Genome skimming herbarium specimens for DNA barcoding and phylogenomics

Chun-Xia Zeng, Peter M. Hollingsworth, Jing Yang, Zheng-Shan He, Zhi-Rong Zhang, De-Zhu Li and Jun-Bo Yang

Abstract

Background: The world’s herbaria contain millions of specimens, collected and named by thousands of researchers, over hundreds of years. However, this treasure has remained largely inaccessible to genetic studies, because of both generally limited success of DNA extraction and the challenges associated with PCR-amplifying highly degraded DNA. In today’s next-generation sequencing world, opportunities and prospects for historical DNA have changed dramatically, as most NGS methods are actually designed for taking short fragmented DNA molecules as templates.

Results: As a practical test of routine recovery of rDNA and plastid genome sequences from herbarium specimens, we sequenced 25 herbarium specimens up to 80 years old from 16 different Angiosperm families. Paired-end reads were generated, yielding successful plastid genome assemblies for 23 species and nuclear rDNAs for 24 species, respectively. These data showed that genome skimming can be used to generate genomic information from herbarium specimens as old as 80 years and using as little as 500 pg of degraded starting DNA.

Conclusions: The routine plastome sequencing from herbarium specimens is feasible and cost-effective (compare with Sanger sequencing or plastome-enrichment approaches), and can be performed with limited sample destruction.

Keywords: Degraded DNA, Herbarium specimens, Genome skimming, Plastid genome, rDNA, DNA barcoding

Background

Herbaria are collections of preserved plant specimens stored for scientific study. There are approximately 3400 herbaria in the world, containing around 350 million specimens, collected over the past 400 years (http://science2/indexHerbariorum.asp). These collections cover most of the world’s plant species, including many rare and endangered local endemics, and species collected from places that are currently expensive or difficult to access [1]. The recovery of DNA from this vast resource of already collected expertly-verified herbarium specimens represent a highly efficient way of building a DNA-based identification resource of the world’s plant species (DNA barcoding) and increasing knowledge of phylogenetic relationships.

The ‘unlocking’ of preserved natural history specimens for DNA barcoding/species discrimination is of particular relevance. In the first decade of DNA barcoding, it became clear that obtaining material from expertly verified is a key rate-limiting step in the construction of a global DNA reference library [2]. The millions of samples that are required for this endeavor, each needing corresponding voucher specimens and meta-data, create a strong impetus for making best-use of previously collected material.

DNA degradation in herbarium samples followed by subsequent diffusion from the sample creates challenges for DNA recovery [3]. In addition, different preservation methods can negatively affect the ability of extract, amplify and sequence DNA [4–6]. PCR amplification of historical DNA is, therefore, generally restricted to short amplicons (<200 bp) and is further vulnerable
to contamination by recent DNA and PCR products from the study species. The cumulative damage to the DNA can also cause incorrect bases to be inserted during enzymatic amplification. The main sources for these alterations are single nucleotide misincorporations [7, 8]. Above all, PCR-based Sanger sequencing by using herbarium samples to generate standard DNA barcodes can be challenging. A recent large-scale study by Kuzmina et al. 2017 [9] examined 20,816 specimens representing 5076 of 5190 vascular plant species in Canada. Kuzmina et al. found that specimen age and method of preservation had significant effects on sequence recovery for all barcode markers. However, massively-parallel short-read Next-generation sequencing (NGS) protocols have the potential to greatly increase the success of herbarium sequencing projects, as many new sequencing approaches do not rely on large, intact DNA templates and instead are well-suited for sequencing low concentrations of short (100-400 bp) fragmented molecules [3, 10].

Straub et al. [11], described how “genome skimming”, involving a shallow-pass genome sequence using NGS, could recover highly repetitive genome regions such as rDNA or organelle genomes, and yield highly useful sequence data at relatively low sequence depth, and these regions include the usual suite of DNA barcoding markers [12, 13]. The genome skimming approach using NGS has been used to recover plastid DNA and rDNA sequences from 146 herbarium specimens [14], to produce the entire nuclear genome of a 43-year-old Arabidopsis thaliana herbarium specimen [15], the complete plastome, the mitogenome, nuclear ribosomal DNA clusters, and partial sequences of low-copy genes from an herbarium specimen of an extinct species of Hesperelaea [16, 17], and the complete plastome, nuclear ribosomal DNA clusters, and partial sequences of low-copy genes from three grass herbarium specimens [18]. However, sequencing small, historical specimens may be especially challenging if a specimen is unique, or nearly so, with no alternative specimens available for study should the first specimen fail. Methods used to extract and prepare DNA for sequencing must both be more or less guaranteed to work, and, in many cases, allow for preservation of DNA for future study [19]. In recent studies that report successfully sequencing of historical specimens from 1 ng to 1 µg of input DNA (for example, up to 1 µg in Bakker et al. [14]; ~600 ng in Staats et al. [15]; 33 ng in Zadane et al. [17]; 8.25–357 ng in Kanda et al. [20]; 5.8–200 ng in Blaimer et al. [21]; less than 10 ng in Besnard et al. [18]; 1–10 ng in Sproul and Maddison [19]). But a number of studies also report abandoning a subset of specimens for which too little input DNA was available (i.e. below 10 ng in Kanda et al. [20]; below 5 ng in Blaimer et al. [21]). To better understand ideal approaches of sample preparation for specimens with minimal DNA, we intentionally limited DNA input to 500 pg per specimen.

In this paper we provide a further practical test of the genome skimming methodology applied to herbarium specimens. As part of the China Barcode of Life project, and our wider phylogenomic studies, our aim was to assess whether the success reported in these early genome skimming studies could be repeated in other laboratories.

We evaluated the success and failure rates of rDNA and plastid genome sequencing from genome skims of 25 different species from herbarium specimens, and explored the impacts of parameters such as amount of input DNA and PCR cycle numbers.

Methods
Specimen sampling
25 herbarium specimens were selected from 16 Angiosperm families covering 22 genera, with specimen ages up to 80 years old. All 25 species were taken from the specimens housed in the Herbarium of the Institute of Botany, Chinese Academy of Sciences (KUN). The samples were selected to represent the major clades of APG III system (Table 1).

DNA extraction
Approximately 1 cm² sections of leaf or 20 mg of leaf tissue were used for each DNA extraction. Genomic DNA was extracted using Tiangen DNAsecure Plant Kit (DP320). Yield and integrity (size distribution) of genomic DNA extracts were quantified by fluorometric quantification on the Qubit (Invitrogen, Carlsbad, California, USA) using the dsDNA HS kit, as well as by visual assessment on a 1% agarose gel.

