Systematic Review

Endovascular and open surgical repair of abdominal aortic aneurysms: A comparative analysis of western and Chinese studies

Feng Shi¹, Yuchen He², Shiyue Wang², Fuqiang Jia³, Chao Ji⁴, Jian Zhang², Xun Liu⁵ and Yanshuo Han⁶,∗

¹Department of Health Management, Shengjing Hospital of China Medical University, Shenyang 110004, P. R. China
²Department of Vascular Surgery, the First Hospital of China Medical University, and Key Laboratory of pathogenesis, prevention and therapeutics of aortic aneurysm Liaoning Province, Shenyang 110001, P. R. China
³Yingkou Vocational and Technical College, Yingkou 115000, P. R. China
⁴Department of Clinical Epidemiology, Shengjing Hospital of China Medical University, Shenyang 110004, P. R. China
⁵School of Life Science and Medicine, Dalian University of Technology, Panjin 116024, P. R. China

*Correspondence: yanshuohan@dlut.edu.cn (Yanshuo Han)

DOI: 10.31083/j.rcm.2020.01.513

This is an open access article under the CC BY-NC 4.0 license (https://creativecommons.org/licenses/by-nc/4.0/).

Abdominal aortic aneurysms (AAA) are life-threatening serious conditions that require effective and quick management. Although it is generally acknowledged that patients with AAA obtain the greatest benefit from endovascular repair (EVAR) compared to open surgical repair (OSR), there are few comparisons between the surgical approaches in Western versus Chinese patients. We aimed to perform a meta-analysis of studies in which EVAR was compared with OSR in the management of abdominal aortic aneurysms. We searched the Western literature through PubMed, OVID and Web of Science from 1991 until December 2018 and the Chinese-language literature from 1998 until December 2018. We pooled the results in January 2019 based on standardized inclusion and exclusion criteria and analyzed them using a conventional meta-analysis. Forty-five English papers with 31,074 AAA patients and twenty-one Chinese studies with 1,405 patients were included in this study. Chinese subjects were more likely to undergo endovascular repair than Western subjects (44.5% versus 41.5%, \(P = 0.012 \)). The 30-day post-discharge mortality rate in Western studies was significantly lower for EVAR than for OSR (odds ratio (OR) = 0.481, \(P < 0.001 \)). However, there was no significant reduction in the 30-day mortality rate following EVAR compared to OSR (OR = 0.733, \(P = 0.247 \)) for Chinese patients. In Western patients, the postoperative complication rate of respiratory system and cardiac system was lower in the EVAR group than in the OSR group (OR = 0.270, \(P < 0.001 \) and OR = 0.411, \(P < 0.001 \), respectively), nevertheless, for Chinese patients, limb ischaemia was more common (OR = 1.539, \(P = 0.049 \)) in the EVAR group. Whether in Western patients with an eight-year follow-up period or Chinese patients with a maximum four-year follow-up period, there was no significant difference between the EVAR and OSR groups in the all-cause death rate (hazard ratio (HR) = 1.026, \(P = 0.483 \) and HR = 1.173, \(P = 0.247 \), respectively). Chinese patients were more likely to receive EVAR than OSR and the 30-day mortality was significantly lower for EVAR than for OSR in Western patients but not in Chinese patients. Endovascular repair can be applied to Chinese patients with a reasonable safety margin. Further work is needed to explore the causes of these treatment differences.

Keywords
Aortic aneurysm; abdominal; ethnic group; endovascular repair; open surgical repair; meta-analysis

1. Introduction
The abdominal aortic aneurysm (AAA) is one of the most common silent killers in elderly men. Rupture of an abdominal aortic aneurysm is usually fatal. Endovascular repair (EVAR) techniques and especially elective repair have been applied in the treatment of abdominal aortic aneurysms both in Western countries (i.e., Europe and North America) and China (Adriaensen et al., 2002; Lovegrove et al., 2008). Most randomized controlled trials comparing EVAR and open surgical repair (OSR) were conducted in Europe (De Bruin et al., 2010) and North America. In contrast, scant data are available in Chinese populations. As EVAR use expands to new regions as an alternative method to OSR, questions regarding its usage in non-Caucasian patients have been raised.

A meta-analysis by (Adriaensen et al., 2002) examined short-term discrepancies between EVAR and OSR using data which
Table 1. Characteristics of studies comparing endovascular aortic aneurysm repair and open surgical repair in Western patients with elective abdominal aortic aneurysms.

Study	Year of Publication	Study Period	Study Location	Journal of Publication	No. of Institutions	EVAR/OSR Study Design	Follow-up EVAR	Follow-up OSR	Comments		
McNally et al	June, 2010	2004-7-2007. 7	USA	J. Vasc. Surg.	single-center	173 228	Retro.		
Jetty et al	March, 2010	2002-4. 3-31-2007. 3-31	Canada	J. Vasc. Surg.	multicenter	888 5573	Retro.	5	5 CIHI-DAD Database $		
Turnbull et al	March, 2010	2002-2. 25-2003. 4-14	USA	J. Vasc. Surg.	13 centers	166 243	PNR	5	5 eLPS €		
Steinmetz et al	January 8, 2010	1999-1. 2006. 12	France	Eur. J. Vasc. Endovasc. Surg.	single-center	148 134	Retro.	5	5 Include High-risk exclude low-risk		
Chisci et al	2009	2005.1-2007.12	Italy and Sweden	J. Endovasc. Ther.	2 centers	74 61	Retro.	1.6	2.1 Exclude Fenestrated EVAR		
Dick et al	March, 29. 2008	1998-1. 2002. 12	Switzerland	World. J. Surg.	single-center	68 244	Retro.	4.6	4.9 Exclude emergency OSR		
Cronenwett et al	December, 2007	2003.1-2006. 12	USA	J. Vasc. Surg.	9 hospitals	495 667	PNR	1	1 VSGNNE Database †		
Faizer et al	June, 2007	1999.1-2004. 12	USA	J. Vasc. Surg.	single-center	304 558	Retro.		
Chan et al	March, 2007	1997.1-2005. 10	UK	Int. J. Clin. Pract.	single-center	157 329	Retro.		
Aljabri et al	December, 2006	NG	Canada	J. Vasc. Surg.	single-center	43 33	PNR	0.5	0.5		
Sicard et al	August, 2006	NG	USA	J. Vasc. Surg.	5 IDE‡	565 61	Retro.	2.7	2.5 High-risk		
Johnson et al	March 15, 2006	2001.5. 1-2003. 9. 30	USA	Am. J. Surg.	123 VA hospitals	717 1187	Retro.	1	1 VA-NSQIP Database		
Aarts et al	August 2, 2005	1998. 10-2004. 1	Netherlands	Ann. Vasc. Surg.	single-center	99 116	Retro.	1.9	1.9		
Soulez et al	August 2005	1998. 9-2002. 7	Canada	J. Vasc. Interv. Radiol	single-center	20 20	RCT	2.4	2.3		
Lifeline Registry	July, 2005	NG	USA	J. Vasc. Surg.	4 IDE ‡	2063 334	Retro.	> 5	> 1 AnCure, AneuRx, Excluder, PowerLink		
Hu et al	March, 2005	2000.1. 1-2003. 10. 31	USA	Am. J. Surg.	14 centers	460 582	Retro. NSQIP-PS Database ‡		
Goueffic et al	2005	1995. 1-2001. 12	France	J. Endovasc. Ther.	single-center	209 289	PNR	1.6	3.3		
Carpenter et al	November, 2004	2000. 7. 18-2003. 3. 31	USA	J. Vasc. Surg.	15 centers	192 66	PNR	4.1	3.1 PowerLink		
Wang et al	September, 2008	2000. 7. 18-2003. 3. 31	Italy	J. Vasc. Surg.	single-center	534 585	PNR	2.8	2.9		
Cao et al	November, 2004	1997. 1-2003. 12	Italy	J. Vasc. Surg.	24 + 4 centers ¥	171 174	RCT	2	2 Aneurysm Management		
DREAM (Prinsen)	October, 2004	2000. 11-2003. 12	Netherlands	N. Engl. J. Med	6 + 6	171 174	RCT	2	2 DREAM Trial Group		
DREAM (Blankensteijn)	June, 9, 2005	2000. 11-2003. 12	Netherlands	N. Engl. J. Med	6 + 6	171 174	RCT	2	2 DREAM Trial Group		
Garcia-Madrid et al	October, 2004	1997. 3-2000. 8	Spain	Eur. J. Vasc. Endovasc. Surg.	single-center	53 30	Retro.	1.6	2.2		
Study	Year of Publication	Study Period	Study Location	Journal of Publication	No. of Institutions	EVAR	OSR	Study Design	Follow-up EVAR	Follow-up OSR	Comments
---------------------	---------------------	-----------------------	----------------	------------------------	--------------------	-------	------	-------------	---------------	---------------	--
Rigbergetal	September, 2004	2001. 1-2002. 12	USA	Arch. Surg.	single-center	61	89	Retro.	The EVAR trial participants
	August, 25, 2004	1999. 9. 1-2003. 12									
EVAR trial 1	June 25, 2005	1999. 9. 1-2004	UK	Lancet.	34 centers	543	539	RCT	2.9	2.9	
	May 20, 2010	1999. 9. 1-2004	USA	N. Engl. J. Med.	37 centers Φ	626	626	RCT	2.9	2.9	
Ballard etal	April, 2004	2000. 11-2003. 5	USA	J. Vasc. Surg.	single-center	22	107	PNR	PCS-12 and MCS-12
Elkourietal	March, 2004	1999. 12. 1-2001. 12. 1	USA	J. Vasc. Surg.	single-center	94	261	Retro.	> 0.08	> 0.08	
Lee etal	March, 2004	2001. 1. 1-2001. 12. 31	USA	J. Vasc. Surg.	986 hospitals	2565	4607	Retro.	
Zeebregts etal	January, 2004	1998. 4-2003. 1	Netherlands	Brit. J. Surg.	single-center	93	82	PNR	1.6	1.7	Exclude former OSR
Moore etal	July, 2003	1995. 11. 22-1998. 2. 12	USA	J. Vasc. Surg.	multicenter	573	111	PNR	5	5	EGS & Ancure $\£$
Jordan etal	May, 2003	2000. 1. 1-2002. 6. 12	USA	Ann. Surg.	single-center	130	87	Retro.	High-Risk
Criado etal	April, 2003	1999. 3. 24-2000. 9. 19	USA	J. Vasc. Surg.	17 centers	240	126	PNR	1.1	0.9	Talent LPS
Matsumura et al	February, 2003	1998. 12-2000. 1	USA	J. Vasc. Surg.	19 centers	235	99	PNR	5	5	Excluder
Peterson et al	May, 2007	1999. 11 - 2002. 1	USA	Am. J. Surg.	single-center	50	50	Retro.	
Arko et al	2003	1996. 10-2000. 7	USA	J. Endovasc. Ther.	single-center	153	141	Retro.	
Ligush et al	September, 2002	1999. 12-2001. 6	USA	J. Vasc. Surg.	single-center	33	66	Retro.	
Teufelsbauer et al	July, 29, 2002	1995. 1-2000. 12	Austria	Circulation.	single-center	206	248	Retro.	2.5	2.5	
Cuypers et al	April, 15, 2001	1996. 9-1999. 10	Netherlands	Brit. J. Surg.	2 centers	57	19	RCT	
Brewster et al	June, 1998	1994. 1-1997. 5	USA	J. Vasc. Surg.	single-center	28	28	Retro.	

