The relationship between a microfinance-based healthcare delivery platform, health insurance coverage, health screenings, and disease management in rural Western Kenya

CURRENT STATUS: UNDER REVIEW

BMC Health Services Research BMC Series

Molly Rosenberg
Indiana University School of Public Health-Bloomington
rosenmol@indiana.edu Corresponding Author
ORCID: 0000-0001-6679-6791

James Akiruga Amisi
AMPATH Kenya

Daria Szkwarko
Brown University

Dan N. Tran
AMPATH Kenya

Becky Genberg
Johns Hopkins University Bloomberg School of Public Health

Maya Luetke
Indiana University Bloomington School of Public Health

Sina Kianersi
Indiana University Bloomington School of Public Health

Jane Namae
Webuye Health and Demographic Surveillance System

Jeremiah Laktabai
AMPATH Kenya

Sonak Pastakia
AMPATH Kenya
Abstract

Introduction Structural barriers often prevent rural Kenyans from receiving healthcare and diagnostic testing. The Bridging Income Generation through group Integrated Care (BIGPIC) Family intervention facilitates microfinance groups, provides health screenings and treatment, and delivers education about health insurance coverage to address some of these barriers. This study evaluated the association between participation in BIGPIC microfinance groups and health screening/disease management outcomes.

Methods From November 2018 to March 2019, we interviewed a sample of 300 members of two rural communities in Western Kenya, 100 of whom were BIGPIC microfinance members. We queried participants about their experiences with health screening and disease management for HIV, diabetes, hypertension, tuberculosis, and cervical cancer. We used log-binomial regression models to estimate the association between microfinance membership and each health outcome, adjusting for key covariates. We also examined the individual and joint effects of microfinance and health insurance coverage on each health outcome.

Results Microfinance members were more likely to be screened for the health conditions we queried, including those provided by BIGPIC [e.g. diabetes: aPR (95% CI): 3.46 (2.60, 4.60)] and those not provided [e.g. cervical cancer: aPR (95% CI): 2.43 (1.21, 4.86)]. Only 11% had active health insurance, yet we found some trends of better disease management among microfinance group members and those with health insurance.

Conclusions In rural Kenya, a microfinance program integrated with healthcare delivery may be effective at increasing health screening. Interventions designed to thoughtfully and sustainably address structural barriers to healthcare will be critical to improving the health of those living in low-resource settings.
Background

Low- and middle-income countries (LMICs) are generally characterized by higher mortality rates and lower life expectancy compared to high-income countries. (1) Kenya is no exception with an average life expectancy of 63 years, placing it in the bottom quartile of all countries. (2) This high mortality is often attributed to a high burden of infectious diseases. (3–6) Overall, 5.6% of the Kenyan population is living with HIV, (7) with a disproportionate burden among women. (2, 8) Kenya also ranks among the 14 countries with the highest burden of TB, multidrug-resistant TB, and TB/HIV co-infection. (9) Non-communicable disease (NCDs) also pose a growing health threat. (6, 10, 11) In 2014, NCDs accounted for 27% of all deaths in the country. (12, 13) Nearly a third of Kenyans have high blood pressure, and diabetes is rapidly increasing in the country. (12, 14) Despite the high burden of infectious diseases and increasing burden of NCDs in Kenya, healthcare service utilization remains low. (15) One significant barrier to healthcare consistently identified across LMICs is poverty. Poverty can suppress healthcare access through inability to afford services, low service availability, and geographic accessibility issues. (16, 17) In Kenya, poverty has been associated with less healthcare utilization (18, 19) and more than a third of the overall population was living below the poverty line in 2016. (20) Additionally, the Kenyan health system is largely funded by out-of-pocket payments from patients and efforts to address the inequity arising from this structure have been mostly unsuccessful. (21) Thus, poverty is a key barrier to uptake of health screening, and the treatment and management of health conditions. (22) Universal health coverage, or the ability of all people to obtain the quality health services they need without suffering financial hardship, (23) may provide an effective pathway toward expanding healthcare access. In 2005, WHO member countries, of which Kenya is a member, passed a resolution urging countries to adopt universal health coverage and, in
2010, the government of Kenya stated that health is a universal right. Yet, little progress has been made toward universal health coverage in Kenya and only about 10–20% of the population has health insurance. The National Health Insurance Fund (NHIF) is the primary source of health insurance in the country and may represent a key turning point for improving healthcare access. The package of NHIF benefits was recently expanded to allow beneficiaries to receive comprehensive inpatient and outpatient care in both the public and private sectors. The government-supported insurance is offered at a low cost, providing affordable premium payment requirements for low-income populations. Despite these improvements, barriers to coverage remain, particularly for rural, informally employed citizens who tend to have the lowest rates of participation in NHIF.

