Insecticidal efficacy of fluralaner (Bravecto®) against *Triatoma brasiliensis*, a major vector of *Trypanosoma cruzi* in Brazil

Tamyres Bernadete Dantas Queiroga1, Luanderson Cardoso Pereira Gomez2, Eduardo Rodrigues de Sena2, Wilo Vítor dos Santos2, Henrique Rafael Pontes Ferreira2, Vicente Toscano de Araújo-Neto1, Andressa Noronha Barbosa-Silva1, Carlos Ramon do Nascimento Brito3, Romeila Karla dos Reis Lima4, João Ciro Fagundes-Neto5, Lúcia Maria da Cunha Galvão3, Henrique Rocha de Medeiros6, Antônia Cláudia Jácome da Câmara3, Manuela Sales Lima Nascimento7, Renata Antonaci Gama7 and Paulo Marcos Matta Guedes7*

Abstract

Background: Triatomines are responsible for the vector transmission of the protozoan parasite *Trypanosoma cruzi*, which causes Chagas disease. *Triatoma brasiliensis* is the main vector of the parasite in Brazil, and dogs are an important reservoir of the parasite. The aim of this study was to evaluate the insecticidal effect of fluralaner (Bravecto®) on *T. brasiliensis* after a blood meal in treated dogs.

Methods: Healthy mongrel dogs (*n* = 8) were recruited from the Zoonoses Control Center (ZCC) in the city of Natal, Rio Grande do Norte, Brazil, and randomized into two groups, a fluralaner (Bravecto®)-treated group (*n* = 4) and a control group (*n* = 4). Colony-reared third-, fourth- and fifth-instar nymphs of *T. brasiliensis* nymphs (*n* = 10) were allowed to feed on dogs from both groups for 30–40 min, once monthly, for up to 12 months. Bug mortality was observed up to 5 days after each blood meal.

Results: Mortality in triatomines which had a blood meal on fluralaner (Bravecto®)-treated dogs was 100% for up to 7 months after treatment, with mortality decreasing to 66.4% after 8 months, 57% after 9 months, 35% after 10 months, 10% after 11 months and 0% after 12 months. The mortality of triatomines that fed on non-treated control dogs was always ≤ 2.5%.

Conclusions: Our results suggest that fluralaner (Bravecto®) treatment of dogs induces long-term mortality of *T. brasiliensis* after the blood meal. This is a potential approach to be used to control vector transmission of *T. cruzi*, the etiological agent of Chagas disease, especially in endemic areas.

Keywords: Chagas disease, Control, Fluralaner, Bravecto®, Systemic insecticide, *Triatoma brasiliensis*, Dog, *Trypanosoma cruzi*

Correspondence: pauloguedes@cb.ufrn.br

1 Department of Microbiology and Parasitology, Federal University of Rio Grande Do Norte, Natal, Rio Grande Do Norte, Brazil

Full list of author information is available at the end of the article

© The Author(s) 2021. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.
Background

Trypanosoma cruzi is the etiologic agent of Chagas disease. Worldwide, an estimated 6–7 million people are infected with this agent and 75 million people live in areas at risk of contracting T. cruzi infection [1]. The main transmission route to humans in Latin America is through blood-sucking bugs (Hemiptera: Reduviidae: Triatominae) by the classical contaminative route consisting of metacyclic forms eliminated by infected triatomines in feces and urine. Several species of triatomine bugs are able to transmit T. cruzi, but Triatoma infestans, Triatoma dimidiata, Triatoma brasiliensis, Rhodnius prolixus and Panstrongylus megistus are considered to be the most important primary vectors of the parasite in Latin American countries [2–4]. Other transmission routes, such as oral and congenital routes, are also important in some endemic countries [1, 5]. It is important to highlight that oral transmission is also vector dependent as infected insects are responsible for food or drink contamination [6].

The use of pyrethroid insecticides in domestic and peridomestic environments is the main or only intervention used to prevent the vectorial transmission of T. cruzi by triatomines [4, 5]. Synthetic pyrethroids have currently replaced the use of organochlorine and organophosphate insecticides due to their longer lasting effect and lower toxicity. However, the residual effect of the insecticide remains only for a few weeks in areas surrounding dwellings due to environmental conditions [7, 8]. Thus, epidemiological surveillance and insecticide reaplication are often necessary to avoid recolonization. In addition, the use of insecticides has stimulated the appearance of T. infestans populations that are resistant to pyrethroids in Argentina [9], Bolivia [10, 11] and Brazil [12]. Resistance of the triatomine bug Rodnius prolixus to pyrethroids has also been described in Venezuela [12] and Colombia [13]. The solution to combat triatomines in these cases is once again the use of insecticides, namely those with greater adverse effects on man, such as organophosphate insecticides (fenitrothion, malathion) and carbamates [14, 15].

