An update on anticancer drug development and delivery targeting carbonic anhydrase IX

Justina Kazokaitė 1, Ashok Aspatwar 2, Seppo Parkkila 2, Daumantas Matulis Corresp. 1

1 Department of Biothermodynamics and Drug Design, Institute of Biotechnology, Vilnius University, Vilnius, Lithuania
2 Faculty of Life sciences and School of Medicine, University of Tampere and Fimlab Ltd, Tampere, Finland

Corresponding Author: Daumantas Matulis
Email address: matulis@ibt.lt

The expression of carbonic anhydrase (CA) IX is up-regulated in many types of solid tumors in humans under hypoxic and acidic microenvironment. Inhibition of CA IX enzymatic activity with selective inhibitors, antibodies or labeled probes has been shown to reverse the acidic environment of solid tumors and reduce the tumor growth establishing the significant role of CA IX in tumorigenesis. Thus, the development of potent antitumor drugs targeting CA IX with minimal toxic effects is important for the target-specific tumor therapy. Recently, several promising antitumor agents against CA IX have been developed to treat certain types of cancers in combination with radiation and chemotherapy. Here we review the inhibition of CA IX by small molecule compounds and monoclonal antibodies. The methods of enzymatic assays, biophysical methods, animal models including zebrafish and Xenopus oocytes, and techniques of diagnostic imaging to detect hypoxic tumors using CA IX-targeted conjugates are discussed with the aim to overview the recent progress related to novel therapeutic agents that target CA IX in hypoxic tumors.
An update on anticancer drug development and delivery targeting carbonic anhydrase IX

*Justina Kazokaitė, *Ashok Aspatwar, Seppo Parkkila, Daumantas Matulis

1Department of Biothermodynamics and Drug Design, Institute of Biotechnology, Vilnius University, Vilnius, Lithuania

2Faculty of Life sciences and School of Medicine, University of Tampere and Fimlab Ltd., Tampere, Finland

* Contributed equally

Corresponding author:
Daumantas Matulis

Email address: matulis@ibt.lt, daumantas.matulis@bti.vu.lt
Abstract:

The expression of carbonic anhydrase (CA) IX is up-regulated in many types of solid tumors in humans under hypoxic and acidic microenvironment. Inhibition of CA IX enzymatic activity with selective inhibitors, antibodies or labeled probes has been shown to reverse the acidic environment of solid tumors and reduce the tumor growth establishing the significant role of CA IX in tumorigenesis. Thus, the development of potent antitumor drugs targeting CA IX with minimal toxic effects is important for the target-specific tumor therapy. Recently, several promising antitumor agents against CA IX have been developed to treat certain types of cancers in combination with radiation and chemotherapy. Here we review the inhibition of CA IX by small molecule compounds and monoclonal antibodies. The methods of enzymatic assays, biophysical methods, animal models including zebrafish and Xenopus oocytes, and techniques of diagnostic imaging to detect hypoxic tumors using CA IX-targeted conjugates are discussed with the aim to overview the recent progress related to novel therapeutic agents that target CA IX in hypoxic tumors.

1. INTRODUCTION

Recent advances in cancer therapy show that hypoxia is the major contributor to tumor development (1, 2). The poor and chaotic tumor angiogenesis leads to the insufficient oxygen and nutrient supply which drastically affects the cellular metabolism (3). Due to the up-regulated glycolysis, tumor cells produce increased amounts of lactate and protons. As a consequence of mTORC1&2 mediated functional and transcriptional activation of c-Myc, tumor cells tend to metabolize glucose preferably via glycolysis rather than oxidative phosphorylation despite sufficient levels of oxygen. This phenomenon is known as Warburg effect (4, 5). The resultant hypoxic and acidic extracellular milieu significantly increases the resistance of cancer cells to chemotherapy and radiotherapy as well as promotes invasiveness and metastasis (6, 7).

Hypoxia stimulates crucial pathways, one of which is implemented by the activation of the heterodimeric hypoxia-inducible factor (HIF) (8). This hypoxia-induced transcriptional program is important for tumor cells to survive harsh conditions. There are many downstream-target genes of HIF which encode proteins such as adhesion molecules (9), matrix metalloproteinases (10), chemokine receptors (11), growth factors (12), differentiation proteins (13), glycolytic enzymes (14), lactate transporters (15), and ion transporters (16). Some HIF-regulated proteins have been shown to be hypoxia-related anticancer targets and possess therapeutic applications (17). Thus, HIF is critically essential for cancer cells to survive and metastasize in the hostile tumor environment due to the HIF-dependent activation of oncogenes and inactivation of tumor suppressor genes.

As a consequence of HIF-mediated transcriptional response to tumor hypoxia, the intracellular and extracellular pH is unbalanced. Normal cells differ from cancer cells by the mechanisms of pH regulation, which create the reversed pH gradient in tumors. Physiologically the intracellular
pH (pHᵢ) is lower than the extracellular pH (pHₑ), which is 7.4. Pathologically pHᵢ is higher than pHₑ, which is 6.7-7.1 (18, 19). This phenomenon of extracellular acidification under hypoxic conditions is created by HIF-dependent induction of proteins, such as transmembrane enzymes, ion pumps, and transporters. They export lactate and protons and import bicarbonate ions to optimize the tumor progression. Among key pH-regulators are V-ATPase, Na⁺/H⁺ exchanger (NHE), monocarboxylate transporters (MCTs) and carbonic anhydrase (CA) IX.

There are seven evolutionarily distinct CA gene families: α-, β-, γ-, δ-, ζ-, η-, and θ-CAs (20–25). In humans, there are only 15 α-CA isoforms, of which 12 are catalytically active and exhibit diverse enzymatic activity, various cellular distribution and physiological functions (26). Being a member of α-CA isoforms in human body, CA IX is a transmembrane homodimer, which catalyzes the reversible hydration of carbon dioxide to bicarbonate and proton outside the cell. The intracellular pH of cancer cells is regulated by the export of lactate and protons and on the import of bicarbonate ions generated by the hydration of CO₂. The acidic metabolites accumulate pericellularly because of the ineffective tumor vasculature and extracellular acidosis. To reduce changes of intracellular pH, the bicarbonate is transported into the cell through the bicarbonate transport metabolon composed of CA IX and bicarbonate transporters. Thereby CA IX is important for cancer cell proliferation because of the participation in both processes: the extracellular acidification and the intracellular alkalinization (24, 27).

CA IX is relevant not only for the cancer cell survival but also to several other biological processes such as the maintenance of cancer stem cell (CSC) function, migration, and invasion. Cell migration depends on the formation of lamellipodia which have been shown to be partially produced by activation of CA IX and its interaction with bicarbonate transporters (28). In addition, acidosis under hypoxic conditions activates proteolytic enzymes, which degrade the extracellular matrix and promote metastasis formation. Thus, CA IX targeting compounds have shown to significantly diminish the cancer stem cell population, inhibit the growth of primary tumors, and reduce metastatic burden (29–33).

In normal tissues, the expression of CA IX is negligible with the exception of the stomach and gallbladder epithelia (34). There is a broad spectrum of aggressive malignancies where CA IX is predominantly overexpressed, namely, neuroblastoma (35), breast tumor (36), head and neck tumors (37), ovarian tumor (38), pancreatic tumor (39), hepatocellular carcinoma (40), etc. In addition, there are several reviews which summarize the significance of CA IX as a promising biomarker for the tumor development (41). Thus, CA IX has emerged as the clinically relevant biomarker and a potential anticancer-drug target.

At the core of α-CA active site, the metal ion, Zn (II), is tetrahedrally coordinated to three imidazole rings from His94, 96, and 119 (numbering according to CA II) and a water/hydroxide anion (42). The catalytic site is located at approximately 15 Å depth conical cavity which consists of hydrophobic (Val121, Val143, Leu198, Val207, Trp209) as well as hydrophilic (Tyr7, Asn62, His64, Asn67, Thr199, Thr200) regions and provides the accessibility to the solvent (22, 43, 44).
A high conservation of amino acids in the active site and surrounding faces has been found among the 12 catalytically active human CA isoforms (24, 45). Thus, the design of CA isoform-selective inhibitors has been the challenging goal for many researchers. In 1954, acetazolamide was approved in clinic as the first CA-targeting antiglaucoma drug (46). In the next decades, a vast collection of CA inhibitors with various affinities and selectivities has been designed and has been extensively reviewed (47–51).

It is a challenging task to design inhibitors that would be not only highly selective to CA IX but also safe for use in humans for the treatment and diagnosis of hypoxic tumors. Many aspects need to be considered to achieve the final goal of developing the promising drugs that could selectively inhibit CA IX in hypoxic tumors. The knowledge about the active site structure of the protein and permeability of the inhibitor across the cell membrane is essential for designing the CA IX specific inhibitors. An inhibitor may be selective for CA IX but it may need to be attached to a conjugate to make it impermeable through the membrane.

Similarly, the potential inhibitors need to go through the physical and biochemical screening and various modifications to develop as CA IX isoform specific compounds. The most promising CA IX inhibitors have to be screened for safety and toxicity in vivo using animal models such as zebrafish before subjecting them to preclinical characterization. In addition to chemical compounds that are selective against CA IX, CA IX-selective biological molecules, such as monoclonal antibodies (mAbs), are at various stages of preclinical and clinical trials as potential anticancer agents targeting CA IX in hypoxic tumors. In addition, the anticancer agents based on CA IX selective inhibitors can be conjugated with various probes for the diagnosis of hypoxic tumors.

