Wheat Germ Agglutinin Blocks the Acrosome Reaction in *Strongylocentrotus purpuratus* Sperm by Binding a 210,000-mol-wt Membrane Protein

SHEILA B. PODELL* and VICTOR D. VACQUIER*

*Department of Biology, B-022 and *Marine Biology Research Division, A-002 Scripps Institute of Oceanography, University of California at San Diego, La Jolla, California 92093

ABSTRACT Wheat germ agglutinin (WGA) binds to the entire surface of *Strongylocentrotus purpuratus* sperm, and inhibits the egg jelly-induced acrosome reaction. The binding was found to be species dependent and was completely inhibited by 5 mM N-acetyl-D-glucosamine. Blockage of the acrosome reaction by WGA was bypassed by a combination of the ionophores A23187 and monensin, although neither ionophore was effective individually. These experiments suggest that WGA blocks both Ca$^{2+}$ uptake and Na$^{+}$/H$^{+}$ exchange in these sperm, which was confirmed by direct measurements of 45Ca$^{2+}$ uptake and H$^{+}$ efflux. The target of WGA in *S. purpuratus* sperm appears to be a membrane glycoprotein of $M_r = 210,000$. Treatment of this protein with neuraminidase or endo-$eta$-N-acetylglucosaminidase F abolished WGA binding.

The acrosome reaction of sea urchin sperm, induced by a high molecular weight glycoprotein component of the egg jelly coat (8, 23, 24), must occur before sperm can fertilize eggs. The reaction includes exocytosis of the acrosome granule, formation of an acrosomal process, and a series of ion movements across the sperm plasma membrane. Within seconds after contact with egg jelly, sea urchin sperm show a net influx of Ca$^{2+}$ and Na$^{+}$, a net efflux of H$^{+}$, depolarization of the membrane potential, and, after a brief delay, a net efflux of K$^{+}$ (10, 21, 22). The ionic changes associated with the acrosome reaction have been studied with ionophores, with channel-blocking drugs, and by manipulation of external ion concentrations; however, the mechanism by which sperm membrane components effect these ion movements remains unclear.

The acrosome reaction can be blocked by antibodies directed against certain sperm membrane components (4, 11, 19, 20). Polyclonal antibodies produced against the externally disposed *Strongylocentrotus purpuratus* sperm membrane proteins of $M_r = 210,000$ and $80,000$ appear to inhibit both the Ca$^{2+}$ uptake and Na$^{+}$/H$^{+}$ exchange that normally occur in response to egg jelly (19). Antigenic cross-reactivity of these two proteins has thus far impeded determination of their individual functions in the acrosome reaction; however, a method to resolve this problem is presented in this paper.

Here, we show that the lectin wheat germ agglutinin (WGA) also blocks the acrosome reaction. We examine the nature of WGA binding to *S. purpuratus* sperm, explore the mechanism by which it inhibits the acrosome reaction, and identify a membrane glycoprotein which may be responsible for the lectin's effect on sperm. A preliminary report of this work has appeared in abstract form (18).

MATERIALS AND METHODS

Gamete Isolation and Handling: Gametes of *S. purpuratus*, *Strongylocentrotus franciscanus*, Lytechinus pictus, and Arbacia punctulata were obtained by injecting the animals with 0.5 M KCl. Gametes were collected with a Pasteur pipette (*dry*) or in 0.45-μm-pore filtered seawater (MFASW). Artificial seawater (ASW), consisting of 480 mM NaCl, 10 mM KCl, 10 mM CaCl$_2$, 27 mM MgCl$_2$, 29 mM MgSO$_4$, and 2 mM NaHCO$_3$ at pH 8.0, was used in some experiments. Sperm concentrations were determined spectrophotometrically by comparing A$_{560}$ with a standardized curve constructed using a hemocytometer (26).

