Pharmacogenetics of glucocorticoid replacement could optimize the treatment of congenital adrenal hyperplasia due to 21-hydroxylase deficiency

Ricardo P. P. Moreira,1 Alexander A. L. Jorge,2 Larissa G. Gomes,1 Laura C. Kaupert,1 João Massud Filho,3 Berenice B. Mendonca,1 Tânia A. S. S. Bachega1

1Unidade de Endocrinologia do Desenvolvimento, Laboratório de Hormônios e Genética Molecular LIM 42, Disciplina de Endocrinologia da Faculdade de Medicina da Universidade de São Paulo, São Paulo/SP, Brazil. 2Unidade de Endocrinologia Genética - LIM 25, Disciplina de Endocrinologia da Faculdade de Medicina da Universidade de São Paulo, São Paulo/SP, Brazil. 3Curso de Especialização em Medicina Farmacêutica da Universidade Federal de São Paulo – UNIFESP, São Paulo/SP, Brazil.

INTRODUCTION: 21-hydroxylase deficiency is an autosomal recessive disorder that causes glucocorticoid deficiency and increased androgen production. Treatment is based on glucocorticoid replacement; however, interindividual variability in the glucocorticoid dose required to achieve adequate hormonal control has been observed.

OBJECTIVE: The present study aimed to evaluate the association between polymorphic variants involved in glucocorticoid action and/or metabolism and the mean daily glucocorticoid dose in 21-hydroxylase deficiency patients.

METHODS: We evaluated 53 patients with classical forms of 21-hydroxylase deficiency who were receiving cortisone acetate. All patients were between four and six years of age and had normal androgen levels.

RESULTS: The P450 oxidoreductase A503V, HSD11B1 rs12086634, and CYP3A7*1C variants were found in 19%, 11.3% and 3.8% of the patients, respectively. The mean ± SD glucocorticoid dose in patients with the CYP3A7*1C and wild-type alleles was 13.9 ± 0.8 and 19.5 ± 3.2 mg/m²/d, respectively. We did not identify an association between the P450 oxidoreductase or HSD11B1 allelic variants and the mean glucocorticoid dose.

CONCLUSION: Patients carrying the CYP3A7*1C variant required a significantly lower mean glucocorticoid dose. Indeed, the CYP3A7*1C allele accounted for 20% of the variability in the cortisol acetate dose. The analysis of genes involved in glucocorticoid metabolism may be useful in the optimization of treatment of 21-hydroxylase deficiency.

KEYWORDS: 21-hydroxylase deficiency; Glucocorticoid replacement therapy; Pharmacogenetics; Polymorphism; CYP3A7*1C allele.

Received for publication on February 18, 2011; First review completed on March 16, 2011; Accepted for publication on May 2, 2011
E-mail: tbachega@usp.br
Tel.: 55 11 3069-7512

INTRODUCTION

Congenital adrenal hyperplasia (CAH) due to 21-hydroxylase deficiency is a common autosomal recessive disorder, caused by mutations in the 21-hydroxylase gene (CYP21A2). These mutations result in decreased glucocorticoid (GC) secretion with or without mineralocorticoid deficiency and excess androgens.1,2 GC replacement therapy significantly improves the prognosis of CAH. The goal of GC replacement therapy is to restore the levels of the steroid hormones to the normal range and to decrease adrenocorticotropic stimulation, which would suppress the effects of androgen overproduction. The aims of GC replacement are to avert adrenal crisis and to allow normal growth and puberty development. Similarly, mineralocorticoid replacement restores serum electrolyte levels and water balance without excessive salt retention.

