Epigenetic and genetic dispositions of ovarian carcinomas

Ken Yamaguchi¹, Noriomi Matsumura¹, Masaki Mandai², Tsukasa Baba¹, Ikuo Konishi¹, and Susan K. Murphy³

¹ Department of Gynecology and Obstetrics, Graduate School of Medicine, Kyoto University, Kyoto, 606-8507 Japan
² Department of Obstetrics and Gynecology, Kinki University, Faculty of Medicine, Osakasayama, Osaka, 589-8511 Japan
³ Department of Obstetrics and Gynecology, Duke University Medical Center, Durham NC, 27708 USA

Correspondence to: Susan K. Murphy, email: susan.murphy@duke.edu

Keywords: epigenetics, methylation, high-grade serous adenocarcinoma, ovarian clear cell carcinoma

Received: September 14, 2014 Accepted: September 15, 2014 Published: September 22, 2014

This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

ABSTRACT

Ovarian clear cell carcinoma has unique clinical characteristics with slow growth and a stress-resistant phenotype that is epigenetically induced during cancer progression in an inflammatory microenvironment. We refer to this as an epigenetic disposition, which is frequently associated with unique biomolecular features including prominent alterations in methylation, microsatellite instability and ARID1A mutations. This characteristic methylation profile also affects glucose metabolism, commonly known as the Warburg effect. In contrast, high-grade ovarian serous adenocarcinoma has a genetic disposition that is accompanied by rapid growth, TP53 mutations and chromosomal instability. The concept of epigenetic and genetic dispositions is applicable to various malignancies, including gastric and colorectal cancers. These disposition classifications are based on fundamental characteristics of malignancies and may provide a new vantage point for development of individualized therapies.

INTRODUCTION

Ovarian cancer has the worst mortality of all malignant gynecologic diseases. Improved understanding of the heterogeneous features of this disease, including distinct clinicopathological and molecular characteristics, are needed to develop individualized therapeutic strategies [1]. The most frequent histological subtype among epithelial ovarian cancers is high-grade serous adenocarcinoma (SAC). SAC develops de novo from the fallopian tube epithelium [2]. The majority of SACs exhibit rapid proliferation and are at an advanced stage at the time of diagnosis. Following surgical debulking and chemotherapy, most show a favorable response. TP53 mutations are present in 96% of SACs, leading to chromosomal instability [3, 4]. In contrast, ovarian clear cell carcinoma (CCC) has distinct clinical and biomolecular features as compared to the other subtypes of ovarian cancer. Properties of ovarian CCC include development associated with endometriosis, chemotherapeutic resistance and thromboembolism complications [5]. These characteristics, referred to as “ovarian CCC-likeness”, are affected in the carcinogenic process by a stressful inflammatory environment [6]. Mutations of ARID1A, a member of the SWI/SNF chromatin remodeling complex, occur in approximately half of ovarian CCC [6-8], and overexpression of HNF1B is a hallmark of ovarian CCC [5, 9]. Epigenetically, DNA methylation profiles of ovarian CCC also differ substantially from that of the other subtypes [10]. We hypothesize here that different histologic subtypes of ovarian cancer exhibit epigenetic or genetic dispositions. Several other cancers, including gastric and colon cancers, also show distinctive dispositions and develop in the same organs as certain subtypes of ovarian cancer. Elucidation of these dispositions will lead to advancement of novel biomarker development and help advance implementation of individualized therapies. In this article, we describe the clinical and biomolecular differences that define epigenetic and genetic dispositions in ovarian cancer, and how these might apply to other malignancies.
Epigenetic and genetic dispositions of ovarian cancer