Note: EVAR: elective endovascular repair; OSR: elective open surgical repair; Retro: retrospective data collection; PNR: prospective non-randomized trial; RCT: randomized controlled trial; $\$: Database described as Canadian Institute for Health Information Discharge Abstract Database in Ontario $\£$: Database described as Talent enhanced Low Profile System \dagger: Database described as Vascular Study Group of Northern New England, in this paper we excluded the following data: Carotid endarterectomy, lower extremity bypass and rupture AAA open surgical repair. \parallel: Database described as Veterans Health Administration's National Surgical Quality Improvement Program. $\|$: Database described as National Surgical Quality Improvement Program Private Sector. $\#: The composition of the DREAM Trial Group includes 24 centers in the Netherlands and 4 centers in Belgium. Φ: Until August 2004, the EVAR trial consisted of 37 clinical centers which included 34 centers that were reported in 2004 and 2005 and an additional 3 centers that contributed 170 patients. $\£$: Stents system includes an EGS component at 18 sites and an Ancure component at 21 sites.
Table 2. Detailed Overview over the Characteristics of Studies from 21 Chinese Cohorts.

Study	Month and Year of Publication	Study Period	Total	Actual	EVAR	Follow-up EVAR	Follow-up OSR	Database
LI Honghao et al	September, 2010	2001. 1. 1-2008. 12. 31	33	27	11	16	...	Sun Yat-sen Memorial Hospital
LI Xinxie et al	June, 2010	2002-2008	58	58	25	33	...	The First Affiliated Hospital of Xinjiang Medical University
Lu Shengwei et al	June, 2010	2005. 6-2009. 3	62	62	29	33	1.5	The First Affiliated Hospital of Guangxi Medical University
Meng Fanxin et al	June, 2010	2000. 1. 1-2010. 1. 1	92	53$	28	25	3	Peking Union Medical College Hospital
Yue Wenliang et al	May, 2010	2004. 1-2009. 4	112	112	66	46	...	The First Affiliated Hospital of China Medical University
Qu Jian et al	May, 2010	2003-2010	120	120	36	84	£	The Second Xiangya Hospital, Central South University
Jiang Lanshan et al	March, 2010	2004-2009	23	23	6	17	< 2	Mianyang Central Hospital
Zhang Jinglan et al	2010	NG	90	90	44	46	...	Beijing Anzhen Hospital, Capital Medical University
Ding Hao et al§	October, 2009	2001. 1. 1-2008. 12. 31	30	30	8	22	1	The First Affiliated Hospital of Anhui Medical University
Chen Weiqing et al§	August, 2009	2001. 6-2008. 1	31	23	4	19	3.2	Tianjin Medical University General Hospital
Zhang Yongjie et al§	June, 2009	2002. 1-2007. 7	42	42	12	30	2.7	Central Hospital of Zibo
Chen Yushuai et al§	December, 2008	2000. 7-2005. 12	54	54	20	34	2.7	First Affiliated Hospital of China Medical University
Tang Xiaobin et al	September, 2008	2002. 1-2007. 7	223	223	82	141	2.7	Beijing Anzhen Hospital, Capital Medical University
Ye Jinming et al	September, 2008	2006. 2-2007. 6	75	72	49	23	...	Zhejiang Hospital & Zhongshan Hospital, Fudan University
Du Qingguo et al	2007	2002. 2-2006. 2	37	37	14	23	...	The First Affiliated Hospital,Chongqing Medical University
Yao Chen et al	January, 2006	2003.10-2004. 10	34	34	15	19	0.9	The First Affiliated Hospital, Sun Yat-sen University
Dong Yiwei et al	December, 2005	2003. 1-2005. 4	23	23	3	20	...	Lanzhou General Hospital, Lanzhou Command, PLA
Shu Chang et al	June, 2003	1999-2002	26	21	7	14	...	The Second Xiangya Hospital, Central South University
Feng Rui et al†	February, 2003	1997. 3-2002. 3	157	157	115	42	...	Shanghai Hospital, Second Military Medical University
Fu Weiguo et al	2003	1997. 9-2001. 10	92	92	31	61	2	Zhongshan Hospital, Fudan University
Guo Wei et al	June, 2000	1993. 6-1999. 8	52	52	20	32	...	General Hospital, People's Liberation Army(PLA)

Note:
§: There were 92 patients involved with sufficient reported data. However only 53 had follow-up data, which we included in our analysis.
£: Although the study reported the survival curve, sufficient data was not reported.
§: Despite mean follow-up time being given the studies did not provide a detailed number for death or survival.
†: This study mainly discussed EVAR and OSR affecting renal function.
were described as non-randomized prospective or retrospective data. A subsequent meta-analysis (Lovegrove et al., 2008) ameliorated this data limitation, but its long-term (more than five years for EVAR) results were not convincing. The EVAR cure rates are controversial with regard to medium- and long-term outcomes, such as all-cause mortality, aneurysm-related mortality and re-intervention. The recent Dutch Randomized Endovascular Aneurysm Management (DREAM) (De Bruin et al., 2010) and EVAR-1 trial results (United Kingdom EVAR Trial Investigators et al., 2010) with regard to EVAR versus OSR have shed light on long-term outcomes. Specifically, six years after randomization, EVAR and OSR of abdominal aortic aneurysm resulted in similar survival rates. The rate of secondary interventions was significantly higher for EVAR than for OSR.

