Gene tree reconciliation including transfers with replacement is NP-hard and FPT

Damir Hasić1 · Eric Tannier2,3

Published online: 22 February 2019
© Springer Science+Business Media, LLC, part of Springer Nature 2019

Abstract
Phylogenetic trees illustrate the evolutionary history of genes and species. Although genes evolve along with the species they belong to, a species tree and gene tree are often not identical. The reasons for this are the evolutionary events at the gene level, like duplication or transfer. These differences are handled by phylogenetic reconciliation, which formally is a mapping between a gene tree nodes and a species tree nodes and branches. We investigate models of reconciliation with gene transfers replacing existing genes, which is a biologically important event, but has never been included in the reconciliation models. The problem is close to the dated version of the classical subtree prune and regraft (SPR) distance problem, where a pruned subtree has to be regrafted only on a branch closer to the root. We prove that the reconciliation problem including transfer with replacement is NP-hard, and that, if speciations and transfers with replacement are the only allowed evolutionary events, it is fixed-parameter tractable with respect to the reconciliation’s weight. We prove that the results extend to the dated SPR problem.

Keywords Phylogenetic reconciliation · Dated subtree prune and regraft SPR · Gene transfer · Transfer with replacement (replacing transfer) · NP hard/complete · Fixed parameter tractable FPT
1 Introduction

Duplications and transfers are events in evolution of genes, and one of the major reasons for discordance between species and gene trees. These differences are modeled by phylogenetic reconciliation (see for example Szöllősi et al. 2015).

The main evolutionary event investigated in this paper is gene transfer (Fig. 1). It involves two, possibly ancient, species existing at the same moment. The species that provides a transferred gene is called a donor species, and the species that receives the gene is called a recipient species.

As phylogenetic analysis never includes the totality of living species, in particular ancient species which can be extinct or not sampled (see transfer from the dead in Szöllősi et al. 2013), the donor species is not assumed to belong to the species phylogeny, but is related to it through one of its ancestors. By extension, this ancestor is considered as the donor, which yields a diagonal transfer or transfer to the future (Fig. 1b–d).

The recipient species either receives a new gene copy, or replaces an existing one (Fig. 1d). The latter event is called replacement transfer or transfer with replacement. In Choi et al. (2012) replacement transfer is called replacing horizontal gene transfer (HGT). They found that the replacing HGT and the additive HGT affect gene functions differently in Streptococcus. In Rice and Palmer (2006) HGT in plastid genomes is studied and the evidence of transfer with replacement is found. HGT with replacement also occurred in the evolution of eukaryotes (Keeling and Palmer 2008). HGT with replacement is used in several phylogenetic studies (Abby et al. 2012; Beiko and Hamilton 2006; Suchard 2005).

In this article we explore the algorithmic aspects of transfers with replacements when time constraints are imposed on transfers (i.e. they should not be directed to the past).

![Fig. 1](image-url) The gene transfer. a A horizontal gene transfer between species existing at the same moment. Species A is a donor species, while species B is a recipient species, and it receives a new gene copy. b A gene exits the observed phylogeny, through a speciation or transfer, then it returns through a horizontal transfer. c The event from b can be represented with a diagonal transfer. d A transferred gene (x_2) replaces already present gene (l). The replaced gene l is lost. This event is called the replacement transfer or transfer with replacement, and is represented by a transfer and gene loss. Formally, $\delta_T(e) = l$, where $e = (x_1, x_2)$ is a transfer.
1.1 A review of previous results

There are two usual ways of detecting transfers by comparing species trees and gene trees. The one is reconciliation, and the other is computation of SPR (subtree prune and regraft) scenarios. Our work lies at the intersection of the two. Indeed, reconciliations can consider time constraints but so far have not included replacing transfers. On the other hand, SPR scenarios are a good model for replacing transfers, but never considered time constraints.

Time constraints result in—fully or partially—dated species trees. For a dated species tree, finding a reconciliation of minimum cost, in model with gene transfers, is usually polynomial time (Merkle et al. 2010; Doyon et al. 2010; Bansal et al. 2012). With an undated species tree, and partial time constraints it is usually NP-hard (Hallett and Lagergren 2001; Tofigh et al. 2011; Bansal et al. 2012), and can be fixed parameter tractable (Hallett and Lagergren 2001; Tofigh et al. 2011), or inapproximable (Dasgupta et al. 2006). If a constraint on time consistency of reconciliation scenarios is relaxed, the problem becomes polynomial (Tofigh et al. 2011; Bansal et al. 2012).

Some results go beyond finding one optimal solution. In Bansal et al. (2013) an algorithm that uniformly samples the space of optimal solutions is given, and it runs in polynomial time (per sample). In Chan et al. (2015) the space of all solutions is explored, while the space of optimal solutions is explored in Scornavacca et al. (2013). Probabilistic models allow sampling of solutions in larger spaces, according to likelihood distributions (Szöllösi et al. 2013).

Until now, only reconciliations with transfers without replacements are investigated. However, note that duplications with replacement, i.e. conversions, were recently introduced by Hasić and Tannier (2019). For a more detailed review on reconciliations see Szöllösi et al. (2015), Nakhleh (2012), and Doyon et al. (2011).

Transfers that replace existing genes are in close relation to the classical tree rearrangement operation subtree prune and regraft (SPR). For the definition of SPR refer to Song (2006) (for the rooted trees) and Allen and Steel (2001) (for the unrooted trees). This operation has never been integrated in the reconciliation models but is used to detect transfers when it is the only allowed evolutionary event at the gene scale. In consequence, these studies are limited to datasets where genes appear in at most one copy per species.

Computing SPR distance between two rooted binary phylogenetic trees on the same label set is NP-hard (Hein et al. 1996; Allen and Steel 2001; Bordewich and Semple 2005). The problem is also NP-hard for the unrooted binary trees (Hickey et al. 2008). If we take the SPR distance as a parameter, then both rooted (Bordewich and Semple 2005) and unrooted (Whidden and Matsen 2018) versions are fixed-parameter tractable (FPT).

There is an approximation algorithm of ratio 3 (Hein et al. 1996), as well as an ILP algorithm for calculating the exact rooted SPR distance (Wu 2009), which can also be determined by reducing it to conjunctive normal form (Bonet and John 2009) and using the existing SAT solvers.
Rooted SPR distance is equivalent to the number of trees in the maximum agreement forest (MAF) (Bordewich and Semple 2005), while in the unrooted version SPR distance is greater than or equal to the size of the MAF (Allen and Steel 2001). A divide and conquer approach with MAF is used for computing the exact SPR distance in Linz and Semple (2011). A 2.5-approximation algorithm for the MAF problem on two rooted binary phylogenetic trees is presented in Shi et al. (2016). In Chen et al. (2015) an FPT algorithm for the rooted SPR, with complexity $O(2.344^k n)$ is presented, which is an improvement compared to $O(2.42^k n)$ (Whidden et al. 2010). The rooted SPR is investigated also for non binary trees (Whidden et al. 2016), and MAF for multiple trees (Chen et al. 2016). For a more complete review see Shi et al. (2013), and Whidden et al. (2016).

The SPR distance on a dated species tree, where only contemporaneous or transfers to the future are allowed, is mentioned in Song (2006), where it is investigated how many dated trees are one SPR operation away from a given dated tree. The complexity of the dated SPR distance computation is left open, and has an answer as a consequence of our results here.

1.2 The contribution of this paper

In this paper, we analyze the algorithmic complexity of finding a minimum reconciliation with replacing transfers in the presence of a dated species tree. If the speciations and replacement transfers are the only evolutionary events in a reconciliation, then finding a minimum dated SPR scenario is an equivalent problem.

We define a model of reconciliation with gene transfer followed by gene replacement, i.e. a transferred gene replaces a gene that is already present in the recipient species (Fig. 1d). We call this event transfer with replacement, and it is represented by a transfer and a loss (the gene that is replaced). We prove that finding a minimum reconciliation that includes transfer with replacement is NP-hard. If speciation and transfer with replacement are the only allowed events, then the problem is fixed parameter tractable with respect to a minimum reconciliation weight, and it is easily reducible to the dated SPR problem. Therefore the dated SPR is also NP-hard and FPT. Note that the hardness of dated SPR is not easily deduced from the hardness of the general SPR, because all the known proofs make an extensive usage of the possibility of time inconsistent SPRs.

We prove NP-hardness by a reduction from Max 2-Sat. Gadgets for variables and clauses are constructed, and used to assemble a reconciliation that we call a proper reconciliation. Hence the gadgets are subreconciliations of the proper reconciliation. Next, we state an obvious claim that relates an optimal Max 2-Sat solution with a minimum proper reconciliation. Then we prove that any minimum reconciliation can be transformed (in polynomial time) into a proper reconciliation of the same weight (therefore minimum).

In order to prove parametrized tractability, we introduce the normalized reconciliation. Intuitively, this reconciliation can be obtained from any reconciliation by raising nodes of gene tree G as much as possible. We achieve this by mapping the nodes of G to the species tree nodes and edges closer to the root, without affecting transfers,
hence keeping the weight of a reconciliation. Then we give a branch and bound algorithm that returns a minimum reconciliation that is also normalized. Thanks to the normalization, we can have at most three cases in the branching algorithm, and every branching produces at least one transfer, so the depth of any branching procedure is at most k, i.e. $3^k n$ is an approximate complexity of the algorithm.

2 Definitions

Phylogenetic reconciliation is a relation between a gene tree and a species tree. The gene trees, and species trees are used to explain the evolutions of genes and species. Because of the gene-level evolutionary events, a gene tree G and a species tree S are often not identical. This difference can be used to detect the evolutionary events that caused it. In order to emphasize the difference, we place a gene tree inside a species tree. Formally, it is done by a mapping $\rho : V(G) \rightarrow V(S) \cup E(S)$, that places gene tree nodes inside the species tree. According to the placement of a gene tree node (and some other conditions), we infer the type of evolutionary events. For example, if $\rho(x) \in V(S)$, where $x \in V(G)$, then x is a speciation. If, on the other hand, $\rho(x) \in E(S)$, then x' might represent transfer, duplication or some other event, which is determined by additional conditions. Also, the mapping ρ determines where inside S an evolutionary event took place.

More details, and formal definitions are given in the remaining of this section.

A phylogenetic tree here is a rooted tree T such that the root vertex, denoted by $\text{root}(T)$, has degree 1 or 2. If $\text{deg}(\text{root}(T)) = 1$, then the incident edge is called the root edge. If $\text{deg}(\text{root}(T)) = 2$, then there is no root edge. We denote the set of all leaves of the tree T by $L(T)$. Trees are considered binary, meaning that the nodes have at most two children. We say that they are fully binary when all internal nodes have exactly two children.

Let $x, y \in V(T) \cup E(T)$. If x is an ancestor of y in T, i.e. if x is in the path from y to $\text{root}(T)$, then we write $y \leq_T x$ or $y \leq x$, defining a partial order on the nodes and edges. If $y \not\leq x$ and $x \not\leq y$, then we say that x and y are incomparable in T.

Let $x \in V(T) \cup E(T)$. By $p^v_T(x) = p^v(x)$ we define the minimal node such that $x < p^v(x)$, and by $p^e_T(x) = p^e(x)$ the minimal edge of T such that $x < p^e(x)$. We call $p^v(x)$ the node parent, and $p^e(x)$ the edge parent. Let $p_T(x) = p(x) = \min\{p^v_T(x), p^e_T(x)\}$. Note that if $x \in V(T)$, then $p(x) \in E(T)$, and if $x \in E(T)$, then $p(x) \in V(T)$.

Let $x \in V(T) \cup E(T)$, and F is a subforest of T. By $p^v_F(x)$ and $p^e_F(x)$ we define the minimal node and the minimal edge from F such that $x < p^v_F(x)$ and $x < p^e_F(x)$, if they exist. Otherwise, $p^v_F(x)$ or $p^e_F(x)$ is not defined.

If x is a node/edge in T, then $T(x)$ is the maximal rooted subtree with root node/edge x. If $A \subseteq L(T)$, then $T(A)$ is the subtree of T with a root vertex of degree 2, and $L(T(A)) = A$.

Let $x \in V(T)$, $\text{deg}(x) = 2$, $y, z \in V(T)$ are the neighbours of x. If we remove x from T, and connect y and z, then we say that node x is suppressed.

Let $f : A \rightarrow B$, $g : C \rightarrow B$, $C \subseteq A$, and $g(x) = f(x)$ for all $x \in C$. Then we write $g = f / C$.

\[\text{Springer} \]
The next definition extends the partial order on the set \(V(T) \cup E(T) \) to the total order by introducing the date function. Intuitively, to every node and edge from \(T \) a date (i.e. a point in the past) is assigned. This derives from the fact that phylogenetic trees and reconciliations represent evolutionary events that happened at some point in the past. Figure 2 depicts a date function for trees \(S \) and \(S' \).

Definition 1 (Date function. Dated tree) Let \(T \) be a rooted tree and \(\tau : V(T) \cup E(T) \rightarrow [0, +\infty) \) such that \(\tau(L(T)) = \{0\} \), \(x_1, x_2 \in V(T) \cup E(T), x_1 < x_2 \implies \tau(x_1) < \tau(x_2) \). Function \(\tau = \tau_T \) is a date function on the tree \(T \), and \(T \) is a dated tree.

Note that the edges of \(T \) are assigned a date. Although it might seem more natural to assign an interval to an edge, here is more convenient to assign a point (i.e. a date).

By a species tree \(S \) we mean a dated, fully binary tree with function \(\tau_S = \tau \), and \(\tau(s_1) \neq \tau(s_2) \), for all \(s_1, s_2 \in V(S) \setminus L(S) \), such that \(s_1 \neq s_2 \).

Subdividing an edge means that a vertex is added to the edge. Formally, edge \(e = (x, y) \) is subdivided if a node \(z \) is added to the graph along with edges \((x, z), (z, y) \), and the edge \(e \) is removed.

Definition 2 (Subdivision of a species tree) Let \(S' \) be a tree obtained from \(S \) by subdividing some edges, and \(\forall e = (p^V(s), s) \in E(S) \), and \(\forall s_1 \in V(S) \) for which \(\tau(s) < \tau(s_1) < \tau(p^V(s)) \), \(\exists s' \in V(S') \setminus V(S) \), \(\tau(s_1) = \tau(s') \), and \(s < s' < p^V(s) \). Tree \(S' \) with these properties, and with the minimum number of nodes is called the subdivision of the species tree \(S \).

Note that the node \(s' \) from Definition 2 is obtained by subdividing some edge, and \(\deg(s') = 2 \). Subdivision of a species tree is unique (Fig. 2). Also, \(L(S') = L(S) \) and \(\text{root}(S') = \text{root}(S) \). If \(e \in E(S') \), then \(v_e \) denotes the maximum element from the set \(\{ x \in V(S) \mid x < e \} \). We assume that \(\tau(V(S') \cup E(S')) = \{0, 1, \ldots, 2n\} \), where \(n \) is the number of the extant species in \(S \), \(\tau(L(S)) = \{0\} \), \(\tau(\text{root}(S)) = 2n \). Therefore if \(x \in V(S') \cup E(S') \), then \(\tau(p(x)) = \tau(x) + 1 \).

We now define a gene tree species tree reconciliation. A gene tree \(G \) is a fully binary tree, which comes with a mapping \(\phi : L(G) \rightarrow L(S) \) that indicates the species in which genes are found in the data.
In the reconciliations that include evolutionary events where one gene replaces another (like conversions or replacement transfers) parts of a gene tree G that are not reconstructed can be important. Therefore, if a gene tree G is given, in order to find a reconciliation, we need to find a gene tree G' that contains G. We call G' an extension of G.

Definition 3 *(Extension)* Let T be a tree, and $\text{deg}(\text{root}(T)) = 1$. A tree T' is said to be an extension of a tree T if $\text{root}(T') = \text{root}(T)$, $\text{deg}(\text{root}(T')) = 1$, T can be obtained from T' by pruning some subtrees and suppressing nodes of degree 2.

