We study the steady state in three-level lambda and ladder systems. It is well-known that in a lambda system this steady state is the coherent population trapping state, independent of the presence of spontaneous emission. In contrast, the steady state in a ladder system is in general not stable against radiative decay and exhibits a minimum in the population of the ground state. We show that incoherent population pumping destroys the stability of the coherent population trapping state in the lambda system and suppresses a previously discovered sharp dip in the steady state response. In the ladder system the observed minimum disappears in the presence of an incoherent pump on the upper transition.

PACS number(s): 42.50.Hz

The first observation in an optical pumping experiment of what is now known as the phenomenon of coherent population trapping (CPT) was made in 1976 by Alzetta et al. They found that the fluorescence intensity of sodium vapour, illuminated by a laser and analyzed as a function of an applied magnetic field, decreased when the difference in frequency of two laser modes matched some hyperfine transitions of the ground state of sodium. A theoretical explanation for this observation can be given in terms of a three-level atomic system in which coherent radiation fields couple two ground states, the initial and final state, to a common excited state. Under the two-photon Raman resonance condition, when the frequency difference of the radiation fields equals the separation in frequency of two laser modes matched some hyperfine transitions of the ground state of sodium, A theoretical explanation for this observation can be given in terms of a three-level atomic system in which coherent radiation fields couple two ground states, the initial and final state, to a common excited state. Under the two-photon Raman resonance condition, when the frequency difference of the radiation fields equals the separation in frequency of two laser modes matched some hyperfine transitions of the ground state of sodium.

Recently, Jyotsna and Agarwal studied the dynamics in a three-level Λ system with spontaneous emission (cf. FIG. 1(a)). They showed that incoherent population pumping destroys the trapping behaviour and leads to a minimum in the population of the lower level. We demonstrate that the minimum disappears in the presence of an incoherent pump.

Consider the three-level Λ system schematically depicted in FIG. 1(a).

Two states |2⟩ and |3⟩ are coupled to state |1⟩ via classical monochromatic light fields of frequencies ω_{2} and ω_{3} respectively. Level |1⟩ decays to the lower-lying level |2⟩ (|3⟩) by spontaneous emission with rate 2γ_{2} (2γ_{3}). Let Ω_{2} and Ω_{3}, defined as Ω_{j} = μ_{1j}E_{j}/ℏ (j = 2, 3), denote the Rabi frequencies associated with the coupling by the fields, with μ_{1j} the dipole matrix interaction term between level 1 and level j, and E_{j} the amplitude of laser field j. The Hamiltonian for this system in the appropriate rotating frame can be written as

\[H = \hbar \Delta_{1} |1⟩⟨1| + \hbar (\Delta_{3} - \Delta_{2}) |2⟩⟨2| + \left(\frac{1}{2} \hbar \Omega_{2} |1⟩⟨2| + \frac{1}{2} \hbar \Omega_{3} |1⟩⟨3| + H.c. \right), \] (1)

with \(\Delta_{2} = E_{1} - E_{2} - \hbar \omega_{2} \) and \(\Delta_{3} = E_{1} - \hbar \omega_{3} \). We have chosen the energy of level |3⟩, E_{3}, as the zero of energy. The density matrix equations are obtained from...
In the absence of the incoherent pump, so \(\lambda \) presence of an incoherent pump \([15]\) of rate \(\lambda \) on the \(|1\rangle \)\(\rightarrow \) configuration as a function of \(|2\rangle \) transition they are given by:

\[
\begin{align*}
\dot{\rho}_{11} &= -2(\gamma_2 + \gamma_3)\rho_{11} - \left(\frac{i}{2} \Omega_2^* \rho_{12} + \frac{i}{2} \Omega_3^* \rho_{13} + \text{H.c.} \right) + 2\lambda(\rho_{11} - \rho_{22}) \\
\dot{\rho}_{12} &= - (\gamma_2 + \gamma_3 - i\Delta_2)\rho_{12} + \frac{i}{2} \Omega_2(\rho_{22} - \rho_{11}) + \frac{i}{2} \Omega_3\rho_{32} - 2\lambda \rho_{12} \\
\dot{\rho}_{13} &= - (\gamma_2 + \gamma_3 - i\Delta_3)\rho_{13} + \frac{i}{2} \Omega_2\rho_{23} + \frac{i}{2} \Omega_3(1 - 2\rho_{11} - \rho_{22}) - \lambda \rho_{13} \\
\dot{\rho}_{22} &= 2\gamma_2\rho_{11} + \left(\frac{i}{2} \Omega_2^* \rho_{12} + \text{H.c.} \right) + 2\lambda(\rho_{11} - \rho_{22}) \\
\dot{\rho}_{23} &= i(\Delta_3 - \Delta_2)\rho_{23} + \frac{i}{2} \Omega_2^* \rho_{13} - \frac{i}{2} \Omega_3\rho_{21} - \lambda \rho_{23}
\end{align*}
\]

