Retrospective review of epidemic viral pneumonia cases in Turkey: A multicenter study

MUSTAFA ÇÖRTÜK1, MURAT ACAT1, ONUR YAZICI2, ZEHRA YASAR3, KEMAL KIRAZ4, SENA YAPICIĞLU ATAMAN5, ELIF TANRIVERDİ6, BURÇAK ZİTÜNLİ1, CENK KIRAKLI5, OZLEM EDİBOĞLU5, FEVZİYE TUŞAVUL5, ADEM DIRİCAN7, HALE KEFELİ CELİK8, SEVKET OZKAYA9 and ERDOĞAN CETİNKAYA6

1Department of Chest Diseases, Karabük University Faculty of Medicine, 78200 Karabük;
2Department of Chest Diseases, Adnan Menderes University Faculty of Medicine, 09010 Aydın;
3Department of Chest Diseases, Abant İzzet Baysal University Faculty of Medicine, 14280 Bolu;
4Department of Chest Diseases, Antalya Ataşehir State Hospital, 07040 Antalya;
5Department of Chest Diseases, İzmir Dr Suat Seren Thoracic Diseases and Surgery Training and Research Hospital, 35110 İzmir;
6Department of Chest Diseases, Yedikule Chest Diseases and Thoracic Surgery Training and Research Hospital, 34020 İstanbul;
7Department of Pulmonary Medicine, Samsun Medical Park Hospital, 55200 Samsun;
8Department of Anesthesiology and Intensive Care Unit, Samsun Training and Research Hospital, 55100 Samsun;
9Department of Pulmonary Medicine, Bahçeşehir University Faculty of Medicine, 34720 İstanbul, Turkey

Received September 26, 2016; Accepted December 6, 2016

DOI: 10.3892/etm.2017.4153

Abstract. Influenza A (H1N1) caused its first pandemic in 2009 in USA and Mexico. Since then, clinicians have exercised great care in order to make an early diagnosis of viral pneumonias. This is due in part to pandemic influenza A infection having greater impact on populations <65 years old than other viral strains, including seasonal influenza. Chest radiographies of those affected displayed a rapid progression of patchy infiltrates, and a large proportion of individuals required admission to intensive care units (ICU). Despite efforts, patients infected with the virus had a high mortality rate. The present multicenter study aimed to retrospectively evaluate the clinical, demographic and prognostic characteristics of patients diagnosed with epidemic viral pneumonia in Turkey. A total of 92 patients were included in the study. The Student’s t-test and Chi-square tests were performed to analyze quantitative data, assuming a normal distribution, and to analyze qualitative data, respectively. Stepwise logistic regression was used to evaluate the effects of demographic variables and laboratory values on the virus mortality rate. The male/female ratio was 42/50 and the mean age was 48.74±16.65 years. A total of 69 (75%) patients were unvaccinated against influenza. The most common symptoms were cough (87%) and fever (63%). Chest computed tomography showed peripheral patchy areas of the lungs of ground glass density in 38 patients (41.3%). A total of 22 (59.4%) patients had H1N1, 5 (12.5%) patients had influenza B, and 38 (41.3%) patients met the criteria for admission to the ICU. Of these patients, 20 (52.63%) were monitored with a mechanical ventilator, with a noninvasive ventilator being adequate for 10 (26.32%) of patients. The length of stay in the ICU was 6.45±5.97 days and the duration of mechanical ventilation was 5.06±4.69 days. A total of 12 (13.04%) patients in the ICU succumbed. Logistic regression analysis revealed that among the parameters possibly associated with mortality, being an active smoker increased the risk of mortality 7.08-fold compared to other groups (P=0.005). In conclusion, viral pneumonia remains a significant health problem during the winter period. Considering the high number of ICU admissions and high rate of mortality for patients in the present study, earlier initiation of antiviral therapy is necessary. Active smoking increased mortality in viral pneumonia.

Introduction

Community-acquired pneumonia (CAP) is a leading disease associated with a high mortality and requiring hospitalization (1,2). In the United States, ~4 million people are diagnosed with CAP annually, with ~600,000 of these patients requiring hospitalization (3). In Turkey, according to the 2014 health statistics by the Turkish Ministry of Health, pneumonia accounts for 2.6% of mortality cases (4).
swab specimens were placed into Virocult transport media.

