Effect of ATG initiation codon context motifs on the efficiency of translation of mRNA derived from exogenous genes in the transgenic silkworm, *Bombyx mori*

Ken-ichiro Tatematsu*, Keiro Uchino, Hideki Sezutsu and Toshiki Tamura

Abstract

The context sequence motif surrounding the ATG initiation codon influences mRNA translation efficiency and affects protein production; however, the optimal sequence differs among species. To determine the optimal sequence for production of recombinant proteins in a transgenic silkworm, we compared 14-nucleotide context motifs around the ATG (ATG-context) in 50 silkworm genes and found the following consensus: (A/T)AN(A/T)ATCAAAatgN. We were also able to define the least-common motif: CCN(C/G)CGN(C/T)(G/C/T)(T/G)atgC, which served as a negative control. To examine the regulatory role of these motifs in protein expression, we constructed reporter plasmids containing different ATG-context motifs together with either the luciferase gene or an enhanced green fluorescent protein (EGFP) gene. These constructs were then used for comparison of luciferase reporter activity and EGFP production in BmN4 cells *in vitro* as well as in transgenic silkworms *in vivo*. We detected 10-fold higher luciferase activity in BmN4 cells transfected with the consensus ATG-context motif construct, compared to the negative control plasmid. ELISA measurements of EGFP translation products with the corresponding constructs in BmN4 cells showed consistently similar results. Interestingly, the translation efficiency of the novel consensus ATG-context motif did not show the highest activity in the transgenic silkworms *in vivo*, except for the fat body. The highest efficiency in the middle and posterior silk glands was produced by the sericin 1 context. Our results show that the ATG-context motifs differ among silkworm tissues. This result is important for the further improvement of the transgenic silkworm system for the production of recombinant proteins.

Keywords: Kozak sequence; Translation; Silkworm; Transgenic; Recombinant protein; Bioreactor

Background

There is an increased demand to develop an efficient bioreactor for the production of recombinant proteins for pharmaceutical and/or diagnostic uses. Transgenic silkworms have several important properties, making them good candidates for such applications. Silk glands represent a highly efficient system for the production of large quantities of proteins, with a capacity of more than 500 mg of silk protein/larva. Also, the larval fat body is able to synthesize about 100 mg of hemolymph protein/larva. Other advantages include the low cost of silkworm rearing (less than 5 cents per larva) and the short time required for the generation of transgenic silkworms (60 days). Transgenic silkworms also allow the development of different protein production systems for various purposes (Tomita 2011; Tatemastu et al. 2012).

The current recombinant protein production systems using transgenic silkworms utilize mainly silk glands. The silk gland secretory products are categorized into two groups—sericins and fibroins. The sericins are glue proteins coating the surface of the silk thread and contribute as much as 25% of the cocoon silk. The fibroins form the silk thread and constitute the remaining 75% of the cocoon silk proteins. The sericins are produced in the middle silk gland (MSG) region, while the fibroins are secreted in the posterior part of the silk glands (PSG). The sericins and fibroins have different properties; the sericins...
are easily dissolved in ordinary buffer, but dissolving fibrins requires the use of strong protein-denaturing agents. The protein secretory mechanisms also differ in the MSG and PSG. The recombinant proteins produced in the MSG are secreted more easily compared to those in the PSG. For example, intact human collagen produced in the PSG is not transferred to the lumen, whereas there is no problem with its secretion in the MSG (Adachi et al. 2010; Tomita 2011). Therefore, the MSG as a production system is more useful for proteins, which require easy purification without losing their biological activity, whereas the PSG seems to be more suitable for the production of specialized proteins, like modified silks (Tatemastu et al. 2012). Consistently, human serum albumin, mouse IgG antibody, and full-length collagen have been produced in MSGs (Ogawa et al. 2007; Iizuka et al. 2010). Projects involving the production of fluorescent color proteins, spider silks, cytokine, human growth factor 2010). Projects involving the production of fluorescent antibody, and full-length collagen have been produced in specialized proteins, like modified silks (Tatemastu et al. 2012).

In the present study, we compared the 14-base sequence context motif at positions -10 to +4 of the ATG initiation codon of 50 B. mori genes and determined the consensus as well as the least-common motif. The observed ATG-context motifs differed from those of vertebrates, but were similar to those of D. melanogaster and Lepidoptera described earlier (Cavener 1987; Chang et al. 1999; Sano et al. 2002). To evaluate their effects, we constructed a series of expression vectors containing luciferase or EGFP reporter genes together with various ATG-context motifs, including the novel B. mori consensus, variations thereof, a sercin 1 gene ATG-context, and the vertebrate Kozak sequence. Finally, we examined the effects of these ATG-context motifs on the production of the recombinant proteins in cultured cells and in the transgenic silkworms.

Results

Consensus sequence surrounding the ATG initiation codon in 50 B. mori genes

To determine the consensus ATG-context motif we compared the 14-base initiation codon context motifs of genes encoding fibrin H chain, fibrin L chain, fibrohexamerin, sercin 1, and 46 other randomly selected B. mori genes. The consensus motif obtained from the alignment showed that ‘A’ was the most frequent nucleotide at positions -10, -9, -7, -6, -3, -2, and -1 (A of the ATG initiation codon corresponds to +1) within the context sequences of -10 to -1 using the binominal test (Figure 1). Specifically, the frequencies of ‘A’ at positions -3, -2 and -1 were higher than 50% and each was identified as a solo consensus nucleotide position by analysis of the 50/75 rule (Cavener 1987), while nucleotide ‘A’ at -7 was considered a co-consensus. From the analysis, the consensus motif (PC) was determined as (A/T)AN(A/T)ATCAATG and the least-common motif, serving as a negative control (NC), was CCN(C/G)CGN(T/G)G(T/C)TGATG.

