Sentiment-based Candidate Selection For NMT

Alex Jones
Dartmouth College
alexander.g.jones.23@dartmouth.edu

Derry Wijaya
Boston University
wijaya@bu.edu

Abstract

The explosion of user-generated content (UGC)—e.g. social media posts, comments, and reviews—has motivated the development of NLP applications tailored to these types of informal texts. Prevalent among these applications have been sentiment analysis and machine translation (MT). Grounded in the observation that UGC features highly idiomatic, sentiment-charged language, we propose a decoder-side approach that incorporates automatic sentiment scoring into the MT candidate selection process. We train separate English and Spanish sentiment classifiers, then, using n-best candidates generated by a baseline MT model with beam search, select the candidate that minimizes the absolute difference between the sentiment score of the source sentence and that of the translation, and perform a human evaluation to assess the produced translations. Unlike previous work, we select this minimally divergent translation by considering the sentiment scores of the source sentence and translation on a continuous interval, rather than using e.g. binary classification, allowing for more fine-grained selection of translation candidates. The results of human evaluations show that, in comparison to the open-source MT baseline model on top of which our sentiment-based pipeline is built, our pipeline produces more accurate translations of colloquial, sentiment-heavy source texts.¹

1 Introduction

The Web, widespread internet access, and social media have transformed the way people create, consume, and share content, resulting in the proliferation of user-generated content (UGC). UGC—such as social media posts, comments, and reviews—has proven to be of paramount importance both for users and organizations/institutions (Pozzi et al., 2016). As users enjoy the freedoms of sharing their opinions in this relatively unconstrained environment, corporations can analyze user sentiments and extract insights for their decision making processes, (Timoshenko and Hauser, 2019) or translate UGC to other languages to widen the company’s scope and impact. For example, Hale (2016) shows that translating UGC between certain language pairs has beneficial effects on the overall ratings customers gave to attractions and shows on TripAdvisor, while the absence of translation hurts ratings. However, translating UGC comes with its own challenges that differ from those of translating well-formed documents like news articles. UGC is shorter and noisier, characterized by idiomatic and colloquial expressions (Pozzi et al., 2016). Translating idiomatic expressions is hard, as they often convey figurative meaning that cannot be reconstructed from the meaning of their parts (Wasow et al., 1983), and remains one of the open challenges in machine translation (MT) (Fadaee et al., 2018). Idiomatic expressions, however, typically carry an additional property: they imply an affective stance rather than a neutral one (Wasow et al., 1983). The sentiment of an idiomatic expression, therefore, can be a useful signal for translation. In this paper, we hypothesize that a good translation of an idiomatic text, such as those prevalent in UGC, should be one that retains its underlying sentiment, and explore the use of textual sentiment analysis to improve translations.

Our motivation behind adding sentiment analysis model(s) to the NMT pipeline are several. First, with the sorts of texts prevalent in UGC (namely, idiomatic, sentiment-charged ones), the sentiment of a translated text is often arguably as important as the quality of the translation in other respects, such as adequacy, fluency, grammatical correctness, etc. Second, while a sentiment classifier can be

¹Code and reference materials are available at https://github.com/AlexJonesNLP/SentimentMT
trained particularly well to analyze the sentiment of various texts—including idiomatic expressions (Williams et al., 2015)—these idiomatic texts may be difficult for even state-of-the-art (SOTA) MT systems to handle consistently. This can be due to problems such as literal translation of figurative speech, but also to less obvious errors such as truncation (i.e. failing to translate crucial parts of the source sentence). Our assumption however, is that with open-source translation systems such as OPUS MT\(^2\), the correct translation of a sentiment-laden, idiomatic text often lies somewhere lower among the predictions of the MT system, and that the sentiment analysis model can help signal the right translation by re-ranking candidates based on sentiment. Our contributions are as follows:

- We explore the idea of choosing translations that minimize source-target sentiment differences on a continuous scale (0-1). Previous works that addressed the integration of sentiment into the MT process have treated this difference as a simple polarity (i.e., positive, negative, or neutral) difference that does not account for the degree of difference between the source text and translation.

- We focus in particular on idiomatic, sentiment-charged texts sampled from real-world UGC, and show, both through human evaluation and qualitative examples, that our method improves a baseline MT model’s ability to select sentiment-preserving and accurate translations in notable cases.

- We extend our method of using monolingual English and Spanish sentiment classifiers to aid in MT by substituting the classifiers for a single, multilingual sentiment classifier, and analyze the results of this second MT pipeline on the lower-resource English-Indonesian translation, illustrating the generalizability of our approach.

