Ambulatory Medication Safety in Primary Care: A Systematic Review

Richard A. Young, MD, Kimberly G. Fulda, DrPH, Anna Espinoza, MD, Ayse P. Gurses, PhD, MS, MPH, Zachary N. Hendrix, MS, Timothy Kenny, MLS, and Yan Xiao, PhD

Purpose: To review the literature on medication safety in primary care in the electronic health record era.

Methods: Included studies measured rates and outcomes of medication safety in patients whose prescriptions were written in primary care clinics with electronic prescribing. Four investigators independently reviewed titles and abstracts with dual-reviewer review for eligibility, characteristics, and risk of bias.

Results: Of 1464 articles identified, 56 met the inclusion criteria. Forty-three studies were noninterventional and 13 included an intervention. The majority of the studies (30) used their own definition of error. The most common outcomes were potential inappropriate prescribing/medications (PIPs), adverse drug events (ADEs), and potential prescribing omissions (PPOs). Most of the studies only included high-risk subpopulations (39), usually older adults taking > 4 medications. The rate of PIPs varied widely (0.19% to 98.2%). The rate of ADEs was lower (0.47% to 14.7%). There was poor correlation of PIP and PPO with documented ADEs leading to physical harm.

Conclusions: This literature is limited by its inconsistent and highly variable outcomes. The majority of medication safety studies in primary care were in high-risk populations and measured potential harms rather than actual harms. Applying algorithms to primary care medication lists significantly overestimates rate of actual harms. (J Am Board Fam Med 2022;35:610–628.)

Keywords: Adverse Drug Events, Electronic Prescribing, Family Medicine, Medication Safety, Primary Health Care, Systematic Review

Introduction
Medication-related errors in primary care have been estimated to cause many potentially unnecessary emergency department (ED) visits and hospitalizations. A commonly quoted estimate that appeared shortly after the Crossing the Quality Chasm report was that 27% of all ambulatory patients experienced an adverse medication event. There has always been controversy over how to define medication safety in primary care.

It has been recognized that primary care is a well-connected agent in a complex adaptive system, and therefore it is inappropriate to apply simplistic linear quality measures to this care. High-value primary care could include other goals such as

This article was externally peer reviewed.

Submitted 9 August 2021; revised 27 December 2021; accepted 10 January 2022.

From JPS Hospital Family Medicine Residency Program, Fort Worth, TX (RAY); Department of Family Medicine and Osteopathic Manipulative Medicine, North Texas Primary Care Practice-Based Research Network, University of North Texas Health Science Center, Fort Worth, TX (KGF, AE); Armstrong Institute Center for Health Care Human Factors, School of Medicine, Bloomberg School of Public Health, Malone Center for Engineering in Healthcare, Whiting School of Engineering, Johns Hopkins University (APG); University of Texas at Arlington, Arlington, TX (ZNH); Maine Medical Center, Portland, ME (TK); College of Nursing and Health Innovation, University of Texas at Arlington, Arlington, TX (YX).

Funding: Agency for Health Care Research and Quality. PROMIS Learning Lab: Partnership in Resilience for Medication Safety Federal Award Identification Number (FAIN): 1R18HS027277-01.

Conflict of interest: RAY discloses that he is the sole owner of SENTIRE, LLC, which is a novel documentation, coding, and billing system for primary care. The other authors report no conflicts.

Prior presentation: Previous version of this work was presented at North American Primary Care Research Group 2021, Virtual.

Corresponding author: Richard A Young, MD, JPS Hospital Family Medicine Residency Program, 1500 S Main St, Fort Worth, TX 76104, (E-mail: ryoung01@jpshealth.org).
deprescribing in the elderly; patient-centered shared decision-making, where patients accept increased risks in one domain of their life to achieve an important outcome in another domain; and the influence of social determinants and comorbidities in patients with multiple chronic diseases.5–7

Many of the early studies of medication safety in primary care were published before the electronic health record (EHR) era.8 One systematic review recognized the limits of EHRs as a source of actionable data to improve quality and safety.9 Other systematic reviews of safety in primary care list medication outcomes as “incidents” that included studies before the EHR era10 or developed problem-mapping approaches.11 No reviews were identified that explored more deeply the varied ways medication safety in primary care may be defined and measured, the relationship between perceived errors and patient harm, and more recently discussed concepts such as deprescribing and patient shared decision-making that may influence perceptions of medication safety events.

The aim of our study was to systematically review the literature on the definitions of and methodologies for measuring medication safety in primary care and to update estimates of the expected rates of adverse drug events (ADEs) in the EHR era. We were also interested in how considerations of deprescribing and patient shared decision-making that may influence perceptions of medication safety events.

Method

Eligibility Criteria

Studies were included if they were restricted to primary care populations only, measured either potential for harm or actual harm from medications, reflected medications managed by the primary care clinic PCPs, and used EHRs with e-prescribing. Noninterventional and interventional studies were included. Studies were excluded if they included nonprimary care prescribers, medication safety outcomes were not the primary outcome, they only measured part of the medication management plan such as transitions of care from the ED back to the primary care clinic, they only surveyed or interviewed select patients about their definition of harm, they only measured 1 or 2 aspects of medication safety such as medication list accuracy studies or lab monitoring lapses, or if the study was only available as an abstract.

Search Strategy and Study Selection

We searched the published literature from January 1999 to December 2020 using Medline, EMBASE, and SCOPUS for relevant English-language articles examining the rates and outcomes of medication errors in prescriptions written by PCPs for their clinic patients. The complete search strategy with keywords and other detailed methods is available in the supplementary online material.

The titles of the first search were reviewed by 1 investigator (RY) to eliminate studies that clearly did not meet our criteria. The relevant remaining abstracts were reviewed by 2 investigators each, with equivalent numbers between 4 investigators (RY, AE, KF, NH), and agreement was assessed. The remaining disagreements were resolved by consensus of the 4 reviewers.

Data Extraction and Risk of Bias Assessment

Identified studies were evaluated for risk of bias by 2 investigators (RY and KF). For nonintervention studies, risk of bias was based on the JBI Critical Appraisal Checklist for prevalence studies.12 Exposures to medications were based on clear criteria widely used in the literature. The quality of the studies was graded based on the Cochrane methodology.13 Interventional studies measured similar outcomes and were graded by the Cochrane Effective Practice and Organization of Care criteria for nonrandomized and interrupted time series studies.14 Most measured process outcomes, not patient-oriented outcomes, such as whether the PCP altered a prescription based on a pharmacist’s feedback or a drug allergy was not listed in the medical record.

Data Extraction and Synthesis

Preliminary data were abstracted onto an Excel spreadsheet. Four reviewers took different sections of the primary sheet for further extraction and arbitration independently (2 per subsection). Any
The studies were performed all over the world: 31 in Europe,19,21,22,24–32,38,39,41,46,51–54,56–58,67,10 in the US,15,16,20,36,42,48,55,68–71 8 in Asia/the Middle East,17,23,34,35,40,43–45 and 7 other.2,27,31–37,39,40,43,44,46–49,54–56,59–61,63–68,71 The majority of studies (30) used their own definition of error, often including some elements of the Beers or similar list.2,22,27,31–37,39,40,43,44,46–49,54–56,59–61,63–68,71 Others used only the Beers list (14),17,18,23,25,38,41,42,45,50,52,53,56,69,70 screening tool of older persons’ prescriptions (STOPP) (13),21,23,24,28–30,41,50,51,53,56,57,62 screening tool to alert to right treatment (START) (5),21,28,30,31,57 and other definitions (9),15,16,19,20,26,52,56,38,64. The majority of the studies were in high-risk populations (defined by each study somewhat differently), generally patients ≥ age 60 and those taking ≥ 4 chronic medications (39).17–49,21,23–30,33,36–38,40–42,45,46,60–53,56–63,67–71 The most common outcomes were PIPs (45),15–30,33–38,40–42,44,45,50–54,56–58,60–63,65–67,69–71 ADEs (12),20,21,28,30,53,57 and potential prescribing omissions (PPOs) (5).21,28,30,53,57

The rate of PIP varied widely (0.19% to 98.2% PIP rate overall; 4.9% to 98.2% for high-risk patients; 0.19% to 16% for a general patient population). The rate of ADE also varied widely (0.047% to 14.7% overall; 7.4% to 9.4% for high-risk patients; 0.047% to 14.7% for a general patient population). The ADE rate was sensitive to the method of data collection. Studies where physicians voluntarily reported ADEs to a registry had much lower rates (0.047% to 1.7%)2,12,39 than those collected by systematic or computerized record review (2.5% to 74%).20,36,55,56,58,64,68

The rate of PPO also varied widely (22.7% to 84.8%).2,21,28,30,53,57 The methods and results were too heterogeneous to quantitatively analyze (mainly due to different outcome measures used in defining medication errors in terms of PIPs, medication events, DRP, and other types; the outcomes were mainly reported as rates of medications reviewed but also included outcome frequencies per provider or per patient that were not convertible to rates.) In general, higher rates of PIP were found in studies of high-risk populations that incorporated multiple measurements of medication usage for each patient (1 year of clinic records, eg). Smaller PIP rates were seen in studies of general primary care populations over shorter time frames (examining the medication list in the EHR at 1 clinic visit or the prescriptions generated from 1 clinic visit).

Results
In all, 1464 articles appeared in the initial search. After reviewing titles, 154 articles were chosen for further review. Fifty-six articles met the search criteria and were included in the final analysis (PRISMA flowchart shown in Supplementary Figure 1).

