Bio-inspired hydrogenase models: The mixed-valence triiron complex $[\text{Fe}_3(\text{CO})_7(\mu-\text{edt})_2]$ and phosphine derivatives $[\text{Fe}_3(\text{CO})_{7-x}(\text{PPh}_3)_x(\mu-\text{edt})_2]$ $(x = 1, 2)$ and $[\text{Fe}_3(\text{CO})_5(\kappa^2\text{-diphosphine})(\mu-\text{edt})_2]$ as proton reduction catalysts

Ahibur Rahamana,b, Shishir Ghosha,c, David Unwinc, Sucharita Basak-Modic, Katherine B. Holtc, Shariff E. Kabira, Ebbe Nordlanderb, Michael G. Richmondd and Graeme Hogarthc

a Department of Chemistry, Jahangirnagar University, Savar, Dhaka-1342, Bangladesh
b Inorganic Chemistry Research Group, Chemical Physics, Center for Chemistry and Chemical Engineering, Lund University, P.O. Box 124, SE-22100 Lund, Sweden
c Department of Chemistry, University College London, 20 Gordon Street, London, WC1H 0AJ, U.K
d Department of Chemistry, 1155 Union Circle, Box 305070, Denton, Texas 76203, USA

1 B3LYP geometries and energies for all optimized ground-state minima
2 The complete list of authors for ref. 58
3 Electrochemical and electrocatalytic studies (Figures S1-S5)
4 X-ray crystallography – full tables of bond lengths and angles for 1-4
1 B3LYP geometries and energies for all optimized ground-state minima

Species: \textit{anti-Ru$_3$(CO)$_7$(µ-edt)$_2$}

HF energy = -2828.5021903

No imaginary frequency
Zero-point correction = 0.182216 (Hartree/Particle)
Thermal correction to Energy = 0.212781
Thermal correction to Enthalpy = 0.213725
Thermal correction to Gibbs Free Energy = 0.118210

Sum of electronic and zero-point Energies = -2828.319974
Sum of electronic and thermal Energies = -2828.289410
Sum of electronic and thermal Enthalpies = -2828.288466
Sum of electronic and thermal Free Energies = -2828.383980

Coordinates: \textit{anti-Ru$_3$(CO)$_7$(µ-edt)$_2$}

\begin{tabular}{cccc}
Ru & 0.94970000 & -1.49340000 & 9.96360000 \\
Ru & -0.03570000 & 0.57440000 & 11.54030000 \\
Ru & -1.21390000 & 1.54840000 & 13.82010000 \\
S & 1.60230000 & -1.07030000 & 12.26380000 \\
S & -1.20740000 & -1.50510000 & 11.07620000 \\
S & 0.80230000 & 2.42120000 & 12.78970000 \\
S & -1.95150000 & 1.99410000 & 11.54890000 \\
O & 1.45850000 & -4.50430000 & 9.83880000 \\
O & -0.40030000 & -1.30750000 & 7.20010000 \\
O & 3.74420000 & -0.69110000 & 8.94370000 \\
O & 0.89830000 & 1.89050000 & 8.99910000 \\
O & -2.32690000 & 3.95220000 & 15.40550000 \\
O & 0.43430000 & 0.26010000 & 16.05890000 \\
O & -3.54240000 & -0.39860000 & 14.23860000 \\
C & 0.56680000 & -2.31750000 & 13.16670000 \\
C & -0.82550000 & -2.55060000 & 12.56160000 \\
C & 0.15780000 & 3.89010000 & 11.85240000 \\
C & -1.23170000 & 3.67670000 & 11.23320000 \\
C & 1.27130000 & -3.37280000 & 9.87590000 \\
C & 0.10810000 & -1.36850000 & 8.22340000 \\
C & 2.70170000 & -0.98100000 & 9.31590000 \\
C & 0.59250000 & 1.23400000 & 9.91100000 \\
C & -1.90930000 & 3.06370000 & 14.80850000 \\
C & -0.18600000 & 0.74930000 & 15.22200000 \\
C & -2.67210000 & 0.33830000 & 14.08370000 \\
H & 0.49620000 & -1.95110000 & 14.19530000 \\
H & 1.14740000 & -3.24690000 & 13.17950000 \\
H & -0.94180000 & -3.59120000 & 12.23840000 \\
H & -1.61580000 & -2.33430000 & 13.28710000 \\
H & 0.90300000 & 4.10380000 & 11.07880000 \\
H & 0.15460000 & 4.72520000 & 12.56100000 \\
H & -1.95800000 & 4.39600000 & 11.62630000 \\
H & -1.19680000 & 3.79040000 & 10.14430000
\end{tabular}
Species: syn-Ru₃(CO)₇(μ-edt)₂
HF energy = -2828.507084
No imaginary frequency
Zero-point correction = 0.182886 (Hartree/Particle)
Thermal correction to Energy = 0.213042
Thermal correction to Enthalpy = 0.213986
Thermal correction to Gibbs Free Energy = 0.120402
Sum of electronic and zero-point Energies = -2828.324198
Sum of electronic and thermal Energies = -2828.294042
Sum of electronic and thermal Enthalpies = -2828.293098
Sum of electronic and thermal Free Energies = -2828.386682

Coordinates: syn-Ru₃(CO)₇(μ-edt)₂
Ru 6.46630000 3.76660000 1.21160000 1.21160000
Ru 5.44920000 1.51540000 2.76290000 2.76290000
Ru 7.84320000 0.44080000 1.49320000 1.49320000
S 4.22030000 2.80630000 1.17210000 1.17210000
S 5.85370000 3.72460000 3.57590000 3.57590000
S 5.59170000 0.50560000 1.49820000 1.49820000
S 7.26700000 0.42710000 3.86790000 3.86790000
O 5.57380000 6.63650000 0.71050000 0.71050000
O 9.32540000 4.69820000 1.84420000 1.84420000
O 6.88540000 3.31010000 -1.79720000 -1.79720000
O 3.20760000 0.74840000 4.61200000 4.61200000
O 9.29510000 -2.23740000 1.52290000 1.52290000
O 7.93200000 0.52560000 -1.57700000 -1.57700000
O 10.47930000 1.94430000 1.97370000 1.97370000
C 3.33150000 4.01390000 2.27160000 2.27160000
C 4.15250000 4.47020000 3.48920000 3.48920000
C 5.77300000 -1.77750000 2.84280000 2.84280000
C 6.61720000 -1.30660000 4.03840000 4.03840000
C 5.90610000 5.55420000 0.90360000 0.90360000
C 8.28390000 4.28340000 1.60360000 1.60360000
C 6.76140000 3.41620000 -0.66210000 -0.66210000
C 4.07410000 1.04440000 3.89760000 3.89760000
C 8.74410000 -1.22980000 1.51480000 1.51480000
C 7.88020000 0.56400000 -0.43220000 -0.43220000
C 9.46340000 1.44750000 1.78330000 1.78330000
H 2.41500000 3.50140000 2.58360000 2.58360000
H 3.04370000 4.86540000 1.64530000 1.64530000
H 3.66310000 4.18170000 4.42580000 4.42580000
H 4.27920000 5.55830000 3.49760000 3.49760000
H 4.75010000 -2.01820000 3.15240000 3.15240000
H 6.20360000 -2.67250000 2.38040000 2.38040000
H 6.02690000 -1.30390000 4.96120000 4.96120000
H 7.48270000 -1.95990000 4.19470000 4.19470000
Species: anti-1
HF energy = -2915.3251158
No imaginary frequency
Zero-point correction = 0.184260 (Hartree/Particle)
Thermal correction to Energy = 0.213898
Thermal correction to Enthalpy = 0.214842
Thermal correction to Gibbs Free Energy = 0.123057
Sum of electronic and zero-point Energies = -2915.140856
Sum of electronic and thermal Energies = -2915.111218
Sum of electronic and thermal Enthalpies = -2915.110274
Sum of electronic and thermal Free Energies = -2915.202059

Coordinates: anti-1
S 1.52470000 -0.97940000 12.28900000
S -1.20290000 -1.40390000 11.10880000
S 0.80000000 2.29120000 12.75310000
S -1.90510000 1.86930000 11.55730000
O 1.34100000 -4.21370000 10.05720000
O -0.44590000 -1.14570000 7.44830000
O 3.58120000 -0.52660000 9.18670000
O 0.80710000 1.83420000 9.15330000
O -2.15380000 3.80970000 15.14420000
O 0.48890000 0.21420000 15.79520000
O -3.36200000 -0.40770000 14.08320000
C 0.55160000 -2.29800000 13.14930000
C -0.84070000 2.52380000 12.53740000
C 0.18090000 3.76770000 11.82170000
C -1.21120000 3.54890000 11.20330000
C 1.16280000 -3.08270000 10.06190000
C 0.06950000 -1.19570000 8.46620000
C 2.53120000 -0.81660000 9.52940000
C 0.51680000 1.15730000 10.05490000
C -1.75350000 2.89830000 14.57150000
C -0.14010000 0.70400000 14.96660000
C -2.49050000 0.32450000 13.92070000
H 0.48540000 -1.99060000 14.19730000
H 1.15220000 -3.21350000 13.11020000
H -0.94840000 -3.55060000 12.17090000
H -1.63530000 -2.34980000 13.26950000
H 0.92560000 3.98400000 11.04850000
H 0.17730000 4.60310000 12.52970000
H -1.93730000 4.27380000 11.58600000
H -1.17740000 3.64880000 10.11330000
Fe 0.87190000 -1.31450000 10.10000000
Fe -0.06090000 0.53950000 11.58890000
Fe -1.12910000 1.46850000 13.67890000

Species: syn-1
HF energy = -2915.3267997
No imaginary frequency
Zero-point correction = 0.184072 (Hartree/Particle)
Thermal correction to Energy = 0.213759
Thermal correction to Enthalpy = 0.214703
Thermal correction to Gibbs Free Energy = 0.122693
Sum of electronic and zero-point Energies = -2915.142727
Sum of electronic and thermal Energies = -2915.113041
Sum of electronic and thermal Enthalpies = -2915.112097
Sum of electronic and thermal Free Energies = -2915.204107

Coordinates: syn-1

S 4.36120000 2.75790000 1.13280000
S 5.96040000 3.65530000 3.48990000
S 5.65260000 -0.37970000 1.44460000
S 7.29680000 0.53490000 3.76450000
O 5.51750000 6.46300000 0.81750000
O 9.20300000 4.61280000 1.87310000
O 6.84970000 3.27320000 -1.65710000
O 3.41260000 0.82140000 4.43300000
O 9.13280000 -2.13920000 1.60300000
O 7.85720000 0.54490000 -1.44280000
O 10.32510000 1.92160000 1.99180000
C 3.41760000 3.89120000 2.25680000
C 4.24270000 4.35250000 3.47450000
C 5.74630000 -1.63640000 2.80480000
C 6.59730000 -1.16560000 4.00070000
C 5.88920000 5.39030000 0.97990000
C 8.16430000 4.20290000 1.61940000
C 6.73110000 3.38580000 -0.52350000
C 4.27590000 1.11540000 3.72540000
C 8.61250000 -1.11780000 1.56430000
C 7.81920000 0.58230000 -0.29880000
C 9.31530000 1.41950000 1.79150000
H 2.52660000 3.33520000 2.56880000
H 3.08290000 4.74490000 1.65770000
H 3.77780000 4.03260000 4.41350000
H 4.33090000 5.44380000 3.50390000
H 4.71170000 -1.83360000 3.10640000
H 6.14710000 -2.55900000 2.37140000
H 6.00200000 -1.12310000 4.91940000
H 7.43740000 -1.84460000 4.18120000
Fe 6.45930000 3.72390000 1.23500000
Fe 5.58380000 1.56160000 2.65070000
Fe 7.80200000 0.46530000 1.50920000
Species: compound 2
HF energy = -3838.2756302
No imaginary frequency
Zero-point correction = 0.452055 (Hartree/Particle)
Thermal correction to Energy = 0.496605
Thermal correction to Enthalpy = 0.497549
Thermal correction to Gibbs Free Energy = 0.371654
Sum of electronic and zero-point Energies = -3837.823575
Sum of electronic and thermal Energies = -3837.779025
Sum of electronic and thermal Enthalpies = -3837.778081
Sum of electronic and thermal Free Energies = -3837.903976

Coordinates: compound 2
Fe 5.53770000 8.05910000 4.66390000
Fe 6.08510000 8.00560000 7.17930000
Fe 5.70620000 7.40350000 9.61730000
P 4.19120000 7.45950000 2.86230000
S 4.02060000 8.61220000 6.33540000
S 5.61790000 6.10970000 5.93520000
S 6.06620000 9.54220000 8.85270000
S 7.67300000 7.04960000 8.48590000
O 5.63190000 10.89210000 3.86040000
O 7.99450000 7.14820000 3.30500000
O 8.18020000 9.53410000 5.90920000
O 2.84260000 8.02100000 9.87400000
O 5.22080000 4.50590000 9.50590000
O 6.56990000 7.64880000 12.42230000
C 5.59820000 9.78290000 4.15400000
C 7.03420000 7.51780000 3.80940000
C 7.26150000 8.89800000 6.24210000
C 3.96500000 7.78410000 9.76740000
C 5.40810000 5.64140000 9.54380000
C 6.24320000 7.55610000 11.32310000
C 3.00340000 7.07250000 6.42680000
H 2.42430000 7.13290000 7.35440000
H 2.29710000 7.10800000 5.58990000
C 3.84780000 5.79280000 6.37500000
C 3.44500000 5.08690000 5.64320000
H 3.86990000 5.29030000 7.34500000
C 7.86300000 9.77550000 9.23820000
H 8.22230000 10.57450000 8.58090000
H 7.91800000 10.13680000 10.27060000
C 8.69040000 8.49160000 9.04870000
H 9.17310000 8.18650000 9.98330000
H 9.47270000 8.63610000 8.29590000
C 5.12960000 7.45010000 1.25910000
C 5.79280000 8.63010000 0.87330000
H 5.74700000 9.51610000 1.50110000
C 6.50670000 8.68830000 0.32330000
H	7.01240000	9.61020000	-0.60210000
C	6.57400000	7.56730000	-1.15630000
H	7.13620000	7.61020000	-2.08670000
C	5.91410000	6.39480000	-0.78760000
H	5.95520000	5.51810000	-1.43080000
C	5.19310000	6.33520000	0.40990000
H	4.68030000	5.41570000	0.67390000
C	2.76900000	8.56370000	2.43360000
C	2.21370000	9.43640000	3.38180000
H	2.62910000	9.48750000	4.38410000
C	1.12950000	10.25270000	3.04360000
H	0.71510000	10.92680000	3.79010000
C	0.58880000	10.20710000	1.75820000
H	-0.25190000	10.84600000	1.49550000
C	1.13570000	9.34120000	0.80550000
H	0.72310000	9.30310000	-0.20060000
C	2.21840000	8.52720000	1.13790000
H	2.64010000	7.86550000	0.38550000
C	3.44320000	5.77300000	2.94180000
C	2.05510000	5.57110000	2.89300000
H	1.38390000	6.41720000	2.77710000
C	1.52210000	4.28170000	2.99280000
H	0.44330000	4.14410000	2.95970000
C	2.36710000	3.17960000	3.13160000
H	1.95130000	2.17720000	3.20850000
C	3.75240000	3.36990000	3.17660000
H	4.41940000	2.51820000	3.29130000
C	4.28720000	4.65580000	3.09180000
H	5.36420000	4.78800000	3.15650000
Species: compound 3
HF energy = -4761.2188321
No imaginary frequency
Zero-point correction = 0.719572 (Hartree/Particle)
Thermal correction to Energy = 0.779074
Thermal correction to Enthalpy = 0.780018
Thermal correction to Gibbs Free Energy = 0.619689
Sum of electronic and zero-point Energies = -4760.499260
Sum of electronic and thermal Energies = -4760.439759
Sum of electronic and thermal Enthalpies = -4760.438814
Sum of electronic and thermal Free Energies = -4760.599143