2. SURVEY METHODOLOGY

A wide variety of chemical compounds have been described in the literature that target tumor-associated CA IX. In this review we selectively describe only aromatic sulfonamides that have been demonstrated to bind and inhibit the catalytic domain of recombinant human CA IX by at least two experimental approaches, such as inhibition of enzymatic activity and biophysical assays including the fluorescent thermal shift assay (FTSA), isothermal titration calorimetry (ITC), and surface plasmon resonance (SPR). We emphasize the use of non-mammalian animal models such as zebrafish and Xenopus oocytes for the toxicity, affinity, and selectivity studies of CA IX targeting sulfonamides. Published in 2016-2017, these studies suggest possibilities that could help in the development of antitumor agents prior to preclinical characterization in mice models.

For reviewing the information, we identified the articles containing information about different biological and chemical antitumor agents that target CA IX in hypoxic tumors. The literature search was performed using the relevant keywords in PubMed. For example, the antibody section was compiled with all available articles published since 1986 up to 2017, in which the use of antibodies for the detection of CA IX in patients was described. Publications were retained...
if they contained relevant information about the promising agents that target CA IX in humans
and also during the development of these agents in human cell lines and mice models. Priority
was given to the antitumor agents that have been developed either for the treatment or imaging of
the tumors using novel strategies.

The focus of this review is also to present recent developments in the treatment and diagnosis of
solid tumors under hypoxic conditions that express CA IX. We present the recent achievements
on the 8 diagnostic tools including chemical and biological antitumor agents targeting CA IX
that are at various stages of preclinical and clinical trials for treating the hypoxic tumors. This
review combines the information about animal models, enzymatic, biophysical methods used in
CA field, as summarized in Figure 1, with the latest references of novel anticancer agents that are
currently applied to target CA IX for the diagnosis and treatment.

3. CA INHIBITOR ASSAYS

3.1. CA enzymatic activity inhibition assay

To evaluate the potency of CA-targeting inhibitor, the stopped-flow CO$_2$ hydration assay (SFA)
has been widely applied for more than 5 decades since the discovery of the method to measure
CA catalyzed CO$_2$ hydration rate by Gibbons and Edsall and by Khalifah (52–54). This
approach is based on the monitoring of the changes in absorbance of pH sensitive indicator upon
CA catalyzed CO$_2$ hydration reaction. The half-maximal inhibitory concentration, IC$_{50}$, is
determined by fitting the compound dose curve according to the Hill model or Morrison equation
(55). The inhibition constant, K$_i$, can be obtained from IC$_{50}$ value by Cheng-Prusoff equation
(56).

Supuran and co-authors have developed a large library of CA inhibitors by SFA and divided
them into five groups according to CA inhibition mechanisms: (1) the zinc binders (sulfonamides
and their isosteres, dithiocarbamates and their isosteres, hydroxamates, etc.) (46, 50, 57–60); (2)
compounds that anchor to the zinc-coordinated water molecule/hydroxide ion (phenols,
polyamines, sulfocoumarins, etc.) (61–65); (3) inhibitors which occlude the entrance to the CA
active site (coumarins and their isosteres) (66–68); (4) compounds which bind out of the active
site (carboxylic acid derivates) (69); (5) inhibitors which bind in an unknown way
(secondary/tertiary sulfonamides, imatinib, nilotinib, etc.) (70–72). Since these various
compounds have been subject of numerous recent reviews, here we concentrate only on aromatic
sulfonamides as CA inhibitors. Supuran’s group also measured the affinity of monoclonal
antibodies to target CA isoforms using SFA (73). In addition to other previously synthesized
compounds containing fluorine, our group has identified a series of fluorinated
benzenesulfonamides as strong CA IX inhibitors by SFA and have shown a correlation between
parameters obtained by enzymatic and biophysical assays (74).

Importantly, CA isoforms share not only hydratase but also esterase activity which was
discovered in early 1960s (75). Both reactions occur in the same catalytic pocket suggesting
similarities in their mechanisms. The method to determine esterase activity is a high-throughput colorimetric assay with various applications such as screening chemical molecules or antibodies against CA isozymes (76, 77).

3.2. Biophysical assays of inhibitor binding to CAs

Advantages and limitations of enzymatic inhibition versus biophysical assays of inhibitor binding have been assessed and are compared in our recent manuscript (78). Biophysical methods not only determine the thermodynamic parameters of ligand binding to CAs but also provide insight into numerous significant factors, which influence the binding: local water structure, hydrogen bonding, hydrophobic interactions, and desolvation. The thermodynamic profiles of drug candidate binding to CA have been widely used. Here we will focus on biophysical techniques, such as fluorescent thermal shift assay (FTSA), isothermal titration calorimetry (ITC), and surface plasmon resonance (SPR), which have been applied in the rational drug design of isoform-selective CA inhibitors.

3.2.1. Isothermal titration calorimetry

Since the invention of first analog of an isothermal titration calorimeter in 1966 (79, 80) and its modifications for biological applications in 1980s (81, 82), ITC has become the method of choice to study protein target-ligand interactions. During the experiment, in the current commercial titration calorimeters, the inhibitor solution from the syringe is injected at constant temperature into the protein solution preloaded to the calorimeter cell until all binding sites of the protein become occupied by the ligand. Importantly, ITC does not require the inhibitor or protein to be labeled or immobilized and allows the determination of the affinity, the binding enthalpy and the stoichiometry in a single titration experiment (83–86).

Numerous studies of interactions between diverse ligands and target CA isoforms have been performed by ITC (22, 87, 88). The binding of anions to CA II was evaluated using ITC, X-ray crystallography, and molecular dynamics simulations by Whitesides group (89). For the deeper understanding of structure-activity relationships, the analysis of buffer ionization effects was performed by ITC upon an inhibitor binding to recombinant human CA isoforms, including CA I (90), CA II (90), CA VB (91), CA VI (92), CA VII (93), CA IX (94), CA XII (95), and CA XIII (96). In addition, ITC standard and displacement titrations were combined with the X-ray crystallographic structures to determine the intrinsic, buffer-independent affinity of para substituted tetrafluorobenzenesulfonamides binding to several human CA isoforms (97).

3.2.2. Fluorescent thermal shift assay

FTSA, also called differential scanning fluorimetry and, in high-throughput format, ThermoFluor®, has been widely applied by numerous researchers and companies, such as Johnson & Johnson, New Brunswick, United States. It is a rapid screening method in the drug
discovery to measure the binding affinities of chemical compounds to targets (98–101). FTSA monitors the equilibrium of a protein between its folded and unfolded states by detecting the fluorescence of solvatochromic probes, such as 1,8-anilinonaphthalene sulfonate or SYPRO® orange, while the temperature is steadily increased. This method determines the protein melting temperature which can be highly affected by the affinity of ligand and its concentration (102, 103). In addition, FTSA is a convenient technique to characterize protein thermal stabilities at various conditions including diverse buffers, excipients, etc (104, 105).

FTSA has been widely applied in the search of CA inhibitors. The binding of sulfamate and sulfamide derivatives to human CA II was investigated using FTSA by Klinger et al. (106). FTSA was also applied by our group to investigate the interactions between human CA isoforms and various series of inhibitors, including tri- and tetrafluorobenzesulfonamides (107, 108), benzenesulfonamide derivatives with pyrimidine moieties (109), saccharin sulfonamides (110), benzenesulfonamides with benzimidazole moieties (111), 4-amino-substituted benzenesulfonamides (112). In addition, the profiles of thermal stabilities of recombinant human CA VB (91), CA VI (92), CA IX (94), and CA XII (95) was described using FTSA.

3.2.3. Surface plasmon resonance

SPR was first demonstrated for the monitoring of biomolecular interactions by Lundstrom et al. in 1983 (113) and the first commercial SPR instrument was launched by Pharmacia Biosensors AB in 1991 (114). During the last decades, SPR biosensors have become the state-of-the-art technology in diagnostics and biomedical research to determine a real-time kinetics and binding affinities of ligand-protein interactions. To screen lead compounds, one of the binding partners, usually the target protein, is immobilized on a metal surface and the ligand flows over that surface by microfluidic system. SPR is a label-free optical method, which measures the changes in refractive index at the metal surface upon the binding reaction.

Studies of SPR application in CA research used recombinant human CA I (115) or mostly CA II (116–118) isoform as a model for the screening of numerous inhibitors. In contrast, Talibov et al. immobilized six human recombinant CA isoforms (full-length CA I, CA II, CA VII, CA XIII, catalytic domains of CA IX and CA XII) and analyzed their interactions with 17 benzenesulfonamide ligands by SPR. Interestingly, results revealed one compound from investigated series to be as a tight binder to recombinant CA IX with the dissociation rates too slow to be determined by SPR (119).

