TRACE FUNCTIONALS ON NON-COMMUTATIVE DEFORMATIONS OF MODULI SPACES OF FLAT CONNECTIONS

PHILIPPE ROCHE, ANDRÁS SZENES

0. Introduction

Let \(G \) be a compact connected and simply connected Lie group, and \(\Sigma \) be a compact topological Riemann surface with a point \(p \) marked on it. One can associate to this data the moduli space of flat \(G \) connections on the punctured Riemann surface \(\Sigma \) denoted by \(\mathfrak{M}^G = \mathfrak{M}^G[\Sigma_p] \). This space decomposes into a union \(\mathfrak{M}^G = \cup \sigma \mathfrak{M}^G(\sigma) \) of moduli spaces of flat connections with the holonomy around the point \(p \) fixed in some conjugacy class \(\sigma \) of \(G \). For generic \(\sigma \) the space \(\mathfrak{M}^G(\sigma) \) is a smooth real algebraic orbifold (manifold if \(G = SU(n) \)), and comes equipped with a canonically defined symplectic form, which induces an algebraic Poisson structure on it.

In this paper, we study non-commutative deformations of the spaces of functions on \(\mathfrak{M}^G \) and \(\mathfrak{M}^G(\sigma) \). We bring together the algebraic approach initiated and developed in the works of Fock, Rosly [18], Alekseev et. al. [3], Buffenoir, Roche [9], and the theory of formal deformations of symplectic manifolds, specifically the index theorem of Fedosov and Nest-Tsygan [12, 17, 27].

Our first result is a simple construction of a canonically defined non-commutative algebra \(\mathfrak{A}_q \) depending on a parameter \(q \), from which \(F(\mathfrak{M}^G) \), the algebraic functions on \(\mathfrak{M}^G \), may be recovered by setting \(q = 1 \). Substituting \(q = e^{2\pi i \hbar} \) one obtains an algebra \(\mathfrak{A}_\hbar \) over the formal power series \(\mathbb{C}[[\hbar]] \) which serves as a formal deformation of \(F(\mathfrak{M}^G) \).

The central object of the index theorem of Fedosov and Nest-Tsygan is a cyclic functional \(\text{Tr} : \mathfrak{A}_\hbar \to \mathbb{C}[[\hbar]] \), called the canonical trace, which plays the role of the index of an elliptic operator in this formal theory.

The focus of our work is a conjectural lifting of the canonical trace, which takes values in formal power series, to a cyclic functional on \(\mathfrak{A}_q \) taking values in functions of \(q \) holomorphic in the unit disc. The two traces will be related by an asymptotic expansion at \(q = 1 \).

Contents of the paper. In §1 we recall the volume formula of Witten and Verlinde’s formula and compute the asymptotics of the \(q \)-volume series that we introduce. In §2 we recall the necessary background about the topology of the spaces \(\mathfrak{M}^G \) and \(\mathfrak{M}^G(\sigma) \). We give a short introduction to

The research was supported by NSF and NSA grants.
the theory of formal deformations in §3 and explain how a variation of the theory can be applied to the case of algebraic manifolds. We start the study of the algebraic functions on the moduli spaces in §3 by giving a construction of the Poisson structure and the Poisson trace using a graphical technique, mostly based on the ideas and constructions of [18, 1, 28]. We quantize this construction in §5 by introducing a slightly more geometric variant of the Reshetikhin-Turaev invariants [29]. The algebra we obtain is analogous to that in [3, 4], but our construction is transparent, geometric, and computationally much more efficient. Our main result is contained in §4, where we prove the asymptotic correspondence of the traces, to which we alluded above, in the case of $G = SU(2)$. We review our results and formulate the main conjecture which served as a motivation for this article in §6. In order to avoid crowding the main body of the paper, and in a hope to make the paper more accessible for the reader unfamiliar with the theory of quantum groups, we included an introduction to a relevant part of the subject in an Appendix §8.

The goal of our work is carrying out the program outlined in §3.2 for the algebras we construct in §5. This involves completing the analysis of §6 for the higher rank groups and proving the assumptions described in §7. These will be the subjects of two follow-up papers. We should note that the idea of approaching the Verlinde formulas via formal index theory was raised by Nest and Tsygan.

With these problems out of the way, one could try to approach Conjecture 7.2 about the characteristic class of A_q.

ACKNOWLEDGMENTS We are greatly indebted to Pavel Etingof for his help at all stages of this project, and to Boris Tsygan for his insights and suggestions. Useful discussions with Jean-Michel Bismut, Victor Guillemin and Michèle Vergne are also gratefully acknowledged.

Contents

0. Introduction 1
1. Three series 3
1.1. Lie theory, notation and preliminaries 3
1.2. The rational case 4
1.3. The trigonometric case 6
1.4. The q-rational case 7
1.5. Several punctures 9
2. Moduli spaces 10
2.1. Topology and singularities 10
2.2. Line bundles and the symplectic form 11
2.3. Several punctures 13
3. Formal deformations of manifolds and index theorems 13
3.1. Formal deformations of symplectic manifolds 13
3.2. Algebraic manifolds and local deformations 15
1. THREE SERIES

In this section we introduce three families of series associated to compact Lie groups. They are all related to the topology of the moduli spaces of flat connections on Riemann surfaces. The first two, the Witten series and the Verlinde sums are well-known. We will sketch their geometric significance in the next section. The last one is the main object of our study, and its connection to the moduli spaces will be explained in the subsequent parts of the paper.

Before we proceed, however, we need to fix some notation.

1.1. Lie theory, notation and preliminaries. The notions of Lie theory will play a major role in this article. Here we set the relevant notation.

- We will assume that G is a compact, simple, connected and simply connected Lie group, with complexified Lie algebra \mathfrak{g}. For most of the paper we also assume that G is simply laced.
- Fix a maximal torus $T \subset G$ with Lie algebra \mathfrak{t}, whose complexification is denoted by \mathfrak{h}. The pairing between \mathfrak{t} and its dual \mathfrak{t}^* will be denoted by \langle , \rangle. We will use the shorthand $\hat{x} = \exp(x)$ for the exponential mapping, where $x \in \mathfrak{t}$ and $\hat{x} \in T$.
- Let $\Lambda = \exp^{-1}(e) \subset \mathfrak{t}$ be the unit lattice and denote by Ω its integral dual, the weight lattice in \mathfrak{t}^*. The set of roots will be denoted by $\Delta \subset \Omega$, and the coroot corresponding to a root $\alpha \in \Delta$ by $\check{\alpha}$. We write e_λ for the group homomorphism $T \rightarrow U(1)$ corresponding to the weight λ. Thus we have $e_\lambda(\hat{x}) = e^{2\pi i \langle \lambda, x \rangle}$.
The Lie algebra \mathfrak{g} has a symmetric bilinear form, which is invariant under the adjoint action of G. Such a form is unique up to multiplication by a constant and induces an inner product on \mathfrak{g}^\ast. The normalization of this inner product is usually fixed in such a way that the long roots (and coroots) have square length 2. The form thus normalized is called the \textit{basic} inner product and will be denoted by $(.,.)$. It induces a linear isomorphism between \mathfrak{t} and \mathfrak{t}^\ast denoted by $x \mapsto x^\ast$.

The Weyl group W_G acts on \mathfrak{T} and \mathfrak{t} effectively. Assume that a Weyl chamber in \mathfrak{t} has been chosen. This induces a split of the roots into positive and negative: $\Delta = \Delta^+ \cup \Delta^-$ and the choice of the dominant weights Ω^+. As usual, $\rho = \frac{1}{2} \sum_{\alpha \in \Delta^+} \alpha$, and θ_G is the highest root of G. The dual Coxeter number h_G is the integer defined by $h_G = (\theta_G, \rho) + 1$.

Denote the conjugacy class of an element $t \in \mathfrak{T}$ by σ_t. Let $\mathfrak{T}_{\text{reg}}$ be the set of regular elements in \mathfrak{T}. We have chosen a dominant chamber in \mathfrak{t}^\ast, which induces a choice of a chamber in \mathfrak{t} and thus a choice of an alcove (a connected component) a in $\mathfrak{T}_{\text{reg}}$. Then by Lie theory we have

$$\text{Conj}(G) \cong T/W_G \quad \text{and} \quad \text{Conj}_{\text{reg}}(G) \cong a.$$

Denote by log the local inverse of the exponential mapping, which maps the only vertex of a at the identity to $0 \in \mathfrak{t}$. Then the mapping \log^* identifies a with the following subset of the dominant chamber of \mathfrak{t}^\ast:

$$a^* = \{ \gamma \in \mathfrak{t}^{*+} | (\gamma, \theta_G) < 1, (\gamma, \alpha) > 0, \alpha \in \Delta^+ \},$$

where θ_G is the highest root.

The representation ring $R(G)$ has an integral basis $\text{Irrep}(G) = \{ \chi_\lambda \}_{\lambda \in \Omega^+}$, where χ_λ is the character of V_λ, the irreducible representation with highest weight λ.

Define a partial ordering on the weights, by saying that $\lambda \geq \mu$ if their difference is a sum of positive roots, i.e. $\lambda - \mu \in \mathbb{Z}^{\geq 0} \Delta^+$. This partial order may be extended to \mathfrak{h}^\ast, the set of all complex weights.

Other conventions:

- Given a non-degenerate pairing $Q : V \otimes W \to \mathbb{C}$ denote by δ_Q the diagonal element $\sum v^i \otimes w_i \in V \otimes W$, where $\{v^i, w_j\}$ are a pair of dual bases of V and W correspondingly, i.e. $Q(v^i, w_j) = \delta^i_j$. In particular, $\delta(V) \in V^* \otimes V$ is the diagonal elements with respect to the canonical pairing between V^* and V.
- Underlining a symbol will mean multiplication by $2\pi i$.

\textit{For most of this section we assume that G is simply laced.} The formulas for the non-simply laced cases require minor modifications of the ones given.

1.2. The rational case

For a positive integer g, consider the function on \mathfrak{t} given by the series

$$\widehat{W}_g^G(x) = \sum_{\lambda \in \Omega^+} \frac{\chi_\lambda(\hat{x})}{(\dim V_\lambda)^{2g-1}}.$$
Clearly, $\tilde{W}_g^G(x)$ is a function of σ_x only. Up to a normalization, to be discussed below, this is the volume series of Witten \cite{[41]} (cf. (2.1)).

Recall the Weyl character and Weyl dimension formulas:

\begin{equation}
\chi_\lambda = \frac{1}{\delta} \sum_{w \in W_G} \text{sign}(w) e_{w(\lambda + \rho)} \quad \text{and} \quad \dim V_\lambda = \prod_{\alpha \in \Delta^+} (\lambda + \rho, \alpha) / (\rho, \alpha),
\end{equation}

where $\text{sign} : W_G \to \pm 1$ is the antisymmetric character of W_G and $\delta = e^\rho \prod_{\alpha \in \Delta^+} (1 - e^{-\alpha})$ is the fundamental antisymmetric character.

Multiplying $\tilde{W}_g^G(x)$ by $\delta(\hat{x})$ and an appropriate x-independent constant one obtains the expression

\begin{equation}
W_g^G(x) = c(g,G) \delta(\hat{x}) \tilde{W}_g^G(x) = (-1)^{(g-1)|\Delta^+|} |Z_G|^g B_{2g-1}^G(x),
\end{equation}

where

\begin{equation}
B_m^G(x) = \sum_{\lambda \in \Omega_{\text{reg}}} \frac{e^{\langle \Delta, x \rangle}}{\prod_{\alpha \in \Delta^+} (\Delta, \alpha)^m}
\end{equation}

Here Ω_{reg} is the set of regular, not necessarily dominant weights, Z_G is the center of G and underlining means multiplication by $2\pi i$. The constant $c(g,G)$ is defined by (1.4). The function (1.3) is a multi-dimensional Fourier series, a higher dimensional analog of the classical Bernoulli polynomials. Such series were studied in a more general context in \cite{[31]} where, in particular, it was proved that $B_m^G(x)$ is a piecewise polynomial function with rational coefficients. When $G = SU(2)$, up to a normalization factor, one recovers the classical Bernoulli polynomials

\begin{equation}
B_m(x) = \sum_{n \neq 0} \frac{e^{2\pi in}}{n^m}.
\end{equation}

Here and in the rest of this paper, we will omit the subscript or superscript “G” when $G = SU(2)$, if this causes no confusion. To compute the coefficients of these polynomials one can apply the following simple lemma \cite{[31]}:

Lemma 1.1. Let f be a rational function of degree ≤ -2 on \mathbb{C} and let P_f be the set of its poles. Then for each x, $0 \leq x < 1$,

\begin{equation}
\sum_{n \in \mathbb{Z}, n \notin P_f} \exp(nx)f(n) = \sum_{p \in P_f} \text{Res}_{u=p} \frac{e^{xu} du}{1 - e^u f(u)}.
\end{equation}

In the case $f(u) = u^{-m}$, $g > 1$, one recovers the well-known formula

\begin{equation}
B_m(x) = \text{Res}_{u=0} \frac{1}{u^m (1 - e^u)}
\end{equation}

where $\{\}$ stands for fractional part of a real number.

Remark 1.1. The Lemma can be extended to the case $\text{deg}(f) > -2$, by assuming $0 < x < 1$ (cf. \cite{[31]}).
1.3. The trigonometric case. Denote by Ω_Δ the root lattice, which is the integral dual of the center lattice $\exp^{-1}(Z_G)$. For positive integers k, g and a dominant weight $\lambda \in \Omega^+_\Delta$, consider the finite sum

$$ V^G_g(\lambda; k) = \frac{1}{|W_G|} \sum_{t \in Z_G[k+h_G]_{\cap T_{reg}}} \chi_{\lambda}(t) \left(\frac{|Z_G|(k+h_G)^{\text{rank}(G)}}{\prod_{\alpha \in \Delta} (1-e^{-\alpha}(t))} \right)^{g-1}, $$

where $Z_G[k] = \{ t \in T | t_k^k \in Z_G \}$, and $h_G = (\theta_G, \rho) + 1$. This sum, first written down by E. Verlinde \cite{37}, turns out to be an integer valued function, whose dependence on λ and k is again piecewise (quasi-)polynomial. Note that the denominator is the Weyl density function which can be written as $\delta = (-1)^{\Delta+1}g^2$. Using this and taking advantage of the Weyl character formula again, we arrive at

$$ V^G_g(\lambda; k) = \left((-1)^{\Delta+1} |Z_G|(k+h_G)^{\text{rank}(G)} \right)^{g-1} \sum_{t \in Z_G[k+h_G]_{\cap T_{reg}}} \frac{e^{\lambda+\rho}(t)}{\delta(t)^{2g-1}}. $$

For $G = SU(2)$ we obtain

$$ V_g(l; k) = i(2(k+2))^{g-1} \sum_{j=1}^{2k+3} \frac{e^{j(l+1)/(2(k+2))}}{(2\sin(j\pi/(k+2)))^{2g-1}}, \quad j \neq k+2, $$

where l is an even number. Again, we can use residue techniques to evaluate this sum:

Lemma 1.2. Let $f(z)$ be a rational function on \mathbb{C} with a set of poles P_f, m a positive integer, such that $f(z) dz/(z(1-z^m))$ is regular at 0 and at ∞. Then

$$ \sum_{z^m=1, z \notin P_f} f(z) = \sum_{p \in P_f} \text{Res}_{z=p} \frac{m dz}{z(1-z^m)} f(z). $$

Applying the lemma to our sum with $f(z) = z^{l+1}(z - 1/z)^{1-2g}$, and $m = 2(k+2)$, we obtain

$$ V_g(l, k) = -2(-2(k+2))^{g} \text{Res}_{z=1} \frac{z^{l'} dz}{(1-z^{2(k+2)})(z - 1/z)^{2g-1}}, $$

where $l' = l + 1 \mod 2k+4$ and $0 \leq l' < 2k+4$. In principle, we also need the residue at $z = -1$, but by symmetry it is equal to the one at $z = 1$ (l' is odd) hence the extra factor of 2.

Finally, we can make the substitution $z = e^{u/(2k+4)}$ to arrive at

$$ V_g(l, k) = 2(-2(k+2))^{g-1} P_{2g-1}(\{(l+1)/2(k+2)\}, k+2), $$

where

$$ P_m(x, k) = \text{Res}_{u=0} \frac{e^{xu} du}{(1-u)(e^{u/2k} - e^{-u/2k})^m}. $$
1.4. The q-rational case. Now we turn to the main object of our study. Define the q-integers by $[n]_q = \frac{q^n - q^{-n}}{q - q^{-1}} \in \mathbb{Z}[q, q^{-1}]$, for every $n \in \mathbb{Z}^>0$. The q-dimension of V_λ is defined in analogy with (1.3) by

$$q\dim V_\lambda = \prod_{\alpha \in \Delta^+} \frac{[\lambda + \rho, \alpha]_q}{[(\rho, \alpha)]_q} \in \mathbb{Z}[q, q^{-1}].$$

By replacing the classical dimension by the q-dimension, we can write down the q-version of the \tilde{W}_G series:

$$\tilde{T}_G(x; q) = \sum_{\lambda \in \Omega^+} \chi_\lambda(\hat{x}) (q\dim V_\lambda)^{2g-1}.$$

The function $q\dim V_\lambda$ as a function of λ has the same symmetry properties with respect to the Weyl group as the usual dimension, so we can use the same trick as above to arrive at the analog of the W_G series:

$$T_G(x; q) = c(g, G, q) \delta(\hat{x}) \tilde{T}_G(x; q),$$

$$T_G(x; q) = (-1)^{(g-1)|\Delta^+|} |Z_G|^g \sum_{\lambda \in \Omega^+} \frac{e^{\langle \Delta, x \rangle}}{\prod_{\alpha \in \Delta^+} q^{\langle \alpha, \lambda \rangle} - q^{-\langle \alpha, \lambda \rangle}}^{2g-1}.$$

Note that while $c(g, G, q)$ is an analog of $c(g, G)$, we do not have $c(g, G, 1) = c(g, G)$.

When $G = SU(2)$, the formula reads

$$T_g(x; q) = (-1)^{g-1} 2^g \sum_{n \neq 0} \frac{e^{dnx}}{(q^n - q^{-n})^{2g-1}}.$$

Observe that for $g \geq 1$ this series converges to a holomorphic function on the complex q-plane. It is difficult to evaluate such a sum (although, cf. Remark 1.2). Instead, we will study the behavior of $T_g(x; q)$ as $q \to 1$. More precisely, we will compute the asymptotics of $T_g(x; e^{\pi i h})$ as $h \to 0^+$, i.e. as h approaches 0 along the ray of purely imaginary numbers in the upper half plane. To this end, consider the form

$$w_g(u, x; h) = \frac{e^{\{x\}u} du}{1 - e^u (e^{hu/2} - e^{-hu/2})^{2g-1}}$$

in the complex u-plane for a fixed $h \in i\mathbb{R}^+$. Divide the set of its poles into 3 parts as follows.

1. $P_1 = \{n| n \in \mathbb{Z}, n \neq 0\}$;
2. $P_2 = \{n/h| n \in \mathbb{Z}, n \neq 0\}$;
3. $u = 0$.

