ABSTRACT

OBJECTIVE: To compare the Edmonton Frail Scale (EFS) and Clinical-Functional Vulnerability Index-20 (CFVI-20) instruments regarding degree of agreement and correlation and compare descriptive models with frailty-associated variables in community-dwelling older people in Brazil.

METHODS: Cross-sectional study, nested in a population-based and household cohort. Baseline sampling was calculated based on a probabilistic approach by conglomerate in two stages. In the first stage, census tract was used as sampling unit. In the second, the number of households was defined according to the population density of individuals aged ≥ 60 years. The Kappa statistic evaluated the agreement between instruments and Pearson’s coefficient their correlation. Factors associated with frailty and high risk of clinical-functional vulnerability were identified by multiple analysis of Poisson regression with robust variance.

RESULTS: Kappa statistics was 0.599 and Pearson’s correlation coefficient 0.755 (p < 0.001). The EFS found a 28.2% prevalence of frailty, and the CFVI-20 found a 19.5% prevalence of high risk of clinical-functional vulnerability. Age equal to or greater than 80 years, history of stroke, polypharmacy, negative self-perceived health, fall in the past 12 months, and hospitalization in the past 12 months were variables associated with frailty in both instruments after multiple analysis. Less than four years of education, osteoarticular disease, and weight loss were associated with frailty only by EFS, and having a caregiver was associated with a high risk of clinical-functional vulnerability only by CFVI-20.

CONCLUSIONS: Although the analyses show moderate agreement and strong positive correlation between the instruments, the indicated prevalence of frailty is discrepant. Our results attest the need to standardize the instrument for assessing frailty in community-dwelling older people.

DESCRIPTORS: Aged. Frailty. Epidemiology. Reproducibility of Results. Risk Factors. Health Surveys, Instrumentation.
INTRODUCTION

By entailing a complex interaction of biological, psychological, and social factors, frailty in older people is a clinically recognizable multidimensional syndrome resulting from a decrease in energy reserves and age-related changes1–3. It often affects older adults with disproportionate health condition changes after stressful events, causing adverse clinical outcomes, such as impairment in activities of daily living, physical limitation, falls, hospitalization, and even death2,4–6.

The prevalence of frailty is expected to increase considerably with the population dynamics expected for the coming years2,4. Identifying frail older adults or those at-risk of frailty is a public health priority. Further appropriate interventions are required to reverse this condition severity or, for those whose condition is irreversible, reduce adverse outcomes7.

The Comprehensive Geriatric Assessment is the most appropriate strategy to identify and classify frail older adults3,4,8. It enables the identification of conditions that compromise patients' health for developing a management plan addressing these conditions4,9. However, this specialized assessment method is considered complex and costly, especially when applied without distinction in community-dwelling older people3,8,9.

Although challenging, finding different ways of identifying frailty in community context is necessary due to the high cost incurred by older adults' care in inappropriate places. Patients must be referred for the appropriate place for care, according to their needs. Several simple, fast-tracking instruments were developed5,10,11, but selecting from among them is difficult due to the lack of standard measure for frailty5. Besides that, the reliability and validity of most of them were not assessed5,10.

Among instruments following the best practices for complex measures development, we may stress the Edmonton Frail Scale (EFS)10 – an easy handling and simple application clinical proposal, even for professionals not specialized in geriatrics or gerontology12,13. Recently, the Clinical-Functional Vulnerability Index-20 (CFVI-20) was also developed in Brazil. Despite presenting a high degree of validity and reliability14, it is still little employed by researchers and health professionals.

EFS and CFVI-20 were not yet simultaneously employed in the same community-dwelling older population, and few studies compared these instruments with others serving the same purpose15–20. Comparing two tests allow us to investigate evidence of convergent validity; that is, the degree of agreement between the measured constructs. Given that both instruments assess the same construct and were validated by the Comprehensive Geriatric Assessment, we could expect a high degree of correlation. This study aims to compare EFS and CFVI-20 regarding the degree of agreement and correlation and compare descriptive models with frailty-associated variables in community-dwelling older people in Brazil.

METHODS

This is a cross-sectional study nested with a population-based cohort and conducted with community-dwelling older people from the municipality of Montes Claros, in the north of Minas Gerais, Brazil. The municipality has approximately 400,000 inhabitants and is the main urban hub within the region.

Baseline sampling was calculated between May and July 2013 based on a probabilistic approach by conglomerate, in two stages. In the first stage, census tract was used as sampling unit. In the second, the number of households was defined according to the population density of individuals aged ≥ 60 years.

