A REVIEW OF MOTIVATION THEORIES, MODELS AND INSTRUMENTS IN LEARNING ENVIRONMENT

Valarmathie Gopalan1, Juliana Aida Abu Bakar2, Abdul Nasir Zulkifli3

1School of Multimedia Technology and Communication, Universiti Utara Malaysia, Malaysia
2, 3School of Creative Industry Management and Performing Arts, Universiti Utara Malaysia, Malaysia

nasirzul@uum.edu.my

Received: 15.02.2020 Revised: 02.03.2020 Accepted: 01.04.2020

Abstract-
Motivation is vital for students to face obstacles to achieving their aspirations. Consistent or natural motivation levels are not adequate to achieve academic and career rates. It takes a strong motivation to persevere in the pursuit of academic or life achievement. The goal of this paper is to perform a literature review to identify motivational theories, models, and motivational questionnaires that can support a technology-based learning environment. The results from the literature review discovered that there are several theories for measuring motivation, intrinsic theory, and extrinsic motivation theory, self-determination theory, ARCS model, social cognitive theory, and expectancy theory. Also, there are several questionnaires that are suitable for the learning environment such as Instructional Material Motivation Study (IMMS), Motivation Score for Questionnaire Learning (MSLQ), Student Motivation for Science Questionnaire (SMTSL), and Self-Regulation of Motivation Academic (SRAM). The results of this paper are intended for teachers, educators and scholars interested in enhancing the learning motivation of their students.

Keywords: Motivation theories, Motivation model, Technology-based learning environment, Motivation Questionnaires

© 2019 by Advance Scientific Research. This is an open-access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/)
DOI: http://dx.doi.org/10.31838/jcr.07.06.100

INTRODUCTION ON LEARNING MOTIVATION
Motivation is not an alternative to persuasion but rather a source of conviction. It took, with the aid of [1], who emphasizes that scholars are smart when choosing words of motivation rather than persuasion. As a result, the definition of motivation often has the same concept among researchers. For example, motivation is the "tendency and intention to guide an individual's behaviour, the power that activates and drives the behaviour towards achieving the goal that requires energy consumption, setting goals, and the willingness to use this energy long enough to achieve it" [2]. In contrast, [3] provide the motivational translation in the phrase psychology of literature as "the power of psychology or energy that drives a particular person," but motivation theory has offered many reasons for human behaviour to get influenced. One of the remarkable studies of the region that emerged in that area was the persuasive generation of using and presenting the concept of using technology to motivate students to trade their actions or sets of minds [4]. There are plenty of techniques or elements used to measure students' motivation to acquire crucial actions through the use of intrinsic or extrinsic strategies. [5] states that human behaviour supported by persistent efforts to achieve goals. Generally, motivation shifted to [6] and [7] as aspirations or compulsion that one must act on, and inspiration to embody those who try to maintain that attitude.

Houssayde defined motivation as the energy to do something with confidence and not be discouraged [8]. Motivation is one of the key factors that can influence the self-efficacy of students and the ability to invest in learning activities. However, there are several external factors, including environmental concerns, financial constraints, lack of resources, time constraints that prevent students from accomplishing the motivation to succeed. Motivation is crucial to reduce fear and stress develop within human beings due to fear of failure. Positive thinking restores positivism to believe and perform tasks without any fear [9]. In addition, self-motivation triggers motivation without relying on external stimuli to complete tasks [10]. On the other hand, extrinsic motivation explains actions motivated by aspirations and fears, not attaining the desired outcome. Fear is a powerful motivator, especially when it concerns our future well-being and efforts [11].

According to [12], seven factors support motivation, namely; challenge, curiosity, control, fantasy, competition, cooperation, and recognition, which primarily suits a game-based learning environment. At the moment, the learning perspective is about perception, and students' goals are moving towards both productive and achievement [8], [13]. A good amount of motivation will pursue to improve success or failure, and a lack of motivation will create major barriers to achieve success [14]. Lack of motivation, frustration, and disruption can hinder productivity and well-being [15]. Besides, other factors that influence learning motivation include; ability to trust effort, inequality, and the nature of academic tasks [15]. In this study, Mobile Augmented Reality (MAR) incorporates several factors to enhance motivation in learning science. The next section presents in detail the theories of motivation involving learning.