Dogs are a link in the chain between sylvatic and domestic transmission cycles [16–21] and have been described as an important domestic reservoir of T. cruzi in several Latin American countries, including Mexico [18, 22], Peru [23], Venezuela [24], Costa Rica [25], Paraguay [19, 26], Bolivia [27], Argentina [21], Chile [28], Ecuador [29] and Brazil [16, 30]. In addition, T. infestans has been reported to have a preference to feed on dog blood than on chicken blood. This preference can be exploited to reduce domestic insect populations by using topical lotions or insecticide-impregnated collars on dogs [31, 32]. Triatoma brasiliensis is the most important T. cruzi vector in the semi-arid areas of northeastern Brazil, and domestic dogs are also important reservoirs in these areas [16, 33]. Thus, dogs are promising targets for interventions, as preventing their infection also prevents human cases of Chagas disease.

Fluralaner (Bravecto®) belongs to the isoxazole compound class and acts as an antagonist of γ-aminobutyric acid (GABA)-gated chloride ion (Cl⁻) channels, preventing the entrance of Cl⁻ into the postsynaptic neuron, leading to hyperexcitability of the insect central nervous system [15]. Fluralaner (Bravecto®) has potent acaricidal activity against ticks and mites, as well as insecticide activity against infestations of phlebotomine sand flies, such as Phlebotomus papatasi [34, 35], Phlebotomus perniciosus [36] and Lutzomyia longipalpis [37], in dogs, cats and poultry [38–42]. Dogs treated with fluralaner (Bravecto®) do not experience any side effects [43], and the compound has significant selectivity for insects over mammalian neurons [44]. Recent studies with fluralaner have shown insecticide activity against T. infestans after blood meals on fluralaner (Bravecto®)-treated dogs [45, 46]. The administration of fluralaner (Bravecto®) to dogs housed in experimental kennels generated 100% mortality of T. infestans nymphs for up to 51 days post-treatment [24]. In another study, the administration of fluralaner (Bravecto®) to dogs residing in rural houses in Argentina generated 100, 81 and 77% T. infestans mortality at 60, 90 and 120 days post-treatment, respectively [46]. However, the insecticide action against T. brasiliensis, the main vector in Brazil [33], has not yet been determined. In this study, we evaluated the systemic insecticidal activity of fluralaner (Bravecto®) against T. brasiliensis after blood feeding on fluralaner-treated dogs compared to a control group, with blood-feeding at once-monthly intervals for 1 year.

Methods

Dog recruitment and maintenance

Dogs were obtained from the Zoonoses Control Center (ZCC), Natal, Rio Grande do Norte State (Brazil). With permission of the ZCC, eight healthy dogs were recruited and maintained in individual kennels. Water was provided ad libitum, and the amount of food provided corresponded to 5 and 10% of body weight for normal body weight and obese animals, respectively. No insecticide treatment was used on the kennels or dogs during the assays, and the dogs were bathed with neutral shampoo 2 weeks before each assay. All experimental protocols were performed according to the Brazilian National Animal Care Ethical Council and the Ethics Committee on Animal Use of the Federal University of Rio Grande do Norte under protocol number 136.061/2018.
Study design
All animals weighed 20–50 kg, were aged between 5 and 11 years and were outbred dogs. The dogs were randomized (tossing of coin in the presence of an observer) into two groups: the fluralaner (Bravecto®)-treated (n = 4) and untreated control (n = 4) groups, respectively, with each group comprising two male and two female dogs. The physical condition of the animals was previously evaluated according to Laflamme [47, 48] and the dogs were classified as normal body weight (ribs easily palpable with minimal fat coverage; waist easily seen by looking over the animal; abdomen retracted when viewed from the side) and obese (ribs palpable with difficulty or not palpable; intense fat coverage; fat deposits evident on the lumbar area and base of the tail; waist does not exist; there is no abdominal depression; evident abdominal distention). Each group consisted of two animals of normal body weight and two that were obese. There were no significant differences in the weight or age of dogs between the control and treated groups. All animals in the treated group received a single oral dose of fluralaner (Bravecto®; Merck Animal Health, Kenilworth, NJ, USA) on the same day, following the manufacturer’s recommendations. The triatomine feeding assays were performed on both groups at day zero (before treatment, for the treated group) and at once-monthly intervals between months 1 and 12. The study was conducted from December 2019 to December 2020. No side effects among fluralaner (Bravecto®)-treated dogs were observed during the study.

