Floquet engineering of optical lattices with spatial features and periodicity below the diffraction limit

S Subhankar, P Bienias, S L Rolston, J V Porto

1 Joint Quantum Institute, National Institute of Standards and Technology and the University of Maryland, College Park, MD 20742, United States of America
2 Joint Center for Quantum Information and Computer Science, NIST/University of Maryland, College Park, MD 20742, United States of America
3 Johns Hopkins University Applied Physics Laboratory, Laurel, MD 20723, United States of America

E-mail: subhanksarthak1@gmail.com

Keywords: Floquet, Hamiltonian engineering, subwavelength, stimulated Raman adiabatic passage (STIRAP), adiabaticity, pulse shaping, Kronig–Penney lattice

Abstract
Floquet engineering or coherent time-periodic driving of quantum systems has been successfully used to synthesize Hamiltonians with novel properties. In ultracold atomic systems, this has led to experimental realizations of artificial gauge fields, topological bandstructures, and observation of dynamical localization, to name a few. Here we present a Floquet-based framework to stroboscopically engineer Hamiltonians with spatial features and periodicity below the diffraction limit of light used to create them by time-averaging over various configurations of a 1D optical Kronig–Penney (KP) lattice. The KP potential is a lattice of narrow subwavelength barriers spaced by half the optical wavelength (λ/2) and arises from the nonlinear optical response of the atomic dark state. Stroboscopic control over the strength and position of this lattice requires time-dependent adiabatic manipulation of the dark-state spin composition. We investigate adiabaticity requirements and shape our time-dependent light fields to respect the requirements. We apply this framework to show that a λ/4-spaced lattice can be synthesized using realistic experimental parameters as an example, discuss mechanisms that limit lifetimes in these lattices, explore candidate systems and their limitations, and treat adiabatic loading into the ground band of these lattices.

1. Introduction

Time–periodic driving of quantum systems is ubiquitous in quantum mechanics. Small amplitude driving of a quantum system probes its linear response [1], while strong driving allows for Hamiltonian engineering [2–6]. Optical potentials and in particular optical lattices have proven to be a powerful tool for manipulating ultracold atomic systems and are used in a wide range of experiments [7–9]. However, the spatial features and periodicity of these potentials (generally arising from the second order ac–Stark shift) in the far field are constrained by the diffraction limit to be of order the wavelength of light used to create them. In particular, the Fourier decomposition of these far-field optical potentials cannot have components with wavelength less than λ/2, and thus the minimum lattice spacing is λ/2. As the lattice spacing determines many of the energy scales in cold-atom lattice systems, it has been of interest to produce optical lattices with smaller spacings in order to increase relevant energy scales [10, 11]. Approaches to making subwavelength-spaced optical lattices have been proposed [12] and realized [13, 14] based on multiphoton effects, and on adiabatic dressing of different spin dependent lattices [15, 16].

Recently, optical lattices based on the nonlinear optical response of dark states [17, 18] were realized [19] with λ/2 periodicity but strongly subwavelength structure within a unit cell, consisting of a Kronig–Penney-like (KP) lattice of narrow repulsive barriers of width ≃λ/50. Time averaging a stroboscopically applied lattice potential with high spatial frequency Fourier components can give rise to an average potential with periodicity and spatial features smaller than λ/2 [10]. Since the dark-state KP lattice has high spatial frequency Fourier components, it is a candidate progenitor lattice with which to realize such a time-averaged, subwavelength-featured lattice. Here, we explore the
implementation of a time-averaged dark-state KP lattice, taking into account realistic imperfections in the dark-state system. After careful consideration of the adiabaticity requirements, we show that lattices with $\lambda/4$ period can be realized as an example, and discuss the prospects for lattices with smaller spacings and features. Reference [20] explores related ideas about painting arbitrary subwavelength optical potentials.

In the time-averaged approach, a time-periodic progenitor potential $W_0(x,t)$ is applied such that the atoms experience the time-averaged potential $W_{\text{avg}}(x)$:

$$W_{\text{avg}}(x) = \frac{1}{T} \int_{-T/2}^{T/2} W_0(x,t) \, dt,$$

where $T = 2\pi/\omega_T$ is the period of $W_0(x,t)$ and ω_T is the Floquet frequency. In order to successfully realize $W_{\text{avg}}(x)$ while avoiding heating, ω_T must be much faster than the timescale associated with the motional degree of freedom in the lattice, which is set by the energy gaps between bands in the lattice [10, 21]. This requirement suggests that ω_T be as large as possible. As we discuss below, the particular realization of $W_0(x,t)$ using a dark-state lattice [19] has an additional requirement of spin adiabaticity that limits the maximum allowable ω_T.

The dark-state lattice is an artificial scalar gauge potential [17–19, 22, 23] experienced by an atom in the dark-state eigenfunction of a three-level Λ-system with a spatially dependent spin composition. Dynamically manipulating the height, barrier width, and position of the lattice requires time-dependent manipulation of the spin composition of the dark-state eigenfunction. This spin manipulation can be seen as a stimulated Raman adiabatic passage (STIRAP) process [24] and adiabaticity requirements set an upper bound on the window for usable ω_T within which the atoms are simultaneously motionally diabatic and spin adiabatic. Understanding the practical limits of these constraints requires a detailed consideration of the system dynamics, which we apply to the specific 171Yb system previously used to demonstrate the dark-state lattice [19].

2. Time-dependent dark-state potentials

We consider the creation of time-periodic potentials for the dark-state channel, $W_{DS}(x,t)$ (which serves as $W_0(x,t)$ in equation (1)), by coupling the three atomic levels in a Λ-system with a spatially homogeneous probe light field $\Omega_p(x,t)$, and a spatially inhomogeneous control light field. The inhomogeneous control light field is composed of two counter propagating fields with equal magnitudes driven simultaneously, $\Omega_c(x,t) = \Omega_c(t) \cos(kx + \phi(t))$ where $k = 2\pi/\lambda$, as shown in figure 1(a). Working in the spatially and temporally local dressed state basis of the Λ-system determined by the coupling fields $\Omega_p(t)$ and $\Omega_c(x,t)$, the Hamiltonian is given by (equation (A.5))

$$\hat{H}_{\text{tot}}(x,t) = \frac{\hbar^2}{2m} + \begin{pmatrix} W_{DS}(x) & 0 & 0 \\ 0 & W_c(x) & 0 \\ 0 & 0 & W_e(x) \end{pmatrix} + \hat{H}_{\text{coll}}(x,p,t),$$

where $W_{DS}(x,t)$ and $W_{\text{BO}}(x,t)$ are the dark-state and bright-state potentials in the three Born–Oppenheimer (BO) channels and $\hat{H}_{\text{coll}}(x,p,t)$ represents the off-diagonal couplings between these channels (see appendix A). $W_{DS}(x,t)$ and $W_{\text{BO}}(x,t)$ include the BO potentials as well as the non-adiabatic corrections to these potentials. The dressed state coupling induced by $\hat{H}_{\text{coll}}(x,p,t)$ is detrimental, since it mixes bare excited state $|3\rangle$ into the dark-state channel through the bright-state channels, inducing photo scattering in the otherwise lossless dark state.

The spin composition of the dark-state eigenfunction for the Λ-system in figure 1(a) is $|\text{DS}(x,t)\rangle = -\cos \alpha(x,t)|1\rangle + \sin \alpha(x,t)|2\rangle$ where $\alpha(x,t) = \tan^{-1}[\Omega_p(t)/\Omega_c(x,t)]$. The non-adiabatic correction to the dark-state BO potential that gives rise to $W_{DS}(x,t)$ is determined by the spatial gradient of the spin composition [17, 18] (appendix A.1) (figure 1(c)),

$$W_{DS}(x,t) = \frac{\hbar^2}{2m} \left(\frac{\partial \alpha(x,t)}{\partial x} \right)^2,$$

which for the light-field configuration considered here is a lattice of narrow repulsive barriers with temporally modulated strength and position. We take here a stroboscopic approach, where $W_{DS}(x,t)$ is repeatedly pulsed on and off in magnitude at N different positions for time T_i with the position of $W_{DS}(x,t)$ being shifted in between the lattice pulses (here $T = \sum T_i$). In addition, $W_{DS}(x,t)$ can be held on and off for t_{on} and t_{off} (figure 1(d)).

Time averaging over the N different pulsed KP lattice potentials with arbitrary strength and position can produce an arbitrary time-averaged potential $W_{\text{avg}}(x)$ [20].

The ability to paint potentials requires real-time control over the position, strength and width of the barriers (equation (3)). The strength of the barriers can be controlled via the Rabi frequencies $\Omega_p(t)$ and $\Omega_c(t)$ (figures 1(b), (c)) with the height and width of the barriers being proportional to $1/\epsilon^2(t)$ and $\epsilon(t)$ respectively [17–19] where $\epsilon(t) = \Omega_p(t)/\Omega_c(t)$ (for $\epsilon(t) \ll 1$). The barriers are located at the nodes/minimums of $\Omega_c(x,t)$.
Without explicit time-dependence, \(H(x, p, t) \) has static, off-diagonal terms depending on the spatial gradient of the dark-state spin composition that couple the dark-state channel to the lossy bright-state channels. This loss mechanism was theoretically [17, 18] and experimentally [19] shown to limit lifetimes in the KP lattice. Large energy gaps between the BO channels via large Rabi frequencies \(\Omega_c \) and \(\Omega_p \) generally aid in suppressing this loss [19]. When explicit time dependence to the Rabi frequencies is included i.e. \(\Omega_c(x, t) \) and \(\Omega_p(t) \), the spatially dependent loss mechanism has a trivial time dependence due to the temporally periodic nature of the changing dressed states, and the loss is quantified by averaging over one Floquet period. There is, however, an additional loss mechanism mediated via an explicitly time-dependent term in \(H(x, p, t) \) (see appendix A). This term mediates non-adiabatic couplings between the dark-state channel and the bright-state channels, but can be suppressed by careful pulse shaping.

