Investigation on the Role of PALB2 Gene in CDH1-Negative Patients With Hereditary Diffuse Gastric Cancer

Marta Carreño, MSc1, Laura Pena-Couso, PhD1, Fátima Mercadillo1, José Perea, MD, PhD2,3 and Miguel Urioste, MD, PhD1

INTRODUCTION: Not all patients with hereditary diffuse gastric cancer (HDGC) are found to carry germline pathogenic variants in the associated gene CDH1, which translates into a challenging clinical management and poor cancer prevention. Thus, several studies have searched for other candidate genes, among which stands PALB2. Our work explores the implication of this known cancer gene in HDGC.

METHODS: We searched for germline PALB2 variants by Sanger sequencing in a series of 58 patients with HDGC who tested negative for CDH1 alterations.

RESULTS: No clearly pathogenic variants in PALB2 were found in these patients. Only 5 rare genetic variants were identified, 3 of which were classified as variants of uncertain significance.

DISCUSSION: Despite the promising association between PALB2 and HDGC suggested by certain works in the literature, our findings do not support PALB2 as a high predisposition gene for HDGC. Larger studies are needed to define its role in this disease and therefore improve cancer prevention.

Clinical and Translational Gastroenterology 2020;11:e00280. https://doi.org/10.14309/ctg.0000000000000280
The link between PALB2 pathogenic variants and HDGC was first found through whole exome sequencing and multiplexed targeted sequencing by other authors (3–6). This preliminary association was based in a reduced number of cases (10 families with HDGC) (3–6) with up to 1 identified case for every 100 CDH1-negative HDGC individuals tested. Similarly, our targeted study in 58 patients revealed a low number of PALB2 variants, and we were unable to demonstrate the pathogenicity of any of them. Therefore, this detection frequency seems minimal, and it is probably unsafe to consider PALB2 as an HDGC predisposition gene until larger series are studied. However, the possibility of testing a treatment with poly-ADP ribose polymerase inhibitors in the derived tumors in those patients carrying PALB2 pathogenic variants could be a promising alternative to gastrectomy (6), and thus, it is a good incentive to continue researching in this topic.

CONFLICTS OF INTEREST
Guarantor of the article: Miguel Urioste, MD, PhD.
Specific author contributions: Marta Carreño and Laura Pena-Couso, share co-first authorship. Marta Carreño, MSc, and Laura Pena-Couso, PhD, contributed equally to this work. M.C., L.P.-C., and M.U. were involved in the design of the study. J.P. and M.U. were involved in patient recruitment. M.C., L.P.-C., and F.M. performed experiments and analyzed data. M.C., L.P.-C., F.M., and M.U. interpreted the results. M.C., L.P.-C., and M.U. elaborated the manuscript. All authors approved the final draft submitted.

Financial support: None to report.
Potential competing interests: None to report.

Study Highlights

WHAT IS KNOWN

- Genetic testing is a crucial part in HDGC diagnosis to allow for optimal clinical management.
- Germline pathogenic variants in CDH1 do not account for all patients with HDGC.
- The implication of PALB2 in HDGC predisposition is poorly documented.

WHAT IS NEW HERE

- Targeted analysis of PALB2 in 58 CDH1-negative HDGC patients revealed only 3 VUS.
- No strong evidence for PALB2 as a HDGC predisposition gene is found.

TRANSLATIONAL IMPACT

- The diagnosis of HDGC patients might not benefit from including PALB2 genetic testing.

REFERENCES
1. Ferlay J, Soerjomataram I, Dikshit R, et al. Cancer incidence and mortality worldwide: Sources, methods and major patterns in GLOBOCAN 2012. Int J Cancer 2015;136:E359–86.