Recent genome-wide technologies have allowed us to group malignancies based on genetic and epigenetic classifications. Ovarian SAC is initiated by \(TP53 \) mutations whereas \(ARID1A \) mutations are observed in the development of roughly half of ovarian CCC [3, 8]. In ovarian CCC, ARID1A and HNF1B have different functional roles. Mutations of tumor suppressor \(ARID1A \) contributes to carcinogenesis in several cancers, including ovarian cancer [11]. HNF1B function is central to the definition of the fundamental ovarian CCC-likeness characteristics. HNF1B influences thrombosis and glucose metabolism, in particular for cancer cells exhibiting the Warburg effect [12, 13]. The expression of \(HNF1B \) is epigenetically regulated by DNA methylation. Indeed, ovarian CCCs have unique methylation profiles that distinguish them from other histological subtypes of ovarian cancer [10]. In CCC, HNF1 pathway genes are activated by coordinate hypomethylation, while many genes belonging to the estrogen receptor (ER) network are suppressed by synchronous hypermethylation. Alterations in DNA methylation are thought to be an early event in cancer progression [14]. Genetic inactivation of \(ARID1A \) initiates carcinogenesis while epigenetic alterations contribute to biological phenotypes as well as progression of ovarian CCC. On the other hand, \(TP53 \) mutations initiate carcinogenesis and also contribute to the rapid growth that characterizes ovarian SAC. In terms of biomolecular features, SAC with \(TP53 \) mutations are dominated by copy number alterations [4]. To help distinguish these biological characteristics, we refer to SAC as having a genetic disposition while CCC has an epigenetic disposition (Figure 1).

The biological features of several malignancies arising in other organs lends itself to their classification as having an epigenetic or genetic disposition. Aberrant DNA methylation is frequently observed in cancers associated with chronic inflammation and infection with viruses or other pathogenic microorganisms, such as Epstein–Barr virus, \(Helicobacter pylori \), hepatitis B or C viruses or human papilloma virus. Genome-wide assessments have led to the identification of novel genetic mutations and epigenetic subclassifications. Kai et. al. showed hypermethylation, representing an epigenetic disposition, is observed in microsatellite instability (MSI) and Epstein–Barr virus (EBV) subgroups of gastric cancer, but not in intestinal and diffuse subtypes of gastric tumors. Intestinal

![Figure 1: Overview of the features that contribute to epigenetic and genetic dispositions.](image)

An epigenetic disposition develops in a stressful microenvironmental context, whereas a genetic disposition is dominated by \(TP53 \) mutations and chromosomal instability. An epigenetic disposition is associated with \(ARID1A \) mutations and the Warburg effect, which is also epigenetically regulated.
and diffuse subgroups frequently exhibit $TP53$ mutations (56%) without increased DNA methylation, conforming to a genetic disposition of gastric cancer [15, 16]. The diffuse subtype of gastric cancer involves chromosomal alterations similar to ovarian SAC [17]. Alteration of DNA methylation is an earlier event, preceding chromosomal instability during hepatocarcinogenesis with chronic inflammation and/or persistent viral infection [18]. Some colorectal cancers have a high frequency of DNA methylation in specific CpG islands, referred to as the “CpG island methylator phenotype” (CIMP) [19]. Epigenetic profiling identified three DNA methylation-based subgroups of colorectal cancer: CIMP-high, CIMP-low and CIMP-negative [19-22]. The CIMP-high subgroup is associated with MSI (80%) and $BRAF$ mutations (53–100%) as well as rare $KRAS$ and $TP53$ mutations (0–18% and 11%, respectively), indicating an epigenetic disposition. The CIMP-low subgroup is characterized by a high rate of $KRAS$ mutations (45–92%) and lower rates of MSI, $BRAF$, or $TP53$ mutations (0, 0–4, and 31–38% respectively), suggesting a mixed genetic and epigenetic disposition. CIMP-negative cases have a high frequency of $TP53$ mutations (71–74%), copy-number alterations [23] and rare MSI (12%) or mutations of $BRAF$ (0–2%) or $KRAS$ (9–33%), representing the genetic disposition subgroup in colorectal cancer. Together these findings suggest that an epigenetic disposition may be involved in some inflammation-induced cancers, while subtypes that are overrepresented by $TP53$ mutations demonstrate a genetic disposition. These biomolecular features are summarized in Table 1.

