Application Of CPM Methode (Critical Path Methode) In Controlling the Time 100 Teus Conatrainer Ship Hull Construction Project

Mia Syafrina, Fandy Bestario Harlan

* Batam Polytechnics
Department of Business Management
Parkway Street, Batam Centre, Batam 29461, Indonesia
E-mail: miasyafrina@polibatam.ac.id, fandybestario@polibatam.ac.id

Abstract
Construction projects are generally the most high-risk businesses, especially shipbuilding projects. Efforts to reduce the risk can be done by minimizing the potential risk. This study aims to see potential high risk and prevent delays in the completion of ship construction using the Critical Path Method CPM at PT. XYZ. By using the Critical Path Method CPM critical paths can be given more attention so that they will not interfere ship construction projects. In addition, it is also a form of anticipation if there is a delay, it is possible to reschedule.

Keywords: CPM Methode, Critical Path, Shipbuilding
1. Introduction

Construction projects are generally the most high-risk businesses [1]. The ship construction project is a competitive project with major risks such as the delay in delivery of the vessel to the owner, work accidents, and production errors that cause the ship not to match the owner's order so with a large level of risk need good planning and control in the field. Based on the Research Report on Shipbuilding Japan Cho et al (1996) it is known that the hull construction process is 48-50% of the shipbuilding process [2]. Delay is defined as the time overrun either beyond the contract's date or beyond the delivery date agreed upon by the project's different parties. PT. XYZ is a ship construction company collaborates with Damen Shipyard Gorinchem for the construction of new ships. In its planning, PT XYZ plans to build a 100 TEUs container ship on time and well managed. Using critical path analysis in ship construction scheduling planning is one of the most effective and efficient methods to prevent delays in ship construction completion.

1.1 Ship Construction

The stages of the hull construction itself are divided into several stages of work. The construction of the ship's hull can be divided into 4 stages [9], namely:

1. Fabrication Part: The fabrication is the earliest level of physical work when building a new ship. The fabrication section consists of several main activities, such as: marking, cutting, roll, press, bending
2. Sub-assembly Part: Sub-assembly process consists of fit-up and welding of production parts that have been carried out at the fabrication stage. Sub assembly process is combining several small components into components per panel.
3. Block assembly Part: Block assembly stage is one of core work on ship construction. Block assembly is the activity combining two or more panels to form a ship block. This merging process usually requires heavy equipment to support its production activities. This stage consists of 4 main activities, namely: JIG preparation, scantling check, fit-up, inspection.

1.2 Critical Path Method

Critical Path Method (CPM) is a technique for analyzing projects by determining the longest sequence of tasks (or the sequence of task with the least slack) through a project network [5]. The function of the critical path is to find out activities that have a very high sensitivity to delays in completing work, or also called critical activities [9]. By concentrating on the most critical tasks it can be ensured that the project is on time and is keeping pace with the schedule set up [3]. The project network is a flow chart that graphically depicts the sequence, inter dependence of the project work plan. One of the functions of the project network is to analyze activities that are on a critical path.

1.3 Project Management

A project is a complex undertaking, non-routine, one-time activity constrained by time, budget, resources, and performance specifications designed to meet customer requirements. The purpose of project management is that these activities can be achieved efficiently and effectively. In general, the project cycle and process from start to finish are as follows:

1. Defining
2. Planning
3. Executing
4. Closure

1.4 Term in Project Networking

Some of the terms often used in project networking are:

• ESij (early start), is earliest start time on activity (i,j) [4]. ES for each element (i,j) is equal with Ei for previous element.
 \[S_{ij} = E_i \]

• EF (early finish), is how fast an activity can be completed. EF for each element (i,j) is equal with ES plus duration of event.
 \[E_{Fij} = E_{Sij} + D_{ij} \]

• LF (late finish), is how late the activity can be completed. At each node we calculate the least finish and start energy for each activity by considering. Lj as the maximum/ latest occurrence
of node j [6]. LF for each element \((i,j)\) is equal with LET from previous j.

\[
LF_{ij} = L_j
\]
(3)

- LS (late start), is how late an activity can be started. LS for each element \((i,j)\) is equal with LF minus duration of event.

\[
LS_{ij} = LF_{ij} - D_{ij}
\]
(4)

- Slack / Float, is how long the activity is delayed. Activity i is regarded as a critical activity if its float time is zero [7].

1.5 Arranging of Critical Path Network
1. List project / process activities
2. Draw a diagram
3. Calculate & analyze the earliest event time (EET)
4. Calculate & analyze the latest event time (LET)
5. Determine the critical path

2. Methods
The type of study is case study research. Case study research, through reports of past studies, allows the exploration and understanding of complex issues. It can be considered a robust research method particularly when a holistic, in-depth investigation is required.

