Pretreatment neutrophil–lymphocyte ratio: useful prognostic biomarker in hepatocellular carcinoma

Marc Najjar 1
Surbhi Agrawal 1
Jean C Emond 1
Karim J Halazun 1,2

1Department of Surgery, Center for Liver Disease and Transplantation, Columbia University Medical Center, New York Presbyterian Hospital, New York, NY, USA; 2Department of Surgery, Division of Liver Transplantation and Hepatobiliary Surgery, Weill Cornell Medical College, New York, NY, USA

Abstract: Hepatocellular carcinoma (HCC) is the most common liver malignancy and the third most common cause of cancer-related deaths. Liver resection (LR) and liver transplantation (LT) are the only curative modalities for HCC. Despite recent advances and the adoption of the Milan and University of California, San Francisco, criteria, HCC recurrence after LR and LT remains a challenge. Several markers and prognostic scores have been proposed to predict tumor aggressiveness and supplement radiological data; among them, neutrophil–lymphocyte ratio (NLR) has recently gained significant interest. An elevated NLR is thought to predispose to HCC recurrence by creating a protumorigenic microenvironment through both relative neutrophilia and lymphocytopenia. In the present review, we attempted to summarize the published work on the role of pretreatment NLR as a prognostic marker for HCC following LR and LT. A total of 13 LT and 18 LR studies were included from 2008 to 2015. Pretransplant NLR was most often predictive of HCC recurrence, recurrence-free survival, and overall survival. NLR was, however, more variably and less clearly associated with worse outcomes following LR.

Keywords: neutrophil–lymphocyte ratio, hepatocellular carcinoma, liver resection, liver transplantation

Introduction

Hepatocellular carcinoma (HCC) is the most common liver malignancy, the sixth most common malignancy worldwide and the third most common cause of cancer-related deaths. 1,2 Patients with early stage disease can be treated with a curative intent by liver resection (LR) or liver transplantation (LT). LR remains the mainstay of treatment for solitary lesions in patients with preserved liver function; LT, on the other hand, provides both an oncologic resection and replacement of a diseased liver.

Despite improvements in patient selection, perioperative care, and surgical techniques, the long-term outcomes of hepatic resection remain unsatisfying, notably with up to 70% 5-year recurrence rates in many series. 3,4 Similarly, the early experience with LT for HCC was plagued with very high recurrence and mortality rates mainly attributed to poor patient selection that failed to exclude patients with extensive disease. 5–9 The Milan criteria (MC) were introduced by Mazzaferro et al and restricted LT for patients with a single tumor no more than 5 cm in diameter, or up to three tumors, none of which exceed 3 cm. 10 The application of the MC, very favorable outcomes were obtained, and this was reproduced by several centers around the world prompting the United Network for Organ Sharing (UNOS) to adopt the criteria for patient selection. LT is now considered the treatment modality of choice.
for patients with underlying liver disease and HCC meeting the MC. Multiple expanded criteria, such as the University of California, San Francisco (UCSF) criteria, have been proposed following MC in an attempt to encompass patients with larger and more numerous tumors.11

Despite the adoption of the MC and the excellent results that ensured, HCC recurrence after LT remains a major challenge. Several authors have reported recurrence rates ranging from 8% to 20%. This is thought to be due to the inability of preoperative radiological findings, such as tumor size and number, to predict the tumor’s aggressiveness and recurrence potential, which are mostly influenced by vascular invasion as well as tumor biology and grade.12–15 Several surrogate predictors of HCC recurrence have been studied with an emphasis on inflammatory markers. Inflammation has been linked with carcinogenesis, the systemic pro-inflammatory effects of tumors are thought to be both a consequence and a cause of carcinogenesis and cancer metastasis through inhibition of apoptosis, promotion of angiogenesis, and DNA damage.16–25 One of the most widely studied inflammatory markers in recent years is the neutrophil–lymphocyte ratio (NLR). The link between NLR and liver malignancies was first demonstrated by Halazun et al who demonstrated a strong predisposition to recurrence and poor survival in patients with NLR>5 who underwent surgery for colorectal liver metastases. Halazun et al were also the first to demonstrate that an elevated NLR (>5) was an independent predictor of poor overall survival (OS) and higher recurrence rates in patients undergoing LT for HCC, and subsequently, several groups have published similar results. Similarly, NLR has been shown to be linked to survival and recurrence following LR for HCC.24 In a meta-analysis examining the prognostic role of NLR in solid tumors in 40,559 patients, Templeton et al. reported that a high NLR is associated with an adverse OS in many solid tumors and specifically with a worse recurrence-free survival (RFS) in HCC (hazard ratio [HR]=4.49; 95% CI: 1.87–10.8).26

The relationship between elevated NLR and worse outcomes in HCC is complex and remains unclear; however, a number of hypotheses have been proposed with both relative neutrophilia and lymphocytopenia potentially contributing to HCC recurrence. Neutrophils have been recognized to be a main source of circulating vascular endothelial growth factor (VEGF) and, therefore, relative neutrophilia could contribute to tumor angiogenesis and metastases through the release of VEGF.27–29 On the other hand, the host immune response to malignancy is thought to be compromised in states of relative lymphocytopenia, such as in patients with high NLR.30 Motomura et al11 have shown that high pretransplant NLR, a predictor of recurrence and shorter RFS following living donor liver transplantation (LDLT) for HCC, was also associated with a significantly higher density of peritumoral CD163-positive tumor-associated macrophages (TAMs) as well as IL-17 producing cells. Both TAMs and IL-17 are known to suppress the antitumor immune response and promote an inflammatory tumor microenvironment. They also lead to the recruitment of neutrophils through the release of CXC chemokines. Therefore, an elevated NLR could be a reflection of a tumorigenic state leading to HCC recurrence following LDLT.31

The current review aims to summarize the published work on the role of pretreatment NLR as a prognostic marker for HCC with a focus on LR and LT as treatment modalities.

