Urinary proteome of dogs with kidney injury during babesiosis

CURRENT STATUS: ACCEPTED

Dagmara Winiarczyk
University of Life Sciences
ORCiD: 0000-0002-1257-869X

Katarzyna Michalak
University of Life Sciences in Lublin Poland

Łukasz Adaszek
Uniwersytet Przyrodniczy w Lublinie

Mateusz Winiarczyk
Uniwersytet Medyczny w Lublinie

Stanisław Winiarczyk genp53@interia.pl
Corresponding Author
ORCiD: 0000-0002-8468-2154

DOI: 10.21203/rs.2.11052/v3

SUBJECT AREAS
Small Animal Medicine

KEYWORDS
Acute kidney injury, Babesiosis, Dog, Proteomics, Urine
Abstract

Background

Acute kidney injury is the most frequent complication of babesiosis in dogs and may provide a natural model for identifying early and specific markers of kidney injury in this species. There are limited data on urine proteomics in dogs, and none of the effect of babesiosis on the urine proteome. This study aimed to identify urinary proteins of dogs with kidney injury during the natural course of babesiosis caused by Babesia canis, and to compare them with proteins in a control group to reveal any potential biomarkers predicting renal injury before the presence of azotemia.

Urine samples were collected from 10 dogs of various breeds and sex with naturally occurring babesiosis, and 10 healthy dogs. Pooled urine samples from both groups were separated by 2D (two-dimensional) electrophoresis, followed by protein identification using MALDI-TOF (matrix-assisted laser desorption ionization time of flight) mass spectrometry.

Results

In total, 176 proteins were identified in the urine samples from healthy dogs, and 403 proteins were identified in the urine samples from dogs with babesiosis. Of the 176 proteins, 146 were assigned exclusively to healthy dogs, and 373 of the 403 proteins were assigned exclusively to dogs with babesiosis; 30 proteins were common for both groups. Characteristic analysis of 373 proteins found in dogs with babesiosis led to the isolation of 8 proteins associated with 10 metabolic pathways involved in immune and inflammatory responses.

Conclusions

It was hypothesized that epithelial-mesenchymal transition might play an important role in the mechanisms underlying pathological changes in renal tissue during babesiosis, as
indicated by a causal relationship network built by combining 5 of the 10 selected metabolic pathways, and 4 of the 8 proteins associated with these pathways; this network included cadherins, gonadotropin releasing hormone receptors, inflammatory responses mediated by chemokine and cytokine signalling pathways, integrins, interleukins, and TGF-β (transforming growth factor β) pathways. Those pathways were linked by interleukin-13, bone morphogenetic protein 7, α2(1) collagen, and tyrosine protein kinase Fer, which are potential biomarkers of damage during babesiosis in dogs, that might indicate early renal injury.

Background

After heart failure, kidney disease is the most frequent cause of reduced quality of life and shortened survival of people and dogs [1–4]. Two different forms of kidney disease, acute kidney injury (AKI) and chronic kidney disease (CKD), are caused by various factors. In humans, 7.8% of patients with AKI develop CKD, and 4.9% of patients progress to end-stage renal disease [1]. Most AKI cases in medicine and veterinary science are diagnosed based on serum or plasma concentrations of non-protein nitrogenous creatinine (Cr) and urea compounds. This method has limited sensitivity, and is not suitable for early AKI detection [2], thus it is necessary to identify markers and methods adequate for the early detection of glomeruli, and/or tubule injury before the decreased glomerular filtration rate (GFR) is signalled by increased Crea concentration [3–6]. One such method is proteomic analysis, which compares the protein profile in normal urine with that typical for a given disease to select potential diagnostic, therapeutic, and prognostic biomarkers [7, 8]. With the decreased GFR and subsequent azotemia and uremia, AKI is among the most frequent complications of babesiosis in dogs, and may provide a natural model for identifying early and specific markers of kidney injury in this species [9,10,11,12]. Evaluation of urinary proteins is a promising strategy for detecting kidney injury. Normal urine should contain
only a small amount of protein, because of the mechanical barrier of the glomerulus, and the reabsorptive capacity of the proximal tubules. Urinary total protein is a mixture of filtered plasma proteins, kidney-derived proteins, and proteins originating from the lower urinary tract. The discovery of candidate urinary protein biomarkers for kidney injury is essentially a hypothesis-generating process. Altered functioning of the nephron can result in the presence of large amounts of proteins in urine. The glomerular filtration barrier normally excludes most proteins as large as, or larger than albumin (ie. MW > 69kDa). The charge of a proteins also influence its filtration: positively charged proteins pass the glomerular barrier more easily than negatively charged proteins. Changes in the structure or composition of this barrier, or in the heamodynamic state of the patient can lead to decreased glomerulal perselectivity. This primary glomerulal dysfunction results in the presence of high amounts of proteins with intermediate, or high molecular weight (MW) in the ultrafiltrate. Proteins smaller than albumin are freely filtered by the glomerulus. However, these proteins subsequently are efficiently reabsorbed by the proximal tubules in a normally functioning kidney. Both primary and secondary tubular dysfunction represent an inability of the tubules to completely reabsorb filtered proteins, and can result in proteinuria [11].

Possible causes of acute kidney injury in dogs with babesiosis include anaemic hypoxia, hypovolemia, haemoglobinuric nephropathy, and myoglobinuric nephropathy secondary to rhabdomyolysis [13,14,15]. Anoxia, reduced renal blood flow, hypotension, and renal ischaemia probably play more important roles in the development of AKI than haemoglobinuria. Hypoxia results in greater renal tubular injury than haemoglobin, and the nephrotoxic effects of haemoglobin are highly individual [14]. Additionally, as shown by Zygner et al. [16], the increase in serum TNF-α concentration in dogs with canine babesiosis influences the development of hypotension and renal failure.
Moreover, as AKI naturally occurs during babesiosis in dogs, this situation could serve as a good model for select studies on AKI in humans. This hypothesis is supported by comparative analysis of urine proteomes in humans and dogs; many proteins related to human diseases, including kidney diseases, have been identified in canine urine [17–19]. In addition, domestic dogs (Canis lupus familiaris) are increasingly perceived as an excellent animal model for studying complex human diseases [20]. Canine DNA and protein sequences are much closer than mouse sequences to human sequences, suggesting that canine biology is more similar in many aspects to human biology than is mouse biology [21–22]. It is also worth a mention that babesiosis is a zoonotic parasitic infection, and has similar clinical presentation to canine babesiosis [23].

This study aimed to identify proteins in the urine of dogs with subclinical kidney injury during the natural course of babesiosis, and to compare them with proteins in the control group to reveal potential biomarkers predicting renal injury before the presence of azotemia.

Results

Based on the clinicopathological variables, all dogs with babesiosis met the criteria for early phase AKI [24]. They had proteinuria with UPC>0.5, decreased urine specific gravity (average, 1.015) and significantly elevated uIgG/uCr, uTHP/uCr, and uRBP/uCr values, which indicated glomerular and tubular damage.

In this study, 176 proteins were identified in pooled urine samples collected from healthy dogs, and 403 proteins were identified in pooled urine samples collected from dogs with babesiosis. Tables 1 and 2 contain lists of the proteins, along with their names, scores, molecular weights, number of matches, UniProt base accession numbers and hyperlinks (see Appendix: Supplementary Table 1.,2.). With Venn diagram software, which shows logical correlations between groups (http://bioinfogp.cnb.csic.es), 146 of the 176 proteins
were assigned exclusively to healthy dogs, and 373 of the 403 proteins were exclusively assigned to dogs with babesiosis; 30 proteins were common for both groups. List of 30 common proteins between two groups has been presented in Supplementary data (see Appendix: Supplementary Table 3). From 146 proteins found exclusively in healthy dogs, 128 were identified by Pantherdb software. According to molecular pathways analysis, those were listed in categories as follows: binding, catalytic activity, molecular function regulator, molecular transducer activity, structural molecule activity, transcription regulator activity, and transporter activity. Two most prominent molecular functions of those proteins were binding, and catalytic activity, consisting of 40 and 27 proteins, respectively.

To further evaluate the 373 proteins found in only the dogs with babesiosis, the Panther programme (http://www.pantherdb.org) was used to isolate 21 proteins from the Canis familiaris species, which were used to form a collection of potential diagnostic and pathophysiological biomarkers for this disease (Table 1). Further analysis of these 21 proteins led to the isolation of 8 proteins associated with 10 metabolic pathways, that were attributed to immune and inflammatory response development (Table 2). Further analysis indicated that a causal relationship network could be built by combining 5 of the 10 selected metabolic pathways and 4 of the 8 proteins with which the pathways were associated. These pathways included cadherins, gonadotropin releasing hormone receptors, inflammatory responses mediated by chemokine and cytokine signalling pathways, integrins, and TGF-β pathways and were linked by interleukin (IL)-13, bone morphogenetic protein 7, α2(1) collagen, and FER tyrosine kinase.

[Insert Fig. 1. Here]

[Insert Fig. 2. Here]

Table 1. List of *Canis familiaris* proteins identified in the urine of dogs with babesiosis by
MALDI-TOF/TOF.

Nr	Accessiona	Protein name	GO molecular function
1	P06596	Phospholipase A2	phospholipase
2	A4Z944	Zinc finger BED domain-containing protein 5	transcription factor
3	O46392	Collagen alpha-2(I) chain	extracellular matrix structural constituent
4	Q9XSU4	40S ribosomal protein S11	structural constituent of ribosome
5	O97556	Rab GDP dissociation inhibitor beta	G-protein modulator acyltransferase
6	Q9TTY2	Tyrosine-protein kinase Fer	tyrosine kinase activit
7	P19006	Haptoglobin	hemoglobin binding
8	Q75V93	Calcitonin receptor-stimulating peptide 2	peptide hormone
9	Q2KNA0	Cytospin-A	structural component
10	P01321	Insulin	hormone
11	Q9N219	Mitochondrial uncoupling protein 3	oxidative phosphorylation
12	E2RK33	Glutamyl-tRNA(Gln) amidotransferase subunit C, mitochondrial	ligase
13	Q32KH5	N-acetylgalactosamine-6-sulfatase	hydrolase
14	P27597	T-cell surface glycoprotein CD3 epsilon chain	transmembrane signalling receptor
15	P24408	Ras-related protein Rab-9A	GTPase
16	P34819	Bone morphogenetic protein 7 (fragment)	growth factor
17	Q5TJE5	Ras guanine nucleotide dissociation stimulator-like 2	guanyl-nucleotide exchange factor
18	Q9N0W9	Interleukin-13	cytokine
19	Q8WMX5	Solute carrier family 15 member 1	transporter
20	O97578	Dipeptidyl peptidase 1 (fragment)	endopeptidase
21	Q861Y6	Nicolin-1	structural component

Table 2. List of metabolic pathways and associated urinary proteins in dogs with babesiosis.

No.	Pathway	Protein
1.	CCKR signalling pathway	Calcitonin receptor-stimulating peptide 2
2.	Cadherin signalling pathway	Tyrosine-protein kinase Fer
3.	Gonadotropin-releasing hormone receptor pathway	Insulin/Bone morphogenetic protein 7 (fragment)
4.	Inflammatory response mediated by chemokines and cytokines	Interleukin 13
5.	Insulin/IGF pathway-mitogen activated protein kinase kinase/MAP kinase cascade	Insulin/Insulin-like growth factor
6.	Insulin/IGF pathway-protein kinase B signaling cascade	Insulin/Insulin-like growth factor
7.	Integrin signalling pathway	Collagen alpha-2(I) chain
8.	Ras pathway	Ral guanine nucleotide dissociation stimulator-like 2
9.	T cell activation	T cell surface glycoprotein CD3 epsilon chain
10.	TGF-beta signaling pathway	Bone morphogenetic protein 7 (fragment)

Discussion

The final bioinformatic analysis of the urine proteome of dogs with babesiosis indicated...
that at least eight proteins (IL-13, bone morphogenetic protein 7, α2(1) collagen, tyrosine-protein kinase Fer, calcitonin receptor-stimulating peptide 2, insulin/insulin-like growth factor, ral guanine nucleotide dissociation stimulator-like 2 and T cell surface glycoprotein CD3 epsilon chain) are related to parasitic invasions and renal inflammatory responses. Non-specific immune responses are activated to limit the initial phase of parasitic invasion, or infection by pathogenic micro-organisms. Parasitic invasion initiates type Th2 immune response, characterised by the activation of Th2 lymphocytes, eosinophilia, basophilia, mast cells, and alternatively activated macrophages (AAM). This process is accompanied by the secretion of IgE antibodies and numerous cytokines, such as IL-3, IL-4, IL-5, IL-9, IL-10, IL-13 and TGF-β. It is well known that IL-13 plays a key role in regulating the anti-parasitic response [25] and is a primary factor that induces fibrosis in many chronic contagious and autoimmune diseases [26]. IL-13 increases the concentration of TGF-β, which leads to collagen deposition in lung and kidney tissues [27], by stimulating its production by macrophages via IL-13Rα2 [28, 29]. Fibrosis is considered the final stage in CKD development regardless of the primary cause, and the effector cells of this process include myofibroblasts generated from renal tubule epithelial cells by epithelial-mesenchymal transition (EMT) [30–33]. During this transition, cells lose polarity upon losing certain communication abilities, and degrading the basement membrane. Adhesive molecules that bind both epithelial cells and the basement membrane, such as E-cadherin and integrins, are replaced by mesenchymal cell markers, such as N-cadherin, nonstriated muscle α-actin, vimentin, fibronectin and collagen I. In an early inflammatory environment, EMT maintains renal tissue homoeostasis by inducing structural regeneration and reconstruction after harmful stress. Long-term support of EMT leads to fibrous degeneration as well as structural and functional tissue and organ disorders [34,35]. Pleiotropic TGF-β molecules and BMPs belonging to the transforming growth factor-β
superfamily (TGF-βSF) participate in one of the most well-known signalling pathways in EMT [36–38]. Increased TGF-β levels lead to loss of the epithelial phenotype, acquisition of the mesenchymal phenotype and collagen accumulation. Serine-threonine kinase receptors and cytoplasmic proteins (Smads) participate in transmitting TGF-β/BMP pathway signals. Smad3, which is induced by TGF-β stimulation, can bind the Col1A2 gene promoter to activate the expression of type 1α2 collagen, which may accumulate in interstitial tissue and contribute to extracellular matrix (ECM) accumulation, leading to fibrous degeneration of the organ [39]. On the other hand, BMP-7 inhibits fibrosis, exerts anti-inflammatory effects and stimulates the regeneration of damaged kidney tissues [40]. In experimental systems, BMP-7 recombinant protein expression or overexpression inhibits fibrosis in diabetic nephropathy or AKI, TGF-β-initiated EMT and E-cadherin suppression [41]. BMP-7 exerts an anti-inflammatory effect by inhibiting neutrophil, monocyte and macrophage infiltration and activity, as well as by repressing the expression of the proinflammatory cytokines IL-6 and IL-1β, and the proinflammatory chemokines MCP1 and IL-8 [41].

The epsilon chain is one of the four subunits of the CD3 protein complex that combines participation in the activation of T cells after antigen binding. The CD3 epsilon protein is also expressed in proximal and distal tubules, and Henle loops. The presence of this protein in renal tubules results from the participation in the active transport of sodium or hydrogen ions as sodium or proton pumps [42]. It is also believed that CD3 epsilon protein may be involved in communication of signal transduction, similar to T lymphocytes. Insulin-like growth factor-1 (IGF-1) is a peptide growth factor produced by the collecting duct of the adult kidney, and its receptors are present in glomeruli and on the basolateral membrane of renal proximal tubular cells. The IGF-1R signaling pathway initiates with binding of IGF-1 to its cell-surface receptor IGF-1R to activate phosphatidylinositol-3
kinase (PI3K)/Akt, or extracellular signal-regulated kinase (ERK)/mitogen-Activated Protein Kinase (MAPK) signaling pathway, to stimulate cell growth and proliferation, and to inhibit programmed cell death [43]. Following ischemic injury, renal IGF-1 has been shown to decrease. The administration of exogenous IGF-1 has been shown to accelerate recovery from ischemic acute renal failure, possible through enhanced proliferation and reduced apoptosis of tubular epithelial cells [44]. The presence of insulin in association with the IGF-I pathway demonstrated in our studies may indicate with some probability, that IGFBP-7 could be a potential biomarker of acute kidney injury in dogs with babesiosis. However, the exact mechanisms underlying this process are not completely understood.