Triatoma brasiliensis specimens were obtained from the insectary of the Immunoparasitology Laboratory of the Department of Microbiology and Parasitology and the Laboratory of *T. cruzi* Biology and Chagas disease of the Department of Clinical and Toxicological Analyses, both from the Federal University of Rio Grande do Norte-UFRN, Natal, Brazil. The triatomine colony was started in 2012 with insects captured in Rio Grande do Norte State, Brazil. Third-, fourth- and fifth-instar nymphs of *T. brasiliensis*, 10 specimens without blood-feeding (20–30 days before the test), were used in the assays for each animal. Third-, fourth- and fifth-instar nymphs were used due to the low mortality in these stages and the large amount of blood that they can ingest during the blood meal. For blood-feeding, the dogs were gently restrained and positioned upright or lying down for a more comfortable position, following which glass pots containing the insects, with the top covered with a net, were placed on the abdomen of each dog and the insects allowed to to feed for 30–40 min (Fig. 1a–c). The blood-feeding success of the triatomines was checked after the allotted blood-feeding time, and non-feeding insects were removed from the experiment. The engorged triatomines (Fig. 1d) were maintained in an insectary (BOD incubator) under standard conditions (28 °C; 50% relative humidity; dark conditions). Insects were monitored at 24, 48, 72, 96 and 120 h after the blood meal for the analysis. Moribund bugs (insects with impaired mobility) were combined with dead bugs for the mortality evaluation.

Statistical analysis
The generalized linear mixed model (GLMM) for repeated measures was used to verify the effect of Bravecto® treatment and dog nutritional status on triatomine mortality over time. The model included the fixed effects of Bravecto® treatment, time, dog nutritional

Fig. 1 Entomological bioassay. **a** Ten specimens of third-, fourth- and fifth-instar nymphs of *Triatoma brasiliensis* were placed in a glass pot with the top covered with a fine mesh and allowed to blood-feed directly on the abdomen of fluralaner (Bravecto®)-treated dogs and on control animals for 30–40 min. **b, c** Blood-feeding by insects on a dog from the treated group. **d** *Triatoma brasiliensis* after finishing a blood meal. The insects were subsequently maintained in an incubator under standard conditions (28 °C; 50% relative humidity) and monitored at 24, 48, 72, 96 and 120 h after blood meal to determine the mortality rate.
status and the interaction between these variables. Differences between groups were considered significant when $P < 0.05$. The analyses were performed using the SPSS version 20.0 software program (SPSS IBM Corp., Armonk, NY, USA) and graphs were created using the PRISM 9.0 software program (GraphPad Software Inc., San Diego, CA, USA).

Results

Fluralaner (Bravecto®) induces 100% mortality of *T. brasiliensis* up to 7 months after treatment of dog and has insecticidal efficacy for up to 10 months

No side effects were observed in dogs treated with fluralaner (Bravecto®) in this study. Using the GLMM for repeated measures to analyze the results over the entire study period, we found that mortality was higher in triatomines that had a blood meal on fluralaner (Bravecto®)-treated dogs than in dogs of the control group ($P < 0.001$) (Table 1). In addition, the treatment induced 100% mortality in *T. brasiliensis* up to 7 months (Fig. 2).

The insecticidal activity of fluralaner (Bravecto®) against *T. brasiliensis* decreased to 66% after 8 months, to 57% after 9 months and to 35% after 10 months; however, the insecticidal action of fluralaner (Bravecto®) was always maintained when compared to that of the control group ($P < 0.001$). At 11 and 12 months after fluralaner (Bravecto®) treatment, triatomine mortality decreased to 10 and 0%, respectively after the monthly blood meal in the treated dogs, which

Variables	Numerator df	Denominator df	Z	P
Body weight (BW)	2	2.125	180.702	0.247
Bravecto® treatment (BT)	2	52.545	34,070.071	<0.0001***
Months of treatment (MT)	6	17.600	29,992.552	<0.0001***
BW × BT	1	3.842	1788.082	0.0782
BW × MT	1	1.745	120.778	0.8313
BT × MT	1	48.111	4392.900	<0.0001***

Effect of Bravecto® treatment and dog nutritional status on triatomine mortality over time was analyzed using the generalized linear mixed model (GLMM) for repeated measures

***Significant difference between groups at $P < 0.0001$

![Fig. 2](image)
Fig. 2
T. brasiliensis mortality (%) at 120 h after a blood meal on outbred dogs treated ($n = 4$) and untreated ($n = 4$) with fluralaner (Bravecto®). Mortality was assessed before the treatment and once monthly for up to 12 months following treatment with a single oral dose of fluralaner. Fluralaner (Bravecto®) induced 100% *T. brasiliensis* mortality for up to 7 months after treatment. Asterisk indicates a significant difference ($P < 0.05$) in mortality between *T. brasiliensis* blood-fed on fluralaner-treated dogs and those blood-fed on control dogs.
was not significantly different from mortality in the control group ($P > 0.05$) (Fig. 2). Among the 480 nymphs used to be fed on fluralaner (Bravecto®)-treated dogs, only 2.1% (10/480) did not blood-feed; in comparison, 2.5% (12/480) of nymphs in the control group did not feed. These results show that fluralaner (Bravecto®) induces long-term mortality of *T. brasiliensis* after a blood meal in treated dogs.

