Comparison of PI and PID Controlled Current Fed QZSI based Induction Motor Drive Systems

P. Shunmugakani1* and D. Kirubakaran2

1Faculty of Electrical Engineering, Sathyabama University, Chennai - 600119, Tamil Nadu, India; shunmugakaniresearchscholar@gmail.com
2St. Joseph's Institute of Technology, Chennai - 600119, Tamil Nadu, India; kirubad@gmail.com

Abstract

Objectives: To improve response of QZSIIMD system. This work aims to reduce settling time and steady state error. Method used: The computations the simulation is done using state space method. Findings: The present work has proposed QZSI for the control of induction motor. The speed response of QZSIIMD system is studied with a positive step change in input. Settling in found to be reduced by 71% and steady state error is reduced by 80% by using PIDC. Applications: The proposed QZSIIMD and system is suitable for textile and paper mills.

Keywords: FL Control, Induction Motor, QZS Inverter

1. Introduction

Current-Source quasi-Z-source inverter with voltage step up / step down and regeneration capability is suggested by Shuitao1. Steady-state performance of current-fed PWMI drives is given by Bullough2. Comparison of PI and PID Controlled Wind turbine Fed Γ- Z Source based PMSM Drives is suggested by Jaffar3. Coordination of PSS and PID Controller for Power System Stability improvement is presented by Kasilingam4. Improvement in the Synchronization method of the VSC Connected to the Grid by PLL is given by Mahdian5. Fuzzy Logic and Firefly Algorithm based mixed System for Efficient Operation of Three Phase Induction Motor Drives is presented by Sundaram6. Carrier-based PWMVSI over modulation strategies: are given by Hava7. Dead-band PWM switching patterns is given by Agelidis8. Minimum-loss vector PWM strategy for three-phase inverters is suggested by Trzynadlowski9. Power losses for SVM techniques is presented by Pinewski10. New SVM-based harmonic elimination inverter control is given by Singh Grewal11. The relationship between space-vector modulation and regular-sampled PWM is suggested by YenShin12. Space-vector PWM voltage control with optimized switch in strategy is presented by Yukosavic13. SVMS applied to interphase transformers-based five-level is suggested by Dupczak14. PWM modulation for CSC is given by Vanaparthy15. Z-source current-type inverters: digital modulation and logic implementation is presented by Vilathgamuwa16. A critical evaluation of PWM methods is given by Boost17. An active modulation technique for single-phase grid-connected CSIs suggested by Chung18. An SVPWM-Based switching pattern for isolated and grid-connected three-phase SBI suggested by Mirafzal14. Use of hybrid PWM and passive resonant Snubber for a grid-connected CSI is presented by Chung19. DC-Link Current Minimization for High-Power CSI fed Motor Drives is presented by Zargari20.

*Author for correspondence
Application of discontinuous PWM modulation in active power filters is presented by Asiminoaei.

The literature does not deal with the comparison of PI and PID controlled QZSIMD systems. This work proposes QZSI for the control of the induction motor. The circuit configuration of CF-QZSI is shown in Figure 1. The Q-Z network uses a coupled inductor and two capacitors.

![Circuit configuration of CF-QZSI.](image)

Figure 1. Circuit configuration of the CF-QZSI.

2. Simulation Results

The open loop and closed loop drive systems are represented using MATLAB package. The open loop controlled QZSIMD system is shown in Figure 2. A step change in wind speed is considered. Output voltage of wind generator is shown in Figure 3. The output of QZSI is shown in Figures 2, 3. The voltage increases from 380 to 490 volts, due to the increase in the wind speed. The speed and torque responses are shown in Figures 4 and 5 respectively. It can be seen that the steady state error in output of QZN is very high.

![Open loop circuit.](image)

Figure 2. Open loop circuit.

![Output voltage of the wind generator.](image)

Figure 3. Output voltage of the wind generator.

