RECTANGULAR QUASIGROUPS AND RECTANGULAR LOOPS

MICHAEL K. KINYON AND J. D. PHILLIPS

Abstract. We solve two problems posed by Krapež by finding a basis of seven independent axioms for the variety of rectangular loops. Six of these axioms form a basis for the variety of rectangular quasigroups. The proofs of the lemmas showing that the six axioms are sufficient are based on proofs generated by the automated reasoning program OTTER, while most of the models verifying the independence of the axioms were generated by the finite model builder Mace4.

1. Introduction

A rectangular band is a semigroup $\mathcal{B} = (B; \cdot)$, which is is a direct product $\mathcal{B} = \mathcal{L} \oplus \mathcal{R}$ of a left zero semigroup $\mathcal{L} = (L; \cdot)$ (that is, a semigroup satisfying $x \cdot y = x$) and a right zero semigroup $\mathcal{R} = (R; \cdot)$ (that is, a semigroup satisfying $x \cdot y = y$). A semigroup that is a direct product of a group and a rectangular band is called a rectangular group.

In a series of papers [1, 2, 3, 4], Krapež has generalized the notion of rectangular group to rectangular quasigroup and rectangular loop. Recall that a quasigroup $\mathcal{Q} = (Q; \cdot)$ is a set Q together with a binary operation $\cdot : Q \times Q \to Q$ such that for each $a \in Q$, the mappings $x \mapsto a \cdot x$ and $x \mapsto x \cdot a$ are bijections. This induces two other binary operations $\backslash, / : Q \times Q \to Q$ as follows. For $x, y \in Q$, $x \backslash y$ is the unique solution u to the equation $x \cdot u = y$ and x / y is the unique solution v to the equation $v \cdot y = x$. This leads to an equivalent definition: a quasigroup $\mathcal{Q} = (Q; \cdot, \backslash, /)$ is a set Q with three binary operations $\cdot, \backslash, / : Q \times Q \to Q$ satisfying the equations:

$$
x \backslash (x \cdot y) = y \quad \quad (x \cdot y) / y = x
$$

$$
x \cdot (x \backslash y) = y \quad \quad (x / y) \cdot y = x
$$

A loop is usually defined as a quasigroup with a neutral element $1 \in Q$ satisfying $1 \cdot x = x$ and $x \cdot 1 = x$. Loops can also be characterized equationally as quasigroups satisfying the additional axiom $x \backslash x = y / y$. Basic references for quasigroup and loop theory are [5, 6, 7, 8].

Following Krapež, a rectangular quasigroup is a direct product of a quasigroup and a rectangular band, while a rectangular loop is a direct product of a loop and a rectangular band. Both can be viewed as varieties of algebras with three binary operations $\cdot, \backslash, /$. To consider a rectangular band as an algebra with three operations, one simply sets $x \backslash y = x / y = x \cdot y$. (This is a convention; different choices lead to different axioms.)

In [1], Krapež found a set of 12 axioms characterizing rectangular loops as algebras $\mathcal{M} = (M; \cdot, \backslash, /)$. He indicated that he had shown that some of the axioms are independent, but believed that not all of them are. He also posed the problem of finding an independent set of axioms ([1], Problem 1, p. 66). In [2], he found a set of 15 axioms characterizing rectangular quasigroups, and again posed the problem of finding an independent set of axioms. The two axiom systems are quite distinct, that is, none of Krapež’s axioms for rectangular quasigroups occur as axioms for rectangular loops.

Date: March 29, 2022.

2000 Mathematics Subject Classification. Primary 20N05; Secondary 68T15.

Key words and phrases. rectangular quasigroup, rectangular loop, automated reasoning, finite model builder.
In this paper, we solve both of the posed problems. We give a system of six axioms and show that this is sufficient to characterize the variety of rectangular quasigroups. We then show that these same six plus one additional axiom characterize the variety of rectangular loops. Finally, we will present models that show that the seven rectangular loop axioms are independent. Here is the statement of our main result.

Theorem 1.1.

1. The equations

 (Q1) \(x \setminus (xx) = x \)
 (Q2) \((xx)/x = x \)
 (Q3) \(x(x\setminus y) = x\setminus(xy) \)
 (Q4) \((x/y)y = (xy)/y \)
 (Q5) \((x\setminus y)(xx) = (x\setminus(xz))u \)
 (Q6) \((xy \cdot (z/u))/(z/u) = x((yu)/u) \)

 are an independent system of axioms for the variety of rectangular quasigroups.

2. Equations (Q1)-(Q6) together with

 (L) \(x \setminus ((x/y)y) = ((x/x)y)/y \)

 are an independent system of axioms for the variety of rectangular loops.

