Partial Sequencing of 16S rRNA Gene of Selected *Staphylococcus aureus* Isolates and its Antibiotic Resistance

H. D. Kusumaningrum*a, L. Handayani‡, & R. Novrianti‡

*aDepartment of Food Science and Technology, Faculty of Agricultural Engineering and Technology, Bogor Agricultural University

‡Southeast Asian Food and Agricultural Science and Technology (SEAFAST) Center, Bogor Agricultural University

Media Peternakan, August 2016, 39(2):67-74
DOI: 10.5398/medpet.2016.39.2.67
Available online at http://medpet.journal.ipb.ac.id/

ABSTRACT

The choice of primer used in 16S rRNA sequencing for identification of *Staphylococcus* species found in food is important. This study aimed to characterize *Staphylococcus aureus* isolates by partial sequencing based on 16S rRNA gene employing primers 16sF, 63F or 1387R. The isolates were isolated from milk, egg dishes and chicken dishes and selected based on the presence of *sea* gene that responsible for formation of enterotoxin-A. Antibiotic susceptibility of the isolates towards six antibiotics was also tested. The use of 16sF resulted generally in higher identity percentage and query coverage compared to the sequencing by 63F or 1387R. BLAST results of all isolates, sequenced by 16sF, showed 99% homology to complete genome of four *S. aureus* strains, with different characteristics on enterotoxin production and antibiotic resistance. Considering that all isolates were carrying *sea* gene, indicated by the occurrence of 120 bp amplicon after PCR amplification using primer SEA1/SEA2, the isolates were most in agreeing to *S. aureus* subsp. *aureus* ST288. This study indicated that 4 out of 8 selected isolates were resistant towards streptomycin. The 16S rRNA gene sequencing using 16sF is useful for identification of *S. aureus*. However, additional analysis such as PCR employing specific gene target, should give a valuable supplementary information, when specific characteristic is expected.

Keywords: 16S rRNA gene sequencing, *Staphylococcus aureus*, enterotoxin-A, antibiotic

ABSTRAK

Pemilihan primer yang digunakan dalam sekuensing gen 16S rRNA untuk identifikasi secara akurat terhadap spesies *Staphylococcus* pada pangan merupakan hal yang penting. Studi ini bertujuan untuk mengkarakterisasi isolat *Staphylococcus aureus* melalui sekuensing parsial terhadap gen 16S rRNA menggunakan primer 16sF, 63F atau 1387R. Isolat yang digunakan diisolasi dari susu, telur olahan dan ayam olahan yang dipilih berdasarkan keberadaan gen *sea* yang berperan dalam pembentukan enterotoksin-A. Kerentanan isolat terhadap enam antibiotik juga diuji. Penggunaan primer 16sF secara umum menghasilkan persentase homologi dan cakupan yang lebih tinggi dibandingkan dengan sekuensing menggunakan 63F atau 1387R. Hasil BLAST terhadap semua isolat yang disekuensing dengan 16sF menunjukkan 99% homologi terhadap 4 strain *S. aureus* dengan karakteristik yang berbeda dalam pembentukan enterotoksin maupun kerentanan terhadap antibiotik. Mengingat bahwa semua isolat mempunyai gen *sea*, yang ditandai dengan kehadiran amplikon 120 bp setelah amplifikasi menggunakan primer SEA1/SEA2, semua isolat homolog dengan *S. aureus* subsp. *aureus* ST288. Penelitian ini juga menunjukkan bahwa empat dari delapan isolat resisten terhadap streptomisin. Sekuensing terhadap gen 16S rRNA menggunakan primer 16sF sangat bermanfaat dalam mengidentifikasi *S. aureus*, tetapi tambahan analisis PCR terhadap gen spesifik, akan memberikan informasi yang berharga terutama jika diharapkan ditemukan karakteristik khusus pada bakteri.

Kata kunci: sekuensing gen 16S rRNA, *Staphylococcus aureus*, enterotoksin-A, antibiotik

*Corresponding author:
E-mail: h_kusumaningrum@ipb.ac.id
INTRODUCTION

Staphylococcal food poisoning is occurred when people consume food contaminated by *Staphylococcus aureus* that produce enterotoxins. Various staphylococcal enterotoxins (SE) in staphylococcal food poisoning have been reported. They were SEA, SEB, SEC, SEF, SED and SEE, and recently new serological types of SEs (SEG, SEH, SEI, SEJ, SEK, SEL, SEM, SEN, SEO, SEP, SEQ, SER and SEU) were also identified (Argudin et al., 2010; Xie et al., 2011, Roussel et al., 2015). Staphylococcal enterotoxins-A (SEA), which is found on most food poisoning by *S. aureus*, is expressed in the mid-exponential phase, and its gene appears to be transferred by temperate bacteriophage (Argudin et al., 2010). The prevalence and genetic diversity of *S. aureus* has been investigated in raw and pasteurized milk (Rall et al., 2008). Relatively shorter primer, i.e. 16sF and 16sR3, were also used (Lee et al., 2007). Three different primers targeting the 16S rRNA gene, i.e. 16sF, 63F and 1387R, was used separately to sequence specific isolates from milk, egg dishes and street-vended foods (Rohinishree & Negi, 2011). For epidemiological purposes, the accuracy of identification of *Staphylococcus* species isolated from various food products is critical. In this regard, molecular characterization is reported to be more accurate (Becker et al., 2004) than phenotypic identification (Rohinishree & Negi, 2011). The 16S rRNA gene is extensively used as taxonomic marker molecules during molecular characterization (Janda & Abbott, 2007), particularly during the sequence analysis for differentiating species and sub species of bacteria (Rohinishree & Negi, 2011).

