Solution-processed sky-blue phosphorescent organic light-emitting diodes based on 2-(5,9-dioxa-13b-boranaphtho[3,2,1-de]anthracene-8-yl)-4-(trimethylsilyl)pyridine chelated iridium complex

Yeong Heon Jeonga†, Chul Woong Joo b, c†, Hyein Jeongd, Jonghee Lee e and Yun-Hi Kim a

a Department of Chemistry and ERI, Gyeongsang National University, Jinju, Republic of Korea; b Reality Device Research Division, Electronics and Telecommunications Research Institute, Daejeon, Republic of Korea; c School of Chemical Engineering, Sungkyunkwan University, Suwon, Republic of Korea; d Samsung Display Co, Ltd #1, Samsung-ro, Giheung-gu, Republic of Korea; e Department of Creative Convergence Engineering, Hanbat National University, Daejeon, Republic of Korea

ABSTRACT
A new 2-(5,9-dioxa-13b-boranaphtho[3,2,1-de]anthracene-8-yl)-4-(trimethylsilyl)pyridine-based iridium complex was synthesized for efficient solution-processed sky-blue phosphorescent organic light-emitting diodes (PhOLEDs). The effect of dioxaboranaphthoanthracene instead of phenyl with the electron-accepting group, as well as the bulky pyridine with the trimethylsilyl group, on the ligand was investigated. The new dopant was found to have an extremely high photoluminescence quantum yield of 94% when doped in an emissive layer. As a result, the solution-processed blue PhOLED consisting of a simple structure without any interlayer exhibited remarkable light-emitting performance with an external quantum efficiency of 8.93% and a current efficiency of 23.56 cd/A.

ARTICLE HISTORY
Received 5 April 2022
Accepted 20 June 2022

KEYWORDS
Organic light-emitting diodes; solution-processed; boron; phosphorescent; external quantum efficiency; iridium complex

Introduction
Light-emitting transition metal complexes have been widely used as emitting dopants in the fields of organic light-emitting diodes (OLEDs) [1,2]. Cyclometalated iridium(III) complexes are one of the most thoroughly studied classes of compounds for these applications due to their excellent thermal stability and photostability, relatively short phosphorescence lifetime, easy color tuning, and high photoluminescence quantum yield [3–8]. This complex has two main structural classes: a homocomplex of type [Ir(CN)3] (CN = cyclometalated ligand), particularly in a fac geometry, and the general formula [Ir(CN)2(LL')]n (LL' = ancillary ligand, n = −1, 0, +1). Color tuning is most often achieved by altering the structure of the cyclometalated ligand; however, ancillary ligands in the heteroleptic complex can sometimes affect the emission color [9–11]. The combination of cyclometalating and ancillary ligands also characterizes the emission T1 state, which is mostly a combination of ligand center (3LC or 3π*) and intermetallic charge transfer (3MLCT or 3dπ*) mixing. Although the structure–property relationship of cyclometalated iridium complexes has been extensively studied, an ongoing challenge in this field is designing molecules that ensure stable and efficient deep-blue emission [11–13].

The most common design rule for blue-light emission of iridium complexes is to introduce an electron donor group at the pyridine group and an electron-withdrawing group at the phenyl group. Since the electron-withdrawing group in the phenyl moiety lowers the highest occupied molecular orbital (HOMO) level, a phenyl part with various electron-withdrawing groups introduced, such as 2,4-difluorophenyl, 3-trifluorocarboxylated-2,4-difluorophenyl, 3-trifluorocarboxylated-2,4-difluorophenyl, 3-trifluoromethyl-2,4-difluorophenyl, 3-nitro-2,4-difluorophenyl, 3-pyridyl-2,4-difluorophenyl, was designed [14–24]. A trimethylsilyl group was recently introduced in the pyridine part, which increased the bandgap of the emitter and increased the horizontal...
dipole orientation (θ) of the Ir complexes, thereby leading to a highly efficient blue emission [24]. In addition, further research has been conducted on solution-based processes instead of the vacuum-deposited process in order to realize cost-effective and large-area mass production of organic electronics [25–29]. These previously reported literatures are exemplary in that they not only demonstrate the great potential of soluble OLEDs, but also the undeniable role of highly efficient electrophosphorescent emitters in achieving high-performance OLEDs in the realization of low-cost, large-area, and inkjet-printed electronics.

