Synthesis of Some New Quinazoline Derivatives and Theoretical Studies of their Geometries

R Kaur, M Bansal, B Kaur*
Department of Chemistry, Punjabi University, Patiala-147002, Punjab, India.

*Correspondence to: Balbir Kaur, aries_balbir@yahoo.co.in

Abstract

Quinazoline and their fused-ring systems are well known for their potential biological activity. Inspired by this and in view of the usefulness of heterocyclic thiols as vulcanization accelerators, new derivatives viz. Quinazoline-2-thiols were prepared. These were synthesized by the condensation of 2-[isothiocyanato(substituted phenyl)methyl]-3,4-dihydronaphthalene-1(2H)-one with primary aromatic amines. All the prepared compounds have been characterized by elemental analysis, IR and mass spectroscopy.

Keywords: Quinazoline; Quinazoline-2-thiols; Fused-ring systems; Condensation.

1. Introduction

In the family of heterocyclic compounds, nitrogen-containing heterocycles are an important class of compounds in medicinal chemistry. There has been considerable interest in the development of preparative methods for the production of quinazolines [1]. This is because quinazolines and their ring-fused derivatives display a broad spectrum of biological activities [2] like antitubercular, analgesic, anti-inflammatory, and anti-bacterial. Adding to this class of heterocyclic compounds, we have reported earlier [3] the reaction of aromatic aldehyde, thiourea and cyclic ketone to synthesize quinazoline-2(1H)-thiones. Then, these were alkylated/aralkylated. The present paper describes the reaction of 2-[isothiocyanato(substituted phenyl)methyl]-3,4-dihydronaphthalene-1(2H)-ones with primary aromatic amines to give another cyclized products viz. quinazoline-2-thiols. Our literature survey reveals that quinazoline-2-thiols are unknown in the literature except for a report mentioning the synthesis of similar compounds [4, 5] 1-(substituted phenyl)-4,4,6-trimethyl-1H,4H-pyrimidine-2-thiols. The later compounds have shown many biological activities [6-8] like anticonvulsive activity like a well-known drug phenobarbitone, as the structure of both of these, are somewhat chemically similar. Also, it has been mentioned in the literature that heterocyclic thiols can act as vulcanization accelerators [4]. Therefore, working on the similar guidelines and in continuation with our research program dealing with the synthesis of biologically active compounds, we report herein a general route to the title compounds.

2. Methods

Melting points were determined in open-end capillaries and are uncorrected. Compounds were checked for their purity by TLC on silica gel G plates and spots were located by iodine vapors. 1H NMR spectra were recorded on BRUKER ADVANCE II 400 NMR Spectrometer using TMS as internal standard. The mass spectra were obtained on a JEOL 5x102/DA-6000 mass spectrometer. The IR spectra were recorded on Perkin-Elmer spectrum RX IFT-IR System using KBr pellets. Elemental analyses of the newly synthesized compounds were carried out on Perkin Elmer model 2400 C H N analyzer. All the compounds gave satisfactory elemental analysis within ±0.4% of theoretical values. The microwave-irradiated reactions were performed in domestic household microwave oven Samsung M177N.

General procedure for the synthesis of 2-arylidenetetralin-1-one (1a-1i):

A mixture of α-tetralone and substituted aromatic aldehydes were subjected to microwave heating for 2-5 minutes using absolute alcohol (5 ml) as energy transfer medium and conc. HCl (0.5 ml) as a catalyst. The reaction mixture was cooled to room temperature. The solid, so obtained, was filtered, washed with ethanol and finally crystallized from ethanol to give 1a-1i.

http://astonjournals.com/csj
Synthesis of 1-(substitutedphenyl)-4-aryl-1,4,5,6-terahydrobenzo[h]quinoxaline-2-thiol (3-9):

A mixture of 2a-2i (0.01 mole), substituted anilines (0.01 mole) and ethanol (2-3 ml) was taken in a flask. To it, few drops (4-5) of H₂SO₄ was added and stirred for 5-10 minutes. Solid separated was washed with glacial acetic acid and then with distilled water.

