Genetic and Functional Characterization of ANGPTL7 as a Therapeutic Target for Glaucoma

Kavita Praveen
Regeneron Genetics Center

Gaurang Patel
Regeneron https://orcid.org/0000-0003-2497-665X

Lauren Gurski
Regeneron Genetics Center

Ariane Ayer
Regeneron Genetics Center

Trikaladarshi Persaud
Regeneron Genetics Center

Matthew Still
Regeneron Genetics Center https://orcid.org/0000-0002-3862-2425

Lawrence Miloscio
Regeneron Pharmaceuticals

Tavé Van Zyl
Regeneron Pharmaceuticals

Silvio Alessandro Di Gioia
Regeneron Genetics Center

Ben Michael Brumpton
Norwegian University of Science and Technology https://orcid.org/0000-0002-3058-1059

Kristi Krebs
University of Tartu

Bjorn Olav Asvold
Norwegian University of Science and Technology https://orcid.org/0000-0003-3837-2101

Esteban Chen
Regeneron Genetics Center

Venkata Chavali
Scheie Eye Institute, University of Pennsylvania

Wen Fury
Regeneron Pharmaceuticals, Inc. https://orcid.org/0000-0001-8671-8221

Venkata Gudiseva
Scheie Eye Institute, University of Pennsylvania

Sarah Hyde
Article

Keywords: Glaucoma, blindness, glaucoma medications, lowering intraocular pressure (IOP)
Title: Genetic and functional characterization of ANGPTL7 as a therapeutic target for glaucoma

Authors: Kavita Praveen¹, Gaurang C. Patel², Lauren Gurski¹, Ariane H. Ayer¹, Trikaladarshi Persaud¹, Matthew D. Still², Lawrence Milosco¹, Tavé Van Zyl², Silvio Alessandro Di Gioia¹, Ben Brumpton³, Kristi Krebs⁶, Björn Olav Åsvold¹⁴, Esteban Chen¹, Venkata R. M. Chavali⁸, Wen Fury², Harini V. Gudiseva⁸, Sarah Hyde⁹, Eric Jorgenson¹, Stephanie Lefebvre⁶, Dadong Li¹, Alexander Li¹, James McIninch⁹, Brijeshkumar Patel², Jeremy S. Rabinowitz², Rebecca Salowe⁸, Claudia Schurmann¹, Anne-Sofie Seidelin¹¹, Eli Stahl¹, Dylan Sun¹, Tanya M. Teslovich¹, Anne Tybjærg-Hansen¹¹, Cristen Willer¹², Scott Waldron⁹, Sabrina Walley², Hua Yang², Sarthak Zaveri², Regeneron Genetics Center, GHS-RGC DiscovEHR Collaboration, Estonian Biobank Research Team*, Ying Hu², Kristian Hveem³, Olle Melander¹⁵, Lili Milani⁶, Stefan Stender¹¹, Joan M. O’Brien⁸, Marcus Jones¹, Gonçalo R. Abecasis¹, Michael N. Cantor¹, Jonathan Weyne², Katia Karalis¹, Aris Economides¹, Giusy Della Gatta¹, Manuel A. Ferreira¹, George D. Yancopoulos², Aris Baras¹, Carmelo Romano², Giovanni Coppola¹

Affiliations:
¹Regeneron Genetics Center, Tarrytown, NY 10591, USA.
²Regeneron Pharmaceuticals, Inc., Tarrytown, NY 10591, USA.
³K.G. Jebsen Center for Genetic Epidemiology, Department of Public Health and Nursing, NTNU, Norwegian University of Science and Technology, Trondheim, 7030, Norway.
HUNT Research Center, Department of Public Health and Nursing, NTNU, Norwegian University of Science and Technology, Levanger, 7600, Norway.

Clinic of Medicine, St. Olavs Hospital, Trondheim University Hospital, Trondheim, 7030, Norway.

Estonian Genome Centre, Institute of Genomics, University of Tartu, Tartu, Estonia.

Department of Endocrinology, Clinic of Medicine, St. Olavs Hospital, Trondheim University Hospital, Trondheim, 7030, Norway.

Department of Ophthalmology, Pearlman School of Medicine, University of Pennsylvania.

Alnylam Pharmaceuticals, Inc., Cambridge, MA 02142, USA.

Bayer AG, Pharmaceuticals, Research and Development, 13342 Berlin, Germany

Department of Clinical Biochemistry, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark.

Division of Cardiovascular Medicine, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA.

Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA.

Department of Human Genetics, University of Michigan, Ann Arbor, MI, USA.

Lund University, Department of Clinical Sciences Malmö, Malmö, Sweden.

Skåne University Hospital, Department of Emergency and Internal Medicine, Malmö, Sweden.

*A complete list of contributing authors to the Regeneron Genetics Center, GHS-RGC DiscovEHR Collaboration and Estonian Biobank Research Team is provided in the Supplementary Appendix.

Correspondence to giovanni.coppola@regeneron.com, aris.baras@regeneron.com, or carl.romano@regeneron.com.
Abstract:

Glaucoma is a leading cause of blindness. Current glaucoma medications work by lowering intraocular pressure (IOP), a risk factor for glaucoma, but most treatments do not directly target the pathological changes leading to increased IOP, which can manifest as medication resistance as disease progresses. To identify physiological modulators of IOP, we performed genome- and exome-wide association analysis in >129,000 individuals with IOP measurements and extended these findings to an analysis of glaucoma risk. We report the identification and functional characterization of rare coding variants (including loss-of-function variants) in ANGPTL7 associated with reduction in IOP and glaucoma protection. We validated the human genetics findings in mice by establishing that Angptl7 knockout mice have lower (~2 mmHg) basal IOP compared to wild-type, with a trend towards lower IOP also in heterozygotes. Conversely, increasing mAngptl7 levels via injection into mouse eyes increases the IOP. We also show that acute gene silencing via siRNA knockdown of Angptl7 in adult mice lowers the IOP (~2-4 mmHg), reproducing the observations in knockout mice. Collectively, our data suggest that ANGPTL7 is important for IOP homeostasis and is amenable to therapeutic modulation to help maintain a healthy IOP that can prevent onset or slow the progression of glaucoma.

Main text:

INTRODUCTION

Glaucoma is a leading cause of irreversible blindness, with a global prevalence of 3.54% in individuals 40-80 years of age, and is projected to affect more than 111.8 million people by 2040 (1). Classified as a neurodegenerative disease, glaucoma is characterized by the progressive loss of retinal ganglion cells in the eye and thinning of the neuroretinal rim of the optic nerve head.
Affected individuals present with visual field loss that is accompanied by increased intraocular pressure (IOP) in the majority of cases (2). Primary open angle glaucoma (POAG) is the most common glaucoma subtype and has highest prevalence in individuals of African ancestry (4.2% prevalence in Africa (1)).

Individuals at greatest risk for POAG are >60 years of age, have a family history of glaucoma, or have high myopia (3–6). Measurable ocular anatomical and physiological features, including low central corneal thickness (CCT), increased cup-to-disc ratio and high intraocular pressure (IOP) (7) correlate with increased risk for glaucoma and, like glaucoma (8), are highly heritable (4, 9–13). Thus, these quantitative risk factors, when measured on large numbers of individuals, can provide a well-powered dataset for genetic studies to elucidate the etiology of glaucoma risk and progression. The latest genome-wide association study (GWAS) of IOP included more than 130,000 individuals and increased the tally of IOP-associated loci to over 100 (14, 15). An earlier GWAS (16) reported that ~89% of loci associated with IOP at a genome-wide significant level showed directionally consistent effects on glaucoma risk, thus reinforcing the utility of quantitative risk factors in gene discovery for glaucoma.

Lowering IOP is the mainstay of all glaucoma therapeutics as IOP continues to be the only modifiable risk factor for the onset or progression of glaucoma. While many effective topical IOP-lowering agents across multiple drug classes are available, they suffer from significant drawbacks, including poor compliance due to frequent dosing requirements and side-effects (17). Waning efficacy over time and the consequent need for treatment escalation are also observed, perhaps in part because the majority of medications in use do not address pathophysiological changes at the
primary site of IOP regulation and aqueous humor egress from the eye, the trabecular meshwork (TM). These limitations result in a large proportion of glaucoma treatment regimens comprising more than one therapeutic agent and patients frequently changing medications or requiring treatment escalation that ultimately involves invasive surgery to maintain a clinically acceptable IOP \cite{18}. Therefore, a significant unmet need remains in the treatment of glaucoma to identify new therapeutic targets offering novel mechanisms of action, as well as treatment platforms that may offer increased durability and tolerability without compromising safety.

We performed genetic association analyses of IOP and glaucoma across eight cohorts to identify rare and coding variants that modulate the risk for glaucoma through IOP. This led to the identification of ANGPTL7 as a candidate, consistent with findings reported recently by another group \cite{19}. In this report, we 1) strengthen the genetic link to glaucoma protection by (i) showing a consistent protective effect of the Gln175His variant in *ANGPTL7* across eight cohorts, (ii) identifying a burden of ultra-rare missense variants in *ANGPTL7* that reduce IOP levels, and (iii) identifying an additional rare *ANGPTL7* loss-of-function variant in African-ancestry individuals; we also present 2) *in vitro* characterization of *ANGPTL7* variants identified from genetic analyses; and 3) *in vivo* results showing that mice without Angptl7 have reduced basal IOP, and that even a partial knockdown of Angptl7 with siRNA can lead to lowering of IOP in mice. Our results establish an important role for ANGPTL7 as a physiological regulator of IOP and suggest that it is also amenable to modification by pharmacological tools, making it a compelling target for a glaucoma therapeutic.
RESULTS

Coding variants in ANGPTL7 are associated with reduced IOP

We studied the effect of rare, protein-altering variation on IOP across two large cohorts, UK Biobank (UKB) and Geisinger DiscovEHR (GHS), including 129,207 individuals of European descent after exclusion of cases with a glaucoma diagnosis (Methods, Table S1). To increase our power to detect associations with rare variants, we performed burden tests by aggregating for each gene all rare (minor allele frequency (MAF) < 1%) predicted loss-of-function (pLOF, defined as stop-gain, frameshift, splice donor, splice acceptor, start-loss, and stop-loss) and missense (predicted deleterious by 5 algorithms, Supplementary Methods) variants. We observed a genome-wide significant association ($P < 5 \times 10^{-8}$) of variants in angiopoietin-like 7 (ANGPTL7) with reduced IOP ($\beta_{\text{allelic}} = -0.21$, $P = 5.3 \times 10^{-24}$; Figure 1A). The gene burden included 63 rare variants but was dominated by two: a missense (Gln175His, MAF = 0.7%) and a stop-gain (Arg177*, MAF = 0.03%) variant, which accounted for 1,902 and 82 individuals out of a total of 2,188 carriers, respectively (Figure 1B, 2, S1). Exclusion of Gln175His and Arg177* from the burden meta-analysis between UKB and GHS did not eliminate the signal completely ($\beta_{\text{allelic}} = -0.23$, $P = 4.4 \times 10^{-4}$; Figure S2), suggesting that other ultra-rare variants in ANGPTL7 are also associated with reduced IOP.