In rural Western Kenya, where this study took place, the Bridging Income Generation with Group Integrated Care (BIGPIC) Family program aims to address some of these structural barriers to healthcare in order to improve screening and healthcare access for local residents. BIGPIC Family offers a combination of interventions designed to synergistically improve health and well-being, including: group-based microfinance services, education about NHIF, point-of-care screening and management for hypertension and diabetes, group-based primary care delivery during microfinance meetings, business literacy, and agricultural training. The microfinance groups are the platform through which much of the BIGPIC programming and healthcare is delivered.

We evaluated the associations between participation in BIGPIC Family microfinance groups and (1) NHIF coverage, (2) health screenings, and (3) disease management outcomes. We hypothesized that participation in the BIGPIC Family microfinance groups would have several positive health-related outcomes, including higher uptake of NHIF, higher uptake of disease screenings, and improved disease management among those with a chronic
disease diagnosis.

Methods

Study population and setting

This cross-sectional study was conducted in two communities of similar size (~15,000 population) and demographics in rural, western Kenya. These two communities were chosen based on the level of their engagement with AMPATH’s BIGPIC program at the time of the study. AMPATH is a partnership between Moi University, Moi Teaching and Referral Hospital, North American universities led by Indiana University, and the Kenyan Government with a mission of teaching, care and research. BIGPIC began implementation in Community 1 in 2016 but had not yet rolled out to Community 2 at the time of our data collection.

We drew our sample from three different study populations. First, we sampled 100 BIGPIC Family microfinance group members, by targeting the full rosters of 7 groups randomly selected from all groups with at least 6 months of active membership in Community 1. Second, we identified a sample of 100 people in Community 1. Third, we identified a sample of 100 people in Community 2. Both community samples were randomly sampled from an enumeration of all community residents developed for a recent hypertension study in the area. Only participants age 18 years and above were eligible. Participants were not eligible to be interviewed twice if they happened to be sampled for both the microfinance group and community sample in Community 1.

The microfinance groups are the platform through which much of the BIGPIC programming is delivered. Individual members meet regularly to take out and repay group-funded loans, and they may choose to receive the full complement of other available interventions, including: 1) screening and care for diabetes and hypertension and 2) NHIF education. Some intervention spillover to non-microfinance community members is expected if they
engaged in health screening or NHIF training at community-wide events.

Data collection

Between November 2018-February 2019, trained local fieldworkers collected survey data from 300 participants. All data were self-reported using a tablet-based, quantitative survey administered in the local language of Kibukusu with REDCap software. The survey covered a range of topics including socio-demographic information, microfinance group experience, and health screenings. All interviews were conducted at home in a private area, after obtaining informed consent. Ethical approval was provided by the Indiana University Institutional Review Board (#1705661852) and the Moi University Institutional Research and Ethics Committee (#00030702).

Key variables

BIGPIC Family microfinance group membership was the primary exposure. Participants who self-reported being a current member of a BIGPIC Family microfinance group with a start date of at least 6 months prior to the interview date were considered exposed. As a sensitivity analysis, we also considered duration of participation as a continuous variable, based on the difference between start date and interview date.

We operationalized **NHIF health insurance coverage** as both a potential outcome of BIGPIC Family group membership, and as an exposure for the health screening and disease management outcomes. Although NHIF education was provided through BIGPIC microfinance groups, the groups have not historically been used to directly enroll participants. Participants were asked to self-report if they had active NHIF coverage, which was confirmed with SMS messages to an NHIF information number.

