A Critical Role for β-catenin in Modulating Levels of Insulin Secretion from β-cells by Regulating Actin Cytoskeleton and Insulin Vesicle Localization

Brie Sorrenson‡,§, Emmanuelle Cognard‡, Kathryn L. Lee‡, Waruni C. Dissanayake‡, Yanyun Fu§, Weiping Han§, William E. Hughes¶, Weiping Han¶, William E. Hughesǁ,**, Peter R. Shepherd‡,§

†Department of Molecular Medicine and Pathology, Faculty of Medical and Health Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand, ‡Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand, §Singapore Bioimaging Consortium, Agency for Science, Technology and Research (A*STAR), Singapore, ¶Department of Medicine, St. Vincent’s Hospital, Victoria Street, Sydney, New South Wales 2010, Australia, ‖Department of Medicine, St. Vincent’s Hospital, Victoria Street, Sydney, New South Wales 2010, Australia, **The Garvan Institute of Medical Research, 384 Victoria Street, Sydney, New South Wales 2010, Australia.

Running title: Role for β-catenin in insulin secretion

To whom correspondence should be addressed: Prof. Peter R. Shepherd, Department of Molecular Medicine and Pathology, Faculty of Medical and Health Sciences, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand, Telephone: +64 9 923 9891; Email: peter.shepherd@auckland.ac.nz

Key words: β-catenin; insulin secretion; type-2 diabetes; incretin; β-cell; islet; Wnt signaling

ABSTRACT

The processes regulating glucose-stimulated insulin secretion (GSIS) and its modulation by incretins in pancreatic β-cells are only partly understood. Here we investigate the involvement of β-catenin in these processes. Reducing β-catenin levels using siRNA knockdown attenuated GSIS in a range of β-cell models and blocked the ability of GLP-1 agonists and the depolarizing agent KCl to potentiate this. This could be mimicked in both β-cell models and isolated islets by short-term exposure to the β-catenin inhibitory drug pyrvinium. In addition, short-term treatment with a drug that increases β-catenin levels, results in an increase in insulin secretion. The timing of these effects suggests that β-catenin is required for the processes regulating trafficking and/or release of pre-existing insulin granules rather than for those regulated by gene expression. This was supported by the finding that overexpression of the transcriptional co-activator of β-catenin, transcription factor 7-like 2 (TCF7L2), attenuated insulin secretion, consistent with the extra TCF7L2 translocating β-catenin from the plasma membrane pool to the nucleus. We show that β-catenin depletion disrupts the intracellular actin cytoskeleton and by using total internal reflectance fluorescence (TIRF) microscopy, we found that β-catenin is required for the glucose- and incretin- induced depletion of insulin vesicles from near the plasma membrane. In conclusion, we find that β-catenin levels modulate Ca2+-dependent insulin exocytosis under conditions of glucose, GLP-1 or KCl stimulation through a role in modulating insulin secretory vesicle localization and/or fusion via actin remodeling. These findings also provide insights as to how overexpression of TCF7L2 may attenuate insulin secretion.

Significant advances have been made in recent years in understanding the processes controlling biphasic insulin release from the β-cells of the pancreas (reviewed in (1-3)). The overall amount of insulin secreted can be increased by incretin hormones, such as glucagon-like peptide-1 (GLP-1) (4), but this still requires glucose to actually trigger the fusion of insulin-containing vesicles with the plasma membrane. Thus incretins increase insulin secretion by increasing the number of insulin vesicles capable of fusing with the membrane. In a normally functioning β-cell there is a significant pool of insulin containing...
vesicles that can be quickly mobilized for release in this way and this is thought to allow for the rapid surge in insulin release known as first phase insulin secretion (reviewed in (2)).

The final steps in the movement of insulin secretory vesicles to be primed for secretion requires remodeling of actin that involves small-GTPases (5). This process can be modulated by incretins but the release of insulin vesicles is triggered by the metabolism of glucose, which increases the ADP/ATP ratio within the cell resulting in the closure of ATP-sensitive potassium channels and membrane depolarization. Subsequent influx of Ca2+ into the cells occurs due to the opening of voltage dependent Ca2+ channels and triggers insulin vesicle exocytosis. The fusion mechanism of insulin vesicles involves classical v-SNARE (Soluble NSF (N-Ethylmaleimide-Sensitive Factor) Attachment Protein Receptor) interactions with t-SNARE on the plasma membrane, and subsequent fusion being triggered by Ca2+ (6,7). The PDZ-domain containing protein Synip (also known as STXBP4) regulates interactions of these vesicles with t-SNARE proteins such as syntaxin-4 and so regulates fusion events (8).

Evidence for new potential mechanisms regulating β-cell function has come from genetic studies. For example, the recent discovery that single nucleotide polymorphisms (SNPs) in the genomic region around the transcription factor 7-like 2 (TCF7L2), particularly those linked to overexpression of TCF7L2, are associated with a significant increased risk of β-cell dysfunction and type-2 diabetes and these are associated with defects in insulin secretion (9-12). Whilst such variants have been determined to adversely affect β-cell mass and function (13) there appears to be a beneficial effect on insulin responsive tissues, particularly with respect to hepatic glucose metabolism (discussed in reference 14). One of the most established functions of TCF7L2 is as a transcription factor which, when bound to β-catenin, regulates expression of a wide range of genes (15). This has generated interest in the potential role of β-catenin in β-cell function. Previous studies had focused on the potential role of β-catenin in β-cell development. For example, gene knockout studies have shown that Cre-mediated deletions of β-catenin, driven by either the rat insulin promoter or the PDX-1 promoter, results in defects in insulin secretion and mild glucose intolerance (16,17). However, we recently provided evidence that suggests β-catenin is necessary for glucose-stimulated insulin secretion (GSIS) in the INS-1E β-cell model (18). This indicates that β-catenin could be playing a role in regulating insulin secretion in adult β-cells. The effect of β-catenin on insulin secretion in β-cells could involve effects mediated via β-catenin/TCF7L2 effects on gene expression (19,13). However, other potential explanations for β-catenin’s role in regulating insulin secretion in adult β-cells are possible. It is likely that the β-catenin/TCF7L2 mediated gene expression plays some role in these effects but a second mechanism must also be considered. The second major role of β-catenin is at the plasma membrane as a component of the cadherin complexes that control adherens junctions that regulating cell-cell adhesion (20-22). Adherens junctions between β-cells are required for the correct regulation of insulin release (23-26) and cell junction-associated β-catenin has been found to co-localise with insulin granules in MIN6 pseudosellets (27). Interestingly, β-catenin also participates in a range of interactions with proteins involved in vesicle trafficking and cytoskeleton organization (8,28,29), which suggests that β-catenin may play an important role in insulin vesicle exocytosis. In this case it would be possible to measure rapid effects of β-catenin on insulin granule dynamics in addition to potential effects mediated in the longer term by gene expression. To date, the role of β-catenin in mediating the effects of incretin hormones on GSIS has not been studied and neither has a role for β-catenin in regulating insulin vesicle localization. In this study we investigate whether β-catenin is necessary for the effect of GLP-1 agonists on GSIS and explore a role for β-catenin in regulating insulin vesicle distribution near the plasma membrane using total internal reflectance fluorescence (TIRF) microscopy. We report that β-catenin is required for glucose- and incretin-stimulated insulin secretion in a range of β-cell models. These data indicate the effects are due to a role for β-catenin in vesicle trafficking and this is supported by the finding that inhibition or reduction of β-catenin perturbs insulin vesicle distribution near the cell surface and disrupts the actin cytoskeleton. Further, overexpression of the β-catenin transcriptional co-activator TCF7L2 protein attenuates insulin secretion.
secretion, which supports a function for β-catenin in insulin secretion that is independent of gene transcription. Together this demonstrates a role for β-catenin in the regulation of insulin secretory vesicle localization and exocytosis.