In single-variant analyses, Gln175His was associated with reduced IOP at a genome-wide significant level ($\beta_{\text{allelic}} = -0.20$ SD, $P = 3.1 \times 10^{-20}$, Figure 2A). Heterozygous and homozygous carriers of Gln175His in ANGPTL7 have a 5.2% (0.8 mmHg) and 26.5% (4.1 mmHg) reduction in median IOP in UKB, respectively (Figure 2B). The Arg177* variant was also nominally associated with reduced IOP with an effect size similar to that of Gln175His ($\beta_{\text{allelic}} = -0.24$ SD, $P = 2.6 \times 10^{-4}$).
10\(^2\), Figure 2C), and 77 heterozygous Arg177* carriers had a 9% (1.4 mmHg) median IOP decrease (Figure 2D). Arg177* appears to be the predominant pLOF variant in European populations; a burden test restricted to pLOF variants (15 variants across UKB and GHS) was dominated by Arg177* (82 of 112 total carriers) and was comparable (\(\text{beta}_{\text{allelic}} = -0.21\) SD, \(P = 2.2 \times 10^{-2}\); Figure S3) to the single-variant association of Arg177* with IOP.

We searched other ancestries for additional pLOFs in ANGPTL7 and identified Trp188*, which is enriched in individuals of African descent (MAF = 0.3%) compared to Europeans (MAF = 0.0013%). We performed an association of Trp188* with IOP in African ancestry individuals from UKB and the Primary Open Angle African American Glaucoma Genetics (POAAGG) study, followed by meta-analysis. Trp188* showed a trend towards reduced IOP, similar to Arg177* and Gln175His, but this was not statistically significant (\(\text{beta}_{\text{allelic}} = -0.11\) SD, \(P = 5 \times 10^{-1}\)). A cross-ancestry meta-analysis of Arg177* and Trp188* variants showed a nominally significant association with reduced IOP (\(\text{beta}_{\text{allelic}} = -0.21\) SD, \(P = 1.5 \times 10^{-2}\); Figure S4).

In summary, we observed a significant association of Gln175His in ANGPTL7 with reduced IOP and a sub-threshold association, in the same direction and of similar magnitude, with pLOF variants in ANGPTL7. Assuming that the pLOF variants indeed cause a loss of protein function, our data suggests that loss of ANGPTL7 can lead to lower IOP.

IOP-associated variants in ANGPTL7 are protective against glaucoma

To understand if carriers of variants in ANGPTL7 would also be protected against glaucoma, we performed an association analysis of Gln175His with glaucoma in UKB, GHS, and
six additional studies: Mount Sinai’s BioMe Personalized Medicine Cohort from Mount Sinai Health System, New York (SINAI), the Malmö Diet and Cancer Study from Malmö, Sweden (MALMO), the FinnGen cohort from Finland, the Estonia Biobank at the University of Tartu, Estonia (EstBB), the HUNT study from Nord-Trøndelag, Norway (HUNT), and the Copenhagen General Population Study/Copenhagen City Heart Study from Copenhagen, Denmark (CGPS-CCHS). A meta-analysis across these eight cohorts showed a significant reduction in glaucoma risk for Gln175His carriers (odds ratio (OR$_{\text{allelic}}$) = 0.77, $P = 2.7 \times 10^{-6}$, Figure 3A). We also analyzed glaucoma risk in carriers of the rarer Arg177*/Trp188* variants in a cross-ancestry meta-analysis and observed a consistent trend towards reduction in risk (OR$_{\text{allelic}}$ = 0.87, $P = 4.1 \times 10^{-4}$, Figure 3B). Taken together, the associations of missense and pLOF variants in ANGPTL7 with reduced IOP and the association of the missense variant with reduced glaucoma risk suggest the hypothesis that loss of ANGPTL7 confers protection against glaucoma, and that this effect is mediated through the regulation of IOP.

ANGPTL7 variants are associated with corneal measures

We performed a phenome-wide association analysis (PheWAS) to understand whether other traits were associated with a burden of pLOF and deleterious missense variants in ANGPTL7. We tested the ANGPTL7 variant aggregate for association with 14,050 and 10,032 binary and quantitative traits in UKB and GHS, respectively. No associations reached phenome-wide significance ($P < 2 \times 10^{-6}$ after multiple-testing correction for 24,082 total traits) in GHS. The only significant associations in UKB were with ocular traits (Table 1), specifically with decreased IOPcc, decreased corneal resistance factor (CRF) and increased corneal refractive power along both weak and strong meridians measured at 3 and 6mm diameters. The effect of these variants on
IOPcc was slightly attenuated (–0.17 SD) compared to that on IOPg (–0.22 SD in UKB), which suggests that ANGPTL7 has some impact on corneal properties that are known to affect the IOPg measurements (20). The association observed with decreased CRF is also consistent with a corneal effect of ANGPTL7.

We used the autorefraction measurements at 3mm diameter to derive measures of clinical interest, namely, mean corneal refractive power (mCRP), corneal astigmatism, and refractive astigmatism (Supplementary Methods) and checked for association with ANGPTL7. We observed a significant association with increased mCRP (beta_{allelic} = 0.16, P = 1.1 \times 10^{-13}, Table 1) but no association with corneal or refractive astigmatism. We also did not observe associations with mean spherical equivalent (MSE; measure of refractive error) or myopia (either derived from MSE or via ICD-10 diagnosis), which could result from increased mCRP (Table S2). Overall, our PheWAS results show that while ANGPTL7 is associated with changes in corneal anatomy/biomechanics-related quantitative measures, we did not detect an increased risk for any related disease outcomes that we could test. In addition, pLOF and deleterious missense variants in ANGPTL7 are not associated with any systemic quantitative traits or binary outcomes.

Gln175His, Arg177* and Trp188* are defective in secretion

To understand the impact of Gln175His, Arg177*, and Trp188* variants on the expression and secretion of ANGPTL7, we transiently transfected constructs expressing the wild type (WT), Gln175His, Arg177*, and Trp188* variant proteins in HEK293 cells. We measured mRNA levels by Taqman, which showed similar Gln175His and Arg177* transcript levels and a trend towards decreased levels of the Trp188* transcript compared to WT (P = 0.08; Figure S5). However,
analysis of intracellular, steady-state protein in whole-cell lysate by western blotting and ELISA revealed increased levels of Gln175His compared to WT ($P < 1 \times 10^{-4}$; Figure 4C). As expected, Arg177* and Trp188* encoded lower molecular weight proteins (~30-32 kDa). No significant difference in the protein levels of these two mutants was revealed by ELISA in comparison to WT (Figure 4A, C). Because ANGPTL7 is a secreted protein, we next determined the levels of WT, Gln175His, Arg177*, and Trp188* in the cellular supernatant. Protein analysis by Western blot showed that the Arg177* and Trp188* variants were not detectable and the Gln175His was drastically reduced in the supernatant compared to WT ($P < 0.05$; Figure 4B). ELISA assay further corroborated the severely reduced levels of Gln175His and the inability of Arg177* and Trp188* to reach the extracellular space (Figure 4C, D).

ANGPTL7 is expressed in cornea, TM and sclera across species

To identify expression of ANGPTL7 in ocular tissues across different species, transcriptome profiles from different parts of eye were generated (Supplementary Methods). High ANGPTL7 expression was observed in cornea, TM, and sclera in human and African green monkey eyes (Figure 5A, B). High Angptl7 expression was also observed in cornea, TM, sclera, optic nerve, and choroid/RPE in eyes of C57BL/6J mice (Figure 5C). In situ hybridization on human donor and mouse eyes using RNAscope probes for human ANGPTL7 and mouse Angptl7 showed ANGPTL7/Angptl7 expression in TM, cornea stroma, and sclera (Figure 5D, E; Supplementary Methods).

Increasing levels of Angptl7 in mouse eyes increases IOP
Previous studies showed that overexpression of \textit{ANGPTL7} in TM cells leads to changes in extracellular matrix (ECM) deposition and reorganization \citep{21, 22} and that ANGPTL7 is increased in aqueous humor of glaucoma patients \citep{22}, however, the role of ANGPTL7 in IOP regulation is not clear. To investigate this, we injected Angptl7 protein in mice via intravitreal and intracameral routes and measured IOP over time. Intravitreal injection of Angptl7 protein in mice led to an initial drop in IOP followed by, starting on day 4, an elevation in IOP of 4-5 mmHg, a 22-25\% increase compared to baseline, that lasted until the end of the experiment on day 7 (Figure 6A).

Similarly, intracameral injection of Angptl7 protein in mice led to an initial drop and subsequent elevation (by 2-5 mmHg) of IOP, starting on day 3 until the end of the experiment on day 7 (Figure 6B). Vehicle-injected mice did not show an increase in IOP in either route of administration.