More importantly, the prevalence of AAAs is different in Western and Chinese populations. Additionally, the promotion of EVAR occurred later in China than in Western countries. Although the results of domestic studies (Fu et al., 2003) confirmed that EVAR is suitable for Chinese patients, three areas on domestic studies are still inconclusive: 1) the Chinese morbidity rate, 2) the morphological specificity of aneurysms and 3) a diameter of aneurysm ≥ 5.5cm as indication for the domestic treatment of abdominal aortic aneurysms. Although it is generally acknowledged that EVAR accords greater benefit than OSR to AAA patients, studies comparing the two techniques in Western versus Chinese populations are sparse. Furthermore, short term outcomes in EVAR versus OSR were not confirmed by meta-analyses based on Chinese patients. Consequently, material for the comparison of both treatments is still lacking.

To better understand the effects of EVAR in Chinese populations, we analyzed data on AAA repair from the literature published during the period that EVAR was introduced. Thus, the aim of our current investigation was to carry out a systematic review of the studies in which EVAR was compared to OSR in the treatment of AAAs patients from Western countries (North America and Europe) and China.

2. Evidence acquisition
2.1 Literature search
A systematic literature search of Western articles on EVAR and OSR of infrarenal AAA was carried out by two independent researchers (Y. H and J. Z) using the MEDLINE (PubMed), journals@Ovid Full Text, and BIOSIS previews databases (OVID). The following Medical Subject Headings (MeSH) search terms were used: aortic aneurysm, abdominal, vascular surgical procedures, stents, and randomized controlled trial. In addition, exploding keywords included endovascular, comparative, and mortality. The corresponding search strategy is provided (Supplementary files 1). We limited our search to reports on human subjects in the English language. We searched databases for articles published between November 1991 (because (Parodi et al., 1991) published their results on the first clinical application of endovascular repair for abdominal aortic aneurysm in 1991) and December 2018. Every relevant article retrieved had its references thoroughly checked. Following this the articles were entered into the ISI WEB OF KNOWLEDGE: WEB OF SCIENCE database (1991 to 2018) to find the references cited in order to find any related literature. Relevant medical journals were also thoroughly checked.

We performed a comprehensive search of the Chinese literature. The key words abdominal aortic aneurysm and endovascular repair were used in a comprehensive search of the CBMdisc (Chinese Biomedical Database) and CNKI (Chinese National Knowledge Infrastructure) databases. All Chinese studies on abdominal aortic aneurysm treatment between January 1998 (because in 1998, Jing and colleagues (Jing et al., 1998) published their initial article of endovascular repair AAA in China) and 24th December 2018 were identified. Reference lists were also examined and relevant articles added to the list. Furthermore, several Chinese journals were hand searched from 1998 to 2015, specifically the Chinese Journal of Practical Surgery, Chinese Journal of General Surgery, Chinese Medical Journal, and Chinese Journal of Vascular Surgery.

2.2 Selection
Inclusion criteria: Randomized controlled, prospective, and retrospective, studies were included if they met the following criteria:
(a): patients diagnosed with an infrarenal and non-ruptured abdominal aortic aneurysm undergoing elective endovascular repair were compared with patients undergoing elective open surgical repair;
(b): at least 20 patients;
(c): sufficient data (> 25 percent of predefined variables) such as patient baseline characteristics and short- and long-term outcomes;
(d): in the case of multiple reports from the same institution, only the most rigorous published report was used to avoid duplication of data;
(e): however, when two or more studies from the same institution reported on medium- or long-term outcomes on the same patients, the results from all linked studies were included synergistically.

Excluded criteria: articles were excluded if they:
(a): did not report outcomes in a comparable fashion;
(b): included patients with other aortic pathologies such as ruptured abdominal aortic aneurysms, thoracic aortic aneurysms and aortic dissections;
(c): contained insufficient data (< 25 percent of predefined variables);
Table 4. Reviewers’ judgements about each methodological quality item included in the Four Western Randomized Controlled Trial (RCT) Studies.

Study	Year of Publication	EVARORS	Cochrane Reviewer’s Handbook	Jadad							
		Adequate sequence generation	Allocation concealment	Blinding	Withdrawals and drop outs	ITT	Risk of Randomization	Double blinding	Withdrawals and drop outs	Jadad's score	
Soulez et al	August, 2005	20	20 computer met unclear	unclear	unmet	unclear	B	2	1	0	3
DREAM	October, 2004	171	174 computer met	double blinding	met	met	A	2	2	1	5
	June, 2005										
	May, 2010										
EVAR-1	August, 2004	543	539 computer met	double blinding	met	met	A	2	2	1	5
	June, 2005										
Cuypers et al	April, 2001	57	19 computer met	double blinding	met	met	A	2	2	1	5

Note: ITT (intent-to-treat)

Table 5. Baseline Characteristics of Patients Undergoing Endovascular Repair (EVAR) or Open Surgical Repair (OSR) for Abdominal Aortic Aneurysms (AAA) in Western and Chinese Studies.

Characteristic	Region	No. of studies	EVAR	OSR	OR/WMD	95% CI	Weight	P	
		n (%)*	N	n (%)*	N				
Male Gender-No.									
Chinese	10	338 (86.2)	392	411 (83.7)	491	1.007	0.678, 1.497	9.25	0.972
Western	34	10,870 (87.7)	12,290	14,708 (81.9)	17,954	1.692	1.460, 1.961	90.75	<0.001
Total	44	11,208 (88.4)	12,682	15,119 (82.0)	18,445	1.614	1.408, 1.849	100	<0.001
Chinese	11	67.31	313	63.69	433	3.63	0.959, 6.302	10.5	0.008
Western	19	73.33	8,399	70.68	8,541	2.413	1.845, 2.982	89.5	<0.001
Total	30	70.32	8,712	67.19	8,974	2.555	2.007, 3.103	100	<0.001
Hypertension-No.									
Chinese	12	209 (51.7)	404	327 (56.9)	575	1.39	0.711, 1.826	14.85	0.588
Western	28	7,127 (67.3)	10,593	10,091 (63.3)	15,934	1.096	0.961, 1.251	85.15	0.17
Total	40	7,336 (66.7)	10,997	10,418 (63.1)	16,509	1.098	0.966, 1.249	100	0.153
Hyperlipidemia-No.									
Chinese	10	1,169 (46.1)	2,534	1,459 (43.8)	3,333	1.213	0.928, 1.587	100	0.158
Western	14	57 (14.4)	395	55 (10.8)	510	1.364	0.899, 2.070	12.44	0.144
Diabetes Mellitus-No.									
Chinese	29	1,533 (14.4)	10,658	2,244 (13.9)	16,123	1.248	1.028, 1.514	87.56	0.025
Western	39	1,590 (14.4)	11,053	2,299 (13.8)	16,633	1.266	1.063, 1.507	100	0.008
Table 5. Baseline Characteristics of Patients Undergoing Endovascular Repair (EVAR) or Open Surgical Repair (OSR) for Abdominal Aortic Aneurysms (AAA) in Western and Chinese Studies.

