RESEARCH ARTICLE

RNA-sequencing analysis of umbilical cord plasma microRNAs from healthy newborns

Gary P. Brennan, Dimitrios M. Vitsios, Sophie Casey, Ann-Marie Looney, Boubou Hallberg, David C. Henshall, Geraldine B. Boylan, Deirdre M. Murray, Catherine Mooney

1 Department of Physiology & Medical Physics, Royal College of Surgeons in Ireland, Dublin, Ireland, 2 FutureNeuro Research Centre, Royal College of Surgeons in Ireland, Dublin, Ireland, 3 European Molecular Biology Laboratory–European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, United Kingdom, 4 INFANT Research Centre, University College Cork, Cork, Ireland, 5 Department of Paediatrics & Child Health, University College Cork, Cork, Ireland, 6 Neonatology, Karolinska University Hospital, Stockholm, Sweden, 7 School of Computer Science, University College Dublin, Belfield, Dublin 4, Ireland

* catherine.mooney@ucd.ie

Abstract

MicroRNAs are a class of small non-coding RNA that regulate gene expression at a post-transcriptional level. MicroRNAs have been identified in various body fluids under normal conditions and their stability as well as their dysregulation in disease has led to ongoing interest in their diagnostic and prognostic potential. Circulating microRNAs may be valuable predictors of early-life complications such as birth asphyxia or neonatal seizures but there are relatively few data on microRNA content in plasma from healthy babies. Here we performed small RNA-sequencing analysis of plasma processed from umbilical cord blood in a set of healthy newborns. MicroRNA levels in umbilical cord plasma of four male and four female healthy babies, from two different centres were profiled. A total of 1,004 individual microRNAs were identified, which ranged from 426 to 659 per sample, of which 269 microRNAs were common to all eight samples. Many of these microRNAs are highly expressed and consistent with previous studies using other high throughput platforms. While overall microRNA expression did not differ between male and female cord blood plasma, we did detect differentially edited microRNAs in female plasma compared to male. Of note, and consistent with other studies of this type, adenylation and uridylation were the two most prominent forms of editing. Six microRNAs, miR-128-3p, miR-29a-3p, miR-9-5p, miR-218-5p, 204-5p and miR-132-3p were consistently both uridylated and adenylated in female cord blood plasma. These results provide a benchmark for microRNA profiling and biomarker discovery using umbilical cord plasma and can be used as comparative data for future biomarker profiles from complicated births or those with early-life developmental disorders.
Introduction

Complications during childbirth and pre-term births can lead to developmental and neurological dysfunction in later life in a subset of children [1–4]. There remains a major unmet need for molecular biomarkers of maternal and neonatal complications such as hypoxic ischemic encephalopathy (HIE). The development of reliable, non-invasive biomarkers would allow us to identify at an early stage, babies at risk of succumbing to developmental and neurological deficits and enable early intervention or prevention. Umbilical cord blood and plasma are a potential source of pertinent biological information following birth which could contain predictive biomarkers of neurological outcome, however little is known about the molecular profile of umbilical cord plasma.

MicroRNAs (miRNAs) are ubiquitously expressed, short non-coding RNAs which fine-tune gene expression by negatively regulating mRNA translation [5]. They are shuttled between cells via extracellular vesicles [6–8] and importantly are abundant in peripheral biofluids including plasma [9], urine [10], cerebrospinal fluid [11], tears, saliva and peritoneal fluid [12]. They were first profiled in human plasma, serum and microvesicles in 2008 [13–15] and since then, subsequent studies have found that their levels in peripheral biofluids often fluctuate in patients with various types of cancer, neurological disorders, sepsis, liver and cardiovascular disease (reviewed in [16–18]). As such miRNAs have received much interest as potential biomarkers and contain many characteristics which render them ideal biomarker candidates: they are more stable than mRNA as they are resistant to RNase cleavage [19]; expression profiles of miRNAs are often more informative and discriminatory than mRNA profiles; they are abundant and profiling miRNAs is rapid and economical [20]; and their levels often change more rapidly in response to an insult or pathophysiological processes allowing early detection of disease which is critical for progressive illnesses such as cancer, Alzheimer’s disease, epilepsy and early life insults [21–25].

We have previously shown that a number of miRNAs display altered expression in umbilical cord blood from infants following perinatal asphyxia [26]. These miRNAs may, in the future, aid clinicians in providing targeted neuroprotection. We have also shown that miRNA alterations may be used to examine downstream targets and elucidate pathogenesis [27]. Accordingly, identification of miRNAs associated with perinatal and neonatal injury is a priority.

Foetal Growth Restriction (FGR) is a disorder which manifests as a reduction or complete halt of genetically predetermined potential growth of a foetus [28]. The placenta plays a vital role in the correct development and growth of the foetus via provision of essential nutrients and protection from toxins which may affect development and growth and is believed to temporally and abundantly produce miRNAs which are involved in placental development and function [29–31]. The placenta can also produce exosomes in which miRNAs can be found [32]. Placentally-expressed miR-424 may play a crucial role in the development of the placenta and is believed therefore to be associated with FGR. Upregulation was noted in placentae with aberrant vascular development linked to FGR [33]. Downregulation of placental miR-16 and miR-21 has been linked to FGR also. MiR-16 has involvement in both apoptosis and regulation of the cell cycle and may display cell-specific functions and expression. PTEN, the target of miR-21, is normally expressed in the placenta and dysregulation may cause aberrant invasion of the placenta, and reduced migration and growth [30]. Trophoblastic miRNAs regulated by hypoxia are increased in maternal plasma and decreased in placental tissue from FGR cases [32].

Preeclampsia affects up to 8% of all live births worldwide and can result in a high risk of morbidity and mortality for both mother and offspring [29], with approx. 25% resulting in
FGR [34]. Inadequate placental oxygenation/angiogenesis may result in consequential hypoxia-ischemia seen in the disorder. Zhu et al. [35] reported over 90 differentially expressed miRNAs between preeclamptic and healthy patients. Multiple miRNAs are dysregulated in severe cases of preeclampsia when compared to uncomplicated, healthy pregnancies. These included but are not limited to miR-210, miR-195, miR-181a, miR-411, and miR-377 [29, 34]. Master hypoxamir miR-210 expression levels are raised in both placental tissue and plasma samples from preeclamptic women [36] and can influence multiple pathways in preeclampsia, for example, angiogenesis, mitochondrial dysfunction and immunity [31]. Pineles et al. [37] demonstrated that overexpression of miR-210 and miR-182 may differentiate preeclampsia from healthy controls. miRNAs which are responsible for regulation of angiogenic factors such as VEGF are also dysregulated in preeclampsia [34].

Serum miR-323 levels differ from healthy controls in both ectopic pregnancy and spontaneous abortion [38, 39]. Conditions such as gestational diabetes may also be diagnosable with miRNA biomarkers, for example, miR-16, miR-17, miR-19a, miR-19b and miR-20a are dysregulated in the condition when compared to healthy subjects [40].

Many RNA species including miRNAs have been shown to be subjected to editing and modification processes including A-I editing, base modifications, as well as chemical modifications [41–45]. Analysis of deep sequencing data has revealed differences between genomic sequences and RNA sequences, including mRNAs, miRNAs and lncRNAs, the result of RNA editing mechanisms which is a critical function of gene regulation [46, 47]. MiRNAs are targeted by A-to-I editing enzymes (ADARs), where an A base is changed to an apparent G, as well as tailing and trimming modifications which involves the addition or removal of a nucleotide at the 3’ or 5’ end of the miRNA entity which is mediated by TUTases, however other forms of modification are also prominent including 2’O-methylation [47–50]. Modification of miRNAs has been shown to modify miRNA-mRNA targeting, stability and RISC-uptake which can alter gene network dynamics and cellular activity and function. Analysis of RNA editing in plasma is still poorly understood and limited by the lower yields of RNA obtained. However analysis of RNA editing, including miRNA editing in peripheral biofluids may confer additional biomarker potential and sensitivity which would allow greater confidence in biomarker identification as well as provide insight into the function of RNA editing in normal and disease processes.

MiRNA profiling has moved away from high throughput qRT-PCR-based platforms towards the use of RNA-sequencing (RNA-seq), however, few datasets on healthy umbilical cord blood plasma exist for reference purposes. In order to develop reliable biomarkers from umbilical cord plasma, it is important that we gain perspective on the naturally occurring miRNA profiles. Previous studies have used microarrays to profile miRNAs in cord blood from neonates with HIE [26], or used RNA-seq to profile miRNA expression from trios of samples from newborn babies and their parents [51], umbilical cord blood derived cells [52, 53], and cord blood buffy coat layers [54]. However, a reference dataset of total miRNA profiles and miRNA editing analysis of healthy umbilical cord plasma has yet to be established.

Here we perform unbiased small RNA-seq on umbilical cord blood plasma from healthy newborn infants. We compared the expression of miRNAs between sexes and between the maternity hospitals of origin. We also performed preliminary analyses on RNA editing differences which may exist between sexes in order to obtain a more comprehensive catalogue of miRNA profiles in umbilical cord blood plasma. Interrogation of the miRNA profiles from umbilical plasma revealed a largely stable miRNA profile between male and female, however differences in RNA editing were identified, indicating increased complexity in the miRNA makeup of umbilical cord blood plasma in females compared to males.
Materials and methods

Study population

Umbilical cord blood samples were collected from two maternity hospitals: Cork University Maternity Hospital (CUMH) and Karolinska University Hospital (KUH). Consent from parents or guardians of the infants included in the study was obtained according to the Declaration of Helsinki and ethical approval was granted from the Clinical Research Ethics Committee of the Cork Teaching Hospitals, Cork, Ireland and local ethical committee approval in Karolinska University Hospital. This was a nested study of infants recruited to the BiHiVE 2 study (NCT02019147).

In total, 8 infants were included in this study; 4 males and 4 females (Table 1). All infants were of European descent, singleton, full term, uncomplicated vaginal births. Samples were collected from 4 infants in CUMH (2 males and 2 females) and from 4 infants in KUH (2 males and 2 females). We did not detect any significant difference between male and female infants based on maternal age, parity, gestation, birthweight, head circumference or length. The Apgar score for all infants was above 9 at 1 and 5 minutes.

Biofluid collection

Umbilical cord blood samples were collected immediately after delivery of all infants in this study and processed within 3 h following strict laboratory SOPs by a dedicated research team who were available 24 h a day. Samples were stored at −80 °C in a monitored storage facility until analysis. 6 ml of umbilical cord blood was collected into vacutainer tubes from the infants and processed within 3 hours of delivery. The plasma was prepared by centrifuging the tubes at 2400 x g, for 10 minutes, at 4 °C. The supernatant was collected into an RNAase free tube and extra care was taken not to disturb the buffy coat which contains the white blood cells. Plasma was then collected into 250 μl RNAase free eppendorfs and stored at −80 °C. The level of haemolysis in the plasma samples was assessed by spectrophotometric analysis using a Nanodrop 2000 spectrophotometer. The absorbance at 414 nm was checked and a cut-off level of 0.25 was used to distinguish haemolysis free samples [55].

Small RNA library preparation and RNA-seq

200 μl of non-hemolyzed cord blood plasma was used to isolate RNA, using the miRCURY RNA isolation kit (Exiqon) according to the manufacturer’s protocol. RNA was eluted in

Table 1. Summary of infant demographics and clinical findings, showing the mean and the range for each feature.

