Research Article

Identification of Novel Potential Vaccine Candidates against Tuberculosis Based on Reverse Vaccinology

Gloria P. Monterrubio-López, Jorge A. González-Y-Merchand, and Rosa María Ribas-Aparicio

Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas (ENCB), Instituto Politécnico Nacional (IPN), Prolongación de Carpio y Plan de Ayala S/N, Colonia Santo Tomás, 11340 México, DF, México

Correspondence should be addressed to Rosa María Ribas-Aparicio; rribas233@yahoo.com

Received 27 September 2014; Accepted 7 January 2015

Academic Editor: Tao Huang

Copyright © 2015 Gloria P. Monterrubio-López et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Tuberculosis (TB) is a chronic infectious disease, considered as the second leading cause of death worldwide, caused by Mycobacterium tuberculosis. The limited efficacy of the bacillus Calmette-Guérin (BCG) vaccine against pulmonary TB and the emergence of multidrug-resistant TB warrant the need for more efficacious vaccines. Reverse vaccinology uses the entire proteome of a pathogen to select the best vaccine antigens by in silico approaches. M. tuberculosis H37Rv proteome was analyzed with NERVE (New Enhanced Reverse Vaccinology Environment) prediction software to identify potential vaccine targets; these 331 proteins were further analyzed with VaxiJen for the determination of their antigenicity value. Only candidates with values ≥0.5 of antigenicity and 50% of adhesin probability and without homology with human proteins or transmembrane regions were selected, resulting in 73 antigens. These proteins were grouped by families in seven groups and analyzed by amino acid sequence alignments, selecting 16 representative proteins. For each candidate, a search of the literature and protein analysis with different bioinformatic tools, as well as a simulation of the immune response, was conducted. Finally, we selected six novel vaccine candidates, EsxL, PE26, PPE65, PE_PGRS49, PBPI, and Erp, from M. tuberculosis that can be used to improve or design new TB vaccines.

1. Introduction

Tuberculosis (TB) is a chronic infectious disease caused by an acid-fast bacillus, Mycobacterium tuberculosis [1]. TB is the second cause of death caused by an infectious agent throughout the world [2, 3]; in 2012, there were an estimated 8.6 million incident cases of TB globally, which is equivalent to 122 cases per 100,000 people, and the absolute number of cases continues to increase slightly from year to year [4].

The current vaccine against tuberculosis, bacillus Calmette-Guérin (BCG), exerts different levels of protection: from 46 to 100% against the disseminated disease form and from 0 to 80% against pulmonary disease [5, 6]. In addition to this low efficacy, reemergence of the disease caused by the appearance of the acquired immunodeficiency syndrome (AIDS) and multidrug-resistant (MDR) strains has generated requirements for a new and more efficient vaccine against TB [7].

The development of new vaccines starts with the identification of unique components of the microorganism capable of generating a protective immune response [3]. With traditional techniques, this could be a long and arduous process, aside from the difficulty of cultivating the microorganism in the laboratory [8–10].

Advances in sequencing technology and bioinformatics have resulted in an exponential growth of genome sequence information that has contributed to the development of software that aids genomic analysis in a short period of time and at a low cost. Reverse vaccinology (RV) applied to the genome of a pathogen aims to identify in silico the complete repertoire of immunogenic antigens that an organism is capable of expressing without the need of culturing the microorganism. Additionally, RV can help to discover novel antigens that might be less abundant, not expressed in vitro, or less immunogenic during infection that are likely to be missed by conventional approaches [8, 11–14].
The RV process begins with the proteomic information in a database; then, the selection of vaccine candidates is performed by means of different bioinformatics tools that analyze the properties of each protein and the human immune response generated by them [8–10, 15]. Good vaccine candidates are considered those that do not present homology with human proteins to avoid the generation of a potential autoimmune response [16]; these candidates must also lack transmembrane regions, in order to facilitate their expression. In addition, it is necessary to analyze the lack of cross-reaction among other pathogenic antigens [14]. Another characteristic a good vaccine candidate should have is to possess good antigenic and adhesin properties, which are important for the pathogenesis of the microorganism and for protection against the disease [13, 17]. Extracellular or cell surface localized proteins are good vaccine candidates due to their increased accessibility to the immune system [14, 16]. Currently, software useful for simulation of the immune response has been developed that could help in the search for novel vaccine candidates [15]. In this work, we have applied RV to the *M. tuberculosis* proteome with the purpose of selecting new antigens that could be used in a novel and more efficient vaccine against TB.

2. Materials and Methods

2.1. Proteome Analysis. New Enhanced Reverse Vaccinology (NERVE) software was downloaded, installed, and utilized to determine vaccine candidates employing the default parameters for Gram-positive bacteria [13]. The proteome sequences of *M. tuberculosis* H37Rv (NC_000962.2), *Mycobacterium bovis* AF2122/97 (NC_002945.3), and *M. bovis* BCG str. Pasteur 1173P2 (NC_008769.1) were downloaded from the Genome Project database of the National Center for Biotechnology Information (NCBI) [18]. Each proteome was analyzed individually by NERVE; conservation values for all proteins were determined comparing the *M. bovis* and BCG proteome against the *M. tuberculosis* proteome using the comparative option.

2.2. Antigenicity Determination. The antigenicity value was calculated for each protein using its amino acid sequences and the VaxiJen server, which predicts whether a protein could be a protective antigen. VaxiJen is based on auto cross covariance (ACC) and has a threshold of 0.5 in the antigenicity value [19].