The data needed in this study will be taken from production data construction of new hull construction. The primary data needed are: data on the intensity of the occurrence of each type of waste. Data collection the weight of the intensity of the waste is carried out by using a questionnaire method on several respondents in companies that have experience in their fields. Primary data the other is the respondent's data on the priority risk rating for the company.

The data will be processed to see the potential for high risk and prevent delays in the completion of ship construction using the Critical Path Method CPM.

3. Results and Discussion
3.1 Data Collection
Data collection was carried out at PT. XYZ with the object of research on the construction of a 100 TEUS container ship.

In the picture above, it can be seen that PT. XYZ builds 100 TEUS container ships with 33 blocks ship assembly part.
TABLE 1. DURATION OF EACH PROCESS

No	Activity	Code	Dependency Logic	Duration (days)
1	Block Fabrication 1	A1	Starting	5
2	Block Fabrication 2	A2	A1	5
3	Block Assembly 1	B1	A1	26
4	Block Assembly 2	B2	A2	30
5	Block Fabrication 3	A3	A2	5
6	Block Assembly 3	B3	A3	28
7	Block Fabrication 4	A4	A3	5
8	Block Assembly 5	B4	A4	25
9	Block Fabrication 7	A5	A4	5
10	Block Assembly 8	B5	A5	25
11	Block Fabrication 4	A6	A5	8
12	Block Assembly 9	B6	A6	25
13	Block Fabrication 6	A7	A6	5
14	Block Assembly 10	B7	A7	29
15	Block Fabrication 10	A8	A7	5
16	Block Assembly 10	B8	A8	32
17	Erection Block 1-2-3	C1	B1, B2, B3	40
18	Block Fabrication 10	A9	A8	5
19	Block Assembly 11	B9	A9	42
20	Block Fabrication 17	A10	A9	5
21	Block Assembly 21	B10	A10	45
22	Block Fabrication 14	A11	A10	5
23	Block Assembly 14	B11	A11	30
24	Block Fabrication 18	A12	A11	5
25	Block Assembly 18	B12	A12	46
26	Block Fabrication 13	A13	A12	5
27	Block Assembly 13	B13	A13	45
28	Block Fabrication 8	A14	A13	5
29	Block Assembly 8	B14	A14	29
30	Block Fabrication 12	A15	A14	5
31	Block Assembly 12	B15	A15	31
32	Block Fabrication 15	A16	A15	5
33	Block Assembly 15	B16	A16	50
34	Block Fabrication 16	A17	A16	5
35	Block Assembly 16	B17	A17	50
36	Block Fabrication 14	A18	A17	5
37	Block Assembly 14	B18	A18	40
38	Erection Block 5-7	C2	B4, B5	46
39	Block Fabrication 19	A19	A18	5
40	Block Assembly 19	B19	A19	55
41	Block Fabrication 20	A20	A19	5
42	Block Assembly 20	B20	A20	53
43	Erection Block 9-17	C3	B9, B10	43
44	Block Fabrication 21	A21	A20	5
45	Block Assembly 21	B21	A21	58
46	Erection Block 9-10	C4	C1, B8, B9	25
47	Block Fabrication 22	A22	A21	5
48	Block Assembly 22	B22	A22	52
49	Block Fabrication 23	A23	A22	5
50	Block Assembly 23	B23	A23	60
51	Block Fabrication 24	A24	A23	5
52	Block Assembly 24	B24	A24	49
53	Block Fabrication 25	A25	A24	5
54	Block Assembly 25	B25	A25	66
55	Block Fabrication 26	A26	A25	5
56	Block Assembly 26	B26	A26	70
57	Block Fabrication 27	A27	A26	5
58	Block Assembly 27	B27	A27	57
59	Erection Block 4-6	C5	C1, B6, B7	32
60	Block Fabrication 28	A28	A27	5
61	Block Assembly 28	B28	A28	67
62	Block Fabrication 29	A29	A28	5
63	Block Assembly 29	B29	A29	65
64	Erection Block 11-18	C6	B11, B12, C3	56
65	Block Fabrication 30	A30	A29	5
66	Block Assembly 30	B30	A30	72
Basically, this critical chain calculation aims to determine the critical activities in the overall project activity. The way to determine critical activities in critical chain analysis is to calculate the float time available for activities. Float time is waiting time for an activity before moving on to the next activity. The float time calculation is according to the formula in sub-chapter 2. In the construction of a 100 TEUS container ship, the critical activities for each of the entire project series are described in table below.

