Polyamine permeation and rectification of kir4.1 channels

Yuri V. Kucheryavykh
Universidad Central Del Caribe

Wade L. Pearson
Washington University School of Medicine in St. Louis

Harley T. Kurata
Washington University School of Medicine in St. Louis

Misty J. Eaton
Universidad Central Del Caribe

Serguei N. Skatchkov
Universidad Central Del Caribe

See next page for additional authors

Follow this and additional works at: https://digitalcommons.wustl.edu/open_access_pubs

Recommended Citation
Kucheryavykh, Yuri V.; Pearson, Wade L.; Kurata, Harley T.; Eaton, Misty J.; Skatchkov, Serguei N.; and Nichols, Colin G., "Polyamine permeation and rectification of kir4.1 channels." *Channels*. 1,3. 172-178. (2007).
https://digitalcommons.wustl.edu/open_access_pubs/3032

This Open Access Publication is brought to you for free and open access by Digital Commons@Becker. It has been accepted for inclusion in Open Access Publications by an authorized administrator of Digital Commons@Becker. For more information, please contact vanam@wustl.edu.
Polyamine Permeation and Rectification of Kir4.1 Channels

Yuri V. Kucheryavykh1,†
Wade L. Pearson2,†
Harley T. Kurata2
Misty J. Eaton1
Serguei N. Skatchkov1
Colin G. Nichols2,*

1Departments of Biochemistry and Physiology, Universidad Central del Caribe; School of Medicine, Bayamón, Puerto Rico
2Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, Missouri USA
*Correspondence to: Colin G. Nichols; Department of Cell Biology and Physiology; Washington University School of Medicine; 660 South Euclid Avenue; St. Louis, Missouri 63110 USA; Tel.: 314.362.6630; fax: 314.362.7463; Email: cnichols@wusm.wustl.edu.
†Both authors contributed equally to this work.

This manuscript was previously published online as a Channels E-publication.

INTRODUCTION

Inward rectifier K⁺ (Kir) channels are expressed in multiple neuronal and glial cells. Recent studies have equated certain properties of exogenously expressed Kir4.1 channels with those of native K⁺ currents in brain cells, as well as demonstrating the expression of Kir4.1 subunits in these tissues. There are nagging problems however with assigning native currents to Kir4.1 channels. One major concern is that in many native tissues, the putatively correlated currents show much weaker rectification than typically reported for cloned Kir4.1 channels. We have now examined the polyamine-dependence of Kir4.1 channels expressed at high density in Cosm6 cells, using inside-out membrane patches. The experiments reveal a complex and variable rectification that can help explain the variability reported for candidate Kir4.1 currents in native cells. Most importantly, rectification seems to be incomplete, even at high polyamine concentrations. In excised membrane patches, with high levels of expression, and high concentrations of spermine, there is ~15% residual conductance that is insensitive to spermine. From a biophysical perspective, this is a striking finding, and indicates either that a bound spermine fails to completely block permeation or that significant spermine permeation (i.e. ‘punchthrough’) is occurring. To examine this further, we have examined block by philanthotoxin (PhTx, essentially spermine with a bulky tail). PhTx block, while less potent, is more complete than spermine block. This leads us to propose that spermine ‘punchthrough’ may be significant in Kir4 channels, and that this may be a major contributor to the weak rectification observed under physiological conditions.
Incomplete Rectification of Kir4.1 Channels

Cosm6 cells, using inside-out membrane patches. The experiments reveal complexities of rectification that can help explain the variability reported for Kir4.x candidate currents in native cells and that may be explained by a relatively high rate of polyamine ‘punch-through’ to the extracellular side of the membrane in this channel.

