Methylated nucleosides in tRNA and tRNA methyltransferases

Hiroyuki Hori*

Department of Materials Science and Biotechnology, Applied Chemistry, Graduate School of Science and Engineering, Ehime University, Matsuyama, Japan

Edited by:
Akio Kanai, Keio University, Japan

Reviewed by:
Ramesh Gupta, Southern Illinois University, USA
Akira Muto, Hirosaki University, Japan

*Correspondence:
Hiroyuki Hori, Department of Materials Science and Biotechnology, Graduate School of Science and Engineering, Ehime University, Bunkyo 3, Matsuyama, Ehime 790-8577, Japan
e-mail: hori@eng.ehime-u.ac.jp

To date, more than 90 modified nucleosides have been found in tRNA and the biosynthetic pathways of the majority of tRNA modifications include a methylation step(s). Recent studies of the biosynthetic pathways have demonstrated that the availability of methyl group donors for the methylation in tRNA is important for correct and efficient protein synthesis. In this review, I focus on the methylated nucleosides and tRNA methyltransferases. The primary functions of tRNA methylations are linked to the different steps of protein synthesis, such as the stabilization of tRNA structure, reinforcement of the codon-anticodon interaction, regulation of wobble base pairing, and prevention of frameshift errors. However, beyond these basic functions, recent studies have demonstrated that tRNA methylations are also involved in the RNA quality control system and regulation of tRNA localization in the cell. In a thermophilic eubacterium, tRNA modifications and the modification enzymes form a network that responds to temperature changes. Furthermore, several modifications are involved in genetic diseases, infections, and the immune response. Moreover, structural, biochemical, and bioinformatics studies of tRNA methyltransferases have been clarifying the details of tRNA methyltransferases and have enabled these enzymes to be classified. In the final section, the evolution of modification enzymes is discussed.

Keywords: RNA modification, RNA methylation, RNA maturation

INTRODUCTION

The first tRNA sequence was determined in 1965 and numerous modifications were identified at various positions within the sequence (Holley et al., 1965). At almost the same time, several tRNA methyltransferase activities were detected in Escherichia coli extract (Hurwitz et al., 1964), which suggested that diverse enzymes are involved in tRNA modification. To date, more than 90 modified nucleosides have been identified in tRNA (Machnicka et al., 2013). Thus, the majority of modified nucleosides that have been discovered in different RNA species are found in tRNA. In the twenty-first century, the major modification pathways of tRNA have been elucidated on the basis of genome sequence data. These studies have demonstrated that the pathways of tRNA modification show diversity among living organisms. In this review, I focus on the methylated nucleosides in tRNA, together with tRNA methyltransferases, and introduce their basic roles as well as their more complex functions.

THE PRIMARY ROLE OF tRNA MODIFICATIONS IS THE REGULATION OF PROTEIN SYNTHESIS

Transfer RNA is an adaptor molecule that enables the genetic code of nucleic acids to be converted to amino acids in protein. Consequently, the primary functions of individual tRNA modifications are linked to the different steps of protein synthesis. In fact, if a tRNA remains unmodified, it becomes charged with a non-cognate amino acid, the corresponding codon in the mRNA is mistranslated, and a mutation is introduced. Table 1 summarizes the typical methylated nucleosides and their positions within the tRNA, their distributions in the three domains of life, the corresponding tRNA methyltransferases, their contributions to tRNA structure, their functions in addition to structural roles, and related publications. (Phillips and Kjellin-Straby, 1967; Taya and Nishimura, 1973; Yaniv and Folk, 1975; Delk et al., 1976; Watanabe et al., 1976, 2005, 2006; Pierre et al., 1978, 2003; Pope et al., 1978; Raba et al., 1979; Greenberg and Dudock, 1980; Ny and Björk, 1980; Osorio-Almeida et al., 1980; Byström and Björk, 1982; Hopper et al., 1982; Walker, 1983; Gupta, 1984; Johnson et al., 1985; Ellis et al., 1986; Reinhardt et al., 1986; van Tol et al., 1987; Ny et al., 1988; Björk et al., 1989, 2001; Jakab et al., 1990; Keith et al., 1990; Perret et al., 1990; Edmonds et al., 1991; Gu and Santi, 1991; Gustafsson and Björk, 1993; Hagervall et al., 1993; Edqvist et al., 1994; Kowalak et al., 1994; Martin and Hopper, 1994; Grosjean et al., 1995, 1996, 2008; Durand et al., 1997; Jiang et al., 1997; Li et al., 1997; Persson et al., 1997, 1998; Anderson et al., 1998, 2000; Constantinesco et al., 1998, 1999a,b; Helm et al., 1998; Hori et al., 1998, 2002, 2003; Matsuyama et al., 1998; Qian et al., 1998; Tomita et al., 1998; Cavaillé et al., 1999; Farabaugh and Björk, 1999; Liu et al., 1999, 2003, 2013; Motorin and Grosjean, 1999; Niederberger et al., 1999; Liu and Straby, 2000; Nordlund et al., 2000; Cloquet-d’Orval et al., 2001, 2005; Dong et al., 2001; Urbanovicius et al., 2001, 2002, 2003, 2005; Yasukawa et al., 2001; Alexandrov et al., 2002, 2005, 2006; Johansson and Byström, 2002; Bultman and Redman, 2002; Pintard et al., 2002; Suzuki et al., 2002, 2007, 2011a; Ahn et al., 2003; Bortolin et al., 2003; De Bie et al., 2003; Droogmans et al., 2003; Elkins et al., 2003; Jackman et al., 2003;
Table 1 | Typical methylated nucleosides in tRNA and corresponding tRNA methyltransferases.

Name and position	Distribution	Methyltransferase(s)	Contribution to tRNA structure	Function(s) in addition to structural role	References
Am4 and Cm4	E	Trm13	Stabilization of aminoacyl stem?	Wilkinson et al., 2007; Tkaczuk, 2010	
Am6	A (Pyrococcus furiosus)	?	Stabilization of aminoacyl stem?	Constantinesco et al., 1999a	
m^2^G6	E/B/A	?/TrmN/Trm14	Stabilization of aminoacyl stem?	Menezes et al., 2011; Flisage et al., 2012; Roovers et al., 2012	
m^2^G7	E	?	Stabilization of aminoacyl stem?	Pierre et al., 1978	
m^1^G9 and m^1^A9	E (mitochondria)	MRPP1	Correct folding of mitochondrial tRNA	Helm et al., 1998; Sakurai et al., 2005a; Viardo et al., 2012	
m^1^G9	E	Trm10	Defect causes young onset diabetes in humans.	Kempenaers et al., 2010; Jackman et al., 2003; Igoillo-Esteve et al., 2013; Shao et al., 2013; Swinehart et al., 2013	
m^2^G10	E	Trm11 and Trm112 complex.	Prevention of alternative tRNA structure	Purushothaman et al., 2005	
m^2^G10 G10	A	Archaeal Trm-m^2^G10 enzyme	Prevention of alternative tRNA structure	Armengaud et al., 2004; Urbanovicius et al., 2006	
Gm18	E/B	Trm3/TrmH	Stabilization of D-arm and T-arm interaction	Persson et al., 1997; Hori et al., 1998, 2002, 2003; Cavallé et al., 1999; Urbanovicius et al., 2002; Nureki et al., 2004; Pleshe et al., 2005; Watanabe et al., 2005, 2006; Ochi et al., 2010, 2013; Gehrig et al., 2012; Jöckel et al., 2012	
m^1^A22	B	TrmK	Prevention of Watson-Crick base pair formation?	Roovers et al., 2008a	
m^2^G26 (m^2^G26)	E/A	Trm1	Prevention of Watson-Crick base pair formation?	Phillips and Kjellin-Straby, 1967; Hopper et al., 1982; Ellis et al., 1986; Reinhart et al., 1986; Edqvist et al., 1994; Martin and Hopper, 1994; Constantinesco et al., 1998, 1999b; Liu et al., 1999; Niederberger et al., 1999; Liu and Straby, 2000; Grosjean et al., 2008; Ihsanawati et al., 2008; Lai et al., 2009; D’Silva et al., 2011; Dewe et al., 2012	

(Continued)
Table 1 | Continued

Name and position	Distribution	Methyltransferase(s)	Contribution to tRNA structure	Function(s) in addition to structural role	References
m\(^2\)G26	E/B	Trm1		Prevention of Watson-Crick base pair formation?	Johnson et al., 1985; van Tol et al., 1987; Awai et al., 2009, 2011
				Stabilization of the three-dimensional core?	
				In the case of G27 modification, stabilization of the anticodon arm?	
m\(^5\)C27	E/A				Edelheit et al., 2013
Cm32 and Um32	B	TrmJ	Stabilization of the anticodon loop		Purta et al., 2006
Cm32	A		Cm32 modification is observed in several tRNA species from H. volcanii and T. acidophilum	Stabilization of the anticodon loop	Walker, 1983; Gupta, 1984
Cm32 and Nm34	E	Trm7 and Trm732 complex synthesizes Cm32		Stabilization of the anticodon loop	
(Cm34, Gm34, and ncm\(^5\)Um34)					
m\(^3\)C32	E/A	Trm140/Q?	Stabilization of the anticodon-loop?	The yeast tmr140 - tmr1 double knockout strain is sensitive to low concentrations of cycloheximide	D'Silva et al., 2011; Noma et al., 2011
Cm34 and cmnm\(^5\)Um34	B	TrmL	Stabilization of the anticodon-loop.	Reinforcement of the codon-anticodon interaction	Benitez-Páez et al., 2010; Liu et al., 2013
Cm34 and Um39	A	Complex of aFib, Nop5p and L7Ae with box C/D guide RNA (intron)	Cm34 and Um39 in tRNA\(^p\) from P. abyssi and H. volcanii are introduced by the box C/D ribonucleoprotein and guide RNA system	Stabilization of the anticodon-arm?	Clouet-d’Orval et al., 2001; Bortolin et al., 2003; Singh et al., 2004; Clouet-d’Orval et al., 2005; Ye et al., 2009; Lin et al., 2011
Cm34	A (Haloarchaea)	Complex of aFib, Nop5p and L7Ae with box C/D guide RNA (sR-tMet)	Several 2\(^\prime\)-O-methylations in archaeal tRNAs are predicted to be formed by the box C/D ribonucleoprotein and guide RNA system	Stabilization of the anticodon-arm?	Joardar et al., 2011
				Reinforcement of the codon-anticodon interaction	
Table 1 | Continued

Name and position	Distribution	Methyltransferase(s)	Contribution to tRNA structure	Function(s) in addition to structural role	References
Xm5U34 derivatives	E/B/A				
				Biosynthetic pathways of Xm5U34 derivatives are not completely clarified	
				For information on the outlines of Xm5U34 biosynthesis pathways, please see these references, Umeda et al., 2005; Chen et al., 2011; van den Born et al., 2011; Moukadiri et al., 2014	
				In some cases, methylation by tRNA methyltransferases is part of the multistep reactions	
				MmmE and MmmG complex and MmmC generates mnm5U34	
				Aquifex aeolicus DUF752 protein is a tRNA methyltransferase that functions without the usually fused oxidase domain	
				The Trm9-Trm112 complex forms mcm5U34 from cm5U34	
				The Trm9 homolog in mammals, *C. elegans* and plants is a methyltransferase domain of ALKBH8	
				The Alk domain in ALKBH8 stereoselectively generates S-mchm5U34 from mcm5U34	
				Human MTO1, MSS1 and MTU1 are involved in τm5s2U34 formation in mitochondrial tRNA	
				Stabilization of the anticodon loop	
				Reinforcement of the codon-anticodon interaction, restriction of wobble base pairing, and prevention of frameshift error	
				Transfer RNAs with the mcm5U modification are the target of Kluyveromyces lactis gamma-toxin and Pichia acaciae killer toxin	
				Trm9-specific tRNA modifications enhance codon-specific translational elongation and promote increased levels of DNA damage response proteins. The synthesized DNA damage response proteins affect with cell cycle regulation	
				ALKBH8 is involved in DNA repair and carcinogenesis	
				Lack of τm5s2U34 in human mitochondrial tRNA causes myoclonus epilepsy associated with ragged-red fibers	
				Taya and Nishimura, 1973; Keith et al., 1990; Uronavicius et al., 2001, 2003; Yasukawa et al., 2001; Suzuki et al., 2002, 2011a; Kalhor and Clarke, 2003; Kaneko et al., 2003; Takai and Yokoyama, 2003; Bujnicki et al., 2004; Chen et al., 2005, 2011; Huang et al., 2005; Kirino et al., 2005; Leipuviene and Björk, 2005; Lu et al., 2006; Sakurai et al., 2006b; Umeda et al., 2005; Yim et al., 2006; Begley et al., 2007; Klassen et al., 2008; Kurata et al., 2008; Meyer et al., 2008, 2009; Roovers et al., 2008b; Moukadiri et al., 2009, 2014; Osavia et al., 2009; Shi et al., 2009; Shimada et al., 2009; Böhme et al., 2010; Fu et al., 2010; Mazauric et al., 2010; Songe-Møller et al., 2010; Kitamura et al., 2011, 2012; Leihne et al., 2011	
Table 1 | Continued

