Olanzapine-induced leucopaenia and thrombocytopaenia in an elderly patient: a case report and review of the evidence

Yogender Kumar Malik, Swapnajeet Sahoo, Ajit Avasthi

SUMMARY
Haematological adverse effects of antipsychotics are rare but life threatening. Existing literature is limited to case reports, which are mostly reported on second generation antipsychotics (clozapine, olanzapine, risperidone, quetiapine). Elderly individuals are at risk of developing side effects with any psychotropics. Olanzapine is commonly used for the management of psychotic symptoms as well as for the management of behavioural and psychological problems with dementia in the elderly. In this case report, we report thrombocytopaenia and leucopaenia in an elderly individual with schizophrenia which developed after initiation of olanzapine and reverted back after stoppage of the drug. This case report highlights that the elderly are susceptible to develop haematological side effects with olanzapine and hence monitoring may be essential.

INTRODUCTION
Blood dyscrasias (leucopaenia—total leucocyte count<3500/cumm, thrombocytopaenia—total platelet count<150 000/cumm, pancytopenia) are rare but life-threatening adverse effects with antipsychotics, mostly reported with second generation antipsychotics. Available literature suggests that antipsychotic induced haematological adverse effects are mostly idiosyncratic. Most of the literature on haematological adverse effects (mostly leucopaenia, neutropaenia and thrombocytopaenia) has been well documented with regard to clozapine. However, there is also evidence (though limited) for the haematological adverse effects of other second generation antipsychotics like risperidone (oral4–7) as well as in depot long acting preparations,8 quetiapine9–12 and olanzapine.3–22 With regard to olanzapine, while some have reported the haematological abnormalities to be reversible,18 22 24 others have reported them to be fatal.15 25 A recent systematic review on the available literature of the haematological side effects of olanzapine from 1998 to 2015 revealed a total of 38 publications (in the age range of 16–83 years).26 Of all these case reports, to date only seven case reports on the haematological adverse effects of olanzapine have been reported in elderly patients13 14 18 23 27–29 and others have been reported in adolescents, youth and middle-aged subjects.26

Though no particular risk factors have been evaluated in this regard, it is a well-known fact that extremes of age (children and elderly, ie, >55–60 years of age) is a risk factor for developing any adverse effect with any psychotropics. In view of this limited literature on the association of olanzapine and blood dyscrasias in the elderly, we report a case of a 62-year-old man with paranoid schizophrenia who developed leucopaenia and thrombocytopaenia while on olanzapine.

CASE DESCRIPTION
Mr G, a 62-year-old married man, retired electrician by occupation was brought by his family members with complaints of hearing of voices over the past 10 years. There was no relevant medical history or family history of mental illness. Detailed exploration of history revealed an illness of insidious onset with a continuous and progressive course which was precipitated by interpersonal problems with office colleagues. Following which initially, the patient started to harbour strong fixed false beliefs that his colleagues wanted to defame him with subsequent anger-outbursts, agitation and suspiciousness towards them. Later on, after few months, he even started to hear voices of his office colleagues in clear consciousness discussing him and commenting on his actions using derogatory language. Due to these events, there was significant socio-occupational dysfunction. He was treated with risperidone (2–4 mg/day) with good compliance for a period
of 6 months with which there was about 60% improvement but later because of non-compliance and restarting of risperidone he did not show any response. Detailed general physical and systemic examination did not reveal any abnormality and mental status examination was suggestive of auditory hallucinations—third person discussing type, delusions of persecution and reference, low mood and suicidal ideations secondary to psychotic symptoms with absence of insight and intact cognitive functions (Mini mental state examination—28/30). A diagnosis of paranoid schizophrenia as per ICD-10 was considered. After all essential routine haematological (complete blood count) and biochemical investigations (serum electrolytes, liver function tests, lipid profile, renal function tests, serum vitamin B12 and folate), all of which came out to be normal, he was started with Olanzapine 5 mg which was gradually increased to 15 mg over a period of 3 weeks (5 mg increment in dose per week).

