Properties of Cereal β-D-Glucan Hydrocolloids and their Effect on Bread and Ketchup Parameters

Michaela Havrlentová1, Zuzana Petruláková2, Alena Burgárová2, Soňa Gavurníková1, Viera Červená1, Ernest Šturdík2,3, Ján Kraic1,3*, Alžbeta Žofajová1

1Plant Production Research Center Piešťany, Bratislavská cesta 122, SK-921 68 Piešťany, Slovakia
2Slovak University of Technology, Faculty of Chemistry and Food Technology, Department of Nutrition and Food Evaluation, Radlinského 9, SK-812 37 Bratislava, Slovakia
3University of SS. Cyril and Methodius in Trnava, Faculty of Natural Sciences, Department of Biotechnology, Námestie J. Herdu 2, SK-917 01 Trnava, Slovakia

Key words: β-D-glucans, hydrocolloid, bread, ketchup, sensory, functional food

INTRODUCTION

Consumers are increasingly interested in buying products considered as healthier. Preferred and popular are foods with higher concentrations of complex saccharides and fibre [AACC, 2001]. Cereal β-D-glucans with glucose units linked by both β-(1→3) and β-(1→4)-linkages are known as valuable substances with functional and nutritive properties and due to their physical and physiological properties, they are of commercial importance [reviewed by Vasanthan & Temelli, 2008; Havrlentová et al., 2011]. Endosperm cell walls and sub-aleurone layers of cereals grains, especially those of barley and oat are good natural sources of β-D-glucans [Havrlentová & Kraic, 2006].

The effects of β-D-glucans on humans are varied. They are potent inducers of humoral and cell-mediated immunity [Estrada et al., 1997], important agents affecting some blood biochemical parameters, particularly decreasing total and LDL-cholesterol [Kerkhoffs et al., 2003; Cui & Wang, 2009], reducing the risk of cardiovascular diseases [Liu et al., 2002], and modulating glycaemic control [Nazare et al., 2009]. β-D-glucan is also a dietary constituent with well-documented effects on increasing satiety, thus helping to provide a feeling of fullness that may play a role in the control of energy balance [Howarth et al., 2001; Burton-Freeman, 2000; Khoury et al., 2012]. On the other hand, in a work by Vitaglione et al. [2010], eating midmorning barley β-D-glucan-enriched snacks did not modify food intake in the short term. Furthermore, β-D-glucans have antibacterial activity [Yun et al., 2003] and functions improving probiotic viability in yogurts [Vasiljevic et al., 2007]. This polysaccharide is also described as an agent to prevent colonic diseases, ulcerative colitis, and colon cancer [Nilsson et al., 2008].

Biological effects as well as physical and chemical properties of β-D-glucans, especially the solubility and ability to bind to cell receptors [Johansson et al., 2004; Tiwari & Cummins, 2009], depend on chemical conformation of the polysaccharide. Viscosity, one of the most important properties of the fibre [Malkki, 2004], is influenced by solubility and molecular weight [AACC, 2001; Wood, 2004; Khoury et al., 2012]. The water-solubility depends particularly on the structure associated with the origin of the β-D-glucans. It decreases in main cereals in the order: oats > barley > wheat [Gajdosová et al., 2007].

Cereal grains as available sources of β-D-glucans are suitable for food supplementation and functional food development [Inglett et al., 2005; Ehrenbergerová et al., 2008]. β-D-glucans, especially in hydrocolloid form [Lazaridou et al., 2004; Lee et al., 2009], improve rheological properties of dough [Butt et al., 2008]. Their addition to food increases sensory as well as nutritional value, improves quality and stability during storage [Lyly et al., 2004; Skendi et al., 2010]. β-D-glucans have been tested as a thickening agent to modify...
texture and appearance in sauces, salad dressings, cakes, and ice creams [Soukoulis et al., 2009; Kalinga & Mishra, 2009; Lee et al., 2009] in development of low calorific foods [Inglett, 1990; Khoury et al., 2012]. They are used as an agent influencing nutritional quality of beverages, soups, oat flakes, oat milk, puddings, yoghurts, and biscuits [Lyby et al., 2003, 2004; Gormley & Morrissey, 1993; Hozová et al., 2004; Sudha et al., 2007; Müller et al., 1995; Kovacs, 1989].

The aim of this study was to evaluate i) microbiological parameters of the β-D-glucan hydrocolloids isolated from oats, barley, wheat, and rye, and to estimate ii) qualitative and sensory characteristics of bread and ketchup fortified with β-D-glucan hydrocolloids.