Characterization data of 1-(substitutedphenyl)-4-aryl-1,4,5,6-terahydrobenzo[h]quinoxaline-2-thiol (3-9):

Product	Z	R	Yield; IR (KBr, cm⁻¹); Mass(m/z); Elemental analysis, ¹H (δ, ppm)
3a	2-CH₃	H	76%; 217-219; 2850.4 (arom. C-H str.), 2604.7 (S-H), 1637 (C=N), 1560 (C-C), 1498.4 (C=C); 1313.9 (C-N)
3b	2-CH₃	2,4(Cl)	40%; 215-217; Anal. Calcd. For CₛH₉NₛS₆: C 66.56; H 4.38; N 6.15%
3c	2-CH₃	4-NO₂	77%; 223-225; Anal. Calcd. For CₛH₆N₅SO₃: C 70.26; H 4.92; N 9.84,
Found: C 70.19; H 4.88; N 9.76%

3d 2-CH₃ 3-NO₂
44%; 218-220; 2909.4 (arom. C-H str.), 2654.6 (S-H), 1616.9 (C=N), 1544.5 (C=C), 1495.2 (C=N), 1394.4 (C-N)
Anal. Calcd. For C₂H₅N₂SO₂: C 70.26; H 4.92; N 9.84. Found: C 70.22; H 4.86; N 9.80%

3e 2-CH₃ 4-OCH₃
13%; 222-224; 2870.2 (arom. C-H str.), 2604.6 (S-H), 1640.4 (C=N), 1590 (C=C), 1461.9 (C=N), 1302 (C-N)
7.95 (s, 1H, SH), 7.66-6.78 (m, 12H, Ar-H), 4.80 (s, 1H, C,H), 3.74 (s, 3H, 4-OCH₃), 3.09-3.07 (t, 2H, C₂H₅CH₂ or C₂H₅CH₃), 2.94-2.93 (t, 2H, C₂H₅CH₂ or C₂H₅CH₃), 2.54-2.53 (s, 3H, 4-OCH₃), 2.21 (s, 3H, CH₃)
Anal. Calcd. For C₂H₅N₂SO₂: C 75.72; H 5.82; N 6.79. Found: C 75.65; H 5.78; N 6.65%

3f 2-CH₃ 2,3(O-CH₂-O)
85%; 215-219; 276 (1.75%), 122 (4.58%), 65 (5.88%), 63.95 (100%), 58.10 (6.60%), 52.10 (6.85%), 40.10 (2.54%)
Anal. Calcd. For C₃H₂N₂OSO₂: C 73.24; H 5.16; N 6.57. Found: C 73.16; H 5.20; N 6.42%

3g 2-CH₃ 4-Br
224-225; 2820 (arom. C-H str.), 2589 (S-H), 1601.9 (C=N), 1405.2 (C=N), 1400.2 (C=N), 1317.5 (C=N)
Anal. Calcd. For C₂H₅N₂S: C 64.93; H 4.54; N 6.06. Found: C 64.99; H 4.42; N 6.01%

3h 2-CH₃ 3-OH
38%; 228-230; Anal. Calcd. For C₂H₅N₂SO: C 75.38; H 5.53; N 7.03. Found: C 75.29; H 5.47; N 6.95%

3i 2-CH₃ 4-CH₃
38%; 222-224; 2910.4 (arom. C-H str.), 2655.3 (S-H), 1586.8 (C=N), 1544.8 (C=C), 1495 (C=N), 1316.4 (C=N)
Anal. Calcd. For C₃H₂N₂S: C 78.78; H 6.06; N 7.07. Found: C 78.69; H 5.99; N 7.01%

4a 4-CH₃ H
69%; 239-241; Anal. Calcd. For C₂H₅N₂S: C 78.53; H 5.76; N 7.33. Found: C 78.49; H 5.66; N 7.25%

4b 4-CH₃ 2,4(Cl)
38%; 232-234; Anal. Calcd. For C₂H₅N₂S: C 66.66; H 4.44; N 6.22. Found: C 66.59; H 4.37; N 6.17%

4c 4-CH₃ 4-NO₂
69%; 216-218; Anal. Calcd. For C₂H₅N₂SO₂: C 70.26; H 4.92; N 9.84. Found: C 70.21; H 4.86; N 9.78%