There was reduction in psychotic symptoms by 40%–50% but on subsequent follow-ups, after 6 weeks of starting Olanzapine, the patient complained of excessive fatigue. On repeat investigations, there was evidence of total leucocyte count of 2600/cumm (baseline—9400/cumm) and total platelet count of 45 000/cumm (baseline—130 000/cumm) without any evidence/history of fever and symptoms suggestive of any local or systemic infection and intake of any other medications. Haematology consultation and detailed autoimmune workup to rule out other possible aetiologies (hepatosplenomegaly, infection and intake of any other medications. Haematological abnormalities, olanzapine was considered to have induced these adverse effects. Leucopaenia and thrombocytopaenia were detected just after 6 weeks of starting Olanzapine at a dosage of 15 mg/day. After ruling out all possible causes of these haematological abnormalities, olanzapine was considered to have induced these adverse effects. Leucopaenia and thrombocytopaenia have been rarely reported with olanzapine and the exact incidence rate is currently unavailable. In the literature search, seven published case reports on olanzapine-induced blood dyscrasias have been reported with elderly subjects (details mentioned in Table 1).

Following this, a possibility of Olanzapine induced leucopaenia and thrombocytopaenia was considered and the drug was stopped. The patient was admitted for inpatient serial monitoring of haematological parameters and after stopping of Olanzapine, serial monitoring revealed an increase in total leucocyte count (8900/cumm) and total platelet count back to normal range (156 000/cumm) within a week. Later on, he was started on aripiprazole 2.5 mg with a very slow hiking of dosage (2.5 mg/fortnightly) along with monitoring of haematological parameters and psychopathology. At 10 mg of aripiprazole after a period of 30 days, the patient showed significant improvement in mood and psychotic symptoms by around 75% and his haematological parameters continued to remain stable over the next 4-month follow-up period. The prognosis of the patient was good and there was no relapse of any haematological abnormalities.

DISCUSSION

In the index elderly subject, olanzapine-associated leucopaenia and thrombocytopaenia were detected just after 6 weeks of starting Olanzapine at a dosage of 15 mg/day. After ruling out all possible causes of these haematological abnormalities, olanzapine was considered to have induced these adverse effects. Leucopaenia and thrombocytopaenia have been rarely reported with olanzapine and the exact incidence rate is currently unavailable. In the literature search, seven published case reports on olanzapine-induced blood dyscrasias have been reported with elderly subjects (details mentioned in Table 1).

Table 1: Olanzapine-induced blood dyscrasias in the elderly

Author/year	Patient details	Dose of olanzapine	Detected after days of initiation of olanzapine	Treatment/outcome
Meissner et al, 1999	56-year-old woman with parkinsonism	15 mg	120 days	Reversibility of leucopaenia after stoppage of olanzapine
	58-year-old man with parkinsonism	5 mg	156 days	
Steinwachs et al, 1999	81-year-old woman with schizophrenia	10 mg	17 days	Reversibility of neutropaenia after stoppage of olanzapine
Teter et al, 2000	60-year-old man with psychosis	20 mg	204 days	Patient had a history of treatment with clozapine and developed neutropaenia subsequent to use of olanzapine which improved after stoppage of the drug
Onofrj and Thomas, 2001	67-year-old man with Parkinson’s disease and psychosis	10 mg	35 days	Stoppage of olanzapine improved pancytopenia and thrombocytopaenia in 14 days
Carrillo et al, 2004	78-year-old man with dementia	10 mg	21 days	Death
Mehta and Sanitato, 2005	83-year-old woman with dementia and depression	2.5 mg	1 day	Stoppage of olanzapine plus treated with G-CSF led to improvement
Stergiou et al, 2005	69-year-old woman with psychosis	10 mg	17 days	Stoppage of drug

G-CSF, granulocyte colony stimulating factor.
Pancytopenia and neutropenia were also reported with thrombocytopenia in two of these case reports with elderly subjects. Rechallenge with the same drug was not possible due to ethical reasons.

