Proteasome Inhibitor-Induced IκB/NF-κB Activation is Mediated by Nrf2-Dependent Light Chain 3B Induction in Lung Cancer Cells

Kyoung-Hee Lee¹, Jungsil Lee², Jisu Woo¹, Chang-Hoon Lee¹,², and Chul-Gyu Yoo¹,²,*

¹Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Seoul National University Hospital, Seoul, Korea, ²Department of Internal Medicine, Seoul National University College of Medicine, Seoul, Korea
*Correspondence: cgyoo@snu.ac.kr

IκB, a cytoplasmic inhibitor of nuclear factor-κB (NF-κB), is reportedly degraded via the proteasome. However, we recently found that long-term incubation with proteasome inhibitors (PIs) such as PS-341 or MG132 induces IκBα degradation via an alternative pathway, lysosome, which results in NF-κB activation and confers resistance to PI-induced lung cancer cell death. To enhance the anti-cancer efficacy of PIs, elucidation of the regulatory mechanism of PI-induced IκBα degradation is necessary. Here, we demonstrated that PI up-regulates nuclear factor (erythroid-derived 2)-like 2 (Nrf2) via both de novo protein synthesis and Kelch-like ECH-associated protein 1 (KEAP1) degradation, which is responsible for IκBα degradation via macroautophagy activation. PIs increased the protein level of light chain 3B (LC3B, macroautophagy marker), but not lysosome-associated membrane protein 2a (Lamp2a, the receptor for chaperone-mediated autophagy) in NCI-H157 and A549 lung cancer cells. Pretreatment with macroautophagy inhibitor or knock-down of LC3B blocked PI-induced IκBα degradation. PIs up-regulated Nrf2 by increasing its transcription and mediating degradation of KEAP1 (cytoplasmic inhibitor of Nrf2). Overexpression of dominant-negative Nrf2, which lacks an N-terminal transactivating domain, or knock-down of Nrf2 suppressed PI-induced LC3B protein expression and subsequent IκBα degradation. Thus, blocking of the Nrf2 pathway enhanced PI-induced cell death. These findings suggest that Nrf2-driven induction of LC3B plays an essential role in PI-induced activation of the IκB/NF-κB pathway, which attenuates the anti-tumor efficacy of PIs.

Keywords: IκB, macroautophagy, Nrf2, nuclear factor-κB, proteasome inhibitor

INTRODUCTION

As the first proteasome inhibitor (PI) approved by the FDA, PS-341, or bortezomib, is well-known for its anti-neoplastic effects toward multiple myeloma and its chemo-sensitizing, synergistic role with other chemotherapeutic agents in controlling myeloma (Richardson et al., 2003). Recently studies have suggested a therapeutic role of PIs in advanced non-small cell lung cancer (NSCLC). (Aghajanian et al., 2002; Fanucchi et al., 2006; Ling et al., 2003; Yang et al., 2004). To improve the poor survival rate and short median overall survival of 8-10 months (Mandrekar et al., 2006), new treatments that can be integrated into the first-line therapy in advanced NSCLC are needed. Nevertheless, PS-341 has shown limited benefits when used as a single agent in NSCLC (Besse et al., 2012). The proteasome is a multicatalytic protease complex that rapidly degrades proteins via the ubiquitin and ATP pathway, but typically not through the lysosome pathway (Coux et al.,...
Various proteins, such as cyclin, cyclin-dependent kinase inhibitor, p53, NF-κB precursor protein, and iκB are degraded via the proteasome (Maki et al., 1996; Pagano et al., 1995; Palombella et al., 1994). This ubiquitin-proteasome pathway plays an important role in cell cycle regulation and signaling; blocking this pathway causes accumulation of pro-apoptotic proteins, which results in apoptosis of cancer cells but not of normal cells (Masdehors et al., 1999; Soligo et al., 2001).

In our previous study, we found that long-term incubation with PIs, PS-341 or MG-132, induced iκB degradation via an alternative lysosome pathway and resulted in NF-κB activation, which conferred resistance to PI-mediated apoptosis in lung cancer cells (Lee et al., 2013). To maximize the anti-cancer effect of PI in NSCLC, it is crucial to elucidate the mechanism of resistance to PI-induced apoptosis. In this present study, we investigated which type of autophagy contributes to such resistance to PI in lung cancer cells. Our results showed that PIs up-regulated Nrf2 via both de novo protein synthesis and KEAP1 degradation, resulting in induction of LC3B, a macroautophagy marker, to degrade iκBα and regulate PI-induced cell death. These findings suggest that the activation of macroautophagy via an Nrf2-dependent mechanism suppresses PI-induced lung cancer cell death by iκBα degradation.