Our research data refer to the study first wave and were collected between November 2016 and February 2017. At this stage, the residence of all older adults interviewed at baseline was...
considered eligible for the new interview. As oriented by data collection instruments, older adults unable to answer the questionnaire were supported by family members or caregivers12-14.

EFS assesses nine domains (cognition, general health status, functional independence, social support, medication, nutrition, mood, urinary incontinence, and functional performance) distributed into 11 items with scores ranging from 0 to 17. Final score from 0 to 4 indicates no frailty; 5 and 6 indicate vulnerability to frailty; 7 and 8 mild frailty; 9 and 10, moderate frailty; and 11 or more indicate severe frailty12,13.

The CFVI-20 is a multidimensional assessment instrument containing 20 items that cover eight predictors of clinical-functional decline in older adults (age, self-perceived health, functional disabilities, cognition, mood, mobility, communication, and multiple comorbidities)14. Its score ranges from 0 to 40. Final score from 0 to 6 points indicates low risk of clinical-functional vulnerability; from 7 to 14 moderate risk; and 15 or higher indicate high risk, potentially frail21.

Dependent variables results were dichotomized at two levels: no frailty (final score ≤ 6) and frailty (final score > 6) according to the EFS; and no frailty (final score < 15) and frailty (final score ≥ 15) according to the CFVI-20. Independent variables were also dichotomized: gender, age group (up to 79 years or ≥ 80 years), marital status (with or without a partner), family arrangement (living alone or accompanied), education level (up to or more than four years of education), literacy (can read or not), own income (yes or no), household monthly income (up to or more than one minimum wage), self-reported chronic morbidities (hypertension, diabetes mellitus, heart disease, osteoarticular disease, neoplasia, stroke), polypharmacy (yes or no) and self-perceived health – assessed by the question “How would you rate your health status?”, with the following response options: “very good,” “good,” “fair,” “poor” or “very poor”.

Positive self-perceived health was classified as “very good” and “good” responses, while “fair,” “poor,” and “very poor” were classified as negative22,23. Self-reported weight loss in the past three months (yes or no), presence of caregiver (yes or no), fall in the past 12 months (yes or no), and hospitalization in the past 12 months (yes or no) were also evaluated.

Bivariate analyses were performed in both scales using the chi-square test to identify factors associated with response variable. Poisson regression with robust variance was used to calculate adjusted prevalence ratios (PR), considering independent variables associated with frailty in the bivariate analysis up to 20% significance level (p < 0.20). Analyses were performed separately for each instrument.

Considering frailty dichotomization (fragile × non-fragile), kappa statistics were applied to verify the agreement between EFS and CFVI-20 and interpreted according to Landis and Koch24. Instruments correlation was assessed based on the total scores, using Pearson’s coefficient25. A significance level of 5% (p < 0.05) was set for all analyses. Collected data were analyzed using the Statistical Package for the Social Sciences (SPSS) version 17.0 (SPSS for Windows, Chicago, USA).

All participants were provided with information on the research and agreed to participate by signing an informed consent form. The project was approved by the Research Ethics Committee of the Faculdades Integradas Pitágoras de Montes Claros under the Opinion No. 1,629,395.

RESULTS

Among the 685 older adults evaluated at baseline, 92 refused to participate in the second stage of the study, 78 changed residence and could not be located, 67 were not found at home after three visits, and 54 had died. Then, 394 community-dwelling older adults participated in the study. The most predominant age group was between 60 and 79 years, representing 76.6% of the sample, with mean age of 73.9 years (SD = 7.9).
Table 1. Demographic, social, economic, and morbidity characterization, health-related care, and frailty-associated factors in community-dwellers older adults (bivariate analysis), 2017.

