Microsatellite analysis of *Rafflesia cantleyi* from the Rafflesia Conservation and Interpretive Centre, Bersia Timur and Gerik Forest Reserve, Perak, Malaysia

C T Lee¹*, L H Tnaha, Z H Humaira¹¹, Z Nurul-Farhanah¹, S L Lee¹, K K S Ng¹, C H Ng¹, A Nur-Nabilah¹, B Norlia¹, A Noorshah¹ and M Y Siti-Munirah¹

¹Forest Research Institute Malaysia, 52109, Kepong, Selangor, Malaysia

* Corresponding author: leechait@frim.gov.my

Abstract. Located at Bersia Timur, the Rafflesia Conservation and Interpretive Centre (RCIC) was initiated by the Forest Research Institute Malaysia (FRIM) and FELDA to boost research and conservation efforts of the iconic Rafflesia species in the state of Perak. It also plays a role in supporting the economy of local communities by promoting local eco-tourism, providing trainings to local tour-guides and involving them in conserving the Rafflesia population. As part of the R & D and conservation effort, genetic diversity assessment of *Rafflesia cantleyi* from RCIC and Gerik Forest Reserve (FR) was carried out. Bract samples from a total of eight and 35 *R. cantleyi* individuals of different flowering/anthesis stages were collected from RCIC and Gerik FR, respectively. We used nine polymorphic microsatellite markers for genotyping. Despite the small sample size (~75% lesser compared with Gerik FR), the total number of alleles observed in RCIC is > 50% than that of Gerik FR, i.e., 33 compared to 57. The genetic diversity measure in terms of observed (H_o) and expected (H_e) heterozygosities from both sites are comparable (RCIC: $H_o = 0.5298$, $H_e = 0.5347$; Gerik FR: $H_o = 0.5145$, $H_e = 0.5868$). Our findings suggest that the *R. cantleyi* population in Gerik FR is a suitable source for future translocation activities.

1. Introduction

Rafflesia is a genus of holoparasitic flowering plants of the family Rafflesiaceae. The genus is small but interesting as some *Rafflesia* spp. are renowned for producing the largest single flowers in the world, growing up to a meter in diameter [1]. These extraordinary flora lack true leaves, stems and roots, they depend completely on their sole host plants, *Tetrastigma* vines (Vitaceae) for water and nutrients. *Rafflesia* spp. can only be found in the tropical rainforest of Southeast Asia. In Malaysia, there are currently 12 described *Rafflesia* species, seven in Peninsular Malaysia and five in Sabah and Sarawak [2].

The Rafflesia Conservation and Interpretive Centre (RCIC), with an area of 223.6 ha, is located at Bersia Timur, Gerik, Perak, Malaysia. It was initiated by the Forest Research Institute Malaysia (FRIM) and Federal Land Development Authority (FELDA) back in 2015, following the discovery of a *Rafflesia* population along Sungai Lebey in FELDA Bersia Timur. The initial objective of setting up the center was to boost R & D and conservation efforts of the iconic *Rafflesia* species in the state of Perak. A few years later, the idea came to fruition with funding from the 11th Malaysia Plan, under the Program: Research and Conservation of *Rafflesia* Populations in the Northern Region of Peninsular Malaysia. Within RCIC, there are eco-tourism zone, *in-situ* and *ex-situ* conservation zones. At
present, equipped with basic infrastructure and research facilities, RCIC also plays a role in supporting the economy of local communities by promoting local eco-tourism pertaining to Rafflesia sighting, providing trainings to local tour-guides, and involving them in conserving the Rafflesia population.

There are two Rafflesia species in RCIC, R. cantleyi Solms and R. azlanii Latiff & Wong, the latter being scarce. As part of the R & D and conservation effort, genetic diversity assessment of R. cantleyi from RCIC and Gerik Forest Reserve (FR) was carried out to investigate their genetic relatedness, which will facilitate future genetic restoration work.

2. Materials and Methods

2.1 Sampling

In 2019, Rafflesia cantleyi samples were collected from RCIC and Gerik Forest Reserve (FR), Perak. Non-destructive sampling was carried out. Bract tissues from a total of eight and 35 R. cantleyi individuals of different flowering/ anthesis stages were collected from RCIC and Gerik FR, respectively. The samples collected were kept in silica gels prior to DNA extraction with modified CTAB method [3].

