Efficiency and credit ratings: a permutation-information-theory analysis

Aurelio Fernandez Bariviera¹,³,⁸, Luciano Zunino²,³,⁴, M Belén Guercio⁴,⁵, Lisana B Martinez¹ and Osvaldo A Rosso⁴,⁶,⁷

¹ Department of Business, Universitat Rovira i Virgili, Avenida Universitat 1, E-43204 Reus, Spain
² Centro de Investigaciones Ópticas (CONICET La Plata—CIC), C.C. 3, 1897 Gonnet, Argentina
³ Departamento de Ciencias Básicas, Facultad de Ingeniería, Universidad Nacional de La Plata (UNLP), 1900 La Plata, Argentina
⁴ Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
⁵ Instituto de Investigaciones Económicas y Sociales del Sur (UNS-CONICET) and Universidad Provincial del Sudoeste (UPSO), Bahía Blanca, Argentina
⁶ Laboratorio de Sistemas Complejos, Facultad de Ingeniería, Universidad de Buenos Aires, 1063 Avenida Paseo Colón 840, Ciudad Autónoma de Buenos Aires, Argentina
⁷ LaCCAN/CPMAT—Instituto de Computação, Universidade Federal de Alagoas, BR 104 Norte km 97, 57072-970 Maceió, AL, Brazil
E-mail: aurelio.fernandez@urv.net, lucianoz@ciop.unlp.edu.ar, guerciomb@gmail.com, lisanabelen.martinez@urv.net and oarosso@gmail.com

Received 5 April 2013
Accepted 23 July 2013
Published 21 August 2013

Online at stacks.iop.org/JSTAT/2013/P08007
doi:10.1088/1742-5468/2013/08/P08007

Abstract. The role of credit rating agencies has been under severe scrutiny after the subprime crisis. In this paper we explore the relationship between credit ratings and informational efficiency of a sample of thirty nine corporate bonds of US oil and energy companies from April 2008 to November 2012. For this purpose we use a powerful statistical tool, relatively new in the financial literature: the complexity–entropy causality plane. This representation space allows us to

⁸ Author to whom any correspondence should be addressed.
graphically classify the different bonds according to their degree of informational efficiency. We find that this classification agrees with the credit ratings assigned by Moody’s. In particular, we detect the formation of two clusters, which correspond to the global categories of investment and speculative grades. Regarding the latter cluster, two subgroups reflect distinct levels of efficiency. Additionally, we also find an intriguing absence of correlation between informational efficiency and firm characteristics. This allows us to conclude that the proposed permutation-information-theory approach provides an alternative practical way to justify bond classification.

Keywords: models of financial markets, nonlinear dynamics, stochastic processes, risk measure and management

Contents

1. Introduction 2
2. Credit ratings 3
3. Informational efficiency and the complexity–entropy causality plane 5
4. Data and results 6
5. Conclusions 12

Acknowledgments 13

Appendix. Permutation-information-theory based quantifiers

A.1. Entropy and statistical complexity 14
A.2. Complexity–entropy plane 15
A.3. Estimation of the probability distribution function 15

References 18

1. **Introduction**

In his classical definition, Fama [1] establishes that a market is informationally efficient if prices reflect all available information, and classifies efficiency into three broad categories: (i) *weak efficiency* if today’s price reflects the information embedded in the series of past prices, (ii) *semi-strong efficiency* if prices reflect all public information, beyond past prices, and (iii) *strong efficiency* if prices reflect all public and private information. We will center our study in the weak form of informational efficiency. Prices are in fact a mechanism of signaling. Hayek [2] says that the price system can be regarded as a platform for communicating information, and its functioning is based on the economy of knowledge where ‘by a kind of symbol, only the most essential information is passed on, and passed on only to those concerned’. In fact such a definition was anticipated by Gibson [3], who wrote ‘when shares become publicly known in an open market, the value which they
acquire there may be regarded as the judgment of the best intelligence concerning them’.
Later, Bachelier [4] formalized the first mathematical model of security prices, considering
a stochastic process without memory. In fact, as recognized by LeRoy [5], the efficient
market hypothesis (EMH) is the theory of competitive equilibrium applied to securities
markets. There is a vast literature on empirical research related to weak informational
efficiency. It is worth mentioning here that deviations from the EMH have been confirmed
for oil and energy markets—see, for instance, results obtained in [6]–[12].
Since the subprime crisis, the activities of credit rating agencies (CRAs) are under
scrutiny, due to their difficulties in ranking financial securities, especially collateralized
debt obligations (CDOs). There are some paradigmatic examples of the slow reaction of
CRAs to market movements: Enron was rated investment grade by both Moody’s and
Standard and Poor’s, four days prior to its bankruptcy on 2 December 2001, and more
recently Lehman Brothers was still rated investment grade by both agencies on the day
of its bankruptcy filing, on 15 September 2008.
The aim of this paper is to build a bridge between credit ratings and a market
derived measure, i.e. informational efficiency. Specifically, we explore the link between the
correlated stochastic behavior of the bond yield time series (quantified by a combination
of entropy and complexity measures) and bond ratings. We want to: (i) classify corporate
bonds by means of the complexity–entropy causality plane, (ii) establish a correspondence
between credit ratings and levels of informational efficiency, and (iii) analyze the potential
link between market efficiency and firm ratios. It is worth remarking here that we are not
trying to analyze causality between credit rating and informational efficiency. Probably, a
better rating induces market participants to trade more actively this bond, increasing the
informative flow to the market and, consequently, the associated informational efficiency.
In contrast, it could be thought that better informational efficiency reflects an intrinsic
quality of the firm that is captured by CRAs.
This paper is organized as follows. Section 2 presents a review about credit ratings.
Section 3 describes the study of informational efficiency by using tools derived from
Information Theory. Section 4 details the data analyzed and the results obtained. Section 5
draws together the main findings of our work. Finally, the appendix includes a thorough
explanation of the permutation-information-theory based quantifiers applied in this paper.

2. Credit ratings
The credit rating industry was born at the beginning of the twentieth century. In fact,
Moody’s, the oldest of the rating agencies, began operations in 1909, publishing ratings of
railroad companies. Credit ratings are intended to measure the likelihood of a firm fulfilling
its debt obligations. According to the European Parliament and Council of the European
Union9, ‘credit rating means an opinion regarding the creditworthiness of an entity, a debt
or financial obligation, debt security, preferred share or other financial instrument, or of an
issuer of such a debt or financial obligation, debt security, preferred share or other financial
instrument, issued using an established and defined ranking system of rating categories’.

9 European Parliament and Council of the European Union, Regulation (EC) No. 1060/2009 of the European
Parliament and of the Council of 16 September 2009 on Credit Rating Agencies, 17 Nov 2009 http://eu.vlex.com/
vid/parliament-council-credit-rating-agencies-70257218.
doi:10.1088/1742-5468/2013/08/P08007
Nevertheless, credit ratings should not be understood as a buy or sell recommendation or a warranty of payment.