Egg jelly (19) was used to induce the acrosome reaction at a concentration of 3.0 nmol hexose/ml, as determined by the phenol-sulfuric acid assay, using fucose as a standard (3). Acrosome reactions were also induced with ionophores, as described previously (19). The percentage of acrosome-reacted sperm was determined by phase-contrast microscopy of sperm fixed in 5% glutaraldehyde.

1 Abbreviations used in this paper: ASW, artificial seawater; MFASW, 0.45-μm-pore filtered seawater; WGA, wheat germ agglutinin; endo F, endo-$eta$-N-acetylglucosaminidase F.
in ASW at x 1250 magnification, with the identity of the samples unknown to the observer. All reagents were from Sigma Chemical Co. (St. Louis, MO) except where indicated otherwise.

Localization of Lectin Binding: WGA was purified from raw wheat germ, purchased from a local health food store, by the method of Vreeland (27), lyophilized from distilled water, and stored dry at 5°C until use. Some batches of WGA were modified by succinylation (13) and/or conjugated to tetramethylrhodamine isothiocyanate (6). Lectin solutions were made fresh each day and stored at 0°C to be used in localization studies were fixed in ASW containing 3% paraformaldehyde and 0.1% glutaraldehyde and then washed and incubated in a blocking solution, as described previously (19). Fluorescent WGA or succinylated WGA was added at various concentrations and mixed with sperm in 0.1 M glycine in ASW for 3 h. In some cases, 0.1 M N-acetyl-d-glucosamine (GlcNAc) was included as a control. Unbound lectins were removed by three washings with ASW, and then sperm were observed with a fluorescence microscope (19).

Sperm Agglutination: Lectins to be tested for sperm agglutination were serially diluted twofold in 12 x 100 mm borosilicate tubes, each containing 1.0 ml of MFSW. In some experiments, the MFSW contained 0.1 M GlcNAc. Each tube received an additional 1.0 ml of sperm in MFSW, so that the final sperm concentration was 2.3 x 10^6 cells/ml in a final volume of 2.0 ml. The tubes were agitated at room temperature on a Lab-Line Junior Orbital shaker (Lab-Line Instruments, Inc., Melrose Park, IL) at 200 rpm for 45 min, then centrifuged in a Sorvall GLC-2B centrifuge (E. L. Ducotin de Nemours & Co., Newtown, CT) for 4 min at 600 rpm. 1 ml of the supernatant was removed, and its A540 was recorded exactly 10 s after it was pipetted into the cuvette, to measure the number of sperm remaining in suspension (26).

WGA Binding to Sperm: WGA binding to sperm was measured directly using 125I-labeled lectin. Immediately before use, 2.0 mg of WGA was dissolved in 1.0 ml of 150 mM NaCl, 10 mM Tris, pH 8.2, to MFSW, and labeled for 10 min at room temperature with 500 Ci of 125I (carrier free, New England Nuclear, Boston, MA) and one iododec (Pierce Chemical Co., Rockford, IL). Free 125I was removed by passing the solution (without the bead) over a 1.4 x 7 cm column of coarse Sephadex G-25 (Pharmacia Inc., Piscataway, NJ) equilibrated in the same buffer. Various amounts of 125I-labeled WGA were added to 0.4 ml of MFSW containing approximately 10^6 sperm and 10 μM N-acetyl-d-glucosamine, which does not affect WGA binding. Sperm agglutination, reversibly inhibits sperm motility (V. D. Vacquier, unpublished observations). Inhibition of motility greatly reduces the loss of sperm cells during washing procedures. The sperm were agitated for 10 min at room temperature with 0.1% SDS, 0.05% (wt/vol) Tween 20, and 1.0 mg/ml periodate-treated BSA (buffer A). Some samples also contained 40 mM GlcNAc. The blots were washed with 25 ml of buffer A, followed by two 1-h washes in 1.0 liter of 0.5 M NaCl, 10 mM Tris, pH 8.2. The blots were dried and placed on Kodak X-AR-5 x-ray film.