Independent variables	Sample Frailty in the Edmonton Frail Scale (n = 394)	Frailty in the Clinical-Functional Vulnerability Index-20 (n = 394)											
	n	%	Yes	n	%	No	p	Yes	n	%	No	p	
Gender													
Male	131	33.2	37	28.2	94	71.8	25	19.1	106	80.9			
Female	263	66.8	74	28.1	189	71.9	52	19.8	211	80.2			
Age group													
Up to 79 years	302	76.6	70	23.2	232	77.8	35	11.6	267	88.4			
≥ 80 years	92	23.4	41	44.6	51	55.4	42	45.7	50	54.3			
Marital status													
With partner	195	49.5	51	26.2	144	73.8	30	15.4	165	84.6			
Without partner	199	50.6	60	30.2	139	69.8	47	23.6	152	76.4			
Family arrangement													
Living alone	50	12.7	14	28.0	36	72.0	13	26.0	37	74.0			
Living accompanied	344	87.3	97	28.2	247	71.8	64	18.6	280	81.4			
Education level													
Up to 4 years	295	74.9	100	33.9	195	66.1	68	23.1	227	76.9			
> 4 years	99	25.1	11	11.1	88	88.9	9	9.1	90	90.9			
Literacy													
Yes	300	76.1	72	24.0	228	76.0	51	17.0	249	83.0			
No	94	23.9	39	41.5	55	58.5	26	27.7	68	72.3			
Own income													
Yes	355	90.1	103	29.0	252	71.0	73	20.6	282	79.4			
No	39	9.9	8	20.5	31	79.5	4	10.3	35	89.7			
Household monthly income													
Up to one minimum wage	102	25.9	35	34.3	67	65.7	27	26.5	75	73.5			
> one minimum wage	292	74.1	100	67	26.0	216	74.0	50	17.1	242	82.9		
Hypertension													
Yes	281	71.3	88	31.3	193	68.7	62	22.1	219	77.9			
No	113	28.7	23	20.4	90	79.6	15	13.3	98	86.7			
Diabetes mellitus													
Yes	90	22.8	30	33.3	60	66.7	16	17.8	74	82.2			
No	304	77.2	81	66.6	223	73.4	61	20.1	243	79.9			
Heart disease													
Yes	110	27.9	43	39.1	67	60.9	35	31.8	75	68.2			
No	284	72.1	68	23.9	216	76.1	42	14.8	242	85.2			
Osteoarticular disease													
Yes	189	48.0	67	35.4	122	64.6	45	23.8	144	76.2			
No	205	52.0	44	21.5	161	78.5	32	15.6	173	84.4			
Neoplasia													
Yes	38	9.6	16	42.1	22	57.9	15	39.5	23	60.5			
No	356	90.4	95	26.7	261	73.3	62	17.4	294	82.6			
Cerebrovascular accident													
Yes	29	7.4	16	55.2	13	44.8	13	44.8	16	55.2			
No	365	92.6	95	26.0	270	74.0	64	17.5	301	82.5			
Polypharmacy													
Yes	107	27.2	53	49.5	54	50.5	35	32.7	72	67.3			
No	287	72.8	58	20.2	229	79.8	42	14.6	245	85.4			
Self-perceived health													
Negative	207	52.5	90	43.5	117	56.5	62	30.0	145	70.0			
Positive	187	47.5	21	11.2	166	88.8	15	8.0	172	92.0			

(Continue)
In total, 66.8% were female, 50.6% lived alone, and 74.9% had up to four years of education; 88.3% did not have a caregiver, 71.3% had hypertension, and 48% had osteoarticular diseases. Table 1 shows sample characteristics and bivariate analyses results.

Table 1. Demographic, social, economic, and morbidity characterization, health-related care, and frailty-associated factors in community-dwellers older adults (bivariate analysis), 2017. (Continuation)

Independent variables	Sample	Frailty in the Edmonton Frail Scale (n = 394)	Frailty in the Clinical-Functional Vulnerability Index-20 (n = 394)									
	n	%	n	%	n	%	p	p				
Weight loss												
Yes	59	15.0	31	25.2	28	47.5	21	35.6	38	64.4	< 0.001	0.001
No	335	85.0	80	23.9	255	76.1	56	16.7	279	83.3	< 0.001	< 0.001
Presence of caregiver												
Yes	46	11.7	25	54.3	21	45.7	23	50.0	23	50.0	< 0.001	< 0.001
No	348	88.3	86	24.7	262	75.3	54	15.5	294	84.5	< 0.001	< 0.001
Fall in the past 12 months												
Yes	123	31.2	54	43.9	69	56.1	39	31.7	84	68.3	< 0.001	< 0.001
No	271	68.8	57	21.0	214	79.0	38	14.0	233	86.0	< 0.001	< 0.001
Hospitalization in the past 12 months												
Yes	57	14.5	33	57.9	24	42.1	22	38.6	35	61.4	< 0.001	< 0.001
No	337	85.5	78	23.1	259	76.9	55	16.3	282	83.7	< 0.001	< 0.001

Table 2. Frequency of Edmonton Frail Scale components in community-dwellers older adults, 2017.