Our goal is to design \(\Omega_p(t) \) and \(\Omega_s(x, t) \) to be simultaneously motionally diabatic and spin adiabatic. In order to design pulses that are spin adiabatic, we consider the three inequalities that quantify the sufficiency requirements for adiabaticity [25] defined at single photon resonance \(\Delta = 0 \) (see appendices A.2, B.2):

\[
\left| \frac{\partial}{\partial t} \alpha(x, t) \right| \ll \Omega_{\text{rms}}(x, t), \quad (4a)
\]

\[
\int_{-\pi/\tau}^{\pi/\tau} \left| \frac{\partial}{\partial t} \left(\frac{\partial \alpha(x, t) / \partial t}{\Omega_{\text{rms}}(x, t)} \right) \right| \, dt \ll 1, \quad (4b)
\]
where $\Omega_{\text{rms}}(x, t) = \sqrt{[\Omega_p(x, t)]^2 + [\Omega_d(t)]^2}$. Equation (4a), called the local adiabatic criterion [24], states that to ensure adiabaticity during pulsing, the energy gap between the dark and bright eigenstates (set by $\Omega_{\text{rms}}(x, t)$) must be much greater than the off-diagonal couplings between them ($|\partial \alpha(x, t) / \partial t|$). Equation (4b) forces the pulses to be smooth while both equations (4b) and (4c) set bounds on their rise and fall times.

To design pulse shapes that satisfy equations (4a)–(4c), we parameterize the condition equation (4a) through a parameter $r(t)$:

$$ r(t) = \frac{\partial \alpha(x_b, t)}{\partial t}, $$

evaluated at $x = x_b$, the position where the inequality is the hardest to satisfy. The role of $r(t)$ is to quantify the spin adiabaticity during the rising and falling segments of the $\Omega_1(t)$, $\Omega_2(t)$ and $\Omega_p(t)$ pulses (figure 1(d)). Specifying $r(t)$ determines the functional form for the Rabi frequencies and the Floquet frequency. To satisfy equation (4) during the switching between the on ($t_{\text{on,i}}$) and off times ($t_{\text{off,i}}$), $|r_i(t)|$ should satisfy the condition $|r_i(t)| \ll 1$ (see appendix B.2) and smoothly change from 0. We consider a convenient analytic form for $r_i(t)$ that has a continuous first derivative (figure 2):

$$ r_i(t) = \begin{cases}
0 & t < -T_i/2 \\
-\frac{n_i \sin^2(\frac{2\pi (t - t_{\text{on,i}}/2)}{t_{\text{Si}}})}{t_{\text{Si}}} & -T_i/2 \leq t \leq -t_{\text{off,i}}/2 \\
0 & -t_{\text{off,i}}/2 \leq t \leq t_{\text{on,i}}/2 \\
-\frac{n_i \sin^2(\frac{2\pi (t + t_{\text{on,i}}/2)}{t_{\text{Si}}})}{t_{\text{Si}}} & t_{\text{on,i}}/2 \leq t \leq -T_i/2 + t_{\text{off,i}}/2 \\
0 & t_{\text{off,i}}/2 \leq t \leq T_i/2 - t_{\text{off,i}}/2 \\
T_i/2 - t_{\text{off,i}}/2 & t \leq T_i/2
\end{cases} \tag{6} $$

where $T_i = t_{\text{Si}} + t_{\text{off,i}} + t_{\text{on,i}}$ and $t_{\text{Si}}/2$ is the rise or fall time.

Generally, it is easiest to be spin adiabatic for large energy separation between the dark and bright-state channels. However at the nodes of $\Omega_1(x, t)$, this energy gap is the smallest with a value of $\hbar \Omega_p(t)/2$ for $\Delta = 0$. Therefore, we consider pulse schemes that change the positions of the nodes only when the energy gap at the nodes is large and the spin composition is essentially homogeneous ($r(t) \gg 1$). We consider two ways to achieve the homogeneous condition in between pulses:

1. $\Omega_p(t) \gg \Omega_1(x, t)$ achieved by turning up Ω_p while turning off both control beams,

2. $\Omega_1(t) \gg \Omega_p \gg \Omega_2(t)$ achieved by turning off $\Omega_2(t)$ while Ω_p and Ω_1 are kept constant.

We note that the pulsing schemes considered here are not unique. Control over $\Omega_1(t)$, $\Omega_2(t)$, $\Omega_p(t)$, $\phi_1(t)$, and $\phi_2(t)$ allows for multiple ways by which arbitrary potentials can be painted, and we refer the reader to [26] for other variants.

For pulse scheme (1), the position where the local adiabatic criterion is the hardest to satisfy, x_{Si}, occurs between the nodes. (Pulse scheme (2), for which only one of the two control beams is driven, is treated in the appendix). We choose
Reducing the barrier height for the Mele model simultaneously, the expressions for \(\Omega_{\text{eff}}(t) \) and \(\Omega_{\text{eff}}(t) \) are as follows (figure 2):

\[
\Omega_{\text{eff}}(t) = \begin{cases}
0 & -T_i/2 \leq t \leq -T_i/2 + t_{\text{off,i}}/2 \\
\beta_i \sin[\arctan(1/\epsilon_i)] \frac{\dot{G}(t + t_{\text{on,i}}/2)}{(2\pi)} & -T_i/2 + t_{\text{off,i}}/2 \leq t \leq -t_{\text{on,i}}/2 \\
\Omega_{\text{eff}} & -t_{\text{on,i}}/2 \leq t \leq t_{\text{on,i}}/2 \\
\beta_i \sin[\arctan(1/\epsilon_i)] \frac{\dot{G}(t - t_{\text{on,i}}/2)}{(2\pi)} & t_{\text{on,i}}/2 \leq t \leq T_i/2 - t_{\text{off,i}}/2 \\
-T_i/2 - t_{\text{off,i}}/2 \leq t \leq T_i/2
\end{cases}
\]

where \(\dot{G}(t) = |4\pi t/\tau_i - \sin(4\pi t/\tau_i) - 2\pi|t|/t| \) and

\[
t_{\text{on,i}} = 4 \arctan(1/\epsilon_i)/(\tau_i \beta_i).
\]

As a specific example, we explore creation of \(\lambda/(2N) \)-spaced lattices where \(N = 2, 3, 4, \ldots \). These lattices are created by time-averaging \(N \lambda/(2N) \)-spaced progenitor KP lattice potentials, each shifted in position by \(\lambda/(2N) \) for \((i - 1)T/N \leq t \leq iT/N \) and pulsed for a period of \(T_i = T/N \) [10], where \(i = 0, 1, \ldots, N - 1 \) (figure 3(a)). More flexibility is possible by pulsing the progenitor lattice with different strengths and relative positions, realizing for example the Rice–Mele model [26, 27] as shown in figure 3(b).

The goal to create \(\lambda/(2N) \)-spaced lattices that significantly confines the ground band sets constraints on the lattice parameters. Without requirements of spin adiabaticity, time-averaging the KP potential creates \(\lambda/(2N) \)-spaced lattices with barriers of maximum average height of \((1/N)E_\text{F} \). Due to the reduction in the size of the unit cell by \(N \), the characteristic energy increases to \(N^2 E_\text{F} \), which is also approximately the energy of the lowest band in a KP lattice. Hence for the \(\lambda/(2N) \)-spaced lattice to provide significant confinement,

\[
N^2 E_\text{F} < \frac{E_\text{F}}{N \epsilon^2} \Rightarrow \epsilon \leq \frac{1}{N^{3/2}}.
\]

The barrier height for the \(\lambda/(2N) \)-spaced lattice is \(W_{\text{avg}}(x_0) = \int_{-T/2}^{T/2} W_{\text{avg}}(x_0, t) / T dt \), which can be controlled by choosing \(\epsilon \) (limited by requirements on spin adiabaticity) and \(t_{\text{off,i}} \) and \(t_{\text{on,i}} \). Of course, non-zero values for \(t_{\text{off,i}} \) and \(t_{\text{on,i}} \) decrease the Floquet frequency \(\omega_T \) as

\[
\frac{1}{\omega_T} = \frac{N}{2\pi} (t_{\text{on,i}} + t_{\text{off,i}} + t_{\text{on,i}}).
\]

Reducing \(\omega_T \) makes it more difficult to be fully motionally diabatic, so that the operational window between the two constraints rapidly decreases with increasing \(N \).
4. Solving for the Bloch–Floquet bandstructure

