Multiple Signals Converge on a Differentiation MAPK Pathway

Colin A. Chavel, Heather M. Dionne†a, Barbara Birkaya, Jyoti Joshi‡b, Paul J. Cullen*

Department of Biological Sciences, State University of New York at Buffalo, Buffalo, New York, United States of America

Abstract

An important emerging question in the area of signal transduction is how information from different pathways becomes integrated into a highly coordinated response. In budding yeast, multiple pathways regulate filamentous growth, a complex differentiation response that occurs under specific environmental conditions. To identify new aspects of filamentous growth regulation, we used a novel screening approach (called secretion profiling) that measures release of the extracellular domain of Msb2p, the signaling mucin which functions at the head of the filamentous growth (FG) MAPK pathway. Secretion profiling of complementary genomic collections showed that many of the pathways that regulate filamentous growth (RAS, RIM101, OPI1, and RTG) were also required for FG pathway activation. This regulation sensitized the FG pathway to multiple stimuli and synchronized it to the global signaling network. Several of the regulators were required for MSB2 expression, which identifies the MSB2 promoter as a target “hub” where multiple signals converge. Accessibility to the MSB2 promoter was further regulated by the histone deacetylase (HDAC) Rpd3p(L), which positively regulated FG pathway activity and filamentous growth. Our findings provide the first glimpse of a global regulatory hierarchy among the pathways that control filamentous growth. Systems-level integration of signaling circuitry is likely to coordinate other regulatory networks that control complex behaviors.

Introduction

Signal transduction pathways regulate the response to extracellular stimuli. Complex behaviors frequently require the action of multiple pathways that act in concert to reprogram cell fate. In metazoan development for example, a highly regulated network of interactions between evolutionarily conserved pathways like Notch and EGFR coordinates every facet of cell growth and differentiation [1]. An important question therefore is to understand how different pathway activities are coordinated during complex behaviors. Addressing this question is increasingly problematic because signaling pathways operate in vast interconnected web-like information networks [2]. Miscommunication between pathways is an underlying cause of diseases such as cancer [3], and therefore it is both critically important and extremely challenging to precisely define the regulatory connections among signaling pathways.

The budding yeast Saccharomyces cerevisiae undergoes a variety of different responses to extracellular stimuli as a result of the function of evolutionarily conserved signal transduction pathways. In response to nutrient limitation, yeast undergoes filamentous growth [4,5,6], a cellular differentiation response in which changes in polarity, cell-cycle progression, and gene expression induce the formation of branched chains of interconnected and elongated filaments. The filamentous cell type is widely regarded as a model for differentiation [7,8,9,10], and in pathogens like Candida albicans, filamentous growth is a critical aspect of virulence [11,12,13].

A number of different pathways are required for filamentous growth (Figure 1A, left panel). These include a MAPK pathway commonly referred to as the FG pathway (Figure 1A, right panel [14,15,16]), the RAS pathway [4,17], the target of rapamycin or TOR pathway [18], the RIM101 pathway [19,20,21], the retrograde pathway (RTG [7]), the inositol regulatory transcription factor Opi1p [22], and a global glucose control protein kinase Snf1p [23,24,25]. It is not clear whether these different pathways function together or independently to regulate filamentous growth. This question is compounded by the fact that several hundred other proteins have been implicated in the filamentation response [7,26,27].

To identify new aspects of filamentous growth regulation, we developed a screening approach to identify regulators of the MAPK pathway that controls filamentous growth. The FG pathway is regulated by the signaling mucin Msb2p [28], a cell-surface glycoprotein [29] that mediates signaling through the RHO guanine nucleotide triphosphatase (GTPase) Cdc42p [30]. Msb2p is processed in its extracellular domain by the aspartyl protease Yps1p, and release of the extracellular domain is required for FG pathway activation [31]. By measuring release of the extracellular domain of Msb2p in complementary genomic collections, we identified new regulators of the FG pathway. Unexpectedly, many
Signal Convergence on a MAPK Pathway

Author Summary

Signal integration is an essential feature of information flow through signal transduction pathways. The mechanisms by which signals from multiple pathways become integrated into a coordinated response remain unclear. We show that multiple pathways that regulate filamentous growth converge on a differentiation-dependent MAPK pathway. Our findings indicate that more extensive communication occurs between signaling pathways that control the filamentation response than has previously been appreciated. We suggest that global communication hierarchies regulate information flow in other systems, particularly higher eukaryotes where multiple pathways typically function simultaneously to modulate a complex response.

In total, 505 genes were identified that influenced Msb2p secretion, which might represent an underestimate due to the stringent statistical cutoff employed. This unexpectedly large collection suggests that Msb2p is subject to extensive regulation, although presumably many of these genes exert their effects indirectly. To enrich for genes that specifically regulate the FG pathway, secondary tests were performed. In one test, the secretion profile of Msb2p was compared to the secretion profile of two other mucins, the signaling mucin Hkr1p [39,40] and transmembrane mucin Flo11p [41,42]. Almost half the genes were common to multiple mucins (44%, Figure 1G) and may function in the general maturation of large secreted glycoproteins. In a second test, the secretion profile of Msb2p was compared to a genomic screen for genes that when overexpressed influence the expression of a FG pathway-dependent reporter (Figure 1H). These tests eliminated general regulators of mucin maturation/trafficking and enriched for potential MAPK regulatory proteins (~72 candidate genes).

Several mutants were identified that were expected to influence Msb2p secretion. Mutants lacking FG pathway components (see Figure 1A), which are required for MSB2 expression in a positive feedback loop [28], showed a defect in Msb2p-β-galactosidase (β-gal) expression (Table S3). A subset of the genes that influence Msb2p secretion but not its expression might function through regulating expression of the YPS1 gene, which is highly regulated [43]. The cell-cycle regulatory transcription factors Swi4p and Swi6p [44,45,46,47,48], were also found to regulate Msb2p secretion (Table S3B and S7). The swi4 and swi6 mutants had different phenotypes in Msb2p-β-galactosidase (β-gal) expression (Table S3), which suggests that the Swi4p and Swi6p proteins may play different roles in regulating cell-cycle dependent expression of the MSB2 gene [49]. Some mating pathway-specific genes (STE3) were also identified, which may have an as yet unappreciated role in communication between the mating and FG pathways, which share a number of components [50].

As a proof-of-principle test, we disrupted fourteen genes that came out of the deletion screen in the Σ1278b background and tested for defects in Msb2p secretion and FG pathway signaling. The test showed a >70% recovery rate based on phenotype and identified a novel connection between the tRNA modification complex Elongator and MSB2 expression, establishing this protein complex as a novel regulator of the MAPK pathway [51]. Therefore, secretion profiling is a valid approach to identify established and potentially novel regulators of the FG pathway.

Results

Secretion Profiling as an Approach to Identify FG Pathway Regulatory Proteins

To identify new regulators of the FG pathway, secretion of the extracellular domain of Msb2p [31] was examined using a high-throughput screening (HTS) approach in complementary genomic collections. Similar approaches have identified regulators of protein trafficking by mis-sorting and secretion of carboxypeptidase Y [32,33,34]. An ordered collection of 4,845 mutants deleted for nonessential open reading frames (ORFs, [35]) was transformed with a plasmid carrying a functional epitope-tagged MSB2-HA fusion gene, and transfomers were screened by colony immunoblot to identify mutants with altered Msb2p-HA secretion (Figure 1B). Computational methods were used to quantitate, normalize, and compare secretion between mutants, which allowed ranking by the level of secreted Msb2p-HA (Table S3). As a result, 67 mutants were identified that showed reduced secretion of Msb2p-HA (Figure 1C, yellow), and 58 mutants were identified that showed elevated secretion (Figure 1C, green).

