Utilization of Climate Files Predicting Future Weather in Dynamic Building Performance Simulation – A review

C N Nielsen* and J Kolarik

Technical University of Denmark, Department of Civil Engineering, Brovej, Building 118, 2800 Kgs. Lyngby, Denmark

Email: *Christian_nicolai_nielsen@live.dk

Abstract. As the climate is changing and buildings are designed with a life expectancy of 50+ years, it is sensible to take climate change into account during the design phase. Data representing future weather are needed so that building performance simulations can predict the impact of climate change. Currently, this usually requires one year of weather data with a temporal resolution of one hour, which represents local climate conditions. However, both the temporal and spatial resolution of global climate models is generally too coarse. Two general approaches to increase the resolution of climate models - statistical and dynamical downscaling have been developed. They exist in many variants and modifications. The present paper aims to provide a comprehensive overview of future weather application as well as critical insights in the model and method selection. The results indicate a general trend to select the simplest methods, which often involves a compromise on selecting climate models.

1. Introduction and background

Climate change is one of the greatest challenges of modern-day society. Based on observed data, the total increase in average temperature between periods 1850-1900 and 2003-2012 is 0.78 °C [1]. The building sector is one of the main greenhouse gas emitters, responsible for around 19% of the worldwide greenhouse gas emissions [1]. These trends call for evermore sustainable and energy efficient buildings. During a lifetime of more than 50 years, current buildings will be exposed to progressively warmer weather, increased frequency of heavy precipitation events, and other climate change phenomena [1], which can have a negative impact on their performance. Therefore, it is reasonable to account for future climate during building design.

Building performance simulation (BPS) is an essential tool for predicting the building energy demand and indoor environmental quality. Various formats of weather data are used in building simulation, but they generally include air temperature, air humidity, solar radiation, as well as wind speed and direction at an hourly temporal resolution as a minimum. Traditionally, a meteorologist applies a set of ranking criteria to the individual months of a continuous 20-to-30-year historical observed data set and assembles a year of 12 typical months to create a weather file [2]. The number of years required to create a weather file is arbitrary, but mostly a period of 30 years is used, as it is equivalent to the climate standard normal period [3].

Climate scientists worldwide use Global Climate Models (GCM) and Regional Climate Models (RCM) to predict the future climate. These are simulation models representing physical processes in the atmosphere, ocean, cryosphere, and on land. RCMs typically simulate a region over a large land area at higher spatial and temporal resolution compared to the global scale of GCMs. A RCM is
typically nested within a GCM, which provide an initial condition and time dependent boundary conditions for the RCM [4]. Each RCM can be used to downscale multiple GCMs.

For each Coupled Model Intercomparison Project (CMIP), climate models use a standardized set of forcing scenarios released by the International Panel on Climate Change (IPCC) to simulate climate systems response to increasing greenhouse gas concentrations. CMIP3 (~2005 to 2010) uses Special Report on Emissions Scenarios (SRES) [5], CMIP5 (2010 to 2014) uses Representative Concentration Pathway (RCP) [1], and CMIP6 (2013 to ~2022) uses Shared Socioeconomic Pathway (SSP) [6]. The current spatial and temporal resolution of GCMs is too coarse for BPS. Therefore, studies on the subject use various methods to increase the spatial and temporal resolution to create suitable future weather files. These methods are commonly referred to as downscaling and there are two main approaches, dynamical downscaling, and statistical downscaling [7]. A third less commonly used approach, hybrid downscaling is a combination of the two main approaches [8].

The purpose of this study was to review studies using future weather data in building performance simulations. We present a large collection of studies, summarizing key attributes of each study to get an overview of the topic.

2. Methodology

The literature search comprised the search engines DTU Findit, Web of Science, Elsevier search results, Mendeley, Google scholar, and DuckDuckGo. The most frequently used keywords were: climate, change, future, weather, data, building, performance, simulation, impact, study, heating, cooling, ventilation, and overheating. The criteria for considering a study in the results of the present paper were that it must present results from a BPS using predicted future weather data. Additionally, only fully dynamic BPS tools were considered, tools using quasi steady-state calculation approach were excluded.

