The jump of the Milnor number in the X_9 singularity class

Szymon Brzostowski and Tadeusz Krasiński

Faculty of Mathematics and Computer Science,
University of Łódź,
ul. Banacha 22, 90-238 Łódź, Poland

December 11, 2013

Abstract

The jump of the Milnor number of an isolated singularity f_0 is the minimal non-zero difference between the Milnor numbers of f_0 and one of its deformations (f_s). We prove that for the singularities in the X_9 singularity class their jumps are equal to 2.

1 Introduction

Let $f_0 : (\mathbb{C}^n, 0) \to (\mathbb{C}, 0)$ be an (isolated) singularity, i.e. f_0 is a germ at 0 of a holomorphic function having an isolated critical point at $0 \in \mathbb{C}^n$, and $0 \in \mathbb{C}$ as the corresponding critical value. More specifically, there exists a representative $\hat{f}_0 : U \to \mathbb{C}$ of f_0, holomorphic in an open neighborhood U of the point $0 \in \mathbb{C}^n$, such that $\hat{f}_0(0) = 0$, $\nabla \hat{f}_0(0) = 0$ and $\nabla \hat{f}_0(z) \neq 0$ for $z \in U \setminus \{0\}$, where for a holomorphic function f we put $\nabla f = \nabla_z f := (\partial f / \partial z_1, \ldots, \partial f / \partial z_n)$.

In the sequel we will identify germs of holomorphic functions with their representatives or the corresponding convergent power series. The ring of germs of holomorphic functions of n variables will be denoted by \mathcal{O}^n.

A deformation of the singularity f_0 is the germ of a holomorphic function $f = f(s,z) : (\mathbb{C} \times \mathbb{C}^n, 0) \to (\mathbb{C}, 0)$ such that:

1. $f(0,z) = f_0(z)$.

*AMS subject classification: 32S05, 14B05, 32S30, 14B07, Keywords: Milnor number, singularity, deformation of singularity

*Email: brzosts@math.uni.lodz.pl, Email: krasinskt@uni.lodz.pl
2. \(f(s,0) = 0 \),

3. for each \(|s| \ll 1 \) it is \(\nabla_z f(s,z) \neq 0 \) for \(z \neq 0 \) in a (small) neighborhood of \(0 \in \mathbb{C}^n \).

The deformation \(f(s,z) \) of the singularity \(f_0 \) will also be treated as a family \((f_s) \) of germs, taking \(f_s(z) := f(s,z) \). In this context, the symbol \(\nabla f_s \) will always denote \(\nabla_z f_s \).

Remark. Notice that in the deformation \((f_s) \) of \(f_0 \) there can occur smooth germs, that is germs satisfying \(\nabla f_0(0) \neq 0 \).

By the above assumptions it follows that, for every sufficiently small \(s \), one can define a (finite) number \(\mu_s \) as the Milnor number of \(f_s \), namely

\[
\mu_s := \mu(f_s) = \dim_{\mathbb{C}} \mathcal{O}_s^n / (\nabla f_s) = i_0 \left(\frac{\partial f_s}{\partial z_1}, \ldots, \frac{\partial f_s}{\partial z_n} \right),
\]

where the symbol \(i_0 \left(\frac{\partial f_s}{\partial z_1}, \ldots, \frac{\partial f_s}{\partial z_n} \right) \) denotes the multiplicity of the ideal \(\left(\frac{\partial f_s}{\partial z_1}, \ldots, \frac{\partial f_s}{\partial z_n} \right) \mathcal{O}_s^n \).

Since the Milnor number is upper semi-continuous in the Zariski topology in families of singularities [GLS07, Ch. I, Thm. 2.6 and Ch. II, Prop. 2.57], there exists an open neighborhood \(S \) of the point \(0 \in \mathbb{C}^n \) such that

1. \(\mu_s = \text{const. for } s \in S \setminus \{0\} \),

2. \(\mu_0 \geq \mu_s \) for \(s \in S \).

