Prevalence of reactivity to the tuberculin test and associated factors in the population attended at a drug addiction center in the period 2013-2016

Castellanos-García E, Carrillo-Conde MA

Centro de Atención y Seguimiento de Drogodependencias de Nou Barris. Institut Genus i Agència de Salut Pública. Barcelona (España)

ABSTRACT

Objective: Epidemiological study of prevalence, carried out at Center for Drug Addiction of the center of addictions of Nou Barris (Barcelona, Spain) during 2013-2016 in order to know the prevalence of tuberculin test reactivity (TTR) and its predictive factors in drug-dependent population.

Material and methods: Epidemiological and clinical variables, associated with the consumption of drugs and the practice of the tuberculin test, were collected. The reading rate and the prevalence of TTR for annual periods, as well as the predictive factors through a bivariate and multivariate logistic regression analysis.

Results: 389 patients were studied (109 in 2013, 84 in 2014, 111 in 2015 and 85 in 2016) and they went to the reading of the TT 337 (86.6%). The prevalence of TTR was 33.2% in the readings. At the bivariate level, TTR was associated with sex, origin and prior history. In the multivariate analysis, the predictive value of age was confirmed (more reactivity in ≥40 years; p <0.001, odds ratio [OR]: 4.85, confidence interval [IC]: 2.68-8.78), being male (p = 0.003, OR: 2.81, IC: 1.43-5.53), and being an immigrant (p <0.001; OR: 7.32, IC: 3.56-15.03).

Discussion: It is concluded that the prevalence of TTR is high, especially in men, in those of more age, and in immigrants and that the drug addiction devices continue to be basic in the detection and monitoring of the latent tuberculosis infection.

Keywords: drug users; surveillance; latent tuberculosis; tuberculin; straining; emigrants and immigrants; heroin; epidemiology.

INTRODUCTION

Tuberculosis (TB) remains a serious public health issue worldwide. Even though the epidemiological situation of TB has improved, one third of the world’s population currently presents latent TB infection (LTI) and the number of patients developing active TB is extremely high. In 2015 there were 10.4 million cases worldwide and 1.8 casualties due to TB: 0.4 million of which were coinfected with human immunodeficiency virus (HIV). TB is, in fact, one of the ten leading causes of mortality and it results in more deaths than HIV and malaria. Moreover, we should consider that these are evitable cases, since TB is a preventable disease, and in most cases, curable.

Out of the countries in the European Union, Spain remains a country with high LTI and TB rates. In 2014, five thousand and eighteen (2018) new cases of TB were reported in Spain and one thousand and thirty-two (1132) in Catalonia. The association of TB with heroin use, especially for injecting drug users (IDUs) is well known ever since the pre-AIDS era. In Spain, the number of heroin users dropped from 1990 and for the last years the prevalence has remained stable, although with a reduced injected use. Currently, it is estimated that 0.7% of the adult population has used heroin at some point. Information and health education, the reduction in the number of users during the 90s, a diminished use of the parenteral route, opioid
agonist therapies and the implementation of har-
reduction programs have lead to a modified epide-
miology of HIV infection and ever since the mid-90s
its Transmission is mainly due to sexual relations-
ships⁴. During this period, the rate of TB in Spain has
also dropped³ and it is possible that it has also done
so among drug users, since in 2016, being IDU was
the main risk factor in 2.4% of the new diagnoses of
TB⁷. Yet, full information was only available in 46
cases. Thus, there is a lack of data, few studies on the
issue and we really do not know if the prevalence of
LTI in this group has varied thirty-five years after the
appearance of HIV. On the other hand, it is also pos-
sible that other factors, such as an increased number
of immigrant population with drug addiction issues
and with high original endemicity for TB may be
affecting the situation and leading to an increased
prevalence of LTI among drug users in Spain. These
data are essential to adapt public health strategies and
improve TB control among drug users and hence, in
the community. The objective of this study is to know
the prevalence of the reactivity to the tuberculin test
(TTR) among drug users who initiate Treatment and
the Trend of this prevalence throughout recent years
as well as predictors associated to TTR.

