Evaluation of Fungicides, Botanicals and Trichoderma spp. against Wilt of Chickpea Caused by Fusarium oxysporum f. sp. ciceri

Sonika Jamwal1*, Anamika Jamwal2, A.C. Jha1, Reena1, Upma Dutta3, Anil Kumar1, Neeraja Sharma4, Sanjeev Kumar1 and Ajay Kumar2

1Advance Centre for Rainfed Agriculture, India
2KVK Kathua, India
3Division of Microbiology, Basic Sciences Main Campus Chatha, India
4KVK Samba, India
*Corresponding author

ABSTRACT

All the fungicides at different concentrations were significantly inhibitory to the fungal growth as compared to control. The cent percent growth inhibition was recorded in carbendazim and Propiconazole at 100 to 1000 ppm). The next effective fungicide was Metalaxyl (500 to1000ppm), benlate (750 and 1000ppm) which were also inhibited cent percent growth of fungus. Trichoderma harzianum isolate 1 (Jammu) showed strong antagonistic effect, followed by T. harzianum isolate 3 (Kathua). The phytoextracts screened in vitro by poisoned food technique against Fusarium oxysporum f. sp. ciceri revealed that Azadirachta indica leaves extract showed maximum growth inhibition of fungus followed by Allium sativum.

Keywords
Fusarium oxysporum f. sp. ciceri, Phyto-extracts, Trichoderma spp.

Introduction

Chickpea (Cicer arietinum) is one of the most important pulse crop cultivated and consumed in India. In India chickpea accounts for about 45% of total pulses produced in the country. Crop duration is about 90 to 120 days. Chickpea is the third most important pulse crop after dry bean and peas produced in the world. India is the largest producer, with about 8 million tonnes accounting of about 70% of total world production (AICRP chickpea). Among the soil borne diseases of chickpea, wilt disease caused by Fusarium oxysporum f. sp. ciceri is an important soil borne disease in Jammu division. Considering seriousness of the disease, the present investigation was carried out.

Materials and Methods

The required quantities of each test fungicides were put in the conical flask containing 100ml molten PDA medium so as to get required concentration in ppm. The flask containing poisoned medium was well shaken to
facilitate uniform mixture of fungicides and 20ml was poured in each sterilized petriplates. Further standard procedure was adopted on % growth inhibition of pathogen. Similar procedure was adopted for testing bioagents. Healthy fresh plant parts i.e., leaves/bulbs/rhizomes were taken washed thoroughly with fresh water and finally rinsed with sterilized distilled water. Fifty gram of plant parts was grinden in a mixture by adding 100ml acetone, filtered through double-layers muslin cloth and tested as per the above techniques. The studies were carried out under in vitro conditions. All the isolation and inoculation work was carried out in laminar air flow under aseptic condition. The platform of laminar air flow was sterilized by glowing ultraviolet light for half an hour prior to commencement of work.

The working surface of laminar flow and side glasses were surface sterilized with denatured spirit. Moreover, other such necessary care was taken to maintain and carryout work under aseptic conditions. The glass wares such as petriplates, beakers and test tubes were sterilized in hot air oven at 180°C for 1 hour and media were sterilized in autoclave at 121.6lbs/inch² for 15 minutes.

Isolation of Fusarium oxysporum f. sp. ciceri

Chickpea plant showing typical wilt symptoms were collected from the farmer’s field of Rayean village from Samba district. The repeated isolations were made to isolate pathogen from wilted plants showing browning of vascular tissue. The roots and stem of infected plants were washed in running tap water to remove soil before isolation to avoid contamination.

The roots were cut into small bits of the size 2.5mm with sterilized blade. These bits were then surface sterilized with 0.1 percent mercury chloride. Each bit was blot dried and four bits placed on the each prepoured solidified potato dextrose agar (PDA) plated. These plates were then incubated at 27°C for seven days. The fungal growth was transferred to the plates of PDA

Purification, identification and maintenance of pathogen

F. o. f. sp. ciceri culture isolated from the wilted chickpea plant were purified from single spore method and identified by the colony characteristics appeared as white cottony growth on PDA medium which became felted and wrinkled in old culture colonies. By microscopically their morphological characters such as abundance of micro and fewer macro conidia were analysed. Microconidia were oval to cylindrical, straight to curved and measured 2.5-3.5x 5-11um and were poured on short, unbranched monophialides. Macroconidia borne on branched conidiophores, were thin walled, 3.5-4.5 x 2.5-6.5 um (Trivedi and Rathi, 2015).

The pathogen was subculture on PDA slants and allowed to grow at 27°C temperature for 10 days. Obtained culture was stored in refrigerator at 40C and were sub cultured periodically once in a month.