Characteristic	Region	No. of studies	EVAR	OSR	OR/WMD	95% CI	Weight	P			
			n (%)*	N	n (%)*	N					
Cardiac Disease-No.	Chinese	8	136 (42.1)	323	122 (35.0)	349	1.404	0.799	2.466	13.58	0.238
	Western†	24	3,923 (47.3)	8,301	2,485 (28.2)	8,807	1.137	0.899	1.438	57.94	0.283
	Western§	13	902 (14.1)	6,390	622 (6.3)	9,820	2.901	1.995	4.218	28.48	<0.001
	Total$	NC	NC	NC	NC	1.522	1.236	1.873		100	<0.001
	Chinese	6	41 (17.2)	239	50 (18.2)	274	1.069	0.661	1.728	10.9	0.787
Pulmonary Disease-No. £	Western	26	3,448 (33.0)	10,438	3,997 (25.6)	15,642	1.515	1.209	1.899	89.1	<0.001
	Total	32	3,489 (32.7)	10,677	4,047 (25.4)	15,916	1.458	1.182	1.799	100	<0.001
Renal Disease-No. Φ	Chinese	4	10 (5.8)	172	10 (6.6)	152	1.041	0.352	3.074	6.65	0.942
	Western	18	564 (6.1)	9,283	833 (5.8)	14,280	1.27	0.902	1.789	93.35	0.171
	Total	22	574 (6.1)	9,455	843 (5.8)	14,432	1.251	0.903	1.733	100	0.178
Cerebrovascular Disease-No.	Chinese	5	25 (11.4)	220	23 (7.4)	311	1.726	0.626	4.762	10.21	0.292
	Western	12	361 (6.6)	5,477	731 (6.1)	12,014	1.287	1.091	1.517	89.79	0.003
	Total	17	386 (6.8)	5,697	754 (6.1)	12,325	1.258	1.019	1.553	100	0.033
Smoking-No. ‡	Chinese	7	71 (45.8)	155	152 (53.5)	284	0.723	0.473	1.106	16.64	0.135
	Western	21	3,145 (70.4)	4,465	2,950 (64.5)	4,571	1.057	0.813	1.375	83.36	0.677
	Total	28	3,216 (69.6)	4,620	3,102 (63.9)	4,855	0.999	0.793	1.258	100	0.992
Peripheral Vascular Disease-No.	Chinese	6	77 (28.9)	266	73 (24.3)	300	0.788	0.496	1.251	24.21	0.312
	Western	10	1,005 (19.5)	5,162	2,576 (22.4)	11,493	1.163	0.764	1.771	75.79	0.482
	Total	16	1,082 (19.9)	5,428	2,649 (22.5)	11,793	1.057	0.742	1.505	100	0.76
Aneurysm Diameter-mm¶	Chinese	10	54.31	247	60.31	387	-5.793	-7.993	-3.594	13.69	<0.001
	Western	15	57.71	4,790	60.41	2,768	-2.491	-3.307	-1.675	86.31	<0.001
	Total	25	56.01	5,037	60.36	3,155	-2.932	-3.697	-2.168	100	<0.001
ASA > II-No. ‡	Western	9	1,783 (74.4)	2,395	1,646 (67.4)	2,441	2.637	1.307	5.322	100	0.007

Note: *: The number of patients for dichotomous data (values in parentheses are percentages) and average for continuous data. NC: not calculated. OR: odds ratio. WMD: weighted mean difference. CI: confidence interval.
¶: Outcomes presented as weighted mean difference.
Δ: Reported in studies as coronary artery disease/ischaemic heart disease from Chinese studies.
†: Reported in studies as coronary artery disease/ischaemic heart disease from Western studies.
§: Reported in studies as congestive heart failure from Western studies.
$: Not calculated because a portion of the total number of patients with cardiac disease combined both CAD and CHF.
‡: Reported in studies as chronic obstructive pulmonary disease/ pulmonary disease.
Φ: Reported in studies as renal failure/renal insufficiency/renal dysfunction.
‡: Reported in studies as smoking present/history of smoking.
†: Denotes American Society of Anesthesiologists, the total scores more than II
P values in bold denote statistical significance.
Table 6. Procedures for Endovascular Repair and Open Surgical Repair for Abdominal Aortic Aneurysms (AAA) in Chinese and Western Studies.

Characteristic	Region	No. of studies	EVAR	OSR	OR/WMD	95% CI	Weight	P		
		n			n					
General anaesthetic-No.	Western	7	582	1,612	1,313	1,393	0.055	0.014, 0.216		
	Chinese	15	183.8	416	261.9	601	-82.192	(-101.793, -62.590)	45.88	< 0.001
	Total	29	166.9	3,811	2,232	4,394	-640.454	(-751.134, -529.774)	54.12	< 0.001
Operative time-min.	Western	14	149.9	3,395	184.1	8,127	-33.557	(-45.179, -21.935)	54.12	< 0.001
	Chinese	15	156.8	416	965.3	601	-640.454	(-751.134, -529.774)	54.12	< 0.001
	Total	29	166.9	3,811	2,232	4,394	-640.454	(-751.134, -529.774)	54.12	< 0.001
Blood Loss-ml.	Western	13	341.6	416	965.3	601	-640.454	(-751.134, -529.774)	54.12	< 0.001
	Chinese	13	52.3	388	694.5	547	-517.31	(-595.507, -439.112)	75.5	< 0.001
	Total	28	249.2	2,232	1,214	2,538	-829.134	(-952.542, -705.726)	100	< 0.001
Blood Transfusion-ml.	Western	10	70.1	784	383	783	-312.695	(-62.053, -3.337)	45.77	< 0.001
	Chinese	4	70.1	784	383	783	-312.695	(-62.053, -3.337)	45.77	< 0.001
	Total	14	61.2	1,172	538.8	1,330	-471.091	(-541.958, -400.223)	100	< 0.001
ICU Stay-hr	Western	13	16.7	3,697	46.3	330	-29.397	(-37.048, -21.747)	47.57	< 0.001
	Chinese	11	11.1	275	64.3	330	-29.397	(-37.048, -21.747)	47.57	< 0.001
	Total	24	14.4	3,972	53.8	330	-29.397	(-37.048, -21.747)	47.57	< 0.001
Postoperative Stay-days	Western	6	3.9	2,063	8.4	2,602	-4.556	(-5.469, -3.643)	53.04	< 0.001
	Chinese	5	24.9	517	10.6	7,018	-5.608	(-6.176, -5.039)	19.9	< 0.001
	Total	11	4.8	5,175	18.6	7,252	-5.3	(-5.850, -4.750)	100	< 0.001

Note: ICU stay: intensive care unit.

(d): did not meet the criteria for abstracts and unpublished data;
(e): were confined to select subgroups of patients (e.g. octogenarians).

2.3 Predefined outcomes

Complications were classified and graded according to the reporting standards of the Ad Hoc Committee for Standardized Reporting Practices in Vascular Surgery of the Society for Vascular Surgery International Society for Cardiovascular Surgery. Three classes of complications (systemic, local-nonvascular, and local-vascular or implant-related) and three grades of severity (mild, moderate, and severe) were used. A reintervention was defined as any surgical or endovascular procedure that was related to the primary aneurysm-repair procedure.

2.4 Assessment of risk of bias

We aimed to reduce the possibility of publication bias through the following methods: searches of meeting abstracts, theses, dissertations and contacting authors for any additional unreported data. When necessary, we contacted the authors of the original papers to receive further information. The risk of bias was assessed using the methods of (Lundh and Gotzsche, 2008).

2.5 Validity assessment

Randomized controlled trials (RCTs): the quality of the methodology was assessed independently by two reviewers (F.S. and Y.H.) using the Cochrane risk of bias tool (Higgins et al., 2011). The risk of bias was divided into low (all criteria met), moderate (one or more criteria met), and high (no criteria met). In addition, the quality of the methodology used in each study was evaluated by the same authors, using the system described by (Jadad et al., 1996). Non-randomized studies (NORS): The quality of non-randomized studies was assessed by two reviewers (F. S. and Y. H.) using the MINORS scoring system describe by (Slim et al., 2003). This method uses (Moher et al., 1999) items for comparative studies with each item scored 0, 1 or 2 corresponding to not reported, inadequately reported, and adequately reported, respectively. Whether RCTs or NORS, discrepancies in ratings were resolved by discussion between the two reviewers (C. J. and Y. H.). Additionally, when discrepancies arose, a third party (J. Z.) was consulted.