RESULTS

Potentiation of insulin secretion by incretins requires β-catenin—In the current study we investigate the role of β-catenin in GSIS and incretin-induced potentiation of GSIS using INS832/3 and MIN6 β-cells since these are models that are responsive to GLP-1 agonists. In INS832/3 and MIN6 cells, exenatide potentiated GSIS at 15 minutes (Fig. 1A,C) and at 2 hours (Fig. 1B,D). Treatment of INS832/3 and MIN6 β-cells with 100 nM pyrvinium, a potent inhibitor of the β-catenin signaling pathway (37) that reduces β-catenin protein level (Fig. 1F), prevented glucose- and incretin-stimulated insulin secretion demonstrating that β-catenin is required for GSIS and the potentiating effect of incretins at 15 minutes and at 2 hours (Fig. 1A-D). Pyrvinium also prevented the effect of 30 mM depolarizing agent KCl on insulin secretion (Fig. 1E). Importantly, the effects of pyrvinium on insulin secretion were observed within 15 minutes, which is prior to any effect on gene transcription (data not shown). This strongly suggests the effects were not due to a reduction in β-catenin-mediated gene expression but were an acute effect of changes in functional β-catenin. In isolated mouse islets, pyrvinium treatment attenuated the effect of high glucose (Fig. 2A), incretin (Fig. 2B) and 30 mM KCl (Fig. 2C) showing that β-catenin is required for appropriate insulin secretion from pancreatic islets and is not just restricted to β-cell models.

To confirm the results obtained using pyrvinium we also suppressed the expression of β-catenin using siRNA. In INS832/3 cells transfected with β-catenin-specific siRNA the level of β-catenin protein was reduced to approximately 25% of that seen in control siRNA transfected cells (Fig. 3A). The reduction in β-catenin protein level was associated with an 87% reduction in both glucose and exenatide stimulated insulin secretion compared to the control transfected cells (Fig. 3B). These results were confirmed using a second β-catenin siRNA, which reduced β-catenin protein level by 50% and was associated with glucose and exenatide stimulated insulin secretion that was reduced by 58% and 62% respectively (data not shown). Control siRNA had no effects compared to untransfected cells (data not shown). β-catenin siRNA transfected cells also had an attenuated insulin secretion in response to the depolarizing agent KCl (Fig. 3C).

Conversely, when we treated cells with the GSK3 inhibitor BIO, which prevents proteosomal degradation of β-catenin by the inhibiting the β-catenin destruction complex (Fig. 1F), glucose- and exenatide-stimulated insulin secretion was increased (Fig. 3D,E). Similarly in islet BIO treatment potentiated not only glucose stimulated insulin secretion but the effect of exenatide (Fig. 4A) and KCl (Fig. 4B). This effect was seen with even very short-term exposure to BIO (15 minutes, Fig. 3D) indicating it was unlikely to be due to gene expression effects and BIO treatment did not increase Cyclin-D2 protein levels, indicating that it was not causing increased β-catenin-dependent gene expression in the same time frame (data not shown). Further, 10 µM iCRT5, XAV-939 or KY-02111, which disrupt the interaction between TCF7L2 and β-catenin, and hence attenuates their combined effect on gene expression did not reduce GSIS in our hands (data not shown).

To verify that the synthetic GLP-1 agonist exenatide was representative of physiological incretins we compared exenatide to the GLP-1 [7-36] amide peptide, which is the principle active form of GLP-1 in vivo. Treating INS832/3 cells with 10 nM GLP-1 [7-36] amide potentiated GSIS to a similar level as 10 nM exenatide (Fig. 5A) and the effect of both was attenuated to a comparable degree by pyrvinium treatment. In INS832/3 cells transfected with siRNA specific to β-catenin, the effect of GLP-1 [7-36] amide on GSIS was reduced in a manner that was comparable to that observed for exenatide (Fig. 5B,C).

Inhibition of β-catenin disrupts insulin vesicle density near the plasma membrane—Given that β-catenin is known to play a role in synaptic vesicle exocytosis in neurons (26) we hypothesized that β-catenin may play a similar role in localizing insulin vesicles near the plasma membrane or their fusion with the membrane in β-cells. To address this we used TIRF microscopy to investigate whether β-catenin plays a role in regulating insulin vesicle density near the cell surface. Under basal conditions, fluorescently labeled insulin can be detected in β-cells by TIRF microscopy,
indicating that insulin vesicles are present in close proximity to the plasma membrane. As expected, high glucose (15 mM and 20 mM for INS832/3 and MIN6 cells respectively) and exenatide treatment depleted insulin vesicle density within the 100 nm region close to the plasma membrane in both INS832/3 (Fig. 6A,B) and MIN6 cells (Fig. 6C,D), which is consistent with these conditions inducing the exocytosis of insulin vesicles. Inhibiting β-catenin using pyrvinium prevented the glucose and exenatide depletion of insulin vesicle density at the cell periphery in both cell lines (Fig. 5). This was further confirmed by MIN6 cells transfected with β-catenin siRNA. In these cells neither glucose nor exenatide treatment decreased insulin vesicle density from basal in the β-catenin siRNA transfected cells (Fig. 7). Together these findings provide strong evidence that β-catenin is required for appropriate fusion of insulin containing granules with the membrane in response to glucose and incretins.

Overexpression of the β-catenin transcriptional co-activator TCF7L2 attenuates insulin secretion—To investigate the importance of β-catenin’s transcriptional role in insulin secretion and to assess the potential impact of TCF7L2 variants that are associated with increased TCF7L2 expression (and type-2 diabetes) we transfected INS832/3 cells with a TCF7L2 expression plasmid and assessed the effect on insulin secretion. As TCF7L2 is the transcriptional co-activator for β-catenin in the nucleus we speculated that an abundance of TCF7L2 would sequester β-catenin from any potential cytoplasmic role in insulin secretion. In cells transfected with TCF7L2 plasmid TCF7L2 protein was overexpressed compared to cells transfected with GFP control plasmid and there was no alteration to the total level of β-catenin protein (Fig. 8A). In cells overexpressing TCF7L2 glucose and exenatide stimulated insulin secretion was reduced compared to control transfected cells by 46% and 54% respectively (Fig. 8B). The reduced insulin secretion in cells overexpressing TCF7L2 supports that the role for β-catenin in insulin secretion is not limited to its transcriptional effects and may help explain how certain TCF7L2 variants, that are associated with overexpression, are linked to defective insulin secretion and type-2 diabetes.

Depletion of β-catenin alters the intracellular actin cytoskeleton — Given that intracellular actin remodeling is required for insulin secretion we investigated whether this a potential mechanism by which β-catenin modulates insulin secretion. Compared to control siRNA transfected cells β-catenin siRNA transfected cells had a lower overall percentage of F-actin (36.1% vs 9.9% respectively, Fig. 9A). As expected, latrunculin treatment was associated with a lower percentage F-actin (16.7%) and phalloidin treatment with a higher percentage F-actin (81.7%). When imaged by confocal microscopy, cells transfected with β-catenin siRNA and treated with glucose displayed more intense actin staining at the cell periphery compared to glucose-treated control siRNA transfected cells (Fig. 9B), indicating that loss of β-catenin disrupts intracellular actin remodeling which is required for insulin secretion.