2.3. Selection of Representative Proteins. With the parameters calculated with NERVE and VaxiJen, we selected proteins that presented an antigenicity value ≥ 0.5, 50% adhesin probability, and without homology with human proteins or transmembrane regions. The proteins selected were grouped according to the family of proteins to which they belong. In this manner, we obtained seven groups: ESX family proteins, PPE family proteins, PE family proteins, PE_PGRS family proteins, lipoproteins, hypothetic proteins, and, the last group, denominated “others,” composed of proteins with different miscellaneous characteristics. The amino acid sequence of each protein were downloaded from the NCBI protein database, and an alignment was made for each group of proteins using Clustal X software [20] in order to select representative proteins from each group.

2.4. Immune Response Simulation. With the amino acid sequences of the proteins selected, a human immune response simulation was performed using the C-ImmSim software to predict whether these proteins could generate a protective immune response against TB [15]. C-ImmSim simulates a portion of a lymph node but is not set up to simulate a realistic concentration of antigen; however, we adjusted the antigen concentration simulation to a high dose, comparable to a vaccination event. Different immunizations were simulated with each protein in the following two different schemes: first, a single immunization with each protein individually at time zero and, second, three immunizations at 0, 2, and 4 weeks with each protein separately. The level of Th1 cells stimulated 80 days after the first injection was identified.

2.5. Protein Analysis. The bioinformatics programs used to study the vaccine candidate’s amino acid sequences included Phobius [21] to calculate and confirm protein subcellular localization more precisely, ANTHERPOT [22], Expasy [23], and IEDB software [24] and their different models for localizing protein regions with greater hydrophilic and greater solvent accessibility related with antigenic regions, and the SYFPEITHI ver. 1.0 program [25], which was used to determine the frequency of presentation of peptides to 35 different alleles of the major histocompatibility complex (MHC). In the case of lipoproteins, we employed only ProPred software [26] to determine the frequency of presentation of 25 amino acid peptides to different alleles of the MHC-II.

2.6. Bibliographic Study. Bibliographic information was sought for each protein using different databases on the website for information regarding its putative function, its use as vaccines, its role in virulence, its corresponding evaluated mutants, its induction of an immune response, and its level of conservation in mycobacterial proteomes.

2.7. Vaccine Candidate Selection. The vaccine candidates were selected using all the results, simulations, and bibliographic information obtained. The candidates possess the best values of the parameters calculated and exert diverse functions that render them useful as different targets in the microorganism (Figure 1).

3. Results and Discussion

3.1. Proteome Analysis. RV offers the advantage of reducing the time and cost of the development process of a new vaccine with the advantage of being safer and more effective. With the purpose of designing a new vaccine against TB with a greater protection level against pulmonary disease, we utilized RV to select vaccine candidates from the *M. tuberculosis* proteome.

The selection of potential vaccine candidates in this study was based on the analysis of several important properties [13, 19, 21, 27]. (1) Surface proteins or secreted proteins were selected because they are good targets of the immune system.
effector molecules. (2) Proteins with multiple transmembrane helices were discarded because they are not recommended for vaccine development, especially DNA vaccines, as they are difficult to clone, express, and purify. (3) Adhesin probability was considered an important factor since the first step in bacterial invasion is the contact with host molecules through adhesion structures, making adhesions good vaccine candidates capable of improving the immune response that results in blocking infection. (4) Proteins having similarity to those of the human proteome were avoided. The use of proteins or genes that encode them and having similitude with human proteins or DNA sequences can generate an autoimmune response or recombination and integration events in the host genome, respectively. (5) Proteins with the best values of antigenicity were chosen. Antigenicity is the property of the proteins to be recognized by the immune system; hence, it is desirable to find the highest antigenicity value for the selection of the best potential vaccine candidates. The \textit{M. tuberculosis} proteome was studied with NERVE software, which identifies \textit{in silico} vaccine candidates, analyzing the biological characteristics that influence vaccine design. NERVE selected the \textit{M. tuberculosis} H37Rv proteome, composed of 3989 proteins; the selection of candidates was performed considering the following characteristics: ≥50% adhesin probability, fewer than two transmembrane regions, and fewer than five proteins similar to the human proteome. In addition to this, the candidates must lack either membrane or cytoplasmic localization. Finally, NERVE selected 331 proteins as vaccine candidates (Additional file 1) (see Supplementary Material available online at http://dx.doi.org/10.1155/2015/483150).

The results were compared with the information deposited in the VIOLIN database [28], and we found several important matches in some antigens. Those coincidences provided support for the results obtained with NERVE. The vaccine candidates selected have diverse putative functions and different conservation values. Moreover, this software tool has the option of comparing the proteomes of two different organisms and of determining a conservation value among all the proteins. In this case, we compared the \textit{M. tuberculosis} H37Rv proteome against the \textit{M. bovis} and the BCG proteome [13, 14].

The proteome analysis was finalized by determining the antigenic value of the 331 vaccine candidates using the VaxiJen server to obtain protective antigens prediction.