Edmonton Frail Scale components	n	%
Cognition (clock drawing test)		
Accepted	78	19.8
Rejected with minor mistakes	64	16.2
Rejected with major mistakes	252	64.0
General health status		
Hospitalization in the past 12 months		
None	337	85.5
1 to 2	48	12.2
More than 2	9	2.3
Self-perceived health		
Excellent/very good/good	187	47.5
Poor	180	45.7
Very poor	27	6.8
Functional independence		
Activities in which assistance is required		
0–1	267	67.8
2–4	123	31.2
5–8	4	1.0
Social support		
When assistance is needed, the older adult has someone to count on		
Always	332	84.3
Sometimes	57	14.5
Never	5	1.2
Medication (five or more)		
No	287	72.8
Yes	107	27.2
Forget to take a medication		
No	269	68.3
Yes	125	31.7
Nutrition (weight loss)		
No	335	85.0
Yes	59	15.0
Mood (feel sad or depressed)		
No	297	75.4
Yes	97	24.6
Urinary incontinence		
No	298	75.6
Yes	96	24.4
Functional performance		
Timed up & Go test		
0–10 seconds	121	30.7
11–20 seconds	189	48.0
More than 20 seconds	84	21.3

In total, 66.8% were female, 50.6% lived alone, and 74.9% had up to four years of education; 88.3% did not have a caregiver, 71.3% had hypertension, and 48% had osteoarticular diseases. Table 1 shows sample characteristics and bivariate analyses results.
The EFS found a 28.2% prevalence of frailty, and the CFVI-20 found a 19.5% prevalence of high risk of clinical-functional vulnerability (equivalent to frailty in EFS). Table 2 shows the frequency distribution of EFS components and Table 3 of CFVI-20 components.

In EFS, 190 older adults (48.2%) presented no frailty, 93 (23.6%) were apparently vulnerable to frailty, 74 (18.8%) had mild frailty, 32 (8.1%) moderate frailty, and 5 (1.3%) severe fragility. As for the CFVI-20, 207 (52.5%) were robust, or with low risk of frailty, 110 (28.0%) had moderate risk of clinical-functional vulnerability, and 77 (19.5%) high risk.

Table 3. Frequency of Clinical-Functional Vulnerability Index-20 components in community-dwellers older adults, 2017.

Clinical-Functional Vulnerability Index-20 components	n	%		
AGE				
60 to 74 years old	226	57.4		
75 to 84 years old	128	32.5		
≥ 85 years	40	10.1		
SELF-PERCEIVED HEALTH				
Health compared to other people from the same age group				
Excellent/very good/good	226	57.4		
Fair or bad	168	42.6		
ACTIVITIES OF DAILY LIVING (ADLs)				
Instrumental (ADL)				
Stopped grocery shopping	Yes	85	21.6	
Stopped managing finances	No	309	78.4	
Stopped performing minor housework	Yes	80	20.3	
Stopped bathing alone	No	314	79.7	
Basic (ADL)				
Stopped bathing alone	Yes	24	6.1	
Stopped bathing alone	No	370	93.9	
COGNITION				
Forgetfulness	Yes	103	26.1	
Forgetfulness	No	291	73.9	
Worsening of forgetfulness in the past months	Yes	68	17.3	
Worsening of forgetfulness in the past months	No	326	82.7	
Forgetfulness preventing the performance of daily activities	Yes	55	14.0	
Forgetfulness preventing the performance of daily activities	No	339	86.0	
MOOD				
Dismay, sadness, or hopelessness in the past month	Yes	109	27.7	
Dismay, sadness, or hopelessness in the past month	No	285	72.3	
Loss of interest or pleasure in the past month in	Yes	81	20.6	
previously enjoyable activities	No	313	79.4	
MOBILITY				
Reach, graspingness, and pincer grip				
Inability to raise the arm above shoulder level	Yes	35	8.9	
Inability to raise the arm above shoulder level	No	359	91.1	
Inability to handle or hold small objects	Yes	31	7.8	
Inability to handle or hold small objects	No	363	92.2	
Aerobic and muscle capacity				
Unintentional weight loss, BMI < 22 kg/m2, calf	Yes	49	12.4	
Aerobic and muscle capacity	No	345	87.6	
Walking difficulties preventing to perform some daily activities	Yes	109	27.7	
Walking difficulties preventing to perform some daily activities	No	285	72.3	
Gait				
Two or more falls in the past year	Yes	110	27.9	
Two or more falls in the past year	No	284	72.1	
Sphincteral incontinence				
Involuntary loss of urine or feces	Yes	117	29.7	
Involuntary loss of urine or feces	No	277	70.3	
COMMUNICATION				
Vision				
Vision impairment that may prevent the performance of some daily activities	Yes	80	20.3	
Vision impairment that may prevent the performance of some daily activities	No	314	79.7	
Hearing				
Hearing impairment that may prevent the performance of some daily activities	Yes	79	20.1	
Hearing impairment that may prevent the performance of some daily activities	No	315	79.9	
MULTIPLE COMORBIDITIES				
Polypathology	Yes	83	21.1	
Polypathology	≥ 5 chronic diseases	Yes	83	21.1
Polypathology	≥ 5 medications	Yes	83	21.1
Polypathology	Hospitalization in the past 6 months	Yes	83	21.1
Kappa statistics found a 0.599 agreement index between the instruments (Table 4). Pearson’s correlation coefficient between EFS and CFVI-20 was 0.755 (p < 0.001).

