Leading causes of cardiovascular hospitalization in 8.45 million US veterans

Nirupama Krishnamurthi1,2, Joseph Francis3, Stephan D. Fihn4, Craig S. Meyer1,2, Mary A. Whooley1,2,5*

1 Veterans Affairs Medical Center, San Francisco, California, United States of America, 2 Department of Medicine, University of California San Francisco, San Francisco, California, United States of America, 3 Office of Reporting, Analytics, Performance Improvement and Deployment, Veterans Health Administration, Washington, D.C., United States of America, 4 Departments of Medicine and Health Services, University of Washington, Seattle, Washington, United States of America, 5 Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, California, United States of America

*mary.whooley@ucsf.edu

Abstract

\textbf{Background}

We sought to determine the leading causes of cardiovascular (CV) hospitalization, and to describe and compare national rates of CV hospitalization by age, gender, race, ethnicity, region, and year, among U.S. veterans.

\textbf{Methods}

We evaluated the electronic health records of all veterans aged ≥18 years who had accessed any healthcare services at either a VA healthcare facility or a non-VA healthcare facility that was reimbursed by the VA, between January 1 2010 and December 31 2014. Among these 8,452,912 patients, we identified the 5 leading causes of CV hospitalization and compared rates of hospitalization by age, gender, race, ethnicity, region, year and type of VA healthcare user.

\textbf{Results}

The top 5 causes of CV hospitalization were: coronary atherosclerosis, heart failure, acute myocardial infarction, stroke and atrial fibrillation. Overall, 297,373 (3.5\%) veterans were hospitalized for one or more of these cardiovascular conditions. The percentage of veterans hospitalized for one or more of these CV conditions decreased over time, from 1.23\% in 2010 to 1.18\% in 2013, followed by a slight increase to 1.20\% in 2014. There was significant variation in rates of CV hospitalization by gender, race, ethnicity, geographic region, and urban vs. rural zip code. In particular, older, male, Black, non-Hispanic, urban and Continental region veterans experienced the highest rates of CV hospitalizations.
Conclusions
Among 8.5 million patients enrolled in the VA healthcare system from 2010 to 2014, there was substantial variation in rates of CV hospitalization by age, gender, race, geographical distribution, year, and use of non-VA (vs. VA only) healthcare care facilities.

Introduction
Cardiovascular disease (CVD) is the leading cause of hospitalization in the US and the leading cause of mortality in developed countries[1], accounting for nearly 1 in 3 deaths in the United States[2]. More than ever, effective health care relies on understanding population-level patterns of CVD. Adoption of electronic health records (EHR) and their recent transformation into nationally harmonized big data files make it possible for researchers to characterize population-level trends in health and healthcare. During the past decade, the Veterans Health Administration (VA) has constructed a centrally harmonized Corporate Data Warehouse (CDW) to standardize patient-level data collected from over 140 medical centers and 1200 free-standing outpatient clinics[3]. Because the VA is the largest healthcare system in the United States (US), the CDW provides a unique opportunity to evaluate population-level rates of hospitalization and how they differ across demographic groups.

Therefore, we sought to 1) determine the leading causes of cardiovascular (CV) hospitalization, and 2) describe and compare national rates of CV hospitalization by age, gender, race, ethnicity, region, year, and use of non-VA (vs. VA only) healthcare facilities, among U.S. veterans.

Methods
Database
We used the VA national Corporate Data Warehouse (CDW) Inpatient, Outpatient and Fee Basis files to extract data for this study. The study was approved by the University of California, San Francisco and San Francisco VA Medical Center institutional review boards under the QUERI (VA Quality Improvement Research and Training Initiative) protocol. Our database contained patient identifiers and the requirement for informed consent was waived by the IRB.

Patient population and data collection
We identified all unique patients ≥ 18 years old, who accessed the VA health care system between January 1, 2010 and December 31, 2014. "Accessed" was defined as having at least one encounter (inpatient, outpatient, emergency department) recorded at either a VA facility or a non-VA facility that was paid for by the VA. All patients hospitalized for any cause were identified. We then identified patients who had an ICD9 discharge diagnosis code for diseases of the circulatory system (ICD9 codes 390 through 459) and calculated the number of unique veterans hospitalized for each code.

We also obtained demographic information (age, sex, race, ethnicity, rural/urban status) and information on healthcare visits (date of visit, location of VHA facility, VA/non-VA care) for all patients. We used the VA urban/rural crosswalk to determine urban/rural status based on the patient’s home address zip code[4]. Race and ethnicity were defined based on Office of Management and Budget (OMB) guidelines. Patients were coded into 5 different US regions.
(per the Veterans Benefits Administration district definitions[5], accessed Jan 24, 2018) on the basis of their primary address zip code. Veterans were categorized as users of only VA care or users of additional care outside the VA, paid for by the VA (VA and non-VA users).

