A rare case of *Streptococcus sanguinis* mycotic popliteal aneurysm

Karan Jolly,1 Rachel Barratt1 and Amit Nair1

1Russells Hall Hospital, Dudley DY1 2HQ, UK

Introduction: Mycotic popliteal aneurysms are not a common phenomenon. They can initially be easily confused with other more trivial conditions such as a Baker’s cyst. We present a case of a patient presenting with a progressively worsening leg swelling which was initially misdiagnosed. Only until symptoms rapidly progressed was a popliteal aneurysm diagnosed. To our knowledge this is the only identified case of a *Streptococcus sanguinis* mycotic popliteal aneurysm.

Case presentation: An 81-year-old gentleman presented to the surgical assessment unit with a six-week history of a painful, diffuse swelling in the left popliteal fossa. Initially, when symptoms developed a provisional diagnosis of a Baker’s cyst was made. When the symptoms progressed to involve swelling of the entire lower limb, an ultrasound was arranged. Detailed imaging revealed a popliteal aneurysm with signs of rupture. Urgent repair was performed, with high suspicion of a mycotic aneurysm intra-operatively. Cultures confirmed this, isolating *Streptococcus sanguinis*. Multiple investigations failed to isolate an acute infective source of this infection. The patient recovered promptly with a long course of intravenous antibiotics, being able to mobilize normally.

Conclusion: Mycotic popliteal aneurysms are not very common and can easily be confused with other benign lesions. The key to diagnosis is the presence of a pulsatile mass and further detailed imaging. This case was unique in that *Streptococcus sanguinis* has not been isolated from such an aneurysm until now. The most likely explanation of this case was that the aneurysm was secondary to transient bacteraemia of this organism through the oral cavity, in the absence of any cardiac involvement.

Keywords: Mycotic aneurysm; popliteal aneurysm; *Streptococcus sanguinis*; vascular surgery.
Myocardial infarction can cause the release of myocardial enzymes into the bloodstream, which can then be detected in blood tests to confirm the diagnosis. These enzymes, such as creatine kinase (CK) and troponin, are released into the bloodstream when heart muscle is damaged or dies. The presence of these enzymes in the blood is a hallmark of acute myocardial infarction.

The release of myocardial enzymes is a result of the structural damage caused by the infarction. When a blood clot forms in an artery and blocks the flow of blood to the heart muscle, the oxygen supply to the muscle is cut off. This lack of oxygen leads to the death of cells in the affected area, which in turn causes the release of enzymes from the damaged cells into the bloodstream.

Blood tests for myocardial enzymes are typically performed within a few hours of the onset of symptoms. The levels of these enzymes can rise rapidly and peak within about 24 hours, after which they begin to decline. This rise and fall in enzyme levels is used to monitor the progress of the infarction.

MRA revealing a left-sided popliteal aneurysm.

Despite these findings, the patient remained afebrile and serial blood cultures taken all came back negative. As the organism is commonly part of the oral flora, an orthopantomogram and transthoracic echocardiogram (TTE) were requested to exclude infective endocarditis. Both of these tests were inconclusive and the patient subsequently refused to have a trans-oesophageal echocardiogram (TOE) to evaluate his heart further. The patient regularly visited his dentist and had reasonable dental hygiene. In the absence of any focal source of sepsis, a conclusion was made that the mycotic aneurysm was secondary to transient Streptococcus sanguinis bacteraemia through the oral mucosa. The patient continued to show significant improvement in mobility in the weeks to follow.

Discussion

Mycotic aneurysms were historically defined as infected aneurysms developing within a previously normal artery secondary to septic embolization due to bacterial endocarditis (Wilson et al. 1978). The absence of fungal organisms in the pathogenesis of this process, however, has led to many adopting the term proposed by Jarrett et al. (1975), ‘infected aneurysm’. In accordance with Osler’s first description in 1885 of a mushroom-shaped aneurysm in a patient with bacterial endocarditis, an aneurysm with a saccular morphology is indicative of an infective process (Osler 1885).

Mycotic popliteal artery aneurysms (MPAA) are a rarely described phenomenon and have only been reported approximately 50 times in the English literature. Despite the popliteal artery being the most common peripheral site for aneurysm formation, mycotic aneurysms tend to favour the femoral artery and abdominal aorta (Joffe et al., 1996).

It has a male preponderance, estimated at 11:3 (male:female), with no particular age predilection and a mean age of onset at 41 years (Wilson et al., 1978). MPAA are typically caused by septic emboli (historically from bacterial endocarditis) in the vasaorum or lumen of peripheral arteries. Other reported pathological processes included extension of infection to the vessel from a contiguous infective process, for example septic arthritis, and direct inoculation of the vessel with an infective organism, for example in trauma or direct arterial injury. The resulting ischaemia of vessel wall or vasaorum from infection leads to destruction of the normal structure of the vessel and aneurysm formation (Stengel & Wolferth, 1923). Whilst Wilson’s definition implies that MPAA occurs ‘within a previously normal artery’ this applies only to the previous lack of an aneurysm in the vessel. Indeed it is unusual for mycotic aneurysms to occur in healthy arteries unless the patient is additionally immunocompromised or the organism particularly virulent.

