Contribution of Space Factors to Decisions on Comfort of Healthy Building Design

Qi Zhen¹, Qiong Huang¹ and Qi Zhang¹
¹Department of Architecture, Tianjin University, 92 Weijin Street, Tianjin, China

zhenqi@tju.edu.cn; qhuang@tju.edu.cn; zhangqi_arch@vip.163.com

Abstract. Healthy buildings are closely related to human health and comfort. Based on the literature survey, this paper explores the definition of comfort in healthy buildings. Through literature analysis and expert interviews, 16 building space factors affecting building indoor environment were identified. To introduce the building space factors into the research on the comfort evaluation of healthy buildings, 152 questionnaires were sent out and the relationship between these factors and building indoor environment comfort evaluation and their rankings were discussed. Data analysis includes the reliability analysis, normal distribution test, Pearson correlation coefficient and MANOVA. The results have shown that the perceived comfort is strongly influenced by the building space factors, and the relationship is complicated. The rankings from professionals and non-professionals were different. Several factors have been identified as key influencing factors. Besides, the perceived comfort is also related to other factors such as age, gender, etc. Such discovery primarily provides an ordering of building space design factors, which will contribute to the buildings’ health, comfort and sustainable development through architectural design from an architect’s perspective.

1. Introduction
The building design aims to provide a healthier and more comfortable environment for people. People stay indoors for more than 90% of the time [1], so most countries believe that the indoor environment has a major impact on human health and well-being [2][3]. Studies have shown that healthier buildings can reduce occupants’ stress [4], increase productivity, and reduce health care costs by 1-5% [5]. Therefore, to determine the relationship between building environment and comfort is conducive to the design and operation of healthy buildings.

In the indoor environment, the literature review examining the comfort of building occupants mainly focuses on the impact of physical environmental conditions on overall IEQ satisfaction, such as noise, light, and temperature [6][7][8]. The influence of architectural design on the indoor environment is mainly reflected in the space characteristics, and the building space factors can interact with occupants [9]. Studies have shown that the architectural decoration and light color have little effect on thermal comfort [10][11], but the building space factors exert a significant influence on overall IEQ satisfaction [12]. Calculating the impact of spatial factors on human comfort and their importance index can help architects design healthier buildings.

1.1. Connotation and elements of healthy buildings
In 2000, the healthy building was explained at the Healthy Building Conference in Espoo, Finland. In addition to temperature, humidity, ventilation and light, the healthy building is also seen as a way to build an indoor environment, including layout, color and personal psychological needs [13]. In
October 2014, the International Well Building Institute (IWBI) in the United States released the world’s first healthy building assessment standard, The Well Building Standard V1 (WELL). The WELL is divided into seven health concepts, i.e. air, water, nutrition, light, fitness, comfort and spirit [14]. In March 2015, the standard was officially introduced into China by the Green Business Certification (GBCI) and IWBI. The Architectural Society of China released the Healthy Building Evaluating Standard T/ASC02-2016 (HBES) on January 6, 2017. The evaluation index system includes six categories: water, air, comfort, fitness, humanities and services [15]. The ASHB first defines a healthy building as a building that provides a healthier environment, facilities and services for building users, promotes physical and mental health, and improves health performance, based on the realization of building functions.

The concept of a healthy building is believed to be a ‘built environment that encourages positive well-being of human beings’ [16]. For decades, researchers have conducted studies to investigate the relationship between human health and the built environment. Different factors in a building affect its safety and hygiene. For example, factors such as lighting, quality of air, thermal comfort, aural comfort, colors, and textures are known to have a positive relationship with a healthy built environment [17]. Apart from these physical dimensions, some immeasurable aspects, such as aesthetics, job satisfaction, and social relationships, play important roles in the state of general well-being [18].

