Therapeutic potential of N-acetyl cysteine during COVID-19 epoch

Ajita Kapur, Munish Sharma, Geetanjali Sageena

Specialty type: Virology

Provenance and peer review: Unsolicited article; Externally peer reviewed.

Peer-review model: Single blind

Peer-review report’s scientific quality classification
- Grade A (Excellent): 0
- Grade B (Very good): B
- Grade C (Good): 0
- Grade D (Fair): 0
- Grade E (Poor): 0

P-Reviewer: Abasimel NA

Received: August 7, 2021
Peer-review started: August 7, 2021
First decision: November 11, 2021
Revised: November 22, 2021
Accepted: February 23, 2022
Article in press: February 23, 2022
Published online: March 25, 2022

Abstract

N-acetyl cysteine (NAC) is a promising drug for prophylaxis and treatment of coronavirus disease 2019 (COVID-19) based on antioxidant and anti-inflammatory mechanisms. Further studies with cautious approach are needed to establish the benefits and risks before considering NAC as an adjuvant treatment for COVID-19.

Key Words: N-acetyl cysteine; COVID-19; Coagulopathy; Therapeutic potential; Prophylaxis; Treatment

Core Tip: Risk of coagulopathy is noteworthy in coronavirus disease 2019 (COVID-19) and cerebral hemorrhage could be a potential risk in COVID-19 patients receiving N-acetyl cysteine (NAC). Results of well-designed randomized controlled trials should be awaited before NAC becomes a common practice for prophylaxis and treatment of patients with COVID-19.

Citation: Kapur A, Sharma M, Sageena G. Therapeutic potential of N-acetyl cysteine during COVID-19 epoch. *World J Virol* 2022; 11(2): 104-106
URL: https://www.wjgnet.com/2220-3249/full/v11/i2/104.htm
DOI: https://dx.doi.org/10.5501/wjv.v11.i2.104
TO THE EDITOR

The impact of coronavirus disease 2019 (COVID-19) pandemic resulting in substantial mortalities and morbidities has driven the quest to accelerate the treatment options for containment of this public health emergency. We read with interest the review by Dominari et al[1]. The authors have reviewed the pharmacology, efficacy, and safety of N-acetyl cysteine (NAC) as an adjuvant therapy of COVID-19. NAC is a nutraceutical precursor of vital antioxidant glutathione. Based on a broad range of antioxidant and anti-inflammatory mechanisms, NAC seems to be a promising drug to attenuate the risk of developing COVID-19, and in high doses might play an adjuvant role in the treatment of severe COVID-19 and alleviate its fatal complications[2]. We agree with author’s insight that NAC is a worthy candidate to be evaluated for COVID-19; however, we consider that a cautiously optimistic approach is required to assess the risk–benefit profile of this medication in the current scenario.

Patients with COVID-19 suffer from coagulopathy and prolonged prothrombin time (PT)[3]. Hypercoagulation due to elevated D dimer and fibrinogen could lead to ischemic stroke in COVID-19 patients. Though less common, intracerebral haemorrhage resulting from consumption coagulopathy related to fibrinogen depletion has been reported in more than 10% of COVID-19 patients with stroke [4].

As documented in the review, adverse effects from NAC could vary from mild gastrointestinal symptoms to severe anaphylactoid reactions[1]. Abnormal hemostatic activity, such as anticoagulant and platelet-inhibiting properties with increased bleeding risk, has been documented in patients receiving NAC[5]. NAC interacts with human vitamin K epoxide reductase at the same binding site and causes interruption in the vitamin K reduction pathway. A recent study warns regarding prolonged use of NAC in COVID-19 patients and suggests the monitoring of international normalized ratio, PT, and partial thromboplastin time. In addition, considering the lipophilicity, and hence, easy passage of NAC through blood brain barrier, this study cautioned about the risk of cerebral hemorrhage in COVID-19[6].

The possible benefits of NAC in COVID-19 seem to outweigh the risks, but an important issue plaguing the usefulness of NAC is its uncertain efficacy in mild cases[7] and potential of unregulated use in the current scenario where there are limited drugs available for the management of COVID-19. Hence, as is rightly stressed upon by the author[1], before the use of NAC in COVID-19 spreads, further research is warranted to avoid another failure story[8]. Clinical trials are already underway to establish efficacy of NAC in COVID-19[9,10], and recent review by Wong et al[11] (2021) elaborated the potential role of NAC as adjunctive remedy for COVID-19[11]. However, there is no in vivo research to specifically examine its effects in COVID-19.