MATERIAL AND METHODS

Experimental methods are described in detail in previous publications. Briefly, COSm6 cells were transfected with pCMV-Kir4.1 (with insertion of Kir2.1 trafficking sequence immediately after residue P272, to increase expression density). Patch-clamp experiments were made at room temperature, in a chamber that allowed the solution bathing the exposed surface of the isolated patch to be changed rapidly. Data were normally filtered at 0.5–2 kHz, signals were digitized at 5 kHz and stored directly on computer hard drive using Clampex software (Axon Inc.). The standard pipette (extracellular) and bath (cytoplasmic) solution used in these experiments had the following composition: 150 mM KCl, 1 mM K-EGTA, 1 mM K-EDTA, 4 mM K$_2$HPO$_4$; pH 7. All polyamines and diamines were purchased from Fluka AG. Off-line analysis was performed using Fetchan, pSTAT (Axon Inc.) and Microsoft Excel programs. Wherever possible, data are presented as mean ± s.e.m. (standard error of the mean). Microsoft Solver was used to fit data by least-square algorithm. Currents in the presence of polyamine were expressed relative to the current in the absence of polyamines (Irel). Irel-voltage relationships were fit by a Boltzmann function plus offset (Figs. 2, 4 and 5):

$$I_{rel} = (1-\text{offset}) \times \left(1 - \frac{1}{1+exp(zF/RT)\times(V_m-V_{1/2})}\right) + \text{offset}$$

(Eqn. 1)

where R, T and F have their usual meanings, z is the effective valence of block, V_m and $V_{1/2}$ are the membrane voltage and the voltage at half maximal block, or were fit by the sum of two Boltzmann functions (Fig. 3):

$$I_{rel} = \text{Amp1} \times \left(1 - \frac{1}{1+exp(z_1F/RT)\times(V_m-V_{1/2,1})}\right) + \left(1-\text{Amp1}\right) \times \left(1 - \frac{1}{1+exp(z_2F/RT)\times(V_m-V_{1/2,2})}\right)$$

(Eqn. 2)

where Amp1 is the fractional amplitude of the high affinity component, z_1 and $V_{1/2,1}$ are the effective valence of block, and voltage at half maximal block for each component.

Figure 1. (A) Representative patch-clamp recordings of Kir4.1 currents expressed in Cosm6 cells, in response to voltage steps from 0 (hold) to voltages between −100 and +100 mV in the on-cell configuration (left), after excision into 150 mM Kout, pH 7.0 (center) and after switching to bath pH 6.0 (right). Kout = 10 mM (above) or 150 mM (below). (B) Steady state current-voltage relationships from (A). Rectification is quite weak at low (normal) Kout. At high Kout, rectification is stronger, but still incomplete at positive voltages. Similar results were obtained in five other patches.

Figure 2. (A) Representative excised patch-clamp recordings of Kir4.1 with 150 mM K$^+$ in the pipette, in response to voltage steps from 0 (hold) to voltages between −100 and +100 mV, with spermine at concentrations indicated, or following exposure to pH 6.0. (B) Steady state current-voltage relationships from (A) (left) and Irel-voltage relationship (right), after subtraction of pH6.0 currents. (Note: pH6.0 subtraction was routinely used in subsequent experiments in Figures 2–5, but for clarity, original records are not shown). (C) Mean Irel-voltage relationships from n = 5 experiments as in (A), fitted with eqn1 ($z = 2.2, 2.8, 2.9, 3.2, V_{1/2} = +22, -6, -27, -42 mV$, and offset = 0.10, 0.11, 0.10 and 0.09, for spermine = 1, 10, 100 μM and 1 mM, respectively, mean ± s.e.m., n = 5–8.
Incomplete Rectification of Kir4.1 Channels

Figure 3. (A) Representative excised patch-clamp recordings of Kir4.1 with 150 mM K⁺ in the pipette, in response to voltage steps from 0 (hold) to voltages between −100 and +100 mV, with spermidine at concentrations indicated. (B) Steady state current-voltage relationships from (A). (C) Relative Irel-voltage relationships from (B). Relationships are fitted with the sum of two Boltzmann functions (Eqn. 2) \(z_1 = 2.3, 2.2, 2.3, V_{1/2,1} = +37, -12, -20 \text{ mV}, \) \(z_2 = 0.8, 1.2, V_{1/2,2} = +150, +65, +44 \text{ mV}, \) and \(\text{Amp}_1 = 0.74, 0.74, 0.70, \) for spermidine = 10, 100 μM and 1 mM, respectively. Dashed line indicates best fit of Eqn. 1 to 1 mM spermidine data.