DISCUSSION

Altering expression of β-catenin results in developmental changes in β-cells, so it has been widely assumed that gene expression is the major way that β-catenin is involved in β-cell function (16,17,38). However, we show here that alterations in β-catenin levels in pancreatic β-cell lines and isolated pancreatic islets have very rapid effects on insulin secretion mediated by glucose, exenatide and GLP-1 [7-36] amide and KCl. Altering β-catenin levels using the drug pyrvinium caused a dramatic reduction in insulin secretion. This is consistent with an effect mediated by reductions in β-catenin as we tested the specificity of this drug against >300 unrelated kinases (data not shown). Other possible explanations for pyrvinium’s actions such as changes in cellular ATP/ADP levels or calcium transients cannot be ruled out but since we observe similar results using siRNA to reduce β-catenin levels we conclude that changes in β-catenin is providing a mechanism for the β-cells to regulate the levels of Ca2+-dependent insulin secretion. Our results suggest that β-catenin is required for regulation of insulin vesicle dynamics near the cell membrane independently of its effects normally mediated by gene expression via an effect on the actin cytoskeleton. This would be consistent with an often overlooked finding that there is no evidence for active signalling via β-catenin to gene expression in adult mouse islets even though β-catenin is present in the islets (39).

Our data show an involvement of β-catenin in the later stages of insulin release.
Many of these mechanisms need to be localized at the plasma membrane so a role for β-catenin in this localization is appealing as a substantial pool of the proteins are localized at the plasma membrane as part of adherens junctions (20-22) and it is known these are required for proper regulation of insulin secretion (23). This possibility is supported by the observation that insulin secretory vesicles have many similarities to neuronal synaptic vesicles and β-catenin is known to have an important role in localizing the reserve pool of synaptic vesicles (28). β-catenin modulates the localization of synaptic vesicles at the plasma membrane as part of a complex with N-cadherin, scribble and β-pix that modulates actin-mediated recruitment of synaptic vesicles (28,40,41).

β-catenin’s N-terminal region interacts with α-catenin, which can regulate F-actin (42). The role of β-catenin in regulating actin has not been studied in the context of insulin secretion and indeed we find that loss of β-catenin alters F-actin in β-cells. These results provide mechanistic insight into how β-catenin affects insulin secretion. F-actin can have both positive and negative effects on insulin secretion and the overall effect can be dependent on the nature of F-actin remodeling (5). Cortical F-actin acts as a physical barrier impeding insulin secretion and glucose stimulation induces localized depolymerization of this actin allowing access of insulin granules to the cell periphery for exocytosis (3,43-45). Glucose also stimulates the polymerization of F-actin in more central parts of the cell, which acts as a cytoskeletal track for insulin granule trafficking (46,47). Here we observe a reduced F-actin fraction in cells where β-catenin had been knocked down and a denser actin structure near the cell periphery that is absent in control siRNA transfected cells. This is consistent with our other data showing that inhibition or depletion of β-catenin restricts insulin granule release from the cell. Similar effects have been reported for other proteins regulating insulin secretion via modulation of the actin cytoskeleton. For instance, Secretagogin knockdown also decreases F-actin and increases the density of the actin structure at the cell periphery (48). While we observe an effect of β-catenin on actin remodeling we have not identified the exact mechanism for how this occurs and we cannot exclude a direct effect on other process involved in insulin, particularly given the other known roles and interactions of β-catenin.

β-catenin has no catalytic activity however it is a scaffold protein that interacts with a number of proteins involved in regulating vesicle trafficking, for instance the C-terminal of β-catenin binds to a number of PDZ domain containing proteins involved in vesicle trafficking and cytoskeleton organization (29), including the scaffold protein Pdzd2, which is known to be involved in insulin secretion (49). The PDZ binding domain also links β-catenin to proteins that modulate the cytoskeleton via Rho GTPases (50,51). For instance, β-catenin has recently been shown to spatially organize the activation of the Rac-GEF TIAM via PDZ-binding domain binding (29). Downstream of Rho GTPase family members, activation of p21-associated kinase (PAK1) is essential for glucose regulation of F-actin and insulin exocytosis (52) and PAK1 itself can interact with and regulate β-catenin (53,54). Additionally β-catenin interacts with the PDZ domain of Synip (29), which regulates the function of Syntaxin-4, which in turn is the most important t-SNARE regulating insulin secretion (45). In this way, β-catenin may influence the activity of syntaxin-4 and insulin vesicle localization or fusion. Another way that β-catenin may regulate insulin secretion is via regulation of ion channel localization, as β-catenin is known to interact with and regulate the surface expression of Ca²⁺-activated potassium channels such as H5lo (55,56). In β-cells, Ca²⁺-activated potassium channels are involved in membrane repolarization (57,58). How these interactions might regulate insulin vesicle trafficking in β-cells remains to be determined.

Although the exact mechanism by which β-catenin regulates insulin vesicle localization is not yet known, a role for β-catenin as part of the insulin secretion machinery and associated actin remodeling may also explain a way in which the diabetes susceptibility gene TCF7L2 influences GSIS. TCF7L2 and E-cadherin both bind to the same region of β-catenin and they bind with similar affinity they will compete with each other form binding and this will be affected by relative expression levels of each (59). Variants in TCF7L2 that cause overexpression disrupt insulin secretion from β-cells (12). A recent study has provided support to the hypothesis that the effect of TCF7L2 is mediated via β-cell resistance to incretin hormones and alteration in
EXPERIMENTAL PROCEDURES

trafficking to the plasma membrane. A critical role in regulating insulin vesicle rearrangement and insulin vesicle trafficking to the plasma membrane. Similarly when we pharmacologically inhibit the β-catenin/TCF7L2 interaction, which is the transcriptional effector unit, we observe no decrease in insulin secretion. This suggests a transcription independent effect of β-catenin on insulin secretory processes but does not exclude a transcription independent effect on the level of GLP-1 receptor.

In summary, this study shows that β-catenin is required for Ca²⁺-dependent insulin secretion in β-cell lines and isolated pancreatic islets and that β-catenin regulates insulin vesicle localization near the plasma membrane independently of its gene regulatory effects. Further, we show that β-catenin is involved in regulating the actin cytoskeleton which provides a mechanistic context for the role of β-catenin in insulin secretion. Further studies will be required to understand exactly β-catenin’s role in these processes but here we confirm that it plays a critical role in regulating insulin vesicle trafficking to the plasma membrane.

EXPERIMENTAL PROCEDURES

Cell culture—INS832/3 β-cells (kindly provided by Professor Christopher B. Newgard, Duke University) were maintained in RPMI 1640 media supplemented with 10% (v/v) fetal bovine serum, 100 U/mL penicillin, 100 µg/mL streptomycin, 2 mM L-glutamine (all from Gibco, Life Technologies), 1 mM sodium pyruvate, 10 mM HEPES and 50 µM 2-mercaptoethanol (all from Sigma-Aldrich). MIN6 cells (passages ~30 - 41) were maintained in Dulbecco’s Modified Eagle’s Medium (DMEM) containing 25 mM glucose, 10% fetal bovine serum, 10 mM HEPES, 100 U/mL penicillin, 100 µg/mL streptomycin and were switched low glucose (5.5 mM) culture medium for 48 hours prior to experimentation. Insulin secretion experiments were performed on confluent cells in 12-well culture plates and TIRF microscopy was performed on cells that were 60 – 80% confluent in glass bottom 35mm Fluorodish cell culture dishes (World Precision Instruments).

