Broadband excitation of spin wave using microstrip line antennas for integrated magnonic devices

Kanta Mori¹, Taichi Goto¹,*, Toshiaki Watanabe², Takumi Koguchi¹, Yuichi Nakamura¹, Pang Boey Lim¹, Alexey B Ustinov³ and Mitsuteru Inoue¹, ⁴

¹ Toyohashi University of Technology, 1-1 Hibarigaoka, Tempaku, Toyohashi, Aichi 441-8580, Japan
² Shin-Etsu Chemical Co., Ltd, 2-13-1 Isobe, Annaka, Gunma 379-0195, Japan
³ St. Petersburg Electrotechnical University, 197376 St. Petersburg, Russia
⁴ Research Institute of Electrical Communication, Tohoku University, 2-1-1 Katahira, Aoba-ku, Sendai 980-8577, Japan

E-mail: goto@ee.tut.ac.jp

Received 24 August 2021, revised 24 November 2021
Accepted for publication 1 December 2021
Published 14 December 2021

Abstract

Strong- and broadband-spin wave (SW) excitation/detection structures are useful for magnonic devices. In particular, such structures are essential for observing magnonic bandgaps of magnonic crystals (MCs). Therefore, this study proposes a manufacturable broadband-SW excitation/detection antenna structure suitable for evaluating MCs. The antenna structure comprises a microstrip line fabricated on a yttrium iron garnet on a metal-covered silicon substrate. Calculations were performed using a three-dimensional finite integration technique and dispersion curves of SWs. The proposed structure exhibited high performance because of the significantly short distance between the signal line and ground plane. The generated bandwidth was ∼1.69 GHz for the 8.9 µm-wavelength SW at a frequency of 4 GHz. This work proposed an appropriate antenna structure for observing magnonic bandgaps, showing high potential for the development of MCs in integrated SW devices.

Keywords: forward volume spin wave, magnetostatic wave, yttrium iron garnet, magnonic crystal, YOM substrate

(Some figures may appear in colour only in the online journal)

1. Introduction

Spin wave (SW) [1, 2] devices have attracted the interest of researchers as next-generation computing elements because of their low loss and wave functionalities, unlike complementary metal-oxide-semiconductor field-effect transistors. To control SW propagation, one-dimensional (1D) magnonic crystals (MCs) using the interference of SWs have been widely studied [3–11] and reviewed [12, 13]. The 1D MCs can demonstrate the filtering [14, 15], confinement [16, 17], and phase shifting (slowing) [18] of SWs and can also be used in SW integrated circuits including logic gates [19–27]. In these applications, forward volume SWs (FV SWs) propagating is suitable because of their in-plane isotropy. In addition, the waveguide (WG) comprising yttrium iron garnet (YIG) is useful because of long propagation length of SWs [19, 28, 29]. However, only a few reports have experimentally demonstrated
1D MCs [7, 30] and 2D MCs [31, 32] using FV SWs with YIG. These works used microstrip line antennas generating broad SW bands (1.7–2.0 GHz [7, 33], 5.7–7.0 GHz [30], 8.3–8.6 GHz [31]) to observe magnonic bandgaps. In addition, they used YIG films with a thickness of >10 µm (10.2 µm [7], 100 µm [30, 31]), hindering the integration of MCs into SW circuits. On the other hand, coplanar antennas [19, 34] have been widely used for the excitation of SWs in nanometer-thick films; but their excitation bandwidth is quite narrow and unsuitable for MCs. To reduce the YIG thickness and integrate MCs on a chip while providing a broadband SW for observation of magnonic bandgaps, an improved SW-excitation/detection structure is essential. Hence, this study proposes a manufacturable antenna structure exciting/detecting broadband SWs, suitable for evaluating MCs. The bandwidth, intensity of SWs, and figure of merit (FOM) are calculated and compared with other conventional antenna structures with various structural parameters.

