A POLYNOMIAL WITH A ROOT MOD p FOR EVERY p HAS A REAL ROOT

RODRIGO ANGELO AND MAX WENQIANG XU

Abstract. We prove that if a polynomial with rational coefficients has a root mod p for every large prime p, then it has a real root. As an application, we show that the primes can’t be covered by finitely many positive definite binary quadratic forms.

1. Introduction

It is known that if a polynomial irreducible over $\mathbb{Q}[x]$ has a root mod p for every prime p, then it has a rational root (and is therefore linear) [8]. This is subtler if the irreducibility condition is dropped, and there exist polynomials e.g.,

$$\begin{align*}
(x^2 + 1)(x^2 + 2)(x^2 - 2) \quad \text{and} \\
(x^2 + x + 1)(x^3 - 2)
\end{align*}$$

[3] that have a root mod p for every prime p, yet no rational root. The first polynomial always has a root mod p because of the identity of Legendre symbols $\left(\frac{-1}{p}\right)\left(\frac{-2}{p}\right) = \left(\frac{2}{p}\right)$, which ensures that always at least one of -1, -2 or 2 is a square mod p. In the second, due to quadratic reciprocity $x^2 + x + 1$ has a root unless $p \equiv 2$ mod 3, but in that case $x = 2^{2w-1}$ is a solution to $x^3 \equiv 2$ mod 3.

Notice however that these two polynomials still have a real root. We show this holds generally.

Theorem 1.1. Let $f \in \mathbb{Q}[x]$ be a polynomial that has a root mod p for every large prime p. Then f has a real root.

This is an application of Chebotarev’s density theorem - the proof itself is fairly straightforward, so much of the paper is dedicated to overviewing the background to Chebotarev’s theorem, which is not straightforward. There is a wide literature about polynomials with a root mod p for every p. For example [2] describes a criteria in terms of Galois theory to decide if a polynomial has this property. The papers [6, 9] show that families of polynomials similar to these two examples have a solution mod n for every integer n, and [11] looks gives criteria for having a root in \mathbb{Q}_p for every p. Products of two irreducible factors with this property are studied in [3]. We expand on this literature, noticing the common thread that these diverse constructions all have a real root.

Our result was motivated by a problem on representing primes with positive definite quadratic forms. A binary quadratic form is an expression of the form $g(x, y) = ax^2 + bxy + c$.
cy^2 \in \mathbb{Z}[x,y]$, and its discriminant is $-D = b^2 - 4ac$ (we also assume $a > 0$ without losing much generality). We call f positive definite if $-D < 0$, in which case $g(x,y) > 0$ for all $x, y \neq 0$. The problem of which primes can be represented by a form f, that is, written as $p = g(m,n)$ for some integers m and n has been extensively studied. A necessary condition is that the equation $g(x,y) \equiv 0 \mod p$ needs to have a non-trivial solution. This requires $-D$ to be a square mod p. In certain cases (when the class number of the discriminant $-D$ is 1) this condition is sufficient, but in general it is not. A fantastic study of the representation of primes by quadratic forms can be found at [4].

A natural task is to look for quadratic forms that together represent all the primes. For instance $x^2 + y^2, x^2 + 2y^2$ and $x^2 - 2y^2$ together cover all primes. This is because a sufficient criterion for p being covered by each of these forms is that $-1, -2$ or 2 is a square mod p respectively (for each of these forms the requirement “$-D$ is a square” is in fact sufficient - which stems from $-4, -8$ and 8 each being quadratic discriminants of class number 1), and as we pointed before one of $-1, -2$ or 2 is always a square mod p. A different example is $x^2 + y^2, x^2 - 5y^2, x^2 + 5y^2$ and $2x^2 + 2xy + 3y^2$, which together cover all primes. These have discriminants $-4, 20, -20$ and -20, one of which is always being a square mod p. For -20 we need to include two forms to cover all the classes, due to the class number of the discriminant -20 being 2 (see page 32 of [4] for an explanation that $x^2 + 5y^2$ and $2x^2 + 2xy + 3y^2$ together cover every prime for which -20 is a square mod p). For any odd cardinality set of discriminants whose product is a perfect square (this guarantees one of the discriminants is always a square mod p), a collection of forms achieving all $h(-D)$ classes of each discriminant $-D$ (which guarantees one of those forms will cover any prime p for which that $-D$ is a square mod p) will cover every large prime. These constructions we provided always include a form such as $x^2 - 2y^2$ or $x^2 - 5y^2$ with positive discriminant – one can ask whether it is possible to achieve this task with only positive definite forms. We answer this negatively.

