A study on r-regular and l-regular near-rings

Marisetti Sowjanya1*, A. Gangadhara Rao2, P.M. Padmalatha3 and T. Radharani 4

Abstract
In this paper, by studying r-regular near-rings and m-regular near-rings, we proved some characterizations of m-regular near-rings, r-regular near-rings with IFP. We introduced the term l-regular near-ring and proved some results.

Keywords
m-regular near-ring, r-regular near-ring, l-regular near-ring, IFP.

AMS Subject Classification
16Y30.

1. Introduction
Development of the concept of near-rings is highly shaped by the inventive research on Ring theory. In ring theory, Roos $^{[14]}$ defined the concept of regularity and this notion was enforced and developed to Near-rings and several mathematicians gave a various characterization of near-rings such as Bell $^{[2]}$, Steve Ligh $^{[7]}$, YV Reddy and CVLN Murthy $^{[13]}$, Ramakotaiah $^{[10, 11]}$, Dheena $^{[5]}$, S Suryanarayanan and N Ganesan $^{[18]}$, Atagün, Akin and Kamacı, Hüseyin and Taştekin, Ismail and SEZGİN, Ashlan $^{[1]}$, Yong UK Cho $^{[3]}$ and Christian Lompjerzy Matczuk $^{[8]}$ developed the concept of semicentral idempotents for near-rings and rings. Especially, in ideal theory, Pairote Yiarayong $^{[20]}$ developed a strong relationship on various kinds of prime ideals in near-rings. Wendt Gerhard $^{[19]}$ investigated minimal ideals and primitivity in Right near-rings. Recently, S Ramkumar and T Manikantan $^{[12]}$ established the notion of the extension of a fuzzy soft set over a near-ring.

2. Preliminaries
For necessary definitions and basic results, the author follows $^{[9]}$. In this Preliminaries section, We recall the required definitions and results as follows.

Definition 2.1. A triplet $(\mathcal{R}, +, \cdot)$ is referred to as The, Right near-ring where

1. \mathcal{R} holds the properties of a "Group" under addition.
2. \mathcal{R} holds the properties of a "Semi-group" under multiplication.
3. $(t^1 + q^1).s^1 = t^1.s^1 + q^1.s^1, \forall t^1, q^1, s^1 \in \mathcal{R}$ (right distributive law).

Moreover in this paper, we consider Right near-ring$(\mathcal{R}, +, .)$ and we designate a right near-ring as \mathcal{R} unless and otherwise mentioned. We write $t^1.s^1$ to denote $t^1.s^1$ for any two elements t^1 and s^1 in a near-ring \mathcal{R}.

Example 2.2. Let $(\mathcal{R}, +)$ where $\mathcal{R} = \{i^1, p^1, q^1, r^1\}$ be a Klein’s four group with addition and product tables mentioned below is an example for a near-ring. [see Pilz, p408 (12)(0,7,13,9)]
Definition 2.3. Let \mathcal{R} is referred to as "Zero-symmetric near-ring (ZSN)" if $k0 = 0$ $\forall k \in \mathcal{R}$ i.e. $\mathcal{R} = \mathcal{R}_0$.

In the above example 2.2, $(\mathcal{R}, +, \cdot)$ is a ZSN and we denote it as $\mathcal{R} \in \eta_0$.

Definition 2.4. Let \mathcal{D} be a subgroup of \mathcal{R} is said to be \mathcal{R}-subgroup $(\mathcal{R}$-SG) if $\mathcal{R} \subseteq \mathcal{D}$.

If $S, T \subseteq \mathcal{R}$ then we define $ST = \{st/s \in S, t \in T\}$.

We, now designate a normal subgroup as NSG.

Definition 2.5. Let \mathcal{I} be a NSG of $(\mathcal{R}, +)$ is referred to as the left ideal of \mathcal{R} if $\forall t, p \in \mathcal{R}, \forall s \in \mathcal{I}, t(p+s) - tp \in \mathcal{I}$.

Definition 2.6. Let \mathcal{I} be a NSG of $(\mathcal{R}, +)$ is referred to as the right ideal of \mathcal{R} if $\exists \mathcal{R} \supseteq \mathcal{I}$.

Definition 2.7. Let \mathcal{I} be a NSG of $(\mathcal{R}, +)$ is referred to as ideal(two-sided ideal) if it satisfies both the definitions of left ideal and a right ideal of \mathcal{R}.

Proposition 2.8. [9, proposition 1.34(c)]

For a $\mathcal{R} \in \eta_0$, every ideal is a \mathcal{R}-SG of \mathcal{R}.

Definition 2.9. Assume that \mathcal{F} is a non-void subset in \mathcal{R}. Then $\{l/s \in I\}$ be the family of all left ideals which contain \mathcal{F}. $L = \bigcap_{x \in L} L_x$ is the smallest one among all left ideal containing \mathcal{F} can be referred as "left ideal generated by \mathcal{F}".

Definition 2.10. Assume that an ideal \mathcal{A} of \mathcal{R} is termed to "principal ideal" if \mathcal{A} is generated by one component.

If an ideal \mathcal{A} which is generated by an element ‘a’, then \mathcal{A} is symbolized by (a).

If a left ideal \mathcal{A} is generated by a single component ‘a’, then \mathcal{A} is symbolized by (a).

