Abstract—SoftCast, a cross-layer design for wireless video transmission, is proposed to solve the drawbacks of digital video transmission: threshold effect and leveling-off effect. Since only linear transforms are used in SoftCast, in this paper, we propose a nonlinear transformed analog transmission framework achieving the same effect. Specifically, in encoder, we carry out power allocation on the transformed coefficients \(x_{ij}^{1/a} \) and encode the coefficients based on the new formulation of power distortion. In decoder, the process of LLSE estimator is also improved. Accompanied with the inverse nonlinear transform, DCT coefficients can be recovered depending on the scaling factors \(b_i \). LLSE estimator coefficients \(w_i \) and metadata. Experiment results show that our proposed framework outperforms the SoftCast in PSNR 1.08 dB and the MSSIM gain reaches to 2.35\% when transmitting under the same bandwidth and total power.

Index Terms— SoftCast, nonlinear transform, analog video transmission coding, graceful degradation, PSNR

1. INTRODUCTION

Contemporary video communication frameworks are mainly divided into three categories: digital video coding, analog video coding and hybrid digital-analog video coding. Traditional digital video transmission systems adopt separated source-channel coding framework. Video sequences are first compressed into bitstream through a standard video encoder, such as H.264/AVC [1]. Then the bitstream is encoded by a channel encoder before transmission. It is well-known that the separated source-channel design has two inherent drawbacks, called threshold effect and leveling-off effect [2]. The threshold effect means the receiver cannot decode the received bit steam when the channel is worse than a certain threshold and the leveling-off effect means that the receiver cannot reconstruct video at a quality matching with the channel SNR when the channel is better than expected. In this case, channel conditions have not been sufficiently used and the highest performance is determined in the encoder. In multi-user scenarios, it is hard to satisfy receivers with various channel conditions through broadcasting.

To ensure different receivers can get different reconstructed video matching with their channel, a cross-layer design named SoftCast [3], [4] has been proposed and it has obtained remarkable achievement. Unlike the conventional digital coding scheme, SoftCast adopts joint source-channel coding scheme. It uses discrete cosine transform (DCT) and power allocation complete the aim of compression and error protection. Fig. 1 shows the result of a group of pictures (GoP) before and after 3D-DCT. We can see that, result of natural pictures after 3D-DCT transform is high compact. So we can get a highly similar reconstruction with only a small part of the components. This is the theoretical basis of compressing in analog communication scheme.

![Fig. 1. (a) Original pictures and (b) DCT transform results.](image)

SoftCast redistributes the power and bandwidth among DCT coefficients instead of the binary steams. If the bandwidth is no enough, the less important coefficients (i.e. coefficients with smaller variances) are dropped to satisfy the bandwidth capacity. Benefit from the novel design in SoftCast, channel perturbations are translated into approximation in the original video pixels and therefore the receiver reconstruct the video sequences at a quality commensurate with the channel condition while eliminating the threshold effect and level-off effect.

SoftCast performs gracefully while dealing with various channel conditions and only linear transforms are used. Based on this observation, it is possible to improve the same effect when using nonlinear transforms in analog transmission. In this paper, we propose a nonlinear transformed analog video transmission framework. The DCT coefficients are transformed with a nonlinear function and then we derive the new distortion formulation. Corresponding power allocation
is implemented among the transformed coefficients. That is the process before amplitude modulation at the encoder. The decoder use the linear least square estimation (LLSE) [5] and inverse power transform to change the received coefficients to the DCT coefficients and then pixel values are reconstructed. Experiment results show that our proposed nonlinear framework outperforms SoftCast both in PSNR and SSIM.

The remainder of the paper is organized as follows. Section 2 reviews the related work. Section 3 describes our proposed communication scheme. Experiment results are reported in Section 4 and Section 5 concludes the paper.

2. BACKGROUND

2.1. Related Work

Conventional digital video transmission scheme separates source coding and channel coding. Motion estimation, transformation, quantization and entropy coding are used to compress the data and increase the robustness. These techniques have been widely used in modern video coding standards, such as H.264/AVC [1] and HEVC [6]. However, the visual quality of compressed video is sensitive to the channel perturbation. To adapt to the various channel conditions, Choi et al. [16] realized adaptive coding by adopting different quantization parameters. Thomas et al. [8] proposed a scalable video coding (SVC) scheme, solving the level-off effect in a progressive way. In SVC, the coded streams are divided into one basic layer and several enhancement layers.