2.6 Data abstraction

After the initial assessment for eligibility, two authors (H. Y. and S. W.) independently abstracted the data from the primary sources. They independently reviewed all the articles. Different results between the two authors were resolved by consensus. For each study we extracted rudimentary information including author(s), study design, journals published, geographical location, date published, etc. The following predefined variables were recorded using an electronic extraction form: preoperative characteristics and postoperative outcomes (we conducted a separate meta-analysis for two different postoperative time periods: short-term and mid-long term). Follow-up visits were scheduled 30 days and 12, 24, 36 months and 5 years after the procedure. Any death or complications occurring within 30 days after the original procedure were defined as short-term, and any death, complication and reintervention occurring more than 30 days after the original procedure were defined as mid-long term. For the results during
was assessed using the I (the Quality Reporting of Meta-analyses (QUROM) guidelines Analyses (PRISMA) statement (available at
ferred Reporting Items for Systematic Reviews and Meta-
3.1
3.7

Cardiac Complications-No.
Western 19 240 (3.7) 6,437 642 (7.3) 8,852 0.41 0.348, 0.485 90.85 <0.001
Total 32 260 (3.8) 6,819 697 (7.4) 9,415 0.43 0.367, 0.504 100 <0.001
Chinese 15 17 (3.9) 435 60 (9.3) 646 0.552 0.324, 0.940 11.58 0.029

Pulmonary Complications-No.
Western 18 152 (3.4) 4,427 573 (11.4) 5,044 0.27 0.222, 0.328 88.42 <0.001
Total 33 169 (3.5) 4,862 633 (11.1) 5,690 0.293 0.245, 0.352 100 <0.001
Chinese 9 12 (3.5) 341 21 (4.5) 468 0.74 0.336, 1.631 11.82 0.455

Renal Complications-No.
Western 19 529 (5.8) 9,056 747 (7.8) 9,617 0.411 0.348, 0.485 90.85 <0.001
Total 28 541 (5.8) 9,397 768 (7.6) 9,415 0.43 0.367, 0.504 100 <0.001
Chinese 4 3 (1.9) 158 7 (3.2) 216 1.011 0.324, 3.198 11.82 0.455

Cerebrovascular Complications-No.
Western 11 31 (0.9) 3,183 39 (1.3) 3,113 0.836 0.508, 1.374 89.84 0.479
Total 15 34 (1.0) 3,341 46 (1.4) 3,329 0.854 0.534, 1.367 100 0.511
Chinese 9 2 (3.7) 248 481 0.743 0.353, 1.564 25.48 0.433

Wound Complications-No.
Western 16 148 (4.1) 3,617 384 (10.0) 3,856 0.72 0.357, 1.453 74.52 0.359
Total 25 157 (3.9) 4,005 408 (9.4) 4,437 0.686 0.390, 1.208 100 0.192
Chinese 8 11 (4.4) 251 396 1.539 1.004, 3.198 26.23 0.049

Limb ischaemia/ embolization-No.
Western 8 50 (2.5) 1,979 52 (2.5) 2,075 0.914 0.462, 1.809 73.77 0.796
Total 16 61 (2.7) 2,230 59 (2.4) 2,471 1.106 0.923, 1.303 100 0.41
Chinese 8 11 (4.4) 251 396 1.539 1.004, 3.198 26.23 0.049

Re-intervention-No.
Western 6 188 (13.4) 1,401 103 (6.5) 1,581 1.962 0.932, 4.176 100 0.08
Chinese 12 8 (2.3) 352 7 (1.8) 424 1.011 0.324, 3.198 11.82 0.455

30 day mortality-No.
Western 33 218 (1.8) 12,133 674 (3.8) 17,817 0.481 0.378, 0.612 92.96 <0.001
Total 45 226 (1.8) 12,485 696 (3.8) 18,359 0.49 0.399, 0.602 100 <0.001

Table 7. End Points and Operative Complicationsof Patients Undergoing Endovascular Repair (EVAR) or Open Surgical Repair (OSR) for Abdominal Aortic Aneurysms (AAA) in Chinese and Western Studies.

Characteristic No. of studies Region EVAR OSR OR 95% CI Weight P

Cardiac Complications-No.
Chinese 13 20 (5.2) 382 55 (9.8) 563 0.683 0.405, 1.153 9.15 0.154
Western 19 240 (3.7) 6,437 642 (7.3) 8,852 0.41 0.348, 0.485 90.85 <0.001
Total 32 260 (3.8) 6,819 697 (7.4) 9,415 0.43 0.367, 0.504 100 <0.001
Chinese 15 17 (3.9) 435 60 (9.3) 646 0.552 0.324, 0.940 11.58 0.029

Pulmonary Complications-No.
Chinese 15 17 (3.9) 435 60 (9.3) 646 0.552 0.324, 0.940 11.58 0.029

2.7 Statistical analysis

This study was performed in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) statement (available at http://www.prisma-statement.org/). This study was also conducted in accordance with the Quality Reporting of Meta-analyses (QUROM) guidelines (Moher et al., 1999) and reporting Meta-analyses of observational studies (MOOSE) guidelines (Stroup et al., 2000). We measured the odds ratio (OR) for dichotomous data, reported with 95% confidence intervals (CI). In addition, we calculated the weighted mean difference (WMD) with 95% CI for continuous data. The analysis was performed by comparing EVAR with OSR; an OR greater than 1 denoted that an event was more common following EVAR. We used the fixed effect model if evidence of nonsignificant heterogeneity was found. If there was evidence of significant heterogeneity, a random effects model as described by (DerSimonian and Laird, 1986) was used, and the degree of heterogeneity was assessed using the I² (Lovegrove et al., 2008) test. I² (Lovegrove et al., 2008) values of 25%, 25-50% and > 50% were considered to represent small, medium and large amounts of inconsistency.

A comparison between Western and Chinese cohorts using the method of subgroups was performed to analyze the diversity between the two groups. However, for the mid-long term survival outcomes the hazard ratios (HRs), Kaplan-Meier survival curves and log-rank test P value (Tierney et al., 2007) were extracted from individual studies. Furthermore, pooling of individual log HRs was performed using the method described by (Parmar et al., 1998). Subgroup analysis and HRs which were calculated by a statistical method were used to contrast the two cohorts. An HR less than 1 indicated a better survival rate for EVAR.

Publication bias was assessed using a funnel plot. Furthermore, to assess heterogeneity, Egger’s test (Egger et al., 1997) and graphical exploration with Egger’s regression asymmetry plot were used to evaluate publication bias. We used the results of 30-day mortality and all-cause mortality for mid-long term as the effect index, because this was the most standardized outcome presented in most studies.

A difference for P < 0.05 was considered statistically significant. All statistical analyses were conducted using spreadsheet software (Microsoft Excel 2007; Microsoft, Redmond, Washington, USA) and performed using the meta. ado module of STATA (version 11.0, College Station, Texas, USA).

3. Evidence synthesis

3.1 Trial flow

The Western literature search identified 172 studies for potential inclusion in the meta-analysis; 127 of these papers were excluded: 96 did not compare endovascular repair (EVAR) with open surgical repair (OSR), four papers described only a selected patient subgroup such as obese or octogenarian patients, another 18
papers contained insufficient data, and nine overlapped with included studies from the same institution. Thus, 45 papers met our inclusion criteria. Trial flow charts are provided in Fig. 1. The trial flow chart for Chinese language articles is provided in Fig. 2.

3.2 Studies selected
Details of the selected articles for this study are given in (Table 1) for the English language articles. The included 45 papers assessed outcomes following elective AAA repair: three reports from the Dutch Randomized Endovascular Aneurysm Management (DREAM) Trial study (Blankenstein et al., 2005; De Bruin et al., 2010; Prinsen et al., 2004) and 3 articles from the EVAR trial 1 study (EVAR trial participants, 2005; Greenhalgh et al., 2004; United Kingdom EVAR Trial Investigators et al., 2010) were treated as one study each for the purpose of analysis because in each case one of the reports represented a mid-long term follow-up study subsequent to an initial report. In addition, because Johnson et al. (2006) and Bush et al. (2006), Carpenter (Endologix and Endologix Investigators, 2004) and Wang et al. (2008), Matsumura et al. (2003) and Peterson et al. (2007) reported from the same institution; they were treated as one for the purpose of analysis. The former dates were replenished respectively by Bush, Wang and Peterson, consequently these both fitted into our study. In total, 38 studies published up to January 2011 ultimately met our predefined inclusion criteria. These articles were published from June 1998 to June 2010 and used patients enrolled from 1994 to 2007. These articles consisted of four randomized controlled trials, 12 prospective non-randomized trials, and 22 retrospective conducted studies; 13 were from Europe and 25 were from North America.

The twenty-one Chinese language papers contained 1,405 AAA procedures. The Chinese language articles were published between 1993 and 2010 (Table 2).