Effects of ATG initiation codon sequence context on reporter genes in BmN4 cells

To examine the effects of the ATG-context motif, we designed a number of variants of context sequences (shown
The context motifs PC and NC were selected to represent the consensus B. mori context and the least-common motif, respectively. 7N3P and 7P3N were designed to compare the effects of nucleotides from -1 to -3 and -4 to -10 between the least-common and consensus motifs, respectively. AAT, AGT, CAA, and CGA were designed to identify the most important nucleotide at positions -1 to -3 and -4 to -10 between the least-common and consensus motifs, respectively. 7N3P and 7P3N were selected to represent the consensus and least-common nucleotides determined by a binominal test and are shown at the bottom. The accession numbers of genes used for the analysis are as follows: AY769299, BMU06073, D10953, D90454, DQ311154, DQ311189, DQ311242, DQ311250, DQ311264, DQ311306, DQ311321, DQ311322, DQ311328, DQ311332, DQ311333, DQ311340, DQ311341, DQ311350, DQ311356, DQ311358, DQ311360, DQ311363, DQ311365, DQ311368, DQ311378, DQ311384, DQ311386, DQ311388, DQ311397, DQ311402, DQ311407, DQ311412, DQ311418, DQ311430, DQ311436, DQ311438, DQ343760, DQ358079, DQ424947, M64336, NM_001044023, NM_001044041, NM_001113262, NM_001145941, S74376, S77508, U30289, U94993, X74320, and X95604.

Figure 1 Compilation of the 14-base sequence context of the ATG initiation codon of B. mori genes. Sequences surrounding the ATG initiation codon were compiled from 50 genes in GenBank. For reference, the ATG initiation codon corresponds to +1 through +3. The frequency of each nucleotide at each position is presented as a percentage. The consensus (italicized letter) and co-consensus nucleotides (underlined letter) were determined by the 50/75 rule (Cavener 1987). The consensus and least-common nucleotides determined by a binominal test are indicated by red and blue boxes, respectively. The consensus and least-common nucleotides were determined using Cavener’s 50/75 rule and/or by a binominal test and are shown at the bottom. The context motifs PC and NC were designed to identify the most important nucleotide at positions -1 to -3 and -4 to -10 between the least-common and consensus motifs, respectively. AAT, AGT, CAA, and CGA were designed to identify the most important nucleotide at positions -1 to -3 and -4 to -10 between the least-common and consensus motifs, respectively. 7N3P and 7P3N were selected to represent the consensus and least-common nucleotides determined by a binominal test and are shown at the bottom. The accession numbers of genes used for the analysis are as follows: AY769299, BMU06073, D10953, D90454, DQ311154, DQ311189, DQ311242, DQ311250, DQ311264, DQ311306, DQ311321, DQ311322, DQ311328, DQ311332, DQ311333, DQ311340, DQ311341, DQ311350, DQ311356, DQ311358, DQ311360, DQ311363, DQ311365, DQ311368, DQ311378, DQ311384, DQ311386, DQ311388, DQ311397, DQ311402, DQ311407, DQ311412, DQ311418, DQ311430, DQ311436, DQ311438, DQ343760, DQ358079, DQ424947, M64336, NM_001044023, NM_001044041, NM_001113262, NM_001145941, S74376, S77508, U30289, U94993, X74320, and X95604.

Table 1 Frequency of nucleotides at each position

Position	A(%)	T(%)	C(%)	G(%)
-10	38	38	20	20
-9	40	40	20	20
-8	32	32	20	20
-7	48	48	20	20
-6	48	48	20	20
-5	26	26	20	20
-4	74	74	20	20
-3	60	60	20	20
-2	52	52	20	20
-1	100	100	20	20

To investigate the effect of the context motif on translational efficiency, we transfected EGFP constructs bearing 11 different sequence contexts (Figure 2a; Table 2) into BmN4 cells. Transfected cells were divided into two aliquots: one to measure the amount of EGFP mRNA and the other to measure the amount of EGFP protein (Table 2). In the experiment, the amounts of EGFP mRNA and ribosomal protein 49 (rp49) mRNA (internal control) were not significantly different. This indicates that the efficiency of
transcription in each construct was constant, and that the difference in the amount of EGFP protein was caused by the translational efficiency of the sequence context of EGFP mRNA. When we compared the translational efficiency of various constructs, the highest amount of EGFP protein was observed in the PC-EGFP transgene, which was ~4-fold higher than that of NC-EGFP. This indicates that the sequence context of the ATG initiation codon significantly affects translational efficiency. The translational efficiencies of 7N3P-EGFP and 7P3N-EGFP showed intermediate values between PC-EGFP and NC-EGFP. In a comparison of 7N3P-EGFP, AAT-EGFP, AGT-EGFP, CAA-EGFP, and CGA-EGFP constructs, the CGA construct demonstrated lower activity compared to the other four, indicating that the mutation of ‘A’ at positions -3 and -2 resulted in a significant reduction in translational efficiency. The Ser1-EGFP, Vert3-EGFP, and Vert9-EGFP constructs showed intermediate efficiencies, indicating that these
context motifs were suboptimal for the initiation of translation in BmN4 cells. These results were similar to those obtained with the *Photinus* luciferase construct; the optimal context for luciferase and EGFP construct expression in BmN4 cells was the *B. mori* consensus motif.

