THE LANDSCAPE OF SOFTWARE FOR TENSOR COMPUTATIONS

CHRISTOS PSARRAS∗, LARS KARLSSON‡, JIAJIA LI†, AND PAOLO BIENTINESI‡

Abstract. Tensors (also commonly seen as multi-linear operators or as multi-dimensional arrays) are ubiquitous in scientific computing and in data science, and so are the software efforts for tensor operations. Particularly in recent years, we have observed an explosion in libraries, compilers, packages, and toolboxes; unfortunately these efforts are very much scattered among the different scientific domains, and inevitably suffer from replication, suboptimal implementations, and in many cases, limited visibility. As a first step towards countering these inefficiencies, here we survey and loosely classify software packages related to tensor computations. Our aim is to assemble a comprehensive and up-to-date snapshot of the tensor software landscape, with the intention of helping both users and developers. Aware of the difficulties inherent in any multi-discipline survey, we very much welcome the reader’s help in amending and expanding our software list, which currently features 80 projects.

Key words. tensor software, multi dimensional arrays, contractions, decompositions

AMS subject classifications. 68N15 68N20

1. Introduction. Similar to matrices, tensors arise in a multitude of disciplines in engineering and science—for instance, in computational chemistry, computational physics, chemometrics, data science, signal processing, and machine learning [50, 78, 18, 11, 76, 17]—and naturally, significant effort goes into the development of numerical software. However, in sharp contrast to the software landscape for (dense) matrix computations, which is nicely layered and organized, that of tensor computations is fragmented and largely unstructured. Indeed, the tensor counterparts to the universally-used libraries such as BLAS—collection of building blocks—and LAPACK—collection of solvers—are still missing.

When surveying the landscape of libraries, packages, compilers, and toolboxes for tensor computations, a massive replication of effort becomes apparent, and the absence of building blocks libraries is certainly one of the main causes for this. Other reasons are to be associated to the fact that tensor software is mostly driven by applications, and is therefore scattered among different communities and scientific outlets. It could be argued that matrix computations are possibly even more widespread, yet a community effort made it possible to create “collection” libraries and standardize interfaces already in the 1970s. The profound difference is that while the language (and notation) for linear algebra (i.e., matrix computations) is quite consistent across disparate disciplines, the same cannot be further from the truth when it comes to the language of multi-linear algebra and multi-dimensional arrays (i.e., tensor computations). Even the most basic concepts, such as the number and the length of the “axes” of a tensor, have entirely different (and often conflicting) names in different disciplines.

In short, the development of tensor software has often been carried out independently in different communities, and even within the same community there has not

∗Aachen Institute for Advanced Study in Computational Engineering Science, RWTH Aachen University, Aachen, Germany (psarras@aiaces.rwth-aachen.de).
†Pacific Northwest National Laboratory, Richland, Washington and College of William & Mary, Williamsburg, Virginia (Jiajia.Li@pnnl.gov).
‡Department of Computing Science, Umeå University, Umeå, Sweden (larsk@cs.umu.se, pauldj@cs.umu.se).

1For the sake of simplicity, in the rest of this manuscript we will refer to all of these types of software simply as “packages”.

1
been any real coordinated effort. Motivated by this observation, we set out to survey the software landscape for tensor computations, aiming to a) create awareness among users of the existing packages, and b) guide the development at large. We see this survey as an essential step towards finding common ground between different applications, and towards identifying possible divisions of concerns, with the ultimate goal of defining a set of fundamental computational building blocks.

This survey takes up from a variety of communities, which often do not code in the same programming language, and, perhaps more importantly, present notable differences in the symbols and nomenclature they use to describe tensor operations. In this document, we do not address those differences, nor aim to rank packages qualitatively, in any way. Instead, we are merely attempting to put this diverse and large set of software packages on the map, with a loose classification of the functionality they provide.

This document is very much a work in progress, and we plan to keep it up-to-date by uploading new versions with some regularity. To this end, we welcome and encourage input, contributions and corrections, to help create a more complete and fair snapshot of the current tensor software landscape. We invite readers to send us contributions via email, and would greatly appreciate consulting the questionnaire in Appendix A.

2. Software list. We present a list of packages that support some form of tensor computations. To be considered for inclusion, a package must offer functionality in at least one of the following categories.

- **Data Manipulation** (DatM): Any operation related to the layout or storage of tensors, such as tensor transposition, reshaping, conversion between different storage formats, . . .
- **Element-Wise Operations** (EWOps): Any kind of element-by-element operation such as addition/subtraction, and/or reductions such as norms, min, max, . . .
- **Contractions** (Con): General contractions between two or more tensors. Currently the survey does not differentiate between binary, ternary, or hypercontractions.
- **Specific Contractions** (SpecCon): Specific operations that qualify as specific contractions, e.g., Tensor Times Vector (TTV), Tensor Times Matrix (TTM), Matricized Tensor Times Khatri-Rao Product (MTTKRP), . . .
- **Decompositions** (Decomp): At least one tensor decomposition, including but not limited to the Canonical Polyadic Decomposition (CPD or CP, also known as PARAllel FACtors analysis, PARAFAC), the Tucker Decomposition, Tensor Train, and their variants.

The following are the key aspects of a package that we aim to focus on.

- **Language**: What language is it written in, and, in the case of compilers/transpilers, what language does it generate code in (denoted by a \(\rightarrow\))?
- **Tensor type**: What type of tensor does it operate on? (e.g., Dense (D), Sparse (S), BlockSparse (BS), symmetric, supersymmetric, . . .)
- **Target system**: What types of computing architecture does it target? (e.g., CPU (C), GPU (G), Distributed Memory (D), . . .). Note: For CPU, there is currently no distinction between single-threaded and multi-threaded implementations.
- **Functionality**: Which of the categories mentioned above does it support?

In the following tables, packages are listed alphabetically. For each package,
Table 1 provides when available a hyperlink to the source code (click on the package name), and a reference to a publication or website. Additionally, each package is listed with an ID number.

Tables 2, 3, and 4 group all packages according to the categories DatM, Con, and Decomp, respectively.

