Abstract

Extreme classification problems are multiclass and multilabel classification problems where the number of outputs is so large that straightforward strategies are neither statistically nor computationally viable. One strategy for dealing with the computational burden is via a tree decomposition of the output space. While this typically leads to training and inference that scales sublinearly with the number of outputs, it also results in reduced statistical performance. In this work, we identify two shortcomings of tree decomposition methods, and describe two heuristic mitigations. We compose these with an eigenvalue technique for constructing the tree. The end result is a computationally efficient algorithm that provides good statistical performance on several extreme data sets.

1. Introduction

Classification applications with large numbers of possible outputs, aka extreme classification problems, are becoming increasingly common, e.g., language modeling, document classification, and image tagging. Furthermore, reductions of structured prediction (Daume III et al., 2014) and structured contextual bandit (Chang et al., 2015) problems to classification can induce large numbers of possible outputs. Consequently, a robust extreme classification primitive would enable new approaches to problems such as ranking, recommendation, or interactive learning.

When the number of possible outputs is small, the structure of the output space can be ignored. Although this presumably sacrifices computational and statistical efficiency, this can be overcome via brute-force, i.e., additional time and space complexity for training and inference, and additional sample complexity for training. For a large number of outputs, however, this is insufficient: in practice it is necessary to tackle issues such as inference time and model size while retaining good generalization, and these goals are facilitated by output structure. For some applications the algorithm designer can posit an approximately correct output structure. Extreme classification focuses on applications where the output structure is unknown and needs to be inferred.

In this work we revisit tree based decomposition algorithms for extreme classification. Although this class of algorithms enjoy favorable inference (and training) time, their accuracy is typically worse than direct approaches such as a flat softmax. We proceed to identify two aspects of tree based algorithms that negatively affect their statistical performance. First, training data is decimated as we go deeper down the tree, so there is not enough data to learn flexible models as the tree grows deeper. Second, trees are not robust to mistakes due to incorrect routing at the internal nodes of the tree. We then propose techniques that reduce the effect of these shortcomings. Finally we present an efficient eigenvalue-based algorithm that learns a tree which maps an example to a (small) set of candidate outputs; this tree is coupled with an underlying generic classification strategy for a complete solution.

2. Background and Rationale

2.1. Notation

We denote vectors by lowercase letters, e.g., \(x, y\); matrices by uppercase letters, e.g., \(W, Z\); and sets by calligraphic uppercase letters, e.g., \(A, B\). The input dimension is denoted by \(d\), the output dimension by \(c\) and the number of examples by \(n\). For multiclass problems \(y\) is a one hot (row) vector, i.e., a vertex of the \((c-1)\) unit simplex; while for multilabel problems \(y\) is a binary vector, i.e., a vertex of the unit \(c\)-cube. The power set of labels is denoted by \(\mathcal{P}(c)\). The indicator function is denoted as \(I[p]\) and is 1 if \(p\) is true and 0 otherwise.
2.2. Tree-Based Decomposition Algorithms

Many existing algorithms that enjoy inference (and sometimes training) times that scale sublinearly with the number of classes are based on partitioning the output space with a tree structure. Early works (e.g. (Morin & Bengio, 2005)) treated the tree as given while more recent papers (Mnih & Hinton, 2009; Bengio et al., 2010; Prabhu & Varma, 2014; Choromanska & Langford, 2015) learn both the tree and the classifier. However, if a flat softmax classifier is feasible it will typically obtain better test accuracy (Rifkin & Klautau, 2004). There are several reasons why label decomposition via trees can underperform. In the sequel, we describe two of them. Our proposed solutions are described in detail in the next section.

Data decimation refers to the reduced amounts of data that reach each individual node in the tree. Label trees are typically trained in a top-down fashion, with the root having access to all the data and learning a router that sends examples to the left or right child. Each child sees only the examples that get routed to it and learns how to route this subset to its children. This continues recursively until the leaves of the tree so each leaf receives a disjoint set of the training examples. Typically an output space with \(c \) labels leads to a tree with \(O(\log c) \) levels and a constant number of candidate classes at each leaf. Therefore each leaf classifier only has access to \(O(n/c) \) examples. Given this, it is not surprising that some of the label tree algorithms employ severely limited classifiers at the leaves, such as static predictors that ignore all information about the incoming example. Instead, we propose to treat the set of classification tasks at each leaf node as a multi-task learning problem (Caruana, 1997) and leverage techniques from that literature, e.g., sharing classifier parameters across leaves.

Routing brittleness refers to the sensitivity of the prediction to mistakes in routing. If the leaves form a partition of the classes then a single mistake anywhere along the path from the root to a leaf will cause an example to be misclassified. Therefore, a typical countermeasure is to have each class in multiple leaves in the hope that the classifier can recover from some mistakes during routing. However, at training time we have additional information about which examples are likely to have problems with routing via the margin associated with the routing decision. We should expect that examples from the true distribution similar to low margin examples could route differently. While we cannot access the true distribution, we can assign an example fractionally to both the left and right branches using the margin. This will make the training algorithm more robust to those parts of the input space that fall near the decision boundaries of the routers.