3.3 General demographics
Within the Western papers, a total of 31,074 elective AAA procedures were reported, of which 12,774 were EVAR and 18,300 were OSR. By comparison, a total of 1,405 operations were reported, of which 1,405 were EVAR and 780 were OSR. There are significant difference for Chinese and Western cohorts. The duration of a typical EVAR procedure (mean 183.8 minutes versus 149.9 minutes) was significantly different than that of a typical OSR procedure (mean 261.9 versus 184.1 minutes) (WMD Chinese -52.785 hours, Western -52.785 hours, P = 0.001). Most of the surgical characteristics showed significant differences between the EVAR and OSR groups both for Chinese and Western cohorts. The duration of a typical EVAR procedure (mean 183.8 minutes versus 149.9 minutes) was significantly different than that of a typical OSR procedure (mean 261.9 versus 184.1 minutes) (WMD Chinese -52.785 hours, Western -52.785 hours, P = 0.001). Also, the range of blood transfusion between the two procedures was even smaller (WMD Chinese -312.7 ml versus WMD Western -312.7 ml, WMD Chinese -517.3 ml), namely, contract by OSR, Chinese patients undergoing EVAR were transfused less blood (approximately a unit) than Western patients.

Considering either the volume of blood loss or blood transfusion, the superiority of endovascular repair over open surgical repair was clear. Specifically, in the Western cohort the range of blood loss between EVAR and OSR was even larger (WMD Chinese -989.1 ml versus WMD Western -640.5 ml). Nevertheless, the range of blood transfusion between the two procedures was even smaller (WMD Chinese -312.7 ml versus WMD Western -312.7 ml), namely, contract by OSR, Chinese patients undergoing EVAR were transfused less blood (approximately a unit) than Western patients.

In addition, patients who underwent EVAR experienced significantly shorter stays in the intensive care unit (ICU) and the hospital for both Western and Chinese cohorts. The Western patients who underwent EVAR had significantly shorter stays in the ICU (WMD Western -52.785 hours, P < 0.001) and significantly shorter duration in the hospital (WMD Western -5.608 days, P < 0.001) than Chinese patients.

3.7 End Point and Adverse Events
Table 7 presents a more detailed overview of the reported complications; the Western pooled estimate of the cardiac compli-
tion rate for EVAR was significantly lower than that for OSR (OR-Western = 0.411, \(P < 0.001 \)). This superiority for EVAR was not replicated in the Chinese cohorts, however. Whether in Chinese or Western cohorts, endovascular repair was associated with a significant reduction in postoperative respiratory complications, however, the Chinese complication rate for the respiratory system (OR = 0.270, \(P < 0.001 \)) in the EVAR group was lower than in Western patients (OR = 0.552, \(P = 0.029 \)) receiving EVAR. There was no significant difference in the incidence of renal, cerebrovascular, and wound complications. Furthermore, Chinese limb ischaemia or embolization were more common (ORChinese = 1.539, \(P = 0.049 \)) in patients receiving EVAR, although Western studies did not contain this difference. In addition, the pooled estimate of 30-day mortality in Western studies for the EVAR group was significantly lower than that for the OSR group (OR = 0.481, \(P < 0.001 \)), however this difference was not present in the Chinese cohort (OR = 0.733, \(P = 0.425 \)) (Fig. 3).

3.8 Medium-long term outcomes

3.8.1 Pooled ORs for Western studies

In Western countries the amount of medium-long term research in this field is far more than in China and it is therefore far easier to reach a satisfactory outcome using Western studies. Consequently, we have primarily based the analysis of the mid-long term comparison of the two AAA treatment methods on Western studies.

Fifteen, four, and nine articles reported data for all-cause mortality at one year, two-three years and more than five years, respectively. In an analysis of the pooled data we found no significant difference in all-cause mortality at one year, 2-3 years and more than five years (OR = 0.932, 95% CI: 0.723-1.203; \(P = 0.590 \) for one year) (OR = 0.850, 95% CI: 0.407-1.774; \(P = 0.665 \) for 2-3 years) (OR = 1.301, 95% CI: 0.982-1.724; \(P = 0.067 \) for more than 5 years) respectively (Fig. 4).

Eight and three articles, respectively, compared aneurysm-related mortality for medium term aneurysm-related mortality and more than 5 years between endovascular repair group and open surgery groups, which showed that medium-term (mean

![Figure 1](https://via.placeholder.com/150)

Figure 1. Flow diagram of this meta-analysis in accordance with the QUOROM statement from Western studies.
Figure 2. Flow diagram of this meta-analysis in accordance with the QUOROM statement from Chinese studies.

Figure 3. Forest plot of 30-day mortality following endovascular aortic aneurysm repair (EVAR) or open surgery repair (OSR) to the treatment of elective abdominal aortic aneurysms (AAAs) between China and Western countries.
follow-up time was 2-3 years) aneurysm-related mortality (OR = 0.566, 0.402-0.796; \(P = 0.001 \)) was significantly lower after EVAR compared to OSR. Endovascular repair did not, however, influence long-term (mean follow-up time was more than five years) aneurysm-related mortality (OR = 0.639, 95% CI: 0.360-1.133; \(P = 0.125 \)) (Fig. 5).

An analysis of eight studies with 1-year follow-up data showed that patients receiving EVAR were more likely to experience re-intervention, (OR = 2.042, 95 % CI: 1.467-2.843; \(P < 0.001 \)) compared to OSR patients. Additionally, an analysis of four studies involving 3,214 participants with 3-year follow-up data showed that EVAR patients were more likely to experience re-intervention (OR = 4.107, 95% CI: 2.304-7.318; \(P < 0.001 \)) than OSR patients (Fig. 6).

3.8.2 Pooled HRs for Western and Chinese studies

Although there were few studies reporting aneurysm-related mortality and the rate of re-intervention, we included the three Chinese articles which reported all-cause mortality (Fig. 7). These studies had a mean follow-up time of 25.4 to 37.6 months and involved 265 participants (95 in EVAR, 170 in OSR). The medium-long term all-cause mortality to a maximum follow-up period of 4 years was not significantly higher (HR = 1.173, 95% CI: 0.895-1.538; \(P = 0.247 \)) for the EVAR group than the OSR group.

Data on all-cause mortality were reported in seventeen trials from Western studies. These studies included 9,994 participants, with a mean follow-up time ranging from 19.2 to 76.8 months. We found no statistically significant difference in the risk of all-cause mortality between the EVAR and OSR patients (HR = 1.026, 95% CI: 0.956-1.100; \(P = 0.483 \)).

3.9 Publication bias

Publication bias was evaluated with a funnel plot of all analyses reporting on 30-day mortality following elective abdominal aortic aneurysm repair. all the points were within the trilateral region (Fig. 8A). Furthermore, publication bias was evaluated using the Begg test (result: \(P = 0.122 \)) and Egger test (result: \(P > |t| \) was 0.920), and the Egger linear regression asymmetry plot frequently tended to show the presence of publication bias (Fig. 8B). The plot displays that the regression line passes through the point of origin, which may indicate the absence of bias.

4. Discussion

Patient racial and ethnic variations reflect racial disparities in socioeconomic status and patient-level differences (Chen et al., 2006). The use of different providers (Bach et al., 2004; Baicker et al., 2005; Byrd and Clayton, 2002) and different treatment by the same provider (Schulman et al., 1999) have been shown to result in disparate practice patterns and outcomes depending on race and ethnicity. Additionally, race and ethnicity have been shown to predict disparities, treatment variations and postoperative outcomes in the surgical arena (Andrew and Elixhauser, 2000; Epstein et al., 2010; Jha et al., 2005). Less is known about racial/ethnic differences in cardiovascular procedure outcomes. Although large
and multiregional cohort studies have shown that minority patients such as black and Hispanic patients are more likely to receive procedures in low-volume hospitals, these studies focus on diverse cardiovascular procedures for which there is a documented association between the disparities of ethnicity and hospital or surgeon volume (Epstein et al., 2010; Trivedi et al., 2006). Unfortunately, even though subsequent research has shown that racial and ethnic disparities account for differences of treatment in AAA, these studies were restricted to a specific racial comparison (black versus white or Hispanic versus white subjects).
Many studies (Lovegrove et al., 2008) assess the short- or mid-long term differences between EVAR and OSR and some of these studies reported on a large number of samples. Despite this, to the best of our knowledge, this is the first systematic review of the different outcomes due to ethnicity - specifically Western and Chinese - following EVAR or OSR for elective abdominal aortic aneurysms. Therefore, our study had some important strengths. This is the most (to our knowledge) comprehensive meta-analysis of patients treated for AAA, using a broad study sample captured through an electronic retrieval system. We used strict inclusion criteria and excluded patients with non-elective aneurysms (ruptured AAAs and inflammatory AAAs) because including them would adversely affect the analysis of the prognosis of patients, which would have distorted the study results. In addition, although heterogeneity is often a concern in meta-analyses, little evidence of heterogeneity was observed throughout our study. We performed a systematic search using multiple databases and extracted data in duplicate.

