The first 100 days of SARS-CoV-2 control in Vietnam

Pham Quang Thai¹,², Maia A Rabaa³,⁴, Duong Huy Luong⁵, Dang Quang Tan⁶, Tran Dai Quang⁶, Ha-Linh Quach¹,⁷, Ngoc-Anh Hoang Thi¹,⁷, Phung Cong Dinh⁸, Nguy Duy Nghia¹, Tran Anh Tu¹, La Ngoc Quang⁹,
Tran My Phuc⁴, Vinh Chau⁴, Nguyen Cong Khanh¹, Dang Duc Anh¹,*, Tran Nhu Duong¹, Guy Thwaites³,⁴, H Rogier van Doorn³,⁴, Marc Choisy³,⁴, OUCRU COVID-19 Research Group†

¹National Institute of Hygiene and Epidemiology, Vietnam
²School of Preventive Medicine and Public Health, Hanoi Medical University, Vietnam
³Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, UK
⁴Oxford University Clinical Research Unit, Vietnam
⁵Medical Services Administration, Ministry of Health, Vietnam
⁶General Department of Preventive Medicine, Ministry of Health, Vietnam
⁷Research School of Population Health, Australian National University, Australia
⁸National Agency for Science and Technology Information, Ministry of Science and Technology, Vietnam
⁹Hanoi University of Public Health, Vietnam
†Members listed in the acknowledgments

*Corresponding author: Professor Dang Duc Anh, Director, National Institute of Hygiene and Epidemiology, Hanoi, Vietnam. dda@nihe.org.vn

© The Author(s) 2020. Published by Oxford University Press for the Infectious Diseases Society of America. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.
Summary:

Vietnam has controlled SARS-CoV-2 spread through the early introduction of mass communication, meticulous contact-tracing with strict quarantine, and international travel restrictions. 60% of the 270 cases were imported, 43% were asymptomatic and 27% of transmissions occurred before symptoms.
Abstract

Background

One hundred days after SARS-CoV-2 was first reported in Vietnam on January 23rd, 270 cases were confirmed, with no deaths. We describe the control measures used by the Government and their relationship with imported and domestically-acquired case numbers, with the aim of identifying the measures associated with successful SARS-CoV-2 control.

Methods

Clinical and demographic data on the first 270 SARS-CoV-2 infected cases and the timing and nature of Government control measures, including numbers of tests and quarantined individuals, were analysed. Apple and Google mobility data provided proxies for population movement. Serial intervals were calculated from 33 infector-infectee pairs and used to estimate the proportion of pre-symptomatic transmission events and time-varying reproduction numbers.

Results

A national lockdown was implemented between April 1st and 22nd. Around 200 000 people were quarantined and 266 122 RT-PCR tests conducted. Population mobility decreased progressively before lockdown. 60% (163/270) of cases were imported; 43% (89/208) of resolved infections remained asymptomatic for the duration of infection. The serial interval was 3·24 days, and 27·5% (95% confidence interval, 15·7%-40·0%) of transmissions occurred pre-symptomatically. Limited transmission amounted to a maximum reproduction number of 1·15 (95% confidence interval, 0·37-2·36). No community transmission has been detected since April 15th.
Conclusions

Vietnam has controlled SARS-CoV-2 spread through the early introduction of mass communication, meticulous contact-tracing with strict quarantine, and international travel restrictions. The value of these interventions is supported by the high proportion of asymptomatic and imported cases, and evidence for substantial pre-symptomatic transmission.

Keywords: COVID-19, SARS-CoV-2, Vietnam, asymptomatic, epidemic control
Introduction

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) emerged in Wuhan city, Hubei Province, China, in late 2019 [1]. On January 30th, the WHO declared the outbreak a ‘Public Health Emergency of International Concern’, and on March 11th a global pandemic. By May 1st 2020, the virus had infected more than 3 million people and killed over 200,000.

SARS-CoV-2 is antigenically different from known human and zoonotic coronaviruses and there is no known pre-existing population immunity [2]. It is highly transmissible through respiratory secretions expelled from an infected person, with a basic reproduction number (R₀) estimated between 2 and 3 in the absence of control measures [3–6]. Many infections are asymptomatic [7], while others lead to symptoms of coronavirus disease (COVID-19) of varying severity [5]. Analyses of serial intervals suggest that contagiousness can occur both before and after the onset of symptoms as well as in those who never develop symptoms [8]. The subsequent exponential rise in infections has threatened to overwhelm even the world’s best developed health systems and cause major loss of life. Methods to control the virus and reduce the impact of COVID-19 have thus become a global priority.