3. Algorithm

3.1. Design

The basic idea is to identify a (small) set of candidate labels for the example, and then invoke a base classifier only on the candidate set. Intuitively, the function which determines the set of candidate labels should have high recall, whereas the base classifier should have high precision when restricted to the candidate set, such that the composition is accurate. We can use any base classifier with our technique, so the focus of this paper is learning the candidate label set function.

Algorithm 1 Predict(\(F, H, x \))

1: \(C \leftarrow F(x) \) \(\{ F : X \rightarrow P(\mathcal{c}) \} \)
2: Return \(H(x, C) \) \(\{ H : X \times P(\mathcal{c}) \rightarrow \mathcal{y} \} \)

Our architecture is succinctly described in Algorithm 1. We utilize a function \(F \) which maps an example to a small set of candidate labels, along with a more generic classifier \(H \) whose possible outputs are limited to those produced by \(F \). For this construction to provide time complexity reduction, the cost of invoking \(F \) should be small, the set \(C \) returned by \(F \) should typically be small, and \(H \) should have complexity which is independent of \(c \) given \(C \). For example, it could depend only upon the size of the candidate set rather than the total number of labels.

To limit the cost of invoking \(F \) we will use a tree-based decomposition with limited depth. To limit the cost of invoking \(H \), we place an upper bound on the size of the set returned by \(F \). This creates two hyperparameters, the tree depth and the leaf node class budget; increasing either will typically improve accuracy at the cost of additional computation. Section 5 provides some guidance on selecting these hyperparameters.

Ensuring \(H \) has computational complexity dependent only upon the size of the candidate set, rather than the total number of labels, is idiosyncratic to the underlying classifier used. We describe how to modify the two models used in our experimental section. For multiclass logistic regression, we only compute and normalize the predictions over the candidate set. For multilabel per-class independent logistic regression, we only compute the values in the candidate set. These modifications can also be applied to the final layers of deep architectures.

3.2. Stagewise Learning

Our ultimate research goal is an online algorithm for jointly learning \(F \) and \(H \), and some of our design choices have been motivated by plausibility of adaptation to the online setting. In this work, however, we restrict our focus to
batch stagewise learning of \(F \) and \(H \), in which \(F \) is first constructed and then \(H \) is optimized given \(F \).

To learn the function \(F \) which determines the set of candidate labels, we will recursively construct a tree whose nodes route the examples to their children. Each router is found by solving an eigenvalue problem which attempts to purify the label distribution in the induced subproblems. The candidate sets for each leaf node are the labels with highest empirical frequency. While the relationship between the ideal objective (recall) and our eigenvalue objective is indirect, our approach is computationally scalable and empirically achieves high recall.

3.3. Learning a Tree Node

Clearly, if the true label(s) are not contained within the candidate set \(C \) then the overall procedure must commit an error. This suggests that learning \(F \) should be done by maximizing recall-at-\(k \). Finding the tree that maximizes recall-at-\(k \) is a hard combinatorial problem and instead we follow a top-down procedure which optimizes a different objective at each node in the tree. Nonetheless, we compute recall as a diagnostic for \(F \) in our experiments.

For multiclass problems, (Choromanska & Langford, 2015) show that arbitrarily low error rates can be achieved by a tree-style decomposition under a weak hypothesis assumption. The weak hypothesis assumption states it is always possible to find a hypothesis which achieves a minimum level of purity while limited to a maximum level of balance. Purity refers to the larger of the fraction of each class’ examples which routes to the left or the right, and is ideally close to 1; whereas balance refers to the larger of the fraction of all examples which route to the left or the right, and is ideally close to 0.5. Inspired by this, our approach is to optimize a related purity objective subject to an approximate balance constraint, in order to achieve a label filtering with high recall.

We temporarily restrict our attention to multiclass problems. For a linear routing node given instances \((x, y)\) ranging over \(\mathbb{R}^d \times \{0, 1\}^c\), a direct implementation of (Choromanska & Langford, 2015) with a strict balance constraint would find a weight vector \(w \in \mathbb{R}^d \) such that

\[
\max_{w : \|w\| = 1} \sum_c \left| \mathbb{E} \left[\mathbb{I} \left[w^\top x > 0 \right] y_c - \mathbb{I} \left[w^\top x \leq 0 \right] y_c \right] \right|
\]

subject to \(\mathbb{E} \left[\mathbb{I} \left[w^\top x > 0 \right] - \mathbb{I} \left[w^\top x \leq 0 \right] \right] = 0 \)

We replace the balance constraint with \(w^\top \mathbb{E} [x] = 0 \). While this generates splits that are close to balanced, we find improved results via computing the empirical median \(b = \text{median}(w^\top x) \) and using \(\mathbb{I} \left[w^\top x > b \right] \) for routing.