Name and position	Distribution	Methyltransferase(s)	Contribution to tRNA structure	Function(s) in addition to structural role	References
Xmo\(^5\)U34 derivatives	B	?		Expansion of wobble base pairing	Pope et al., 1978; Nasvall et al., 2004; Novoa et al., 2012
m\(^7\)G34	E (Mitochondria)	?		Expansion of wobble base pairing?	Matsuyama et al., 1998; Tomita et al., 1998
m\(^7\)G36	E (Chloroplast)	?			Osorio-Almeida et al., 1980; Jakab et al., 1990
m\(^1\)G37	E/B/A	Trm5/TrmD/Trm5	Prevention of frameshift errors.	Prevention of misacylation of tRNA\(^{Asp}\) by Arg-RS	Osorio-Almeida et al., 1980; Byström and Björk, 1982; Björk et al., 1989, 2001; Perret et al., 1990; Hagervall et al., 1993; Li et al., 1997; Farabaugh and Björk, 1999; Ahn et al., 2003; Elkins et al., 2003; Liu et al., 2003; Brulé et al., 2004; Christian et al., 2004, 2013; O'Dwyer et al., 2004; Takeda et al., 2006; Christian and Hou, 2007; Lee et al., 2007; Goto-Ito et al., 2008, 2009; Toyooka et al., 2008; Sakaguchi et al., 2012; Paris et al., 2013
m\(^1\)G37	E	Trm5	The m\(^1\)G37 modification is often observed in eukaryotic tRNA\(^{Ala}\) (for example, yeast tRNA\(^{Ala}\))	Stabilization of the anticodon loop	Holley et al., 1965; Grosjean et al., 1996; Brulé et al., 2004
yW37 derivatives	E/A	Trm5 + Tyw3/Trm5 (homologs) + Taw3	For information on the biosynthetic pathways of yW37 derivatives, please see these references, Noma et al., 2010; de Crécy-Lagard et al., 2010		

Biosynthesis of yW37 derivatives starts with the m\(^1\)G37 modification by Trm5 in both eukaryotes and archaea.

Some archaean biosynthetic pathways are predicted from genomic information.

In some intermediate steps, methylation(s) by Tyw3 (yeast) or Taw3 and Trm5 homologs (archaea) and a radical SAM reaction are involved.

The names, Trm12 and TrmM, were previously allocated to eukaryotic and archaean methyltransferases, respectively in yW37 biosynthetic pathways.

Therefore, some genome sequence projects used these names.

(Continued)
Table 1 | Continued

Name and position	Distribution	Methyltransferase(s)	Contribution to tRNA structure	Function(s) in addition to structural role	References
t^6A_{37} derivatives	E/B/A	TsaA	The biosynthetic pathway of m^6t^6A contains a methylation step	Prevention of frameshift errors	Jiang et al., 1997; Kalhor et al., 2005; Wåas et al., 2006, 2007; Noma et al., 2006, 2010; Suzuki et al., 2007; Umitsu et al., 2009; de Crécy-Lagard et al., 2010; Perche-Letuvée et al., 2012
i^6A_{37} derivatives	B	MiaB	The 2-methylthio group of ms^2i^6A derivatives is formed by MiaB (a radical SAM enzyme)	Prevention of frameshift errors	Gupta, 1984; Qian et al., 1998; Durant et al., 2005; McCrate et al., 2006; Arragain et al., 2010; Atta et al., 2010, 2012; Wei et al., 2011; Fujimori, 2013
m^2A_{37}	B	?			
m^6A_{37}	B	TmG?			
m^5C_{38}	E/B?	Dnmt2	Dnmt2 is a methyltransferase with high sequence similarity to DNA methyltransferases		Durand et al., 1997; Li et al., 1997; Persson et al., 1998; Farabaugh and Björk, 1999; Urbonavicius et al., 2001, 2003; Kierzek and Kierzek, 2003; Pierre et al., 2003; Ote et al., 2006; Atta et al., 2010, 2012; Fujimori, 2013
m^5C_{34}, m^5C_{40}, m^5C_{48} and m^5C_{49}	E/A	Trm4 (human Misu/Trm4)	Site specificities of tRNA m^5C methyltransferases are not completely clarified		Yaniv and Folk, 1975
			Trm4 homologs might be involved in the methylation(s) of other position(s)		Qian et al., 1998
			m^5C_{34} and m^5C_{40} in yeast tRNAs are introduced in an intron-dependent manner		Dong et al., 2001; Goll et al., 2006
			Archaeal binds to archaean Trm4 and regulates the specificity of methylation site		

(Continued)
Name and position	Distribution	Methyltransferase(s)	Contribution to tRNA structure	Function(s) in addition to structural role	References
Human Trm4 (Misu)	E/B	Trm8 (human METTL1)-Trm82 complex/TrmB.	Human Trm4 (Misu) catalyzes the m^5^C34 formation in tRNA^Leu^ in an intron-dependent manner.	Stabilization of the three-dimensional core?	Gupta, 1984; Motorin and Grosjean, 1999; King and Redman, 2002; Alexandrov et al., 2006; Brzezicha et al., 2006; Auxilien et al., 2007, 2012; Walbott et al., 2007; Chernyakov et al., 2008; Kuratani et al., 2010; Chan et al., 2012; Edelheit et al., 2013; Preston et al., 2013
m^7^G46 A/B	Trm8 (human METTL1)-Trm82 complex/TrmB.	Stabilization of the three-dimensional core?	Under oxidative stress, yeast tRNA^Leu^ changes the level of m^5^C modifications which lead to selective translation of mRNA.	The half-life of tRNA^Val^ is shortened in the yeast trm8 and trm4 double knockout strain.	Auclair et al., 2008; Edmond et al., 2008; Tomikawa et al., 2013
m^7^G49 A/B	Trm2 + a/TrmA or TrmF0/RlmD-like protein	Trm2 + a/TrmA or TrmF0/RlmD-like protein	The level of m^5^C modification in tRNA^His^ increases in response to growth arrest in S. cerevisiae.	The half-life of tRNA^Val^ is shortened in the yeast trm8 and trm4 double knockout strain.	Auclair et al., 2008; Edmond et al., 2008; Tomikawa et al., 2013
m^5^C51 A/B	Trm2 + a/TrmA or TrmF0/RlmD-like protein	Trm2 + a/TrmA or TrmF0/RlmD-like protein	The m^5^C51 modification in some pathogens is essential for growth at high temperatures. Please see main text.	The half-life of tRNA^Val^ is shortened in the yeast trm8 and trm4 double knockout strain.	Auclair et al., 2008; Edmond et al., 2008; Tomikawa et al., 2013
m^5^C52 A/B	Trm2 + a/TrmA or TrmF0/RlmD-like protein	Trm2 + a/TrmA or TrmF0/RlmD-like protein	The m^5^C52 modification in some pathogens is essential for growth at high temperatures. Please see main text.	The half-life of tRNA^Val^ is shortened in the yeast trm8 and trm4 double knockout strain.	Auclair et al., 2008; Edmond et al., 2008; Tomikawa et al., 2013
m^5^U54 E/B/A	Trm2 + a/TrmA or TrmF0/RlmD-like protein	Trm2 + a/TrmA or TrmF0/RlmD-like protein	The m^5^U54 modification in some pathogens is essential for growth at high temperatures. Please see main text.	The half-life of tRNA^Val^ is shortened in the yeast trm8 and trm4 double knockout strain.	Auclair et al., 2008; Edmond et al., 2008; Tomikawa et al., 2013
m^5^U54 derivatives	E/B/A	Pyrococcus abyssi	The m^5^U54 modification in some gram-negative bacteria including E. coli is synthesized by TrmA.	The m^5^U54 modification in gram-positive and some gram-negative bacteria is synthesized by TrmF0.	Edmond et al., 1991; Tomikawa et al., 2012

(Continued)
Table 1 | Continued

Name and position	Distribution	Methyltransferase(s)	Contribution to tRNA structure	Function(s) in addition to structural role	References
Pyrococcus abyssi rRNA methyltransferase (RlmD)-like protein synthesizes m^5^U54				Formation of the reverse Hoogsteen base pair with A58	Delk et al., 1976; Watanabe et al., 1976; Raba et al., 1979; Greenberg and Dudock, 1980; Ny and Björk, 1980; Ny et al., 1988; Edmonds et al., 1991; Gu and Santi, 1991; Gustafsson and Björk, 1993; Kowalak et al., 1994; Constantinesco et al., 1999a; Nordlund et al., 2000; Johansson and Byström, 2002; Urbonavicius et al., 2002, 2005; Shigi et al., 2006; Choudhury et al., 2007a,b; Matsumoto et al., 2007; Alian et al., 2008; Leulliot et al., 2008; Tomikawa et al., 2008, 2010; Awai et al., 2009; Nishimasu et al., 2009; Auxilien et al., 2011; Hamdane et al., 2011a,b, 2012, 2013; Yamagami et al., 2012
E. coli TrmA binds to rRNA and this binding is essential for cell viability				Eukaryotic Trm2 has a 5' -> 3' endonuclease activity and is involved in DNA repair	
m^1^ψ54 derivatives	A	TrmY [Mja 1640 (Methanocaldococcus jannaschii), and Hvo 1989 (Haloferax volcanii)]			Gupta, 1984; Chen and Yuan, 2010; Chatterjee et al., 2012; Wurm et al., 2012
Cm56	A	aTrm56 or the complex of aFib, Nop5p and L7Ae with BoxC/D guide RNA (Pyrobaculum aerophylum)			Walker, 1983; Gupta, 1984; Constantinesco et al., 1999a; Renalier et al., 2005; Kuratani et al., 2008; Tomikawa et al., 2013
m^6^C56	E			This modification is identified by the bisulfite method; the modification might be a m^5^C derivative	Edelheit et al., 2013
Name and position	Distribution	Methyltransferase(s)	Contribution to tRNA structure	Function(s) in addition to structural role	References
-------------------	--------------	----------------------	---------------------------------	---	------------
m1A57 and m1A58	A	TrmI (aTrmI)	Formation of the reverse Hoogsteen base pair between m5U54 and m1A58	Stabilization of the T-loop structure	Walker, 1983; Gupta, 1984; Constantinesco et al., 1999a; Roovers et al., 2004; Guelorget et al., 2010, 2011; Tomikawa et al., 2013
m1G57	A	TrmI (aTrmI)	m1G57 is formed from m1A57 by deamination	Walker, 1983; Gupta, 1984; Grosjean et al., 1995	
m2G57	A	?		Walker, 1983	
m1A58	E/B	Trm6-Trm61 complex, and Trmt61B (Mitochondria)/TrmI	Formation of the reverse Hoogsteen base pair between m5U54 and m1A58	Stabilization of the T-loop structure	Anderson et al., 1998, 2000; Droogmans et al., 2003; Kadaba et al., 2004; Ozanick et al., 2007; Barraud et al., 2008; Guelorget et al., 2010; Qu et al., 2011; Chujo and Suzuki, 2012