Methods
A systematic review of published literature from January 2000 to January 2016 was undertaken using the US National Library of Medicine (MEDLINE). The outcome of interest was the relationship between pretreatment NLR and survival outcomes (RFS and OS) in patients with HCC treated by LR or LT. Search terms included: “hepatocellular carcinoma”, “neutrophil lymphocyte ratio”, “liver resection”, “hepatectomy”, and “liver transplantation”. Inclusion criteria were as follows: 1) Studies of HCC treated with a single modality (LR or LT); 2) prognostic value of pretreatment NLR on postoperative outcomes; and 3) availability of a HR, 95% CI, and a p value for OS and/or RFS. Excluded from the study were: 1) abstracts without full texts, 2) manuscripts unavailable in English, 3) duplicate data sets, and 4) review articles.

Results
Liver transplant
Included studies and NLR definition
Thirteen studies with a total of 2,929 patients evaluating the impact of preoperative NLR and outcomes following LT for HCC were included (Table 1). All the studies were published between 2009 and 2015. Most patients receiving an LT were within MC; however, a significant variability existed among centers with a range of transplantation within MC of 39%–100%. Centers with most LT outside MC tended to be from Asia (China, Japan, and Korea) and tended to perform mostly LDLT as opposed to European and North American centers where most patients were within MC and tended to predominantly receive deceased donor liver transplantation (DDLT). The NLR cutoff value varied between studies – 4 out of 13 chose a cutoff of 5 based on previous reports in
Table 1 Prognostic value of pretreatment NLR in HCC patients treated with LT

First author	Year	Center location	n	LT type	Within MC, n (%)	Within UCSF criteria, n (%)	NLR cutoff	HR (Analysis method) (CI, p-value)	5-Year survival rate, high versus low NLR, (%, p-value)	Follow-up time (months) mean/median (range)	Proposed prognostic score using NLR	Comments
Agopyan et al 2015	32 Los Angeles, USA	865	DDLT	717 (84)	789 (92)	Continuous variable	RFS (M) – 1.89 (1.15–3.10, 0.002)	–	30 (9–73)	Risk score (R). Monogram includes: nuclear grade, vascular invasion, downstaging, tumor size, AFP, NLR, cholesterol	Among pretransplant variables, only NLR, AFP, and Milan status were independent predictors of RFS. The risk score (R) used all clinicopathologic variables to predict RFS (C statistic 0.85)	
Bertuzzo et al 2011	33 Bologna, Italy	219	DDLT	138 (74)	90 (50)	5	OS (M) – 4.87 (2.47–9.58, <0.0001)	RFS (M) – 19.14 (6.95–52.71, <0.0001)	–	OS – (8 vs 93, <0.0001)	RFS – (25 vs 75, <0.0001)	Only NLR and MVI were significantly predictive of OS and RFS on multivariate analysis. Ninety percent of patients with high NLR had MVI
Halazun et al 2009	34 New York, USA	150	DDLT	104 (70)	126 (84)	5	OS (M) – 6.10 (2.29–16.29, <0.0001)	RFS (M) – 19.99 (2.48–16.24, 0.005)	–	OS – (28 vs 64, 0.001)	RFS – (25 vs 75, <0.0001)	On multivariate analysis, preop AFP level >400 and NLR were predictive for OS, and tumor size >3 cm and NLR were predictive for RFS. Preop recurrence score C statistic 0.74
Lai et al 2013	35 Brussels, Belgium	146	DDLT	114 (78)	124 (85)	5.4	–	ITTS – (48 vs 65, 0.02)	–	ITTS – (48 vs 65, 0.02)	50 (IQR: 22–100)	NLR was the best predictor of dropout from transplant waiting list but did not predict OS or RFS, while PLR best predicted RFS
Limaye et al 2013	36 Florida, USA	160	DDLT	134 (84)	90 (56)	5	OS (M) – 2.22 (1.1–413, 0.001)	RFS (M) – 6.24 (2.52–15, 0.0002)	–	OS – (38 vs 68, 0.005)	RFS – (27 vs 79, 0.001)	On multivariate analysis, preop AFP level >400, MVI, and NLR were predictive for OS, while only NLR was predictive for RFS
Motomura et al 2012	37 Fukuoka, Japan	158	LDLT	94 (59)	94 (59)	4	–	–	–	–	38 (1–116)	–

(Continued)
First author	Year	Center location	n	LT type	n (%)	Within MC, n (%)	Within UCSF criteria, n (%)	NLR cutoff	HR (Analysis method) (CI, p-value)	5-Year survival rate, high versus low NLR, (%, p-value)	Follow-up time (months) mean/median (range)	Proposed prognostic score using NLR	Comments
Na et al	2014	Seoul, South Korea	224	LDLT	133 (59)	6		OS (M) – 2.90 (1.40–6.00, 0.004)	RFS (M) – 2.512 (0.987–6.391, 0.053)	68 (6–139)	NPF: NLR and CRP	Patients outside MC. Only NLR was predictive for OS. NLR was associated with RFS by univariate analysis only. On multivariate analysis, preop AFP level >100 and tumor size >5 cm were predictors of RFS. Preop CRP and NLR as well as the "NPF" were predictive of OS and RFS in patients outside MC. NLR did not predict HCC recurrence or OS. The absence of neoadjuvant therapy and nonfulfillment of MC on explant histology were the only predictors of recurrence. Beyond Tokyo criteria, MVI, AFP, DCP, and NLR were preop predictors of recurrence. Max AFP and DCP were better prognostic markers than NLR (higher sensitivity and specificity). HBV-associated HCC, MVI, tumor number, and high NLR were independent prognostic factors of RFS and OS.	
Parisi et al	2014	London, UK	150	DDLT	150 (100)	5				28 (0–116)		Beyond Tokyo criteria, MVI, AFP, DCP, and NLR were preop predictors of recurrence. Model_OS, AUC = 0.806 Model_TFS, AUC = 0.820	
Shindoh et al	2014	Tokyo, Japan	124	LDLT	80 (65)	2.4		OS (M) – 2.654 (1.419–4.964, <0.001)	RFS (M) – 3.665 (1.799–7.466, <0.001)	34 (5–74)		Preoperative prognostic score model: HBV, MVI, and NLR	
Wang et al	2011	Guangdong, China	101	DDLT	65 (64)	56 (55)	3	OS (M) – 2.654 (1.419–4.964, <0.001)	RFS (M) – 3.665 (1.799–7.466, <0.001)	34 (5–74)		Preoperative prognostic score model: HBV, MVI, and NLR	
Wang et al	2015	Zhejiang, China	248	DDLT/ LDLT	97 (39)	4	OS (M) – 1.097 (1.04–1.15, <0.001)	RFS (M) – 1.088 (1.029–1.151, 0.003)	26 (0.2–134)		Tumor number and size, AFP, and NLR predict RFS. Tumor number and size, AFP, NLR, and MVI predict OS. All patients were male. Model_OS, AUC = 0.806 Model_TFS, AUC = 0.820		
In the literature, 7 used a calculated value using an ROC (range 3–6), Shindoh et al\(^\text{39}\) used the median (2.4), Lai et al\(^\text{35}\) the third quartile (5.4) whereas Agopian et al\(^\text{32}\) analyzed log NLR as a continuous variable. Moreover, the definition for “preoperative” NLR was different among the studies. Eight of the 12 studies used an NLR that was measured within a week of LT, with 6 specifically within a day of the surgery. The remaining three had different time frames: Limaye et al\(^\text{36}\) examined NLR at the time of HCC diagnosis, Shindoh et al\(^\text{39}\) reported the mean NLR in the 90 days preoperatively whereas Yoshizumi et al\(^\text{43}\) did not specify.