We replace the purity objective with

\[
\sum_c \left(\mathbb{E} \left[w^\top x_c \right] \right)^2 = w^\top \left(\sum_c \mathbb{E} [x_c] \mathbb{E} [x_c]^\top \right) w,
\]

which is an eigenvector problem on the sum of the frequency-weighted class-conditional means. Note the substitution

\[
\sum_c \left| \mathbb{E} \left[\mathbb{I} \left[w^\top x > 0 \right] y_c - \mathbb{I} \left[w^\top x \leq 0 \right] y_c \right] \right| \rightarrow \sum_c \left(\mathbb{E} \left[w^\top x_c \right] \right)^2
\]

replaces the original purity objective (which tries to maximize the per-class absolute difference in examples routing left vs. right) with a proxy (which tries to maximize the distance between the projected class-conditional mean and the origin). While (1) admits a fast solution, the objective is now sensitive to the magnitude of the examples. This can be mitigated by preprocessing the data so that the norms of the examples are similar. In Section 5 most datasets are processed such that all examples have unit norm.

To generalize to multilabel, we condition on the entire label vector for each example: on a data set features \(X \in \mathbb{R}^{n \times d} \) and labels \(Y \in \{0, 1\}^{n \times c} \), and a linear predictor \(\hat{X} = Y (Y^\top Y)^{-1} Y^\top X \) of \(X \) given \(Y \), equation (1) is equivalent to \(w^\top (\hat{X}^\top \hat{X}) w \).

Ultimately we arrive at the constrained eigenvalue problem

\[
\max_{w : \|w\| = 1} w^\top (\hat{X}^\top \hat{X}) w.
\]

Except for the balance constraint, equation (2) corresponds to one variant of orthonormal partial least squares. This is sensible given the bilinear factor model interpretation of PLS: we seek a direction in feature space which captures the maximum variance in the label space. Thus while equation (2) was motivated by analysis for the multiclass case, it is also plausible for multilabel problems.

Equation (2) is a top eigenvalue problem which can be efficiently solved, e.g., using power iteration or randomized PCA (Halko et al., 2011). We can incorporate the linear constraint by projecting out \(1^\top \hat{X} \) during power iteration.

The dependence upon the number of classes \(c \) is via the cost of multiplying with the hat matrix \(Y (Y^\top Y)^{-1} Y^\top \). The hat matrix is idempotent which implies \(\hat{X}^\top \hat{X} = \hat{X}^\top \hat{X} \) and eliminates one application of the hat matrix. For multiclass the remaining application can be done in \(O(n) \), i.e., constant time per example. For multilabel we exploit that multiplication with the hat matrix is equivalent to solving a least squares problem, i.e.,

\[
(Y^\top Y)^{-1} Y^\top X z = \arg\min_c \| Y v - X z \|_2^2.
\]
Because in our multilabel experiments \(Y \) is very sparse, we use a small number of iterations of diagonally preconditioned conjugate gradient which is sufficient for good results. Each iteration is only \(O(ns) \), where \(s \) is the average number of nonzero labels per example.

3.4. Recursive Tree Construction

To learn an entire tree, we combine the previous procedure for learning a single node with a specification of how to recursively create child problems.

Once a node has been constructed, a straightforward way to induce subproblems is to route the data set according to the routing function at that node. Unfortunately, however, typically a constant fraction of examples are very close to the boundary. Moreover, the routers along each path are diverse which implies that most examples have multiple, almost independent, “chances” of being routed with a low diversity which implies that most examples have multiple, near at least one of these surfaces. Moreover, each node completely ignores the examples from “neighboring” tree nodes that could be used for, say, smoothing out the estimates of the most frequent classes in that node.

We mitigate this problem by defining a routing probability at each node and using fractional routing during tree building and randomized routing during training of the underlying classifiers, which we describe in detail in the sequel. We utilize fractional and randomized routing only during training. At inference time, we use deterministic routing.

Fractional routing means that when we construct \(F \), we propagate expected example counts to each child node, optimize an importance-weighted version of equation (2), and utilize aggregates of expected counts to determine which classes are in the candidate set at a leaf.

The routing probability at each node is heuristically defined by assuming that a test example \(\hat{x} \) is sampled from a Gaussian centered at a training example \(x \). Let \(w \) and \(b \) be the routing vector and bias for a particular node. Under the above assumption we have

\[
p(w^\top \hat{x} > b) = p(w^\top x + \sigma w^\top z > b) = \Phi \left(\frac{w^\top x - b}{\sigma} \right)
\]

where \(z \) is a vector of iid standard Gaussians and \(\Phi \) is the CDF of a standard Gaussian. The first equality is by definition of \(\hat{x} \) while the second is by rearranging terms and using that \(-w^\top z\) has a standard Gaussian distribution (since \(||w|| = 1 \) c.f. (2)). We heuristically set the standard deviation \(\sigma = \lambda/m \) where \(m \) is the sum of the importance weights of all examples routed to the node, and \(\lambda \) is the eigenvalue from equation (2).

