Stabilization of the critical and subcritical semilinear inhomogeneous and anisotropic elastic wave equation

Zhen-Hu Ning † Fengyan Yang∗‡ and Jiacheng Wang §

Abstract We prove exponential decay of the critical and subcritical semilinear inhomogeneous and anisotropic elastic wave equation with locally distributed damping on bounded domain. One novelty compared to previous results, is to give a checkable condition of the inhomogeneous and anisotropic medias. Another novelty is to establish a framework to study the stability of the damped semilinear inhomogeneous and anisotropic elastic wave equation, which is hard to apply Carleman estimates to deal with. We develop the Morawetz estimates and the compactness-uniqueness arguments for the semilinear elastic wave equation to prove the unique continuation, observability inequality and stabilization result.

It is pointing that our proof is different from the classical method (See Dehman et al.[15], Joly et al.[26] and Zuazua [59]), which succeeds for the subcritical semilinear wave equation and fails for the critical semilinear wave equation.

Keywords inhomogeneous and anisotropic elastic wave equation, critical and subcritical nonlinearity, exponential stabilization, morawetz estimates

Mathematics Subject Classification 35L51,74E05,74E10,93D15,93D20

1 Some Notations

Let O be the origin of $\mathbb{R}^n (n \geq 3)$ and

$$r(x) = |x|, \quad x \in \mathbb{R}^n \quad (1.1)$$

be the standard distance function of \mathbb{R}^n. Moreover, let $\langle \cdot , \cdot \rangle$, div, ∇, Δ and $I_n = (\delta_{i,j})_{n \times n}$ be the standard inner product of \mathbb{R}^n, the standard divergence operator of \mathbb{R}^n, the standard gradient operator of \mathbb{R}^n, the standard Laplace operator of \mathbb{R}^n and the unit matrix.

Let $(a_{ijkl})_{n \times n \times n \times n} (x)$ be a smooth tensor function defined on \mathbb{R}^n satisfying

$$a_{ijkl}(x) = a_{jikl}(x) = a_{klij}(x), \quad (1.2)$$

∗Corresponding author, E-mail address: yangfy16@bjfu.edu.cn
†Faculty of Information Technology, Beijing University of Technology, Beijing, 100124, China; E-mail address: nzh41034@163.com.
‡School of Sciences Beijing Forestry University, Beijing, 100083, China.
§School of Mathematical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China; e-mail: wjiacheng@amss.ac.cn.

This work is supported by the Fundamental Research Funds for the Central Universities, NO.BLX201924, the National Science Foundation of China, grant NO.61573342, and Key Research Program of Frontier Sciences, CAS, NO.QYZDJ-SSWSYS011.
for any \(x \in \mathbb{R}^n \) and any \(1 \leq i, j, k, l \leq n \), and the ellipticity condition
\[
\alpha \sum_{i,j=1}^{n} \varepsilon_{ij} \varepsilon_{ij} \leq \sum_{i,j,k,l=1}^{n} a_{ijkl}(x) \varepsilon_{ij} \varepsilon_{kl} \leq \beta \sum_{i,j=1}^{n} \varepsilon_{ij} \varepsilon_{ij}, \quad x \in \mathbb{R}^n, \tag{1.3}
\]
for every symmetric tensor \((\varepsilon_{ij})_{n \times n} \), where \(\alpha, \beta \) are positive constants.

Let \(u(x,t) = (u_1(x,t), ..., u_n(x,t)) : \mathbb{R}^n \times (0, +\infty) \to \mathbb{R}^n \) be a function. Denote
\[
\frac{\partial u_i}{\partial x_j}, \quad \frac{\partial u_i}{\partial t}, \quad \frac{\partial^2 u_i}{\partial t^2}, \tag{1.4}
\]
and
\[
\varepsilon_{ij}(u) = \frac{1}{2}(u_{ij} + u_{ji}), \quad \varepsilon_{ij,k}(u) = \frac{\partial \varepsilon_{ij}(u)}{\partial x_k}, \tag{1.5}
\]
for any \(x \in \mathbb{R}^n \) and any \(1 \leq i, j, k \leq n \). For any \(x \in \mathbb{R}^n \) and any \(1 \leq i, j, k, l \leq n \), we define
\[
\sigma_{ij}(u) = \sum_{k,l=1}^{n} a_{ijkl}(x) \varepsilon_{kl}(u). \tag{1.6}
\]
Denote
\[
\nabla u = (\nabla u_1, ..., \nabla u_n) = (u_{i,j})_{n \times n}, \quad |\nabla u|^2 = \sum_{i=1}^{n} |\nabla u_i|^2, \tag{1.7}
\]
\[
\sigma(u) = (\sigma_1(u), ..., \sigma_n(u)) = (\sigma_{ij}(u))_{n \times n}, \tag{1.9}
\]
and
\[
\varepsilon(u) = (\varepsilon_{ij}(u))_{n \times n}. \tag{1.10}
\]
Denote
\[
B(h) = \left\{ x \mid |x| \leq h \right\}, \quad \forall h > 0. \tag{1.11}
\]
Let \(S(r) \) be the sphere in \(\mathbb{R}^n \) with radius \(r \). Then
\[
\langle X, \frac{\partial}{\partial r} \rangle = 0, \quad \text{for} \quad X \in S(r)_x, x \in \mathbb{R}^n \setminus O. \tag{1.12}
\]

2 Introduction

Let \(\Omega \subset \mathbb{R}^n \) be a bounded domain with smooth compact boundary \(\Gamma \) and let \(\nu(x) = (\nu_1(x), ..., \nu_n(x)) \) be the unit normal vector outside \(\Omega \) for \(x \in \Gamma \).

It is assumed that \(\Gamma = \Gamma_0 \cup \Gamma_1 \), where \(\Gamma_0, \Gamma_1 \subset \Gamma, \Gamma_0 \cap \Gamma_1 = \emptyset, \Gamma_0 \neq \emptyset \) and
\[
\frac{\partial r}{\partial \nu} \leq 0, \quad x \in \Gamma_0 \quad \text{and} \quad \frac{\partial r}{\partial \nu} \geq 0, \quad x \in \Gamma_1. \tag{2.1}
\]

Let \(\omega \) be an open subset of \(\Omega \) such that
\[
\omega \supset \bigcup_{x \in \Gamma_1} \left\{ y \in \Omega \mid |y - x| < \xi \right\}, \tag{2.2}
\]
for some \(\xi > 0 \).

Example 2.1. Let \(R_0, R_1, \varepsilon_0 \) be positive constants such that \(R_1 > R_0, \varepsilon_0 < R_1 - R_0 \). An example can be given by \(\Omega = B(R_1) \setminus B(R_0), \omega = B(R_1) \setminus B(R_0 + \varepsilon_0), \Gamma_0 = S(R_0) \) and \(\Gamma_1 = S(R_1) \).
We consider the following system.

\[
\begin{cases}
 u_{tt} - \text{div} \sigma(u) + a(x)u_t + f(u) = 0 & (x, t) \in \Omega \times (0, +\infty), \\
 u = 0 & (x, t) \in \Gamma_0 \times (0, +\infty), \\
 \sigma(u)u^T = 0 & (x, t) \in \Gamma_1 \times (0, +\infty), \\
 u(x, 0) = u_0(x), \quad u_t(x, 0) = u_1(x) & x \in \Omega,
\end{cases}
\]

(2.3)

where \(a(x) \in C^1(\mathbb{R}^n)\) is a nonnegative function and

\[
f(u) = (|u_1|^{p_1-1}u_1, ..., |u_n|^{p_n-1}u_n),
\]

(2.4)

where

\[
1 < p_i \leq \frac{n + 2}{n - 2} \quad \text{for} \quad 1 \leq i \leq n.
\]

(2.5)

The energy of the system (2.3) is defined by

\[
E(t) = \frac{1}{2} \int_\Omega \left(|u_t|^2 + \sigma(u) \circ \varepsilon(u) + 2F(u) \right) dx,
\]

(2.6)

where

\[
F(u) = \sum_{i=1}^{n} \frac{1}{p_i + 1} |u_i|^{p_i+1},
\]

(2.7)

and \(\circ\) is defined by

\[
B \circ D = \sum_{i,j=1}^{n} b_{ij}d_{ji}.
\]

(2.8)

for real matrixes \(B = (b_{ij})_{n \times n}\) and \(D = (d_{ij})_{n \times n}\).

