How cold is cold dark matter? Small scales constraints from the flux power spectrum of the high-redshift Lyman-α forest

Matteo Viel,1,2 George D. Becker, 3 James S. Bolton, 4 Martin G. Haehnelt,5 Michael Rauch, 6 Wallace L.W. Sargent 3

1 INAF - Osservatorio Astronomico di Trieste, Via G.B. Tiepolo 11, I-34131 Trieste, Italy
2 INFN/National Institute for Nuclear Physics, Via Valerio 2, I-34127 Trieste, Italy
3 Palomar Observatory, California Institute of Technology, Pasadena, CA 91125, USA
4 Max-Planck-Institut für Astrophysik, Karl-Schwarzschild-Strasse 1, D-85741, Garching, Germany
5 Institute of Astronomy, Madingley Road, Cambridge CB3 0HA, United Kingdom
6 Carnegie Observatories, 813 Santa Barbara Street, Pasadena, CA 91101, USA

(Dated: February 1, 2008)

We present constraints on the mass of warm dark matter (WDM) particles derived from the Lyman-α flux power spectrum of 55 high-resolution HIRES spectra at $2.0 < z < 6.4$. From the HIRES spectra, we obtain a lower limit of $m_{\text{WDM}} > 1.2$ keV (2σ) if the WDM consists of early decoupled thermal relics and $m_{\text{WDM}} > 5.6$ keV (2σ) for sterile neutrinos. Adding the Sloan Digital Sky Survey Lyman-α flux power spectrum, we get $m_{\text{WDM}} > 4$ keV and $m_{\text{WDM}} > 28$ keV (2σ) for thermal relics and sterile neutrinos. These results improve previous constraints by a factor two.

Introduction. Warm dark matter (WDM) has been advocated in order to solve the apparent problems of standard cold dark matter (CDM) scenarios at small scales (e.g. [1]), most notably: the excess of the number of galactic satellites, the cuspsiness and high (phase space) density of galactic cores and the large number of galaxies filling voids. These and other problems could be alleviated if the dark matter (DM) is made of warm instead of cold particles. The main effect of the larger thermal velocities would be to suppress structures below the Mpc scale. However, poorly understood astrophysical factors (e.g. [2, 3, 4]), have also to be considered in order to reliably model the spatial distribution of dark matter at small scales. The Lyman-α absorption produced by the intervening neutral hydrogen in the spectra of distant quasars (QSOs), the so called Lyman-α forest, is a powerful tool for constraining dark matter properties. It probes the matter power spectrum in the mildly nonlinear regime over a large range of redshifts ($z = 2 - 6$) down to small scales ($1 - 80 h^{-1}$ Mpc) [5]. In previous work, Ref. [6] used two samples of high-resolution QSO Lyman-α forest spectra at $z \sim 2.5$ to set a lower limit of 550 eV for the mass of a thermal warm dark matter candidate (2 keV in case of a sterile neutrino). More recently, Ref. [7] and Ref. [8], using the Sloan Digital Sky Survey (SDSS) QSO data set at higher redshifts and different methods significantly improved this limit by a factor ~ 4. Among the possible WDM candidates, the most promising appears to be a sterile neutrino with a mass in the keV range, which could be part of many particle physics models with grand unification (e.g. [9]). Because of a non-zero mixing angle between active and sterile flavor states, X-ray flux observations can also constrain the abundance and decay rate of such DM particles (e.g. [10]). The constraints from Lyman-α forest data and those from the X-ray fluxes of astrophysical objects together put considerable tension on the parameter space still allowed for a sterile neutrino particle with the phase-space distribution proposed by Dodelson & Widrow (DW) [11], although other non-standard scenarios must be explored [12]. Here, we will use a new large set of high-resolution Lyman-α forest spectra in order to improve limits on the mass of a WDM particle.