In this study we report the major differences between Chinese and Western cohorts in the treatment and outcomes of two major AAA procedures. We found a significantly low short-term respiration complication after EVAR Importantly, the examination of short-term outcomes confirmed that EVAR is associated with significantly low 30-day mortality in Western countries. The counterpart as well as China, nevertheless, EVAR has not exposed this superior. The racial/ethnic disparities we found can be partially explained by differences in the use of EVAR techniques, socioeconomic status and co-morbidities (Osborne et al., 2009). Additionally, several factors of providers (low-mortality, high-quality and high-volume hospitals) may be responsible for these differences in the outcomes of AAA procedures.

Chinese patients were more likely to receive EVAR (44%) compared to Western patients (41%). This difference in treatment may be due to four separate mechanisms First, these disparities could be attributed to confounding provider-patient factors such as decision making (Rathore and Krumholz, 2004) in provider care and differences in patient preferences (e.g., prevalence and morbidity of AAAs). Second, these disparities in treatment could be caused by anatomical differences in AAAs (e.g., EVAR suitability) between Chinese and Western patients. Third, these disparities could be caused by differences in the type and quantity of co-morbidities (e.g., cardiac and pulmonary morbidities with AAAs) that influence the treatment decision. Finally, objective factors due to socioeconomic status (e.g., insurance statues) may lead to the disparities in treatment. Patient mortality may be influenced by these disparities of treatment directly and indirectly. This study demonstrated a trend toward worse early outcomes of EVAR among Chinese subjects (30-day mortality was 2.3%) which is not significant diversity versus OSR.

A possible explanation for the disparity in AAA repair is patient preferences and provider-patient factors. Although little is known about the prevalence of AAAs among the racial and ethnic groups represented in this meta-analysis, two studies (Salem et al., 2009; Spark et al., 2001) have demonstrated a very low incidence of aneurysms in Asian subjects. This may provide some evidence to the prevalence of Chinese aneurysms. Unfortunately, their study was only a comparative research of the population confined to a specific geographical area (Leicester, Bradford in Eng-
Perhaps Chinese patients will receive more medical attention for EVAR and therefore receive the minimally invasive procedure because of the lower prevalence of disease among Chinese patients compared to Western patients.

Anatomical variation may be responsible for racial disparities in the treatment and mortality of AAAs. Although most variation is unexplained by observable patients and provider factors, differences of ethnicity alone may be treated differently because of unmeasured factors such as anatomical variation and aneurysm size (Osborne et al., 2009). However, no previous studies to date have reported anatomical differences in AAAs between racial and ethnic groups, especially Chinese patients. Although there is no evidence available, through our analysis and previous work (Fu et al., 2003) it is plausible that Chinese patients may be predisposed to AAAs that are suitable for EVAR which may partially explain the disparity in treatment. A previous study (Osborne et al., 2009) suggested that the racial and ethnic disparity in mortality can be partially (29%) explained by differences in patient comorbidities. Therefore, this result also suggested that Chinese patients may have more challenging aortic anatomies (e.g., shorter common iliac arteries) and more access-related and device-related complications compared to Western patients (Tam et al., 2018; Wu et al., 2014).

A previous study (Osborne et al., 2009) also demonstrated that 26% of the disparity in mortality is due to differences in socioeconomic status. The type of insurance such as Medicare, Medicaid, private insurance and self-pay in American patients could partially represent differences in socioeconomic status. With regard to treatment disparities, they demonstrated that insurance status predicts disease severity at the time of treatment; however, after discharge, the outcomes are similar among insurance categories. Furthermore, uninsured and Medicaid patients possess different health statuses compared to Medicare and private insurance patients, which adversely influence peri-operative mortality. The
Chinese literature does not clearly report the health insurance type and the expense of AAAs, but Asian patients were more likely to be enrolled in Medicare or uninsured, even though their socioeconomic status was higher than Black patients (Epstein et al., 2010).

Our study has a number of limitations. First, the method of reporting - including reporting of the frequency of events - was variable, making data aggregation challenging. Three studies have been adjusted systemically in the following fashion: (1) data from the same medical center has been reported by (Bush et al., 2006; Johnson et al., 2006) separately. Johnson reported the one-year follow-up data through 5 propensity groups, while Bush reported the survival analysis curve. Compared with Bush, Johnson provided a more complete analysis on the preoperative data. So we analyzed the preoperative data from Johnson's paper while using survival analysis results from Bush's paper. (2) (Carpenter and Endologix Investigators, 2004) published a paper in 2004 and Wang et al. (2008) published a paper in 2008 with both papers reporting the same outcome, but with different follow up times (Wang followed up as long as 81 months which was much longer than Carpenter). Therefore, we used Wang's data to compute the HR value but used Carpenter's data to compute the OR value. (3) Although (Matsumura et al., 2003; Peterson et al., 2007) both reported their follow-up data, but we used Peterson's data to evaluate the long-term efficacy because of its different follow-up period and its analysis of survival data.

There were several other limitations. Our study data was limited to the available literature - although we used the VA (Veterans Affairs) and NIS (Nationwide Inpatient Sample) US databases, it would have been better to have had more available data. We couldn't categorize the data according to racial/ethnic group. The Chinese literature data may include the Chinese population data. Our enrollment criterion was that both EVAR and OSR were reported in a comparative way; this made our Chinese sample much smaller than the Western sample. Additionally, Chinese papers published are much less than the Western literature. Finally, because this analysis was mainly based on data from Western and Chinese populations, additional investigation in other populations is still needed.

In conclusion, we found that Chinese patients were more likely to receive EVAR than OSR, and the post-procedure short-term mortality was significantly lower for EVAR than for OSR in Western patients but not in Chinese patients. Endovascular repair can be applied to Chinese patients with a reasonable safety margin. Further work is needed to explore the causes of these treatment differences.

Authors' contribution statement

Feng Shi and Yanshuo Han contributed to conception and design; Yuchen He, Yanshuo Han, Shiyue Wang and Jian Zhang contributed to acquisition of data, or analysis and interpretation of data; and Yanshuo Han and Chao Ji were involved in drafting the manuscript or revising it critically for important intellectual content. All authors have given final approval on the version to be published.

Funding

This work was supported by National Natural Science Foundation of China (grant number: 81600370), China Postdoctoral Science Foundation (grant number: 2018M640270) and Fundamental Research Funds for the Central Universities (grant number: DUT19RC(3)076) for Yanshuo Han, and Liaoning Provincial Natural Science Foundation of China (2019-ZD-0789) for Chao Ji.

Acknowledgment

We thank Ejear Editing Service (Ejear Editing Company) for editing the English text of a draft of the manuscript.

Conflict of interest

The authors declare no conflict of interest in preparing this article.

