Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
Propagation of respiratory viruses in human airway epithelia reveals persistent virus-specific signatures

Manel Essaidi-Laziosi, PhD, a Francisco Brito, MSc, b Sacha Benaudia, MSc, c Lena Royston, MD, a Valeria Cagno, PhD, a Melanie Fernandes-Rocha, d Isabelle Piuz, a Evgeny Zdobnov, PhD, b Song Huang, PhD, c Samuel Constant, PhD, c Marc-Olivier Boldi, PhD, c Laurent Kaiser, MD, d and Caroline Tapparel, PhD d Geneva, Switzerland

Background: The leading cause of acute illnesses, respiratory viruses, typically cause self-limited diseases, although severe complications can occur in fragile patients. Rhinoviruses (RVs), respiratory enteroviruses (EVs), influenza virus, respiratory syncytial virus (RSV), and coronavirus (HCoV–OC43), are highly prevalent respiratory pathogens, but because of the lack of reliable animal models, their differential pathogenesis remains poorly characterized.

Objective: We sought to compare infections by respiratory viruses isolated from clinical specimens using reconstituted human airway epithelia.

Methods: Tissues were infected with RV-A55, RV-A49, RV-B48, RV-C8, and RV-C15; respiratory EV-D68; influenza virus H3N2; RSV-B; and human coronavirus (HCoV–OC43). Replication kinetics, cell tropism, effect on tissue integrity, and cytokine secretion were compared. Viral adaptation and tissue response were assessed through RNA sequencing.

Results: RVs, RSV-B, and HCoV-OC43 infected ciliated cells and caused no major cell death, whereas H3N2 and EV-D68 induced ciliated cell loss and tissue integrity disruption. H3N2 was also detected in rare goblet and basal cells. All viruses, except RV-B48 and HCoV-OC43, altered cilia beating and mucociliary clearance. H3N2 was the strongest cytokine inducer, and HCoV-OC43 was the weakest. Persistent infection was observed in all cases. RNA sequencing highlighted perturbation of tissue metabolism and induction of a transient but important immune response at 4 days after infection. No majority mutations emerged in the viral population.

Conclusion: Our results highlight the differential in vitro pathogenesis of respiratory viruses during the acute infection phase and their ability to persist under immune tolerance. These data help to appreciate the range of disease severity observed in vivo and the occurrence of chronic respiratory tract infections in immunocompromised hosts. (J Allergy Clin Immunol 2018;141:2074-84.)

Key words: Respiratory virus, rhinovirus, cytotoxicity, pathogenesis, cytokines, mucociliary clearance, immune response, persistence

Acute respiratory tract infections are the leading cause of both illness and death in postneonatal children at less than 5 years of age. Viruses represent the main cause of respiratory tract infections, among which the predominant causative agent is rhinovirus (RV) (40% of all viral respiratory tract infections), followed by influenza virus and respiratory syncytial virus (RSV). This latter infection has been reported as the main viral cause of hospitalization in infants, followed by RV and influenza virus. Unexpected outbreaks can also be caused by emerging or re-emerging pathogens, such as enterovirus (EV)–D68, which was responsible for the nationwide US outbreak of mild-to-severe respiratory illness in 2014 that especially affected the pediatric population. Even though respiratory viruses generally cause self-limited illnesses, the societal effect is significant because of work and school absenteeism, medical visits, and misuse of antibiotics. Furthermore, lower respiratory tract infections, chronic infections, and complications, such as bronchiolitis, pneumonia, and asthma exacerbations, are frequent in young children, immunocompromised subjects, or those with underlying conditions. Despite this considerable burden to individual well-being and the public health care system, supportive care is the only therapeutic option against most respiratory viruses. Therefore a better understanding of their pathogenesis is crucial to develop more effective antiviral drugs or vaccines.

Because cellular receptors are species specific for most human respiratory viruses, only a few animal models exist to study this prevalent and diverse group of pathogens. Selected mouse strains or transgenic mice expressing human receptors, as well as mouse-adapted viruses, are used; however, they mimic poorly pathogenesis in a human host. Most in vitro studies are performed in immortalized cells and sometimes in primary cells derived from human airways, but these cell lines cannot fully reproduce the complexity of the human airway epithelium. In addition, some respiratory viruses, such as RVs from species C, grow poorly in standard cell lines. In this respect much effort has been dedicated to develop more representative models, such as airway epithelia reconstituted from primary cells isolated from nasal or bronchial surgeries. These air-liquid interface
tissue-culture systems have been validated for the study of respiratory viruses, such as RSV, influenza, human coronaviruses (HCoVs), and RVs. They reproduce the pseudostratified architecture of the human airway epithelium, which is composed of basal, ciliated, and goblet cells, as well as its defense mechanisms (ie, mucociliary clearance [MCC] and epithelial cell immunity). Using standardized in vitro–reconstituted human airway epithelia and clinical viral strains, we could compare infection patterns by the most prevalent respiratory viruses, including 5 RVs, a respiratory EV, RSV, influenza, and HCoV. For each infection, we compared the replication kinetics, cellular tropism, and effect of the virus on tissue integrity or cytokine secretion. In addition, we performed high-throughput RNA sequencing (HTS) on viruses and host tissues collected at different times after infection to investigate changes in viral populations and tissue response. Our data highlight the differential in vitro pathogenesis of these representative respiratory pathogens and reveal the systematic viral persistence in the absence of a fully competent immune response.