Haptoglobin, and acute phase protein, also appeared among 21 proteins identified in the urine of dogs with babesiosis. Although it was not included in the final network of close connections selected by the Panther system, haptoglobin is considered to be one of the valuable markers used in the assessment of the course of babesiosis in dogs. In the other study, dogs with babesiosis had reduced serum level of haptoglobin in relation to normal values [45,46]. In this context, it is worth to ask a question about the correlation between a decreased serum level of haptoglobin and its level in excreted urine.

In this study, protein analysis was performed by mass spectrometry without any pre-treatment of urine. Looking at the gene ontology map derived from the dataset, it appears that urine proteome in dogs with babesiosis is composed of several clusters of proteins. Although our study has a major limitation of using a pooled samples, we believe that our findings complete in some way the description of urinary signs of a clinical conditions of renal tissue in dogs with babesiosis. Verifying their significance in the diagnosis and prognosis of the disease requires further study.

Conclusions

In summary, to the best of our knowledge, this study is the first to comprehensively
analyse the urinary proteome of dogs with babesiosis, demonstrating the association of the identified proteins with this disease, and kidney injury. Urine interleukin-13, bone morphogenetic protein 7, α2(1) collagen and tyrosine-protein kinase Fer are potential biomarkers of kidney injury during babesiosis in dogs that might indicate early renal injury; however, further studies are needed to verify their significance in the diagnosis and prognosis of the disease. Functional analysis of these four proteins indicates that epithelial-mesenchymal transition (EMT) might play an important role in the mechanisms underlying pathological changes in renal tissues during the course of babesiosis.

Methods

5.1 Animals and sample collection

Dogs were enrolled during routine admission to Faculty of Veterinary Medicine clinics at the University of Life Sciences in Lublin. Informed consent was obtained from the owners prior to clinical investigations and sample collection. The studies were reviewed and approved by the Ethics Committee of the University of Life Sciences in Lublin (Poland) No 70/2018. All relevant data for inclusion criteria for dogs and values of urine parameters and urinary biomarkers used in the study have already been published [47]. Briefly, the study involved 20 mixed-breed dogs (10 males, 10 females) weighing 5–8 kg (median, 6.2 kg) and aged 2–7 years (median, 4.35 years) that were divided into two groups. All dogs underwent individual clinical and laboratory tests to determine their health status, and to identify signs of kidney damage, particularly in the diseased group. Group 1 (study group, n = 10; five males and five females) consisted of dogs naturally infected with B. canis, while group 2 (control group, n = 10; five males and five females) consisted of healthy dogs [47]. All dogs in group 1 showed symptoms of babesiosis (apathy, anorexia, changes in urine colour, and pale mucous membranes), and haematology analysis revealed
thrombocytopenia (platelets 12–88 × 10⁹/l) and anaemia (erythrocytes 3.5–5.3 × 10¹²/l.)

All dogs were nonazotemic, and the serum creatinine concentration remained within the reference range. All dogs in this group had *Babesia*-positive blood smears, and infection was additionally confirmed by PCR according to the protocol described in other studies [12,16]. Possible co-infections (borreliosis, anaplasmosis, ehrlichiosis) were excluded in all dogs based on PCR and ELISA results [48]. All dogs in group 1 were successfully treated with imidocarb (5 mg/kg s.c.). Dogs in group 2 were clinically healthy and were referred to the clinic for vaccination purposes. Blood smear analysis and PCR for *B. canis* gave negative results for all animals in group 2. Voided midstream urine samples were collected in the morning before the treatment with imidocarb, and each sample was centrifuged on the day of collection at 500 × g for 10 minutes at 4°C. The supernatants were removed, and protease inhibitors were added (Protease Inhibitor Cocktail, Roche Diagnostic Corp.).

Urine protein and Cr concentration were measured by the enzymatic colorimetric method (BS-130 analyser, Mindray), and basic urinalysis with microscopic sediment analysis was performed on fresh urine samples. Urine specific gravity (USG) was measured using a refractometer. The remaining urine was frozen at −80°C for further analysis. Macroscopic evaluation of urine in group 1 showed yellow to dark brown samples, while all group 2 samples were yellow. Urine protein analysis revealed proteinuria in eight of the 10 group 1 dogs, and eight dogs in this group also had a urine protein/creatinine ratio > 0.5. Urine dipstick analysis showed haemoglobinuria in seven of the 10 group 1 dogs, which was severe (++++) in two dogs. Urine specific gravity was decreased in all diseased dogs, with an average value of 1.015 (Table 3). No dogs in the control group had proteinuria or haemoglobinuria. Statistically higher concentrations of urinary biomarkers (ulG/UCr, uTHP/UCr, and uRBP/UCr) were found in the urine samples from all dogs with babesiosis compared to those from the control animals (p < 0.05), indicating dysfunctional
glomerular and tubular kidney regions (Table 3). For proteomic analysis, 10 individual urine samples (0.5 ml each) from groups 1 (affected dogs) and 2 (healthy dogs) were collected and pooled. Pooled sample was made by mixing the same amount of protein of each tear fluid sample. Each pooled urine sample was subjected to desalting on the filter to enable quick ultrafiltration with a high-density coefficient (Amicon Ultra Merck). Protein concentrations were measured with a microlitre spectrophotometer (NANO), and the urine samples were then prepared and subjected to 2D electrophoresis. Each individual gel spot was then analysed by mass spectrometry with the MALDI-TOF (matrix-assisted laser desorption ionization-time of flight) technique.

Table 3. Urinary parameters of renal function and concentration of urinary markers in dogs with babesiosis (group 1) and healthy dogs (group 2) (expressed as the median and range).

Variable	Group 1 (n = 10)	Group 2 (n = 10)	P
uCr [mg/dl]	58.68 (3.24–120.58)	135.64 (53.91–212.82)	0.02
Specific gravity	1.015 (1.010–1.030)	1.030 (1.015–1.045)	0.02
UPC [mg/mg]	2.3 (0.48–6.24)	0.2 (0.05–0.40)	0.02
uRBP/uCr [mg/g]	24.65 (0.06–76.21)	0.2 (0.09–0.3)	0.02
uTHP/uCr [mg/g]	1.50 (0.13–7.80)	0.2 (0.09–0.3)	0.02
uIgG/uCr [mg/g]	120.78 (0-394.31)	0	0.02

* Measured using the sulfosalicylic acid (SSA) method

UPC = urine protein-to-creatinine ratio, uRBP = urinary retinol binding protein, uTHP = urinary Tamm-Horsfal protein, uIgG = urinary immunoglobulin G, uCrea = urinary creatinine

5.2 2D electrophoresis

Two-dimensional electrophoresis was used to separate the proteins in the tested urine samples [49]. Preliminary tests showed that the optimum amount of protein for 2D electrophoresis is 85 µg; thus, this amount of protein was broken down via a precipitation and purification kit (ReadyPrep™ 2-D Cleanup Kit, Bio-Rad, Warsaw, Poland). The obtained protein pellets were then dissolved in rehydration buffer, and the resulting solutions were applied to a rehydration plate and covered with 17-cm immobilized pH gradient (IPG)
linear strips for isoelectric focusing (pH 3–10, Bio-Rad). The gel on the strips was soaked with the protein sample, and the strips were removed after a 12-hour rehydration period and then subjected to electrophoresis in the first dimension (IEF-100 Hoefer; 250 V/30 min; 10 000 V/3 hr; 60 kV/hr, with a current limit of 50 µA/strip hr). Under the influence of the electric field, proteins in the strips migrated to the location corresponding to their isoelectric point. After separation, the IPG strips were prepared for electrophoresis in the second dimension to separate the proteins by molecular mass. Vertical electrophoretic separation was performed in 12.5% polyacrylamide gels with the following current parameters: 600 V/30 mA/100 W in an electrophoretic chamber (PROTEAN® II xi, Bio-Rad). The obtained gels were subjected to a standard colouring procedure with silver in the presence of formaldehyde as a regulator. The protein spots were cut out of the gels, decolourized, reduced and alkylated using dithiothreitol and iodoacetamide [50]. Gel pieces containing proteins were subjected to digestion to obtain shorter peptide fragments. Trypsin digestion occurred in 50 mM ammonium bicarbonate buffer at 37°C for 12 hours (Promega, Trypsin Gold, Mass Spectrometry Grade, Technical Bulletin) [51]. The obtained peptides were subsequently eluted from the gel with a water/acetonitrile/TFA solution (v:v 450:500:50). The extracted peptides were purified using C18 Zip-TIP pipette tips according to the manufacturer’s instructions (Merck Chemicals, Billerica, MA, USA, PR 02358, Technical Note) and applied to the MTP AnchorChip 384 plate (Bruker, Bremen, Germany).

5.3 Mass spectrometry

After the protein samples were dried on the MTP AnchorChip 384 plate, the surface was covered with a super-saturated solution of α-cyano-4-hydroxycinnamic acid (HCCA, Bruker), functioning as a matrix mediating energy transmission to the sample. Simultaneously, 0.5 µl of a peptide standard was applied to the calibration fields (Peptide
Calibration Standard II, Bruker), which were also covered with the matrix solution. Spectrometric analysis was performed using an UltrafleXtreme III MALDI-TOF/TOF (Bruker), and flexControl 3.3 (Bruker) software was applied for mass spectra collection. The obtained peptides were subjected to mild ionization using the MALDI-TOF instrument in linear mode within the 900–4000 Da mass scope in reflectron mode. The obtained mass spectra were analysed with flexAnalysis 3.4 (Bruker) software as follows: smoothing (Savitsky-Golay method), baseline subtraction (Top Hat baseline algorithm), and peak geometry (Stanford Network Analysis Platform (SNAP) algorithm). All peaks with a signal to noise ratio > 3 qualified for further analysis. Experimental data were analysed using the abovementioned software to exclude peaks originating from trypsin or environmental pollution. To ensure correct identification, the selection of possible post-translational modifications using BioTools 3.2 (Bruker) was essential. Post-translational modifications are derived from both the methodology and metabolic processes in the patients. The obtained spectra were compared to the Swiss-Prot database restricted to “bony vertebrate” taxa using Mascot 2.2 software with a maximum error of 0.3 Da. The results with Mascot scores above 62 were considered statistically significant (p ≤ 0.05). If this threshold was not reached, the fragment ion spectra of chosen peptides were subjected to fragmentation in tandem spectrometry mode [52,53].

5.4 Bioinformatic analysis

Venn diagrams were used to show differences between gene lists of healthy and diseased dogs where the UniProt accession numbers were used.[54]. By means of this software it was possible to obtain subset of proteins assigned exclusively to healthy dogs, subset of proteins common to both groups and subset of proteins assigned exclusively to dogs with babesiosis.

Then to study the biological pathway networks and functional classification the UniProt
accession numbers of the protein subset assigned to dogs with babesiosis were entered into Panther Classification System [55]. Analysis was carried out selecting Canis lupus familiaris database.

Abbreviations

2D: two-dimensional, **MALDI-TOF**: Matrix-assisted laser desorption ionization time of flight, **TGF-β**: transforming growth factor, **AKI**: acute kidney injury, **CKD**: chronic kidney disease, **Cr**: creatinine, **GFR**: glomerular filtration rate, **ulgG**: urinary immunoglobulin G, **uTHP**: urinary TammHorsfall Protein, **uRBP**: urinary retinol-binding protein, **Il13**: interleukin 13, **EMT** epithelial-mesenchymal transition, **ECM**: extracellular matrix, **IGF-I** insulin-like growth factor, **CD3**: cluster of differentiation 3, **USG**: urine specific gravity, **UPC**: urine protein to creatinine ratio

Declarations

Ethics approval and consent to participate

The protocol was approved by the Animal Ethics Board of the Department an Clinic of Animal Internal Diseases, University of Life Sciences in Lublin.

The dog owners were informed about the methods and purpose of the study and gave their written informed consent.

Consent for publication

Not applicable

Availability of data and material

The datasets used and analysed during the current study are available from the corresponding author on reasonable request.

Competing interests

The authors have declared that no competing interests exist.

Funding
This work was partly supported by the Polish National Science Centre (NCN) [grant numbers UMO–2016/23/N/NZ5/02576 and UMO–2017/25/N/NZ5/01875].

Authors’ contributions
Conceived and designed the experiments: DW, MW, SW. DW, MW contributed to sample collection and laboratory analysis. ŁA performed PCR analysis. KM performed electrophoresis procedure and mass spectrometry analysis. All authors participated in the interpretation of results and the preparation of the manuscript.

Acknowledgements
We thank Dorota Pietras-Ozga, PhD, for technical assistance with the electrophoresis procedure.

References
1. Coca SG, Yusuf B, Shlipak MG, Garg AX, Parikh CR. Long-term risk of mortality and other adverse outcomes after acute kidney injury: a systematic review and meta-analysis. Am J Kidney Dis. 2009;53:961–73.

2. Bellomo R, Ronco C, Kellum JA, Mehta RL, Palevsky P. Acute renal failure - definition, outcome measures, animal models, fluid therapy and information technology needs: the Second International Consensus Conference of the Acute Dialysis Quality Initiative (ADQI) Group. Crit Care. 2004;8:R204-12.

3. Kellum JA, Devarajan P. What can we expect from biomarkers for acute kidney injury? Biomark Med. 2014;8:1239-45.

4. Lee YJ, Chang CC, Chan JP, Hsu WL, Lin KW, Wong ML. Prognosis of acute kidney injury in dogs using RIFLE (Risk, Injury, Failure, Loss and End-stage renal failure)-like criteria. Vet Rec. 2011;168:264.

5. Murray PT, Mehta RL, Shaw A, Ronco C, Endre Z, Kellum JA, et al. Potential use of biomarkers in acute kidney injury: report and summary of recommendations from the 10th
Acute Dialysis Quality Initiative consensus conference. Kidney Int. 2014;85:513–21.

6. Venkataraman R, Kellum JA. Defining acute renal failure: the RIFLE criteria. J Intensive Care Med. 2007;22:187–93.

7. Gopal J, Muthu M, Chun SC, Wu HF. State-of-the-art nanoplatform-integrated MALDI-MS impacting resolutions in urinary proteomics. Proteomics Clin Appl. 2015;9:469–81.

8. Thomas S, Hao L, Ricke WA, Li L. Biomarker discovery in mass spectrometry-based urinary proteomics. Proteomics Clin Appl. 2016;10:358–70.

9. Köster L, Lobetti R, Kelly P. Canine babesiosis: a perspective on clinical complications, biomarkers, and treatment. Vet Med (Auckl). 2015;6:119–128

10. Mosqueda J, Olvera-Ramírez, Aguilar-Tipacamú AG, et al. Current Advances in Detection and Treatment of Babesiosis. Curr Med Chem. 2012; 19:1504–1518.

11. De Loor J, Daminet S, Smets P, Maddens B, Meyer E. Urinary Biomarkers for Acute Kidney Injury in Dogs. J Vet Intern Med 2013;27:998–1010.

12. Adaszek L, Winiarczyk S. Molecular characterization of Babesia canis canis isolates from naturally infected dogs in Poland. Vet Parasitol. 2008;152:235–41.

13. Jacobson LS, Lobetti RG. Renal involvement in dogs with babesiosis. 2001. https://www.ingentaconnect.com/content/sabinet/savet/2001/00000072/00000001/art0000

7. Accessed 4 Apr 2019.

14. Jacobson LS, Lobetti RG. Rhabdomyolysis as a complication of canine babesiosis. J Small Anim Pract. 1996;37:286–91.

15. Solano-Gallego L, Sainz A, Roura, X, et al. A review of canine babesiosis: the European perspective. Parasit Vectors. 2016;9:336.

16. Zygnier W, Gójska-Zygner O, Bąska P, Długosz E. Increased concentration of serum TNF alpha and its correlations with arterial blood pressure and indices of renal damage in dogs infected with Babesia canis. Parasitol Res. 2014;113:1499–503.
17. Adachi J, Kumar C, Zhang Y, Olsen JV, Mann M. The human urinary proteome contains more than 1500 proteins, including a large proportion of membrane proteins. Genome Biol. 2006;7:R80.