2. Calculation model

Figure 1 shows the calculation model of the SW-excitation structure composed of a signal line (SL)/ WG/ground plane (GP)/substrate. In general, thin and narrow SLs generate broadband SWs, but the intensity of these SWs decreases because of the large distance between the SL and GP, reducing the high-frequency electric field and magnetic field in the WG. Hence, the distance between the SL and GP should be reduced while narrowing the SL width to generate strong and broadband SWs. However, such a structure has not been demonstrated so far because of the difficulty associated with its fabrication; in particular, handling the sample is difficult. When the WG is composed of a few micrometers of YIG without substrates, the WG breaks because of the brittle property of the YIG. Hence, we propose placing the single crystalline YIG film on a metal-covered Si substrate. This structure is fabricable because of the recent research of bonding techniques, like the bonding between two garnets [35], garnet and Si [36, 37], garnet and GaAs [38], and two metals [39]. In addition, deposition techniques of YIG onto non-garnet substrates are also developing [39–41], promising for obtaining the proposed SW excitation/detection structure.

In the calculation model, the SL and GP were composed of Cu, the WG was YIG, and the substrate was Si. The material parameters used in the simulation were as follows: conductivity of Cu $\sigma = 5.96 \times 10^7$ S m$^{-1}$ [42], the relative permittivity of YIG $\varepsilon_{\text{YIG}} = 15.3$ [19], Gilbert damping constant $\alpha = 2.4 \times 10^{-4}$ [29], gyromagnetic ratio $\gamma = 2.8$ MHz Oe$^{-1}$, saturation magnetization $4\pi M_s = 1800$ G, the relative permittivity of Si $\varepsilon_{\text{Si}} = 12$ and conductivity of Si 50 S m$^{-1}$. The sizes of the WG, GP, and substrate were all 100×100 µm. The length of the SL was 100 µm, and it was placed above the center of the WG without any gaps. The thicknesses of the SL, GP, and substrate were fixed to fabricable general values of 0.1 µm, 0.1 µm, and 380 µm, respectively. The WG thickness and SL width were varied. The internal bias magnetic field between 790 and 1400 Oe was applied perpendicular to the film plane to generate the FV SWs.

3. Calculation procedure

3.1. Outline

SW intensity spectra were calculated as follows. First, the magnetic field distribution excited by the antenna structures was calculated using a three-dimensional (3D) model. Second, the magnetic field distribution was fast Fourier transformed to the SW intensity spectra versus wavenumber k. Third, the dispersion curves of the SWs were calculated. Fourth, the SW intensity spectra versus k were substituted for the dispersion curves, and the SW intensity spectra versus frequency f were obtained.

3.2. Magnetic field distribution

Calculation of excited magnetic field was performed using a 3D simulator based on the finite integration technique (Dassault Systemes Simulia CST Studio Suite 2018) [43, 44] because of the excellent agreement between the calculated and experimental results in previous studies [7, 19]. The 3D model was discretized into tetragonal mesh cells. The electric and magnetic fields of the cells were determined using the integral form of Maxwell’s equation combined with the continuity boundary conditions [43]. In this software, we set the ‘waveguide port’ plane at the edge of the SL and directly above the GP. The width and height of the ‘port area’ were $40 \times$ WG thickness + SL width and $21 \times$ WG thickness + SL height, respectively. The input power to the port was 0.5 W. Reflection at this port was almost zero. The observed frequency was 4 GHz. Hence, the distribution of the x-directional magnetic field h_x was obtained directly above the WG and along the WG-width direction. The y-directional position was set at the center. The values of $h_x(y)$ between meshes were complemented and obtained in Δx of 1 nm increments.
3.3. SW intensity spectrum versus wavenumber

The range of the obtained h_λ is from $x = -50 \, \mu m$ to $+50 \, \mu m$. This range is not sufficient to obtain a high-resolution SW intensity spectrum versus k. A value of 0 was added (zero paddings) to h_λ to increase this resolution. This data set can be defined as $h_{\lambda,0}$ and described as

$$h_{\lambda,0}(x) = \begin{cases} 0 & (-500 \, \mu m < x < -50 \, \mu m) \\ h_\lambda(x) & (-50 \, \mu m \leq x \leq +50 \, \mu m) \\ 0 & (+50 \, \mu m < x < +500 \, \mu m) \end{cases}.$$

(1)

$h_{\lambda,0}(x)$ was Fourier transformed into the SW intensity spectrum versus k, $H(k)$, using MATLAB (MathWorks, version 2020) via the following equations:

$$H(k) = \frac{2}{N} \sum_{i}^{N-1} h_{\lambda,0}(i) \exp \left(-j \frac{N' \Delta k i}{N} \right),$$

(2)

$$k = \frac{2 \pi n}{N' \Delta x},$$

(3)

where i and n are positive integers (0, 1, 2, …), N is the data length of $h_{\lambda,0}(x) (= 100 \, 002)$, N' is the data length of $h_{\lambda,0}(x) (= 1000 \, 002)$, and j is an imaginary unit.