RESULTS

WGA Binding to Sperm

By fluorescence microscopy, WGA appeared to bind the entire surface of fixed S. purpuratus sperm, and this binding was completely inhibited by 0.1 M GlcNAc (Fig. 1). Agglutination of sea urchin sperm by WGA was species dependent (Fig. 2). Of the four species tested, S. purpuratus was most easily agglutinated (50% agglutination at 130 μg/ml) followed by close relative S. franciscanus (50% agglutination at 260 μg/ml). A. punctulata sperm are only partially agglutinated at much higher WGA concentrations, and L. pictus sperm failed to show any agglutination with WGA.

The agglutination of S. purpuratus sperm was completely inhibited by GlcNAc, a sugar that avidly binds to WGA (3; 50% inhibition at 0.8 mM). The sugar derivatives N-acetyl-d-galactosamine (50% inhibition at 6 mM) and N-acetylneuraminic acid (50% inhibition at 5 mM) were six to seven times less effective at blocking agglutination. WGA did not inhibit sperm motility, observed by light microscopy, until the cells became so densely agglutinated that mobility was impossible.

WGA is known to react strongly with various sialic acid derivatives as well as GlcNAc (1, 15, 16, 28). A. punctulata sperm, which does not bind sialic acids but retains GlcNAc affinity (13), does not agglutinate S. purpuratus sperm. Treatment of sperm with neuraminidase for 1 h at pH 6.5 and 23°C caused a 50% decrease in 125I-WGA binding to sperm (Fig. 4); however, optimal conditions for neuraminidase activity (pH 5.0, 37°C) were radically different from those required to maintain healthy S. purpuratus sperm (pH 8.0, 5-15°C). The conditions chosen as a compromise (pH 6.5, 23°C) probably do not allow complete enzymatic digestion to occur. The sperm did not remain viable under these conditions for >1 h. Standard chemical techniques for removing sialic acid cannot be used on intact sperm, because the cells die in the presence of 10 mM periodate or at pH levels <5.0 (Podell, S., unpublished data).
Effects of WGA on the Acrosome Reaction

WGA was found to be a potent inhibitor of the egg jelly-induced sperm acrosome reaction in *S. purpuratus*, even at concentrations too low to cause agglutination (Fig. 5). The inhibition did not occur in the presence of 5 mM GlcNAc or 2.5 mg/ml sialopeptides derived from hog gut mucin (12). Sialic acid binding may play a role in this phenomenon, since succinylated WGA had very low inhibitory potency (Fig. 5). It is not possible to directly test the role of sialic acid binding on WGA-mediated inhibition of the acrosome reaction, because the low pH and high temperature required to completely remove sialic acid from the cell surface render *S. purpuratus* sperm unable to acrosome react.

To study the effects of WGA on ion movements associated with the acrosome reaction, we induced the reaction by various artificial means (Fig. 6 and Table I). The effects of WGA are partially bypassed by nigericin, and WGA does not significantly inhibit the acrosome reaction induced by NH$_4$OH (25), proving that the sperm are still capable of reacting. WGA binding to sperm was not substantially reduced by NH$_4$OH (Fig. 4). Adding monensin to egg jelly, to promote Na$^+$/H$^+$ exchange, did not restore the acrosome reaction in the presence of WGA (Table I). WGA also blocked the acrosome reactions normally induced by the ionophore A23187; however, when A23187 was combined with monensin, the acrosome reaction occurred. This result was the same whether the ionophores were added simultaneously or se-

Figure 1 WGA binding to *S. purpuratus* sperm. Panels at left are phase-contrast, and those at right are corresponding fluorescence micrographs at approximately × 2,300 magnification. WGA is 32 μg/ml in a and b; 0.1 M GlcNAc is present along with WGA in c and d.
the cells. The WGA-treated sperm showed normal motility when observed in the light microscope, and their baseline level of H⁺ efflux did not differ significantly from untreated cells, suggesting normal metabolic activity. WGA had no effect on net sperm H⁺ or Ca²⁺ ion fluxes in the presence of 0.1 M GlcNAc.