Variable	Female (n = 4)	Male (n = 4)	p-value
CUMH (n)	2	2	
KUH (n)	2	2	
Maternal age (yrs)	31.75 (25-37)	34.25 (26-41)	0.5733
Parity (n)	1.75 (1-3)	2 (1-3)	0.7049
Gestation (weeks)	41 (39-42)	40 (39-40)	0.2070
Birthweight (g)	3525 (2985-4240)	3693.75 (3375-3980)	0.5994
Head circumference (cm)	35.375 (34-36.2)	35.05 (32-37)	0.7940
Length (cm)	50.75 (48-53)	52 (51-53)	0.4122
Apgar score (1 min)	9 (9)	9 (9-10)	0.3559
Apgar score (5 min)	10 (10)	10 (10)	–

A two-tailed unpaired t-test was performed between males and females for each variable and the resulting p-value is shown. Gestation is rounded to the nearest week. The median Apgar score is shown rather than the mean.

https://doi.org/10.1371/journal.pone.0207952.t001
25 μl. A standard overnight RNA ethanol precipitation step was then performed and RNA was re-suspended in 10 μl RNase free water to concentrate. RNA integrity and quantity was determined using the small RNA detection kit (DNF-470) on a Fragment Analyzer (Advanced Analytical Technologies). RNA (5 μl) from each sample was then used to construct small RNA libraries using the Illumina TruSeq Small RNA library kit. Due to the small amount of input RNA the protocol was modified slightly (all kit reagents were halved) to prevent extensive adapter dimer formation. Libraries were size selected using a Pippin Prep with 3% agarose dye free cassettes and size selection was validated using a 2100 High sensitivity DNA Bioanalyzer chip (Agilent). The concentration of each library was determined using the HS-dsDNA kit for Qubit, libraries were pooled and pooled libraries were sequenced at the Trinseq Facility at the Institute for Molecular Medicine at St. James Hospital Dublin on an Illumina miSeq.

Sequencing data processing and differential miRNA analyses
The FastQC [56] program was employed to assess the quality of the reads. The fastq files were then upload to Chimira [44] where count-based miRNA expression data were generated. Sequences were adapter trimmed and mapped against miRBase v21 hairpin sequences [57] allowing up to two mismatches per sequence. Further analyses was performed using R/Bioconductor [58, 59]. The edgeR [60] package was used to identify significantly differentially expressed miRNAs following the protocol described by Law et al. [61]. The trimmed mean of M-values (TMM) normalisation method [62] was used for normalisation of the miRNA expression count data. Differential expression analysis was performed using voom [63] and limma [64]. P-values were adjusted for multiple testing by controlling the false discovery rate (FDR) according to the method of Benjamini and Hochberg [65]. A miRNA was considered to be differentially expressed if the adjusted p-value was ≤ 0.05. Expression data have been submitted to the gene expression Omnibus (GSE119002).

Modification analysis
Modification analysis of the umbilical cord blood samples was performed using Chimira [44]. Chimira allows for the detection of any non-templated sequences within the input small RNA-Seq samples that are not encoded in the genomic sequence of origin. The output of this pipeline is a comprehensive set of all identified 3′, 5′ and internal modifications (SNPs and ADAR-edits). Each modification is characterised by a non-templated sequence pattern and an index, which determines its position relative to the original sequence. In order to study the differential levels of adenylation, uridylation, guanylation and cytcyclation between the female and male samples we have collapsed Chimira’s modification counts into either mono-nucleotide or poly-nucleotide patterns of the same nucleotide (e.g. A, UU, CCC, etc.).

Poly-nucleotide patterns refer to sequences of two or more identical nucleotides and are all grouped together into a single modification type. For example, any ‘CC’, ‘CCC’, and/or ‘CCCC’ modifications are considered collectively as poly-C modifications. A mono-nucleotide modification on the other hand, e.g. ‘C’, stands on its own as a distinct modification pattern. All other isoforms are not included in this analysis and their counts are merged with the counts of the corresponding templated sequences. Finally, we have defined as differentially expressed/modified miRNAs with a fold change in expression or modification level that is > 2 (or < -2) and an associated p-value < 0.05. Normalization of miRNA modification counts from male and female samples and identification of differentially modified miRNAs was performed using the DESeq2 software package [66].
Results and discussion

Count-based miRNA expression data was generated by mapping to human miRBase V21, resulting in an average of 329,721 counts per sample (range 162,954 to 460,783, Fig 1A). A total of 1,004 unique miRNAs were identified across all samples, ranging from 426 miRNAs in sample CF_1 to 659 in sample CF_2 with an average 486 miRNAs per sample (Fig 1B). 370 unique miRNAs were detected in at least six of the eight samples (Fig 1C) and 269 miRNAs were detected in all eight samples (S1 File).

The raw counts were converted to CPM and log-CPM values and miRNAs were removed unless their CPM value was greater than 10 with expression in at least four of the eight samples. Fig 2 shows the density of the log-CPM values for raw pre-filtered data and post-filtered data for each sample. This includes the threshold for the log-CPM of one (equivalent to a CPM value of 10) used in the filtering step. This reduced the number of miRNAs from 1,004 to 300. This is substantially higher than results reported for high throughput qRT-PCR profiling platforms studies of adult plasma [9], and is one of the potential advantages of using an RNA-seq based approach to obtain genome-wide coverage. Lizarraga et al [54] used an EdgeSeq miRNA Whole Transcriptome Assay to profile the miRNAs in buffy coat of cord blood samples from 89 newborns, of which 564 miRNAs were retained for further analysis after filtering. Looney et al [26] used micorarray profiling of umbilical cord blood of 24 infants retaining 259 miRNAs for differential expression analysis after filtering [26]. Meanwhile, 395 miRNAs were detected in three pooled samples from Down syndrome and normal fetal cord blood mononuclear cells (CBMCs) using RNA-seq expression profiling [52].

The filtered data were then normalised using the TMM method [62]. Boxplots of log-CPM values showing expression distributions for each sample before and after normalisation are shown in Fig 3.

Unsupervised clustering of samples

Principal Component Analysis (PCA), is a non-parametric method of reducing a complex data set to reveal hidden, simplified dynamics within it. This is accomplished by converting a set of observations of variables (which may be correlated) into a set of values of linearly

Fig 1. Counts and miRNAs identified per sample. A: Total number of counts per sample mapped to human miRBase V21. B: Number of unique miRNAs with at least one count in any sample. C: Number of unique miRNAs found in at least 6 of the 8 samples. Samples are coded as follows: C—CUMH; K—KUH; F—Female; M—Male.

https://doi.org/10.1371/journal.pone.0207952.g001
uncorrelated principal components (PCs). These PCs may then reveal relationships between
the variables. PC1 explains the largest proportion of variation in the data, with subsequent PCs
having a smaller effect and being orthogonal to the ones before them. Ideally, samples should
cluster by the condition of interest, and any outliers should be identified. If the samples cluster
by anything other than the condition of interest in any dimensions then that factor can be included in the linear modelling.

Fig 4 shows the principal components analysis plots of PC1 against PC2 for the normalised log-CPM values in our data. Each dot represents a sample and we have coloured and labelled the samples by the sex of the infant (Male or Female) (Fig 4A) or the centre of origin of the samples (CUMH or KUH) (Fig 4B). We can see from these plots that there is no obvious clustering by either sex or centre of origin. However, when we calculate the Pearson correlation coefficient \(r \) between the individual PCs and the available clinical/demographic variables (Table 1) we can observe that there is some correlation between the sex of the infant and the centre of origin of the sample and PC1 \((r = -0.44 \) and 0.4 respectively) and between the centre of origin of the sample and PC2 and PC3 \((r = -0.6 \) and -0.5 respectively) (Fig 4C). Therefore we conclude that there may be a slight “batch” effect due to the centre of origin of the sample and have included this factor in the linear model when looking for differentially expressed miRNAs between males and females. The PCs > 3 each account for less than 10% of the variation in the data and are not shown.

Differential expression analysis

Differential expression analysis was performed using voom [63] and limma [64] as implemented in the R package, edgeR [60]. Subsequently, empirical Bayesian moderation was applied by borrowing information across all miRNAs to obtain more precise estimates of miRNA variability. Significance was defined using an adjusted \(p \)-value [65] cutoff that is set at 5% by default. No miRNAs were found to be significantly differentially expressed between male and female infants (Table 2). A heatmap of log-CPM values for the top 75 miRNAs ranked by \(p \)-value is shown in Fig 5.

Cellular origin of miRNAs in umbilical cord plasma samples and biomarker potential

The 10 most abundant miRNA (i.e. highest average miRNA expression across all samples) are: miR-486-5p, miR-10b-5p, miR-26a-5p, miR-191-5p, miR-16-5p, miR-22-3p, miR-181a-5p, miR-92a-3p, miR-451a and miR-30e-5p. Many of these are similar to those found in [51]. The most abundant miRNA, miR-486-5p, accounts for nearly 50% of all raw miRNA counts in our samples. miR-486-5p has previously been noted to be highly expressed in RNAseq studies [13, 51] and is detected in most profiling studies of adult plasma that we have seen (S2 File). This miRNA is abundant within red blood cells suggesting that this may be due to selective secretion to plasma or increased stability in plasma [51], however, it does not appear to be detected with such abundance in high-throughput qRT-PCR profiling [9].

Utilising Ensembl [67], the locations of the highest expression of these 300 miRNAs were determined. Of the most abundant miRNAs, interestingly, 49 were most highly expressed in “brain fragments”, 46 in the choroid plexus, 27 in the hindbrain, 21 in the forebrain/forebrain fragment and 11 in the spinal cord. While others were most abundant in the cerebellum (8), the cerebral cortex (8), the medulla oblongata (7), the basal ganglia (6), the temporal lobe (5) or in the midbrain (3). Other miRNAs of note were most abundant elsewhere such as skeletal muscle, ovaries, testis, adrenal gland and stomach. This is interesting as a number of placental miRNAs have been linked to brain development: miR-16-5p, miR-21-5p, miR-93-5p, miR-182-5p, miR-146a-5p and miR-135b-5p [68]. All of these, except miR-135b-5p, were found to be abundantly expressed in our samples (S3 File).

Haider et al. [18] have created a miRNA expression matrix spanning 18 cell types, reflecting a broad range of most major cell types (epithelial, endothelial, mesenchymal, hematopoietic,
Fig 4. Principal components analysis plots of log-CPM values over PC1 and PC2 showing a 68% confidence ellipse where each point represents a sample. Samples are coloured and labelled by A: Sex of the infant (M/F) and B: Centre of origin of the samples (C—CUMH; K—KUH). C: Correlation Matrix. Positive correlations (Pearson correlation coefficient (r)) are displayed in blue and negative correlations in red colour. Colour intensity and the size of the circle are proportional to the correlation coefficients. The PCs > 3 each account for less than 10% of the variation in the data and are not shown.

https://doi.org/10.1371/journal.pone.0207952.g004
and muscle). We examined the possible cellular origin of the 100 most highly expressed miRNAs in the umbilical cord plasma samples by cross checking them against the 100 most highly expressed miRNAs in each of 18 unique cell types (S3 File). Thirty of the 100 most highly expressed miRNAs were not found in any of the 18 cell types and 19 miRNAs were ubiquitously expressed: miR-26a-5p, miR-16-5p, miR-22-3p, miR-21-5p, let-7f-5p, miR-25-3p, miR-103a-3p, miR-93-5p, miR-26b-5p, let-7a-5p, miR-19b-3p, miR-107, miR-29a-3p, miR-15a-5p, let-7g-5p, miR-27a-3p, miR-23a-3p, let-7d-5p and miR-29c-3p. Thirteen of these ubiquitously expressed miRNAs were also found in our profiling study of adult plasma (let-7d-5p, let-7g-5p, miR-103a-3p, miR-15b-5p, miR-16-5p, miR-21-5p, miR-25-3p, miR-26a-5p, miR-26b-5p, miR-27a-3p, miR-29a-3p and miR-93-5p) [9]. Sixty nine miRNAs were found in at least one and 23 miRNAs were found in all of the seven of the hematopoietic cell types (centroblast, memory B cell, monocyte, naive B cell, NK cell, plasma B cell and red blood cell) (S3 File).