MATERIALS AND METHODS

Reagents

Rabbit polyclonal anti-iκBα, anti-LC3B, anti-phospho-mTOR (Ser2448), anti-sirtuin1, and anti-KEAP1 antibodies, cycloheximide, p65 siRNAs, and LC3B siRNAs were purchased from Cell Signaling Technology (Danvers, USA). Rabbit polyclonal anti-p65, anti-cIAP2, anti-PARP, anti-Nrf2(C-20), anti-Lamin A/C, goat polyclonal anti-COX-2, anti-GAPDH, mouse monoclonal Lamp2 antibodies, secondary antibodies conjugated to horseradish peroxidase, Nrf2 siRNAs, control siRNAs, Lamp2 shRNAs, and control shRNAs were obtained from Santa Cruz Biotechnology (Santa Cruz, USA). Rabbit polyclonal Lamp2α antibody was from Abcam (Cambridge, UK). Bortezomib (PS-341) was obtained from Selleckchem (Houston, USA) and MG132 was from Calbiochem (Darmstadt, Germany). The etomer of dehydroxymethylepoxyquinomycin (DHMEQ), (-)-DHMEQ, was from ChemScene (Monmouth Junction, USA). Lipofectamine 2000 was purchased from Invitrogen (Carlsbad, USA). 3-MA and thiazolyl blue tetrazolium blue (MTT) was from Sigma-Aldrich, Inc. (St. Louis, USA).

Cell line authentication

NCH-H157 (ATCC, USA), derived from squamous cell lung cancer, and A549, lung adenocarcinoma epithelial cells, (Korean Cell Line Bank, Korea) were maintained in RPMI (GIBCO by Life Technologies, Grand Island, USA) containing 10% heat-inactivated FBS and 1% penicillin-streptomycin at 37°C under 5% CO₂. Experiments performed on cells that were passaged less than 20 times.

Quantitative real-time PCR

Total RNA from NCH-H157 and A549 cells was isolated using the RNeasy kit (Qiagen, Germany). cDNA was synthesized from 1 μg of total RNA using a Reverse Transcription system (Promega, USA). PCR amplification was performed with 2X TaqMan gene expression master mix (Applied Biosystems, USA). Nrf2 probe (Hs00975961_g1) and GAPDH probe (Hs99999905_m1) were obtained from Applied Biosystems. Power SYBR Green (Applied Biosystems) was used for PCR amplification for COX-2 and LC3B. COX-2 primers (fwd 5′-TGAGCAATCTACGGTTGCTG-3′, rev 5′-TGCTGTGCTGGACAAACTGC-3′), LC3B primers (fwd 5′-GAGAACAGCTCTCCGTTCCTGG-3′, rev 5′-GTCCTTGCTACACCAACGGAAG-3′) and GAPDH primers (fwd 5′-GAAGTGGTAAGGTCGGAGTC-3′, rev 5′-GAAGATGTTATGGAGTTTCTC-3′) were used.

Preparation of cell extracts

Cells were allowed to equilibrate in ice-cold cytoplasmic extraction buffer (CEB) consisting of 10 mM Tris-HCl (pH 7.8), 10 mM KCl, 1.5 mM EDTA, and 0.5 mM DTT for 5 min. The cells were lysed on ice in a 0.4% NP-40/CEB/protease inhibitor cocktail (Roche Diagnostics Corporation, USA). Following centrifugation at 3,500 rpm for 5 min, the supernatants (cytoplasmic extracts) were collected. The nuclear pellets were washed with CEB and then suspended in nuclear extraction buffer (NEB) consisting of 20 mM Tris-HCl (pH 7.8), 150 mM NaCl, 50 mM KCl, 1.5 mM EDTA, 5 mM DTT, and 0.4% NP-40/protease inhibitor cocktail. Following centrifugation at 13,000 rpm for 15 min, the supernatants (nuclear extracts) were collected. Total cellular extracts were prepared in 1X cell lysis buffer (Cell Signaling Technology). Protein concentrations were determined using the Bradford method (Bio-Rad, USA).