18. Brandt LE, Ehrhart EJ, Scherman H, Olver CS, Bohn AA, Prenni JE. Characterization of the canine urinary proteome. Vet Clin Pathol. 2014;43:193–205.

19. Miller I, Presslmayer-Hartler A, Wait R, Hummel K, Sensi C, Eberini I, et al. In between-Proteomics of dog biological fluids. J Proteomics. 2014;106:30–45.

20. Lindblad-Toh K, Wade CM, Mikkelsen TS, Karlsson EK, Jaffe DB, Kamal M, et al. Genome sequence, comparative analysis and haplotype structure of the domestic dog. Nature. 2005;438:803–19.

21. Parker HG, Shearin AL, Ostrander EA. Man’s best friend becomes biology’s best in show: genome analyses in the domestic dog. Annu Rev Genet. 2010;44:309–36.

22. Rowell JL, McCarthy DO, Alvarez CE. Dog models of naturally occurring cancer. Trends Mol Med. 2011;17:380–8.

23. Akel T, Mobarakai N. Hematologic manifestations of babesiosis. Ann Clin Microbiol Antimicrob. 2017;16:6.

24. Cowgill LD. Iris grading of acute kidney injury: International Renal Interest Society (IRIS), 2012. http://www.iris-kidney.com/guidelines/grading.html.

25. Tizard I. Veterinary immunology. 9th ed. St. Louis: Elsevier; 2012.

26. Wynn TA. IL-13 effector functions. Annu Rev Immunol. 2003;21:425–56.

27. Wynn TA, Ramalingam TR. Mechanisms of fibrosis: therapeutic translation for fibrotic disease. Nat Med. 2012;18:1028–40.

28. Brunner SM, Schiechl G, Kesselring R, Martin M, Balam S, Schlitt HJ, et al. IL-13 signaling via IL-13Ralpha2 triggers TGF-beta1-dependent allograft fibrosis. Transplant Res. 2013;2:16.
29. Fichtner-Feigl S, Strober W, Kawakami K, Puri RK, Kitani A. IL-13 signaling through the IL-13alpha2 receptor is involved in induction of TGF-beta1 production and fibrosis. Nat Med. 2006;12:99-106.

30. Benali SL, Lees GE, Castagnaro M, Aresu L. Epithelial mesenchymal transition in the progression of renal disease in dogs. Histol Histopathol. 2014;29:1409-14.

31. Burns WC, Kantharidis P, Thomas MC. The role of tubular epithelial-mesenchymal transition in progressive kidney disease. Cells Tissues Organs. 2007;185:222-31.

32. Kuleš J, Mrljak V, Barić Rafaj R, et al. Identification of serum biomarkers in dogs naturally infected with Babesia canis canis using a proteomic approach. BMC Vet Res. 2014;10:111.

33. Kuleš J, Gotić J, Mrljak V, Barić R. Blood markers of fibrinolysis and endothelial activation in canine babesiosis. BMC Vet Res. 2017;13:82.

34. Kalluri R, Weinberg RA. The basics of epithelial-mesenchymal transition. J Clin Invest. 2009;119:1420-8.

35. Pieniazek M, Donizy P, Zietek M, Szynglelewicz B, Matkowski R. The role of TGF-beta-related signal transduction pathways in pathogenesis of epithelial-mesenchymal transition as a key element in cancer development and progression. Postepy Hig Med Dosw (Online). 2012;66:583-91.

36. Bottinger EP, Bitzer M. TGF-beta signaling in renal disease. J Am Soc Nephrol. 2002;13:2600-10.

37. Fan JM, Ng YY, Hill PA, Nikolic-Paterson DJ, Mu W, Atkins RC, et al. Transforming growth factor-beta regulates tubular epithelial-myofibroblast transdifferentiation in vitro. Kidney Int. 1999;56:1455-67.

38. Patel SR, Dressler GR. BMP7 signaling in renal development and disease. Trends Mol Med. 2005;11:512-8.
39. Meng XM, Chung AC, Lan HY. Role of the TGF-beta/BMP-7/Smad pathways in renal diseases. Clin Sci (Lond). 2013;124:243–54.

40. Tsujimura T, Idei M, Yoshikawa M, Takase O, Hishikawa K. Roles and regulation of bone morphogenetic protein-7 in kidney development and diseases. World J Stem Cells. 2016;8:288–96.

41. Gould SE, Day M, Jones SS, Dorai H. BMP-7 regulates chemokine, cytokine, and hemodynamic gene expression in proximal tubule cells. Kidney Int. 2002;61:51–60.

42. Alroy J, Ucci AA, Azabdoftari G, Banner BF, Cheville JC. Expression of CD3 antigens in renal tubule epithelium and renal oncocytomas. Pathol Res Pract. 2005;201:803–8.

43. Tao Y, Pinzi V, Bourhis J, Deutsch E. Mechanisms of disease: signaling of the insulin-like growth factor 1 receptor pathway—therapeutic perspectives in cancer. Nat Clin Pract Oncol. 2007; 4:591–602.

44. Ding H, Kopple JD, Cohen A, Hirschberg RJ. Recombinant human insulin-like growth factor-I accelerates recovery and reduces catabolism in rats with ischemic acute renal failure Clin Invest. 1993;91:2281–7.

45. Ulutas B, Bayramli G, Ulutas PA, Karagenc T. Serum concentration of some acute phase proteins in naturally occurring canine babesiosis: a preliminary study. Vet Clin Pathol. 2005;34:144–7.

46. Matijatko V, Mrljak V, Kis I, et al. Evidence of an acute phase response in dogs naturally infected with Babesia canis. Vet Parasitol. 2007;144:242–50.

47. Winiarczyk D, Adaszek L, Bartnicki M, Abramowicz B, Lyp P, Madany J, et al. Utility of urinary markers in the assessment of renal dysfunction in canine babesiosis. Tierarztl Prax Ausg K Kleintiere Heimtiere. 2017;45:84–8.

48. Dziegiel B, Adaszek L, Carbonero A, Lyp P, Winiarczyk M, Debiak P, et al. Detection of canine vector-borne diseases in eastern Poland by ELISA and PCR. Parasitol Res.
Supplementary Tables

Table 1. Proteins identified in urine from healthy dogs.