Viral pneumonia, nasopharyngeal, oropharyngeal and nasal

in the study. Viral pneumonia was diagnosed according
to clinical and radiological examination results, and the

in the study. The male

have all been previously diagnosed with viral pneumonia.

retrospectively from January 2015 to April 2015. The patients

were included in the study. The male/female ratio was 42/50,

and the mean age was 48.74±16.65 years. Patients were from

were included in the study. The male/female ratio was 42/50,

and the mean age was 48.74±16.65 years. Patients were from

were included in the study. The male/female ratio was 42/50,

and the mean age was 48.74±16.65 years. Patients were from

were included in the study. The male/female ratio was 42/50,

and the mean age was 48.74±16.65 years. Patients were from

were included in the study. The male/female ratio was 42/50,

and the mean age was 48.74±16.65 years. Patients were from

were included in the study. The male/female ratio was 42/50,

and the mean age was 48.74±16.65 years. Patients were from

were included in the study. The male/female ratio was 42/50,

and the mean age was 48.74±16.65 years. Patients were from

were included in the study. The male/female ratio was 42/50,

and the mean age was 48.74±16.65 years. Patients were from

were included in the study. The male/female ratio was 42/50,

and the mean age was 48.74±16.65 years. Patients were from

were included in the study. The male/female ratio was 42/50,

and the mean age was 48.74±16.65 years. Patients were from

were included in the study. The male/female ratio was 42/50,

and the mean age was 48.74±16.65 years. Patients were from

were included in the study. The male/female ratio was 42/50,

and the mean age was 48.74±16.65 years. Patients were from

were included in the study. The male/female ratio was 42/50,

and the mean age was 48.74±16.65 years. Patients were from

were included in the study. The male/female ratio was 42/50,

and the mean age was 48.74±16.65 years. Patients were from

were included in the study. The male/female ratio was 42/50,

and the mean age was 48.74±16.65 years. Patients were from

were included in the study. The male/female ratio was 42/50,

and the mean age was 48.74±16.65 years. Patients were from

were included in the study. The male/female ratio was 42/50,

and the mean age was 48.74±16.65 years. Patients were from

were included in the study. The male/female ratio was 42/50,

and the mean age was 48.74±16.65 years. Patients were from

were included in the study. The male/female ratio was 42/50,

and the mean age was 48.74±16.65 years. Patients were from

were included in the study. The male/female ratio was 42/50,

and the mean age was 48.74±16.65 years. Patients were from

were included in the study. The male/female ratio was 42/50,

and the mean age was 48.74±16.65 years. Patients were from

were included in the study. The male/female ratio was 42/50,

and the mean age was 48.74±16.65 years. Patients were from

were included in the study. The male/female ratio was 42/50,

and the mean age was 48.74±16.65 years. Patients were from

were included in the study. The male/female ratio was 42/50,

and the mean age was 48.74±16.65 years. Patients were from

were included in the study. The male/female ratio was 42/50,

and the mean age was 48.74±16.65 years. Patients were from

were included in the study. The male/female ratio was 42/50,

and the mean age was 48.74±16.65 years. Patients were from

were included in the study. The male/female ratio was 42/50,

and the mean age was 48.74±16.65 years. Patients were from

were included in the study. The male/female ratio was 42/50,

and the mean age was 48.74±16.65 years. Patients were from

were included in the study. The male/female ratio was 42/50,

and the mean age was 48.74±16.65 years. Patients were from

were included in the study. The male/female ratio was 42/50,

and the mean age was 48.74±16.65 years. Patients were from

were included in the study. The male/female ratio was 42/50,

and the mean age was 48.74±16.65 years. Patients were from

were included in the study. The male/female ratio was 42/50,

and the mean age was 48.74±16.65 years. Patients were from

were included in the study. The male/female ratio was 42/50,

and the mean age was 48.74±16.65 years. Patients were from

were included in the study. The male/female ratio was 42/50,

and the mean age was 48.74±16.65 years. Patients were from

were included in the study. The male/female ratio was 42/50,

and the mean age was 48.74±16.65 years. Patients were from

were included in the study. The male/female ratio was 42/50,

and the mean age was 48.74±16.65 years. Patients were from

were included in the study. The male/female ratio was 42/50,

and the mean age was 48.74±16.65 years. Patients were from

were included in the study. The male/female ratio was 42/50,

and the mean age was 48.74±16.65 years. Patients were from

were included in the study. The male/female ratio was 42/50,

and the mean age was 48.74±16.65 years. Patients were from

were included in the study. The male/female ratio was 42/50,

and the mean age was 48.74±16.65 years. Patients were from

were included in the study. The male/female ratio was 42/50,
Results

Patient characteristics and symptoms. Of the 92 patients that were included in the present study, 69 (75%) patients were unvaccinated against influenza. The demographic characteristics, main laboratory results and radiological findings of the patients are outlined in Table I. The most prevalent symptoms were a cough (87%) and a fever (63%). The duration between the onset of symptoms and presentation to the hospital was 5.51±3.27 days, and 18 patients (19.6%) had a history of contact with individuals complaining of upper respiratory tract viral infections. The prevalence of symptoms is depicted in Table II. No additional disorders were found in 56.5% of patients. The prevalence of comorbidities are shown in Table II.