Definitions

Cardiovascular (CV) hospitalization was defined as hospitalization due to one or more of the 5 most common cardiovascular conditions. Hospitalization rate was defined as the number of unique veterans per 100 veterans that were hospitalized between January 1, 2010 and December 31, 2014. Previous studies have demonstrated the validity of using VA electronic health records to identify patients with cardiovascular disease[6–9]. We started by identifying patients who had any ICD9 discharge diagnosis code of 390 through 459 (diseases of the circulatory system). We found that the 5 most common circulatory disorder ICD9 discharge diagnosis codes were: 414.01 (coronary atherosclerosis of native coronary artery), 428.0 (congestive heart failure, unspecified), 427.31 (atrial fibrillation), 410.71 (subendocardial infarction, initial episode of care) and 434.91 (cerebral artery occlusion, unspecified with cerebral infarction). We then expanded our definitions to include all ICD-9 codes used by the CMS chronic conditions data warehouse[10] for each of these top 5 conditions (see below). We were unable to find a similar definition of coronary atherosclerosis in the CMS chronic conditions warehouse and therefore included ICD9 codes 414.0x to capture coronary atherosclerosis in a more inclusive manner.

ICD9 codes used:

- Coronary atherosclerosis: 414.0x
- Heart failure: 398.91, 402.01, 402.11, 402.91, 404.01, 404.03, 404.11, 404.13, 404.91, 404.93, 428.x
- Atrial fibrillation: 427.31
- Myocardial infarction: 410.x
- Stroke: 430, 431, 433.01, 433.11, 433.21, 433.31, 433.81, 433.91, 434.00, 434.01, 434.10, 434.11, 434.90, 434.91, 435.0, 435.1, 435.3, 435.8, 435.9, 436

Statistical analysis

Age-adjusted rates of CV hospitalization (per 100 veterans) over a 5-yr period were calculated in addition to yearly and average annual age-adjusted CV hospitalization rates for all classes of demographic and geographic variables. We separately calculated the proportion of veterans hospitalized for each of the top 5 CV conditions. Multivariate regression models were used to predict the odds of cardiovascular hospitalization. All statistical analyses were carried out using SAS (version 9.3, SAS Institute, Cary, NC) and STATA (version 14, StataCorp, College, TX) statistical packages.

Results

A total of 8,452,912 unique veterans accessed the VA health care system between January 1, 2010 and December 31, 2014. This cohort predominantly consisted of White (69%), non-Hispanic (84%), male (93%) patients who had an average age of 60 years [Table 1]. Veterans had a similar distribution of rural and urban origins, but there were more veterans living in the Southeast, Midwest or North Atlantic regions than in the Continental or Pacific regions.
Causes of hospitalization

The 5 leading causes of CV hospitalization were coronary atherosclerosis, heart failure, acute myocardial infarction, stroke and atrial fibrillation. Of the 8,452,912 unique veterans, 297,373 (3.5%) were hospitalized for one or more of these 5 CV conditions between 2010 and 2014.

Veterans with one or more CV hospitalizations were on average 8.5 years older than those without CV hospitalizations [Table 1].

Sex

On comparison by sex, we found that men were more likely than women to be hospitalized for CVD. During the 5-year period, 3.6% of male veterans experienced one or more CV hospitalizations as opposed to 1.9% of female veterans, adjusted for age [Fig 1]. Annual age-adjusted rates of CV hospitalization were 1.23 per 100 male veterans vs. 0.56 per 100 female veterans [Table 2]. When we analyzed our study sample further by breaking down CV hospitalizations by condition, men were more than twice as likely as women to be hospitalized for each

Table 1. Characteristics of veterans hospitalized vs. not hospitalized for one of the top 5 cardiovascular conditions between 2010 and 2014 †.

Patient Characteristics	All	Hospitalized	Not Hospitalized		
	(N = 8,452,912)	(N = 297,373)	(N = 8,155,539)		
Age, years (mean ± SD)	60.01 ± 17.63	68.24 ± 11.18	59.71 ± 17.75		
Sex					
Female, number (%)	7,045	2.4	7,045	7,045	7.0
Male	290,328	97.6	290,328	290,328	93.0
Race					
White	223,778	75.3	223,778	223,778	69.0
Black or African American	47,910	16.1	47,910	47,910	14.2
Native Hawaiian or Other Pacific Islander	2,108	0.7	2,108	2,108	0.7
American Indian or Alaska Native	1,849	0.6	1,849	1,849	0.7
Asian	1,330	0.5	1,330	1,330	0.9
Ethnicity					
Not Hispanic	270,873	91.1	270,873	270,873	84.1
Hispanic	14,751	5.0	14,751	14,751	5.4
Region					
Southeast	61,067	20.5	61,067	61,067	19.4
Midwest	62,495	21.0	62,495	62,495	21.1
North Atlantic	57,662	19.4	57,662	57,662	22.0
Continental	50,453	17.0	50,453	50,453	15.8
Pacific	47,962	16.1	47,962	47,962	17.0
Rural/Urban Status					
Urban	136,450	45.9	136,450	136,450	46.4
Rural	143,114	48.1	143,114	143,114	48.9
VA Healthcare User Type					
VA Only	79,180	26.6	79,180	79,180	68.3
VA and Non-VA Users	218,193	73.4	218,193	218,193	31.7
Diagnosis					
Coronary atherosclerosis	93,380	1.1	93,380	N/A	
Heart failure	88,769	1.1	88,769	29.9	
Acute myocardial infarction	61,501	0.7	61,501	20.7	
Stroke	58,386	0.7	58,386	19.6	
Atrial fibrillation	45,115	0.5	45,115	15.2	