4d 4-CH₃ 3-NO₂
36%; 237-239; Anal. Calcd. For C₂H₅N₂SO₂: C 70.26; H 4.92; N 9.84. Found: C 70.20; H 4.95; N 9.78%

4e 4-CH₃ 4-OCH₃
07%; 220-222; Anal. Calcd. For C₂H₅N₂SO₂: C 75.72; H 5.82; N 6.79. Found: C 75.68; H 5.75; N 6.63%

4f 4-CH₃ 2,3(O-CH₂-O)
77%; 221-223; Anal. Calcd. For C₂H₅N₂SO₂: C 73.24; H 5.16; N 6.57. Found: C 73.29; H 5.11; N 6.49%

4g 4-CH₃ 4-Br
31%; 246-248; 2874.8 (arom. C-H str.), 2596.4 (S-H), 1592.2 (C=C), 1485.5 (C=C), 1401.1 (C=N), 1297.9 (C-N)
Anal. Calcd. For C₂H₅N₂S: C 64.93; H 4.54; N 6.06. Found: C 64.89; H 4.46; N 5.97%

4h 4-CH₃ 3-OH
38%; 253-255; Anal. Calcd. For C₂H₅N₂SO: C 75.38; H 5.53; N 7.03. Found: C 75.43; H 5.48; N 6.99%

4i 4-CH₃ 4-CH₃
38%; 235-237; 2924 and 2849 (arom. C-H), 2590.9 (S-H), 1617.8 (C=N), 1559.8 (C=C), 1458.2 (C=C), 1320.9 (C-N)
396, 277, 276, 128, 105, 103, 65, 58, 40
Anal. Calcd. For C₂H₅N₂S: C 78.78; H 6.06; N 7.07. Found: C 78.71; H 6.12; N 7.13%

5a 4-OCH₃ H
71%; 246-249; 2918 (arom. C-H str.), 2603.4 (S-H), 1618.1 (C=N), 1513.5 (C=C), 1458.1 (C=C), 1303 (C-N)
Anal. Calcd. For C₂H₅N₂SO: C 75.37; H 5.53; N 7.03. Found: C 75.29; H 5.44; N 7.11%

5b 4-OCH₃ 2,4(Cl)
77%; 240-242; Anal. Calcd. For C₂H₅N₂SO: C 64.38; H 4.29; N 6.01. Found: C 64.29; H 4.21; N 5.92%

5c 4-OCH₃ 4-NO₂
90%; 241-243; Anal. Calcd. For C₂H₅N₂SO₂: C 67.72; H 4.74; N 9.48. Found: C 67.68; H 4.63; N 9.40%

5d 4-OCH₃ 3-NO₂
34%; 238-240; Anal. Calcd. For C₂H₅N₂SO₂: C 67.72; H 4.74; N 9.48. Found: C 67.66; H 4.67; N 9.42%

