White matter microstructure and the clinical risk for psychosis: A diffusion tensor imaging study of individuals with basic symptoms and at ultra-high risk

Lukasz Smigielski a,b,*, Philipp Stämpfli c,d, Diana Wotruba a, Roman Buechler b,e, Stefan Sommer c,d, Miriam Gerstenberg b, Anastasia Theodoridou a,c, Susanne Walitza b,f,g, Wulf Rössler a,b,i, Karsten Heekeren i,c,j

a The Zurich Program for Sustainable Development of Mental Health Services (ZinEP), Psychiatric University Hospital Zurich, University of Zurich, Zurich, Switzerland
b Department of Child and Adolescent Psychiatry and Psychotherapy, Psychiatric University Hospital Zurich, University of Zurich, Zurich, Switzerland
c Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric University Hospital Zurich, University of Zurich, Zurich, Switzerland
d Department of Neuropadology, University Hospital of Zurich, Zurich, Switzerland
e MR-Center of the Psychiatric Hospital and the Department of Child and Adolescent Psychiatry, University of Zurich, Zurich, Switzerland
f Neuroscience Center Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland
i Zurich Center for Integrative Human Physiology, University of Zurich, Zurich, Switzerland
j Department of Psychiatry and Psychotherapy I, LVR-Hospital, Cologne, Germany

* Corresponding author at: Psychiatric University Hospital Zurich, Neumünsterallee 9, 8032 Zurich, Switzerland.
E-mail address: lukasz.smigielski@uzh.ch (L. Smigielski).

https://doi.org/10.1016/j.nicl.2022.103067
Received 23 March 2022; Received in revised form 19 May 2022; Accepted 28 May 2022
Available online 31 May 2022

ARTICLE INFO

Keywords:
Diffusion weighted imaging
Fractional anisotropy
MRI
Clinical high risk
Prodrome
Schizophrenia

ABSTRACT

Background: Widespread white matter abnormalities are a frequent finding in chronic schizophrenia patients. More inconsistent results have been provided by the sparser literature on at-risk states for psychosis, i.e., emerging subclinical symptoms. However, considering risk as a homogenous construct, an approach of earlier studies, may impede our understanding of neuro-progression into psychosis.

Methods: An analysis was conducted of 3-Tesla MRI diffusion and symptom data from 112 individuals (mean age, 21.97 ± 4.19) within two at-risk paradigm subtypes, only basic symptoms (n = 43) and ultra-high risk (n = 37), and controls (n = 32). Between-group comparisons (involving three study groups and further split based on the subsequent transition to schizophrenia) of four diffusion-tensor-imaging-derived scalars were performed using voxelwise tract-based spatial statistics, followed by correlational analyses with Structured Interview for Prodromal Syndromes responses.

Results: Relative to controls, fractional anisotropy was lower in the splenium of the corpus callosum of ultra-high-risk individuals, but only before stringent multiple-testing correction, and negatively correlated with General Symptom severity among at-risk individuals. At-risk participants who transitioned to schizophrenia within 3 years, compared to those that did not transition, had more severe WM differences in fractional anisotropy and radial diffusivity (particularly in the corpus callosum, anterior corona radiata, and motor/sensory tracts), which were even more extensive compared to healthy controls.

Conclusions: These findings align with the subclinical symptom presentation and more extensive disruptions in converters, suggestive of severity-related demyelination or axonal pathology. Fine-grained but detectable differences among ultra-high-risk subjects (i.e., with brief limited intermittent and/or attenuated psychotic symptoms) point to the splenium as a discrete site of emerging psychopathology, while basic symptoms alone were not associated with altered fractional anisotropy.
1. Introduction

Schizophrenia is a highly debilitating psychiatric disorder with a complex symptom presentation and an unclear etiopathogenesis. Disorder-related dysfunctions have been observed across many biological levels, including genetics (Birnbaum and Weinberger, 2017), epigenetics (Smigielski et al., 2020), and neurotransmitter systems (Brisch et al., 2014) as well as brain structure (Van Erp et al., 2018) and functional networks (Dong et al., 2018). In this context, white matter (WM) abnormalities seem to be particularly well positioned to account for cognitive, affective, and perceptual symptoms observed in schizophrenia. Specifically, WM microstructural characteristics largely impact information transmission through the conduction velocity of axons (Caminiti et al., 2013; Tuladhar et al., 2015), corresponding with the pervasive cognitive difficulties reported by patients (Zai et al., 2017; Zanelli et al., 2019). Multiple lines of evidence also indicate schizophrenia is a disorder of disrupted brain connectivity, both functionally and structurally (Pettersson-Yeo et al., 2011; Stämpfli et al., 2019; Zalesky et al., 2011). Axonal bundles are physically associated with gray matter structures (O’Muircheartaigh and Jbabdi, 2018), and brain connectivity is largely linked to oligodendroglia and myelination (Davis et al., 2003). WM also has properties that may explain the progression of schizophrenia. Specifically, WM maturational processes for lower-order tracts (e.g., motor tracts) occur before those for higher-order tracts, with the fiber projections not being refined until late adolescence or early adulthood (Bava et al., 2010). This time window coincides with frequent onset of psychotic disorders. Furthermore, many schizophrenia liability genes overlap with known WM genetic variants (Bohlken et al., 2016; Chavarria-Siles et al., 2016; Roussos and Haroutunian, 2014; Van Scheltinga et al., 2013; Zhao et al., 2021). Indeed, the existing evidence for the involvement of WM deficits in schizophrenia seems robust (Kubicki et al., 2007; Tamnes and Agartz, 2016; Vitolo et al., 2017), with the largest-to-date ENIGMA consortium meta-analysis (2359 controls, 1963 patients) reporting widespread microstructural abnormalities across all major WM fasciculi (Kelly et al., 2018). Beyond to between-group differences from healthy controls (HC), numerous studies have identified significant associations between WM markers and (predominantly positive) symptoms (Bopp et al., 2017; Cheung et al., 2011; Stämpfli et al., 2019), core cognitive functions (Kochunov et al., 2017), but also theory of mind abilities (Kim et al., 2021) and poor insight into illness (Antoniou et al., 2011; Gjerretsens et al., 2019). These associations were especially evident for frontal, fronto-temporal, and fronto-limbic tracts, the superior longitudinal fasciculus, and inter-hemispheric connections (Kuswanto et al., 2012; Paranzone et al., 2017). Notably, a large body of literature also points to the corpus callosum as the epicenter of schizophrenia-related abnormalities (Koshiyama et al., 2018; Madigand et al., 2019; Patel et al., 2011).