Protein name	Score	Mass	Matches	Access no.	Hyperlink
Endophilin-A2	64	41.7	9	Q2KJA1	http://www.uniprot.org/uniprot/Q2KJA1
BTB/POZ domain-containing protein KCTD1	66	29.7	7	Q719H9	http://www.uniprot.org/uniprot/Q719H9
Prolyl 3-hydroxylase 3	52	82.6	11	Q8IVL6	http://www.uniprot.org/uniprot/Q8IVL6
Protein Name	Score	Identity	Accession	Link	
--	-------	----------	-----------	---	
Essential MCU regulator	54	11.5	Q2M2S2	http://www.uniprot.org/uniprot/Q2M2S2	
C-X-C motif chemokine 3	43	11.3	Q10746	http://www.uniprot.org/uniprot/Q10746	
Desmin	65	53.3	Q5XFN2	http://www.uniprot.org/uniprot/Q5XFN2	
Uromodulin	65	72.9	Q862Z3	http://www.uniprot.org/uniprot/Q862Z3	
Heat shock factor-binding protein 1	51	8.5	O75506	http://www.uniprot.org/uniprot/O75506	
Phosphoglucomutase-2	45	69.9	Q7TSV4	http://www.uniprot.org/uniprot/Q7TSV4	
Methylmalonyl-CoA mutase, mitochondrial	50	83.6	Q9GK13	http://www.uniprot.org/uniprot/Q9GK13	
Histone H1t	51	22.1	P40286	http://www.uniprot.org/uniprot/P40286	
General transcription factor II-I	50	110.6	A7MB80	http://www.uniprot.org/uniprot/A7MB80	
Zinc finger protein 106	68	210.8	O88466	http://www.uniprot.org/uniprot/O88466	
Protein CutA	76	19.2	O60888	http://www.uniprot.org/uniprot/O60888	
Protein Lines homolog 1	58	87.5	Q8NG48	http://www.uniprot.org/uniprot/Q8NG48	
Dihydropyrimidinase-related protein 1	48	62.5	Q14194	http://www.uniprot.org/uniprot/Q14194	
Interleukin-22	43	20.3	Q9GZX6	http://www.uniprot.org/uniprot/Q9GZX6	
BTB/POZ domain-containing protein KCDT1	46	29.7	Q719H9	http://www.uniprot.org/uniprot/Q719H9	
Ribosome-binding protein 1	48	164.8	Q28298	http://www.uniprot.org/uniprot/Q28298	
Glycogen debranching enzyme	43	176.9	Q2PQH8	http://www.uniprot.org/uniprot/Q2PQH8	
6-Phosphofructo-2-kinase/fructose-2,6-bisphosphatase 3	67	54.2	Q28901	http://www.uniprot.org/uniprot/Q28901	
60S ribosomal protein L37	58	11.3	P79244	http://www.uniprot.org/uniprot/P79244	
Interleukin-11	46	21.6	P47873	http://www.uniprot.org/uniprot/P47873	
Vascular cell adhesion protein 1	63	82.3	P19320	http://www.uniprot.org/uniprot/P19320	
Ig heavy chain V region AC38 205.12	66	13	P06330	http://www.uniprot.org/uniprot/P06330	
Collagen alpha-1(XXV) chain	88	65.1	Q98X50	http://www.uniprot.org/uniprot/Q98X50	
Sphingosine 1-phosphate receptor 3	51	43	Q99500	http://www.uniprot.org/uniprot/Q99500	
Vascular cell adhesion protein 1	51	82.3	P19320	http://www.uniprot.org/uniprot/P19320	
Vacuolar protein sorting-associated protein 4B	41	49.6	P46467	http://www.uniprot.org/uniprot/P46467	
Protein Name	Accession	Score	p-value	Uniprot ID	
--	-----------	-------	---------	---	
SPRY domain-containing protein 7	51	22.2	5	Q2T9X3	
Myoglobin	48	17.3	7	P02185	
Retinol-binding protein 2	43	15.8	5	Q08652	
Mesenteric estrogen-dependent adipogenesis protein	53	34.6	6	A4IFN2	
NADH dehydrogenase [ubiquinone] 1 alpha subcomplex subunit 10, mitochondrial	49	40.9	6	Q0MQB6	
Nucleoside diphosphate kinase A	51	17.3	5	Q05982	
PR domain zinc finger protein 12	49	40.7	6	A2AJ77	
Gastric inhibitory polypeptide receptor	53	54	8	P48546	
Carbohydrate sulfotransferase 1	54	47.5	9	Q9EQC0	
Ras-specific guanine nucleotide-releasing factor 1	50	146.3	13	Q13972	
Coiled-coil domain-containing protein 184	39	20.7	3	Q52MB2	
NADH dehydrogenase [ubiquinone] 1 alpha subcomplex subunit 4-like 2	42	10.1	3	Q9NRX3	
Elongation factor 1-beta	59	25	7	Q5E983	
Uncharacterized protein C12orf60 homolog	52	28.3	10	Q810N5	
Serum albumin	44	70.6	10	P49822	
DNA-binding protein RFX5	52	65.7	11	P48382	
C2 domain-containing protein 3	50	262.6	15	Q4AC94	
Protein deglycase DJ-1	55	20.1	6	Q95LI9	
Calmodulin-regulated spectrin-associated protein 1	54	179.9	12	D3Z8E6	
Zinc finger protein 101	49	51.9	7	Q8IZC7	
Mini-chromosome maintenance complex-binding protein	51	73.8	7	Q9BTE3	
Protein SOX-16 (Fragment)	46	6.9	5	Q62247	
Essential MCU regulator, mitochondrial	45	11.5	4	Q2M2S2	
G protein-coupled	52	62.6	7	Q9Z2G7	
Protein Name	Accession	Score	Number of Peptides	Uniprot Link	
--	-----------	-------	--------------------	--	
Golgi SNAP receptor complex member 1	O88441	5	4	http://www.uniprot.org/uniprot/O88441	
Metaxin-2	P10649	9	7	http://www.uniprot.org/uniprot/P10649	
Glutathione S-transferase Mu 1	Q2TBU3	7	11	http://www.uniprot.org/uniprot/Q2TBU3	
Calpain-2 catalytic subunit	Q27971	1	9	http://www.uniprot.org/uniprot/Q27971	
Pleckstrin homology domain-containing family G member 4B	Q96PX9	9	15	http://www.uniprot.org/uniprot/Q96PX9	
Proflin-4	Q9D6i3	3	6	http://www.uniprot.org/uniprot/Q9D6i3	
EH domain-containing protein 4	Q9H223	2	12	http://www.uniprot.org/uniprot/Q9H223	
Hepcidin	Q8MJ80	3	5	http://www.uniprot.org/uniprot/Q8MJ80	
Glycine receptor subunit beta	P48167	7	5	http://www.uniprot.org/uniprot/P48167	
Sulfotransferase 4A1	P63046	6	8	http://www.uniprot.org/uniprot/P63046	
Unconventional myosin-IId	O94832	2	10	http://www.uniprot.org/uniprot/O94832	
Actin-related protein 2/3 complex subunit 3	Q3T035	5	6	http://www.uniprot.org/uniprot/Q3T035	
Actin-related protein 2/3 complex subunit 3	Q3T035	5	6	http://www.uniprot.org/uniprot/Q3T035	
Autophagy-related protein 16-1	Q676U5	5	7	http://www.uniprot.org/uniprot/Q676U5	
Carbonic anhydrase 5B, mitochondrial	Q9Y2D0	0	5	http://www.uniprot.org/uniprot/Q9Y2D0	
Putative olfactory receptor 2B3	Q76000	0	4	http://www.uniprot.org/uniprot/Q76000	
Zinc finger protein 75D	P51815	5	10	http://www.uniprot.org/uniprot/P51815	
Trafficking protein particle complex subunit 1	Q17Qi1	1	6	http://www.uniprot.org/uniprot/Q17Qi1	
Golgi SNAP receptor complex member 1	Q2TBU3	3	9	http://www.uniprot.org/uniprot/Q2TBU3	
Zinc finger protein 491	Q8N8L2	2	9	http://www.uniprot.org/uniprot/Q8N8L2	
Cytoskeleton-associated protein 2-like	A5PK21	1	12	http://www.uniprot.org/uniprot/A5PK21	
Retinoic acid receptor RXR-beta (fragment)	P49743	3	9	http://www.uniprot.org/uniprot/P49743	
Apolipoprotein A-II	E2RAK7	7	4	http://www.uniprot.org/uniprot/E2RAK7	
Tubulin polymerization-promoting protein family member 2	Q4R3A0	0	6	http://www.uniprot.org/uniprot/Q4R3A0	
Bcl-2-like protein 2	Q1RMX3	3	6	http://www.uniprot.org/uniprot/Q1RMX3	
Mini-chromosome maintenance complex	A5PJM5	5	16	http://www.uniprot.org/uniprot/A5PJM5	
Protein Description	Accession	Mw	pI	Gene ID	URL
---------------------	-----------	----	-----	---------	-----
Alpha-2,8-sialyltransferase 8F	P61647	45.4	8	http://www.uniprot.org/uniprot/P61647	
H-2 class I histocompatibility antigen, K-B alpha chain	P01901	41.7	11	http://www.uniprot.org/uniprot/P01901	
Fibroleukin	Q14314	50.8	9	http://www.uniprot.org/uniprot/Q14314	
Phosphatidylethanolamine-binding protein 2	Q8VIN1	21.7	6	http://www.uniprot.org/uniprot/Q8VIN1	
Zinc finger and SCAN domain-containing protein 5A	Q9BUG6	56.9	8	http://www.uniprot.org/uniprot/Q9BUG6	
Fructose-1,6-bisphosphatase 1	Q3SZB7	37	5	http://www.uniprot.org/uniprot/Q3SZB7	
Beta-defensin 107A	A4H217	7.9	3	http://www.uniprot.org/uniprot/A4H217	
Golgi SNAP receptor complex member 1	Q62931	28.6	10	http://www.uniprot.org/uniprot/Q62931	
Zinc finger protein 624	Q9P2J8	102.5	13	http://www.uniprot.org/uniprot/Q9P2J8	
Prelamin-A/C	P48679	74.6	12	http://www.uniprot.org/uniprot/P48679	
Aspartate-tRNA ligase, cytoplasmic	P15178	57.5	18	http://www.uniprot.org/uniprot/P15178	
Beta-lactoglobulin	Q29146	20.6	6	http://www.uniprot.org/uniprot/Q29146	
ATP synthase subunit alpha, mitochondrial	P25705	59.8	16	http://www.uniprot.org/uniprot/P25705	
RUN and FYVE domain-containing protein 2	Q8R4C2	70.8	18	http://www.uniprot.org/uniprot/Q8R4C2	
Pyridine nucleotide-disulfide oxidoreductase domain-containing protein 2	Q3U4I7	63.5	10	http://www.uniprot.org/uniprot/Q3U4I7	
Profilin-3	Q8R4C2	15	7	http://www.uniprot.org/uniprot/Q8R4C2	
Prolyl 3-hydroxylase 3	Q8IVL6	82.6	10	http://www.uniprot.org/uniprot/Q8IVL6	
Tumor susceptibility gene 101 protein	Q99816	44.1	7	http://www.uniprot.org/uniprot/Q99816	
Vascular cell adhesion protein 1	P29533	82.4	10	http://www.uniprot.org/uniprot/P29533	
Ataxin-7	Q8R4I1	93.8	8	http://www.uniprot.org/uniprot/Q8R4I1	
Gamma-aminobutyric acid receptor subunit alpha-1	P08219	52.1	6	http://www.uniprot.org/uniprot/P08219	
43 kDa Receptor-associated protein of the synapse	P12672	47.6	10	http://www.uniprot.org/uniprot/P12672	
Protein-arginine deiminase type-2	P20717	76	9	http://www.uniprot.org/uniprot/P20717	
Protein Name	Score	Coverage	Identity	Uniprot ID	UniProt Link
--	-------	----------	----------	------------	--
Heat shock factor-binding protein 1	53	8.6	6	Q9CQZ1	http://www.uniprot.org/uniprot/Q9CQZ1
Non-homologous end-joining factor 1	55	34.1	7	Q6AYI4	http://www.uniprot.org/uniprot/Q6AYI4
Microtubule-associated protein RP/EB family member 1	51	30.1	10	Q5R7Z5	http://www.uniprot.org/uniprot/Q5R7Z5
Protein kish-A	56	8.4	6	Q9CR64	http://www.uniprot.org/uniprot/Q9CR64
Ubiquitin carboxyl-terminal hydrolase 14	56	56.3	9	P40826	http://www.uniprot.org/uniprot/P40826
Cap-specific mRNA (nucleoside-2'-O-)-methyltransferase 1	64	96.6	12	Q9DBC3	http://www.uniprot.org/uniprot/Q9DBC3
DNA dC->dU-editing enzyme APOBEC-3G	65	45.9	8	Q694B9	http://www.uniprot.org/uniprot/Q694B9
Annexin A10	63	37.8	8	Q9UJ72	http://www.uniprot.org/uniprot/Q9UJ72
Cysteine and glycine-rich protein 2	57	21.8	6	P97314	http://www.uniprot.org/uniprot/P97314
Calmodulin-regulated spectrin-associated protein 1	50	179.9	15	D3Z8E6	http://www.uniprot.org/uniprot/D3Z8E6
Tyrosine-protein phosphatase non-receptor type 12	58	87.2	7	P35831	http://www.uniprot.org/uniprot/P35831
Dual specificity phosphatase DUPD1	55	24.3	6	P0C595	http://www.uniprot.org/uniprot/P0C595
Protein cereblon	53	50.1	10	Q5R6Y2	http://www.uniprot.org/uniprot/Q5R6Y2
Testis-expressed sequence 33 protein	53	30.8	5	O43247	http://www.uniprot.org/uniprot/O43247
Complexin-3	51	17.6	7	Q8WVH0	http://www.uniprot.org/uniprot/Q8WVH0
Plasmalemma vesicle-associated protein	61	50.6	12	Q9WV78	http://www.uniprot.org/uniprot/Q9WV78
Calcium/calmodulin-dependent protein kinase II inhibitor 1	53	8.6	4	A7MBG3	http://www.uniprot.org/uniprot/A7MBG3
BTB/POZ domain-containing protein KCTD1	56	29.7	6	Q719H9	http://www.uniprot.org/uniprot/Q719H9
Threonine synthase-like 2	62	54.8	6	Q86YJ6	http://www.uniprot.org/uniprot/Q86YJ6
Probable tRNA pseudouridine synthase 1	65	36.6	7	Q5M934	http://www.uniprot.org/uniprot/Q5M934
Ras-related protein Rab-7a	51	23.8	8	P51149	http://www.uniprot.org/uniprot/P51149
Essential MCU regulator, mitochondrial	52	11.5	4	Q2M2S2	http://www.uniprot.org/uniprot/Q2M2S2
Golgi SNAP receptor complex member 1	51	28.6	5	O88630	http://www.uniprot.org/uniprot/O88630
Dual specificity	54	25.5	8	Q68J44	http://www.uniprot.org/uniprot/Q68J44
Protein Name	Accession	Score	E-value	ID	Link
---	-----------	-------	---------	----------	--
Phosphatase DUPD1	53	20.5	5	Q921J2	http://www.uniprot.org/uniprot/Q921J2
GTP-binding protein Rheb	60	42.4	10	Q9MZU4	http://www.uniprot.org/uniprot/Q9MZU4
Radical S-adenosyl methionine domain-containing protein 2	50	102.5	11	Q9P2J8	http://www.uniprot.org/uniprot/Q9P2J8
Zinc finger protein 624	56	320.5	16	P97526	http://www.uniprot.org/uniprot/P97526
Neurofibromin	54	121.9	13	Q9ULE4	http://www.uniprot.org/uniprot/Q9ULE4
Phosphomannomutase 2	58	28.4	6	Q3SZJ9	http://www.uniprot.org/uniprot/Q3SZJ9
Isocitrate dehydrogenase [NADP] cytoplasmic	53	47	6	P41562	http://www.uniprot.org/uniprot/P41562
Beta-1,3-galactosyltransferase 4	44	42.9	7	Q5TJE8	http://www.uniprot.org/uniprot/Q5TJE8
Transmembrane protein 238	51	18.1	4	C9JJ98	http://www.uniprot.org/uniprot/C9JJ98
Protein FAM184B	51	25.0	7	Q810F4	http://www.uniprot.org/uniprot/Q810F4
Coiled-coil domain-containing protein 136	51	133.7	9	Q3TVA9	http://www.uniprot.org/uniprot/Q3TVA9
Protein KHNYN	50	75.1	9	Q80U38	http://www.uniprot.org/uniprot/Q80U38
Retinol-binding protein 2	50	15.8	4	Q08652	http://www.uniprot.org/uniprot/Q08652
Tetratricopeptide repeat protein 36	72	20.7	7	Q3SZV0	http://www.uniprot.org/uniprot/Q3SZV0
E3 ubiquitin-protein ligase RNF152	62	23.1	6	D2H6Z0	http://www.uniprot.org/uniprot/D2H6Z0
Protein RCC2	50	56.8	10	Q9P258	http://www.uniprot.org/uniprot/Q9P258
Signal peptidase complex subunit 2	54	25.3	6	Q5RAY6	http://www.uniprot.org/uniprot/Q5RAY6
Protein myomaker	50	25.1	4	A6NI61	http://www.uniprot.org/uniprot/A6NI61
Apoptosis-enhancing nuclease	57	37.6	9	Q9CZI9	http://www.uniprot.org/uniprot/Q9CZI9
Short-chain specific acyl-CoA dehydrogenase, mitochondrial	53	44.6	9	P16219	http://www.uniprot.org/uniprot/P16219
Fanconi anemia group B protein	61	99.4	12	Q8NB91	http://www.uniprot.org/uniprot/Q8NB91
Dual specificity phosphatase 28	70	18.7	6	Q4G0W2	http://www.uniprot.org/uniprot/Q4G0W2
Succinyl-CoA ligase [ADP-forming] subunit beta, mitochondrial	65	50.3	12	Q4R517	http://www.uniprot.org/uniprot/Q4R517
Zinc finger and SCAN domain-containing protein 5A	51	56.9	9	Q9BUG6	http://www.uniprot.org/uniprot/Q9BUG6
Protein Name	ID	Score	BLAST	UniProt ID	Link
--	------	-------	-------	--	---
Eukaryotic translation initiation factor 4E-binding protein 1	50	12.7	5	Q0P5A7	http://www.uniprot.org/uniprot/Q0P5A7
39S ribosomal protein L30, mitochondrial	57	18.7	6	Q58DV5	http://www.uniprot.org/uniprot/Q58DV5
WAP four-disulfide core domain protein 12	57	12.7	4	A4K2P0	http://www.uniprot.org/uniprot/A4K2P0
UV-stimulated scaffold protein A	55	82.6	12	Q9D479	http://www.uniprot.org/uniprot/Q9D479
NADH dehydrogenase [ubiquinone] 1 alpha subcomplex subunit 12	52	17.1	4	Q9UI09	http://www.uniprot.org/uniprot/Q9UI09
Tribosomal protein L30, mitochondrial	57	18.7	6	Q58DV5	http://www.uniprot.org/uniprot/Q58DV5
WAP four-disulfide core domain protein 12	57	12.7	4	A4K2P0	http://www.uniprot.org/uniprot/A4K2P0
UV-stimulated scaffold protein A	55	82.6	12	Q9D479	http://www.uniprot.org/uniprot/Q9D479
NADH dehydrogenase [ubiquinone] 1 alpha subcomplex subunit 12	52	17.1	4	Q9UI09	http://www.uniprot.org/uniprot/Q9UI09
Tribosomal protein L30, mitochondrial	57	18.7	6	Q58DV5	http://www.uniprot.org/uniprot/Q58DV5
WAP four-disulfide core domain protein 12	57	12.7	4	A4K2P0	http://www.uniprot.org/uniprot/A4K2P0
UV-stimulated scaffold protein A	55	82.6	12	Q9D479	http://www.uniprot.org/uniprot/Q9D479
NADH dehydrogenase [ubiquinone] 1 alpha subcomplex subunit 12	52	17.1	4	Q9UI09	http://www.uniprot.org/uniprot/Q9UI09
Tribosomal protein L30, mitochondrial	57	18.7	6	Q58DV5	http://www.uniprot.org/uniprot/Q58DV5
WAP four-disulfide core domain protein 12	57	12.7	4	A4K2P0	http://www.uniprot.org/uniprot/A4K2P0
UV-stimulated scaffold protein A	55	82.6	12	Q9D479	http://www.uniprot.org/uniprot/Q9D479
NADH dehydrogenase [ubiquinone] 1 alpha subcomplex subunit 12	52	17.1	4	Q9UI09	http://www.uniprot.org/uniprot/Q9UI09
Tribosomal protein L30, mitochondrial	57	18.7	6	Q58DV5	http://www.uniprot.org/uniprot/Q58DV5
WAP four-disulfide core domain protein 12	57	12.7	4	A4K2P0	http://www.uniprot.org/uniprot/A4K2P0
UV-stimulated scaffold protein A	55	82.6	12	Q9D479	http://www.uniprot.org/uniprot/Q9D479
NADH dehydrogenase [ubiquinone] 1 alpha subcomplex subunit 12	52	17.1	4	Q9UI09	http://www.uniprot.org/uniprot/Q9UI09
Protein Name	Value1	Value2	Value3	Accession	URL
------------------------------------	--------	--------	--------	-----------	----------------------------------
Retinol-binding protein 4	44	23.4	6	P27485	http://www.uniprot.org/uniprot/P27485
BTB/POZ domain-containing protein KCTD1	49	29.7	6	Q719H9	http://www.uniprot.org/uniprot/Q719H9
Collagen alpha-2(I) chain	45	80.9	11	C0HJP6	http://www.uniprot.org/uniprot/C0HJP6
L-gulonolactone oxidase	55	51	13	Q8HXW0	http://www.uniprot.org/uniprot/Q8HXW0
Zinc finger protein 624	58	102.5	12	Q9P2J8	http://www.uniprot.org/uniprot/Q9P2J8
Cilia- and flagella-associated protein 52	57	69.2	11	Q8N1V2	http://www.uniprot.org/uniprot/Q8N1V2
Autophagy-related protein 16-1	53	68.9	12	Q676U5	http://www.uniprot.org/uniprot/Q676U5
IQ domain-containing protein D	55	51.8	13	Q17QH9	http://www.uniprot.org/uniprot/Q17QH9
Fibroblast growth factor 12	55	27.6	6	P61328	http://www.uniprot.org/uniprot/P61328
Interferon-induced protein with tetratricopeptide repeats 1	52	52.8	12	Q4R5F5	http://www.uniprot.org/uniprot/Q4R5F5
Fanconi anemia group B protein	50	99.4	13	Q8NB91	http://www.uniprot.org/uniprot/Q8NB91
Protein TMEM155	55	14.4	5	Q5R4Y3	http://www.uniprot.org/uniprot/Q5R4Y3
Transmembrane protein 225	58	26.3	5	Q6GV28	http://www.uniprot.org/uniprot/Q6GV28
Telomerase reverse transcriptase	65	128.6	10	Q14746	http://www.uniprot.org/uniprot/Q14746
Tetratricopeptide repeat protein 36	64	20.7	9	Q3SZV0	http://www.uniprot.org/uniprot/Q3SZV0
Arginine/serine-rich protein 1	52	33.7	8	Q9BUV0	http://www.uniprot.org/uniprot/Q9BUV0
V-set and transmembrane domain-containing protein 2B	61	30.4	6	A6NLU5	http://www.uniprot.org/uniprot/A6NLU5
Ninein	52	245.2	20	Q8N4C6	http://www.uniprot.org/uniprot/Q8N4C6
Electron transfer flavoprotein subunit beta	51	27.9	7	Q68FU3	http://www.uniprot.org/uniprot/Q68FU3
Coiled-coil domain-containing protein 25	53	24.6	6	Q86WR0	http://www.uniprot.org/uniprot/Q86WR0
Protein-arginine deiminase type-2	49	76	8	P20717	http://www.uniprot.org/uniprot/P20717
Radical S-adenosyl methionine domain-containing protein 2	55	42.4	8	Q9MZU4	http://www.uniprot.org/uniprot/Q9MZU4
Golgi SNAP receptor complex member 1	61	28.6	7	O88630	http://www.uniprot.org/uniprot/O88630
BTB/POZ domain-containing protein KCTD1	55	29.7	5	Q719H9	http://www.uniprot.org/uniprot/Q719H9
Protein name	Score	Mass	Matches	Access no.	Hyperlink
--	-------	-------	---------	--------------	----------------------------------
Zinc finger and SCAN domain-containing protein 5A	57	56.9	9	Q9BUG6	http://www.uniprot.org/uniprot/Q9BUG6
Calcium-binding mitochondrial carrier protein SCaMC-3	51	52.7	9	Q6GQS1	http://www.uniprot.org/uniprot/Q6GQS1

Table 2. Proteins identified in urine from dogs with babesiosis.