If part (1) of Theorem 1.1 is assumed, then it is easy to show that (L), (Q1)-(Q6) characterize the variety of rectangular loops. Indeed, if \(\mathcal{M} = (M; \cdot, \setminus, /) \) satisfies (L), (Q1)-(Q6), then \(\mathcal{M} \) is a rectangular quasigroup, and hence a direct product \(\mathcal{M} = B \oplus Q \) of a rectangular band \(B \) and a quasigroup \(Q \), each of which satisfies (L). This implies that \(Q \) is a loop, and so \(\mathcal{M} \) is a rectangular loop. Conversely, since every rectangular band and every loop satisfy (L), so does every rectangular loop. Thus what remains is to show that (Q1)-(Q6) characterize the variety of rectangular quasigroups and then to show the independence of (L), (Q1)-(Q6).

As part of the proof of Theorem 1.1 we will also show that eight of Krapež’s fifteen axioms are sufficient to characterize rectangular quasigroups.

We also thank A. Krapež for helpful comments on the first draft of this paper.

2. **OTTER AND MACE4**

The proofs of the lemmas in §3 are based on proofs generated by the equational reasoning program OTTER developed by McCune [9]. OTTER can prove theorems from axioms in first-order logic, but is strongest in equational reasoning. Not surprisingly then, most new mathematics to come out of automated reasoning has been in fields close to algebra. For general methods for applying automated reasoning to problems in mathematics and other areas, see the book by Wos and Pieper [10]. New results proved by OTTER in particular can be found in the book by McCune and Padmanabhan [11].

It is mathematically sound to use OTTER output directly as the proof of a theorem, as is the practice in [11], for instance. Despite the complexity of OTTER’s search procedure, the program can be made to output a proof object, which can be independently verified by other software, such as a lisp program. However, OTTER’s proofs are often long sequences of unintuitive equations, and it is useful to re-express them in a form which a human reader can easily verify. Some discussion of the procedure for “humanizing” proofs occurs in [12]. In loop and quasigroup theory, this was first applied by Kunen [13, 14, 15, 16, 17], and then later by the present authors and Kunen in various combinations of coauthors [18, 19, 20, 21, 22, 23, 24].

The proofs in §3 of the present paper are somewhat closer to the OTTER proofs than in the aforementioned references. In quasigroup and loop theory, one can rely on a great deal of existing machinery (e.g., autotopisms) to simplify proofs. Not so much machinery is available for rectangular quasigroups and rectangular loops. Nevertheless, the proofs herein are still translated into a humanly verifiable form. In particular, we took care to ensure that each step directly uses one of the axioms or a closely related equation, or else uses one of the equations in Proposition 3.1 below.
The models in [3] that show the independence of axioms (Q1)-(Q6) were found using McCune’s finite model builder Mace4 [25]. Mace4 can generate its output in a portable form, which can then be used by other programs to independently verify the claimed properties of the models. However, in this case all of the models are quite small, so it was just as easy to verify the properties “by hand”.

3. Proofs

Since every quasigroup and every rectangular band satisfy (Q1)-(Q6), to show that these equations characterize the variety of rectangular quasigroups, it is enough to show that they imply the axioms of Krapež:

Proposition 3.1 [3]. The following equations axiomatize the variety of rectangular quasigroups: (Q1)-(Q4) and

\[
(xy)(xy \cdot z) = x(y(xz)) \quad (K5)
\]
\[
(x \setminus y)(x(yz)) = x(y(xz)) \quad (K6)
\]
\[
(x/y)(x(yz)) = x(y(xz)) \quad (K7)
\]
\[
x((xy)/z) = xz \quad (K8)
\]
\[
((xy)/y)z = xz \quad (K9)
\]
\[
(x \cdot y)/(yz) = (xz)/z \quad (K10)
\]
\[
(x(y/z))/(yz) = (xz)/z \quad (K11)
\]
\[
(x(y/z))/(yz) = (xz)/z \quad (K12)
\]
\[
x(x((yz)/z)) = x((x(yz))/z) \quad (K13)
\]
\[
(x(y)/x)(y/z) = x((x \cdot y)/z) \quad (K14)
\]
\[
x((yz)/z) = (xy \cdot z)/z \quad (K15)
\]

Lemma 3.2. (Q1), (Q3), (K14) \implies

\[
x \setminus (x \cdot xz) = x(x \setminus (xz)) = x(x \setminus xz) = xz \quad (3.1)
\]

Proof. Replace \(y \) with \(x \) in (K14) and use (Q1) to get \(x \setminus (x \cdot xz) = xz \). The other forms of (3.1) follow applying (Q3).