Forty-three studies were noninterventional (Table 1),15–58 and 13 included an intervention (Table 2).59–71 The noninterventional studies that measured potentially inappropriate prescribing/medications (PIPs) were all judged to be of low risk of bias because they included defined patient populations with clear process measure outcomes (whether or not a Beers list medication was on a patient’s medication list, eg). The risk of bias assessment of noninterventional studies that measured ADEs or drug-related problems (DRPs) is shown in Supplementary Table 3. One of the 11 studies was judged to be of low risk of bias, 4 with some concern, 6 with a high risk of bias. Among the interventional studies, most also measured process outcomes, such as whether the PCP altered a prescription based on a pharmacist’s feedback or a drug allergy was not listed in the medical record, not patient-oriented outcomes. The risk of bias table for each interventional study is presented in Supplementary Table 4. Only 1 study was judged to be of low risk of bias. The others had a high risk of bias.

discrepancies were further analyzed and discussed by all 4 reviewers (RY, AE, KF, NH), until consensus was reached.

There was significant heterogeneity in the countries of origin, measures of medication safety, and intensity and style of data collection, so it was not appropriate to combine the data using meta-analysis. In addition, this review did not aim to provide a definitive summary statistic for the frequency of medication safety events but rather to show the range in measures and estimates. We also did not attempt to standardize different outcome reporting rates (per prescription, clinic visit, or patient over some longer period of time) to a single measure. Rather, our primary results were expressed in the original units of each study and therefore provide an assessment of broad trends.

We did not predefine concepts such as “high-risk” but reported the descriptions provided by the identified studies. We did not register this study with a database such as PROSPERO.
Lead Author (Year)	Setting	Number of Patients or Prescriptions	High-Risk Subpopulation?	Definition of Medical Error	Error Rate	Other Outcomes
Abramson15 (2011)	PC in NY	2432 paper prescriptions at baseline and 2079 electronic at 1 year	No	PIP—IOM definition of prescribing errors	16.0%	
Abramson16 (2012)	PC in NY	1629 prescriptions at 3 months postimplementation, 1738 at 1 year	No	PIP—IOM definition of prescribing errors	4.5%	
Al-Busadi17 (2020)	Oman PC	377 patients	Ages 65+	PIP—Beers, STOPP	12.7%-17.2%	
Almeida18 (2019)	Brazilian PC	227 patients	≥ 60 years of age	PIP—Beers	53.7%-63.4%	
Amos19 (2015)	Italy PC	865,354 patients	Ages 65+	PIP—own definition (Mao)	28% had at least one PIP	
Aspinall20 (2002)	Pennsylvania Veterans Affairs PC	198 patient/provider pairs	No, but limited to a VA outpatient population	ADE—provider or patient report	26%	83 ADEs reported in active surveillance versus 1 in passive reporting
Aubert21 (2016)	Swiss university PC	1002 patients	Ages 50-80	PIP—STOPP PPO—START	PIP 6.7%, PPO 27.5%	> 65 years, 5.6% PIP, 32.2% PPO
Avery22 (2013)	England PC	6048 prescriptions for 1777 patients	No	PIP—own definition	4.9%	
Awad23 (2019)	Kuwait PC	478 patients, 2645 prescriptions	Ages 65+	PIP—Beers, STOPP, FORTA, MAI	44.3%-55.1%	
Barry24 (2016)	Northern Ireland PC	6826 patients	Medicine for dementia dispensed	PIP—STOPP	64.4%	
Blo25 (2015)	UK PC	13,900 patients	Ages 65+	PIP—Beers	38.4% any, 17.4% long-term	
Bregnhøj26 (2007)	Danish GP patients	212 patients, 1621 prescriptions	Age of 65+, taking 5 or medications	PIP—MAI	94.3%	
Brekke27 (2008)	Norwegian GP patients	85,836 patients	Ages 70+	PIP—own definition	18.4%	
Bruin-Huisman28	Dutch GP patients	4537 patients per year	Ages 65+	PIP—STOPP PPO—START	34.7% PIP, 84.8% PPO	
Cahir29 (2014)	Irish PC	931 patients	Ages 70+	PIP—STOPP	42% PIP	

Patients with ≥ 2 PIP indicators were twice as likely to have an ADE (adjusted OR 2.21), have a significantly lower mean HRQoL utility (adjusted coefficient − 0.09), and nearly a 2-fold increased risk in the expected rate of A&E visits (adjusted IRR 1.85).
Lead Author (Year)	Setting	Number of Patients or Prescriptions	High-Risk Subpopulation?	Definition of Medical Error	Error Rate	Other Outcomes
Castillo-Paramo30 (2014)	Spanish PC	272 patients	Ages 65+	PIP—STOPP PPO—START	37.5%-50.7%	Two thirds of PIP medications on PC medication list were started by hospital doctors
Chen31 (2005)	England PC	37,940 patients	No	PIP—own definition	0.19% drug-drug, 0.49% drug-disease	
Clark32 (2007)	Scotland PC	2513 ADR reports in year 2000 and 1455 ADR reports in 2001	No	ADE—own definition	The “top 10” medications accounted for 1715 of 2817 (60.9%, 95% CI 59.1, 62.7) ADE reports but only 2.2 million out of a total of 128 million primary care prescriptions (1.7%).	
Corona-Rojo33 (2009)	Mexico public health centers	1400 patients	Ages 70+	PIP—own definition	53%	
Dhabali34 (2011)	Malaysia University PC	17,288 patients	No	PIP—own definition	5.3%	
Dhabali35 (2012)	Malaysia University PC	23,733 patients	No	PIP—own definition	0.87%	
Diaz Hernandez36 (2018)	US federally funded PC	2218 patients	Ages 65+ with at least one chronic condition who received pharmacy services with 2 or more medications and experienced a medication error or an ADE	PIP—own definition, several sources	Medication errors 12.5/100, potential ADE 9.4/100, ADE 5.0/100	
Doubova Dubova37 (2007)	Mexico PC	624 patients	Ages 50+ with nonmalignant pain syndrome who received prescriptions of nonopioid analgesics	PIP—own definition	80%	
Fix38 (2011)	German PC	744 patients	Ages 50+ who regularly took one or more drugs, rural areas of Germany, GP home visits	PIP—Beers	18%	

Continued
Lead Author (Year)	Setting	Number of Patients or Prescriptions	High-Risk Subpopulation?	Definition of Medical Error	Error Rate	Other Outcomes
Gnadinger39 (2017)	Switzerland PC	197 cases of medication incidents	No	“Medication incidents” self-described	2.07 per GP per year = 46.5 per 100,000 contacts.	
		180 physicians (GP and pediatricians) at 144 practices				
Goren40 (2017)	Turkish PC	1206 patients	Ages 65 +	PIP—own definition	33%	They detected 29 (0.9%) A, 380 (11.8%) B, 2494 (77.7%) C, 289 (9%) D, and 18 (0.6%) X risk rating category PIPs
Guthrie41 (2011)	UK PC	139,404 patients	“Particularly vulnerable” defined by age, pre-existing disease, or pre-existing coprescription.	PIP—STOPPPO—START	13.9%	
Jayaweera42 (2020)	US PC	111,461 PCPs who specialized in family medicine, internal medicine, general practice, and geriatric medicine	Medicare Part D patients	PIP—Beers	4.9%	PIP varied widely across PCPs with the bottom quartile at 1.2% and the top quartile at 10.1%
Kheir43 (2014)	Qatar PC	52 patients, 175 DRPs were identified with an average of 3.4 DRPs per patient	No	DRP—own definition	3.4 DRPs per patient	The most commonly reported DRPs were nonadherence to drug therapy (31%), need for education and counseling (23%), and ADRs (21%)
Khoja44 (2011)	Saudi Arabia PC	463 prescriptions from public clinics and 2836 from private clinics	No	“Prescription errors”—own definition	18.7%	Type B errors were detected in 8.0% versus 6.0% of drugs prescribed by public and private clinics, respectively and type C errors were found in 2.2% versus 1.1% drugs prescribed by public and private clinics, respectively
Komagamine45 (2018)	Japan hospital PC	671 patients	65+	PIP—Beers	54.8% in patients exempt from payment, 36.0% for others	
Kovacevic46 (2017)	Serbian PC	388 prescriptions	“Elderly” with polypharmacy	DRP—own definition	98.2% with at least one DRP	
Lead Author (Year)	Setting	Number of Patients or Prescriptions	High-Risk Subpopulation?	Definition of Medical Error	Error Rate	Other Outcomes
--------------------	---------	------------------------------------	--------------------------	-----------------------------	------------	---------------
Kunac47 (2014)	New Zealand PC	376 voluntary reports	No	Medication errors—own definition	14.7% of reports listed a patient harm	
Miller49 (2006)	Australian PC	8215 patients Each GP was asked to record whether or not each of 30 patients had experienced an ADE in the preceding 6 months	No	ADE—own definition; frequency of hospitalization	852 patients (10.4%) had experienced ADE	A GP severity rating for the most recent ADE was provided for 551 patients. Over half (53.9%) were rated as having a “mild” event(s), with a third rated as “moderate.” A “severe” rating was given for 55 patients (10.0% of those with an ADE or 6.7 per 1000 patients sampled). Responses to the question on hospitalization were received for 223 patients in survey 2. Of these, 7.6% (95% CI, 3.6 to 11.6) had been hospitalized as a result of the most recent ADE (9.7 per 1000 patients in the total sample). Preventability was judged for 327 patients in survey 3. GPs classified the ADE as preventable for 23.2% (95% CI, 17.4 to 29.1), made up of 19.9% of “mild” events, 25% of “moderate” and 32% of “severe” events
Oliveira50 (2015)	Brazilian family health units	142 patients Ages 60+	PIP—Beers, STOPP	33.8%-51.8%		
Perez51 (2018)	Ireland PC	38,229 patients Ages 65+	PIP—STOPP	45.3%-51.0%		
Ryan52 (2009)	Ireland PC	500 patients Ages 65+ and at least 1 medication	PIP—Beers and IPET	13%		
Ryan53 (2009)	Ireland PC	1329 patients Ages 65+ and at least 1 medication	PIP—Beers, STOPP PPO—START	18.3%-21.4% 22.7%	177 (61.8%) of the potential PIPs identified were of “high severity”	
Stocks54 (2015)	UK PC	949,552 patients No	PIP—own definition	5.26%		
Trinkle55 (2017)	Ohio University PC	1160 patients A pharmacist performed a comprehensive EHR review and conducted a telephone interview with each of the respective participants at 7-21 days (first screen) and 30-60 days (second screen) following a medication change	ADE—own definition	Of the 701 participants and 1568 unique medication changes, 226 (32%) suspected ADEs were identified; 30% of the suspected ADEs were deemed to be “definite” or “probable” following causality assessment, 21% of the 68 ADEs were preventable, and 40% were ameliorable	All ADEs were considered significant; however, only 2 were serious or life-threatening	
Table 1. Continued