During growth, preference is given to short half-life glucocorticoids (e.g., hydrocortisone acetate) that avoid growth suppression and weight gain, which are commonly observed when long half-life GCs (e.g., prednisone or dexamethasone) are used.1 Among the GCs with a short half-life, cortisone acetate (CA) is one therapeutic option for the treatment of children with CAH.3 Cortisone acetate is converted to cortisol by the action of 11β-hydroxysteroid dehydrogenase 2 (11β-HSD2), an enzyme that is expressed in the placenta and in the adrenal gland.4 The 11β-HSD2 enzyme catalyzes the conversion of cortisol to cortisone, which is a weak glucocorticoid with minimal mineralocorticoid activity.5 This conversion is important to ensure the maintenance of mineralocorticoid receptor (MR) levels in the adrenal cortex, which is necessary for the proper regulation of sodium and potassium homeostasis.6 The expression of 11β-HSD2 is under the control of glucocorticoids, and its activity is regulated by the glucocorticoid receptor (GR), which is a member of the ligand-activated transcription factor superfamily.7 The GR binds to the glucocorticoid response element (GRE) of the 11β-HSD2 gene and activates its transcription.8 Therefore, the glucocorticoid dose is critical to ensure the proper expression of 11β-HSD2 in the adrenal cortex, which is necessary to maintain sodium and potassium homeostasis.9
The medical records of 53 patients with CAH were reviewed from a group of 213 classical CAH patients who underwent glucocorticoid replacement therapy in our hospital. The selection criteria included the use of CA, good compliance and hormonal control between the ages of 4 and 6 years (before starting pubertal development). Adequate control was defined by normal auxological parameters and biochemical assessments according to age during the two years of this study. The assessment comprised eight laboratory measurements.

Testosterone and androstenedione levels were maintained at levels lower than 0.48 nmol/l (14 ng/dl) and 69.9 pmol/L (2 ng/ml), respectively. Bone age was evaluated yearly using the Greulich-Pyle system. No patient presented with adrenal crisis during this period or clinical/hormonal parameters suggestive of overtreatment (e.g., Cushing features, decreased growth rate or 17-hydroxyprogesterone levels less than 36 nmol/l). Thirty-eight patients (27 females) had the salt-wasting (SW) form, which was defined as the development of dehydration, a sodium level less than 130 mmol/l and high plasminic renin activity in the neonatal period. Fifteen patients (11 females) had the simple virilizing (SV) form, which was characterized by ambiguous genitalia in girls and signs of postnatal virilization in both sexes without dehydration or salt waste. At diagnosis, all patients had basal 17-hydroxyprogesterone levels that were greater than 50 ng/ml. Daily CA doses (mg/m²/day) were evaluated retrospectively. The CA doses were administered three times a day, and the highest dose was administered at bedtime. Patients with the SW form also received fludrocortisone 50 ± 25 μg/day in the morning. No patient received gonadotropin-releasing hormone analogs, aromatase inhibitors or antiandrogenics.

Body mass index (BMI) was calculated as the weight (in kilograms) divided by the height (in meters) squared, and the BMI Z-score was determined according to the curves of the Centers for Disease Control and Prevention. Of the 53 patients, 13 achieved final height (FH). The relationship between the achieved FH and target height (TH) was expressed as FH.SDS - TH.SDS, and this value was individually calculated for each patient.

Methods

CYP21A2 mutations were screened by Southern blotting to identify large gene rearrangements and by allele-specific polymerase chain reaction (PCR) to determine the 15 common microconversions. If mutations were not identified in both alleles, CYP21A2 sequencing was performed. The identified mutations were segregated in parent DNA samples. CYP21A2 genotypes were divided according to predicted impairment of enzymatic activity as previously described: null and A and B groups, predicting 0%, 2% and 3-7% residual enzymatic activity, respectively.

Selected regions of the CYP3A7, POR, and HSD11B1 genes were amplified and sequenced as previously described. One hundred healthy volunteers were selected to determine the allelic frequency of the identified polymorphisms. None of the control subjects had a history of malignancy.