Effects of ATG-context motifs on the efficiency of mRNA translation in MSG, PSG, and fat body of transgenic silkworm

To examine whether the results obtained in BmN4 cells can be applied to the production of recombinant protein in the transgenic silkworm, we generated transgenic silkworms containing the EGFP constructs with the NC, PC, AAT, and Ser1 context motifs using the piggyBac vector pBac-X-EGFP, as shown in Figure 2b. We chose the NC, PC, and AAT context motifs because they showed the lowest, highest, and intermediate efficiencies in BmN4 cells, respectively. We also examined the Ser1 context motif originating from the sericin 1 gene, because we expected it to be adapted for the MSG translation. We generated three lines of transgenic silkworms for NC-EGFP and two lines each for PC-EGFP, AAT-

Context name	*Photinus* luciferase activity (×10^4) (A)	Renilla luciferase activity (×10^2) (B)	*Photinus*/Renilla (A/B) Fold activity (%)	
NC-Luc	8.3 ± 1.1	4.26 ± 0.7	196.5 ± 15.0	100
PC-Luc	88.3 ± 26.6	4.34 ± 0.5	2,008.7 ± 393.1	1,022
7N3P-Luc	55.9 ± 20.4	4.23 ± 0.5	1,307.5 ± 393.6	665
7P3N-Luc	56.8 ± 10.2	4.49 ± 0.8	1,272.5 ± 184.9	648
AAT-Luc	38.7 ± 27.4	4.44 ± 0.6	834.6 ± 533.9	425
AGT-Luc	39.4 ± 6.7	4.28 ± 0.6	941.6 ± 252.9	479
CAA-Luc	15.0 ± 2.7	4.80 ± 0.4	316.8 ± 84.3	161
CGA-Luc	11.1 ± 2.4	4.82 ± 0.4	228.2 ± 30.8	116
Ser1-Luc	45.0 ± 24.1	4.68 ± 0.6	928.2 ± 373.2	427
Vert3-Luc	25.5 ± 3.1	4.66 ± 0.3	547.9 ± 61.0	279
Vert9-Luc	36.9 ± 6.6	4.81 ± 0.3	775.4 ± 173.8	395
atgA-Luc	24.3 ± 16.9	4.47 ± 0.5	550.6 ± 413.8	280
atgC-Luc	34.3 ± 2.1	4.56 ± 0.5	759.1 ± 102.1	386
atgT-Luc	27.9 ± 12.5	4.58 ± 0.8	594.0 ± 171.2	302

Values represent the mean ± standard deviation (SD) obtained from three individual experiments. The fold efficiency is indicated as the activity of NC equal to 100. Measurement of each luciferase activity was performed at least three times. The value of *Photinus* luciferase activity/Renilla luciferase activity was calculated in each measurement.

Effects of ATG-context motifs on the efficiency of mRNA translation in MSG, PSG, and fat body of transgenic silkworm

To examine whether the results obtained in BmN4 cells can be applied to the production of recombinant protein in the transgenic silkworm, we generated transgenic silkworms containing the EGFP constructs with the NC, PC, AAT, and Ser1 context motifs using the piggyBac vector pBac-X-EGFP, as shown in Figure 2b. We chose the NC, PC, and AAT context motifs because they showed the lowest, highest, and intermediate efficiencies in BmN4 cells, respectively. We also examined the Ser1 context motif originating from the sericin 1 gene, because we expected it to be adapted for the MSG translation. We generated three lines of transgenic silkworms for NC-EGFP and two lines each for PC-EGFP, AAT-

Context name	EGFP protein (µg/well) (A)	EGFP mRNA (×10^{-6}) (pmol/ng) (B)	rp49 mRNA (×10^{-7}) (pmol/ng) (C)	EGFP/rp49 mRNA (B/C)	Translational efficiency (A/(B/C))	Fold efficiency (%)
NC-EGFP	1.60 ± 0.5	4.31 ± 1.2	6.99 ± 0.17	6.15 ± 1.5	0.28 ± 0.13	100
PC-EGFP	6.37 ± 1.7	3.97 ± 1.5	6.68 ± 0.57	5.92 ± 1.9	1.20 ± 0.60	424
7N3P-EGFP	4.15 ± 0.6	3.47 ± 1.3	7.00 ± 0.17	4.92 ± 1.7	0.94 ± 0.41	341
7P3N-EGFP	3.54 ± 0.7	3.50 ± 1.1	6.81 ± 0.23	5.14 ± 1.6	0.76 ± 0.34	274
AAT-EGFP	4.58 ± 1.2	4.32 ± 1.2	6.89 ± 0.47	6.22 ± 1.5	0.79 ± 0.34	286
AGT-EGFP	2.72 ± 0.7	3.43 ± 1.3	6.82 ± 0.25	5.00 ± 1.7	0.61 ± 0.29	216
CAA-EGFP	4.04 ± 1.0	4.26 ± 1.2	6.63 ± 0.14	6.43 ± 1.9	0.68 ± 0.30	248
CGA-EGFP	1.20 ± 0.2	3.21 ± 1.4	6.93 ± 0.50	4.60 ± 1.8	0.30 ± 0.14	106
Ser1-EGFP	3.17 ± 0.7	3.40 ± 1.0	6.74 ± 0.31	5.03 ± 1.4	0.68 ± 0.28	248
Vert3-EGFP	2.87 ± 0.7	3.67 ± 1.2	7.20 ± 0.27	5.09 ± 1.6	0.62 ± 0.26	224
Vert9-EGFP	2.84 ± 0.3	3.30 ± 1.5	7.02 ± 0.49	4.65 ± 1.8	0.68 ± 0.27	251