MATERIAL AND METHODS

Materials

The β-D-glucan hydrocolloids were isolated from oat (cultivar Kanton), barley (cultivar Oriflame), wheat (cultivar Yavaros-Tall), and rye (cultivar Daňkovské Nové). Mature seeds were obtained from the Gene Bank of the Slovak Republic of the Plant Production Research Centre Piešťany, Slovak Republic. Hydrocolloids were prepared according to the patent No 276 192 of Kuniak et al. [1992]. Concentrations of β-D-glucans in extracts were up to 2%. Hydrocolloids were double sterilized at 100°C and stored in the dark at 8±2°C.

Methods

Total number of microorganisms in functional foods as well as β-D-glucan hydrocolloids performed before bread and ketchup fortification was determined by plate counting method on glucose-yeast agar [STN ISO 4833], coliform bacteria on VRBL agar [STN ISO 4832], and yeasts and moulds on chloramphenicol glucose yeast agar [STN ISO 7954]. All agar types used were manufactured by Imuna Pharm JSC (Sarišské Michalafy, Slovakia).

Wheat breads were prepared from white bread wheat flour, salt, yeast, and water. Experimental breads without (control sample) and with β-D-glucans were prepared according to recipe (Table 1) using the mixing device Dionsa SP12 (Germany) and the oven Mwe Signo (Germany). The 2% β-D-glucan hydrocolloids were added to the dough before mixing in a concentration of 50 mL per 1 kg of flour.

Ketchup was made from tomato puree, glucose syrup, vinegar, salt, aroma, starch, thickening agent, and water according to recipe (Table 2) by Kolagrex Int. Ltd., Kolárovo, Slovakia. Ketchup was prepared from tomato puree aseptically bottled in 200 kg batches, using stainless steel tanks for the processing. β-D-glucans fortification was carried out directly during the production process, in hot ketchup right up to packaging and bottling. The amount of β-D-glucan hydrocolloids (3 mL per 300 g of the food product) was calculated according to a recommended daily intake of β-D-glucans. Samples without the hydrocolloids addition were marked as a control.

The recommended daily intake of β-D-glucans in food products to fulfil health beneficial effects is stated in the range of 1.1-7.6 g and with a mean intake period of 5.5 weeks to decrease total blood cholesterol level and to reduce the risk of coronary heart disease [EFSA, 2010]. In bakery products with ≥3 g/100 g of β-D-glucans of oat grain fibre, the polysaccharide can stabilise sugar metabolism [EFSA, 2011]. In our research, the amount of β-D-glucans from cereal sources higher than 3 g/100 g was considered in breads and by assuming

TABLE 1. Formula for preparation of breads supplemented with insoluble β-D-glucans isolated from wheat, rye, barley, and oats.

Raw materials for 1 kg of dough	Sample No. 1	Sample No. 2	Sample No. 3	Sample No. 4	Sample No. 5
Wheat flour (g)	1000	1000	1000	1000	1000
Salt (g)	16	16	16	16	16
Fresh active yeast (g)	20	20	20	20	20
Instant dried yeast (g)	30	30	30	30	30
Water (g)	550	550	550	550	550
β-D-glucan hydrocolloids (ml)	50	50	50	50	-

Conditions of preparation dough	Time to mastication (min)	Dough temperature (°C)	Time of proofing dough (min)	Time of baking (min)	Temperature (°C)	Weight (g)
	slowly	31.2	50	35	own	raw piece
	quickly	31.5	50	35	bread	finished product
		31.0	52	35	200	600
		31.2	50	35	250	600
					520	600
					520	600
					520	600
					520	600
					520	600
					520	600
					520	600
					520	600
					520	600

No. 1: wheat bread + wheat β-D-glucan hydrocolloid, No. 2: wheat bread + rye β-D-glucan hydrocolloid, No. 3: wheat bread + barley β-D-glucan hydrocolloid, No. 4: wheat bread + oats β-D-glucan hydrocolloid, No. 5: wheat bread (control sample). Concentration of β-D-glucans in breads balanced up to 100 mL.
a minimum of two pieces of bread (approximately 150 g) consumed by a person per day, the recommended daily intake is ingested.