Statistical Analyses

Qualitative variables are listed as frequencies and percentages, whereas quantitative variables are presented as the mean ± SD. Group comparisons based on genotype were

Subjects and Methods

Subjects

The present study was approved by the Ethic Committee of the Faculdade de Medicina da Universidade de São Paulo, and written consent was obtained from patients and controls.
performed using an unpaired Student t-test or a Mann-Whitney rank sum test for numerical variables and a Chi-square or Fisher exact test for nominal variables, as appropriate. To assess whether the genetic variants had independent prognostic significance for outcome, we performed single regression analysis followed by multiple regression analysis adjusting for established influential factors. A p-value less than 0.05 was considered statistically significant.

RESULTS

The POR A503V, HSD11B1 rs12086634, and CYP3A7*1C polymorphic variants were found in 19%, 11.3%, and 3.8% of the CAH patients and in 26.4%, 17.4%, and 2.3% of the control subjects, respectively. The CYP3A7*1C and POR variants were identified only in heterozygous state in the studied patients. In contrast, 1% of the CAH patients and 6% of the controls were homozygous for the HSD11B1 rs12086634 allele, whereas 10.3% of the CAH patients and 12% of the controls were heterozygous. The frequency of these genetic variants did not differ between children with CAH and the controls (p>0.05). All polymorphisms were in Hardy-Weinberg equilibrium.

In patients between 4 and 6 years of age with SW and SV forms, the mean CA dose was 18.5±3.4 and 20.1±3.3 mg/m²/day, respectively, (p=0.086). In SW patients between 4 and 6 years of age, the mean fludrocortisone dose was 50±25 μg/day. There were no differences in the mean CA doses among patients with the null, A or B CYP21A2 genotypes (p>0.05).

In the period of this study, the mean bone age advancement in SW and SV patients was 1.5±0.7 and 1.2±0.6 years, respectively (p>0.05). The mean BMI Z-scores at 4 and 6 years of age were 0.8±0.003 and 0.7±0.02, respectively. In addition, the mean 17-hydroxyprogesterone levels during these two years were 194.8±157.6 nmol/l (6,283±5,063 ng/dl), and 202.7±132.8 nmol/l (6,540±4,285 ng/dl), in patients SW and SV forms, respectively. Of the 53 patients, 13 achieved FH, and the corrected FH ranged from −0.87 to +0.86 SD. The clinical data are described in Table 1.

There were no differences in the mean daily CA doses between the patients with the wild-type POR allele and the patients heterozygous for the POR A503V allele or between the patients with the wild-type HSD11B1 allele and the patients heterozygous or homozygous for the HSD11B1 rs12086634 allele (Table 2).

Interestingly, the mean daily CA dose was lower in patients with the CYP3A7*1C allele compared with patients with the wild-type allele: 13.9±0.8 vs. 19.5±3.2 mg/m²/d, respectively (95% confidence interval for difference of means: 2.4 to 8.8 mg/m²/d; p=0.001, power of calculation 96.2%). Moreover, single regression analysis followed by multiple linear regression analysis revealed that the influence of this polymorphism on CA dose did not vary according to clinical form, sex, CYP21A2 genotype or concomitant use of fludrocortisone. The CYP3A7*1C variant alone accounted for 20% of the CA dose variability (p=0.001), and 33% of the observed variability was explained by the presence of CYP3A7*1C in association with the age at diagnosis (p=0.004).

DISCUSSION

A short FH and adverse effects have been described during CAH treatment despite the achievement of adequate hormonal control. Several approaches have been proposed to improve treatment, such as the addition of flutamide and testolactone to glucocorticoid replacement therapy,12 and therapy optimization strategies based on CYP21A2 genotypes.13 Although a good correlation has been observed between genotype and the clinical form, no such correlation has been identified between genotype and glucocorticoid requirements in classical forms.19 Similarly, in our cohort, there were no differences in the mean glucocorticoid dose among patients with null, A or B CYP21A2 genotypes, which suggests that other factors influence the glucocorticoid requirement.