The microstructure of WM tracts can be quantified non-invasively in vivo using diffusion weighted imaging (DWI) data and diffusion tensor imaging (DTI) models (Podwalski et al., 2020; Shizukuishi et al., 2013). Published DWI/DTI studies support the involvement of progressive (Cetin-Karayumak et al., 2020) and subtype-related aspects of WM microstructure abnormalities in schizophrenia, as exemplified in differences between hallucinating versus non-hallucinating patients (Bersnesiewicz et al., 2021) or those with persistent negative symptoms versus non-deficit patients (Podwalski et al., 2021). In this context, investigating differential fine-grained symptoms emerging before onset of psychosis in a disorder may greatly inform our understanding of the cognitive, affective, and perceptual neural processes underlying mental illness. Early detection of low-grade symptoms may also have measurable clinical implications, leading to early interventions, with the goal of decreasing functional disability, improving overall health outcomes, and reducing negative societal impacts (Correll et al., 2018; Lieberman et al., 2019). The clinical risk of psychosis paradigm has evolved for research purposes and as a clinical staging model (Fusar-Poli et al., 2020). The established risk criteria were developed to capture the pre-psychotic stage and include basic symptoms (BS), ultra-high risk (UHR) criteria, and genetic risk and deterioration syndrome (GRD) (Fusar-Poli et al., 2013; Schultze-Lutter et al., 2015). Specifically, the BS category reflects subtle subjective experiences based on cognitive-perceptive basic symptoms (COPER) and/or cognitive disturbances (COGDIS) (Schultze-Lutter and Theodoridou, 2017). UHR has been hypothesized as an imminent risk for psychosis and is identified based on the presence of either brief limited intermittent psychotic symptoms (BLIPS) and/or attenuated psychotic symptoms (APS) and/or genetic risk combined with a functional decline (Schultze-Lutter et al., 2011). BS are thought to feature an earlier at-risk phase, compared to UHR (Fusar-Poli et al., 2013), while GRD is proportionally rare (Fusar-Poli et al., 2016). According to a recent meta-analysis, 25% of those meeting high-risk criteria developed psychosis within 3 years, and the likelihood increased over time (de Pablo et al., 2021). Fig. 1 depicts a schematic model of early psychosis onset (Fusar-Poli et al., 2013).

DWI/DTI studies on high clinical risk have been less frequent and have employed smaller sample sizes than those on schizophrenia or first-episode psychosis (Waszczuk et al., 2021). These studies tend to converge on the type and spatial location of WM abnormalities observed in schizophrenia and indicate their lower severity (Bernard et al., 2015; Clemen von Hohenberg et al., 2014; Krakauer et al., 2017). However, treating risk as a homogenous construct may simultaneously undermine efforts to understand the mechanisms underlying psychotic symptoms (Fusar-Poli et al., 2016). From a clinical perspective, what particularly matters is the prediction of full-blown psychosis. While dedicated screening interviews are generally very sensitive in differentiating at-risk from healthy individuals, accurately predicting the transition to a formal diagnosis within at-risk groups remains much more challenging and has involved the application of rather poorly validated predictive models (Montemagni et al., 2020). Neuroimaging may potentially help in objectively formulating such prognoses, as exemplified by the relatively few studies that have identified specific local WM abnormalities in those individuals that later developed psychosis (León-Ortiz et al., 2020; Rigucci et al., 2016). Finding a reliable biomarker or at least achieving some biomarker-informed improvement in prognostic accuracy could revolutionize early recognition and intervention. There is an ongoing discussion of whether the transition may be marked by dramatic changes in WM microstructure or rather follows a more subtle pattern (Di Biase et al., 2021).

To the best of our knowledge, no previous study has explicitly compared whole-brain WM for different typologies of symptoms within the clinical high-risk paradigms. Accordingly, this work was conducted to investigate possible differences in the WM microstructure using DTI metrics among three thoroughly characterized groups: HC, only BS, and UHR. We postulated fractional anisotropy would be lowest in the UHR group, followed by the only BS group in an intermediate position and, lastly, the HC group. Given the composition of our sample was restricted to the subclinical portion of the psychosis spectrum and our use of a relatively conservative measure of DTI, we hypothesized rather subtle differences would be observed. In terms of spatial effects, we expected to see differences in WM tracts of key importance in schizophrenia, i.e., long-range association tracts (such as the superior longitudinal fasciculus), projection tracts (such as the thalamic radiation), and/or the corpus callosum. Additionally, we explored possible associations with WM indices and early perceptual-cognitive and functional deficits, as assessed by well-established instruments in the field. Finally, we explored the putative WM differences in dependency of the subsequent conversion to a formal diagnosis of schizophrenia (i.e., transition criterion).

2. Methods

2.1. Participants

The study was part of the multimodal Zurich Program for Sustainable NeuroImage: Clinical 35 (2022) 103067
2
Development of Mental Health Services (ZInEP) project (Theodoridou et al., 2014). Subjects (males and females aged 16–33) were recruited by specialized psychiatric early recognition units in the Greater Zurich Area (BS/UHR) and using announcements (HC). The Mini-International Neuropsychiatric Interview (Sheehan et al., 1998) was administered in the HC group to rule out any present or past psychiatric illnesses. Basic symptoms were assessed using the adult (Schultze-Lutter et al., 2007) or child/youth (Schultze-Lutter and Koch, 2010) versions of the Schizophrenia Proneness Instrument. Specifically, individuals were assigned to the BS group when at least one COPPER symptom or at least two COGDIS symptoms were present. The UHR criteria were assessed using the Structured Interview for Prodromal Syndromes (SIPS) (McGlashan et al., 2001) and met when at least one BLIPS or one APS state-trait criterion was fulfilled. Intelligence was estimated using a multiple-choice vocabulary intelligence test (Mehrfachwahl Wortschatz Test, Version B; MWT-B) (Lehrl, 1999) and for those aged below 20 years using a fluid nonverbal intelligence test (Leistungsprüfsystem, subtest 3; LPS-3) (Horn, 1983). Handedness was assessed with the Edinburgh Handedness Inventory (Oldfield, 1971). Meeting any of the following criteria resulted in study exclusion: any past or present mental illness, standard contraindications to magnetic resonance imaging (MRI) examination, pregnancy, history of neurological disease or brain trauma, substance or alcohol dependence, or the inability to provide informed consent. All procedures contributing to this work were approved by the Cantonal Ethics Committee Zurich and comply with the ethical standards of the national and institutional committees on human experimentation and with the Helsinki Declaration of 1975, as revised in 2008. Written informed consent was obtained from all participants and additionally, with the Helsinki Declaration of 1975, as revised in 2008. Written informed consent was obtained from all participants and additionally, with the Helsinki Declaration of 1975, as revised in 2008. Written informed consent was obtained from all participants and additionally, with the Helsinki Declaration of 1975, as revised in 2008. Written informed consent was obtained from all participants and additionally, with the Helsinki Declaration of 1975, as revised in 2008. Written informed consent was obtained from all participants and additionally, with the Helsinki Declaration of 1975, as revised in 2008. Written informed consent was obtained from all participants and additionally, with the Helsinki Declaration of 1975, as revised in 2008. Written informed consent was obtained from all participants and additionally, with the Helsinki Declaration of 1975, as revised in 2008. Written informed consent was obtained from all participants and additionally, with the Helsinki Declaration of 1975, as revised in 2008. Written informed consent was obtained from all participants and additionally, with the Helsinki Declaration of 1975, as revised in 2008. Written informed consent was obtained from all participants and additionally, with the Helsinki Declaration of 1975, as revised in 2008. Written informed consent was obtained from all participants and additionally, with the Helsinki Declaration of 1975, as revised in 2008. Written informed consent was obtained from all participants and additionally, with the Helsinki Declaration of 1975, as revised in 2008. Written informed consent was obtained from all participants and additionally, with the Helsinki Declaration of 1975, as revised in 2008. Written informed consent was obtained from all participants and additionally, with the Helsinki Declaration of 1975, as revised in 2008. Written informed consent was obtained from all participants and additionally, with the Helsinki Declaration of 1975, as revised in 2008. Written informed consent was obtained from all participants and additionally, with the Helsinki Declaration of 1975, as revised in 2008. Written informed consent was obtained from all participants and additionally, with the Helsinki Declaration of 1975, as revised in 2008. Written informed consent was obtained from all participants and additionally, with the Helsinki Declaration of 1975, as revised in 2008. Written informed consent was obtained from all participants and additionally, with the Helsinki Declaration of 1975, as revised in 2008. Written informed consent was obtained from all participants and additionally, with the Helsinki Declaration of 1975, as revised in 2008.