ARID1A mutations in the epigenetic disposition phenotype

ARID1A belongs to the SWI/SNF (SWItch/Sucrose NonFermentable) complex, whose members have ATPase activities and regulate transcription by altering chromatin structure. The SWI/SNF complex is composed

Cancer	Subtypes	Molecular features
Ovarian cancer	Epigenetic disposition	$ARID1A$ mutations (46–57%)
	Clear cell carcinoma	$HNF1B$ hypomethylation
	Genetic disposition	ER pathway hypermethylation
	High-grade serous adenocarcinoma	$TP53$ mutations (96%)
		Chromosomal instability
Gastric cancer	Epigenetic disposition	Hypermethylation
	Microsatellite instability (MSI type)	MSI
		$ARID1A$ mutations (83%)
	Epstein-Barr virus (EBV) type	Hypermethylation
		$ARID1A$ mutations (73%)
	Genetic disposition	$TP53$ mutations (56%)
	Intestinal and diffuse type (MSI stable, no EBV type)	Chromosomal instability
Colorectal cancer	Epigenetic disposition	Hypermethylation
	CIMP-high	MSI
		$ARID1A$ mutations (39%)
		$BRAF$ mutations (53–100%)
	CIMP-low	$KRAS$ mutations (45–92%)
	Genetic disposition	$TP53$ mutations (71–74%)
	CIMP-negative	Chromosomal instability
Hepatocellular cancer	Epigenetic disposition	$ARID1A$ mutations (10–17%)
	HBV, HCV infected	
of 13–15 subunits including ARID1A, BRG1 and SNF5. The ARID1A/BRG1 complex interacts directly with p53 to effect tumor suppressor functions regulated by cell cycle-related genes [11]. Interestingly, ARID1A mutations are found in cancers with an epigenetic disposition, which include EBV and MSI groups in gastric cancer and the CIMP-high subtype in colorectal cancer (73–83% and 39%, respectively) [15, 24]. In gastric cancer, ARID1A mutations are significantly increased in TP53 wild type as opposed to TP53 mutated cases. Those tumors with ARID1A alterations tend to have prolonged, recurrence-free survival [15]. Hepatocellular carcinomas associated with hepatitis B or C virus infections exhibit ARID1A mutations as well as other mutations in other chromatin regulators (~50%) that are not related to TP53 mutations [25-27]. In ovarian cancer, CCC has an epigenetic disposition with a methylation alteration subtype and ARID1A mutations, whereas SAC is characterized by TP53 mutations and thus a genetic disposition. ARID1A expression is positively correlated with the expression of ER in endometrial and breast cancer [28, 29]. Both ARID1A and ER alpha expression are lost and ER pathway genes are downregulated by hypermethylation in ovarian CCC [10]. BRG1, the main ATPase of the SWI/SNF complex, regulates chromatin remodeling during steroid hormone signaling [30]. These trends suggest that loss of chromatin remodeling complex function, including ARID1A, initiates carcinogenesis with methylation-mediated suppression of ER signaling in the inflammatory carcinogenic environment. Further exploration of the role of the SWI/SNF complex and ARID1A may indicate an even more substantial impact on the biomolecular regulation of tumors with an epigenetic disposition phenotype.