To investigate these factors, we chose to evaluate the glucocorticoid dose in patients between 4 and 6 years of age, which appears to be a period of steady linear growth. Several studies have shown a tendency to overtreat in the first three years of life to avoid SW crises. During puberty, however, the glucocorticoid requirement generally increases because of alterations in cortisol pharmacokinetics.20 Despite suppressed androgen levels, we ruled out overtreatment in our cohort because the serum 17-hydroxyprogesterone levels were greater than 36 nmol/l, and the mean BMI Z-score and mean growth rate of all patients were both in the normal range.

Genetic factors have been shown to contribute to interindividual variability in the response to different drugs.10 Recently, genetic polymorphisms have been associated with

Allelic Variant	Genotype	CA dose (mg/m²/d)	p-value
HSD11B1	G/C	19.1±3.6	0.852
(rs12086634)	C/T	19.3±2.7	
CYP3A7	Wild type	19.5±3.2	<0.001
(CYP3A7*1C)	CYP3A7*1C	13.9±0.8	
POR	G/C	19.2±3.5	
(A503V)	C/T	18.7±3.4	0.569

CA: cortisone acetate.
variability in glucocorticoid doses and susceptibility to osteoporosis in Addison’s disease. Among treated CAH patients, there is great interindividual variability in the daily glucocorticoid dose. To the best of our knowledge, however, there are no data evaluating the effect of allelic variants other than CYP21A2 gene variants.

The frequency of the POR A503V, HSD11B1 rs12086634, and CYP3A7*1C allelic variants was similar among patients and controls in our study. Although POR A503V is associated with decreased P450c17 activity and decreased androgen synthesis, our data suggest that this enzymatic impairment, at least in the heterogeneous individuals seen in our cohort, does not influence the daily CA requirement. Interestingly, the HSD11B1 rs12086634 variant has been shown to reduce gene transcription in vitro, which was consistent with reduced cortisol generation and probably higher CA requirements.14 In our cohort, however, HSD11B1 rs12086634 carriers required a CA dose similar to that required by individuals lacking this variant.

The CYP3A7 gene is predominantly expressed in the fetal liver, and its expression is sharply downregulated after birth.31 However, the CYP3A7*1C allele contains a modified promoter that causes constitutive CYP3A7 expression in the adult liver.21 P450A7 catalyzes the 16z-hydroxylation of DHEA and DHEAS22 and the CYP3A7*1C allele has been associated with lower DHEA levels in women with polycystic ovary syndrome.12 Although the allelic frequency of this genetic variant did not differ between the children with CAH and the controls, the glucocorticoid replacement doses were significantly lower in children with the CYP3A7*1C allele.

Because CAH treatment is designed to normalize androgens, we hypothesized that the CYP3A7*1C allele results in less severe hyperandrogenism and, consequently, decreased glucocorticoid requirements. However, the CYP3A7*1C allele was a rare variant in our Brazilian cohort and probably only affects the treatment of a minority of patients. There is no doubt that other variants in different genes, such as those related to gastrointestinal absorption, could contribute to the interindividual variability in glucocorticoid doses.

We cannot exclude a sample-size effect to explain the absence of a correlation between the POR and HSD11B1 variants and the mean daily glucocorticoid dose. This was a pilot study involving a large series of Brazilian patients followed at a single center, and we were able to select 53 patients who were treated with the same glucocorticoid (i.e., CA) since their diagnosis.

Despite the limitations of this study design, other retrospective studies have also highlighted the influence of pharmacogenetics on individual responses to drugs.23,24 Indeed, pharmacogenetic testing has become an important tool to guide therapy with drugs such as warfarin, dasatinib and trastuzumab.25

The present study is the first to raise the potential advantage of genetic screening to obtain better CAH treatment. Future studies involving both larger cohorts and other candidate genes are certainly warranted to consolidate this approach.

ACKNOWLEDGEMENTS

The authors gratefully acknowledge Dr. Bruno Ferraz de Souza for English language review.