Remark 2.1. The system (2.3) can be rewritten as for \(1 \leq i \leq n\),

\[
\begin{cases}
 u_{iti} - \sum_{j=1}^{n} \sigma_{ij,j}(u) + a(x)u_{it} + |u_i|^{p_i-1}u_i = 0 & (x, t) \in \Omega \times (0, +\infty), \\
 u_i |_{\Gamma_0} = 0 & t \in (0, +\infty), \\
 \sum_{j=1}^{n} \sigma_{ij}(u)v_j |_{\Gamma_1} = 0 & t \in (0, +\infty), \\
 u_i(x, 0) = u_{0i}(x), \quad u_{i,t}(x, 0) = u_{1i}(x) & x \in \Omega,
\end{cases}
\]

(2.9)

Then \(E(t)\) can be rewritten as

\[
E(t) = \frac{1}{2} \int_\Omega \left(\sum_{i=1}^{n} u_{iti}^2 + \sum_{i,j=1}^{n} \sigma_{ij}(u)\varepsilon_{ij}(u) + \sum_{i=1}^{n} \frac{2}{p_i + 1} |u_i|^{p_i+1} \right) dx.
\]

(2.10)

There are a wealth of literatures on the controllability and stabilization of the elastic wave equation. For homogeneous isotropic elastic wave equation, see [2 4 29 30]. For homogeneous nonisotropic elastic wave equation, see [3 7 8 13 21 31 60 55 56 60]. For the inhomogeneous elastic wave equation, see [9 34 37 42 51].

There exist few literature on the stabilization of the semilinear elastic wave equation. Stabilization of the subcritical semilinear wave equation has been fully studied. See [13 14 15 26 32 59 60]. Microlocal analysis given by [4 17] are the main methods to deal with the stabilization of the semilinear wave equation. However, microlocal analysis doesn’t work for the critical semilinear wave equation. As is known, the Morawetz estimate is a simple and effective tool to deal with the...
energy estimate on hyperbolic PDEs. See [33, 36, 39, 40, 57, 58, 60]. Therefore, we develop the Morawetz estimates and the compactness-uniqueness arguments to try to prove the stabilization of the critical and subcritical semilinear inhomogeneous elastic wave equation.

It is pointing that the (elastic) wave equation with Dirichlet/Neumann boundary condition has special physical meaning, see [16, 28, 38, 35].

The following assumption is the main assumption.

Assumption (A) There exists constant \(\delta > 0 \) such that for any \(x \in \Omega \) and for every symmetric tensor \((\varepsilon_{ij})_{n \times n} \),

\[
\sum_{ijkl=1}^{n} \left((1 - \delta)\alpha_{ijkl} - \frac{r}{2} \frac{\partial \alpha_{ijkl}}{\partial r} \right) \varepsilon_{ij} \varepsilon_{kl} \geq 0. \tag{2.11}
\]

Remark 2.2. We don’t know whether the condition \((2.11)\) is necessary. However from a view of inhomogeneous and anisotropic wave equation:

\[
\begin{cases}
 u_{tt} - \text{div} A(x) \nabla u = 0 & (x, t) \in \Omega \times (0, +\infty), \\
 u(x, 0) = u_0(x), u_t(x, 0) = u_1(x) & x \in \Omega,
\end{cases} \tag{2.12}
\]

the condition \((2.11)\) may be a general condition.

Similar with the condition \((2.11)\), we give the following condition for the inhomogeneous and anisotropic wave equation. There exists a constant \(\delta > 0 \) such that

\[
\langle \left((1 - \delta)A(x) - \frac{r}{2} \frac{\partial A(x)}{\partial r} \right) X, X \rangle \geq 0 \quad \text{for} \quad X \in \mathbb{R}^3, \ x \in \overline{\Omega}. \tag{2.13}
\]

Let \(G(x) = A^{-1}(x) \). Let \(x \in \mathbb{R}^n, X, Y \in \mathbb{R}^n \) and \(Y = G(x)X \). We deduce that

\[
Y^T \left(\lambda A(x) - \frac{r}{2} \frac{\partial A(x)}{\partial r} \right) Y \\
= \langle G(x) \left(\lambda A(x) - \frac{r}{2} \frac{\partial A(x)}{\partial r} \right) G(x)X, X \rangle \\
= \langle \left(\lambda G(x) + \frac{r}{2} \frac{\partial (G(x))}{\partial r} \right) X, X \rangle, \tag{2.14}
\]

where \(\lambda \) is a constant. It follows from Lemma 3.3 and Lemma 3.4 in [43] that the condition \((2.13)\) is almost equivalent to GCC (geometric control condition).

Example 2.2. Let

\[
a_{ijkl}(x) = \lambda(x)\delta_{ij}\delta_{kl} + \mu(x)(\delta_{ik}\delta_{jl} + \delta_{il}\delta_{jk}), \quad 1 \leq i, j, k, l \leq n, \quad x \in \mathbb{R}^n, \tag{2.15}
\]

where \(\lambda(x), \mu(x) \in C^\infty(\mathbb{R}^n) \) satisfy

\[
0 < \alpha \leq \mu(x) \leq \beta \quad \text{and} \quad 0 < \alpha \leq \lambda(x) + 2\mu(x) \leq \beta, \quad x \in \mathbb{R}^n. \tag{2.16}
\]

Assume that there exists constant \(0 < \delta \leq 1 \) such that

\[
(1 - \delta)\mu(x) - \frac{r}{2} \frac{\partial \mu(x)}{\partial r} \geq 0, \quad x \in \Omega, \tag{2.17}
\]

and

\[
(1 - \delta)(\lambda(x) + 2\mu(x)) - \frac{r}{2} \frac{\partial (\lambda(x) + 2\mu(x))}{\partial r} \geq 0, \quad x \in \Omega. \tag{2.18}
\]
Then for any $x \in \Omega$,
\[
\begin{align*}
\sum_{ijkl=1}^{n} \left((1 - \delta)a_{ijkl}(x) - \frac{r}{2} \frac{\partial a_{ijkl}}{\partial r} \right) \varepsilon_{ij} \varepsilon_{kl} \\
= \left((1 - \delta)\lambda(x) - \frac{r}{2} \frac{\partial \lambda(x)}{\partial r} \right) \left(\sum_{i=1}^{n} \varepsilon_{ii} \right)^{2} \\
+ 2 \left((1 - \delta)\mu(x) - \frac{r}{2} \frac{\partial \mu(x)}{\partial r} \right) \sum_{i,j=1}^{n} \varepsilon_{ij} \varepsilon_{ij} \\
\geq 0.
\end{align*}
\] (2.19)

Well-posedness of the subcritical semilinear wave equation has been studied by [10, 19, 20, 21, 25, 45] and well-posedness of the critical semilinear wave equation has been studied by [5, 21, 22, 23, 27, 47, 48, 49, 50]. There exists similar results for the nonlinear elastic wave equation. See [1, 46, 61]. It is pointing that well-posedness of the critical semilinear wave equation on bounded domain with Dirichlet boundary condition or Neumann boundary condition has been proved by [11, 12]. However, well-posedness of the critical semilinear wave equation on Riemannian manifold or with variable coefficients is still an open problem. As far as we know, the well-posedness of critical semilinear wave equation on Riemannian manifold or with variable coefficients is so hard that there exists no noteworthy study recently. Since we are mainly interested in stabilization of the system (2.3), we assume the following condition hold throughout the paper.