1.2. Comfort of healthy buildings

The comfort specified in the WELL focus on significantly reducing the most common causes of physiological disturbances, distraction and irritation, and largely enhancing acoustics, ergonomics, smell and thermal comfort to avoid stress and injury and improve individual comfort, work efficiency and health level. HBES incorporates natural light and lighting into comfort evaluation. As shown in Table 1, the concept of comfort in the standard includes three elements of indoor environmental quality (sound, heat, vision) and ergonomics. However, even if the requirements of existing standards are met, not all occupants are satisfied with the indoor environment [19].

A healthy building should provide a comfortable indoor environment for occupants, which makes them healthy, both physically and psychologically [20]. The importance of indoor environment has reached a consensus among many researchers. Comfort perceived by human is disrupted by many (individual, social, and architectural) factors. Jaakola believes that different determinants simultaneously affect both human health and comfort, and sometimes the effects may be synergistic [21]. They combine to form an overall comfort experience, which is the concept of comfort that is discussed in this paper, that is, the occupants’ overall satisfaction with the indoor environment.

Standard	Comfort characteristics	Comfort characteristics	Standard
WELL	Accessibility design standard in ADA	Indoor artificial cold/heat source	HBES
Ergonomics: vision and physiology	Ergonomics	Acoustic environment	
Outdoor noise intrusion	Indoor noise	Thermal and humid environment	
Reverberation time	Sound masking	Light environment	
Silencing surface	Sound barrier		
Thermal comfort	Independent thermal control		
Radiant thermal comfort	Olfactory comfort		

1.3. Hypotheses
The purpose of this paper is to confirm the impact of building space factors on human comfort, to enrich the terms of comfort characteristics in standard of healthy buildings. Obviously, it is important for architects to make decisions to optimize building design and thus to improve space comfort. The lack of space quality standards has led architects to rely entirely on personal experience in optimizing space design, and unfortunately their preferences are not the same as those of occupants. After interviews and questionnaires, this paper discussed whether all spatial factors contribute to comfort and counted the rankings of space factors that occupants consider important. This paper also attempted to identify several factors that unrelated to space but affect the comfort experience. These factors include occupants’ age, gender, etc.

We attempted to make three hypotheses:

Hypothesis 1: There are several building space factors that are important for people to evaluate whether a room is comfortable or not.

Hypothesis 2: When physical environmental conditions meet the standards, assessing whether the indoor environment is comfortable mostly depends on the spatial conditions that are of high importance to people’s comfort.

Hypothesis 3: Factors unrelated to space such as age, gender, etc., also have an impact on people’s overall comfort evaluation.

2. Determination of building space factors

The internal space of the building is separated from the natural space for some purpose by people with the use of a certain material and technical means. It has the closest relationship with people and has the greatest impact on people. It should have a beautiful form under the premise of meeting functional requirements, and thus meet people’s mental and aesthetic needs.

Code	Item	Grade 1	Grade 7
A1	Floor dimension b	Too small	Too large
A2	Height of ceilings b	Too short	Too high
A3	Shape of rooms a	Unsatisfactory	Satisfactory
B1	Openness of spaces b	Too closed	Too open
B2	Size of windows b	Too small	Too large
B3	Orientation of windows a	Unsatisfactory	Satisfactory
B4	Presence of natural images a	Unsatisfactory	Satisfactory
B5	Indoor/outdoor sunshades a	Unsatisfactory	Satisfactory
B6	Entrance/exit location a	Unsatisfactory	Satisfactory
C1	Separation in the room (column, mezzanine, etc.) a	Unsatisfactory	Satisfactory
C2	Layout a	Unsatisfactory	Satisfactory
C3	Function districts a	Unsatisfactory	Satisfactory
D1	Color of ground/wall/ceiling a	Unsatisfactory	Satisfactory
D2	Material of ground/wall/ceiling a	Unsatisfactory	Satisfactory
D3	Texture of ground/wall/ceiling a	Unsatisfactory	Satisfactory
D4	Other decorations a	Unsatisfactory	Satisfactory

* These items have a 7-point scale: 1-being not satisfactory, 7-being satisfactory.

