Habitat associations of rainbow trout Oncorhynchus mykiss and brown trout Salmo trutta fry

Eric R. Fetherman1 | Brian W. Avila2

1Colorado Parks and Wildlife, Fort Collins, Colorado, USA
2Department of Fish, Wildlife and Conservation Biology, Colorado State University, Fort Collins, Colorado, USA

Correspondence
Eric R. Fetherman, Colorado Parks and Wildlife, 317 West Prospect Road, Fort Collins, CO 80526, USA.
Email: eric.fetherman@state.co.us

Abstract
Habitat restoration activities continue to increase in large rivers, but many of these projects focus on improving juvenile or adult habitats. Incorporating the habitat associations of fry into restoration designs will allow for broader successes from restoration for all life stages and may be useful for either multispecies or specific-species management. This study investigated the habitat associations of rainbow trout Oncorhynchus mykiss and brown trout Salmo trutta fry in the upper Colorado River, focusing on the mean substrate size (D_{50}), velocity (m s$^{-1}$), depth (m) and presence of wood in near-shore habitats. S. trutta and O. mykiss were found in higher numbers in fry sites with a D_{50} of 151 mm (ranging from 96 to 206 mm), velocities ranging from 0.20 to 0.23 m s$^{-1}$ and depths ranging from 0.17 to 0.18 m. Although there was considerable overlap in habitat associations between the two species, there may be opportunities for single-species management, if this is a goal of such restoration activities, by adjusting design criteria based on differing habitat associations. In addition, the results suggest that including larger particle sizes in near-shore habitats and upstream of fry sites could decrease Tubifex tubifex habitat and thereby fry infection severity by reducing exposure to Myxobolus cerebralis. Stocking, interspecific competition and/or the presence of pathogens can affect fry habitat associations and cause deviations from demonstrated suitability indices. As such, evaluating system-specific differences in habitat associations may allow future habitat restoration activities to be more effective.

KEYWORDS
brown trout, Colorado River, habitat associations, Oncorhynchus mykiss, rainbow trout, Salmo trutta

1 INTRODUCTION

Alteration of aquatic systems due to biotic factors, such as the implementation of dams, water and land use for agricultural development and physical manipulation of lotic systems (e.g., whitewater parks), and abiotic factors, such as fires, floods and warming of stream temperatures (Fox et al., 2016; Gido et al., 2010; Kustu et al., 2010), has led to habitat degradation and resulted in changes to flow regimes, habitat connectivity, increased severity and spread of disease and, ultimately, fish population declines. For example, changing water levels, shoreline development and loss of marshes in the Great Lakes have been related to the decline of northern pike Esox lucius...
L. populations (Casselman & Lewis, 1996). Salmon populations on the West Coast of the United States have been listed as threatened or endangered as a result of loss of habitat due to barriers to migration (Nehlsen et al., 1991; Northwest Power Planning Council, 1987; Sheer & Steel, 2006). Habitat degradation in the form of sediment accumulation in Windy Gap Reservoir, Colorado, has contributed to the establishment and perpetuation of Myxobolus cerebralis, the parasite that causes whirling disease, in the upper Colorado River, resulting in rainbow trout Oncorhynchus mykiss (Walbaum 1792) population decline (Nehring, 2006). Tubifex tubifex worms, the secondary host for M. cerebralis (Markiw & Wolf, 1983; Wolf & Markiw, 1984), prefer sand/silt habitats with high organic matter (Granath Jr. & Gilbert, 2002), and accumulation of fine particles in near-shore salmonid fry habitats due to decreased or regulated flows contributes to T. tubifex proliferation (Thompson, 2011) and increased infection rates in susceptible individuals. Habitat is clearly a driving factor in fish population dynamics, and a broader understanding of how species interact with their habitat throughout their life cycle, and how habitat degradation affects those interactions, is needed for effective population management.

As an organism grows and matures, its use of habitat changes over time (Hayes et al., 1996; Shutter, 1990). Salmonids use a suite of habitats throughout their life cycle. Within streams, fry, as compared to older life stages, prefer the shallower and slower velocities typically found along the margins (Horner & Bjornn, 1976; Miller, 1957; Raleigh et al., 1984), with cover types that commonly consist of vegetation and interstitial spaces between rocks, allowing for easier escape from predators (Griffith, 1972; Raleigh et al., 1984). Overwinter fry habitat consists of shallow water with low velocity (Bustard & Narver, 1975; Huusko et al., 2007), with cobble-boulder substrate providing the main cover (Griffith & Smith, 1995). As fry grow, habitat preferences change (Cramer & Ackerman, 2009), and fish move into deeper and faster water that is shared with adults (Raleigh et al., 1984). The deeper and faster water provides larger prey (aquatic insects and fish) and cover consisting of larger substrate types (boulders), logs, debris, overhanging banks and riffles (Bustard & Narver, 1975). Juvenile and adult overwinter habitat tends to differ from summer habitat (Raleigh et al., 1984), where instream substrate, log jams, undercut banks and overhanging vegetation are often used if present (Wesche, 1980), as are deeper pools where depth is assumed to provide the requisite cover requirements (Cunjak, 1996).

Stocking is a key management strategy for reestablishing, maintaining or enhancing stream and river salmonid populations, and specific habitat variables likely play an important role in the retention, survival and growth of stocked fish. For example, stream temperature affects the survival of O. mykiss in their first winter (Meyer and Griffith, 1997), and temperature and water velocities have been shown to affect the growth of age-0 O. mykiss (Korman & Campana, 2009). Increasing the success of stocking events may require an understanding of habitat associations of both wild and stocked fish and stocking fish into the correct habitats to increase survival and recruitment. In addition, different strains of fish may be stocked for a myriad of reasons, e.g., varied angling opportunities or disease-resistance characteristics. Disease may be an especially important consideration in conjunction with habitat in systems where specific pathogens are established. Avila et al. (2018) showed that the stream characteristics in systems in which M. cerebralis was present or absent affected the survival of two M. cerebralis–resistant strains of O. mykiss, stocked as fry, 2 months after stocking. The presence of other species may also affect stocking success. Previous work has shown that brown trout Salmo trutta L. competition with O. mykiss results in the exclusion of O. mykiss fry from desired habitats (Gatz et al., 1987), and fry stocking success may be affected by predation from larger S. trutta (Avila et al., 2018). Although mechanical removals may be an option for reducing competition and predation between stocked O. mykiss and S. trutta, removals can be both time intensive and expensive (Fetherman et al., 2015). Restoration activities could present an alternative to mechanical removals if habitat associations differed between the two species, especially in locations where these management actions are already planned or taking place.