If the right ideal \mathcal{A} is generated by a single component ‘a’, then \mathcal{A} is symbolized by (a).

Definition 2.11. The center of a near-ring \mathcal{R} is defined as $\mathcal{C} = \{x \in \mathcal{R} : nx = xn, \forall n \in \mathcal{R}\}$.

Elements in \mathcal{C} are said to be central.

Definition 2.12. A component ‘p’ is termed as an idempotent element of \mathcal{R} if $p^2 = p$, for $p \in \mathcal{R}$.

Table 1. Addition table

	i^1	i^1	p^1	q^1	r^1
i^1	i^1	p^1	q^1	r^1	
p^1	p^1	i^1	q^1	r^1	
q^1	q^1	r^1	i^1	p^1	
r^1	r^1	q^1	p^1	i^1	

Table 2. Product table

	i^1	i^1	p^1	p^1	q^1	q^1	r^1	r^1
i^1	i^1	i^1	i^1	i^1	i^1	i^1	i^1	i^1
p^1	p^1	p^1	p^1	p^1	p^1	p^1	p^1	p^1
q^1	q^1	q^1	q^1	q^1	q^1	q^1	q^1	q^1
r^1	r^1	r^1	r^1	r^1	r^1	r^1	r^1	r^1

Definition 2.13. A non-zero element ‘t’ in \mathcal{R} is termed as nilpotent, if $\exists k \in \mathcal{R}$ which is greater than or equal to 2 such that $t^k = 0$.

Definition 2.14. A subset \mathcal{G} of \mathcal{R} is referred to as "nil" if for all $t \in \mathcal{G}$ are nilpotent.

Definition 2.15. The set $0 : \Delta = \{t \in \mathcal{R} : tx = 0, \forall x \in \Delta\}$, where Δ be a subset of \mathcal{R}, is known as the annihilator of Δ.

If $\Delta = \{\delta\}$, then $(0 : \Delta)$ is denoted by $(0 : \delta)$.

Corollary 2.16. [9, corollary 1.43 (a)] For any $\delta \in \mathcal{R}$, $(0 : \delta)$ is a "left ideal" of \mathcal{R}.

Corollary 2.17. [9, corollary 1.43 (b)] If Δ is a \mathcal{R}-SG of Γ, then the annihilator $(0 : \Delta)$ is an ideal in \mathcal{R}.

According to [2, 5, 9], let \mathcal{R} is identified as Insertion of Factors Property (IFP), supposing that $ts = 0 \implies tps = 0$, $\forall t, s, p \in \mathcal{R}$. The above-mentioned near-ring Example 2.2 is an example for IFP near-ring.

Proposition 2.18. [9, proposition 9.3] The following affirmations are equivalent:

- \mathcal{R} has the insertion of factors property (IFP).
- $(0 : s)$ is an ideal of \mathcal{R}, $\forall s \in \mathcal{R}$.
- Let $\mathcal{I} = (0 : \mathcal{G})$, for all subsets \mathcal{G} of \mathcal{R}, \mathcal{I} is an ideal.

Definition 2.19. For each component $k \in \mathcal{R}$, if $k^2 = 0 \implies k = 0$, then \mathcal{R} is known as reduced near-ring.

Lemma 2.20. [5, lemma 2.8] For each $d, l \in \mathcal{R}$, which is a reduced near-ring then $dlt = dtl$ where $t^2 = t, t \in \mathcal{R}$.

Proposition 2.21. [9, proposition 9.37] If $\mathcal{R} \in \eta_0$ is having no non-zero nilpotent components, then \mathcal{R} satisfies the IFP.

Definition 2.22. For each component $c \in \mathcal{R}$, if $\mathcal{R}c = \mathcal{R}c^2$ then \mathcal{R} is known as "left bi potent".

Definition 2.23. For each component $k \in \mathcal{R}$, there is a component l in \mathcal{R} such that $k = kl$ then \mathcal{R} is known as "regular near-ring (RN)"

Definition 2.24. For each component $p \in \mathcal{R}$, there is a component l in \mathcal{R} such that $p = lp^2$, then \mathcal{R} is known as "left strongly regular near-ring (left SRN)"

According to [15], for each component $q \in \mathcal{R}$, there is a component l which is an idempotent in \mathcal{R} such that $q = ql, l \in \langle q \rangle$, then \mathcal{R} is known as "r-regular near-ring (r-RN)"

Theorem 2.25. [15, Theorem 2.8] If \mathcal{R} is r-RN with 1 and has IFP then $a = al$ implies $a = la$, where l is an idempotent in $\mathcal{R}, l \in \langle a \rangle$.

Theorem 2.26. [15, Theorem 2.9] Let \mathcal{R} be a r-RN which satisfies IFP with 1 then \mathcal{R} is reduced.
Lemma 2.27. [9] [17] Let \(\mathcal{R} \in \eta_0 \) have IPF if and only if \(\mathcal{R} \) is an ideal where \(\mathcal{R} = (0 : \mathcal{S}) \), for all subsets \(\mathcal{S} \) of \(\mathcal{R} \).

