \in -x_\xi^2(\omega) \) a.s.

Since \(T_\infty = (-x_\xi^2) \cap D_\xi \) this implies that

\[
v_\infty = \sup_{\gamma} \{E(\gamma, a) : \gamma \in L^\infty(\mathcal{H}, (-x_\xi^2) \cap D_\xi)\} \leq Es(a|T_\infty).
\]

On the other hand, \(h_\infty^* I_{\{|h_\infty| \leq M\}} \in L^\infty(\mathcal{H}, (-x_\xi^2) \cap D_\xi) \) for all \(M > 0 \). Therefore,

\[
v_\infty \geq E((h_\infty^*, a)I_{\{|h_\infty| \leq M\}}) = E(s(a|T_\infty)I_{\{|h_\infty| \leq M\}})
\]

and \(v_\infty \geq Es(a|T_\infty) \) by the monotone convergence theorem. \(\square \)

3. PROOF OF THEOREM 1 FOR \(p = \infty \)

As we have already mentioned, Lemma 2.4 yields that conditions (i) and (iii) of Theorem 1.3 are equivalent. Assume that (ii) is satisfied and put \(X = (\gamma, \xi) \), \(\gamma \in L^\infty(\mathcal{H}, D_\xi) \). The implication (ii) \(\implies \) (i) is a consequence of the inequality

\[
E(fX) = E(gX) - E((g - f)X) \leq E(\gamma, E(g\xi|\mathcal{H})) + E((g - f)X^-)
\]

\[
\leq \|g - f\|_1\|X^-\|_\infty.
\]

(3.1)

Let us prove that (ii) follows from (iii). We look for \(g \) of the form \(g = f + \varphi(\omega, \xi(\omega)) \), where \(\varphi \in L_+^0(\mathcal{H} \otimes \mathcal{B}([\mathbb{R}^d])) \). Firstly, the desired function \(\varphi \) should satisfy (1.3):

\[
E(\varphi\xi|\mathcal{H}) = \int \varphi(\omega, x)P_\xi(\omega, dx) = -a(\omega) \text{ a.s.}
\]

Secondly, the function \(\omega \mapsto \varphi(\omega, \xi(\omega)) \) should be \(P \)-integrable. We construct a function \(\varphi \) with these properties in Lemma 3.3 after some preliminary work.

Lemma 3.1. Consider a probability measure \(Q \) on \((\mathbb{R}^d, \mathcal{B}([\mathbb{R}^d]))\) with the support \(\mathcal{X} \). If \(0 \in \text{ri}(\text{conv} \mathcal{X}) \) then for all \(y \) in the linear span \(D \) of \(\mathcal{X} \) the following equality holds true:

\[
w(y) := \inf \left\{ \int \varphi(x)Q(dx) : \int \varphi(x)xQ(dx) = y, \ \varphi \in L_+^\infty(Q) \right\} = \mu(y|\text{conv} \mathcal{X}).
\]
Proof. It is easy to check that the epigraph of w: $\text{epi } w = \{(y, \alpha) \in D \times \mathbb{R} : w(y) \leq \alpha\}$ is a convex set (see [9], Lemma 2). Following the general scheme of duality theory (see e.g. [9], [7]) let us find the conjugate function (Young-Fenchel transform) of w:

$$w^*(\lambda) = \sup_{y \in D}\{(y, \lambda) - w(y)\} = \sup_{\varphi, y}\{(y, \lambda) - \int \varphi(x)Q(dx) : \int \varphi(x)Q(dx) = y, \varphi \in L^\infty_+(Q)\} = \sup_{\varphi}\int \varphi((x, \lambda) - 1)Q(dx) : \varphi \in L^\infty_+(Q)\} = \delta(\lambda \rhd \varnothing), \ \lambda \in D.$$

Here δ is the indicator function: $\delta(\lambda \rhd \varnothing) = 0, \ \lambda \in \varnothing; \ \delta(\lambda \rhd \varnothing) = +\infty, \ \lambda \notin \varnothing$. The Young-Fenchel transform of w^* is of the form:

$$w^{**}(y) = \sup_{\lambda \in D}\{(y, \lambda) - w^*(\lambda)\} = (y|\varnothing) = \mu(y|\text{conv } \varnothing), \ y \in D.$$

We claim that $\text{dom } w := \{y \in D : w(y) < \infty\} = D$. Clearly, this is the case iff the set $A = \{\int \varphi(x)Q(dx) : \varphi \in L^\infty_+(Q)\}$ coincides with D.

Assume that $z \in D$ does not belong to the convex set A. Then there exists a non-zero vector $h \in D$, separating A and z:

$$\left(\int \varphi(x)Q(dx), h\right) = \int \varphi(x)(x, h)Q(dx) \leq (z, h), \ \varphi \in L^\infty_+(Q).$$

Putting $\varphi(x) = cI_{\{(h, x) \geq 0\}}$, where $c \in \mathbb{R}_+$, we conclude that the inequality

$$c \int (x, h)^+Q(dx) \leq (z, h)$$

should hold true for all $c > 0$. Consequently $(x, h)^+ = 0$ Q-a.s. Then $(h, x) \leq 0$, $x \in \varnothing$ and \varnothing is contained in the subspace orthogonal to h, since $0 \in \text{ri } (\text{conv } \varnothing)$. This means that the linear span of \varnothing does not coincide with D, a contradiction.