The secretion of Msb2p was also examined using an overexpression collection of 3,411 ORFs under the control of the inducible GAL1 promoter [36]. This collection allows examination of essential genes and can be assessed in the Σ1278b background, in which filamentous growth occurs in an Msb2p- and MAPK pathway-dependent manner [37]. Approximately 390 genes were identified that influenced the secretion of Msb2p-HA when overexpressed (Table S4). The two screens identified few common genes (Figure 1D, 1.5% overlap), which is not entirely surprising given that gene overexpression does not necessarily induce the same (or opposite) phenotype as gene deletion [38] and because the two backgrounds exhibit different degrees of filamentous growth [37]. Significant overlap was observed at the level of gene process/function (Figure 1E, 89% overlap), which resulted in classification of genes into different functional categories (Figure S1; Tables S3 and S4). Introduction of an MSB2-lacZ reporter showed a high correlation between genes that affect Msb2p secretion and MSB2 expression (Figure 1F; compare 1d to Mζ). Because MSB2 is itself a target of the FG pathway [28], many of the genes identified likely influence the activity of the FG pathway.

Multiple Signaling Pathways Regulate the FG Pathway

To identify new genes that regulate the FG pathway, ~50 candidate genes were disrupted in wild-type strains of the Σ1278b background, and the resulting mutants were tested for effects on FG pathway activity. To distinguish between mutants that influence filamentous growth from those that have a specific effect on FG pathway activity, a transcriptional reporter (FUS1) was used that in Σ1278b strains lacking an intact mating pathway (ste4) is dependent upon Msb2p and other FG pathway components including the transcription factor Ste12p [Figure 2A and 2B [28]]. A number of potential MAPK regulatory proteins were identified by this approach, many of which have been implicated in regulating filamentous growth through their functions in other pathways.
Mitochondrial retrograde signaling (the RTG network), which is responsible for mitochondrial communication with the nucleus, was required for FG pathway signaling. The RTG network responds to the integrity of the mitochondria and nutrient state, specifically the availability of certain amino acids. The proteins Rtg1p, Rtg2p, and Rtg3p are the main targets of the pathway, and these factors initially induce the expression of genes involved in the TCA cycle [52]. Rtg1p, Rtg2p, and Rtg3p were required for FG pathway signaling (Figure 2A). These factors are under the control of Mks1p, which inhibits Rtg3p translocation to the nucleus, preventing expression of target genes [53]. Mks1p is subsequently under the control of Rtg2p, which will bind and sequester Mks1p.

Figure 1. Secretion profiling of Msb2p. (A) Filamentous growth regulation in yeast. At left, different regulatory proteins and pathways that have been implicated in filamentous growth. It is unclear whether RAS regulates the FG pathway, as shown by the question mark. At right, the FG MAPK pathway. Cell surface proteins Msb2p and Sho1p connect to the Rho GTPase Cdc42p and effector p21 activated kinase Ste20p. The MAPKKK Ste11p, MAPKK Ste7p, and MAPK Kss1p regulate the activity of the transcription factors Ste12p and Tec1p. (B) Colonies from the MATα ordered deletion collection containing pMSB2-HA were pinned to nitrocellulose filters on SD-URA medium and incubated for 48h (left panel). Filters were rinsed in a stream of water and probed with anti-HA antibodies to detect shed Msb2p-HA (right panel). The mutant at position A2 (arrow) was identified as defective for Msb2p-HA secretion. (C) The secretion profile of Msb2p-HA in the haploid (MATα) ordered deletion collection. Y-axis, normalized spot intensity (Intensity) as a measure of secreted Msb2p-HA. X-axis, deletion mutants ranked by normalized spot intensity. Yellow, mutants that showed a decrease (2.5 standard deviations below average, -2.5 SD) in Msb2p-HA secretion. Green, mutants that showed elevated Msb2p-HA secretion (2.5 SD above average). (D) Overlay between genes identified in the deletion screen (blue circle at left, 124 genes) and the overexpression (O/E) screen (yellow circle at right, 389 genes). Seven common genes were identified (see Table S4C for details). (E) Overlay based on genes that share a common process/function. (F) Heat map showing normalized spot intensity (at 1d and 2d intervals) as a readout of Msb2p secretion compared to expression levels of an MSB2-lacZ (M2) reporter. Yellow, reduced secretion; green, elevated secretion; grey, N/D. See Table S3 for details. (G) Comparative mucin secretion profiling. Genes that influence Msb2p-HA secretion when overexpressed (−389 genes) were examined in strains containing Hkr1p-HA (PC2740) and Flo11p-HA (PC2043). Yellow, Msb2p-specific genes; blue, genes common to multiple mucins (Table S8). (H) Comparison between the secretion profile of Msb2p and regulators of a MAPK pathway growth reporter (FUS1-HIS3, [134]) whose expression is dependent upon the transcription factor Ste12p and elements of the STE pathway [135,136,137].

doi:10.1371/journal.pgen.1000883.g001

Figure 2. The role of filamentation control proteins on FG pathway activity. (A) FUS1-lacZ expression was monitored in the indicated strains in mid-log phase grown in YEPD medium. The experiment was performed in duplicate, and error bars represent standard deviation between experiments. In synthetic medium, the opi1 mutant showed a >3-fold decrease in FUS1-lacZ expression compared to wild type (data not shown). (B) Comparison between FUS1-HIS3 expression and invasive growth for a subset of mutants shown in (A). Equal concentrations of cells were spotted onto YEPD medium or synthetic medium containing glucose (SD), amino acids except histidine (−HIS), amino acids except histidine and containing the competitive inhibitor 4-amino-1,2,4-triazole. After two days, the plates were photographed. The YEPD plate was photographed, washed in a stream of water, and photographed again (Washed). Growth on SD-HIS is indicative of MAPK pathway activity. Growth on SD-HIS+AT is indicative of hyperactivity. Although the tor1 mutant induces hyperinvasive growth it does not influence MAPK activity.

doi:10.1371/journal.pgen.1000883.g002
and prevent its interaction with Rtg3p [54]. Consistent with its inhibitory role in the RTG pathway, Mks1p had an inhibitory role on FG pathway activity (Figure 2A and 2B). Rtg2p, in turn, is negatively regulated by the Tor1p complex via Lst8p [53]. Several mitochondrial components, including ribosomal subunits and enzymes of the TCA cycle, showed varied expression and signaling defects in the screen (Tables S3 and S4; Figure S7A). Deletion of Tor1p did not have the same effect as Mks1p (Figure 2A and 2B), but it has been shown that RTG can function independently of Tor1p inputs [56]. Consistent with a connection to RTG, the activity of the FG pathway was sensitive to certain amino acids such as glutamate (Figure S2).

Components of the Rim101p pathway [19], including the transcriptional repressor Rim101p and Dip16p, which is required for processing and activation of Rim101p [20,21], were required for FG pathway activity (Figure 2A). The Rim101p pathway is required for pH-dependent invasive growth, and the activity of the FG pathway was slightly sensitive to pH levels (Figure S2). Other regulators of the FG pathway included components of the RAS pathway (see below) and the inositol regulatory transcription factor Opi1p (Figure 2A [57,58]), which has recently been tied to filamentous growth regulation [22].

The discovery that many filamentous growth regulatory pathways impinge on the FG pathway suggests a systems-level coordination between the pathways that regulate filamentous growth. We directly tested other filamentation regulatory proteins. Filamentous growth is regulated by the global glucose-regulatory protein Snfl1p [23,24,25]. Snfl1p was not required for FG pathway activity (Figure 2A). The negative regulators Fkh1p/Fkh2p [59] and Nrg1p/Nrg2p [23,60], which function to inhibit invasive growth, did not influence FG pathway activity (Figure 2A). Therefore, many but not all inputs into filamentous growth regulation also regulate the FG pathway. This finding may begin to account for the large number of genes identified by secretion profiling that impinge on the FG pathway.

Ras2p/CAMP Regulates Starvation-Dependent Induction of MSB2 Expression

The RAS pathway has previously been implicated in FG pathway regulation [61]. However, systematic genomic analyses have failed to substantiate a connection between the two pathways [8,9,10,62,63,64,65], and a prevailing consensus is that the pathways function independently and converge on common targets [66,67]. We found that the GTPase Ras2p [67,68] was required for the expression of an MSB2 reporter, including the starvation-dependent induction of Tor1p inputs [56]. Consistent with a connection to RTG, the activity of the FG pathway was sensitive to certain amino acids such as glutamate (Figure S2).