Denote
\[
H^{1}_{\Gamma_0}(\Omega) = \{ w \in H^1(\Omega), \quad w|_{\Gamma_0} = 0 \}. \tag{2.20}
\]

Assumption (S) Let $E_0 > 0$ be a constant. For any $E(0) \leq E_0$, there exists a unique solution of the system (2.3) such that
\[
(u, u_t) \in C \left([0, +\infty), \left(H^1_{\Gamma_0}(\Omega) \right)^n \times (L^2(\Omega))^n \right). \tag{2.21}
\]

Remark 2.3. If E_0 is sufficiently small, the above condition is equivalent to the global existence of the system (2.3) with small initial data.

Theorem 2.1. Let Assumption (A) hold true. Then there exists positive constants C_1, C_2, which are dependent on E_0 given by (2.21), such that
\[
E(t) \leq C_1e^{-C_2t}E(0), \quad \forall t > 0. \tag{2.22}
\]
3 Key Lemmas

Lemma 3.1. Suppose that \(u(x,t)\) solves the system (2.3). Let \(H = \phi(x)x = \phi(x) \sum_{i=1}^{n} x_i \frac{\partial}{\partial x_i}\), where \(\phi \in C^1(\mathbb{R}^n)\) is a nonnegative function. Then

\[
\int_0^T \int_{\Gamma} \left(H(u) \sigma(u) u^T \right) d\Gamma dt + \frac{1}{2} \int_0^T \int_{\Gamma} \left(|u_i|^2 - \sigma(u) \circ \varepsilon(u) - 2F(u) \right) H : \nu d\Gamma dt \\
\geq \int_0^T \int_{\Omega} u_t (H(u)) T d\Gamma + \delta \int_0^T \int_{\Omega} \phi(x) \sigma(u) \circ \varepsilon(u) dx dt \\
- C \int_0^T \int_{\Omega} |\nabla \phi| |\nabla u|^2 dx dt + \int_0^T \int_{\Omega} a(x) u_t (H(u)) T dx dt \\
+ \frac{1}{2} \int_0^T \int_{\Omega} \left(|u_i|^2 - \sigma(u) \circ \varepsilon(u) - 2F(u) \right) \text{div} H dx dt,
\]

(3.1)

Moreover, assume that \(P \in C^1(\mathbb{R}^n) : \mathbb{R}^n \mapsto \mathbb{R}^1\) is a real function. Then

\[
\int_0^T \int_{\Omega} \left(|u_i|^2 - \sigma(u) \circ \varepsilon(u) - \sum_{i=1}^{n} |u_i|^{p_i+1} \right) P dx dt \\
\geq \int_0^T \int_{\Omega} \left(|u_i|^2 - P u_i u^T dx \right) + C \int_0^T \int_{\Omega} |\nabla P| |u| |\nabla u| dx dt - \int_0^T \int_{\Gamma} P u \sigma(u) u^T d\Gamma dt \\
+ \frac{1}{2} \int_0^T \int_{\Omega} \left(P a(x) |u|^2 dx \right),
\]

(3.2)

where \(C\) depends on \(\alpha, \beta\), given by (1.3).

Proof. First, we multiply the elastic wave equations in (2.3) by \((H(u))^T\) and integrate over
\[\Omega \times (0, T).\] Note that

\[
\sigma(u) \odot (\nabla (H(u))) = \sum_{i,j,m=1}^{n} \sigma_{ij}(u) (\phi(x)x_{m}u_{i,m})_j \\
= \phi(x) \sum_{i,j,m=1}^{n} \sigma_{ij}(u) (x_{m}u_{i,m})_j + \sum_{i,j,m=1}^{n} \sigma_{ij}(u) \frac{\partial \phi}{\partial x_j} x_{m}u_{i,m} \\
= \phi(x) \left(\sum_{i,j=1}^{n} \sigma_{ij}(u)u_{i,j} + \sum_{i,j,m=1}^{n} \sigma_{ij}(u)x_{m}u_{i,j,m} \right) \\
+ \sum_{i,j,m=1}^{n} \sigma_{ij}(u) \frac{\partial \phi}{\partial x_j} x_{m}u_{i,m} \\
= \phi(x) \left(\sum_{i,j=1}^{n} \sigma_{ij}(u)\varepsilon_{ij}(u) + \sum_{i,j,k,l,m=1}^{n} a_{ijkl}(x)\varepsilon_{kl}(u)x_{m}\varepsilon_{ij,m}(u) \right) \\
+ \sum_{i,j,m=1}^{n} \sigma_{ij}(u) \frac{\partial \phi}{\partial x_j} x_{m}u_{i,m} \\
= \phi(x) \left(\sum_{i,j=1}^{n} \sigma_{ij}(u)\varepsilon_{ij}(u) - \frac{r}{2} \frac{\partial}{\partial r} \left(\sum_{i,j=1}^{n} \sigma_{ij}(u)\varepsilon_{ij}(u) \right) - \frac{r}{2} \sum_{i,j,k,l=1}^{n} \frac{\partial a_{ijkl}(x)}{\partial r} \varepsilon_{ij}(u)\varepsilon_{kl}(u) \right) \\
+ \sum_{i,j,m=1}^{n} \sigma_{ij}(u) \frac{\partial \phi}{\partial x_j} x_{m}u_{i,m} \\
= \phi(x) \sum_{i,j,k,l=1}^{n} \left(a_{ijkl} - \frac{r}{2} \frac{\partial a_{ijkl}}{\partial r} \right) \varepsilon_{ij}(u)\varepsilon_{kl}(u) + \frac{1}{2} H \left(\sum_{i,j=1}^{n} \sigma_{ij}(u)\varepsilon_{ij}(u) \right) \\
+ \sum_{i,j,m=1}^{n} \sigma_{ij}(u) \frac{\partial \phi}{\partial x_j} x_{m}u_{i,m} \tag{3.3}
\]