The simulink model of closed loop QZSIMD system with PI controller is shown in Figure 6. The output voltage of QZ network is sensed and it is compared with the needed voltage. The error is applied to a PI controller. The output of PI controller is compared with the triangular signal to generate the pulses required by the MOSFETs of the semi converter. The output voltage of wind generator and QZ network are shown in Figures 7 and 8 respectively. From the Figure 8 the output voltage is regulated. The speed and torque responses are shown in Figure 9 and Figure 10 respectively.

![Output voltage of Quasi-Z source.](image)

Figure 4. Output voltage of Quasi -Z source.

![Motor speed.](image)

Figure 5. Motor speed.

![Torque.](image)

Figure 6. Torque.
The closed loop PID controlled QZSI fed induction motor drive is shown in Figure 11. The PI controller in the above system is replaced by a PID controller. Output voltage of wind generator and QZ network are shown in Figures 12 and 13 respectively. The speed response and torque response of the QZSIMD are shown in Figures 14 and 15 respectively. The comparison of the response of PI and PID controlled systems are given in Table 1. The comparison indicates that the response of PID controlled system is better than that of the PICS.
Comparison of PI and PID Controlled Current Fed QZSI based Induction Motor Drive Systems

3. Findings

The CF-QZSI is suitable for low voltage application. The settling time is reduced from 1.4 to 1 second using PID controller and the steady state.

4. Conclusion

The PI and PID controlled QZSI fed induction motor drive systems are compared in terms of torque, settling time and error in speed from the comparison, it was concluded that the dynamic response of PID controlled system is superior to PI controlled system. The numbers of passive elements are reduced, since the coupled inductor is used. The disadvantage of QZSI network is that it needs two big capacitors.

The present work deals with modeling and simulation of PI and PID controlled QZSI drive systems. The comparison of PID and Fuzzy logic controlled drive systems will be done in future.