METHODS

Detailed procedures are provided in the Methods section in this article’s Online Repository at www.jacionline.org.

Human airway epithelia reconstituted in vitro (MucilAir)

MucilAir tissues (Epithelix Sàrl, Geneva, Switzerland) were cultured at the air-liquid interface from a mixture of nasal polyp epithelial cells originating from 14 healthy donors, as previously described.16

Viruses

The apical surface was inoculated with 100 μL of infected sample. Sample collection was performed, as previously reported.16 To prepare viral stocks, apical samples collected 2 days after infection (dpi) were used to infect 5 new tissues. Samples were collected daily, and the 4 samples with highest viral loads were pooled. Isolated viruses were purified as described,20 and viral stocks were quantified by using real-time quantitative PCR (qPCR).

Viral load quantification

RNA extracted with NucliSens easyMAG (bioMérieux, Marcy L’Etoile, France) was quantified by using qPCR with the QuantiTect kit (#204443; Qiagen, Hilden, Germany) in a StepOne ABI Thermocycler.

Abbreviations used

dpi: Days after infection
EV: Enterovirus
HCoV: Human coronavirus
HTS: High-throughput RNA sequencing
IP-10: Interferon-inducible protein 10
LDH: Lactate dehydrogenase
MCC: Mucociliary clearance
qPCR: Real-time quantitative PCR
RSV: Respiratory syncytial virus
RV: Rhinovirus
TEER: Transepithelial electrical resistance

Immunofluorescence

RV and EV were detected with anti–double-stranded RNA antibody (mAbJ2; SCICONS, Szirak, Hungary);16 influenza with anti–influenza A antibody (MAB5001; Millipore, Temecula, Calif); RSV with anti-RSV antibody (MAB5006; Millipore), and HCoV-OC43 with anti–HCoV-OC43 nucleoprotein antibody (MAB9013; Millipore). Ciliated, goblet, and basal cells were stained with the anti–beta IV tubulin antibody (179504; Abcam, Cambridge, United Kingdom), anti–mucin 5A antibody (bs1022R-Cy3; Bioss, Woburn, Mass), and anti–p63-a mAb (13109; Cell Signalling, Danvers, Mass), respectively. The Alexa Fluor 594–goat anti-mouse antibody (A11032; Life Technologies, Grand Island, NY) and the Alexa Fluor 488–goat anti-rabbit antibody (A11008; Life Technologies) were used as secondary antibodies. Images were acquired with the Zeiss LSM700 Meta Confocal Microscope (Zeiss, Oberkochen, Germany) and processed by Imaris (Bitplane, Zurich, Switzerland).16

Lactate dehydrogenase assay and transepithelial electrical resistance

Lactate dehydrogenase (LDH) release in basal medium was measured with the Cytotoxicity Detection Kit (04744926001; Roche, Mannheim, Germany), and transepithelial electrical resistance (TEER) was measured with an EVOM volt ohmmeter (World Precision Instruments, Sarasota, Fla).

ELISA

Cytokines were quantified in basal medium by means of ELISA, according to the manufacturer’s instructions.

MCC and cilia beating

Displacement velocity of polystyrene microbeads (84135; Sigma, St Louis, Mo) at the tissue apical surface was measured with contrast phase microscopy and Image Pro-Plus software (Media Cybernetics, Rockville, Md). Cilia beating movies were created with a Sony XCD-U50CR microscope (Sony, Tokyo, Japan), Sony zcl software, and ImageJ software (National Institutes of Health, Bethesda, Md).

Statistics

Values are expressed as means ± SEMs. The ANOVA F-test was run and, on significance (P < .05), completed by using multiple comparisons with the max-t test.15 ANOVA was replaced by a Kruskal-Wallis nonparametric case, if needed. Analyses were made with R software (https://www.R-project.org/). For each biological replicate, infections were done in duplicates, and N represents the number of infected tissues.

High-throughput sequencing

RNA extracted from apically collected specimens or from tissues by using TRIzol (5596018; Ambion, Austin, Tex) was used for library preparation with the TruSeq Stranded Total RNA Kit (Illumina, San Diego, Calif). For transcriptome analysis, library preparation was preceded by using ribodepletion Ribo-Zero Gold. Sequencing was performed with TruSeq SBS HS v3 chemistry on an Illumina HiSeq2500 sequencer. Differential expression analyses were performed with R/Bioconductor package DESeq2. Viral genomes were assembled de novo by using IDBA-UD.22 Variant calling was performed with Lofreq,23 SNVer,24 and SAMtools 1.3.25 Only the variants agreed upon by at least 2 of the 3 callers were considered for downstream analysis.