† All p values (hospitalized vs. not hospitalized) < 0.0001 except rural/urban status (p = 0.3967).
† Unknown race: 20,398 (6.9%) hospitalized; 1,188,907 (14.6%) not hospitalized
Unknown ethnicity: 11,749 (4.0%) hospitalized; 857,851 (10.5%) not hospitalized
Unknown region: 17,734 (6.0%) hospitalized, 379,375 (4.7%) not hospitalized
Unknown rural/urban status: 17,809 (6.0%) hospitalized; 383,478 (4.7%) not hospitalized

https://doi.org/10.1371/journal.pone.0193996.t001

Causes of hospitalization

The 5 leading causes of CV hospitalization were coronary atherosclerosis, heart failure, acute myocardial infarction, stroke and atrial fibrillation. Of the 8,452,912 unique veterans, 297,373 (3.5%) were hospitalized for one or more of these 5 CV conditions between 2010 and 2014. Veterans with one or more CV hospitalizations were on average 8.5 years older than those without CV hospitalizations [Table 1].

Sex

On comparison by sex, we found that men were more likely than women to be hospitalized for CVD. During the 5-year period, 3.6% of male veterans experienced one or more CV hospitalizations as opposed to 1.9% of female veterans, adjusted for age [Fig 1]. Annual age-adjusted rates of CV hospitalization were 1.23 per 100 male veterans vs. 0.56 per 100 female veterans [Table 2]. When we analyzed our study sample further by breaking down CV hospitalizations by condition, men were more than twice as likely as women to be hospitalized for each...
separate CV condition, with the exception of stroke, for which men and women had similar rates [Fig 1]. Multivariate regression models adjusted for other demographics as covariates showed that men had significantly greater odds of CV hospitalization (overall, and by each of the 5 conditions) than women [Tables 3 and 4].

Race and ethnicity

Blacks had the highest age-adjusted rate of CV hospitalization among all classes of race (4.9%), followed by American Indians (4.02%), Native Hawaiians (3.8%) and Whites (3.7%) [Fig 1]. Among all racial groups, Asians had the lowest age-adjusted rates for all 5 CV conditions. For specific conditions, Blacks had the highest age-adjusted rates for stroke (1.4%) and heart failure (2.2%), while Whites and American Indians had the highest rates for atrial fibrillation and coronary atherosclerosis. This trend was also consistent when adjusted for other demographics, with Blacks demonstrating significantly higher odds of CV hospitalization overall, and for stroke and heart failure, compared to Whites [Tables 3 and 4]. In age-adjusted analyses, rates of CV hospitalization were lower in non-Hispanics vs. Hispanics (3.7% vs 4.0%). However, Hispanics showed significantly lower odds of CV hospitalization compared to non-Hispanics after multivariate adjustment (OR 0.96, 95% CI 0.94, 0.97) [Table 3].
Table 2. Age-adjusted annual rates of hospitalization (per 100 veterans) for one or more of the top 5 cardiovascular conditions.

Predictor Variables	2010	2011	2012	2013	2014	Avg Annual Rate
Sex						
Female	0.57	0.54	0.57	0.57	0.56	0.56
Male	1.26	1.24	1.22	1.21	1.23	1.23
Race						
White	1.25	1.23	1.20	1.18	1.20	1.21
Black or African American	1.61	1.61	1.58	1.57	1.62	1.60
Native Hawaiian or Other Pacific Islander	1.15	1.18	1.23	1.23	1.26	1.21
American Indian or Alaska Native	1.32	1.30	1.34	1.25	1.35	1.31
Asian	0.73	0.75	0.78	0.81	0.76	0.77
Ethnicity						
Not Hispanic	1.27	1.25	1.23	1.22	1.23	1.24
Hispanic	1.42	1.39	1.28	1.24	1.27	1.32
Region						
Southeast	1.33	1.31	1.26	1.23	1.23	1.27
Midwest	1.16	1.13	1.11	1.10	1.12	1.12
North Atlantic	1.03	1.02	1.02	1.02	1.07	1.03
Continental	1.41	1.36	1.37	1.36	1.36	1.37
Pacific	1.19	1.20	1.20	1.19	1.18	1.19
Rural/Urban Status						
Urban	1.24	1.23	1.22	1.21	1.25	1.23
Rural	1.18	1.16	1.14	1.11	1.12	1.14
VA Healthcare User Type						
VA Only	0.53	0.49	0.46	0.45	0.47	0.48
VA and Non-VA Users	2.46	2.41	2.38	2.34	2.41	2.40

Table 3. Age-adjusted and multivariate models evaluating predictors of cardiovascular hospitalization due to one or more of the top 5 cardiovascular conditions.