Ras2p might regulate MSB2 expression by modulating cAMP levels through activation of adenylate cyclase [71]. As shown in Figure 3C, bypass of the MSB2 expression defect of the ras2A mutant was observed in cells lacking the phosphodiesterase PDE2 [72]. The ras2A pde2A double mutant showed wild-type expression of the MSB2 gene (Table S7), and overexpression of the PDE2 gene inhibited FG pathway activity (Table S4). Sensitizing MSB2 expression to cAMP levels represents a direct nutritional tie into MAPK regulation (Figure S2) and may explain why a large collection of genes that function in nutrient sensing were identified by secretion profiling (23.5%; Tables S3, S4, S5).

Ras2p also functions in a pathway that regulates the activity of the transcription factor Flo8p, which converges along with the FG pathway on the common target FLO11 [66,73,74,75]. The Flo8p pathway is co-regulated by Ras2p and the glucose receptor-heterotrimeric G-protein Gpr1p-Gpa2p [76,77,78,79,80]. Gpr1p, Gpa2p, and Flo8p were not required for MSB2 expression (Figure 3C, shown for flo8) or FG pathway signaling (Figure S2B). Ras2p also regulates a diverse collection of nutrient- and stress-related responses [81], and the ras2A mutant exhibits a number of phenotypes including glycogen accumulation, resistance to oxidative stress [82,83], enhanced chronological lifespan [84,85,86], and resistance to oleate [87]. MAPK pathway mutants did not show these phenotypes (Figure S4A, S4B, S4C, S4D), which suggests that the FG pathway does not regulate Ras2p function. We therefore suggest that the two pathways function in a unidirectional regulatory circuit RAS -> MAPK.

Expression profiling using whole-genome DNA microarrays was used to validate the above results. The expression profiles of cells overexpressing MSB2 or containing a hyperactive allele (MSB2A100->A108) were compared in wild-type cells, the ras2A mutant, and the ste12A mutant genome wide (Figure 3D). Most of the genes that showed MSB2-dependent induction (Figure 3D, red) were reduced in the ras2A and ste12A mutants (Figure 3D, green). Expression profiling identified new targets of the FG pathway, including genes that function in nutrient scavenging, respiration, and the response to stress (Figure 3D; yellow, N/S, Nutrient/ Stress). Targets of the RIM101 pathway [19] were also identified (Figure 3D, purple). The induction of nutrient scavenging genes may represent a feed-forward loop where starvation induces FG pathway activation, which results in the induction of genes to sustain foraging. We note that the observed gene expression changes in the microarray profiling studies encompass both direct and indirect effects. To summarize, RAS regulates the FG pathway by regulating the starvation-dependent induction of MSB2 expression.

Rpd3p(L) Regulates MSB2 Expression by Binding to the MSB2 Promoter

To further explore the regulation of MSB2 expression, transcriptional regulatory proteins identified by secretion profiling were examined. The Rpd3p(L) HDAC complex was identified as a strong positive regulator of MSB2 expression. Rpd3p(L) comprises a 12 subunit complex [88] that includes the bridging proteins Sin3p [89,90] and Scc3p [91]. Rpd3p, Sin3p, and Scc3p were required for starvation-dependent MSB2 expression and to produce wild-type levels of the Msb2p protein (Figure 4A). Rpd3p,
Sin3p, and Sdh3p were required for the induction of FG pathway reporters (Table S7) and invasive growth (Figure S6A).

Rpd3p functions in distinct large and small complexes with different cellular functions. Rpd3p(S) recognizes methylated histone H3 subunits and functions to repress spurious transcription initiation from cryptic start sites in open reading frames [92]. Rpd3p(S) contains unique proteins Rco1p and Eaf3p. In contrast, Rpd3p(L) is enriched for different proteins including Rtx2p [92], which is required for Rpd3p(L) function [93]. Immunoblot analysis (Figure 4A), transcriptional reporters (Figure 4B), and invasive growth assays (Figure S6A), showed that Rtx2p was required for MSB2 expression and FG pathway activation. In contrast, Rpd3p(L) was not required for pheromone response pathway activation (Figure S5), which shares components with the FG pathway but induces different target genes [5,94,95] and which does not require Msb2p function [28].

Histone deacetylases typically repress gene expression by causing compaction of chromatin into structures inaccessible to transcription factors. With respect to MSB2 expression however, Rpd3p(L) had a positive role. We tested whether Rpd3p(L) negatively regulated an inhibitor of MSB2 expression, such as the transcription factor Dig1p [96,97,98] but were unable to find evidence to support this possibility (Figure S6B). Rpd3p(L) functions as a positive regulator of some genes, including targets of the high osmolarity glycerol response (HOG) pathway by direct association with the promoters of HOG pathway targets [99], and in the regulation of some mating-specific targets [100]. Therefore, Rpd3p(L) might positively regulate MSB2 expression by associating with the MSB2 promoter. Chromatin immunoprecipitation (ChIP) analysis identified Rpd3p(L) at the MSB2 promoter (Figure 4C, Sin3p-HA). In the sin3A mutant, less Ste12p was found at the MSB2 promoter (Figure 4C and 4D, compare wild type to sin3A). Msb2p and the FG pathway also control STE12 expression. Ste12p-HA protein levels were reduced in the sin3A mutant (Figure 4E), as a result of a decrease in STE12 expression determined by q-PCR (data not shown). Therefore, Rpd3p(L) positively regulates the FG pathway by promoting MSB2 expression. Rpd3p(L) may also indirectly promote FG pathway activity by the regulation of other transcription factors that influence MSB2 expression.

Comparative Analysis of MSB2 and FLO11 Gene Regulation

Most of the regulators of MSB2 expression [MAPK, RAS, RIM101, OPI1, and Rpd3p(L)] also regulate expression of FLO11 [22,66,101], a target “hub” gene required for cell adhesion during filamentous growth and biofilm formation [8,18,42,66,102,103,104,105]. Because FLO11 is one of the most highly regulated yeast genes and a target of the FG pathway, we explored the regulation of the two genes in detail.

MSB2 and FLO11 expression were compared by quantitative PCR in a panel of signaling and transcription factor mutants. Phenotypic tests were used to measure FG pathway activity and Flo11p-dependent adhesion (Table S7). As expected, MSB2 and FLO11 expression showed similar dependencies on a number of pathways (Figure 5A, top panel). FLO11 expression was also dependent on genes that did not affect MSB2 expression (Figure 5A, middle panel), including primarily components of the Flo8p pathway. Unexpectedly, FLO11 expression was also dependent on genes that inhibited MSB2 expression, such as snf2A and mes1A (Figure 5A, bottom panel). Such inhibition might be explained by a negative-feedback loop that functions to dampen the FG pathway.

Like Msb2p, Flo11p is a secreted protein [41], which allowed an extensive comparison between the regulation of the two proteins in different conditions and genetic contexts. The levels of secreted proteins were examined in microbial mats, which expand in an Msh2p (MAPK pathway)- and Flo1p-dependent manner [105]. Msh2p-HA and Flo1p-HA showed similar dependencies on Ras2p and the FG pathway transcription factor Ste12p (Figure 5B). A “ring” pattern of Msh2p-HA and Flo1p-HA secretion was observed in the ras2A mutant (Figure 5B), which may indicate that Ras2p is required to sustain MSB2 and FLO11 expression in cells exposed to modest nutritional stress, like the interior of expanding mats. In contrast, Flo1p-HA secretion was dependent on proteins on which Msb2p-HA was not (Figure 5C; snf2A and mes1A). Msh2p-HA and Flo1p-HA showed opposing secretion patterns under some conditions in specific regions of mat interiors (Figure 5D) in agreement with the idea that the two genes are differentially regulated in some contexts. Therefore, expression, phenotypic, and secretion profiling corroborate the existence of a complex, partially overlapping regulatory circuit that governs the regulation of MSB2 and a primary MAPK target hub gene FLO11 (Figure S8).