Clearly, we have

$$T_g(x; e^{\pi i h}) = (-1)^{g-1} 2^g \sum_{p \in P_1} \Res w_g(u, x; h).$$
Now consider \(\sum_{p \in P} \text{Res}_{u=p} w_g(u, x, h) \) and assume \(x \notin \mathbb{Z} \). Since \(e^{(x)u}/(1 - e^u) \) and its first \(2g \) derivatives vanish exponentially as \(u \to \pm \infty \) on the real line and \((e^{hu/2} - e^{-hu/2})^{2g-1} \) is periodic with period \(2\pi/h \), we have
\[
\left| \text{Res}_{u=2\pi n/h} w_g(u, x, h) \right| < ce^{-\tau|n|/|h|}
\]
for some positive constants \(c \) and \(\tau \), independent from \(n \). Then by summing the geometric series we obtain that
\[
\left| \sum_{p \in P} \text{Res}_{u=p} w_g(u, x, h) \right| < 2ce^{-\tau/|h|}
\]
as \(h \to i0^+ \). Finally, since, outside a small neighborhood of its poles, the function \(e^{(x)u}/(1 - e^u) \) vanishes exponentially as \(|\text{Re}(u)| \to \infty \) and so does \((e^{ihu} - e^{-ihu})^{1-2g} \) as \(|\text{Im}(u)| \to \infty \), we see that the line integral of \(w_g(u, x; h) \) over a sequence of appropriately chosen contours, e.g. the boundary of the rectangles
\[
\text{Rect}_L = \{|h\text{Re}(u)|, |\text{Im}(u)| \leq (2L + 1)\pi\}, \quad L \in \mathbb{N}
\]
goes to 0 as \(L \to \infty \). We can summarize what we have found as follows:

Proposition 1.3. There are positive constants \(c \) and \(\tau \) (possibly depending on \(x \)) such that for \(x \notin \mathbb{Z} \)
\[
|T_g(x; e^{\pi ih}) - (-1)^g - 2g \text{Res}_{u=0} w_g(u, x, h)| < ce^{-\tau/|h|}
\]
for sufficiently small \(h \in i\mathbb{R}^+ \).

Remark 1.2. Note that the existence of such an expansion around \(q = 1 \) for a holomorphic function of \(q \) on the unit disc, is a rather rare occurrence. It strongly suggests that the function is related to modular forms. In fact, there are examples of such relations [10]:
\[
T_1(x, q) = \frac{d}{du} \log \theta_4(u/2, \tau), \; q = e^{i\pi \tau}
\]
but we will not explore this connection in this paper. From the point of view of modular forms, the asymptotic behavior of \(T \) appears as a “defect” of sorts, a measurement of its failure to be modular.

We finish this section with an observation which will be central to our main result. Clearly, there is a formal analogy between \(V^G_g(\lambda; k) \) and \(T^G_g(x; h) \), both of them being a trigonometric deformation of \(W^G_g(x) \). Our residue calculations quantify this analogy in the case of \(G = SU(2) \), as follows.

First, by shifting the variables we can rewrite (1.11) as
\[
V^G_g(l - 1; k - 2) = 2(-2k)^{q-1} P_{2g-1}(l/2k, k),
\]
for \(l/2, k \in \mathbb{Z}_{\geq 0} \). On the other hand, (1.15) implies that asymptotically

\[
T_g(x; e^{\pi i h}) \sim 2(-2)^{g-1} P_{2g-1}(\{x\}, 1/h) \quad \text{as} \quad h \to i0^+.
\]

A similar equality holds in the higher rank case. This will be covered in a later publication.

1.5. Several punctures. Let \(P \) be a finite set. We can extend the results of this section as follows. We can write down a function of \(\vec{x} : P \to t \)

\[
\tilde{W}_g^G(\vec{x}) = \sum_{\lambda \in \Omega^+} \frac{\prod_{p \in P} \chi_{\lambda}(\hat{x}(p))}{(\dim V_\lambda)^{2g-2+|P|}}.
\]

and the series

\[
W_g^G(\vec{x}) = c_{|P|}(g, G) \left(\prod_{p \in P} \delta(\hat{x}(p)) \right) \tilde{W}_g^G(\vec{x}) =
\]

\[
\frac{(-1)^{|g-1|\Delta^+}|Z_G|^g}{|W_G|} \sum_{\vec{w} : P \to W_G} \text{sign}(\vec{w}) B_{2g-2+|P|}^G(\vec{w} \cdot \vec{x}),
\]

where \(\text{sign}(\vec{w}) = \prod_{p \in P} \text{sign}(\vec{w}(p)) \) and \(\vec{w} \cdot \vec{x} = \sum_{p \in P} \vec{w}(p)(\vec{x}(p)) \). For \(G = SU(2) \) we obtain the formula

\[
W_g(\vec{x}) = (-2)^{g-1} \sum_{\vec{c}} \text{sign}(\vec{c}) B_{2g-2+|P|}(\vec{c} \cdot \vec{x})
\]

where the first summation is over all possible \(|P|\)-tuples of signs \(\vec{c} \) and \(\text{sign}(\vec{c}) = \prod_p \vec{c}(p) \).

In the trigonometric case, one replaces \(\lambda \in \Omega_\Delta \) by \(\vec{\lambda} : P \to \Omega^+ \) such that \(\sum_{p \in P} \vec{\lambda}(p) \in \Omega_\Delta \), and writes a formula for \(V_g(\vec{\lambda}; k) \) by replacing \(\chi_\lambda \) in (1.8) by \(\prod_{p \in P} \chi_{\lambda(p)}(t) \). Now the formulas for \(\tilde{T}_g^G(\vec{x}; q) \) and \(T_g^G(\vec{x}; q) \) can be written down by analogy. We can summarize the final result as follows:

Proposition 1.4. The Verlinde sums and the q-volume series for \(G = SU(2) \) are both related to the same polynomial function as follows:

\[
V_g(\vec{I} - \vec{I}, k - 2) = 2(-2k)^{g-1} \sum_{\vec{c}} \text{sign}(\vec{c}) P_{2g-2+|P|} \left(\{\vec{c} \cdot \vec{I}/2k\}, k \right);
\]

and if for every choice of signs \(\vec{c} \) the condition \(\vec{c} \cdot \vec{x} \notin \mathbb{Z} \) holds then

\[
T_g(\vec{x}, e^{\pi i h}) \sim 2(-2)^{g-1} \sum_{\vec{c}} \text{sign}(\vec{c}) P_{2g-2+|P|} \left(\{\vec{c} \cdot \vec{x}\}, h^{-1} \right),
\]

where \(\sim \) means asymptotic equality as used above.

We will call \(\hat{x} \in T \) special if the condition in the proposition holds.
2. Moduli spaces

This section serves as a quick introduction to the topology of the moduli spaces of flat connections on Riemann surfaces. For more detailed analysis [8] is a good reference. The first part §2.1 is not essential for following the rest of the paper and is only given as an orientation for the reader. We want to emphasize the relation between the the singularities of the Witten sums and those of the corresponding moduli spaces.

Keeping the notation of the previous section, let again G be a compact, simple, simply connected Lie group. Let Σ be a topological Riemann surface and $P \subset \Sigma$ be a finite nonempty set of points. We will use the shorthand $\Sigma_P = \Sigma \setminus P$ and when $P = \{p\}$ we will write Σ_p for $\Sigma \setminus P$. The moduli space of flat G-connections $M^G = M^G[\Sigma_P]$ modulo gauge transformations can be defined as the quotient

$$M^G = \text{Hom}(\pi_1(\Sigma_P),G)/\text{Ad}G.$$

We discuss the case of one puncture $P = \{p\}$ first, and explain how to generalize the results to several punctures at the end of the section.

There is a natural map $\text{Hol}_p : M^G[\Sigma_p] \to \text{Conj}(G)$ which assigns to a flat connection the conjugacy class of the holonomy around the puncture p. Denote by $M^G(\sigma)$ the space $\text{Hol}_p^{-1}(\sigma)$ for and conjugacy class $\sigma \in \text{Conj}(G)$. We will be interested in the case of regular orbits only. In this case, $M^G(\sigma)$ is (a possibly singular) manifold of dimension $(2g-1)\dim G - \text{rank}(G)$.

2.1. Topology and singularities. In this paragraph, we describe the family of spaces $M^G(t)$ as t varies, with emphasis on the question of smoothness. This is needed since we will discuss the Riemann-Roch calculus on these spaces later. The discussion is necessarily incomplete and somewhat informal. For complete details cf. [8, 26].

Choosing the standard presentation of $\pi_1(\Sigma_P)$ we can represent $M^G(\sigma)$ as

$$\{[A_1, B_1] \ldots [A_g, B_g] \in \sigma | A_i, B_i \in G\}/\text{Ad}G,$$

where $[A, B] = ABA^{-1}B^{-1}$. As in the previous section, sometimes we will replace the regular orbit σ by a representative $t \in T_{\text{reg}}$. Then we have

$$M^G(t) = \{[A_1, B_1] \ldots [A_g, B_g] = t | A_i, B_i \in G\}/\text{Ad}T.$$

Since G is compact, the space $M^G(t)$ is Hausdorff. We will study the question: at what $\mu \in M^G$ is the space M^G singular. For $\mu \in M^G$, let $\text{Mon}(\mu)$ be the monodromy group of μ, which is the subgroup of G generated by holonomies of μ, i.e. by the subgroup generated by the elements $\{A_i, B_i | i = 1, \ldots, g\}$. Assume that $\text{Mon}(\mu)$ is connected. Then $\text{Mon}'(\mu)$ the commutator subgroup of $\text{Mon}(\mu)$ is a semisimple compact Lie subgroup of G containing t, thus it has a maximal torus $T_\mu \subset T$. Denote the set of roots of $\text{Mon}'(\mu)$ by Δ_μ and the Lie algebra of T_μ by t_μ.

Barring some degenerate cases, for a generic μ, we have $\text{Mon}'(\mu) = G$. Clearly, the singularities will appear at a solution μ whenever the centralizer
$Z(\text{Mon}'(\mu))$ in G is strictly greater than Z_G. Denote $t = \text{Hol}_p(\mu)$. There are two cases:

1. $\dim Z(\text{Mon}'(\mu)) > 0$. In this case we say that \mathcal{M}^G has a serious singularity at μ. We can assume that $Z(\text{Mon}'(\mu))$ contains a 1-dimensional toric subgroup $T_1 \subset T$. Then

$$\Delta_\mu \subset \{ \alpha \in \Delta | e_\alpha(t) = 1, \text{ for } t \in T_1 \}.$$

Thus

$$t_\mu \subset \langle \tilde{\alpha} | \alpha \in \Delta_\mu \rangle_{\text{lin}},$$

where $\langle \rangle_{\text{lin}}$ means linear span and $\tilde{\alpha}$ is the coroot corresponding to the root α. This happens if and only if t is not in general position with respect to the coroots of G. In other words, \mathcal{M}^G has serious singularities at μ if t is the exponential of a linear combination of rank(G) − 1 coroots of G. We will call such t special. This property only depends on the conjugacy class σ_t.

2. $Z(\text{Mon}'(\mu))$ is finite but strictly larger than Z_G. This produces orbifold singularities. The existence of such μ does not depend on t, but on the group G only. More precisely, one needs a non-trivial element $z \in Z(\text{Mon}'(\mu))/Z_G$, i.e. an element which lies on rank(G) singular subsets $U_\alpha = \{ e_\alpha = 1 \} \subset T$, $\alpha \in \Delta$, but not in the intersection of all of the U_αs which is Z_G. Note that such element z does not exist for $G = SU(n)$, thus in this case orbifold singularities do not appear in \mathcal{M}^G.

We can conclude that \mathcal{M}^G is singular (in the serious sense) at a point μ exactly when $\text{Hol}_p(\mu)$ is special. Some more work is required to show that $\mathcal{M}^G(t)$ is singular exactly when t is special [8, Sec. 5]. This implies, in particular, that $\mathcal{M}^G(t)$ is smooth when $G = SU(n)$ and t is not special.

Recall from (1.1) that the set of regular orbits in G is represented by an alcove $a \subset T$, which is in one-to-one correspondence with the set $a^* \subset t^*$ of dominant real weights of height at most 1 via the mapping \log^*. We can introduce the sets a_{nspec} (resp. a^*_{nspec}) as the subsets of T (resp. t^*) representing nonspecial elements. By the above discussion, this set is the complement of the intersection of a (resp. a^*) with a hyperplane arrangement, and has a rather complicated chamber structure. The spaces $\mathcal{M}^G(t)$, where t varies in one of the chambers of a_{nspec} are all isomorphic and form a trivial family. The spaces $\mathcal{M}^G(t)$ and $\mathcal{M}^G(t')$ corresponding to two neighboring chambers differ by set of high codimension and in general are not isomorphic. For details see [4, 8, 21, 34].

2.2. Line bundles and the symplectic form. A useful approach for studying the topology of $\mathcal{M}^G(t)$ is to represent it as a quotient using infinite dimensional symplectic reduction [1, 8, 18, 26]. In particular, this means that $\mathcal{M}^G(t)$ comes equipped with a canonical symplectic form ω_t induced by the symplectic form on the space of all connections, which depends only on the normalization of the symmetric bilinear product on g. The line bundles
on $\mathfrak{M}^G(t)$ correspond to homogeneous bundles for the central extension of the loop group of G. We summarize the necessary facts in the following proposition. For details consult \cite{8, 26}.

Proposition 2.1. Let $t \in a_{\text{an spec}}$ be a non-special element of T. Then

- There is an identification $\eta : t^* \oplus \mathbb{R} \cong H^2(\mathfrak{M}^G(t), \mathbb{R})$, such that
- The cohomology class of ω_t is $\eta(\log(t)^*, 1)$
- For $\lambda \in P_\Delta$ and $k \in \mathbb{Z}$, the cohomology class $\eta(\lambda, k)$ is integral, being the Chern class of a line bundle $L_{\lambda,k}$.
- The line bundle $L_{\lambda,k}$ is positive on $\mathfrak{M}^G(t)$ with respect to ω_t if and only if λ/k is in the same chamber as $\log(t)^*$.
- The following formula holds: $c_1(\mathfrak{M}^G(t)) = 2\eta(\rho, (\theta_G, \rho) + 1)$.

Now we can describe the connection of the formulas of the previous section with the topology of the moduli spaces. The first formula proved by Witten \cite{41, 25} says that the functions $W^G_g(\log(t))$ give the volume of the moduli spaces with respect to the canonical symplectic structure.

\begin{equation}
W^G_g(\log(t)) = \int_{\mathfrak{M}^G(t)} e^{\omega_t}.
\end{equation}

The second formula computes the Riemann-Roch number of the line bundle $L_{\lambda,k}$ on the space $\mathfrak{M}^G(t)$, where $\lambda/k = \log(t)^*$. Assume that (λ, k) is such that t is non-special. The space $\mathfrak{M}^G(t)$ may be endowed with an appropriate Kähler structure and the line bundle $L_{\lambda,k}$ with a holomorphic structure. Then the famous Verlinde formula reads (cf. \cite{41, 23, 8})

\begin{equation}
V^G_g(\lambda; k) = \dim H^0(\mathfrak{M}^G(t), L_{\lambda,k}).
\end{equation}

The 4th part of the Proposition corresponds to the statement that the bundle $L_{\lambda,k}$ is ample on $\mathfrak{M}^G(t)$ under the stated conditions. In particular, vanishing of higher cohomology holds for sufficiently high powers of $L_{\lambda,k}$. Somewhat surprisingly, such vanishing holds for the bundles $L_{\lambda,k}$ themselves \cite{33}. Thus by the Grothendieck-Riemann-Roch formula we have

\begin{equation}
V^G_g(\lambda; k) = \int_{\mathfrak{M}^G(t)} e^{\eta(\lambda,k) \text{Todd}(\mathfrak{M}^G(t))}
\end{equation}

The RHS does not change if we vary t inside its chamber.

Finally, using that $\hat{A}(M) = e^{c_1(M)/2\text{Todd}(M)}$, and comparing the formulas for ω_t and $c_1(M)$ given in Proposition 2.1 with (1.16) we obtain ($G = SU(2)$):

\begin{equation}
2(-2)^{g-1} P_{2g-1}(x, k) = \int_{\mathfrak{M}^G(\hat{x})} e^{k\omega_t} \hat{A}(\mathfrak{M}^G(\hat{x}))
\end{equation}

for $0 < x < 1/2$.

A similar formula holds in the for general G as well \cite{32, 8}.
2.3. Several punctures. The case of several punctures is entirely analogous, so we will be very brief. In this case, the moduli space $\mathcal{M}^G[\Sigma_P]$ is a union of the fibers $\mathcal{M}^G(\bar{\sigma})$ of the map $\text{Hol}_P : \mathcal{M}^G[\Sigma_P] \to \text{Conj}(G) \times |P|$. Serious singularities arise whenever for some $|P|$-tuple of Weyl group elements $\bar{w} : P \to W_G$ the product $\prod_{p \in P} \bar{w}(\vec{t})$ is a special element of T (as defined above). We will call such $|P|$-tuple of elements of \bar{t}: $P \to a$ representing $\bar{\sigma}$ special. Again, there is a canonical symplectic form $\omega_{\bar{t}}$ on $\mathcal{M}^G(\bar{t})$ and an isomorphism $\eta : t^{\otimes |P|} \oplus \mathbb{R} \cong H^2(\mathcal{M}^G(\bar{t}), \mathbb{R})$. The multiple puncture version of the formula for $G = SU(2)$ from above reads:

$$2\sum_{\varepsilon_P \to \pm} \text{sign}(\varepsilon) P_{2g-2+|P|} \langle \{\varepsilon \cdot \bar{x} \}, k \rangle = \int_{\mathcal{M}^G(\bar{x})} e^{k\omega_{\bar{x}}} \hat{A}(\mathcal{M}^G(\bar{x})).$$

where again $0 < \bar{x}(p) < 1/2$, for all $p \in P$.

3. Formal deformations of manifolds and index theorems

3.1. Formal deformations of symplectic manifolds. In this section we review the formal deformation theory of symplectic manifolds. A reference for this is [17, 38].

For a complex vector space V, denote by $V[[h]]$ the space of formal power series in h with coefficients in V. A formal deformation (the terms star product or deformation quantization are also used) of a manifold M is a product $\cdot : C^\infty(M) \otimes C^\infty(M) \to C^\infty(M)[[h]]$, which when extended linearly to $C^\infty(M)[[h]]$ is

- associative: $f \cdot (g \cdot h) = (f \cdot g) \cdot h$;
- local: $f \cdot g = fg + \sum_{n=1}^\infty B_n(f,g)h^n$, where B_n is a bidifferential operator.

It is easy to see that $B_1(f,g) - B_1(g,f) = \{f,g\}$ is a Poisson bracket on $C^\infty(M)$. When $M = (M^{2n}, \omega)$ is a symplectic manifold, and the deformation is such that the induced Poisson bracket is the symplectic one, then we speak of a formal deformation of a symplectic manifold.

Remark 3.1. Note the factor of $2\pi i$ in front of h, marked by underlining, inside the expansion in the definition of locality. This at variance with most conventions in the literature. We chose it because it is consistent with h being real and with the symplectic form ω being integral in our applications.

Associativity induces an infinite set of complicated non-linear equations on the B_ns, which were recently explicitly solved in local coordinates by Kontsevich [24]. The existence of the solution in the symplectic case was proved [12, 19] (cf. [38] for detailed references).
The group of formal base changes (gauge transformations)

\[G(M) = \left\{ \gamma : f \mapsto f + \sum_{n=1}^{\infty} \gamma_n(f) \mid \gamma_n \text{ is a differential operator} \right\} \]

acts on the space of formal products via \(f \cdot \gamma g = \gamma(\gamma^{-1}f \cdot \gamma^{-1}g) \). A natural question is the classification of formal deformations up to this action.

From here on, we only study the symplectic case \((M^{2n}, \omega)\). Then the orbits of this action are labeled by a characteristic class \(\theta(M, \cdot) \in \omega/\hbar + H^2(M)[[\hbar]] \) (cf. \([17, 27, 22, 39, 27, 11]\)).