3.3. Zebrafish model for compound toxicity

Phenotype-based screening using zebrafish has become a promising high-throughput assay for the drug discovery. This approach revealed that 62% of drugs approved from 1999 till 2008 were discovered by phenotype-based screens despite that they represented only a small fraction of all
screens (120). Phenotypic screens possess many significant advantages over target-based screens including the identification of drugs without a validated target or the characterization of the therapeutic profile of the compound, which affects several targets simultaneously. Zebrafish has emerged as a powerful model system for phenotypic screens of drug-candidates in vivo because of many advantages that include high homology between zebrafish and mammalian CAs, low cost, and avoidance of most ethical issues associated with the use of other animals. However, zebrafish lack lung, prostate, and mammary glands, heart septation, limbs, and it is necessary to grow zebrafish at 30 °C, while compounds against mammalian targets are usually optimized for 37 °C (121, 122).

Zebrafish can be particularly useful to carry out toxicological studies of CA inhibitors. Toxic effects of two fluorinated benzenesulfonamides as CA IX inhibitors were investigated on zebrafish development (123). LC₅₀ values showed that one compound exhibited 10-fold lower toxicity than ethoxzolamide (EZA), a compound used as a drug in humans. In addition, light-field microscopy and histological analysis revealed that EZA induced side effects such as pericardial edema, unutilized yolk sac and abnormal body shape of zebrafish. In contrast, developmental abnormalities were not detected in embryos treated with the fluorinated benzenesulfonamides (Table 1). Thus, this study showed that CA IX inhibitors did not have adverse effects on phenotype and morphology of zebrafish larvae. Such toxicological screenings of the compounds using zebrafish could provide information on the safety of lead molecule that could be useful for further development into a drug.

3.4. Oocyte system for heterologous expression of CAs to determine compound affinity and selectivity

Since 1960s, the Xenopus laevis has been widely used as a convenient animal model in various biomedical fields including molecular and physiological research. The Xenopus oocytes have many advantages including a large number of offspring, easy manipulations because of their big size (1.1-1.3 mm) and easy maintenance. Furthermore, oocytes feature highly efficient translation of heterologous RNA into protein.

Native Xenopus oocytes do not possess any CA activity and thus have become a convenient in vivo model system to investigate CA inhibitors. The enzymatic activity of CA can be evaluated with microelectrodes while monitoring the intracellular and extracellular acidification. Results can be confirmed by mass spectrometric gas analysis of lysed or intact oocytes (124). The transfection of Xenopus oocytes with cRNA of CA isozymes has been published by Deitmer's group (125, 126). They showed the complete inhibition of CA IX enzymatic activity with 30 µM EZA according to the rates of cytosolic pH changes and amplitudes of pH changes at the outer membrane side (125). The same effect was found in CA IX expressing oocytes treated with 1 µM fluorinated benzenesulfonamide targeting CA IX (127). The IC₅₀ was found to be in the range of 15-25 nM for both intracellularly and extracellularly expressed CA IX. Moreover, the compound exhibited strong selectivity over CA II, CA IV or CA XII in oocytes expressing a
particular CA isoform (Table 1). This novel in vivo approach allows the identification of the
affinity and selectivity of CA IX inhibitors in the living eukaryotic cell with fully matured target
CA isozyme.

4. CA IX-TARGETED STRATEGIES

Targeting CA IX enzyme is a promising approach for the development of new therapeutics
against hypoxic tumors. There are several agents that can selectively target CA IX by using
different strategies. Here, we present therapeutic agents that have been used against CA IX for
diagnosis and treatment of hypoxic tumors in humans (Table 2).

4.1. Monoclonal antibodies for CA IX-targeted therapy

M75 and chimeric G250 (cG250) are two widely-applied monoclonal antibodies (mAbs)
recognizing human CA IX. These mAbs have been used for clinical detection or therapy (128,
129). The M75 targets the PG-domain of CA IX and is used for the detection of CA IX in human
tissues (130–132). cG250 has been successfully developed for anticancer immunotherapy (133)
due to its ability to elicit antibody-dependent cellular cytotoxicity (134). The clinical trials
showed that cG250 is safe, and has effect on the disease burden, when applied alone or together
with interferon-α (135, 136). This mAb is marketed by WILEX AG using RENCAREX® as a
trade name and has been used for renal cell carcinoma patients (RCC) who are at high risk of
relapse (137). In the recent past, this mAb under the name of girentuximab, has been assessed as
an adjuvant in Phase III ARISER trial in RCC patients and showed that the patients expressing
CA IX benefited more than ones without or minimal expression of CA IX (138). In a phase II
study, the mAb labeled with lutetium (177Lu-girentuximab) demonstrated the significantly
positive impact on the progressive metastatic ccRCC patients (139). In addition,
REDECTANE® (124I-girentuximab) has been in clinical development targeting ccRCC (140).
Furthermore, A3 and CC7 have been developed as CA IX-selective mAbs by the phage display
method. They showed promising results in animal models of colorectal cancer and may be useful
for the drug delivery (128). These studies clearly showed that mAbs and their modified versions
are potential candidates for the development as anticancer agents targeting tumors that express
CA IX.

Several monoclonal antibodies have been developed that influence the catalytic activity of CA
IX (141). Pastorekova’s group has demonstrated that the mAb VII/20 binds to the catalytic
domain of CA IX, causing the receptor-mediated internalization of the antibody-protein
complex. Authors have shown that this process is important for the immunotherapy because
significant anticancer effects of VII/20 were found in mouse xenograft model of colorectal
carcinoma (142). Thus, the application of CA IX-targeting antibodies might be significantly
beneficial immunotherapeutic strategy.
Furthermore, mAbs have been considered as the ligands of choice for the design of antibody-drug conjugates (ADCs). In current clinical development, there are 65 ADCs mostly targeting various proteins at cell surface (143, 144). Since antibodies might cause problems related with the penetration or immunogenicity, there is a demand for smaller agents, such as peptides or chemical derivatives, for the drug delivery. Recently, Neri with co-authors has described CA IX-targeting small-molecule drug conjugates. Monovalent and divalent conjugates of acetazolamide with the cytotoxic maytansinoid DM1 exhibited promising anticancer activity in SKRC52 renal cell carcinoma in vivo (145, 146).

4.2 Chemical compounds targeting CA IX for therapy

A wide range of CA IX selective inhibitors has been designed with the help of X-ray crystallography and computational analysis. Among them, a group of sulfonamides show potential for developing as anticancer agents. A sulfonamide compound, indisulam, has shown a significant antitumor activity in preclinical cancer models (147). Phase II clinical trials were conducted to determine the efficacy, safety and tolerability of indisulam in combination with irinotecan in patients with metastatic colorectal cancer who were previously treated with 5-fluorouracil/leucovorin and oxaliplatin (148) but no further information is available about the outcome of the trial. Similarly, bis-sulfonamides have shown promising results in vitro in tumor sections and target tumors in vivo (149). Preclinical studies using ureidosulfonamide inhibitor of CA IX, named as U-104 or SLC-0111 (SignalChem Lifesciences Corp), showed positive effects with the negligible toxicity for the treatment of various tumors (150, 151). Recently, U-104 has been demonstrated to be effective in vitro and in vivo models of the pancreatic ductal adenocarcinoma (Pt45.P1/asTF+). U-104 significantly decreased the growth of pancreatic cells in hypoxia but not in normoxia and reduced the tumor growth in mice emphasizing the potential of the compound as a therapeutic agent against CA IX (152).

Small molecule-drug conjugates (SMDCs) have been used for the selective delivery of therapeutic agents to tumor sites. The series of stable and therapeutically active SMDCs were generated by attaching acetazolamide to monomethyl auristatin E using dipeptide linkers. They showed a promising antitumor activity in mice bearing SKRC-52 renal tumors. Since CA IX is a transmembrane protein, the findings of this study is significantly important for the targeted drug delivery in kidney cancer patients (153). Similarly, PEGylated bis-sulfonamide CA inhibitors were synthesized from aminosulfonamide pharmacophores conjugated with either ethyleneglycol oligomeric or polymeric diamines. These compounds efficiently controlled the growth of several CA IX-expressing cancer cell lines including colon HT-29, breast MDA-MB-23, and ovarian SKOV-3 (154).

To demonstrate the antitumor effect of CA IX inhibition in vivo, the vast library of conjugates against CA IX has been designed. Dual targeting bioreductive nitroimidazole-based sulfamide drug, named as DH348, was used to evaluate the impact on the extracellular acidification and radiosensitivity in HT-29 colorectal cancer cells and mouse xenograft models. By using nontoxic
doses of DH348, the hypoxia-induced extracellular acidification was significantly reduced and
the tumor growth was decreased. DH348 also sensitized the tumor to irradiation and the effect
was CA IX-dependent (155). In addition, the combination of SLC-0111 and APX3330 has been
reported in patient-derived 3D pancreatic cancer models. Results of dual treatment showed a
greater decrease in the intracellular pH and 3D tumor spheroid growth than treatment with either
inhibitor alone (156). Recently, phase I clinical trial of SLC-0111 has been finished and the
compound was scheduled to enter Phase II trials (157). Since results of phase I trials have not
been published, the characterization of pharmacodynamics and pharmacokinetics of SLC-0111 is
not available yet.