Reviews of the available literature suggest that, in many cases, blood cultures do not identify a causative organism.
However, when the organism has been identified, *Staphylococcus aureus* is the most prevalent cause of MPAA followed by *Streptococcus viridans* and *Staphylococcus epidermidis*. Other organisms are varied and include *Campylobacter jejuni*, *Escherichia coli*, *Streptococcus faecalis* and *Streptococcus pneumoniae*, and *Tuberculosis* and *Salmonella* spp. (Killen *et al.*, 2009). This is the first reported case of MPAA caused by *Streptococcus sanguinis* to the best of our knowledge. *Streptococcus sanguinis* is a Gram-positive coccii, a normal colonizer of the oral cavity, and is thought to be protective against dental caries (Caufield *et al.*, 2000). It is also a common causative agent in bacterial endocarditis, especially in patients who have undergone recent dental work. It is perhaps surprising, given its prevalence in bacterial endocarditis, that this organism has not been identified before in a MPAA. However this is likely due to the relative rarity of MPAA.

Unfortunately for clinicians, mycotic popliteal artery aneurysms have a varied and inconsistent presentation. That said, there are some features that one would expect to find in a typical MPAA. Classically, MPAA present as a painful, tender, pulsatile swelling in the popliteal fossa. Some patients will also be pyrexic and often have a primary infective focus such as bacterial endocarditis. As with our case, MPAA can be confused with a Baker’s Cyst and further evaluation is not sought until symptoms of the aneurysm itself, such as claudication, acute ischaemia or digital thromboembolism arise (Varga *et al.*, 1994).

Laboratory studies typically show raised inflammatory markers and a leukocytosis but this is not present in all patients. Blood cultures, as previously mentioned, are only present in approximately 50% of reported MPAA cases, although this may be explained by pre-diagnosis treatment with antibiotics for the primary infective focus (Killen *et al.*, 2009). Imaging is diagnostic for MPAA and modalities include colour-duplex ultrasound, computed tomography (CT) angiogram, MR angiogram or, more historically, conventional interventional angiogram. CT angiogram and MR angiogram are the favoured imaging modalities used in current practice. Imaging provides the diagnostician with information regarding size, diameter and morphology; as mentioned, saccular morphology is highly suggestive of an infective pathophysiology.

Once identified, two issues must be addressed: firstly identifying and treating the primary infective source and secondly treating the popliteal aneurysm itself. For the former, this involves assessment of the entire cardiovascular system and often a transoesophageal echocardiogram regardless of the presence of an audible heart murmur. If this is negative it is also worth investigating the adjacent knee joint for the presence of a septic effusion and taking a history for recent trauma or damage to the knee joint. Both of these conditions are treated in the main by at least 2 weeks of intravenous antibiotics followed by 4 weeks of intravenous or oral antibiotics according to clinical response. Septic arthritis also involves arthroscopy or open washout of the knee joint. Treatment of the popliteal aneurysm itself and any complications that have ensued is normally guided by multidisciplinary team management but in the main consists of resection and revascularization. At present, there is no evidence-based consensus on the approach for popliteal aneurysms with both medial and posterior approaches being utilized (Safar & Cina, 2001). The aneurysm itself is resected or excluded from circulation and the artery revascularized with standard reconstructive techniques using an autologous vein graft (normally long saphenous vein) (Killen *et al.*, 2009; Safar & Cina, 2001). Synthetic grafts are avoided due to the presence of infection (Killen *et al.*, 2009; Varga *et al.*, 1994). At least two case reports describe the use of endovascular techniques to manage a ruptured infected popliteal artery aneurysm, both with satisfactory short- to medium-term outcomes. Whilst there is the benefit of endovascular treatment being minimally invasive, this has to be balanced with the risk of implanting synthetic graft material in an infected space (Schimmer & Somjen, 2009; Bani-hani *et al.*, 2012). This technique may become more popular with recently published improved patency rates for non-mycotic popliteal artery aneurysms treated endovascularly (Bani-hani *et al.*, 2012).

Occasionally MPAA, as with all popliteal aneurysms, can result in the need for amputation either as a result of escalation of the primary process itself prior to treatment or failure of the graft. It is likely that these cases are underreported.

Summary

MPAA and indeed all mycotic aneurysms are much rarer nowadays due to the high index of suspicion for bacterial endocarditis in patients with heart murmurs followed by early and aggressive antibiotic treatment. However, despite their rarity this case report has illustrated new bacteriology in its pathogenesis and also highlighted the pitfalls in diagnosis of the condition.
thoracic aorta: the role of transesophageal echocardiography. J Am Soc Echocardiogr 9, 663–667.

Killen, S. D., O’Brien, N., O’Sullivan, M. J., Karr, G., Redmond, P. & Fulton, G. (2009). Mycotic aneurysm of the popliteal artery secondary to Streptococcus pneumoniae: a case report and review of the literature. J Med Case Rep 3, 117.

Osler, W. (1885). The Gulstonian lectures on malignant endocarditis. Br Med J 1, 467–70.

Safar, H. A. & Cina, C. S. (2001). Ruptured mycotic aneurysm of the popliteal artery. J Cardiovasc Surg 42, 237–240.

Schimmer, W. & Somjen, G. (2009). Endovascular repair of a ruptured, mycotic popliteal aneurysm. ANZ J Surg 79, 560–561.

Stengel, A. & Wolfarth, C. C. (1923). Mycotic (bacterial) aneurysms of intravascular origin. Arch Intern Med 31, 527–554.

Varga, Z. A., Locke-Edmunds, J. C. & Baird, R. N. (1994). A multicenter study of popliteal aneurysms. Joint Vascular Research Group. J Vasc Surg 20, 171.

Wilson, S. E., Van Wagenen, P. & Passaro, E. Jr. (1978). Arterial infection. Curr Probl Surg 15, 1–89.