\textbf{Angptl7 KO mice have lower basal IOP than WT}

We generated and characterized \textit{Angptl7} \textit{-/-} (KO) mice. We did not observe any ocular changes on anterior segment optical coherence tomography (OCT), or a difference in corneal thickness between the two genotypes (Figure S6). We also monitored the IOP in KO, \textit{Angptl7} \textit{+/-} (Het) and WT mice and observed a dose-dependent decrease in IOP across the three genotypes (Figure 7A). The mean IOP was lowered in KO mice (mean \pm standard error of the mean (SEM): 15.39 \pm 0.25 mmHg) by 11\% (1.96 mmHg, $P < 1 \times 10^{-4}$) compared to WT (17.36 \pm 0.23 mmHg). Het mice (16.26 \pm 0.43 mmHg) showed a smaller (6\%, 1.1 mmHg, $P = 0.02$) but significant reduction in IOP compared to WT. We confirmed via RNAscope that Angptl7 mRNA was not expressed in any ocular tissue in KO mice whereas it was expressed in TM, cornea, and sclera of WT mice (Figure S7; Supplementary Methods).
siRNA-induced knockdown of Angptl7 mRNA and lowering of IOP in WT Mice

To investigate whether knockdown of Angptl7 with small interfering RNA (siRNA) can also lower IOP, we tested six different siRNAs targeting Angptl7 in C57BL/6J mice and monitored IOP over time. We injected C57BL/6J mice intravitreally with 15µg of siRNAs and performed qPCR six weeks later on limbal rings dissected from mouse eyes enriched for the TM. IOP was significantly lowered 2 weeks post-injection in mice treated with two of the six siRNAs (siRNA #3 and #5) compared to the PBS and Naïve (no injection) groups (Figure 7B). Naïve and PBS-treated animals maintained their IOPs at baseline for the duration of the study (weeks 0-6). In mice treated with siRNA#3 and #5, IOP was lowered by 2-4 mmHg starting at week 2 compared to PBS-treated mice (Figure 7B). At the end of the study, we collected the eyes, carefully micro-dissected the limbal ring and performed qPCR. We observed the highest level of knockdown (>50%) of Angptl7 mRNA with siRNAs #3 and #5 compared to PBS-treated mice, which is consistent with the IOP lowering observed in mice injected with these two siRNAs (Figure 7C). These results suggest that acute inhibition of Angptl7 expression also lowers IOP.
In this study, we present genetic and functional evidence for a role for ANGPTL7 in the physiological control of IOP and as a potential target for glaucoma therapy. Through genetic association analyses across 8 cohorts in Europeans, we confirmed the association of a rare missense variant, Gln175His (rs28991009), in ANGPTL7 with a decrease in IOP and with decreased risk for glaucoma (15, 19). We further identified pLOF variants in ANGPTL7, Arg177* (rs143435072) and African ancestry-enriched Trp188* (rs145750805), that also associated with a decrease in IOP, suggesting that Gln175His carriers are protected from glaucoma through a loss or reduction in ANGPTL7 activity. Through cell-based expression assays, we found that Gln175His, Arg177*, and Trp188* were severely defective in secretion when compared to wild-type and, while not proof, this observation is consistent with the hypothesis that they result in a loss of protein function. We also identified predicted-deleterious ANGPTL7 variants in burden analyses associated with reduced IOP, indicating that there may be other ultra-rare ANGPTL7 variants that confer protection from glaucoma. Supporting this hypothesis, a recent report described the association of one of these ANGPTL7 variants enriched in Finnish individuals (Arg220Cys) with reduced IOP and decreased risk for glaucoma (19).

ANGPTL7 is a secreted glycoprotein that is thought to form homo-oligomers (tri- or tetramers), like other members of the ANGPTL family (23, 24). The ANGPTL7 mRNA was first isolated from human postmortem eyes where it shows the highest expression relative to other tissues (23). Within the eye, our in situ hybridization results show that ANGPTL7 is expressed most strongly in the cornea and TM, consistent with previous findings (22). We have also shown using single-cell RNAseq that ANGPTL7 expression is particularly enriched in the
juxtacanalicular tissue (JCT), a region of the TM most important for IOP regulation and generation of aqueous humor outflow resistance (25, 26). In addition to being expressed in tissues directly relevant in glaucoma, several lines of evidence have implicated ANGPTL7 in glaucoma pathophysiology. First, elevated levels of ANGPTL7 mRNA and protein were observed in eye tissues from glaucoma patients compared to controls, and under conditions of increased IOP simulated by perfusion of eye anterior segment explants (22, 27, 28). Second, ANGPTL7 is one of the most upregulated genes in response to corticosteroid treatment (29, 30), which can cause increased IOP in ~40% of general population and ~90% of individuals with POAG (31, 32). Third, ANGPTL7 levels are also increased in response to TGF-beta, a growth factor that is thought to modulate the ECM and lead to increased IOP (33). Fourth, ANGPTL7 itself can modulate the expression of components of the TM ECM (21, 22).

The above studies suggest a strong correlation of ANGPTL7 expression with glaucoma disease-state, however, they are not evidence for a causal relationship between ANGPTL7 levels and elevated IOP/glaucoma. Human genetics finding of an association between ANGPTL7 loss and lower IOP suggests that ANGPTL7 is physiologically important for IOP regulation. We validated this hypothesis in mice where we performed reciprocal experiments: measuring IOP after increasing ANGPTL7 levels via injection of mAngptl7 into mouse eyes, and after removing all mAngptl7 protein by generating Angtpl7 KO mice. Our findings show that increasing mAngptl7 results in increased (~2-4 mmHg) IOP and decreasing mAngptl7 through KO mice reduces basal IOP levels (~2 mmHg), establishing that ANGPTL7 functions in vivo to maintain IOP homeostasis. We further recapitulated the reduction in IOP observed in KO mice by injecting WT mouse eyes with siRNA against mAngptl7, which not only replicates the observation in genetic
mutant mice but also illustrates that the effect of mAngptl7 on IOP continues post-development and is amenable to modulation by therapeutics in adulthood. Our results of lower IOP in Angptl7 KO mice are highly consistent with observations from human genetics. Based on this, we could extend the siRNA knockdown findings to humans and surmise that inhibition of ANGPTL7 in adulthood could be an efficacious way to lower IOP and, eventually, the risk for glaucoma.

Our human genetics findings indicate that the variants in ANGPTL7 associated with reduced IOP were also associated with decreased mean corneal resistance factor (CRF), an output of the Ocular Response Analyzer (ORA) that reflects the elastic property of the cornea (34), and increased mean corneal refractive power (mCRP). mCRP, along with axial length and lens power, contributes to the overall refractive state of the eye (35), and increased mCRP (i.e. a steeper cornea) may be indicative of possible myopia or astigmatism. However, as we did not observe evidence of association with myopia or astigmatism in PheWAS, we conclude that the changes to mCRP are either insufficient to result in a disease outcome or are compensated by other changes in traits that were not measured, such as axial length (36). While an effect of ANGPTL7 on corneal properties is clearly indicated by the associations with mCRP and CRF, we assert that this effect cannot account for the full extent of IOP reduction observed. Instead, we posit an independent contribution of ANGPTL7 to IOP homeostasis based on the following: (1) The persistent association with reduced IOPcc suggests that there is IOP reduction even after controlling for corneal properties; (2) Angptl7 KO mice eyes show reduced basal IOP without evidence of corneal thinning or other corneal abnormalities; and (3) the association of ANGPTL7 variants with glaucoma protection is a result we would not expect if the reduction of IOP was purely due to
ANGPTL7’s effect on corneal anatomy (37). Therefore, we believe that ANGPTL7 likely has a pleiotropic effect on both IOP and corneal anatomy/biomechanics in humans.

Therapeutic knockdown of ANGPTL7 in patients with open angle glaucoma may present a unique opportunity to not only lower IOP through a novel mechanism of action, but also to intervene in the disease process. Among the most widely used IOP-lowering agents, none directly address pathophysiological changes occurring at the level of TM and instead reduce IOP through mechanisms that reduce the aqueous burden on the conventional pathway, either through suppressing aqueous formation or increasing its outflow via the alternative (uveoscleral) pathway (38). Consequently, as TM dysfunction progresses in a glaucoma patient, treatment intensification naturally follows (18). While further studies are needed to investigate the role of ANGPTL7 in pathways contributing to TM dysfunction and IOP elevation, several lines of evidence point to pro-fibrotic actions at the level of the TM, including its corticosteroid and TGF-beta responsiveness, as well as its enriched expression in JCT TM (discussed earlier).

As all studies, this study has limitations. First, we did not account for IOP-lowering medication use in the IOP analysis. We did exclude from the IOP analysis individuals with a glaucoma diagnosis, greatly reducing the effect of medication use, however this would not exclude those individuals on IOP-lowering medications without a glaucoma diagnosis. In addition, the IOP measurement in UKB for most participants was only taken once, and therefore can be prone to errors that a median of multiple measurements might buffer against. Both of the above factors would influence the estimation of the effect of rare genetic variants on IOP. Second, since a glaucoma diagnosis can often be made well after the onset of disease, we can expect that a certain
percentage of controls have undiagnosed glaucoma, which may affect the effect size estimate. Third, the ANGPTL7 gene in humans lies within intron 28 of MTOR (39), therefore variants in ANGPTL7 could also affect MTOR function. While a possibility, it is unlikely that the effect on IOP and glaucoma is due to MTOR, as: (i) the variants are predicted to be protein-altering in ANGPTL7 whereas there is no obvious predicted functional effect on MTOR; (ii) we show data suggesting that the variants have a functional impact on ANGPTL7; and (iii) we show mouse data that establish a role for ANGPTL7 in IOP regulation.

In summary, our genetic and pharmacological results indicate that ANGPTL7 participates in the normal physiological regulation of IOP in humans and mice. Since excessive amounts of ANGPTL7 protein in the eyes of experimental animals cause IOP to elevate to pathological levels, upregulation of ANGPTL7 in humans may be responsible for the elevated IOP that leads to POAG. Therefore, we propose ANGPTL7 as an excellent candidate to explore as a therapeutic target for POAG.

MATERIALS AND METHODS

Study Design

Association with IOP was tested on a total of 101,678 individuals and 27,529 individuals of European ancestry from the United Kingdom Biobank (UKB) and the MyCode Community Health Initiative cohort from Geisinger Health System (GHS), respectively. The UKB is a population-based cohort study of people aged between 40 and 69 years recruited through 22 testing centers in the UK between 2006 and 2010 (40). The GHS MyCode study is a health system-based cohort of patients from Central and Eastern Pennsylvania (USA) recruited in 2007-2019 (41). For
IOP association tests in African ancestry individuals, we included 4,114 individuals from UKB and 3,167 individuals from the Primary Open Angle African-American Glaucoma Genetics (POAAGG) study conducted at the University of Pennsylvania Perelman School of Medicine (42). We excluded all participants with a glaucoma diagnosis code (ICD-10 H40) or self-reported glaucoma (UKB field IDs: 6148 and 20002) from IOP analyses.