The Warburg effect and an epigenetic disposition

In ovarian CCC, HNF1B is a fundamental molecular component of the biological characterization referred to as “ovarian CCC-likeness”. HNF1B expression is epigenetically regulated and its protein product is involved in glucose homeostasis. Mutations in HNF1B cause “RCAD syndrome” (Renal Cysts And Diabetes) and are associated with non-insulin-dependent (type 2) diabetes mellitus (NIDDM) of MODY5 (Mature-Onset Diabetes of the Young 5) as well as a syndrome of developmental renal anomalies [31]. Obesity induces impairment of glucose metabolism through silencing of HNF1B [32]. In ovarian CCC cells, HNF1B promotes the uptake of glucose through the glucose transporter-1 (GLUT1) protein and aerobic glycolysis, the “Warburg effect” [12]. The Warburg effect is a metabolic process in cancer that may contribute to cell survival under hypoxic conditions or in a stressful environment. Cancer cells utilize the Warburg effect to facilitate uptake and incorporation of nutrients into biomaterials (e.g., nucleotides, amino acids, and lipids) for production of a new cell [33]. Exploration of metabolic regulation specific for cancer cells is currently an area of intense research in order to identify and develop novel diagnostic tools and therapies. Recent reports support that the Warburg effect is influenced by the epigenetic regulation of genes related to glucose metabolism, such as GLUT1, PK (pyruvate kinase) and PKM (pyruvate kinase, muscle), in several malignancies including clear cell renal cell carcinoma, gastric cancer and colorectal cancer [34-36]. HNF1B plays a crucial role in defining an epigenetic disposition phenotype and the expression of HNF1B itself is regulated by DNA methylation. The Warburg effect may be epigenetically induced in cancers in the context of a stressful carcinogenic environment, leading to an epigenetic disposition phenotype.

CONCLUSIONS

Genetic and epigenetic dispositions are proposed to characterize high-grade serous and clear cell ovarian cancers, respectively. Ovarian high-grade serous adenocarcinoma exhibits a genetic disposition with high frequency TP53 mutations, essential for initiation of carcinogenesis, and chromosomal instability. ARID1A mutations often occur to initiate oncogenesis in cancers with an epigenetic disposition. An epigenetic disposition is frequent among ovarian CCC and is typified by a fundamental change in epigenetic regulation and subsequent gene expression affecting aggressive behavior leading to the development of cancer in the context of a stressful inflammatory environment. These characteristic methylation profiles may also affect cancer-specific glucose metabolism, commonly known as the Warburg effect. The concept of epigenetic and genetic dispositions is applicable for other organ malignancies, including gastric and colorectal cancers. Further exploration is needed to better understand these genetic and epigenetic disposition phenotypes across malignancies and how this can be used to further development of individualized and/or targeted therapies.

REFERENCES

1. Cho KR, Shih Ie M. Ovarian cancer. Annu Rev Pathol 2009; 4:287-313.
2. Koshiyama M, Matsumura N, Konishi I: Recent concepts of ovarian carcinogenesis: type I and type II. Biomed Res Int 2014; 934261.
3. TCGA Research Network. Integrated genomic analyses of ovarian carcinoma. Nature 2011; 474:609-615.
4. Ciriello G, Miller ML, Aksoy BA, Senbabaoglu Y, Schultz N, Sander C. Emerging landscape of oncogenic signatures across human cancers. Nat Genet 2013; 45:1127-1133.
5. Yamaguchi K, Mandai M, Oura T, Matsumura N, Hamanishi J, Baba T, Matsui S, Murphy SK, Konishi I. Identification of
an ovarian clear cell carcinoma gene signature that reflects inherent disease biology and the carcinogenic processes. Oncogene 2010; 29:1741-1752.

6. Mandai M, Matsumura N, Baba T, Yamaguchi K, Hamanishi J, Konishi I. Ovarian clear cell carcinoma as a stress-responsive cancer: Influence of the microenvironment on the carcinogenesis and cancer phenotype. Cancer Lett 2011.

7. Jones S, Wang TL, Shih Je M, Mao TL, Nakayama K, Roden R, Glas R, Slamon D, Diaz LA Jr., Vogelstein B et al. Frequent mutations of chromatin remodeling gene ARID1A in ovarian clear cell carcinoma. Science 2010; 330:228-231.

8. Wiegand KC, Shah SP, Al-Agha OM, Zhao Y, Tse K, Zeng T, Senz J, McConkey MK, Angelosso MS, Kalloger SE et al. ARID1A mutations in endometriosis-associated ovarian carcinomas. N Engl J Med 2010; 363:1532-1543.

