On p-torsion of p-adic elliptic curves with additive reduction

René Pannekoek

May 5, 2014

1 Introduction

In this article, we fix a prime p. If E/\mathbb{Q}_p is an elliptic curve with additive reduction, and one chooses for it a minimal Weierstrass equation over \mathbb{Z}_p:

$$y^2 + a_1 xy + a_3 y = x^3 + a_2 x^2 + a_4 x + a_6, \quad a_i \in \mathbb{Z}_p \text{ for each } i,$$

then we denote by $E_0(\mathbb{Q}_p) \subset E(\mathbb{Q}_p)$ the subgroup of points that reduce to a non-singular point of the reduced curve. As is well-known, this subgroup does not depend on the choice of minimal Weierstrass equation.

The purpose of this note is to investigate the structure of $E_0(\mathbb{Q}_p)$ as a topological group.

Theorem 1. Let E/\mathbb{Q}_p be an elliptic curve with additive reduction, such that it can be given by a minimal Weierstrass equation over \mathbb{Z}_p:

$$y^2 + a_1 xy + a_3 y = x^3 + a_2 x^2 + a_4 x + a_6,$$

where the a_i are contained in $p\mathbb{Z}_p$ for each i. Then the group $E_0(\mathbb{Q}_p)$ is topologically isomorphic to \mathbb{Z}_p, except in the following four cases:

1. $p = 2$ and $a_1 + a_3 \equiv 2 \pmod{4}$;
2. $p = 3$ and $a_2 \equiv 6 \pmod{9}$;
3. $p = 5$ and $a_4 \equiv 10 \pmod{25}$;
4. $p = 7$ and $a_6 \equiv 14 \pmod{49}$.

In each of the cases (i)-(iv), $E_0(\mathbb{Q}_p)$ is topologically isomorphic to $p\mathbb{Z}_p \times \mathbb{F}_p$, where \mathbb{F}_p has the discrete topology.
The proof of Theorem 1 will be given in Section 4.5. The case \(p > 7 \) of Theorem 1 was also mentioned in [3].

We will say a few words about the idea of the proof. It is a standard fact from the theory of elliptic curves over local fields [2, VII.6.3] that \(E_0(\mathbb{Q}_p) \) admits a canonical filtration

\[
E_0(\mathbb{Q}_p) \supset E_1(\mathbb{Q}_p) \supset E_2(\mathbb{Q}_p) \supset E_3(\mathbb{Q}_p) \supset \ldots,
\]

where for each \(i \geq 1 \) the quotient \(E_i(\mathbb{Q}_p)/E_{i+1}(\mathbb{Q}_p) \) is isomorphic to \(\mathbb{F}_p \). The quotient \(E_0(\mathbb{Q}_p)/E_1(\mathbb{Q}_p) \) is also isomorphic to \(\mathbb{F}_p \) by the fact that \(E \) has additive reduction. One has a natural isomorphism of topological groups \(j : E_2(\mathbb{Q}_p) \sim \mathbb{p}^2 \mathbb{Z}_p \) given by the theory of formal groups. If \(p > 2 \), the same theory even gives a natural isomorphism \(j' : E_1(\mathbb{Q}_p) \sim \mathbb{p} \mathbb{Z}_p \). These isomorphisms identify \(E_n(\mathbb{Q}_p) \) with \(\mathbb{p}^n \mathbb{Z}_p \) for all \(n \geq 2 \). The idea of the proof of theorem 1 is to start from \(j \) or \(j' \) and, by extending its domain, to build up an isomorphism between \(E_0(\mathbb{Q}_p) \) and either \(\mathbb{Z}_p \) or \(\mathbb{p} \mathbb{Z}_p \times \mathbb{F}_p \).

Rather than elliptic curves over \(\mathbb{Q}_p \) with additive reduction, we consider the more general case of Weierstrass curves over \(\mathbb{Z}_p \) whose generic fiber is smooth and whose special fiber is a cuspidal cubic curve. This allows more general results. Theorem 1 is derived as a special case.

At the end of the note, we give examples for each prime \(2 \leq p \leq 7 \) of an elliptic curve \(E/\mathbb{Q} \) with additive reduction at \(p \) such that \(E_0(\mathbb{Q}_p) \) contains a \(p \)-torsion point defined over \(\mathbb{Q} \).

2 Preliminaries

2.1 Preliminaries on Weierstrass curves

All proofs of facts recalled in this section can be found in [2, Ch. IV, VII].

Let \(K \) be a finite field extension of \(\mathbb{Q}_p \) for some prime \(p \), and let \(v_K : K \rightarrow \mathbb{Z} \cup \{\infty\} \) be its normalized valuation. Let \(\mathcal{O}_K \) be the ring of integers, \(\mathfrak{m}_K \) its maximal ideal and \(k \) its residue field. By a **Weierstrass curve** over \(\mathcal{O}_K \) we mean a projective curve \(\mathcal{E} \subset \mathbb{P}^2_{\mathcal{O}_K} \) defined by a Weierstrass equation

\[
y^2 + a_1 xy + a_3 y = x^3 + a_2 x^2 + a_4 x + a_6,
\]

such that the generic fiber \(\mathcal{E}_K \) is an elliptic curve with \((0 : 1 : 0)\) as the origin. The coefficients \(a_i \) are uniquely determined by \(\mathcal{E} \). The discriminant of \(\mathcal{E} \), denoted \(\Delta_\mathcal{E} \), is defined as in [2, III.1]. The curve \(\mathcal{E} \) is said to be minimal if \(v_K(\Delta_\mathcal{E}) \) is minimal among \(v_K(\Delta_{\mathcal{E}'}) \), where \(\mathcal{E}' \) ranges over the Weierstrass curves such that \(\mathcal{E}'_K \cong \mathcal{E}_K \).