Association with glaucoma was tested in 8 studies: UKB, GHS, Mt. Sinai BioMe cohort (SINAI), the Malmö Diet and Cancer study (MALMO) (43), the Estonia Biobank (EstBB) (44), The Trøndelag Heath Study (HUNT) (45), FinnGen, a study from Finland, and the Copenhagen General Population Study and the Copenhagen City Heart Study (CGPS-CCHS) (46). We had, in total, up to 40,042 cases (UKB: 12,377, GHS: 8,032, SINAI: 409, MALMO: 2,395, EstBB: 7,629, HUNT: 3,874; CPGS-CCHS: 1,863; FinnGen: 3,463) and 947,782 controls of European ancestry, and 5,153 cases (UKB: 448, POAAGG: 3,444, SINAI: 1,261) and 21,650 controls of African ancestry in glaucoma analyses.

Phenotype definition

IOP in UKB was measured in each eye using the Ocular Response Analyzer (ORA, Reichert Corp., Buffalo, New York). Participants were excluded from this test if they reported having eye surgery in the preceding 4 weeks or having an eye infection. The ORA calculates two forms of IOP, a Goldmann-correlated IOP (IOPg) and a corneal compensated IOP (IOPcc). IOPg most closely approximates the IOP measured by the Goldmann Applanation Tonometer (GAT), which has been the gold standard for measuring IOP, while IOPcc provides a measure of IOP that is adjusted to remove the influence of corneal biomechanics (47). For this study, we focused on
IOPg as this measurement is the most comparable to IOP measurements in other cohorts, and herein IOPg will be referred to as IOP. IOP in POAAGG was measured using a GAT. In GHS, IOP measurements were obtained from several instruments including GAT, Tono-pen and I-Care, which are correlated with IOPg readings from the ORA (48). For GHS individuals who were not prescribed any IOP medications, we used the median of all IOP measurements available. For individuals who had an IOP medication prescribed, we used the median of IOP measurements available preceding the start date for IOP medications (if available). Individuals for whom we did not have non-medicated IOP values were excluded from the IOP genetic analyses. For association analyses of IOP, we excluded individuals with: 1) a glaucoma diagnosis; 2) IOP measures that were more than 5 standard deviations away from the mean; 3) more than a 10-mmHg difference between both eyes. We derived a mean IOP measure between both eyes for each individual. IOP of only one eye was used in instances where IOP measures for both eyes were not available.

Details on glaucoma definition in each cohort are given in the Supplementary Methods. In brief, glaucoma cases in GHS, SINAI, MALMO, HUNT, EstBB, FinnGen and CGPS-CCHS were defined by the presence of an ICD-10 H40 diagnosis code in either outpatient or inpatient electronic health records. In UKB, glaucoma cases were defined as individuals with either an ICD-10 H40 diagnosis or self-reported glaucoma (UKB field ID: 6148 or 20002). In the POAAGG cohort, glaucoma cases and controls were classified based on an ophthalmic examination by glaucoma specialists, and glaucoma suspects were also included in the cases (49).

Statistical analyses
High coverage whole exome sequencing and genotyping was performed at the Regeneron Genetics Center as previously described (50, 51) and given in Supplementary Methods. We estimated the association with IOP and glaucoma of genetic variants or their gene burden using REGENIE v1.0.43 (52) (UKB, GHS, MALMO, SINAI), SAIGE (53) (HUNT, EstBB, FinnGen) or logistic regression (CGPS-CCHS). Analyses were adjusted for age, age2, sex, an age-by-sex interaction term, experimental batch-related covariates, and genetic principal components, where appropriate. Cohort-specific statistical analysis details are provided in Supplementary Methods. Results across cohorts were pooled using inverse-variance weighted meta-analysis. Details on the PheWAS analysis conducted in UKB and GHS are provided in Supplementary Methods. Description of statistical analyses for in vitro and in vivo experiments are provided in the respective figure legends.

Functional studies

In vitro characterization was conducted for the WT ANGPTL7 and three ANGPTL7 variants: Gln175His, Arg177* and Trp188*. Briefly, WT ANGPTL7 and the three variants in a pcDNA 3.1(+) vector backbone were transiently transfected with FuGENE6 (Promega) into HEK293 cells. Protein and mRNA levels of the transfectants in the cell lysate and supernatant were measured via ELISA and TaqMan, respectively, and visualized by western blotting. Details are provided in Supplementary Methods.

Angptl7 -/- mice were generated by Regeneron Pharmaceuticals using the VelociMouse® technology (54). Heterozygous mice (Angptl7 +/-) were bred to generate age-matched wild-type, het and KO littermates that were used for experimentation. Ocular anatomy in these mice was characterized using optical coherence tomography (OCT). Detailed methods on generation and
characterization of KO mice, and injection of mAngptl7 and siRNA into mouse eyes are given in Supplementary Methods.

IOP was measured as previously described (55–57). Briefly, mice were anesthetized and IOP was measured in both eyes using a TonoLab rebound tonometer (Colonial Medical Supply, Franconia, NH) before the start of Angptl7 injection and every day afterwards for six days. When testing Angptl7 siRNAs, IOPs were measured in each eye before then start of experiment and then every week until end of study. IOP measurements for both eyes were completed within 3–5 minutes.
Supplementary Materials

Supplementary Appendix

Supplementary Methods

Table S1: Number of samples across cohorts included in IOP and glaucoma analyses.

Fig. S1: Missense and predicted loss-of-function (pLOF) variants in ANGPTL7 and IOP levels in individuals of European descent in GHS.

Table S1: Number of samples across cohorts included in IOP and glaucoma analyses.

Fig. S2: Meta-analysis of ANGPTL7 aggregate of predicted loss-of-function and deleterious missense variants (MAF<1%), excluding Gln175His and Arg177*, with IOP.

Fig. S3: Meta-analysis of ANGPTL7 aggregate of predicted loss-of-function variants only (MAF<1%) with IOP.

Fig. S4: Cross-ancestry meta-analysis of Arg177* and Trp188* with IOP.

Table S2: Association of ANGPTL7 aggregate of pLOF and deleterious missense variants and ocular traits of interest in UKB.

Fig. S5: Relative expression of WT and variant ANGPTL7 mRNA in a HEK293 cell line.

Fig. S6: Characterization of Angptl7 KO and WT mouse eyes by OCT.

Fig. S7: In situ characterization of Angptl7 mRNA in WT and Angptl7 KO mouse eyes.
References and Notes

1. Y.-C. Tham, X. Li, T. Y. Wong, H. A. Quigley, T. Aung, C.-Y. Cheng, Global prevalence of glaucoma and projections of glaucoma burden through 2040: a systematic review and meta-analysis, *Ophthalmology* **121**, 2081–2090 (2014).

2. R. N. Weinreb, T. Aung, F. A. Medeiros, The pathophysiology and treatment of glaucoma: a review, *JAMA* **311**, 1901–1911 (2014).

3. R. C. Wolfs, C. C. Klaver, R. S. Ramrattan, C. M. van Duijn, A. Hofman, P. T. de Jong, Genetic risk of primary open-angle glaucoma. Population-based familial aggregation study, *Arch. Ophthalmol.* **116**, 1640–1645 (1998).

4. T. Toh, S. H. M. Liew, J. R. MacKinnon, A. W. Hewitt, J. L. Poulsen, T. D. Spector, C. E. Gilbert, J. E. Craig, C. J. Hammond, D. A. Mackey, Central corneal thickness is highly heritable: the twin eye studies, *Invest. Ophthalmol. Vis. Sci.* **46**, 3718–3722 (2005).

5. C. M. Green, L. S. Kearns, J. Wu, J. M. Barbour, R. M. Wilkinson, M. A. Ring, J. E. Craig, T. L. Wong, A. W. Hewitt, D. A. Mackey, How significant is a family history of glaucoma? Experience from the Glaucoma Inheritance Study in Tasmania, *Clin. Experiment. Ophthalmol.* **35**, 793–799 (2007).

6. M. W. Marcus, M. M. de Vries, F. G. Junoy Montolio, N. M. Jansonius, Myopia as a risk factor for open-angle glaucoma: a systematic review and meta-analysis, *Ophthalmology* **118**, 1989-1994.e2 (2011).
7. H. Hollands, D. Johnson, S. Hollands, D. L. Simel, D. Jinapriya, S. Sharma, Do findings on routine examination identify patients at risk for primary open-angle glaucoma? The rational clinical examination systematic review, *JAMA* **309**, 2035–2042 (2013).

8. N. G. Asefa, A. Neustaeter, N. M. Jansonius, H. Snieder, Heritability of glaucoma and glaucoma-related endophenotypes: Systematic review and meta-analysis, *Surv. Ophthalmol.* **64**, 835–851 (2019).

9. J. A. Landers, A. W. Hewitt, D. P. Dimasi, J. C. Charlesworth, T. Straga, R. A. D. Mills, R. Savarirayan, D. A. Mackey, K. P. Burdon, J. E. Craig, Heritability of central corneal thickness in nuclear families, *Invest. Ophthalmol. Vis. Sci.* **50**, 4087–4090 (2009).

10. F. Carbonaro, T. Andrew, D. A. Mackey, T. D. Spector, C. J. Hammond, Heritability of intraocular pressure: a classical twin study, *Br. J. Ophthalmol.* **92**, 1125–1128 (2008).

11. L. M. E. van Koolwijk, D. D. G. Despriet, C. M. van Duijn, L. M. Pardo Cortes, J. R. Vingerling, Y. S. Aulchenko, B. A. Oostra, C. C. W. Klaver, H. G. Lemij, Genetic contributions to glaucoma: heritability of intraocular pressure, retinal nerve fiber layer thickness, and optic disc morphology, *Invest. Ophthalmol. Vis. Sci.* **48**, 3669–3676 (2007).

12. O. Pärssinen, P. Era, A. Tolvanen, J. Kaprio, M. Koskenvuo, T. Rantanen, Heritability of intraocular pressure in older female twins, *Ophthalmology* **114**, 2227–2231 (2007).