2.2 Microsatellite genotyping

Nine microsatellite markers were used in genotyping the 43 R. cantleyi samples (Table 1). Multiplex PCRs were conducted in 8 µL reaction mixture, with ~10 ng of template DNA, 0.3 µM of each forward and reverse primer and 1x master mix of Type-it Multiplex PCR Kit (QIAGEN GmbH). PCR was run in GeneAmp PCR System 9700 (Applied Biosystems) using the following program: initial denaturing step at 95°C for 5 min, 55 cycles of 95°C (30 sec), 60°C (90 sec) and 72°C (30 sec), and a final extension of 30 min at 60°C. Subsequently, fragment analyses were carried out using an ABI 3130xl Genetic Analyzer with ROX 400 (Applied Biosystems) as the internal size standard.

2.3 Data analysis

Genotyping was performed using GeneMarker v2.6.4 (SoftGenetics). Genotypic data was analysed using GDA version 1.0 [6]. Cluster analysis at the individual level was performed using PowerMarker version 3.25 [7], adopting shared allele method [8], which is based on the proportion of shared alleles.

3. Results and Discussion

As reported by Barkman et al. (2017) [4], the microsatellite peak patterns of R. cantleyi revealed a diploid state. While the markers Raff 11 and Raff15 were developed for R. cantleyi [4], six of the nine microsatellite markers used in this study were developed for R. lagascae and R. manillana (Man109 - Man1169) [5]. The latter were transferable in R. cantleyi. Cross-amplification of microsatellite markers in closely related species has been demonstrated in numerous studies [9]. The majority of the microsatellite markers developed in R. lagascae have also been proven applicable in R. speciosa [10]. Although Barkman et al. (2017) reported no amplification for Raff12 [4], we were able to obtain PCR products for this locus, with observed alleles of 216, 220 and 246bp. The corresponding allele size range reported for 42 R. tuan-mudae was 208 – 224bp [4].

There has been a reduction in the R. cantleyi population size in RCIC due to trampling by elephants prior to the installation of electric fence. Nevertheless, despite the small sample size (~75% lesser compared with Gerik FR), the total number of alleles observed in RCIC is more than 50% of that of Gerik FR, i.e. 33 vs 57 (Table 2). In fact, two alleles (364bp and 383bp) at locus Man109 were found exclusively in RCIC. The genetic diversity measures in terms of observed (H_o) and expected (H_e) heterozygosities from both sites are comparable (RCIC: H_o = 0.5298, H_e = 0.5347; Gerik FR: H_o = 0.5145, H_e = 0.5868) (Table 2). This reflects that the R. cantleyi population in RCIC is not depauperate in genetic diversity compared with Gerik FR, the adjacent natural population, which is good for in situ conservation.
Table 1. Primer sequences (5′ – 3′) of the nine microsatellite markers used in this study.

Locus Name	Repeat motif	Forward & Reserve Primer Sequences	Reference
Raff11	AC	F: CGAGCATCAACATCATATCC	Barkman et al. 2017 [4]
		R: GCATGCAAGGTGCTTGTGTAT	
Raff12	GA	F: GAGAAAGTGAGCGTGAGTTGA	Barkman et al. 2017 [4]
		R: TGCCCTACCAATAAAAACTGG	
Raff15	TC	F: ACCTATGGTCCTTGGAGTGGG	Barkman et al. 2017 [4]
		R: CAGCAACAGCAAAAAGAAGG	
Man109	AC	F: ACGTAGTCCATCCATTGAAGG	Pelser et al. 2017 [5]
		R: ACCTAGCCACAGCTTC	
Man120	AG	F: GTGTATCTTCGCTGCTTTCAC	Pelser et al. 2017 [5]
		R: GTGTATCAACAGAGCAG	
Man171	AAT	F: GCCCGCCTTCACCATTAATC	Pelser et al. 2017 [5]
		R: AGAAGCGAGGTGAAACTGCTC	
Man273	AC	F: GCGTGGTTCATTCATGGAGG	Pelser et al. 2017 [5]
		R: AACTCAGGCCCTTCCTC	
Man714	AC	F: GTGCCTGCTAATGTGCTGCACACCCTT	Pelser et al. 2017 [5]
		R: CATAGGCTCTGACACCTTTGC	
Man1169	AC	F: CTTTGTCGAGTAAAGGCTAGTC	Pelser et al. 2017 [5]
		R: ACCTCAACTTCAATGCAGTC	

Table 2. The genetic diversity parameters of the *Rafflesia cantleyi* populations at RCIC and Gerik FR.

