Introduction

L-glutaminase (E.C.3.5.1.2) is an amidohydrolase that catalyzes the deamination of L-glutamine and produce L-glutamic acid and ammonia. This enzyme has significant applications in food, therapeutic and analytical industries. In food sector, addition of glutaminase leads to improvement of glutamate content, which enhances pleasant and delicious taste of the foodstuff (Kurihara 2009). The palatable taste of traditional food like soya sauce, miso and sufu is the involvement of L-glutaminase during course of fermentation and leads to accumulation of high content of L-glutamate (Lioe et al. 2010; Binod et al. 2017). In diagnostic and health monitoring, analysis of L-glutamine and glutamate level in the blood is very important (Madeira et al. 2018). Similarly, glutaminase based monitoring of glutamine and glutamate levels in mammalian cell culture media is effective for mass culturing (Cattaneo et al. 1992). Kikkoman Corporation, Japan first developed L-glutaminase based biosensor to determine the L-glutamine levels for diagnostic purpose and now it is worldwide applied. High rate of L-glutamine consumption is a characteristic of cancerous cells for biosynthesis of proteins and nucleic acids. Unlike normal cells, tumor cells have lack of L-glutamine biosynthetic machinery. As a consequence, growth of the tumor cells depends upon uptake of L-glutamine from serum. Administration of exogenous L-glutaminase in serum or at the site of tumor leads to depletion of glutamine level, therefore, tumor cells are starved for glutamine (Soren et al. 2019). Based on this principle, L-glutaminase is being extensively used as therapeutic agent to restrict growth of tumor or cancer cell. Recently for prolonged stability and better distribution of the enzyme, immobilized and nano forms of glutaminase are being developed.

Since the discovery of glutaminase, a vast number of microbes belongs to fungi and bacteria have been reported to be L-glutaminase producer (Soren et al. 2019). Among the fungal genera, Aspergillus and Trichoderma are the major...
producer of L-glutaminase. For mass cultivation, both submerged and solid-state fermentation are employed by supplementing glutamine in the culture media. But report on raw or low-cost substrate is scanty in this regard. Due to existence of natural habitat and adequate oxygenation, the rate of productivity in solid state fermentation (SSF) of any metabolite is much higher than submerged fermentation (SmF) (Binod et al. 2017). Sabu et al. (2002) reported that salt stable enzyme from marine origin is effective in the treatment of acute lymphoblastic leukemia (ALL), as the isolated enzyme is more stable in salt-rich human plasma.

Considering these perspectives, the present study deals with the isolation of a potent L-glutaminase producing fungi from the soil of coastal area. The physicochemical environment of the organism has been optimized to recover maximum enzyme and under SSF to minimize the production cost. And finally, the anti-cancerous effectiveness of the isolated enzyme was explored under in vitro condition to highlight its therapeutic potentialities.

Materials and Methods

Isolation and identification of L-glutaminase producing fungi

Soil samples were collected from the coastal belt of Bay of Bengal from Bhitarkanika (20°45′N 87°0′E) and Digha (21°38′18″N 87°30′35″E). For exploring L-glutaminase producing fungi, soil samples were serially diluted, and 0.1 ml of each dilution was spread on glutamine supplemented (1.0%, w/v) potato dextrose agar (PDA) that containing 0.75% (w/v) phenol red and 100 mg/l ampicillin. The initial medium pH was maintained at 7.0. The plates were incubated at 28 °C for 7 days. Glutaminase producing fungi were selected by observing the pink zone around the colonies (Meghavarnam and Janakiraman 2017).

In secondary screening, primarily selected fungal isolates were cultured into the liquid medium (pH 7.0) having same composition as like isolation media (without agar) for 96 h. The plates were incubated at 28 °C for 7 days. Glutaminase producing fungi were selected by observing the pink zone around the colonies (Meghavarnam and Janakiraman 2017).