The sensory evaluations of final wheat breads and tomato ketchups were accomplished by a five (Table 3) and four point (Table 4) hedonic scale, respectively, and for both food products were validated. Evaluations were generated by a panel of ten certified referees; young women in the age of 24-30 years of normal weight and with a university education. Sensory evaluations were carried out in a way that the highest grade in the evaluation corresponded with the fulfillment of all demands for organoleptic properties and the lowest grade (null) corresponded with major qualitative deficiencies. The total tastiness (%) of bread and ketchup, respectively, were evaluated graphically by means of a 100 mm unstructured line segment where average values of all analysed parameters for

Used raw material	Sample No. 1	Sample No. 2	Sample No. 3	Sample No. 4	Sample No. 5
Tomato purée 36-38 °Rf (%)	19	19	19	19	19
Glucosic syrup (%)	19.5	19.5	19.5	19.5	19.5
Vinegar (18%) (%)	1.4	1.4	1.4	1.4	1.4
Salt (%)	2	2	2	2	2
Aroma (%)	0.15	0.15	0.15	0.15	0.15
Starch (%)	2.5	2.5	2.5	2.5	2.5
Thickening (%)	0.03	0.03	0.03	0.03	0.03
Water (%)	55.4	55.4	55.4	55.4	55.4
β-D-glucan hydrocolloids (mL)	3	3	3	3	-

No. 1: ketchup + wheat β-D-glucan hydro colloids, No. 2: ketchup + rye β-D-glucan hydrocolloids, No. 3: ketchup + barley β-D-glucan hydrocolloids, No. 4: ketchup + oats β-D-glucan hydrocolloids, No. 5: ketchup (control sample). Concentration of β-D-glucan in extracts balanced up to 6 mL.

Table 2. Formula for preparation tomato ketchup supplemented with insoluble β-D-glucans isolated from wheat, rye, barley, and oats.

Parameter	Score scale	Score description
Form of product	4	good domed
	3	moderately domed
	2	soft domed
	1	irregular
	0	spread, cracks
Colour of crust	4	typical
	3	darker/lighter
	2	dark/light
	1	very dark/very light
	0	scorched
Thickness / firmness of crust	4	semi-coarse / semi-hard board
	3	coarse / hard
	2	thin / soft
	1	very thin / very soft
	0	inconvenient
Aroma of crust / crumb	4	savorous, typical
	3	less distinct
	2	few distinct
	1	unsavorous
	0	foreign
Porosity of crumb	4	uniform, fine walls, medium pores
	3	less uniform, soft walls, medium pores
	2	non-uniform, ruder walls, small void
	1	crumbly, dense pores
	0	Smear, divided of crumbs
Total tastiness	unacceptable	very tasty, excellent

Table 3. Scale of the sensory scoring evaluation of bread with β-glucans.
TABLE 4. Scale of the sensory scoring evaluation of tomato ketchup with β-glucans.

Parameter	Score scale	Score description
Appearance and colour	3	typical, red
	2	brown-red
	1	brown
	0	foreign, undesirable
Aroma	3	savorous, typical in tomatoes
	2	less distinct
	1	unsavourous
	0	foreign, atypical
Consistence	3	semi-rigid, without particulate
	2	rigid without particulate
	1	semi-rigid, with particulate
	0	rigid with particulate
Taste	3	distinct, typical in tomatoes
	2	less distinct with cereal’s starch odour
	1	dull with cereal’s starch odour
	0	foreign, undesirable
Total tastiness		unacceptable very tasty, excellent

Each sample was calculated to percentages; these values were marked on the line segment [Ingr et al., 2001]. Tests were carried out in a specialized laboratory at a temperature of 24°C.

Water activity (aw) was measured in the bread crust 4 h after bread baking using AW Sprint TH500 (Pedak, Neythuyzen, Netherlands) at laboratory temperature (24°C) in a dust-free environment and determined by water adsorptive properties. The measurement was based on the balance of aw of the sample and relative air humidity above the defined solutions over 24 h [Valik et al., 1990].

Statistical rheological parameters and sensory examinations were carried out using the SPSS for Windows (Release 11.5.1.) program. Sensory data were calculated using logarithmic transformation and were processed by using multifactorial (two- and three-way) analysis of variance.

RESULTS AND DISCUSSION

Bread

Organoleptic properties of fortified fresh breads were evaluated in the study (Table 5). Cereal β-D-glucans are useful substances in functional food preparation, especially in bakery, because of their excellent rheological properties [Butt et al., 2008]. Statistically significant differences in sensory evaluations were not confirmed between fortified breads and the wheat control (Table 6). Three parameters (form of product, colour of crust, and colour of crumb) had the same score (p=1.000) in all analysed types of bread. Differences (p<0.069) were observed in the aroma of crust. Control bread and bread fortified with barley β-D-glucans showed the best results (3.80) compared to other types of breads where scores for this parameter were lower (3.20 for wheat and oats β-D-glucans and 3.00 for rye). Only one statistically significant difference (p<0.049) was observed in firmness of crust. In comparison with other samples (the parameter was equal, 4.00), lower firmness of crust (3.60) was observed in sample No. 1 containing wheat β-D-glucans.