Thus, $\text{dom } w = D$, w is continuous on D and $w = w^{**}$ by the Fenchel-Moreau theorem [7]. □

Lemma 3.2. There exists a function $\chi : [0, 1] \times \mathbb{R}^d \mapsto \mathbb{R}$, measurable with respect to $\mathcal{B}([0, 1]) \otimes \mathcal{B}(\mathbb{R}^d)$ and possessing the following property: for any probability measure Q on $\mathcal{B}(\mathbb{R}^d)$ and for any $\mathcal{B}(\mathbb{R}^d)$-measurable real-valued function f there exists $r \in [0, 1]$ such that $\chi(r, x) = f(x) Q$-a.s.

Lemma 3.2 is borrowed from the paper [5] (Theorem A.3).

Lemma 3.3. If $\xi \in L^1(\mathcal{F}, \mathbb{R}^d)$, $0 \in \text{ri } (\text{conv } \varnothing_\xi)$ $a.s.$, $a \in L^0(\mathcal{H}, D_\xi)$ and $\nu = \mu(-a|\text{conv } \varnothing_\xi)$, then there exists a function $\varphi \in L^1_+(\mathcal{H} \otimes \mathcal{B}(\mathbb{R}^d))$ such that

$$\int \varphi(\omega, x)P_\xi(\omega, dx) = -a(\omega) \ a.s.,$$

$$\int \varphi(\omega, x)P_\xi(\omega, dx) \in [\nu(\omega), \nu(\omega) + \varepsilon(\omega)] \ a.s.$$ for any \mathcal{H}-measurable function $\varepsilon > 0$.

Proof. Consider the trace $\mathcal{H}' = \Omega' \cap \mathcal{H}$ of the σ-algebra \mathcal{H} on the set $\Omega' = \{ \omega : 0 \in \text{ri} (\text{conv } \mathcal{X}(\omega)) \} \in \mathcal{H}^p$. Let χ be some function, mentioned in Lemma 3.2. We fix an \mathcal{H}'-measurable function $\varepsilon > 0$ and introduce the set-valued mapping $G : \Omega' \mapsto [0,1]$ by the formula

$$G(\omega) = \{ y \in [0,1] : \int \chi(y,x) P_\xi(\omega, dx) \in [\nu(\omega), \nu(\omega) + \varepsilon(\omega)],$$

$$\int \chi(y,x) P_\xi(\omega, dx) = -a(\omega), \int \chi^-(y,x) P_\xi(\omega, dx) = 0 \}.$$

Applying Lemma 3.1 to $Q(dx) = P_\xi(\omega, dx)$ and Lemma 3.2, we conclude that $G(\omega) \neq \emptyset$ for all $\omega \in \Omega'$. The functions

$$\int \chi^-(y,x) P_\xi(\omega, dx), \int \chi(y,x) P_\xi(\omega, dx), \int \chi(y,x) P_\xi(\omega, dx),$$

depending on (ω,y), are measurable with respect to $\mathcal{H} \otimes \mathcal{B}([0,1])$: see [3], Lemma 2.2(a). Hence,

$$\text{gr} G = \{ (\omega,y) \in \Omega' \times [0,1] : y \in G(\omega) \} \in \mathcal{H}' \otimes \mathcal{B}([0,1])$$

and by Aumann’s measurable selection theorem there exists an \mathcal{H}'-measurable function $r : \Omega' \mapsto [0,1]$, satisfying the condition $r(\omega) \in G(\omega)$ a.s. on Ω' ([1], Corollary 18.27). The function $\varphi(\omega,x) = \chi(\tilde{r}(\omega), x)$, where \tilde{r} is an \mathcal{H}-measurable modification of r, has the desired properties. □

The end of the proof of Theorem 1.3. Let us prove that condition (iii) implies (ii) ($p = \infty$). According to the assumption,

$$s(a|T_\infty) = \mu(-a|\text{conv } \mathcal{X}_\xi) \in L^1(\mathcal{H}), \quad a = E(f\xi|\mathcal{H}).$$

Let $\varepsilon > 0$ be some constant. Using the notation of Lemma 3.3, we put $g(\omega) = f(\omega) + \varphi(\omega, \xi(\omega))$. The function $g \geq f$ is \mathcal{F}-measurable, \mathbb{P}-integrable since

$$E(\varphi \wedge M) = \mathbb{E}(\varphi \wedge M|\mathcal{H}) = \mathbb{E} \int (\varphi(\omega,x) \wedge M) P_\xi(\omega, dx)$$

$$\leq \mathbb{E} \mu(-a|\text{conv } \mathcal{X}_\xi) + \varepsilon, \quad M > 0,$$

and satisfies the equality (3.2):

$$E(g\xi|\mathcal{H}) = a(\omega) + \int \varphi(\omega,x) x P_\xi(\omega, dx) = 0 \quad \text{a.s.}$$

4. N-period model

We turn to N-period market model on a filtered probability space, presented in the introductory section. In addition to the introduced notation denote by $D_{n-1}(\omega)$ the linear span of $\mathcal{X}_{n-1}(\omega)$.

Our second main result is the following.

Theorem 4.1. If the process $S_n \in L^\infty(\mathcal{F}_n, \mathbb{R}^d)$, $n = 0, \ldots, N$ satisfies the NA property, then for an element $f \in L^1_{++}(\mathcal{F}, \mathbb{P})$ the following conditions are equivalent:
(i) \(v := \sup \{ \mathbb{E}(fX) : \|X\|_\infty \leq 1, \ X \in K \} < \infty \), where
\[
K = \{ \gamma_n \in L^\infty(\mathcal{F}_{n-1}, D_{n-1}) ; \ n = 1, \ldots, N \};
\]
(ii) there exist an equivalent to \(\mathbb{P} \) martingale measure \(Q \), whose density satisfies the inequality \(dQ/d\mathbb{P} \geq cf \) with some constant \(c > 0 \);
(iii) the recurrence relation
\[
\beta_N = f, \quad \beta_n = \mathbb{E}(\beta_{n+1} | \mathcal{F}_n) + \mu(-a_n \text{conv } \mathcal{K}_n), \quad a_n = \mathbb{E}(\beta_{n+1} \Delta S_{n+1} | \mathcal{F}_n)
\]
specifies the \(\mathbb{P} \)-integrable sequence \((\beta_n)_{n=0}^\infty \).