Results and Discussion

Results revealed that all the systemic fungicides were capable of inhibiting the growth of the test fungus at different concentrations as compared to check. Carbendazim and Propiconazole proved be the most effective inhibiting cent percent growth of the test fungus at all the concentrations (100, 250, 500, 750 and 1000ppm) followed by Metalaxyl (500, 750 and 1000ppm) and benlate (750 and 1000ppm).
Table 1 Evaluation of fungicides against *Fusarium oxysporum* f. sp. ciceri at different concentrations

Systemic Fungicides (PPM)	Growth Inhibition (%)	Non systemic Fungicides (PPM)	Growth Inhibition (%)	Mix fungicides (PPM)	Growth inhibition (%)	
Metalaxyl	100	92.1(74.24)	500	32.1 (34.85)	100	52.2 (46.55)
	250	93.3 (78.21)	1000	59.4(50.71)	250	88.3 (70.46)
	500	100.0 (88.15)	1500	65.5 (54.39)	500	91.7 (73.80)
	750	100.0 (88.15)	2000	77.2 (61.84)	1000	100.0 (88.15)
	1000	100.0 (88.15)	2500	82.7 (69.81)	1500	100.0 (88.15)
Carbendazim (Bavistin 50WP)	100	100.0 (88.15)	500	33.2 (35.51)	100	32.5 (35.08)
	250	100.0 (88.15)	1000	46.5 (43.27)	250	100.0 (88.15)
	500	100.0 (88.15)	1500	52.4 (46.67)	500	100.0 (88.15)
	750	100.0 (88.15)	2000	53.3 (47.18)	1000	100.0 (88.15)
	1000	100.0 (88.15)	2500	52.7 (46.86)	1500	100.0 (88.15)
Carbendazim(12WP) + Mancozeb (63WP)	100	100.0 (88.15)	500	33.2 (35.51)	100	32.5 (35.08)
Propiconazole (Tilt)	100	100.0 (88.15)	500	66.0 (54.61)	100	21.3 (27.82)
	250	100.0 (88.15)	1000	80.1 (63.88)	250	31.4 (34.40)
	500	100.0 (88.15)	1500	88.2 (70.35)	500	38.6 (38.71)
	750	100.0 (88.15)	2000	88.4 (70.52)	1000	65.0 (53.01)
	1000	100.0 (88.15)	2500	88.70 (70.79)	1500	66.4 (54.88)
Benlate	250	90.6 (72.68)	500	66.0 (54.66)	250	93.0 (75.20)
	500	82.7 (65.78)	700	94.3 (76.92)	1500	100.0 (88.15)
	750	100.0 (88.15)	1000	100.0 (88.15)	1000	100.0 (88.15)
	1000	100.0 (88.15)				
Treatment	Conc. TXC	Treatment	Conc. T&C	Treatment	Conc. TxC	
S.E.± 0.08	0.09 0.17	0.08	0.09 0.19	0.20	0.26 0.45	
C.D. (=0.05) 0.21	0.24 0.49	0.24	0.27 0.53	0.58	0.75 1.30	

Average of three replication; Figures in parenthesis are arc sine transformed values.
Table 2
In vitro efficacy of plant extracts against *Fusarium oxysporum* f. sp. *ciceri*

Plant extracts	Percent inhibition of mycelial growth at different concentration (percent)	Mean					
	5%	10%	15%				
Azadirachta indica (Neem)	35.64	(36.65)	46.90	(43.22)	58.15	(49.69)	56.33
Daturastramonium (Daturas)	25.40	(30.26)	33.51	(33.37)	41.61	(40.17)	42.22
Allium sativum (Garlic)	30.17	(33.32)	40.21	(39.35)	50.24	(45.14)	48.18
Ocimumtenuiflorum (Tulsi)	21.54	(27.65)	25.90	(30.59)	30.25	(33.37)	35.16
Control	0.00	(0.00)	0.00	(0.00)	0.00	(0.00)	

SEm± | 0.59 | 0.56 | 0.66 | | |
CD(P=0.05) | 1.83 | 1.73 | 2.04 | | |

*Average of four replications**Figures given in parenthesis are angular transformed values.

Table 3
Antagonistic efficacy of *Trichoderma* spp. against wilt of chickpea under *in vitro* condition

Antagonists	Growth inhibition (%)
Trichoderma harzianum isolate 1 (Jammu)	81.42 (64.82)
Trichoderma harzianum isolate 2 (Samba)	72.3 (58.56)
Trichoderma harzianum isolate 3 (Kathua)	77.4 (61.94)
Trichoderma viride isolate 1 (Jammu)	74.0 (59.64)
Trichoderma viride isolate 2 (Samba)	67.6 (55.65)
Trichoderma viride isolate 3 (Kathua)	63.8 (53.31)
Trichoderma virens isolate 1 (Jammu)	66.0 (54.66)
Trichoderma virens isolate 2 (Samba)	70.7 (57.53)
Trichoderma virens isolate 3 (Kathua)	71.1 (57.78)
Control	0.0 (4.05)

S.E.m± | 0.29 |
C.D. (P=0.05) | 0.83 |

*Average of three replication ** Figures in parenthesis are sine transformed values.