For \(\Delta_2 = \Delta_3 = 0 \) and \(\Omega_2 = \Omega_3 \equiv \Omega \) real, this leads to the steady state solution:

\[
\begin{align*}
\rho_{11} &= \frac{\Omega^2 \lambda}{N} \\
\rho_{22} &= \frac{\Omega^2 T}{2NM} \\
\rho_{33} &= 1 - \rho_{11} - \rho_{22} \\
\text{Im}(\rho_{12}) &= \frac{2}{\Omega}((\gamma_2 + \lambda)\rho_{11} - \lambda \rho_{22}) \\
\text{Im}(\rho_{13}) &= \frac{2\gamma_3}{\Omega} \rho_{11} \\
\text{Re}(\rho_{23}) &= \rho_{22} - \frac{(\gamma_2 + \gamma_3 + \lambda)}{\lambda} \rho_{11} \\
\text{Re}(\rho_{12}) &= \text{Re}(\rho_{13}) = \text{Im}(\rho_{23}) = 0
\end{align*}
\]

where

\[
\begin{align*}
M &= 2\lambda(\gamma_2 + \gamma_3 + 2\lambda) + \Omega^2 \\
N &= (4\gamma_3 \lambda + \Omega^2)(\gamma_2 + \gamma_3 + \lambda) + 2\Omega^2 \\
T &= (\gamma_2 + \gamma_3 + 2\lambda)(4\lambda(\gamma_2 + \lambda) + \Omega^2)
\end{align*}
\]

In the absence of the incoherent pump, so \(\lambda = 0 \), the steady state \([3]\) equals the CPT state, which has been studied by Jyotsna and Agarwal \([13]\). In the \(\Lambda \) system with symmetric fields the population is then equally distributed between the two ground levels. Switching on the incoherent pump and taking equal rates of spontaneous emission \(\gamma_2 = \gamma_3 \equiv \gamma \), we have plotted in FIG. \(\text{FIG. 2} \) the steady state populations \(\rho_{22} \) (dashed curves) and \(\rho_{33} \) (solid curves) as a function of the rate of spontaneous emission for various pumping rates.

As soon as \(\lambda \neq 0 \), the distribution of population over the two ground states becomes asymmetric (\(\rho_{33} > \rho_{22} \)) and the higher \(\lambda \), the larger the difference between the two. In fact, as \(\gamma \to \infty \), all curves for \(\rho_{33} \) go to 1, and those for \(\rho_{22} \) go to 0, except if \(\lambda = 0 \). For sufficiently strong decay rates, the incoherent pump thus depletes level \(|2\rangle \). This can be seen more clearly in FIG. \(\text{FIG. 3} \), which shows \(\rho_{22} \) on a larger scale for \(\gamma \).

\[
\rho_{11} \approx \frac{\Omega^2}{4\gamma(2\gamma + \lambda)} \approx 0
\]
\[
\rho_{22} \simeq \frac{\Omega^2(\gamma + \lambda)}{4\gamma\lambda(2\gamma + \lambda)} \simeq 0
\]
\[
\rho_{33} \simeq \frac{4\gamma\lambda(2\gamma + \lambda) - \Omega^2(\gamma + 2\lambda)}{4\gamma\lambda(2\gamma + \lambda)} \simeq 1.
\]

FIG. 2 also shows that \(\rho_{11} = \rho_{22} = \rho_{33} = 1/3\) at \(\gamma = 0\), as long as \(\lambda \neq 0\). In the absence of decay, the incoherent pump distributes the population equally among the levels of the \(\Lambda\) system, independent of \(\lambda\) and \(\Omega\).