Predictor Variables	Age-Adjusted OR	Multivariate Model			
	OR	95% CI	OR	95% CI	p value
Age (per 5-year increase)	-	-	1.17	(1.17, 1.17)	<.0001
Sex					
Female	Ref.		Ref.		
Male	1.98	(1.93, 2.03)	2.82	(2.76, 2.89)	<.0001
Race					
White	Ref.		Ref.		
Black or African American	1.37	(1.36, 1.39)	1.26	(1.25, 1.27)	<.0001
Native Hawaiian or Other Pacific Islander	1.05	(1.00, 1.09)	0.91	(0.87, 0.95)	<.0001
American Indian or Alaska Native	1.10	(1.05, 1.16)	0.96	(0.92, 1.01)	0.1111
Asian	0.59	(0.56, 0.62)	0.60	(0.57, 0.64)	<.0001
Ethnicity					
Not Hispanic	Ref.		Ref.		
Hispanic	1.07	(1.06, 1.09)	0.96	(0.94, 0.97)	<.0001
Region					
Pacific	Ref.		Ref.		
Southeast	1.09	(1.07, 1.10)	1.04	(1.03, 1.05)	<.0001
Midwest	0.96	(0.95, 0.98)	0.99	(0.98, 1.00)	0.1121
North Atlantic	0.86	(0.84, 0.87)	1.06	(1.05, 1.07)	<.0001
Continental	1.16	(1.14, 1.17)	1.13	(1.12, 1.14)	<.0001
Rural/Urban Status					
Rural	Ref.		Ref.		
Urban	1.03	(1.02, 1.04)	1.19	(1.18, 1.20)	<.0001
Year					
2010	Ref.		Ref.		
2011	0.98	(0.97, 0.99)	0.96	(0.95, 0.98)	<.0001
2012	0.97	(0.96, 0.98)	0.94	(0.93, 0.95)	<.0001
2013	0.96	(0.95, 0.97)	0.93	(0.92, 0.94)	<.0001
2014	0.97	(0.96, 0.98)	0.96	(0.94, 0.98)	<.0001
VA Healthcare User Type					
VA Only	Ref.		Ref.		
VA and Non-VA Users	6.83	(6.78, 6.89)	4.98	(4.94, 5.02)	<.0001

‡ The number of veterans included in the multivariate model was 6,776,493 due to exclusion of unknown race, ethnicity, region and rural/urban status data points

https://doi.org/10.1371/journal.pone.0193996.t003
Urban vs. rural

The age-adjusted proportion of veterans hospitalized for CVD was significantly higher for urban vs. rural veterans (3.5% vs. 3.4%, p < 0.0001) [Fig 2, Table 3]. While atrial fibrillation and acute myocardial infarction seemed to affect rural and urban veterans similarly, urban veterans had higher age-adjusted rates of hospitalization for heart failure than rural veterans (1.13% vs. 0.94%). A multivariate regression model showed 19% greater odds of CV hospitalization among urban veterans compared to rural veterans (OR 1.19, p < 0.0001) [Table 3]. Similarly greater odds were observed for urban veterans with multivariate models for each of the 5 CV conditions [Table 4].

Temporal trend and VA healthcare user type

Temporally, the age-adjusted rate of CV hospitalization dropped from 1.23% in 2010 to 1.18% in 2013, but increased to 1.20% in 2014 [Fig 2]. While age-adjusted rates decreased consistently between 2010 and 2014 for coronary atherosclerosis, a slight increase was seen from 2013 to 2014 for stroke, heart failure, and myocardial infarction. On examination of the annual CV hospitalization rates from 2010 to 2014, we found a consistent decrease in age-adjusted rates between 2010 and 2013 followed by an increase in 2014 for a majority of the categories of sex, race, ethnicity, region and rural/urban status [Table 2]. The increase in CV hospitalization rate...

Table 4. Five multivariable model evaluating predictors of hospitalization due to each of the top 5 cardiovascular conditions §.

Predictor Variables in Multivariate Model	Coronary atherosclerosis	Heart failure	Acute myocardial infarction	Stroke	Atrial fibrillation
Age (per 5-year increase)					
Female	1.09 (1.08, 1.09)	1.29 (1.29, 1.30)	1.12 (1.12, 1.12)	1.17 (1.17, 1.18)	1.16 (1.16, 1.17)
Male					
Race					
White	4.35 (4.13, 4.59)	2.76 (2.63, 2.89)	3.26 (3.08, 3.46)	1.76 (1.68, 1.83)	2.37 (2.23, 2.52)
Black or African American					
Native Hawaiian or Other Pacific Islander	0.80 (0.78, 0.81)	2.07 (2.04, 2.11)	0.96 (0.94, 0.99)	1.84 (1.80, 1.88)	0.66 (0.64, 0.68)
American Indian or Alaska Native	0.78 (0.71, 0.84)	1.08 (1.00, 1.16)	0.93 (0.84, 1.02)	1.01 (0.91, 1.12)	0.69 (0.61, 0.78)
Asian	0.91 (0.84, 0.98)	0.95 (0.87, 1.04)	1.00 (0.91, 1.10)	1.10 (0.99, 1.22)	0.89 (0.79, 1.00)
Ethnicity					
Not Hispanic	0.61 (0.56, 0.68)	0.64 (0.58, 0.70)	0.58 (0.51, 0.66)	0.72 (0.64, 0.82)	0.40 (0.34, 0.47)
Region					
Pacific	0.88 (0.85, 0.91)	1.00 (0.97, 1.03)	1.03 (0.99, 1.07)	1.26 (1.22, 1.31)	0.64 (0.61, 0.67)
Southeast	1.23 (1.2, 1.26)	0.92 (0.90, 0.94)	1.00 (0.97, 1.02)	0.98 (0.96, 1.01)	1.11 (1.07, 1.14)
Midwest	1.05 (1.03, 1.07)	0.93 (0.92, 0.95)	1.01 (0.98, 1.04)	0.93 (0.90, 0.95)	1.04 (1.01, 1.07)
North Atlantic	1.09 (1.06, 1.11)	1.01 (1.00, 1.04)	1.09 (1.06, 1.12)	0.98 (0.96, 1.01)	1.17 (1.13, 1.20)
Continental	1.32 (1.29, 1.35)	1.03 (1.01, 1.05)	1.08 (1.05, 1.11)	1.11 (1.08, 1.14)	1.10 (1.06, 1.13)
Rural/Urban Status					
Rural	1.03 (1.02, 1.05)	1.30 (1.29, 1.32)	1.14 (1.12, 1.16)	1.25 (1.23, 1.27)	1.27 (1.24, 1.29)
Urban	1.00 (0.99, 1.01)	1.00 (0.99, 1.01)	1.00 (1.00, 1.01)	1.00 (0.99, 1.01)	1.00 (0.99, 1.01)
Year					
2010	0.90 (0.89, 0.92)	0.98 (0.96, 1.00)	1.00 (0.97, 1.03)	0.98 (0.96, 1.01)	1.01 (0.98, 1.04)
2011	0.84 (0.82, 0.85)	0.95 (0.93, 0.97)	1.01 (0.98, 1.03)	0.99 (0.96, 1.02)	1.02 (0.99, 1.05)
2012	0.77 (0.75, 0.79)	0.98 (0.96, 1.00)	1.00 (0.98, 1.03)	0.98 (0.95, 1.00)	1.02 (0.99, 1.05)
2013	0.76 (0.75, 0.78)	1.04 (1.02, 1.06)	1.04 (1.01, 1.07)	1.01 (0.98, 1.04)	1.06 (1.03, 1.09)
VA Healthcare User Type					
VA Only	4.75 (4.68, 4.82)	4.78 (4.71, 4.85)	7.19 (7.04, 7.35)	4.81 (4.71, 4.90)	4.52 (4.43, 4.62)
VA and Non-VA Users					