Figure 3, among other things, depicts G and G'. In Fig. 3b we have $L(G) = \{l_1, \ldots, l_6\}$, $V(G) = \{x_1, \ldots, x_6\} \cup L(G)$, $L(G') = L(G) \cup \{l_7, l_8, l_9\}$, $V(G') = V(G) \cup \{x_7, x_8, l_7, l_8, l_9\}$. We always have $\text{root}(G') = \text{root}(G)$, $V(G) \subseteq V(G')$, and $L(G) \subseteq L(G')$.

Note $p^G_e(l_2) = x_3$, $p^G_e(l_2) = x_8$, $p^G_e(l_2) = (x_3, l_2)$, and $p^E_e(l_2) = (x_8, l_2)$. Let $e = (x_8, l_2)$, then $p^G_e(e) = x_3$, $p^G_e(e) = x_8$, $p^E_e(e) = (x_2, x_3)$, and $p^E_e(e) = (x_7, x_8)$.

A fundamental notion, in a reconciliation between a species tree and a gene tree, is the mapping of nodes of G the edges and vertices of S, denoted by ρ.

Definition 4 *(Semireconciliation)* Let G' be an extension of a gene tree G, S be a species tree, and S' be a subdivision of S. Next, let τ be a date function on S', $\phi : L(G) \to L(S)$, and $\rho : V(G') \to V(S) \cup E(S')$ such that $\rho/L(G) = \phi$ and $\rho(\text{root}(G')) = \rho(\text{root}(G)) = \text{root}(S)$. If $x, y \in V(G')$, $x < y$, and $\rho(x)$ and $\rho(y)$ are comparable in S, then $\rho(x) \leq \rho(y)$. We call a semireconciliation the 6-tuple $\mathcal{R} = (G, G', S, \phi, \rho, \tau)$.

We say that a node $x \in V(G')$ is positioned or placed in $s \in V(S) \cup E(S')$, if $\rho(x) = s$.

In Fig. 3 we have $L(S) = \{L_1, \ldots, L_5\}$, $V(S) = \{X_1, \ldots, X_5\} \cup L(S)$, $E(S) = \{E_1, \ldots, E_9\}$. For S' (Fig. 3d) we have: $L(S') = L(S)$, $V(S')$ contains $V(S)$ and some other non-labeled nodes, $E(S') = \{E_1, E_2, E_3, E_3, E_4, E_5, E_6, E_7, E_7, E_8, E_8, E_9, E_9, E_9, E_9, E_9\}$.

Regarding mapping ρ, we have: $\rho(x_1) = X_1$, $\rho(x_2) = X_2$, $\rho(x_3) = E_2$, $\rho(x_{10}) = E_9$, $\rho(l_{11}) = E_7$, $\rho(l_{10}) = E_7$ (but it could be $\rho(l_{10}) = E_7$ as well).

Mapping ρ, together with the model’s set of evolutionary events, determines which evolutionary event corresponds to nodes of G'. We will give more details after each definition.

Note that the nodes of G' are not mapped into $V(S') \setminus V(S)$. If $\rho(x) = e' \in E(S')$ and e' is a part of $e \in E(S)$, then we will write $\rho(x) \in e$.

The next definition introduces subtrees of G' that are not in G.

Definition 5 *(Lost subtree)* A maximal subtree T of G' such that $V(T) \cap V(G) = \emptyset$ is called a lost subtree. An edge from a lost subtree we call a lost edge.

Figure 3b contains three lost subtrees (dashed lines). Every lost subtree has exactly one edge. Figure 3c also has three lost subtrees, but one of them has three edges (the subtree with vertices $x_7, x_{14}, l_{10}, l_{11}$).
Definition 6 (Speciation) Let \mathcal{R} be a semireconciliation, $x \in V(G')$, and $\rho(x) \in V(S) \setminus L(S)$. If the children of x in G' can be labeled x'_l, x'_r so that $\rho(x)_l \leq \rho(x'_l) < \rho(x)$, $\rho(x)_r \leq \rho(x'_r) < \rho(x)$, then x is called a speciation. The set of all speciations is denoted by $\Sigma(\mathcal{R})$ or Σ.

A semireconciliation is a reconciliation without established gene evolutionary events. The next definitions introduce these events. We define evolutionary events only for genes. Every internal node of S is S', and an extension of the gene tree is G'. The gene tree G in b is different from the gene tree G in (a). A species tree S. $V(S) = \{X_1, \ldots, X_5, L_1, \ldots, L_5\}$, root($S$) = X_1, root$_E(S) = E_1$, $E(S) = \{E_1, \ldots, E_9\}$, $L(S) = \{L_1, \ldots, L_5\}$. b An LCA reconciliation. $V(G) = \{x_1, \ldots, x_6, l_1, \ldots, l_6\}$, $V(G') = V(G) \cup \{x_7, x_8, x_9, l_7, l_8, l_9\}$, $L(G) = \{l_1, \ldots, l_6\}$, $L(G') = L(G) \cup \{l_7, l_8, l_9\}$. Duplications are x_3, x_6. Speciations in G are x_2, x_4, x_5, while speciations in G' that are not in G are x_7, x_8, x_9. Losses are l_7, l_8, l_9. We have three lost edges/subtrees (dashed lines). Node placement: $\rho(x_1) = X_1$, $\rho(x_2) = X_2$, $\rho(x_3) = E_2$, $\rho(l_9) = E_5$, etc. c The edge (x_{12}, x_{13}) is a transfer. Since the loss l_9 is paired with x_{11}, (x_{10}, x_{11}) is a transfer with replacement, i.e. (gene) x_{11} replaces l_9. Node x_6 is a conversion (and is paired with l_{11}). We have three lost subtrees. One lost subtree (with vertices $x_{7}, x_{14}, l_{10}, l_{11}$) has three edges. We have two non-free losses (l_8 and l_{10}), and two free losses (l_9 and l_{13}). d Tree S' is the subdivision of S. Edge E_9 is subdivided into four parts, while each of the edges E_3, E_7, E_8 is subdivided into two parts. The rest of the edges are not subdivided.

Fig. 3 Examples of reconciliations. A species tree is S, gene tree is G, the subdivision of S is S', and an extension of the gene tree is G'. The gene tree G in b is different from the gene tree G in (a). A species tree S. $V(S) = \{X_1, \ldots, X_5, L_1, \ldots, L_5\}$, root($S$) = X_1, root$_E(S) = E_1$, $E(S) = \{E_1, \ldots, E_9\}$, $L(S) = \{L_1, \ldots, L_5\}$. b An LCA reconciliation. $V(G) = \{x_1, \ldots, x_6, l_1, \ldots, l_6\}$, $V(G') = V(G) \cup \{x_7, x_8, x_9, l_7, l_8, l_9\}$, $L(G) = \{l_1, \ldots, l_6\}$, $L(G') = L(G) \cup \{l_7, l_8, l_9\}$. Duplications are x_3, x_6. Speciations in G are x_2, x_4, x_5, while speciations in G' that are not in G are x_7, x_8, x_9. Losses are l_7, l_8, l_9. We have three lost edges/subtrees (dashed lines). Node placement: $\rho(x_1) = X_1$, $\rho(x_2) = X_2$, $\rho(x_3) = E_2$, $\rho(l_9) = E_5$, etc. c The edge (x_{12}, x_{13}) is a transfer. Since the loss l_9 is paired with x_{11}, (x_{10}, x_{11}) is a transfer with replacement, i.e. (gene) x_{11} replaces l_9. Node x_6 is a conversion (and is paired with l_{11}). We have three lost subtrees. One lost subtree (with vertices $x_{7}, x_{14}, l_{10}, l_{11}$) has three edges. We have two non-free losses (l_8 and l_{10}), and two free losses (l_9 and l_{13}). d Tree S' is the subdivision of S. Edge E_9 is subdivided into four parts, while each of the edges E_3, E_7, E_8 is subdivided into two parts. The rest of the edges are not subdivided.
After introducing the remaining evolutionary events, we will see that \(x \in V(G') \) is a speciation if and only if \(\rho(x) \in V(S) \).

Gene duplication is an event where one gene is replaced by two identical gene copies. In Fig. 3b duplications are \(x_3 \) and \(x_6 \).

Refer to Fig. 2 and the comment after Definition 2 for \(v_e \).

Definition 7 (Duplication) Let \(\mathcal{R} \) be a semireconciliation, \(x \in V(G') \), \(x'_1, x'_2 \) be the children of \(x \) in \(G' \), \(\rho(x) = e \in E(S') \). If \(v_e \leq \rho(x'_1) \), \(v_e \leq \rho(x'_2) \), \(\deg(x'_1) > 2 \) or \(x'_1 \in L(G') \), and \(\deg(x'_2) > 2 \) or \(x'_2 \in L(G') \), then \(x \) is called a duplication. The set of all duplications is denoted by \(\Delta(\mathcal{R}) \) or \(\Delta \).

From now on, we will assume \(\tau(x) = \tau(\rho(x)) \) for all \(x \in V(G') \).

Gene transfer is explained in Sect. 1 and Fig. 1. In Fig. 3c the edges \((x_{10}, x_{11})\) and \((x_{12}, x_{13})\) are transfers. Vertices \(x_{10} \) and \(x_{12} \) are transfer parents, where \(x_{11} \) and \(x_{13} \) are transfer children.

Definition 8 (Transfer) Let \(\mathcal{R} \) be a semireconciliation, \(x \in V(G') \), \(x'_1, x'_2 \) be the children of \(x \) in \(G' \), \(\rho(x) = e \in E(S') \). For one of the \(x'_1, x'_2 \) (say \(x'_1 \)) holds \(v_e \leq \rho(x'_1) \) and \(\deg(x'_1) > 2 \). For the other one (i.e. \(x'_2 \)) we have \(\rho(x'_2) = e' \in E(S') \), \(\tau(e') \leq \tau(e) \), \(\deg(x'_2) = 2 \), and \(v_{e'} \leq \rho(x'_2) \), where \(x'_2 \) is the only child of \(x'_1 \) in \(G' \). Then \(x \) is called a transfer parent, \(x'_1 \) is a transfer child, and the edge \((x, x'_2) \in E(G') \) is a transfer. If \(\tau(x'_1) = \tau(x) \), the transfer is a horizontal transfer, and if \(\tau(x'_2) < \tau(x) \), the transfer is a diagonal transfer or transfer to the future. The set of all transfers is denoted by \(\Theta(\mathcal{R}) \) or \(\Theta \).

We say that transfer \((x, x'_1)\) belongs to edge \((a, b) \in E(G) \) if \(x \) and \(x'_1 \) belong to \((a, b) \), i.e. \(b \prec_{G'} x'_1 \prec_{G'} x \leq_{G'} a \).

In Fig. 3c nodes \(l_8, l_9, l_{10}, l_{11} \) are gene losses.

Definition 9 (Loss) Let \(\mathcal{R} \) be a semireconciliation, and \(x \in L(G') \setminus L(G) \). Then \(x \) is called a loss. The set of all losses is denoted by \(\Lambda(\mathcal{R}) \) or \(\Lambda \).

The next two events that we define are created by pairing some of the previously defined events with a loss.

The replacement transfer is explained in Sect. 1 and Fig. 1. In Fig. 3c a replacement transfer is \((x_{10}, x_{11})\), i.e. \(x_{11} \) replaces \(l_9 \).

Definition 10 (Replacement transfer) Let \(\mathcal{R} \) be a semireconciliation, \(\delta_T : \Theta \rightarrow \Lambda \) be an injective partial function such that for all transfers \(e = (x_1, x_2) \in \delta_T^{-1}(\Lambda) \) holds \(\rho(x_2) = \rho(\delta_T(e)) \), and \(x_2 \) and \(\delta_T(e) \) are incomparable in \(G' \). If \(e \in \delta_T^{-1}(\Lambda) \), then \(e \) is called a replacement transfer or transfer with replacement, and \(\delta_T(e) \) is its associate loss. The set of all replacement transfers is denoted by \(\Theta'(\mathcal{R}) \) or \(\Theta' \), and the set of all associate losses by \(\Lambda_T'(\mathcal{R}) \) or \(\Lambda'_T \).

In the previous definition, the mapping \(\delta_T \) pairs transfer \(e \) (or we can say the transfer child \(x_2 \)) with the loss \(l = \delta_T(e) \) (see Fig. 1). In this way, we get that the gene \(x_2 \) is replacing \(l \), hence the name transfer with replacement. Requirement \(\rho(x_2) = \rho(l) \) is necessary if \(x_2 \) replaces \(l \). In our example (Fig. 3c) \(\delta_T(x_{10}, x_{11}) = l_9 \).

Conversion is to duplication what replacement transfer is to transfer. Node \(x_6 \) is a conversion (Fig. 3c).
Definition 11 (Conversion) Let \mathcal{R} be a semireconciliation, $\delta_D : \Delta \rightarrow \Lambda$ be an injective partial function such that $\rho(x) = \rho(\delta_D(x))$, and x and $\delta_D(x)$ be incomparable in G' for all $x \in \delta_D^{-1}(\Lambda)$. If $x \in \delta_D^{-1}(\Lambda)$, then x is called a conversion, and $\delta_D(x)$ is its associate loss. The set of all conversions is denoted by $\Lambda'(\mathcal{R})$ or Λ', and the set of associate losses by $\Lambda_D(\mathcal{R})$ or Λ_D.

We have $\delta_D(x_6) = l_{11}$ (Fig. 3c).

The elements of $\Lambda' = \Lambda'_T \cup \Lambda'_D$ are called free losses, because we will assign them zero cost (see the comment after Definition 13). The set of all (evolutionary) events is $\{S, D, T, L, C, T_R\}$. Free losses in Fig. 3c are l_9 and l_{11}, while l_8 and l_{10} are non-free losses.

Intuitively, a reconciliation between gene tree G and species tree S is a placement of G inside S. The most important part is the function ρ, which defines the placement. If events that replace existing genes (like conversions or transfer with replacement) are included in the reconciliation, a reconstruction of G' is also important. Figure 3b–c depicts reconciliations. The following definition is an extension of the definition from Hasić and Tannier (2019).

Definition 12 (Reconciliation) Let $(G, G', S, \phi, \rho, \tau)$ be a semireconciliation, and $X \subseteq \{D, T, L, C, T_R\}$. To every node from $V(G') \setminus L(G)$ some event from X is attached, and $\Lambda'_T \cap \Lambda'_D = \emptyset$. Then $\mathcal{R} = (G, G', S, \phi, \rho, \tau, \delta_T, \delta_D, A)$ is called an X reconciliation.

If the set X is not important in the context, or it is known, then we will use just reconciliation instead of X reconciliation. If we wish to emphasize that G' and ρ are from reconciliation \mathcal{R}, then we write $G'_\mathcal{R}$ and $\rho_\mathcal{R}$.

If the transfers with replacement, or conversions are not included in a reconciliation, then $\delta_T^{-1}(\Lambda) = \emptyset$, or $\delta_D^{-1}(\Lambda) = \emptyset$. Note that if $x \in V(G')$ and $\text{deg}(x) = 2$, then x is a transfer child.

Speciations, duplications, transfers, losses, conversions, and transfers with replacement are called evolutionary events. A reconciliation can allow only some of these events. For example, if a reconciliation \mathcal{R} allows speciations, duplications and losses, we will call it a DL reconciliation. If \mathcal{R} also allows transfers, we call it a DTL reconciliation. Speciations are assumed to be allowed in every reconciliation, so they are not emphasized in the type of a reconciliation. If transfers are not allowed in a reconciliation, then the date function is not necessary, and can be disregarded. Note that if $X \subseteq Y$, then any X reconciliation is also a Y reconciliation. If conversions or transfers with replacement are included in a reconciliation, then we assume that free losses are allowed. Therefore T_R reconciliation allows speciations, replacement transfers, and free losses, while $T_R \ L$ reconciliations additionally allow non-free losses.

Not every semireconciliation can produce a reconciliation. For example, if a node from G' is mapped under its LCA (Last/Lowest Common Ancestor—see Goodman et al. 1979; Chauve and El-Mabrouk 2009) position, then the transfers must be allowed as an event in order to obtain a reconciliation. Figure 3b depicts an LCA reconciliation.

