Comment on "Teleportation of Three-Qubit State via Six-qubit Cluster State"

December 25, 2014

Anindita Banerjee a Chitra Shukla b

aDepartment of Physics and Center for Astroparticle Physics and Space Science,
Bose Institute, Block EN, Sector V, Kolkata 700091, India.

bDepartment of Physics and Materials Science and Engineering,
Jaypee Institute of Information Technology, A-10, Sector-62, Noida, UP-201307, India.

Abstract

Recently Yu and Sun 1 have presented probabilistic teleportation of 3-qubit cat state via 6-qubit cluster state. The success probability depends on absolute value of only two of the coefficients of cluster state i.e. \(|a|^2 + |b|^2\). We have demonstrated the feasibility to teleport 3-qubit cat state via 2-qubit non maximally entangled cluster state. In this comment we have prescribed an optimal protocol for teleportation of \(n\)-qubit state of the form \(\langle \alpha|x\rangle + \beta|\bar{x}\rangle_n\) via non maximally entangled Bell state \(a|00\rangle + b|11\rangle\) henceforth allowing teleportation of \(n\)-qubit state via 2-qubit Bell state. The success probability of the prescribed protocol is \(|b|^2\).

Yu and Sun 1 have recently presented a scheme of probabilistic teleportation where they have teleported 3-qubit cat state \(|000\rangle + |y|111\rangle\) via 6-qubit non maximally entangled cluster state \(a|000000\rangle + b|000111\rangle + c|111000\rangle + d|111111\rangle\) as the quantum channel. Pathak and Banerjee 2 have reported that an \(n\)-qubit state \(\langle \alpha|x\rangle + \beta|\bar{x}\rangle_n\) where \(x \in \{0,1\}\) can be deterministically teleported via a Bell state. We can therefore teleport an \(n\)-qubit state with certain probability via a 2-qubit non maximally entangled Bell state.

Alice and Bob are spatially separated parties. Alice wish to teleport an unknown \(n\)-qubit state in Z-basis of the form as presented in equation (1). The quantum circuit of the proposed protocol is also presented in Figure 1.

\[
|\psi_{\text{unknown}}\rangle = \alpha|x_1x_2 \ldots x_n\rangle + \beta|\bar{x}_1\bar{x}_2 \ldots \bar{x}_n\rangle, \tag{1}
\]

where \(x \in \{0,1\}\) and \(\alpha\) and \(\beta\) are real such that \(|\alpha|^2 + |\beta|^2 = 1\) and \(|\alpha| < |\beta|\). Let all the particles from 2\(^{nd}\) to the \(n\)th be denoted by \(|e\rangle\) and only the first qubit be denoted by \(x\). Therefore, \(|e\rangle = |x_2 \ldots x_n\rangle\) and \(|\bar{e}\rangle = |\bar{x}_2 \ldots \bar{x}_n\rangle\). Finally, we can write the unknown \(n\)-qubit as

\[
|\psi_{\text{unknown}}\rangle = \alpha|x\rangle_n + \beta|\bar{x}\rangle_n. \tag{2}
\]

Alice and Bob possess prior shared non maximally entangled Bell state

\[
|\psi_{\text{channel}}\rangle = a|00\rangle + b|11\rangle, \tag{3}
\]

where \(|a|^2 + |b|^2 = 1\). The final state of the system is given by

\[
|\psi_1\rangle = |\psi_{\text{unknown}}\rangle \otimes |\psi_{\text{channel}}\rangle = (\alpha|x\rangle + \beta|\bar{x}\rangle) \otimes (a|00\rangle + b|11\rangle) = \alpha a|x00\rangle + \beta b|x11\rangle + \beta a|\bar{x}00\rangle + \beta b|\bar{x}11\rangle. \tag{4}
\]

Alice applies controlled-NOT (CNOT) 2 operations on all her qubits keeping the first qubit as control. The transformed state is denoted by

\[
|\psi_2\rangle = \alpha a|x \oplus e\rangle (x \oplus 0)0\rangle + \alpha b|x \oplus e\rangle (x \oplus 1)1\rangle + \beta a|\bar{x} \oplus \bar{e}\rangle (\bar{x} \oplus 0)0\rangle + \beta b|\bar{x} \oplus \bar{e}\rangle (\bar{x} \oplus 1)1\rangle. \tag{5}
\]

We will use the following identities in equation (5).

1email: aninditabanerjee.physics@gmail.com

2CNOT is a two qubit gate, it operates on two qubits \(|x\rangle\) and \(|y\rangle\) such that the output is given by \(|x\rangle\) and \(|x\rangle \oplus |y\rangle\) respectively.
Bob measures the ancilla in the computational basis. If he gets $|\bar{e}\rangle$, then the protocol is successful and if he gets $|1\rangle$ then the protocol fails. Iff, he gets $|0\rangle$ then with b^2 probability he has obtained the state

$$|\psi_6\rangle = \alpha|0\rangle + \beta|1\rangle.$$

Bob will apply U_2 on his shared qubit and obtain the unknown qubit which in this case is Identity operator. For other results of Alice (01/10/11), we refer to the standard teleportation protocol for which Bob needs to apply suitable operator($X/Z/iY$) . Now, he has to obtain all the n-qubits in his lab thus, he will produce the separable bits $|e\rangle^{\otimes n-1}$. Thus, the resultant state is

$$|\psi_7\rangle = \alpha|0e\rangle + \beta|1e\rangle = \alpha|0(x \oplus x_2, \ldots, x \oplus x_n)\rangle + \beta|1(x \oplus x_2, \ldots, x \oplus x_n)\rangle.$$
Bob applies CNOT operations on $|e^\prime\rangle^\otimes n-1$ and obtains the n-qubit state as shown in equation (11).

$$|\psi\rangle = \alpha|x_1 x_2 ... x_n\rangle + \beta|\bar{x}_1 \bar{x}_2 \bar{x}_n\rangle$$

(11)

Therefore in this letter we have shown that an n-qubit state $(\alpha|x\rangle + \beta|\bar{x}\rangle)_n$ where $x \in \{0, 1\}$ can be teleported via a 2-qubit Bell state. This can be done with success probability b^2.

Acknowledgment: Authors thank Anirban Pathak and Som Shubhro Bandyopadhyay for discussion. AB thanks DST-SERB project SR/S2/LOP-18/2012.

References

[1] Yu L.-z., Sun S.-x.,: Int. J. Theor. Phys. (2014), DOI 10.1007/s10773-014-2360-x.

[2] Pathak A., Banerjee A.,: Int. J. of Quantum Inf. 9, 389 (2011).