We define the probability of an example along a path in the tree to be the product of its routing probabilities over the nodes in the path. These probabilities also allow for terminating the recursion prior to hitting the maximum allowed tree depth, because the expected counts can be used to estimate recall-at-\(k \). Thus, we can specify an additional hyperparameter \(\phi \) which is the acceptable recall-at-\(k \) at which to terminate recursion.

The fractional example counts are equivalent to importance weights in the eigenvalue problem of equation (2), and in particular for multilabel classification we solve an importance-weighted version of the least squares problem in equation (3).

Once the tree is constructed we have a function from example to leaf node. We then associate a set of classes with each leaf node in order to define the function from example to set of classes. The set of labels associated with a leaf node is defined as the \(k \) most frequent labels in the training set which route to that node (weighted by the probability of them reaching the node), where \(k \) is the leaf-node class budget (a hyperparameter which limits training and inference time complexity).

3.5. Classifier Training

Once the tree has been constructed, we optimize the classifier \(H \) using stochastic gradient descent. We use randomized routing during this stage to sample a path through the tree each time an example is encountered during optimization. The sampled path associates a candidate set of labels with each example according to the leaf node terminating the path. We then modify the training (and inference) procedure to honor the restriction of the model to the candidate set. For multilabel this is straightforward as we use an independent logistic link for each class. For multiclass we use softmax link, in which case we compute output pre-activations only for the candidate set, and then normalize only over the candidate set. In both cases time complexity is independent of the total number of classes given the cardinality of the candidate set.

Note the same underlying model \(H \) is being employed at every leaf node. This is motivated both by the desire to mitigate space complexity and the need to limit model complexity given the decimation of data that occurs at the leaves. However, we augment the original features with a categorical variable indicating the leaf node. This allows us to treat the problem of training the underlying classifier as a multi-task learning problem, where the node id indicates the task. At one extreme, ignoring the node id means the same classifier is used at every tree node (albeit leveraging a different candidate set of labels). At the
other extreme, each task can be considered completely separate, i.e., each leaf node has a distinct classifier. The latter option is typically not viable for large data sets either computationally (as the space complexity is quite high) or statistically (as data decimation at the leaves would force an excessively simple classifier). Intermediate possibilities from the multi-task learning literature include multiplexing via a hash kernel (Weinberger et al., 2009), positing a low-rank structure on the parameters across tasks (Evgeniou & Pontil, 2007), and leveraging group-sparsity (Chen et al., 2011). For our experiments we find empirically that only modest customization of the underlying classifier per-node is statistically viable; for more details see section 5.

4. Related Work

Tree based decompositions are popular in the extreme learning literature due to their inherent scaling properties. In early work (Morin & Bengio, 2005) on language modeling the tree was derived from a hand crafted hierarchy and given to the algorithm as an input. More recent work has focused on learning the tree structure as well (Mnih & Hinton, 2009; Bengio et al., 2010; Prabhu & Varma, 2014; Choromanska & Langford, 2015). Like our technique here, tree based decompositions recursively partition the feature space in order to induce easier subproblems.

Our randomized routing approach is similar to (Mnih & Hinton, 2009) in which a training example is sent both left and right if it is within ε (a hyperparameter) of the router’s decision boundary.

Some techniques focus solely on improving inference time for a given model. In (Bengio et al., 2010) spectral techniques are used to define a tree based decomposition via the eigenvectors of a matrix derived from the confusion matrix of a pretrained (multiclass) model. The composition of a label filter with a base classifier was proposed by (Weston et al., 2013), whose inference procedure is essentially the same as our proposal. During training, however, we learn the filter prior to learning to underlying classifier rather than the converse, which allows us to exploit the computational speedup of filtering and consequently utilize a more computationally expensive classifier. Indeed, the relative poor comparative performance of (Weston et al., 2013) to FastXML reported in (Prabhu & Varma, 2014) is plausibly due to the use of a naïve Bayes classifier to mitigate computational constraints during training.

The idea of recursively solving eigenvalue problems to convert a multiclass problem into a sequence of simpler classification problems was explored by (Yildiz & Alpaydin, 2005). In that work authors heuristically searched over possible partitionings of the classes at each node, which becomes increasingly infeasible as the number of classes increases. Furthermore, their technique does not apply to multilabel problems.

Randomized methods for efficient eigenvalue decomposition were introduced by (Halko et al., 2011) and are useful to the practical implementation of our approach.

Embedding based approaches are also popular in the extreme learning literature. These techniques seek a low-dimensional representation of the features and/or labels which mitigate both computational and sample complexity. We compare experimentally with X1 (Bhatia et al., 2015), an embedding method with state of the art performance on several public extreme data sets.