Lemma 2.28. [5, lemma 1]
If a near-ring \(\mathcal{R} \in \eta_0 \) is reduced then for any \(0 \neq a \in \mathcal{R} \)
1. \(\mathcal{R} \setminus A(a) \) is reduced and the residue class \(\mathcal{R} \) of a mod\(A(a) \) is a nonzero divisor where \(A(a) = \{ x \in \mathcal{R} : xa = 0 \} \).
2. \(k_1k_2...k_n = 0 \) implies \((k_1)(k_2)...(k_n) = 0 \) for any \(k_1, k_2, ..., k_n \).

Theorem 2.29. [5, Theorem 1]
Let a near-ring \(\mathcal{R} \) be reduced. If \(\mathcal{S} \) is a nonvoid multiplicative subsemigroup of \(\mathcal{R} \) such that \(0 \notin \mathcal{S} \), then a completely prime ideal \(\mathcal{D} \) exists in \(\mathcal{R} \) such that \(\mathcal{D} \cap \mathcal{S} = \emptyset \).

3. Characterization of ”r-regular near-rings”.

The principal object ”m-regular near-ring” was cited by G.Gopala Krishna Moorthy, R. Veega, and S. Geetha [6] and proved some results. In this section, we have a new characterization.

According to [6] for each component \(k \in \mathcal{R} \), there is a component \(l \in \mathcal{R} \) such that \(k = kl^m \) where \(m \geq 1 \) is a fixed integer, then \(\mathcal{R} \) is known as ”m-regular near-ring(m-RN)”.

Lemma 3.1. [6, lemma 3.10] Let \(\mathcal{R} \) be a m-RN, \(a \in \mathcal{R} \) and \(a = ab^m \). Then
- The idempotents are \(ab^m \) and \(b^m a \).
- \(ab^m \mathcal{R} = a \mathcal{R} \) & \(\mathcal{R}b^m a = \mathcal{R}a \).

Let \(\mathcal{D} \) subset of \(\mathcal{R} \) then \(\sqrt{\mathcal{D}} = \{ x \in \mathcal{R} : x^k \in \mathcal{D} \) for some \(k \geq 1 \} \)

Definition 3.2. Let \(\mathcal{D} \) be an ideal of \(\mathcal{R} \) is known as Semi-Prime Ideal(S-PI) supposing that for all ideals \(\mathcal{J} \) of \(\mathcal{R} \), \(\mathcal{J}^2 \subseteq \mathcal{D} \) implies \(\mathcal{J} \subseteq \mathcal{D} \).

Theorem 3.3. Let \(\mathcal{R} \in \eta_0 \) be a m-RN, r-RN with unity, and has IPF. Then \(\mathcal{C} = \sqrt{\mathcal{C}} \) where \(\mathcal{C} \) is \(\mathcal{R} \)-SG of \(\mathcal{R} \).

Proof. Assume that \(\mathcal{C} \) is a \(\mathcal{R} \)-SG of \(\mathcal{R} \). Let \(p \in \mathcal{C} \) implies \(p \mathcal{C} \in \mathcal{C} \) which implies \(p \in \sqrt{\mathcal{C}} \) hence, we get \(\mathcal{C} \subseteq \sqrt{\mathcal{C}} \).

Now let \(p \in \sqrt{\mathcal{C}} \Rightarrow p^k \in \mathcal{C} \).

By using the definition of m-RN, lemma 3.1 and theorem 2.25, we have \(p = pl^mp = (l^mp) = (l^m)p = l^mp^2 \).

Now, \(p = l^mpp = l^m(l^mp^2) = l^m(l^{m+1}p^2) = \cdots = l^{(k-1)m}p^k \subseteq \mathcal{R} \).

Hence, we get \(\sqrt{\mathcal{C}} \subseteq \mathcal{C} \).

Thus, \(\mathcal{C} = \sqrt{\mathcal{C}} \) where \(\mathcal{C} \) is \(\mathcal{R} \)-SG of \(\mathcal{R} \).

Definition 3.4. For each component \(p, t \) in a m-RN \(\mathcal{R} \) is referred to have IPF if \(pt = 0 \) then \(pl^mt = 0 \), for some \(l \in \mathcal{R} \) and \(m \geq 1 \) is a fixed integer.

Theorem 3.5. If \(\mathcal{R} \in \eta_0 \) be a m-RN, r-RN in which all the idempotents are central then \(\mathcal{R} \) is reduced.

Proof. Suppose \(p \in \mathcal{R} \) such that \(p^2 = 0 \).

By using the definition of m-RN, and lemma 3.1, \(p = pl^m p = l^mp^2 = l^mp = 0 \).

Therefore, \(\mathcal{R} \) is reduced.

Theorem 3.6. If \(\mathcal{R} \in \eta_0 \) be a m-RN, r-RN in which all the idempotents are central then \(\mathcal{R} \) satisfies IPF.

Proof. Let \(t, p \in \mathcal{R} \) such that \(tp = 0 \).

Now, \((pt)^2 = (pt)(pt) = p(tp)t = p0 = 0 \).

By the theorem 3.5, \(pt = 0 \).

For \(m \geq 1 \), a fixed integer, consider \((l^mp)^2 = (l^m)(l^mp) = t(l^m)p = t^mp = t^m0 = 0 \).

By the theorem 3.5, \(t^mp = 0 \).

Hence \(\mathcal{R} \) has IPF.