Inoculum preparation

Spore suspension of the potent fungal isolate was prepared by addition of 5 ml sterilized distilled water containing Tween 80 (2 drops/100 ml) onto the 3 days old fungal slants. The final concentration of the spore suspension was adjusted to about 2.0 × 10^2 spores/ml and preserved at 4 °C for further use.

Optimization of enzyme production through SSF

One variable at a time (OVAT) approach

Raw substrates were first treated with hot 1.0 % NaOH followed by repeated washing with cold and warm water to remove the dirt and other undesirable compounds. The washed substrates were then sun dried and cut into small pieces (2-3 mm). Solid state fermentation was carried out in Roux flasks containing 2.0 g of agro-industrial raw substrates moistened with 1.0 ml of glutamine (1.0%) solution (as inducer). Different raw substrates viz, sugarcane bagasse, wheat bran, rice straw, mustard oil cake and orange peel were used to examine their supporting effect on enzyme production. The effect of medium pH on enzyme production was checked by adjusting the pH (4.0-12.0) of moistening solution. The effect of temperature on enzyme production was studied by incubating the culture flaks at different incubation temperatures (20 - 50 °C). The optimization of important parameters like substrate concentration (1.0-10.0%, w/v), inoculum concentrations (0.5-3.0%, v/v) and moisture content (10-50%, w/v) were also done for enzyme production.

Response surface methodology (RSM) for optimization of L-glutaminase production

Five most influencing parameters (with their respective levels) were selected from OVAT experiments and further optimization was made using RSM. To explore the effects of these variables on the L-glutaminase production, a Box-Behnken factorial design was employed. An experimental design (5 factors with 3 levels) comprising multiple experiments were conducted for statistical optimization. Full experimental design is listed in Table 1. The relation between the coded value and actual values are described as in following.

\[
X_i = \frac{x_i - x_0}{\Delta x_i}
\]

Where, \(x_i\) is the independent variable coded value, \(x_0\) is the actual value of independent variable at their center point, and \(\Delta x_i\) is the step change value.

A model was generated by the regression analysis of the responses, and, its efficiency was tested by ANOVA and F-test. Three-dimensional (3D) response surface
Table 1. Experimental design used in RSM studies by using four independent variables each at three levels showing observed and predicted values of L-glutaminase production.

Run	Factor 1	Factor 2	Factor 3	Factor 4	Factor 5	L-Glutaminase (U/gds)	
	A: pH	B: T.	C: Inoculum	D: Substrate	E: Moisture	Observed value	Predicted value
-----	----------	----------	------------	------------	------------	---------------------	-----------------
1	4	27.5	2	8	30	64.38	54.77
2	4	30	2	7	10	55.87	55.92
3	3	30	2	7	20	55.8	56.29
4	4	27.5	1	6	20	57.81	65.58
5	5	27.5	3	7	20	64.67	60.86
6	4	25	3	7	20	60.79	62.23
7	/5	27.5	2	6	20	60.85	61.20
8	3	27.5	2	7	10	60.42	68.51
9	4	27.5	2	7	20	68.93	58.61
10	4	25	2	7	10	59.65	68.51
11	4	27.5	2	7	20	68.93	56.63
12	4	30	2	7	30	56.31	57.83
13	3	27.5	2	6	20	57.87	57.12
14	4	30	2	8	20	57.94	64.14
15	4	27.5	2	6	10	63.87	54.99
16	4	25	1	7	20	54.43	58.68
17	4	30	2	6	20	58.22	55.20
18	4	25	2	6	20	53.53	60.41
19	5	27.5	2	7	30	60.34	56.79
20	4	27.5	1	7	10	55.37	54.84
21	3	25	2	7	20	55.95	55.17
22	4	27.5	2	6	30	56.65	62.13
23	3	27.5	1	7	20	63.12	57.12
24	5	25	2	7	20	58.04	67.34
25	4	27.5	1	8	20	67.28	62.43
26	4	27.5	1	7	30	61.19	58.37
27	5	27.5	2	7	10	58.82	68.51
28	4	27.5	2	7	20	67.37	57.86
29	5	27.5	1	7	20	59.23	59.07
30	4	27.5	2	8	10	57.8	55.00
31	3	27.5	2	7	30	53.7	56.23
32	5	30	2	7	20	55.93	58.72
33	3	27.5	3	7	20	57.43	68.51
34	4	27.5	2	7	20	67.98	60.41
35	4	25	2	8	20	60.02	68.51
36	4	27.5	2	7	20	68.93	68.51
37	4	27.5	2	7	20	68.93	60.27
38	4	27.5	3	8	20	59.43	62.77
39	3	27.5	2	8	20	64.11	60.96
40	5	27.5	2	8	20	60.88	56.87
41	4	27.5	3	7	30	58.21	57.24
42	4	30	3	7	20	57.12	67.67
43	4	27.5	3	6	20	68.41	52.60
44	4	25	2	7	30	52.22	66.67
45	4	27.5	3	7	10	67.82	58.80
46	4	30	1	7	20	58.2	57.24
plots were generated to highlight the interactions among variables using Design-Expert 10.0 software (USA) (Das et al. 2013).