Lead Author (Year)	Setting	Number of Patients or Prescriptions	High-Risk Subpopulation?	Definition of Medical Error	Error Rate	Other Outcomes
Wallace56 (2017)	Ireland PC	605 patients for ADE interview; 662 patients for EQ-5 Days-3L questionnaire; 806 patients for chart review	Ages 70+	PIP—Beers, STOPP ADE—own definition HRQoL—Euro Qual-5 Dimensions (EQ-5 Days)-3L	40% STOPP 26% Beers 74% ≥ 1 ADE	In multivariable analysis ≥2 Beers 2012 PIP was not associated with ADE’s (adjusted incidence rate ratio 1.00 [95% CI 0.78, 1.29]), poorer HRQoL (adjusted coefficient −0.05 [95% CI −0.11, 0.003]), A&E visits (adjusted OR 1.54 [95% CI 0.88, 2.71]), or emergency admission (adjusted OR 0.72 [95% CI 0.41, 1.28]). At baseline, the prevalence of ≥ 1 PIP was 40% (n = 243), with 362 (60%) participants prescribed no PIP, 142 (24%) 1 PIP, and 101 (16%) ≥ 2 PIPs
Wauters57 (2016)	Belgium PC	503 patients in the Belfrail-Med cohort	Ages 80+	PIP—STOPP PPO—START	PIP 56% PPO 67%	Increase risk of hospitalization (HR 1.26) and mortality (HR 1.39) for underuse but not overuse
Wucherer58 (2017)	Germany PC	446 patients	Ages 70+ with positive screening for dementia	DRP—PIE-Doc®-System	92.8%	Problems related to administration and compliance were the most common group of DRPs (59.9% of registered DRPs; n = 645), followed by problems with drug interactions (16.7%; n = 180), problems with inappropriate drug choice (14.7%; n = 158), problems with the dosage (6.2%; n = 67), and problems with ADEs (2.5%; n = 27)

Abbreviations: A&E, accident & emergency; ADE, adverse drug event; ADR, adverse drug reaction; Beers, Beer’s criteria; DRP, drug-related problem; EHR, electronic health record; FORTA, fit for the aged; GP, general practitioner; HRQoL, health-related quality of life; IOM, Institute of Medicine; MAI, medication appropriateness index; PC, primary care; PCP, primary care physician; PIP, potentially inappropriate prescribing; PPO, potential prescribing omission; START, screening tool to alert to right treatment; STOPP, screening tool of old people’s prescriptions.
Lead Author (Year)	Setting	Number of Patients or Prescriptions	High-Risk Subpopulation	Definition of Medical Error	Intervention	Error Rate	Other Outcomes	
Benson59 (2018)	Australian GP patients	493 patients	Polypharmacy (5+ medications), diabetes, adherence concerns, asthma/chronic obstructive pulmonary disease, inadequate response to therapy, suspected adverse reaction, patient request, pain management, recent hospital discharge, and medication with a narrow therapeutic index	DRP—own definition	Feedback by pharmacist to GP	1124 DRPs in 493 consultations, 685/984 (70%) recs accepted. 94% of patients had at least 1 DRP	Pharmacists made a total of 984 recommendations in relation to the 1140 DRPs identified, of which 685 (70%) were recorded as acted on by the GP. Harms not measured	
Clyne60 (2015)	Ireland PC	196 patients	Ages 70+	PIP—own definition	Intervention GP participants received a complex, multifaceted intervention	Completion PIP: 100% to 52% in the intervention group, 100% to 77% in the control group (P = .02)	0.7 PIP per patient intervention, 1.18 control (P = .02)	Harms not measured
Clyne61 (2016)	Ireland PC	196 patients—follow-up of primary study	Ages 70+	PIP—own definition	Pharmacist feedback as above.	51% patients with PIP in the intervention group, 76% in the control group (P = .01). The mean number of PIP drugs in the intervention group was 0.61, 1.03 in the control group (P = .01)	Harms not measured	
Gibert62 (2018)	France PC	172 patients	Ages 75+ who were taking at least 5 drugs	PIP—STIPP	GPs taught to use STOPP criteria on their own patients	GP’s intervention decreased the number of PIMs according to STOPP criteria to 106 and was beneficial for 44.9% of the patients (n = 44). The mean MAI score of all medications and PIMs decreased by 14.3% (P < .001) and 39.1% (P < .001) respectively	Harms not measured	
Lead Author	Setting	Number of Patients or Prescriptions	High-Risk Subpopulation	Definition of Medical Error	Intervention	Error Rate	Other Outcomes	
-------------	---------	-------------------------------------	--------------------------	-----------------------------	--------------	------------	---------------	
Howard⁶³ (2014)	UK PC	2038 patient records reviewed	Taking one of 8 classes of potentially hazardous medications	Potentially hazardous prescribing—own definition	Intervention practices received simple feedback plus a pharmacist-led information technology complex intervention (PINCER) lasting 12 weeks	Pharmacists recommended 2105 interventions in 74% (95% CI 73, 76; 1516/2038) of cases and 1685 actions were taken in 61% (95% CI 59, 63; 1246/2038) of cases; control group not reported	Harms not measured	
Leendertse⁶⁴ (2013)	Netherlands PC	364 intervention and 310 control patients	Patients with a high risk on medication-related hospitalizations based on old age, use of 5 or more medicines, nonadherence and type of medication used	Medication-related hospital admissions, ADE, survival, quality of life (EQ5D/Visual Analog scale)	The intervention consisted of a patient interview and evaluation of a pharmaceutical care plan. The patient’s own pharmacist and GP carried out the intervention. The control group received usual care and was cared for by a GP other than the intervention GP	6 (1.6%) admissions in intervention group, 10 in control group (3.2%), p = NS	The secondary outcomes were not statistically significantly different either	
Lenander⁶⁵ (2014)	Sweden PC	209 patients	Ages 65+ and 5+ medications	DRP—own definition	The pharmacist reviewed all medications (prescription, nonprescription, and herbal) regarding recommendations and renal impairment, giving advice to patients and GPs. Each patient met the pharmacist before seeing their GP. Control patients received their usual care	No significant difference was seen when comparing change in DRPs between the groups	Groups not balanced at beginning of trial. Harms not measured	
Lead Author	Year	Setting	Number of Patients or Prescriptions	High-Risk Subpopulation	Definition of Medical Error	Intervention	Error Rate	Other Outcomes
-------------	------	---------	-------------------------------------	-------------------------	----------------------------	--------------	------------	---------------
Lopez-Picazo	2011	Spain PC	81,805 patients of 265 family physicians	No	Potentially serious drug interactions—own definition	Specially designed software analyzed EHR data and generated reports. Physicians and their patients randomized into 4 groups: control, report, sessions, and face-to-face personal interviews	Overall, a baseline mean of 6.7 interactions per 100 patients, which was reduced to 5.3 interactions after follow-up	Harms not measured
Peek	2020	UK PC	47,413 patients in 43 general practices	Have 1 or more risk factors for any of the 12 medication safety indicators at the start of the intervention	12 medication safety indicators (10 relating to potentially hazardous prescribing and 2 to inadequate blood-test monitoring) developed for SMASH	SMASH comprised (1) training of clinical pharmacists to deliver the intervention; (2) a web-based dashboard providing actionable, patient-level feedback; and (3) pharmacists reviewing individual at-risk patients and initiating remedial actions or advising general practitioners doing so.	At baseline, 95% of practices had rates of potentially hazardous prescribing (composite of 10 indicators) between 0.88% and 6.19%. The prevalence of potentially hazardous prescribing reduced by 27.9% (95% CI 20.3% to 36.8%, \(P < .001 \)) at 24 weeks and by 40.7% (95% CI 29.1% to 54.2%, \(P < .001 \)) at 12 months	Harms not measured
Singh	2012	New York PC	1125 patients preintervention; 1050 patients postintervention	Ages 65+	ADE—own definition	This was a cluster randomized trial in which 12 practices were each randomized to one of 3 states (4 practices each): (1) team resource management intervention; (2) team resource management intervention with PEA; (3) no intervention (comparison group).	In the "Intervention with PEA" group there was a statistically significant decrease in the overall rate of preventable ADEs after the intervention compared to before (7.4 per 100 patient-years vs 12.6, \(P = .018 \)) and in the rate of moderate or severe (combined) preventable ADEs (1.6 vs 6.4, \(P = .035 \)). Examples of preventable errors include missed allergy, wrong dosage, errors of dispensing, administration errors, and failure to order or complete laboratory monitoring. Harms not measured. Groups were not balanced at baseline.	
Vanderman	2017	Veterans Affairs PC in North Carolina	1539 patients preintervention; 1490 patients postintervention	Ages 65+	PIP—Beers	Computerized physician order entry in Epic EHR	PIP rate 12.6% preintervention, 12.0% post (\(P = .NS \))	Top 10 PIPs 9.0% to 8.3%, (\(P = .016 \)) Harms not measured
A small subset of the studies (6/56 [10.7%]) reported actual harms (Clark et al.\(^32\) reported adverse drug reactions but provided no further detail on harms.).\(^{20,29,49,55,56,64}\) In a study that may have included events not originating from the primary care clinic, 55/8171 (0.67%) of patients reported a severe ADE in the past 6 months and were hospitalized as a result (the hospitalization estimate was calculated from numbers in the article that only included 1 of 3 study periods).\(^{49}\) General practitioners judged 23.2% of the ADEs to be preventable. Another study, using its own definition of ADE, concluded that all ADEs were significant, and 0.2% of patients suffered a “serious or life-threatening” ADE (this is a good example of the subjectivity of these ADE measurements—in 1 of the 2 cases, the patient passed out and fell after a medication dose was reduced; in the other, a patient with a history of falls fell, went to the ED, and the X-rays were normal).\(^{55}\) A study using its own definition of ADE calculated that 1.7% of prescriptions had any level of ADE, with no further reporting of actual harm.\(^{32}\) Another study using its own definition of a medication incident reported an ADE rate of 0.047% of physician-patient contacts over 1 year.\(^{39}\)