The three most studied pregnancy-associated miRNA-clusters [69] are the chromosome 14 miRNA cluster (C14MC), the chromosome 19 microRNA cluster (C19MC) and miR-371-3 cluster, which is also localized on chromosome 19. The C14MC (also called the miR-379/miR-

Table 2. Differential expression analysis. Males versus females.

miRNA	logFC	p-value	adj. p-value
hsa-miR-145-5p	1.536	0.025	0.894
hsa-miR-141-3p	-1.999	0.031	0.894
hsa-miR-660-5p	-1.699	0.035	0.894
hsa-miR-380-3p	2.805	0.037	0.894
hsa-miR-3176	-1.719	0.045	0.894
hsa-miR-874-3p	1.580	0.046	0.894
hsa-miR-127-3p	1.557	0.048	0.894

Table showing the log fold change (logFC), p-value and adjusted p-value (adj. p-value) of miRNAs with p-value < 0.05 (sorted by p-value) following linear modelling in limma with empirical Bayes moderation.

https://doi.org/10.1371/journal.pone.0207952.t002

Fig 5. Heatmap of log-CPM values for top 20 miRNAs ranked by: A: Most abundant, B: Most stable and C: By p-value following differential expression analysis. Expression across each miRNA has been scaled so that mean expression is zero and standard deviation is one. Samples with relatively high expression of a given miRNA are marked in red and samples with relatively low expression are marked in blue. Lighter shades and white represent genes with intermediate expression levels. Samples and genes have been reordered by the method of hierarchical clustering. A dendrogram is shown for the sample clustering.

https://doi.org/10.1371/journal.pone.0207952.g005
656 or miR-379/miR-410 cluster) is the largest comprising 52 miRNA genes and is placental
mammal lineage specific [69]. C19MC (also known as miR-498(46)) contains 46 miRNA
genes. It is primate-specific and is expressed in placenta, embryonic stem cell (ESC), and cer-
tain tumors [69–71]. Williams et al. found high expression of C19MC in placental tissue and
in samples from umbilical cord and mothers but low expression in nonpregnant women and
fathers [51]. C19MC is also highly expressed in infantile hemangioma [71]. The third cluster,
mir-371-3 cluster, consists mainly of three miRNAs, miR-371a-3p, miR-372 and miR-373-3p,
located on chromosome 19 within a region adjacent to the C19MC cluster. Similar to C14MC
and C19MC, this cluster is conserved in mammals and is predominantly expressed in the pla-
centa [69]. 10% of the 300 miRNA in our filtered dataset map to these three clusters.

Indeed, many miRNAs identified in our study have been linked with processes associated
with pregnancy and pregnancy related complications suggesting that umbilical cord plasma
miRNA profiles may reflect pregnancy status and potential complications. For example,
miRNA associated with preeclampsia (let-7a-3p, miR-24-3p, miR-26a-5p, miR-29a-3p, miR-
103a-3p, miR-125a-5p, miR-125b-5p, miR-130b-3p, miR-181a-5p, miR-342-3p miR-542-3p
and miR-574-5p) [72–74] and ectopic pregnancy (miR-323a-3p) [39].

Comparison of umbilical cord plasma miRNA profiles to adult miRNA plasma profiles

In a previous study of miRNA expression profiles in adult plasma we found that although
there is a similar number of miRNAs being detected across studies, there is a large degree of
variation between the lists of miRNAs being detected by the different platforms (e.g. high
throughput qRT-PCR profiling or RNA-seq, Exiqon or TaqMan, etc) [9]. However, we
observed that there was a set of 40 miRNAs that were common to at least six of the seven stud-
ies that were compared [9, 12, 13, 15, 75, 76]. In this case, of the 300 miRNAs that remained in
our study after filtering, 192 of these have been previously detected in at least one other profil-
ing study of adult plasma (S2 File).

Of the 108 miRNAs which were not detected in adult plasma 11 of these miRNA are also
in the top 100 most abundant miRNA in our samples: miR-381-3p, miR-378a-3p, miR-92b-
3p, miR-654-3p, miR-106b-3p, miR-6131, miR-340-5p, miR-151b, miR-1307-5p, miR-421
and miR-3182. This could indicate that umbilical cord plasma has a unique miRNA profile
which may contain biomarkers more selective for pre/post-natal development or disease.
This may also reflect the temporal changes in miRNA expression throughout ageing and
future studies may compare miRNA profiles from adolescents and elderly people to deter-
mine this further.

The NCBI GeneRIF database [77] was used to determine whether any of the 108 miRNAs
that were not found in adult plasma played specific roles in pregnancy or pregnancy complica-
tions. We identified miRNA that are involved throughout pregnancy from the preparation of
the endometrium for pregnancy (miR-181a-3p) [78], to embryo attachment and early develop-
ment (miR-145) [79, 80], embryonic stem cell differentiation and renewal (miR-181a-2-3p
and the let-7 family of miRNAs) [81, 82], umbilical cord derived mesenchymal stem cells pro-
liferation (miR-26b-3p) [83] and placental growth (miR-377-3p) [84]. Additionally, miRNAs
including miR-141, miR-145, miR-378a-3p and miR-424 were identified that are regulators of
trophoblast invasion, proliferation, survival and differentiation [79, 84–87].

Alterations in many of the miRNA that are present in our samples that were not detected in
adult plasma have been linked to complications in both mothers and foetuses. These miRNA
include: miR-18a, miR-136, miR-221, miR-141 and miR-145, which have been implicated in
preeclampsia [88–91]. Additionally, miR-141 has been implicated in unexplained recurrent
spontaneous abortions [92], miR-424 and miR-141 have been linked with fetal growth restriction [33, 93]) and miR-374a-3p is downregulated in HIE [26].

Using miRTarBase [94], we identified 75 validated targets (supported by strong experimental evidence) of the most abundant miRNA in our samples that were not found in adult plasma (summarised in Table 3). We found evidence to support the role of 50 of these genes in pregnancy and pregnancy related complications.

Many of the genes that we identified as targets of these miRNA are believed to play a role in the preparation and development of the uterus in early pregnancy (TWIST1 [130], CDK6 [95], RUNX1 [138], CDK6 [95], MITF [130], HNRNPA2B1 [118] and BMP2 [123]), decidualisation (CDKN1A [153] and STAT3 [130]), implantation of the embryo (RECK [134], KRAS [122], CDH1 [155] and SMAD4 [160]) and the activation of the migration, invasion, proliferation and differentiation of the trophoblast (MAPK1 [125], MYC [135], TGFB [141], DAB2IP [103], RECK [133], SMAD7 [88] and STAT3 [149]). They continue to play roles during pregnancy.
and are important for the healthy progression of pregnancy and fetal growth (CASP3 [154], GLI3 [110], VEGFA [147], CCND2 [96], CDKN1C [99], IL-4 [120], IGF1R [119] and Akt1 [98]). DKK3 [107], ITGAV [115], TWIST1 [131] and ROCK1 [115] upregulation has also been reported in the myometrium in healthy pregnancies at full-term. While CCNG2 [96] and FOXO4 [156] are downregulated in the placenta at full term. A number of these genes have been implicated in complications of pregnancy including: miscarriage (VEGFA [147], DAB21P [103], CDKN1A [151, 152], PTEN [124] and MDM2 [128]); preeclampsia (CD1C [105], CYP19A1 [102], VEGFA [147], CDKN1C [100, 101], DAB2IP [104], CCNG2 [111] and GRB2 [116]); pre-term labour (RhoA [142, 143]); gestational diabetes (CCNG2 [111, 112], ITGA6 [113], RAB23 [113] and FOXO4 [158]); gestational trophoblastic disease (MDM2 [127]); male-specific neonatal encephalopathy (MECP2 [132]); neural tube defects (ITGA6 [113] and RAB23 [113]); Carpenter Syndrome (RAB23 [129]); intrahepatic cholestasis of pregnancy (PUM1 [139]); ectopic pregnancies (DKK3 [106]); and foetal conotruncal anomalies (MAPK1 [126]).

Analysis of miRNA editing

RNA editing enzymes including ADAR proteins have been shown to function aberrantly in various types of cancers and neurological disorders [161–164]. Additionally, it has recently been demonstrated that it is possible to distinguish between different cancer types based on the presence or absence of alternatively modified miRNAs (isomiRs) [165]. As such it is intuitive that the search for biomarkers should include criteria which would allow the identification of alternatively edited RNAs, as they may correlate with, and therefore aid in diagnosis of disease development, progression and prognosis [165]. MiRNAs have been shown to be subjected to edits and modifications and we therefore expanded our interrogation of umbilical cord plasma miRNA profiles to investigate the prevalence of editing and whether differences exist between sexes. Using Chimira [44], we performed editing analysis on our sequencing data, initially analysed global modification profile of all samples and differential expression of adenylation, uridylation, guanylation and cytocylation of miRNAs (Fig 6). Statistically significant differential expression was taken as a fold change in expression of > 2 (or < -2) and an associated p-value < 0.05. We found there were consistently more differentially expressed edited miRNAs in female cord blood compared to males (Fig 7). However, expression of the differentially
edited miRNAs is very low and thus further evidence is required in order to infer any functional implications from the differential modification profiles in this particular study (S4 File). Of the four types of editing analysed adenylation and uridylation were the most abundant differential modification identified, which is in line with previous editing analysis [45, 166–169]. Of note, miR-128-3p, miR-29a-3p, miR-9-5p, miR-218-5p, 204-5p and miR-132-3p were consistently both uridylated and adenylated in female cord blood plasma (S1 Fig).

Of further interest was the origin of miRNAs which were both differentially adenylated and uridylated in females. With the exception of miR-29a-3p (which is enriched in brain) 5 of the 6 miRNAs which underwent differential adenylation and uridylation are brain specific [170].

Editing of RNA has been reported to be highly prominent in the central nervous system [171]. It is interesting to speculate on the origin of these miRNAs, as these are healthy infants who...
experienced routine vaginal births, leakage via a disrupted blood brain barrier is unlikely. It is possible however that these brain specific miRNAs were encapsulated in signalling micro-vesicles and transported out of the brain in order to elicit a peripheral cell response [172]. Site-of-editing analysis revealed that editing occurred most frequently at the 3’ end of the miRNA molecule. Specifically adenylation and uridylation occurred most frequently at the +1 site suggesting 3’ tailing of the miRNAs. MiRNAs have been shown to be selectively uridylated by 3’ terminal uridylyl transferases (TUTases) TUT7 and TUT4. This editing can modify miRNA-gene regulatory networks by affecting the stability of the miRNA [50, 173–175].