The (constant) difference \(\mu_0 - \mu_s \) for \(s \in S \setminus \{0\} \) will be called the jump of the deformation \((f_s) \) and denoted by \(\lambda((f_s)) \). The smallest nonzero value among all the jumps of deformations of the singularity \(f_0 \) will be called the jump (of the Milnor number) of the singularity \(f_0 \) and denoted by \(\lambda(f_0) \).

The first general result concerning the problem of computation of the jump was S. Gusein-Zade’s [Gus93], who proved that there exist singularities \(f_0 \) for which \(\lambda(f_0) > 1 \) and that for irreducible plane curve singularities \(f_0 \) it holds \(\lambda(f_0) = 1 \). He showed that generic elements in some classes of singularities (satisfying conditions concerning the Milnor numbers and modality) fulfill \(\lambda(f_0) > 1 \), but he did not give any specific example of such a singularity.

The two-dimensional version of the problem of computation of the jump, and more precisely – of the non-degenerate jump (i.e., all the families \((f_s) \) being considered are to be made of Kouchnirenko non-degenerate singularities), has been studied in [Bod07], [Wal10].

The following are examples of classes of singularities that fulfill the assumptions of the Gusein-Zade theorem.

1. The class \(X_9 \), in the terminology of [AGV85]. It consists of singularities stably equivalent to the singularities of the form \(f_0^a(x,y) := x^4 + y^4 + ax^2y^2, a \in \mathbb{C}, a^2 \neq 4 \). The singularities are of modality 1 and \(\mu(f_0^a) = 9 \).
2. The class $W_{1,0}$, in the terminology of [AGV85]. It consists of singularities stably equivalent to the singularities of the form $f^{(a,b)}_0(x,y) := x^4 + y^6 + (a + by)x^3, a, b \in \mathbb{C}, a^2 \neq 4$. The singularities are of modality 2 and $\mu(f^{(a,b)}_0) = 15$.

By the Gusein-Zade result, generic elements f of the classes X_9 and $W_{1,0}$ satisfy $\lambda(f) > 1$. However, determining the jump of any particular element of these classes is still an open and difficult problem. Gusein-Zade did not give any specific example of a singularity f with $\lambda(f) > 1$. The purpose of this work is to prove (Thm. 5) that for the singularities in the X_9 class we have

$$\lambda(f_0^a) = 2$$

(and that therefore all the singularities of the class X_9 are „generic” in the family X_9). In the class $W_{1,0}$ we obtain only a partial result (Prop. 3). Namely, for the singularities in $W_{1,0}$ that are stably equivalent to the ones in the subclass

$$f^{(0,b)}_0(x,y) = x^4 + y^6 + bx^2y^4, \ b \in \mathbb{C},$$

we have

$$\lambda(f^{(0,b)}_0) = 1$$

therefore these singularities are not „generic” in the family $W_{1,0}$).

This implies that the jump $\lambda(f_0)$ is not a topological invariant of singularities (Cor. 2).

In the light of the above results the following problems arise:

1. Show that for the remaining singularities in the $W_{1,0}$ class, i.e. for the singularities stably equivalent to $f^{(a,b)}_0 := x^4 + y^6 + (a + by)x^3, a, b \in \mathbb{C}, 0 \neq a^2 \neq 4$, we have $\lambda(f^{(a,b)}_0) = 2$,

and more general ones (posed by Bodin in [Bod07]):

(2) Find an algorithm that computes $\lambda(f_0)$.

(3) Give the list of all possible Milnor numbers arising from deformations of f_0 (see [Wal10] for partial results in the non-degenerate case).

2 Preliminaries

Let \mathbb{N} be the set of nonnegative integers and \mathbb{R}_+ be the set of nonnegative real numbers. Let $f_0(x,y) = \sum_{(i,j) \in \mathbb{N}^2} a_{ij}x^iy^j$ be a singularity. Put $\text{supp}(f_0) := \{(i,j) \in \mathbb{N}^2 : a_{ij} \neq 0\}$. The Newton diagram of f_0 is defined as the convex hull of the set

$$\bigcup_{(i,j) \in \text{supp}(f_0)} (i,j) + \mathbb{R}^2_+.$$
and is denoted by $\Gamma_+(f_0)$. It is easy to see that the boundary (in \mathbb{R}^2) of the diagram $\Gamma_+(f_0)$ is a sum of two half-lines and a finite number of compact line segments. The set of those line segments will be called the Newton polygon of the singularity f_0 and denoted by $\Gamma(f_0)$. For each segment $\gamma \in \Gamma(f_0)$ we define a weighted homogeneous polynomial