The aim of this study was to first assess the physical habitat variables that affect fry abundance and distribution in the upper Colorado River, Colorado, and determine if fry habitat preferences differ between S. trutta and O. mykiss fry such that habitat restoration activities could target specific habitats to reduce competition between the two species during early life stages. Based on previous research (Fetherman et al., 2014) and observations from continued long-term monitoring, it was expected that mean substrate size, velocity and depth in near-shore habitats would differ between the two species and potentially between stocked and wild O. mykiss fry due to differences in their genetic background. In addition, the authors expected that habitat associations of both S. trutta and O. mykiss fry would differ from published suitability indices (SI) (Raleigh et al., 1984; Raleigh et al., 1986) due to interspecific competition, O. mykiss fry stocking or the presence of M. cerebralis (established). Second, the authors expected variations in habitat across sites to differentially affect exposure to M. cerebralis and thereby the presence and abundance of salmonid fry. Restoration activities could target favourable T. tubifex habitats that perpetuate M. cerebralis exposure, thereby increasing the survival and establishment success of O. mykiss.

2 MATERIALS AND METHODS

2.1 Site description

The fry habitat associations study was conducted in a 6.3 km section of the upper Colorado River (Grand County, Colorado; Figure 1). Flows through this section of the Colorado River are partially regulated by Windy Gap dam, with discharge over the course of the study (July through October 2018) averaging 3.8 m3 s$^{-1}$, ranging from 1.8 to 7.7 m3 s$^{-1}$ (USGS, 2019). Temperatures in this section range from 3.4°C in the winter to 16.2°C in the summer, with a mean annual temperature of 10.7°C (Fetherman et al., 2014).

The whirling disease parasite M. cerebralis was established in the upper Colorado River in the early 1990s (Nehring, 2006). The result
was the elimination of *O. mykiss* age-0 recruitment, leading to the collapse of the *O. mykiss* population, leaving *S. trutta* as the dominant salmonid in the system (Nehring & Walker, 1996). *S. trutta* are more resistant to *M. cerebralis* than *O. mykiss*, having evolved with *M. cerebralis* in their native, European home ranges (Hedrick et al., 1999; Hedrick et al., 2003; Hoffman, 1970), and reproduce naturally and are self-sustaining within the study section. *O. mykiss* populations in the river are primarily maintained through stocking of *M. cerebralis*-resistant *O. mykiss*, previously subcatchable fish [172–238 mm total length (TL); Fetherman et al., 2014] and more recently fry (<50 mm TL), although some natural reproduction does occur.

Fry stocking, which was considered to increase survival by reducing hatchery-related behavioural conditioning (Jackson & Brown, 2011; Olla et al., 1998), became the primary management option for this section of the Colorado River after low recruitment and survival rates were observed using subcatchable *O. mykiss* (Fetherman et al., 2014). Stocked *O. mykiss* fry have shown increased survival and recruitment compared to stocking larger fish in the Colorado and Gunnison rivers (Fetherman & Schisler, 2016). On 16 July 2018, *O. mykiss* fry (62,000; 37.7 ± 0.3 mm TL) were stocked from a raft in the margins on both sides of the river between Hitching Post and the lowermost Red Barn fry sampling site (Figure 1).

2.2 | Fry sampling

Fry were sampled at 20 15.2 m long sites, 4 in which abundance was estimated and 16 from which single-pass counts were obtained (Figure 1). Fry abundance was estimated at one site at the Sheriff Ranch, two sites in the Red Barn area and one site at Hitching Post. These four sites were historically sampled on an annual basis to monitor natural reproduction (Fetherman et al., 2014) and stocked fry survival. Fry estimates were accomplished using two Smith-Root LR-24 backpack electrofishing units running side-by-side to cover available fry habitat. Backpack settings for voltage were recorded from each site to determine their effect on fry detection probabilities, obtained by running the quick set-up function on the LR-24 units. Three passes were completed through each site, and fry were removed on each pass. The number of *O. mykiss* and *S. trutta* fry captured was recorded, per pass, and all fry encountered were measured and returned to the site.

An additional 16 sites were included to increase sample size and inference regarding fry habitat associations: 4 sites at Sheriff Ranch, 4 sites at Kinney Creek, 5 sites in the Red Barn area and 3 sites at Hitching Post (Figure 1). Due to limited sampling time, only one removal pass was conducted through each of these 16 sites to obtain counts per site, by species, using the same electrofishing methods described earlier for fry abundance estimation. All 20 sites were sampled five times, twice in July, before and after *O. mykiss* fry stocking, and once a month near the end of August, September and October.

2.3 | Ethical statement

Sampling was approved by Colorado Parks and Wildlife (CPW), and care and use of experimental animals complied with the guidelines.
and policies of CPW, as approved by the CPW scientific collection permit DOW087.

2.4 | Habitat data collection

Habitat covariate data considered to explain fry habitat associations and distribution were collected from each of the 20 sites on all five sampling occasions. Covariates included mean substrate size (D50) obtained through pebble counts, temperature (°C), dissolved oxygen concentration (percentage saturation and mg l−1; August through October only), velocity (m s−1), depth (m), fry site width (m) and presence of wood in the site (binomial; present or absent). Pebble counts were obtained, and D50 was calculated using the methods presented in Rosgen (1996). Because river discharge was low and relatively consistent across the 5 months of the study, pebble counts were collected once from each site in July and did not change between the July and October sampling occasions. Temperature and dissolved oxygen were obtained from the lower, middle and upper thirds of each fry site, using a YSI Pro 1020 dissolved oxygen and temperature meter. The sensor was placed at an average depth at half the fry site width, and values were recorded once consistency in the readings was achieved. Depth measurements and depth-average velocity, measured by setting a flow sensor to 0.6 of the measured depth from the water surface, were recorded at the same three locations using a Marsh-McBirney flowmeter attached to a wading rod that measured depth in 0.03 m increments (Avila, 2016; Richer et al., 2020). Fry site width was measured based on the farthest distance from shore a fry of either species was captured within the site and changed with each visit. Finally, wood, in the form of downed trees or woody growth from the bank, was recorded as present or absent in each site. Similar to pebble counts, the presence of wood in a site did not change between the July and October sampling occasions.

