ratio of those nurses in their finding, which we think provides some
but limited evidence on effective staffing interventions. For instance,
beyond being cared for by more high-betweenness nurses, a patient
with low mortality risk can also be cared for by more low-
betweenness nurses. Moving forward, we believe that a study
focusing on the percentages (percent of core and high-betweenness
nurses of all nurses caring for a patient), instead of the raw numbers,
can supply more comprehensive suggestions to ICU staffing. ■

Author disclosures are available with the text of this letter at
www.atsjournals.org.

You Chen, Ph.D.*
Vanderbilt University
Nashville, Tennessee
and
Vanderbilt University Medical Center
Nashville, Tennessee

Chao Yan, M.S.
Vanderbilt University
Nashville, Tennessee

Mayur B. Patel, M.D., M.P.H.
Vanderbilt University Medical Center
Nashville, Tennessee
and
Veteran Affairs Tennessee Valley Healthcare System
Nashville, Tennessee

ORCID IDs: 0000-0001-8232-8840 (Y.C.); 0000-0001-5230-0871 (M.B.P.).

*Corresponding author (e-mail: you.chen@vanderbilt.edu).

References

1. Kelly Costa D, Liu H, Boltey EM, Yakusheva O. The structure of critical
care nursing teams and patient outcomes: a network analysis. Am J
Respir Crit Care Med 2020;201:483–485.
2. Everett M, Borgatti SP. Ego network betweenness. Soc Networks 2005;
27:31–38.
3. Valente TW. Social networks and health: models, methods, and
applications. Oxford: Oxford University Press; 2010.

CORRESPONDENCE

Reply to Chen et al.

From the Authors:

Thank you to Dr. Chen and colleagues for their thoughtful
letter in response to our recent paper “The Structure of
Critical Care Nursing Teams and Patient Outcomes: A
Network Analysis” (1). We conducted an exploratory,
hypothesis-generating study using network analysis methods
to more deeply understand and examine ICU nurse staffing.
We very much appreciate Dr. Chen and colleagues’ helpful
comments to further advance the field of network science in
health care.

We acknowledge the potential limitations of defining a
connection between nurses if they provided direct care for
the same patient during the patient’s ICU stay. Defining a connection
among clinicians as to whether they shared the same patient is the
most commonly used approach in healthcare network analyses
(2–5). Nonetheless, we agree that defining connections this way may
be problematic when patients have prolonged ICU stays (i.e., 30 d or
more). However, in our sample, the mean length of stay was 4.7 days
(SD, 6.8), indicating that the majority of our patient sample had ICU
stays of 11 days or less, and that prolonged ICU stays are less of a
concern in our sample. In other studies in which patients have
prolonged ICU stays, considering alternative definitions of a
connection between healthcare clinicians, such as whether a
nurse handed off a patient to another nurse, might be a possible way
to measure connections among clinicians. Additionally, in our study,
an average patient was cared for by only seven different nurses,
further ameliorating the concern that our measure may not be
sufficiently discriminative. Our sociogram also demonstrates
that there is enough variability in the coreness and betweenness
measures to identify significant associations with outcomes of
interest.

The authors rightfully point out the possibility of a selection bias
from nonrandom assignment of nurses to patients in our work. This
bias is a limitation in all cross-sectional analyses of healthcare
variables and patient outcomes. However, among all the selection bias
present in healthcare studies, nurse-to-patient assignment bias has
been least likely to occur. Previous studies by our team and others
show that nurse assignments are based on staffing availability, patient
case-mix, and other unit-level factors (6, 7) and are near random at
the patient level (8). In addition, in studies by our team, when nurse
assignments were nonrandom, better-prepared, qualified nurses
tended to be assigned to sicker patients (8)—a negative bias that
works to weaken the results of our findings. However, we agree that
unobserved selection could be confounding our findings, particularly
considering the exploratory nature of our study; we acknowledged
unobserved selection bias in our limitations section (1). In addition,
we are unable to adjust or account for patient acuity measures, such
as the Acute Physiology and Chronic Health Evaluation score (9),
and therefore we are unfortunately unable to examine mortality
risk and nurse network positions, as suggested by Chen and
colleagues.