The preparedness, timing, and nature of the response to SARS-CoV-2 have varied substantially between countries. Many affected countries have resorted to extreme social distancing measures through so-called ‘lockdowns’, where populations isolate themselves within their homes, reducing all but essential contact with others. As first observed in Hubei Province in China, and subsequently in other countries, these measures slow transmission and reduce disease incidence [9–11], but at significant social and economic cost. However, ‘lockdowns’ represent a combination of potentially independent interventions (for example, closing schools and universities, suspending public transport, banning public gatherings, closing non-essential businesses), the effects of which in isolation are uncertain. Determining their relative contributions to SARS-CoV-2 control is critical to understanding how they might be safely and incrementally lifted, or partially reinstated. Such
information may be acquired from studying the measures employed by countries that have so far controlled the virus.

Vietnam is a low-middle income country that shares borders with China, The Lao People’s Democratic Republic, and Cambodia. It is the 15th most populous country on earth, with 97.3 million people, and it was one of the first countries affected by SARS-CoV-2, recording its first case on January 23rd 2020. Yet, by May 1st, 270 cases were confirmed, with no deaths [12]. Here we present a descriptive study that aims to characterize and quantify measures used for SARS-CoV-2 and characteristics of the cases in Vietnam during the first 100 days of the epidemic. Our aim was to identify the measures most closely associated with successful SARS-CoV-2 control.

Methods

Clinical, epidemiological and policy data were provided by Vietnam’s National Steering Committee for COVID-19 response. Data from 270 SARS-CoV-2-confirmed cases to May 1st 2020 included their age, gender, nationality, dates of symptom onset (if any), entry to the country and quarantine (if any), hospital admission and discharge, and the results of RT-PCR tests. Imported cases were distinguished from those acquired domestically, with information on quarantine at or after entry to the country. Imported cases were denoted G0; and among domestically-acquired infections, those acquired directly from G0 cases were denoted as G1, others were denoted G2+.

Intervention data consisted of daily time-series of the numbers in quarantine and RT-PCR tests performed. Daily reports from the Ministry of Health and Vietnam’s National Steering Committee for COVID-19 response listed key milestones in national SARS-CoV-2 control measures. Apple mobility data [13] and Google community mobility data [14] provided proxies of population movements, with additional information provided in the Supplementary Appendix.

Serial intervals were calculated from dates of symptoms onset of infector-infectee pairs identified by contact tracing and fitted to a normal distribution by maximum likelihood[8]. The estimated
distribution parameters (mean and standard deviation, together with their confidence intervals and variance-covariance matrix) were used to estimate the proportion of pre-symptomatic transmissions and three time-varying reproduction numbers [15]: between G0 and G1 (step 1), between G1 and G2+ (step 2), and between G0, G1, and G2+ combined (step 1 and 2 combined) (further details in the Supplementary Appendix).

We used a logistic regression to investigate the link between the proportion of asymptomatic infections and age, gender, nationality (Vietnamese versus non-Vietnamese), and imported versus domestically-acquired infection. We used a gamma regression to investigate the link between the duration of hospitalisation and the same variables listed above, plus symptomatic versus asymptomatic. To correct for potential confounding effects between the explanatory variables, we used Type-II likelihood ratio tests [16]. All analyses were done with R 4.0.0 [17] using the packages car [16] 3.0-76, EpiEstim [18] 2.2-1, fitdistrplus [19] 1.0-14, incidence [20] 1.7.17 and mvtnorm [21] 1.1-05, with additional details in the Supplementary Appendix.

Results

Epidemic description and control measures

On January 10th, before the first case was confirmed in Vietnam, the Vietnam Government reinforced temperature and health status screening at border gates for passengers arriving from Wuhan, tracing and quarantining of suspected cases and their contacts, monitoring of suspected cases of respiratory infections in hospitals and the community, and initiated mass communication to the public on preventive measures (hand washing, contact avoidance and mask wearing).

The epidemic timeline for Vietnam, including the numbers quarantined and hospitalised, tests performed, cases confirmed, population movements, and the timing and nature of major Government-led control measures are summarised in Figure 1. The control measures are summarised in Table 1 and Table S1. To date, two waves of transmission have occurred: the first
began on January 23rd and resulted in 16 cases (9 imported, 7 acquired in-country), and the second on March 6th, leading to 254 cases (154 imported, 100 acquired in-country).

The first confirmed cases of SARS-CoV-2 infection presented in Hanoi and Ho Chi Minh City during the lunar New Year holiday (23-29th January). Cases were travellers from Wuhan city or their contacts, and were identified by the public health laboratory network using improvised molecular diagnostics, including agnostic sequencing, prior to implementation of the WHO-approved assays [22]. Amongst the cases were the first confirmed human-to-human transmissions outside of China [23].