RESULTS

Respiratory viruses have varied growth kinetics

Viral stocks were prepared for RV-A55 (RV from species A, major group), RV-A49 (RV from species A, minor group),
TABLE I. Clinical specimens used to prepare viral stocks directly in tissues

Virus	Specimen	Patient	Collection year	Study
RSV-B	NPS	Newborn (CH)	2014	Essaidi-Laziosi et al.
H3N2	NPS	Adult (CH)	2013	This study
HCoV-OC43	NPS	Elderly (CH)	2014	This study
EV-D68	NPS or OPS	Child (Tanzania)	2008	L’Huillier et al.
RV-A55 (M)	NPS	Elderly (CH)	2012	This study
RV-A49 (m)	NPA	Child (CH)	2009	Tapparel et al.
RV-B48	NPA	Infant (CH)	2012	This study
RV-C8	Serum	Child (Fr)	2012	Lupo et al.
RV-C15	NPA	Child (CH)	2009	Tapparel et al.

CH, Switzerland; Fr, France; NPA, nasopharyngeal aspirate; NPS, nasopharyngeal swab; OPS, oropharyngeal swab.

Respiratory viruses induce varied patterns of cytokine secretion, ranging from strong induction by H3N2 to weak induction by HCoV-OC43

Release of chemokines (IL-8, interferon-inducible protein 10 [IP-10], and RANTES) and cytokines (IFN-α/α3, IL-1β, IL-6, and GM-CSF) induced by viral infections was evaluated at 4 dpi (Fig 4). H3N2 was the only virus to significantly induce all cytokines. RV-A and RV-Cs induced an intermediate response, whereas RV-B48 induced significantly less IFN-α. Overall, the response to RSV-B and EV-D68 was similar to the response to RV-A and RV-Cs, except for IL-1β, which was not significantly induced by either virus. Finally, HCoV-OC43 induced significantly less IL-8, IP-10, RANTES, IFN-α, and IL-1β than the other viruses.

Other cytokines involved in the pathophysiology of allergic diseases (IL-33, IL-25, thymic stromal lymphopoietin, and IFN-β) and anti-inflammatory cytokines (TGF-β) were either not significantly induced compared with control values (IL-33 and TGF-β) or not detected (IL-25, thymic stromal lymphopoietin, and IFN-β; see Fig E1 in this article’s Online Repository at www.jacionline.org).

All but RV-B48 and HCoV-OC43 affect cilia beating and MCC independent of viral input

MCC was affected by all viruses except RV-B48 and HCoV-OC43 (Fig 5). This was confirmed by an observed decrease in cilia beating frequency at 2 dpi for EV-D68 and 4 dpi for H3N2, RV-A55, RV-A49, RV-C8, RV-C15, and RSV (data not shown).

Infections with 100-fold serial dilutions of the inoculum (starting with higher concentrations for less cytotoxic viruses) were compared for the 2 most cytotoxic viruses (H3N2 and EV-D68), the 2 least cytotoxic viruses (HCoV-OC43 and RV-48), and 2 viruses with intermediate toxicity (RV-C8 and RSV-B) to assess whether these observed differences were linked to different amounts of infectious particles in viral stocks. As shown in Fig E2 (in this article’s Online Repository at www.jacionline.org), EV-D68 exhibits a similar but delayed toxicity, even after inoculation of 10⁴ viral RNA copies, whereas RV-B48 and HCoV-OC43 do not affect MCC, even after inoculation of 10⁷ and 10⁸ viral RNA copies, respectively. Of note, the low cytokine induction by HCoV-OC43 was also confirmed at these higher inoculum doses (data not shown).

RV-B48 (RV from species B), RV-C15 (RV from species C), RV-C8 (RV from species C), isolated from a patient’s serum with disseminated infection, EV-D68 (respiratory EV from species D), influenza A H3N2 Victoria like, RSV subgroup B, and HCoV-OC43 (Table I) directly in reconstituted airway differentiated cells, contributing to tissue recovery.

Respiratory viruses have varied cell tropisms

All viruses tested were localized in ciliated cells, but only infections with EV-D68 and H3N2 resulted in large-scale ciliated cell destruction (Fig 2, A). H3N2 was the only tested virus to be detected rarely in goblet and basal cells (Fig 2, B). EV-D68 was found in nonciliated cells without goblet or basal cell markers (data not shown), likely being undifferentiated cells.

EV-D68 and H3N2 are the most cytotoxic viruses

All viruses showed cytotoxicity, as measured based on LDH release in the basal medium, but EV-D68 and H3N2 were significantly more cytotoxic (Fig 3, A) and were the only viruses to cause loss of tissue integrity evidenced by decreased TEER (at later time points for H3N2; Fig 3, B). This observation is coherent with immunofluorescence results (Fig 2, A). TEER and LDH values returned to normal at 5 dpi for EV-D68, despite a low number of ciliated cells and at 11 dpi for 8 of 12 H3N2-infected tissues (data not shown), which suggests a rapid proliferation of undifferentiated cells, contributing to tissue recovery.
All respiratory viruses cause persistent infection, which is not linked to majority mutations in the viral population but rather a contained innate immune response and tissue recovery