Clinical indications of pneumonia. Chest radiographies revealed bilateral patchy pneumonic infiltrates in 69.6% of patients. Chest computed tomography (CT) identified peripheral multiple patchy areas of ground glass density in 38 patients (41.3%). Bilateral alveolar-interstitial consolidations and ground-glass opacities were observed in five patients by chest X-ray and CT imaging (Figs. 1-5). From the laboratory findings, leukocyte count was found to be within the normal range, >10,000/mm³, in 54 patients (58.7%). The lymphocyte count was found to be below the normal limit, at a median value of 1,000/mm³, in 34 patients (37%). The laboratory data are detailed in Table I.

The throat and nasal swab specimens of 37 patients with clinical and radiological findings suggestive of viral pneumonia were sent to the laboratory. Treatment was initiated on the same day. A total of 22 (59.4%) of these patients had H1N1, and 5 (12.5%) patients had influenza B. Patients with suspected viral pneumonia were administered the antiviral drug oseltamivir, on a dose of 150 mg/day, and monitored accordingly.

Outcomes of patients admitted to the ICU. Of the 92 patients in total, 38 (41.3%) patients met the criteria for admission to the ICU. Of these patients, 20 (52.63%) were monitored with a mechanical ventilator, with a noninvasive mechanical ventilator (NIMV) being adequate for 10 (26.32%) of the patients. A smaller group of 8 (8.7%) patients were monitored with NIMV during weaning from mechanical ventilation. The length of stay in the ICU was 6.45±5.97 days (1-30 days), and the duration of mechanical ventilation (MV) was 5.06±4.69 days (1-18 days). A total of 12 (13.04%) patients did not survive treatment. Logistic regression analysis indicated that among the parameters potentially associated with mortality, current smoking increased the mortality risk 7.08-fold compared with non-smokers and ex-smokers (95% confidence interval: 1.81-27.67) (P=0.005). No significant relationship was found between mortality and other parameters, including age, gender, comorbid diseases, platelet count, lactate dehydrogenase (LDH) level, arterial blood oxygen level at the time of presentation and creatine kinase (CK).

Discussion

The present study demonstrated that the majority of patients diagnosed with viral pneumonia were middle-aged
individuals presenting with major symptoms of a cough, fever and shortness of breath. The patients displayed a rapid progression of patchy infiltrates in their chest radiographies and a large proportion required admission to the ICU. A total of 38 (41.3%) patients were monitored at the ICU, and 20 (52.63%) required MV. The rate of mortality was 13.04%. Active smoking caused a 7.08-fold increase in the mortality risk.

In the present study, the mean age was 48.74±16.65 years, with no significant difference in gender. A past study comparing patients with bacterial CAP and viral pneumonias found the mean age to be 60.0±20.2 years for bacterial CAP patients vs. 49.7±18.7 years for viral pneumonia patients (16). In a general study of patients with CAP, the mean age was 66 years, with a range of 52-78 years (7). Another study found that 90.3% of patients with H1N1 were younger than 65 years (17). In the present study, the mean age was found to be lower for viral pneumonia compared to that recorded previously for bacterial pneumonia (5,16). However, the present results are consistent with the previously recorded mean ages of patients with viral pneumonia (16,18).

A study including 1,088 cases performed in 2009 during the H1N1 pandemic reported that the clinical status of patients deteriorated rapidly; 31% required intensive care, mortality was higher in those >50 years-old, overall mortality was 11% and the rate of comorbidity was 68% (19). Similarly, Gürgün et al reported that 25% of patients diagnosed with influenza pneumonia required intensive care (16), while Almirall et al found that the rate of ICU admissions was 7% in patients with bacterial CAP vs. 19.3% in patients with viral CAP (20). Furthermore, Rello et al reported an ICU admission rate of 62.5% in H1N1 pneumonia (21). For the patients of the present study, the rate of ICU admission was 41.3%. This higher rate relative to that documented for bacterial pneumonia suggests that patients with suspected viral pneumonia may require closer monitoring (5).