Entry of airline passengers into Vietnam from Wuhan city and elsewhere in China was monitored and progressively limited (Table 1), and cases and their contacts were quarantined for 14 days in Government facilities to prevent onward transmission. Schools and universities remained closed after the lunar New Year holiday, with staggered re-opening from May 4th (closures lasted ~3 months). The National Steering Committee for COVID-19 response was established in late January, composed of 24 members from 23 ministries charged with coordinating the epidemic response. A hotline was set-up by the Ministry of Health on January 27th, a nationwide SMS push notification system was put in place through all mobile phone providers on February 3rd, and a mobile phone app for contact tracing and symptom reporting was launched on February 8th.

In early February, following the repatriation of a number of Vietnamese nationals from Wuhan city, a cluster of community transmitted infections was detected in two communes in Vinh Phuc province, bordering Hanoi [24,25]. On February 13th, these communes were quarantined for three weeks, with no additional cases detected in the country until March 6th and the start of the second wave of infections in Hanoi.

This second wave began on March 6th following diagnosis of the index case, who had arrived in Hanoi on March 2nd from London after visiting Italy and the UK. Following their identification, all
passengers and crew on the flight from London with the index case were quarantined in Government facilities for 14 days, as were all individuals in direct contact with the index or any subsequent cases. The immediate neighbourhood of the index case was sealed off, with active surveillance conducted to detect any new cases. These surveillance measures revealed SARS-CoV-2 infection in 12 others on the flight and 2 close contacts of the infected traveller after entering Vietnam.

Further cases occurred in the following two weeks, mostly in foreign and returning Vietnamese travellers from Europe and the USA, including multiple acquisitions in a Ho Chi Minh City bar on March 14th (19 cases), a cluster among nursing (17 cases) and catering (28 cases) staff in a large Hanoi hospital, and a community cluster in Me Linh district (13 cases), in the north of Hanoi. Systematic layered testing and quarantine requirements were put in place for cases (F0) and their direct (F1) and indirect (F2-4) contacts. Cases were isolated in assigned hospitals until tested negative at least twice by RT-PCR. F1 and F2 contacts were quarantined for at least 14 days in dedicated facilities (health centres, hotels, military camps) with negative tests required before release. F3 and F4 contacts were asked to self-quarantine for 14 days. Until May 1st, around 70 000 have been quarantined in Government facilities and around 140,000 at home or in hotels. 266 122 RT-PCR-based SARS-CoV-2 tests were performed, with a ratio of around 1 positive person: 1 000 tests conducted.

After further measures to prevent entry of infected international travellers (Table 1), a nationwide lockdown was enforced on April 1st, including closure of all shops except gas stations, food stores, and pharmacies; suspension of public transport, including all taxis; and mandatory mask wearing in all public spaces. Mobility data show that population movement decreased substantially after the start of the second infection wave in early March, reaching a nadir in early April at the start of the lockdown (Figure 1B). Movements increased slowly during the last week of the lockdown and more rapidly once the lockdown was partially lifted on April 23rd. On April 15th, the last case of wave two
was identified; subsequent cases (n = 2) have been detected between April 15th and May 1st (time of writing) among international travellers quarantined on arrival.

Characteristics of the cases

Sixty percent (163/270) of cases were imported (Table 2, Figure 2); 110 were quarantined and tested positive on entry, whereas 53 entered prior to the implementation of systematic quarantine measures and were identified in the community. Vietnamese nationals represented 134/163 (82.2\%) of the imported cases and 89/107 (83.2\%) of those acquired in-country. The median age of imported and domestically-acquired cases was 27 years (interquartile range (IQR) 21-42) and 41 years (IQR 28-49), and 81/163 (49.7\%) and 69/107 (64.5\%) of these were female, respectively.

By May 1st, 208 patients were discharged and 62 remained hospitalised for treatment or isolated. Forty-three percent (89/208) of discharged cases never developed symptoms, and this was not significantly associated with age, gender, nationality, or origin of infection (imported or domestically-acquired). Among all the symptomatic cases, 25.3\% (38/150) developed symptoms in a Government quarantine facility. Among the imported cases who developed symptoms, 73.9\% (68/92) did so after entry to the country (Figure 3A, see Table S4 for the numbers of symptomatic in imported and non-imported cases). The median age of symptomatic and asymptomatic cases was 30 (IQR 24-49) and 31 (IQR 23-45), respectively (no significant effect of age on the probability to develop symptoms, Figure 3C). Among the 150 with symptoms, 21 (14.0\%) developed severe disease, of whom five required mechanical ventilation and two received extra-corporeal membrane oxygenation. No fatalities were recorded. The duration of hospitalisation was significantly shorter (p<0.0001) for asymptomatic (17 days, IQR 13-22) than for symptomatic cases (19 days, IQR 16-25).