For analog video transmission, a novel design, SoftCast [3], has been proposed to eliminate the level-off effect and the threshold effect. Based on SoftCast, many works have been presented to improve the video quality and the compression ratio. Fan et al. [9] proposed a soft mobile video broadcast scheme based on distributed source coding (D-cast), applying distributed source coding to exploit the temporal redundancy. Wu et al. [10] explored the spatial correlation by applying coset coding across adjacent pixel lines. Xiong et al. [11] have verified that decorrelation transform can bring significant gain by boosting the energy diversity in the signal representation.

For hybrid video transmission, many hybrid schemes have been proposed to integrate the high efficiency of digital video transmission and the elegant performance of the analog video transmission. Liu et al. [12] proposed a hybrid scheme, in which the residuals were encoded by ParCast [13] and other parts were encoded with a digital encoder. Besides, Zhao et al. [14] proposed an adaptive hybrid digital–analog video transmission scheme (A-HDAVT), in which each GoP was filtered into one low-pass frame and several high-pass frames, transmitted with the digital transmission method and the analog transmission method respectively. Tan et al. [15] proposed a prediction model to optimize the resource allocation for a superposition coding based hybrid digital-analog system.

2.2. Review of SoftCast

SoftCast is a comprehensive design for wireless video broadcast, with the function of video compression, error protection and data transmission. As shown in Fig. 2, the encoder of SoftCast consists of DCT, power allocation, Walsh-Hadamard transform (WHT). The decoder consists of inverse WHT, LLSE, and inverse DCT.

![Flow chart of SoftCast](Image)

In encoder, first, DCT removes the spatial redundancy of a video frame. Then power allocation minimizes the total distortion by optimally scaling the DCT coefficients. WHT redistributes the energy among transmitted packets to protect the data from packets loss. Finally, before transmission, coded data are mapped to wireless symbols by quadrature amplitude modulation (QAM).

In decoder, coded data can be obtained after demodulation and inverse WHT. The LLSE estimator is used as inverse operation of power allocation and denoising. The overall process of encoding and decoding can be represented as follows:

\[Y_i = F_i(X_i) = g_i X_i \]
\[\hat{Y}_i = Y_i + N \]
\[\hat{X}_i = G_i(\hat{Y}_i) = \omega_i \hat{Y}_i \]

where \(X_i \) denote the coefficients in chunk \(i \), \(F_i \), \(G_i \) represent the encoding process and decoding process respectively. \(g_i \) is the scaling factor, \(Y_i \) the encoding process, \(\omega_i \) is the LLSE factor and the \(\hat{X}_i \) represents the decoding DCT coefficients.

Chunk division is processed before power allocation to satisfy the bandwidth. When the bandwidth is constrained, some chunks with non-zero values are discarded gradually. As distortion resulting from the discarded chunks is the sum of the squares of the coefficients, the chunks with smaller variances are more possible to be discarded.

3. PROPOSED FRAMEWORK

3.1. Framework Overview

Our proposed framework is shown in Fig. 3. First, each GoP is transformed with 3D-DCT and divided into chunks.
As most DCT coefficients are close to zero, containing little information of the original frames and non-zero coefficients are spatially clustered. The number of chunks transmitted is adaptive according to the bandwidth. Then we transform the DCT coefficients with a power function $f(x) = x^{1/a}$ and reallocate power among the transformed coefficients. WHT is used to balance the energy among transmitted packets. Fig. 4 shows the data distribution of a chunk before and after the power function. We can see that the transformed coefficients are more clustered compared with the original coefficients. Regardless of the symbol, the encoding process with nonlinear transform can be expressed as

$$Y_i = F_i(X_i) = b_i X_i^{1/a}, \quad (2)$$

where X_i represents the DCT coefficient of chunk i, $1/a$ means the power of the power function, b_i denotes the scale factors and Y_i is the encode results.