We solve the Bloch–Floquet bandstructure for our Hamiltonian

\[
\hat{H}(x, t) = \frac{\hat{p}^2}{2m} + \frac{\hbar}{2} \left(\begin{array}{ccc}
0 & 0 & \Omega_p(t) \\
0 & 0 & \Omega_{S}(x, t) \\
\Omega_{S}(t) & \Omega_{S}(x, t) & -(2\Delta(t) + i\Gamma) \end{array} \right) \tag{11}
\]

where \(\hat{\Omega}(x + \lambda, t) = \hat{\Omega}(x, t + T) = \hat{\Omega}(x, t)\) with \(\Delta(t) = 0\) and \(\Gamma = 48.2\hbar\omega_{Kr}\) (for the \(6s^2)^1S_0 \rightarrow (6s6p)^3P_1\) transition in \(^{171}\)Yb). We substitute the Bloch–Floquet ansatz, \(|\psi(x, t)\rangle = e^{i\hat{\Omega}(x, t)/\hbar}|u_{qs}(x, t)\rangle\) into the time-dependent Schrödinger equation \(\hat{H}(x, t)|\psi(x, t)\rangle = i\hbar^{-1}\partial|\psi(x, t)\rangle/\partial t\) to yield

\[
\hat{K}_q|u_{qs}(x, t)\rangle = E_q|u_{qs}(x, t)\rangle, \tag{12}
\]

where \(q\) is the quasimomentum, \(E_q\) is the quasienergy, \(|u_{qs}(x, t)\rangle\) is the Bloch–Floquet mode, and

\[
\hat{K}_q = \left(\frac{\hat{p} + \hbar q}{2m} \right) - i\hbar \frac{\partial}{\partial t} + \hat{\Omega}(x, t),
\]

is the quasienergy operator defined in an extended Hilbert space where time is treated as a coordinate with periodic boundary conditions [2, 3, 5, 28–31]. The extension of the Hilbert space is symbolically represented by the double ket notation for the Bloch–Floquet mode \(|u_{qs}(x, t)\rangle\) [2, 3]. We solve the eigenvalue problem in equation (12) to calculate the Bloch–Floquet bandstructure (appendix C.1).

5. Results

The loss due to the off–diagonal coupling terms in \(\hat{H}_{\text{ad}}(x, t)\) that arises from the spatial gradient of the dark-state spin composition increases with smaller \(\epsilon\) [17–19]. This suggests that in order to generate potentials that have reasonable lifetimes with realistic values for Rabi frequencies, it is desirable to work at large \(\epsilon\), as allowed by equation (9). In figure 4, we investigate the creation of a \(\lambda/4\)-spaced lattice potential that significantly confines the ground band. With a choice of \(\epsilon = 0.2, \tau_{01} = 0.01, \tau_0^S = 600\Gamma\), and \(\tau_0^q = 0.36\Gamma\) (equation (10)) we use the pulse shape in equation (7) to create this potential (figure 4(a)). The green trace is the pulse profile for \(\Omega_{S}(t)\) and therefore \(\Omega_{p}(t) = \sqrt{\Delta^2 - \Omega_{S}^2(t)}\) while the blue trace is the phase profile \(\phi(t)\) during one Floquet period. The numbered red dots enumerate the different time slices during the pulse. One Floquet period of pulsing involves stitching together two sub–Floquet periods that have a relative phase \(\phi_{01}(t)\) differing by \(\pi/2\). Note that the phase is suddenly switched during an off period when there is no spatial variation to the dark state. The sub–Floquet periods are color coded and labeled as I and II. This pulse yields an effective \(\lambda/4\)-spaced \(W_{\text{avg}}(x)\) potential with \(\sim E_q\) barriers as shown in figure 4(b) where \(W_{\text{avg}}(x)\) is plotted.

In figure 4(c), we search for the window of operational \(\omega_T\) within which the bands of an effective \(\lambda/4\)-spaced lattice Hamiltonian are clearly defined by monitoring the Floquet spectrum \(E_q\) at \(q = 0\) as a function of \(\omega_T/\omega_{Kr}\). As \(\omega_T\) is increased, the pulse becomes more motionally diabatic, but at the cost of increased \(\tau_{01}\) (equation (8)). The increased \(\tau_{01}\) results in stronger admixing of the dark-state channel with the bright-state channels. The loss rate \(-\text{Im}(E_q)\) is encoded in the color of the points in figure 4(c). The gray dots have loss \((-\text{Im}(E_q))\) much larger than the highest value in the color bar.

In figure 4(d), we plot the bandstructure in the Brillouin zone of \(\hat{H}(x, t)\) for the time-averaged Hamiltonian \(\hat{p}^2/(2m) + W_{\text{avg}}(x)\) where \(W_{\text{avg}}(x)\) is evaluated using equation (1) (figure 4(b)) for the chosen pulse shape (figure 4(a)). The folded bandstructure is indicative of a \(\lambda/4\)-spaced lattice. The Bloch–Floquet bandstructure for the dark-state channel (figure 4(e)) is obtained by solving the Hamiltonian \(\hat{H}_{\text{DS}}(x, t) = \hat{p}^2/(2m) + W_{\text{DS}}(x, t)\) for \(\omega_T = 150\omega_{Kr}\) (equation (3) and see appendix C.2). The avoided crossings enclosed in the red circles in figure 4(e) arise from couplings with high-lying dark-state eigenfunctions. The bandstructures shown in figures 4(d) and (e) ignore \(\hat{H}_{\text{ad}}(x, t)\) and therefore exclude loss due to non-adiabatic couplings with the bright states. In figure 4(f), we show the Bloch–Floquet bandstructure of \(\hat{H}(x, t)\) (equation (11)), which includes the non-adiabatic bright-state couplings. The avoided crossings exist in the Bloch–Floquet bandstructure at the same place \((q, E_q)\) for the same parameters in figures 4(e) and (f), suggesting that these crossings arise from couplings with high-lying dark-state eigenfunctions. The ground Bloch–Floquet band for \(\hat{H}(x, t)\) has the same shape as the static \(\lambda/4\)-spaced lattice (except near the avoided crossings). The calculated average lifetime in the time-averaged potential for the ground band in figure 4(f) is 1 ms, which can be substantially improved with a lower \(\omega_T\). In general, lifetimes can be increased and the avoided crossings can be removed by operating at larger Rabi frequencies.
We also calculate the Bloch–Floquet bandstructures at a lower Floquet frequency of $\omega_F = 50 \omega_0$ (pink vertical line in figure 4(c)). The Bloch–Floquet bandstructure of the dark-state channel Hamiltonian $H_{DS}(x, t)$ is shown in figure 4(g), and of $\hat{H}(x, t)$ in figure 4(h). The average lifetime of the ground band is 32 ms (the colored regions in figure 4(h)) and is much longer than the lifetime of 1 ms for the Bloch–Floquet bandstructure obtained at $\omega_F = 150 \omega_0$ in figure 4(f). The avoided crossings due to coupling to high-lying dark states, however, are larger for the same Rabi frequencies.

In figure 5, we show the dynamics of the spatial probability densities of the dark-state Bloch–Floquet mode and its spin composition at time slices 1–5 (figure 4(a)) in the (q, E_q) configuration labeled by the brown star in figure 4(f). The purple trace is the scaled probability density of the Bloch–Floquet dark-state mode and it has $\lambda/4$ periodicity. It is roughly stationary except for the small wiggles that correspond to micromotion. Meanwhile, the spin composition (the black and red traces) of the Bloch–Floquet mode changes dramatically as a function of time during the Floquet period. The population in $|3\rangle$ (yellow trace) remains quite small.

To create subwavelength-spaced lattices with larger N, the window of operational ω_F will be smaller by N (equation (10)). In addition, since larger N requires working with smaller ϵ (equation (9)), the loss mechanisms limiting lifetime in these lattices become more significant. However, higher Rabi frequencies can combat both these limitations. Using larger Rabi frequencies, we show an example demonstrating the feasibility of a $\lambda/6$-spaced lattice.

With increased Rabi frequency of $\Omega_0^R = 1800 \Gamma$, we use the pulse shape in equation (7) to design a composite pulsing profile (figure 6(a)) to create a time-averaged $\lambda/6$-spaced lattice potential $W_{avg}(x)$ that has $\sim 9E_q$ tall barriers (figure 6(b)). Here $\epsilon_i = 0.135$, $\tau_{Ri} = 0.01$, and $\tau_{SI} = 0.59 \tau_i$. One Floquet period of pulsing involves stitching together three sub-Floquet periods with the relative phase $\phi_{ij}(t)$ differing by $\pi/3$ between adjacent sub-Floquet periods. For $\omega_F = 280 \omega_0$ (yellow vertical line in figure 6(c)), we plot the bandstructure of the time-averaged Hamiltonian $\hat{p}^2/(2m) + W_{avg}(x)$ in figure 6(d), the Bloch–Floquet bandstructure of the dark-state