Protein name	Score	Mass	Matches	Access no.	Hyperlink						
Lipase member N	54	45.7	8	Q5VXI9	http://www.uniprot.org/uniprot/Q5VXI9						
Succinyl-CoA ligase [ADP-forming] subunit beta, mitochondrial	57	50.3	9	Q4R517	http://www.uniprot.org/uniprot/Q4R517						
TATA box-binding protein-like protein 2	51	39.3	5	Q6SJ95	http://www.uniprot.org/uniprot/Q6SJ95						
Interferon gamma	53	18.1	5	P01581	http://www.uniprot.org/uniprot/P01581						
m7GpppX diphosphatase	57	38.8	9	Q96C86	http://www.uniprot.org/uniprot/Q96C86						
Peptidyl-prolyl cis-trans isomerase F, mitochondrial	52	22.6	6	P30404	http://www.uniprot.org/uniprot/P30404						
Mast cell carboxypeptidase A	52	48.9	6	P15088	http://www.uniprot.org/uniprot/P15088						
SprT-like domain-containing protein Spartan	54	56.1	14	G3X912	http://www.uniprot.org/uniprot/G3X912						
39S ribosomal protein L50, mitochondrial	54	18.3	9	Q8VDT9	http://www.uniprot.org/uniprot/Q8VDT9						
Trafficking protein particle complex subunit 1	55	17	6	Q5NCF2	http://www.uniprot.org/uniprot/Q5NCF2						
Desmin	36	53.3	9	Q5XFN2	http://www.uniprot.org/uniprot/Q5XFN2						
Dysferlin	57	240	17	Q9ESD7	http://www.uniprot.org/uniprot/Q9ESD7						
Leucine-rich repeat-containing protein 14 O	54	55.7	6	A5Pjj5	http://www.uniprot.org/uniprot/A5Pjj5						
Coenzyme Q-binding protein COQ10 homolog B, mitochondrial	58	28	10	Q5IOI9	http://www.uniprot.org/uniprot/Q5IOI9						
Bactericidal permeability-increasing protein (Fragment)	54	49	6	Q28739	http://www.uniprot.org/uniprot/Q28739						
G protein-activated inward	51	48.3	6	P48548	http://www.uniprot.org/uniprot/P48548						
Protein Name	Accession	EC Value	UniProt ID	Link							
--	-----------	----------	------------------	---							
rectifier potassium channel 4	4	8	P47870	http://www.uniprot.org/uniprot/P47870							
Gamma-aminobutyric acid receptor subunit beta-2	56	59.3	Q8N9B4	http://www.uniprot.org/uniprot/Q8N9B4							
Ankyrin repeat domain-containing protein 42	53	43.6	Q5T0W9	http://www.uniprot.org/uniprot/Q5T0W9							
Protein FAM83B	62	115.2	Q9D6F4	http://www.uniprot.org/uniprot/Q9D6F4							
Zinc finger protein 624	61	102.5	Q9P2J8	http://www.uniprot.org/uniprot/Q9P2J8							
Gamma-aminobutyric acid receptor subunit alpha-4	62	61.3	Q9P2J8	http://www.uniprot.org/uniprot/Q9P2J8							
Hyaluronan and proteoglycan link protein 2	54	38.6	Q9ESM3	http://www.uniprot.org/uniprot/Q9ESM3							
HAUS augmin-like complex subunit 2	55	23.4	Q5RE16	http://www.uniprot.org/uniprot/Q5RE16							
Thromboxane-A synthase	54	60.7	P49430	http://www.uniprot.org/uniprot/P49430							
Vimentin	54	53.7	P20152	http://www.uniprot.org/uniprot/P20152							
TD and POZ domain-containing protein 2	51	42.2	Q717B2	http://www.uniprot.org/uniprot/Q717B2							
Kinase suppressor of Ras 2	62	110	Q3UVC0	http://www.uniprot.org/uniprot/Q3UVC0							
Cortxin-2	55	9.2	Q3URE8	http://www.uniprot.org/uniprot/Q3URE8							
Transmembrane protein 240	53	20.3	Q5SV17	http://www.uniprot.org/uniprot/Q5SV17							
Protein FAM71C	50	27.9	Q8NEG0	http://www.uniprot.org/uniprot/Q8NEG0							
Carboxylesterase 1E	58	61.8	Q64176	http://www.uniprot.org/uniprot/Q64176							
Cytochrome P450 3A31	67	58	Q70537	http://www.uniprot.org/uniprot/Q70537							
Leucine-rich repeat-containing protein 14	61	55.3	Q15048	http://www.uniprot.org/uniprot/Q15048							
Protein phosphatase Slingshot homolog 1	66	116.5	Q8WYL5	http://www.uniprot.org/uniprot/Q8WYL5							
Twinkle protein, mitochondrial	53	77.6	Q96RR1	http://www.uniprot.org/uniprot/Q96RR1							
Ubiquitin-conjugating enzyme E2 N	53	17.2	Q0P5K3	http://www.uniprot.org/uniprot/Q0P5K3							
Delta-1-pyrroline-5-carboxylate synthase	55	87.8	Q9Z110	http://www.uniprot.org/uniprot/Q9Z110							
40S ribosomal protein S11	35	18.6	Q9XSU4	http://www.uniprot.org/uniprot/Q9XSU4							
Synaptic vesicle membrane protein VAT-1 homolog-like	61	46.2	Q9HCJ6	http://www.uniprot.org/uniprot/Q9HCJ6							
Glutamyl-tRNA(Gln) amidotransferase subunit C, mitochondrial	40	18	E2RK33	http://www.uniprot.org/uniprot/E2RK33							
Trafficking protein	63	17	Q5NCF2	http://www.uniprot.org/uniprot/Q5NCF2							
Protein Name	Accession	% MASCOT Score	Database	Link							
--	-----------	----------------	----------	-----------------------------------							
Rab GDP dissociation inhibitor beta	O97556	50.8	8	http://www.uniprot.org/uniprot/O97556							
Parvalbumin alpha	P20472	12.1	10	http://www.uniprot.org/uniprot/P20472							
B-cell lymphoma 6 protein homolog	P41183	58.8	11	http://www.uniprot.org/uniprot/P41183							
Probable tubulin polyglutamylase TTLL1	Q5PPI9	49.5	9	http://www.uniprot.org/uniprot/Q5PPI9							
Neurofilament medium polypeptide	P12839	95.8	7	http://www.uniprot.org/uniprot/P12839							
Suppressor of tumorigenicity 7 protein	Q07E08	67.7	9	http://www.uniprot.org/uniprot/Q07E08							
Vesicle transport protein USE1	Q9CQ56	30.8	7	http://www.uniprot.org/uniprot/Q9CQ56							
Protein C12orf4 homolog	D4A770	54.3	8	http://www.uniprot.org/uniprot/D4A770							
Cell death activator CIDE-A	O70302	24.8	6	http://www.uniprot.org/uniprot/O70302							
Tryptophan 5-hydroxylase 2	Q2HZ26	56.8	9	http://www.uniprot.org/uniprot/Q2HZ26							
Kelch-like protein	Q2T9Z7	70.2	8	http://www.uniprot.org/uniprot/Q2T9Z7							
Ubiquitin carboxyl-terminal hydrolase 37	Q86T82	111	12	http://www.uniprot.org/uniprot/Q86T82							
Coatamer subunit beta'	P35605	103.2	6	http://www.uniprot.org/uniprot/P35605							
Centrosomal protein of 170 kDa protein B	Q80U49	171.2	11	http://www.uniprot.org/uniprot/Q80U49							
Eukaryotic translation initiation factor 4 gamma 2	Q62448	102.6	15	http://www.uniprot.org/uniprot/Q62448							
Trifunctional enzyme subunit alpha, mitochondrial	Q64428	83.3	6	http://www.uniprot.org/uniprot/Q64428							
Isovaleryl-CoA dehydrogenase, mitochondrial	P12007	46.9	6	http://www.uniprot.org/uniprot/P12007							
Pericentrin	O95613	380.6	32	http://www.uniprot.org/uniprot/O95613							
Hydroxysteroid dehydrogenase-like protein 2	A4FUZ6	45.5	5	http://www.uniprot.org/uniprot/A4FUZ6							
Ras-related protein Rab-34, isoform NARR	P0DI83	21.1	4	http://www.uniprot.org/uniprot/P0DI83							
Interferon-induced protein with tetratricopeptide repeats 1	Q4R5F5	55.8	11	http://www.uniprot.org/uniprot/Q4R5F5							
Cysteine--tRNA ligase, mitochondrial	Q2KIF8	62	12	http://www.uniprot.org/uniprot/Q2KIF8							
Ubiquitin carboxyl-terminal hydrolase 37	F1N5V1	111.2	13	http://www.uniprot.org/uniprot/F1N5V1							
Interferon regulatory factor 2-binding protein	Q8IU81	62.6	8	http://www.uniprot.org/uniprot/Q8IU81							
Protein Name	ID	Mw	Unit	Uniprot ID	Link						
---	-----	-------	------	-------------------------------------	---------------------------------------						
Ubiquitin carboxyl-terminal hydrolase 37	84	111.2	14	F1N5V1	http://www.uniprot.org/uniprot/F1N5V1						
Centrosomal protein of 152 kDa	55	197.9	12	O94986	http://www.uniprot.org/uniprot/O94986						
E3 SUMO-protein ligase PIAS2	57	64.3	9	Q6AZ28	http://www.uniprot.org/uniprot/Q6AZ28						
ATR-interacting protein	61	72.4	11	Q9N077	http://www.uniprot.org/uniprot/Q9N077						
T-cell surface glycoprotein CD3 epsilon chain	54	23	4	P27597	http://www.uniprot.org/uniprot/P27597						
Rab GDP dissociation inhibitor beta	55	50.8	10	O97556	http://www.uniprot.org/uniprot/O97556						
Elongation factor Tu GTP-binding domain-containing protein 1	64	127.1	16	Q8C0D5	http://www.uniprot.org/uniprot/Q8C0D5						
HIV Tat-specific factor 1 homolog	57	86.6	12	Q8BG0C0	http://www.uniprot.org/uniprot/Q8BG0C0						
Peptidyl-prolyl cis-trans isomerase A	58	18.1	5	Q9TTC6	http://www.uniprot.org/uniprot/Q9TTC6						
Tektin-4	58	51.3	7	Q8WW24	http://www.uniprot.org/uniprot/Q8WW24						
Sp110 nuclear body protein	58	79.6	9	Q9HB58	http://www.uniprot.org/uniprot/Q9HB58						
Rab11 family-interacting protein 5	57	69.9	10	Q8R361	http://www.uniprot.org/uniprot/Q8R361						
Alkylidihydroxyacetonephosphate synthase, peroxisomal	53	73.7	8	O00116	http://www.uniprot.org/uniprot/O00116						
Fibroblast growth factor 9	57	23.5	4	P31371	http://www.uniprot.org/uniprot/P31371						
Lysozyme C	52	16.9	5	Q659U0	http://www.uniprot.org/uniprot/Q659U0						
Phosphoribosyl pyrophosphate synthase-associated protein 2	55	41.2	7	O08618	http://www.uniprot.org/uniprot/O08618						
Zona pellucida sperm-binding protein 3	60	47.1	6	P42098	http://www.uniprot.org/uniprot/P42098						
Galactoside 2-alpha-L-fucosyltransferase 2	62	39.1	8	O77485	http://www.uniprot.org/uniprot/O77485						
39S ribosomal protein L30, mitochondrial	56	18.7	7	Q58DV5	http://www.uniprot.org/uniprot/Q58DV5						
Desmin	47	53.3	6	Q5XFN2	http://www.uniprot.org/uniprot/Q5XFN2						
Dipeptidyl peptidase 1 (Fragment)	43	50.1	4	O97578	http://www.uniprot.org/uniprot/O97578						
Vimentin	50	53.7	8	P20152	http://www.uniprot.org/uniprot/P20152						
Serine/threonine-protein kinase 3	53	57.1	9	Q9J10	http://www.uniprot.org/uniprot/Q9J10						
Neurofilament medium polypeptide	62	95.8	12	P12839	http://www.uniprot.org/uniprot/P12839						
Rab GDP dissociation	62	50.8	8	O97556	http://www.uniprot.org/uniprot/O97556						
Protein Name	P	Mw	Ref	UniProt ID	Link						
--	---	------	------	--------------------	-------------------------------						
Zinc finger protein 624	65	102.5	10	Q9P2J8	http://www.uniprot.org/uniprot/Q9P2J8						
Uncharacterized protein KIAA1683 homolog	64	87	6	Q8WNU4	http://www.uniprot.org/uniprot/Q8WNU4						
Phosphatidylserine decarboxylase proenzyme	56	47.7	5	Q58DH2	http://www.uniprot.org/uniprot/Q58DH2						
Probable tubulin polyglutamylase TTLL1	66	49.4	9	Q0VC71	http://www.uniprot.org/uniprot/Q0VC71						
ATP synthase subunit d, mitochondrial	63	18.7	5	P13620	http://www.uniprot.org/uniprot/P13620						
Breast cancer anti-estrogen resistance protein 3	61	93.5	8	Q58DL5	http://www.uniprot.org/uniprot/Q58DL5						
Sperm surface protein Sp17	61	17.4	4	Q15506	http://www.uniprot.org/uniprot/Q15506						
Actin-related protein T1	55	42.1	6	Q4R821	http://www.uniprot.org/uniprot/Q4R821						
Inhibitor of nuclear factor kappa-B kinase subunit beta	54	87.8	7	O88351	http://www.uniprot.org/uniprot/O88351						
Glucosamine-6-phosphate isomerase 2	53	31.3	5	Q9CRC9	http://www.uniprot.org/uniprot/Q9CRC9						
E3 ubiquitin-protein ligase TRIM32	55	73.5	9	Q13049	http://www.uniprot.org/uniprot/Q13049						
Protein FAM98B	56	45.9	6	Q80VD1	http://www.uniprot.org/uniprot/Q80VD1						
DNA topoisomerase 2-alpha	56	173.5	11	Q01320	http://www.uniprot.org/uniprot/Q01320						
Interferon alpha-1/13	50	22.1	4	P01562	http://www.uniprot.org/uniprot/P01562						
Bone morphogenetic protein 7	56	21.5	6	P34819	http://www.uniprot.org/uniprot/P34819						
Protein phosphatase Slingshot homolog 1	60	116.5	16	Q8WYL5	http://www.uniprot.org/uniprot/Q8WYL5						
Serum albumin	42	70.6	14	P49822	http://www.uniprot.org/uniprot/P49822						
Peroxiredoxin-1	61	22.3	9	Q6B4U9	http://www.uniprot.org/uniprot/Q6B4U9						
Zinc finger BED domain-containing protein 5	48	80.2	11	A4Z944	http://www.uniprot.org/uniprot/A4Z944						
Zinc finger and SCAN domain-containing protein 9	57	47	9	O15535	http://www.uniprot.org/uniprot/O15535						
NADH dehydrogenase [ubiquinone] 1 alpha subcomplex subunit 2	69	11.1	7	Q4R5E2	http://www.uniprot.org/uniprot/Q4R5E2						
Tektin-4	67	51.3	11	Q8WW24	http://www.uniprot.org/uniprot/Q8WW24						
Elongation factor Tu GTP-binding domain-containing protein 1	70	127.1	16	Q8C0D5	http://www.uniprot.org/uniprot/Q8C0D5						
DCC-interacting protein 13-beta	68	75	7	Q8NEU8	http://www.uniprot.org/uniprot/Q8NEU8						
Protein Name	Accession No.	Score	Value	PDB ID	Link						
--	---------------	-------	-------	--------	-----------------------------						
Ras-related protein Rab-28	Q3SWY9	55	25	Q3SWY9	http://www.uniprot.org/uniprot/Q3SWY9						
Translation initiation factor elf-2B subunit delta	Q63186	55	58.4	Q63186	http://www.uniprot.org/uniprot/Q63186						
D-beta-hydroxybutyrate dehydrogenase, mitochondrial	P86198	62	15.2	P86198	http://www.uniprot.org/uniprot/P86198						
Gap junction alpha-8 protein	Q8K4Q9	69	49.9	Q8K4Q9	http://www.uniprot.org/uniprot/Q8K4Q9						
Dual specificity phosphatase 28	Q4G0W2	54	18.7	Q4G0W2	http://www.uniprot.org/uniprot/Q4G0W2						