Submitted: June 21, 2019
Accepted: December 02, 2019
Published: March 30, 2020

References

Adriaenssen, M. E., Bosch, J. L., Halpern, E. F., Myriam Hunink, M. G. and Gazelle, G. S. (2002) Elective endovascular versus open surgical repair of abdominal aortic aneurysms: systematic review of short-term results. Radiology 224, 739-747.
Andrew, R. M. and Elixausker, A. (2000) Use of major therapeutic procedures: are Hispanics treated differently than non-Hispanic whites. Ethnicity and Disease 10, 384-394.
Bach, P. B., Pham, H. H., Schrag, D., Tate, R. C. and Hargraves, J. L. (2004) Primary care physicians who treat blacks and whites. The New England Journal of Medicine 357, 575-584.
Baick, K., Chandra, A. and Skinner, J. S. (2005) Geographic variation in health care and the problem of measuring racial disparities. Perspectives in Biology and Medicine 48 (S), S42-S53.
Blankensteijn, J. D., de Jong, S. E., Prinssen, M., van der Ham, A. C., Buth, J., van Sterkenburg S. M., Verhagen, H. J., Buskens, E., Grobbée, D. E. And Dutch Randomized Endovascular Aneurysm Management (DREAM) Trial Group. (2005) Two-year outcomes after conventional or endovascular repair of abdominal aortic aneurysms. The New England Journal of Medicine 352, 2398-2405.
Bush, R. L., Johnson, M. L., Collins, T., C., Henderson, W. G., Khuri, S. F., Yu, H. J., Lin, P. H., Lumsden, A. B. and Ashton, C. M. (2006) Open versus endovascular abdominal aortic aneurysm repair in VA hospitals. Journal of the American College of Surgeons 202, 577-587.
Byrd, W. M. and Clayton, L. (2002) An American health dilemma: race, medicine and health care in the United States 1900-2000. New York, NY: Routledge.
Carpenter, J. P. and Endologix Investigators. (2004) Midterm results of the multicenter trial of the powerlink bifurcated system for endovascular aortic aneurysm repair. Journal of Vascular Surgery 40, 849-859.
Chen, E., Martin, A. D. and Matthews, K. A. (2006) Understanding health disparities: the role of race and socioeconomic status in children's health. American Journal of Public Health 96, 702-708.
De Bruin, J. L., Baas, A. F., Buth, J., Prinssen, M., Verhoeven, E. L., Cuypers, P. W., van Sambroeck, M. R., Balm, R., Grobbée, D. E., Blankensteijn, J. D. and DREAM Study Group. (2010) Long-term outcome of open or endovascular repair of abdominal aortic aneurysm. The New England Journal of Medicine 362, 1881-1889.
DerSimonian, R. and Laird, N. (1986) Meta-analysis in clinical trials. Controlled Clinical Trials 7, 177-188.
Egger, M, Smith, G. D., Schneider, M. and Minder, C. (1997) Bias in meta-analysis detected by a simple, graphical test. British Medical Journal 315, 629-634.
Epstein, A. J., Gray, B. H. and Schlesinger, M. (2010) Racial and eth-
nic differences in the use of high-volume hospitals and surgeons. The Archives of Surgery 145, 179-186.
EVAR trial participants. (2005) Endovascular aneurysm repair versus open repair in patients with abdominal aortic aneurysm (EVAR trial 1): randomised controlled trial. Lancet 365, 2179-2186.
Fu, W., Huang, J., Wang, Y., Guo, D., Chen, B., Jiang, J., et al. (2003) Prospective clinical controlled study on endovascular repair versus conventional surgical repair of abdominal aortic aneurysm. Shanghai Medical Journal 26, 537-540.
Greenhalgh, R. M., Brown, L. C., Kwong, G. P., Powell, J. T., Thompson, S. G. and EVAR trial participants. (2004) Comparison of endovascular aneurysm repair with open repair in patients with abdominal aortic aneurysm (EVAR trial 1), 30-day operative mortality results: randomised controlled trial. Lancet 364, 843-848.
Higgins, J. P. T., Green, S., Alderson, P., Clarke, M., Mulrow, C. D. and Oxman, A. D. (2011) Version 5.1.0. [updated March 2011] The Cochrane Collaboration 2011. Available from: www.cochrane-handbook.org.
Jadad, A. R., Moore, R. A., Carroll, D., Jenkinson, C., Reynolds, D. J., Gavaghan, D. J. and McQuay, H. J. (1996) Assessing the quality of reports of randomized clinical trials: is blinding necessary? Controlled Clinical Trials 17, 01-12.
Jha, A. K., Fisher, E. S., Li, Z., Orav, E. J. and Epstein, A. M. (2005) Racial trends in the use of major procedures among the elderly. The New England Journal of Medicine 353, 683-691.
Jing, Z., Muller-Wiefel, H., Raithel, D., Cao, G., Wang, Z., Tian, J., Zhao, Z. and Bao, J. (1998) Endovascular exclusion of abdominal aortic aneurysm. Chinese Journal of Surgery 36, 212-214.
Johnson, M. L., Bush, R. L., Collins, T. C., Lin, P. H., Liles, D. R., Henderson, W. G., Khuri, S. F. and Petersen, L. A. (2006) Propensity score analysis in observational studies: outcomes after abdominal aortic aneurysm repair. The American Journal of Surgery 192, 336-343.
Lovegrove, R. E., Javid, M., Magee, T. R. and Galland, R. B. (2008) A meta-analysis of 21,178 patients undergoing open or endovascular repair of abdominal aortic aneurysm. British Journal of Surgery 95, 677-684.
Lundh, A. and Gotzsche, P. C. (2008) Recommendations by Cochrane Review Groups for assessment of the risk of bias in studies. BMC Medical Research Methodology 8, 22.
Matsumura, J. S., Brewster, D. C., Makaroun, M. S. and Nafte1, D. C. (2003) A multicenter controlled clinical trial of open versus endovascular treatment of abdominal aortic aneurysm. Journal of Vascular Surgery 37, 262-271.
Moher, D., Cook, D. J., Eastwood, S., Olkin, I., Rennie, D. and Stroup, D. F. (1999) Improving the quality of reports of meta-analyses of randomised controlled trials: the QUOROM statement. Quality of Reporting of Meta-analyses. Lancet 354, 1896-1900.
Osborne, N. H., Upchurch, G. R. Jr., Mathur, A. K. and Dimick, J. B. (2009) Explaining racial disparities in mortality after abdominal aortic aneurysm repair. Journal of Vascular Surgery 50, 709-713.
Parmar, M. K., Torri, V. and Stewart, L. (1998) Extracting summary statistics to perform meta-analyses of the published literature for survival endpoints. Statistics in Medicine 17, 2815-2834.
Parodi, J. C., Palmaz, J. C. and Barone, H. D. (1991) Transfemoral intraluminal graft implantation for abdominal aortic aneurysms. Annals of Vascular Surgery 5, 491-499.
Supplementary files 1

Pubmed

("Aortic Aneurysm, Abdominal" [Mesh] OR "AAA" [tiab] OR (("Aneurysm" [Mesh] OR "Aneurysm" [Tw] OR "Aneurysms" [Tw]) AND ("Abdomen" [Mesh] OR "Abdominal Cavity" [Mesh] OR "Abdomen" [Tw] OR "Abdominal" [Tw] OR "Aorta, Abdominal" [Mesh] OR ("Aorta" [Tw] OR "Aortic" [Tw]) AND ("abdominal" [Tw] OR "abdomen" [Tw])))) AND ("Endovascular Procedures" [majr] OR "Endovascular" [ti] OR "EVAR" [ti] OR "Minimal invasive" [ti] OR "Minimally-invasive" [ti] OR "Stentgraft" [ti] OR "Stent-graft" [ti]) AND ("Open" [ti] OR "OSR" [ti] OR "OAR" [ti] OR "OR" [ti] OR "OS" [ti])

OVID

("Abdominal aorta aneurysm") OR "AAA".ti,ab. OR ("Aneurysm" OR "Aneurysms".mp. OR "Aneurysms".mp.) AND ("Abdomen" OR "Abdominal".mp. OR "Abdominal aorta" OR ("Aorta" OR "Aortic".mp.) AND ("abdominal" OR "abdomen")))) AND ("Endovascular surgery" OR "EVAR".ti. OR "Minimal invasive" OR "Minimally-invasive" OR "Stentgraft" OR "Stent-graft") AND ("Open" OR "OSR" OR "OAR" OR "OR" OR "OS")

Web of Science

TS = ("AAA" OR ("Aneurysm" OR "Aneurysms") AND ("Aorta" OR "Aortic") AND ("abdominal" OR "abdomen")) AND TI = ("Endovascular" OR "EVAR" OR "eEVAR" OR "Minimal invasive" OR "Minimally-invasive" OR "Stentgraft" OR "Stent-graft") AND TI = ("Open" OR "OSR" OR "OAR" OR "OR" OR "OS")