Figure 4. Stroboscopic creation of a $\lambda/4$-spaced lattice potential: (a) one Floquet period constituting the $\Omega_1(t)$ pulse (green trace) and phase pulse $\phi(t)$ (blue trace) for $\epsilon_1 = 0.2$, $\tau_{R1} = 0.01$, $\Omega_1^0 = 600 \Gamma$, and $\tau_{SI} = 0.36 \tau_i$. The numbered red dots enumerate the different time slices shown in figure 5. The two sub-Floquet periods are labeled as I and II. (b) The time-averaged potential $W_{avg}(x)$. (c) The Floquet spectrum E_q at $q = 0$ as a function of ω_F/ω_0. The background of seemingly random points represent Floquet states whose quasienergies are only defined up to modulo $h\omega_0$. The loss rate $-\text{Im}(E_q)$ is given by the colors of the points. (d) The ground band of the time-averaged Hamiltonian $\hat{p}^2/(2m) + W_{avg}(x)$. (e) The Bloch–Floquet ground band of the dark-state channel Hamiltonian $\hat{H}_{DS}(x, t) = \hat{p}^2/(2m) + W_{DS}(x, t)$. The Floquet spectrum at $q = 0$ represents the yellow vertical cut in subfigure (c). In (d)–(f) the bottom edge of the first excited band is at $-8E_q$. (g) The Bloch–Floquet ground band of the dark-state channel Hamiltonian $\hat{H}_{DS}(x, t) = \hat{p}^2/(2m) + W_{DS}(x, t)$ at $\omega_F/\omega_0 = 50$. (h) The Bloch–Floquet ground band of $\hat{H}(x, t)$ at $\omega_F/\omega_0 = 50$. The pink region at $q = 0$ represents the pink vertical cut in subfigure (c).
channel Hamiltonian \(\hat{H}_{ds}(x, t) \) in figure 6(e), and the Bloch–Floquet bandstructure of \(\hat{H}(x, t) \) in figure 6(f).

The folded bandstructures are indicative of a \(\lambda/6 \)-spaced lattice. The particular phase sequence in figure 6(a) used to create the \(\lambda/6 \)-spaced lattice breaks time-reversal symmetry: the Bloch–Floquet bandstructures are therefore asymmetric about \(q = 0 \). The avoided crossings enclosed in the red circles exist in both Bloch–Floquet bandstructures at the same place \((q, E_p) \) for the same parameters in figures 6(e) and (f), suggesting that these particular crossings arise from couplings with high-lying dark-state eigenfunctions. The avoided crossing enclosed in the green circle in figure 6(f) arises due to couplings with bright-state eigenfunctions.

6. Experimental considerations and limitations

While working with large Rabi frequencies reduces losses, a potential disadvantage is that the \(\Lambda \)-system approximation may break down. Perfect \(\Lambda \)-systems are rare in nature, and \(\Omega_p(t) \) and \(\Omega_c(t) \) can couple off-resonantly to states outside of the \(\Lambda \)-system. These off-resonant couplings manifest as effective two-photon detunings for the approximate \(\Lambda \)-system. Non-zero two-photon detunings are detrimental to STIRAP \([24, 32]\), although spatially homogeneous detuning could in principle be compensated with time-dependent laser detuning. Two-photon detunings originating from \(\Omega_c(x, t) \), however, are temporally and spatially modulated.
We start with the time-dependent Hamiltonian

\[
\hat{H}(x, t) = \frac{\hat{p}^2}{2m} + \frac{\hbar}{2} \begin{pmatrix}
0 & 0 & \Omega_p(t) \\
0 & 0 & \Omega_c(x, t) \\
\Omega_p(t) & \Omega_c(x, t) & -(2\Delta(t) + i\Gamma')
\end{pmatrix}.
\]

\(\hat{H}(x, t)\) is non-Hermitian due to the \(i\Gamma'\)/2 term and requires a biorthogonal set of eigenvectors to diagonalize it [38]. Due to the non-Hermitian nature of \(\hat{H}(x, t)\), the eigenvectors are not guaranteed to be orthogonal to each other, but still form a linearly independent set that spans the Hilbert space [38]. To derive the artificial gauge potentials and for quantifying the sufficiency conditions for adiabaticity, we transform \(\hat{H}(x, t)\) using a rotation transform \(\hat{R}(x, t)\) composed of the right eigenvectors [38] of the spin-light field coupling part of \(\hat{H}(x, t)\). The expression for \(\hat{R}(x, t)\) is:

7. Summary and outlook

In this paper, we evaluate the idea of stroboscopically generating potentials using the repulsive barriers of a dark-state KP potential. We analyzed the competing requirements of maintaining dark-state spin adiabaticity and simultaneous motional diabaticity during pulsing of the KP potentials in the presence of realistic imperfections. We showed that it is possible to create such potentials in an experimental system of \(^{171}\text{Yb}\) atoms by calculating the Floquet spectrum of atoms in a stroboscopically generated \(\lambda/4\)-spaced lattice. This approach is applicable to any three-level system, although it needs to be well isolated from coupling to other levels in order to ensure good lifetimes. While we have treated 1D systems here, this method can be readily generalized to 2D. Using progenitor lattices of subwavelength attractive traps [37] in conjunction with barriers can allow for flexibility in tailoring arbitrary time-averaged potential landscapes not limited by diffraction.

Acknowledgments

We would like to thank Jean Dalibard for stimulating discussions. SS, YW, T-CT, SLR, and JVP acknowledge support from NSF PFC at JQI (Grant No. PHY1430094) and ONR (Grant No. N000141712411). PB and AVG acknowledge funding by AFOSR, ARL CDQI, NSF PFC at JQI, DoE ASCR Quantum Testbed Pathfinder program (award No. DE-SC0019040), ARO MURI, NSF PFCQC program, and the DoE BES QIS program (award No. DE-SC0019449). PT acknowledges support from the NRC postdoctoral fellowship. Note—We note that related and complementary work is being pursued by Lacki et al [20].

Appendix A. Sufficiency conditions for adiabaticity

We start with the time-dependent Hamiltonian

\[
\hat{H}(x, t) = \frac{\hat{p}^2}{2m} + \frac{\hbar}{2} \begin{pmatrix}
0 & 0 & \Omega_p(t) \\
0 & 0 & \Omega_c(x, t) \\
\Omega_p(t) & \Omega_c(x, t) & -(2\Delta(t) + i\Gamma')
\end{pmatrix}.
\]
Here we derive the expression for the Floquet scalar gauge potential for the dark-state channel. The expression for \hat{A} when both control beams are driven simultaneously as in pulse scheme (1) is

$$
\hat{R}(x, t) = \begin{pmatrix}
\cos \alpha e^{i\theta} & \sin \alpha \frac{1}{\sqrt{1 + t^2}} & \sin \alpha \frac{1}{\sqrt{1 + u^2}} \\
-\sin \alpha & \cos \alpha e^{-i\theta} \sqrt{1 + t^2} & \cos \alpha e^{-i\theta} \sqrt{1 + u^2} \\
0 & \frac{l}{\sqrt{1 + t^2}} & \frac{u}{\sqrt{1 + u^2}}
\end{pmatrix},
$$

(A.2)

where

$$
\alpha = \tan^{-1} \frac{\Omega_\perp(t)}{\Omega_\parallel(x, t)}, \quad \zeta = \sqrt{|\Omega_\parallel(x, t)|^2 + \Omega_\perp^2(t)},
$$

$$
\theta = \text{Arg} \Omega_\parallel(x, t), \quad l = \frac{2E_-(x, t)}{\zeta}, \quad u = \frac{2E_+(x, t)}{\zeta}.
$$

(A.3)

For pulse scheme (1) where both control beams are changed simultaneously with equal magnitude: $\Omega_\parallel(x, t) = \Omega_\perp(t)\sin(kx + \phi(t))$ resulting in $\theta(x, t) = 0$. For pulse scheme (2) where only one control beam is pulsed: $\Omega_\parallel(x, t) = \Omega_\perp(t) e^{i\theta(t)} / \sqrt{1 + \Omega_\perp^2} e^{-ikx} / 2i$ resulting in $\theta(x, t) = \text{constant}$.

The transformation $H_{\text{col}}(x, t) = \hat{R}^{-1} \hat{H} \hat{R} - i\hbar \hat{D} \partial / \partial t$ rotates $\hat{H}(x, t)$ into the dressed-atom picture of the Λ-system. The effective Hamiltonian after the transformation is [22, 24, 32, 39–41]

$$
\hat{H}_{\text{col}}(x, t) = \frac{\hat{H} - \hat{\Lambda}^2}{2m} - \hat{B} + \hat{H}_{\text{BO}}(x, t),
$$

(A.4)

where $\hat{\Lambda} = i\hbar \hat{R}^{-1} \nabla \hat{R}, \hat{B} = i\hbar \hat{R}^{-1} \partial \hat{R} / \partial t$, $\Delta_\parallel(t) = \Delta(t) + i\Gamma / 2$, and $E_\pm = (-\Delta_\parallel(t) \pm \sqrt{\Delta_\parallel^2(t) + \Omega_\parallel^2(t) + \Omega_\perp^2(t)^2}) / 2$ are the energies of the upper and lower bright states.