Enzyme extraction

After fermentation, sterile distilled water (5.0 ml) was added to each flask and shaken for 30 min at 100 rpm. The mixture was filtered through cheese cloth and centrifuged at 5000 rpm for 10 min. The crude enzyme was subjected to (NH₄)₂SO₄ precipitation (80%) and then dialedyzed against the phosphate buffer (1M, pH 7.0). Finally, the enzyme was collected by membrane filtration using 100 kDa molecular weight cut-off (Amicon, Merck). The partial purified glutaminase was stored for further use.

L-Glutaminase assay

The activity of L-glutaminase was determined by estimating the amount of ammonia liberated from the specific hydrolysis of substrate L-glutamine according to the method described in our previous publication (Soren et al. 2019). In brief, the reaction mixture consisting of 0.2 ml of crude enzyme, 0.5 ml of 0.04 M L-glutamine and 0.5 ml of 0.1 M phosphate buffer (pH 8.0). Then the mixture was incubated at 37 °C for 30 min. After that, 0.5 ml of 1.5 M Tri-chloroacetic acid (TCA) was added to stop the reaction. After dilution with distilled water (200 times), 100 µl of Nessler’s reagent was added and absorbance was measured at 450 nm. A blank was prepared in the similar way, where, TCA was added before enzymatic reaction. One unit of L-glutaminase was defined as the amount of enzyme that liberates 1 µmol of ammonia under optimum conditions.

Field emission Scanning Electron Microscopy (FE-SEM) and Energy Dispersive X-ray (EDX) study

The surface morphology of solid substrate before and after fermentation was examined using FE-SEM (MERLIN, Zeiss). For this, dehydrated materials were put onto 1 cm ×1 cm glass slide and kept in an auto-sputter (Quorum-Q150R ES) under vacuum for gold coating. Images of surface morphology of the substrate were taken at various magnifications. Energy dispersive X-ray (EDX) spectrum was also taken for analysis of metal composition of solid substrate (Kar et al. 2013).

In vitro cytotoxicity assay

Vero cell line (kidney of an African Cercopithecus aethiops) and cancerous HCT (Homo sapiens colon colorectal carcinoma) cell line (IMGENEX, India) were maintained at 37 °C in Dulbecco’s modified eagle medium (supplemented with Fetal Bovine Serum and 100 µL each of penicillin and streptomycin) (Himedia, India) in a 5.0% CO₂ incubator. Feasible influence of cell lines by addition of partial purified enzyme was determined through MTT assay. Cells were prepared at a concentration of 1.7 x 10⁵ cells per well and incubated with 20 µl of L-glutaminase (30.93 U/ml) for 96 h and 20 µl phosphate buffer saline (PBS, pH 7.0) was used as control. Then 20 µl of MTT stock (Himedia) was added to each well and incubated for 4 h at 37 °C. Thereafter, MTT solubilizing agent was added into each well and color intensity measured at 570 nm. The concentration of enzyme needed for 50% (IC₅₀) inhibition of cell growth was determined from the dose response curves for each cell line. The percentage growth inhibition was calculated using the following formula:

\[
\text{Growth inhibition (\%) = 100 - \left(\frac{AE \times 100}{AC} \right) }
\]

Where, AE and AC are the mean absorbance measured for cell viability in culture medium containing enzyme and PBS, respectively.