Another interesting related object is the canonical trace on the algebra \((C^\infty(M)[[\hbar]], \cdot)\). A functional \(T \) on a non-commutative ring is called cyclic or a trace if \(T(ab) = T(ba) \). Such functionals on \((C^\infty(M)[[\hbar]], \cdot)\) form a 1-dimensional free module over \(\mathbb{C}[[\hbar]] \) with a distinguished element. To understand this we recall the local theory of formal deformations of symplectic manifolds.

Let \(M = \mathbb{R}^{2n} \) with a translation invariant symplectic form \(\omega \). Then the famous Moyal product is given by

\[f \cdot_{Mp} g = m(e^{\pi_\omega} f \otimes g), \]

where \(\pi_\omega = \omega^{-1} \) is the translation invariant Poisson bivector field induced by \(\omega \) and \(m \) is the ordinary commutative product on \(C^\infty(M)[[\hbar]] \otimes \mathbb{C} \). We collect the highlights of the local theory in the theorem below.

Theorem 3.1 ([17, 27]).

1. The Moyal product is a formal deformation of the symplectic vector space \((\mathbb{R}^{2n}, \omega)\).
2. Any formal product on \((\mathbb{R}^{2n}, \omega)\) is gauge-equivalent to \(\cdot_{Mp} \).
3. For every local derivation \(D = \sum_{n=1}^{\infty} D_n h^n \) of the algebra \((C^\infty(\mathbb{R}^{2n})[[\hbar]], \cdot_{Mp})\), \(D_n \in \text{Diff}(\mathbb{R}^{2n}) \), there exists an element \(f \in C^\infty(\mathbb{R}^{2n})[[\hbar]] \), such that \(Dg = f \cdot_{Mp} g - g \cdot_{Mp} f \), for every \(g \in C^\infty(\mathbb{R}^{2n})[[\hbar]] \). Similarly, any local automorphism of the form \(1 + \sum_{n=1}^{\infty} A_n h^n \) can be obtained by exponentiating such a derivation.
4. Integration against the density \(\omega^n/h^n \) defines a trace functional on the algebra \((C^\infty(\mathbb{R}^{2n})[[\hbar]], \cdot_{Mp})\), which is unique up to a constant in \(\mathbb{C}[[\hbar]] \).

The particular choice of normalization \(f \rightarrow f f \omega^n/h^n \) is called the canonical trace on the Moyal product. By the above theorem, this notion can be extended to an arbitrary formal deformation of \((\mathbb{R}^{2n}, \omega)\) via the isomorphism from statement (2), and this notion is well-defined by statement (3). Finally, using Darboux’s theorem, we can define the canonical trace on a formal deformation of an arbitrary symplectic manifold \((M^{2n}, \omega)\) by requiring that the pull-back of such a functional \(\text{tr} : C^\infty(M)[[\hbar]] \rightarrow h^{-n} \mathbb{C}[[\hbar]] \) with respect to a symplectic embedding of an open subset of \(\mathbb{R}^{2n} \) into \(M \) is a canonical trace on (an open subset of) \(\mathbb{R}^{2n} \).

Proposition 3.2 ([27]). For every formal deformation \((C^\infty(M)[[\hbar]], \cdot)\) of a symplectic manifold \((M, \omega)\) the canonical trace exists and is unique.
We denote the canonical trace by \(\text{Tr}_{\text{can}} \). Now we can formulate the Fedosov-Nest-Tsygan index theorem \([17, 27]\) for a compact symplectic manifold \(M \). It relates the two objects defined above:

\[
\text{Tr}_{\text{can}}(1) = \int_M e^\theta \hat{A}(M).
\]

(3.2)

This is an analog of the Grothendieck-Riemann-Roch formula, which have already used in the previous section. For a compact symplectic manifold \((M, \omega) \) with integral symplectic form, let \(L \) be a line bundle whose first Chern class is \(\omega \). If \(M \) has a compatible Kähler structure and \(L \) is endowed with an appropriate holomorphic structure, then, for large \(k \), the GRR theorem gives the following expression for the dimension of the space of sections of \(L^k \):

\[
\dim H^0(L^k) = \int_M e^{kc_1(L)} \text{Todd}(M).
\]

(3.3)

This expression is an integer valued polynomial which only depends on the symplectic structure. Note that the RHS, which in the projective algebraic case is also known as the Hilbert polynomial, can be defined for any symplectic manifold.

An alternative expression of the same type can be given using the \(\hat{A} \)-genus:

\[
\dim H^0(L^k) = \int_M e^{kc_1(L) + c_1(M)/2} \hat{A}(M).
\]

Define the shifted Hilbert polynomial as

\[
P_L(k) = \int_M e^{kc_1(L)} \hat{A}(M).
\]

(3.4)

Now define a deformation \((M, \cdot) \) of a symplectic manifold basic if \(\theta(M, \cdot) = \omega/\hbar \). Then combining the above formulas we obtain that given a basic deformation of a compact symplectic manifold \((M^{2n}, \omega) \) and a line bundle \(L \) on \(M \) with \(c_1(L) = \omega \), we have \([17, 27]\)

\[
\text{Tr}_{\text{can}}(1) = P_L(h^{-1}).
\]

(3.5)

3.2. **Algebraic manifolds and local deformations.** For the purposes of our paper we need to reformulate the theory we just outlined.

Let \(A_0 \) be a subalgebra of \(C^\infty(M) \) which separates points and is not in the kernel of any non-zero complex differential operator on \(M \). Let \(A_\hbar \) be an \(\hbar \)-adically complete associative algebra over \(\mathbb{C}[[\hbar]] \), such that \(A_\hbar/\hbar A_\hbar \cong A_0 \). Assume that there exists a section \(s : A_0 \rightarrow A_\hbar \) of the natural map \(A_\hbar \rightarrow A_0 \) which, when extended to \(A_0[[\hbar]] \), gives an isomorphism \(s_\hbar : A_0[[\hbar]] \cong A_\hbar \). Then the formula \(f \cdot s \cdot g = s^{-1}(s(f)s(g)) \) defines a product on \(A_0[[\hbar]] \). If this product is local (see the definition at the start of this section), then we say that \(s \) is a local section.

Definition 3.1. An algebra \(A_\hbar \) which has a local section is called a local deformation of \(A_0 \).
As it is clear from the construction above, the data \((A_\hbar, s)\) of an algebra with a local section such that \(A_0 = C^\infty(M)\) is equivalent to that of a formal deformation of the manifold \(M\).

Lemma 3.3. The action of the gauge group defined in (3.1) corresponds to the action \(s \to s_\gamma = s \circ \gamma^{-1}\).

The proof is clear. This means that the classification of formal deformations of symplectic manifolds up to gauge transformations is equivalent to the classification of local deformations of the algebra \(C^\infty(M)\). Then the following statement is immediate:

Proposition 3.4. The Poisson structure, the characteristic class and the canonical trace \(A_\hbar \to \mathbb{C}[[\hbar]]\) induced by a pair \((A_\hbar, s)\) is independent of \(s\).

The interest in this statement lies in the possibility of studying these invariants in examples of local deformations \(A_\hbar\), which do not have natural sections.

Such examples could arise in the following setting. Suppose that \((M, \omega)\) is a smooth real affine algebraic manifold with a symplectic Poisson structure on the space of algebraic functions. Denote by \(A_0\) the space of complex algebraic functions on \(M\). While this is somewhat arbitrary, we choose our deformation ring to be

\[
D_1(q) = \{ \text{Rational functions in } q, \text{ with no poles at } q = 1 \text{ and } 0 < |q| < 1 \}
\]

A non-commutative algebra \(A_q\) over \(D_1(q)\), which is given by finite number of generators and relations, such that \(A_q/(q-1)A_q \cong A_0\) is often called a \(q\)-deformation of \(A_0\). It is a local \(q\)-deformation if, in addition, the \(\hbar\)-adic completion \(A_\hbar = A_q \hat{\otimes}_{\mathbb{C}_1(q)} \mathbb{C}[[\hbar]]\), where \(q = e^{\hbar}\), is a local deformation of \(A_0\) in the sense defined above. Assuming that the Poisson structure derived from \(A_\hbar\) is the given symplectic one, we can ask the following questions:

1. What is the characteristic class of \(A_q\), which is defined as the characteristic class of \(A_\hbar\)?
2. Can the canonical trace be defined on \(A_q\)?

The first question is clear, although such computations are very difficult. The second question requires some comment. One could hope to start with a cyclic functional \(\text{Tr}_q : A_q \to D_1(q)\) and by Taylor expansion obtain a functional \(\text{Tr}_\hbar : A_\hbar \to \mathbb{C}[[\hbar]]\), and then after choosing a local section \(s\), one could arrive at a functional \(\text{Tr}_\hbar : A_0[[\hbar]] \to \mathbb{C}[[\hbar]]\). Next, one needs to show that such a functional extends as a cyclic functional to \(C^\infty(M)[[\hbar]]\) and then finally, one could see if \(\hbar^{-n}\text{Tr}_\hbar\) is the canonical trace or not. Of course, it could very well happen that \(A_q\) does not have any cyclic functionals at all.

An Example. The only treatable, but non-trivial example with which we are familiar is the quantum torus. The 2-dimensional torus can be written written as an affine variety with generators \(\{U^\pm, V^\pm\}\) and relations
\{U^+U^- = V^+V^- = 1\}. It has a canonical translation invariant symplectic form \(\omega\), which we normalize so that \(\int \omega = 1\). The non-commutative deformation has the same, but now non-commutative, generators and relations and an additional relation \(UV = qVU\). Clearly, the monomials \(\{U^mV^n \mid m, n \in \mathbb{Z}\}\) form a basis of this algebra and this gives the necessary section.

Proposition 3.5. 1. This deformation is local, and the derived Poisson structure is the one, corresponding to \(\omega\).

2. The functional \(\text{Tr}_q(U^mV^n) = \delta_m\delta_n\) is cyclic.

3. When passing to \(\mathbb{C}[[h]]\), \(q = e^h\), this functional is given by integration against \(\omega\) and it is \(h\) times the canonical trace.

4. The characteristic class of this deformation \(\omega/h\), thus the deformation is basic.

We leave the proof of the proposition as an exercise to the reader. The first two statements are easy, and the third one is doable. Note that statement (3) and the F-NT index theorem imply statement (4).

One may generalize this setup, by starting with a cyclic functional on \(A_q\) with values in \(\text{Mer}_{1}^{\text{asym}}(q)\), the meromorphic functions on the unit disc \(\{|q| < 1\}\), which have an asymptotic expansion in \(q - 1\) as \(q\) approaches 1 along the real axis. The function \(T_q(x; q)\) introduced in (1.13) is an example of such a function. Then one can pass to values in \(\mathbb{C}[[h]]\) by setting \(q = e^h\) and taking the asymptotic expansion \(\text{asym}: \text{Mer}_{1}^{\text{asym}}(q) \to \mathbb{C}[[h]]\). As it happens, we will need such a generalization.

In this paper, we construct \(q\)-deformations of the moduli spaces of flat connections \(M_G[\Sigma_P](\sigma)\), and study the questions raised above for these non-commutative algebras. We discuss our results in detail in \(\S 7\).

4. G-Colored Graphs

4.1. Functions on the moduli space.

In this section we introduce \(G\)-colored graphs which are a way to represent the set \(F(M^G)\) of algebraic functions on \(M^G\). They are based on the notion of graph connections of Fock and Rosly [18], which was introduced as a discretization of gauge theory on Riemann surfaces. Our version is substantially similar but technically more flexible than the original one. A similar construction can be found in [3], where ordinary circular holonomies are used and an almost identical notion appears in [28]. Still there are some technical differences and the notion of “equivalence” seems to be new. Our proofs will be brief since they are similar to the original ones.

We keep the notation of \(\S 2\).

A \(G\)-colored graph \(f\) on \(\Sigma_P = \Sigma \setminus P\) consists of

- an oriented, not necessarily connected graph \(\Gamma(f)\) immersed in \(\Sigma_P\).

We denote the set of edges of \(\Gamma(f)\) by \(E_{\Gamma(f)}\), the set of its vertices by \(V_{\Gamma(f)}\);
• a coloring of each edge $e \in E_{\Gamma(f)}$ by a representation $C_f(e)$ of the group G.
• a coloring of each vertex $v \in V_{\Gamma(f)}$ by an invariant
\[
\phi_f(v) \in \left(\otimes_{e \to v} C_f(e)^* \otimes_{e \leftarrow v} C_f(e) \right)^G
\]
where the tensor products are taken over the incoming and outgoing edges correspondingly.

Remark 4.1. Note that the definition of coloring of the vertices above is somewhat imprecise, since we did not specify the order in which the tensor products are taken. Naturally, we are taking advantage of the fact that the space of invariants of a tensor product of representations of G are naturally isomorphic to the space of invariants of the same representations tensored in a different order. In fact, using the orientation of the surface, we have a natural **cyclic orientation** of the edges adjacent to a vertex, but this still does not provide us with an ordering. This might seem like hair splitting here, but we will have to return to this question in the next section.

Given an immersed graph Γ in Σ_P with colored edges $e \mapsto C(e)$, and a connection ∇ on the trivial G-bundle over Σ_P, one can construct an element $\nabla_{\Gamma} \in \otimes_{e \in E_{\Gamma}} \text{Hom}(C(e), C(e))$ by taking the parallel transports of ∇ along the edges of Γ. Then given a G-colored graph f, we obtain a number $f(\nabla)$ by pairing ∇_{Γ} with $\otimes_{v \in V_{\Gamma(f)}} \phi_f(v)$.

Lemma 4.1.
1. The number $f(\nabla)$ does not change if ∇ is replaced by a gauge-equivalent connection.
2. Let f and g be G-colored graphs and define $f \cup g$ to be the G-colored graph with $\Gamma_{f \cup g} = \Gamma(f) \cup \Gamma(g)$ and with coloring inherited from f and g. Then $(f \cup g)(\nabla) = f(\nabla)g(\nabla)$.
3. If ∇ is flat then $f(\nabla)$ is invariant under homotopic changes of the immersion of $\Gamma(f)$.

The proofs are straightforward and will be omitted.

Denote by $F(G, \Sigma_P)$ the free vector space generated by all G-colored graphs modulo homotopy of the embedding of the graph. Then taking unions of the underlying graphs as in the Lemma endows this space with an algebra structure. According to the statement (1) of the Lemma, every element of this space defines a function on $\mathcal{M}^G[\Sigma_P]$. These functions are clearly algebraic and we have a homomorphism $F(G, \Sigma_P) \to F(\mathcal{M}^G[\Sigma_P])$ to the space of algebraic functions on $\mathcal{M}^G[\Sigma_P]$.

To describe the kernel of this map, fix an open disc $D \subset \Sigma_P$ with boundary ∂D a smooth embedded circle. Consider a G-colored graph f in generic position with respect to D. This means that every edge can intersect ∂D only transversally and only finitely many times. Then we can define a new,
contracted G-colored graph $f|D$, where the underlying immersed graph the
quotient graph $\Gamma/D\cap\Gamma$. This has a single vertex in D and the edges adjacent
to this vertex correspond to the points of intersection of the edges of Γ with
∂D. The colorings of the edges and vertices outside D are inherited from Γ,
while the coloring of the new vertex can be obtained by contracting each edge
e in D using the canonical diagonal element $\delta(C(e))$ in $C(e)^* \otimes C(e)$. We
will call two G-colored graphs, related by such a contraction or a sequence
of contractions, equivalent. Note that since we are free to move the graphs
homotopicly, the position of D does not play any role.

Below we list a few important special cases of equivalent G-colored graphs.

Example 4.1. 1. We can erase any edge which is colored by the trivial
representation.
2. We can place a virtual 2-valent vertex colored by the diagonal element
$\delta(V)$ on any edge colored by a representation V.
3. For two crossing edges, we can place a vertex at the intersection, col-
ored by the permutation $P_{VW}^* V \otimes W \rightarrow W \otimes V$.
4. A contractible loop colored by the representation V_λ is equivalent to
the number $\dim V_\lambda$.
5. Fix an embedded interval $I \subset \Sigma_P$ and consider an $f \in F(G, \Sigma_P)$
in generic position with respect to I. For simplicity, assume that the
m edges intersecting I are similarly oriented with respect to I; denote
their colorings by V_1, \ldots, V_m. Then f is equivalent to $f|I$ where $\Gamma(f|I)$
is obtained from $\Gamma(f)$ by introducing two new $m + 1$-valent vertices S
and E joined by an edge e, as shown in Figure 1. (The interval I is
represented by a thick line.) The element $f|I \in F(G, \Sigma_P)$ is a sum of
colored graphs which retain the colorings of those edges and vertices
which are common with f, and thus have the form $g(f, V, \phi(S), \phi(E))$.
Here $V = C(e), \phi(S) \in \text{Hom}(V_1 \otimes \ldots \otimes V_m, V)$ and $\phi(E) \in \text{Hom}(V, V_1 \otimes
\ldots \otimes V_m)$. These two spaces of invariants are naturally paired to each
other via the formula $\text{Tr}_V(\phi(S)\phi(E))$, thus we can define

$$f|I = \sum_{V \in \text{Irrep}(G)} \sum_i g(f, V, \psi^i, \psi_i), \quad (4.1)$$

where $\sum_i \psi^i \otimes \psi_i = \delta_{T}(\text{Hom}(V_1 \otimes \ldots \otimes V_m, V))$ is the diagonal element
induced by this pairing.

Remark 4.2. Note that the pairing $\text{Tr}(\phi(S)\phi(E))$ is somewhat redundant,
since by Schur’s Lemma we have

$$\phi(S)\phi(E) = \frac{\text{Tr}_V(\phi(S)\phi(E))}{\dim V} \text{id}_V. \quad (4.2)$$

Denote by $\text{Col}(\Gamma)$ the set of all possible colorings of the edges of a fixed
immersed graph Γ by irreducible representations, and by $\Phi(\Gamma, C)$ the linear
space of colorings of the vertices of a graph Γ with a fixed coloring $C \in$
Col(Γ) of its edges. According to the following proposition the kernel of the map discussed above is generated by our notion of equivalence.

Proposition 4.2.
1. Two equivalent G-colored graphs f and $f|D$ take the same values on any flat connection $∇$.
2. Let $Γ \subset Σ_P$ be an embedded graph, such that each face of $Γ$ is contractible and contains exactly one puncture. Then
 \[F(\mathfrak{M}^G[Σ_P]) = \bigoplus_{C \in \text{Col}(Γ)} \Phi(Γ, C). \]
3. The kernel of the map $F(G, Σ_P) \to F(\mathfrak{M}^G[Σ_P])$ is linearly generated by equivalence.

Definition 4.1. Define the graphs satisfying the condition in the 2nd statement exact. Such graphs always exist as long as there is at least one puncture. For an exact graph $Γ \in Σ_P$ define the dual graph $\tilde{Γ}$ to be a graph embedded into $Σ$ with vertices at the punctures (the set P), and faces containing exactly one vertex of $Γ$ each.

Proof:
(1). If we trivialize $∇$ over D, then the parallel transport of $∇$ along the edges will be all equal to the identity element of G. Then performing the partial contractions in the definition of $f(∇)$ by contracting along the edges in D only, we arrive at $f|D(∇)$.

(2). This was pointed out in [18]. The statement follows from the Peter-Weyl Theorem, since \mathfrak{M}^G is simply a product of groups divided by the diagonal adjoint action. Note that coloring each edge by the trivial representation and the vertices by the trivial invariants gives the unit element of the algebra.