Identification of the WGA Receptor

When sperm membrane proteins were separated electrophoretically, transferred to nitrocellulose paper, and exposed to ¹²⁵I-WGA, a single membrane protein of Mr = 210,000 became labeled (Fig. 9). Although this interaction was strong enough to occur in a high ionic strength, detergent-containing medium, it was completely inhibited by 40 mM GlcNAc. The same result is obtained when the interaction was analyzed by immunoprecipitation instead of protein blotting (data not shown). After treatment with neuraminidase at pH 5.0, the Mr = 210,000 protein showed increased electrophoretic mobility (Fig. 10), which suggests that sialic acid residues have been removed. A similar mobility shift occurred after diges-

Ion Flux Measurements

Direct measurements of egg jelly-induced H⁺ efflux and Ca²⁺ influx in S. purpuratus sperm showed that both responses were blocked by the presence of 40 µg/ml WGA (Figs. 7 and 8). In each case, the block occurs quite rapidly (within 5 min at 0°C) at a WGA concentration that agglutinates <10% of

Figure 2 Comparison of WGA agglutination in the following sea urchin species: S. purpuratus (●); S. franciscanus (○); A. punctulata (▲); L. pictus (△).
Ionophore-induced acrosome reactions in *S. purpuratus* sperm. Symbols indicate the following ionophores: nigericin (Δ); A23187 (○); monensin (■); A23187 plus monensin (●). Each point represents the average of three experiments with different sperm batches.

Figure 6 Ionophore-induced acrosome reactions in *S. purpuratus* sperm.

Table 1

AR inducer	WGA + GlcNAc inhibition of AR (%)
Egg jelly	1 98 99
Monensin (40 μM) + jelly	0 91 100
A23187 (38 μM)	12 83 86
Monensin + A23187	96 96 96
Nigericin (40 μM)	59 100 41
NH₄OH (pH 9.1)	87 96 9
None	0 0 0

Data is average of two experiments with different sperm batches. Concentration of WGA is 40 μg/ml, and GlcNAc is 0.1 M. AR, acrosome reaction.

The sugar derivative on *S. purpuratus* sperm most probably responsible for WGA binding is sialic acid, as shown by agglutination and acrosome reaction studies with succinylated 45

![Image of graph showing acrosome reaction inhibition by WGA](https://example.com/graph1.png)

Figure 7 Effect of WGA on egg jelly-induced H⁺ efflux. Symbols indicate *S. purpuratus* sperm treatment as follows: ○, addition of egg jelly at time indicated by arrow; ▽, 40 μg/ml WGA, then egg jelly at time indicated by arrow; Δ, 40 μg WGA (no jelly); ×, no treatment at all.

Figure 8 Effect of WGA on egg jelly-induced ⁴⁰Ca²⁺ uptake. Symbols indicate *S. purpuratus* sperm treatment with the following: ○, 40 μg/ml WGA; ●, 40 μg/ml WGA plus 0.1 M GlcNAc. Arrow indicates time at which egg jelly was added.

Discussion

WGA adheres to the entire surface of *S. purpuratus* sperm, with higher affinity than to sperm of *S. franciscanus*, *A. punctulata*, or *L. pictus*. This variability in lectin binding among sea urchin sperm could be expected if cell surface glycoproteins are involved in a species-specific recognition process such as the egg jelly-induced acrosome reaction. Inhibition of the acrosome reaction by WGA suggests that the lectin binds at or near a site critical for the initiation of the reaction.