Three noninterventional studies correlated PIP findings with actual harm. One found no association between patients with \(\geq 2\) PIPs and harms such as ADEs, reduced quality of life, ED visits, or hospital admissions.\(^{56}\) One found an association between \(\geq 2\) PIP and a lower mean health-related quality of life utility (adjusted coefficient \(-0.09, SE 0.02, P < .001\)) and an increased risk in the expected rate of ED visits (adjusted IRR 1.85; 95% CI 1.32, 2.58, \(P < .001\)) but no difference in hospitalizations or other outcomes.\(^{29}\) One study in frail elderly greater than 80 years of age found an adjusted increased risk of hospitalization (HR 1.26) and mortality (HR 1.39) for underuse of medications but not overuse.\(^{57}\)

One intervention study measured patient harms and found that the intervention had no impact on hospitalizations.\(^{64}\) Most intervention studies involved pharmacists reviewing patient charts or pharmacy data and making recommendations to the physicians, which were accepted to varying degrees (25% to 70%).\(^{29,39,61,63\text{-}65,67,68}\) less so with automated EHR reminders (5% to 21%).\(^{66,69}\) These recommendations were mostly process changes such as adding indications for the medications or ordering lab tests for routine monitoring.

Table 2. Continued

Lead Author	Setting	Number of Patients or Prescriptions	High-Risk Subpopulation	Description of Medical Error	Error Rate	Other Outcomes
Wessell \(^32\) (2008)	South Carolina PC	124,802 patients	Ages 65+	High-risk medication use based on 44 indicators	Always inappropriate 0.41%, rarely appropriate medication decreased from 1.48% to 1.30%	Harms not measured
Wessell \(^71\) (2013)	20 PC sites in 14 US states	49,047 patients	High-risk medication use based on 44 indicators	Always inappropriate 0.41%, rarely appropriate medication decreased from 1.48% to 1.30%	Improved 3/5 measures by 2.9% to 4.0%; 2/5 measures unchanged over 2 years	Harms not measured

Abbreviations: ADE, adverse drug event; Beers, Beer’s criteria; DRP, drug-related problem; EHR, electronic health record; GP, general practitioner; MAI, medication appropriateness index; PC, primary care; PEA, practice enhancement associate; PIM, potentially inappropriate medication; PIP, potentially inappropriate prescribing; PREP, practice enhancementassociate; STOPP, screening tool of old people’s prescriptions.
No studies in our review considered patient shared decision-making processes or cases where patients accepted a degree of risk from a medication to achieve another goal more important to the patient. No studies measured other aspects of harms reported by patients in other studies to be important such as emotional discomfort; wasted time for patients, physicians, and the health care system; loss of relationship and trust in the clinician; and financial costs to patients, clinicians, and the health care system.

Discussion
We found that actual harm from medication errors in primary care, versus potential for harm, is much lower than is commonly quoted (or projected) and rarely results in ED visits or hospital admissions. The existing literature does not take into account shared patient decision-making, accepted risk-benefit trade-offs, or deprescribing goals in the elderly, nor does it measure other patient-centered outcomes such as patient and caregiver hassles, cost, and loss of trust with the primary care team. The ranges of reported ADE and medication error rates illustrate the inadequacies of current evidence to suggest both the scope of medication error-related harms as well as how medication errors should be defined.

Limitations
There are limitations to the literature and our analysis. Most identified studies only measured PIPs and not patient harms. Medication lists were obtained from available clinic or national pharmacy records. There may have been discrepancies between the electronic reports and the medications that PCPs and patients considered to be the active list. In other studies, as many as 90% of the patients at home were found to have inaccurate medication information in their chart, and nearly half of patients experienced medication discrepancies during care transitions. We attempted to limit studies to only those where the chronic and acute medications were prescribed by PCPs. In studies using national pharmacy databases, it is possible that some of the prescriptions were written by non-PCPs. The studies also did not make distinctions between medications that were on the patients’ medication lists that were heavily influenced by non-PCP physicians versus medications originally prescribed by the PCPs. The majority of studies self-described their patient populations as “high-risk,” though there were many variations of that definition.

Our study was limited to only the medication list and prescribing in the primary care center. We did not include other sources of medication safety concerns in primary care such as transitions from hospital or rehabilitation facilities. Therefore, our review might have missed important sources of medication safety concerns related to primary care. We limited our searches to our definition of studies in the EHR era. It is possible that relevant studies were missed using this strategy. We limited our searches to primary care terms. It is possible that relevant studies were conducted in primary care settings that did not use that keyword or a similar keyword such as family medicine. Our review did not include studies that defined a medication error as a chronic disease goal not achieved (such as a hemoglobin A1c for a diabetic patient) or where laboratory monitoring for adverse drug effects did not occur.

Implications for Practice, Policy, and Future Research
When viewing harms from a patient’s perspective, Kuzel et al found that 70% of reported harms were psychological, including anger, frustration, belittlement, and loss of relationship and trust in one’s clinician, which are in contrast with physical harms such as pain, bruising, worsening medical condition, emergency visits, and hospitalizations. Such psychological harms were not reported in the studies in our review. Kuzel et al concluded that errors reported by interviewed patients suggest that breakdowns in access to and relationships with clinicians may be more prominent medical errors than technical errors in diagnosis and treatment.

Perhaps medication safety should not even be conceptualized as complying with recommendations from medication lists such as Beers, STOPP, or START. Lai et al interviewed frontline clinicians and patients and found in both groups that safety was conceptualized more in terms of work functions involving grouping of tasks or responsibilities, rather than domains such as medications, diagnoses, care transitions, referrals, and testing. In addition not considered in the literature is the critical roles of patients and families beyond the prescribing actions by family physician. Review of hypoglycemic events resulting in ED visits showed that the most common...
precipitants were reduced food intake and administration of the wrong insulin product.82

A commonly used definition of an ADE was that there was at least a 50% chance that the symptom was related to the medication in question. However, most of the reported ADEs were mild, such as bruising when taking warfarin or constipation when taking a calcium channel blocker. Similar to our study focused on the primary care clinic, a recent randomized trial of care transitions from hospital to primary care found that in-home assessments by pharmacists with communication to the primary care team made no impact on ADEs or medication errors.83

In the intervention studies, we found that the impact on a prescriber to change medications is greater if there is personal communication by the pharmacist and the change requested by the pharmacist is relatively minor (such as adding the indication to the prescription or updating the medication list in the EHR) and uncommonly impacts major prescribing decisions such as whether the patient should take a drug at all. Perhaps shared decision-making processes help explain why PCPs ignore most computerized drug alerts84–86 and why the intervention studies identified in this review made little to no impact on PIP rates. Even high-risk medications such as benzodiazepines are helpful in selective elderly patients, where the benefits likely outweigh the risks.87

Other studies of ambulatory care outside of primary care have measured actual harms. For example, Gandhi et al estimated that rates of life-threatening ADEs in a multispecialty group were 138/1000 person-years, but that only 11% were preventable.88 Most of the root causes of the preventable cases were patients that did not take their medications as prescribed, not PIP by prescribers.

Our findings share some conclusions with other reviews on medication safety in primary care, including most medication errors are “not clinically important”;89 ADEs are not usually preventable;90 computer decision support inconsistently affects PIP rates with no evidence it reduces patient harms91 and actually creates new sources of error such as alarm fatigue;92 and the variance of reported “medication errors” is large and a function of patient populations, methods, definitions, and the parts of the system studied—and interventions make little difference.93 Medication safety is not measured well with ADEs, because many are expected side effects of the medications and are not preventable. Safety is better conceptualized as a series of actions to perform, which is more analogous to aviation safety, and is consistent with how frontline primary care teams conceptualize safety.81 Our review confirms other observations that potential medication errors do not usually result in injuries or fatal outcomes,94 and conversely, just because a patient experienced an ADE does not mean that a medication error occurred. The Agency for Healthcare Research and Quality (AHRQ) first highlighted these distinctions in 2019, adding subcategories to ADEs such as preventable, potential, ameliorable, and nonpreventable.95 The vast majority of studies in our sample do not make these distinctions.

EHR-focused studies have found that alerts are ignored by physicians 90% of the time in adult ambulatory care,84 and acceptance rates of alternative recommendations to potentially inappropriate medications followed only 11.1% of the time.86 EHR alerts for coprescribing high-risk medication combinations such as benzodiazepines and opioids did not change prescribing practices.85 EHRs were found to be the root cause of medical errors at high risk for an adverse event in 14% of reported cases in an embedded practice-based anonymous reporting system.96 In summary, our review and other evidence concludes that alerts from computers suggesting medication changes to clinicians are most often ignored, implying that there are likely good reasons for patients to be on medications that computerized algorithms flag as high risk.97

Future for Primary Care Medication Safety Research

We make the following recommendations for future research and practice of medication safety in primary care.