Data sets. We use two different data sets: i) the high resolution HIRES data set presented in [13] which consists of 55 QSOs spanning the range $2.0 < z < 6.4$; ii) the SDSS Lyman-α forest data of McDonald et al. [14], which consists of 3035 quasar spectra at low resolution ($R \sim 2000$) and low signal-to-noise ratio spanning a wide range of redshifts ($z = 2.2 - 4.2$). We have calculated the flux power spectrum from the HIRES data for 4 redshift bins with median redshifts $z = 2.5, 3.5, 4.5, 5.5$ and 20 logarithmically spaced bins in wavenumber spanning $0.002 < k (\text{s/km}) < 0.287$. Note, however, that we use only 12 bins in the range $0.003 < k (\text{s/km}) < 0.077$ for our present analysis (a total of 48 points). The total redshift path of the HIRES sample is $\Delta z = 29.1$. The redshift path of the lowest redshift bin is comparable to that of the LUQAS sample of high-resolution spectra ($\Delta z = 13$) which we used previously [15], while the other three redshift bins have smaller redshift paths of approximately equal length. Note that our previous work based on the LUQAS sample used only the range $0.003 < k (\text{s/km}) < 0.03$. For the SDSS data set we use 132 flux power spectrum measurements $P_F(k, z)$ that span 11 redshift bins and 12 k-wavenumbers in the range $0.00141 < k (\text{s/km}) < 0.01778$ (roughly corresponding to scales of 5-50 comoving Mpc). Since the HIRES spectra have higher resolution than the SDSS spectra we can use the flux power spectrum obtained from the HIRES data to extend our analysis to smaller scales. We have removed the damped Lyman-α systems (DLAs) from the observed HIRES spectra, but decided not to attempt to remove the metal lines. We rely on the measurement of
the contribution of metal absorption to the flux power spectrum at $z = 2.13$ by $\frac{13}{14}$. We use this estimate to correct our measurement of the flux power spectrum at $z = 2.5$, and apply a smaller correction for the measurement at $z = 3.5$. For the two highest redshift bins we do not apply any correction to our measurements of the flux power spectrum as the metal contribution should be very small at these redshifts. The contribution of the metal absorption to the flux power spectrum at the scales considered here depends only weakly on wavenumber and is degenerate with the value of the assumed effective optical depth $\frac{13}{14}$. Marginalizing over the observed range of the effective optical depth in our parameter analysis will (implicitly) account for a possibly different contribution to the flux power spectrum than we have assumed. We have tested the effect of continuum fitting errors by calculating the flux power spectrum of each observed Lyman-α forest spectrum at $z > 4$ for 100 continuum fit realizations where we have adjusted the continuum level of the observed spectra randomly by a factor $1 + \epsilon$ with ϵ in the range $[-0.1, 0.1]$. This should be a reasonable estimate of the effect of continuum fitting errors at high redshift. At smaller redshifts the continuum fitting errors should be below 4%. The variations of the flux power for these 100 realizations lies well within the statistical errors of the flux power spectrum of our full sample and estimates differ by less than 5% from the case with $\epsilon = 0$. We have decided not to try to explicitly account for continuum fitting errors. The covariance matrix of the flux power spectrum for the HIRES data set was calculated with a jack-knife estimator.