While gender, nationality, and origin of infection did not have any significant effect, the duration of hospitalisation of symptomatic cases increased with age (with a discharge rate decreasing by 1.24\% for every year older, p = 0.0060) (Figure 3B).
Epidemiological parameters over time

From 33 infector-infectee pairs, the mean serial interval was estimated to be 3.24 days (95% confidence interval (CI), 1.38-5.10 days) with a standard deviation of the distribution of 5.46 days (95% CI, 4.14-6.78 days). An estimated 27.5% (95% CI, 15.7%-40.0%) of the distribution was below zero, suggesting these transmissions occurred prior to the onset of symptoms in the infector (Figure 3D). From the (non-quarantined) imported cases (G0) and onward infected cases (G1 and G2+), we calculated the effective reproductive number R by date (Figure 1F-H). Limited transmission amounted to a maximum R of 1.15 (95% CI, 0.37-2.36). R rarely exceeded 1 and a decrease of R is seen as more mitigating measures were implemented from the end of March before the nationwide lockdown. When analysing R from G0 to G1 (step 1) and from G1 to G2+ (step 2) separately, we found that R was drastically decreased for step 1 simultaneously with suspension of all international travel (March 18th), while for step 2 transmission continues with R slightly above 1 despite intense contact tracing and quarantine. Only during the nationwide lockdown R was reduced to less than 1 (Figure 1F and G).

Discussion

On January 23rd 2020, Vietnam was one of the first countries to report SARS-CoV-2 infection and the first to report human-to-human transmission outside of China [23]. Yet 100 days later, it confirmed just 270 cases despite extensive testing, with no community transmission since April 15th. In the three weeks prior to May 1st, there were only two imported cases and no reported cases elsewhere in the country. The nature, timing, and success of the control measures introduced may have relevance to other countries seeking to control SARS-CoV-2 transmission.

Vietnam has experience in responding to emerging infectious diseases. In the last 20 years, it has confronted outbreaks of SARS [26], avian and pandemic influenza [27,28], hand-foot-and-mouth disease [29], measles [30], and dengue [31]. Its outbreak responses are coordinated by the Ministry
of Health, a permanent national Public Health Emergency Operations Centre at the National Institute for Hygiene and Epidemiology, and through a network of provincial Centres for Disease Control and lower level preventive medicine centres [32].

Two waves of SARS-CoV-2 infections have occurred over the last 100 days in Vietnam, with community transmission actively interrupted by rapid isolation and identification of primary and secondary cases and their contacts. Around 200 000 people spent at least 14 days in quarantine. Amongst those quarantined, many were second degree contacts (F2); to our knowledge, no other country has implemented quarantine in this manner. 266,122 RT-PCR tests were performed, primarily in those quarantined, giving a ratio of tests conducted per positive person (~1000:1) or, equivalently about 200 tested people per positive case.

The majority of cases (60%) in Vietnam were imported from COVID-19 affected countries; first from China and then from Europe and the USA. Early introduction of airport screening, followed by quarantine of all arrivals and the eventual suspension of nearly all international flights prevented further introductions, allowing greater focus on the detection and prevention of domestic transmission. Consistent Government communication of disease risk and prevention strategies from February 3rd may have contributed to declines in population movement prior to the nationwide lockdown, particularly in March, when all mobile phone users received 10 SMS push notifications from the Ministry of Health in addition to information provided through other media; these early reductions in population movement may have contributed to lowering the reproduction number. The majority of imported cases were less than 30 years old, and most of those that acquired the infection domestically were under 40 years, which may explain the low numbers with severe disease and absence of deaths.

The high proportion of cases that developed symptoms after isolation (73.9%) or never developed symptoms (43%) highlights one of the major challenges of controlling SARS-CoV-2 and the strengths of Vietnam’s approach. Suspected cases were identified and quarantined based on their
epidemiological risk of infection (recent contact with a confirmed case or travel to a COVID-19 affected country), rather than on exhibiting symptoms. Without the implementation of strong control measures and meticulous contact-tracing, it is likely such cases would have silently transmitted the virus and undermined other control efforts.

The strength of our report is that it provides a complete picture based on national data of case numbers, their clinical and demographic characteristics, and the testing performed and various interventions made by the Government over time. Further, the use of systematic quarantine measures allowed clear distinction between imported and domestically-acquired cases, thus allowing for estimation of the efficiency of various interventions. The limitations are that the data are descriptive, contain relatively small numbers of confirmed cases, and only include the first 100 days of an epidemic that is likely to continue for many months. It is therefore impossible to conclude definitively which of these control measures have resulted in the current control of SARS-CoV-2 in Vietnam and whether they will continue to work in the future.

There are, however, two distinctive features of Vietnam’s response. First, the Government acted quickly, educating and engaging the public, placing restrictions on international flights, closing schools and universities, and instituting exhaustive case-contact tracing from late January, well before these measures were advised by WHO. Second, they placed the identification, serial testing, and minimum 14-day isolation of all direct contacts of cases, regardless of symptom development, at the heart of the response. Our findings suggest the latter measure was likely to be especially effective given nearly half of those infected did not develop symptoms.