Overall survival

Mixed findings were reported regarding the prognostic value of elevated preoperative NLR. Elevated NLR was associated with worse OS following LT for HCC in 8 studies out of 13\(^\text{31,33,34,36,37,40–42}\) with reported 5-year OS rates ranging from 20% to 62% in the high NLR group versus 62% to 84% in the low NLR group. Similarly, using multivariate and COX regression models, the independent predictability of OS by NLR differed between studies. Six groups found that elevated NLR is an independent predictor of worse OS with HR and 95% CI ranging from 1.097 CI: 1.04–1.15 to 6.10 CI: 2.29–16.29 (\(p<0.001\)), whereas the other groups either found a trend that was not statistically significant on multivariate analysis\(^\text{35}\) or did not comment on OS.

Recurrence-free survival

Pretransplant NLR levels were strongly associated with RFS. Eleven out of the 13 studies concluded that a high preoperative NLR was predictive of a shorter RFS post-LT with an HR and 95% CI ranging from 1.088 CI: 1.029–1.151 to 67 CI: 11–413 (\(p<0.05\)). On the other hand, two studies did not find that preoperative NLR had a predictive value for outcome determination. Parisi et al\(^\text{38}\) considered both preoperative median NLR and NLR≥5 and found that both were not significant predictors of HCC recurrence on univariate Cox regression analysis, with the only predictors of RFS in their study being outside MC status and absence of neoadjuvant therapy. Likewise, Lai et al\(^\text{35}\) found that elevated preoperative NLR (≥5.4) was not a significant predictor of HCC recurrence but was a predictor of dropout from the liver transplant list.

Similar findings were reported by Sun et al in a meta-analysis that included 10 studies with a total of 1,687 patients evaluating outcomes following LT for HCC. Sun et al found that preoperative NLR was associated with poorer RFS (HR=3.61, 95% CI: 2.23–5.84), poorer OS (HR=2.71, 95% CI: 1.91–3.83) as well as decreased 1-, 3-, and 5-year OS.

Table 1 (Continued)

First author	Year	Center location	LT type	n LT (type)	Follow-up time (months) mean/median (range)	5-Year survival rate, high versus low NLR, (% p-value)	Proposed prognostic score using NLR of RFS	Comments
Xiao et al\(^\text{42}\)	2013	Sichuan, China	DDLT/LDLT	280	32 (13–144)	RFS (M) = 1.758 (1.22–2.530, 0.002) OS (62 vs 30, <0.001) RFS (42 vs 6, 0.0002)	HBV-associated HCC, NLR, tumor size, and MVI were associated with RFS and OS. However, NLR only predicted RFS and not OS. Cohort comprised of patients with recurrent HCC after resection or loco-regional therapy. Node size + number >8 and NLR were predictive of RFS.	-
Yoshizumi et al\(^\text{43}\)	2013	Fukuoka, Japan	LDLT	104	58 (IQ: 24–96)	RFS (M) = 4.02 (1.32–8.1) OS (42 vs 6, 0.0002)	Elevated NLR was an independent predictor of worse OS with HR and 95% CI ranging from 1.097 CI: 1.04–1.15 to 6.10 CI: 2.29–16.29 (\(p<0.001\)), whereas the other groups either found a trend that was not statistically significant on multivariate analysis\(^\text{35}\) or did not comment on OS.	-

Abbreviations: AFP, alpha fetoprotein; AUC, area under the curve; CRP, C-reactive protein; DCP, des-gamma-carboxyprothrombin; DDLT, deceased donor liver transplantation; HBV, hepatitis B virus; HCC, hepatocellular carcinoma; HR, hazard ratio; ITTS, intention to treat survival; LDLT, living donor liver transplantation; M, multivariate analysis; MC, Milan criteria; MVI, microvascular invasion; NLR, neutrophil–lymphocyte ratio; NPF, new prognostic factor; OS, overall survival; PLR, platelet to lymphocyte ratio; RFS, recurrence-free survival; TFS, tumor-free survival; U, univariate analysis; UCSF, University of California, San Francisco.
and RFS rates. Moreover, a subgroup analysis demonstrated a positive correlation between the increase in cutoff value and the increase in HR for prognosis.44