* These items are two-sided, the best score is 4, both grade 1 and 7 being most negative. For analysis, we re-encode them into a negative-positive 4-point scale (1 and 7: mark 1; 2 and 6: mark 2; 3 and 5: mark 3; 4: mark 4)

In the 21st century, study about spatial attribute perception started [22]. Most studies examined single space attribute, such as size, window-wall ratio, and color. The perception content of these space attributes includes space forms, such as spaciousness, closure, complexity, and organization, and general preferences, such as like and satisfaction [23]. Other studies have examined the relationship between certain human emotions (like pleasure, stress and anxiety) or their work efficiency and architectural design features [24]. It is believed that architectural design factors are important for
human experience [25]. We summarized the building space factors discussed in the literature and interviewed 50 professionals. According to their comprehensive results, we classified the building space factors, which are divided into four categories (dimension, enclosure, layout and separation, color and texture) and a total of 16 factors, as shown in Table 2. For the convenience of further study, these impact factors were coded.

3. Methodology

3.1. Questionnaire development

The purpose of the questionnaire survey is to investigate different views on the importance of the above spatial factors, and to determine people’s satisfaction with different building space factors and overall environmental satisfaction. Besides, there are people’s social contact, performance and emotion, and this paper also verified their relevance. Questionnaires with a 7-point semantic differential scale were used to further analyze these identified influencing factors.

There were four main parts in the questionnaire. Section 1 was the background information of the respondents. Five questions (Table 3) were designed to gather basic information about respondents (gender, age, occupation, daily working hours and work experience) which was believed to affect the overall comfort evaluation and help ensure the authenticity and validity of the data collected at the same time. In Section 2, 16 questions corresponding to 16 spatial factors (Table 2) were designed to determine the importance of each factor affecting healthy buildings and their rankings from its response. Section 3 was about other factors, including related indoor environmental quality (IEQ) factors and personal control degree, and the respondents can add other important factors that have not been mentioned before (Table 3). Section 4 was about the space atmosphere, performance and emotion of respondents (Table 3).

Basic information	Personal control	Space atmosphere	Performance	Emotions
Gender	Flexible selection of stations c	Privacy d	Work enthusiasm d	Fatigue e
Age	Sunshade c	Crowding e	Work efficiency d	Anxiety e
Occupation	Window opening c		Depression e	
Working hours	Temperature c			
Work experience	Light c	Noise c	Laziness e	

c These items have a 7-point scale: 1-being no control at all, 7-full control.
d These items have a 7-point scale: 1-very low, 7-very high.
e These items have a 7-point scale: 1-being agree, 7-being disagree.

3.2. Data collection

The questionnaires were distributed to respondents by email or QR code. According to the purpose of the questionnaire survey, the target samples from several cities in different regions such as Tianjin, Beijing, etc. were selected, including experienced professionals such as architects and non-professionals. Therefore, to determine the key factors that affect the comfort of the building space environment from their response are more scientific and reasonable.

A total of 152 questionnaires were sent out from March to April 2019, and 151 valid responses were collected with an effective response rate of 99%. The background information about the respondents is shown in Table 4.
Table 4. Distribution of the returns from different groups.

Male/Female ratio	Age	Daily working hours	Work experience (year)	Professional/non-professional ratio
1:1.07	under 18	1.99%	3~5	Less than 1
	18~25	23.18%	5~8	1~3
	26~30	41.72%	8~11	3~5
	31~40	14.57%	Over 11	Over 5
	41~50	11.26%		
	51~60	7.28%		

3.3. analysis
Data analysis was divided into three steps. First, reliability analysis and normal distribution test were carried out. Then, Pearson correlation coefficient was used to analyze the relationship between building space factors and the overall comfort of indoor environment. Finally, the effects of other factors on indoor environmental comfort were analyzed. SPSS 22.0 was used to analyze the data and research the principal components of impact factors influencing the comfort of healthy building.

4. Results and discussion

4.1. Reliability analysis and normal distribution test

Table 5. Reliability Statistics of the factors.

Cronbach's Alpha	Cronbach's Alpha Based on Standardized Items
0.898	0.896

Table 6. Normal distribution test of the factors.