Throughout the 28-day culture period, viral genomic RNA was produced at the tissue apical surface despite repeated epithelial washes (Fig 6). The infectivity of viruses collected at 28 dpi was confirmed in tissue culture. To find out whether this persistence was linked to changes in the composition of the viral population, viruses produced in the tissue (RV-B48 and RV-C15, see Fig E3 in this article’s Online Repository at www.jacionline.org) or released apically (EV-D68, Fig 6) were sequenced by means of HTS during the acute (4 dpi for RV-B48 and RV-C15 and 2 dpi for EV-D68) and persistent (16 dpi for RV-B48 and RV-C15 and
28 dpi for EV-D68) phases of the infection. The EV-D68 inoculum was also analyzed by using HTS. Changes were observed in the composition of the viral population at different time points, indicating evolution of the viral quasispecies (see Table E1 in this article’s Online Repository at www.jacionline.org). However, the proportion of variants in the population stayed less than 50% at all time points. Mutations highlighted in the coding sequence were silent except for 1 substitution (Leu to Pro) in the VP2 protein of RV-C15 present in the population at 4 dpi (30.6%) and 16 dpi (24.2%, see Table E1). Of note, 3 changes observed in the RV-B48 5' untranslated region with low frequency at 4 dpi (23.8%, 30.7%, and 25%) were no longer detected at 16 dpi (see Table E1). Comparison of genome coverage at the different time points did not highlight the presence of defective interfering particles (see Fig E4 in this article’s Online Repository at www.jacionline.org).

Tissue response was then addressed through transcriptomic analysis of tissues infected with RV-C15 (moderate cytotoxicity) and RV-B48 (low cytotoxicity) at 4 and 16 dpi. For RV-C15, 8514 and 3272 genes showed altered expression at 4 and 16 dpi,
FIG 3. Effect of infections on epithelia. Viral toxicities calculated from the amount of LDH released by damaged cells in the basal medium (n = 8; A) and TEER (n ≥ 2; B) were measured at days 2 and 5 post infection (p.i.). The 48-hour time point represents LDH accumulated during 48 hours; for later time points, the medium was replaced every day, and data correspond to LDH secretions within the preceding 24 hours. Dotted lines in Fig 3, B, correspond to the established threshold of tissue integrity. *P < .05, **P < .01, and ***P < .001. Asterisks in light gray show statistical significance relative to noninfected tissue, whereas black asterisks show statistical significance compared with all other respiratory viruses at each time point.
respectively, whereas 750 (4 dpi) and 109 (16 dpi) genes were affected by RV-B48 (see Fig E5 and Table E2 in this article’s Online Repository at www.jacionline.org). Among those, only 56 (4 dpi) and 7 (16 dpi) genes were affected specifically by RV-B48. Biological processes (Fig 7 and see Table E3 in this article’s Online Repository at www.jacionline.org) and reactome pathway enrichment analysis (see Table E4 in this article’s Online Repository at www.jacionline.org) both highlighted modifications of metabolic processes at 4 dpi but not 16 dpi. Defense and immunity pathways were also strongly activated at 4 dpi (particularly for RV-C15) and decreased between 4 and 16 dpi. Importantly, pathways linked to cilia morphogenesis, organization, and assembly were affected only in RV-C15–infected tissues.

Together, these findings indicate that after important modifications of tissue metabolism and activation of innate immunity at 4 dpi, tissues recover and develop tolerance to the infection at 16 dpi without incurring major changes in the viral population.

DISCUSSION

Using reconstituted human airway epithelia, we analyzed the first steps of pathogenesis of the most prevalent human respiratory pathogens. Viruses were amplified in human tissues directly from clinical specimens to best reflect in vivo conditions. Moreover, identical batches of tissues were inoculated in parallel to ensure optimal comparisons of infections by the different respiratory viruses. Our data revealed similarities but also marked differences among the tested viruses.

Of the 9 clinical isolates tested (RV-A55, RV-A49, RV-B48, RV-C8, RV-C15, EV-D68, RSV-B, H3N2, and HCoV-OC43),
replication patterns were generally similar, with an increase in apical release during the first 48 hours, followed by a peak between 48 and 96 hours and a slight decrease thereafter. Surprisingly, all respiratory viruses tested were detected constantly over the 28-day culture period. Viral persistence was reported in similar tissue culture systems for a recombinant RSV–green fluorescent protein, as well as in calf tracheal organ cultures for bovine RV and influenza A. Here we extend these observations and show that 9 single-stranded RNA respiratory viruses with highly diverse biological characteristics systematically produced persistent infections in cultured human respiratory tissues. Persistence could not be explained by major viral changes because HTS of RV-C15, RV-B48, and EV-D68 collected at 16 dpi or later were not significantly different from those isolated in acute infection, either in viral population composition or in the appearance of defective interfering viral particles. On the other hand, transcriptome analysis of host tissues infected with RV-C15 and RV-B48 showed that innate immunity is strongly induced during the acute phase of infection but decreases thereafter and is insufficient to clear the infection. Although all these viruses usually cause self-limited diseases, chronic infections have been documented in immunocompromised populations, supporting our observation and confirming that an effective immune response is required for viral clearance.