Figure 4. (A) Representative excised patch-clamp recordings of Kir4.1 with 150 mM K⁺ in the pipette, in response to voltage steps from 0 (hold) to voltages between −100 and +100 mV, with Mg²⁺ at concentrations indicated. (B) Steady state current-voltage relationships from (A). (C) Relative Irel-voltage relationships from (B), fitted with Eqn. 1 \(z = 1.8, 1.3, 1.0, V_{1/2} = +61, +42, +18 \text{ mV}, \) and \(\text{offset} = 0.49, 0.35, 0.24, \) for Mg²⁺ = 10, 100 μM, and 1 mM, respectively. Rectification is shallow and incomplete, even at 1 mM Mg²⁺ at +100 mV.

Figure 5. (A) Representative excised patch-clamp recordings of Kir4.1 with 10 mM K⁺ in the pipette, in response to voltage steps from 0 (hold) to voltages between −100 and +100 mV, with spermine at concentrations indicated. (B) Steady state current-voltage relationships from (A) (left) and relative Irel-voltage relationship (right). Rectification is steep \(z = 2.0, 2.5, V_{1/2} = -39, -79 \text{ mV}, \) for spermine = 1, 100 μM, respectively, but incomplete, with offset of 0.36 and 0.13, at 1 and 100 μM spermine, respectively. For comparative purposes, Irel-V relationships obtained under the same spermine concentrations with 150 mM Kout from Figure 2 are shown in dashed lines.
As an empirical measure of the degree of rectification, we measured the 'rectification ratio' (RR), i.e. the absolute ratio of currents at 30 mV positive to the reversal potential (I_{Erev+30}) to the current at 30 mV negative to the reversal potential (I_{Erev-30}):

\[
RR = \frac{I_{Erev+30}}{I_{Erev-30}}
\]

(Eqn. 3)

RESULTS

Kir4.1 channels show strong rectification in high external [K⁺], but weak rectification in physiological [K⁺]. Figure 1 shows representative currents in on-cell and excised membrane patches from Cosm6 cells expressing recombinant Kir4.1 channels, with high (150 mM), and low, pseudo-physiological (10 mM) [K⁺] in the pipette (Kout). Prior to excision, on-cell currents clearly show significantly less rectification at low Kout than at high Kout. As an empirical measure of the degree of rectification, the rectification ratio (Eqn. 3) was considerably higher in on-cell patches with 10 Kout (RR = 0.47 ± 0.08, n=5) than with 150 Kout (RR = 0.21 ± 0.02, n = 5). It was not possible to assess these parameters at different Kout on the same patch. However, with similar electrodes, the absolute level of outward current tends to be quite high at low Kout, compared to currents at high Kout, suggesting that the 'cross-over' phenomenon that is typical of 'classical' Kir2-like channels will be absent (Fig. 1B). Following patch excision, rectification is substantially lost in both cases, although complete linearization of outward current was not achieved in low Kout (Fig. 1A). Kir4.1 channels are very sensitive to block by even slightly acidic pH.26-28 In patches from non-transfected cells, basal currents were unaffected by switching from pH7.4 to pH6.0 (data not shown).

Therefore to assess complete block of Kir4.1 channels, patches were routinely exposed to polyamine-free solution at pH6.0 (as in Fig. 1). Importantly, exposure to pH6 inhibits all current through Kir4.1-expressing membrane patches (Fig. 1), indicating that the small outward conductances measured in the on-cell condition are also through Kir4.1 channels.

Spermine and spermidine block underlies physiological rectification. Inward rectification of Kir channels results from block by cytoplasmic polyamines and Mg²⁺ ions.1 As shown in Figures 2–5, excision of Kir4.1 channels into polyamine- and Mg²⁺-free solutions caused complete loss of rectification, although 'wash-out' was frequently slow, with loss of rectification taking seconds to minutes for completion, as is typically observed with Kir2.x channels.29 Upon exposure of Kir4.1 channels to 1-100 μM spermine or spermidine (Figs. 2 and 3), rectification was restored. Putrescine (not shown) and Mg²⁺ (Fig. 4), at concentrations up to 1 mM caused only minimal rectification of Kir4.1. Rectification induced by spermine or spermidine is concentration dependent, with ~+20 mV shift in the mid-point of rectification for a 10-fold decrease in polyamine concentration. At very low spermine concentrations, however, the time course of block becomes very long, and at 1 μM, the steady state Irel-voltage relationship is difficult to ascertain (Fig. 2).