An analysis of several demographic and laboratory phenotypes (including age, gender, CRP level, sedimentation, urea, creatinine, aspartate aminotransferase, alanine aminotransferase, lactate dehydrogenase and creatine kinase) associated with mortality indicated that active smoking increased the mortality risk 7.08-fold. Previously published studies on CAP have revealed that 72% of pneumonia cases requiring intensive care were predisposed by smoking (22). Similarly, smoking has been found to be a risk factor in patients requiring admission to the ICU for viral pneumonia (23). Cigarette smoke disrupts the pulmonary defense mechanism by reducing mucociliary clearance (24). This deterioration in the defence mechanism may be associated with the increased rate of mortality with pneumonia in current smokers. Although it is established that mortality is higher in patients admitted to the ICU, a direct association between active smoking and mortality in viral pneumonia remains to be established. Previous analysis of the radiological imaging methods indicated that bilateral involvement was greater in viral pneumonias (25), while other studies found that radiological presentation varies substantially, and thus, has no predictive value in differential diagnosis (26). Similar to the results by Shiley et al (25), present results of the chest radiography and chest CT imaging revealed bilateral pneumonic infiltrates in 69.6 and 79.2% of patients, respectively.

The current study found that 69 (75%) patients were unvaccinated against influenza. This may be due to the proportion of young adults included in the patient group, or that only 26.09% of cases exhibited comorbidities. As viral pneumonias are thought to progress rapidly following the onset of symptoms (21), and the present study found a mortality rate of 13.04%, these results suggest that influenza vaccination should not be overlooked by individuals who have no contraindications for vaccination. In the present study, 1 out of 12 of the patients who did not survive were vaccinated against influenza.

Similar to previous studies, the current study found that the majority (59.4%) of viral swab specimens taken from patients with suspected viral pneumonia were positive for influenza A (7,8). The patients from whom specimens were requested consisted of those who had suspected viral pneumonia based on clinical, radiological and laboratory findings, however, lacked the growth of any other microorganisms. In clinical practice in Turkey, swab specimens from patients who are suspected to have viral pneumonia, are analysed only during the ‘influenza season’ (i.e., December-March). When cases of influenza are less prevalent, diagnoses are made according to clinical and radiological findings. Nevertheless, an association between early antiviral treatment and better survival has been demonstrated by previous studies (19,27). In the present

Variable	n	%
Symptoms		
Cough	80	87.0
Fever	58	63.0
Dyspnea	54	58.7
Malaise	30	32.6
Myalgia	16	17.8
Headache	15	16.3
Gastrointestinal*	7	7.6
Upper airway*	7	7.6
Chest pain	6	6.5
Hemoptysis	2	2.2
Hoarseness	1	1.1

Comorbidities		
None	52	56.5
Hypertension	16	17.4
Chronic obstructive pulmonary disease	14	15.2
Diabetes mellitus	11	12.0
Asthma	6	6.5
Coronary artery disease	5	5.4
Malignancy	2	2.2
Cerebrovascular disease	1	1.1

*Nausea, vomiting, diarrhea, *Sore throat, cold.
Figure 1. Influenza A (H1N1)-positive viral pneumonia. Image shows a 49-year-old woman admitted to hospital with complaints of a cough and fever. (A) The posteroanterior chest X-ray and (B) thoracic computed tomography scan displayed bilateral patchy ground-glass opacities (arrows).

Figure 2. Influenza A (H1N1)-positive viral pneumonia. Image shows a 43-year-old man admitted to the intensive care unit due to acute respiratory failure. (A) Bilateral alveolar-interstitial consolidations and ground-glass opacities (arrows) were observed by chest X-ray. (B) One month later, healing with fibrosis (arrows) was observed by chest X-ray.

Figure 3. Influenza A (H1N1)-positive viral pneumonia. Image shows a 43 year-old man admitted to the intensive care unit due to acute respiratory failure. Bilateral alveolar-interstitial consolidations and ground-glass opacities (black arrows) were observed by (A) chest X-ray and (B) chest computed tomography imaging. (C) Bilateral minimally pleural fluid was also observed on chest computed tomography (blue arrows). One month later, (D and E) healing with fibrosis (white arrow) was observed and (F) pleural fluid had disappeared (red arrow).
In conclusion, viral pneumonia remains a major health problem during the winter period. In affected patients, the H1N1 virus is a potential etiologic agent. Therefore, H1N1 should be considered, particularly in patients presenting with symptoms of pneumonia. These include fever, shortness of breath and muscle pain during the influenza season, coupled with clinical characteristics, including high levels of CRP, LDH and CK, and radiological evidence of bilateral pneumonic infiltrates that progress rapidly. Smoking habits should be particularly questioned, due to findings of an association between active smoking and increased mortality. As viral pneumonia is associated with high mortality and the need for ICU admission, antiviral treatment should be rapidly initiated upon clinical suspicion of the disease. However, there is still no method to quickly isolate the pneumonia agent. Further research is required to elucidate the role of active

Figure 4. Influenza A (H1N1)-positive viral pneumonia. Image shows a 38-year-old man presented with a cough, dyspnea and fever. (A and B) The postero-anterior chest X-ray revealed rapidly progressing bilateral consolidation (arrows), despite treatment with antibiotics. (C and D) Bilateral alveolar-interstitial consolidations and ground-glass opacities (arrows) were observed by chest computed tomography imaging.