Discussion

In this study, we address the fundamental question of how different signal transduction pathways function in concert to reprogram cellular behavior. This question is relevant to understanding the complex cellular decision-making underlying many cellular responses. Most studies on signal transduction regulation focus on a single pathway, or on highly related pathways that potentially engage in cross talk [50]. Here we report one of the first attempts to gain a systems-level perspective on the global regulation of a MAPK pathway that controls a differentiation response. This effort relied on primarily genomic approaches including a new technique called secretion profiling, which measures release of a cell-surface MAPK regulatory protein. The “top-view” perspective we obtained has shown that many of
the major regulatory proteins that control filamentous growth also control MAPK signaling. This finding is challenging to accept given that many of the pathways are currently viewed as separate entities. Nonetheless, this view is consistent with an emerging systems-level appreciation of pathway regulation in complex situations – cell differentiation, stem cell research, and cancer - where pathway interconnectedness drives the rationale for drug development and new therapeutic endeavors.

New Connections between Signaling Networks

We specifically show that four major regulators of filamentous growth are also required for FG pathway signaling (Figure 5E). The connections between the RIM101, OPI1, and RTG pathways to FG pathway regulation are entirely novel. We further show that the RAS pathway and several other pathways [MAPK, Swi4p, Rpd3p(L)] converge on the promoter of the key upstream regulator (MSB2) of the FG pathway. Like other signal integration mechanisms [8,66], the MSB2 promoter is a target “hub” where multiple pathways converge. This regulatory point makes sense from the perspective that Msb2p levels dictate FG pathway activity [28]. Given that the FG pathway exhibits multimodality in regulation of pathway outputs [39], its precise modulation is critical to induce an appropriate response.

The regulation of the FG pathway differs from that of a related MAPK pathway, the pheromone response pathway, where secreted peptide pheromones provide the single major input into activation [5,106,107]. The pheromone response pathway is not regulated by the RAS, RIM, or RTG pathways and does not appear to be influenced by the Rpd3p(L) HDAC, although some target mating genes do require Rpd3p(L) for expression [100]. Both the FG and mating pathways are regulated by positive feedback [28,65,108,109], presumably to provide signal amplification. Therefore, the FG pathway is distinguished in that it is highly sensitized to multiple external inputs. Because our screening approach was highly biased to identify regulators that function at the “top” of the pathway (at Msb2p), it is likely that the FG pathway may be subject to additional regulation not identified by this approach.

The networks that regulate filamentation signaling pathways appear in some cases to be redundant. For example, RAS regulates FLO11 expression through Flo8p and the FG pathway (Figure 5E). RIM101 similarly controls FLO11 expression through Nrg1p/Nrg2p and FG regulation (Figure 5E). However, any one of the major filamentation regulatory pathways when absent appears fully defective for the response. Such parallel processing of signaling networks might allow for “fine-tuning” of the differentiation response, or alternatively to synchronize all of the pathways to the
global regulatory circuit. Such synchronization may coordinate different aspects of filamentous growth (cell-cell adhesion, cell cycle regulation, reorganization of polarity) into a cohesive response.

RAS/cAMP Sensitizes MAPK Activity to Cellular Nutrient Status

Filamentous growth occurs within a narrow nutritional range [25], between high nutrient levels that support vegetative growth and limiting nutrients that force entry into stationary phase. The finding that Ras2p controls the overall levels of MSB2 expression extends the initial connection between RAS and the FG pathway [61] in several important ways. First, the results explain how Ras2p connects to the FG pathway above Cdc42p. Second, the data provide a link between nutrition and FG pathway signaling at the level of cellular cAMP levels. Third, Ras2p does not appear to function as a component of the FG pathway. This conclusion is based on the conditional requirement for Ras2p in MSB2 regulation, the suppression of the ras2Δ signaling defect by loss of PDE2, and the placement of Ras2p above MSB2 in the FG pathway. Our results fit with the general idea that RAS controls a broad response to cellular stress that encompasses FG pathway regulation. Ras2p has recently been shown to regulate the MAPK pathway that controls sporulation [110], a diploid-specific starvation response. Ras2p may therefore function as a general regulator of MAPK signaling in response to nutritional stress.

HDAC Regulation of MAPK Signaling

Examples by which MAPK pathways control target gene expression by recruitment of chromatin remodeling proteins is relatively common and include Rpd3p(L) regulation of HOG [99,111,112] and mating pathway [100] target genes. However,
the regulation of MAPK activity through chromatin remodeling proteins provides a hierarchical mechanism for global cellular reprogramming. Regulation of FG pathway activity by Rpd3p(L) may contribute to the establishment of a differentiated state. Once activated, FG pathway activity may be sustained by Rpd3p(L) to reinforce accessibility to the MSB2 promoter and formation of the filamentous cell type. Although the connection between Rpd3p(L) and nutrition is not entirely clear, Rpd3p(L) preferentially localizes to highly expressed genes, such as those required for anaerobic processes [113]. Therefore, Rpd3p(L) may coordinate overall growth rate with the persistence of MAPK activity. Precedent for Rpd3p(L) HDACs in regulating developmental transitions comes from Drosophila Dpap3, which together with the Chameau HAT function as opposing cofactors of NKF-AP-1-dependent transcription during metamorphosis [114]. HDAC regulation of MAPK activity may therefore represent a general feature of MAPK regulation.

In conclusion, we have identified an unprecedented degree of regulation of a differentiation-dependent MAPK pathway by multiple regulatory proteins and pathways. Our findings open up new avenues for exploring the relationships between pathways and the extent of their cross-regulation with the ultimate goal of understanding all functionally relevant pathway interactions in a comprehensive manner.

Materials and Methods

Strains, Plasmids, and Microbiological Techniques

Yeast strains are described in Table S1. Plasmids are described in Table S2. Yeast and bacterial strains were manipulated by standard methods [115,116]. PCR-based methods were used to generate gene disruptions, GAL1 promoter fusions [117,118], and insertion of epitope fusions [119], using auxotrophic and antibiotic resistant markers [120]. Integrations were confirmed by PCR Southern analysis and DNA sequencing. Plasmids pMSB2-GFP and pMSB2-HA have been described [31], as have plasmids pMSB2-lacZ and pMSB2AG-lacZ [39]. Plasmids containing FG pathway targets KSS1, SVS1, PGU1, and ILR042C fused to the lacZ gene were provided by C. Boone [65], pFLO8 was provided by G. Fink [37]. Plasmid pIL30-galactosidase assays were performed in 96-well format by transforming overexpression plasmids [36] was examined in a wild-type S1278b strain containing a functional MSB2-HA gene integrated at the MSB2 locus under the control of its endogenous promoter (PC999). Plasmids were purified from Escherichia coli stocks by alkaline lysis DNA preparation in 96-well format. Plasmid DNA was transformed into PC999 using the high-throughput transformation protocol described above. Transformants were selected on SD-URA and screened by pinning to nitrocellulose filters on SD-URA medium overlaid with a nitrocellulose filter (0.4 μm; HAHY08550 Millipore) and incubated for 48 h at 30°C. Filters were rinsed in distilled water to remove cells and probed by immunoblot analysis. Cross-contamination was estimated at 0.8% based on growth in blank positions; ~93% of the collection (4554 mutants) was examined.