2.2. MRI data acquisition

Neuroimaging data were collected using a 3 T whole-body MRI scanner (Achieva, Philips Healthcare, Best, the Netherlands) and an 8-channel head coil. A diffusion-weighted single-shot spin-echo echoplanar imaging sequence with an isotropic resolution of 2 mm was acquired using the following parameters: repetition time (TR), 13009 ms; echo time (TE), 55 ms; field of view (FOV), 224 × 224 mm²; 75 contiguous transversal slices; slice thickness, 2 mm; acquisition matrix, 112 × 112; SENSE factor, 2; partial Fourier encoding, 68%. Diffusion acquisition was conducted along 32 directions (b = 1000 s/mm²) in addition to one b = 0 s/mm² volume. The total scan time was 8 min 42 s. Moreover, T1-weighted 1-mm isotropic images were collected for anatomical referencing with a 3D magnetization-prepared rapid gradient-echo (MPRAGE) sequence using the following parameters: TR, 8.3 ms; TE, 3.8 ms; FOV, 240 × 240 mm²; flip angle, 8°; 160 sagittal slices; slice thickness, 1 mm, in-plane-resolution, 1 × 1 mm². One individual from the HC group, one from the BC group, and three from the UHR group (altogether 5 out of 117) were excluded from the final analyses owing to signal artifacts identified in the quality assessment. The four calculated DTI scalars were fractional anisotropy (FA), mean diffusivity (MD), axial diffusivity (AD), and radial diffusivity (RD) and were investigated, because they may provide refined information on the underlying WM architecture (Aung et al., 2013) and, in some studies, they revealed a distinct pattern in patients with the same conditions, such as schizophrenia (Clark et al., 2011; Klauser et al., 2017).

2.3. Pre-processing and quality assessment

Pre-processing of diffusion data and quality assessment were performed prior to statistical analysis. The pipeline details are described as follows. A multiple-step assessment was implemented to maximize the signal quality evaluation and detect image artifacts. First, denoising of the diffusion data was performed in MRtrix3 (Brain Research Institute, Melbourne, Australia, v0.3.12) (Tournier et al., 2012) to quantify the noise level based on the truncated spherical harmonics fit. Second, tensor residuals were calculated after fitting a tensor model to the diffusion data. Third, mean signal intensity for each acquired diffusion direction was plotted and inspected along the three orthogonal directions (slice, read, and phase), and T1 contour overlays onto the non-diffusion-weighted b = 0 image were computed in sagittal, axial, and coronal planes to check for remaining distortions. The datasets were pre-processed to correct for subject motion and distortions by using eddy in FSL (Analysis Group, FMRIB Software Library, Oxford, UK, v6.0) tools (Andersson and Sotiropoulos, 2016; Jenkinson et al., 2012; Smith et al., 2004; Woolrich et al., 2009). The brain extraction was performed using bet (Smith,
2002) to remove non-brain tissue and to conduct skull stripping. Additionally, residual susceptibility-induced distortions caused by EPI sequences were corrected by the bdp algorithm in BrainSuite (Bhushan et al., 2015) incorporating the T1-weighted MPRAGE image as reference. Finally, the tensor fitting and computation of four tensor metrics were performed. FA (most broadly used), computed as the variance among the three orthogonal eigenvectors of diffusion tensors (Hagmann et al., 2006; Mandl et al., 2008), is considered a proxy of WM integrity and most probably reflects its geometrical properties that may be influenced by the geometrical fiber configuration, diameter, and axon diameter, as well as myelination (Friedrich et al., 2020). MD is an overall and rotationally invariant diffusion marker (Landman et al., 2007), AD reflects axonal integrity associated with damage or fragmentation (Budde et al., 2009), and RD has been primarily linked to myelin properties and fiber coherence (Sun et al., 2006).

2.4. Data analysis

Voxelwise analysis steps were performed using the Tract-Based Spatial Statistics (TBSS) pipeline (Smith et al., 2006) implemented in FSL. FA maps were aligned to a 1 × 1 × 1 mm standard space, by using nonlinear registration to the MNI152 (Montreal Neurological Institute) template. A mean FA map was generated from the subject-wise FA images and subsequently skeletonized to include the shared WM tracts. The mean FA skeleton was thresholded at a value of 0.2, and individual FA maps were projected onto the derived skeleton image. All non-FS tensor measures were derived using the tracts non_FA script in FSL, which employs the same operations for non-linear registration, warping, and employs skeleton projection as for the FA maps. Group-level statistics were performed with Permutation Analysis of Linear Models (PALM) (Winkler et al., 2014) using threshold-free cluster enhancement (TFCE) (Smith and Nichols, 2009) with 10,000 random permutations and a family-wise error (FWE) rate of $p < 0.05$. In contrast to other methods, TFCE does not necessitate defining arbitrary thresholds for cluster size. Six pairwise contrasts were examined, including sex and (demeaned) age as nuisance regressors. Following the computational evidence that ANOVA with pairwise comparisons does not always properly control the error rate in brain imaging studies, the permutation-based approach was applied to correct for multiple hypothesis testing and to adjust the p-values accordingly, as proposed and described in detail by Alberton and colleagues (Alberton et al., 2020). While multiple testing correction standards differ among researchers and specific study objectives, results withstanding the TFCE method with 10,000 permutations in the TBSS terminology (with $p < 0.001$, Positive ($p < 0.001$), and Negative ($p < 0.047$) symptoms of the SIPS, with higher scores present in the UHR group, but not for the Disorganization SIPS symptoms. Both at-risk groups also differed in the Global Assessment of Functioning, notably, with significantly higher scores present in the BS group ($p = 0.042$). Most of the participants in the UHR group (29 out of 37) also met the BS criteria. Nine individuals from each of the two at-risk groups were receiving antipsychotic medication. Eleven participants (four BS subjects and seven UHR subjects) transitioned to schizophrenia within a 3-year period (mean time to transition, 11.27 months; range, 2–33 months).

3. Results

3.1. Demographic and symptom data

Table 1 provides detailed participant characteristics. The groups did not significantly differ in age, sex, handedness, or estimated IQ. There were significant differences among the at-risk groups for the General ($p < 0.001$), Positive ($p < 0.001$), and Negative ($p < 0.047$) symptoms of the SIPS, with higher scores present in the UHR group, but not for the Disorganization SIPS symptoms. Both at-risk groups also differed in the Global Assessment of Functioning, notably, with significantly higher scores present in the BS group ($p = 0.042$). Most of the participants in the UHR group (29 out of 37) also met the BS criteria. Nine individuals from each of the two at-risk groups were receiving antipsychotic medication. Eleven participants (four BS subjects and seven UHR subjects) transitioned to schizophrenia within a 3-year period (mean time to transition, 11.27 months; range, 2–33 months).