$$
(f_0)_\gamma := \sum_{(i,j) \in \gamma} a_{ij}x^iy^j.
$$

A singularity f_0 is called non-degenerate (in the Kouchnirenko sense) on a segment $\gamma \in \Gamma(f_0)$ iff the system

$$
\frac{\partial (f_0)_\gamma}{\partial x}(x,y) = 0, \quad \frac{\partial (f_0)_\gamma}{\partial y}(x,y) = 0
$$

has no solutions in $\mathbb{C}^* \times \mathbb{C}^*$. f_0 is called non-degenerate iff it is non-degenerate on every segment $\gamma \in \Gamma(f_0)$.

For the sake of simplicity, we consider the case of convenient singularities f_0, i.e. we suppose that $\Gamma_+(f_0)$ intersects both coordinate axes in \mathbb{R}^2. For such singularities we denote by S the area of the domain bounded by the coordinate axes and the Newton polygon $\Gamma(f_0)$. Let a (resp. b) be the distance of the point $(0,0)$ to the intersection of $\Gamma_+(f_0)$ with the horizontal (resp. vertical) axis. The number

$$
\nu(f_0) := 2S - a - b + 1
$$

is called the Newton number of the singularity f_0. Let us recall Planar Kouchnirenko Theorem.

Theorem 1. ([Kou76]) For a convenient singularity f_0 we have:

1. $\mu(f_0) \geq \nu(f_0)$.
2. if f_0 is non-degenerate then $\mu(f_0) = \nu(f_0)$.

Theorem 1 can be completed in the following way.

Theorem 2. (Płoski, [Pło90, Pło99]) If for a convenient singularity f_0 there is $\nu(f_0) = \mu(f_0)$ then f_0 is non-degenerate.

We will also need a „global” result concerning projective algebraic curves.

Theorem 3. ([GP01 Prop. 6.3]) Let $\mathcal{C} \subset \mathbb{CP}^2$ be a projective algebraic curve of degree d. Suppose that m irreducible components of \mathcal{C} pass through a point $P \in \mathcal{C}$. Then the Milnor number $\mu_P(\mathcal{C})$ of \mathcal{C} at P satisfies the inequality

$$
\mu_P(\mathcal{C}) \leq (d-1)(d-2) + m - 1.
$$
The rest of the section is devoted mainly to the concept of a versal unfolding. It is based on the book by Ebeling [Ebe07].

Let \(f_0: (\mathcal{C}^n, 0) \rightarrow (\mathcal{C}, 0) \) be a germ of a holomorphic function. An unfolding of \(f_0 \) is a holomorphic germ \(F: (\mathcal{C}^n \times \mathcal{C}^k, 0) \rightarrow (\mathcal{C}, 0) \) such that \(F(z, 0) = f_0(z) \) and \(F(0, u) = 0 \).

Two unfoldings \(F: (\mathcal{C}^n \times \mathcal{C}^k, 0) \rightarrow (\mathcal{C}, 0) \) and \(G: (\mathcal{C}^n \times \mathcal{C}^k, 0) \rightarrow (\mathcal{C}, 0) \) of \(f_0 \) are said to be equivalent, if there exists a holomorphic map-germ

\[
\psi: (\mathcal{C}^n \times \mathcal{C}^k, 0) \rightarrow (\mathcal{C}^n, 0), \quad \psi(z, 0) = z, \quad \psi(0, u) = 0
\]

such that

\[
G(z,u) = F(\psi(z,u), u).
\]

It is easy to see that this notion of equivalence is in fact an equivalence relation in the set of unfoldings of \(f_0 \).