All 9 viruses exhibited preferential apical replication with specific tropism for ciliated cells. Only H3N2 was also detected in rare goblet and basal cells. These results are consistent with previous studies on RSV, RV-A, RV-C, HCoV-OC43, and influenza. In a previous study on sinus mucosal organ culture, the RV genome was present in both ciliated and nonciliated cells; however, this study included mechanical tissue culture, the RV genome was present in both ciliated and nonciliated cells; however, this study included mechanical tissue injury before infection, which might support viral spread. In addition, HTS of tissues infected with RV-B48 showed significantly fewer changes in gene expression profiles than tissues infected with RV-C15. In particular, processes related to cilia morphogenesis were not affected by RV-B48, supporting the observed absence of perturbation of MCC and cilia beating by this virus. Concerning HCoV-OC43, the absence of effect on tissue was associated with an even weaker induction of cytokines. Among all tested cytokines, only IP-10 and IL-6 were induced, although at significantly lower levels than by all other respiratory viruses. The ability of coronaviruses to remain undetected by innate immune sensors has been unraveled recently. Interestingly, for most viruses that affected cilia beating and MCC, a limited number of cells was infected, and the ciliated cell layer was preserved. This observation suggests a paracrine effect, propagated disorganization of cilia beating, or both. It has been shown that infection by HCoV-E229 does not affect tissue integrity in vitro and cilia beating in vivo. Cilia dyskinesia was observed, and Wang et al suggested that it would affect MCC; however, HCoV-E229 might have a more expanded cell tropism compared with other HCoV species and might thus be more virulent than HCoV-OC43.

Regarding the other respiratory viruses, RVs from species A and C, as well as RSV-B, affected MCC but without causing significant cell death or loss in tissue integrity. These observations were confirmed with RSV-A (data not shown). Previous studies with RSV-A in air-liquid interface cultures showed no change in cilia beating frequencies at 72 hours after infection, but ciliary dyskinesia was increased. However, this finding does not contradict our data because in our case inhibition of cilia beating for this virus started at only 4 dpi. In addition, our RSV-B was produced in tissue directly from a clinical sample, whereas in the study by Smith et al, the RSV-A stock was produced in BSC-1 monkey kidney cells and was potentially cell adapted. For RVs, the low number of infected cells and a weak effect on mucosal integrity has already been demonstrated. Similarly, in vitro and in vivo RSV infections were also associated with little tissue damage, which is an unexpected finding for a virus that is highly pathogenic in vivo. However, it has been previously proposed that RV pathogenicity in vivo is mainly immune mediated. Surprisingly, the RV-C8 strain that was associated with a disseminated human infection was not particularly virulent in our model. This result suggests that the in vivo dissemination and virulence is linked to host rather than viral factors.

We also investigated the ability of respiratory viruses to induce cytokines involved in asthma exacerbation and atopy. However, no correlation was found, even for viruses known to exacerbate allergic diseases, such as RV-Cs. Similar studies performed in tissues originating from asthmatic donors will certainly bring more insight into these associations and the role of host factors.

EV-D68 and H3N2 were the most cytotoxic viruses in interfering both with MCC and tissue integrity, with marked
FIG 6. Virus production at the apical site of air-liquid interface cultures of reconstituted human airway epithelia over a prolonged time period. Viral RNA loads measured by using qPCR from infected samples collected at the apical side of tissues infected with 9 different respiratory viruses are shown. Each tissue was inoculated with 10^6 RNA copies of the indicated virus, and tissues were washed 3 times after 4 hours; samples were then collected from the apical surface at the indicated time point ($n = 4$).

FIG 7. Comparison between the top 30 most significantly enriched biological processes in tissues infected with RV-C15 and RV-B48 at the indicated time. Circle size represents the number of differentially expressed genes found on that pathway, whereas the color represents the adjusted P value. The top 100 genes showing significant changes in each condition is available in Table E2, as well as the enrichment analysis for gene ontology biological processes (see Table E3) and the reactome pathway (see Table E4). SRP, Signal recognition particle.
loss of ciliated cells at days 2 and 5, respectively. For both viruses, tissues recovered in most cases, which is presumably linked to proliferation of undifferentiated cells, as previously described. To our knowledge, this study presents the first successful attempt to grow EV-D68 in human respiratory epithelia, and our data shed some light on the capacity of this virus to replicate and kill ciliated cells. In vitro virulence of EV-D68 is particularly striking when compared with that of RVs belonging to the same genus. This difference might account for the frequent complicated diseases observed during EV-D68 infections. Different strains of influenza (H3N2, H1N1, or influenza B) are also known to affect tissue integrity, cilia beating, and MCC in mice, rats, pigs, and human subjects. In addition, we observed similar induction of LDH release and blockage of MCC with an H1N1 clinical isolate (data not shown). The mechanisms used by EV-D68 and influenza to destroy ciliated cells might differ. In our study EV-D68 toxicity was associated with higher replication but intermediate cytokine induction, whereas for H3N2, it was associated with strong cytokine induction but intermediate replication levels.