3.2. Selection of Representative Proteins. Using the calculated characteristics, the number of vaccine candidates was
reduced to 73 proteins, with a stricter selection, as mentioned in the Methods section. These proteins were grouped in seven clusters according to their type and the family to which they belong, as follows: the ESX protein family (3 proteins), the PPE protein family (7 proteins), the PE proteins family (8 proteins), PE, PGRS protein family (16 proteins), lipoproteins (5 proteins), hypothetical proteins (21 proteins), and the final group denominated “others” (13 proteins) (Table 1). This process was carried out because it is well known that members within the same protein family possess a close relationship between their sequences and functions.

With the purpose of selecting representative proteins from each group, we used amino acid sequences from their members to perform alignments using the Clustal X program, with the exception of those from the “others” and hypothetical proteins groups.

In the case of the hypothetic proteins, an alignment was carried out using the Psi-BLAST tool from the NCBI website, in order to grant them a putative function; in some cases, a coincidence was not found, but in others we could assume a probable function (Figure 2).

For the selection of representative proteins, we took into account the similarity among the sequences of the group, the best antigenicity values, the high probability to act as an adhesin, and their conservation in the M. bovis and BCG proteome. For this part, we chose 12 representative candidates from the seven protein families (Table 1).

3.3. Immune Response Simulation. The 12 proteins selected were used to conduct simulations of the human immune system response under different conditions with C-ImmSim software. In terms of the results of the simulations, C-ImmSim server showed the following nine graphs for each simulation: B-cell population, B-cell population per state, Th cell population, Th cell population per state, Tc population, Tc population per state, CD population, EP population, and Ab production (Figure 3). We found the same pattern in all the selected proteins with a slight difference among levels. However, we focused mainly on Th1 cells level including all states, because it has been reported that protective immunity against TB is conferred mainly by Th1 cells [14, 29]. We found that the levels of stimulated cells were most similar among the selected proteins when one immunization was performed, but this level improved when the number of immunizations increased, and there was also a remarkable differentiation among the proteins at the final simulation step. PE_PGRS family proteins showed the highest levels of stimulated Th cells, which also generated a good level of B cells stimulation, which is important for complementing the immune response (Figure 4).

3.4. Protein Analysis. The proteins were analyzed individually with several bioinformatics tools to determine whether the protein sequences had a region with important antigenic characteristics, that is, a region where there are matches with hydrophobicity, solvent accessibility, presentation to MHC, and antigenicity.

We did not find a protein that clearly possesses an antigenic region that could be used as an epitope or as a fusion in a vaccine. Conversely, we determined that all the proteins had high values of antigenicity in different parts of the sequence; thus, we recommend the use of complete proteins in a vaccine formulation because using only a fragment could eliminate some epitopes necessary for a complete and protective human immune response against the whole microorganism.

We also found that all of the proteins selected as vaccine candidates could be presented to several MHC with a high probability value, resulting in good probability of immune response induction against these components of M. tuberculosis.

In this analysis process, we identified protein subcellular localizations using Phobius tools to confirm the results emitted by NERVE, because Phobius software is more accurate than the program (HMMTOP) utilized by NERVE [21]. This characteristic is important in a vaccine candidate because proteins with cytoplasmic or membrane localization are less antigenic than extracytoplasmic proteins.

3.5. Bibliographic Study. We wanted to know whether the proteins would be safe if we used them on a vaccine formulation prior to the preclinical trials; thus, we studied the information published about different characteristics related with their impact on virulence.

We were able to observe that some proteins have not been studied, but we found information about other members of their family groups, such as PE, PPE, and PE_PGRS proteins, suggesting an influence on immune system evasion and antigenic variation, an important feature in considering a protein that will be included in a vaccine [39, 47, 59]; besides, PE_PGRS family proteins are restricted to pathogenic mycobacteria and, in particular, PE_PGRSII and PE_PGRS I7 have been reported to induce maturation and activation of human dendritic cells, enhancing the ability of the latter to induce Th cells stimulation [26, 60].

In case of the antigen LppN we did not find specific information, besides, almost all the proteins in M. tuberculosis genome lack conserved regions, which means that they are unique proteins with different characteristics. Some lipoproteins are major antigens in the Mycobacterium genus that can generate also a cellular and humoral immune response but without immune memory response [50, 61–64].

Erp protein is a virulence factor present only in the Mycobacterium genus [51–53], it is an immunodominant antigen related to pathogenicity and is strongly induced in nutrient starvation related to the latency phase [53]. On the other hand, PBP1 protein is important in the replication phase because it catalyzes the final steps of bacterial cell wall peptidoglycan synthesis [54, 65, 66].

The EsxL candidate is an ESX-like protein with very similar characteristics to Esat-6, which is an immunodominant secreted protein used in research associated with the diagnosis of TB and new TB vaccines [30]. Esat-6 is a strong T-cell antigen, and its family members are involved in virulence and in host-pathogen interplay via either antigenic variation or antigenic drift [31, 32, 67].
Table 1: Proteins selected after reducing parameters and grouped in seven categories according their family group