Armed with the knowledge that incoherent population pumping leads to a steady state which is different from the CPT state in the \(\Lambda\) system, one could ask how it would affect the dependence of \(\rho_{22}\) on the detuning \(\Delta_2\). The question arises because Jyotsna and Agarwal [13] found that for weak fields and unequal decay rates \(\gamma_2\) and \(\gamma_3\), \(\rho_{22}\) exhibits a sharp dip as a function of \(\Delta_2\) around the Raman resonance condition \(\Delta_2 = \Delta_3\). They explain that this happens because for unequal decay rates (say \(\gamma_2 > \gamma_3\)), more population is present in state \(|2\rangle\) than in state \(|3\rangle\) if \(\Delta_2 \neq \Delta_3\). But at the resonance condition, state \(|2\rangle\) always contains half of the population. Hence a dip occurs around this value, which becomes sharper with increasing \(\gamma_2\). For \(\lambda \neq 0\), however, the steady state at \(\Delta_2 = \Delta_3\) is no longer the CPT state and level \(|2\rangle\) contains less than half of the total population. We have calculated the steady state response of the \(\Lambda\) system with incoherent pumping for \(\Delta_2 \neq \Delta_3\). The resulting expressions are lengthy and therefore not given here. However, the dependence of \(\rho_{22}\) on \(\Delta_2\) for weak fields \(\Omega \ll \gamma_2, \gamma_3\) is shown in FIG. 3.

We see an overall decrease in \(\rho_{22}\) as \(\lambda\) increases. The dip in \(\rho_{22}\) completely disappears for \(\lambda \simeq \Omega\) and \(\rho_{22}\) then becomes independent of the detuning. This is expected if incoherent pumping is the dominant pumping mechanism, since the amount of detuning from the transition is irrelevant for a pump with a linewidth much larger than the transition width. The same behaviour occurs for stronger fields, for which the dip is smoother [13].

Let us now consider the ladder system of FIG. 1(b) with an incoherent pump on the \(|1\rangle\rightarrow|2\rangle\) transition. The Hamiltonian and the evolution equations of the reduced density matrix for this system are similar to those of the \(\Lambda\) configuration and not given here (see eg. [14]). From them the steady state solution is easily obtained. FIG. 3 shows the steady state population of level \(|3\rangle\) as a function of \(\gamma_2\) for symmetric fields and under the Raman resonance condition.

![FIG. 3](image)

FIG. 3. \(\rho_{33}\) vs. \(\gamma_2\) in the ladder system for increasing incoherent pumping rates on the \(|1\rangle\rightarrow|2\rangle\) transition. The parameters used are \(\Omega_2 = \Omega_3 = 10\), \(\Delta_2 = \Delta_3 = 0\) and \(\gamma_3 = 0.1\).

We see that \(\rho_{33}\) exhibits a minimum in the absence of incoherent population pumping. This minimum arises because as soon as \(\gamma_2 \neq 0\), the steady state in the ladder system deviates from the CPT state and level \(|1\rangle\) becomes populated. For small values of \(\gamma_3\), \(|3\rangle\) contributes to the population in level \(|1\rangle\) and so \(\rho_{33}\) initially decreases with \(\gamma_2\). However, as \(\gamma_2\) increases further, \(\rho_{33}\) approaches again the value 1/2 and hence the minimum is formed. The size of the minimum becomes smaller with increasing \(\lambda\) and disappears for \(\gamma_3 \ll \lambda \leq \Omega\). If the rate of incoherent pumping dominates the spontaneous emission from level \(|2\rangle\), one can show that

\[
\rho_{11} \simeq \frac{\Omega^2}{4\lambda\gamma_3 + 3\Omega^2}
\]
\[
\rho_{22} \simeq \frac{\Omega^2}{4\lambda\gamma_3 + 3\Omega^2}
\]
\[
\rho_{33} \simeq \frac{4\lambda\gamma_3 + \Omega^2}{4\lambda\gamma_3 + 3\Omega^2}
\]

The steady state populations have become independent of \(\gamma_2\) in this limit and the upper two levels contain equal amounts of population, as expected when the coupling
between these levels is large compared to the decay.