We will say that a Weierstrass curve \(\mathcal{E}/\mathcal{O}_K \) has **good reduction** when the special fiber \(\mathcal{E}_k \) is smooth, **multiplicative reduction** when \(\mathcal{E}_k \) is nodal (i.e. there are two distinct tangent directions to the singular point), and **additive reduction** when \(\mathcal{E}_k \) is cuspidal (i.e. one tangent direction to the singular point). A non-minimal Weierstrass curve has additive reduction. The reduction type of an elliptic curve \(E \) is defined to be the reduction type
of a minimal Weierstrass model of E over \mathcal{O}_K, which is a minimal Weierstrass curve $\mathcal{E}/\mathcal{O}_K$ such that $\mathcal{E}_K \cong E$. By the fact that the minimal Weierstrass model of E is unique up to \mathcal{O}_K-isomorphism, this is well-defined.

We have $E(K) = \mathcal{E}(K) = \mathcal{E}(\mathcal{O}_K)$ since \mathcal{E} is projective. Therefore, we have a reduction map $E(K) \to \mathcal{E}(k)$ given by restricting an element of $\mathcal{E}(\mathcal{O}_K)$ to the special fiber. By $\mathcal{E}_0(K)$ we denote the subgroup $\mathcal{E}_0(K) \subset \mathcal{E}(K)$ of points reducing to a non-singular point of the special fiber \mathcal{E}_k. By $\mathcal{E}_1(K) \subset \mathcal{E}_0(K)$ we denote the kernel of reduction, i.e. the points that map to the identity 0_k of $\mathcal{E}(k)$. A more explicit definition of $\mathcal{E}_1(K)$ is

$$
\mathcal{E}_1(K) = \{(x, y) \in \mathcal{E}(K) : v_K(x) \leq -2, v_K(y) \leq -3\} \cup \{0\}.
$$

(2)

More generally, one defines subgroups $\mathcal{E}_n(K) \subset \mathcal{E}_0(K)$ as follows:

$$
\mathcal{E}_n(K) = \{(x, y) \in \mathcal{E}(K) : v_K(x) \leq -2n, v_K(y) \leq -3n\} \cup \{0\}.
$$

We thus have an infinite filtration on the subgroup $\mathcal{E}_1(K)$:

$$
\mathcal{E}_1(K) \supset \mathcal{E}_2(K) \supset \mathcal{E}_3(K) \supset \cdots
$$

(3)

For an elliptic curve E/K and an integer $n \geq 0$, we define $E_n(K)$ to be $\mathcal{E}_n(K)$, where \mathcal{E} is a minimal Weierstrass model of E over \mathcal{O}_K. The $E_n(K)$ are well-defined, again by the fact that the minimal Weierstrass model of E is unique up to \mathcal{O}_K-isomorphism.

Proposition 2. For \mathcal{E} a Weierstrass curve over \mathbb{Z}_p, there is an exact sequence

$$
0 \to \mathcal{E}_1(K) \to \mathcal{E}_0(K) \to \tilde{\mathcal{E}}_{\text{sm}}(k) \to 0,
$$

where $\tilde{\mathcal{E}}_{\text{sm}}$ is the complement of the singular points in the special fiber $\tilde{\mathcal{E}}$.

Proof. This comes down to Hensel’s lemma. See [2, VII.2.1].

For any Weierstrass curve \mathcal{E}, we can consider its formal group $\hat{\mathcal{E}}$ [2 IV.1–2]. This is a one-dimensional formal group over \mathcal{O}_K. Giving the data of this formal group is the same as giving a power series $F = F_{\hat{\mathcal{E}}}$ in $\mathcal{O}_K[[X,Y]]$, called the formal group law. It satisfies

$$
F(X,Y) = X + Y + \text{(terms of degree } \geq 2)
$$

and

$$
F(F(X,Y), Z) = F(X, F(Y, Z)).
$$

For \mathcal{E} as in (1), the first few terms of F are given by:

$$
F(X,Y) = X + Y - a_1 XY - a_2 (X^2 Y + XY^2) - 2a_3 (X^3 Y + XY^3) + (a_1 a_2 - 3a_3)X^2 Y^2 - (2a_1 a_3 + 2a_4)(X^4 Y + XY^4) - (a_1 a_3 - a_2^2 + 4a_4)(X^3 Y^2 + X^2 Y^3) + \ldots
$$

3
Treating the Weierstrass coefficients \(a_i \) as unknowns, we may consider \(F \) as an element of \(\mathbb{Z}[a_1, a_2, a_3, a_4, a_6][[X, Y]] \) called the generic formal group law. If we make \(\mathbb{Z}[a_1, a_2, a_3, a_4, a_6] \) into a weighted ring with weight function \(\text{wt} \), such that \(\text{wt}(a_i) = i \) for each \(i \), then the coefficients of \(F \) in degree \(n \) are homogeneous of weight \(n - 1 \) \([2, \text{IV.1.1}]. \) For each \(n \in \mathbb{Z}_{\geq 2} \), we define power series \([n] \) in \(\mathcal{O}_K[[T]] \) by \([2] (T) = F(T, T) \) and \([n](T) = F([n - 1](T), T) \) for \(n \geq 3 \). Here also, we may consider each \([n] \) either as a power series in \(\mathcal{O}_K[[T]] \) or as a power series in \(\mathbb{Z}[a_1, a_2, a_3, a_4, a_6][[T]] \) called the generic multiplication by \(n \) law. We have:

Lemma 3. Let \([p] = \sum_n b_n T^n \in \mathbb{Z}[a_1, a_2, a_3, a_4, a_6][[T]] \) be the generic formal multiplication by \(p \) law. Then:

1. \(p \mid b_n \) for all \(n \) not divisible by \(p \);
2. \(\text{wt}(b_n) = n - 1 \), considering \(\mathbb{Z}[a_1, a_2, a_3, a_4, a_6] \) as a weighted ring as above.

Proof. (1) is proved in \([2, \text{IV.4.4}]\). (2) follows from \([2, \text{IV.1.1}]\) or what was said above.