Theorem 3.7. If \(\mathcal{R} \in \eta_0 \) be a m-RN, r-RN in which all the idempotents are central then \(\mathcal{R} \)-SG is an ideal.

Proof. Let \(\mathcal{R} \) be r-RN in which all idempotents are central.

By the definition of r-RN and By the theorem 2.25, we have \(a = ea, e^2 = e, e \in (a) \).

Let \(a \in \mathcal{R} \). Since, by the definition of m-RN, we have \(a = ab^m a \) where \(m \geq 1 \), a fixed integer and By the lemma 3.1, \(b^m a \) is idempotent.

Let \(b^m = e \) then by using the lemma 3.1, \(\mathcal{R} e = \mathcal{R} b^m a = \mathcal{R} a \).

Claim: \(0 : \mathcal{F} = \{ y \in \mathcal{R} : xy = 0 \forall s \in \mathcal{G} \} \).

Now, \((c - ce) e = ce - ce^2 = ce - ce = 0 \forall c \in \mathcal{R} \).

By the theorem 3.6, \(\mathcal{R} \) has IFP, \((c - ce) e = 0 \forall c \Rightarrow \mathcal{R} e \in (0 : \mathcal{F}) \).

Let \(y \in (0 : \mathcal{F}) \Rightarrow sy = 0, \forall s \in \mathcal{G} \).

\(\Rightarrow syx^m y = 0 \).

Now, \(yx^m = (yx^m) e \in \mathcal{G} \Rightarrow yx^m (yx^m) e = 0 \).

\(\Rightarrow yx^m y = 0, \forall s \in \mathcal{G} \).

Therefore, \(0 : \mathcal{F} = \mathcal{R} e = \mathcal{R} b^m a = \mathcal{R} a \).

By the lemma 2.27, \(0 : \mathcal{F} \) become an ideal, for any subset of \(\mathcal{R} \) of \(\mathcal{R} \).

\(\mathcal{R} \) become an ideal.

Thus, every \(\mathcal{R} \)-SG is an ideal of \(\mathcal{R} \).

Theorem 3.8. If \(\mathcal{R} \in \eta_0 \) be a m-RN, r-RN in which all the idempotents are central then \(\mathcal{R} \) is semi-prime near-ring.

Proof. Let us define an ideal \(\mathcal{D} \) in \(\mathcal{R} \) such that \(pt \in \mathcal{D} \) for \(p, t \in \mathcal{R} \).

Let \(\mathcal{G} \) be \(\mathcal{R} \)-SG of \(\mathcal{R} \).

Then by the theorem 3.7, \(\mathcal{G} \) is an ideal of \(\mathcal{R} \) and suppose that \(\mathcal{D}^2 \subseteq \mathcal{G} \).

Since \(\mathcal{R} \) is zero-symmetric, \(\mathcal{R} \mathcal{D} \subseteq \mathcal{D} \).

If \(p \in \mathcal{D} \), then \(p = pt^m p \in \mathcal{D} \mathcal{D} \subseteq \mathcal{D} \subseteq \mathcal{D}^2 \subseteq \mathcal{G} \).

\(\mathcal{D} \subseteq \mathcal{G} \).

So, any \(\mathcal{R} \)-SG of \(\mathcal{R} \) is a S-PI.
Specifically, \(\{0\} \) is a S-PI and hence \(R \) is a semi-prime near-ring.

Example 3.9. Let us define \(R \) on \(Z_6 = \{0, 1, 2, 3, 4, 5\} \) with addition and product tables.[see Pilz, p409 (24)(3, 5, 3, 1, 1)]

Addition is modulo 6.

0	1	2	3	4	5
0	1	2	3	4	5
1	2	3	4	5	0
2	3	4	5	0	1
3	4	5	0	1	2
4	5	0	1	2	3
5	0	1	2	3	4

Then \((R, +, .) \) is a r-RN and also m-RN.

4. Characterization of ”l-regular near-rings”.

On studying the concepts of r-regular near-ring in [15, 16], the term l-regular near-ring was introduced. Yong Uk Cho [4] introduced semicentral idempotents and developed some results in the concept of reducibility in near-ring and we extended this notion of semicentral idempotent to the generalized regular near-rings namely r-regular near-ring(r-RN) and l-regular near-rings(l-RN).

We introduce the term ”l-regular near-ring(l-RN)” as follows:

Definition 4.1. For each element \(q \in \mathbb{R} \), there is a component \(l \) which is an idempotent in \(R \) such that \(q = lq, l \in |q| \), then \(R \) is known as ”l-regular near-ring(l-RN)”.

Definition 4.2. For each element \(p^2 = p \in R \) is referred to be left semicentral idempotent(left-SCI) if \(R \circ p = p \circ R \).

Definition 4.3. For each element \(q^2 = q \in \mathbb{R} \) is referred to be right semicentral idempotent(right-SCI) if \(q \circ R = q \circ q \).

Definition 4.4. For each element \(e^2 = e \in \mathbb{R} \) is referred to be central idempotent(CI) if \(ek = ke \) for all \(k \in \mathbb{R} \).

Theorem 4.5. Let \(R \in \eta_2 \), r-RN with 1 and has IFP. Then every left-SCI is right-SCI.

Proof. Since by the theorem 2.25, \(q = qe \) implies \(q = eq \) for all \(q \in R \).