Finally, Table 5 attempts to gather the “more complete” packages, i.e., those that offer support for at least four out of the five categories described above.
ID	Package Name	Functionality									Platform	Language
0	Acrotensor [28]		✓	✓	✓	✓					D, C, G	C++
1	AdaTM [54]		✓			✓					S, C	C
2	Boost.uBlas.Tensor [6]	✓	✓	✓	✓	✓					D, C	C++
3	BTAS [73]	✓	✓	✓	✓	✓	✓				nan	C++
4	COGENT [48]		✓	✓	✓	✓	✓				D, G	Python → CUDA
5	COMET [86]		✓	✓	✓	✓	✓				S, C	C++, CUDA
6	CoTenGra [34]		✓	✓	✓	✓	✓				D, C, G	Python
7	CP-CALS [75]		✓	✓	✓	✓	✓				D, C, G	C++, MATLAB
8	CSTF [9]		✓	✓	✓	✓	✓				S, D	Scala
9	CuTensor [64]	✓	✓	✓	✓	✓	✓				D, G	C, CUDA
10	cuTT [41]	✓	✓			✓					D, G	C++, CUDA
11	Cyclops [81]	✓	✓	✓	✓	✓	✓				S, D	C++, CUDA
12	D-Tucker [43]		✓	✓	✓	✓	✓				D, C	Matlab
13	DFacTo [15]		✓	✓	✓	✓	✓				D, C	C++
14	Eigen Tensor [16]	✓	✓	✓	✓	✓	✓				D, C, G	C++
15	ExaTN [60]	✓	✓	✓	✓	✓	✓				D, C, G	C++, Python
16	Fastor [74]	✓	✓	✓	✓	✓	✓				D, C	C++
17	FTensor [52]	✓	✓	✓	✓	✓	✓				D, C	C++
18	Genten [72]		✓	✓	✓	✓	✓				D, S, C	C, G
19	GigaTensor [45]		✓	✓	✓	✓	✓				S, C, D	Unknown
20	HPTT [85]	✓	✓	✓	✓	✓	✓				D, C	C++, Python, C++
21	ITensor [29]	✓	✓	✓	✓	✓	✓				D, BS	C, G
22	libtensor [42]		✓	✓	✓	✓	✓				D, BS	C++
23	Ltensor [2]		✓	✓	✓	✓	✓				D, C	C++
24	MATLAB [58]	✓	✓	✓	✓	✓	✓				D, C	Matlab
25	MultiArray [30]	✓	✓	✓	✓	✓	✓				D, C	C++
26	multiway [38]		✓	✓	✓	✓	✓				D, C	R
27	N-way toolbox [4]		✓	✓	✓	✓	✓				D, C	Matlab
28	NCON [69]		✓	✓	✓	✓	✓				D, C	Matlab
29	netcon [70]		✓	✓	✓	✓	✓				D, C	Matlab
ID	Package Name	Functionality	Tensor Type	Platform	Language							
-----	-----------------------	---------------	-------------	----------	----------							
30	NumPy [36]	✓ ✓ ✓ ✓	D C	Python								
31	Ocean [88]	✓ ✓ – –	D C, G	C, Py								
32	ParCube [65]	– – – ✓	S C	Matlab								
33	ParTensor [56]	✓ – – ✓	D C, G	C++								
34	ParTT! [55]	✓ ✓ ✓ –	S C, G	C, CUDA, Mat								
35	PLANC [46]	– – – ✓	D C, D	C++								
36	PLS toolbox [90]	– – – ✓	D C	Matlab								
37	Pytensor [91]	✓ ✓ ✓ ✓	D S C	Python								
38	PyTorch [66]	✓ ✓ ✓ ✓ ✓	D S C, G	Python, C++, CUDA								
39	quimb [33]	– – ✓ –	D C, D, G	Python								
40	rTensor [53]	✓ ✓ ✓ ✓ ✓	D C	Python								
41	rTensor (randomized) [25]	– – – ✓	D C	Python								
42	scikit-tensor [62]	✓ ✓ ✓ ✓ ✓	D S C	Python								
43	Scikit-TT [31]	– – – ✓	D C	Python								
44	SPALS [14]	– – – ✓	S C	C++								
45	SPARTan [68]	– – – ✓	S C	Matlab								
46	SPLATT [80]	– – ✓ –	S C, D	C, C++, Oct, Mat								
47	SuSMoST [3]	– – – ✓	D C	Python								
48	T3F [63]	✓ ✓ ✓ ✓ –	D C, G	Python								
49	TACO [49]	✓ ✓ ✓ ✓ –	D S C, G	C++, C++ → C++								
50	TAL_SH [57]	✓ ✓ ✓ ✓ –	D C, G	C, C++, Fort								
51	TBlis [59]	✓ ✓ ✓ ✓ –	D C	C++								
52	TCCG [82]	– – ✓ –	D C	C++								
53	TCL [83]	– – ✓ ✓ –	D C	C++, Python								
54	TDALAB [92]	– – – ✓	D S C	Matlab, GUI								
55	TeNPy [37]	– – – ✓	D C	Python								
56	Tensor Fox [23]	– – – ✓	D S C	Python, Matlab								
57	Tensor package [19]	– – – ✓	D C	Matlab								
58	Tensor Toolbox [10]	✓ ✓ ✓ ✓ ✓	D S C	Matlab								
59	tensor_decomposition [79]	– – – ✓	D C, D	Python								
ID	Package Name	Functionality	Tensor Type	Platform	Language							
----	--------------	---------------	-------------	----------	----------							
		DatM EWOps SpecCon Con Decomp										
60	TensorBox [71]	– – – – ✓ ✓	D, S C	Matlab								
61	TensorD [35]	– – – – ✓ ✓	D, C, G	Python								
62	TensorFlow [1]	✓ ✓ ✓ ✓	D, S C, D, G	C++, Python								
63	TensorLab [89]	– – – – ✓ ✓	D, S C	Matlab								
64	TensorLab+ [39]	– – – – ✓ ✓	D, S C	Matlab								
65	TensorLy [51]	✓ ✓ ✓ ✓ ✓ ✓	D, C, G	Python								
66	TensorNetwork [77]	– – ✓ ✓ ✓ ✓ ✓	D, S C, G	Python								
67	TensorOperations.jl [44]	✓ ✓ ✓ ✓ ✓ ✓	D, C, G	Julia								
68	TensorTrace [26]	– – ✓ ✓ ✓ ✓ ✓	D, C	GUI → Py, Jul, Mat								
69	Three-Way [32]	– – ✓ ✓ ✓ ✓ ✓	D, C	R								
70	TiledArray [12]	✓ ✓ ✓ ✓ ✓ ✓	D, BS C, D	C++								
71	tncontract [20]	– – ✓ ✓ ✓ ✓ ✓	D, C	Python								
72	TNR [27]	– – – – ✓ ✓ ✓	D, C	Matlab								
73	TorchMPS [61]	– – ✓ ✓ ✓ ✓ ✓	D, C	Python								
74	TT-Toolbox [24]	✓ ✓ ✓ ✓ ✓ ✓	D, C, D*, G*	Matlab, Python								
75	TTC [84]	✓ ✓ ✓ ✓ ✓ ✓	D, C	Python → C++								
76	TVM [13]	– – ✓ ✓ ✓ ✓ ✓	D, C	C++								
77	Uni10 [47]	✓ ✓ ✓ ✓ ✓ ✓	D, S C, G	Python								
78	xerus [40]	✓ ✓ ✓ ✓ ✓ ✓	D, S C	C++								