Values represent the mean ± SD obtained from more than three individual experiments. The fold efficiency is indicated as the activity of NC equal to 100. Measurements of the amount of protein and mRNA were performed at least three times. Values of relative EGFP mRNA and translational efficiency were calculated in each measurement.
EGFP, and Ser1-EGFP by the ordinary methods using
the transposon piggyBac as a vector. Because the re-
porter gene is under the control of the UAS sequence
(Figure 2b), the EGFP gene is not expressed without
the presence of GAL4 protein. To express these four con-
structs in different tissues, each transgenic strain was
mated with the Ser1-GAL4 (Tatematsu et al. 2010),
FibH-GAL4 (Sezutsu et al. 2009), or 30 k-GAL4 lines
(H. Sezutsu, personal communication), which express
the GAL4 gene at the fifth instar in the MSG, PSG, and
the fat body, respectively. Silkworms that possessed both
the UAS-X-EGFP (Figure 2b) and GAL4 constructs were
easily selected by observing the larval stemmata because
the UAS and GAL4 constructs were marked with 3 x
P3-EGFP and 3 x P3-DsRed, respectively (Figure 3a).
When comparing the effects of the four context se-
quen
ces on EGFP expression, the transgenic strains with
the NC-EGFP/Ser1-GAL4, PC-EGFP/Ser1-GAL4, and
AAT-EGFP/Ser1-GAL4 constructs showed weak, strong,
and intermediate levels of EGFP fluorescence in MSG,
respectively (Figure 3b). The strongest fluorescence
was observed in the Ser1-EGFP/Ser1-GAL4 silkworms in
the MSG. Similar results were observed in PSG (Figure 3b);
regarding the level of expression among the four con-
structs, the highest was Ser1-EGFP/FibH-GAL4, the lowest
was NC-EGFP/FibH-GAL4, and the PC-and AAT-EGFP
constructs had intermediate expression levels in the PSG.
However, the effect of the sequence context on expression in
the fat body was different (Figure 3b); the PC construct showed higher activity
than that of Ser1-EGFP, and the expression levels of the
NC and AAT constructs were much lower than those of
PC and Ser1.

To further analyze the effects of the context sequence,
we measured the amounts of EGFP protein and mRNA
in the MSG (Table 3), PSG (Table 4), and fat body
(Table 5), and compared the translational efficiency
among the four constructs. In the MSG, the highest
translational efficiency was observed for the Ser1-EGFP
construct and the lowest in NC-EGFP. PC-EGFP also
showed a high level of efficiency, indicating that
the sequence context was critical for recombinant protein
production. NC-EGFP demonstrated the lowest EGFP protein production and translational
efficiency in all tissues examined. Although PC-EGFP
showed the highest EGFP protein production and trans-
lational efficiency in the fat body, the construct with the
highest efficiency in the MSG and PSG was Ser1-EGFP.
Thus, the effects of each sequence context on EGFP ex-
pression in the fat body were similar to those observed
in BmN4 cells, but differed from the effects in MSG and
PSG.

Discussion

We performed a compilation of the 14-nucleotide se-
quen
nces surrounding the ATG initiation codon of
50 *B. mori* genes and determined the consensus ATG
context motif (A/T)AN(A/C)ATCAAAatgN, as well as
the least-common ATG context CCN(C/G)CGN(C/T/G)
(G/C/T)/(T/G)atgC, which served as the control. The
novel consensus motif was consistent with the previ-
ous consensus motifs of *B. mori* (Chang et al.
1999) and *Drosophila* (Cavener 1987), but differed from
that of *D. melanogaster* (Kozak 1987a, 1987b). When we
compared the previously reported *B. mori* consensus
motif (ANCAAAtgNNN) with our novel consensus se-
quen,
ence, a significant difference was found in the fre-
quency of ‘T’ at position -5. The frequency of ‘T’ in our
results was significantly higher than would be expected
for a random occurrence (Figure 1). Our *B. mori* consen-
sus motif was slightly more similar to the *D. melanogaster*
consensus motif, (C/A)AA(A/C)atg, reported by Cavener
(1987). When we reanalyzed Cavener’s original data using
our method, we received the consensus AANAAN(C/A)
AA(A/C)atg. Differences between our *B. mori* consensus
motif and the reanalyzed *D. melanogaster* consensus
motif were at positions -1, -4, -5, -7, and -10.

We also determined which nucleotides of the consen-
sus context motifs were important for efficient transla-
tion. Our results show that ‘A’ at position -3 was the
most important nucleotide; substitution of this nucleo-
tide caused a significant reduction in efficiency. The re-
gion of -10 to -4 also displayed a significant effect, while
the nucleotide at position +4 did not have any detectable
effect. Our results differ from those of Chang et al.
(1999), who found that the nucleotides at positions -1 to -6
had no effect while those at +4 to +6 significantly increased
Figure 3 Expression of EGFP in the transgenic silkworm.