Substantial differences, not statistically significant, were recorded not only in aroma, particularly in the crust aroma, but also in aroma of bread crumb which evaluators considered to be less expressed in samples with the application of wheat, rye, and oat β-D-glucan hydrocolloids. Porosity of crumb was lower in all analysed bread samples fortified with cereal β-D-glucan hydrocolloids. Differences were also observed in the taste of bread crust. Firmness value in control samples was 3.80 with lower values (3.60) being recorded in those fortified with wheat, rye, and oat β-D-glucan hydrocolloids. On the other hand, a higher score for bread crust taste

TABLE 5. Sensory evaluation of breads supplemented with β-D-glucan hydrocolloids (x̄, n=10).

Sensory parameter	Sample No. 1	Sample No. 2	Sample No. 3	Sample No. 4	Sample No. 5
Form of product	4.00±0.00	4.00±0.00	4.00±0.00	4.00±0.00	4.00±0.00
Colour of crust	3.80±0.57	3.80±0.57	3.80±0.57	3.80±0.57	3.80±0.57
Thickness of crust	4.00±0.00	4.00±0.00	3.80±0.57	3.80±0.57	3.80±0.57
Firmness of crust	3.60±1.19	4.00±0.00	4.00±0.00	4.00±0.00	4.00±0.00
Aroma of crust	3.20±1.07	3.00±1.40	3.80±0.57	3.20±1.31	3.80±0.57
Aroma of crumb	3.60±1.47	3.60±1.47	4.00±0.00	3.80±0.57	4.00±0.00
Porosity of crumb	3.40±1.62	3.40±1.62	3.40±1.62	3.40±1.62	3.60±1.47
Colour of crumb	3.80±0.57	3.80±0.57	3.80±0.57	3.80±0.57	3.80±0.57
Piancy of crumb	4.00±0.00	3.60±1.47	4.00±0.00	3.80±0.57	4.00±0.00
Taste of crumb	3.60±1.47	3.60±1.47	4.00±0.00	3.60±1.47	3.60±1.47
Taste of crust	3.80±0.57	3.40±1.62	3.60±1.47	3.60±1.47	4.00±0.00
Firmness of crumb	3.80±0.57	3.80±0.57	3.60±1.47	3.60±1.47	3.60±1.47
Tackiness of crumb (to palate during long mastication)	3.40±1.62	3.60±1.47	3.60±1.13	3.20±1.31	3.40±1.14

No. 1: wheat bread + wheat β-D-glucan hydrocolloids, No. 2: wheat bread + rye β-D-glucan hydrocolloids, No. 3: wheat bread + barley β-D-glucan hydrocolloids, No. 4: wheat bread + oats β-D-glucan hydrocolloids, No. 5: wheat bread (control sample). Concentration of β-D-glucans in breads balanced up to 100 mg.
TABLE 6. \(P\) Values from analysis of variance for sensory evaluations of bread fortified with \(\beta\)-D-glucan hydrocolloids from different cereal sources.

Trait	\(P\) Value
Form of product	1.000
Colour of crust	1.000
Thickness of crust	0.083
Firmness of crust	0.049
Aroma of crust	0.069
Aroma of crumb	0.277
Porosity of crumb	0.989
Colour of crumb	1.000
Pliancy of crumb	0.252
Taste of crust	0.322
Taste of crumb	0.469
Firmness of crumb	0.506
Tackiness of crumb	0.985

(4.00) was seen in the barley samples. In the taste of crumb, all samples with cereal \(\beta\)-D-glucans were worse compared to the control. Alternatively, in breads enriched with wheat, rye, and oat \(\beta\)-D-glucans, a higher level of firmness of crumb was shown in comparison with the control bread. Generally, it can be concluded that the lowest total tastiness was observed in bread with added wheat \(\beta\)-D-glucan (81.2%) compared to the control (90%) (Figure 1). On the other hand, the highest values in total tastiness were recorded in bread containing rye and oat \(\beta\)-D-glucans (95.2 and 91.4%, respectively).

Oat is a good source of \(\beta\)-D-glucan [Havrličková & Krauc, 2006] with oat \(\beta\)-D-glucan usually exhibiting higher viscosity due to longer molecular chains [Beer et al., 1997; Gajdošová et al., 2007]. It is well documented in the literature that it is therefore more frequently used in the food industry [Lazaridou et al., 2004; Dongowski et al., 2005; Havrlentová et al., 2011]. In our study by preparation of bread enriched with cereal \(\beta\)-D-glucan, oat \(\beta\)-D-glucan was also deemed a good additive component with good sensory results. Hydrocolloids [Lazaridou et al., 2004; Lee et al., 2009] at a concentration of 2% were successfully used in our study and similar results were also reported by other authors [Lyly et al., 2004; Dongowski et al., 2005].