3.4. Dispersion curve

The wavenumber $k_{\rm air/WG/GP}$ of the SW propagating in the WG sandwiched between a dielectric layer (= air) and a metal layer (= GP) was calculated using the equations shown in [33]:

$$k_{\rm air/WG/GP} = \frac{1}{t_{\rm WG} \sqrt{\mu}} \ln \sqrt{\frac{\mu - 1}{\mu + 1}}.$$

(4)

$$\mu = 1 + \frac{(\gamma H_{\rm in} + i \alpha f) (\gamma \cdot 4 \pi M_{x})}{(\gamma H_{\rm in} + i \alpha f)^2 - f^2}.$$

(5)

where $t_{\rm WG}$ is the thickness of the WG layer, μ is the permeability, and $H_{\rm in}$ is the internal magnetic field.

In a conventional microstrip line antenna, the following equation was used to calculate the dispersion curve [7] instead of equation (4)

$$k_{\rm air/WG/substrate} = \frac{1}{t_{\rm WG} \sqrt{\mu}} \ln \sqrt{\frac{\mu - 1}{\mu + 1}}.$$

(6)

In this study, the internal magnetic field was tuned so that the SW with a wavelength λ of 8.9 μm ($k = 0.706 \, \mu m^{-1}$) [19] was excited at $f = 4 \, GHz$.

3.5. SW intensity spectrum versus frequency

The SW intensity spectrum was obtained by substituting the dispersion curve (described in section 3.4) for the SW intensity spectrum versus k (described in section 3.3).

3.6. SW intensity, bandwidth, and FOM

To draw a comparison with other antenna structures, the working frequency f was set at 4 GHz, and the SW intensity at $f = 4 \, GHz$ was defined as H_{GHz}. Bandwidth was defined as a continuous frequency band with an SW intensity $>0.5 H_{\text{GHz}}$. The FOM was defined as $H_{\text{GHz}} \times \text{bandwidth}$.

4. Results and discussion

4.1. Influence of signal line width

Figure 2 shows the calculated results for the h_λ distribution, SW intensity versus k, dispersion curve, and SW intensity versus f for various SL widths w_{SL}. Figure 3 shows H_{GHz}, bandwidth, and FOM with various w_{SL}; it also includes the calculated results that are not shown in figure 2. In this calculation, the following parameters were used: the GP thickness $t_{\text{GP}} = 0.1 \, \mu m$, the SL thickness $t_{\text{SL}} = 0.1 \, \mu m$, WG thickness $t_{\text{WG}} = 1 \, \mu m$, and the conductivity of SL and GP $\sigma = 5.96 \times 10^7 \, S \, m^{-1}$. The SW intensity at $k = 0$ increased as w_{SL} increased (figure 2(b)) because of the broadening of h_λ (figure 2(a)), similar to a previous report [45].

The same five dispersion curves are shown in figure 2(c) because of unrelation between the dispersion curve and w_{SL}. The calculated results of the SW intensity are shown in figure 2(d). When the w_{SL} became larger, the second and third bands occurred. The working frequency (4 GHz) shifted from the first band to the second band. This behavior showed the mountain-shaped spectrum of H_{GHz} versus w_{SL} in figure 3(a).

The largest value of H_{GHz} was observed at $w_{\text{SL}} = 2 \, \mu m$ (figure 3(a)). The bandwidth shown in figure 3(b) gradually decreased as w_{SL} increased. The steep change in bandwidth between $w_{\text{SL}} = 7$ and $8 \, \mu m$ was caused by the shift of the working band (from the first to the second band), as shown in figure 2(d). The obtained FOM spectra (figure 3(c)) showed the largest value at $w_{\text{SL}} = 1 \, \mu m$. This value of w_{SL} was used in the subsequent calculations.