MATERIAL AND METHODS

Epidemiological descriptive cross-sectional pre-
valence study carried out in the Drug Addiction
Treatment and Follow-Up Centre of Nou Barris
(CAS of NB), a facility providing outpatient care to
alcohol or drug users who request assistance in this
area of Barcelona. The district of Nou Barris has a
reference population of 165,718 inhabitants (as of
2007) which accounts for 10.27% of the population
of Barcelona.

The CAS of NB, among other provisions, screens
TB in all patients initiating treatment there. For that
purpose, the tuberculin skin test (TST) also known
as Mantoux intradermal test is performed by means
of the intradermal injection of 2 U (0.1 ml) of Purifi-
ced Protein Derivative (PPD RT 23) to all patients
who initiate treatment and that fulfill screening crite-
ria according to the medical service (most frequently
those with prior negative TST over a year ago). Lect-
ure of the tuberculin test, which measures positivity
or negativity by means of the size of the induration
and thus, the presence or not of potential infection, is
performed 48 to 72 hours later.

This study included all patients requesting assis-
tance in CAS NB from 2013 to 2016 in whom TTR
had to be performed. The following were excluded:
a) patients with a history of TB; b) patients with
previous positive TST; and c) patients with previous
negative TST in the last year, as to avoid the boosts-
ter effect. The exclusion of these patients was already
carried out by the medical staff in the establishment
and they never underwent the TST.

TST was considered to be positive when:

– An induration of 5 or more millimetres in HIV-
infected persons and/or recent contact with a per-
son with pulmonary or laryngeal TB.

– An induration of 10 or more millimetres in non-
HIV-infected patients or in the absence of recent
contact with pulmonary or laryngeal TB in the
absence of BCG vaccination.

– An induration of 15 or more millimetres for
BCG-vaccinated patients with no other previous
considerations.

The TST was considered negative for indurations
under the aforementioned diameters

Positive cases were referred to Drassanes Care
Centre in Barcelona, to rule out active TB by means
of radiological and bacteriological studies.

The study variables were collected by means of a
specifically designed information collection sheet and
data from the electronic clinical record. The following
variables were collected: a) age; b) age group (15 to 24,
24 5 to 34, 35 to 44, 45 to 54, 55 to 64 and 65 or more);
gender (male/female); Spanish (yes/no) and country
of origin otherwise; e) main drug of abuse; f) opioid
agonist therapy (OAT) (yes/no); g) IDU (yes/no); h)
prior imprisonment (yes/no); i) dual pathology (yes/
no); j) HIV infection (yes/no); k) Hepatitis C Virus
(HCV) infection (yes/no); l) year of last TST; m)
result of TST in millimetres; n) assistance for TST rea-
ning (yes/no); o) positive TST (yes/no); and p) prior
clinical record in CAS (yes/no).

The statistical analysis of data was performed by
means of SPSS version 24.0 for Windows. For the de-
scription of continuous variables, the mean, standard
deviation, minimum, median, maximum and num-
ber of valid cases were used. For the description of
categorical variables, the number and percentage of
patients per category have been used. For all statistical
tests, the level of statistical significance (p) was 0.05. A
descriptive analysis of sociodemographic and clinical
variables of patients has been performed, globally and
comparatively according to nationality, to determine
whether there were statistically significant differences
between the autochthonous population and immi-
gants. The reading rate of TST and the prevalence
of TTR was performed by means of an “intention-
to-treat (ITT) analysis” (including all patients with
inclusion criteria regardless they actually had their TST read) and “per-protocol analysis” (only including those who had their TST read). A bivariate analysis of the results of TST and the presence of TTR with the variables included in the study was performed. To assess factors potentially associated to TST reading as well as predictors for LTI, the variables which proved significant in the bivariate analysis were included in a binary logistic regression multivariate model, and odds ratios (OR) with their corresponding 95% confidence intervals (CI) were calculated.