Theorem 1.2. There is no finite set of positive definite binary quadratic forms such that for every large prime p, at least one of the forms has a non-trivial solution to $g(x,y) \equiv 0 \mod p$.

By non-trivial we mean a solution other than $(x, y) = (0, 0) \mod p$. In particular there is no finite set of positive definite binary quadratic forms together representing all the primes, since each solution to $g(x,y) = p$ provides a non-trivial solution of $g(x,y) \equiv 0 \mod p$ (in a trivial solution p^2 divides $g(x,y)$). Will Jagy independently asked this question on Mathoverflow, and Lucia [5] gave a proof based on Dirichlet’s theorem and density considerations. We offer a proof using our main result on polynomials with a root mod p for every p.

Acknowledgement. We thank the anonymous referees, whose detailed comments helped us refine our proofs and exposition.
2. Background and examples

Let us begin recalling the definition of the Frobenius automorphism of Galois extensions of \(\mathbb{Q} \), and the statement of Chebotarev’s density theorem.

Given a polynomial \(f \in \mathbb{Q}[x] \), let \(K \subset \mathbb{C} \) be the splitting field of \(f \) over \(\mathbb{Q} \) (the smallest extension of \(\mathbb{Q} \) containing all roots of \(f \)), with Galois group \(G = \text{Aut}(K/\mathbb{Q}) \), and let \(O_K \) be the ring of algebraic integers in \(K \). For a prime \(p \in \mathbb{Z} \), let \(\mathcal{P} \) be a maximal ideal in \(O_K \) containing the ideal \(pO_K \) (it is a general algebraic fact that every proper ideal in a ring is inside at least one maximal ideal - in the language of algebraic number theory this called a prime ideal over \(K \) above \(p \)). It is handy to know that \(\mathcal{P} \cap \mathbb{Z} = p\mathbb{Z} \) for such an ideal.

If \(p \) does not divide the discriminant of \(K/\mathbb{Q} \), there always exists a unique automorphism \(\pi \in G \) with the property \(\pi(x) \equiv x^p \mod \mathcal{P} \) for every \(x \in O_K \) (meaning \(\pi(x) - x^p \in \mathcal{P} \)). This is called the Frobenius automorphism. This automorphism may change depending on our choice of \(\mathcal{P} \), but if we choose a different maximal ideal \(\mathcal{P}' \) containing \(pO_K \), the new Frobenius is always a conjugate \(\sigma \pi \sigma^{-1} \) of the other Frobenius, where \(\sigma \in \text{Aut}(K/\mathbb{Q}) \) (this is because all other maximal ideals \(\mathcal{P}' \) containing \(pO_K \) are of the shape \(\mathcal{P}' = \sigma(\mathcal{P}) \)). We loosely refer to the Frobenius automorphism as \(\pi_p \), keeping in mind that if the maximal ideal \(\mathcal{P} \) is not specified \(\pi_p \) is only defined up to conjugacy.

Due to this conjugacy ambiguity, it only makes sense to ask if \(\pi_p \) belongs to a set \(C \subset G \) if that set is closed under conjugation (that is, an union of conjugacy classes). We now state Chebotarev’s density theorem, which describes the distribution of the Frobenius \(\pi_p \) in \(G \) as \(p \) varies.