Let \(R \in \eta_2 \), r-RN with 1 and has IFP.

Now for each \(q \in \mathbb{R} \) \(\exists e^2 = e \in \mathbb{R} \) such that \(q = qe, e \in |q| \subseteq |q| \).

Since \((1-e)e = 0 \iff (1-e)qe = 0 \forall q \in \mathbb{R} \).

\(qe - eqe = 0 \iff qe = eqe \iff e \) is left-SCI.

By the theorem 2.25, \(qe = eqe = eq \iff eq = eq \iff e \) is right-SCI.

Thus, every left-SCI is right-SCI.

Corollary 4.6. Let \(R \in \eta_0 \), r-RN with 1 and has IFP. Then \(R \) is central.

Theorem 4.7. Let \(R \in \eta_0 \) be l-RN with 1 and has IFP. Then for any idempotent is left-SCI.

Proof. Let \(R \in \eta_0 \), l-RN with 1 and has IFP.

Now for each \(q \in \mathbb{R} \) \(\exists e^2 = e \in \mathbb{R} \) such that \(q = qe, e \in |q| \subseteq |q| \).

Since \((1-e)e = 0 \implies (1-e)qe = 0 \forall q \in \mathbb{R} \).

\(qe - eqe = 0 \implies q = eqe \implies e \) is left-SCI.

Thus, for any idempotent is left semicentral idempotent(left-SCI).

In the above theorems 4.5, 4.7 and corollary 4.6, the concepts of unity and reducibility is essential.

Example 4.8. Consider a near-ring on the group \(Z_6 = \{0, 1, 2, 3, 4, 5\} \) with addition and product table given below.[see Pilz, p410 (53)(0, 1, 4, 3, 4, 1)]

Addition is modulo 5.

0	1	2	3	4	5
0	1	2	3	4	5
1	2	3	4	5	0
2	3	4	5	0	1
3	4	5	0	1	2
4	5	0	1	2	3
5	0	1	2	3	4

This near-ring is r-RN and also l-RN. This near-ring is ZSN, reduced without unity.

It is clear that the idempotent elements 2 and 5 are not central. This near-ring \(R \) is right-SCI but not left-SCI. (for an element \(1 \in R \) such that \(2.1 \neq 1.2, 1 \).

Example 4.9. Any regular near-ring(RN) is r-RN and l-RN. Let us consider \(R \) on the group \(Z_5 = \{0, 1, 2, 3, 4\} \) with addition and product tables. [see Pilz, p408, (7)(0, 1, 4, 3, 4)]

Addition is modulo 5.

0	1	2	3	4
0	1	2	3	4
1	2	3	4	0
2	3	4	0	1
3	4	0	1	2
4	0	1	2	3

Then \((R, +, .) \) is a RN.

Remark 4.10. In the above mentioned example 4.9, the near-ring \(R \) is left-SCI but not right-SCI(for an element \(1 \in R \) such that \(2.1 \neq 2.1.2 \).
Theorem 4.11. For a near-ring \(\mathcal{R} \) is l-RN then \(\mathcal{R} = \mathcal{R}l \).

Proof. By the definition of l-RN, then \(l = el \), since \(e^2 = e, e \in |l| \).
\[l \in \mathcal{R}l \implies l \in \mathcal{R}l \]
Therefore \(\mathcal{R} = \mathcal{R}l \).

Theorem 4.12. For a near-ring \(\mathcal{R} \) is l-RN then \((0 : u) = (0 : \mathcal{R}u) = (0 : \mathcal{R}) \), \(\forall u \in \mathcal{R} \).

Proof. Since \(\mathcal{R} \) is l-RN, \(u \in \mathcal{R}u \).
Let \(x \in (0 : \mathcal{R}u) \).
Now \(xu = 0 \implies xu = 0 \implies (0 : \mathcal{R}u) = (0 : u) \).
Let \(x \in (0 : u) \) then \(xu = 0 \implies xu = 0 \implies x \in (0 : \mathcal{R}u) \implies (0 : u) \subseteq (0 : \mathcal{R}u) \).
Therefore \((0 : u) = (0 : \mathcal{R}) \).
By the theorem 4.11, \((0 : u) = (0 : \mathcal{R}u) = (0 : \mathcal{R}) \).

Theorem 4.13. Let a near-ring \(\mathcal{R} \) be l-RN. Then every principal ideal is generated by an idempotent.

Proof. Let \(c \in \mathcal{R} \). Consider a principal ideal generated by \(c \).
If \(\mathcal{R} \) is l-RN, \(\mathcal{R} = uc, u^2 = u, u \in (c) \subseteq (c) \implies (c) \subseteq (u) \).
Therefore \((c) = (u) \).

Example 4.14. Let us consider \(\mathcal{R} \) on \(\mathbb{Z}_5 = \{0, 1, 2, 3, 4, 5\} \) with addition and product table given below.[see Pilm. p409 (24)(3, 5, 3, 1, 1)]
Addition is modulo 6.

0	1	2	3	4	5
0	1	2	3	4	5
1	2	3	4	5	0
2	3	4	5	0	1
3	4	5	0	1	2
4	5	0	1	2	3
5	0	1	2	3	4

The only ideals of \(\mathcal{R} \) are \(\{0\} \), \(\{0, 2, 4\} \) and \(\{0, 1, 2, 3, 4, 5\} \).
This near-ring \((\mathcal{R}, +, \cdot) \) is both r-RN and l-RN.