Results

Isolation and primary screening of suitable fungi

After primary and secondary screening, the best extracellular L-glutaminase producing fungus designated as KPJ-2 was selected. The phenotypic identification was confirmed by phylogenetic analysis. The sequence homology of 28S rDNA amplicons revealed that KPJ-2 was most similar with Fusarium nelsonii CIB04 (GenBank accession no. MN117676.1) (Fig. 1).

Optimization of solid-state fermentation following OVAT approach

Physicochemical conditions are the key factor that moni-
tored growth of microbes and its productivity (Halder et al. 2012; Elegbede and Lateef 2019). L-glutaminase production by \textit{F. nelsonii} KPJ-2 was carried out under SSF in presence of various agro-industrial residues like sugarcane bagasse, wheat bran, rice straw, mustard oil cake and orange peel. The results revealed that wheat bran supported higher productivity of L-glutaminase (30.38 U/gds) by the isolate (Fig. 2). Among the various concentration of wheat bran, the highest enzyme production of about 47.82 U/gds was found at 7.0% (w/v) (Fig. 3a). Maximum L-glutaminase production by the fungal isolate (47.28 U/gds) was noted in presence of 20.0% (v/w) moistening agent (Fig. 3a).

The pH of the fermentation medium greatly influences the metabolic activities as well as growth of the organism. The highest enzyme activity of 35.53 U/gds was found at pH 4.0 (Fig. 3b). Production of enzyme was also studied in broad range of incubation temperatures (20-50 °C) (Fig. 3b) and optimum enzyme production was noted at 25 °C (41.29 U/gds). Inoculum concentration was found optimum for L-glutaminase production (47.37 U/gds) at 2.0% (v/w, 2 × 10^2 spore/ml) (Fig. 3b).

Optimization of enzyme production using RSM

Box-Behnken factorial design of RSM was employed for optimization of culture conditions for L-glutaminase production by newly isolated \textit{F. nelsonii} KPJ-2. By taking three levels of five factors, a group of 46 experimental trials were performed. The levels of enzyme production have been represented in Table 1. A quadratic model was generated in response to L-glutaminase production by applying multiple regression analysis of the experimental data. The following second-order polynomial equation was derived:

$$L\text{-glutaminase activity (Y)} = +68.51 + 0.5338 \times A + 0.1756 \times B + 0.9644 \times C + 0.9144 \times D - 1.17 \times E - 0.4900 \times A \times B + 2.33 \times A \times C - 1.55 \times A \times D + 2.06 \times A \times E - 1.86 \times B \times C - 1.69 \times B \times D + 1.46 \times B \times E - 4.61 \times C \times D - 3.86 \times C \times E + 3.45 \times D \times E - 4.85 \times A^2 - 7.62 \times B^2 - 2.90 \times C^2 - 2.87 \times D^2 - 4.91 \times E^2$$

Where, \(Y\) represents glutaminase production (U/gds), and \(A, B, C, D\) and \(E\) are initial pH, temperature (°C),

![Figure 2. Optimization of different raw substrates for L-glutaminase production.](image2.png)

![Figure 3. (a) Production of L-glutaminase in different substrate concentration (% w/v) of wheat bran and moisture content (% v/v), (b) Production of L-glutaminase in different initial fermentation pH, fermentation temperature (°C) and variable inoculum concentration (%), by strain KPJ-2.](image3.png)
inoculum concentration (%), substrate concentration (%) and moisture content (%), respectively.