The other aim of this study was to analyse influence of different \(\beta\)-D-glucans on water activity \(\left(a_w\right)\) in breads. Water activity \(\left(a_w\right)\) values \((n=3, a=0.05)\) were as follows: 0.917±0.003 (sample No. 1), 0.975±0.004 (No. 2), 0.967±0.003 (No. 3), 0.965±0.003 (No. 4), and 0.963±0.002 (No. 5). These values show that the addition of oat hydrocolloids moderately decreased the value of \(a_w\) by 0.046 whereas the remaining hydrocolloids increased \(a_w\) by 0.002-0.012 compared to the control. Molecular weight of cereal \(\beta\)-D-glucans influences the water activity in functional foods supplemented with this polysaccharide [Dongowski et al., 2005, Vasanthan & Temelli, 2008, Havrlentová et al., 2011]. This was well documented in the work of Skendi et al., 2010 where two different molecular weight barley \(\beta\)-glucan isolates were added to bread and water activity and other rheological properties of dough and bread characteristics were examined. Barley \(\beta\)-D-glucans addition affected flour, dough, and bread parameters [Skendi et al., 2010], which was also documented in our study by using different types of \(\beta\)-D-glucan hydrocolloids for the preparation of functional breads.

Ketchup

Microbiological analyses of the total number of coliform bacteria, yeasts, and moulds in \(\beta\)-D-glucan hydrocolloids confirmed the absence of microorganisms \((<1\text{ CFU/mL})\) and proved the microbiological safety of all the hydrocolloids used. The microbiological testing of tomato ketchup with added hydrocolloids after 180 days of storage at laboratory temperature \((20\pm2°C)\) confirmed that microorganisms were not present in any of the analysed samples and the addition of \(\beta\)-D-glucan hydrocolloids did not influence the microbiological sterility; neither immediately after producing nor after storage.

Organoleptic properties of \(\beta\)-D-glucan-enriched fresh and 180-days shelf-stored ketchups were determined. Results related to ketchup samples evaluated in two dates separately, on the day of production and 180 days after showed that the addition of \(\beta\)-D-glucans compared to control sample decreased the typical ketchup aroma and taste (Table 7). This phenomenon occurred in all used types of \(\beta\)-D-glucans in both monitored times. The addition of \(\beta\)-D-glucans did not affect the total tastiness of the ketchup significantly. However aroma of ketchup was significantly influenced by the addition of oat \(\beta\)-D-glucans, date of evaluation, and their interaction (Table 8).

Besides the microbiological purity of cereal \(\beta\)-D-glucans, good sensory characteristics in fortified bread and ketchup, softer ketchup texture, and plant and tastier bread were revealed especially for \(\beta\)-D-glucans isolated from oat seeds. Analysing total tastiness in bread, it can be stated that this parameter increased in the order: wheat hydrocolloids < barley < control < oat < rye (Figure 1). In total tastiness of ketchup, the order was as follows: barley < wheat < rye < oat < control immediately after producing the fortified ketchup or rye < barley < wheat < oat < control after 180 days of storage, (Figure 2 and 3). In detail, in aroma of ketchup, the addition

![FIGURE 1](image_url). Total tastiness of wheat breads supplemented with \(\beta\)-D-glucan hydrocolloids extracted from different cereals.
Cereal β-D-Glucan Hydrocolloids and their Effect on Bread and Ketchup Parameters

Of oat β-D-glucan hydrocolloids immediately after production showed 2.83 points compared to 2.00-2.67 points in other used cereal hydrocolloids (Table 7). As well as taste, oat β-D-glucan hydrocolloids proved better results after 180 days storage compared to other added hydrocolloids (2.80 points compared to 2.60). Oat β-D-glucan can be identified in our study as the best positively influencing bread and ketchup sensory properties.

Through its structure and physical properties, oat β-D-glucan is often used in the food industry [Havrlentová et al., 2011; Gajdošová et al., 2007]. Oat gum (with β-D-glucan content of 65%, w/w) showed great potential as a gel-forming, thickening, and stabilizing agent [Ramos-Chavira et al., 2009]. Stabilizing ability was detected also in our study, where water activity was seen at approximately 0.917, i.e. less than in the control (0.963). In the literature, the presence of oat β-D-glucan concentrates resulted in low water activity and high stability in cereal bars [Gutkoski et al., 2007] and increased shelf-life with increased levels of β-D-glucans from barley and oat in cakes [Kalinga & Mishra, 2009] was observed.