Time to achieve the full insecticidal efficacy of fluralaner (Bravecto®) against *T. brasiliensis* increases according to the treatment period

We analyzed the mortality of triatomines up to 5 days after each blood meal, which is the length of time required for the elimination of metacyclic trypomastigotes in the feces and/or urine of the insects. All triatomines exposed to fluralaner (Bravecto®)-treated dogs in the first and second months after treatment died within 1 day post-exposure (Fig. 3a, b). The time needed to reach 100% mortality of triatomines gradually increased to 2 days at the third month and to 5 days at fourth, fifth, sixth and seventh months after treatment of the dogs with fluralaner (Bravecto®) (Fig. 3c–g). Triatominic mortality observed 5 days post-blood meal was 66% in month 8, 57% in month 9, 35% in month 10, 10% in month 11 and 0% in month 12 (Fig. 3h–l).

The nutritional status of the dog does not influence fluralaner (Bravecto®) insecticidal activity against *T. brasiliensis*

The fluralaner (Bravecto®)-treated dogs were subclassified as obese or normal body weight to analyze whether the dog’s nutritional status would influence the insecticidal effect of fluralaner (Bravecto®). Mortality among triatomines after blood-feeding on fluralaner (Bravecto®)-treated dogs was 100% for both groups (obese and normal-weight dogs) between 1 and 7 months after the fluralaner (Bravecto®) treatment. In the following months, triatominic mortality differed between the two groups, remaining at 100% mortality in treated obese animals in months 8 and 9 (vs 49.7 and 30% mortality, respectively, in normal-weight dogs), then falling to 77% (vs 10% in normal-weight dogs) in month 10 and to 25% (vs 0% in normal-weight dogs) in month 11. None of the insects died after a blood meal in both groups in month 12 (Fig. 4). These data show that the dog’s nutritional status does not significantly influence the insecticidal efficacy of fluralaner (Bravecto®) against *T. brasiliensis* after blood-feeding on treated-dogs during the follow-up (GLMM: $P > 0.001$) (Table 1).

Discussion

In this study, we demonstrated that a single oral dose of fluralaner (Bravecto®) to dogs induces high *T. brasiliensis* mortality after a blood meal on treated dogs. Insecticidal efficacy was observed for up to 10 months after treatment, irrespectively of the animal’s body weight, suggesting that treating dogs with fluralaner is an a control strategy for Chagas disease in endemic areas.

The mortality of *T. brasiliensis* was 100% within 120 h post-blood meal on treated dogs for up to 7 months. Susceptibility to fluralaner (Bravecto®) was determined in *T. infestans* in Bolivia [45] and Argentina [46], where promising results were observed. The study conducted in Bolivia evaluated the insecticide activity of three commercial, oral, single-dose insecticides, namely fluralaner (Bravecto®), afoxolaner (NexGard®) and spinosad (Comfortis®), in outbred dogs exposed to blood-feeding by third- and fourth-instar nymphs of *T. infestans*. The authors of that study observed 100% mortality of *T. infestans* up to 51 days after treatment with fluralaner (Bravecto®) and afoxolaner (NexGard®) [45]. The study conducted in Argentina assessed the insecticide efficacy of a single oral dose of fluralaner (Bravecto®) administered to dogs against pyrethroid-resistant and -susceptible *T. infestans* (third- and fifth-instar nymphs). Cumulative bug mortality in pyrethroid-resistant and -susceptible insects was 100% up to 2 months after dog treatment, decreasing to approximately 80% in months 3 and 4 and to 0–2% at 7 months [46]. These results suggest that *T. brasiliensis* is more susceptible to the insecticidal action of fluralaner (Bravecto®) administered in dogs when compared to *T. infestans*.