We rearrange the terms in equation (A.4) to separate the motion of atoms in the three BO channels (dark state, upper-bright state, and lower-bright state) [17, 18, 22] from the off-diagonal couplings ($\hat{H}_{\text{col}}(x, p, t)$). For pulse scheme (1) ($\theta(x, t) = 0$), this gives

$$
\hat{H}_{\text{col}}(x, t) = \hat{\hat{p}}^2 / 2m + \frac{\hbar^2}{2m} \begin{cases}
\left(\alpha'\right)^2 & 0 \\
0 & \frac{l' u'}{(l - u)^2} - \frac{u}{(l - u)} \left(\alpha'\right)^2 \\
0 & 0
\end{cases} + \hat{H}_{\text{BO}}(x, t)
$$

where $f' = \partial f / \partial x$ and $f = \partial f / \partial t$. The term $\hat{\hat{B}}(x, t)$ arises from the explicit time dependence of $\hat{\hat{H}}(x, t)$. Careful pulse shaping can help suppress the terms in $\hat{\hat{B}}(x, t)$ that couple the dark-state channel with the bright-state channels. The coupling terms in $\hat{H}_{\text{col}}(x, p, t)$ depend only on the ratio of the Rabi frequencies (α', α) and not on their absolute magnitudes, while the energy separation between the channels ($\hat{E}_{\text{BO}}(x, t)$) depend on absolute magnitudes of the Rabi frequencies. Thus at higher Rabi frequencies the BO channels become increasingly decoupled. In addition, $\Delta \ll \Omega_\perp^2$, Ω_\parallel^2 ensures that the bright-state channels are well separated from the dark-state channel.

A.1. Floquet scalar gauge potentials

Here we derive the expression for the Floquet scalar gauge potential for the dark-state channel. The expression for \hat{A} when both control beams are driven simultaneously as in pulse scheme (1) is
The local adiabatic criterion is analogous to the one for the instantaneous dark state. The expressions for the scalar gauge potentials for the dark-state channel is:

\[
\mathbf{W} = \frac{\hbar^2}{2m} \left(\begin{array}{ccc} 0 & -1/\sqrt{l^2 + 1} \alpha' & -1/\sqrt{u^2 + 1} \\ \sqrt{l^2 + 1}u / (l - u) & 0 & \sqrt{l^2 + 1}u / (u - l) \\ -l/\sqrt{u^2 + 1} / (u - l) & -l/\sqrt{u^2 + 1} / (l - u) & 0 \end{array} \right), \quad \text{(A.6)}
\]

The expression for the scalar gauge potentials for the BO channels is:

\[
\mathbf{\tilde{\mathbf{W}}} = \frac{\hbar^2}{2m} \left(\begin{array}{ccc} (\alpha')^2 & 0 & 0 \\ 0 & -l^2/2 + 1 u^2 / (l - u) & 0 \\ 0 & 0 & l^2/2 + 1 u^2 / (u - l) \\ l^2/2 + 1 u^2 / (u - l) & 0 & l^2/2 + 1 u^2 / (l - u) \\ l^2/2 + 1 u^2 / (l - u) & 0 & l^2/2 + 1 u^2 / (u - l) \\ 0 & 0 & 0 \end{array} \right), \quad \text{(A.7)}
\]

where the first matrix contains the scalar gauge potentials for each of the BO channels. The scalar gauge potential for the dark-state channel is:

\[
W_{\text{DS}}(x, t) = \frac{\hbar^2}{2m} \left(\frac{\partial}{\partial x} \alpha(x, t) \right)^2. \quad \text{(A.8)}
\]

The expressions for \(\hat{A}(x, t)\) and \(W_{\text{DS}}(x, t)\) for pulse scheme (2) \((\theta(x, t) = \text{constant})\), are:

\[
\hat{A} = i\hbar \left(\begin{array}{ccc} i\theta' \cos^2 \alpha & -e^{-i\theta}(\sin(2\alpha)\theta' + 2\alpha') & -e^{-i\theta}(\sin(2\alpha)\theta' + 2\alpha') \\ e^{-i\theta}\sqrt{l^2 + 1} u (\sin(2\alpha)\theta' - 2\alpha') / (2(l - u)) & 2\sqrt{l^2 + 1} & 2\sqrt{l^2 + 1} \\ e^{-i\theta}\sqrt{l^2 + 1} u (\sin(2\alpha)\theta' - 2\alpha') / (2(u - l)) & -\sqrt{l^2 + 1} u (\sin(2\alpha)\theta' + l') / (l - u) & -\sqrt{l^2 + 1} u (\sin(2\alpha)\theta' + l') / (u - l) \end{array} \right), \quad \text{(A.9)}
\]

and

\[
W_{\text{DS}}(x, t) = \frac{\hbar^2}{2m} \left[\frac{1}{4} \left(\sin(2\alpha(x, t)) \frac{\partial}{\partial x} \theta(x, t) \right)^2 + \left(\frac{\partial}{\partial x} \alpha(x, t) \right)^2 \right]. \quad \text{(A.10)}
\]

A.2. Formulating the sufficiency conditions for adiabaticity

The general expression for \(\hat{B}\) is analogous to \(\hat{A}\), except that the derivatives are with respect to \(x\) in \(\hat{A}\) and with respect to \(t\) in \(\hat{B}\), which for pulse scheme (1) is:

\[
\hat{B} = i\hbar \left(\begin{array}{ccc} 0 & -1/\sqrt{l^2 + 1} \dot{\alpha} & -1/\sqrt{u^2 + 1} \dot{\alpha} \\ -\sqrt{l^2 + 1} u / (l - u) \dot{\alpha} & 0 & -\sqrt{l^2 + 1} u / (u - l) \dot{\alpha} \\ -l/\sqrt{u^2 + 1} / (u - l) \dot{\alpha} & -l/\sqrt{u^2 + 1} / (l - u) \dot{\alpha} & 0 \end{array} \right). \quad \text{(A.11)}
\]

The local adiabatic criterion (equation (4a)) for the instantaneous dark state requires that the minimum of the spatially and temporally varying energy gap between the dark and bright states must be much larger than the largest off-diagonal couplings between them, which we quantify as...
\[\Omega_{\text{rms}}(x_h, t) \geq \left| \frac{\partial}{\partial t} \alpha(x_h, t) \right|, \]
(A.12)

where \(\Omega_{\text{rms}}(x, t) = \sqrt{\Omega_0^2(x, t)^2 + \Omega_2^2(t)} \).

For \(\Delta = 0 \), where fastest STIRAP pulses are guaranteed [24, 32, 42, 43]

\[\Omega_{\text{rms}}^2(x_h, t) \geq \left| \frac{\partial}{\partial t} \alpha(x_h, t) \right|^2, \]
(A.13)

The expression for pulse scheme (2) (\(\theta(x, t) = \) constant) is:

\[
\hat{\theta} = i \hbar \begin{pmatrix}
\frac{i \theta \cos^2 \alpha}{\sqrt{2}} & -\frac{e^{-i\theta}(i \sin(2\alpha) \theta + 2\alpha)}{2\sqrt{l^2 + 1}} & -\frac{e^{-i\theta}(i \sin(2\alpha) \theta + 2\alpha)}{2\sqrt{l^2 + 1}} \\
\frac{e^{i\theta} \sqrt{2l + 1} (i \sin(2\alpha) \theta - 2\alpha)}{2(l - u)} & \frac{i \theta \cos^2 \alpha}{l - u} & 0 \\
\frac{e^{i\theta} \sqrt{2l + 1} (i \sin(2\alpha) \theta - 2\alpha)}{2(u - l)} & \frac{\sqrt{l^2 + 1} (i \theta \cos^2 \alpha + l)}{2(l - u)} & \frac{i \theta \cos^2 \alpha}{(l - u)}
\end{pmatrix},
\]
(B.14)

which in addition to \(\dot{\alpha} \) and \(\alpha \) depends on \(\dot{\theta} \) and \(\theta \).

Appendix B. Pulse shaping

B.1. Pulse scheme (2)

In the main text, we consider pulse scheme (1) with the constraint \(\Omega_{\text{rms}}^2(t) + \Omega_{\text{rms}}^2(t) = \beta_{1c}^2 \). For pulse scheme (2), in which only one control beam is pulsed, \(\Omega_{\text{rms}}^2(t) = \Omega_{\text{rms}}^2(t) + \Omega_{\text{rms}}^2(t) = \Omega_{\text{rms}}^2(t) \), the pulse shape \(\Omega_{\text{rms}}(t) \) and \(t_{Si} \) are determined by \(r_{oi}(t) \) (equation (6)) and \(\epsilon_i \) as follows:

\[
\Omega_{\text{rms}}(t) = \frac{\Omega_{\text{rms}}^0 G(t + t_{\text{on,i}}/2)}{\sqrt{16\pi^2 \epsilon_i^2 + 4\pi^2 - G^2(t + t_{\text{on,i}}/2)}} - \frac{t_{\text{on,i}}/2}{t_{\text{on,i}}/2} \leq t \leq \frac{t_{\text{on,i}}/2}{t_{\text{on,i}}/2},
\]

\[
\frac{\Omega_{\text{rms}}^0 G(t - t_{\text{on,i}}/2)}{\sqrt{16\pi^2 \epsilon_i^2 + 4\pi^2 - G^2(t - t_{\text{on,i}}/2)}} - t_{\text{on,i}}/2 \leq t \leq \frac{t_{\text{on,i}}/2}{t_{\text{on,i}}/2},
\]

\[
\frac{4}{\eta_{\text{rms}} \Omega_{\text{rms}}^0 \sqrt{4\epsilon_i^2 + 1}}.
\]

B.2. Verifying the spin-adiabaticity requirements and choice for \(r_{oi} \)