a. Stemmata of the fifth instar larva. UAS-EGFP constructs with NC, PC, AAT, and Ser1 sequence contexts of the initiation codon were marked with a 3 × P3-EGFP marker construct allowing the expression of EGFP in the stemmata. The GAL4 driver construct under the control of the sericin 1, fibroin H chain, or 30 k protein gene promoter was linked with a marker construct, 3 × P3-DsRed, allowing the expression of DsRed in the stemmata. The stemmata of a larva harboring PC-EGFP, Ser1-GAL4, or both PC-EGFP and Ser1-GAL4 are shown. The images were taken under white light or under a fluorescence microscope equipped with an EGFP or DsRed filter. Arrows indicate the stemmata with EGFP or DsRed fluorescence. Scale bar: 1 mm.

b. EGFP expression in the MSG, PSG, and the fat body of the transgenic silkworm with different GAL4 driver constructs. MSG, PSG, and the fat body on the sixth day of the fifth instar are shown. Images were taken under a fluorescence microscope equipped with an EGFP filter. Expression of UAS-EGFP with different context motifs was only observed in silkworms with GAL4 drivers. The numbers above the tissue photographs indicate the transgenic silkworm lines. Scale bar: 10 mm.
Furthermore, we found that our new consensus motif of *B. mori* genes was more efficient than the Kozak sequence. However, Sano et al. (2002) reported that the use of the 5′-untranslated region including the Kozak sequence dramatically increased expression levels in baculovirus-infected cells. In both of these studies, baculovirus was used for transgene expression, whereas we used transient expression of plasmid. The differences between our results and previously reported data may be due to the different expression systems used in experiments; further studies are required to determine the exact reasons for the differences.

Three features differed between the vertebrate consensus Kozak motif and our *B. mori* consensus motif. First, the vertebrate ATG context shows a strong preference for nucleotide position +4 (Kozak 1987a, 1987b, 1997), but not in *B. mori*. Second, the vertebrate consensus motif is CG-rich throughout the sequence, but A-rich in *B. mori*. Third, three upstream triplet repeats, RCCRCCRCCatg, which are important for ribosomal recognition, are present in vertebrates (Kozak 1987b), while no such repeats were found in our results, suggesting that mRNA recognition by the ribosome differs between insects and vertebrates.

Table 3 Effects of sequence context of the ATG initiation codon on translational efficiency of EGFP expressed in MSG

Line no.	EGFP protein (μg/larva) (A)	EGFP mRNA (x10^{-7}) (pmol/ng) (B)	rp49 mRNA (x10^{-7}) (pmol/ng) (C)	EGFP/rp49 mRNA (B/C)	Translational efficiency (A/B/C)	Fold efficiency (%)
NC						
1	31.4 ± 5.8	70.8	7.83	9.05	3.47	
-EGFP	2	16.8 ± 2.4	44.1	7.26	6.07	2.76
3	12.6 ± 1.7	49.9	7.70	6.48	1.95	
Average	20.3	54.9	7.60	7.23	2.73	
PC						
1	130.2 ± 9.9	19.8	6.96	2.85	45.7	
-EGFP	2	158.9 ± 12.1	29.6	6.71	4.40	36.1
Average	144.5	24.7	6.84	3.61	40.9	
AAT						
1	76.8 ± 7.2	48.7	9.04	5.39	14.2	
-EGFP	2	89.0 ± 12.9	34.4	8.14	4.23	21.0
Average	82.9	41.6	8.59	4.84	17.6	
Ser1						
1	276.3 ± 36.4	40.8	8.14	5.01	55.1	
-EGFP	2	261.4 ± 18.4	37.3	7.76	4.80	54.4
Average	268.9	39.0	7.95	4.91	54.8	

Values obtained from each line and averages of lines are shown. The fold efficiency is indicated as the efficiency of the average of NC equal to 100.

Table 4 Effects of sequence context of the ATG initiation codon on translational efficiency of EGFP expressed in PSG

Line no.	EGFP protein (μg/larva) (A)	EGFP mRNA (x10^{-7}) (pmol/ng) (B)	rp49 mRNA (x10^{-7}) (pmol/ng) (C)	EGFP/rp49 mRNA (B/C)	Translational efficiency (A/B/C)	Fold efficiency (%)
NC						
1	12.9 ± 0.8	4.20	3.95	1.06	12.1	
-EGFP	2	9.9 ± 0.3	1.73	3.54	0.49	20.2
3	12.6 ± 0.7	0.48	3.60	0.14	93.0	
Average	11.8	2.14	3.70	0.56	41.8	
PC						
1	80.6 ± 15.3	1.35	2.93	0.46	175.5	
-EGFP	2	104.8 ± 24.2	2.14	3.65	0.59	178.1
Average	92.7	2.14	3.29	0.52	176.8	
AAT						
1	25.5 ± 3.6	1.64	3.23	0.51	50.3	
-EGFP-EGFP	2	53.5 ± 15.8	0.84	3.50	0.24	220.5
Average	39.5	1.24	3.37	0.37	135.4	
Ser1						
1	94.4 ± 10.4	1.53	3.52	0.44	216.9	
-EGFP	2	106.2 ± 34.7	1.15	3.09	0.37	284.9
Average	100.3	1.34	3.31	0.40	250.9	

Values obtained from each line and averages of lines are shown. The fold efficiency is indicated as the efficiency of the average of NC equal to 100.
The assays of context motif effects demonstrated that these sequences significantly affect the efficiency of translation initiation in BmN4 cultured cells, as well as the production of recombinant proteins in the MSG, PSG, and fat body of transgenic silkworms. This is the first report that optimization of context motifs is important for efficient recombinant protein production in transgenic silkworms. Such optimization is simple and does not affect the protein sequence. In addition, context motifs can be used for the suppression of translation initiation when a reduction in protein production is required. Furthermore, context motifs may facilitate precise translation initiation sometimes causes the utilization of an internal ATG codon in B. mori cells.