Library preparation
All samples were subsequently built into blunt-end DNA libraries in the laboratories using the NEBNext Ultra II DNA library Prep kit for Illumina (New England Bio-labs) which has been optimized for as little as 5 ng starting DNA and Illumina-specific adapters [22]. The library protocol was performed as per the manufacturer’s instructions with four modifications: (i) 500 pg of input DNA was selected to accommodate low starting DNA quantities, (ii) DNA was not fragmented by sonication because the DNA was highly degraded; (iii) The NEBNext library was generated without any size selection; (iv) DNA libraries were then amplified in an indexing PCR, which barcoded each library and discriminated each
sample. Five PCR cycles was suggested by the manufacturer’s instruction for 5 ng of input DNA. As only 500 pg of starting DNA was used, we tested use of increasing numbers of PCR cycles (namely \(\times 6, \times 8, \times 10, \times 12, \times 14 \) PCR cycles). Concentration and size profiles of the final indexed libraries (125 libraries, representing 25 specimens at 5 different numbers of PCR cycles) were assessed on a Bioanalyzer 2100 using a high sensitivity DNA chip.

Library pooling

The final indexed libraries were then pooled (33 or 34 samples per lane) in equimolar ratios and sequenced on three lanes on an Illumina XTen sequencing system (Illumina Inc.) using paired and chemistry at the Cloud health Medical Group Ltd.

Analyses

Successfully sequenced samples were assembled into chloroplast genomes and nuclear rDNAs. Here the rDNAs comprise the complete sequence of 26S, 18S, and 5.8S and internal transcribed spacers (ITS1 and ITS2). We did not assemble the internal gene spacer (IGS) because of the complexity of this region which is rich in duplications and inversions.

The raw sequence reads were filtered for primer/adaptor sequences and low-quality reads with the NGS QC Toolkit [23]. The cut-off value for percentage of read length was 80, and that for PHRED quality score was 30. Then the filtered high-quality pair-end reads were assembled into contigs with Spades 3.0 [24]. Next, we identified highly similar genome sequences using the Basic Local Alignment Search Tool (BLAST: http://blast.ncbi.nlm.gov/). The procedures and parameters for setting the sequence quality control, de novo assembly, and blast search were followed as in Yang et al. [25]. Next, we determined the proper orders of the aligned contigs using the highly similar genome sequences identified in the BLAST search as references. At this point, the target contigs were assembled into complete plastid genomes and nuclear rDNAs.

Annotation of the plastomes was performed using the plastid genome annotation package DOGMA [26].

Table 1 List of the specimen materials, DNA yields used in our study

Sample ID	Species	Family	Collection	Age	ng/ul	Volume (ul)	DNA yield (ng)
01	Manglietia fordiana	Magnoliaceae	19780402	39	0.894	36	32.184
02	Manglietia fordiana	Magnoliaceae	19541027	63	2.35	37	86.95
03	Schisandra henryi	Schisandraceae	19821108	35	1.67	33	61.71
04	Schisandra henryi	Schisandraceae	19840528	33	0.909	33	29.997
05	Phoebe neanthera	Lauraceae	1938	79	0.507	36	18.252
06	Cinnamomum bodinieri	Lauraceae	1960	57	2.26	26	81.36
08	Holboellia latifolia	Lardizabalaceae	1982	35	1.29	34	43.86
09	Chloranthus erectus	Chloranthaceae	1973	44	4.18	36	150.48
10	Sarcandra glabra	Chloranthaceae	1988	29	4.35	31.5	137.025
11	Meconopsis racemosa	Papaveraceae	1976	41	4.35	22	95.7
12	Macleaya microcarpa	Papaveraceae	1986	31	1.97	35.5	69.935
13	Hodgsonia macrocarpa	Cucurbitaceae	1982	35	2.18	34	74.12
14	Malus yunnanensis	Rosaceae	1939	78	0.834	35	29.19
15	Elaeagnus loureiri	Elaeagnaceae	1993	24	9.75	34	331.5
16	Rhododendron rex subsp. fictolacteum	Ericaceae	1979	38	8.15	20.5	167.075
17	Swertia bimaculata	Gentianaceae	19840823	33	1.67	35	58.45
18	Primula sinopurpurea	Primulaceae	19400907	77	0.974	32	31.168
19	Paedonia scandens	Araceae	19550331	62	0.344	34	11.696
20	Colocasia esculenta	Araceae	19741001	43	1.46	36	52.56
21	Pholidota chinensis	Orchidaceae	1959	58	0.107	34	3.638
22	Otochilus porrectus	Orchidaceae	1990	27	0.344	35	12.04
23	Indosasa sinica	Poaceae	2007	10	1.65	35	57.75
24	Camellia gymnoyna	Theaceae	19340617	83	0.417	36	15.012
25	Camellia sinensis var. assamica	Theaceae	2002	15	4.03	23	92.69
26	Panicum incomtum	Poaceae	20001017	17	1.63	36	58.68

All vouchers are deposited in the herbarium of the Kunming Institute of Botany (KUN)
were manually adjusted. The online tRNAscan-SE service [27] was used to further determine tRNA genes. The final complete plastomes and rDNAs were deposited into GenBank (Accession numbers: MH394344-MH394431; MH270450-MH270494).

Fungi or other plants may be co-isolated during the DNA extraction process resulting in DNA contamination [1]. This is particularly important where starting DNA concentrations are extremely low. We thus sub-sampled our data to check for contamination. To check for contamination in the plastid DNA sequences, for each species we extracted its rbcL sequence and blasted it against GenBank to check that it grouped with related species. BLAST1 (implemented in the BLAST program, version 2.2.17) was used to search the reference database for each query sequence with an E value < 1 × 10^{-5}. Likewise, to check for plant and fungal contamination in the rDNA sequences, we took the final assembled ITS sequences (or partial ITS sequences where complete ITS was not recovered) and blasted the sequences against the NCBI database to check that it grouped with related species.

Results

All 25 species yielded amounts of DNA suitable for library preparation and further processing. Total yields varied between 3 ng and 400 ng from on average 20 mg of dried leaf tissue, usually the equivalent of 1 cm² of leaf tissue (Table 1). We found a negative correlation between specimen age and DNA yield (Fig. 1).

We successfully enriched and sequenced DNA libraries constructed from herbarium material. Despite only 500 pg of input DNA, good quality libraries were produced from 100 of 125 samples (25 species, with ×8, ×10, ×12, ×14 PCR cycles). The concentration of the final indexed libraries based on six PCR cycles per species was too low to be further sequenced. Between 15,877,478 and 44,724,436 high-quality paired-end reads were produced, with the total number of bases ranging from 2,381,621,700 bp (2.38 giga base pairs, Gbp) to 6,708,665,400 bp (6.71 Gbp) (Table 2). These were then assembled into contigs, and using a blast search into plastid genomes and rDNA arrays.

After de novo assembly, two species (Otophyllum porrectus and Pholidota chinensis) generated poor plastid assemblies, with the longest contigs being 6705 bp with 2 × coverage and 1325 bp with 3 × coverage respectively. The other 23 species yielded useful plastid assemblies drawn from 3 to 61 contigs assembled into plastid genomes with depths ranged from 459 × to 2176 ×. Of these 23 species, 14 were assembled into complete plastid genomes. Eight species were assembled into nearly complete plastid genomes, but with gaps ranged from 5 to 349 bp (Table 2). However, although Rhododendron rex subsp. fictolacteum yielded useful plastid assemblies, many gaps were detected among contigs when the species Vaccinium macrocarpon was used as reference data.