This table focuses on the methylated nucleosides in tRNA and tRNA methyltransferases. Consequently, the detailed biosynthetic pathways of complicated modified nucleosides that do not involve methylation are not explained. They are summarized as “derivatives.” Although many methylated nucleosides and their methyltransferases have been studied for more than 40 years, recent publications are mainly cited in the references due to limitation of space. Abbreviations are as follow: Eukaryote, E; Eubacteria, B; Archaea, A. The eukaryotic enzyme names are based on the yeast enzyme names. For human enzymes, please see this review Towns and Begley (2012).
Kalhor and Clarke, 2003; Kaneko et al., 2003; Kierzek and Kierzek, 2003; Takai and Yokoyama, 2003; Armengaud et al., 2004; Brulé et al., 2004; Bujnicki et al., 2004; Christian et al., 2004, 2013; Freude et al., 2004; Kadaba et al., 2004; Nasvall et al., 2004; Nureki et al., 2004; O’Dwyer et al., 2004; Okamoto et al., 2004; Roovers et al., 2004, 2008a,b, 2012; Singh et al., 2004; Cartlidge et al., 2005; Chen et al., 2005, 2011; Durant et al., 2005; Huang et al., 2005; Kalhor et al., 2005; Kirino et al., 2005; Leipuviene and Björk, 2005; Lu et al., 2005; Pleshe et al., 2005; Purushothaman et al., 2005; Renalier et al., 2005; Sakurai et al., 2005a,b; Umeda et al., 2005; Waas et al., 2005, 2007; Brezicha et al., 2006; Goll et al., 2006; McGrate et al., 2006; Noma et al., 2006, 2010, 2011; Ote et al., 2006; Purta et al., 2006; Shigi et al., 2006; Takano et al., 2006; Takeda et al., 2006; Yim et al., 2006; Zegers et al., 2006; Auxilien et al., 2007, 2011, 2012; Begley et al., 2007; Christian and Hou, 2007; Choudhury et al., 2007a,b; Lee et al., 2007; Matsumoto et al., 2007; Ozanick et al., 2007; Walbott et al., 2007; Wilkinson et al., 2007; Alian et al., 2008; Barraud et al., 2008; Cherryakov et al., 2008; Goto-Ito et al., 2008, 2009; Ihsanawati et al., 2008; Klassen et al., 2008; Kurata et al., 2008; Kuratani et al., 2008, 2010; Leulliot et al., 2008; Meyer et al., 2008, 2009; Tomikawa et al., 2008, 2010, 2013; Toyooka et al., 2008; Avai et al., 2009, 2011; Lai et al., 2009; Moukadiri et al., 2009, 2014; Nishimasa et al., 2009; Osawa et al., 2009; Shi et al., 2009; Shimada et al., 2009; Umitsu et al., 2009; Ye et al., 2009; Arragain et al., 2010; Atta et al., 2010, 2012; Benitez-Páez et al., 2010; Böhme et al., 2010; Chen and Yuan, 2010; de Crécy-Lagard et al., 2010; Fu et al., 2010; Guelorget et al., 2010, 2011; Kempenaers et al., 2010; Mazauric et al., 2010; Ochi et al., 2010, 2013; Songe-Moller et al., 2010; Tkaczuk, 2010; D’Silva et al., 2011; Hamdane et al., 2011a,b, 2012, 2013; Joardar et al., 2011; Kitamura et al., 2011, 2012; Leihne et al., 2011; Liger et al., 2011; Lin et al., 2011; Menezes et al., 2011; Pearson and Carell, 2011; Qiu et al., 2011; van den Born et al., 2011; Wei et al., 2011; Armengod et al., 2012; Chan et al., 2012; Chatterjee et al., 2012; Chiuo and Suzuki, 2012; Dewe et al., 2012; Fislage et al., 2012; Gehrig et al., 2012; Guy et al., 2012; Jöckel et al., 2012; Novoa et al., 2012; Pastore et al., 2012; Patil et al., 2012a,b; Perche-Letuvé et al., 2012; Sakaguchi et al., 2012; Towns and Begley, 2012; Vilardo et al., 2012; Wurm et al., 2012; Yamagami et al., 2012; Edelheit et al., 2013, 2014; Fujimori, 2013; Igoillo-Esteve et al., 2013; Kim and Almo, 2013; Ochi et al., 2013; Paris et al., 2013; Preston et al., 2013; Shao et al., 2013; Swinehart et al., 2013).

In Table 1, several important tRNA modifications such as pseudouridine (ψ), l-lysidine, γ-aminodine, queosine (Q), and 2-thiodeuridine (s²U) are not listed because their biosynthetic pathways do not include any methylation steps. Nevertheless, Table 1 outlines the roles of key tRNA modifications and demonstrates that methylated nucleosides and tRNA methyltransferases are very important for such functions. The structures of typical methylated nucleosides are shown in Figure 1. It is impossible to depict all methylated nucleosides in Figure 1 due to limitations of space. Please visit the database (http://modomics.genesi lic. pl/modifications/) to obtain additional structural information (Machnicka et al., 2013). The structure of tRNA and positions of the methylated nucleotides are shown in Figure 2. As for tRNA stabilization by methylated nucleosides, see this review (Motorin and Helm, 2010). Even today, the contributions to tRNA structure and/or function in protein synthesis of many methylated nucleosides remain unknown (Table 1). However, various tRNA methyltransferases and their corresponding disruptant strains have been analyzed, and their functions are gradually being elucidated. Among the phenotypes of the gene disruptant strains, many phenomena have been reported that are difficult to understand directly in terms of enzyme function or effects on protein synthesis. For example, E. coli miaA mutant strains, which contain A37 instead of ms²ψA37 in the tRNA, show a moderate mutator phenotype that results in an increased rate of GC→AT transversion (Zhao et al., 2001). Furthermore, inosine 34 modification in fission yeast is essential for cell cycle progression (Tsutsu et al., 2007). These phenomena might be caused by changes in the amount of certain protein(s), such as transcription factors, in the disruptant strains. In fact, recently, it has been reported that Trm9-specific tRNA modifications enhance codon-specific elongation of translation and promote increased levels of DNA damage response proteins (Begley et al., 2007). Furthermore, several eukaryotic tRNA methyltransferases (for example, human ALKBH8 Shimada et al., 2009; Fu et al., 2010, and yeast Trm2 Choudhury et al., 2007a,b) are involved directly in DNA repair and carcinogenesis because they exist as fusion proteins with other enzyme(s). However, it remains possible that some of the phenomena observed in the disruptant strains are linked to unknown biological phenomena.

MULTIPLE REGULATION OF tRNA MODIFICATION PATHWAYS AND IMPORTANCE OF THE AVAILABILITY OF METHYL DONORS

In living cells, more than 50% of the high energy compounds such as ATP, that are produced by respiration are consumed by protein synthesis. Furthermore, the most important metabolic pathway of amino acids is protein synthesis. The metabolic pathways of energy and amino acids are closely linked. Studies on the pathways of tRNA modification have revealed that the RNA modification systems are located downstream of the pathways of energy and amino acid metabolism and that they are regulated at multiple steps (Herbig et al., 2002; Iwata-Reuyl, 2003; Ikuchi et al., 2008, 2010; Shigi et al., 2008; Suzuki and Miyachi, 2010; Phillips et al., 2012; Laxman et al., 2013; Miyauchi et al., 2013; Perrochia et al., 2013 Figure 3 and Table 1). Thus, depletion of a certain compound (for example, one of the amino acids) or disruption of a metabolic pathway can result in incomplete modification of tRNA and thus an increased frequency of translational errors.

The structures of identified modified nucleosides suggest that the majority of tRNA modifications require a methylation step(s) (Table 1 and Figure 1). The methyl-transfer reaction by majority of tRNA methyltransferases consumes S-adenosyl-L-methionine (AdoMet) as the methyl-group donor. Thus, the depletion of AdoMet leads to multiple incomplete modifications in tRNA. The precursors of AdoMet are ATP and methionine. These facts seem to provide an answer for the question, “Why do living organisms use the methionine codon as the initiation codon for protein synthesis?” Under conditions where methionine is limited and the tRNA contains multiple incomplete modifications, to avoid increase of frequency of translational error, the methionine codon is selected the initiation codon of protein synthesis. Analogously,
the fact that eubacterial methionyl-initiator tRNA^{Met} is formylated and formylation is the transfer of one carbon atom suggests that the supply of sources of single carbon atoms is very important for efficient and accurate protein synthesis in bacteria.

STRUCTURES OF tRNA METHYLTRANSFERASES

Transfer RNA methyltransferases can be divided into two types on the basis of their methyl donor: one class uses AdoMet whereas the other utilizes 5, 10-methylenetetrahydrofolate (Table 2). As mentioned above, the majority of tRNA methyltransferases are AdoMet-dependent. For information on the catalytic mechanisms of tRNA methyltransferases, see Watanabe et al., 2005; Kuratani et al., 2008; Meyer et al., 2008; Osawa et al., 2009; Hou and Perona, 2010; Hamdane et al., 2012). Recently, a radical SAM enzyme was identified as a ribosomal RNA methyltransferase (Atta et al., 2010); radical SAM enzymes utilize a 4Fe-4S cluster to generate a reactive radical from AdoMet. No radical SAM enzymes that act as tRNA methyltransferases have been identified as yet. However, three types of radical SAM enzymes are involved in tRNA modifications (2-methylthiotransferases that generate ms^{2}t^{6}A derivatives, 2-methylthiotransferases that generate ms^{2}i^{6}A derivatives, and enzymes involved in the biosynthesis of yW^{37} derivatives) (Suzuki et al., 2007; Atta et al., 2010, 2012; de Crécy-Lagard et al., 2010; Fujimori, 2013 and Table 1). Radical SAM tRNA methyltransferase(s) might be identified in the near future, because there are many methylated nucleosides, for which the responsible enzyme(s) have not yet been identified (Table 1).

AdoMet-dependent methyltransferases are classified by their catalytic domain (Schubert et al., 2003). Two different classes (classes I and IV) have been identified among the tRNA methyltransferases (Table 2). Class I enzymes contain the Rossmann fold in the catalytic domain (Figure 4A), whereas class IV enzymes have the topological-knot structure (Figure 4B). Class IV enzymes were predicted initially by bioinformatics studies to be members of the SpoU-TrmD (SPOUT) superfamily (Anantharaman et al., 2002). Subsequently, crystallographic studies (Table 2) revealed that these enzymes have a topological-knot structure. YibK was predicted initially to be an RNA methyltransferase of unknown function (Gustafsson et al., 1996). Determination of the crystal structure revealed the presence of the topological-knot structure in the catalytic domain of YibK (Lim et al., 2003). Later, YibK was shown to function as tRNA (Cm^{34}/cmnn^{5}Um^{34}) methyltransferase and was renamed TrmL (Benítez-Páez et al., 2010; Liu et al., 2013). At almost the same
Figure 2 | Structure of tRNA. (A) Clover-leaf structure of tRNA. The numbers show the positions of the nucleotides. (B) L-shaped tRNA structure. Transfer RNA forms an L-shaped structure, in which the D- and T-arms interact by tertiary base pairs.

Figure 3 | Transfer RNA modifications are regulated by various metabolic pathways. In this figure, conversions of chemical compounds and conceptual effects are shown by thin and thick arrows, respectively. To emphasize the relationships among energy metabolism, amino acid metabolism, tRNA modification, and protein synthesis, DNA replication and so on are omitted.
To date, several tRNA methyltransferases have been identified as members of the SPOUT superfamily on the basis of crystal structures (Kuratani et al., 2008; Chen and Yuan, 2010; Chatterjee et al., 2012; Wurm et al., 2012; Shao et al., 2013) or structures predicted from amino acid sequences and conserved motifs (Renalier et al., 2005; Purta et al., 2006; Tkaczuk et al., 2007; Kempenaers et al., 2010, and Figure 4B). Furthermore, the SPOUT superfamily is expanding beyond the SpoU and TrmD families: novel enzymes such as an archaeal Trm10 homolog (Kempenaers et al., 2010) and TrmY (Chen and Yuan, 2010; Chatterjee et al., 2012; Wurm et al., 2012) have been identified. These enzymes cannot be simply classified into the SpoU or TrmD families. Therefore, it might be necessary to reclassify the enzymes of the SPOUT superfamily on the basis of their structure, the methylated nucleosides produced, and their reaction mechanisms.

The number of identified class I methyltransferases has also increased. Crystal structures of class I enzymes have been reported, as shown in Table 2; however, for many of the enzymes, structures have been predicted from their amino acid sequences and conserved motifs. The difficulty with crystallographic studies is that the eukaryotic and archaeal enzymes often require other subunit(s) to regulate (or stabilize) their activities (Anderson et al., 1998; Alexandrov et al., 2002, 2005; Purushothaman et al., 2005; Mazauric et al., 2010; Liger et al., 2011; Noma et al., 2011, and Table 1). Only a few structural studies of the multisubunit complexes have been performed, namely Trm8–Trm82 (Leulliot et al., 2008), and the Fibrillalin, Nop5 and L7Ae complex (Ye et al., 2009; Lin et al., 2011). In addition, structures for the tRNA bound-form of Trm5 (Goto-Ito et al., 2009) and T-arm-like RNA bound-form of TrmA (Alian et al., 2008) have been reported. Furthermore, several eukaryotic tRNA methyltransferases are fused with other functional domains and are involved in other processes such as DNA repair (Choudhury et al., 2007a,b; Shimada et al., 2009; Fu et al., 2010; Songe-Møller et al., 2010; D’Silva et al., 2011; Leihne et al., 2011; Noma et al., 2011; van den Born et al., 2011; Pastore et al., 2012). Although the crystal structures of the RNA recognition motif and AlkB domains of ALKB8H, which also contains a methyltransferase domain, have been reported (Pastore et al., 2012), there is no entire crystal structure of a eukaryotic multidomain tRNA methyltransferase.