Hence

\[
\sigma(u) \odot (\nabla (H(u))) \geq \delta \phi(x)\sigma(u) \odot \varepsilon(u) - Cr|\nabla \phi||\nabla u|^2 \\
+ \frac{1}{2} H (\sigma(u) \odot \varepsilon(u)) \\
= \delta \phi(x)\sigma(u) \odot \varepsilon(u) - Cr|\nabla \phi||\nabla u|^2 \\
+ \frac{1}{2} \text{div} (\sigma(u) \odot \varepsilon(u)H) - \frac{1}{2} \text{div} H (\sigma(u) \odot \varepsilon(u)), \tag{3.4}
\]
Therefore
\begin{align*}
0 &= (u_{tt} - \nabla \sigma(u) + a(x)u_t + f(u)) (H(u))^T \\
&= \left((u_t (H(u))^T)_t - \frac{1}{2} \nabla (u_t^2 H) + \frac{1}{2} u_t^2 \nabla H \right) \\
&\quad - \left(\nabla \left((\sigma(u) (H(u))^T) - \sigma(u) \odot (\nabla (H(u))) \right) + a(x)g(u_t) (H(u))^T + \nabla (F(u)) \\
&\quad - \frac{1}{2} \nabla (u_t^2 H) + \frac{1}{2} u_t^2 \nabla H \\
&\quad + a(x)u_t (H(u))^T + F(u) \nabla H - F(u) \nabla H \\
&\quad \geq (u_t (H(u))^T)_t + \delta \phi(x) \sigma(u) \odot \varepsilon(u) - C \varepsilon \nabla \phi \nabla u^2 \\
&\quad - \nabla \left(\sigma(u) (H(u))^T \right) + \frac{1}{2} (|u_t|^2 - \sigma(u) \odot \varepsilon(u) - 2F(u)) \nabla H \\
&\quad + \frac{1}{2} \nabla (u_t^2 H) - \frac{1}{2} \nabla (u_t^2 H) + \frac{1}{2} u_t^2 \nabla H \\
&\quad + a(x)u_t (H(u))^T. \tag{3.5}
\end{align*}

In addition, we multiply the wave equation in (2.3) by Pu, and integrate over $\Omega \times (0,T)$. Note that
\begin{align*}
0 &= (u_{tt} - \nabla \sigma(u) + a(x)u_t + f(u)) Pu^T \\
&= \left((Pu_{tt}u^T)_t - P|u_t|^2 \right) \\
&\quad - \left(\nabla (Pu_t u^T) - Pu \sigma(u) \odot \varepsilon(u) - \sigma(u) \odot (\nabla P) u \right) \\
&\quad + \frac{1}{2} (Pa(x)|u|^2) + P \sum_{i=1}^n |u_t|^{p_t+1} \\
&= (Pu_{tt}u) - \nabla (\sigma(u) Pu^T) + \sigma(u) \odot (\nabla P) u + \frac{1}{2} (Pa(x)|u|^2) \tag{3.6}
\end{align*}

The equality (3.2) follows from Green’s formula. ∎

Lemma 3.2. Let $u(x,t)$ solve the system (2.3). Then
\begin{equation}
E(t)\bigg|_0^T = - \int_0^T \int_\Omega a(x)|u_t|^2 dx dt, \tag{3.7}
\end{equation}
which implies $E(t)$ is decreasing.
Proof. Multiplying the equation in (2.3) by u_t, and integrating over $\Omega \times (0, T)$, the equality (3.7) follows from Green’s formula. \square

Proposition 3.1. Let Assumption (A) hold true. Then there exists $T_0 \geq 0$ such that for any $T > T_0$, the only solution $(u, u_t) \in C([0, T], (H^1(\Omega))^n \times (L^2(\Omega))^n)$ to the system

\[
\begin{aligned}
 &u_{tt} - \text{div} \sigma(u) + f(u) = 0 \quad (x, t) \in \Omega \times (0, T), \\
 &u|_{\Gamma_0} = 0 \quad t \in (0, +\infty), \\
 &\sigma(u)\nu|_{\Gamma_1} = 0 \quad t \in (0, +\infty), \\
 &u_t = 0 \quad (x, t) \in \omega \times (0, T),
\end{aligned}
\]

where $f(u)$ is given by (2.4), is the trivial one $u \equiv 0$.

Proof Let $a(x) \equiv 0$, it follows from (3.7) that

$$E(t) = E(0), \quad t > 0. \tag{3.9}$$

Let $H = x$ and $a(x) \equiv 0$. It follows from (3.1) that

$$
\begin{aligned}
 &\int_0^T \int_\Omega (H(u)\sigma(u)u^T) \, d\Gamma dt + \frac{1}{2} \int_0^T \int_{\partial\Omega} (|u_i|^2 - \sigma(u) \circ \varepsilon(u) - 2F(u)) \, H \cdot \nu \, d\Gamma dt \\
 \geq &\int_0^T \int_\Omega u_t (H(u))^T \, dx |_0^T + \delta \int_0^T \int_\Omega \phi(x)\sigma(u) \circ \varepsilon(u) \, dx dt \\
 &- C \int_0^T \int_\Omega r|\nabla \phi||\nabla u|^2 \, dx dt \\
 &+ \frac{1}{2} \int_0^T \int_\Omega (|u_i|^2 - \sigma(u) \circ \varepsilon(u) - 2F(u)) \, \text{div} H \, dx dt \\
 &= \int_\Omega u_t (H(u))^T \, dx |_0^T + \delta \int_0^T \int_\Omega \phi(x)\sigma(u) \circ \varepsilon(u) \, dx dt \\
 &- C \int_0^T \int_\Omega r|\nabla \phi||\nabla u|^2 \, dx dt \\
 &+ \frac{n}{2} \int_0^T \int_\Omega \left(|u_i|^2 - \sigma(u) \circ \varepsilon(u) - \sum_{i=1}^n |u_i|^{p_i+1} \right) \, dx dt \\
 &+ \int_0^T \int_\Omega \sum_{i=1}^n \frac{(p_i - 1)n}{2(p_i + 1)} |u_i|^{p_i+1} \, dx dt. \tag{3.10}
\end{aligned}
$$

Denote

$$
\delta_c = \min_{1 \leq i \leq n} \left\{ \delta_i \left(\frac{(p_i - 1)n}{2(p_i + 1)} \right) \right\}. \tag{3.11}
$$

Let $P = \frac{n - \delta_c}{2}$ and $a(x) \equiv 0$. Substituting the formula (3.2) into the formula (3.10), we obtain

$$
\begin{aligned}
 &\int_0^T \int_\Omega (H(u)\sigma(u)u^T) \, d\Gamma dt + \frac{1}{2} \int_0^T \int_{\partial\Omega} (|u_i|^2 - \sigma(u) \circ \varepsilon(u) - 2F(u)) \, H \cdot \nu \, d\Gamma dt \\
 \geq &\int_\Omega u_t (H(u) + Pu)^T \, dx |_0^T \\
 &+ \frac{\delta_c}{2} \int_0^T \int_\Omega (|u_i|^2 + \sigma(u) \circ \varepsilon(u) + 2F(u)) \, dx dt. \tag{3.12}
\end{aligned}
$$

Note that $u|_{\Gamma_0} = 0$, then for $1 \leq i, j, m \leq n$,

$$
 u_{i,m} \nu_j = u_{i,jm} \nu = u_{i,jm}, \quad x \in \Gamma_0. \tag{3.13}
$$
Hence

\[H(u)\sigma(u)\nu^T = \sum_{i,j,m=1}^n x_m u_{i,m} \sigma_{ij}(u) \nu_j \]

\[\quad = \sum_{i,j,m=1}^n u_{i,j} \sigma_{ij}(u) x_m \nu_m \]

\[\quad = \sum_{i,j,m=1}^n \varepsilon_{ij}(u) \sigma_{ij}(u) x_m \nu_m \]

\[\quad = \sigma(u) \circ \varepsilon(u)(H \cdot \nu), \quad x \in \Gamma_0. \]

(3.14)