Theorem 2.1 (Chebotarev’s density theorem \([12]\)). With the set up above, for each conjugacy class \(C \) of \(G \), there exist infinitely many primes \(p \) such that \(\pi_p \in C \). In fact the proportion of primes \(p \) satisfying \(\pi_p \in C \) is \(\frac{|C|}{|G|} \), that is

\[
\lim_{x \to \infty} \frac{\#\{p \leq x : \pi_p \in C\}}{\pi(x)} = \frac{|C|}{|G|}.
\]

A modern proof can be found in \([7]\). We won’t be concerned with its proof on this paper, only with how to apply it. The following lemma explains the connection of the Frobenius automorphism with the roots mod \(p \) of a polynomial

Lemma 2.2. Let \(p \) be a prime that does not divide the discriminant, leading coefficient or denominators of any coefficients of \(f \in \mathbb{Q}[x] \). Then the number of roots of \(f(x) \mod p \) is equal to the number of roots \(\alpha \in K \) of \(f(x) \) satisfying \(\pi_p(\alpha) = \alpha \).

Notice that the number of fixed roots of \(\pi_p \) does not depend on the conjugate of \(\pi_p \) we choose, since a root \(\alpha \) is fixed by \(\pi_p \) iff the root \(\sigma(\alpha) \) is fixed by \(\sigma \pi_p \sigma^{-1} \). However in the proof below we work with a fixed maximal ideal \(\mathcal{P} \), which fixes the conjugate of \(\pi_p \) it defines.

The intuition behind the lemma is that a polynomial of degree \(n \) always has all \(n \) roots over some extension of \(\mathbb{F}_p \), which can be thought as the roots over \(K \) mapped by reduction mod \(\mathcal{P} \) the “residue field” \(O_K/\mathcal{P} \), a finite field extension of \(\mathbb{F}_p \) - but the ones that belong to
the base field \mathbb{F}_p are exactly the ones satisfying $\alpha^p \equiv \alpha$ - the ones fixed by Frobenius. For simplicity, we will prove it only in the case where f is monic with integer coefficients.

Proof. Let $\alpha_1, \ldots, \alpha_n \in K$ be the roots of f, which are in O_K due to the assumption f is monic with integer coefficients. We begin by noticing that if p doesn’t divide the discriminant of f, then $p \nmid D = \prod_{i \neq j} (\alpha_i - \alpha_j) \Rightarrow D = \prod_{i \neq j} (\alpha_i - \alpha_j) \notin \mathcal{P}$ (because D is an integer and $\mathcal{P} \cap \mathbb{Z} = p\mathbb{Z}$), which means $\alpha_i - \alpha_j \notin \mathcal{P}$ for $i \neq j$. In other words, all the roots of f are distinct mod \mathcal{P}.

Each solution m of $f(m) \equiv 0 \mod p$ must be equivalent to some α_i mod \mathcal{P}. This is because if m is an integer, $p|f(m) \Rightarrow f(m) \in \mathcal{P} \Rightarrow (m - \alpha_1) \cdots (m - \alpha_n) \in \mathcal{P} \Rightarrow m - \alpha_i \in \mathcal{P}$ for some i (since \mathcal{P} is maximal). Conversely, if $\alpha_i \equiv m \mod \mathcal{P}$ for some integer m, then $f(m) \equiv f(\alpha_i) = 0 \mod \mathcal{P}$, which implies $f(m) \equiv 0 \mod p$, since $\mathcal{P} \cap \mathbb{Z} = p\mathbb{Z}$. This means that to find out how many roots mod p that f has we just need to count how many of $\alpha_1, \ldots, \alpha_n$ are equivalent to an integer mod \mathcal{P}.