Credit ratings are based on the opinions of analysts who, after examining quantitative data (e.g. financial statements, financial ratios, macroeconomic data, etc) and qualitative data (interviewing the firm’s senior managers), reach a decision about the rating. These ratings are usually materialized in a letter grade or a combination of letters and figures. The best rating is Aaa and the worst is C. Between them, there are twenty categories, which are intended to fine tune the credit appraisal. They can be divided into two global categories: investment (the upper half) and speculative (the bottom half) grades. The first category represents instruments issued by companies that have solid financial indicators and have a high payment capacity. The second category represents instruments issued by companies whose financial strength is questioned, and default on debt or late repayment is likely to occur.

At the beginning, credit ratings were mostly focused on utility companies. Later, financial regulations increased the importance of CRAs. The Federal Reserve was created in 1913 and the Securities and Exchange Commission (SEC) of the United States in 1934. These two institutions rapidly began to issue financial regulations to standardize the format of financial information disclosure and to limit the risk exposure of banks. In order to promote a safer and more transparent financial system, bank regulators in many countries link the minimum capital requirements to bond rating, as a standard measure of the riskiness of the bonds. Although there are a significant number of CRAs, three of them, namely Moody’s, Standard and Poor’s and Fitch, comprise about 80% of the market share. Successive regulations in the US and other countries favor this concentration and, as White [13] recognizes, ‘creditworthiness judgments of these third-party raters attained the force of law’. In this line, Tichy [14] states that these three big rating agencies are regarded as all-powerful and unregulated elements of the financial markets.

A main criticism of the CRAs’ assessment is their lack of transparency. They do not disclose any of the criteria upon which their ratings are based, or the methods applied. In addition, their business model is questioned. At the beginning of their activities, CRAs raised money from investors who were interested in an independent credit risk appraisal. However, in the 1970s, the revenue source shifted from ‘investor pays’ to ‘issuer pays’. This change casts some doubts about the independence of opinions and, consequently, gives rise to potential conflicts of interest. CRAs face two important forces: on the one hand they are interested in giving their best opinion on the credit quality of a firm, but, on the other hand, they want to give ‘good news’ to the firm that pays for the service. This situation is relevant because in most markets it is mandatory for a firm to contract one of the CRAs in order to be authorized to issue new debts. Nevertheless, the fact that investors pay for rating information does not prevent big mistakes. Ross [15] remembers that 11% of investment grade corporate issues and 78% of the municipal bonds that had been rated as Aaa or Aa defaulted during the Great Depression. This situation reflects the fact that credit rating is not a trivial task.

Most of the analyses on ratings in the literature focused their attention on guessing the variables that mainly affect or determine the assignation of rating categories, and on investigating the influence of rating changes in prices and yields. There are several papers that analyze the relationship between rating and firm risk, i.e. the comparison between ratings and market based measures to assess the risk of firms. In other words, they try
to figure out whether ratings inject new information to the market or whether, on the contrary, the market has already incorporated that information before the disclosure of ratings. Weinstein [16] finds empirical evidence that prices change before rating change announcements. In the same line of thinking, Geske and Delianedis [17] conclude that markets anticipate to rating changes independently that the change is within or between speculative and investment grade categories. Elton et al [18] analyze the corporate bond price behaviors, taking into account that the credit rating qualifications given by Moody’s and Standard and Poor’s determine homogeneous groups related to the yield curve. However, they recognize the existence of other important factors that affect the price bond evolution such as the default risk, liquidity, tax liability, recovery rate and maturity. Perraudin and Taylor [19] find ‘that bond prices and credit ratings generally embed similar views on relative credit risk, and any difference in views that do arise are often temporary’. In a recent work, May [20] detects that changes in credit ratings produce a significant reaction in bond prices. Lu et al [21] study the effect of uncertainty and asymmetry of information over corporate bond spreads and find that yield spread of bonds with short maturities are partially explained by corporate credit rating. Abad et al [22] find evidence that negative announcements of ratings convey relevant information to the market.

In this paper we are particularly interested in exploring a potential relationship between credit ratings and informational efficiency from a physical viewpoint. This link could help to find a more objective and unbiased way to classify credit ratings.

3. Informational efficiency and the complexity–entropy causality plane

The study of weak informational efficiency is about the possibility of unveiling information from prices or return time series. Financial markets can be regarded as dynamical systems, whose behavior is recorded in time series of prices, yields, turnover, etc. These time series should be carefully analyzed in order to understand the underlying phenomenon. Quantifiers derived from Information Theory can be particularly suitable candidates for this task since they allow us to extract some properties of the probability distributions estimated from the observed data. One of the key metrics is Shannon entropy. Given any arbitrary discrete probability distribution \(P = \{ p_i \geq 0, i = 1, \ldots, M \} \) for which \(\sum_{i=1}^{M} p_i = 1 \), Shannon entropy is defined as \(S[P] = -\sum_{i=1}^{M} p_i \ln p_i \) [23]. It is equal to zero if the underlying structure is fully deterministic \((p_k = 1 \land p_i = 0, \forall i \neq k) \) and reaches a maximum value for an uncorrelated stochastic process (uniform distribution, i.e. \(p_i = 1/M, \forall i = 1, \ldots, M \)). It is remarkable that this amount of information is computed in terms of state probabilities and does not depend on a particular distribution.

The use of informational entropy to study economic phenomena can be traced back to the paper by Theil and Leenders [24], where entropy is used to predict short-term price fluctuations in the Amsterdam Stock Exchange. Fama [25] and Dryden [26] perform a similar study for the New York and London Stock Exchanges, respectively. Philippatos and Nawrocki [27] analyze the proportions of securities with positive, negative and null returns on the American Stock Exchange using Information Theory methodologies, and conclude that they are dependent on the previous day and are not significantly influenced by the proportion of untraded securities. Philippatos and Wilson [28] propose the average mutual information or shared entropy as a proxy for systematic risk. Much more recently, Risso [29] combines an entropy quantifier and symbolic time series analysis in order to relate informational efficiency and the probability of having an economic crash. Later, the
same author [30] also uses Shannon entropy to rank the informational efficiency of several stock markets around the world. Alvarez-Ramirez and coworkers implement a multiscale entropy concept to monitor the evolution of the informational efficiency over different time horizons. By applying this methodology to crude oil prices [31, 32] and the Dow Jones index (DJI) [33], the presence of some particular cyclic dynamics is unveiled.