Cell transfection—All transfections and subsequent experiments were performed using medium lacking antibiotics. To knockdown β-catenin, cells at 70% – 80% confluence were transfected with validated siRNA specific to β-catenin or with control scrambled siRNA (Stealth™ RNAi siRNA Negative Control, Med GC) at a final concentration of 30 nM using Lipofectamine® 2000 transfection reagent (INS832/3 cells) or Lipofectamine® LTX transfection reagent (MIN6 cells). To overexpress TCF7L2, INS832/3 cells were transfected at 70% – 80% confluence with TCF7L2 plasmid pcDNA/Myc TCF4, which was a gift from Bert Vogelstein (Addgene plasmid #16512 (30)), or control GFP plasmid (pEGFP-C1; Clontech PT3028-5, kindly provided by Professor Xu Tao, Institute of Biophysics, Chinese Academy of Sciences) using Lipofectamine 3000™ transfection reagent at a ratio of 3:1 reagent (µL) to DNA (µg). Following transfection, medium was replaced after 24 hours and experiments were performed 48 hours after transfection. Cells to be analyzed by TIRF microscopy were co-transfected with a plasmid expressing GFP to allow for the identification of transfected cells. All reagents for siRNA experiments were from Life Technologies and used according to the manufacturer’s instructions.

Insulin secretion assay—Prior to insulin secretion experiments cells were starved in modified Krebs-Ringer bicarbonate HEPES (KRHB) buffer (119 mM NaCl, 4.74 mM KCl, 1.19 mM MgSO₄, 25 mM NaHCO₃, 1.19 mM KH₂PO₄, 2.54 mM CaCl₂ and 20 mM HEPES) pH 7.4, containing 0.2% (w/v) BSA for 1 hour. When required, cells were pre-treated with inhibitor during the final 30 minutes of starvation. Following starvation the medium was replaced with KRHB containing low glucose (3 mM), high glucose (15 mM for INS832/3 cells and 20 mM for MIN6 cells), high glucose + 10 nM exenatide (Byetta®) or high glucose + 10 nM GLP-1 [7-36] amide (GenScript). Cells were treated with 100 nM pyrvinium pamoate (Sigma-
Aldrich) or 5 µM BIO (Sigma-Aldrich) as indicated. iCRT5 was obtained from Axon Medchem. Following incubation for the indicated time an aliquot of medium was collected, diluted appropriatly and the insulin content was determined using the AlphaLISA Insulin Assay Kit (PerkinElmer). Cells were rinsed twice with ice-cold PBS and cellular lysates were harvested in buffer containing 20 mM Tris-HCl (pH 7.5), 150 mM NaCl, 1 mM EDTA, 1 mM EGTA, 1% Triton X-100, 2.5 mM sodium pyrophosphate, 1 mM β-glycerol phosphate, 1 mM vanadate, 100 mM NaF, 1 mM AESBF, 4 µg/ml aprotinin, 0.4 µg/ml pepstatin, 4 µg/ml leupeptin and 30 µM ALLN. Lysates were collected, centrifuged at 16,100 x g for 10 minutes and cleared supernatants were analyzed by polyacrylamide gel electrophoresis for western blotting.

Islet isolation and static insulin secretion—All experiments involving mice were reviewed and approved by the Institutional Animal Care and Use Committee of A*STAR (Agency for Science, Technology and Research) under IACUC #110683 or the University of Auckland Animal Ethics Committee under #001732. Islets were isolated from the offspring of 129, C57BL/6 or CD1 mice aged at 12 weeks old and fed a regular diet, by collagenase digestion and purified by hand-picking as previously described (31) or a protocol devised by combining several published methods (32-34). For this method islets were isolated using the collagenase digestion using 0.9 mg/ml Collagenase V (Sigma) in Isolation-KRBH (129 mM NaCl, 5 mM NaHCO3, 4.8 mM KCl, 1.2 mM KH2PO4, 1.2 mM MgSO4, 10 mM HEPES, 1 mM CaCl2, 5.56 mM glucose and 0.1% BSA plus 0.02 mg/ml DNase) for 19 minutes at 37 oC followed by wash steps and separation of islets using firstly cell separation medium Histopaque (1.1 g/ml) and finally using a 40 µm cell strainer. Following isolation, islets were transferred into a non tissue culture treated petri dish and cultured overnight at 11 mM glucose in RPMI 1640 medium supplemented with 10% (v/v) heat-inactivated fetal bovine serum, 1% penicillin/streptomycin (v/v), 1 mM sodium pyruvate and 7.5 mM HEPES, 50 µM 2-mercaptoethanol, pH 7.4 (Invitrogen) at 37°C for the first 48 hours with a media change at 12 - 24 hours. Islets were then incubated at 37°C and media was changed every 3-4 days. For incubations, a different batch of islets was used per experimental replicate.

Prior to treatment islets were aliquoted into 24-well plates (8 per well) or microtubes (10-15 size matched islets per tube) and fasted for 1 hour in KRHB buffer supplemented with 0.2% BSA and 2.8 mM glucose. During the fasting period islets were pre-treated with 100 nM pyrvinium pamoate or DMSO (control). Following fasting, the medium was replaced with KRHB buffer containing low (2.8 mM) glucose, high (11.2 mM or 16.7 mM) glucose or low glucose with 30 mM KCl. Islets were treated with 100 nM pyrvinium pamoate, 1 µM BIO or control (DMSO) as indicated. After one-hour treatment, supernatant was taken for insulin measurements (ELISA, Mercodia or AlphaLISA, PerkinElmer) and pelleted islets were taken in RIPA buffer containing 150 mM NaCl, 1% NP-40, 0.5% Na-deoxycholate, 0.1% SDS, 50 mM Tris-HCl (pH 8.0), Complete protease and PhosSTOP inhibitor cocktails (Roche) for insulin measurements in islets (ELISA, Mercodia).

Western blot analysis—Western blot analysis was carried out with antibodies specific against total β-catenin (1:2000; Symanis), α-tubulin (1:20,000; Sigma-Aldrich), β-actin (1:20,000; Sigma-Aldrich) and GAPDH (1:20,000; Abcam). Following overnight incubation in primary antibody, membranes were washed and incubated with anti-mouse (1:25,000; Sigma-Aldrich) or anti-sheep (1:15,000; Dako) IgG-horseradish peroxidase conjugated antibody for 1 hour at room temperature and developed using Clarity™ Western ECL substrate (BioRad Laboratories).

Immunofluorescence staining—Cells were incubated in KRHB buffer (136 mM NaCl, 4.7 mM KCl, 5 mM NaHCO3, 1.3 mM MgSO4(7H2O), 1.3 mM KH2PO4, 1 mM CaCl2, 10 mM HEPES, 0.5% (w/v) BSA) for 1 hour prior to stimulation with glucose, exenatide or indicated treatments. When required, 100 nM pyrvinium was included for the final 30 minutes of starvation. Following treatment, cells were fixed for 15 minutes in 4% paraformaldehyde, permeabilized for 15 minutes in 0.2% Triton X-100 and blocked with 0.2% BSA for 1 hour. Insulin vesicles were labeled by antibody staining with monoclonal anti-insulin antibody (1:500; Sigma-Aldrich), and anti-mouse Alexa Fluor555® conjugated antibody (1:500; Life Technologies) then stored in PBS until imaging.

TIRF microscopy—Total internal reflection fluorescence (TIRF) microscopy was performed using Leica AM TIRF MC equipment.
Role for β-catenin in insulin secretion

on a Leica DM6000B microscope controlled by LAS AF 3 software (Leica Microsystems). Cells suitable for imaging were identified by fluorescence microscopy using an HC PL APO 100x/1.47 oil objective and TIRF images (603-678nm filter) were obtained on a Leica DFC310Fx camera from samples excited with a 561nm laser introduced into the excitation light path at an appropriate angle to image ~100nm into the cell, as previously described (35,36). Images were managed using ImageJ (Rasband, W.S., National Institutes of Health, http://imagej.nih.gov/ij) and insulin vesicle density was assessed in individual cells using ImageJ to quantify the cellular area and Imaris (v7.2 Bitplane) to detect ‘spots’ of ~0.5 nm diameter.