9. Tsuchiya A, Sakamoto M, Yasuda J, Chuma M, Ohta T, Ohki M, Yasugi T, Taketani Y, Hirohashi S. Expression profiling in ovarian clear cell carcinoma: identification of hepatocyte nuclear factor-1 beta as a molecular marker and a possible molecular target for therapy of ovarian clear cell carcinoma. Am J Pathol 2003; 163:2503-2512.

10. Yamaguchi K, Huang Z, Matsumura N, Mandai M, Okamoto T, Baba T, Konishi I, Berchuck A, Murphy SK. Epigenetic determinants of ovarian clear cell carcinoma biology. Int J Cancer 2014; 135:585-597.

11. Guan B, Wang TL, Shih IM. ARID1A, a factor that promotes formation of SWI/SNF-mediated chromatin remodeling, is a tumor suppressor in gynecologic cancers. Cancer Res 2011; 71:6718-6727.

12. Okamoto T, Mandai M, Matsumura N, Yamaguchi K, Kondoh H, Amano Y, Baba T, Hamanishi J, Abiko K, Kosaka K et al. Hepatocyte nuclear factor-1 beta (HNF-1beta) promotes glucose uptake and glycolytic activity in ovarian clear cell carcinoma. Mol Carcinog 2013.

13. Cuff J, Salari K, Clarke N, Esheba GE, Forster AD, Huang S, West RB, Higgins JP, Longacre TA, Pollack JR. Integrative bioinformatics links HNF1B with clear cell carcinoma and tumor-associated thrombosis. PLoS One 2013; 8:e74562.

14. Kanai Y, Arai E. Multilayer-omics analyses of human cancers: exploration of biomarkers and drug targets based on the activities of the International Human Epigenome Consortium. Front Genet 2014; 5:24.

15. Wang K, Kan J, Yuen ST, Shi ST, Chu KM, Law S, Chan TL, Kan Z, Chan AS, Tsui WY et al. Exome sequencing identifies frequent mutation of ARID1A in molecular subtypes of gastric cancer. Nat Genet 2011; 43:1219-1223.

16. Matsusaka K, Kaneda A, Nagae G, Ushiku T, Kikuchi Y, Hino R, Uozaki H, Seto Y, Takada K, Aburatani H et al. Classification of Epstein-Barr virus-positive gastric cancers by definition of DNA methylation epigenotypes. Cancer Res 2011; 71:7187-7197.

17. Takeno SS, Leal MF, Lisboa LC, Lipay MV, Khayat AS, Assumpçao PP, Burbano RR, Smith MeA. Genomic alterations in diffuse-type gastric cancer as shown by high-resolution comparative genomic hybridization. Cancer Genet Cytogenet 2009’ 190:1-7.

18. Kanai Y. Genome-wide DNA methylation profiles in precancerous conditions and cancers. Cancer Sci 2010; 101:36-45.

19. Sakai E, Nakajima A, Kaneda A. Accumulation of aberrant DNA methylation during colorectal cancer development. World J Gastroenterol 2014; 20:978-987.

20. Shen L, Toyota M, Kondo Y, Lin E, Zhang L, Guo Y, Hernandez NS, Chen X, Ahmed S, Konishi K et al. Integrated genetic and epigenetic analysis identifies three different subclasses of colon cancer. Proc Natl Acad Sci U S A 2007; 104:18654-18659.

21. Takeo SS, Leal MF, Lisboa LC, Lipay MV, Khayat AS, Assumpçao PP, Burbano RR, Smith MeA. Genomic alterations in diffuse-type gastric cancer as shown by high-resolution comparative genomic hybridization. Cancer Genet Cytogenet 2009’ 190:1-7.

22. Hinoue T, Weisenberger DJ, Lange CP, Shen H, Byun HM, Van Den Berg D, Malik S, Pan F, Noushmehr H, van Dijk CM et al. Genome-scale analysis of aberrant DNA methylation in colorectal cancer. Genome Res 2012; 22:271-282.

