UNIPOTENT AND PROUNIPOTENT GROUPS:
COHOMOLOGY AND PRESENTATIONS

BY ALEXANDER LUBOTZKY AND ANDY R. MAGID

A pro-affine algebraic group G, over the field k (which we always take to be algebraically closed of characteristic zero) is an inverse limit of affine algebraic groups [3]. If the algebraic groups in the inverse system are unipotent, we call G prounipotent. Pro-affine algebraic groups arise naturally in the theory of finite-dimensional k-representations of discrete and analytic groups [3, 4, 9] and prounipotent groups arise naturally as the prounipotent radicals of pro-affine groups. Our interest in prounipotents is motivated by possible applications to finite-dimensional representation theory.

The extension of the category of unipotent groups to that of prounipotents makes possible "combinatorial group theory" (free groups and presentations):

If X is a set, there is a prounipotent group $F(X)$ containing X such that for every prounipotent group H and function $f : X \rightarrow H$ with $\text{Card} \{X - f^{-1}(L)\}$ finite for every closed subgroup L of finite codimension in H there is a unique homomorphism $\tilde{f} : F(X) \rightarrow H$ extending f [5, 2.1]. Every prounipotent group G is a homomorphic image of a free prounipotent group F so there is an exact sequence (*) $1 \rightarrow R \rightarrow F \rightarrow G \rightarrow 1$. We can choose (*) with $R \subseteq (F, F)$ and in this case we call (*) a proper presentation of G. If $F = F(X)$ in (*), we call X generators for G and we call generators of R, as a prounipotent normal subgroup of F, relations for G.

As for pro-p groups [11], the numbers of generators and relations for G have a cohomological interpretation. Cohomology here is in the category of polynomial representations as in [2]. There is a unique simple in this category (the one-dimensional trivial module k) so cohomological dimension is defined as $\text{cd}(G) = \inf \{i \mid H^n(G, k) = 0, n > i\}$.

Theorem 1 [5, 2.8 and 2.9]. *The following are equivalent for prounipotent G:

(a) G is free,
(b) G is a projective group in the category of prounipotent groups,
(c) $\text{cd}(G) \leq 1$.

Received by the editors November 13, 1981.

1980 Mathematics Subject Classification. Primary 14L25, 20G10.
PROPOSITION 2 [5, 1.14]. If H is a pronipotent subgroup of the pronipotent group G then $\text{cd}(H) \leq \text{cd}(G)$.

COROLLARY 3 [5, 2.10]. A closed subgroup of a free pronipotent group is free.

THEOREM 4 [5, 3.2 AND 3.11]. Let $1 \rightarrow R \rightarrow F(X) \rightarrow G \rightarrow 1$ be a proper presentation of the pronipotent group G. Then $d = \dim(H^1(G, k)) = \text{Card}(X)$ and $r = \dim(H^2(G, k))$ is the minimal number of normal generators of R as a pronipotent subgroup of F. Thus, d is the minimal number of generators and r is the minimal number of relations for G.

The preceding results are proved similarly to the analogous results for pro-p groups. (See [11].) Special properties of pronipotents establish

THEOREM 5 [5, 3.14]. If G is pronipotent and $\dim(H^n(G, k)) = 1$ for some $n \geq 1$, then $\text{cd}(G) = n$.

If G is one-relator, $\dim(H^2(G, k)) = 1$ by Theorem 4 so

COROLLARY 6 [5, 3.15]. A one-relator pronipotent group has cohomological dimension 2.

(Corollary 6 is the pronipotent analogue of [9, 11.2, p. 633].)

When G is finite-dimensional, $\text{cd}(G) = \dim(G)$, so the only one-relator G is $k \times k$. In general, there is a Golod-Shafarevich type inequality relating the numbers of generators and relations.

THEOREM 7 [7, 3.11]. Let G, d, and r be as in Theorem 4 with $r \neq 0$ and G finite-dimensional. Then $r \geq d^2/4$, with strict inequality unless $G = k \times k$, when $r = 1$ and $d = 2$.

The proof of Theorem 7 relies on the notion of a group algebra developed in [6 and 7]: The coordinate ring $k[G]$ of the pronipotent group G is a G-bimodule so that the right translations define an embedding ρ of G in the units of the G-module endomorphism ring of $k[G]$ as a left G-module. We denote $\text{End}_G(k[G])$ by $k\langle G \rangle$.

When G is finitely generated, $k\langle G \rangle$ is like a group algebra for G (if B is a finite-dimensional associative algebra, $U_1(B)$ is the group of units of B congruent to 1 modulo the radical).