Other markers and proposed scores
Beside pretransplant NLR, other markers have been identified as predictors of OS and RFS. Elevated alpha fetoprotein (AFP) levels and the presence of microvascular invasion (MVI) were among the factors most commonly associated with and predictive of worse OS; they were identified as independent predictors of worse OS in respectively four33,36,40–41 and five studies.33,36,40–42 Similarly, AFP, MVI, tumor number, and size were found to independently predict RFS in four,22,17,39,41 four,33,36,40,42 three,40,41,43 and five34,37,41–43 studies, respectively. Several prediction models and scores were proposed by the authors by integrating the identified variables with the aim of predicting HCC recurrence following LT. Agopyan et al32 developed a risk score (R) nomogram using both pre- and post-explant clinicopathologic data (nuclear grade, MVI, downstaging, tumor size, AFP, NLR, and cholesterol) with a reported C statistic of 0.85. Other examples include: Halazun et al’s34 initial preoperative recurrence score (NLR and tumor size) with a C statistic of 0.74; Na et al’s37 “new prognostic factor” (NLR and C-reactive protein [CRP]); Shindo et al’s39 “prognostic score” (Tokyo criteria status, AFP, and des-gamma-carboxyprothrombin [DCP] levels); Wang et al’s40 “preoperative prognostic score” (hepatitis B virus [HBV], MVI, and NLR) with an area under the curve (AUC) of 0.781; and finally, Wang et al’s41 RFS model (Model_TFS) (AFP, NLR, age, tumor number, and size) with an AUC of 0.820. Recently, Halazun et al proposed a new score predicting RFS following LT for HCC: the MORAL score (model of recurrence after liver transplant). The pre-MORAL score is based on preoperative criteria and integrates both NLR and AFP, along with tumor size. It is so far one of the most predictive pretransplant scores with a C statistic of 0.82.45

Liver resection
Included studies and NLR definition
Eighteen studies with a total of 7,902 patients evaluating the impact of preoperative NLR and outcomes following curative LR for HCC were included (Table 2). All the studies were published between January 2008 and January 2016. The NLR cutoff was chosen based on either previously published literature or using statistical analyses such as ROC to determine the most predictive value, the cutoff values ranging from 2 to 5. Similar to the transplant studies, the definition of “preoperative” NLR differed among groups. Ten studies used NLR within 7 days of surgery whereas the rest did not specify the time frame. Importantly, the studied patient populations had a significant level of variability as the authors often investigated specific groups of patients with HCC. Although most included patients with early stage HCC undergoing resection with curative intent, the following peculiarities existed: Fu et al, Li et al, and Wang et al47,54,62 evaluated exclusively patients with HBV-related HCC and Liao et al49 studied patients with small single nodule HCCs whereas Goh et al49 were interested exclusively in large HCCs (>10 cm).

Overall survival
Mixed findings were reported regarding the prognostic value of elevated preoperative NLR. Elevated NLR was associated with worse OS following LR for HCC in 8 studies out of 18,48,51,53,56,58,59,62 with reported 5-year OS rates ranging from 29% to 53% in the high NLR group versus 35% to 76% in the low NLR group. Similarly, using multivariate and COX regression models, the independent predictability of OS by NLR also differed between studies. Eight groups found that elevated NLR is an independent predictor of worse OS with HR ranging from 1.031 CI: 1.002–1.060 to 4.9 CI: 1.8–13.2 (p<0.05). Whereas the other groups either found an association between NLR and OS on univariate analysis that was not statistically significant on multivariate analysis,49,50,52,57 did not find any association,46,54,61 or did not evaluate or comment on it.46,63

Recurrence-free survival
Similar to OS, NLR’s association with and its predictability of RFS were highly variable among various studies. Fifty percent of the included studies (9 out of 18) concluded that preoperative NLR is an independent predictor of RFS, higher NLR levels being associated with shorter RFS with an HR and 95% CI ranging from 1.32 CI: 1.06–1.65 to 2.59 CI: 1.15–5.84 (<0.05).48,50,53,55,56,58,59,62,63

In contrast with LT, the association between preoperative NLR and outcomes following LR for HCC were less clear. In summary, among the 18 studies analyzed, only 8 (44%) and 9 (50%) concluded that preoperative NLR is an independent predictor of, respectively, OS and RFS. This variability could be, in part, attributed to the heterogeneity of the studied groups, such as, for instance, a difference in the etiology of HCC, reported to be HBV related in three studies.47,54,62 On the other hand, it is interesting to note that three of the groups that found no association between preoperative NLR
Table 2 Prognostic value of pretreatment NLR in HCC patients treated with curative-intent resection

First author	Year	Center location	n	NLR cutoff	HR (Analysis method) (CI, p-value)	5-year survival rate, high vs low NLR (%; p-value)	Follow-up time (months) mean/median (range)	Proposed prognostic score using NLR	Comments
Chan et al	2015	Hong Kong	324	5	−	−	44.6 (0.1–1.60)	−	All BCLC Stage 0A. PNI was a predictor of OS and RFS, however, neither NLR nor PLR has any prognostic significance for RFS or OS
Fu et al	2016	Shanghai	772	Preop NLR: 1.65, Postop NLR: 3.65	"IBS" (Preop NLR and postop NLR) OS (M) = 4.247 (2.786–6.473, <0.001), RFS (M) = 2.111 (1.696–2.626, <0.001)	OS = (69 vs 93), RFS = (39 vs 66)	39 (2–60)	IBS: Preop NLR and postop NLR	Preop NLR results were not reported separately, preop NLR was combined in IBS with postop NLR. Elevated IBS (persistently elevated NLR pre- and postop) predicted both OS and RFS
Fu et al	2013	Guangdong	282	2	OS (M) = 1.434 (1.044–1.970, 0.023), RFS (M) = 1.362 (1.025–1.811, 0.033)	OS = (29 vs 50), <0.001, RFS = (20 vs 32), <0.001	29 (2–83)	−	HBV-associated HCC. NLR predicts OS and RFS along with tumor size, tumor number, MVI, and Child score
Goh et al	2016	Singapore	166	4	−	−	23 (0–170)	−	Large HCC tumors (>10 cm). NLR was associated with OS, not RFS and only on univariate analysis. AFP and tumor rupture predicted OS whereas MVI and AFP predicted RFS
Gomez et al	2008	Leeds	96	5	OS (M) = 1.031 (1.002–1.060, 0.033), RFS (M) = 2.59 (1.15–5.84, 0.02)	Median RFS – (8 vs 18 months), <0.01	30 (6–152)	−	On univariate analysis, MVI, NLR, and R1 resection were associated with but did not predict OS. NLR and R1 resection predicted RFS
Huang et al	2015	Wenzhou	1659	Stratified into quartiles	−	−	−	−	Stratified NLR predicted OS along with tumor number, PVT, MVI, and Child-Pugh score NLR was associated with OS only on univariate analysis but not on multivariate. Combined GPS and CLIP scores had the best prognostic value (C-index=0.705)
Huang et al	2014	Guangdong	349	3	−	−	39	J	−
Ji et al	2016	Guangzhou	321	2	OS (M) = 1.473 (1.083–2.004, 0.014), RFS (M) = 1.405 (1.076–1.833, 0.012)	OS = (30 vs 50), <0.001, RFS = (21 vs 35), <0.001	−	NLR combined with APRI	Preoperative NLR and APRI are independent predictors of RFS and OS, their combination provided the highest prognostic value for OS
Li et al	2015	Chengdu	236	2.3	−	−	37 (±20)	X0	HBV–HCC only. NLR has no prognostic significance for RFS or OS. Postop NLR–PLR score predicted OS and RFS