2 Related Work

Several papers in recent years have addressed the incorporation of sentiment into the MT process. Perhaps the earliest of these is Sennrich et al. (2016), which examined the effects of using honorific marking in training data to help MT systems pick up on the T-V distinction (e.g. informal tu vs. formal vous in French) that serves to convey familiarity or similarity. Si et al. (2019) used sentiment-labeled sentences containing one of a fixed set of sentiment-ambiguous words, as well as valence-sensitive word embeddings for these words, to train models such that users could input the desired sentiment at translation time and receive the translation with the appropriate valence. Lastly, Lohar et al. (2017, 2018) experimented with training sentiment-isolated MT models—that is, MT models trained on only texts that had been pre-categorized into a set number of sentiment classes i.e., positive-only texts or negative-only texts. Our approach is novel in using sentiment to re-rank candidate translations of UGC in an MT pipeline and in using precise sentiment scores rather than simple polarity matching to aid the translation process.

In terms of sentiment analysis models of non-English languages, Can et al. (2018) experimented with using an RNN-based English sentiment model to analyze the sentiment of texts translated into English from other languages, while Balahur and Turchi (2012) used SMT to generate sentiment training corpora in non-English languages. Dashtipour et al. (2016) provides an overview and comparison of various techniques used to tackle multilingual sentiment analysis.

As for MT candidate re-ranking, Hadj Ameur et al. (2019) provides an extensive overview of the various features and tools that have been used to aid in the candidate selection process, and also proposes a feature ensemble approach that doesn’t rely on external NLP tools. Others who have used candidate selection or re-ranking to improve MT performance include Shen et al. (2004) and Yuan et al. (2016). To the best of our knowledge, however, no previous re-ranking methods have used sentiment for re-ranking despite findings that MT often alters sentiment, especially when ambiguous words or figurative language such as metaphors or idioms are present or when the translation exhibits incorrect word order (Mohammad et al., 2016).

3 Models and Data

3.1 Sentiment Classifiers

For the first portion of our experiments, we train monolingual sentiment classifiers, one for English and another for Spanish. For the English classifier, we fine-tune the BERT Base uncased model (Devlin et al., 2019), as it achieves SOTA or nearly SOTA results on various text classification tasks. We construct our BERT-based sentiment classifier
model using BERTForSequenceClassification, following McCormick and Ryan (2019). For our English training and development data, we sample 50K positive and 50K negative tweets from the automatically annotated sentiment corpus described in Go et al. (2009) and use 90K tweets for training and the rest for development. For the English test set, we use the human-annotated sentiment corpus also described in Go et al. (2009), which consists of 359 total tweets after neutral-labeled tweets are removed. We use BertTokenizer with ‘bert-base-uncased’ as our vocabulary file and fine-tune a BERT model using one NVIDIA V100 GPU to classify the tweets into positive or negative labels for one epoch using the Adam optimizer with weight decay (AdamW) and a linear learning rate schedule with warmup. We use a batch size of 32, a learning rate of 2e-5, and an epsilon value of 1e-8 for Adam. We experiment with all of the hyperparameters, but find that the model converges very quickly (i.e. additional training after one epoch improves test accuracy negligibly, or causes overfitting). We achieve an accuracy of 85.2% on the English test set.

For the Spanish sentiment classifier, we fine-tune XLM-RoBERTa Large, a multilingual language model that has been shown to significantly outperform multilingual BERT (mBERT) on a variety of cross-lingual transfer tasks (Conneau et al., 2020), also using one NVIDIA V100 GPU. We construct our XLM-RoBERTa-based sentiment classifier model again following McCormick and Ryan (2019). The Spanish training and development data were collected from Mozetič et al. (2016). After removing neutral tweets, we obtain roughly 27.8K training tweets and 1.5K development tweets. The Spanish test set is a human-annotated sentiment corpus containing 7.8K tweets, of which we use roughly 3K after removing neutral tweets and evening out the number of positive and negative tweets. We use the XLMRobertaTokenizer with vocabulary file ‘xlm-roberta-large’ and fine-tune the XLM-RoBERTa model to classify the tweets into positive or negative labels. The optimizer, epsilon value, number of epochs, learning rate, and batch size are the same as those of the English model, determined via experimentation (without grid search or a more regimented method). Unlike with the English model, we found that fine-tuning the Spanish model sometimes produced unreliable results, and so employ multiple random restarts and select the best model, a technique used in the original BERT paper (Devlin et al., 2019). The test accuracy on the Spanish model was 77.8%.

3.2 Baseline MT Models

The baseline MT models we use for both English-Spanish and Spanish-English translation are the publicly available Helsinki-NLP/OPUS MT models released by Hugging Face and based on Marian NMT (Tiedemann and Thottingal, 2020; Junczys-Dowmunt et al., 2018; Wolf et al., 2019). Namely, we use both the en-ROMANCE and ROMANCE-en Transformer-based models, which were both trained using the OPUS dataset (Tiedemann, 2017) with Sentence Piece tokenization and using training procedures and hyperparameters specified on the OPUS MT Github page and in Tiedemann and Thottingal (2020).

4 Method: Sentiment-based Candidate Selection

We propose the use of two language-specific sentiment classifiers (which, as we will describe later in the paper, can be reduced to one multilingual sentiment model)—one applied to the input sentence in the source language and another to the candidate translation in the target language—to help an MT system select the candidate translation that diverges the least, in terms of sentiment, from the source sentence (Figure 1).