4.3 Targeting CA IX using nanoparticles

Gold nanoparticles coated with chemical inhibitors are a relatively new to the field of the
development of agents targeting CA IX. The gold nanoparticles modified with CA IX inhibitors
cannot pass through the membrane. Thus, they show a great potency to be effective in targeting
and inhibiting the extracellular active site of CA IX.

The nanoparticles, which were modified with thiols and benzenesulfonamide groups, selectively
inhibited CA IX (K_i 32 nM) but their affinities toward CA I and CA II were more than 10-folds
lower (K_i 451 nM). In addition, these nanoparticles possessed a greater affinity toward CA IX
than acetazolamide and may be suitable candidates for imaging and treatment of hypoxic tumors
(158). Recently, gold nanoparticles were used to target CA IX for photoacoustic imaging and
optical hyperthermia (159). In addition, derivatives of benzenesulfonamides combined with
nanorods showed a significant impact on the reduction of the extracellular acidification in
hypoxic human mammary and colorectal carcinomas (160). These studies suggest that the use of
nanoparticles can be used to efficiently target extracellular part of CA IX in hypoxic tumors.

To improve the potency and selectivity of novel inhibitors, recently multivalent nanoconstructs
have been developed (161, 162). These nanoconstructs showed excellent inhibitory effects with
K_i values of 6.2-0.67 nM against tested CA isozymes. They contain multiple copies of a ligand,
which are displayed closely on the same derivative. Thus, a weak mM binder can be changed to
μM binder and the biomolecular recognition can be enhanced (163). Even though the use of
multivalent nanoconstructs in the field of CA IX inhibition is quite recent, there is a great
potential to develop CA IX inhibitors with high affinity and selectivity properties using this
multivalent strategy.

5. IMAGING METHODS

Detection of hypoxic regions of solid tumors is an important step for cancer treatment (164). The
application of selective ligands against CA IX in diagnostic imaging has been widely
investigated. They could help to decide which patients can get benefit from the adjunctive
therapy (165). Both antibodies and small molecular weight compounds have been used for non-invasive imaging of CA IX in a number of aggressive and late stage types of tumors and metastases (137).

5.1. Imaging of tumors using CA IX-specific mAbs

CA IX is a useful biomarker for clear cell renal cell carcinoma (ccRCC) because CA IX is absent in normal kidney tissues. The CA IX-specific cG250, radiolabeled with iodine-124 or zirconium-89, has been used for the diagnosis of ccRCC (166). High parameters of sensitivity and specificity were determined by positron emission tomography/computed tomography (PET/CT) when cG250 labeled with iodine-124 was applied for the imaging of ccRCC (167). This study suggests a great potential to monitor ccRCC in patients and allows the differentiation of ccRCC versus non-ccRCC.

An iodine-125 radiolabelled M75, CA IX-selective mAb, has been developed for pre-clinical imaging of CA IX in hypoxic tumors in mouse xenograft models (130, 131). In addition, human A3 and CC7 mini-antibodies have been designed. Their small size enables them to distribute faster compared to full sized antibodies. These antibodies do not inhibit the catalytic activity of CA IX and are selective for the extracellular domain of human CA IX (168). By using mAbs coated with near-infrared fluorescent (NIRF) molecules, molecular imaging probes have been developed and applied for the non-invasive detection of breast cancer axillary lymph node (ALN) metastases. The high selectivity of these probes have been confirmed in vitro and in vivo using models of preclinical breast cancer metastasis (169).

5.2. Affibody molecules for imaging of CA IX expression

The affibodies are specially engineered small proteins that can bind to target proteins with a high affinity similarly to mAbs. These molecules can be used as novel anticancer drugs and/or for radionuclide imaging of tumors. In a recent study, several in vitro and in vivo properties of affibodies labeled with 99mTc and 125I were characterized. Tested affibodies were highly specific to CA IX in SK-RC-52 cells and selectively accumulated in SK-RC-52 xenografts (170). The study suggests the usefulness of CA IX-binding affibodies for cancer detection and therapy.

5.3. Imaging of CA IX expression with small molecular chemical probes

Chemical probes can be applied for labeling and detection of biomolecules in order to study molecular processes occurring within living cells. The sulfonamide-based CA inhibitors efficiently bind to CA IX in hypoxic tumors as the active site of the enzymes is only available upon hypoxic conditions (171). Unlike CA IX-specific mAbs, sulfonamides can recognize cells that are in hypoxic conditions. Thus, CA IX inhibitors and mAbs can give the different information about imaging and prognosis (172). To prevent the sulfonamide-based inhibitors
from passing through the membrane, inhibitors can be conjugated with fluorescent dye (FITC), albumin or hydrophilic sugar moieties that would prevent their entry into the cell (173). Among them, sulfonamides attached to FITC were shown to be membrane-impermeable with a high affinity to CA IX. This imaging agent was able to bind to CA IX, expressed in cells under hypoxic but not normoxic conditions (171). Similarly, acetazolamide-based derivatives bearing many types of NIRF dyes were designed as promising probes for the imaging of hypoxia-induced CA IX in tumor cells. Compounds were characterized to be up to 50-fold selective to CA IX compared to CA II. In preclinical studies using mice with HT-29 tumors, the significant impact of CA IX inhibitors with NIRF group on the non-invasive quantification of CA IX was determined (174). Moreover, fluorescent sulfonamides containing a charged fluorophore have been used in vivo and have shown a great efficiency in detecting CA IX in HT-29 and SK-RC-52 tumor xenografts (175, 176).

5.4 Imaging hypoxic tumor areas with nonpeptidic ligand conjugates.

Recently, nonpeptidic ligand conjugates have been evaluated for single-photon emission computed tomography (SPECT) imaging of hypoxic cancers that express CA IX (177). For a better clinical care, a broader knowledge about the level of hypoxia is needed. CA IX-targeting ligand was synthesized with the aim to deliver the attached 99mTc-chelating agent to hypoxic regions. The studies of binding characterization in vitro and imaging of the biodistribution in vivo were carried out. Results showed that several such conjugates can selectively bind to CA IX in tumors. This study revealed the significantly important applications of nonpeptidic ligand conjugates to evaluate the level of hypoxia in tumors (177).

In summary, the mAbs G250 and M75 have the advantages of binding to CA IX selectively on the surface of cancer cells, and thus they are able to detect cancer cells that overexpress CA IX. This is because the mAbs are raised against specific epitopes of CA IX, and they are unable to pass through the cell membranes due to the high molecular weight. However, the mAbs (G250 and M75) bind to the PG domain, and therefore they cannot affect its catalytic activity. In contrast, chemical inhibitors recognize the active site and can inhibit the enzymatic activity of CA IX, but they might possess several disadvantages including the low selectivity because of similarity of the α-CAs active sites, and the permeation through the plasma membrane. Thus, they might have off-target effects because of affinity to both intracellular and extracellular CAs. If the chemical inhibitors are conjugated with bulky molecules to avoid the internalization, they may still bind to other membrane CAs, such as CA XII. Thus, the properties of mAbs and chemical inhibitors need to be taken into consideration for using them as anticancer agents or as probes for the imaging of solid tumors.

6. CONCLUSION
The critical role of CA IX in the tumor progression and aggressiveness has been shown and CA IX has been proposed as a promising therapeutic drug target and a clinically useful biomarker of the broad range of hypoxic tumors. Our review described efforts in the development of selective agents against CA IX. It is a challenging task to develop a compound of high affinity and selectivity towards only one CA isoform due to the high homology between twelve catalytically active CA isoforms in human body. Deeper insight in the structural analysis and interactions of proteins involved in pH regulatory mechanisms of tumor cell could provide the relevant new strategies for rational drug design of CA IX-selective compounds for the therapy and diagnostic imaging.

LIST OF ABBREVIATIONS

- ADCs - Antibody-drug conjugates
- ALN - Axillary lymph node
- EZA - Ethoxzolamide
- IC₅₀ - The concentration causing 50% inhibition of target activity
- CA - Carbonic anhydrase
- ccRCC - Clear cell renal cell carcinoma
- FITC - fluorescent dye
- FTSA - Fluorescent thermal shift assay
- HIF - Hypoxia-inducible factor
- mAbs - Monoclonal antibodies
- NIRF - Near-infrared fluorescent
- PET/CT - Positron emission tomography/computed tomography
- SFA - Stopped-flow CO₂ hydration assay
- SLC - SignalChem Lifesciences Corp
- SMDCs - Small molecule-drug conjugates
- SPECT - Single-photon emission computed tomography
- SPR - Surface plasmon resonance
- U-104 - Ureidosulfonamide inhibitor of CA IX
REFERENCES