39S ribosomal protein L30, mitochondrial	Q58DV5	53	18.7	Q58DV5	http://www.uniprot.org/uniprot/Q58DV5						
Ras-related protein Rab-36	O95755	61	36.8	O95755	http://www.uniprot.org/uniprot/O95755						
tRNA-dihydrouridine(20) synthase [NAD(P)+]-like	Q9NX74	50	55.8	Q9NX74	http://www.uniprot.org/uniprot/Q9NX74						
AP-3 complex subunit mu-2	P53677	55	47.2	P53677	http://www.uniprot.org/uniprot/P53677						
OTU domain-containing protein 6B	Q8N6M0	52	34	Q8N6M0	http://www.uniprot.org/uniprot/Q8N6M0						
A-kinase anchor protein 10, mitochondrial	O88845	57	74.1	O88845	http://www.uniprot.org/uniprot/O88845						
Hemoglobin subunit beta	P02073	56	16.3	P02073	http://www.uniprot.org/uniprot/P02073						
Single-pass membrane and coiled-coil domain-	Q95JR4	55	34.1	Q95JR4	http://www.uniprot.org/uniprot/Q95JR4						
containing protein 2											
Myotrophin	Q3T0F7	56	13.1	Q3T0F7	http://www.uniprot.org/uniprot/Q3T0F7						
Zinc finger protein 622	Q969S3	77	54.8	Q969S3	http://www.uniprot.org/uniprot/Q969S3						
Protein POF1B	Q8WVV4	63	68.9	Q8WVV4	http://www.uniprot.org/uniprot/Q8WVV4						
HORMA domain-containing protein 1	D3ZWE7	57	45.4	D3ZWE7	http://www.uniprot.org/uniprot/D3ZWE7						
Sperm surface protein Sp17	Q15506	58	17.4	Q15506	http://www.uniprot.org/uniprot/Q15506						
Tyrosine-protein kinase BAZ1B	Q9Z277	56	172.2	Q9Z277	http://www.uniprot.org/uniprot/Q9Z277						
Nicolin-1	Q861Y6	43	24.6	Q861Y6	http://www.uniprot.org/uniprot/Q861Y6						
Parvalbumin alpha	P20472	63	12.1	P20472	http://www.uniprot.org/uniprot/P20472						
Vimentin (Fragment)	P48670	58	51.9	P48670	http://www.uniprot.org/uniprot/P48670						
Protein FAM3C	Q92520	52	24.9	Q92520	http://www.uniprot.org/uniprot/Q92520						
Uncharacterized aarF domain-containing protein kinase 5	Q3MIX3	53	66.3	Q3MIX3	http://www.uniprot.org/uniprot/Q3MIX3						
Interferon-induced protein with	P09914	51	55.8	P09914	http://www.uniprot.org/uniprot/P09914						
Protein Name	Accession	pI	MW	m	Uniprot ID						
--------------	-----------	----	-----	---	------------------						
tetratricopeptide repeats 1	50	27.4	10	A2T7G9	http://www.uniprot.org/uniprot/A2T7G9						
Oxidoreductase HTATIP2	52	25.4	10	GSTA1_PIG	http://www.uniprot.org/uniprot/P5178						
Glutathione S-transferase alpha M14	50	18.8	8	B6VH75	http://www.uniprot.org/uniprot/B6VH75						
Sperm acrosome membrane-associated protein 3	53	27.1	6	Q8C6C7	http://www.uniprot.org/uniprot/Q8C6C7						
Protein FAM204A	55	27.4	6	A2T7G9	http://www.uniprot.org/uniprot/A2T7G9						
Ras-related protein Rab-36	55	29.4	6	O95755	http://www.uniprot.org/uniprot/O95755						
Neurofibromin	50	323.1	24	Q04690	http://www.uniprot.org/uniprot/Q04690						
Oxidoreductase HTATIP2	52	27.4	6	A2T7G9	http://www.uniprot.org/uniprot/A2T7G9						
Transmembrane emp24 domain-containing protein 9	61	27.5	6	Q3T133	http://www.uniprot.org/uniprot/Q3T133						
Centromere protein H	61	28	8	Q3T0L1	http://www.uniprot.org/uniprot/Q3T0L1						
Centrosomal protein of 104 kDa	72	105	14	Q80V31	http://www.uniprot.org/uniprot/Q80V31						
Nicolin-1	55	24.5	6	Q9BSH3	http://www.uniprot.org/uniprot/Q9BSH3						
Acylphosphatase-2	57	10.9	5	P35745	http://www.uniprot.org/uniprot/P35745						
Mitofusin-1	58	84.5	9	Q811U4	http://www.uniprot.org/uniprot/Q811U4						
Ras-related protein Rab-36	54	36.8	9	O95755	http://www.uniprot.org/uniprot/O95755						
Hippocalcin-like protein 1	51	22.4	7	P62748	http://www.uniprot.org/uniprot/P62748						
Stanniocalcin-2	47	34.1	9	Q5RAT2	http://www.uniprot.org/uniprot/Q5RAT2						
Major vault protein	51	96.2	14	Q9EQK5	http://www.uniprot.org/uniprot/Q9EQK5						
Peptidyl-prolyl cis-trans isomerase FKBP1A	59	12	4	Q62658	http://www.uniprot.org/uniprot/Q62658						
Tyrosine-protein phosphatase non-receptor type 12	54	87.2	17	P35831	http://www.uniprot.org/uniprot/P35831						
Kinase suppressor of Ras 2	52	108.9	16	Q6VAB6	http://www.uniprot.org/uniprot/Q6VAB6						
Putative ATP-dependent RNA helicase DHX30	54	136.9	10	Q2NKY8	http://www.uniprot.org/uniprot/Q2NKY8						
U3 small nucleolar RNA-associated protein 14 homolog A	53	88.2	10	Q3T0Q8	http://www.uniprot.org/uniprot/Q3T0Q8						
395 ribosomal protein L30, mitochondrial	64	18.7	7	Q58DV5	http://www.uniprot.org/uniprot/Q58DV5						
Growth arrest and DNA damage-inducible proteins-interacting protein 1	63	25.9	8	Q9CR59	http://www.uniprot.org/uniprot/Q9CR59						
Protein FAM57B	66	31.2	7	Q71RH2	http://www.uniprot.org/uniprot/Q71RH2						
Gene Name	Accession Number	Description	Score	E Value	Uniprot ID						
--	------------------	---	-------	----------	------------------						
Ras-related protein Rab-9A	P24408	Probable tubulin polycystatamylase TTLL1	2		http://www.uniprot.org/uniprot/P24408						
Adenyl cyclase-associated protein 2	Q9CYT6	Collagen alpha-1(I) chain (Fragments)	4	8	http://www.uniprot.org/uniprot/Q9CYT6						
NADH dehydrogenase [ubiquinone] flavoprotein 1, mitochondrial	Q0MQI4	Rho GTPase-activating protein 18	9	5	http://www.uniprot.org/uniprot/Q0MQI4						
Unconventional myosin-Ie	Q6NSZ9	Zinc finger and SCAN domain-containing protein 25	5	8	http://www.uniprot.org/uniprot/Q6NSZ9						
Four and a half LIM domains protein 2	O35115	Putative uncharacterized protein MYH16	5		http://www.uniprot.org/uniprot/O35115						
EGF domain-specific O-linked N-acetylglucosamine transferase	A0JND3	Annexin A10	6		http://www.uniprot.org/uniprot/A0JND3						
Tripartite motif-containing protein 42	Q8IWZ5	Beta-crystallin B2	4		http://www.uniprot.org/uniprot/Q8IWZ5						
Syndecan-4	O35988	Sorting nexin-3	6		http://www.uniprot.org/uniprot/O35988						
OTU domain-containing protein 6B	Q8N6M0	Desmin	7		http://www.uniprot.org/uniprot/Q8N6M0						
Cytospin-A	Q2KNA0	Ribosome-binding protein 1	10		http://www.uniprot.org/uniprot/Q2KNA0						
OTU domain-containing protein 6B	Q8N6M0	Glutathione S-transferase alpha M14	6		http://www.uniprot.org/uniprot/Q8N6M0						
Ribosome-binding protein 1	Q28298	Zinc finger protein castor homolog 1	13		http://www.uniprot.org/uniprot/Q28298						
Succinate	Q9CQA3	Annexin A10	6		http://www.uniprot.org/uniprot/Q9CQA3						
Protein Name	pI	MW	%I	UniProt ID	Link						
--	------	-----	-----	----------------------------	--						
Dehydrogenase [ubiquinone] iron-sulfur subunit, mitochondrial	A3										
Coiled-coil domain-containing protein 122	60	32.4	7	Q5T0U0	http://www.uniprot.org/uniprot/Q5T0U0						
Zinc finger C2HC domain-containing protein 1C	58	61.1	15	Q9BGW4	http://www.uniprot.org/uniprot/Q9BGW4						
Ceramide synthase 3	58	61.1	8	Q8IU89	http://www.uniprot.org/uniprot/Q8IU89						
Tetratricopeptide repeat protein 36	55	20.7	8	Q3SZV0	http://www.uniprot.org/uniprot/Q3SZV0						
Ras-related protein Rab-17	51	23.7	9	Q9H0T7	http://www.uniprot.org/uniprot/Q9H0T7						
Transmembrane and coiled-coil domain-containing protein 5A	52	34.5	5	Q8N6Q1	http://www.uniprot.org/uniprot/Q8N6Q1						
Inosine triphosphate pyrophosphatase	56	21.8	6	Q9BY32	http://www.uniprot.org/uniprot/Q9BY32						
Vacuolar protein sorting-associated protein 29	51	20.7	6	Q9UBQ0	http://www.uniprot.org/uniprot/Q9UBQ0						
AP-3 complex subunit mu-2	66	47.2	8	P53677	http://www.uniprot.org/uniprot/P53677						
Ras and EF-hand domain-containing protein homolog	60	71.3	10	Q5RI75	http://www.uniprot.org/uniprot/Q5RI75						
Protein C19orf12 homolog	65	15.1	6	Q8WUR0	http://www.uniprot.org/uniprot/Q8WUR0						
Serine palmitoyltransferase 2	54	63.6	9	O15270	http://www.uniprot.org/uniprot/O15270						
Thioredoxin, mitochondrial	53	18.4	4	P97493	http://www.uniprot.org/uniprot/P97493						
Vesicle transport protein USE1	57	30.8	9	Q9CQ56	http://www.uniprot.org/uniprot/Q9CQ56						
Far upstream element-binding protein 3 O	55	61.9	7	Q96I24	http://www.uniprot.org/uniprot/Q96I24						
Nesprin-3	51	112.3	20	Q4FZC9	http://www.uniprot.org/uniprot/Q4FZC9						
Zinc finger protein 532	50	112.2	15	Q6NXK2	http://www.uniprot.org/uniprot/Q6NXK2						
Hemoglobin subunit epsilon (Fragment)	50	15.6	6	O13071	http://www.uniprot.org/uniprot/O13071						
Vimentin	60	53.7	15	P20152	http://www.uniprot.org/uniprot/P20152						
Centromere protein H	61	28	7	Q3T0L1	http://www.uniprot.org/uniprot/Q3T0L1						
Potassium/sodium hyperpolarization-activated cyclic nucleotide-gated channel 1	60	93.4	11	Q9MZS1	http://www.uniprot.org/uniprot/Q9MZS1						
Pleckstrin homology-like domain family A member 3	59	13.9	5	Q9WV95	http://www.uniprot.org/uniprot/Q9WV95						
Zinc finger and SCAN	71	56.9	11	Q98UG6	http://www.uniprot.org/uniprot/Q98UG6						
Domain-Containing Protein	pI	Mw	Description	UniProt ID							
--	--------	------	--	---------------------							
Signal recognition particle receptor subunit beta	29.7	7	Q4FZX7	http://www.uniprot.org/uniprot/Q4FZX7							
Tetratricopeptide repeat protein 6	60	8	Q86TZ1	http://www.uniprot.org/uniprot/Q86TZ1							
Protein phosphatase 1 regulatory subunit beta	47.7	8	D3Z0R2	http://www.uniprot.org/uniprot/D3Z0R2							
Oculomedin	5.3	4	Q9Y5M6	http://www.uniprot.org/uniprot/Q9Y5M6							
Interleukin-2	17.8	6	Q95KP3	http://www.uniprot.org/uniprot/Q95KP3							
NADH dehydrogenase [ubiquinone] 1 alpha subcomplex subunit 2	11	5	O43678	http://www.uniprot.org/uniprot/O43678							
Ras-related protein Rab-36	36.8	7	O95755	http://www.uniprot.org/uniprot/O95755							
ATP-dependent 6-phosphofructokinase, liver type	58.8	10	P17858	http://www.uniprot.org/uniprot/P17858							
AarF domain-containing protein kinase 4	59.6	6	Q6AY19	http://www.uniprot.org/uniprot/Q6AY19							
Fidgetin-like protein 1	74.8	12	Q6PIW4	http://www.uniprot.org/uniprot/Q6PIW4							
Neutrophil cytosol factor 4	39.1	8	Q15080	http://www.uniprot.org/uniprot/Q15080							
Glycine amidinotransferase, mitochondrial	48.8	4	Q9D964	http://www.uniprot.org/uniprot/Q9D964							
Uncharacterized protein C1orf168 homolog	82.8	9	A2A995	http://www.uniprot.org/uniprot/A2A995							
Haptoglobin	36.9	5	P19006	http://www.uniprot.org/uniprot/P19006							
F-box/LRR-repeat protein 8	41.4	5	Q96CD0	http://www.uniprot.org/uniprot/Q96CD0							
Desmin	53.3	9	Q5XFN2	http://www.uniprot.org/uniprot/Q5XFN2							
Torsin-4A	47.3	6	Q9NXH8	http://www.uniprot.org/uniprot/Q9NXH8							
OTU domain-containing protein 6B	34	6	Q8N6M0	http://www.uniprot.org/uniprot/Q8N6M0							
39S ribosomal protein L2, mitochondrial	33.5	9	Q2TA12	http://www.uniprot.org/uniprot/Q2TA12							
Telomerase reverse transcriptase	128.6	8	O14746	http://www.uniprot.org/uniprot/O14746							
Solute carrier family 15 member 1	79.3	5	Q8WMX5	http://www.uniprot.org/uniprot/Q8WMX5							
Tripartite motif-containing protein 75	54.4	7	Q3UWZ0	http://www.uniprot.org/uniprot/Q3UWZ0							
Probable ATP-dependent RNA helicase DDX28	59.8	6	Q9NUL7	http://www.uniprot.org/uniprot/Q9NUL7							
Glutamyl-tRNA(Gln) amidotransferase	17.6	4	E2RK33	http://www.uniprot.org/uniprot/E2RK33							
Protein	Accession	Fold	Domain								
---------------------------------	-----------	------	--------								
Cap-specific mRNA (nucleoside-2'-O-)-methyltransferase 1	Q9DBC3	96.6	12								
Protein MB21D2	Q8C525	49	8								
Desmin	Q5XFN2	53.3	3								
NADH dehydrogenase [ubiquinone] 1 alpha subcomplex subunit 2	O43678	11	5								
Oculomedin	Q9Y5M6	5.3	4								
Glycogen phosphorylase, brain form	Q5MIB6	96.9	12								
V-set and transmembrane domain-containing protein 2B	Q9JME9	30.3	5								
Microsomal triglyceride transfer protein large subunit	P55156	99.6	11								
E3 ubiquitin-protein ligase ARHI2	Q9Z1K6	59.3	8								
Ubiquitin carboxyl-terminal hydrolase 37	Q86T82	111	6								
Putative homeodomain transcription factor 1	Q9UMS5	88	9								
Junction plakoglobin	P14923	82.4	6								
Pericentriolar material 1 protein	Q15154	230	10								
43 kDa receptor-associated protein of the synapse	P12672	47.6	13								
Desmin	Q5XFN2	53.3	6								
Probable tubulin polyglutamylase TTLL1	O95922	49.4	10								
Ubiquitin carboxyl-terminal hydrolase 48	Q86UV5	121.1	8								
Parvalbumin alpha	P20472	12.1	7								
Putative fatty acid-binding protein 5-like protein 3	A8MUU1	11.5	6								
Tyrosine-protein phosphatase non-receptor type 6	P81718	70	11								
Zinc finger protein 624	Q9P2J8	102.5	13								
Zinc finger and SCAN domain-containing protein 5A	Q9BUG6	56.9	11								
Actin-related protein 2/3	Q3T035	20.8	7								
Complex Subunit	UniProt ID	Cytoskeleton	UniProt ID	Cytoskeleton							