3. Results

We reviewed a total of 109 full articles of which 47 were identified as climate change related building performance simulation studies. The 37 studies are listed in Table 2 and have covered 164 locations. As the simulation studies dealing with predictions of building performance in the future are receiving increasing attention, a webpage was created, that allows an easy update of the current list of identified studies (www.futureweatherbps.com). The downscaling method column (Table 2) discloses how the climate data was downscaled and or converted into a weather file usable for BPS. Morphing was the most used downscaling method (33%) followed by CCWorldWeatherGen (CCWWG) (24%) or directly simulating an output from dynamically downscaled data from RCM(s) (24%). The 47 studies use a selection of 61 different GCMs. Each GCM is used by one to eight studies, except for HadCM3, which is used by 21 studies indicating that HadCM3 might be overrepresented in the literature. More than a half of the studies from 2015 or newer rely solely on outdated data from CMIP3. This is partially attributed to the continued use of the weather generator tool CCWorldWeatherGen. One reason why the CCWorldWeatherGen tool is still being used is that it is easy to use as it generates EnergyPlus or TMY2 weather files directly. Although many studies are aware of the uncertainties involved in climate modelling, only five studies have described their method for selecting climate models and they generally follow the IPCC criteria. Omitting climate model selection is problematic as climate models differ widely [9] and using a climate model in the extreme end of the entire ensemble can lead to misleading results.

Some examples of methods include Liu et al. [10] creating a TMY weather file from historical data and using it together with averaged data from 24 GCMs to make six future weather files (three time periods and two RCP scenarios). Bravo Dias et al. [11] compare three downscaling methods: morphing, dynamical downscaling, and CCWorldWeatherGen. Generally, most studies compare the future weather with historic data from the same climate model, but Silvero et al. [12] compares the results of the future weather with results from the observed weather because historic data from 2009 from the MOCH-HadGEM2-ES model was not available.
Four studies [8,11,13,14] have compared weather files obtained by different methods. Judging by the mean temperatures, the downscaling methods for creating future weather file ranked from lowest to highest temperature increase are: dynamical downscaling, morphing, Meteonorm, CCWorld-WeatherGen, and WeatherShift. Fernández et al. [15] compared a large ensemble of climate models and found RCMs to be skewed towards lower temperatures compared to GCMs, which supports dynamical downscaling having smaller temperature increase than GCM based downscaling methods.

Our review suggests (Table 2), there is a general trend to select the simplest methods. Thirty studies use output data from a single climate model. Twelve studies use multiple climate models, but only three of them [8,16,17] implemented at least four variables: dry bulb temperature, relative humidity, solar radiation, and wind speed with wind direction from the baseline weather file. Others excluded wind speed [10,18,19] or used dry bulb temperature only [20–22] which is not meteorologically consistent unless the other variables are adjusted.

Many studies use BPS to compute the increase in cooling demand and decrease in heating demand caused by the climate change. Their results are illustrated in Table 1. The differences in predicted change in cooling demand, and heating demand (with respect to the particular baseline) cannot be directly compared. They vary according to the different climate models and downscaling methods applied as well as the different approaches to simulation of heating and cooling. However, Table 1 indicates that there is a much larger spread in predicted cooling demand than in predicted heating demand. With respect to the cooling demand the predicted increase is in the range from 12 to 375 %.

In addition to the many different methods used by different studies to create future weather files, there are particularly many ways to treat the solar radiation data. The root of the problem is that GCMs and RCMs only provide the global horizontal irradiance, while direct normal irradiance and diffuse horizontal irradiance is required for BPS. Clear sky models is a field of study in itself [23] and so far, no studies have investigated, which clear sky model is best suited for climate model outputs. Two examples of approach to using of solar radiation data are following. Jylhä et al. [17] apportion the global solar radiation between direct and diffuse radiation using an empirical approach and utilise an observed average partition between the radiation components. Cellura et al. [24] used the global solar radiation to calculate the direct and diffuse solar radiation based on the ASHRAE Handbook of Fundamentals from 2013. Other studies such as the study by Pouriya and Umberto [13] keep solar radiation from the baseline weather file.

Table 1. A comparison of the change in cooling- and heating demand relative to their baselines.