Method. Modeling the flux power spectrum of the Lyman-α forest for given cosmological parameters down to the required small scales is not straightforward and accurate numerical supercomputer simulations are required. Here, we model the flux power spectrum with full hydro-dynamical simulations using a second order Taylor expansion around a best fitting model. This allows us to obtain a reasonably accurate prediction of the flux power spectrum for a large range of parameters, based on a moderate number of simulations $\frac{17}{13}$. The method has been first introduced in Ref. $\frac{16}{13}$ and we refer to this work for further details. Note that while in Ref. $\frac{16}{13}$ the prediction for the flux power were made using a first order Taylor expansion, here the expansion is made to second order: i.e. the parameter dependence of the flux power spectrum $P(k, z, p)$ is locally described by a 2nd order polynomial function for any redshift z, set of wavenumbers k and cosmological or astrophysical parameters p. In this work, we use as input in the hydro-dynamical simulations a linear matter power spectrum as in $\frac{6}{13}$ 25 and we assume that the sterile neutrino phase-space distribution is equal to that of active neutrinos multiplied by a suppression factor. Deviations from this first-order approximation were computed in $\frac{18}{13}$, but typically these corrections lower the bounds on the warm dark matter mass by only 10% $\frac{7}{2}$. For our best estimate of the flux power spectrum of our fiducial model we used a simulation of a box of length $60 h^{-1} \text{comoving Mpc}$ with 2×400^{3} gas and cold DM particles (gravitational softening $2.5 h^{-1} \text{kpc}$). The fiducial flux power spectrum has been corrected for box size and resolution effects. Note that resolution corrections are large at high redshift and redshift/scale dependent: they reach 50% (300%) at the smallest scales at $z = 4.5$ ($z = 5.5$). We performed a number of additional hydro-dynamical simulations with a box size of $20 h^{-1} \text{comoving Mpc}$ and 2×256^{3} gas and DM particles (grav. soft. 1 $h^{-1} \text{kpc}$) for WDM models with a (thermal) warm dark matter of mass $m_{\text{WDM}} = 1, 4, 8 \text{keV}$, to calculate the derivatives of the flux power spectrum with respect to changes of the WDM particle mass and other astrophysical and cosmological parameters of interest in this analysis. We have checked the convergence of the flux power spectrum on the relevant scales using several additional simulations (following the approach of $\frac{19}{13}$) with 2×256^{3} gas and DM particles and box sizes of $10 h^{-1} \text{Mpc}$ (grav. soft. 2 $h^{-1} \text{kpc}$), $5 h^{-1} \text{Mpc}$ (grav. soft. 1 $h^{-1} \text{kpc}$) and a $5 h^{-1} \text{Mpc}$ simulation with 2×448^{3} (grav. soft. 0.27 $h^{-1} \text{kpc}$).

We then used a modified version of the code CosmoMC $\frac{20}{13}$ to derive parameter likelihoods from the the HIRES and SDSS Lyman-α data. For the HIRES data, we had a set of 18 parameters: 7 cosmological parameters; 6 parameters describing the thermal state of the Intergalactic Medium: parameterization of the gas temperature-gas density relation $T = T_{0}(z)(1 + \delta)^{\gamma(z)-1}$ as a broken power law at $z = 3$ with the two astrophysical param-

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{fig1.png}
\caption{Flux power spectrum of the HIRES data set at different redshifts and best fit models (solid curve) with $m_{\text{WDM}} = 8 \text{keV}$ and a model with $m_{\text{WDM}} = 2.5 \text{keV}$ (dashed curve).}
\end{figure}
parameters $T^A_0(z)$ and $\gamma^A(z)$ describing the amplitude; 4 parameters describing the evolution of the effective optical depth with redshift (slope T^A_0 and amplitude T^A_0 at $z = 3$ and $z = 5$) since a single power-law has been shown to be a poor approximation over this wide redshift range (see [13]); one parameter describing the spatial fluctuations of the Ultra-Violet (UV) background f_{UV}.

