Case 3 / 2018 – Corrected Transposition of the Great Arteries with Natural Progression to Severe Biventricular Dysfunction and No Associated Defects in a 51-Year Old Man

Edmar Atik, Fidel Leal, Ivanhoé S. L. Leite

Instituto do Coração do Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, SP - Brazil

Clinical data

Dyspnea on exertion for two years, progressing to low cardiac output and syncope lately, treated with dobutamine and usual drugs for congestive heart disease (currently using furosemide 40 mg, spironolactone 25 mg and losartan 12.5 mg).

Physical examination: Good general condition, eunpeic, acyanotic, normal pulse rate in the four limbs. Weight: 70 Kg, Height: 160 cm, blood pressure (right arm): 90/60 mmHg, HR: 94 bpm.

Precordium: Apex beat was not palpable, without systolic impulses. Low heart sounds, and low intensity heart murmur heard in the left lower sternal border. Liver was not palpable and lungs were clear.

Complementary tests

Electrocardiography: Sinus rhythm, conduction abnormality seen in the left branch with long QRS duration (169 ms; AQRS = 0°), negative T-wave in I, aVL and V6 (AT = +155°), biatrial overload, and enlarged, peaked p-wave (AP+77°). (Figure 1).

Chest radiography: Enlarged heart due to round-shaped left ventricular arch and double-density left atrium with elevation of left bronchus. Congestion of pulmonary vessels, enlarged descending aorta, dilation of mid-aortic arch. Cardiothoracic index 0.61. (Figure 1).

Echocardiography: Atroventricular and ventriculoarterial discordance, intact atrioventricular conduction. Ventricular septum is bulging to the right. Marked tricuspid insufficiency to the left (tricuspid annulus = 36 mm) and dilated atriums. Systolic dysfunction and diffuse hypokinesis of right ventricle, TAPSE = 0.7 CM. Significant tricuspid regurgitation.

Computed tomography coronary angiography: Left-dominant coronary circulation. The right ventricle was perfused by the anterior ventricular artery, a coronary artery branch that arises from the anterior Valsalva sinus. Left ventricle was perfused at right by the artery that arises from anterior Valsalva sinus as a thin branch and travels towards the anterior surface (Figure 2).

Clinical reasoning: There were clinical evidence of corrected transposition of the great arteries, particularly a late ventricular dysfunction. The late ventricular dysfunction was probably caused by relative coronary insufficiency caused by systemic right ventricular hypertrophy, despite good irradiation seen in computed tomography coronary angiography.

Keywords

Congenitally Corrected Transposition of Great Arteries; Ventricular Dysfunction / surgery; Heart Failure, Cardiac Output, Low; Syncope.
Clinicoradiological Correlation

Atik et al

Natural evolution of corrected transposition of great arteries

Figure 1 – Electrocardiogram showing conduction abnormality in the left branch, biatrial overload and T-wave orientation towards the left ventricle at right. Chest X-ray showing cardiomegaly with enlarged ventricle and left atrium. Four-chamber echocardiographic view showing enlarged right ventricle at left and deviation of the interventricular septum at right and enlarged left atrium.

Figure 2 – Computed tomography angiography of coronary arteries showing the right and left anterior ventricular branch originating from the anterior sinus of Valsalva (B). Larger arteries, composed by the circumflex, posterior ventricular and marginal arteries, arise from the posterior sinus of Valsalva that perfuses the entire right ventricle at left (A and C).

literature and recognized as a consequence of right ventricular dysfunction, and the main long-term sequela of this condition. Decreased coronary flow after vasodilation with adenosine, resulting in altered vasoreactivity and possible microcirculation was previously reported,4 which may explain the ventricular dysfunction. Therefore, the best option for these patients may be atrial and arterial anatomic repair by double switch operation in some stage of the disease.1,2
References

1. Bautista-Hernandez V, Myers PO, Cecchin F, Marx GR, del Nido PJ. Late left ventricular dysfunction after anatomic repair of congenitally corrected transposition of the great arteries. J Thorac Cardiovasc Surg. 2014;148(1):254-8.

2. Morcos M, Kilner PJ, Sahn DJ, Litt HI, Valsangiaco-Buechel ER, Sheehan FH. Comparison of systemic right ventricular function in transposition of the great arteries after atrial switch and congenitally corrected transposition of the great arteries. Int J Cardiovasc Imaging. 2017;33(12):1993-2001.

3. Placci A, Lovato L, Bonvicini M. Congenitally corrected transposition of the great arteries in an 83-year-old asymptomatic patient: description and literature review. BMJ Case Rep. 2014 Oct 21;2014. pii: bcr2014204228.

4. Hauser M, Meierhofer C, Schweiger M, Vogt M, Kaemmerer H, Kuehn A. Myocardial blood flow in patients with transposition of the great arteries – risk factor for dysfunction of the morphologic systemic right ventricle late after atrial repair. Circ J. 2015;79(2):425-31.

This is an open-access article distributed under the terms of the Creative Commons Attribution License