In decoder, after the demodulation and inverse WHT, the received data can be expressed as

$$\hat{Y}_i = Y_i + N \quad (2)$$

where N denotes the channel noise. The factors of LLSE estimator will be used to denoise the received data \hat{Y}_i. Therefore, DCT coefficients can be approximated as

$$\hat{X}_i = G_i(\hat{Y}_i) = \omega_i \hat{Y}_i^a \quad (3)$$

where $G_i(*)$ denotes the decoding function, ω_i is new the LLSE factor and \hat{X}_i represents the decoding results. The frames can be reconstructed with inverse DCT by setting all the discarded chunks to zero.

Fig. 3. Flow chart of our proposed framework.

3.1. Nonlinear Transform Based Distortion Optimization

Power allocation plays an important role in the analog video transmission schemes, which intends to minimize the total distortion within the constraint of total power. We first transform the coefficients with a nonlinear function and assign power among chunks of transformed coefficients. We derive the new formulation of the total distortion, which contains the distortion of SoftCast as a specific case. Related to SoftCast, we have higher degree of freedom of the representation the DCT coefficients. Nonlinear transform perform better than SoftCast in reallocating power within chunks.

Since power function is used in our framework, the decoding process for each chunk can be expressed as

$$\hat{Y}_i = \omega_i Y_i = \omega_i (b_i X_i^{1/a} + N)^a \quad (4)$$

then the distortion of chunk i

$$D_i = E \left(\| X_i - \omega_i (b_i X_i^{1/a} + N)^a \|^2 \right) \quad (5)$$

Fig. 4. Distribution of DCT coefficients before and after the power function transform.

3.1.1. Optimization Formulation

In this paper, we model the original coefficients X_i as random values with zero mean and variance σ_i^2, transformed coefficients $X_i^{1/a}$ with zero mean and variance σ_i^2, random variables $X_i^{1-1/a}$ with zero-mean and σ_i^2 and the channel is an additive Gaussian noise channel with variance σ_n^2.

So the total distortion in the receiver with a constraint of total power P can be formulated as
\[\min \sum D_i = \sum_i E \left(\left\| X_i - \left[\omega_i \left(b_i X_i^a + N \right) \right] \right\|^2 \right) \]
\[\text{s.t.} \quad P = \sum_i b_i^2 \sigma_{i1}^2 \]

we use Taylor expansion to approximate formula (5) for convenience

\[D_i \approx E \left(\left\| X_i - \omega_i \left(b_i X_i^a - ab_i^{a-1} X_i^{1-a} N \right) \right\|^2 \right) \]

assuming \[\omega_i \left(b_i X_i^a + N \right) \] making a good approximation of \(X_i \), so \(b_i^2 \omega_i \) approximate 1 in high SNR according to (8). \(D_i \) can be rewritten as

\[D_i \approx E \left(\left\| ab_i^{-2} X_i^{1-a} N \right\|^2 \right) \]

So the optimization problem with the constraint of total power \(P \) can be simply expressed in the form of variances as

\[\min \sum D_i = \sum_i \sigma_i^2 \sigma_{i2}^2 \frac{\sigma_{i0}^2}{b_i^2} \]
\[\text{s.t.} \quad P = \sum_i b_i^2 \sigma_{i1}^2 \]

3.1.2. Lagrange Multiplier

We use Lagrange multiplier to solve the optimization problem of (10) and (11), since \(\sigma_i^2 \) and \(\sigma_{i2}^2 \) are constant, the Lagrange function \(L(\alpha, b_1, ..., b_M) \) can be simplified as

\[L(\alpha, b_1, ..., b_M) \approx \sum_i \frac{\sigma_{i2}^2}{b_i^2} - \alpha \left(P - \sum_i b_i^2 \sigma_{i1}^2 \right) \]

making \(\frac{\partial L}{\partial b_i} = 0, \frac{\partial L}{\partial \alpha} = 0 \), we can get

\[\alpha = \frac{\sum \sigma_{i1} \sigma_{i2}}{P} \]

the nonlinear encoder that minimize the distortion is

\[Y_i = b_i X_i^{1/a}, \text{where} \]

\[b_i = \frac{1}{\sqrt{\sigma_{i1}}} \sqrt{\frac{P \sigma_{i2}}{\sum \sigma_{i2} \sigma_{i1}}} \]

Where the \(\sigma_{i1} \) and \(\sigma_{i2} \) represents the standard deviation of \(X_i^a \) and \(X_i^{1-a} \).