LEARNING MOTIVATION THEORIES
Basically, motivation is categorized as intrinsic motivation, extrinsic motivation and amotivation [15], [16], [17], [18]. Besides, many theories have been introduced to convey the concept and type of learning motivation. They are intrinsic and extrinsic motivation theory [16], self-determination theory (SDT) [16], ARCS Model [19], Social Cognitive Theory (SCT) [20] and Expectancy Theory [21].

Theory of Intrinsic and Extrinsic Motivation
Following [16], intrinsic motivation defines the best task, without external expectations, to fulfill one's own needs. Challenges, curiosity, control, and fantasy are the elements to trigger intrinsic to learning. Also, [22], [23] emphasize that intrinsic motivation and academic performance shared and profound connections. Intrinsic motivation leads someone to engage actively in educational activities in order to learn new things.
with their preparation without any external incentive contrary to the assumption of external rewards, products, or under any pressure [14], [15], [16], [24]. Much of these previous works have intrinsically motivated into game-based games that have learned [23], [24] [25], [26], [27], [28] their minds in studying what is considered important and what gives impact on teaching achievement [29], [30], [31]. Intrinsic motivation can spread positivity and create the knowledge gained to sustain long term. In contrast to intrinsic motivation, extrinsic motivation describes external activities that include gifts [10], [15], [7], [14], [24], [32], coercion [33], [34] and punishment [15], [33]. A person who wishes to succeed or excel to be accepted among fellows or under any pressure cannot survive long [33]. Extrinsic motivation leads to dissatisfaction and reluctance in action [33], [33] claimed that extrinsic motivation should be introduced at an early stage of any process to attract attention so that it can evolve into intrinsic motivation as the learning process becomes more meaningful and immersive. There is a high chance that the individual will reach a saturation where he/she can no longer develop his/her intrinsic motivation or extrinsic motivation. At that point, amotivation occurs. Amotivation is the point at which intrinsic motivation and extrinsic motivation no longer exist [16], [17].

Intrinsic and extrinsic motivation is required to gain knowledge with own will or through the influence or attraction of external things [10], [15], [33], [35], [36]. Thus, through the use of extrinsic motivation, students can stimulate intrinsic motivation, which has the potential to last longer. Learning is a simple process, only when students are interested and patient, and always motivated to seek knowledge [33]. Intrinsic motivation produces self-motivation in the search for identification; at the same time, extrinsic motivation is the goal of the study [33]. Therefore, students should always be encouraged to deal with the situation, even when it is challenging. They need to encourage themselves to maintain positive thinking and not to give up on challenges.

Theory of Self-Determination (SDT)

The theory of self-determination, also known as SDT, develops out of intrinsic and extrinsic motivation [10], [16], [37]. Intrinsic motivation reflects the inherent propensity of humans to include a range of mastery capabilities. In the meantime, extrinsic motivation represents the somewhat right scale of relative sovereignty. As a consequence, it can only represent external exploitation or self-regulation. As illustrated in Figure 1, the most notable feature of every intrinsic and extrinsic motivation is autonomy, competence, and relatedness, and it exists as SDT [38], [39].

Autonomy refers to individuality and freedom [16]; competence related to sensations of efficacy and performance in their pursuit and achievement; meanwhile, relatedness provides a sense of cohesion and importance in the learning environment [38], [39].

Knowledge will improve students academic success and motivation [39], [40]. As shown in Figure 2, SDT comprises of five mini-theories which include cognitive evaluation theory (CET), organismic integration theory (OIT), causality orientations theory (COT), basic psychological needs theory (BPNT), and goal contents theory (GCT) [16], [41], [42].

Figure 2: Sub-Theories of Self-Determination Theory (SDT)

Cognitive evaluation theory (CET) is a psychology theory designed to explain the effects of apparent consequences on internal motivation [43]. CET draws attention to the importance of autonomous roles and skills in promoting in-depth inspiration that is important to education, the arts, games, and many other fields. Ten years later, [44], [45] embraced organismic integration theory (OIT) and causality orientations theory (COT) as a sub-theory of SDT.