Lemma 3.3.

1. (Q1), (Q3), (K6), (K14) \implies (K5), (K8)
2. (Q2), (Q4), (K12), (K15) \implies (K10), (K9)

Proof. For (1): By Lemma 3.2 we may use [3.1]. In (K6), replace \(y \) with \(x \cdot xy \) and use [3.1] to get (K5). Next

\[
x(y \setminus (yz)) = x \cdot y(y \setminus z) \quad \text{by (Q3)}
\]
\[
x \cdot x[x \setminus y(y \setminus z)] \quad \text{by [3.1]}
\]
\[
x(x \setminus y \cdot [x(x \setminus y) \setminus y(y \setminus z)]) \quad \text{by (K5)}
\]
\[
x[x(x \setminus y) \setminus x(x \setminus y \cdot y(y \setminus z))] \quad \text{by (Q3)}
\]
\[
x[x(x \setminus y) \setminus (x(x \setminus y) \cdot y(y \setminus z))] \quad \text{by (Q3)}
\]
\[
x[x(x \setminus y) \setminus (x(x \setminus y) \cdot y(y \setminus z))] \quad \text{by (K14)}
\]
\[
x[x(x \setminus y) \setminus (x(x \setminus y) \cdot y(y \setminus z))] \quad \text{by (K14)}
\]
\[
x[x(x \setminus y) \setminus (x(x \setminus y) \cdot y(y \setminus z))] \quad \text{by (K14)}
\]
\[
x(x \setminus y \cdot [x(x \setminus y) \setminus y(y \setminus z)]) \quad \text{by (Q3)}
\]
\[
x(x \setminus y \cdot [x(x \setminus y) \setminus y(y \setminus z)]) \quad \text{by (Q3)}
\]
\[
x \cdot x[x \setminus z] \quad \text{by (K5)}
\]
\[
xz \quad \text{by [3.1]}
This is (K8).
The proof of (2) is the mirror of that of (1). □

Lemma 3.4. (1) \((Q4), (K5), (K9) \Rightarrow (K7)\)
(2) \((Q3), (K10), (K8) \Rightarrow (K11)\)

Proof. For (1):
\[
(x/y)\ [(x/y)z] = [(x/y)(x/y)z] \quad \text{by (K5)}
= [(x/y)(z)(x/y)] \quad \text{by (Q4) twice}
= (xz)\ [(xz)z] \quad \text{by (K9) twice}
= x\ [(xz)z] \quad \text{by (K5)}
\]
which establishes (K7).
The proof of (2) is the mirror of that of (1). □

Lemma 3.5. \((Q1), (Q3), (K14), (K15) \Rightarrow (K13)\)

Proof. By Lemma 3.2 we may use \((3.1)\). We compute
\[
[(x\ [(xy)]z)/z] = [x(\ [(xy)]z)/z] \quad \text{by (Q3)}
= x\ [(x\ [(xy)]z)/z] \quad \text{by (K15)}
= x\ [(x\ [(x\ [(xy)]z)/z])\] \quad \text{by (5.1)}
= x\ [(x\ [(x\ [(x\ [(xy)]z)/z])\] \quad \text{by (K15)}
= x\ [(x\ [(xy)]z)/z] \quad \text{by (K15)}
\]
and this is (K13). □

Combining Proposition 3.1 and the lemmas, we obtain the following.

Theorem 3.6. Krapež’s axioms \((Q1)-(Q4), (K6), (K12), (K14), (K15)\) are sufficient to characterize the variety of rectangular quasigroups.

So to complete the characterization part of the proof of Theorem 1.1 we need only the following.

Lemma 3.7. (1) \((Q1), (Q3), (Q5) \Rightarrow (K6), (K14)\).
(2) \((Q2), (Q4), (Q6) \Rightarrow (K12), (K15)\).

Proof. For (1): First, we compute
\[
(x\ [(x\ [(xz)]z]) = (x\ [(x\ [(xz)]z])) \quad \text{by (Q1)}
= (x\ [(x\ [(x\ [(xz)]z))]) \quad \text{by (Q3)}
= (x\ [(xz)]z) \quad \text{by (Q5)}
\]
so that the expression \((x\ [(x\ [(xz)]z]])\) is constant in \(y\), that is,
\[
(x\ [(x\ [(xz)]z])] = (x\ [(x\ [(x\ [(xz)]z))]).
\]
Take \(u = xx\) and apply (Q1) to get (K6). Next,
\[
x\ [(x\ [(xz)]z)] = (x\ [(x\ [(xz)]z)) \quad \text{by (K6)}
= x\ [(xz)]z \quad \text{by (Q5)}
\]
and this is (K14).
The proof of (2) is the mirror of that of (1). □
4. Independence of the Axioms

In this section, we present models that show the independence of axioms (L), (Q1)-(Q6), and this will complete the proof of the Theorem. Note that equation (L) is equivalent to its own mirror, while the other axioms come in mirrored pairs. Thus once we have presented a model satisfying, for instance, all axioms except (Q6), it follows that the same underlying set with the dual operations $x \odot y := y \cdot x$, $x \backslash y := y / x$, $x \div y := y \div x$ will be a model satisfying all axioms except (Q5). Thus it is enough to present four models.

