Case Study

Efficacy of Kinesiology Taping for Recovery from Occupational Wrist Disorders Experienced by a Physical Therapist

B.YEONG-JO KIM, PhD, PT1), JUNG-HOON LEE, PhD, PT1)*

1) Department of Physical Therapy, College of Nursing and Healthcare Sciences, Dong-Eui University: 176 Eomgwangno, Busanjin-gu, Busan 614-714, Republic of Korea

Abstract. [Purpose] The aim of this paper was to report the efficacy of kinesiology taping for recovery from wrist pain and limited range of motion (ROM) in a physical therapist with repetitive strain injuries. [Subjects] A 32-year-old male physical therapist developed recurring severe pain in the dominant wrist and limited active ROM with extremely painful supination. [Methods] The kinesiology tape was applied to the lumbricals, musculi interossei dorsales, palmares, the wrist extensor and flexor muscles, and the wrist joint for 3 weeks for an average of 10 h/day. [Results] After application of the kinesiology tape, the Numeric Pain Rating Scale and Patient-rated Wrist Evaluation scores decreased, and the Patient-Specific Functional Scale score increased in comparison with the initial score. [Conclusion] Repeated kinesiology taping of the wrist muscles and joint could be an effective method for recovery from occupational wrist disorders experienced by physical therapists.

Key words: Occupational wrist pain, Kinesiology tape, Work-related musculoskeletal disorders

INTRODUCTION

Physical therapy practice is associated with an increased risk of the development of work-related musculoskeletal disorders (WMSDs)1) because physical therapists engage in manual therapy, twisting, bending, reaching, and lifting and maintain awkward positions for prolonged periods of time while tending to patients2, 3). Grooten et al.4) reported that more than half of the physical therapists employed for their study experienced discomfort or pain in the hand/wrist area (58.5%). Previous studies have shown that manual traction, joint mobilization, or performance of orthopaedic manual therapy techniques, alone or in combination, is related to an increased prevalence of WMSDs affecting the hand/wrist region1, 4, 5). Even though studies have frequently reported the prevalence of WMSDs in physical therapists1, 3, 5), no study has been carried out to evaluate the appropriate treatment for occupational wrist pain experienced by physical therapists. In this report, we describe the efficacy of kinesiology taping of the wrist muscles and joint for recovery from occupational wrist pain that developed in a physical therapist.

CASE DESCRIPTION

A 32-year-old male physical therapist developed recurring severe pain in the dominant (right) wrist and limited active range of motion (ROM) with extremely painful supination. He described the pain as a constant “achy” and occasionally “sharp” sensation that varied in intensity depending on his wrist activities. He complained that all his repetitive occupational activities, such as joint mobilization and manual traction in patients with musculoskeletal disorders, neurodevelopmental treatment in patients with stroke, and transferring of patients, aggravated his wrist pain and limited ROM. He was diagnosed with repetitive strain injuries and received a prescription for rest and a wrist brace. However, he could not suspend his wrist movement because of the many patients in his charge. In addition, keeping the brace on to immobilize his wrist made it difficult to perform physical therapy. The subject signed an informed consent document that was approved by the Ethics Committee of Dong-Eui University, in accordance with the ethical standards of the Declaration of Helsinki. He had a Numeric Pain Rating Scale (NPRS) score (0, no pain; 10, the worst imaginable pain) of 7/10 for the wrist area. The wrist and forearm ROMs were measured by using a goniometer. The following ROMs were documented during the initial assessment: wrist flexion of 58° (normal range, 0–80°), extension of 38° (normal range, 0–80°), radial deviation of 8° (normal range, 0–20°), ulnar deviation of 25° (normal range, 0–30°), pronation of 68° (normal range, 0–80°), and supination of 46° (normal range, 0–80°).

The pain subset score derived from the Patient-rated...
Table 1. Outcomes of the patient-specific functional scale

Assessment	Baseline score	Final score
PSFS (score)	20/50	45/50
Activity 1 (turn a door knob)	6/10	9/10
Activity 2 (manual traction)	3/10	8/10
Activity 3 (joint mobilization)	3/10	9/10
Activity 4 (transfer stroke patient)	3/10	9/10
Activity 5 (neurodevelopmental treatment)	5/10	9/10

PSFS, Patient-Specific Functional Scale

METHODS

Wrist Evaluation (PRWE) (0, no difficulty; 10, unable to perform the activity), which is a validated instrument used for assessing wrist pain and functional disability while performing activities of daily living7, was 38/50, and the function subset score was 55/100 (specific function activities, 31/50; usual function activities, 24/50). The total baseline score obtained with the Patient-Specific Functional Scale (PSFS) (0, unable to perform the activity; 10, able to perform the activity), which is another validated instrument used for measuring functional status associated with a patient’s condition8, was 20/50 (Table 1).

RESULTS

As shown in Table 1, after kinesiology taping, the NPRS scores decreased and the wrist and forearm ROMs increased. During the taping intervention, the patient could perform occupational wrist activities more easily than he could with a brace on. By the final assessment, the NPRS score had decreased to 0/10; the pain subset score of the PRWE had decreased to 5/50; the function subset score of the PRWE had decreased to 2/100 (specific function activities, 1/50; usual function activities, 1/50); the PSFS score had increased to 45/50 (Table 1); and wrist flexion had increased to 78°, extension had increased to 73°, radial deviation had increased to 20°, ulnar deviation had increased to 30°, pronation had increased to 78°, and supination had increased to 77°. The pain had resolved, and he was able to perform physical therapy involving repetitive wrist activity without any pain or limited ROM in his wrist.