§ The number of veterans included in the multivariate model was 6,776,493 due to exclusion of unknown race, ethnicity, region and rural/urban status data points.

https://doi.org/10.1371/journal.pone.0193996.t004
from 2013 to 2014 was particularly evident among blacks, American Indians, urban veterans and veterans living in the North Atlantic region [Table 2]. On adjusting for other covariates, we found overall lower odds of CV hospitalization in 2011–14 in comparison to 2010 [Table 3]. However, the odds of hospitalization for heart failure (OR 1.04, p < 0.0001), myocardial infarction (OR 1.04, p < 0.0001) and atrial fibrillation (OR 1.06, p < 0.0001) were significantly higher in 2014 compared to 2010 [Table 4].

Adjusted for age, over the 5-year period, 8.3% of veterans who used non-VA care experienced one or more CV hospitalizations, in comparison to 1.3% of veterans who used only VA care [Fig 2]. This trend was consistent after adjustment for other demographics and veterans who used non-VA care were 4.98 times more likely than VA-only users to experience a CV hospitalization (95% CI 4.94, 5.02, p < 0.0001) [Table 3]. Similar associations were also noted for each of the 5 individual conditions [Table 4].

Region

Geographically, veterans living in the Continental region showed the highest age-adjusted CV hospitalization rate (3.99%) over the 5-year period, while veterans living in the North Atlantic region had the lowest rate (2.99%) [Fig 3]. Looking at regional differences by condition, the
Fig 3. Variation in hospitalization rates by region. [Figure similar but not identical to the original image obtained from USGS National Map Viewer (open access) at http://viewer.nationalmap.gov/viewer/, and is therefore for illustrative purposes only].

https://doi.org/10.1371/journal.pone.0193996.g003
Continental region experienced the highest age-adjusted rates of hospitalization due to coronary atherosclerosis (1.33%), heart failure (1.16%), myocardial infarction (0.82%) and stroke (0.82%) [Fig 3]. The North Atlantic region experienced the lowest age-adjusted rates for all five conditions.

Discussion

We sought to identify the top 5 causes of CV hospitalization in US veterans and to compare rates of CV hospitalization by age, sex, race, region, and year, using national electronic health records. Among 8,452,912 unique veterans who accessed VA healthcare during a 5-year period (Jan 2010–Dec 2014), the top 5 causes of CV hospitalization were: coronary atherosclerosis, heart failure, acute myocardial infarction, stroke and atrial fibrillation. Overall, 297,373 (3.5%) veterans were hospitalized for one or more of these cardiovascular conditions. However, there was significant variation in rates of CV hospitalization by gender, race, ethnicity, geographic region, urban vs. rural status, and year. In particular, older, male, Black, non-Hispanic, urban, and Continental region veterans experienced the highest rates of CV hospitalizations.

This is the first study using complete nationwide data (as opposed to a sample) to understand the patterns of cardiovascular hospitalization in the Veterans Health Administration on a large scale. The importance of our study pertains to the unique nature of both the veteran population and the Veterans Health Administration as a healthcare system. Since veterans have different health exposures and the Veterans Administration acts as a single payer system, one cannot presume that national trends such as those described previously[2] would apply to the veteran population. Over 8 million veterans receive healthcare through the Veterans Health Administration system every year[11], and cardiovascular disease is the leading cause of hospitalization[12]. Although many smaller studies have examined racial and gender differences[13–16], geographical variations[17, 18], temporal trends[19, 20] and utilization of healthcare services[21] pertaining to different aspects of the diagnosis, treatment, care and outcomes of patients with cardiovascular disease, population-wide descriptions of CVD epidemiology have only recently become possible due to the consolidation of national electronic health records in a centralized CDW.[3, 22] In an era where EHRs are becoming increasingly central to epidemiological research[23–25] and efforts are being made to standardize and share EHR data across health systems[26–30], the assembly of big data resources in a single repository provides a unique and unparalleled opportunity to study population-level trends in health and healthcare utilization. Moreover, the usefulness of EHRs in clinical research provides incentives to explore their use in clinical trials[31–33].