Algorithm 1 is similar in spirit to the operation of modern search engines, in which hand-crafted features such as BM25 (Robertson et al., 1999) are used to filter the set of candidate documents prior to more expensive and higher precision re-ranking by another model.

5. Experiments

Software to reproduce these experiments is at https://anonymized.

Table 1. Data sets used in experiments. s is the average number of labels per example.

Dataset	s	n	d	c	Root Node Learn Time
Twitter	1.27	25M	1M	264K	49s
ALOI	1	97K	128	1K	0.3s
ODP	1	1.5M	0.5M	100K	2.5s
LSHTC	3.26	2.4M	1.6M	325K	13s

Table 1 lists the datasets used in our experiments, along with the time to learn the root node of the tree. All times quoted in the experimental section are for a Matlab implementation running on a standard desktop, which has dual 3.2Ghz Xeon E5-1650 CPU and 48Gb of RAM.

In principle, several parallelization strategies are available. First, eigenvalue problems are inherently amenable to distributed implementation, as the computational bottleneck is matrix-vector product. Second, all nodes at a particular depth of the tree can be learned in parallel, i.e., parallel running time for computing the entire tree is a function of the depth given sufficient resources. In practice for these experiments we compute the entire tree sequentially on a single machine.

Many published algorithms do not scale to the datasets utilized in our experiments section. Even among those that do, replication on these datasets is challenging. Therefore our
baseline comparisons for these experiments, while seemingly idiosyncratic, are the current published state-of-the-art procedures for these datasets. We also compare with (Choromanska & Langford, 2015) when possible, as our technique is inspired by their analysis.

Regarding hyperparameters: for these experiments, we found that increasing the number of candidates per leaf node k always improved results statistically, and therefore k was set in practice by our own notion of acceptable training time of the underlying classifier (note tree construction time is independent of k). However, increasing the tree depth did not always improve results statistically, therefore, while building the tree we monitored a hold-out set for recall in order to determine the best depth.

5.1. Twitter

Unlike the other data sets in this section, there is no widely used classification problem associated with this data set. Instead, we utilized this dataset to explore the label structure uncovered by the tree learning algorithm. Twitter hashtags are convenient for this purpose, as they are numerous, interpretable, and strongly related to the text of the containing tweet. We took a 6 month sample of Twitter data from the beginning of 2010, filtered for tweets containing a hashtag, and then filtered out hashtags which did not occur at least 5 times in the sample. This resulted in 25 million tweets containing 264 thousand unique hashtags. We used a 20-bit hashing kernel with unigrams and bigrams to generate a feature representation for each tweet, and use a primal representation of the Hellinger kernel, i.e., we normalized each tweet’s token frequency to sum to 1 and then took the square root of the token frequencies. This ensures each tweet’s features has unit Euclidean norm.

Table 2 shows the most frequent classes (hashtags) for selected nodes from a depth 12 tree. The procedure is capable of discovering clusters of hashtags that are related by functional, regional, or semantic cohesion. However, the most frequent hashtags (e.g., #nowplaying, #ff) are essentially placed in every node. We return to this issue in the discussion section.

5.2. ALOI

ALOI is a color image collection of one-thousand small objects recorded for scientific purposes (Geusebroek et al., 2005). The number of classes in this data set does not qualify as extreme by current standards, but we utilize it to facilitate comparison with the underlying classifier alone. For these experiments we will consider test classification accuracy utilizing the same train-test split and features from (Choromanska & Langford, 2015). Specifically there is a fixed train-test split of 90:10 for all experiments and the representation is linear in 128 raw pixel values. Unlike the other experiments, the ALOI examples have variable Euclidean norm, but the variation is modest: 95% of the examples have norm between 34 and 148.

Table 2. Selected nodes’ most frequent classes (hashtags) for the tree learned from Twitter data.

Tags
#nowplaying #jobs #ff #tweetmyjobs #news #dc
stl sf pdx #raleigh #austin #sac #nashville
#followfriday #phoenix #ny #pittsburgh #la
#vouconfessarque #nowplaying #ff #bbb #bhb10
#jobs #douradofacts #todeseriarod #fail #epartybr
#fato #haiti #maiorabracovirtual #dourado #ff
#livres2010 #oremos #coisasdetimido #qualquerarota #todoadolescente
#nowplaying #ff #jobs #retweetthisisf #bieberbemine
#happybirthdayjustin #babyonitunes #biebcrbemine
#justinbiebcr #fb #tweetmyjobs #damnhowtrue
#followfriday #biebcrgasm #1 #grindmebieber #quote #news #retweetthis #followmejp
#jobs #ff #writer #manager #dev #engineering
#ff #jv #marketing #php #job #net #project
#developer #hiring #programmer #engineer #consultant #customer #flash
#nowplaying #ff #jobs #donttalktome #retweetthis
#shootmyself #deleteyouraccount #letsbehonest
#thisdateisover #shewprobablyahoe #retweetthisisf
#howwouldyoufeel #ffb #unwifable #urwack
#cantbemyvalentine #tweetmyjobs #fail
#imthetypeto #1

Table 3. ALOI purity results, comparing the eigenvalue technique to random root nodes. In all cases train balance is 50% by construction.