With \(u_t = \sigma(u)\nu = 0, \quad x \in \Gamma_1 \),

(3.15)

and

\[\frac{\partial r}{\partial \nu} \leq 0, \quad x \in \Gamma_0 \quad \text{and} \quad \frac{\partial r}{\partial \nu} \geq 0, \quad x \in \Gamma_1, \]

(3.16)

we obtain

\[\int_0^T \int_{\Gamma} ((H(u) + Pu)\sigma(u)\nu^T) d\Gamma dt \]

\[+ \frac{1}{2} \int_0^T \int_{\Gamma} |u_t|^2 - \sigma(u) \circ \varepsilon(u) - 2F(u)) H \cdot \nu d\Gamma dt \]

\[= \int_0^T \int_{\Gamma_0} ((H(u) + Pu)\sigma(u)\nu^T) d\Gamma dt \]

\[+ \frac{1}{2} \int_0^T \int_{\Gamma_0} |u_t|^2 - \sigma(u) \circ \varepsilon(u) - 2F(u)) H \cdot \nu d\Gamma dt \]

\[+ \int_0^T \int_{\Gamma_1} ((H(u) + Pu)\sigma(u)\nu^T) d\Gamma dt \]

\[+ \frac{1}{2} \int_0^T \int_{\Gamma_1} |u_t|^2 - \sigma(u) \circ \varepsilon(u) - 2F(u)) H \cdot \nu d\Gamma dt \]

\[= \frac{1}{2} \int_0^T \int_{\Gamma_0} \sigma(u) \circ \varepsilon(u)(H \cdot \nu) d\Gamma dt \]

\[- \frac{1}{2} \int_0^T \int_{\Gamma_1} (\sigma(u) \circ \varepsilon(u) + 2F(u)) H \cdot \nu d\Gamma dt \]

\[\leq 0. \]

(3.17)

It follows from the Korn’s inequality with Dirichlet boundary conditions \(\text{[41]} \) that

\[\int_\Omega |\nabla u|^2 dx \]

\[\leq C \int_\Omega \varepsilon(u) \varepsilon(u) dx \]

\[\leq C \int_\Omega \sigma(u) \varepsilon(u) dx. \]

(3.18)

Substituting (3.17) into (3.12), we obtain

\[\int_0^T E(t) dt \leq CE(0), \]

(3.19)
which implies
\[(T - C)E(0) \leq 0.\] (3.20)

The assertion holds true. □

By a similar proof with Proposition 3.1, the following proposition holds.

Proposition 3.2. Let Assumption (A) hold true. Then there exists \(T_0 \geq 0\) such that for any \(T > T_0\), the only solution \((u, u_t) \in C([0, T], (H^1(\Omega))^n \times (L^2(\Omega))^n)\) to the system
\[
\begin{aligned}
u_{tt} - \text{div} \sigma(u) &= 0 \quad (x, t) \in \Omega \times (0, T), \\
u|_{\Gamma_0} &= 0 \quad t \in (0, +\infty), \\
\sigma(u)\nu|_{\Gamma_1} &= 0 \quad t \in (0, +\infty), \\
u_t &= 0 \quad (x, t) \in \omega \times (0, T),
\end{aligned}
\] (3.21)
is the trivial one \(u \equiv 0\).

4 Proofs of Theorem 2.1

Lemma 4.1. Let Assumption(A) hold true. Let \(u\) solve the system (2.3). Then there exists a positive constant \(C\) such that
\[
\int_0^T E(t)dt \leq C \int_0^T \int_{\Omega} a(x)|u_t|^2dxdt + C \int_0^T \int_{\Omega} |u|^2dxdt
\] (4.1)
for sufficiently large \(T\).
Proof. It follows from classical Korn’s inequality [14] that
\[
\int_{\Omega} |\nabla u|^2dx \
\leq C \int_{\Omega} (|u|^2 + \epsilon(u) \ast \epsilon(u))dx,
\] (4.2)
and the Korn’s inequality with Dirichlet boundary conditions [11] that
\[
\int_{\Omega} |\nabla u|^2dx \
\leq C \int_{\Omega} \epsilon(u) \ast \epsilon(u)dx \
\leq C \int_{\Omega} \sigma(u) \ast \epsilon(u)dx.
\] (4.3)

Let \(\overline{\omega} \subset \Omega\) be an bounded open set with smooth boundary such that
\[
\Gamma_1 \subset \overline{\omega} \quad \text{and} \quad (\overline{\omega} \setminus \Gamma_1) \subset \omega.
\] (4.4)
Let \(\phi \in C^\infty(\mathbb{R}^n)\) be a nonnegative function such that
\[
\phi = 1, x \in \Omega \setminus \omega \quad \text{and} \quad \phi = 0, x \in \overline{\omega}.
\] (4.5)
Let
\[
H = \phi(x)x.
\] (4.6)
It follows from (3.1) that
\[
\int_0^T \int_{\Omega} \left(|u_i|^2 - \sigma(u) \circ \varepsilon(u) - 2F(u) \right) \mathbf{H} \cdot \mathbf{v} \, dt + \frac{1}{2} \int_0^T \int_{\Omega} \left(|u_i|^2 - \sigma(u) \circ \varepsilon(u) - 2F(u) \right) H \cdot \mathbf{v} \, dt
\geq \int_\Omega u_i (H(u))^T dx \bigg|_0^T + \delta \int_\Omega \int_\Omega (\phi(x) \sigma(u) \circ \varepsilon(u) dx dt
\]

\[
- C \int_0^T \int_{\Omega} r|\nabla| \nabla u|^2 dx dt + \int_0^T \int_{\Omega} a(x) u_i (H(u))^T dx dt
\]

\[
+ \frac{1}{2} \int_0^T \int_{\Omega} \left(|u_i|^2 - \sigma(u) \circ \varepsilon(u) - \sum_{i=1}^n |u_i|^{p_i+1} \right) \text{div} H dx dt
\]

\[
+ \int_0^T \int_{\Omega} \sum_{i=1}^n \frac{(p_i - 1) \text{div} H}{2(p_i + 1)} |u_i|^{p_i+1} dx dt. \quad (4.7)
\]

Note that
\[
\text{div} H = n, \quad x \in \Omega \setminus \omega. \quad (4.8)
\]

Denote
\[
\delta_c = \min_{1 \leq i \leq n} \left\{ \delta, \frac{(p_i - 1)n}{2(p_i + 1)} \right\}, \quad (4.9)
\]

Let \(P = \frac{1}{2} \left(\text{div} H - \phi_0 \right) \), substituting (3.2) into (3.1), with (4.2) and (4.3), we obtain
\[
\int_0^T \int_{\Omega \setminus \omega} \left(|u_i|^2 + \sigma(u) \circ \varepsilon(u) + 2F(u) \right) dx dt
\]

\[
\leq C(E(0) + E(T)) + C \int_0^T \int_{\Omega \setminus \omega} \left(|u_i|^2 + \sigma(u) \circ \varepsilon(u) + \sum_{i=1}^n |u_i|^{p_i+1} \right) dx dt
\]

\[
+ C \int_0^T \int_{\Omega} a(x) \left(|u_i|^2 + \sigma(u) \circ \varepsilon(u) \right) dx dt
\]

\[
+ \int_0^T \int_{\Omega} \left(C_c |u|^2 + \epsilon \sigma(u) \circ \varepsilon(u) \right) dx dt. \quad (4.10)
\]

