Gas-phase Lifetimes of Nucleobase Analogues by Picosecond Pump-Ionization and Streak Techniques

Susan Blaser*, Hans-Martin Frey, Cornelia G. Heid§, and Samuel Leutwyler*

*Correspondence: Prof. Dr. S. Leutwyler
Universität Bern
Departement für Chemie und Biochemie
Freiestrasse 3
CH-3012 Bern
Tel.: +41 31 631 44 79
E-mail: leutwyler@iac.unibe.ch
§Current address: Dept. of Chemistry
University of Wisconsin-Madison
Madison, Wisconsin 53706, USA

Abstract: The picosecond (ps) timescale is relevant for the investigation of many molecular dynamical processes such as fluorescence, nonradiative relaxation, intramolecular vibrational relaxation, molecular rotation and intermolecular energy transfer, to name a few. While investigations of ultrafast (femtosecond) processes of biological molecules, e.g. nucleobases and their analogues in the gas phase are available, there are few investigations on the ps time scale. We have constructed a ps pump-ionization setup and a ps streak camera fluorescence apparatus for the determination of lifetimes of supersonic jet-cooled and isolated molecules and clusters. The ps pump-ionization setup was used to determine the lifetimes of the nucleobase analogue 2-aminopurine (2AP) and of two 2AP(H₂O)ₙ water cluster isomers with n=1 and 2. Their lifetimes lie between 150 ps and 3 ns and are strongly cluster-size dependent. The ps streak camera setup was used to determine accurate fluorescence lifetimes of the uracil analogue 2-pyridone (2PY), its self-dimer (2PY)₂, two isomers of its trimer (2PY)₃, and its tetramer (2PY)₄, which lie in the 7–12 ns range.

Keywords: 2-Aminopurine · Lifetimes · Picosecond pump-ionization · Picosecond streak camera · 2-Pyridone

1. Introduction

Many molecular dynamic processes take place on the picosecond (ps) timescale. These include relaxation processes such as fluorescence, internal vibrational relaxation (IVR), intersystem crossing (ISC), molecular rotation, collisional energy transfer and dephasing and intramolecular electronic energy transfer. The development of stable ps sources in the early 70s allowed fluorescence and Raman decay measurements and first pump-probe experiments by Lauberau. Hochstrasser et al. extended the range from the visible to the infrared (IR) and performed ps experiments on photochemical predissociation and fluorescence in the condensed phase. Zewail and co-workers transferred these methods into the gas-phase and to molecular beams, including time-resolved structural changes by ultrafast electron diffraction techniques. Recent ps investigations on gas-phase molecules have focused on ground- and excited state IVR, which occurs on a timescale of 0.5–100 ps. Mikami and co-workers have studied the ground state IVR dynamics of organic UV chromophores and clusters using ps IR-UV pump-probe experiments, and for instance have determined the IVR lifetime of the OH v=1 vibrational stretch of phenol as 14 ps. Reid and co-workers have investigated IVR mechanisms in electronically excited states by combining ps time-resolved photoelectron spectroscopy with the pump-ionization method. This yields ps time-resolved information on the internal state distribution of the newly-formed ion and thereby on the IVR process of the excited-state neutral molecule. These selected examples show that the ps time range is of great importance in the understanding of intramolecular dynamics.

Here we describe a pulsed supersonic beam apparatus that combines two different ps techniques with a laser spectroscopic resolution of about 10 cm⁻¹ in the UV between 215 and 350 nm (Fig. 1); A pump/ionization experimental setup (A) is able to resolve excited-state lifetimes from ~20 ps up to ~3 ns. This is complemented by a ps streak-camera setup (B) for measuring decays over the 50 ps to 100 ns time range. As an application of the pump-probe setup, we present lifetimes of 9H-2-aminopurine (2AP), which is a weakly fluorescent isomer of adenine (6-aminopurine) and of its water clusters 2AP(H₂O)ₙ with n=1 and 2. The ps streak camera setup was used to investigate the fluorescence cis-amide 2-pyridone (2PY) and its dimer, trimers and tetramers. All molecules/clusters were cooled to ~3 K in a pulsed supersonic molecular beam.