To understand the reaction mechanisms, substrate specificity, subunit (domain) interactions, and regulation of activity of these enzymes, structural studies are necessary. Among the enzyme complexes that are involved in tRNA methylation, the mnmEG and mnmC complexes, which are required for the mnm5U34 modification (Taya and Nishimura, 1973; Bujnicki et al., 2004; Yi et al., 2006; Meyer et al., 2008, 2009; Roovers et al., 2008b; Moukadiri et al., 2009, 2014; Osawa et al., 2009; Shi et al., 2009; Bohme et al., 2010; Kitamura et al., 2011, 2012; Pearson and Carell, 2011; Armengod et al., 2012; Kim and Almo, 2013), are only found in eubacteria, which shows the complexity of the Xm5U34 biosynthetic pathway. In eukaryotes, the biosynthetic pathways of Xm5U34 have not been completely clarified: Trm9 and the so-called “Elongator” complex are known to be involved (Huang et al., 2005; Chen et al., 2011; Leihne et al., 2011). Furthermore, although we determined recently that tRNAenz from Thermoplasma acidophilum,

Table 2	Classification of tRNA methyltransferases by crystal structures.
Name	**References**
S-ADENOSYL-L-METHIONINE-DEPENDENT ENZYMES	
Class I	
TrmA	Alian et al., 2008
TrmB	Zegers et al., 2006
MnmC	Barraud et al., 2008; Kitamura et al., 2011
Trm1 and aTrm1	Roovers et al., 2004; Guelorget et al., 2010, 2011
TrmN	Fislage et al., 2012
TrmI	Ihsanawati et al., 2008; Awai et al., 2011
Trm4	Kuratani et al., 2010
Trm5	Goto-Ito et al., 2008, 2009
Trm8–Trm82	Leulliot et al., 2008
Trm14	Fislage et al., 2012
AlkB homolog 8 (domains)	Pastore et al., 2012
Fibrillalin, Nop5 and L7Ae complex	Ye et al., 2009; Lin et al., 2011
Dnm2	Dong et al., 2001
Class IV	
TrmD	Ahn et al., 2003; Elkins et al., 2003; Liu et al., 2003
TrmH	Nureki et al., 2004; Pleshe et al., 2005
TrmL (YibK)	Lim et al., 2003; Liu et al., 2013
TrmY	Chen and Yuan, 2010; Chatterjee et al., 2012; Wurm et al., 2012
Trm10	Shao et al., 2013
aTrmS6	Kuratani et al., 2008
Radical SAM-tRNA methyltransferase	
Unknown	
5, 10-METHYLENETETRAHYDROFOLATE-DEPENDENT ENZYMES	
MnmG	Meyer et al., 2008; Osawa et al., 2009; Shi et al., 2009
TrmFO	Nishimasu et al., 2009

The enzymes, of which structures have been determined by X-ray crystal structure studies, are listed. There are various enzymes, of which structures have been predicted by their amino acid sequences, conserved motifs and bioinformatics studies (Gustafsson et al., 1996; Anantharaman et al., 2002; Purta et al., 2006; Roovers et al., 2008a; Phizicky and Hopper, 2010; Tkaczuk, 2010). Detailed insight into catalytic mechanisms of tRNA methyltransferases is only available in a few cases: see these references (Watanabe et al., 2005; Kuratani et al., 2008; Meyer et al., 2008; Osawa et al., 2009; Hou and Perona, 2010; Hamdan et al., 2012).
Hori

Methylated nucleosides in tRNA and tRNA methyltransferases

FIGURE 4 | Structures of Rossman fold (Class I) and topological knot fold (Class IV). The topologies of class I (A) and IV (B) folds are compared. Circles and triangles show α-helices and β-strands, respectively. The AdoMet binding sites and three conserved motifs in the class IV are shown in red and green, respectively. The known class IV enzymes work as a dimer. (C) The dimer structure of *T. thermophilus* TrmH. *T. thermophilus* TrmH is a typical class IV enzyme. Fluorescence derived from three tryptophan residues (Trp73, Trp126, and Trp191) was monitored in the stopped-flow pre-steady state kinetic analysis as described in the main text. This figure is based on these publications Clouet-d’Orval et al. (2005), Ochi et al. (2013) with slight modifications.

Frontiers in Genetics | Non-Coding RNA | May 2014 | Volume 5 | Article 144 | 14

a thermo-acidophilic archaeon, has 5-carbamoylmethyluridine at position 34 (ncm5U34) (Tomikawa et al., 2013), the biosynthetic pathway in archaea is unknown.

As studies on eukaryotic enzymes have progressed, the number of complex enzymes identified has increased. For example, mammalian enzymes often have additional domains, regulatory subunits and/or paralogs. For information on the identification and prediction of human tRNA methyltransferases, see this review (Townes and Begley, 2012).

TRANSFER RNA RECOGNITION BY tRNA METHYLTRANSFERASES

Transfer RNA methyltransferases strictly modify a specific nucleoside at a specific position in a tRNA. Within the field of nucleic acid-related enzymes, a common question is “How does the enzyme recognize a specific substrate and act at a specific position?” Consequently, the substrate specificities of tRNA methyltransferases have been studied by measuring activities in crude cell extracts, microinjecting labeled tRNA, biochemical studies with purified enzymes, crystallographic studies, and analyses of tRNA from disruptant strains.

In general, tRNA methyltransferases recognize the local structure around the target site in the tRNA, including tertiary structural elements such as stem-loop structure(s). TrmA from *E. coli* recognizes U54 in the ribose-phosphate backbone of the T-arm (Gü and Santi, 1991; Allan et al., 2008). *Aquifex aeolicus* TrmB requires the five nucleotides AGG*UC* sandwiched between two stem-loop structures (the asterisk corresponds to the methylation site, G46) (Okamoto et al., 2004). TrmFO recognizes the G53-C61 base pair and U54U55C56 sequence in the T-arm (Yamagami et al., 2012). TrmD recognizes the purine36G37 sequence in the anticodon-arm-like microhelix (Brulé et al., 2004; Takeda et al., 2006). In some cases, tertiary interactions are required. For example, crystallographic studies of the complex between Trm5 and tRNA revealed that the enzyme requires interaction between the D- and T-loop of the tRNA (Goto-Ito et al., 2009), which is consistent with the results of biochemical studies with the purified enzyme (Christian et al., 2004; Christian and Hou, 2007).

The target site for methylation is often embedded in the L-shaped tRNA structure. Consequently, in many (or almost all) cases, recognition of tRNA by tRNA methyltransferases seems to involve multiple steps (initial binding and induced fit processes). Although it is very difficult to prepare intermediate complexes, we recently analyzed the initial binding and changes in structure of TrmH by stopped-flow pre-steady-state kinetic analysis (Ochi et al., 2010, 2013). TrmH binds to tRNA within 10 ms in the initial binding process, in which substrate and non-substrate (methylated) tRNAs are not distinguished. Methylated tRNA is excluded from the complex subsequently due to steric hindrance between the methyl groups in the tRNA and AdoMet before the induced-fit process occurs. The advantage of this mechanism is that methylated tRNA does not severely inhibit the methyl-transfer reaction as a competitive inhibitor. Subsequently, in the induced-fit process, which takes more than 50 ms, G18 is recognized and ribose introduced into the catalytic pocket. During the induced-fit process, movement of Trp126 in motif 2 is observed (Ochi et al., 2013 and Figure 4C).

Several tRNA methyltransferases act on multiple sites in tRNA. For example, archaenal Trm1 acts on both A57 and A58 (Roovers et al., 2004; Guelorget et al., 2010). Similarly, *Aquifex aeolicus*...
Trm1 acts on both G26 and G27 (Awai et al., 2009). On the basis of biochemical studies, we determined that this eubacterial Trm1 recognizes the methylation sites (G26 and G27) from the T-arm (Awai et al., 2009, 2011) whereas archaeal Trm1 recognizes G26 from the D-stem and variable region (Constantinescu et al., 1999b). These Trm1 proteins share high sequence homology (Awai et al., 2009); however, comparison of the crystal structures revealed that the distribution of positive charges on the enzyme surface differs between archaeal (Ihsanawati et al., 2008) and eubacterial (Awai et al., 2011) Trm1. Thus, these studies show how difficult it is to predict target sites on the basis of amino acid sequences. Furthermore, in some cases, other subunits regulate the site specificity. For example, the methylation site recognized by Trm7 is determined by its partner subunit (Guy et al., 2012) and the site specificity of archaeal Trm4 changes in the presence of archease (Auxilien et al., 2007). Moreover, the m1C modifications in eukaryotic tRNA are regulated by the presence of an intron in the precursor tRNA (Motorin and Grosjean, 1999; Brzezicha et al., 2003; Singh et al., 2004). This system is useful in minimizing the size of the genome. In the future, it is possible that considerable numbers of 2′-O-methylated modifications in archaean tRNA might be identified as products of this system.

REGULATION OF THE DEGRADATION AND LOCALIZATION OF tRNA BY METHYLATED NUCLEOSIDES

As shown in Table 1, modifications of the anticodon loop (positions 32–38) are involved directly in protein synthesis whereas other modifications affect the structure of the tRNA. Consequently, for a long time, it was thought that modifications outside the anticodon loop acted to stabilize tRNA structure and regulate the half-life of tRNAs. Indeed, we observed in the thermophilic eubacterium *Thermus thermophilus* that hypomodification at multiple sites in tRNA owing to disruption of one of the modification enzymes promotes the degradation of tRNA^Phe^ and tRNA^Asp^ at high temperatures (Tomikawa et al., 2010).

In the case of eukaryotes, tRNA methylations work coordinately as stabilizing factors and markers of maturation, and the degree of modification changes in response to various stresses. Hypomethylated tRNAs are degraded aggressively. For example, in the *Saccharomyces cerevisiae* trm4 (synthesizes mC3 at multiple sites) and trm8 (produces m5G46) double knock-out strain, the half-life of tRNA^Val^ is shortened and the strain shows a growth defect (Alexandrov et al., 2006). Therefore, tRNA modifications stabilize tRNA structure coordinately and systems to degrade hypomethylated tRNAs exist in eukaryotic cells (Alexandrov et al., 2006; Chernyakov et al., 2008; Pluzicky and Hopper, 2010; D’Silva et al., 2011; Dewe et al., 2012). Furthermore, in *S. cerevisiae*, the m1A58 modification by the Trm6–Trm61 complex regulates both the degradation of initiator tRNA^Met^ and its transport from the nucleus to the cytoplasm (Anderson et al., 1998, 2000; Kadaba et al., 2004). The m1A58 modification functions a marker of maturation and absence of modification leads to degradation of initiator tRNA^Met^ during transport. Thus, m1A58 is part of the RNA quality control system. Moreover, in the case of *S. cerevisiae*, splicing is performed in the cytoplasm (Takano et al., 2005) and precursor tRNAs are matured during repeated-transports between the nucleus and cytoplasm (Ohira and Suzuki, 2011). Therefore, some tRNA modifications might act as the markers of maturation at halfway checkpoints. In *Leishmania tarentolae*, a proportion of tRNA^Glu^ and tRNA^Gln^ is transported from the cytoplasm to the mitochondria (Kaneko et al., 2003). In the cytoplasmic tRNA, U34 is modified to mcm5s2U34, whereas in the mitochondrial tRNA it is modified to mcm5Um34. These results suggest that the s2U34 modification may suppress transport from the cytoplasm to mitochondria. Given that both the s2U and Um modifications shift the equilibrium of ribose puckering to the C3′-endo form (Kawai et al., 1992), these modifications have a nearly equivalent stabilizing effect on the codon-anticodon interaction. The 5-methylcarboxymethyl (mcm) group restricts wobble base pairing (Takai and Yokoyama, 2003). Taken together, these findings suggest that a substantial number of methylated nucleosides contribute to RNA quality control systems and/or the regulation of tRNA localization, even though they were considered previously to have simply a structural role.