By comparison with Kir2.1, a striking and previously unappreciated feature of polyamine block of Kir4.1 currents is the incomplete nature. There is a clear pedestal of conductance, even at saturating [spermine] or voltage (Fig. 2). A similar pedestal is apparent in the presence of spermidine, although a secondary phase of channel block is now also evident (Fig. 3), and a single Boltzmann function is inadequate to fit the data (dashed line Fig. 3C), requiring Irel-V relationships to be fit by the sum of two Boltzmann functions.

Initially, we had assumed the pedestals of unblocked conductance in both on-cell conditions and in the presence of spermine or spermidine to be a reflection of unsubtracted “leak” current, but it is present in every patch (Fig. 3C) and, like the pedestal conductance seen in the intact cell (Fig. 1), it is inhibited by switching to pH6.0. The question of whether this results from an incomplete block of the channel when spermine is present, or from spermine permeation is considered below. Nevertheless, the similarity of the pedestal conductance in the intact cell, and in excised patches exposed to spermine or spermidine, together with the very low sensitivity to Mg²⁺ block, indicates that spermine and spermidine are the likely physiologically relevant blockers of the channel.

Kout dependence of rectification is due to Kout dependence of polyamine sensitivity. Importantly, exposure of patches containing low Kout to spermine induced only weak and incomplete rectification (Fig. 5); even in 100 μM spermine, prominent outward currents are apparent with 10 mM Kout. Figure 6 summarizes mean fitted parameters to Irel-voltage relationships for Kir4.1 channels exposed to different [spermine] at different Kout values. As Kout is lowered, rectification shifts to more negative voltages, with V_{1/2} shifting in proportion to E_{K} (Fig. 6A). In addition, the plateau conductance tends to become more prominent (Fig. 6B). This plateau conductance, and increasing prominence at low Kout, will contribute to the apparent lowering of the degree of rectification in intact cells, but moreover has important implications for the mechanism of inward rectification itself in these channels.

Pedestal of unblocked current at saturating (polyamine) and voltage: Comparative effects of spermine and philanthotoxin. Most analyses of rectification in other Kir channels, and mechanistic models of channel block, predict essentially complete block at saturating [polyamine].30 A sizeable (~10 to 15%) pedestal of non-blocked current at positive voltages in Kir4 channels has significant implications for the mechanism of channel block. It implies one of two possibilities: (1) that when the polyamine binding site(s) are saturated, [K⁺] ions can still pass through the channel (i.e. past the polyamine), or (2) that occupancy of a completely occluding site by polyamine is not complete, even at the highest [polyamine]. This possibility could be accounted in, for example, a model in which polyamines first bind in a concentration-dependent way, at a shallow,
Figure 7. (A) Structures of philanthotoxin (PhTx) and natural polyamines. (B) Hypothetical model for spermine block and permeation that could account for a plateau conductance. The model predicts no plateau for philanthotoxin, since blocker permeation is obviated. (C) Representative patch-clamp recordings of Kir4.1 in an excised patch (140 Kout), in response to voltage steps from 0 (hold) to voltages between −100 and +100 mV, with spermine or PhTx at concentrations indicated.

Figure 8. (A, expanded in B) Steady state current-voltage relationships from Figure 7, at concentrations indicated. (C, expanded in D) Irel-voltage relationships from (A). Although a plateau offset is prominent with Spm block at 1 or 100 µM, rectification is essentially complete with 1 mM PhTx block.
incompletely, blocking site, and from there enter a deeper completely blocking site from which there is a significant rate of exit to the outside (Fig. 7B). In an attempt to distinguish these possibilities, we have examined channel block by philanthotoxin (PhTx), a spider toxin that is chemically essentially spermine with a bulky tail group (Fig. 7A). As shown in Figure 7C, PhTx blocks Kir4.1 channels with similar potency to spermine, and with similar voltage-dependence, although the kinetics of PhTx block are considerably slower. Importantly, however, at high concentrations and positive voltages, there is a distinct difference in the blocking profile: At concentrations giving a comparable voltage range of block, PhTx block crosses-over spermine block. PhTx is more complete at positive voltages and does not attain a plateau (Figs. 7C and 8). As discussed below, the bulky spermine analog is unable to permeate the channel and suggests that spermine permeation may underlie the ‘pedestal’ of current that is observed in Kir4 channels.