In this study, a new 2-(5,9-dioxa-13b-boranaphtho[3,2,1-de]anthracene-8-yl)−4-(trimethylsilyl)pyridine-based iridium complex, (BOPySi)2IrPic, was designed and synthesized for high-efficiency solution-processed sky-blue phosphorescent OLEDs (PhOLEDs). To lower the HOMO energy level, the 2-(5,9-dioxa-13b-boranaphtho[3,2,1-de]anthracene-8-yl) group was introduced instead of the phenyl part with general electron acceptor groups. Furthermore, the introduction of the trimethylsilyl group has led to the increase in the bandgap and horizontal dipole orientation. It is also advantageous for easily dissolving the synthesized dopant in common organic solvents because of the trimethylsilyl functional group in the boron containing ligand. The solution-processed sky-blue PhOLEDs with a (BOPySi)2IrPic emitter-doped emissive layer (EML) exhibited a peak external quantum efficiency (EQE) of 8.93% with a current efficiency (CE) of 23.56 cd/A.

Experimental

Figure 1 (a) demonstrated solution-processed PhOLEDs based on the two new emitters that were fabricated on glass substrates with a structure of indium tin oxide (ITO, 150 nm) as the bottom anode, PEDOT:PSS (40 nm) as HIL, mCP:TSP01: (BOPySi)2IrPic (1:1:20 wt%, 40 nm) as single EML, BmPyPB (x nm) as ETL, LiF (1 nm) as the electron injection layer (EIL), and aluminum (Al) (100 nm) as the top cathode. A mixed-host layer consisting of a hole-transporting host, 1,3-bis(N-carbazolyl) benzene (mCP), and an electron-transporting host, diphenyl[4-(triphenylsilyl)phenyl]phosphine oxide (TSP01), was doped with (BOPySi)2IrPic as an emitting layer (EML). Then, 40-nm-thick hole injection layers (HILs) of poly(3,4-ethylenedioxythiophene): poly(styrenesulfonate) (PEDOT:PSS) and electron transfer layers (ETLs) of 1,3-bis(3,5-dipyrid-3-yl-phenyl)benzene (BmPyPB) with thicknesses of 30, 40, and 50 nm were fabricated. The mixed-host mCP:TSP01 (1:1) and dopant of (BOPySi)2IrPic were dissolved in the toluene solvent. The total concentration of the EML solution was 1.0 wt%. The detailed device fabrication and encapsulation methods were listed in the supporting information.

Results and discussion

The synthetic routes and chemical structures of (BOPySi)2IrPic are shown in Scheme 1. BOPySi ligand was synthesized by using the Suzuki coupling reaction. Cyclometalated iridium m-chloro-bridged dimer was prepared by using the well-known Nonoyama reaction between the ligand and IrCl3 ·xH2O in a mixture of water and 2-ethoxyethanol (5 mL: 15 mL). The new (BOPySi)2IrPic sky-blue Ir (III) complex was obtained via the reaction of the μ-chloro-bridged dimer with 2-picolinic acid in 2-ethoxyethanol. The structure of the intermediates and new iridium complexes was confirmed by 1H-NMR, 13C-NMR, and HRMS measurements. The supporting information contains the details of the synthesis and characterizations.

The photophysical properties of the newly synthesized sky-blue emitters, (BOPySi)2IrPic, in dilute chloroform solutions were examined via the UV-vis absorption and photoluminescence (PL) spectra, as shown in Figure 2. Meanwhile, the photophysical data of (BOPySi)2IrPic are summarized in Table 1. The absorption maximums of (BOPySi)2IrPic are approximately 255, 349, and 410 nm. It is known that 255 nm can be matched to the

![Figure 1](image-url)
\(\pi \rightarrow \pi^* \) transition of the cyclometalated ligand, while 349 nm belongs to the singlet metal ligand charge transfer transition \(^{1}\text{MLCT}\) transition. Moreover, the weak 410 nm may belong to the triplet metal ligand charge transfer transition \(^{3}\text{MLCT}\). Photoluminescence was observed at approximately 479 nm with a 509-nm shoulder, which is 4-nm red-shifted compared with bis(4,6-difluorophenylpyridinato-N,C2)picolinatoiridium (FIrpic). \(T_1 \) was calculated to be almost 2.77 eV from the onset of the low-temperature PL measurements.