13. P. Healey, F. Carbonaro, B. Taylor, T. D. Spector, P. Mitchell, C. J. Hammond, The heritability of optic disc parameters: a classic twin study, *Invest. Ophthalmol. Vis. Sci.* **49**, 77–80 (2008).
14. A. P. Khawaja, J. N. Cooke Bailey, N. J. Wareham, R. A. Scott, M. Simcoe, R. P. Igo Jr, Y. E. Song, R. Wojciechowski, C.-Y. Cheng, P. T. Khaw, L. R. Pasquale, J. L. Haines, P. J. Foster, J. L. Wiggs, C. J. Hammond, P. G. Hysi, UK Biobank Eye and Vision Consortium, NEIGHBORHOOD Consortium, Genome-wide analyses identify 68 new loci associated with intraocular pressure and improve risk prediction for primary open-angle glaucoma, Nat. Genet. 50, 778–782 (2018).

15. X. R. Gao, H. Huang, D. R. Nannini, F. Fan, H. Kim, Genome-wide association analyses identify new loci influencing intraocular pressure, Hum. Mol. Genet. 27, 2205–2213 (2018).

16. H. Choquet, K. K. Thai, J. Yin, T. J. Hoffmann, M. N. Kvale, Y. Banda, C. Schaefer, N. Risch, K. S. Nair, R. Melles, E. Jorgenson, A large multi-ethnic genome-wide association study identifies novel genetic loci for intraocular pressure, Nat. Commun. 8, 2108 (2017).

17. A. Garg, G. Gazzard, Treatment choices for newly diagnosed primary open angle and ocular hypertension patients, Eye 34, 60–71 (2020).

18. A. R. Patel, G. F. Schwartz, J. H. Campbell, C.-C. Chen, C. B. McGuiness, J. K. Multani, V. Shih, O. U. Smith, Economic and Clinical Burden Associated With Intensification of Glaucoma Topical Therapy: A US Claims-based Analysis, J. Glaucoma 30, 242–250 (2021).

19. Y. Tanigawa, M. Wainberg, J. Karjalainen, T. Kiiskinen, G. Venkataraman, S. Lemmelä, J. A. Turunen, R. R. Graham, A. S. Havulinna, M. Perola, A. Palotie, FinnGen, M. J. Daly, M. A. Rivas, Rare protein-altering variants in ANGPTL7 lower intraocular pressure and protect against glaucoma, PLoS Genet. 16, e1008682 (2020).
20. D. A. Luce, Determining in vivo biomechanical properties of the cornea with an ocular response analyzer, *J. Cataract Refract. Surg.* **31**, 156–162 (2005).

21. N. Comes, L. K. Buie, T. Borrás, Evidence for a role of angiopoietin-like 7 (ANGPTL7) in extracellular matrix formation of the human trabecular meshwork: implications for glaucoma, *Genes Cells* **16**, 243–259 (2011).

22. J. Kuchtey, M. E. Källberg, K. N. Gelatt, T. Rinkoski, A. M. Komàromy, R. W. Kuchtey, Angiopoietin-like 7 secretion is induced by glaucoma stimuli and its concentration is elevated in glaucomatous aqueous humor, *Invest. Ophthalmol. Vis. Sci.* **49**, 3438–3448 (2008).

23. R. Peek, R. A. Kammerer, S. Frank, I. Otte-Höller, J. R. Westphal, The angiopoietin-like factor cornea-derived transcript 6 is a putative morphogen for human cornea, *J. Biol. Chem.* **277**, 686–693 (2002).

24. C. Carbone, G. Piro, V. Merz, F. Simionato, R. Santoro, C. Zecchetto, G. Tortora, D. Melisi, Angiopoietin-Like Proteins in Angiogenesis, Inflammation and Cancer, *Int. J. Mol. Sci.* **19** (2018), doi:10.3390/ijms19020431.

25. G. Patel, W. Fury, H. Yang, M. Gomez-Caraballo, Y. Bai, T. Yang, C. Adler, Y. Wei, M. Ni, H. Schmitt, Y. Hu, G. Yancopoulos, W. D. Stamer, C. Romano, Molecular taxonomy of human ocular outflow tissues defined by single-cell transcriptomics, *Proc. Natl. Acad. Sci. U. S. A.* **117**, 12856–12867 (2020).

26. T. van Zyl, W. Yan, A. McAdams, Y.-R. Peng, K. Shekhar, A. Regev, D. Juric, J. R. Sanes, Cell atlas of aqueous humor outflow pathways in eyes of humans and four model species
provides insight into glaucoma pathogenesis, Proc. Natl. Acad. Sci. U. S. A. 117, 10339–10349 (2020).

27. S. K. Bhattacharya, E. J. Rockwood, S. D. Smith, V. L. Bonilha, J. S. Crabb, R. W. Kuchtey, N. G. Robertson, N. S. Peachey, C. C. Morton, J. W. Crabb, Proteomics reveal Cochlin deposits associated with glaucomatous trabecular meshwork, J. Biol. Chem. 280, 6080–6084 (2005).

28. N. Comes, T. Borrás, Individual molecular response to elevated intraocular pressure in perfused postmortem human eyes, Physiol. Genomics 38, 205–225 (2009).

29. W. R. Lo, L. L. Rowlette, M. Caballero, P. Yang, M. R. Hernandez, T. Borrás, Tissue differential microarray analysis of dexamethasone induction reveals potential mechanisms of steroid glaucoma, Invest. Ophthalom. Vis. Sci. 44, 473–485 (2003).

30. F. W. Rozsa, D. M. Reed, K. M. Scott, H. Pawar, S. E. Moroi, T. G. Kijek, C. M. Krafchak, M. I. Othman, D. Vollrath, V. M. Elner, J. E. Richards, Gene expression profile of human trabecular meshwork cells in response to long-term dexamethasone exposure, Mol. Vis. 12, 125–141 (2006).

31. A. F. Clark, Basic sciences in clinical glaucoma: steroids, ocular hypertension, and glaucoma, J. Glaucoma 4, 354–369 (1995).

32. S. Phulke, S. Kaushik, S. Kaur, S. S. Pandav, Steroid-induced Glaucoma: An Avoidable Irreversible Blindness, J Curr Glaucoma Pract 11, 67–72 (2017).
33. J. Wang, A. Harris, M. A. Prendes, L. Alshawa, J. C. Gross, S. M. Wentz, A. B. Rao, N. J. Kim, A. Synder, B. Siesky, Targeting Transforming Growth Factor-β Signaling in Primary Open-Angle Glaucoma, *J. Glaucoma* 26, 390–395 (2017).

34. N. Garcia-Porta, P. Fernandes, A. Queiros, J. Salgado-Borges, M. Parafita-Mato, J. M. González-Méijome, Corneal biomechanical properties in different ocular conditions and new measurement techniques, *ISRN Ophthalmol* 2014, 724546 (2014).

35. R. A. Gordon, P. B. Donzis, Refractive development of the human eye, *Arch. Ophthalmol.* 103, 785–789 (1985).

36. Q. Fan, A. Pozarickij, N. Y. Q. Tan, X. Guo, V. J. M. Verhoeven, V. Vitart, J. A. Guggenheim, M. Miyake, J. W. L. Tideman, A. P. Khawaja, L. Zhang, S. MacGregor, R. Höhn, P. Chen, G. Biino, J. Wedenoja, S. E. Saffari, M. S. Tedja, J. Xie, C. Lanca, Y. X. Wang, S. Sahebjada, J. Mazur, A. Mirshahi, N. G. Martin, S. Yazar, C. E. Pennell, M. Yap, A. E. G. Haarman, C. A. Enthoven, J. Polling, Consortium for Refractive Error and Myopia (CREAM), UK Biobank Eye and Vision Consortium, A. W. Hewitt, V. W. V. Jaddoe, C. M. van Duijn, C. Hayward, O. Polasek, E.-S. Tai, H. Yoshikatsu, P. G. Hysi, T. L. Young, A. Tsujikawa, J. J. Wang, P. Mitchell, N. Pfeiffer, O. Pärrssinen, P. J. Foster, M. Fossarello, S. P. Yip, C. Williams, C. J. Hammond, J. B. Jonas, M. He, D. A. Mackey, T.-Y. Wong, C. C. W. Klaver, S.-M. Saw, P. C. N. Baird, C.-Y. Cheng, Genome-wide association meta-analysis of corneal curvature identifies novel loci and shared genetic influences across axial length and refractive error, *Commun Biol* 3, 133 (2020).

37. H. Choquet, R. B. Melles, J. Yin, T. J. Hoffmann, K. K. Thai, M. N. Kvale, Y. Banda, A. J. Hardcastle, S. J. Tuft, M. M. Glymour, C. Schaefer, N. Risch, K. S. Nair, P. G. Hysi, E.
Jorgenson, A multiethnic genome-wide analysis of 44,039 individuals identifies 41 new loci associated with central corneal thickness, *Commun Biol* 3, 301 (2020).

38. J. D. Stein, A. P. Khawaja, J. S. Weizer, Glaucoma in Adults-Screening, Diagnosis, and Management: A Review, *JAMA* 325, 164–174 (2021).

39. Y. Katoh, M. Katoh, Comparative integromics on Angiopoietin family members, *Int. J. Mol. Med.* 17, 1145–1149 (2006).

40. C. Sudlow, J. Gallacher, N. Allen, V. Beral, P. Burton, J. Danesh, P. Downey, P. Elliott, J. Green, M. Landray, B. Liu, P. Matthews, G. Ong, J. Pell, A. Silman, A. Young, T. Sprosen, T. Peakman, R. Collins, UK biobank: an open access resource for identifying the causes of a wide range of complex diseases of middle and old age, *PLoS Med.* 12, e1001779 (2015).

41. D. J. Carey, S. N. Fetterolf, F. Daniel Davis, W. A. Faucett, H. Lester Kirchner, U. Mirshahi, M. F. Murray, D. T. Smelser, G. S. Gerhard, D. H. Ledbetter, The Geisinger MyCode community health initiative: an electronic health record–linked biobank for precision medicine research, *Genet. Med.* 18, 906–913 (2016).

42. E. S. Charlson, P. S. Sankar, E. Miller-Ellis, M. Regina, R. Fertig, J. Salinas, M. Pistilli, R. J. Salowe, A. L. Rhodes, W. T. Merritt, M. Chua, B. T. Trachtman, H. V. Gudiseva, D. W. Collins, V. R. M. Chavali, C. Nichols, J. Henderer, G.-S. Ying, R. Varma, E. Jorgenson, J. M. O’Brien, The Primary Open-Angle African American Glaucoma Genetics Study: Baseline Demographics, *Ophthalmology* 122, 711–720 (2015).