In order to perform this study, prior authorization from the Directorate of the Drug Prevention and Care Services of the Public Health Agency in Barcelona was sought. Moreover, patients were requested their informed consent, which could not be performed in no longer active members of the Centre, since this study was partly retrospective and partly prospective.

The study was performed in accordance with international ethical recommendations, good clinical practices guidelines, RD 711/2002 and the regulations in force in Spain (Circular 15/2002). Management, communication and transfer of personal data was done according to Organic Law 16/1999 as of December 13th, for the protection of personal data.

RESULTS

The study included all patients who sought assistance in CAS NB from 2013 to 2016 subject to TST. Patients who were excluded were: a) those with a history of TB disease; b) those with previously positive TST; and c) those who had undergone TST in the last year, as to avoid the booster effect: a strong immune response generated by a second exposure to tuberculin. The exclusion was already performed by the medical staff and these patients never underwent TST.

A total of 389 patients were included: 109 in 2013, 84 in 2014, 11 in 2015 and 85 in 2016. 299 (76.9%) were males and 90 (23.1%) were females. The men age was 40.3 ± 7.4 years. Other descriptive features are depicted in Table 1.

Variable	n	%
Spanish		
– Yes	323	83
– No	66	17
Prior CAS history		
– Yes	277	71.2
– No	112	28.8
Heroin		
– Yes	40	10.3
– No	349	89.7
IDU		
– Yes	27	6.9
– No	361	93.1
OA treatment		
– Yes	41	10.5
– No	348	89.5
Conviction record		
– Yes	46	11.8
– No	340	87.4
– NA	3	0.8
Dual pathology		
– Yes	139	35.7
– No	250	64.3
HIV infection		
– Yes	10	2.6
– No	322	82.8
– NC	57	14.6
HCV infection		
– Yes	26	6.7
– No	305	78.4
– NA	58	14.9

Note. OA: opioid agonists; CAS: centro de atención y seguimiento de drogodependencias; NA: not available; IDU: injecting drug use; HCV: Hepatitis C virus; HIV: human immunodeficiency virus.

Table 1. Descriptive features of the study population.

337 patients (86.6%) came forward for their TST to be read. There were no significant differences in the trend of attendance per year (85.3% in 2013, 89.3% in 2014, 87.4% in 2015 and 83.5% in 2016; p=0.57). TST reading was not associated either to gender, a previous history in Cas, alcohol, heroin or cocaine use, criminal record, OAT, dual pathology, HIV or HCV infections.
By contrast, TST reading did prove to be associated to the age group (91% of attendance for patients ≥ 40 years old vs. 80.8% for younger patients; p=0.001), Spanish nationality (87% of attendance among Spanish patients vs. 83.1% among immigrants; p=0.03) and IDU (63% of attendance among IDUs vs. 88.4% for non-IDUs; p<0.001). Multivariate analysis confirmed the association between TST reading and being 40 years old or older (OR 2.91; 95% CI: 1.54-5.51; p=0.001) and not being an IDU (OR 0.10; CI: 0.08-0.47; p<0.001).

The prevalence of TTR by ITT analysis was 28.2% (112/389) and 33.2% (112/337) per protocol analysis. Induration had a minimum value of 0 mm and a maximum of 32 mm with a mean induration of 5.45 mm ± 8.27. A larger mean induration was observed among immigrants (19.5 mm vs. 4.4 mm in Spanish patients; p<0.001). The trend in the prevalence of TTR during the study years showed no significant differences (p=0.37).

Patients with TTR were older (mean age of 45.3 vs 39.8 among those with no TTR; p<0.001). To a bivariate extent, TTR also was associated to gender (36.9% among men vs. 20.3% among women; p=0.005), nationality (59.3% among immigrants vs. 28% among Spanish patients) and with a previous history

Table 2. Variables associated to tuberculin skin test reading. Bivariate and multivariate analysis.