ADAPTATION OF PROTEIN SYNTHESIS TO ENVIRONMENTAL CHANGE THROUGH A NETWORK BETWEEN MODIFIED NUCLEOSIDES AND tRNA MODIFICATION ENZYMES

tRNA MODIFICATIONS IN T. THERMOPHILUS

Thermus thermophilus provides an example of a living organism that utilizes changes in the structural rigidity (flexibility) of tRNA through multiple nucleoside modifications to adapt protein synthesis to environmental changes. *Thermus thermophilus* is an extreme thermophilic eubacterium found in hot springs and can grow at a wide range of temperatures (50–83°C). Under natural conditions, the temperature of hot springs can be changed dramatically by several factors, for instance the overflow of hot spring water, snow falling, and the influx of river water. *Thermus thermophilus* can synthesize proteins in response to these temperature changes. Three distinct modifications (Gm18, m3s2U54, and m1A58) are found in T. thermophilus tRNA and the combination of these modifications increases the melting temperature of tRNA by near 10°C as compared with that of the unmodified transcript (Watanabe et al., 1976; Horie et al., 1985; Shigi et al., 2006; Tomikawa et al., 2010). Although these modifications are very important as structural factors in tRNA, they do not have an effect on translational fidelity below 65°C and the level of modification is very low in tRNA from cells cultured at 50°C (Figure 5A). This change in the extent of modification reflects the adaptation of protein synthesis to temperature change (Yokoyama et al., 1987). Transfer tRNA^Phe^ from cells cultured at 80°C efficiently synthesizes poly(U) at high temperatures (above 65°C). In contrast, tRNA^Phe^ from cells cultured at 50°C, in which the levels of the three modifications are low, works efficiently at low temperatures (Figure 5B). Thus, the levels of three modified nucleosides, Gm18, m3s2U54, and m1A58, in tRNA control the elongation of translation via the flexibility of the tRNA. These findings were
FIGURE 5 | Network between modified nucleosides and tRNA modification enzymes observed in *T. thermophilus*. (A) The proportion of Gm18, m^5{s}U54, and m^1{A}58 in tRNA (contents in tRNA fraction) increases with increasing culture temperature. (B) Transfer RNA^Phe^ from cells cultured at 80°C can efficiently synthesize Poly(U) at high temperatures. In contrast, at low temperatures, transfer RNA^Phe^ from cells cultured at 50°C can work more efficiently than tRNA from cells cultured at 80°C. (C) Modifications of tRNA in *T. thermophilus* are depicted on the clover-leaf structure. Dotted lines show the tertiary base pairs. The levels of the m^7{G}46 and ψ^55 modifications are nearly 100% at a wide range of temperatures. The levels of modifications marked by yellow are regulated by the m^7{G}46 and ψ^55 modifications. (D) At temperatures greater than 65°C, the presence of m^7{G}46 increases the rates of modification of Gm18 by TrmH, m^1{A}58 by TrmI and m^1{G}37 by TrmD. The acceleration of m^1{A}58 formation by TrmI in the presence of m^7{G}46 and m^5{U}54 has been confirmed only by *in vitro* experiments. The m^1{A}58 modification accelerates the thio-transfer reaction by the sulfur atom exchange complex that is required for the formation of m^5{s}2{U}54. Therefore, at high temperatures, m^7{G}46, m^5{U}54, and m^1{A}58 coordinate to promote the formation of m^5{s}2{U}54 and increases tRNA stability. In contrast, at low temperatures below 65°C, the ψ^55 modification increases rigidity within the local structure of the tRNA as described in the main text. This network provides a mechanism by which extreme thermophilic eubacteria adapt to temperature changes. The network regulates the order of modifications in tRNA. This figure summarizes the experimental data in these publications Yokoyama et al. (1987), Shigi et al. (2006), Tomikawa et al. (2010), Ishida et al. (2011), Yamagami et al. (2012).

reported in 1987 (Yokoyama et al., 1987). However, at the beginning of the twenty-first century, the mechanisms of regulation of these modifications remained unknown.

SWITCHING OF NETWORK BETWEEN MODIFIED NUCLEOSIDES AND tRNA MODIFICATION ENZYMES

Initially, we assumed that transcriptional and/or translational regulation of the tRNA modification enzymes was involved in the regulation of the three modifications. However, unexpectedly, we have observed that the phenomenon can be simply explained by the RNA recognition mechanisms of the tRNA modification enzymes (Shigi et al., 2002; Tomikawa et al., 2010; Ishida et al., 2011; Yamagami et al., 2012). Several common modifications (for example, m^7{G}46 and ψ^55) are found in *T. thermophilus* tRNA in addition to Gm18, m^5{s}U54, and m^1{A}58. When the genes for the modification enzymes for m^7{G}46 and ψ^55 (*trmB* and *truB*, respectively) were disrupted individually, the levels of Gm18, m^5{s}U54 and m^1{A}58 in tRNA were changed dramatically (Tomikawa et al., 2010; Ishida et al., 2011). Thus, modified nucleosides and tRNA modification enzymes form a network, and this network regulates the extent of modifications on the basis of temperature (Figures 5C,D).

At high temperatures (above 65°C), m^7{G}46 functions as a marker of precursor tRNA and increases the reaction rates of other modification enzymes. In contrast, at low temperatures, ψ^55 confers local structural rigidity and slows down the rate of formation of other modifications around ψ^55 (that is, Gm18, m^5{s}U54, and m^1{A}58). This inhibitory effect weakens as the temperature increases and is not observed above 65°C. Thus, the m^7{G}46 and ψ^55 modifications work as an accelerator and a brake in the network, respectively. The advantage of this mechanism is that the network does not include any transcriptional or translational regulatory steps: protein synthesis is not necessary. Thus, the response of the network to environmental changes is very rapid. This is a typical strategy in eubacteria, where genome size is limited.
Similar networks between modified nucleosides and tRNA modification enzymes have also been reported in mesophiles. For example, ms^2ΨA37 modification in E. coli tRNA is required for 2'-O-methylation by TrmL (Benitez-Paz et al., 2010), and the Cm32 and Gm34 modifications in S. cerevisiae tRNA^Phe are required for the formation of yW37 from m^1G37 (Guy et al., 2012). However, the network in T. thermophilus is distinct because the modifications are almost all in the three-dimensional core of the tRNA and the network responds to environmental changes.

GENETIC DISEASE AND tRNA METHYLATION

Modifications of tRNA regulate protein synthesis. Consequently, if a disruption of tRNA modification is not lethal, it can directly cause a genetic disease. In fact, there are several reports concerning the relationship between genetic disease and tRNA modification (Yasukawa et al., 2001; Suzuki et al., 2002, 2011b; Freude et al., 2004; Kirino et al., 2005; Umeda et al., 2005; Wei et al., 2011; Towns and Begley, 2012; Igoillo-Esteve et al., 2013). In particular, the number of reports of a link between diabetes and tRNA modification are increasing, which suggests that an increase in the frequency of translation errors has an effect on energy metabolism. The severe disruption of energy metabolism often damages muscle and neuronal cells, which consume large amounts of energy. This perspective enables mitochondrial diseases that are caused by a problem with mitochondrial tRNA modification to be understood (Yasukawa et al., 2001; Suzuki et al., 2002, 2011b; Kirino et al., 2005; Umeda et al., 2005). Furthermore, several tRNA methyltransferases are fused to DNA repair enzymes, which means that these enzymes are related directly to DNA repair and carcinogenesis (Choudhury et al., 2007a,b; Shimada et al., 2009). Moreover, abnormal tRNA modifications have been also reported in cancers (Kuchino and Borek, 1978; Kuchino et al., 1981; Shindo-Okada et al., 1981). These might be caused by the rearrangement of chromosomes in cancer cells.

INFECTION, IMMUNITY, AND tRNA METHYLATION—tRNA THERAPY

Among the tRNA modification enzymes, tRNA guanine transglycosidase (Tgt), which is required for the production of Q34, and tRNA ψ55 synthase (TruB), which generates ψ55, are essential factors for infection by Shigella flexneri (Durand et al., 1994) and Pseudomonas aeruginosa (Sata et al., 1997), respectively. Similarly, we also found that tRNA (m^1ΨG46) methyltransferase is essential for infection by Colletotrichum lagenarium, an infectious fungus (Takano et al., 2006). Furthermore, tRNAs that contain mc^3U modifications are the target of Kluyveromyces lactis gamma-toxin (Lu et al., 2005) and Pichia acaciae killer toxin (Klassen et al., 2008). Moreover, given that retroviruses utilize host tRNA as the primer for reverse transcription, tRNA methylation and methyltransferases are involved in both reverse transcription and the packaging of virus particles. For example, human immunodeficiency virus (HIV; AIDS virus) utilizes the m^1A58 modification in tRNA^Lys as the terminator of reverse transcription (see reviews, Marquet, 1998; Saadatmand and Kleiman, 2012; Sleiman et al., 2012). Consequently, the regulation of tRNA modification and modification enzymes might be a powerful tool to control infectious organisms.

When an exogenous single-stranded RNA such as Haemophilus influenzae tRNA is present in humans, Toll-like receptor 7 (TLR7) forms a dimer structure and then activates the immune response systems (Figure 6). However, endogenous or E. coli tRNA does not stimulate TLR7. The mechanism of differentiation was clarified recently by two groups, who found that the Gm18 modification in E. coli tRNA suppresses immunostimulation via TLR7 (Gebrig et al., 2012; Jockel et al., 2012). Thus, enterobacteria exploit the Gm18 modification in tRNA to avoid the host immune system. Furthermore, given that Gm18-modified tRNA acts as an antagonist of TLR7 (Jockel et al., 2012), Gm18-modified tRNA might be an effective anti-inflammatory drug.

EVOLUTION OF MODIFICATIONS IN tRNA

Finally, it is worthwhile discussing the evolution of modifications in tRNA. During the early period of chemical evolution (see reviews Cermakian and Cedergren, 1998; Joyce and Orgel, 2006), inosine could be used as a basic component of RNA, because it can be synthesized from adenosine non-enzymatically. Inosine seems to have been excluded after the appearance of genes because it changes the genetic information during the replication process. Simple methylated nucleosides such as m^1G became essential when the reading frame of protein synthesis was separated into three-nucleotide units (Bjork et al., 1989, 2001). Thus, several methylated nucleosides seem to have appeared during the chemical evolution period (Cermakian and Cedergren, 1998). After the appearance of the reading frame, the importance of the availability of methyl groups increased and it seems that the methionine codon was selected as the translation initiation codon.

It appears that complicated enzymes were not formed during the period of chemical evolution (Joyce and Orgel, 2006). The early enzymes might have been oligopeptides and might have included metals as the catalytic center, as is the case for deaminases (Carter, 1998; Schaub and Keller, 2002). It is possible that the codons were not fixed strictly as is observed in the universal code (Jukes, 1973; Cedergren et al., 1986; Osawa et al., 1992). However, it is likely that the most basic catalytic core of tRNA methyltransferases was established when cell-like organisms began to exchange their components and genes because the basic structure of tRNA methyltransferases is shared by all living organisms found today (Figure 4 and Table 2). The structures of methyltransferases (Schubert et al., 2003) suggest that RNA methyltransferases, which were required for protein synthesis, evolved to yield DNA and protein methyltransferases many times during the evolution of life. The mechanisms to generate the complicated modified nucleotides that regulate the wobble base pair seem to have arisen after the origination of living organisms because they show considerable diversity and involve multistep reactions (Table 1).

The temperature of primordial Earth was higher than that of the Earth at present. Consequently, several nucleoside modifications in tRNA and rRNA would be necessary to stabilize the structure of the RNA (Motorn and Helm, 2010). However, it is likely that the network between modified nucleosides and tRNA modification enzymes that is observed in extreme thermophiles (Figure 5D and section Adaptation of Protein Synthesis...
to Environmental Change Through a Network Between Modified Nucleosides and tRNA Modification Enzymes) was established after the cooling of the Earth because it responds to low temperatures (Ishida et al., 2011). Obviously, the functions of modified nucleotides with respect to the RNA quality control system and regulation of cellular localization were acquired after the appearance of eukaryotes (see section Regulation of the Degradation and Localization of tRNA by Methylated Nucleosides).

Transfer RNA modifications are still evolving. The most powerful driving force is the existence of infectious organisms (see section Infection, Immunity, and tRNA Methylations—tRNA Therapy). Hosts need to distinguish endogenous RNA from exogenous RNA to prevent infection and infectious organisms need to avoid the host defense system to survive. Consequently, tRNA modifications and modification enzymes are still subject to evolution even today.

REFERENCES

Ahn, H. J., Kim, H. W., Yoon, H. J., Lee, B., Suh, S. S., and Yang, J. K. (2003). Crystal structure of tRNA(m1G37)methyltransferase: insights into tRNA recognition. EMBO J. 22, 2593–2603. doi: 10.1093/emboj/cdg269

Alexander, A., Chernyakov, I., Gu, W., Hiley, S. L., Hughes, T. R., et al. (2006). Rapid tRNA decay can result from lack of nonessential modifications. Mol. Cell 21, 87–96. doi: 10.1016/j.molcel.2005.10.036

Alexander, A., Grayhack, E. J., and Phizicky, E. M. (2005). tRNA m7Gmethylation: Anantharaman, V., Koonin, E. V., and Aravind, L. (2002). SPOUT: a class of methyltransferases that includes spoU and trmR DNA methylase superfamilies, and novel superfamilies of predicted prokaryotic RNA methylases. J. Mol. Microbiol. Biotechnol. 4, 71–75.