We found marked variance in rates of CV hospitalization by sex, race, and ethnicity. Odds of CV hospitalization were lower in women than men. A previous study showed that among people older than 65 years of age in 2010, women accounted for the majority of hospital stays for stroke[2, 34]. Although veterans with CV hospitalizations in our study were 68 years old on average, we found that male veterans demonstrated higher rates of stroke hospitalizations than females. Blacks had greater odds than whites of hospitalization for stroke or heart failure, but lower odds of hospitalization for coronary atherosclerosis or atrial fibrillation. Asians had the lowest rates of hospitalization for all 5 conditions. Sadly, the black vs. white difference in heart failure hospitalization was unchanged from a survey that was conducted more than 10 years ago[35]. Similarly, it was found that among Medicare beneficiaries, the rate of stroke hospitalization for blacks was 30% higher than for whites[2, 36]. We also found that whites had the highest rates of hospitalization for atrial fibrillation, similar to findings from a study using the National Hospital Discharge Survey data[2]. We also observed striking differences in rates of CV hospitalization by geographic region. Rates of CV hospitalization were higher in urban
vs. rural veterans. As compared with veterans living in the Pacific region, rates of CV hospitalization were higher among those living in the Continental and Southeast regions. The most dramatic difference was in hospitalizations for coronary atherosclerosis: veterans in the Continental and Southeast were 32% and 23% respectively more likely than those in the Pacific region to be hospitalized. Unfortunately, these geographic patterns appear unchanged from those observed over 20 years ago among veterans admitted with cardiovascular diagnoses.[13] Similar studies of Medicare beneficiaries have found that rates of hospitalization for acute MI and heart failure were higher in the Southeast than in the West[35, 37], suggesting that regional differences in CV health are stable across patient populations in the US. Future studies are needed to determine whether these differences are due to variation in clinical practices or to demographic factors themselves.

Finally, we observed a decrease in age-adjusted rates of CV hospitalization between 2010 and 2013 followed by a slight increase in 2014. Broken down by condition, the increase from 2013 to 2014 appears to be driven by stroke, heart failure and myocardial infarction. The increase in overall CV hospitalization rate from 2013 to 2014 was also evident among blacks, American Indians, urban veterans and veterans living in the North Atlantic region. Previous studies have shown that the absolute number of hospital discharges for cardiovascular disease in the US decreased from 2000–2010.[2] However, the number of inpatient discharges for stroke increased during the same time period while those for heart failure remained unchanged [2]. Examination of hospitalization rates among patients aged 65 and above for coronary heart disease from the National Hospital Discharge Surveys showed a decrease between 1980 and 2006.[38] While our findings somewhat match national trends, the increase in hospitalization rates from 2013 to 2014 is concerning. Future research is needed to determine whether this is an ongoing trend and if so, what patient subpopulations are most affected and the causes for such increase.

Several limitations must be kept in mind when interpreting our results. First, it is possible that different coding practices across VA medical centers might contribute to some of the geographical variations that we observed. Second, electronic health records have many inaccuracies[3, 39–41]. Since we did not use chart review to document CV hospitalization, misclassification of the reasons for CV hospitalization is a possibility. Third, the rates only reflect hospitalizations within the VA healthcare system, and not all veterans are enrolled in the VA healthcare system. Therefore, the results may have limited generalizability. Finally, we were unable to determine reasons for the variations in hospitalization rates by gender, race, ethnicity, region, and year. It is possible that these observations reflect differences in comorbidity or socioeconomic status across the population or regional clinical practices.

In summary, the adoption of electronic records has substantially improved our ability to evaluate population-level healthcare patterns. Variations in hospitalization rates by demographic and geographic factors could signal differential access to care, disparities in quality of care, differential distribution of risk factors or variations in genetic susceptibility to disease. Future studies should aim to determine what exposures and risk factors account for the high rates of cardiovascular disease in these subpopulations. The use of national data to determine gender, racial and regional variations in healthcare will inform future healthcare policy and allocation of resources.

Author Contributions

Conceptualization: Nirupama Krishnamurthi, Mary A. Whooley.

Data curation: Nirupama Krishnamurthi.
Formal analysis: Nirupama Krishnamurthi, Craig S. Meyer.

Funding acquisition: Mary A. Whooley.

Methodology: Nirupama Krishnamurthi, Joseph Francis, Stephan D. Fihn, Craig S. Meyer, Mary A. Whooley.

Project administration: Mary A. Whooley.

Resources: Mary A. Whooley.

Supervision: Mary A. Whooley.

Writing – original draft: Nirupama Krishnamurthi.

Writing – review & editing: Nirupama Krishnamurthi, Joseph Francis, Stephan D. Fihn, Mary A. Whooley.