-----------------	------------	--------------	------------	--------------							
FSD1-like protein	P06830	61	22.3	7							
Transcriptional repressor NF-X1	Q12986	53	130	10							
Phosphatidylinositol 4-phosphate 5-kinase type-1 alpha	P70182	62	60.8	12							
Thiamine-triphosphatase	Q9BU02	54	25.7	9							
Dual specificity phosphatase 28	Q4G0W2	52	18.7	7							
Peptidyl-prolyl cis-trans isomerase D	Q9CR16	57	41.1	8							
Artemin	Q6AYE8	51	24.2	6							
Transcriptional repressor NF-X1	P70182	53	130	10							
Tyrosine-protein kinase receptor TYRO3	P55144	52	97.2	8							
Ras-related protein Rab-17	Q9HOT7	53	23.7	5							
Zinc finger and SCAN domain-containing protein 5A	Q9BUG6	77	56.9	7							
SLAIN motif-containing protein 2	Q8CI08	50	62.6	7							
Adenylyl cyclase-associated protein 2	P52481	52	53.2	7							
Acylphosphatase-2	P00818	51	11.2	6							
Protein Name	Mw	PPI	Uniprot ID	Link							
--	------	-----	-----------------------	---							
Centriolar coiled-coil protein of 110 kDa	51	11.9	Q7TSH4	http://www.uniprot.org/uniprot/Q7TSH4							
Zinc finger and SCAN domain-containing protein 5A	51	56.9	Q9BUG6	http://www.uniprot.org/uniprot/Q9BUG6							
Fibronectin type 3 and ankyrin repeat domains protein 1	54	38.6	Q6B858	http://www.uniprot.org/uniprot/Q6B858							
Hemoglobin subunit beta	60	16.3	Q6B858	http://www.uniprot.org/uniprot/Q6B858							
Ankyrin repeat and death domain-containing protein 1A	51	57.9	Q495B1	http://www.uniprot.org/uniprot/Q495B1							
Protein-arginine deiminase type-4	63	75.1	Q9Z183	http://www.uniprot.org/uniprot/Q9Z183							
Actin-binding Rho-activating protein	60	43	Q8BUZ1	http://www.uniprot.org/uniprot/Q8BUZ1							
Myotrophin	51	13.1	Q3T0F7	http://www.uniprot.org/uniprot/Q3T0F7							
Ras GTPase-activating protein 2	52	97.8	P58069	http://www.uniprot.org/uniprot/P58069							
Cleavage and polyadenylation specificity factor subunit 1	54	162.4	Q10569	http://www.uniprot.org/uniprot/Q10569							
Cholecystokinin	55	12.9	P41520	http://www.uniprot.org/uniprot/P41520							
Cortexin-2	55	9.2	Q3URE8	http://www.uniprot.org/uniprot/Q3URE8							
Uncharacterized protein C12orf60	53	27.7	Q5U649	http://www.uniprot.org/uniprot/Q5U649							
Tettraticopeptide repeat protein 36	66	20.7	Q3SZV0	http://www.uniprot.org/uniprot/Q3SZV0							
Coiled-coil domain-containing protein 81	64	76.8	Q6ZN84	http://www.uniprot.org/uniprot/Q6ZN84							
Tyrosine-protein kinase Fer	63	95.1	Q9TTY2	http://www.uniprot.org/uniprot/Q9TTY2							
Tettraticopeptide repeat protein 36	59	20.7	Q3SZV0	http://www.uniprot.org/uniprot/Q3SZV0							
Ras-related protein Rab-36	64	36.8	O95755	http://www.uniprot.org/uniprot/O95755							
Rab GDP dissociation inhibitor beta	66	50.8	O97556	http://www.uniprot.org/uniprot/O97556							
Centromere/kinetochore protein zw10 homolog	63	89.6	O43264	http://www.uniprot.org/uniprot/O43264							
Parvalbumin alpha	62	12.1	P20472	http://www.uniprot.org/uniprot/P20472							
Complement C1q subcomponent subunit B	62	26.6	Q2KIV9	http://www.uniprot.org/uniprot/Q2KIV9							
Double-stranded RNA-binding protein Staufen homolog 2	68	62.8	Q9NUL3	http://www.uniprot.org/uniprot/Q9NUL3							
CD209 antigen-like protein B	66	37.7	Q8CJ91	http://www.uniprot.org/uniprot/Q8CJ91							
SRC kinase signaling inhibitor 1	66	112.7	11	Q9C0H9	http://www.uniprot.org/uniprot/Q9C0H9						
Oxidoreductase HTATIP2	72	27.4	7	A2T7G9	http://www.uniprot.org/uniprot/A2T7G9						
Tyrosine--tRNA ligase, cytoplasmic	51	59.4	12	Q4KM49	http://www.uniprot.org/uniprot/Q4KM49						
Zinc finger protein 101	50	51.9	10	Q8IZC7	http://www.uniprot.org/uniprot/Q8IZC7						
60S ribosomal protein L37	53	11.3	7	P79244	http://www.uniprot.org/uniprot/P79244						
Zinc finger protein 621	52	50.2	6	Q6ZSS3	http://www.uniprot.org/uniprot/Q6ZSS3						
E3 ubiquitin-protein ligase RNF152	50	23.1	5	D2H6Z0	http://www.uniprot.org/uniprot/D2H6Z0						
Ras-related protein Rab-36	68	36.8	9	Q95755	http://www.uniprot.org/uniprot/Q95755						
Prolactin	64	26.1	7	Q9QZL1	http://www.uniprot.org/uniprot/Q9QZL1						
Vacuolar ATPase assembly integral membrane protein Vma21	50	44.4	4	Q78T54	http://www.uniprot.org/uniprot/Q78T54						
Hemoglobin subunit beta	69	16.3	10	P02073	http://www.uniprot.org/uniprot/P02073						
Sterile alpha and TIR motif-containing protein 1	60	80.8	12	I3L5V6	http://www.uniprot.org/uniprot/I3L5V6						
39S ribosomal protein L50, mitochondrial	62	18.3	6	Q8VDT9	http://www.uniprot.org/uniprot/Q8VDT9						
Interferon regulatory factor 2-binding protein 1	66	62.6	14	Q8IU81	http://www.uniprot.org/uniprot/Q8IU81						
FUN14 domain-containing protein 2	50	16.6	5	Q9D6K8	http://www.uniprot.org/uniprot/Q9D6K8						
Potassium voltage-gated channel subfamily B member 1	62	96.7	13	Q14721	http://www.uniprot.org/uniprot/Q14721						
Collagen alpha-2(I) chain	64	129.8	9	O46392	http://www.uniprot.org/uniprot/O46392						
Protein AAR2 homolog	61	43.9	9	Q08DJ7	http://www.uniprot.org/uniprot/Q08DJ7						
Aurora kinase C	65	35.9	13	Q9UQB9	http://www.uniprot.org/uniprot/Q9UQB9						
NAD-dependent protein deacetylase sirtuin-7	58	45.7	14	Q8BKJ9	http://www.uniprot.org/uniprot/Q8BKJ9						
Peroxiredoxin-1	56	22.3	9	Q06830	http://www.uniprot.org/uniprot/Q06830						
Perilipin-3	52	47.1	7	Q5RAV8	http://www.uniprot.org/uniprot/Q5RAV8						
Protein kish-A	52	8.3	4	Q148I3	http://www.uniprot.org/uniprot/Q148I3						
Ras-related protein Rab-36	50	36.8	6	Q95755	http://www.uniprot.org/uniprot/Q95755						
Succinyl-CoA ligase [ADP-forming] subunit beta, mitochondrial	62	50.3	12	Q4R517	http://www.uniprot.org/uniprot/Q4R517						
Protein Name	PDB	MW (kDa)	ID	Link							
--	------	----------	------	--							
Glycogen phosphorylase, liver form	51	97.9	12	P09811 http://www.uniprot.org/uniprot/P09811							
Integrin alpha-11	50	134.1	13	P61622 http://www.uniprot.org/uniprot/P61622							
Neuropathy target esterase	63	150.9	17	Q3TRM4 http://www.uniprot.org/uniprot/Q3TRM4							
Oncostatin-M	61	28.8	9	P13725 http://www.uniprot.org/uniprot/P13725							
Vesicle transport protein USE1	63	30.8	9	Q9CQ56 http://www.uniprot.org/uniprot/Q9CQ56							
Testicular haploid expressed gene protein	50	43.8	8	Q5XHX8 http://www.uniprot.org/uniprot/Q5XHX8							
Serine/threonine-protein phosphatase 6 catalytic subunit	55	35.8	7	O00743 http://www.uniprot.org/uniprot/O00743							
E3 ubiquitin-protein ligase MARCH8	53	33.7	5	Q0VD59 http://www.uniprot.org/uniprot/Q0VD59							
Phospholipase A2	25	17.0	3	P06596 http://www.uniprot.org/uniprot/P06596							
Protein polyglycylase TERTL10	55	80.2	13	A4Q9F3 http://www.uniprot.org/uniprot/A4Q9F3							
T-complex protein 1 subunit gamma	58	61.1	13	Q3TOK2 http://www.uniprot.org/uniprot/Q3TOK2							
Vimentin (Fragment)	57	51.9	14	P48670 http://www.uniprot.org/uniprot/P48670							
Ras-related protein Rab-36	61	36.8	9	O95755 http://www.uniprot.org/uniprot/O95755							
Interferon-induced protein with tetratricopeptide repeats 1	54	55.8	10	Q4R5F5 http://www.uniprot.org/uniprot/Q4R5F5							
Uncharacterized protein C1orf186	52	19.6	4	Q6ZWK4 http://www.uniprot.org/uniprot/Q6ZWK4							
Isocitrate dehydrogenase [NADP] cytoplasmic	51	47.1	7	Q9XSG3 http://www.uniprot.org/uniprot/Q9XSG3							
Dual specificity phosphatase	51	18.7	5	Q4G0W2 http://www.uniprot.org/uniprot/Q4G0W2							
Methylmalonic aciduria type A protein, mitochondrial	50	46.9	6	Q8IVH4 http://www.uniprot.org/uniprot/Q8IVH4							
Rab GDP dissociation inhibitor beta	47	50.8	8	O97556 http://www.uniprot.org/uniprot/O97556							
Vacuolar protein sorting-associated protein 4B	62	49.5	14	Q5R658 http://www.uniprot.org/uniprot/Q5R658							
C-type natriuretic peptide	66	13.5	9	P56283 http://www.uniprot.org/uniprot/P56283							
T-complex protein 1 subunit alpha	64	60.8	14	P18279 http://www.uniprot.org/uniprot/P18279							
Carboxylesterase 1E	67	61.8	11	Q64176 http://www.uniprot.org/uniprot/Q64176							
Stefin-2	52	11.9	6	P35174 http://www.uniprot.org/uniprot/P35174							
Ras-related protein Rab-5	55	24.5	6	P59279 http://www.uniprot.org/uniprot/P59279							
Protein Name	Protein ID	M.wt	Spec.	SwissProt ID	Link						
--------------	------------	------	-------	--------------	------						
Hemoglobin subunit epsilon (Fragment)	53	15.6	5	O13071	http://www.uniprot.org/uniprot/O13071						
Adenylosuccinate synthetase lisozyme 1	53	50.5	8	Q8N142	http://www.uniprot.org/uniprot/Q8N142						
Fragile X mental retardation protein 1 homolog	52	67.3	7	Q5R9B4	http://www.uniprot.org/uniprot/Q5R9B4						
Calponin-1	50	33.4	8	Q2HJ38	http://www.uniprot.org/uniprot/Q2HJ38						
Calponin-1	84	33.4	10	Q9GK38	http://www.uniprot.org/uniprot/Q9GK38						
Tyrosine-tRNA ligase, cytoplasmic	58	59.5	9	Q5R8T5	http://www.uniprot.org/uniprot/Q5R8T5						
14 kDa phosphohistidine phosphatase	50	14	4	Q9NRX4	http://www.uniprot.org/uniprot/Q9NRX4						
N-acetylgalactosamine-6-sulfatase	45	58.4	4	Q32KH5	http://www.uniprot.org/uniprot/Q32KH5						
Norrin	58	15.6	6	Q2K178	http://www.uniprot.org/uniprot/Q2K178						
Ribosome biogenesis protein BOP1	50	83.2	8	P97452	http://www.uniprot.org/uniprot/P97452						
Sp110 nuclear body protein	51	79.6	7	Q9HB58	http://www.uniprot.org/uniprot/Q9HB58						
Endophilin-A2	52	41.7	7	Q62419	http://www.uniprot.org/uniprot/Q62419						
Ras-related protein Rab-36	54	36.8	5	O95755	http://www.uniprot.org/uniprot/O95755						
Putative uncharacterized protein C6orf50	53	12.6	5	Q9HD87	http://www.uniprot.org/uniprot/Q9HD87						
Cytochrome P450 2C23	52	57	8	P24470	http://www.uniprot.org/uniprot/P24470						
Protein MB21D2	52	49	9	Q8C52	http://www.uniprot.org/uniprot/Q8C52						
Heat shock 70 kDa protein 4L (Fragments)	52	23.8	9	P86265	http://www.uniprot.org/uniprot/P86265						
Oxidoreductase HTATIP2	53	27.4	6	A2T7G9	http://www.uniprot.org/uniprot/A2T7G9						
Ras-related protein Rab-36	56	36.8	6	O95755	http://www.uniprot.org/uniprot/O95755						
OTU domain-containing protein 6B	54	34	7	Q8N6M0	http://www.uniprot.org/uniprot/Q8N6M0						
Suppressor of IKBKE 1	53	23.7	8	Q9CPR7	http://www.uniprot.org/uniprot/Q9CPR7						
Myb/SANT-like DNA-binding domain-containing protein 3	64	32.7	8	Q0III0	http://www.uniprot.org/uniprot/Q0III0						
Ras-related protein Rab-36	52	36.8	8	O95755	http://www.uniprot.org/uniprot/O95755						
Calpastatin	50	77.6	11	P27321	http://www.uniprot.org/uniprot/P27321						
NACHT, LRR and PYD domains-containing protein 5	62	123.4	21	Q647I9	http://www.uniprot.org/uniprot/Q647I9						
Protein Name	Protein ID	Event	Fraction	aa	UniProt ID	UniProt Link					
-------------	------------	-------	----------	----	------------	-------------					
Mitochondrial uncoupling protein 3	38	34.6	5	Q9N2I9	http://www.uniprot.org/uniprot/Q9N2I9						
Hemoglobin subunit beta	62	16.3	8	P02073	http://www.uniprot.org/uniprot/P02073						
Diacylglycerol kinase theta	50	104	11	Q6P5E8	http://www.uniprot.org/uniprot/Q6P5E8						
C-type natriuretic peptide	65	13.5	8	P56283	http://www.uniprot.org/uniprot/P56283						
Interleukin-12 receptor subunit beta-2	55	98.5	17	Q99665	http://www.uniprot.org/uniprot/Q99665						
Tumor necrosis factor receptor superfamily member 5	58	33.4	7	P27512	http://www.uniprot.org/uniprot/P27512						
Tetra-tricopeptide repeat protein 34	53	61.8	10	A8MYJ7	http://www.uniprot.org/uniprot/A8MYJ7						
TATA box-binding protein-associated factor RNA polymerase I subunit D	52	33	4	Q5M948	http://www.uniprot.org/uniprot/Q5M948						
Tetra-tricopeptide repeat protein 36	65	20.7	9	Q3SZV0	http://www.uniprot.org/uniprot/Q3SZV0						
Nicolin-1	62	24.5	9	Q9B9SH3	http://www.uniprot.org/uniprot/Q9B9SH3						
Gamma-tubulin complex component 2	51	103.8	22	Q921G8	http://www.uniprot.org/uniprot/Q921G8						
Calcium/calmodulin-dependent protein kinase II inhibitor 1	52	8.6	6	A7MBG3	http://www.uniprot.org/uniprot/A7MBG3						
Tropomodulin-4	53	39.5	7	Q0VC48	http://www.uniprot.org/uniprot/Q0VC48						
Protein THEM6	51	24	6	Q5XIE1	http://www.uniprot.org/uniprot/Q5XIE1						
F-box/SPRY domain-containing protein 1	55	31.1	7	Q8K3B1	http://www.uniprot.org/uniprot/Q8K3B1						
Actin-like protein 7B	52	45.9	9	Q9Y614	http://www.uniprot.org/uniprot/Q9Y614						
Kinase suppressor of Ras 2	56	110	20	Q3UVCO	http://www.uniprot.org/uniprot/Q3UVCO						