http://astonjournals.com/csj

Chemical Sciences Journal, Volume 2011: CSJ-18
5e	4-OCH₃	4-OCH₃	65%; 253-255; Anal. Calcd. For C₆H₅N₂O₄S₂: C 72.89; H 5.61; N 6.54. Found: C 72.76; H 5.57; N 6.49 %
5f	4-OCH₃	2,3(O-CH₂-O)	78%; 247-249; Anal. Calcd. For C₆H₅N₂O₄S₂: C 70.59; H 4.98; N 6.33. Found: C 70.48; H 4.89; N 6.39 %
5g	4-OCH₃	4-Br	254-255; Anal. Calcd. For C₆H₅N₂O₄S₂: C 62.76; H 4.39; N 5.86. Found: C 62.69; H 4.30; N 5.74 %
5h	4-OCH₃	3-OH	269-271; Anal. Calcd. For C₆H₅N₂O₄S₂: C 72.46; H 5.31; N 6.76. Found: C 72.52; H 5.39; N 6.82 %
5l	4-OCH₃	4-CH₃	74%; 245-247; 2919.6 (arom. C-H str.), 2596.4 (S-H), 1600 (C=N), 1586.6 (C=C), 1453.6 (C=O); 1317.6 (C-N) Anal. Calcd. For C₆H₅N₂O₄S₂: C 75.73; H 5.82; N 6.79. Found: C 75.68; H 5.77; N 6.69 %
6a	4-Cl	H	71%; 242-244; Anal. Calcd. For C₆H₅N₂S: C 71.64; H 4.73; N 6.96. Found: C 71.52; H 4.79; N 6.88 %
6b	4-Cl	2,4(Cl)	58%; 254-256; Anal. Calcd. For C₆H₅N₂S: C 61.28; H 3.62; N 5.95. Found: C 61.23; H 3.68; N 5.89 %
6c	4-Cl	4-NO₂	33%; 229-231; Anal. Calcd. For C₆H₅N₂S: C 64.43; H 4.03; N 9.39. Found: C 64.47; H 4.09; N 9.25 %
6d	4-Cl	3-NO₂	37%; 244-246; Anal. Calcd. For C₆H₅N₂S: C 64.43; H 4.03; N 9.39. Found: C 64.39; H 4.11; N 9.29 %
6e	4-Cl	4-OCH₃	10%; 235-237; Anal. Calcd. For C₆H₅N₂S: C 69.44; H 4.86; N 6.48. Found: C 69.47; H 4.78; N 6.32 %
6f	4-Cl	2,3(O-CH₂-O)	79%; 240-242; Anal. Calcd. For C₆H₅N₂S: C 67.26; H 4.26; N 6.28. Found: C 67.19; H 4.23; N 6.24 %
6g	4-Cl	4-Br	31%; 253-255; Anal. Calcd. For C₆H₅N₂S: C 59.75; H 3.73; N 5.81. Found: C 59.67; H 3.65; N 5.72 %
6h	4-Cl	3-OH	37%; 264-266; Anal. Calcd. For C₆H₅N₂S: C 68.89; H 4.54; N 6.69. Found: C 68.80; H 4.42; N 6.58 %
6i	4-Cl	4-CH₃	74%; 255-256; 2925.9 (arom. C-H str.), 2590 (S-H), 1617.2 (C=N), 1559.8 (C=C), 1494.2 (C=O); 1289.2 (C-N) 357. 229, 129, 128, 127, 125, 92, 65, 26 Anal. Calcd. For C₆H₅N₂S: C 72.11; H 5.05; N 6.73. Found: C 72.02; H 5.12; N 6.65 %
7a	4-COOH	H	71%; 2917.7 (arom. C-H), 2596 (S-H), 1613.8 (C=N), 1513.8 (C=C), 1431.7 (C=O); 1394.5 (C-N) Anal. Calcd. For C₆H₅N₂S: C 72.81; H 4.85; N 6.79. Found: C 72.72; H 4.93; N 6.68 %
7i	4-COOH	4-CH₃	46%; 2919.5 (arom. C-H), 2603.9 (S-H), 1601.2 (C=N), 1586.6 (C=C), 1455.3 (C=O); 1317.7 (C-N) Anal. Calcd. For C₆H₅N₂S: C 73.23; H 5.16; N 6.57. Found: C 73.15; H 5.12; N 6.65 %
7f	4-COOH	2,3(O-CH₂-O)	71%, 230-232(d): 91 (2.01%), 65.05 (1.88%), 52.40 (1.50%), 43.90 (100%) Anal. Calcd. For C₆H₅N₂S: C 68.42; H 4.38; N 6.14. Found: C 68.32; H 4.29; N 6.09 %
8a	H	H	2874.1 (arom. C-H), 2588.9 (S-H), 1600 (C=N), 1557.8 (C=C), 1494.3 (C=O); 1328.7 (C-N) Anal. Calcd. For C₆H₅N₂S: C 78.26; H 5.55; N 7.61. Found: C 78.35; H 5.48; N 7.72 %
8e	H	4-OCH₃	2871.6 (arom. C-H), 2589 (S-H), 1600.1 (C=N), 1494.6 (C=C), 1328.7 (C-N) Anal. Calcd. For C₆H₅N₂S: C 75.37; H 5.53; N 7.03. Found: C 75.28; H 5.43; N 7.24 %
8i	H	4-CH₃	2590 (S-H), 1654.1 (C=N), 1508.3 (C=C) Anal. Calcd. For C₆H₅N₂S: C 78.53; H 5.76; N 7.33. Found: C 78.46; H 5.82; N 7.21 %
9i	2-NH₂	4-CH₃	3334 & 3412 (N-H), 2924 (arom. C-H), 2596.4 (S-H), 1577 (C=N), 1540.9 (C=C), 1463.8 (C=O); 1316.7 (C-N) 269, 176, 128, 127, 106, 92, 65, 59, 41 Anal. Calcd. For C₆H₅N₂S: C 75.56; H 5.79; N 10.57. Found: C 75.67; H 5.70; N 10.46 %