It was also seen that olanzapine-induced haematological abnormalities can be seen at any time of treatment duration ranging from the first day to 204 days. The index case developed leucopaenia and neutropaenia after around 42 days (6 weeks) of starting of olanzapine. Of the seven case reports, while there was reported fatality in only one case, the others improved with stoppage of olanzapine (though one required granulocyte colony stimulating factor (G-CSF) additionally). Similarly, stoppage of olanzapine led to improvement in haematological parameters within a week, which further ascertains that olanzapine was the definite agent for inducing leucopaenia and thrombocytopenia in the index case. The Naranjo probability score was 9 indicating a definite association of leucopaenia and thrombocytopenia with olanzapine in the index case.

Though the exact mechanism of action of olanzapine induced neutropaenia and leucopaenia is not known, considering it’s chemical structure and pharmacological receptor profile are quite similar to clozapine, those mechanisms proposed for clozapine induced haematological abnormalities can be postulated for olanzapine too. Some of these proposed mechanisms are: (1) olanzapine can modulate levels of the G-CSF and can cause subsequent transient granulocytopaenia like clozapine and (2) possibly olanzapine use can also lead to formation of nitriium cations catalysed by Flavin containing monoxenone-3 system of leucocytes like clozapine. However, both of these hypotheses are not yet proven.

It has been suggested to screen patients as high and low risk for developing olanzapine-induced haematological abnormalities (ie, high risk includes previous history of haematological diseases, family history of blood dyscrasias and any previous history of drug-induced granulocytopaenia). We further suggest that being an elder be preferred and any previous history of drug-induced granulocytopaenia. However, both of these hypotheses are not yet proven.

The index case adds to the extremely limited literature on olanzapine-induced leucopaenia and thrombocytopaenia in elderly subjects and suggests that whenever an elderly patient receiving olanzapine has objective abnormalities (ie, high risk includes previous history of drug-induced granulocytopaenia). We further suggest that being an elder be preferred and any previous history of drug-induced granulocytopaenia. However, both of these hypotheses are not yet proven.

The index case adds to the extremely limited literature on olanzapine-induced leucopaenia and thrombocytopaenia in elderly subjects and suggests that whenever an elderly patient receiving olanzapine has objective abnormalities (ie, high risk includes previous history of drug-induced granulocytopaenia). We further suggest that being an elder be preferred and any previous history of drug-induced granulocytopaenia. However, both of these hypotheses are not yet proven.

The index case adds to the extremely limited literature on olanzapine-induced leucopaenia and thrombocytopaenia in elderly subjects and suggests that whenever an elderly patient receiving olanzapine has objective abnormalities (ie, high risk includes previous history of drug-induced granulocytopaenia). We further suggest that being an elder be preferred and any previous history of drug-induced granulocytopaenia. However, both of these hypotheses are not yet proven.

Acknowledgements We acknowledge the patient and his family members for providing consent for reporting this case study.

Contributors All the authors were involved in the management of the patient. YKM has drafted the initial manuscript. SS and AA critically evaluated the existing literature and have drafted the final manuscript. All the authors have equal contribution in the preparation of the manuscript.