OIT is a spectrum of motivational states with three main parts. Motivational context assesses self-determined activity [39]. An important subject on the principles of organism integration is autonomy and the importance of internationalization. COT acts as self-interest and knows the price of output from the intervention, manipulates the focus that perceives the provision of additional benefits, income, and support as production and, eventually, as amotivational [44]. At this impersonal degree of amotivation, the emphasis is on performance. This explains the variations between self-determined actions and the world in a way that decides their fate. It is accompanied by the support of the basic psychological needs theory (BPNT) [46]. Human interest has established three essential psychological needs, their future autonomy, competence, and relatedness [46]. One study found that the need for satisfaction is necessary in order to make the most of growth, excitement, great success, and well-being among people [49]. Finally, goal content theory (GCT) shows the difference between achieving primary happiness and based on intrinsic motivation and extrinsic motivation [16]. Extrinsic motivation is given to fleeting riches and recognition, an intrinsic sense of self-development, and collective well-being [16]. Intrinsic motivation in the social context is significant to the teaching environment and the most important advantages for students. It focuses on basic and non-extrinsic objectives for better teaching results [16].

Attention, Relevance, Confidence, and Satisfaction (ARCS) Model

Human actions and emotions have a clear association with motivation [47]. Motivation is a positive force to deal with the awareness of approach and performance [48]. Students may be encouraged to make use of relevant, rewarding, and relaxing knowledge of the content [47], [49]. According to [19], ARCS model as a structured way of defining and discussing the inspiration for learning.
First, attention is essential to the development and maintenance of student commitment to learning [50]. Second, the relevancy is essential to obtain confidence [50]. Confidence is related to the students’ thoughts and desires to keep working with happiness [50]. Finally, satisfaction is a feeling of self-fulfillment in reaching the desired goal. Satisfaction gained by improved learning methods and the amount of information that has been correctly learned. By the end of the day, satisfaction happens when the learned information is beneficial in actual circumstances [50]. The ARCS model is the researcher’s priority in assessing motivation in overall academic performance [51], [52], [53]. In line with [54], the impetus for interest can be very influential in engaging and lasting longer in learning. Figure 3 shows the factors and strategies of the ARCS model. According to academics, students may be easily distracted and enthralled by the use of secondary materials or by stimulating learning. Besides, the goal of information acquisition can be accomplished by helping to understand basic examples that are relevant to the real environment. Students will cultivate self-confidence and motivation by understanding and realizing the opportunities for success and commitment after becoming successful [55]. Finally, satisfaction occurs when students can apply new knowledge, able to communicate, and make decision for projects and produce high-quality results in return [55].

Theory of Social Cognitive (SCT)
It has been used in several domain names, including education, communication, and psychology. The theory of social cognitive (SCT) represents knowledge through direct feedback, communications, remarks, and social media impacts [56]. The SCT was derived from the creation of context and information from social impacts. A research by [57] shows that social factors impact human beings, such as children. Continuous learning and building on the verbal communication between the reactions of the network and the internet. SCT portrays the interrelationship between behaviour, the dimension of the world, and the personal dimension. The behaviour may be related, and the outcome of each behaviour is different. SCT shows how human beings benefit from and maintain various types of behaviour and basic intervention strategies [58]. Environmental factors can impact humans and are classified as social and physical environments. The social atmosphere refers to one’s own family and friends at the same time as the physical environment refers to comfort and luxury [58]. Interactive learning with SCT allows students to benefit from self-confidence through practice.