However, analyzing time series by only estimating the Shannon entropy could be insufficient since, as recalled by Feldman and Crutchfield [34], an entropy measure does not quantify the degree of structure present in a process. In fact, it is necessary to measure the statistical complexity in order to fully characterize the system’s dynamics. This is why we have proposed considering also the statistical complexity for the analysis of financial time series [35]. Measures of statistical complexities try to quantify the underlying hidden organizational structure. In that sense, perfect order and maximal randomness (a periodic sequence and a fair coin toss, for example) are defined with zero complexity because they are the easiest to describe and understand. At a given distance from these extremes, a wide range of possible degrees of physical structure exists. The complexity measure allows us to quantify this array of behavior [36].

In the present paper we employ the complexity–entropy causality plane (CECP), i.e. the representation space with the permutation entropy of the system in the horizontal axis and an appropriate permutation statistical complexity measure in the vertical one, for the analysis. This novel information-theory tool was recently shown to be a practical and robust way to discriminate the linear and nonlinear correlations present in stock [35], commodity [37] and sovereign bond [38] markets. The location in the CECP allows us to quantify the inefficiency of the system under analysis, because the presence of temporal patterns derives in deviations from the ideal position associated with a totally random process, i.e. normalized entropy and statistical complexity equal to one and zero, respectively. Consequently, the distance to this random ideal planar location can be used to define a ranking of efficiency. Technical details about the estimation of the permutation entropy, and the permutation statistical complexity, as well as the construction of the CECP are left to the appendix, in order to make the reading of the paper easier. Readers unfamiliar with these topics are strongly encouraged to read the appendix at this point.

4. Data and results

In this work we analyze the daily values of the yield to maturity of thirty nine corporate bonds, corresponding to oil and energy companies of the United States. The yield to maturity is the annualized percentage return of a bond held until its stated maturity. All data were collected from the Datastream database. The period under analysis goes from 1st April 2008 until 16th November 2012, giving a total of $N = 1209$ data points for each bond. Time counting was performed over trading days, skipping weekends and holidays. In order to homogenize our sample, bonds are selected using the following criteria: (i) they are issued by companies from the United States and from the oil and energy sectors, (ii) they are straight bonds, (iii) the coupons are constant with a fixed frequency, (iv) the repayment is at par, (v) they mature before year 2029, (vi) they are long term (10–30 years), and (vii) the rating is available. To arrive at the thirty nine corporate bonds, we select only one bond per firm in order to avoid over representation bias. Codes and names of these indices are listed in table 1. We consider the current ratings at the end of the period.
Table 1. Corporate bonds.

DS Code	Borrower	Issue date	Maturity date	Coupon	Moody’s rating
1 18797N	Anadarko Petroleum Corporation	15/10/96	15/10/26	7.500	Ba1
2 17874U	Apache Corporation	27/02/96	15/03/26	7.700	A3
3 81359Q	Berry Petroleum Co.	24/10/06	01/11/16	8.250	B3
4 56161F	Buckeye Partners Lp	30/06/05	01/07/17	5.125	Baa3
5 90269K	Canadian Natural Resources Limited	19/03/07	15/05/26	5.700	Baa1
6 93510X	Cimarex Energy Company	01/05/07	01/05/17	7.125	Ba2
7 216442	Conocophillips Company	01/07/97	01/01/27	7.800	A1
8 18739L	El Paso Corporation	03/02/98	01/02/18	7.000	Ba3
9 18258R	El Paso Natural Gas Company	13/11/96	15/11/26	7.500	Baa3
10 18438P	Enbridge Energy Partners Lp	01/10/98	01/10/28	7.125	Baa1
11 61384H	Energen Corporation	22/07/97	24/07/17	7.400	Baa3
12 81359L	Energy Transfer Partners Ltd	23/10/06	15/02/17	6.125	Baa3
13 1688NK	EOG Resources Incorporated	10/09/07	15/09/17	5.875	A3
14 2101ME	Forest Oil Corp.	15/12/07	15/06/19	7.250	B1
15 251985	Hess Corporation	01/10/99	01/10/29	7.875	Baa2
16 46082X	Husky Energy Incorporated	18/06/04	15/06/19	6.150	Baa2
17 18791U	Marathon Oil Corporation	15/05/92	15/05/22	9.375	Baa2
18 1798EF	Mcmoran Exploration Co.	14/11/07	15/11/14	11.875	Caa1
19 241094	Murphy Oil Corporation	04/05/99	01/05/29	7.050	Baa3
20 95576F	Nexen Incorporated	04/05/07	15/05/17	5.650	Baa3
21 18616C	Noble Energy Incorporated	15/10/93	15/10/23	7.250	Baa2
22 251451	Occidental Petroleum Corporation	10/02/99	15/02/29	8.450	A2
23 38803V	Overseas Shipholding Group Inc	19/02/04	15/02/24	7.500	Caa1
24 80814U	Peabody Energy Corp.	12/10/06	01/11/26	7.875	Ba1
25 65954C	Pioneer Natural Resources Company	01/05/06	01/05/18	6.875	Ba1
26 49481N	Plains All American Pipeline Lp	15/02/05	15/08/16	5.875	Baa3
27 86422F	Plains Exploration and Production Co.	13/03/07	15/03/17	7.000	B1
28 64349H	Quicksilver Resources Incorporated	16/03/06	01/04/16	7.125	B3
29 1722EQ	Range Resources Corporation	28/09/07	01/10/17	7.500	Ba3
30 18737W	Sherwin-Williams Company	10/02/97	01/02/27	7.375	A3
31 18242J	Spectra Energy Capital Llc	20/07/98	15/07/18	6.750	Baa2
32 49480M	Stone Energy Corp.	15/12/04	15/12/14	6.750	Caa2
under analysis. However, we must highlight that the ratings of the selected bonds were very stable during all of the period and only three of them changed from investment to speculative grades or vice versa.

We estimate permutation entropy (H_S) and permutation statistical complexity (C_{JS}) for the different corporate bonds. Embedding dimensions $D = \{3, 4, 5\}$ and embedding delay $\tau = 1$ are chosen. Ordinal patterns generated by these parameters correspond to three, four and five consecutive days. As we mention in the appendix, the pattern length (embedding dimension) should satisfy the relation $N \gg D!$ in order to achieve reliable statistics. Note that for $D = 5$ we have 120 possible patterns. Taking into account that $N = 1209$ the validity of the required inequality could be questioned. However, comparing the analysis for the different embedding dimensions (please see figures 1 and 3) we conclude that the results obtained are similar, supporting the choice of $D = 5$ in our characterization. It should be noted that long-range correlations in the time series are reflected in the relative frequency of the ordinal patterns, i.e. some particular patterns appear more often than the others due to the memory effect, and the estimated probability distribution is different from the uniform one expected for an uncorrelated stochastic process. Moreover, stochastic processes with different long-range correlations, such as fractional Gaussian noise (fGn) and fractional Brownian motion (fBm), can be clearly discriminated by using permutation quantifiers with parameters similar to that employed in the present analysis [39]–[42].