(Continued)
First author	Year	Center location	n	NLR cutoff	HR (Analysis method) (CI, p-value)	5-year survival rate, high vs low NLR (%), p-value	Follow-up time (months) mean/median (range)	Proposed prognostic score using NLR	Comments	
Liao et al	2014	Guilin	256	2.31	OS (M) – 1.639 (1.212–2.218, 0.001) RFS (M) – 1.690 (1.247–2.291, 0.001)	OS – (38 vs 76, <0.001) RFS – (30 vs 70, <0.001)	–	“RS” stratifies OS and RFS 0 to 5, 1 point given for: 1) NLR>2.3, 2) Tumor size >5 cm, 3) TNM Stage 3 4) AST level >40 (µ/L)	Preop NLR, tumor size, TNM stage, and AST level were independent predictors of RFS and OS	
Liao et al	2015	Chongqing	222	2.1	OS – 3.013 (1.633–5.561, <0.001) RFS – 1.619 (1.057–2.478, 0.027)	–	42	–	Single nodule small HCC. Preop NLR, postop TACE, and MVI predicted RFS, whereas only preop NLR and postop TACE predicted OS. AFP level not correlated with outcomes (however, high AFP group >400 had small sample size of 53)	
Liao et al	2016	Chongqing	387	NMLR 1.2	“NMLR” OS (M) – 4.247 (2.786–6.473, <0.001) OS – 19.307 (8.804–42.341, <0.001) RFS – 4.457 (2.254–8.812, <0.001)	–	44 (1.5–84)	NMLR	NLR was not a predictor of OS and RFS; however, an integrated NMLR was. Other predictors of OS were platelet count, MVI, tumor number and size, TNM staging, and intratumoral CD16/CD8; while other predictors of RFS were HBs Ag status, AFP, BCLC stage, and intratumoral CD16/CD8	
Lu et al	2016	Guangxi	963	2.81	OS (M) – 1.296 (1.074–1.563, 0.007) RFS (M) – 1.32 (1.06–1.65, 0.014)	OS – (31 vs 46, <0.001)	–	–	NLR was a predictor of OS and RFS in BCLC 0/A and B HCC, not in advanced BCLC C cases. Predictors of OS were preop NLR, tumor number and size, macrovascular invasion, presence of tumor capsule, and ALT. Predictors of RFS were NLR, AFP, macrovascular invasion, and tumor size	
Mano et al	2013	Kyushu	958	2.81	OS (M) – 3.745 (1.027–1.088, 0.0002) RFS (M) – 2.096 (1.002–1.060, 0.0361)	OS – (52 vs 73, <0.001)	–	–	Preop NLR was a predictor of both OS and RFS after HCC resection. Other predictors of OS were tumor stage, number and size, PVT, and serum albumin, whereas AFP, sum albumin, ICGR 15, and PVT also predicted RFS.	(Continued)
First author	Year	Center location	n	NLR cutoff	HR (Analysis method) (CI, p-value)	5-year survival rate, high vs low NLR (%; p-value)	Follow-up time (months) mean/median (range)	Proposed prognostic score using NLR	Comments	
--------------	------	----------------	---	------------	-----------------------------------	---	---	-------------------------------------	----------	
Okamura et al	2016	Shizuoka	375	2.8	OS (M) – 2.69 (1.57–4.59, <0.001)	OS – (45 vs 76, <0.001)	41 (6–120)	–	TNM stage 1 only. NLR was the strongest independent prognostic risk factor for OS. Other factors included: Age, AFP, and DCP. However NLR did not predict OS in TNM stages 2 and 3	
Peng et al	2014	Sichuan	189	Increased versus decreased	Change in NLR (preop to postop). OS (M) – 2.637 (1.356–5.128, 0.004) RFS (M) – 2.372 (1.563–3.601, <0.001)	OS – (53 vs 76, 0.003) RFS – (22 vs 54, <0.001)	33 (5–75)	–	Increased NLR, but not high preoperative NLR or postoperative NLR, helps to predict worse OS and RFS in patients with small HCC who underwent curative resection	
Wang	2015	New York	234	2.5	OS (M) – 4.9 (1.8–13.2, 0.002) RFS (M) – 2.2 (1.3–3.8, 0.005)	–	–	–	HBV–HCC. NLR predicted OS and RFS in the absence of liver fibrosis; however, it did not in the patients with fibrosis. PLR and PNI did not independently predict OS or RFS	
Yamamura	2014	Nagoya	113	3.1	RFS (M) – 2.58 (1.43–4.58, 0.002)	–	30 (1–124)	–	NLR was the only inflammatory marker independently associated with RFS. PLR, PI, PNI, and GPS were not predictive of RFS	

Note: *Indicates variation from NLR score.