Population	Sample Size	Observed Heterozygosity (H_o)	Expected Heterozygosity (H_e)	Total no. of alleles	Mean no. of alleles per locus
RCIC	8	0.5298	0.5347	33	3.67
Gerik FR	35	0.5145	0.5868	57	6.33

The neighbour-joining tree based on DAS, shared allele distance [8] showed that the *R. cantleyi* population at FELDA Bersia Timur is not genetically distinct from those at Gerik FR, in that the eight *R. cantleyi* individuals from RCIC were not clustered under one branch in the dendrogram (Figure 1). This indicates that there is no prominent genetic differentiation between these two populations. Hence, our findings suggest that the *R. cantleyi* population in Gerik FR is a suitable source for future translocation activities, in other words, future introduction of *R. cantleyi* individuals from Gerik FR to RCIC for enrichment will not disrupt the existing population genetic structure.
Figure 1. Neighbour-joining tree based on shared allele distance [8] showing the relationship among the Rafflesia cantleyi samples. The eight individuals from the Rafflesia Conservation and Interpretive Centre (RCIC) did not form a cluster on their own (branches in red), indicating no prominent genetic differentiation between the RCIC and Gerik FR populations. Note: PPIR is the abbreviation for RCIC in Bahasa Malaysia, Pusat Pemuliharaan dan Interpretif Rafflesia.

Acknowledgements
This study was funded by the Ministry of Energy and Natural Resources under the 11th Malaysia Plan (Program Penyelidikan dan Pemuliharaan Populasi Rafflesia di Ekosistem Semulajadi Zon Utara Semenanjung Malaysia). We thank the supporting staff from the Genetics Laboratory FRIM (Ramli P, Ghazali J, Yahya M, Yarsi B, Sharifah T & late Suryani CS) for their laboratory assistance, as well as the staffs of RCIC (Nadiatul Hidayah ZA, Muhammad Shahmi D, Nur Fatin Nabila MZ and Nurul Huda AK), Ishak Y and Nuranis-Suraya B for their support during our sampling trips. We were glad to have Mohamad Alif Izzad MST and Muhammad Azlan S joining the field trip in July 2019 during their internship. We are grateful to the Hulu Perak District Forest Office for granting permission to access Gerik FR.
References

[1] Nais J 2001 Rafflesia of the world. Malaysia: Natural History Publications.

[2] Siti Munirah M Y, Salamah A and Razelan M S 2020 On the morphological variation of Rafflesia cantleyi (Rafflesiaceae) in Pulau Tioman, Pahang, Peninsular Malaysia. Blumea 65 75–82

[3] Murray M and Thompson W F 1980 Rapid isolation of high molecular weight plant DNA. Nucleic Acids Research 8 4321–4325

[4] Barkman T J, Klooster M R, Gaddis K D, Franzone B, Calhoun S, Manickam S, Vessabutr S, Sasirat S and Davis C C 2017. Reading between the vines: Hosts as islands for extreme holoparasitic plants. American Journal of Botany 104 1–8

[5] Pelser P B, Nickrent D L, Gemmill C E C and Barcelona J F 2017 Genetic diversity and structure in the Philippine Rafflesia lagascae complex (Rafflesiaceae) inform its taxonomic delimitation and conservation. Systematic Botany 42 543–553

[6] Lewis P O and Zaykin D 2001 Genetic data analysis (GDA: version 1.0 d16c): a computer program for the analysis of allelic data. http:// lewis.eeb.uconn.edu/ lewishome/software. html

[7] Liu K and Muse S V 2005 PowerMarker: integrated analysis environment for genetic marker data. Bioinformatics 21 2128–2129

[8] Jin L and Chakraborty R 1993 Estimation of genetic distance and coefficient of gene diversity from single-probe multilocus DNA fingerprinting data. Molecular Biology and Evolution 11 120–127

[9] Barbará T, Palma-Silva C, Paggi G M, Bered F, Fay M F and Lexer C 2007 Cross-species transfer of nuclear microsatellite markers: potential and limitations. Molecular Ecology 16 3759-3767

[10] Pelser P B, Nickrent D L and Barcelona J F 2018 A conservation genetic study of Rafflesia speciosa (Rafflesiaceae): patterns of genetic diversity and differentiation within and between islands. Blumea 63 93–101