Results obtained by estimating both permutation quantifiers, H_S and C_{JS}, for the corporate bond markets of US oil and energy companies are displayed in figure 1. According to them we can clearly identify two clusters. The planar location of each cluster corresponds to homogeneous rating categories: investment and speculative grades. The first category (black and red symbols) exhibits, on average, high entropy and low complexity, indicating that series behaves more randomly and, thus, that they are closer to the informationally efficient behavior. The second category can be subdivided into two subgroups. The bonds in the upper part of this category (Ba1–Ba3), represented by green symbols, are located in an area with intermediate entropy and complexity values. Finally, the lower part of the speculative grade bonds (B1–Caa2), indicated by blue and light blue symbols, exhibits less entropy and higher complexity, which highlight their informational

Table 1. (Continued.)

DS Code	Borrower	Issue date	Maturity date	Coupon	Moody’s rating
33	18725W Sunoco Incorporated	01/11/94	01/11/24	9.000	Ba2
34	96571M Swift Energy Company	01/06/07	01/06/17	7.125	B3
35	602040 Talisman Energy Incorporated	21/10/97	15/10/27	7.250	Baa2
36	244814 Tennessee Gas Pipeline Company	13/03/97	01/04/17	7.500	Baa3
37	16527D Transcanada Pipelines	14/10/97	14/10/25	7.060	A3
38	243459 Transcontinental Gas Pipe Line Co.	15/07/96	15/07/26	7.080	Baa2
39	18241H Valero Energy Corporation	25/06/96	01/07/26	7.650	Baa2
Figure 1. Location of the corporate bond markets of US oil and energy companies in the CECP. Permutation quantifiers are estimated by using different embedding dimensions $D = \{3, 4, 5\}$ and embedding delay $\tau = 1$. The following symbols and colors are employed to discriminate the different credit ratings: black circle (A1), black square (A2), black triangle (A3), red circle (Baa1), red square (Baa2), red triangle (Baa3), green circle (Ba1), green square (Ba2), green triangle (Ba3), blue circle (B1), blue square (B3), light blue circle (Caa1) and light blue square (Caa2). Dashed lines represent the maximum and minimum complexity values for a given value of the entropy (see, for instance, [43] for further details about these bounds).
Figure 2. Average location of the three clusters identified in the analysis: corporate bonds in the investment category grade (A1 to Baa3, black lines), in the upper part of the speculative grade (Ba1 to Ba3, red lines), and in the lower part of this category (B1 to Caa2, blue lines). Mean and standard deviation of the permutation quantifiers estimated with $D = 5$ and embedding delay $\tau = 1$ for each cluster are plotted. Dashed lines represent the maximum and minimum complexity values for a given value of the entropy.

inefficiency. Of course, these are average behaviors, and particular exceptions can be observed. In figure 2 the mean and standard deviation of the permutation quantifier values estimated with $D = 5$ and embedding delay $\tau = 1$ for the above mentioned clusters are displayed. Estimated values for permutation entropy and permutation statistical complexity show a high correlation. This kind of information redundancy is characteristic of stochastic processes. When the temporal correlations in the process increase, H_S and C_{JS} are smaller and larger, respectively, advising about the presence of these patterns. The locations in the CECP allow us to conclude that the correlated stochastic properties of the yields time series are coherent with classifications given by CRAs. Following the same approach, it was very recently shown that the qualifications given by Moody’s to sovereign bonds of thirty countries are coherent with the location of the associated time series in the CECP [38].

Trying to justify the fact that intrinsic temporal correlations play a significant role in the CECP location obtained for the different corporate bonds, we have also estimated the permutation quantifiers for the shuffled corporate bond data. Shuffled realization of the original data is obtained, permuting them in a random order, and eliminating, consequently, all non-trivial temporal correlations. From figure 3, where the location obtained for the original data (blue circles) and its shuffled counterparts (red circles) are depicted, it can be easily concluded that the positions obtained from the original data are not obtained by chance and the underlying correlations are relevant. Estimated values of the permutation quantifiers for the shuffled data are very close to that expected for a fully random record ($H_S \approx 1$ and $C_{JS} \approx 0$). The same behavior for stock [35] and commodity [37] markets has been previously confirmed.
Figure 3. Location of the original (blue circles) and shuffled (red circles) corporate bond markets in the CECP with embedding dimensions $D = 3$ (upper plot), $D = 4$ (central plot) and $D = 5$ (lower plot) and embedding delay $\tau = 1$. The estimations for the shuffled realization are very close to that expected for a fully random record with $H_S \approx 1$ and $C_{JS} \approx 0$. Dashed lines represent the maximum and minimum complexity values for a given value of the entropy.
Table 2. Description of the five selected accounting ratios.

Ratio	Expected sign
Quick ratio (QR) \[\frac{\text{Cash and short term investments}}{\text{Current liabilities}}\]	+
Current ratio (CurrRatio) \[\frac{\text{Current assets}}{\text{Current liabilities}}\]	+
Coverage ratio (CovRatio) \[\frac{\text{Gross income}}{\text{Interest expense on debt}}\]	+
Interest earning ratio (IE) \[\frac{\text{Interest expense on debt}}{\text{Earnings before interest and taxes}}\]	-
Interest cash ratio (IC) \[\frac{\text{Interest expense on debt}}{\text{Net cash flow-operating activities}}\]	-

In order to analyze the relationship between informational efficiency and firm characteristics, we perform Spearman’s non-parametric correlation between permutation entropy and the average of some accounting ratios for the period 2008–2011. Selected accounting ratios and their expected signs are detailed in table 2. Results for this non-parametric correlation are shown in table 3. Similar results were also obtained using Kendall’s non-parametric correlation. If we consider the whole sample, there is not a statistically significant correlation. We have also computed the correlations for investment and speculative grade subgroups, looking for a differential effect within bond categories. After this classification, the results are similar, but the correlation with the interest cash is significant, albeit with the opposite expected sign.

According to these results, we conclude that accounting ratios are not significantly correlated with permutation entropy. This situation is relevant considering that accounting ratios are used for computing credit ratings and, as the CECP analysis shows, credit ratings are associated with informational efficiency. Consequently, accounting ratios and permutation entropy are both related to credit ratings but they appear to be independent of each other. In light of these results, we can conclude that permutation quantifiers provide additional explicative power to justify bond classification.

5. Conclusions

This paper analyzes the relationship between informational efficiency and credit ratings in the corporate bond markets of US oil and energy companies. On the one hand, we find that bonds that are included in the investment grade category, i.e. those with the highest creditworthiness, are located in the region of the CECP that represents the most informationally efficient behavior. On the other hand, bonds that belong to the speculative grade category exhibit less entropy and greater complexity, which indicates less efficiency. These different planar locations confirm a significant relationship between the informational efficiency and the credit rating of corporate bonds.