This research was supported by grants from FAPESP [05/04726-0 and 09/54239-2], RPPM by FAPESP (# 09/54305-1), TASSB by CNPq (# 305117/2009-2), AALJ by CNPq (# 301477/2009-4) and BBM by CNPq (# 301339/2006-9).

REFERENCES

1. Speiser PW, White PC. Congenital adrenal hyperplasia. N Engl J Med. 2003;39:776-88, doi: 10.1056/NEJMra021561.
2. Demirci C, Witchel SF. Congenital adrenal hyperplasia. Dermatol Ther. 2008;21:340-53, doi: 10.1111/j.1529-8039.2008.00216.x.
3. Gasparini N, Di Maio S, Salerno M, Argenziano A, Franzese A, Tersore A. Growth pattern during the first 36 months of life in congenital adrenal hyperplasia (21-hydroxylase deficiency). Horm Res. 1997;47:17-22, doi: 10.1159/000018583.
4. Ninkenstrom A, Marcus C, Axelsson M, Wedell A, Riten EM. Failure of corticosterone pharmacokinetics in a boy with congenital adrenal hyperplasia because of defective 11beta-hydroxysteroid dehydrogenase reductase activity. J Clin Endocrinol Metab.1999;84:1210-3, doi: 10.1210/jc.84.4.1210.
5. Balsamo A, Cicognani A, Baldazzi L, Barbaro M, Baronio F, Gennari M, et al. CYP21 genotype, adult height, and pubertal development in 35 patients treated for 21-hydroxylase deficiency. J Clin Endocrinol Metab.2003;88:5680-8, doi: 10.1210/jc.2003-001213.
6. Bonfig W, Bechtold S, Schmid H, Knoer D, Schwarz HP. Reduced final height outcome in congenital adrenal hyperplasia under prednisone treatment: deceleration of growth velocity during puberty. J Clin Endocrinol Metab.2007;92:1635-9, doi: 10.1210/jc.2006-2109.
7. Mathuramy K, Elamin MB, Smushkin G, Murad MH, Lampuros JP, Elamin KB. et al. Clinical review: Adult height in patients with congenital adrenal hyperplasia: a systematic review and metaanalysis. J Clin Endocrinol Metab.2010;95:4161-72, doi: 10.1210/jc.2009-2616.
8. Borden SM, Honour JW, Hindmarsh PC. Management of altered hydrocortisone pharmacokinetics in a boy with congenital adrenal hyperplasia using a continuous subcutaneous hydrocortisone infusion. J Clin Endocrinol Metab.2009;94:3477-80, doi: 10.1210/jc.2009-0630.
9. Lovas K, Cjesdal CG, Christiansen M, Wolff AB, Almas B, Svartberg J, et al. Glucocorticoid replacement therapy and pharmacogenetics in Addison’s disease: effects on bone. Eur J Endocrinol.2009;160:993-1002, doi: 10.1530/EJE-09-0880.
10. Ingebritsen-Sundberg M, Sim SC, Gomez A, Rodriguez-Antonia C. Influence of cytochrome P450 polymorphisms on drug therapies: pharmacogenetic, pharmacopeigenetic and clinical aspects. Pharmacol Ther.2007;116:496-526, doi: 10.1016/j.pharmthera.2007.09.004.
11. Burk O, Tegude H, Koch I, Hustert E, Wolhold R, Glaeser H, et al. Molecular mechanisms of polymorphic CYP3A7 expression in adult human liver and intestine. J Biol Chem.2002;277:24280-8, doi: 10.1074/jbc.M202345200.
12. Goodarzi MO, Xu N, Azziz R. Association of CYP3A7*1C and serum dehydroepiandrosterone sulfate levels in women with polycystic ovary syndrome. J Clin Endocrinol Metab.2008;93:2909-12, doi: 10.1210/jc.2008-0863.
13. Tomlinson JW, Walker EA, Bujalska IJ, Draper N, Lavery GC, Cooper MS, et al. 11beta-hydroxysteroid dehydrogenase type 1: a tissue-specific regulator of glucocorticoid response. Endocrin Rev.2004;25:831-66, doi: 10.1210/er.2003-0033.
14. Draper N, Walker EA, Bujalska IJ, Tomlinson JW, Chalder SM, Arlt W, et al. Mutations in the genes encoding 11beta-hydroxysteroid dehydrogenase type 1 and hexose-6-phosphate dehydrogenase interact to cause cortisone reductase deficiency. Nat Genet.2003;34:439-443, doi: 10.1038/ng1241.
15. Miller WL, Huang N, Agrawal V, Giacomini KM. Genetic variation in human P450 oxidoreductase. Mol Cell Endocrinol.2009;300:180-4, doi: 10.1016/j.mce.2008.09.017.
16. Bacheva TA, Billebeck AE, Madureira G, Arnhold IJ, Medeiros MA, Marcondes JA, et al. Low frequency of CYP2B deletions in Brazilian patients with congenital adrenal hyperplasia due to 21-hydroxylase deficiency. Hum Hered.1999;49:1-14, doi: 10.1159/000022383.
17. Robbieille J, Brouillette C, Houde A, Despres JP, Tchernev A, Vahli MC. Molecular screening of the 11beta-hsd1 gene in men characterized by the metabolic syndrome. Obes Res.2004;12:1570-75, doi: 10.1038/oby.2004.196.
18. Merke DP, Keil MF, Jones JV, Fields J, Hill S, Cutler GB Jr. Flutamide, testolactone, and reduced hydrocortisone dose maintain normal growth velocity and bone maturation despite elevated androgen levels in children with congenital adrenal hyperplasia. J Clin Endocrinol Metab.2000;85:1114-20, doi: 10.1210/jc.85.3.1114.
19. Pinto G, Tardy V, Trivin C, Thallasinos C, Lortat-Jacob S, Nihoul-Fekete C, et al. Follow-up of 68 children with congenital adrenal hyperplasia due to 21-hydroxylase deficiency: Relevance of genotype for management. J Clin Endocrinol Metab.2005;90:2624-33, doi: 10.1210/jc.2005-021433.
20. Chaumardari E, Hindmarsh PC, Johnston A, Brook CG. Congenital adrenal hyperplasia due to 21-hydroxylase deficiency: Alterations in
cortisol pharmacokinetics at puberty. J Clin Endocrinol Metab. 2001; 86:2701-08, doi: 10.1210/jc.86.6.2701.