The significant model terms were evaluated by analyzing variance (ANOVA) in the optimization study (p < 0.01) and represented in Table 2. The statistical analysis revealed that F-value of 24.61, and Prob > F was less than 0.0001. This result indicated that the model is significant for best utilization of optimized parameters for L-glutaminase production. The lack of fit value 5.08 also implies to be non-significant related to pure error; hence the model seems to be fit (Table 2). There is 3.99% chance of Lack of Fit F-value. The Predicted R² of

Table 2 ANOVA for quadratic model representing the F and P value to determine the most significant value.

Source	Sum of Squares	df	Mean Square	F-value	p-value	
Model	997.68	20	49.88	33.26	< 0.0001	Significant
A-pH	6.71	1	6.71	4.47	0.0446	
B-Temperature	0.0361	1	0.0361	0.0241	0.8780	
C-Inoculum	18.60	1	18.60	12.40	0.0017	
D-Substrate	13.38	1	13.38	8.92	0.0062	
E-Moisture	17.26	1	17.26	11.51	0.0023	
AB	0.9604	1	0.9604	0.6404	0.4311	
AC	30.97	1	30.97	20.65	0.0001	
AD	9.64	1	9.64	6.43	0.0179	
AE	16.97	1	16.97	11.32	0.0025	
BC	13.84	1	13.84	9.23	0.0055	
BD	11.46	1	11.46	7.64	0.0106	
BE	15.48	1	15.48	10.32	0.0036	
CD	85.10	1	85.10	56.74	< 0.0001	
CE	59.52	1	59.52	39.69	< 0.0001	
DE	47.61	1	47.61	31.75	< 0.0001	
A²	192.31	1	192.31	128.23	< 0.0001	
B²	529.49	1	529.49	353.06	< 0.0001	
C²	65.92	1	65.92	43.95	< 0.0001	
D²	71.89	1	71.89	47.93	< 0.0001	
E²	224.55	1	224.55	149.73	< 0.0001	
Residual	37.49	25	1.50			
Lack of Fit	35.21	20	1.76	3.85	0.0702	not significant
Pure Error	2.29	5	0.4572			
Cor Total	1035.17	45				
0.8124 is in reasonable agreement with the Adjusted R^2 of 0.9130 as the difference is less than 0.2. The adequate precision value, which measures the ‘signal to noise ratio’ was desirable to be > 4.0, and in the present case, the value of the said indices was 16.243. Thus, it can be stated that the model was statistically sound and can be used to navigate the design space (Das et al. 2013). The most significant mutual interaction was noticed among substrate concentration, temperature, moisture content and inoculum concentration for L-glutaminase production by *F. nelsonii* KPJ-2 (Fig. 4).

Confirmation experiment

Using Design Expert 10.0, numerical optimization design space was explored with a fitted quadratic model to arrive at an optimum fermentation condition. The desirability of optimized variables was found using independent function that assigns comparative importance to responses. Solutions with higher desirability for SSF gave an optimum pH of 4.1, fermentation temperature of 26.8 °C, inoculum percentage of 2.3%, moisture content of 13.6% and substrate amount of 6.4% (w/v), which could support L-glutaminase production of 68.93 U/gds (Fig. 5). Under these conditions, confirmation experiments were conducted in three replicates and the activity of 69.75 U/gds was determined, which suggested that experimental and predicted values were in good agreement.

Evaluation of pattern of wheat bran utilization and elemental analysis during glutaminase production

The SEM study revealed the gradual dislodgement of cortical layer and formation of mycelial mat on the surface of wheat bran after 72 h of fermentation. Numerous lateral pores on wheat bran surface were formed due to microbial interaction (Fig. 6). The peak analysis of EDX spectra revealed that the content of sodium, magnesium,
phosphorous, potassium and calcium ions gradually decreased during course of fermentation and these may utilize for growth of fungus (Fig. 6). These data clearly demonstrated that wheat bran was became decomposed during fungus growth and the ingredients of the bran supported the biosynthesis of L-glutaminase.