Western blot analysis

Equal amounts of protein were resolved by 4-12% SDS-PAGE (Invitrogen) and transferred to nitrocellulose membranes (GE Healthcare Bio-sciences, UK). The membranes were blocked with 5% skim milk-blocking buffer for 1 h before incubation overnight at 4°C with primary antibodies. The membranes were then washed three times and incubated with horseradish peroxidase-conjugated secondary antibodies in blocking buffer for 1 h. After successive washes, the membranes were developed using SuperSignal West Pico Chemiluminescent kit (Thermo Fisher Scientific, USA).

Transfection of siRNAs and shRNAs

Transfection of control siRNAs, p65 siRNAs, LC3B siRNAs, Nrf2 siRNAs, control shRNAs, or Lamp2 shRNAs was carried out using Lipofectamine 2000 according to the manufacturer’s specifications. After 48 h, the cells were used in experiments.

Transduction of adenovirus vectors

Cells were plated in a 60-mm tissue culture plate. After overnight incubation, the cells were transduced at multiplicities of infection of 50 with adenovirus vectors expressing wild-type Nrf2 (Ad-WT-Nrf2) or dominant-negative Nrf2 (Ad-DN-Nrf2), which lacks an N-terminal transactivating.
domain, in complete RPMI media for 2 h with gentle shaking and then incubated at 37℃, 5% CO₂. After 48 h, the cells were used in experiments.

Cell viability assay

Cell viability was measured by the MTT assay. MTT solution was added to cells (final concentration of 0.5 mg/mL), and the cells were incubated at 37℃ for 30 min. After removing the culture media, 50 µL DMSO was added and the optical density of each well was read at 570 nm.

Statistical analysis

Data were evaluated using the Student t-test to determine statistical significance, and a P value of < 0.05 was considered to indicate significance.

RESULTS

PI activates IκB/NF-κB pathway

As described in our previous report (Lee et al., 2013), long-term incubation with PI resulted in IκBα degradation (Fig. 1A) in both NCI-H157 and A549 cells. Expression of NF-κB subunit p65 was increased in the nuclear extracts, indicating the nuclear translocation of NF-κB (Fig. 1B). NF-κB in the nucleus up-regulated NF-κB-regulated gene and protein expression of COX-2 and cIAP2 (Figs. 1C and 1D). The PI-induced increase in COX-2 expression was suppressed by blocking NF-κB activation by two different methods: DHMEQ, which blocks the nuclear translocation and DNA-binding of NF-κB (Fig. 1E), or siRNAs, which were used to knock-down of NF-κB-p65 (Fig. 1F). These results suggest that PI activates the IκB/NF-κB pathway.
PI-induced IκBα degradation is associated with macroautophagy

We previously showed that the activation of lysosomal proteolytic enzymes, also known as autophagy, is involved in PI-induced IκBα degradation (Lee et al., 2013). To determine the subtypes of autophagy involved in this process, we evaluated the effect of PIs on macroautophagy or chaperone-mediated autophagy, which was assessed by measuring its surrogate markers, LC3B and Lamp2a, respectively. PI increased LC3B, but not Lamp2a, via transcriptional activation (Figs. 2A and 2B). When macroautophagy was blocked by the inhibitor, 3-methyladenine (3-MA), PI-induced IκBα degradation was reduced (Fig. 2C), suggesting an association between PI-induced IκBα degradation and macroautophagy.

Macroautophagy mediates PI-induced IκBα degradation

To elucidate the cause and effect relationship between PI-induced degradation of IκBα and autophagy, we assessed the effect of LC3B or Lamp2a knock-down on PI-induced IκBα degradation. Knock-down of the LC3B gene, but not Lamp2a, reduced PI-induced IκBα degradation (Figs. 3A and 3B). These findings confirm that PI-induced IκBα degradation is dependent on macroautophagy.
PI-induced IkBα degradation is mediated by Nrf2 up-regulation via both de novo protein synthesis and KEAP1 degradation