As our primary health outcomes, we queried if participants had ever been screened for each of the following health conditions: HIV, diabetes, hypertension, tuberculosis, and cervical cancer. BIGPIC Family routinely provides screening and care for some conditions
(diabetes and hypertension), but not others (HIV, tuberculosis, cervical cancer). We also assessed two disease management outcomes among the small subset of participants who reported a diagnosis of hypertension, diabetes, or HIV (n=32): 1) current medication for condition, and 2) healthcare visit to manage condition within the last 6 months. We also collected sociodemographic data on: sex, age, marital, educational attainment, employment outside the home, and household assets (quartiles of a weighted index of ownership of 20 items, aligned with the methodology of the 2014 Kenyan DHS). (33)

Statistical analysis

To understand the relationship between microfinance group membership and each of the health insurance, health screening, and disease management outcomes, we used log-binomial models to estimate prevalence ratios. We compared unadjusted results to results adjusted for age, sex, and marital status. To explore potential differences by sex and by SES, we ran models stratified by sex and by household assets dichotomized at the median. In the case of ‘0’ cell counts in the stratified analyses, we added 0.5 to each cell. To assess whether there were statistical differences in effect sizes by sex and SES, we introduced an interaction term between each of sex and household assets with microfinance group membership. Interaction terms with Wald p-values <0.05 indicated statistically significant differences.

Since people who select into microfinance groups are likely to have different personality profiles compared to those that do not and this may also correlate with engagement in health screenings and care, we conducted a sensitivity analysis examining the relationships of interest among a study population restricted to only include microfinance group members. We then used duration of group membership as a proxy for the exposure, with a cutpoint dividing short-term members (<12 months) from long-term members (greater than or equal to 12 months). We compared the prevalence of our health outcomes
between short and long-term members to assess whether the results were of similar magnitude to our main findings.

Finally, we explored the single and joint effects of microfinance group membership and health insurance coverage on the health screening and disease management outcomes. We assessed these trends visually by plotting the prevalence of each outcome among the following four mutually exclusive exposure categories: 1) No exposure, 2) Health insurance coverage only, 3) Microfinance membership only, 4) Both health insurance coverage and microfinance membership.

Results

Overall, 300 men and women enrolled in the study. We targeted 421 potential participants for interview, 21 were ineligible, 2 refused, and we were unable to locate 101 for a response rate of 74%. A majority of the participants were women (63%), were currently married (73%), and did not work outside the home in the last 30 days (80%) (Table 1). Participants ranged in age from 18 to 96 (median age: 40) and lived in households with, on average, 5 people. One-third of participants were BIGPIC Family microfinance group members. Members were more likely to be women, older, and currently married. There were no significant differences by microfinance membership for educational attainment, formal employment, household assets, and household size.

Overall, 11% of all participants had active NHIF health insurance coverage. Health screening rates varied by condition: HIV (84%), diabetes (41%), hypertension (64%), tuberculosis (10%), and cervical cancer (19% - calculated among women only). Among those who reported a diagnosis with HIV, diabetes, or hypertension (n = 32), nearly three-quarters (72%) reported a medical visit in the last six months. Just over half reported being currently on medication for their condition (53%).

Health insurance coverage was higher among microfinance group members (14%)
compared to non-members (10%). However, this association was not statistically significant [PR (95% CI): 1.49 (0.78, 2.84)], and attenuated further after adjustment for age, gender, and marital status [aPR (95% CI): 1.26 (0.64, 2.27)] (Table 2).

There were strong associations between microfinance group membership and health screening (Table 2). Microfinance members were over three times as likely to report diabetes screening [aPR (95% CI): 3.46 (2.60, 4.60)], about twice as likely to report hypertension screening [aPR (95% CI): 1.96 (1.56, 2.46)], over three times as likely to report tuberculosis screening [aPR (95% CI): 3.31 (1.56, 7.03)]. Among women, microfinance group members were over twice as likely to report cervical cancer screening [aPR (95% CI): 2.43 (1.21, 4.86)]. For each of these outcomes the unadjusted results were similar in magnitude to the results adjusted for age, gender, and marital status.

Microfinance membership had a weaker, but still positive, association with HIV screening [PR (95% CI): 1.23 (1.13, 1.34)]. However, after covariate adjustment, the HIV results attenuated toward the null and the confidence interval widened to include the null [aPR (95% CI): 1.11 (0.64, 2.47)].

Among those who reported diagnoses with HIV, diabetes, or hypertension (n = 32), the results trended toward a positive association between microfinance group membership and disease management outcomes (Table 2). In unadjusted models, microfinance group members were nearly 50% more likely to report a medical visit within the last 6 months [PR (95% CI): 1.47 (1.00, 2.16)], and 70% more likely to report current medication for their health condition [PR (95% CI): 1.70 (0.92, 3.13)]. Results were attenuated after covariate adjustment with confidence intervals widely spanning the null, yet the positive trend of the associations remained. Due to the small sample size of this sub-group, our ability to precisely measure these associations was limited.