The independence of (L) is obvious, because any nonloop quasigroup satisfies (Q1)-(Q6), but not (L). Table 1 gives a specific example. Table 2 is a model satisfying (L), (Q1), and (Q3)-(Q6), but not (Q2). Table 3 is a model satisfying (L), (Q1)-(Q3), (Q5)-(Q6), but not (Q4). Table 4 is a model satisfying (L), (Q1)-(Q5), but not (Q6).

\begin{table}[h]
\centering
\begin{tabular}{c|ccc}
\cdot & 0 & 1 & 2 \\
\hline
0 & 0 & 1 & 2 \\
1 & 2 & 0 & 1 \\
2 & 1 & 2 & 0 \\
\end{tabular}
\begin{tabular}{c|ccc}
\\ & 0 & 1 & 2 \\
\hline
0 & 0 & 1 & 2 \\
1 & 1 & 2 & 0 \\
2 & 2 & 0 & 1 \\
\end{tabular}
\begin{tabular}{c|ccc}
/ & 0 & 1 & 2 \\
\hline
0 & 1 & 2 & 0 \\
1 & 2 & 0 & 1 \\
2 & 1 & 2 & 0 \\
\end{tabular}
\caption{(Q1)-(Q6), but not (L)}
\end{table}

\begin{table}[h]
\centering
\begin{tabular}{c|cc}
\cdot & 0 & 1 \\
\hline
0 & 0 & 1 \\
1 & 1 & 0 \\
\end{tabular}
\begin{tabular}{c|cc}
\\ & 0 & 1 \\
\hline
0 & 0 & 1 \\
1 & 1 & 0 \\
\end{tabular}
\begin{tabular}{c|cc}
/ & 0 & 1 \\
\hline
0 & 1 & 0 \\
1 & 0 & 1 \\
\end{tabular}
\caption{(L), (Q1), (Q3)-(Q6), but not (Q2)}
\end{table}

\begin{table}[h]
\centering
\begin{tabular}{c|cccc}
\cdot & 0 & 1 & 2 & 3 \\
\hline
0 & 0 & 1 & 1 & 0 \\
1 & 0 & 1 & 1 & 0 \\
2 & 3 & 2 & 2 & 3 \\
3 & 3 & 2 & 2 & 3 \\
\end{tabular}
\begin{tabular}{c|cccc}
\\ & 0 & 1 & 2 & 3 \\
\hline
0 & 0 & 1 & 1 & 0 \\
1 & 0 & 1 & 1 & 0 \\
2 & 3 & 2 & 2 & 3 \\
3 & 3 & 2 & 2 & 3 \\
\end{tabular}
\begin{tabular}{c|cccc}
/ & 0 & 1 & 2 & 3 \\
\hline
0 & 0 & 2 & 1 & 0 \\
1 & 0 & 1 & 1 & 0 \\
2 & 0 & 2 & 2 & 0 \\
3 & 3 & 1 & 1 & 3 \\
\end{tabular}
\caption{(L), (Q1)-(Q3), (Q5)-(Q6), but not (Q4)}
\end{table}

\begin{table}[h]
\centering
\begin{tabular}{c|cc}
\cdot & 0 & 1 \\
\hline
0 & 0 & 1 \\
1 & 0 & 1 \\
\end{tabular}
\begin{tabular}{c|cc}
\\ & 0 & 1 \\
\hline
0 & 0 & 1 \\
1 & 0 & 1 \\
\end{tabular}
\begin{tabular}{c|cc}
/ & 0 & 1 \\
\hline
0 & 0 & 0 \\
1 & 0 & 1 \\
\end{tabular}
\caption{(L), (Q1)-(Q5), but not (Q6)}
\end{table}
References

[1] A. Krapež, Rectangular loops, Publ. Inst. Math. (Beograd) (N.S.) 68(82) (2000), 59–66. MR 2002b:20105, Zbl 0971.20047.