For the overexpression screen, a collection of ~5,500 overexpression plasmids [36] was examined in a wild-type S1278b strain containing a functional MSB2-HA gene integrated at the MSB2 locus under the control of its endogenous promoter (PC999). Plasmids were purified from Escherichia coli stocks by alkaline lysis DNA preparation in 96-well format. Plasmid DNA was transformed into PC999 using the high-throughput transformation protocol described above. Transformants were selected on SD-URA and screened by pinning to nitrocellulose filters on synthetic medium containing 2% galactose and lacking uracil (SD-URA) medium overlaid with a nitrocellulose filter (0.4 μm; HAHY08550 Millipore) and incubated for 48 h at 30°C. Filters were washed in a stream of water and probed by immunoblot analysis as described above. Candidate genes/deletions that were initially identified were confirmed by retesting. Approximately ~35% of the deletion strains and 37% of the overexpression plasmids failed retesting and were considered false positives (Tables S3B and S4B). Comparative secretion profiling of Msb2p-HA, Hkr1p-HA, and Flo11p-HA was performed by transforming overexpression plasmids identified in the Msb2p-HA screen into strains that contain Hkr1p-HA (PC2740) and Flo11p-HA (PC2043). Transformants were pinned onto S-GAL-URA plates and screened by pinning to nitrocellulose filters on SD-URA medium overlaid with a nitrocellulose filter (0.4 μm; HAHY08550 Millipore) and incubated for 48 h at 30°C. Filters were rinsed in distilled water to remove cells and probed by immunoblot analysis. Cross-contamination was estimated at 0.8% based on growth in blank positions; ~93% of the collection (4554 mutants) was examined.

Computer Analysis

To compare levels of secreted protein between samples, spot intensity was measured and normalized to colony size. Small colonies initially scored as undersecretors and large colonies (particularly at plate corners) scored as hypersecretors were eliminated or flagged for retesting. As an additional test, standard immunoblots were performed from cells grown in liquid culture.
Supernatants (S) and cell pellets (P) were separated by centrifugation. In most cases (>80%), differential secretion by colony immunoblot was reflected by an altered S/P ratio by standard immunoblot analysis. The ImageJ MicroArray Profile.jar algorithm (http://www.optinav.com/download/MicroArray_Profile.jar) created by Dr. Bob Dougherty and Dr. Wayne Rasband, commonly used for Microarray analysis, was used as a plugin for the ImageJ program. Image intensity was determined in 96-panel format by inverting the image after background subtraction. Plate-to-plate variation was normalized by dividing the average intensity of all spots with the average intensity of each plate, and this factor was applied to the intensity of each spot. Heat maps for expression and secretion profiling were generated as described [127]. Classification of genes based on process/function was determined using GO ontology terms in publicly available databases including the Saccharomyces genome database (http://www.yeastgenome.org/). Analysis of human mucin genes was facilitated by the Human Protein Reference Database (http://www.hprd.org/).

DNA Microarray Analysis
DNA microarray analysis was performed as described [128,129]. Wild type (PC538), GAL-MSB2 (PC1083), GAL-MSB2 ste12A (PC1079), GAL-MSB2 ras2A (PC2949), MSB2\textsuperscript{4100-418} (PC1516), MSB2\textsuperscript{4100-418} ste12A (PC1811), and MSB2\textsuperscript{4100-418} ras2A (PC2364) strains were grown in YEP-GAL for 6 h, at which point cells were examined by microscopy for the characteristic filamentation response. RNA was prepared by hot acid phenol and passage over a RNaseasy column (Qiagen). Microarray construction, target labeling, and hybridization protocols were as described [130]. Sample comparisons were independently replicated at least 3 times from separate inductions. Fluoro-reverse experiments were used to identify sequence-specific dye biases. Arrays were scanned using a GenePix 4000 scanner (Axon Instruments). Image analysis was performed using GenePix Pro 3.0. Array features (i.e., spots) having low signal intensities or signals compromised by artifacts were removed from further analysis. Background subtracted Cy5/Cy3 ratios were log\textsubscript{2} transformed and a Loess normalization algorithm (http://www.optinav.com/download/MicroArray_Profile.jar) was applied for each spot. Heat maps for expression of all spots with the average intensity of each plate, and this factor to-plate variation was normalized by dividing the average intensity format by inverting the image after background subtraction. Plate-to-plate variation was normalized by dividing the average intensity format by inverting the image after background subtraction. Plate-to-plate variation was normalized by dividing the average intensity format by inverting the image after background subtraction. Plate-to-plate variation was normalized by dividing the average intensity format by inverting the image after background subtraction. Plate-to-plate variation was normalized by dividing the average intensity format by inverting the image after background subtraction.

Chromatin Immunoprecipitation (ChIP) Analysis
ChIP assays were performed as described [31]. Strains PC3091 (STE12-HA), PC3355 (sin3A, STE12-HA) and PC3579 (sin3-HA) were grown in YEPD medium for 8 h. Cross-linking was performed with 1% formaldehyde for 15 min at 25°C. Cells were collected by centrifugation and washed twice in PBS buffer. Cells were resuspended in ChIP lysis buffer (Upstate, Billerica, CA), and lysed by Fast Prep 24 (MP) for one cycle at 6.5 for 45 sec. After puncturing the bottom of Fast Prep tubes with a 22 gauge needle, lysates were collected by centrifugation. DNA was sheared by sonication on a Branson Digital Sonifier at setting 20% amplitude, 15 pulses for 20 sec, 55 sec. Pull downs were performed using a ChIP assay kit (Upstate) with anti-HA antibodies with 10% input sample set aside for a control. qPCR was used to determine relative amount of immunoprecipitated specific DNA loci in IP, Input, and Mock (no antibody) samples. The housekeeping ACT1 gene was used to normalize quantification in qPCR reactions. Data are expressed as IP/Input where \Delta ΔCt=(Ct \text{Input-MSB2-G5G}-Ct \text{Input-MSB2-G5G})-(Ct \text{Input-MSB3-G5G}-Ct \text{Input-MSB3-G5G}). Primers used were MSB2 promoter forward 5'-CGA-TAGCTGATAGACTGTGGAGTCG-3' and reverse 5'-GTTGGCACAAGCGCCACGTGTCTGCCG-3', MSB2 intergenic region forward 5'-TGACCAAAACTTGAGCTG-3' and reverse 5'-GGTTGGATGAGGATGATGAAA-3' and ACT1 forward 5'-GGCTTCTTGGACTACCCCTCCACCA-3' and reverse 5'-GATGGGACACATTTCGCTTATTTG-3'. ChIP pull downs were also visualized by gel electrophoresis.

mRNA Level Determination Using Quantitative PCR
Total RNA was isolated from 25 ml cultures grown in YEP GAL for 8 h using hot acid phenol extraction. cDNA synthesis was carried out using 1 μg RNA and the iScript cDNA Synthesis Kit (Bio-Rad; Hercules CA) according to the manufacturer’s instructions. One tenth of the synthesized cDNA was used as the template for real-time PCR. 25 ul real time PCR reactions were performed on the BioRad MyQ Cycler with iQ SYBR Green Supermix (Bio-Rad). RT qPCR was performed using the following amplification cycles: initial denaturation for 8 min at 95°C, followed by 35 cycles of denaturation for 15 sec at 95°C and annealing for 1 min at 60°C. Melt curve data collection was enabled by decreasing the set point temperature after cycle 2 by 0.5°C. The
specificity of amplicons was confirmed by generating the melt curve profile of all amplified products. Gene expression was quantified as described [132]. Primers were based on a previous report [133] and were FLO11 forward 5'-GTTCAGACGTCCAGGCGAAA-3' and reverse 5'-GAATTTACCGGTGGTGAAGTG-3' and those described for ChIP assays above. All reactions were performed in duplicate and average values are reported.

Supporting Information

Figure S1 Genes that regulate Msb2p-HA secretion comprise a number of different functional categories. Pie charts of functional categories enriched in the genomic screens. Far left, functional categories that contributed to Msb2p-HA secretion; middle panel, functional categories that were inhibitory for Msb2p-HA secretion; far right, the overall functional classification of genes in the yeast genome for reference. Functional classification of yeast genes was facilitated by SGD (http://www.yeastgenome.org/).