Proof. (ii) \(\Rightarrow \) (i). This statement follows from an estimate, similar to (3.1).
(i) \(\Rightarrow \) (iii). Consider the process \(X^\gamma = 1 + \gamma \):
\[
X^\gamma_{n+1} = X^\gamma_n + (\gamma_{n+1}, \Delta S_{n+1}), \quad X^\gamma_0 = 1.
\]
If the random variable \(\beta_n \in L^1_+ (\mathcal{F}_n) \) is well-defined, put
\[
u_n = \sup_\gamma \{ \mathbb{E}(\beta_n X^\gamma_n) : X^\gamma_k \geq 0, \ \gamma_k \in L^\infty(\mathcal{F}_{k-1}, D_{k-1}), \ 1 \leq k \leq n \}.
\]
By virtue of assumption (i) we have
\[
u_N \leq \sup_\gamma \{ \mathbb{E}(\beta_N X^\gamma_N) : X^\gamma_N \geq 0, \ \gamma_k \in L^\infty(\mathcal{F}_{k-1}, D_{k-1}), \ 1 \leq k \leq n \} = \mathbb{E}f + v < \infty.
\]
If \(u_{m+1} < \infty \) and the process \(\gamma \) satisfies the conditions of the definition of \(u_{m+1} \), then \(\beta_{m+1} \in L^1(\mathcal{F}_{m+1}) \) and
\[
\mathbb{E}(\beta_{m+1} X^\gamma_{m+1}) = \mathbb{E}(X^\gamma_m \mathbb{E}(\beta_{m+1} | \mathcal{F}_m)) + \mathbb{E}(\gamma_{m+1}, a_m).
\]
Consequently,
\[
u_{m+1} \geq \mathbb{E}(X^\gamma_m \mathbb{E}(\beta_{m+1} | \mathcal{F}_m)) + t_{m+1}, \quad (4.1)
\]
\[
t_{m+1} = \sup_\gamma \{ \mathbb{E}(\gamma_{m+1}, a_m) : X^\gamma_{m+1} \geq 0, \ \gamma_{m+1} \in L^\infty(\mathcal{F}_m, D_m) \}.
\]
The condition \(X^\gamma_{m+1} = X^\gamma_m + (\gamma_{m+1}, \Delta S_{m+1}) \geq 0 \) a.s. can be rephrased as
\[
(\gamma_{m+1}(\omega), x) \geq -X^\gamma_m(\omega), \quad x \in \mathcal{K}_m(\omega) \text{ a.s.,}
\]
that is, \(\gamma_{m+1} \in -X^\gamma_m \mathcal{K}_m(\omega) \) a.s. (see the proof of Lemma 2.4 for \(p = \infty \)). Here we take into account that \(\gamma_{m+1} = 0 \) a.s., if \((\gamma_{m+1}, \Delta S_{m+1}) \geq 0 \) and \(\gamma_{m+1} \in D_m \) a.s. (Lemma 2.3). Thus,
\[
t_{m+1} = \sup_\gamma \{ \mathbb{E}(\gamma_{m+1}, a_m) : \gamma_{m+1} \in L^\infty(\mathcal{F}_m, -X^\gamma_m \mathcal{K}_m) \}.
\]
The measurability of the set-valued mapping \(\mathcal{K}_m(\omega) \) with respect to \(\mathcal{F}_m \) follows from \(\mathcal{K}_m(\omega) = \bigcap_{i=1}^\infty \{ h : (h, \eta_i(\omega)) \leq 1 \} \), where \((\eta_i)_{i=1}^\infty \) is a Castaing representation of \(\mathcal{K}_m \) and from Theorem 1M of [10], concerning the measurability of a countable intersection. Owing to the compactness of \(\mathcal{K}_m(\omega) \) a.s., which follows from \(0 \in \text{ri(\text{conv } \mathcal{K}_m)} \), by the measurable maximum theorem there exists an element \(\gamma^*_{m+1} \in L^0(\mathcal{F}_m, -X^\gamma_m \mathcal{K}_m) \) such that
\[
(\gamma_{m+1}, a_m) \leq (\gamma^*_{m+1}, a_m) = s(a_m - X^\gamma_m \mathcal{K}_m) = X^\gamma_m \mu(-a_m \text{conv } \mathcal{K}_m).
\]
In particular, \(t_{m+1} \leq \mathbb{E}(\gamma_{m+1}^*, a_m) \). On the other hand, by approximation of \(\gamma_{m+1}^* \) by the elements \(\gamma_{m+1}^* I_{|\gamma_{m+1}^*| \leq M} \in L^\infty(\mathcal{F}_m, -X^\gamma_m) \), \(M \to \infty \), we deduce that

\[
\mathbb{E}(\gamma_{m+1}^*, a_m) = \lim_{M \to \infty} \mathbb{E}(\gamma_{m+1}^* I_{|\gamma_{m+1}^*| \leq M}, a_m) \leq t_{m+1}
\]

by the monotone convergence theorem.