Variable	TST reading n (%)	Bivariate analysis	Multivariate analysis
	p	p	OR (95% CI)
Age ≥40 years	0.001	0.001	2.91 (1.54-5.51)
– Yes	190 (91.8)		
– No	147 (80.8)		
Spanish	0.03	–	
– Yes	281 (87.0)		
– No	55 (83.1)		
IDU	<0.001	0.001	0.10 (0.08-0.47)
– Yes	17 (63.0)		
– No	319 (88.4)		

Note. Variables considered in the analysis: age, age group, gender, nationality, main drug of abuse, opioid agonist therapies, injecting drug use, history of conviction, dual pathology, HIV infection, HCV infection, attendance to TST reading, year of last TST and previous clinical history in CAS.

CI: confidence interval; OR: odds ratio, TST: tuberculin skin test; IDU: injecting drug use.
Prevalence of reactivity to the tuberculin test and associated factors in the population attended at a drug addiction center in the period 2013-2016

Castellanos-García E, Carrillo-Conde MA. Prevalence of reactivity to the tuberculin test and associated factors in the population attended at a drug addiction center in the period 2013-2016

— 59 —

hol and illegal drug abusers, who have traditionally been considered a “population at risk” of suffering TB, has proven a higher prevalence (28.8% in the ITT analysis and 33.2% in the PP analysis). This can be considered a high figure within the adult Spanish population, although lower than that observed (40-50%)10-12 among some population groups, such as the imprisoned population. We have not observed a difference regarding prevalence according to the type of substance of abuse or the route of abuse, probably because the infection rate depends mostly on the incidence of the disease which is more strongly associated to socioeconomic status than to drug abuse itself. Nevertheless, we did observe that the prevalence of TTR was higher among men, older individuals and immigrants. The association of TTR with male gender has been broadly established8,13-15 and is probably due to the fact than men present higher exposure rates than women. The association between TTR and age has also been cited by many authors 8,9,12,13,16,17 and it has even been stated than between 20 and 54, the risk of infection increases by approximately 5 to 9.4% per every increased year of age 8,13. Last, the prevalence of TTR in our study also was significantly associated with the immigrant population. Throughout recent years, LTI has raised due to the immigration phenomenon, which has been increasingly ongoing in Spain ever since 200018. This is mainly from developing countries where TB is highly endemic. The arrival of this population has entailed an increased number of TB in our country leading to epidemiological modifications and is therefore impeding TB control 19. Hence, for example, in January 2015, 4,718,863 immigrants were registered in Spain, with a concurrent increase of TB prevalence, especially in big cities such as Barcelona and Madrid20. Some studies have observed21,22, as we have, that the prevalence of TTR is higher among immigrants23,24. In our study, the prevalence of TTR was 59.3% for immigrants while for the autochthonous population it was 28%. This is already quite striking, but it is even more so if we consider that the immigrant population was younger (up to two thirds were under 40) while 57.3% of the autochthonous population was over 40 years old—which should hypothetically result in a lower rate of infection, which it does not.

On the other hand, it has also been stated that the duality drug-abuse and immigration is more and more common, although this statement is somewhat controversial according to some authors25. In this study, only 17% of the sample was immigrant, but substance abuse such as heroin and the probability of OAT were significantly more common in this group

Table 3. Predictors for TST reactivity. Bivariate and Multivariate analysis.