Table 1: Main list. Packages are sorted alphabetically by name. We use an i superscript to denote an interface to the specific language. We use the x superscript to denote an experimental feature.
ID	Name	DatM	EWOps	SpecCon	Con	Decomp
2	Boost.uBlas.Tensor	✓	✓	✓	✓	–
3	BTAS	✓	✓	✓	✓	✓
9	CuTensor	✓	✓	✓	✓	–
10	cuTT	✓	–	–	–	–
11	Cyclops	✓	✓	✓	✓	–
14	Eigen Tensor	✓	✓	✓	✓	–
15	ExaTN	✓	✓	✓	✓	✓
16	Fastor	✓	✓	✓	✓	–
17	FTensor	✓	✓	✓	✓	–
20	HPTT	✓	–	–	–	–
24	MATLAB	✓	✓	✓	✓	–
25	MultiArray	✓	–	–	–	–
30	NumPy	✓	✓	✓	✓	–
31	Ocean	✓	✓	–	–	–
34	ParTI!	✓	✓	–	–	✓
37	Pytensor	✓	✓	✓	✓	✓
38	PyTorch	✓	✓	✓	✓	–
40	rTensor	✓	✓	✓	–	✓
42	scikit-tensor	✓	✓	–	–	✓
48	T3F	✓	✓	–	–	✓
49	TACO	✓	✓	✓	✓	–
50	TAL.SH	✓	✓	✓	✓	–
51	TBlis	✓	✓	✓	✓	–
58	Tensor Toolbox	✓	✓	✓	✓	✓
62	TensorFlow	✓	✓	✓	–	–
65	TensorLy	✓	✓	✓	✓	–
67	TensorFlow.jl	✓	✓	✓	✓	–
70	TiledArray	✓	✓	✓	✓	–
74	TT-Toolbox	✓	–	–	–	✓
75	TTC	✓	–	–	–	–
78	Uni10	✓	✓	✓	✓	–

Table 2: Packages that support Data Manipulation (DatM).
ID	Name	DatM	EWOps	SpecCon	Con	Decomp
0	Acrotensor		✓			−
2	Boost.uBlas.Tensor	✓	✓	✓		−
3	BTAS	✓	✓	✓		✓
4	COGENT			✓		−
5	COMET			✓		−
6	CuTenGra			✓		−
9	CuTensor	✓	✓	✓		−
11	Cyclops	✓	✓	✓		−
14	Eigen Tensor	✓	✓	✓		−
15	ExaTN	✓	✓	✓		✓
16	Fastor	✓	✓	✓		−
17	FTensor	✓	✓	✓		−
21	ITensor			✓		✓
22	libtensor			✓		−
23	Ltensor			✓		−
24	MATLAB	✓	✓	✓		−
28	NCON			✓		−
29	netcon			✓		−
30	NumPy	✓	✓	✓		−
37	Pytensor	✓	✓	✓		✓
38	PyTorch	✓	✓	✓		−
39	quimb			✓		−
49	TACO	✓	✓	✓		−
50	TAL_SH	✓	✓	✓		−
51	TBlis	✓	✓	✓		−
52	TCCG			✓		−
53	TCL			✓		−
58	Tensor Toolbox	✓	✓	✓		✓
62	TensorFlow	✓	✓	✓		−
65	TensorLy	✓	✓	✓		✓
66	TensorNetwork			✓		−
67	TensorOperations.jl	✓	✓	✓		−
68	TensorTrace			✓		−
69	Three-Way			✓		✓
70	TiledArray	✓	✓	✓		−
71	tncontract			✓		−
73	TorchMPS			✓		−
78	Uni10	✓	✓	✓		−
79	xerus			✓		✓