We use the off-diagonal coupling terms in equation (A.11) and set \(\Delta = 0 \) to recast the sufficiency conditions in [25] (the inequalities equations (4a)–(4c)). The first condition equation (4a) implies

\[
\left| \frac{\partial}{\partial t} \alpha(x_h, t) \right| \ll \Omega_{\text{rms}}(x_h, t),
\]

\[(B.3)\]

\[
\Rightarrow r_{oi} \ll 1,
\]

\[(B.4)\]

where we have used equations (5) and (6). For \(r_{oi} = 0.01 \), this inequality is well satisfied. The stronger version [25] of the second inequality equation (4b) states:

\[
\left| \frac{\partial}{\partial t} \left(\frac{\partial \alpha(x_h, t)}{\partial t} \bigg/ \Omega_{\text{rms}}(x_h, t) \right) \right|_{\text{max}} t_{\text{Si}} \ll 1
\]

\[(B.5)\]
\[
\Rightarrow r_{0i} \ll \frac{1}{2\pi} \approx 0.16. \tag{B.6}
\]

For \(r_{0i} = 0.01\), this inequality is also well satisfied. We note that equation (B.5) also enforces that \(r(t)\) must be differentiable. The stronger version of the third inequality equation (4c) is [25]

\[
|\Omega_{\text{rms}}(x_b, t) r^2(t)_{\text{max}}| t_{\text{si}} \ll 1 \tag{B.7}
\]

\[
\Rightarrow t_{\text{si}} \beta_{r} r_{0i}^2 \ll 1 \Rightarrow 4 \arctan(1/e_{c}) \ll 1/r_{0i} \text{ for pulse scheme (1),} \tag{B.8}
\]

where we have substituted equation (8). Again, this inequality is well satisfied for \(r_{0i} = 0.01\).

Appendix C. Bloch–Floquet bandstructure

C.1. Bandstructure of \(\hat{H}(x, t)\)

We evaluate the matrix elements of the quasienergy operator \(\hat{K}_q\) derived in section 4. \(\hat{K}_q\) is expressed in dimensionless units \(\hat{x}\) and \(\hat{t}\) where \(\hat{x} = (2\pi/\lambda)x = kx, \hat{t} = (2\pi/T)t = \omega_T t, E_R = \hbar^2 k^2/(2m) = \hbar \omega_q,\) and the tildes over \(x\) and \(t\) are dropped for convenience, as follows:

\[
\begin{aligned}
\left[(-i\partial_{x} + q)^2 + \hat{\Omega}(x, t) - i\omega_T \frac{\partial}{\partial t} \right] u_{q,E_j}(x, t)) &= E_{q}[u_{q,E_j}(x, t)) \\
\Rightarrow \hat{K}_q[u_{q,E_j}(x, t)) &= E_{q}[u_{q,E_j}(x, t))].
\end{aligned} \tag{C.1}
\]

We expand the Hilbert space of the Bloch–Floquet modes in a plane wave basis:

\[
[u_{q,E_j}(x, t))] = \sum_{lmj} q_{lmj} |lmj\rangle \text{ where } \langle xt\{lmj\} = e^{ilx e^{imj}\hat{x}}. \text{ Here } l \in [-L,L], m \in [-M,M], j \in [1,2,3] \text{ representing the three spins, and } L \text{ and } M \text{ are integers. The Hilbert space spanned by the basis set is composed of plane waves with the property } \sum_{lmj}|lmj\rangle = I^{(2L+1)} \otimes I^{(2M+1)} \otimes I^3. \text{ We solve equation (C.2) by diagonalizing } \hat{K}_q. \text{ The matrix elements of the spin-independent components of } \hat{K}_q(|l' m' j'|\hat{K}_q|lmj\rangle) \text{ are:}
\]

\[
\langle l' m' j'|(-i\partial_{x} + q)^2|lmj\rangle = [(l + q)^2 \delta_{l'l'} \otimes \delta_{mm'} \otimes \delta_{jj'}. \tag{C.3}
\]

The spin-dependent component of \(\hat{K}_q\) is \(\hat{\Omega}(x, t)\):

\[
\hat{\Omega}(x, t) = \frac{1}{2} \begin{pmatrix}
0 & 0 & \Omega_f(t) \\
0 & 0 & \Omega_f(t) \\
\Omega_f(t) & \Omega_f(t) & -(2\Delta(t) + i\Gamma)
\end{pmatrix} \tag{C.5}
\]

\[
= \frac{1}{2} \begin{pmatrix}
\Omega_f(t)|1\rangle\langle 3| + |3\rangle\langle 1| + (2\Delta(t) + i\Gamma)|3\rangle\langle 3| + \Omega_f(t)|2\rangle\langle 3| + \Omega_f(t)|3\rangle\langle 2|
\end{pmatrix}, \tag{C.6}
\]

where the matrix elements of A and B are

\[
\langle l' m' j'|A|lmj\rangle = \delta_{l'l'} \otimes (m'|\Omega_f(t)|m) \otimes (\delta_{j'3} + \delta_{j'3}), \tag{C.7}
\]

\[
\langle l' m' j'|B|lmj\rangle = -i\Gamma \delta_{l'l'} \otimes \delta_{mm'} \otimes \delta_{j'3} - 2\delta_{l'l'} \otimes (m'|\Delta(t)|m) \otimes \delta_{jj'}. \tag{C.8}
\]

Depending on the pulse scheme, \(\langle l' m' j'|C|lmj\rangle\) has different forms. For pulse scheme (1) i.e. \(\Omega_f(t) = \Omega_f(t)\sin(x + \phi(t)):\)

\[
\langle l' m' j'|C|lmj\rangle = \frac{1}{2} (\delta_{j',j-1} + \delta_{j',j+1}) \otimes \left(m'|\Omega_f(t)\sin(\phi(t))\right) \tag{C.9}
\]

For pulse scheme (2) i.e. \(\Omega_f(t) = \Omega_f(t)e^{i\phi(t)} + 1/i = \Omega_f(t)e^{-ix/2i}:\)

\[
\langle l' m' j'|C|lmj\rangle = \frac{1}{2} (\delta_{j',j-1} + \delta_{j',j+1}) \otimes \left(m'|\Omega_f(t)e^{i\phi(t)}\right) - \frac{\Omega_{f}}{2i}\delta_{j'3} \otimes \delta_{mm'} \tag{C.10}
\]

The spatio-temporal probability distribution of a Bloch–Floquet mode is

\[
|\psi|^2 = \sum_{l' m' l m j} c_{l' m' j} c_{l m j} e^{i(\Delta(lt + x + j + m')t)}, \tag{C.11}
\]
where $|\psi_i\rangle = \langle x, t|\rho_{q,i}(x, t)\rangle$ with the fractional probability of being in spin $|i\rangle$ at x and $t \in [-\pi, \pi]$, given by

$$\frac{|\langle i|\psi_i\rangle|^2}{|\psi_i|^2} = \sum_{\ell \ell' m m'} C_{\ell m \ell'} C_{\ell' m' \ell'} \varepsilon^{(i-\ell)x + (m-m')t}.$$ \hfill (C.12)

It is important [17] to appropriately choose the number of plane waves L and M to be large enough to accurately represent the couplings between the dark-state channel and bright-state channels. We solve for the lowest few dozen eigenstates near zero energy of these sparse matrices with dimensions $3(2L+1)(2M+1) \times 3(2L+1)(2M+1) \sim 10^5 \times 10^5$ using the Arnoldi algorithm. We find that the solution converges with M as low as 25, however for all our calculations we use $M \approx 210$.

C.2. Bandstructure of $\hat{H}_{DS}(x, t)$

In this subsection, we outline the method used to numerically solve for the Bloch–Floquet bandstructure of the dark-state channel ignoring non-adiabatic couplings to the bright-state channels:

$$\hat{H}_{\text{DS}}(x, t) = \frac{\hat{p}^2}{2m} + W_{\text{DS}}(x, t)$$ \hfill (C.13)

where $\hat{H}_{\text{DS}}(x + \lambda/2, t) = \hat{H}_{\text{DS}}(x, t)$ and $\hat{H}_{\text{DS}}(x, t + T) = \hat{H}_{\text{DS}}(x, t)$. Due to the nonlinear nature of $W_{\text{DS}}(x, t)$ solving for the bandstructure in the extended Hilbert space approach requires a 2D Fourier transform of $W_{\text{DS}}(x, t)$. Instead, we solve for the bandstructure using the approach outlined in [2, 3, 5, 29] where we evaluate the time evolution operator over one Floquet period, $\hat{U}(T, 0)$, and then diagonalize it.

Making the Bloch ansatz, $|\psi(x, t)\rangle = e^{i\mathbf{q}\cdot\mathbf{x}}|\mathbf{q},\text{DS}(x, t)\rangle$, the time-dependent Schrödinger equation in dimensionless units is

$$\frac{\partial}{\partial t}|\mathbf{q},\text{DS}(x, t)\rangle = -\frac{i}{\omega_f} \left((-i\partial_x + q)^2 + W_{\text{DS}}(x, t) \right)|\mathbf{q},\text{DS}(x, t)\rangle.$$ \hfill (C.14)

We determine the time evolution operator for one Floquet period $\hat{U}_{q,\text{DS}}(2\pi + t_0, 0)$ [2, 3, 5] and equate that to the time evolution operator of an effective Floquet Hamiltonian $e^{-i\hat{H}_{\text{DS}}(t_0)\Delta t}/h$, where $\hat{H}_{q,\text{DS}}(t_0)$ is defined at a Floquet gauge t_0 [4].