Table 1

	HC (n = 32)	BS (n = 43)	UHR (n = 37)	Test statistic (χ^2, F, U)	p-value
Age (years)	21.72	23.09	20.89	F < 0.05	0.058
Sex, male/female	(3.84)	(4.12)	(4.34)		
(\% male)	14/18	22/21	23/14	F = 2.934	0.032
Handedness, r/l/a*	25/4/3	40/1/2	34/2/0	F > 2.388	0.016
Estimated IQb	112.30	104.89	108.38	F < 0.05	0.055
GAF	(14.08)	(10.64)	(14.22)		
NA	57.90	52.28	129.75		
SIPS Positive	4.84	10.3	4.00	F < 0.001	0.015
NA	(3.07)	(3.48)	(3.48)		
SIPS Negative	10.93	15.47	5.52	F < 0.047	0.047
NA	(5.51)	(5.40)	(5.40)		
SIPS General	2.81	5.35	4.65	F < 0.001	0.001
NA	(1.84)	(2.54)	(2.54)		
SIPS Disorganization	7.28	8.22	7.81	F < 0.001	0.137
CPZ equivalent	(3.22)	(3.37)	(3.37)		
n medicated	20.56	21.72	21.72		0.853
(115.71)	(55.27)	n = 9	n = 9		
Transition to F20	4 (RISK: 7)	9.50	12.29		
(by 3-year follow-up), \%	(RISK: 7)	(9.3%)	(9.3%)		
group, mean time in months		(4.22)	(12.29)		

Abbreviations: HS, basic symptoms group; CPZ, chlorpromazine; GAF, Global Assessment of Functioning; HC, healthy controls group; r/l/a, right/left/ambidextrous; SIPS, Structured Interview for Prodromal Syndromes; UHR, ultra-high risk for psychosis group. ameasured by the Edinburgh Handedness Inventory; bmeasured by the multiple-choice vocabulary intelligence test (MWT-B) for those aged <20 years and by the fluid nonverbal intelligence test (LPS-3) for those aged >20 years. Values are means and standard deviations, unless otherwise stated. Statistics: χ^2, Chi-square test statistic; F, ANOVA F-statistic; U, Mann-Whitney U test statistic. Significance was assessed at $p < 0.05$.

L. Smigielski et al.
3.2. Tract-based spatial statistics: at-risk groups and controls

In the whole-brain TBSS analyses, UHR and HC groups differed in FA in the splenium of the corpus callosum. Specifically, FA in this region was found to be reduced in UHR individuals, compared to controls (cluster size, 420 voxels; max at X = −10, Y = −32, Z = 25; fwe < 0.05; Cohen’s d = 0.12; Fig. 2). However, the significance of this finding did not remain after additional correction over contrasts performed within the modality and therefore should be considered as indicative of subtle differences. The fwe threshold of 0.05 corresponded to the cfwe threshold of approximately 0.23 in this analysis with six pairwise contrasts. No further significant results at either level of thresholding were found for any of the examined contrasts (i.e., UHR vs. HC, UHR vs. BS, BS vs. HC) or modalities (i.e., FA, RD, MD, AD).

3.3. Associations with subclinical symptoms

Significant negative partial correlations after the FDR correction between SIPS General symptoms and FA in the following ROIs: the splenium (−0.313, \(p_{\text{uncorr}} = 0.005 \)), the left and right anterior corona radiata (−0.302, \(p_{\text{uncorr}} = 0.007 \); −0.296, \(p_{\text{uncorr}} = 0.008 \)), the left and right anterior thalamic radiation (−0.349, \(p_{\text{uncorr}} = 0.002 \); −0.310, \(p_{\text{uncorr}} = 0.005 \)), and the left superior fronto-occipital fasciculus (−0.315, \(p_{\text{uncorr}} = 0.005 \)). There was also an effect for the left superior fronto-occipital fasciculus and the SIPS Negative symptoms (−0.306, \(p_{\text{uncorr}} = 0.006 \)). There were no other significant findings in this analysis. Fig. 3 depicts the relevant scatterplots.

3.4. Tract-based spatial statistics: transition to schizophrenia

Further explorations of the whole brain WM between the RISK-NT (n = 67) and RISK-T (n = 11) groups, as well as between the HC (n = 32) and RISK-T (n = 11) groups were conducted at the thresholds corrected (cfwe < 0.05) and uncorrected (fwe > 0.05) for contrasts. The cfwe threshold of 0.05 corresponded to the fwe threshold of approximately 0.03 in this analysis. To increase the methodological homogeneity, the RISK-T group was comprised of converters to schizophrenia only, and two individuals diagnosed with a brief psychotic disorder (F23) were excluded from this analysis. The RISK-NT versus RISK-T groups did not differ in age (\(p = 0.392 \)), sex (\(p = 0.602 \)), or estimated IQ (\(p = 0.147 \)). Similarly, no differences in these variables were found in the HC versus RISK-T groups (\(p = 0.668, p = 0.255, p = 0.052 \), respectively). In the RISK-T individuals (compared to the RISK-NT individuals), a cluster of lower FA was found at a stringent significance threshold and further clusters of lower FA and higher RD were found at a more lenient significance threshold. Large clusters of lower FA and of higher RD in the RISK-T individuals, relative to HC individuals, were identified at both significance thresholds. The findings include the whole corpus callosum, forceps minor, forceps major, anterior and superior corona radiata, anterior thalamic radiation, fornix, and corticospinal tract (Table 2, Fig. 4).

4. Discussion

This study compared WM microstructure in three groups, from subjects with a symptom burden in the lower portion of the spectrum of the psychosis continuum prior to any formal diagnosis (UHR and BS only) and from reference control individuals (HC). The main finding was specific to the splenium and limited to the UHR versus HC contrast for FA at a non-conservative correction threshold. FA in this area was negatively associated with the general domain of prodromal symptoms. In those who transitioned into schizophrenia within 3 years (relative to those who did not transition and healthy controls), lower FA and higher RD, particularly in the corpus callosum, corona radiata, and motor/sensory tracts, were found, conforming to a more severe WM disruption pattern. No differences were found for MD and AD in any of these analyses.

Indications of abnormalities of the corpus callosum with a particular role of the splenium in schizophrenia date from early histological research (Innocenti et al., 2003) and subsequent MRI studies (Kelly et al., 2018; Patel et al., 2011). The splenium is a bulbous structure overlapping with the tela choroidea of the third ventricle and the midbrain (Kayazeva, 2013). Splenial FA was found to be lowest in schizophrenia patients with impaired illness awareness, as compared to patients with intact illness awareness and healthy controls (Gerretsen et al., 2019). A handful of studies examined DTI indices in at-risk individuals, revealing distinct effects in the corpus callosum. For example, FA in the splenium in UHR individuals was positioned intermediate compared to individuals with first-episode psychosis and controls (Carletti et al., 2012). Significant FA reductions relative to controls were also identified in at-risk mental state individuals, specifically in the whole corpus callosum (genu, trunk, splenium) (Saito et al., 2017), in a subsection of it (Katagiri et al., 2015), and in its left portion, among other regions (Wang et al., 2016). In contrast, some studies detected no difference in FA between UHR individuals and controls (Bakker et al., 2016; Clemm von Hohenberg et al., 2014; Peters et al., 2010), while another investigation identified a significant difference in the corpus...
callosum body and splenium only in UHR subjects who developed psychosis over a 36-month follow-up period (Rigucci et al., 2016). Thus, the results hitherto should be considered inconsistent. While our key finding was not significant after correction across all contrasts, we interpret this outcome as correspondent with the subclinical portion of the psychosis continuum examined, with stronger results expected under increased symptom severity and persistence (DeRosse and Karlsgodt, 2015; Van Os et al., 2009). Accordingly, the disruption of WM integrity in the splenium may be an early subclinical vulnerability marker of psychosis. This effect possibly reflects a focal disruption in neurons or axons, related to abnormally organized or less densely packed fibers, as occurs with compromised intra-axonal microtubular density, altered cell membrane permeability, or lower degrees of myelination. The fibers in this region include functionally important projections from the temporal, parietal,
Fig. 4. Output from the tract-based spatial statistics analysis for converters versus non-converters to schizophrenia (left panel A–C) and converters versus healthy controls (right panel D–G). The findings are visualized in red on the green TBSS skeleton and using the MNI152 brain template. The results were computed using Threshold-Free Cluster Enhancement with 10,000 permutations and a family-wise error rate of $p < 0.05$ (fwep). Additional correction for contrasts is marked as cfwep. Results were visually emphasized for presentation using the `tbss_fill` function in FSL. FA, fractional anisotropy; HC, healthy controls; RD, radial diffusivity; RISK-NT, risk individuals who did not transition to schizophrenia; RISK-T, risk individuals who transitioned to schizophrenia.
and occipital cortices (Raybaud, 2010). The observed subtle abnormality in this major interhemispheric WM tract also supports the theory of structural dysconnectivity (Petterson-Yeo et al., 2011). The corpus callosum myelinates from birth to adolescence, with the genu and splenium each following distinct trajectories (Giedd et al., 1999; Tanaka-Arakawa et al., 2015), i.e., higher FA and a lower isotropic diffusion coefficient for the splenium (Schneider et al., 2004), indicative of earlier myelination. Thus, an early structural deficiency or maldevelopment of the splenium could affect the speed and quality of interhemispheric communication. This may further lead to cognitive-perceptual deficits in dependency of other factors, such as environmental exposures (Davis et al., 2016), and spread along a severity continuum. Supporting this view, a recent study identified stage-specific effects in schizophrenia, with callosal microstructural alterations at an early disorder stage and volumetric callosal macrostructural alterations at a late stage (Madgand et al., 2019). Our discussion would be incomplete without mentioning possible developmental WM processes, as exemplified by a recent finding on dynamic age-related and fiber-specific changes across the maturation of schizophrenia (Cetin-Karayumak et al., 2020). In a large sample, FA was shown to be up to 7% lower across the whole lifespan in schizophrenia patients, compared to controls, as well as characterized by an earlier peak maturation (at 27 years versus 33 years). In addition, early developmental abnormalities were found in limbic fibers, both abnormal maturation and accelerated aging were found in long-range association fibers, and, of particularly relevance to the present work, severe abnormalities and accelerated aging were found in callosal fibers (Cetin-Karayumak et al., 2020). Our results indicate that the spatial sequence of WM development for individuals within the at-risk window may indeed differ from a normal healthy course.