The series \(F(u, v) \) converges to an element of \(\mathfrak{m}_K \) for all \(u, v \in \mathfrak{m}_K \). To \(\mathcal{E} \) one associates the group \(\hat{\mathcal{E}}(\mathfrak{m}_K) \), the \(\mathfrak{m}_K \)-valued points of \(\hat{\mathcal{E}} \), which as a set is just \(\mathfrak{m}_K \), and whose group operation + is given by \(u + v = F(u, v) \) for all \(u, v \in \hat{\mathcal{E}}(\mathfrak{m}_K) \). The identity element of \(\hat{\mathcal{E}}(\mathfrak{m}_K) \) is \(0 \in \mathfrak{m}_K \). If \(n \geq 1 \) is an integer, then by \(\hat{\mathcal{E}}(\mathfrak{m}_K^n) \) we denote the subset of \(\hat{\mathcal{E}}(\mathfrak{m}_K) \) corresponding to the subset \(\mathfrak{m}_K^n \subset \mathfrak{m}_K \), where \(\mathfrak{m}_K^n \) is the \(n \)th power of the ideal \(\mathfrak{m}_K \) of \(\mathcal{O}_K \). The groups \(\hat{\mathcal{E}}(\mathfrak{m}_K^n) \) are subgroups of \(\hat{\mathcal{E}}(\mathfrak{m}_K) \), and we have an infinite filtration of \(\hat{\mathcal{E}}(\mathfrak{m}_K) \):

\[
\hat{\mathcal{E}}(\mathfrak{m}_K) \supset \hat{\mathcal{E}}(\mathfrak{m}_K^2) \supset \hat{\mathcal{E}}(\mathfrak{m}_K^3) \supset \cdots \tag{4}
\]

Proposition 4. The map

\[
\psi_K : \mathcal{E}_1(K) \xrightarrow{\sim} \hat{\mathcal{E}}(\mathfrak{m}_K)
\]

\[
(x, y) \mapsto -x/y
\]

\[
0 \mapsto 0
\]

is an isomorphism of topological groups. Moreover, \(\psi_K \) respects the filtrations \([3]\) and \([4]\), i.e. it identifies the subgroups \(\mathcal{E}_n(K) \) defined above with \(\hat{\mathcal{E}}(\mathfrak{m}_K^n) \).

Proof. See \([2, \text{VII.2.2}]\).
Proof. First, we claim that \(\text{Ext}^1_{\mathbb{Z}} \) results in the exact sequence
\[
\text{exact sequence associated to } \text{Hom}_{\mathbb{Z}} \]
where the last equality follows from the fact that \(\text{Hom}(\mathbb{Z}, X) \) isomorphic as a topological group to either \(\mathbb{Z} \) or \(\mathbb{Z} \times F_p \). Here \(\hat{\mathbb{Z}} \) which proves the claim. Putting \(A = \mathbb{Z}/p \mathbb{Z} \), we find \(\text{Ext}^1_{\mathbb{Z}}(F_p, A) = \mathbb{A}/pA \). Then \(\mathbb{Z} \) endowed with the indiscrete topology.

Proposition 5. Suppose \(X \) is a topological abelian group and we have a short exact sequence
\[
0 \to \mathbb{Z}_p^d \to X \to F_p \to 0.
\]
of topological groups where the second arrow is a topological embedding. Then \(X \) is isomorphic as a topological group to either \(\mathbb{Z}_p^d \) or \(\mathbb{Z}_p^d \times F_p \). It is indeed necessary to require \(\mathbb{Z}_p^d \to X \) to be a topological embedding, i.e. a homeomorphism onto its image, since otherwise we could take \(X \) to be the product \((\mathbb{Z}_p^d)^{\text{ind}} \times F_p \), where the first factor is the abelian group \(\mathbb{Z}_p^d \) endowed with the indiscrete topology.

Proof. First, we claim that \(\text{Ext}^1_{\mathbb{Z}}(F_p, A) = \mathbb{A}/pA \) for any abelian group \(A \). Taking the long exact sequence associated to \(\text{Hom}_{\mathbb{Z}}(-, A) \) for the exact sequence \(0 \to \mathbb{Z} \xrightarrow{p} \mathbb{Z} \to F_p \to 0 \) results in the exact sequence
\[
\text{Hom}(\mathbb{Z}, A) \to \text{Hom}(\mathbb{Z}, A) \to \text{Ext}^1_{\mathbb{Z}}(F_p, A) \to \text{Ext}^1_{\mathbb{Z}}(\mathbb{Z}, A) = 0
\]
where the last equality follows from the fact that \(\text{Hom}(\mathbb{Z}, -) \) is an exact functor. Using that \(\text{Hom}(\mathbb{Z}, A) = A \), we get
\[
\text{Ext}^1_{\mathbb{Z}}(F_p, A) = A/pA,
\]
which proves the claim. Putting \(A = \mathbb{Z}_p^d \), we find \(\text{Ext}^1_{\mathbb{Z}}(F_p, \mathbb{Z}_p^d) = \mathbb{F}_p^d \). We conclude that the equivalence classes of extensions of \(\mathbb{Z} \)-modules \(0 \to \mathbb{Z}_p^d \to X \to F_p \to 0 \) are in bijective correspondence with the elements of \(\mathbb{F}_p^d \). The element \(0 \in \mathbb{F}_p^d \) corresponds to the split extension. The non-split ones are obtained as follows. For \(v \in \mathbb{Z}_p^d - p\mathbb{Z}_p^d \), we construct an extension
\[
0 \to \mathbb{Z}_p^d \to X_v \xrightarrow{f_v} F_p \to 0
\]
by defining the subgroup \(X_v \subset \mathbb{O}_p^d \) as \(X_v = \mathbb{Z}_p^d + \langle v/p \rangle \) and letting \(f_v : X_v \to F_p \) be the unique group homomorphism that is trivial on \(\mathbb{Z}_p^d \subset X_v \) and that sends \(v/p \) to 1. The equivalence class of the above extension only depends on the class of \(v \) modulo \(p \mathbb{Z}_p^d \). Note that if we take any element \(x \in X_v \) mapping to 1 in \(F_p \), we have \(px = v + pv_1 \in \mathbb{Z}_p^d \) for some \(v_1 \in \mathbb{Z}_p^d \). Note further that \(X_v \) is topologically isomorphic to \(\mathbb{Z}_p^d \), if we give it the subspace topology.