Coordinates: compound 3
Fe 2.75610000 3.67690000 4.37290000
Fe 3.21950000 6.13190000 4.00850000
Fe 3.20260000 8.34690000 2.69240000
P 2.72560000 1.74900000 5.61780000
P 2.68720000 9.58120000 0.78960000
S 4.82250000 4.66050000 4.68940000
S 2.16380000 5.34120000 5.86630000
S 1.31830000 7.03010000 3.04750000
S 3.95540000 6.32210000 1.81910000
O -0.03410000 3.58260000 3.49000000
O 3.75580000 2.51920000 1.87940000
O 4.49890000 8.10810000 5.68340000
O 2.07270000 10.36780000 4.51040000
O 6.00750000 9.25830000 2.70420000
C 1.06580000 3.61080000 3.84510000
C 3.36300000 2.97090000 2.87050000
C 3.96000000 7.45690000 4.87760000
C 2.52470000 9.59340000 3.79160000
C 4.90790000 8.93140000 2.69940000
C 4.87980000 4.89930000 6.52600000
H 5.21650000 3.94790000 6.95300000
H 5.65040000 5.65160000 6.72730000
C 3.52650000 5.32650000 7.11900000
H 3.58280000 6.34240000 7.52280000
H 3.21600000 4.65640000 7.92630000
C 1.15750000 6.17610000 1.41620000
H 0.46680000 5.34020000 1.56860000
H 0.67930000 6.88360000 0.72900000
C 2.50330000 5.69550000 0.85680000
H 2.63110000 6.01430000 -0.18180000
H 2.57970000 4.60590000 0.88220000
C 1.42630000 0.53360000 5.07620000
C 0.49920000 -0.05490000 5.94980000
H 0.50700000 0.19870000 7.00580000
C -0.44510000 -0.97130000 5.47460000
H -1.15890000 -1.41260000 6.16780000
Carbon	X-Coordinate	Y-Coordinate	Z-Coordinate
C	-0.47170000	-1.31980000	4.12380000
H	-1.20780000	-2.03180000	3.75570000
C	0.45390000	-0.74740000	3.24620000
H	0.44500000	-1.01240000	2.19080000
C	1.39100000	0.17250000	3.71680000
H	2.10210000	0.60710000	3.01880000
C	4.22350000	0.65320000	5.62310000
H	5.46390000	1.14490000	5.19030000
C	5.54320000	2.16850000	4.83520000
H	6.59740000	0.32500000	5.20250000
C	7.55010000	0.72310000	4.85900000
H	6.50480000	-0.99490000	5.64520000
C	7.38600000	-1.63360000	5.65130000
C	5.27170000	-1.49720000	6.07490000
H	5.18960000	-2.52750000	6.41580000
C	4.13980000	-0.68190000	6.06160000
H	3.18510000	-1.08730000	6.38850000
C	2.36110000	1.98140000	7.41850000
C	3.26170000	1.61300000	8.43000000
H	4.19440000	1.11780000	8.17530000
C	2.97090000	1.87780000	9.77290000
H	3.68390000	1.58860000	10.54270000
C	1.77470000	2.50510000	10.12420000
H	1.54900000	2.70900000	11.16900000
C	0.86920000	2.87590000	9.12410000
H	-0.06310000	3.37230000	9.38550000
C	1.16360000	2.62610000	7.78350000
H	0.46340000	2.94470000	7.01520000
C	2.87250000	8.70180000	-0.82510000
C	4.11170000	8.11110000	-1.13740000
H	4.93930000	8.17690000	-0.43600000
C	4.28590000	7.42020000	-2.33690000
H	5.25070000	6.97060000	-2.56160000
C	3.22160000	7.29180000	-3.23570000
H	3.35580000	6.74390000	-4.16600000
C	1.98590000	7.86420000	-2.92970000
H	1.15090000	7.76620000	-3.62050000
C	1.81160000	8.56940000	-1.73430000
H	0.84520000	9.01410000	-1.51470000
C	1.01500000	10.36960000	0.67860000
C	0.80480000	11.46320000	-0.18340000
H	1.62890000	11.86000000	-0.77100000
C	-0.45590000	12.05100000	-0.28780000
H	-0.60140000	12.89680000	-0.95690000
C	-1.52500000	11.56050000	0.46920000
H	-2.50660000	12.02370000	0.39070000
C	-1.32560000	10.48010000	1.32930000
H	-2.14880000	10.09500000	1.92730000
C	-0.06350000	9.88660000	1.43530000
HOMO

LUMO
Species: compound 4
2 Complete list of authors for reference 58

(58) Gaussian 09, Revision A.02: M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. Bearpark, J. J. Heyd, E. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J. M. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, O. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, D. J. Fox, Gaussian, Inc., Wallingford CT, 2009.
3 Electrochemical and electrocatalytic studies

a. Oxidation response of 2 over a range of scan rates

Figure S1. CVs of 2 (0.5 mM) in 0.5 M TBAPF$_6$ in dichloromethane (a) at 0.01 (black), 0.02 (brown), 0.05 (dark green) and 0.1 V s$^{-1}$ (light green); b) at 0.1 (black), 1 (brown), 5 (dark green) and 10 V s$^{-1}$ (light green); c) Plot of i_p v$1/2$ against v$1/2$ for the oxidation peak.

The oxidation behavior of the complexes was studied in detail over scan rates of 0.01 – 10 V s$^{-1}$, as shown for 2 in Figure ESI 1 a and b. At all scan rates one oxidation peak occurs, which shifts to higher potentials with increasing scan rate thus indicating quasi-reversibility. The corresponding reduction peak consists of two overlapping processes taking place at a similar potential, which at scan rates above 1 V s$^{-1}$ can be resolved into two components. The first is centered at 0.05 V with a position independent of scan rate and the second, at -0.15 V (at 1 V s$^{-1}$), shifts to more negative potentials at faster scan rates indicating quasi-reversibility. This
would suggest that after the first oxidation the product undergoes chemical or structural change allowing further loss of an electron at a similar potential.

Figure ESI 1c shows a plot of peak current normalized by dividing by square root of scan rate vs. square root of scan rate, which reveals that twice as many electrons are transferred at low scan rates than high; thus we suggest a one electron transfer at fast scan rates that tends to two electrons as the electrochemical timescale is increased. This would suggest that after the first oxidation the product undergoes chemical or structural change allowing further loss of an electron at a similar potential. The rate of this chemical step is likely to be different for complexes with different degrees of substitution and may explain why fewer electrons are involved in oxidation of 3 than the other two complexes.

b. Cyclic voltammetry of 1 in CO-saturated solution

![Cyclic Voltammogram](image)

Figure S2: CV at 0.1 Vs\(^{-1}\) of 0.5 mM 1 in 0.1 M TBAPF\(_6\) / dichloromethane in Ar-saturated (black) and CO-saturated (brown) solution.

The CV of 1 was carried out in a CO saturated solution, where the first oxidation and reduction peaks were unchanged in position and magnitude. Additional reduction peaks were observed at -1.87 V and -2.1 V, along with oxidation peaks at -1.7 V (associated with the
reduction at -1.87 V -0.85 V and 0.82 V. Reduction of [Fe₂(CO)₆(µ-edt)] under the same experimental conditions occurs reversibly at -1.9 V vs. Fc/Fc⁺ [20,22] We therefore tentatively assign the reduction response at -1.87 V to this diiron complex, formed as a decomposition product after the reduction of 1. A common decomposition process for these complexes after reduction is the loss of a CO ligand and rapid dimerisation of the remaining products [20,49], which is suppressed in excess CO. The observation that reversibility of the reduction of 1 is not improved in a CO-saturated solution suggests that CO ligand loss is not a major decomposition route in this case and cleavage of iron-sulfur bond(s) and fragmentation of the cluster into di- and mono-iron complexes is most likely.

c. CVs of complexes 4-6 in dichloromethane

![Graph](image)

Figure S3. CVs of 0.5 mM 4 (black), 5 (brown) and 6 (green) in CH₂Cl₂ (0.5 mM solution, supporting electrolyte [NBu₄][PF₆], scan rate 0.1 Vs⁻¹, glassy carbon electrode, potential vs Fc⁺/Fc).

d. Electrocatalysis of 4 in MeCN
Figure S4. CVs of 4 in the absence of acid and in the presence of 1 to 10 molar equivalents of HBF₄ as shown in the legend (1 mM solution in acetonitrile, supporting electrolyte [NBu₄][PF₆], scan rate 0.1Vs⁻¹, glassy carbon electrode, potential vs Fc⁺/Fc).

In acetonitrile addition of one molar equivalent of acid to 4 results in two new reduction peaks at $E_p = -1.63$ V and $E_p = -2.26$ V, in addition to the reduction peaks at $E_p = -1.89$ V and $E_p = -2.70$ V associated with 4 in the absence of acid. All the peak currents increase with acid concentration. The shift in reduction to less negative potentials on addition of acid is indicative of protonation of neutral 4 taking place before reduction, i.e. a CE mechanism. Asymmetric diphosphine substitution of these complexes results in sufficient basicity for protonation to take place in MeCN, allowing the electrocatalytic reduction of protons to take place at ca. 0.2 V more positive than the reduction potential of the complex.

e. DigiSim simulation for 1st catalytic process for 2
Figure S5: Simulated CVs for 2 (black) and 1 (grey) obtained from DigiSim using the mechanism and parameters given in the text and in ref [23] from main document.

The electrocatalytic response of 1 has been reported previously [23] and rate constants for the protonation steps obtained from simulated results for a very simple ECEC mechanism. A similar mechanism is presented for 2 below (Red text indicates parameters that differ between 1 and 2), and simulated CVs of this mechanism are shown above.

\[
\begin{align*}
 &
 \begin{array}{c}
 2 \quad E = -1.7 \text{ V} \\
 \quad + e^- \\
 \quad - e^- \\
 \quad K = 10^4 \\
 \quad k_f = 50 \\
 \quad \text{Products}
 \end{array}
 \quad \rightarrow \\
 \begin{array}{c}
 2^- \quad E = -1.6 \text{ V} \\
 \quad + H^+ \\
 \quad - H^+ \\
 \quad K(1) = 10^{10} \\
 \quad k(1) = 10^6 \\
 \quad \text{Products}
 \end{array}
\end{align*}
\]

\[K(2) = 10^{10} \quad + H^+ \quad H^+ \quad - H_2 \quad - H_2\]
\[k(2) = 2 \times 10^4 \quad - H_2 \quad + H_2\]

\[2H^- \quad E = -1.6 \text{ V} \]
Neutral 2 undergoes reduction at ca. -1.7 V and the resulting 2^- species can either undergo further reaction to undefined ‘products’ or protonate to give 2H. The rate and equilibrium constants for the non-catalytic route to ‘products’ were obtained by simulating voltammograms for 2 obtained in the absence of acid and comparing their scan rate dependence with experimental CVs. The equilibrium constant $K(1) = 10^{10}$ for protonation of 2^- reflects the difference in pKa of 2^- and the strong acid HBF$_4$. 2H then undergoes further reduction to form 2H^- followed by a simultaneous proton addition / hydrogen elimination step. The equilibrium constant $K(2)$ for this step again reflects the difference in pKa of the acid and 2H^- species. The two rate constants $k(1)$ and $k(2)$ for the protonation steps have been varied in the simulation until a fit to the experimental peak currents was obtained. The simulated peak currents are plotted against experimental peak currents for 1 and 2 in Figure 6 of the main document.

We have previously reported a value of $k(1)$ of 1×10^5 mol$^{-1}$ dm$^{-6}$ s$^{-1}$ for complex 1 compared to $k(1)$ of 1×10^6 mol$^{-1}$ dm$^{-6}$ s$^{-1}$ found here for 2. Likewise, the rate constant $k(2)$ for 2 is found to be greater than for 1: 2×10^4 mol$^{-1}$ dm$^{-6}$ s$^{-1}$ compared to 3×10^3 mol$^{-1}$ dm$^{-6}$ s$^{-1}$. This supports the argument that rate of catalysis increases with basicity of the complex and protonation is the rate limiting step for complex 1.
Table 1. Crystal data and structure refinement for str0701 (1).

Property	Value
Identification code	str0701
Chemical formula	C₁₉H₈Fe₃O₇S₄
Formula weight	547.96
Temperature	150(2) K
Radiation, wavelength	MoKα, 0.71073 Å
Crystal system, space group	triclinic, P1bar
Unit cell parameters	a = 6.4228(14) Å, α = 77.541(3)°, b = 8.2906(18) Å, β = 83.384(3)°, c = 18.331(4) Å, γ = 68.854(3)°
Cell volume	888.2(3) Å³
Z	2
Calculated density	2.049 g/cm³
Absorption coefficient μ	2.918 mm⁻¹
F(000)	544
Crystal colour and size	red, 0.14 × 0.14 × 0.03 mm³
Data collection method	Bruker SMART APEX diffractometer
ω rotation with narrow frames	
θ range for data collection	1.14 to 28.28°
Index ranges	h = −8 to 8, k = −10 to 10, l = −23 to 24
Completeness to θ = 26.00°	95.7%
Reflections collected	7497
Independent reflections	3970 (Rint = 0.0333)
Reflections with F²>2σ	3453
Absorption correction	semi-empirical from equivalents
Min. and max. transmission	0.6855 and 0.9176
Structure solution	Patterson synthesis
Refinement method	Full-matrix least-squares on F²
Weighting parameters a, b	0.0957, 0.3371
Data / restraints / parameters	3970 / 0 / 226
Final R indices [F²>2σ]	R₁ = 0.0417, wR₂ = 0.1248
R indices (all data)	R₁ = 0.0480, wR₂ = 0.1411
Goodness-of-fit on F²	1.051
Largest and mean shift/su	0.000 and 0.000
Largest diff. peak and hole	1.362 and −0.649 e Å⁻³
Table 2. Atomic coordinates and equivalent isotropic displacement parameters (Å\(^2\)) for str0701. \(U_{eq}\) is defined as one third of the trace of the orthogonalized \(U^{ij}\) tensor.

	x	y	z	\(U_{eq}\)
Fe(1)	0.49104(9)	0.18472(7)	0.12332(3)	0.01900(16)
Fe(2)	0.45340(8)	0.05416(6)	0.26069(3)	0.01601(16)
Fe(3)	0.52323(8)	-0.20844(6)	0.37009(3)	0.01768(16)
S(1)	0.77282(15)	0.07540(12)	0.20364(5)	0.0191(2)
S(2)	0.47024(15)	-0.08479(11)	0.16718(5)	0.0188(2)
S(3)	0.52767(15)	0.05756(12)	0.37525(5)	0.0196(2)
S(4)	0.19084(15)	-0.04207(12)	0.32264(5)	0.0202(2)
O(1)	0.7607(6)	0.0944(5)	-0.01223(18)	0.0445(9)
O(2)	0.5150(6)	0.5388(4)	0.1039(2)	0.0459(9)
O(3)	0.0485(5)	0.3139(5)	0.0581(2)	0.0441(9)
O(4)	0.1328(5)	0.4110(4)	0.24480(18)	0.0341(7)
O(5)	1.0014(5)	-0.3758(4)	0.3984(2)	0.0407(8)
O(6)	0.5304(6)	-0.4978(4)	0.30040(19)	0.0393(8)
O(7)	0.3501(6)	-0.3226(4)	0.51996(17)	0.0389(8)
C(1)	0.6539(7)	0.1340(5)	0.0398(2)	0.0274(9)
C(2)	0.5048(7)	0.4029(5)	0.1128(2)	0.0269(8)
C(3)	0.2184(7)	0.2630(5)	0.0841(2)	0.0287(9)
C(4)	0.2685(7)	0.2742(5)	0.2432(2)	0.0234(8)
C(5)	0.8171(7)	-0.3069(5)	0.3850(2)	0.0254(8)
C(6)	0.5271(7)	-0.3852(5)	0.3266(2)	0.0232(8)
C(7)	0.4207(7)	-0.2793(5)	0.4623(2)	0.0265(8)
C(8)	0.9194(6)	-0.1438(5)	0.1826(2)	0.0222(8)
C(9)	0.7642(6)	-0.2232(5)	0.1587(2)	0.0232(8)
C(10)	0.2491(6)	0.1588(5)	0.4170(2)	0.0257(8)
C(11)	0.0713(6)	0.1072(5)	0.3892(2)	0.0265(8)
Table 3. Bond lengths [Å] and angles [°] for str0701.