A lack of significant effects for the only BS group suggests that this subclinical syndrome is not yet matched by measurable changes in WM microstructure. Notably, the rare findings in BS described in the literature have pointed to functional differences, such as a loss of typical perceptual deficits in dependency of other factors, such as environmental exposures (Davis et al., 2016), and spread along a severity continuum. Supporting this view, a recent study identified stage-specific effects in schizophrenia, with callosal microstructural alterations at an early disorder stage and volumetric callosal macrostructural alterations at a late stage (Madgand et al., 2019). Our discussion would be incomplete without mentioning possible developmental WM processes, as exemplified by a recent finding on dynamic age-related and fiber-specific changes across the maturation of schizophrenia (Cetin-Karayumak et al., 2020). In a large sample, FA was shown to be up to 7% lower across the whole lifespan in schizophrenia patients, compared to controls, as well as characterized by an earlier peak maturation (at 27 years versus 33 years). In addition, early developmental abnormalities were found in limbic fibers, both abnormal maturation and accelerated aging were found in long-range association fibers, and, of particularly relevance to the present work, severe abnormalities and accelerated aging were found in callosal fibers (Cetin-Karayumak et al., 2020). Our results indicate that the spatial sequence of WM development for individuals within the at-risk window may indeed differ from a normal healthy course.

A lack of significant effects for the only BS group suggests that this subclinical syndrome is not yet matched by measurable changes in WM microstructure. Notably, the rare findings in BS described in the literature have pointed to functional differences, such as a loss of typical perceptual deficits in dependency of other factors, such as environmental exposures (Davis et al., 2016), and spread along a severity continuum. Supporting this view, a recent study identified stage-specific effects in schizophrenia, with callosal microstructural alterations at an early disorder stage and volumetric callosal macrostructural alterations at a late stage (Madgand et al., 2019).Our discussion would be incomplete without mentioning possible developmental WM processes, as exemplified by a recent finding on dynamic age-related and fiber-specific changes across the maturation of schizophrenia (Cetin-Karayumak et al., 2020). In a large sample, FA was shown to be up to 7% lower across the whole lifespan in schizophrenia patients, compared to controls, as well as characterized by an earlier peak maturation (at 27 years versus 33 years). In addition, early developmental abnormalities were found in limbic fibers, both abnormal maturation and accelerated aging were found in long-range association fibers, and, of particularly relevance to the present work, severe abnormalities and accelerated aging were found in callosal fibers (Cetin-Karayumak et al., 2020). Our results indicate that the spatial sequence of WM development for individuals within the at-risk window may indeed differ from a normal healthy course.

A lack of significant effects for the only BS group suggests that this subclinical syndrome is not yet matched by measurable changes in WM microstructure. Notably, the rare findings in BS described in the literature have pointed to functional differences, such as a loss of typical perceptual deficits in dependency of other factors, such as environmental exposures (Davis et al., 2016), and spread along a severity continuum. Supporting this view, a recent study identified stage-specific effects in schizophrenia, with callosal microstructural alterations at an early disorder stage and volumetric callosal macrostructural alterations at a late stage (Madgand et al., 2019). Our discussion would be incomplete without mentioning possible developmental WM processes, as exemplified by a recent finding on dynamic age-related and fiber-specific changes across the maturation of schizophrenia (Cetin-Karayumak et al., 2020). In a large sample, FA was shown to be up to 7% lower across the whole lifespan in schizophrenia patients, compared to controls, as well as characterized by an earlier peak maturation (at 27 years versus 33 years). In addition, early developmental abnormalities were found in limbic fibers, both abnormal maturation and accelerated aging were found in long-range association fibers, and, of particularly relevance to the present work, severe abnormalities and accelerated aging were found in callosal fibers (Cetin-Karayumak et al., 2020). Our results indicate that the spatial sequence of WM development for individuals within the at-risk window may indeed differ from a normal healthy course.

A lack of significant effects for the only BS group suggests that this subclinical syndrome is not yet matched by measurable changes in WM microstructure. Notably, the rare findings in BS described in the literature have pointed to functional differences, such as a loss of typical perceptual deficits in dependency of other factors, such as environmental exposures (Davis et al., 2016), and spread along a severity continuum. Supporting this view, a recent study identified stage-specific effects in schizophrenia, with callosal microstructural alterations at an early disorder stage and volumetric callosal macrostructural alterations at a late stage (Madgand et al., 2019). Our discussion would be incomplete without mentioning possible developmental WM processes, as exemplified by a recent finding on dynamic age-related and fiber-specific changes across the maturation of schizophrenia (Cetin-Karayumak et al., 2020). In a large sample, FA was shown to be up to 7% lower across the whole lifespan in schizophrenia patients, compared to controls, as well as characterized by an earlier peak maturation (at 27 years versus 33 years). In addition, early developmental abnormalities were found in limbic fibers, both abnormal maturation and accelerated aging were found in long-range association fibers, and, of particularly relevance to the present work, severe abnormalities and accelerated aging were found in callosal fibers (Cetin-Karayumak et al., 2020). Our results indicate that the spatial sequence of WM development for individuals within the at-risk window may indeed differ from a normal healthy course.