Additionally, in this paper we investigate a potential link between entropy and accounting ratios. The aim of this approach is to explore whether firm characteristics are
related to the permutation entropy, and thus connected with the degree of informational efficiency. Surprisingly, only one of the five selected accounting ratios, the interest cash, is statistically significant for speculative grade bonds. However, this correlation does not present the expected sign. This situation highlights an absence of correlation between accounting ratios and informational efficiency. Since we have confirmed a correlated behavior between informational efficiency and the permutation quantifiers estimated in this paper, we conclude that the CECP provides an alternative and more transparent way to justify bond classification.

In the future, we propose to further study the reasons behind the lack of relationship between accounting ratios and permutation entropy, in spite of the fact that, on the one hand, credit ratings and permutation entropy, and, on the other hand, credit ratings and accounting ratios, are actually linked. Additionally, we would like to expand this study to other sectors in order to set a comparative study and verify that the CECP provides a good classification of the rating quality, independently of the firm sector.

Table 3. Spearman’s non-parametric correlation between permutation entropy estimations and the five selected accounting ratios for the different embedding dimensions $D = \{3, 4, 5\}$. QR: quick ratio, CurrRatio: current ratio, CovRatio: coverage ratio, IE: interest earning ratio and IC: interest cash ratio.

	QR	CurrRatio	CovRatio	IE	IC
All firms $D = 3$	−0.190	−0.085	0.218	0.129	0.027
p-value	0.260	0.607	0.182	0.435	0.873
All firms $D = 4$	−0.228	−0.062	0.231	0.141	0.055
p-value	0.175	0.706	0.157	0.392	0.740
All firms $D = 5$	−0.181	−0.117	0.151	0.209	0.116
p-value	0.283	0.477	0.358	0.202	0.480
N	37a	39	39	39	39
Investment grade					
$D = 3$					
p-value					
Speculative grade					
$D = 3$					
p-value					

a El Paso Natural Gas Company and Tennessee Gas Pipeline Company are not included because cash and short-term investment figures are not available for these firms in the Datastream database.

b Significant at the 5% level.

c Significant at the 1% level.
Acknowledgments

Luciano Zunino, M Belén Guercio and Osvaldo A Rosso were supported by Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina. Lisana B Martinez acknowledges the support of a PhD scholarship from the Department of Business of Universitat Rovira i Virgili, Spain. Osvaldo A Rosso acknowledges support as a CNPq fellow, Brazil.

Appendix. Permutation-information-theory based quantifiers

A.1. Entropy and statistical complexity

The information content of a system is usually evaluated via a probability distribution function (PDF) describing the apportionment of some measurable or observable quantity, commonly a time series $S(t)$. An information measure can be roughly defined as a quantity that characterizes this given probability distribution. The Shannon entropy is very often used as the most ‘natural’ one [44]. Given any arbitrary discrete probability distribution $P = \{p_i, i = 1, \ldots, M\}$, with M the number of degrees of freedom, Shannon’s logarithmic information measure reads

$$S[P] = -\sum_{i=1}^{M} p_i \ln p_i.$$ \hspace{1cm} (A.1)

It can be regarded as a measure of the uncertainty associated with the physical process described by P. If $S[P] = S_{\min} = 0$ we are in a position to predict with complete certainty which of the possible outcomes i, whose probabilities are given by p_i, will actually take place. Our knowledge of the underlying process described by the probability distribution is maximal in this instance. In contrast, our knowledge is minimal for the equiprobable distribution $P_e = \{p_i = 1/M, i = 1, \ldots, M\}$ and, consequently, the uncertainty is maximal, $S[P_e] = S_{\max}$.

It is widely known that an entropic measure does not quantify the degree of structure present in a process [34]. Moreover, it was recently shown that measures of statistical or structural complexity are necessary for a better understanding of chaotic time series because they are able to capture their organizational properties [36]. This specific kind of information is not revealed by randomness measures. Rosso and coworkers introduced an effective statistical complexity measure (SCM) that is able to detect essential details of the dynamics and differentiate different degrees of periodicity and chaos [45]. This specific SCM, that provides important additional information regarding the peculiarities of the underlying probability distribution, is defined via the product

$$C_{JS}[P] = Q_J[P, P_e] \cdot H_S[P]$$ \hspace{1cm} (A.2)

of the normalized Shannon entropy

$$H_S[P] = S[P]/S_{\max},$$ \hspace{1cm} (A.3)

with $S_{\max} = S[P_e] = \ln M$, ($0 \leq H_S \leq 1$) and P_e the equiprobable distribution, and the so-called disequilibrium Q_J. This latter quantifier is defined in terms of the extensive (in the thermodynamical sense) Jensen–Shannon divergence $J[P, P_e]$ that links two PDFs.
We have
\[Q_{J}[P, P_e] = Q_0 \cdot J[P, P_e], \tag{A.4} \]
with
\[J[P, P_e] = S[(P + P_e)/2] - S[P]/2 - S[P_e]/2. \tag{A.5} \]

\(Q_0\) is a normalization constant, equal to the inverse of the maximum possible value of \(J[P, P_e]\). This value is obtained when one of the values of \(P\), say \(p_m\), is equal to one and the remaining \(p_i\) values are equal to zero, i.e.,
\[Q_0 = -2 \left\{ \left(\frac{M + 1}{M} \right) \ln(M + 1) - 2 \ln(2M) + \ln M \right\}^{-1}. \tag{A.6} \]

It is worth emphasizing here that the functional product form for the complexity measure was originally proposed by López-Ruiz et al [46]. The Jensen–Shannon divergence, that quantifies the difference between two (or more) probability distributions, is especially useful to compare the symbol-composition of different sequences [47]. We stress the fact that the statistical complexity defined above is the product of two normalized entropies (the Shannon entropy and the Jensen–Shannon divergence), but it is a non-trivial function of the entropy because it depends on two different probability distributions, i.e., the one corresponding to the state of the system, \(P\), and the equiprobable distribution, \(P_e\), taken as reference state. Furthermore, it has been shown that for a given value of \(H_S\), the range of possible SCM values varies between a minimum \(C_{\text{min}}\) and a maximum \(C_{\text{max}}\) [43]. Therefore, the evaluation of the complexity provides additional insight into the details of the system’s probability distribution, which is not discriminated by randomness measures like the entropy. It can also help to uncover information related to the correlational structure between the components of the physical process under study [48, 49].