DISCUSSION

Variable rectification in Kir4 channels and physiological relevance. Several studies have attempted to assign native currents to Kir4.x/5.x channels. However, in many native tissues apparent Kir4.x/5.x channels show rather weak physiological rectification (examples in refs. 10, 13 and 16–20). The present results help to reconcile these findings and suggest that native Kir4.1 currents will underlie weakly rectifying currents under physiological conditions.

Unlike classical strong inward rectifiers of the Kir2 sub-family, which typically show increasing rectification with Kout and ‘crossover’ of current-voltage relationships,1 Kir4.1 currents rectify more weakly at low Kout than at high Kout, to the extent that outward current is greater at all voltages in 10 mM Kout than at 150 mM Kout (Fig. 1). Most biophysical analyses of Kir4 channels have been performed at high (150 mM) Kout, and the relatively weak rectification at physiological Kout has been largely unappreciated. The pedestal conductance tends to be higher as Kout is reduced (Fig. 5) provides a mechanistic explanation for the relatively weaker rectification that is observed in the intact cell under such conditions.

The relevance of a weak and Kout-dependent rectification of Kir4 currents to the physiology of cells in which these channels are present is unclear. In electrically active cells, a relatively weak rectification would tend to shorten action potentials, as well as reduce excitability. Glial cells are generally considered electrically inexcitable, but in these cells, weak rectification would tend to imply that relatively high K+ conductance will be present even at depolarized voltages, which may be relevant to K+ buffering in these cells.

Biophysical implications of variable and incomplete rectification. Various models have been proposed to account for the details of rectification.29-32 Our original model of ‘long-pore plugging’ proposed a shallow, weakly voltage-dependent site and a deep, strongly voltage-dependent binding site.30 Recent models are still consistent with this general idea, and multiple mutagenesis studies have indicated that the shallow site is associated with the cytoplasmic vestibule of the Kir channel, whereas the deep site is in the inner cavity or the entrance to the selectivity filter.21,22,29,31-34 In such a model, it is easy to see how shallow binding may not completely occlude the channel35,36 but it is difficult to imagine that significant K+ permeation could occur when the polyamine is bound at a deep site in the inner cavity. A small pedestal of non-blocked current at positive voltages and very low (< 1 μM) spermine or spermidine concentrations has been reported previously for Kir2.1,32 leading to the proposal that there is a finite rate of polyamine permeation through the selectivity filter. In cyclic nucleotide gated (CNG) channels, which are also blocked in a steeply voltage-dependent manner by polyamines,37 this permeation seems to be significant, such that current-voltage relationships are biphasic, channels are blocked up to a certain point, but block is almost completely relieved at higher voltages.

So can permeation account for the much more significant plateau conductance that is evident in Kir4 channels with high polyamine concentrations and strong depolarizing voltages? Permeation is highly unlikely for philanthotoxin (Fig. 7), and, consistent with this notion, CNG channels show only monophasic block by PhTx.37 In the present case, we have shown that PhTx can also induce strong inward rectification of Kir4.1, but there is no significant plateau of conductance. We thus suggest that the plateau of current in Kir4.1 channels is the result of a higher net permeation rate than in Kir2 channels.