A lack of significant effects for the only BS group suggests that this subclinical syndrome is not yet matched by measurable changes in WM microstructure. Notably, the rare findings in BS described in the literature have pointed to functional differences, such as a loss of typical perceptual deficits in dependency of other factors, such as environmental exposures (Davis et al., 2016), and spread along a severity continuum. Supporting this view, a recent study identified stage-specific effects in schizophrenia, with callosal microstructural alterations at an early disorder stage and volumetric callosal macrostructural alterations at a late stage (Madgand et al., 2019). Our discussion would be incomplete without mentioning possible developmental WM processes, as exemplified by a recent finding on dynamic age-related and fiber-specific changes across the maturation of schizophrenia (Cetin-Karayumak et al., 2020). In a large sample, FA was shown to be up to 7% lower across the whole lifespan in schizophrenia patients, compared to controls, as well as characterized by an earlier peak maturation (at 27 years versus 33 years). In addition, early developmental abnormalities were found in limbic fibers, both abnormal maturation and accelerated aging were found in long-range association fibers, and, of particularly relevance to the present work, severe abnormalities and accelerated aging were found in callosal fibers (Cetin-Karayumak et al., 2020). Our results indicate that the spatial sequence of WM development for individuals within the at-risk window may indeed differ from a normal healthy course.

A lack of significant effects for the only BS group suggests that this subclinical syndrome is not yet matched by measurable changes in WM microstructure. Notably, the rare findings in BS described in the literature have pointed to functional differences, such as a loss of typical perceptual deficits in dependency of other factors, such as environmental exposures (Davis et al., 2016), and spread along a severity continuum. Supporting this view, a recent study identified stage-specific effects in schizophrenia, with callosal microstructural alterations at an early disorder stage and volumetric callosal macrostructural alterations at a late stage (Madgand et al., 2019). Our discussion would be incomplete without mentioning possible developmental WM processes, as exemplified by a recent finding on dynamic age-related and fiber-specific changes across the maturation of schizophrenia (Cetin-Karayumak et al., 2020). In a large sample, FA was shown to be up to 7% lower across the whole lifespan in schizophrenia patients, compared to controls, as well as characterized by an earlier peak maturation (at 27 years versus 33 years). In addition, early developmental abnormalities were found in limbic fibers, both abnormal maturation and accelerated aging were found in long-range association fibers, and, of particularly relevance to the present work, severe abnormalities and accelerated aging were found in callosal fibers (Cetin-Karayumak et al., 2020). Our results indicate that the spatial sequence of WM development for individuals within the at-risk window may indeed differ from a normal healthy course.

A lack of significant effects for the only BS group suggests that this subclinical syndrome is not yet matched by measurable changes in WM microstructure. Notably, the rare findings in BS described in the literature have pointed to functional differences, such as a loss of typical perceptual deficits in dependency of other factors, such as environmental exposures (Davis et al., 2016), and spread along a severity continuum. Supporting this view, a recent study identified stage-specific effects in schizophrenia, with callosal microstructural alterations at an early disorder stage and volumetric callosal macrostructural alterations at a late stage (Madgand et al., 2019). Our discussion would be incomplete without mentioning possible developmental WM processes, as exemplified by a recent finding on dynamic age-related and fiber-specific changes across the maturation of schizophrenia (Cetin-Karayumak et al., 2020). In a large sample, FA was shown to be up to 7% lower across the whole lifespan in schizophrenia patients, compared to controls, as well as characterized by an earlier peak maturation (at 27 years versus 33 years). In addition, early developmental abnormalities were found in limbic fibers, both abnormal maturation and accelerated aging were found in long-range association fibers, and, of particularly relevance to the present work, severe abnormalities and accelerated aging were found in callosal fibers (Cetin-Karayumak et al., 2020). Our results indicate that the spatial sequence of WM development for individuals within the at-risk window may indeed differ from a normal healthy course.
schizophrenia (Hummer et al., 2018; Rigucci et al., 2016; Tennesen et al., 2018). FA is a proxy of microstructural integrity, being relatively unspecific in terms of underlying pathological processes. RD reflects diffusion perpendicular to the axonal fibers and is presumably better positioned as a proxy of myelination (Alexander et al., 2007). It has been suggested that FA and RD, unlike other indices, are early-stage-specific biomarkers (Acosta-Cabronero et al., 2012), which aligns with our results, i.e., no observed effects for MD or AD. Notably, in a recent study in UHR individuals, global WM FA predicted symptoms at 6 months and a transition to psychosis at 12 months (Kristensen et al., 2021). The pattern of our results for both UHR and RISK-T subgroups aligns with grey matter findings from a largely identical group of participants, as reported in our previous publication (Buechler et al., 2020). Specifically, relative to HC and BS subjects, UHR individuals presented with larger cortical volumes in frontal and parietal regions, which were driven by larger cortical surface areas, while a cortical thinning was identified for RISK-T compared to RISK-NT subjects. These effects might have originated from aberrant pruning linked to a neurodevelopmental delay and stress-induced functional aggravation (Buechler et al., 2020). As repeatedly demonstrated, subcortical, cortical, and WM changes underly derly psychotic disorders are anatomically and causally linked (Douaud et al., 2007; Hoistad et al., 2009; Stauffer et al., 2021).

As noted above, an emerging issue involves putative mechanisms leading to observed abnormalities in the splenium and other WM tracts, as well as their implications for the brain system. Neurodegenerative (Kochunov and Hong, 2014) and neuroinflammatory processes (Najjar and Pearlman, 2015) both provide putative explanatory foundations for the origin of brain tissue deterioration. The aggregated evidence links schizophrenia with changes in proinflammatory cytokines (based on protein level, mRNA expression, and gene polymorphism data) (Rodrigues-Amorim et al., 2018), with microglial activation and proliferation in WM, as well as with reduced astroglial density, especially in the cingulum and corpus callosum (Najjar and Pearlman, 2015). Notably, both structures were included in our key findings. A longer neuroinflammatory response in WM may affect oligodendrocytes and myelin sheaths around axons (Chew et al., 2013). These observations of excessive inflammatory states in schizophrenia may further lead to novel prevention or treatment approaches (Cho et al., 2019); however, many factors linking molecular regulatory mechanisms, WM, and manifested psychopathology await deciphering in the future (Murphy et al., 2021).

This study has some limitations. One of them is the non-conservative correction threshold, and the study conclusions should therefore be interpreted proportionally and in light of this. The effects of medication, which was, however, equally distributed in the at-risk groups, is a potential confounding factor that cannot be completely ruled out. Besides, while the BS criteria were exclusively fulfilled by those who qualified for the BS group, most of the participants in the UHR group also met the BS criteria. Although an isolated presentation of BS and UHR criteria is less common, further investigations should further explore the WM microstructure by differentiating between the UHR symptoms with and without concomitant BS symptomatology. In addition, our results are cross-sectional and correlational, which precludes inferences of causality. Future longitudinal studies are necessary to confirm our findings reflect the key neural mechanisms producing the symptoms of psychotic deterioration. Furthermore, while TBSS is considered the leading and state-of-the-art method for voxelwise analysis of diffusion signals, it may generate possible biases in the skeleton projection step for some fiber geometries (Bach et al., 2014). Last but not least, the interpretation of DTI scalars is not unequivocal (Winkleswki et al., 2018), and disentangling the exact mechanisms behind the signal differences, such as myelination or fiber architecture, may be improved by using the magnetization transfer ratio or free water imaging contrasts (Mandl et al., 2015).

5. Conclusions

This is the first study, to our knowledge, to investigate the brain WM within two at-risk paradigm subtypes. Based on this work and past studies, the WM microstructure appears to be a meaningful and severity-related brain phenotype associated with the psychosis spectrum. It may be monitored over the course of symptom development from early signs to diagnostically ascertained stages, with the intention of elucidating its role as a putative biomarker or therapeutic target.