In summary, Vietnam controlled SARS-CoV-2 spread by acting early, maintaining clear and consistent public communications, introducing meticulous contact-tracing and quarantine, and implementing progressive international travel restrictions. The value of these interventions in controlling the infection is supported by the high proportion of asymptomatic cases and imported cases, and evidence for substantial pre-symptomatic transmission.
Epilogue

There has been no case of community transmission during the 99 days between April the 16th and July the 24th. Lockdown measures have been progressively lifted and schools, universities, non-essential shops, karaoke bars and places for mass gatherings have been re-opened. An additional 146 cases have been confirmed on arrival among repatriated Vietnamese nationals, and they have subsequently been isolated. Over the 5 days before submission (July 27th 2020), 14 new cases of community transmission of unknown origin have been detected in the fifth largest city in Vietnam, bringing the total number of cases to 431 and sparking another large public health response.
Acknowledgements

We are grateful to the Ministry of Health of Vietnam and the National Steering Committee for COVID-19 response for making data available for this study, and Dr. Bui Vu Duy, the director of the Rapid Response Information Team of the National Steering Committee for COVID-19 Response, for his support.

OUCRU COVID-19 Research Group Members:

Mary Chambers, Marc Choisy, Jeremy Day, Dong Huu Khanh Trinh, Dong Thi Hoai Tam, Joseph Donovan, Du Hong Duc, Ronald B Geskus, Ho Quang Chanh, Ho Van Hien, Huong Dang Thao, Huynh Le Anh Huy, Huynh Ngan Ha, Huynh Trung Trieu, Huynh Xuan Yen, Evelyne Kestelyn, Thomas Kesteman, Lam Anh Nguyet, Lam Minh Yen, Katrina Lawson, Le Kim Thanh, Le Nguyen Truc Nhu, Le Thanh Hoang Nhat, Le Thi Hoang Lan, Le Van Tan, Sonia Odette Lewycka, Nguyen Bao Tran, Nguyen Minh Nguyet, Nguyen Than Ha Quyen, Nguyen Thanh Ngoc, Nguyen Thi Han Ny, Nguyen Thi Hong Thuong, Nguyen Thi Huyen Trang, Nguyen Thi Kim Tuyen, Nguyen Thi Ngoc Diep, Nguyen Thi Phuong Dung, Nguyen Thi Tam, Nguyen Thi Thu Hong, Nguyen Thu Trang, Nguyen Van Vinh Chau, Nguyen Xuan Truong, Ninh Thi Thanh Van, Phan Nguyen Quoc Khanh, Phung Khanh Lam, Phung Le Kim Yen, Phung Tran Huy Nhat, Maia Rabaa, Thuong Nguyen Thuy Thuong, Guy Thwaites, Louise Thwaites, Tran My Phuc, Tran Tan Than, Tran Thi Bich Ngoc, Tran Tinh Hien, H Rogier van Doorn, Jennifer Van Nuil, Vinh Chau, Vu Thi Ngoc Bich, Vu Thi Ty Hang, Sophie Yacoub.

Funding

MR, GT, HRvD and MC and the OUCRU COVID-19 research group are supported by the Wellcome Trust.

Declaration of interests

All authors declare no competing interests.
References

1. Zhu N, Zhang D, Wang W, et al. A Novel Coronavirus from Patients with Pneumonia in China, 2019. New England Journal of Medicine 2020; 382:727–733.

2. Zheng M, Song L. Novel antibody epitopes dominate the antigenicity of spike glycoprotein in SARS-CoV-2 compared to SARS-CoV. Cellular & Molecular Immunology 2020; :1–3.

3. Li Q, Guan X, Wu P, et al. Early Transmission Dynamics in Wuhan, China, of Novel Coronavirus–Infected Pneumonia. New England Journal of Medicine 2020; 382:1199–1207.

4. Sanche S, Lin YT, Xu C, Romero-Severson E, Hengartner N, Ke R. High Contagiousness and Rapid Spread of Severe Acute Respiratory Syndrome Coronavirus 2. Emerging Infectious Diseases 2020; 26:1199.

5. Fu L, Wang B, Yuan T, et al. Clinical characteristics of coronavirus disease 2019 (COVID-19) in China: A systematic review and meta-analysis. Journal of Infection 2020; 80:656–665.

6. Zhang S, Diao M, Yu W, Pei L, Lin Z, Chen D. Estimation of the reproductive number of novel coronavirus (COVID-19) and the probable outbreak size on the Diamond Princess cruise ship: A data-driven analysis. International Journal of Infectious Diseases 2020; 93:201–204.