Table 3: Packages that support Contractions (Con).
ID	Name	CP	Tucker	TensorTrain	Other
1	AdaTM	✓			−
3	BTAS	✓	✓		−
7	CP-CALS	✓	−	−	−
8	CSTF	−	−	−	✓
12	D-Tucker	−	✓	−	−
13	DFacTo	✓	−	−	−
15	ExaTN	−	−	✓	−
18	Genten	✓	−	−	−
19	GigaTensor	✓	−	−	−
21	ITensor	−	−	✓	−
26	multiway	✓	✓	−	✓
27	N-way toolbox	✓	✓	−	✓
32	ParCube	✓	−	−	−
33	ParTensor	✓	−	−	−
34	ParTI!	✓	✓	−	−
35	PLANC	✓	−	−	−
36	PLS toolbox	✓	✓	−	−
37	Pytensor	−	✓	−	−
40	rTensor	✓	✓	−	✓
41	rTensor (randomized)	✓	−	−	−
42	scikit-tensor	✓	✓	−	✓
43	Scikit-TT	−	−	✓	−
44	SPALS	✓	−	−	−
45	SPARTan	−	−		✓
46	SPLATT	✓	−	−	−
47	SuSMoST	−	−	✓	✓
48	T3F	−	−	✓	−
54	TDALAB	✓	−	−	−
55	TeNPy	−	−	✓	−
56	Tensor Fox	✓	−	−	−
57	Tensor package	✓	−	−	−
58	Tensor Toolbox	✓	✓	−	✓
59	tensor_decomposition	✓	✓	−	−
60	TensorBox	✓	✓	−	✓
61	TensorD	✓	✓	−	−
63	TensorLab	✓	✓	−	✓
64	TensorLab+	✓	−	−	✓
65	TensorLy	✓	✓	✓	−
69	Three-Way	✓	✓	−	−
72	TNR	−	−	−	✓
74	TT-Toolbox	−	−	✓	−
79	xerus	−	−	✓	−

Table 4: Packages that support Decompositions (Decomp).
2.1. Notable omissions. Certain packages that are well known in the community for offering tensor contractions and other operations include TAMM [5] and TCE [8]. These packages were not included in the list, since both are implemented as components of a larger project, NWChem [87] (a software primarily targeted towards computational chemistry), and are not usable independently. Furthermore, while many tensor operations can be cast in terms of BLAS and LAPACK calls, e.g., [21, 22, 67], in this survey we only focus on packages that support multi-dimensional arrays.

3. Conclusion. We provide a survey of tensor packages which arise in a wide range of fields and applications. Most of the packages are written in (or target) one of a handful of well-known programming languages, and are standalone, i.e., they do not depend on one another. This means that many packages (re-)implement, often sub-optimally, the same or similar functionality within their own codebase (e.g., tensor transposition, and specific operations such as MTTKRP and TTV).

With this list we aim to help both (new) users in finding a suitable package for their needs, and developers in identifying opportunities for cooperation, modularity, and optimization. Ultimately, our goal is to create awareness about the level of redundancy that permeates the software landscape of tensor computations, and the

ID	Name	Language	DATM	EWOps	SpecCon	Con	Decomp
2	Boost.uBlas.Tensor	C++	✓	✓	✓	✓	
3	BTAS	C++	✓	✓	✓	✓	−
9	CuTensor	C, CUDA	✓	✓	✓	✓	−
11	Cyclops	C++	✓	✓	✓	✓	−
14	Eigen Tensor	C++	✓	✓	✓	✓	−
15	ExaTN	C++, Py3	✓	✓	✓	✓	✓
16	Fastor	C++	✓	✓	✓	✓	−
17	FTensor	C++	✓	✓	✓	✓	−
21	iTensor	C++, Julia	−	✓	✓	✓	✓
24	MATLAB	Matlab	✓	✓	✓	✓	−
30	NumPy	Python	✓	✓	✓	✓	−
34	ParTi!	C, CUDA, Matlab	✓	✓	✓	−	✓
37	Pytensor	Python	✓	✓	✓	✓	−
38	PyTorch	Python, C++, CUDA	✓	✓	✓	−	✓
40	rTensor	R	✓	✓	✓	✓	−
42	scikit-tensor	Python	✓	✓	✓	✓	−
49	TACO	C++, C++ → C++	✓	✓	✓	−	−
50	TAL_SH	C, C++, Fort	✓	✓	✓	✓	−
51	TBlis	C++	✓	✓	✓	✓	−
58	Tensor Toolbox	Matlab	✓	✓	✓	✓	✓
62	TensorFlow	C++, Python	✓	✓	✓	✓	−
65	TensorLy	Python	✓	✓	✓	✓	✓
67	TensorOperations.jl	Julia	✓	✓	✓	−	−
70	TiledArray	C++	✓	✓	✓	✓	−
78	Uni10	C++	✓	✓	✓	✓	−
potential implications on software quality, performance, and productivity.

Furthermore, we see this survey as a first step to pave the way towards a set of universal, optimized, building blocks, which shall play the same role as the one that BLAS and LAPACK have played (and are playing) in the domain of numerical linear algebra.

Acknowledgments. Financial support from the Deutsche Forschungsgemeinschaft (German Research Foundation) through grant IRTG 2379 is gratefully acknowledged.

Appendix A. Questionnaire.

Any cross-disciplinary investigation of this size is bound to be incomplete and to contain mistakes. We therefore kindly ask the reader to help us by emailing corrections and additions to pauldj@cs.umu.se. When providing information about a package, please consider the following questions.

1. What is the name of the package?
2. Where is the source code located?
3. Would you please provide a reference (preferably in BibTeX format) to a publication, preprint, or website about the package?
4. In which programming language(s) is the package written?
5. Which programming language(s) do users have to code in to use the package?
6. Is the package standalone? Alternatively, does it depend on another package that is either in the list or that belongs in the list?
7. What is the target computing architecture (CPUs, GPUs, Distributed Memory, others)?
8. Does the package support layout-related operations, such as tensor transpositions, or reshaping, . . . ?
9. Does it support element-wise operations, such as addition/subtraction, reductions, . . . ?
10. Does it support general binary contractions? If not, what are the limitations?
11. Does it support only a specific, subset of contractions? (e.g., TTV, TTM, MTTKRP)
12. Does it support other types of contractions? Which one(s)?
13. Does it support tensor decompositions? If so, please provide a comma separated list of decompositions supported.
14. Would you please describe in 1-2 sentences what the package is about, what target problem it addresses, and what functionalities it provides?
15. Is there any other information about the package that you deem essential in order to describe its functionality?

Thank you for your help!