A.2. Complexity–entropy plane

In statistical mechanics one is often interested in isolated systems characterized by an initial, arbitrary, and discrete probability distribution, and the main purpose is to describe their evolution towards equilibrium. At equilibrium, we can suppose, without loss of generality, that this state is given by the equiprobable distribution \(P_e\). The temporal evolution of the statistical complexity measure (SCM) can be analyzed using a two-dimensional (2D) diagram of \(C_{JS}\) versus time \(t\). However, the second law of thermodynamics states that, for isolated systems, entropy grows monotonically with time (\(dH_S/dt \geq 0\)). This implies that \(H_S\) can be regarded as an arrow of time, so that an equivalent way to study the temporal evolution of the SCM is through the analysis of \(C_{JS}\) versus \(H_S\). The complexity–entropy plane has been used to study changes in the dynamics of a system originated by modifications of some characteristic parameters (see, for instance, [35, 37, 38, 50, 51] and references therein).

A.3. Estimation of the probability distribution function

When using quantifiers based on Information Theory, such as \(H_S\) and \(C_{JS}\), a probability distribution associated with the time series under analysis should be provided beforehand. Many methods have been proposed for a proper estimation of it. We can mention:
(i) frequency counting [50], (ii) procedures based on amplitude statistics [52], (iii) binary symbolic dynamics [53], (iv) Fourier analysis [54], and (v) wavelet transform [55], among others. Their applicability depends on particular characteristics of the data, such as stationarity, time series length, variation of the parameters, level of noise contamination, etc. In all these cases the dynamics’ global aspects can be somehow captured, but the different approaches are not equivalent in their ability to discern all the relevant physical details.

Methods for symbolic analysis of time series that discretize the raw series and transform it into a sequence of symbols constitute a powerful tool. They efficiently analyze nonlinear data and exhibit low sensitivity to noise [56]. However, finding a meaningful symbolic representation of the original series can be a subtle task [57]. Different symbolic sequences may be assigned to a given time series [58]. In this respect, an issue of some importance is that of ascertaining whether the temporal order in which the distinct time series values appear is considered or not. In the first case one says that causal information has been taken into account. If one merely assigns a symbol \(a \) of the finite alphabet \(\mathcal{A} \) to each value of the time series, the ensuing symbolic sequence can be regarded as a non-causal coarse-grained description of the time series under consideration. The PDF extracted from the time series will not have any causal information. The usual histogram technique corresponds to this kind of assignment. Causal information may be incorporated into the construction process that yields \(P \) if one symbol of a finite alphabet \(\mathcal{A} \) is assigned instead to a (phase-space) trajectory’s portion, i.e., we assign ‘words’ to each trajectory portion. The Bandt and Pompe (BP) methodology [59] for extracting a PDF from a time series corresponds to the causal type of assignment, and the resulting probability distribution \(P \) constitutes, thus, a causal coarse-grained description of the system. ‘Partitions’ are devised by comparing the order of neighboring relative values rather than by apportioning amplitudes according to different levels. The appropriate symbol sequence arises naturally from the time series. No model-based assumptions are needed.

Given a time series \(S(t) = \{x(t) ; t = 1, \ldots, N\} \), an embedding dimension \(D > 1(\in \mathbb{N}) \), and an embedding delay \(\tau (\in \mathbb{N}) \), the BP-pattern of order \(D \) generated by

\[
s \mapsto (x_s, x_{s+\tau}, \ldots, x_{s+(D-2)\tau}, x_{s+(D-1)\tau}),
\]

(A.7)
is considered. To each time \(s \), BP assign a \(D \)-dimensional vector that results from the evaluation of the time series at times \(s, s + \tau, \ldots, s + (D-2)\tau, s + (D-1)\tau \). Clearly, the higher the value of \(D \), the more information about the ‘future’ is incorporated into the ensuing vectors. By the ordinal pattern of order \(D \) related to the time \(s \), BP mean the permutation \(\pi = (r_0 \ r_1 \ldots \ r_{D-2} \ r_{D-1}) \) of \((0 \ 1 \ldots \ D-2 \ D-1) \) defined by

\[
x_{s+r_0\tau} \leq x_{s+r_1\tau} \leq \cdots x_{s+r_{D-2}\tau} \leq x_{s+r_{D-1}\tau}.
\]

(A.8)

In this way the vector defined by (A.7) is converted into a definite symbol \(\pi \). To get a unique result BP consider that \(r_i < r_{i+1} \) if \(x_{s+r_i\tau} = x_{s+r_{i+1}\tau} \). This is justified if the values of \(x_t \) have a continuous distribution so that equal values are very unusual. For all the \(D! \) possible orderings (permutations) \(\pi_i \) when the embedding dimension is \(D \), their associated relative frequencies can be naturally computed according to the number of times this particular order sequence is found in the time series, divided by the total number of
Efficiency and credit ratings: a permutation-information-theory analysis

Figure A.1. Illustration of the construction principle for ordinal patterns of length D [60]. For $D = 4$, full circles and continuous lines represent the sequence $x_0 \leq x_3 \leq x_2 \leq x_1$ which leads to the pattern (0321).

sequences. Thus, an ordinal pattern probability distribution $P = \{p(\pi_i), i = 1, \ldots, D!\}$ is derived from the time series.

In order to illustrate the BP recipe, consider a simple example: a time series with seven ($N = 7$) values $x = \{4, 7, 9, 10, 6, 11, 3\}$, and we evaluate the BP-PDF for $D = 3$ and $\tau = 1$. Triplets (4, 7, 9) and (7, 9, 10) represent the permutation pattern (012) since the values are in increasing order. On the other hand, (9, 10, 6) and (6, 11, 3) correspond to the permutation pattern (201) since $x_{s+2} \leq x_s \leq x_{s+1}$, while (10, 6, 11) has the permutation pattern (102) with $x_{s+1} \leq x_s \leq x_{s+2}$. Then, the associated probabilities result: $p_{(012)} = p_{(201)} = 2/5$; $p_{(102)} = 1/5$; $p_{(021)} = p_{(120)} = p_{(210)} = 0$.

Graphically, figure A.1 illustrates the construction principle of the ordinal patterns of length $D \in \{2, 3, 4\}$ [60]. Consider the sequence $\{x_0, x_1, x_2, x_3\}$. For $D = 2$, there are only two possible directions from x_0 to x_1, up and down. For $D = 3$, starting from x_1 (up) the third part of the pattern can be above x_1, below x_0 or between x_0 and x_1 as it is illustrated in figure A.1. A similar situation is obtained starting from x_1 (down). For $D = 4$, for each one of the six possible positions for x_2 we will have 4 possible locations for x_3, leading in this way finally to the $D! = 4! = 24$ different ordinal patterns. A graphical representation of all possible patterns corresponding to $D = \{3, 4, 5\}$ can be found in figure 2 of [60].