The relationship between BIGPIC microfinance membership and health screening tended to
be stronger in men compared to women (Table 3). Statistical support for this gender difference was only observed for the tuberculosis screening outcome (Wald p-value = 0.05). The relationship between BIGPIC microfinance membership and health screening tended to be stronger in households with lower assets compared to higher assets. Statistical support for this difference by household assets was only observed for the HIV screening outcome (Wald p-value = 0.05).

Our sensitivity analysis operationalizing microfinance exposure as length of membership instead of as member vs. non-member showed similar trends of associations (Table 4). Among current microfinance members (n = 96), those with longer memberships tended to have more health insurance coverage, higher rates of health screening, and better disease management outcomes. The point estimates for each of these outcomes were above the null (with the exception of the estimate for HIV screening and medical visit within the last 6 months), though these estimates were calculated imprecisely with wide confidence intervals often spanning the null.

Finally, we compared the prevalence of each health screening and disease management outcome between those with single and joint exposures of microfinance membership and health insurance coverage (Fig. 2). Visual inspection of Fig. 2 illustrates our finding that microfinance groups are strongly associated with the health screening outcomes, but suggests that the additive effect of health insurance coverage on health screening outcomes is not substantial. Health insurance did appear to be more important for the disease management outcomes. All participants with both microfinance memberships and health insurance coverage had received recent medical care and current medication to treat a chronic condition. These estimates are measured imprecisely due to small sample sizes in exposure categories and sub-groups.

Discussion
In this study, we found that a microfinance program underpinning the BIGPIC Family intervention in western rural Kenya was strongly associated with increased screening for several key health conditions. Notably, these positive associations were observed for conditions screened for directly by the BIGPIC program (hypertension and diabetes) as well as conditions for which the BIGPIC program does not regularly screen (HIV, tuberculosis, and cervical cancer). We also found that microfinance members tended to have better health insurance coverage and disease management outcomes for chronic health conditions, though these findings were not statistically significant.

Our findings align with the generally positive results observed in previous evaluations of the BIGPIC program and of the broader microfinance landscape worldwide. Many microfinance programs, like BIGPIC, have begun integrating health training and healthcare provision into their programs,(34, 35) and have generally found positive health effects, particularly in sexual health and maternal/child health arenas.(35–39) The BIGPIC program has broad objectives to improve the overall health and well-being of Kenyans, but has primarily focused on addressing hypertension and diabetes management. A recent BIGPIC evaluation found participation was associated with increased engagement in care after a hypertension or diabetes diagnosis and consequent reductions in blood pressure.(29) Our study builds on this prior evaluation by examining screening and management of health conditions beyond hypertension and diabetes (i.e. HIV, tuberculosis, cervical cancer) and by contextualizing the results with information on the relationship with health insurance coverage uptake. We also find preliminary evidence of stronger effect sizes of the microfinance program among men and among poorer households.

The positive relationship we observed between microfinance group membership and health insurance coverage was weaker than we hypothesized. Education about the benefits of NHIF health insurance coverage is provided through BIGPIC programming; thus, we
anticipated uptake of NHIF would be higher than the 14% we observed among the group members. It is possible that it will take more time for an expanding health insurance scheme like the NHIF to gain traction in rural communities with little experience with the program. (21) Until recently, the NHIF had more limited coverage, including limited coverage at some of the facilities in the study area. Thus, the low uptake observed could also be explained by residents in the area rationally choosing not to purchase a product that provided them with limited coverage. (40) NHIF uptake in the study area may naturally expand as knowledge about the expansion of NHIF coverage spreads. Recently, the BIGPIC clinical team has sought to obtain more direct integration with NHIF by incorporating BIGPIC healthcare services as part of the NHIF benefit package. Preliminary findings show new increases in NHIF uptake in the study community when copays are eliminated. Analysis of the combined impact of BIGPIC Family and NHIF is ongoing. Importantly, our findings do not estimate the isolated impact of exposure to microfinance, but rather exposure to the comprehensive suite of interventions the BIGPIC Family program delivers through a microfinance platform. Thus, our ability to understand the mechanisms through which the program operates is limited. Future evaluations should concentrate on understanding the relative impact of each component of the intervention and identifying the optimal set of interventions to produce the largest health impact.