In our experiment, the influence of context motifs on translational efficiency varied depending on the tissue. We designed NC and PC sequence contexts that represented the least-common and consensus sequences, respectively. The translational efficiency of the NC sequences was the lowest in all tissues, whereas the PC sequences demonstrated the highest efficiency in BmN4 cells and the fat body, but not in the MSG and PSG. The BmN4 cell line is derived from silkworm ovaries; however, it may retain similar characters to fat body cells because dexamethasone treatment induces accumulation of lipid in the cells (Akiduki and Imanishi 2007). Feng et al. (1991) reported that the effects of context sequences on translation in D. melanogaster were stage-dependent. These results suggest that stage- and tissue-specific adjustment of context motifs is needed for the maximum production of recombinant proteins. Silk glands represent an organ that is highly specialized for massive production of several secretory proteins within a short time interval (Julien et al. 2005). Our data show that this specialization also involves the adjustment of ATG initiation codon context motifs.

The optimization of different tissue-specific expression systems in transgenic silkworms is important from the viewpoint of posttranslational modifications, including glycosylations. The recombinant proteins produced by insect cells generally carry paucimannose-type n-glycans (Harrison and Jarvis 2006). The proteins produced by tissues other than the silk gland also have paucimannose- or highmannose-type n-glycans (Tomita 2011). However, the recombinant proteins produced in the MSG contain N-acetylglucosaminylated complex N-glycans (Iizuka et al. 2009). The optimization of the ATG context motifs is part of a large project developing recombinant protein production systems adapted for different tissues.

In conclusion, we identified the ATG context motif consensus in the silkworm B. mori, and showed that optimization of the sequence context is useful for increased production of recombinant protein in cultured cells and in transgenic silkworms. The context motifs best adapted to high production in cultured cells and the fat body differed from those in the MSG and PSG. Therefore, different optimized context sequences for different tissues may be required for the maximum expression of transgenes.

Methods

Construction of expression vectors

To generate the plasmid pIB-X-EGFP (Figure 2b), the EGFP gene amplified from the plasmid pBac[UAS-ser_sig-EGFP/
3 × P3-EGFP] (Tatematsu et al. 2010) using the primers EGFP-BstBI-U and EGFP Stop(+)-L (Table 6) was inserted into the BamHI-EcoRI site of pBluescript SK(−) (TOYOBO, Osaka, Japan). The constructed plasmid, pEGFP/pBS, contained the TTTCTGAAG (italicized letter, BstBI site) sequence downstream of the context sequence instead of the original EGFP sequence TGAGCAAG (this sequence change did not alter the amino acid sequence of EGFP). The adapter, except for IB-BlnI in Table 6, was inserted into the BstBI-BamHI site of the plasmid pEGFP/pBS to generate the plasmid pBS-X-EGFP. Simultaneously, the IB-BlnI adapter (Table 6) was inserted into the HindIII-KpnI site of the plasmid pB-X-V5/His (Life Technologies, Carlsbad, CA, USA) to introduce a BlnI site, and the resultant plasmid pB-X/V5/His_BlnI was obtained. Then, the NheI fragment from pBS-X-EGFP was inserted into the BlnI site of the plasmid pB-X-V5/His_BlnI. To generate the plasmid pBac-X-EGFP (Figure 2b), the NheI fragment from the plasmid pBS-X-EGFP was inserted into the BlnI site of the plasmid pBac [SerUAS/3 × P3-EGFP] (Tatematsu et al. 2010).

To generate pB-X-Luc constructs (Figure 2b), the Photinus (firefly) luciferase gene was amplified from the firefly luciferase gene was amplified from the Photinus [SerUAS/3 × P3-EGFP] (Tatematsu et al. 2010) using the primers pGL3 U and pGL3 L (Table 6). Then, the amplified fragment was inserted into the plasmid pZErO-2 (Life Technologies) in the same direction as the lacZ gene. A ClaI-EcoRI fragment from pLuc/pZero was site, and the resultant plasmid pBS-X-Luc was inserted into the BstBI-EcoRI site of pBS-X-EGFP to generate pBS-X-Luc constructs. The NheI fragment of pBS-X-Luc was inserted into the BlnI site of the plasmid pB-V5/His, and pB-X-Luc was constructed. Although the N-terminal amino acid sequence of the luciferase gene was altered in the process of plasmid construction, there was little or no effect on enzymatic activity.

The sequence of the constructed plasmid was verified by DNA sequencing on an ABI3100 or ABI3130 DNA sequencing kit (Life Technologies).