Variable	Reactive TST (n, %)	Bivariate analysis	Multivariate analysis
Age ≥40 years		0.001	4.85 (2.68-8.78)
– Yes	81 (42.6)		
– No	31 (21.1)		
Male	0.005	0.003	2.81 (1.43-5.53)
– Yes	97 (36.9)		
– No	15 (20.3)		
Previous history	0.033		
– Yes	72 (30.0)		
– No	40 (41.2)		
Immigrant		0.001	7.32 (3.56-15.03)
– Yes	32 (59.3)		
– No	79 (28.0)		

Nota: Variables considered in the analysis: age, age group, gender, nationality, main drug of abuse, opioid agonist therapies, injecting drug use, history of conviction, dual pathology, HIV infection, HCV infection, attendance to TST reading, year of last TST and previous clinical history in CAS. CI: confidence interval; OR: odds ratio, TST: tuberculin skin test; IDU: injecting drug use.

in CAS (30% among those with one vs. 41.2% in those who did not; p= 0.03). However, there were no significant differences with previous imprisonment, drug abuse, IDU, OAT, dual pathology or HIV/HCV infections. Multivariate analysis confirmed the independent association of TTR with age (more prevalence for patients of 40 or more years of age; OR: 4.85, CI: 2.68-8.78; p <0.001), gender (more prevalence for men; (OR: 2.81, CI: 1.43-5.53; p = 0,003) and nationality (more prevalence of TTR among immigrants OR: 2.81, CI: 1.43-5.53; p = 0003) while the predictive value of a previous history was ruled out (Table 3).

DISCUSSION

In Spain, it is estimated that the overall prevalence of TTR in adults in 22.3%8 and that it goes up to 25.7% among risk groups such as hospital staff9, although data from Alcaide et al6 are from 2003 and probably throughout recent years the prevalence of TTR may have dropped. This study, targeted at alco-
than in Spanish participants. It is likely that foreign heroin users are more prone to OAT programs, while non-drug users and others who believe that they do not need these treatments are more reluctant to seeking assistance. It is also possible, that overall, access of immigrant population may be impaired due to illegal stays, unawareness of healthcare circuits, cultural or language barriers or even due to the insensitivity of some healthcare professionals. Anyhow, the prevalence of TTR is probably higher among immigrant drug users than among those who do not use drugs, as previously observed in other studies, although the prevalence greatly varies depending on the country of origin and for some groups, such as those from Maghreb, prevalence rates of up to 70% have been observed regardless of drug use. In opposition, we should consider that immigrants showed larger inductions (10.5 vs 4.4mm; p<0.001) than the Spanish population, which can be due to the influence of vaccination, or the presence of infections by Mycobacteria other than Mycobacterium tuberculosis which may induce booster effects. It seems unlikely that all immigrants with TTR are so due to TB infection.

Something that we should also consider is attendance to TST reading: 86.6% of the patients who actually underwent the test. This is quite satisfying especially if we bear in mind that this is a drug-abuser population, who is usually less adherent and more unstable. In fact, this data differs by over 10% from those obtained by Alcaide et al. in an immigrant population in Barcelona, where 24% of the sample did not attend the TST reading. In this study, immigrants also presented a poorer attendance than Spanish individuals, yet with no statistical significance in the multivariate analysis. Other groups such as younger individuals and IDUs probably need particular attention, since they also were the group with the worse attendance rate.

One of the obstacles of this study was to determine the positivity threshold of the TST in screening this population. There are different opinions regarding the ranges of TST due to its low specificity, high TB vaccination coverage and potential infection by different strains than M. tuberculosis – more prevalent in nearby or tropical countries (cross-reactions). This study has adopted the recommendations of García Pais et al. gathered in Fisterra and widely accepted. A limitation of the study is that is was carried out in only one CAS in Barcelona, which always limits the extrapolation of its conclusions. Nevertheless, we do not believe that overall results would have greatly varied if carried out in other similar facilities across the city. Only the rate of immigrant population and its country of origin, heterogeneous in each CAS, could entail modified TTR prevalence rates.

Finally, we must highlight that these results prove that although some infections such as HIV have significantly decreased among drug users, other such as TB, most commonly associated to low incomes and poor social conditions, are still extremely high. Therefore, we recommend keeping guard for its prevention and control and insist in implementing strategies aimed at reducing the morbimortality of this infection in our community.