REFERENCES

[1] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Corrado, A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow, A. Harp, G. Irving, M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser, M. Kudlur, J. Levenberg, D. Mané, R. Monga, S. Moore, D. Murray, C. Olah, M. Schuster, J. Shlens, B. Steiner, I. Sutskever, K. Talwar, P. Tucker, V. Vanhoucke, V. Vasudevan, F. Viégas, O. Vinyals, P. Warden, M. Wattenberg, M. Wicke, Y. Yu, and X. Zheng, TensorFlow: Large-scale machine learning on heterogeneous systems, 2015, https://www.tensorflow.org/. Software available from tensorflow.org.

[2] A.C. Limache and P.S. Rojas Fredini, LTensor: A high performance C++ Tensor Library based on Index Notation. http://code.google.com/p/ltensor/.
12 C. PSARRAS, L. KARLSSON, J. LI AND P. BIENTINESI

[3] S. S. Akimenko, G. D. Anisimova, A. I. Fadeeva, V. F. Fefelov, V. A. Gorbunov, T. R. Kayumova, A. V. Myshlyavtseva, M. D. Myshlyavtseva, and P. V. Stishenko, Susmost: Surface science modeling and simulation toolkit, Journal of Computational Chemistry, 41 (2020), pp. 2084–2097, https://doi.org/10.1002/jcc.26370, https://onlinelibrary.wiley.com/doi/abs/10.1002/jcc.26370, https://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1002/jcc.26370.

[4] C. A. Andersson and R. Bro, The n-way toolbox for matlab, Chemometrics and Intelligent Laboratory Systems, 52 (2000), pp. 1–4, https://doi.org/10.1016/S0169-7439(00)00071-X, https://www.sciencedirect.com/science/article/pii/S016974390000071X.

[5] E. Aprà, M. Klemm, and K. Kowalski, Efficient implementation of many-body quantum chemical methods on the intel® xeon phi coprocessor, in SC ’14: Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis, 2014, pp. 674–684, https://doi.org/10.1109/SC.2014.60.

[6] C. Basso, Tlib: A flexible c++ tensor framework for numerical tensor calculus, 2017, https://arxiv.org/abs/1711.10912.

[7] C. Basso, Design of a high-performance tensor-vector multiplication with bias, in Computational Science – ICCS 2019, J. M. F. Rodrigues, P. J. S. Cardoso, J. Monteiro, R. Lam, V. V. Khrizhianovskaya, M. H. Lees, J. J. Dongarra, and P. M. Sloot, eds., Cham, 2019, Springer International Publishing, pp. 32–45.

[8] G. Baumgartner, A. Auer, D. E. Bernholdt, A. Bibireata, V. Choppella, D. Cociorva, Xiaoyang Gao, R. J. Harrison, S. Hirata, S. Krishnamoorthy, S. Krishnan, Chichung Lam, Qingda Lu, M. Nooijen, R. M. Pitzer, J. Ramamurthy, P. Sadayappan, and A. Sibiryakov, Synthesis of high-performance parallel programs for a class of ab initio quantum chemistry models, Proceedings of the IEEE, 93 (2005), pp. 276–292, https://doi.org/10.1109/JPROC.2004.840311.

[9] Z. Blanco, B. Liu, and M. M. Dehnavi, Cstf: Large-scale sparse tensor factorizations on distributed platforms, in Proceedings of the 47th International Conference on Parallel Processing, ICPP 2018, New York, NY, USA, 2018, Association for Computing Machinery, https://doi.org/10.1145/3225058.3225133, https://doi.org/10.1145/3225058.3225133.

[10] Brett W. Bader, Tamara G. Kolda and others, Tensor Toolbox for MATLAB, Version 3.2. www.tensortoolbox.org, Feb. 10, 2021.

[11] R. Bro, Multi-way analysis in the food industry - models, algorithms, and applications, tech. report, MRI, EPG and EMA,” Proc ICSLP 2000, 1998.

[12] J. A. Calvin and E. F. Valeev, TiledArray: A general-purpose scalable block-sparse tensor framework. https://github.com/valeevgroup/tiledarray.

[13] T. Chen, T. Moreau, Z. Jiang, L. Zheng, E. Yan, M. Cowan, H. Shen, L. Wang, Y. Hu, L. Cæze, C. Guestrin, and A. Krishnamurthy, Tvm: An automated end-to-end optimizing compiler for deep learning, 2018, https://arxiv.org/abs/1802.04799.

[14] D. Cheng, R. Peng, I. Perros, and Y. Liu, Spals: Fast alternating least squares via implicit leverage scores sampling, in Proceedings of the 30th International Conference on Neural Information Processing Systems, NIPS’16, Red Hook, NY, USA, 2016, Curran Associates Inc., p. 721–729.

[15] J. H. Choi and S. Vishwanathan, Dfacto: Distributed factorization of tensors, in Advances in Neural Information Processing Systems, Z. Ghahramani, M. Welling, C. Cortes, N. Lawrence, and K. Q. Weinberger, eds., vol. 27, Curran Associates, Inc., 2014, https://proceedings.neurips.cc/paper/2014/file/d5fead94f5350c12c322b5b664544c1-Paper.pdf.

[16] Christian Skeller, Benoit Steiner, Eigen tensor module. https://eigen.tuxfamily.org/dox/unsupported/group__CXX11__Tensor__Module.html.

[17] A. Cichocki, D. Mandic, L. De Lathauwer, G. Zhou, Q. Zhao, C. Caiafa, and H. A. Phan, Tensor decompositions for signal processing applications: From two-way to multi-way component analysis, IEEE signal processing magazine, 32 (2015), pp. 145–163.

[18] P. Comon, Tensor decompositions, state of the art and applications, 2009, https://arxiv.org/abs/0905.0454.

[19] P. Comon, Tensors: a Brief Introduction, IEEE Signal Processing Magazine, 31 (2014), pp. 44–53, https://doi.org/10.1109/MSP.2014.2298533, https://hal.archives-ouvertes.fr/hal-00932379.

[20] A. Darmawan and A. Grimsmo, tncontract. https://github.com/andrewdarmawan/tncontract.