Age equal to or greater than 80 years, history of stroke, polypharmacy, negative self-perceived health, fall in the past 12 months, and hospitalization in the past 12 months were variables that remained statistically associated with frailty in both instruments after multiple analysis. Less than four years of education, osteoarticular disease, and weight loss were

Table 4. Analysis of agreement for frailty classification according to Edmonton Frail Scale and Clinical-Functional Vulnerability Index-20 in community-dwellers older adults, 2017.

	Edmonton Frail Scale (EFS)	CFVI-20: (n) (%)	(n) (%)
	No frailty		Frailty
CFVI-20:			
No frailty	271 85.5	46 14.5	317
Frailty	12 15.6	65 84.4	77

Kappa = 0.599 (p < 0.001).

Table 5. Frailty-associated factors in community-dwellers older adults according to Edmonton Frail Scale and Clinical-Functional Vulnerability Index-20 (multiple analysis), 2017.

Independent variables	Frailty in the Edmonton Frail Scale	Frailty in the CFVI-20
	PR 95%CI p	PR 95%CI p
Age group	0.001	< 0.001
≥ 80 years	1.643 1.239 – 2.178 3.327 2.204 – 5.021	2.139 1.484 – 3.082 2.546 1.619 – 4.004
Up to 79 years	1 1	1 1
Education level	0.002	< 0.001
Up to 4 years	2.171 1.314 – 3.589	1 1
> 4 years	1 1	1 1
Osteoarticular disease	0.016	< 0.001
Yes	1.410 1.065 – 1.865	1.410 1.065 – 1.865
No	1 1	1 1
Cerebrovascular accident	< 0.001	< 0.001
Yes	2.139 1.484 – 3.082 2.546 1.619 – 4.004	2.139 1.484 – 3.082 2.546 1.619 – 4.004
No	1 1	1 1
Polypharmacy	0.001	0.004
Yes	1.610 1.217 – 2.130 1.657 1.174 – 2.337	1.610 1.217 – 2.130 1.657 1.174 – 2.337
No	1 1	1 1
Self-perceived health	< 0.001	< 0.001
Negative	3.115 2.085 – 4.654 3.294 2.081 – 5.213	3.115 2.085 – 4.654 3.294 2.081 – 5.213
Positive	1 1	1 1
Weight loss	0.006	
Yes	1.542 1.132 – 2.102	
No	1 1	1 1
Presence of caregiver	0.020	
Yes	1.615 1.078 – 2.419	
No	1 1	1 1
Fall in the past 12 months	0.037	0.029
Yes	1.363 1.019 – 1.824 1.503 1.043 – 2.166	1.363 1.019 – 1.824 1.503 1.043 – 2.166
No	1 1	1 1
Hospitalization in the past 12 months	< 0.001	0.005
Yes	1.825 1.382 – 2.409 1.715 1.181 – 2.490	1.825 1.382 – 2.409 1.715 1.181 – 2.490
No	1 1	1 1

PR: prevalence ratio.
associated with frailty only by EFS, and having a caregiver was associated with a higher risk of fragility only by CFVI-20 (Table 5).

DISCUSSION

We found a moderate agreement and a strong positive correlation between EFS and CFVI-20. The prevalence of frailty in community-dwelling older people was higher in EFS. Demographic, social, economic, and morbidity-related factors, as well as health services use, influenced frailty in community-dwelling older people, but differences within the identification of these variables by the instruments was small.

The similarity and relevance of the main components justify the moderate agreement found between the instruments. Both scales assess cognition, functional independence, mood, and health conditions (or presence of morbidities). The EFS separately assesses social support, medication, nutrition, urinary incontinence, and functional performance; in turn, CFVI-20 assesses age, self-perceived health, mobility, and communication.

Our results differ from those reported by a systematic review and the meta-analysis of studies conducted in Latin America and the Caribbean, where the prevalence of frailty identified by the EFS in Brazilian community-dwelling older adults was 35.8%, with 95%CI 30.6–41.2. As for the CFVI-20, although validated in Brazil, few population-based studies employed it.

The different prevalence found in both instruments may be explained by the cutoff point. ICVF-20 cut-off point refer fewer older adults for specialized evaluation by screening, identifying those with greater needs. Considering the benefit-cost ratio, this process is considered positive due to the high cost of broad geriatric assessment. Given that specialized care services are not always available, this is an opportunity to optimize resources in primary care.