Abbreviations: AFP, alpha fetoprotein; ALT, alanine aminotransferase; APRI, aminotransferase/platelet count ratio index; AST, aspartate aminotransferase; BCLC, Barcelona clinic liver cancer; CLIP, Cancer of the Liver Italian Program; DCP, des-γ-carboxy prothrombin; GPS, Glasgow prognostic score; HBV, hepatitis B virus; HCC, hepatocellular carcinoma; HR, hazard ratio; IBS, inflammation-based score; ICGR, indocyanine green retention rate; M, multivariate analysis; MVI, microvascular invasion; NLR, neutrophil to lymphocyte ratio; NMLR, neutrophil and monocyte to lymphocyte ration; OS, overall survival; PI, prognostic index; PLR, platelet to lymphocyte ratio; PNI, prognostic nutritional index; PVT, portal vein thrombosis; RFS, recurrence-free survival; RS, risk score; TACE, transarterial chemoembolization; U, univariate analysis.
and outcomes reported a significant correlation between postoperative NLR, or the change in NLR from pre- to postoperative, and outcomes. The prognostic value of a postoperative, or change in, NLR stems from the idea that the dynamic change in NLR may represent a change in balance of the host inflammatory and immune responses to the tumor following LR and, therefore, potentially carries a more significant prognostic value.

Discussion

LR remains the primary treatment modality for early HCC without cirrhosis or liver failure; however, despite improvement in outcomes, there remains a high recurrence rate postoperatively. Since the introduction of the Milan and UCSF criteria, LT has become the treatment of choice for patients with HCC and cirrhosis with excellent results being reported by centers worldwide. Despite the adoption of these criteria by UNOS and the excellent results that followed, HCC recurrence after LT remains a challenge. The limitation of these criteria is thought to be due to both an imperfect accuracy of preoperative imaging modalities at measuring tumor size and number and the inability of radiological findings to predict tumor aggressiveness. Several biological and chemical surrogate markers of HCC recurrence have been proposed with a focus on inflammatory markers. Since Halazun et al and Gomez et al showed that pretreatment NLR is a predictor of worse outcomes respectively after LT and LR, multiple other groups have reproduced this work, at times reporting mixed results. The relationship between elevated NLR and worse outcomes in HCC is complex and remains unclear; however, a number of hypotheses have been proposed with both relative neutrophilia and lymphocytopenia potentially contributing to HCC recurrence.

Based on the results of the reported studies, pretransplant NLR levels were most often associated with and predictive of both OS and RFS. However, this relationship seemed to be stronger and more frequently reported between NLR and RFS compared to OS. In contrast with LT, the association between preoperative NLR and outcomes following LR for HCC were less clear and the results more variable. This variability could be, in part, attributed to the heterogeneity of the studied groups. The change in NLR from pre to postresection, rather than the absolute pretreatment value, has been shown to be sometimes correlated with worse outcomes in HCC patients undergoing LR.

Several other markers and tumor characteristics have been studied in the setting of LR and LT for HCC and have been linked to varying degrees with worse outcomes. Some of the most commonly cited ones are AFP, MVI, and tumor size and number. Other scores based on pre and posttransplant variables have been proposed with even higher prognostic values, some examples include the MORAL score as well as the recently published nomogram by Agopian et al.

Limitations

The current review presents several limitations. First, most reported studies had a relatively small sample size – with
few exceptions, most studies did not exceed 300 patients. Second, although an NLR threshold of 5 was most commonly used, a wide range of cutoffs was also reported (range 2–6). This heterogeneity renders it difficult to draw conclusions regarding the clinical value of pretreatment NLR; efforts should be, therefore, made to standardize the definition of elevated NLR in future studies. Heterogeneity was also noted in the type of LT (LDLT vs DDLT) as well as in the use of loco-regional therapies that could potentially impact NLR and which were not always accounted for. Finally, it should be noted that most studies showing no relationship between NLR and outcomes (negative studies) are usually less likely to be published, therefore creating a potential selection bias overestimating the predictive value of pretreatment NLR.

Disclosure

The authors report no conflicts of interest in this work.