1. All studies purporting to measure preventable ADEs (to use the AHRQ definitions) in the future should:
 a. Include chart reviews of flagged cases. Potentially inappropriate prescribing rarely leads to actual physical harm.
 b. Take into consideration patient shared decision-making, acceptance of risk-benefit trade-offs, and deprescribing goals in elderly patients and do not count these decisions as medical errors. Deprescribing is complex. Few studies have examined the success rate and safety of deprescribing, and there is a
risk of relapse of symptoms. Deeper consideration should also be given to the critical roles of patients and families beyond the prescribing actions by PCP.

c. Include patient harms such as psychological injury, wasted time, unnecessary trips to health care facilities, and increased costs. To adjudicate and measure these outcomes, individual chart reviews will likely be necessary with judgement calls made by clinicians for each potential case. Also, patients can be asked directly if they believe their medications may be causing illness.

2. For primary care practices trying to improve the quality of their care, voluntary reporting systems for clinicians, staff, and patients are feasible to guide understanding of potential quality improvement themes, though they are unreliable for absolute measures of errors or harms. Confidential reports appear to be superior to anonymous reports and may be more useful in understanding errors and designing interventions to improve patient safety.

3. Primary care offices could possibly be made safer by changing work flows, improving the hectic environment, and allowing the primary care teams to have more time to review medication concerns. For example, a study examining how receptionists and general practitioners interact found potential sources of error that could be reduced with improved communication.

4. Future studies designed to measure the effects of interventions on more serious physical harms caused by preventable ADEs will require thousands of high-risk patients, as rates are expected to be less than 1% of the study population per year.

5. There may be a role for a core outcome set to be developed for primary care medication safety (www.comet-initiative.org). The complexity of primary care and multifaceted nature of primary care prescribing outcomes make this a difficult task.

To see this article online, please go to: http://jabfm.org/content/35/3/610.full.

References

1. Sarkar U, Lopez A, Maselli JH, Gonzales R. Adverse drug events in U.S. adult ambulatory medical care. Health Serv Res 2011;46:1517–33.
2. Gandhi TK, Weingart SN, Borus J, et al. Adverse drug events in ambulatory care. N Engl J Med 2003;348:1556–64.
3. Elder NC, Pallerla H, Regan S. What do family physicians consider an error? A comparison of definitions and physician perception. BMC Fam Pract 2006;7:73.
4. Young RA, Roberts RG, Holden RJ. The challenges of measuring, improving, and reporting quality in primary care. Ann Fam Med 2017;15:175–82.
5. Timetti M, Dindo L, Smith CD, et al. Challenges and strategies in patients’ health priorities-aligned decision-making for older adults with multiple chronic conditions. PloS One 2019;14:e0218249.
6. Scott IA, Hilmer SN, Reeve E, et al. Reducing inappropriate polypharmacy: the process of deprescribing. JAMA Intern Med 2015;175:827–34.
7. Ferdinand KC, Yadav K, Nasser SA, et al. Disparities in hypertension and cardiovascular disease in blacks: the critical role of medication adherence. J Clin Hypertens (Greenwich) 2017;19:1015–24.
8. Elder NC, Dovey SM. Classification of medical errors and preventable adverse events in primary care: a synthesis of the literature. J Fam Pract 2002;51:927–32.
9. Feng C, Le D, McCoy AB. Using electronic health records to identify adverse drug events in ambulatory care: a systematic review. Appl Clin Inform 2019;10:123–8.
10. Panesar SS, deSilva D, Carson-Stevens A, et al. How safe is primary care? A systematic review. BMJ Qual Saf 2016;25:544–53.
11. Garfield S, Barber N, Walley P, Willson A, Eliasson L. Quality of medication use in primary care—mapping the problem, working to a solution: a systematic review of the literature. BMC Med 2009;7:50.
12. Munn Z, Moola S, Liis K, Riitano D, Tufanaru C. Methodological guidance for systematic reviews of observational epidemiological studies reporting prevalence and cumulative incidence data. Int J Evid Based Healthc 2015;13:147–53.
13. Cochrane Handbook for Systematic Reviews of Interventions [Internet]; 2021 [cited 2021 Aug 10]. Available from: https://training.cochrane.org/handbook/current/chapter-07.
14. Cochrane Effective Practice and Organization of Care (EPOC) [Internet]. EPOC resources for review authors; 2017 [cited 2021 May 15]. Available from: epoc.cochrane.org/resources/epoc-resources-review-authors.
15. Abramson EL, Barron Y, Quaresimo J, Kaushal R. Electronic prescribing within an electronic health record reduces ambulatory prescribing errors. Jt Comm J Qual Patient Saf 2011;37:470–8. Oct.
16. Abramson EL, Bates DW, Jenter C, et al. Ambulatory prescribing errors among community-based providers in two states. J Am Med Inform Assoc 2012;19:644–8.
17. Al-Busaidi S, Al-Kharusi A, Al-Hinai M, et al. Potentially inappropriate prescribing among elderly patients at a primary care clinic in Oman. J Cross Cult Gerontol 2020;35:209–16.

18. Almeida TA, Reis EA, Pinto IVL, et al. Factors associated with the use of potentially inappropriate medications by older adults in primary health care: an analysis comparing AGS Beers, EU(7)-PIM List, and Brazilian Consensus PIM criteria. Res Social Adm Pharm 2019;15:370–7.

19. Amos TB, Keith SW, Del Canale S, et al. Inappropriate prescribing in a large community-dwelling older population: a focus on prevalence and how it relates to patient and physician characteristics. J Clin Pharm Ther 2015;40:7–13.

20. Aspinall MB, Whittle J, Aspinall SL, Maher RL, Jr., Good CB. Improving adverse-drug-reaction reporting in ambulatory care clinics at a Veterans Affairs hospital. Am J Health Syst Pharm 2002;59:841–5.

21. Aubert CE, Streit S, Da Costa BR, et al. Polypharmacy and specific comorbidities in university primary care settings. Eur J Int Med 2016;35:35–42.

22. Avery AJ, Ghaleb M, Barber N, et al. The prevalence and nature of prescribing and monitoring errors in English general practice: a retrospective case note review. Br J Gen Pract 2013;63:e543–e553.

23. Awad A, Hanna O. Potentially inappropriate medication use among geriatric patients in primary care setting: a cross-sectional study using the Beers, STOPP, FORTA and MAI criteria. PloS One 2019;14:e0218174.

24. Barry HE, Cooper JA, Ryan C, et al. Potentially inappropriate prescribing among people with dementia in primary care: a retrospective cross-sectional study using the Enhanced Prescribing Database. J Alzheimers Dis 2016;52:1503–13.

25. Ble A, Masoli JA, Barry HE, et al. Any versus long-term prescribing of high risk medications in older people using 2012 Beers criteria: results from three cross-sectional samples of primary care records for 2003/4, 2007/8 and 2011/12. BMC Geriatr 2015;15:146.

26. Bregnhøj L, Thrstrup S, Kristensen MB, Bjerrum L, Sonne J. Prevalence of inappropriate prescribing in primary care. Pharm World Sci 2007;29:109–15.

27. Brekke M, Rognstad S, Straand J, et al. Pharmacologically inappropriate prescriptions for elderly patients in general practice: How common? Baseline data from the Prescription Peer Academic Detailing (Rx-PAD) study. Scand J Prim Health Care 2008;26:80–5.

28. Bruin-Huisman L, Abu-Hanna A, van Weert H, Beers E. Potentially inappropriate prescribing to older patients in primary care in the Netherlands: a retrospective longitudinal study. Age Ageing 2017;46:614–9.

29. Cahir C, Bennett K, Teljeur C, Fahey T. Potentially inappropriate prescribing and adverse health outcomes in community dwelling older patients. Br J Clin Pharmacol 2014;77:201–10.

30. Castillo-Paramo A, Claveria A, Verdejo González A, Rey Gómez-Serramillos I, Fernández-Merino MC, Figueiras A. Inappropriate prescribing according to the STOPP/START criteria in older people from a primary care setting. Eur J Gen Pract 2014;20:281–9.

31. Chen YF, Avery AJ, Neil KE, Johnson C, Dewey ME, Stockley HI. Incidence and possible causes of prescribing potentially hazardous/contraindicated drug combinations in general practice. Drug Saf 2005;28:67–80.

32. Clark RC, Maxwell SRJ, Kerr S, et al. The influence of primary care prescribing rates for new drugs on spontaneous reporting of adverse drug reactions. Drug Saf 2007;30:357–66.

33. Corona RJ, Altagracia MM, Kravzov JJ, Vazquez CL, Perez ME, Rubio-Poo C. Potential prescription patterns and errors in elderly adult patients attending public primary health care centers in Mexico City. CIA 2009;4:343–50.

34. Dhabali AA, Awang R, Zyoud SH. Pharmaco-epidemiologic study of the prescription of contraindicated drugs in a primary care setting of a university: a retrospective review of drug prescription. CP 2011;49:500–9.

35. Dhabali AA, Awang R, Zyoud SH. Clinically important drug-drug interactions in primary care. J Clin Pharm Therapeutics 2012;37:426–30.

36. Diaz Hernandez SH, Cruz-Gonzalez I. Incidence and preventability of medication errors and ADEs in ambulatory care older patients. Consult Pharm 2018;33:454–66.

37. Doubova Dubova SV, Reyes-Morales H, Torres-Arreola LP, Suarez-Ortega M. Potential drug-drug and drug-disease interactions in prescriptions for ambulatory patients over 50 years of age in family medicine clinics in Mexico City. BMC Health Serv Res 2007;7:147.