Conclusion

miRNAs play a role in multiple key processes throughout pregnancy; including preparation of endometrial tissue for implantation, management of immune-associated genes, development of the placenta and angiogenesis [28]. Dysregulation of the expression of these miRNAs may therefore be associated with complications in pregnancy [29], making them good candidate biomarkers for not only HIE [26, 176], but for many pregnancy-related disorders. Furthermore, due to the relative stability of miRNAs under normal conditions [177], they appear to be potentially useful diagnostic biomarkers of multiple disordered states [178] in pregnancy and beyond. More research is required however, to decipher their target pathways and mechanisms of action.

While overall miRNA expression did not differ between male and female cord blood plasma, we did detect differentially edited miRNAs in female plasma compared to male. Editing of miRNAs is now known to be altered in disease [161–164] and can affect miRNA-mRNA targeting, indeed Choudhury et al, identified that A-I editing of miR-376 was reduced in glioma and had an effect on the repertoire of target mRNAs [179]. This allowed an increase in cell invasiveness. As such it is intuitive that future miRNA biomarker studies profile changes in miRNA editing as it may correlate with disease development, progression and outcome. Of note, and consistent with other studies of this type, adenylation and uridylation were the two most prominent forms of editing. Analysis of the sites of adenylation and uridylation along the miRNA molecule revealed that editing was most prominent at the 3’ end of the miRNAs at the +1 position, indicating 3’ tailing, a common modification of miRNAs. Analysis of the expression patterns of these miRNAs revealed that all except miR-29a-3p are expressed almost exclusively in brain [170]. Although only a few miRNAs were differentially edited in females and expression levels were low, it is an interesting finding as the effects of sex on RNA editing is poorly understood and warrants further investigation.

This study is the first to profile miRNA editing in cord blood plasma from healthy infants. Although we did not detect a difference between male and female miRNA expression, possibly due to the small sample size, and expression of the differentially edited miRNAs is very low, this study can be used as comparative data for future biomarker profiles from complicated births or those with developmental disorders including those initiated by HIE.

Supporting information

S1 Fig. Expression patterns of the miRNAs which were both differentially adenylated and uridylated in female cord blood plasma. A: miR-128-3p, B: miR-29a-3p, C: miR-9-5p, D: miR-218-5p, E: 204-5p and F: miR-132-3p. Analysis of the expression patterns of these miRNAs revealed that all except miR-29a-3p (although it is enriched) are expressed almost exclusively in brain (highlighted with green boxes) [170]. (PNG)
S1 File. Table showing the raw counts for the 269 miRNA identified in all umbilical cord plasma samples. miRNA are ranked by average abundance across all samples.
(CSV)

S2 File. miRNA identified in the umbilical cord plasma samples after filtering and their overlap with miRNA identified in six other studies of biofluids in healthy adults. miRNA names were mapped to the mature human sequences from miRBase version 21 [57]. Blondal [75], Chen [13], Mitchell [15], Mooney [9], Wang–Exiqon [76], Wang–Taqman [76] and Weber [12].
(CSV)

S3 File. Possible cellular origin of the 100 most abundant miRNAs identified in the umbilical cord plasma samples. a—acinar cell; b—adipocyte; c—ductal cell; d—endothelial; e—epithelial cell; f—fibroblast; g—hepatocyte; h—lymphatic EC; i—myocyte; j—neutrophil; k—smooth muscle cell; l—centroblast; m—memory B cell; n—monocyte; o—naïve B cell; p—NK cell; q—plasma B cell; and r—red blood cell. Cell types a—k are hematopoietic; Cell types l—r are hematopoietic. An asterix is placed in the column if the miRNA is found in the top 100 of miRNAs expressed in that cell type. Expression profiles for all cells taken from [18]. MiRNAs are included if they are identified in at least one cell type and are listed in order of average abundance across all samples (mean). SD—standard deviation.
(CSV)

S4 File. Table showing the modification counts for all miRNA identified in any umbilical cord plasma samples.
(CSV)

Author Contributions

Conceptualization: David C. Henshall, Geraldine B. Boylan, Deirdre M. Murray, Catherine Mooney.

Data curation: Ann-Marie Looney, Boubou Hallberg, Geraldine B. Boylan, Deirdre M. Murray, Catherine Mooney.

Formal analysis: Dimitrios M. Vitsios, Catherine Mooney.

Funding acquisition: David C. Henshall, Geraldine B. Boylan, Deirdre M. Murray, Catherine Mooney.

Investigation: Gary P. Brennan, Catherine Mooney.

Methodology: Gary P. Brennan, Catherine Mooney.

Project administration: Catherine Mooney.

Validation: Gary P. Brennan.

Visualization: Gary P. Brennan, Dimitrios M. Vitsios, Catherine Mooney.

Writing – original draft: Gary P. Brennan, Dimitrios M. Vitsios, David C. Henshall, Catherine Mooney.

Writing – review & editing: Gary P. Brennan, Dimitrios M. Vitsios, Sophie Casey, David C. Henshall, Geraldine B. Boylan, Deirdre M. Murray, Catherine Mooney.
References

1. Battin MR, Dezoete JA, Gunn TR, Gluckman PD, Gunn AJ. Neurodevelopmental outcome of infants treated with head cooling and mild hypothermia after perinatal asphyxia. Pediatrics. 2001; 107 (3):480–484. https://doi.org/10.1542/peds.107.3.480 PMID: 1123086

2. McKinlay CJ, Cutfield WS, Battin MR, Dalziel SR, Crowther CA, Harding JE, et al. Cardiovascular risk factors in children after repeat doses of antenatal glucocorticoids: an RCT. Pediatrics. 2015; 135(2): e405–e415. https://doi.org/10.1542/peds.2014-2408 PMID: 25601978

3. Conway J, Walsh B, Boylan G, Murray D. Mild hypoxic ischaemic encephalopathy and long term neurodevelopmental outcome—A systematic review. Early human development. 2018; 120:80–87. https://doi.org/10.1016/j.earlhumdev.2018.02.007 PMID: 29496329

4. O'Driscoll D, Felice VD, Kenny LC, Boylan GB, O'Keeffe GW. Mild prenatal hypoxia-ischemia leads to social deficits and central and peripheral inflammation in exposed offspring. Brain, Behavior, and Immunity. 2018; 69:418–427. https://doi.org/10.1016/j.bbi.2018.01.001

5. Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell. 2004; 116(2):281–297. https://doi.org/10.1016/S0092-8674(04)00045-5 PMID: 14744438

6. Simeoli R, Montague K, Jones HR, Castaldi L, Chambers D, Kelleher JH, et al. Exosomal cargo including microRNA regulates sensory neuron to macrophage communication after nerve trauma. Nature Communications. 2017; 8(1):1778. https://doi.org/10.1038/s41467-017-01841-5 PMID: 29176651

7. Luarte A, Cisternas P, Caviedes A, Batiz LF, Lafourcade C, Wynen E, et al. Astrocytes at the Hub of the Stress Response: Potential Modulation of Neurogenesis by miRNAs in Astrocyte-Derived Exosomes. Stem Cells International. 2017;1719050. https://doi.org/10.1155/2017/1719050 PMID: 29081809

8. Bayraktar R, Van Roosbroeck K, Cailin GA. Cell to cell communication: microRNAs as hormones. Molecular Oncology. 2017; 11(12):1673–86. https://doi.org/10.1002/1878-0261.12144 PMID: 29024380

9. Mooney C, Raoof R, El-Naggar H, Sanz-Rodriguez A, Jimenez-Mateos EM, Henshall DC. High Throughput qPCR Expression Profiling of Circulating MicroRNAs Reveals Minimal Sex- and Sample Timing-Related Variation in Plasma of Healthy Volunteers. PLOS ONE. 2015; 10(12): e0145316. https://doi.org/10.1371/journal.pone.0145316 PMID: 26691312

10. Argyropoulos C, Wang K, McClarty S, Huang D, Bernardo J, Ellis D, et al. Urinary microRNA profiling in the nephropathy of type 1 diabetes. PLOS ONE. 2013; 8(1): e54662. https://doi.org/10.1371/journal.pone.0054662 PMID: 23358711

11. Raof R, Jimenez-Mateos EM, Bauer S, Tackenberg B, Rosenow F, Lang J, et al. Cerebrospinal fluid microRNAs are potential biomarkers of temporal lobe epilepsy and status epilepticus. Scientific Reports. 2017; 7(1):3328. https://doi.org/10.1038/s41598-017-02969-6 PMID: 28607431

12. Weber JA, Baxter DH, Zhang S, Huang DY, Huang KH, Lee MJ, et al. The microRNA spectrum in 12 body fluids. Clinical Chemistry. 2010; 56(11):1733–1741. https://doi.org/10.1373/clinchem.2010.147405 PMID: 20847327

13. Chen X, Ba Y, Ma L, Cai X, Yin Y, Wang K, et al. Characterization of microRNAs in serum: a novel class of biomarkers for diagnosis of cancer and other diseases. Cell Research. 2008; 18(10):997–1006. https://doi.org/10.1038/cr.2008.282 PMID: 18766170

14. Hunter MP, Ismail N, Zhang X, Aguda BD, Lee EJ, Yu L, et al. Detection of microRNA expression in human peripheral blood microvesicles. PLOS ONE. 2008; 3(11):e3694. https://doi.org/10.1371/journal.pone.0003694 PMID: 19002258

15. Mitchell PS, Parkin RK, Kroh EM, Fritz BR, Wyman SK, Pogosova-Agadjanyan EL, et al. Circulating microRNAs as stable blood-based markers for cancer detection. Proceedings of the National Academy of Sciences. 2008; 105(30):10513–10518. https://doi.org/10.1073/pnas.0804549105

16. Reid G, Kirschner MB, van Zandwijk N. Circulating microRNAs: Association with disease and potential use as biomarkers. Critical Reviews in Oncology/Hematology. 2011; 80(2):193–208. https://doi.org/10.1016/j.critrevonc.2010.11.004 PMID: 21145252

17. Moldovan L, Batte KE, Trgovcich J, Wisler J, Marsh CB, Piper M. Methodological challenges in utilizing miRNAs as circulating biomarkers. Journal of Cellular and Molecular Medicine. 2014; 18(3):371–390. https://doi.org/10.1111/jcmm.12236 PMID: 24533657

18. Haider BA, Baras AS, McCall MN, Hertel JA, Cornish TC, Halushka MK. A critical evaluation of microRNA biomarkers in non-neoplastic disease. PLOS ONE. 2014; 9(2):e89565. https://doi.org/10.1371/journal.pone.0089565 PMID: 24586876

19. Aryani A, Denecke B. In vitro application of ribonucleases: comparison of the effects on mRNA and miRNA stability. BMC Research Notes. 2015; 8(1):164. https://doi.org/10.1186/s13104-015-1114-z PMID: 25899823
20. Kroh EM, Parkin RK, Mitchell PS, Tewari M. Analysis of circulating microRNA biomarkers in plasma and serum using quantitative reverse transcription-PCR (qRT-PCR). Methods. 2010; 50(4):298–301. https://doi.org/10.1016/j.ymeth.2010.01.032 PMID: 20146939

21. Frères P, Wenric S, Boukerroucha M, Fasquelle C, Thiry J, Bovy N, et al. Circulating microRNA-based screening tool for breast cancer. Oncotarget. 2016; 7(5):5416. https://doi.org/10.18632/oncotarget.6786 PMID: 26734993

22. Yuan T, Huang X, Woodcock M, Du M, Dittmar R, Wang Y, et al. Plasma extracellular RNA profiles in healthy and cancer patients. Scientific Reports. 2016; 6:19413. https://doi.org/10.1038/srep19413 PMID: 26786760