Let \(F: (\mathcal{C}^n \times \mathcal{C}^k, 0) \rightarrow (\mathcal{C}, 0) \) be an unfolding of \(f_0 \) and \(\varphi: (\mathcal{C}^l, 0) \rightarrow (\mathcal{C}^k, 0) \) - a holomorphic map-germ. The unfolding of \(f_0 \) induced from \(F \) by \(\varphi \) is defined by the formula

\[
G(z, u) = F(z, \varphi(u)).
\]

An unfolding \(F: (\mathcal{C}^n \times \mathcal{C}^k, 0) \rightarrow (\mathcal{C}, 0) \) of \(f_0 \) is called versal if any unfolding of \(f_0 \) is equivalent to one induced from \(F \).

The following proposition will be useful.

Proposition 1. ([Mar82, Ch. 4, Prop. 2.4]) If \(f \in \mathcal{O}^n \) is a singularity, \(m \) is the maximal ideal in \(\mathcal{O}^n \), then

\[
\dim_{\mathcal{C}} \frac{\mathcal{O}^n}{m(Vf) \mathcal{O}^n} = \dim_{\mathcal{C}} \frac{\mathcal{O}^n}{(Vf) \mathcal{O}^n} + n.
\]

The main result concerning versal unfoldings is the following.

Theorem 4. Let \(f_0: (\mathcal{C}^n, 0) \rightarrow (\mathcal{C}, 0) \) be a singularity and put \(\mu = \mu(f_0) \). Let \(g_1, \ldots, g_{\mu+n-1} \in \mathcal{O}^n \) be any representatives of a basis of the \(\mathcal{C} \)-vector space \(\frac{m}{m(\mathcal{C}^n)} \). Then the holomorphic germ

\[
F: (\mathcal{C}^n \times \mathcal{C}^{\mu+n-1}, 0) \rightarrow (\mathcal{C}, 0)
\]

defined as

\[
F(z, u) := u_1g_1(z) + \ldots + u_{\mu+n-1}g_{\mu+n-1}(z) + f_0(z)
\]

is a versal unfolding of \(f_0 \).

Remark. The proof of the above theorem runs in a very similar way to that given by Ebeling ([Ebe07, Prop. 3.17]); see also [Wal81, Thm. 3.4] for a more general, but less explicit, approach to the concept of a versal unfolding and a proof of Theorem 3.

Let \(f: (\mathcal{C}^m, 0) \rightarrow (\mathcal{C}, 0) \) and \(g: (\mathcal{C}^m, 0) \rightarrow (\mathcal{C}, 0) \) be two germs of holomorphic functions. We say that \(f \) is stably equivalent to \(g \) (see [AGV85]) iff there exists \(p \in \mathbb{N}, \mu \geq \max\{m, n\} \), such that \(\tilde{f} := f(z_1, \ldots, z_\mu) + \frac{z_{\mu+1}^2}{2} + \ldots + \frac{z_p^2}{2} \) is biholomorphically
equivalent to \(\tilde{g} := g(w_1, \ldots, w_m) + w_{m+1}^2 + \ldots + w_{m'}^2 \), i.e. there exists a biholomorphism \(\Phi : (\mathbb{C}^n, 0) \to (\mathbb{C}^n, 0) \) such that \(\tilde{f} \circ \Phi = \tilde{g} \).

It is easy to check that the Milnor number of a singularity is an invariant of the stable equivalence. The same is true for the jump of a singularity.

Proposition 2. The jump of a singularity is an invariant of the stable equivalence.

Proof. Since obviously \(\lambda (f) = \lambda (g) \) for any two biholomorphically equivalent singularities \(f \) and \(g \), it suffices to prove that for a singularity \(f_0 : (\mathbb{C}^n, 0) \to (\mathbb{C}, 0) \) the equality

\[
\lambda (f_0(z)) = \lambda (f_0(z) + z_{n+1}^2)
\]

holds, where \(z = (z_1, \ldots, z_n) \).

First we consider the case \(\mu (f_0) = 1 \). Clearly, \(\text{ord} f_0 = 2 \). For the deformation \(f_s(z) := f_0(z) + sz_1 \) we have \(\mu (f_0) - \mu (f_s) = 1, s \neq 0 \). Hence \(\lambda (f_0) = 1 \). Similarly, \(\lambda (f_0(z) + z_{n+1}^2) = 1 \).

Now assume that \(\mu (f_0) \geq 2 \).