Lastly, we favored modeling the exposure variable as the
number of core and high-betweenness nurses in a patient’s
care team instead of a percentage as suggested by Chen and
colleagues. We chose to measure the number of core and
high-betweenness nurses because a percentage measure is
calculated as a ratio of two variables (percentage core
nurses = number of core nurses over the total number of nurses);
both of these variables are stochastic (or random) and both are
collinear with ICU length of stay. Including a stochastic variable
nonlinearly (e.g., as a denominator of another stochastic variable)
could bias the model.
We thank Dr. Chen and colleagues for their thoughtful comments, and we agree that future work should further examine and study the intricacies of ICU nurse staffing and its implications to patient care and outcomes.

Author disclosures are available with the text of this letter at www.atsjournals.org.

Deena Kelly Costa, Ph.D., R.N.*
University of Michigan School of Nursing
Ann Arbor, Michigan
and
University of Michigan Institute for Healthcare Policy & Innovation
Ann Arbor, Michigan

Haiyin Liu, M.A.
Emily M. Boltey, B.S.N., R.N.
University of Michigan School of Nursing
Ann Arbor, Michigan

Olga Yakusheva, Ph.D.
University of Michigan School of Nursing
Ann Arbor, Michigan
University of Michigan Institute for Healthcare Policy & Innovation
Ann Arbor, Michigan
and
University of Michigan School of Public Health
Ann Arbor, Michigan

ORCID ID: 0000-0002-7776-5349 (D.K.C.).

*Corresponding author (e-mail: dkcosta@umich.edu).

References

1. Kelly Costa D, Liu H, Boltey EM, Yakusheva O. The structure of critical care nursing teams and patient outcomes: a network analysis. Am J Respir Crit Care Med 2020;201:483–486.

2. Landon BE, Keating NL, Onnela J-P, Zaslavsky AM, Christakis NA, O’Malley AJ. Patient-sharing networks of physicians and health care utilization and spending among Medicare beneficiaries. JAMA Intern Med 2018;178:66–73.

3. Barnett ML, Landon BE, O’Malley AJ, Keating NL, Christakis NA. Mapping physician networks with self-reported and administrative data. Health Serv Res 2011;46:1592–1609.

4. Landon BE, Onnela J-P, Keating NL, Barnett ML, Paul S, O’Malley AJ, et al. Using administrative data to identify naturally occurring networks of physicians. Med Care 2013;51:715–721.

5. Gray JE, Davis DA, Pursley DM, Smallcomb JE, Geva A, Chawla NV. Network analysis of team structure in the neonatal intensive care unit. Pediatrics 2010;125:e1460–e1467.

6. Rischbieth A. Matching nurse skill with patient acuity in the intensive care units: a risk management mandate. J Nurs Manag 2006;14:397–404.

7. Ma Y. Modeling of ICU nursing workload to inform better staffing decisions. 2015 [accessed 2020 Sep 1]. Available from: http://hdl.handle.net/1721.1/99032.

8. Yakusheva O, Costa DK, Weiss M. Patients negatively impacted by discontinuity of nursing care during acute hospitalization. Med Care 2017;55:421–427.

9. Zimmerman JE, Kramer AA, McNair DS, Malila FM. Acute Physiology and Chronic Health Evaluation (APACHE) IV: hospital mortality assessment for today’s critically ill patients. Crit Care Med 2006;34:1297–1310.

Erratum: Telemedicine-enabled Accelerated Discharge of Patients Hospitalized with COVID-19 to Isolation in Repurposed Hotel Rooms

There is an error in the article by Bruni and colleagues, published in the August 15, 2020, issue of the Journal. On the bottom of the first page there is a missing sentence at the end of the third footnote paragraph. This sentence should read: “Telemetry software provided by Vree Health Italia, Rome, Italy.”

Reference

1. Bruni T, Lalvani A, Richeldi L. Telemedicine-enabled accelerated discharge of patients hospitalized with COVID-19 to isolation