Using the baseline MT model described in Section 3.2, we first generate $n = 10$ best candidate translations using a beam size of 10 at decoding time. We decided on 10 as our candidate number based on the fact that one can expect a relatively low drop off in translation quality with this parameter choice (Hasan et al., 2007), while also maintaining a suitably high likelihood of getting variable translations. Additionally, decoding simply becomes too slow in practice beyond a certain beam size.

Once our model generates the 10 candidate translations for a given input sentence, we use the sentiment classifier trained in the appropriate language to score the sentiment of both the input sentence and each of the translations in the interval $[0, 1]$.

3https://www.kaggle.com/c/spanish-airlines-tweets-sentiment-analysis

4http://opus.nlpl.eu

5https://github.com/Helsinki-NLP/OPUS-MT-train
To compute the sentiment score $S(x)$ for an input sentence x, we first compute a softmax over the array of logits returned by our sentiment model to get a probability distribution over all m possible classes (here, $m = 2$, since we only used positive- and negative-labeled tweets). Representing the negative and positive classes using the values 0 and 1, respectively, we define $S(x)$ to be the expected value of the class conditioned on x, namely $S(x) = \sum_{n=1}^{m} P(c_n | x) v_n$, where c_i is the ith class and v_i is the value corresponding to that class. In our case, since we have only two classes and the negative class is represented with value 0, $S(x) = P(\text{positive class} | x)$. After computing the sentiment scores, we take the absolute difference between the input sentence x’s score and the candidate translation t_i’s score for $i = 1, 2, ..., 10$ to obtain the sentiment divergence of each candidate. We select the candidate translation that minimizes the sentiment divergence, namely $y = \arg\min_{t_i} |S(t_i) - S(x)|$. Our method of selecting a translation differs from previous works in our use of the proposed sentiment divergence, which takes into account the degree of the sentiment difference (and not just polarity difference) between the input sentence and the candidate translation.

5 Experiments

Figure 1: The pipeline for our modified NMT model.

5.1 English-Spanish Evaluation Data
The aim of our human evaluation was to discover how Spanish-English bilingual speakers assess both the quality and the degree of sentiment preservation of our proposed sentiment-sensitive MT model’s translations in comparison to those of the human (a professional translator), the baseline MT model (Helsinki-NLP/OPUS MT), and a SOTA MT model, namely Google Translate.

The human evaluation data consisted of 30 English (en) tweets, each translated using the above four methods to Spanish. We sample 30 English tweets from the English sentiment datasets that we do not use in training (Section 3.1) as well as from another English sentiment corpus (CrowdFlower, 2020). In assembling this evaluation set, we aimed to find a mix of texts that were highly idiomatic and sentiment-loaded—and thus presumably difficult to translate—but also ones that were more neutral in affect, less idiomatic, or some combination of the two.

5.2 English-Spanish Evaluation Setup
For the English-Spanish evaluation, we hired two fully bilingual professional translators using contracting site Freelancer. Both evaluators were asked to provide proof of competency in both languages beforehand. The evaluation itself consisted of four translations (one generated by each method: human, baseline, sentiment-MT, Google Translate) for each of the 30 English tweets above, totaling 120 texts to be evaluated. For each of these texts, evaluators were asked to:

1. Rate the accuracy of the translation on a 0-5 scale, with 0 being the worst quality and 5 being the best
2. Rate the sentiment divergence of the translation on a 0-2 scale, with 0 indicating no sentiment change and 2 indicating sentiment reversal
3. Indicate the reasons for which they believe the sentiment changed in translation

The evaluation instructions and a translation evaluation template are given for reference in the appendix.

6 We make available all our human evaluation data, evaluation questions, responses, and results at https://github.com/AlexJonesNLP/SentimentMT/tree/main/Data%20and%20Reference%20Materials.

7 https://data.world/crowdflower/apple-twitter-sentiment

8 https://www.freelancer.com/
5.3 English-Spanish Evaluation Results

As depicted in Table 1, the results of the English-Spanish human evaluation show improvements across the board for our modified pipeline over the vanilla baseline model. For the purposes of analysis, we divide the 30 English sentences (120 translations) into two categories: “all” (consisting of all 120 translations) and “idiomatic,” consisting of 13 sentences (52 translations) deemed particularly idiomatic in nature. Although methods exist for identifying idiomatic texts systematically, e.g. Peng et al. (2014), we opt to hand-pick idiomatic texts ourselves. We do this in hopes of curating not only texts that contain idiomatic “multi-word” expressions, but also ones that are idiomatic in less concrete ways, which will enable us to gain more qualitative insights in the evaluation. Examples of such sentences are discussed in Section 7.