38. Fiss T, Dreier A, Meinke C, van den Berg N, Ritter CA, Hoffmann W. Frequency of inappropriate drugs in primary care: analysis of a sample of immobile patients who received periodic home visits. Age Ageing 2011;40:66.

39. Gnadinger M, Conen D, Herzig L, et al. Medication incidents in primary care medicine: a prospective study in the Swiss Sentinel Surveillance Network (Sentinella). BMJ Open 2017;7:e013658.

40. Goren Z, Demirkapu MJ, Akpinar Acet G, Cali S, Gulcebi Idriz Oglu M. Potential drug-drug interactions among prescriptions for elderly patients.
patients in primary health care. Turk J Med Sci 2017;47:47–54.

41. Guthrie B, McCowan C, Davey P, Simpson CR, Dreischulte T, Barnett K. High risk prescribing in primary care patients particularly vulnerable to adverse drug events: cross sectional population database analysis in Scottish general practice. BMJ 2011;342:d3514.

42. Jayaweera A, Chung Y, Jabbarpour Y. Primary care physician characteristics associated with prescribing potentially inappropriate medication for elderly patients: Medicare Part D data. J Am Board Fam Med 2020;33:561–8.

43. Kheir N, Awaisu A, Sharfi A, Kida M, Adam A. Drug-related problems identified by pharmacists conducting medication use reviews at a primary health center in Qatar. Int J Clin Pharm 2014;36:702–6.

44. Khoja T, Neyaz Y, Qureshi NA, Magzoub MA, Haycox A, Walley T. Medication errors in primary care in Riyadh City, Saudi Arabia. Eastern Mediterranean Health J 2011;17:156–9.

45. Komagamine J, Hagane K. Effect of total exemption from medical service co-payments on potentially inappropriate medication use among elderly ambulatory patients in a single center in Japan: a retrospective cross-sectional study. BMC Res Notes 2018;11:199.

46. Kovacevic SV, Miljkovic B, Culacic M, et al. Evaluation of drug-related problems in older polypharmacy primary care patients. J Eval Clin Pract 2017;23:860–5.

47. Kunac DL, Tatley MV, Seddon ME. A new web-based Medication Error Reporting Programme (MERP) to supplement pharmacovigilance in New Zealand—findings from a pilot study in primary care. N Z Med J 2014;127:69–81.

48. Lynch J, Rosen J, Selinger HA, Hickner J. Medication management transactions and errors in family medicine offices: a pilot study. In: Henriksen K, Battles JB, Keyes MA, Grady ML, editors. Advances in Patient Safety: New Directions and Alternative Approaches (Vol. 4, Technology and Medication Safety). Rockville, MD: AHRQ; 2008.

49. Miller GC, Britth HC, Valenti L. Adverse drug events in general practice patients in Australia. Med J Aust 2006;184:321–4.

50. Oliveira MG, Amorim WW, de Jesus SR, Heine JM, Coqueiro HL, Passos LC. A comparison of the Beers and STOPP criteria for identifying the use of potentially inappropriate medications among elderly patients in primary care. J Eval Clin Pract 2015;21:320–5.

51. Perez T, Moriarty F, Wallace E, McDowell R, Redmond P, Fahey T. Prevalence of potentially inappropriate prescribing in older people in primary care and its association with hospital admission: longitudinal study. BMJ 2018;363:k4524.

52. Ryan C, O’Mahony D, Kennedy J, et al. Appropriate prescribing in the elderly: an investigation of two screening tools, Beers criteria considering diagnosis and independent of diagnosis and improved prescribing in the elderly tool to identify inappropriate use of medicines in the elderly in primary care in Ireland. J Clin Pharm Ther 2009;34:369–76.

53. Ryan C, O’Mahony D, Kennedy J, Weeble P, Byrne S. Potentially inappropriate prescribing in an Irish elderly population in primary care. Br J Clin Pharmacol 2009;68:936–47.

54. Stocks SJ, Kontopantelis E, Akbarow A, Rodgers S, Avery AJ, Ashcroft DM. Examining variations in prescribing safety in UK general practice: cross sectional study using the Clinical Practice Research Datalink. BMJ 2015;351:h5501.

55. Trinkley KE, Weed HG, Beatty SJ, Porter K, Nahata MC. Identification and characterization of adverse drug events in primary care. Am J Med Qual 2017;32:518–25.

56. Wallace E, McDowell R, Bennett K, Fahey T, Smith SM. Impact of potentially inappropriate prescribing on adverse drug events, health related quality of life and emergency hospital attendance in older people attending general practice: a prospective cohort study. GERONA 2017;72:271–7.

57. Wauters M, Elseviers M, Vaes B, et al. Too many, too few, or too unsafe? Impact of inappropriate prescribing on mortality, and hospitalization in a cohort of community-dwelling oldest old. Br J Clin Pharmacol 2016;82:1382–92.

58. Wucherer D, Thyrian JR, Eichler T, et al. Drug-related problems in community-dwelling primary care patients screened positive for dementia. Int Psychogeriatr 2017;29:1857–68.

59. Benson H, Lucas C, Benrimoj SI, Kmet W, Williams KA. Pharmacists in general practice: recommendations resulting from team-based collaborative care. Aust J Prim Health 2018;24:448–54.

60. Clynne B, Smith SM, Hughes CM, OPTI-SCRIPT study team, Effectiveness of a multifaceted intervention for potentially inappropriate prescribing in older patients in primary care: a cluster-randomized controlled trial (OPTI-SCRIPT Study). Ann Fam Med 2015;13:545–53.

61. Clynne B, Smith SM, Hughes CM, OPTI-SCRIPT study team, Sustained effectiveness of a multifaceted intervention to reduce potentially inappropriate prescribing in older patients in primary care (OPTI-SCRIPT study). Implement Sci. 2016;11:79.

62. Gilbert P, Cabaret M, Moulin M, et al. Optimizing medication use in elderly people in primary care: impact of STOPP criteria on inappropriate prescriptions. Arch Gerontology Geriatrics 2018;75:16–9.
63. Howard R, Rodgers S, Avery AJ, Sheikh A, PINCER trialists. Description and process evaluation of pharmacists’ interventions in a pharmacist-led information technology-enabled multicentre cluster randomised controlled trial for reducing medication errors in general practice (PINCER trial). Int J Pharm Pract 2014;22:59–68.

64. Leendertse AJ, de Koning GH, Goudsward AN, et al. Preventing hospital admissions by reviewing medication (PHARM) in primary care: an open controlled study in an elderly population. J Clin Pharm Ther 2013;38:379–87.

65. Lenander C, Elfsson B, Danielsson B, Midlov P, Hasselstrom J. Effects of a pharmacist-led structured medication review in primary care on drug-related problems and hospital admission rates: a randomized controlled trial. Scand J Prim Health Care 2014;32:180–6.

66. Lopez-Picazo JJ, Ruiz JC, Sanchez JF, Ariza A, Aguilera B. A randomized trial of the effectiveness and efficiency of interventions to reduce potential drug interactions in primary care. Am J Med Qual 2011;26:145–53.

67. Peek N, Gude WT, Keers RN, et al. Evaluation of a pharmacist-led actionable audit and feedback intervention for improving medication safety in UK primary care: an interrupted time series analysis. PLoS Med 2020;17:e1003286.

68. Singh R, Anderson D, McLean-Plunkett E, et al. Effects of self-empowered teams on rates of adverse drug events in primary care. Int J Fam Med 2012;2012:74639.

69. Vanderman AJ, Moss JM, Bryan WE, 3rd, Sloane R, Jackson GL, Hastings SN. Evaluating the impact of medication safety alerts on prescribing of potentially inappropriate medications for older veterans in an ambulatory care setting. J Pharm Pract 2017;30:82–8.

70. Wessell AM, Nietert PJ, Jenkins RG, Nemeth LS, Ornstein SM. Inappropriate medication use in the elderly: results from a quality improvement project in 99 primary care practices. Am J Geriatr Pharmacother 2008;6:21–7.

71. Wessell AM, Ornstein SM, Jenkins RG, Nemeth LS, Litvin CB, Nietert PJ. Medication safety in primary care practice: results from a PPRNet quality improvement intervention. Am J Med Qual 2013;28:16–24.

72. Elder NC, Vonder Meulen M, Cassidy A. The identification of medical errors by family physicians during outpatient visits. Ann Fam Med 2004;2:125–9.

73. Kuzel AJ, Woolf SH, Gilchrist VJ, et al. Patient reports of preventable problems and harms in primary health care. Ann Fam Med 2004;2:333–40.

74. Doye SM, Phillips RL, Green LA, Fryer GE. Types of medical errors commonly reported by family physicians. Am Fam Physician 2003;67:697.

75. Doye SM, Phillips RL, Green LA, Fryer GE. Consequences of medical errors observed by family physicians. Am Fam Physician 2003;67:915.

76. Brody AA, Gibson B, Tresner-Kirsch D, et al. High prevalence of medication discrepancies between home health referrals and Centers for Medicare and Medicaid Services home health certification and plan of care and their potential to affect safety of vulnerable elderly adults. J Am Geriatr Soc 2016;64:e166–e170.

77. Coleman EA, Smith JD, Raha D, Min SJ. Posthospital medication discrepancies: prevalence and contributing factors. Arch Intern Med 2005;165:1842–7.

78. Harris CM, Sridharan A, Landis R, Howell E, Wright S. What happens to the medication regimen of adults during and after an acute hospitalization? J Patient Saf 2013;9:150–3.

79. O’Connor PJ, Sperl-Hillen JAM, Johnson PE, Rush WA. Identification, classification, and frequency of medical errors in outpatient diabetes care. In: Henriksen K, Battles JB, Marks ES, Lewin DI, editors. Advances in Patient Safety: From Research to Implementation (Vol. 1, Research Findings). Rockville, MD: AHRQ; 2005.