In vitro cytotoxicity assay of L-glutaminase

The purified L-glutaminase from KPJ-2 has been subjected to cytotoxic study against the HCT and Vero cell line in different doses. The treatment of cancerous cell line (HCT) with increasing concentration of L-glutaminase resulted in appreciable inhibition of cell growth after 48 h in comparison to Vero cells (Fig. 7). This study indicates that this enzyme has potential cytotoxic effect against cancer cells. The concentration of IC_{50} value was found to be 203.95 μg/ml for HCT (Fig. 7). This in vitro screening model provides preliminary data on drug selection for clinical trials.

Discussion

In this study, an L-glutaminase producing fungal strain was isolated from the marine resources considering its natural habitat as a salt tolerant organism. Presently marine bioresources have tremendous therapeutic importance for development of anticancer, antibacterial and antiviral drugs (Malve 2016). Based on the morphological and phylogenetic analysis, the isolated organism was identified as *F. nelsonii* KPJ-2. The production of L-glutaminase from marine organism like *Aspergillus* sp. ALAA-2000, and *Beauveria* sp. was also reported by Ahmed et al. (2016) and Sabu et al. (2002), respectively. Selection of suitable substrate for solid state fermentation process is very crucial determinant of fermentation productivity (Nathiya et al. 2011). OVAT method is primarily employed to select the effective physicochemical condition on the growth of organism for production of L-glutaminase. In SSF, among the tested agricultural residues wheat bran supported maximum L-glutaminase production and this suggested the compatibility of this substrate for enzyme production as it may provide optimum carbon, nitrogen and mineral demand for growth of *F. nelsonii* KPJ-2 as well as enzyme synthesis. Nathiya et al. (2011) reported maximum production of L-glutaminase (42.37±0.47 U/g) by *Aspergillus flavus* KUGF009 utilizing tea dust followed by Bengal gram husk, groundnut oilcake, wheat bran and rice bran. Optimum inoculum concentration is essential because low inoculum density may produce insufficient biomass that leads to less product formation, whereas, a higher inoculum size may favor too much biomass formation that deplete the nutrients very fast or accumulates some self-limiting waste products (Kashyap et al. 2002). El-Sayed (2009) and Ye et al. (2013) reported that 2.0% inoculum concentration supports maximum glutaminase production by *Trichoderma koningii* and *Bacillus amyloliquefaciens*, respectively, and our finding is in good agreement with them. Temperature beyond the optimum zone exerted adverse effect on the enzyme production by any microbes as at both low and high temperature the growth of the organism is restricted (Binod et al. 2017). In this study the fungal isolate *F. nelsonii* KPJ-2 produced maximum L-glutaminase at 25 °C, which is in accordance with the report of Kashyap et al. (2002) on *Zygosaccharomyces rouxii*. Moisture level regulates the metabolic activity of the microorganism during SSF process (Pandey et al. 2000). Higher moisture levels may decrease porosity, alter particle structure, enhancement of bacterial growth or low oxygen transfer; whereas, the lower moisture level may lead to improve water tension, lower degree of swelling and reduced solubility of the nutrients of the solid substrate (Raimbault and Alazard 1980; Pandey 1992). For critical analysis of the most vibrant parameters, response surface methodology (RSM) based statistical analysis was carried out. The precise effect of five factors was examined by Box-Behnken factorial design. The relationship between the independent parameter were evaluated by examining the 3D response surfaces curves (Fig. 4) which showed the variation in the yields of L-glutaminase as a function of two variables when the other variables at their central values. Evaluation of response surface curves indicate the range of optimum conditions within the experimental area covered or show the way to confirmative experiments to achieve better results. The observed mean of L-glutaminase activity found to be 68.93 U/gds which is closed to predicted values and hence validates
the model. At optimized condition 14.50% increment in L-glutaminase production was achieved in comparison to un-optimized state.