Ref.	Scenario	Cooling increase	Heating decrease
[25]	RCP2.6 – RCP 8.5	12 - 35 %	No heating demand
[26]	A1F1, A2	17 - 36 %	15 - 49 %
[27]	RCP 4.5	29 - 31 %	21 - 22 %
[13]	A2, RCP 8.5	14 - 55 %	18 - 27 %
[28]	A2	40 - 163 %	24 - 90 %
[22]	A2, A1B, B2	59 - 156 %	23 - 55 %
[10]	RCP2.6 – RCP 8.5	121 - 278 %	No heating demand
[24]	RCP2.6 – RCP 8.5	81 - 375 %	25 - 82 %

4. Conclusion
We presented an extensive review of literature focused on the use of future weather files in building performance simulations. The large number of available climate models brings a high difficulty in selecting the optimum one, which motivated this study. Various downscaling methods can increase the spatial and temporal resolution to create future weather files suitable for building performance simulation. Most use morphing or Climate Change World Weather file Generator, both classified as statistical downscaling while others use dynamically downscaled data from regional climate models. Most studies omit climate model selection and depending on the climate model the results can be misleading.
Table 2. Overview of 37 climate change building performance simulation studies sorted by publication year newest first. This table is based on a survey of published research, and it has been shortened to publications published in 2014 or newer due to page limits. The uncut table is freely available at www.futureweatherbps.com. Keywords are consolidated such that energy-demand, consumption, efficiency, use, becomes energy etc.

Ref.	Purpose	Year	Typology	Location	Project	GCM (RCM)	Scenario	Downscaling	Refs.
[28]	Energy	2050	Residential	Mediterr.	CMIP3	HadCM3	A2	CCWWG	EnergyPlus
[11]	Energy	2080	Office, townhouse	Iberia	CMIP5	HadCM3 (WRF)	A2	CCWWG, Morphing	EnergyPlus
[10]	Energy	2035, 2065, 2090	Rental apartments	Hong Kong	CMIP5	24 GCMs	RCP2.6, 4.5, 6.0, 8.5	Morphing	EnergyPlus
[7]	Overheating, heating, cooling	2011-2040, 2041-2070, 2071-2000	Residential	Paris	CORDEX, CMIP5	11 GCM-RCM combinations	RCP4.5, 8.5	RCM	EnergyPlus
[27]	Thermal performance	2045	Residential	Australia	CMIP5	-	RCP4.5	Statistical	TRNSYS
[12]	Under- and overheating	1990, 2009, 2030, 2050, 2070	Residential	Paraguay	CORDEX, CMIP5	ECMWF-ERAINT, HadGEM2-ES, (RCA4)	RCP4.5, 8.5	RCM, Statistical	EnergyPlus
[13]	Weather file comparison	1959-2075	16 different	Toronto	CMIP3, CMIP5	HadCM3 (HRM3)	A2, RCP8.5	CCWWG, RCM, WeatherShift	-
[25]	Cooling	2020, 2050, 2080	Office	Taiwan	CMIP5	NorESM1-M	RCP2.6, 4.5, 8.5	Morphing	EnergyPlus
[29]	Energy	2030, 2060, 2090	Large office	USA	CMIP5	14 GCMs	RCP4.5, 8.5	WeatherShift	EnergyPlus
[30]	Energy	2020, 2050, 2080	House	Argentina	CMIP3	HadCM3	A2	CCWWG	EnergyPlus
[8]	Weather file comparison	2010-2039, 2040-2069, 2070-2099	16 different	Geneva	CORDEX, CMIP5, CMIP3	4 GCMs (RCA4)	A2, RCP45, RCP85	CCWWG, WeatherShift, Meteonorm, RCM	
[16]	Energy	2048-2100	House	Valencia	CMIP5	CNRM-CM5, MPI-ESM-LR	RCP8.5	Morphing	TRNSYS
[31]	Energy	2020, 2050, 2080	Commercial	Montreal	CMIP3	HadCM3	A2	CCWWG	EnergyPlus
[24]	Energy	2035, 2065, 2090	Office	Europe	CMIP5	24 GCMs	RCP2.6, 4.5, 6.0, 8.5	Morphing	TRNSYS
[32]	Energy, Passive design	2050	House	Córdoba	CMIP3	HadCM3	A2	CCWWG	EnergyPlus
[33]	Energy, Adaptation	2020, 2050	Social housing	Brazil	CMIP3	HadCM3	A2	CCWWG	EnergyPlus
[34] Passive design	2036-2065, 2066-2095	House, apartment, residential	Firenze	CORDEX, CMIP5, (COSMO-CLM)	RCP8.5	Morphing	EnergyPlus		
---------------------	----------------------	---------------------------------	---------	---------------------------	--------	-----------	------------		
[35] Energy	2020, 2050, 2080	Social housing block	Milano	CMIP3	HadCM3	A2	CCWWG	EnergyPlus	
[26] Energy	2050	Residential, office	USA	CMIP3	HadCM3	A1F1, A2	Morphing	EnergyPlus	
[20] Energy	2021-2100	156 residential	Sweden	CMIP3	CNRM-CM3, ECHAM5, (RCA3)	A1B	RCM	Matlab	
[36] Heating	2020, 2030, 2040, 2050	Apartment	Europe, Canada	CMIP3	HadCM3	low, med, hi	CCWWG	Matlab	
[37] Mitigation, Adaptation	2050, 2080	House	Ecuador	CMIP3	HadCM3	A2	CCWWG	TRNSYS	
[38] Overheating, Cooling	2050	Dwelling	Netherlands	CMIP3	5 GCMs (8 RCMs)	KNMI’06 G+, KNMI’06 W+	Hybrid	IDA	
[39] Energy	2020, 2050, 2080	Office	Chile	CMIP3	HadCM3	A2	CCWWG	Excel VBA	
[40] Regional future weather	2000-2089	Office, hotel, mall	Shanghai	CMIP5	HadGEM2-CC	RCP4.5	Morphing	EnergyPlus	
[41] Energy	2050, 2090	Apartment blocks	Växjö	CMIP5	HadGEM2	RCP4.5, 8.5	Morphing	VIP-Energy	
[42] Energy, Passive design	2020, 2050, 2080	Social dwelling	Brazil	CMIP3	HadCM3	A2	CCWWG	EnergyPlus	
[43] Energy, Passive design	2020, 2050, 2080	Apartment	Taipei	CMIP3	MIROC3.2-M	A2, A1B, B1	Morphing	EnergyPlus	
[44] Heating	2005, 2029	House	Tokyo	CMIP5	MIROC4h (WRF)	RCP4.5	RCM	TRNSYS	
[21] Heating	1961-2100	Building stock	Sweden	CMIP3	5 GCMs (RCA3)	A1B3	RCM	Matlab	
[45] Performance, Aging factors	2010, 2020, 2030, 2040, 2050, 2060	Library	Turin	CMIP3	-	A2, B1	Morphing	IDA	
[46] Energy	1990, 2040, 2090	Office	Japan	CMIP3	MRI-CGCM2 (RCM20)	A2	RCM	TAS	
[47] Passive design	2070	Residential	Adelaide	CMIP3	CSIRO-Mk3.0	A1B, B1	Morphing	AccuRate	
[17] Energy	1980-2100	Not specified	Finland	CMIP3	19 GCMs	A2, A1B, B1	Morphing	IDA	
[48] Energy	2007, 2034	House	Japan	CMIP5	MIROC4h (WRF)	RCP4.5	RCM	TRNSYS	
[49] Energy	2052-2089	Commercial, residential	USA	CMIP3	CASCaDe	A2	Statistical	EnergyPlus	
[50] Heating, cooling	1950-2100	Offices	Wien	CMIP3	(REMO-UBA)	A1B	RCM	TAS	
References