http://astonjournals.com/csj
3. Results and Discussion

2-Arylidenedeteraline-1-one (1), obtained by the reaction of α-tetralone and substituted aromatic aldehyde, when treated with potassium isothiocyanate gave 2-{[isothiocyanato(substituted phenyl)methyl]-3,4-dihyronaphthalene-1(2H)-one (2). Infrared absorption spectra measurements of compounds 2a-2i showed a band at about 2040 cm⁻¹, the characteristic broad band attributed to the isothiocyanate group. This compound on further reaction with primary aromatic amine gave 1-(substituted phenyl)-4-aryl-1,4,5,6-terahydrobenzo[h]quinazoline-2-thiol (3-9) (Scheme 1). The IR spectra of the prepared compounds displayed the characteristic S-H stretching vibration at 2550-2600 cm⁻¹. In addition, the Mass Spectra (MS) of the compound 3a showed the molecular ion peak at 382 while the MS of maximum compounds did not show any molecular ion peak but showed the peaks due to fragments that supported the expected structure.

As an example, the disappearance of IR band for isothiocyanate group at 2055.8 cm⁻¹ and appearance of S-H band at 2604.6 cm⁻¹ clearly proves the formation of 3e from 2e. Therefore, the spectroscopic data along with the literature survey [4-5], helped in proposing the following mechanism for the above-mentioned reaction:

Scheme 1

Z = (3) 2-CH₃ (4) 4-CH₃ (5) 4-OCH₃ (6) 4-Cl (7) 4-COOH (8) H (9) 2-NH₂
R = (a) H (b) 2,4(Cl) (c) 4-NO₂ (d) 3-NO₂ (e) 4-OCH₃ (f) 2,3(O-CH₂-O) (g) 4-Br (h) 3-OH (i) 4-CH₃
4. Conclusion

Keeping in view the biological potential of Quinazoline derivatives, a methodology has been developed to synthesize new derivatives of Quinazolines viz. Quinazoline-2-thiols. For this, 2-[isothiocyanato(substituted phenyl)methyl]-3,4-dihydronaphthalene-1(2H)-ones were treated with primary aromatic amines. Also, Guassian-03 studies of the prepared compounds have been carried out.

Computational Studies

As shown by the Gaussian 03 studies through the instrument, the stereochemistry of the synthesized compounds seems to be like the reported compounds (I) in the literature [9-13].

http://astonjournals.com/csj
Solid-state conformation of I as hydrochloride salt. Hydrogen bond distances: N1 – Cl = 3.088 Å, N3 – Cl = 3.075 Å

The stereochemistry of the prepared compounds is given below showing that phenyl ring is not in the same plane as the rest of the molecule:
Competing Interests

The authors declare that they have no competing interests.

Authors’ Contributions

All authors contributed more or less equally to this work.

References

[1] (a) Kidwai M, Kukreja S, Rastogi S, Singhal K, 2007. Microwave-accelerated multicomponent synthesis for a novel scaffold of monastrol analogues. Letters in Organic Chemistry, 4(5): 357-361. (b) Barluenga J, Tomas M, Ballesteros A, Lopez LA, 1994. A simple approach to pyrimidine and quinazoline derivatives by [4+2] cycloaddition of 1,3-diazadienes and enamines. Heterocycles, 37(2): 1109-20.