[21] E. Di Napoli, D. Fabregat-Traver, G. Quintana-Orti, and P. Bientinesi, Towards an efficient use of the blas library for multilinear tensor contractions, Applied Mathematics and Computation, 235 (2014), pp. 454–468, http://arxiv.org/pdf/1307.2100.
[22] E. Di Napoli, E. Peise, M. Hrywniak, and P. Bientinesi, High-performance generation of the hamiltonian and overlap matrices in flapw methods, Computer Physics Communications, 211 (2017), pp. 61 – 72, http://arxiv.org/pdf/1602.06589v2. High Performance Computing for Advanced Modeling and Simulation of Materials.

[23] F. B. Diniz, A fast implementation for the canonical polyadic decomposition, 2019, https://arxiv.org/abs/1912.02366.

[24] S. Dolgov, B. Khoromskij, I. Oseledets, and D. Savostyanov, Computation of extreme eigenvalues in higher dimensions using block tensor train format, Computer Physics Communications, 185 (2014), pp. 1207–1216, https://doi.org/https://doi.org/10.1016/j.cpc.2013.12.017, https://www.sciencedirect.com/science/article/pii/S0010465513004293.

[25] N. B. Ericsson, K. Manohar, S. L. Brunton, and J. N. Kutz, Randomized CP tensor decomposition, Machine Learning: Science and Technology, 1 (2020), p. 025012, https://doi.org/10.1088/2632-2153/ab8240, https://doi.org/10.1088/2632-2153/ab8240.

[26] G. Evenbly, Tensortracen: an application to contract tensor networks, 2019, https://arxiv.org/abs/1911.02558.

[27] G. Evenbly and G. Vidal, Tensor network renormalization, Phys. Rev. Lett., 115 (2015), p. 180405, https://doi.org/10.1103/PhysRevLett.115.180405, https://link.aps.org/doi/10.1103/PhysRevLett.115.180405.

[28] A. Fisher, Acrontensor, version 00, 3 2017, https://wwwosti.gov/biblio/1390052.

[29] M. Fishman, S. R. White, and E. M. Stoudenmire, The itensor software library for tensor network calculations, 2020, https://arxiv.org/abs/2007.14822.

[30] R. García and A. Lumsdaine, Multiarray: a c++ library for generic programming with arrays, Software: Practice and Experience, 35 (2005), pp. 159–188, https://doi.org/10.1002/spe.630, https://onlinelibrary.wiley.com/doi/10.1002/spe.630, https://doi.org/10.1002/spe.630.

[31] P. Gelß, S. Klus, S. Matera, and C. Schütte, Nearest-neighbor interaction systems in the tensor-train format, Journal of Computational Physics, 341 (2017), pp. 140–162, https://doi.org/10.1016/j.jcp.2017.04.007, https://www.sciencedirect.com/science/article/pii/S0021999117302784.

[32] A. Giordani, H. A. L. Kiers, and M. A. D. Ferraro, Three-way component analysis using the r package threeWay, Journal of Statistical Software, Articles, 57 (2014), pp. 1–23, https://doi.org/10.18637/jss.v057.i07.

[33] J. Gray, quimb: A python package for quantum information and many-body calculations, Journal of Open Source Software, 3 (2018), p. 819, https://doi.org/10.21105/joss.00819, https://doi.org/10.21105/joss.00819.

[34] J. Gray and S. Kourtis, Hyper-optimized tensor network contraction, Quantum, 5 (2021), p. 410, https://doi.org/10.22331/q-2021-03-15-410, http://dx.doi.org/10.22331/q-2021-03-15-410.

[35] L. Hao, S. Liang, J. Ye, and Z. Xu, Tensord: A tensor decomposition library in tensorflow, Neurocomputing, 318 (2018), pp. 196–200, https://doi.org/10.1016/j.neucom.2018.08.055, https://www.sciencedirect.com/science/article/pii/S0925231218310178.

[36] C. R. Harris, K. J. Millman, S. J. van der Walt, R. Gommers, P. Virtanen, D. Cournapeau, E. Wieser, J. Taylor, S. Berg, N. J. Smith, R. Kern, M. Picus, S. Hoyer, M. H. van Kerkwijk, M. Brett, A. Haldane, J. F. del Río, M. Wiebe, P. Peterson, P. Gérard-Marchant, K. Sheppard, T. Reddy, W. Weckesser, H. Abadi, C. Gohlke, and T. E. Oliphant, Xerus - a general purpose tensor library. Available online, Version of Feb 2022 downloaded from https://libxerus.org/, 2014–2017.

[37] J. Hauschild and F. Pollmann, Efficient numerical simulations with tensor networks: Tensor network python (tenpy), 2018, https://arxiv.org/abs/1805.00055.

[38] N. E. Helwig and M. N. E. Helwig, Package ‘multiway’, 2019.

[39] S. Hendrikx, M. Boussé, N. Vervliet, M. Vandecappelle, R. Kenis, and L. De Lathauwer, Tensorlab+. Available online, Version of Feb 2022 downloaded from https://www.tensorlabplus.net.

[40] B. Huber and S. Wolf, Xerus - a general purpose tensor library. https://libxerus.org/, 2014–2017.

[41] A.-P. Hynninen and D. I. Lyakh, cutt: A high-performance tensor transpose library for cuda compatible gpus, 2017, https://arxiv.org/abs/1705.01598.

[42] K. Z. Ibrahim, S. W. Williams, E. Epifanovsky, and A. I. Krylov, Analysis and tuning of libtensor framework on multicore architectures, in 2014 21st International Conference on High Performance Computing (HiPC), 2014, pp. 1–10, https://doi.org/10.1109/HiPC.
[43] J.-G. Jang and U. Kang, D-tucker: Fast and memory-efficient Tucker decomposition for dense tensors, in 2020 IEEE 36th International Conference on Data Engineering (ICDE), 2020, pp. 1850–1853, https://doi.org/10.1109/ICDE43074.2020.00186.