(3). It follows from (2) that it is sufficient to prove that given an exact graph $Γ$ any element $f \in F(G, Σ_P)$ is equivalent to a sum of G-colored graphs with underlying graph $Γ$. Let $\tilde{Γ}$ be the dual graph as described in the definition above. Put the given G-colored graph f into general position with respect to $\tilde{Γ}$. Then by performing the \dagger operation on f with respect to each edge of $\tilde{Γ}$ we obtain a new G-colored graph $f_{\tilde{Γ}}$ (or a sum of such) which intersect each edge of $\tilde{Γ}$ exactly once and which is equivalent to f. Finally, using equivalence again, we can replace each of the vertices in each face of $\tilde{Γ}$ by a
For each puncture \(p \in P \) and representation \(V \) define an element \(c^p_\Gamma \in F(G, \Sigma_P) \) with \(\Gamma(c^p_\Gamma) \) a small counterclockwise oriented circle around \(p \) colored by \(V \). We will also use the notation \(c^p_\chi \) when \(V = V_\chi \). The graph underlying the product \(c^p_\Gamma \Delta c^p_\chi \), is the union of two small concentric circles around \(p \). The colored graph \((c^p_\Gamma, c^p_\chi) \) intersects the two circles transversally, has 4 vertices. Contracting the two pairs of vertices joined by two edges, it is easy to see that \(c^p_\Gamma \alpha \) is equivalent to \(c^p_\chi \). Thus the correspondence \(c^p_\chi \mapsto V \in R(G) \) extends to a homomorphism (in fact, isomorphism) of algebras.

4.2. The Poisson structure

Now we define a Poisson structure on the space of \(G \)-colored graphs \([18, 1, 23]\). Fix an element \(t \in (\text{Sym}^2(\mathfrak{g}))^G \). Then for two \(G \)-colored graphs \(f \) and \(g \) in general position, and a point \(m \in \Gamma(f) \cap \Gamma(g) \), we can define a new \(G \)-colored graph \(f \cup_m^t g \), which is obtained from \(f \cap g \) by placing a vertex at \(m \), colored by \(P_{12}t : C(e_f(m)) \otimes C(e_g(m)) \rightarrow C(e_g(m)) \otimes C(e_f(m)) \), where \(e_f(m) \) and \(e_g(m) \) are the two edges containing \(m \) and \(P_{12} \) is the permutation operator.

Now define

\[
\{f, g\} = \sum_{m \in \Gamma(f) \cap \Gamma(g)} \text{sign}(e_f(m), e_g(m)) f \cup_m^t g,
\]

where the sign is obtained by comparing the orientations of the ordered pair \((e_f(m), e_g(m))\) to the orientation of \(\Sigma \).

Proposition 4.3. 1. The operation \(\{f, g\} \) is well-defined on \(F(\mathcal{M}^G[\Sigma_P]) \), i.e. it is compatible with homotopy and equivalence.

2. The operation \(\{f, g\} \) is a Poisson bracket on \(F(\mathcal{M}^G[\Sigma_P]) \).

3. The elements \(c^p_\Gamma \), \(p \in P \) generate a subalgebra in the Poisson center of \(F(\mathcal{M}^G[\Sigma_P]) \) in the sense that \(\{c^p_\Gamma, f\} = 0 \) for all \(f \in F(\mathcal{M}^G[\Sigma_P]) \).

4. The spaces \(\mathcal{M}^G(\vec{\tau}) \subset \mathcal{M}^G[\Sigma_P] \) are symplectic leaves of this Poisson structure, and the induced symplectic form is exactly \(\omega_\tau \) (cf. [8]).

Proof: (1). To prove compatibility with homotopy, it is sufficient to show the property shown on Figure 2, where vertices colored by \(t \) are marked by circles. This easily follows from the identity

\[
t_{13} + t_{23} = (\Delta_0 \otimes \text{id})(t) \in U(\mathfrak{g})^\otimes 3,
\]

where \(\Delta_0 \) is the coproduct in the universal enveloping algebra \(U(\mathfrak{g}) \). The indices, as usual, mark the embedding of \(V^\otimes 2 \) into \(V^\otimes 3 \), e.g. \(t_{13} = P_{23}(t \otimes \text{id}) \). The compatibility with equivalence follows from this because using homotopy it can always be arranged that there are no intersection points in \(D \).

(2). This statement follows from simple combinatorics of the intersection points (cf. [4, 28]).
(3). Again, using homotopy we can arrange that an arbitrary graph does not intersect a small circle around p.

(4). This statement is one of the main results of [18]. \square

4.3. The Poisson trace. Proposition 4.2 (2) allows us to define an augmentation $H_\Gamma : F(\mathfrak{g}(\Sigma P)) \to \mathbb{C}$ by projecting onto the exact graph Γ colored by trivial representations and invariants. We also give a more constructive formula for $H_\Gamma(f)$ for a general $f \in F(G, \Sigma P)$ which will be useful for computations later on. First, we define a variant of the operation $\dagger I$, denoted by $\dagger_0 I$ and called cutting, which is similar to \dagger with the difference that V is allowed to be the trivial representation only. Thus (4.1) is modified by

$$f \dagger_0 I = \sum_i g(f, \mathbb{C}, \psi^i, \psi_i),$$

where $\sum_i \psi^i \otimes \psi_i = \delta_{Tr}(\text{Hom}(V_1 \otimes \ldots \otimes V_m, \mathbb{C})).$

Remark 4.3. We present a schematic picture of the cutting operation on Figure 3. Note that now we can erase the edge between S and E, since it is colored by the trivial representation. However, as a mnemonic for the diagonal element δ_{Tr} that is inserted, we join the two vertices by a dashed line (chord).
Now assume that \(\Gamma \) is exact, and suppose that the graph \(\Gamma(f) \) is in a generic position with respect to the dual graph \(\hat{\Gamma} \). By applying the cutting operation with respect to each edge of \(\hat{\Gamma} \) we obtain a new \(G \)-colored graph

\[
f \uparrow_0 \hat{\Gamma} = f \prod_{e \in E(\hat{\Gamma})} \uparrow_{0e}.
\]

The graph underlying \(f \uparrow_0 \hat{\Gamma} \) is a union of disjoint pieces, each located on some contractible face. Thus \(f \uparrow_0 \hat{\Gamma} \) is equivalent to a number.

Proposition 4.4.

1. The operation \(f \uparrow_0 \hat{\Gamma} \) is well defined on \(\mathfrak{M}^G[\Sigma_P] \), i.e. it is compatible with homotopy and equivalence.
2. The \(G \)-colored graph \(f \uparrow_0 \hat{\Gamma} \) is equivalent to the number \(H_{\Gamma}(f) \).
3. \(H_{\Gamma}(f) \) does not depend on the choice of the exact graph \(\Gamma \).
4. \(H_{\Gamma}(f) \) is given by a smooth top form on the smooth part of \(\mathfrak{M}^G[\Sigma_P] \).
5. For any \(f, g \), \(H(\{f, g\}) = 0 \).

Proof. (1). Clearly compatibility with equivalence holds with respect to any disc \(D \) which lies entirely in one of the faces of \(\hat{\Gamma} \). Using this we may assume that each face contains only one vertex. Then the only relevant homotopy relation is moving one of these vertices across one of the cutting edges. We leave proving this case as an exercise to the reader.

(2). Because of part (1) we may assume that \(\Gamma(f) = \Gamma \), in which case the statement is obvious.

(3). It is easy to see that any two exact graphs are related by the operation of contracting single edge in some exact graph \(\Gamma \). This corresponds to removing an edge in \(\hat{\Gamma} \), and the statement now follows from compatibility with equivalence. Hence from now on we can omit the index \(\Gamma \) in \(H_{\Gamma} \).

(4). Note that there is another simple way to define \(H_{\Gamma} \). From our earlier discussion it is clear that the space \(\mathfrak{M}^G \) is a quotient of a product of copies of the group \(G \), corresponding to the edges of \(\Gamma \) by the action of a product of copies of the group \(G \) corresponding to the vertices of \(\Gamma \). Since the only matrix coefficient on a compact Lie group whose integral does not vanish is that of the trivial representation, we see that the measure induced on \(\mathfrak{M}^G \) by the operation \(H_{\Gamma} \) is simply the push-forward of the Haar measure on the product of the groups. This push-forward is clearly smooth whenever the action is locally trivial.

(5). The proof of this statement is analogous to that of Proposition 5.6 (cf. Remark 5.2). It follows from the fact that a self-intersecting edge colored by \(V_\lambda \), with the tensor \(P_{12} \circ t \) inserted at the intersection point is equivalent to an edge without self-intersection, colored the same way and multiplied by \(-2C(\lambda)\), where \(C(\lambda) \) is the value of the Casimir operator, normalized using \(t \) on \(V_\lambda \). This, in turn, follows from the equality \(t = \Delta C - 1 \otimes C - C \otimes 1 \).

There is a somewhat exotic proof of this statement in [28].

Consider now the following general situation. Assume that \(\pi : M \to N \) is a fibration between two compact, smooth manifolds, and assume that the
manifolds are endowed with smooth volume forms μ_M and μ_N such that the volume of both manifolds is 1. Then one can define the push-forward operation on continuous functions $\pi_* : C^0(M) \to C^0(N)$ by integrating with respect to the natural measure $\mu_M / \pi^* \mu_N$ along the fibers. The proof of the following formulas will be omitted:

Lemma 4.5. Let $\{c_i, c^i\}_{i=0}^\infty$ be dual bases of functions on N, i.e. $\int_N c^i c_j \mu_N = \delta_{ij}$ and the functions $\{c_i\}$ are complete in $L^2(N, \mu_N)$. Then

1. $\pi_*(f) = \sum_i \left(\int_M f \pi^*(c^i) \mu_M \right) c_i$

2. The permanence equation

$$\pi_*(f \pi^*(g)) = \pi_*(f) g$$

holds for any $f \in C^0(M)$ and $g \in C^0(N)$.

For notational simplicity we will concentrate on the $|P| = 1$ case from here on. Now set $N = \text{Conj}_{\text{reg}}(G)$ with measure induced by the Haar measure on G, $\pi = \text{Hol}_p$ and $M \subset \mathcal{M}^{G}[\Sigma_P]$ the smooth part of $\text{Hol}^{-1}_p(N)$ with the measure defined by H above. While the technical conditions of the Lemma do not hold, the conclusions do (cf. [8, Theorem 4.2]), thus we can conclude

Proposition 4.6. Define a functional Tr on $F(\mathcal{M}^{G}[\Sigma_P])$ by the series

$$\text{Tr}(f) = \sum_{\lambda \in \Omega^+} H(f c^\lambda) \bar{\chi}_\lambda.$$

1. Then the series converges pointwise at every regular orbit and for every G-colored graph f, takes values in continuous functions on $\text{Conj}_{\text{reg}}(G)$.
2. The \mathbb{C}-valued functional $\text{Tr}(f)^\sigma$ obtained by evaluation at a non-special conjugacy class σ can be obtained by integration along $\mathcal{M}^{G}(\sigma)$ with respect to a smooth measure μ_σ.
3. We have

$$\text{Tr}(fc_\lambda) = \text{Tr}(f) \chi_\lambda.$$

Note that for a non-special t, we have a symplectic form ω_t on $F(\mathcal{M}^{G}[\Sigma_P])$ which also produces a smooth volume form. The following equality is due to Witten [41, 25, 8]

$$c(g, G) \delta(t) \mu_t = \frac{\omega(t)^{\dim \mathcal{M}^{G}(\sigma)}}{\dim \mathcal{M}^{G}(\sigma)!}$$

where $c(g, G)$ is defined by (1.3).

To demonstrate the power of the “cutting calculus” described above, we finish this section with the computation of $\text{Tr}(1)$ for an arbitrary number of
punctures. As
\[\text{Tr}(f) = \sum_{\lambda} H \left(f \prod_{p \in P} c^p_{\lambda(p)} \right) \prod_{p \in P} \tilde{X}_{\lambda(p)} \]
computing Tr(1) involves computing \(H(\prod_{p \in P} c^p_{\lambda(p)}) \). Choose an exact graph \(\Gamma \) and cut the graph under consideration by the edges of \(\tilde{\Gamma} \). Then every edge \(e \) of \(\tilde{\Gamma} \) will cut through two edges with opposite orientations. In order for them to give a non-zero contribution, they have to have the same coloring. Thus \(H(\prod_{p \in P} c^p_{\lambda(p)}) = 0 \) unless \(\lambda(p) = \lambda(p') = \lambda \) for \(p, p' \in P \). Then according to (4.2) the contribution at each cutting edge is a factor of \((\dim V_\lambda)^{-1} \), while the remaining graph consists of a union of loops colored by \(\lambda \), one on each face of \(\tilde{\Gamma} \). These faces correspond to the vertices of \(\Gamma \) and each contributes a factor of \(\dim V_\lambda \) (cf. Example 4.1 (2)). Thus we obtain
\[H \left(\prod_{p \in P} c^p_{\lambda} \right) = (\dim V_\lambda)^{|V_{\Gamma}| - |E_{\Gamma}|} = (\dim V_\lambda)^{2 - 2g - |P|}. \]
Here we used that the Euler characteristic of \(\Sigma \) is \(2 - 2g \) and that the faces of \(\Sigma \) are in one-to-one correspondence with the punctures. Thus we have
\[(4.7) \quad \text{Tr}^{\tilde{\sigma}}(1) = \sum_{\lambda} \prod_{p \in P} \chi_{\lambda}(\tilde{\sigma}(p)) \frac{1}{(\dim V_\lambda)^{2 - 2g - |P|}}. \]

5. Ribbon graphs and the moduli algebra

In this section we construct a non-commutative \(q \)-deformation of the algebra \(F[G^{\Sigma_P}] \), based on the representation theory of quantum groups. This algebra is similar or equivalent to the “moduli algebra” constructed in [5, 36] (cf. also [3, 8]). Our construction is much more geometric and transparent, however, and the calculations are much simpler. We clarify the relation of this algebra to the ribbon categories of Reshetikhin and Turaev [29], which simplifies the construction a great deal.

Note that since we will need to pass to special values of \(q \), instead of the standard quantum group \(U_q(g) \), we will work over a smaller, “non-restricted” algebra defined over the ring \(D_1(q) \), which we introduced in [8] (cf. §8 for some details). We will use the generic symbol \(U \) for this algebra.

We start with a technical prelude. In defining the quantum analog of the \(G \)-colored graphs, we need a somewhat more geometric version of the coloring of the vertices than that in [29]. The notion of cyclic invariant that we introduce allows us to define an algebra of the “correct” size.

5.1. The Reshetikhin-Turaev map. Recall the construction of ribbon categories of Reshetikhin and Turaev [29].

Define a band as a rectangle embedded in oriented 3-space which has its sides marked as follows: the starting edge, the ending edge, the left edge
and the right edge. Alternatively, one can think of an arrow drawn on one side (the “marked side”) of the rectangle parallel to one pair of edges. In particular, the band and its boundary segments are oriented. By attaching an edge e of a band to an oriented segment I, we mean that restricting the embedding of the band to e is an orientation-reversing embedding of e into I.

Let \mathfrak{U} be an appropriate non-restricted Ribbon Hopf algebra algebra \mathfrak{U} (cf. §S. and remark above). Fix L_s and L_e, two parallel oriented lines in \mathbb{R}^3. A ribbon configuration is a union of bands of two types, ribbons and coupons, which projects into the strip between the two lines and such that the lines, ribbons and coupons are all disjoint except that the starting and ending edges of each ribbon are attached to either a line or to the starting or ending edge of a coupon. If we associate an irreducible representation of \mathfrak{U} to each ribbon of a particular ribbon configuration C, then the whole configuration, as well as each coupon c acquires a type: $(S(c), E(c))$ which is simply the list of the colorings of the ribbons at the starting and the ending edges of the coupon, with the direction of the arrows recorded as follows: we record a $+$ if the arrow points towards the coupon and a $-$ if it points away from the coupon. Thus $(S(c), E(c))$ has the form $([V_1, e_1], \ldots, [V_k, e_k], [W_1, \rho_1], \ldots, [W_l, \rho_l])$, where $e_i = \pm 1$, $\rho_i = \pm 1$ and $V_i, W_j \in \text{Rep}(\mathfrak{U})$.

A \mathfrak{U}-ribbon configuration is one where each ribbon is colored by a representation of \mathfrak{U}, and each coupon by a \mathfrak{U}-invariant map

$$V_s(c) = V_1^{e_1} \otimes \ldots \otimes V_k^{e_k} \to W_1^{\rho_1} \otimes \ldots \otimes W_l^{\rho_l} = V_e(c)$$

with the convention that if the coloring is V then on the starting end $V^+ = V$ and $V^- = V^*$ where the latter is the left representation of \mathfrak{U} defined on the dual space to V using the antipode; on the other end it is the other way around: $W^- = W$ and $W^+ = W^*$.

A fundamental result of [29] is that each \mathfrak{U}-ribbon configuration defines a morphism of \mathfrak{U}-representations $V_s(C) \to V_e(C)$, which depends on the ribbon configuration up to homotopy only. Denote by $I_{(S,E)}$ the linear space of intertwining maps (5.1), which we will call invariants of type (S, E). Then the result may be summarized by saying that a ribbon configuration with colored edges defines a homotopy invariant product

$$\text{RT} : \otimes_e I_{(S(c), E(c))} \to I_{(S(C), E(C))}.$$

We will call this product the Reshetikhin-Turaev map.

5.2. Cyclic invariants and colored ribbon graphs.

The improvement that we suggest is the following: define a cyclic type $(T)^{\text{cyl}}$ to be a cyclicly ordered set of representations of \mathfrak{U}, each marked with a $+$ or a $-$. Clearly, each ordinary type induces a cyclic type by assigning a cyclic order to the V’s and W’s the obvious way, listing the representations counterclockwise, ignoring which ones are attached to the lower edge and which ones to the
upper edge. If \((T)^{\text{cycl}}\) has \(m\) representations, there will be \(m(m+1)\) different types corresponding to \((T)^{\text{cycl}}\). Indeed, one can reduce a cyclic ordering on \(m\) elements to an ordinary ordering in \(m\) different ways, and then one can divide an ordered set of \(m\) elements into two ordered sequences in \(m+1\) ways. Denote the cyclic type derived from an ordinary type \((S,E)\) by \((S,E)^{\text{cycl}}\).

There are operations of bending an edge (or “attaching a candy cane”) which map spaces of invariants of the same cyclic type into each other. Given a type
\[
(S,E) = \left[\left(\begin{array}{l} (V_1, \varepsilon_1), \ldots, (V_k, \varepsilon_k) \end{array}\right), \left[\begin{array}{l} (W_1, \rho_1), \ldots, (W_l, \rho_l) \end{array}\right] \right],
\]
and an intertwiner \(\phi \in I_{(S,E)}\), let
\[
A_{er}\phi = (\text{id} \otimes a(W_l, \rho_l))(\phi \otimes \text{id}_{W_l^{-\rho_l}}),
\]
where \(a(W, \rho) : W^\rho \otimes W^{-\rho} \to \mathbb{C}\) is the standard coinvariant (cf. Appendix). Then \(A_{er}\phi\) is an invariant of type
\[
\left[\left(\begin{array}{l} (V_1, \varepsilon_1), \ldots, (V_k, \varepsilon_k), (W_l, \rho_l) \end{array}\right), \left[\begin{array}{l} (W_1, \rho_1), \ldots, (W_{l-1}, \rho_{l-1}) \end{array}\right] \right]
\]
A pictorial representation of this operation is shown on Figure 4. We can define three other operations \(A_{el}, A_{sr}\) and \(A_{sl}\) which bend the edges \(W_1, V_k\) and \(V_1\) respectively. Clearly, have \(A_{er}A_{sr} = \text{id}\) and \(A_{el}A_{sl} = \text{id}\). Iterating these maps we get various maps between these spaces of invariants.