G/F-actin measurement—Cells were rinsed with PBS and lysed in prewarmed (at 37°C) actin stabilization buffer (50 mM PIPES pH 6.9, 50 mM NaCl, 5 mM MgCl₂, 5 mM EGTA, 5% (v/v) Glycerol, 0.1% Nonidet P40, 0.1% Triton X-100, 0.1% Tween 20, 0.1% 2-mercaptoethanol, 0.001% Antifoam A, 1 mM ATP and protease inhibitors). Cells were scraped off the culture dish surface, homogenized by passing through a 31 gauge needle five times and incubated for 10 minutes at 37°C. Lysates were centrifuged for 5 minutes at 2000 x g, at 37°C. The homogenate was then centrifuged for 1 hour at 100,000 x g at 37°C. The F-actin pellet was resuspended in MilliQ water containing 10 µM cytochalasin D and analysed by Western blot using anti-β-actin and anti-β-catenin antibody alongside the G-actin containing supernatant. Latrunculin and phallodin were included as positive control treatments to decrease or increase the percentage of F-actin respectively.

Statistical analyses—Statistical analyses were performed using the statistical software package GraphPad Prism 6.0 (GraphPad Software Inc.). Results are presented as the mean ±SEM and statistical differences were determined using one way ANOVA with Tukey’s post hoc test *P < 0.05, **P < 0.005, ***P < 0.001.

Acknowledgements: This work was funded by a project grant from the Health Research Council of New Zealand, a PJ Smith Traveling Fellowship from the University of Auckland and Brie Sorrenson was funded by a New Zealand Heart Foundation Research Fellowship.

Conflict of interest: The authors declare no conflicts of interest.

Author contributions: Brie Sorrenson, Emmanuelle Cognard, Kathryn Lee, Waruni Dissanayake, Weiping Han, William Hughes and Peter Shepherd contributed to the experimental design. Brie Sorrenson, Kathryn Lee, Waruni Dissanayake, Emmanuelle Cognard, Yanyun Fu and William Hughes performed the experiments. Brie Sorrenson, Emmanuelle Cognard, Kathryn Lee, Waruni Dissanayake, William Hughes and Peter Shepherd analysed and interpreted the data. Brie Sorrenson and Peter Shepherd wrote the paper.
REFERENCES

1. Fu, Z., Gilbert, E. R., and Liu, D. (2013) Regulation of insulin synthesis and secretion and pancreatic Beta-cell dysfunction in diabetes. *Curr Diabetes Rev.* 9, 25-53
2. Rorsman, P., and Braun, M. (2013) Regulation of insulin secretion in human pancreatic islets. *Annu Rev Physiol.* 75, 155-179
3. Wang, Z., and Thurmond, D. C. (2009) Mechanisms of biphasic insulin-granule exocytosis - roles of the cytoskeleton, small GTPases and SNARE proteins. *J Cell Sci.* 122, 893-903
4. Meloni, A. R., DeYoung, M. B., Lowe, C., and Parkes, D. G. (2013) GLP-1 receptor activated insulin secretion from pancreatic beta-cells: mechanism and glucose dependence. *Diabetes Obes Metab.* 15, 15-27
5. Kalwat, M. A., and Thurmond, D. C. (2013) Signaling mechanisms of glucose-induced F-actin remodeling in pancreatic islet beta cells. *Exp Molecular Med.* 45, e37.
6. Ostenson, C. G., Gaisano, H., Sheu, L., Tibell, A., and Bartfai, T. (2006). Impaired gene and protein expression of exocytotic soluble N-ethylmaleimide attachment protein receptor complex proteins in pancreatic islets of type 2 diabetic patients. *Diabetes.* 55, 435-440
7. Saxena, R., Gianniny, L., Burtt, N. P., Lyssenko, V., Giuducci, C., Sjogren, M., Florez, J. C., Almgren, P., Isomaa, B., Orho-Melander, M., Lindblad, U., Daly, M. J., Tuomi, T., Hirschhorn, J. N., Ardlie, K. G., Groop, L. C., and Altshuler, D. (2006) Common single nucleotide polymorphisms in TCF7L2 are reproducibly associated with type 2 diabetes and reduce the insulin response to glucose in nondiabetic individuals. *Diabetes.* 55, 2640-2644
8. Lyssenko, V., Lupi, R., Marchetti, P., Del Guerra, S., Orho-Melander, M., Almgren, P., Sjogren, M., Ling, C., Eriksson, K. F., Lethagen, A. L., Mancarella, R., Berglund, G., Tuomi, T., Nilsson, P., Del Prato, S., and Groop, L. (2007) Mechanisms by which common variants in the TCF7L2 gene increase risk of type 2 diabetes. *J Clin Invest.* 117, 2155-2163
9. Mitchell, R. K., Mondragon, A., Chen, L., Mcginty, J. A., French, P. M., Ferrer, J., Thorens, B., Hodson, D. J., Rutter, G. A., and Da Silva Xavier, G. (2015) Selective disruption of Tcf7l2 in the pancreatic β cell impairs secretory function and lowers β cell mass. *Hum Mol Genet.* 24, 1390-1399
10. Rutter, G. A. (2014) *Dorothy Hodgkin Lecture 2014 - Understanding genes identified by genome-wide association studies for Type 2 diabetes.* *Diabet Med.* 31, 1480-1487
11. Jin, T. (2008) The WNT signalling pathway and diabetes mellitus. *Diabetologia.* 51, 1771-1780
12. Dabernat, S., Secrest, P., Peuchant, E., Moreau-Gaudry, F., Dubus, P., and Sarvetnick, N. (2009) Lack of beta-catenin in early life induces abnormal glucose homeostasis in mice. *Diabetologia.* 52, 1608-1617
13. Elghazi, L., Gould, A. P., Weiss, A. J., Barker, D. J., Callaghan, J., Opland, D., Myers, M.,
Role for β-catenin in insulin secretion

Cras-Meneur, C., and Bernal-Mizrachi, E. (2012) Importance of beta-Catenin in glucose and energy homeostasis. *Sci Rep.* 2, 693

18. Cognard, E., Dargaville, C. G., Hay, D. L., and Shepherd, P. R. (2013) Identification of a pathway by which glucose regulates beta-catenin signalling via the cAMP/protein kinase A pathway in beta-cell models. *Biochem J.* 449, 803-811

19. da Silva Xavier, G., Loder, M. K., McDonald, A., Tarasov, A. I., Carzaniga, R., Kronenberger, K., Barg, S., and Rutter, G. A. (2009) TCF7L2 regulates late events in insulin secretion from pancreatic islet beta-cells. *Diabetes.* 58, 894-905

20. Arikkath, J., and Reichardt, L. F. (2008) Cadherins and catenins at synapses: roles in synaptogenesis and synaptic plasticity. *Trends Neurosci.* 31, 487-494

21. Brigidi, G. S., and Barnji, S. X. (2011) Cadherin-catenin adhesion complexes at the synapse. *Curr Opin Neurobiol.* 21, 208-214

22. Valenta, T., Hausmann, G., and Basler, K. (2012) The many faces and functions of beta-catenin. *EMBO J.* 31, 2714-2736

23. Hauge-Evans, A. C., Squires, P. E., Persaud, S. J., and Jones, P. M. (1999) Pancreatic beta-cell-to-beta-cell interactions are required for integrated responses to nutrient stimuli: enhanced Ca2+ and insulin secretory responses of MIN6 pseudoislets. *Diabetes.* 48, 1402-1408