Found at: doi:10.1371/journal.pgen.1000883.s001 (6.08 MB TIF)

Figure S2 MSB2 expression is influenced by a different extracellular stimuli. The expression of an MSB2-lacZ fusion was examined under the conditions described. Cells were grown to mid-log phase in YEPD medium (30°C) or medium lacking glucose (YEP), containing a poor carbon source (YEP-GAL), or to saturation in a poor carbon source (YEP-GAL 16h). MSB2-lacZ expression was also compared in medium supplemented with the amino acid glutamate and medium at pH 3, pH 7, and pH 8. Cells were harvested, and β-galactosidase assays were performed in independent replicates. The error bars represent standard deviation between experiments.

Found at: doi:10.1371/journal.pgen.1000883.s002 (2.70 MB TIF)

Figure S3 Genetic suppression analysis of RAS pathway components based on the activity of the Fus1-His3 reporter. (A) The morphology of wild-type cells and cells containing the activated allele MSB2A100-818 or overexpressing MSB2 (GAL-MSB2) in combination with ra2Δ or ste12Δ mutations. Images were taken by DIC at 100X. Bar, 20 microns. (B) Equal concentrations of cells of the indicated genotypes were spotted onto YEPD and YEP-GAL media containing the indicated volume of hydrogen peroxide. Plates were incubated for 2d at 30°C and photographed. (D) The ra2Δ mutant is resistant to oleate in comparison to wild-type cells and FG pathway mutants. Equal concentrations of cells were spotted onto media containing oleate and examined after 7d at 30°C.

Found at: doi:10.1371/journal.pgen.1000883.s004 (2.72 MB TIF)

Figure S5 Genetic analysis of the Sin3p-Rpd3p complex in regulating MAPK signaling. (A) Halo assays. Wild-type cells and the indicated mutants were spread onto YEPl medium and 1 μl of 1mU α-factor was applied to plates. (B) Genetic suppression analysis of the ra2Δ mutant in combination with other mutants in the filamentous growth pathway. (C) Cell morphologies of the ra2Δ and ra2Δ mutants in combination with the activated allele MSB2A100-818. Bar, 10 microns.

Found at: doi:10.1371/journal.pgen.1000883.s005 (4.03 MB TIF)

Figure S7 The relationship between filamentous growth regulation and cellular respiration. (A) Secretion profiling identifies nutritional regulatory and enzymatic genes and genes that function in respiration or mitochondrial functions. (B) The role of the mitochondria on filamentous growth. Antimycin and oligomycin, but not rapamycin induce filamentation. Petite mutants are capable of undergoing filamentous growth. Cells were grown on semi-solid agar medium for 24 h and assessed by microscopy for filamentous growth. Bar, 10 microns. (C) A functional mitochondria is required for mat expansion. Mats were incubated on YEPl medium and assessed over time for expansion. On the final day, the plate was washed to reveal invaded cells. (D) Expression of MSB2-lacZ in cells exposed to mitochondrial inhibitors antimycin or oligomycin or in petite mutants.

Found at: doi:10.1371/journal.pgen.1000883.s006 (9.03 MB TIF)

Figure S8 Model for the combinatorial regulation of the MSB2 and FLO11 promoters. Nutritional information is conveyed to the regulation of MSB2 expression through Ras2p/cAMP and Rpd3(L). Rpd3(L) is required MSB2 expression by association with the MSB2 promoter (blue line). Ras2p contributes to MAPK regulation by several mechanisms (red lines). Ras2p/cAMP is required to activate MSB2 expression through an unknown mechanism (denoted by question mark). In contrast, Ras2p-cAMP-PKA-Flolp is required for FLO11 expression through the Flo1p transcription factor. Msb2p regulates FLO11 expression by MAPK signaling (green arrows). Msb2p further regulates its own expression through autoregulation by the MAPK pathway (green arrows). The dotted green line represents the feed-forward loop, by MAPK induction of genes that function in nutritional scavenging. FLO11-specific regulators are shown in yellow (Snf1p, TOR).

Found at: doi:10.1371/journal.pgen.1000883.s007 (11.14 MB TIF)

Table S1 Yeast strains.

Found at: doi:10.1371/journal.pgen.1000883.s008 (4.19 MB TIF)

Table S2 Plasmids used in this study.
Signal Convergence on a MAPK Pathway

Table S3 Mb2p-HA secretion analysis in the MTa collection of deletion mutants. Found at: doi:10.1371/journal.pgen.1000883.s010 (0.08 MB XLS)

Table S4 Genes that when overexpressed influence the secretion of Mb2p-HA. Found at: doi:10.1371/journal.pgen.1000883.s011 (0.71 MB XLS)

Table S5 Secondary screens to evaluate Mb2p-HA secretion. Found at: doi:10.1371/journal.pgen.1000883.s012 (1.33 MB XLS)

Table S6 Expression profiling of cells containing an activated allele of MBR2 or overexpressing the MBR2 gene in combination with ras2 and ste12. Found at: doi:10.1371/journal.pgen.1000883.s014 (8.71 MB XLS)

Table S7 Comparison of MBR2 and FLO11 expression levels, invasive growth, and MAPK signaling in mutants identified by secretion profiling. Found at: doi:10.1371/journal.pgen.1000883.s015 (0.03 MB XLS)

References

1. Dorozquez DB, Rebay I (2006) Signal integration during development: mechanisms of EGFR and Notch pathway function and cross-talk. Crit Rev Biochem Mol Biol 41: 339–383.

2. Hurlbut GD, Kankel MW, Lake RJ, Artavanis-Tsakonas S (2007) Crossing with Notch in the hyper-network. Curr Opin Cell Biol 19: 166–175.

3. Wagner EF, Nebreda AR (2009) Signal integration by JNK and p38 MAPK pathways in cancer development. Nat Rev Cancer 9: 537–549.

4. Gimeno CJ, Ljungdahl PO, Styles CA, Fink GR (1992) Unipolar cell divisions in the yeast S. cerevisiae lead to filamentous growth: regulation by starvation and Ras. Cell 68: 1077–1090.

5. Schwartz MA, Madhani HD (2004) Principles of map kinase signaling specificity in Saccharomyces cerevisiae. Annu Rev Genet 38: 725–748.

6. Verstrepen KJ, Kils FM (2006) Floculation, adhesion and biofilm formation in yeasts. Mol Microbiol 60: 5–15.

7. Jin R, Dobry CJ, McCown PJ, Kumar A (2008) Large-scale analysis of yeast secretion profiling. Mol Microbiol 60: 5–15.

8. Borrmann AR, Leigh-Bell JA, Yu H, Bertone P, Gerstein M, et al. (2006) Target hub proteins serve as master regulators of development in yeast. Gene Dev 20: 435–448.

9. Prinz S, Avila-Campillo I, Molnar H, Friesen H, Cominco C, et al. (2005) Components of the ESCRT pathway, DFG16, and YGR122w are required for Rim101p to act as a corepressor with Nrg1 at the negative regulatory element of the DIT1 gene of Saccharomyces cerevisiae. Mol Cell Biol 25: 6722–6738.

10. Reynolds TB (2006) The Opi1p transcription factor affects expression of FLO11, mat formation, and invasive growth in Saccharomyces cerevisiae. Eukaryot Cell 5: 1266–1275.

11. Kuchin S, Vyas VK, Carlson M (2002) Sulf1 protein kinase and the repressors Nrg1 and Nrg2 regulate FLO11, haploid invasive growth, and diploid pseudohyphal differentiation. Mol Cell Biol 22: 3994–4000.

12. Cullen PJ, Sprague GF, Jr. (2000) Glucose depletion causes haploid invasive growth in yeast. Proc Natl Acad Sci U S A 97: 13619–13624.

13. Palcek SP, Parikh AS, Kron SJ (2000) Genetic analysis reveals that FLO11 upregulation and cell polarization independently regulate invasive growth in Saccharomyces cerevisiae. Genetics 156: 1005–1025.

14. Mosch HU, Fink GR (1997) Dissection of filamentous growth by transposon mutagenesis in Saccharomyces cerevisiae. Genetics 145: 671–684.