By providing insight into the tissue response to viral infections, this study reveals possible broad-spectrum host-targeted strategies to combat respiratory viruses. Based on cytokine (Fig 4) and transcriptome (Fig 7) profiles of infected tissues and on published data, several pathways have shown promise as targets for antiviral therapies. For example, inhibitors of the inflammatory IκB kinase, nuclear factor κB signaling pathways, and biological processes related to protein localization and targeting, as well as type III interferon–based therapies (reviewed by Syedbasha and Egli), have all been reported to exhibit a direct antiviral activity or to counteract virally activated pathways. Based on our data, these molecules represent valuable targets to fight the infection, as well as its subsequent biological consequences and associated symptoms. Other recently characterized broad-spectrum antiviral molecules known to be effective against enveloped and nonenveloped viruses could also be further validated in this system, such as oxysterols, which interfere with the formation of viral replication organelles or direct-acting antiviral drugs active in vitro against several types of viruses, such as sialidase-derived compounds or polymerase inhibitors. Thus this clinically relevant and unique tissue-culture model could be used to test promising compounds for their tissue toxicity and broad-spectrum antiviral activity (either as prevention or treatment). Because the model is applicable to diverse respiratory viruses circulating in the population (including poorly cultivable ones, such as RV-C), these studies will provide valuable and wide-ranging information that might better guide later in vivo models.

Taken together, our data provide a comprehensive overview of the differential pathogenesis of some of the most prevalent respiratory viruses in human subjects. We demonstrate that among the tested viruses, influenza H3N2 and EV-D68 are the most virulent, followed by RSV-B, RV-A, and RV-C, whereas HCoV-OC43 and RV-B are almost noncytotoxic. These significant differences in vitro might contribute to the diversity of disease severity associated with each of these pathogens in vivo.

Furthermore, we highlight viral persistence in these respiratory tissues and indicate that this persistence results from a contained epithelial cell response in addition to absence of immune cells rather than significant changes in viral population composition. To conclude, our results shed light on the complex interplay between viruses and the host tissue response and contribute to the understanding of the mechanism behind chronic respiratory tract infections in immunocompromised patients.

We thank Sophie Clément (Department of Pathology and Immunology, Faculty of Medicine, University of Geneva), Ludovic Wiszniiewski (Epithelix Sàrl), Bernardett Boda (Epithelix Sàrl), Rosy Bonfante (Epithelix Sàrl), and Patricia Boqueta-Suter (Division of Genetic and Laboratory Medicine, Geneva University Hospital, Switzerland), for technical help, as well as the iGE3 genomics platform of the University of Geneva, for HTS and transcriptome analysis and Annie Hartley for editorial assistance.

Key messages

- RV-B48 and HCoV-OC43 induce low toxicity in respiratory tissues because they affect neither MCC nor tissue integrity. RV-A55, RV-A49, RV-C8, RV-C15, and RSV exhibit low cytotoxicity but affect MCC. H3N2 and EV-D68 are the most pathogenic, affecting both MCC and tissue integrity.
- In tissues deficient of immune cells, respiratory viruses are able to cause persistent infection. This persistence is not linked to the emergence of majority mutations in the viral population but rather involves a contained innate immune response and recovery of normal tissue metabolism.
- This model system provides some clues to improve our understanding of the pathogenesis of these frequent pathogens and helps to appreciate the range of disease severity observed in vivo, as well as the frequent occurrence of chronic respiratory tract infections in immunocompromised hosts.

REFERENCES

1. World Health Organization. Global Health Observatory (GHO) data—child mortality and causes of death 2015. Available at: http://www.who.int/gho/child_health/mortality/causes/en/. Accessed December 2016.
2. Denny FW Jr. The clinical impact of human respiratory virus infections. Am J Respir Crit Care Med 1995;152(suppl):S4–12.
3. Ambrosiomi J, Biredevaux PO, Watters K, Basnet S, Sijapati S, Hill M, Palmenberg AC, et al. Differential pathogenesis of respiratory syncytial virus clinical isolates in BALB/c mice. J Virol 2011;85:762–93.
4. Bartlett NW, Walton RP, Edwards MR, Aniscenko J, Caramori G, Zhu J, et al. Mouse models of rhinovirus-induced disease and exacerbation of allergic airway inflammation. Nat Med 2008;14:199–204.
5. Khan F. Enterovirus D68: acute respiratory illness and the 2014 outbreak. Emerg Med Clin North Am 2015;33:e19–32.
6. Bertino JS. Cost burden of viral respiratory infections: issues for formulary decision makers. Am J Med 2002;112(suppl 6A):42S–98.
7. Nguyen C, Kaku S, Dutera D, Koschmider WG, Bähr J. Viral respiratory infections of adults in the intensive care unit. J Intensive Care Med 2016;31:427–41.
8. Stokes KL, Chi MH, Sakamoto K, Newcomb DC, Currier MG, Huckabee MM, et al. Differential pathogenesis of respiratory syncytial virus clinical isolates in BALB/c mice. J Virol 2011;85:762–93.
9. Bartlett NW, Walton RP, Edwards MR, Aniscenko J, Caramori G, Zhu J, et al. Mouse models of rhinovirus-induced disease and exacerbation of allergic airway inflammation. Nat Med 2008;14:199–204.
10. Margine I, Krammer F. Animal models for influenza viruses: implications for universal vaccine development. Pathogens 2014;3:845–74.
11. Bochkov YA, Watters K, Basnet S, Sijapati S, Hill M, Palmenberg AC, et al. Mutations in VP1 and 3A proteins improve binding and replication of rhinovirus C15 in HeLa-E8 cells. Virology 2016;499:350–60.
12. Villeneuve R, Shields MD, Power UF. Respiratory syncytial virus interaction with human airway epithelium. Trends Microbiol 2013;21:238–44.
13. Mitchell H, Levin D, Forrest S, Beauchemin CA, Tipper J, Knight J, et al. Higher level of replication efficiency of 2009 (H1N1) pandemic influenza virus than those of seasonal and avian strains: kinetics from epithelial cell culture and computational modeling. J Virol 2011;85:1125-35.