1. Semenza, G. L. (2014) Oxygen Sensing, Hypoxia-Inducible Factors, and Disease Pathophysiology, *Annual Review of Pathology* 9, 47–71.
2. Hanahan, D., and Weinberg, R. A. (2011) Hallmarks of Cancer: The next Generation, *Cell* 144, 646–674.
3. Weil, J., Loges, S., Dimmeler, S., and Carmeliet, P. (2013) Recent Molecular Discoveries in Angiogenesis and Antiangiogenic Therapies in Cancer, *The Journal of Clinical Investigation* 123, 3190–3200.
4. Waterman-Storer, C. M. (1956) On Respiratory Impairment in Cancer Cells, *Science (New York, N.Y.)* 124, 269–270.
5. Vander Heiden, M. G., Cantley, L. C., and Thompson, C. B. (2009) Understanding the Warburg Effect: The Metabolic Requirements of Cell Proliferation, *Science (New York, N.Y.)* 324, 1029–1033.
6. Wojtkowiak, J. W., Verduzo, D., Schramm, K. J., and Gillies, R. J. (2011) Drug Resistance and Cellular Adaptation to Tumor Acidic pH Microenvironment, *Molecular Ecology*, 2023–2038.
7. Good, J. S., and Harrington, K. J. (2013) The Hallmarks of Cancer and the Radiation Oncologist: Updating the 5Rs of Radiobiology, *Clinical Oncology (Royal College of Radiologists (Great Britain))* 25, 569–577.
8. Danko, C. M. (2014) Hypoxia and Hypoxia-Inducible Factor-1 in the Solid Tumour, *Nature Reviews. Cancer* 8, 705–713.
9. Ryu, M. H., Park, H. M., Chung, J., Lee, C. H., and Park, H. R. (2010) Hypoxia-Inducible Factor-1alpha Mediates Oral Squamous Cell Carcinoma Invasion via Upregulation of Alpha5 Integrin and Fibronectin, *Biochemical and Biophysical Research Communications* 393, 11–15.
10. O’Toole, E. A., Koningsveld, R. van, Chen, M., and Woodley, D. T. (2008) Hypoxia Induces Epidermal Keratinocyte Matrix Metalloproteinase-9 Secretion via the Protein Kinase C Pathway, *Journal of Cellular Physiology* 214, 47–55.
11. Li, Y., Qiu, X., Zhang, S., Zhang, Q., and Wang, E. (2009) Hypoxia Induced CCR7 Expression via HIF-1alpha and HIF-2alpha Correlates with Metastatic Potential in Colon Cancer, *Biochimica et Biophysica Acta. Cancer Biomarker & Therapy* 8, 322–330.
12. Kote, J. E., Iyer, N. V., Laughner, E., and Semenza, G. L. (1999) Defective Vascularization of HIF-1alpha-Null Embryos Is Not Associated with VEGF Deficiency but with Mesenchymal Cell Death, *Developmental Biology* 209, 254–267.
13. Takubo, K., Goda, N., Yamada, W., Iriuchishima, H., Ikeda, E., Kubota, Y., Shima, H., Johnson, R. S., Hirao, A., Suematsu, M., and Sada, T. (2010) Regulation of the HIF-1alpha Level is Essential for Hematopoietic Stem Cells, *Cell Stem Cell* 7, 391–402.
14. Obach, M., Navarro-Sabanté, A., Caro, J., Kong, X., Duran, J., Gómez, M., Perales, J. C., Ventura, F., Rosa, J. L., and Bartrons, R. (2004) 6-Phosphofructo-2-Kinase (Pfkfb3) Gene Promoter Contains Hypoxia-Inducible Factor-1 Binding Sites Necessary for Transactivation in Response to Hypoxia, *The Journal of Biological Chemistry* 279, 53562–53570.
15. Ullah, M. S., Davies, A. J., and Halestrap, A. P. (2006) The Plasma Membrane Lactate Transporter MCT4, but Not MCT1, Is Up-Regulated by Hypoxia through a HIF-1alpha-Dependent Mechanism, *Journal of Biological Chemistry* 281, 9030–9037.
16. Parks, S. K., Chiche, J., and Pouyssegur, J. (2013) Disrupting Proton Dynamics and Energy Metabolism for Cancer Therapy, *Nature Reviews. Cancer* 13, 611–623.
17. Wilson, W. R., and Hay, M. P. (2011) Targeting Hypoxia in Cancer Therapy, *Nature Reviews. Cancer* 11, 393–410.
18. Hashim, A. I., Zhang, X., Wojtkowiak, J. W., and Gillies, R. J. (2011) Imaging pH and Metastasis, *NMR in biomedicine* 24, 582–591.
19. Mazzio, E. A., Smith, B., and Soliman, K. F. A. (2010) Evaluation of Endogenous Acidic Metabolic Products Associated with Carbohydrate Metabolism in Tumor Cells, *Journal of Cellular Physiology* 226, 177–188.
20. Prete, S. D., Vullo, D., Luca, V. D., Supuran, C. T., and Capasso, C. (2014) Biochemical Characterization of the η-Carboxylic Anhydrase from the Marine Diatom Thalassiosira Weisfflogii, *TweCA, Journal of Enzyme Inhibition and Medicinal Chemistry* 29, 906–911.
21. Supuran, C. T., and O’Toole, E. A. (2014) η-Class Carbonic Anhydrases as Drug Targets for Antimalarial Agents, *Expert Opinion on Therapeutic Targets* 19, 551–563.
22. Krishnamurthy, V. M., Kaufman, G. K., Urbach, A. R., Gitlin, I., Gadiksen, K. L., Weibel, D. B., and Whitesides, G. M. (2008) Carbonic Anhydrase as a Model for Biophysical and Physical-Organic Studies of Proteins and Protein-Ligand Binding, *Chemical Reviews* 108, 946–1051.
23. Kikutani, S., Nakajima, K., Nagasato, C., Tsuji, Y., Miyatake, A., and Matsuda, Y. (2016) Thylakoid Luminal textheta-Carbonic Anhydrase Critical for Growth and Photosynthesis in the Marine Diatom Phaeodactylum Tricornutum, *Proceedings of the National Academy of Sciences of the United States of America* 113, 9828–9833.
24. Aggarwal, M., Boone, C. D., Kondett, B., and McKeenna, R. (2013) Structural Annotation of Human Carbonic Anhydrases, *Journal of Enzyme Inhibition and Medicinal Chemistry* 28, 267–277.
25. Capasso, C., and Supuran, C. T. (2015) An Overview of the Alpha-, Beta- and Gamma-Carbonic Anhydrases from Bacteria: Can Bacterial Carbonic Anhydrases Shed New Light on Evolution of Bacteria?, *Journal of Enzyme Inhibition and Medicinal Chemistry* 30, 325–332.
26. Frost, S. C. (2014) Physiological Functions of the Alpha Class of Carbonic Anhydrases, *Sub-Cellular Biochemistry* 75, 9–30.
27. Alterio, V., Hilvo, M., Fiore, A. D., Supuran, C. T., Pan, P., Parkkila, S., Scaloni, A., Pastorek, J., Pastorekova, S., Pedone, C., Scozzafla, A., Monti, S. M., and Simone, G. D. (2009) Crystal Structure of the Catalytic Domain of the Tumor-Associated Human Carbonic Anhydrase IX, *Proceedings of the National Academy of Sciences* 106, 16233–16238.
28. Svastova, E., Wittkowski, E., Takacova, M., Koso, J., Zatovicova, M., Barathova, M., Kopacek, J., Pastorek, J., and Pastorekova, S. (2012) Carbonic Anhydrase IX Interacts with Bicarbonate Transporters in Lamellipodia and Increases Cell Migration via Its Catalytic Domain, *The Journal of Biological Chemistry* 287, 3392–3402.
29. Swietach, P., Hulikova, A., Vaughan-Jones, R. D., and Harris, A. L. (2010) New Insights into the Physiological Role of Carbonic Anhydrase IX in Tumour pH Regulation, *Oncogene* 29, 6509–6521.
30. Pastorek, J., and Pastorekova, S. (2015) Hypoxia-Induced Carbonic Anhydrase IX as a Target for Cancer Therapy: From Biology to Clinical Use, *Seminars in Cancer Biology* 31, 52–64.
31. Sedlakova, O., Svastova, E., Takacova, M., Koso, J., Pastorek, J., and Pastorekova, S. (2014) Carbonic Anhydrase IX, a Hypoxia-Induced Catalytic Component of the pH Regulating Machinery in Tumors, *Frontiers in Physiology* 4.
32. Lock, F. E., McDonald, P. C., Lou, Y., Serrano, I., Chafe, S. C., Ostlund, C., Aparicio, S., Winum, J.-Y., Supuran, C. T., and Dedhar, S. (2013) Targeting Carbonic Anhydrase IX Depletes Breast Cancer Stem Cells within the Hypoxic Niche, *Oncogene* 32, 5210–5219.
570. McDonald, P. C., Winum, J.-Y., Supuran, C. T., and Dedhar, S. (2010) Recent Developments in Targeting Carbonic Anhydrase IX for Cancer Therapeutics, Oncotarget 1, 84–95.

571. Pastorekova, S., Parkkila, S., Parkkila, A., Opavsky, R., Zelnik, V., Saarnio, J., and Pastorek, J. (1997) Carbonic Anhydrase IX. MN/CA IX: Analysis of Stomach Complementary DNA Sequence and Expression in Human and Rat Alimentary Tracts, Gastroenterology 112, 398–408.

572. Ameis, H. M., Drenckhan, A., Freytag, M., Izbicki, J. R., Supuran, C. T., Reinshagen, K., Holland-Cunz, S., and Gros, S. J. (2016) Carbonic Anhydrase IX Correlates with Survival and Is a Potential Therapeutic Target for Neuroblastoma, Journal of Enzyme Inhibition and Medicinal Chemistry 31, 404–409.