4.2. Influence of waveguide thickness

Figure 4 shows the h_λ distribution, SW intensity versus k, dispersion curve, and SW intensity versus f for various t_{WG}. Figure 5 shows H_{GHz}, bandwidth, and FOM with various t_{WG}; it also includes calculated results that are not shown in figure 4. In this calculation, the following parameters were used: $t_{\text{GP}} = 0.1 \, \mu m$, $t_{\text{SL}} = 0.1 \, \mu m$, $w_{\text{SL}} = 1 \, \mu m$, and $\sigma = 5.96 \times 10^7 \, S \, m^{-1}$. The value of h_λ increased as t_{WG} became thinner (figure 4(a)) because of the expansion of the radius of curvature of the rotating magnetic field generated around the SL. As the radius of curvature of the rotating magnetic field increased, the y component of the magnetic field passing through the WG reduced, while its x component increased, thus h_λ increased. Figures 4(b) and 5(a) show an increase in the SW intensity caused by the thinning of the WG. The increase in h_λ also increased the SW intensity. These SW intensity spectra were substituted into the dispersion curves (figure 4(c)), and the SW intensity spectra...
Figure 2. (a) The x-directional magnetic field h_x distributions, (b) SW intensity spectra versus wavenumber k, (c) dispersion curves, and (d) SW intensity spectra versus frequency f with various SL widths w_{SL} (0.4, 0.6, 1, 3, and 10 μm).

Figure 3. (a) SW intensity at the frequency f of 4 GHz (H_{4GHz}), (b) bandwidth of the SW intensity spectra versus frequency f, and (c) FOM with various SL width w_{SL}.

(figure 4(d)) were obtained. The dispersion curve in the bottom of figure 4(c) was cut off at around 4.0 GHz because of no solution of the equation (4). As t_{WG} reduced, the SW intensity increased, while the bandwidth reduced (figures 5(a) and (b)). The narrowing of the bandwidth observed when $t_{WG} < 2 \mu$m in figure 5(b) was a result of the steep slope of dispersion curves shown in figure 4(c). Eventually, the largest value of FOM was 28.2 GHz\cdotOe at $t_{WG} = 1 \mu$m. The values of H_{4GHz} and bandwidth were 16.6 Oe and 1.7 GHz, respectively. Therefore, the antenna structure was determined as described above.

4.3. Comparison with other antenna structures

The SW intensity spectrum versus f obtained using the determined structure (figure 6(a)) was compared with those of other antenna structures. The spectrum with the largest FOM is shown in figure 6(d). The well-known and conventional microstrip line structure used in previous works [7, 20, 32, 46, 47] (figure 6(b)) was composed of a 500 μm-thick gadolinium gallium garnet (GGG) substrate/1 μm-thick WG (YIG)/0.1 μm-thick SL (Cu)/500 μm-thick substrate (FR4)/18 μm-thick GP (Cu). Most structural parameters were set to the same as those used in the structure proposed in this work. The values of w_{SL}, α, and σ were the same as those above. The top structure comprising a YIG grown on a GGG substrate was bonded to the bottom structure using a flip-chip bonding technique. The dispersion curve was calculated using equation (6). Figure 6(e) shows the SW intensity spectrum versus f of this conventional microstrip line structure. In addition, H_{4GHz} was 6.7 Oe, the bandwidth was 1.5 GHz, and the FOM was 10.1 GHz\cdotOe (table 1).

Similarly, the SW intensity spectrum generated by a coplanar antenna (figure 6(c)) was also calculated with the same t_{SL}, t_{WG}, α, and σ. The thickness of the GGG substrate was 500 μm, and the dispersion curve was also calculated using equation (6). Figure 6(f) shows the calculated spectra. Thus, H_{4GHz} was 17.9 Oe, the bandwidth was 0.5 GHz, and the FOM was 9.0 GHz\cdotOe (table 1).

In table 1, The antenna structure of this work showed the FOM of 28.2 GHz\cdotOe, \sim2.8 times larger than that of the conventional microstrip line, mostly because of the large H_{4GHz} generated by the short distance between the SL and GP. On the other hand, the H_{4GHz} generated by the coplanar antenna was close to that obtained in this work. However, the bandwidth was as small as one-third of that in this work. This work’s FOM was approximately three times larger than that of the coplanar antenna.
Figure 4. (a) The x-directional magnetic field h_x distributions, (b) SW intensity spectra versus wavenumber k, (c) dispersion curves, and (d) SW intensity spectra versus frequency f with various WG thicknesses t_{WG} (0.1, 0.3, 1, 3, and 20 μm).