14. Bochkov YA, Palmenberg AC, Lee WM, Raihe JA, Aminueva SP, Sun X, et al. Molecular modeling, organ culture and reverse genetics for a newly identified human rhinovirus C. Nat Med 2011;17:627-32.

15. Hao W, Bernard K, Patel N, Ulbrandt N, Feng H, Svabek C, et al. Infection and propagation of human rhinovirus C in human airway epithelial cells. J Virol 2012;86:13524-32.

16. Tapparel C, Sobo K, Constant S, Huang S, Van Belle S, Kaiser L. Growth and characterization of different human rhinovirus C types in three-dimensional human airway epithelia reconstituted in vitro. Virology 2013;446:1-8.

17. Knight DA, Holgate ST. The airway epithelium: structural and functional properties in health and disease. Respirology 2003;8:432-46.

18. Roche WR, Montefort S, Baker J, Holgate ST. Cell adhesion molecules and the bronchial epithelium. Eur Respir Rev 1993;148(suppl):S79-82.

19. Smith DJ, Gaffney EA, Blake JR. Modelling mucociliary clearance. Respir Physiol Neurobiol 2008;163:178-88.

20. Nakagome K, Bochkov YA, Ashraf S, Brockman-Schneider RA, Evans MD, Pasic TR, et al. Effects of rhinovirus on viral propagation and cytokine production. J Allergy Clin Immunol 2014;134:332-41.

21. Hothorn T, Bretz F, Westfall P. Simultaneous inference in general parametric models. Biocon R 2008;4:34-63.

22. Peng Y, Leung HC, Yiu SM, Chin FY, IDBA-UD: a de novo assembler for single-cell and metagenomic sequencing data with highly uneven depth. Bioinformatics 2012;28:1420-8.

23. Wilm A, Aw PP, Bertrand D, Yeo GH, Ong SH, Wong CH, et al. LoFreq: a sequence-variant caller for uncovering cell-population heterogeneity from high-throughput sequencing datasets. Nucleic Acids Res 2012;40:3466-8.

24. Wei Z, Wang W, Hu P, Lyon GJ, Hakonarson H. SNVer: a statistical tool for variant calling in analysis of pooled or individual next-generation sequencing data. Nucleic Acids Res 2011;39:e132.

25. Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, et al. The Sequence Alignment/Map format and SAMtools. Bioinformatics 2009;25:2078-9.

26. Lupi J, Schuffenecker I, Morel-Baccard C, Bardet J, Payen V, Kaiser L, et al. Disseminated rhinovirus C8 infection with infectious virus in blood and fatal outcome in a child with repeated episodes of bronchiolitis. J Clin Microbiol 2015;53:1775-7.

27. Tapparel C, Cordey S, Junier T, Farinelli L, Van Belle S, Soccal PM, et al. Human rhinovirus genotype variation during chronic upper and lower respiratory tract infections. PLoS One 2011;6:e21163.

28. Essaidi-Laziosi M, Lyon M, Mamin A, Fernandes Rocha M, Kaiser L, Tapparel C. A new real-time RT-qPCR assay for the detection, subtyping and quantification of human respiratory syncytial viruses positive- and negative-sense RNAs. J Virol Methods 2016;235:9-14.

29. L’Huillier AG, Kaiser L, Petty TJ, Kilowoko M, Kyungu E, Hongoa P, et al. Molecular epidemiology of human rhinoviruses and enteroviruses highlights their diversity in Sub-Saharan Africa. Viruses 2015;7:6412-23.

30. Tadokoro T, Wang Y, Barak LS, Bai Y, Randall SH, Hogan BL. IL-6/STAT3 promotes regeneration of airway ciliated cells from basal stem cells. Proc Natl Acad Sci U S A 2014;111:E3641-9.

31. Esposito S, Daleno C, Scala A, Castellazzi L, Terranova L, Sferrazza Papa S, et al. Targeting viral proteostasis limits influenza virus, HIV, and dengue virus infection decreases tracheal mucociliary velocity and clearance of Streptococcus pneumoniae. Am J Respir Cell Mol Biol 2010;42:450-60.

32. Xu J, Wang G, Deering C, Macke M, Shao J, Burns R, Blau DM, et al. Human coronavirus 229E infects polarized airway epithelia from the apical surface. J Virol 2000;74:9234-9.