In estimating the effect of UV fluctuations on the flux power we adopt a conservative approach and consider the model of [21], where the UV fluctuation have a large impact on the flux. The model assumes that the UV background and its spatial fluctuations are produced by Lyman-Break galaxies and QSOs and uses as input the QSOs and Lyman-Break luminosity functions at $z = 3.5, 4, 5, 6$. At $z = 5.5$ the flux power in the model with UV fluctuations is larger by 4% at the largest scales increasing to 20% at $k = 0.2$ s/km (not included in the analysis), compared to the case without UV fluctuations. At $z = 4$ and $z = 3.5$ the only differences arise at scales $k > 0.3$ s/km, which are not considered in the present analysis. Further details on the UV model can be found in [21] (but see other approaches [22]). We parameterize the effect of UV fluctuations on the flux power with a multiplicative factor f_{UV} constrained to be in the range [0, 1]. For the SDSS data we have used a total of 28 parameters: 15 parameters used for the HIRES spectra (without f_{UV} and the two parameters describing the effective optical depth evolution at $z = 5$) plus 13 noise-related parameters: 1 parameter which accounts for the contribution of DLAs and 12 parameters modelling the resolution and the noise properties of the SDSS data set (see [22]). We do not address the role of different reionization scenarios on the flux power. To do this self-consistently would require radiative transfer simulations beyond present numerical capabilities and the effect of the reionization history should be subdominant and degenerate with the thermal state of the gas. In computing the likelihood a crucial input is the covariance matrix of the two data sets. The covariance matrix of the SDSS flux power is provided by the authors of [14]. We found the covariance matrix of our HIRES data set to be rather noisy (especially at high redshift), preventing a reliable inversion. To overcome this problem we use the suggestion of [24]. We regularize the observed covariance matrix using the correlation coefficients as estimated from the simulated spectra, $cov_{ij} = r_{ij} \sqrt{cov_{ii}} \sqrt{cov_{jj}}$ with $r_{ij} = cov_{ij} / \sqrt{cov_{ii} cov_{jj}}$, where cov_{ij} and cov_{ij} are the covariance matrices of the observed and simulated spectra, respectively. Note that this procedure implicitly assumes that observed and simulated data have similar covariance properties. We have applied moderate priors to the thermal history to mimic the observed thermal evolution as in [10] and a prior on the Hubble constant (72 ± 8 km/s/Mpc), but note that the final results for the mass constraint are not affected by these priors.

Results. In Figure 1 we show the best fit model for the HIRES data set (continuous curve, $m_{WDM} = 8$ keV) and a model with a smaller mass for the thermal WDM particle (dashed line, $m_{WDM} = 2.5$ keV). The constraining power of the small scales at high redshift is immediately evident. The χ^2 value of the best fit model is ~ 40 for 36 d.o.f. and with a probability of 16% this is a reasonable fit. As noted in Ref. [7] at high redshifts, the mean flux level is lower and the flux power spectrum is closer to the linear prediction making the flux power data points very sensitive to the free-streaming effect of WDM. We confirm that there are no strong degeneracies between m_{WDM} and the other parameters, demonstrating that the effect of a WDM particle on the Lyman-α flux power is unique, and that the other cosmological and astrophysical parameters considered here cannot mimic its effect.

The 2σ lower limits for the mass of the warm dark matter particle are: 1.2 keV, 2.3 keV and 4 keV, for the HIRES, SDSS and SDSS+HIRES data sets, respectively. The corresponding limits for DW sterile neutrino are: 5.6, 13, and 28 keV (see [6] for how the masses are related for the two cases). The χ^2 of the best fit model of the joint analysis ~ 198 for 170 d.o.f. which should occur in 7% of the cases. The sample of HIRES spectra improves our previous constraint from high-resolution spectra obtained from the LUQAS sample by a factor two. Dropping the highest redshift bin ($z = 5.5$) weakens the limit to 0.8 keV (3.3 keV) for the mass of a thermal (sterile) neutrino. The SDSS data alone is still more constraining than the HIRES data alone, due to the smaller statistical errors of the SDSS flux power spectrum and the finer coverage of a large redshift range which helps to break some of the degeneracies between astrophysical and cosmological parameters. Combining the SDSS data and the HIRES results in an overall improvement of a factor ~ 2 and gives the strongest limits on the mass of WDM particles from Lyman-α forest data to date. In Table 1 we summarize the constraints obtained for the most relevant astrophysical and cosmological parameters (1σ) for our analysis of the HIRES only and HIRES+SDSS data sets. We note that, similarly to [4], there is a preference for a non-zero $1/m_{WDM}$ value which is at present not statistically significant (less than 2σ). The data also prefers models with non-zero UV background fluctuations.