Theory of Expectancy
The theory of expectancy was coined by [21]. This definition has been built mainly on an operating environment to motivate workers. Subsequently, expanded and updated with the guidance of [59], [60]. Expectancy has a better sense of motivation and the way it applies to all of us [61], [62]. It assumed that there was a courting between the amounts of the attempt made and the total results and appreciation obtained from the attempt and results [61], [62]. This concept shows that rigorous effort can lead to higher results and rewards. Therefore, it should inspire them to make an effort, although they had to face difficulties [21], [63]. According to [21], effort, result, and valence are interlinked with human motivation. Initially, experts applied expectancy, instrumentality, and valence as a measure to prove the relationship [61], [62]. This theory is more to external rewards and appreciation. There are numerous efforts and perseverance required before earning praises [61], [62], [63]. In the beginning, students should be genuinely excited and agree with the fact that continuous performance with perseverance will lead to success [61], [62], [63]. The students must realize that the size of the award depends on the amount of effort they make to achieve something and then go for it [61], [62], [63]. When they receive appreciation for their efforts, they are recognized instrumentality. Finally, the potential value is entirely enormous and this is called valence [61], [62], [63]. At this point, the expectancy theory is achieved.

EXISTING MOTIVATION QUESTIONNAIRES
Researchers used a set of questionnaires to assess motivation in their areas of study. Previously, this study led four types of questionnaires to assess learning motivation, namely; Instructional Materials Motivation Survey (IMMS) [19], Motivational Strategies for Learning Questionnaire (MSLQ) [64], Student Motivation towards Science Learning Questionnaire (SMTSL) [54], and Self-Regulation of Academic Motivation (SRAM) [65].

Instructional Materials Motivation Survey (IMMS)
The instructional materials motivation survey (IMMS) is used to determine students’ motivation in learning. The constructs for this survey are derived from the ARCS model of motivation [55]. First of all, the Course Interest Survey (CIS) was designed to test students’ response to the instruction, and the IMMS instrument was the second group of surveys designed to assess students’ motivational reactions to self-directed instruction materials [19]. Both CIS and IMMS instruments assess the motivation level of students. Indeed, the difference is for the CIS instrument, the instructor performs or instructs the learning for students while for the IMMS instrument, it allows the students to conduct their self-paced learning. There are 34 items in the CIS instrument and 36 items in the IMMS instrument [66], [67]. Then the revised IMMS instrument was proposed by [68]. The original IMMS instrument contained 36 items while the revised version contained only 12 items. All elements have been validated and implemented to assess motivation in a technology-based learning environment [68].

Motivational Strategies for Learning Questionnaire
The Motivational Strategies for Learning Questionnaire (MSLQ) was proposed and proven its reliability by [69]. The motivation scales referred to the socio-cognitive version of motivation have covered three specific areas including value, expectation, and affect. Value includes the intrinsic and extrinsic orientation of the goal and the value of the task [69]. Expectation surrounds the learning controls. A momentary self-efficacy then affects the symptoms of anxiety [69]. The MSLQ instrument consists of six scales and nine sub-scales. The scales measure the level of motivation in the learning environment. Those six scales are...
intrinsic goal orientation, extrinsic goal orientation, undertaking value, manipulate belief about studying, manipulate belief about learning and overall performance, and test anxiety. Besides, the nine sub-scales are rehearsal, elaboration, organization, critical thinking, metacognitive self-regulation, time and study environment management, effort regulation, peer learning, and help-seeking [69].

Science Learning Motivation Questionnaire

[54] designated a questionnaire for science learning and called it as student motivation for the science learning questionnaire (SMTS). The motivational scales labelled as self-efficacy, active learning strategies, science learning values, achievement goals, and learning environment stimulation [54]. Self-efficacy ensures that students have faith in their skills and knowledge so that they can carry out a learning venture. Active learning by students using a wide variety of strategies to create new knowledge from their previous experience is energy learning. Students are motivated to study science based on a science learning interest observation and then a performance goal scale. This measure refers to the highest results in science learning, and the target of achievement refers to students’ sense of accomplishment in science learning as their success in technology learning has improved. Subsequently, getting associated with the stimulation of the environment refers to the learning environment, such as the classroom, and getting to know the content, training the instructors, and getting to know the consultation and interaction between college students, which increased their willingness to learn science. To date, this questionnaire is used to determine the motivation for various academic backgrounds of students, particularly in science learning.