Bond	Length	Bond	Length		
Fe(1)–C(1)	1.790(4)	Fe(1)–C(3)	1.809(4)		
Fe(1)–C(2)	1.810(4)	Fe(1)–S(2)	2.2521(11)		
Fe(1)–S(1)	2.2627(11)	Fe(1)–Fe(2)	2.5385(8)		
Fe(2)–C(4)	1.765(4)	Fe(2)–S(3)	2.2146(11)		
Fe(2)–S(4)	2.2155(11)	Fe(2)–S(2)	2.2353(11)		
Fe(2)–S(1)	2.2406(11)	Fe(2)–Fe(3)	2.5655(8)		
Fe(3)–C(5)	1.793(4)	Fe(3)–C(7)	1.797(4)		
Fe(3)–C(6)	1.805(4)	Fe(3)–S(4)	2.2367(11)		
Fe(3)–S(3)	2.2381(11)	S(1)–C(8)	1.823(4)		
S(2)–C(9)	1.831(4)	S(3)–C(10)	1.836(4)		
S(4)–C(11)	1.833(4)	O(1)–C(1)	1.145(5)		
O(2)–C(2)	1.129(5)	O(3)–C(3)	1.139(5)		
O(4)–C(4)	1.158(5)	O(5)–C(5)	1.143(5)		
O(6)–C(6)	1.131(5)	O(7)–C(7)	1.138(5)		
C(8)–C(9)	1.522(5)	C(10)–C(11)	1.527(6)		
C(1)–Fe(1)–C(3)	97.48(19)	C(1)–Fe(1)–C(2)	95.69(19)		
C(3)–Fe(1)–C(2)	94.20(18)	C(1)–Fe(1)–S(2)	96.68(14)		
C(3)–Fe(1)–S(2)	91.48(13)	C(2)–Fe(1)–S(2)	165.59(14)		
C(1)–Fe(1)–S(1)	98.11(13)	C(3)–Fe(1)–S(1)	163.24(14)		
C(2)–Fe(1)–S(1)	90.35(13)	S(2)–Fe(1)–S(1)	80.63(4)		
C(1)–Fe(1)–Fe(2)	141.34(13)	C(3)–Fe(1)–Fe(2)	108.13(14)		
C(2)–Fe(1)–Fe(2)	110.37(14)	S(2)–Fe(1)–Fe(2)	55.24(3)		
S(1)–Fe(1)–Fe(2)	55.28(3)	C(4)–Fe(2)–S(3)	95.38(13)		
C(4)–Fe(2)–S(4)	92.57(14)	S(3)–Fe(2)–S(4)	81.76(4)		
C(4)–Fe(2)–S(2)	112.05(13)	S(3)–Fe(2)–S(2)	152.18(4)		
S(4)–Fe(2)–S(2)	92.09(4)	C(4)–Fe(2)–S(1)	102.59(14)		
S(3)–Fe(2)–S(1)	97.52(4)	S(4)–Fe(2)–S(1)	164.81(4)		
S(2)–Fe(2)–S(1)	81.48(4)	C(4)–Fe(2)–Fe(1)	70.99(13)		
S(3)–Fe(2)–Fe(1)	144.18(4)	S(4)–Fe(2)–Fe(1)	130.32(3)		
S(2)–Fe(2)–Fe(1)	55.86(3)	S(1)–Fe(2)–Fe(1)	56.10(3)		
C(4)–Fe(2)–Fe(3)	136.25(13)	S(3)–Fe(2)–Fe(3)	55.25(3)		
S(4)–Fe(2)–Fe(3)	55.20(3)	S(2)–Fe(2)–Fe(3)	99.13(4)		
S(1)–Fe(2)–Fe(3)	112.03(3)	Fe(1)–Fe(2)–Fe(3)	151.74(3)		
C(5)–Fe(3)–C(7)	98.79(19)	C(5)–Fe(3)–C(6)	91.75(18)		
C(7)–Fe(3)–C(6)	99.36(18)	C(5)–Fe(3)–S(4)	163.63(13)		
C(7)–Fe(3)–S(4)	96.95(14)	C(6)–Fe(3)–S(4)	90.11(13)		
C(5)–Fe(3)–S(3)	91.32(13)	C(7)–Fe(3)–S(3)	102.86(13)		
C(6)–Fe(3)–S(3)	156.81(13)	S(4)–Fe(3)–S(3)	80.78(4)		
C(5)–Fe(3)–Fe(2)	109.39(13)	C(7)–Fe(3)–Fe(2)	143.02(13)		
C(6)–Fe(3)–Fe(2)	103.11(12)	S(4)–Fe(3)–Fe(2)	54.43(3)		
S(3)–Fe(3)–Fe(2)	54.39(3)	C(8)–S(1)–Fe(2)	103.01(12)		
C(8)–S(1)–Fe(1)	102.13(15)	Fe(2)–S(1)–Fe(1)	68.62(3)		
C(9)–S(2)–Fe(2)	104.89(13)	C(9)–S(2)–Fe(1)	100.80(13)		
Fe(2)–S(2)–Fe(1)	69.90(3)	C(10)–S(3)–Fe(2)	102.78(13)		
C(10)–S(3)–Fe(3)	101.56(14)	Fe(2)–S(3)–Fe(3)	70.36(3)		
C(11)–S(4)–Fe(2)	103.06(14)	C(11)–S(4)–Fe(3)	102.08(13)		
Fe(2)–S(4)–Fe(3)	70.37(4)	O(1)–C(1)–Fe(1)	177.2(4)		
O(2)–C(2)–Fe(1)	177.8(4)	O(3)–C(3)–Fe(1)	178.5(4)		
Bond	Angle (°)	Bond	Angle (°)	Bond	Angle (°)
----------------------	-----------	----------------------	-----------	----------------------	-----------
O(4)–C(4)–Fe(2)	167.6(4)	O(5)–C(5)–Fe(3)	175.9(4)		
O(6)–C(6)–Fe(3)	178.9(4)	O(7)–C(7)–Fe(3)	178.2(4)		
C(9)–C(8)–S(1)	112.9(3)	C(8)–C(9)–S(2)	111.9(3)		
C(11)–C(10)–S(3)	112.3(3)	C(10)–C(11)–S(4)	111.6(3)		
Table 4. Anisotropic displacement parameters (Å\(^2\)) for str0701. The anisotropic displacement factor exponent takes the form:
\[-2\pi^2 h^2 a^* a U_{11} + \ldots + 2hka^* b^* U_{12}\]

	U\(^{11}\)	U\(^{22}\)	U\(^{33}\)	U\(^{23}\)	U\(^{13}\)	U\(^{12}\)
Fe(1)	0.0196(3)	0.0183(3)	0.0180(3)	0.0016(2)	0.0059(2)	0.0066(2)
Fe(2)	0.0148(3)	0.0148(3)	0.0170(3)	-0.00056(19)	-0.00403(19)	-0.0039(2)
Fe(3)	0.0176(3)	0.0148(3)	0.0188(3)	0.0002(2)	-0.0046(2)	-0.0041(2)
S(1)	0.0160(4)	0.0198(4)	0.0215(4)	-0.0003(3)	-0.0052(3)	-0.0067(3)
S(2)	0.0176(4)	0.0181(4)	0.0210(4)	-0.0023(3)	-0.0040(3)	-0.0064(3)
S(3)	0.0214(5)	0.0180(4)	0.0196(5)	-0.0033(3)	-0.0050(3)	-0.0058(3)
S(4)	0.0161(4)	0.0234(5)	0.0209(5)	-0.0015(4)	-0.0037(3)	-0.0071(4)
O(1)	0.041(2)	0.058(2)	0.0244(17)	-0.0049(15)	-0.0017(14)	-0.0079(17)
O(2)	0.057(2)	0.0263(17)	0.057(2)	0.0012(15)	-0.0111(18)	-0.0209(16)
O(3)	0.0269(17)	0.046(2)	0.052(2)	0.0073(16)	-0.0249(15)	-0.0067(15)
O(4)	0.0322(17)	0.0225(15)	0.0338(17)	0.0001(12)	-0.0049(13)	0.0049(13)
O(5)	0.0249(17)	0.0305(17)	0.061(2)	0.0013(15)	-0.0086(15)	-0.0061(13)
O(6)	0.057(2)	0.0285(16)	0.0367(18)	-0.0090(13)	-0.0053(15)	-0.0180(16)
O(7)	0.053(2)	0.0259(16)	0.0260(16)	0.0004(12)	0.0087(14)	0.0060(15)
C(1)	0.026(2)	0.029(2)	0.023(2)	0.0057(16)	-0.0091(16)	-0.0077(17)
C(2)	0.028(2)	0.0226(19)	0.028(2)	0.0009(16)	-0.0099(16)	-0.0061(16)
C(3)	0.032(2)	0.0220(19)	0.028(2)	0.0007(16)	-0.0016(17)	-0.0066(17)
C(4)	0.025(2)	0.0221(18)	0.0186(18)	0.0004(14)	-0.0063(14)	-0.0039(16)
C(5)	0.029(2)	0.0194(18)	0.026(2)	-0.0015(15)	-0.0022(16)	-0.0088(16)
C(6)	0.0232(19)	0.0183(18)	0.0241(19)	0.0006(15)	-0.0036(15)	-0.0042(15)
C(7)	0.033(2)	0.0164(17)	0.026(2)	-0.0039(15)	-0.0040(16)	-0.0029(16)
C(8)	0.0166(18)	0.0224(18)	0.0233(19)	-0.0038(15)	0.0005(14)	-0.0022(14)
C(9)	0.0186(18)	0.0204(18)	0.0261(19)	-0.0050(15)	-0.0023(14)	-0.0008(14)
C(10)	0.022(2)	0.0244(19)	0.028(2)	-0.0093(16)	-0.0036(15)	-0.0013(15)
C(11)	0.0165(18)	0.028(2)	0.026(2)	-0.0045(16)	-0.0026(14)	0.0028(15)
Table 5. Hydrogen coordinates and isotropic displacement parameters (Å2) for str0701.

	x	y	z	U
H(8A)	1.0340	−0.1372	0.1422	0.027
H(8B)	0.9973	−0.2224	0.2275	0.027
H(9A)	0.7873	−0.3410	0.1900	0.028
H(9B)	0.8022	−0.2382	0.1061	0.028
H(10A)	0.2540	0.1223	0.4721	0.031
H(10B)	0.2075	0.2885	0.4049	0.031
H(11A)	−0.0456	0.2146	0.3648	0.032
H(11B)	−0.0002	0.0490	0.4323	0.032
Table 6. Torsion angles [°] for str0701.

Bond	Value 1	Value 2	Value 3
C(1)–Fe(1)–Fe(2)–C(4)	174.4(3)		
C(2)–Fe(1)–Fe(2)–C(4)	45.1(2)		
S(1)–Fe(1)–Fe(2)–C(4)	120.62(14)		
C(3)–Fe(1)–Fe(2)–S(3)	−128.76(15)		
S(2)–Fe(1)–Fe(2)–S(3)	152.44(7)		
C(1)–Fe(1)–Fe(2)–S(4)	−108.9(2)		
C(2)–Fe(1)–Fe(2)–S(4)	121.75(14)		
S(1)–Fe(1)–Fe(2)–S(4)	−162.69(5)		
C(3)–Fe(1)–Fe(2)–S(4)	78.81(14)		
S(2)–Fe(1)–Fe(2)–S(4)	−103.87(4)		
C(4)–Fe(2)–Fe(3)–C(5)	−133.1(2)		
S(4)–Fe(2)–Fe(3)–C(5)	177.18(15)		
C(S)–Fe(2)–Fe(3)–C(5)	6.57(15)		
C(4)–Fe(2)–Fe(3)–C(7)	4.3(3)		
S(4)–Fe(2)–Fe(3)–C(7)	−45.4(2)		
S(1)–Fe(2)–Fe(3)–C(7)	144.0(2)		
C(4)–Fe(2)–Fe(3)–C(6)	130.2(2)		
S(4)–Fe(2)–Fe(3)–C(6)	80.56(13)		
C(1)–Fe(2)–Fe(3)–C(6)	−90.05(13)		
S(1)–Fe(2)–Fe(3)–C(6)	49.69(19)		
S(2)–Fe(2)–Fe(3)–C(6)	−86.17(4)		
Fe(1)–Fe(2)–Fe(3)–S(3)	−111.81(6)		
S(4)–Fe(2)–Fe(3)–S(3)	−105.65(5)		
S(1)–Fe(2)–Fe(3)–S(3)	83.74(4)		
C(4)–Fe(2)–S(1)–C(8)	−154.59(19)		
S(4)–Fe(2)–S(1)–C(8)	21.9(2)		
C(1)–Fe(2)–S(1)–C(8)	−98.12(13)		
Fe(1)–Fe(2)–S(1)–C(8)	52.86(13)		
C(4)–Fe(2)–S(1)–Fe(1)	−56.48(13)		
S(4)–Fe(2)–S(1)–Fe(1)	120.04(15)		
Fe(3)–Fe(2)–S(1)–Fe(1)	150.80(3)		
C(3)–Fe(1)–S(1)–C(8)	108.3(5)		
S(2)–Fe(1)–S(1)–C(8)	45.45(13)		
C(1)–Fe(1)–S(1)–C(8)	−149.42(14)		
C(2)–Fe(1)–S(1)–C(8)	114.78(14)		
C(4)–Fe(2)–S(2)–C(9)	141.7(2)		
S(4)–Fe(2)–S(2)–C(9)	−124.70(14)		
Fe(1)–Fe(2)–S(2)–C(9)	96.04(14)		
Fe(3)–Fe(2)–S(2)–C(9)	45.63(15)		
S(4)–Fe(2)–S(2)–Fe(1)	139.26(4)		
Fe(3)–Fe(2)–S(2)–Fe(1)	−165.67(3)		
C(3)–Fe(1)–S(2)–C(9)	146.91(19)		
S(1)–Fe(1)–S(2)–C(9)	−47.96(13)		
Bond	Value 1	Value 2	Value 3
-----------------------------	----------	----------	----------
C(1)–Fe(1)–S(2)–Fe(2)	151.14(13)		-111.16(14)
C(2)–Fe(1)–S(2)–Fe(2)	2.1(5)		53.97(3)
C(4)–Fe(2)–S(3)–C(10)	46.98(19)		-44.85(14)
S(2)–Fe(2)–S(3)–C(10)	-123.57(16)		150.47(14)
Fe(1)–Fe(2)–S(3)–C(10)	111.59(15)		-97.88(14)
C(4)–Fe(2)–S(3)–Fe(3)	144.86(14)		53.03(3)
S(2)–Fe(2)–S(3)–Fe(3)	-25.68(9)		-111.65(4)
Fe(1)–Fe(2)–S(3)–Fe(3)	-150.52(5)		99.60(14)
C(4)–Fe(2)–S(3)–Fe(3)	113.07(13)		-147.60(14)
S(2)–Fe(2)–S(3)–Fe(3)	144.86(14)		133.62(19)
Fe(1)–Fe(2)–S(3)–Fe(3)	-112.86(13)		53.03(3)
C(4)–Fe(2)–S(3)–Fe(3)	-106.10(13)		52.48(3)
S(2)–Fe(2)–S(3)–Fe(3)	93.5(3)		99.60(14)
C(4)–Fe(2)–S(3)–Fe(3)	-19(8)		62(8)
C(4)–Fe(2)–S(3)–Fe(3)	20(8)		20(10)
C(4)–Fe(2)–S(3)–Fe(3)	-78(10)		169(10)
C(4)–Fe(2)–S(3)–Fe(3)	118(10)		171(10)
C(4)–Fe(2)–S(3)–Fe(3)	-38(17)		59(17)
C(4)–Fe(2)–S(3)–Fe(3)	-135(17)		164(17)
C(4)–Fe(2)–S(3)–Fe(3)	172(17)		-42.6(18)
C(4)–Fe(2)–S(3)–Fe(3)	39.3(18)		132.6(17)
C(4)–Fe(2)–S(3)–Fe(3)	-141.6(17)		171.4(18)
C(4)–Fe(2)–S(3)–Fe(3)	0.5(19)		17(5)
C(4)–Fe(2)–S(3)–Fe(3)	-83(5)		-180(100)
C(4)–Fe(2)–S(3)–Fe(3)	120(5)		172(5)
C(4)–Fe(2)–S(3)–Fe(3)	65(20)		-34(20)
C(4)–Fe(2)–S(3)–Fe(3)	-131(20)		162(19)
C(4)–Fe(2)–S(3)–Fe(3)	175(100)		-172(11)
C(4)–Fe(2)–S(3)–Fe(3)	-79(11)		13(11)
C(4)–Fe(2)–S(3)–Fe(3)	95(11)		48(11)
C(4)–Fe(2)–S(3)–Fe(3)	38.3(3)		-32.2(3)
C(4)–Fe(2)–S(3)–Fe(3)	-5.9(4)		-29.2(3)
C(4)–Fe(2)–S(3)–Fe(3)	41.6(3)		35.0(3)
C(4)–Fe(2)–S(3)–Fe(3)	-37.3(3)		0.4(4)
C(4)–Fe(2)–S(3)–Fe(3)	-35.6(3)		36.8(3)
Table 1. Crystal data and structure refinement for str0734 (2).