7. Mizumoto K, Kagaya K, Zarebski A, Chowell G. Estimating the asymptomatic proportion of coronavirus disease 2019 (COVID-19) cases on board the Diamond Princess cruise ship, Yokohama, Japan, 2020. Eurosurveillance 2020; 25:2000180.

8. Du Z, Xu X, Wu Y, Wang L, Cowling BJ, Meyers LA. Serial Interval of COVID-19 among Publicly Reported Confirmed Cases. Emerging Infectious Diseases 2020; 26:300.

9. Thornton J. Covid-19: A&E visits in England fall by 25% in week after lockdown. BMJ 2020; 369:m1401.
10. Lau H, Khosrawipour V, Kocbach P, et al. The positive impact of lockdown in Wuhan on containing the COVID-19 outbreak in China. Journal of travel medicine 2020; Available at: https://academic.oup.com/jtm/advance-article/doi/10.1093/jtm/taaa037/5808003.

11. Fisher D, Wilder-Smith A. The global community needs to swiftly ramp up the response to contain COVID-19. The Lancet 2020; 395:1109–1110.

12. TRANG TIN VỀ ĐỊCH BỆNH VIÊM ĐƯỜNG HÔ HẤP CẤP COVID-19 - Bộ Y tế - Trang tin về dịch bệnh viêm đường hô hấp cấp COVID-19. Available at: https://ncov.moh.gov.vn/. Accessed 7 May 2020.

13. Apple LLC. Apple COVID-19 Reports on Mobility Trends. Available at: https://www.apple.com/covid19/mobility. Accessed 7 May 2020.

14. Google LLC. Google COVID-19 Community Mobility Reports. Available at: https://www.google.com/covid19/mobility/. Accessed 7 May 2020.

15. Thompson RN, Stockwin JE, van Gaalen RD, et al. Improved inference of time-varying reproduction numbers during infectious disease outbreaks. Epidemics 2019; 29:100356.

16. Fox J, Weisberg S. An R Companion to Applied Regression. Third. Thousand Oaks CA: Sage, 2019. Available at: https://socialsciences.mcmaster.ca/jfox/Books/Companion/.

17. R Core Team. R: A Language and Environment for Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing, 2020. Available at: https://www.R-project.org/.

18. Cori A. EpiEstim: Estimate Time Varying Reproduction Numbers from Epidemic Curves. 2019. Available at: https://CRAN.R-project.org/package=EpiEstim.

19. Delignette-Muller ML, Dutang C. fitdistrplus: An R Package for Fitting Distributions. Journal of Statistical Software 2015; 64:1–34.
20. Kamvar ZN, Cai J, Pulliam JRC, Schumacher J, Jombart T. Epidemic curves made easy using the R package incidence [version 1; referees: awaiting peer review]. F1000Research 2019; 8. Available at: https://doi.org/10.12688/f1000research.18002.1.

21. Genz A, Bretz F, Miwa T, et al. mvtnorm: Multivariate Normal and t Distributions. 2020. Available at: https://CRAN.R-project.org/package=mvtnorm.

22. Le TQM, Takemura T, Moi ML, et al. Severe Acute Respiratory Syndrome Coronavirus 2 Shedding by Travelers, Vietnam, 2020. Emerging Infectious Diseases 2020; 26:727.

23. Phan LT, Nguyen TV, Luong QC, et al. Importation and Human-to-Human Transmission of a Novel Coronavirus in Vietnam. New England Journal of Medicine 2020; 382:872–874.

24. Thanh HN, Van TN, Thu HNT, et al. Outbreak investigation for COVID-19 in northern Vietnam. The Lancet Infectious Diseases 2020; 20:535–536.

25. Le MD PHT, MD LVN, MD DMT, et al. The first infant case of COVID-19 acquired from a secondary transmission in Vietnam. The Lancet child and Adolescent Health 2020; 4:405–406.

26. Vu HT, Leitmeyer KC, Le DH, et al. Clinical description of a completed outbreak of SARS in Vietnam, February–May 2003. Emerging Infectious Diseases 2004; 10:334–338.

27. Tran TH, Nguyen TL, Nguyen TD, et al. Avian influenza A (H5N1) in 10 patients in Vietnam. New England Journal of Medicine 2004; 350:1179–1188.

28. Hien TT, Boni MF, Bryant JE, et al. Early Pandemic Influenza (2009 H1N1) in Ho Chi Minh City, Vietnam: A Clinical Virological and Epidemiological Analysis. PLoS Medicine 2010; 7:e1000277–11.

29. Khanh TH, Sabanathan S, Thanh TT, et al. Enterovirus 71–associated Hand, Foot, and Mouth Disease, Southern Vietnam, 2011. Emerging Infectious Diseases 2012; 18:2002–2005.
30. Choisy M, Trinh ST, Nguyen TND, et al. Sero-Prevalence Surveillance to Predict Vaccine-Preventable Disease Outbreaks; A Lesson from the 2014 Measles Epidemic in Northern Vietnam. Open Forum Infectious Diseases 2019; 6:103–7.