43. G. Berglund, S. Elmståhl, L. Janzon, S. A. Larsson, Design and feasibility. *Journal of Internal Medicine* 233, 45–51 (1993).
44. L. Leitsalu, T. Haller, T. Esko, M.-L. Tammeoo, H. Alavere, H. Snieder, M. Perola, P. C. Ng, R. Mägi, L. Milani, K. Fischer, A. Metspalu, Cohort Profile: Estonian Biobank of the Estonian Genome Center, University of Tartu, *Int. J. Epidemiol.* **44**, 1137–1147 (2015).

45. S. Krokstad, A. Langhammer, K. Hveem, T. L. Holmen, K. Midthjell, T. R. Stene, G. Bratberg, J. Heggland, J. Holmen, Cohort profile: The HUNT study, Norway, *Int. J. Epidemiol.* **42**, 968–977 (2013).

46. Y. Aguib, J. Al Suwaidi, The Copenhagen city heart study (Østerbroundersøgelsen), *Glob. Cardiol. Sci. Pract.* **2015**, 33 (2015).

47. D. Luce, Methodology for Cornea Compensated IOP and Corneal Resistance Factor for the Reichert Ocular Response Analyzer, *Invest. Ophthalmol. Vis. Sci.* **47**, 2266–2266 (2006).

48. E. Eriksson, L. Davidsson, R. Brautaset, A comparative study of the tonometers: Goldmann applanation, Perkins, Tono-Pen XL and Reichert 7CR, *International Journal of Ophthalmic Practice* **2**, 246–251 (2011).

49. E. S. Charlson, P. S. Sankar, E. Miller-Ellis, M. Regina, R. Fertig, J. Salinas, M. Pistilli, R. J. Salowe, A. L. Rhodes, W. T. Merritt 3rd, M. Chua, B. T. Trachtman, H. V. Gudiseva, D. W. Collins, V. R. M. Chavali, C. Nichols, J. Henderer, G.-S. Ying, R. Varma, E. Jorgenson, J. M. O’Brien, The primary open-angle african american glaucoma genetics study: baseline demographics, *Ophthalmology* **122**, 711–720 (2015).

50. F. E. Dewey, M. F. Murray, J. D. Overton, L. Habegger, J. B. Leader, S. N. Fetterolf, C. O’Dushlaine, C. V. Van Hout, J. Staples, C. Gonzaga-Jauregui, R. Metpally, S. A. Pendergrass, M. A. Giovanni, H. L. Kirchner, S. Balasubramanian, N. S. Abul-Husn, D. N. Hartzel, D. R.
Lavage, K. A. Kost, J. S. Packer, A. E. Lopez, J. Penn, S. Mukherjee, N. Gosalia, M. Kanagaraj, A. H. Li, L. J. Mitnau, L. J. Adams, T. N. Person, K. Praveen, A. Marcketta, M. S. Lebo, C. A. Austin-Tse, H. M. Mason-Suare, S. Bruse, S. Mellis, R. Phillips, N. Stahl, A. Murphy, A. Economides, K. A. Skelding, C. D. Still, J. R. Elmore, I. B. Borecki, G. D. Yancopoulos, F. D. Davis, W. A. Faucett, O. Gottesman, M. D. Ritchie, A. R. Shuldiner, J. G. Reid, D. H. Ledbetter, A. Baras, D. J. Carey, Distribution and clinical impact of functional variants in 50,726 whole-exome sequences from the DiscovEHR study, *Science* **354**, aaf6814 (2016).

51. C. V. Van Hout, I. Tachmazidou, J. D. Backman, J. D. Hoffman, D. Liu, A. K. Pandey, C. Gonzaga-Jauregui, S. Khalid, B. Ye, N. Banerjee, A. H. Li, C. O’Dushlaine, A. Marcketta, J. Staples, C. Schurmann, A. Hawes, E. Maxwell, L. Barnard, A. Lopez, J. Penn, L. Habegger, A. L. Blumenfeld, X. Bai, S. O’Keeffe, A. Yadav, K. Praveen, M. Jones, W. J. Salerno, W. K. Chung, I. Surakka, C. J. Willer, K. Hveem, J. B. Leader, D. J. Carey, D. H. Ledbetter, Geisinger-Regeneron DiscovEHR Collaboration, L. Cardon, G. D. Yancopoulos, A. Economides, G. Coppola, A. R. Shuldiner, S. Balasubramanian, M. Cantor, Regeneron Genetics Center, M. R. Nelson, J. Whittaker, J. G. Reid, J. Marchini, J. D. Overton, R. A. Scott, G. R. Abecasis, L. Yerges-Armstrong, A. Baras, Exome sequencing and characterization of 49,960 individuals in the UK Biobank, *Nature* **586**, 749–756 (2020).

52. J. Mbatchou, L. Barnard, J. Backman, A. Marcketta, J. A. Kosmicki, A. Ziyatdinov, C. Benner, C. O’Dushlaine, M. Barber, B. Boutkov, L. Habegger, M. Ferreira, A. Baras, J. Reid, G. Abecasis, E. Maxwell, J. Marchini, Computationally efficient whole-genome regression for quantitative and binary traits, *Nat. Genet.* (2021), doi:10.1038/s41588-021-00870-7.
53. W. Zhou, J. B. Nielsen, L. G. Fritsche, R. Dey, M. E. Gabrielsen, B. N. Wolford, J. LeFaive, P. VandeHaar, S. A. Gagliano, A. Gifford, L. A. Bastarache, W.-Q. Wei, J. C. Denny, M. Lin, K. Hveem, H. M. Kang, G. R. Abecasis, C. J. Willer, S. Lee, Efficiently controlling for case-control imbalance and sample relatedness in large-scale genetic association studies, *Nat. Genet.* **50**, 1335–1341 (2018).

54. T. M. Dechiara, W. T. Poueymirou, W. Auerbach, D. Frendewey, G. D. Yancopoulos, D. M. Valenzuela, VelociMouse: fully ES cell-derived F0-generation mice obtained from the injection of ES cells into eight-cell-stage embryos, *Methods Mol. Biol.* **530**, 311–324 (2009).

55. W.-H. Wang, J. C. Millar, I.-H. Pang, M. B. Wax, A. F. Clark, Noninvasive measurement of rodent intraocular pressure with a rebound tonometer, *Invest. Ophthalmol. Vis. Sci.* **46**, 4617–4621 (2005).

56. G. C. Patel, J. C. Millar, A. F. Clark, Glucocorticoid receptor transactivation is required for glucocorticoid-induced ocular hypertension and glaucoma, *Invest. Ophthalmol. Vis. Sci.* **60**, 1967–1978 (2019).

57. G. C. Patel, T. N. Phan, P. Maddineni, R. B. Kasetti, J. C. Millar, A. F. Clark, G. S. Zode, Dexamethasone-induced ocular hypertension in mice: Effects of myocilin and route of administration, *Am. J. Pathol.* **187**, 713–723 (2017).

58. P. Kumar, S. Henikoff, P. C. Ng, Predicting the effects of coding non-synonymous variants on protein function using the SIFT algorithm, *Nat. Protoc.* **4**, 1073–1081 (2009).
59. I. A. Adzhubei, S. Schmidt, L. Peshkin, V. E. Ramensky, A. Gerasimova, P. Bork, A. S. Kondrashov, S. R. Sunyaev, A method and server for predicting damaging missense mutations, *Nat. Methods* 7, 248–249 (2010).

60. S. Chun, J. C. Fay, Identification of deleterious mutations within three human genomes, *Genome Res.* 19, 1553–1561 (2009).

61. J. M. Schwarz, C. Rödelsperger, M. Schuelke, D. Seelow, MutationTaster evaluates disease-causing potential of sequence alterations, *Nat. Methods* 7, 575–576 (2010).