Identification code	str0734
Chemical formula	C_{28}H_{23}Fe_{3}O_{6}PS_{4}
Formula weight	782.22
Temperature	150(2) K
Radiation, wavelength	MoKα, 0.71073 Å
Crystal system, space group	triclinic, P1bar
Unit cell parameters	
a = 8.799(5) Å	α = 90.571(7)°
b = 11.268(6) Å	β = 90.498(14)°
c = 16.543(9) Å	γ = 109.469(8)°
Cell volume	1546.2(14) Å³
Z	2
Calculated density	1.680 g/cm³
Absorption coefficient μ	1.751 mm⁻¹
F(000)	792
Crystal colour and size	orange, 0.26 × 0.10 × 0.03 mm³
Data collection method	Bruker SMART APEX diffractometer
θ range for data collection	1.92 to 28.50°
Index ranges	h −11 to 11, k −14 to 14, l −21 to 20
Completeness to θ = 26.00°	96.0%
Reflections collected	12859
Independent reflections	6918 (R_{int} = 0.0526)
Reflections with F^2 > 2σ	5013
Absorption correction	semi-empirical from equivalents
Min. and max. transmission	0.6588 and 0.9493
Structure solution	direct methods
Refinement method	Full-matrix least-squares on F^2
Weighting parameters a, b	0.1153, 23.3869
Data / restraints / parameters	6918 / 0 / 379
Final R indices [F^2 > 2σ]	R1 = 0.0943, wR2 = 0.2600
R indices (all data)	R1 = 0.1181, wR2 = 0.2787
Goodness-of-fit on F^2	1.052
Largest and mean shift/su	0.000 and 0.000
Largest diff. peak and hole	1.045 and −1.726 e Å⁻³
Table 2. Atomic coordinates and equivalent isotropic displacement parameters (Å2) for str0734. U_{eq} is defined as one third of the trace of the orthogonalized U^i tensor.

	x	y	z	U_{eq}
Fe(1)	0.96236(15)	0.75489(12)	0.27600(7)	0.0210(3)
Fe(2)	1.02441(15)	0.75027(12)	0.42629(7)	0.0210(3)
Fe(3)	0.93980(15)	0.73262(13)	0.57610(8)	0.0254(3)
P(1)	0.7852(3)	0.7072(2)	0.17239(14)	0.0234(5)
S(1)	0.8304(3)	0.8181(2)	0.37425(13)	0.0247(5)
S(2)	0.8856(3)	0.5792(2)	0.35165(14)	0.0249(5)
S(3)	1.1034(3)	0.9050(2)	0.51675(14)	0.0265(5)
S(4)	1.1145(3)	0.6519(2)	0.51945(13)	0.0252(5)
O(1)	1.1288(11)	0.1074(7)	0.2324(5)	0.051(2)
O(2)	1.1775(9)	0.6511(8)	0.1886(5)	0.046(2)
O(3)	1.3416(9)	0.8435(8)	0.3554(5)	0.046(2)
O(4)	0.6838(9)	0.8454(8)	0.5909(5)	0.048(2)
O(5)	0.7057(10)	0.4828(8)	0.6058(6)	0.053(2)
O(6)	1.0825(12)	0.7830(11)	0.7384(5)	0.066(3)
C(1)	1.0612(12)	0.9142(10)	0.2481(6)	0.033(2)
C(2)	1.0952(11)	0.6934(9)	0.2214(5)	0.029(2)
C(3)	1.2091(13)	0.8051(10)	0.3751(6)	0.033(2)
C(4)	0.7839(11)	0.8025(10)	0.5833(6)	0.029(2)
C(5)	0.7970(14)	0.5782(12)	0.5936(8)	0.045(3)
C(6)	1.0224(13)	0.7631(12)	0.6756(7)	0.043(3)
C(7)	0.6460(11)	0.6819(9)	0.3840(6)	0.027(19)
C(8)	0.6787(11)	0.5582(9)	0.3792(6)	0.029(2)
C(9)	1.3020(13)	0.9020(11)	0.5491(7)	0.039(2)
C(10)	1.3055(11)	0.7679(10)	0.5492(6)	0.031(2)
C(11)	0.8862(12)	0.7166(10)	0.0744(5)	0.029(2)
C(12)	0.9900(13)	0.8332(12)	0.0517(7)	0.040(3)
C(13)	1.0745(16)	0.8483(17)	-0.0200(8)	0.061(4)
C(14)	1.0556(18)	0.7458(18)	-0.0684(7)	0.067(5)
C(15)	0.953(2)	0.6311(17)	-0.0485(7)	0.063(4)
C(16)	0.8671(16)	0.6160(13)	0.0221(6)	0.046(3)
C(17)	0.6568(12)	0.8028(10)	0.1519(6)	0.032(2)
C(18)	0.6422(13)	0.8918(9)	0.2064(6)	0.034(2)
C(19)	0.5397(13)	0.9589(10)	0.1874(7)	0.037(2)
C(20)	0.4560(14)	0.9401(11)	0.1160(7)	0.043(3)
C(21)	0.4742(14)	0.8554(13)	0.0609(8)	0.050(3)
C(22)	0.5721(13)	0.7841(11)	0.0772(7)	0.038(2)
C(23)	0.6428(12)	0.5460(9)	0.1753(6)	0.029(2)
C(24)	0.4776(12)	0.5208(11)	0.1821(7)	0.038(2)
C(25)	0.3736(15)	0.3982(12)	0.1939(8)	0.048(3)
C(26)	0.4326(14)	0.3013(12)	0.1973(9)	0.051(3)
C(27)	0.5994(16)	0.3236(11)	0.1884(8)	0.048(3)
C(28)	0.7001(13)	0.4448(10)	0.1807(7)	0.036(2)
Bond Lengths [Å] and Angles [°] for str0734.				

Fe(1)–C(1) 1.782(11)	Fe(1)–C(2) 1.791(8)			
Fe(1)–P(1) 2.244(3)	Fe(1)–S(1) 2.249(3)			
Fe(1)–S(2) 2.261(3)	Fe(1)–Fe(2) 2.546(2)			
Fe(2)–C(3) 1.762(11)	Fe(2)–S(4) 2.198(3)			
Fe(2)–S(3) 2.210(3)	Fe(2)–S(2) 2.256(3)			
Fe(2)–S(1) 2.258(3)	Fe(2)–Fe(3) 2.584(2)			
Fe(3)–C(6) 1.776(12)	Fe(3)–C(4) 1.799(10)			
Fe(3)–C(5) 1.802(13)	Fe(3)–S(3) 2.238(3)			
Fe(3)–S(4) 2.238(3)	Fe(3)–C(23) 1.832(10)			
P(1)–C(17) 1.834(10)	P(1)–C(11) 1.842(9)			
S(1)–C(7) 1.834(10)	S(2)–C(8) 1.819(10)			
S(3)–C(9) 1.834(11)	S(4)–C(10) 1.812(10)			
O(1)–C(1) 1.149(13)	O(2)–C(2) 1.130(11)			
O(3)–C(3) 1.151(13)	O(4)–C(4) 1.145(12)			
O(5)–C(5) 1.128(14)	O(6)–C(6) 1.147(14)			
C(7)–C(8) 1.516(13)	C(9)–C(10) 1.522(15)			
C(11)–C(16) 1.383(15)	C(11)–C(12) 1.384(16)			
C(12)–C(13) 1.388(16)	C(13)–C(14) 1.36(2)			
C(14)–C(15) 1.35(2)	C(15)–C(16) 1.377(18)			
C(17)–C(18) 1.381(14)	C(17)–C(22) 1.386(14)			
C(18)–C(19) 1.392(13)	C(19)–C(20) 1.363(16)			
C(20)–C(21) 1.363(18)	C(21)–C(22) 1.386(14)			
C(23)–C(24) 1.391(14)	C(23)–C(28) 1.395(14)			
C(24)–C(25) 1.396(17)	C(25)–C(26) 1.357(17)			
C(26)–C(27) 1.414(17)	C(27)–C(28) 1.366(16)			

Bond Angles [°] for str0734.
C(1)–Fe(1)–C(2) 95.1(5)
C(2)–Fe(1)–P(1) 90.9(3)
C(2)–Fe(1)–S(1) 164.0(3)
C(1)–Fe(1)–S(2) 159.9(3)
C(1)–Fe(1)–Fe(2) 103.66(10)
P(1)–Fe(1)–Fe(2) 104.5(3)
C(1)–Fe(1)–Fe(3) 150.27(9)
S(2)–Fe(2)–S(1) 55.59(7)
C(3)–Fe(2)–S(3) 92.3(4)
C(3)–Fe(2)–S(2) 102.1(4)
S(3)–Fe(2)–S(2) 165.54(10)
S(4)–Fe(2)–S(1) 151.29(10)
S(2)–Fe(2)–S(1) 80.33(9)
S(4)–Fe(2)–Fe(1) 144.25(9)
S(2)–Fe(2)–Fe(1) 55.80(7)
C(3)–Fe(2)–Fe(3) 135.1(3)
S(3)–Fe(2)–Fe(3) 54.98(8)
S(1)–Fe(2)–Fe(3) 99.15(8)
C(6)–Fe(3)–C(4) 100.1(5)
C(4)–Fe(3)–C(5) 91.3(5)
C(4)–Fe(3)–S(3) 90.9(3)
C(6)–Fe(3)–S(4) 100.0(4)
C(5)–Fe(3)–S(4) 91.9(4)
C(6)–Fe(3)–Fe(2) 141.5(4)
C(5)–Fe(3)–Fe(2) 109.5(4)
S(4)–Fe(3)–Fe(2) 53.65(7)
C(23)–P(1)–C(11) 104.6(5)
Bond

C(23)–P(1)–Fe(1)
C(11)–P(1)–Fe(1)
C(7)–S(1)–Fe(2)
C(8)–S(2)–Fe(2)
Fe(2)–S(2)–Fe(1)
C(9)–S(3)–Fe(3)
C(10)–S(4)–Fe(2)
Fe(2)–S(4)–Fe(3)
O(2)–C(2)–Fe(1)
O(6)–C(6)–Fe(3)
C(7)–C(8)–S(2)
C(9)–C(10)–S(4)
C(16)–C(11)–P(1)
C(11)–C(12)–C(13)
C(15)–C(14)–C(13)
C(15)–C(16)–C(11)
C(18)–C(17)–P(1)
C(17)–C(18)–C(19)
C(19)–C(20)–C(21)
C(21)–C(22)–C(17)
C(24)–C(23)–P(1)
C(23)–C(24)–C(25)
C(25)–C(26)–C(27)
Table 4. Anisotropic displacement parameters (Å\(^2\)) for str0734. The anisotropic displacement factor exponent takes the form: \(-2\pi^2[h^2a^*2U^{11} + ... + 2hka*b*U^{12}]\)

	\(U^{11}\)	\(U^{12}\)	\(U^{13}\)	\(U^{23}\)	\(U^{12}\)
Fe(1)	0.0218(6)	0.0277(7)	0.0169(6)	0.0010(5)	0.0005(5)
Fe(2)	0.0193(6)	0.0294(7)	0.0168(6)	-0.0007(5)	0.0010(5)
Fe(3)	0.0225(7)	0.0376(8)	0.0194(6)	0.0001(5)	0.0010(5)
P(1)	0.0231(11)	0.0298(12)	0.0213(11)	-0.0005(9)	0.0010(5)
S(1)	0.0238(11)	0.0319(12)	0.0224(11)	-0.0032(8)	0.0015(8)
S(2)	0.0271(11)	0.0268(11)	0.0236(11)	0.0014(8)	0.0013(9)
S(3)	0.0223(11)	0.0314(12)	0.0262(11)	-0.0028(9)	0.0015(8)
S(4)	0.0250(11)	0.0363(12)	0.0224(11)	0.0024(9)	0.0006(8)
O(1)	0.057(5)	0.035(4)	0.050(5)	0.011(4)	0.011(4)
O(2)	0.038(4)	0.067(5)	0.047(5)	-0.011(4)	0.000(4)
O(3)	0.025(4)	0.069(6)	0.041(4)	0.007(4)	0.006(3)
O(4)	0.034(4)	0.065(5)	0.053(5)	-0.002(4)	0.010(4)
O(5)	0.042(5)	0.050(5)	0.059(6)	0.006(4)	0.026(4)
O(6)	0.067(6)	0.129(9)	0.019(4)	-0.008(5)	0.009(4)
C(1)	0.029(5)	0.036(6)	0.037(5)	0.001(4)	-0.005(4)
C(2)	0.031(5)	0.034(5)	0.020(4)	-0.004(4)	0.004(4)
C(3)	0.043(6)	0.036(5)	0.025(5)	0.008(4)	0.005(4)
C(4)	0.019(4)	0.044(6)	0.024(5)	0.009(4)	0.001(3)
C(5)	0.031(6)	0.052(7)	0.055(7)	-0.002(6)	0.004(5)
C(6)	0.029(5)	0.067(8)	0.034(6)	-0.002(5)	-0.002(4)
C(7)	0.024(4)	0.036(5)	0.027(5)	0.005(4)	0.001(4)
C(8)	0.023(4)	0.031(5)	0.028(5)	0.002(4)	-0.002(4)
C(9)	0.031(5)	0.047(6)	0.039(6)	-0.006(5)	-0.010(4)
C(10)	0.025(5)	0.047(6)	0.021(4)	-0.010(4)	-0.001(4)
C(11)	0.033(5)	0.049(6)	0.019(4)	-0.001(4)	0.002(4)
C(12)	0.033(6)	0.056(7)	0.032(6)	0.000(5)	0.011(4)
C(13)	0.041(7)	0.106(12)	0.042(7)	0.023(8)	0.013(6)
C(14)	0.068(9)	0.131(15)	0.021(6)	0.025(8)	0.013(6)
C(15)	0.088(11)	0.098(12)	0.024(6)	-0.010(7)	0.000(6)
C(16)	0.060(8)	0.065(8)	0.023(5)	-0.006(5)	-0.003(5)
C(17)	0.025(5)	0.038(5)	0.034(5)	0.002(4)	-0.002(4)
C(18)	0.043(6)	0.035(5)	0.033(5)	0.006(4)	0.006(4)
C(19)	0.042(6)	0.044(6)	0.036(6)	0.013(5)	0.004(5)
C(20)	0.042(6)	0.049(7)	0.050(7)	0.010(5)	0.007(5)
C(21)	0.038(6)	0.065(8)	0.055(8)	0.016(6)	-0.004(5)
C(22)	0.037(6)	0.047(6)	0.038(6)	0.009(5)	-0.002(5)
C(23)	0.032(5)	0.035(5)	0.021(4)	0.000(4)	-0.001(4)
C(24)	0.025(5)	0.052(6)	0.037(6)	0.002(5)	0.003(4)
C(25)	0.036(6)	0.056(7)	0.055(8)	0.011(6)	-0.005(5)
C(26)	0.033(6)	0.039(6)	0.074(9)	0.010(6)	-0.001(6)
C(27)	0.057(8)	0.033(6)	0.052(7)	-0.004(5)	0.006(6)
C(28)	0.030(5)	0.034(5)	0.040(6)	-0.011(4)	0.000(4)
Table 5. Hydrogen coordinates and isotropic displacement parameters (Å²) for str0734.

x	y	z	U	
H(7A)	0.5953	0.6878	0.4364	0.032
H(7B)	0.5690	0.6838	0.3404	0.032
H(8A)	0.6046	0.5024	0.3387	0.035
H(8B)	0.6562	0.5165	0.4323	0.035
H(9A)	1.3852	0.9536	0.5121	0.047
H(9B)	1.3273	0.9391	0.6042	0.047
H(10A)	1.3352	0.7483	0.6041	0.037
H(10B)	1.3898	0.7619	0.5117	0.037
H(12A)	1.0036	0.9043	0.0860	0.048
H(13A)	1.1446	0.9289	−0.0351	0.074
H(14A)	1.1154	0.7550	−0.1168	0.080
H(15A)	0.9401	0.5607	−0.0833	0.076
H(16A)	0.7938	0.5355	0.0351	0.055
H(18A)	0.7010	0.9070	0.2561	0.041
H(19A)	0.5278	1.0193	0.2251	0.044
H(20A)	0.3853	0.9859	0.1048	0.051
H(21A)	0.4189	0.8450	0.0103	0.060
H(22A)	0.5820	0.7238	0.0389	0.045
H(24A)	0.4350	0.5877	0.1786	0.045
H(25A)	0.2613	0.3825	0.1996	0.058
H(26A)	0.3614	0.2182	0.2057	0.061
H(27A)	0.6407	0.2557	0.1877	0.058
H(28A)	0.8130	0.4608	0.1790	0.043
Table 6. Torsion angles [°] for str0734.