Protein family group	ID	Rx	VaxiJen antigenicity value	Length (amino acid)	Psi BLAST				
ESX family									
gi	15608177	ref	NP	215553	L	Rv1037c	0.7444	94	ND
gi	15608338	ref	NP	215714	L	Rv1198	0.6286	94	ND
gi	1560755	ref	NP	218136	L	Rv3619c	0.7444	94	ND
PPE family									
gi	57116729	ref	YP	177724	L	Rv0388c (PPE9)	0.5334	180	ND
gi	57116916	ref	YP	177840	L	Rv1801 (PPE29)	0.5636	423	ND
gi	57116975	ref	YP	177871	L	Rv2353c (PPE39)	0.897	354	ND
gi	57117064	ref	YP	177934	L	Rv3135 (PPE50)	0.5029	132	ND
gi	57117135	ref	YP	177998	L	Rv3621c (PPE65)	0.5241	413	ND
PE family									
gi	57116715	ref	YP	177710	L	Rv0285 (PE5)	0.6696	102	ND
gi	57116910	ref	YP	177834	L	Rv1788 (PE18)	0.6228	99	ND
gi	57116913	ref	YP	177837	L	Rv1791 (PE19)	0.6125	94	ND
gi	57116998	ref	YP	177888	L	Rv2519 (PE26)	0.718	492	ND
gi	57117110	ref	YP	177975	L	Rv3477 (PE26)	0.5325	98	ND
gi	57117136	ref	YP	177999	L	Rv3622c (PE32)	0.5099	99	ND
gi	57117151	ref	YP	178010	L	Rv3739c (PE67)	0.5101	77	ND
gi	57117167	ref	YP	178025	L	Rv3893c (PE36)	0.5971	77	ND
PE, PGRS family									
gi	57116752	ref	YP	177736	L	Rv0532 (PE, PGRS6)	1.789	594	ND
gi	57116773	ref	YP	177750	L	Rv0746 (PE, PGRS9)	1.7153	783	ND
gi	57116787	ref	YP	177759	L	Rv0832 (PE, PGRS12)	0.6034	137	ND
gi	57116793	ref	YP	177763	L	Rv0872 (PE, PGRS15)	2.0866	606	ND
gi	57116818	ref	YP	177780	L	Rv1067c (PE, PGRS19)	2.2481	667	ND
gi	57116826	ref	YP	177786	L	Rv1091 (PE, PGRS22)	2.5016	853	ND
gi	57116864	ref	YP	177811	L	Rv1441c (PE, PGRS26)	2.1299	491	ND
gi	57116905	ref	YP	177831	L	Rv1795c (wag22)	2.0054	914	ND
gi	57116924	ref	YP	177847	L	Rv1840c (PE, PGRS34)	1.5912	515	ND
gi	57116973	ref	YP	177869	L	Rv2340c (PE, PGRS39)	1.0512	413	ND
gi	57117010	ref	YP	177896	L	Rv2634c (PE, PGRS46)	2.146	778	ND
gi	57117029	ref	YP	177909	L	Rv2853 (PE, PGRS48)	2.1046	615	ND
gi	57117093	ref	YP	177961	L	Rv3344c (PE, PGRS49)	3.0927	484	ND
gi	57117098	ref	YP	177965	L	Rv3367 (PE, PGRS51)	2.0713	588	ND
gi	57117101	ref	YP	177968	L	Rv3388 (PE, PGRS52)	2.2486	731	ND
gi	57117117	ref	YP	177981	L	Rv3512 (PE, PGRS56)	3.4881	1079	ND
Protein family group	ID	RV	Vaxijen antigenicity value	Length (amino acid)	Psi BLAST				
----------------------	----	-----	---------------------------	---------------------	-----------				
Lipoproteins									
gi.15607723.ref.NP_215097_1	Rv0583c (LpqN)	0.6569	228	ND					
gi.15608368.ref.NP_215744_1	Rv1228 (LpqX)	0.7609	185	ND					
gi.15608679.ref.NP_216057_1	Rv1541c (LprI)	0.5298	197	ND					
gi.15609407.ref.NP_216786_1	Rv2270 (LppN)	0.5899	175	ND					
gi.15609921.ref.NP_217300_1	Rv2784c (LppU)	0.685	171	ND					
Hypothetics									
gi.15607199.ref.NP_214571_1	Rv0057	0.6907	173	No matches	Related with PE family proteins of *Mycobacterium*				
gi.57116831.ref.YP_177639_1	Rv116A	0.6337	91	Related with *Mycobacterium* lipoproteins and gp53 *Mycobacterium* phage	No matches				
gi.15608277.ref.NP_215653_1	Rv116B	0.76	122	Related with *Mycobacterium* lipoproteins and gp53 *Mycobacterium* phage	No matches				
gi.1560941L.ref.NP_216320_1	Rv1804c	0.575	108	Related with *Mycobacterium* lipoproteins and gp53 *Mycobacterium* phage	No matches				
gi.1560905L.ref.NP_216430_1	Rv1914c	0.5202	135	Related with proline and threonine rich *Mycobacterium* proteins, like chaperone molecular and *Rhodococcus* hypothetical proteins	No matches				
gi.15609215.ref.NP_216594_1	Rv2078	0.5425	104	Related with proline and threonine rich *Mycobacterium* proteins, like chaperone molecular and *Rhodococcus* hypothetical proteins	No matches				
gi.15609220.ref.NP_216599_1	Rv2083	0.8189	314	Related with proline and threonine rich *Mycobacterium* proteins, like chaperone molecular and *Rhodococcus* hypothetical proteins	No matches				
gi.15609401.ref.NP_216780_1	Rv2264c	0.5862	592	Related with proline and threonine rich *Mycobacterium* proteins, like chaperone molecular and *Rhodococcus* hypothetical proteins	Related with *Mycobacterium* lipoproteins and gp53 *Mycobacterium* phage				