Method	Equation (2)	Average	Maximum
Train Purity	86.7%	71.9%	84.8%
Test Purity	86.9%	74.0%	85.6%
Test Balance	49.98	50.0%	49.96%

ALOI is a multiclass dataset so we can investigate the relationship between the eigenvalue problem and the original multiclass purity objective. Table 3 shows the results. We computed the training and test purity for the split induced by the root node. We also sampled 10,000 random weight vectors uniformly distributed on the hypersphere and computed the same quantities. For this dataset, the purity at the root node is better than that achieved by the maximum over the random draws, indicating the eigenvalue procedure is achieving an extreme quantile of the purity distribution, despite optimizing a proxy. This advantage is maintained on the held-out test data. In all cases, perfect balance on the training set is achieved by construction. Test set deviation of balance is negligible.
Classification results are shown in Table 4. The baseline is a rank-50 logistic regression, i.e., a single hidden layer neural network with 50 hidden nodes and linear hidden activations, trained via stochastic gradient descent. The comparison is a tree combined with rank-50 logistic regression, where the weights from input to the 50-dimensional intermediate representation are shared across all tree nodes but the output bias and the weights from intermediate representation to output are node-specific. We used a tree with maximum depth 12, maximum classifiers per leaf of 25, and acceptable training tree recall of 99.9%.

Generalization is comparable between the two solutions, with the errors induced by the tree partially compensated by the increased flexibility of the underlying classifier due to multi-task training: in contrast, when using the same classifier at every leaf, training accuracy decreases from 95.97% to 95.43% and test accuracy from 91.03% to 89.53%.

Empirically we find randomized routing is an effective regularizer. If we use deterministic routing during tree construction, training tree recall increases from 98.1% to 100% but test tree recall drops from 96.5% to 93.3%. If we use randomized routing during tree construction but deterministic routing while training the underlying classifier, training accuracy increases from 95.97% to 97.90% but test accuracy drops from 91.03% to 79.34%.

Inference times are dominated by constant factors, but note that the tree solution does 38 hyperplane evaluations per example, while the baseline does 1000. On the larger datasets analogous differences can translate into wall clock advantage if they overwhelm constant factors.

(Choromanska & Langford, 2015) report 86.5% test accuracy on this data set. However, their procedure is an online learning procedure which is applicable in scenarios where our stagewise learning procedure is not.

Model	Avg Depth	Test Accuracy	Test Tree Recall	Tree + Rank-50 LR	Rank-50 LR
Avg Leaf Classifiers	24.09	96.5%	n/a	13.94	n/a
Test Accuracy	91.12%	91.03%	96.5%	24.09	13.94
Inference Speed	125,000 ex/s	41,000 ex/s	n/a	2015	5.3. ODP

5.3. ODP

The Open Directory Project (ODP) is a public human-edited directory of the web which was processed by (Bennett & Nguyen, 2009) into a multic和平 data set. For these experiments we will consider test classification error utilizing the same train-test split, features, and labels from (Choromanska & Langford, 2015). Specifically there is a fixed train-test split of 2:1 for all experiments, the representation of document is a bag of words, and the unique class assignment for each document is the most specific category associated with the document.

We used a tree with maximum depth 14, maximum classifiers per leaf of 4000, and acceptable training tree recall of 99.9%. The underlying classifier is a logistic regression, using a hashing kernel (Weinberger et al., 2009) to 2^{15} dimensions to mitigate the space complexity. After hashing we use a primal representation of the Hellinger kernel, i.e., we normalized each document’s token frequencies to sum to 1 and then took the square root of the token frequencies.

The node indicator variable is augmented to the feature representation but not interacted, i.e., each node learns a distinct bias vector for the logistic regression, but otherwise shares all parameters.

Results are shown in Table 5. The baseline is a rank-300 logistic regression, i.e., a single hidden layer neural network with 300 hidden nodes and linear hidden activations, trained via randomized techniques (Mineiro & Karampatziakis, 2015), which is the current state of the art for this data set. Computationally, the baseline is superior to the current method despite considering every class at inference time, because it can fully exploit the hardware (vectorization, cache locality, etc.). Our label filtering method, while asymptotically faster, cannot exploit all the features of the architecture it is running on, both because the sequence of vector products associated with routing in the tree is conditional on previous results, and because the matrix-vector product to compute the output pre-activations for the underlying classifier is restricted to a potentially different set of candidates for each example.

Tree recall is 81.3% and 50.4% on the training and test set respectively: by comparison, the recall of the 4000 most frequent training set labels is 31.6% and 29.3% on the training and test set respectively. The test set deviation of the recall is somewhat disappointing, but nonetheless overall accuracy is superior for the current method.