15. Collet PJ, Sabathi W, Jr., Graham E, Ackerman RL, Lockyer PN, et al. (2004) A signaling mucin at the head of the Cdc42- and MAPK-dependent filamentous growth pathway in yeast. Mol Microbiol 47: 1017–1028.

16. Roberts CJ, Raymond CK, Yamashiro CT, Stevens TH (1991) Methods for high-throughput yeast mutagenesis in Saccharomyces cerevisiae. Genetics 156: 1005–1023.

17. Kuchin S, Vyas VK, Carlson M (2002) Sulf1 protein kinase and the repressors Nrg1 and Nrg2 regulate FLO11, haploid invasive growth, and diploid pseudohyphal differentiation. Mol Cell Biol 22: 3994–4000.

18. Cullen PJ, Sprague GF, Jr. (2000) Glucose depletion causes haploid invasive growth in yeast. Proc Natl Acad Sci U S A 97: 13619–13624.

19. Palcek SP, Parikh AS, Kron SJ (2000) Genetic analysis reveals that FLO11 upregulation and cell polarization independently regulate invasive growth in Saccharomyces cerevisiae. Genetics 156: 1005–1025.

20. Mosch HU, Fink GR (1997) Dissection of filamentous growth by transposon mutagenesis in Saccharomyces cerevisiae. Genetics 145: 671–684.

21. Collet PJ, Sabathi W, Jr., Graham E, Ackerman RL, Lockyer PN, et al. (2004) A signaling mucin at the head of the Cdc42- and MAPK-dependent filamentous growth pathway in yeast. Mol Microbiol 47: 1017–1028.

22. Singh PK, Hollingsworth MA (2006) Cell surface-associated mucins in signal transduction. Trends Cell Biol 16: 467–476.

23. Kim HO, Lee B, Yoon SY, Park SY, Park H, et al. (2008) Cleavage of the signaling mucin Mobi2 by the aspartyl protease Yps1 is required for MAPK activation in yeast. J Cell Biol 181: 1073–1081.

24. Roberts CJ, Raymond CK, Yamashiro CT, Stevens TH (1991) Methods for studying the yeast vacuole. Methods Enzymol 194: 644–661.

25. Schüller C, Lamm K, Brumm J, Wu BW, Saunders M, et al. (2008) Global Analysis of Yeast Endosomal Transport Identifies the Vps53/68 Sorting Complex. Mol Biol Cell 19: 1292–1294.

26. Bonangelino CJ, Chavez EM, Bonifacino JS (2002) Genomic screen for vacuolar protein sorting genes in Saccharomyces cerevisiae. Mol Biol Cell 13: 2486–2501.

27. Schulter C, Lamm K, Brumm J, Wu BW, Saunders M, et al. (2008) Global Analysis of Yeast Endosomal Transport Identifies the Vps53/68 Sorting Complex. Mol Biol Cell 19: 1292–1294.

28. Bonangelino CJ, Chavez EM, Bonifacino JS (2002) Genomic screen for vacuolar protein sorting genes in Saccharomyces cerevisiae. Mol Biol Cell 13: 2486–2501.

29. Winerz EA, Eshemooker DD, Aströmoff A, Liang H, Anderson K, et al. (1999) Functional characterization of the S. cerevisiae genome by gene deletion and parallel analysis. Science 285: 901–906.
36. Gelperin DM, White MA, Wilkinson ML, Kon Y, Kung LA, et al. (2005) Biochemical and genetic analysis of the yeast proteome with a movable ORF collection. Genes Dev 19: 2161–2166.

37. Liu H, Styles CA, Fink GR (1996) Saccharomyces cerevisiae S288C has a mutation in FLO8, a gene required for filamentous growth. Genetics 144: 967–978.

38. Niu W, Li Z, Zhan W, Iyer VR, Marcotte EM (2008) Mechanisms of cell cycle control revealed by a systematic and quantitative overexpression screen in S. cerevisiae. PLoS Genet 4: e1000120. doi:10.1371/journal.pgen.1000120.

39. Pinonak A, Bikay B, Dionne HS, Vadnay N, Cullen PJ (2009) The Signaling Mucins Mib2 and Hirl1 Differentially Regulate the Filamentation MAPK Pathway and Contribute to a Multimodal Response. Mol Biol Cell.

40. Toda T, Uno I, Ishida K, Powers S, Kataoka T, et al. (1985) In yeast, RAS8p is a central element of the regulatory network that controls FLO11 expression and invasive growth in Saccharomyces cerevisiae. Genetics 109: 91–106.

41. Bardele B, Fink GR (1998) The tRNA modification complex elongator family of aspartyl proteases required for cell wall integrity in Saccharomyces cerevisiae. Eukaryot Cell 4: 1364–1374.

42. Nasmyth K, Dirick L (1991) The role of SWI4 and SWI6 in the activity of G1 cyclin-dependent kinases during late G1. Cell 66: 1015–1026.

43. Krysan DJ, Ting EL, Abeijon C, Kroos L, Fuller RS (2005) Yapsins are a family of helix-loop-helix-leucine zipper transcription complexes in yeast that function in a signaling pathway. Genes Dev 13: 887–900.

44. Zhang S, Lippman SI, Schlepper L, Slonim N, Broach JR (2009) p53 regulates transcription in yeast through a network of signaling pathways. Mol Syst Biol 5: 245.

45. Roberts CJ, Nelson B, Marton MJ, Stoughton R, Meyer MR, et al. (2000) Signaling and circuitry of multiple MAPK pathways revealed by a matrix of global gene expression profiles. Science 287: 873–880.

46. Rupp S, Summers E, Lo HJ, Madhani H, Fink G (1999) MAP kinase and cAMP filamentation signaling pathways converge on the unusually large promoter of the yeast FLO11 gene. Embo J 18: 1257–1269.

47. Lee J, Freed J, Lum S, Fink GR (2000) Gbeta acts as a sensor for glucose to activate Gpa2, a G protein-coupled receptor required for a yeast filamentation signaling pathway. Mol Cell 16: 235–241.

48. Charizanis C, Juhnke H, Krems B, Entian KD (1999) Spaceship, a novel yeast aspartyl protease required for cell wall integrity. J Biol Chem 274: 40961–40966.

49. Kuehne T, Carrozzi MA, Yu Y, Grant PA, Eberharter A, et al. (2000) Sds3p, Fie1p and Hec1p form a multiprotein complex containing the yeast Sin3p and Rpd3p transcriptional regulators. Mol Cell 10: 163–173.

50. Loudet O, Pichon C, Badeau J, Labarre J, Boy-Marcotte E, et al. (2002) The SHO1 branch of yeast HOG pathway. Embo J 21: 3521–3533.

51. Sato Y, Kozawa Y, Hashimoto T, Ishida K, Yamashita Y, et al. (2002) Sds3p, a protein that interacts with Fmr1, is required for histone deacetylase activity. J Biol Chem 275: 40961–40966.

52. Rundlett SE, Carmen AA, Kobayashi R, Bavykin S, Turner BM, et al. (1996) Regulation and Functional Basis of Mucin Shedding in a Yeast Mucin. Mol Cell 1: 1378–1387.
Carrozza MJ, Li B, Florens L, Suganuma T, Swanson SK, et al. (2005) Histone H3 methylation by Set8 directs deacetylation of coding regions by Rpd3S to suppress spurious intragenic transcription. Cell 125: 581–592.

Colina AR, Young D (2005) Rafl60, a novel component of the Rpd3 histone deacetylase complex required for Rpd3 activity in Saccharomyces cerevisiae. J Biol Chem 280: 42352–42356.

Qi M, Elion EA (2005) MAP kinase pathways. J Cell Sci 118: 3569–3572.

Murphy LO, Blenis J (2006) MAPK signal specificity: the right place at the right time. Trends Biochem Sci 31: 206–275.

Cook JK, Bardwell L, Kron SJ, Thorner J (1996) Two novel targets of the MAP kinase Ssk1 are negative regulators of invasive growth in the yeast Saccharomyces cerevisiae. Genes Dev 10: 2831–2848.