3.2. LLSE Estimator

Accompanied with the encoded video data, a small amount of metadata are also transmitted to receiver for decoding. In our framework, we also need to transmit the mean of each chunk, variances of \(X_i, X_i^{a-1/a} \) and \(X_i^{1/a} \), namely \(\sigma_{i0}^2, \sigma_{i2}^2 \) and \(\sigma_{i1}^2 \). Besides, a bitmap recording the location of transmitted chunks also need to be sent to the receiver.

According to the new formulation of total distortion, we recalculate the LLSE estimator factors for denoising. We get a LLSE coefficient \(\omega_i \) for each chunk, which is related to \(\sigma_{i0}^2, \sigma_{i2}^2, \sigma_{i1}^2 \) and scaling factor \(b_i \). After getting the approximation of the nonlinear transformed coefficients, inverse power allocation will be adopt to obtain DCT coefficients.

At the receiver, we know the encode coefficients with noise of each chunk after inverse WHT. LLSE can be represented in a simple form as

\[\tilde{Y}_i = \omega_i \left(b_i X_i^a + N \right)^a \]

Similar to the process of distortion optimization, the total distortion in the principle of minimize mean-square error (MMSE) can be formulated as

\[D = \sum E \left(\left\| X_i - \left[\omega_i \left(b_i X_i^a + N \right) \right] \right\|^2 \right) \]

\[\approx \sum_i \left(1 - b_i^2 \omega_i \right)^2 \sigma_{i0}^2 + a^2 b_i^{2a-2} \omega_i^2 \sigma_{i2}^2 \sigma_{i1}^2 \]

Obviously that \(D \) is a convex function of variables \(\omega_i \) for the other variables are constants in decoder. Distortion achieve the global minima when all the partial derivatives of \(D \) equal to zero and the LLSE estimator factors

\[\omega_i = \frac{\sigma_{i0}^2}{b_i^2 \left(\sigma_{i0}^2 + a^2 \sigma_{i2}^2 \sigma_{i1}^2 \right)} \]

The distortion \(D \) can be calculated by putting \(\omega_i \) back into the formula

\[D = \sum a^2 \sigma_{i2}^2 \sigma_{i0}^2 \sigma_{i1}^2 \frac{\sigma_{i0}^2}{b_i^2 \left(\sigma_{i0}^2 + a^2 \sigma_{i2}^2 \sigma_{i1}^2 \right)} \]

4. EXPERIMENT RESULTS

The test platform of the experiments is MATLAB R2014a. Test videos in this paper are in the common test condition of HEVC. In this paper, values of \(a \) are 1.11 and 1.12, 1.31, 1.20 and 1.29 for videos with different resolutions empirically. To evaluate the performance of the proposed method for different constraints of the channel, the signal noise ratio (SNR) is set 5, 10, 15, and 20. PSNR and SSIM are used as the metrics.

Table 1 shows the PSNR error between our proposed framework and SoftCast. The average gain can reach to 0.47 dB, 0.73 dB, 0.94 dB and 1.08 dB when SNR values 20, 15
10 and 5 respectively. The corresponding maximum can reach to 3.0 dB, 3.7 dB, 4.0 dB and 4.2 dB respectively. The extreme values present in the video, ‘SlideShow’. We analyzed the video and found that most frames contain less contents relative to the other videos. The nonlinear transform analog video transmission framework execute better power allocation for smooth pictures.