We introduce the weight of a reconciliation as a way to compare them.

Definition 13 (Weighted reconciliation) Let \mathcal{R} be an X reconciliation, and $X = \{a_1, \ldots, a_k\}$. If $c_i \geq 0$ are associated with the events a_i ($i = 1, \ldots, k$), then
ω(R) = \sum c_i \cdot |a_i| is called the weight or cost of R, where |a_i| denotes the number of nodes in G' that are associated with the event a_i (i = 1, ..., k).

The speciations do not affect the weight of a reconciliation, thus their weight is 0. In this paper, the free losses (losses assigned to a conversion or replacement transfer) have weight 0. The rest of the evolutionary events have weight 1.

Definition 14 (Minimum X Reconciliation problem) Let G and S be a gene and a species trees. The problem of finding an X reconciliation with the minimum weight we call the Minimum X Reconciliation.

The next definition introduces the weight of a subtree of G'. We need this to estimate the weight of a reconciliation by decomposing G' into subtrees and evaluating the weight of every subtree.

Definition 15 (The weight of a subtree) Let R be a reconciliation and T be a subtree of G'. By ω_R(T) or ω(T) we denote the sum of weights of all events assigned to the nodes and edges of T.

Let T_1 be a subtree of G' (Fig. 3c), where V(T_1) = \{x_2, x_{10}, x_{11}, l_1, l_{12}\}. It has one transfer with replacement, hence ω(T_1) = tr, where tr is the weight of a replacing transfer.

Let T_2 be a subtree with V(T_2) = \{x_4, x_5, x_{12}, x_{13}, x_6, l_4, l_5, l_6, l_{13}\}. Then ω(T_2) = t + c, where t and c are the weights assigned to a transfer and a conversion.

3 Finding a minimum DTLCT_R reconciliation is NP-hard

In this section, and the rest of the paper, we assume that all events have weight 1, except the speciations and free losses, which have weight 0. We prove that finding a minimum reconciliation that includes transfers with replacement is NP-hard. We first prove the NP-hardness of the problem of finding a minimum reconciliation that includes all events (duplication, transfer, loss, conversion, transfer with replacement).

Let F be a logical expression/formula, or simply formula, in conjunctive normal form with (logical) variables x_1, ..., x_n. If x is a variable, then x is called a positive literal, and ¬x is a negative literal. Literals x^1_i, x^2_i, x^3_i are assigned to the variable x_i. We can assume that x^1_i and x^2_i have the same logical value, which is different from the logical value of x^3_i. Variables can be true or false. A literal is true if it is positive and the variable is true, or if it is negative and the variable is false. Similarly, a literal is false if it is positive and the variable is false, or if it is negative and the variable is true.

We will use a reduction from the Max 2- SAT.

MAX 2- SAT:

Input: F = C_1 \land C_2 \land \ldots \land C_m; C_j = x_{j_1}^1 \lor x_{j_2}^1, j = 1, ..., m; K \leq m.

Output: Is there a truth assignment for logical variables x_1, ..., x_n such that there are at least K true clauses.

This problem is NP-hard (Garey et al. 1976; Garey and Johnson 1979), solvable in polynomial time if K = m (Even et al. 1976; Garey and Johnson 1979). It remains
NP-hard even if every variable appears in at most three clauses (Raman et al. 1998). We assume that every variable appears in exactly three clauses, and both positive and negative literals are present (Lemma 1). We also assume the optimization version of this problem that asks for the minimum number of false clauses.

The next lemma proves the NP-completeness of the reduced problem.

Lemma 1 The Max 2-Sat is NP-hard if every variable appears in exactly three clauses, and both positive and negative literal of every variable is present.

Proof See Appendix. □

3.1 Variable and clause gadgets

In order to construct a polynomial reduction from the Max 2-Sat to the Minimum DTLCT_R Reconciliation, suppose we have a logical formula F as an instance of the Max 2-Sat, with n variables and m clauses, such that each variable appears exactly three times as a literal, and both positive and negative literals are present. We will construct a species tree, gene tree, and function ϕ mapping the gene tree leaves to the species tree leaves as an instance of the reconciliation problem.

First, we introduce the *border line* that corresponds to some date, depicted by horizontal dashed line in Figs. 4, 5, 6, 7, and 8. Some nodes of the constructed gene tree will be assigned to literals of x_i ($i = 1, \ldots, n$), and in a minimum reconciliation, their mapping above or under this border line will decide if the literals are true or false. In consequence, the positive and negative version of a same variable must be mapped on the opposite sides of the border line in reconciliations.

For each variable and each clause we define a piece of a gene tree and a piece of a species tree with appropriate function ϕ.

A gadget for a variable x_i is illustrated in Fig. 4. The species subtree S_{x_i} consists in 28 leaves named A_i^1, \ldots, A_i^{28}, organized in two subtrees. Seven cherry trees are under the border line on each part, and then linked by two combs, one fully above and one fully under the border line.

The gene subtree G_{x_i} is also organized in two subtrees, each consisting in 7 cherry trees linked by a comb. One of the subtrees is identified as the “true literal subtree” and the other as the “false literal subtree”.

Let $(l_{i,k}, r_{i,k})$ be the kth cherry of the gene tree G_{x_i} (i.e. $l_{i,k}, r_{i,k}$ are the children of b_i^k assigned to the left and right subtree of S_{x_i}, and $k = 1, \ldots, 14$). The function ϕ, mapping the leaves of the gene tree to the leaves of the species tree, is such that $\phi(l_{i,k}) = A_{2k-1}^i$ and $\phi(r_{i,k}) = A_{29-2k}^i$ ($k \in \{1, \ldots, 7\}$); $\phi(l_{i,k}) = A_{30-2k}^i$ and $\phi(r_{i,k}) = A_{2k}^i$ ($k \in \{8, \ldots, 14\}$).

Edges/transfers incident with x_1^i, x_2^i, x_3^i (horizontal full lines in Fig. 4) are also included in G_{x_i}.

Next, both trees G and S (Fig. 5) are anchored by an outgroup comb of size $P(n)$, a polynomial with sufficient size, with respective leaf sets $a_1^1, \ldots, a_{P(n)}^i$ and $a_1, \ldots, A_{P(n)}$, and $\phi(a_k^i) = A_{i,1}$ ($k = 1, \ldots, P(n)$).

Figure 6 illustrates a gadget for a clause $C_j = x_{j1} \vee x_{j2}$. A subtree S_{C_j} of the species tree is a fully balanced binary tree with 8 leaves, denoted by B_1^j, \ldots, B_8^j. The
Fig. 4 A variable gadget denoted by G_{x_i}. It is composed of S_{x_i} (a part of the species tree S) and G_{x_i} (a part of the gene tree G). The border line is the horizontal, dashed line. Nodes A_1^i, \ldots, A_{28}^i are the leaves of S_{x_i}. Nodes $C_{i,1}, \ldots, C_{i,12}$ are some of the inner nodes of S_{x_i}, and $s_{x_i}^0$ is the root of S_{x_i}. The rest of the labels denote some of the nodes of G_{x_i}. Variable x_i has two true (represented by $x_i^1, x_i^2 \in V(G)$) and one false literal (represented by $x_i^3 \in V(G)$). Edges (transfers) incident with x_i^1, x_i^2, x_i^3 are also included in G_{x_i}.

Fig. 5 A variable gadget with an anchor. We have $P(n)$ species in the anchor, where P is sufficiently large polynomial. Nodes $d_1^i, \ldots, d_{P(n)}^i, a_1^i, \ldots, a_{P(n)}^i$ belong to the gene tree that is part of the anchor.

internal nodes of the subtree leading to B_j^1, \ldots, B_j^4 are all above the border line, while the internal nodes of the subtree leading to B_j^5, \ldots, B_j^8 are all under the border line.

To each literal from the clause corresponds a fully balanced gene tree with a root of degree two, and four leaves, respectively mapped by the function ϕ to
A clause gadget that corresponds to a clause $C_j = x'_j_1 \lor x'_j_2$.

- a The literal x'_j_1 is true, and x'_j_2 is false.
- b The literal x'_j_2 is true, and x'_j_1 is false.
- c Both literals are true.
- d Both literals are false, hence the clause is false. In this case we have an extra transfer, which is incident with r_{j_2}

$$((B_{j_1}^l, B_{j_1}^r), (B_{j_2}^l, B_{j_2}^r))$$ (which is an arbitrary way of mapping each cherry to the two different species subtrees). The roots of the two gene subtrees are respectively labeled r_{j_1} and r_{j_2}. The internal nodes are $r_{j_1}^0, r_{j_1}^1$, and $r_{j_2}^0, r_{j_2}^1$. The forest of these two gene subtrees is denoted by F_j.

The clause and variable gadgets are linked to form the full trees G and S (Fig. 7).

Observe the gadget for $C_j = x'_j_1 \lor x'_j_2$ (Fig. 6). It has two gene tree subtrees rooted at r_{j_1}, r_{j_2}. These subtrees represent literals x'_j_1, x'_j_2, and are linked to x'_j_1 and x'_j_2 that are literals of variables x_{i_1} and x_{i_2}, i.e. $x'_j_1 \in \{x_{i_1}^1, x_{i_1}^2, x_{i_1}^3\}, x'_j_2 \in \{x_{i_2}^1, x_{i_2}^2, x_{i_2}^3\}$.

Hence the gene tree subtrees rooted at r_{j_1} and r_{j_2} are linked to $G_{x_{i_1}}$ and $G_{x_{i_2}}$.

The species subtrees and the gene subtrees are linked by the comb containing all variables and clauses in the order $x_1, \ldots, x_n, C_1, \ldots, C_m$.
3.2 Proper reconciliation

Now that we have constructed an instance for the reconciliation problem from a logical formula, we need to be able to translate a reconciliation into an assignment of the variables. This is possible for a type of reconciliation named proper. Proper reconciliations are illustrated in Figs. 7 and 8.

Trees G and S on the one hand, and their proper reconciliation, on the other hand are formed in the same way—by merging all gadgets. For the sake of formalism, we first introduced G and S, and now we introduce the proper reconciliation.

In the next definition, $B_{1,2}^j = \text{lca}(B_1^j, B_2^j)$, i.e. $B_{1,2}^j$ is the minimal node (in S) that is an ancestor of B_1^j and B_2^j. Similarly, $B_{5,6,7,8}^j = \text{lca}(B_5^j, B_6^j, B_7^j, B_8^j)$ is the minimal node (in S) that is an ancestor of B_5^j, B_6^j, B_7^j, and B_8^j.

Definition 16 (Proper reconciliation) Let G and S be a gene and species tree constructed from a logical formula. We call a reconciliation $\mathfrak{R} = (G, G', S, \phi, \rho, \tau, \delta_T, \delta_D, \{T_R\})$ a proper reconciliation if:

- all transfers are horizontal;
- in the variable gadgets, the gene tree vertices in the anchor comb are mapped by ρ to the species tree vertices in the anchor comb, that is, $\rho(c_i^0) = s_i^0$, $\rho(d_i^j) = D_i^j$ (for all $k \in \{1, \ldots, P(n)\}$), $\rho(d_i) = s_i^1$;
Lemma 2

Let F be a logical formula and G, S be the gene and species tree assigned to F, as previously described. There is an obvious relation between a value assignment to logical variables and a proper reconciliation between G and S.

Lemma 2 Let F be a 2-SAT formula with n variables and m clauses. Trees G and S are the gene and species tree assigned to F. Let R be a proper reconciliation between G and S. There is an assignment of the logical variables which satisfies exactly $17n + 5m - \omega(R)$ clauses.

Proof The assignment is constructed from the proper reconciliation according to the positions of the corresponding vertices above or under the border line.

The definition of a proper reconciliation ensures that two opposite literals are always on the opposite side of the border line.

Every variable gadget has 17 transfers (counting the ones incident with x_i^1, x_i^2, x_i^3), and the total number of transfers generated by these gadgets is $17n$.

Clause gadget has 5 or 4 transfers (not counting the incoming transfers, because they are already counted in the variable gadgets), depending if the clause’s literals are both false or not. Let f be the number of the false clauses. Then we have f clause gadgets with 5 transfers corresponding to false clauses.

Hence the number of transfers, generated in the clause gadgets, is $4(m - f) + 5f = 4m + f$. This yields $\omega(R) = 17n + 4m + f$, so there are $m - f = m - (\omega(R) - 17n - 4m) = 17n + 5m - \omega(R)$ true clauses.

We see that, if we minimize the cost of a proper reconciliation, we also minimize the number of false clauses in the logical formula. We say that, for a given G and S, the only transfers are the one depicted by variable and clause gadgets.
is a proper reconciliation of minimal weight if it has the minimal weight among all proper reconciliations between G and S.

As an immediate consequence of Lemma 2, we have the next lemma.

Lemma 3 To a proper reconciliation of minimal weight corresponds an optimal 2-SAT formula.

In order to prove NP-hardness, we need to show that there is a minimum reconciliation that is also proper, which can be easily (in polynomial time) obtained from an arbitrary minimum ($DTLCT_R$) reconciliation.

3.3 Proper minimum reconciliation

If a minimum reconciliation is also a proper, then we will call it a proper minimum reconciliation. At this point, we do not know if this reconciliation always exists. In this section, we describe how to construct this reconciliation, given a a minimum reconciliation, thus proving its existence. After this, the notions of a proper reconciliation of minimal weight and a proper minimum reconciliation become identical. Again, we always assume that G and S are constructed from a given 2-SAT formula.

We say that a node $x \in V(G')$ is placed in $s \in V(S) \cup E(S')$ if $\rho(x) = s$.

If R is a proper reconciliation, then $\omega(G_{x_i}) = 17$ (here we also count three transfers incident with x_1^i, x_2^i, x_3^i), and $\omega(F_j) \in \{4, 5\}$ for all variable and clause gadgets.

Lemma 4 Let R be a minimum X reconciliation between G and S, where G and S are a gene and a species trees constructed from a logical formula, and $i \in \{1, \ldots, n\}$, $j \in \{1, \ldots, m\}$. Then we have:

(a) $\omega(F_j) \geq 4$;

(b) if both r_{j_1} and r_{j_2} are under the border line, then $\omega(F_j) \geq 5$;

(c) $\omega(G_{x_i}) \geq 17$;

(d) if x_1^i or x_2^i is on the same side of the border line as x_3^i, then $\omega(G_{x_i}) \geq 19$.

Proof See Appendix.

The proof of next theorem describes a polynomial algorithm that transforms a minimum reconciliation R into a reconciliation R' that is both minimum and proper.

Theorem 1 Let G and S be a gene and a species tree constructed from a logical formula. There is a minimum $DTLCT_R$ reconciliation between G and S that is a proper reconciliation.

Proof See Appendix.

Theorem 2 The Minimum $DTLCT_R$ RECONCILIATION is NP-hard.

Proof We will use a reduction from the optimization version of MAX 2-SAT. Let $F = C_1 \land C_2 \land \ldots \land C_m$, $C_j = x_{j_1}^i \lor x_{j_2}^i$, $j = 1, \ldots, m$ be an instance of MAX 2-SAT. Trees S and G can be obtained from F in polynomial time. After obtaining
a minimum reconciliation between S and G as an output of the MINIMUM DT LCTR RECONCILIATION, we can (in polynomial time) obtain a proper minimum reconciliation (the proof of Theorem 1), and from it an optimal logical formula, i.e. a logical formula F with the minimum number of false clauses (Lemma 2).

Since a proper reconciliation is a T_R reconciliation, i.e. it has only transfers with replacement and all losses are free, then the next theorem can be proved in the same manner as Theorem 2.

Theorem 3 Let $X \subseteq \{D, T, L, C, T_R\}$ and $T_R \in X$. Then the MINIMUM X RECONCILIATION is NP-hard.

Proof We will reduce the MAX 2-SAT to the MINIMUM X RECONCILIATION. Let F be an instance of the MAX 2-SAT, and G and S be a gene and a species tree obtained from F (as described earlier).