A retrospective cohort study of hospitalized patients with moderate or severe COVID-19 pneumonia documented lower risk of progression to serious respiratory failure in patients treated with NAC[12]. However, we would like to emphasize that the results of the randomized controlled trials should be awaited before incorporating NAC to improve prognosis and clinical outcomes in the treatment of COVID-19.

FOOTNOTES

Author contributions: Kapur A designed the editorial; Kapur A, Sharma M, and Sageena G wrote the manuscript; All authors gave final approval for publication.

Conflict-of-interest statement: All authors declare no conflict of interest.

Open-Access: This article is an open-access article that was selected by an in-house editor and fully peer-reviewed by external reviewers. It is distributed in accordance with the Creative Commons Attribution NonCommercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: https://creativecommons.org/Licens/es/by-nc/4.0/

Country/Territory of origin: India

ORCID number: Ajita Kapur 0000-0003-3449-6959; Munish Sharma 0000-0003-1334-5844; Geetanjali Sageena 0000-0001-7248-4356.

S-Editor: Fan JR
L-Editor: Filipodia
P-Editor: Fan JR
REFERENCES

1 Dominari A, Hathaway lli D, Kapasi A, Paul T, Makkar SS, Castaneda V, Gara S, Singh BM, Agadi K, Butt M, Retnakumar V, Chittajallu S, Taugir R, Sana MK, Ke M, Razzack S, Moallem N, Alvarez A, Talalaev M. Bottom-up analysis of emergent properties of N-acetylcysteine as an adjuvant therapy for COVID-19. World J Virol 2021; 10: 34-52 [PMID: 33816149 DOI: 10.5501/wjv.v10.i2.34]

2 De Flora S, Balansky R, La Maestra S. Rationale for the use of N-acetylcysteine in both prevention and adjuvant therapy of COVID-19. FASEB J 2020; 34: 13185-13193 [PMID: 32780893 DOI: 10.1096/fj.202001807]

3 Levi M, Thachil J, Iba T, Levy JH. Coagulation abnormalities and thrombosis in patients with COVID-19. Lancet Haematol 2020; 7: e436-e440 [PMID: 32407672 DOI: 10.1016/S2352-3026(20)30145-9]

4 Nannoni S, de Groot R, Bell S, Markus HS. Stroke in COVID-19: A systematic review and meta-analysis. Int J Stroke 2021; 16: 137-149 [PMID: 33103610 DOI: 10.1177/1747493020972922]

5 Niemi TT, Munsterhjelm E, Pöyhäi R, Hyyninen MS, Salmenperä MT. The effect of N-acetylcysteine on blood coagulation and platelet function in patients undergoing open repair of abdominal aortic aneurysm. Blood Coagul Fibrinolysis 2006; 17: 29-34 [PMID: 16607076 DOI: 10.1097/01.mbc.0000195922.26950.89]

6 Hashemi SA, Kyani A, Bathaie SZ. The in silico mechanism of hVKOR interaction with acetaminophen and its metabolite, as well as N-acetyl cysteine: caution on application in COVID-19 patients. J Biomol Struct Dyn 2021; 1-12 [PMID: 33879035 DOI: 10.1080/07391102.2021.1910570]

7 Schloss J, Leach M, Brown D, Hannan N, Kendall-Reed P, Steel A. The effects of N-acetyl cysteine on acute viral respiratory infections in humans: A rapid review. Adv Integr Med 2020; 7: 232-239 [PMID: 32837898 DOI: 10.1016/j.aimed.2020.07.006]

8 Saag MS. Misguided Use of Hydroxychloroquine for COVID-19: The Infusion of Politics Into Science. JAMA 2020; 324: 2161-2162 [PMID: 33165507 DOI: 10.1001/jama.2020.22389]

9 Lai-Becker M, Duncan MK. Efficacy of N-Acetylcysteine (NAC) in Preventing COVID-19 From Progressing to Severe Disease. September 23 2020 - May 31, 2021 [cited 10 March 2021]. Available from: https://clinicaltrials.gov/ct2/show/NCT044190251

10 Wong KK, Lee SWH, Kua KP. N-Acetylcysteine as Adjuvant Therapy for COVID-19 - A Perspective on the Current State of the Evidence. J Inflamm Res 2021; 14: 2993-3013 [PMID: 34262324 DOI: 10.2147/JIR.S306849]

11 Assimakopoulos SF, Aretia D, Kominios D, Dimitropoulou D, Lagadino M, Leonidou L, Oikonomou I, Mouzaki A, Maragos M. N-acetyl-cysteine reduces the risk for mechanical ventilation and mortality in patients with COVID-19 pneumonia: a two-center retrospective cohort study. Infect Dis (Lond) 2021; 53: 847-854 [PMID: 34182881 DOI: 10.1080/23744235.2021.1945675]