In the ‘all’ subset of the data, we see a +0.12 gain for our modified pipeline over the baseline in terms of accuracy (where higher accuracy is better), as well as a +0.11 improvement in sentiment divergence (where smaller divergence is better). On the idiomatic subset, the differences are more pronounced: we see a +0.80 gain over the baseline for accuracy and a +0.35 improvement in sentiment divergence. While our pipeline lags behind Google Translate in all metrics for English-Spanish—due to the superiority of Google Translate over OPUS MT in multiple regards (training data size, parameters, multilinguality, compute power, etc.)—our modification moves OPUS MT closer to this SOTA system. As a benchmark and to validate the soundness of our evaluation set, we include results for translations performed by a professional human translator, which, as expected, are vastly superior to those for any of the NMT systems used across the board for our modified pipeline over the baseline model. For the purposes of comparing with previous work examining human agreement on sentiment judgments. In line with Krippendorff’s inter-annotator agreement measure α (Krippendorff, 2011), which we choose as a metric in order to compare with previous work examining human agreement on sentiment judgments. In line with Provoost et al. (2019)’s findings of moderate agreement ($\alpha = 0.51$), we see α values ranging from 0.638 to 0.673 for the whole and idiomatic subsets of the data; the values of Pearson’s r (Lewis-Beck et al., 2004) with their corresponding p-values are reported in Table 2.

Additionally, we measure agreement between the two English-Spanish evaluators using Krippendorff’s inter-annotator agreement measure α (Krippendorff, 2011), which we choose as a metric in order to compare with previous work examining human agreement on sentiment judgments. In line with Provoost et al. (2019)’s findings of moderate agreement ($\alpha = 0.51$), we see α values ranging from 0.638 to 0.673 for the whole and idiomatic subsets of the data, respectively.

Language Pair	Pearson’s r (p-value) (all)	Pearson’s r (p-value) (idiom.)
en→es	0.764 (3.42e-47)	-0.759 (9.90e-21)
en→id	0.570 (1.09e-15)	-0.756 (8.67e-14)

Table 2: Pearson’s correlation coefficient and corresponding p-value with respect to accuracy and SentIDiff for each of the evaluations, broken down into the full (all) and idiomatic subsets.

In terms of automatic MT evaluation, we note...
Table 1: The BLEU scores on the Tatoeba dataset, the accuracy and sentiment divergence scores on Twitter data, and the top 3 reasons given for sentiment divergence for each translation method, language pair, and chosen subset of the Twitter data: all/idiomatic. Note that ratings for each language are given by different sets of evaluators, and shouldn’t be compared on a cross-lingual basis.

Method	BLEU (Tatoeba)	BLEU (all tweets)	BLEU (idiom. tweets)	Accuracy (all tweets)	Accuracy (idiom. tweets)	SentiDiff (all tweets)	SentiDiff (idiom. tweets)	Top-3 Qual.
Baseline								
$en \rightarrow es$	31.37	38.93	39.28	2.06	0.92	1.37	1.23	MI, O, MO
$en \rightarrow id$	31.17	–	–	2.98	0.77	2.50	1.00	MO, O, MI
Modified								
$en \rightarrow es$	22.15	39.10	43.47	2.18	0.81	2.17	0.88	MO, IG, MI
$en \rightarrow id$	20.85	–	–	3.31	0.65	3.20	0.64	MO, O, MI
Google Transl.								
$en \rightarrow es$	51.39	56.76	57.98	3.08	0.43	2.31	0.79	MI, MO, O
$en \rightarrow id$	33.93	–	–	3.57	0.55	3.00	0.94	MO, MI, O/IR
Human								
$en \rightarrow es$	100	100	100	4.28	0.10	4.44	0.08	MO, O, IR

that although our method causes a decrease in BLEU score on the Tatoeba test data for both languages (Table 1: Modified vs. Baseline)—which is to be expected, as Tatoeba consists of “general” texts as opposed to UGC, and we select potentially non-optimal candidates during re-ranking—our method improves over the baseline for the Spanish tweets (and more so on the idiomatic tweets) on which the human evaluation was conducted. This result supports the efficacy of our model in the context of highly-idiomatic, affective UGC, and highlights the different challenges that UGC presents in comparison to more “formal” text.

Google Translate still outperforms the baseline and our method in terms of BLEU score on Tatoeba and the tweets. The explanation here is simply that the baseline model is not SOTA, which is to be expected given it’s a free, flexible, open-source system. However, as our pipeline is orthogonal to any MT model, including SOTA, it could be used to improve a SOTA MT model for UGC.

6 Method Extension

6.1 Translation with Multilingual Sentiment Classifier

As highlighted in Hadj Ameur et al. (2019), one of the major criticisms of decoder-side re-ranking approaches for MT is their reliance on language-specific external NLP tools, such as the sentiment classifiers described in Section 3.1. To address the issue of language specificity and to develop a sentiment analysis model that can be used in tandem with MT between any two languages, we develop a multilingual sentiment classifier following Misra (2020). Specifically, we fine-tune the XLM-RoBERTa model using the training and development data used to train the English sentiment classifier, and the same tokenizer, vocabulary file, hyperparameters, and compute resources (GPU) used in training the Spanish classifier. We then use this multilingual language model fine-tuned on English sentiment data to perform zero-shot sentiment classification on various languages, and incorporate it into our beam search candidate selection pipeline for MT.