DISCUSSION

Repetitive strain injuries in the wrist may be caused by repetitive tasks, vibrations, forceful exertions, or mechanical compression during repetitive wrist activity9. The repetitive wrist activity required to perform physical therapy, such as manual traction, joint mobilization, and neurodevelopmental treatment, may cause excessive stress on muscles, tendons, ligaments, and nerves in the wrist.

Skin deformation caused by application of kinesiology tape stimulates cutaneous mechanoreceptors10. According to the counterirritant theory, the excitement of mechanoreceptive afferents induces the release of enkephalin (i.e., inhibition of the neurotransmitter involved in the integration of pain [substance P] and hyperpolarization of interneurons), which results in inhibition of the transmission of nociceptive signals11. Therefore, we assume that the elasticity of kinesiology tape is effective in relieving occupational wrist pain.

The elasticity of kinesiology tape allows free ROM within the range of its elasticity and controls joint instability12. Therefore, wrist activity with kinesiology tape may provide support to an injured wrist joint and could be easier for the patient compared with keeping a brace on. In addition, kinesiology tape is stretched and under increased tension during wrist activity, which forces the wrist to return to forearm pronation. Therefore, painful supination is avoided by the flexibility of the tape, and the natural healing process is assisted.

Although the effects of kinesiology taping, such as increased muscle strength and activity, are still controversial, from the findings of a few previous studies, it is assumed that kinesiology taping at the calves may improve the functioning of the medial gastrocnemius and thus, enhance vertical jumping13 and posture balance14. Therefore, kinesiology taping may improve the functioning of the wrist extensor and flexor muscles and reduce wrist pain, which can be estimated based on the gradual increase in wrist and forearm ROMs and the PSFS score and the gradual decrease
in the PRWE score. However, the mechanisms underlying
the effects of kinesiology taping on muscle function cannot
be confirmed on the basis of our findings, and further inves-
tigations should be carried out.

REFERENCES

1) Campo M, Weiser S, Koenig KL, et al.: Work-related musculoskeletal
disorders in physical therapists: a prospective cohort study with 1-year
follow-up. Phys Ther, 2008, 88: 608–619. [Medline] [CrossRef]
2) Holder NL, Clark HA, DiBlasio JM, et al.: Cause, prevalence, and response
to occupational musculoskeletal injuries reported by physical therapists
and physical therapist assistants. Phys Ther, 1999, 79: 642–652. [Medline]
3) Bork BE, Cook TM, Rosecrance JC, et al.: Work-related musculoskeletal
disorders among physical therapists. Phys Ther, 1996, 76: 827–835. [Med-
line]
4) Grooten WJ, Wernstedt P, Campo M: Work-related musculoskeletal disor-
ders in female Swedish physical therapists with more than 15 years of job
experience: prevalence and associations with work exposures. Physiother
Theory Pract, 2011, 27: 213–222. [Medline] [CrossRef]
5) Glover W, McGregor A, Sullivan C, et al.: Work-related musculoskeletal
disorders affecting members of the Chartered Society of Physiotherapy.
Physiotherapy, 2005, 91: 138–147. [CrossRef]
6) Green WB, Heckman JD: The clinical measurement of joint motion. Rose-
mont: American academy of orthopaedic surgeons, 1994.
7) MacDermid JC, Turgeon T, Richards RS, et al.: Patient rating of wrist pain
and disability: a reliable and valid measurement tool. J Orthop Trauma,
1998, 12: 577–586. [Medline] [CrossRef]
8) Stratford P, Gill C, Westaway M, et al.: Assessing disability and change on
individual patients: a report of a patient specific measure. Physiother Can,
1995, 47: 258–263. [CrossRef]
9) van Tulder M, Malmivaara A, Koes B: Repetitive strain injury. Lancet,
2007, 369: 1815–1822. [Medline] [CrossRef]
10) Yamashiro K, Sato D, Yoshida T, et al.: The effect of taping along forearm
on long-latency somatosensory evoked potentials (SEPs): an ERP study. Br
J Sports Med, 2011, 45: A9. [CrossRef]
11) Lundy-Ekman L: Neuroscience fundamentals for rehabilitation, 3rd ed. St.
Louis: Saunders Elsevier, 2007.
12) Jaraczewska E, Long C: Kinesio taping in stroke: improving functional use
of the upper extremity in hemiplegia. Top Stroke Rehabil, 2006, 13: 31–42.
[Medline] [CrossRef]
13) Huang CY, Hsieh TH, Lu SC, et al.: Effect of the Kinesio tape to muscle
activity and vertical jump performance in healthy inactive people. Biomed
Eng Online, 2011, 10: 70. [Medline] [CrossRef]
14) Cortesi M, Cattaneo D, Jonsdottir J: Effect of Kinesio taping on standing
balance in subjects with multiple sclerosis: A pilot study. NeuroRehabili-
tation, 2011, 28: 365–372. [Medline]