By plugging the obtained value \(t_{m+1} = \mathbb{E}[X^\gamma_n \mu(-a_m \mid \text{conv } \mathcal{X}_m)] \) in (4.1), we get

\[
v_{m+1} \geq \mathbb{E}\left(\left(\mathbb{E}(\beta_{m+1} | \mathcal{F}_m) + \mu(-a_m \mid \text{conv } \mathcal{X}_m) \right) X^\gamma_m \right) = \mathbb{E}(\beta_m X^\gamma_m).
\]

This inequality holds true under the assumption \(X^\gamma_k \geq 0 \), \(\gamma_k \in L^\infty(\mathcal{F}_{k-1}, D_{k-1}) \), \(k = 1, \ldots, m \). Hence, \(v_m \leq v_{m+1} < \infty \). By induction this implies (iii).

(iii) \(\implies \) (ii). Put \(\nu_n = \mu(-a_n \mid \text{conv } \mathcal{X}_n) \). Recall that \(a_n \in L^0(\mathcal{F}_n, D_n) \) (see (1.4)). By Lemma 3.3 for any \(n = 1, \ldots, N \) there exists a function \(\varphi_n \in L^0_+(\mathcal{F}_n \otimes \mathcal{B}(\mathbb{R}^d)) \) such that

\[
\int \varphi_n(\omega, x) P_n(\omega, dx) = -a_n(\omega) \text{ a.s.},
\]

(4.2)

\[
\int \varphi_n(\omega, x) P_n(\omega, dx) \in [\nu_n(\omega), \nu_n(\omega) + \beta_n(\omega)] \text{ a.s.}
\]

(4.3)

Put \(\zeta_{n+1}(\omega) = \varphi_n(\omega, \Delta S_{n+1}(\omega)) \). The inequality

\[
\mathbb{E}(\zeta_{n+1} \wedge M) = \mathbb{E}\left(\left(\varphi_n(\omega, x) \wedge M \right) P_n(\omega, dx) \right) \leq \mathbb{E}(\nu_n + \beta_n),
\]

similar to (3.2), these functions are \(\mathbb{P} \)-integrable. We can rewrite (4.2), (4.3) as follows:

\[
\mathbb{E}(\zeta_{n+1} \Delta S_{n+1} | \mathcal{F}_n) = -a_n, \quad \mathbb{E}(\zeta_{n+1} | \mathcal{F}_n) = \nu_n + \varepsilon_n \beta_n,
\]

(4.4)

where \(\varepsilon_n \) is an \(\mathcal{F}_n \)-measurable function, taking values in \([0, 1]\). Put \(z_N = 1 + \zeta_N / f \),

\[
z_n = \frac{1}{1 + \varepsilon_n} \left(1 + \frac{\zeta_n}{\beta_n} \right), \quad n = 1, \ldots, N - 1; \quad Z = f \prod_{n=1}^{N} z_n.
\]

We claim that the random variable \(Z \) is integrable and

\[
\mathbb{E}(z_{n+1} \ldots z_N f | \mathcal{F}_n) = \beta_n(1 + \varepsilon_n), \quad n = 0, \ldots, N - 1.
\]

(4.5)

By virtue of (4.4) and the definition of \((\beta_n)_{n=0}^N \) we have

\[
\mathbb{E}(z_N f | \mathcal{F}_{N-1}) = \mathbb{E}(f | \mathcal{F}_{N-1}) + \mathbb{E}(\zeta_N | \mathcal{F}_{N-1})
\]

\[
= \mathbb{E}(\beta_N | \mathcal{F}_{N-1}) + \nu_N - 1 + \varepsilon_{N-1} \beta_{N-1} = (1 + \varepsilon_{N-1}) \beta_{N-1}.
\]

Assume that the random variable \(z_{m+1} \ldots z_N f \) is integrable and (4.5) holds true for \(n = m \). Then

\[
\mathbb{E}(I_{\{z_m \leq M\}} z_m z_{m+1} \ldots z_N f) = \mathbb{E}(I_{\{z_m \leq M\}} z_m \beta_m(1 + \varepsilon_m)) \leq \mathbb{E}(\beta_m + \zeta_m).
\]

Hence, \(z_m z_{m+1} \ldots z_N f \in L^1(\mathcal{F}) \). Moreover,

\[
\mathbb{E}(z_m z_{m+1} \ldots z_N f | \mathcal{F}_{m-1}) = \mathbb{E}(z_m \beta_m(1 + \varepsilon_m) | \mathcal{F}_{m-1}) = \mathbb{E}(\beta_m + \zeta_m | \mathcal{F}_{m-1})
\]

\[
= \mathbb{E}(\beta_m | \mathcal{F}_{m-1}) + \nu_{m-1} + \varepsilon_{m-1} \beta_{m-1} = (1 + \varepsilon_{m-1}) \beta_{m-1}.
\]
By induction (4.5) hold true for all \(n \). In particular, \(Z \in L^1(\mathcal{F}) \).

Consider a probability measure \(Q \) with the density \(dQ/dP = cZ, \ c = 1/EZ \). Evidently, \(dQ/dP \geq 2^{-N+1}c.f. \) Let us check that \(Q \) is a martingale measure. Put \(A_{n-1} \in \mathcal{F}_{n-1} \). We have

\[
\frac{1}{c}E_Q(I_{A_{n-1}}\Delta S_n) = E(E(Z|\mathcal{F}_n)I_{A_{n-1}}\Delta S_n) = E(z_1 \ldots z_n\beta_n(1 + \varepsilon_n)I_{A_{n-1}}\Delta S_n) = E(z_1 \ldots z_n\beta_nE((\beta_n + \zeta_n)\Delta S_n|\mathcal{F}_{n-1})) = 0
\]

since \(E(\zeta_n\Delta S_n|\mathcal{F}_{n-1}) = -a_{n-1} = -E(\beta_n\Delta S_n|\mathcal{F}_{n-1}). \)

\[\Box\]

5. Examples

In example 5.1 we concretize the formulas of condition (iii) of Theorem 1.3 for a scalar random variable \(\xi \) in the case of general probability space. In example 5.2 we consider a one-period model on a countable space.