2.5 | M. cerebralis sample collection

Although stocking of M. cerebralis–resistant O. mykiss fry has resulted in increased survival and recruitment (Fetherman & Schisler, 2016), the pathogen continues to persist in the upper Colorado River and remains an obstacle for reestablishing O. mykiss in the system. In October, up to five S. trutta fry and five O. mykiss fry, dependent upon availability, were collected from each of the four abundance estimation sites at Sheriff Ranch, Red Barn and Hitching Post as part of a long-term monitoring study of M. cerebralis infection and prevalence in wild fish populations. In addition, one to two fry per species per site were collected from the 16 single-pass count sites in the Sheriff Ranch, Kinney Creek, Red Barn and Hitching Post areas. Collecting fry in October ensured full development of myxospores following previous natural exposure to the triactinomyxon, the infectious waterborne stage of the parasite (Hedrick & El-Matbouli, 2002) released by T. tubifex. Myxospores were enumerated (O’Grodnick, 1975) from whole fish using the pepsin-trypsin digest method (Markiw and Markiw & Wolf, 1974) by the CPW Aquatic Animal Health Laboratory (Brush, Colorado).

2.6 | Statistical analyses

Occupancy rates were estimated for each species using the occupancy estimation with detection <1 estimator in programme MARK (White & Burnham, 1999). Model sets were structured separately for S. trutta and O. mykiss fry using encounter histories constructed for each site and including five encounter occasions, with each occasion containing a “1” if the species was detected and “0” if it was not detected. Encounter histories also included site-specific individual covariates for D50, backpack voltage settings, velocity, depth, temperature and presence of wood, and the O. mykiss encounter histories included an additional individual covariate representing whether the site had been stocked in July. Model sets included intercept models for detection probability, P, and occupancy probability, ψ. Additional models were constructed in which P varied by the individual or additive combinations of D50, backpack voltage and/or velocity, and ψ varied by D50, velocity, depth, temperature, presence of wood and/or stocking status (O. mykiss only). Models were ranked using AIC corrected for small sample sizes (AICc), compared using AICc differences (ΔAICc) and ranked using model weights (w0; Burnham & Anderson, 2002). Model-averaged parameter estimates and associated unconditional standard errors were reported from each model set (w0 > 0; Anderson, 2008).

Fry abundance estimates, N, were obtained from three pass removal data using a Huggins closed capture-recapture estimator in programme MARK. As a removal estimate, only P was estimated from the likelihood, whereas the recapture probability, c, was set to zero since fish could not be recaptured on subsequent passes. Fry length was included as an individual covariate in the encounter histories. The model set included an intercept model for P, as well as models in which P differed individually or additively by pass, fish length, velocity, D50, backpack voltage settings and stocking status, and N was estimated as a derived parameter (Huggins, 1989). S. trutta and O. mykiss abundances were estimated separately.

Fry abundance estimates and counts were used to explore habitat associations of S. trutta and O. mykiss fry. Initially, Proc Corr (SAS institute, 2019) was used to obtain Pearson correlation coefficients and determine if habitat variables were correlated. Width was highly correlated with fry TL, likely because fry move towards the centre of the river as they get larger (Chapman & Bjørn, 1969; Mitro & Zale, 2002; Northcote, 1992). Other habitat variables (e.g., D50) were collected based on site width and considered to be more explanatory, so width was removed from further analyses. Within the count data, presence of wood was correlated with velocity, D50 and stocking status, and velocity, depth and temperature were correlated with each other. For the abundance data, presence of wood was correlated with velocity, temperature and depth. Although these habitat variables were later retained in the habitat association model sets, correlated variables were never included in the same model.
The authors used a general linear model (GLM) as implemented in SAS Proc GLM to evaluate fry habitat associations. Model sets were constructed separately using abundance or count data for S. trutta and O. mykiss and included an intercept model, and individual and additive combinations of D_{50}, presence of wood, temperature, depth, velocity and stocking status, within the confines of the previously described correlation analyses. In addition, a quadratic relationship was included for D_{50}, temperature, depth and velocity to determine if instead of a linear relationship a minimum or maximum value for these covariates existed within the range of measurements recorded. To balance parameter number and sample size, only one quadratic relationship was included in any given model; nonetheless, other variables were considered additively with the quadratic relationship. Model covariates existed within the range of measurements recorded. To instead of a linear relationship a minimum or maximum value for these two AIC analyses were conducted using a GLM to determine how M. cerebralis exposure affected salmonid fry distribution across the sites and if certain habitat variables were associated with fry myxospore count. The first analysis included two models, an intercept model and a model in which the change in fry numbers between July and October was explained by myxospore count, as a measure of infection severity, obtained from fry collected in October. The second analysis included individual and additive combinations of the habitat variables measured in the fry sites as explanatory variables for fry myxospore counts obtained from the various sites. The results are presented as described earlier for the fry habitat association analyses.

RESULTS

Habitat characteristics of fry sites

D_{50} varied widely among fry sites, averaging 72 (s.e., 13) mm and ranging from 0 to 220 mm (Table 1). The average temperature range was fairly narrow across sites, ranging from 12.8 to 15.8°C, although temperatures in July reached 22.7°C and in October were as low as 3.3°C. Dissolved oxygen saturation was generally greater than 100%, and concentration was greater than 8 mg l$^{-1}$. As such, dissolved oxygen was not included as an explanatory variable for fry abundance or distribution because it never decreased below levels considered optimal for trout (Piper et al., 1982). Average velocity ranged from 0.03 to 0.50 m s$^{-1}$, depth ranged from 0.09 to 0.22 m and width varied from 0.6 to 3.8 m. Depth and velocity were higher during periods of higher discharge in July, whereas fry site width was widest in October when fry started moving towards the centre of the river as they grew. Wood, either downed trees or woody growth from the shore, was present in 50% of the sites (Table 1).