In the present study, we analyzed the mortality of *T. brasiliensis* up to 120 h after the blood meal. This is the period needed for the metacyclic trypomastigotes to be released by triatomines [49–53]. The interval between triatominic infection and trypomastigote excretion is important with respect to food contamination and also to prevent vectorial infection of another vertebrate host. In this study, bugs intoxicated after the blood meal on fluralaner (Bravecto®)-treated dogs were immobile, lying with their backs on the ground, which greatly reduces the chance of vectorial and oral transmission. Release of metacyclic trypomastigote forms of *T. cruzi* after triatominic infection is dependent on temperature, triatominic species, parasite strain, inoculum, mixed or single strain infection, immune factors, the microbiota and nutritional status of the insect [49–51, 54]. *Rhodnius prolixus* infected with two *T. cruzi* isolates (Te-I and Te-II) in single and mixed infections started to release metacyclic trypomastigotes at 5 days after infection [49]. Tamayo et al. demonstrated the presence of metacyclic
trypomastigotes in rectal ampulla of *R. prolixus* at 6 and 16 days after infection with the TcI and TcII discreet typing units (DTU) of *T. cruzi* strain, respectively [51]. The time required to release metacyclic trypomastigote forms in the feces and urine of *T. brasiliensis* has not yet been determined.

Interestingly, when we analyzed the efficacy of fluralaner (Bravecto®) at 96 h post-blood meal in dogs, we
observed 100% mortality of _T. brasiliensis_ in months 1, 2 and 3 post-treatment and 62.5 and 33% in months 4 and 7 post-treatment, respectively. Data in the literature demonstrate cumulative _T. infestans_ mortality of 100, 100, 79–80%, 70–77% and 2% at months 1, 2, 3, 4 and 7 post-treatment, respectively [46]. Interestingly, we observed that the insecticidal effect of fluralaner (Bravecto®) was similar in obese and normal body weight animals during the follow-up. Fluralaner (Bravecto®) is well distributed in dogs through tissues after being absorbed; however, the highest concentrations have been found in fat, followed by liver, kidney and muscle [34]. The greater concentration of fluralaner in fat tissue may prolong the insecticide action in obese dogs.

The insecticidal activity of fluralaner (Bravecto®) on _T. brasiliensis_ and _T. infestans_ indicates that this approach of treating dogs could contribute to Chagas disease control in Latin America. Based on the results of the present study, we recommend that fluralaner (Bravecto®) be administered to dogs from endemic areas every 7 months to interrupt _T. cruzi_ transmission. After the seventh month, 100% insect mortality is not achieved, but the effective time period may allow the maintenance of the parasite transmission in endemic areas. _Triatoma brasiliensis_ is the triatomine species of greatest importance in the domestic transmission of _T. cruzi_ in the Caatinga biome, being the main vector in Brazil [4, 55, 56]. Dogs infected with _T. cruzi_ have been identified in several cities of Rio Grande do Norte state, likely contributing to parasite transmission by the oral and vector routes [16]. Several cases of acute Chagas disease were recently demonstrated in Rio Grande do Norte as being due to the ingestion of sugarcane juice contaminated with _T. brasiliensis_. Dogs were identified as reservoirs of the parasite [16, 57].

Another relevant aspect is the occurrence of mixed infection with _T. cruzi_ and _Leishmania_ spp. in dogs in Latin America because there is an overlap of endemic areas for Chagas disease and cutaneous and visceral leishmaniasis [5, 30, 58–61]. Fluralaner (Bravecto®) treatment of dogs also has an insecticidal effect on sand flies [37], suggesting that this treatment could possibly assist in reducing the canine infection rate by _T. cruzi_ and _Leishmania_ spp. in endemic areas.

Conclusions

The present study demonstrates that fluralaner (Bravecto®) induces long-term mortality of _T. brasiliensis_ after a blood meal in treated dogs and can be used as a potential method to control vectorial transmission of _T. cruzi_, the etiological agent of Chagas disease.

Fig. 4 Insecticidal effect of fluralaner (Bravecto®) against _T. brasiliensis_ is not influenced by the dog’s body mass index. Mortality proportion (%) of third-, fourth- and fifth-instar nymphs of _T. brasiliensis_ at 120 h post-blood meal on outbred dogs treated with fluralaner (Bravecto®) with normal body mass index (n = 2) and with high body mass index (n = 2) at months 1–12 post-treatment.
Abbreviations
ZCC: Zoonoses Control Center; SD: Standard deviation.

Acknowledgements
We thank the Zoonoses Control Center in Natal which encourages and supports projects in collaboration with the Federal University of Rio Grande do Norte aiming to control infectious diseases.

Authors’ contributions
TBDQ, LMCG, ACJM, MSLN, RAG and PMMG designed the study protocol. LCPG, ERS, ANBS and CRNB maintained the Triatoma brasiliensis colony. JCFN, VTAN and RKRL were the veterinarians responsible for the clinical evaluation and follow-up of the dogs. TBDQ, LCPG, ERS, HRPF, JCFN, VTAN and RKRL performed the triatomine feeding assays. TBDQ, LCPG, ERS, HRPF and PMMG observed triatomine mortality. TBDQ, HRM and PMMG performed the statistical analysis. CRNB, LMCG, ACJC, MSLN, RAG and PMMG were responsible for the funding acquisition. TBDQ, CRNB, LMCG, ACJC, MSLN, RAG and PMMG were the main contributors in writing the manuscript. All authors read and approved the final manuscript.