References

1. Nichols CG, Lopatin AN. Inward rectifier potassium channels. Ann Rev Physiol 1997;59:171-91.
2. Fakler B, Brandle U, Bond C, Glowatzki E, Konig C, Adelman JP, Zenner HP, Ruppersberg JP. A structural determinant of differential sensitivity of cloned inward rectifier K+ channels to intracellular spermine. FEBS Letters 1994;356:199-203.
3. Lichtenstein KP, Heiz A, Lorentz S, Hempfling A, Holzel S, Lohoff FW, Schmitz B, Sander T. Supportive evidence for an allelic association of the human KCNJ10 potassium channel gene with idiopathic generalized epilepsy. Epilepsy Research 2005;63:113-8.
4. Rozengurt N, Lopez I, Chiu CS, Kofuji P, Lester HA, Neusch C. Time course of inner ear degeneration and deafness in mice lacking the Kir4.1 potassium channel subunit. Hearing Research 2003;177:71-80.
5. Wangemann P, Itza EM, Albrecht B, Wu T, Jabba SV, Maganti I, Lee JH, Everitt LA, Wall SM, Royaux JE, Green ED, Marcus DC. Loss of KCNJ10 protein expression abolishes endocochlear potential and causes deafness in Pendred syndrome mouse model. BMC Medicine 2004;2:30.
6. Buono RJ, Lohoff FW, Sander T, Sperling MR, O’Connor MJ, Dlugos DJ, Ryan SG, Golden GT, Zhao H, Scantongood TM, Berrettini WH, Ferraro TN. Association between variation in the human KCNJ10 potassium ion channel gene and seizure susceptibility. Epilepsy Research 2004;58:175-83.
7. Ferraro TN, Golden GT, Smith GG, Martin JP, Lohoff FW, Gieringer TA, Zamboni D, Schwobel CL, Press DM, Kratzer SO, Zhao H, Berrettini WH, Buono RJ. Fine mapping of a seizure susceptibility locus on mouse Chromosome 1: Nomination of Kcnj10 as a causative gene. Mammalian Genome 2004;15:259-51.
8. Poapulasundaram S, Knott C, Shamotoienko OG, Foran PG, Dolly JO, Ghiani CA, Gallo V, Wilkin GP. Glial heterogeneity in expression of the inwardly rectifying K+ channel, Kir4.1, in adult rat CNS. GLIA 2000;30:562-72.
9. Koefuji P, Biedermann B, Siddharthan V, Raap M, Iandiev I, Milenkovic I, Thomzig A, Reichenbach A. Kir potassium channel subunit expression in retinal glial cells: Implications for spatial potassium buffering. GLIA 2002;39:292-303.
10. Li J, Heav V, Timpe I. Identification of an inward rectifier potassium channel gene expressed in mouse cortical astrocytes. GLIA 2001;33:57-71.
11. Ishii M, Horio Y, Tada Y, Fihono H, Inanobe A, Ino M, Yamada M, Gotow T, Uchiyama Y, Kurachi Y. Expression and clustered distribution of an inwardly rectifying potassium channel, KAB-2/Kir4.1, on mammalian retinal Muller cell membrane: Their regulation by insulin and laminin signals. J Neurosci 1997;17:7725-35.
12. Wu J, Xu H, Shen W, Jiang C. Expression and coexpression of CO2-sensitive Kir channels in brainstem neurons of rats. J Mem Biol 2004;197:179-91.
13. Olsen ML, Higashimori H, Campbell SL, Hablitz JJ, Sontheimer H. Functional expression of Kir4.1 channels in spinal cord astrocytes. GLIA 2006;53:516-28.
14. Neusch C, Papadopoulos N, Muller M, Maletzki I, Wintzer SM, Hirrlinger J, Handschuh M, Bahr M, Richter DW, Kirchhoff F, Hulsmann S. Lack of the Kir4.1 channel subunit abolishes K+ buffering properties of astrocytes in the ventral respiratory group: Impact on extracellular K+ regulation. J Neurophysiol 2006;95:1843-52.
15. Fakler B, Bond CT, Adelman JP, Ruppersberg JP. Heterooligomeric assembly of inward-rectifier K+ channels from subunits of different subfamilies—K(Ir)2.1 (Irk1) and K(Ir)4.1 (Bir10). Pflugers Archiv - Eur J Physiol 1996; 433:77-83.

16. Bringmann A, Skoczak SN, Biedermann B, Faude F, Reichenbach A. Alterations of potassium channel activity in retinal Muller glial cells induced by arachidonic acid. Neuroscience 1998; 86:1291-306.

17. Han Y, Jacoby RA, Wu SM. Morphological and electrophysiological properties of dissociated primate retinal cells. Brain Research 2000; 875:175-86.