Let \mathcal{R}_1 be a minimum X reconciliation, and \mathcal{R}_2 be a minimum DT LCTR reconciliation between G and S. Then \mathcal{R}_1 is a DT LCTR reconciliation, hence $\omega(\mathcal{R}_2) \leq \omega(\mathcal{R}_1)$.

Let \mathcal{R}_3 be a minimum proper reconciliation obtained from \mathcal{R}_2, as described in the proof of Theorem 1. Then $\omega(\mathcal{R}_3) = \omega(\mathcal{R}_2)$.

Since \mathcal{R}_3 is a proper reconciliation, it is a T_R reconciliation, hence an X reconciliation, and therefore $\omega(\mathcal{R}_3) \geq \omega(\mathcal{R}_1)$.

From the previous inequalities, we obtain $\omega(\mathcal{R}_1) = \omega(\mathcal{R}_2) = \omega(\mathcal{R}_3)$, i.e. \mathcal{R}_1 is a minimum DT LCTR reconciliation.

Now we can repeat the earlier procedure. From \mathcal{R}_1 we construct a proper minimum reconciliation, which we can use to find an optimal assignment for F. \square

Note that in the proof of Theorem 3 we have that a minimum X reconciliation is also a minimum DT LCTR reconciliation. This claim is true in our case, when G and S are obtained from F. It does not hold for an arbitrary G and S.

4 The Minimum T_R Reconciliation is fixed-parameter tractable

We will give a branch and bound algorithm that solves the MINIMUM T_R RECONCILIATION, with complexity $O(f(k)p(n))$, where p is a polynomial, k is a parameter representing an upper bound for the reconciliation’s weight, and f is a (computable) function.

We give some basic properties of the (minimum) T_R reconciliations that will be used in the proofs.

Lemma 5 Let \mathcal{R} be a minimum T_R reconciliation, and $e \in E(G') \setminus E(G)$. Then e cannot be a transfer.

Proof Assume the opposite, i.e. e is a transfer. Figure 9a depicts the construction of a reconciliation with a smaller weight, which contradicts the minimality of \mathcal{R}. \square

Every edge of S contains exactly one lineage from G'. To state and prove this fact more formally, we introduce the notion of aligned edges. Intuitively, two edges $e_1, e_2 \in E(G')$ are aligned if they are inside a same edge $E_1 \in E(S')$, and are connected, in some way, by a sequence of vertices of G' contained in E_1 (Fig. 10).
Lemma 6 Let \mathcal{R} be a T_R reconciliation, $(s_1, s_2) \in E(S')$, $e_1 = (x_1, x_2)$, $e_2 = (y_1, y_2) \in E(G')$ such that $s_1 \geq \rho(x_1) \geq \rho(x_2) \geq s_2$, and $s_1 \geq \rho(y_1) \geq \rho(y_2) \geq s_2$. Then e_1 and e_2 are aligned edges.
Lemma 7 If \mathcal{R} is a T_R reconciliation of a gene tree G and a species tree S, then every extant species has exactly one extant gene assigned, i.e. for every $s \in L(S)$ there is exactly one $x \in L(G)$ such that $\phi(x) = s$.

Proof Let us prove that every extant species has at least one extant gene assigned. Assume the opposite. Let $s_1 \in L(S)$ be an extant species with no assigned extant gene. Let $f \in E(S') \cup V(S)$ be the minimal element satisfying $s_1 < f$, and there is $x \in V(G')$ such that $\rho(x) = f$. As a result of the minimality of f, we have that x is not a speciation. Therefore $f \in E(S')$. Assume that x is a minimal element of $V(G')$ assigned to f. Then x is a loss, and it is not assigned to a transfer, i.e. x is a non-free loss. Since \mathcal{R} is a T_R reconciliation, it cannot have non-free losses. A contradiction.

Now we will prove the lemma’s claim. Assume the opposite. Let $s_2 \in L(S)$ be a species with at least two genes assigned (say $x_1, x_2 \in L(G)$). Let $E_2 \in E(S')$ be the edge incident with s_2. Then E_2 contains at least two edges $e_1, e_2 \in E(G)$ (edges incident with x_1, x_2). This contradicts Lemma 6.

We need the notion of extending losses in order to explain some of the properties of T_R reconciliation. The loss extension is depicted in Fig. 9b.

Definition 18 (Loss extension) Let $l_1 \in E(G')$ be a loss assigned to $E_1 \in E(S')$, $E_2, E_3 \in E(S')$ be the children of E_1, and $X_1 \in V(S)$ be the common vertex of E_1, E_2, E_3. Insert new vertices l_2, l_3 into $V(G')$, and connect them with l_1. Next, take $\rho(l_1) = X_1, \rho(l_2) = E_2, \rho(l_3) = E_3$. This procedure we call a loss extension, and we say that the loss l_1 is extended.

The next lemma states that if we have only transfers, losses, speciations (i.e. we have a TL reconciliation), and every edge of S' has at most one lineage from G', then...
we can extend these losses in a unique way to obtain a T_R reconciliation (this is not necessarily minimum T_R reconciliation). Figure 12 depicts this fact.

Lemma 8 Let \mathcal{R} be a TL reconciliation such that every extant species has exactly one extant gene assigned, every $E_1 \in E(S')$ contains at most one edge from $E(G')$, and every lost subtree has only one edge. Then there is a T_R reconciliation \mathcal{R}', such that $G'_{\mathcal{R}'}$ is an extension of $G'_{\mathcal{R}}$. $\rho_{\mathcal{R}} = \rho_{\mathcal{R}'} / G'_{\mathcal{R}'}$. Among all T_R reconciliations obtained in this way, there is only one of minimal weight, and it is obtained by extending losses.

Proof Let l be a loss, and $\rho(l) = E_1 \in E(S')$. If there is a transfer child in E_1, then assign l to the transfer child.

If there is no transfer child in E_1, then extend l.

Repeat the previous process until all losses are assigned to the transfer children. In this way, by extending losses, we obtain a T_R reconciliation \mathcal{R}'. Since every extant species has exactly one extant gene assigned, during the process of extension every loss will encounter a lineage from G, i.e. a transfer child. Therefore every (extended) loss can be assigned to a transfer child.

Since all transfers in \mathcal{R} are from G, they are also transfers in \mathcal{R}'. Hence the weight of \mathcal{R}' is not less than the number of transfers. On the other hand, all losses in \mathcal{R}' are free, therefore $\omega(\mathcal{R}')$ equals to the number of transfers, i.e. \mathcal{R}' is a T_R reconciliation of minimal weight obtainable from \mathcal{R}.

If \mathcal{R}'' is another T_R reconciliation of minimal weight obtained from \mathcal{R}, then \mathcal{R}'' does not contain extra transfers, i.e. all lost subtree of $G'_{\mathcal{R}''}$ contain only speciations, i.e. all lost subtrees are obtained by extending losses.

Since a T_R reconciliation does not contain more than one edge of G' per edge in S' (Lemma 6), there is a unique reconciliation obtained by extending losses. With this we conclude the proof.

From the previous lemmas we have that, when observing T_R reconciliations without additional lost transfers (the minimum reconciliations are among them), it is enough to observe G instead of G', i.e. we are interested only in positions of $V(G)$ inside S'.

4.1 Normalized reconciliation

In order to reduce the search space of the algorithm that searches for a minimum T_R reconciliation, we introduce the notion of normalized reconciliation. The algorithm
we give can output every normalized reconciliation with a non-null probability. Every minimum reconciliation can be transformed into a normalized one, without changing its cost, by the operations we call transfer adjustment, node raising, and node translocation. Formally, we perform these operations by modifying G' and ρ.

The next definition introduces transfer adjustment (Fig. 13). The purpose of this operation is to obtain that all transfer parents are in $V(G)$.

Definition 19 (Transfer adjustment) Let \mathcal{R} be a minimum T_R reconciliation, (x_0, x_1') be a transfer and $x_0 \notin V(G)$, $x = p^*_{G'}(x_0)$, $x_1, \ldots, x_k \in V(G')$ such that $x_0 < x_1 < \cdots < x_k < x$, x_2' be another child of x in G' ($x_2' \neq x_k$), and x_i' be the child of x_i ($i = 1, 2$).

Let \mathcal{R}' be a T_R reconciliation obtained from \mathcal{R} by modifying G' and ρ in the following way.

If x is a transfer parent, let $f_i = \rho(x_i') \in E(S')$ ($i = 1, 2$); $f_{\min} \in \{f_1, f_2\}$ such that $\tau(f_{\min}) = \min\{\tau(f_1), \tau(f_2)\}$; $f_{\max} \in \{f_1, f_2\}$ such that $f_{\max} \neq f_{\min}$; $x' = p^*_{G'}(x)$. Transform G' as follows: remove all the edges (from G') incident with x; remove the edges (x_{\max}', x''_{\max}), (x_0, x_1'); suppress x_0, and insert x''; connect x with x_{\max}', x''_{\max}, and x''_{\min}; connect x'' with x_k, x', and x_{\max}'. Define $\rho_{\mathcal{R}'}$: $\rho_{\mathcal{R}'}(x'') = \rho_{\mathcal{R}}(x)$; $\rho_{\mathcal{R}'}(x_k) = \rho_{\mathcal{R}}(x_{\max}')$; $\rho_{\mathcal{R}'}(y) = \rho_{\mathcal{R}}(y)$ for all $y \in V(G'_{\mathcal{R}'})\{x_0\}$.

If x is a speciation, let $s_0 = \rho_{\mathcal{R}}(x)$; $f \in E(S')$ be the parent edge of s_0. Transform G' as follows: remove the edges $(x_0, x_1'), (x, x_k)$, and (x, x_{\min}'); suppress x_0 and insert x_{k+1}; connect x and x_1'; connect x_{k+1} with x, x_k, and x_2'. Define $\rho_{\mathcal{R}'}$: $\rho_{\mathcal{R}'}(x) = f$; $\rho_{\mathcal{R}'}(x_{k+1}) = s_0$; $\rho_{\mathcal{R}'}(y) = \rho_{\mathcal{R}}(y)$ for all $y \in V(G'_{\mathcal{R}'})\{x_0\}$.

In Fig. 13a we have $f_{\min} = f_1$, $f_{\max} = f_2$, and $k = 3$. After adjusting (x_0, x_1') (Fig. 13a), the new transfer (x'', x_2') needs adjusting.

Since the number of transfers is not changed by transfer adjustments, the next lemma is obvious, and we omit a proof.

Lemma 9 If \mathcal{R}' is obtained from a minimum T_R reconciliation by transfer adjustments, then \mathcal{R}' is also a minimum T_R reconciliation.

The next notion is depicted in Fig. 14.
Definition 20 (Node raising) Let \mathcal{R} be a T_R reconciliation with all transfer parents from $V(G)$, and $x \in V(G')$ be a transfer parent or transfer child. We can create a new reconciliation \mathcal{R}' in the following way.

Assume that $x \in V(G)$ is a transfer parent, (x, x') is a transfer, x'' is the minimal node such that $x < x''$ and $(x'' = \rho^G(x)$ or x'' is a transfer child). Let f be the maximal edge from $E(S')$ such that $\rho(x) \leq f \leq \rho(x'')$. Let $x_1, \ldots, x_k \in V(G') \setminus V(G)$ such that $x < x_1 < \cdots < x_k < x''$.

Define $\rho_{\mathcal{R}'}$ as $\rho_{\mathcal{R}'}(x) = f$, $\rho_{\mathcal{R}'}(y) = \rho_{\mathcal{R}}(y)$ for all $y \in V(G') \setminus \{x\}$, (x, x') is also a transfer in \mathcal{R}'. Reattach x_1, \ldots, x_k below x so that $x_1 < \cdots < x_k < x < x''$.

Note that we do not raise speciations, because it would create a new transfer (Fig. 11b) and increase the weight of a reconciliation.

We do not place a raised node in a speciation from S. If we raise a transfer parent x, then it remains a transfer parent, i.e. adjusted transfers remain adjusted.

From the previous comments we have the following lemma.

Lemma 10 If \mathcal{R}' is obtained from a minimum T_R reconciliation by raising nodes, then \mathcal{R}' is also a minimum T_R reconciliation.

Proof Note that in a T_R reconciliation, $\omega(\mathcal{R})$ is the number of transfers. By raising nodes, we do not raise speciations, hence we do not create new transfers. Therefore $\omega(\mathcal{R}') \leq \omega(\mathcal{R})$. Since \mathcal{R} is a minimum T_R reconciliation, we obtain $\omega(\mathcal{R}') = \omega(\mathcal{R})$, i.e. \mathcal{R}' is a minimum T_R reconciliation.

We cannot raise a node if its parent from G is in the same time interval, or its parent (from G) is a speciation in the next time interval.

Sometimes, nodes of G' can be raised only if moved to another edge of S' in the same time interval (Fig. 15). That is why we introduce node translocation.
Fig. 15 Node translocation. Node y' is a diagonal transfer child. Transfer (x, x') is horizontal. Nodes x and x_1 are horizontal transfer parents, and x_2 is a diagonal transfer parent.

a We cannot raise nodes x, x_1, x_2.

b We move $x, x_1, x_2, a n d y'$ to E_2. The number of transfers does not change. Now we can raise $x, x_1, a n d x_2$.

Definition 21 (Node translocation) Let \mathcal{R} be a TR reconciliation, (x, x') be a horizontal transfer, $x \in V(G)$, $y' \in V(G')$ be a transfer child, $\rho_\mathcal{R}(x) = \rho_\mathcal{R}(y') = E_1 \in E(S')$, $x_i \in V(G)$ such that $x < x_i < y'(i = 1, \ldots, k)$, $\rho(x') = E_2 \in E(S')$. Let \mathcal{R}' be a TR reconciliation obtained from \mathcal{R} by modifying G' and ρ as follows. Insert a new node y'' into G', suppress x', remove edge (x, x''), where x'' is a child of x in G' and $x'' \neq x'$. Insert edges (x, y'') and (y'', x''). Define $\rho_\mathcal{R}'(x) = \rho_\mathcal{R}'(x_i) = E_2 (i = 1, \ldots, k)$, $\rho_\mathcal{R}'(y'') = E_1$, $\rho_\mathcal{R}'(y) = \rho_\mathcal{R}(y)$ for all $y \in V(G') \setminus \{x, y', x_1, \ldots, x\}$. This operation we call a node translocation, and we say that nodes x and $x_i (i = 1, \ldots, k)$ are translocated to E_2.

Note that if all transfers incident with x and $x_i (i = 1, \ldots, k)$ are diagonal, then we cannot translocate the nodes. Also, if y' is a diagonal transfer child, then we can raise x and $x_i (i = 1, \ldots, k)$ after translocation.

Node translocation does not change the number of transfers. Hence, the next lemma is obvious, and we do not prove it.

Lemma 11 If \mathcal{R}' is obtained from a minimum TR reconciliation by node translocations, then \mathcal{R}' is also a minimum TR reconciliation.

The next definition introduces the notion of normalized reconciliation, which represents the output of the main algorithm. The purpose of introducing this type of reconciliation is to reduce the search space of the branch and bound algorithm that we will to give.

Basically, a minimum reconciliation is normalized if we cannot raise any node, i.e. all nodes are “as high as possible”, and all transfer parents are from $V(G)$. Nodes are grouped. Every group has one highest node (say y), that “blocks” the other nodes. Node y can be a speciation, transfer child, or $root(G)$.

Figure 16 depicts a normalized reconciliation. In the group with x_2 and x_4, y is a speciation. In the group with x_3, y is $root(G)$. Nodes x_1 and x_5 are blocked by non-labeled transfer children.

Definition 22 (Normalized reconciliation) Let \mathcal{R} be a minimum TR reconciliation that satisfies the following conditions. Every transfer parent is from $V(G)$. For every
A recording of a minimum reconciliation. a Nodes $x_1, x_4 \in V(G)$ are transfer parents. We have two more transfer parents that are not from $V(G)$, which makes 4 transfers in total. Node x_5 is a transfer child, and $x_2, x_3 \in V(G)$ are speciations. b A reconciliation obtained after adjusting transfers incident with x_1 and x_2, and raising nodes x_2, x_3, x_4, x_5. c A normalized reconciliation obtained after translocating and raising node x_1.