If $\alpha_i \equiv m \mod \mathcal{P}$ for an some $m \in \mathbb{Z}$, then $\pi_p(\alpha_i) \equiv \alpha_i^p \equiv m^p \equiv m \equiv \alpha_i \mod \mathcal{P}$ (the fact that $m^p - m \in pO_K \subset \mathcal{P}$ follows from Fermat’s little theorem, since m is an integer). This implies $\pi_p(\alpha_i) = \alpha_i$, since an automorphism must send a root of f to another root (since $\sigma(f(x)) = f(\sigma(x))$), and we established the only root congruent to α_i mod \mathcal{P} is α_i itself. Conversely, if $\pi_p(\alpha_i) = \alpha_i$, we obtain $\alpha_i^p \equiv \alpha_i \mod \mathcal{P} \Rightarrow \alpha_i^p - \alpha_i \equiv \alpha_i(\alpha_i - 1) \cdots (\alpha_i - (p - 1)) \equiv 0 \mod \mathcal{P}$, which implies $\alpha_i \equiv m \mod \mathcal{P}$ for some $m \in \{0, \ldots, p - 1\}$.

So the number of solutions of $\pi_p(\alpha_i) = \alpha_i$ counts how many α_i’s are congruent to some integer mod \mathcal{P}, completing the proof.

We also sketch a proof of existence and uniqueness of the Frobenius automorphism, relying on the fact that any finite extension K/\mathbb{Q} can be made of the shape $K = \mathbb{Q}[[\beta]]$ for some $\beta \in K$ (that’s the primitive element theorem, see 7.3 of [1] for proof). For simplicity we also assume the minimal polynomial of β is monic with integer coefficients, and that $O_K = \mathbb{Z}[\beta]$ (this can’t always be arranged, but gives a good idea of where the Frobenius automorphism comes from).

Proof. Let the minimal polynomial g of β have roots $\beta = \beta_1$ and β_2, \ldots, β_n. For $K = \mathbb{Q}[[\beta]]$, each of the n automorphisms of K/\mathbb{Q} is given by the map $\sigma(\beta) = \beta_i$ for some i (which fully defines σ on $K = \mathbb{Q}[[\beta]]$ - these other roots all belong to K as well due to K being a Galois extension of \mathbb{Q}).

We know from a binomial expansion that $g(\beta^p) \equiv g(\beta)^p \equiv 0 \mod \mathcal{P}$, that is $f(\beta^p) = (\beta^p - \beta_1) \cdots (\beta^p - \beta_n) \in \mathcal{P} \Rightarrow \beta^p \equiv \beta_i \mod \mathcal{P}$ for some β_i. If σ is the automorphism sending β to β_i we obtain for any integers a_0, \ldots, a_k:

$$\sigma(a_0 + a_1 \beta + \ldots + a_k \beta^k) = a_0 + a_1 \beta_i + \ldots + a_k \beta_i^k,$$

which is

$$\equiv a_0 + a_1 \beta_i^p + \ldots + a_k \beta_i^{kp} \equiv (a_0 + a_1 \beta + \ldots + a_k \beta^k)^p \mod \mathcal{P},$$

so $\sigma(x) \equiv x^p \mod \mathcal{P}$ for every $x \in \mathbb{Z}[\beta] = O_K$, proving existence.
A POLYNOMIAL WITH A ROOT MOD p FOR EVERY p HAS A REAL ROOT

Uniqueness follows from the fact that if p doesn’t divide the discriminant of g then the roots β_1, \ldots, β_n are distinct mod P, so knowing $\sigma(\beta) \equiv \beta^p \mod P$ determines what root $\sigma(\beta)$ is sent to, which fully determines σ.

We made a number of simplifying assumptions here to get the ideas across and cover extensions of Q in a minimal way. For a more detailed and general approach to the Frobenius automorphism of number field extensions, see chapter 6 of [10].

This set up is very useful in practice for studying root counts of a polynomial mod p. Let us see two examples, diving deeper in the polynomials we provided earlier.

Example 2.3. $f(x) = (x^2 + 1)(x^2 + 2)(x^2 - 2)$ has roots $\pm i, \pm i\sqrt{2}$ and $\pm \sqrt{2}$. Its splitting field is $K = Q[i, \sqrt{2}]$, a degree 4 extension of Q. Any automorphism of K must permute the roots of $g(x) = x^2 + 1$ (that is due to $g(\sigma(\alpha)) = \sigma(g(\alpha)) = 0$ for a root α of g), and the roots of $x^2 - 2$ as well. That is, $\sigma(i) = \pm i$ and $\sigma(\sqrt{2}) = \pm \sqrt{2}$. The value of σ at these two roots determines the value of $\sigma(i\sqrt{2}) = \sigma(i)\sigma(\sqrt{2})$, fully determining the automorphism. With this, one can see that $\sigma \mapsto (\sigma(i), \sigma(\sqrt{2}))$ identifies $Aut(K/Q)$ as the group $\{\pm 1\} \times \{\pm 1\}$.