The expression for $\hat{U}_{q,\text{DS}}(2\pi, 0)$ for $t_0 = 0$ is derived as follows:

$$|\mathbf{q},\text{DS}(x, 2\pi)\rangle = |\hat{U}_{q,\text{DS}}(2\pi, 0)|\mathbf{q},\text{DS}(x, 0)\rangle$$

$$= \int_0^{2\pi} e^{-i\hat{H}_{\text{DS}}(t, 0)\Delta t/\omega_f} |\mathbf{q},\text{DS}(x, 0)\rangle dt/\omega_f$$

$$= \left(\prod_{j=0}^{L} e^{-i\hat{H}_{\text{DS}}(j\Delta t, 0)\Delta t/\omega_f} \right) |\mathbf{q},\text{DS}(x, 0)\rangle$$

$$= \left(\prod_{j=0}^{L} S_{q,}\left(e^{-i\hat{H}_{\text{DS}}(j\Delta t, 0)\Delta t/\omega_f} \right) S_{q,}^{-1} \right) |\mathbf{q},\text{DS}(x, 0)\rangle$$

$$\Rightarrow \hat{U}_{q,\text{DS}}(2\pi, 0) = \left(\prod_{j=0}^{L} S_{q,}\left(e^{-i\hat{H}_{\text{DS}}(j\Delta t, 0)\Delta t/\omega_f} \right) S_{q,}^{-1} \right) = e^{-i\hat{H}_{\text{DS}}(0)\Delta t/\omega_f},$$ \hfill (C.15)

where Δt is the time-ordering operator, $L\Delta t = 2\pi$ and L is an integer number of time-steps. $S_{q,}$ is chosen to diagonalize $\hat{H}_{\text{DS}}(x, l\Delta t)$ at time $l\Delta t$: $S_{q,}^{-1} \hat{H}_{\text{DS}}(x, l\Delta t) S_{q,} = E_{q,}^l(l\Delta t)$ where $S_{q,}^{-1} S_{q,} = I^{2L+1}$. Finally, we diagonalize $\hat{U}_{q,\text{DS}}(2\pi, 0)$ in equation (C.15) to evaluate the Floquet eigenvalues and the eigenvectors [2, 3, 5]:

$$\hat{U}_{q,\text{DS}}(2\pi, 0) = e^{-i\hat{H}_{\text{DS}}(0)\Delta t/\omega_f} = \sum_{j=0}^{2L+1} e^{-iE_{q,j}^{2L+1}\Delta t/\omega_f} |\mathbf{q},\text{DS}(x, 0)\rangle \langle u_{q,j}^{(2L+1)}(x, 0)|.$$

The Floquet eigenvalues $E_{q,j}^{2L+1}$ are time-independent. For $\lambda/(2N)$-spaced lattices, the Rabi pulses are the same for each T/N sub-Floquet period and symmetry arguments were used to speed up the creation of the one-period Floquet evolution operator, $\hat{U}_{q,\text{DS}}(2\pi, 0)$ [5].

Appendix D. Effect of two-photon detuning

In this section, we discuss the detrimental effect of the states outside the Λ-system in realizing $\lambda/(2N)$-spaced lattices for the specific case of 171Yb. In addition to the Λ-system composed of the states $|1\rangle$, $|2\rangle$ and $|3\rangle$, the $(6s6p)\ ^{3}P_{1}$ manifold has 5 additional states $|4\rangle$ to $|8\rangle$ that can couple to states $|1\rangle$ and $|2\rangle$ (figure D1). When the
To adiabatically eliminate the excited states and quantify their effect on the ground states, we can solve for the effective Rabi frequencies when \(\Delta \ll \Delta_{\text{HFS}} \). By dynamically modulating \(\delta_1(t) \) and \(\delta_2(t) \), we compensate for the spatially homogeneous but temporally modulated real parts in equation (D.2). The compensated \(\hat{\Omega}_{\text{OR}}(x, t) \) is added to \(\hat{H}(x, t) \) and solved for using the method outlined in section 4 and appendix C.1 to calculate the Bloch–Floquet bandstructure of \(\lambda/(2N) \)-spaced lattices in the presence of two-photon detunings and photon scattering loss due to states outside the \(\Lambda \)-system. The non-Hermitian terms in equation (D.2) account for loss from photon scattering due to admixing of the adiabatically eliminated excited states with the bare stable ground states [1] and [2]. For a \(\lambda/4 \)-spaced lattice created by pulse scheme (1), equation (D.2) is

\[
\langle m'm''|\hat{\Omega}_{\text{OR}}(x, t)|m''\rangle = -i\frac{\Gamma}{4\Delta_{\text{HFS}}} \delta_{\rho,\rho'} \otimes \langle m'|\Omega_x^2(t)|m\rangle \otimes (\delta_{\gamma_1,\gamma_1} + \delta_{\gamma_2,\gamma_2})
\]

- \(\frac{\Gamma}{8\Delta^2} \delta_{\rho,\rho'} \otimes \langle m'|\Omega_x^2(t)|m\rangle \otimes \delta_{\gamma_2,\gamma_2} \) + \(\frac{\Gamma}{2\Delta_{\text{HFS}}} \delta_{\rho,\rho'} \otimes \langle m'|\Omega_x^2(t)|m\rangle \otimes \left(\frac{3}{16} \delta_{\gamma_1,\gamma_1} + \frac{1}{16} \delta_{\gamma_1,\gamma_2} \right) \)

- \(\frac{1}{2\Delta_{\text{HFS}}} \left(\delta_{\rho,\rho'-2} + \delta_{\rho,\rho'+2} \right) \otimes \langle m'|\Omega_x^2(t)\cos 2\phi(t)|m\rangle \) \otimes \left(\frac{3}{16} \delta_{\gamma_1,\gamma_1} + \frac{1}{16} \delta_{\gamma_1,\gamma_2} \right). \tag{D.5}

Figure D1. Level structure of the \((6s^2)^1S_0\) and \((6s6p)^3P_1\) manifolds of \(^{171}\text{Yb}\). \(\Delta \) is the single photon detuning, \(\Delta_{\text{HFS}} \) is the Zeeman splitting in the excited state due to an external magnetic field, and \(\Delta_{\text{HFS}} \) is the hyperfine splitting.
where $\Delta_{\text{HFS}} \simeq -33,000 \Gamma$ and $\Delta \simeq -5500 \Gamma$ (figure D1). The real spatio-temporally modulated terms in equation (D.5) originate from $\Omega_s(x,t)$, and may only be compensated with the experimental overhead of adding more laser fields.

In figure D2(b), we show the effect of $\bar{\Omega}_{\text{STIRAP}}(x,t)$ and contrast it with an ideal Λ-system (figure D2(a)). In figure D2(b), the window of operational ω_R is smaller and the losses are higher, as expected. At lower ω_R, the sinusoidal two-photon detunings are not time-averaged out. The ground band is also red shifted due to the ac-Stark shifts being red detuned. Large Rabi frequencies with uncompensated spatio-temporally modulated two-photon detuning destroy the fidelity of the STIRAP pulses and make it harder to create $\lambda/(2N)$-spaced lattices. Losses from excited states admixing further shorten lifetimes.

Another possible candidate system that uses fine-structure states instead of hyperfine states for the Λ-system consists of the metastable states $(6s6p)^3P_2$ and $(6s6p)^3P_0$ of Yb as the long-lived states [1] and [2], and $(6s7s)^4S_0$ as the excited state [3]. This Λ-system is well isolated, and [1] and [2] are separated in energy by multiple THz. In this configuration, $\lambda/(2N)$-spaced lattices can be realized for both bosonic and fermionic species of Yb. The large matrix elements for the $(6s6p)^3P_2 \leftrightarrow (6s7s)^4S_0$ and $(6s6p)^3P_0 \leftrightarrow (6s7s)^4S_0$ transitions ensure that higher Rabi frequencies can be achieved in these systems without the detrimental effect of states outside the Λ-system. However, Floquet heating from interactions [2,3] and losses from fine-structure collisions of $(6s6p)^3P_2$ atoms [44] could limit lifetimes in these systems.

Appendix E. Adiabatic loading into the ground band

There are a few ways to adiabatically load into the ground band of a $\lambda/4$-spaced lattice given that one has control over $\Omega_{\text{det}}(t), \Omega_{\text{cst}}(t), \Omega_p(t), \phi_1(t),$ and $\phi_2(t)$. We consider here a protocol in which the time-averaged potential is grown by periodically pulsing $\Omega_s(t)$ with a slowly varying envelope $f(t)$ with a timescale much slower than the motional degree of freedom: $\bar{\Omega}_s(t) = f(t)\Omega_s(t)$. The pulse profile for $\bar{\Omega}_s(t)$ is determined by equation (7) for a given final ϵ. For pulse scheme (1), $\Omega_p(t)$ along the ramp is determined by $\bar{\Omega}_p(t) = \sqrt{\beta^2 - \bar{\Omega}_s^2(t)}$. The large and constant energy gap $h\beta/2$ minimizes admixing of the dark-state channel with the bright-state channels. Under these conditions the loading is spin adiabatic because

$$\left| \frac{\partial \tilde{\alpha}(x_t, t)}{\partial t} \right| < |\beta f(t)| < 2\beta$$

(E.1)

for $0 < f(t) < 1$ and $f(t) \ll 1/T$, where $\tilde{\alpha} = \tan^{-1}[\bar{\Omega}_p(t)/\bar{\Omega}_s(x, t)]$. For pulse scheme (2), we propose the protocol $\Omega_p(t) = (1 - f(t))\Omega_p$ and the pulse profile for $\Omega_{\text{cst}}(t)$ is one that creates the desired $\lambda/4$-spaced lattice for a chosen ϵ according to equation (B.1). $\Omega_p(t)$ is reduced from an initial large value to its final value of Ω_p. This ensures that the energy gap $h\beta/2$ at the nodes is lower at the end of the ramp than at the start, minimizing admixing of the dark-state channel with the bright-state channels along the ramp.