Example 5.3 underlines the non-local character of the conditions of Theorem 4.1. Therein we construct a process \((S_0, S_1, S_2) \) with no martingale measure, whose density is bounded from below by a positive constant, but, at the same time, for each of the processes \((S_0, S_1), (S_1, S_2) \) such a measure exists.

At last, example 5.4 shows that conditions (0.2), (0.3) need not be equivalent for \(p = \infty \) even if there exists \(z \in L^1_{1+} \), satisfying the condition \(E(Xz) = 0 \), \(X \in K \) and the subspace \(K \) is generated by a countable collection of elements.

Example 5.1. Consider the case of scalar random variable \(\xi \). We use the notation of Theorem 1.3. Assume that \(\xi \in L^p(\mathcal{F}), \ 0 \in \text{ri}(\text{conv} \ \mathcal{H}) \) and \(f \in L^q(\mathcal{F}), \ 1/p + 1/q = 1, \ p \in [1, \infty] \).

For \(q \in (1, \infty] \) we have

\[
\psi_p(\omega, h) = \int [(hx)^{-}]^p P_\xi(\omega, dx) = (h^+)^pE((\xi^-)^p|\mathcal{H})(\omega) + (h^-)^pE((\xi^+)^p|\mathcal{H})(\omega)
\]

and condition (iii) shapes to

\[
s(a|T_p) = \sup_h \{E(f\xi|\mathcal{H})h : \psi_p(\omega, h) \leq 1\}
\]

\[
= \frac{(E(f\xi|\mathcal{H}))^+}{E((\xi^-)^p|\mathcal{H})^{1/p}} + \frac{(E(f\xi|\mathcal{H}))^-}{E((\xi^+)^p|\mathcal{H})^{1/p}} \in L^q(\mathcal{H}). \quad (5.1)
\]

For \(q = 1, p = \infty \) we have \(\text{conv} \ \mathcal{H}(\omega) = [\delta_1(\omega), \delta_2(\omega)] \), \(0 \in (\delta_1, \delta_2) \) a.s. By virtue of Remark 1.7 condition (iii) becomes

\[
\mu(-a[\delta_1, \delta_2]) = \frac{(E(f\xi|\mathcal{H}))^+}{|\delta_1|} + \frac{(E(f\xi|\mathcal{H}))^-}{\delta_2} \in L^1(\mathcal{H}). \quad (5.2)
\]

Example 5.2. Here we slightly generalize the model of [4] (Remark 6.5.2), [12] (Example 2). Put \(\Omega = \mathbb{N} \). Consider a countable partition \((A_i^j)_{j=1}^\infty \) of the set \(\Omega \):

\[
\mathbb{N} = \bigcup_{j=1}^\infty A_i^j, \ A_i^j \cap A_i^k = \emptyset, \ i \neq k.
\]
Denote by \mathcal{H} the σ-algebra, generated by this partition. Let

$$A^j_0 = A^{2j-1}_1 \cup A^{2j}_1, \quad A^{2j-1}_1 \cap A^{2j}_1 = \emptyset, \quad j = 1, \ldots, \infty$$

and consider the σ-algebra \mathcal{F} generated by the sets $(A^j_1)_{j=1}^{\infty}$. Assume that $P(A^1_1) > 0$, $j \in \mathbb{N}$ and let $\xi \in L^p(\mathcal{F})$, $1 \leq p \leq \infty$ be a random variable with $0 \in \text{ri} (\text{conv} \mathcal{X}_j)$:

$$\xi(\omega) > 0, \quad \omega \in A^{2j-1}_1, \quad \xi(\omega) < 0, \quad \omega \in A^{2j}_1, \quad j \in \mathbb{N}.$$

Let $f \in L^q_+(\mathcal{F})$, $1/p + 1/q = 1$, $p \in [0, \infty]$. For brevity, we put $\eta^j = \eta(\omega)$, $\omega \in A^1_1$ for any \mathcal{F}-measurable random variable η. Define the random variable ρ by the formula

$$\rho(\omega) = \sum_{j=1}^{\infty} \left(f^{2j} \left| \frac{\xi^{2j}}{\xi^{2j-1}} \right| \frac{P(A^{2j}_1)}{P(A^{2j-1}_1)} I_{A^{2j-1}_1}(\omega) + f^{2j-1} \left| \frac{\xi^{2j-1}}{\xi^{2j}} \right| \frac{P(A^{2j-1}_1)}{P(A^{2j}_1)} I_{A^{2j}_1}(\omega) \right).$$

We claim that a necessary and sufficient condition for the existence of a random variable g, satisfying conditions (ii) of Theorem 1.3, is the following:

$$\rho \in L^q(\mathcal{F}). \quad (5.3)$$

We make use of conditions (5.1), (5.2), obtained in example 5.1. In our case

$$E(f\xi \mathcal{H})(\omega) = \sum_{j=1}^{\infty} \frac{f^{2j-1}\xi^{2j-1}P(A^{2j-1}_1) + f^{2j}\xi^{2j}P(A^{2j}_1)}{P(A^j_1)} I_{A^j_0}(\omega),$$

$$(E(f\xi \mathcal{H}))^+(\omega) = \sum_{j=1}^{\infty} \frac{|\xi^{2j}|P(A^{2j}_1)(\rho^{2j} - f^{2j})^+}{P(A^j_1)} I_{A^j_0}(\omega),$$

$$(E(f\xi \mathcal{H}))^-(\omega) = \sum_{j=1}^{\infty} \frac{\xi^{2j-1}P(A^{2j-1}_1)(f^{2j-1} - \rho^{2j-1})^-}{P(A^j_1)} I_{A^j_0}(\omega).$$

Let $q = 1$. Since $[\delta_1, \delta_2] = \sum_{j=1}^{\infty} [\xi^{2j}, \xi^{2j-1}] I_{A^j_0}$, condition (5.2) shapes to

$$E\mu(-a|[\delta_1, \delta_2]) = \sum_{j=1}^{\infty} \left((\rho^{2j} - f^{2j})^+P(A^{2j}_1) + (f^{2j-1} - \rho^{2j-1})^-P(A^{2j-1}_1) \right)$$

$$= \| (\rho - f)^+ \|_1 < \infty,$$

which is equivalent to (5.3), as long as $f \in L^1(\mathcal{F})$.