Carbendazim and Mancozeb at 250, 500, 1000 and 1500ppm concentrations were found most effective. Gupta et al., (2014) found that carbendazim were most effective at higher doses against fungus *in vitro*. Singh and Singh (2006) found that carbendazim and mancozeb completely inhibited the fungal growth *in vitro* at higher. Carboxin and thiram at 1000, 1500ppm were cent percent effective. Thiram + Mancozeb at 1500 and 1000ppm showed effective inhibitory effects. Among the non-systemic fungicides, Captan proved to be the most effective in inhibiting cent percent mycelial growth at 1000, 2000 and 2500ppm concentrations followed by Thiram at 2500ppm (88.70%) inhibition. Similarly Nikam et al., (2007) reported that Thiram (0.15%) + carbendazim (0.1%) is proved to be the most effective against *Fusarium oxysporum* f. sp. *ciceri* as shown in table 1.

In *vitro* effect of Plant extract against *Fusarium oxysporum* f. sp. *ciceri*

Effect of plant extracts was tested at 5, 10, and 15 percent concentration against inhibition of mycelial growth of *Fusarium oxysporum* f. sp. *ciceri* by poison food technique. The *Azadirachta indica* leaf extract was found significantly superior in inhibiting the mycelial growth (56.33%), followed by *Allium sativum* love extract (48.18%) and
Daturastrum monium (42.22). Ocimum tenuiflorum leaf extract was found least effective (35.16%) against inhibition of mycelial growth of the fungus. As the concentration of plant extracts increased, the inhibition of test fungus decreases (Table 2). Similarly Kumar et al., (2012) evaluated 17 plant extracts and 7 completely inhibited the mycelial growth in vitro. Similar results were found by B. D. S. Nathawat and Mahindra (Pratap (2014). Sahani and Saxena (2008) reported that the seeds treated or soaked in Azadirachta indica (seed) extracts were the most effective for Fusarium oxysporum and significantly increased seed germination.

In vitro efficacy of Trichoderma spp against wilt of chickpea caused by Fusarium oxysporum f. sp. ciceri

Out of nine antagonists tested, Trichoderma harzianum isolate 1 (Jammu) showed significantly maximum growth inhibition 81.42% followed by T. harzianum isolate 3 (Kathua) as 77.4% growth inhibition as compared to control (Table 3). Mishra et al., 2012 also reported almost similar result on groundnut. Trichoderma viride isolate 1 (Jammu) showed 74.0% inhibition, Trichoderma virens isolate 3 (Kathua) inhibited 71.1% test fungus.

References

http://www.aicrpchickpea.res.in/
Kumar, P., and Mane, S. S. (2017), Efficacy of fungicides and biocontrol agents against Fusarium oxysporum f. sp. ciceri. Int. J. Curr. Microbial. App. Sci, 6(3): 1450 -1455
Kumar, Rajendra, Jeewa Ram, LalitChhata and B. B. L. Thakore (2012). Evaluation of plant extracts against Pythium aphanidermatum inciting damping off of tomato. Ann. Pl. Protec. Sci. 20:181-183.
Mishra, Divakar, A. A. Lal and Sobita Simon (2012). Efficacy of Trichoderma spp. with and without fungicides against tikka disease of groundnut. Ann. Pl. Protec. Sci. 20:492-493.
Nathawat, B. D. S. and Mahendra Pratap (2014). Evaluation of fungicides, botanicals and Trichoderma spp. against collar rot of groundnut (Arachis hypocraea L.) caused by Aspergillus niger van Tiegham. Ann. Pl. Protec. Sci. 22(2):382-385.
Nikam, P. S., Jagtap G. P. and Sonatakke, P. L. (2007), Management of chickpea wilt caused by Fusarium oxysporum f. sp. ciceri. African Journal of Agricultural Research Vol. 2 (12), pp. 692-697.
Sahani, R. K. and A, R. Saxena (2008). Efficacy of extracts of medicinal plants against Fusarium oxysporum f. sp. pici. Ann. Pl. Protec. Sci. 16:534-535.
Trivedi, L., and Rathi, Y. P. S. 2015. Detection of seed mycoflora from chickpea wilt complex seedborne Fusarium oxysporum f. sp. ciceri diseased seeds. World J. Pharmacl. Sci., 4(9): 1242-1249.

How to cite this article:
Sonika Jamwal, Anamika Jamwal, A.C. Jha, Reena, Upma Dutta, Anil Kumar, Neeraja Sharma, Sanjeev Kumar and Ajay Kumar. 2017. Evaluation of Fungicides, Botanicals and Trichoderma spp. against Wilt of Chickpea Caused by Fusarium oxysporum f. sp. ciceri. Int.J.Curr.Microbiol.App.Sci. 6(12): 1389-1393. doi: https://doi.org/10.20546/ijcmas.2017.612.155