Site	D_{50} (mm)	Temperature (°C)	DO (% sat.)	DO (mg l$^{-1}$)	Velocity (m s$^{-1}$)	Depth (m)	Width (m)	Wood
SR1	96	14.1 ± 3.3	105 ± 6	9.2 ± 0.4	0.19 ± 0.04	0.20 ± 0.01	2.7 ± 0.5	–
SR2	53	12.8 ± 2.8	103 ± 5	9.2 ± 0.5	0.32 ± 0.05	0.31 ± 0.02	1.8 ± 0.4	–
SR3	31	13.7 ± 3.0	107 ± 5	9.3 ± 0.5	0.13 ± 0.04	0.15 ± 0.01	2.4 ± 0.3	+
SR4	177	13.8 ± 3.0	107 ± 5	9.3 ± 0.4	0.28 ± 0.07	0.17 ± 0.01	2.6 ± 0.3	–
SR5	6	14.2 ± 3.0	105 ± 6	9.1 ± 0.5	0.11 ± 0.05	0.15 ± 0.03	0.7 ± 0.1	–
KC1	115	14.0 ± 2.6	106 ± 2	8.7 ± 0.5	0.08 ± 0.03	0.14 ± 0.01	2.2 ± 0.3	+
KC2	26	14.6 ± 2.5	103 ± 3	8.5 ± 0.6	0.03 ± 0.02	0.17 ± 0.02	1.5 ± 0.3	+
KC3	0	14.5 ± 2.4	116 ± 3	9.6 ± 0.6	0.26 ± 0.07	0.15 ± 0.01	0.6 ± 0.1	–
KC4	81	15.3 ± 2.2	113 ± 3	9.0 ± 0.5	0.07 ± 0.04	0.18 ± 0.02	1.5 ± 0.2	–
RB1	82	15.4 ± 1.8	118 ± 1	9.4 ± 0.5	0.22 ± 0.04	0.16 ± 0.01	3.4 ± 0.7	–
RB2	112	15.8 ± 1.8	115 ± 3	9.1 ± 0.5	0.35 ± 0.06	0.15 ± 0.02	1.9 ± 0.4	+
RB3	30	15.6 ± 1.6	118 ± 3	9.2 ± 0.5	0.17 ± 0.04	0.09 ± 0.01	1.8 ± 0.2	–
RB4	19	15.5 ± 1.6	119 ± 3	9.3 ± 0.5	0.50 ± 0.08	0.22 ± 0.01	1.4 ± 0.3	+
RB5	44	15.0 ± 1.7	110 ± 3	8.8 ± 0.5	0.25 ± 0.08	0.14 ± 0.01	1.8 ± 0.2	+
RB6	10	14.7 ± 1.7	102 ± 4	8.2 ± 0.6	0.07 ± 0.03	0.22 ± 0.01	1.2 ± 0.3	+
RB7	220	14.5 ± 1.7	100 ± 3	8.1 ± 0.6	0.04 ± 0.01	0.14 ± 0.02	3.0 ± 0.4	+
HP1	120	14.4 ± 2.1	105 ± 4	8.7 ± 0.2	0.18 ± 0.04	0.19 ± 0.01	3.5 ± 0.7	–
HP2	39	13.7 ± 1.8	109 ± 2	9.0 ± 0.4	0.11 ± 0.05	0.14 ± 0.01	1.7 ± 0.2	+
HP3	66	14.3 ± 1.8	111 ± 5	9.0 ± 0.3	0.15 ± 0.04	0.19 ± 0.01	2.7 ± 0.5	+
HP4	121	14.4 ± 2.1	103 ± 5	8.4 ± 0.3	0.12 ± 0.03	0.13 ± 0.01	3.8 ± 0.7	–
3.2 | Fry occupancy

S. trutta fry were detected in all sites during all sampling occasions, with the exception of one site in the Kinney Creek area in October. Occupancy for *S. trutta* was estimated to be one, with depth and *D*\(_{50}\) being the best predictors of \(\psi\), although regression coefficients for both overlapped zero. *S. trutta* \(\hat{P}\) (unconditional s.e.) within any given sampling occasion was \(\geq 0.98\) (±0.01). *O. mykiss* fry were not detected in all fry sites, with two sites in the Kinney Creek area in which *O. mykiss* fry were never observed. Despite less-frequent detection, fry in all fry sites, with two sites in the Kinney Creek area in which *O. mykiss* fry were not detected with the exception of one site in the Kinney Creek area in October. Fry occupancy for *S. trutta* was estimated to be one, with depth and *D*\(_{50}\) being the best predictors of \(\psi\), although regression coefficients for both overlapped zero. Nonetheless, \(\hat{P}\) was lower than that for *S. trutta* fry at 0.65 (±0.06). *D*\(_{50}\) had a positive effect on \(\hat{P}\), suggesting that *O. mykiss* were more likely to be detected in sites with a larger *D*\(_{50}\).

3.3 | *S. trutta* fry habitat associations

A quadratic relationship for *D*\(_{50}\) appeared in the top four models of the *S. trutta* single pass count analysis and had the highest cumulative weight of any variable in the model set (cumulative AIC\(_C\) weight = 0.81). The number of *S. trutta* fry per site was maximized at a *D*\(_{50}\) of 151 mm and was ≥10 per site (658 fry per km) between a *D*\(_{50}\) of 96 and 206 mm (Figure 2). Temperature (cumulative AIC\(_C\) weight = 0.99) was the only other variable to have an effect, appearing in the first two models. *S. trutta* abundance was lowest in one of the four sites that contained wood (Figure 3).