A diagram chase shows that this construction gives us \(p^d - 1 \) different equivalence classes of extensions. Suppose that \(v, w \in \mathbb{Z}_p^d - p\mathbb{Z}_p^d \) and \(\phi : X_v \xrightarrow{\sim} X_w \) are such that
\[
\begin{array}{ccccccccc}
0 & \longrightarrow & \mathbb{Z}_p^d & \longrightarrow & X_v & \xrightarrow{f_v} & F_p & \longrightarrow & 0 \\
\text{id} & & \downarrow & & \phi & & \downarrow & & \text{id} \\
0 & \longrightarrow & \mathbb{Z}_p^d & \longrightarrow & X_w & \xrightarrow{f_w} & F_p & \longrightarrow & 0
\end{array}
\]
is a commutative diagram. Consider an element \(x \in X_v \) such that \(f_v(x) = 1 \). Then \(f_w(\phi(x)) = 1 \). Furthermore, \(px = v + pv_1 \) for some \(v_1 \in p\mathbb{Z}_p^d \), and \(\phi(px) = p\phi(x) = w + pw_1 \) for some \(w_1 \in p\mathbb{Z}_p^d \). Hence \(v + pv_1 = \phi(v + pv_1) = w + pw_1 \), so \(v \equiv w \) (mod \(p\mathbb{Z}_p^d \)).

Let \(X \) be a topological group sitting inside an extension of topological groups \(0 \to \mathbb{Z}_p^d \xrightarrow{i} X \xrightarrow{f} \mathbb{F}_p \to 0 \), with \(i \) a topological embedding and \(f \) continuous. This means that there exists an extension of topological groups \(0 \to \mathbb{Z}_p^d \to Y \to \mathbb{F}_p \to 0 \) that is either split or equal to one of the form \(0 \to \mathbb{Z}_p^d \to X_v \xrightarrow{f} \mathbb{F}_p \to 0 \), an isomorphism of groups \(\phi : X \xrightarrow{\sim} Y \), and a commutative diagram:

\[
\begin{array}{ccc}
0 & \to & \mathbb{Z}_p^d \\
\downarrow & & \downarrow \phi \\
0 & \to & \mathbb{Z}_p^d \\
\end{array}
\begin{array}{ccc}
& \xrightarrow{f} & \mathbb{F}_p \\
& \downarrow \text{id} & \downarrow \text{id} \\
& \mathbb{F}_p & \to 0.
\end{array}
\]

We claim that \(\phi \) must also be a homeomorphism. Since both \(X \) and \(Y \) are topological disjoint unions of the translates of their subgroups \(\mathbb{Z}_p^d \), and \(\phi \) respects the disjoint union decomposition, this is clear. So \(X \) is topologically isomorphic to \(Y \), and hence to either \(\mathbb{Z}_p^d \) or \(\mathbb{Z}_p^d \times \mathbb{F}_p \).

Remark 6. By repeatedly applying Proposition 5 we see that if we have a finite filtration \(\mathbb{Z}_p^d = M_n \subset M_{n-1} \subset \ldots \subset M_1 \) of topological groups, in which all quotients are isomorphic to \(\mathbb{F}_p \), then \(M_1 \) is torsion-free if and only if it is topologically isomorphic to \(\mathbb{Z}_p^d \).

The following is a strengthening of Proposition 5 in the case \(d = 1 \), which will be important for us.

Corollary 7. Let \(p \) be a prime and suppose we have a short exact sequence

\[0 \to p\mathbb{Z}_p \xrightarrow{i} X \to \mathbb{F}_p \to 0 \]

of topological abelian groups where the second arrow is a topological embedding. If \(X \) is topologically isomorphic to \(\mathbb{Z}_p \), then \(v_p(i^{-1}(px)) = 1 \) for all \(x \in X - i(p\mathbb{Z}_p) \), where \(v_p \) is the \(p \)-adic valuation. If \(X \) is not topologically isomorphic to \(\mathbb{Z}_p \), it is topologically isomorphic to \(p\mathbb{Z}_p \times \mathbb{F}_p \), and we have \(v_p(i^{-1}(px)) > 1 \) for all \(x \in X - i(p\mathbb{Z}_p) \).

Proof. If \(X \) is topologically isomorphic to \(\mathbb{Z}_p \), the map \(i \) is given by multiplication by some unit \(\alpha \in \mathbb{Z}_p^* \) followed by the inclusion \(p\mathbb{Z}_p \subset \mathbb{Z}_p \). The conclusion follows.

If \(X \) is not topologically isomorphic to \(\mathbb{Z}_p \), then by Proposition 5 we must have \(X \cong p\mathbb{Z}_p \times \mathbb{F}_p \). But then if \(x = (y,c) \), we have \(v_p(i^{-1}(px)) = v_p(py) > 1 \).
Lemma 8. Let K be a finite extension of \mathbb{Q}_p with ring of integers \mathcal{O}_K. Then \mathcal{O}_K is topologically isomorphic to \mathbb{Z}_p^d, where $d = [K : \mathbb{Q}_p]$.

Proof. \mathcal{O}_K is a free \mathbb{Z}_p-module of rank d, so there is a group isomorphism $\mathbb{Z}_p^d \sim \mathcal{O}_K$. Since both groups are topologically finitely generated, any isomorphism between them is bicontinuous [1, 1.1].

3 Weierstrass curves with additive reduction over \mathcal{O}_K

As in section 2, let K be a finite extension of \mathbb{Q}_p. Let \mathcal{O}_K again be the ring of integers of K, with maximal ideal m_K and residue field k.

In this section, we gather some general properties of Weierstrass curves over \mathcal{O}_K with additive reduction.

Lemma 9. Let $\mathcal{E}/\mathcal{O}_K$ be a Weierstrass curve with additive reduction. Then \mathcal{E} is \mathcal{O}_K-isomorphic to a Weierstrass curve of the form

$$y^2 + a_1xy + a_3y = x^3 + a_2x^2 + a_4x + a_6,$$

where all a_i lie in m_K.