Funding
This work was supported by the Conselho Nacional de Desenvolvimento Científico e Tecnológico (Edital Universal—Grant No. 409271/2018-7) and financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior—Brasil (CAPES)—Finance Code 001. The authors (PMMG and MSLN) were financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior—Brasil (CAPES). TBDQ received a doctoral scholarship from the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior—Brasil (CAPES).

Availability of data and materials
Data supporting the conclusions of the present study are included within the article. Data used and/or analyzed during this study are available from the corresponding author upon reasonable request.

Declarations

Ethics approval and consent to participate
All experimental protocols were performed according to the Brazilian National Animal Ethics Council and the Ethics Committee on Animal Use of the Federal University of Rio Grande do Norte under protocol number 136.061/2018.

Consent for publication
Not applicable.

Competing interests
No competing interests.

Author details
1. Graduate Program in Pharmaceutical Sciences, Federal University of Rio Grande Do Norte, Natal, Rio Grande Do Norte, Brazil.
2. Graduate Program in Parasitary Biology, Federal University of Rio Grande Do Norte, Natal, Rio Grande Do Norte, Brazil.
3. Canis and Catus Veterinary Clinic, Natal, Rio Grande Do Norte, Brazil.
4. Zoonoses Control Center, Natal, Rio Grande Do Norte, Brazil.
5. Agricultural School of Jundiá, Federal University of Rio Grande Do Norte, Macaíba, Rio Grande Do Norte, Brazil.
6. Department of Microbiology and Parasitology, Federal University of Rio Grande Do Norte, Natal, Rio Grande Do Norte, Brazil.

Received: 29 April 2021 Accepted: 24 August 2021
Published online: 06 September 2021

References
1. World Health Organization. Chagas disease (also known as American trypanosomiasis). World Health Organization; 2021. https://www.who.int/health-topics/chagas-disease#tab=tab_1. Accessed 21 July 2021.

2. Gourbiere S, Dorn P, Triepf F, Dumonteil E. Genetics and evolution of triatomines: from phylogeny to vector control. Heredity (Edinb). 2011;108:190–202.

3. Noireau F, Dioque P, Janssen AM. Trypanosoma cruzi: adaptation to its vectors and its hosts. Vet Res. 2009;40:26.

4. Dias JC, Silveira AC, Schofield CJ. The impact of Chagas disease control in Latin America: a review. Mem Inst Oswaldo Cruz. 2002;97:603–12.

5. Coura JR, Dias JC. Epidemiology, control and surveillance of Chagas disease: 100 years after its discovery. Mem Inst Oswaldo Cruz. 2009;104(Suppl 1):31–40.

6. Liloso M, Reigada C, Pires-Silva D, Fontes F, Limeira C, Monsalve-Lara J, et al. Dynamics of food sources, ectopic distribution and Trypanosoma cruzi infection in Triatoma brasiliensis from the northeast of Brazil. PLoS Negl Trop Dis. 2020;14:e0008735.

7. Gurtler RE, Canale DM, Spillmann C, Stariolo R, Salomon OD, Blanco S, et al. Effectiveness of residual spraying of peri-domestic ecotopes with deltamethrin and permethrin on Triatoma infestans in rural western Argentina: a district-wide randomized trial. Bull World Health Organ. 2004;82:196–205.

8. Cecere MC, Vazquez-Prokopec GM, Ceballos LA, Gurevitz JM, Zarate JE, Zaidenberg M, et al. Comparative trial of effectiveness of pyrethroid insecticides against peri-domestic populations of Triatoma infestans in northwestern Argentina. J Med Entomol. 2006;43:902–9.

9. Picollo MI, Vassena C, Barrios S, Fontes F, Limeira C, Monsalve-Lara J, et al. High resistance to pyrethroid insecticides associated with ineffective field treatments in Triatoma infestans (Hemiptera: Reduviidae) from Northern Argentina. J Med Entomol. 2005;42:637–42.

10. Parada R, Delpierre S, Duchon S, Chavez T. Insecticide resistance of Triatoma infestans (Hemiptera, Reduviidae) vector of Chagas disease in Bolivia. Trop Med Int Health. 2010;15:1037–48.

11. Bustamante Gomez M, Goncalves Dioutauli L, Gorla D. Distribution of pyrethroid resistant populations of Triatoma infestans in the Southern Cone of South America. PLoS Negl Trop Dis. 2016;13:e0004561.