2. Experimental Setups

2.1 Picosecond Pump-Ionization Setup

Fig. 1 shows a scheme of the ps pump-ionization apparatus (A). The molecular sample is placed in a 20 Hz magnetically pulsed supersonic jet nozzle and heated to a vapor pressure of 0.2–2 mbar, corresponding to temperatures of 80 °C to 230 °C. The vapor is entrained in a noble gas carrier at 1–2 bar (Ne or Ar) and expanded into the molecular beam source chamber (5·10⁻⁵ mbar during operation). The core of the resulting pulsed supersonic jet is extracted through a 2 mm diameter skimmer and enters the ion source of a 0.90 m long linear Wiley-McLaren type time-of-flight mass spectrometer (TOF-MS) that is or-
that is attached to the spindle, with a resolution of 1.4286 µm/step, corresponding to 9.530 fs/step. The translation stage is scanned at a constant rate while simultaneously recording the mass-separated ion signals from the pump-ionization process. The data acquisition is speeded up by operating the digital oscilloscope (LeCroy Waverunner 104Xi-A) in sequence mode, and doubled by recording data during both travel directions of the stage. As a typical example, the oscilloscope records 1192 mass spectra at 20 Hz while the translation stage travels 150 mm. This corresponds to 1.7 measurements per ps or a resolution of 0.6 ps. The ion signal ps transients are fitted with an IDL program using a Levenberg-Marquardt routine which is a least-square algorithm with variable step size.

2.2 Picosecond Streak Camera Setup

Fig. 1 also shows a second setup (B) that is combined with the same molecular beam apparatus, which measures the fluorescence lifetimes of excited species using a ps streak camera: The ~20 ps UV output of the OPO/OPA is directed into the TOF-MS ion source. The molecules are S0\rightarrow S1 excited by the UV OPO/OPA and then ionized by a 266 nm (~20 ps) pulse that is generated by doubling the residual 532 nm with a Brewster-angle cut BBO. The time between pump and ionization pulses is varied by sending the former over a 1080 mm travel directions of the stage. As a typical example, the oscilloscope records 1192 mass spectra at 20 Hz while the translation stage travels 150 mm. This corresponds to 1.7 measurements per ps or a resolution of 0.6 ps. The ion signal ps transients are fitted with an IDL program using a Levenberg-Marquardt-routine which is a least-square algorithm with variable step size.

Fig. 2. Ionization delay transients of (a) 2-amino-purine, excitation at 32362 cm⁻¹, (b) 2-amino-purine·(H2O)2 isomer 1A, excitation at 32292 cm⁻¹, (c) 2-amino-purine·(H2O)2 isomer 2A, excitation at 32163 cm⁻¹.
perspective S_0±S_1 origins, which are 32362 cm^{-1} for 2AP, 32292 cm^{-1} for isomer A of 2AP·H$_2$O and 32163 cm^{-1} for isomer 2A of 2AP·(H$_2$O)$_2$.[14,15] For 2AP we obtain a pump-ionization lifetime of $\tau = 156 \pm 6$ ps. This is about twice the value derived from the rotational contour simulation.[13] This indicates that while lifetime broadening has an effect on the rotational contour, there are additional broadening mechanisms that have not yet been taken into account. One of these is the inversion tunneling of the 2-amino group, which gives rise to two sub-bands and which may increase to the O$_0^\pi$ band width.

The lifetimes of the 2AP·(H$_2$O)$_n$ n=1 and 2 clusters are $\tau = 584 \pm 11$ ps for isomer 1A and $\tau = 2.460 \pm 0.065$ ns for isomer 2A. Hydrogen-bonding of one or two H$_2$O molecules at the Sugar-edge site (1A, 2A) increases the 2AP lifetime by factors of 4 and 16 respectively. This reflects the influence of H-bonding on the lowest $\pi\pi^*$ excited state, which is near-degenerate with and closely coupled to the optically bright $\pi\pi^*$ state.[16] In bare 2AP this $\pi\pi^*/\pi\pi^*$coupling gives rise to rapid ($k = 6 \times 10^9$ s^{-1}) nonradiative relaxation, which is slowed down by increasing solvation.[16]

These measurements reveal some advantages of the ps pump-ionization setup: i) The molecular and cluster lifetimes can be measured in a cluster mass-specific and often isomer-specific manner. ii) The time resolution – given by the temporal convolution of the pump and ionization pulses – is ≈ 30 ps, which is typically 3–6 times better than in the streak camera experiment, see below. iii) The photoions are collected and detected with near-unity efficiency. iv) Since several cluster masses are measured simultaneously, there is a potential multiplex advantage, and effects of cluster fragmentation can be diagnosed. Among the disadvantages, we note: i) Only one point on the pump/probe transient can be measured per shot. ii) Longer lifetimes than ~3 ns are increasingly difficult to measure because of the finite pointing stability of the delay stage and slow pointing drifts of the two lasers. iii) The density of molecules/clusters is ≈ 500 times lower in the TOF-MS source than in front of the pulsed nozzle. iv) The ionization pulse energy cannot be increased without limits because of spurious one-color two-photon ionization processes.