The identity automorphism $(1, 1)$ fixes all 6 roots of f, and each of the other automorphisms fixes two roots of f ($(1, -1)$ fixes $\pm i$, $(-1, 1)$ fixes $\pm \sqrt{2}$ and $(-1, -1)$ fixes $\pm i\sqrt{2}$).

Due to commutativity, each of the 4 elements of $Aut(K/Q)$ is alone in a conjugacy class. We conclude by Chebotarev’s theorem and Lemma 2.2 that for a proportion $\frac{1}{4}$ of primes, $f(x)$ has exactly 6 roots mod p, and for a proportion $\frac{3}{4}$ of primes it has exactly 2 roots mod p. These are the only possibilities for the root count of f mod p for a prime that doesn’t divide its discriminant ($p \neq 2, 3$).

Which of the cases the Frobenius belongs to is determined by $(\frac{\sigma_2(i)}{i}, \frac{\sigma_2(\sqrt{2})}{\sqrt{2}}) \equiv \left((-1)^{\frac{p-1}{2}}, 2^{\frac{p-1}{4}}\right) \equiv ((-1)^{\frac{p-1}{2}}, (\frac{2}{p})) \mod p$.

Example 2.4. $f(x) = (x^2 + x + 1)(x^3 - 2)$ has roots $\omega, \omega^2, \sqrt[3]{2}, \omega \sqrt[3]{2}$ and $\omega^2 \sqrt[3]{2}$, where ω is a cube root of unity. The splitting field of f is therefore $K = Q[\sqrt[3]{2}, \omega]$, a degree 6 extension of Q. An automorphism σ permutes the roots of $g(x) = x^3 - 2$. With relations such as $\sigma(\omega) = \frac{\sigma(\omega \sqrt[3]{2})}{\sigma(\sqrt[3]{2})}$, one can use the action of σ on the 3 roots of $x^3 - 2$ to determine the action of σ on all roots of f, fully determining σ. It can be verified each of those permutations of the roots of $x^3 - 2$ in fact provides an automorphism of K/Q, so $Aut(K/Q) \simeq S_3$.

We then have 3 cases depending on the conjugacy class of an automorphism $\sigma \in S_3$:

- If σ fixes the 3 roots of $x^3 - 2$, then it fixes all 5 roots of f. From lemma 2.2, if π_p is an automorphism of this type, f has 5 roots mod p.
- If σ acts on the 3 roots of $x^3 - 2$ like a permutation of cycle type $(2)(1)$ in S_3. In this case one can deduce σ flips ω and ω^2. So in total σ fixes a single root of f in this case. From lemma 2.2, if π_p is an automorphism of this type, f has 1 root mod p.

If \(\sigma \) is of cycle type (3) in \(S_3 \), one deduces it must fix \(\omega \) and \(\omega^2 \). In this case \(\sigma \) fixes 2 roots of \(f \). From lemma 2.2, if \(\pi_p \) is an automorphism of this type, \(f \) has 2 roots mod \(p \).

Hence for a prime \(p \) not dividing the discriminant of \(f \) (\(p \neq 2, 3 \)), \(f \) will always have 5, 1 or 2 roots mod \(p \). Furthermore, because \(S_3 \) has 1 identity, 3 elements of cycle type (1)(2) (which form a conjugacy class), and 2 elements of cycle type (3) (another conjugacy class), we conclude from Chebotarev’s theorem that the density of the set of primes in each of these cases are \(\frac{1}{6} \), \(\frac{3}{6} \) and \(\frac{2}{6} \) respectively.

