Enhanced photocatalysis by coupling of anatase TiO₂ film to triangular Ag nanoparticle island

Jinxia Xu¹,³, Xiangheng Xiao¹,²,³*, Feng Ren¹,³, Wei Wu¹,³, Zhigao Dai¹,³, Guangxu Cai¹,³, Shaofeng Zhang¹,³, Juan Zhou¹,³, Fei Mei⁴ and Changzhong Jiang¹,³*

Abstract

In order to overcome the low utilization ratio of solar light and high electron-hole pair recombination rate of TiO₂, the triangular Ag nanoparticle island is covered on the surface of the TiO₂ thin film. Enhancement of the photocatalytic activity of the Ag/TiO₂ nanocomposite system is observed. The increase of electron-hole pair generation is caused by the enhanced near-field amplitudes of localized surface plasmon of the Ag nanoparticles. The efficiently suppressed recombination of electron-hole pair caused by the metal-semiconductor contact can also enhance the photocatalytic activity of the TiO₂ film.

Keywords: plasmon, photocatalysis, nanospheres lithography, Ag nanoparticle island

Background

TiO₂, as a key photocatalyst, has received extensive attention during the past decades due to its strong catalytic activity, high chemical stability, nontoxicity, and low cost [1-5]. However, owing to its wide bandgap of 3.2 eV, only approximately 4% solar spectrum can be utilized and the conversion of photon to electron-hole pair is low. Furthermore, the high rate of electron-hole pair recombination limits the efficiency of photocatalytic activity. Therefore, how to enhance photocatalytic efficiency is very important for the widespread application of TiO₂ as a photocatalyst. Recently, surface plasmon-mediated photocatalytic activity of TiO₂ has become a hot research topic [6-9]. Surface plasmon resonance is produced by metal nanoparticles (NPs) due to photo-induced collective oscillation of conduction electrons on the surface of metal NPs when their size are smaller than the wavelength of the incident light beam (i.e., localized surface plasmon resonance, (LSPR)) [10]. The bandgap of TiO₂ is 3.2 eV; near UV light (irradiation) can excite electron-hole pairs [11]. Ag NPs also show a very intense localized surface plasmon absorption in the near-UV region [12], which greatly enhances the electric field intensity in the vicinity of the Ag NPs. This enhanced near field at near-UV region could increase the light absorption to boost the excitation of electron-hole pairs in TiO₂ and thus increase the efficiency of photocatalysis. This clearly indicates that the LSPR effect is a potential way for the enhancement of photocatalysis. The local field can be greatly enhanced in the vicinity of the triangular Ag NP array due to its unique morphology with sharp corners and edges. Theoretical studies on metal structures showed that the local field could be enhanced by several orders of magnitude in the NPs with special shape (e.g., triangular plates) [13]. Yang et al. [14] demonstrated that the LSPR of triangular Ag NPs was much stronger than that of sphere Ag NPs. In this study, we can get triangular Ag NP island on the surface of TiO₂ film. The Ag/TiO₂ composite film shows higher photocatalytic activity than the pure TiO₂.

Experimental section

TiO₂ film with a thickness of about 680 nm was prepared by direct-current reactive magnetron sputtering deposition on silica glass and then was subsequently capped with triangular Ag NPs (schematically described in Figure 1d). Well-ordered latex sphere template of polystyrene (PS) nanospheres (460 nm in diameter) was prepared on the TiO₂ surface [15,16]. Metal Ag was deposited on the TiO₂-PS surface by electron beam evaporation; the thickness of Ag film is approximately

* Correspondence: xxh@whu.edu.cn; czjiang@whu.edu.cn
¹Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, Wuhan University, Wuhan, 430072, People’s Republic of China
²State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu, 610054, People’s Republic of China
Full list of author information is available at the end of the article

© 2012 Xu et al; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
After the deposition of metal Ag, the PS nanospheres were removed by sonicating the sample in chloroform (CHCl₃) for 20 s.

The structure of TiO₂ film was investigated by grazing incidence X-ray diffraction (XRD). The morphologies of the self-assembled PS nanosphere mask and metal NPs were characterized by scanning electron microscopy (SEM) (FEI Sirion FEG, FEI Company, Eindhoven, The Netherlands). The microstructure of the samples was investigated using a JEOL JEM 2010 HT (JEOL Ltd., Akishima, Tokyo, Japan) transmission electron microscope (TEM) operated at 200 kV. Raman scattering spectra of all the samples were collected using a micro-Raman system. An Ar laser (488.0 nm) was used as the excitation source, and the laser power was kept at 10 mW.