23. Riancho J, Vázquez-Higuera JL, Pozueta A, Lage C, Kazimierczak M, Bravo M, et al. MicroRNA profile in patients with Alzheimer’s disease: analysis of miR-9-5p and miR-598 in raw and exosome enriched cerebrospinal fluid samples. Journal of Alzheimer’s Disease. 2017; 57(2):483–491. https://doi.org/10.3233/JAD-161179 PMID: 28269782

24. Raoof R, Bauer S, El Naggar H, Connolly NM, Brennan GP, Brindley E, et al. Dual-center, dual-platform microRNA profiling identifies potential plasma biomarkers of adult temporal lobe epilepsy. EBioMedicine. 2018. https://doi.org/10.1016/j.ebiom.2018.10.068 PMID: 30396857

25. Ponnusamy V, Kapellou O, Yip E, Evanson J, Wong LF, Michael-Titus A, et al. A study of microRNAs from dried blood spots in newborns after perinatal asphyxia: a simple and feasible biosampling method. Pediatric Research. 2016; 79(5):799. https://doi.org/10.1038/pr.2015.276 PMID: 26720606

26. Looney AM, Walsh BH, Moloney G, Grenham S, Fagan A, O’keeffe GW, et al. Downregulation of umbilical cord blood levels of miR-374a in neonatal hypoxic ischemic encephalopathy. The Journal of Pediatrics. 2015; 167(2):269–273. https://doi.org/10.1016/j.jpeds.2015.04.060 PMID: 26001314

27. Moloney G, Grenham S, Fagan A, O’keeffe GW, et al. Downregulation of umbilical cord blood levels of miR-374a in neonatal hypoxic ischemic encephalopathy. The Journal of Pediatrics. 2015; 167(2):269–273. https://doi.org/10.1016/j.jpeds.2015.04.060 PMID: 26001314

28. Looney A, Ahearne C, Hallberg B, Boylan G, Murray D. Downstream mRNA target analysis in neonatal hypoxic-ischaemic encephalopathy identifies novel marker of severe injury: A proof of concept paper. Molecular Neurobiology. 2017; 54(10):8420–8428. https://doi.org/10.1007/s12035-016-0330-4 PMID: 27957679

29. Chiofalo B, Laganà AS, Vaiarelli A, La Rosa VL, Rossetti D, Palmara V, et al. Do miRNAs play a role in fetal growth restriction? A fresh look to a busy corner. BioMed research international. 2017; 2017. https://doi.org/10.1155/2017/6073167

30. Maccani MA, Padbury JF, Marsit CJ. miR-16 and miR-21 expression in the placenta is associated with fetal growth. PLOS ONE. 2011; 6(6):e21210. https://doi.org/10.1371/journal.pone.0021210 PMID: 21698265

31. Lycoudi A, Mavreli D, Mavrou A, Papantoniou N, Kolialexi A. miRNAs in pregnancy-related complications. Expert review of molecular diagnostics. 2015; 15(8):999–1010. https://doi.org/10.1586/14737159.2015.1053468 PMID: 28051307

32. Mouillet JF, Chu T, Hubei CA, Nelson DM, Parks W, Sadovsky Y. The levels of hypoxia-regulated microRNAs in plasma of pregnant women with fetal growth restriction. Placenta. 2010; 31(9):781–784. https://doi.org/10.1016/j.placenta.2010.07.001 PMID: 20667590

33. Huang L, Shen Z, Xu Q, Huang X, Chen Q, Li D. Increased levels of microRNA-424 are associated with the pathogenesis of fetal growth restriction. Placenta. 2013; 34(7):624–627. https://doi.org/10.1016/j.placenta.2013.04.009 PMID: 23643257

34. Lagana AS, Vitale SG, Sapia F, Valenti G, Corrado F, Padula F, et al. miRNA expression for early diagnosis of preeclampsia onset: hope or hype? The Journal of Maternal-Fetal & Neonatal Medicine. 2018; 31(6):817–821. https://doi.org/10.1080/14767058.2017.1296642

35. Zhu XM, Han T, Sargent IL, Yin GW, Yao YQ. Differential expression profile of microRNAs in human placentas from preeclamptic pregnancies vs normal pregnancies. American journal of obstetrics and gynecology. 2009; 200(6):661–e1. https://doi.org/10.1016/j.ajog.2008.12.045 PMID: 19285651

36. Zhang Y, Fei M, Xue G, Zhou Q, Jia Y, Li L, et al. Elevated levels of hypoxia-inducible microRNA-210 in pre-eclampsia: new insights into molecular mechanisms for the disease. Journal of cellular and molecular medicine. 2012; 16(2):249–259. https://doi.org/10.1111/j.1582-4934.2011.01291.x PMID: 21388517

37. Pineles BL, Romero R, Montenegro D, Tarca AL, Han YM, Kim YM, et al. Distinct subsets of microRNAs are expressed differentially in the human placentas of patients with preeclampsia. American journal of obstetrics and gynecology. 2007; 196(3):261–e1. https://doi.org/10.1016/j.ajog.2007.01.008 PMID: 17346547
38. Xu T, Li L, Huang C, Li X, Peng Y, Li J. MicroRNA-323-3p with clinical potential in rheumatoid arthritis, Alzheimer’s disease and ectopic pregnancy. Expert opinion on therapeutic targets. 2014; 18(2):153–158. https://doi.org/10.1517/14728222.2014.855201 PMID: 24283221
39. Zhao Z, Zhao Q, Warrick J, Lockwood CM, Woodworth A, Moley KH, et al. Circulating microRNA miR-323-3p as a biomarker of ectopic pregnancy. Clinical chemistry. 2012; p. 179283.
40. Zhu Y, Tian F, Li H, Zhou Y, Lu J, Ge Q. Profiling maternal plasma microRNA expression in early pregnancy to predict gestational diabetes mellitus. International Journal of Gynecology & Obstetrics. 2015; 130(1):49–53. https://doi.org/10.1016/j.ijgo.2015.01.010
41. Blow MJ, Grocock RJ, van Dongen S, Enright AJ, Dicks E, Futreal PA, et al. RNA editing of human microRNAs. Genome Biology. 2006; 7(4):R27. https://doi.org/10.1186/gb-2006-7-4-r27 PMID: 16594986
42. Velazquez-Torres G, Shoshan E, Ivan C, Huang L, Fuentes-Mattei E, Paret H, et al. A-to-I miR-378a-3p editing can prevent melanoma progression via regulation of PARVA expression. Nature Communications. 2018; 9(1):461. https://doi.org/10.1038/s41467-018-02851-7 PMID: 29386624
43. Paul D, Sinha AN, Ray A, Lal M, Nayak S, Sharma A, et al. A-to-I editing in human miRNAs is enriched in seed sequence, influenced by sequence contexts and significantly hypoedited in glioblastoma multiforme. Scientific Reports. 2017; 7(1):2466. https://doi.org/10.1038/s41598-017-02397-6 PMID: 28550310
44. Vitsios DM, Enright AJ. Chimira: analysis of small RNA sequencing data and microRNA modifications. Bioinformatics. 2015; 31(20):3365–3367. https://doi.org/10.1093/bioinformatics/btv380 PMID: 26093149
45. Vitsios DM, Davis MP, van Dongen S, Enright AJ. Large-scale analysis of microRNA expression, epitranscriptomic features and biogenesis. Nucleic Acids Research. 2017; 45(3):1079–1090. https://doi.org/10.1093/nar/gkw1031 PMID: 28180281
46. Heale BS, Keegan LP, O’Connell MA. The effect of RNA editing and ADARs on miRNA biogenesis and function. In: Regulation of microRNAs. Springer; 2010. p. 76–84.
47. Higuchi M, Maas S, Single FN, Hartner J, Rozov A, Burnashev N, et al. Point mutation in an AMPA receptor gene rescues lethality in mice deficient in the RNA-editing enzyme ADAR2. Nature. 2000; 406(6791):78. https://doi.org/10.1038/35017558 PMID: 10894545
48. Chawla G, Sokol NS. ADAR mediates differential expression of polycistronic microRNAs. Nucleic Acids Research. 2014; 42(8):5245–5255. https://doi.org/10.1093/nar/gku145 PMID: 24561617
49. Tomaselli S, Galeano F, Alon S, Raho S, Galardi S, Polito VA, et al. Modulation of microRNA editing, expression and processing by ADAR2 deaminase in glioblastoma. Genome Biology. 2015; 16(1):5. https://doi.org/10.1186/s13059-014-0575-z PMID: 25582055
50. Kim B, Ha M, Loeff L, Chang H, Simanshu DK, Li S, et al. TUT7 controls the fate of precursor microRNAs by using three different uridylation mechanisms. The EMBO Journal. 2015; 34(13):1801–1815. https://doi.org/10.15252/embr.201590931 PMID: 25979828
51. Williams Z, Ben-Dov IZ, Elias R, Mihailovic A, Brown M, Rosenwaks Z, et al. Comprehensive profiling of circulating microRNA via small RNA sequencing of cDNA libraries reveals biomarker potential and limitations. Proceedings of the National Academy of Sciences. 2013; 110(11):4255–4260. https://doi.org/10.1073/pnas.1214061110
52. Xu Y, Li W, Liu X, Ma H, Tu Z, Dai Y. Analysis of microRNA expression profile by small RNA sequencing in Down syndrome fetuses. International Journal of Molecular Medicine. 2013; 32(5):1115–1125. https://doi.org/10.3892/ijmm.2013.1499 PMID: 24071828
53. Merkerova M, Vasikova A, Belickova M, Bruchova H. MicroRNA expression profiles in umbilical cord blood cell lineages. Stem Cells and Development. 2010; 19(1):17–26. https://doi.org/10.1089/scd.2009.0071 PMID: 19435428
54. Lizzarraga D, Huen K, Combs M, Escudero-Fung M, Eskenazi B, Holland N. miRNAs differentially expressed by next-generation sequencing in cord blooduffy coat samples of boys and girls. Epigenomics. 2016; 8(12):1619–1635. https://doi.org/10.2217/epi-2016-0031 PMID: 27882772
55. Kirschner MB, Kao SC, Edelman JJ, Armstrong NJ, Vallely MP, van Zandwijk N, et al. Haemolysis during sample preparation alters microRNA content of plasma. PLOS ONE. 2011; 6(9):e24145. https://doi.org/10.1371/journal.pone.0024145 PMID: 21909417
56. Andrews S. FASTQC. A quality control tool for high throughput sequence data; 2010.
57. Kozomara A, Griffiths-Jones S. miRBase: annotating high confidence microRNAs using deep sequencing data. Nucleic Acids Research. 2014; 42(D1):D68. https://doi.org/10.1093/nar/gkt1181 PMID: 24275495
58. R Core Team. R: A Language and Environment for Statistical Computing; 2016. Available from: http://www.R-project.org/.
59. Huber W, Carey VJ, Gentleman R, Anders S, Carlson M, Carvalho BS, et al. Orchestrating high-throughput genomic analysis with Bioconductor. Nature Methods. 2015; 12(2):115–121. https://doi.org/10.1038/nmeth.3252 PMID: 25633503

60. Robinson MD, McCarthy DJ, Smyth GK. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics. 2010; 26(1):139–140. https://doi.org/10.1093/bioinformatics/btp616 PMID: 19910308

61. Law CW, Alhamdoosh M, Su S, Smyth GK, Ritchie ME. RNA-seq analysis is easy as 1-2-3 with limma, Glimma and edgeR. F1000Research. 2016; 5. https://doi.org/10.12688/f1000research.9005.1 PMID: 27441086

62. Robinson MD, Oshlack A. A scaling normalization method for differential expression analysis of RNA-seq data. Genome Biology. 2010; 11(3):R25. https://doi.org/10.1186/gb-2010-11-3-r25 PMID: 20196867

63. Law CW, Chen Y, Shi W, Smyth GK. Voom: precision weights unlock linear model analysis tools for RNA-seq read counts. Genome Biology. 2014; 15(2):R29. https://doi.org/10.1186/gb-2014-15-2-r29 PMID: 24485249

64. Ritchie ME, Phipson B, Wu D, Hu Y, Law CW, Shi W, et al. limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Research. 2015; 43(7):e47. https://doi.org/10.1093/nar/gkv007 PMID: 25605792

65. Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. Journal of the Royal Statistical Society Series B (Methodological). 1995; 57(1):289–300.

66. Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biology. 2014; 15(12):550. https://doi.org/10.1186/s13059-014-0550-8 PMID: 25516281

67. Hubbard T, Barker D, Birney E, Cameron G, Chen Y, Clark L, et al. The Ensembl genome database project. Nucleic Acids Research. 2002; 30(1):38–41. https://doi.org/10.1093/nar/30.1.38 PMID: 11752248

68. Maccani MA, Padbury JF, Lester BM, Knopik VS, Marsit CJ. Placental miRNA expression profiles are associated with measures of infant neurobehavioral outcomes. Pediatric research. 2013; 74(3):272. https://doi.org/10.1038/pr.2013.102 PMID: 23783433

69. Morales-Prieto DM, Ospina-Prieto S, Chaiwangyen W, Schoenleben M, Markert UR. Pregnancy-associated miRNA-clusters. Journal of Reproductive Immunology. 2013; 97(1):51–61. https://doi.org/10.1016/j.jri.2012.11.001 PMID: 23432872

70. Noguer-Dance M, Abu-Amero S, Al-Khtib M, Lefevre A, Coullin P, Moore GE, et al. The primate-specific microRNA gene cluster (C19MC) is imprinted in the placenta. Human Molecular Genetics. 2010; 19(18):3566–3582. https://doi.org/10.1093/hmg/ddq272 PMID: 20610438

71. Yang Q, Lu J, Wang S, Li H, Ge Q, Lu Z. Application of next-generation sequencing technology to profile the circulating microRNAs in the serum of preeclampsia versus normal pregnant women. Clinica Chimica Acta. 2011; 412(23-24):2167–2173. https://doi.org/10.1016/j.cca.2011.07.029

72. Gunel T, Zeybek Y, Akçakaya P, Kalelioglu I, Benian A, Ermis H, et al. Serum microRNA expression in pregnancies with preeclampsia. Genet Mol Res. 2011; 10(4):4034–4040. https://doi.org/10.4238/2011.November.8.5 PMID: 22095477

73. Wu L, Zhou H, Lin H, Qi J, Zhu C, Gao Z, et al. Circulating microRNAs are elevated in plasma from severe pre-eclamptic pregnancies. Reproduction. 2011; p. REP–11.

74. Blondal T, Jensby Nielsen S, Baker A, Andreassen D, Mourtzen P, Wrang Teilum M, et al. Assessing sample and miRNA profile quality in serum and plasma or other biofluids. Methods. 2013; 59(1):S1–S6. https://doi.org/10.1016/j.ymeth.2012.09.015 PMID: 23036329

75. Wang K, Yuan Y, Cho JH, McClarty S, Baxter D, Galas DJ. Comparing the MicroRNA spectrum between serum and plasma. PLOS ONE. 2012; 7(7):e41561. https://doi.org/10.1371/journal.pone.0041561 PMID: 22859996

76. Jimeno-Yepes AJ, Sticco JC, Mork JG, Aronson AR. GeneRIF indexing: sentence selection based on machine learning. BMC bioinformatics. 2013; 14(1):171. https://doi.org/10.1186/1471-2105-14-171 PMID: 23725347

77. Zhang Q, Zhang H, Jiang Y, Xue B, Diao Z, Ding L, et al. MicroRNA-181a is involved in the regulation of human endometrial stromal cell decidualization by inhibiting Krüppel-like factor 12. Reproductive Biology and Endocrinology. 2015; 13(1):23. https://doi.org/10.1186/s12958-015-0019-y PMID: 25889210
79. Kang YJ, Lees M, Matthews LC, Kimber SJ, Forbes K, Aplin JD. MiR-145 suppresses embryo-epithelial juxtacrine communication at implantation by modulating maternal IGF1R. J Cell Sci. 2015; p. jcs–164004. https://doi.org/10.1242/jcs.164004 PMID: 25609710

80. Lozoya T, Dominguez F, Romero-Ruiz A, Steffani L, Martinez S, Monterde M, et al. The Lin28/Let-7 system in early human embryonic tissue and ectopic pregnancy. PLOS ONE. 2014; 9(1):e87698. https://doi.org/10.1371/journal.pone.0087698 PMID: 24498170

81. Xu Z, Jiang J, Xu C, Wang Y, Sun L, Guo X, et al. MicroRNA-181 regulates CARM1 and histone arginine methylation to promote differentiation of human embryonic stem cells. PLOS ONE. 2013; 8(1): e53146. https://doi.org/10.1371/journal.pone.0053146 PMID: 23301034

82. Tran ND, Kissner M, Subramanyam D, Parchem RJ, Laird DJ, Blelloch RH. A miR-372/Let-7 Axis Regulates Human Germ Versus Somatic Cell Fates. Stem Cells. 2016; 34(7):1985–1991. https://doi.org/10.1002/stem.2378 PMID: 27066911

83. Wang Q, Xu C, Zhao Y, Xu Z, Zhang Y, Jiang J, et al. miR-26b-3p regulates human umbilical cord-derived mesenchymal stem cell proliferation by targeting estrogen receptor. Stem cells and development. 2016; 25(5):415–426. https://doi.org/10.1089/scd.2015.0267 PMID: 26723394

84. Farrokhnia F, Aplin JD, Westwood M, Forbes K. MicroRNA regulation of mitogenic signaling networks in the human placenta. Journal of Biological Chemistry. 2014; p. jbc–M114. https://doi.org/10.1074/jbc.M114.587295 PMID: 25077964

85. Ospina-Prieto S, Chaivangnyen W, Herrmann J, Grotten T, Schleussner E, Markert UR, et al. MicroRNA-141 is upregulated in preeclamptic placentae and regulates trophoblast invasion and intercellular communication. Translational Research. 2016; 172:61–72. https://doi.org/10.1016/j.trsl.2016.02.012 PMID: 27012474

86. Luo L, Ye G, Nadeem L, Fu G, Yang BB, Honarpour E, et al. MicroRNA-378a-5p promotes trophoblast cell survival, migration and invasion by targeting Nodal. J Cell Sci. 2012; 125(13):3124–3132. https://doi.org/10.1242/jcs.096412 PMID: 22454525

87. Mouillet JF, Donker RB, Mishima T, Cronquist T, Chu T, Sadovsky Y. The unique expression and function of miR-424 in human placental trophoblasts. Biology of reproduction. 2013; 89(2):25–1. https://doi.org/10.1095/biolreprod.113.110049 PMID: 23803556

88. Xu P, Zhao Y, Liu M, Wang Y, Wang H, Li Yx, et al. Variations of microRNAs in human placentas and plasma from preeclamptic pregnancy. Hypertension. 2014; 63(6):1276–1284. https://doi.org/10.1161/HYPERTENSIONAHA.113.02647 PMID: 24664294

89. Ji L, Zhang L, Li Y, Guo L, Cao N, Bai Z, et al. MiR-136 contributes to pre-eclampsia through its effects on apoptosis and angiogenesis of mesenchymal stem cells. Placenta. 2017; 50:102–109. https://doi.org/10.1016/j.placenta.2017.01.102 PMID: 28161054

90. Li H, Ge Q, Guo L, Lu Z. Maternal plasma miRNAs expression in preeclamptic pregnancies. BioMed research international. 2013; 2013.

91. Han L, Zhao Y, Luo Q, Liu X, Lu S, Zou L. The significance of miR-145 in the prediction of preeclampsia. Bratislavské lekarske listy. 2017; 118(9):523–528. https://doi.org/10.4149/BLL_2017_101 PMID: 29061058

92. Chou CH, Shrestha S, Yang CD, Chang NW, Lin YL, Liao KW, et al. miRTarBase update 2018: a resource for experimentally validated microRNA-target interactions. Nucleic Acids Research. 2017; 46(D1):D296–D302. https://doi.org/10.1093/nar/gkx1067

93. Chen CH, Shrestha S, Yang CD, Chang NW, Lin YL, Liao KW, et al. Isoform-specific requirement for Akt1 in the developmental regulation of cellular metabolism during lactation. Cell. 2006; 126(4):475–490. https://doi.org/10.1016/j.cell.2006.01.011 PMID: 17141631
98. Kent LN, Ohboshi S, Soares MJ. Akt1 and insulin-like growth factor 2 (Igf2) regulate placentaion and fetal/postnatal development. The International journal of developmental biology. 2012; 56(4):255. https://doi.org/10.1387/ijdb.113407k PMID: 22562201

99. Dória S, Sousa M, Fernandes S, Ramalho C, Brandão O, Matias A, et al. Gene expression pattern of IGFl2, PHLD2A, PEG10 and CDK11C imprinted genes in spontaneous miscarriages or fetal deaths. Epigenetics. 2010; 5(5):444–450. https://doi.org/10.4161/epi.5.5.12118 PMID: 20484977

100. Romanelli V, Belinchon A, Campos-Barros A, Heath K, Garcia-Minaur S, Martinez-Glez V, et al. CDK11C mutations in HELLP/pre eclamptic mothers of Beckwith–Wiedemann syndrome (BWS) patients. Placenta. 2009; 30(8):551–554. https://doi.org/10.1016/j.placenta.2009.03.013 PMID: 19386358

101. Lim A, Ferguson-Smith A. Genomic imprinting effects in a compromised in utero environment: implications for a healthy pregnancy. In: Seminars in cell & developmental biology. vol. 21. Elsevier; 2010. p. 201–208.