CORRESPONDENCE

Eulalia Castellanos
Institut Genus i Agència de Salut Pública. Barcelona
E-mail: ecastell@aspb.cat

BIBLIOGRAPHY

1. Arias Guillén M, Palomar R, Arias M. Avances en el diagnóstico de la infección tuberculosa latente en pacientes en tratamiento renal sustitutivo. Nefrología. 2011;31:137-41.
2. World Health Organization. 10 facts on tuberculosis (Consulted December 13th 2016) Available from: http://www.who.int/features/factfiles/tuberculosis/es/
3. Rodríguez E, Villarrubia S, Martínez EV, Amillategui E, Sastre M, Díaz O. Informe epidemiológico sobre la situación de la tuberculosis en España. Madrid: Instituto de Salud Carlos III; Centro Nacional de Epidemiología; 2014.
4. Álvarez Rodríguez M, Godoy García P. Prevalencia de la infección tuberculosa y por el VIH en los usuarios de un programa de reducción de riesgos para usuarios de drogas por vía parenteral (UDVP). Rev Esp Salud Pública. 1999;73:375-81.
5. Alcohol, tabaco y drogas ilegales en España. Madrid: Centro de publicaciones. Ministerio de Sanidad, Servicios Sociales e Igualdad; 2016.
6. Díez M, Oliva J, Sánchez F, Vives N, Cevallos C, Izquierdo A; Grupo SINIVIH. Incidencia de los nuevos diagnósticos de VIH en España, 2004-2009. Gac Sanit. 2012;26:107-15.
7. La tuberculosis a Catalunya l’any 2016. Informe preliminar. Barcelona: Agència de Salut Pública de Catalunya, Generalitat de Catalunya; 2017.
8. Alcaide J, Altet MN, Canela-Soler J, Pina JM, Milà C, de Souzas ML, et al. Estudio de la infección tuberculosis en adultos. Rev Clin Esp. 2003;203:321-8.
9. Casas I, Esteve M, Guerola R, García-Olivé I, Ruiz-Manzano J. Estudio de la infección tuberculosa en trabajadores de un hospital general universitario. Factores asociados y evolución en 20 años. Arch Bonconeumol. 2011;47:541-6.
10. García-Guerrero J, Marco A, Saiz de la Hoya P, Vera EJ; Grupo de estudio Prevalhep de prisiones. Estudio multicéntrico de prevalencia de infección tuberculosa latente en los internados en prisiones españolas. Rev Esp Sanid Penit. 2010;12:79-83.
11. Solé N, Marco A, Escribano M, Orcau A, Quintero S, Del Baño L, et al. Prevalencia de infección tuberculosa latente en los inmigrantes que ingresan en prisión. Rev Esp Sanid Penit. 2012;14:12-8.
12. Marco A, Solé N, Orcau A, Escribano M, del Baño L, Quintero S, et al. Prevalence of latent tuberculosis infection in inmates recently incarcerated in a men’s prison in Barcelona. Int J Tuberc Lung Dis. 2012;16:60-4.
13. Alcaide J, Altet MN, de Souza ML, Jiménez-Fuentes MA, Milà C, Solsona J. Búsqueda activa de tuberculosis en inmigrantes de Barcelona. Arch Bronconeumol. 2004;40:453-8.
14. Vinod K, Diwan, AT. Sex, gender, and tuberculosis. Lancet. 1999;353:1000-1.
15. Caylà JA, Jansà JM, Batalla J, Díez E, Parellada N, García A. Tuberculosis en Barcelona. Análisis de los 899 casos notificados en 1986. Med Clin (Barc). 1988;90:611-6.
16. Louther J, Rivera P, Feldman J, Villa N, DeHovitz J, Sepkowitz KA. Risk of tuberculin conversion according to occupation among health care workers at a New York City hospital. Am J Respir Crit Care Med. 1997;156:201-5.