The sugar derivative on *S. purpuratus* sperm most probably responsible for WGA binding is sialic acid, as shown by agglutination and acrosome reaction studies with succinylated 45
WGA, as well as neuraminidase digestion of isolated sperm membrane proteins. Very low concentrations of GlcNAc (<5 mM) were observed to inhibit the effects of WGA on sperm. This result can be attributed to the strong affinity of the lectin for GlcNAc, which is much greater than for sialic acid (16), rather than to similarity between the competing sugar and carbohydrates at the sperm surface.

How does WGA block the acrosome reaction? Studies with monensin and A23187 (Table I) suggest that the lectin interferes with both Na+/H+ exchange and Ca2+ influx. Direct measurements of external pH and 45Ca2+ uptake support this conclusion, although the 45Ca2+ filtration assay used could not detect very small, rapid, reversible ion fluxes. To block ionophore-induced acrosome reactions, the lectin could sterically impede or cross-link membrane proteins that normally move laterally, or allosterically inhibit a necessary conformational change in a regulatory glycoprotein. WGA could also prevent jelly binding to sperm, but this is difficult to test because of nonspecific WGA-jelly interaction. On nitrocellulose blots, WGA appeared to bind egg jelly (data not shown), but this interaction was not inhibited by 0.1 M GlcNAc, twenty times the sugar concentration that abolishes WGA inhibition of the acrosome reaction.

We have identified an Mr = 210,000 glycoprotein as the S. purpuratus sperm membrane component that most avidly binds WGA. We cannot rule out the possibility of minor, low-affinity interactions of the lectin with other membrane components under the mild conditions necessary to maintain sperm viability; however, the 210,000-mol wt protein represents an attractive subject for further study. Previous reports have identified this protein as one of four S. purpuratus sperm proteins accessible to 125I labeling in intact sperm (2, 17), and it has been shown that antibodies directed against it block the S. purpuratus acrosome reaction (19). Further characterization of the protein should yield new insights into the mechanisms that regulate ionic fluxes associated with the sperm acrosome reaction.

The authors thank Mr. G. W. Moy for his technical assistance. This work was supported by a U. S. Public Health Service traineeship to S. B. Podell and National Institutes of Health grant HD-12896 to V. D. Vacquier.

Received for publication 22 February 1984, and in revised form 13 July 1984.