Generally, during sequencing analysis, the DNA target is firstly amplified using a pair primers followed by the sequencing using a single primer (SenGupta & Cookson, 2010). Identification based on highly conserved genes such as 16S rRNA usually uses long sequences primers (≥ 500 bp to about 1500 bp) (Janda & Abbott, 2007), although species specific shorter sequenc- es can also be applied. For this purposes, universal primers for amplification of 16S rRNA genes are widely available, such as primers 63F and 1387R (1350bp) (Marchesi et al., 1998) and 27f and 1492r (Frank et al., 2008). Relatively shorter primer, i.e. 16sF and 16sR3 were also used (Lee et al., 2007). Since the choice of primers will affect the diversity of bacterial species that will be detected (Fredriksson et al., 2013), in this study three different primers targeting the 16S rRNA gene, i.e. 16sF, 63F and 1387R, was used separately to sequence DNA of selected *S. aureus* isolates from milk, egg dishes and chicken dishes. Milk, egg dishes and chicken dishes were reported contaminated by *S. aureus* in previous study (Handayani et al., 2014).

Furthermore, as information on the spreading of antibiotic resistance strains among *S. aureus* in food is also important, the antibiotic susceptibility testing of the isolates against antibiotics was also conducted in this study. The antibiotics tested were antibiotics that usually used to control human infections as well as to control and treat infections on farms. Many *S. aureus* strains that demonstrated resistance to different antibiotics were isolated from hospitals (Schmitz et al., 1999; Brown & Ngeno, 2007; Xie et al., 2011), hospital waste waters (Thompson et al., 2012), as well as from animal based food product, such as raw milk and dairy products (Jamali et al., 2015), poultry retail meat (Teramoto et al., 2016), and goat milk powder (Xing et al., 2016).

MATERIALS AND METHODS

Bacterial Strain and Isolates

The wild-type of *S. aureus* from raw milk (S1, S4 and S10), egg dishes (TB1), sautéed chicken cuts (UA2 and UA13) and chicken cuts satay (SJ1 and SJ4) were isolated in previous study (Handayani et al., 2014). *S. au- reus* ATCC 25923 was used as a reference bacterium. All bacteria were grown in a tryptic soy broth or agar (Difco Laboratory, Detroit, MI, U.S.A.), and incubated at 37°C for 18h-24h. For confirmation, the isolates were spread onto Baird-Parker Agar (Oxoid Ltd., Hampshire, UK) supplemented with egg-yolk tellurite. Plates were incubated at 37°C for 18-24 h, thereafter the colonies were picked and streaked on Mannitol Salt Agar (Oxoid Ltd., Hampshire, UK). Typical colonies were then tested for production of catalase using Staphylase test kit (Oxoid Ltd., Hampshire, UK) and biochemical identification using API Staph (bioMérieux Inc., North Carolina, USA) according to manufacturer’s instructions.

DNA Extraction

Genomic DNA was isolated as described previously by Mason et al. (2001) with slight modification, as reported by Handayani et al. (2014), i.e. lysostaphin (10 mg/ml) was substituted by lysozyme (Bio Basic Canada Inc., Ontario, Canada) solution (10 mg/ml). The concentration of genomic DNA was determined by the Spectrophotometer UV -1800 (Shimadzu, Japan) at 260 nm while the quality was assessed based on the ration of the reading at 260/280 nm. The integrity of the DNA was checked by running in 1.5% agarose gel at 75V for 40 min electrophoresis (Bio-Rad Laboratories Pte. Ltd., Singapore).

Detection of 16S rRNA and Sea Gene by PCR

The amplification of the gene encoding 16S rRNA and *sea* was performed using primers listed in Table 1 at Thermal Cycler 2720 (Applied Biosystems, California, USA). PCR master mix consisted of 12.5 µL of DreamTaq Green master mix (Thermo Fisher Scientific, Massachusetts, USA), 1 µL of each primer (10 µM), 2 µL of DNA template, and 8.5 µL nuclease free water (Thermo Fisher Scientific, Massachusetts, USA). Cycling parameters were one denaturation cycle for 5 min at 95°C and 30 amplification cycles for denaturation (1 min at 95°C), annealing (1 min at 55°), extension (1 min at 72°C) and termination for 5 min at 72°C, adopted from Lee et al. (2007). The amplification products were visualized on 2% agarose gel (Thermo Fisher Scientific, Massachusetts, USA) by electrophoresis (Bio-Rad, Bio- Rad Laboratories Pte. Ltd., Singapore) at 75 V for 40 min.
Sequence Analysis of 16S rRNA Gene