In addition, the thermal properties of the synthesized dopant were characterized by thermogravimetric analysis (TGA), and differential scanning calorimetry (DSC) measurements were conducted under an \(\text{N}_2 \)-filled atmosphere (see Fig. S1 and Table 1). The TGA results revealed that \((\text{BOPySi})_2\text{IrPic}\) has remarkable thermal stability, with a 5% weight loss temperature \((\Delta T_{5\%})\) of more than 430°C. However, the DSC results did not reveal the temperatures of the glass transition \((T_g)\), melting \((T_m)\), and crystallization \((T_c)\) of the materials.

The HOMO and the lowest unoccupied molecular orbital (LUMO) energy level of \((\text{BOPySi})_2\text{IrPic}\) could be estimated from cyclic voltammograms and the optical bandgap from the absorption edge, as shown in Fig. S2. In addition, the HOMO energy level of \((\text{BOPySi})_2\text{IrPic}\) was calculated to be \(-5.5\) eV according to the equation of \(E_{\text{HOMO}}\) (eV) = \(-4.84 - [E_{\text{ox, onset}} - E_{1/2}(\text{ferrocene})]\). The value of the energy gap \(E_g\) was obtained by using the UV-vis absorption spectrum edge \(\lambda_{\text{a, edge}}\) based on the formula of \(E_g = 1240/\lambda_{\text{a, edge}}\). The calculated optical bandgap of \((\text{BOPySi})_2\text{IrPic}\) is 2.90 eV. The LUMO energy level was estimated from the difference between the optical bandgap of 2.9 eV and the HOMO energy level of \(-5.5\) eV by using the equation \(E_{\text{LUMO}} = E_g + E_{\text{HOMO}}\).

The LUMO energy level of \((\text{BOPySi})_2\text{IrPic}\) calculated by using this equation was \(-2.60\) eV, as listed in Table 1.

In order to achieve high light-emitting performance, the choice of the host material is important, particularly the high photoluminescent quantum yield (PLQY) of the emitter-doped host layer. To meet this requirement, the dependency of the PLQY on the host variations was tested. In particular, mCP, TSPO1, and a mixture of mCP and TSPO1 were tested as host materials, which have been known to be good host materials for solution-processed blue PhOLEDs due to their high triplet energy levels and good charge transfer properties. It was found that the \((\text{BOPySi})_2\text{IrPic}\) emitter had much higher PLQY values when doped in a mixed-host layer consisting of a hole-transporting host (mCP) and an electron-transporting host (TSPO1) than with a single host structure. The absolute PLQYs of \((\text{BOPySi})_2\text{IrPic}\) were measured as 90%, 31%, and 94%, respectively, for 20% doping mCP, mCBP, and mCP: TSPO1(1:1) films. As

Compound	UV \(\lambda_{\text{max}}\) (nm)	PL \(\lambda_{\text{max}}\) (nm)	FWHM (nm)	\(T_d,5\%\) (°C)	\(T_g\) (°C)	\(T_m\) (°C)	HOMO (eV)	LUMO (eV)	\(E_g\) (eV)	\(T_1\)
\((\text{BOPySi})_2\text{IrPic}\)	255, 349	479, 509	46.4	430	–	–	5.5	2.6	2.9	2.77

Figure 2. UV-vis absorption and PL spectrum of \((\text{BOPySi})_2\text{IrPic}\).

Figure 3. Current density \((J)\)–voltage \((V)\)–luminance \((L)\) characteristics of the solution-processed PhOLED.

Figure 4. Normalized electroluminescence (EL) spectra.
Table 2. Device performances of solution processed OLEDs in this study

dopant	ETL Thickness	EQE (%)	CE (cd/A)	CIE coordinates (x, y)
(BOPySi)_2IrPic	30nm	5.58	14.50	(0.20, 0.53)
	40nm	8.09	21.16	(0.21, 0.53)
	50nm	8.93	23.56	(0.22, 0.53)

A result, solution-processed OLEDs were fabricated with this mCP:TSPO1 mixed-host structure.