First note, that if \(f_s \) is a deformation of \(f_0 \) then the family \((f_s(z) + z_{n+1}^2) \) is a deformation of \(f_0(z) + z_{n+1}^2 \). Clearly, \(\mu (f_s(z) + z_{n+1}^2) = \mu (f_s(z)) \) so

\[
\lambda (f_0(z)) \geq \lambda (f_0(z) + z_{n+1}^2).
\]

To prove the opposite inequality we take a deformation \((g_s) \) of \(g_0(z, z_{n+1}) := f_0(z) + z_{n+1}^2 \) that realizes \(\lambda (g_0) \) i.e. \(\mu (g_0) - \mu (g_s) = \lambda (g_0) \) for \(s \neq 0 \). Let, by Theorem 4, \(h_1, \ldots, h_{\mu+n-1} \in \mathcal{O}^n \) constitute a basis of \(\frac{m_0}{m_\nu h_{0(V_0)} \otimes \mathcal{O}^{n+1}} \), where \(\mu := \mu (f_0) \) and \(m_\nu \) is the maximal ideal of \(\mathcal{O}^n \). Then \(h_1, \ldots, h_{\mu+n-1}, z_{n+1} \) constitute a basis of \(\frac{m_{n+1}}{m_0(V_0)} \). Hence, up to a biholomorphism, we may assume that

\[
g_s(z, z_{n+1}) = v_1(s) h_1(z) + \ldots + v_{\mu+n-1}(s) h_{\mu+n-1}(z) + v_{\mu+n}(s) z_{n+1} + f_0(z) + z_{n+1}^2,
\]

for holomorphic \(v_1, \ldots, v_{\mu+n} : (\mathbb{C}, 0) \to (\mathbb{C}, 0) \).

We claim that the \(g_s \)'es are not smooth. Indeed, in the opposite case we would have for \(s \neq 0 \)

\[
\lambda (g_0) = \mu (g_0) - \mu (g_s) = \mu (g_0).
\]

On the other hand, for the deformation \(\tilde{g}_s(z, z_{n+1}) := s(z_1^2 + \ldots + z_n^2) + g_0(z, z_{n+1}) \) of \(g_0 \) we would have, for sufficiently small \(s \neq 0 \), \(\mu (\tilde{g}_s) = 1 \) and then \(\mu (g_0) - \mu (\tilde{g}_s) = \mu (f_0) - 1 > 0 \). Hence \(\lambda (g_0) \leq \mu (g_0) - \mu (\tilde{g}_s) = \mu (g_0) - 1 \), a contradiction to \(\lambda (g_0) \).

Since the \(g_s \)'es are not smooth, \(v_{\mu+n} = 0 \). Thus for the deformation \(f_s(z) := v_1(s) h_1(z) + \ldots + v_{\mu+n-1}(s) h_{\mu+n-1}(z) + f_0(z) \) of \(f_0 \) there is \(\mu (g_s) = \mu (f_s) \) and

\[
\lambda (g_0) = \mu (g_0) - \mu (g_s) = \mu (f_0) - \mu (f_s) = \lambda (f_s).
\]

This implies \(\lambda (f_0) \leq \lambda (g_0) \). \(\square \)
3 Main Results

In this section we will present the proofs of the results. We begin with the main theorem, concerning the class X_0.

Theorem 5. For the singularities
\[f_0^n(x, y) = x^4 + y^4 + ax^2y^2, \]
where $a \in \mathbb{C}, a^2 \neq 4$, we have
\[\lambda(f_0^n) = 2. \]
Moreover, for every singularity of type X_0 its jump is equal to 2.

First we state and prove a lemma.

Lemma 1. The (classes of the) monomials x^iy^j with $0 < i + j \leq 3$ and the monomial x^2y^2 form a basis of the \mathbb{C}-vector space $m/ m(\nabla f_0^n)$.