[2] (a) Kunes J, Bazant J, Pour M, Waisser K, Slosarek M, Janota J, 2000. Quinazoline derivatives with antitubercular activity. IL Farmaco, 55: 725-729. (b) Alagarsamy V, Salomon VR, Vanikavitha G, Paluchamy V, Chandran MR, Sujin AA, Thangathiruppathy A, Amuthalakshmi S, Revathi R, 2002. Synthesis, analgesic, anti-inflammatory and antibacterial activities of some novel 2-phenyl-3-substituted quinazolin-4(3h) ones. Biological and Pharmaceutical Bulletin, 25(11): 1432-1435.

[3] Kaur B, Kaur R, 2007. Synthesis of fused quinazolinethiones and their S-alkyl/aryl derivatives. ARKIVOC, (xv): 315-323.

[4] Mathes RA, Stewart FD, Swedish F, 1948. A synthesis of 2-pyrimidinethiols. Journal of American Chemical Society, 70: 1452-1453.

[5] Mathes RA, 1953. 2-Pyrimidinethiols. Journal of American Chemical Society, 75: 1747-1748.

[6] Koppel HC, Springer RH, Robins RK, Cheng CC, 1961. Pyrimidines. I. Synthesis of pyrimidinethiols. Journal of Medicinal Chemistry, 26: 792-803.

[7] Alagarsamy V, Shankar D, Solomon VR, 2006. Synthesis of some novel 2-mercapto-3-(substituted amino)-5,6,7,8-tetrahydro-3H-benzo[4,5]thieno[2,3-d]pyrimidin-4-ones as analgesic and anti-inflammatory agents. ARKIVOC, xvi: 149-159.

http://astonjournals.com/csj
[8] Azam MA, Kumar BRP, Shalini S, Suresh B, Reddy TK, Reddy CD, 2008. Synthesis and biological screening of 5-[(4,6-disubstituted pyrimidine-2-yl)thio)methyl]-N-phenyl-1,3,4-thiadiazol-2-amines. Indian Journal of Pharmaceutical Sciences, 70(5): 672-677.

[9] Rana K, Kaur B, Kumar B, 2004. Synthesis and hypertensive activity of some dihydropyrimidines. Indian Journal of Chemistry, 43B: 1553-1557.

[10] Jauk B, Pernat T, Kappe CO, 2000. Design and synthesis of a conformationally rigid mimic of the dihydropyrimidine calcium channel modulator SQ 32,926. Molecules, 5: 227-239.

[11] Kappe CO, 1998. 4-Aryldihydropyrimidines via the Biginelli Condensation: Aza-Analogs of Nifedipine-Type calcium channel modulators. Molecules, 3: 1-9.

[12] Fosheim R, 1986. Crystal structure of the dihydropyridine Ca²⁺ antagonist felodipine. Dihydropyridine binding prerequisites assessed from crystallographic data. Journal of Medicinal Chemistry, 29: 305-307.

[13] Rovnyak GC, Kimball SD, Beyer B, Cucinotta G, DiMarco JD, Gougoutas J, Hedberg A, Malley M, McCarthy JP, Zhang R, Moreland S, 1995. Calcium entry blockers and activators: Conformational and structural determinants of dihydropyrimidine calcium channel modulators. Journal of Medicinal Chemistry, 38: 119-129.

[14] Sinha AK, Rastogi SN, 1991. Synthesis of 3,3a-trans/cis-2-phenyl/acetyl-3-aryl-tetrahydroindeno/naphtha[1,2-c]- and hexahydrobenzol[6,7]cyclohepta[1,2-c]pyrazoles as anti-implantation agents. Indian Journal of Chemistry, 30B: 684-691.

[15] Pal R, Handa RN, Pujari HK, 1993. Heterocyclic systems containing bridgehead nitrogen atom: Part LXXIV- Reaction of 4-phenyl-3,4,5,6-tetrahydrobenzo[h]quinazoline-2(1H)-thione with α-haloacids and dibromoethane. Indian Journal of Chemistry, 32B: 929-932.

[16] Gupta R, Gupta AK, Paul S, Kachroo PL, 1995. Improved microwave-induced synthesis of chalcones and related enones. Indian Journal of Chemistry, 34B: 61-62.

http://astonjournals.com/csj