24. Mohammed, J. K., Voss, U., Kesavan, G., Kostetskii, I., Wierup, N., Radice, G. L., and Semb, H. (2010) N-cadherin is dispensable for pancreas development but required for beta-cell granule turnover. *Genesis.* 48, 374-381

25. Parmaud, G., Lavallard, V., Bedat, B., Matthey-Doret, D., Morel, P., Berney, T., and Bosco, D. (2015) Cadherin engagement improves insulin secretion of single human beta-cells. *Diabetes.* 64, 887-896

26. Rogers, G. J., Hodgkin, M. N., and Squires, P. E. (2007) E-cadherin and cell adhesion: a role in architecture and function in the pancreatic islet. *Cell Physiol Biochem.* 20, 987-994

27. Hodgkin, M. N., Rogers, G. J., and Squires, P. E. (2007) Colocalization between beta-catenin and insulin suggests a novel role for the adherens junction in beta-cell function. *Pancreas.* 34, 170-171

28. Bandi, S. X., Shimazu, K., Kimes, N., Huelsken, J., Birchmeier, W., Lu, B., and Reichardt, L. F. (2003) Role of beta-catenin in synaptic vesicle localization and presynaptic assembly. *Neuron.* 40, 719-731

29. Gujral, T. S., Karp, E. S., Chan, M., Chang, B. H., and MacBeath, G. (2013) Family-wide investigation of PDZ domain-mediated protein-protein interactions implicates beta-catenin in maintaining the integrity of tight junctions. *Cell Biol.* 20, 816-827

30. Korinek, V., Barker, N., Morin, P. J., van Wijnen, D., de Weger, R., Kinzler, K. W., Vogelstein, B., and Clevers, H. (1997) Constitutive transcriptional activation by a beta-catenin-Tcf complex in APC-/- colon carcinoma. *Science.* 275, 1784-1787

31. Bertera, S., Balamurugan, A. N., Bottino, R., He, J., and Trucco, M. (2012) Increased Yield and Improved Transplantation Outcome of Mouse Islets with Bovine Serum Albumin. *J Transplant.* 2012, 856386 p. 9.

32. Li, D.-S., Yuan, Y.-H., Tu, H.-J., Liang, Q.-L., and Dai, L.-J. (2009) A protocol for islet isolation from mouse pancreas. *Nat Protocols.* 4, 1649-1652

33. Stull, N. D., Breite, A., McCarthy, R., Tersey, S. A., and Mirmira, R. G. (2012) Mouse Islet of Langerhans Isolation using a Combination of Purified Collagenase and Neutral Protease. *J Vis Exp.* 67, 4137

34. Gustavsson, N., Lao, Y., Maximov, A., Chuang, J. C., Kostromina, E., Repa, J. J., Li, C., Radda, G. K., Sudhof, T. C., and Han, W. (2008) Impaired insulin secretion and glucose intolerance in synaptotagmin-7 null mutant mice. *Proc Natl Acad Sci USA.* 105, 3992-3997

35. Falasca, M., Hughes, W. E., Dominguez, V., Sala, G., Fostira, F., Fang, M. Q., Cazzolli, R., Shepherd, P. R., James, D. E., and Maffucci, T. (2007) The role of phosphoinositide 3-kinase C2alpha in insulin signaling. *J Biol Chem.* 282, 28226-28236

36. Lopez, J. A., Burchfield, J. G., Blair, D. H., Mele, K., Ng, Y., Vallotton, P., James, D. E., and Hughes, W. E. (2009) Identification of a distal GLUT4 trafficking event controlled by actin polymerization. *Mol Biol Cell.* 20, 3918-3929
Role for β-catenin in insulin secretion

37. Thorne, C. A., Hanson, A. J., Schneider, J., Tahinci, E., Orton, D., Cselenyi, C. S., Jernigan, K. K., Meyers, K. C., Hang, B. I., Waterson, A. G., Kim, K., Melancon, B., Ghidu, V. P., Sulikowski, G. A., LaFleur, B., Salic, A., Lee, L. A., Miller, D. M., and Lee, E. (2010) Small-molecule inhibition of Wnt signaling through activation of casein kinase 1alpha. Nat Chem Biol. 6, 829-836

38. Rulifson, I. C., Karnik, S. K., Heiser, P. W., ten Berge, D., Chen, H., Gu, X., Taketo, M. M., Nusse, R., Hebrok, M., and Kim, S. K. (2007) Wnt signaling regulates pancreatic beta cell proliferation. Proc Natl Acad Sci USA. 104, 6247-6252

39. Krutzfeldt, J., and Stoffel, M. (2010) Regulation of wingless-type MMTV integration site family (WNT) signalling in pancreatic islets from wild-type and obese mice. Diabetologia. 53,123-127

40. Sun, Y., Aiga, M., Yoshida, E., Humbert, P. O., and Bamji, S. X. (2009) Scribble interacts with beta-catenin to localize synaptic vesicles to synapses. Mol Biol Cell. 20, 3390-3400

41. Sun, Y., and Bamji, S. X. (2011) beta-Pix modulates actin-mediated recruitment of synaptic vesicles to synapses. J Neurosci. 31, 17123-17133

42. Maiden, S. L., and Hardin, J. (2011) The secret life of alpha-catenin: moonlighting in morphogenesis. J Cell Biol. 195, 543-552

43. Thurmond, D. C., Gonelle-Gispert, C., Furukawa, M., Halban, P. A., and Pessin, J. E. (2003) Glucose-stimulated insulin secretion is coupled to the interaction of actin with the t-SNARE (target membrane soluble N-ethylmaleimide-sensitive factor attachment protein receptor protein) complex. Mol Endocrinol. 17, 732-42.

44. Mourad, N. I., Nenquin, M., and Henquin, J.C. (2010) Metabolic amplifying pathway increases both phases of insulin secretion independently of beta-cell actin microfilaments. Am J Physiol Cell Physiol. 299, 389-398

45. Jewell, J. L., Luo, W., Oh, E., Wang, Z., and Thurmond, D. C., (2008) Filamentous actin regulates insulin exocytosis through direct interaction with Syntaxin 4. J Biol Chem. 283, 10716-10726

46. Orci, L., Gabbay, K. H., and Malaisse, W. J. (1972) Pancreatic beta-cell web: its possible role in insulin secretion. Science. 175, 1128-1130

47. Heaslip, A. T., Nelson, S. R., Lombardo, A. T., Beck Previs, S., Armstrong, J. and Warshaw, D. M. (2014) Cytoskeletal dependence of insulin granule movement dynamics in INS-1 beta-cells in response to glucose. PLoS One. 9, e109082

48. Yang, S. Y., Lee, J. J., Lee, J. H., Lee, K., Oh, S. H., Lee, M. S., and Lee K. J. (2016) Secretagogin affects insulin secretion in pancreatic β-cells by regulating actin dynamics and focal adhesion. Biochem J. 473, 1791-1803

49. Tsang, S. W., Shao, D., Cheah, K. S., Okuse, K., Leung, P. S., and Yao, K. M. (2011) Increased basal insulin secretion in Pdzd2-deficient mice. Mol Cell Endocrinol. 315, 263-270

50. Fukata, M., and Kaibuchi, K. (2001) Rho-family GTPases in cadherin-mediated cell-cell adhesion. Nature reviews. Nat Rev Mol Cell Biol. 2, 887-897

51. Ligon, L. A., Karki, S., Tokito, M., and Holzbaur, E. L. (2001) Dynactin binds to beta-catenin and may tether microtubules at adherens junctions. Nat Cell Biol. 3, 913-917