gi.15609420.ref.NP_216799_1	Rv2283	0.7336	64	Related with proline and threonine rich *Mycobacterium* proteins, like chaperone molecular and *Rhodococcus* hypothetical proteins	No matches				
gi.15609429.ref.NP_216808_1	Rv2292c	0.5396	74	Related with proline and threonine rich *Mycobacterium* proteins, like chaperone molecular and *Rhodococcus* hypothetical proteins	No matches				
Hypothetics									
gi.15609439.ref.NP_216818_1	Rv2302	0.958	80	Related with transduction signal protein and hypothetical proteins from *Nocardiia* and *Frankia*, DNA binding protein from *Streptomyces*	No matches				
gi.15609797.ref.NP_217176_1	Rv2660c	0.9073	75	Related with transduction signal protein and hypothetical proteins from *Nocardiia* and *Frankia*, DNA binding protein from *Streptomyces*	No matches				
gi.15609843.ref.NP_217222_1	Rv2706c	0.527	85	Related with transduction signal protein and hypothetical proteins from *Nocardiia* and *Frankia*, DNA binding protein from *Streptomyces*	No matches				
gi.15600972.ref.NP_217476_1	Rv2960c	0.6945	82	Related with transduction signal protein and hypothetical proteins from *Nocardiia* and *Frankia*, DNA binding protein from *Streptomyces*	No matches				
gi.15601035.ref.NP_217514_1	Rv2998	0.8339	153	Related with transduction signal protein and hypothetical proteins from *Nocardiia* and *Frankia*, DNA binding protein from *Streptomyces*	No matches				
gi.1560204.ref.NP_217583_1	Rv3067	0.566	136	Related with transduction signal protein and hypothetical proteins from *Nocardiia* and *Frankia*, DNA binding protein from *Streptomyces*	No matches				
gi.1560316.ref.NP.217696_1	Rv3180c	0.5182	144	Related with transduction signal protein and hypothetical proteins from *Nocardiia* and *Frankia*, DNA binding protein from *Streptomyces*	Related with membrane proteins and lipoproteins from *Corynebacterium* and *Streptomyces*				
gi.15610343.ref.NP.217723_1	Rv3207c	0.6281	285	Related with membrane proteins and lipoproteins from *Corynebacterium* and *Streptomyces*	Related with membrane proteins and lipoproteins from *Corynebacterium* and *Streptomyces*				
gi.5717091.ref.NP.217854_2	Rv3337	0.8824	128	Related with membrane proteins and lipoproteins from *Corynebacterium* and *Streptomyces*	Related with membrane proteins and lipoproteins from *Corynebacterium* and *Streptomyces*				
gi.15610854.ref.NP.218235_1	Rv3718C	0.7971	147	Related with membrane proteins and lipoproteins from *Corynebacterium* and *Streptomyces*	Related with membrane proteins and lipoproteins from *Corynebacterium* and *Streptomyces*				
gi.15611034.ref.NP.218415_1	Rv3898c	0.7675	110	Related with membrane proteins and lipoproteins from *Corynebacterium* and *Streptomyces*	Related with membrane proteins and lipoproteins from *Corynebacterium* and *Streptomyces*				
Protein family group	ID	Rv	VaxiJen antigenicity value	Length (amino acid)	Psi BLAST				
---------------------	----	-----	---------------------------	---------------------	-----------				
Others	gi.1560173_ref.NP.214545.1	Rv0031	0.738	70	ND				
	gi.57116685_ref.YP.177687.1	Rv0050 (PBP1)	0.613	678	ND				
	gi.57116889_ref.NP.216091.2	Rv1575	0.7415	166	ND				
	gi.57117071_ref.YP.177941.1	Rv3198A	0.6669	84	ND				
	gi.15610488_ref.NP.217869.1	Rv3352c	0.8742	123	ND				
	gi.15610946_ref.NP.218327.1	Rv3810 (Erp)	0.6734	284	ND				
	gi.15609895_ref.NP.217274.1	Rv2758c	0.6574	88	ND				
	gi.57117060_ref.YP.177930.1	Rv3118	0.833	100	ND				
	gi.15610417_ref.NP.217798.1	Rv328l	0.7311	177	ND				
	gi.15611001_ref.NP.218382.1	Rv3865	0.604	103	ND				
	gi.15609778_ref.NP.217157.1	Rv2641	0.7934	152	ND				
	gi.15607954_ref.NP.215329.1	Rv0814c	0.833	100	ND				
	gi.57116926_ref.YP.177849.1	Rv1860	0.5244	325	ND				