Hence
\[
\int_0^T \int_{\Omega \setminus \omega} \left(|u_i|^2 + \sigma(u) \circ \varepsilon(u) + 2F(u) \right) dx dt
\]

\[
\leq C(E(0) + E(T)) + C \int_0^T \int_{\Omega} a(x) \left(|u_i|^2 + \sigma(u) \circ \varepsilon(u) + \sum_{i=1}^n |u_i|^{p_i+1} \right) dx dt
\]

\[
+ C \int_0^T \int_{\Omega} |u|^2 dx dt. \quad (4.11)
\]

Therefore
\[
\int_0^T \int_{\Omega} \left(u_i^2 + \sigma(u) \circ \varepsilon(u) + 2F(u) \right) dx dt
\]

\[
\leq C(E(0) + E(T)) + C \int_0^T \int_{\Omega} a(x) \left(|u_i|^2 + \sigma(u) \circ \varepsilon(u) + \sum_{i=1}^n |u_i|^{p_i+1} \right) dx dt
\]

\[
+ C \int_0^T \int_{\Omega} |u|^2 dx dt. \quad (4.12)
\]
Let \(P = a(x) \) in the equality (3.2), we obtain
\[
\int_0^T \int_\Omega a(x) (\sigma(u) \otimes \varepsilon(u) + 2F(u)) \, dxdt
\leq C(E(0) + E(T)) + C \int_0^T \int_\Omega a(x) (|\mathbf{u}_t|^2 + |\mathbf{u}|^2) \, dxdt
+ C \int_0^T \int_\Omega a(x)|\mathbf{u}_t|^2 \, dxdt
+ \int_0^T \int_\Omega (C_\varepsilon |\mathbf{u}|^2 + \varepsilon \sigma(u) \otimes \varepsilon(u)) \, dxdt.
\] (4.13)

With (4.12), we obtain
\[
\int_0^T E(t) \, dt \leq C(E(0) + E(T)) + C \int_0^T \int_\Omega a(x)|\mathbf{u}_t|^2 \, dxdt
+ C \int_0^T \int_\Omega |\mathbf{u}|^2 \, dxdt.
\] (4.14)

It follows from (3.7) that
\[
C(E(0) + E(T)) = 2CE(T) + C \int_0^T \int_\Omega a(x)|\mathbf{u}_t|^2 \, dxdt.
\] (4.15)

Note that \(E(t) \) is decreasing, then, for \(T \geq 4C \)
\[
\int_0^T E(t) \, dt \leq C \int_0^T \int_\Omega a(x)|\mathbf{u}_t|^2 \, dxdt + C \int_0^T \int_\Omega |\mathbf{u}|^2 \, dxdt.
\] (4.16)

□

Lemma 4.2. Let Assumption (A) hold true. Let \(u(x, t) \) solve the system (2.3). Then for any \(E(0) \leq E_0 \),
\[
\int_0^T E(t) \, dt \leq C(E_0, T) \int_0^T \int_\Omega a(x)|\mathbf{u}_t|^2 \, dxdt,
\] (4.17)

for sufficiently large \(T \).

Proof. We apply compactness-uniqueness arguments to prove the conclusion. It follows from (4.1) that
\[
\int_0^T E(t) \, dt \leq C \int_0^T \int_\Omega a(x)|\mathbf{u}_t|^2 \, dxdt + C \int_0^T \int_\Omega |\mathbf{u}|^2 \, dxdt.
\] (4.18)

Then, if the estimate (4.17) doesn’t hold true, there exist \(\{u_k\}_{k=1}^\infty \) such that
\[
E_k(0) \leq E_0,
\] (4.19)
where
\[
E_k(t) = \frac{1}{2} \int_\Omega (|\mathbf{u}_{k,t}|^2 + \sigma(u_k) \otimes \varepsilon(u_k) + 2F(u_k)),
\] (4.20)
and
\[
\int_0^T \int_\Omega |\mathbf{u}_k|^2 \, dxdt \geq k \int_0^T \int_\Omega a(x)|\mathbf{u}_{k,t}|^2 \, dxdt.
\] (4.21)
With (3.7), we have
\[E_k(t) \leq E_0, \quad 0 \leq t \leq T. \] (4.22)
and
\[\int_0^T E_k(t) dt \leq T E_0. \] (4.23)
Therefore, there exists \(\hat{u}_0 \) and a subset of \(\{ u_k \}_{k=1}^{\infty} \), still denoted by \(\{ u_k \}_{k=1}^{\infty} \), such that
\[u_k \rightharpoonup \hat{u}_0 \text{ weakly in } (H^1(\Omega \times (0, T)))^n, \] (4.24)
and
\[u_k \rightarrow \hat{u}_0 \text{ strongly in } (L^2(\Omega \times (0, T)))^n. \] (4.25)

Case a:
\[\int_0^T \int_\Omega |\hat{u}_0|^2 dx dt > 0. \] (4.26)
Denote
\[q_i = \frac{2n}{(n-2)p_i}, \quad q_i^* = \frac{q_i}{q_i - 1}. \] (4.27)
for \(1 \leq i \leq n \). Since \(1 < p_i \leq \frac{n+2}{n-2} \), then
\[\frac{2n}{n+2} \leq q_i, q_i^* \leq \frac{2n}{n-2}. \] (4.28)
Note that
\[\frac{1}{q_i} + \frac{1}{q_i^*} = 1, \] (4.29)
Then, \(L^{q_i^*}(\Omega) \) is the dual space of \(L^{q_i}(\Omega) \).

Note that
\[H^1(\Omega) \hookrightarrow L^{\frac{2n}{n-2}}(\Omega). \] (4.30)
Therefore, it follows from (4.22) that for \(1 \leq i \leq n \)
\[\{|u_{ki}|^{p_i-1}u_{ki}\} \text{ are bounded in } L^\infty([0,T],L^{q_i}(\Omega)). \] (4.31)
Then
\[\{|u_{ki}|^{p_i-1}u_{ki}\} \text{ are bounded in } L^{q_i}(\Omega \times (0,T)). \] (4.32)
Hence for \(1 \leq i \leq n \)
\[|u_{ki}|^{p_i-1}u_{ki} \rightharpoonup |\hat{u}_{0i}|^{p_i-1}\hat{u}_{0i} \text{ weakly in } L^{q_i}(\Omega \times (0,T)). \] (4.33)
It follows from (4.21) that
\[a(x)\hat{u}_{0t} = 0 \quad (x,t) \in \mathbb{R}^n \times (0,T). \] (4.34)
Therefore, with (4.24) and (4.33), we obtain
\[
\begin{cases}
\hat{u}_{0t} - \text{div } \sigma(\hat{u}_0) + f(\hat{u}_0) = 0 & (x,t) \in \Omega \times (0,T), \\
\hat{u}_{0|\Gamma_0} = 0 & t \in (0, +\infty), \\
\sigma(\hat{u}_0)\nu|_{\Gamma_1} = 0 & t \in (0, +\infty), \\
\hat{u}_{0t} = 0 & (x,t) \in \omega \times (0,T),
\end{cases}
\] (4.35)
where \(f(\hat{u}_0) \) is given by (2.4). It follows from Proposition 3.1 that
\[
\hat{u}_0 \equiv 0, \quad (x, t) \in \Omega \times (0, T),
\] (4.36)
which contradicts (4.26).