62. J. A. Kosmicki, J. E. Horowitz, N. Banerjee, R. Lanche, A. Marcketta, E. Maxwell, X. Bai, D. Sun, J. D. Backman, D. Sharma, F. S. P. Kury, H. M. Kang, C. O’Dushlaine, A. Yadav, A. J. Mansfield, A. H. Li, K. Watanabe, L. Gurski, S. E. McCarthy, A. E. Locke, S. Khalid, S. O’Keeffe, J. Mbatchou, O. Chazara, Y. Huang, E. Kvikstad, A. O’Neill, P. Nioi, M. M. Parker, S. Petrovski, H. Runz, J. D. Szustakowski, Q. Wang, E. Wong, A. Cordova-Palomera, E. N. Smith, S. Szalma, X. Zheng, S. Esmaeeli, J. W. Davis, Y.-P. Lai, X. Chen, A. E. Justice, J. B. Leader, T. Mirshahi, D. J. Carey, A. Verma, G. Sirugo, M. D. Ritchie, D. J. Rader, G. Povysil, D. B. Goldstein, K. Kiryluk, E. Pairo-Castineira, K. Rawlik, D. Pasko, S. Walker, A. Meynert, A. Kousathanas, L. Moutsianas, A. Tenesa, M. Caulfield, R. Scott, J. F. Wilson, J. K. Baillie, G. Butler-Laporte, T. Nakanishi, M. Lathrop, J. B. Richards, Regeneron Genetics Center, UKB Exome Sequencing Consortium, M. Jones, S. Balasubramanian, W. Salerno, A. R. Shuldiner, J. Marchini, J. D. Overton, L. Habegger, M. N. Cantor, J. G. Reid, A. Baras, G. R. Abecasis, M. A. R. Ferreira, Pan-ancestry exome-wide association analyses of COVID-19 outcomes in 586,157 individuals, *Am. J. Hum. Genet.* 108, 1350–1355 (2021).
63. C. Bycroft, C. Freeman, D. Petkova, G. Band, L. T. Elliott, K. Sharp, A. Motyer, D.
Vukcevic, O. Delaneau, J. O’Connell, A. Cortes, S. Welsh, A. Young, M. Effingham, G.
McVean, S. Leslie, N. Allen, P. Donnelly, J. Marchini, The UK Biobank resource with deep
phenotyping and genomic data, *Nature* **562**, 203–209 (2018).
64. M. A. Ferreira, J. M. Vonk, H. Baurecht, I. Marenholz, C. Tian, J. D. Hoffman, Q. Helmer,
A. Tillander, V. Ullemar, J. van Dongen, Y. Lu, F. Rüscheid, J. Esparza-Gordillo, C. W.
Medway, E. Mountjoy, K. Burrows, O. Hummel, S. Grosche, B. M. Brumpton, J. S. Witte, J.-J.
Hottenga, G. Willemsen, J. Zheng, E. Rodríguez, M. Hotze, A. Franke, J. A. Revez, J. Beesley,
M. C. Matheson, S. C. Dharmage, L. M. Bain, L. G. Fritsche, M. E. Gabrielsen, B. Balliu,
23andMe Research Team, AAGC collaborators, BIOS consortium, LifeLines Cohort Study, J. B.
Nielsen, W. Zhou, K. Hveem, A. Langhammer, O. L. Holmen, M. Løset, G. R. Abecasis, C. J.
Willer, A. Arnold, G. Homuth, C. O. Schmidt, P. J. Thompson, N. G. Martin, D. L. Duffy, N.
Novak, H. Schulz, S. Karrasch, C. Gieger, K. Strauch, R. B. Melles, D. A. Hinds, N. Hübner, S.
Weidinger, P. K. E. Magnusson, R. Jansen, E. Jorgenson, Y.-A. Lee, D. I. Boomsma, C.
Almqvist, R. Karlsson, G. H. Koppelman, L. Paternoster, Shared genetic origin of asthma, hay
fever and eczema elucidates allergic disease biology, *Nat. Genet.* **49**, 1752–1757 (2017).
65. S. Das, L. Forer, S. Schönherr, C. Sidore, A. E. Locke, A. Kwong, S. I. Vrieze, E. Y. Chew,
S. Levy, M. McGue, D. Schlessinger, D. Stambolian, P.-R. Loh, W. G. Iacono, A. Swaroop, L. J.
Scott, F. Cucca, F. Kronenberg, M. Boehnke, G. R. Abecasis, C. Fuchsberger, Next-generation
genotype imputation service and methods, *Nat. Genet.* **48**, 1284–1287 (2016).
66. S. McCarthy, S. Das, W. Kretzschmar, O. Delaneau, A. R. Wood, A. Teumer, H. M. Kang,
C. Fuchsberger, P. Danecek, K. Sharp, Y. Luo, C. Sidore, A. Kwong, N. Timpson, S. Koskinen,
S. Vrieze, L. J. Scott, H. Zhang, A. Mahajan, J. Veldink, U. Peters, C. Pato, C. M. van Duijn, C. E. Gillies, I. Gandin, M. Mezzavilla, A. Gilly, M. Cocca, M. Traglia, A. Angius, J. C. Barrett, D. Boomsma, K. Branham, G. Breen, C. M. Brummett, F. Busonero, H. Campbell, A. Chan, S. Chen, E. Chew, F. S. Collins, L. J. Corbin, G. D. Smith, G. Dedoussis, M. Dorr, A.-E. Farmaki, L. Ferrucci, L. Forer, R. M. Fraser, S. Gabriel, S. Levy, L. Groop, T. Harrison, A. Hattersley, O. L. Holmen, K. Hveem, M. Kretzler, J. C. Lee, M. McGue, T. Meitinger, D. Melzer, J. L. Min, K. L. Mohlke, J. B. Vincent, M. Nauck, D. Nickerson, A. Palotie, M. Pato, N. Pirastu, M. McInnis, J. B. Richards, C. Sala, V. Salomaa, D. Schlessinger, S. Schoenherr, P. E. Slagboom, K. Small, T. Spector, D. Stambolian, M. Tuke, J. Tuomilehto, L. H. Van den Berg, W. Van Rheenen, U. Volker, C. Wijmenga, D. Toniolo, E. Zeggini, P. Gasparini, M. G. Sampson, J. F. Wilson, T. Frayling, P. I. W. de Bakker, M. A. Swertz, S. McCarroll, C. Kooperberg, A. Dekker, D. Altshuler, C. Willer, W. Iacono, S. Ripatti, N. Soranzo, K. Walter, A. Swaroop, F. Cucca, C. A. Anderson, R. M. Myers, M. Boehnke, M. I. McCarthy, R. Durbin, Haplotype Reference Consortium, A reference panel of 64,976 haplotypes for genotype imputation, *Nat. Genet.* **48**, 1279–1283 (2016).

67. P.-R. Loh, P. Danecek, P. F. Palamara, C. Fuchsberger, Y. A Reshef, H. K Finucane, S. Schoenherr, L. Forer, S. McCarthy, G. R. Abecasis, R. Durbin, A. L Price, Reference-based phasing using the Haplotype Reference Consortium panel, *Nat. Genet.* **48**, 1443–1448 (2016).

68. S. R. Browning, B. L. Browning, Rapid and accurate haplotype phasing and missing-data inference for whole-genome association studies by use of localized haplotype clustering, *Am. J. Hum. Genet.* **81**, 1084–1097 (2007).
69. B. L. Browning, Y. Zhou, S. R. Browning, A one-penny imputed genome from next-generation reference panels, *Am. J. Hum. Genet.* **103**, 338–348 (2018).

70. M. Mitt, M. Kals, K. Pärn, S. B. Gabriel, E. S. Lander, A. Palotie, S. Ripatti, A. P. Morris, A. Metspalu, T. Esko, R. Mägi, P. Palta, Improved imputation accuracy of rare and low-frequency variants using population-specific high-coverage WGS-based imputation reference panel, *Eur. J. Hum. Genet.* **25**, 869–876 (2017).

71. J. K. Nair, J. L. S. Willoughby, A. Chan, K. Charisse, M. R. Alam, Q. Wang, M. Hoekstra, P. Kandasamy, A. V. Kel’in, S. Milstein, N. Taneja, J. O’Shea, S. Shaikh, L. Zhang, R. J. van der Sluis, M. E. Jung, A. Akinc, R. Hutabarat, S. Kuchimanchi, K. Fitzgerald, T. Zimmermann, T. J. C. van Berkel, M. A. Maier, K. G. Rajeev, M. Manoharan, Multivalent N-acetylgalactosamine-conjugated siRNA localizes in hepatocytes and elicits robust RNAi-mediated gene silencing, *J. Am. Chem. Soc.* **136**, 16958–16961 (2014).

72. N. Pontikos, S. Chua, P. J. Foster, S. J. Tuft, A. C. Day, UK Biobank Eye and Vision Consortium, Frequency and distribution of corneal astigmatism and keratometry features in adult life: Methodology and findings of the UK Biobank study, *PLoS One* **14**, e0218144 (2019).

73. R. L. Shah, J. A. Guggenheim, UK Biobank Eye and Vision Consortium, Genome-wide association studies for corneal and refractive astigmatism in UK Biobank demonstrate a shared role for myopia susceptibility loci, *Hum. Genet.* **137**, 881–896 (2018).

74. D. M. Valenzuela, A. J. Murphy, D. Frendewey, N. W. Gale, A. N. Economides, W. Auerbach, W. T. Poueymirou, N. C. Adams, J. Rojas, J. Yashenck, R. Chernomorsky, M. Boucher, A. L. Elsasser, L. Esau, J. Zheng, J. A. Griffiths, X. Wang, H. Su, Y. Xue, M. G.
Dominguez, I. Noguera, R. Torres, L. E. Macdonald, A. F. Stewart, T. M. DeChiara, G. D.
Yancopoulos, High-throughput engineering of the mouse genome coupled with high-resolution
expression analysis, Nat. Biotechnol. 21, 652–659 (2003).

W. T. Poueymirou, W. Auerbach, D. Frendewey, J. F. Hickey, J. M. Escaravage, L. Esau, A.
T. Doré, S. Stevens, N. C. Adams, M. G. Dominguez, N. W. Gale, G. D. Yancopoulos, T. M.
DeChiara, D. M. Valenzuela, F0 generation mice fully derived from gene-targeted embryonic
stem cells allowing immediate phenotypic analyses, Nat. Biotechnol. 25, 91–99 (2007).
Acknowledgements:

The authors would like to thank everyone who made this work possible. In particular: the UK Biobank team, their funders, the dedicated professionals from the member institutions who contributed to and supported this work, and most especially the UK Biobank participants, without whom this research would not be possible. The exome sequencing was funded by the UK Biobank Exome Sequencing Consortium (i.e., Bristol Myers Squibb, Regeneron, Biogen, Takeda, Abbvie, Alnylam, AstraZeneca and Pfizer). This research has been conducted using the UK Biobank Resource under application number 26041; EstBB, we thank all participants and staff of the Estonian biobank for their contribution to this research and the analytical work of EstBB was carried out in part in the High Performance Computing Center of the University of Tartu. L.M and K.K were supported by grants from the Estonian Research Council PRG184 and by the European Union through the European Regional Development Fund (Project No. 2014-2020.4.01.15-0012); We want to acknowledge the participants and investigators of the FinnGen study. We also thank the MyCode Community Health Initiative participants for taking part in the DiscovEHR collaboration.

Funding: This research received funding from Regeneron Pharmaceuticals. JOB was supported by the National Eye Institute (#RO1EY023557-01), Vision Research Core Grant (P30 EY001583), and NIH Grant (LM010098). Funds also come from the F.M. Kirby Foundation, Research to Prevent Blindness, The UPenn Hospital Board of Women Visitors, and The Paul and Evanina Bell Mackall Foundation Trust. The Ophthalmology Department at the Perelman School of Medicine and the VA Hospital in Philadelphia, Pennsylvania, also provided support. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript. The Trøndelag Health Study (The HUNT Study) is a collaboration between HUNT Research...
Center (Faculty of Medicine and Health Sciences, NTNU, Norwegian University of Science and Technology), Trøndelag County Council, Central Norway Regional Health Authority, and the Norwegian Institute of Public Health. The genotyping in HUNT was financed by the National Institutes of Health; University of Michigan; the Research Council of Norway; the Liaison Committee for Education, Research and Innovation in Central Norway; and the Joint Research Committee between St Olav’s hospital and the Faculty of Medicine and Health Sciences, NTNU. S.S received funding from the Independent Research Fund, Denmark (Sapere Aude Research leader, grant number 9060-00012B). V.R.M.C received funding from R21EY028273-01A1 and the Lisa Dean Moseley Foundation Grant.

Author contributions: All authors contributed to critical review of the manuscript for important intellectual content, and final approval of submission of the manuscript for publication.