Proof. We construct an automorphism $\alpha \in \text{PGL}_3(\mathcal{O}_K)$ that maps \mathcal{E} to a Weierstrass curve of the desired form. Consider a translation $\alpha_1 \in \text{PGL}_3(\mathcal{O}_K)$ moving the singular point of the special fiber \mathcal{E}_k to $(0 : 0 : 1)$. The image $\mathcal{E}_1 = \alpha_1(\mathcal{E})$ is a Weierstrass curve with coefficients satisfying a_3, a_4, a_6 in m_K. There exists a second automorphism $\alpha_2 \in \text{PGL}_3(\mathcal{O}_K)$, of the form $x' = x, y' = y + cx$, such that in the special fiber of $\alpha_2(\mathcal{E}_1)$ the unique tangent at $(0 : 0 : 1)$ is given by $y' = 0$. The Weierstrass curve $\mathcal{E}_2 = \alpha_2(\mathcal{E}_1)$ now has all its coefficients a_1, a_2, a_3, a_4, a_6 in m_K. One may thus take $\alpha = \alpha_2 \circ \alpha_1$. □

Suppose that $\mathcal{E}/\mathcal{O}_K$ is a Weierstrass curve given by (1), and suppose that the a_i are contained in m_K. In particular, \mathcal{E} has additive reduction. If we let F denote the formal group law of \mathcal{E}, then the assumption on the a_i implies that $F(u, v)$ converges to an element of \mathcal{O}_K for all $u, v \in \mathcal{O}_K$. Hence F can be seen to induce a group structure on \mathcal{O}_K, extending the group structure on $\hat{\mathcal{E}}(m_K)$. The same statement holds true when we replace K by a finite field extension L.

Definition 10. Let $\mathcal{E}/\mathcal{O}_K$ be a Weierstrass curve given by (1), and assume that the a_i are contained in m_K. For any finite field extension $K \subset L$, we denote by $\hat{\mathcal{E}}(\mathcal{O}_L)$ the topological group obtained by endowing the space \mathcal{O}_L with the group structure induced by F.

The following proposition will be fundamental in determining of the structure of $\mathcal{E}_0(\mathbb{Q}_p)$ as a topological group for Weierstrass curves with additive reduction.
Proposition 11. Let $\mathcal{E}/\mathcal{O}_K$ be a Weierstrass curve given by (1), and assume that the a_i are contained in m_K.

1. The map $\Psi : \mathcal{E}_0(K) \to \hat{\mathcal{E}}(\mathcal{O}_K)$ that sends (x,y) to $-x/y$ is an isomorphism of topological groups.

2. If $6e(K/Q_p) < p - 1$, where e denotes the ramification degree, then $\mathcal{E}_0(K)$ is also topologically isomorphic to \mathcal{O}_K equipped with the usual group structure.

Proof. Let π be a uniformizer for \mathcal{O}_K. Consider the field extension $L = K(\rho)$ with $\rho^6 = \pi$. Then define the Weierstrass curve D over \mathcal{O}_L by

$$y^2 + \alpha_1 xy + \alpha_3 y = x^3 + \alpha_2 x^2 + \alpha_4 x + \alpha_6,$$

where $\alpha_i = a_i/\rho^i$. There is a birational map $\phi : \mathcal{E} \times_{\mathcal{O}_K} \mathcal{O}_L \to D$, given by $\phi(x, y) = (x/\rho^2, y/\rho^3)$. The birational map ϕ induces an isomorphism on generic fibers, and hence a homeomorphism between $\mathcal{E}(L)$ and $D(L)$. Using (2) and the fact that we have $(x, y) \in \mathcal{E}_0(L)$ if and only if $v_L(x), v_L(y)$ are both not greater than zero, one sees that ϕ induces a bijection $\mathcal{E}_0(L) \sim \mathcal{D}_1(L)$, that all maps (a priori just of sets) in the following diagram are well-defined, and that the diagram commutes:

$$\begin{array}{cccccc}
\mathcal{E}_1(K) & \overset{\text{incl}}{\longrightarrow} & \mathcal{E}_0(K) & \overset{\text{incl}}{\longrightarrow} & \mathcal{E}_0(L) & \overset{\phi}{\longrightarrow} & \mathcal{D}_1(L) \\
\downarrow \psi_K & & \downarrow \psi & & \downarrow \psi_L & & \downarrow \psi_L \\
\hat{\mathcal{E}}(m_K) & \overset{\text{incl}}{\longrightarrow} & \hat{\mathcal{E}}(\mathcal{O}_K) & \overset{\text{incl}}{\longrightarrow} & \hat{\mathcal{E}}(\mathcal{O}_L) & \overset{\rho}{\longrightarrow} & \hat{\mathcal{D}}(m_L)
\end{array}$$

Here the map $\psi_L : \mathcal{E}_0(L) \to \mathcal{O}_L$ is defined by $(x, y) \mapsto -x/y$, the rightmost lower horizontal arrow is multiplication by ρ, and the maps labeled incl are the obvious inclusions. Note that the horizontal and vertical outer maps are all continuous. Since ψ_L, ϕ and multiplication by ρ are homeomorphisms (for ψ_L one uses Proposition 4), so is Ψ_L. Hence Ψ must be a homeomorphism onto its image. By Galois theory, Ψ is surjective, so it is itself a homeomorphism.

Let $F_\hat{D}$ be the formal group law of D. One calculates that

$$\rho F(X, Y) = F_\hat{D}(\rho X, \rho Y).$$

Hence all maps in the diagram are group homomorphisms. This proves the first part of the proposition.

Now assume $6e(K/Q_p) < p - 1$, so that $v_L(p) = 6v_K(p) = 6e(K/Q_p) < p - 1$. Now [2 IV.6.4(b)] implies that $\mathcal{E}_1(K)$ is topologically isomorphic to m_K, and $\mathcal{D}_1(L)$ to m_L. Since \mathcal{E} has additive reduction, we have $\hat{\mathcal{E}}_{sm}(k) \cong k^+ \cong \mathbf{F}_p^f$, where $f = f(K/Q_p)$ is the inertia degree of K/Q_p and $\hat{\mathcal{E}}_{sm}$ is the smooth locus of the special fiber of \mathcal{E}. Proposition 2 shows we have a short exact sequence

$$0 \to m_K \to \mathcal{E}_0(K) \to \mathbf{F}_p^f \to 0.$$
In the diagram above, the topological group $\mathcal{E}_0(K)$ is mapped homomorphically into the torsion-free group $\mathcal{D}_1(L)$, hence it is itself torsion-free. It follows from Remark 6 that $\mathcal{E}_0(K)$ is topologically isomorphic to \mathcal{O}_K. This proves the second part.