Theorem 4.15. Let a near-ring \(\mathcal{R} \) be l-RN. Then \(\mathcal{R} \) has no nonzero nil ideals.

Proof. Suppose \(A \) be a nonzero nil ideal in \(\mathcal{R} \).
Let \(0 \neq a \in A \) and \(a = ea, e \in |a| \), \(e^2 = e \).
By the theorem 4.13, \(e \in (a) \subseteq A \).
\[\implies \ \\
\] is nilpotent, which is a conflict to ‘\(e \)' is idempotent.
Thus, \(\mathcal{R} \) has no nonzero nil ideals.

Theorem 4.16. For a near-ring \(\mathcal{R} \in \mathcal{R} \) is l-RN and every \(\mathcal{R} \)-subgroup is an ideal of \(\mathcal{R} \) then \(\mathcal{R} \) is left SRN.

Proof. Suppose that \(\mathcal{R} \) is l-RN and every \(\mathcal{R} \)-subgroup is an ideal of \(\mathcal{R} \).
By proposition 2.8, \(a = ea, e^2 = e, e \in |a| \subseteq (a) = \mathcal{R}a \).
\[\implies e = na, \text{for some } n \in \mathcal{R} \]
Therefore \(a = ea = nna = na^2 \) for some \(n \in \mathcal{R} \).
Hence \(\mathcal{R} \) is left SRN.

Theorem 4.17. For a near-ring \(\mathcal{R} \in \eta_0 \) is l-RN with 1 then \(\mathcal{R} \) is reduced.

Proof. Let \(t \in \mathcal{R} \) and \(t^2 = 0 \implies t \in (0 : t) \implies \langle t \rangle \subseteq (0 : t) \).
Suppose \(\mathcal{R} \) is l-RN, then \(t = et, e^2 = e, e \in |t| \subseteq (t) \subseteq (0 : t) \implies et = 0 \).
Therefore \(t = 0 \).
Hence \(\mathcal{R} \) is reduced.

Theorem 4.18. For a near-ring \(\mathcal{R} \in \eta_0 \) is l-RN with 1 and has IFP then \(d = ed \) implies \(d = de \) where ‘\(e \)' is an idempotent.

Proof. Suppose \(\mathcal{R} \) is l-RN with 1 and has IFP.
Now \(d \in \mathcal{R} \exists e^2 = e \in \mathcal{R} \implies d = ed, e \in |d| \subseteq |d| \).
Since \((1 - e) e = 0 \implies (1 - e) de = 0 \forall d \in \mathcal{R} \implies de - ede = 0 \implies de = ed = ed = d \) [by the lemma 2.20].
Therefore \(d = ed \) implies \(d = de \).

Definition 4.19. Let \(\mathcal{R} \) is referred to as weakly regular near-ring(WRN) if \(A^2 = A \) for every ideal \(A \) of \(\mathcal{R} \).

Definition 4.20. Let an ideal \(\mathcal{D} \) of \(\mathcal{R} \) is referred to as "Completely Prime Ideal(CPI) if \(kl \in \mathcal{D} \) implies \(k \in \mathcal{D} \) or \(l \in \mathcal{D} \).

Definition 4.21. Let an ideal \(\mathcal{D} \) of \(\mathcal{R} \) is referred to as "3-Prime Ideal(3-PI) if \(kn^l \in \mathcal{D} \) implies \(k \in \mathcal{D} \) or \(l \in \mathcal{D} \) for every \(n^l \in \mathcal{R} \).

Theorem 4.22. Let a near-ring \(\mathcal{R} \) be l-RN. Then \(\mathcal{R} \) is WRN.

Proof. Let \(\mathcal{D} \) be an ideal of \(\mathcal{R} \) and \(a \in \mathcal{D} \).
\[a = ea, e^2 = e, e \in |a| \subseteq \mathcal{D} \subseteq \mathcal{D}, \mathcal{D} = \mathcal{D}^2. \]
But \(\mathcal{D}^2 \subseteq \mathcal{D} \), therefore \(\mathcal{D} = \mathcal{D}^2. \)
Thus, \(\mathcal{R} \) is WRN.

Theorem 4.23. Let a near-ring \(\mathcal{R} \) be l-RN. Then \(\mathcal{R} \) has no nonzero nilpotent ideal.

Proof. Suppose \(J \) be a nonzero nilpotent ideal in \(\mathcal{R} \).
Then \(J^k = (0) \) for some \(k \) which is greater than or equal to 2.
By the theorem 4.22, every ideal in \(\mathcal{R} \) is idempotent i.e., \(J = J^2. \)
\[J^k = J^{k-2} J = J^{k-4} J^2 J \]
Continuing in this way we get \(J = (0) \).
It is a contradiction.
Thus \(\mathcal{R} \) has no nonzero nilpotent ideal.