Conceptualization: KP, GP, AB, CR and GC

Data curation: DL, MNC

Genetic Analysis: KP, LG, MAF, AHA, SADG, AL, TMT, CS, DS, KK, BB, SS, ES, EJ

Funding acquisition: GDY, GRA, AB, JOB, CR, LM, OM, SS, KH

Mouse model and experiments: GP, BP, SWalley, HY, WF, SZ, JR, WF

siRNA design and development: SL, JM, SWaldrong, SH

In vitro experiments: GDG, TP, LM, MDS

Project administration: EC, MJ
Datasets: JOB, VRMC, HVG, RS, BB, KH, BOA, CW, KK, LM, SS, AS, AT, OM

Supervision: MAF, GDG, YH, KH, LM, KK, AE, JW, AB

Writing – original draft: KP, GP, GDG, TVZ, CR, GC

Competing interests: Regeneron authors receive salary from and own options and/or stock of the company. C.W.’s spouse is an employee of the Regeneron Genetics Center.
Figures

A

Study	Participants	AAF	Effect (LCI I UCI)	p-value	
GHS	27,157	1,372	0	-0.10 (-0.20 I 0.00)	5.2E-02
UKB	99,862	1,808	0	-0.23 (-0.27 I -0.19)	2.3E-24
Meta	127,019	2,180	0	-0.21 (-0.25 I -0.17)	5.3E-24

Effect (95% CI)

B

![Diagram showing gene expression and correlation with IOP](image)

- **SP**: shows significant correlation with IOP
- **Collided Coil**: shows moderate correlation with IOP
- **Fibrinogen C-terminal**: shows weak correlation with IOP

IOP (mmHg)

- **Median IOP/IQR (mmHg)**
 - Cases: N=11,502
 - Controls: N=373,536

IOP Value	Cases	Controls
Median	16.9/4.4	12.3/2.5
10	2	40
20	9	16
30	129	5,700
40	0	167
50	9	83
60	0	33
70	2	14
80	0	33
90	1	24
100	1	23
110	1	23

Correlation Analysis

- Each variant is represented with a dot indicating its correlation with IOP.
Figure 1: An aggregate of rare (MAF < 1%) loss-of-function and missense variants in \textit{ANGPTL7} is associated with IOP. (A) Association of an aggregate of 63 pLOF and deleterious (based on 5 prediction algorithms) missense variants in \textit{ANGPTL7} with reduced IOP in 129,207 individuals of European descent. (B) Missense and predicted loss-of-function (pLOF) variants in \textit{ANGPTL7} and IOP levels in individuals of European descent from UKB. The plots represent Goldmann-correlated IOP (mean of both eyes) levels in carriers of 1 pLOF and 10 missense variants in \textit{ANGPTL7} that are predicted deleterious by five different algorithms and have at least five carriers amongst the 101,678 exome-sequenced individuals with IOP measurements in the UK Biobank. The median IOP level across carriers of all 49 pLOF and predicted-deleterious missense \textit{ANGPTL7} variants (14.64 mmHg) is indicated by the red line, and the median IOP in non-variant carriers (15.46 mmHg) is indicated by the blue line. Magenta diamonds mark the median IOP in carriers of each variant. Beneath the plots is the median and interquartile range of IOP and the numbers of variant carriers diagnosed with glaucoma or controls in UKB (n= 385,040).
Figure 2: Gln175His and Arg177* are major contributors to the gene burden association of ANGPTL7 with IOP. Association of Gln175His (A) and Arg177* (C) variants in ANGPTL7 with IOP, effect measured in standard deviation units, in individuals of European descent. (B, D) Boxplots representing Goldmann-correlated (IOPg) in the UK Biobank across genotypes. (B) Gln175His heterozygous and homozygous carriers have a 0.8-mmHg and 4.1-mmHg lower median IOPg, respectively, compared to non-carriers. (D) Arg177* heterozygous carriers have a
1.4-mmHg lower IOPg compared to non-carriers. GHS: Geisinger DiscovEHR, UKB: UK Biobank.
Figure 3: Association of ANGPTL7 variants with glaucoma. (A) Meta-analysis results for Gln175His with glaucoma across 8 different cohorts. (B) Cross-ancestry meta-analysis of Arg177* and Trp188* across 5 EUR and 3 AFR cohorts. The variants in the meta-analysis of EUR and AFR cohorts were Arg177* and Trp188*, respectively. GHS: Geisinger DiscovEHR, UKB: UK Biobank, SNAI: Mt. Sinai Medical School BioMe Biobank, MALMO: Malmo Diet and Cancer
Study, EstBB: the Estonia Biobank at the University of Tartu; HUNT: the HUNT study from Nord-Trøndelag; CGPS-CCHS: the Copenhagen General Population Study and the Copenhagen City Heart Study, POAAGG: Primary Open Angle African-American Glaucoma Genetics, AAF = alternative allele frequency.
Table 1: Statistically significant ($P < 2 \times 10^{-6}$) results from PheWAS of an aggregate of up to 110 pLOF and deleterious missense variants (MAF<1%) in ANGPTL7 in UKB. CRF=corneal resistance factor.

Trait	P-value	OR/Effect in SD (LCI	UCI)
Intraocular pressure Corneal Compensated (IOPcc) (mean of both eyes)	6.32E-14	-0.17 [-0.21	-0.13]
CRF (right eye)	5.20E-13	-0.16 [-0.20	-0.11]
CRF (left eye)	4.50E-12	-0.15 [-0.20	-0.11]
6mm weak meridian (left eye)	4.00E-20	0.21 [0.16	0.25]
6mm weak meridian (right eye)	4.20E-18	0.19 [0.15	0.24]
6mm strong meridian (left eye)	3.10E-17	0.19 [0.14	0.23]
6mm strong meridian (right eye)	7.60E-17	0.18 [0.14	0.23]
3mm weak meridian (right eye)	2.00E-14	0.16 [0.12	0.20]
3mm weak meridian (left eye)	1.60E-13	0.15 [0.11	0.20]
3mm strong meridian (left eye)	1.30E-12	0.15 [0.11	0.19]
3mm strong meridian (right eye)	1.80E-12	0.15 [0.11	0.19]
Corneal Power (mean of both eyes)	1.10E-13	0.16 [0.11	0.20]
Figure 4. Expression analysis of ANGPTL7 Gln175His, Arg177*, and Trp188* in a HEK293 cell line. (A), (B) Western blotting shows intra- and extra-cellular protein levels of ANGPTL7 wild-type, Gln175His, Arg177*, and Trp188*. (C) ELISA was run to quantify intra- and extra-cellular protein levels of ANGPTL7 wild-type, Gln175His, Arg177*, and Trp188* transiently transfected in HEK293 cells (whole-cell lysate was diluted 1:1,000; supernatant was diluted 1:10,000. Both whole-cell lysate and supernatant were normalized against the total amount of protein from the whole-cell lysate); **** = $P < 1 \times 10^{-4}$ statistical difference from WT whole cell lysate; $^\wedge = P < 0.05$, $^\wedge\wedge\wedge = P < 1 \times 10^{-4}$ statistical difference from WT supernatant. (D) Ratio of secreted versus intracellular ANGPTL7 wild-type, Gln175His, Arg177*, and Trp188* protein levels. Raw ANGPTL7 wild-type, Gln175His, Arg177*, and Trp188* protein levels were normalized to the whole-lysate protein concentration; **** = $P < 1 \times 10^{-4}$ statistical difference from WT. Western blotting and ELISA analysis were repeated on three independent biological replicates. Technical replicates (n=3) were run for the ELISA analysis. P-values were calculated by one-way ANOVA with Tukey’s post hoc analysis. Data are represented as mean ± SEM.
Figure 5. ANGPTL7 expression in ocular tissues across species. RNA-sequencing-based expression levels (measured in transcripts per million, TPM) are highest in cornea, trabecular meshwork (TM), and sclera in human (A), and African green monkey (B) eyes, and in cornea, TM, sclera, optic nerve, and choroid/RPE in C57BL/6J mice; (C) *In situ* hybridization (RNAscope) shows ANGPTL7/Angptl7 (red) expression in TM, cornea and sclera in human (D) and murine (E) eyes. DAPI staining (blue) counterstains cell nuclei. RPE: retinal pigmented epithelium; CB: ciliary body; SC: Schlemm’s canal; CM: ciliary muscle; AC: anterior chamber; RGC: retinal ganglion cell; INL: inner nuclear layer; ONL: outer nuclear layer.
Figure 6. Increasing mAngptl7 levels in mouse eyes increases IOP. Murine Angptl7 (mAngptl7) protein was injected into mouse eyes via intravitreal (A) or intracameral route (B), and IOP was measured over time. After an initial drop, IOP remained elevated for several days in Angptl7-treated eyes compared to PBS treated (CTRL (PBS)) eyes. * = $P < 0.05$; ** = $P < 0.01$ statistical significance compared to PBS treatment. Statistical analyses were performed using Student’s t-test. Data are presented as means and error bars represent SEM.
Figure 7: Reducing Angptl7 levels in mice lowers IOP. (A) IOP was significantly lowered in Angptl7 KO compared to Het and WT mice (mean ± SEM; **** = \(P < 1 \times 10^{-4} \)). (B) Intravitreal
injection with 15µg of Angptl7-siRNA significantly lowered IOP in two of six siRNAs tested (n=6-8/group) compared to the PBS (n=6) and Naïve (no injection, n=5) groups and remained lowered throughout the end of the study. siRNAs 3 and 5 lowered IOP between 2-4 mmHg starting at week 2 compared to PBS-treated mice. * = $P < 0.05$, ** = $P < 0.01$, *** = $P < 1 \times 10^{-3}$, **** = $P < 1 \times 10^{-4}$ statistical difference between siRNA #5 and PBS-treatment. $\# = P < 0.05$, $$ = P < 0.01$, $$$ = P < 1 \times 10^{-3}$, #### = $P < 1 \times 10^{-4}$ statistical difference between siRNA #3 and PBS-treatment. P-values were calculated using one-way ANOVA with Dunnett’s post hoc analysis. (C) qPCR results from micro-dissected limbal ring showed the highest level of knockdown (>50%) of Angptl7 mRNA with siRNAs #3 and #5 compared to PBS-treated mice, which is highly consistent with the IOP lowering observed in mice injected with these two siRNAs (B). Error bars represent SEM.
Supplementary Files

This is a list of supplementary files associated with this preprint. Click to download.

- PraveenSupplementarymaterials.pdf