52. Kalwat, M. A., Yoder, S. M., Wang, Z., and Thurmond, D. C. (2013) A p21-activated kinase (PAK1) signaling cascade coordinate regulates F-actin remodeling and insulin granule exocytosis in pancreatic beta cells. Biochem Pharmacol. 85, 808-816

53. He, H., Shulkes, A., and Baldwin, G. S. (2008) PAK1 interacts with beta-catenin and is required for the regulation of the beta-catenin signalling pathway by gastrins. Biochim Biophys Acta. 1783, 1943-1954

54. Zhu, G., Wang, Y., Huang, B., Liang, J., Ding, Y., Xu, A., and Wu, W. (2012) A Rac1/PAK1 cascade controls beta-catenin activation in colon cancer cells. Oncogene. 31, 1001-1012

55. Bian, S., Bai, J. P., Chapin, H., Le Moellic, C., Dong, H., Caplan, M., Sigworth, F. J., and Navaratnam, D. S. (2011) Interactions between beta-catenin and the HSlo potassium channel regulates HSlo surface expression. PloS One. 6, e28264

56. Lesage, F., Hibino, H., and Hudsperth, A. J., (2004) Association of beta-catenin with the alpha-subunit of neuronal large-conductance Ca2+-activated K+ channels. Proc Natl Acad Sci USA. 101, 671-675
Role for β-catenin in insulin secretion

57. Dufer, M., Neye, Y., Horth, K., Krippet-Drews, P., Hennige, A., Widmer, H., Widmer, H., McClafferty, H., Shipston, M. J., Haring, H. U., Ruth, P., and Drews, G. (2011) BK channels affect glucose homeostasis and cell viability of murine pancreatic beta cells. Diabetologia. 54, 423-432

58. Jacobson, D. A., Mendez, F., Thompson, M., Torres, J., Cochet, O., and Philipson, L. H. (2010) Calcium-activated and voltage-gated potassium channels of the pancreatic islet impart distinct and complementary roles during secretagogue induced electrical responses. J Physiol. 588, 3525-3537

59. Choi, H. J., Huber, A. H., and Weis, W. I. (2006) Thermodynamics of beta-catenin-ligand interactions: the roles of the N- and C-terminal tails in modulating binding affinity. J Biol Chem. 281, 1027-1038

The abbreviations used are: DMEM, Dulbecco’s Modified Eagle’s Medium; GAPDH, Glyceraldehyde 3-phosphate dehydrogenase; GLP-1, glucagon-like peptide-1; GSIS, glucose-stimulated insulin secretion; GSK3, glycogen synthase kinase 3; KRBH, Krebs-Ringer bicarbonate HEPES; PAK1, p21 activated kinase; SNARE, Soluble NSF (N-Ethylmaleimide-Sensitive Factor) Attachment Protein Receptor; SNPs, single nucleotide polymorphisms; TCF7L2, transcription factor 7-like 2; TIRF, total internal reflectance fluorescence.
FIGURE LEGENDS

FIGURE 1. Inhibiting β-catenin in INS832/3 and MIN6 β-cells prevents glucose and exenatide stimulated insulin secretion. Cells were glucose-starved for 1 hour and pre-treated for 30 minutes with pyrvinium (100 nM) or DMSO as a control. (A, B) INS832/3 cells were treated with 3 mM glucose, 15 mM glucose, 15 mM glucose + 10 nM exenatide (C, D) MIN6 cells were treated with 3 mM glucose, 20 mM glucose, or 20 mM glucose + 10 nM exenatide. (E) Cells were treated with 4.74 mM KCl or 30 mM KCl. Treatments contained pyrvinium (100 nM) where indicated and cells were incubated for (A, C) 15 minutes or (B, D, E) 2 hours. Medium was collected and insulin concentration determined using the AlphaLISA insulin kit. *P<0.05 and ***P<0.001 compared to the untreated cells of the same glucose condition, as assessed by one way ANOVA with Tukey’s post hoc test. Similar results were obtained in at least three independent experiments. (F) Cell lysates of inhibitor treated cells were used for western blot analysis to visualize the effect on β-catenin protein level relative to GAPDH loading control.

FIGURE 2. Pyrvinium inhibits glucose-stimulated insulin secretion in isolated mouse islets. (A) In vitro static insulin secretion assay was performed using isolated islets (10 islets per group) receiving control (DMSO) or pyrvinium treatment with low (2.8 mM) or high (11.2 mM) glucose. Accumulated insulin in supernatant was normalized to islet insulin content. Data are presented as mean ± SEM from at least three independent experiments. (B, C) Islet insulin secretion assay was performed by serial 1 hour incubations at 37°C were performed using KRBH with 0.2% (w/v) BSA and either low (2.8mM) or high (16.7mM) glucose with or without 100 nM pyrvinium and secretagogues (exenatide (B) and KCl (C)). Media was collected following each treatment and insulin concentration determined. Results are from 3 or 4 separate experiments with insulin concentration (mg/ml) normalised to the average maximum concentration of untreated islets at highest stimulation within each experiment to account for batch-to-batch differences in total secretory capacity. **P<0.01, ***P<0.001 compared to the untreated cells of the same glucose condition, as assessed by ANOVA with Tukey’s post hoc test.

FIGURE 3. siRNA knockdown of β-catenin attenuates glucose and exenatide stimulated insulin secretion and inhibition of β-catenin degradation potentiates insulin secretion. INS832/3 cells were transfected with siRNA specific to β-catenin or a scrambled control and 48 hours after transfection cells were glucose-starved for 1 hour then incubated in 3 mM glucose, 15 mM glucose or 15 mM glucose + 10 nM exenatide for 2 hours. (A) Cell lysates were collected and used for western blot analysis to quantify total β-catenin protein level relative to α-tubulin as a loading control. (B) Medium was collected for determination of insulin concentration using the AlphaLISA kit. (C) INS832/3 cells were transfected with siRNA and stimulated with 4.74 mM or 30 mM KCl for 2 hours and the concentration of insulin in the medium determined. (D,E) INS832/3 cells were glucose-starved for 1 hour, pre-treated for 30 min with BIO (5 µM) or DMSO as a control. Glucose treatments contained BIO (5 µM) where indicated and cells were incubated for 15 minutes or 2 hours and insulin concentration determined using the AlphaLISA insulin kit. **P<0.01 and ***P<0.001 compared with scrambled control transfected cells of the same glucose condition, as assessed by ANOVA with Tukey’s post hoc test. Similar results were obtained in at least three independent experiments.

FIGURE 4. Islet insulin secretion assay was performed by serial 1 hour incubations at 37°C were performed using KRBH with 0.2% (w/v) BSA and either low (2.8mM) or high (16.7mM) glucose with or without 1 µM BIO and secretagogues ((A) exenatide and (B) KCl). Media was collected following each treatment and insulin concentration determined. Results are from 3 or 4 separate experiments with insulin concentration (mg/ml) normalised to the average maximum concentration of untreated islets at highest stimulation within each experiment to account for batch-to-batch differences in total secretory capacity. ***P<0.001 compared to the untreated cells of the same glucose condition, as assessed by ANOVA with Tukey’s post hoc test.
FIGURE 5. Inhibiting β-catenin prevents the effect of the incretin GLP-1 [7-36] amide on insulin secretion. (A) INS832/3 cells were glucose-starved for 1 hour and pre-treated for 30 minutes with pyrvinium (100 nM) or DMSO as a control and then treated with 3 mM glucose, 15 mM glucose, 15 mM glucose + 10 nM exenatide or 15 mM glucose + 10 nM GLP-1 [7-36] amide. Glucose treatments contained pyrvinium (100 nM) where indicated and cells were incubated for 2 hours. Medium was collected for determination of insulin concentration using the AlphaLISA insulin kit. (B, C) INS832/3 cells were transfected with siRNA specific to β-catenin or a scrambled control and 48 hours after transfection cells were glucose-starved for 1 hour then incubated in 3 mM glucose, 15 mM glucose or 15 mM glucose + 10 nM exenatide for 2 hours. (B) Cell lysates were collected and used for western blot analysis to quantify total β-catenin protein level relative to α-tubulin as a loading control. (C) Medium was collected and insulin concentration determined using the AlphaLISA insulin kit. *P<0.05, ***P<0.001 compared to the untreated cells of the same glucose condition, as assessed by ANOVA with Tukey’s post hoc test. Similar results were obtained in at least three independent experiments.