	A1	A2	A3	B1	B2	B3	B4	B5
N	151	151	151	151	151	151	151	151
Mean	3.72	3.98	4.49	3.87	3.62	4.50	4.03	4.21
Std. Deviation	1.167	1.023	1.356	1.287	1.258	1.708	1.645	1.490
Skewness	-0.154	0.002	-0.101	0.162	-0.556	-0.181	-0.006	-0.150
Std. Error of Skewness	0.097	0.179	0.197	0.197	0.197	0.197	0.197	0.197
Kurtosis	1.636	2.572	0.197	0.852	0.054	-0.676	-0.653	-0.226
Std. Error of Kurtosis	0.392	0.392	0.392	0.392	0.392	0.392	0.392	0.392

	B6	C1	C2	C3	D1	D2	D3	D4
N	151	151	151	151	151	151	151	151
Mean	4.32	4.05	4.12	3.88	4.17	4.20	4.11	3.99
Std. Deviation	1.378	1.496	1.469	1.553	1.375	1.361	1.329	1.369
Skewness	-0.017	0.054	-0.017	0.169	0.215	0.003	0.084	-0.051
Std. Error of Skewness	0.097	0.179	0.197	0.197	0.197	0.197	0.197	0.197
Kurtosis	0.392	-0.049	0.050	-0.421	0.040	0.310	0.258	0.056
Std. Error of Kurtosis	0.392	0.392	0.392	0.392	0.392	0.392	0.392	0.392

Cronbach’s alpha is often used to test the internal consistency of collected data. The reliability is
acceptable if the Cronbach’s alpha value is more than 0.7 [26]. Cronbach’s alpha was used in this study to test the internal consistency among the impact factors. The Cronbach’s coefficient was more than 0.7, as shown in Table 5.

The normality test of space comfort evaluation was conducted by using the kurtosis and skewness coefficients. As shown in Table 6, all the skewness and kurtosis coefficients except A1 and A2 were less than 1, so it could be considered that the results are approximately normally distributed.

4.2. Rankings of factors and correlation analysis

With collected data, the correlation rank of factors was calculated. As shown in the Table 7, rankings from professionals and that from non-professionals showed inconsistent performance. Layout and separation, color and texture were regarded as important to the indoor environment comfort by all the respondents. However, compared with non-professionals, professionals think that texture had little impact on comfort. Professionals believed that all three sub-factors of dimension were very important, while non-professionals believed floor dimension and height of ceilings were not so important. As far as Enclosure was concerned, the size of the window was considered important by professionals, followed by the openness of the space and interior and exterior shading measures, while non-professionals considered the openness of the space to be more important, followed by shading and window size. The reason for the difference in ranking was believed to be that professionals were more sensitive to factors such as space scale and window-wall ratio because they were engaged in architectural design. Of course, it was also influenced by personal preference. Based on the overall ranking, some factors (floor dimension / orientation of windows, etc.) were considered to have a weak relationship with the overall comfort of the room.

Pearson correlation coefficient was used to measure the relationship between the satisfaction degree of 16 factors and the overall satisfaction degree of overall comfort. As shown in the Table 8, there was a significant correlation between the evaluation of 16 factors and the overall comfort evaluation. In general, factors with obvious correlation were also considered important except four (shape of rooms, openness of spaces, size of windows and texture of ground/wall/ceiling). Dimension (A1-A3) was related to crowding degree of the room, work enthusiasm and work efficiency. Enclosure (B4-B6), layout and separation (C1-C3) and color and texture (D1-D4) were related to privacy and crowding of the room and work enthusiasm, while only B4 was related to work efficiency. Building space factors had little influence on the evaluation results of emotion.

Table 7. Correlation index and ranking of the factors.