Another possible explanation for the discrepancy between scales prevalence is the differences among some of their components: while EFS assesses “social support,” CFVI-20 approaches “age” and “communication.” Besides that, similar components are approached differently by each instrument. While the EFS assesses “cognition” using the clock drawing test, the CFVI-20 does so by evoking words. As the clock drawing test requires number knowledge, the low education level among Brazilians older adults may compromise its result. Thus, the low performance in this test (which increases the prevalence of frailty) may be related to difficulties not necessarily associated to a cognitive deficit.

EFS assesses “health status” by the number of hospitalizations in the past 12 months; in turn, ICVF-20 addresses the number of hospitalizations in the past six months in the component “multiple comorbidities.” The instruments also differ regarding “functional independence,” or “functional disability”; while EFS approach it by preparing meals/cooking, getting around from place to place, using the phone, doing laundry, and taking medicines, CFVI-20 employs doing the dishes and bathing.

In the component “medication,” EFS approaches forgetting to take medications, which is unregarded by the CFVI-20. In EFS, “functional performance” is evaluated using the timed Up & Go Test with a distance of approximately three meters and time stratified by “0 to 10 seconds,” “11 to 20 seconds,” and “greater than 20 seconds.” CFVI-20, in turn, assesses whether the time spent on the 4-meter gait speed test is greater than five seconds.

CFVI-20 also differs from EFS by including the “mobility” component – which assesses the ability to raise the arms above the shoulder level and handle or hold small objects, Body Mass Index, calf circumference, walking difficulties that may interfere with activities of daily living, falls in the past year, and fecal incontinence – and addressing polypathology in the “multiple comorbidities” component.
These factors reveal that the instruments diverse characteristics influence the prevalence of frailty in older adults. A systematic review concluded that frailty components and corresponding indicators considerably vary depending on the method employed by the instrument. It also reported a lack of consensus regarding which elements should be considered to predict frailty and, consequently, increase this condition accurate diagnosis.

Our results found a correlation between advanced age and frailty regardless of the instrument used. However, frailty correlation with low education was only identified by the EFS. Other studies comparing instruments also observed this association between frailty, advanced age, and lower education level. A longitudinal study conducted in the Netherlands identified, besides the association with low education, an association between low income and frailty.

The history of stroke and falls – factors associated with frailty in both instruments, – as well as the osteoarticular disease identified by the EFS corroborate results reported by other studies. Osteoarticular disease and stroke sequelae engender functional limitations that impair the performance of basic, instrumental, and advanced activities that were previously performed without restrictions, increasing the risk of falls.

We also found an association between polypharmacy and frailty in both instruments, a result confirmed in this condition consensus and also reported by other authors. A French study found independent and combined effects of polypharmacy and frailty on mortality risk factors in older adults. This vulnerability may be explained by drugs pharmacokinetic and pharmacodynamic properties in the aging body, as well as by the potential adverse reactions of drug interaction.

The two instruments also showed an association between frailty and negative self-perceived health – an indicator that incorporates physical, cognitive, and emotional components, as well as aspects related to well-being and personal life satisfaction. Considering that, this measure can predict mortality, functional capacity decline, and frailty in older adults.

We also found an association between frailty and weight loss in the EFS. Impaired nutritional status is an important sign of frailty in older adults, and dietary intervention is a non-pharmacological treatment capable of correcting macro and micronutrient deficiency, preventing weight loss that can lead to frailty syndrome.

Frailty and the presence of a caregiver were only associated in the CFVI-20 and probably indicates a reverse causality, that is: the frail older adult needs a caregiver to assist him in the activities of daily living. Thus, caregivers demand or presence would be markers of existing fragility.

Hospitalization was associated with frailty in both instruments – a result also confirmed in meta-analysis. Although chronic diseases are not necessarily accompanied by frailty, acute episodes of certain illnesses or exacerbation of chronic conditions may increase the risk of adverse events, leading to frailty in older people and, consequently, to unfavorable clinical outcomes, such as hospitalization. Hospitalizations for any reason cause important changes in older adults’ daily life.

Comparing instruments capable of identifying frailty in community-dwellers older adults may contribute to the search for an applicable instrument, especially at primary healthcare and places with few professionals specialized in geriatrics. Despite their peculiarities, both scales were akin in identifying associated factors or fragility markers and may be useful to health teams in outlining components that most interfere with fragility and in identifying older adults who require specialized care. The CFVI-20 seems more useful in a context of few resources, for determining a smaller number of patients to be referred for comprehensive geriatric assessment.
Our study has some limitations. The main limitation is the lack of a comprehensive geriatric assessment, which would allow other simultaneous analyses of the two instruments. However, this procedure was separately performed in the instruments validation. As this is a cross-sectional study, we could not establish causal relationships. Moreover, both instruments include self-reported components, relying on the memory of the interviewee or their caregiver. However, our study carefully evaluated a representative random sample of community-dwellers older adults using validated and reliable instruments.