5. References

1. Shuitao Y, Lei Q, Peng EZ. Current-Fed quasi-Z-source inverter with voltage buck-boost and regeneration capability. IEEE Transactions Industrial Applications. 2011; 47(2):882–92.
2. Bowes SR, Bullough R. Steady-state performance of current-fed pulse-width-modulated inverter drives. IEEE Proceedings B- Electric Power Applications. 1984; 131(3):113–32.
3. Ali AJS, Ramesh GP. Comparison of PI and PID controlled wind generator fed Γ- Z source based PMSM drives. Indian Journal of Science and Technology. 2016; 9(1):1–6.
4. Kasilingam G, Pasupuleti J. Coordination of PSS and PID controller for power system stability enhancement – overview. Indian Journal of Science and Technology. 2015; 8(2):142–51
5. Mahdian H, Hashemi H, Ghadimi AA. Improvement in the synchronization process of the voltage-sourced converters connected to the grid by PLL in order to detect and block the double frequency disturbance term. Indian Journal of Science and Technology. 2013; 6(7):4940–52.
6. Sundaram KM, Kumar RS, Krishnakumar C, Sugavanam KR. Fuzzy logic and firefly algorithm based hybrid system for energy efficient operation of three phase induction motor drives. Indian Journal of Science and Technology. 2016; 9(1):1–5.
7. Hava AM, Kerkman RJ, Lipo TA. Carrier-based PWMVSI over modulation strategies: analysis, comparison, and
design. IEEE Transactions on Power Electronics. 1998 Jul; 13(4):674–89.
8. Agelidis VG, Ziogas PD, Joos G. Dead-band PWM switching patterns. Power Electronics Specialists Conference, 1992. PESC ’92 Record., 23rd Annual IEEE. 1992; 1:427–34.
9. Trzynadlowski AM, Legowski S. Minimum-loss vector PWM strategy for three-phase inverters. IEEE Transactions on Power Electron. 1994; 9(1):26–34.
10. Perruchoud PJ, Pinewski PJ. Power losses for space vector modulation techniques. Power Electronics in Transportation; 1996. p. 167–73.
11. Bowes SR, Grewal SS. Novel space-vector-based harmonic elimination inverter control. IEEE Transactions on Industry Applications. 2000; 36(2):549–57.
12. Bowes SR, YenShin L. The relationship between space-vector modulation and regular-sampled PWM. IEEE Transactions on Industrial Electronics. 1997 Oct; 44(5):670–79.
13. Stefanovic VR, Vukosavic SN. Space-vector PWM voltage control with optimized switching strategy. Industry Applications Society Conference Record of the 1992 IEEE, TX. 1992; 1:1025–33.
14. Dupczak B, Perin AJ, Heldwein ML. Space vector modulation strategy applied to interphase transformers-based five-level current source inverters. IEEE Transactions on Power Electronics. 2012 Jun; 27(6):2740–51.
15. Ojo O, Vanaparthy S. Carrier-based discontinuous PWM modulation for current source converters. Industry Applications Conference, 2004. 39th IAS Annual Meeting. Conference Record of the 2004 IEEE. 2004; 4:2224–31.
16. Loh PC, Vilathgamuwa DM, Gajanayake CJ, Wong LT, Ang CP. Z-source current-type inverter: Digital modulation and logic implementation. in Proc. 40th IAS Annu. Ind. Appl. Conf., Meet. Conf. Rec. 2005; 2:940–7.
17. Boost MA, Ziogas PD. State-of-the-art carrier PWM techniques: A critical evaluation. IEEE Transactions on Industrial Electronics. 1988 Mar–Apr; 24(2):271–80.
18. Li RTH, Chung HSH, Chan TKM. An active modulation technique for single-phase grid-connected CSI. IEEE Transactions on Power Electronics. 2007 Jul; 22(4):1373–82.
19. Mirafzal B, Saghaieini M, Kaviani AK. An SVPWM-Based switching pattern for stand-alone and grid-connected three-phase single stage boost inverters. IEEE Transactions on Power Electronics. 2011 Apr, 26(4):1102–11.
20. Li RTH, Chung HSH, Lau WH, Zhou B. Use of hybrid PWM and passive resonant Snubber for a grid-connected CSI,. IEEE Transactions on Power Electronics. 2010 Feb; 25(2):298–309.
21. Li YW, Pande M, Zargari NR, Wu B. DC-link current minimization for high-power current-source motor drives. IEEE Transactions on Power Electronics, 2009 Jan, 24(1):232–40.
22. Asiminoaei L, Rodriguez P, Blaabjerg F. Application of discontinuous PWM modulation in active power filters, IEEE Transactions on Power Electronics. 2008 Jul; 23(4):1692–706.
23. Vodyakho O, Hackstein D, Steimel A, Kim T. Novel current-space vector control for shunt active power filters based on the three-level inverter. IEEE Transactions on Power Electronics. 2008 Jul; 23(4):1668–78.
24. Baumann M, Nussbaumer T, Kolar JW. Comparative evaluation of modulation methods of a three-phase buck+boost PWM rectifier—Part I: Theoretical analysis. IEEE Transactions on Power Electronics. 2008; 1(2):225–67.
25. Enjeti PN, Ziogas PD, Lindsay JF. Programmed PWM techniques to eliminate harmonics: A critical evaluation. IEEE Transactions on Industry Applications. 1990 Mar–Apr; 26(2):302–16.
26. Helle L, Larsen KB, Jorgensen AH, Nielsen MS, Blaabjerg F. Evaluation of modulation schemes for three-phase to three phase matrix converters. IEEE Transactions on Industrial Electronics. 2004 Feb; 51(1):158–71.
27. Kolar JW, Ertl H, Zach FC. Influence of the modulation method on the conduction and switching losses of a PWM converter system. IEEE Transactions on Industry Applications. 1991 Nov–Dec; 27(6):1063–75.
28. Halkosaari T, Tuusa H. Optimal vector modulation of a PWM current source converter according to minimal switching losses. Power Electronics Specialists Conference, 2000. PESC 00. 2000 IEEE 31st Annual, Galway. 2000; 1:127–32.
29. McGrath BP, Holmes DG. Natural current balancing of multicell current source inverters. IEEE Transactions on Power Electronics. 2008 May; 23(3):1239–46.