References

1. Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D. Global cancer statistics. CA Cancer J Clin. 2011;61(2):69–90.
2. Ries L, Malbert D, Krapcho M, et al. SEER Cancer Statistics Review, 1973–2004. Bethesda, MD: National Cancer Institute; 2007.
3. Tralhão JG, Dagher I, Lino T, Roudié J, Franco D. Treatment of tumour recurrence after resection of hepatocellular carcinoma. Analysis of 97 consecutive patients. Eur J Surg Oncol. 2007;33(6):746–751.
4. Shimada K, Sano T, Sakamoto Y, Kosuge T. A long-term follow-up and management study of hepatocellular carcinoma patients surviving for 10 years or longer after curative hepatectomy. Cancer. 2005;104(9):1939–1947.
5. Ishizaki Y, Kawasaki S. The evolution of liver transplantation for hepatocellular carcinoma (past, present, and future). J Gastroenterol. 2008;43(1):18–26.
6. Moreno P, Juarrieta E, Figueras J, et al. Orthotopic liver transplantation: treatment of choice in cirrhotic patients with hepatocellular carcinoma? Transplant Proc. 1995;27(4):2296–2298.
7. Iwatsuki S, Starzl TE, Sheahan DG, et al. Hepatic resection versus transplantation for hepatocellular carcinoma. Ann Surg. 1991;214:221–228.
8. Van Thiel DH, Carr B, Iwatsuki S, Selby RR, Fung JJ, Starzl TE. The 11-year Pittsburgh experience with liver transplantation for hepatocellular carcinoma: 1981–1991. J Surg Oncol. 1993;53:78–82.
9. Ringe B, Pichlmayr R, Witterkind C, Tusch G. Surgical treatment of small hepatocellular carcinomas in patients with cirrhosis. N Engl J Med. 1996;334(11):693–699.
10. Yao FY, Ferrell L, Bass NM, et al. Liver transplantation for hepatocellular carcinoma: expansion of the tumor size limits does not adversely impact survival. Hepatology. 2001;33(6):1394–1403.
11. Schwartz ME, D’Amico F, Vitale A, Emre S, Cillo U. Liver transplantation for hepatocellular carcinoma: are the Milan criteria still valid? Eur J Surg Oncol. 2008;34(3):256–262.
12. Jonas S, Bechstein WO, Steimuller T, et al. Vascular invasion and histopathologic grading determine outcome after liver transplantation for hepatocellular carcinoma in cirrhosis. Hepatology. 2001;33(5):1080–1086.
13. Duffy JP, Vardanian A, Benjamin E, et al. Liver transplantation criteria for hepatocellular carcinoma should be expanded: a 22-year experience with 467 patients at UCLA. Ann Surg. 2007;246(3):502–509; discussion 509–511.
14. Sotiropoulos GC, Molmenti EP, Losch C, Beckebaum S, Broelsch CE, Lang H. Meta-analysis of tumor recurrence after liver transplantation for hepatocellular carcinoma based on 1,198 cases. Eur J Med Res. 2007;12(10):527–534.
15. AJCC Cancer Staging Handbook. 7th Ed. Chicago: American Joint Committee on Cancer; 2010.
16. Woibers M, Koller MT, Wittman JC, Steyerberg EW. Prognostic models with competing risks: methods and application to coronary risk prediction. Epidemiology. 2009;20(4):555–561.
17. Starzl TE. The saga of liver replacement, with particular reference to the reciprocal influence of liver and kidney transplantation (1955–1967). J Am Coll Surg. 2002;195(5):587–610.
18. Agopian VG, Petrovsky H, Kaldas FM, et al. The evolution of liver transplantation during 3 decades: analysis of 5347 consecutive liver transplants at a single center. Ann Surg. 2013;258(3):409–421.
19. Todo S, Furukawa H. Japanese Study Group on Organ Transplantation. Living donor liver transplantation for adult patients with hepatocellular carcinoma: experience in Japan. Ann Surg. 2004;240(3):451–459; discussion 459–466.
20. Alba E, Vallis C, Dominguez J, et al. Transcatheter arterial chemoembolization in patients with hepatocellular carcinoma on the waiting list for orthotopic liver transplantation. AJR Am J Roentgenol. 2008;190(5):1341–1348.
21. Liu DS, Yu NC, Raman SS, et al. Percutaneous radiofrequency ablation of hepatocellular carcinoma as a bridge to liver transplantation. Hepatology. 2005;41(5):1130–1137.
22. Mazaferro V, Battistoni C, Perrone S, et al. Radiofrequency ablation of small hepatocellular carcinoma in cirrhotic patients awaiting liver transplantation: a prospective study. Ann Surg. 2004;240(5):900–909.
23. Halazun KJ, Aldoori A, Malik HZ, et al. Elevated preoperative neutrophil to lymphocyte ratio predicts survival following hepatic resection for colorectal liver metastases. Eur J Surg Oncol. 2008;34(1):55–60.
24. Strasberg SM. Nomenclature of hepatic anatomy and resections: a review of the Brisbane 2000 system. J Hepatobiliary Pancreat Surg. 2005;12(5):351–355.
25. Templeton AJ, McNamara MG, Šruba B, et al. Prognostic role of neutrophil-to-lymphocyte ratio in solid tumors: a systematic review and meta-analysis. J Natl Cancer Inst. 2014;106(6):dju124.
26. Tanigawa N, Amaya N, Matsumura M, Shimomatsuya T. Correlation between expression of vascular endothelial growth factor and tumor vascularity, and patient outcome in human gastric carcinoma. J Clin Oncol. 1997;15(2):826–832.
27. Kusumanto YH, Yam DA, Hospers GA, Meijer C, Mulder NH. Platelets and granulocytes, in particular the neutrophils, form important compartments for circulating vascular endothelial growth factor. Angiogenesis. 2003;6(4):283–287.
28. Brodsky SV, Mendele N, Melamed M, Ramaswamy G. Vascular density and VEGF expression in hepatic lesions. J Gastrointestin Liver Dis. 2007;16(4):373–377.
29. Chew V, Tow C, Teo M, et al. Inflammatory tumour microenvironment is associated with superior survival in hepatocellular carcinoma patients. J Hepatol. 2010;52(3):370–379.
30. Motomura T, Shirabe K, Mano Y, et al. Neutrophil–lymphocyte ratio reflects hepatocellular carcinoma recurrence after liver transplantation via inflammatory microenvironment. J Hepatol. 2013;58(1):58–64.
31. Agopian VG, Harlander-Locke M, Zarrinpar A, et al. A novel prognostic nomogram accurately predicts hepatocellular carcinoma recurrence after liver transplantation: analysis of 865 consecutive liver transplant recipients. J Am Coll Surg. 2015;220(4):416–427.
32. Bertuzzo VR, Cescon M, Ravaioi M, et al. Analysis of factors affecting recurrence of hepatocellular carcinoma after liver transplantation: with special focus on inflammation markers. Transplantation. 2011;91(11):1279–1285.
33. Halazun KJ, Hardy MA, Rana AA, et al. Negative impact of neutrophil-lymphocyte ratio on outcome after liver transplantation for hepatocellular carcinoma. Ann Surg. 2009;250(1):141–151.
34. Dai Q, Santana EC, Pinheiro R, et al. Neutrophil and platelet-to-lymphocyte ratio as new predictors of dropout and recurrence after liver transplantation for hepatocellular cancer. Transpl Int. 2014;27(1):32–41.
36. Limaye AR, Clark V, Soldevila-Pico C, et al. Neutrophil-lymphocyte ratio predicts overall and recurrence-free survival after liver transplantation for hepatocellular carcinoma. *Hepatol Res*. 2013;43(7):757–764.

37. Na GH, Kim DG, Han JH, et al. Inflammatory markers as selection criteria of hepatocellular carcinoma in living donor liver transplantation. *World J Gastroenterol*. 2014;20(21):6594–6610.

38. Parisi I, Tsiochatzis E, Wijewanthan H, et al. Inflammation-based scores do not predict post-transplant recurrence of hepatocellular carcinoma in patients within Milan criteria. *Liver Transpl*. 2014;20(11):1327–1335.