For the nuclear rDNAs, 21 species gave ribosomal DNA sequences assemblies >4.3 kb drawn from 1 to 2 contigs with sequencing depths ranging from 3 × to 567 × (no nrDNA sequences could be assembled for Pholidota chinensis, Paederia scandens, Otophyllum porrectus, and Camellia gymnogyna) (Table 3). Of these 21 species, 18 resulted in assembled nrDNAs consisting of partial sequences of 18S and 26S, along with the complete sequence of 5.8S and the internal transcribed spacers ITS1 and ITS2. However, 3 species (2 samples of Manglietia fordiana (Sample ID 01 and 02), Phoebe nevantha (Sample ID 05), were difficult to assemble, resulting in only partial recovery of 5.8S and the internal transcribed spacers ITS1 and ITS2.

To check the quality of the plastid sequences, all gene regions were translated. No stop codons that would be indicative of sequencing errors were detected within the assembled contigs. We then extracted about 1400 bp of rbcL sequence from 23 of the samples to check for contamination (for Rhododendron rex subsp. fictolacteum (Sample ID 16), the plastid genome was not assembled successfully but we could nevertheless extract the rbcL sequence from the plastid contigs). These rbcL sequences were subjected to a blast search against the NCBI database. The rbcL sequences contained no insertions or deletions and matched the correct genus or family in each case (Table 4). Likewise, we blasted the final assembled rDNA ITS sequences (or partial ITS sequences) from 24 samples against the NCBI database. In all cases, the closest match to the sequence was from the family of the sequenced sample. No matches with fungi were detected (Table 5).
Sample ID	PCR cycles	Species	Family	Total sequences	Raw data (gb)	# contigs	Total assembly length (bp)	Completed	GenBank accession number
01D	×8	Manglietia fordiana	Magnoliaceae	22404632	3.36	9	158993	1059 bp gap	MH394393
01E	×10	Manglietia fordiana	Magnoliaceae	25869654	3.88	32	159759	349 bp gap	MH394394
01A	×12	Manglietia fordiana	Magnoliaceae	35201972	5.28	14	158241	1840 bp gap	MH394391
01B	×14	Manglietia fordiana	Magnoliaceae	30007234	4.5	14	158221	1840 bp gap	MH394392
02D	×8	Manglietia fordiana	Magnoliaceae	22829038	3.42	8	161497	1040 bp gap	MH394397
02E	×10	Manglietia fordiana	Magnoliaceae	32497068	4.87	21	160113	Y	MH394398
02A	×12	Manglietia fordiana	Magnoliaceae	29637182	4.45	12	158315	1802 bp gap	MH394395
02B	×14	Manglietia fordiana	Magnoliaceae	31089730	4.66	22	160113	Y	MH394396
03D	×8	Schisandra henryi	Schisandraceae	29691984	4.45	5	145963	94 bp gap	MH394365
03E	×10	Schisandra henryi	Schisandraceae	25141160	3.77	4	145616	54 bp gap	MH394366
03A	×12	Schisandra henryi	Schisandraceae	32511344	4.88	11	146031	18 bp gap	MH394363
03B	×14	Schisandra henryi	Schisandraceae	29856636	4.48	9	145993	63 bp gap	MH394364
04D	×8	Schisandra henryi	Schisandraceae	24039822	3.61	4	146212	53 bp gap	MH394369
04E	×10	Schisandra henryi	Schisandraceae	23870902	3.58	4	146243	53 bp gap	MH394370
04A	×12	Schisandra henryi	Schisandraceae	33190158	4.98	15	146218	63 bp gap	MH394367
04B	×14	Schisandra henryi	Schisandraceae	30498044	4.57	6	145893	45 bp gap	MH394368
05D	×8	Phoebe neurantha	Lauraceae	29040850	4.36	11	152782	Y	MH394354
05E	×10	Phoebe neurantha	Lauraceae	27831254	4.17	15	152782	Y	MH394355
05A	×12	Phoebe neurantha	Lauraceae	44724436	6.71	17	152781	1 bp gap	MH394352
05B	×14	Phoebe neurantha	Lauraceae	35264634	5.29	13	152781	1 bp gap	MH394353
06D	×8	Cinnamomum bodinieri	Lauraceae	30188820	4.53	9	152778	Y	MH394417
06E	×10	Cinnamomum bodinieri	Lauraceae	32065328	4.81	13	152719	Y	MH394418
06A	×12	Cinnamomum bodinieri	Lauraceae	24488292	3.67	7	152719	Y	MH394415
06B	×14	Cinnamomum bodinieri	Lauraceae	35035602	5.26	11	152719	Y	MH394416
08D	×8	Holboellia latifolia	Lardizabalaceae	26229946	3.93	5	157817	Y	MH394377
08E	×10	Holboellia latifolia	Lardizabalaceae	28273022	4.24	9	157818	Y	MH394378
08A	×12	Holboellia latifolia	Lardizabalaceae	33873136	5.08	13	157614	204 bp gap	MH394375
08B	×14	Holboellia latifolia	Lardizabalaceae	34021360	5.1	10	157818	Y	MH394376
09D	×8	Chloranthus erectus	Chloranthaceae	21843512	3.28	4	157812	43 bp gap	MH394413
09E	×10	Chloranthus erectus	Chloranthaceae	18044364	2.71	5	157812	47 bp gap	MH394414
09A	×12	Chloranthus erectus	Chloranthaceae	30022162	4.5	13	157852	Y	MH394411
09B	×14	Chloranthus erectus	Chloranthaceae	28656686	4.3	11	157852	Y	MH394412
10D	×8	Sarcandra glabra	Chloranthaceae	18893508	2.83	5	158733	119 bp gap	MH394361
10E	×10	Sarcandra glabra	Chloranthaceae	20662770	3.1	7	159007	22 bp gap	MH394362
10A	×12	Sarcandra glabra	Chloranthaceae	27510166	4.13	9	158900	Y	MH394360
10B	×14	Sarcandra glabra	Chloranthaceae	29545206	4.43	9	158900	Y	MH394431
11D	×8	Mecanopsis racemosa	Papaveraceae	24351884	3.65	5	153762	Y	MH394401
11E	×10	Mecanopsis racemosa	Papaveraceae	29160582	4.37	5	153762	Y	MH394402
11A	×12	Mecanopsis racemosa	Papaveraceae	33763340	5.06	6	153763	Y	MH394399
11B	×14	Mecanopsis racemosa	Papaveraceae	35990358	5.4	4	153728	1 bp gap	MH394400
12D	×8	Macleaya microcarpa	Papaveraceae	26265548	3.94	11	161064	48 bp gap	MH394385
12E	×10	Macleaya microcarpa	Papaveraceae	25100372	3.77	11	161064	48 bp gap	MH394386
12A	×12	Macleaya microcarpa	Papaveraceae	29491952	4.42	13	161118	Y	MH394383
12B	×14	Macleaya microcarpa	Papaveraceae	28462338	4.27	12	161110	2 bp gap	MH394384
Sample ID	PCR cycles	Species Family	Total sequences	Raw data (gb)	#contigs	Total assembly length (bp)	Completed GenBank accession number		
-----------	------------	----------------	----------------	--------------	----------	--------------------------	----------------------------------		
13D	×8	Hodgsonia macrocarpa	Cucurbitaceae	26886870	4.03	26	155027	1300 bp gap	MH394428
13E	×10	Hodgsonia macrocarpa	Cucurbitaceae	34179418	5.13	16	154855	1298 bp gap	MH394429
13A	×12	Hodgsonia macrocarpa	Cucurbitaceae	37182144	5.58	18	156015	20 bp gap	MH394426
13B	×14	Hodgsonia macrocarpa	Cucurbitaceae	36782268	5.52	17	156146	Y	MH394427
14D	×8	Malus yunnanensis	Rosaceae	22107718	3.32	16	158955	820 bp gap	MH394389
14E	×10	Malus yunnanensis	Rosaceae	25720160	3.86	5	160071	Y	MH394390
14A	×12	Malus yunnanensis	Rosaceae	37501036	5.63	5	160067	Y	MH394387
14B	×14	Malus yunnanensis	Rosaceae	33776058	5.07	5	160068	Y	MH394388
15D	×8	Elaeagnus laurieii	Elaeagnaceae	15195822	2.28	5	152196	8 bp gap	MH394424
15E	×10	Elaeagnus laurieii	Elaeagnaceae	16862680	2.53	5	152196	8 bp gap	MH394425
15A	×12	Elaeagnus laurieii	Elaeagnaceae	21511050	3.23	4	152199	5 bp gap	MH394422
15B	×14	Elaeagnus laurieii	Elaeagnaceae	20556860	3.08	6	152199	5 bp gap	MH394423
16D	×8	Rhododendron rex subsp. fictolacteum	Ericaceae	23623070	3.54				
16E	×10	Rhododendron rex subsp. fictolacteum	Ericaceae	28092596	4.21				
16A	×12	Rhododendron rex subsp. fictolacteum	Ericaceae	31352560	4.7				
16B	×14	Rhododendron rex subsp. fictolacteum	Ericaceae	30525730	4.58				
17D	×8	Swertia bimaculata	Gentianaceae	18303136	2.77	53	152808	266 bp gap	MH394373
17E	×10	Swertia bimaculata	Gentianaceae	16559554	2.48	41	153443	9947 bp gap	MH394371
17A	×12	Swertia bimaculata	Gentianaceae	15877478	2.38	30	143977	9947 bp gap	MH394372
17B	×14	Swertia bimaculata	Gentianaceae	18448302	2.77	48	153602	341 bp gap	MH394372
18D	×8	Primula sinopurpurea	Primulaceae	22890598	3.43	5	151945	50 bp gap	MH394358
18E	×10	Primula sinopurpurea	Primulaceae	26618684	3.99	5	151945	50 bp gap	MH394359
18A	×12	Primula sinopurpurea	Primulaceae	24107472	3.62	3	151945	50 bp gap	MH394356
18B	×14	Primula sinopurpurea	Primulaceae	25834066	3.88	3	151945	50 bp gap	MH394357
19D	×8	Paederia scandens	Araceae	25307356	3.8	15	162267	247 bp gap	MH394346
19E	×10	Paederia scandens	Araceae	24658068	3.7	7	162268	247 bp gap	MH394347
19A	×12	Paederia scandens	Araceae	23850180	3.58	8	162282	253 bp gap	MH394344
19B	×14	Paederia scandens	Araceae	24064764	3.61	10	162139	253 bp gap	MH394345
20D	×8	Colocasia esculenta	Araceae	29284270	4.39	4	162350	155 bp gap	MH394430
20E	×10	Colocasia esculenta	Araceae	25045978	3.77	5	162350	155 bp gap	MH394421
20A	×12	Colocasia esculenta	Araceae	23560322	3.53	6	162414	155 bp gap	MH394419
20B	×14	Colocasia esculenta	Araceae	24533656	3.68	4	162414	155 bp gap	MH394420
21D	×8	Pholidota chinensis	Orchidaceae	21688990	3.25				
21E	×10	Pholidota chinensis	Orchidaceae	20880950	3.13				
21A	×12	Pholidota chinensis	Orchidaceae	23548018	3.23				
21B	×14	Pholidota chinensis	Orchidaceae	27148284	4.07				
22D	×8	Otochilus porrectus	Orchidaceae	15550512	2.33				
22E	×10	Otochilus porrectus	Orchidaceae	22638772	3.4				
22A	×12	Otochilus porrectus	Orchidaceae	21572196	3.23				
22B	×14	Otochilus porrectus	Orchidaceae	28960858	4.34				
23D	×8	Indosasa sinica	Gramineae	18793020	2.82	6	139848	18 bp gap	MH394381
23E	×10	Indosasa sinica	Gramineae	17903432	2.69	10	139740	Y	MH394382
One-way analyses of variance (ANOVA) were performed to test the total reads against PCR cycles, PCR cycles against plastid contig numbers, PCR cycles against plastid genome assembly length, and PCR cycles against plastid mean-depth. We found that there was no significant correlation between PCR cycles and plastid contig numbers, PCR cycles and plastid genome assembly length, and PCR cycles and plastid coverage. There was, however, a significant positive correlation between the number of PCR cycles and the total number of reads, and PCR cycles and the plastid mean-depth (Fig. 2).