Measurement of luciferase activity and EGFP expression in BmN4 cells

To measure the effect of the ATG-context motif sequence on luciferase activity, BmN4 cells were cultured in six-well plates until they were ~80% confluent. The transfection was performed with a mixture of 1-μg pB-X-Luc vector, 0.1-μg pRL-TK vector (Promega) and 6-μL FuGENE HD reagent (Promega). Transfected cells were lysed in 200-μL 1 × passive lysis buffer (Promega) 3 days after transfection, and luciferase activity was measured using a dual luciferase assay kit (Promega). To measure EGFP protein and mRNA, cultured BmN4 cells were transfected with 1-μg pB-X-EGFP vector and 6-μL FuGENE HD reagent (Promega). Cells were harvested 3 days after transfection and split into two aliquots to measure mRNA and protein by quantitative PCR and enzyme-linked immunosorbent assay (ELISA), respectively. Isogen (Nippon Gene, Tokyo, Japan) was used to
extract total RNA from transfected BmN4 cells, and the cDNA was synthesized from isolated RNA using RevertraAce reverse transcriptase (TOYOBO). Quantitative PCR was performed as reported previously (Tatematsu et al. 2010). The primers EGFPCL2U and EGFPCL2L (Table 6) were used to amplify EGFP mRNA, and primers rp49LC2F and rp49LC2R (Table 6) were used to amplify rp49 (Table 2). To measure EGFP protein, transfected BmN4 cells were extracted with 300-μL 1× passive lysis buffer (Promega), and an ELISA for EGFP protein was performed on Reacti-Bind anti-GFP-coated plates (Pierce, Rockford, IL, USA), as previously reported (Tatematsu et al. 2010). The measurements of luciferase activity and EGFP protein were repeated at least three times.

Generation of transgenic silkworms and measurement of EGFP expression in MSG, PSG, and fat body
The silkworm strain w1-pnd, which is non-diapausing, with non-pigmented eggs and eyes, was used to generate transgenic silkworms. The diapausing strain w-1 was used to maintain each transgenic strain. These strains were maintained at the Transgenic Silkworm Research Unit, National Institute of Agrobiological Sciences. Silk-worm larvae were reared on an artificial diet (Nosan, Yokohama, Japan) at 25°C.

Transgenic silkworms were generated as previously reported using transposon piggyBac as a vector (Tamura et al. 2007; Tatematsu et al. 2010). Transgenic silkworms harboring the EGFP construct with different sequence contexts were mated with adults from Ser1-GAL4 (Tatematsu et al. 2010), FibH-GAL4 (Suzutsu et al. 2009), or 30 K-GAL4 strains (H. Suzutsu, personal communication), and their F1 larvae, harboring both EGFP and GAL4 constructs, were used for the experiment. The MSG, PSG, and fat body were dissected from 10 larvae on the sixth day of the fifth instar. The amounts of EGFP mRNA and protein in tissue were measured using quantitative PCR and ELISA, as reported previously (Tatematsu et al. 2010).

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
KT: carried out the experiments, analyzed data and drafted the manuscript. KLU: carried out the experiments. HS: carried out the experiments. TT: designed experiments, analyzed data and drafted the manuscript. All authors have read and approved the final manuscript.

Acknowledgments
We thank Mr. Kaoru Nakamura, Mr. Koji Hashimoto, and Mr. Toshihiko Misawa for maintaining silkworms. We also thank Miss Mai Hayakawa for technical support and Dr. Michal Zuvic for critical reading of the manuscript. This work was supported by a grant from the Ministry of Agriculture, Forestry and Fisheries of Japan (Integrated Research Project for Plants, Insects, and Animals using Genome Technology, INSECT-2020).