39. Shindoh J, Sugawara Y, Nagata R, et al. Evaluation methods for pre-transplant oncologic markers and their prognostic impacts in patient undergoing living donor liver transplantation for hepatocellular carcinoma. *Transpl Int*. 2014;27(4):391–398.

40. Wang GY, Yang Y, Li H, et al. A scoring model based on neutrophil to lymphocyte ratio predicts recurrence of HBV-associated hepatocellular carcinoma after liver transplantation. *PLoS One*. 2011;6(9):e25295.

41. Wang W, Ye Y, Wang T, et al. Prognostic prediction of male recipients selected for liver transplantation: with special attention to neutrophil to lymphocyte ratio. *Hepatol Res*. 2016;46(9):899–907.

42. Xiao GQ, Liu C, Liu DL, Yang JY, Yan LN. Neutrophil-lymphocyte ratio predicts the prognosis of patients with hepatocellular carcinoma after liver transplantation. *World J Gastroenterol*. 2013;19(45):8398–8407.

43. Yoshizumi T, Ikegami T, Yoshiya S, et al. Impact of tumor size, number of tumors and neutrophil-to-lymphocyte ratio in liver transplantation for recurrent hepatocellular carcinoma. *Hepatol Res*. 2013;43(7):709–716.

44. Sun XD, Shi XJ, Chen YG, Wang CL, Ma Q, Lv GY. Elevated prooperative neutrophil-lymphocyte ratio is associated with poor prognosis in hepatocellular carcinoma patients treated with liver transplantation: a meta-analysis. *Gastroenterol Res Pract*. 2016;2016:4743808.

45. Halazun KJ, Najjar M, Abdelmessih RM, et al. Recurrence after liver transplantation for hepatocellular carcinoma: a new MORAL to the story. *Ann Surg*. 2017;265(3):557–564.

46. Chan AW, Chan SL, Wong GL, et al. Prognostic nutritional index (PNI) predicts tumor recurrence of very early/early stage hepatocellular carcinoma after surgical resection. *Ann Surg Oncol*. 2015;22(13):4138–4148.

47. Fu SJ, Shen SL, Li SQ, et al. Prognostic value of preoperative peripheral neutrophil-to-lymphocyte ratio in patients with HBV-associated hepatocellular carcinoma after radical hepatectomy. *Med Oncol*. 2013;30(4):721.

48. Fu YP, Ni XC, Yi Y, et al. A novel and validated inflammation-based score (IBS) predicts survival in patients with hepatocellular carcinoma following curative surgical resection: a STROBE-compliant article. *Medicine (Baltimore)*. 2016;95(7):e2784.

49. Goh BK, Kam JH, Lee SY, et al. Significance of neutrophil-to-lymphocyte ratio, platelet-to-lymphocyte ratio and prognostic nutrition index as preoperative predictors of early mortality after liver resection for huge (≥10 cm) hepatocellular carcinoma. *J Surg Oncol*. 2016;113(6):621–627.

50. Gomez D, Farid S, Malik HZ, et al. Preoperative neutrophil-to-lymphocyte ratio as a prognostic predictor after curative resection for hepatocellular carcinoma. *World J Surg*. 2008;32(8):1757–1762.

51. Huang GQ, Zhu GQ, Liu YL, et al. Stratified neutrophil-to-lymphocyte ratio accurately predict mortality risk in hepatocellular carcinoma patients following curative liver resection. *Oncotarget*. 2016;7(5):5429–5439.

52. Huang J, Xu L, Luo Y, He F, Zhang Y, Chen M. The inflammation-based scores to predict prognosis of patients with hepatocellular carcinoma after hepatectomy. *Med Oncol*. 2014;31(4):883.

53. Ji F, Liang Y, Fu SJ, et al. A novel and accurate predictor of survival for patients with hepatocellular carcinoma after surgical resection: the neutrophil to lymphocyte ratio (NLR) combined with the aspartate aminotransferase/platelet count ratio index (APRI). *BMC Cancer*. 2016;16:137.

54. Li C, Wen TF, Yan LN, et al. Postoperative neutrophil-to-lymphocyte ratio plus platelet-to-lymphocyte ratio predicts the outcomes of hepatocellular carcinoma. *J Surg Res*. 2015;198(1):73–79.

55. Liao W, Zhang J, Zhu Q, et al. Preoperative neutrophil-to-lymphocyte ratio as a new prognostic marker in hepatocellular carcinoma after curative resection. *Transl Oncol*. 2014;7(2):248–255.

56. Liao R, Tang ZW, Li DW, Luo SQ, Huang P, Du CY. Preoperative neutrophil-to-lymphocyte ratio predicts recurrence of patients with single-nodule small hepatocellular carcinoma following curative resection: a retrospective report. *World J Surg Oncol*. 2015;13:265.

57. Liao R, Jiang N, Tang ZW, et al. Systemic and intratumoral balances between monocytes/macrophages and lymphocytes predict prognosis in hepatocellular carcinoma patients after surgery. *Oncotarget*. 2016;7(21):30951–30961.

58. Lu SD, Wang YY, Peng NF, et al. Preoperative ratio of neutrophils to lymphocytes predicts postresection survival in selected patients with early or intermediate stage hepatocellular carcinoma. *Medicine (Baltimore)*. 2016;95(5):e2722.

59. Mano Y, Shirabe K, Yamashita Y, et al. Preoperative neutrophil-to-lymphocyte ratio is a predictor of survival after hepatectomy for hepatocellular carcinoma: a retrospective analysis. *Ann Surg*. 2013;258(2):301–305.

60. Okamura Y, Sugiuara T, Ito T, et al. Neutrophil to lymphocyte ratio as an indicator of the malignant behaviour of hepatocellular carcinoma. *Br J Surg*. 2016;103(7):891–898.

61. Peng W, Li C, Wen TF, et al. Neutrophil to lymphocyte ratio changes preoperative to lymphocyte ratio accurately predict mortality risk in hepatocellular carcinoma patients following curative liver resection. *World J Gastroenterol*. 2014;20(21):682–688.