For $q \in (1, \infty]$ we use (5.1). By virtue of the equalities

$$E((\xi^-)^p \mathcal{H}) = \sum_{j=1}^{\infty} \frac{|\xi^{2j}|^pP(A^{2j}_1)}{P(A^j_1)} I_{A^j_0}, \quad E((\xi^+)^p \mathcal{H}) = \sum_{j=1}^{\infty} \frac{(\xi^{2j-1})^pP(A^{2j-1}_1)}{P(A^j_1)} I_{A^j_0}$$

we get

$$s(a|T_p) = \sum_{j=1}^{\infty} \frac{(\rho^{2j} - f^{2j})^+P(A^{2j}_1)^{1-1/p} + (f^{2j-1} - \rho^{2j-1})^-P(A^{2j-1}_1)^{1-1/p}}{P(A^j_1)^{1-1/p}} I_{A^j_0}.$$
For \(q \in (1, \infty) \) condition (5.1) means that
\[
\|s(a|T_p)\|_q^q = \sum_{j=1}^{\infty} \left([(\rho^{2j} - f^{2j})^+] q P(A^{2j}_1) + +[(f^{2j-1} - \rho^{2j-1})^-] q P(A^{2j-1}_1) \right) \\
= \|((\rho - f)^+) q\|_q < \infty,
\]
and is reduced to (5.3). At last, condition \(s(a|T_1) \in L^\infty(\mathcal{H}) \) for \(f \in L^\infty(\mathcal{F}) \) is equivalent to the boundedness of \(\rho \).

Example 5.3. Put \(\Omega = \mathbb{N} \) and consider the filtration \(\mathcal{F}_0 \subset \mathcal{F}_1 \subset \mathcal{F}_2 \), where the \(\sigma \)-algebra \(\mathcal{F}_n \) is generated by the sets \((A_n^j)_{j=1}^\infty \), \(n = 0, 1, 2 \),
\[
A^0_0 = \{4j - 3, 4j - 2, 4j - 1, 4j\}, \quad A^1_1 = \{2j - 1, 2j\}, \quad A^2_2 = \{j\}.
\]
Define the probability measure \(P \) on \(\mathcal{F}_2 = \mathcal{F} \) by \(P(A^{2j-1}_2) = P(A^{2j}_2) = 2^{-j-1} \).

Note that
\[
P(A^j_1) = P(A^{2j-1}_2) + P(A^{2j}_2) = 2^{-j},
\]
\[
P(A^j_0) = P(A^{2j-1}_1) + P(A^{2j}_1) = 2^{-2j-1} + 2^{-2j} = \frac{3}{2^{2j}}.
\]

We put
\[
\xi_1(\omega) = \Delta S_1(\omega) = \sum_{j=1}^{\infty} \left(I_{A^{2j-1}_1}(\omega) - \frac{1}{2^j} I_{A^{2j}_1}(\omega) \right),
\]
\[
\xi_2(\omega) = \Delta S_2(\omega) = \sum_{j=1}^{\infty} \left(I_{A^{2j-1}_2}(\omega) - \frac{1}{2^{j/2}} I_{A^{2j}_2}(\omega) \right).
\]

According to Example 5.2, for the existence of \(g_n \in L^1(\mathcal{F}_n) \), \(n = 1, 2 \), satisfying the conditions
\[
E(g_n \xi_n | \mathcal{F}_{n-1}) = 0, \quad g_n \geq 1,
\]
it is necessary and sufficient that the functions
\[
\rho_n(\omega) = \sum_{j=1}^{\infty} \left(\frac{1}{2^{j/n}} \frac{P(A^{2j};n)}{P(A^{2j-1};n)} I_{A^{2j-1}_n}(\omega) + \frac{P(A^{2j-1};n)}{P(A^{2j};n)} I_{A^{2j}_n}(\omega) \right), \quad n = 1, 2
\]
in the conditions of the form (5.3), are integrable. A simple calculation shows that it is the case:
\[
E \rho_1 = E \sum_{j=1}^{\infty} \left(\frac{1}{2^{j+1}} I_{A^{2j+1}_1} + \frac{2^j}{2^{j+1}} I_{A^{2j}_1} \right) = \sum_{j=1}^{\infty} \left(\frac{1}{2^{2j}} + \frac{2}{2^j} \right) < \infty,
\]
\[
E \rho_2 = E \sum_{j=1}^{\infty} \left(\frac{1}{2^{j/2}} I_{A^{2j+1}_2} + \frac{2^{j/2}}{2^{j+1}} I_{A^{2j}_2} \right) = \sum_{j=1}^{\infty} \left(\frac{1}{2^{2j/2+1}} + \frac{1}{2^{j/2+1}} \right) < \infty.
\]