Lemma 5.1. The spaces of invariants of the same fixed cyclic type
\[
\{ I_{(S,E)} | (S,E)^{\text{cycl}} = (T)^{\text{cycl}} \}
\]
are canonically isomorphic under these maps.

Proof: This is implicit in the original paper [29]. One needs to check a generalization of the relation (Rel13) of [24]. An instance of such a relation is
\[
\phi(\mu v_1, \mu v_2, \ldots, \mu v_l) = \phi(v_1, v_2, \ldots, v_l)
\]
for an invariant \(\phi \in \text{Hom}(V_1 \otimes V_2 \otimes \ldots \otimes V_l, \mathbb{C})\). This follows from the fact that \(\mu\) is a group-like element, and \(\epsilon(\mu) = 1.\)

We will call invariants related by the above maps cyclically equivalent. The Lemma allows us to define the space \(I_{(T)^{\text{cycl}}}\) of cyclic \(\mathfrak{U}\)-invariants of type \((T)^{\text{cycl}}\) as equivalence classes of intertwiners of the same cyclic type related by the above maps.
Example 5.1. The simplest example of a cyclic invariant is the trivial invariant of type \(((V,+)), [(V,-)]^{\text{cycl}} \). This can be interpreted as the 6 different invariant maps, which correspond to the diagram (Fig.1) of [29], or equivalently to the 6 maps of page 167 of [11] denoted \(\iota^+_V, \iota^-_V, \alpha^+_V, \alpha^-_V, \beta^+_V, \beta^-_V \).

Remark 5.1. Since \(\mu \) equals to the identity when \(q = 1 \), cyclic equivalence of quantum invariants corresponds to ordinary cyclic permutations and contractions of the factors in the classical case.

Now we can define a non-commutative generalization of \(G \)-colored graphs.

Definition 5.1. A \(\Upsilon \)-colored ribbon graph \(f \) consists of

- a ribbon graph \(R(f) \), which is a union of oriented discs (vertices) and ribbons embedded into \(\mathbb{R}^3 \). The discs and ribbons are disjoint except that each end of each ribbon is attached to the boundary of a disc, as always, respecting the orientations. We denote the set of ribbons of \(R(f) \) by \(E_{R(f)} \) and the set of vertices by \(V_{R(f)} \).
- A coloring \(C_f : E_R(f) \to \text{Rep}(\Upsilon) \) of the ribbons by representations of \(\Upsilon \).
- Clearly such a coloring assigns a cyclic type \((T(v))^{\text{cycl}} \) to each vertex \(v \in V_R(f) \).
- A coloring of each vertex \(v \in V_R(f) \) by a cyclic invariant \(\phi(v) \) of type \((T(v))^{\text{cycl}} \).

This definition does not allow for free edges; we will stipulate their existence whenever necessary. The key point is that the Reshetikhin-Turaev map given in (5.2) is compatible with cyclic equivalence.

Lemma 5.2. Let \(f \) be a \(\Upsilon \)-colored ribbon graph with \(m \) free edges embedded in the interior of a cylindrical surface \(CS \) (e.g. in \(\{x^2 + y^2 < 1\} \) in \(\mathbb{R}^3 \) in such a way that the free edges are attached to a fixed circle (e.g. \(\{x^2 + y^2 = 1, z = 0\} \)) on \(CS \). A choice of type, compatible with the cyclic type, induced by the colorings and the cyclic ordering of the \(m \) free edges, as well as a choice of a type for each vertex, give rise to a \(\Upsilon \)-ribbon configuration. The \(RT \) map (5.2), induced by this configuration applied to the colorings of the vertices give rise to an invariant map between the tensor products of the colorings of the free edges. Then all the invariant maps thus obtained are cyclicly equivalent.

The proof of this lemma is left to the reader as an exercise. It will be important for us that this operation of replacing a ribbon graph by a single vertex is defined over \(D_1(q) \).

We can pair the free edges against a vertex and obtain the following:

Corollary 5.3. The algorithm described in the Lemma associates a well-defined number to every \(\Upsilon \)-colored ribbon graph (without free edges).

This is our version of the Reshetikhin-Turaev invariant. A special case is
Corollary 5.4. The pairing between $\text{Hom}(\mathbb{C}, V_1 \otimes \cdots \otimes V_l)$ and $\text{Hom}(V_1 \otimes \cdots \otimes V_l, \mathbb{C})$ given by composition is cyclically invariant.

One could also say that there is a canonical pairing $\langle \cdot, \cdot \rangle : I(T)_{\text{cycl}} \otimes I(T^*)_{\text{cycl}} \to \mathbb{C}$ between cyclic invariants if type $(T)_{\text{cycl}}$ and those of the dual type $(T^*)_{\text{cycl}}$, which changes the cyclic orientation to the opposite and changes each representation to its dual.

5.3. Quantization of moduli spaces. The notions of cyclic invariants and colored ribbon graphs permit us to q-deform the constructions of the previous section. The constructions below are completely parallel to the classical case of the previous section.

Let Σ be a compact Riemann surface embedded into 3-space, oriented outward, with a set of marked points P, as before. Denote by Σ^ε a small open neighborhood of Σ and by π a projection $\pi : \Sigma^\varepsilon \to \Sigma$ and let $\Sigma_P = \pi^{-1}(\Sigma \setminus P)$. Then define $F^q(\mathcal{U}, \Sigma_P)$ to be the free $D_1(q)$-module, generated by the homotopy classes of embeddings of colored ribbon graphs into $\Sigma_P \subset \mathbb{R}^3$. We can define a product of two colored ribbon graphs $f, g \in F^q(\mathcal{U}, \Sigma_P)$ as the disjoint union of the two ribbon graphs f' and g', where f' is in the interior of Σ and is homotopic to f, while g' is in the exterior of Σ and is homotopic to g. Note that this is an associative but, generally, non-commutative product. An analogous operation was used earlier by Turaev in [36] (also cf. [5]).

Now we define the notion of equivalence. We fix a disc $D \subset \Sigma_P$ and a \mathcal{U}-colored ribbon graph f in Σ_P^ε such that $R(f) \cap \pi^{-1}(\partial D) \subset \Sigma$. This means that the ribbons intersecting $\pi^{-1}(\partial D)$ are effectively attached to ∂D. This is a version of the notion of generic position with respect to D. Then using Lemma 5.2 we can construct a new graph $f|D \in F^q(\mathcal{U}, \Sigma_P)$ by replacing the part $\pi^{-1}D \cap R(f)$ by a single vertex which can be arranged to lie entirely in Σ. The colorings of the edges and vertices outside D are inherited from f, while the coloring of the new vertex is obtained Lemma 5.2. Now define the algebra $F^q(\mathcal{M}_G[\Sigma_P])$ to be the quotient of $F^q(\mathcal{U}, \Sigma_P)$ by the $D_1(q)$ linear subspace generated by this notion of equivalence, which subspace is clearly also an ideal. Thus $F^q(\mathcal{M}_G[\Sigma_P])$ is endowed with a natural associative algebra structure over $D_1(q)$.

Again we have the basic examples of equivalence:

Example 5.2. 1. We can erase an edge which is colored by the trivial representation.

2. We can divide every ribbon into two pieces joined by a vertex colored by the trivial cyclic invariant (cf. Example 5.1).

3. A small ring-like ribbon contractible in Σ_P^ε and colored by V_λ is equivalent to the q-number $q \dim V_\lambda$.

4. We can replace two overcrossing (resp. undercrossing) ribbons colored by V and W, by 4 ribbons attached to a coupon colored by $P_{VW}R_{VW}^{(+)}$ (resp. $P_{VW}R_{VW}^{(-)}$), where as usual $R^{(+)}$ denotes the R matrix and $R^{(-)}$ denotes R^{-1}_{21}. (Figure 5).

5. The operation $\dagger I$, as well as the operation of cutting $\dagger 0 I$ are defined as in the previous section. The pairing $\text{Tr}_V(\phi(S)\phi(E))$ needs to be replaced by $\text{Tr}_V(\mu\phi(S)\phi(E))$ as it is natural in the theory of quantum groups (cf. §3). Just as in the definition of equivalence, the condition of generic position is $\pi^{-1}(I) \cap R(f) \in I$.

6. Assume that a ribbon e of a U-colored ribbon graph f is colored by a representation V_λ. Then we have $\tilde{f} = v(\lambda)f$, where \tilde{f} is f with the ribbon e twisted according to the orientation of 3-space by 360 degrees, and $v(\lambda)$ is the value of the (central) ribbon element v in the representation V_λ (cf. [29], §3). Twisting in the opposite direction induces multiplication by $v(\lambda)^{-1}$.

For an embedded graph $\Gamma \subset \Sigma_P$, there is a well-defined ribbon graph $R_\Gamma \subset \Sigma_P$ obtained by thickening Γ in Σ. In particular, one can associate canonical elements c_{λ}^{p} to the Poisson central elements c_{λ}^{p} defined in the previous section.

According to Remark 5.1, there is a well-defined classical limit of a cyclic invariant to a classical invariant, extending $\text{ev} : D_1(q) \to \mathbb{C}$.

Proposition 5.5. 1. Define a map over \mathbb{C}

$$\text{red}_F : F^q(M^G[\Sigma_P]) \to F(M^G[\Sigma_P]),$$

by shrinking the width of the ribbons to 0, projecting them onto Σ_P and applying the abovementioned reduction of the cyclic invariants to the classical ones. This map is an algebra homomorphism over \mathbb{C}.

2. The space of all colorings of an exact graph Γ span $F^q(M^G[\Sigma_P])$.

3. The elements $\{c_{\lambda}^{p} | p \in P, \lambda \in \Omega^+\}$ are in the center of $F^q(M^G[\Sigma_P])$.

They span an algebra isomorphic to $R(G)^{\oplus |P|} \otimes D_1(q)$.

Proof: (1). This amounts to checking that the relations in the quantum case reduce to the classical ones when $q = 1$. This is straightforward.

(2.) The proof is similar to that of Proposition 4.2 (2). By iterating the $\dagger e$
operation with respect to the edges to the dual graph \(\tilde{\Gamma} \), one can write any element of \(F^q(\mathcal{M}_G[\Sigma_P]) \) as a sum of elements with underlying graph \(\Gamma \).

(3.) The statement is clear since one can move a small circle around the line \(\pi^{-1}(p) \) for some puncture \(p \), the graph underlying \(c^p_V \), past any other ribbon graph using a homotopy. Moreover, using the same argument as in the classical case, in \(F^q(\mathcal{M}_G[\Sigma_P]) \) we have \(c^p_V \otimes W = c^p_V \cdot c^p_W = c^p_W \cdot c^p_V \).

The definition of the analog of the operation \(H_\Gamma \) is a bit more subtle, because out of the 3 definitions we gave in the commutative case (projection, cutting, integration) only the cutting operation is clearly well-defined.

Proposition 5.6.

1. The functional \(H_\Gamma \) defined by the cutting operation, does not depend on \(\Gamma \). Thus we have a well-defined functional \(H : F^q(\mathcal{M}_G[\Sigma_P]) \to D_1(q) \). Also, the functionals \(H \) in the classical and quantum cases are compatible with the reduction map \(\text{red}_F \), i.e. we have \(H(\text{red}_F(f)) = \text{ev}(H(f)) \).

2. The Poisson structure induced on \(F(\mathcal{M}_G) \) by the evaluation map \(\text{red}_F \) and the relation \(q = e^{\pi i \hbar} \) coincides with the one defined in §4.2.

3. For \(f, g \in F^q(\mathcal{M}_G[\Sigma_P]) \), we have \(H(fg) = H(gf) \).

Proof: (1). The proof is the same as in the classical case. (2). This can be derived from the results [13]. We will the details here. (3). It is sufficient to prove the statement for the case when \(R(f) \) is the thickening of an exact graph \(\Gamma \) and \(R(g) \) is the same graph, but with edges oriented in the opposite way. Choose an ordering of the edges at each vertex of \(\Gamma \) compatible with the cyclic order. Every edge of the dual graph \(\tilde{\Gamma} \) is crossed by two edges of \(fg \) and \(gf \) which have the same coloring but opposite orientation. To perform the cutting operation, we move these two edges side by side, so that we achieve the condition

\[
\pi^{-1}(\tilde{\Gamma}) \cap R(\{fg\}) = \tilde{\Gamma} \cap R(\{fg\}),
\]

and we do the same for \(gf \). Note that this involves making a non-canonical choice, but we make the same choice in both cases. After performing the cutting with respect to the edges of \(\tilde{\Gamma} \) we obtain that

\[
H(\{fg\}) = \prod_{e \in E_{\Gamma}} (qd\dim C(e))^{-1} \prod_{v \in V_{\Gamma}} \langle \phi_f(v), \phi_g(v) \rangle_1,
\]

where \(\langle \cdot, \cdot \rangle_1 \) is a certain pairing between the corresponding invariants which depends on the particular choice that we made at each edge of \(\tilde{\Gamma} \). The formula for \(H(\{gf\}) \) is the same, but with a pairing \(\langle \cdot, \cdot \rangle_2 \) replacing \(\langle \cdot, \cdot \rangle_1 \). The difference between the two pairings is that in the first case, the ribbon graph \(R(g) \) is above \(R(f) \), and in the second case it is below. The two cases are related by the homotopic move of rotating by 360 degrees the piece of \(R(g) \) remaining on a particular face after the cutting, so that it ends up under the corresponding piece of \(R(f) \). Thus the difference between \(H(\{fg\}) \) and \(H(\{gf\}) \) will be a twist of \(\pm 360 \) degrees at every edge of \(\tilde{\Gamma} \), wherever the two pieces of graphs are joined. At an edge of \(\tilde{\Gamma} \), which we assume to be colored by \(V_\lambda \),
this twist contributes a factor of $v^+(\lambda)$ on one side and $v^-(\lambda)$ on the other, which cancel each other. This ends the proof. □

Remark 5.2. Parts (2) and (3) together imply Proposition 4.4 (5), but the proof of (3) given above has a simple semiclassical version giving a proof of the Poisson trace property of H. Instead of the 360 degree twists, in that case one encounters self-intersecting edges with the operator $P_{12} \circ t$ (cf. §4.2) inserted at the point of self-intersection.

6. The trace

Now we are ready to define the fixed holonomy quantized moduli spaces. Again to avoid further complicating our notation, we will assume that G is simply-laced.

Fix a set of regular conjugacy classes $\tilde{\sigma} : P \to \text{Conj}_{\text{reg}}(G)$ and define the quotient by the ideal

$$F^q(\mathfrak{M}^G(\tilde{\sigma})) = F^q(\mathfrak{M}^G[\Sigma_P]) / \langle \{ e_\lambda^p = \chi_\lambda(\tilde{\sigma}(p)) | p \in P, \lambda \in \Omega^+ \} \rangle$$

Define a functional Tr_q on $F^q(\mathfrak{M}^G[\Sigma_P])$ by the series

$$\text{Tr}_q^\tilde{\sigma}(f) = \sum_\tilde{\chi} H \left(f \prod_{p \in P} e^p_{\tilde{\chi}(p)} \right) \prod_{p \in P} \bar{\chi}_{\lambda(p)}(\tilde{\sigma}(p)).$$

(6.1)

Formally, the series takes values in functions in q and $|P|$ copies of (a completion of) $R(G)$.

Our main result is formulated in the Theorem below. As we mentioned earlier, we are only proving this statement for $G = SU(2)$ in this paper, although several partial results are proved in the general case.

We will use the term “convergence” in the punctured unit disc, to mean absolute and uniform convergence of holomorphic functions on each ringlike domain $\{ \epsilon \leq |q| \leq 1 - \epsilon \}$.

Theorem 6.1. Let $f \in F^q(\mathfrak{M}^G[\Sigma_P])$, $G = SU(2)$ and $\tilde{\sigma}$ as above.

1. Then the series (6.1) defining $\text{Tr}_q^\tilde{\sigma}(f)$ converges to a holomorphic function on the punctured unit disc.
2. For every $p \in P$, $\lambda \in \Omega^+$
 $$\text{Tr}_q(e^p_{\lambda}) = \text{Tr}_q(f) \chi_\lambda$$

 thus the evaluation $\text{Tr}_q^\tilde{\sigma}$ descends to the quotient $F^q(\mathfrak{M}^G(\tilde{\sigma}))$.
3. If $\tilde{\sigma}$ is not special (cf. §1.3), then $\text{Tr}_q^\tilde{\sigma}(f)$ has an asymptotic expansion at $q = 1$. More precisely, there is a function $\text{Tr}_h(f)$, analytic in a neighborhood of 0, and positive constants τ, C such that:
 $$|\text{Tr}_q(f) - \text{Tr}_h(f)| < C e^{-\frac{\tau}{|q|}},$$

 where $q = e^{\pi i h}$ and $h \in i\mathbb{R}^+$ is sufficiently small. Moreover, $\text{Tr}_h(f)$ is a rational function in q and h.
Remark 6.1. The notation Tr$_\hbar$(f) is somewhat inconsistent. We will sometimes use asymp(Tr$_q$(f)) instead.

The proofs of parts (1) and (3) are given after Proposition 6.6.

Proof of (2): Consider the diagonal element $\sum_\lambda \chi_\lambda \otimes \bar{\chi}_\lambda$ with respect to the standard quadratic form on $R(G)$: $(\alpha, \beta) = H_G(\alpha \beta)$, where H_G is the projection onto the trivial character. This form is manifestly invariant: $(\alpha \gamma, \beta) = (\alpha, \beta \gamma)$, thus the diagonal element has a similar property: $\sum_\lambda \chi_\lambda \chi_\mu \otimes \bar{\chi}_\lambda \chi_\mu = \sum_\lambda \chi_\lambda \otimes \chi_\mu \bar{\chi}_\lambda \chi_\mu$.

This implies the statement since the algebra spanned by $\{c_\lambda\}$ is simply another copy of the algebra $R(G)$.

6.1. The one puncture case. Again, first we consider the $|P| = 1$ case. Let p be a marked point on a surface Σ of genus g, and fix a conjugacy class σ of the group G.

Our goal is to study the infinite series $\operatorname{Tr}_q(f) = \sum_{\lambda \in P^+} H(f^p_\lambda) \chi_\lambda(\sigma)$.

We first express $H(f^p_\lambda)$ in terms of intertwiners of irreducible finite dimensional representations of \mathfrak{U}.

Let Γ be the usual exact graph with vertex o, $2g$ edges, $\{e_i\}_{i=1}^{2g}$, and a single face containing the puncture p. Then the ribbon graph $\Gamma(c^p_\lambda)$ is the thickening of a small circle around p, which is homotopic to the product $e_1 e_2 e_1^{-1} e_2^{-1} \ldots e_{2g-1} e_{2g-2} e_{2g-1} e_{2g}$ taken in $\pi_1(\Sigma_p)$.

By Proposition 5.5 (2), any colored ribbon graph $f \in F^q(G^{\Sigma})$ is equivalent to one with underlying ribbon graph $R\Gamma$, the thickening of the graph Γ, thus we can assume that, in fact, $R(f) = R\Gamma$. Then f is given by the colorings of the edges: $C_{\Gamma}(e_{2i-1}) = V_{\mu(i)}$, $C_{\Gamma}(e_{2i}) = V_{\nu(i)}$, $i = 1, \ldots, 2g$, and an invariant $\phi_\Gamma \in \operatorname{Hom}_\mathfrak{U}(V, D_1(q))$, where we have denoted by $V = \bigotimes_{i=0}^1 V_i$, with $V_i = V_{\nu(i)}^* \otimes V_{\mu(i)}^* \otimes V_{\nu(i)} \otimes V_{\mu(i)}$.