We test the model using the same test data used previously. On the English test data, this multilingual model achieves an accuracy of 83.8%, comparable to the accuracy score achieved using the BERT monolingual model (85.2%). On the Spanish test set, the multilingual model achieves a somewhat lower score of 73.6% (cf. 77.8% for the monolingual trained model), perhaps showing the limitations of this massively multilingual model on
6.2 English-Indonesian Evaluation Setup

We use the multilingual sentiment classifier in our sentiment-sensitive MT pipeline (Figure 1) to perform translations on a handful of languages; examples from this experimentation are displayed in Tables 4 and 5 in the appendix.

We perform another human evaluation, this time involving English→Indonesian translations in place of English→Spanish. We choose Indonesian, as it is a medium-resource language (unlike Spanish, which is high-resource) (Joshi et al., 2020), and because we were able to obtain two truly bilingual annotators for this language pair.

The setup of the evaluation essentially mirrors that of the en→es evaluation, except we don’t obtain professional human translations as a benchmark for Indonesian, due to the difficulty of obtaining the quality of translation required. Thus, the resulting evaluation set contains only 30 * 3 = 90 translations instead of 120.

6.3 English-Indonesian Evaluation Results

The accuracy and sentiment divergence averages for different subsets of the en-id data are located in Table 1, and we direct readers to Section 5.3 for a qualitative discussion of these results. Quantitatively, we observe that our modified model outperforms the baseline in accuracy and sentiment divergence on every subset of the en-id data, while being comparable or better than Google Translate on the “all” and idiomatic subsets, respectively (Table 1). Specifically, on the “all” subset we see improvements of +0.33 and +0.12 over the baseline for accuracy and sentiment divergence, respectively, and on the idiomatic subset we see respective improvements of +0.70 and +0.36. Google Translate achieves slightly better accuracy and sentiment preservation overall (+0.26 and +0.10 over our pipeline for accuracy and sentiment divergence, respectively), but lags behind our pipeline in the idiomatic category (-0.20 and -0.30 for accuracy and sentiment divergence, respectively, compared to our pipeline).

Qualitatively, we see very similar reasons listed for sentiment divergence as we did for English-Spanish: each of the NMT systems we looked at had errors most frequently in the MI, MO, and O categories, denoting mistranslation of idiomatic language, mistranslation of other types of language, and other reasons for sentiment divergence, respectively; with MO being more frequent than MI in English-Indonesian evaluations, potentially due to lower MT performances for this language than Spanish (i.e., BLEU score for English-Indonesian modified model is 20.85 on the Tatoeba dataset compared to 22.15 for English-Spanish). However, as noted in the analysis of the previous evaluation, not all of these errors occurred with equal frequency across systems. For instance, Google Translate and the human translator produced less errors overall than the OPUS MT system, so the error codes should be interpreted as indicating the relative frequency and prevalence of certain translation errors that affect sentiment, not as markers to be compared on a system-to-system basis. As with the English-Spanish evaluation, certain qualitative observations made by our evaluators will be discussed further in Section 7. In line with results on the previous evaluation, accuracy and sentiment divergence are shown to be strongly negatively correlated, with Pearson’s r values of -0.570 and -0.756 for the whole and idiomatic subsets of the data, respectively, both of which are statistically significant (p<<0.05) and are displayed in Table 2.

Table 3 shows Krippendorff’s alpha agreement measure α for both sets of evaluations with respect to accuracy (“acc.”) and sentiment divergence (“SentiDiff”) across different subsets.

Table 3: Values of Krippendorff’s alpha agreement measure α for both sets of evaluations with respect to accuracy (“acc.”) and sentiment divergence (“SentiDiff”) across different subsets.

Subset	acc (all)	SentiDiff (all)	acc (idiom.)	SentiDiff (idiom.)
en→es	0.675	0.638	0.767	0.673
en→id	0.661	0.516	0.612	0.541

Table 3 shows Krippendorff’s alpha agreement measure (Krippendorff, 2011) for accuracy and sentiment divergence across both subsets, indicating moderate agreement, with higher agreement on accuracy. As was found with the English-Spanish evaluation, this is in line with previous findings of moderate human agreement on sentiment judgement (Krippendorff’s $\alpha=0.51$) (Provoost et al., 2019).

7 Discussion

Our experimentation with the various MT models generated a number of interesting example cases concerning the translation of idiomatic language. For example, given the tweet “Time Warner Road Runner customer support here absolutely blows,” the baseline MT gives a literal translation...
of the word “blows” as “pukulan” (literally, “hits”) in Indonesian; Google Translate gives a translation “hebat” (“awesome”) that is opposite in sentiment to the idiomatic sense of the word “blows” (“sucks”) in English; and our model gives a translation closest in meaning and sentiment to “blows,” namely “kacau” (approx. “messed up” in Indonesian). There are also cases where our model gives a translation that is closer in degree of sentiment than what Google Translate produces. Given the source text “Yo @Apple fix your shitty iMessage,” Google Translate produces “Yo @Apple perbaiki iMessage buruk Anda” (“Yo @Apple fix your bad iMessage”), which has roughly the same polarity as the source tweet. By contrast, our proposed model produces “Yo @Apple perbaiki iMessage menyebalkan Anda,” using the word “menyebalkan” (“annoying”) instead of “buruk,” which conveys a closer sentiment to “shitty” than simply “bad”.