The current density (J)–voltage (V)–luminance (L) characteristics and normalized electroluminescence (EL) spectra of two (BOPySi)_2IrPic-doped sky-blue PhOLEDs with 50-nm-thick BmPyPB ETLs are shown in Figures 3 and 4, respectively. The device performances of the OLEDs used in this study, including key light-emitting performance parameters and EL emission characteristics, are summarized in Table 2. Solution-processed PhOLEDs showed low turn-on voltages at approximately 4.0 V at 1 cd/m², which could be explained by relatively small injection barriers from both the ETL to the EML and the HTL to the EML, as shown in the band diagram of Figure 1. The low injection barrier can be attributed to the mCP:TSPO1 mixed host, as well as the adequate HOMO/LUMO energy level of the dopants.

In Figure 4, the EL spectra of the PhOLEDs showed peak emission at approximately 489 nm, which is slightly red-shifted compared with the (BOPySi)_2IrPic PL emission due to the strong intermolecular interactions and the optimization of optical length. Shoulder EL emission at approximately 516 nm was found and verified in the PL study. The color coordinates of (BOPySi)_2IrPic with 50-nm-thick BmPyPB ETL were (0.22, 0.53).

The EQE and CE values as a function of the luminance are given in Figure 5 and Table 2. Based on the host combination, the PLQY value of (BOPySi)_2IrPic in an mCP and TSPO1 mixed host was quite high at 94%, as shown in Table 3. This result could improve the light-emitting performances of solution-processed devices. In general, the solution-processed PhOLEDs with (BOPySi)_2IrPic emitter showed high efficiencies in terms of EQE and CE, even though the device structure is very simple, without any interlayer in the HIL–EML and EML–ETL interfaces. The solution-processed (BOPySi)_2IrPic-based PhOLEDs with 30-nm, 40-nm, and 50-nm BmPyPB ETL thicknesses showed 5.58%, 8.09%, and 8.93% EQE values, respectively. In addition, the (BOPySi)_2IrPic device with a 50-nm-thick BmPyPB ETL device showed the highest CE (23.56 cd/A). It is possible to achieve high-performance solution-processed OLEDs with a very simple structure by optimizing ETL thickness, selecting an appropriate host, and developing a new dopant combination. As illustrated in Fig. S3, we also found that the light-emitting performances of (BOPySi)_2IrPic emitter-based device in this study show highly improved efficiencies compared to those of FIrpic-based OLED, which is the most well-known reference phosphorescent sky-blue dopant.

Table 3. PLQY values of (BOPySi)_2IrPic doped host variations

PLQY (%)	mCP host	mCBP host	mCP:TSPO1 host
(BOPySi)_2IrPic	90	31	94

Figure 5. (a) External quantum efficiency (EQE) and (b) current efficiency (CE) — luminance characteristics of the device designed.

Conclusion

A new 2-(5,9-dioxo-13b-boranaphtho[3,2,1-de]anthracene-8-yl) electron-acceptor-group-based iridium complex was designed and synthesized for solution-processed sky-blue PhOLEDs. The new dopant doped in a mixed host of mCP:TSPO1 showed an extremely high PLQY of 94%. The resultant solution-processed sky-blue PhOLED with a very simple device structure exhibited a high CE of 23.56 cd/A and EQE of 8.93% through the optimization of the doping concentration and ETL thickness. Therefore, a new molecular design was proposed in order to
develop high-efficiency printing-processed phosphorescent OLEDs.

Acknowledgements

This work was supported by the Electronics and Telecommunications Research Institute (ETRI) grant funded by the Korean government (21ZB1200, The Development of the Technologies for ICT Materials, Components and Equipment) and the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (2018R1A6A1A03026005, 2021R1A2B5B03086367, and 2019M3D1A210396911).

Disclosure statement

No potential conflict of interest was reported by the author(s).

Funding

This work was supported by National Research Foundation of Korea: [Grant Number 2018R1A6A1A03026005, 2019M3D1A210396911, 2021R1A2B5B03086367]; Electronics and Telecommunications Research Institute (ETRI): [Grant Number 21ZB1200].