Figure 5. (a) SW intensity at the frequency f of 4 GHz (H_{4GHz}), (b) bandwidth of the SW intensity spectra versus frequency f, and (c) FOM with various WG thicknesses t_{WG}.

The obtained bandwidth of this work’s antenna structure was 1.7 GHz, larger than values obtained in other works (0.3 GHz [7], 1.3 GHz [30], and 0.3 GHz [31]). Therefore, the proposed antenna structure using a YIG film placed on a metal (YOM) substrate showed better performance for magnonic devices with a broad and strong excitation band.

4.4. Importance of conductivity

The SW intensity spectra versus f with various σ were calculated to determine the importance of the conductivity σ of the SL and GP. Figures 7 and 8 show the calculated spectra. The bandwidth did not change significantly, but the x-directional magnetic field h_x was reduced as the conductivity reduced because of the reduction of the magnetic flux density between the SL and GP. As a result, the FOM increased as σ increased. Therefore, a higher conductivity is better for increasing the SW intensity. The conductivity of Cu was sufficient to obtain these results. In contrast, the smoothness of the excitation band was degraded to $\sigma < 1 \times 10^5$ S m$^{-1}$. Thus, a conductivity of Cu or higher is required for obtaining an appropriate SW intensity spectrum.
Figure 6. (a) Microstrip line structure proposed in this paper, (b) conventional microstrip line structure, and (c) coplanar antenna structure. (d), (e) and (f) SW intensity spectra versus frequency f generated by each of the corresponding structures.

Table 1. Comparison of antenna structures.

Antenna type	Figure	H_{4GHz} (Oe)	Bandwidth (GHz)	FOM (GHz∙Oe)
Microstrip line (this work)	6(a)	16.6	1.7	28.2
Conventional microstrip line	6(b)	6.7	1.5	10.1
Coplanar antenna	6(c)	17.9	0.5	9.0

Figure 7. (a) The x-directional magnetic field h_x distributions, (b) SW intensity spectra versus wavenumber k, (c) dispersion curves, and (d) SW intensity spectra versus frequency f with various GP and SL conductivities σ (1×10^4, 1×10^5, 5.96×10^7, 1×10^8, and 1×10^9 S m$^{-1}$).
5. Conclusion

The optimal structural parameters of the microstrip line antenna using a YOM substrate were determined by calculations at a frequency f of 4 GHz. The wavelength λ and wavenumber k of the excited/detected SWs were 8.9 μm and 0.706 μm⁻¹, respectively. The largest FOM in this study was obtained with the structure shown in figure 1 with an SL thickness tSL = 0.1 μm, an SL width wSL = 1 μm, a WG thickness tWG = 1 μm, a GP thickness tGP = 0.1 μm, and the conductivity of GP and SL σ = 5.96 × 10³ S m⁻¹. The largest FOM was 28.2 GHz-Oe, and the bandwidth was 1.7 GHz (3.0 GHz–4.7 GHz), useful for observing the magnonic bandgap of MCs. In addition, this calculation showed the importance and evidence of a YOM substrate. This work will further the development of SW devices and substrates.

Data availability statement

The data generated and/or analysed during the current study are not publicly available for legal/ethical reasons but are available from the corresponding author on reasonable request.

Acknowledgments

This work was partly supported by Grants-in-Aid for Scientific Research (KAKENHI) Nos. 20H02593, 19H00765, 20K20535 from the Japan Society for the Promotion of Science (JSPS), Bilateral Program No. JPJSBP120214807 from JSPS and No. 21-52-50006 from RFBR, New Energy and Industrial Technology Development Organization (NEDO) No. 20002157-0, the Research Foundation for the Electrotechnology of Chubu (REFEC), and the Foundation for Technology Promotion of Electronic Circuit Board. We also acknowledge Dr Takuya Yoshimoto, Mr Kei Shimada, and Professor Hironaga Uchida for their support.