Self-Regulation

Self-Regulation embeds with social cognitive theory [57], [70]. Self-regulated knowledge of the system produces self-thinking processes, feelings, and actions as a method of constructivist learning and directing [71], [72]. Self-regulation questionnaire encompasses six significant dimensions as shown in Figure 4. They include; Mastery Self-Talk (MST), Relevance Enhancement (RE), Situational Interest Enhancement (SI), Performance-Relative Capacity Self-Communicate (PST), Environmental Structuring (ENS), Self-Consequences (SC), and Performance Extrinsic Self-Talk (EST) [65].

![Figure 4: Self-Regulation Major Scales](image)

MST represents students’ thinking to encourage them to do better [65]. RE refers to the practice of self-awareness to identify more critical or relevant [65]. Meanwhile, SI in practice itself to develop an emotional empire of academic importance. For example, decorating student hobbies and well-being for a reasonable period [65]. PST refers to the emphasis placed explicitly on collective student attention to a variety of overall performance potentials for continuous performance and the tendency to perform them adequately [65]. The EST is a search technique for completing an activity. SC is designed to recognize and control extrinsic reinforcement to achieve specific efforts and ENS is designed to reduce off-the-job opportunities by reducing the likelihood of interruption.

DISCUSSION AND CONCLUSION

This paper explores many existing motivational theories, models, and motivational questionnaires. These theories play an important role in improving students learning performance. Previously, SDT and ARCS models have been widely used to measure motivation for the technology-based academic environment. IMMS questionnaire, MSLQ questionnaire, SMSTL questionnaire, and SRAM questionnaire are undoubtedly an ideal for assessing motivation in teaching and learning. However, there is a lack of technical factors or elements to measure learning motivation in a technology-based academic environment such as through the utilisation of Augmented Reality in education. Also, the implementation of theories such as social cognitive theory and the expectancy theory is still in its infancy within a technology-based academic environment. The whole idea is to look at the concepts that can develop learning motivation. Learning is a multi-layer development process that requires rules to achieve its objectives. As a result, our scholars have developed a conceptual framework as a guideline. This combination of theories is useful in the process of learning based on technology-based academic background and serves as a guide to the difficulties of understanding and visualizing information. Motivation is a emotion associated with human action. Based on the theories and models discussed in this paper, the general discussion is on how to handle one’s emotions to continue to work towards their goals.

ACKNOWLEDGMENT

We want to thank the Ministry of Higher Education for supporting us by funding the Fundamental Research Grant Scheme (FRGS); and our utmost gratitude also goes to the School of Creative Industry Management and Performing Art, School of Multimedia Technology and Communication and Universiti Utara Malaysia for other supports and facilities provided that have facilitated the research process along this year.