Notes on Contributors

Yeong Heon Jeong received his B.S. and M.S. in chemistry degrees from Gyeongsang National University (GNU) in 2019 and 2022, respectively. He is a doctoral-course student from 2022, and he is studying the development of organic semiconductor materials for OLEDs, OPVs, and OTFTs at GNU.

Chul Woong Joo received his B.S. and M.S. in Polymer Science and Engineering of Organic Electronics Devices degrees from Dankook University, South Korea in 2008 and 2010, respectively. He joined the Electronics and Telecommunications Research Institute in Daejeon, South Korea in 2011, and his current research interests include device architectures in OLEDs and next-generation displays.

Hyein Jeong is a Master in Samsung Display Co. She received her Ph.D. degree from Pusan National University. She has been researching on the OLED materials and devices in Samsung Display Co.

Jonghee Lee received his B.S., M.S., and Ph.D. in Chemistry from the Korea Advanced Institute of Science and Technology (KAIST), Republic of Korea in 2002, 2004, and 2007, respectively. He joined Electronics Telecommunications Research Institute (ETRI), Republic of Korea in 2007. Then, he moved to the Institut für Angewandte Photophysik (IAPP) at the Technische Universität Dresden in Germany as a post-doc researcher under the Alexander von Humboldt fellowship in 2010. After 2 years, he joined ETRI again in 2012 and has worked on solution process, as well as light-extraction techniques, for organic light-emitting diodes (OLEDs). He has been an associate professor at Hanbat National University, Daejeon, South Korea since 2018.

Yun-Hi Kim is a professor in the Department of Chemistry of Gyeongsang National University (GNU). She obtained her M.S. and Ph.D. degrees from Korea Advanced Institute of Science and Technology (KAIST). She worked at the Department of Chemistry and Department of Materials
Science and Engineering at the Massachusetts Institute of Technology (MIT) as a post-doc fellow and a post-doc associate. Since joining the faculty of GNU in 2006, she has been researching on the development of an organic semiconductor for OLEDs, OTFTs, and organic solar cells.

References

[1] M.A. Baldo, D.F. O’Brien, Y. You, A. Shoustikov, S. Sibley, M.E. Thompson, and S.R. Forrest, Highly Efficient Phosphorescent Emission from Organic Electroluminescent Devices, Nature 395, 151–154 (1998). doi:10.1038/25954

[2] H.J. Jang, J.Y. Lee, G.W. Baek, J. Kwak, and J.-H. Park, Progress in the development of the display performance of AR, VR, QLED and OLED devices in recent years, J. Inf. Disp. 23, 1–17 (2022). doi:10.1080/15980316.2022.2035835

[3] A.B. Tamayo, S. Garon, T. Sajoto, P.I. Djurovich, I.M. Tsyba, R. Bau, and M.E. Thompson, Cationic Bis-Cyclometalated Iridium(III) Diimine Complexes and Their Use in Efficient Blue, Green, and Red Electroluminescent Devices, Inorg Chem 44, 8723–8732 (2005). doi:10.1021/ic050970t

[4] M.S. Lowry, J.J. Goldsmith, J.D. Slinker, R. Rohl, R.A. Pascal, G.G. Malliaras, and S. Bernhard, Single-Layer Electroluminescent Devices and Photoinduced Hydrogen Production from an Iridium(III) Complex, Chem Mater 17, 5712–5719 (2005). doi:10.1021/cm051312+4

[5] K.K.-W. Lo, D.C.-M. Ng, and C.-K. Chung, First Examples of Luminescent Cyclometalated Iridium(III) Complexes as Labeling Reagents for Biological Substrates, Organometallics 20, 4999–5001 (2001). doi:10.1021/om0101652b

[6] Q. Zhao, M. Yu, L. Shi, S. Liu, C. Li, M. Shi, Z. Zhou, C. Huang, and F. Li, Cationic Iridium(III) Complexes with Tunable Emission Color as Phosphorescent Dyes for Live Cell Imaging, Organometallics 29, 1085–1091 (2010). doi:10.1021/om090691r

[7] R. Gao, D.G. Ho, B. Hernandez, M. Selke, D. Murphy, P.I. Djurovich, and M.E. Thompson, Bis-Cyclometalated Ir(III) Complexes as Efficient Singlet Oxygen Sensitizers, J Am Chem Soc 124, 14828–14829 (2002). doi:10.1021/ja0280729

[8] E. Zysman-Colman, Iridium(III) in Optoelectronic and Photonics Applications (John Wiley & Sons, Inc, Chichester, West Sussex U.K., 2017).