[2] A. Krapež, Rectangular quasigroups, in Z. Kadelburg (ed.), Proceedings of the 10th Congress of Yugoslav Mathematicians (Belgrade, 2001), 169–171, Univ. Belgrade Fac. Math., Belgrade, 2001. Zbl 1005.20049.

[3] A. Krapež, A generalization of rectangular loops, in A. Krapež (ed.), A tribute to S. B. Prešić. Papers celebrating his 65th birthday. Beograd: Matematički Institut SANU, 89-93 (2001). Zbl 1005.20048.

[4] A. Krapež, Generalized associativity on rectangular quasigroups, in Z. Daróczy and Z. Páles (eds.), Functional equations—results and advances, 335–349, Adv. Math. (Dordr.) 3, Kluwer Acad. Publ., Dordrecht, 2002. MR 2003j:39072, Zbl 0999.39022.

[5] V. D. Belousov, Foundations of the Theory of Quasigroups and Loops, Izdat. Nauka, Moscow, 1967 (Russian). MR 36#1569, Zbl 0163.01801.

[6] R. H. Bruck, A Survey of Binary Systems, Springer-Verlag, 1971. MR 20#76, Zbl 0206.30301.

[7] O. Chein, H. O. Pflugfelder, and J. D. H. Smith (eds.), Quasigroups and Loops: Theory and Applications, Sigma Series in Pure Math. 9, Heldermann Verlag, 1990. MR 93g:20036, Zbl 0719.20036.

[8] H. O. Pflugfelder, Quasigroups and Loops: Introduction, Sigma Series in Pure Math. 8, Heldermann Verlag, Berlin, 1990. MR 93g:20132, Zbl 0719.20036.

[9] W. W. McCune, OTTER 3.3 Reference Manual and Guide, Technical Memorandum ANL/MCS-TM-263, Argonne National Laboratory, 2003; or see: http://www.mcs.anl.gov/AR/otter/

[10] L. Wos and G. W. Pieper, A Fascinating Country in the World of Computing — Your Guide to Automated Reasoning, World Scientific, 1999.

[11] W. W. McCune and R. Padmanabhan, Automated Deduction in Equational Logic and Cubic Curves, Lecture Notes in Comp. Sci. 1095, Springer, Berlin, 1996.

[12] J. Hart and K. Kunen, Single axioms for odd exponent groups, J. Automated Reasoning 14 (1995) 383–412.

[13] K. Kunen, Moufang quasigroups, J. Algebra 183 (1996) 231–234.

[14] K. Kunen, Quasigroups, loops, and associative laws, J. Algebra 185 (1996) 194–204.

[15] K. Kunen, Alternative loop rings, Communications in Algebra 26 (1998) 557–564.

[16] K. Kunen, G-loops and permutation groups, J. Algebra 220 (1999) 694–708.

[17] K. Kunen, The structure of conjugacy closed loops, Transactions Amer. Math. Soc. 352 (2000) 2889–2911.

[18] M. K. Kinyon, K. Kunen, and J. D. Phillips, Every diassociative A-loop is Moufang, Proc. Amer. Math. Soc. 130 (2002) 619–624.

[19] M. K. Kinyon, K. Kunen, and J. D. Phillips, A generalization of Moufang and Steiner loops, Algebra Universalis 48 (2002) 81–101.

[20] M. K. Kinyon and J. D. Phillips, A note on trimedial quasigroups, Quasigroups and Related Systems 9 (2002) 65–66

[21] M. K. Kinyon, K. Kunen, and J. D. Phillips, Diassociativity in conjugacy closed loops, Communications in Algebra 32 (2004) 767–786.

[22] M. K. Kinyon and J. D. Phillips, Commutants of Bol loops of odd order, Proc. Amer. Math. Soc. 132 (2004) 617–619

[23] M. K. Kinyon and J. D. Phillips, Axioms for trimedial quasigroups, Comment. Math. Univ. Caroliniae 45 (2004) 2877–294

[24] M. K. Kinyon and K. Kunen, The structure of extra loops, Quasigroups and Related Systems, to appear.

[25] W. W. McCune, Mace 4.0 Reference Manual and Guide, Technical Memorandum ANL/MCS-TM-264, Argonne National Laboratory, 2003; or see: http://www.mcs.anl.gov/AR/mace4/

Department of Mathematical Sciences, Indiana University South Bend, South Bend, IN 46634 USA
E-mail address: mkinyon@iusb.edu
URL: http://mpages.iusb.edu/~mkinyon

Department of Mathematics & Computer Science, Wabash College, Crawfordsville, IN 47933 USA
E-mail address: philipj@wabash.edu
URL: http://www.wabash.edu/depart/math/faculty.html#Phillips