12. Vassena CV, Picollo MI, Zerba EN. Insecticide resistance in Brazilian Triatoma infestans and Venezuelan Rhodnius prolixus. Med Vet Entomol. 2000;14(1):51–5.

13. Calderon JM, Fuya P, Santacoloma L, Gonzalez C. Deltamethrin resistance in Chagas disease vectors colonizing oil palm plantations: implications for vector control strategies in a public health-agriculture interface. Parasit Vectors. 2020;13(1):163.

14. Mougabure-Cueto G, Picollo MI. Insecticide resistance in vector Chagas disease: evolution, mechanisms and management. Acta Trop. 2015;149:70–85.

15. Germano M, Picollo MI, Spillmann C, Mougabure-Cueto G. Fenitrothion: an alternative insecticide for the control of deltamethrin-resistant populations of Triatoma infestans in northern Argentina. Med Vet Entomol. 2014;28:21–5.

16. Araujo-Neto VT, Honorato NRM, de Oliveira SR, Barbosa-Silva AN, da Matta Guedes PM, Chiani E, et al. Trypanosoma cruzi circulating among dogs and triatomines in the endemic countryside of the State of Rio Grande do Norte. Brazil Acta Trop. 2019;200:105067.

17. Gurtler RE, Cecere MC, Lauricella MA, Cardinal MV, Kitan U, Cohen JE. Domestic dogs and cats as sources of Trypanosoma cruzi infection in rural northwestern Argentina. Parasitology. 2007;134(1):69–82.

18. Estrada-Franco JG, Bhatia V, Diaz-Albarrán O, Ochoa-Garcia L, Barbabosa A, Vazquez-Chagoyan JC, et al. Human Trypanosoma cruzi infection and seropositivity in dogs. Mexico Emerg Infect Dis. 2006;12(4):624–30.

19. Fraenkel S, Salvioni OD, de Arias AR, Arze VP, Rolon M, Ramirez N, et al. Identification of bloodmeal sources of triatomines captured in the Paraguayan Chaco region of South America by means of molecular biology analysis. Pathog Glob Health. 2020;114(1):30–9.

20. Castillo-Neyra R, Chou Chu L, Quispe-Machaca V, Ancca-Juarez J, Malaga Chavez FS, Bastos Mazuelos M, et al. The potential of canine sentinel dogs for re-emerging Trypanosoma cruzi transmission. Prev Vet Med. 2015;120(3–4):349–56.

21. Enriquez GF, Cardinal MV, Orozco MM, Lantai L, Schijman AG, Gurtler RE. Discrete typing units of Trypanosoma cruzi identified in rural dogs and cats in the humid Argentinean Chaco. Parasitology. 2013;140(3):303–8.