Model	Avg Leaf Classifiers	Test Accuracy	Test Tree Recall	Tree + LR	Rank-300 LR
Avg Depth	n/a	13.98	81.3%	13.98	n/a
Avg Leaf Classifiers	3882	50.4%	50.4%	50.4%	n/a
Test Accuracy	16.85%	19.53%	19.53%	19.53%	n/a
Inference Speed	1700 ex/s	230 ex/s	n/a	2015	5.3. ODP
(Choromanska & Langford, 2015) report 6.57% test accuracy on this data set.

5.4. LSHTC

The Large Scale Hierarchical Text Classification Challenge was a public competition involving multilabel classification of documents into approximately 300,000 categories (Partalas et al., 2015). The training and (unlabeled) test files are available from the Kaggle platform. The features are bag of words representations of each document.

We used a tree with maximum depth 14, maximum classifiers per leaf of 4000, and acceptable training tree recall of 99.9%. Preprocessing is identical to ODP.

The node indicator variable is augmented to the feature representation but not interacted, i.e., each node learns a distinct bias for each (candidate) class, but otherwise shares all parameters. Training and test set recall for the tree are 86% and 72% respectively; by comparison, the recall of the 4000 most frequent training set labels is 33.8% and 33.7% on the training and test set respectively.

Model	Precision at 1	Precision at 3	Precision at 5	Inference Speed (ex/s)
FastXML	49.35%	52.69%	24.03%	2000*
X1	55.57%	33.84%	24.07%	125*
Tree + ILR k = 6000	53.0%	33.9%	24.8%	1058
	53.7%	34.5%	25.3%	688
Tree + ILR k = 12000	54.3%	34.9%	25.6%	370

Table 6. LSHTC results. Averages are example-averages across the training set.

We compare with (Mineiro & Karampatziakis, 2015) in Table 6, using the same train-test split as that publication. The baseline is a rank-800 per-class approximate kernel logistic regression trained via randomized techniques. This model is equivalent to a 2 hidden layer neural network, where the first hidden layer of 800 units has linear activation; the second hidden layer of 4000 units has cosine activation, i.e., random Fourier features (Rahimi & Recht, 2007); and the final layer of 325K units minimizes cross-entropy loss. Computationally, the baseline is far slower than the current technique. Statistically, performance is similar.

We also compare with published results for FastXML (Prabhu & Varma, 2014) and X1 (Bhatia et al., 2015) in Table 7 using the same train-test split as those publications, which is a different train-test split than that utilized in Table 6. Reported metrics for FastXML and X1 are for ensembles of these models, with 50 and 15 elements in each ensemble respectively.² For our model, we show several results corresponding to different numbers of classifiers at each leaf: these correspond to different points on a Pareto frontier trading off accuracy with inference time. FastXML does not compare favorably, but there is no clear preference between X1 and our model: X1 has superior precision at 1, and our model has superior precision at 3 and 5.

6. Discussion

The technique presented in this paper attempts to learn a particular type of output structure, namely regions of feature space for which a small number of labels tend to occur. This structure is clearly useful for the particular inference strategy articulated in Algorithm 1, but has other potential applications. For example, during exploratory data analysis, it might be useful to identify labels that are cooccur in the same regions of feature space.

The Twitter experiment suggests the most frequent classes are always part of the candidate set. One future direction of research is to investigate whether head classes should treated separately from tail classes, e.g., only use the tree to identify candidates amongst tail classes. This might mitigate the need to have the total leaf node candidate slots greatly exceed the number of classes.

One natural question is why both a filter and a classifier are required: an alternate strategy would be to repeatedly filter until a simple model is invoked, e.g., a constant predictor, which for multiclass would be a single class and for multilabel with ranking loss would be a fixed ordering over the classes. Our initial (limited) experimentation did not yield promising results in this direction. We speculate two possible issues: the difference in decision surfaces expressible by one-versus-all compared to conjunctions of hyperplanes, and the high sample complexity of learning deep trees due to data decimation.

We obtain good results for text problems, where linear predictors have good performance. We also expect to do well on problems where (primal approximations of) kernel machines have good performance. However, we do not antic-

²It is unclear if timings are for a single model or the ensemble.
ipate good performance for direct application of this tech-
nique to problems where a feature representation must be
learned, e.g., image classification. For these problems it is
implausible that hyperplanes in the original feature space
will produce a high recall label filter. Instead, one pos-
sibility is to use the feature representation from a smaller
(number of labels) version of the problem to drive the tree
construction for the original problem, e.g., use of an intern-

eral layer of a pretrained convolutional network as a feature
map. Another is to replace the eigenvalue strategy at each
node with a procedure that finds a one-dimensional nonlin-
early function of the data which is highly correlated with
the labels, e.g., deep CCA (Andrew et al., 2013).