80. Raebel MA, Chester EA, Brand DW, Magid DJ. Imbedding research in practice to improve medication safety. In: Henriksen K, Battles JB, Keyes MA, Grady ML, editors. Advances in Patient Safety: New Directions and Alternative Approaches (Vol. 4, Technology and Medication Safety). Rockville, MD: AHRQ; 2008.

81. Lai AY, Yuan CT, Marsteller JA, et al. Patient safety in primary care: conceptual meanings to the health care team and patients. J Am Board Fam Med 2020;33:754–64.

82. Geller AL, Shehab N, Lovegrove MC, et al. National estimates of insulin-related hypoglycemia and errors leading to emergency department visits and hospitalizations. JAMA Intern Med 2014;174:678–86.

83. Gurwitz JH, Kapoor A, Garber L, et al. Effect of a multifaceted clinical pharmacist intervention on medication safety after hospitalization in persons prescribed high-risk medications: a randomized clinical trial. JAMA Intern Med 2021;181:610.

84. Weingart SN, Toth M, Sands DZ, Aronson MD, Davis RB, Phillips RS. Physicians’ decisions to override computerized drug alerts in primary care. Arch Intern Med 2003;163:2625–31.

85. Smith LB, Golberstein E, Anderson K, et al. The association of EHR drug safety alerts and co-prescribing of opioids and benzodiazepines. J Gen Intern Med 2019;34:1403–5.

86. Friebe MP, LeGrand JR, Shepherd BE, Breeden EA, Nelson SD. Reducing inappropriate outpatient medication prescribing in older adults across...
electronic health record systems. Appl Clin Inform 2020;11:865–72.

87. Hirschtritt ME, Olfson M, Kroenke K. Balancing the risks and benefits of benzodiazepines. JAMA 2021;325:347–8.

88. Gandhi TK, Seger AC, Overhage JM, et al. Outpatient adverse drug events identified by screening electronic health records. J Patient Saf 2010;6:91–6.

89. Elliott RA, Camacho E, Jankovic D, Sculpher MJ, Faria R. Economic analysis of the prevalence and clinical and economic burden of medication error in England. BMJ Qual Saf 2021;30:96–105.

90. Lainer M, Vogele A, Wensing M, Sonnichsen A. Improving medication safety in primary care: a review and consensus procedure by the LINNEAUS collaboration on patient safety in primary care. Eur J Gen Pract 2015;21 Suppl:14–8.

91. Lainer M, Mann E, Sonnichsen A. Information technology interventions to improve medication safety in primary care: a systematic review. Int J Qual Health Care 2013;25:590–8.

92. Ranji SR, Rennke S, Wachter RM. Computerised provider order entry combined with clinical decision support systems to improve medication safety: a narrative review. BMJ Qual Saf 2014;23:773–80.

93. Olaniyan JO, Ghaleb M, Dhillon S, Robinson P. Safety of medication use in primary care. Int J Pharm Pract 2015;23:3–20.

94. Bates DW, Cullen DJ, Laird N, et al. Incidence of adverse drug events and potential adverse drug events: implications for prevention. JAMA 1995;274:29–34.

95. Agency for Healthcare Research and Quality [Internet]. Medication errors and adverse drug events; 2019 [cited 2020 Mar 13]. Available from: https://psnet.ahrq.gov/primer/medication-errors-and-adverse-drug-events.

96. Crane S, Sloane PD, Elder N, et al. Reporting and using near-miss events to improve patient safety in diverse primary care practices: a collaborative approach to learning from our mistakes. J Am Board Fam Med 2015;28:452–60.

97. Isaac T, Weissman JS, Davis RB, et al. Overrides of medication alerts in ambulatory care. Arch Intern Med 2009;169:305–11.

98. Thio SL, Nam J, van Driel ML, Dirven T, Blom JW. Effects of discontinuation of chronic medication in primary care: a systematic review of deprescribing trials. Br J Gen Pract 2018;68:e663–e672.

99. Wasson JH. A patient-reported spectrum of adverse health care experiences: harms, unnecessary care, medication illness, and low health confidence. J Ambul Care Manage 2013;36:245–50.

100. Fernald DH, Pace WD, Harris DM, West DR, Main DS, Westfall JM. Event reporting to a primary care patient safety reporting system: a report from the ASIPS collaborative. Ann Fam Med 2004;2:327–32.

101. Linzer M, Baier Manwell L, Mundt M, et al. Organizational climate, stress, and error in primary care: the MEMO study. In: Henriksen K, Battles JB, Marks ES, Lewin DI, editors. Advances in Patient Safety: From Research to Implementation (Vol. 1, Research Findings). Rockville, MD: AHRQ; 2005.

102. Grant S, Mesman J, Guthrie B. Spatio-temporal elements of articulation work in the achievement of repeat prescribing safety in UK general practice. SocioHealth Illn 2016;38:306–24.
Appendix

Appendix Figure 1. PRISMA Flow Chart

Potential titles identified through database searching (Medline, EMBASE, SCOPUS) (n=1,464)

Additional records identified through other sources. (n=0)

Titles remaining after duplicates and non-relevant studies removed. (n=154)

Abstracts screened (n=154)

Studies excluded
- Paper prescriptions (n=19)
- Did not measure errors (n=19)
- Not clinic-based (n=15)
- Data not just primary care (n=14)
- Abstract/poster only (n=11)
- Not focused on medication errors (n=9)
- Limited to < 5 drugs or diseases (n=4)
- Other (n=5)

Full-text articles assessed for eligibility and quality (n=58)

Studies excluded
- Not focused on medication errors (n=4)
- Did not measure errors or potential errors (n=1)

Studies included
- Studies in references not identified in original literature search (n=3)

Studies included in review (n=56)

Additional records identified through other sources. (n=0)

Studies in references not identified in original literature search (n=3)
Appendix Table 1. PRISMA Checklist

Section and Topic	Item #	Checklist Item	Location where item is reported
TITLE			
Title	1	Identify the report as a systematic review.	1
ABSTRACT			
Abstract	2	See the PRISMA 2020 for Abstracts checklist.	2
INTRODUCTION			
Rationale	3	Describe the rationale for the review in the context of existing knowledge.	3
Objectives	4	Provide an explicit statement of the objective(s) or question(s) the review addresses.	3-4
METHODS			
Eligibility criteria	5	Specify the inclusion and exclusion criteria for the review and how studies were grouped for the syntheses.	4
Information sources	6	Specify all databases, registers, websites, organisations, reference lists and other sources searched or consulted to identify studies. Specify the date when each source was last searched or consulted.	4
Search strategy	7	Present the full search strategies for all databases, registers and websites, including any filters and limits used.	Appendix
Selection process	8	Specify the methods used to decide whether a study met the inclusion criteria of the review, including how many reviewers screened each record and each report retrieved, whether they worked independently, and if applicable, details of automation tools used in the process.	5
Data collection process	9	Specify the methods used to collect data from reports, including how many reviewers collected data from each report, whether they worked independently, any processes for obtaining or confirming data from study investigators, and if applicable, details of automation tools used in the process.	5
Data items	10a	List and define all outcomes for which data were sought. Specify whether all results that were compatible with each outcome domain in each study were sought (e.g. for all measures, time points, analyses), and if not, the methods used to decide which results to collect.	5-6
	10b	List and define all other variables for which data were sought (e.g. participant and intervention characteristics, funding sources). Describe any assumptions made about any missing or unclear information.	5-6
Study risk of bias assessment	11	Specify the methods used to assess risk of bias in the included studies, including details of the tool(s) used, how many reviewers assessed each study and whether they worked independently, and if applicable, details of automation tools used in the process.	5
Effect measures	12	Specify for each outcome the effect measure(s) (e.g. risk ratio, mean difference) used in the synthesis or presentation of results.	n/a
Synthesis methods	13a	Describe the processes used to decide which studies were eligible for each synthesis (e.g. tabulating the study intervention characteristics and comparing against the planned groups for each synthesis (item #5)).	n/a
	13b	Describe any methods required to prepare the data for presentation or synthesis, such as handling of missing summary statistics, or data conversions.	n/a
	13c	Describe any methods used to tabulate or visually display results of individual studies and syntheses.	5-6
	13d	Describe any methods used to synthesize results and provide a rationale for the choice(s). If meta-analysis was performed, describe the model(s), method(s) to identify the presence and extent of statistical heterogeneity, and software package(s) used.	5-6
	13e	Describe any methods used to explore possible causes of heterogeneity among study results (e.g. subgroup analysis, meta-regression).	n/a
	13f	Describe any sensitivity analyses conducted to assess robustness of the synthesized results.	n/a
Reporting bias assessment	14	Describe any methods used to assess risk of bias due to missing results in a synthesis (arising from reporting biases).	n/a
Certainty assessment	15	Describe any methods used to assess certainty (or confidence) in the body of evidence for an outcome.	n/a
Section and Topic	Item #	Checklist Item	Location where item is reported
-----------------------	--------	---	---------------------------------
RESULTS			
Study selection	16a	Describe the results of the search and selection process, from the number of	Appendix
		records identified in the search to the number of studies included in the review,	
		ideally using a flow diagram.	
	16b	Cite studies that might appear to meet the inclusion criteria, but which were	18-19
		excluded, and explain why they were excluded.	
Study characteristics	17	Cite each included study and present its characteristics.	Tables 1 and 2
Risk of bias in studies	18	Present assessments of risk of bias for each included study.	Appendix
Results of individual studies	19	For all outcomes, present, for each study: (a) summary statistics for each group (where appropriate) and (b) an effect estimate and its precision (e.g. confidence/credible interval) and measures of statistical heterogeneity. If comparing groups, describe the direction of the effect.	7-15
Results of syntheses	20a	For each synthesis, briefly summarise the characteristics and risk of bias	n/a
	20b	Present results of all statistical syntheses conducted. If meta-analysis was	n/a
		done, present for each the summary estimate and its precision (e.g. confidence/credible interval) and measures of statistical heterogeneity. If comparing groups, describe the direction of the effect.	
	20c	Present results of all investigations of possible causes of heterogeneity	n/a
		among study results.	
	20d	Present results of all sensitivity analyses conducted to assess the robustness	n/a
		of the synthesized results.	
Reporting biases	21	Present assessments of risk of bias due to missing results (arising from	n/a
		reporting biases) for each synthesis assessed.	
Certainty of evidence	22	Present assessments of certainty (or confidence) in the body of evidence	n/a
		for each outcome assessed.	
DISCUSSION			
Discussion	23a	Provide a general interpretation of the results in the context of other	17-19
		evidence.	
	23b	Discuss any limitations of the evidence included in the review.	18-19
	23c	Discuss any limitations of the review processes used.	18
	23d	Discuss implications of the results for practice, policy, and future research.	19-22
OTHER INFORMATION			
Registration and	24a	Provide registration information for the review, including register name and	6
protocol		registration number, or state that the review was not registered.	
	24b	Indicate where the review protocol can be accessed, or state that a protocol	6
		was not prepared.	
	24c	Describe and explain any amendments to information provided at registration or in the protocol.	n/a
Support	25	Describe sources of financial or non-financial support for the review, and the	Appendix
		role of the funders or sponsors in the review.	
Competing interests	26	Declare any competing interests of review authors.	Cover letter
Availability of data,	27	Report which of the following are publicly available and where they can be	Cover letter
code and other		found: template data collection forms; data extracted from included studies;	
materials		data used for all analyses; analytic code; any other materials used in the	
		review.	
Detailed Methods