Activity Code	Dependency Logic	Duration (days)	Time (Days)	Information				
			EST	EFT	LST	LFT	Float	
A1	Start	5	0	5	0	5	0	Critical
A2	A1	5	5	10	5	10	0	Critical
B1	A1	26	5	31	457	483	452	
B2	A2	30	10	40	455	483	443	
A3	A2	5	10	15	10	15	0	Critical
B3	A3	28	15	43	455	483	440	
A4	A3	5	15	20	15	20	0	Critical
B4	A4	25	20	45	434	459	414	
A5	A4	25	25	50	434	459	409	
B5	A5	8	25	33	25	33	0	Critical
A6	A6	25	33	58	498	523	465	
B6	A6	5	33	38	33	38	0	Critical
A7	A7	29	38	67	494	523	456	
B7	A7	5	38	43	38	43	0	Critical
A8	A8	32	43	75	498	530	455	
B8	A8	40	43	83	483	523	440	
C1	B1, B2, B3	40	43	83	483	523	440	
A9	A9	42	48	90	432	474	384	
B9	A9	42	48	90	432	474	384	
A10	A10	5	48	53	48	53	0	Critical
B10	A10	45	53	96	429	474	376	
A11	A10	5	53	58	53	58	0	Critical
B11	A11	30	58	88	469	499	411	
A12	A11	5	58	63	58	63	0	Critical
B12	A12	46	63	109	453	499	390	
A13	A12	5	63	68	63	68	0	Critical
B13	A13	45	68	113	460	505	392	
A14	A13	5	68	73	68	73	0	Critical
B14	A14	29	73	102	476	505	403	
A15	A14	5	73	78	73	78	0	Critical
B15	A15	31	78	109	524	555	446	
A16	A15	5	78	83	83	83	0	Critical
B16	A16	50	83	133	505	555	422	

TABLE 2. CRITICAL ACTIVITY

21 | Jurnal Akuntansi, Ekonomi dan Manajemen Bisnis | Vol. 9 No.1, July 2021, 17-24 | E-ISSN: 2548-9836
In the table above, it can be seen that critical activities are activities that do not have waiting time for the next activity. So that critical activities are activity with zero float value. In addition, the critical path can also be seen from the project network diagram shown in fig 3 below.
Then an analysis of the causes of delays in the project schedule is carried out, especially in the scope of critical activities. Based on the critical activity chain analysis, the activities that have a zero float value are:

1. Fabrication: A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17, A18, A19, A20, A21, A22, A23
2. Assembly: B23
3. Erection: C9, C10, C12, C13, C18, C19

4. Conclusion

From the results of research and discussions that have been carried out, several conclusions are obtained as follows:

1. By using the Critical Path Method CPM in scheduling, it is known that the age for a 100 TEUS ship construction project from start to finish is 555 days
2. Critical Path for a 100 TEUS ship construction project is an activity with the notation A1, A2, A3, A4, A5, A6, A7, A8, A9, A10, A11, A12, A13, A14, A15, A16, A17, A18, A19, A20, A21, A22, A23, B23, C9, C10, C12, C13, C18, C19.

Suggestions from the results of research and discussion, it can be suggested to the contractor to:

1. Activities/works that are on a critical path can be given more attention because they can disrupt the overall 100 TEUS ship construction project.
2. If there is a delay in returning, the contractor can reschedule with methods of accelerating projects that are on the critical path.

However, this research was conducted at the planning stage of shipbuilding. So the analysis of this critical path method can be a risk prevention of time delays in shipbuilding projects. In addition, the analysis from this research can be used by company as a reference in contractual agreements with ship owners.

References

A. Harlan, F. B., & Resda, D. P. (2019). Mitigation of Delay Risk in Ship Construction Project With Lean Approach. International Conference on Applied Economics and Social Science (pp. 160-164). Batam: Atlantis Press.
B. Imamah, M. P., & Supriyanto, H. (2013). Evaluasi dan Perbaikan Proses Sub Assembly dengan Pendekatan Lean Risk di PT. PAL Indonesia (Persero). JURNAL TEKNIK ITS, 1-6.
C. Manalu, Z., & Lestari, Y. D. (2015). PROJECT EFFECTIVENESS IMPROVEMENT: A CASE STUDY IN PT.X. JOURNAL OF BUSINESS AND MANAGEMENT, 587-593.
D. Moussourakis, J., & Hakever, C. (2007). Models for Accurate Computation of Earliest and Latest Start Times and Optimal Compression in Project Networks. Journal of Construction Engineering and Management, 133(8), 600–608
E. Newbold, R. C. (1998). Project Management in the Fast Lane. CRC Press.

F. Pankaj, R. D., Kumar, A., & Agarwal, R. (2020). Energy efficient path determination in wireless sensor network by critical path method. Malaya Journal of Matematik, 8(3), 797–802.

G. Shi, Q., & Blomquist, T. (2012). A new approach for project scheduling using fuzzy dependency structure matrix. International Journal of Project Management, 30(4), 503–510.

H. Storch, R.L, Hammon, C.P, Bunch, H.M dan Moore, R.C. (1995). Ship Production 2nd Edition. Maryland: Cornell Maritime Press

I. Yamit. (2000). Manajemen Proyek Konstruksi (Edisi Ke-1).Yogyakarta (ID): Andi.