33. Ngaosuwankul N, Noisumdaeng P, Komolsiri P, Pooruk P, Chokephaibulkit K, et al. Molecular epidemiology of human rhinoviruses and enteroviruses highlights their dominance in Sub-Saharan Africa. Viruses 2015;7:6412-23.

34. Reed SE. Persistent respiratory virus infection in tracheal organ cultures. Br J Exp Pathol 1969;50:378-88.

35. Ibricevic A, Pekosz A, Walter MJ, Newby C, Battaile JT, Brown EG, et al. Targeting viral proteostasis limits influenza virus, HIV, and dengue virus infection. Immunity 2016;44:56-68.

36. Wang X, de Haan AM, Ploegh HL. HVEM is a receptor for persistent respiratory virus infection. J Virol 2004;78:1556-64.

37. Zhang L, Peeples ME, Boucher RC, Collins PL, Pickles RJ. Respiratory syncytial virus infection of human airway epithelial cells is polarized, specific to ciliated cells, and without obvious cytopathology. J Virol 2002;76:5654-66.

38. Reed SE. Persistent respiratory virus infection in tracheal organ cultures. Br J Exp Pathol 1969;50:378-88.

39. Jakobsen K, Biecke A, Plutecka H, Hubalewska-Mazgaj M, Mastalerz L, Bochenek G, et al. Th2-type cytokine-induced mucus metaplasia decreases susceptibility of human bronchial epithelium to rhinovirus infection. Am J Respir Cell Mol Biol 2014;51:229-41.

40. Grgis TF, Bochkov YA, Basnet S, Pasie TR, Brockman-Schneider RA, Palmenberg AC, et al. Rhinovirus C targets ciliated airway epithelial cells. Respir Res 2017;18:80.

41. Wang G, Deering C, Macke M, Shao J, Burns R, Blau DM, et al. Human coronavirus 229E infection decreases tracheal mucociliary velocity and clearance of Streptococcus pneumoniae. Am J Respir Cell Mol Biol 2010;42:450-60.

42. Wang G, Deering C, Macke M, Shao J, Burns R, Blau DM, et al. Human coronavirus 229E infects polarized airway epithelia from the apical surface. J Virol 2000;74:9234-9.

43. Smith CM, Kulkarni H, Radhakrishnan P, Rutman A, Bankart MJ, Williams G, et al. Ciliary dyskinesia is an early feature of respiratory syncytial virus infection. Eur Respir J 2014;43:485-96.

44. Winther B. Effects on the nasal mucosa of upper respiratory viruses (common cold). Dan Med Bull 1994;41:193-204.

45. Hetland JO. Clinical virology of rhinoviruses. Adv Virus Res 1999;54:453-66.

46. Dijkman R, Wang Y, Barak LS, Bai Y, Randall SH, Hogan BL. IL-6/STAT3 promotes regeneration of airway ciliated cells from basal stem cells. Proc Natl Acad Sci U S A 2014;111:E3641-9.

47. Wang X, de Haan AM, Ploegh HL. HVEM is a receptor for persistent respiratory virus infection. J Virol 2004;78:1556-64.

48. Ibricevic A, Pekosz A, Walter MJ, Newby C, Battaile JT, Brown EG, et al. Targeting viral proteostasis limits influenza virus, HIV, and dengue virus infection. Immunity 2016;44:56-68.

49. Axelsson NS, Moskina N, Fenuari R, Gardner TJ, Aguirre S, Shah PS, et al. Validation of the anti-inflammatory properties of small-molecule IkappaBalpha Kinase (IKK-2) inhibitors by comparison with adenosinergic-mediated delivery of dominant-negative IKK1 and IKK2 in human airways smooth muscle. Mol Pharmacol 2006;70:697-705.

50. Hongoa P, Kilowoko M, Kyungu E, Hongoa P, et al. Molecular epidemiology of human rhinoviruses and enteroviruses highlights their diversity in Sub-Saharan Africa. Viruses 2015;7:6412-23.

51. Ferguson NS, Moskina N, Fenuari R, Gardner TJ, Aguirre S, Shah PS, et al. Targeting viral proteostasis limits influenza virus, HIV, and dengue virus infection. Immunity 2016;44:56-68.

52. Mazur I, Wurzer JW, Elharhardt C, Pleschka S, Puthavathana P, Silberzahn T, et al. IL-6/STAT3 promotes regeneration of airway ciliated cells from basal stem cells. Proc Natl Acad Sci U S A 2014;111:E3641-9.

53. Kalies KU, Romisch K. Inhibitors of protein translocation across the ER membrane. Traffic 2015;16:1027-38.

54. Heaton NS, Moskina N, Fenuari R, Gardner TJ, Aguirre S, Shah PS, et al. Targeting viral proteostasis limits influenza virus, HIV, and dengue virus infection. Immunity 2016;44:56-68.

55. Axelsson NS, Moskina N, Fenuari R, Gardner TJ, Aguirre S, Shah PS, et al. Targeting viral proteostasis limits influenza virus, HIV, and dengue virus infection. Immunity 2016;44:56-68.