Bond	Torsion Angle [°]
C(1)–Fe(1)–Fe(2)–C(3)	57.6(5)
P(1)–Fe(1)–Fe(2)–C(3)	170.6(4)
S(2)–Fe(1)–Fe(2)–C(3)	119.1(4)
C(2)–Fe(1)–Fe(2)–S(4)	-29.0(4)
S(1)–Fe(1)–Fe(2)–S(4)	150.0(17)
S(1)–Fe(1)–Fe(2)–S(3)	19.8(4)
P(1)–Fe(1)–Fe(2)–S(3)	-111.97(19)
S(2)–Fe(1)–Fe(2)–S(3)	-163.50(13)
C(2)–Fe(1)–Fe(2)–S(2)	-76.2(3)
S(1)–Fe(1)–Fe(2)–S(2)	102.80(11)
P(1)–Fe(1)–Fe(2)–S(2)	-179.0(3)
S(2)–Fe(1)–Fe(2)–S(1)	-102.80(11)
C(2)–Fe(1)–Fe(2)–Fe(3)	-150.3(4)
S(1)–Fe(1)–Fe(2)–Fe(3)	28.72(15)
C(3)–Fe(2)–Fe(3)–C(6)	-0.7(8)
S(3)–Fe(2)–Fe(3)–C(6)	-51.4(7)
S(1)–Fe(2)–Fe(3)–C(6)	-139.2(7)
C(3)–Fe(2)–Fe(3)–C(4)	129.8(6)
S(3)–Fe(2)–Fe(3)–C(4)	79.2(4)
S(1)–Fe(2)–Fe(3)–C(4)	-8.6(4)
C(3)–Fe(2)–Fe(3)–C(5)	-132.9(6)
S(3)–Fe(2)–Fe(3)–C(5)	176.4(4)
S(1)–Fe(2)–Fe(3)–C(5)	88.6(4)
C(3)–Fe(2)–Fe(3)–S(3)	50.7(5)
S(2)–Fe(2)–Fe(3)–S(3)	-171.05(11)
Fe(1)–Fe(2)–Fe(3)–S(3)	-111.39(16)
S(3)–Fe(2)–Fe(3)–S(4)	-106.11(12)
S(1)–Fe(2)–Fe(3)–S(4)	166.13(11)
C(1)–Fe(1)–P(1)–C(23)	-177.8(5)
S(1)–Fe(1)–P(1)–C(23)	-85.9(4)
Fe(2)–Fe(1)–P(1)–C(23)	-44.4(4)
C(2)–Fe(1)–P(1)–C(17)	-148.9(5)
C(2)–Fe(1)–P(1)–C(17)	121.5(4)
S(1)–Fe(1)–P(1)–C(11)	64.2(5)
S(1)–Fe(1)–P(1)–C(11)	156.2(4)
Fe(2)–Fe(1)–P(1)–C(11)	-162.3(4)
C(2)–Fe(1)–S(1)–C(7)	-96.5(12)
S(2)–Fe(1)–S(1)–C(7)	-45.3(3)
C(1)–Fe(1)–S(1)–Fe(2)	-107.3(3)
P(1)–Fe(1)–S(1)–Fe(2)	156.56(9)
C(3)–Fe(2)–S(1)–C(7)	142.5(5)
S(3)–Fe(2)–S(1)–C(7)	-123.4(3)
Fe(1)–Fe(2)–S(1)–C(7)	98.4(3)
C(3)–Fe(2)–S(1)–Fe(1)	44.1(4)
S(3)–Fe(2)–S(1)–Fe(1)	138.23(9)
S(3)–Fe(2)–S(1)–Fe(1)	-166.71(7)
S(4)–Fe(2)–S(2)–C(8)	104.2(3)
S(1)–Fe(2)–S(2)–C(8)	-46.8(3)
Fe(3)–Fe(2)–S(2)–C(8)	49.1(3)
S(4)–Fe(2)–S(2)–Fe(1)	-154.39(9)
Bond	Angle (°)
-------------------------	------------
S(1)–Fe(2)–S(2)–Fe(1)	54.56(8)
C(1)–Fe(1)–S(2)–C(8)	106.5(10)
P(1)–Fe(1)–S(2)–C(8)	−59.3(3)
Fe(2)–Fe(1)–S(2)–C(8)	97.2(3)
C(2)–Fe(1)–S(2)–Fe(2)	112.8(3)
S(1)–Fe(1)–S(2)–Fe(2)	−54.85(8)
S(4)–Fe(2)–S(3)–C(9)	44.9(4)
S(1)–Fe(2)–S(3)–C(9)	−163.5(4)
Fe(2)–Fe(1)–S(2)–C(8)	9.3(10)
C(2)–Fe(2)–S(3)–Fe(3)	5.0(5)
S(1)–Fe(2)–S(3)–Fe(3)	98.78(9)
Fe(3)–Fe(2)–S(3)–Fe(3)	97.7(4)
S(5)–Fe(3)–S(3)–C(9)	50.5(5)
Fe(2)–Fe(3)–S(3)–C(9)	52.64(9)
C(6)–Fe(3)–S(3)–C(9)	−111.9(13)
Fe(2)–Fe(3)–S(3)–Fe(2)	−100.1(4)
C(4)–Fe(3)–S(3)–Fe(2)	−109.2(3)
S(4)–Fe(3)–S(3)–Fe(2)	51.71(8)
S(3)–Fe(3)–S(3)–C(10)	−45.2(3)
S(1)–Fe(2)–S(3)–C(10)	−127.3(4)
Fe(3)–Fe(2)–S(4)–C(10)	−97.8(3)
S(3)–Fe(2)–S(4)–Fe(3)	52.64(9)
S(1)–Fe(2)–S(4)–Fe(3)	−29.5(2)
C(6)–Fe(3)–S(4)–C(10)	−49.2(5)
C(5)–Fe(3)–S(4)–C(10)	−147.3(5)
Fe(2)–Fe(3)–S(4)–C(10)	99.7(4)
C(4)–Fe(3)–S(4)–C(10)	14.3(9)
S(3)–Fe(3)–S(4)–Fe(2)	−52.02(8)
P(1)–Fe(1)–C(1)–O(1)	−176.100
S(2)–Fe(1)–C(1)–O(1)	18.25
C(1)–Fe(1)–C(2)–O(2)	158.22
S(1)–Fe(1)–C(2)–O(2)	48.23
S(2)–Fe(1)–C(2)–O(2)	51.22
S(3)–Fe(2)–C(3)–O(3)	44.5
S(1)–Fe(2)–C(3)–O(3)	139.4
Fe(3)–Fe(2)–C(3)–O(3)	5.0
C(5)–Fe(3)–C(4)–O(4)	63.21
S(4)–Fe(3)–C(4)–O(4)	161.21
C(6)–Fe(3)–C(5)–O(5)	62.44
S(3)–Fe(3)–C(5)–O(5)	−135.43
Fe(2)–Fe(3)–C(5)–O(5)	−145.44
C(5)–Fe(3)–C(6)–O(6)	117.23
S(4)–Fe(3)–C(6)–O(6)	23.23
Fe(1)–S(1)–C(7)–C(8)	41.0(7)
S(1)–C(7)–C(8)–S(2)	−7.8(9)
Fe(1)–S(2)–C(8)–C(7)	−28.7(7)
Fe(3)–S(3)–C(9)–C(10)	36.8(6)
Fe(2)–S(4)–C(10)–C(9)	36.1(8)
C(23)–P(1)–C(11)–C(16)	−7.0(10)
Fe(1)–P(1)–C(11)–C(16)	116.0(9)
C(17)–P(1)–C(11)–C(12)	66.1(9)
C(16)–C(11)–C(12)–C(13)	−1.3(16)
C(11)–C(12)–C(13)–C(14)	−0.6(19)
C(13)–C(14)–C(15)–C(16)	−1(2)
C(12)–C(11)–C(16)–C(15) 2.2(17) P(1)–C(11)–C(16)–C(15) −177.2(10)
C(23)–P(1)–C(17)–C(18) 116.5(9) C(11)–P(1)–C(17)–C(18) −135.5(9)
Fe(1)–P(1)–C(17)–C(18) −12.1(10) C(23)–P(1)–C(17)–C(22) −64.0(9)
C(11)–P(1)–C(17)–C(22) 44.0(9) Fe(1)–P(1)–C(17)–C(22) 167.4(7)
C(22)–C(17)–C(18)–C(19) 1.9(16) P(1)–C(17)–C(18)–C(19) −178.6(8)
C(17)–C(18)–C(19)–C(20) −1.0(17) C(18)–C(19)–C(20)–C(21) −1.1(18)
C(19)–C(20)–C(21)–C(22) 2.4(19) C(20)–C(21)–C(22)–C(17) −1.5(18)
C(18)–C(17)–C(22)–C(21) 0.7(16) P(1)–C(17)–C(22)–C(21) 179.8(9)
C(17)–P(1)–C(23)–C(24) −15.1(10) C(11)–P(1)–C(23)–C(24) −120.0(9)
Fe(1)–P(1)–C(23)–C(24) 118.0(8) C(17)–P(1)–C(23)–C(28) 172.7(8)
C(11)–P(1)–C(23)–C(28) 67.8(9) Fe(1)–P(1)–C(23)–C(28) −54.2(9)
C(28)–C(23)–C(24)–C(25) 0.1(16) P(1)–C(23)–C(24)–C(25) −172.3(9)
C(23)–C(24)–C(25)–C(26) −1.4(19) C(24)–C(25)–C(26)–C(27) 0(2)
C(25)–C(26)–C(27)–C(28) 3(2) C(26)–C(27)–C(28)–C(23) −4.9(18)
C(24)–C(23)–C(28)–C(27) 3.1(16) P(1)–C(23)–C(28)–C(27) 175.7(9)
Table 1. Crystal data and structure refinement for str0732 (3).

Identification code	str0732
Chemical formula	C\(_{50}\)H\(_{38}\)Fe\(_3\)O\(_{5.50}\)P\(_2\)S\(_4\)
Formula weight	1084.53
Temperature	150(2) K
Radiation, wavelength	MoK\(\alpha\), 0.71073 Å
Crystal system, space group	orthorhombic, C2/c
Unit cell parameters	\(a = 25.520(16) \text{ Å}\) \(\alpha = 90^\circ\) \(\beta = 94.720(10)^\circ\) \(\gamma = 90^\circ\)
Cell volume	10360(11) Å\(^3\)
Z	8
Calculated density	1.391 g/cm\(^3\)
Absorption coefficient \(\mu\)	1.096 mm\(^{-1}\)
F(000)	4432
Crystal colour and size	red, 0.22 × 0.10 × 0.05 mm\(^3\)
Data collection method	Bruker SMART APEX diffractometer
\(\theta\) range for data collection	2.22 to 28.31°
Index ranges	\(h = -32 \text{ to 33, } k = -17 \text{ to 17, } l = -39 \text{ to 39}\)
Completeness to \(\theta = 26.00^\circ\)	99.1 %
Reflections collected	41674
Independent reflections	12131 (R\(_{int}\) = 0.2646)
Reflections with \(\text{Fo}^2>2\sigma\)	5012
Absorption correction	semi-empirical from equivalents
Min. and max. transmission	0.7945 and 0.9472
Structure solution	direct methods
Refinement method	Full-matrix least-squares on \(\text{Fo}^2\)
Weighting parameters a, b	0.0984, 0.0000
Data / restraints / parameters	12131 / 0 / 581
Final R indices \([\text{Fo}^2>2\sigma]\)	R1 = 0.1027, wR2 = 0.2069
R indices (all data)	R1 = 0.2394, wR2 = 0.2551
Goodness-of-fit on \(\text{Fo}^2\)	0.960
Extinction coefficient	0.0092(4)
Largest and mean shift/su	0.000 and 0.000
Largest diff. peak and hole	1.051 and −0.631 e Å\(^{-3}\)
Table 2. Atomic coordinates and equivalent isotropic displacement parameters (Å2) for str0732. U_{eq} is defined as one third of the trace of the orthogonalized U^{ij} tensor.

	x	y	z	U_{eq}
Fe(1)	0.12442(4)	0.27778(9)	0.14586(4)	0.0394(4)
Fe(2)	0.14810(4)	0.45862(9)	0.13345(4)	0.0406(4)
Fe(3)	0.13819(4)	0.61971(9)	0.08961(4)	0.0398(4)
P(1)	0.12235(8)	0.13768(16)	0.18617(7)	0.0377(5)
P(2)	0.10912(8)	0.70490(17)	0.19108(7)	0.0442(6)
S(1)	0.20526(8)	0.34334(17)	0.15897(8)	0.0461(6)
S(2)	0.10574(8)	0.40396(17)	0.19108(7)	0.0442(6)
S(3)	0.07318(8)	0.50690(17)	0.09584(8)	0.0445(6)
S(4)	0.17740(8)	0.48029(16)	0.06520(8)	0.0440(6)
O(1)	0.0127(2)	0.2662(5)	0.1141(2)	0.0544(16)
O(2)	0.1603(3)	0.1924(5)	0.0649(2)	0.0628(18)
O(3)	0.2041(3)	0.7025(5)	0.1522(2)	0.0561(17)
O(4)	0.0904(2)	0.7525(5)	0.1522(2)	0.0561(17)
O(5)	0.2423(2)	0.7139(5)	0.0954(2)	0.0561(17)
C(1)	0.0565(4)	0.2713(6)	0.1274(3)	0.043(2)
C(2)	0.1450(3)	0.2239(7)	0.0964(3)	0.047(2)
C(3)	0.1800(4)	0.5544(7)	0.1641(3)	0.055(2)
C(4)	0.1093(3)	0.7025(7)	0.1270(3)	0.045(2)
C(5)	0.2009(3)	0.6811(6)	0.0933(3)	0.043(2)
C(6)	0.2109(3)	0.3650(7)	0.2187(3)	0.052(2)
C(7)	0.1596(4)	0.4017(7)	0.2356(3)	0.054(2)
C(8)	0.0714(3)	0.4398(7)	0.0421(3)	0.050(2)
C(9)	0.1260(3)	0.4232(7)	0.0271(3)	0.046(2)
C(10)	0.0660(3)	0.0579(6)	0.1687(3)	0.041(2)
C(11)	0.0307(4)	0.0231(8)	0.1978(3)	0.065(3)
C(12)	−0.0088(5)	−0.0383(9)	0.1840(4)	0.096(5)
C(13)	−0.0164(4)	−0.0667(8)	0.1395(4)	0.070(3)
C(14)	0.0181(4)	−0.0336(7)	0.1100(3)	0.052(2)
C(15)	0.0592(4)	0.0284(7)	0.1252(3)	0.055(2)
C(16)	0.1767(3)	0.0497(6)	0.1827(3)	0.040(2)
C(17)	0.2258(3)	0.0849(7)	0.1753(3)	0.048(2)
C(18)	0.2677(4)	0.0172(8)	0.1709(3)	0.061(3)
C(19)	0.2586(4)	−0.0837(8)	0.1724(3)	0.059(3)
C(20)	0.2093(4)	−0.1190(7)	0.1805(3)	0.054(3)
C(21)	0.1683(4)	−0.0519(7)	0.1855(3)	0.051(2)
C(22)	0.1181(3)	0.1554(6)	0.2452(3)	0.044(2)
C(23)	0.1569(4)	0.1231(7)	0.2772(3)	0.056(2)
C(24)	0.1540(5)	0.1450(9)	0.3226(4)	0.080(3)
C(25)	0.1117(5)	0.2008(9)	0.3351(4)	0.077(3)
C(26)	0.0723(4)	0.2300(8)	0.3046(4)	0.065(3)
C(27)	0.0767(4)	0.2090(7)	0.2598(3)	0.054(2)
C(28)	0.1143(3)	0.6397(6)	−0.0241(3)	0.042(2)
C(29)	0.1650(3)	0.6144(6)	−0.0365(3)	0.041(2)
C(30)	0.1697(4)	0.5595(7)	−0.0740(3)	0.054(2)
C(31)	0.1249(3)	0.5302(7)	−0.1011(3)	0.053(2)
C(32)	0.0758(3)	0.5557(7)	−0.0889(3)	0.057(3)
C(33)	0.0707(3)	0.6108(7)	−0.0515(3)	0.045(2)
C(34)	0.0408(3)	0.7497(6)	0.0246(3)	0.042(2)
C(35)	0.0242(4)	0.8252(7)	−0.0048(3)	0.054(2)
---	---	---	---	---
C(36)	-0.0264(4)	0.8604(7)	-0.0083(3)	0.056(3)
C(37)	-0.0628(4)	0.8196(7)	0.0186(3)	0.054(2)
C(38)	-0.0476(3)	0.7446(7)	0.0484(3)	0.048(2)
C(39)	0.0036(3)	0.7100(7)	0.0523(3)	0.047(2)
C(40)	0.1445(3)	0.8207(6)	0.0207(3)	0.042(2)
C(41)	0.1551(3)	0.8822(7)	0.0582(3)	0.051(2)
C(42)	0.1821(4)	0.9711(7)	0.0537(4)	0.058(3)
C(43)	0.2004(4)	0.9973(7)	0.0146(4)	0.056(3)
C(44)	0.1918(4)	0.9388(7)	-0.0221(4)	0.059(3)
C(45)	0.1641(3)	0.8489(7)	-0.0191(3)	0.054(2)
C(46)	0.2049(13)	0.203(3)	-0.0754(13)	0.138(14)
C(47)	0.1634(4)	0.1235(10)	-0.1074(4)	0.089(4)
C(48)	0.1943(5)	0.3085(10)	-0.0743(6)	0.086(4)
C(49)	0.1998(6)	0.2672(15)	-0.0425(7)	0.118(6)
C(50)	0.1530(6)	0.2277(14)	-0.1371(8)	0.180(10)
O(6)	0.076(2)	0.344(4)	-0.2145(18)	0.34(3)
C(51)	0.029(3)	0.395(6)	-0.218(2)	0.32(4)
Table 3. Bond lengths [Å] and angles [°] for str0732.