The dual graph $\tilde{\Gamma}$ is isomorphic to Γ, has its vertex at p and each of its $2g$ edges intersect exactly one edge of Γ at one point. Denote these points of intersection by $\{a_i\}_{i=1}^{2g}$, correspondingly. We can represent $H(f^p_\lambda)$ by performing the cutting operation with respect to the edges of $\tilde{\Gamma}$. The resulting colored ribbon graph will have the form of a cartwheel lying entirely above the face of $\tilde{\Gamma}$. If we represent the insertion of the diagonal element by a dotted line, or chord, between the two relevant vertices of $H(f^p_\lambda)$, then we obtain the “cartwheel with a snow chain” diagram with $4g + 1$ vertices $\{a, a_i^\pm\}$ with a_i^+ and a_i^- joined by a chord as shown schematically on the Figure 8 for the case $g = 2$.
Next, for $\lambda, \mu \in P^+$ and a finite dimensional representation V, introduce the notation

$$I(V; \lambda, \mu) = \text{Hom}(V_\lambda, V_\mu \otimes V)$$

and denote by $I(V; \lambda)$ the space $I(V; \lambda, \lambda)$. This notation is appropriate since I and I^* are naturally dual to each other. Indeed, let $\phi \in I(V; \lambda, \mu)$ and $\psi \in I^*(V; \lambda, \mu)$. If we use the shorthand $\psi \circ \phi$ for the composition $(\psi \otimes \text{id})\phi$ and $\langle \rangle_V$ for the natural invariant pairing on $V^* \otimes V$, then the expression $\langle \psi \circ \phi \rangle_V$ can be considered a constant, since it represents an intertwiner from the irreducible representation V_λ to itself. The resulting pairing is non-degenerate and gives rise to the diagonal element $\delta(V, \lambda, \mu) \in I^*(V; \lambda, \mu) \otimes I(V; \lambda, \mu)$ defined by $\delta(V, \lambda, \mu) = \sum \alpha_i \otimes \alpha_i$ where $\{\alpha_i\}$ and $\{\alpha^i\}$ are dual bases with respect to the pairing, i.e. $\langle \alpha_i \circ \alpha^i \rangle_V = \delta^i_j$.

If V, W are two finite dimensional U-modules, let

$$\xi_{V;W}(\lambda) = \sum_{j,k} \alpha^j \circ \beta^k \circ \alpha_j \circ \beta_k \in \text{Hom}(V_\lambda, V_\lambda \otimes V^* \otimes W^* \otimes V \otimes W),$$

where $\sum_j \alpha^j \otimes \alpha_j = \delta(V; \lambda)$ and $\sum_k \alpha^k \otimes \alpha_k = \delta(W; \lambda)$. As usual, we will write $\xi_{\lambda\mu}$ instead of $\xi_{V_\lambda V_\mu}$.

Lemma 6.2. We have

$$H(f^p) = \frac{1}{(q \dim V_\lambda)^{2g-1}} \eta_{\text{id}_{V_\lambda} \otimes \phi T}(\xi_{\nu(g)\mu(g)}(\lambda) \circ \cdots \circ \xi_{\nu(1)\mu(1)}(\lambda)),\tag{6.2}$$

where again \circ stands for the composition of intertwiners as above, each acting on V_λ only.

Proof: After cutting the cartwheel diagram between a_{-2g} and a_{1+} we obtain the expression on the RHS exactly, with each chord contributing a factor $(q \dim V_\lambda)^{-1}$. When we make this cut, we lose a factor of $q \dim V_\lambda$, hence the exponent $1 - 2g$ in the expression.\qed

As a particular case of this expression, we can take $f = 1$ and obtain:

$$H(c^p) = \frac{1}{(q \dim V_\lambda)^{2g-1}}\tag{6.3}$$
for the $|P| = 1$ case. This formula can be found in [3, 9]. In general, this leads to the quantum version of (4.7):

\begin{equation}
\text{Tr}_{\tilde{q}}(1) = \prod_{\lambda} \frac{\prod_{p \in P} \chi_\lambda(\tilde{\sigma}(p))}{(q\dim V_\lambda)^{2q-2+|P|}}.
\end{equation}

For $G = SU(2)$ this is exactly the series $\tilde{T}(\tilde{x}; q)$ introduced in §1.4, where \tilde{x} and $\tilde{\sigma}$ are related by the exponential map as usual.

Next, we would like to study the behavior of (6.2) in §8.3, while only providing the basic definitions below.

Our plan is to identify the spaces $I(V; \lambda, \mu)$ and the corresponding intertwiner spaces for the Verma modules $I(V; \lambda, \mu)$ with $V[\lambda - \mu]$ via the expectation value map $\langle \rangle$ (cf. Definition 8.1). This would identify, for example, all of the spaces $I(V; \lambda)$ with the same vector space $V[0]$, which would facilitate a universal treatment. To this end we need the expectation value map to be an isomorphism, and this turns out to be true most of the time. Indeed, if μ is sufficiently far from the walls of the Weyl chamber relative to ν, i.e. μ is generic with respect to ν (cf. Definition 8.2), then the expectation value map is an isomorphism between $I(V; \lambda, \mu)$ and $V[\lambda - \mu]$. In addition, in the Verma module case, the map $\langle \rangle$ has a right inverse $v \mapsto \phi^v_\lambda$.

For any sufficiently generic λ, this allows one to introduce the fusion matrices $J_{VW}(\lambda) \in \text{End}(V \otimes W)$, defined by (8.1), which represent the operation of composition of the intertwiners under the identification $\langle \rangle$. This object has a natural generalization $J_{UVW...}$ to tensor products with more than 2 factors. The operator $Q_W(\lambda) \in \text{End}(W)$ is defined by taking the trace of $J_{VW}(\lambda)$ (cf. (8.3)). Finally, the dynamical Weyl group elements $A_{V,w}(\lambda) : V[\nu] \to V[w(\nu)]$, defined for $\lambda \in \Omega^+$, $w \in W_G$, represent the standard inclusion of Verma modules $M_{w,\lambda} \hookrightarrow M_\lambda$ under the same identification.

All objects defined in the previous paragraph have a universal form: $J(\lambda) = J_{12}(\lambda), J_{1,2,...}, Q(\lambda), A_w(\lambda)$ in an appropriate completions of tensor products of Ω. The following lemma is a simple consequence of the notation we introduced.

Lemma 6.3. Let V be a finite dimensional representation, $\lambda, \mu \in \Omega^+$ and μ sufficiently generic. Then under the identification of $I(V; \lambda, \mu)$ with $V[\lambda - \mu]$ and $I^*(V; \lambda, \mu)$ with $V[\lambda - \mu]^*$, the diagonal element $\delta(V; \lambda, \mu)$ corresponds to the element

\[\sum_i v^i \otimes Q_V(\lambda)^{-1}v_i \in V[\lambda - \mu]^* \otimes V[\lambda - \mu], \]

where $\sum_i v^i \otimes v_i = \delta(V[\lambda - \mu])$.

The Lemma allows us to write down a formula for $H(f_c^p)$ in terms of fusion matrices only.

Proposition 6.4. For notational convenience, denote by $W(i), i = 1 \cdots 4g$ the spaces

$$V_{v(g)}^* [0], V_{\nu(g)}^* [0], V_{\mu(g)}^* [0], V_{\nu(g)}^* [0], \cdots , V_{v(1)}^* [0], V_{\mu(1)}^* [0], V_{\nu(1)}^* [0], V_{\mu(1)}^* [0]$$

in that order. If $\lambda \in \Omega^+$ is sufficiently generic, then we have:

$$H(f_c^p) = \frac{1}{(q\dim V_{\lambda})^{2g-1}} \phi_1 J_1, \cdots , J_g(\lambda) \prod_{i=1}^{g} Q_{W(4i-1)}(\lambda) Q_{W(4i)}(\lambda) \omega$$

where $\omega = \otimes_{i=1}^{g} \delta(W(4i-1)) \delta(W(4i)) \otimes \delta(W(4i-3), W(4i-1))$ is the diagonal element of $\otimes_{i=1}^{g} W(i)$.

The key point is that while the LHS of (6.5) is defined for dominant integral weights λ, the RHS is meaningful for arbitrary (generic) λ. This allows us to interpret the RHS in representation theoretical terms for arbitrary λ.

Proposition 6.5. Let $f \in F^q(\mathfrak{m}_G)$. Then there exists a function \hat{R}_f, which is rational of non-positive degree in the variables $q^{\alpha}, \alpha \in \Delta^+$ with coefficients in $D_1(q)$ and with poles along the “hyperplanes” $q^{\alpha} - q^m$, such that for $\lambda \in \Omega^+$, sufficiently generic, one has

$$H(f_c^p(V_{\lambda})) = \frac{1}{(q\dim V_{\lambda})^{2g-1}} \hat{R}_f \left(q^{(\alpha, \lambda)} - 1, \alpha \in \Delta^+ \right),$$

where \mapsto means substitution.

Proof: We only give a proof in the case of $G = SU(2)$. This statement could be derived from results of [14], but in this paper, since we are mostly working with $SU(2)$, we chose to give explicit formulas from which the statement is manifest. We are hoping that this will give a better idea of the complexity of the computations to the reader. No such formulas are known in the case of other groups.

For $G = SU(2)$, the operators J and Q are given in a concrete basis of each irreducible representation in (8.8) and (8.9). Comparing these with (6.5) and the formula (8.2) for J_1, \cdots , J_N, the statement of the proposition follows immediately. \square

Denote the function obtained by substitution in the RHS of (6.6) by $R_f(\lambda)$. Define the shifted Weyl group action on t^* by $w.\lambda = w(\lambda + \rho) - \rho$ for all $w \in W_G$. We will now show that the function $R_f(\lambda)$ is invariant under the shifted Weyl group action. We will use the properties of the operators $A_{w,V}$ defined above and in §8.3.

Proposition 6.6. The function $R_f(\lambda)$ invariant under the shifted action of the Weyl group: $R_f(\lambda) = R_f(w.\lambda)$ for every $w \in W_G$.

for can conclude from Proposition 6.5 and Proposition 6.6 that \(SU \frac{q}{x} < 0 \) has a certain form, which will be used to study Tr has simples poles of the type (1 – \(\sigma \)), in this case, there are only finitely many non-generic weights for every problem can be circumvented. Indeed, as it was pointed out in Remark 8.2 this is a consistency check with the Weyl invariance of \(R_H \), therefore we have to analyze the behavior of \(R_H \) restricted to \(V \). Taking Remark 6.2 on the zero weight subspace. This follows from the relation (8.6).

As a result it is sufficient to show the following relation:

\[
A_w^{(4)}(\lambda)A_w^{(3)}(\lambda)A_w^{(2)}(\lambda)A_w^{(1)}(\lambda)Q_2(\lambda)^{-1}Q_1(\lambda)^{-1}\omega = Q_2^{-1}(w.\lambda)Q_1^{-1}(w.\lambda)\omega.
\]

This is equivalent to showing that

\[
Q(w.\lambda)^{-1}|_{V[0]} = A_w(\lambda)Q^{-1}(\lambda)S(A_w(\lambda))|_{V[0]}
\]
on the zero weight subspace. This follows from the relation (8.6). \(\square \)

Remark 6.2. Note that in the \(SU(2) \) case \(J_{VW}(\lambda) \) restricted to \(V[0] \otimes W[0] \) has simples poles of the type \((1 - q^{2(\lambda - k)})^{-1}, k \in \mathbb{N} \). From (8.10), \(Q(\lambda)^{-1}(\lambda) \) restricted to \(V[0] \) has simple poles of the type: \((1 - q^{2(\lambda - 2 - k)})^{-1}, k \in \mathbb{N} \). This is a consistency check with the Weyl invariance of \(R_\sigma(\lambda) \) and (6.7).

We have shown that far from the walls of the dominant chamber \(H(\text{fe}_\lambda^\sigma) \) has a certain form, which will be used to study \(\text{Tr}_q(\mathbf{f}) \). The expression for \(\text{Tr}_q(\mathbf{f}) \), however, contains a sum over all dominant integral weights, and therefore we have to analyze the behavior of \(H(\text{fe}_\lambda^\sigma) \) on the hyperplanes of non-generic weights as well. One needs to refine the results of [14] in order to be able to treat these cases, and we will not do this here.

Nevertheless, we can continue the study in the \(G = SU(2) \) case where this problem can be circumvented. Indeed, as it was pointed out in Remark 8.2 (3), in this case, there are only finitely many non-generic weights for every representation \(V \).

Proof of parts (1) and (3) of Theorem 6.1 Denote by \(\nu \) the fundamental weight of \(SU(2) \). We now return to the notation of [14]: assume that a number \(0 < x < 1/2 \) represents the conjugacy class \(\sigma \), so that exp(\(x \)) = \(\dot{x} \in \sigma \). We can conclude from Proposition 6.3 and Proposition 6.4 that

\[
\delta(\dot{x})\text{Tr}_q(\mathbf{f}) = \frac{1}{2} \sum_{n \in \mathbb{Z}} e_{\nu}(x) (q^n - q^{-n})^{2g-1} R_\sigma(n\nu) \in D_1(q) \otimes R(T),
\]

where \(\sum \) means only summing finite values.

Now we can apply the arguments of [14] to the sum in the above formula. Indeed, since \(R_\sigma \) is of non-positive degree in \(q_\nu \), the exponential convergence
of the series is guaranteed. (There is a possible pole at 0). The residue calculations also go through: we apply the Residue Theorem to the form

\[(6.10) \quad w_f(u, x; h) = \frac{e^{\{x\}u} du \, \hat{R}_f (q \mapsto e^{i\pi h}, q_\nu \mapsto e^{h u/2})}{1 - e^u} \frac{1}{(e^{hu/2} - e^{-hu/2})^{2g-1}}.\]

Again, the poles break into 3 parts:

1. \(P_1 = \{m \mid m \in \mathbb{Z}, (q^m - q^{-m})^{1/2g} R_f(mv) \neq \infty\};\)
2. \(P_2 \subset \{m/h + m \mid n \in \mathbb{Z}, n \neq 0 |m| < M\} \) for some \(M;\)
3. \(P_3 = \{m \mid m \in \mathbb{Z}, (q^m - q^{-m})^{1/2g} R_f(mv) = \infty\}.\)

The set of poles \(P_1\) contributes the infinite sum, \(P_2\) – exponentially small corrections and \(P_3\) – the asymptotic expansion. The statements in part (3) then clearly follow. \(\square\)

\section{The case of several punctures.} We will use the notational conventions from [1] and [2]. Thus \(P \subset \Sigma\) is a set of punctures and we fix a set of conjugacy classes \(\tilde{\sigma}_i : P \rightarrow \text{Conj}_{\text{reg}}(G)\) and corresponding elements \(\tilde{x}_i : P \rightarrow t.\)

We set \(|P| = k, P = \{p_1, \ldots, p_k\}\) and use the notation \(\sigma_i = \tilde{\sigma}(p_i),\) etc. Our goal is the study of the series \((6.1)\):

\[(6.11) \quad \text{Tr}_q(f) = \sum_{\lambda_1, \ldots, \lambda_k \in \Omega^+} H \left(f \prod_{i=1}^k c_{\lambda_i}^{p_i} \right) \prod_{i=1}^r \tilde{\chi}_{\lambda_i}(\sigma_i).\]

The analysis is similar to the one-puncture case, thus we only highlight the differences here. The difficulty is that this sum formally has \(k\) parameters instead of 1. Our plan is to reduce the computations to the \(k = 1\) case. Again, we first state the results which can be obtained for any \(G\) and then analyze the case \(G = SU(2)\) in more detail.

We first express \(H(f \prod_{i=1}^k c_{\lambda_i}^{p_i})\) in terms of intertwiners of irreducible finite dimensional representations of \(U.\) Let \(\Gamma\) be the exact graph with vertex \(o\) and with \(2g + k - 1\) edges: \(\{e_i, i = 1, \ldots, 2g, m_j, j = 1, \ldots, k - 1\}\) The ribbon graph \(\Gamma(c_{\lambda_i}^{p_i})\) is homotopic to \(m_i\) in \(\pi_1(\Sigma_P),\) whereas the ribbon graph \(\Gamma(c_{\lambda_i}^{p_i})\) is homotopic to \(e_1 e_2 e_1^{-1} e_2^{-1} \cdots e_{2g-1} e_{2g} e_{2g-1}^{-1} e_{2g}^{-1} m_1 \cdots m_{k-1}.\) Again, we can compute \(H(f \prod_{i=1}^k c_{\lambda_i}^{p_i})\) using the cutting operation.

Let \(C_f(e_{2i-1}) = V_{\mu(i)}, C_f(e_{2i}) = V_{\nu(i)}, \) let \(C_f(m_j) = V_{\zeta(j)}, j = 1, \ldots, k - 1.\) The element \(f\) determines an invariant \(\phi_f \in \text{Hom}(V, D_1(q)),\) where \(V = \otimes_{j=k-1}^1 V_j \otimes \otimes_{i=2g} V_i,\) with \(V_j = V_{\nu(j)} \otimes V_{\nu(i)} \otimes V_{\mu(i)} \otimes V_{\mu(j)},\) and \(V_i = V_{\zeta(i)} \otimes V_{\zeta(i)}.\)

Let \(V\) be a finite dimensional \(U\)-module, let \(\eta_V(\lambda, \mu)\) be the elements of \(\text{Hom}(V_{\lambda}, V_{\lambda} \otimes V^* \otimes V)\) defined by \(\eta_V(\lambda, \mu) = \sum_j \alpha_j \circ \alpha_j \) where \(\sum_j \alpha_j \otimes \alpha_j = \delta(V; \lambda, \mu).\)
We can therefore rewrite the formula for \(H(\prod_{i=1}^{k} c_{\lambda_i}^{P_i}) \) as:

\[
(q\dim V_\lambda)^{1-2g} \prod_{i=1}^{k-1} (q\dim V_{\lambda_i})^{-1} H(\prod_{i=1}^{k} c_{\lambda_i}^{P_i}) = \\
(id_\lambda \otimes \phi_r) \eta_{\zeta(k-1)}(\lambda, \lambda_{k-1}) \circ \cdots \circ \eta_{\zeta(1)}(\lambda, \lambda_1) \circ \xi_{\nu(\mu_1)}(\lambda) \circ \cdots \circ \xi_{\nu(\mu_k)}(\lambda),
\]

where we have denoted \(\lambda = \lambda_k \).