The photocatalytic efficiency of TiO₂ and Ag/TiO₂ films with an area of 4 cm² was evaluated by measuring the degradation rates of 5 mg/L methylene blue (MB) solution under UV irradiation. A mercury lamp (OSRAM AG, München, Germany; 250 W with characteristic wavelength at 365 nm) was used as light source. Before irradiation, the samples were put in 40-mL MB for 30 min in darkness to reach absorption equilibrium. The decolorization of the MB solution was measured by a UV-vis spectrometer at the wavelength of 664.0 nm. The
absorption spectrum of the MB solution was measured at a time interval of 30 min, and the total irradiation time was 4 h.

Results and discussion
XRD was used to investigate the crystal phase of the TiO2 films after annealing at 500°C for 2 h in oxygen atmosphere. As shown in Figure 2, it can be seen that the annealed TiO2 film shows a typical anatase structure without any other detectable phase (JCPDS no. 21-1272), indicating the formation of anatase TiO2 nanocrystals [17].

Figure 1a shows the self-assembled monolayer arrays of nanospheres with a typically ordered hexagonal pattern on the surface of the TiO2 film. The SEM image of the PS nanospheres coated with Ag film deposited by electron-beam evaporation is shown in Figure 1b, and the inset is the magnification SEM image of the same sample. It demonstrates that the Ag film wraps the PS spheres uniformly and tightly. The morphology of the Ag NPs exhibits ordered hexagonal periodic arrays formed on the surface of the TiO2 film with a large area after removing the PS sphere masks, as shown in Figure 1c. The Ag NP island is triangular due to the shape of the interstitial voids in the shadow mask. The inset in Figure 1c shows the magnified SEM image of Ag NPs on the TiO2 film. The formation of Ag NPs on the surface of TiO2 film can also be observed in the cross-sectional TEM image of the Ag/TiO2 nanocomposite film in the inset of Figure 1d. Thus, the triangular Ag NP island with a large uniform area can be obtained by this method.

In order to verify the influence of the Ag NP island on the photocatalytic activity of the TiO2 film, the photocatalytic activity of Ag/TiO2 composite system was evaluated by degradation of the MB solution under UV irradiation at room temperature. For comparison, the pure TiO2 film was carried out under the same experimental conditions. As shown in Figure 3 (inset), the Ag/TiO2 composite system obtained higher photocatalytic
efficiency (81%) than the pure TiO$_2$ film (60%). Meanwhile, the photodegradation of MB can be assumed to follow the classical Langmuir-Hinshelwood kinetics [18], and its kinetics may be expressed as follows:

$$\ln \left(\frac{A_0}{A} \right) = kt$$ \hspace{1cm} (1)

Where k is the apparent first-order reaction rate constant (min$^{-1}$), A_0 and A represent the absorbance before and after irradiation for time t, respectively. From the plots of $\ln \left(\frac{A_0}{A} \right)$ versus the irradiation time shown in Figure 3, the k values obtained from the slopes of the simulated straight line are 3.875×10^{-3} \text{min}^{-1} and 6.372×10^{-3} \text{min}^{-1} for the pure TiO$_2$ film and Ag/TiO$_2$ system, respectively. The rate of MB decomposition for the Ag/TiO$_2$ nanocomposite is more than 1.6-fold as fast as that of pure TiO$_2$ film. The results indicate that the Ag/TiO$_2$ composite system exhibits better photocatalytic performance than the pure TiO$_2$ film.

The electronic structure of TiO$_2$ plays a key role in TiO$_2$ photocatalysis. The increasing number of electron-hole pairs and the separation of electron-hole pairs at the surface of TiO$_2$ are the key factors to improve the photocatalytic abilities of TiO$_2$. Based on our experimental results and literatures, the photocatalytic activity enhancement could be explained as follows.
Firstly, the LSPR can be enhanced at the corner of the triangular Ag NPs, the incident light field coupling to the LSPR might induce the enhancement of absorption of light, which boosts the excitation of electron-hole pairs in TiO$_2$, and therefore increase the efficiency of photocatalysis. The local field intensity enhancement distribution E/E_0 in the logarithmic scale due to the presence of Ag NPs was simulated using the finite-difference time-domain method, as shown in Figure 4a. In this method, we assume that 80-nm-thick Ag equilateral triangular NPs with 120-nm edge length are arranged in a hexagonal lattice and that the incident wavelength is 480 nm. For simplicity in simulation, we assume that the Ag NPs are isolated from each other. In our structure, we consider z as the light incident direction, and x is the polarization direction; the highest enhancement is close to 10^3 at the tip of the triangular Ag NP island. In order to prove the existence of the strong localized electric field induced by the triangular Ag NPs experimentally, we carried out a surface Raman scattering study. Figure 4b shows the Raman scattering spectra of the pure TiO$_2$ film and the Ag/TiO$_2$ nanocomposite film. All the samples observed in the Raman bands at 144, 199, 399, 516, and 640 cm$^{-1}$ can be assigned to the Eg, Eg, B1g, A1g or B1g, and an overtone Eg vibration mode, respectively [19]. It is interesting to note that the Raman scattering is greatly enhanced in the Ag/TiO$_2$ nanocomposite system compared with that in the pure TiO$_2$ film. It is well known that Raman scattering intensity is proportional to the electric field intensity [20]. The stronger Raman scattering attained from the Ag/TiO$_2$ nanocomposite indicates that a stronger electric field was induced by introducing the Ag NPs, which is consistent with the simulated results. Theoretical and experimental results both show a strong local electric field induced by the Ag NP island. This enhanced local electric field induced by the Ag NPs will be used for the photoactivity enhancement of the TiO$_2$ film.