CRediT authorship contribution statement

Łukasz Smigielski: Conceptualization, Methodology, Formal analysis, Writing – original draft, Visualization. Philipp Stampfl: Methodology, Formal analysis, Writing – review & editing. Diana Wotruba: Conceptualization, Methodology, Formal analysis, Investigation, Writing – review & editing. Roman Buechler: Investigation, Data curation, Writing – review & editing. Stefan Sommer: Methodology, Formal analysis, Writing – review & editing. Miriam Gerstenberg: Investigation, Writing – review & editing. Anastasia Theodoridou: Conceptualization, Writing – review & editing, Supervision. Susanne Walitza: Resources, Writing – review & editing, Supervision. Wulf Rössler: Conceptualization, Resources, Writing – review & editing, Supervision, Funding acquisition. Karsten Heekeren: Conceptualization, Writing – review & editing, Supervision.

Declaration of Competing Interest

The authors declare the following financial interests/personal relationships which may be considered as potential competing interests: SW has received in the last 5 years royalties from Thieme, Hogrefe, Kohlhammer, Springer, and Beltz. Her work was supported in the last 5 years by the Swiss National Science Foundation, EU FP7s programs, Hochspezialisierte Medizin of the Kanton Zurich, Switzerland, BfArM, ZnEP, Hartmann Müller Stiftung, Olga Mayenfisch, Gertrud Thalmann, Vontobel, Unicentia, Erika Schwarz Fonds, and Gesundheitsförderung Schweiz. The other authors declare no conflicts of interest.

Acknowledgments

This work was supported by the Zurich Program for Sustainable Development of Mental Health Services. Study design, data collection, analysis, and interpretation as well as preparation of the manuscript were conducted independently from the funding source.

References

Abboud, R., Noronha, C., Dwadkar, V.A., 2017. Motor system dysfunction in the schizophrenia diathesis: neural systems to neurotransmitters. Eur. Psychiatry 44, 125–133.

Acosta-Cabronero, J., Alley, S., Williams, G.B., Peng, G., Nestor, P.J., 2012. Diffusion tensor metric as biomarker in Alzheimer’s disease. PLoS ONE 7, e49072.

Alberton, B.A., Nichols, T.E., Gamba, H.R., Winkler, A.M., 2020. Multiple testing correction over contrasts for brain imaging. NeuroImage 216, 116760.

Alexander, A.L., Lee, J.E., Lazar, M., Field, A.S., 2007. Diffusion tensor imaging of the brain. Neurotherapeutics 4, 316–329.

Allenforder, J.B., Sturz, J.M., Szafarski, J.P., 2012. Changes in white matter integrity follow excitatory tRMS treatment of post-stroke aphasia. Restor. Neurol. Neurosci. 30, 105–113.

Anderson, J.L., Sotropoulos, S.N., 2016. An integrated approach to correction for off-resonance effects and subject movement in diffusion MR imaging. Neuroimage 125, 1063–1078.

Antoniou, D., Prudent, V., Rebani, Y., D’Angelo, A., Ardekani, B.A., Malaspina, D., Hopman, M.J., 2011. White matter integrity and lack of insight in schizophrenia and schizoaffective disorder. Schizophr. Res. 128, 76–82.

Aung, W.Y., Mar, S., Benzinger, T.L., 2013. Diffusion tensor MRI as a biomarker in axonal and myelin damage. Imag. Med. 5, 427.

Bach, M., Lau, F.B., Leemans, A., Tax, C.M., Binslev, G.J., Stéfánsdóttir, B., Maier-Hein, K.H., 2014. Methodological considerations on tract-based spatial statistics (TBSS). Neuroimage 100, 358–369.

Bakker, G., Caan, M., Schluter, R., Bloemen, O.N., de Silva-Alves, F., De Koning, M., Boot, E., Vingerhoets, W., Nieman, D., De Haan, L., 2016. Distinct white-matter...
NeuroImage: Clinical 35 (2022) 103067

Correll, C.U., Galling, B., Pawar, A., Krivko, A., Bonetto, C., Ruggeri, M., Craig, T.J., Clemm von Hohenberg, C., Pasternak, O., Kubicki, M., Ballinger, T., Vu, M.-A., Clark, K.A., Nuechterlein, K.H., Asarnow, R.F., Hamilton, L.S., Phillips, O.R., Cetin-Karayumak, S., Di Biase, M.A., Chunga, N., Reid, B., Somes, N., Lyall, A.E., Buechler, R., Wotruba, D., Michels, L., Theodoridou, A., Metzler, S., Walitza, S., Brisch, R., Saniotis, A., Wolf, R., Bielau, H., Bernstein, H.-G., Steiner, J., Bogerts, B., Bohlken, M.M., Brouwer, R.M., Mandl, R.C., Kahn, R.S., Hulshoff Pol, H.E., 2016. Genetic schizophrenia from a neurobiological and evolutionary perspective: old fashioned, modern, and future directions. Neuroimage 115, 269–280.

Birnbaum, R., Weinberger, D.R., 2017. Genetic insights into the neurodevelopmental origins of schizophrenia. Nat. Rev. Neurosci. 18, 727–740.

Bhushan, C., Haldar, J.P., Choi, S., Joshi, A.A., Shattuck, D.W., Leahy, R.M., 2015. Co-registration and distortion correction of diffusion and anatomical images based on internal and external constraints. Neuroimage 102, 565–586.

Bunea, S., Thayer, J., Jacobs, W. M., Fornage, T., 2017. Longitudinal characterization of white matter maturation during adolescence. Brain Res. 1327, 38–46.

Beresnevičius, J., Craven, A.R., Hugdahl, K., Laberg, E.M., Knutsen, R.A., Johnsen, E., Glereiner, R., 2021. Mini-Mental State Examination Difficulties between Hallucinating and Non-Hallucinating Schizophrenia Spectrum Patients. Diagnostics 11, 139.

Bernard, A.A., Orr, J.M., Mittal, V.A., 2015. Abnormal hippocampal-thalamic white matter tract development and positive symptom course in individuals at ultra-high risk for psychosis. npj Schizophr. 1, 1–6.

Bhushan, C., Haldar, J.P., Joshi, A.A., Shattuck, D.W., Leahy, R.M., 2015. Co-registration and distortion correction of diffusion and anatomical images based on internal and external constraints. Neuroimage 102, 565–586.

Burliuk, W., Sorber, B., Bernard, J.A., Mittal, V.A., 2018. Motor clusters reveal differences in risk for psychosis, cognitive functioning, and thalamocortical connectivity: evidence for vulnerability subtypes. Clin. Psychol. Sci. 6, 721–734.

DeRosse, P., Karlsgodt, K.H., 2015. Examining the psychosis continuum. Curr. Behav. Neurosci. Rep. 2, 80–89.

Blase, M.A., Ceitn-Karayumak, S., Lyall, A.E., Zalesky, A., Cho, K.K., Zhang, F., Kubicki, M., Rathi, Y., Lyons, M.G., Bouix, S., 2021. White matter changes in psychosis risk relate to development and are not impacted by the transition to psychosis. Mol. Psychiatry 1–12.

Dong, D., Wang, Y., Chang, X., Luo, C., Yao, D., 2018. Dysfunction of large-scale brain networks in schizophrenia: a meta-analysis of resting-state functional connectivity. Schizophr. Bull. 44, 168–181.

Doushan, G., Smith, S., Jenkins, M., Behrens, T., Johannsen, H.-B., Vickers, J., James, S., Voets, N., Watkins, K., Matthews, P.M., 2007. Anatomically related grey and white matter abnormalities in adolescent-onset schizophrenia. Brain 130, 2375–2386.