Bond	Length [Å]	Bond	Length [Å]
Fe(1)–C(1)	1.778(9)	Fe(1)–C(2)	1.779(11)
Fe(1)–S(1)	2.249(3)	Fe(1)–P(1)	2.250(3)
Fe(1)–S(2)	2.257(3)	Fe(1)–Fe(2)	2.547(2)
Fe(2)–C(3)	1.751(10)	Fe(2)–S(1)	2.226(3)
Fe(2)–S(3)	2.239(3)	Fe(2)–S(2)	2.248(3)
Fe(2)–S(4)	2.269(3)	Fe(2)–Fe(3)	2.546(2)
Fe(3)–C(4)	1.790(11)	Fe(3)–C(5)	1.797(9)
Fe(3)–P(2)	2.251(3)	Fe(3)–S(3)	2.270(3)
Fe(3)–S(4)	2.281(3)	P(1)–C(22)	1.810(9)
P(1)–C(16)	1.835(9)	P(1)–C(10)	1.837(8)
P(2)–C(28)	1.828(9)	P(2)–C(40)	1.829(8)
P(2)–C(34)	1.840(8)	S(1)–C(6)	1.822(9)
S(2)–C(7)	1.844(9)	S(3)–C(8)	1.855(9)
S(4)–C(9)	1.840(8)	O(1)–C(1)	1.115(9)
O(2)–C(2)	1.139(10)	O(3)–C(3)	1.173(10)
O(4)–C(4)	1.151(10)	O(5)–C(5)	1.141(9)
C(6)–C(7)	1.526(13)	C(8)–C(9)	1.516(12)
C(10)–C(15)	1.372(11)	C(10)–C(11)	1.391(12)
C(11)–C(12)	1.344(14)	C(12)–C(13)	1.396(15)
C(13)–C(14)	1.377(13)	C(14)–C(15)	1.390(12)
C(16)–C(17)	1.374(12)	C(16)–C(21)	1.390(12)
C(17)–C(18)	1.422(12)	C(18)–C(19)	1.381(14)
C(19)–C(20)	1.386(13)	C(20)–C(21)	1.399(12)
C(22)–C(27)	1.381(12)	C(22)–C(23)	1.397(12)
C(23)–C(24)	1.411(13)	C(24)–C(25)	1.392(15)
C(25)–C(26)	1.365(15)	C(26)–C(27)	1.397(13)
C(28)–C(33)	1.387(11)	C(28)–C(29)	1.416(11)
C(29)–C(30)	1.366(12)	C(30)–C(31)	1.408(12)
C(31)–C(32)	1.377(12)	C(32)–C(33)	1.368(12)
C(34)–C(35)	1.394(12)	C(34)–C(39)	1.419(11)
C(35)–C(36)	1.372(12)	C(36)–C(37)	1.397(13)
C(37)–C(38)	1.386(13)	C(38)–C(39)	1.385(12)
C(40)–C(45)	1.390(12)	C(40)–C(41)	1.413(12)
C(41)–C(42)	1.396(12)	C(42)–C(43)	1.352(13)
C(43)–C(44)	1.364(13)	C(44)–C(45)	1.410(13)
C(46)–C(49)	1.33(4)	C(46)–C(48)	1.45(4)
C(46)–C(47)	1.74(4)	C(47)–C(50)	1.68(2)
C(48)–C(49)	1.107(19)	O(6)–C(51)	1.37(8)

Angular Data:

Bond	Angle [°]
C(1)–Fe(1)–C(2)	93.7(4)
C(1)–Fe(1)–S(1)	88.7(3)
C(1)–Fe(1)–P(1)	97.6(3)
C(1)–Fe(1)–S(2)	88.8(3)
S(1)–Fe(1)–S(2)	80.42(9)
C(1)–Fe(1)–Fe(2)	103.7(3)
S(1)–Fe(1)–Fe(2)	54.86(7)
S(2)–Fe(1)–Fe(2)	55.39(7)
C(3)–Fe(2)–S(3)	113.2(3)
C(3)–Fe(2)–S(2)	93.8(3)
S(3)–Fe(2)–S(2)	92.48(10)
S(2)–Fe(2)–S(4)	98.56(10)
S(2)–Fe(2)–Fe(3)	164.03(10)
S(1)–Fe(2)–Fe(3)	144.12(8)

C(1)–Fe(1)–C(2) 158.5(3)
C(1)–Fe(1)–S(1) 93.6(3)
C(1)–Fe(1)–P(1) 107.27(9)
C(1)–Fe(1)–S(2) 155.2(3)
C(1)–Fe(1)–Fe(2) 100.2(3)
S(1)–Fe(1)–S(2) 106.85(10)
C(1)–Fe(1)–Fe(2) 100.2(3)
S(1)–Fe(1)–Fe(2) 154.11(8)
S(2)–Fe(1)–Fe(2) 94.0(3)
C(3)–Fe(2)–S(3) 152.48(10)
C(3)–Fe(2)–S(2) 81.14(10)
C(3)–Fe(2)–S(4) 102.2(3)
S(3)–Fe(2)–S(4) 80.39(10)
C(3)–Fe(2)–Fe(3) 70.6(3)
S(3)–Fe(2)–Fe(3) 56.21(7)
Bond	Angle (°)				
S(2)–Fe(2)–Fe(3)	130.48(8)				
C(3)–Fe(2)–Fe(1)	137.3(3)				
S(3)–Fe(2)–Fe(1)	98.63(8)				
S(4)–Fe(2)–Fe(1)	110.91(8)				
C(4)–Fe(3)–C(5)	94.9(4)				
C(5)–Fe(3)–P(2)	92.7(3)				
C(5)–Fe(3)–S(3)	163.1(3)				
C(4)–Fe(3)–S(4)	158.9(3)				
P(2)–Fe(3)–S(4)	106.18(10)				
C(4)–Fe(3)–Fe(2)	103.5(3)				
C(5)–Fe(3)–C(10)	118.7(6)				
C(9)–C(10)–C(11)	118.0(8)				
C(11)–C(10)–P(1)	123.2(7)				
C(11)–C(12)–C(13)	120.6(10)				
C(13)–C(14)–C(15)	119.2(9)				
C(17)–C(16)–C(21)	119.8(8)				
C(21)–C(16)–P(1)	120.9(7)				
C(19)–C(18)–C(17)	119.9(9)				
C(19)–C(20)–C(21)	119.6(9)				
C(27)–C(22)–C(23)	117.4(9)				
C(23)–C(22)–P(1)	123.0(7)				
C(25)–C(24)–C(23)	118.7(10)				
C(25)–C(26)–C(27)	118.7(10)				
C(33)–C(28)–C(29)	118.7(8)				
C(29)–C(28)–P(2)	118.66(3)				
C(29)–C(30)–C(31)	120.7(8)				
C(33)–C(32)–C(31)	120.5(8)				
C(35)–C(34)–C(39)	117.9(8)				
C(39)–C(34)–P(2)	121.0(6)				
C(35)–C(36)–C(37)	118.9(9)				
C(39)–C(38)–C(37)	120.8(8)				
C(45)–C(40)–C(41)	118.3(8)				
C(41)–C(40)–P(2)	117.5(7)				
C(43)–C(42)–C(41)	121.2(9)				
C(43)–C(44)–C(45)	119.5(9)				
C(49)–C(46)–C(48)	46.6(16)				
C(48)–C(46)–C(47)	121(2)				
C(49)–C(48)–C(46)	61.1(18)				
Atom	U^{11}	U^{12}	U^{13}	U^{14}	U^{15}
------	----------	----------	----------	----------	----------
Fe(1)	0.0420(7)	0.0407(7)	0.0348(7)	0.0011(6)	-0.0011(5)
Fe(2)	0.0442(7)	0.0406(8)	0.0358(8)	0.0028(6)	-0.0042(5)
Fe(3)	0.0417(7)	0.0402(7)	0.0368(8)	0.0021(6)	-0.0002(5)
P(1)	0.0504(12)	0.0400(13)	0.0323(13)	0.0021(10)	0.0010(9)
P(2)	0.0407(12)	0.0440(14)	0.0340(13)	0.0016(10)	-0.0020(10)
S(1)	0.0466(12)	0.0471(14)	0.0431(14)	0.0028(11)	-0.0054(10)
S(2)	0.0512(13)	0.0471(14)	0.0333(13)	0.0012(10)	-0.0025(10)
S(3)	0.0458(12)	0.0455(14)	0.0408(14)	0.0056(10)	-0.0039(10)
S(4)	0.0470(12)	0.0413(13)	0.0430(14)	0.0027(10)	-0.0006(10)
O(1)	0.0444(4)	0.0574(5)	0.0604(5)	0.0093	-0.0083
O(2)	0.0845(5)	0.0584(5)	0.0484	-0.0034	0.0134
O(3)	0.0755(5)	0.0504(5)	0.0484	0.0023	-0.0143
O(4)	0.0564(5)	0.0665(5)	0.0494	-0.0113	0.0103
O(5)	0.0544(5)	0.0574(5)	0.0564	-0.0083	-0.0033
O(6)	0.0556(5)	0.0375(5)	0.0365	0.0024	-0.0034
O(7)	0.0455(5)	0.0435(5)	0.0516	0.0105	-0.0044
O(8)	0.0736(6)	0.0546(5)	0.0386	0.0065	0.0005
O(9)	0.0354(5)	0.0546(5)	0.0436	0.0055	-0.0104
O(10)	0.0495(5)	0.0405(5)	0.0395	-0.0024	-0.0024
O(11)	0.0515(5)	0.0536(6)	0.0496	0.0125	-0.0124
O(12)	0.0636(6)	0.0616(7)	0.0366	0.0050	-0.0044
O(13)	0.0555(5)	0.0536(5)	0.0406	0.0034	-0.0054
O(14)	0.0606(5)	0.0425(5)	0.0365	0.0024	-0.0014
O(15)	0.0475(5)	0.0415(5)	0.0335	0.0004	0.0004
O(16)	0.0707(7)	0.0798(5)	0.0496	-0.0215	0.0175
O(17)	0.1111(10)	0.1011(10)	0.0859	-0.0458	0.0668
O(18)	0.0636(6)	0.0699(7)	0.0778	-0.0156	0.0106
O(19)	0.0616(6)	0.0516(6)	0.0416	-0.0034	-0.0105
O(20)	0.0666(6)	0.0446(6)	0.0547	0.0035	0.0055
O(21)	0.0555(5)	0.0365(5)	0.0295	0.0024	-0.0034
O(22)	0.0596(5)	0.0506(5)	0.0355	0.0144	0.0034
O(23)	0.0566(6)	0.0838(5)	0.0456	0.0185	0.0025
O(24)	0.0647(6)	0.0567(6)	0.0547	0.0005	-0.0075
O(25)	0.0727(7)	0.0436(6)	0.0436	-0.0044	-0.0165
O(26)	0.0586(5)	0.0466(5)	0.0476	0.0045	-0.0094
O(27)	0.0495(5)	0.0425(5)	0.0436	0.0024	0.0044
O(28)	0.0636(5)	0.0627(6)	0.0416	-0.0045	-0.0105
O(29)	0.0878(5)	0.1051(9)	0.0447	0.0076	-0.0136
O(30)	0.0879(9)	0.0981(10)	0.0477	-0.0176	0.0126
O(31)	0.0596(5)	0.0808(8)	0.0557	-0.0076	0.0095
O(32)	0.0586(5)	0.0606(6)	0.0436	-0.0075	0.0095
O(33)	0.0545(5)	0.0425(5)	0.0395	0.0034	0.0054
O(34)	0.0395(5)	0.0495(5)	0.0375	0.0034	0.0064
O(35)	0.0505(5)	0.0586(6)	0.0557	-0.0045	0.0155
O(36)	0.0546(5)	0.0757(6)	0.0295	-0.0145	0.0004
O(37)	0.0455(5)	0.0757(6)	0.0496	-0.0155	-0.0054
O(38)	0.0455(5)	0.0586(6)	0.0335	0.0024	0.0064

Table 4. Anisotropic displacement parameters (\AA^2) for str0732. The anisotropic displacement factor exponent takes the form: $-2\pi^2[h^2a^2U^{11} + \ldots + 2hka*b*U^{12}]$.
C(34)	0.046(5)	0.045(5)	0.033(5)	−0.004(4)	−0.002(4)	−0.004(4)
C(35)	0.056(6)	0.071(7)	0.034(5)	0.010(5)	−0.004(4)	−0.007(5)
C(36)	0.067(7)	0.058(7)	0.041(6)	0.002(5)	−0.010(5)	0.018(5)
C(37)	0.052(6)	0.058(6)	0.049(6)	−0.006(5)	−0.013(5)	0.002(4)
C(38)	0.040(5)	0.061(6)	0.043(6)	0.002(5)	0.002(4)	−0.002(4)
C(39)	0.058(6)	0.048(6)	0.032(5)	0.003(4)	−0.010(4)	−0.006(4)
C(40)	0.049(5)	0.032(5)	0.043(6)	0.003(4)	−0.001(4)	−0.003(4)
C(41)	0.054(5)	0.046(6)	0.049(6)	0.006(5)	−0.008(4)	0.007(4)
C(42)	0.066(6)	0.037(6)	0.068(7)	−0.001(5)	−0.009(5)	−0.008(4)
C(43)	0.058(6)	0.045(6)	0.068(7)	0.004(5)	0.009(5)	−0.006(4)
C(44)	0.053(6)	0.062(7)	0.063(7)	0.001(6)	0.009(5)	−0.003(5)
C(46)	0.10(2)	0.18(4)	0.12(3)	−0.04(3)	−0.02(2)	0.03(2)
C(47)	0.067(7)	0.119(11)	0.079(9)	0.003(8)	0.002(6)	0.008(7)
C(48)	0.073(8)	0.076(10)	0.111(12)	0.014(9)	0.011(8)	−0.006(7)
C(49)	0.086(10)	0.112(14)	0.161(18)	0.037(13)	0.038(11)	−0.008(9)
C(50)	0.075(10)	0.159(17)	0.32(3)	0.053(18)	0.094(14)	0.018(10)
Table 5. Hydrogen coordinates and isotropic displacement parameters (Å2) for str0732.