Figure 5. Influenza A (H1N1)-positive viral pneumonia. Image shows a 55-year-old woman admitted to hospital with complaints of a cough, dyspnea and fever. Chest computed tomography imaging displayed bilateral alveolar consolidations (red arrows) and ground-glass opacities (black arrows).
smoking on pneumonia mortality. Additionally, further studies should be performed to identify a method for rapid and definite pneumonia agent isolation.

References

1. Welte T, Torres A and Nathwani D: Clinical and economic burden of community-acquired pneumonia among adults in Europe. Thorax 67: 71-79, 2012.
2. Mandell LA, Wunderink RG, Anzueto A, Bartlett JG, Campbell GD, Dean NC, Dowell SF, File TM Jr, Musher DM, Niederman MS, et al: Infectious diseases society of America/American thoracic society consensus guidelines on the management of community-acquired pneumonia in adults. Clin Infect Dis 44: 27-72, 2007.
3. Fine MJ, Aube TE, Yealy DM, Hanusa BH, Weissfeld LA, Singer DE, Coley CM, Marrie TJ and Kapoor WN: A prediction rule to identify low-risk patients with community-acquired pneumonia. N Engl J Med 336: 243-250, 1997.
4. Türkiye istatistik kurumu. www.tuik.gov.tr. Accessed March 16, 2016.
5. Ozľů T, Bůžčů Y and Oszů S: Community-acquired pneumonia based on the Turkish national data. Tuberk Toraks 55: 191-212, 2007 (In Turkish).
6. Public Health Institution of Turkey: Field Guide for Laboratory Diagnosis of Contagious Diseases. http://mirokobiyojolo.thsk.saglik.gov.tr/ums/B/Bakteriyel%20pnomoniler.pdf. Accessed December 21, 2016.
7. Holter JC, Müller F, Bjørnang O, Samdal HH, Marthinsen JB, Jenum PA, Ueland T, Frøland SS, Aukrust P, Husebye E, et al: Etiology of community-acquired pneumonia and diagnostic yields of microbiological methods: A 3-year prospective study in Norway. BMC Infect Dis 15: 64, 2015.
8. Qu JX, Gu L, Pu ZH, Yu XM, Liu YM, Li R, Wang YM, Cao B and Wang C: Beijing Network for Adult Community-Acquired Pneumonia (BNACAP): Viral etiology of community-acquired pneumonia among adolescents and adults with mild or moderate severity and its relation to age and severity. BMC Infect Dis 15: 89, 2015.
9. Tang CM and Macfarlane JT: Early management of younger adults dying of community acquired pneumonia. Respir Med 87: 289-294, 1993.
10. Gómez-Gómez A, Magaña-Aquino M, García-Sepúlveda C, Ochoa-Pérez UR, Falcón-Escobedo R, Comas-García A, Aranda-Romo S, Contreras-Treviño HI, Jiménez-Rico PV, Banda-Barbacoa A, et al: Severe pneumonia associated with pandemic (H1N1) 2009 outbreak, San Luis Potosí, Mexico. Emerg Infect Dis 16: 23-34, 2010.
11. Sertogullarindan B, Ozbay B, Gunini H, Sunnetcioglu A, Sertogullarindan B, Ozbay B, Gunini H, Sunnetcioglu A, et al: Clinical and prognostic features of patients with pandemic 2009 influenza A (H1N1) virus in the intensive care unit. Afr Health Sci 11: 163-170, 2011.
12. Girard MP, Tam JS, Assoussou OM and Kiény MP: The 2009 A (H1N1) influenza virus pandemic: A review. Vaccine 28: 4895-4902, 2010.
13. Fiore AE, Shay DK, Haber P, Iskander JK, Uyeki TM, Mootrey G, Breese JS and Cox NJ: Advisory Committee on Immunization Practices (ACIP), Centers for Disease Control and Prevention (CDC): Prevention and control of influenza. Recommendations of the advisory committee on immunization practices (ACIP), 2007. MMWR Recomm Rep 56 (RR-6): 1-54, 2007.