REFERENCES

1. Bhavanandan, V. P., and A. W. Katlic. 1979. The interaction of wheat germ agglutinin with sialoglycoproteins. J. Biol. Chem. 254:400–4008.
2. Cross, N. L. 1983. Isolation and electrophoretic characterization of the plasma membrane of sea urchin sperm. J. Cell Sci. 59:13–25.
3. Dubois, M., J. A. Gilles, J. K. Hamilton, P. A. Rebers, and F. Smith. 1956. Colorimetric method for determination of sugars and related substances. Anal. Chem. 28:350–356.
4. Eckberg, W. R., and C. B. Metz. 1982. Isolation of an Arctica sperm fertilization antigen. J. Exp. Zool. 221:101–105.
5. Elder, J. H., and S. Alexander. 1982. Endo-β-N-acetylglucosaminidase F: endoglycosidase from Flavobacterium meningosepticum that cleaves both high-mannose and complex glycoproteins. Proc. Natl. Acad. Sci. USA. 79:4540–4544.
6. Ferramaci, J. R. 1979. Microinjection of fluorescently labeled α-actinin into living fibroblasts. Proc. Natl. Acad. Sci. USA. 76:3967–3971.
7. Glass, W. F., R. C. Briggs, and L. S. Hinlica. 1981. Use of lectins for detection of electrophoretically separated glycoproteins transferred onto nitrocellulose sheets. J. Biol. Chem. 115:219–224.
8. Kopf, G. S., and D. L. Garbers. 1980. Calcium and a fucose-sulfate-rich polymer regulate sperm cyclic nucleotide metabolism and the acrosome reaction. Biol. Reprod. 22:1118–1126.
9. Laemmli, U. K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T-4. Nature (Lond.). 227:680–685.
10. Lee, H. C., C. Johnson, and D. Epel. 1983. Changes in internal pH associated with initiation of motility and acrosome reaction of sea urchin sperm. Dev. Biol. 95:31–45.
11. Lupo, A. C., and V. D. Vacquier. 1985. Antibody to a specific sperm surface glycoprotein inhibits the egg jelly-induced acrosome reaction. Dev. Biol. 79:325–333.
12. Mayle-Pfenniger, M. F., and J. D. Jamieson. 1979. Distribution of cell surface saccharides on pancreatic cells. I. General method for preparation of lectin-ferritin conjugates. J. Cell Biol. 80:69–76.
13. Monniguy, M. C., Sene, A. Obernolteich, A. C. Roche, F. Delmotte, and E. Bossieli. 1979. Properties of succinylated wheat germ agglutinin. Eur. J. Biochem. 98:39–45.
14. Moret, J. 1981. Silver stain for proteins in polyacrylamide gels; a modified procedure with enhanced uniform sensitivity. Anal. Biochem. 117:205–210.
15. Muresan, V., Z. D. J. Smith, and J. D. Jamieson. 1982. Purification and use of limulin: a sialic-acid specific lectin. J. Histochem. Cytochem. 30:938–940.
16. Peters, B. P., S. Ebisu, I. J. Goldstein, and M. Flashner. 1979. Interaction of wheat germ agglutinin with sialic acid. Biochemistry. 18:5505–5511.
17. Podell, S. B., G. W. Moy, and V. D. Vacquier. 1984. Isolation and characterization of a plasma membrane fraction of sea urchin sperm exhibiting species-specific recognition of the egg surface. Biochem. Biophys. Acta. In press.
18. Podell, S. B., and V. D. Vacquier. 1983. Wheat germ agglutinin blocks the sea urchin sperm acrosome reaction by binding to a sperm membrane glycoprotein. J. Cell Biol. 79/5, Pt. 2:112a. (Abstr.)
19. Podell, S. B., and V. D. Vacquier. 1984. Inhibition of the sea urchin sperm acrosome reaction by antibodies directed against two sperm membrane proteins: characterization and mechanism of action. Exp. Cell Res. In press.
20. Saling, P. M., W. R. Eckberg, and C. B. Metz. 1982. Mechanism of univalent antisperm antibody inhibition of fertilization in the sea urchin Arbacia punctulata. J. Exp. Zool. 221:93–99.
21. Schackmann, R. W., R. Christen, and B. M. Shapiro. 1981. Membrane potential depolarization and increased intracellular pH accompany the acrosome reaction of sea urchin sperm. Proc. Natl. Acad. Sci. USA. 78:6066–6070.
22. Schackmann, R. W., and Shapiro. 1981. A partial sequence of ionic changes associated with the acrosome reaction of Strongylocentrotus purpuratus. Dev. Biol. 81:145-154.
23. SeGall, G. K., and W. J. Lennarz. 1979. Chemical characterization of the component of the jelly coat from sea urchin eggs responsible for induction of the acrosome reaction. Dev. Biol. 71:33-48.
24. SeGall, G. K., and W. J. Lennarz. 1981. Jelly coat and induction of the acrosome reaction in echinoid sperm. Dev. Biol. 86:87-93.
25. Tilney, L. G., S. Hatano, H. Ishikawa, and M. S. Mooseker. 1973. The polymerization of actin: its role in the generation of the acrosomal process of certain echinoid sperm. J. Cell Biol. 59:109-126.
26. Vacquier, V. D., and J. E. Payne. 1973. Methods for quantitating sea urchin egg binding. Exp. Cell Res. 82:227-235.
27. Vretblad, P. 1976. Purification of lectins by biospecific affinity chromatography. Biochim. Biophys. Acta. 434:169-176.
28. Wright, C. 1980. Location of the N-acetyl-D-neuraminic acid binding site in wheat germ agglutinin. J. Mol. Biol. 139:53-60.