	x	y	z	U
H(6A)	0.2215	0.3025	0.2342	0.062
H(6B)	0.2388	0.4147	0.2260	0.062
H(7A)	0.1649	0.4693	0.2480	0.065
H(7B)	0.1498	0.3578	0.2599	0.065
H(8A)	0.0540	0.3749	0.0452	0.060
H(8B)	0.0503	0.4784	0.0192	0.060
H(9A)	0.1277	0.4516	-0.0029	0.056
H(9B)	0.1327	0.3511	0.0253	0.056
H(11A)	0.0347	0.0430	0.2281	0.078
H(12A)	-0.0317	-0.0626	0.2047	0.115
H(13A)	-0.0451	-0.1084	0.1297	0.083
H(14A)	0.0138	-0.0530	0.0797	0.062
H(15A)	0.0831	0.0508	0.1049	0.066
H(17A)	0.2316	0.1543	0.1732	0.058
H(18A)	0.3020	0.0413	0.1669	0.073
H(19A)	0.2862	-0.1289	0.1680	0.070
H(20A)	0.2033	-0.1883	0.1825	0.065
H(21A)	0.1345	-0.0761	0.1910	0.062
H(23A)	0.1858	0.0857	0.2683	0.067
H(24A)	0.1803	0.1222	0.3443	0.096
H(25A)	0.1103	0.2189	0.3653	0.092
H(26A)	0.0423	0.2639	0.3137	0.077
H(27A)	0.0502	0.2327	0.2384	0.064
H(29A)	0.1955	0.6356	-0.0189	0.050
H(30A)	0.2036	0.5408	-0.0818	0.065
H(31A)	0.1284	0.4935	-0.1275	0.063
H(32A)	0.0453	0.5347	-0.1066	0.068
H(33A)	0.0366	0.6297	-0.0441	0.054
H(35A)	0.0489	0.8534	-0.0230	0.065
H(36A)	-0.0366	0.9118	-0.0288	0.067
H(37A)	-0.0980	0.8433	0.0166	0.065
H(38A)	-0.0727	0.7166	0.0663	0.058
H(39A)	0.0139	0.6600	0.0733	0.056
H(41A)	0.1440	0.8631	0.0862	0.061
H(42A)	0.1878	1.0140	0.0786	0.069
H(43A)	0.2195	1.0574	0.0127	0.068
H(44A)	0.2044	0.9584	-0.0495	0.071
H(45A)	0.1587	0.8073	-0.0444	0.064
Table 6. Torsion angles [°] for str0732.

Bond Sequence	Torsion Angle [°]
C(1)–Fe(1)–Fe(2)–C(3)	130.4(6)
S(1)–Fe(1)–Fe(2)–C(3)	−52.1(5)
S(2)–Fe(1)–Fe(2)–C(3)	51.7(5)
C(2)–Fe(1)–Fe(2)–S(1)	−81.1(3)
S(2)–Fe(1)–Fe(2)–S(1)	103.8(11)
C(2)–Fe(1)–Fe(2)–S(1)	88.0(3)
P(1)–Fe(1)–Fe(2)–S(1)	−139.14(18)
C(1)–Fe(1)–Fe(2)–S(2)	78.7(3)
S(1)–Fe(1)–Fe(2)–S(2)	−103.80(11)
C(1)–Fe(1)–Fe(2)–S(4)	−91.4(3)
S(1)–Fe(1)–Fe(2)–S(4)	86.14(11)
S(2)–Fe(2)–Fe(3)–C(3)	44.2(4)
S(4)–Fe(2)–Fe(3)–C(3)	−176.0(3)
S(4)–Fe(2)–Fe(3)–C(5)	−178.1(3)
S(4)–Fe(2)–Fe(3)–C(5)	−76.2(3)
C(3)–Fe(2)–Fe(3)–P(2)	178.1(4)
S(3)–Fe(2)–Fe(3)–P(2)	−44.14(18)
S(4)–Fe(2)–Fe(3)–P(2)	57.77(18)
C(3)–Fe(2)–Fe(3)–S(3)	−137.7(4)
C(3)–Fe(2)–Fe(3)–S(3)	−59.83(12)
Fe(1)–Fe(2)–Fe(3)–S(3)	31.37(15)
S(1)–Fe(2)–Fe(3)–S(4)	51.68(15)
S(2)–Fe(2)–Fe(3)–S(4)	−161.74(12)
C(1)–Fe(1)–P(1)–C(22)	−99.8(4)
S(1)–Fe(1)–P(1)–C(22)	75.0(3)
Fe(2)–Fe(1)–P(1)–C(22)	32.7(4)
C(2)–Fe(1)–P(1)–C(16)	42.3(4)
S(2)–Fe(1)–P(1)–C(16)	−133.7(3)
C(1)–Fe(1)–P(1)–C(10)	20.3(4)
S(1)–Fe(1)–P(1)–C(10)	−164.9(3)
Fe(2)–Fe(1)–P(1)–C(10)	152.8(3)
C(5)–Fe(3)–P(2)–C(28)	98.1(4)
C(4)–Fe(3)–P(2)–C(40)	74.1(4)
S(3)–Fe(3)–P(2)–C(40)	166.5(3)
Fe(2)–Fe(3)–P(2)–C(40)	−157.8(3)
C(5)–Fe(3)–P(2)–C(34)	−138.8(4)
S(4)–Fe(3)–P(2)–C(34)	131.2(3)
C(3)–Fe(2)–S(1)–C(6)	47.8(4)
S(2)–Fe(2)–S(1)–C(6)	−45.4(3)
Fe(3)–Fe(2)–S(1)–C(6)	109.5(3)
C(3)–Fe(2)–S(1)–Fe(1)	147.5(3)
S(2)–Fe(2)–S(1)–Fe(1)	54.33(8)
Fe(3)–Fe(2)–S(1)–Fe(1)	−150.76(13)
C(2)–Fe(1)–S(1)–C(6)	−157.4(4)

49
Bond	Distance (Å)	Bond	Distance (Å)
S(2)–Fe(1)–S(1)–C(6)	45.0(3)	Fe(2)–Fe(1)–S(1)–C(6)	99.2(3)
C(1)–Fe(1)–S(1)–Fe(2)	67.8	C(2)–Fe(1)–S(1)–Fe(2)	103.4(3)
P(1)–Fe(1)–S(1)–Fe(2)	−158.95(9)	S(2)–Fe(1)–S(1)–Fe(2)	−54.15(8)
C(3)–Fe(2)–S(2)–C(7)	−46.6(5)	S(1)–Fe(2)–S(2)–C(7)	46.9(3)
S(3)–Fe(2)–S(2)–C(7)	−160.1(3)	S(4)–Fe(2)–S(2)–C(7)	137.1(4)
Fe(3)–Fe(2)–S(2)–Fe(1)	−114.1(3)	Fe(1)–Fe(2)–S(2)–C(7)	101.2(3)
C(3)–Fe(2)–S(2)–Fe(1)	−147.7(3)	S(1)–Fe(2)–S(2)–Fe(1)	−54.33(8)
S(3)–Fe(2)–S(2)–Fe(1)	98.76(9)	S(4)–Fe(2)–S(2)–Fe(1)	35.9(4)
Fe(3)–Fe(2)–S(2)–Fe(1)	144.74(9)	C(1)–Fe(1)–S(2)–C(7)	155.7(4)
C(2)–Fe(1)–S(2)–C(7)	−108.2(7)	S(1)–Fe(1)–S(2)–C(7)	−43.9(3)
P(1)–Fe(1)–S(2)–C(7)	62.3(3)	Fe(2)–Fe(1)–S(2)–C(7)	−96.6(3)
C(1)–Fe(1)–S(2)–Fe(2)	−107.7(3)	C(2)–Fe(1)–S(2)–Fe(2)	−11.6(7)
S(1)–Fe(1)–S(2)–Fe(2)	53.65(8)	P(1)–Fe(1)–S(2)–Fe(2)	158.92(8)
Fe(1)–Fe(1)–S(3)–C(8)	141.7(4)	S(1)–Fe(2)–S(3)–C(8)	−47.6(4)
C(5)–Fe(3)–S(3)–C(8)	−95.3(10)	S(4)–Fe(2)–S(3)–C(8)	42.5(3)
S(4)–Fe(3)–S(3)–C(8)	−46.1(3)	Fe(1)–Fe(2)–S(3)–C(8)	−67.4(3)
C(4)–Fe(3)–S(3)–Fe(2)	−105.5(3)	S(1)–Fe(2)–S(3)–Fe(2)	−145.7(2)
P(2)–Fe(3)–S(3)–Fe(2)	159.79(9)	S(4)–Fe(3)–S(3)–Fe(2)	55.54(8)
C(3)–Fe(2)–S(4)–C(9)	−155.7(5)	S(1)–Fe(2)–S(4)–C(9)	108.3(3)
S(3)–Fe(2)–S(4)–C(9)	−43.8(3)	S(2)–Fe(2)–S(4)–C(9)	20.6(5)
S(3)–Fe(2)–S(4)–C(9)	−99.4(3)	S(3)–Fe(2)–S(4)–Fe(3)	−152.29(8)
C(3)–Fe(2)–S(4)–Fe(3)	−56.3(3)	S(1)–Fe(2)–S(4)–Fe(3)	−152.29(8)
S(3)–Fe(2)–S(4)–Fe(3)	55.56(8)	S(2)–Fe(2)–S(4)–Fe(3)	120.0(4)
Fe(1)–Fe(2)–S(4)–Fe(3)	151.20(7)	C(4)–Fe(3)–S(4)–C(9)	110.7(8)
C(5)–Fe(3)–S(4)–C(9)	−147.6(4)	P(2)–Fe(3)–S(4)–C(9)	−54.9(3)
S(3)–Fe(3)–S(4)–C(9)	45.2(3)	Fe(2)–Fe(3)–S(4)–C(9)	99.8(3)
C(4)–Fe(3)–S(4)–Fe(2)	10.9(7)	C(5)–Fe(3)–S(4)–Fe(2)	112.6(3)
P(2)–Fe(3)–S(4)–Fe(2)	−154.75(8)	S(3)–Fe(3)–S(4)–Fe(2)	−54.65(7)
C(2)–Fe(1)–C(1)–O(1)	−7(23)	S(1)–Fe(1)–C(1)–O(1)	88(23)
P(1)–Fe(1)–C(1)–O(1)	−105(23)	S(2)–Fe(1)–C(1)–O(1)	148(23)
Fe(2)–Fe(1)–C(1)–O(1)	94(23)	C(1)–Fe(1)–C(2)–O(2)	143(14)
S(1)–Fe(1)–C(2)–O(2)	−16(14)	P(1)–Fe(1)–C(2)–O(2)	−123(14)
S(2)–Fe(1)–C(2)–O(2)	48(15)	Fe(2)–Fe(1)–C(2)–O(2)	38(14)
S(1)–Fe(2)–C(3)–O(3)	−29(4)	S(3)–Fe(2)–C(3)–O(3)	147(4)
S(2)–Fe(2)–C(3)–O(3)	53(4)	S(4)–Fe(2)–C(3)–O(3)	−128(4)
Fe(3)–Fe(2)–C(3)–O(3)	−176(5)	Fe(1)–Fe(2)–C(3)–O(3)	12(5)
C(5)–Fe(3)–C(4)–O(4)	−117(15)	P(2)–Fe(3)–C(4)–O(4)	149(15)
S(3)–Fe(3)–C(4)–O(4)	47(15)	S(4)–Fe(3)–C(4)–O(4)	−17(15)
Fe(2)–Fe(3)–C(4)–O(4)	−8(15)	C(4)–Fe(3)–C(5)–O(5)	145(10)
P(2)–Fe(3)–C(5)–O(5)	−121(10)	S(3)–Fe(3)–C(5)–O(5)	33(10)
S(4)–Fe(3)–C(5)–O(5)	−15(10)	Fe(2)–Fe(3)–C(5)–O(5)	39(10)
Fe(2)–S(1)–C(6)–C(7)	33.1(7)	Fe(1)–S(1)–C(6)–C(7)	−38.5(7)
S(1)–C(6)–C(7)–S(2)	4.4(9)	Fe(2)–S(2)–C(7)–S(6)	−39.4(7)
Fe(1)–S(2)–C(7)–C(6)	31.4(7)	Fe(2)–S(3)–C(8)–S(4)	−30.8(7)
Fe(3)–S(3)–C(8)–C(9)	38.8(7)	S(3)–C(8)–C(9)–S(4)	−30.8(7)
Fe(2)–S(4)–C(9)–C(8)	36.4(7)	Fe(3)–S(4)–C(9)–C(8)	−34.0(7)
C(22)–P(1)–C(10)–C(15)	−178.2(7)	C(16)–P(1)–C(10)–C(15)	−70.1(7)
Bond/Angle	Distance/Angle		
------------	---------------		
Fe(1)–P(1)–C(10)–C(15)	55.7(8)		
C(16)–P(1)–C(10)–C(11)	107.7(9)		
C(15)–C(10)–C(11)–C(12)	0.4(16)		
C(10)–C(11)–C(12)–C(13)	−2(2)		
C(12)–C(13)–C(14)–C(15)	−0.9(16)		
P(1)–C(10)–C(15)–C(14)	178.6(7)		
C(22)–P(1)–C(16)–C(17)	−98.3(7)		
Fe(1)–P(1)–C(16)–C(17)	30.8(8)		
C(10)–P(1)–C(16)–C(21)	84.4(7)		
C(16)–P(1)–C(22)–C(27)	172.4(7)		
C(34)–P(2)–C(28)–C(33)	120.9(7)		
Fe(3)–P(2)–C(28)–C(29)	66.3(7)		
C(33)–C(28)–C(29)–C(30)	−2.4(12)		
C(28)–C(29)–C(30)–C(31)	1.9(13)		
C(30)–C(31)–C(32)–C(33)	1.7(15)		
C(29)–C(28)–C(33)–C(32)	2.6(13)		
C(28)–P(2)–C(34)–C(35)	−70.0(8)		
Fe(3)–P(2)–C(34)–C(35)	161.4(6)		
C(40)–P(2)–C(34)–C(39)	−141.8(7)		
C(39)–C(34)–C(35)–C(36)	−1.3(13)		
C(34)–C(35)–C(36)–C(37)	0.4(14)		
C(36)–C(37)–C(38)–C(39)	0.9(14)		
C(35)–C(34)–C(39)–C(38)	2.1(12)		
C(28)–P(2)–C(40)–C(45)	6.1(8)		
Fe(3)–P(2)–C(40)–C(45)	131.7(7)		
P(2)–C(2)–C(3)–C(4)	−178.8(7)		
C(49)–C(46)–C(47)–C(50)	85.5(5)		
C(47)–C(46)–C(48)–C(49)	126.3(4)		
Table 1. Crystal data and structure refinement for str0889 (4).

Identification code	str0889
Chemical formula	C_{35}H_{30}Fe_{3}O_{5}P_{2}S_{4}
Formula weight	888.32
Temperature	150(2) K
Radiation, wavelength	MoKα, 0.71073 Å
Crystal system, space group	orthorhombic, Pnma
Unit cell parameters	a = 23.939(7) Å, α = 90°
b = 17.775(5) Å, β = 90°	
c = 8.513(2) Å, γ = 90°	
Cell volume	3622.4(18) Å³
Z	4
Calculated density	1.629 g/cm³
Absorption coefficient μ	1.546 mm⁻¹
F(000)	1808
Crystal colour and size	orange, 0.40 × 0.34 × 0.03 mm³
Data collection method	Bruker SMART 1K CCD diffractometer
θ range for data collection	ω rotation with narrow frames
Index ranges	h −30 to 31, k −23 to 23, l −11 to 10
Completeness to θ = 26.00°	99.6 %
Reflections collected	28927
Independent reflections	4433 (R_{int} = 0.0695)
Reflections with F²>2σ	2997
Absorption correction	semi-empirical from equivalents
Min. and max. transmission	0.5767 and 0.9551
Structure solution	direct methods
Refinement method	Full-matrix least-squares on F²
Weighting parameters a, b	0.0514, 0.0000
Data / restraints / parameters	4433 / 0 / 235
Final R indices [F²>2σ]	R₁ = 0.0396, wR₂ = 0.0854
R indices (all data)	R₁ = 0.0661, wR₂ = 0.0903
Goodness-of-fit on F²	0.906
Largest and mean shift/su	0.001 and 0.000
Largest diff. peak and hole	1.430 and −0.608 e Å⁻³
Table 2. Atomic coordinates and equivalent isotropic displacement parameters (Å2) for str0889. U_{eq} is defined as one third of the trace of the orthogonalized U^0 tensor.