CONCLUSIONS

The EFS and CFVI-20 instruments showed moderate agreement and strong positive correlation, as well as similar features for identifying associations. However, the prevalence of frailty differed between them. This result stresses the need to standardize the instrument for measuring frailty in community-dwellers older adults.

REFERENCES

1. Xue QL. The frailty syndrome: definition and natural history. Clin Geriatr Med. 2011;27(1):1-15. https://doi.org/10.1016/j.cger.2010.08.009

2. Clegg A, Young J, Iliffe S, Rikkert MO, Rockwood K. Frailty in elderly people. Lancet. 2013;381(9868):752-62. https://doi.org/10.1016/S0140-6736(12)62167-9

3. Morley JE, Vellas B, Kan GA, Anker SD, Bauer JM, Bernabei R, et al. Frailty Consensus: a call to action. J Am Med Dir Assoc. 2013;14(6):392-7. https://doi.org/10.1016/j.jamda.2013.03.022

4. Cesari M, Prince M, Thiagarajan JA, Carvalho IA, Bernabei R, Chan P, et al. Frailty: an emerging public health priority. J Am Med Dir Assoc. 2016;17(3):188-92. https://doi.org/10.1016/j.jamda.2015.12.016

5. Dent E, Kowal P, Hoogendijk EO. Frailty measurement in research and clinical practice: a review. Eur J Intern Med. 2016;31:3-10. https://doi.org/10.1016/j.ejim.2016.03.007

6. Vermeiren S, Vella-Azzopardi R, Beckwée D, Habbig AK, Scafoglieri A, Jansen B, et al. Frailty and the prediction of negative health outcomes: a meta-analysis. J Am Med Dir Assoc. 2016;17(12):1163.e1-1163.e17. https://doi.org/10.1016/j.jamda.2016.09.010

7. Chen X, Mao G, Leng SX. Frailty syndrome: an overview. Clin Interv Aging. 2014;9:43341. https://doi.org/10.2147/CIA.S45300

8. Clegg A, Rogers L, Young J. Diagnostic test accuracy of simple instruments for identifying frailty in community-dwelling older people: a systematic review. Age Ageing. 2015;44(1):148-52. http://doi: 10.1093/ageing/afu137

9. Lacas A, Rockwood K. Frailty in primary care: a review of its conceptualization and implications for practice. BMC Med. 2012;10:4. https://doi.org/10.1186/1741-7015-10-4

10. Bouillon K, Kivimaki M, Hamer M, Sabia S, Fransson EI, Singh-Manoux A, et al. Measures of frailty in population-based studies: an overview. BMC Geriatr. 2013;13:64. https://doi.org/10.1186/1471-2318-13-64

11. Vries NM, Staal JB, Ravensberg CD, Hobbelen JS, Olde-Rikkert MG, Nijhuis-van der Sanden MW. Outcome instruments to measure frailty: a systematic review. Ageing Res Rev. 2011;10(1):104-14. http://doi.org/10.1016/j.arr.2010.09.001

12. Rolfsen DB, Majumdar SR, Tsuyuki RT, Tahir A, Rockwood K. Validity and reliability of the Edmonton Frail Scale. Age Ageing. 2006;35(5):526-9. https://doi.org/10.1093/ageing/af041

13. Fabrício-Wehbe SCC, Schiaveto FV, Vendrusculo TRP, Haas VJ, Dantas RAS, Rodrigues RAP. Adaptação cultural e validade da Edmonton Frail Scale - EFS em uma amostra de idosos brasileiros. Rev. Latino-Am. Enfermagem. 2009;17(6):1043-9. https://doi.org/10.1590/S0104-11692009000600018