[1] Core Writing Team, Pachauri R K and Meyer L A (eds.) IPCC, 2014 Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. IPCC, (Switzerland Geneva) 151 pp.

[2] Herrera M, Natarajan S, Coley D A, Kershaw T, Ramallo-González A P, Eames M, Fosas D and Wood M 2017 A review of current and future weather data for building simulation Build. Serv. Eng. Res. Technol. 38 602–27

[3] WMO (World Meteorological Organization) 2017 Guidelines on the Calculation of Climate Normals WMO-No. 1203 18

[4] Mearns L O, Giorgi F, Whetten P, Pabon D, Hulme M and Lal M 2003 Guidelines for Use of Climate Scenarios Developed from Regional Climate Model Experiments Development 38

[5] Nakićenović, N, Swart, R (eds.) 2000 Special Report on Emissions Scenarios (UK: Cambridge University Press)

[6] O’Neill B C, Tebaldi C, Van Vuuren D P, Eyring V, Friedlingstein P, Hurtt G, Knutti R, Kriegler E, Lamarque J F, Lowe J, Meehl G A, Moss R, Riahi K and Sanderson B M 2016 The Scenario Model Intercomparison Project (ScenarioMIP) for CMIP6 Geosci. Model Dev. 9 3461–82

[7] Machard A, Inard C, Alessandrini J-M, Pelé C andRibéron J 2020 A Methodology for Assembling Future Weather Files including Heatwaves for Building Thermal Simulations from Regional Climate Models Multi-years Datasets Submitt. to Energies 1–34