The genotypic characterization of bacteria isolates was made through partial sequence analysis of 16S rRNA gene, using single primer 16sF, 63F, or 1387R. The PCR products that were amplified with primers 16sF/16sR3 were sequenced using primer 16sF. The PCR products amplified with primers 63F/1387R were sequenced using primer 63F and 1387R separately. The process of DNA sequencing was conducted by BigDye Applied Biosystem sequencer engine model 3730 at Macrogen inc., Singapore. Partial sequence data obtained, in FASTA format, was then submitted to the BLAST process at NCBI (National Center for Biotechnology Information) database for the identification of isolates (http://blast.ncbi.nlm.nih.gov/Blast.cgi). The BLAST process was conducted using nucleotide collection searching setting (nr/nt) with *Staphylococcus aureus* subsp. *aureus* (taxid:46170) as organism of choice. The sequencing results were then compared to the reported 16S rRNA gene sequences of *Staphylococcus* species available in the GenBank database. The isolates were identified based on the highest homology percentages to the reported sequences.

Antimicrobial Susceptibility Testing

Antimicrobial susceptibility was tested according to the guidelines of the Clinical Laboratory Standards Institute (CLSI, 2012) using the disk diffusion technique with commercially available discs (Oxoid). The antimicrobials and concentrations in micrograms tested were gentamicin (10 mcg), streptomycin (10 mcg), kanamycin (30 mcg), chloramphenicol (30 mcg), tetracycline (30 mcg), and oxytetracycline (30 mcg). The inhibition zones, in mm, were measured in duplicate and scored as sensitive, intermediate susceptibility and resistant according to the CLSI recommendations, e.g. >19, 15-18 and <14 for tetracycline; >18, 13-17 and <12 for chloramphenicol; etcetera (CLSI, 2014). Gentamicin 10 µg S ≥15 13–14 ≤12; Kanamycin 30 µg ≥18 14–17 ≤13; Streptomycin 10 µg ≥15 12–14 ≤11; Chloramphenicol 30 µg ≥18 13–17 ≤12; Tetracycline 30 µg ≥19 15–18 ≤14 (CLSI, 2014).

RESULTS

Genotypic Characteristic of Isolates

Ten isolates of 78 presumptive *S. aureus* isolates were positive for *S. aureus* (Handayani et al., 2014). Eight of these isolates were reconfirmed in this study carrying sea gene that responsible for formation of staphylococcal enterotoxin-A (SEA). The presence of sea gene was indicated by the occurrence of 120 bp amplicon, after PCR amplification using primer SEA1/SEA2 (Table 2). The reference strain, *S. aureus* ATCC 25923, did not show this gene. In addition to the work of Handayani et al. (2014), all isolates also demonstrated 1350 bp amplicon after amplification by 63F/1387R primer (universal primer). The amplified PCR products of some isolates are shown in Figure 1.

The BLAST results are listed in Table 3. Sequencing by primer 16sF resulted in high identity percentages (almost all achieved 99%) towards the existing genome of *S. aureus* strains found in database of NCBI GenBank, in comparison to the sequencing by 63F and 1387R. Sequencing by 63F showed similarity to *S. aureus* strains in a range between 94% and 99%, while by 1387R in a range of 90% to 99%. In addition, using 16sF also resulted in low E-value. The lower the E-value, or the closer it
is to zero, the match is more significant (Pearson, et al., 2014). The expect value (E) is a parameter that describes the number of hits one can “expect” to see by chance when searching a database of a particular size. As shown in Table 3, by sequencing using primer 16sF, all isolates demonstrated 99% homology to the sequence of genome of 4 strains of S. aureus. They were S. aureus strain MSSA476, S. aureus subsp. aureus ST772-MRSA-V strain DAR4145, S. aureus subsp. aureus DSM 20231, and S. aureus subsp. aureus ST288 (isolate 10338, 10497, 15532, 16035, 18341, 18412 and 18583). Strain MSSA476, DAR4145 and DSM 20231 do not produce enterotoxin-A, as reported at accession BX571857.1, CP010526.1 and CP011526.1, respectively (NCBI, 2016). On the other hand, S. aureus subsp. aureus ST288 isolates 10338, 10497, 15532, 16035, 18341, 18412 and 18583 are known as enterotoxin-A producer. Complement of the genome for the enterotoxin-A gene (entA) of S. aureus subsp. aureus ST288 isolate 10338, 10497, 15532, 16035, 18341, 18412 and 18583 are shown in Table 4. Since all isolates were detected carrying sea gene (Table 2), the isolates were in agreeing to S. aureus subsp. aureus ST288 that able to form enterotoxin-A. The present study has been indicating that sequencing with 16s rRNA as gene target has been successfully identifying the isolates to specific strains. Additional PCR analysis employing SEA1/SEA2 primers increased accuracy of characterization of the isolates.

Antibiotic Resistance Among the Isolates

Four isolates showed resistance to streptomycin (Table 5). All isolates, however, were susceptible to gentamycin and oxytetracycline. Interestingly, the resistant strains to streptomycin were isolated from different food sources, i.e. from milk (S10), egg dishes (TBI), sautéed chicken cuts (UA13) and chicken cuts satay (SJ1). Next to resistance to streptomycin, isolate TBI showed also intermediate resistance to kanamycin, chloramphenicol and tetracycline.