Ohlman KA, Nelson C, Tai G, Hung W, Yong C, et al. (2000) Two regulators of Ste12p inhibit pheromone-responsive transcription by separate mechanisms. Mol Cell Biol 20: 4199–4209.

Chou S, Lane S, Lia H (2006) Regulation of mating and filamentation genes by two distinct Ste12 complexes in Saccharomyces cerevisiae. Mol Cell Biol 26: 4794–4803.

De Nadal E, Zapater M, Alepuz PM, Sumoy L, Mas G, et al. (2004) The MAPK Hog1 recruits Rpd3 histone deacetylase to activate osmoregulatory genes. Nature 427: 370–374.

Vidal M, Strich R, Esposito RE, Gaber RF (1991) RPD1 (SIN3/UME4) is required for maximal activation and repression of diverse yeast genes. Mol Cell Biol 11: 6306–6316.

Barrales RR, Jimenez J, Beas JJ (2008) Identification of novel activation mechanisms for FLO11 regulation in Saccharomyces cerevisiae. Genetics 178: 145–156.

Lo WS, Dranginis AM (1996) FLO11, a yeast gene related to the STA genes, encodes a novel cell surface floculin. J Bacteriol 178: 7144–7151.

Lambrechts MG, Bauer FF, Marmur J, Pretorius IS (1996) Muc1, a mucin-like protein that is regulated by Msi10, is critical for pseudohyphal differentiation in yeast. Proc Natl Acad Sci U S A 93: 8419–8424.

Lo WS, Dranginis AM (1998) The cell surface floculin Flo11 is required for pseudohyphal formation and invasion by Saccharomyces cerevisiae. Mol Biol Cell 9: 161–171.

Reynolds TB, Fink GR (2001) Bakers' yeast, a model for fungal biofilm formation. Science 291: 878–881.

BardeLL L (2004) A walk-through of the yeast mating response pathway. Pathways 25: 1463–1476.

Eaton EA (2000) Pheromone response, mating and cell biology. Curr Opin Microbial 3: 573–581.

Nakayama N, MiyaJima A, Ariki K (1987) Common signal transduction system shared by STE2 and STE3 in haploid cells of Saccharomyces cerevisiae: autochrome cell-cycle arrest results from forced expression of STE2. Embryo J 6: 249–254.

Bender A, Sprague GF, Jr. (1986) Yeast peptide pheromones, a-factor and alpha-factor, activate a common response mechanism in their target cells. Cell 47: 929–937.

McDonald CM, Wagner M, Dunham MJ, Shin ME, Ahmed NT, et al. (2009) The Ras/cAMP pathway and the CDK-like kinase Ime2 regulate the MAPK Smk1 and spore morphogenesis in Saccharomyces cerevisiae. Genetics 181: 511–525.

Mas G, de Nadal E, Dechant R, de la Concepcion ML, Logie C, et al. (2009) Recruitment of a chromatin remodelling complex by the Hog1 MAP kinase to stress genes. Embo J 28: 326–336.

Dunn KL, Equipois PS, Drobic B, He S, Dove JC (2005) The Ras-MAPK signal transduction pathway, cancer and chromatin remodeling. Biochem Cell Biol 83: 1–14.

Kurdistanti SK, Robyr D, Tavaresio S, Grunstein M (2002) Genome-wide binding map of the histone deacetylase Rpd3 in yeast. Nat Genet 31: 249–254.

Miotto B, Sagner T, Berenger H, Bohlmann D, Pradel J, et al. (2006) Chameau HAT and DRDp3 HDAC function as antagonistic cofactors of JNK/AP-1-dependent transcription during Drosophila metamorphosis. Genes Dev 20: 101–112.

Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.

Rose MD, Winston F, Hieter P (1996) Methods in yeast genetics. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.

Baudin A, Otazi-Kalogeropoulos O, Denouel A, Lacroix F, Collin G (1993) A simple and efficient method for direct gene deletion in Saccharomyces cerevisiae. Nucleic Acids Res 21: 3329–3330.

Longtine MS, McKenzie A, 3rd, Demarini DJ, Shah NG, Wach A, et al. (1996) Additional modules for versatile and economical PCR-based gene deletion and modification in Saccharomyces cerevisiae. Yeast 14: 953–961.

Schneider BL, Seufert W, Steiner B, Yang QH, Futterer ABC (1995) Use of polymerase chain reaction epitope tagging for protein tagging in Saccharomyces cerevisiae. Yeast 11: 1265–1274.

Goldstein AL, McCaluer JH (1999) Three new dominant drug resistance cassettes for gene disruption in Saccharomyces cerevisiae. Yeast 15: 1541–1553.

Laloux I, Jacobs E, Dubois E (1994) Involvement of SRE element of Ty1 in pseudohyphae formation and invasion by Saccharomyces cerevisiae. Mol Biol Cell 5: 1451–1463.

Chau J, Pringle JR (1995) Patterns of bud-site selection in the yeast Saccharomyces cerevisiae. J Cell Biol 129: 751–765.

Jeness DD, Goldman BS, Hartwell LH (1987) Saccharomyces cerevisiae mutants unresponsive to alpha-factor pheromone: alpha-factor binding and extragenic suppression. Mol Cell Biol 7: 1311–1319.

Cullen PJ, Schultz J, Horvica J, Stevenson BJ, Jigami Y, et al. (2000) Defects in protein glycosylation cause SHO1-dependent activation of a STE12 signaling pathway in yeast. Genetics 155: 1005–1018.

Giertz RD, Schiestl RH (2007) Microtiter plate transformation using the LiAc/SS carrier DNA/PEG method. Nat Protoc 2: 5–8.

Giertz RD, Woods RA (2002) Transformation of yeast by lithium acetate/single-stranded carrier DNA/polylethylene glycol method. Methods Enzymol 350: 87–96.

Eisen MB, Spellman PT, Brown PO, Botstein D (1998) Cluster analysis and display of genome-wide expression patterns. Proc Natl Acad Sci U S A 95: 14863–14868.

DeRisi JL, Iyer VR, Brown PO (1997) Exploring the metabolic and genetic control of gene expression on a genomic scale. Science 278: 680–686.

Lashkari DA, DeRisi JL, McCuaker JH, Namath AF, Gentile C, et al. (1997) Yeast microarrays for genome wide parallel genetic and gene expression analysis. Proc Natl Acad Sci U S A 94: 13057–13062.

Fuzzick TG, Koeppeberg C, Goldmark JP, Neal G, Basom R, et al. (2001) Widespread collaboration of Inv2 and Sin3-Rpd3 chromatin remodeling complexes in transcriptional repression. Mol Cell Biol 21: 6450–6460.

Yu MC, Lamming DW, Eklund JA, Sinclair DA, Silver PA (2006) The role of protein arginine methylation in the formation of silent chromatin. Genes Dev 20: 3249–3254.

Plauf AM (2001) A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res 29: e45.

Voyov V, Verstrepen KJ, Jansen A, Rammer VM, Burawski S, et al. (2006) Genes with internal repeats require the THO complex for transcription. Proc Natl Acad Sci U S A 103: 14425–14428.

McCallery G, Clay EJ, Resky K, Sprague GF, Jr. (1987) Identification and regulation of a gene required for cell fusion during mating of the yeast Saccharomyces cerevisiae. Mol Cell Biol 7: 2690–2690.

O'Rourke SM, Herskowitz I (2004) Unique and redundant roles for HOG MAPK pathway components as revealed by whole-genome expression analysis. Mol Biol Cell 15: 532–542.

Rivers DM, Sprague GF, Jr. (2003) Autocrine activation of the pheromone response pathway in metalα2 -cells is attenuated by SST2- and ASG7-dependent mechanisms. Mol Genet Genomics 270: 225–233.

Hagen DC, McCaffrey G, Sprague GF, Jr. (1991) Pheromone response elements are necessary and sufficient for basal and pheromone-induced transcription of the FUS1 gene of Saccharomyces cerevisiae. Mol Cell Biol 11: 2902–2906.