LOWER BOUNDS FOR POSSIBLE BLOW–UP SOLUTIONS FOR THE NAVIER–STOKES EQUATIONS REVISITED.

JULIO A. MONTERO

ABSTRACT. In this paper we give optimal lower bounds for the blow-up rate of the $H^s(\mathbb{T}^3)$-norm, $\frac{1}{2} < s < \frac{5}{2}$, of a putative singular solution of the Navier–Stokes equation.

1. Introduction

In [1] the authors, based on ideas presented by Robinson, Sadowski, Silva in [5], showed an almost optimal lower bound for the blow–up rate of solutions of the Navier–Stokes equations with periodic boundary conditions on a bounded maximal interval of existence $(0, T)$, $T < \infty$, when this solution belongs to $\dot{H}^{\frac{1}{2}}(\mathbb{T}^3) \cap \dot{H}^{\frac{5}{2}}(\mathbb{T}^3)$. To be more precise, it was shown that a regular solution of the Navier–Stokes equation whose maximal interval of existence (or regularity) is $(0, T)$, must satisfy

$$\|u(t)\|_{\dot{H}^{\frac{1}{2}}(\mathbb{T}^3)} \geq \frac{c}{\sqrt{(T-t)|\log(T-t)|}},$$

for a constant $c > 0$. In this paper we go a little further and give a proof of the expected optimal lower blow–up rate. Namely, we prove the following estimate on the blow–up rate of putative singular solutions to the Navier–Stokes equations:

$$\frac{C}{t^{\frac{1}{2}}} \leq \|u(T-t)\|_{\dot{H}^{\frac{1}{2}}(\mathbb{T}^3)}, \quad C > 0.$$

The proof of this result requires a detailed inspection of the bounds on the non-linear term of the Navier–Stokes equations found in [5], and the application of an interpolation technique inspired by the method used by Hardy to prove Carlson’s inequality (see [2]).

The lower blow–up rates for putative singular solutions to the Navier–Stokes equations can be interpreted as a regularity criterion for solutions of the equation (as they give a lower bound on the size of the maximal interval of existence). These blow–up estimates were first stated for the L^p spaces, $p > 3$, without proof by Leray in his remarkable paper [4], and proved by Giga in [3] via semigroup theory. In this paper, we rather follow the elementary proof on homogeneous Sobolev spaces given by Robinson, Sadowski and Silva for their blow–up estimates.

This paper was written while the author was visiting the Mathematics Department at Cornell University, and he is quite grateful for their warm hospitality and in particular to Prof. Tim Healy for his encouragement. He also must acknowledge the support of Colciencias and his home institution, the Universidad de los

2010 Mathematics Subject Classification. Primary 35Q30, Secondary 35B44.

Key words and phrases. Navier–Stokes, blow-up, homogeneous Sobolev spaces.
The next statement is essentially the same given in [5]. The main difference is that we show a proof which includes the case when the solution belongs to $\dot{H}^{s}((T^3) \cap \dot{H}^{s+1}(T^3))$.

Theorem 2.1. Let $u(x,t) = (u_1, u_2, u_3)$ be a solution Navier–Stokes equations whose maximum interval of existence is $(0,T)$, $0 < T < \infty$, and such that $u \in C((0,T), \dot{H}^{s}(T^3) \cap \dot{H}^{s+1}(T^3))$, with $\frac{1}{2} < s < \frac{5}{2}$. Then the following estimate holds

$$\frac{C_s}{t^{\frac{s}{2}-\frac{1}{2}}} \leq \|u(T-s)\|_{\dot{H}^{s}(T^3)}.$$

Proof. First, we must recall the energy inequality found in [5]:

$$\frac{d}{dt} \left(\|u(t)\|^2 \right) + 4\pi^2 \|u(t)\|_{s+1} \leq C_\varepsilon \left(\sum_k |\hat{a}_k| |k|^r \right) \|u(t)\|_s \|u\|_{s+1-r},$$

with $0 \leq r \leq 1$. Here, we use $\|v\|_s$ to denote the norm of v in the homogeneous Sobolev spaces $\dot{H}^{s}(T^3)$. Now we pick $r = \frac{1}{2} \left(s - \frac{1}{2} \right)$, and apply the interpolation technique employed by Hardy in his proof of Carlson’s inequality (see [2]), to the first factor on the right hand side of (2), to obtain:

$$\sum_k |\hat{a}_k| |k|^{\frac{s}{2}-\frac{1}{2}} = \sum_k |\hat{a}_k| |k|^{\frac{s}{2}-\frac{1}{2}} \frac{\sqrt{a|k|^{s+\frac{1}{2}} + b|k|^{s+\frac{1}{2}}}}{\sqrt{a|k|^{s+\frac{1}{2}} + b|k|^{s+\frac{1}{2}}}}$$

$$\leq \left(a \|u\|_s^2 + b \|u\|_{s+1}^2 \right)^\frac{1}{2} \left(\sum_k \frac{1}{a|k|^{s+\frac{1}{2}} + b|k|^{s+\frac{1}{2}}} \right)^\frac{1}{2}$$