Table 1. PSNR error between our proposed and SoftCast

Video	SNR	20	15	10	5
BasketballPass_416x240		0.0300	0.0463	0.0803	0.1293
BlowingBubbles_416x240		0.1364	0.1946	0.2646	0.2853
BQSquare_416x240		0.0791	0.1436	0.1534	0.1656
RaceHorses_416x240		0.0743	0.1077	0.1212	0.1615
BasketBallDrill_832x480		0.0676	0.1236	0.1869	0.2323
BQ Mall_832x480		0.1662	0.2672	0.3286	0.3675
PartyScene_832x480		0.0850	0.1151	0.1395	0.1836
RaceHorsesC_832x480		0.2000	0.2588	0.3003	0.3294
FourPeople_1280x720		0.7203	1.1549	1.4721	1.6557
Johnny_1280x720		0.8601	1.4866	1.9970	2.2772
SlideEditing_1280x720		0.5934	0.6410	0.7022	0.7542
SlideShow_1280x720		3.0006	3.7052	4.0278	4.1871
BasketBallDrive_1920x1080		0.3862	0.8455	1.3387	1.5987
BQTerrace_1920x1080		0.3960	0.6294	0.8192	0.9746
Cactus_1920x1080		0.4003	0.7606	1.0862	1.3572
Kimono_1920x1080		0.5616	1.1246	1.6847	2.0164
ParkScene_1920x1080		0.1633	0.3472	0.5750	0.7985
Tennis_1920x1080		0.7018	1.4014	2.0792	2.4678
PeopleOnStreet_2560x1600		0.3628	0.5354	0.6433	0.7265
Traffic_2560x1600		0.3696	0.6274	0.8169	0.9479
Average		0.4677	0.7258	0.9409	1.0808

Table 2. MSSIM error between our proposed and SoftCast

Video	SNR	20	15	10	5
BasketballPass_416x240		0.0001	0.0002	0.0004	0.0009
BlowingBubbles_416x240		0.0002	0.0006	0.0016	0.0040
BQSquare_416x240		0.0004	0.0005	0.0018	0.0013
RaceHorses_416x240		0.0003	0.0007	0.0013	0.0030
BasketBallDrill_832x480		0.0002	0.0007	0.0017	0.0034
BQ Mall_832x480		0.0006	0.0016	0.0037	0.0065
PartyScene_832x480		0.0001	0.0004	0.0010	0.0025
RaceHorsesC_832x480		0.0005	0.0015	0.0034	0.0055
FourPeople_1280x720		0.0026	0.0073	0.0174	0.0339
Johnny_1280x720		0.0032	0.0092	0.0227	0.0464
SlideEditing_1280x720		0.0054	0.0105	0.0147	0.0155
SlideShow_1280x720		0.0555	0.0978	0.1383	0.1450
BasketBallDrive_1920x1080		0.0029	0.0084	0.0201	0.0340
BQTerrace_1920x1080		0.0014	0.0041	0.0097	0.0177
Cactus_1920x1080		0.0015	0.0044	0.0110	0.0224
Kimono_1920x1080		0.0020	0.0060	0.0160	0.0367
ParkScene_1920x1080		0.0005	0.0015	0.0043	0.0103
Tennis_1920x1080		0.0029	0.0084	0.0218	0.0471
PeopleOnStreet_2560x1600		0.0014	0.0041	0.0094	0.0170
Traffic_2560x1600		0.0013	0.0036	0.0088	0.0172
Average		0.0041	0.0086	0.0152	0.0235

Experiment results also show that our proposed framework can outperform SoftCast slightly in lower resolution and perform better while dealing with higher resolution videos. Relative to SoftCast, our work also acquire better power allocation within the chunks. Fig. 6 show the parts of frame reconstruction contrast of the SoftCast and our proposed framework of video “Slideshow” and “Jonney”.

Table 2 shows the comparison of MSSIM between our proposed framework and the SoftCast. In our proposed framework, results show that MSSIM gain is positively related to PSNR gain. The average of MSSIM gain is 0.41%, 0.86%, 1.52% and 2.35% respectively. Fig. 7 shows some detail results of MSSIM contrast. Results confirm that our
proposed framework can improve the performance of the analog video transmission both in PSNR and MSSIM.

5. CONCLUSION

In this paper, we propose a nonlinear transformed based analog video transmission framework. We execute power allocation on nonlinear transformed DCT coefficients instead of DCT coefficients itself and derive corresponding distortion expression with the constraint of total power. Scaling factors and LLSE estimator factors are updated by minimizing the distortion. Experiment result confirm that our proposed framework can improve the quality of reconstructed videos in PSNR and SSIM. In our future work, we will further expand the forms of the encode function and try to optimize power allocation inside the chunk instead of only allocating power among chunks.