Finally, when comparing plastome assembly coverage with C values of the species concerned we find a slight negative but not significant correlation (Fig. 3), which would suggest, at least for our sampling, that plastome assembly coverage is not affected by nuclear genome size of the specimen concerned.

Discussion

Sequencing herbarium specimens from low amounts of starting DNA

Our current study successfully demonstrated the recovery of plastid genome sequences and rDNA sequences from herbarium specimens, some up to 80 years old. Our study used small amounts of starting tissue (c 1 cm²) and extremely low initial concentrations (500 pg) of degraded starting DNA. This success with a small amount of starting tissue is important, and demonstrates the practical feasibility of organelle genome and rDNA recovery with minimal impacts on specimens. These findings, in the context of studies by others (e.g. Bakker et al. [14]) confirm that genome skimming can be performed with limited sample destruction enabling relatively straightforward access to high-copy number DNA in preserved herbarium specimens spanning a wide phylogenetic coverage.

To accommodate the use of only 500 pg of input DNA, we modified the library protocol to remove the step of DNA fragmentation by sonication because the DNA was already highly degraded, we did not undertake any size selection, and we increased the number of PCR cycles to enrich the indexed library. After library preparation and Illumina paired-end sequencing, a sufficient number of read pairs (> 15,000,000) were generated for our 25 specimens and 100 libraries. This strategy allowed the generation of complete or near complete plastid genomes with depths ranging from 459 x 10^4 to 2176 x 10^4, and nuclear ribosomal units with a high sequencing depth (3 x 10^5 to 567 x 10^5) for 23 and 24 specimens respectively. Despite the low starting concentration, no plant or fungal contaminants were obviously detectable in the assembled plastomes and rDNA sequences.