In general, we observe that translation of idiomatic language commonly results in literal translation of the language by all MT models, even for a SOTA MT system like Google Translate. For example, given tweets like “Okay, first assessment of the Kindle... it fucking rocks!,” which our pipeline translates as “Bien, la primera evaluación del Kindle... ¡está jodidamente bien!,” one evaluator notes that “The word ‘bien’ has less positive sentiment than the word ‘genial’ (which is a closer translation for ‘it rocks’).” For the sentence “Just broke my 3rd charger of the month. Get your shit together @apple,” which is translated by the professional translator as “Se acaba de romper mi tercer cargador del mes. Sean más eficientes @apple,” one evaluator acutely notes that “The expression ‘Get your shit together’ was translated in a more formal way (it loses the vulgarism). I would have translated it as ‘Poneos las pilas, joder’ to keep the same sentiment. We could say that this translation has a different diaphasic variation than the source text.” This demonstrates that sentiment preservation is a problem not only for NMT systems, but for human translators as well. The same evaluator also notes that “The acronym ‘tbh’ was not translated” in the sentence “@Apple tbh annoyed with Apple’s shit at the moment,” and says “this acronym is important for the sentiment because it expresses the modality of the speaker.” In another example, we see our sentiment-sensitive pipeline helping the baseline distinguish between such a semantically fine-grained distinction as that between “hope” and “wish”: the baseline translates the sentence “@Iberia Ojalá que encuentres pronto tu equipaje!!” as “@Iberia I wish you’d find your luggage soon!!,” while our pipeline correctly...
chooses “@Iberia I hope you will find your luggage soon!!.” Clearly, we see considerable overlap in the causes of sentiment divergence between Spanish and Indonesian, despite the fact that these are typologically disparate languages with differing resource capacities in regard to MT.

In other languages, similar patterns of idiomatic mistranslation are observed. In French, for example, both Google Translate and the baseline model translate “Why are people such wankers these days?” as “Pourquoi les gens sont-ils si branleurs ces jours-ci?,” while our pipeline produces “Pourquoi les gens sont-ils si cons ces jours-ci?.” In this case, the use of “si” before the noun “branleurs” doesn’t sound idiomatic (“tels branleurs” would fit better), but the degree term “si” makes sense before adjective “cons” (approx. “stupid” or “irritating”), which is also a more versatile, common, and idiomatic term in French than “branleurs.” This is a prime example of a source text for which the most idiomatic translation isn’t the most literal one, even though the source text doesn’t contain figurative language per se. The baseline system evidently benefits from a sentiment-sensitive step in the decoder that nudges it toward this choice without being specifically trained to reward idiomaticity.

In terms of automatic MT evaluation, our method improves over the baseline for the Spanish tweets on which the human evaluation was conducted. This result supports the efficacy of our model in the context of highly-idiomatic, affective UGC. And while Google Translate still outperforms the baseline and our pipeline in terms of BLEU score on Tatoeba (for both languages) and the tweets (for which only Spanish had a gold-standard benchmark)—given that the baseline model that we built our pipeline on is not SOTA—our pipeline can be added to any MT system and can also improve SOTA MT for UGC.

Furthermore, our approach also lends itself to many practical scenarios, e.g. companies who are interested in producing sentiment-preserving translations of large bodies of UGC but who lack the sufficient funds to use a subscription API like Google Cloud Translation. In these contexts, it may be beneficial—or even necessary—to improve free, open-source software in a way that is tailored to one’s particular use case (thus the idea of “customized MT” that many companies now offer), instead of opting for the SOTA but more costly software.

More generally, since our approach shows that we can improve performance of an MT model for a particular use case i.e., UGC translation using signals beyond translation data that is relevant for the task at hand i.e., sentiment, it will be interesting to explore other signals that are relevant for improving MT performance in other use cases. It will also be interesting to explore the addition of these signals in a pipeline (our current method), as implicit feedback such as in (Wijaya et al., 2017), or as explicit feedback in an end-to-end MT model for example, as additional loss terms in supervised (Wu et al., 2016), weakly-supervised (Kuwanto et al., 2021), or unsupervised (Artetxe et al., 2017) MT models.

Beyond the potential engineering contribution for low-resource, budget-constrained settings, our experiments also offer rich qualitative insights regarding the causes of sentiment change in (machine) translation, opening up avenues to more disciplined efforts in mitigating and exploring these problems.