There are several aspects of the study design that warrant cautious interpretation of our findings. First, the cross-sectional design prevented us from establishing temporal relationships between the exposure and the outcomes with certainty. Although we attempted to minimize this concern by asking many of our survey questions in reference to specific time periods, reverse causal interpretations of our findings are still plausible. Second, our health screening and disease management outcomes were self-reported by participants. Social desirability bias may have influenced our results. Finally, though we
controlled for several potential confounders in our analyses, unmeasured confounding may still have influenced our estimates. We examined the potential magnitude of this issue with a sensitivity analysis using an alternate microfinance exposure definition, membership duration. This analysis produced similar findings to our main analyses, providing some reassurance that our findings are robust to bias from unmeasured confounding. Future studies with longitudinal follow-up, randomized exposures, and healthcare outcomes extracted from medical records will be able to provide clearer insights into the relationships we observed.

Conclusions

Our study provides preliminary evidence that microfinance programs, like the one underpinning the BIGPIC Family intervention, may have the capacity to increase screening and disease management for key diseases. Increased screening can dramatically decrease the public health burden of diseases through earlier detection and engagement in care. (41) Similar programs that address barriers to healthcare at multiple levels should be prioritized for further evaluation. Combined microfinance and healthcare delivery programs can be resource-intensive, but may be made more financially sustainable through expanded health insurance coverage. Ongoing efforts should be made to increase health insurance uptake to sustain novel healthcare delivery models like BIGPIC Family and to realize the potential health benefits coverage may provide.

Declarations

Ethics approval and consent to participate: Ethical approval for this study protocol was provided by the Indiana University Institutional Review Board (#1705661852) and the Moi University Institutional Research and Ethics Committee (#00030702). Written informed consent was obtained from all study participants. Participants who were unable to sign
their name confirmed their willingness to participate with a fingerprint and a witness signature.

Consent for publication: Not applicable.

Availability of data and material: The data underlying this study are not publicly available because they contain sensitive health information from participants. The data will be made available by the corresponding author on reasonable request.

Competing interests: The authors declare no competing interests.

Funding: This project was supported with support from the Indiana Clinical and Translational Sciences Institute funded, in part by Grant Number UL1TR001108 from the National Institutes of Health, National Center for Advancing Translational Sciences, Clinical and Translational Sciences Award. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.

Author contributions: MR and JAA conceived the study with input and important contributions from DS, DT, BG, ML, SK, JN, JL, and SP. MR conducted the analysis, and wrote the first draft of the manuscript. MR, ML, SK, and JN were involved in study preparation and field data collection activities. MR, JAA, DS, DT, BG, ML, SK, JN, JL, and SP contributed to the interpretation of the findings, critical review of the manuscript, and approval of the final manuscript as submitted.

Acknowledgments: The authors would like to acknowledge the tireless efforts of the fieldworkers Patrick Ndombi and Cashphine Sitati and express our deep gratitude to the participants for their time and for sharing their experiences.

References

1. Abubakar I, Tillmann T, Banerjee A. Global, regional, and national age-sex specific all-cause and cause-specific mortality for 240 causes of death, 1990-2013: a
systematic analysis for the Global Burden of Disease Study 2013. Lancet (London, England). 2015;385(9963):117-71.

2. World Health Organization. World Health Statistics 2016: Monitoring Health for the SDGs Sustainable Development Goals: World Health Organization; 2016.

3. Ngugi AK, Agoi F, Mahoney MR, Lakhani A, Mang'ongo D, Nderitu E, et al. Utilization of health services in a resource-limited rural area in Kenya: Prevalence and associated household-level factors. Plos One. 2017;12(2).

4. Dye C. After 2015: infectious diseases in a new era of health and development. Philos Trans R Soc Lond B Biol Sci. 2014;369(1645):20130426.

5. Omran AR. The epidemiologic transition: a theory of the epidemiology of population change. 1971. Milbank Q. 2005;83(4):731-57.

6. Kenyan Ministry of Health. Kenya Health Policy 2012–2030. Nairobi; 2012.

7. National AIDS Control Council. Kenya AIDS Response Progress Report 2014 Progress towards Zero March 2014 [Available from: http://files.unaids.org/en/dataanalysis/knowyourresponse/countryprogressreports/2014countries/KEN_narrative_report_2014.pdf.

8. World Health Organization. Number of people (all ages) living with HIV Estimates by country 2017 [updated 2017-07-19; cited 2017 11.28.2017]. Available from: http://apps.who.int/gho/data/view.main.22100?lang=en.

9. World Health Organization. Use of high burden country lists for TB by WHO in the post-2015 era 2015 [Available from: http://www.who.int/tb/publications/global_report/high_tb_burdencountrylists2016-2020.pdf.