References

1. Abanry NO, Al-Jaloud A, Al-Jabr A. Clozapine-induced blood dyscrasias in Saudi Arab patients. Int J Clin Pharm 2014;36:815–20.
2. Kate N, Grover S, Aggarwal M, et al. Clozapine associated thrombocytopenia. J Pharmacol Pharmacother 2013;4:149–51.
3. Lambertenghi Deliliers G. Blood dyscrasias in clozapine-treated patients in Italy. Haematologica 2000;85:233–7.
4. Sembja O, Okui S. Risperidone-induced thrombocytopaenia: a case report. Gen Hosp Psychiatry 2009;31:97–8.
5. Dernovsek Z, Tavcar R. Risperidone-induced leucopenia and neutropaenia. Br J Psychiatry 1997;171:393–4.
6. Lopez Altimirias FX, Muñoz Rodriguez FJ, Escoté Llobet S. Leukopenia associated to the use of risperidone: a case report and review of the literature. Rev Clin Esp 2006;206:162–3.
7. Manfredi G, Solfanelli A, Dimitri G, et al. Risperidone-induced leukopenia: a case report and brief review of literature. Gen Hosp Psychiatry 2013;35:102.e3–102.e6.
8. Uzun S, Kozumplik O, Jakovljević M, et al. Leukopenia during therapy with risperidone long-acting injectable: two case reports. J Clin Psychopharmacol 2008;28:713–4.
9. Cowan C, Oakley C, Leukopenia and neutropenia induced by quetiapine. Prog Neuropsychopharmacol Biol Psychiatry 2007;31:292–4.
10. Hung WC, Hsieh MH. Neutropenia associated with the comedication of quetiapine and valproate in 2 elderly patients. J Clin Psychopharmacol 2012;32:416–7.
11. Park HJ, Kim JY. Incidence of neutropenia with valproate and quetiapine combination treatment in subjects with acquired brain injuries. Arch Phys Med Rehabil 2016;97:183–8.
12. Rahman A, Mican LM, Fischer C, et al. Evaluating the incidence of leucopenia and neutropenia with valproate, quetiapine, or the combination in children and adolescents. Ann Pharmacother 2009;43:822–30.
13. Mehta A, Sanitato J. A case of neutropenia and thrombocytopenia shortly after initiating olanzapine. Psychiatry 2005;2:18–19.
14. Onofrj M, Thomas A. One further case of pancytopenia induced by olanzapine in a Parkinson’s disease patient. Eur Neurol 2001;45:56–7.
15. Carrillo JA, González JA, Gervasini G, et al. Thrombocytopenia and fatality associated with olanzapine. Eur J Clin Pharmacol 2004;60:295–6.
16. Bogunovic O, Viswanathan R. Thrombocytopenia possibly associated with olanzapine and subsequently with benztopine mesylate. Psychosomatics 2000;41:277–8.
17. Buchman N, Stroux RD, Ulman AM, et al. Olanzapine-induced leucopaenia with human leukocyte antigen profiling. Int Clin Psychopharmacol 2001;16:55–7.
18. Cordes J, Streit M, Loefller S, et al. Reversible neutropenia during treatment with olanzapine: three case reports. World J Biol Psychiatry 2004;5:230–4.
19. Grover S, Hegde A, Agarwal M. Olanzapine-associated leucopaenia and thrombocytopenia managed with lithium in a patient who developed leucopaenia with clozapine in the past: a case report. Prim Care Companion CNS Disord 2012;14.
20. Konakanchi R, Grace JJ, Szarowicz R, et al. Olanzapine prolongation of granulocytopaenia after clozapine discontinuation. J Clin Psychopharmacol 2000;20:703–4.
21. Mathias S, Schaff JW, Sonntag A. Eosinophilia associated with olanzapine. J Clin Psychiatry 2002;63:246–7.
22. Sahoo S, Singla H, Spoorty M, et al. Thrombocytopenia associated with olanzapine: a case report and review of literature. Indian J Psychiatry 2016;58:339–41.
Yogender Kumar Malik completed MBBS program from Mullana medical college, Kurukshetra University, Haryana in 2014, and obtained an MD degree in psychiatry from PGIMER, Chandigarh, India in 2017. He has been working at the department of psychiatry in PGIMER, Chandigarh, India since 2015. His research interests include psychopharmacology and epilepsy.

Swapnajeet Sahoo obtained his bachelor’s degree from VSS Medical College, Burla, Odisha, India in 2011 and his MD in Psychiatry from the prestigious Post Graduate Institute of Medical Education and Research, Chandigarh, India in 2015. He is currently working as a senior resident in the Department of Psychiatry, Post Graduate Institute of Medical Education and Research, Chandigarh, India. His main research interests include psychopharmacology, psychotherapy, cognitive neurosciences and Schizophrenia.