The BP-generated probability distribution P is obtained once we fix the embedding dimension D and the embedding delay τ. The former parameter plays an important role in the evaluation of the appropriate probability distribution, since D determines the number of accessible states, given by $D!$. Moreover, it has been established that the length N of the time series must satisfy the condition $N \gg D!$ in order to achieve reliable statistics and proper distinction between stochastic and deterministic dynamics [40, 61]. With respect to the selection of the parameters, BP suggest in their cornerstone paper [59] to work with $3 \leq D \leq 7$ with a time lag $\tau = 1$. Nevertheless, other values of τ might provide additional information. It has recently been shown that this parameter is strongly related, when it is relevant, to the intrinsic time scales of the system under analysis [62]–[65].

doi:10.1088/1742-5468/2013/08/P08007

17
It is clear that, applying this prescription for symbolizing time series, some details of the original amplitude information and variability are lost. However, a meaningful reduction of the complex systems to their basic inherent structure is provided. The symbolic representation of time series by recourse to a comparison of consecutive points \((\tau = 1)\) or non-consecutive points \((\tau > 1)\) allows for an accurate empirical reconstruction of the underlying phase-space, even in the presence of weak (observational and dynamical) noise [59]. Furthermore, the ordinal pattern associated PDF is invariant with respect to nonlinear monotonic transformations. Accordingly, nonlinear drifts or scalings artificially introduced by a measurement device will not modify the quantifiers’ estimation, a useful property if one deals with experimental data (see, i.e., [66]). These advantages make the BP approach more convenient than conventional methods based on range partitioning. Additional advantages of the method reside in its simplicity (we need few parameters: the pattern length/embedding dimension \(D\) and the embedding delay \(\tau\)) and the extremely fast nature of the pertinent calculation process.

In this work the normalized Shannon entropy, \(H_S\) (A.3), and the SCM, \(C_{JS}\) (A.2), are evaluated using the permutation probability distribution. Defined in this way, these quantifiers are usually known as permutation entropy and permutation statistical complexity [41]. They characterize the diversity and correlational structure, respectively, of the orderings present in the complex time series. The complexity–entropy causality plane (CECP) is defined as the two-dimensional (2D) diagram obtained by plotting permutation statistical complexity (vertical axis) versus permutation entropy (horizontal axis) for a given system [40]. For further details about the estimation of permutation quantifiers and an exhaustive list of its main biomedical and econophysics applications we refer the reader to [67].

References

[1] Fama E F, Efficient capital markets: a review of theory and empirical work, 1970 J. Finance 25 383
[2] Hayek F A, The use of knowledge in society, 1945 Am. Econ. Rev. 35 519
[3] Gibson G R, 1889 The Stock Exchanges of London, Paris and New York: a Comparison (New York: G P Putnam)
[4] Bachelier L, Théorie de la spéculation, 1900 Ann. Sci. Normale Supérieure 3 21
[5] LeRoy S F, Efficient capital markets and martingales, 1989 J. Econ. Literature 27 1583
[6] Serletis A and Rosenberg A A, The Hurst exponent in energy futures prices, 2007 Physica A 380 325
[7] Uritskaya O Y and Serletis A, Quantifying multiscale inefficiency in electricity markets, 2008 Energy Econ. 30 3109
[8] Alvarez-Ramirez J, Alvarez J and Rodriguez E, Short-term predictability of crude oil markets: a detrended fluctuation analysis approach, 2008 Energy Econ. 30 2645
[9] Charles A and Darné O, The efficiency of the crude oil markets: evidence from variance ratio tests, 2009 Energy Policy 37 4267
[10] Alvarez-Ramirez J, Alvarez J and Solis R, Crude oil market efficiency and modeling: insights from the multiscaling autocorrelation pattern, 2010 Energy Econ. 32 993
[11] Alvarez-Ramirez J and Escarela-Perez R, Time-dependent correlations in electricity markets, 2010 Energy Econ. 32 269
[12] Arouni M El H, Dinh T H and Nguyen D K, Time-varying predictability in crude-oil markets: the case of GCC countries, 2010 Energy Policy 38 4371
[13] White L J, Markets: the credit rating agencies, 2010 J. Econ. Perspect. 24 211
[14] Tichy G, Did rating agencies boost the financial crisis? 2011 Intercon.: Rev. Eur. Econ. Policy 46 232
[15] Ross I, Higher stakes in the bond-rating game, 1976 Fortune 93 133
[16] Weinstein M I, The effect of a rating change announcement on bond price, 1977 J. Financ. Econ. 5 329

doi:10.1088/1742-5468/2013/08/P08007
Efficiency and credit ratings: a permutation-information-theory analysis

[17] Geske R L and Delianedis G, The components of corporate credit spreads: default, recovery, taxes, jumps, liquidity, and market factors, 2001 UCLA Anderson Working Paper No. 22-01 (available at SSRN: http://ssrn.com/abstract=306479 or doi:10.2139/ssrn.306479)

[18] Elton E J, Gruber M J, Agrawal D and Mann C, Factors affecting the valuation of corporate bonds, 2004 J. Bank. Financ. 28 2747

[19] Peraudin W and Taylor A P, On the consistency of ratings and bond market yields, 2004 J. Bank. Financ. 28 2769

[20] May A D, The impact of bond rating changes on corporate bond prices: new evidence from the over-the-counter market, 2010 J. Bank. Financ. 34 2822

[21] Lu C-W, Chen T-K and Liao H-H, Information uncertainty, information asymmetry and corporate bond yield spreads, 2010 J. Bank. Financ. 34 2265

[22] Abad P, Díaz A and Robles-Fernández M D, Credit rating announcements, trading activity and yield spreads: the Spanish evidence, 2012 Int. J. Monetary Econ. Financ. 5 38

[23] Cover T M and Thomas J A, 2006 Elements of Information Theory 2nd edn (New York: Wiley-Interscience)

[24] Theil H and Leenders C T, Tomorrow on the Amsterdam stock exchange, 1965 J. Bus. 38 277

[25] Fama E F, Tomorrow on the New York stock exchange, 1965 J. Bus. 38 285

[26] Dryden M M, Short-term forecasting of share prices: an information theory approach, 1968 Scottish J. Political Econ. 15 227

[27] Philippatos G C and Nawrocki D N, The behavior of stock market aggregates: evidence of dependence on the american stock exchange, 1973 J. Bus. Res. 1 101

[28] Philippatos G C and Wilson C J, Information theory and risk in capital markets, 1974 Omega 2 523

[29] Rosso W A, The informational efficiency and the financial crashes, 2008 Res. Int. Bus. Financ. 22 396

[30] Rosso W A, The informational efficiency: the emerging markets versus the developed markets, 2009 Appl. Econ. Lett. 16 485

[31] Martina E, Rodriguez E, Escarela-Perez R and Alvarez-Ramirez J, Multiscale entropy analysis of crude oil price dynamics, 2011 Energy Econ. 33 936