[44] Jutho, getzdan, S. Lyon, M. Proter, M. P. S, Leo, J. Garrison, F. Otto, E. Saba, J.-G. Jang and U. Kang, J. Li, J. Choi, I. Perros, J. Sun, and R. Vuduc, J. Li, J. Bien, and M. T. Wells, F. Kjolstad, S. Chou, D. Lugato, S. Kamil, and S. Amarasinghe, R. Kannan, G. Ballard, and H. Park, A high-performance parallel algorithm for nonnegative matrix factorization, SIGPLAN Not., 51 (2016), https://doi.org/10.1145/3016078.2851152, https://doi.org/10.1145/3016078.2851152.

[45] Y.-J. Kao, Y.-D. Hsieh, and P. Chen, Uni10: an open-source library for tensor network algorithms, Journal of Physics: Conference Series, 640 (2015), p. 012040, https://doi.org/10.1088/1742-6596/640/1/012040, https://doi.org/10.1088/1742-6596/640/1/012040.

[46] J. Kim, A. Sukumaran-Rajam, V. Thumma, S. Krishnamoorthy, A. Panyala, L. Pouchet, A. Rountev, and P. Sadayappan, A code generator for high-performance tensor contractions on gpus, in 2019 IEEE/ACM International Symposium on Code Generation and Optimization (CGO), 2019, pp. 85–95, https://doi.org/10.1109/CGO.2019.8661182.

[47] F. Kjolstad, S. Chou, D. Lugato, S. Kamil, and S. Amarasinghe, Taco: A tool to generate tensor algebra kernels, in 2017 32nd IEEE/ACM International Conference on Automated Software Engineering (ASE), 2017, pp. 943–948, https://doi.org/10.1109/ASE.2017.8115709.

[48] T. G. Kolda and B. W. Bader, Tensor decompositions and applications, SIAM Review, 51 (2009), pp. 455–500, https://doi.org/10.1137/07070111X, https://doi.org/10.1137/07070111X, https://arxiv.org/abs/https://doi.org/10.1137/07070111X, https://www.jstatsoft.org/v087/i10, https://www.jstatsoft.org/v087/110.

[49] J. Li, J. Choi, I. Perros, J. Sun, and R. Vuduc, Model-driven sparse cp decomposition for higher-order tensors, in 2017 IEEE International Parallel and Distributed Processing Symposium (IPDPS), 2017, pp. 1048–1057, https://doi.org/10.1109/IPDPS.2017.80.

[50] J. Li, Y. Ma, C. Yan, J. Sun, and R. Vuduc, ParTI!: a Parallel Tensor Infrastructure for Data Analysis, in NIPS, Tensor-Learn Workshop, 2016.

[51] G. Loukas and A. P. Liavas, Nesterov-based alternating optimization for nonnegative tensor completion: Algorithm and parallel implementation, in 2018 IEEE 19th International Workshop on Signal Processing Advances in Wireless Communications (SPAWC), 2018, pp. 1–5, https://doi.org/10.1109/SPAWC.2018.8445941.

[52] D. I. Lyakh, An efficient tensor transpose algorithm for multicore cpu, intel xeon phi, and nvidia tesla gpus, Computer Physics Communications, 189 (2015), pp. 84–91, https://doi.org/10.1016/j.cpc.2014.12.013, https://www.sciencedirect.com/science/article/pii/S0010465514004330.

[53] D. A. Matthews, High-performance tensor contraction without transposition, SIAM Journal on Scientific Computing, 40 (2018), pp. C1–C24, https://doi.org/10.1137/16M108968X, https://doi.org/10.1137/16M108968X, https://doi.org/10.1137/16M108968X.

[54] A. J. McCaskey, G. Alvarez, D. Liakh, E. Dumitrescu, and T. Mintz, Ezatn. [Computer Software] https://doi.org/10.11578/dc.20201001.81, oct 2018, https://doi.org/10.11578/dc.20201001.81, https://doi.org/10.11578/dc.20201001.81.

[55] J. Miller, Torchmps. https://github.com/jemisjoky/torchmps, 2019.

[56] M. Nickel, scikit-tensor: Python library for multilinear algebra and tensor factorizations.

[57] A. Novikov, P. Izmalkov, V. Khrulkov, M. Figurnov, and I. Oseledets, Tensor train decomposition on tensorflow (t3f), Journal of Machine Learning Research, 21 (2020), pp. 1–
7. http://jmlr.org/papers/v21/18-008.html.

[64] NVIDIA Corporation, cuTensor. https://developer.nvidia.com/cutensor.

[65] E. E. Papalexakis, C. Faloutsos, and N. D. Sidiropoulos, Sparse parallelizable canon-decomp-parafac tensor decomposition, ACM Trans. Knowl. Discov. Data, 10 (2015), https://doi.org/10.1145/2729980, https://doi.org/10.1145/2729980.

[66] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, T. Killeen, Z. Lin, N. Gimelshein, L. Antiga, A. Desmaison, A. Köpf, E. Yang, Z. DeVito, M. Raison, A. Tejani, S. Chilamkurthy, B. Steiner, L. Fang, J. Bai, and S. Chintala, PyTorch: An imperative style, high-performance deep learning library, 2019, https://arxiv.org/abs/1912.01703.

[67] E. Peise, D. Fabregat-Traver, and P. Bientinesi, On the performance prediction of bias-based tensor contractions, in High Performance Computing Systems: Performance Modeling, Benchmarking, and Simulation, S. A. Jarvis, S. A. Wright, and S. D. Hammond, eds., vol. 8966 of Lecture Notes in Computer Science, Springer International Publishing, Apr. 2015, pp. 193–212, http://arxiv.org/pdf/1409.8608v1.

[68] I. Peberries, E. E. Papalexakis, F. Wang, R. Vuduc, E. Searles, M. Thompson, and J. Sun, Spartan: Scalable parafac2 for large & sparse data, in Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD ’17, New York, NY, USA, 2017, Association for Computing Machinery, p. 375–384, https://doi.org/10.1145/3097983.3098014.

[69] R. N. C. Pfeifer, G. Evenbly, S. Singh, and G. Vidal, NeoN: A tensor network contractor for matlab, 2015, https://arxiv.org/abs/1402.0939.