17. De March P. La evolución de la tuberculosis en Barcelona. Sesenta años de observación (1921-1981). Enferm Torax. 1983;121:53-88.
18. Maher D, Raviglione M. Global epidemiology of tuberculosis. Clin Chest Med. 2005;26:167-82.
19. Programa Integrado de Investigación en Tuberculosis (PII-TB) de SEPAR. Estudio ECUUTTE. En: Libro del año SEPAR 2008 sobre la tuberculosis y la solidaridad. Barcelona: Fundación Respira de SEPAR; 2008.
20. Ospina JE, Orcau A, Millen JP, Ros M, Gil S, Caylà JA. Epidemiology of tuberculosis in immigrants in a large city with large-scale immigration (1991-2013). PlosOne. 2016;11:e0164736.
21. García Vidal J, Jansà JM, García P, Barneix I, Caylà JA. Enfermedades infecciosas y características sociodemográficas de los inmigrantes extranjeros del centro penitenciario de hombres de Barcelona. Rev Esp Salud Pública. 1998;72:197-208.
22. Morales García C, Parra J, Valero B, Sanbonmat-su S, Sánchez JA, Hernández J. Características de la tuberculosis en la población inmigrante en el Área de Salud Sur de Granada. Enferm Infec Microbiol Clin. 2015;33:166-72.
23. Christian García C. Tuberculosis in groups of risk of the Region Metropolitana, Chile, 2008. Rev Chil Enferm Respir. 2010;26:105-11.
24. Molina Y, Lomas MM, Romero FJ, Romero MJ. Influencia del fenómeno migratorio sobre la tuberculosis en una zona semiurbana. Arch Bronconeumol. 2014;50:325-31.
25. Gato E, Salas S, López Hernández-Ardieta M, Losada E. Estudio descriptivo del perfil del usuario inmigrante atendido en los centros de atención integral a las drogodependencias de la Comunidad de Madrid. Psiquiatría.com. 2011;15:22. (Consulted December 5th 2016.) Available from: http://hdl.handle.net/10401/4113
26. Díaz de Quijano E, Brugal MT, Pasarín MI, Galdós-Tanguis H, Caylà J, Borrell C. Influenza of the desigualdades sociales, the conflictividad social and the pobreza extrema sobre la morbilidad por tuberculosis en la ciudad de Barcelona. Rev Esp Salud Pública. 2001;75:517-28.
27. Ramos JM, Pastor C, Masi MM, Cascales E, Royo G, Gutiérrez-Rodero F. Examen de salud en la población inmigrante: prevalencia de infección tuberculosa latente, hepatitis B, hepatitis C, infección por el VIH y sífilis. Enferm Infecc Microbiol Clin. 2003;21:540-2.
28. Alonso FJ, García-Bajo MC, Lougedo MJ, Co- mas JM, García-Palencia M, López de Castro F, et al. Prevalencia de infección tuberculosa en las personas inmigrantes del Área de Salud de Toledo. Rev Esp Salud Pública. 2004;78:593-600.
29. Ríos R, García-Rodríguez JA, Rodríguez-García ML, Meseguer A, Martí D, Guerrero-Sánchez G. Prevalencia de infección tuberculosa en las personas inmigrantes de Lorca (Murcia). SEMERGEN-Medicina de Familia. 2008;34:323-9.
30. Rivas-Clemente FJ, Necher-Conches M, Corri- llero Martín J, García-Herreros Madueño MT. Prevalencia de infección tuberculosa entre los inmigrantes magrebíes. Med Clin. 2000;114:245-9.
31. García-Pais MJ, Rigueiro MT, Casariego E, Corredoia JC, Varela J, García-Rodriguez FJ. Prueba de la tuberculina - técnica del Mantoux. (Consulted November 23rd 2016) Available from: http://www.fisterra.com/material/tecnicas/mantoux/mantoux.pdf