Nevertheless, as we shall see, in the two-period model under consideration, there is no equivalent martingale measure \(Q \) with the density \(dQ/dP \geq c > 0 \), where \(c \) is some constant.
Let \(\omega \in A_1^j \). With the notation of Theorem 4.1 we have \(\beta_2 = 1 \),
\[
a_1(\omega) = E(\xi_2 | F_1)(\omega) = \frac{E(\xi_2 1_{A_1^j})}{P(A_1^j)} = \frac{P(A_2^{2j-1}) - 2^{-j/2}P(A_2^{2j})}{P(A_1^j)} = \frac{1 - 2^{-j/2}}{2},
\]
\[
\mu(-a_1|\text{conv} \, \omega_1)(\omega) = \inf \{ \lambda > 0 : -a_1(\omega) \in \lambda[-2^{-j/2}, 1] \} = 2^{j/2}a_1(\omega),
\]
\[
\beta_1(\omega) = 1 + \mu(-a_1|\text{conv} \, \omega_1)(\omega) = 1 + 2^{j/2} \frac{(1 - 2^{-j/2})}{2} = \frac{2^{j/2} + 1}{2}
\]
and \(E\beta_1 = \sum_{j=1}^{\infty} (2^{j/2} + 1)P(A_1^j)/2 < \infty \).

Now assume that \(\omega \in A_0^j \). Then
\[
a_0(\omega)P(A_0^j) = \frac{E(1_{A_1^j} \xi_1 | F_0)(\omega)P(A_0^j)}{P(A_0^j)} = \frac{E(\beta_1 \xi_1 | F_0)(\omega)P(A_0^j)}{P(A_0^j)} = \frac{2^{j-1/2} + 1}{2}P(A_1^{2j-1})
\]
\[
- \frac{2^j + 1}{2} \frac{1}{2j} P(A_1^{2j}) = \frac{1}{2^{j+1}} \left(2^{j-1/2} + \frac{1}{2} - \frac{1}{2^{j+1}} \right)
\]
In addition, \(a_0(\omega) > 0 \) and
\[
\mu(-a_0|\text{conv} \, \omega_0)(\omega) = \inf \{ \lambda > 0 : -a_0(\omega) \in \lambda[-2^{-j}, 1] \} = 2^j a_0(\omega).
\]
This yields that
\[
E\mu(-a_0|\text{conv} \, \omega_0) = \sum_{j=1}^{\infty} 2^j a_0^j P(A_1^j) = \infty, \quad a_0^j = a_0(\omega), \ \omega \in A_0^j.
\]
Therefore, \(\beta_0 = E(\beta | F_0) + \mu(-a_0|\text{conv} \, \omega_0) \notin L^1(F_0) \).

This result shows also that
\[
\sup_{\gamma} \{ E\gamma_n : \gamma_n \in L^\infty(F_{n-1}) \land \gamma_n \geq -1 \} = \infty,
\]
whereas
\[
\sup_{\gamma_n} \{ E(\gamma_n, \xi_n) : \gamma_n \in L^\infty(F_{n-1}) \land (\gamma_n, \xi_n) \geq -1 \} < \infty, \quad n = 1, 2.
\]

Let us present a strategy \(\gamma_n \in L^0(F_{n-1}) \land \gamma_n \geq -1 \), satisfying the conditions
\(E\gamma_1 = \infty \), \(G_2^\gamma \geq -1 \).

The strategy, constructed below, is "aggressive" and consists in buying of the maximal allowable amount of stocks in each step.

Put \(\gamma_1(\omega) = \sum_{j=1}^{\infty} 2^j I_{A_1^j} \). Then
\[
G_1^\gamma = \sum_{j=1}^{\infty} \left(2^j I_{A_1^{2j-1}} - I_{A_1^{2j}} \right) \geq -1.
\]
Since \(A_1^{2j-1} = A_2^{4j-3} \cup A_2^{4j-2} \) and
\[
\xi_2(\omega) = 1, \quad \omega \in A_2^{4j-3}, \quad \xi_2(\omega) = -\frac{1}{2^{j-1/2}}, \quad \omega \in A_2^{4j-2},
\]
we see that the portfolio $\gamma_2(\omega) = \sum_{j=1}^{\infty} 2^{j-1/2}(2^j + 1)I_{A_{1j-1}}$ is admissible:

$$G_2^\gamma = \sum_{j=1}^{\infty} \left(2^j I_{A_{1j-1}} - I_{A_{1j}} \right) + \sum_{j=1}^{\infty} \left(2^{j-1/2}(2^j + 1)I_{A_{2j-3}} - (2^j + 1)I_{A_{2j-2}} \right) \geq -1$$

and $E G_2^\gamma = \infty$ as long as

$$P(A_{1j-1}^2) = 2^{-2j+1}, \ P(A_{1j}^2) = 2^{-2j}, \ P(A_{2j-3}^2) = P(A_{2j-2}^2) = 2^{-2j}.$$

Example 5.4. Let $\Omega = \mathbb{N}$, $\mathcal{F}_0 = \{\emptyset, \Omega\}$ and let \mathcal{F} be generated by one-point subsets of \mathbb{N}. We put $A_j = \bigcup_{i=j}^{\infty} \{2i\}$, $B_j = \{4j + 1\}$,

$$\Delta S^i_1 = \xi^i = 2^j I_{B_{j-1}} - I_{A_j}, \ j \in \mathbb{N}$$

and define the probability measure Q on \mathcal{F} by $Q\{2j - 1\} = Q\{2j\} = 2^{-j-1}$. Clearly, Q is a martingale measure for S:

$$Q(B_{j-1}) = Q\{2(2j - 1) - 1\} = \frac{1}{2^{2j}}, \ Q(A_j) = \sum_{i=j}^{\infty} \frac{1}{2^{i+1}} = \frac{1}{2^j}$$