10. African Health Observatory, World Health Organization. Kenya: Factsheet of Health Statistics 2018. 2018.
11. Kenya National Bureau of Statistics, Kenyan Ministry of Health, World Health Organization. Kenya STEPwise Survey for Non-communicable diseases risk factors: 2015 report. Nairobi: Kenyan Ministry of Health; 2015.

12. World Health Organization. Noncommunicable diseases country profiles 2014. 2014.

13. Kenyan Ministry of Health. Kenya STEPwise Survey for Non-Communicable Diseases Risk Factors 2015 Report. Nairobi, Kenya; 2015.

14. Oti S, Kyobutungi C. P2-232 cardiovascular disease conditions: prevalence, awareness, treatment and control among the urban poor in Nairobi. Journal of Epidemiology & Community Health. 2011;65(Suppl 1):A285-A.

15. Obare V, Brolan CE, Hill PS. Indicators for Universal Health Coverage: can Kenya comply with the proposed post-2015 monitoring recommendations? International Journal for Equity in Health. 2014;13(1):123.

16. Peters DH, Garg A, Bloom G, Walker DG, Brieger WR, Rahman MH. Poverty and access to health care in developing countries. Ann N Y Acad Sci. 2008;1136:161-71.

17. Ensor T, Cooper S. Overcoming barriers to health service access: influencing the demand side. Health Policy Plan. 2004;19(2):69-79.

18. Musyoka P, Korir J, Omolo J, C. Nzai C. An Empirical Analysis of the Effect of Poverty on Health Care Utilization in Kenya2018.

19. Ilinca S, Di Giorgio L, Salari P, Chuma J. Socio-economic inequality and inequity in use of health care services in Kenya: evidence from the fourth Kenya household health expenditure and utilization survey. International Journal for Equity in Health. 2019;18(1):196.

20. World Bank Group. Kenya Economic Update: Policy Options to Advance the Big 4- Unleashing Kenya’s Private Sector to Drive Inclusive Growth and Accelerate Poverty Reduction. WAshington, D.C. ; 2018.
21. Chuma J, Okungu V. Viewing the Kenyan health system through an equity lens: implications for universal coverage. Int J Equity Health. 2011;10.
22. Beaglehole R, Epping-Jordan J, Patel V, Chopra M, Ebrahim S, Kidd M, et al. Improving the prevention and management of chronic disease in low-income and middle-income countries: a priority for primary health care. Lancet. 2008;372(9642):940-9.
23. World Health Organization, The World Bank. Tracking Universal Health Coverage: 2017 Global Monitoring Report. Geneva; 2017.
24. World Health Organization. Fifty-eighth World Health Assembly Resolution: Sustainable health financing, universal coverage and social health insurance. Geneva; 2005.
25. Republic of Kenya. The Constitution of Kenya. 2010.
26. Republic of Kenya. Transforming Health: Accelerating attainment of Health Goals: The Kenya Health Sector Strategic and Investment Plan (KHSSP) July 2013 – June 2017. Nairobi; 2013.
27. Barasa E, Rogo K, Mwaura N, Chuma J. Kenya National Hospital Insurance Fund Reforms: Implications and Lessons for Universal Health Coverage. Health Syst Reform. 2018:1-16.
28. Gwatkin DR, Ergo A. Universal health coverage: friend or foe of health equity? The Lancet. 2011;377(9784):2160-1.
29. Pastakia SD, Manyara SM, Vedanthan R, Kamano JH, Menya D, Andama B, et al. Impact of bridging income generation with group integrated care (BIGPIC) on hypertension and diabetes in rural Western Kenya. Journal of general internal medicine. 2017;32(5):540-8.
30. Vedanthan R, Kamano JH, Lee H, Andama B, Bloomfield GS, DeLong AK, et al. Bridging Income Generation with Group Integrated Care for cardiovascular risk
reduction: Rationale and design of the BIGPIC study. American Heart Journal. 2017;188:175-85.

31. Leung C, Naert M, Andama B, Dong R, Edelman D, Horowitz C, et al. A Human-Centered Design Approach to Develop a Microfinance and Group Medical Visit Model for Cardiovascular Risk Reduction in Western Kenya (BIGPIC Study). Am Heart Assoc; 2017.

32. KEMRI Wellcome Trust. Research Projects: High blood pressure and diabetes [Available from: https://kemri-wellcome.org/programme/high-blood-pressure-and-diabetes/].