The complex rheological behaviour of β-D-glucan concentrates isolated from cereals depends on the origin, technological pre-treatments, and concentration [Dongowski et al., 2005] and influences the effects in intestinal tract. The importance of food processing can alter postprandial glycaemic control. Good physicochemical properties (viscosity, optimum molecular weight) and concentration of β-D-glucan in 300 g of tomato ketchup balanced up to 6 mL.

Table 7. Sensory evaluation of tomato ketchup supplemented with β-D-glucan hydrocolloids immediately after producing and after 180 days storage (X, n=10).

Sensory parameter	1st day	180th day								
	Sample No. 1	Sample No. 2	Sample No. 3	Sample No. 4	Sample No. 5	Sample No. 1	Sample No. 2	Sample No. 3	Sample No. 4	Sample No. 5
Appearance and colour	3.00±0.00	3.00±0.00	3.00±0.00	3.00±0.00	3.00±0.00	3.00±0.00	3.00±0.00	3.00±0.00	3.00±0.00	3.00±0.00
Aroma	2.00±1.79	2.67±0.99	2.67±0.99	2.83±0.53	3.00±0.00	2.80±0.45	2.80±0.45	2.80±0.45	2.80±0.45	3.00±0.00
Consistence	3.00±0.00	2.83±0.53	3.00±0.00	3.00±0.00	3.00±0.00	3.00±0.00	3.00±0.00	3.00±0.00	3.00±0.00	3.00±0.00
Taste	2.50±1.14	2.67±0.99	2.83±0.53	2.67±0.99	3.00±0.00	2.80±0.45	2.60±0.55	2.60±0.55	2.80±0.45	3.00±0.00

No. 1: ketchup + wheat β-D-glucan hydrocolloids, No. 2: ketchup + rye β-D-glucan hydrocolloids, No. 3: ketchup + barley β-D-glucan hydrocolloids, No. 4: ketchup + oats β-D-glucan hydrocolloids, No. 5: ketchup (control sample). Concentration of β-D-glucan in 300 g of tomato ketchup balanced up to 6 mL.

Table 8. MS values from analysis of variance for sensory parameters of ketchup fortified with β-D-glucan hydrocolloids from different cereal sources evaluated in two dates, right after producing (1st date) and after 180 days of storage (2nd date).

Source of variability	df	Aroma	Consistence	Taste
Date of evaluation (B)	1	0.378*	0.007	0.030
Ketchup (A)	4	0.314**	0.007	0.106
Evaluator (C)	9	0.068	0.003	0.063
A×B	4	0.238**	0.007	0.072
A×C	9	0.153*	0.003	0.102
B×C	36	0.051	0.002	0.060
Residual	36	0.056	0.003	0.057
Total	99			

* P < 0.05, ** P < 0.01

of oat β-D-glucan hydrocolloids immediately after production showed 2.83 points compared to 2.00-2.67 points in other used cereal hydrocolloids (Table 7). As well as taste, oat β-D-glucan hydrocolloids proved better results after 180 days storage compared to other added hydrocolloids (2.80 points compared to 2.60). Oat β-D-glucan can be identified in our study as the best positively influencing bread and ketchup sensory properties.

Through its structure and physical properties, oat β-D-glucan is often used in the food industry [Havrlentová et al., 2011; Gajdošová et al., 2007]. Oat gum (with β-D-glucan content of 65%, w/w) showed great potential as a gel-forming, thickening, and stabilizing agent [Ramos-Chavira et al., 2009]. Stabilizing ability was detected also in our study, where water activity was seen at approximately 0.917, i.e. less than in the control (0.963). In the literature, the presence of oat β-D-glucan concentrates resulted in low water activity and high stability in cereal bars [Gutkoski et al., 2007] and increased shelf-life with increased levels of β-D-glucans from barley and oat in cakes [Kalinga & Mishra, 2009] was observed.

The complex rheological behaviour of β-D-glucan concentrates isolated from cereals depends on the origin, technological pre-treatments, and concentration [Dongowski et al., 2005] and influences the effects in intestinal tract. The importance of food processing can alter postprandial glycaemic control. Good physicochemical properties (viscosity, optimum molecular weight) and concentration of β-D-glucan hydrocolloids remain in porridge or granola with added cereal β-D-glucans, whereas depolymerization in bread and pasta reduces β-D-glucan bioactivity [Regand et al., 2009].
CONCLUSIONS

Our experiments revealed that there were no problems in microbiological parameters of isolated cereal β-D-glucan hydrocolloids. Addition of β-D-glucans especially originating from oat positively influenced sensory parameters of the bread crust and also contributed to softening of the acidic taste of ketchup. Fortification of bread and ketchup with β-D-glucan hydrocolloids can improve sensory parameters of both tested foods; consumption of these ingredients could supply compounds known as agents to prevent some of modern diseases associated with non-optimal nutritional status. Cereal β-D-glucan hydrocolloids could be exploited for a generation of new innovative products.