Transfer (x, x') and $y \in V(G')$ that is the maximal element such that $x \leq y$, $\rho(x) \leq \rho(y)$, and $\tau(y) \leq \tau(x) + 1$, one of the following conditions is satisfied:

- $\tau(y) = \tau(x)$ and y is a horizontal transfer child;
- $\tau(y) = \tau(x)$, y is a diagonal transfer child, and (x, x') is a diagonal transfer;
- $\tau(y) = \tau(x) + 1$ and $y \in V(G)$ is a speciation;
- $\tau(y) = \tau(x) + 1$ and $y = \text{root}(G)$.

For every diagonal transfer (x, x'), we have $|E(T_l)| = 1$ and $\tau(l) = \tau(\text{root}(T_l)) - 1$, where l is a loss assigned to x', and T_l is a lost subtree with a leaf l. Then the reconciliation \mathcal{R} is called a normalized reconciliation.

Note that any normalized reconciliation is also minimum, and has all transfers adjusted. The proof of Theorem 4 describes how to construct a normalized reconciliation from an arbitrary minimum reconciliation.

Theorem 4 Let \mathcal{R} be a minimum T_R reconciliation. Then there is a normalized reconciliation \mathcal{R}' that can be obtained from \mathcal{R} by adjusting transfers, and raising and translocating nodes.

Proof See Appendix. \square

4.2 Random normalized reconciliation

In this subsection we describe an FPT algorithm that returns a normalized reconciliation with weight not greater than k, if there is one.

The problem definition follows.

K- MINIMUM T_R RECONCILATION:

Input: S, G, k

Output: A normalized T_R reconciliation \mathcal{R} such that $\omega(\mathcal{R}) \leq k$, or a message that there is no such reconciliation.
We are given S, G and ϕ, which is, in this particular case, a bijection between the leaves of G and the leaves of S (Fig. 17a). Let A_i be extant species (leaves of S), and a_i be extant genes (leaves of G) ($i = 1, \ldots, n$). We will maintain, during the execution of the algorithm, a set of active edges which initially contains the terminal edges of G, i.e. the edges with a leaf as an extremity. Some of the active edges might be lost edges, but initially none is.

We will first describe the algorithm, give appropriate figures, and in the next subsection we will give pseudocodes.

At the beginning, to every extant gene a_i, where $\phi(a_i) = A_i$ (Fig. 17a), an edge from $E(G)$ that is incident with a_i is assigned. At this moment, these are the active edges.

We repeat the next part for every time slice, going bottom-up.

Observe one time slice. Let s_0 be the internal node of S in this time slice. Let E_1, E_2 be the edges from S incident with s_0, and e_1, e_2 active edges that belong to E_1, E_2 (Fig. 17b). We have several cases.

Case 1. At least one of the edges e_1 or e_2 is lost. Then coalesce them at s_0 (meaning the lca of the two edges in G is mapped to s_0 by ρ), and the edge that is not lost propagate to the next time slice. If both edges e_1 and e_2 are lost, then their parent (which is also a lost edge) is propagated to the next time slice. All other edges are propagated to the next time slice as well (Fig. 17c), where they remain active.

Case 2. Edges e_1 and e_2 are incident in G. Then coalesce them at s_0 (Fig. 17d). All other active edges propagate to the next time slice, where they remain active. The parent edge of e_1 and e_2 is also an active edge in the next time slice.

Case 3. Edges e_1 and e_2 are neither lost nor incident. Branch and bound tree is branching into three subtrees (subcases (a1), (a2), and (b)).

Case 3a1. Put e_1 on hold (Fig. 18a). This means that e_1 is not propagated into the next time slice, but stays active as long as it does not become a (diagonal) transfer (see
Case 3b). Edge e_2 and all other active edges from the current time slice are propagated into the next time slice.

Case 3a2. The same as Case 3a1, but e_2 is on hold instead of e_1.

Case 3b. Let x (Fig. 18b) be the minimum node in $V(G)$ that is an ancestor of both e_1 and e_2, $x_1', \ldots, x_{k_1}' \in V(G)$ be the vertices in the path from e_1 to x, and $x_2'', \ldots, x_{k_2}'' \in V(G)$ be the vertices in the path from e_2 to x. Take $\rho(x) = s_0$. Observe x_1'. Let e_3 be a random active edge with maximal τ-value that is a descendant of x_1', E_3 be the edge from $E(S)$ that contains e_3, and x_1', \ldots, x_{m+1}^1 ($m_1 \geq 0$) be the vertices in the path from e_3 to x_1'. Add these vertices and corresponding edges to E_3, as well as transfer (x_1', x_1^1). Repeat the process for every child of x_1'. It is possible that some of the added transfers are diagonal. We say that x_1' is randomly expanded. In E_3 add a lost edge e_3'. If e_3 was on hold, then coalesce e_3' with the other lineage at s_0. Otherwise propagate e_3' to the next time slice as an active edge. Next, randomly expand the remaining nodes x_2', \ldots, x_{k_1}', x_2'', \ldots, x_{k_2}''.

The condition of maximality of $\tau(e_3)$ is necessary, because we cannot have transfers to the past.

Case 4. We reached $\text{root}_E(S)$. Then randomly expand all the remaining nodes from $V(G)$ and $\rho(\text{root}(G)) = \text{root}(S)$.

The rest of the procedure is a standard branch and bound. When we reach the first solution (reconciliation) with at most k transfers, we denote it by R^*. If R is some other reconciliation, obtained in the branch and bound process, such that $\omega(R) < \omega(R^*)$, then we take $R^* = R$. If $\omega(R) = \omega(R^*)$, then we randomly take $R^* = R$.

If during the branch and bound procedure, we obtain a (partial) reconciliation with more than k transfers, then we do not branch, and go one step back.

4.3 Pseudocodes and properties

In this section we give pseudocodes, prove some properties of the algorithm, and give a proof that k-Minimum T_R Reconciliation is fixed-parameter tractable.

Theorem 5 Let R be a normalized reconciliation and $\omega(R) \leq k$. Then R is a possible output of Algorithm 1.

Proof See Appendix. \qed

\[Springer \]
Theorem 6 If Algorithm 1 returns a reconciliation \(R \), then \(\omega(R) \leq k \) and \(R \) is a normalized reconciliation.

Proof See Appendix.

Theorem 7 Time complexity of Algorithm 1 is \(O(3^k n) \).

Proof Branching in the algorithm occurs only when we add transfers, i.e. with every branching we add at least one transfer. Therefore we can have the branch depth at most \(k \). Since the reconciliation is normalized (hence minimal), one of 3a1, 3a2, 3b holds. Given that we branch to three cases \((a_1, a_2, \text{ and } b) \), the size of the branch and bound tree is \(O(3^k n) \).

Theorem 8 Minimum TR Reconciliation is fixed-parameter tractable with respect to the parameter that represents an upper bound for the reconciliation’s weight.

Proof Follows directly from Theorems 4, 5, 6, and 7.

5 The Minimum Dated SPR Scenario is NP-hard and FPT

Finally, we prove that a constrained version of the well known SPR (subtree prune and regraft) distance problem, the Minimum Dated SPR Scenario, mentioned in Song (2006), is equivalent to the Minimum TR Reconciliation problem.

Definition 23 (Dated SPR operation) Let \(T \) be a dated, fully binary, rooted tree, \(e_1 = (a_2, a_1), e_2 = (b_2, b_1) \in E(T) \), where \(a_2 = \nu_T(a_1), b_2 = \nu_T(b_1) \), and \(\tau(a_1) < \tau(b_2) \). Delete \(e_1 \), suppress \(a_2 \), subdivide \(e_2 \) with a node \(a'_2 \), where \(\tau(a_1) \leq \tau(a'_2) \), connect \(a_1 \) and \(a'_2 \). Denote the obtained tree by \(T' \). We say that \(T' \) is obtained from \(T \) by a dated SPR (subtree prune and regraft) operation.

Algorithm 1 PARAMETRICMINIMUMRECONCILIATION

```plaintext
1: procedure PARAMETRICMINIMUMRECONCILIATION(G, S, k)
2: create S' - a subdivision of S;
3: R is a partially constructed reconciliation;
4: \( R^* \) is a current minimum reconciliation;
5: INITIALIZE(\( R, R^*, curr_time_slice \));
6: BRANCHANDBOUND(\( R, R^*, curr_time_slice, k \));
7: return(\( R^* \));
8: end procedure
```

Algorithm 2 INITIALIZE

```plaintext
1: procedure INITIALIZE(\( R, R^*, curr_time_slice \))
2: \( R^* \leftarrow NULL \);
3: \( \omega(NULL) \leftarrow +\infty \);
4: \( curr_time_slice \leftarrow 0 \);
5: assign the extant genes \( a_i \) to the corresponding edges \( A_i \) \( (i = 1, \ldots, n) \);
6: edges from \( E(G) \) incident with \( a_i \) \( (i = 1, \ldots, n) \) declare as active;
7: end procedure
```
We will denote this SPR operation by $spr((a_2, a_1), (b_2, b_1)) = a_2' \neq b_2'$, or by $T \rightarrow T'$. Note that if $spr((a_2, a_1), (b_2, b_1)) = a_2', spr((a_2, a_1), (b_2, b_1)) = a_2''$, and $\tau(a_2') \neq \tau(a_2'')$, then these two SPR operations are different.

Definition 24 (Minimum Dated SPR Scenario problem) Let T and T' be rooted, fully binary trees, where T is a dated and T' is an undated tree. Assigning dates to $V(T')$, and finding a minimum number (over all possible date assignments to $V(T')$) of SPR operations that transform T into T' is called the Minimum Dated SPR Scenario problem. The number of SPR operations is called the length of SPR scenario.

Now we introduce a parametrized version of the problem we are interested in.

K-Minimum Dated SPR Scenario:

Input: T—dated, T'—undated, full binary, rooted trees; $k \geq 0$ is a parameter;

Output: A minimum dated SPR scenario with the length not greater than k, or a message that a scenario like this does not exist.
Algorithm 4 \textsc{AddBranchAndBoundNode}

1: procedure \textsc{AddBranchAndBoundNode}(R, \textit{curr_time_slice}, \textit{case}, \textit{k})
2: \hspace{1em} if \textit{case} == (a$_1$) or \textit{case} == (a$_2$) then
3: \hspace{2em} if \textit{case} == (a$_1$) then
4: \hspace{3em} $e' \leftarrow e_1$;
5: \hspace{2em} else
6: \hspace{3em} $e' \leftarrow e_2$;
7: \hspace{2em} end if
8: \hspace{1em} put e' on hold;
9: \hspace{1em} propagate all other active edges to the next time slice;
10: else if \textit{case} == (b) then
11: \hspace{2em} $x \leftarrow \text{lca}_G(e_1, e_2) \in V(G)$;
12: \hspace{2em} x'_1, \ldots, x'_{k_1} nodes from $V(G)$ in the path from e_1 to x;
13: \hspace{2em} x''_1, \ldots, x''_{k_2} nodes from $V(G)$ in the path from e_2 to x;
14: \hspace{2em} assign x to s_0;
15: \hspace{2em} randomly expand x'_1, \ldots, x'_{k_1} and x''_1, \ldots, x''_{k_2};
16: \hspace{2em} $t \leftarrow \omega(R)$ - i.e. the number of transfers in the current partial reconciliation;
17: \hspace{2em} if $t > k$ then
18: \hspace{3em} return;
19: \hspace{2em} end if
20: if R is a (complete) reconciliation then
21: \hspace{3em} if $\omega(R) < \omega(R^*)$ then
22: \hspace{4em} $R^* \leftarrow R$;
23: \hspace{3em} else if $\omega(R) == \omega(R^*)$ then
24: \hspace{4em} $R^* \leftarrow R$ - random;
25: \hspace{3em} end if
26: \hspace{3em} return;
27: \hspace{2em} end if
28: \hspace{2em} end if
29: end procedure

Lemma 12 The k-Minimum Dated SPR Scenario is (polynomially) equivalent to the k-Minimum T_R Reconciliation.

\textbf{Proof} See Appendix. \hfill \square

Theorem 9 The k-Minimum Dated SPR Scenario is NP-hard.

\textbf{Proof} Since there is a polynomial reduction from Minimum T_R Reconciliation to Minimum Dated SPR Scenario (Lemma 12) and Minimum T_R Reconciliation is NP-hard (Theorem 3), then Minimum Dated SPR Scenario is NP-hard. \hfill \square

Theorem 10 The k-Minimum Dated SPR Scenario is fixed-parameter tractable with respect to parametrized distance.

\textbf{Proof} Since there is a polynomial reduction (which is also an FPT reduction) from k-Minimum Dated SPR Scenario to k-Minimum T_R Reconciliation (Lemma 12) and Minimum T_R Reconciliation is FPT (Theorem 8), then Minimum Dated SPR Scenario is FPT. \hfill \square
6 Conclusion

We propose an integration of two ways of detecting lateral gene transfers, and more generally to construct gene histories and handle the species tree gene tree discrepancies. On one side, SPR scenarios model transfers with replacements and are limited by computational complexity issues, the difficulty to include time constraints and other gene scale events like transfers without replacement, duplications, conversions and losses. On the other side, reconciliation algorithms usually work with dynamic programming, necessitating an independence hypothesis on different gene tree lineages, incompatible with replacing transfers.

It is a big issue for biological models, because the results can depend on the type of methodology which is chosen, leading to simplification hypotheses. Moreover, algorithms are often tested with simulations containing the same hypotheses as the inference models. This is why it can be important to explore methodological issues at the edge of both methods, which is what we do here.

Future work include imagining a way to include transfer with replacement in standard reconciliation software. This will require more integration and probably more efficient algorithms so that it does not harm the computing time.

Acknowledgements ET was supported by the French Agence Nationale de la Recherche (ANR) through Grant No. ANR-10-BINF-01–01 ‘Ancestrome’.

Compliance with ethical standards

Conflict of interest The authors declare that they have no conflict of interest.

Appendix: Proofs

Here we give proofs that are omitted in the main text.

Proof of Lemma 1 We will use a reduction from the MAX 2- SAT, where every variable appears in at most three clauses. This problem is NP-hard (Raman et al. 1998).

Let F be an instance of the MAX 2- SAT, and every variable appears in at most three clauses. If there is a variable x that appears exactly once, and it belongs to a clause C, then we can assign it a value and make C a true clause. Similarly, if there is a variable y that has only positive, or only negative literals, then we can assign it a value to make the corresponding clauses true.

In this way we eliminate all the variables that appear exactly once, or have only positive or only negative literals. Therefore, we can assume that F has variables that appear two or three times, and have both positive and negative literals.

Let x_0 be a variable that appears in exactly two clauses. After inserting $(x_0 \lor x_1^0) \land (x_1^0 \lor x_2^0) \land (\neg x_1^0 \lor x_3^0) \land (\neg x_2^0 \lor x_3^0) \land (x_2^0 \lor \neg x_3^0)$ into F, we obtain a logical formula with x_0 in exactly three clauses. The new variables x_1^0, x_2^0, x_3^0 also appear in exactly three clauses, and they have positive and negative literal present.

In this way we obtain a logical formula F' that has every variable in exactly three clauses, with both positive and negative literal present. If the added variables are true,
then all the new clauses will be true. Therefore the number of true clauses in F is maximized if and only if the number of true clauses in F' is maximized.

The previous reduction is obviously polynomial in n and m, where n is the number of variables, and m is the number of clauses in F. \square

Proof of Lemma 4 To prove (a) and (b), we identify two cases, according to the positions of r_{j1} and r_{j2}.

Case 1. Node r_{j1} or r_{j2} is above the border line. In order to obtain $\omega(F_j) < 4$, we need that some of the nodes $r_{j1}^0, r_{j2}^0, r_{j1}^1, r_{j2}^1$ is neither a duplication nor incident with a transfer. The only way to have this is if some of them is placed in $s_{C_j}^0 = \text{root}(S_{C_j})$.