31. Hung TM, Clapham HE, Bettis AA, et al. The Estimates of the Health and Economic Burden of Dengue in Vietnam. Trends in Parasitology 2018; 34:904–918.

32. Balajee SA, Pasi OG, Etoundi AGM, et al. Sustainable Model for Public Health Emergency Operations Centers for Global Settings. Emerging Infectious Diseases 2017; 23:93–6.
Table 1. The timing and nature of major Vietnam Government-led control measures, including international border control, internal control, and Ministry of Health-led communications (further details provided in Table S1). The colours shown in the phase column indicate the intensity of control measures taken over different periods (white, initial; light yellow, early; light orange, intermediate; orange, pre-epidemic; brown, epidemic/lockdown; dark orange, post-lockdown), and correspond to those used in Figure 1 and Table S1.

Control measures at international borders	Phase	Date	Event
	January 3		Strengthening of border control measures announced by the Government
	January 22		Monitoring of body temperature and health status at border gates; early case detection and contact tracing with mandatory quarantine started
	January 28 - February 5		Suspension of all flights from China; suspension of tourist visas to foreigners who have been in China; enhanced control of Vietnam-China border; 14-day mandatory quarantine for all travellers who have come from COVID-19 affected areas in China
	February 23 - February 28		Medical declarations for all incoming visitors from Korea; all flights from affected zones diverted to secondary airports outside of HCMC and Hanoi
	February 28		Mandatory 14-day quarantine for all travellers entering Vietnam from a COVID-19 affected country
	March 15 - March 18		Visa suspension for all non-Vietnamese citizens for at least 30 days
	March 21 - March 22		Mandatory 14-day quarantine at centralised facilities for all arriving travellers, regardless of origin; suspension of entry to all foreigners (except for diplomatic and official purposes)
	March 21 - March 23		Vietnam Airlines suspends routes with Singapore, Thailand, Indonesia, Laos, Myanmar, UK, and Japan
	March 27		All individuals entering the country from March 8 onward required to declare and update their health status to aid surveillance; strict control of all entrants by road, sea and air, especially shared borders with Laos and Cambodia
	April 1		Closure of main and auxiliary border gates

Internal control measures	Phase	Date	Event
	January 20		22 hospitals chosen for the treatment of suspected COVID-19
	January 30 - May 4		All schools and universities closed following lunar New Year holiday
	Late January – early February		Field hospitals and quarantine centres established in major cities and near border crossings
	February 2 - February 16		Announcement that the Vietnam Social Insurance health fund will cover SARS-CoV-2 tests and treatment; commune in Vinh Phuc province, Hanoi (10 600 people) quarantined; accelerated domestic production and supply of PPE
	March 16 - March 20		Enforcement of mask wearing at public places; crowds over 50 people discouraged; entertainment services closed
	March 21		Mandatory Health Declaration required for passengers on domestic flights and trains; religious services suspended
	March 25 - April 22		Amusement parks, restaurants, catering businesses, billiard clubs, gyms, spas, hair salons close in Ho Chi Minh City
	April 1 - April 22		Declaration of COVID-19 epidemic in Vietnam. Country-wide lockdown implemented; mandatory mask-wearing in public; banning of public gatherings of >2 people; non-essential movement outside of residence discouraged; public transportation and taxi services restricted
services halted

April 23 Lockdown measures relaxed, some non-essential businesses remain closed; increased frequency of domestic flights

May 4 - May 11 Staggered reopening of schools and universities

Ministry of Health-led Communications

Phase	Date	Event
January 9 onward		Dissemination of information advising on the disease situation in China and to maintain calm
January 20		Updated information concerning the epidemic and case numbers provided every 2 hours on MoH websites ncov.moh.gov.vn and ncov.vnncdc.gov.vn
January 27		Telephone hotline number announced to receive information and opinions on the epidemic and to advise on personal disease prevention
February 2		Technology-based communication plan established to inform population: SMS to all mobile subscribers; videos and infographics disseminated through mass media, social networks, digital platforms such as Facebook, Zalo, YouTube
February 8		Vietnam Health App and website launched by MoH to provide information on COVID-19 and disease prevention for the people and healthcare workers
February 14		Announcement and education around 14-day isolation period for COVID-19 cases and contacts; coordinate with Vietnam Television (VTV) to enhance education and messaging
February 23		Release of pop song, Ghen Cô Vy (English: Jealous Coronavirus), to promote handwashing, social distancing, not touching one’s face, and keeping their environment clean
March 2		MoH coordinates with Vietnam Television (VTV 24) to develop daily broadcast on the COVID-19 epidemic
March 19		Mandatory use of the Hanoi Smart City app to monitor the health and movement of recovered confirmed cases, suspected cases, and people under quarantine
March 22		Recommendation that people over 60 years stay at home; recommendation that everyone wear a mask when outside of the home and practice good hygiene
April 18		Release of Bluezone mobile application that uses BLE low-power Bluetooth positioning technology to identify and track and communicate with F1 and F2 contacts when positive cases are detected
Table 2. Clinical and demographic characteristics of SARS-CoV-2 patients.