Theorem 4.24. Let a near-ring \(\mathcal{R} \) be l-RN with left unity then every CPI is a maximal
A study on γ-regular and l-regular near-rings — 2202/2203

Proof. Let \mathcal{C} be a CPI of \mathfrak{R}
Suppose $\mathcal{C} \subseteq \mathfrak{M} \subseteq \mathfrak{R}$ then $\exists a \in \mathfrak{M} \setminus \mathcal{C}$
Now $a = ea, e^2 = e, e \in |a| \subseteq |\mathcal{C}| \subseteq |\mathfrak{M}| \Rightarrow e \in \mathfrak{M}$
$(1 - e)a = 0 \in \mathcal{C} \Rightarrow 1 - e \in \mathcal{C} \subseteq \mathfrak{M} \Rightarrow 1 - e \in \mathfrak{M}$.
Let $c \in \mathfrak{R}$ then $c = (1 - e + e) = (1 - e)e + ec \in \mathfrak{M}$.
Therefore $\mathfrak{R} = \mathfrak{M}$.

Hence \mathcal{C} is a maximal ideal.

Theorem 4.25. Let \mathfrak{R} be a l-RN with left unity and has IFP then every 3-PI is maximal.

Proof. Let \mathcal{C} be a 3-PI of \mathfrak{R}.
Assume $\mathcal{C} \subseteq \mathfrak{M} \subseteq \mathfrak{R}$.
Let $c \in \mathfrak{M} \setminus \mathcal{C}$.
Now $c = ec, e^2 = e, e \in |c| \subseteq |\mathcal{C}|$.
$(1 - e)c = 0$.
Since \mathfrak{R} has IFP, $(1 - e)nc = 0 \forall n \in \mathfrak{R}$.
$(1 - e)c = 0 \subseteq \mathcal{C} \Rightarrow 1 - e \in \mathcal{C} \subseteq \mathfrak{M} \Rightarrow 1 - e \in \mathfrak{M}$.
For any x in \mathfrak{R}, $x = ex + (1 - e)x \in \mathfrak{M}$.
Therefore $\mathfrak{R} = \mathfrak{M}$.

Thus \mathcal{C} is maximal ideal.

Theorem 4.26. If a near-ring \mathfrak{R} is l-RN then every ideal I of \mathfrak{R} is l-RN.

Proof. Suppose \mathfrak{R} is l-RN, then $a = ea, e^2 = e, e \in |a|$.
Assume that I is an ideal \mathfrak{R}.
Let $a \in I$ then $a = ea, e \in |a| \subseteq I$.
Therefore I is l-RN.

Theorem 4.27. For a near-ring $\mathfrak{R} \in \eta_0$ with identity.

1. \mathfrak{R} is l-RN and has IFP.

2. \mathfrak{R} is reduced and every CPI is maximal.

Proof. (1) \Rightarrow (2)
Suppose \mathfrak{R} is l-RN.
By theorem 4.17, \mathfrak{R} is reduced and by theorem 4.24, it is proved.

(2) \Rightarrow (1)
Suppose $\mathfrak{R} \in \eta_0$ is reduced and every CPI is maximal.
Since $\mathfrak{R} \in \eta_0$ is reduced, $ab = 0 \Rightarrow ba = 0$.
Consider $nba = n(ba) = n0 = 0 \Rightarrow (nb)a = 0 \Rightarrow anb = 0 \forall n \in \mathfrak{R}$.
Therefore \mathfrak{R} has IFP.
Let $0 \neq a \in \mathfrak{R}$, by the lemma 2.28, $\mathfrak{K} = \mathfrak{R} \setminus A(a)$ is reduced and \bar{a} is not a zero divisor.
Also, every CPI of \mathfrak{K} is a maximal ideal in \mathfrak{K}.
Let Q be the multiplicative subsemigroup generated by an element $\bar{a} - \bar{1} \bar{a}$ where $\bar{1} \in |a|$.
If not, by the theorem 2.29, there exists a CPI \bar{P} with $\bar{P} \cap Q = \emptyset$.
Suppose $|a| \subseteq \bar{P}$ then $\bar{a} \in \bar{P}$.
$\Rightarrow \bar{a} - \bar{1} \bar{a} \in \bar{P}$.
$\Rightarrow \bar{a} - \bar{1} \bar{a} \in \bar{P} \cap Q$, it is a contradiction to the fact that $\bar{P} \cap Q = \emptyset$.
Suppose $|a| \nsubseteq \bar{P}$ and \bar{P} is maximal, we have $\mathfrak{K} = \bar{P} + |a|$. $\bar{P} = \bar{a} + \bar{t}$ where $\bar{a} \in \bar{P}, \bar{t} \in |a|$.
$\Rightarrow \bar{a} - \bar{t} \bar{a} = \bar{a} \bar{a} \in \bar{P}$.
$\Rightarrow \bar{a} - \bar{t} \bar{a} \in \bar{P} \cap Q$, it is a contradiction to the fact, $\bar{P} \cap Q = \emptyset$.
Thus $0 \in Q$.
Now $0 = (\bar{a} - \bar{t} \bar{a})(\bar{a} - \bar{t} \bar{a}) \cdots (\bar{a} - \bar{t} \bar{a}) = (\bar{1} - \bar{t}) \bar{a}, \bar{a} \in |a|$.
Since \bar{a} is not zero divisor, $(\bar{1} - \bar{t}) = 0 \Rightarrow \bar{1} = \bar{t}, t \in |a|$.
Hence $(1 - t)a \in A(a) \Rightarrow (1 - t)a = 0, t \in |a|, t^2 = t \Rightarrow a = ta, t^2 = t, t \in |a|$.
Therefore \mathfrak{R} is l-RN.