Secondly, in the case of the Ag/TiO$_2$ system, because of the lower work function of TiO$_2$ (4.2 eV [21,22]) compared with that of Ag (4.52 to 4.74 eV [23]), the Ag is a Schottky contact and will result in the upward bending of the energy band near the contact region. When TiO$_2$ is excited by the incident light, electrons will move to the surface and accumulate there, while photo-generated holes remain in the TiO$_2$. However, considering the work function of Ag which is higher than that of TiO$_2$, the photogenerated electrons will transfer from TiO$_2$ to Ag NPs (as shown in Figure 5); the electrons and holes will separate at the surface region. Moreover, there are fewer electrons transferring from Ag to TiO$_2$ due to the Schottky barrier. The accumulated electrons at Ag NPs could be transferred to the oxygen absorbed on the surface to form superoxide O_2^- or O_2^{2-} [24]. Accumulation of holes at the valence band of TiO$_2$ leads to the production of surface hydroxyl radical -OH [25], which is responsible for the oxidation decomposition of MB organics. Organic compounds are completely decomposed into water and carbon dioxide by reacting with the produced hydroxyl radicals [26]. Thus, the Ag/TiO$_2$ composite system can efficiently suppress the recombination of photo-generated carriers and enhance photocatalytic activity.

Conclusions

In conclusion, a highly ordered triangular Ag NP island on the surface of anatase TiO$_2$ film was successfully prepared using the PS nanosphere lithography strategy. The Ag/TiO$_2$ nanocomposite system can efficiently enhance photocatalytic activity. In addition, the Ag NP island will be of great significance to future applications in the fields of metal-semiconductor nanocomposite system photocatalysis for light-energy conversion.

Competing interests

The authors declare that they have no competing interests.

Acknowledgements

The author thanks the NSFC (10905043, 11005082, 91026014, 11175133, 51171132), the Foundations from Chinese Ministry of Education (311003, 20100141120042, 20110141130004), the Open Research Fund of State Key Laboratory of Electronic Thin Films and Integrated Devices (UESTC) (KFJJ201004), Young Chenguang Project of Wuhan City (201050231055), and the Fundamental Research Funds for the Central Universities, Hubei Provincial Natural Science Foundation (2011CD2B70).

Author details

1Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, Wuhan University, Wuhan, 430072, People’s Republic of China.
2State Key Laboratory of Electronic Thin Films and Integrated Devices, University of Electronic Science and Technology of China, Chengdu, 610054, People’s Republic of China.
3Center for Electron Microscopy and School of Physics and Technology, Wuhan University, Wuhan, 430072, People’s Republic of China.
4School of Electrical & Electronic Engineering, Hubei University of Technology, Wuhan, 430068, People’s Republic of China.

Authors’ contributions

JX participated in material preparation, data analysis, and drafted the manuscript. XX conceived and co-wrote the paper. FR, WW, ZD, GC, SZ, JZ, and FM participated in the sample characterization. CJ participated in its design and coordination. All authors read and approved the final manuscript.