3.4 | *O. mykiss* fry habitat associations

Stocking had the largest effect on *O. mykiss* fry single-pass counts (cumulative AIC\(_C\) weight = 0.95), appearing in all models with ΔAIC\(_C\) ≤ 5.58. The top model also contained the effects of *D*\(_{50}\) (cumulative AIC\(_C\) weight = 0.5) and temperature (cumulative AIC\(_C\) weight = 0.33), although the effect of temperature was expected given a similar effect in *S. trutta* fry counts. Velocity (cumulative AIC\(_C\) weight = 0.20) appeared in the third model of the set (ΔAIC\(_C\) = 0.94). Because stocking had a large effect on fry count, *D*\(_{50}\) and velocity were compared between sites where stocking did or did not (i.e., natural reproduction) occur. There was no observable relationship between counts and *D*\(_{50}\) or velocity in sites in which only natural reproduction occurred, likely due to the lower counts obtained from those sites. *O. mykiss* fry numbers in stocked sites increased with an increase in *D*\(_{50}\) (Figure 4).

FIGURE 2 *Salmo trutta* fry single-pass counts and associations with (a) *D*\(_{50}\), (b) depth and (c) velocity

FIGURE 3 *Salmo trutta* fry abundances from the four sites in which three pass removals were conducted in July through October 2018 and associations with *D*\(_{50}\) and presence of wood. The trendline shows the relationship between *S. trutta* fry abundance and *D*\(_{50}\) in the three sites in which wood was absent (●) Wood (▲) No Wood
Although S. trutta and O. mykiss fry counts were similar at the maximum measured D_{50} of 220 mm. Similarly, increased velocities resulted in increased counts of O. mykiss fry in stocked sites (Figure 4). In sites containing more than five O. mykiss fry (328 fry per km), D_{50} averaged 118 (±71) mm, 22% lower than the average D_{50} for S. trutta fry, and velocity averaged 0.23 (±0.13) m s$^{-1}$, 13% higher than the average velocity for S. trutta fry.

Stocking also had the largest effect on O. mykiss trout fry abundance (cumulative AICc weight = 0.62), appearing in the top three models of the set. A quadratic effect for velocity appeared in the top model, and when compared across sites that were or were not stocked, a similar positive relationship was observed between velocity and abundance as for the count data (Figure 5). The average velocity in the stocked sites was 0.24 (±0.09) m s$^{-1}$, but the highest abundance was obtained from sites with a velocity of 0.45 m s$^{-1}$. Despite lower O. mykiss fry abundance overall, 1.5 times more stocked O. mykiss fry were present than S. trutta fry in sites with a velocity of 0.45 m s$^{-1}$. Depth had the second-highest cumulative AICc weight (0.35) relative to stocking. The average depth in stocked fry sites was 0.17 (±0.03) m, and overall, depth had a negative effect on O. mykiss fry abundance in stocked sites (Figure 5). The highest abundances were obtained in sites with a depth of 0.13 m, which contained 1.7 times more stocked O. mykiss fry than S. trutta fry. Unlike O. mykiss fry counts, no effect of D_{50} on O. mykiss fry abundance was observed.

Myxospore counts (±s.e.) for O. mykiss averaged 12,268 (±9333) myxospores per fish, ranging from 0 to 109,233 myxospores per fish across the sites, whereas S. trutta averaged 11,123 (±4744) myxospores per fish, ranging from 0 to 134,678 myxospores per fish. Myxospore count did not appear to have an effect on the change in salmonid fry numbers within a site between July and October, with the intercept model as the top model (w$_{\text{intercept}}$ = 0.72, w$_{\text{change}}$ = 0.28). In addition, the measured habitat variables appeared to have little effect on myxospore count, with the intercept model being the top model of the set. Nonetheless, models containing individual habitat covariates appeared in models with a ΔAICc ≤ 2.24. D_{50} (cumulative AICc weight = 0.40) had a negative effect on myxospore count, suggesting that myxospore counts decreased with an increase in D_{50}. Although depth, velocity and temperature appeared in weighted models within the set (cumulative AICc weights = 0.26, 0.24 and 0.24, respectively), no effect on myxospore count was observed for these three variables.

3.5 M. cerebralis habitat correlations

The results show that S. trutta and O. mykiss fry exhibit varying but overlapping habitat associations in the upper Colorado River, especially with respect to mean substrate size, velocity and depth.
Occupancy results suggest that there were no fry sites that contained only _S. trutta_ or _O. mykiss_ fry, which resulted in weak statistical relationships between occupancy and measured habitat variables, such as \(D_{50} \), because all sites contained both species. Had there been more sites in which one or the other species was absent, the relationship between occupancy and \(D_{50} \) would likely have been more apparent. Nonetheless, detection probability results suggest that _O. mykiss_ were more likely to occupy sites with a higher \(D_{50} \), and this was supported by the fry count results showing that _O. mykiss_ numbers in stocked sites increased with an increase in \(D_{50} \). Given the overlap in site occupancy and average habitat associations of _S. trutta_ and _O. mykiss_ fry, differences in expected (Raleigh et al., 1984) and observed suitability for _O. mykiss_ may be a result of competitive exclusion from more suitable habitat by _S. trutta_ fry (Gatz et al., 1987), which are more abundant. _S. trutta_ densities increased in many of Colorado’s rivers after the loss of _O. mykiss_ populations to whirling disease (Nehring & Thompson, 2001), with similar declines observed in several drainages in Montana (Baldwin et al., 1998; Granath Jr. et al., 2007). Mechanical removal of _S. trutta_ populations has been studied as a management option for reintroducing or increasing _O. mykiss_ populations in Colorado waters, with some locations showing greater success than others (Fetherman et al., 2015; Fetherman et al., 2018). _S. trutta_ population manipulation has not been attempted in the upper Colorado River, and current management, _O. mykiss_ fry stocking, has resulted in increased fry survival and recruitment (Fetherman & Schisler, 2017). Despite overlapping associations, the results suggest that there may be an opportunity to further increase _O. mykiss_ fry survival through exclusion of _S. trutta_ fry, which could be accomplished by incorporating higher velocities (>0.23 m s\(^{-1}\)) and shallower depths (<0.17 m) into near-shore habitats during restoration. This is supported by the higher _O. mykiss_ vs. _S. trutta_ abundances observed in shallower and higher-velocity sites even though _O. mykiss_ fry were less abundant overall throughout the study section.