[70] R. N. C. Pfeifer, J. Haegeaman, and F. Verstraete, Faster identification of optimal contraction sequences for tensor networks, Phys. Rev. E, 90 (2014), p. 033315, https://doi.org/10.1103/PhysRevE.90.033315, https://link.aps.org/doi/10.1103/PhysRevE.90.033315.

[71] A. Phan, A. Cichocki, and P. Tichavsky, On fast algorithms for orthogonal Tucker decomposition, in 2014 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 2014, pp. 6676–6677, https://doi.org/10.1109/ICASSP.2014.6854910.

[72] E. T. Phipps and T. G. Kolda, Software for sparse tensor decomposition on emerging computing architectures, SIAM Journal on Scientific Computing, 41 (2019), pp. C269–C290, https://doi.org/10.1137/18M11210091, https://doi.org/10.1137/18M11210091, https://arxiv.org/abs/https://doi.org/10.1137/18M11210091.

[73] K. Pierce, V. Rish, and E. F. Valiev, Robust Approximation of Tensor Networks: Application to Grid-Free Tensor Factorization of the Coulomb Interaction, J. Chem. Theory Comput., 17 (2021), pp. 2217–2230, https://doi.org/10.1021/acs.jctc.0c01310, https://pubs.acs.org/doi/10.1021/acs.jctc.0c01310.

[74] R. Poya, A. J. Gil, and R. Ortigosa, A high performance data parallel tensor contraction framework: Application to coupled electro-mechanics, Computer Physics Communications, 216 (2017), pp. 35–52, https://doi.org/https://doi.org/10.1016/j.cpc.2017.02.016, https://www.sciencedirect.com/science/article/pii/S0010465517300681.

[75] C. Psarras, L. Karlsson, and P. Bientinesi, Concurrent alternating least squares for multiple simultaneous canonical polyadic decompositions, 2020, https://arxiv.org/abs/2010.04678.

[76] S. Rabanser, O. Sichur, and S. Günnewann, Introduction to tensor decompositions and their applications in machine learning, 2017, https://arxiv.org/abs/1711.10781.

[77] C. Roberts, A. Milsted, M. Ganahl, A. Zalcman, B. Fontaine, Y. Zou, J. Hiday, G. Vidal, and S. Leichenauer, TensorNetwork: A library for physics and machine learning, 2019, https://arxiv.org/abs/1905.01330.

[78] N. Sidiropoulos, L. Lathauwer, X. Fu, K. Huang, E. Papalexakis, and C. Faloutsos, Tensor decomposition for signal processing and machine learning, IEEE Transactions on Signal Processing, PP (2016), https://doi.org/10.1109/TSP.2017.2690524.

[79] N. Singh, L. Ma, H. Yang, and E. Solomonik, Comparison of accuracy and scalability of gauss-newton and alternating least squares for cp decomposition, 2020, https://arxiv.org/abs/1910.12331.

[80] S. Smith, N. Ravindran, N. D. Sidiropoulos, and G. Karipis, Splat: Efficient and parallel sparse tensor-matrix multiplication, in 2015 IEEE International Parallel and Distributed Processing Symposium, 2015, pp. 61–70, https://doi.org/10.1109/IPDPS.2015.27.

[81] E. Solomonik, D. Matthews, J. Hammond, and J. Demmel, Cyclops tensor framework: Reducing communication and eliminating load imbalance in massively parallel contractions, in 2013 IEEE 27th International Symposium on Parallel and Distributed Processing, 2013, pp. 813–824, https://doi.org/10.1109/IPDPS.2013.112.
[82] P. Springer and P. Bientinesi, *Design of a high-performance gemm-like tensor–tensor multiplication*, ACM Trans. Math. Softw., 44 (2018), https://doi.org/10.1145/3157733.

[83] P. Springer and P. Bientinesi, *Design of a high-performance gemm-like tensor–tensor multiplication*, ACM Trans. Math. Softw., 44 (2018), https://doi.org/10.1145/3157733.

[84] P. Springer, J. R. Hammond, and P. Bientinesi, *Ttc: A high-performance compiler for tensor transpositions*, ACM Trans. Math. Softw., 44 (2017), https://doi.org/10.1145/3104988.

[85] P. Springer, T. Su, and P. Bientinesi, *Hptt: A high-performance tensor transposition c++ library*, in Proceedings of the 4th ACM SIGPLAN International Workshop on Libraries, Languages, and Compilers for Array Programming, ARRAY 2017, New York, NY, USA, 2017, Association for Computing Machinery, p. 56–62, https://doi.org/10.1145/3091966.3091968.

[86] R. Tian, L. Guo, J. Li, B. Ren, and G. Kestor, *A high-performance sparse tensor algebra compiler in multi-level ir*, 2021, https://arxiv.org/abs/2102.05187.

[87] M. Vallej, E. Bylaska, N. Govind, K. Kowalski, T. Straatsma, H. Van Dam, D. Wang, J. Nieplocha, E. Apra, T. Winds, and W. de Jong, *Nwchem: A comprehensive and scalable open-source solution for large scale molecular simulations*, Computer Physics Communications, 181 (2010), pp. 1477–1489, https://doi.org/https://doi.org/10.1016/j.cpc.2010.04.018, https://www.sciencedirect.com/science/article/pii/S0010465510001438.

[88] E. van den Berg, *The ocean tensor package*, 2018, https://arxiv.org/abs/1810.08723.

[89] N. Vervliet, O. Debals, L. Sorber, M. Van Barel, and L. De Lathauwer, *Tensorlab 3.0*, Mar. 2016, https://www.tensorlab.net. Available online.

[90] B. M. Wise, N. Gallagher, R. Bro, J. Shaver, W. Windig, and R. S. Koch, *Pls toolbox 4.0*, 2007.

[91] J. O. Yoo, A. Ramanathan, and C. J. Langmead, *Pynestar: A python based tensor library*, (2010).

[92] G. Zhou and A. Cichocki, *A brief guide for tdalab ver 1.1*, (2013).