The following corollary is worth noting, but will not be used in what follows.

Corollary 12. Let $\mathcal{E}/\mathcal{O}_K$ be a Weierstrass curve with additive reduction. If $6e(K/Q_p) < p - 1$, then $\mathcal{E}_0(K)$ is topologically isomorphic to \mathcal{O}_K.

Proof. The statement that $\mathcal{E}_0(K)$ is topologically isomorphic to \mathcal{O}_K only depends on the \mathcal{O}_K-isomorphism class of \mathcal{E}. By Lemma 9 there exists a Weierstrass curve \mathcal{E}' with $a_i \in \mathfrak{m}_K$ that is \mathcal{O}_K-isomorphic to \mathcal{E}. Now apply Proposition 11 to \mathcal{E}'. \qed

4 Weierstrass curves with additive reduction over \mathbb{Z}_p

In this section, we gather some general properties of Weierstrass curves over \mathbb{Z}_p with additive reduction and finish the proof of theorem 1.

Lemma 13. Let \mathcal{E}/\mathbb{Z}_p be a Weierstrass curve with additive reduction. Then there exists a topological isomorphism $\chi : \hat{\mathcal{E}}(p\mathbb{Z}_p) \cong p\mathbb{Z}_p$ such that for $n \in \mathbb{Z}_{\geq 1}$, χ identifies $\hat{\mathcal{E}}(p^n\mathbb{Z}_p)$ with $p^n\mathbb{Z}_p$.

Proof. For $p > 2$, this is standard; the proof may be found in [2, IV.6.4(b)]. We now treat the case $p = 2$. By Lemma 9 we may assume that the Weierstrass coefficients a_i of \mathcal{E} all lie in $2\mathbb{Z}_2$. The multiplication by 2 on $\hat{\mathcal{E}}(2\mathbb{Z}_2)$ is given by the power series

$$[2](T) = F_{\hat{\mathcal{E}}}(T, T) = 2T - a_1T^2 - a_2T^3 + (a_1a_2 - 7a_3)T^4 - \ldots,$$

where $F_{\hat{\mathcal{E}}}$ is the formal group law of \mathcal{E}. By [2, IV.3.2(a)], $\hat{\mathcal{E}}(2\mathbb{Z}_2)/\hat{\mathcal{E}}(4\mathbb{Z}_2)$ is cyclic of order 2. By [2, IV.6.4(b)], there exists a topological isomorphism $\hat{\mathcal{E}}(4\mathbb{Z}_2) \cong 4\mathbb{Z}_2$. Hence there exists an extension

$$0 \to 2\mathbb{Z}_2 \xrightarrow{i} \hat{\mathcal{E}}(2\mathbb{Z}_2) \to \mathbb{Z}_2 \to 0.$$

From Theorem 5 we see that $\hat{\mathcal{E}}(2\mathbb{Z}_2)$ is topologically isomorphic either to $2\mathbb{Z}_2$ or to $4\mathbb{Z}_2 \times \mathbb{F}_2$. Assume that the latter is the case, then there is an element z of order 2 in $\hat{\mathcal{E}}(2\mathbb{Z}_2)$ that is not contained in $\hat{\mathcal{E}}(4\mathbb{Z}_2)$. For such a z we have $v_2(z) = 1$, where $v_2 : \hat{\mathcal{E}}(2\mathbb{Z}_2) \to \mathbb{Z}_{\geq 1} \cup \{\infty\}$ is the 2-adic valuation on the underlying set $2\mathbb{Z}_2$ of $\hat{\mathcal{E}}(2\mathbb{Z}_2)$. Using that in the duplication power series 3 we have $a_i \in 2\mathbb{Z}_2$ for each i, it follows that $v_2([2](z)) = 2$, so $[2](z) \neq 0$. This is a contradiction, so there exists an isomorphism $\chi : \hat{\mathcal{E}}(2\mathbb{Z}_2) \cong 2\mathbb{Z}_2$ as topological groups. From this, and from the fact that $\hat{\mathcal{E}}(2^n\mathbb{Z}_2)/\hat{\mathcal{E}}(2^{n+1}\mathbb{Z}_2) \cong \mathbb{F}_2$ for all $n \in \mathbb{Z}_{\geq 1}$ [2, IV.3.2(a)], we see that χ necessarily respects the filtrations on either side. \qed

Corollary 14. Let \mathcal{E}/\mathbb{Z}_p be a Weierstrass curve with additive reduction. Then there exists an isomorphism $\mathcal{E}_1(\mathbb{Q}_p) \cong p\mathbb{Z}_p$ which for $n \in \mathbb{Z}_{\geq 1}$ identifies $\mathcal{E}_n(\mathbb{Q}_p)$ with $p^n\mathbb{Z}_p$.

Proof. Such an isomorphism can be obtained by composing the isomorphism χ from Lemma 13 with the isomorphism $\psi_{\mathbb{Q}_p}$ from Proposition 11. \qed
4.1 \(p = 2 \)

Proposition 15. Let \(E/\mathbb{Z}_2 \) be a Weierstrass curve with its coefficients \(a_i \) in \(2\mathbb{Z}_2 \). Then \(E_0(\mathbb{Q}_2) \) is topologically isomorphic to \(\mathbb{Z}_2 \) if \(a_1 + a_3 \equiv 0 \pmod{4} \), and to \(2\mathbb{Z}_2 \times F_2 \) otherwise.

Proof. Proposition 2 shows that there is a short exact sequence

\[
0 \to E_1(\mathbb{Q}_2) \to E_0(\mathbb{Q}_2) \to F_2 \to 0.
\]

By Lemma 13, we have \(E_1(\mathbb{Q}_2) \cong 2\mathbb{Z}_2 \), so Proposition 5 implies that \(E_0(\mathbb{Q}_2) \) is topologically isomorphic either to \(\mathbb{Z}_2 \) or to \(2\mathbb{Z}_2 \times F_2 \).