References
Adachi T, Wang X, Murata T, Obara M, Akutsu H, Machida M, Umezawa A, Tomita M (2010) Production of a nontriplet helical collagen alpha chain in transgenic silkworms and its evaluation as a gelatin substitute for cell culture. Biotechnol Bioeng 106:860–870
Agarwal S, Jha S, Sanjal A, Amla DV (2009) Effect of point mutations in translation initiation context on the expression of recombinant human α1-proteinase inhibitor in transgenic tomato plants. Plant Cell Rep 28(12):1791–1798
Akuduki G, Imanishi S (2007) Establishment of a lipid accumulation model in an insect cell line. Arch Insect Biochem Physiol 66:109–121
Cavenor DR (1987) Comparison of the consensus sequence flanking translational start sites in Drosophila and vertebrates. Nucleic Acids Res 15(4):1353–1361
Cavenor DR, Ray SC (1991) Eukaryotic start and stop translation sites. Nucleic Acids Res 19(12):3185–3192
Chang MJ, Kuzio J, Blissard GW (1999) Modulation of translational efficiency by contextual nucleotides flanking a Baculovirus initiator AUG codon. Virology 259(2):369–383
Cherbas L, Cherbas P (1993) The arthropod initiator: the capsite consensus plays an important role in transcription. Insect Biochem Mol Biol 23:81–90
Feng Y, Gunter LE, Organ EL, Cavenor DR (1991) Translation initiation in Drosophila melanogaster is reduced by mutations upstream of the AUG initiator codon. Mol Cell Biol 11(4):2149–2153
Harrison RL, Janis DL (2006) Protein N-glycosylation in the baculovirus-insect cell expression system and engineering of insect cells to produce mammalian-like recombinant glycoproteins. Avi- Virus Res 68:159–191
Iizuka M, Ogawa S, Takeuchi A, Nakakita S, Kubo Y, Miyawaki Y, Hiraibayashi J, Tomita M (2009) Production of a recombinant mouse monoclonal antibody in transgenic silkworm cocoons. FEBS J 276:5806–5820
Iizuka T, Suzutsu H, Tatatematu K, Kobayashi L, Yonemura N, Uchino K, Nakajima K, Kojima K, Takabayashi C, Machii H, Yamada K, Kurihara H, Akisaka T, Nakasaki Y, Miyawaki A, Karsawa S, Kobayashi H, Yamaguchi J, Kuiwabara N, Nakamura T, Yoshii K, Tamura T (2013) Colored fluorescent silk made by transgenic silkworms. Adv Funct Mater doi:10.1002/adfm.201303065
Joshi CP, Zhou H, Huang Q, Chiang V (1997) Context sequences of translation initiation codon in plants. Plant Mol Biol 35(6):993–1001
Julien E, Coulon-Bubblex M, Garel A, Royer C, Chavancy C, Pudhomme JC, Couble P (2005) Silk gland development and regulation of silk protein genes. In: Gilbert LI,.latrou K, Gill SS (eds) Comprehensive molecular insect science. Elsevier BV, Amsterdam, pp 369–384
Kanamori Y, Hayakawa Y, Matsumoto H, Yasukochi Y, Shirama S, Nakahara Y, Kuchi M, Kamimura M (2010) A eukaryotic (insect) tricistronic mRNA encodes three proteins selected by context-dependent scanning. J Biol Chem 285(47):36933–36944
Kozak M (1984) Point mutations close to the aug initiator codon affect the efficiency of translation of rat preproinsulin in vivo. Nature 308(5950):241–246
Kozak M (1988) Point mutations define a sequence flanking the AUG initiator codon that modulates translation by eukaryotic ribosomes. Cell 44(2):283–292
Kozak M (1987a) An analysis of S′-noncoding sequences from 699 vertebrate messenger RNAs. Nucleic Acids Res 15(20):8125–8148
Kozak M (1987b) At least six nucleotides preceding the AUG initiator codon enhance translation in mammalian cells. J Mol Biol 196(3):947–950
Kozak M (1991) Structural features in eukaryotic mRNAs that modulate the initiation of translation. J Biol Chem 266(30):19867–19870
Kozak M (1997) Recognition of AUG and alternative initiator codons is augmented by G in position +4 but is not generally affected by the nucleotides in positions +5 and +6. EMBO J 16(3):2482–2492
Kurihara H, Suzutsu H, Tamura T, Yamada K (2007) Production of an active feline interferon in the cocoon of transgenic silkworms using the fibroin H-chain expression system. Biochem Biophys Res Commun 357:950–956
Markov RV, Gamelbrant AA, McClintock TS (1998) Consensus translational initiation sites of marine invertebrate phyla. Biol Bull 195(3):251–254
Ogawa S, Tomita M, Shimizu K, Yoshizato K (2007) Generation of a transgenic silkworm that secretes recombinant proteins in the sericin layer of cocoon: production of recombinant human serum albumin. J Biotechnol 128:531–544
Ranjana A, Haisain SE (1995) Influence of codon usage and translation initiation codon context in theAChN/P-based expression system: computer analysis using homologous and heterologous genes. Virus Genes 9(2):149–153
Sano KI, Maeda K, Ono M, Maeda Y (2002) Enhancement of protein expression in insect cells by a lobster tropomyosin cDNA leader sequence. FEBS Lett 532(1–2):143–146
Seeber F (1997) Consensus sequence of translational initiation sites from Toxoplasma gondii genes. Parasitol Res 83(3):309–311

Sezutsu H, Uchino K, Kobayashi I, Tatematsu K, Iizuka T, Yonemura N, Tamura T (2009) Conservation of fibroin gene promoter function between the domesticated silkworm Bombyx mori and the wild silmoth Antheraea yamamai. J Insect Biotechnol Sericol 78:1–10

Sugio T, Matsura H, Matsu T, Matsunaga M (2010) Effect of the sequence context of the AUG initiation codon on the rate of translation in dicotyledonous and monocotyledonous plant cells. J Biosci Bioeng 109(2):70–173

Tamura T, Kuwabara N, Uchino K, Kobayashi I, Kanda T (2007) An improved DNA injection method for silkworm eggs drastically increases the efficiency of producing transgenic silkworms. J Insect Biotechnol Sericol 76(3):155–159

Tatematsu K, Sezutsu H, Tamura T (2012) Utilization of transgenic silkworms for recombinant protein production. J Biotechnol Biomaterial S9004, doi:10.4172/2155-952X.S9-004

Tatematsu K, Kobayashi I, Uchino K, Sezutsu H, Iizuka T, Yonemura N, Tamura T (2010) Construction of a binary transgenic gene expression system for recombinant protein production in the middle silk gland of the silkworm Bombyx mori. Transgenic Res 19(3):473–487, doi:10.1007/s11248-009-9228-2

Tateno M, Toyooka M, Shikano Y, Takeda S, Kuwabara N, Sezutsu H, Tamura T (2009) Production and characterization of the recombinant human μ-opioid receptor from transgenic silkworms. J Biochem 145(1):37–42, doi:10.1093/jb/mvn147

Teule F, Miao YG, Sohn BH, Kim YS, Hull JJ, Fraser MJ, Lewis RV, Jarvis DL (2012) Silkworms transformed with chimeric silkworm/spider silk genes spin composite silk fibers with improved mechanical properties. PNAS 109(3):923–928, doi: 2012PNAS109.923T

Tomita M (2011) Transgenic silkworms that weave recombinant proteins into silk cocoons. Biotechnol Lett 33:645–654

Tomita M, Munetsuna H, Sato T, Adachi T, Hino R, Hayashi M, Shimizu K, Nakamura N, Tamura T, Yoshizato K (2003) Transgenic silkworms produce recombinant human type III procollagen in cocoons. Nat Biotechnol 21:52–56

doi:10.1186/2193-1801-3-136

Cite this article as: Tatematsu et al.: Effect of ATG initiation codon context motifs on the efficiency of translation of mRNA derived from exogenous genes in the transgenic silkworm, Bombyx mori. SpringerPlus 2014 3:136.