6. REFERENCES

[1] T. Wiegand, G. J. Sullivan, G. Bjontegaard and A. Luthra, “Overview of the H.264/AVC video coding standard”, Circuits and Systems for Video Technology, IEEE Transactions on, vol. 13, no.7, pp. 650-576, July 2003.
[2] D. L. He, C. L. Lan, C. Luo, E. H. Chen, F. Wu, and W. J. Zeng, “Progressive pseudo-analog transmission for mobile video streaming”, IEEE Transaction on Multimedia, vol.19, no. 8, pp. 1894-1907, Aug. 2017.
[3] S. Jakubczak and D. Katabi, “A cross-layer design for scalable mobile video”, In Proceedings of ACM Mobicon’11, pp. 289–300. ACM, 2011.
[4] S. Jakubczak, H. Rabul, and D. Katabi, “Softcast: One video to serve all wireless receivers”, Technical report, Computer Science and Artificial Intelligence Laboratory, Massachusetts Institute of Technology, 2009.
[5] K. H. Lee and D. Petersen, “Optimal linear coding for vector channels,” IEEE Transactions on Communications, vol. COM-24, no. 12, pp. 1283-1290, Dec. 1976.
[6] G. Sullivan, J. Ohm, W.-J. Han and T. Wiegand, “Overview of the High Efficiency Video Coding (HEVC) Standard”, Circuits and Systems for Video Technology, IEEE Transactions on, vol. 22, no. 12, pp. 1649-1668, Dec. 2012.
[7] H. Choi, J. Yoo, J. Nam, D. Sim, and I. Bajic, “Pixel-wise unified rate-quantization model for multi-level rate control”, Selected Topics in Signal Processing, IEEE Journal of, vol. 7, no. 6, pp. 1112–1123, Dec. 2013.
[8] T. Schierl, T. Stockhammer, and T. Wiegand, “Mobile video transmission using scalable video coding”, Circuits and Systems for Video Technology, IEEE Transactions on, 17(9):1204–1217, Sept. 2007.
[9] X. P. Fan, F. Wu and D. B. Zhao,” D-cast: DSC based soft mobile video broadcast”, In Proceedings of ACM MUM’11, pp. 226-235, Dec. 2011.
[10] F. Wu, X. L. Peng, and J. Z. Xu, “LineCast: Line-Based Distributed Coding and Transmission for Broadcasting Satellite Images,” IEEE Transactions on Image Processing, vol. 23, no. 3, pp. 1015–1027, 2014.
[11] R. Q. Xiong, F. Wu, J. Z. Xu and W. Gao, “Performance Analysis of Transform in Uncoded Wireless Visual Communication”, IEEE International Symposium on, pp. 1159-1162, May, 2013.
[12] Y. Liu, X. C. Lin, N. F. Fan and L. Zhang, “Hybrid-digital analog video transmission in wireless multicast and multiple-input multiple-output system”, Journal of Electronic Imaging, vol. 25, Issue 1, pp. 1-14, Jan/Feb, 2016.
[13] X. L. Liu, W. J. Hu, Q. F. Pu and F. Wu, “ParCast: soft video delivery in MIMO-OFDM WLANs”, In Proc. Annual Int. Conf. on Mobile Computing and Networking, Mobicom, pp. 233–244, Istanbul, Turkey, 2012.
[14] X. Zhao, H. C. Lu, C. W. Chen and J. Wu, “Adaptive hybrid digital–analog video transmission in wireless fading channel”, Circuits and Systems for Video Technology, IEEE Transactions on, vol. 17, no.9, pp. 1103–1120, June, 2016.
[15] B. Tan, H. Cui and C. W. Chen, “An Optimal Resource Allocation for Superposition Coding Based Hybrid Digital-Analog System”, IEEE Internet of Things Journal, vol.4, Issue.4 pp.945-956, Aug. 2017.
[16] A. Hore and D. Ziou, “Image quality metrics: PSNR vs. SSIM,” in Pattern Recognition (ICPR), 2010 20th International Conference on, pp. 2366-2369, 2010.
[17] Z. Wang, A. C. Bovik, H. R. Sheikh and E. P. Simoncelli, “Image quality assessment: from error visibility to structural similarity”, IEEE Transactions on Image Processing, vol. 13, Issue 4, pp. 600-612, Apr. 2004.