Case b:
\[
\hat{u}_0 \equiv 0 \quad \text{on} \quad \Omega \times (0, T).
\] (4.37)

Denote
\[
v_k = u_k / \sqrt{c_k} \quad \text{for} \quad k \geq 1,
\] (4.38)
where
\[
c_k = \int_0^T \int_{\Omega} |u_k|^2 \, dx \, dt.
\] (4.39)

Then \(v_k \) satisfies for \(1 \leq i \leq n \),
\[
v_{k,tt} - \text{div} \sigma(v_k) + a(x)v_{k,t} + f(u_k) \sqrt{c_k} = 0 \quad (x, t) \in \Omega \times (0, T),
\] (4.40)
and
\[
\int_0^T \int_{\Omega} |v_k|^2 \, dx \, dt = 1.
\] (4.41)

It follows from (4.21) that
\[
1 \geq k \int_0^T \int_{\Omega} a(x)v_{k,t}^2 \, dx \, dt.
\] (4.42)

Therefore, It follows from (4.18) that
\[
\hat{E}_k(0) \leq 1 + \frac{1}{k} \leq 2,
\] (4.43)
where
\[
\hat{E}_k(t) = \frac{1}{2} \int_{\Omega} \left(|v_{k,t}|^2 + \sigma(v_k) \cdot \varepsilon(u_k) + \sum_{i=1}^{n} \frac{2}{p_i - 1} |u_{ki}|^{p_i - 1} |v_{ki}|^2 \right).
\] (4.44)

Hence, there exists \(v_0 \) and a subset of \(\{v_k\}_{k=1}^{\infty} \), still denoted by \(\{v_k\}_{k=1}^{\infty} \), such that
\[
v_k \rightharpoonup v_0 \quad \text{weakly in} \quad (H^1(\Omega \times (0, T)))^n,
\] (4.45)
and
\[
v_k \rightarrow v_0 \quad \text{strongly in} \quad (L^2(\Omega \times (0, T)))^n.
\] (4.46)

It follows from (3.7), (4.38) and (4.43) that
\[
\hat{E}_k(t) \leq \hat{E}_k(0) \leq 2, \quad \forall 0 \leq t \leq T.
\] (4.47)

Let \(q_i, q_i^* \) be given by (4.27). Note that
\[
H^1(\Omega) \hookrightarrow L^\frac{2n}{n-2} (\Omega).
\] (4.48)

Therefore, it follows from (4.47) that for \(1 \leq i \leq n \)
\[
\int_0^T \int_{\Omega} \sum_{i=1}^{n} |u_{ki}|^{p_i - 1} v_{ki} \, dx \, dt
\]
\[
= \int_0^T \int_{\Omega} \sum_{k=1}^{n} c_k \frac{q_i(p_i - 1)}{2} |v_{ki}|^{\frac{2n}{n-2}} \, dx \, dt
\]
\[
\leq \sum_{k=1}^{n} \frac{q_i(p_i - 1)}{2} C(T).
\] (4.49)
With (4.37) and (4.39), we obtain
\[
\lim_{k \to +\infty} \int_0^T \int_{\Omega} \sum_{i=1}^n \left(|u_{ki}|^{p_i-1} v_{ki} \right)^{q_i} dx dt = 0.
\] (4.50)

It follows from (4.42) that
\[
a(x)v_{0t} = 0 \quad (x, t) \in \mathbb{R}^n \times (0, T).
\] (4.51)

Therefore, it follows from (4.40) and (4.50) that
\[
\begin{aligned}
\begin{cases}
v_{0t} - \text{div} \sigma(v_0) = 0 & (x, t) \in \Omega \times (0, T), \\
v_0|_{\Gamma_0} = 0 & t \in (0, +\infty), \\
\sigma(v_0)v|_{\Gamma_1} = 0 & t \in (0, +\infty), \\
v_{0t} = 0 & (x, t) \in \omega \times (0, T),
\end{cases}
\end{aligned}
\] (4.52)

Then it follows from Proposition 3.2 that
\[
v_0 = 0, \quad x \in \Omega,
\] (4.53)

which contradicts (4.41). □

Proof of Theorem 2.1 It follows from (3.7) and (4.17) that, for sufficiently large \(T \),
\[
TE(T) \leq \int_0^T E(t) dt \leq C(E_0, T) \int_0^T \int_{\Omega} a(x)|u_t|^2 dx dt
\leq C(E_0, T) (E(0) - E(T)).
\] (4.54)

Hence,
\[
E(T) \leq \frac{C(E_0, T)}{C(E_0, T) + T} E(0).
\] (4.55)