References

1. Centers for Disease Control and Prevention, National Center for Health Statistics. Underlying Cause of Death 1999–2016 on CDC WONDER Online Database, released December, 2017. Data are from the Multiple Cause of Death Files, 1999–2016, as compiled from data provided by the 57 vital statistics jurisdictions through the Vital Statistics Cooperative Program. http://wonder.cdc.gov/ucd-icd10.html.

2. Benjamin EJ, Blaha MJ, Chiuve SE, Cushman M, Das SR, Deo R, et al. Heart Disease and Stroke Statistics-2017 Update: A Report From the American Heart Association. Circulation. 2017.

3. Fihn SD, Francis J, Clancy C, Nielson C, Nelson K, Rumsfeld J, et al. Insights from advanced analytics at the Veterans Health Administration. Health Aff (Millwood). 2014; 33(7):1203–11.

4. The Rural Veteran Outreach Toolkit. VA Office of Rural Health. https://www.ruralhealth.va.gov/partners/toolkit.asp.

5. Locations Map. US Department of Veterans Affairs. https://www.va.gov/directory/guide/map.asp.

6. Saczynski JS, Andrade SE, Harrold LR, Tija J, Cutrona SL, Dodd KS, et al. A systematic review of validated methods for identifying heart failure using administrative data. Pharmacoeconomics and Drug Safety. 2012; 21:129–40. https://doi.org/10.1002/pds.2313 PMID: 22262599

7. Jensen PN, Johnson K, Floyd J, Heckbert SR, Carnahan R, Dublin S. A systematic review of validated methods for identifying atrial fibrillation using administrative data. Pharmacoeconomics and Drug Safety. 2012; 21:141–7. https://doi.org/10.1002/pds.2317 PMID: 22626000

8. McCormick N, Bhole V, Lacaille D, Avina-Zubieta JA. Validity of Diagnostic Codes for Acute Stroke in Administrative Databases: A Systematic Review. PLOS ONE. 2015; 10(8):e0135834. https://doi.org/10.1371/journal.pone.0135834 PMID: 26292280

9. Niesner K, Murff HJ, Griffin MR, Wasserman B, Greer R, Grijalva CG, et al. Validation of Veterans Health Administration administrative data algorithms for the identification of cardiovascular hospitalization and covariates. Epidemiology (Cambridge, Mass). 2013; 24(2):334–5.

10. Chronic Conditions Data Warehouse. Centers for Medicare and Medicaid Services. http://www.ccwdata.org/

11. Veterans Health Administration. http://www.va.gov/health/.

12. VA research on Cardiovascular Disease. Office of Research & Development, VA Health Care. http://www.research.va.gov/topics/cardio.cfm.

13. Whittle J, Conigliaro J, Good C, Lo拮ren RP. Racial differences in the use of invasive cardiovascular procedures in the Department of Veterans Affairs medical system. N Engl J Med. 1993; 329(9):621–7. https://doi.org/10.1056/NEJM199308263290907 PMID: 8341338

14. Peterson ED, Wright SM, Daley J, Thibault GE. Racial variation in cardiac procedure use and survival following acute myocardial infarction in the Department of Veterans Affairs. JAMA. 1994; 271(15):1175–80. PMID: 8151875

15. Young BA, Maynard C, Boyko EJ. Racial differences in diabetic nephropathy, cardiovascular disease, and mortality in a national population of veterans. Diabetes Care. 2003; 26(8):2392–9. PMID: 12882688

16. Goldstein KM, Melnyk SD, Zullig LL, Stechuchak KM, Oddone E, Bastian LA, et al. Heart matters: Gender and racial differences cardiovascular disease risk factor control among veterans. Womens Health Issues. 2014; 24(5):477–83. https://doi.org/10.1016/j.whi.2014.05.005 PMID: 25213741
17. Subramanian U, Weinberger M, Eckert GJ, L'Italien GJ, Lapuerta P, Tierney W. Geographic variation in health care utilization and outcomes in veterans with acute myocardial infarction. J Gen Intern Med. 2002; 17(8):604–11. https://doi.org/10.1046/j.1525-1497.2002.11048.x PMID: 12213141

18. Ashton CM, Petersen NJ, Soucek J, Menke TJ, Yu HJ, Pietz K, et al. Geographic variations in utilization rates in Veterans Affairs hospitals and clinics. N Engl J Med. 1999; 340(1):32–9. https://doi.org/10.1056/NEJM19991073400106 PMID: 9878643

19. Rogot E, Hrubec Z. Trends in mortality from coronary heart disease and stroke among U.S. veterans; 1954–1979. J Clin Epidemiol. 1989; 42(3):245–56. PMID: 2709082

20. Li B, Mahan CM, Kang HK, Eisen SA, Engel CC. Longitudinal health study of US 1991 Gulf War veterans: changes in health status at 10-year follow-up. Am J Epidemiol. 2011; 174(7):761–8. https://doi.org/10.1093/aje/kwr154 PMID: 21795757

21. Wright SM, Daley J, Fisher ES, Thibault GE. Where do elderly veterans obtain care for acute myocardial infarction: Department of Veterans Affairs or Medicare? Health Serv Res. 1997; 31(6):739–54. PMID: 9018214

22. Maynard C, Chapko MK. Data resources in the Department of Veterans Affairs. Diabetes Care. 2004; 27 Suppl 2:822–6.

23. Newby LK. Understanding Population Cardiovascular Health: Harnessing the Power of Electronic Health Records. Circulation. 2015; 132(14):1303–4. https://doi.org/10.1161/CIRCULATIONAHA.115.018750 PMID: 26330415