Table 1. Rare germline PALB2 variants found in CDH1-negative HDGC patients

PALB2 variant	MAF (gnomAD)	Interpretation	Patient ID	Sex	Cancer (age at diagnosis)	Family history	
c.48>Tdup	ND	VUS	P1	F	DGC (48)	1 SDR with GC (42)	
c.834delinsAT	0.075%	LB	P2	F	DGC (37)	2 FDR with GC (52; 63)	1 SDR with GC
c.1194G>A	0.094%	VUS	P3	M	DGC (54)	2 FDR with DGC (54; 64)	
c.2748>C	ND	VUS	P4	M	DGC (56)	2 FDR with DGC (44; 47)	1 of them also developed PC (cause of death)

Age at cancer diagnosis is indicated in brackets. Decision criteria for variant interpretation are mentioned in Methods. The nomenclature of the variants refers to the canonical transcript NM_024675.4.

DGC, diffuse gastric cancer; F, female; FDR, first-degree relative; GC, gastric cancer; ID, identification; LB, likely benign; M, male; ND, not described; PC, pancreatic cancer; SDR, second-degree relative; VUS, variant of uncertain significance.

*Indicates individual(s) deceased due to cancer.

SALSA P083-D1 (MRC Holland). Analysis of PALB2 was performed by Sanger sequencing. The primers were designed with Primer3Plus tool and are available on request. Presence of the selected variants of interest was confirmed in a second sample.

Variant interpretation

The selected variants in PALB2 were those with a minor allele frequency <1% (according to gnomAD). Decision on the variant interpretation was made considering the American College of Medical Genetics and Genomics guidelines (9), information from public databases (ClinVar, Leiden Open Variation Database, dbSNP, Ensembl, gnomAD, and Human Gene Mutation Database) and in silico pathogenicity predictors (PolyPhen, SIFT, and Condel).

RESULTS

No clearly pathogenic variants in PALB2 were identified in any of the 58 CDH1-negative HDGC patients in this study. We found 5 rare genetic variants in PALB2 (minor allele frequency <1%), 3 of them were classified as variants of uncertain significance (VUS) and the other 2 as likely benign variants. These variants were found in HDGC families without breast cancer cases (Table 1). DNA samples from the family relatives were not available; therefore, cosegregation studies could not be performed. Several aspects of the mentioned VUS such as their unreported frequency in general population or location near a splice site could suggest a pathogenic effect.
2. Oliveira C, Seruca R, Carneiro F. Genetics, pathology, and clinics of familial gastric cancer. Int J Surg Pathol 2006;14:21–33.
3. Sahasrabudhe R, Lott P, Bohorquez M, et al. Germline mutations in PALB2, BRCA1, and RAD51C, which regulate DNA recombination repair, in patients with gastric cancer. Gastroenterology 2017;152:983–6.
4. Fewings E, Larionov A, Rendman J, et al. Germline pathogenic variants in PALB2 and other cancer-predisposing genes in families with hereditary diffuse gastric cancer without CDH1 mutation: A whole-exome sequencing study. Lancet Gastroenterol Hepatol 2018;3:489–98.
5. Hansford S, Kaurah P, Li-Chang H, et al. Hereditary diffuse gastric cancer syndrome: CDH1 mutations and beyond. JAMA Oncol 2015;1:23–32.
6. Carvajal-Carmona LG. PALB2 as a familial gastric cancer gene: Is the wait over? Lancet Gastroenterol Hepatol 2018;3:451–2.
7. Nepomuceno TC, De Gregorio G, Bastos de Oliveira FM, et al. The role of PALB2 in the DNA damage response and cancer predisposition. Int J Mol Sci 2017;18:1886.
8. van der Post RS, Vogelaar IP, Carneiro F, et al. Hereditary diffuse gastric cancer: Updated clinical guidelines with an emphasis on germline CDH1 mutation carriers. J Med Genet 2015;52:361–74.
9. Richards S, Aziz N, Bale S, et al. Standards and guidelines for the interpretation of sequence variants: A joint consensus recommendation of the American College of Medical genetics and Genomics and the Association for Molecular Pathology. Genet Med 2015;17:405–23.

Open Access This is an open access article distributed under the terms of the Creative Commons Attribution-Non Commercial-No Derivatives License 4.0 (CCBY-NC-ND), where it is permissible to download and share the work provided it is properly cited. The work cannot be changed in any way or used commercially without permission from the journal.