THEOREM 8 [7, 2.8]. If G is a finitely generated pronipotent group and B a finite-dimensional associative k-algebra any polynomial representation $G \rightarrow U_1(B)$ extends uniquely to an algebra homomorphism $k\langle G \rangle \rightarrow B$. Moreover, this property characterizes $k\langle G \rangle$.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
Theorem 9 [7, 2.10]. Let G be a prounipotent group with a proper presentation $1 \rightarrow R \rightarrow F\langle x_1, \ldots, x_d \rangle \rightarrow G \rightarrow 1$ where $\{s_1, \ldots, s_r\}$ is a minimal set of normal generators of R. Then $k\langle G \rangle$ is the formal (noncommutative) power series algebra $k\langle \rho(x_1) - 1, \ldots, \rho(x_d) - 1 \rangle$ modulo the ideal generated by $\{\rho(s_j) - 1\}$.

Theorem 9 is proved by first treating the case where G is free on $\{x_1, \ldots, x_d\}$ [6, 1.5] (so $k\langle G \rangle$ is a formal power series algebra). Then the embedding $\rho: G \rightarrow k\langle G \rangle$ embeds G in the ring of formal power series. This extends (in fact, reproves) the Magnus embedding [1, p. 151] of the free discrete group, and provides a concrete description of the free prounipotent group on d generators as the Zariski closure of the subgroup generated by $\{1 + t_i\}$ in the group of units of constant term 1 in $k\langle t_1, \ldots, t_d \rangle$. Using this description, we obtain

Theorem 10 [6, 2.7]. The associated graded Lie algebra [1, p. 145] of the lower central series of a free prounipotent group on d generators is a free k-Lie algebra on d generators.

The proofs of the preceding theorems use a description of $k[G]$ as an ascending union of G-submodules $E_i(G)$ defined by $E_{-1}(G) = 0$ and $E_{i+1}(G)/E_i(G) = (k[G]/E_i(G))^G$. If G is finitely generated then the numbers $c_i(G) = \dim(E_i(G))$ are all finite, and we have

Proposition 11 [6, 1.3 AND 7, 3.12]. Let G be prounipotent,
(a) G is free on d generators if and only if $c_i(G) = 1 + d + d^2 + \cdots + d^i$ for $i \geq 0$.
(b) G is finite-dimensional if and only if the series $\{c_i(G)\}$ has polynomial growth.

Finally, we record some applications to the finite-dimensional representation theory of a discrete group Γ. We let $A(\Gamma)$ be the pro-algebraic hull of Γ [10, 2.2] and $R_u(\Gamma)$ the prounipotent radical of $A(\Gamma)$.

Theorem 12 [5, 4.3]. If Γ contains a free subgroup of finite index, $R_u(\Gamma)$ is a free unipotent group.

If Γ is torsion free nilpotent, then $R_u(\Gamma)$ is finite-dimensional, and there is an embedding $\Gamma \rightarrow R_u(\Gamma)$. (This is the Malcev embedding for which our methods provide a new proof [6, 5.12].) In this case we have $H^i(\Gamma, k) = H^i(R_u(\Gamma), k)$ [7, 3.8] so we can apply Theorem 7 to obtain an inequality relating the ranks of the first and second cohomology groups of Γ.

REFERENCES
1. N. Bourbaki, Lie groups and Lie algebras. I, Addison-Wesley, Reading, Mass., 1975.
2. G. Hochschild, Cohomology of algebraic linear groups, Illinois J. Math. 5 (1961), 492–579.
3. G. Hochschild and G. D. Mostow, *Pro-affine algebraic groups*, Amer. J. Math. 91 (1964), 1127–1140.

4. A. Lubotzky, *Tannaka duality for discrete groups*, Amer. J. Math. 102 (1980), 663–689.

5. A. Lubotzky and A. Magid, *Cohomology of unipotent and prounipotent groups*, J. Algebra 74 (1982), 76–95.

6. ———, *Free prounipotent groups* (preprint).

7. ———, *The group algebra of a prounipotent group* (preprint).

8. R. Lyndon, *Cohomology theory of groups with a single defining relation*, Ann. of Math. (2) 52 (1960), 650–665.

9. A. Magid, *Module categories of analytic groups*, Cambridge Univ. Press, London and New York (to appear).

10. G. D. Mostow, *Representative functions on discrete groups and solvable arithmetic groups*, Amer. J. Math. 92 (1970), 1–32.

11. J. P. Serre, *Cohomologie galoisienne*, Lecture Notes in Math., vol. 5, Springer-Verlag, Berlin and New York, 1965.

DEPARTMENT OF MATHEMATICS, BAR-ILAN UNIVERSITY, RAMAT GAN, ISRAEL

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF OKLAHOMA, NORMAN, OKLAHOMA 73019