Anderson, J., Phan, L., Cuesta, R., Carison, B. A., Pak, M., et al. (1998). The essential Gcd10p-Gcd14p complex is required for 1-methyladenosine modification and maturation of initiator methionyl-tRNA. Genes Dev. 12, 3650–3652. doi: 10.1101/gad.12.23.3650

Anderson, J., Phan, L., and Himmeleus, A. G. (2000). The Gcd10p/Gcd14p complex is the essential two-subunit tRNA(1-methyladenosine) methyltransferase of Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. U.S.A. 97, 5173–5178. doi: 10.1073/pnas.090103297

Armengaud, J., Urbonavičius, J., Fernandez, B., Chausinand, G., Bujnicki, J. M., and Grosjean, H. (2004). N7-methylation of guanosine at position 10 in tRNA is catalyzed by a THUMP domain-containing, S-adenosymethionine-dependent methyltransferase, conserved in Archaea and Eukaryota. J. Biol. Chem. 279, 37142–37152. doi: 10.1074/jbc.M403845200

Armengaud, M. E., Moudad, I., Prado, S., Ruiz-Partida, R., Benitez-Paez, A., et al. (2012). Enzymology of tRNA modification in the bacterial MnmEG pathway. Biochimie 94, 1510–1520. doi: 10.1016/j.biochi.2012.02.019

Arragain, S., Handelman, S. K., Fortouhar, F., Wei, F. Y., Tomizawa, K., Hunt, J. E., et al. (2010). Identification of eukaryotic and prokaryotic methyltransferases for biosynthesis of 2-methylthio-N1-threonylcarbamoyladenosine in tRNA. J. Biol. Chem. 285, 28425–28433. doi: 10.1074/jbc.M110.106831

Atta, M., Arragain, S., Fontecave, M., Mulliez, E., Hunt, J. E., Luff, J. D., et al. (2012). The methylthiolation reaction mediated by the Radical-SAM enzymes. Biochim. Biophys. Acta 1824, 1223–1230. doi: 10.1016/j.bbapap.2011.11.007

Atta, M., Mulliez, E., Arragain, S., Forouhar, F., Hunt, J. E., Fontecave, M. (2010). S-Adenosymethionine-dependent radical-based modification of biological macromolecules. Curr. Opin. Struct. Biol. 20, 684–692. doi: 10.1016/j.str.2010.09.009

Auxilien, S., Khadari, F., Rasmussen, A., Douthwaite, S., and Grosjean, H. (2007). Archease from Pyrococcus abyssi improves substrate specificity and solubility of a tRNA m1C methyltransferase. J. Biol. Chem. 282, 18711–18721. doi: 10.1074/jbc.M607493200

Auxilien, S., Guérineau, V., Szweykowska-Kulińska, Z., and Golinelli-Pimpanceau, B. (2012). Human tRNA m5C methyltransferase mis is multispecific. RNA Biol. 9, 1331–1338. doi: 10.4161/rna.22180

Auxilien, S., Rasmussen, A., Rose, S., Brochier-Armanet, C., et al. (2011). Specificity shifts in the rRNA and tRNA nucleotide targets of archaeal and bacterial m1U methyltransferases. RNA 17, 45–53. doi: 10.1261/rna.2323411

Awai, T., Kimura, S., Tomikawa, C., Ochi, A., Ihsanawati, Besoho, Y., et al. (2009). Aquifex aeolicus tRNA (N5,N1-guanine)-dimethyltransferase (Trm1) catalyzes transfer of methyl groups not only to guanine 26 but also to guanine 27 in tRNA. J. Biol. Chem. 284, 20467–20478. doi: 10.1074/jbc.M109.020024

FIGURE 6 | Immune response and tRNA methylation. Transfer RNA from H. influenzae, a respiratory infectious bacterium, induces the dimer formation by Toll like receptor-7 (TLR7) and then the immune response is stimulated via binding of the proteins, MyD88, IRAK1, and IRAK4. However, human and E. coli tRNAs do not stimulate TLR7 because these tRNA contains the Gm18 modification. The E. coli trmH gene disruptant strain does not show any obvious phenotype under laboratory culture conditions (Persson et al., 1997). The Gm18 modification and TrmH are required for survival of E. coli in the animal gut.
Awai, T., Ochi, A., Ihsanawati, Sengoku, T., Hirata, A., Bessho, Y., et al. (2011). Substrate tRNA recognition mechanism of a multisite-specific tRNA methyltransferase, *Aquifex aeolicus* Trm1, based on the X-ray crystal structure. *J. Biol. Chem.* 286, 35236–35246. doi: 10.1074/jbc.M111.253641

Barraud, P., Godinelli-Pupatteau, B., Atmane, C., Sanglier, S., Van Dorselaer, A., Droogmans, L., et al. (2008). Crystal structure of *Thermus thermophilus* tRNA m1A58 methyltransferase and biophysical characterization of its interaction with tRNA. *J. Mol. Biol.* 377, 535–550. doi: 10.1016/j.jmb.2008.01.041

Begley, U., Duyaiah, M., Patil, A., Rooney, J. P., DiRenzo, D., Young, C. M., et al. (2010). A “gain of function” mutation in a protein mediates production of novel modified nucleosides. *EMBO J.* 29, 1842–1851. doi: 10.1038/sj.emboj.7600783

Björk, G. R., Wikstrom, P. M., and Byström, A. S. (1989). Prevention of trans-translation by *P. K. Band R. S. K.* 10.1038/sj.emboj.7600666

Benítez-Páez, A., Villarroya, M., Douthwaite, S., Gabaldón, T., and Armengod, M. E. (2010). YibK is the 2’-0-methyltransferase TrmL that modifies the wobble nucleotide in *Escherichia coli* tRNA (Leu) isoacceptors. RNA 16, 2131–2143. doi: 10.1261/rna.2249510

Björk, G. R., Jacobsson, K., Nilsson, K., Johansson, M. J., Byström, A. S., and Persson, O. P. (2001). A primordial tRNA modification required for the evolution of life? *EMBO J.* 20, 231–239. doi: 10.1093/emboj/20.1.231

Björk, G. R., Wikström, P. M., and Byström, A. S. (1989). Prevention of translational frameshifting by the modified nucleoside 1-methylguanosine. *Science* 244, 986–989. doi: 10.1126/science.2471265

Böhme, S., Meyer, S., Krüger, A., Steinhoff, H. J., Wittinghofer, A., and Klare, J. P. (2010). Structure of G-domain conformations in the tRNA-modifying MnmG–GidA complex resolved with double electron electron resonance spectroscopy. *J. Biol. Chem.* 285, 16991–17000. doi: 10.1074/jbc.M109.096131

Bortolin, M. L., Bacher, J. P., and Clouté-Orval, B. (2003). In vitro RNP assembly and methylation guide activity of an unusual box C/D RNA, cis-acting archaeal pre-tRNA(Trp). *Nucleic Acids Res.* 31, 6524–6535. doi: 10.1093/nar/gkg680

Brulé, H., Elliott, M., Redlak, M., Zehner, Z. E., and Holmes, W. M. (2004). Conservation of struc-

tural and functional genetic analysis of the *S. cerevisiae* RNC1/TRM2: evidences for its involvement in DNA double-strand break repair. *J. Mol. Biol.* 343, 623–632. doi: 10.1016/j.jmb.2004.04.025

Christian, T., Evilla, C., Williams, S., and Hou, Y. M. (2004). Distinct origins of tRNA (m1G37) methyltransferase. *J. Mol. Biol.* 339, 707–719. doi: 10.1016/j.jmb.2004.04.025

Christian, T., Gamper, H., and Hou, Y. M. (2013). Conservation of structure and mechanism by Trm5 enzymes. *RNA* 19, 1192–1199. doi: 10.1261/rna.039503.113

Choudhury, S. A., Asefa, B., Kauler, P., and Chow, T. Y. (2007b). Synergistic effect of TRM2/RNC1 and EXO1 in DNA double-strand break repair in *Saccharomyces cerevisiae*. *Mol. Cell. Biochem.* 304, 127–134. doi: 10.1007/s11010-007-9493-7

Christian, T. E. M. (2008). Degradation of several hypomodified mature tRNA species by the *E. coli* nucleases Rat1 and Xrn1. *Nat Commun.* 3, 937. doi: 10.1038/ncomms1938

Chernyakov, I., Whipple, J. M., Kotelawala, L., Grayhack, E. J., and Phizicky, E. M. (2008). Degradation of several hypomodified mature tRNA species in *Saccharomyces cerevisiae* is mediated by Met22 and the 5′-3′ exonucleases Ral1 and Rxl1. *Genes Dev.* 22, 1369–1380. doi: 10.1101/gad.1654308

Christian, T., Evilla, C., Williams, S., and Hou, Y. M. (2004). Distinct origins of tRNA (m1G37) methyltransferase. *J. Mol. Biol.* 339, 707–719. doi: 10.1016/j.jmb.2004.04.025

Christian, T., Gamper, H., and Hou, Y. M. (2013). Conservation of structure and mechanism by Trm5 enzymes. *RNA* 19, 1192–1199. doi: 10.1261/rna.039503.113

Choudhury, S. A., Asefa, B., Kauler, P., and Chow, T. Y. (2007b). Synergistic effect of TRM2/RNC1 and EXO1 in DNA double-strand break repair in *Saccharomyces cerevisiae*. *Mol. Cell. Biochem.* 304, 127–134. doi: 10.1007/s11010-007-9493-7

Choudhury, S. A., Asefa, B., Webb, A., Ramotar, D., and Chow, T. Y. (2007a). Functional and genetic analysis of the *Saccharomyces cerevisiae* RNC1/TRM2: evidences for its involvement in DNA double-strand break repair. *Mol. Cell. Biochem.* 300, 215–226. doi: 10.1007/s11010-006-9386-1

Chuo, T., and Suzuki, T. (2012). Trmt61B is a methyltransferase responsible for 1-methyladenosine at position 58 of human mitochondrial tRNAs. *RNA* 18, 2269–2276. doi: 10.1261/rna.035600.112

Claude-Oival, B., Bortolin, M. L., Gaspin, C., and Bacherelle, J. P. (2001). Box C/D RNA guides for the ribose methylation of archaeal tRNAs. the tRNA-Trp intron guides the formation of two ribose-methylated nucleosides in the mature tRNA-Trp. *Nucleic Acids Res.* 29, 4518–4529. doi: 10.1093/nar/29.16.4518

Claude-Oival, B., Gaspin, C., and Mougin, A. (2005). Two different mechanisms for tRNA ribose methylation in Archaea: a short survey. *Biochimie* 87, 889–895. doi: 10.1016/j.biochi.2005.02.004

Constantinescu, F., Benachenhou, N., Motorin, Y., and Grosjean, H. (1998). The RNA(guanine-26,N2-N3) methyltransferase (Trm1) from the hyperthermophilic archaean *Pyrococcus furiosus*: cloning, sequencing of the gene and its expression in *Escherichia coli*. *Nucleic Acids Res.* 26, 3753–3761. doi: 10.1093/nar/26.16.3753

Constantinescu, F., Motorin, Y., and Grosjean, H. (1999a). Transfer RNA modification enzymes from *Pyrococcus furiosus*: detection of the enzymatic activities in *vivo*. *Nucleic Acids Res.* 27, 1308–1315. doi: 10.1093/nar/27.5.1308

Constantinescu, F., Motorin, Y., and Grosjean, H. (1999b). Charakterisation and enzymatic properties of tRNA(guanine-26, N2) (2, N2) (di)methyltransferase (Trm1p) from *Pyrococcus furiosus*. *J. Mol. Biol.* 291, 375–392.