573. Betof, A. S., Rabbani, Z. N., Hardee, M. E., Kim, S. J., Broadwater, G., Bentley, R. C., Snyder, S. A., Vujaskovic, Z., Oosterwijk, E., Harris, L. N., Horton, J. K., Dewhirst, M. W., and Blackwell, K. L. (2012) Carbonic Anhydrase IX Is a Predictive Marker of Doxorubicin Resistance in Early-Stage Breast Cancer Independent of HER2 and TOP2A Amplification, British Journal of Cancer 106, 916–922.

574. Yang, J.-S., Chen, M.-K., Yang, S.-F., Chang, Y.-C., Su, S.-C., Chiou, H.-L., Chien, M.-H., and Lin, C.-W. (2014) Increased Expression of Carbonic Anhydrase IX in Oral Submucous Fibrosis and Oral Squamous Cell Carcinoma, Clinical Chemistry and Laboratory Medicine 52, 1367–1377.

575. Choschzick, M., Oosterwijk, E., Müller, V., Woelber, L., Simon, R., Moeh, H., and Tennstedt, P. (2011) Overexpression of Carbonic Anhydrase IX (CAIX) Is an Independent Unfavorable Prognostic Marker in Endometrioid Ovarian Cancer, Virchows Archiv 459, 193–200.

576. Couvelard, A., O’Toole, D., Turley, H., Leek, R., Sauvanet, A., Degott, C., Ruszniewski, P., Belghiti, J., Harris, A. L., Gatter, K., and Pezzella, F. (2005) Microvascular Density and Hypoxia-Inducible Factor Pathway in Pancreatic Endocrine Tumours: Negative Correlation of Microvascular Density and VEGF Expression with Tumour Progression, British Journal of Cancer 92, 94–101.

577. Huang, W.-J., Jeng, Y.-M., Lai, H.-S., Fong, I.-U., Sheu, F.-Y. B., Lai, P.-L., and Yuan, R.-H. (2015) Expression of Hypoxic Marker Anhydrase IX Expression in Cancer Patients: A Meta-Analysis, BioMed Research International 2015, 2015, e453543.

578. Fisher, S. Z., Maupin, C. M., Budayova-Spano, M., Govindasamy, L., Tu, C., Agbandje-McKenna, M., Silverman, D. N., Voth, G. A., and McKenna, R. (2007) Atomic Crystal and Molecular Dynamics Simulation Structures of Human Carbonic Anhydrase II: Insights into the Proton Transfer Mechanism, ChemBioChem 6, 2930–2937.

579. Eriksson, A. E., Jones, T. A., and Liljas, A. (1988) Refined Structure of Human Carbonic Anhydrase II at 2.0 A Resolution, Journal of Biological Chemistry 263, 613–828.

580. Peled, Y., and Sarkanan, S. (1978) Carbonic Anhydrase: Structure Catalytic Versatility, and Inhibition, Advances in Enzymology and Related Areas of Molecular Biology 47, 149–274.

581. Pinard, M. A., Mahon, B., McKenna, R., Pinard, M. A., Mahon, B., and McKenna, R. (2015) Probing the Surface of Human Carbonic Anhydrase for Clues towards the Design of Isoform Specific Inhibitors, Probing the Surface of Human Carbonic Anhydrase for Clues towards the Design of Isoform Specific Inhibitors, Biochemical Pharmacology 89, 737–749.

582. Supuran, C. T. (2012) Structure-Based Drug Discovery of Carbonic Anhydrase Inhibitors, Journal of Enzyme Inhibition and Medicinal Chemistry 27, 759–772.

583. Lomelino, C., and McKenna, R. (2016) Carbonic Anhydrase Inhibitors: A Review on the Progress of Patent Literature (2011-2016), Expert Opinion on Therapeutic Patents 26, 947–956.

584. Supuran, C. T. (2016) How Many Carbonic Anhydrase Inhibition Mechanisms Exist?, Journal of Enzyme Inhibition and Medicinal Chemistry 31, 345–360.

585. Supuran, C. T. (2017) Advances in Structure-Based Drug Discovery of Carbonic Anhydrase Inhibitors, Expert Opinion on Drug Discovery 12, 61–88.

586. Alterio, V., Di Fiore, A., D’Ambrosio, K., Supuran, C. T., and De Simone, G. (2012) Multiple Binding Modes of Inhibitors to Carbonic Anhydrase: How to Design Specific Drugs Targeting 15 Different Isoforms?, Expert Opinion on Therapeutic Patents 23, 737–749.

587. Gibbons, B. H., and Eads, J. T. (1963) RATE OF HYDRATION OF CARBON DIOXIDE AND DEHYDRATION OF CARBONIC ACID AT 25 DEGREES, The Journal of Biological Chemistry 238, 3502–3507.

588. Gibbons, B. H., and Eads, J. T. (1964) KINETIC STUDIES OF HUMAN CARBONIC ANHYDRASES B AND C, The Journal of Biological Chemistry 239, 2539–2544.

589. Khalifah, R. G. (1971) The Carbon Dioxide Hydration Activity of Carbonic Anhydrase. I Stop-Flow Kinetic Studies on the Native Human Enzymes B and C, Journal of Biological Chemistry 246, 2561–73.

590. Morrison, J. F. (1969) Kinetics of the Reversible Inhibition of Enzyme-Catalysed Reactions by Tight-Binding Inhibitors, Biochimica Et Biophysica Acta 185, 269–286.

591. Cheng, Y., and Prusoff, W. H. (1973) Relationship between the Inhibition Constant (K1) and the Concentration of Inhibitor Which Causes 50 per Cent Inhibition (150) of an Enzymatic Reaction, Biochemical Pharmacology 22, 3099–3108.

592. Carta, F., Akdemir, A., Scoccitafeta, A., Massini, E., and Supuran, C. T. (2013) Xanthates and Thioxicarbamates Strongly Inhibit Carbonic Anhydrases and Show Antiglioma Action in Vivo, Journal of Medicinal Chemistry 56, 4691–4700.

593. Innocenti, A., Scoccitafeta, A., and Supuran, C. T. (2010) Carbonic Anhydrase Inhibitors. Inhibition of Transmembrane Isoforms IX, XII, and XIV with Less Investigated Anions Including Trithiocarbonate and Dithiocarbamate, Bioorganic & Medicinal Chemistry Letters 20, 1548–1550.

594. Carta, F., Aggarwal, M., Maresca, A., Scoccitafeta, A., McKenna, R., Masini, E., and Supuran, C. T. (2012) Dithiocarbamates Strongly Inhibit Carbonic Anhydrases and Show Antiglioma Action in Vivo, Journal of Medicinal Chemistry 55, 1721–1730.

595. Supuran, C. T. (2013) Carbonic Anhydrase Inhibitors: An Editorial, Expert Opinion on Therapeutic Patents 23, 677–679.

596. Naclerio, A., Cervelli, A., and Supuran, C. T. (2016) 7-Aryl-Trizolyl-Substituted Sulfooxamates Are Patent, Selective Inhibitors of the Tumor-Associated Carbonic Anhydrase IX and XII, Journal of Enzyme Inhibition and Medicinal Chemistry 31, 1226–1233.
Benzenesulfonamides and Benzofuzed Sultams Act as Selective hCA IX Inhibitors: Toward Understanding a New Mode of Inhibition

Supuran, C. T. (2016) How Many Carbonic Anhydrase Inhibition Mechanisms Exist?, Chemistry Letters 665, 302–305.

Tars, K., Vullo, D., Kazaks, A., Leitans, J., Lends, A., Grandane, A., Zalubovskis, R., Scozzafava, A., and Supuran, C. T. (2013) Imatinib and Nilotinib Strongly Inhibit Several Mammalian Alpha-Carbonic Anhydrase Isoforms, Bioorganic & Medicinal Chemistry 21, 4102–4106.

Supuran, C. T. (2016) How Many Carbonic Anhydrase Inhibition Mechanisms Exist?, Journal of Enzyme Inhibition and Medicinal Chemistry 31, 345–360.

Méayer, B., Martin-Mingot, A., Vullo, D., Supuran, C. T., and Thibaudau, S. (2013) Supercar Synthesized Tertiary Benzenesulfonamides and Benzofuzed Sultams Act as Selective hCA IX Inhibitors: Toward Understanding a New Mode of Inhibition by Tertiary Sulfonamides, Organic & Biomolecular Chemistry 11, 7540–7549.

Dekaminavičiūtė, D., Kairys, V., Zilnytė, M., Petrikaitė, V., Jachno, J., Revuckienė, J., Žvirblienė, A. (2014) Monoclonal Antibodies Raised against 167-180 Aa Sequence of Human Carbonic Anhydrase XII Inhibit Its Enzymatic Activity, Journal of Enzyme Inhibition and Medicinal Chemistry 29, 804–810.