Discussion. We have used a sample of high resolution Lyman-α forest spectra which is sensitive to the suppression in the matter power spectrum at small scales caused by the free-streaming of WDM particles. We have modelled the observed flux power spectrum by using high resolution hydro-dynamical simulations that incorporate the relevant physical processes. We also improved previous analyses by extending the parameter space, performing a Taylor expansion order of the flux power spectrum in the cosmological and astrophysical parameters to second instead of first order, and including UV fluctuations that should be important at the high redshifts consid-
ertered here. We confirm that the observed Lyman-α forest flux power spectrum at small scales and high redshifts requires significantly more power on small scales than provided by the models that try to reproduce the cores of dwarf galaxies with a warm dark matter particle by \[7\]. We improve previous lower limits on the mass of warm dark particles of \[7\] by a factor two and those of \[8\] by a factor three. This further decreases the rather small gap between the limits on the mass of DW sterile neutrinos from Lyman-α forest data and those on mass and mixing angle from the diffuse X-ray background (e.g. \[26\]). We note that all the limits quoted here refers to the thermal production mechanism for sterile neutrinos and could be potentially 10–20% weaker in case of non-thermality \[26\].

Acknowledgments. Simulations made at COSMOS funded by PPARC, HEFCE, SGI, Intel and at HPCF (Cambridge, UK). GDB, MR and WLWS thank NSF for support under grants AST 05-6845, AST-0206067 and AST-0606888. HIRES spectra obtained at the Keck Obs. (supported by Keck Foundation). We thank J.Lesgourgues for comments.

\begin{table}[h]
\centering
\caption{Marginalized estimates (1σ errors)}
\begin{tabular}{|l|c|}
\hline
parameter & HIRES+SDSS & HIRES \\
\hline
\hline
\hline
\hline
n & 0.97 ± 0.03 & 0.97 ± 0.05 \\
\hline
σ₈ & 0.96 ± 0.07 & 1.0 ± 0.2 \\
\hline
Ωₘ & 0.25 ± 0.03 & 0.28 ± 0.09 \\
\hline
τₘ₈(z = 3) & 0.35 ± 0.01 & 0.33 ± 0.03 \\
\hline
τ₈₈(z = 3) & 3.17 ± 0.07 & 3.02 ± 0.37 \\
\hline
γ₄₈(z = 3) & 1.44 ± 0.12 & 1.54 ± 0.33 \\
\hline
τ₈₈(z = 5) & 1.53 ± 0.09 & 1.54 ± 0.19 \\
\hline
τ₄₈(z = 5) & 4.77 ± 0.44 & 4.92 ± 0.5 \\
\hline
T₀(z = 3)(10⁴) K & 2.23 ± 0.30 & 1.54 ± 0.34 \\
\hline
f_{UV} & 0.65 ± 0.25 & 0.58 ± 0.28 \\
\hline
1/m_{WDM}(keV⁻¹) & 0.09 ± 0.07 & 0.44 ± 0.22 \\
\hline
\end{tabular}
\end{table}

[1] P. Bode, J. P. Ostriker and N. Turok, Astrophys. J. 556, 93 (2001); B. Moore, T. Quinn, F. Governato, J. Stadel and G. Lake, Mon. Not. Roy. Astron. Soc. 310, 1147 (1999); V. Avila-Reese, P. Colin, O. Valenzuela, E. D’Onghia and C. Firmani, Astrophys. J. 559, 516 (2001); M. Miranda, Maccio’ A.V., 2007, arXiv:0706.4866v1.