The SEM-EDX studies show a thin lump of cell aggregates on the surface of wheat bran and distortion of surface layer as well as utilization of its mineral content after 72 h of fermentation. Wheat bran composed of fructans, xylans, cellulose, lignin, galactan in addition to other biomolecules including proteins and minerals (Onipe et al. 2015). The perforation of surface wall of wheat bran indicates KPJ-2 liberated an array hydrolytic enzyme including L-glutaminase which initiates hydrolysis from the surface layer. The enzymatic end products induced the fungus for liberation of reasonable amount of L-glutaminase. The elementary analysis revealed the quantity of iron and zinc ions decrease during fermentation while sodium, magnesium, phosphorous, potassium and calcium ions quantity gradually increase after fermentation. These ions may contribute to maintain the growth of the organism, physiological requirement and conformational stability of the enzyme molecule.

Cytotoxicity study revealed that L-glutaminase arrested cell proliferation of HCT cells with IC_{50} value of 203.95 μg/mL. On the contrary, the enzyme has no impact on Vero cell which implies that it become non-toxic to normal cells and, therefore, well-suited for anticancer or antitumor therapy. The literatures reflected that effectiveness and IC_{50} value of L-glutaminase varied depending upon the target cells. Reda (2015) reported IC_{50} of 64.70 μg/mL as growth inhibition doses for HCT cell line. Singh and Banik (2013) reported that in case of hepatocellular carcinoma (Hep-G2) cell lines IC_{50} dose was 82.27 μg/mL. Also, IC_{50} of 63.30 μg/mL was recorded by Elshafei et al. (2014) against hepatocellular carcinoma (Hep-G2) cell.

Conclusion

This is probably the first report that *F. nelsonii* KPJ-2, which is generally regarded as plant pathogen, is an excellent producer of extracellular L-glutaminase. Utilization of wheat bran as supporting substrate minimizes the production cost, therefore, will be economic and applicable for pharmaceutical and other industries. As the organism isolated from marine environment and the isolated L-glutaminase can restricted the growth of HCT cell line, therefore, this enzyme deserves for human wellness. Future work has been targeted towards the characterization the enzyme property and construction of nano-form structure to enhance its effectiveness.

Acknowledgements

The authors are thankful to the Rajiv Gandhi National Fellowship supported by University Grant Commission, funded by Ministry of Social Justice & Empowerment and Ministry of Tribal Affairs, Government of India for the financial contribution in this study.

References

Ahmed AM, Taha TM, Abo-Dahab NF, Hassan FS (2016) Process optimization of L-glutaminase production; a tumour inhibitor from marine endophytic isolate *Aspergillus* sp. ALAA-2000. J Microb Biochem Technol 8:256-267.

Binod P, Sindhu R, Madhavan A, Abraham A, Mathew AK, Beevi US, Sukumaran RK, Singh SP, Pandey A (2017) Recent developments in L-glutaminase production and applications an overview. Biosens Technol 245:1766-1774.

Cattaneo MV, Luong JH, Mercille S (1992) Monitoring glutamine in mammalian cell cultures using an amperometric biosensor. Biosens Bioelectron 7:329-334.

Das A, Paul T, Halder SK, Jana A, Maity C, Mohapatra PK, Pati BR, Mondal KC (2013) Production of cellulolytic enzymes by *Aspergillus fumigatus* ABK9 in wheat bran-rice straw mixed substrate and use of cocktail enzymes for deinking of waste office paper pulp. Biosens Technol 128:290-296.

Elegbede JA, Lateef A (2019) Optimization of the production of xylanases in corncob-based media by *Aspergillus niger* and *Trichoderma longibrachiatum* using Taguchi approach. Acta Biol Szeged 63(1):51-58.

Elshafei AM, Hassan MM, Ali NH, Abouzeid MA, Mahmoud DA, Elghonemy DH (2014) Purification, kinetic properties and antitumor activity of L-glutaminase from *Penicillium brevicompactum* NRC829. British Micro Res J 4:97-115.

El-Sayed AS (2009) L-glutaminase production by *Trichoderma koningii* under solid-state fermentation. Indian J Microbiol 49:243-250.

Felsenstein J (1981) Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17:368-376.