[8] Moazami A, Nik V M, Carlucci S and Geving S 2019 Impacts of future weather data typology on building energy performance – Investigating long-term patterns of climate change and extreme weather conditions Appl. Energy 238 696–720

[9] Fernández J, Frías M D, Cabos W D, Cofiño A S, Domínguez M, Fita L, Gaertner M A, García-Diez M, Gutiérrez J M, Jiménez-Guerrero P, Liguori G, Montávez J P, Romera R and Sánchez E 2019 Consistency of climate change projections from multiple global and regional model intercomparison projects Clim. Dyn. 52 1139–56

[10] Liu S, Kwok Y T, Lau K K L, Tong H W, Chan P W and NG E 2020 Development and application of future design weather data for evaluating the building thermal-energy performance in subtropical Hong Kong Energy Build. 209 109696

[11] Bravo Dias J, Carrilho da Graça G and Soares P M M 2020 Comparison of methodologies for generation of future weather data for building thermal energy simulation Energy Build. 206

[12] Silvero F, Lops C, Montelpare S and Rodrigues F 2019 Impact assessment of climate change on buildings in Paraguay—Overheating risk under different future climate scenarios Build. Simul. 12 943–60

[13] Pouriya J and Umberto B 2019 Building energy demand within a climate change perspective: The need for future weather file IOP Conf. Ser. Mater. Sci. Eng. 609

[14] Eames M, Kershaw T and Coley D 2012 A comparison of future weather created from morphed observed weather and created by a weather generator Build. Environ. 56 252–64

[15] Fernández J, Frias M D, Cabos W D, Cofiño A S, Domínguez M, Fita L, Gaertner M A, García-Diez M, Gutiérrez J M, Jiménez-Guerrero P, Liguori G, Montávez J P, Romera R and Sánchez E 2019 Consistency of climate change projections from multiple global and regional model intercomparison projects Clim. Dyn. 52 1139–56

[16] Pérez-Andreu V, Aparicio-Fernández C, Martínez-Ibernón A and Vivancos J L 2018 Impact of climate change on heating and cooling energy demand in a residential building in a Mediterranean climate Energy 165 63–74

[17] Jylhä K, Ruosteenoja K, Jokisalo J, Pilli-Sihvola K, Kalamees T, Mäkelä H, Hyvönen R and Drebs A 2015 Hourly test reference weather data in the changing climate of Finland for building energy simulations Data Br. 4 162–9
[18] Chan A L S 2011 Developing future hourly weather files for studying the impact of climate change on building energy performance in Hong Kong Energy Build. 43 2860–8
[19] Wang X, Chen D and Ren Z 2010 Assessment of climate change impact on residential building heating and cooling energy requirement in Australia Build. Environ. 45 1663–82
[20] Nik V M and Arfvidsson J 2017 Using Typical and Extreme Weather Files for Impact Assessment of Climate Change on Buildings Energy Procedia 132 616–21
[21] Nik V M, Mata E, Sasic Kalagasidis A and Scartezzini J L 2016 Effective and robust energy retrofitting measures for future climatic conditions - Reduced heating demand of Swedish households Energy Build. 121 176–87
[22] Asimakopoulos D A, Santamouris M, Farrou I, Laskari M, Zanis G, Giannakidis G, Tsigas K, Kapsomenakis J, Douvis C, Zerofos S C, Antonakaki T and Giannakopoulos C 2012 Modelling the energy demand projection of the building sector in Greece in the 21st century Energy Build. 49 488–98
[23] Antonanzas-Torres F, Urraca R, Polo J, Perpiñán-Lamigueiro O and Escobar R 2019 Clear sky solar irradiance models: A review of seventy models Renew. Sustain. Energy Rev. 107 374–87
[24] Cellura M, Guarino F, Longo S and Tumminia G 2018 Climate change and the building sector: Modelling and energy implications to an office building in southern Europe Energy Sustain. Dev. 45 46–65
[25] Huang K T, Weng Y T and Hwang R L 2019 Identifying suitable general circulation model for future building cooling energy analysis E3S Web Conf. 111 4–7
[26] Shen P 2017 Impacts of climate change on U.S. building energy use by using downscaled hourly future weather data Energy Build. 134 61–70
[27] Farah S, Whaley D, Saman W and Boland J 2019 Integrating climate change into meteorological weather data for building energy simulation Energy Build. 183 749–60
[28] Rodrigues E and Fernandes M S 2020 Overheating risk in Mediterranean residential buildings: Comparison of current and future climate scenarios Appl. Energy 259 114110
[29] Troup L, Eckelman M J and Fannon D 2019 Simulating future energy consumption in office buildings using an ensemble of morphed climate data Appl. Energy 255 113821
[30] Flores-Larsen S, Filippín C and Barea G 2019 Impact of climate change on energy use and bioclimatic design of residential buildings in the 21st century in Argentina Energy Build. 184 216–29
[31] Hosseini M, Tardy F and Lee B 2018 Cooling and heating energy performance of a building with a variety of roof designs; the effects of future weather data in a cold climate J. Build. Eng. 17 107–14
[32] Suárez R, Escandón R, López-Pérez R, León-Rodríguez Á L, Klein T and Silvester S 2018 Impact of climate change: Environmental assessment of passive solutions in a single-family home in Southern Spain Sustain. 10
[33] Triana M A, Lamberts R and Sassi P 2018 Should we consider climate change for Brazilian social housing? Assessment of energy efficiency adaptation measures Energy Build. 158 1379–92
[34] Pierangiolì L, Cellai G, Ferriere R, Trombi G and Bindi M 2017 Effectiveness of passive measures against climate change: Case studies in Central Italy Build. Simul. 10 459–79
[35] Erba S, Causone F and Armani R 2017 The effect of weather datasets on building energy simulation outputs Energy Procedia 134 545–54
[36] Andrić I, Piña A, Ferrão P, Fournier J, Lacarrière B and Le Corre O 2017 The impact of climate change on building heat demand in different climate types Energy Build. 149 225–34
[37] Palme M and Lobato A 2017 Robustness of residential houses in Ecuador in the face of global warming: Prototyping and simulation studies in the Amazon, coastal and Andes macroclimatic regions Mediterranean Green Buildings and Renewable Energy: Selected Papers from the World Renewable Energy Network’s Med Green Forum vol 2 (Cham:
[38] Hamdy M, Carlucci S, Hoes P J and Hensen J L M 2017 The impact of climate change on the overheating risk in dwellings—A Dutch case study Build. Environ. 122 307–23