Let us take $\rho(r_{j1}^0) = s_{C_j}^0$. Then $\rho(r_{j1}) > s_{C_j}^0$, or $\rho(r_{j1})$ and $s_{C_j}^0$ are incomparable. If $\rho(r_{j1}^1) < s_{C_j}^0$, then (r_{j1}, r_{j1}^1) is a transfer, and the weight of F_j is not decreased. If $\rho(r_{j1}^1) = s_{C_j}^0$, then r_{j1} is a duplication, or one of the edges (r_{j1}, r_{j1}^0) and (r_{j1}, r_{j1}^1) contains a transfer. In this way we eliminate two transfers (that were incident with r_{j1}^0 and r_{j1}^1), and obtain one transfer or duplication. But we generate at least one non-free loss in S_{C_j}. Similar considerations apply to the other nodes of F_j. Hence we cannot obtain $\omega(F_j) < 4$.

Case 2. Both nodes r_{j1} and r_{j2} are under the border line. Then none of the nodes $r_{j1}^0, r_{j2}^0, r_{j1}^1, r_{j2}^1$ is placed in $s_{C_j}^0$, therefore every one of them is incident with at least one transfer. If we wish to eliminate transfers starting at r_{j1} or r_{j2}, then we need to place them both in $\text{lca}(B_5, B_6, B_7, B_8)$, i.e. in the minimal node in S_{C_j} that is ancestor of $B_5, B_6, B_7,$ and B_8 (Fig. 19). In this case we increase the number of non-free losses. Whichever placement we choose, we have $\omega(F_j) \geq 5$.

(c) The proof is similar in spirit to the proof of (a). See Figs. 4 and 5. The idea is to see what happens if some of the 17 transfers, present in a proper reconciliation that belongs to G_{xi}, is not present in some other reconciliation.

First, note that if some of the nodes d_{i1}^j are not placed in D_j^i ($j = 1, \ldots, P(n)$), then we would have transfers that are not present in a proper reconciliation. Also, if none of the nodes d_{i1}^j is placed in D_j^i ($j = 1, \ldots, P(n)$), then we would have a reconciliation more expensive than any proper reconciliation. Hence we can assume that, for the anchoring nodes d_{i1}^j, we have $\rho(d_{i1}^j) = D_j^i$ ($j = 1, \ldots, P(n)$).

In a proper reconciliation, there are 14 transfers incident with b_{i1}^s ($s = 1, \ldots, 14$). In an arbitrary reconciliation, we can achieve that no transfer or a duplication is incident

Fig. 19 Lemma 4a, b, Case 2. When r_{j1} and r_{j2} are positioned in $\text{lca}(B_5, B_6, B_7, B_8)$ we obtain extra non-free losses
with \(b_i^s \) only if \(\rho(b_i^s) = s_{x_i}^0 \). Then a parent of \(b_i^s \) (i.e. \(c_i^{s-1} \), as well as \(c_i^0 \), is a duplication, or is incident with a transfer, and two or more non-free losses are created. Therefore by having \(\rho(b_i^s) = s_{x_i}^0 \), for some values of \(s \), does not give \(\omega(G_{x_i}) < 17 \).

Assume that the nodes \(b_i^s \) (\(s = 1, \ldots, 14 \)) are placed as in the proper reconciliation. Observe nodes \(x_1^1, x_2^2 \), and assume that they are not incident with a transfer, and the edge \((x_2^2, x_1^1)\) does not contain a transfer. Then we have at least two transfers at the edges \((c_i^1, x_1^1)\) and \((x_1^2, c_i^3)\), or at some other edges leading to some of the \(b_i^s \). Similar considerations apply for \(x_2^1 \). Therefore, in this case too we cannot decrease the number of transfers.

Can we have less than 17 transfers if take \(\rho(b_i^s) = s_{x_i}^0 \), for some values of \(s \), and eliminate transfers incident with \(x_1^1, x_2^2 \)? Let us take \(\rho(b_i^s) = s_{x_i}^0 \). Then the nodes \(c_i^6 \) and \(c_i^0 \) are not placed as in the proper reconciliation. Hence we have at least two transfers or duplications, and non-free losses not present in the proper reconciliation. Also, if the nodes \(x_1^1, x_2^2 \) are not placed as in the proper reconciliation, we have a transfer, different from the previous two, that is not present in the proper reconciliation. Therefore, we have at least three evolutionary events not present in the proper reconciliation, and we cannot obtain less than 17 events.

(d) Let us take that \(x_1^1 \) and \(x_2^1 \) are under the border line. Then at least three of the nodes \(c_1^1, c_2^2, c_3^3 \) are not on the gadgets positions. Some of these nodes are \(c_1^1, c_2^2, c_3^3 \), because they are descendants of \(x_1^1 \) in \(G \). The paths \((c_1^1, b_1^2, A_2^2), (c_2^2, b_3^3, A_5^5), (c_3^3, b_4^4, A_7^7)\) generate extra three transfers. An extra transfer is created on the edge \((x_2^2, x_1^1)\), or on some other edge that is an ancestor of \(x_2^2 \). Even if we eliminate the two transfers incident with \(x_1^1 \) and \(x_2^2 \), we gain 4 more. Hence \(\omega(G_{x_i}) \geq 19 \). □

Proof of Theorem 1 Let \(\mathcal{R} \) be a minimum \(D T L C T_R \) reconciliation. We use \(\mathcal{R} \) to construct \(\mathcal{R}' \) that is both minimum and proper.

The construction of a proper reconciliation is described earlier. The only thing that we need to specify in \(\mathcal{R}' \) is the positions of \(x_1^1, x_2^2 \), and \(x_3^3 \) with respect to the border line, as well as the positions of \(r_{j_1} \) and \(r_{j_2} \).

If \(x_1^1 \) and \(x_2^2 \) are not on the same side of the border line as \(x_3^3 \) (in \(\mathcal{R} \)), then they are on the same side in \(\mathcal{R}' \) as in \(\mathcal{R} \). If \(x_1^1 \) or \(x_2^2 \) is on the same side as \(x_3^3 \) (in \(\mathcal{R} \)), then \(x_1^1 \) and \(x_2^2 \) are above, and \(x_3^3 \) is under the border line (in \(\mathcal{R}' \)).

Next, the vertices of \(F_j \) are placed in \(S_{C_j} \), as in the description of the proper reconciliation (Definition 16), so that the nodes \(r_{j_1} \) and \(r_{j_2} \) are placed on the same side of the border line as \(x_{j_1}' \) and \(x_{j_2}' \) (in \(\mathcal{R}' \)), respectively. A reconciliation, obtained in this way, we denote by \(\mathcal{R}' \). By construction, it is a proper reconciliation. Let us prove that it is a minimum reconciliation.

We have \(\omega_{\mathcal{R}}(G_{x_i}) \geq 17 = \omega_{\mathcal{R}'}(G_{x_i}), \omega_{\mathcal{R}}(F_j) \geq 4, \) and \(\omega_{\mathcal{R}'}(F_j) \in \{4, 5\} \) (Lemma 4).

Let \(i \in \{1, \ldots, n\}, x_1^1, x_2^2, x_3^3 \) be connected with \(r_{a_1} \in V(F_a), r_{b_1} \in V(F_b), r_{c_1} \in V(F_c) \) via transfers. We introduce a notation \(\Omega_{\mathcal{R}}(i) = \omega_{\mathcal{R}}(G_{x_i}) + \omega_{\mathcal{R}}(F_a) + \omega_{\mathcal{R}}(F_b) + \omega_{\mathcal{R}}(F_c) \).

Case 1. Assume that \(\omega_{\mathcal{R}}(F_a) \geq \omega_{\mathcal{R}'}(F_a), \omega_{\mathcal{R}}(F_b) \geq \omega_{\mathcal{R}'}(F_b), \omega_{\mathcal{R}}(F_c) \geq \omega_{\mathcal{R}'}(F_c) \). Then \(\omega_{\mathcal{R}}(G_{x_i}) + \omega_{\mathcal{R}}(F_a) + \omega_{\mathcal{R}}(F_b) + \omega_{\mathcal{R}}(F_c) \geq \omega_{\mathcal{R}'}(G_{x_i}) + \omega_{\mathcal{R}'}(F_a) + \omega_{\mathcal{R}'}(F_b) + \omega_{\mathcal{R}'}(F_c), i.e. \Omega_{\mathcal{R}}(i) \geq \Omega_{\mathcal{R}'}(i). \)

\(\square \) Springer
Case 2. Assume that $\omega_{GR}(F_a) = 4$, $\omega_{GR}(F_d) = 5$, $\omega_{GR}(F_b) \geq \omega_{GR}(F_d)$, $\omega_{GR}(F_c) \geq \omega_{GR}(F_c)$. Since $\omega_{GR}(F_d) = 5$, we have that x^3_1 is under the border line (in GR). Because of the transformation rules, at the beginning of the proof, we have that x^1_1, x^2_1 are under the border line (in R and R'), while x^3_1 is above the line (in R and R').

Let y_1 be a literal of variable x_1 (i.e. $y_1 \in \{x^1_1, x^2_1, x^3_1\}$) connected with $r_{a_2} \in V(F_d)$ via transfer. Since $\omega_{GR}(F_d) = 4$, $\omega_{GR}(F_d) = 5$, we have that y_1 is above the border line in R, and under the line in R', hence $y_1 = x^3_1$.

Assume that $F_{a'}, F_{b'}$ are connected with x^1_1, x^2_1 via transfers. Then $\omega_{GR}(F_{a'}) = \omega_{GR}(F_{b'}) = 4$, $\omega_{GR}(G_{x_1}) \geq 19$. We have $\omega_{GR}(F_{a'}) \geq 4 = \omega_{GR}(F_{a'})$ and $\omega_{GR}(F_{b'}) \geq 4 = \omega_{GR}(F_{b'})$.

From the previous arguments, $\omega_{GR}(G_{x_1}) + \omega_{GR}(F_a) + \omega_{GR}(F_d) \geq 19 + 4 = 23$. Hence $\omega_{GR}(G_{x_1}) + \omega_{GR}(F_a) + \omega_{GR}(F_d) \geq \omega_{GR}(F_a) + \omega_{GR}(F_d)$.

Finally, $(\omega_{GR}(G_{x_1}) + \omega_{GR}(F_a) + \omega_{GR}(F_d) + \omega_{GR}(F_c)) + (\omega_{GR}(G_{x_1}) + \omega_{GR}(F_a) + \omega_{GR}(F_d) + \omega_{GR}(F_c)) = \omega_{GR}(G_{x_1}) + \omega_{GR}(F_a) + \omega_{GR}(F_d) + \omega_{GR}(F_c)$, i.e. $\omega_{GR}(i) + \omega_{GR}(s) \geq \omega_{GR}(i) + \omega_{GR}(s)$.

The next cases use the approach of Case 2.

Case 3. Assume that $\omega_{GR}(F_b) = 4$, $\omega_{GR}(F_b) = 5$, $\omega_{GR}(F_a) \geq \omega_{GR}(F_a)$, $\omega_{GR}(F_c) \geq \omega_{GR}(F_c)$. This case is analogous to Case 2.

Case 4. Assume that $\omega_{GR}(F_c) = 4$, $\omega_{GR}(F_c) = 5$, $\omega_{GR}(F_a) \geq \omega_{GR}(F_a)$, $\omega_{GR}(F_b) \geq \omega_{GR}(F_b)$. Then x^3_1 is under, and x^1_1, x^2_1 are above the border line in R'. We have two subcases.

Case 4.1. Assume that x^1_1 or x^2_1 was on the same side of the line as x^3_1 (in R). Then $\omega_{GR}(G_{x_1}) \geq 19$. Hence $\omega_{GR}(G_{x_1}) + \omega_{GR}(F_a) + \omega_{GR}(F_b) + \omega_{GR}(F_c) \geq 19 + \omega_{GR}(F_a) + \omega_{GR}(F_b) + \omega_{GR}(F_c)$.

Next, $(\omega_{GR}(G_{x_1}) + \omega_{GR}(F_a) + \omega_{GR}(F_b) + \omega_{GR}(F_c)) + (\omega_{GR}(G_{x_1}) + \omega_{GR}(F_a) + \omega_{GR}(F_b) + \omega_{GR}(F_c)) = \omega_{GR}(G_{x_1}) + \omega_{GR}(F_a) + \omega_{GR}(F_b) + \omega_{GR}(F_c)$, i.e. $\omega_{GR}(i) + \omega_{GR}(l) \geq \omega_{GR}(i) + \omega_{GR}(l)$.

Case 5. Assume that $\omega_{GR}(F_a) = \omega_{GR}(F_b) = 4$, $\omega_{GR}(F_d) = \omega_{GR}(F_d) = 5$, and $\omega_{GR}(F_c) \geq \omega_{GR}(F_c)$. By a similar argument as in the previous cases, we have that x^1_1, x^2_2 are under the line (in R and R'), while x^1_3 is above the line (in R and R'). Let $y_1 \in \{x^1_1, x^2_1, x^3_1\}$ be connected with $r_{a_2} \in V(F_a)$, and $y_2 \in \{x^1_2, x^2_2, x^3_2\}$ be connected with $r_{b_2} \in V(F_b)$. As in the previous cases, we have $y_1 = x^3_1$, $y_2 = x^3_2$, and they were above the line in R, and under the line in R'. Hence $\omega_{GR}(G_{x_1}) \geq 19$ and $\omega_{GR}(G_{x_2}) \geq 19$. Let $x^1_2, x^2_2, x^1_3, x^2_3$ be connected with $F_{a_1}, F_{b_1}, F_{a_1}, F_{b_1}$. Then $\omega_{GR}(F_{a_1}) = \omega_{GR}(F_{b_1}) = \omega_{GR}(F_{a_1}) = \omega_{GR}(F_{b_1}) = 4$.

\@}
Therefore $\omega_R(G_{x_i}) + \omega_R(G_{x_i}) + \omega_R(F_a) + \omega_R(F_a) + \omega_R(F_b) + \omega_R(F_b) \geq 19 + 19 + 4 + 4 + 4 = 17 + 17 + 5 + 5 + 5 = \omega_R'(G_{x_i}) + \omega_R'(G_{x_i}) + \omega_R'(F_a) + \omega_R'(F_a) + \omega_R'(F_b) + \omega_R'(F_b)$.

Hence $(\omega_R(G_{x_i}) + \omega_R(F_a) + \omega_R(F_b) + \omega_R(F_c)) + (\omega_R(G_{x_i}) + \omega_R(F_a) + \omega_R(F_b) + \omega_R(F_c)) \geq (\omega_R'(G_{x_i}) + \omega_R'(F_a) + \omega_R'(F_b) + \omega_R'(F_c)) + (\omega_R'(G_{x_i}) + \omega_R'(F_a) + \omega_R'(F_b) + \omega_R'(F_c))$, i.e. $G_{x_i} \geq \omega_R'(t) \geq \omega_R'(t)$.

The next three cases are not possible, because x_i^3 cannot be on the same side of the line as x_i^1 or x_i^2 in R'.

Case 6. Assume that $\omega_R(F_a) = \omega_R(F_c) = 4, \omega_R'(F_a) = \omega_R'(F_c) = 5, \omega_R(F_b) \geq \omega_R'(F_b)$.

Case 7. Assume that $\omega_R(F_b) = \omega_R(F_c) = 4, \omega_R'(F_b) = \omega_R'(F_c) = 5, \omega_R(F_a) \geq \omega_R'(F_a)$.

Case 8. Assume that $\omega_R(F_a) = \omega_R(F_b) = \omega_R(F_c) = 4, \omega_R'(F_a) = \omega_R'(F_b) = \omega_R'(F_c) = 5$.

Every $i \in \{1, \ldots, n\}$ belongs to exactly one case. Variables s (from Cases 2 and 3), l (Case 4.2), r and t (Case 5) are equal to some $i \in \{1, \ldots, n\}$, but are different among themselves, i.e. there is no value that repeats itself among variables s, l, r, t.