21. Schuetz JD, Beach DL, Guzelian PS. Selective expression of cytochrome P450 CYP3A mRNAs in embryonic and adult human liver. Pharmacogenetics. 1994;4:11-20, doi: 10.1097/00008357-199402000-00002.

22. Miller KK, Cai J, Ripp SL, Pierce WM Jr., Rushmore TH, Prough RA. Stereo- and regioselectivity account for the diversity of dehydroepiandrosterone (DHEA) metabolites produced by liver microsomal cytochromes P450. Drug Metab Dispos. 2004;32:305-13, doi: 10.1124/dmd.32.3.305.

23. Kovac MK, Maslac AR, Rakicevic LB, Radojkovic DP. The c.-1639G>A polymorphism of the VKORC1 gene in Serbian population: retrospective study of the variability in response to oral anticoagulant therapy. Blood Coagul Fibrinolysis. 2010;21:558-63, doi: 10.1097/MBC.0b013e32833c2988.

24. Anglicheau D, Legendre C, Thervet E. Pharmacogenetics of tacrolimus and sirolimus in renal transplant patients: from retrospective analyses to prospective studies. Transplant Proc. 2007;39:2142-4, doi: 10.1016/j.transproceed.2007.06.018.

25. Gervasini G, Benitez J, Carrillo JA. Pharmacogenetic testing and therapeutic drug monitoring are complementary tools for optimal individualization of drug therapy. Eur J Clin Pharmacol. 2010;66:755-74, doi: 10.1007/s00228-010-0857-7.