$$E_Q \xi^i_j = 2^j Q(B_{j-1}) - Q(A_j) = 0.$$

Put $B = \bigcup_{j=1}^{\infty} B_{j-1}$ and $B' = \Omega \setminus (A_1 \cup B) = \bigcup_{j=1}^{\infty} \{4j - 1\}$. The set Ω coincides with the union of disjoint sets A_1, B, B'. We note that

$$Q(A_1) = \frac{1}{2}, \ Q(B') = \sum_{j=1}^{\infty} Q\{2(2j) - 1\} = \sum_{j=1}^{\infty} \frac{1}{2^{2j+1}} = \frac{1}{6}$$

and define an equivalent to Q ”market” measure P by

$$P(C) = E_Q(\zeta I_C), \ \zeta = \sum_{i=1}^{\infty} 2^{i-1} I_{B_{i-1}} + \frac{3}{4} (I_{A_1} + I_{B'}) , \ C \in \mathcal{F}.$$

Let J be a finite subset of N. Putting in the inequality

$$G_2^\gamma(\omega) := \sum_{j \in J} \gamma^j \xi^j(\omega) \geq -1, \ \omega \in \mathbb{N} \ \ (5.4)$$

$\omega = 2m > \max J$ and then $\omega = 4(m-1) + 1$, we get:

$$\sum_{j \in J} \gamma^j \leq 1, \ 2^m \gamma^m \geq -1.$$

As far as

$$E_Q(\zeta \xi^j) = E_Q(2^{j-1} I_{B_{j-1}} - \frac{3}{4} I_{A_j}) = \frac{1}{2} - \frac{3}{4} \frac{1}{2^j},$$

for γ satisfying (5.4) we have

$$EG_2^\gamma = \sum_{j \in J} \gamma^j E_Q(\zeta \xi^j) = \frac{1}{2} \sum_{j \in J} \gamma^j - \frac{3}{4} \sum_{j \in J} \gamma^j 2^{-j} \leq \frac{1}{2} + \frac{3}{4} \sum_{j=1}^{\infty} \frac{1}{2^{2j}} = \frac{3}{4}.$$

On the other hand, if g is the P-density of a martingale measure and g is uniformly bounded from below by a constant $c > 0$, then

$$E(g \xi^j) = 2^j E(g I_{B_{j-1}}) - E(g I_{A_j}) = 0,$$
\[E(qI_{A_j}) \geq c2^j P(B_{j-1}) = c2^{2j-1} Q(B_{j-1}) = \frac{c}{2}, \]

in contradiction to the dominated convergence theorem, since \(\lim_{j \to \infty} I_{A_j} = 0 \) a.s.

Summing up, for the subspace \(K \subset L^\infty(\mathcal{F}) \), generated by the countable collection of elements \((\xi_j)_{j=1}^\infty \), condition (0.3) is satisfied for \(f = 1, p = \infty \). Moreover, there exists and element \(z = \zeta^{-1} \in L^1_{++}(\mathcal{F}) \) such that \(\langle X, z \rangle = E(Xz) = EQX = 0, \) \(X \in K \). However, there is no element \(g \) satisfying (0.2) for \(q = 1 \): a counterexample to the assertion of Theorem 6.1 of [6].

References

[1] Aliprantis C.D., Border K.C. Infinite dimensional analysis. A hitchhiker’s guide. 3rd edn. Berlin: Springer, 2007, 703 p.
[2] Bourbaki N. General Topology. Fundamental Structures, Moscow: Nauka, 1968, 272 p, [Russian translation].
[3] Dalang R.C., Morton A., Willinger W. Equivalent martingale measures and no-arbitrage in stochastic securities market models. — Stoch. Stoch. Rep., 1990, v. 29, No 2, p. 185–201.
[4] Delbaen F., Schachermayer W. The mathematics of arbitrage. Berlin: Springer, 2006, 373 p.
[5] Evstigneev I.V., Schürger K., Taksar M.I. On the fundamental theorem of asset pricing: random constraints and bang-bang no-arbitrage criteria. — Math. Finance, 2004, v. 14, No. 2, p. 201–221.
[6] Leitner J. Optimal portfolios with lower partial moment constraints and LPM-risk-optimal martingale measures. — Math. Finance, 2008, v. 18, No. 2, p. 317-331.
[7] Magaril-Il’yaev G.G., Tikhomirov V.M. Convex analysis: theory and applications. Providence, RI: AMS, 2003, 183 p.
[8] Rásonyi M., Stettner L. On utility maximization in discrete-time financial market models. — Ann. Appl. Probab., 2005, v. 15, No. 2, p. 1367–1395.
[9] Rockafellar R.T. Duality and stability in extremum problems involving convex functions. — Pacific J. Math., 1967, v. 21, No. 1, p. 167–187.
[10] Rockafellar R.T. Integral functionals, normal integrands and measurable selections. — Lecture Notes in Math., 1976, v. 543, p. 157–207.
[11] Rokhlin D.B. The Kreps-Yan theorem for \(L^\infty \). — Int. J. Math. Math. Sci., 2005, v. 2005, No. 17, p. 2749–2756.
[12] Rokhlin D., Schachermayer W. A note on lower bounds of martingale measure densities. — Illinois J. Math., 2006, v. 50, No. 4, p. 815–824.
[13] Shiryaev A.N. Essentials of Stochastic Finance. Vol.2: Theory, Moscow: Phasis, 1998, 528 p., [Russian edition]

D.B. Rokhlin, Faculty of Mathematics, Mechanics and Computer Sciences, Southern Federal University, Mil’chakova str., 8A, 344090, Rostov-on-Don, Russia

E-mail address: rokhlin@math.rsu.ru