ORCID ID

Taichi Goto https://orcid.org/0000-0002-0621-8196

References

[1] Stanciule D D and Prabhakar A 2009 Spin Waves (Berlin: Springer)
[2] Dmitriev V F and Kalinikos B A 1988 Excitation of propagating magnetization waves by microstrip antennas Sov. Phys. J. D. 31 875–98
[3] Nikitov S A, Tailhades P and Tsai C S 2001 Spin waves in periodic magnetic structures—magnonic crystals J. Magn. Magn. Mater. 236 320–30
[4] Kruglyak V V, Sokolovskii M L, Tkachenko V S and Kuchko A N 2006 Spin-wave spectrum of a magnonic crystal with an isolated defect J. Appl. Phys. 99 08C906
[5] Kuchko A N, Sokolovskii M L and Kruglyak V V 2005 Spin wave spectrum of a magnonic crystal with an internally structured defect Physica B 370 73–77
[6] Chunak A V, Serga A A, Hillebrands B and Kostylev M P 2008 Scattering of backward spin waves in a one-dimensional magnonic crystal Appl. Phys. Lett. 93 022508
[7] Goto T, Shimada K, Nakamura Y, Uchida H and Inoue M 2019 One-dimensional magnonic crystal with Cu stripes for forward volume spin waves Phys. Rev. Appl. 11 014033
[8] Banerjee C, Choudhury S, Sinha J and Barman A 2017 Pseudo-one-dimensional magnonic crystals for high-frequency nanoscale devices Phys. Rev. Appl. 8 014036
[9] Wang Z K, Zhang V L, Lim H S, Ng S C, Kuok M H, Jain S and Adeyeye A O 2009 Observation of frequency band gaps in a one-dimensional nanostructured magnonic crystal Appl. Phys. Lett. 94 083112
[10] Morozova M A, Grishin S V, Sadovnikov A V, Romanenko D V, Sharaevskii Y P and Nikitov S A 2015 Band gap control in a line-defect magnonic crystal waveguide Appl. Phys. Lett. 107 242402
[11] Frey P et al 2020 Reflection-less width-modulated magnonic crystal Commun. Phys. 3 17
[12] Krawczyk M and Grundler D 2014 Review and prospects of magnonic crystals and devices with reprogrammable band structure J. Phys.: Condens. Matter 26 123202
[13] Chunak A V, Serga A A and Hillebrands B 2017 Magnonic crystals for data processing J. Phys. D: Appl. Phys. 50 244001
[14] Kim S-K, Lee K-S and Han D-S 2009 A gigahertz-range spin-wave filter composed of width-modulated nanostrip magnonic-crystal waveguides Appl. Phys. Lett. 95 082507
[15] Zivieri R, Montoncello F, Giovannini L, Nizzoli F, Tacchi S, Madami M, Gubbiotti G, Carlotti G and Adeyeye A O 2011 Collective spin modes in chains of dipolarly interacting rectangular magnetic dots Phys. Rev. B 83 054431
[16] Kanazawa N, Goto T and Inoue M 2014 Spin wave localization in one-dimensional magnonic microcavity comprising yttrium iron garnet J. Appl. Phys. 116 083903
[17] Ma F S, Lim H S, Zhang V L, Ng S C and Kuok M H 2012 Magnonic band structure investigation of one-dimensional
bi-component magnonic crystal waveguides Nanoscale Res. Lett. 7 498

[18] Zhu Y, Chi K H and Tsai C S 2014 Magnonic crystals-based tunable microwave phase shifters Appl. Phys. Lett. 105 022411

[19] Goto T, Yoshimoto T, Iwamoto B, Shimada K, Ross C A, Sekiguchi K, Granovsky A B, Nakamura Y, Uchida H and Inoue M 2019 Three port logic gate using forward volume spin wave interference in a thin yttrium iron garnet film Sci. Rep. 9 16472

[20] Kanazawa N, Goto T, Sekiguchi K, Granovsky A B, Ross C A, Takagi H, Nakamura Y, Uchida H and Inoue M 2017 The role of Snell’s law for a magnonic majority gate Sci. Rep. 7 7898

[21] Kanazawa N, Goto T, Sekiguchi K, Granovsky A B, Ross C A, Takagi H, Nakamura Y and Inoue M 2016 Demonstration of a robust magnonic spin wave interferometer Sci. Rep. 6 30268

[22] Sato N, Sekiguchi K and Nozaki Y 2013 Electrical demonstration of spin-wave logic operation Appl. Phys. Express 6 063001

[23] Fischer T, Kewenig M, Bozhko D A, Serga A A, Syvorotka I I, Ciubotaru F, Adelmann C, Hillebrands B and Chumak A V 2017 Experimental prototype of a spin-wave majority gate Appl. Phys. Lett. 110 152401