De Antuine, V., Matulienė, J., Smirnov, V., Timm, D. D., Zubriene, A., Baraunaskienė, L., Morkinaite, V., Smirnovienė, J., Michaelovienė, V., Juozapaitiene, V., Miekelieviciute, A., Kazokaite, J., Bakstyte, S., Kasliauskaitė, A., Jachno, J., Revuckienė, J., Kiošanaitė, M., Piliputytė, V., Ivanuskaitė, E., Milinavičiūtė, G., Smirnovas, V., Petrikaitė, V., Kairys, V., Petruaskas, V., Norvašas, P., Lingė, D., Gibeža, P., Ėkapauskaitė, E., Zakiauskas, A., Kazlauskas, E., Manakova, E., Gražulis, S., Ladbury, J. E., and Matulis, D. (2014) Discovery and Characterization of Novel Selective Inhibitors of Carbonic Anhydrase IX, Journal of Medicinal Chemistry 57, 9435–9446.

Tashian, R. E., Douglas, D. P., and Yu, Y. S. (1964) Esterase and Hydrase Activity of Carbonic Anhydrase. I. From Primate Erythrocytes, Biochemical and Biophysical Research Communications 14, 256–261.

Akmucėglau, A., Akhaba, Y., Gysër, H., Gökşu, S., Gülçin, Čiūtė, Smirnovienė, Kasiliauskaitė, Matulienė, Akbaba, Y., Göçer, H., Göksu, S., Gülçin, Juozaiaitienė, Matulienė, Akbaba, Y., Göçer, H., Göksu, S., Gülçin, Journal of Enzyme Inhibition and Medicinal Chemistry 21, 1379–1385.

Uda, N. R., Seibert, V., Stennier-Liewen, F., Müller, P., Herzig, P., Gondi, G., Zeidler, R., Dijk, M. van, Zippepius, A., and Renner, C. (2015) Esterase Activity of Carbonic Anhydrases Serves as Surrogate for Selecting Antibodies Blocking Hydratase Activity, Journal of Inhibition and Medicinal Chemistry 30, 955–960.

Smirnovienė, J., Smirnovas, V., and Matulis, D. (2017) Picomolar Inhibitors of Carbonic Anhydrase: Importance of Inhibition and Binding Assays, Analytical Biochemistry 522, 61–72.

Liet, R. M., Rytting, J. H., Hansen, L. D., and Christensen, J. J. (1966) Thermodynamics of Proton Dissociation in Dilute Aqueous Solution. V. An Enzyme Titration Study of Adenosine, Pentoses, Hexoses, and Related Compounds 1A, Journal of the American Chemical Society 88, 2641–2645.

Christensen, J. J., Liat, R. M., Hansen, L. D., and Partridge, J. A. (1966) Enzyme Titration. A Calorimetric Method for the Determination of AG, AH, and AS from a Single Thermometric Titration 1A, The Journal of Physical Chemistry 70, 2003–2010.

Ramsay, G., Prabh, R., and Freire, E. (1986) Direct Measurement of the Energetics of Association between Myelin Basic Protein and Phosphatidylerine Vesicles, Biochemistry 25, 2265–2270.

Schön, A., and Freire, E. (1989) Thermodynamics of Intersubunit Interactions in Cholera Toxin upon Binding to the Oligosaccharide Portion of Its Cell Surface Receptor, Ganglioside GM1, Biochemistry Biochemistry 32, 5019–5024.

Klebe, G. (2001) Thermodynamics of Metal Ion Binding. 1. Metal Ion Binding by Wild-Type Carbonic Anhydrase, Biochemistry 40, 5338–5344.

DiTusa, C. A., Christensen, T., McCall, K. A., Fierke, C. A., and Toone, E. J. (2001) Thermodynamics of Metal Ion Binding by Wild-Type Carbonic Anhydrase, Biochemistry 40, 5338–5344.

Khalil, R. G., Zanger, R., Egan, A. L., and Toone, E. J. (2004) Thermodynamics of Binding of the CO2-Competitive Inhibitor Iminidazole and Related Compounds to Human Carbonic Anhydrase I. An Isothermal Titration Calorimetry Approach to Studying Weak Binding by Displacement with Strong Inhibitors, Biochemistry 32, 3058–3066.

Fox, M. J., Kang, K., Sherman, W., Heroux, A., Sastry, G. M., Baghbanzadeh, M., Lockett, M. R., and Whitesides, G. G. (2014) The Journal of Physical Chemistry 70, 2003–2010.
90. Morkūnaitė, V., Gylté, J., Zubričienė, A., Baranauskienė, L., Kišonaitė, M., Michailovičienė, V., Juozapaitienė, V., Todd, M. J., and Matulis, D. (2015) Intrinsic Thermodynamics of Sulfonamide Inhibitor Binding to Human Carbonic Anhydrases I and II, *Journal of Enzyme Inhibition and Medicinal Chemistry* 30, 204–211.

91. Kasliasukas, A., Caisait, V., Juozapaitienė, V., Zubričienė, A., Michailovičienė, V., Revuckien, J., Baranauskienė, L., Me skys, R., and Matulis, D. (2015) Thermodynamic Characterization of Human Carbonic Anhydrase VB Stability and Intrinsic Binding of Compounds, *Journal of Thermal Analysis and Calorimetry* 123, 2191–2200.

92. Kasliasukas, J., Miliarivoč, G., Smirnov, J., Matuličienė, J., and Matulis, D. (2015) Intrinsic Thermodynamics of Tetrafluorobenzesulfonamides to Native and Recombinant Human Carbonic Anhydrase VI, *The FEBS Journal* 282, 972–983.

93. Pilipūtytė, V., and Matulis, D. (2015) Intrinsic Thermodynamics of Trifluoromethanesulfonamide and Ethoxzolamide Binding to Human Carbonic Anhydrase VII, *Journal of Molecular Recognition* 28, 166–172.

94. Linkuvienė, V., Matuličienė, J., Juozapaitienė, V., Michailovičienė, V., Jachno, J., and Matulis, D. (2016) Intrinsic Thermodynamics of Inhibitor Binding to Human Carbonic Anhydrase IX, *Biochimica et Biophysica Acta (BBA) - General Subjects* 1860, 708–718.

95. Jogaitė, V., Zubričienė, A., Michailovičienė, V., Gylté, J., Morkūnaitė, V., and Matulis, D. (2013) Characterization of Human Carbonic Anhydrase XII Stability and Inhibitor Binding, *Bioorganic & Medicinal Chemistry* 21, 1431–1436.

96. Baranauskienė, L., and Matulis, D. (2012) Intrinsic Thermodynamics of Ethoxzolamide Inhibitor Binding to Human Carbonic Anhydrase XIII, *BMC Biophysics* 5, 12.

97. Zubričienė, A., Smirnov, A., Smirnovė, J., Morkūnaitė, V., Michailovičienė, V., Jachno, J., Juozapaitienė, V., Norvašas, P., Manakova, E., Gražulis, S., and Matulis, D. (2015) Intrinsic Thermodynamics of 4-Substituted-2,3,5,6-Tetrafluorobenzesulfonamides Binding to Carbonic Anhydrases by Isothermal Titration Calorimetry, *Biophysical Chemistry* 205, 51–65.

98. Kranz, J. K., and Schalk-Hihi, C. (2011) Protein Thermal Shifts to Identify Low Molecular Weight Fragments, *Methods in Enzymology* 493, 277–298.

99. Lo, M.-C., Aulabaugh, A., Jin, G., Cowling, R., Bard, J., Malamas, M., and Ellestad, G. (2004) Evaluation of Fluorescence-Based Thermal Shift Assays for Hit Identification in Drug Discovery, *Analytical Biochemistry* 332, 153–159.

100. Pantoliano, M. W., Petrella, C. E., Kwanoski, J. D., Lobanov, V. S., Myslik, J., Graf, E., Carver, T., Asel, E., Springer, B. A., Lane, P., and Salemme, F. R. (2000) High-Density Miniaturized Thermal Shift Assays as a General Strategy for Drug Discovery, *Journal of Biomolecular Screening* 6, 429–440.

101. Niesen, F. H., Berglund, H., and Vedadi, M. (2007) The Use of Differential Scanning Fluorimetry to Detect Ligand Interactions That Promote Protein Stability, *Nature Protocols* 2, 2212–2221.

102. Cimmperman, P., and Matulis, D. (2011) Chapter 8: Protein Thermal Denaturation Measurements via a Fluorescent Dye. In *Biophysical Chemistry*, pp 247–274.

103. Cimmperman, P., Baranauskienė, L., Jachmiowicz, S., Jachno, J., Torresan, J., Michailovičienė, V., Matuličienė, J., Sereikaitė, J., Bumelis, V., and Matulis, D. (2008) A Quantitative Model of Thermal Stabilization and Destabilization of Proteins by Ligands, *Biophysical Journal* 95, 3222–3231.

104. Mezzasalma, T. M., Kranz, J. K., Chan, W., Struble, G. T., Schalk-Hihi, C., Deckman, I. C., Springer, B. A., and Todd, M. J. (2007) Enhancing Recombinant Protein Quality and Yield by Protein Stability Profiling, *Journal of Biomolecular Screening* 12, 418–428.

105. Cummings, M. D., Farnum, M. A., and Nelen, M. I. (2006) Universal Screening Methods and Applications of ThermoFluor, *Journal of Biomolecular Screening* 11, 854–863.