Groups	Code	Item	Correlation index and ranking					
			Professional	non-professional	All			
Dimension	A1	Floor dimension	0.88	7	0.71	16	0.77	15
	A2	Height of ceilings	0.92	3	0.77	13	0.82	10
	A3	Shape of rooms	0.86	9	0.84	4	0.85	3
Enclosure	B1	Openness of spaces	0.84	10	0.85	3	0.85	3
	B2	Size of windows	0.90	5	0.80	11	0.83	9
	B3	Orientation of windows	0.80	15	0.78	12	0.79	12
	B4	Presence of natural images	0.82	13	0.77	13	0.79	12
	B5	Indoor/outdoor sunshades	0.84	10	0.81	10	0.82	10
	B6	Entrance/exit location	0.82	13	0.72	15	0.75	16
Layout	C1	Separation in the room	0.96	1	0.87	1	0.90	1
and separation	C2	Layout	0.92	3	0.82	9	0.85	3
	C3	Function districts	0.90	5	0.83	7	0.85	3
Color and texture	D1	Color of ground/wall/ceiling	0.96	1	0.87	1	0.90	1
	D2	Material of ground/wall/ceiling	0.84	10	0.84	4	0.84	8
	D3	Texture of ground/wall/ceiling	0.72	16	0.83	7	0.79	12
	D4	Other decorations	0.88	7	0.84	4	0.85	3

Factors with high correlation.
Table 8. Pearson correlation coefficient of the factors with the overall comfort.

Overall comfort	Pearson Correlation	Sig. (2-tailed)
A1	.338**	.000
A2	.231**	.004
A3	.391**	.000
B1	.180*	.027
B2	.191	.019
B3	.380**	.000
B4	.503**	.000
B5	.451**	.000
N	151	151

Table 9. MANOVA of the factors that affect the degree of satisfaction with the overall comfort.

Source	Type III Sum of Squares	Mean Square	F	Sig.	Partial Eta Squared
Gender	1.538	1.538	1.118	.292	.008
Age	13.511	2.702	1.965	.088	.067
Daily working hours	9.662	3.221	2.343	.076	.049
Work experience	4.711	1.570	1.142	.334	.024
Flexible selection of stations	9.579	1.368	1.317	.250	.083
Control of sunshade	6.370	1.062	1.021	.416	.057
Control of window opening	2.577	.368	.354	.926	.024
Control of temperature	7.744	1.106	1.064	.392	.068
Control of light	5.682	.812	.781	.605	.051
Control of noise	1.925	.275	.265	.966	.018
Control of air quality	9.074	1.296	1.247	.284	.079

4.3. Evaluation of factors unrelated to space

Multivariate Analysis of Variance was used to analyze the effect of factors unrelated to space (age, gender, etc.) on the overall comfort evaluation. As shown in Table 9, all the eleven factors had little influence on the evaluation of overall comfort in the statistical sense. However, after statistical analysis, compared with women, men had a higher tolerance for the environment. With the increase of age, daily working hours and work experience, the evaluation of environmental comfort decreased.

5. Conclusion

In this study, questionnaire survey was used to check whether the building space factors had influence on comfort evaluation, thus contributing to the comfort decision-making in healthy building design. The results proved the three previous hypotheses. First, 11 of the 16 spatial factors selected had significant influence on the overall comfort evaluation. Secondly, in general, when the physical environmental conditions met the standards, the factors considered to be more important had a higher correlation with overall comfort. Some of the anomalies were considered to come from three reasons: professional experience, sample size, and personal preference. Finally, there were some factors (personal characteristics, personal control) that interfere with comfort assessment, although not obviously.

In this study, only questionnaires were used for investigation and analysis, the indoor environment quality of the buildings was not specifically measured, which was more convenient in the laboratory. Therefore, it is suggested that future research can quantify the impact of building space factors on comfort evaluation based on laboratory studies.
Acknowledgments

This research was financially supported by the National Key Research and Development Program of China (Grant No. 2016YFC0700200).