14. Moraes EN, Carmo JA, Moraes FL, Azevedo RS, Machado CJ, Montilla DER. Clinical-Functional Vulnerability Index-20 (CFCV-20): rapid recognition of frail older adults. Rev Saude Publica. 2016;50:81. https://doi.org/10.1590/s1518-8787.2016050006963
15. Chang CI, Chan DC, Kuo KN, Hsiung CA, Chen CY, Ching-I. Prevalence and correlates of geriatric frailty in a northern Taiwan community. J Formos Med Assoc. 2011;110(4):247-57. https://doi.org/10.1016/S0929-6646(11)60037-5
16. Cesari M, Gambassi G, Kan GA, Vellas B. The frailty phenotype and the Frailty Index: different instruments for different purposes. Age Ageing. 2014;43(1):10-2. https://doi.org/10.1093/ageing/aft160
17. Jung HW, Kim SW, Ahn S, Lim JY, Han JW, Kim TH, et al. Prevalence and outcomes of frailty in Korean elderly population: comparisons of a multidimensional frailty index with two phenotype models. PLoS One. 2014;9(2):e87958. https://doi.org/10.1371/journal.pone.0087958
18. García-Peña C, Ávila-Funes JA, Dent E, Gutiérrez-Robledo L, Pérez-Zepeda M. Frailty prevalence and associated factors in the Mexican Health and Aging Study: a comparison of the Frailty Index and the phenotype. Exp Gerontol. 2017;79:55-60. https://doi.org/10.1016/j.exger.2016.03.016
19. Harmand MGC, Meillon C, Bergua V, Teguo MT, Dartigues JF, Avila-Funes JA, et al. Comparing the predictive value of three definitions of frailty: results from the Three-City Study. Arch Gerontol Geriatr. 2017;72:153-63. https://doi.org/10.1016/j.archger.2017.06.005
20. Ramírez Ramírez JU, Cadena Sanabria MO, Ochoa ME. Aplicación de la Escala de Fraildad de Edmonton en población colombiana. Comparación con los criterios de Fried. Rev Esp Geriatr Gerontol. 2017;52(6):322-5. https://doi.org/10.1016/j.regg.2017.04.001
21. Moraes EN, Moraes FL. Avaliação multidimensional do idoso. 5.ed. Belo Horizonte, MG: Foliúm; 2016. (Coleção Guia de Bolso em Geriatria e Gerontologia, 1).
22. Silva RJS, Smith-Menezes A, Tribess S, Rómulo-Perez V, Virtuoso Júnior JS. Prevalência e fatores associados à percepção negativa da saúde em pessoas idosas no Brasil. Rev Bras Epidemiol. 2012;15(1):49-62. https://doi.org/10.1590/S1415-790X2012000100005
23. Medeiros SM, Silva LSR, Carneiro JA, Ramos GCF, Barbosa ATF, Caldeira AP. Fatores associados à autopercetção negativa da saúde entre idosos não institucionalizados de Montes Claros, Brasil. Cienc Saude Coletiva. 2016;21(11):3377-86. https://doi.org/10.1590/1413-812320152111.18752015
24. Landis JR, Koch GG. The measurement of observer agreement for categorical data. Biometrics. 1977;33(1):159-74. https://doi.org/10.2307/2529310
25. Figueiredo Filho DB, Silva Júnior JA. Desvendando os mistérios do Coeficiente de Correlação de Pearson (r). Rev Política Hoje. 2009;18(1):115-46.
26. Da Mata FAF, Pereira PPS, Andrade KRC, Figueiredo ACMG, Silva MT, Pereira MG. Prevalence of frailty in Latin America and the Caribbean: a systematic review and meta-analysis. PLoS One. 2016;11(8):e0160019. https://doi.org/10.1371/journal.pone.0160019
27. Xie B, Larson JL, Gonzalez R, Pressler SJ, Lustig C, Arslanian-Engoren C. Components and indicators of frailty measures: a literature review. J Frailty Aging. 2017;6(2):76-82. https://doi.org/10.14283/jfa.2017.11
28. Herr M, Robine JM, Pinot J, Arvieu JI, Ankri J. Polypharmacy and frailty: prevalence, relationship, and impact on mortality in a French sample of 2350 old people. Pharmacoepidemiol Drug Saf. 2015;24(6):637-46. https://doi.org/10.1002/pds.3772
29. Saum KU, Schöttker B, Meid AD, Holleczek B, Haefeli WE, Hauer K, et al. Is polypharmacy associated with frailty in older people? Results from the ESTHER Cohort Study. J Am Geriatr Soc. 2017;65(2):e27-e32. https://doi.org/10.1111/jgs.14718
30. Pagotto V, Bachion MM, Silveira EA. Autoavaliação da saúde por idosos brasileiros: revisão sistemática da literatura. Rev Panam Salud Publica. 2013;33(4):302-10.

Authors’ Contribution: Study conception and planning: JAC, ASOS, LCM, FMC, ENM, APC. Data collection: JAC, ASOS, FMC. Data analysis and interpretation: JAC, LCM, FMC, APC. Manuscript preparation and draft: JAC, ASOS, LCM, FMC, ENM, APC. Manuscript critical review: JAC, LCM, FMC, ENM, APC. Final approval: All authors. Public responsibility for the content of this article: JAC.

Conflict of Interest: The authors declare no conflict of interest.