Study Selection

Studies were included if they were restricted to primary care only, measured either potential for harm or actual harm from medications, reflected medications managed by the primary care clinic, and used EHRs with e-prescribing. Different forms of data collection were allowed, e.g. data culled from EHRs in the clinic or reports of possible harms from clinic personnel or patients. Observational and interventional studies were included. Studies were excluded if they included non-primary care prescribers; medication safety outcomes were not the primary outcome; only measured part of the medication management plan such as transitions of care from the ED back to the primary care clinic; only surveyed or interviewed select patients about their definition of harm; only measured one or two aspects of medication safety such as medication list accuracy studies or lab monitoring lapses, or if the study was only available as an abstract. We also excluded studies that limited the patient population to those with less than 4 symptoms, diagnoses, or drug classes, for example, a study only looking at benzodiazepine prescribing in an elderly population.

The titles of the first search were reviewed by 1 investigator (RY) to eliminate studies that clearly did not meet our criteria. The relevant remaining abstracts were reviewed by 2 investigators each, with equivalent numbers between 4 investigators (RY, AE, KF, NH), and agreement was assessed. The initial agreement rate was 65%, so the investigators met to further clarify inclusion/exclusion criteria. The most important type of study without initial agreement was one where a national pharmacy database was used to analyze for potentially inappropriate prescribing (PIP) as opposed to records housed in the primary care EHR. The team agreed that if the report provided a statement that all or nearly all of the reviewed prescriptions were controlled by primary care then the study was included.
repeat review of the literature review showed 88% agreement. The remaining disagreements were resolved by consensus of the 4 reviewers.

Data Extraction and Quality Assessment

Identified studies were evaluated for risk of bias by 2 investigators (RY and KF). All identified observational studies were deemed to have a low risk of bias. Exposures to medications were based on clear criteria widely used in the literature. The studies that used their own definition of PIP were mostly based on existing criteria such as Beers lists. For similar reasons, confounding was deemed to be a minimal concern. Most studies did not measure patient outcomes – such as hospitalizations or deaths – merely the exposure to certain medications. Studies enrolled subjects with widely varying underlying risks for ADEs, but each were clear on their criteria and were based on the totality of the primary care clinic populations.

Intervention studies measured similar outcomes. Most measured process outcomes, not patient-oriented outcomes, such as whether the primary care physician altered a prescription based on a pharmacist’s feedback or a drug allergy was not listed in the medical record. One intervention study measured patient harms with little chance for misclassification bias: hospital admission. Another used multiple reviewers to assess an ADE, then determine the probability that a certain medication caused it.

Role of the Funding Source

This review was funded by the Agency for Healthcare Research and Quality (AHRQ), which had no role in the conception, design, and implementation of this study. The authors are solely responsible for the content of this article.
Appendix Table 1. Search Strategies for Online Databases, Coverage 1999-2020

Database	Strategies	Results
PubMed	(((((((Drug-Related Side Effects and Adverse Reactions)[Mesh] OR adverse drug event OR drug event)[Title]) OR [Medication Errors][Mesh] AND medication error OR medication error*[Title] OR medication safety)[Title] OR prescription error*[Title] OR [Medical Errors][Mesh]) OR [Medical error*[Title]]) AND [1999/01/01[PDAT] : ”2020/12/31”[PDAT]) AND English[lang]) AND (Primary Health Care)[Mesh] OR [”Physicians, Primary Care”[Mesh]] OR [”Internal Medicine”[Mesh]] OR [internal medicine OR [internal medicine][Title]] OR [”Ambulatory Care Facilities”[Mesh]] OR [primary care OR (primary care)[Title]] OR [ambulatory care OR [ambulatory care][Title]] OR [”Family Practice”[Mesh]] OR (family practice)[Title] OR [family medicine OR (family medicine)[Title]]) AND [1999/01/01[PDAT] : ”2020/12/31”[PDAT]) AND English[lang]) AND (primary OR family OR internal OR patient OR [patient safety][Title]) AND ([”1999/01/01”[PDAT] : ”2020/12/31”[PDAT]) AND English[lang]) AND (prospective OR multicenter OR observational OR cross-sectional OR cross-sectional OR cohort OR chart review) Filters: from 1999/1/1 - 2020/12/31	926
EMBASE	("adverse drug reaction":ti OR "adverse drug reactions":ti OR "medication error":ti OR "medication safety":ti OR "medical errors":ti OR "drug safety":ti OR [prescribing error]*ti OR [prescribing errors]*ti) AND ["internal medicine":ti OR "family practice":ti OR "family medicine":ti OR "primary care":ti OR "general practice":ti OR "ambulatory care":ti OR "family":ti OR "primary":ti OR "internal":ti OR "ambulatory":ti OR ["patient safety":ti]) AND [1999-2020]/py	354
SCOPUS	TITLE-ABS-KEY (”drug related side effects” OR "adverse drug event” OR "drug-event” OR "medication error” OR "medication safety” AND TITLE-ABS-KEY (”internal medicine” OR "general internal medicine” OR "ambulatory care” OR "family practice” OR "family medicine” OR "general practice” AND TITLE [internal OR primary OR "family” OR "general” OR "ambulatory” OR "patient safety”]) AND TITLE-ABS-KEY (prospective OR multicenter OR observational OR ["cross-sectional” OR cross-sectional OR cohort])	184
Total		1464
	After Duplicates Removed	1178
Appendix Table 3. Risk of Bias of Identified Studies

Non-Intervention Studies with Adverse Drug Event or Drug Related Problems Outcomes.

Paper	Sample frame	Study participants	Sample size	Subject described	Analysis is complete	Valid methods to ID condition	Measured standard reliable	Appropriate statistics	Response rate adequate	Bias/Quality Assessment
Aspinall	+	-	+	-	+	-	+	+	-	High risk
Clark	+	+	-	+	-	-	+	+	-	High risk
Diaz-Hernandez-Carrillo	-	+	+	+	-	+	-	+	-	High risk
Gunasinghe	+	+	+	+	+	-	+	+	+	High risk
Kheir	-	+	-	+	+	+	+	+	-	High risk
Kovacevic	-	-	+	+	-	+	+	+	+	High risk
Kunac	+	+	+	+	-	+	+	+	+	Some concern
Miller	+	+	+	+	-	+	+	+	+	Some concern
Trinkley	-	+	+	+	-	+	+	+	-	Some concern
Wallace	+	+	+	+	-	+	+	+	+	Some concern
Wucherer	+	+	+	+	+	-	+	+	+	Some concern
Appendix Table 3. Risk of Bias for Intervention Studies

Risk of Bias for Quasi-Experimental Intervention Studies

Study	Random sequence generation (selection bias)	Allocation concealment (selection bias)	Baseline characteristics similar	Baseline outcome measurement (detection bias)	Baseline outcome assessment (detection bias)	Reporting against contamination	Selective reporting (reporting bias)	Other bias
Bannow 2018	✗	✗	✗	✗	✗	✗	✗	✗
Clyne 2015	✗	✗	✗	✗	✗	✗	✗	✗
Clyne 2016	✗	✗	✗	✗	✗	✗	✗	✗
Gilbert 2018	✗	✗	✗	✗	✗	✗	✗	✗
Leendertse 2013	✗	✗	✗	✗	✗	✗	✗	✗
Lenander 2014	✗	✗	✗	✗	✗	✗	✗	✗
Lopez-Perez 2011	✗	✗	✗	✗	✗	✗	✗	✗
Singh 2012	✗	✗	✗	✗	✗	✗	✗	✗
Vandermar 2017	✗	✗	✗	✗	✗	✗	✗	✗
Wessell 2008	✗	✗	✗	✗	✗	✗	✗	✗

Risk of Bias for interrupted time series studies

Study	Interven on independent of other changes	Shape of the intervention on effect data collection	Binding of outcome assessment (detection bias)	Incomplete outcome data (detection bias)	Reporting against contamination	Selective reporting (reporting bias)	Other bias
Peak 2020	✗	✗	✗	✗	✗	✗	✗
Wessell 2013	✗	✗	✗	✗	✗	✗	✗