102. Shimodaira M, Nakayama T, Sato I, Sato N, Izawa N, Mizutani Y, et al. Estrogen synthesis genes CYP19A1, HSD3B1, and HSD3B2 in hypertensive disorders of pregnancy. Endocrine. 2012; 42(3):700–707. https://doi.org/10.1007/s12020-012-9699-7 PMID: 22638611

103. Li S, Zhai J, Lu J, Hong Y, Zhao W, Zhao A, et al. BMAL1 facilitates trophoblast migration and invasion via SP1-DNM1/DA2B2IP pathway in recurrent spontaneous abortion. Oncotarget. 2017; 8(52):89451. https://doi.org/10.18632/oncotarget.20702 PMID: 29163762

104. Shan N, Xiao X, Chen Y, Luo X, Yin N, Deng Q, et al. Expression of DAB2IP in human trophoblast and its role in trophoblast invasion. The Journal of Maternal-Fetal & Neonatal Medicine. 2016; 29(3):393–399. https://doi.org/10.3109/16649063.2016.1164896

105. DARMOCHWAL-KOLARZ D, Rolinski J, Tabarkiewicz J, Leszczynska-Gorzelak B, Buczkowski J, Wojas K, et al. Myeloid and lymphoid dendritic cells in normal pregnancy and pre-eclampsia. Clinical & Experimental Immunology. 2003; 132(2):339–344. https://doi.org/10.1046/j.1365-2249.2003.02136.x

106. Savaris RF, Hamilton AE, Lessey BA, Giudice LC. Endometrial gene expression in early pregnancy: lessons from human eoctopic pregnancy. Reproductive Sciences. 2008; 15(8):797–816. https://doi.org/10.1177/1933719108317585 PMID: 18591649

107. Rehman KS, Yin S, Mayhew BA, Word RA, Rainey WE. Human myometrial adaptation to pregnancy: cDNA microarray gene expression profiling of myometrium from non-pregnant and pregnant women. MHR: Basic science of reproductive medicine. 2003; 9(11):681–700. PMID: 14561811

108. Li SH, Lin MH, Hwu YM, Lu CH, Yeh LY, Chen YJ, et al. Correlation of cumulus gene expression of myometrium from non-pregnant and pregnant women. Placenta. 2009; 30(11):972–981. https://doi.org/10.1016/j.placenta.2009.05.013

109. Tong D, Lu X, Wang HX, Plante I, Lui E, Laird DW, et al. A dominant loss-of-function GJA1 (Cx43) mutant impairs parturition in the mouse. Biology of reproduction. 2009; 80(6):1099–1106. https://doi.org/10.1095/biolreprod.108.071969 PMID: 19176884

110. Bethin KE, Nagai Y, Siadek R, Asada M, Sadovsky Y, Hudson TJ, et al. Microarray analysis of uterine gene expression in mouse and human pregnancy. Molecular endocrinology. 2003; 17(8):1454–1469. https://doi.org/10.1210/me.2003-0007 PMID: 12775764

111. Uuskula L, Männik J, Rull K, Minajeva A, Köks S, Vaas P, et al. Mid-gestational gene expression profile in placenta and link to pregnancy complications. PLOS ONE. 2012; 7(11):e49248. https://doi.org/10.1371/journal.pone.0049248 PMID: 23145134

112. Lamadrid-Romero M, Solís K, Cruz-Reséndiz M, Pérez J, Díaz N, Flores-Herrera H, et al. Central nervous system development-related microRNAs levels increase in the serum of gestational diabetic women during the first trimester of pregnancy. Neuroscience research. 2018; 130:8–22. https://doi.org/10.1016/j.neurese.2017.08.003 PMID: 28803788

113. Saija EA, Fatum G, Save P, et al. Mid-gestational gene expression profile and epigenetics in recurrent spontaneous abortion. Placenta. 2010; 31(10):700–707. https://doi.org/10.1016/j.placenta.2010.05.013

114. Salbaum JM, Kappen C. Neural tube defect genes and maternal diabetes during pregnancy. Birth Defects Research Part A: Clinical and Molecular Teratology. 2010; 88(8):601–611. https://doi.org/10.1002/bdra.20680 PMID: 20564432

115. Salliew-Wondim D, Höjler M, Rings F, Ghanem N, Ulas-Cinar M, Peippo J, et al. Bovine pretransfer endometrium and embryo transcriptome fingerprints as predictors of pregnancy success after embryo transfer. Physiological genomics. 2010; 42(2):201–218. https://doi.org/10.1152/physiogenomics.00047.2010 PMID: 20388838

116. Breuiller-Fouche M, Germain G. Gene and protein expression in the myometrium in pregnancy and labor. Reproduction. 2006; 131(5):837–850. https://doi.org/10.1530/rep.1.00725 PMID: 16672349

117. Anteby EY, Ayesh S, Shochina M, Hamani Y, Schneider T, Al-Shareef W, et al. Growth factor receptor-protein bound 2 (GRB2) upregulation in the placenta in preeclampsia implies a possible role for rasa...
signalling. European Journal of Obstetrics & Gynecology and Reproductive Biology. 2005; 118 (2):174–181. https://doi.org/10.1016/j.ejogrb.2004.04.029

117. Enquobahrie DA, Qiu C, Muhie SY, Williams MA. Maternal peripheral blood gene expression in early pregnancy and preeclampsia. International Journal of molecular epidemiology and genetics. 2011; 2 (1):78. PMID: 21537405

118. Forde N, Bazer FW, Spencer TE, Lonergan P. ‘Conceptualizing’ the endometrium: identification of conceptus-derived proteins during early pregnancy in cattle. Biology of reproduction. 2015; 92 (6):156–1. https://doi.org/10.1095/biolreprod.115.129296 PMID: 25947061

119. Pringle K, Roberts C. New light on early post-implantation pregnancy in the mouse: roles for insulin-like growth factor-II (IGF-II)? Placenta. 2007; 28(4):286–297. https://doi.org/10.1016/j.placenta.2006.04.006 PMID: 16824595

120. Denney JM, Nelson EL, Wadhwa PD, Mathew L, Chung EK, et al. Longitudinal modulation of immune system cytokine profile during pregnancy. Cytokine. 2011; 53(2):170–177. https://doi.org/10.1016/j.cyto.2010.11.005 PMID: 21123081

121. Wang Y, Li Q, Liu C, Han F, Chen M, Zhang L, et al. Protein arginine methyltransferase 5 (Prmt5) is required for germ cell survival during mouse embryonic development. Biology of reproduction. 2015; 92(4). https://doi.org/10.1095/biolreprod.114.127308

122. Long X, Zhang M, Chen X, He J, Ding Y, Zhang C, et al. Expression of KRAS in the endometrium of early pregnant mice and its effect during embryo implantation. Reproductive biomedicine online. 2015; 31(1):51–61. https://doi.org/10.1095/rbmo.2015.04.005 PMID: 25999213

123. Cha J, Sun X, Dey SK. Mechanisms of implantation: strategies for successful pregnancy. Nature Medicine. 2012; 18(12):1754. https://doi.org/10.1038/nm.3012 PMID: 23223073

124. Tokyol C, Aktepe F, Husniye Dilek F, Yilmazer M. Comparison of Placental PTEN and β1 integrin expression in early spontaneous abortion, early and late normal pregnancy.Upsala journal of medical sciences. 2006; 113(2):235–242. https://doi.org/10.3109/2000-1967-231 PMID: 18509818

125. Du MR, Zhou WH, Dong L, Zhu XY, He YY, Yang JY, et al. Cyclosporin A promotes growth and invasion of early pregnant mice and its effect during embryo implantation. Reproductive biomedicine online. 2015; 31(1):51–61. https://doi.org/10.1095/rbmo.2015.04.005 PMID: 25999213

126. Contro E, Stefani L, Berto S, Lapucci C, Arcelli D, Prandstraller D, et al. Circulating mRNA in maternal plasma at the second trimester of pregnancy: a possible screening tool for cardiac conotruncal and left ventricular outflow tract abnormalities. Molecular diagnosis & therapy. 2017; 21(6):653–661. https://doi.org/10.1007/s40291-017-0295-7

127. Fulop V, Mok SC, Genest DR, Gati I, Doszpold J, Berkowitz RS. p53, p21, Rb and mdm2 oncoproteins. European Journal of Obstetrics & Gynecology and Reproductive Biology. 2014; 182:7–10. https://doi.org/10.1016/j.ejogrb.2014.07.044

128. Fraga LR, Boquett JA, Dutra CG, Vianna FS, Heck C, Gonçalves RO, et al. Interaction between TP63 and MDM2 genes and the risk of recurrent pregnancy loss. European Journal of Obstetrics & Gynecology and Reproductive Biology. 2014; 164(11):2926–2930. https://doi.org/10.1002/ajmg.a.36726

129. Haye D, Collet C, Sembely-Taveau C, Haddad G, Denis C, Soule N, et al. Protein arginine methyltransferase 5 (Prmt5) is required for germ cell survival during mouse embryonic development. Biology of reproduction. 2015; 92(4). https://doi.org/10.1095/biolreprod.114.127308

130. Li Yw, Hou Xm, Ni H. Expression of Six bHLH Superfamily Members in Mouse Uterus During Early Pregnancy. Journal of Huazhong University of Science and Technology. 2006; 26 (6):738–740. https://doi.org/10.1007/s11596-006-0631-3 PMID: 17357505

131. O’Brien M, Morrison JJ, Smith TJ. Upregulation of PSCDBP, TLR2, TWIST1, FLJ35382, EDNRB, and RGS12 gene expression in human myometrium at labor. Reproductive sciences. 2008; 15(4):382–393. https://doi.org/10.1177/1933719108316179 PMID: 18497345

132. Lynch S, Whatley S, Ramesh V, Sinha S, Ravine D. Sporadic case of fatal encephalopathy with neonatal onset associated with a T158M missense mutation in MECP2. Archives of Disease in Childhood -Fetal and Neonatal Edition. 2003; 88(3):F250–F252. https://doi.org/10.1136/fn.88.3.F250 PMID: 12719401

133. Guo J, Zou L. Correlation of RECK with matrix metalloproteinase-2 in regulation of trophoblast invasion of early pregnancy. Journal of Huazhong University of Science and Technology. 2006; 26 (6):738–740. https://doi.org/10.1007/s11596-006-0631-3 PMID: 17357505

134. Hu SJ, Ren G, Liu JL, Zhao ZA, Yu YS, Su RW, et al. MicroRNA expression and regulation in mouse uterus during embryonic implantation. Journal of Biological Chemistry. 2008; 283(34):23473–23484. https://doi.org/10.1074/jbc.M800406200 PMID: 18566855

135. Maruo T, Mochizuki M. Immunohistochemical localization of epidermal growth factor receptor and myc oncogene product in human placenta: implication for trophoblast proliferation and differentiation.
Zhao KQ, Lin HY, Zhu C, Yang X, Wang H. Maternal Smad3 deficiency compromises decidualization in mice. Journal of cellular biochemistry. 2012; 113(10):3266–3275. https://doi.org/10.1002/jcb.24204 PMID: 22644778

Levy C, Robel P, Gautray J, De Brux J, Verma U, Descomps B, et al. Estradiol and progesterone receptors in human endometrium: normal and abnormal menstrual cycles and early pregnancy. American Journal of Obstetrics & Gynecology. 1980; 136(5):646–651. https://doi.org/10.1016/0002-9378(80)91018-2

Athilakshmi K, Shanmugasundaram N, Li Q, DeMayo FJ, Lydon JP, Bagchi MK, et al. Runx1 Functions Downstream of BMP2 to Regulate Uterine Stromal Differentiation and Blood Vessel Formation at the Maternal-Fetal Interface.; 2011.