Delk, A. S., Romeo, J. M., Nagle, D. P. Jr., and Rabinowitz, J. C. (1976). Biosynthesis of ribothymidine in the transfer RNA of *Streptococcus faecalis* and *Bacillus subtilis*. a methylolation of RNA involving 5,10-methylene tetrahydrofolate. *J. Biol. Chem.* 251, 7649–7656.
Hori, R. H., Clarke, S. (2003). Novel methyle transferase for modified uridine residues at the wobble position of tRNA. Mol. Cell. Biol. 23, 9283–9292. doi: 10.1128/MCB.23.24.9283-9292.2003

Kallor, H. R., Penjwini, M., and Clarke, S. (2005). A novel methyletransferase required for the hypermodified nucleoside wybutosine in eucaryotic tRNA. Biochem. Biophys. Res. Commun. 334, 433–440. doi:10.1016/j.bbrc.2005.06.111

Kaneko, T., Suzuki, T., Kapushoc, S. T., Rubio, M. A., Ghazvini, J., Watanabe, K., et al. (2003). Wobble modification differences and subcellular localization of tRNAs in Leishmania tarentolae: implication for tRNA sorting mechanism. EMBO J. 22, 657–667. doi:10.1093/emboj/cdg066

Kawai, G., Yamamoto, Y., Kamimura, T., Masegi, T., Sekine, M., Hata, T., et al. (1992). Conformational rigidity of specific pyrimidine residues in tRNA arises from posttranscriptional modifications that enhance steric interaction between the base and the 2′-hydroxyl group. Biochemistry 31, 1040–1046. doi: 10.1021/bi00119a012

Keith, G., Deegers, J., Pochart, P., Heyman, T., Kuo, K. C., and Gehrke, C. W. (1990). Euukaryotic tRNAs(Pro): primary structure of the anticodon loop; presence of 5-carbamoylmethyluridine or inosine as the first nucleoside of the anticodon. Biochem. J. 267, 235–241. doi:10.1042/ijb01902351

Kim, J., and Almo, S. C. (2013). Structural basis for hypermodification of the wobble uridine in tRNA by bifunctional enzyme MmmC. BMC Struct. Biol. 13:5. doi:10.1186/1472-6807-13-5

King, M. Y., and Redman, K. L. (2002). tRNA methyltransferases utilize two cysteine residues in the formation of 5-methylcytosine. Biochemistry 41, 11122–11125. doi:10.1021/bi016205q

Kirino, Y., Goto, Y., Campos, Y., Arenas, J., and Suzuki, T. (2005). Specific correlation between the wobble modification deficiency in mutant tRNAs and the clinical features of a human mitochondrial disease. Proc. Natl. Acad. Sci. U.S.A. 102, 7127–7132. doi:10.1073/pnas.0500536102

Kimura, A., Nishimoto, M., Sengoku, T., Shibata, R., Jäger, B., Björk, G. R., et al. (2012). Characterization and structure of the Aquifex aeolicus protein DUF752: a bacterial RNA methyltransferase (Mmcm2) functioning without the usually fused oxido domain (Mmcm1). J. Biol. Chem. 287, 43950–43960. doi:10.1074/jbc.M112.409300
Kitamura, A., Sengoku, T., Nishimoto, M., Yokoyama, S., and Bessho, Y. (2011). Crystal structure of the bifunctional tRNA modification enzyme MmmC from Escherichia coli. Protein Sci. 20, 1105–1113. doi: 10.1002/pro.659
Klassen, R., Paluszynski, J. F., Wemhoff, S., Pfeiffer, A., Fricke, J., and Meinhardt, F. (2008). The primary target of the killer toxin from Pichia oocystis is tRNA(Gln). Mol. Microbiol. 69, 681–697. doi: 10.1111/j.1365-2958.2008.06031.x
Kowalak, J. A., Dalluge, J. J., McCloskey, J. A., and Stetter, K. O. (1994). The role of posttranscriptional modification in stabilization of transfer RNA from hyperthermophiles. Biochemistry 33, 7869–7876. doi: 10.1021/bi00191a014
Kuchino, Y., and Borek, E. (1978). Tumour-specific phenylalnine tRNA contains two supernumerary methylated bases. Nature 271, 126–129. doi: 10.1038/271126a0
Kuchino, Y., Shindo-Okada, N., Ando, N., Watanabe, S., and Nishimura, S. (1981). Modified uridines with C5-methylene substituents at the first position of the tRNA anticodon stabilize U.G wobble pairing during decoding. J. Biol. Chem. 256, 9039–9062.
Kurata, S., WeihlBaumer, A., Ohtsuki, T., Shimazaki, T., Wada, T., Kirino, Y., et al. (2008). Modified uridines with C5-methylene substituents at the first position of the tRNA anticodon stabilize U.G wobble pairing during decoding. J. Biol. Chem. 283, 18801–18811. doi: 10.1074/jbc.M800233200
Kuratani, M., Bessho, Y., Nishimoto, M., Groesjen, H., and Yokoyama, S. (2008). Crystal structure and mutational study of a unique SpoU family archaeal methylase that forms Z'-O-methylcytidine at position 56 of tRNA. J. Mol. Biol. 375, 1064–1075. doi: 10.1016/j.jmb.2007.11.023
Kuratani, M., Hirano, M., Goto-Ino, S., Itoh, Y., Hikada, Y., Nishimoto, M., et al. (2010). Crystal structure of Methanosarcina barkeri Jannasch Tm complexed with spheninfin. J. Mol. Biol. 401, 323–333. doi: 10.1016/j.jmb.2010.06.046
Lai, T. P., Stauffer, K. A., Murthi, A., Shaheen, H. H., Peng, G., Martin, N. C., et al. (2011). Mechanism of activation of methyltransferases involved in translation by the Trm112 'hub' protein. Proteins 79, 928–939. doi: 10.1002/prot.23105
Liu, J., Zhou, G. Q., and Straby, K. B. (1999). Caenorhabditis elegans ZC376.5 encodes a tRNA (m2/2G(26))dimethyltransferase in which (246)arginine is important for the enzyme activity. Gene 226, 73–81. doi: 10.1016/S0378-1119(98)01550-2
Liu, R. J., Zhou, M., Fang, Z. P., Wang, M., Zhou, X. L., and Wang, E. D. (2013). The tRNA recognition mechanism of the minimalistic SPOUT methyltransferase, TrmL. Nucleic Acids Res. 41, 7828–7842. doi: 10.1093/nar/gkt568
Liu, J., Huang, B., Esberg, A., Johannson, M. J., and Byström, Å. S. (2005). The Kluyveromyces lactis gamma-toxin targets tRNA anticodons. RNA 11, 1648–1654. doi: 10.1012/216.2172105
Marquèt, R. (1998). “Chapter 28 Importance of modified nucleotides in replication of retrovirus, plant retrovirots, and retrotransposons,” in Modification and Editing of tRNA, eds H. Grosjean and R. Benne (Washington, DC: ASM press), 517–333.
Martin, N. C., and Hopper, A. K. (1994). How single genes provide tRNA processing enzymes to mitochondria, nuclei and the cytosol. Biochimie 76, 1161–1167. doi: 10.1016/0300-9884(94)90045-0
Machnicka, M. A., Milanowska, K., Osman Oglou, O., Purta, E., Kurkowska, M., Olchowik, A., et al. (2013). MODOMICS: a database of RNA modification pathways–2013 update. Nucleic Acids Res. 41, D262–267. doi: 10.1093/nar/gks1007
Matsuyma, S., Ueda, T., Crain, P. F., McCloskey, J., A., and Watanabe, K. (1998). A novel wobble rule found in starfish mitochondria. Presence of 7-methylguanosine at the anticodon wobble position expands decoding capability of tRNA. J. Biol. Chem. 273, 3363–3368. doi: 10.1074/jbc.273.6.3363
Mazauric, M. H., Dirick, L., Purushothaman, S. K., Björk, G. R., and Lapeyre, B. (2010). Trm112p is a 15-kDa zinc finger protein essential for the activity of two tRNA and one protein methyltransferases in yeast. J. Biol. Chem. 285, 1805–1815. doi: 10.1074/jbc.M111.113100
McCrate, N. E., Varner, M. E., Kim, K. L., and Nagan, M. C. (2006). Molecular dynamics simulations of human tRNA Lys3 UUU: the role of modified bases in mRNA recognition. Nucleic Acids Res. 34, 3561–3568. doi: 10.1093/nar/gkl380
Menezes, S., Gaston, K. W., Krivos, K. L., Apolinario, E. I., Reich, N. O., Sowers, K. R., et al. (2011). Formation of m5G6 in Methanosarcina barkeri Jannasch tRNA catalyzed by the novel methyltransferase Trm14. Nucleic Acids Res. 39, 7641–7655. doi: 10.1093/nar/gkr475
Meyer, S., Scrima, A., Versées, W., and Wittinghofer, A. (2008). Crystal structures of the conserved tRNA-modifying enzyme GidA: implications for its interaction with MmM and substrate. J. Mol. Biol. 380, 532–547. doi: 10.1016/j.jmb.2008.04.072
Meyer, S., Wittinghofer, A., and Versées, W. (2009). G-domain dimerization orchestrates the tRNA wobble modification reaction in the MmM/GidA complex. J. Mol. Biol. 392, 910–922. doi: 10.1016/j.jmb.2009.07.004
Miyachi, K., Kimura, S., and Suzuki, T. (2013). A cyclic form of N6-threonylcarboxamidolysine as a widely distributed tRNA hypermodification. Nat. Chem. Biol. 9, 105–111. doi: 10.1038/nchembio.1137
Motorin, Y., and Groesjen, H. (1999). Multisite-specific tRNAm3C- methyltransferase (Trm4) in yeast Saccharomyces cerevisiae: identification of the gene and substrate specificity of the enzyme. RNA 5, 1105–1118. doi: 10.1017/S1355838299982201
Motorin, Y., and Helm, M. (2010). tRNA stabilization by modified nucleotides. Biochemistry 49, 4934–4944. doi: 10.1021/bi100408z
Moukadiri, I., Garzón, M. I., Björk, G. R., and Armengol, M. E. (2014). The output of the tRNA modification pathways controlled by the Escherichia coli MmmEG and MmM enzymes depends on the growth conditions and the tRNA species. Nucleic Acids Res. 42, 2603–2623. doi: 10.1093/nar/gkt1228
Moukadiri, I., Prado, S., Piera, J., Vélez-Arzamendi, A., Björk, G. R., and Armengol, M. E. (2009). Evolutionarily conserved proteins MmM and GidA catalyze the formation of two methyluridine derivatives at tRNA wobble positions. Nucleic Acids Res. 37, 7177–7193. doi: 10.1093/nar/gkp762
Nasvall, S., Cheng, L., and Björk, G. R. (2004). The modified wobble nucleoside uridine-5-oxyacetic acid in tRNAPro(cm5UGG) promotes reading of all four proline codons in vivo. RNA 10, 1662–1673. doi: 10.1012/216.706404
Niederberger, C., Graub, R., Costa, A., Desgros, I., and Schwein格ruber, M. E. (1999). The tRNA N2,N2-di-methylaminoguanosine-26 methyltransferase encoded by gene trm1 increases efficiency of suppression of an ochre codon in Schizosaccharomyces pombe. FEBS Lett. 464, 67–70. doi: 10.1016/S0014-5793(99)01679-9

Nishinaka, H., Ishitani, R., Yamashita, K., Iwashita, C., Hirata, A., Hori, H., et al. (2009). Atomic structure of a folate/FAD-dependent tRNA TS4 methyltransferase. Proc. Natl. Acad. Sci. U.S.A. 106, 8180–8185. doi: 10.1073/pnas.0910330106

Noma, A., Ishitani, R., Kato, M., Naga, O., Nureki, O., and Suzuki, T. (2010). Expanding the role of the jumonji C domain as an RNA hydroxylase. J. Biol. Chem. 285, 34303–34307. doi: 10.1074/jbc.M110.136598

Noma, A., Kirino, Y., Ikeuchi, Y., and Suzuki, T. (2006). Biosynthesis of wybutosine, a hyper-modified nucleoside in eukaryotic phenylalanine tRNA. EMBO J. 25, 2124–2125. doi: 10.1038/sj.emboj.7601105

Noma, A., Yi, S., Kato, T., Takai, Y., Suzuki, T., and Suzuki, T. (2011). Amino acid differences in each subunit of the heteroligomeric tRNA m1A58 Mtase from Saccharomyces cerevisiae contribute to tRNA binding. Nucleic Acids Res. 39, 6808–6819. doi: 10.1093/nar/gkt574

Paris, Z., Horáková, E., Rubio, M. A., Sample, P., Fleming, I. M., Armocida, S., et al. (2013). The T. brucei TRM5 methyltransferase plays an essential role in mitochondrial protein synthesis and function. RNA 19, 649–658. doi: 10.1261/rna.036665.112

Pastore, C., Topaldidou, I., Forouharian, F., Yan, A. C., Levy, M., and Hunt, J. F. (2012). Crystal structure and RNA binding properties of the RNA recognition motif (RRM) and AlkB domains in human AlkB homolog 8 (ABH8), an enzyme catalyzing tRNA hypermodification. J. Biol. Chem. 287, 2130–2143. doi: 10.1074/jbc.M111.286187