Summarizing, we analyzed the behavior of the steady state in atomic three-level Λ and ladder systems in the presence of incoherent population pumping. In the Λ system the steady state is no longer equal to the CPT state under influence of this pump. A similar decay of the trapping state has recently been shown to occur due to fluctuations between two driving fields in a double-Λ configuration [17]. We have demonstrated that a sufficiently strong rate of incoherent pumping suppresses the sharp dip which was found in the steady state response of the Λ system as a function of detuning Δ_2 [13]. In the ladder configuration, the minimum which occurs in the steady state population of the lowest level $|3\rangle$ as a function of the rate of spontaneous emission from the upper level $|2\rangle$ disappears if the $|1\rangle - |2\rangle$ transition is incoherently pumped.

Other works on three-level atomic level schemes have demonstrated that phase-diffusion in the pumping fields has substantial effects on coherence phenomena such as the gain in a lasing without inversion (LWI) ladder system [18] and the refractive index enhancement in a V configuration [19]. These phase fluctuations in the driving fields are also known to lead to a decay of the CPT state in Λ systems [17] and thus their effect seems to be qualitatively similar to that of incoherent population pumping. Another point of consideration is that we have only studied dilute media of Λ and ladder systems here. In order to treat dense media, local-field corrections have to be taken into account. It has been shown for the coherently pumped Λ system that CPT persists in dense media for all field strengths [20] and it would be interesting to see what the result is of including an incoherent pump.

ACKNOWLEDGMENTS

I have benefited from useful discussions with G. Nienhuis.

[1] G. Alzetta, A. Gozzini, L. Moi, and G. Orriols, Nuovo Cimento B 36, 5 (1976); G. Alzetta and L. Moi ibid. 52, 209 (1979).
[2] G. Orriols, Nuovo Cimento B 53, 1 (1979).
[3] P.M. Radmore and P.L. Knight, J. Phys. B 15, 561 (1982).
[4] B.J. Dalton and P.L. Knight, J. Phys. B 15, 3997 (1982).
[5] M.O. Scully and S.-Y. Zhu, Phys. Rev. Lett. 62, 2813 (1989); Y. Wang, G. Xu, C. Ye, J. Zhao, S. Zhou, and Y. Liu, Phys. Rev. A 53, 1160 (1996).
[6] S. Boublil, A.D. Wilson-Gordon, and H. Fridmann, J. Mod. Opt. 38, 1739 (1991).
[7] A. Aspect, E. Arimondo, R. Kaiser, N. Vansteenkiste, and C. Cohen-Tannoudji, Phys. Rev. Lett. 61, 826 (1988).
[8] J.R. Kukliński, U. Gaubatz, F.T. Hioe, and K. Bergmann, Phys. Rev. A 40, 6741 (1989); S. Schiemann, A. Kuhn, S. Steuerwald, and K. Bergmann, Phys. Rev. Lett. 71, 3637 (1993).
[9] A. Imamoglu, J.E. Field, and S.E. Harris, Phys. Rev. Lett. 66, 1154 (1991).
[10] G.S. Agarwal, G. Vemuri, and T.W. Mossberg, Phys. Rev. A 48, R4055 (1993).
[11] G. Vemuri and D.M. Wood, Phys. Rev. A 50, 747 (1994).
[12] G. Vemuri and G.S. Agarwal, Phys. Rev. A 53, 1060 (1996).
[13] I.V. Jyotsna and G.S. Agarwal, Phys. Rev A 52, 3147 (1995).
[14] G.S. Agarwal, Quantum Optics (Springer Verlag, Berlin, 1974).
[15] A pump is named "incoherent" if its linewidth is much larger than the width of the transition on which it operates [11].
[16] The condition for the occurrence of the minimum is $\gamma_3 < \frac{1}{3}\sqrt{6}\Omega$.
[17] M. Fleischhauer, M.D. Lukin, D.E. Nikonov, and M.O. Scully, Opt. Commun. 110, 351 (1994).
[18] G. Vemuri, K.V. Vasavada, and G.S. Agarwal, Phys. Rev A 52, 3228 (1995).
[19] S. Gong and Z. Xu, Opt. Commun. 115, 65 (1995).
[20] I.V. Jyotsna and G.S. Agarwal, Phys. Rev. A 53, 1690 (1996).