Whether \(\pi_p \) fixes \(\omega \) or flips it with \(\omega^2 \) is determined by the value of \(p \) mod 3 (since \(\pi_p(\omega) = \omega^p \)), and in the case \(p \equiv 1 \mod 3 \) whether \(\pi_p \) fixes \(\sqrt{2} \) is determined by whether \(2^{p-1} \equiv 1 \mod p \). This information fully determines the class of \(\pi_p \).

3. Proofs of Theorem 1.1 and Theorem 1.2

We are ready to prove the following result, which has Theorem 1.1 as a corollary.

Theorem 3.1. Let \(f \in \mathbb{Q}[x] \) be a polynomial with distinct complex roots, such that \(f \) has at least \(k \) roots mod \(p \) for every large prime \(p \). Then \(f \) has at least \(k \) real roots.

The two polynomials we provided are examples of the sharpness of this statement, for \(k = 2 \) and \(k = 1 \) respectively.

Proof. Let \(\alpha_1, \ldots, \alpha_n \in K \subset \mathbb{C} \) be the complex roots of \(f \). Complex conjugation provides an automorphism of \(K/\mathbb{Q} \) - name this automorphism \(\theta \). By Chebotarev’s density theorem, there exist infinitely many \(p \) such that \(\pi_p \) is conjugate to \(\theta \), say \(\pi_p = \sigma^{-1} \theta \sigma \) for some automorphism \(\sigma \in \text{Aut}(K/\mathbb{Q}) \). By assumption, \(f \) has at least \(k \) roots mod \(p \) for such \(p \) - by Lemma 2.2 this implies at least \(k \) of \(\alpha_1, \ldots, \alpha_n \) satisfy \(\pi_p(\alpha_i) = \alpha_i \), which implies each of those satisfies \(\sigma^{-1} \theta \sigma(\alpha_i) = \alpha_i \Rightarrow \theta(\sigma(\alpha_i)) = \sigma(\alpha_i) \). But \(\theta \) is complex conjugation, so this implies each of those \(\sigma(\alpha_i) \) is real. Because \(\sigma \) is an automorphism it permutes the roots, so \(\sigma(\alpha_i) \) are \(k \) distinct roots of \(f \) - we conclude \(f \) has at least \(k \) real roots, as desired. The assumption that \(f \) has distinct roots is required in the application of Lemma 2.2 to make sure the discriminant of \(f \) is non-zero, so large primes don’t divide it.

\[\square \]

Notice also that by using the density from Chebotarev’s theorem, at least \(\frac{1}{|\text{Aut}(K/\mathbb{Q})|} \) of primes have \(\pi_p \) conjugate to complex conjugation, so the assumption that \(f \) has roots mod \(p \) for every large \(p \) may be weakened to \(f \) has \(k \) roots mod \(p \) for a proportion greater than \(1 - \frac{1}{|\text{Aut}(K/\mathbb{Q})|} \) of primes - this is enough to force one of those primes to have \(\pi_p \) conjugate to complex conjugation, and the rest of the proof works equally.

Proof of Theorem 1.1. If \(f \) has a root mod \(p \) for every \(p \), the product of its irreducible factors over \(\mathbb{Q}[x] \) also has this property. Applying Theorem 3.1 to this polynomial with \(k = 1 \), we obtain it has a real root, which is also a root of \(f \).

\[\square \]
Proof of Theorem 1.2. For a large enough prime \(p \), if the equation \(g(x, y) = ax^2 + bxy + cy^2 \equiv 0 \) has a non-trivial solution, then certainly \(y \neq 0 \mod p \), since if \(y \equiv 0 \mod p \) we obtain \(ax^2 \equiv 0 \mod p \), which assuming \(p \) is large compared with \(a > 0 \) would imply \(x \equiv 0 \mod p \) as well, contradicting that \((x, y)\) is non-trivial. Dividing by \(y^2 \) we obtain that \(at^2 + bt + c \equiv 0 \mod p \) has a root \(\mod p \), namely \(t = xy^{-1} \). So if one of the forms \(a_i x^2 + b_i x y + c_i y^2 \) always has a non-trivial solution \(\mod p \), then

\[
f(t) = \prod_{i=1}^{n} (a_i t^2 + b_i t + c_i)
\]

has a root \(\mod p \) for every large prime \(p \), which would imply by Theorem 1.1 that \(a_i t^2 + b_i t + c_i \) has a real root for some \(i \), i.e., it is not positive definite. This contradiction finishes the proof.