DISCUSSION

Among the SEs, SEA is reported as the most common cause of staphylococcal food poisoning worldwide, but the involvement of other SEs has been also found. SEA is considered as the main cause of staphylococcal food poisoning, probably due to its high resistance to proteolytic enzymes (Argudin, et al., 2010). In the present study, all (eight) isolates were identified carrying sea gene, suggesting the potential risk of these strains due to production of SEA. Another study conducted in Indonesia by Salasia et al. (2011), however, did not find this gene in 11 food isolates (i.e. fermented milk product, sausage, meat ball, cakes and cheese), but found seb, sec, see and seg genes. They found, however, sea gene in 5 isolates of 19 milk isolates.

Regarding the sequencing results, as predicted, the use of 3 different primers resulted in various identity percentages. Sequencing by primer 16sF (5’-CCGCCCTGGGGAGTACG-3’) resulted in higher identity percentages (almost all achieved 99%) towards the existing genome of S. aureus strains in comparison to the sequencing by 63F (5’-CAGGCCCTAACACATGCAAGTC-3’) and 1387R (5’-GGCCGGWGTGTACAA GGC-3’). As was presented in Table 3, sequencing by 16sF also resulted in higher query coverage than that achieved by 63F and 1387R, except for isolate SJ4. These results highlighted that 16s rRNA sequencing by short sequence could provide sufficient identification amongst S. aureus strain. The 16sF has been used before to detect 16s rRNA genes of S. aureus isolates from food sample (Lee et al., 2007; Lee & Park 2016).

This study found that all isolates demonstrated 99% homology to the sequence genome of 4 strains of S. aureus by sequencing using primer 16sF. Based on the highest total score of the BLAST results, all isolates showed similarity to the genome of S. aureus strain MSSA476 and S. aureus subsp. aureus ST772-MRSA-V strain DAR4145. Strain MSSA476 is an invasive community acquired methicillin-susceptible S. aureus (Holden et al. 2004). On the other hand strain DAR4145 is a multidrug resistant strain of ST772-MRSA-V (Steinig et
Table 3. Query length, E value, identity percentages, query coverage and total score of the sequencing results towards homologous sequences found in the NCBI GenBank database after the BLAST process

Isolates	Sequenced by 63F	Sequenced by 1387R	Sequenced by 16sF						
	E Value	Query cover (%)	Total score	E Value	Query cover (%)	Total score	E Value	Query cover (%)	Total score
SJ1	94	91	10820	90	90	8793	99	99	2117
SJ4	97	96	10798	97	98	12349	99	99	2161
S1	98	82	12853	98	82	12853	100	100	2195
S4	92	92	11906	99	90	9075	95	95	2195
S10	98	87	13679	99	86	13529	95	95	2206
TB1	97	87	13424	98	95	13618	95	95	2139
UA2	97	93	12560	98	93	13119	94	94	2195
UA13	99	94	13590	98	95	13507	95	95	2139

Homologous sequence: S. aureus strain MSSA476, complete genome

	E Value	Query cover (%)	Total score	E Value	Query cover (%)	Total score	E Value	Query cover (%)	Total score
SJ1	94	91	10820	90	90	7329	99	99	1756
SJ4	97	96	10793	98	98	10274	94	94	1793
S1	97	84	11092	98	82	10699	95	95	1820
S4	92	92	9911	99	90	7558	94	94	1840
S10	98	87	11388	99	86	11262	95	95	1830
TB1	97	87	11175	98	95	11336	95	95	1774
UA2	97	93	10455	98	93	10921	94	94	1820
UA13	99	94	13596	98	95	13507	95	95	2139

Homologous sequence: S. aureus subsp. aureus ST288, isolate 10338, 10497, 15532, 16035, 18341, 18412 and 18583, complete genome

	E Value	Query cover (%)	Total score	E Value	Query cover (%)	Total score	E Value	Query cover (%)	Total score
SJ1	94	91	10820	90	90	8794	99	99	2106
SJ4	97	96	10798	96	98	12338	94	94	2150
S1	97	84	11092	98	82	12848	95	95	2183
S4	92	92	9911	99	90	7558	94	94	2183
S10	98	87	11388	99	86	11262	95	95	2183
TB1	97	87	11175	98	95	11336	95	95	2183
UA2	97	93	10455	98	93	10921	94	94	2183
UA13	99	94	13596	98	95	13507	95	95	2183

Homologous sequence: S. aureus subsp. aureus DSM 20231, complete genome

	E Value	Query cover (%)	Total score	E Value	Query cover (%)	Total score	E Value	Query cover (%)	Total score
SJ1	94	91	10820	90	90	8782	98	98	2095
SJ4	97	96	10804	96	98	12338	98	98	2139
S1	97	84	13313	98	82	12848	95	95	2172
S4	92	92	11895	99	90	9058	99	99	2172
S10	98	87	13668	99	86	13524	95	95	2172
TB1	97	87	13413	98	95	13612	95	95	2172
UA2	97	93	12549	98	93	13114	94	94	2172
UA13	99	94	13596	98	95	13507	95	95	2172