$$\leq \left(a \|u\|_s^2 + b \|u\|_{s+1}^2 \right)^\frac{1}{2} \left(\frac{4\pi}{\sqrt{ab}} \left(\frac{\sqrt{a}}{\sqrt{b}} \int_0^\infty \frac{y^{\frac{s}{2}-\frac{1}{2}}}{1 + y^2} \, dy \right) \right)^\frac{1}{2},$$

if we choose $a = \|u(t)\|_s^2$ and $b = \|u(t)\|_{s+1}^2$ then the energy inequality (2) becomes

$$\frac{d}{dt} \left(\|u(t)\|^2 \right) + 4\pi^2 \|u(t)\|_{s+1}^2 \leq C_\varepsilon \|u(t)\|_{s+\frac{s}{2}} \|u(t)\|^{\frac{s}{s+1}} \|u(t)\|^{\frac{s}{s+1}}.$$

Now, observe that $\frac{s}{2} + \frac{5}{4} = \left(\frac{s}{2} - \frac{1}{4} \right) s + \left(\frac{5}{4} - \frac{s}{2} \right) (s+1)$, so by interpolation between homogeneous Sobolev spaces, we get

$$\|u\|_{s+\frac{s}{2}} \leq \|u\|_{s}^{\frac{s}{s+1}} \|u\|_{s+1}^{\frac{s}{s+1}}.$$

Therefore, from inequality (3) we obtain

$$\frac{d}{dt} \left(\|u(t)\|^2 \right) + 4\pi^2 \|u(t)\|_{s+1}^2 \leq C_\varepsilon \|u(t)\|_{s}^{s+\frac{s}{2}} \|u(t)\|^{\frac{s}{s+1}}.$$
It is time to use Young’s inequality \(ab \leq \frac{a^p}{p} + \frac{b^q}{q} \), with the choice
\[
p = \frac{2(s+\frac{1}{2})}{s-\frac{1}{2}} \quad \text{and} \quad q = \frac{2}{s-\frac{1}{2}}.
\]
We thus get
\[
\frac{1}{2} \frac{d}{dt}(\|u(t)\|_s^2) \leq c_s(\|u(t)\|_s^2)^{\left(1+\frac{1}{s-\frac{1}{2}}\right)}.
\]
Finally, by integrating between \(T-t \) and \(T \) the previous estimate, inequality (1) follows.

Remark 1. Theorem 2.1 is also valid when we consider the case of the whole space, i.e., for solutions \(u(t) \in \dot{H}^{\frac{3}{2}}(\mathbb{R}^3) \cap \dot{H}^{\frac{5}{2}}(\mathbb{R}^3) \), this because all the calculations leading to its proof are valid on \(\mathbb{R}^3 \) if we change sums by integrals.

The previous proof gives us also an lower bound on size on the maximal interval of existence. Indeed, the following result holds.

Corollary 2.1. Let \(u(x,t) \) be a solution of the Navier–Stokes equations with initial condition \(u_0(x) \in \dot{H}^{s}(\mathbb{T}^3) \), \(\frac{1}{2} < s < \frac{5}{2} \), and let \(T > 0 \) be the minimum time for blow–up. Then

\[
\frac{K_s}{(\|u_0\|_s)^{\frac{1}{2(s-\frac{1}{2})}}} \leq T.
\]

3. **Conclusions**

Theorem 2.1 includes the optimal lower bound for blow–up rates when \(u \in \dot{H}^{\frac{3}{2}}(\mathbb{T}^3) \cap \dot{H}^{\frac{5}{2}}(\mathbb{T}^3) \); this particular case was missing in the proof given in [5], and in [11] a non optimal bound was proved. These bounds raise the following question: If there exists some \(C > 0 \) such that \(\|u(T-t)\|_s \leq Ct^{-\frac{1}{2}(s-\frac{1}{2})} \), does \(\|u(T-t)\|_s \) blow–up? Furthermore, a lower blow-up rate for \(u \in \dot{H}^{\frac{3}{2}}(\mathbb{T}^3) \), for putative blow–up solutions to the Navier–Stokes equations, is yet unknown.

References

[1] Cortissoz, Jean C.; Montero, Julio A.; Pinilla Carlos E. On lower bounds for possible blow–up solutions to the periodic Navier-Stokes equation. Journal of Mathematical Physics 55, 033101 (2014); doi: 10.1063
[2] Larsson, Leo; Maligranda, Lech; Pečarić, Josip; Persson, Lars-Erik Multiplicative inequalities of Carlson type and interpolation. World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2006.
[3] Giga, Yoshikazu. Solutions for semilinear parabolic equations in \(L^p \) and regularity of weak solutions of the Navier–Stokes system. J. Differential Equations 62 (1986), no. 2, 186—212.
[4] Leray, J. Sur le mouvement d’un liquide visqueux emplissant l’espace. Acta Math. 63 (1934), no. 1, 193–248.
[5] Robinson, James C.; Sadowski, Witold; Silva, Ricardo P. Lower bounds on blow up solutions of the three-dimensional Navier-Stokes equations in homogeneous Sobolev spaces.J. Math. Phys. 53 (2012), no. 11, 115618, 15 pp.