The analog of Proposition 6.4 holds. Indeed, if \(\lambda \) is sufficiently far from the walls of the dominant chamber, we have:

\[
\eta_V(\lambda, \lambda - \mu) = \sum_i (\phi_{X_\mu}^{i'i} \otimes id) \phi_{\lambda}^{Q(\lambda)^{-1} v_i}
\]

where \(\sum_i v_i \otimes v_i = \delta(V[\mu]) \). Denote by \(W(i) \), \(i = 1, \cdots, 4g + 2k - 2 \), the appropriate weight spaces

\[
V_{\zeta(k-1)}^*[\mu_{k-1}], V_{\zeta(k-1)}[\mu_{k-1}], \cdots, V_{\zeta(1)}^*[\mu_1], V_{\zeta(1)}[\mu_1], V_{\nu(\mu_1)}[0], V_{\nu(\mu_1)}^*[0], V_{\nu(\mu_2)}[0], V_{\nu(\mu_2)}^*[0], \cdots, V_{\nu(\mu_k)}[0], V_{\nu(\mu_k)}^*[0], V_{\nu(\mu_k)}[0], V_{\nu(\mu_k)}^*[0].
\]

If \(\lambda \) is sufficiently far from the walls of the Weyl chamber of dominant weights, we have:

\[
(6.12) \quad (q\dim V_\lambda)^{2g-1} \prod_{i=1}^{k-1} q\dim V_{\lambda_i} H\left(\prod_{i=1}^{k-1} c_{\lambda_i}^{P_i} c_{\lambda_i}^{P_i}\right) = \\
\phi_r J_{1, \cdots, 4g+2k-2}(\lambda) \prod_{j=1}^{k-1} Q_{W(2j)}^{-1}(\lambda) \prod_{j=1}^{g} Q_{W(4i+2k-2)}^{-1}(\lambda) Q_{W(4i+2k-2)}^{-1}(\lambda) \omega_{g,k}
\]

where \(\omega_{g,k} \) is the diagonal element of \(\otimes_{i=1}^{4g+2k-2} W(i) \).

Again, there are appropriate rational functions \(\hat{R}_f \) and \(R_f \), depending on the additional parameters \(\mu_1, \cdots, \mu_{k-1} \), which recover (6.12) for sufficiently generic \(\lambda \). The proof of Proposition 6.6 carries over to the multi-puncture case:

Proposition 6.7. The functions \(R_f(\lambda; \mu_1, \cdots, \mu_{k-1}) \) satisfy

\[
(6.13) \quad R_f(\lambda; \mu_1, \cdots, \mu_{k-1}) = R_f(w; \lambda; w(\mu_1), \cdots, w(\mu_{k-1}))
\]

for any \(w \in W_G \).

Assume that \(G = SU(2) \) in the rest of the section; \(\nu \) is the fundamental weight as before. Denote the set of weights of \(V_{\zeta(i)} \) by \(Z_i \nu \), where \(Z_i \) is a finite subset of \(\mathbb{Z} \) invariant under \(n \to -n \). The key point is that if we fix \(\lambda = n \nu \), then only finitely many possible sets of \(\mu \)’s can make a non-zero contribution to (6.11). More concretely, we need to show that

\[
(6.14) \quad \sum_{n_j \in Z_j, \mu_j \geq N} \frac{R_f(n \nu; n_1 \nu, \cdots, n_{k-1} \nu)}{\prod_{j=1}^{k-1} (n+1-n_j)^{q_j-1} \prod_{j=1}^{k} (n+1-n_j)^{q_j-1}} \prod_{j=1}^{k} \frac{\sin(2\pi(n+1-n_j)x_j)}{\sin(2\pi x_j)}
\]
for N large enough admits an asymptotic expansion of the form stated in Theorem 6.1. This series can also be written:

$$
\sum_{\epsilon_j=\pm 1, n_j \in \mathbb{Z}, j \geq N} R_f((n-1)\nu; n_1\nu, \ldots, n_k-1\nu) \prod_{j=1}^{k} \frac{\epsilon_j e^{\epsilon_j(n-n_j)x_j}}{2i\sin(2\pi x_j)}.
$$

Using the symmetry property of $R_f((n-1)\nu; n_1\nu, \ldots, n_k-1\nu)$, the series has an asymptotic expansion, if all the series

$$
\sum_{n \in \mathbb{Z}} R_f((n-1)\nu; n_1\nu, \ldots, n_k-1\nu) \prod_{j=1}^{k} \frac{\epsilon_j e^{\epsilon_j(n-n_j)x_j}}{2i\sin(2\pi x_j)},
$$

have asymptotic expansions. These series are exactly of the type already studied in the one puncture case and they satisfy the asymptotic property when $\sum_j \epsilon_j x_j \notin \mathbb{Z}$. This last condition is exactly the condition of being “non-special”. □

7. Conclusion

The purpose of this section is to review what we have done so far, and formulate the conjecture which served as the original motivation for starting this work. In the theorem below, we put our results together. For simplicity, we consider the one-puncture case only.

Theorem 7.1. Let $G = SU(2)$, Σ be a compact genus g Riemann surface with a puncture at a point p, and let σ be a regular conjugacy class in $SU(2)$.

1. Then there is a non-commutative q-deformation $A_q = F^q(\mathfrak{M}[\Sigma_p](\sigma))$ over $D_1(q)$ of the space of algebraic functions on $\mathfrak{M}[\Sigma_p](\sigma)$.

2. There is a cyclic functional

$$
\text{Tr}^\sigma_q : A_q \to \text{Mer}^{\text{asym}}_1(q)
$$

with values in meromorphic functions in the variable q on the unit disc which have an asymptotic expansion in the variable h, related to q by $q = e^{\pi i h}$, as $h \to i0^+$.

3. The equation

$$
(7.1) \quad c(g,q)\delta(\sigma)\text{asym}(\text{Tr}^\sigma_q(1)) = h^{g-1} \int_{\mathfrak{M}(\sigma)} e^{\omega_\sigma/h} \hat{A}(\mathfrak{M}(\sigma))
$$

holds, where asympt : $\text{Mer}^{\text{asym}}_1 \to \mathbb{C}[[h]]$ is the asymptotic expansion, ω_σ is the standard symplectic form (cf. §2.2) and $c(g,q)$ is the normalization constant defined in §1.4.

Denote the asymptotic expansion $\text{asym}(\text{Tr}^\sigma_q)$ by Tr^σ_h. To proceed we need to make the following assumptions (cf. §1.2):

1. The deformation $F^q(\mathfrak{M}^G(\sigma))$ of the algebraic functions on $\mathfrak{M}^G(\sigma)$ is local (cf. §3.2 for the definition).

2. The trace functional $s^*\text{Tr}^\sigma_h$ on $F(\mathfrak{M}^G(\sigma))[[h]]$, which is the pull-back
of $\text{Tr}_h^q : F^q(\mathcal{M}^G[\Sigma P]) \to \mathbb{C}[\hbar]$ via a local section $s : F(\mathcal{M}^G[\Sigma P]) \to F^q(\mathcal{M}^G[\Sigma P])[\hbar]]$ extends to all smooth functions $C^\infty(\mathcal{M}^G(\sigma))[\hbar]]$.

We will give a proof of these two statements in a forthcoming second part of our paper.

This finally allows us to formulate our conjecture:

Conjecture 7.2. The characteristic class of the deformation A_q is ω_{σ}/\hbar, i.e. A_q is basic, and up to an appropriate power of \hbar the functional $f \mapsto c(g, q)\delta(\sigma)\text{asym}(\text{Tr}_q^g(f))$ is the canonical trace.

We expect this conjecture to hold in complete generality, for all groups and arbitrary number of punctures. Note that in order for the asymptotic expansions to exist, one needs to assume that σ is non-special.

We do not know how to approach this conjecture at the moment. Clearly, the work [3] is relevant, but it is not clear how to make the connection rigorous. What we have shown is that the two statements in the conjecture are consistent: *If A_q is basic then the asymptotic trace is canonical.*

Finally, note that for groups other than $SU(n)$, the moduli space of flat connections with fixed holonomies is an orbifold even for generic inserted conjugacy classes. Our results could shed some light on the correct form of the orbifold version of the index theorem of Fedosov and Nest-Tsygan.

8. Appendix

In this appendix we collected facts about quantum groups of which we make use in the main text. We recall the basic definitions in §8.1 and make them more explicit in the \mathfrak{sl}_2 case in §8.2. The monographs [10, 23] are the basic references for this part. In §8.3 we recall the definitions of dynamical quantum groups and dynamical Weyl groups defined in [14, 15, 16]. We also present some explicit computations in the \mathfrak{sl}_2 case, which are based on a brief remark in [35], but are not available in this form in the literature.

8.1. Quantum Universal Algebra.

For an indeterminate q, define the following elements of $\mathbb{Z}[q, q^{-1}]$: $[m]_q = \frac{q^m-q^{-m}}{q-q^{-1}}$ for $m \in \mathbb{Z}$, $[n]_q! = [n]_q \cdots [1]_q$, for $n \in \mathbb{N}$, and

\[
\begin{bmatrix} n \\ m \end{bmatrix}_q = \frac{[n]_q!}{[m]_q! [n-m]_q!}, 0 \leq m \leq n.
\]

Let \mathfrak{g} be a finite dimensional complex simple Lie algebra of rank r with Cartan matrix (a_{ij}), and let d_i be the coprime positive integers such that the matrix $d_i a_{ij}$ is symmetric. Introduce the notation $q_i = q^{d_i}$.

$\Omega_q(\mathfrak{g})$ is the $\mathbb{C}(q)$ Hopf algebra generated by $K_i, K_i^{-1}, e_i, f_i, i = 1, \ldots, r$ satisfying the defining relations:

$K_i K_i^{-1} = K_i^{-1} K_i = 1, K_i K_j = K_j K_i,
\]

\[
K_i e_j K_i^{-1} = q_i^{a_{ij}} e_j, K_i f_j K_i^{-1} = q_i^{-a_{ij}} f_j
\]
\[e_i f_j - f_j e_i = \delta_{ij} \frac{K_i - K_i^{-1}}{q_i - q_i^{-1}}, \]

\[\sum_{r=0}^{1-a_{ij}} \left[\begin{array}{c} 1 - a_{ij} \\ r \end{array} \right] \frac{1}{q_i} (-1)^r e_i^{1-a_{ij}-r} e_j^r e_i^r = 0, \]

\[\sum_{r=0}^{1-a_{ij}} \left[\begin{array}{c} 1 - a_{ij} \\ r \end{array} \right] \frac{1}{q_i} (-1)^r f_i^{1-a_{ij}-r} f_j^r f_i^r = 0. \]

The coproduct is defined by:

\[\Delta(e_i) = e_i \otimes 1 + K_i^{-1} \otimes e_i, \quad \Delta(f_i) = f_i \otimes K_i + 1 \otimes f_i, \quad \Delta(K_i) = K_i \otimes K_i. \]

We denote the counit by \(\epsilon \) and the antipode by \(S \). The sum of positive roots may be expressed as \(2\rho = \sum_{i=1}^r m_i \alpha_i \) with \(m_i \in \mathbb{N} \). Define \(K_{2\rho} = \prod_{i=1}^r K_i^{m_i} \).

Then for every \(a \in \mathcal{U}_q(\mathfrak{g}) \) we have \(S^2(a) = K_{2\rho} a K_{2\rho}^{-1} \).

As the above relations are defined over the ring \(\mathcal{A} = \mathbb{Z}[q, q^{-1}] \), by adding to the list of generators the divided powers \((K_i - K_i^{-1})/(q_i - q_i^{-1}) \), one can define the “non-restricted” integral form of \(\mathcal{U}_q(\mathfrak{g}) \), an \(\mathcal{A} \)-subalgebra \(\mathcal{U}_A(\mathfrak{g}) \) of \(\mathcal{U}_q(\mathfrak{g}) \) such that the natural map \(\mathcal{U}_A(\mathfrak{g}) \otimes_\mathcal{A} \mathbb{C}(q) \to \mathcal{U}_q(\mathfrak{g}) \) is an isomorphism of \(\mathbb{C}(q) \)-algebras. Then one can specialize \(q \) to a non zero complex number \(q_0 \in \mathbb{C} \) by \(\mathcal{U}_{q_0}(\mathfrak{g}) = \mathcal{U}_A(\mathfrak{g}) \otimes_\mathcal{A} \mathbb{C} \) using the homomorphism \(ev_{q_0} : \mathcal{A} \to \mathbb{C} \) which sends \(q \) to \(q_0 \). In particular, one can set \(q = 1 \) and obtain that \(\mathcal{U}_1(\mathfrak{g}) \) is essentially isomorphic to \(U(\mathfrak{g}) \). (One needs to set \(K_i = 1 \) as well; for the details see [10, §9.2]). When we speak of a representation \(V \) of the quantum group, we assume that the operators \(K_i \) act diagonalizably, with eigenvalues \(q^n, n \in \mathbb{C} \). This assures a “good limit” as \(q \to 1 \), i.e. an appropriate action of \(U(\mathfrak{g}) \) on \(V/(q = 1) \).

In the text, we enlarged the ring \(\mathcal{A} \) to the ring \(D_1(q) \), which consists of those rational functions in \(q \) which have no poles on the unit disc except possibly at \(0 \). To simplify the notation we denoted this algebra by \(\mathcal{U} = \mathcal{U}_A(\mathfrak{g}) \otimes_\mathcal{A} D_1(q) \).

For every complex weight \(\lambda \in \mathfrak{h} \), define the Verma module \(M_\lambda \) as the universal \(\mathcal{U} \)-module generated by a vector \(v_\lambda \) and relations

\[K_i v_\lambda = q^{(\lambda, \alpha_i)} v_\lambda, \quad e_i v_\lambda = 0, \quad i = 1, \ldots, r. \]

Remark 8.1. Note that we defined \((\ , \) \) to be the basic inner product on \(t^* \), normalized by the condition, that the long roots have square length 2 (cf. §1.3). The formulas above then work for simply laced Lie algebras only and we assume in what follows that \(g \) is such a Lie algebra. In the non simply laced case one needs to normalize the inner product in such a way that the short roots have square length 2.

If \(\lambda \in \Omega^+ \) is a dominant integral weight, then \(M_\lambda \) has a unique finite dimensional quotient \(V_\lambda \) which is irreducible.
Define the q-dimension of V_{λ} by $q\dim(V_{\lambda}) = Tr_{V_{\lambda}}(K_{2p}) \in \mathbb{N}[g, q^{-1}]$. From the classical Weyl formula we have $q\dim(V_{\lambda}) = \prod_{\alpha \in \Delta^+} \frac{[(\lambda + \rho, \alpha)]_q}{[(\rho, \alpha)]_q}$.

The Hopf algebra $\mathfrak{U}_q(\mathfrak{g})$ has some additional special properties: it is

- **quasitriangular**: there is an operator R in a completion of $\mathfrak{U}_q(\mathfrak{g})^{\otimes 2}$ such that for every $a \in \mathfrak{U}_q(\mathfrak{g})$, $\Delta^{op}(a) = R \Delta(a) R^{-1}$, and $(\Delta \otimes id)(R) = R_{13} R_{23}$, $(id \otimes \Delta)(R) = R_{13} R_{12}$.

- **a ribbon Hopf algebra**: it can be completed with the element $u = \sum_i S(b_i) a_i$, and with a central element v (the ribbon element), defined by $v^2 = u S(u)$, and $\Delta(v) = (R_{21} R_{12})^{-1}(v \otimes v)$. The action of v on irreducible representations V_{λ} is the constant $v(\lambda) = q^{-C(\lambda)}$ where $C(\lambda)$ is the value of the classical quadratic Casimir in the classical representation associated to the dominant weight λ. We use the symbol μ for the grouplike element $uw^{-1} = K_{2p}$. It plays an important role in the “attaching the candy cane” transformation in §5.2. While the natural pairing $V^* \otimes V \to \mathbb{C}(q)$ is invariant, the pairing $V \otimes V^*$ is not. It needs to be composed with μ^{-1} acting on the second factor.

This elements act in the appropriate modules over \mathfrak{U} as well.

8.2. **The example $\mathfrak{U}_q(sl(2))$**. In this paragraph we write down some explicit formulas for the objects defined above in the simplest case of $\mathfrak{g} = sl(2)$.

The R-matrix belongs to a completion of $\mathfrak{U}_q(sl(2))^{\otimes 2}$ and is given by $R = R^0 g^{h/2}$, where $R^0 = \exp_q z (q e \otimes f)$ and $K = q^h$. The q-exponential is defined by $\exp_q(z) = \sum_{n=0}^{+\infty} z^n / (q; q)_n$, where $(a; q)_n = \prod_{k=0}^{n-1} (1 - ab^k)$.

The irreducible representations V_m of $\mathfrak{U}_q(sl(2))$ are classified by a positive integer m. We can choose a basis v_k^m, $0 \leq k \leq m$ of V_m, on which the action of the generators of $\mathfrak{U}_q(sl(2))$ is

$$K v_k^m = q^{(m-2k)} v_k^m, \quad ev_k^m = [m - k + 1] v_{k-1}^m, \quad f v_k^m = [k + 1] v_{k+1}^m,$$

where we omitted the subscript from the definition of the q-integers.

A basis of the Verma module M_{λ} is denoted u_k^λ, $k \in \mathbb{N}$, on which the action of the generators of $\mathfrak{U}_q(sl(2))$ is

$$K u_k^\lambda = q^{(\lambda - 2k)} u_k^\lambda, \quad eu_k^\lambda = [k][\lambda - k + 1] u_{k-1}^\lambda, \quad fu_k^\lambda = u_{k+1}^\lambda.$$

The action of the ribbon element v on V_m is well defined and is simply multiplication by the constant $q^{-m(m+2)/2}$.

One can define a quantum version of the Weyl reflection as follows. Define an algebra automorphism T of $\mathfrak{U}_q(sl(2))$ by

$$T(e) = -q f, \quad T(f) = -q^{-1} e, \quad T(q^h) = q^{-h}.$$

The operator T intertwines Δ, the standard coalgebra structure of $\mathfrak{U}_q(sl(2))$, with the opposite coalgebra structure Δ^{op}, i.e. $\Delta^{op} T = (T \otimes T) \Delta$. Then one can define an element w such that $T(a) = wav^{-1}$ and $\Delta(w) = R^{-1}(w \otimes w)$. Its action on V_m can easily be computed: $w v_k^m = (-1)^k q^{-m^2/4 - km} v_{m-k}^m$. We have $w^2 = (-1)^m id$ on V_m.

8.3. Dynamical Quantum Groups. Here we give a short survey of the formalism of fusion matrices introduced in [14, 15] and dynamical quantum Weyl groups from [35, 16] in a form necessary for our applications. The original papers mainly deal with intertwiners between Verma modules instead of irreducible finite dimensional modules. We have had lots of help from Pavel Etingof here.

Notation. We presume the notation of §1.1 and §6. For any \mathfrak{h}-diagonalizable representation V of the algebra \mathfrak{U} and weight $\mu \in \mathfrak{h}^*$ denote by $V[\mu]$ the μ-weight space in V. Thus we have $V = \oplus \mu V[\mu]$. Note that for a highest weight representation U_{λ} with highest weight λ, we have $U_{\lambda}[\mu] = 0$ unless $\mu \leq \lambda$ with respect to the standard partial order (cf. §1.1). Also, we will denote the weight of a vector v of pure weight in a representation V by $\text{wt}(v)$.

Definition 8.1. Let V be a finite dimensional representation of \mathfrak{U}, and U_λ, U_μ be highest weight representations generated by the vectors u_λ and u_μ, correspondingly. The expectation value $\langle \phi \rangle$ of an intertwiner ϕ from $\text{Hom}(U_{\lambda}, U_{\mu} \otimes V)$ is defined by the equation $\phi(u_\lambda) = u_\mu \otimes \langle \phi \rangle + \sum_i u_i \otimes v_i$, where $\text{wt}(u_i) < \mu$. This yields a map $\langle \rangle : \text{Hom}(U_{\lambda}, U_{\mu} \otimes V) \to V[\lambda - \mu]$.

We will be interested in two cases: when $U_{\lambda} = V_{\lambda}$ the irreducible highest weight representation for a dominant integral weight λ and when $U_{\lambda} = M_{\lambda}$ the Verma module for arbitrary $\lambda \in \mathfrak{h}^*$. We denote the intertwiners in the second case by $\tilde{I}(V; \lambda, \mu)$ and $\tilde{I}^*(V; \lambda, \mu) = \text{Hom}(M_{\mu}, M_{\lambda} \otimes V^*)$.