[39] Rubio-Bellido C, Pérez-Fargallo A and Pulido-Arcas J A 2016 Optimization of annual energy demand in office buildings under the influence of climate change in Chile Energy 114 569–85

[40] Zhu M, Pan Y, Huang Z and Xu P 2016 An alternative method to predict future weather data for building energy demand simulation under global climate change Energy Build. 113 74–86

[41] Dodoo A and Gustavsson L 2016 Energy use and overheating risk of Swedish multi-storey residential buildings under different climate scenarios Energy 97 534–48

[42] Invidiata A and Ghisi E 2016 Impact of climate change on heating and cooling energy demand in houses in Brazil Energy Build. 130 20–32

[43] Huang K T and Hwang R L 2016 Future trends of residential building cooling energy and passive adaptation measures to counteract climate change: The case of Taiwan Appl. Energy 184 1230–40

[44] Arima Y, Ooka R, Kikumoto H and Yamanaka T 2016 Effect of climate change on building cooling loads in Tokyo in the summers of the 2030s using dynamically downscaled GCM data Energy Build. 114 123–9

[45] Waddicor D A, Fuentes E, Sisó L, Salom J, Favre B, Jiménez C and Azar M 2016 Climate change and building ageing impact on building energy performance and mitigation measures application: A case study in Turin, northern Italy Build. Environ. 102 13–25

[46] Shibuya T and Croxford B 2016 The effect of climate change on office building energy consumption in Japan Energy Build. 117 1–11

[47] Karimpour M, Belusko M, Xing K, Boland J and Bruno F 2015 Impact of climate change on the design of energy efficient residential building envelopes Energy Build. 87 142–54

[48] Kikumoto H, Ooka R, Arima Y and Yamanaka T 2015Study on the future weather data considering the global and local climate change for building energy simulation Sustain. Cities Soc. 14 404–13

[49] Dirks J A, Gorrissen W J, Hathaway J H, Skorski D C, Scott M J, Pulsipher T C, Huang M, Liu Y and Rice J S 2015 Impacts of climate change on energy consumption and peak demand in buildings: A detailed regional approach Energy 79 20–32

[50] Berger T, Amann C, Formayer H, Korjenic A, Pospischal B, Neururer C and Smutny R 2014 Impacts of climate change upon cooling and heating energy demand of office buildings in Vienna, Austria Energy Build. 80 517–30