To further understand the molecular mechanism underlying PI-induced, macroautophagy-dependent IkBα degradation, we searched for upstream regulators of LC3B, such as the mammalian target of rapamycin (mTOR), sirtuin1, and Nrf2 (Esclatine et al., 2009; Zhou et al., 2015; Zhu et al., 2013). mTOR is a Ser/Thr protein kinase and catalytic subunit of two structurally distinct complexes: TOR complex 1 (TORC1) and TORC2. Specially, TORC1 is known to be an upstream negative regulator of Atg1 complex involved in autophagy induction. Inhibition of mTOR activity triggers autophagy (Esclatine et al., 2009). Sirtuin1 is one of the class III histone deacetylases, involving many critical cellular processes including tumorigenesis and cell proliferation. Sirtuin1 induction was reported to abolish autophagy, whereas downregulation of sirtuin1 and inhibition of sirtuin1 activity enhance autophagy in cancer cells (Zhou et al., 2015). However, in this study, PIs did not affect the level of phospho-mTOR and sirtuin1 (Fig. 4A). The activation of Nrf2 has been demonstrated to play a crucial role in cancer cell resistance to different anticancer therapies. PS-341 treatment activates Nrf2 in cancer cells and Nrf2 negatively regulates autophagy in lung epithelial cells (Zhu et al., 2013). PI treatment resulted in up-regulation of Nrf2 and reduced the expression of KEAP1 (Fig. 4A). The down-regulation of KEAP1 has been shown to stabilize Nrf2 and increase its expression; however, de novo protein synthesis by transcriptional activation was also responsible for PI-induced Nrf2 up-regulation (Figs. 4B and 4C). Knock-down of Nrf2 by transfection of siRNAs targeting Nrf2 gene or overexpression of dominant negative-Nrf2 (Ad-DN-Nrf2) repressed PI-induced LC3B induction and subsequent IkBα degradation (Figs. 4D and 4E). However, LC3B transcripts increased rather than decreased in Nrf2 siRNA transfected cells (data not shown). Thus, Nrf2 mediates up-regulation of LC3B protein and subsequent IkBα degradation in PI stimulated cells.
PI-induced Nrf2 activation suppresses PI-induced cell death

We previously reported that NF-κB activation makes lung cancer cells resistant to TNF-α-induced apoptosis (Kim et al., 2000), thus, we assessed whether Nrf2 activation suppresses PI-induced apoptosis. Knock-down of Nrf2 with siRNAs increased cleavage products of poly (ADP-ribose) polymerase (PARP), indicative of the apoptotic cell fraction, in PS-341 treated cells (Fig. 5A). The MTT assay also showed decreased cell viability in DN-Nrf2-overexpressing PI-treated cells (Fig. 5B). A schematic of our hypothesis based on the results of this study is shown in Fig. 5C. Taken together, PI-induced Nrf2 activation results in IκBα degradation via macroautophagy, and subsequent NF-κB activation suppresses apoptotic cell death.

DISCUSSION

In the present study, we showed that Nrf2 up-regulation and subsequent macroautophagy activation are responsible for PI-induced IκBα degradation. We previously demonstrated that IκBα degradation and NF-κB activation confer resistance to PI- or TNF-α-mediated apoptosis in lung cancer cells (Kim et al., 2000; Lee et al., 2013). This is the first study implicating Nrf2 and macroautophagy in the upstream mechanism leading to PI-induced IκBα degradation and subsequent NF-κB activation in lung cancer.

Macropatorium is a major autophagic process in which dysfunctional proteins are sequestered by cytosolic double-membrane vesicles for degradation (Cuervo, 2004). In contrast, chaperone-mediated autophagy is a more selective process that does not require such vesicular traffic; this process requires recognition of a peptide motif and binding to Lamp2a receptor (Majeski and Dice, 2004). With PI-induced up-regulation of LC3B but not Lamp2a, as well as knock-down of LC3B which reduces PI-induced IκBα degradation, our results indicate that macroautophagy, not chaperone-mediated autophagy, is a key mechanism of resistance to PI-induced apoptosis in lung cancer. Although treatment with PI may slightly increase the protein levels of LC3B because of decreased proteasome-associated LC3B degradation (Gao et al., 2010), we showed that PI elevated LC3B mRNA levels.