Let \([2](T) \in O_K[[T]]\) be the formal duplication formula (5) on \(E \). Let \(\Psi \) be the map from Proposition 11. Since \(\Psi \) is an isomorphism of topological groups, we have for all \(P \in E_0(\mathbb{Q}_2) \):

\[
\Psi(2P) = [2](\Psi(P)).
\] (6)

By Corollary 7, we have \(E_0(\mathbb{Q}_2) \cong \mathbb{Z}_2 \) if and only if for all \(P \in E_0(\mathbb{Q}_2) - E_1(\mathbb{Q}_2) \) we have \(2P = E_1(\mathbb{Q}_2) - E_2(\mathbb{Q}_2) \), which by (6) is true if and only if for all \(z \in \hat{E}(\mathbb{Z}_2) - \hat{E}(2\mathbb{Z}_2) \) we have \(v_2([2](z)) = 1 \), where \(v_2 : \hat{E}(\mathbb{Z}_2) \to \mathbb{Z}_{\geq 0} \cup \{\infty\} \) is the 2-adic valuation on the underlying set \(\mathbb{Z}_2 \) of \(\hat{E}(\mathbb{Z}_2) \). This condition may be checked using the duplication power series

\[
[2](T) = 2T - a_1T^2 - 2a_2T^3 + (a_1a_2 - 7a_3)T^4 - \ldots = \sum_{i=1}^{\infty} b_iT^i.
\]

In deciding whether \(v_2([2](z)) = 1 \) for \(z \in \hat{E}(\mathbb{Z}_2) - \hat{E}(2\mathbb{Z}_2) \), we do not need to consider those parts of terms whose coefficients have valuation \(\geq 2 \). The non-linear parts of each coefficient \(b_i \) will contribute only terms with valuation \(\geq 2 \), so may ignore these and keep only the linear parts. The terms \(b_i z^i \) with \(i \) odd we may discard altogether; by Lemma 3 all their coefficients have valuation \(\geq 2 \). Finally, we may discard all terms \(b_i z^i \) with \(i \) even and \(\geq 6 \): a polynomial in \(\mathbb{Z}[a_1, \ldots, a_6] \) whose weight is odd and at least 5 does not contain a linear term (there being no \(a_5 \)), so the terms involving \(z^6, z^8, z^{10}, \ldots \) will have valuation \(\geq 2 \).

We thus get that, if \(z \in \hat{E}(\mathbb{Z}_2) - \hat{E}(2\mathbb{Z}_2) \),

\[
v_2([2](z)) = 1 \iff v_2(2z - a_1z^2 - 7a_3z^4) = 1.
\]

This is true for all \(z \in \hat{E}(\mathbb{Z}_2) - \hat{E}(2\mathbb{Z}_2) \) if and only if:

\[
v_2(z - \frac{a_1}{2}z^2 - \frac{7a_3}{2}z^4) = 0 \iff a_1 + 7a_3 \equiv 0 \pmod{4} \iff a_1 + a_3 \equiv 0 \pmod{4}
\]

since \(z \equiv z^2 \equiv z^4 \pmod{2} \). This proves the proposition. \(\square \)
4.2 $p = 3$

Proposition 16. Let \mathcal{E}/\mathbb{Z}_3 be a Weierstrass curve with its coefficients a_i in $3\mathbb{Z}_3$. Then $\mathcal{E}_0(\mathbb{Q}_3)$ is topologically isomorphic to \mathbb{Z}_3 if $a_2 \not\equiv 6 \pmod{9}$, and to $3\mathbb{Z}_3 \times \mathbb{F}_3$ otherwise.

Proof. We proceed as in the proof of Proposition 15 using the formal triplication formula:

$$[3](T) = 3T - 3a_1T^2 + (a_1^2 - 8a_2)T^3 + (12a_1a_2 - 39a_3)T^4 + \ldots = \sum_{i=1}^{\infty} b_i T^i. \quad (7)$$

We consider the usual exact sequence for $\mathcal{E}_0(\mathbb{Q}_3)$:

$$0 \to \mathcal{E}_1(\mathbb{Q}_3) \to \mathcal{E}_0(\mathbb{Q}_3) \to \mathbb{F}_3 \to 0.$$

We see from $\mathcal{E}_1(\mathbb{Q}_3) \cong 3\mathbb{Z}_3$ and Corollary 4 that $\mathcal{E}_0(\mathbb{Q}_3)$ is topologically isomorphic to $3\mathbb{Z}_3 \times \mathbb{F}_3$ if and only if for all elements $z \in \hat{\mathcal{E}}(\mathbb{Z}_3) - \hat{\mathcal{E}}(3\mathbb{Z}_3)$, $[3](z)$ has valuation greater than 1. On the other hand, $\mathcal{E}_0(\mathbb{Q}_3)$ is topologically isomorphic to \mathbb{Z}_3 if for all such z, the valuation of $[3](z)$ is 1. Reasoning as in the proof of Proposition 15 we see that we may ignore all terms of degree not equal to 1 or a multiple of 3 since their coefficients are divisible by 3 and have positive weight. Also we may ignore the terms of degree both equal to a multiple of 3 and greater than 3, since their coefficients do not contain parts that are linear in a_1, \ldots, a_6. Finally, we may ignore the non-linear part of the term of degree 3. We see that for $z \in \hat{\mathcal{E}}(\mathbb{Z}_3) - \hat{\mathcal{E}}(3\mathbb{Z}_3)$, we have:

$$v_3([3](z)) = 1 \iff v_3(3z - 8a_2z^3) = 1.$$

This happens for all such z if and only if:

$$v_3(z - \frac{8a_2}{3}z^3) = 0 \iff 1 - \frac{8a_2}{3} \not\equiv 0 \pmod{3} \iff a_2 \not\equiv 6 \pmod{9}$$

since $z \equiv z^3 \pmod{3}$. This proves the proposition. \[\square\]

4.3 $p = 5$

Proposition 17. Let \mathcal{E}/\mathbb{Z}_5 be a Weierstrass curve with its coefficients a_i in $5\mathbb{Z}_5$. Then $\mathcal{E}_0(\mathbb{Q}_5)$ is topologically isomorphic to \mathbb{Z}_5 if $a_4 \not\equiv 10 \pmod{25}$, and to $5\mathbb{Z}_5 \times \mathbb{F}_5$ otherwise.