Cytospin-A	50	125	17	Q2KNA0	http://www.uniprot.org/uniprot/Q2KNA0						
Uridine 5’-monophosphate synthase	51	52.6	8	P11172	http://www.uniprot.org/uniprot/P11172						
Coiled-coil domain-containing protein 25	50	24.6	8	Q78PG9	http://www.uniprot.org/uniprot/Q78PG9						
NADH dehydrogenase [ubiquinone] 1 alpha subcomplex subunit 12	64	17.1	6	Q9UI09	http://www.uniprot.org/uniprot/Q9UI09						
Ras-related protein Rab-36	62	36.8	9	Q95755	http://www.uniprot.org/uniprot/Q95755						
Epididymal-specific lipocalin-5	65	20.8	8	P06911	http://www.uniprot.org/uniprot/P06911						
NADH dehydrogenase [ubiquinone] 1 alpha	57	11.1	7	Q4R5E2	http://www.uniprot.org/uniprot/Q4R5E2						
Subcomplex/Subunit	M.W.	Isoform	UniProt ID	Link							
--------------------	------	---------	------------	------							
Zinc finger protein cas tor homolog 1	72	193.3	Q86V15	http://www.uniprot.org/uniprot/Q86V15							
Hippocalcin-like protein 1	62	22.4	P62748	http://www.uniprot.org/uniprot/P62748							
Uncharacterized protein C12orf60	56	27.7	Q5U649	http://www.uniprot.org/uniprot/Q5U649							
Mini-chromosome maintenance complex-binding protein	56	73.6	Q8R3C0	http://www.uniprot.org/uniprot/Q8R3C0							
Transmembrane protein 132C	59	122.6	Q8N3T6	http://www.uniprot.org/uniprot/Q8N3T6							
Ubiquitin carboxyl-terminal hydrolase isozyme 1	56	25.2	P50103	http://www.uniprot.org/uniprot/P50103							
Apolipoprotein A-II	54	11.2	P0DM93	http://www.uniprot.org/uniprot/P0DM93							
Kinesin light chain 2	52	69.3	Q9H0B6	http://www.uniprot.org/uniprot/Q9H0B6							
Glutathione peroxidase 3	50	25.6	P23764	http://www.uniprot.org/uniprot/P23764							
Prolactin	55	26.6	P12420	http://www.uniprot.org/uniprot/P12420							
Arginine/serine-rich protein 1	51	33.7	Q9BUV0	http://www.uniprot.org/uniprot/Q9BUV0							
Amyloid beta A4 protein (Fragment)	58	6.2	Q29149	http://www.uniprot.org/uniprot/Q29149							
Leucine-rich repeat-containing protein 49	61	79.4	Q91YK0	http://www.uniprot.org/uniprot/Q91YK0							
PH and SEC7 domain-containing protein 3	50	115.3	Q2PFD7	http://www.uniprot.org/uniprot/Q2PFD7							
Insulin	54	12.5	P01321	http://www.uniprot.org/uniprot/P01321							
Dual specificity phosphatase 28	54	18.7	Q4G0W2	http://www.uniprot.org/uniprot/Q4G0W2							
Calpain-2 catalytic subunit	50	80.8	P17655	http://www.uniprot.org/uniprot/P17655							
Peroxiredoxin-1	52	22.3	Q06830	http://www.uniprot.org/uniprot/Q06830							
Ras-related protein Rab-25	53	23.5	P46629	http://www.uniprot.org/uniprot/P46629							
tRNA-dihydouridine(47) synthase [NAD(P)(+)]-like	53	72.4	Q91X11	http://www.uniprot.org/uniprot/Q91X11							
AarF domain-containing protein kinase 4	56	59.6	Q6AY19	http://www.uniprot.org/uniprot/Q6AY19							
RING finger protein 10	52	90.7	Q08E13	http://www.uniprot.org/uniprot/Q08E13							
E3 ubiquitin-protein ligase RNF152	60	23.1	D2H6Z0	http://www.uniprot.org/uniprot/D2H6Z0							
Protein-arginine deiminase type-3	53	76.3	Q9Z184	http://www.uniprot.org/uniprot/Q9Z184							
Sentan	65	16.6	A6NMZ2	http://www.uniprot.org/uniprot/A6NMZ2							
Plakophilin-4	53	132.3	Q68FH0	http://www.uniprot.org/uniprot/Q68FH0							
Protein Name	ID	E-Value	Length	Name	Score	Link	E-Value	Length	Name	Score	Link
------------------------------------	------	---------	--------	--	-------	---	---------	--------	--	-------	---
Urotensin-2B	65	13.0	8	Q765I1	http://www.uniprot.org/uniprot/Q765I		1				
Signal peptidase complex subunit 2	53	25.3	8	Q15005	http://www.uniprot.org/uniprot/Q15005		5				
Tektin-4	54	51.3	12	Q8WW24	http://www.uniprot.org/uniprot/Q8WW24		24				
Cytochrome P450 2j3	53	58.4	10	P51590	http://www.uniprot.org/uniprot/P51590		0				
Ras-related protein Rab-36	64	36.8	9	O95755	http://www.uniprot.org/uniprot/O95755		5				
Isocitrate dehydrogenase [NADP] cytoplasmic	50	47.2	6	Q6XUZ5	http://www.uniprot.org/uniprot/Q6XUZ5		5				
E3 ubiquitin-protein ligase RNF169	55	77.1	8	E9Q7F2	http://www.uniprot.org/uniprot/E9Q7F2		2				
Class E basic helix-loop-helix protein 40	51	45.9	6	O14503	http://www.uniprot.org/uniprot/O14503		3				
Interleukin-13	55	15.5	6	Q9N0W9	http://www.uniprot.org/uniprot/Q9N0W9		6				
Rab GDP dissociation inhibitor beta	67	50.8	7	O97556	http://www.uniprot.org/uniprot/O97556		6				
Isocitrate dehydrogenase [NADP], mitochondrial	60	51.3	8	P54071	http://www.uniprot.org/uniprot/P54071		1				
Stanniocalcin-2	63	34.1	8	O97561	http://www.uniprot.org/uniprot/O97561		1				
Ephrin type-B receptor 4	50	110.3	11	P54761	http://www.uniprot.org/uniprot/P54761		1				
NADH dehydrogenase [ubiquinone] 1 alpha subcomplex subunit 12	60	17.1	7	Q9UL09	http://www.uniprot.org/uniprot/Q9UL09		9				
Dual specificity phosphatase 28	54	18.7	7	Q4G0W2	http://www.uniprot.org/uniprot/Q4G0W2		2				
Parafibromin	54	60.7	13	Q6P1J9	http://www.uniprot.org/uniprot/Q6P1J9		9				
Bactericidal permeability-increasing protein	59	54	10	Q6AXU0	http://www.uniprot.org/uniprot/Q6AXU0		0				
Zinc finger protein castor homolog 1	61	193.3	17	Q86V15	http://www.uniprot.org/uniprot/Q86V15		5				
Calcitonin receptor-stimulating peptide 2	44	14.3	7	Q75V93	http://www.uniprot.org/uniprot/Q75V93		3				
Corticoliberin	58	20.8	9	Q95MI6	http://www.uniprot.org/uniprot/Q95MI6		6				
Urotensin-2B	50	13	6	Q765I1	http://www.uniprot.org/uniprot/Q765I1		1				
Pumilio homolog 3	53	73.9	16	Q15397	http://www.uniprot.org/uniprot/Q15397		7				
Protein FAM162B	55	18.1	9	A6QPI4	http://www.uniprot.org/uniprot/A6QPI4		4				
Cytochrome c oxidase subunit 6C	55	8.6	7	Q7YRK2	http://www.uniprot.org/uniprot/Q7YRK2		2				
Aromatase	56	58.6	13	P46194	http://www.uniprot.org/uniprot/P46194		4				
Protein Name	ID	E价值	位置	UniProt ID	Link						
--	----	-------	------	------------------	---						
Zinc finger protein 101	50	51.9	9	Q8IZC7	http://www.uniprot.org/uniprot/Q8IZC7						
Phosphatidylethanolamine-binding protein 1	52	21.2	5	Q8MK67	http://www.uniprot.org/uniprot/Q8MK67						
Leucine-tRNA ligase, cytoplasmian	57	135.7	11	Q5R614	http://www.uniprot.org/uniprot/Q5R614						
NACHT, LRR and PYD domains-containing protein 10	76	77.3	14	Q8CCN1	http://www.uniprot.org/uniprot/Q8CCN1						
Urotensin-2B	70	13	7	Q7651I	http://www.uniprot.org/uniprot/Q7651I						
Mortality factor 4-like protein 2	82	32.2	8	Q9R0Q4	http://www.uniprot.org/uniprot/Q9R0Q4						
Nucleolar pre-ribosomal-associated protein 1	59	256.5	15	O60287	http://www.uniprot.org/uniprot/O60287						
Serine/threonine-protein phosphatase 6 catalytic subunit	74	35.8	10	O00743	http://www.uniprot.org/uniprot/O00743						
Hemopexin	63	52	7	Q91X72	http://www.uniprot.org/uniprot/Q91X72						
Rab GDP dissociation inhibitor beta	52	51	8	P50397	http://www.uniprot.org/uniprot/P50397						
Sperm surface protein Sp17	55	17.3	5	Q62252	http://www.uniprot.org/uniprot/Q62252						
Natriuretic peptides B	46	15.1	4	P16859	http://www.uniprot.org/uniprot/P16859						
Iron-responsive element-binding protein 2	55	106.1	8	B3VKQ2	http://www.uniprot.org/uniprot/B3VKQ2						
STE20-related kinase adapter protein alpha	53	41.9	5	Q5E9J9	http://www.uniprot.org/uniprot/Q5E9J9						
E3 ubiquitin-protein ligase RNF169	50	77.1	9	E9Q7F2	http://www.uniprot.org/uniprot/E9Q7F2						
Acyl-coenzyme A synthetase ACSM2B, mitochondrial	57	64.8	8	Q68CK6	http://www.uniprot.org/uniprot/Q68CK6						
Survival motor neuron protein	63	32.2	9	Q4R4F8	http://www.uniprot.org/uniprot/Q4R4F8						
Tekitn-4	54	51.3	8	Q8WW24	http://www.uniprot.org/uniprot/Q8WW24						
Anaphase-promoting complex subunit CDC26	61	9.8	4	Q3SZT7	http://www.uniprot.org/uniprot/Q3SZT7						
39S ribosomal protein L30, mitochondrial	71	18.7	5	Q58DV5	http://www.uniprot.org/uniprot/Q58DV5						
Interleukin-4	64	15.5	6	P55030	http://www.uniprot.org/uniprot/P55030						
39S ribosomal protein L10, mitochondrial	51	29.6	8	Q3TBW2	http://www.uniprot.org/uniprot/Q3TBW2						
39S ribosomal protein L30, mitochondrial	50	18.7	5	Q58DV5	http://www.uniprot.org/uniprot/Q58DV5						
Acylphosphatase-2	61	11.1	7	P35744	http://www.uniprot.org/uniprot/P35744						
Tekitn-4	51	51.3	8	Q8WW24	http://www.uniprot.org/uniprot/Q8WW24						
Potassium/sodium	68	95.7	17	Q9JKA9	http://www.uniprot.org/uniprot/Q9JKA9						
	ID	Value	Scale	PDB	Link						
------------------------------	-----	-------	-------	-----	---						
hyperpolarization-activated cyclic nucleotide-gated channel 2	51	18.7	6	Q4G0W2	http://www.uniprot.org/uniprot/Q4G0W2						
Dual specificity phosphatase 28	63	45.5	10	A4FUZ6	http://www.uniprot.org/uniprot/A4FUZ6						
Hydroxysteroid dehydrogenase-like protein 2	52	10	5	P17716	http://www.uniprot.org/uniprot/P17716						
Islet amyloid polypeptide	9	152.8	13	Q5U4C1	http://www.uniprot.org/uniprot/Q5U4C1						
G-protein coupled receptor-associated sorting protein 1	51	47.9	7	Q9UK05	http://www.uniprot.org/uniprot/Q9UK05						
Cytosolic purine 5'-nucleotidase	52	65.3	10	O46411	http://www.uniprot.org/uniprot/O46411						
Vesicle transport protein USE1	59	30.8	16	Q9CQ56	http://www.uniprot.org/uniprot/Q9CQ56						
Putative zinc finger protein 137	61	24.7	8	P52743	http://www.uniprot.org/uniprot/P52743						
Elongation factor 1-beta	52	25	5	Q5E983	http://www.uniprot.org/uniprot/Q5E983						
Tektin-4	64	51.3	12	Q8WW24	http://www.uniprot.org/uniprot/Q8WW24						
Parathyroid hormone/parathyroid hormone-related peptide receptor	67	66.7	9	Q1LZC7	http://www.uniprot.org/uniprot/Q1LZC7						
Chorionic somatomammotropin hormone 2	50	28.2	6	P19159	http://www.uniprot.org/uniprot/P19159						
Probable tubulin polyglutamylase TLL1	51	49.5	8	Q5PPI9	http://www.uniprot.org/uniprot/Q5PPI9						
Collagen alpha-1(XI) chain (Fragment)	62	89.3	10	Q28083	http://www.uniprot.org/uniprot/Q28083						
G kinase-anchoring protein 1	68	42.2	10	Q5XIG5	http://www.uniprot.org/uniprot/Q5XIG5						
Protein phosphatase Slingshot homolog 1	67	116.5	14	Q8WYI5	http://www.uniprot.org/uniprot/Q8WYI5						
Arginine-serine-rich protein 1	58	33.7	8	Q9BUV0	http://www.uniprot.org/uniprot/Q9BUV0						
Sorting and assembly machinery component 50 homolog	50	52.2	6	Q8BGH2	http://www.uniprot.org/uniprot/Q8BGH2						
Cystatin-B	57	11.2	4	P25417	http://www.uniprot.org/uniprot/P25417						
Desmin	61	53.6	13	P17661	http://www.uniprot.org/uniprot/P17661						
Transmembrane inner ear expressed protein	52	53.6	6	Q8K467	http://www.uniprot.org/uniprot/Q8K467						
Putative uncharacterized protein encoded by CRHR1-IT1	50	17.2	6	Q96LR1	http://www.uniprot.org/uniprot/Q96LR1						
Oculomedin	58	5.3	5	Q9Y5M6	http://www.uniprot.org/uniprot/Q9Y5M6						
Protein kish-A	62	8.3	5	Q148I3	http://www.uniprot.org/uniprot/Q148I3						
--------------------------	----	-----	---	--------	-------------------------------------						
Rab GDP dissociation	51	50.8	6	O97556	http://www.uniprot.org/uniprot/O97556						
inhibitor beta											
Glutathione S- transferase Mu 6	52	25.8	8	O35660	http://www.uniprot.org/uniprot/O35660						
Hemoglobin subunit beta	68	16.3	8	P02073	http://www.uniprot.org/uniprot/P02073						
Zinc finger and SCAN	62	56.9	11	Q9BUG6	http://www.uniprot.org/uniprot/Q9BUG6						
domain-containing protein 5A											
Ras-related protein Rab-36	53	36.8	7	O95755	http://www.uniprot.org/uniprot/O95755						
39S ribosomal protein	54	18.3	9	Q8VDT9	http://www.uniprot.org/uniprot/Q8VDT9						
L50, mitochondrial											
NAD-dependent protein	51	45.7	9	Q8BKJ9	http://www.uniprot.org/uniprot/Q8BKJ9						
deacetylase sirtuin-7											
Ras-related protein Rab-36	57	36.8	12	O95755	http://www.uniprot.org/uniprot/O95755						
Putative uncharacterized	62	7.3	5	A6NGU7	http://www.uniprot.org/uniprot/A6NGU7						
protein encoded by LINC01546											
Hemoglobin subunit beta	51	16.3	7	P02073	http://www.uniprot.org/uniprot/P02073						
3-Oxo-5-beta-sterol 4-	50	37.7	8	P51857	http://www.uniprot.org/uniprot/P51857						
dehydrogenase											
Synaptosomal-associated	56	29.1	7	Q9Z2P6	http://www.uniprot.org/uniprot/Q9Z2P6						
protein 29											
Zinc finger protein 624	52	102.5	10	Q9P2J8	http://www.uniprot.org/uniprot/Q9P2J8						
Ubiquitin carboxyl-terminal hydroxylase 48	51	120.7	11	Q76LT8	http://www.uniprot.org/uniprot/Q76LT8						
Cholecystokinin	56	12.7	4	P23362	http://www.uniprot.org/uniprot/P23362						

Figures
Figure 1

Image of 2DE gel from dogs with babesiosis
Figure 2

Image of 2DE gel from healthy dogs