Homologous sequence: S. aureus subsp. aureus strain ATCC25923, complete genome

	E Value	Query cover (%)	Total score	E Value	Query cover (%)	Total score	E Value	Query cover (%)	Total score
SJ1	94	91	10820	90	90	8782	98	98	2095
SJ4	97	96	10804	96	98	12338	98	98	2139
S1	97	84	13313	98	82	12848	95	95	2172
S4	92	92	11895	99	90	9058	99	99	2172
S10	98	87	13668	99	86	13524	95	95	2172
TB1	97	87	13413	98	95	13612	95	95	2172
UA2	97	93	12549	98	93	13114	94	94	2172
UA13	99	94	13596	98	95	13507	95	95	2172

Furthermore, all isolates which were sequenced by 16sF also showed 99% homology to the sequence genome of *S. aureus* subsp. *aureus* ST288, a highly transmissible methicillin-resistant *S. aureus* (Vogel et al., 2012) that produce enterotoxin-A. The occurrence of strain ST228 were notified for long periods. Conceicao et al., (2007) reported that strain ST239-MRSA-III was replaced by both strain ST5-MRSA-II and ST228-MRSA-I between
Table 4. Accession and complement of the genome for the enterotoxin-A gene (entA) of *S. aureus* subsp. *aureus* ST288, isolate 10338, 10497, 15532, 16035, 18341, 18412 and 18583

Isolate	Accession	Complement for the enterotoxin A gene	Source*
10388	HE579059.1	1988966..1989738 http://www.ncbi.nlm.nih.gov/nuccore/HE579059	
10497	HE579061.1	1988953..1989726 http://www.ncbi.nlm.nih.gov/nuccore/HE579061	
15532	HE579063.1	1989266..1990039 http://www.ncbi.nlm.nih.gov/nuccore/HE579063	
16035	HE579065.1	1988898..1989671 http://www.ncbi.nlm.nih.gov/nuccore/HE579065	
18341	HE579069.1	1988952..1989725 http://www.ncbi.nlm.nih.gov/nuccore/HE579069	
18412	HE579071.1	1988718..1989491 http://www.ncbi.nlm.nih.gov/nuccore/HE579071	
18583	HE579073.1	1988770..1989543 http://www.ncbi.nlm.nih.gov/nuccore/HE579073	

Note: * Last accessed [5 April 2016]

Table 5. Antibiotic susceptibility of *S. aureus* isolates

Isolate	Sources	Gentamicin	Streptomycin	Kanamycin	Chloramphenicol	Tetracycline	Oxytetracycline
S1	raw milk	S	S	S	S	S	S
S4	raw milk	S	R	I	I	S	S
S10	raw milk	R	S	I	S	S	S
TB1	egg dishes	S	R	I	I	S	S
UA1	sautéed chicken cuts	S	S	S	S	S	S
UA2	sautéed chicken cuts	S	S	S	S	S	S
UA13	sautéed chicken cuts	S	R	S	S	S	S
SJ1	chicken cuts satay	S	R	I	S	S	S
SJ4	chicken cuts satay	S	S	S	S	S	S

Note: S: Sensitive, I: Intermediate, R: Resistance, determined by diameter zone of inhibition in mm. Gentamicin: S ≥15, I 13–14, R ≤12; Kanamycin: S ≥18, I 13–17, R ≤12; Chloramphenicol: S ≥18, I 13–17, R ≤12; Tetracyclines S ≥19, I 15–18, R ≤14 (CLSI, 2014).

1994 and 2004 in Hungary. A study conducted in hospitals in a relative small geographic area in Switzerland also observed that several MRSA clones (ST5-MRSA-II, ST45-MRSA-IV, ST228-MRSA-I and ST247-MRSA-I) were present over a period of 8 years from 1997 to 2004 (Blanc et al., 2007). More recently, Vogel et al. (2012) compared the whole genome of eight ST228 isolates recovered between 2001 and 2008 that spread over ten years in a tertiary care hospital in Switzerland. These reports suggested that the spreading of ST228 strain was confirmed.

As discussed above, when sequenced by 16S F all isolates showed good homology (99%) to some strains found in the NCBI GenBank data base with different characteristics on its antibiotic resistance. Next to this characteristic, the corresponding strains also showed differences on capability to form enterotoxin. Strain MSSA476 and DAR4145, as well as strain DSM 20231 did not produce enterotoxin-A (NCBI, 2016). On the other hand, *S. aureus* subsp. *aureus* ST288 isolate 10338, 10497, 15532, 16035, 18341, 18412 and 18583 are known as enterotoxin-A producers. Therefore, additional information to confirm the presence of a gene that responsible for formation of enterotoxin-A is considerably important. Since all selected isolates were confirmed carrying *sea* gene, indicated by the presence of 120 bp amplicon after PCR amplification using primer SEA1 and SEA2 as presented in Table 2, all isolates were most in agreeing with *S. aureus* subsp. *aureus* ST288. The *sea* gene is 771 bp in size encoding an enterotoxin A precursor of 257 amino acid residues (Huang et al., 1987). Specific primers SEA1 and SEA2 were frequently used in PCR analysis to detect the presence of *sea* gene in *S. aureus* isolates from food, such as in raw and pasteurized milk (Rall et al., 2008); Kérouanton et al., 2007) and ready-to-eat Kimbap (Lee et al., 2007). Specific PCR primers have commonly been employed to confirm the presence or absence of specific characteristics associated with target microorganisms such as virulence factors.