Patil, A., Chan, C. T., Dyavaiah, M., Rooney, J. P., Dedon, P. C., and Bregly, T. J. (2012a). Translational inducibility–independent protein stress results from a deficiency in Trm9–catalyzed tRNA modifications. RNA 9, 990–1001. doi: 10.1016/j.rna.2020.11.045

Patil, A., Dyavaiah, M., Joseph, F., Rooney, J. P., Chan, C. T., Dedon, P. C., et al. (2012b). Increased tRNA modification and gene-specific codon usage regulate cell cycle progression during the RNA damage response. Cell Cycle 11, 3656–3665. doi: 10.4161/cc.21919

Pearson, D., and Carell, T. (2011). Assay of both activities of the bifunctional tRNA-modifying enzyme MmmC reveals a kinetic basis for selective full modification of m5m3U to m5m5U. Nucleic Acids Res. 39, 4818–4826. doi: 10.1093/nar/gkr071

Perche-Letuvé, P., Kathivelu, V., Berggren, G., Clemancey, M., Latour, J. M., Maurel, V., et al. (2012). 4-Demethylcytosine synthase from Pyrococcus abyssi is a radical-S-adenosyl-L-methionine enzyme with an additional [4Fe-4S] cluster that interacts with the pyruvate co-substrate. J. Biol. Chem. 287, 41174–41185. doi: 10.1074/jbc.M112.405019

Perret, V., Garcia, A., Grosejoe, H., Ebel, J. P., Florentz, C., and Giegé, R. (1990). Relaxation of a transfer RNA specificity by removal of modified nucleotides. Nature 344, 787–789. doi: 10.1038/34477a0

Perrochia, L., Crozet, E., Hecker, A., Zhang, W., Bareille, J., Collinet, B., et al. (2013). In vitro biosynthesis of a universal 6α-tRNA modification in Archaea and Eukarya. Nucleic Acids Res. 41, 1953–1964. doi: 10.1093/nar/gks1287

Persson, B. C., Jäger, G., and Gustafsson, C. (1997). The spoU gene of Escherichia coli, the fourth gene of the spo operon, is essential for tRNA (1Gm18) 2′-O-methyltransferase activity. Nucleic Acid Res. 25, 3969–3973. doi: 10.1093/nar/25.20.4093

Persson, B. C., Olafsson, O., Lundgren, H. K., Hederstedt, L., and Björk, G. R. (1998). The m5m3m3A37 modification of tRNA in Salmonella typhimurium regulates growth on citric acid cycle intermediates. J. Bacteriol. 180, 3144–3151.

Phillips, G., Swairjo, M. A., Gasto, K. W., Bailly, M., Limbach, P. A., Iwata, Reul, et al. (2012). Diversity of archeosine synthesis in crenarchaeota. ACS Chem. Biol. 7, 300–305. doi: 10.1021/cb300361w

Phillips, J. H., and Kjellin-Strabry, K. (1967). Studies on microbial ribonucleic acid. IV. Two mutants of Saccharomyces cerevisiae lacking N2-2-dimethylguanine in soluble ribonucleic acid. J. Mol. Biol. 26, 509–518. doi: 10.1016/0022-2836(69)00318-X

Phizicky, E. M., and Hopper, A. K. (2010). tRNA biology charges to the front. Genes Dev. 24, 1832–1860. doi: 10.1101/gad.195650

Pierre, A., Berneman, A., Vedel, M., Robert-Gero, M., and Vigier, P. (1978). Amino acyl-tRNA synthetase of the Chlorobium limicola (Dev. Genes 4, 1832–1860). doi: 10.1101/gad.195650

Pierre, A., Bujnicki, J. M., Som, D. S., and Anderson, J. T. (2007). Conserved amino acids in each subunit of the heteroligomorphic tRNA m1A58 Mtase from Saccharomyces cerevisiae contribute to tRNA binding. Nucleic Acids Res. 35, 6808–6819. doi: 10.1093/nar/gkm574

Pintard, L., Lecointe, F., Bujnicki, J. M., Bonnerot, C., Grosjean, H., and Lapreye, B. (2002). Trn7p catalyses the formation of two 2′-O-methylribosides in yeast tRNA anticond loop. EMBO J. 21, 1811–1820. doi: 10.1093/emboj/21.7.1811

www.frontiersin.org

May 2014 | Volume 5 | Article 144 | 23

Hori

Methylated nucleosides in tRNA and tRNA methyltransferases
Takano, Y., Takayagai, N., Horii, H., Ikeuchi, Y., Suzuki, T., Kimura, A., et al. (2006). A gene involved in modifying transfer RNA is required for fungal pathogenicity and stress tolerance of Colletotrichum lagenarium. Mol. Microbiol. 60, 81–92. doi: 10.1111/j.1365-2958.2006.05080.x

Takeda, H., Toyooka, T., Ikeuchi, Y., Yokobori, S., Okadome, K., Takano, F., et al. (2006). The substrate specificity of RNA (m1G37) methyltransferase (TrmD) from Aquifex aeolicus. Genes Cells 11, 1353–1365. doi: 10.1111/j.1365-2443.2006.01022.x

Taya, Y., and Nishimura, S. (1973). Biosynthesis of 3-methylaminomethyl-2-thiothiouridylate. I. Isolation of a new tRNA-methylese specific for 3-methylaminomethyl-2-thiothiouridylate. Biochem. Biophys. Res. Commun. 51, 1062–1068. doi: 10.1016/0006-291X(73)90003-1

Tkaczuk, K. L., Dunin-Horkawicz, S., Purta, E., and Bujnicki, J. M. (2011). Roles of conserved amino acid sequence motifs in the SpoU bifunctional methyltransferase–extensive moonlighting in mitochondrial tRNA modifications. Nucleic Acids Res. 39, 942–957. doi: 10.1093/nar/gkr1059

Tomita, K., Ueda, T., and Watanabe, K. (1998). 7-Methylguanosine at the anti-codon wobble position of squid mitochondrial tRNA(Ser)GCU: molecular basis for assignment of AGA/AGG codons as serine in invertebrate mitochondria. Biochim. Biophys. Acta 1399, 78–82. doi: 10.1016/S0006-291X(98)00099-2

Towne, W. L., and Begley, T. J. (2012). Transfer RNA methyltransferases and their corresponding modifications in budding yeast and humans: activities, predication, and potential roles in human health. DNA Cell Biol. 31, 434–454. doi: 10.1089/dna.2011.1437

Toyooka, T., Awai, T., Kanai, T., Imanaka, T., and Horii H. (2008). Stabilization of tRNA (m1G37) methyltransferase (TrmB) stabilizes the dimer structure and enhances fidelity of methylation. Proteins 71, 1400–1408. doi: 10.1002/prot.21827

Urbonavicius, J., Stahl, G., Durand, J. M., and Björk, G. R. (2001). Improvement of reading frame maintenance is a common function for several tRNA modification enzymes. EMBO J. 20, 4863–4873. doi: 10.1093/emboj/20.17.4863

Urbonavicius, J., Skouloubris, S., Myllykkalho, H., and Grosjean, H. (2005). Identification of a novel gene encoding a flavin-dependent tRNA:m7G methyltransferase in bacteria–evolutionary implications. Nucleic Acids Res. 33, 3955–3964. doi: 10.1093/nar/gki703

Van den Born, E., Vágbo, C. B., Songe-Møller, L., Leihne, V., Lien, G. F., Leibl, B., and van Tol, H., et al. (2001). Improvement of reading frame maintenance is a common function for several tRNA modification enzymes. EMBO J. 20, 4863–4873. doi: 10.1093/emboj/20.17.4863

Van den Born, E., Vágbo, C., Songe-Møller, L., Leihne, V., Lien, G. F., Leibl, B., and van Tol, H., et al. (2001). Improvement of reading frame maintenance is a common function for several tRNA modification enzymes. EMBO J. 20, 4863–4873. doi: 10.1093/emboj/20.17.4863

Watanabe, K., Shinma, M., Oshima, T., and Nishimura, S. (1976). Heat-induced stability of tRNA from an extreme thermophile, Thermus thermophilus. J. Biol. Chem. 251, 1062–1068. doi: 10.1016/S0006-291X(76)80250-1

Watanabe, K., Nureki, O., Fukushima, T., and Hori, H. (2006). Functional categorization of the conserved basic amino acid residues in TrmH (tRNA (Gm18) methyltransferase) enzymes. J. Biol. Chem. 281, 34630–34639. doi: 10.1074/jbc.M60141200

Watanabe, K., Nureki, O., Fukushima, T., and Hori, H. (2006). Functional categorization of the conserved basic amino acid residues in TrmH (tRNA (Gm18) methyltransferase) enzymes. J. Biol. Chem. 281, 34630–34639. doi: 10.1074/jbc.M60141200

Watanabe, K., Nureki, O., Fukushima, T., Ishii, R., Okamoto, H., Yokoyama, S., et al. (2005). Roles of conserved amino acid sequence motifs in the SpoU tRNA methyltransferase family. J. Biol. Chem. 280, 10368–10377. doi: 10.1074/jbc.M411209200

Watanabe, K., Shinma, M., Oshima, T., and Nishimura, S. (1976). Heat-induced stability of tRNA from an extreme thermophile, Thermus thermophilus. J. Biol. Chem. 251, 1062–1068. doi: 10.1016/S0006-291X(76)80250-1

Wei, F. Y., Suzuki, T., Watanabe, S., Kimura, S., Katsukawa, T., Fujimura, A., et al. (2011). Deficit of tRNA modification by Cdkal1 causes the development of type 2 diabetes in mice. J. Clin. Invest. 121, 3598–3608. doi: 10.1172/JCI38036

Wilkinson, M. L., Crary, S. M., Jackman, J. E., Grayhack, E. J., and Phizicky, E. M. (2007). The Zn2+-methyltransferase responsible for modification of yeast tRNA at position 4. RNA 13, 404–413. doi: 10.1261/rna.399607

Wurm, J. P., Griese, M., Bahr, U., Held, M., Heckel, A., Karas, M., et al. (2012). Identification of the enzyme responsible for N1-methylation of pseudouridine 54 in archaeal tRNAs. RNA 18, 412–420. doi: 10.1261/rna.028498.111

Yamagami, R., Yamashita, K., Nishimasu, H., Tomikawa, C., Ochi, A., Iwashita, C., et al. (2012). The tRNA recognition mechanism of folate/FAD-dependent tRNA methyltransferase (TrmFØ). J. Biol. Chem. 287, 42480–42494. doi: 10.1074/jbc.M112.390112

Yaniv, M., and Folk, W. R. (1975). The nucleotide sequences of the two glutamine transfer ribonucleic acids from Escherichia coli. J. Biol. Chem. 250, 3243–3253.

Yasukawa, T., Suzuki, T., Ishii, N., Ohta, S., and Watanabe, K. (2001). Wobble modification defect in tRNA disturbs codon-anticodon interaction in a mitochondrial disease. EMBO J. 20, 4794–4902. doi: 10.1093/emboj/20.17.4794
Ye, K., Jia, R., Lin, J., Ju, M., Peng, J., Xu, A., et al. (2009). Structural organization of box C/D RNA-guided RNA methyltransferase. Proc. Natl. Acad. Sci. U.S.A. 106, 13803–13813. doi: 10.1073/pnas.0905128106

Yim, L., Moukadiri, I., Björk, G. R., and Armengod, M. E. (2006). Further insights into the tRNA modification process controlled by proteins MnmE and GidA of Escherichia coli. Nucleic Acids Res. 34, 5892–5905. doi: 10.1093/nar/gkl752

Yokoyama, S., Watanabe, K., and Miyazawa, T. (1987). Dynamic structures and functions of transfer ribonucleic acids from extreme thermophiles. Adv. Biophys. 23, 115–147. doi: 10.1016/0065-227X(87)90006-2

Zegers, I., Gigot, D., van Vliet, F., Tricot, C., Aymerich, S., Bujnicki, J. M., et al. (2006). Crystal structure of Bacillus subtilis TrmB, the tRNA (m7G46) methyltransferase. Nucleic Acids Res. 34, 1925–1934. doi: 10.1093/nar/gkl116

Zhao, J., Leung, H. E., and Winkler, M. E. (2001). The miaA mutator phenotype of Escherichia coli K-12 requires recombination functions. J. Bacteriol. 185, 1796–1800. doi: 10.1128/JB.183.5.1796-1800.2001

Conflict of Interest Statement: The author declares that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Received: 28 March 2014; accepted: 04 May 2014; published online: 23 May 2014. Citation: Hori H (2014) Methylated nucleosides in tRNA and tRNA methyltransferases. Front. Genet. 5:144. doi: 10.3389/fgene.2014.00144

This article was submitted to Non-Coding RNA, a section of the journal Frontiers in Genetics.

Copyright © 2014 Hori. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.