For herbarium plastome assembly, the procedures and parameters for setting the sequence quality control, de novo assembly, blast search and genome annotation

Table 2 (continued)

Sample ID	PCR cycles	Species	Family	Total sequences	Raw data (gb)	#contigs	Total assembly length (bp)	Completed GenBank accession number
23A	× 12	*Indosasa sinica*	Gramineae	19106404	2.87	9	139740	Y
23B	× 14	*Indosasa sinica*	Gramineae	19668682	2.95	8	139740	Y
24D	× 8	*Camellia gymnogyna*	Theaceae	17176632	2.58	4	156402	Y
24E	× 10	*Camellia gymnogyna*	Theaceae	24532196	3.68	7	156590	Y
24A	× 12	*Camellia gymnogyna*	Theaceae	26478224	3.97	4	156590	Y
24B	× 14	*Camellia gymnogyna*	Theaceae	29768770	4.47	4	156590	Y
25D	× 8	*Camellia sinensis var. assamica*	Theaceae	23291572	3.49	4	157028	Y
25E	× 10	*Camellia sinensis var. assamica*	Theaceae	18698814	2.8	5	157028	Y
25A	× 12	*Camellia sinensis var. assamica*	Theaceae	21788776	3.27	4	157029	Y
25B	× 14	*Camellia sinensis var. assamica*	Theaceae	26155342	3.92	8	157028	Y
26D	× 8	*Panicum incomtum*	Gramineae	16865102	2.53	61	139986	Y
26E	× 10	*Panicum incomtum*	Gramineae	20465942	3.07	21	139999	Y
26A	× 12	*Panicum incomtum*	Gramineae	20004364	3	18	139999	Y
26B	× 14	*Panicum incomtum*	Gramineae	20672642	3.1	17	139999	Y
were followed as in Yang et al. [25]. The rate of our 25 specimens with 100 libraries was c. 5 h per specimen on a 3-TB RAM Linux workstation with 32 cores. It was not different significantly between fresh and herbarium specimens.

Recovery of widely used loci in plant molecular systematics

A benefit of the genome skimming approach is that it can recover loci widely used in previous molecular systematics studies (e.g. Coissac et al. 2016 [12]). Here we recovered the standard *rbcL* DNA barcode region from 23/25 samples, the standard *matK* DNA barcode region from 23/25 specimens, the standard *trnH-psbA* DNA barcode region from 23/25 samples, the *trnL* intron from 23/25 samples, and the ITS1 and ITS2 from 20/25 to 19/25 samples respectively. In addition to the recovery of these standard DNA barcoding loci, we also recovered many other regions used as supplementary barcode markers (e.g. *atpF-I, psbK-I*). The data produced with this approach can thus contribute towards standard and extended DNA barcode reference libraries [12], in helping identify additional regions which are informative for any given clade [28], as well as producing data for phylogenomic investigations to elucidate the relationships amongst plant groups.

Sample ID	PCR Cycles	Species	Family	#contigs	Total assembly length (bp)	(mean) Coverage (×)	Reference genome	GenBank accession number
01A ×12	Manglietia fordiana	Magnoliaceae	2	10343	406	KJ414477_ Chryso banus icaco	MH270473	
02A ×12	Schisandra henryi	Schisandraceae	1	15487	47	MH270475		
03A ×12	Schisandra henryi	Schisandraceae	1	10747	78	MH270476		
04A ×12	Schisandra henryi	Schisandraceae	1	10926	32	MH270478		
05A ×12	Cinnamomum bodinieri	Lauraceae	2	7516	19	MH270477		
06A ×12	Cinnamomum bodinieri	Lauraceae	1	12587	458	MH270483		
07A ×12	Halboellia latifolia	Lardizabalaceae	1	9298	160	MH270479		
08A ×12	Chloranthus erectus	Chloranthaceae	1	9094	54	MH270480		
09A ×12	Sarcdandra glabra	Schisandraceae	1	9062	51	MH270481		
10A ×12	Mecocopsis racemosas	Papaveraceae	1	7577	60	MH270482		
11A ×12	Macleaya microcarpa	Papaveraceae	1	12587	458	MH270483		
12A ×12	Hodgsonia macrocarpa	Cucurbitaceae	1	10172	567	MH270484		
13A ×12	Malus yunnanensis	Rosaceae	1	5953	249	MH270485		
14A ×12	Elaeagnus loureirii	Elaeagnaceae	1	7901	428	MH270486		
15A ×12	Rhododendron rex subsp. fictolac tum	Ericaceae	1	6825	380	MH270487		
16A ×12	Swertia bimaculata	Gentianaceae	1	9644	48	MH270488		
17A ×12	Primula sinopurea	Primulaceae	1	5539	15	MH270489		
18A ×12	Paederia scandens	Araceae	1	4399	5	MH270490		
19A ×12	Colocasia esculenta	Araceae	1	4399	5	MH270490		
20A ×12	Pholidota chinensis	Orchidaceae	1	17306	93	MH270491		
21A ×12	Otochilus porectus	Orchidaceae	1	17306	93	MH270491		
22A ×12	Indosasa sinica	Gramineae	1	11212	46	MH270493		
23A ×12	Colocasia esculenta	Araceae	1	8446	74	MH270494		

Table 3 Assembly statistics of rDNAs for all specimens used in this study

Sample ID	PCR Cycles	Species	Family	#contigs	Total assembly length (bp)	(mean) Coverage (×)	Reference genome	GenBank accession number
01A ×12	Manglietia fordiana	Magnoliaceae	2	10343	406	KJ414477_ Chryso banus icaco	MH270473	
02A ×12	Manglietia fordiana	Magnoliaceae	2	8637	67	MH270474		
03A ×12	Schisandra henryi	Schisandraceae	1	15487	47	MH270475		
04A ×12	Schisandra henryi	Schisandraceae	1	10747	78	MH270476		
05A ×12	Cinnamomum bodinieri	Lauraceae	2	7516	19	MH270477		
06A ×12	Cinnamomum bodinieri	Lauraceae	1	10926	32	MH270478		
08A ×12	Halboellia latifolia	Lardizabalaceae	1	9298	160	MH270479		
09A ×12	Chloranthus erectus	Chloranthaceae	1	9094	54	MH270480		
10A ×12	Sarcdandra glabra	Schisandraceae	1	9062	51	MH270481		
11A ×12	Mecocopsis racemosas	Papaveraceae	1	7577	60	MH270482		
12A ×12	Macleaya microcarpa	Papaveraceae	1	12587	458	MH270483		
13A ×12	Hodgsonia macrocarpa	Cucurbitaceae	1	10172	567	MH270484		
14A ×12	Malus yunnanensis	Rosaceae	1	5953	249	MH270485		
15A ×12	Elaeagnus loureirii	Elaeagnaceae	1	7901	428	MH270486		
16A ×12	Rhododendron rex subsp. fictolac tum	Ericaceae	1	6825	380	MH270487		
17A ×12	Swertia bimaculata	Gentianaceae	1	9644	48	MH270488		
18A ×12	Primula sinopurea	Primulaceae	1	5539	15	MH270489		
19A ×12	Paederia scandens	Araceae	1	4399	5	MH270490		
20A ×12	Colocasia esculenta	Araceae	1	4399	5	MH270490		
21A ×12	Pholidota chinensis	Orchidaceae	1	17306	93	MH270491		
22A ×12	Otochilus porectus	Orchidaceae	1	17306	93	MH270491		
23A ×12	Indosasa sinica	Gramineae	1	11212	46	MH270493		
24A ×12	Camellia gymnogyna	Theaceae	1	8446	74	MH270494		
Table 4 BLAST results with extracted \(rbcL\) sequence against GenBank