Next to genotypic characteristic, information on antibiotic resistance amongst *S. aureus* strains found in food is also important for surveillance and epidemiology study. This study found that four isolates from different food sources (from milk, egg dishes, sautéed chicken cuts and chicken cuts satay) were resistant to streptomycin. Streptomycin resistance among *S. aureus* isolates was also reported in other study. Jamali et al. (2015) found that amongst *S. aureus* isolates from raw milk and dairy products (n=328), 5.8% demonstrated resistance to streptomycin, 4% to kanamycin, 3.7% to chloramphenicol, and 2.1% to gentamicin. Most isolates were resistant to tetracycline (56.1%) followed by to penicillin (47.3%). The high percentage of resistant isolates to these last two antibiotics could be due to the widespread use of these antibiotics to control and treat infections on dairy farms (Jamali et al., 2015). Moreover, the fact that streptomycin resistant strains were found in milk, egg dishes and chicken dishes indicated possible
occurrence of cross contamination from human or food vendor. Schmitz et al. (1999) found that 21% of the *S. aureus* isolates (n=699) collected from different hospitals in Europe were resistant to streptomycin. They also found, however, 23% of the *S. aureus* isolates were resistant to gentamicin, 29% to tobramycin, and 31% to kanamycin. In more recent study, Onwubiko & Sadiq (2011) also found that 55.8% of *S. aureus* from clinical isolates in a tertiary health institution in North-western Nigeria (n=129) showed resistance to streptomycin, 68.8% to tetracycline, 38.1% to chloramphenicol, and 7.6% to gentamycin. The spreading of *S. aureus* strains that resistant to antibiotics has become a global concern. Continued surveillance of *S. aureus* producing enterotoxin-A in milk, egg and poultry food products at genotypic levels is necessary to understand and limit further increases of staphylococcal food poisoning incidences.

CONCLUSION

This study has demonstrated that in order to increase the accuracy of the identification results, next to the sequencing of *S. aureus* targeting 16S rRNA gene, PCR analysis using specific primer is considerably important. All eight isolates were carrying sea gene, detected by PCR analysis, indicating that they can produce staphylococcal enterotoxin-A. Genotypic characterization of the selected strains by sequencing using 16sF, showed agreeing to the sequence genome of *S. aureus* subsp. *aureus* ST288 that also produce enterotoxin-A. This study also found that 4 of 8 selected isolates were resistant to streptomycin.

ACKNOWLEDGEMENT

This work was funded by The Directorate General of Higher Education, Ministry of Education and Culture of Indonesia, through the University Excellent Research (PUPT) Competitive Research Grant 2013-2014.

REFERENCES

Argudin, M. A., M. C. Mendoza, & M. R. Rodicio. 2010. Food poisoning and *Staphylococcus aureus* enterotoxins. Toxins. 2: 1751-1773. http://dx.doi.org/10.3390/toxins201751

Becker, K., D. Harmsen, A. Mellmann, M. Christian, P. Schumann, G. Peters, & C. von Eiff. 2004. Development and evaluation of a quality–controlled ribosomal sequence database for 16S ribosomal RNA–based identification of *Staphylococcus* species. J. Clin. Microbiol. 42: 4988-4995. http://dx.doi.org/10.1128/JCM.42.11.4988-4995.2004

Blanc, D. S., C. Petignat, A. Wenger, G. Kuhn, Y. Vallet, D. Fracheboud, S. Trachsel, M. Reymond, N. Troillet, H. H. Siegrist, S. Oeufray, M. Bes, J. Etienne, J. Bille, P. Francioli, & G. Zanetti. 2007. Changing molecular epidemiology of methicillin resistant *Staphylococcus aureus* in a small geographic area over an eight-year period. J. Clin. Microbiol. 45: 3729-3736. http://dx.doi.org/10.1128/JCM.00511-07

Brown, P. D. & C. Ngeno. 2007. Antimicrobial resistance in clinical isolates of *Staphylococcus aureus* from hospital and community sources in southern Jamaica. Int. J. Infect. Dis. 11: 220-225. http://dx.doi.org/10.1016/j.ijid.2006.04.005

CLSI, Clinical and Laboratory Standards Institute. 2012. Performance Standards for Antimicrobial Disk Susceptibility Tests; Approved Standard—Eleventh Edition. CLSI document M02-A11. Wayne, Pennsylvania 19087 USA.

CLSI, Clinical and Laboratory Standards Institute. 2014. Performance Standards for Antimicrobial Susceptibility Testing. Twenty-Fourth Informational Supplement. CLSI document M100-S24. Wayne, Pennsylvania 19087 USA.