18. Kofoji P, Connors NC. Molecular substrates of potassium spatial buffering in glial cells. Molecular Neurobiology 2003; 28:195-208.

19. Solesio E, Linn DM, Perlman I, Lasater EM. Characterization with barium of potassium currents in turtle retinal Muller cells. Journal of Neurophysiology 2000; 83:418-30.

20. Bringmann A, Skoczak SN, Biedermann B, Faude F, Reichenbach A. Alterations of potassium channel activity in retinal Muller glial cells induced by arachidonic acid. Neuroscience 1998; 86:1291-306.

21. Kurata HT, Marton LJ, Nichols CG. The polyamine binding site in inward rectifier K+ channels. J Gen Physiol 2006; 127:467-480.

22. Kurata HT, Phillips LR, Rose T, Loussouarn G, Herlitze S, Fritzsch F, Enkvetchakul D, Nichols CG, Baudewitz T. Molecular basis of inward rectification: Polyamine interaction sites located by combined channel and ligand mutagenesis. J Gen Physiol 2004; 124:541-54.

23. Pearson WL, Nichols CG. Block of the Kir2.1 channel pore by alkylamine analogues of endogenous polyamines. J Gen Physiol 1998; 112:356-59.

24. Ma D, Zerangue N, Lin YF, Collins A, Yu M, Jan YN, Jan LY. Role of ER export signals in controlling surface potassium channel numbers. Science 2001; 291:316-9.

25. Guo D, Lu Z. Inward rectification in strongly rectifying IRK1 channels. J Gen Physiol 2000; 116:561-8.

26. Xu H, Yang Z, Cui N, Giwa LR, Abdulkadir L, Pand M, Sharma P, Shan G, Shen W. Jiang C. Molecular determinants for the distinct pH sensitivity of Kir1.1 and Kir4.1 channels. Am J Physiol - Cell Physiol 2000; 279:C1464-71.

27. Xu H, Yang Z, Cui N, Chanchevalap S, Valesky WW, Jiang C. A single residue contributes to the difference between Kir4.1 and Kir1.1 channels in pH sensitivity, rectification and single channel conductance. J Physiol 2000; 528:267-77.

28. Casamassima M, D’Adamo MC, Presta M, Tucker SJ. Identification of a heteromeric interaction that influences the rectification, gating, and pH sensitivity of Kir4.1/Kir5.1 potassium channels. J Biol Chem 2003; 278:43533-40.

29. Guo D, Lu Z. Interaction mechanisms between polyamines and IRK1 inward rectifier K+ channels. J Gen Physiol 2003; 122:485-500.

30. Lopatin AN, Makhina EN, Nichols CG. The mechanism of inward rectification of potassium channels: “Long-pore plugging” by cytoplasmic polyamines. J Gen Physiol 1995; 106:923-55.

31. Guo D, Ramu Y, Klem AM, Lu Z. Mechanism of rectification in inward-rectifier K+ channels. J Gen Physiol 2003; 121:261-276.

32. Guo D, Lu Z. Mechanism of IRK1 channel block by intracellular polyamines. J Gen Physiol 2000; 115:799-814.

33. Shiek RC, Chang JC, Kuo CC. K+ binding sites and interactions between permeating K+ ions at the external pore mouth of an inward rectifier K+ channel (Kir2.1). J Biol Chem 1999; 274:17424-30.

34. Chang HK, Yeh SH, Shiek RC. The effects of spermine on the accessibility of residues in the M2 segment of Kir2.1 channels expressed in Xenopus oocytes. J Physiol 2003; 553:101-12.

35. Xie L, John SA, Weiss JN. Inward rectification by polyamines in mouse Kir2.1 channels: Synergy between blocking components. J Physiol 2003; 550:67-82.

36. Xie L, John SA, Weiss JN. Spermine block of the strong inward rectifier potassium channel Kir2.1: Dual roles of surface charge screening and pore block. J Gen Physiol 2002; 120:53-66.

37. Guo D, Lu Z. Mechanism of cGMP-gated channel block by intracellular polyamines. J Gen Physiol 2000; 115:783-98.