Let A_1 be the set of all values of i from the Case 1 that are different from all s, l, r, t.

In a similar manner we introduce sets $A_{2,3}, A_{4,1}, A_{4,2}, A_5$.

We will use the previous cases to prove $\omega(R) \geq \omega(R')$. We have $2 \cdot \omega(R) = \sum_i \omega_R(G_{x_i}) + \sum_i \Omega_R(i) = \sum_i \omega_R(G_{x_i}) + \sum A_1 \Omega_R(i) + \sum A_{2,3} \Omega_R(i) + \Omega_R(s)) + \sum A_{4,1} \Omega_R(i) + \sum A_{4,2} \Omega_R(i) + \sum A_5 \Omega_R(i) + \Omega_R(r) + \Omega_R(t)) + \sum A_{4,1} \Omega_R(i) + \sum A_{4,2} \Omega_R(i) + \sum A_5 \Omega_R(i) + \Omega_R(r) + \Omega_R(t)) = 2 \cdot \omega(R')$.

Finally, $\omega(R) \geq \omega(R')$. Therefore R' is a minimum reconciliation. □

Proof of Theorem 4 We will transform R into R' in two steps. First, we adjust all transfers that need to be adjusted, and then we alternately raise and translocate nodes.

Note that the definitions of the operations give the sufficient conditions for executing them. We assume that we perform these operations only if the conditions are satisfied. Additionally, we will translocate nodes only if y' $(y'$ is from Definition 21) is a diagonal transfer child. This results in a raisable node after translocation.

Step 1. We adjust all transfers, with the transfer parent not from G, in an arbitrary order. This procedure will end in polynomial number of steps.

Indeed, we have two situations. In the first situation (Fig. 13a) we obtain another transfer that needs adjusting (transfer (x''', x')), but the transfer parent x''' is positioned above x in G'. In the second situation (Fig. 13b), the total number of transfers waiting for adjusting decreases by 1. Hence the effect of adjusting transfer is either positioning transfer parent higher in G', or reducing the number of unadjusted transfer. Since we are bounded by the size of G' and the number of transfers, the number of adjustments is finite and it is polynomial in size of G and S.

Therefore all transfers will be adjusted.
Step 2. Take an arbitrary transfer parent or a transfer child \(x \in V(G') \) that we can raise, and raise it. Repeat the previous procedure, as long as there is a node that we can raise.

After there are no more transfer parents or children that can be raised, translocate some node, if there is such a node. Then, again, raise all nodes that can be raised. Note that we translocate a node only if it results in a raisable node (see the second paragraph of this proof).

Repeat the previous procedure of raising and translocating nodes as long as possible.

This procedure will end in a polynomial number of steps. Indeed, by raising a node \(x \), \(\tau(x) \) increases. Since \(\tau(x) < \tau(root(G)) \), we have that Step 2 must end in polynomial number of steps, i.e. we will obtain a reconciliation in which no transfer parent or child can be raised.

By applying Steps 1 and 2 we obtain a reconciliation \(\mathcal{R}' \). Since the number of transfers is not changed (Lemmas 9, 10, and 11), we have \(\omega(\mathcal{R}') = \omega(\mathcal{R}) \), i.e. \(\mathcal{R}' \) is a minimum reconciliation. We need to prove that \(\mathcal{R}' \) is a normalized reconciliation.

Let \((x, x') \in E(G') \) be a transfer, \(y \in V(G') \) be the maximal element such that \(x \leq y \), \(\rho(y) \leq \rho(x) \), and \(\tau(y) \leq \tau(x) + 1 \).

Let us prove that \(y \) is not a transfer parent. Assume the opposite. Then \(y \in V(G) \). Let \(x'' \) be the element as described in Definition 20 obtained by raising \(y \). Then \(\tau(y) = \tau(x'') \) and \(x'' \) is a transfer parent or child; or \(\tau(y) = \tau(x'') - 1 \) and \(x'' \) is a speciation or \(root(G) \). In both cases we obtain a contradiction with the maximality of \(y \).

Let \(y \) be a transfer child. We need to prove that \(\tau(x) = \tau(y) \). Assume the opposite, i.e. \(\tau(x) < \tau(y) \). Let us take the maximal \(x_1 \) such that \(x \leq x_1 \leq y \) and \(\tau(x_1) = \tau(x) \).

Since all the transfers are adjusted, we have \(x_1 \in V(G) \) and \(x_1 \) is a transfer parent. Since \(\tau(x_1) < \tau(y) \), node \(x_1 \) can be raised, which is a contradiction with Step 2, where we raise and translocate nodes as long as possible. Therefore \(\tau(x) = \tau(y) \).

Let \(y \) be a diagonal transfer child. We need to prove that \((x, x') \) is a diagonal transfer. Assume the opposite, i.e. \(\tau(x) = \tau(x') \). Let \(\rho(y) = E_1 \in E(S') \) and \(\rho(x') = E_2 \in E(S') \). We have \(\tau(E_1) = \tau(E_2) = \tau(x) \).

Since there are no speciations from \(S \) with the same date (see a comment after Definition 1), one of the edges \(E_1 \) or \(E_2 \) is not incident with a speciation from \(S \). If \(E_1 \) is not incident with a speciation, then we can raise \(y \). If \(E_2 \) is not incident with a speciation, then we can translocate \(x \) to \(E_2 \) and raise \(x \). In both situations we have a contradiction with Step 2. Therefore, \((x, x') \) is a diagonal transfer.

Let \(y \) be a speciation, or \(y = root(G) \). Then \(\tau(x) < \tau(y) \). Since \(\tau(y) \leq \tau(x) + 1 \), we have \(\tau(y) = \tau(x) + 1 \).

Let \((x, x') \) be a diagonal transfer, \(l \) a loss assigned to \(x' \), \(T_l \) a lost subtree with a leaf \(l \). From Step 2 we have that we cannot raise \(x' \). This is possible only if \(\tau(T_l) = \tau(l) + 1 \), and therefore \(T_l \) has only one edge.

We proved that the properties of a normalized reconciliation are satisfied. Hence \(\mathcal{R}' \) is a normalized reconciliation.

\(\square \)

Proof of Theorem 5 Since \(\mathcal{R} \) is a normalized reconciliation, it is also, by definition, minimum. If \(I \) is a time slice, then \(R_I \) denotes the partial reconciliation induced by \(I \), i.e. the part of \(\mathcal{R} \) that is inside \(I \), and all other time slices before \(I \), where “before”
refer to those lower in the tree. We will prove that the algorithm constructs \mathfrak{R}_I during the execution. We will use mathematical induction on I.

Let I_0 be the first time slice (i.e. the lowest time slice), and $s_0 \in V(S)$ be a speciation such that $\tau(s_0) \in I_0$ (Fig. 17), $E_1, E_2 \in E(S)$ are incident with s_0. Next, e_1, e_2 are the minimal edges of G' contained in E_1 and E_2. More precisely, $e_1 = (x_1, x_2)$, $e_2 = (y_1, y_2)$ are the minimal edges of G' such that $\rho(x_2) \leq e_1 \leq \rho(x_1)$ and $\rho(y_2) \leq e_2 \leq \rho(y_1)$. Edges e_1 and e_2 are unique (Lemma 6).

Let us prove that we can obtain \mathfrak{R}_{I_0} during the execution of the algorithm. We have several cases.

Case 1. Edges e_1 and e_2 are incident. Let us prove that e_1 and e_2 coalesce at s_0. Assume the opposite, $\rho(x) \neq s_0$, where $x \in V(G)$ is incident with both e_1 and e_2. Then e_1 or e_2 is a transfer, hence we can construct a reconciliation with smaller weight by placing x in s_0, which contradicts the minimality of \mathfrak{R}. Figure 20 depicts a more detailed argumentation.

Case 2. Edges e_1 and e_2 are not incident. We will investigate subcases. Some subcases are not obtainable by the algorithm. For them, we will prove they cannot occur in \mathfrak{R}. Let x be the minimal element from $V(G)$ that is an ancestor of e_1 and e_2.

Case 2.1. Let $\rho(x) = s_0$, $\rho(x_1') = E_1$, $\rho(x_2'') = E_2$ ($i_1 = 1, \ldots, k_1; i_2 = 1, \ldots, k_2$), where x_1' and x_2'' are explained in Sect. 4.2. This case refers to Case 3b of Sect. 4.2.

We will prove that there is a random choice such that the random expansion of x_1' produces placement of the nodes identical to the one in \mathfrak{R}.

Assume the opposite, there is no such random choice. This means that we cannot obtain a situation depicted by Fig. 18b. Then there are descendants of x_1', denoted by y_j' ($j = 1, \ldots, k$) (Fig. 21) such that $y_1', \ldots, y_{k-1}' \in V(G)$, $y_j' = \rho_G(y_{j+1}')$ ($j = 1, \ldots, k - 1$), y_k' is a transfer parent, $y_k' \in V(G') \setminus V(G)$, and $\rho(y_1') = \ldots = $

Fig. 20 Situations that cannot occur in a normalized reconciliation. Time slice I_k contains E_1, E_2, and s_0. Edges e_1, e_2 are active edges, and are incident with x. Edges $E_1, E_2 \in E(S')$ are incident with s_0. Node $x \in V(G)$ must be positioned in $s_0 \in V(S)$, i.e. $\rho(x) = s_0$. a If $\rho(x) = E_1$, then the reconciliation is not minimal, since we can eliminate one transfer by taking $\rho(x) = s_0$. Here, $x'' = \rho_G'(x')$ is a transfer child, and $x' = \rho_G'(x'')$ is a transfer parent. b In a similar way we obtain a reconciliation with smaller weight. c, d These situations are not possible, since the reconciliation is normalized, and we cannot have a transfer (x_1, x_2) with $x_1 \notin V(G)$. Also, we could obtain a reconciliation with smaller weight, by taking $\rho(x) = s_0$. e Here we have $\tau(x') = \tau(x)$. Since the reconciliation is normalized, and we have only one speciation from S (i.e. s_0) in the time slice I_k, then we have $\tau(x') > \tau(s_0)$, hence this situation is not possible.
the algorithm (Cases 3

\[\rho(y'_k) = E_3. \] Let \(E_4 \in E(S') \) be the edge that contains \(y'_{k+1} \), which is a child of \(y'_k \). By translocating \(y'_1, \ldots, y'_k \) to \(E_4 \) we obtain a reconciliation with one transfer less, which contradicts the optimality of \(\mathcal{R} \). Another reason why this case is not possible is that \(y'_k, y'_{k+1} \) is not adjusted, which contradicts the fact that \(\mathcal{R} \) is a normalized reconciliation.

Therefore, we can obtain the expansion of \(x'_1 \). The same reasoning applies for \(x'_2, \ldots, x'_{k_1} \) and \(x''_1, \ldots, x''_{k_2} \) and their children.

Case 2.2. Assume that \(E_i \in E(S') \) receives a diagonal transfer and \(e_{3-i} \in E(G) \) is propagated to the next time slice \((i = 1 \text{ or } i = 2) \). This case is also obtainable by the algorithm (Cases 3a1 and 3a2).

Case 2.3. Both \(e_1 \) and \(e_2 \) are propagated to the next time slice. Then \(s_0 \) contains two unaligned edges from \(G \), which is impossible for a \(T_R \) reconciliation (Lemma 6). Therefore this case cannot occur.

Case 2.4 We have \(\rho(x) = s_0 \), and there is \(y_1 \in \{x'_1, \ldots, x'_{k_1}\}, \) or \(y_2 \in \{x''_1, \ldots, x''_{k_2}\} \) such that \(\rho(y_1) \neq E_1, \) or \(\rho(y_2) \neq E_2. \) Since \(s_0 \) is the only speciation in \(S \) in the current time slice, then all \(x'_1, \ldots, x'_{k_1} \) and \(x''_1, \ldots, x''_{k_2} \) are transfers.

Let \(\mathcal{R}' \) be a reconciliation such that \(\rho_{\mathcal{R}'}(x'_1) = \ldots = \rho_{\mathcal{R}'}(x'_{k_1}) = E_1, \) \(\rho_{\mathcal{R}'}(x''_1) = \ldots = \rho_{\mathcal{R}'}(x''_{k_2}) = E_2, \) and \(\rho_{\mathcal{R}'}(y) = \rho_{\mathcal{R}'}(y) \) for all the remaining \(y \in V(G). \) Then \(\mathcal{R}' \) is a reconciliation with smaller weight than \(\mathcal{R} \), which contradicts the optimality of \(\mathcal{R} \).

Case 2.5. Assume that \(\tau(x) > \tau(s_0), \) \(\tau(y_1) \leq \tau(s_0), \) and \(\tau(y_2) \leq \tau(s_0) \) for some \(y_1 \in \{x'_1, \ldots, x'_{k_1}\}, y_2 \in \{x''_1, \ldots, x''_{k_2}\}. \) Then \(\mathcal{R} \) is not a normalized reconciliation. Hence this case is not possible.

Case 2.6. If \(x \) is in \(I_0 \) and \(\rho(x) \neq s_0, \) then by taking \(\rho(x) = s_0 \) we get a reconciliation with fewer transfers (similarly to Case 1 and Fig. 20), contrary to the minimality of \(\mathcal{R}. \)

For the inductive hypothesis part, assume that the statement is true for time slices \(I_0, I_1, \ldots, I_{k-1}. \) Let us prove that it is true for \(I_k. \) Proving the statement for \(I_k \) is the same as for \(I_0, \) therefore we will not repeat it.

Hence \(\mathcal{R}_I \) is obtainable by the procedure. Since \(\mathcal{R}_I = \mathcal{R} \) for the final time slice \(I, \) \(\mathcal{R} \) is also obtainable by the algorithm. Since it is a minimal reconciliation, \(\mathcal{R} \) is a possible output of the algorithm. \(\square \)
We will use the next lemma in the proof of Theorem 6. Basically, it states that it is not important which random choice we select in Case 3b of the algorithm (see Sect. 4.2).

Lemma 13 *The random choice in Case 3b of the algorithm does not affect the weight of an output reconciliation.*

Proof Let I_k be the observed time interval, and I_0, \ldots, I_{k-1} be the time intervals before I_k (Fig. 22).

Let x'_1 be a node that we randomly expand, and assume we have more than one choice for a random active edge with maximal τ-value that is a descendant of x'_1. Let e_{31} and e_{32} be two of those edges.

We will use notations from Sect. 4.2. When constructing R_{I_k} from $R_{I_{k-1}}$, we are adding some new nodes from G. Only x is a speciation, and all other nodes are transfer parents. Since every transfer has a parent from $V(G)$, we obtain that the number of newly added transfers is equal to the number of newly added nodes from $V(G)$ minus one. Therefore $\omega(R_{I_k})$ is not affected by a choice of e_3.

Note that the active edges in I_{k+1} are not affected by a choice of e_3. \square

Proof of Theorem 6 It is obvious that $\omega(\mathcal{R}) \leq k$, because the algorithm cuts an edge of the branch and bound tree if $t > k$, where t is the number of transfers in a partially constructed reconciliation.

Now we will prove that the conditions of Definition 22 are satisfied. Let $(x, x') \in E(G')$ be a transfer in \mathcal{R}, and $y \in V(G')$ be the maximal element such that $x \leq y$, $\rho(x) \leq \rho(y)$, $\tau(y) \leq \tau(x) + 1$.

In the algorithm, transfers are created when nodes are randomly expanded. Since only nodes in $V(G)$ are randomly expanded, every transfer starts in a node from $V(G)$. Hence $x \in V(G)$.