Conceicao, T., M. Aires-de-Sousa, M. Fuzi, A. Toth, J. Paszi, T. Ungvari, W. B. van Leeuwen, A. van Belkum, H. Grundmann, & H. de Lencastre. 2007. Replacement of methicillin-resistant *Staphylococcus aureus* clones in Hungary over time: a 10-year surveillance study. Clin. Microbiol. Infect. 13: 971-979. http://dx.doi.org/10.1111/j.1469-0691.2007.01794.x

Frank, J. A., C. I. Reich, S. Sharma, J. S. Weisbaum, B. A. Wilson, & G. J. Olsen. 2008. Critical evaluation of two primers commonly used for amplification of bacterial 16S rRNA genes. Appl. Environ. Microbiol. 74: 2461-2470. http://dx.doi.org/10.1128/AEM.02272-07

Fredrikssoon, N. J., M. Hermansson, & B. M. Wilén. 2013. The choice of PCR primers has great impact on assessments of bacterial community diversity and dynamics in a wastewater treatment plant. FLoS ONE 8: e76431. http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0076431. [20 December 2015]. http://dx.doi.org/10.1371/journal.pone.0076431

Handayani, L., D. N. Faridah, & H. D. Kusumaningrum. 2014. Staphylococcal enterotoxin A gene-carrying *Staphylococcus aureus* isolated from foods and its control by crude alkaloid from papaya leaves. J. Food Prot. 77: 1992-1997. http://dx.doi.org/10.3151/0362-028X.JFP-13-483

Holden M.T., E. J. Feil, J. A. Lindsay, S. J. Peacock, N. P. Day, M. C. Enright, T. J. Foster, C. E. Moore, L. Harst, R. Atkin, et al. 2004. Complete genomes of two clinical *Staphylococcus aureus* strains: Evidence for the rapid evolution of virulence and drug resistance. PNAS. 101: 9786-9791. http://www.ncbi.nlm.nih.gov/pmc/articles/PMC470752/pdf/019786.pdf. [20 October 2015]. http://dx.doi.org/10.1073/pnas.0402521101

Huang, I. Y., J. L. Hughes, M. S. Bergdoll, & E. J. Schantz. 1987. Complete amino acid sequence of staphylococcal enterotoxin A. J. Biol. Chem. 262: 7006-7013.

Huong, B. T. M., Z. H. Mahmud, S. B. Neogi, A. Kassu, N. V. Nhtien, A. Mohammad, M. Yamato, F. Ota, N. T. Lam, H. T. A. Dao, & N. C. Khan. 2010. Toxigenicity and genetic diversity of *Staphylococcus aureus* isolated from Vietnamese ready-to-eat foods. Food Cont. 21: 166–171. http://dx.doi.org/10.1016/j.foodcont.2009.05.001

Jamali, H., M. Paydar, B. Radmehr, S. Ismail, & A. Dadrasnia. 2015. Prevalence and antimicrobial resistance of *Staphylococcus aureus* isolated from raw milk and dairy products. Food Cont. 54: 383-388. http://dx.doi.org/10.1016/j.foodcont.2015.02.013

Janda, J. M. & S. I. Abott. 2007. 16S rRNA gene sequencing for bacterial identification in the diagnostic laboratory: pluses, perils, and pitfalls. J. Clin. Microbiol. 45: 2761-2764. http://dx.doi.org/10.1128/JCM.01228-07

Kérouanton, A., J. A. Hennekinne, C. Letertre, L. Petit, O. Chesneau, A. Brisabois, & M. L. D. Buyser. 2007. Characterization of *Staphylococcus aureus* strains associated with food poisoning outbreaks in France. Int. J. Food Microbiol. 115: 369-375. http://dx.doi.org/10.1016/j.ijfoodmicro.2006.10.050

Kim B., H. Yi, J. Chun, & C. Cha. 2014. Genome sequence of type strain of *Staphylococcus aureus* subsp. *aureus*. Gut Pathogens 6:6. http://gutpathogens.biomedcentral.com/articles/10.1186/1757-4749-6-6. [20 December 2015]. http://dx.doi.org/10.1186/1757-4749-6-6

Lee, Y. D., B. Y. Moon, J. H. Park, H. I. Chang, & W. J. Kim. 2007. Expression of enterotoxin genes in *Staphylococcus au-

KUSUMANINGRUM ET AL. / Media Peternakan 39(2):67-74 August 2016 73
Santosaningsih, D., S. Santoso, N. S. Budayanti, K. Kuntaman, S. J. Hiom, & W. G. W. Wade. 1998. Design and evaluation of useful bacterium-specific PCR primers that amplify genes coding for bacterial 16S rRNA. Appl. Environ. Microbiol. 64: 795-799.

Mason, W. J., J. S. Blevins, K. Beenken, N. Wibowo, N. Ojha, & M. S. Smelker. 2011. Multiplex PCR protocol for the diagnosis of staphylococcal infection. J. Clin. Microbiol. 39: 3332-3338. http://dx.doi.org/10.1128/JCM.39.9.3332-3338.2001

NCBI. 2016. National Center for Biotechnology Information. http://www.ncbi.nlm.nih.gov. [5 March 2016].

Onwubiko, N. E. & N. M. Sadiq. 2011. Antibiotic sensitivity pattern of Staphylococcus aureus from clinical isolates in a tertiary health institution in Kano, Northwestern Nigeria. Pan Afr. Med. J. 8: 4. http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3201603/pdf/pamj-8-4.pdf. [20 January 2016].