[32] Ortiz-Cruz A, Rodriguez E, Ibarra-Valdez C and Alvarez-Ramirez J, Efficiency of crude oil markets: evidences from informational entropy analysis, 2012 Energy Policy 41 365

[33] Alvarez-Ramirez J, Rodriguez E and Alvarez J, A multiscale entropy approach for market efficiency, 2012 Int. Rev. Financ. Anal. 21 64

[34] Feldman D P and Crutchfield J P, Measures of statistical complexity: why? 1998 Phys. Lett. A 238 244

[35] Zunino L, Zanin M, Tabak B M, Pérez D G and Rosso O A, Complexity–entropy causality plane: a useful approach to quantify the stock market inefficiency, 2010 Physica A 389 1891

[36] Feldman D P, McTague C S and Crutchfield J P, The organization of intrinsic computation: complexity–entropy diagrams and the diversity of natural information processing, 2008 Chaos 18 043106

[37] Zunino L, Tabak B M, Serinaldi F, Zanin M, Pérez D G and Rosso O A, Commodity predictability analysis with a permutation information theory approach, 2011 Physica A 390 876

[38] Zunino L, Bariviera A F, Belén Guercio M, Martinez L B and Rosso O A, On the efficiency of sovereign bond markets, 2012 Physica A 391 4342

[39] Bandt C and Shiha F, Order patterns in time series, 2007 J. Time Ser. Anal. 28 646

[40] Rosso O A, Larrondo H A, Martín M T, Plastino A and Fuentes M A, Distinguishing noise from chaos, 2007 Phys. Rev. Lett. 99 154102

[41] Rosso O A, Zunino L, Pérez D G, Figliola A, Larrondo H A, Garavaglia M, Martín M T and Plastino A, Extracting features of Gaussian self-similar stochastic processes via the Bandt–Pompe approach, 2007 Phys. Rev. E 76 061114

[42] Zunino L, Pérez D G, Martín M T, Garavaglia M, Plastino A and Rosso O A, Permutation entropy of fractional Brownian motion and fractional Gaussian noise, 2008 Phys. Lett. A 372 4768

[43] Martín M T, Plastino A and Rosso O A, Generalized statistical complexity measures: geometrical and analytical properties, 2006 Physica A 369 439

[44] Shannon C E and Weaver W, 1949 The Mathematical Theory of Communication (Champaign, IL: University of Illinois Press)

[45] Lamberti P W, Martín M T, Plastino A and Rosso O A, Intensive entropic non-triviality measure, 2004 Physica A 334 119

[46] López-Ruiz R, Mancini H L and Calbet X, A statistical measure of complexity, 1995 Phys. Lett. A 209 321

[47] Grosse I, Bernaola-Galván P, Carpena P, Román-Roldán R, Oliver J and Eugene Stanley H, Analysis of symbolic sequences using the Jensen–Shannon divergence, 2002 Phys. Rev. E 65 041905

[48] Rosso O A and Masoller C, Detecting and quantifying stochastic and coherence resonances via information-theory complexity measurements, 2009 Phys. Rev. E 79 040106(R)
Efficiency and credit ratings: a permutation-information-theory analysis

[49] Rosso O A and Masoller C, Detecting and quantifying temporal correlations in stochastic resonance via information theory measures, 2009 Eur. Phys. J. B 69 37
[50] Rosso O A, Craig H and Moscato P, Shakespeare and other English Renaissance authors as characterized by information theory complexity quantifiers, 2009 Physica A 388 916
[51] Lovallo M and Telesca L, Complexity measures and information planes of x-ray astrophysical sources, 2011 J. Stat. Mech. P03029
[52] De Micco L, Gonzalez C M, Larrondo H A, Martín M T, Plastino A and Rosso O A, Randomizing nonlinear maps via symbolic dynamics, 2008 Physica A 387 3373
[53] Mischaikow K, Mrozek M, Reiss J and Szyniszewski A, Construction of symbolic dynamics from experimental time series, 1999 Phys. Rev. Lett. 82 1144
[54] Powell G E and Percival I C, A spectral entropy method for distinguishing regular and irregular motion of Hamiltonian systems, 1979 J. Phys. A: Math. Gen. 12 2053
[55] Rosso O A, Blanco S, Jordanova J, Kolev V, Figliola A, Schürmann M and Başar E, Wavelet entropy: a new tool for analysis of short duration brain electrical signals, 2001 J. Neurosci. Methods 105 65
[56] Finn J M, Goettee J D, Toroczkai Z, Anghel M and Wood B P, Estimation of entropies and dimensions by nonlinear symbolic time series analysis, 2003 Chaos 13 444
[57] Bollt E M, Stanford T, Lai Y C and Zyczkowski K, Validity of threshold-crossing analysis of symbolic dynamics from chaotic time series, 2000 Phys. Rev. Lett. 85 3524
[58] Daw C S, Finney C E A and Tracy E R, A review of symbolic analysis of experimental data, 2003 Rev. Sci. Instrum. 74 915
[59] Bandt C and Pompe B, Permutation entropy: a natural complexity measure for time series, 2002 Phys. Rev. Lett. 88 174102
[60] Parlitz U, Berg S, Luther S, Schirdewan A, Kurths J and Wessel N, Classifying cardiac biosignals using ordinal pattern statistics and ordinal pattern statistics and ordinal pattern statistics, 2012 Comput. Biol. Med. 42 319
[61] Staniek M and Lehnertz K, Parameter selection for permutation entropy measurements, 2007 Int. J. Bifurcation Chaos 17 3729
[62] Zunino L, Soriano M C, Fischer I, Rosso O A and Mirasso C R, Permutation-information-theory approach to unveil delay dynamics from time-series analysis, 2010 Phys. Rev. E 82 046212
[63] Soriano M C, Zunino L, Rosso O A, Fischer I and Mirasso C R, Time scales of a chaotic semiconductor laser with optical feedback under the lens of a permutation information analysis, 2011 IEEE J. Quantum Electron. 47 252
[64] Soriano M C, Zunino L, Larger L, Fischer I and Mirasso C R, Distinguishing fingerprints of hyperchaotic and stochastic dynamics in optical chaos from a delayed opto-electronic oscillator, 2011 Opt. Lett. 36 2212
[65] Zunino L, Soriano M C and Rosso O A, Distinguishing chaotic and stochastic dynamics from time series by using a multiscale symbolic approach, 2012 Phys. Rev. E 86 046210
[66] Saco P M, Carpi L C, Figliola A, Serrano E and Rosso O A, Entropy analysis of the dynamics of El Niño/Southern oscillation during the Holocene, 2010 Physica A 389 5022
[67] Zanin M, Zunino L, Rosso O A and Papo D, Permutation entropy and its main biomedical and econophysics applications: a review, 2012 Entropy 14 1553