REFERENCES

1. J.W. Gläsdorf, “Executives’ and academics’ perceptions on the need for instruction in written persuasion,” The Journal of Business Communication (1973), vol. 23, no.4, pp. 55-68, 1986.
2. D. E. Papalia, S.W. Olds, and R.D. Feldman, “A child’s world: Infancy through adolescence,” New York, NY: McGraw-Hill, 1993.
3. K. M. Sheldon, J. Arndt, and L. Houser-Marko, “In search of the organismic valuing process: The human tendency to move towards beneficial goal choices,” Journal of Personality, vol. 71, no.5, pp. 835-869, 2003.
4. B. J. Fogg, “Persuasive Technology: Using Computers to Change What We Think and Do,” San Francisco: Morgan Kaufmann Publishers, 2003.
5. J.B. Rotter, “Some implications of a social learning theory for the prediction of goal directed behavior from testing procedures,” Psychological Review, vol. 67, no.5, pp. 301, 1960.
6. R. Ma’rof, “Social psychology,” Serdang: Penerbit Universiti Putra Malaysia, 2001.
7. S.H. Hamjah, Z.Ismail, R.M. Rashid, and E.A. Rozali, “Methods of increasing learning motivation among students,” Procedia-Social and Behavioral Sciences, vol. 18, pp. 138-147, 2011.
8. A. Di Serio, M. B. Ibaizáez, and C. D. Kloos, “Impact of an augmented reality system on students’ motivation for a visual art course,” Computers & Education, vol. 68, pp. 586-596, 2013.
9. K. Tobin, K. Alexakos, A. Malyukova and A.K.H. Gangi, “Jin Shin Jyutsu and ameliorating emotion, enhancing mindfulness, and sustaining productive learning environments,” In Exploring emotions, aesthetics and wellbeing in science education, pp. 221-247, 2017.
10. V. Gopalan, J.A.A. Bakar, A.N. Zulifi, A. Awii and R.C. Mat, "A review of the motivation theories in learning," In AIP Conference Proceedings, vol. 1891, no. 1, pp. 020043, 2017.
11. H. Barjesteh, "Navigating the dark side of motivation in learning English: problems and solutions," The Online Journal of New Horizons in Education, vol.8, no. 2, 2018.
12. T. Malone, and M. Lepper, "Making learning fun: A taxonomy of intrinsic motivations of learning," In R. E. Snow & M. J. Farr (Eds.), Attitude, learning, and instruction: Cognitive and affective process analyses, vol.3, pp. 223-256, 1987.
13. J. Reeve, R. M. Ryan and E. L. Deci, "Sociocultural influences on student motivation as viewed through the lens of self-determination theory," Big theories revisited, vol. 2, pp. 15-40, 2018.
14. L. Jaemu, Y. Kim and Lee, "A web-based program to motivate underachievers learning number sense," International Journal of Instructional Media, vol. 35, no.2, pp. 185-195, 2008.
15. R. M. Ryan and E.L. Deci, "Self-determination theory: Basic psychological needs in motivation, development, and wellness," 2017.
16. R. M. Ryan and E.L. Deci, "Intrinsic and extrinsic motivations: Classic definitions and new directions," Contemporary educational psychology, vol. 25, no. 1, pp. 54-67, 2000.
17. M. Yardimci, N. Bektas, G. K. Özkırtık, G. K. Muslu, G. O. Gercğer, and Z. Başbakanlı, "A study of the relationship between the study process, motivation resources, and motivation problems of nursing students in different educational systems," Nurse Education Today, vol. 48, pp. 13-18, 2017.
18. J. L. Mitchell, M. Gagné, A. Beaudry, and L. Dyer, "The role of perceived organizational support, distributive justice and motivation in reactions to new information technology," Computers in Human Behavior, vol. 28, no. 2, pp. 729-738, 2012.
19. J. M. Keller, "Development and use of the ARCS model of instructional design," Journal of instructional development, vol. 10, no. 3, pp. 2-10, 1987.
20. A. Bandura, "Human agency in social cognitive theory," American psychologist, vol. 44, no. 9, pp. 1175, 1989.
21. W. Van Eerde, and H. Thierry, "Vroom’s expectancy models and work-related criteria: A meta-analysis," Journal of applied psychology, vol.81, no. 5, pp. 575, 1996.
22. M. D. Stotz, "Creature counting: the effects of augmented reality on perseverance and early numeracy skills," 2018.
23. M.R. Lepper, J.H. Corpus, and S.S. Iyengar, "Intrinsic and extrinsic motivational orientations in the classroom: age differences and academic correlates," Journal of educational psychology, vol.108, no. 1, pp. 105, 2006.
24. F. I. Steele, Work, and Motivation by Victor H. Vroom. IMR: Industrial Management Review (pre-1986), vol. 6, no. 1, pp. 106, 1964.
25. L. Legault, "Intrinsic and Extrinsic Motivation," 2016.