ACKNOWLEDGEMENTS

Authors thanks go to the companies Adivot, Ltd., Nitra and Kolagrex Int. Ltd., Kolárovo and to Prof. Lubomír Valík for material provided and Emerald s.r.o. for language correction. This work originated thanks to the support within the Operational Programme Research and Development for the project: “Transfer, use and dissemination of research results of plant genetic resources for food and agriculture” (ITMS: 26220220058), co-financed from the resources of the European Regional Development Fund.

REFERENCES

1. AACC, The definition of dietary fiber. Cereal Foods World, 2001, 46, 112-129.
2. Beer U., Wood P.J., Weisz J., Molecular weight distribution an (1→3),(1→4)-β-D-glucan content of consecutive extracts of various oat and barley cultivars. Cereal Chem., 1997, 74, 476-480.
3. Butt M.S., Tahir-Nadeem M., Khan M.K.I., Shabir R., Butt M.S., Oat: unique among the cereals. Eur. J. Nutr., 2008, 47, 68–79.
4. Burton-Freeman B., Dietary fiber and energy regulation. J. Nutr., 2000, 130, 272S–275S.
5. Cui S.W., Wang Q., Cell wall polysaccharides in cereals: chemical structure and functional properties. Struct. Chem., 2009, 20, 291–297.
6. Dongowski G., Drzikova B., Senge B., Blochwitz R., Gebhardt E., Habel A., Rheological behaviour of β-glucan preparations from oat products. Food Chem., 2005, 93, 279–291.
7. EFSA, Scientific Opinion on the substantiation of a health claim related to oat beta-glucan and lowering blood cholesterol and reduced risk of coronary heart disease pursuant to Article 14 of Regulation (EC) No 1924/2006. EFSA J., 2010, 8, 1885–1899.
8. EFSA, Scientific Opinion on the substantiation of health claims related to beta-glucans from oats and barley and maintenance of normal blood LDL-cholesterol concentrations (ID 1236, 1299), increase in satiety leading to a reduction in energy intake (ID 851, 852), reduction of post-prandial glycaemic responses (ID 821, 824), and “digestive function” (ID 850) pursuant to Article 13(1) of Regulation (EC) No 1924/2006. EFSA J., 2011, 9, 2207–2228.
9. Ehrenbergerová J., Brezinová Belcvedi N., Posuta V., Hrstková P., Cerkal R., Newman C.W., Changes caused by genotype and environmental conditions in beta-glucan of spring barley for dietetically beneficial human nutrition. Pl. Foods Human Nutr., 2008, 63, 111–117.
10. Estrada A., Yun C.H., VanKessel A., Li B., Hauta S., Laarveld B., Immunomodulatory activities of oat beta-glucan in vitro and in vivo. Microbiol. Immunol., 1997, 41, 991–998.
11. Gajdošová A., Petraláková Z., Havrlentová M., Červená V., Hovzová B., Šturdik E., Kogan G., The content of water-soluble and water-insoluble β-D-glucans in selected oats and barley varieties. Carbohydr. Polym., 2007, 70, 46–52.
12. Gormley T.R., Morrissey A., A note on the evaluation of wheaten breads containing oat flour or oat flakes. Irish J. Agric. Food Res., 1993, 32, 205–209.
13. Gutkoski L.C., Bonamigo J.M.D., Teixeira D.M.D., Pezo I., Development of oat based cereal bars with high dietary fiber content. Ciencia Tecnol. Alim., 2007, 27, 355–363.
14. Havrlentová M., Krajc J., Content of β-D-glucan in cereal grains. J. Food Nutr. Res., 2006, 45, 97–103.
15. Havrlentová M., Petraláková Z., Burgáráová A., Gago F., Hinlková A., Šturdik E., Cereals beta-glucans and their significance for the preparation of functional foods – a review. Czech J. Food Sci., 2011, 29, 1–14.
16. Howarth N.C., Saltzman E., Roberts S.B., Dietary fiber and weight regulation. Nutr. Rev., 2001, 59, 129–139.
17. Hovzová B., Kuniak E., Kelemenová B., Application of β-glucans isolated from mushrooms Pleurorus ostreatus (Pleuran) and Lentinus edodes (Lentinan) for increasing the bioactivity of yoghurts. Czech J. Food Sci., 2004, 22, 204–214.