23. Network CGA. Comprehensive molecular characterization of human colon and rectal cancer. Nature 2012; 487:330-337.

24. Cajuso T, Hänninen UA, Kondelin J, Gylfe AE, Tanskanen T, Katainen R, Pirkkänen E, Ristolainen H, Kaasinen E, Taipale M et al. Exome sequencing reveals frequent inactivating mutations in ARID1A, ARID1B, ARID2 and ARID4A in microsatellite unstable colorectal cancer. Int J Cancer 2014; 135:611-623.

25. Guichard C, Amaddeo G, Imbeaud S, Ladeiro Y, Pelletier L, Maad IB, Calderaro J, Bioulac-Sage P, Letexier M, Degos F et al. Integrated analysis of somatic mutations and focal copy-number changes identifies key genes and pathways in hepatocellular carcinoma. Nat Genet 2012; 44:694-698.

26. Fujimoto A, Totoki Y, Abe T, Borovoih KA, Hosoda F, Nguyen HH, Aoki M, Hosono N, Kubo M, Miya F et al. Whole-genome sequencing of liver cancers identifies etiological influences on mutation patterns and recurrent mutations in chromatin regulators. Nat Genet 2012; 44:760-764.

27. Huang J, Deng Q, Wang Q, Li KY, Dai JH, Li N, Zhu ZD, Zhou B, Liu XY, Liu RF et al. Exome sequencing of Hepatitis B Virus-associated hepatocellular carcinoma. Nat Genet 2012; 44:1117-1121.

28. Zhang ZM, Xiao S, Sun GY, Liu YP, Zhang FH, Yang HF, Li J, Qiu HB, Liu Y, Zhang C et al. The clinicopathologic significance of the loss of BAF250a (ARID1A) expression in endometrial carcinoma. Int J Gynecol Cancer 2014; 24:534-540.
29. Zhao J, Liu C, Zhao Z. ARID1A: a potential prognostic factor for breast cancer. Tumour Biol 2014; 35:4813-4819.
30. King HA, Trotter KW, Archer TK. Chromatin remodeling during glucocorticoid receptor regulated transactivation. Biochim Biophys Acta 2012; 1819:716-726.
31. Horikawa Y, Iwasaki N, Hara M, Furuta H, Hinokio Y, Cockburn BN, Lindner T, Yamagata K, Ogata M, Tomonaga O et al. Mutation in hepatocyte nuclear factor-1 beta gene (TCF2) associated with MODY. Nat Genet 1997; 17:384-385.
32. Kornfeld JW, Baitzel C, Könner AC, Nicholls HT, Vogt MC, Herrmanns K, Scheja L, Haumaitre C, Wolf AM, Knippschild U et al. Obesity-induced overexpression of miR-802 impairs glucose metabolism through silencing of Hnf1b. Nature 2013; 494:111-115.
33. Vander Heiden MG, Cantley LC, Thompson CB. Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science 2009; 324:1029-1033.
34. Li B, Qiu B, Lee DS, Walton ZE, Ochocki JD, Mathew LK, Mancuso A, Gade TP, Keith B, Nissim I et al. Fructose-1,6-bisphosphatase opposes renal carcinoma progression. Nature 2014.
35. Lopez-Serra P, Marcilla M, Villanueva A, Ramos-Fernandez A, Palau A, Leal L, Wahi JE, Setien-Baranda F, Szczesna K, Moutinho C et al. A DERL3-associated defect in the degradation of SLC2A1 mediates the Warburg effect. Nat Commun 2014; 5:3608.
36. Desai S, Ding M, Wang B, Lu Z, Zhao Q, Shaw K, Yung WK, Weinstein JN, Tan M, Yao J. Tissue-specific isoform switch and DNA hypomethylation of the pyruvate kinase PKM gene in human cancers. Oncotarget 2013.