Nrf2 is known to have dual effects on cell death, preventing tumor occurrence in normal cells and playing a cytoprotective role in cancer cells (Hou et al., 2015; Lim et al., 2013; van der Wijst et al., 2015). The main mechanism of this resistance involves dissociation of Nrf2 from KEAP1, which enables Nrf2 to bind antioxidant responsive elements to promote the transcription of genes encoding antioxidant enzymes, leading to chemoresistance (Kobayashi et al., 2006; Leinonen et al., 2014). This is in accordance with the findings of previous studies of PI-mediated Nrf2-dependent upregulation of antioxidant enzymes (Dreger et al., 2009). In this study, we demonstrated PI-mediated, Nrf2-dependent activation of macroautophagy leading to subsequent IκBα degradation and determined two mechanisms by which PI up-regulates Nrf2: *de novo* protein synthesis and KEAP1 degradation. Clinically, high Nrf2 expression in tumor specimens is correlated with poor response rate of platinum-based chemotherapy and is an independent prognostic factor for survival in advanced NSCLC patients (Yang et al., 2015).
Nrf2 Mediates PI-Induced IkBα Degradation
Kyoung-Hee Lee et al.

2011). Based on our findings, targeting Nrf2 or macroautophagy may improve the result of PI therapy in lung cancer. As suggested by our data showing that knock-down of Nrf2 enhanced PI-induced apoptosis, inhibiting Nrf2 is a promising approach. Autophagy blockade may also be a potential effective strategy for overcoming tumor resistance in chemotherapy and relevant data has been published in colon, hepatocellular, pancreatic cancer, and osteosarcoma (Ding et al., 2011; Li et al., 2010; Mujumdar et al., 2010; Wu et al., 2014). Recently, a study by Moriya et al reported improved chemotherapy outcomes following treatment with macro-lide antibiotic, an autophagy flux inhibitor, in combination with bortezomib in multiple myeloma (Moriya et al., 2013). By simultaneously targeting the ubiquitin-proteasome system and autophagy-lysosome system, we may expect better outcomes in lung cancer as in other cancers (Ryter and Choi, 2015).

In conclusion, our data show that PI-induced Nrf2 activation enhances macroautophagy, leading to IkBα degradation and subsequent NF-κB activation in NCI-H157 and A549 cells. Targeting these specific anti-apoptotic mechanisms may represent a novel strategy for overcoming the resistance to PI-induced apoptosis in lung cancer.

ACKNOWLEDGEMENTS
This study was supported by grant 0420140780 from Seoul National University Hospital.