	asymptomatics	symptomatics
n	120	150
Age (years)	31 (IQR: 23-45)	30 (IQR: 24-49)
proportion females	54.2%	56.7%
proportion G0	57.5%	62.7%
proportion G1	6.7%	15.3%
proportion G2+	35.8%	22.0%
proportion Vietnamese	82.5%	82.7%
hospitalization duration (days)¹	17 (IQR: 13-22)	19 (IQR: 16-25)
proportion in quarantine on arrival²	44.2%	38.0%

¹for those discharged only (i.e. n = 89 for the asymptomatics and n = 119 for the symptomatics
²for G0 only.
Figure Legends

Figure 1. Timeline of SARS-CoV-2 emergence and response in Vietnam.

The background colour reflects the intensity of the interventions taken by the Vietnam Government to control the COVID-19 epidemic, with darker shades indicating more intense disease control measures. The main events of these periods are described in detail in Table 1. Panel A: number of people in isolation by day. Panel B: relative indices of population movements: number of travellers by car (c), on foot (f) (both from Apple Mobility Data[13]), proxies of people in retail and recreation areas (r), in groceries stores and pharmacies (g), in parks (p), in bus transit stations (t), at work (w), and at home (h), all from Google Community Mobility Data[14]. The hashed area indicates the lunar New Year holiday (23-29th January). Traditionally, the first half of the week is spent at home with close family, whereas the second half of the week is dedicated to visits of members of the extended family. Panel C: number of SARS-CoV-2 positive cases hospitalised and RT-PCR tests performed by day. Panel D: cumulative number of detected SARS-CoV-2 positive cases in Vietnam, differentiating imported cases (G0) and whether they were isolated at entry or later, and locally transmitted cases and whether they were in direct contact with imported cases (G1) or not (G2+). Panel E: numbers of SARS-CoV-2 imported cases together with cumulative numbers of local transmissions. Circled characters indicate major internal transmission events: first introduction of SARS-CoV-2 virus in the country (1: 16 cases), second introduction (2: 15 cases), cluster of transmission in a Ho Chi Minh City bar (B: 19 cases), cluster of transmission in a large Hanoi hospital (H: 17 cases), community cluster of transmission linked to the Hanoi hospital through catering staff (T: 28 cases) and community cluster of transmission in Me Linh district in the north of Hanoi (M: 13 cases). Panels F-H: estimates of the reproduction number for the two epidemics. G focuses only on the first step of the chain of transmission between G0 and G1, whereas H focuses on all the other steps of the chain of transmission. F includes all detected cases. The shaded blue area shows the 95% confidence intervals.
Figure 2. Demographics of the 270 SARS-CoV-2 positive cases in Vietnam.

Age distribution for the 163 imported cases (left column) and the 107 cases of local transmission (right column), by nationality (top row) and gender (bottom row).

Figure 3. Asymptomatic and symptomatic SARS-CoV-2 infection in Vietnam.

Panel A: distribution of the interval between entry into the country and the onset of symptoms for 92 symptomatic imported SARS-CoV-2 positive cases, differentiating those who were isolated at entry from those who were not. Symptoms occurred after entry on the right-hand side of the vertical red line. Panel B: duration of hospital stay of 208 discharged SARS-CoV-2 positive cases. Dots and error bars show mean and 95% confidence interval (assuming a gamma distribution) per decile of age, lines and shaded areas show gamma regression fits and their 95% confidence intervals. The corresponding gamma regression table is in Table S2. Panel C: relationship between age and the proportion asymptomatic among 208 discharged SARS-CoV-2 positive cases. Vertical dotted lines indicate deciles of the age distribution, with the proportion asymptomatic estimated within each of these deciles. Vertical error bars show 95% confidence intervals. The horizontal line and the grey area show the average across ages and its 95% confidence interval. The corresponding logistic regression table is in Table S3. Panel D: distribution of serial intervals for 33 infector-infectee pairs together with a normal distribution fitted to it. The shaded area shows the 95% confidence interval. The vertical black line shows the estimate of the mean serial interval, together with its 95% confidence interval (dashed vertical lines). The proportion of the distribution to the left of the red line is a proxy for the proportion of infections that occur before the onset of symptoms.
Figure 2

163 imported cases

107 cases of domestic transmission