4. 2-Pyridone Clusters

We tested the ps streak camera setup and 2-pyridone (2PY) and its self-dimer (2PY)$_2$, because their $\pi\pi^*$ state fluorescence lifetimes have been previously determined via the Lorentzian widths of individual rovibronic lines as $\tau = 11.4 \pm 0.1$ ns for 2PY and $\tau = 9.0 \pm 0.1$ ns for (2PY)$_2$.[17,18]

Furthermore, we investigated two isomers of the 2-pyridone trimer (2PY)$_3$, denoted A and B, and the (2PY)$_2$ homo-tetramer, which have been identified and assigned by resonant two-photon ionization spectroscopy.[19] All species were excited at their respective 0^0 transitions, which are at 29886 cm^{-1} (2PY)$_2$, 30807 cm^{-1} (2PY)$_3$, and 30931 cm^{-1} for the low-symmetry (2PY)$_2$ isomer A, 30988 cm^{-1} for the high-symmetry (2PY)$_3$, isomer B and 30572 cm^{-1} for the (2PY)$_2$ homo-tetramer.[19] Fig. 3 shows the respective fluorescence lifetime measurements, lifetime fits and ab initio optimized ground-state structures.

The ps streak camera lifetime of 2PY in Fig. 3 is fitted as $\tau = 7.80 \pm 0.05$ ns (1σ). This is somewhat shorter than the 11 ± 1 ns determined by Held et al. from the Lorentzian broadening of individual rotational lines.[13] The lifetime of (2PY)$_2$, is $\tau = 13.2 \pm 0.2$ ns. This 70% increase in lifetime relative to 2PY is in agreement with previous observations that bridging the cis-amide H-N-C=O group of 2PY with two or more H-bonds prevents out-of-plane twisting of the NH and C=O bonds in the $\pi\pi^*$ state, thereby blocking the access to the lowest conical intersection of 2PY.[19] Held et al. determined that the (2PY)$_2$ lifetime via Lorentzian line-broadening as 9 ±1 ns.[19] Given that this lifetime is 4 ns shorter while the 2PY lifetime is 2.2 ns longer than the ps streak camera measurements, and given the much smaller fit errors of the latter, we suggest that the Lorentzian broadening lifetime determinations have a ±2 ns (1σ) uncertainty, which is twice that indicated in refs. [17] and [18]. In this case, the differences relative to the ps streak camera measurement lie within ±2σ for 2PY and (2PY)$_2$.

The lifetimes of the two isomers of (2PY)$_3$ are intermediate between those of 2PY and (2PY)$_2$. The C$_4$ symmetry isomer B has a lifetime $\tau_B = 11.7 \pm 0.2$ ns. The low-symmetry C$_3$ isomer A has a slightly shorter lifetime $\tau_A = 11.1 \pm 0.3$ ns. The lifetime of (2PY)$_2$ was determined as $\tau_B = 10.0 \pm 0.4$ ns. A reason for this pattern of lifetimes with increasing cluster size is that the H-bonds are strongest in the dimer, which exhibits a planar H-bonded 8-center ring. In the trimers and tetramer the H-bond arrangements are increasingly strained and twisted,[19] which leads to a weaker clamping and allowing easier out-of-plane twisting of the H-N-C=O group and more rapid radiationless relaxation.[20]

The ps streak camera setup has the advantage that: i) the local density in the beam is higher in front of the pulsed nozzle, ii) the entire lifetime range (0.2–50 ns) is measured for every laser shot, iii) the measurement accuracy for lifetimes >500 ps is good and becomes increasingly better with increasing lifetime. Disadvantages are: i) Fluorescence measurements are not intrinsically mass- or species-specific and may contain contributions from other fluorescent species. ii) The accuracy of lifetimes <200 ps decreases rapidly with decreasing lifetime. iii) The maximum efficiency for collecting photons is ~3% and this cannot
be increased without deteriorating the time resolution.