Note: in bold are the highlighted representative proteins selected. ND: not determined.
(a) PE family proteins

(b) PPE family proteins

Figure 2: Continued.
Figure 2: Continued.
PGRS49, PBP1, and Erp correspond to several family proteins that could be used as vaccine candidates. The application of bioinformatics programs for the identification of proteins that could be used as vaccine candidates is a very useful, easier, and shorter process compared with traditional vaccinology, which is important for the research concerning public health.

4. Conclusions

The application of bioinformatics programs for the identification of proteins that could be used as vaccine candidates is a very useful, easier, and shorter process compared with traditional vaccinology, which is important for the research concerning public health. Using RV, we selected six novel vaccine candidates from the M. tuberculosis H37Rv proteome, employing mainly in silico studies. The six proteins selected: EsxL, PE26, PPE65, PE_PGRS49, PBP1, and Erp correspond to several family proteins and possess different characteristics that are useful and important in vaccine design. The bibliographic information also indicated that they might be safe.

The potential vaccine candidates selected in this work could be used in different vaccine designs to conduct experiments in order to validate them as DNA vaccines, rBCG, or as recombinant proteins, to improve protection against TB, rendering the new vaccines more effective against the pulmonary disease.

We did not propose a specific and unique antigenic region within these protein structures; however, the bioinformatics and bibliographic analyses showed characteristics that make them valuable putative vaccine candidates that could be used further to experimentally investigate whether they are suitable for the development of a new vaccine against tuberculosis.

Conflict of Interests

The authors declare that they have no competing interests.

Authors’ Contribution

Gloria P. Monterrubio-López, Jorge A. González-Y-Merchán, and Rosa María Ribas-Aparicio contributed equally to the original concept and design described in the paper. Gloria P. Monterrubio-López performed experiments and contributed in the areas of data collection, analysis, and interpretation. Rosa María Ribas-Aparicio supervised the overall project, providing essential guidance. Gloria P. Monterrubio-López and Rosa María Ribas-Aparicio drafted the paper. All authors revised the paper critically and read and approved the final version.
Figure 3: Continued.
Figure 3: C-ImmSim simulation of an immunization experiment using Erp protein. An immunogenic molecule (Erp) was inoculated at time zero. Different cellular populations showed stimulation with Erp antigen at 1.2 months after one dose immunization. (a) B-cell population, (b) B-cell population per state, (c) Th cell population, (d) Th cell population per state, (e) Tc cell population, (f) Tc cell population per state, (g) macrophages population per state, (h) dendritic cell population per state, (i) epithelial cell population, and (j) antibody titers.

Figure 4: Levels of Th cells stimulated with vaccine candidates assessed with the C-ImmSim server. Simulation with C-ImmSim was performed for each vaccine candidate with one and three immunizations, and Th1 cells stimulated values per microliter were identified 80 days after the first immunization. The best stimulation was induced by PE_PGRS49 protein followed by PE_PGRS 56, PE26, PPE65, and PBP1 proteins.
| Characteristic or function | Not reported | A DNA vaccine with a protein related member Rv1818c has been reported, which generates protection only with the PE domain and better response with the complete protein. | Not reported | Not reported | Not reported | Not reported |

References

| References | [30–38] | [29, 39–46] | [29, 32, 34, 47–49] | [26, 39, 50–52] | [53–58] |

Note: ESXL (ESXL family); PE:_PGRS49 (PE_PGRS family); PE26 (PE family); PPE65 (PPE family); Erp and PBPI (Others).
Acknowledgments

The authors thank Margaret Bruner and Ingrid Mascher for English editing. Rosa María Ribas-Aparicio and Jorge A. González-y-Merchant are grateful for support of this work from Instituto Politécnico Nacional Grants nos. SIP-20144063 and SIP-20140970. Gloria P. Monterrubio-López thanks CONACyT-México and PIFIP-IPN-México for graduate studies fellowships. The authors are also grateful to Dr. Sandro Vivona at Stem CentRx and Dr. Alfonso Méndez-Tenorio, ENCB-IPN professor, for their kind help in installing NERVE and to Dr. Filippo Castiglione at the Istituto per le Applicazioni del Calcolo (IAC) for his valuable advice on the use of the C-ImmSim server.

References

[1] J. Weiner III and S. H. E. Kaufmann, “Recent advances towards tuberculosis control: vaccines and biomarkers,” Journal of Internal Medicine, vol. 275, no. 5, pp. 467–480, 2014.
[2] J. Montoya, J. A. Solon, S. R. C. Cunanan et al., “A randomized, controlled dose-finding Phase II study of the M72/AS01 candidate tuberculosis vaccine in healthy PPD-positive adults,” Journal of Clinical Immunology, vol. 33, no. 8, pp. 1360–1375, 2013.
[3] A. P. Junqueira-Kipnis, L. M. Marques Neto, and A. Kipnis, “Role of fused Mycobacterium tuberculosis immunogens and adjuvants in modern tuberculosis vaccines,” Frontiers in Immunology, vol. 5, article 188, 2014.
[4] World Health Organization, Global Tuberculosis Report, World Health Organization, Lyon, France, 2013.
[5] B. M. Buddle, N. A. Parlane, D. N. Wedlock, and A. Heiser, “Overview of vaccination trials for control of tuberculosis in cattle, wildlife and humans,” Transboundary and Emerging Diseases, vol. 60, no. 1, pp. 136–146, 2013.
[6] M. Lu, Z. Y. Xia, and L. Bao, “Enhancement of antimycobacterial Th1-cell responses by a Mycobacterium bovis BCG prime-protein boost vaccination strategy,” Cellular Immunology, vol. 285, no. 1-2, pp. 111–117, 2013.
[7] S. H. E. Kaufmann, “Tuberculosis vaccine development at a divide,” Current Opinion in Pulmonary Medicine, vol. 20, no. 3, pp. 294–300, 2014.
[8] J. A. Triccas and J. K. Nambiar, “Challenge of developing new tuberculosis vaccines to generate life-long protective immunity,” Expert Review of Vaccines, vol. 8, no. 7, pp. 823–825, 2009.
[9] A. Bekmurzayeva, M. Sypabekova, and D. Kanayeva, “Tuberculosis diagnosis using immunodominant, secreted antigens of Mycobacterium tuberculosis,” Tuberculosis, vol. 93, no. 4, pp. 381–388, 2013.
[31] P. Brodin, I. Rosenklands, P. Andersen, S. T. Cole, and R. Brosch, "ESAT-6 proteins: protective antigens and virulence factors?" Trends in Microbiology, vol. 12, no. 11, pp. 500–508, 2004.