26. T. Masood and J. Egger, "Augmented reality in support of Industry 4.0—Implementation challenges and success factors," Robotics and Computer-Integrated Manufacturing, vol.58, pp. 181-195, 2019.
27. T. H. Laine, E. Nygren, A. Dirin, and H. J. Suk, "Science Spots AR: a platform for science learning games with augmented reality," Educational Technology Research and Development, pp. 1-25, 2016.
28. M. M. Marques and L. Pombo, "Game-based mobile learning with augmented reality: are teachers. in project and design literacy as cornerstones of smart education," Proceedings of the 4th International Conference on Smart Learning Ecosystems and Regions, vol. 158, pp. 207, 2019.
29. C. Bullard, "Level Up Intrinsic Motivation Using Gamification and Game-Based Learning," Journal of Interdisciplinary Teacher Leadership, vol.1, no.1, 2016.
30. J. Martí-Parreño, E. Ménendez-Ibáñez, and A. Alonso-Arroyo, "The use of gamification in education: a bibliometric and text mining analysis," Journal of Computer Assisted Learning, 2016.
31. A. P. Model, "The Role of Motivation, Affect and Engagement in Simulation /Game Environments," Using Games and Simulations for Teaching and Assessment, 2016.
32. F. Xu, D. Buhalis and J. Weber, "Serious games and the gamification of tourism," Tourism Management, vol. 60, pp. 244-256, 2017.
33. J. Buchner and J. Zumbach, "Promoting intrinsic motivation with a mobile augmented reality learning environment," International Association for Development of the Information Society, 2018.
34. H. F. Hanafi, "The effect of collaborative mobile augmented reality application on students learning performance (Doctoral dissertation, Universiti Pendidikan Sultan Idris). 2017.
35. Y. S. Chang, K. J. Hu, C. W. Chiang and A. Lugmayr, "Applying mobile augmented reality (ar) to teach interior design students in layout plans: evaluation of learning effectiveness based on the arcs model of learning motivation theory," Sensors, vol. 20, no.1, pp. 105, 2020.
36. L. Deci and R. M. Ryan, "Optimizing students’ motivation in the era of testing and pressure: A self-determination theory perspective," In Building Autonomous Learners. Springer Singapore, pp. 9, 2016.
37. M. Vansteenkiste, W. Lens, and E.L. Deci. "Intrinsic versus extrinsic goal contents in self-determination theory: Another look at the quality of academic motivation," Educational Psychologist, vol. 41, no.1, pp. 19-31, 2006.
38. S.O. Üstüd, H. Halvari, O. Sorebo, and E.L. Deci, "Motivation, Learning Strategies, and Performance in Physical Education at Secondary School," Advances in Physical Education, vol. 6, no.1, pp. 27, 2016.
39. R. M. Ryan and E.L. Deci, An overview of self-determination theory: An organismic dialectical perspective. In E. L. Deci, & R. M. Ryan (Eds.), Handbook of Self-Determination Research. Rochester, NY: University of Rochester Press (2002).
40. W.S. Grolnick, R.M. Ryan, and E.L. Deci, "Inner resources for school achievement: Motivational mediators of children's perceptions of their parents," Journal of educational psychology, vol.83, no. 4, pp. 508, 1991.
41. M. Gilchrist and C. J. Mallett, "The theory (SDT) behind effective coaching," The Psychology of Sports Coaching: Research and Practice, no. 38, 2016.
42. D. Stirling, "Motivation in Education," Learning Development Institute, 2014.
43. E. L. Deci, "Cognitive evaluation theory: effects of extrinsic rewards on intrinsic motivation," Springer US, pp. 129-159, 1975.
44. E. L. Deci and R. M. Ryan, "Toward an Organismic Integration Theory," In Intrinsic Motivation and Self-Determination in Human Behavior, Springer US, pp. 113-148, 1985a.
45. E. L. Deci and R. M. Ryan, "Causality Orientations Theory," In Intrinsic motivation and self-determination in human behavior. Springer US, pp. 149-175, 1985b.
46. M. Gagné and E. L. Deci, "The History of Self-Determination Theory in Psychology and" The Oxford handbook of work engagement, motivation, and self-determination theory, pp. 1, 2014.
47. R. J. Wlodkowski, Motivation and teaching: A practical guide, 1978.
48. A. Bulgak and C. Príbeau, "The role of perceived enjoyment in the students’ acceptance of an augmented reality teaching platform: A structural equation modelling approach," Studies in Informatics and Control, vol.19, no.3, pp. 319-330, 2010.
49. D. N. E. Phon, M. B. Ali, and N. D. A. Halim, "Collaborative Augmented Reality in Education: A Review," International Conference on Teaching and Learning in Computing and Engineering Latvia, Kuching, Malaysia, 2014.