Query Sample ID	Query Species (Family)	PCR cycles	Gene	Length (bp)	Reference Species Accession number (Family)	Query coverage (%)	Identities (%)	Identify level
01A	Manglietia fordiana (Magnoliaceae)	12	rbcL	1428	Magnolia cathcartii_JX280392.1 (Magnoliaceae)	100	99	Family
					Magnolia biondii_KY085894.1 (Magnoliaceae)	100	99	
					Michelia odorii_JX280398.1 (Magnoliaceae)	100	99	
					Manglietia fordiana_L12658.1 (Magnoliaceae)	98	100	
02A	Manglietia fordiana (Magnoliaceae)	12	rbcL	1428	Magnolia cathcartii_JX280392.1 (Magnoliaceae)	100	99	Family
					Magnolia biondii_KY085894.1 (Magnoliaceae)	100	99	
					Michelia odorii_JX280398.1 (Magnoliaceae)	100	99	
					Manglietia fordiana_L12658.1 (Magnoliaceae)	98	100	
03A	Schisandra henryi (Schisandraceae)	12	rbcL	1428	Schisandra chinensis_KY111264.1 (Schisandraceae)	100	99	Genus
					Schisandra chinensis_KU362793.1 (Schisandraceae)	100	99	
					Schisandra sphenanthera_L12665.2 (Schisandraceae)	98	99	
04A	Schisandra henryi (Schisandraceae)	12	rbcL	1428	Schisandra chinensis_KY111264.1 (Schisandraceae)	100	99	Genus
					Schisandra chinensis_KU362793.1 (Schisandraceae)	100	99	
					Schisandra sphenanthera_L12665.2 (Schisandraceae)	98	99	
05A	Phoebe neurantha (Lauraceae)	12	rbcL	1428	Phoebe omeiensis_KX437772.1 (Lauraceae)	100	99	Family
					Persea Americana_KX437771.1 (Lauraceae)	100	99	
					Persea sp._JF966606.1 (Lauraceae)	100	99	
06A	Cinnamomum bodinieri (Lauraceae)	12	rbcL	1428	Phoebe bournei_KY346512.1 (Lauraceae)	100	99	Family
					Phoebe chekiangensis_KY346511.1 (Lauraceae)	100	99	
					Phoebe sheari_KX437773.1 (Lauraceae)	100	99	
					Cinnamomum verum_KY635878.1 (Lauraceae)	100	99	
08A	Holboellia latifolia (Lardizabalaceae)	12	rbcL	1428	Akebia quinata_KX611091.1 (Lardizabalaceae)	100	99	Family
					Stauntonia hexaphylla_L37922.2 (Lardizabalaceae)	99	99	
					Akebia trifoliata_KU204898.1 (Lardizabalaceae)	100	99	
					Holboellia latifolia_L37918.2 (Lardizabalaceae)	99	99	
09A	Chloranthus erectus (Chloranthaceae)	12	rbcL	1428	Chloranthus spicatus_EF380352.1 (Chloranthaceae)	100	100	Genus
					Chloranthus japonicas_KP256024.1 (Chloranthaceae)	100	99	
					Chloranthus spicatus_AY236835.1 (Chloranthaceae)	98	99	
					Chloranthus erectus_AY236834.1 (Chloranthaceae)	98	99	
10A	Sarcandra glabra (Chloranthaceae)	12	rbcL	1428	Chloranthus spicatus_EF380352.1 (Chloranthaceae)	100	99	Family
					Chloranthus japonicas_KP256024.1 (Chloranthaceae)	100	98	
					Chloranthus nervosus_AY236841.1 (Chloranthaceae)	97	98	
11A	Meconopsis racemosa (Papaveraceae)	12	rbcL	1428	Meconopsis horridula_JX087717.1 (Papaveraceae)	89	100	Genus
					Sarcandra glabra_HQ336522.1 (Chloranthaceae)	97	100	
Table 4 (continued)

Query Information	Sample ID	Query Species (Family)	PCR cycles	Gene name	Length (bp)	BLAST results	Query coverage (%)	Identities (%)	Identify level
12A	Meleayla microcarpa (Papaveraceae)	12	rbcL	1428		Meconopsis horridula__JX087712.1 (Papaveraceae)	97	99	
						Meconopsis delavayi__JX087688.1 (Papaveraceae)	97	99	
						Macleayla microcarpa_FJ626612.1 (Papaveraceae)	97	99	Family
13A	Hodgsonia macrocarpa (Cucurbitaceae)	12	rbcL	1449		Cucumis sativus var. hardwickii_K852702.1 (Cucurbitaceae)	100	98	Family
						Cucumis sativus_KX231330.1 (Cucurbitaceae)	100	98	
						Cucumis sativus_KX231329.1 (Cucurbitaceae)	100	98	
						Malus doumeri_KX499611.1 (Rosaceae)	100	99	Family
14A	Malus yunnanensis (Rosaceae)	12	rbcL	1428		Vauquelinia californica_KY419925.1 (Rosaceae)	100	99	
						Cotonaster francheti_KY419994.1 (Rosaceae)	100	99	Family
						Malus doumeri_KX499611.1 (Rosaceae)	100	99	
						Cotonaster horizontalis_KY419917.1 (Rosaceae)	100	99	
15A	Elaeagnus toureichii (Elaeagnaceae)	12	rbcL	1428		Elaeagnus macrophylla_KP211788.1 (Elaeagnaceae)	100	99	Order
						Elaeagnus sp_.KY420020.1 (Elaeagnaceae)	100	99	
						Toricella angulate_KX64359.1 (Cornaceae)	99	99	
16A	Rhododendron rex subsp. Fictolacteum (Ericaceae)	12	rbcL	1428		Rhododendron simsii_GQ997829.1 (Ericaceae)	100	99	Family
						Rhododendron poncicum_KM360957.1 (Ericaceae)	98	99	
						Swertia mussoti_KU641021.1 (Gentianaceae)	98	99	Family
17A	Swertia bimaculata (Gentianaceae)	12	rbcL	1443		Gentianopsis citre_ KM360802.1 (Gentianaceae)	97	98	
						Gentianella rapunculoides_Y11862.1 (Gentianaceae)	97	99	
18A	Primula sinopurpurea (Primulaceae)	12	rbcL	1428		Primula poissonii_KX668176.1 (Primulaceae)	100	99	Genus
						Primula chrysochlora_KX668178.1 (Primulaceae)	100	99	
						Primula poissonii_KF753634.1 (Primulaceae)	100	99	
19A	Paederia scandens (Araceae)	12	rbcL	1443		Pothos scandens_AM905732.1 (Araceae)	96	99	Family
						Pedicularum paei_AM905733.1 (Araceae)	96	99	
						Pothiodium lobbianum_AM905734.1 (Araceae)	96	99	
20A	Colocasia esculenta (Araceae)	12	rbcL	1443		Colocasia esculenta_IN105690.1 (Araceae)	100	100	Species
						Colocasia esculenta_IN105689.1 (Araceae)	100	99	
						Pinellia pedatisecta_KTO25709.1 (Araceae)	100	99	
21A	Pholidota chinenis (Orchidaceae)	12	rbcL	–		–	–	–	
22A	Otochilus porrectus (Orchidaceae)	12	rbcL	–		–	–	–	
23A	Indosasa sinica (Poaceae)	12	rbcL	1434		Pleioblastus maculatus_JXS13424.1 (Poaceae)	100	100	Family
Practical benefits
A primary motivation for this study was our own experiences with suboptimal DNA recovery from herbarium specimens using Sanger sequencing coupled with difficulty in accessing fresh material of some species. The success of this method using only small amounts of starting tissue from herbarium specimens is an important step to addressing these challenges. It makes sequencing type specimens a realistic proposition, which can further serve to integrate genetic data into the existing taxonomic framework. A second practical benefit is that field work is often not possible in some geographical regions where past collections have been made. Political instability and/or general inaccessibility can preclude current collecting activities, and where habitats have been highly degraded or destroyed, the species concerned may simply be no longer available for collection. Mining herbaria to obtain sequences from previously collected material can circumvent this problem. Thirdly, sequencing plastid genomes and rDNA arrays from specimens that are many decades old enables a baseline to be established for haplotype and ribotype diversity. This baseline can then be used to assess evidence for genetic diversity loss or change due to recent population declines or environmental change.