Incorporating density in this argument we see that this product of quadratic polynomials fails to have a root \(\mod p \) for a proportion at least \(\frac{1}{\left| \text{Aut}(K/\mathbb{Q}) \right|} \) of primes (namely, any prime whose Frobenius is complex conjugation, which won’t fix any of the roots of \(f \), which are all non-real if all forms are positive definite). This is least \(\frac{1}{2n} \), because the splitting field of \(f(t) = \prod_{i=1}^{n} (a_i t^2 + b_i t + c_i) \) is \(K = K_n \) where \(\mathbb{Q} = K_0 \subset K_1 \subset \cdots \subset K_n \), and each \(K_i \) is obtained by including the roots of \(a_i t^2 + b_i t + c_i \) to \(K_{i-1} \). So each of field extension \(K_i/K_{i-1} \) has degree at most 2, which makes the degree of \(K/\mathbb{Q} \) at most \(2^n \) (in fact the Galois group of this extension is \(\{\pm 1\}^m \) for some \(m \leq n \)). So a set of \(n \) positive definite quadratic forms must fail to cover a proportion of at least \(\frac{1}{2^n} \) of prime numbers.

References

[1] E. Artin and A.A. Blank. Algebra with Galois Theory. Courant Lecture Notes Series. Courant Institute of Mathematical Sciences, New York University, 2007.
[2] D. Berend and Y. Bilu. Polynomials with roots modulo every integer. Proc. Amer. Math. Soc., 124(6):1663–1671, 1996.
[3] R. Brandl, D. Bubboloni, and I. Hupp. Polynomials with roots \(\mod p \) for all primes \(p \). J. Group Theory, 4(2):233–239, 2001.
[4] D.A. Cox. Primes of the form \(x^2 + ny^2 \). Pure and Applied Mathematics (Hoboken). John Wiley & Sons, Inc., Hoboken, NJ, second edition, 2013. Fermat, class field theory, and complex multiplication.
[5] Lucia (https://mathoverflow.net/users/38624/lucia). reference for: no finite set of positive (integer) binary quadratic forms represents all primes. MathOverflow. URL:https://mathoverflow.net/q/373903 (version: 2020-10-12).
[6] Andrea M. Hyde, Paul D. Lee, and Blair K. Spearman. Polynomials \((x^3 - n)(x^2 + 3)\) solvable modulo any integer. Amer. Math. Monthly, 121(4):355–358, 2014.
[7] J. C. Lagarias and A. M. Odlyzko. Effective versions of the Chebotarev density theorem. In Algebraic number fields: L-functions and Galois properties (Proc. Sympos., Univ. Durham, Durham, 1975), pages 409–464. Academic Press, London-New York, 1977.
[8] H. Lenstra. Lecture Notes: The Chebotarev Density Theorem. URL: https://websites.math.leidenuniv.nl/algebra/Lenstra-Chebotarev.pdf. Last visited on 2022/05/17.
[9] Bhawesh Mishra. Polynomials consisting of quadratic factors with roots modulo any positive integer. Amer. Math. Monthly, 129(2):178–182, 2022.
[10] P. Samuel. *Algebraic Theory of Numbers*. Hermann, 1970.

[11] J. Sonn. Polynomials with roots in \mathbb{Q}_p for all p. *Proc. Amer. Math. Soc.*, 136(6):1955–1960, 2008.

[12] N. Tschebotareff. Die Bestimmung der Dichtigkeit einer Menge von Primzahlen, welche zu einer gegebenen Substitutionsklasse gehören. *Math. Ann.*, 95(1):191–228, 1926.