24. Lau E, Watson KE, Ping P. Connecting the Dots: From Big Data to Healthy Heart. Circulation. 2016; 134(5):362–4. https://doi.org/10.1161/CIRCULATIONAHA.116.021892 PMID: 27324358

25. Vasan RS, Benjamin EJ. The Future of Cardiovascular Epidemiology. Circulation. 2016; 133(25):2626–33. https://doi.org/10.1161/CIRCULATIONAHA.116.023528 PMID: 27324358

26. Weintraub WS, Karlsberg RP, Tcheng JE, Boris JR, Buxton AE, Doe JT, et al. Accf/Aha 2011 key data elements and definitions of a base cardiovascular vocabulary for electronic health records: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Clinical Data Standards. Circulation. 2011; 124(1):103–23. https://doi.org/10.1161/CIR.0b013e31821ccf71 PMID: 21646493

27. Bufalino V, Bauman MA, Shubrook JH, Balch AJ, Boone C, Vennum K, et al. Evolution of "the guideline advantage": lessons learned from the front lines of outpatient performance measurement. Circ Cardiovasc Qual Outcomes. 2014; 7(3):493–8. https://doi.org/10.1161/HCQ.0000000000000003 PMID: 24785960

28. Fleurence RL, Curtis LH, Califf RM, Platt R, Selby JV, Brown JS, Launching Pcornet, a national patient-centered clinical research network. J Am Med Inform Assoc. 2014; 21(4):578–82. https://doi.org/10.1136/amiajnl-2014-002747 PMID: 24821743

29. Corley DA, Feigelson HS, Lieu TA, McGlynn EA. Building Data Infrastructure to Evaluate and Improve Quality: Pcornet. J Oncol Pract. 2015; 11(3):204–6. https://doi.org/10.1200/JOP.2014.003194 PMID: 25980016

30. Hripcsak G, Duke JD, Shah NH, Reich CG, Huser V, Schuemie MJ, et al. Observational Health Data Sciences and Informatics (Ohdsi): Opportunities for Observational Researchers. Stud Health Technol Inform. 2015; 216:574–8. PMID: 26262116

31. Solomon SD, Pfeffer MA. The Future of Clinical Trials in Cardiovascular Medicine. Circulation. 2016; 133(25):2662–70. https://doi.org/10.1161/CIRCULATIONAHA.115.020723 PMID: 27324361

32. Mentz RJ, Hernandez AF, Berdan LG, Rorick T, O'Brien EC, Ibarra JC, et al. Good Clinical Practice Guidance and Pragmatic Clinical Trials: Balancing the Best of Both Worlds. Circulation. 2016; 133(9):872–80. https://doi.org/10.1161/CIRCULATIONAHA.115.019902 PMID: 26927005

33. Antman EM, Bierer BE. Standards for Clinical Research: Keeping Pace With the Technology of the Future. Circulation. 2016; 133(9):823–5. https://doi.org/10.1161/CIRCULATIONAHA.116.020976 PMID: 26927004

34. Elixhauser A, Jiang HJ. Hospitalizations for Women with Circulatory Disease, 2003: Statistical Brief #5. Healthcare Cost and Utilization Project (Hcup) Statistical Briefs. Rockville (MD)2006.

35. Mensah GA, Mokdad AH, Ford ES, Greenland KJ, Croft JB. State of disparities in cardiovascular health in the United States. Circulation. 2005; 111(10):1233–41. https://doi.org/10.1161/01.CIR.0000158136.76824.04 PMID: 15769763

36. Casper M B E, Williams GI Jr, Halverson JA, Braham VE, Greenland KJ. Atlas of Stroke Mortality: Racial, Ethnic, and Geographic Disparities in the United States. Atlanta, GA: US Department of Health and Human Services, Centers for Disease Control and Prevention. 2003.
37. Casper M, Nwaise I, Croft JB, Hong Y, Fang J, Greer S. Geographic disparities in heart failure hospitalization rates among Medicare beneficiaries. J Am Coll Cardiol. 2010; 55(4):294–9. https://doi.org/10.1016/j.jacc.2009.10.021 PMID: 20117432

38. Liu L. Changes in cardiovascular hospitalization and comorbidity of heart failure in the United States: findings from the National Hospital Discharge Surveys 1980–2006. Int J Cardiol. 2011; 149(1):39–45. https://doi.org/10.1016/j.ijcard.2009.11.037 PMID: 20060181

39. Kim J. Big Data, Health Informatics, and the Future of Cardiovascular Medicine. J Am Coll Cardiol. 2017; 69(7):899–902. https://doi.org/10.1016/j.jacc.2017.01.006 PMID: 28209228

40. Noel PH, Copeland LA, Perrin RA, Lancaster AE, Pugh MJ, Wang CP, et al. VHA Corporate Data Warehouse height and weight data: opportunities and challenges for health services research. J Rehabil Res Dev. 2010; 47(8):739–50. PMID: 21141302

41. Price LE, Shea K, Gephart S. The Veterans Affairs’s Corporate Data Warehouse: Uses and Implications for Nursing Research and Practice. Nurs Adm Q. 2015; 39(4):311–8. https://doi.org/10.1097/NAQ.0000000000000118 PMID: 26340242