[9] M.S. Lowry, W.R. Hudson, R.A. Pascal, and S. Bernhard, Accelerated Luminophore Discovery Through Combinatorial Synthesis, J Am Chem Soc 126, 14129–14135 (2004). doi:10.1021/ja047156+

[10] P.N. Curtin, L.L. Tinker, C.M. Burgess, E.D. Cline, and S. Bernhard, Structure—Activity Correlations Among Iridium(III) Photosensitzers in a Robust Water-Reducing System, Inorg Chem 48, 10498–10506 (2009). doi:10.1021/ic9007763

[11] Y. You, and S.Y. Park, Inter-Ligand Energy Transfer and Related Emission Change in the Cyclometalated Heteroleptic Iridium Complex: Facile and Efficient Color Tuning over the Whole Visible Range by the Ancillary Ligand Structure, J Am Chem Soc 127, 12438–12439 (2005). doi:10.1021/ja052880t

[12] J. Li, P.I. Djurovich, B.D. Alleyne, M. Yousufuddin, N.N. Ho, J.C. Thomas, J.C. Peters, R. Bau, and M.E. Thompson, Synthetic Control of Excited-State Properties in Cyclometalated Ir(III) Complexes Using Ancillary Ligands, Inorg Chem 44, 1713–1727 (2005). doi:10.1021/ic048599h

[13] N.M. Shavaleev, F. Monti, R. Scopelliti, A. Baschieri, L. Sambri, N. Armaroli, M. Grätzel, and M.K. Nazeeruddin, Extreme Tuning of Redox and Optical Properties of Cationic Cyclometalated Iridium(III) Isocyaniode Complexes, Organometallics 32, 460–467 (2013). doi:10.1021/om300894m

[14] C. Adachi, R.C. Kwong, P. Djurovich, V. Adamovich, M.A. Baldo, M.E. Thompson, and S.R. Forrest, Endothermic Energy Transfer: A Mechanism for Generating Very Efficient High-Energy Phosphorescent Emission in Organic Materials, Appl Phys Lett 79, 2082–2084 (2001). doi:10.1063/1.1400076

[15] A.B. Tamayo, B.D. Alleyne, P.I. Djurovich, S. Lamansky, I. Tsyba, N.N. Ho, R. Bau, and M.E. Thompson, Synthesis and Characterization of Facial and Meridional Tris-cyclometalated Iridium(III) Complexes, J Am Chem Soc 125, 7377–7387 (2003). doi:10.1021/ja034537z

[16] S. Lee, S.O. Kim, H. Shin, H.J. Yun, K. Yang, S.K. Kwon, J.J. Kim, and Y.H. Kim, Deep-Blue Phosphorescence from Perfluoro Carbonyl-Substituted Iridium Complexes, J Am Chem Soc 135, 14321–14328 (2013). doi:10.1021/ja4065188

[17] V.V. Grushin, N. Herron, D.D. LeCloux, W.J. Marshall, V.A. Petrov, and Y. Wang, New, efficient electroluminescent materials based on organometallic Ir complexes, Chem Commun 16, 1494–1495 (2001). doi:10.1039/b103490c

[18] S. Takizawa, H. Ichizono, T. Nishida, S. Tokito, and Y. Yamashita, Finely-tuned Blue-phosphorescent Iridium Complexes Based on 2-Phenylpyridine Derivatives and Application to Polymer Organic Light-emitting Device, Chem Lett 35, 748–749 (2006). doi:10.1246/cl.2006.748

[19] J.B. Kim, S.H. Han, K. Yang, S.K. Kwon, J.J. Kim, and Y.H. Kim, Highly Efficient Deep-Blue Phosphorescence from Heptfluoropropyl-Substituted Iridium Complexes, Chem Commun (Camb) 51, 58–61 (2015). doi:10.1039/C4CC07768G