[24] Kostylev M P, Serga A A, Schneider T, Leven B and Hillebrands B 2005 Spin-wave logical gates Appl. Phys. Lett. 87 153501

[25] Schneider T, Serga A A, Leven B, Hillebrands B, Stamps R L and Kostylev M P 2008 Realization of spin-wave logic gates Appl. Phys. Lett. 92 022505

[26] Ustinov A B and Lähderanta E 2016 A microwave interferometer based on a ferrite–ferroelectric layered structure Tech. Phys. Lett. 42 891–4

[30] Chi K H, Zhu Y, Mao R, Nikitov S, Gulyaev Y V and Tsai C S 2011 Propagation characteristics of magnetostatic volume waves in one-dimensional magnonic crystals with oblique incidence IEEE Trans. Magn. 47 3708–11

[31] Chi K H, Zhu Y and Tsai C S 2014 Confinement of magnetostatic forward volume waves in two-dimensional magnonic crystals with line defects J. Appl. Phys. 115 17D125

layer for magnetostatic volume wave propagation IEEE Trans. Magn. 49 1000–4

[33] Shimada K, Goto T, Kanazawa N, Takagi H, Nakamura Y, Uchida H and Inoue M 2017 Extremely flat transmission band of forward volume spin wave using gold and yttrium iron garnet J. Phys. D: Appl. Phys. 50 275001

[34] Sekiguchi K, Yamada K, Seo S-M, Lee K-T, Chiba D, Kobayashi K and Ono T 2012 Time-domain measurement of current-induced spin wave dynamics Phys. Rev. Lett. 108 017203

[35] Haga Y, Goto T, Baryshev A V and Inoue M 2012 One-dimensional single- and dual-cavity magnetophotonic crystal fabricated by bonding J. Magn. Soc. Japan 36 54–57

[36] Izuhara T, Levy M and Osgood R M 2000 Direct wafer bonding and transfer of 10-μm-thick magnetic garnet films onto semiconductor surfaces Appl. Phys. Lett. 76 1261–3

[37] Shoji Y, Mizumoto T, Yokoi H, Hsieh I-W and Osgood R M 2008 Magneto-optical isolator with silicon waveguides fabricated by direct bonding Appl. Phys. Lett. 92 071117

[38] Shimatsu T, Mollema R H, Monsma D, Keim E G and Lodder J C 1998 Metal bonding during sputter film deposition J. Vac. Sci. Technol. A 16 2125–31

[39] Sadovnikov A V, Begnin E N, Sheshukova S E, Sharaevskii Y P, Stognij A, Novitski N N, Sakharov V K, Khivintsev Y V and Nikitov S A 2019 Route toward semiconductor magnonics: light-induced spin-wave nonreciprocity in a YIG/GaAs structure Phys. Rev. B 99 054424

[40] Stognij A I, Lutsev L V, Bursian V E and Novitskii N N 2015 Growth and spin-wave properties of thin YFeCoSiO12 films on Si substrates J. Appl. Phys. 118 023905

[41] Goto T, Onbajio M C and Ross C A 2012 Magneto-optical properties of cerium substituted yttrium iron garnet films with reduced thermal budget for monolithic photonic integrated circuits Opt. Express 20 28507–17

[42] Matula R A 1979 Electrical resistivity of copper, gold, palladium, and silver J. Phys. Chem. Ref. Data 8 1147–298

[43] Weiland T 1996 Time domain electromagnetic field computation with finite difference methods Int. J. Numer. Modell. Electron. Netw. Devices Fields 9 295–319

[44] Weiland T, Timm M and Munteanu I 2008 A practical guide to 3D simulation IEEE Microw. Mag. 9 62–75

[45] Zhang Y, Yu T, Chen J-L, Zhang Y-G, Feng J, Tu S and Yu H 2018 Antenna design for propagating spin wave spectroscopy in ferromagnetic thin films J. Magn. Magn. Mater. 450 24–28

[46] Kanazawa N, Goto T, Sekiguchi K, Granovsky A B, Takagi H, Nakamura Y and Inoue M 2016 Spin wave absorber generated by artificial surface anisotropy for spin wave device network AIP Adv. 6 095204

[47] Ustinova I A, Nikitin A A, Kondrashov A V, Popov D A, Ustinov A B and Lähderanta E 2016 A microwave interferometer based on a ferrite–ferroelectric layered structure Tech. Phys. Lett. 42 891–4