22. Balan LU, Yerbes IM, Pina MA, Balmes J, Pascual A, Hernandez O, et al. Higher seroprevalence of Trypanosoma cruzi infection in dogs than in domestic cats in the humid Argentinean Chaco. Parasitology. 2013;140(3):303–8.
humans in an urban area of Campeche, Mexico. Vector Borne Zoonotic Dis. 2011;11(7):843–4.
23. Castillo-Neyra R, Levy MZ, Naquira C. Effect of free-roaming dogs currying on the control of canine rabies. Rev Peru Med Exp Salud Publica. 2016;33(4):772–9.
24. Criante G, Rojas A, Teixeira MM, Azez N. Infected dogs as a risk factor in the transmission of human Trypanosoma cruzi infection in western Venezuela. Acta Trop. 2006;98(3):247–54.
25. Bonilla MC, Castro-Vasquez RM, Herrero-Acosta MV, Urbina-Villalobos A, Dolz G. Canine trypanosomiasis in an endemic Costa Rican community: demonstration of the active infection cycle. Vet Parasitol Reg Stud Reports. 2019;171:103007.
26. Fujita O, Sanabria L, Inchausti A, De Arias AR, Tomizawa Y, Oku Y. Animal reservoirs for Trypanosoma cruzi infection in an endemic area in Paraguay. J Vet Med Sci. 1994;56(2):305–8.
27. Gabrieili S, Spinacci M, Macchioni F, Rojo D, Totino V, Rojas P, et al. Canine Trypanosoma cruzi infection in the Bolivian Chaco. Parasite Vectors. 2018;11:632.
28. Ortiz S, Ceballos MI, Gonzalez CR, Reyes C, Gomez V, Garcia A, et al. Trypanosoma cruzi diversity in infected dogs from areas of the north coast of Chile. Vet Parasitol Reg Stud Rep. 2016;65:42–7.
29. Rivadeneira-Barreiro PE, De Oca-Jimenez RM, Vazquez-Chagoyan JC, Martinez-Suibela S, Moran-Loor A, Ochoa-Garcia L, et al. Trypanosoma cruzi co-infections with other vector borne diseases are frequent in dogs from the pacific coast of Ecuador. Microb Pathog. 2021;155:104884.
30. Bezerra CM, Cavalcanti LP, Souza Rde C, Barbosa SE, Xavier SC, Jansen AM, et al. Domestic, peridomestic and wild hosts in the transmission of Trypanosoma cruzi in the Caatinga area colonised by Triatoma brasiliensis. Mem Inst Oswaldo Cruz. 2014;109(7):887–98.
31. Gurtler RE, Ceballos LA, Ordonez-Krasnowski P, Lanati LA, Stariolo R, Kitron U. Strong host-feeding preferences of the vector Triatoma brasiliensis. Mem Inst Oswaldo Cruz. 2014;109(7):887–98.
32. Gurtler RE, Ceballos LA, Ordonez-Krasnowski P, Lanati LA, Stariolo R, Kitron U. Strong host-feeding preferences of the vector Triatoma brasiliensis modified by vector density: implications for the epidemiology of Chagas disease. PLoS Negl Trop Dis. 2009;3(5):e447.
33. Gurtler RE, Ceballos LA, Marzio VL, Carvalho AC, Anez N. Infected dogs as a risk factor in the transmission of Trypanosoma cruzi in western Venezuela. Acta Trop. 2006;98(3):247–54.
34. Gomez SA, Lucientes J, Castillo JA, Peris MP, Delacour S, Ortega P, et al. The epidemiologic importance of Triatoma brasiliensis as a chagas disease vector in Brazil: a revision of domiciliary captures during 1993–1999. Mem Inst Oswaldo Cruz. 2003;98(4):443–9.
35. Gurtler RE, Ceballos LA, Marzio VL, Carvalho AC, Anez N. Infected dogs as a risk factor in the transmission of Trypanosoma cruzi in western Venezuela. Acta Trop. 2006;98(3):247–54.
36. Bongiorno G, Meyer L, Evans A, Lekouch N, Bianchi R, Khoury C, et al. A randomized, blinded, controlled application of fipronil spot-on on dogs against the Chagas disease vector. PLoS Negl Trop Dis. 2009;3(5):e447.
37. Laflame DP, Development and validation of a body condition score system for dogs. Canine Practice. 1997;22:6.
38. Ferreira-Silva S, Brito AKF, Freire BAA, Sousa LM, Pereira IM. Canine obesity: review. PUBBVET. 2017;11(4):10.
39. Araujo CA, Waniak PI, Jansen AM. Tc-Tell co-infection can enhance Trypanosoma cruzi growth in Rhodinus prolixus. Parasite Vectors. 2014;7:94.
40. Asin S, Catala S. Development of Trypanosoma cruzi in Triatoma infestans: influence of temperature and blood consumption. J Parasitol. 1995;81(1):1–7.
41. Rohdich N, Roepke RK, Nuehninger MC. Safety of fipronal chewable tablets (Bravecto), a novel systemic antiparasitic drug, in dogs after oral administration. Parasite Vectors. 2014;7:87.
42. Ozoe Y, Asahi M, Ozoe F, Nakahira K, Mita T. The antiparasitic isoxazoline A1443 is a potent blocker of insect ligand-gated chloride channels. Biochem Biophys Res Commun. 2010;399(1):744–9.
43. Loza A, Talaga A, Herbas G, Canavivi RJ, Cahuasini T, Luck L, et al. Systemic insecticide treatment of the canine reservoir of Trypanosoma cruzi induces high levels of lethality in Triatoma infestans, a principal vector of Chagas disease. Parasite Vectors. 2017;10(1):344.
44. Thomas E, Chiquet M, Sander B, Zschiesche E, Flochlay AS. Field efficacy and safety of fipronal solution for administration in drinking water for the treatment of poultry red mite (Dermanyssus gallinae) infestations in commercial flocks in Europe. Parasite Vectors. 2017;10(1):457.
45. Walther FM, Allan MJ, Roepke RK, Nuehninger MC. Safety of fipronal chewable tablets (Bravecto), a novel systemic antiparasitic drug, in dogs after oral administration. Parasite Vectors. 2014;7:87.
46. Laino MA, Cardinal MV, Enriquez GF, Alvedro A, Gaspe MS, Gurtler RE. An oral dose of fipronal administered to dogs kills pyrethroid-resistant and susceptible Chagas disease vectors for at least four months. Vet Parasitol. 2019;268:98–104.
47. Queiroga et al. Parasites Vectors (2021) 14:456
Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.