Definition 8.2. We will say that $\mu \in \mathfrak{t}^*$ is not generic with respect to the dominant weight $\nu \in \Omega^+$ if for some positive root $\alpha \in \Delta^+$ we have\footnote{We remind the reader that we are assuming G is simply laced}

$$0 \leq \langle \alpha, \lambda + \rho \rangle \alpha \leq \nu$$

Lemma 8.1. Let $\lambda, \mu \in \Omega^+$.

1. The natural map $\pi : \tilde{I}(V, \lambda, \mu) \to \text{Hom}(M_{\lambda}, V_{\mu} \otimes V)$ factors through a map $\tilde{\pi} : \mathfrak{I}(V, \lambda, \mu) \to \mathfrak{I}(V, \lambda, \mu)$, which is compatible with the expectation value maps.

2. The expectation value map $\langle \rangle : \mathfrak{I}(V; \lambda) \to V[\lambda - \mu]$ is injective.

3. Suppose that $V = V_\nu$ with $\nu \in \Omega^+$ and that μ is generic with respect to ν. Then the expectation value map $\langle \rangle : \tilde{I}(V_\nu; \lambda, \mu) \to V_\nu[\lambda - \mu]$ has a canonical (right) inverse $v \mapsto \phi^*_\lambda v$. In particular, the map $\langle \rangle$ is surjective.

The Lemma implies the following important statement:
Proposition 8.2. If \(\mu \) is generic with respect to \(\nu \), then the map
\[
\langle \rangle : I(V; \lambda, \mu) \rightarrow V_{\nu}[\lambda - \mu]
\]
is an isomorphism of vector spaces.

Remark 8.2. 1. One can extend the notion of genericity of \(\mu \) with respect to \(V_{\nu} \) to an arbitrary finite dimensional representation \(V \) by additivity, and thus conclude that \(\langle \rangle : I(V; \lambda, \mu) \rightarrow V[\lambda - \mu] \) is an isomorphism.
2. We will also denote by \(\phi^\mu_\lambda \) the map \(\tilde{\pi} \phi^\mu_\lambda \in I(V, \lambda, \lambda - \text{wt}(v)) \) if this causes no confusion.
3. Note that in the case of \(g = \mathfrak{sl}_2 \), there are only finitely many weights \(\mu \) non-generic with respect to a particular representation \(V \).

Proof of the Lemma: (1). Let \(\phi \in \tilde{I}(V, \lambda, \mu) \) be a non-zero intertwiner. Then the image \(\pi(\phi(M_\lambda)) \) is a finite dimensional module of highest weight \(\lambda \), which necessarily has to be isomorphic to \(V_\lambda \). Clearly, then \(\pi \) factors through \(\tilde{\pi} \).

(2). Let \(\phi \in I(V, \lambda, \mu) \) and represent the image of the highest weight vector as \(\phi(v_\lambda) = \sum_i x_i \otimes y_i \), where we assume that the \(x_i \)'s are vectors of pure weight in \(V_\mu \). Split the sum as
\[
\sum_i x_i \otimes y_i = \sum_j x_{\text{max}}^j \otimes y_j + \sum_l x_l \otimes y_l
\]
where the vectors \(x_{\text{max}}^j \) are the vectors of maximal weight among those which occur in the original sum. It follows from the intertwiner property that any such vector \(x_{\text{max}}^j \) has to be a singular vector, i.e. be killed by all of the \(e_i \)'s. Then the statement follows since \(V_\lambda \) has only one such vector, the highest weight vector, and this implies the statement.

(3). This statement is a slight generalization (\(\lambda, \mu \) arbitrary) of Etingof-Styrkas [13, Proposition 2.1.].

The Proposition allows us to introduce the basic objects of [14]: fusion matrices and the dynamical Weyl group operators. Below we will always assume that the necessary genericity conditions hold. In particular, we have an intertwiner \(\phi^\mu_\lambda \in \tilde{I}(V, \lambda, \lambda - \text{wt}(v)) \) such that \(\langle \phi \rangle = v \). If \(V, W \) are finite dimensional modules, define an endomorphism of \(V \otimes W \), called fusion matrix and denoted \(J_{VW}(\lambda) \), by the equation
\[
\langle \phi^v_{\lambda - \text{wt}(w)} \circ \phi^w_\lambda \rangle = J_{VW}(\lambda)(v \otimes w),
\]
where \(v, w \) are pure weight vectors. In fact, there exists a universal element \(J(\lambda) \) in a completion of \(\Omega^{\otimes 2} \) such that \(J(\lambda) \) is represented by \(J_{VW}(\lambda) \) on the module \(V \otimes W \). This operator satisfies the so-called "dynamical cocycle equation":
\[
(id \otimes \Delta)J(\lambda)J_{23}(\lambda) = (\Delta \otimes id)J(\lambda)J_{12}(\lambda - h^{(3)}),
\]
where the notation \(h^{(3)} \) stands for the action of \(h \) on the 3rd tensor component.
One can generalize the definition of $J_{V W}$ to tensor products with more components. These higher fusion matrices are also induced by universal elements which may be written as

\begin{equation}
J_{1, 2, \ldots, N}(\lambda) = J_{1, 2, \ldots, N}(\lambda) \cdot \cdots \cdot J_{N-1, N}(\lambda),
\end{equation}

where $J_{1, 2, \ldots, N}(\lambda) = (id \otimes \Delta^{(N-1)})J(\lambda)$ and $\Delta^{(p)} : \mathfrak{U} \rightarrow \mathfrak{U}^\otimes p$ is the iterated coproduct.

If $v \in W[\lambda - \mu]^*$, $w \in W[\lambda - \mu]$, the linear map $\text{Tr}_W(\phi^V_\lambda \otimes \text{id}_W)\phi^w_\lambda$ is an intertwiner from V_λ to itself, which is necessarily the identity times a constant, which will be denoted by the same symbol. This defines a non-degenerate pairing between $W[\lambda - \mu]^*$ and $W[\lambda - \mu]$, and we can define an invertible endomorphism $Q_W(\lambda)$ of $W[\lambda - \mu]$, such that:

\begin{equation}
\text{Tr}_W(\phi^V_\lambda \otimes \text{id}_W)\phi^w_\lambda = \langle v, Q_W(\lambda)w \rangle,
\end{equation}

i.e $\langle v, Q_W(\lambda)w \rangle = \text{Tr}_W(J_{W, W}(\lambda)(v \otimes w))$. We can also define the universal element $Q(\lambda)$ in a completion of \mathfrak{U} by $Q(\lambda) = \sum_i S(a_i)b_i$ where $J(\lambda) = \sum_i a_i \otimes b_i$. It is easy to check that this element is represented on W by $Q_W(\lambda)$.

Finally, we turn to the definition of the dynamical quantum Weyl group was introduced in [35, 15]. For V finite dimensional, sufficiently generic $\lambda \in \Omega^+$ and an element $w \in W_G$, there is a canonical inclusion $M_{w, \lambda} \hookrightarrow M_\lambda$, which induces an isomorphism between $I(V; w, \lambda) \rightarrow I(V; \lambda)$. The expectation value map identifies these spaces with $V[\nu]$ and $V[w(\nu)]$, correspondingly, thus this isomorphism can be represented by an operator $A_{V, w}(\lambda) : V[\nu] \rightarrow V[w(\nu)]$. Again, this operator is induced by a universal element $A_w(\lambda)$ in a completion of \mathfrak{U}, such that on each finite dimensional $\mathfrak{U}_q(g)$ module V, $A_w(\lambda)$ is represented by an endomorphism $A_{V, w}(\lambda)$. The operators $A_w(\lambda)$ satisfy the following two relations:

\begin{equation}
A_{w w'}(\lambda) = A_w(\lambda)A_{w'}(\lambda), \forall w, w' \in W_G, l(w w') = l(w) + l(w'),
\end{equation}

\begin{equation}
\Delta(A_w(\lambda))J(\lambda) = J(w, \lambda)A_w^{(2)}(\lambda)A_w^{(1)}(\lambda - h(2)).
\end{equation}

In particular, applying $(S \otimes \text{id})$ followed by the algebra multiplication one obtains the relation between $Q(\lambda)$ and $Q(w, \lambda)$:

\begin{equation}
Q(\lambda) = S(A_w(\lambda - wh))Q(w, \lambda)A_w(\lambda).
\end{equation}

8.4. Explicit computation in the \mathfrak{sl}_2 case.

Here we present some explicit computations of the objects defined in the previous paragraph in the $\mathfrak{U}_q(\mathfrak{sl}_2)$ case. To simplify our notation, we will identify the weight $\lambda = l \nu$ with the integer l and the weight $wt(\nu)$ with the symbol h.

Let $J(\lambda)$ the fusion matrix of $\mathfrak{U}_q(\mathfrak{sl}_2)$, it can easily be computed using the ABRR linear equation [2] which reads:

\begin{equation}
J(\lambda)(1 \otimes q^{(2\lambda + 1)h - h^2/2}) = R_{21}(1 \otimes q^{(2\lambda + 1)h - h^2/2})J(\lambda),
\end{equation}
The computation results in the following formula:

\[J(\lambda) = \sum_{n=0}^{\infty} \frac{q^n(1-q^{-2})^{2n}}{(q^{-2}; q^{-2})_n} (f^n \otimes e^n j_n(\lambda)) \tag{8.8} \]

where \(j_n(\lambda) = \prod_{k=0}^{n-1} (1 - q^{2(\lambda-h-k)})^{-1} \).

Recall that \(Q(\lambda) = \sum_i S(a_i) b_i \), where \(J(\lambda) = \sum_i a_i \otimes b_i \). After a straightforward computation, we obtain from (8.8), that

\[Q(\lambda)v^m_k = 2\varphi_1(q^{-2(m-k+1)}, q^{2k}; q^{2(\lambda-m+2k)})(q^{-2})v^m_k, \]

where \(2\varphi_1 \) is the basic hypergeometric function of base \(q^{-2} \) evaluated at \(q^{-2} \).

Using the Heine formula [20] we obtain

\[Q(\lambda)v^m_k = q^{-2(m-k+1)}q^{2k}q^{2(\lambda-m+2k)}(q^{-2})v^m_k. \tag{8.9} \]

From this explicit expression, an easy computation implies the relation:

\[Q(-\lambda-2)Q(\lambda + h) = q^{h^2/2}v. \tag{8.10} \]

If \(\lambda \) is a positive integer then \(\omega_\lambda = \frac{\lambda^{\lambda+1}}{[\lambda+1]!} u^\lambda_0 \) is a singular vector in \(M_\lambda \) and \(\phi_\lambda^m(\omega_\lambda) \) is a singular vector in \(M_{\lambda-(m-2k)} \otimes V_m \). The endomorphism \(A_{V_m}(\lambda) \) is defined by \(\phi_\lambda^m(\omega_\lambda) = \omega_\lambda-(m-2k) \otimes A_{V_m}(\lambda)(v^m_k) + \) terms of lower weight.

It can be shown that \(A_{V_m}(\lambda) \) is the value of the element \(A(\lambda) \) acting on \(V_m \), where

\[A(\lambda) = v^{-1} Kq^{-h^2/4}wQ(\lambda). \tag{8.11} \]

In order to show this equality one can follow the proof of [16] or proceed along the lines of [35]: we can first compute \(\phi_\lambda^m(u^\lambda_0) \), and then compute \(\phi_\lambda^m(\omega_\lambda) \) by applying \(\frac{\lambda^{\lambda+1}}{[\lambda+1]!} \). This is leads to

\[A_{V_m}(\lambda)(v^m_k) = \frac{k+n}{[k]!} 3\varphi_2(q^{2(\lambda-n+1)}, q^{2(-m+k-1)}, q^{2k}, q^{2n-2}, q^{2(\lambda-n)})(q^{-2})v^m_{m-k}, \tag{8.12} \]

where \(n = m - 2k \).

By using the q-analog of Saalschütz formula [20], we arrive at:

\[A_{V_m}(\lambda)(v^m_k) = (-1)^k q^{-k(m-k+1)} \frac{(q^{2(\lambda+k+1)}; q^{-2})_k}{(q^{2(\lambda-m+2k)}; q^{-2})_k} v^m_{m-k}. \tag{8.13} \]

from which equation (8.11) follows.
References

[1] M. Atiyah, R. Bott, Yang-Mills equations over Riemann surfaces, Philos. Trans. Roy. Soc. London Ser. A 308 (1983), no. 1505, 523-615.

[2] D. Arnaudon, E. Buffenoir, E. Ragoucy, Ph. Roche, Universal solutions of quantum Yang-Baxter equations, Lett. Math. Phys. 44 (1998), no. 3, 201-214.

[3] A. Y. Alekseev, H. Grosse, V. Schomerus, Combinatorial Quantization of the Hamiltonian Chern-Simons Theory I, Comm. Math. Phys. 172 (1995) 317-358.
A. Y. Alekseev, H. Grosse, V. Schomerus, Combinatorial Quantization of the Hamiltonian Chern-Simons Theory II, Comm. Math. Phys. 174 (1995) 561-604.

[4] J. Andersen, J. Mattes, N. Reshetikhin, The Poisson structure on the moduli space of flat connections and chord diagrams, Topology 35 (1996), 1069-1083.

[5] J. Andersen, J. Mattes, N. Reshetikhin, Quantization of the algebra of chord diagrams, Math. Proc. Cambridge Philos. Soc. 124 (1998), no. 3, 451-467.

[6] A. Beauville, Vector bundles on curves and generalized theta functions: recent results and open problems, Math. Sci. Res. Inst. Publ. 28, Cambridge University Press, Cambridge 1995, pp. 17-33. (Preprint: alg-geom/9404001)

[7] H. Boden, Yi Hu, Variations of moduli of parabolic bundles, Math. Ann. 301, no. 3, 539-559.

[8] J.-M. Bismut, F. Labourie, Symplectic geometry and the Verlinde Formulas, Preprint Université de Paris-Sud, (1998).

[9] E. Buffenoir, Ph. Roche, Two dimensional lattice gauge theory based on a quantum group, Comm. Math. Phys. 170 (1995).
E. Buffenoir, Ph. Roche, Link Invariants and Combinatorial Quantization of Hamiltonian Chern Simons Theory, Comm. Math. Phys. 181 (1996), 331-365.

[10] V. Chari, A. Pressley, Quantum Groups, Cambridge University Press (1994).

[11] P. Deligne, Déformations de l’algèbre des fonctions d’une variété symplectique: comparaison entre Fedosov et De Wilde, Lecomte, Selecta Math. (N.S.) 1 (1995), no. 4, 667-697.

[12] M. De Wilde, P. Lecomte, Existence of star-Products and of formal deformations of the Poisson Lie algebra of arbitrary symplectic manifolds, Lett. Math. Phys. 7 (1983), 487-496.

[13] P. Etingof, K. Styrkas, Algebraic Integrability of Macdonald Operators and Representation Theory of Quantum Groups, Comp. Math. 114 (1998), 125-152. Preprint: math.QA/9603022

[14] P. Etingof, A. Varchenko, Exchange Dynamical Quantum Groups, Comm. Math. Phys. 205 (1999), 19-52, Preprint: math.QA/9801135.

[15] P. Etingof, A. Varchenko, Traces of Intertwining Operators for Quantum Groups and Difference Equations I, Preprint: math.QA/9907181.

[16] P. Etingof, A. Varchenko, Dynamical Weyl Groups and Applications, in preparation

[17] B. Fedosov, Deformation Quantization and Index Theory, Mathematical Topics, 9 Akademie Verlag, Berlin (1996)

[18] V. V. Fock, A. A. Rosly, Poisson structures on moduli space of flat connections on Riemann surfaces and the r-matrices, Moscow Seminar in Math. Physics, 67-86, Amer. Math. Soc. Transl. Ser. 2 191(1999), q-alg/9802054

[19] V. Guillemin, Star products on prequantizable symplectic manifolds, Lett. Math. Phys. 35 (1995).

[20] G. Gasper, R. Rahman, Basic Hypergeometric Series, Encyclopedia of mathematics and its applications, 35, Cambridge University Press, (1990).

[21] L. C. Jeffrey, F. C. Kirwan, Intersection theory on moduli spaces of holomorphic bundles of arbitrary rank on a Riemann surface, Ann. Math. 148 (1998).

[22] A. V. Karabegov, M. Schlichenmaier, Identification of Berezin-Toeplitz deformation quantization, Preprint: math.QA/0000606.
[23] C. Kassel, Quantum Groups, Springer-Verlag (1995).
[24] M. Kontsevich, Deformation quantization of Poisson manifolds, I, Preprint: math.QA/9709040.
[25] K. Liu, Heat kernel and moduli spaces I.-II. Math. Res. Letters 3 (1996), 743-762., Math. Res. Letters 4 (1997), 569-588.
[26] E. Meinrenken, C. Woodward, Hamiltonian loop group actions and Verlinde factorization, J. Diff. Geom. 50(1998), no.3, 417-469.
[27] R. Nest, B. Tsygan, Algebraic index theorem Comm. Math. Phys. 172 (1995), no. 2, 223–262.
[28] M. Polyak, N. Reshetikhin, On 2D Yang-Mills theory and invariants of links, Deformation theory and Symplectic geometry (Ascona, 1996), 223-248, Math. Phys. Stud.,20, Kluwer Acad. Publ., Dordrecht
[29] N. Reshetikhin, V. Turaev, Ribbon Graphs and their invariants derived from quantum Groups, Comm. Math. Phys. 127 (1990), 1-26.
[30] A. Szenes, The combinatorics of the Verlinde formulas, Vector Bundles in Algebraic Geometry, (Durham 1993), London Math.Soc Lecture notes Ser. 208, Cambridge University, Press, Cambridge (1995).
[31] A. Szenes, Iterated residues and multiple Bernoulli Polynomials, Internat. Math. Res. Notices, no. 18, (1998).
[32] A. Szenes, A vanishing theorem for trigonometric sums, in preparation.
[33] C. Teleman, The quantization conjecture revisited, Preprint: math.AG/9808029.
[34] M. Thaddeus, Geometric invariant theory and flips, J. Amer. Math. Soc. 9 (1996).
[35] V. Tarasov, A. Varchenko, Difference Equations compatible with trigonometric KZ differential equations, Preprint: math.QA/0002132.
[36] V. Turaev, Algebras of loops on surfaces, algebras of knots, and quantization. Braid group, knot theory and statistical mechanics, II, 324–360, Adv. Ser. Math. Phys., 17, World Sci. Publishing, River Edge, NJ, 1994.
[37] Verlinde, Fusion rules and moduli transformations in 2D conformal field theory, Nuclear Phys. B 300 (1988), no.3, 360-376.
[38] A. Weinstein, Deformation Quantization, Séminaire Bourbaki, Vol. 1993/1994. Astérisque No 227 (1995).
[39] A. Weinstein, Ping Xu, Hochschild cohomology and characteristic classes for star-products, Geometry of differential equations, 177-194, Amer. Math. Soc. Transl. Ser. 2 186(1998).
[40] E. T. Whittaker, G. N. Watson, A course of modern analysis, Cambridge Mathematical library, Cambridge University Press (1996)
[41] E. Witten, On Quantum Gauge Theories in Two Dimensions, Comm. Math. Phys. 141 (1991), 153-209.

Massachusetts Institute of Technology, Department of Mathematics, Cambridge, MA 02139, USA
E-mail address: szenes@math.mit.edu

Laboratoire de Physique Mathématique et Théorique, Université Montpellier II, 34000 Montpellier, France
E-mail address: roche@lpm.univ-montp2.fr