Definition 4.28. Let a near-ring \mathfrak{R} is referred to as “Left Quasi Duo(LQD)” if every maximal left ideal of \mathfrak{R} is two-sided ideal.

Theorem 4.29. For a near-ring $\mathfrak{R} \in \eta_0$ is the LQD with left unity l, \mathfrak{R} is l-RN then $\mathfrak{R} = \{q\} + (0 : q)$.

Proof. Since \mathfrak{R} is l-RN, then $q = tq, t^2 = t, t \in |q| \subseteq |q|$.
$\Rightarrow q \subseteq (q)q.
Then (q)q \subseteq (q)q.
And we have $|q\rangle q \subseteq (q)q$.
Therefore $\bar{q} = \langle q \rangle q$.
Suppose that $\mathfrak{R} \neq \langle q \rangle + (0 : q)$.
Then there exists a maximal left ideal \mathfrak{C} such that $\langle q \rangle + \langle 0 : q \rangle \subseteq \mathfrak{C}$.
Since \mathfrak{R} is LQD, \mathfrak{C} is a two-sided ideal.
Since $q \in \mathfrak{C}, (q)q \subseteq \mathfrak{C} \subseteq \bar{q} = \langle q \rangle q$.
Therefore $\mathfrak{C}q = \langle q \rangle q$.
Therefore $\mathfrak{C}q = \langle q \rangle q \subseteq \mathfrak{C}$.
Therefore $s \in \{q\}$ such that $q = sq, s \in \{q\}$.
$\Rightarrow (1 - s)q = 0 \Rightarrow 1 - s \in \{0 : q\}$.
Therefore $1 = s + (1 - s) \in \{q\} + \{0 : q\} \subseteq \mathfrak{C}$.
It is a contradiction.
Therefore $\mathfrak{R} = \langle q \rangle + (0 : q)$.

5. Conclusion

In mathematics, several researchers are working on algebra. Recently as an application of near-rings, mathematicians used planar near-rings, near-rings of polynomials, and other near-rings to expand designs and codes. In this publication, we made an effort to develop the concept of regular near-rings and generalized regular near-rings.

Acknowledgment

The authors are very thankful to the referees for their valuable suggestions to sharpen this article.

References

[1] A. Atagun, H. Kamaci, İ. Teстekin and A. SEZGİN, P-Properties in Near-Rings, J. Math. Fund. Sci., 51(2019), 152–167.
[2] H E Bell, Near-rings in which each element is a power of itself, Bull. Aust. Math. Soc., 2(1970), 363–368.
[3] Y Uk Cho, A study on near-rings with semi-central idempotents, Far East J. Math. Sci. (FJMS) 98(2015), 759–762.
[4] Y Uk Cho, On Semicentral Idempotents in Near-Rings, Appl. Math. Sci., 9(2015), 3843 – 3846.
[5] P Dheena, A generalization of strongly regular near-rings, Indian J. Pure Appl. Math. 20(1989), 58–63.
[6] G Gopala Krishna Moorthy, R veega and S Geetha, On Pseudo m-power commutative Near-rings, IOSR Journal of Mathematics(IOSR-JM), 12(2016), 80–86.
[7] S Ligh, On regular near-rings, Math. Japon., 15(1970), 7–13.
[8] C Lomp and J Matczuk, A note on semicentral idempotents, Comm. Algebra., 45(2017), 2735–2737.
[9] G Pilz, Near-rings: the theory and its applications, 23 edition, 2011.
[10] D. Ramakotaiah, Theory of Near Rings, PhD Thesis, Andhra University, 1968.
[11] D. Ramakotaiah and G K Rao, IFP near-rings, J. Aust. Math. Soc., 27(1979), 365–370.
[12] S. Ramkumar and T. Manikantan, Extensions of fuzzy soft ideals over near-rings, Malaya J. Mat., S(1)(2020), 626–631.
[13] Y V Reddy and C V L N Murty, On strongly regular near-rings, Proc. Edinb. Math. Soc., 27(2)(1984), 61–64.
[14] Roos, Rings and Regularities, PhD Thesis, Technische Hoge School, Delft, 1975.
[15] M. Sowjanya, A. Gangadhara Rao, A. Anjaneyulu and T. Radha Rani, r-Regular Near-Rings, International Journal of Engineering Research and Application, 8(2018), 11–19.
[16] M. Sowjanya, A. Gangadhara Rao, T. Radharani and V. Padmaja, Results on r-regular near-rings, Int. J. Math. Comput. Sci., 4(15)(2020), 1327–1336.
[17] G. Sugantha and R. Balakrishnan, γ near-rings, International Research Journal of Pure Algebra, 4(2014), 546–551.
[18] S. Suryanarayanan and N. Ganesan, Stable and pseudo stable near rings, Indian J. Pure Appl. Math., 19(1988), 1206–1216.
[19] G. Wendt, Minimal Ideals and Primitivity in Near-rings, Taiwanese J. Math., 23(2019), 799–820.
[20] P. Yiarayong, Some Basic Properties of Completely Prim Ideals in Near Rings, J. Math. Fund. Sci. 47(2015), 227–235.