[2] J. Wang and S.D.M. White, arXiv:astro-ph/0702575

[3] L.E. Strigari, M. Kaplinghat, J.S. Bullock, Phys. Rev. D 75, 061303 (2007); W.B. Lin, D.H. Huang, X. Zhang, R. Brandenberger, Phys. Rev. Lett. 86, 954 (2001)

[4] L. E. Strigari, J. S. Bullock, M. Kaplinghat, A. V. Kravtsov, O. Y. Gnedin, K. Abazajian and A. A. Klypin, Astrophys. J. 652, 306 (2006); J. Simon, G. Geha, Astrophys. J. 670, 313 (2007)

[5] U. Seljak, A. Slosar and P. McDonald, JCAP, 0610, 14 (2006); M. Viel, M. G. Haehnelt and A. Lewis, MNRAS, 370, L51 (2006)

[6] M. Viel, J. Lesgourgues, M. G. Haehnelt, S. Matarrese and A. Riotto, Phys. Rev. D 71, 063534 (2005).

[7] U. Seljak, A. Makarov, P. McDonald and H. Trac, Phys. Rev. Lett. 97, 191303 (2006)

[8] M. Viel, J. Lesgourgues, M. G. Haehnelt, S. Matarrese, A. Riotto Phys. Rev. Lett. 97, 071301 (2006)

[9] P. L. Biermann and A. Kusenko, Phys. Rev. Lett. 96, 091301 (2006); P. J. E. Peebles, Astrophys. J. 258, 415 (1982); K. Abazajian, Phys. Rev. D 73, 063513 (2006)

[10] A. Boyarsky, A. Neronov, O. Ruchayskiy and M. Shaposhnikov, Phys. Rev. D 74, 103506 (2006); C. R. Watson, J. F. Beacom, H. Yuksel and T. P. Walker, Phys. Rev. D 74, 033009 (2006); A. Boyarsky, J. W. den Herder, A. Neronov, O. Ruchayskiy, arXiv:astro-ph/0612219; Abazajian K., Fuller G.M. and Tucker W.H., Astrophys. J. 562, 593 (2001); K. Abazajian and S. M. Koushiappas, Phys. Rev. D 74, 023527 (2006); A. Boyarsky, D. Iakubovskyi, O. Ruchayskiy, V. Savchenko, arXiv:0709.2301v1

[11] S. Dodelson, L.M. Widrow, Phys. Rev. Lett. 72, 17 (1994)

[12] A. Kusenko, Phys. Rev. Lett. 97, 241301 (2006)

[13] G.D. Becker, M. Rauch, W.L.W. Sargent, Astrophys. J. 662, 72 (2007)

[14] P. McDonald et al., Astrophys. J. Suppl. 163, 80 (2006).

[15] T. S. Kim, M. Viel, M. G. Haehnelt, R. F. Carswell and S. Cristiani, MNRAS, 347, 355 (2004); R. A. C. Croft et al., Astrophys. J. 581, 20 (2002).

[16] M. Viel and M. G. Haehnelt, Mon. Not. Roy. Astron. Soc. 365, 231 (2006).

[17] V. Springel, Mon. Not. Roy. Astron. Soc. 364, 1105 (2005); M. Viel, M. G. Haehnelt and V. Springel, Mon. Not. Roy. Astron. Soc. 354, 684 (2004).

[18] K. Abazajian, Phys. Rev. D 73, 063506 (2006)

[19] P. McDonald, Astrophys. J. 585, 34 (2003)

[20] A. Lewis and S. Bridle, Phys. Rev. D 66, 103511 (2002); CosmoMC home page: http://www.cosmologist.info

[21] J.S. Bolton, M.G. Haehnelt, arXiv:astro-ph/0703306

[22] P. McDonald et al., Mon. Not. Roy. Astron. Soc. 360, 1471 (2006); R.A.C. Croft, Astrophys. J. 610, 642 (2004).

[23] P. McDonald et al., Astrophys. J. 635, 761 (2005).

[24] A. Lidz et al., Astrophys. J. 638, 27 (2006).

[25] S. Colombi, S. Dodelson and L. M. Widrow, Astrophys. J. 458, 1 (1996); S. H. Hansen, J. Lesgourgues, S. Pastor and J. Silk, Mon. Not. Roy. Astron. Soc. 333, 544 (2002).

[26] T. Asaka, M. Shaposhnikov, M. Laine, 2007, JHEP, 0701, 91