Proof. We have $\nabla f_0^n(x, y) = (4x^3 + 2axy^2, 4y^3 + 2ax^2y)$. Let us note that $x^5, x^3y \in m(\nabla f_0^n)$ because
\[x^5 = \left(\frac{x^2}{4} + \frac{2ay^2}{4(a^2 - 4)} \right) \frac{\partial f_0^n}{\partial x} + \left(\frac{-a^2xy}{4(a^2 - 4)} \right) \frac{\partial f_0^n}{\partial y} \]
and
\[x^3y = \left(\frac{-y}{a^2 - 4} \right) \frac{\partial f_0^n}{\partial x} + \left(\frac{ax}{2(a^2 - 4)} \right) \frac{\partial f_0^n}{\partial y}. \]
Since f_0^n is symmetric with respect to x and y, also $y^5, xy^3 \in m(\nabla f_0^n)$. Hence the classes of the monomials
\[x, y, x^2, xy, x^2y, x^3, x^2y^2, x^4, x^3y^2, xy^3 \]
generate $m/ m(\nabla f_0^n)$. Since $x^4 \equiv -\frac{3}{2}y^2, y^4 \equiv -\frac{3}{2}x^2y^2$ modulo $m(\nabla f_0^n)$, we get that the classes of the monomials x^iy^j with $0 < i + j \leq 3$ and the monomial x^2y^2 also generate the space $m/ m(\nabla f_0^n)$. They form a basis of $m/ m(\nabla f_0^n)$ because by Proposition 1 $\dim_{\mathbb{C}} m/ m(\nabla f_0^n) = \dim_{\mathbb{C}} \partial^n / m(\nabla f_0^n) - 1 = \dim_{\mathbb{C}} \partial^n / (\nabla f_0^n) \partial^n + 1 = \mu(f_0^n) + 1 = 10$. □

Proof of Theorem 5. By Proposition 2 it is enough to prove the first part of the theorem. Let us fix $a \in \mathbb{C}, a^2 \neq 4$ and let $f_0 := f_0^n$. We have $\mu(f_0) = 9$. Let us consider the deformation
\[f_s(x, y) := x^4 + (y^2 + sx)^2 + ax^2(y^2 + sx) \]
of f_0. Let us apply the change of coordinates: $x \mapsto x - sy^2, y \mapsto sy$, for $s \neq 0$. In these coordinates the f_s'es take the form
\[\tilde{f}_s(x, y) = s^2x^4 + as^3xy^2 + s^4y^8 + \left[(ax^3 + x^4 - 2a^2s^2x^2y^2 - 4sx^3y^2 + 6s^2x^2y^4 - 4s^3xy^6) \right]. \]
It is easily seen that such \(f_s \)'s are non-degenerate if \(s \neq 0 \). Thus, by Kouchnirenko theorem, we get \(\mu (f_s) = \nu (f_s) = 7 \) and so
\[
\mu (f_s) = 7 \quad \text{for} \quad s \neq 0. \tag{4}
\]
This means that \(\lambda (f_s) = 2 \) and therefore \(\lambda (f_0) \leq 2 \). By the definition of the jump of a singularity, there are only two cases: \(\lambda (f_0) = 1 \) or \(\lambda (f_0) = 2 \). We will exclude the first possibility. Suppose to the contrary, that there exists a deformation \((f_s) \) of the singularity \(f_0 \) with the property that
\[
\mu (f_s) = 8 \quad \text{for} \quad s \neq 0. \tag{5}
\]
By Theorem4 and Lemma1 we may assume that
\[
f_s (x, y) = s_{10} (s) x + s_{91} (s) y + s_{20} (s) x^2 + s_{11} (s) xy + s_{02} (s) y^2 + s_{30} (s) x^3 + s_{21} (s) x^2 y + s_{12} (s) y^3 + s_{03} (s) \gamma + s_{22} (s) x^2 y^2 + f_0 (x, y),
\]
where \(s_{10}, \ldots, s_{22} : (\mathbb{C}, 0) \to (\mathbb{C}, 0) \) are holomorphic. Since \(\deg f_s = 4 \) and \(\mu (f_s) = 8 \) for \(s \neq 0 \), by Theorem3 three or four of the irreducible components of the curve \(\mathcal{C} := \{(x, y) \in \mathbb{C}^2 : f_s (x, y) = 0\} \) pass through the origin. Hence \(\ord f_s = 3 \) or \(\ord f_s = 4 \), for \(0 < |s| \ll 1 \). The latter case is impossible by Theorem1 because then \(\mu (f_s) \geq \nu (f_s) \geq 9 \). Thus, it suffices to consider the case \(\ord f_s = 3 \). So, assume \(\ord f_s = 3 \) for \(s \neq 0 \). Fix any small \(s_0 \in \mathbb{C} \setminus \{0\} \). We can write
\[
f_{s_0} (x, y) = s_{30} x^3 + s_{21} x^2 y + s_{12} xy^2 + s_{03} y^3 + (s_{22} + a) x^2 y^2 + x^4 + y^4,
\]
with \(s_{ij} = s_{ij} (s_0) \in \mathbb{C} \). Since \(\ord f_{s_0} = 3 \), \(f_0 \) has to be degenerate. Otherwise, by checking all the possible cases, we would get \(\mu (f_{s_0}) \leq 6 \) (by the Kouchnirenko theorem), which contradicts (5). Since \(\gcd (3, 4) = 1 \), the degeneracy of \(f_{s_0} \) may only happen on a segment of \(\Gamma (f_{s_0}) \) lying in the line: \(u + v = 3 \). So, we may write
\[
f_{s_0} (x, y) = (\alpha x + \beta y)^2 (\gamma x + \delta y) + (s_{22} + a) x^2 y^2 + x^4 + y^4,
\]
for some \(\alpha, \beta, \gamma, \delta \in \mathbb{C}, |\alpha| + |\beta| > 0, |\gamma| + |\delta| > 0 \). Moreover, \(\alpha \neq 0 \) and \(\beta \neq 0 \) because otherwise \(f_{s_0} \) would be non-degenerate. If we change coordinates: \(\alpha x + \beta y \mapsto x, y \mapsto y \) then \(f_{s_0} \) takes the form
\[
\widetilde{f}_{s_0} (x, y) = x^2 (e x + \zeta y) + P_4 (x, y),
\]
where \(e, \zeta \in \mathbb{C}, |e| + |\zeta| > 0 \), and \(P_4 \) is a non-zero homogeneous polynomial of degree 4. We easily check, considering all the possible cases, that \(f_{s_0} \) is non-degenerate. So, again by the Kouchnirenko theorem, we would have
\[
\mu (f_{s_0}) = \mu (\widetilde{f}_{s_0}) = \nu (\widetilde{f}_{s_0}) \leq 6,
\]
which contradicts (5).