References

Andrew, Galen, Arora, Raman, Bilmes, Jeff, and Livescu,
Karen. Deep canonical correlation analysis. In Proceedings of the 30th International Conference on Machine Learning, pp. 1247–1255, 2013.

Bengio, Samy, Weston, Jason, and Grangier, David. Label embedding trees for large multi-class tasks. In Advances in Neural Information Processing Systems, pp. 163–171, 2010.

Bennett, Paul N and Nguyen, Nam. Refined experts: improving classification in large taxonomies. In Proceedings of the 32nd international ACM SIGIR conference on Research and development in information retrieval, pp. 11–18. ACM, 2009.

Bhatia, Kush, Jain, Himanshu, Kar, Purushottam, Varma, Manik, and Jain, Prateek. Sparse local embeddings for extreme multi-label classification. In Advances in Neural Information Processing Systems, pp. 730–738, 2015.

Caruana, Rich. Multitask learning. Machine learning, 28 (1):41–75, 1997.

Chang, Kai-wei, Krishnamurthy, Akshay, Agarwal, Alekh, Daumé, Hal, and Langford, John. Learning to search better than your teacher. In Proceedings of the 32nd International Conference on Machine Learning (ICML-15), pp. 2058–2066, 2015.

Chen, Jianhui, Zhou, Jiayu, and Ye, Jieping. Integrating low-rank and group-sparse structures for robust multitask learning. In Proceedings of the 17th ACM SIGKDD international conference on Knowledge discovery and data mining, pp. 42–50. ACM, 2011.

Choromanska, Anna E and Langford, John. Logarithmic time online multiclass prediction. In Advances in Neural Information Processing Systems, pp. 55–63, 2015.

Daumé III, Hal, Langford, John, and Ross, Stephane. Efficient programmable learning to search. arXiv preprint arXiv:1406.1837, 2014.

Evgeniou, A and Pontil, Massimiliano. Multi-task feature learning. Advances in neural information processing systems, 19:41, 2007.

Geusebroek, Jan-Mark, Burghouts, Gertjan J, and Smeulders, Arnold WM. The Amsterdam library of object images. International Journal of Computer Vision, 61(1): 103–112, 2005.

Halko, Nathan, Martinsson, Per-Gunnar, and Tropp, Joel A. Finding structure with randomness: Probabilistic algorithms for constructing approximate matrix decompositions. SIAM review, 53(2):217–288, 2011.

Mineiro, Paul and Karampatziakis, Nikos. Fast label embeddings via randomized linear algebra. In Machine Learning and Knowledge Discovery in Databases, pp. 37–51. Springer, 2015.

Mnih, Andriy and Hinton, Geoffrey E. A scalable hierarchical distributed language model. In Advances in neural information processing systems, pp. 1081–1088, 2009.

Morin, Frederic and Bengio, Yoshua. Hierarchical probabilistic neural network language model. In Proceedings of the international workshop on artificial intelligence and statistics, pp. 246–252. Citeseer, 2005.

Partalas, Ioannis, Kosmopoulos, Aris, Baskiotis, Nicolas, Artieres, Thibaud, Palouras, George, Gaussier, Eric, Androustopoulos, Ion, Amini, Massih-Reza, and Galinari, Patrick. LSHTC: A benchmark for large-scale text classification. arXiv preprint arXiv:1503.08581, 2015.

Prabhu, Yashoteja and Varma, Manik. Fastxml: A fast, accurate and stable tree-classifier for extreme multi-label learning. In Proceedings of the 20th ACM SIGKDD international conference on Knowledge discovery and data mining, pp. 263–272. ACM, 2014.

Rahimi, Ali and Recht, Benjamin. Random features for large-scale kernel machines. In Advances in neural information processing systems, pp. 1177–1184, 2007.

Rifkin, Ryan and Klautau, Aldebaro. In defense of one-vs-all classification. The Journal of Machine Learning Research, 5:101–141, 2004.

Robertson, Stephen E, Walker, Steve, Beaulieu, Micheline, and Willett, Peter. Okapi at trec-7: automatic ad hoc filtering, vlc and interactive track. Nist Special Publication SP, pp. 253–264, 1999.
Weinberger, Kilian, Dasgupta, Anirban, Langford, John, Smola, Alex, and Attenberg, Josh. Feature hashing for large scale multitask learning. In \textit{Proceedings of the 26th Annual International Conference on Machine Learning}, pp. 1113–1120. ACM, 2009.

Weston, Jason, Makadia, Ameesh, and Yee, Hector. Label partitioning for sublinear ranking. In \textit{Proceedings of the 30th International Conference on Machine Learning (ICML-13)}, pp. 181–189, 2013.

Yildiz, Olcay Taner and Alpaydin, Ethem. Linear discriminant trees. \textit{International Journal of Pattern Recognition and Artificial Intelligence}, 19(03):323–353, 2005.