5. Conclusions

With the ps pump-ionization setup we have measured the excited-state decays of 2-aminopurine (2AP) and its water clusters $1A$ and $2A$ which could not be previously resolved with ns experiments.\cite{13-15} All fits resulted in monoexponential decays. The \sim155 ps lifetime for the monomer is twice the value determined via Lorentzian line broadening of the 2AP rotational contours.\cite{13} This makes it clear that additional broadening mechanisms that were so far disregarded in the contour modeling must be taken into account. The lifetime of the 2AP chromophore is found to increase dramatically with the number of solvent water molecules, by a factor of four for the $1A$ complex and by a factor of 16 for the $2A$ cluster.

The fluorescence lifetimes of 2-pyridone (2PY) and of four different (2PY)$_n$ clusters were determined with the ps streak camera setup. The 2PY monomer has the shortest fluorescence lifetime with 7.80 ns, while the dimer has the longest lifetime of 13.2 ns. The two trimers have a similar lifetime with 11.7 ns for isomer B and 11.2 ns for isomer A. The fluorescence lifetime of the tetramer is even shorter with 10.0 ns.

Received: January 17, 2014

\begin{thebibliography}{99}
\bibitem{1} A. J. Campillo, V. H. Kollmann, S. L. Shapiro, \textit{Science} \textbf{1976}, 193, 227.
\bibitem{2} A. Lauberau, \textit{J. Chem. Phys.} \textbf{1975}, 63, 2262.
\bibitem{3} W. Kaiser, A. Lauberau, \textit{Chem. Phys.} \textbf{1979}, 6, 313.
\bibitem{4} M. Iannone, B.R. Cowen, R. Diller, \textit{Applied Optics} \textbf{1991}, 30, 5247.
\bibitem{5} R. M. Hochstrasser, D. S. King, A. C. Nelson, \textit{Chem. Phys. Lett.} \textbf{1976}, 42, 8.
\bibitem{6} R. M. Hochstrasser, D. S. King, \textit{J. Am. Chem. Soc.} \textbf{1975}, 97, 4760.
\bibitem{7} P. M. Felker, W. R. Lambert, A. H. Zewail, \textit{J. Chem. Phys.} \textbf{1982}, 77, 1603.
\bibitem{8} J. S. Baskin, A. H. Zewail, \textit{J. Chem. Phys.} \textbf{1989}, 93, 570.
\bibitem{9} J. C. Williamson, J. M. Cao, H. Ilbe, H. Frey, A. H. Zewail, \textit{Nature} \textbf{1997}, 386, 159.
\bibitem{10} M. Kayano, T. Ebata, Y. Yamada, N. Mikami, \textit{J. Chem. Phys.} \textbf{2004}, 120, 7400.
\bibitem{11} Y. Yamada, T. Ebata, M. Kayano, N. Mikami, \textit{J. Chem. Phys.} \textbf{2004}, 120, 7410.
\bibitem{12} K. L. Reid, \textit{Int. Rev. Phys. Chem.} \textbf{2008}, 27, 607.
\bibitem{13} S. Lobsiger, R. K. Sinha, M. Trachsel, S. Leutwyler, \textit{J. Chem. Phys.} \textbf{2011}, 134, 114307.
\bibitem{14} R. K. Sinha, S. Lobsiger, S. Leutwyler, \textit{J. Phys. Chem. A} \textbf{2012}, 116, 1129.
\bibitem{15} S. Lobsiger, R. K. Sinha, S. Leutwyler, \textit{J. Phys. Chem. B} \textbf{2013}, 117, 12410.
\bibitem{16} S. Lobsiger, R. K. Sinha, S. Blaser, H.-M. Frey, S. Leutwyler, to be published.
\bibitem{17} A. Held, B. B. Champagne, D. W. Pratt, \textit{J. Chem. Phys.} \textbf{1991}, 95, 8732.
\bibitem{18} A. Held, D. W. Pratt, \textit{J. Chem. Phys.} \textbf{1992}, 96, 4869.
\bibitem{19} C.T. Heid, Diploma thesis, Dept. für Chemie und Biochemie, Universität Bern, \textbf{2008}.
\bibitem{20} S. Blaser, P. Ottiger, S. Lobsiger, H.-M. Frey, S.