REFERENCES
Aghajanian, C., Soignet, S., Dizon, D.S., Pien, C.S., Adams, J., Elliott, P.J., Sabbatini, P., Miller, V., Hensley, M.L., Pezzulli, S., et al. (2002). A phase I trial of the novel proteasome inhibitor PS341 in advanced solid tumor malignancies. Clin. Cancer Res. 8, 2505-2511.
Besse, B., Planchard, D., Veillard, A.S., Taittide, L., Khayat, D., Ducourtieux, M., Pignon, J.P., Lumbroso, J., Lafontaine, C., Mathiot, C., et al. (2012). Phase 2 study of frontline bortezomib in patients with advanced non-small-cell lung cancer. Lung Cancer 76, 78-83.
Coux, O., Tanaka, K., and Goldberg, A.L. (1996). Structure and functions of the 20S and 26S proteasomes. Annu. Rev. Biochem. 65, 801-847.
Cueno, A.M. (2004). Autophagy: many paths to the same end. Mol. Cell. Biochem. 263, 55-72.
Ding, Z.B., Hui, B., Shi, Y.H., Zhou, J., Peng, Y.F., Gu, C.Y., Yang, H., Shi, G.M., Ke, A.W., Wang, X.Y., et al. (2011). Autophagy activation in hepatocellular carcinoma contributes to the tolerance of oxaliplatin via reactive oxygen species modulation. Clin. Cancer Res. 17, 6229-6238.
Dreger, H., Westphal, K., Weller, A., Baumann, G., Stangl, V., Meiners, S., and Stangl, K. (2009). NF-κB-dependent upregulation of antioxidant enzymes: a novel pathway for proteasome inhibitor-mediated cardioprotection. Cardiovasc. Res. 83, 354-361.
Esclatine, A., Chaumorcel, M., and Codogno, P. (2009). Macrolactone signaling and regulation. Curr. Top. Microbiol. Immunol. 335, 33-70.
Fanucchi, M.P., Fossella, F.V., Belt, R., Natale, R., Fidias, P., Carbone, D.P., Govindan, R., Raez, L.E., Robert, F., Ribeiro, M., et al. (2006). Randomized phase II study of bortezomib alone and bortezomib in combination with docetaxel in previously treated advanced non-small-cell lung cancer. J. Clin. Oncol. 24, 5025-5033.
Gao, Z., Gammoh, N., Wong, P.M., Erdjument-Bromage, H., Tempst, P., and Jiang, X. (2010). Processing of autophagic protein LC3 by the 20S proteasome. Autophagy 6, 126-137.
Goldberg, A.L., Stein, R., and Adams, J. (1995). New insights into proteasome function: from archaeabacteria to drug development. Chem. Biol. 2, 503-508.
Hou, X., Bai, X., Gou, X., Zeng, H., Xia, C., Zhuang, W., Chen, X., Zhao, Z., Huang, M., Jin, J. (2015). 3’,4’,5’,7-pentamethoxyflavone sensitizes Cisplatin-resistant A549 cells to Cisplatin by inhibition of the 20S pathway. Mol. Cells 38, 396-401.
Kim, J.Y., Lee, S., Hwangbo, B., Lee, C.T., Kim, Y.W., Han, S.K., Shim, Y.S., and Yoo, C.G. (2000). NF-kappaB activation is related to the resistance of lung cancer cells to TNF-alpha-induced apoptosis. Biochem. Biophys. Res. Commun. 273, 140-146.
Kobayashi, A., Kang, M.I., Watai, Y., Tong, K.I., Shibata, T., Uchida, K., and Yamamoto, M. (2006). Oxidative and electrophilic stresses activate Nrf2 through inhibition of ubiquitination activation of Keap1. Mol. Cell. Biol. 26, 221-229.
Lee, K.H., Jeong, J., and Yoo, C.G. (2013). Long-term incubation with proteasome inhibitors (Pls) induces IkappaBAlpha degradation via the lysosomal pathway in an IkappaB kinase (IKK)-dependent and IKK-independent manner. J. Biol. Chem. 288, 32777-32786.
Leinonen, H.M., Karsanen, E., Polonen, P., Heinaniemii, M., and Levonon, A.L. (2014). Role of the Keap1-Nrf2 pathway in cancer. Adv. Cancer Res. 122, 281-320.
Li, J., Hou, N., Faried, A., Tsutsumi, S., and Kawanou, H. (2010). Inhibition of autophagy augments 5-fluorouracil chemotheraphy in human colon cancer in vitro and in vivo model. Eur. J. Cancer 46, 1900-1909.
Lim, J., Lee, S.H., Cho, S., Lee, I.S., Kang, B.Y., and Choi, H.J. (2013). 4-methoxychalcone enhances cisplatin-induced oxidative stress and cytotoxicity by inhibiting the Nrf2/ARE-mediated defense mechanism in A549 lung cancer cells. Mol. Cells 36, 340-346.
Ling, Y.H., Liebes, L., Zou, Y., and Perez-Soler, R. (2003). Reactive oxygen species generation and mitochondrial dysfunction in the apoptotic response to Bortezomib, a novel proteasome inhibitor, in human H460 non-small cell lung cancer cells. J. Biol. Chem. 278, 33714-33723.
Majeski A.E., and Dice, J.F. (2004). Mechanisms of chaperone-mediated autophagy. Int. J. Biochem. Cell Biol. 36, 2435-2444.
Maki, C.G., Hulbregtse, J.M., and Howley, P.M. (1996). In vivo ubiquitination and proteasome-mediated degradation of p53(1). Cancer Res. 56, 2649-2654.
Mandrekar, S.J., Chald, S.E., Hillman, S.L., Allen, K.L., Marks, R.S., Maillard, J.A., Krook, J.E., Maksymik, A.W., Chansky, K., Kelly, K., et al. (2006). A diagnostic model for advanced stage nonsmall cell lung cancer. Pooled analysis of North Central Cancer Treatment Group trials. Cancer 107, 781-792.
Masdehors, P., Oumura, S., Merle-Biral, H., Mentz, F., Cosset, J.M., Dumont, J., Magdelinat, H., and Delic, J. (1999). Increased sensitivity of CLL-derived lymphocytes to apoptotic death activation by the proteasome-specific inhibitor lactacystin. Br. J. Haematol. 105, 757-757.
Moriya, S., Che, X.F., Komatsu, S., Abe, A., Kawaguchi, T., Gotoh, A., Inazu, M., Tomoda, A., and Miyazawa, K. (2013). Macrolide antibiotics block autophagy flux and sensitize to bortezomib via endoplasmic reticulum stress-mediated CHOP induction in myeloma cells. Int. J. Oncol. 42, 1541-1550.
Mujumdar, N., Mackenzie, T.N., Dudeja, V., Chugh, R., Antonoff, M.B., Borja-Cacho, D., Sangwan, V., Dawra, R., Vickers, S.M., and
Nrf2 Mediates PI-Induced IkBα Degradation
Kyoung-Hee Lee et al.