Habitat associations for both _S. trutta_ and _O. mykiss_ fry were similar to published SI for some habitat variables but differed for others. Habitat SI for _S. trutta_ fry are highest (SI = 1.0) in gravel (particle size 2–64 mm) and lower (SI = 0.35) in cobble/rubble (particle size 64–250 mm) substrate types (Raleigh et al., 1986). Nonetheless, the results suggest that _S. trutta_ fry are more often associated with cobble/rubble in the Colorado River and less so with gravel, although high counts were obtained from some gravel-dominated sites. The depth at which _S. trutta_ numbers were highest is well shallower than that considered optimal for _S. trutta_ fry (0.40 m; Raleigh et al., 1986), although all of the sites were shallower than 0.40 m (SI < 0.19 for depth across all sites). Velocity was within the optimal range (SI = 1) previously reported for _S. trutta_ fry (Raleigh et al., 1986). Cover is also an important component in _S. trutta_ fry habitat suitability (Raleigh et al., 1986), with a maximum suitability when cover is greater than 10%. The presence of wood did not increase fry counts or abundances for either species, although the percentage of the site occupied by wood was not quantified and could have been lower than 10%, or wood may not have functioned as cover. _S. trutta_ abundances were lowest in one of the four sites that contained wood, but this site was also shallower with higher velocities that likely made the site less suitable for _S. trutta_ fry. Temperature was within the optimal range for both _S. trutta_ and _O. mykiss_ fry (Raleigh et al., 1984; Raleigh et al., 1986); nonetheless, an effect of temperature was observed for both species. Overall, fry numbers were reduced in later sampling months when temperatures were cooler, which has been observed previously (Fetherman et al., 2014) and is likely a result of life history (Chapman & Bjornn, 1969; Mitro & Zale, 2002; Northcote, 1992).

O. mykiss fry counts exhibited a linear increase with \(D_{50} \) up to 220 mm, which is consistent with habitat SI, suggesting highest suitability (SI = 1) in cobble/rubble and boulder (particle size 250–4000 mm) substrates and SI ≤ 0.13 in substrates classified as gravel or smaller (Raleigh et al., 1984). A similar effect was not observed with _O. mykiss_ abundance, likely due to the smaller number of abundance estimation sites which contained a wide range of \(D_{50} \) values, depths and velocities that may have affected their suitability for _O. mykiss_ fry. Suitability for _O. mykiss_ fry typically decreases in both sites that are shallower and have higher velocities (Raleigh et al., 1984), but the authors found the opposite associations with depth and velocity in their study. Nonetheless, it is important to note that values for velocity and depth were obtained independently (i.e., no interaction), so it is unknown whether a combination of higher velocities and shallower depths would be beneficial for _O. mykiss_ fry. Interactions were not included in the model sets to prevent over-parameterization. Statistical relationships and habitat association inferences may have been stronger if the data set had been large enough to include interactions, and the authors suggest incorporating interactions between habitat variables into future studies, if possible.

O. mykiss fry habitat associations were especially apparent in sites in which _O. mykiss_ had been stocked, primarily because natural reproduction in the upper Colorado River remains low (Fetherman et al., 2014) and wild fry were more difficult to detect. It is probable, given their genetics and history of domestication (Hedrick et al., 2003; Schisler et al., 2006), that stocked _M. cerebralis_-resistant fry act differently from more wild-type fish and may exhibit different habitat associations than those previously described (Raleigh et al., 1984). _O. mykiss_ fry stocking shows promise for restoring _O. mykiss_ populations reduced by whirling disease (Avila et al., 2018; Fetherman et al., 2018) and will likely continue to be the primary management option for reestablishing or enhancing _O. mykiss_ populations in systems where _M. cerebralis_ is established. As such, understanding the habitat associations of stocked _O. mykiss_ fry increases the knowledge of how these fish will interact with a novel lotic environment. The lack of clear habitat associations for wild _O. mykiss_ fry may also suggest that habitat restoration activities initially designed to increase the survival of stocked _O. mykiss_ fry will not have detrimental effects on wild fry survival when these systems eventually become wild fry dominated and rely on stocking declines, especially because wild populations established using _M. cerebralis_-resistant _O. mykiss_ will have similar genetic backgrounds.

Overall, infection severity, as measured by myxospore count, did not have an effect on the change in fry number between July and October. Nonetheless, only those individuals more resistant to _M. cerebralis_ are expected to be present in October (Fetherman et al.,...
reestablishing O. mykiss species or multispecies management, depending on the goals of the project. In addition, restoration activities could be useful for either specific part of a broader biomic restoration approach (Johnson et al., 2014), which may have resulted in the lack of an effect. Myxospore count decreased with an increase in D50. T. tubifex worms prefer sand/silt habitats with high organic matter (Granath Jr. & Gilbert, 2002), and releases of the waterborne infectious stage of the parasite, triactinomyxons, from the worms likely drive salmonid infection severity (Hedrick & El-Matbouli, 2002; Kerans & Zale, 2002). As such, the results suggest that including larger particle sizes in near-shore habitats could decrease T. tubifex habitat and thereby infection severity, especially in O. mykiss fry. It is important to note, however, that habitat variables were collected within the fry sites only. Triactinomyxons are buoyant and distributed throughout the water column (Kerans & Zale, 2002). Therefore, additional upstream habitat manipulations, specifically increased particle sizes to reduce T. tubifex habitat and increased velocities to prevent sediment deposition, may be required to reduce the production of and contact with triactinomyxons in near-shore fry habitats.

Habitat restoration activities continue to increase in large rivers (Roni et al., 2008; Vigmostad et al., 2005), including the upper Colorado River. Although many of these projects focus on improving juvenile and adult fish habitat (Roni, 2019; Roni et al., 2008), it is important to consider fry habitat and other ecosystem disturbances that may affect early life-stage survival during these activities as part of a broader biomic restoration approach (Johnson et al., 2020). In addition, restoration activities could be useful for either specific species or multispecies management, depending on the goals of the project. Current management in the Colorado River is focused on reestablishing O. mykiss, and the results suggest that there are opportunities for exclusion of S. trutta fry by adjusting design criteria based on differing habitat associations. Nonetheless, once O. mykiss are established, the goal will be to manage for both S. trutta and O. mykiss fry to provide diverse angling opportunities for Colorado anglers. The results suggest that a D50 of 151 mm (96–206 mm) will maximize fry number and abundance for both species, as will velocities ranging from 0.20 to 0.23 m s−1 and depths ranging from 0.17 to 0.18 m. Management strategies being used to (re)establish, maintain or enhance populations, e.g., stocking, should be considered as they may affect how salmonid fry associate with, distribute across and, ultimately, survive in near-shore habitats. In systems where pathogens, e.g., M. cerebralis, are established, the effects of habitat on the persistence of the pathogen life cycle should be considered for all primary-host susceptible life stages and species and incorporated into habitat restoration designs. Finally, the results show that factors such as interspecific competition, stocking and presence of pathogens can cause deviations in habitat associations from demonstrated SI and that evaluating system-specific differences may allow future habitat restoration activities to be more effective.