Pearson, W. R. 2014. BLAST and FASTA similarity searching for multiple sequence alignment. Methods Mol. Biol. 1079:75-101. http://dx.doi.org/10.1007/978-1-62703-646-7_5

Rall, V. L. M., F. P. Vieira, R. Rall, R. L. Vieitias, A. Fernandez Jr., J. M. G. Candeias, K. F. G. Cardoso, & J. P. Araujo Jr. 2008. PCR detection of staphylococcal enterotoxin genes in Staphylococcus aureus strains isolated from raw and pasteurized milk. Vet. Microbiol. 132: 408-414. http://dx.doi.org/10.1016/j.vetmic.2008.05.011

Rohinishree, Y. S. & P. S. Negi. 2011. Detection, identification and characterization of staphylococci in street vend foods. Food Nutr. Sci. 2: 304-313. http://dx.doi.org/10.4236/fns.2011.24044

Roussell, S., B. Felix, N. Vingadassalon, J. Grout, J. Hennekinne, L. Guillier, A. Brisabois, & F. Auvray. 2015. Staphylococcus aureus strains associated with food poisoning outbreaks in France: comparison of different molecular typing methods, including MLVA. Front Microbiol. 6: 982. http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4566840. [2 February 2016].

Salasía, S. I. O., S. Tato, N. Sugiyono, D. Ariyanti, & F. Prabawati. 2011. Genotypic characterization of Staphylococcus aureus isolated from bovines, humans, and food in Indonesia. J. Vet. Sci. 12: 353-361. http://dx.doi.org/10.4142/jvs.2011.12.4.353

Santosaningsih, D., S. Santosu, N. S. Budayanti, K. Kuntaman, E.S. Lestari, H. Farida, R. Hapsari, F. Hadi, W. Winarto, C. Milheiric, K. et al. 2014. Epidemiology of Staphylococcus aureus harboring the mecA or Panton-Valentine leukocidin genes in hospitals in Java and Bali, Indonesia. Am. J. Trop. Med. Hyg. 90: 728–734. http://dx.doi.org/10.4269/ajtmh.13-0734

Schelin J., N. Wallin-Carquist, M. T. Cohn, R. Lindqvist, G. C. Barker, & P. Radstrom. 2011. The formation of Staphylococcus aureus enterotoxin in food environments and advances in risk assessment. Virulence. 2: 580-592. http://dx.doi.org/10.4161/viru.2.6.18122

Schmitz, F. J., A. C. Fluit, M. Gondolf, R. Beyrau, E. Lindenlauf, J. Verhoef, H. Heinz, & M. E. Jones. 1999. The prevalence of aminoglycoside resistance and corresponding resistance genes in clinical isolates of staphylococci from 19 European hospitals. J. Antimicrob. Chemother. 43: 253-259. http://dx.doi.org/10.1093/jac/43.2.253

SenGupta, D. J. & B. T. Cookson. 2010. A general approach for improving cycle-sequencing that facilitates a robust one-step combined amplification and sequencing method. J. Mol. Diagn. 12: 272-277. http://dx.doi.org/10.2353/jmoldx.2010.090134

Steinig, E. J., P. Andersson, S. R. Harris, D. S. Sarovich, A. Manoharan, P. Coupland, M. T. G. Holden, J. Parkhill, S. D. Bentley, D. A. Robinson, & S. Y. C. Tong. 2015. Single-molecule sequencing reveals the molecular basis of multidrug-resistance in ST772 methicillin-resistant Staphylococcus aureus. BMC Genomics. 16:388. http://bmcgenomics.biomedcentral.com/articles/10.1186/s12864-015-1599-9. [5 January 2016].

Teramoto, H., S. Salaheen, & D. Biswas. 2016. Contamination of post-harvest poultry products with multidrug resistant Staphylococcus aureus in Maryland-Washington DC metro area. Food Cont. 65: 132–135. http://dx.doi.org/10.1016/j.foodcont.2016.01.024

Thompson J. M., A. Gundogdu, H. M. Stratton, & M. Katoili. 2012. Antibiotic resistant Staphylococcus aureus in hospital wastewaters and sewage treatment plants with special reference to methicillin-resistant Staphylococcus aureus (MRSA). J. Appl. Microbiol. 114: 44-54. http://dx.doi.org/10.1111/jam.12037

Vogel V., L. Falquet, S. P. Calderon-Copete, P. Basset, & D. S. Blanc. 2012. Short term evolution of a highly transmissible methicillin-resistant Staphylococcus aureus clone (ST228) in a tertiary care hospital. PLoS One. 7: e38969. http://journals.plos.org/plosone/article/citation?id=10.1371%2Fjournal.pone.0038969. [20 January 2016].

Xie Y., Y. He, A. Gehring, Y. Hu, Q. Li, S. Tu. 2011. Genotypes and toxin gene profiles of Staphylococcus aureus clinical isolates from China. PLoS ONE. 6: e28276. http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0028276. [15 February 2016].

Xing, X., Y. Zhang, Q. Wu, X. Wang, W. Ge, & C. Wu. 2016. Prevalence and characterization of Staphylococcus aureus isolated from goat milk powder processing plants. Food Cont. 59: 644-650. http://dx.doi.org/10.1016/j.foodcont.2015.06.042