18. Inglett G.E., USA's oatrim replaces fat in many food products. Food Technol., 1990, 44, 100–106.
19. Inglett G.E., Peterson S.C., Carriere C.J., Maneepun S., Rheological, textural and sensory properties of Asian noodles containing an oat cereal hydrocolloid. Food Chem., 2005, 90, 1–8.
20. Ingr I., Pokorny J., Valenťova H., Senzorická analýza potravin. 2001, MZLU, Brno, 201p (in Czech).
21. Johansson L., Tuomainen P., Ylinen M., Ekholm P., Virikki L., Structural analysis of water-soluble and-insoluble beta-glucans of whole-grain oats and barley. Carbohydr. Polym., 2004, 58, 267–274.
22. Kalinga D., Mishra V.K., Rheological and physical properties of low fat cakes produced by addition of cereal beta-glucan concentrates. J. Food Process. Preserv., 2009, 33, 384–400.
23. Kerckhoffs D.A.J.M., Hornstra G., Mensink R.P., Cholesterol-lowering effect of β-glucan from oat bran in mildly hypercholesterolemic subjects may decrease when β-glucan is incorporated into bread and cookies. Am. J. Clin. Nutr., 2003, 78, 221–227.
24. Khoury D.E., Cuda C., Luhovy B.L., Anderson, G.H., Beta-glucan: Health benefits in obesity and metabolic syndrome. J. Nutr. Metab., 2012, 2012, 851362.
25. Kovacs J., Composition of oats and nettle extracts to be used as herbal components in the food industry. Hungary, patent No 276 63, 111–117.
26. Lazaridou A., Biliaderis C.G., Micha-Screttas M., Steele B.R., A comparative study on structure-function relations of mixed-linkage (1-3), (1-4) linear β-D-glucans. Food Hydrocoll., 2004, 18, 837–855.
28. Lee S., Inglett G.E., Palmquist D., Warner K., Flavor and texture attributes of foods containing beta-glucan-rich hydrocolloids from oats. LWT – Food Sci. Technol., 2009, 42, 350–357.
29. Lyly M., Salmenkallio-Marttila M., Suortti T., Autio K., Pouitanen K., Lahteenmäki L., Influence of oat β-glucan preparations on the perception of mouthfeel and on rheological properties in beverage prototypes. Cereal Chem., 2003, 80, 536–541.
30. Mäkki Y., Trends in dietary fibre research and development – A Review. Acta Aliment., 2004, 33, 39–62.
31. Müller R., Bohatiel J., Boltz D., Frank, B., Process for the production of a seasoning sauce based on oat. US-Patent, 1995, No 5, 407,690.
32. Nazare J.A., Normand S., Triantafyllou A.O., DeLaPerriere A.B., Desage M., Laville M., Characterization and functional properties of an oat gum extracted from a drought harvested oat (Avena sativa). Food Sci. Biotechnol., 2009, 18, 900–903.
33. Nilsson U., Johansson M., Nilsson A., Björck I., Nyman, M., Dietary supplementation with beta-glucan enriched oat bran increases faecal concentration of carboxylic acids in healthy subjects. Europ. J. Clin. Nutr., 2008, 62, 978–984.
34. Ramos-Chavira N., Carvajal-Millan E., Rascon-Chu A., Marquez-Escalante J., Santana, Rodriguez, V., Salmeron-Zamora, J., Modulation of the postprandial phase by beta-glucan in overweight subjects: Effects on glucose and insulin kinetics. Molec. Nutr. Food Res., 2009, 53, 361–369.
35. Skendi A., Biliaderis C.G., Papageorgiou M., Rudek C., Microbial activities in kôrky nebaleného a baleného chleba. Bulletin Food Res., 1990, 29, 353–360.
36. Vitaglione P., Lumaga R.B., Montagnese C., Messia M.C., Marconi E., Scalì L., Satiating effect of a barley beta-glucan-enriched snack. J. Am. Coll. Nutr., 2010, 29, 113–121.
37. Wood P.J., Relationship between solution properties of cereal beta-glucans and physiological effects – a review. Trends Food Sci. Techn., 2004, 15, 313–320.
38. Yun C.H., Estrada A., Van Kessel A., Byung-Chul P.I., Laarveld B., Beta-glucan, extracted from oat, enhances disease resistance against bacterial and parasitic infection. FEMS Immun. Med. Microbiol., 2003, 35, 67–75.