Atom	x	y	z	U_{eq}
Fe(1)	0.15503(2)	0.2500	0.59365(6)	0.01868(13)
Fe(2)	0.25908(2)	0.2500	0.52604(6)	0.01954(13)
Fe(3)	0.36290(2)	0.2500	0.58924(7)	0.03029(16)
P(1)	0.10398(3)	0.16421(4)	0.46965(8)	0.02208(16)
S(1)	0.21782(3)	0.16739(4)	0.68991(7)	0.02195(15)
S(2)	0.31925(3)	0.16841(4)	0.42807(8)	0.03068(18)
C(1)	0.11999(15)	0.2500	0.7598(5)	0.0255(9)
C(2)	0.21393(14)	0.2500	0.3608(5)	0.0221(8)
C(3)	0.36755(12)	0.1787(2)	0.7368(4)	0.0389(8)
C(4)	0.43235(19)	0.2500	0.5080(5)	0.0485(13)
O(1)	0.08707(12)	0.2500	0.8762(3)	0.0425(8)
O(2)	0.19911(10)	0.2500	0.2319(3)	0.0246(6)
O(3)	0.37049(9)	0.13483(15)	0.8352(3)	0.0570(7)
O(4)	0.47546(13)	0.2500	0.4516(4)	0.0816(14)
C(5)	0.23246(11)	0.20701(15)	0.8834(3)	0.0289(6)
C(6)	0.33451(13)	0.20760(18)	0.2349(3)	0.0407(8)
C(7)	0.44611(11)	0.21312(15)	0.3820(3)	0.0267(6)
C(8)	0.13317(11)	0.11023(15)	0.3069(3)	0.0249(6)
C(9)	0.18200(12)	0.06805(16)	0.3319(3)	0.0330(7)
C(10)	0.20534(13)	0.02725(18)	0.2092(4)	0.0415(8)
C(11)	0.18149(14)	0.02861(18)	0.0624(4)	0.0441(8)
C(12)	0.13430(13)	0.07173(17)	0.0348(4)	0.0391(8)
C(13)	0.11035(11)	0.11240(16)	0.1569(3)	0.0307(7)
C(14)	0.06892(11)	0.09328(15)	0.5902(3)	0.0263(6)
C(15)	0.08770(14)	0.01996(17)	0.6018(4)	0.0467(9)
C(16)	0.06150(17)	-0.03110(19)	0.7023(4)	0.0597(11)
C(17)	0.01652(14)	-0.0098(2)	0.7876(4)	0.0480(9)
C(18)	-0.00350(13)	0.0626(2)	0.7764(4)	0.0499(9)
C(19)	0.02277(12)	0.11379(19)	0.6794(4)	0.0424(8)
Table 3. Bond lengths [Å] and angles [°] for str0889.

Bond	Length	Bond	Length
Fe(1)–C(1)	1.750(4)	Fe(1)–P(1)	2.2211(8)
Fe(1)–P(1A)	2.2211(8)	Fe(1)–S(1A)	2.2554(8)
Fe(1)–S(1)	2.2554(8)	Fe(1)–C(2)	1.774(4)
Fe(2)–S(2A)	2.2075(9)	Fe(2)–S(2)	2.2075(9)
Fe(2)–S(1)	2.2533(8)	Fe(2)–S(1A)	2.2533(8)
Fe(2)–Fe(3)	2.5430(10)	Fe(2)–C(3A)	1.787(3)
Fe(3)–C(3)	1.787(3)	Fe(3)–C(4)	1.800(5)
Fe(3)–S(2)	2.2534(9)	Fe(3)–S(2A)	2.2534(9)
C(8)–P(1)	1.824(3)	C(7)–P(1)	1.825(3)
P(1)–C(8)	1.825(3)	P(1)–C(7)	1.825(3)
S(1)–C(5)	1.825(3)	S(2)–C(6)	1.823(3)
Bond	Distance (Å)	Bond	Distance (Å)
----------------------	--------------	----------------------	--------------
C(14)–P(1)–Fe(1)	117.32(9)	C(5)–S(1)–Fe(2)	102.89(9)
C(5)–S(1)–Fe(1)	101.81(9)	Fe(2)–S(1)–Fe(1)	69.08(3)
C(6)–S(2)–Fe(2)	102.74(10)	C(6)–S(2)–Fe(3)	102.15(11)
Fe(2)–S(2)–Fe(3)	69.50(3)	O(1)–C(1)–Fe(1)	
O(2)–C(2)–Fe(2)	160.4(3)	O(2)–C(2)–Fe(1)	126.7(3)
Fe(2)–C(2)–Fe(1)	72.96(14)	O(3)–C(3)–Fe(3)	177.7(3)
O(4)–C(4)–Fe(3)	177.6(4)	C(5A)–C(5)–S(1)	112.69(9)
C(6A)–C(6)–S(2)	112.46(10)	C(7A)–C(7)–P(1)	118.44(9)
C(13)–C(8)–C(9)	118.8(3)	C(13)–C(8)–P(1)	122.2(2)
C(9)–C(8)–P(1)	119.0(2)	C(10)–C(9)–C(8)	119.9(3)
C(11)–C(10)–C(9)	120.5(3)	C(10)–C(11)–C(12)	120.2(3)
C(11)–C(12)–C(13)	119.9(3)	C(12)–C(13)–C(8)	120.7(3)
C(15)–C(14)–C(19)	117.8(3)	C(15)–C(14)–P(1)	122.7(2)
C(19)–C(14)–P(1)	119.4(2)	C(14)–C(15)–C(16)	120.7(3)
C(17)–C(16)–C(15)	120.3(3)	C(16)–C(17)–C(18)	120.1(3)
C(17)–C(18)–C(19)	119.9(3)	C(18)–C(19)–C(14)	121.1(3)

Symmetry operations for equivalent atoms

A: \(x, -y + 1/2, z\)
Table 4. Anisotropic displacement parameters (Å²) for str0889. The anisotropic displacement factor exponent takes the form: $-2\pi^2[\hbar^2a^*U_11+...+2hka^*b^*U_{12}]$

	U_1	U_2	U_3	U_{12}	U_{13}	U_{23}
Fe(1)	0.0165(3)	0.0242(3)	0.0153(3)	0.0000	0.0001(2)	0.0000
Fe(2)	0.0172(3)	0.0253(3)	0.0161(3)	0.0000	0.0015(2)	0.0000
Fe(3)	0.0177(3)	0.0497(4)	0.0235(3)	0.0000	0.0015(2)	0.0000
P(1)	0.0197(3)	0.0268(4)	0.0197(3)	0.0000	-0.0005(3)	-0.0020(3)
S(1)	0.0213(3)	0.0260(3)	0.0186(3)	0.0001(3)	0.0004(3)	0.0013(3)
S(2)	0.0279(4)	0.0387(4)	0.0255(4)	-0.0048(3)	0.0040(3)	0.0076(3)
C(1)	0.0195(19)	0.030(2)	0.027(2)	0.0000	-0.0042(17)	0.0000
C(2)	0.0172(19)	0.024(2)	0.025(2)	0.0000	0.0013(16)	0.0000
C(3)	0.0270(16)	0.058(2)	0.0318(17)	0.0009(16)	-0.0006(14)	0.0110(15)
C(4)	0.029(2)	0.087(4)	0.030(3)	0.0000	-0.002(2)	0.0000
O(1)	0.0346(17)	0.067(2)	0.0255(16)	0.0000	0.0127(14)	0.0000
O(2)	0.0257(14)	0.0329(16)	0.0152(14)	0.0000	0.0019(11)	0.0000
O(3)	0.0516(15)	0.0725(17)	0.0468(16)	0.0156(14)	-0.0012(12)	0.0203(13)
O(4)	0.0271(19)	0.173(4)	0.045(2)	0.0000	0.0116(17)	0.0000
C(5)	0.0279(15)	0.0410(17)	0.0177(14)	0.0053(12)	-0.0030(12)	0.0006(13)
C(6)	0.0359(17)	0.065(2)	0.0215(15)	-0.0037(14)	0.0085(13)	0.0119(16)
C(7)	0.0210(13)	0.0370(15)	0.0219(14)	-0.0005(11)	-0.0026(11)	-0.0018(11)
C(8)	0.0275(14)	0.0238(15)	0.0233(14)	-0.0044(11)	-0.0005(12)	-0.0072(12)
C(9)	0.0355(17)	0.0306(17)	0.0328(17)	-0.0060(13)	0.0009(13)	0.0011(13)
C(10)	0.0423(19)	0.0354(18)	0.047(2)	-0.0075(15)	0.0052(16)	0.0042(15)
C(11)	0.056(2)	0.0379(19)	0.039(2)	-0.0158(15)	0.0171(16)	-0.0099(16)
C(12)	0.0447(19)	0.048(2)	0.0243(16)	-0.0081(14)	0.0063(14)	-0.0183(16)
C(13)	0.0294(15)	0.0358(17)	0.0269(16)	-0.0027(13)	0.0030(12)	-0.0114(13)
C(14)	0.0243(14)	0.0304(15)	0.0241(14)	-0.0004(12)	-0.0036(12)	-0.0071(12)
C(15)	0.060(2)	0.0305(18)	0.050(2)	0.0002(15)	0.0212(17)	-0.0031(16)
C(16)	0.087(3)	0.0268(19)	0.066(3)	0.0011(17)	0.026(2)	-0.0106(19)
C(17)	0.046(2)	0.053(2)	0.045(2)	0.0093(17)	-0.0035(17)	-0.0261(18)
C(18)	0.0259(16)	0.073(3)	0.051(2)	0.0240(19)	0.0087(15)	-0.0014(17)
C(19)	0.0303(16)	0.049(2)	0.047(2)	0.0166(16)	0.0079(15)	0.0069(15)
Table 5. Hydrogen coordinates and isotropic displacement parameters (Å²) for str0889.

	x	y	z	U
H(5A)	0.2040	0.1888	0.9587	0.035
H(5B)	0.2694	0.1888	0.9196	0.035
H(6A)	0.3715	0.1894	0.1997	0.049
H(6B)	0.3063	0.1894	0.1589	0.049
H(7A)	0.0144	0.1858	0.3375	0.032
H(9A)	0.1991	0.0674	0.4327	0.040
H(10A)	0.2380	−0.0018	0.2268	0.050
H(11A)	0.1974	−0.0001	−0.0204	0.053
H(12A)	0.1183	0.0735	−0.0673	0.047
H(13A)	0.0780	0.1420	0.1376	0.037
H(15A)	0.1188	0.0041	0.5408	0.056
H(16A)	0.0753	−0.0810	0.7108	0.072
H(17A)	−0.0013	−0.0448	0.8554	0.058
H(18A)	−0.0354	0.0773	0.8354	0.060
H(19A)	0.0091	0.1639	0.6736	0.051
Table 6. Torsion angles [°] for str0889.

Bond	Angle [°]	Bond	Angle [°]
C(1)–Fe(1)–Fe(2)–C(2)	180.0	P(1)–Fe(1)–Fe(2)–C(2)	49.47(3)
P(1A)–Fe(1)–Fe(2)–C(2)	−49.47(3)	S(1A)–Fe(1)–Fe(2)–C(2)	−127.75(2)
S(1)–Fe(1)–Fe(2)–C(2)	127.75(2)	C(1)–Fe(1)–Fe(2)–S(2A)	−108.61(4)
P(1)–Fe(1)–Fe(2)–S(2A)	120.86(5)	P(1A)–Fe(1)–Fe(2)–S(2A)	21.92(5)
S(1A)–Fe(1)–Fe(2)–S(2A)	−56.36(5)	S(1)–Fe(1)–Fe(2)–S(2A)	−160.86(5)
C(2)–Fe(1)–Fe(2)–S(2A)	71.39(4)	C(1)–Fe(1)–Fe(2)–S(2A)	108.61(4)
P(1)–Fe(1)–Fe(2)–S(2A)	−21.92(5)	P(1A)–Fe(1)–Fe(2)–S(2A)	−120.86(5)
S(1A)–Fe(1)–Fe(2)–S(2A)	−79.28(4)	S(1)–Fe(1)–Fe(2)–S(2A)	56.36(5)
S(1)–Fe(1)–Fe(2)–C(2)	127.75(2)	S(1A)–Fe(1)–Fe(2)–C(2)	108.61(4)
C(2)–Fe(1)–Fe(2)–C(2)	−108.61(4)	P(1)–Fe(1)–Fe(2)–C(2)	−21.92(5)
P(1A)–Fe(1)–Fe(2)–C(2)	120.86(5)	P(1A)–Fe(1)–Fe(2)–C(2)	49.47(3)
S(1)–Fe(1)–Fe(2)–C(2)	−56.36(5)	S(1A)–Fe(1)–Fe(2)–C(2)	−160.86(5)
C(2)–Fe(1)–Fe(2)–C(2)	71.39(4)	C(1)–Fe(1)–Fe(2)–C(2)	108.61(4)
P(1)–Fe(1)–Fe(2)–C(2)	−21.92(5)	P(1A)–Fe(1)–Fe(2)–C(2)	−120.86(5)
S(1A)–Fe(1)–Fe(2)–C(2)	−79.28(4)	S(1)–Fe(1)–Fe(2)–C(2)	56.36(5)
S(1)–Fe(1)–Fe(2)–C(2)	127.75(2)	S(1A)–Fe(1)–Fe(2)–C(2)	108.61(4)
C(2)–Fe(1)–Fe(2)–C(2)	−108.61(4)	P(1)–Fe(1)–Fe(2)–C(2)	−21.92(5)
P(1A)–Fe(1)–Fe(2)–C(2)	120.86(5)	P(1A)–Fe(1)–Fe(2)–C(2)	49.47(3)
S(1)–Fe(1)–Fe(2)–C(2)	−56.36(5)	S(1A)–Fe(1)–Fe(2)–C(2)	−160.86(5)
C(2)–Fe(1)–Fe(2)–C(2)	71.39(4)	C(1)–Fe(1)–Fe(2)–C(2)	108.61(4)
P(1)–Fe(1)–Fe(2)–C(2)	−21.92(5)	P(1A)–Fe(1)–Fe(2)–C(2)	−120.86(5)
S(1A)–Fe(1)–Fe(2)–C(2)	−79.28(4)	S(1)–Fe(1)–Fe(2)–C(2)	56.36(5)
Bond	Angle (deg)		
-----------------------	-------------		
C(2)–Fe(1)–S(1)–Fe(2)	31.79(6)		
S(2A)–Fe(2)–S(2)–C(6)	-44.22(11)		
S(1A)–Fe(2)–S(2)–C(6)	-127.31(14)		
Fe(1)–Fe(2)–S(2)–C(6)	110.74(11)		
S(2A)–Fe(2)–S(2)–Fe(3)	54.16(3)		
S(1A)–Fe(2)–S(2)–Fe(3)	-28.93(10)		
S(3A)–Fe(3)–S(2)–C(6)	113.4(3)		
C(4)–Fe(3)–S(2)–C(6)	-53.36(14)		
Fe(2)–Fe(3)–S(2)–C(6)	99.23(10)		
C(3)–Fe(3)–S(2)–Fe(2)	104.90(10)		
S(2A)–Fe(3)–S(2)–Fe(2)	-52.99(3)		
S(1A)–Fe(3)–S(2)–Fe(2)	-127.31(14)		
Fe(1)–Fe(3)–S(2)–C(6)	-98.38(11)		
C(3A)–Fe(3)–S(2)–C(6)	110.74(11)		
C(4)–Fe(3)–S(2)–C(6)	-52.99(10)		
Fe(2)–Fe(3)–S(2)–C(6)	113.4(3)		
Fe(1)–Fe(3)–S(2)–C(6)	-44.22(11)		

Symmetry operations for equivalent atoms

A $x,-y+1/2,z$