33. Kenya National Bureau of Statistics, Ministry of Health/Kenya, National AIDS Control Council/Kenya, Kenya Medical Research Institute, Population NCf, Development/Kenya. Kenya Demographic and Health Survey 2014. Rockville, MD, USA; 2015.

34. Johnson A, Butchereit C, Keyes M, Vance D, Anderson K, Gray B, et al. Longitudinal Study of the Impact of the Integration of Microfinance and Health Services on Bandhan Clients in India. Electronic copy) Retrieved from Freedom from Hunger website: www.freedomfromhunger.org/sites/default/files/LongitudinalStudyReportBandhanIndia2008-2013.pdf. 2014.

35. Rosenberg M, Jules R, Luetke M, Kianersi S, Nelson E, Jean-Louis F. Health Education Training Embedded in a Microfinance Platform Associated with Safer Sexual Behavior in Haitian Women. Aids Behav. 2019.

36. Nadkarni S, Genberg B, Galarraga O. Microfinance Interventions and HIV Treatment Outcomes: A Synthesizing Conceptual Framework and Systematic Review. Aids Behav. 2019.

37. Leatherman S, Metcalfe M, Geissler K, Dunford C. Integrating microfinance and health
strategies: examining the evidence to inform policy and practice. Health Policy Plan. 2012;27(2):85-101.

38. Arrivillaga M, Salcedo JP. A systematic review of microfinance-based interventions for HIV/AIDS prevention. AIDS Educ Prev. 2014;26(1):13-27.

39. Lorenzetti LMJ, Leatherman S, Flax VL. Evaluating the effect of integrated microfinance and health interventions: an updated review of the evidence. Health Policy Plan. 2017;32(5):732-56.

40. Mbau R, Kabia E, Honda A, Hanson K, Barasa E. Examining purchasing reforms towards universal health coverage by the National Hospital Insurance Fund in Kenya. International Journal for Equity in Health. 2020;19(1):19.

41. Kim Y, Radoias V. Screening, diagnosis, and long-term health outcomes in developing countries-The case of hypertension. PLoS One. 2018;13(12):e0208466.

Tables

Table 1. Characteristics of the study population of 300 residents of two communities in rural western Kenya, 2018-2019

*Member of BIGPIC Family microfinance group for at least 6 months prior to interview

**p-value reported for chi-square test for categorical variables and t-test for continuous variables. P-values calculated among observations with non-missing values.

***Measured by adding up the self-reported value (at time of purchase) of 20 key items in participant’s household

Table 2. Relationship between microfinance group membership, health screening, and disease management, among 300 residents of two communities in rural western Kenya, 2018-2019
Socio-demographic characteristics	Total N=300	Yes N=100
Gender		
Male	112 (37.3%)	19 (19.0%)
Female	188 (62.7%)	81 (81.0%)
Age		
<20	24 (8.0%)	1 (1.0%)
20-29	51 (17.0%)	11 (11.0%)
30-39	68 (22.7%)	32 (32.0%)
40-49	76 (25.3%)	30 (30.0%)
50+	81 (27.0%)	26 (26.0%)
Marital status		
Never married	45 (15.1%)	1 (1.0%)
Currently married	219 (73.2%)	84 (84.0%)
Divorced/separated	35 (11.7%)	15 (15.0%)
Missing	1	0
Education		
None/ Some primary	92 (30.7%)	31 (31.0%)
Primary	116 (38.7%)	45 (45.0%)
Secondary	69 (23.0%)	20 (20.0%)
Post-secondary	23 (7.7%)	4 (4.0%)
Work outside home (last 30 days)		
Yes	59 (19.7%)	17 (17.0%)
No	240 (80.3%)	83 (83.0%)
Missing	1	0
Household asset quartile*		
Q1	70 (25.6%)	21 (23.6%)
Q2	70 (25.6%)	27 (30.3%)
Q3	61 (22.3%)	19 (21.4%)
Q4	73 (26.6%)	22 (24.7%)
Missing	26	11
Current NHIF coverage		
Yes	33 (11.0%)	14 (14.1%)
No	266 (89.0%)	85 (85.9%)
Missing	1	1
Household size		
Mean (SD)	5.0 (2.27)	5.2 (2.37)
Health screening characteristics		
HIV screening		
Yes	252 (84.0%)	96 (96.0%)
No	48 (16.0%)	4 (4.0%)
Diabetes screening		
Yes	124 (41.3%)	77 (77.0%)
No	176 (58.7%)	23 (23.0%)
Hypertension screening		
Yes	191 (63.7%)	96 (96.0%)
No	109 (36.3%)	4 (4.0%)
Tuberculosis screening		
Yes	31 (10.3%)	20 (20.0%)
No	269 (89.7%)	80 (80.0%)
Cervical cancer screening		
Yes	36 (19.2%)	23 (28.4%)
No	152 (80.9%)	58 (71.6%)
Disease management outcomes, among those who report HIV, diabetes, or hypertension diagnoses (n=32)		
Medical visit in last 6 months		
Yes	23 (71.9%)	10 (90.9%)
No	9 (28.1%)	1 (9.1%)
Currently taking medication		
Yes	17 (53.1%)	8 (72.7%)
No	15 (46.9%)	3 (27.3%)
Unadjusted	Adjusted*	
------------------	------------------	
PR (95% CI)	p	PR (95% CI)
Current NHIF coverage	1.49 (0.78, 2.84)	0.2
Health screening outcomes		
HIV screening	1.23 (1.13, 1.34)	<0.0001
Diabetes screening	3.28 (2.50, 4.30)	<0.0001
Hypertension screening	2.02 (1.74, 2.35)	<0.0001
Tuberculosis screening	3.64 (1.81, 7.29)	0.0003
Cervical cancer screening	2.42 (1.27, 4.64)	0.008
Disease management outcomes, among those diagnosed with HIV, diabetes, or hypertension (n=32)		
Medical visit in last 6 months	1.47 (1.00, 2.16)	0.05
Currently taking medication	1.70 (0.92, 3.13)	0.1