ACKNOWLEDGEMENTS

The authors thank J. Evert and C. Prince for help with data collection in the field; L. Gerk, A. Kraft and V. Vincent for their help with myxospore enumeration; and G. Wilcox for preparing the map of the upper Colorado River study reach.

AUTHOR CONTRIBUTIONS

E.R.F. assisted with data generation, data analysis and manuscript preparation. B.W.A. helped with concepts, data generation and manuscript preparation.

ORCID

Eric R. Fetherman https://orcid.org/0000-0003-4792-7148
Brian W. Avila https://orcid.org/0000-0003-1988-2587

REFERENCES

Anderson, D. R. (2008). Model based inference in the life sciences: A primer on evidence. New York, NY: Springer.

Avila, B. W. (2016). Survival of rainbow trout fry in the wild: a comparison of two whirling disease resistant strains. Masters thesis. Colorado State University library. Retrieved from http://hdl.handle.net/10217/178916.

Avila, B. W., Winkelman, D. L., & Fetherman, E. R. (2018). Survival of whirling-disease-resistant rainbow trout fry in the wild: a comparison of two strains. Journal of Aquatic Animal Health, 30, 280–290.

Baldwin, T. J., Peterson, J. E., McGhee, G. C., Staigmiller, K. D., Motteram, E. S., Downs, C. C., & Stanek, D. R. (1998). Distribution of Myxobolus cerebralis in salmonid fishes in Montana. Journal of Aquatic Animal Health, 10, 361–371.

Burnham, K. P., & Anderson, D. R. (2002). Model selection and multimodel inference: A practical information-theoretic approach (2nd ed.). New York, NY: Springer-Verlag.

Bustard, D. R., & Narver, D. W. (1975). Aspects of the winter ecology of juvenile Coho salmon (Oncorhynchus kisutch) and steelhead trout (Salmo gairdneri). Journal of the Fisheries Research Board of Canada, 32, 667–687.

Casselman, J. M., & Lewis, C. A. (1996). Habitat requirements of northern pike (Esox lucius). Canadian Journal of Fisheries and Aquatic Sciences, 53(Suppl. 1), 161–174.

Chapman, D. W., & Bjornn, T. C. (1969). Distribution of salmonids in streams with special references to food and feeding. In T. G. Northcote (Ed.), Symposium on Salmon and Trout in streams. H. R. MacMillan Lectures in Fisheries (pp. 153–176). University of British Columbia: Vancouver, British Columbia, Canada.

Cramer, S. P., & Ackerman, N. K. (2009). Linking stream carrying capacity for salmonids to habitat features. American Fisheries Society Symposium, 71, 225–254.

Cunjak, R. A. (1996). Winter habitat of selected stream fishes and potential impacts from land-use activity. Canadian Journal of Fisheries and Aquatic Sciences, 53(Suppl. 1), 267–282.

Fetherman, E. R., & Schisler, G. J. (2016). Sport Fish Research Studies. Federal Aid Project F-394-R15. Federal Aid in Fish and Wildlife Restoration, Job Progress Report. Fort Collins, CO: Colorado Parks and Wildlife, Aquatic Wildlife Research Section.

Fetherman, E. R., & Schisler, G. J. (2017). Sport Fish Research Studies. Federal Aid Project F-394-R16. Federal Aid in Fish and Wildlife Restoration, Job Progress Report. Fort Collins, CO: Colorado Parks and Wildlife, Aquatic Wildlife Research Section.

Fetherman, E. R., Schisler, G. J., & Avila, B. W. (2018). Sport Fish Research Studies. Federal Aid Project F-394-R17. Federal Aid in Fish and Wildlife Restoration, Job Progress Report. Fort Collins, CO: Colorado Parks and Wildlife, Aquatic Wildlife Research Section.

Fetherman, E. R., Winkelman, D. L., Baerwald, M. R., & Schisler, G. J. (2014). Survival and reproduction of Myxobolus cerebralis resistant rainbow trout in the Colorado River and increased survival of age-0 progeny. PLoS One, 9(5), e96954.

Fetherman, E. R., Winkelman, D. L., Bailey, L. L., Schisler, G. J., & Davies, K. (2015). Brown trout removal effects on short-term survival and
movement of *Myxobolus cerebralis*-resistant rainbow trout. *Transactions of the American Fisheries Society*, 144, 610–626.

Fox, B. D., Bledsoe, B. P., Kolden, E., Kondratieff, M. C., & Myrick, C. A. (2016). Eco-hydraulic evaluation of a whitewater park as a fish passage barrier. *Journal of the American Water Resources Association*, 52(2), 420–442.

Gatz, A. J., Sale, M. J., & Loar, J. M. (1987). Habitat shifts in rainbow trout: competitive influences of brown trout. *Oecologia*, 74, 7–19.

Gido, K. B., Dodds, W. K., & Eberle, M. E. (2010). Retrospective analysis of fish community change during a half-century of landuse and streamflow changes. *Journal of North American Benthological Society*, 29(3), 970–987.

Granath, W. O., Jr., Gilbert, M. A., Wyatt-Pescador, E. J., & Vincent, E. R. (2001). Habitat suitability information: Rainbow trout. *FWS/OBS-82/10.60*. Washington, DC: U.S. Fish and Wildlife Service.

Hedrick, R. P., & El-Matbouli, M. (2002). Recent advances with taxonomy. *Transactions of the American Fisheries Society*, 131, 145–166.

Kerans, B. L., & Zale, A. V. (2002). The ecology of *Myxobolus cerebralis*. *American Fisheries Society Symposium*, 29, 145–166.