[32] S. Bertholet, G. C. Iretton, D. J. Ordway et al., "A defined tuberculosis vaccine candidate boosts BCG and protects against multidrug-resistant Mycobacterium tuberculosis," Science Translational Medicine, vol. 2, no. 53, Article ID 53ra74, 2010.

[33] D. Bottai and R. Brosch, "Mycobacterial PE, PPE and ESX clusters: novel insights into the secretion of these most unusual protein families," Molecular Microbiology, vol. 73, no. 3, pp. 325–328, 2009.

[34] S. C. Derrick and S. L. Morris, "The ESAT6 protein of Mycobacterium tuberculosis induces apoptosis of macrophages by activating caspase expression," Cellular Microbiology, vol. 9, no. 6, pp. 1547–1555, 2007.

[35] N. C. G. van Pittius, S. L. Sampson, H. Lee, Y. Kim, P. D. van Helden, and R. M. Warren, "Evolution and expansion of the Mycobacterium tuberculosis PE and PPE multigene families and their association with the duplication of the ESAT-6 (esx) gene cluster regions," BMC Evolutionary Biology, vol. 6, article 95, 2006.

[36] M. Harboe, T. Oettinger, H. G. Wiker, I. Rosenklands, and P. Andersen, "Evidence for occurrence of the ESAT-6 protein in Mycobacterium tuberculosis and virulent Mycobacterium bovis and for its absence in Mycobacterium bovis BCG," Infection and Immunity, vol. 64, no. 1, pp. 16–22, 1996.

[37] F.-A. Mir, S. H. E. Kaufmann, and A. N. Eddine, "A multicistronic DNA vaccine induces significant protection against tuberculosis in mice and offers flexibility in the expressed antigen repertoire," Clinical and Vaccine Immunology, vol. 16, no. 10, pp. 1467–1475, 2009.

[38] P. S. Renshaw, K. L. Lightbody, V. Veverka et al., "Structure and function of the complex formed by the tuberculosis virulence factors CFP-10 and ESAT-6," The EMBO Journal, vol. 24, no. 14, pp. 2491–2498, 2005.

[39] X.-Y. He, J. Li, J. Hao et al., "Assessment of five antigens from Mycobacterium tuberculosis for serodiagnosis of tuberculosis," Clinical and Vaccine Immunology, vol. 18, no. 4, pp. 565–570, 2011.

[40] B. Samten, X. Wang, and P. F. Barnes, "Mycobacterium tuberculosis ESX-1 system-secreted protein ESAT-6 but not CFP10 inhibits human T-cell immune responses," Tuberculosis, vol. 89, no. 1, pp. S74–S76, 2009.

[41] S. Banu, N. Honoré, B. Saint-Joanis, D. Philpott, M.-C. Prévost, and S. T. Cole, "Are the PE-PGRS proteins of Mycobacterium tuberculosis variable surface antigens?" Molecular Microbiology, vol. 44, no. 1, pp. 9–19, 2002.

[42] M. J. Brennan, G. Delogu, Y. Chen et al., "Evidence that mycobacterial PE-PGRS proteins are cell surface constituents that influence interactions with other cells," Infection and Immunity, vol. 69, no. 12, pp. 7326–7333, 2001.

[43] P. P. Singh, M. Parra, N. Cadieux, and M. J. Brennan, "A comparative study of host response to three Mycobacterium tuberculosis PE-PGRS proteins," Microbiology, vol. 154, no. 11, pp. 3469–3479, 2008.

[44] M. G. Chaitra, M. S. Shaila, and R. Nayak, "Evaluation of T-cell responses to peptides with MHC class I-binding motifs derived from PE-PGRS 33 protein of Mycobacterium tuberculosis," Journal of Medical Microbiology, vol. 56, no. 4, pp. 466–474, 2007.

[45] G. Delogu, C. Pusceddu, A. Bua, G. Fadda, M. J. Brennan, and S. Zanetti, "Rv1818c-encoded PE-PGRS protein of Mycobacterium tuberculosis is surface exposed and influences bacterial cell structure," Molecular Microbiology, vol. 52, no. 3, pp. 725–733, 2004.

[46] C. Espitia, J. P. Laclette, M. Mondragón-Palomino et al., "The PE-PGRS glycine-rich proteins of Mycobacterium tuberculosis: a new family of fibronectin-binding proteins?" Microbiology, vol. 145, no. 12, pp. 3487–3495, 1999.

[47] G. Delogu and M. J. Brennan, "Comparative immune response to PE and PE-PGRS antigens of Mycobacterium tuberculosis," Infection and Immunity, vol. 69, no. 9, pp. 5606–5611, 2001.

[48] A. Karpoul, N. C. G. van Pittius, A. Namouchi et al., "Insights into the evolutionary history of tubercle bacilli as disclosed by genetic rearrangements within a PE-PGRS duplicated gene pair," BMC Evolutionary Biology, vol. 6, article 107, 2006.

[49] A. S. Mustafa, R. Al-Attiyah, S. N. M. Hanif, and F. A. Shaban, "Efficient testing of large pools of Mycobacterium tuberculosis RDI peptides and identification of major antigens and immunodominant peptides recognized by human Th1 cells," Clinical and Vaccine Immunology, vol. 15, no. 6, pp. 916–924, 2008.