*Adjusted for age (categorized at above/below age 40 years), marital status (categorized as currently married vs not), and gender. As cervical cancer screening rates were only calculated among female participants, the adjusted results for this outcome were not adjusted for gender.

Table 3. Relationship between microfinance group membership, health screening, and disease management, stratified by gender and socioeconomic status among 300 residents of two communities in rural western Kenya, 2018-2019

Women (n=188)*	Men (n=112)*			
PR (95% CI)	p	PR (95% CI)	p	
Current NHIF coverage	1.61 (0.73, 3.53)	0.2	1.09 (0.26, 4.64)	0.9
Health screening outcomes				
HIV screening	1.21 (1.08, 1.35)	0.007	1.26 (1.10, 1.44)	<0.0001
Diabetes screening	3.12 (2.16, 4.50)	<0.0001	4.00 (2.74, 5.86)	<0.0001
Hypertension screening	1.67 (1.40, 1.98)	<0.0001	2.67 (2.02, 3.52)	<0.0001
Tuberculosis screening	2.20 (1.02, 4.78)	0.02	12.23 (2.56, 58.46)	0.002
Cervical cancer screening	-	-	-	-
Disease management outcomes, among those diagnosed with HIV, diabetes, or hypertension (n=32)				
Medical visit in last 6 months	1.67 (0.98, 2.82)	0.06	1.20 (0.84, 1.72)	0.3
Currently taking medication	1.94 (0.95, 3.96)	0.07	1.00 (0.20, 4.95)	1.0

*Wald p-values for interaction terms between gender and microfinance group membership were <0.05 for the tuberculosis screening outcome only

**Wald p-values for interaction terms between gender and household wealth asset (dichotomized at median) were <0.05 for the HIV screening outcome only
Table 4. Association between duration of microfinance group membership* and key health screening and disease management outcomes, among current microfinance group members (n=96)

	PR (95% CI)	P
Current NHIF coverage	1.38 (0.40, 4.75)	0.6
Health screening outcomes		
HIV screening	0.94 (0.88, 1.00)	0.05
Diabetes screening	1.42 (1.01, 1.98)	0.04
Hypertension screening	1.10 (0.95, 1.28)	0.2
Tuberculosis screening	1.09 (0.42, 2.82)	0.9
Cervical cancer screening	1.28 (0.57, 2.90)	0.5
Disease management outcomes, among those diagnosed with HIV, diabetes, or hypertension		
Medical visit in last 6 months	0.83 (0.58, 1.19)	0.3
Currently taking medication	2.50 (0.85, 7.31)	0.1

*Microfinance group membership duration cutpoint at above/below 12 months

Figures
Figure 1

Conceptual model of the BIGPIC Family intervention components
Figure 2

Health screening and disease management outcomes among those with single and joint exposures to microfinance groups and health insurance coverage