Now we prove a partial result concerning the class \(W_{1,0} \). \qed
Proposition 3. For the singularities \(f_0^{(0,b)}(x,y) = x^4 + y^6 + bx^2y^4 \), where \(b \in \mathbb{C} \), we have
\[
\lambda(f_0^{(0,b)}) = 1.
\]
In particular, \(\lambda(x^4 + y^6) = 1 \).

Proof. Fix \(b \in \mathbb{C} \). Since \(f_0^{(0,b)} \) is Kouchnirenko non-degenerate, it follows that \(\mu(f_0^{(0,b)}) = V(f_0^{(0,b)}) = 15 \). Consider the following deformation of \(f_0^{(0,b)} \):
\[
f_s^{(0,b)}(x,y) := x^4 + (y^2 + sx)^3 + bx^2y^4.
\]
The deformation consists of degenerate singularities (for \(s \neq 0 \)). Apply the following change of coordinates: \(x \mapsto x - sy^2, y \mapsto sy \). In these coordinates the \(f_s^{(0,b)} \) take the form
\[
f_s^{(0,b)}(x,y) = s^3x^3 + (s^4 + bs^6)y^8 + \left[x^4 - 4sx^3y^2 + (6sx^2 + bs^4)x^2y^4 - (4s^3 + 2bs^5)xy^6\right].
\]
It is immediately seen that for \(s \neq 0 \) the singularities \(f_s^{(0,b)} \) are non-degenerate and so
\[
\mu(f_s^{(0,b)}) = 14.
\]
Since the Milnor number is a biholomorphic (and even a topological) invariant of a singularity, there is also
\[
\mu(f_0^{(0,b)}) = 14.
\]
It means that for this particular deformation \((f_s^{(0,b)}) \) of \(f_0^{(0,b)} \) we have \(\lambda((f_s^{(0,b)})) = 1 \) and consequently \(\lambda(f_0^{(0,b)}) = 1 \).