Halder SK, Maity C, Jana A, Pati BR, Mondal KC (2012) Chitinolytic enzymes from the newly isolated *Aeromonas hydrophila* SBK1: study of the mosquitocidal activity. BioControl 57:441-449.

Kar S, Gauri SS, Das A, Jana A, Maity C, Mandal A, Mohapatra PK, Pati BR, Mondal KC (2013) Process optimization of xylanase production using cheap solid substrate by *Trichoderma reesei* SAF3 and study on the alteration of behavioral properties of enzyme obtained from SSF and SmF. Bioproc Biosyst Eng 36:57-68.
Kashyap P, Sabu A, Pandey A, Szakacs G, Soccol CR (2002) Extra-cellular L-glutaminase production by *Zygosaccharomyces rouxii* under solid-state fermentation. Process Biochem 38:307-312.

Kurihara K (2009) Glutamate: from discovery as a food flavor to role as a basic taste (umami). Am J Clin Nutr 90:719S-22S.

Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R, Thompson JD (2007) Clustal W and Clustal X version 2.0. Bioinform 23:2947-2948.

Lioe HN, Selamat J, Yasuda M (2010) Soy sauce and its umami taste: a link from the past to current situation. J Food Sci 75:R71-76.

Madeira C, Alheira FV, Calcia MA, Silva T, Tannos FM, Vargas-Lopes C, Fisher M, Goldenstein N, Brasil MA, Vinogradov S, Ferreira ST (2018) Blood levels of glutamate and glutamine in recent onset and chronic schizophrenia. Front Psychiatry 9:713.

Malve H (2016) Exploring the ocean for new drug developments: Marine pharmacology. J Pharm Bioallied Sci 8(2):83-91.

Meghavarnam AK, Janakiraman S (2017) Solid state fermentation: An effective fermentation strategy for the production of L-asparaginase by *Fusarium culmorum* (ASP-87). Biocatal Agric Biotechnol 11:124-130.

Nathiya K, Nath SS, Angayarkanni J, Palaniswamy M (2011) Optimised production of L-glutaminase: A tumour inhibitor from *Aspergillus flavus* cultured on agro-industrial residues. Afr J Biotechnol 10:13887-13894.

Onipe OO, Jideani AI, Beswa D (2015) Composition and functionality of wheat bran and its application in some cereal food products. Int J Food Sci Tech 50:2509-18.

Pandey A (1992) Recent process developments in solid-state fermentation. Process Biochem 27:109-117.

Pandey A, Soccol CR, Nigam P, Soccol VT (2000) Biotechnological potential of agro-industrial residues. I: sugarcane bagasse. Bioresour Technol 74:69-80.

Raimbault M, Alazard D (1980) Culture method to study fungal growth in solid fermentation. Eur J Appl Microbiol Biotechnol 9:199-209.

Reda FM (2015) Kinetic properties of *Streptomyces canarius* L-glutaminase and its anticancer efficiency. Braz J Microbiol 46:957-968.

Sabu A, Kumar SR, Chandrasekaran M (2002) Continuous production of extracellular L-glutaminase by Caalginate-immobilized marine *Beauveria bassiana* BTMF S-10 in packed-bed reactor. Appl Biochem Biotechnol 102:71-79.

Singh P, Banik RM (2013) Biochemical characterization and antitumor study of L-glutaminase from *Bacillus cereus* MTCC 1305. Appl Biochem Biotechnol 171:522-531.

Soren JP, Paul T, Banerjee A, Mondal KC, Mohapatra PK (2019) Exploitation of agricultural waste as sole substrate for production of bacterial L-glutaminase under submerged fermentation and the proficient application of fermented hydrolysate as growth promoting agent for probiotic organisms. Waste Biomass Valor 1-13.

Ye M, Liu X, Zhao L (2013) Production of a novel salt-tolerant L-glutaminase from *Bacillus amyloliquefaciens* using agro-industrial residues and its application in Chinese soy sauce fermentation. Biotechnol 12:25-35.