ORCID iDs

S Subhankar @ https://orcid.org/0000-0001-8664-3098

P Bienias @ https://orcid.org/0000-0002-7583-7177

Figure D2. The Floquet spectrum E_q at $\epsilon = 0.2$ as a function of ω_R/ω_R for a $\lambda/4$-spaced lattice: all calculations are performed for $\Omega_0 = 600\Gamma, r_\text{in} = 0.01, \epsilon_1 = 0.2, \Delta = 0,$ and $r_\text{in} = 0.36\Gamma$. (a) For the ideal Λ-system. (b) For the Λ-system with the spatio-temporally modulated ac-Stark shifts and losses due to the excited states [4]–[8].
References

[1] Alland A and Simons B D 2010 Response Functions 2nd edn (Cambridge: Cambridge University Press) pp 360–408
[2] Eckardt A and Anisimovas E 2015 High-frequency approximation for periodically driven quantum systems from a Floquet-space perspective New J. Phys. 17 093039
[3] Eckardt A 2017 Colloquium: Atomic quantum gases in periodically driven optical lattices Rev. Mod. Phys. 89 011004
[4] Bakov M, D’Alessio L and Polkovnikov A 2015 Universal high-frequency behavior of periodically driven systems: from dynamical stabilization to Floquet engineering Adv. Phys. 64 139–226
[5] Holthaus M 2015 Floquet engineering with quasienergy bands of periodically driven optical lattices J. Phys. B: At. Mol. Opt. Phys. 49 013001
[6] Oka T and Kitamura S 2019 Floquet engineering of quantum materials Annu. Rev. Condens. Matter Phys. 10 387–408
[7] Lewenstein M, Sanpera A and Ahufinger V 2017 Ultracold Atoms in Optical Lattices: Simulating Quantum Many-Body Systems (Oxford: Oxford University Press)
[8] Dutta O, Gajda M, Hauke P, Lewenstein M, Lühmann D-S, Malomed B A, Sowińskiego T and Zakrzewski J 2015 Non-standard Hubbard models in optical lattices: a review Rep. Prog. Phys. 78 066003
[9] Gross C and Bloch J 2017 Quantum simulations with ultracold atoms in optical lattices Science 357 995–1001
[10] Nascimbene S, Goldman N, Cooper N R and Dalibard J 2015 Dynamic optical lattices of subwavelength spacing for ultracold atoms Phys. Rev. Lett. 115 140401
[11] Lewenstein M, Sanpera A, Ahufinger V, Damski B, Sen A and Sen U 2007 Ultracold atomic gases in optical lattices: mimicking condensed matter physics and beyond Adv. Phys. 56 243–379
[12] Dubletsy B and Berman P R 2002 λ/4, λ/8, and higher order atom gratings via raman transitions Laser Phys. 12 1161–70
[13] Anderson R P, Trypogeorgos D, Valdés-Curiel A, Liang Q Y, Tao J, Zhao M, Andrijauskas T, Jüelzinnaus G and Spielmann I B 2019 Realization of a fractional period adiabatic superlattice arXiv:1907.08912
[14] Ritt G, Geckeler C, Salger T, Cennini G and Weitz M 2006 Fourier synthesis of optical potentials for atomic quantum gases Phys. Rev. A 74 4–7
[15] Yi W, Daley A J, Pupillo G and Zoller P 2008 State-dependent, addressable subwavelength lattices with cold atoms New J. Phys. 10 073015
[16] Lundblad N, Ansari S, Guo Y and Moan E 2014 Observations of λ/4 structure in a low-loss radio-frequency–dressed optical lattice Phys. Rev. A 90 035612
[17] Lacki M, Baranow M A, Pichler H and Zoller P 2016 Nanoscale ‘dark State’ optical potentials for cold atoms Phys. Rev. Lett. 117 233001
[18] Jendrzejewski I, Eckel S, Ticek T G, Jüelzinnaus G, Campbell G K, Jiang L and Gorkshov A V 2016 Subwavelength-width optical tunnel junctions for ultracold atoms Phys. Rev. A 94 063422
[19] Wang Y, Subbhanak S, Bienias P, Lacki M, Tsui T C, Baranow M A, Gorkshov A V, Zoller P, Porto J V and Rolston S L 2018 Dark state optical lattice with a subwavelength spatial structure Phys. Rev. Lett. 120 083601
[20] Lacki M, Zoller P and Baranow M A 2019 Stroboscopic painting of optical potentials for atomic and subatomic resolution Am. Phys. Soc. 100 033610
[21] Rahav S, Gilary J and Fishman S 2003 Effective Hamiltonians for periodically driven systems Phys. Rev. A 68 013820
[22] Moody J, Shapere A D and Wilczek F 1989 Adiabatic effective Lagrangians Report No. IASSNS-HEP-89/13
[23] Dalibard J, Gerbier F, Jüelzinnaus G and Öhberg P 2011 Colloquium: Artificial gauge potentials for neutral atoms Rev. Mod. Phys. 83 1523–43
[24] Vitanov N V, Rangelov A A, Shore B W and Bergmann K 2017 Stimulated Raman adiabatic passage in physics, chemistry, and beyond Rev. Mod. Phys. 89 011506
[25] Tong D M, Singh K, Kwek L C and Oh C H 2007 Sufficiency criterion for the validity of the adiabatic approximation Phys. Rev. Lett. 98 150402
[26] Xiao D, Chang M C and Niu Q 2010 Berry phase effects on electronic properties Rev. Mod. Phys. 82 1959–2007
[27] Rice M J and Mele E J 1982 Elementary excitations of a linearly conjugated diatomic polymer Phys. Rev. Lett. 49 1455–9
[28] Shirley D J 1965 Solution of the schrodinger equation with a Hamiltonian periodic in time Phys. Rev. 138 B979–87
[29] Grifoni M and Hanggi P 1998 Driven quantum tunneling Phys. Rep. 304 229–354
[30] Breuer H P and Holthaus M 1998 Adiabatic processes in the ionization of highly excited hydrogen atoms Z. Phys. D 11 1–14
[31] Dres K and Holthaus M 1999 Floquet theory for short laser pulses Eur. Phys. J. D 5 119–34
[32] Shore B W 2017 Picturing stimulated Raman adiabatic passage: a STIRAP tutorial Adv. Opt. Photonics 9 563
[33] Subbhanak S, Wang Y, Tsui T C, Rolston S L and Porto J V 2019 Nanoscale atomic density microscopy Phys. Rev. X 9 021002
[34] Daham M B, Peik E, Reichel J, Castin Y and Salomon C 1996 Bloch oscillations of atoms in an optical potential Phys. Rev. Lett. 76 4508–11
[35] Kastberg A, Phillips W D, Rolston S L, Spreewe R J C and Jessen P S 1995 Adiabatic cooling of cesium to 700 nK in an optical lattice Phys. Rev. Lett. 74 1552–5
[36] Tsui T C, Wang Y, Subbhanak S, Porto J V and Rolston S L 2019 Realization of a stroboscopic optical lattice for cold atoms with subwavelength spacing arXiv:1911.00394
[37] Bienias P et al. 2018 Coherent optical nano-tweezers for ultra-cold atoms arXiv:1808.02487
[38] Brody D C 2014 Bichromatic quantum mechanics J. Phys. A: Math. Theor. 47 035035
[39] Fleischhauer M and Marangos J P 2005 Electromagnetically induced transparency: optics in coherent media Rev. Mod. Phys. 77 633–73
[40] Cheneau M, Yefsah T, Unter K J, Castin Y and Salomon C 2016 Geometric potentials in quantum optics: a semi-classical interpretation Europhys. Lett. 115 60003
[41] Goldberg N, Jüelzinnaus G, Öhberg P and Spielman I B 2014 Light-induced gauge fields for ultracold atoms Rep. Prog. Phys. (https://doi.org/10.1088/0034-4885/77/12/126401)
[42] Dykhne A M 1962 Adiabatic perturbation of discrete spectrum states J. Exp. Theor. Phys. 14 941–3
[43] Vasiliev G S, Kuhn A and Vitanov N V 2009 Optimum pulse shapes for stimulated Raman adiabatic passage Phys. Rev. A 80 1–7
[44] Yamaguchi A, Uetake S, Hashimoto D, Doyle J M and Takahashi Y 2008 Inelastic collisions in optically trapped ultracold metastable ytterbium Phys. Rev. Lett. 101 233002