Conclusions
This study confirms the practical and routine application of genome skimming for recovering sequences from plastid genomes and rDNA from small amounts
Query_Sample ID	Query_Species (Family)	PCR cycles	Gene name	Length (bp)	BLAST results	Reference_Species (Family)	Query coverage	Identities
01A	Manglietia fordiana (Magnoliaceae)	12	ITS	369	Magnolia virginiana	DQ499097.1 (Magnoliaceae)	100%	95%
02A	Manglietia fordiana (Magnoliaceae)	12	ITS	349	Magnolia virginiana	DQ499097.1 (Magnoliaceae)	100%	95%
03A	Schisandra henryi (Schisandraceae)	12	ITS	676	Schisandra pubescens	JF978533.1 (Schisandraceae)	99%	99%
04A	Schisandra henryi (Schisandraceae)	12	ITS	676	Schisandra pubescens	JF978533.1 (Schisandraceae)	99%	99%
05A	Phoebe neurantha (Lauraceae)	12	ITS	518	Phoebe neurantha	FM957847.1 (Lauraceae)	100%	99%
06A	Cinnamomum bodinieri (Lauraceae)	12	ITS	603	Cinnamomum microphyllum	JF978533.1 (Lauraceae)	100%	99%
08A	Holboellia latifolia (Lardizabalaceae)	12	ITS	677	Holboellia angustifolia subsp. angustifolia	AF263436.1 (Lardizabalaceae)	100%	99%
09A	Chloranthus erectus (Chloranthaceae)	12	ITS	663	Chloranthus erectus	AF280410.1 (Chloranthaceae)	99%	99%
10A	Sarcandra glabra (Chloranthaceae)	12	ITS	667	Sarcandra glabra	KWNU91871 (Chloranthaceae)	100%	100%
11A	Meconopsis racemosa (Papaveraceae)	12	ITS	671	Meconopsis racemosa	JF411034.1 (Papaveraceae)	100%	99%
12A	Macleaya microcarpa (Papaveraceae)	12	ITS	612	Macleaya cordata	JF978819.2 (Papaveraceae)	99%	89%
13A	Hodgsonia macrocarpa (Cucurbitaceae)	12	ITS	614	Hodgsonia heteroclitic	HE661302.1 (Cucurbitaceae)	100%	98%
14A	Malus yunnanensis (Rosaceae)	12	ITS	596	Malus prattii	JQ392445.1 (Rosaceae)	99%	99%
15A	Elaeagnus laevis (Elaeagnaceae)	12	ITS	649	Elaeagnus macrophylla	JQ062495.1 (Elaeagnaceae)	99%	99%
16A	Rhododendron rex subsp. fichtolacteum (Ericaceae)	12	ITS	646	Rhododendron rex subsp. fichtolacteum	KM605995.1 (Ericaceae)	100%	100%
17A	Swertia bimaculata (Gentianaceae)	12	ITS	626	Swertia bimaculata	JF978819.2 (Gentianaceae)	100%	99%
18A	Primula sinopurpurea (Primulaceae)	12	ITS	631	Primula melanolops	JF978004.1 (Primulaceae)	100%	99%
19A	Paederia scandens (Araceae)	12	ITS	–	–	–	–	
20A	Colocasia esculenta (Araceae)	12	ITS	552	Colocasia esculenta	JF004871.1 (Araceae)	99%	99%
21A	Pholidota chinensis (Orchidaceae)	12	ITS	–	–	–	–	
22A	Othocilus parvus (Orchidaceae)	12	ITS	–	–	–	–	
23A	Indosasa sinica (Poaceae)	12	ITS	604	Oligostachyum sulphureum	EU847131.1 (Poaceae)	98%	99%
24A	Camellia gymnogyna (Theaceae)	12	ITS	–	–	–	–	
25A	Camellia sinensis var. assamica (Theaceae)	12	ITS	645	Camellia sinensis var. sinensis	JF004871.1 (Theaceae)	99%	99%
26A	Panicum incomptum (Poaceae)	12	ITS	795	Chaschilia egregia	LT593967.1 (Poaceae)	100%	98%
of starting tissue from preserved herbarium specimens. The ongoing development of new sequencing technologies is creating a fundamental shift in the ease of recovery of nucleotide sequences enabling ‘new uses’ for the hundreds of millions of existing herbarium specimens [1, 10, 14, 16, 29]. This shift from Sanger sequencing to NGS approaches has now firmly moved herbarium specimens into the genomic era.

Authors’ contributions
BY and DZL organized the project. CXZ performed the experiments, analyzed the data, and wrote the paper; PMH wrote and edited the paper; JY, ZSH, and ZRZ extracted DNA, prepared library. All authors read and approved the final manuscript.

Author details
1 Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, China. 2 Royal Botanic Garden Edinburgh, 20A Inverleith Row, Edinburgh EH3 5LR, UK.

Acknowledgements
We are very grateful to Mr. Wei Fang (Kunming Institute of Botany, Chinese Academy of Sciences) for kindly providing the materials. We would like to thank Ms. Chun-Yan Lin and Mr. Shi-Yu Lv (Kunming Institute of Botany, Chinese Academy of Sciences) for their help with the experiments.