Li Y, Lu H, Ji Y, Wu S, Yang Y. Identification of genes for normalization of real-time RT-PCR data in placental tissues from intrahepatic cholestasis of pregnancy. Placenta. 2016; 48:133–135. https://doi.org/10.1016/j.placenta.2016.07.003 PMID: 27871465

Gray CA, Abbey CA, Beremann PD, Choi Y, Farmer JL, Adelson DL, et al. Identification of endometrial genes regulated by early pregnancy, progesterone, and interferon tau in the ovine uterus. Biology of reproduction. 2006; 74(2):383–394. https://doi.org/10.1095/bioreprod.105.046656 PMID: 16251498

Prossler J, Chen Q, Chamley L, James J. The relationship between TGFβ, low oxygen and the outgrowth of extravillous trophoblasts from anchoring villi during the first trimester of pregnancy. Cytokine. 2014; 68(1):9–15. https://doi.org/10.1016/j.cyto.2014.03.001 PMID: 24787051

Cario-Toumaniartz C, Reillaudoux G, Sauzeau V, Heutte F, Finet M, Chardin P, et al. Modulation of RhoA—Rho kinase-mediated Ca2+ sensitization of rabbit myometrium during pregnancy—role of Rnd3. The Journal of physiology. 2003; 552(2):403–413. PMID: 14561824

Larrey J, Smith M, Pawade J, Strachan B, Mellor H, Bernal AL. Up-regulation of myometrial RHO effector proteins (PKN1 and DIAPH1) and C1P-1 (PPP1R14A) phosphorylation in human pregnancy is associated with increased GTP-RHOA in spontaneous preterm labor. Biology of reproduction. 2007; 76(6):971–982. https://doi.org/10.1095/bioreprod.106.058982 PMID: 17301291

Musavi SA, Yamashita S, Fujihara T, Masaka H, Islam MR, Kim S, et al. Analysis of differentially expressed genes and the promoters in bovine endometrium throughout estrus cycle and early pregnancy. Animal Science Journal. 2018. https://doi.org/10.1111/asj.13901 PMID: 30182475

Takahashi H, Ohkuchi A, Usui R, Takizawa T, Matsubara S, Suzuki M. Importance of chromosome 19 miRNA cluster in pregnancy. Obstet Gynecol. 2014; 2(2):1032.

Fotovati A, Abu-Ali S, Nakayama K, Nakayama KI. Impaired ovarian development and reduced fertility in female mice deficient in Skp2. Journal of anatomy. 2011; 218(6):668–677. https://doi.org/10.1111/j.1469-7580.2011.01370.x PMID: 21450015

Su MT, Lin SH, Chen YC, Kuo PL. Gene–gene interactions and gene polymorphisms of VEGFA and EG-VEGF gene systems in recurrent pregnancy loss. Journal of assisted reproduction and genetics. 2014; 31(6):699–705. https://doi.org/10.1007/s10815-014-0223-2 PMID: 24671265

Ladyman S, Grattan D. Region-specific reduction in leptin-induced phosphorylation of signal transducer and activator of transcription-3 (STAT3) in the rat hypothalamus is associated with leptin resistance during pregnancy. Endocrinology. 2004; 145(8):3704–3711. https://doi.org/10.1210/en.2004-0338 PMID: 15142988

Poehlmann TG, Fitzgerald JS, Meissner A, Wengenmaier T, Schleussner E, Friedrich K, et al. Trophoblast invasion: tuning through LIF, signalling via Stat3. Placenta. 2005; 26:S37–S41. https://doi.org/10.1016/j.placenta.2005.01.007 PMID: 15837065

Teng CB, Diao HL, Ma H, Cong J, Yu H, Ma XH, et al. Signal transducer and activator of transcription 3 (Stat3) expression and activation in rat uterus during early pregnancy. Reproduction. 2004; 128(2):197–205. https://doi.org/10.1530/rep.1.00053 PMID: 15280559

Lv X, Cai Z, Li S. Increased apoptosis rate of human decidual cells and cytotrophoblasts in patients with recurrent spontaneous abortion as a result of abnormal expression of CDKN1A and Bax. Experimental and therapeutic medicine. 2016; 12(5):2865–2868. https://doi.org/10.3892/etm.2016.3692 PMID: 27882087

Shang W, Shu M, Liu M, Wang A, Lv L, Zhao Y, et al. Elevated expressions of p53, CDKNA1, and Bax in placental vili from patients with recurrent spontaneous abortion. Eur Rev Med Pharmacol Sci. 2013; 17(24):3376–3380. PMID: 24379070

Li F, Devi YS, Bao L, Mao J, Gibori G. Involvement of cyclin D3, CDKN1A (p21), and BIRC5 (Survivin) in interleukin 11 stimulation of decidualization in mice. Biology of reproduction. 2008; 78(1):127–133. https://doi.org/10.1095/bioreprod.107.063313 PMID: 17881769
154. Shynlova O, Dorogin A, Lye SJ. Stretch-induced uterine myocyte differentiation during rat pregnancy: involvement of caspase activation. Biology of reproduction. 2010; 82(6):1248–1255. https://doi.org/10.1095/biolreprod.109.081158 PMID: 20181619

155. Kiewisz J, Kaczmarek MM, Andronowska A, Blitek A, Ziecik AJ. Gene expression of WNTs, β-catenin and E-cadherin during the perimplantation period of pregnancy in pigs-involvement of steroid hormones. Theriogenology. 2011; 76(4):687–699. https://doi.org/10.1016/j.theriogenology.2011.03.022 PMID: 21652061

156. Lim R, Riley C, Barker G, Rice G, Lappas M. Human labour is associated with decreased cytoplasmic FoxO4. Placenta. 2012; 33(1):52–59. https://doi.org/10.1016/j.placenta.2011.10.004 PMID: 22112832

157. Lappas M, Lim R, Riley C, Menon R, Permezel M. Expression and localization of FoxO3 and FoxO4 in human placenta and fetal membranes. Placenta. 2010; 31(12):1043–1050. https://doi.org/10.1016/j.placenta.2010.09.009 PMID: 20934750

158. Sati L, Soygur B, Celik-Ozeneci C. Expression and localization of FoxO4 in normal term and gestational diabetic placentas. European Journal of Obstetrics and Gynecology and Reproductive Biology. 2016; 206:e104. https://doi.org/10.1016/j.ejogrb.2016.07.274

159. Boyle KE, Newsom SA, Janssen RC, Lappas M, Friedman JE. Skeletal muscle MnSOD, mitochondrial complex II, and SIRT3 enzyme activities are decreased in maternal obesity during human pregnancy and gestational diabetes mellitus. The Journal of Clinical Endocrinology & Metabolism. 2013; 98(10):E1601–E1609. https://doi.org/10.1210/jc.2013-1943

160. Liu G, Lin H, Zhang X, Li Q, Wang H, Qian D, et al. Expression of Smad2 and Smad4 in mouse uterus during the oestrous cycle and early pregnancy. Placenta. 2004; 25(6):530–537. https://doi.org/10.1016/j.placenta.2003.11.006 PMID: 15135236

161. Cesarini V, Silvestris DA, Tassinari V, Tomaselli S, Alon S, Eisenberg E, et al. ADAR2/miR-589-3p axis controls glioblastoma cell migration/invasion. Nucleic Acids Research. 2018; 46(4):2045–2059. https://doi.org/10.1093/nar/gkx1257 PMID: 29267965

162. Pinto Y, Buchumenski I, Levanon EY, Eisenberg E. Human cancer tissues exhibit reduced A-to-I editing of miRNAs coupled with elevated editing of their targets. Nucleic Acids Research. 2017; 46(1):71–82. https://doi.org/10.1093/nar/gkx1176

163. Zipeto MA, Sadarangani A, Santos NPD, Balaian L, Chun HJ, Pineda G, et al. ADAR1 activation drives leukemia stem cell self-renewal by impairing Let-7 biogenesis. Cell Stem Cell. 2016; 19(2):177–181. https://doi.org/10.1016/j.stem.2016.05.004 PMID: 27292188

164. Nigita G, Acunzo M, Romano G, Veneziano D, Laganà A, Vitiello M, et al. microRNA editing in seed region aligns with cellular changes in hypoxic conditions. Nucleic Acids Research. 2016; 44(13):6298–6308. https://doi.org/10.1093/nar/gkw532 PMID: 27298257

165. Telonis AG, Magee R, Loher P, Chervoneva I, Londin E, Rigoutsos I. Knowledge about the presence or absence of miRNA isoforms (isomiRs) can successfully discriminate amongst 32 TCGA cancer types. Nucleic Acids Research. 2017; 45(6):2973–2985. https://doi.org/10.1093/nar/gkx082 PMID: 28206648

166. Burroughs AM, Ando Y, de Hoon MJ, Tornaru Y, Nishibu T, Uekawara R, et al. A comprehensive survey of 3’ animal miRNA modification events and a possible role for 3’ adenylation in modulating miRNA targeting effectiveness. Genome Research. 2010; 20(10):1398–1410. https://doi.org/10.1101/gr.106054.110 PMID: 20719920

167. Thornton JE, Du P, Jing L, Sjekloca L, Lin S, Grossi E, et al. PAPD5-mediated 3’ adenylation and subsequent degradation of miR-21 is disrupted in proliferative disease. Proceedings of the National Academy of Sciences. 2014; 111(31):11467–11472. https://doi.org/10.1073/pnas.1317751111

168. Bohle J, Persson H, Shin JW, Ishizu Y, Newie IS, Sakilde R, et al. PAPD5-mediated 3’ adenylation and subsequent degradation of miR-21 is disrupted in proliferative disease. Proceedings of the National Academy of Sciences. 2014; 111(31):11467–11472. https://doi.org/10.1073/pnas.1317751111

169. Ludwig N, Leidinger P, Becker K, Backes C, Fehlmann T, Pallach C, et al. Distribution of miRNA expression across human tissues. Nucleic Acids Research. 2016; 44(8):3865–3877. https://doi.org/10.1093/nar/gkw116 PMID: 26921406

170. Gallo A, Vukic D, Michalik D, O’Connell MA, Keegan LP. ADAR RNA editing in human disease: more to it than meets the I. Human Genetics. 2017; 136(9):1265–1278. https://doi.org/10.1007/s00439-017-1837-0 PMID: 28913566
Valadi H, Ekström K, Bossios A, Sjöstrand M, Lee JJ, Låtvall JO. Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nature Cell Biology. 2007; 9(6):654–659. https://doi.org/10.1038/ncb1596 PMID: 17486113

Heo I, Joo C, Cho J, Ha M, Han J, Kim VN. Lin28 mediates the terminal uridylation of let-7 precursor MicroRNA. Molecular Cell. 2008; 32(2):276–284. https://doi.org/10.1016/j.molcel.2008.09.014 PMID: 18951094

Heo I, Joo C, Kim YK, Ha M, Yoon MJ, Cho J, et al. TUT4 in concert with Lin28 suppresses microRNA biogenesis through pre-microRNA uridylation. Cell. 2009; 138(4):696–708. https://doi.org/10.1016/j.cell.2009.08.002 PMID: 19703396

Heo I, Ha M, Lim J, Yoon MJ, Park JE, Kwon SC, et al. Mono-uridylation of pre-microRNA as a key step in the biogenesis of group II let-7 microRNAs. Cell. 2012; 151(3):521–532. https://doi.org/10.1016/j.cell.2012.09.022 PMID: 23063654

Looney A, O’Sullivan M, Ahearne C, Finder M, Felderhoff-Mueser U, Boylan G, et al. Altered Expression of Umbilical Cord Blood Levels of miR-181b and Its Downstream Target mUCH-L1 in Infants with Moderate and Severe Neonatal Hypoxic-Ischaemic Encephalopathy. Molecular Neurobiology. 2018; p. 1–7.

Bail S, Swerdel M, Liu H, Jiao X, Goff LA, Hart RP, et al. Differential regulation of microRNA stability. Rna. 2010; 16(5):1032–1039. https://doi.org/10.1261/rna.185150 PMID: 20348442

Wang J, Chen J, Sen S. MicroRNA as biomarkers and diagnostics. Journal of cellular physiology. 2016; 231(1):25–30. https://doi.org/10.1002/jcp.25056 PMID: 26031493

Choudhury Y, Tay FC, Lam DH, Sandanaraj E, Tang C, Ang BT, et al. Attenuated adenosine-to-inosine editing of microRNA-376a* promotes invasiveness of glioblastoma cells. The Journal of Clinical Investigation. 2012; 122(11):4059–4076. https://doi.org/10.1172/JCI62925 PMID: 23093778