Saluja, A.K. (2010). Triptolide induces cell death in pancreatic cancer cells by apoptotic and autophagic pathways. Gastroenterology 139, 598-608.

Pagano, M., Tam, S.W., Theodoras, A.M., Beer-Romero, P., Del Sal, G., Chau, V., Yew, P.R., Draetta, G.F., and Rolfe, M. (1995). Role of the ubiquitin-proteasome pathway in regulating abundance of the cyclin-dependent kinase inhibitor p27. Science 269, 682-685.

Palombella, V.J., Rando, O.J., Goldberg, A.L., and Maniatis T. (1994). The ubiquitin-proteasome pathway is required for processing the NF-kappa B1 precursor protein and the activation of NF-kappa B. Cell 78, 773-785.

Richardson, P.G., Barlogie, B., Berenson, J., Singhal, S., Jagannath, S., Irwin, D., Rajkumar, S.V., Skalak, G., Alsina, M., Alexander, R., et al. (2003). A phase 2 study of bortezomib in relapsed, refractory myeloma. N. Engl. J. Med. 348, 2609-2617.

Ryter, S.W., and Choi, A.M. (2015). Autophagy in lung disease pathogenesis and therapeutics. Redox. Biol. 4, 215-225.

Soligo, D., Servida, F., Delia, D., Fontanella, E., Lamorte, G., Caneva, L., Fumiatti, R., and Lamberti-Dellis, G. (2001). The apoptotic response of human myeloid leukaemia cell lines and of normal and malignant haematopoietic progenitor cells to the proteasome inhibitor PSI. Br. J. Haematol. 113, 126-135.

van der Wijst, M.G., Huisman, C., Mpofu, A., Roelfes, G., and Rots, M.G. (2015). Targeting Nrf2 in healthy and malignant ovarian epithelial cells: Protection versus promotion. Mol. Oncol. 9, 1259-1273.

Wu, W., Li, W., Zhou, Y., and Zhang, C. (2014). Inhibition of beclin1 affects the chemotherapeutic sensitivity of osteosarcoma. Int. J. Clin. Exp. Pathol. 7, 7114-7122.

Yang, H., Wang, W., Zhang, Y., Zhao, J., Lin, E., Gao, J., and He, J. (2011). The role of NF-E2-related factor 2 in predicting chemoresistance and prognosis in advanced non-small-cell lung cancer. Clin. Lung Cancer 12, 166-171.

Yang, Y., Ikezoe, T., Saito, T., Kobayashi, M., Koefler, H.P., and Taguchi, H. (2004). Proteasome inhibitor PS-341 induces growth arrest and apoptosis of non-small cell lung cancer cells via the JNK/c-Jun/AP-1 signaling. Cancer Sci. 95, 176-180.

Zhou, Z.W., Li, X.X., He, Z.X., Pan, S.T., Yang, Y., Zhang, X., Chow, K., Yang, T., Qiu, J.X., Zhou, Q., et al. (2015). Induction of apoptosis and autophagy via sirtuin1- and PI3K/Akt/mTOR-mediated pathways by plumbagin in human prostate cancer cells. Drug Des. Devel. Ther. 9, 1511-1515.

Zhu, L., Barret, E.C., Xu, Y., Liu, Z., Manoharan, A., and Chen, Y. (2013). Regulation of Cigarette Smoke(CS)-Induced Autophagy by Nrf2. PLoS One 8, e55695.