Eisen, J.P., Frezouls, C., Schlüeter, L., Ocklenburg, S., Blasi, A., Giannakou, B., Caramia, T., Tondelli, F., Marchini, S., Ferrarelli, F., 2020. Cortical Volume Differences in Subjects at Risk for Psychosis Are Driven by Surface Area. Schizophr. Bull. 46, 1511–1519.

Fusar-Poli, P., Borgwardt, S., Bechdolf, A., Addington, J., Rüther, A., Schultze-Lutter, F., Addington, J., 2021. Evidence from a diffusion tensor imaging study. Schizophr. Bull. 40, 895–906.

Fusar-Poli, P., Ceccarelli, C., Borgwardt, S., Woods, S.W., Addington, J., Nelson, B., Nielsen, D.H., Stahl, D.B., Tsigos, G., Celnik, S., Schindler, C., 2016. Heterogeneity of psychosis risk within individuals at clinical high risk: a meta-analytical stratification. JAMA Psychiatry 73, 113–120.

Fusar-Poli, P., de Pablo, G.S., Correll, C.U., Meyer-Lindenberg, A., Millar, M.J., Borgwardt, S., Galders, A., Bechdolf, A., Pfennig, D., 2020. Prevention of psychosis advances in detection, diagnosis, and intervention. JAMA Psychiatry.

Giedd, J.N., Blumenthal, J., Jeffries, N.O., Rapajic, J.C., Vaituzis, A.C., Liu, H., Berry, V.C., Tohin, M., Nelson, J., Castellanos, F.X., 1999. Development of the human corpus callosum during childhood and adolescence: a longitudinal MRI study. Prog. Neuro-Psychopharmacol. Biol. Psychiatry 23, 571–588.

Hagemann, P., Jonasson, L., Maeder, M., Thiran, J.-P., Wedeen, V.J., Meuli, R., 2006. Improving techniques:—from diffusion-tensor imaging to diffusion tensor imaging and beyond. Radiographics 26, S205–S223.

Hassan, T.A., Elkholy, S.F., Shehata, H.M., Elmazny, A.N., Sadek, M.N., Mahmoud, B.E., Elsherbeni, M.M., 2021. Fractional anisotropy measurements of the left dorsolateral prefrontal cortex for therapeutic response assessment after three-year observational study of persons at clinical high-risk for psychosis. Eur. Psychiatry 21, 47–56.

Hinton, K.E., Lahey, B.B., Villalta-Gil, V., Meyer, F.A.C., Burgess, L.L., Chodes, L.K., Haroutunian, V., 2016. White matter microstructure in individuals at clinical high risk of psychosis: a whole-brain diffusion tensor imaging study. Schizophr. Bull. 42, 1167–1175.

Ho, D.K.L., Stewart, D.G., Pfefferkorn, M., Sabri, M., Harvey, P.D., Hof, P.R., Buxbaum, J., Haroutunian, V., 2003. White matter changes in schizophrenia: evidence for myelin-related dysfunction. Arch. Gen. Psychiatry 60, 443–456.

de Pablo, G.S., Radau, J., Pereira, J., Bonolli, I., Arienti, V., Besarab, F., Soardo, L., Caballero, A., Fortea, L., Catalan, A., 2021. Probability of transition to psychosis in individuals at clinical high risk: an updated meta-analysis. JAMA Psychiatry 78, 970–978.

Hurlemann, R., Bruder, R., Stoll, D.W., Treiber, T., Gold, I., 2013. White matter integrity and symptom dimensions of schizophrenia: a diffusion tensor imaging study. Schizophr. Bull. 39, 280–286.

Jenkinson, M., Beckmann, C.F., Behrens, T.E., Woolrich, M.W., Smith, S.M., 2012. Fsl. NeuroImage 81, 124–141.

Jenkinson, M., Beckmann, C.F., Behrens, T.E., Woolrich, M.W., Smith, S.M., 2012. Fsl. NeuroImage 81, 124–141.

Jenkinson, M., Beckmann, C.F., Behrens, T.E., Woolrich, M.W., Smith, S.M., 2012. Fsl. NeuroImage 81, 124–141.

Jenkinson, M., Beckmann, C.F., Behrens, T.E., Woolrich, M.W., Smith, S.M., 2012. Fsl. NeuroImage 81, 124–141.

Jenkinson, M., Beckmann, C.F., Behrens, T.E., Woolrich, M.W., Smith, S.M., 2012. Fsl. NeuroImage 81, 124–141.

Jenkinson, M., Beckmann, C.F., Behrens, T.E., Woolrich, M.W., Smith, S.M., 2012. Fsl. NeuroImage 81, 124–141.
Van Scheltinga, A.F.T., Bakker, S.C., Van Haren, N.E., Derks, E.M., Buizer-Voskamp, J.E., Boon, H.B., Cahn, W., Pol, H.E.H., Ripke, S., Ophoff, R.A., 2013. Genetic schizophrenia risk variants jointly modulate total brain and white matter volume. Biol. Psychiatry 73, 525–531.

Vilà, P.V., Stegmayr, K., Bracht, T., Federspiel, A., Bohlhalter, S., Strik, W., Wiest, R., Walther, S., 2022. Neurological soft signs are associated with altered white matter in patients with schizophrenia. Schizophr. Bull. 48, 220–230.

Vilà, P.V., Stegmayr, K., Federspiel, A., Bohlhalter, S., Wiest, R., Walther, S., 2020. Altered diffusion in motor white matter tracts in psychosis patients with catatonia. Schizophr. Res. 220, 210–217.

Vito, E., Tata, M.K., Pignolo, C., Cauda, F., Costa, T., Zennaro, A., 2017. White matter and schizophrenia: A meta-analysis of voxel-based morphometry and diffusion tensor imaging studies. Psychiatry Res. 250, 8–21.

Watana, S., Jiang, H., Nagae-Poetscher, I.M., Van Zijl, P.C., Mori, S., 2004. Fiber tract-based atlas of human white matter anatomy. Radiology 230, 77–87.

Wang, C., Ji, F., Hong, Z., Poh, J., Krishnan, R., Lee, J., Rekhi, G., Keefe, R., Adcock, R., Wood, S., 2016. Disrupted salience network functional connectivity and white-matter microstructure in persons at risk for psychosis: findings from the LYRiKS study. Psychiatr. Med. 26, 2771–2783.

Waszczuk, K., Rek-Ovodzin, K., Tyburski, E., Mak, M., Misiak, B., Samochowicz, J., 2021. Disturbances in White Matter Integrity in the Ultra-High-Risk Psychosis State—A Systematic Review. J. Clin. Med. 10, 2515.

Winkler, A.M., Ridgway, G.R., Webster, M.A., Smith, S.H., Nichols, T.E., 2014. Permutation inference for the general linear model. Neuroimage 92, 381–397.

Winklewocki, P.J., Sabisz, A., Naumczyk, P., Jodzio, K., Szarowska, E., Szarmach, A., 2018. Understanding the physiopathology behind axial and radial diffusivity changes—what do we know? Front. Neurol. 9, 92.

Woolrich, M.W., Jbabdi, S., Patenaude, B., Chappell, M., Makni, S., Behrens, T., Beckmann, C., Jenkinson, M., Smith, S.M., 2009. Bayesian analysis of neuroimaging data in FSL. Neuroimage 45, S173–S186.

World Health Organization, 1992. The ICD-10 classification of mental and behavioural disorders: clinical descriptions and diagnostic guidelines. World Health Organization.