Corollary 1. For every singularity \(f_0 \) stably equivalent to one of \(f_0^{(0,b)} \), \(b \in \mathbb{C} \), the jump \(\lambda(f_0) \) of \(f_0 \) is equal to 1.

Proposition 3 implies also that \(\lambda(f_0) \) is not a topological invariant of \(f_0 \). Recall that two singularities \(f \) and \(g \) in \(\mathbb{C}^n \) have the same topological type if there exist neighbourhoods \(U \) and \(V \) of \(0 \in \mathbb{C}^n \) and a homeomorphism \(\Phi : U \to V \) such that \(\Phi(V(f)) = V(g) \), where \(V(f) \) (resp. \(V(g) \)) is the zero set of \(f \) (resp. \(g \)) in \(U \) (resp. \(V \)).

Corollary 2. The jump of the Milnor number \(\lambda(f_0) \) is not a topological invariant of \(f_0 \).

Proof. By the Gusein-Zade theorem, for generic elements \(f_0^{(a,b)} \) of the class \(W_{1,0} \) we have \(\lambda(f_0^{(a,b)}) > 1 \). Proposition 3 gives that the elements \(f_0^{(0,b)} \) of \(W_{1,0} \) satisfy \(\lambda(f_0^{(0,b)}) = 1 \). But all the singularities \(f_0^{(a,b)}, a, b \in \mathbb{C}, a^2 \neq 4 \), have the same topological type. This follows from the general Lê-Ramanujam theorem on \(\mu \)-constant families of singularities or from the (much easier) fact that all the singularities \(f_0^{(a,b)} \) have the same resolution graph.

Acknowledgement. We thank prof. A. Płoski for discussions which led to improvement of the text of the paper.
References

[AGV85] Arnold, V. I., Gusein-Zade, S. M. and Varchenko, A. N. Singularities of differentiable maps. Vol. I. The classification of critical points, caustics and wave fronts, volume 82 of Monographs in Mathematics. Birkhäuser Boston Inc., Boston, MA, 1985.

[Bod07] Bodin, A. Jump of Milnor numbers. Bull. Braz. Math. Soc. (N.S.), 38(3):389–396, 2007.

[Ebe07] Ebeling, W. Functions of several complex variables and their singularities, volume 83 of Graduate Studies in Mathematics. American Mathematical Society, Providence, RI, 2007.

[GLS07] Greuel, G.-M., Lossen, C. and Shustin, E. Introduction to singularities and deformations. Springer Monographs in Mathematics. Springer, Berlin, 2007.

[GP01] Gwoździewicz, J. and Płoski, A. Formulae for the singularities at infinity of plane algebraic curves. Univ. Iagel. Acta Math., (39):109–133, 2001. Effective methods in algebraic and analytic geometry (Kraków, 2000).

[Gus93] Gusein-Zade, S. M. On singularities from which an A_1 can be split off. Funct. Anal. Appl., 27(1):57–59, 1993.

[Kou76] Kouchnirenko, A. G. Polyèdres de Newton et nombres de Milnor. Invent. Math., 32(1):1–31, 1976.

[Mar82] Martinet, J. Singularities of smooth functions and maps, volume 58 of London Mathematical Society lecture note series. Cambridge University Press, 1982.

[Pło90] Płoski, A. Newton polygons and the Łojasiewicz exponent of a holomorphic mapping of \mathbb{C}^2. Ann. Polon. Math., 51:275–281, 1990.

[Pło99] Płoski, A. Milnor number of a plane curve and Newton polygons. Univ. Iagel. Acta Math., 37:75–80, 1999. Effective methods in algebraic and analytic geometry (Bielsko-Biała, 1997).

[Wal10] Walewska, J. The second jump of Milnor numbers. Demonstratio Math., 43(2):361–374, 2010.

[Wal81] Wall, C. T. C. Finite determinacy of smooth map-germs. Bull. London Math. Soc., 13(6):481–539, 1981.