106. Klinger, A. L., McCosker, D. F., Smith-Swintosky, V., Shank, R. P., and Maryanoff, B. E. (2006) Inhibition of Carbonic Anhydrase II by Sulfamate and Sulfamide Groups: An Investigation Involving Direct Thermodynamic Binding Measurements, *Journal of Medicinal Chemistry* 49, 3496–3500.

107. Budutienė, V., Zubričienė, A., Smirnov, A., Gylté, J., Timm, D., Manakova, E., Gražulis, S., and Matulis, D. (2013) 4-Substituted-2,3,5,6-Tetrafluorobenzesulfonamides as Inhibitors of Carbonic Anhydrases I, II, VII, XII, and XIII, *Bioorganic & Medicinal Chemistry* 21, 2093–2106.

108. Budutienė, V., Zubričienė, A., Smirnov, A., Timm, D. D., Smirnov, J., Kazokaitė, J., Michailovičienė, V., Zaksauskas, A., Manakova, E., Gražulis, S., and Matulis, D. (2015) Functionalization of Fluorinated Benzenesulfonamides and Their Inhibitory Properties toward Carbonic Anhydrases, *ChemMedChem* 10, 662–687.

109. Čepakpūtė, E., Zubričienė, A., Smirnov, A., Torresan, J., Kišonaitė, M., Kazokaitė, J., Gylté, J., Michailovičienė, V., Jogaitė, V., Manakova, E., Gražulis, S., Tumkevičius, S., and Matulis, D. (2013) Benzanesulfonamides with Pyrimidine Moieties as Inhibitors of Human Carbonic Anhydrases I, II, VI, VII, XII, and XIII, *Bioorganic & Medicinal Chemistry* 21, 6937–6947.

110. Morkūnaitė, V., Baranauskienė, L., Zubričienė, A., Kairys, V., Ivanova, J., Tranpenceris, P., Matulis, D. (2014) Saccharin Sulfonamides as Inhibitors of Carbonic Anhydrases I, II, VII, XII, and XIII, *Biosurfactants as Sulfonamides with Benzimidazole Moieties as Inhibitors of Carbonic Anhydrases I, II, VII, XII, and XIII, *Journal of Enzyme Inhibition and Medicinal Chemistry* 29, 124–131.

111. Rutkaskas, K., Zubričienė, A., Tumasienė, I., Kantiminičienė, K., Kažėmėkaitė, M., Smirnov, A., Kazokaitė, J., Morkūnaitė, V., Čepakpūtė, E., Manakova, E., Gražulis, S., Beresnevčius, Z. J., and Matulis, D. (2014) 4-Amino-Substituted Benzanesulfonamides as Inhibitors of Human Carbonic Anhydrases, *Molecules (Basel, Switzerland)* 19, 17356–17380.

112. Liedberg, B., Nylander, C., and Lunström, I. (1983) Surface Plasmon Resonance for Gas Detection and Biosensing, *Sensors and Actuators B: Chemical* 4, 299–304.

113. Jönsson, U., Fägerstam, L., Ivarsson, B., Karlsson, R., Lundh, K., Löfås, S., Persson, B., Roos, H., and Rönngberg, I. (1991) Real-Time Biospecific Interaction Analysis Using Surface Plasmon Resonance and a Sensor Chip Technology, *BioTechniques* 11, 620–627.

114. Jecklin, M. C., Schauer, S., Dumelin, C. E., and Zenobi, R. Label-Free Determination of Protein-Ligand Binding Constants Using Mass Spectrometry and Validation Using Surface Plasmon Resonance and Isothermal Titration Calorimetry, *Journal of Molecular Recognition* 22, 319–329.

115. Myškys, D. G. (2003) Analysis of Small-Molecule Interactions Using Biacore S51 Technology, *Analytical Biochemistry* 329, 316–323.

116. Navratilova, I., and Hopkins, A. L. (2010) Fragment Screening by Surface Plasmon Resonance, *ACS Medicinal Chemistry Letters* 1, 44–48.
917. Svastová, E., Hulíková, A., Rafajová, M., Zaťovicová, M., Gibadulinová, A., Caschi, A., Cecchi, A., Scozzafava, A., Supuran, C. T., Pastorek, J., and Pastoreková, S. (2004) Hypoxia Activates the Capacity of Tumor-Associated Carbonic Anhydrase IX to Acidify Extracellular pH, FEBS letters 577, 439–445.

918. Pastoreková, S., Ratcliffe, P. J., and Pastorek, J. (2008) Molecular Mechanisms of Carbonic Anhydrase IX-Mediated pH Regulation under Hypoxia, BJU international 101 Suppl 4, 8–15.

919. Li, Y., Wang, H., Oosterwijk, E., Selman, Y., Mira, J. C., Medrano, T., Shiverick, K. T., and Frost, S. C. (2009) Antibody-Specific Detection of CAIX in Breast and Prostate Cancers, Biochemical and Biophysical Research Communications 386, 488–492.

920. Groves, K., Bao, B., Zhang, J., Handy, E., Kennedy, P., Cunco, G., Supuran, C. T., Yared, W., Peterson, J. D., and Rajopadhye, M. (2012) Synthesis and Evaluation of Near-Infrared Fluorescent Sulfonamide Derivatives for Imaging of Hypoxia-Induced Carbonic Anhydrase IX Expression in Tumors, Bioorganic & Medicinal Chemistry Letters 22, 653–657.

921. Cecchi, A., Hulíková, A., Pastorek, J., Pastoreková, S., Scozzafava, A., Winum, J.-Y., Montero, J.-L., and Supuran, C. T. (2005) Carbonic Anhydrase Inhibitors. Design of Fluorescent Sulfonamides as Probes of Tumor-Associated Carbonic Anhydrase IX That Inhibit Isozyme IX-Mediated Acidification of Hypoxic Tumors, Journal of Medicinal Chemistry 48, 4834–4841.

922. Ahlskog, J. K. J., Dumelin, C. E., Trüssel, S., Mårlind, J., and Neri, D. (2009) In Vivo Targeting of Tumor-Associated Carbonic Anhydrases Using Acetazolamide Derivatives, Bioorganic & Medicinal Chemistry Letters 19, 4851–4856.

923. Lv, P.-C., Putt, K. S., and Low, P. S. (2016) Evaluation of Nonpeptidic Ligand Conjugates for SPECT Imaging of Hypoxic and Carbonic Anhydrase IX-Expressing Cancers, Bioconjugate Chemistry 27, 1762–1769.
Figure 1

Methods

Methods which might be applied for developing CA IX-targeting compounds before pre-clinical characterization in tumor cells and mice

- Stopped-flow CO₂ hydration assay
- Biophysical assays
- Zebrafish model
- Oocytes of *Xenopus laevis*
 - Isothermal titration calorimetry
 - Fluorescent thermal shift assay
 - Surface plasmon resonanse
Biological model systems for the investigation of CA IX inhibitors

The compounds did not show any significant toxicity on zebrafish and possessed nanomolar IC_{50} for heterologous CA IX expressed in *Xenopus* oocytes. In addition, the selectivity of compounds toward CA isoforms was evaluated according to the effect of compounds on the reduction of extracellular (CA IX, CA IV, and CA XII) and intracellular (CA II) CA-induced acidification in oocytes [123, 127].
Table 1. Biological model systems for the investigation of CA IX inhibitors. The compounds did not show any significant toxicity on zebrafish and possessed nanomolar IC_{50} for heterologous CA IX expressed in *Xenopus* oocytes. In addition, the selectivity of compounds toward CA isoforms was evaluated according to the effect of compounds on the reduction of extracellular (CA IX, CA IV, and CA XII) and intracellular (CA II) CA-induced acidification in oocytes [119, 123].

Inhibitor	Type of study	Toxicology	Affinity and selectivity
VD11-4-2		$LC_{50} = 120 \mu M$	CA IX: $IC_{50} = 25 \text{nM}$
			CA II: <5.0% effect on pH at 10 µM
			CA IV: 57.8% effect on pH at 10 µM
			CA XII: 28.0% effect on pH at 50 nM
VD12-09		$LC_{50} = 13 \mu M$	CA IX: 25.5% effect on pH at 10 µM
			CA II: <5.0% effect on pH at 10 µM

Methods:
1. light-field microscopy
2. histological analysis

IC_{50} - the concentration causing 50% inhibition of target activity, LC_{50} - 50% lethal concentration.
Table 2 (on next page)

Anti-tumor agents for targeting hypoxia-induced CA IX for therapy and diagnosis
Table 2. Anti-tumor agents for targeting hypoxia-induced CA IX for therapy and diagnosis

Anti-tumor agents	Therapy stage	Diagnosis	References
SLC-0111	Phase I trial	Solid tumors	[157]
U-104	Preclinical trials		[150-152]
G250 (girentuximab)	Phase III clinical trial	ccRCC diagnosis	[138]
177Lu-labelled girentuximab	Phase II clinical trials	ccRCC diagnosis	[139]
Indisulam	Phase I clinical trials	Solid tumors	[147, 148]
NIR fluorescent derivative of the acetazolamide	Preclinical trials	Xenograft tumor model	[169]
99mTc-(HE)3-ZCAIX:2	Preclinical trials	Disseminated cancer	[170]
125I-ZCAIX:4	Preclinical trials	Primary renal cell carcinoma	[170]