Proof. For simplicity, we give the formal multiplication by 5 power series in the case where a_1, a_2, a_3 are zero:

$$[5](T) = 5T - 1248a_4T^5 + \ldots = \sum_{i=1}^{\infty} b_i T^i \quad (8)$$

This formula suffices for our purposes, since the same arguments as in the proofs of Propositions 15 and 16 show that the terms that are canceled by setting $a_1 = a_2 = a_3 = 0$ could have been ignored anyway.
We apply Corollary 7 to:

$$0 \rightarrow 5\mathbb{Z} \rightarrow \mathcal{E}_0(\mathbb{Q}_5) \rightarrow \mathbb{F}_5 \rightarrow 0.$$ In (8) we may ignore terms of degree not equal to 1 or 5, by the same reasoning as in the proofs of Propositions 13 and 16. We see that for $$z \in \hat{\mathcal{E}}(\mathbb{Z}_5) - \hat{\mathcal{E}}(5\mathbb{Z}_5)$$ we have:

$$v_5([5](z)) = 1 \iff v_5(5z - 1248a_4z^5) = 1.$$ This happens for all such $$z$$ if and only if:

$$v_5(z - \frac{1248a_4}{5}z^5) = 0 \iff 1 - \frac{1248a_4}{5} \not\equiv 0 \pmod{5} \iff a_4 \not\equiv 10 \pmod{25}$$ since $$z \equiv z^5 \pmod{5}$$. This proves the proposition.

4.4 $$p = 7$$

Proposition 18. Let $$\mathcal{E}/\mathbb{Z}_7$$ be a Weierstrass curve with its coefficients $$a_i$$ in $$7\mathbb{Z}_7$$. Then $$\mathcal{E}_0(\mathbb{Q}_7)$$ is topologically isomorphic to $$\mathbb{Z}_7$$ if $$a_6 \not\equiv 14 \pmod{49}$$, and to $$7\mathbb{Z}_7 \times \mathbb{F}_7$$ otherwise.

Proof. For simplicity, we give the formal multiplication by 7 power series with $$a_1, a_2, a_3$$ set to zero:

$$[7](T) = 7T - 6720a_4T^5 - 352944a_6T^7 + \ldots$$

As before, the terms that have disappeared as a result could have been ignored anyway. We apply Corollary 7 to:

$$0 \rightarrow 7\mathbb{Z}_7 \rightarrow \mathcal{E}_0(\mathbb{Q}_7) \rightarrow \mathbb{F}_7 \rightarrow 0.$$ In (9) we may ignore terms of degree not equal to 1 or 7, by the same reasoning as in the proofs of Propositions 13 and 16. We see that for $$z \in \hat{\mathcal{E}}(\mathbb{Z}_7) - \hat{\mathcal{E}}(7\mathbb{Z}_7)$$ we have:

$$v_7([7](z)) = 1 \iff v_7(7z - 352944a_6z^7) = 1.$$ This happens if and only if:

$$v_7(z - \frac{352944a_6}{7}z^7) = 0 \iff 1 - \frac{352944a_6}{7} \not\equiv 0 \pmod{7} \iff a_6 \not\equiv 14 \pmod{49}$$ since $$z \equiv z^7 \pmod{7}$$. This proves the proposition.

4.5 **The proof of Theorem 1**

We are now ready to derive Theorem 1 from our previous results.

Let $$E/\mathbb{Q}_p$$ and $$a_1, \ldots, a_6 \in p\mathbb{Z}_p$$ be as in the statement of the theorem. Then the Weierstrass curve

$$y^2 + a_1xy + a_3y = x^3 + a_2x^2 + a_4x + a_6,$$ over $$\mathbb{Z}_p$$ defines a minimal Weierstrass model of $$E$$. The theorem follows by applying to $$\mathcal{E}$$ part 2 of Proposition 11 if $$p > 7$$, or one of Propositions 13–18 if $$p \leq 7$$.

12
5 Examples

In this section, we have collected some examples of elliptic curves over \mathbb{Q}_p with additive reduction, such that their points of good reduction contains a p-torsion point. In particular, all curves and torsion points are defined over \mathbb{Q}. The fact that they possess a p-torsion point of good reduction can be verified using the appropriate result from the previous section. (Note that these result do not say when the p-torsion points will be defined over \mathbb{Q}.)

Example 19. The elliptic curve

$$E_2 : y^2 - 2y = x^3 - 2$$

has additive reduction at 2, and its 2-torsion point $(1, 1)$ is of good reduction.

Example 20. The elliptic curve

$$E_3 : y^2 = x^3 - 3x^2 + 3x$$

has additive reduction at 3, and its 3-torsion point $(1, 1)$ is of good reduction.

Example 21. The elliptic curve

$$E_5 : y^2 - 5y = x^3 + 20x^2 - 15x$$

has additive reduction at 5, and its 5-torsion point $(1, -1)$ is of good reduction.

Example 22. The elliptic curve

$$E_7 : y^2 + 7xy - 28y = x^3 + 7x - 35$$

has additive reduction at 7, and its 7-torsion point $(2, 1)$ is of good reduction.

6 Acknowledgements

It is a pleasure to thank Ronald van Luijk and Sir Peter Swinnerton-Dyer for many useful remarks.

References

[1] Nikolay Nikolov and Dan Segal. On finitely generated profinite groups, I: strong completeness and uniform bounds. Ann. of Math., 165:171–238, 2007.

[2] J. Silverman. The Arithmetic of Elliptic Curves. Springer-Verlag, New York, 1986.

[3] Sir H.P.F. Swinnerton-Dyer. Density of rational points on certain surfaces. Unpublished, 2010.