Korman, J., & Campana, S. E. (2009). Effects of hydropoeaking on nearshore habitat use and growth of age-0 rainbow trout in large regulated river. *Transactions of the American Fisheries Society*, 138, 76–87.

Kustu, M. D., Fan, Y., & Roback, A. (2010). Large-scale water cycle perturbation due to irrigation pumping in the US High Plains: A synthesis of observed streamflow changes. *Journal of Hydrology*, 390, 222–244.

Markiw, M. E., & Wolf, K. (1974). Myxosoma cerebralis: isolation and centrifugation from fish skeletal elements – sequential enzymatic digestions and purification by differential centrifugation. *Journal of the Fisheries Research Board of Canada*, 31, 15–20.

Markiw, M. E., & Wolf, K. (1983). *Myxosoma cerebralis* (Myxozoa, Myxosporea) etiological agent of salmonid whirling disease requires tubificid worm (*Annelida, Oligochaeta*) in its life cycle. *Journal of Protozoology*, 30, 561–564.

Meyer, K. A., & Griffith, J. S. (1997). First-winter survival of rainbow trout and brook trout in the Henrys Fork of the Snake River, Idaho. *Canadian Journal of Zoology*, 75, 59–63.

Miller, R. B. (1957). Permanence and size of home territory in stream-dwelling cutthroat trout. *Journal of the Fisheries Research Board of Canada*, 14(5), 687–691.

Mitro, M. G., & Zale, A. V. (2002). Seasonal survival, movement, and habitat use of age-0 rainbow trout in the hensys fork of the Snake River, Idaho. *Transactions of the American Fisheries Society*, 131(2), 271–286.

Nehlsen, W., Williams, J. E., & Lichatowich, J. A. (1991). Pacific salmon at the crossroads: stocks at risk from California, Oregon, Idaho, and Washington. *Fisheries*, 16(2), 4–21.

Northwest Power Planning Council. (1987). *Compilation of information on salmon and steelhead losses in the Columbia River basin*. 1987 Columbia River basin fish and wildlife program, appendix D. Portland, OR: Northwest Power Planning Council.

Nehring, R. B. (2006). *Colorado’s Coldwater fisheries: Whirling disease case histories and insights for risk management*. Report number 79. Denver, CO: Colorado division of wildlife, *Aquatilc Waterfowl Research Section*.

Nehring, R. B., & Thompson, K. G. (2001). Impact assessment of some physical and biological factors in the whirling disease epizootic among wild trout in Colorado. Special Report Number 76. Denver, CO: Colorado Division of Wildlife, *Aquatilc Waterfowl Research Section*.

Oella, B. L., Davis, M. W., & Ryer, C. H. (1998). Understanding how the hatchery environment represses or promotes the development of behavioral skills. *Bulletin of Marine Science*, 62, 531–550.

Piper, R. G., McElwain, I. B., Orme, L. E., McCaren, J. P., Fowler, L. G., & Leonaird, J. R. (1982). Fish hatchery management. Washington, DC: U.S. Fish and Wildlife Service.

Raleigh, R. F., Zuckerman, L. D., & Nelson, P. C. (1984). Habitat suitability information: Rainbow trout. FWS/OBS-82/10.60. Washington, DC: U.S. Fish and Wildlife Service.

Richer, E. E., Fetherman, E. R., Crone, E. A., Wright, F. B., III, & Kondratieff, M. C. (2020). Multispecies fish passage evaluation at a rock-ramp fishway in a Colorado transition zone stream. *North American Journal of Fisheries Management*, 40, 1510–1522.
Roni, P. (2019). Does river restoration increase fish abundance and survival or concentrate fish? The effects of project scale, location, and fish life history. *Fisheries, 44*(1), 7–19.

Roni, P., Hanson, K., & Beechie, T. (2008). Global review of the physical and biological effectiveness of stream habitat rehabilitation techniques. *North American Journal of Fisheries Management, 28*, 856–890.

Rosgen, D. (1996). *Applied river morphology*. Pagosa Springs, CO: Wildland Hydrology.

SAS Institute. (2019). *SAS system software, release 9.4*. Cary, NC: SAS Institute.

Schisler, G. J., Myklebust, K. A., & Hedrick, R. P. (2006). Inheritance of *Myxobolus cerebralis* resistance among F1-generation crosses of whirling disease resistant and susceptible rainbow trout strains. *Journal of Aquatic Animal Health, 18*, 109–115.

Sheer, M. B., & Steel, E. A. (2006). Lost watersheds: barriers, aquatic habitat connectivity, and salmon persistence in the Willamette and lower Columbia River basins. *Transactions of the American Fisheries Society, 135*(6), 1654–1669.

Shutter, B. J. (1990). Population-level indicators of stress. *American Fisheries Society Symposium, 8*, 145–166.

Thompson, K. G. (2011). Evaluation of small-scale habitat manipulation to reduce the impact of the whirling disease parasite in streams. *Aquatic Ecosystem Health & Management, 14*, 305–317.

USGS. (2019). USGS current conditions for the nation. Retrieved from https://nwis.waterdata.usgs.gov/nwis/uv?/ Vigmostad, K. E., Mays, N., Hance, A., & Cangelosi, A. (2005). Ecosystem restoration: Lessons for existing and emerging initiatives. Washington, DC: Northeast Midwest Institute.

Wesche, T. A. (1980). The WRRI trout cover rating method: development and application. Water Resources Series Number 78. Laramie, WY: Water Resources Research Institute, University of Wyoming.

White, G. C., & Burnham, K. P. (1999). *Program MARK: survival estimation from populations of marked animals*. Bird Study, 46(Suppl), 120–138.

Wolf, K., & Markiw, M. E. (1984). Biology contravenes taxonomy in the Myxozoa: new discoveries show alteration of invertebrate and vertebrate hosts. *Science, 225*, 1449–1452.

How to cite this article: Fetherman, E. R., & Avila, B. W. (2022). Habitat associations of rainbow trout *Oncorhynchus mykiss* and brown trout *Salmo trutta* fry. *Journal of Fish Biology*, 100(1), 51–61. https://doi.org/10.1111/jfb.14918