8 Conclusion

In this paper we use sentiment analysis models to help publicly available MT baseline models select sentiment-preserving translations. Conducting both automated and manual evaluations, we show that our architecturally simple, low-resource, and generalizable approach can produce surprisingly good results for translating the sort of idiomatic texts prevalent in UGC. In the future, we will explore the use of sentiment as additional feedback for training an MT model end-to-end.

Acknowledgements

We would like to thank Boston University for their generous funding of this project. We also appreciate the work of Chris McCormick and Nick Ryan in constructing the BERT tutorial we used as a blueprint for all three sentiment models.

References

Mikel Artetxe, Gorka Labaka, Eneko Agirre, and Kyunghyun Cho. 2017. Unsupervised neural machine translation. arXiv preprint arXiv:1710.11041.

Alexandra Balahur and Marco Turchi. 2012. Multilingual sentiment analysis using machine translation? In Proceedings of the 3rd Workshop in Computational Approaches to Subjectivity and Sentiment Analysis, pages 52–60, Jeju, Korea. Association for Computational Linguistics.
Federico Alberto Pozzi, Elisabetta Fersini, Enza Messina, and Bing Liu. 2016. Sentiment analysis in social networks. Morgan Kaufmann.

Simon Provoost, Jeroen Ruwaard, Ward van Breda, Heleen Riper, and Tibor Bosse. 2019. Validating automated sentiment analysis of online cognitive behavioral therapy patient texts: An exploratory study. Frontiers in Psychology, 10:1065–1077.

Rico Sennrich, Barry Haddow, and Alexandra Birch. 2016. Controlling politeness in neural machine translation via side constraints. In Proceedings of the 2016 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, pages 35–40, San Diego, California. Association for Computational Linguistics.

Libin Shen, Anoop Sarkar, and Franz Josef Och. 2004. Discriminative reranking for machine translation. In Proceedings of the Human Language Technology Conference of the North American Chapter of the Association for Computational Linguistics: HLT-NAACL 2004, pages 177–184, Boston, Massachusetts, USA. Association for Computational Linguistics.

Chenglei Si, Kui Wu, Ai Ti Aw, and Min-Yen Kan. 2019. Sentiment aware neural machine translation. In Proceedings of the 6th Workshop on Asian Translation, pages 200–206, Hong Kong, China. Association for Computational Linguistics.

Jörg Tiedemann. 2017. OPUS. University of Helsinki.

Jörg Tiedemann and Santhosh Thottingal. 2020. OPUS-MT – building open translation services for the world. In Proceedings of the 22nd Annual Conference of the European Association for Machine Translation, pages 479–480, Lisbon, Portugal. European Association for Machine Translation.

Artem Timoshenko and John R Hauser. 2019. Identifying customer needs from user-generated content. Marketing Science, 38(1):1–20.

Thomas Wasow, Ivan Sag, and Geoffrey Nunberg. 1983. Idioms: An interim report. In Proceedings of the XIIIth International Congress of Linguists, pages 102–115. CIPL Tokyo.

Derry Tanti Wijaya, Brendan Callahan, John Hewitt, Jie Gao, Xiao Ling, Marianna Apidianaki, and Chris Callison-Burch. 2017. Learning translations via matrix completion. In Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing, pages 1452–1463.

Lowri Williams, Christian Bannister, Michael Arribas-Ayllon, Alun Preece, and Irena Spasić. 2015. The role of idioms in sentiment analysis. Expert Systems with Applications, 42(21):7375–7385.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony Moi, Pierric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz, Joe Davison, Sam Shleifer, Patrick von Platen, Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu, Teven Le Scao, Sylvain Gugger, Mariama Drane, Quentin Lhoest, and Alexander M. Rush. 2019. Huggingface’s transformers: State-of-the-art natural language processing. Computing Research Repository, arXiv: 1910.03771. Version 5.

Yonghui Wu, Mike Schuster, Zhifeng Chen, Quoc V Le, Mohammad Norouzi, Wolfgang Macherey, Maxim Krikun, Yuan Cao, Qin Gao, Klaus Macherey, et al. 2016. Google’s neural machine translation system: Bridging the gap between human and machine translation. arXiv preprint arXiv:1609.08144.

Zheng Yuan, Ted Briscoe, and Mariano Felice. 2016. Candidate re-ranking for SMT-based grammatical error correction. In Proceedings of the 11th Workshop on Innovative Use of NLP for Building Educational Applications, pages 256–266, San Diego, CA. Association for Computational Linguistics.
Appendix