50. J. M. Keller, "First principles of motivation to learn and e-learning," Distance Education, vol. 29, no. 2, pp. 175-185, 2008.

51. C. H. Chen, Y. Y. Chou and C. Y. Huang, "An Augmented-Reality-Based Concept Map to Support Mobile Learning for Science," The Asia-Pacific Education Researcher, vol. 25, no. 4, pp. 567-578, 2016.

52. T. H. Chiang, S. J. Yang, and G. J. Hwang, "Students' online interactive patterns in augmented reality-based inquiry activities," Computers & Education, vol. 78, pp. 97-108, 2014.

53. N. N. N. Mahadzir and L. F. Phung, "The Use of Augmented Reality Pop-Up Book to Increase Motivation in English Language Learning For National Primary School," Journal of Research & Method in Education, vol. 1, no. 1, pp. 26-30, 2013.

54. H. L. Tuan, C. C. Chin and S. H. Shieh, "The development of a questionnaire to measure students’ motivation towards science learning," International Journal of Science Education, vol. 27, no. 6, pp. 639-654, 2005.

55. W. Huang, W. Huang, H. Diefes-Dux, and P. K. Imbrie, "A preliminary validation of Attention, Relevance, Confidence and Satisfaction model-based Instructional Material Motivational Survey in a computer-based tutorial setting," British Journal of Educational Technology, vol. 37, no. 2, pp. 243-259, 2006.

56. A. Bandura, "Social cognitive theory of mass communication," Media Effects: Advances in Theory and Research, New York, NY: Routledge, pp. 94-124, 2002.

57. H. Bandura, "Human agency in social cognitive theory," American psychologist, vol. 44, no. 9, pp. 1175, 1989.

58. A. Bandura, Self-efficacy: The exercise of control. New York: Freeman, 1997.

59. L.W. Porter and E.E. Lawler, "What job attitudes tell about motivation," Harvard business review, vol. 46, no. 1, pp. 118-126, 1968.

60. C. C. Pinder, "Valence-instrumentality-expectancy theory," Motivation and work behavior (4th ed.). New York: McGraw-Hill, pp. 144-164, 1987.

61. B. F. Redmond and S. K. Nemati, "Expectancy Theory," Retrieved January 27, 2017, from https://wikispaces.psu.edu/display/PSYCH484/4. Expectancy Theory, 2016.

62. F. C. Lunenburg, "Expectancy theory of motivation: motivating by altering motivation," International Journal of Management, Business, and Administration, vol. 5, no.1, pp. 1-5, 2011.

63. K. N. Bauer, K. A. Orvig, K. Ely, and E. A. Surface, "Re-examination of motivation in learning contexts: Meta-analytically investigating the role type of motivation plays in the prediction of key training outcomes," Journal of Business and Psychology, vol. 31, no.1, 33-50, 2016.

64. P. R. Pintrich and E. V. De Groot, "Motivational and self-regulated learning components of classroom academic performance," Journal of educational psychology, vol. 82, no. 1, pp. 33, 1990.

65. S. Gonzales, M. Dowson, S. Brickman, and M. McInerney, Self-regulation of academic motivation: Advances in structure and measurement. Retrieved 11/05/06, from http://www.aare.edu.au/05paper/05371.Pdf, 2006.

66. J. M. Keller, "IMMS: Instructional materials motivation survey," Florida State University, 1987a.

67. J. M. Keller, "Instructional materials motivation scale (IMMS) Unpublished manuscript. The Florida State University,1987b.

68. Loorbach, N., Peters, O., Karreman, J., & Steehouder, M. (2015). Validation of the Instructional Materials Motivation Survey (IMMS) in a self-directed instructional setting aimed at working with technology. British Journal of Educational Technology, 46(1), 204-218.

69. P. R. Pintrich, D.A. Smith, T. Garcia, and W.J. McKeachie, "Reliability and predictive validity of the Motivated Strategies for Learning Questionnaire (MSLQ)," Educational and psychological measurement, vol. 53, no. 3, pp. 801-813, 1993.

70. B. Zimmermann and D. Schunk. "Self-regulated learning and academic: Theory, research, and practice," 1989.

71. P. H. Winne, "Self-regulation is ubiquitous but its forms vary with knowledge," Educational Psychologist, vol. 30, no.4, pp. 223-228, 1995.