References

[1] Hidayetoglu M L, Yildirim K and Cagatay K 2010 The effects of training and spatial experience on the perception of the interior of buildings with a high level of complexity Sci. Res. Essays 5 (5) pp 428–39
[2] CEC 2004 The European environment and health action plan 2004-2010 COM (2004) 416 final vol I SEC (2004)729
[3] WHO 2004 Regional office for Europe Declaration EU/04/504627/6
[4] Salleh M R 2008 Life event, stress, and illness Malays. J. Med. Sci. 15 (4) pp 9–18
[5] Morton B and Ramos J 2014 The drive toward healthier buildings 2014: the market drivers and impact of building design and construction on occupant health, well-being and productivity Smart Mark. Rep. Dodge Data Anal
[6] Choi J H and Aziz A 2009 Loftness V. Decision support for improving occupant environmental satisfaction in office buildings: The relationship between subset of IEQ satisfaction and overall environmental satisfaction Proceedings of the 9th International Conference Healthy Buildings Syracuse NY USA paper p 747
[7] Lai A C K, Mui K W, Wong L T and Law L Y 2009 An evaluation model for indoor environmental quality (IEQ) acceptance in residential buildings. Energy Build 41(9) pp 930-6
[8] Astolfi A and Pellerey F 2008 Subjective and objective assessment of acoustical and overall environmental quality in secondary school classrooms. J Acoust Soc Am 123(1) pp 163-73
[9] Van Leeuwen J P and Wagter H 1997 Architectural design-by-features in: R. Junge (Ed.) CAAD Futures Springer Dordrecht
[10] Fanger P O, Breum NO and Jerking E 1997 Can colour and noise influence man’s thermal comfort? Ergonomics 20(1) pp 11-8
[11] Rohles F H and Wells W V 1977 The role of environmental antecedents on subsequent thermal comfort ASHRAE Trans 83(2) pp 21-9
[12] Xu H, Huang Q and Zhang Q 2018 A study and application of the degree of satisfaction with indoor environmental quality involving a building space factor Building and Environment 143 pp 227–39
[13] Loftness V, Hakkinen B, Adan O and Nevalainen A 2007 Elements that contribute to healthy building design Environmental Health Perspectives 115(6) pp 965–70
[14] The WELL building standard. v1 with Q2 2017. [EB/OL]
[15] Wang Q Q, Meng C and Li G Z 2017 Introduction to the preparation of T/ASC 02—2016 Assessment Standard for Healthy Building Building Science 33(02) pp 163-6
[16] Ho D C W, et al. 2004 Assessing the health and hygiene performance of apartment buildings Facilities 22 (3/4) pp 58–69
[17] Rousseau D and Wasley J 1997 Healthy by design, Building and Remodeling Solutions for Creating Healthy Homes Hartley & Marks Publishers Inc. WA
[18] Samuelsson L 2000 Quality assurance of the indoor environment in schools Offices and dwellings
[19] Frontczak M and Wargocki P 2011 Literature survey on how different factors influence human comfort in indoor environments Building and Environment 46(4) pp 922–37
[20] Grawitch M J and Ballard D W 2016 The Psychologically Healthy Workplace: Building a Win-win Environment for Organizations and Employees American Psycho- logical Association
[21] Jaakola J K 1998 The office environment model: a conceptual analysis of the sick building syndrome Indoor Air Journal (suppl. 4) pp 7-16
[22] Stamps A E III 2010 Effects of permeability on perceived enclosure and spaciousness Environ. Behav. 42 (6) pp 864–86
[23] Stamps A E III 2011 Effects of boundary height and horizontal size within boundary on
perceived enclosure *Percept. Mot. Skills* 113 (3) pp 995–8

[24] Kwallek N, Lewis C M and Robbins A S 1988 Effects of office interior color on workers’ mood and productivity *Percept. Mot. Skills* 66 pp 123–8

[25] Ergan S, Shi Z and Yu X 2018 Towards quantifying human experience in the built environment: A crowdsourcing based experiment to identify influential architectural design features *Journal of Building Engineering* 20(May) pp 51–9

[26] Aigbavboa C and Thwala W 2013 Confirmatory Factor Analysis of Neighbourhood Features Amongst South African Low-income Housing Occupants *American Society of Civil Engineers* pp 1107-22