Competing interests
The authors declare that they have no competing interests.

Availability of data and materials
The datasets supporting the conclusions of this article are available in the NCBI SRA repository, SRP142448 and hyperlink to datasets in http://www.ncbi.nlm.nih.gov/home/submit.shtml.

Consent for publication
Not applicable.

Ethics approval and consent to participate
Not applicable.

Funding
This work was funded by a program for basic scientific and technological data acquisition of the Ministry of Science and Technology of China (Grant No. 2013FY112600), the Large-scale Scientific Facilities of the Chinese Academy of Sciences (Grant No: 2017-LSF-GBOWS-02), and Biodiversity Conservation Strategy Program of Chinese Academy of Sciences (ZSSD-011).

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Received: 27 November 2017 Accepted: 20 April 2018 Published online: 05 June 2018

References
1. Särkinen T, Staats M, Richardson JE, Cowan RS, Bakker FT. How to open the treasure chest? Optimizing DNA extraction from herbarium specimens. PloS ONE. 2012;7(8):e43808.
2. Hebert PDN, Hollingsworth PM, Hajibabaei M. From writing to reading the encyclopedia of life. Philos Trans R Soc B. 2016;371(1702):20150321.
3. Kistler L, Ware R, Smith O, Collins M, Allaby RG. A new model for ancient DNA decay based on paleogenomic meta-analysis. Nucleic Acids Res. 2017;45(11):6310–20.
4. Hall LM, Wollcox MS, Jones DS. Association of enzyme inhibition with methods of museum skin preparation. Biotechniques. 1997;22(5):928–34.

5. Hedmark E, Ellegren H. Microsatellite genotyping of DNA isolated from claws left on tanned carnivore hides. Int J Legal Med. 2005;119(6):370–3.

6. Tang EPY. Path to effective recovering of DNA from formalin-fixed biological samples in natural history collections: workshop summary. Washington: The National Academies Press; 2006.

7. Groombridge JJ, Jones CG, Bruford MW, Nichols RA. ’Ghost’ alleles of the Mauritian kestrel. Nature. 2000;403(6770):616.

8. Stiller M, Green RE, Ronan M, Simons JF, Du L, He W, Egholm M, Rothberg JM, Ellegren H. Microsatellite genotyping of DNA isolated from biological samples in natural history collections: workshop summary. Washington: The National Academies Press; 2006.

9. Stielow B, Geml J, Richardson JE, Bakker FT. Genomic treasure troves: from gene to genome. Biol Rev. 2015;90(1):157–66.

10. Smith O, Palmer SA, Gutaker R, Allaby RG. An NGS approach to archaeo-mycological museum specimens in natural history collections: workshop summary. Washington: The National Academies Press; 2006.

11. Smith O, Palmer SA, Gutaker R, Allaby RG. An NGS approach to archaeo-mycological museum specimens in natural history collections: workshop summary. Washington: The National Academies Press; 2006.

12. Coissac E, Hollingsworth PM, Lavergne S, Taberlet P. From barcodes to genomes: extending the concept of DNA barcoding. Mol Ecol. 2016;25(7):1423–8.

13. Hollingsworth PM, Li DZ, van der Bank M, Twyford AD. Telling plant species apart with DNA: from barcodes to genomes. Philos Trans R Soc B. 2016;371(1702):20150338.

14. Bakker FT, Lei D, Yu JY, Mohammadin S, Wei Z, van de Kerke S, Gravendeel B, Nieuwenhuis M, Staats M, Alquezar-Planas DE, Holmer R. Herbarium genomics: plastome sequence assembly from a range of herbarium specimens using an Iterative Organelle Genome Assembly pipeline. Biol J Lin Soc. 2016;117(1):33–43.

15. Staats M, Erkens RHI, van de Vossenberg B, Weringa JJ, Kraaijeveld K, Stelkov B, Genni J, Richardson JE, Bakker FT. Genomic treasure troves: complete genome sequencing of herbarium and insect museum specimens. PLoS ONE. 2013;8(7):e69189.

16. van de Paer C, Hong-Wa C, Jeziorski C, Besnard G. Mitogenomics of Hesperelaea, an extinct genus of Oleaceae. Gene. 2016;594(2):197–202.

17. Zedane L, Hong-Wa C, Murienne J, Jeziorsky C, Baldwin BG, Besnard G. Museomics Illuminate the history of an extinct, paleoendemic plant lineage (Hesperelaea, Oleaceae) known from an 1875 collection from Guadalupe Island, Mexico. Biol J Linnean Soc. 2015;117(1):44–57.

18. Besnard G, Christin PA, Malé PJG, Lhuillier E, Lauzeral C, Coissac E, Vorontsova MS. From museums to genomics: old herbarium specimens shed light on a C3 to C4 transition. J Exp Bot. 2014;65(22):6711–21.

19. Sproul JS, Maddison DR. Sequencing historical specimens: successful preparation of small specimens with low amounts of degraded DNA. Mol Ecol Resour. 2017;17:1183–201.

20. Kanda K, Pflug JM, Sproul JS, Dasenko MA, Maddison DE. Successful recovery of nuclear protein-coding genes from small insects in museums using Illumina sequencing. PLoS ONE. 2015;10:30419329.

21. Blaimer BB, Lloyd MW, Guillery WX, SnG B. Sequence capture and phylogenetic utility of genomic ultraconserved elements obtained from pinned insect specimens. PLoS ONE. 2016;11:e0161531.

22. Meyer M, Kircher M. Illumina sequencing library preparation for highly multiplexed target capture and sequencing. Cold Spring Harb Protoc. 2010. https://doi.org/10.1101/pdb.prot5448.

23. Patel RK, Jain M. NGS QC toolkit: a toolkit for quality control of next generation sequencing data. PLoS ONE. 2012;7(2):e30619.

24. Bankevich A, Nurk S, Antipov D, Gurevich AA, Dvorkin M, Kulikov AS, Lesin VM, Nikolenko SI, Pham S, Pyshkin AV, Saveliev SV, Subramaniam S, St V, Tesler G, Alekseyev MA, Pevzner PA. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol. 2012;19(5):453–77.

25. Yang JB, Li DZ, Li HT. Highly effective sequencing whole chloroplast genomes of angiosperms by nine novel universal primer pairs. Mol Ecol Resour. 2014;14(5):1024–31.

26. Wyman SK, Jansen RK, Boore JL. Automatic annotation of organelar genomes with DOGMA. Bioinformatics. 2004;20(17):3252–5.

27. Schattner P, Brooks AN, Lowe TM. The tRNAscan-SE, snoscan and snoGPS web servers for the detection of tRNAs and snoRNAs. Nucleic Acids Res. 2005;33(Suppl_2):W686–9.

28. Li XW, Yang Y, Henry RJ, Rossetto M, Wang YT, Chen SL. Plant DNA barcoding: from gene to genome. Biol Rev. 2015;90(1):1157–66.

29. Hart ML, Forrest LL, Nicholls JA, Kidner CA. Retrieval of hundreds of nuclear loci from herbarium specimens. Taxon. 2016;65(5):1081–92.