Received: 14 February 2012 Accepted: 2 May 2012
Published: 2 May 2012

References

1. Linsenbigler AL, Lu G, Yates JT: Photocatalysis on TiO$_2$ surfaces: principles, mechanisms, and selected results. Chem Rev 1995, 95:735.
2. Tada H, Yamamoto M, Ito S: Promoting Effect of MgO$_x$ submonolayer coverage of TiO$_2$ on the photoinduced oxidation of anionic surfactants. Langmuir 1999, 15:3699.
3. Wang D, Zou Y, Wen S, Fan D: A passivated codoping approach to tailor the band edges of TiO$_2$ for efficient photocatalytic degradation of organic pollutants. Appl Phys Lett 2009, 95:012106.
4. Han F, Kambala VSR, Srinivasan M, Rajarathnam D, Naidu R: Tailored titanium dioxide photocatalysts for the degradation of organic dyes in wastewater treatment: a review. Appl Catal A-Gen 2009, 359:25.
5. Jakob M, Levanon H, Kamat PV: Charge distribution between UV-irradiated TiO$_2$ and gold nanoparticles: determination of shift in the Fermi level. Nano Lett 2003, 3:353.
6. Tian Y, Tatsuma T: Mechanisms and applications of plasmon-induced charge separation at TiO$_2$ films loaded with gold nanoparticles. J Am
7. Min BK, Heo JE, Youn NK, Joo OS, Lee H, Kim JH, Kim HS: Tuning of the photocatalytic 1, 4-dioxane degradation with surface plasmon resonance of gold nanoparticles on titania. Catal Commun 2009, 10:712.

8. Awaazu K, Fujimaki M, Rockstuhl C, Torimura J, Murakami H, Ohki Y, Yoshida N, Watanabe T: A plasmonic photocatalyst consisting of silver nanoparticles embedded in titanium dioxide. J Am Chem Soc 2008, 130:1676.

9. Kumar MK, Krishnamoorthy S, Tan LK, Chiam SY, Tripathy S, Gao H: Field effects in plasmonic photocatalyst by precise SiO2 thickness control using atomic layer deposition. ACS Catal 2011, 1:350.

10. Evanoff DD Jr, Chumanov G: Synthesis and optical properties of silver nanoparticles and arrays. Chem Phys Chem 2005, 6:1231.

11. Tang H, Prasad K, Sanjinés R, Schmid PE, Lévy F: Electrical and optical properties of TiO2, anatase thin films. J Appl Phys 1994, 75.

12. Kerker M: The optics of colloidal silver: something old and something new. J Colloid Interface Sci 1985, 105:297.

13. Yang WH, Schatz GC, Duyne RPV: Discrete dipole approximation for calculating extinction and Raman intensities for small particles with arbitrary shapes. J Chem Phys 1995, 103:869.

14. Yang Y, Matsubara S, Xiong L, Hayakawa T, Nogami M: Solvothermal synthesis of multiple shapes of silver nanoparticles and their SERS properties. J Phys Chem C 2007, 111:9095.

15. Rybczynski J, Ebels U, Giersig M: Large-scale, 2D arrays of magnetic nanoparticles. Colloid. Surface. A: Physicochem. Eng Aspects 2003, 219:1.

16. Zhang YJ, Li W, Chen KJ: Application of two-dimensional polystyrene arrays in the fabrication of ordered silicon pillars. J Alloys Compd 2008, 450:512.

17. Gu DE, Yang BC, Hu YD, V and N co-doped nanocrystal anatase TiO2 photocatalysts with enhanced photocatalytic activity under visible light irradiation. Catal Lett 2007, 118:254.

18. Al-Ekabi H, Serpone N: Kinetics studies in heterogeneous photocatalysis. I. Photocatalytic degradation of chlorinated phenols in aerated aqueous solutions over titania supported on a glass matrix. J Phys Chem 1988, 92:5726.

19. Zhang WF, He YL, Zhang MS, Yin Z, Chen Q: Raman scattering study on anatase TiO2 nanocrystals. J Phys D: Appl Phys 2000, 33:912.

20. Garcia-Vidal FJ, Pendry JB: Collective theory for surface enhanced Raman scattering. Phys Rev Lett 1996, 77:1163.

21. Tan TY, Yip CK, Beydoun D, Anral R: Effects of nano-Ag particles loading on TiO2 photocatalytic reduction of selenate ions. Chem Eng J 2003, 95:179.

22. Breeze AJ, Schlesinger Z, Carter SA: Charge transport in TiO2 /MEH-PPV polymer photovoltaics. Phys Rev B 2001, 64:125205.

23. Fang YJ, Sha J, Wang ZL, Wan YT, Xia WW, Wang YW: Behind the change of the photoluminescence property of metal-coated ZnO nanowire arrays. Appl Phys Lett 2011, 98:353103.

24. Miyamoto M, Nakajima A, Hashimoto K, Watanabe T: A highly hydrophilic thin film under 1 \mu W/cm2 UV illumination. Adv Mater 2002, 14:55.

25. Alberic RM, Jardim WF: Charge transport in TiO2 /MEH-PPV polymer photovoltaics. Phys Rev B 2001, 64:125205.

26. Yu JG, Xiong JF, Cheng B, Liu SW: Fabrication and characterization of Ag- TiO2 multiphase nanocomposite thin films with enhanced photocatalytic activity. Appl Catal B-Environ 2005, 60:211.