Transfers are constructed in Cases 3b and 4 (see Sect. 4.2). Therefore, y can be a speciation from G, transfer child, or *root*(G). If y is a speciation, then $x \in \{x'_1, \ldots, x'_{k_1}, x''_1, \ldots, x''_{k_2}\}$, where $x'_1, \ldots, x'_{k_1}, x''_1, \ldots, x''_{k_2}$ are explained in Sect. 4.2, and $\tau(y) = \tau(x) + 1$. If y is a transfer child, then $\tau(y) = \tau(x)$. If y is *root*(G), then $\tau(y) = \tau(x) + 1$.

\[\square \] Springer
Let y be a diagonal transfer child. Diagonal transfers are made by using edges from G that were on hold. From Case 3a we have that a loss l, assigned to y, belongs to a lost subtree T_l with one edge and $\tau(root(T_l)) = \tau(y) + 1$. Also, (x, x') cannot be a horizontal transfer, because when we put an edge on hold all other edges are propagated to the next time slice, leaving no room for accepting a transfer.

Now we will prove that R is a minimal reconciliation. The algorithm given in Sect. 4.2 is branch and bound, and it exhaustively observes every case possible for a normalized reconciliation, which we stated in the proof of Theorem 5. Also, which random option it takes in Case 3b does not affect the optimality of an output (Lemma 13). The algorithm always chooses a reconciliation of a smaller weight, if it finds one. Therefore, if it returns a reconciliation as a output, then it is a minimal reconciliation. i.e R is a minimal reconciliation.

Proof of Lemma 12 Note that if $(a_2, a_1) \in E(G)$, then there is a path in G' $(a_2, b_1, \ldots, b_t, a_1)$. The length of this path is at least 1, i.e. $s \geq 0$. Hence every edge from G is a path in G'. Also, (a_2, a_1) can contain a transfer. In this proof we assume that all transfers are adjusted (as described by Definition 19 and Fig. 13), i.e. all transfers start in $V(G)$.

We introduce a coloring of edges and nodes that were involved in some SPR operation. Let $spr((a_2, a_1), (b_2, b_1)) = a'_2$ be the i-th SPR operation $T_i \rightarrow T_{i+1}$. Then we color the edge (a'_2, a_1) and node a'_2 with color C_i. If the edge (b_2, b_1) was colored, then edges (b_2, a'_2) and (a'_2, b_1) are colored with the same color. Let c_1 be the child of a_2 (in T_i) different from a_1, and c_2 be the parent of a_2 (in T_i). Then c_2 is the parent of c_1 (in T_{i+1}). If edge (c_2, a_2) was colored with a color, then the edge (c_2, c_1) is colored with the same color.

To a minimum SPR scenario we will assign a minimum T_R reconciliation. Colored edges will represent transfers, colored nodes will be transfer parents, non-colored edges will coincide with the edges of the species tree, and non-colored nodes will be speciations.

Let us first demonstrate the reduction from k-MINIMUM T_R RECONCILIATION to k-MINIMUM DATED SPR SCENARIO. Let S and G be a species and gene tree, $S = T_0 \rightarrow T_1 \rightarrow \cdots \rightarrow T_k = G$ be a minimum SPR scenario transforming S into G. Using this minimum SPR scenario, we will construct a minimum T_R reconciliation.

Note that in T_k we have at most k nodes that are colored. Also, colored edges form (colored) subtrees of T_k with colored roots and inner nodes, while the leaves of these trees are not colored.

If $a \in V(T_k)$ is a non-colored node, then it can be observed as a node from S and node from G. Take $\rho(a) = a \in V(S)$, for all non-colored nodes $a \in V(T_k) = V(G)$. Non-colored paths connect non-colored nodes. All non-colored edges from $T_k = G$ place inside S so that they contain no transfer. Note that the leaves of T_k are non-colored.

Now, inside S we will place colored nodes and colored edges. Let T_c be an arbitrary colored tree, and c_0 be its root. Then c_0 is on a non-colored path of G, and we will leave it there in S. Next, the inner nodes of T_c we place inside S. Let $L(T_c) = \{l_1, \ldots, l_s\}$, and $\tau(l_1) \geq \cdots \geq \tau(l_s)$. Assume that $c^1_i, c^2_i, \ldots, c^k_i$ are inner nodes of T_c in the path from l_1 to c_0 whose placement inside S is not defined. Then place these nodes in the
edge of S' just above l_1, i.e. $\rho(c^1_1) = \ldots = \rho(c^1_i) = p^E_S(\rho(l_1))$. Repeat the previous process for leaves l_2, \ldots, l_s. In this way we obtain a reconciliation with transfers, and every edge of S at any moment contains at most one lineage from G', hence if we extend losses we obtain a T_R reconciliation. Since a transfer can start only at a colored node, we have at most k transfers, i.e. $\omega(\mathcal{R}) \leq k$.

After the next reduction, we will prove that \mathcal{R} is a minimum reconciliation.

In the second part, we demonstrate a reduction from **K- Minimum Dated SPR Scenario** to **K- Minimum T_R Reconciliation**. Let T be a dated and T' an undated binary rooted tree. We need a minimum dated SPR scenario $T = T_0 \rightarrow T_1 \rightarrow \cdots \rightarrow T_k = T'$.

Take $S = T$ and $G = T'$. Let \mathcal{R} be a minimum T_R reconciliation, and $\omega(\mathcal{R}) = k$. We will prove that the length of minimum dated SPR scenario is k, and reconstruct it using \mathcal{R}.

First, let us construct a scenario of the length k. Adjust all transfers in \mathcal{R}, so they start at the nodes from $V(G)$, just like in the first step of the proof of Theorem 4 (Definition 19, Fig. 13).

Take $T_k = T'$, $G_k = G$, $G'_k = G'$, and $\mathcal{R}_k = \mathcal{R}$. Let (x_2, x_1) be an arbitrary transfer, x'_1 be the child of x_1 in G', l be the loss assigned to x_1, and $l_0 = \text{root}(T_l)$, where T_l is a lost subtree such that $l \in L(T_l)$. Let $p_k = (l_0, l_1, \ldots, l_{s-1}, l_s = l)$ be a path in G' (i.e. in T_l), and therefore a lost path. Remove (x_2, x_1) from G'_k, suppress x_2, include the path p_k into G_k (p_k is not a lost path anymore), suppress x_1. Thus we eliminate one transfer, and obtain $G_{k-1}, G'_{k-1}, \mathcal{R}_{k-1}$, where $\omega(\mathcal{R}_{k-1}) = \omega(\mathcal{R}_k) - 1$. By repeating this procedure, we obtain an SPR scenario $T' = T_k \rightarrow T_{k-1} \rightarrow \cdots \rightarrow T_0 = T$, i.e. $T = T_0 \rightarrow T_1 \rightarrow \cdots \rightarrow T_k = T'$.

Since the transfers can be horizontal or diagonal, corresponding SPR operations are dated. We proved that optimal dated SPR scenario transforming T into T' has the length at most k.

Let us prove that the previous reductions construct a minimum reconciliation (the first reduction) and a minimum SPR scenario (the second reduction). Let $T_1 \rightarrow \ldots T_k$ be a minimum SPR scenario. Take $S = T_1$, $G = T_k$ and \mathcal{R} is a reconciliation obtained in the first reduction. We have $k' = \omega(\mathcal{R}) \leq k$. Now, let $T_1 = T_1' \rightarrow T_2' \rightarrow \cdots \rightarrow T_{k'}' = T_k$ be a SPR scenario obtained from G and S in the second reduction. Then $k'' \leq k' \leq k$. Since there is no SPR scenario, transforming T_1 into T_k, with the length less than k, we have $k'' = k' = k$. \qed

References

Abby SS, Tannier E, Gouy M, Daubin V (2012) Lateral gene transfer as a support for the tree of life. Proc Natl Acad Sci USA 109(13):4962–4967. https://doi.org/10.1073/pnas.1116871109

Allen BL, Steel M (2001) Subtree transfer operations and their induced metrics on evolutionary trees. Ann Comb 5(1):1–15. https://doi.org/10.1007/s00026-001-8006-8

Bansal MS, Alm EJ, Kellis M (2012) Efficient algorithms for the reconciliation problem with gene duplication, horizontal transfer and loss. Bioinformatics 28(12):283–291. https://doi.org/10.1093/bioinformatics/bts225

Bansal MS, Alm EJ, Kellis M (2013) Reconciliation revisited: handling multiple optima when reconciling with duplication, transfer, and loss. J Comput Biol 20(10):738–754. https://doi.org/10.1089/cmb.2013.0073
Beiko RG, Hamilton N (2006) Phylogenetic identification of lateral genetic transfer events. BMC Evol Biol 6(1):15. https://doi.org/10.1186/1471-2148-6-15
Bonet ML, John KS (2009) Efficiently calculating evolutionary tree measures using SAT. vol 5584. LNCS. Springer, Berlin. pp 4–17. https://doi.org/10.1007/978-3-642-02777-2_3
Bordewich M, Semple C (2005) On the computational complexity of the rooted subtree prune and regraft distance. Ann Comb 8(4):409–423. https://doi.org/10.1007/s00026-004-0229-z
Chan Y, Ranwez V, Scornavacca C (2015) Exploring the space of gene/species reconciliations with transfers. J Math Biol 71(5):1179–1209. https://doi.org/10.1007/s00285-014-0851-2
Chauve C, El-Mabrouk N (2009) New perspectives on gene family evolution: losses in reconciliation and a link with superetrees. Lecture Notes in Computer Science (including subseries lecture notes in artificial intelligence and lecture notes in bioinformatics) 5541 LNBI, pp 46–58. https://doi.org/10.1007/978-3-642-02008-7_4
Chen ZZ, Fan Y, Wang L (2015) Faster exact computation of rSPR distance. J Comb Optim 29(3):605–635. https://doi.org/10.1007/s10878-013-9695-8
Chen J, Shi F, Wang J (2016) Approximating maximum agreement forest on multiple binary trees. Algorithmica 76(4):867–889. https://doi.org/10.1007/s00453-015-0087-6
Choi SC, Rasmussen MD, Hubisz MJ, Gronau I, Stanhope MJ, Siepel A (2012) Replacing and additive horizontal gene transfer in streptococcus. Mol Biol Evol 29(11):3309–3320. https://doi.org/10.1093/molbev/mss138
Dasgupta B, Ferrarini S, Gopalakrishnan U, Paryani NR (2006) Inapproximability results for the lateral gene transfer problem. J Comb Optim 11(4):387–405. https://doi.org/10.1007/s10878-006-8212-8
Doyon JP, Scornavacca C, Ranwez V, Berry V (2010) An efficient algorithm for gene/species trees parsimonious reconciliation with losses, duplications, and transfers. In: Comparative genomics: international workshop, RECOMB-CG 2010, Ottawa, Canada, October 9–11, 2010 Proceedings (October), pp 93–108. https://doi.org/10.1007/978-3-642-16181-0_9
Doyon JP, Ranwez V, Daubin V, Berry V (2011) Models, algorithms and programs for phylogeny reconciliation. Briefings Bioinf 12(5):392–400. https://doi.org/10.1093/bib/bbr045
Even S, Itai A, Shamir A (1976) On the complexity of timetable and multicmodity flow problems. SIAM J Comput 5(4):691–703. https://doi.org/10.1137/0205048
Garey MR, Johnson DS (1979) Computers and Intractability: a guide to the theory of NP-completeness. W. H. Freeman & Co., New York
Garey M, Johnson D, Stockmeyer L (1976) Some simplified NP-complete graph problems. Theor Comput Sci 1(3):237–267. https://doi.org/10.1016/0304-3975(76)90059-1
Goodman M, Czelusniak J, Moore GW, Romero-Herrera AE, Matsuda G (1979) Fitting the gene lineage into its species lineage, a parsimony strategy illustrated by cladograms constructed from globin sequences. Syst Biol 28(2):132–163. https://doi.org/10.1093/sysbio/28.2.132
Hallett MT, Lagergren J (2001) Efficient algorithms for lateral gene transfer problems. In: Proceedings of the fifth annual international conference on computational biology. RECOMB ’01. ACM, New York, pp 149–156. https://doi.org/10.1145/369133.369188
Hasić D, Tannier E (2019) Gene tree species tree reconciliation with gene conversion. J Math Biol. https://doi.org/10.1007/s10878-019-01331-w
Hein J, Jiang T, Wang L, Zhang K (1996) On the complexity of comparing evolutionary trees. Discrete Appl Math 71(1–3):153–169. https://doi.org/10.1016/S0166-218X(96)00062-5
Hickey G, Dehne F, Rau-Chaplin A, Blouin C (2008) SPR distance computation for unrooted trees. Evol Bioinform 4:17–27. https://doi.org/10.4137/EBI.S419
Keeling PJ, Palmer JD (2008) Horizontal gene transfer in eukaryotic evolution. Nat Rev Genet 9:605–618. https://doi.org/10.1038/nrg2386
Linz S, Semple C (2011) A cluster reduction for computing the subtree distance between phylogenies. Ann Comb 15(3):465–484. https://doi.org/10.1007/s00026-011-0108-3
Merkle D, Middendorf M, Wieseke N (2010) A parameter-adaptive dynamic programming approach for inferring cophylogenies. BMC Bioinf 11(1):S60. https://doi.org/10.1186/1471-2105-11-S1-S60
Nakhleh L (2012) Computational approaches to species phylogeny inference and gene tree reconciliation. Biophys Chem 34(1):13–23. https://doi.org/10.1016/j.bpc.2010.12.017
Raman V, Ravikumar B, Rao S (1998) A simplified NP-complete MAXSAT problem. Inf Process Lett 65(1):1–6. https://doi.org/10.1016/S0020-0190(97)00223-8
Rice DW, Palmer JD (2006) An exceptional horizontal gene transfer in plastids: gene replacement by a distant bacterial paralog and evidence that haptophyte and cryptophyte plastids are sisters. BMC Biol 4(1):31. https://doi.org/10.1186/1741-7007-4-31

Scornavacca C, Paprotny W, Berry V, Ranwez V (2013) Representing a set of reconciliations in a compact way. J Bioinform Comput Biol 11(02):1250025. https://doi.org/10.1142/S0219720012500254

Shi F, Feng Q, Chen J, Wang L, Wang J (2013) Distances between phylogenetic trees: a survey. Tsinghua Sci Technol 18(5):490–499. https://doi.org/10.1109/TST.2013.6616522

Shi F, Feng Q, You J, Wang J (2016) Improved approximation algorithm for maximum agreement forest of two rooted binary phylogenetic trees. J Comb Optim 32(1):111–143. https://doi.org/10.1007/s10878-015-9921-7

Song YS (2006) Properties of subtree-prune-and-regraft operations on totally-ordered phylogenetic trees. Ann Comb 10(1):147–163. https://doi.org/10.1007/s00026-006-0279-5

Suchard MA (2005) Stochastic models for horizontal gene transfer: taking a random walk through tree space. Genetics 170(1):419–431. https://doi.org/10.1534/genetics.103.025692

Szöllősi GJ, Tannier E, Lartillot N, Daubin V (2013) Lateral gene transfer from the dead. Syst Biol 62(3):386–397. https://doi.org/10.1093/sysbio/syt003

Szöllősi GJ, Tannier E, Daubin V, Boussau B (2015) The inference of gene trees with species trees. Syst Biol 64(1):42–62. https://doi.org/10.1093/sysbio/syu048

Tofigh A, Hallett M, Lagergren J (2011) Simultaneous identification of duplications and lateral gene transfers. IEEE ACM Trans Comput Biol Bioinform 8(2):517–535. https://doi.org/10.1109/TCBB.2010.14

Whidden C, Matsen F (2018) Calculating the unrooted subtree Prune-and-Regraft distance. IEEE ACM Trans Comput Biol Bioinform: 1–1. https://doi.org/10.1109/TCBB.2018.2802911

Whidden C, Beiko RG, Zeh N (2010) Fast FPT algorithms for computing rooted agreement forests: theory and experiments. Springer, Berlin, pp 141–153. https://doi.org/10.1007/978-3-642-13193-6_13

Whidden C, Beiko RG, Zeh N (2016) Fixed-parameter and approximation algorithms for maximum agreement forests of multifurcating trees. Algorithmica 74(3):1019–1054. https://doi.org/10.1007/s00453-015-9983-z

Wu Y (2009) A practical method for exact computation of subtree prune and regraft distance. Bioinformatics 25(2):190–196. https://doi.org/10.1093/bioinformatics/btn606

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.