A Example Translations

Language	Original	Baseline	Modified
French	Yo @Apple fix your shitty iMessage	Yo @Apple répare ta merde iMessage	Yo @Apple réparer votre sale iMessage
Original	Why are people such wankers these days?	Baseline	Modified
	Pourquoi les gens sont-ils si branleurs ces jours-ci?	Pourquoi les gens sont-ils si cons ces jours-ci?	
Italian	Yo @Apple fix your shitty iMessage	Yo @Apple riparare la tua merda iMessage	Yo @Apple riparare il vostro iMessaggio di merda
Original	Time Warner Road Runner customer support here absolutely blows.	Baseline	Modified
	O suporte ao cliente do Time Warner Road Runner é absolutamente insuportável.	O suporte ao cliente do Time Warner Road Runner aqui é absolutamente estragado.	
Indonesian	Yo @Apple fix your shitty iMessage	Baseline	Modified
	Dukungan pelanggan Pelarian Jalan Warner waktu di sini benar-benar pukulan.	Dukungan pelanggan di sini benar-benar kacau.	
German	I need a new boyfriend... I’m stuck in a rut.	Baseline	Modified
	Ich brauche einen neuen Freund.	Ich brauche einen neuen Freund, ich stecke in einer Falle.	
Croatian	Time Warner Road Runner customer support here absolutely blows.	Baseline	Modified
	Podrška za klijente Time Warner Road Runnera ovdje apsolutno udara.	Podpora klijenta Time Warner Road Runnera ovdje je apsolutno pukla.	
Finnish	Could Time Warner Cable suck more?	Baseline	Modified
	Voisiko Time Warner Cable imeä enemmän?	Voisiko Time Warner Cable olla enemmän surkea?	
Indonesian	I’m sorry—I’m feeling kinda yucky myself—5am is going to come too quick.	Baseline	Modified
	Olen pahoin, olen itsekin aika naljaillen, että aamuuvideltä tulee liian nopeasti.	Olen pahoillani, että olen itse vähän kuvottava, mutta aamuuvideltä tulee liian nopea.	
Table 4: Example texts exhibiting our pipeline’s performance using the sentiment models from the first and second human evaluations.

English-Spanish	
Original	Time Warner Road Runner customer support here absolutely blows.
Baseline	Time Warner Road Runner atención al cliente aquí absolutamente golpes.
Modified	El servicio de atención al cliente de Warner Road Runner aquí es absolutamente malo.
Original	Could Time Warner Cable suck more?
Baseline	¿Podría Time Warner Cable chupar más?
Modified	¿Podría Time Warner Cable apestar más?
Original	Went to see the Star Trek movie last night. Very satisfying.
Baseline	Fui a ver la película de Star Trek anoche.
Modified	Fui a ver la película de Star Trek anoche, muy satisfactoria.

Spanish-English	
Original	Vivo con el miedo que Ryanair me cancelen los vuelos... Que poquito me fio de ellos
Baseline	I live with the fear that Ryanair will cancel my flights... that I don’t give a damn about them.
Modified	I live with the fear that Ryanair will cancel my flights... what little do I trust them with?
Original	La verdad es que a día de hoy, con Ryanair las cosas están muy baratas para viajar.
Baseline	The truth is that nowadays, with Ryanair things are too cheap to travel.
Modified	The truth is that today, with Ryanair, things are very cheap to travel.
Original	@Iberia Ojalá que encuentres pronto tu equipaje!!
Baseline	@Iberia I wish you’d find your luggage soon!!
Modified	@Iberia I hope you will find your luggage soon!!

B Evaluation Instructions

The following are excerpts from the instructions given to evaluators for both the English-Spanish and English-Indonesian evaluations: The document you are now looking at should contain prompts numbered up to 120. For each of these prompts, you will be asked to do three things:

1. Rate the accuracy of the translation. Please rate the accuracy of the translation on a 0 to 5 scale, where 0 indicates an “awful” translation, 2.5 indicates a “decent” translation, and 5 indicates a “flawless” translation. Feel free to use half-increments, i.e. 0.5, 1.5, 2.5, 3.5, or 4.5, and go with your gut as a fluent speaker of both languages.

2. Rate the sentiment divergence of the translation. The sentiment of a text corresponds to the emotion it conveys. For example, “I am happy” has a very positive sentiment, and “The weather is terrible” has a very negative sentiment. Please rate the sentiment divergence on a 0 to 2 scale, where 0 indicates that the sentiment of the source sentence perfectly matches that of the translation and 2 indicates that the sentiment of the source sentence is the opposite of that of the translation. As when rating accuracy, feel free to use half-increments, i.e. 0.5, 1.5.

3. Indicate the reasons for sentiment divergence. Please bold the statements which you believe accurately describe why you believe the sentiment changed from the source sentence to the translation. For example if the source sentence was “Oh my god, it’s raining cats and dogs!” and the translation was Ay dios mio, esta lloviendo perros y gatos, ” you should bold the statement “The translation contained literal translation(s) of figurative English language.”

C Sample Prompt

Below is an example of a translation evaluation prompt that evaluators were asked to respond to:

- Accuracy:

- Sentiment divergence:

- Please bold all of the below which had an effect on the sentiment of the translation:

 1. The translation contained literal translation(s) of figurative English language.
2. The translation contained other types of mistranslated words
3. The original (English) sentence can’t be properly translated to Spanish
4. The overall meaning of the English sentence changed substantially when translated to Spanish (i.e. even the gist of the English sentence is unrecoverable)
5. The sentiment didn’t change at all
6. Other (please write in next to this)