[50] R. Al-Attiyah and A. S. Mustafa, "Computer-assisted prediction of HLA-DR binding and experimental analysis for human promiscuous Th1-Cell peptides in the 24 kDa secreted lipoprotein (LppX) of Mycobacterium tuberculosis," Scandinavian Journal of Immunology, vol. 59, no. 1, pp. 16–24, 2004.

[51] D. Kocincová, B. Sondén, L. De Mendoçā-Lima, B. Gicquel, and J.-M. Reyrat, "The Erp protein is anchored at the surface by a carboxy-terminal hydrophobic domain and is important for cell-wall structure in Mycobacterium smegmatis," FEMS Microbiology Letters, vol. 231, no. 2, pp. 191–196, 2004.

[52] L. I. Klep, M. Soria, F. C. Blanco et al., "Identification of two proteins that interact with the Erp virulence factor from Mycobacterium tuberculosis by using the bacterial two-hybrid system," BMC Molecular Biology, vol. 10, article 3, 2009.

[53] L. de Mendoçā-Lima, Y. Bordat, E. Pivert et al., "The allele encoding the mycobacterial Erp protein affects lung disease in mice," Cellular Microbiology, vol. 5, no. 1, pp. 65–73, 2003.

[54] S. Bhakta and J. Basu, "Overexpression, purification and biochemical characterization of a class a high-molecular-mass penicillin-binding protein (PBP), PBP1 and its soluble derivative from Mycobacterium tuberculosis," Biochemical Journal, vol. 361, no. 3, pp. 635–639, 2002.

[55] F.-X. Berthet, M. Lagranderie, P. Gounon et al., "Attenuation of virulence by disruption of the Mycobacterium tuberculosis erp gene," Science, vol. 282, no. 5389, pp. 759–762, 1998.

[56] H. Billman-Jacobe, R. E. Haite, and R. L. Coppel, "Characterization of a Mycobacterium smegmatis mutant lacking penicillin binding protein I," Antimicrobial Agents and Chemotherapy, vol. 43, no. 12, pp. 3011–3013, 1999.

[57] L. G. Dover, A. M. Cerdeñā-Tarraga, M. J. Pallen, J. Parkhill, and G. S. Besra, "Comparative cell wall core biosynthesis in the mycolated pathogens, Mycobacterium tuberculosis and Corynebacterium diphtheriae," FEMS Microbiology Reviews, vol. 28, no. 2, pp. 225–250, 2004.

[58] J. E. Graham and J. E. Clark-Curtiss, "Identification of Mycobacterium tuberculosis RNAs synthesized in response to phagocytosis by human macrophages by selective capture of transcribed sequences (SCOTS)," Proceedings of the National Academy of Sciences of the United States of America, vol. 96, no. 20, pp. 11554–11559, 1999.
[59] C. R. McEvoy, P. D. Van Helden, R. M. Warren, and N. C. G. Van Pittius, “Evidence for a rapid rate of molecular evolution at the hypervariable and immunogenic Mycobacterium tuberculosis PPE38 gene region,” BMC Evolutionary Biology, vol. 9, no. 1, article no. 237, 2009.

[60] K. Bansal, S. R. Elluru, Y. Narayana et al., "PE-PGRS antigens of Mycobacterium tuberculosis induce maturation and activation of human dendritic cells," The Journal of Immunology, vol. 184, no. 7, pp. 3495–3504, 2010.

[61] M. G. Drage, N. D. Pecora, A. G. Hise et al., “TLR2 and its coreceptors determine responses of macrophages and dendritic cells to lipoproteins of Mycobacterium tuberculosis,” Cellular Immunology, vol. 258, no. 1, pp. 29–37, 2009.

[62] A.-H. Hovav, J. Mullerad, L. Davidovitch et al., “The Mycobacterium tuberculosis recombinant 27-kilodalton lipoprotein induces a strong Th1-type immune response deleterious to protection,” Infection and Immunity, vol. 71, no. 6, pp. 3146–3154, 2003.

[63] I. C. Sutcliffe and D. J. Harrington, “Lipoproteins of Mycobacterium tuberculosis: an abundant and functionally diverse class of cell envelope components,” FEMS Microbiology Reviews, vol. 28, no. 5, pp. 645–659, 2004.

[64] M. Rezwan, T. Grau, A. Tschumi, and P. Sander, "Lipoprotein synthesis in mycobacteria," Microbiology, vol. 153, no. 3, pp. 652–658, 2007.

[65] E. C. Hett and E. J. Rubin, "Bacterial growth and cell division: a mycobacterial perspective," Microbiology and Molecular Biology Reviews, vol. 72, no. 1, pp. 126–156, 2008.

[66] E. C. Hett, M. C. Chao, A. J. Steyn, S. M. Fortune, L. L. Deng, and E. J. Rubin, "A partner for the resuscitation-promoting factors of Mycobacterium tuberculosis," Molecular Microbiology, vol. 66, no. 3, pp. 658–668, 2007.

[67] P. Brodin, L. Majlessi, L. Marsollier et al., "Dissection of ESAT-6 system I of Mycobacterium tuberculosis and impact on immunogenicity and virulence," Infection and Immunity, vol. 74, no. 1, pp. 88–98, 2006.