[20] H.J. Seo, K.M. Yoo, M. Song, J.S. Park, S.H. Jin, Y.I. Kim, and J.J. Kim, Deep-Blue Phosphorescent Iridium Complexes with Picolinic Acid N-Oxide as the Ancillary Ligand for High Efficiency Organic Light-Emitting Diodes, Org Electron 11, 564–572 (2010). doi:10.1016/j.orgel.2009.12.014

[21] S.H. Kim, J. Jang, S.J. Lee, and J.Y. Lee, Deep Blue Phosphorescent Organic Light-Emitting Diodes Using a Si Based Wide Bandgap Host and an Ir Dopant with Electron Withdrawing Substituents, Thin Solid Films 517, 722–726 (2008). doi:10.1016/j.tsf.2008.08.156

[22] C. Fan, Y. Li, C. Yang, H. Wu, J. Qin, and Y. Cao, Phosphoryl/Sulfonyl-Substituted Iridium Complexes as Blue Phosphorescent Emitters for Single-Layer Blue and White Organic Light-Emitting Diodes by Solution Process, Chem Mater 24, 4581–4587 (2012). doi:10.1021/cm302850w

[23] C.H. Yang, M. Mauro, F. Polo, S. Watanabe, I. Muenster, R. Fröhlich, and L. De Cola, Deep-Blue-Emitting
Heteroleptic Iridium(III) Complexes Suited for Highly Efficient Phosphorescent OLEDs, Chem Mater 24, 3684–3695 (2012). doi:10.1021/cm3010453

[24] H. Shin, Y.H. Ha, H.G. Kim, R. Kim, S.K. Kwon, Y.H. Kim, and J.J. Kim, Controlling Horizontal Dipole Orientation and Emission Spectrum of Ir Complexes by Chemical Design of Ancillary Ligands for Efficient Deep-Blue Organic Light-Emitting Diodes, Adv Mater 31, 1808102 (2019). doi:10.1002/adma.201808102

[25] J.H. Jou, M.F. Hsu, W.B. Wang, C.L. Chin, Y.C. Chung, C.T. Chen, J.J. Shyue, S.M. Shen, M.H. Wu, W.C. Chang, C. Liu, S. Chen, and H. Chen, Solution-Processable, High-Molecule-Based Trifluoromethyl-Iridium Complex for Extraordinarily High Efficiency Blue-Green Organic Light-Emitting Diode, Chem Mater 21, 2565–2567 (2009). doi:10.1021/cm900387a

[26] X. Liu, Z. Yu, M. Yu, X. Zhang, Y. Xu, P. Lv, S. Chu, C. Liu, W.Y. Lai, and H. Wei, Iridium(III)-Complexed Polydendrimers for Inkjet-Printing OLEDs: The Influence of Solubilizing Steric Hindrance Groups, ACS Appl Mater Interfaces 11, 26174–26184 (2019). doi:10.1021/acsami.9b07238

[27] Y. Jiang, P. Lv, J.Q. Pan, Y. Li, H. Lin, X.W. Zhang, J. Wang, Y.Y. Liu, Q. Wei, G.C. Xing, L. WY, and W. Huang, Low-Threshold Organic Semiconductor Lasers with the Aid of Phosphorescent Ir(III) Complexes as Triplet Sensitizers, Adv Func Mater 29, 1806719 (2019). doi:10.1002/adfm.201806719

[28] S. Cao, L. Hao, W.Y. Lai, H. Zhang, Z. Yu, X. Zhang, X. Liu, and W. Huang, Distinct phosphorescence enhancement of red-emitting iridium(< scp > iii < /scp >) complexes with formyl-functionalized phenylpyridine ligands, J Mater Chem C 4, 4709–4718 (2016). doi:10.1039/C6TC00856A

[29] Y. Tao, X. Guo, L. Hao, R. Chen, H. Li, Y. Chen, X. Zhang, W. Lai, and W. Huang, A Solution-Processed Resonance Host for Highly Efficient Electrophosphorescent Devices with Extremely Low Efficiency Roll-off, Adv Mater 27, 6939–6944 (2015). doi:10.1002/adma.201503108