The estimate (2.22) holds. □

References

[1] R. Agemi, Global existence of nonlinear elastic waves. Invent. math. 142(2000), 225-250.
[2] F. Alabau, V. Komornik, Observabilité, contrôlabilité et stabilisation frontière du système d’élasticité linéaire, C.R. Acad. Sci. Paris, Sér. I Math., 324 (1997), 519-524.
[3] F. Alabau, V. Komornik, Boundary observability, controllability, and stabilization of linear elastodynamic systems, SIAM J. Control and Optim., 37 (1999), 521-542.
[4] C. Bardos, G. Lebeau and J. Rauch, Sharp sufficient conditions for the observation, control and stabilization from the boundary, SIAM J. Control and Optim., 30 (1992), 1024-1065.
[5] H. Bahouri, J. Shatah, Decay estimate for the critical semilinear wave equations, Ann. Inst. Henri Poincaré, Analyse non linéaire, 15(1998), 783-798.
[6] M. Bellassoued, Energy decay for the elastic wave equation with a local time-dependent nonlinear damping, Acta Mathematica Sinica Jul., 24 (2008), 1175-1192.
[7] R. Bey, A. Heminna and J. P. Loheac, Boundary stabilization of the linear elastodynamic system by a Lyapunov-type method, Math. Complutense., 16 (2003), 417-441.
[8] R. Bey, A. Heminna and J. P. Loheac, Boundary stabilization of a linear elastodynamic system with variable coefficients, Electron. J. Differential Equations., 78 (2001), 1-23.
[9] K. Boulehmi, M. Aouadi, Decay of solutions in inhomogeneous thermoelastic diffusion bars, Appl. Anal., 93 (2014), 281-304.
[10] P. Brenner, W. Von Wahl, Global classical solutions of nonlinear wave equations, Math. Z., 176(1981), 87-121.
[11] N. Burq, G. Lebeau, F. Planchon. Global existence for energy critical waves in 3-D domains. J. Amer. Math. Soc. 21 (2008), 831-845.
[12] N. Burq and F. Planchon. Global existence for energy critical waves in 3-D domains: Neumann boundary conditions. Amer. J. of Math., 131 (2009), 1715-1742.
[13] M. M. Cavalcanti, V. N. Domingos Cavalcanti, Existence and asymptotic stability for evolution problems on manifolds with damping and source terms, J. Math. Anal. Appl., 291(1) (2004), 109-127.
[14] M. M. Cavalcanti, V. N. Domingos Cavalcanti, I. Lasiecka, Well-posedness and optimal decay rates for the wave equation with nonlinear boundary damping-source interaction, J. Diff. Eqns., 236 (2007), 407-459.
[15] B. Dehman, G. Lebeau, E. Zuazua, Stabilization and control for the subcritical semilinear wave equation, Ann. Sci. École Norm. Sup., 36,
[16] D. A. R. Dalvit, F. D. Mazzitelli, X. Orsi. Millán, Dynamical Casimir effect for different geometries, Journal of Physics A General Physics, 39(21)(2006), pp. 525-551.
[17] P. Gérard, Oscillation and concentration effects in semilinear dispersive wave equations, J. Funct. Anal. 41(1)(1996) 60-98.
[18] A. Guesmia, On the decay estimates for elasticity systems with some localized dissipations, Asymptot. Anal., 22 (2000), 1-13.
[19] J. Ginibre, G. Velo, On the global Cauchy problem for nonlinear Klein-Gordon equation, Math. Z., 189(1985), 487-505.
[20] J. Ginibre, G. Velo, On the global Cauchy problem for nonlinear Klein-Gordon equation II, Ann. Inst. Henri Poincaré, Analyse non linéaire, 6(1989), 15-35.
[21] J. Ginibre, G. Velo, Regularity of solution of critical and subcritical nonlinear wave equation, Nonlinear Analysis T.M.A., 22(1994), 1-19.
[22] M. Grillakis, Regularity and asymptotic behaviour of nonlinear wave equation with critical nonlinearity, Ann. Math., 132(1990), 485-505.
[23] M. Grillakis, Regularity for nonlinear wave equation with critical nonlinearity, Pure Appl. Math., 45(1992), 749-774.
[24] M. A. Horn, Implications of sharp trace regularity results on boundary stabilization of the system of linear elasticity, J. Math. Anal. Appl., 223 (1999), 126-150.
[25] K. Jörgen, Das Anfangswert problem im Grossen für eien nichlineare Wellengleichungen, Math. Z., 77(1961), 295-308.
[26] R. Joly, C. Laurent, Stabilization for the semilinear wave equation with geometric control condition, Anal. PDE., (2013), 1089-1119.
[27] L. V. Kapitanskiǐ, The Cauchy problem for semilinear wave equations, I. J. Soviet Math., 49, 1166-1186; II. J. Soviet Math., 62, 2746-2777; III. J. Soviet Math., 62, 2619-2645.
[28] D. Kim, J. Kim, D. Sheen, Absorbing boundary conditions for wave propagation in viscoelastic media, J. Comput. Appl. Math., 76(1C2)(1996), 301-314.
[29] J. Lagnese, Boundary stabilization of linear elastodynamic systems, SIAM J. Control and Optim., 21 (1983), 968-984.
[30] J. Lagnese, Uniform asymptotic energy estimates for solutions of the equations of dynamic plane elasticity with nonlinear dissipation at the boundary, Nonlinear Anal., 16 (1991), 35-54.
[31] I. Lasiecka, Nonlinear boundary feedback stabilization of dynamic elasticity with thermal effects, Shape optimization and optimal design (Cambridge, 1999), Pure and Appl. Math., 216 (2001), 333-354.
[32] I. Lasiecka, D. Tataru, Uniform boundary stabilization of semilinear wave equation with nonlinear boundary dissipation, Differential Integral Equations, 6 (1993), 507-533.
[33] P.D.Lax, Morawetz, C.S., Phillips, R.S.: Exponential decay of solutions of the wave equation in the exterior of a star-shaped obstacle, Comm. Pure Appl. Math. 16: 477-486, 1963.
[34] M. Marin, S. Nicaise, Existence and stability results for thermoelastic dipolar bodies with double porosity, Contin. Mech. Thermodyn. 28 (2016), 1645-1657.
[35] J. M. Melenk, A. Parsania, S. Sauter, General DG-Methods for Highly Indefinite Helmholtz Problems, 57(3)(2013), 536-581.
[36] R. B. Melrose, Singularities and energy decay in acoustic scattering, Duke Math. J. 46: 43-59, 1979.
[37] Y.S. Meng, F.Y. Yang, Z.H.Ning, Internal observability, controllability and stabilization of the inhomogeneous and anisotropic elastic wave equation, Appl Math Optim (2020).
[38] K. Moez, Équation des ondes amorties dans un domaine extérieur, Bulletin de la Société mathématique de France, 131(2)(2003), 211-228.
[39] C.S. Morawetz, The decay of solutions of the exterior initial-boundary value problem for the wave equation, Comm. Pure Appl. Math. 14: 561-568, 1961.
[40] C.S. Morawetz, Decay for solutions of the exterior problem for the wave equation, Comm. Pure Appl. Math. 28: 229-246, 1975.
[41] J. Neˇcas and I. Hlav´aˇcek, Mathematical Theory of Elastic and Elastico-Plastic Bodies: An Introduction, Elsevier, Amsterdam, 1981.
[42] S. Nicaise and J. Valein, Stabilization of non-homogeneous elastic materials with voids, J. Math. Anal. Appl., 387 (2012), 1061-1087.
[43] Z.H. Ning, Asymptotic behavior of the nonlinear Schrödinger equation on exterior domain, Math. Res. Lett. in press, arXiv:1905.09540 [math.AP].
[44] J. A. Nitsche, On korns second inequality, RAIRO Anal. Numr., 15 (1981), 237-248.
[45] H. Pecher, L^p Abschätzungen und klassische Lösungen fùr nich lineare wellengleichungen.I. Math. Z., 150(1976), 159-183.
[46] W.M. Peng, W.G. Zhang, Global existence for nonlinear elastic waves in high space dimensions, 148(2017), 203-211.
[47] J. Rauch, The u^5-Klein-Gordon equation. Pitman Research Notes in Math. (Brezis H and Lions J L, eds.) 53(1982), 335-364.
[48] J. Shatah, M. Struwe, Regularity results for nonlinear wave equations. Ann. Math., 138(1993), 505-518.
[49] J. Shatah, M. Struwe, Well-posedness in the energy space for semilinear wave equation with critical growth. IMRN., (1994), 303-309.
[50] M. Struwe, Global regular solution to the u^5 Klein-Gordon equations. Ann Scu. Norm Sup. Pisa,, 15(1988), 495-513.
[51] Y. X. Shang, S. M. Li, Control properties for second-order hyperbolic systems in anisotropic cases with applications in inhomogeneous and anisotropic elastodynamic systems, SIAM J. Control and Optim., 56 (2018), 4181-4202.
A. Tadeu, P. Stanak, J. Antonio, J. Sladek, V. Sladek, 2.5D elastic wave propagation in non-homogeneous media coupling the BEM and MLPG methods, Eng. Anal. Bound. Elem., 53 (2015), 86-99.

A. Tadeu, P. Stanak, J. Antonio, J. Sladek, V. Sladek, The influence of non-homogeneous material properties on elastic wave propagation in fluid-filled boreholes. Comput. Model. Eng. Sci., 107 (2015), 345-378.

L. Tebou, On the stabilization of dynamic elasticity equations with unbounded locally distributed dissipation, Differential Integral Equations, 19 (2006), 785-798.

L. Tebou, Stabilization of the elastodynamic equations with a degenerate locally distributed dissipation, Systems Control Lett., 56 (2007), 538-545.

T. H. Qin, Symmetrizing nonlinear elastodynamic system, J. Elasticity., 50 (1998), 242-252.

P. F. Yao, On the observability inequalities for the exact controllability of the wave equation with variable coefficients, SIAM J. Control Optim. 37: 1568-1599, 1999.

P. F. Yao, Boundary controllability for the quasilinear wave equation, Appl. Math. Optim. 61: 191-233, 2010.

E. Zuazua, Exponential decay for the semilinear wave equation with localized damping in unbounded domains, J. Math. Pures Appl., 70(1992), 513-529.

Z. F. Zhang and P. F. Yao. Global smooth solutions and stabilization of nonlinear elastodynamic systems with locally distributed dissipation, Systems Control Lett., 58 (2009), 491-498.

D. B. Zha, Remarks on nonlinear elastic waves in the radial symmetry in 2-D, 36(7), 2016, 4051-4062.