FIGURE 6. Inhibiting β-catenin prevents glucose and exenatide induced depletion of insulin vesicles near the plasma membrane. Cells were glucose-starved for 1 hour and pre-treated for 30 minutes with pyrvinium (100 nM) or DMSO as a control. (A, B) INS832/3 cells were treated with 3 mM glucose, 15 mM glucose or 15 mM glucose + 10 nM exenatide; (C, D) MIN6 cells were treated with 3 mM glucose, 20 mM glucose or 20 mM glucose + 10 nM exenatide. Glucose treatments contained pyrvinium (100 nM) where indicated and cells were incubated for (A, C) 15 minutes or (B, D) 2 hours. Cells were fixed and insulin vesicles were stained with anti-insulin antibody and Alexa555® conjugated secondary antibody. Fluorescence within 100 nm of the plasma membrane was visualized using TIRF microscopy and the density of insulin vesicles quantified using Imaris software. Scale bars are 5 µm. ***P<0.001 compared to the untreated cells of the same glucose condition, as assessed by ANOVA with Tukey’s post hoc test. Images are representative of approximately 25 taken for each treatment and the vesicle density was calculated using at least 20 images. Similar results were obtained in at least three independent experiments.

FIGURE 7. Loss of β-catenin perturbs insulin vesicle distribution near the plasma membrane. MIN6 cells were transfected with siRNA specific to β-catenin or a scrambled control and a GFP plasmid to identify transfected cells. 48 hours after transfection cells were glucose-starved for 1 hour and incubated in 3 mM glucose, 20 mM glucose or 20 mM glucose + 10 nM exenatide for 2 hours. Cells were fixed and insulin vesicles were stained with anti-insulin antibody and Alexa555® conjugated secondary antibody. Fluorescence within 100 nM of the plasma membrane was visualized using TIRF microscopy and the density of insulin vesicles quantified using Imaris software. Scale bars are 5 µm. ***P<0.001 compared with scrambled control transfected cells of the same glucose condition, as assessed by one way ANOVA with Tukey’s post hoc test. Images are representative of approximately 20 taken for each treatment and the vesicle density was calculated from at least 15 images. Similar results were obtained in at least three independent experiments.

FIGURE 8. Overexpressing TCF7L2 in INS832/3 β-cells impairs glucose and exenatide stimulated insulin secretion. INS832/3 cells were transfected with TCF7L2 plasmid or a GFP control plasmid and, 48 hours after transfection, cells were glucose-starved for 1 hour then incubated in 3 mM glucose, 15 mM glucose or 15 mM glucose + 10 nM exenatide for 2 hours. (A) Cell lysates were collected and used for western blot analysis to quantify total TCF7L2 protein level relative to α-tubulin as a loading control. (B) Medium was collected for determination of insulin concentration using the AlphaLISA kit. ***P<0.001 compared to the control GFP transfected cells of the same glucose condition, as assessed by ANOVA with Tukey’s post hoc test. Similar results were obtained in at least three independent experiments.

FIGURE 9. Depletion of β-catenin affects intracellular actin remodeling. (A) F-actin and G-actin fractions were isolated from INS832/3 cells transfected with control siRNA or β-catenin siRNA and used for western blot analysis with anti-β-actin antibody and anti-β-catenin antibody to confirm
siRNA knockdown. Latrunculin and Phalloidin were used as control treatments for decreasing and increasing F-actin respectively. The percentage of F-actin was quantified by densitometry. *$P<0.05$, **$P<0.01$, ***$P<0.001$ compared to the control GFP transfected cells of the same glucose condition, as assessed by ANOVA with Tukey’s post hoc test. (B) Transfected cells were seeded on glass coverslips, starved in low glucose and treated with high glucose for 2 hours. Cells were fixed and stained for F-actin using Alexa Fluor® 633 Phalloidin (red) and the nucleus was visualized with DAPI (green).

FIGURE 1

A. INS832/3 15 min

B. INS832/3 2 hr

C. MIN6 15 min

D. MIN6 2 hr

E. INS832/3 2 hr

F. Western Blot

Vehicle
100 nM Pyruvate
5 μM BIO

β-catenin

GAPDH

4.74 mM KCl
30 mM KCl
FIGURE 2

A

B

C

Role for β-catenin in insulin secretion
FIGURE 3

A

Control siRNA β-catenin siRNA

β-catenin

α-tubulin

kDa

B

INS832/3 2 hr

Control siRNA β-catenin siRNA

Insulin (pmol/mg/ml)

C

INS832/3 15 min

Vehicle 5 µM BIO

Insulin (pmol/mg/ml)

D

INS832/3 2 hr

Vehicle 5 µM BIO

Insulin (pmol/mg/ml)

E

INS832/3 2 hr

Control siRNA β-catenin siRNA

β-catenin

β-actin

kDa
FIGURE 4

A

Insulin concentration % normalized to max

Vehicle

BIO 1uM

2.8 mM glucose

16.7 mM glucose

16.7 mM glucose + exendin

B

Insulin concentration % normalized to max

Vehicle

BIO 1uM

2.8 mM glucose

16.7 mM glucose

16.7 mM glucose + exendin
Role for β-catenin in insulin secretion

FIGURE 5

A

INS-β2 2 hr

Vehicle
100 nM pyrininium

0.0

3 mM glucose
15 mM glucose
15 mM glucose + exendin
15 mM glucose + GLP-1 (7-36)

B

Control siRNA
β-catenin siRNA

GAPDH

β-catenin protein level relative to GAPDH

0.0

0.5

1.0

1.5

Control siRNA
β-catenin siRNA

C

INS-β2 2 hr

0.0

3 mM glucose
15 mM glucose
15 mM glucose + exendin
15 mM glucose + GLP-1 (7-36)

Control siRNA
β-catenin siRNA
FIGURE 7

Role for β-catenin in insulin secretion
Role for β-catenin in insulin secretion

FIGURE 8

A

TCF7L2

β-catenin

α-tubulin

B

INS832/3 2 hr

Insulin (pmol/mg protein)

1.0 mm glucose

15.0 mm glucose

15.0 mm glucose + saxagliptin

Control GFP transfected

TCF7L2 transfected

Role for β-catenin in insulin secretion

FIGURE 9

A

Latrunculin	Phalloidin	Control siRNA	β-catenin siRNA
Gardin	Gardin	Gardin	Gardin
F-actin	F-actin	F-actin	F-actin
β-catenin	β-catenin	β-catenin	β-catenin
kDa			
150	100	50	37

B

Control siRNA

β-catenin siRNA

Unstimulated

Glucose stimulated

ns

F-actin (% of total)

*

**

###

Downloaded from http://www.jbc.org/ by guest on March 13, 2020
A Critical Role for β-catenin in Modulating Levels of Insulin Secretion from β-cells by Regulating Actin Cytoskeleton and Insulin Vesicle Localization

Brie Sorrenson, Emmanuelle Cognard, Kathryn L. Lee, Waruni C. Dissanayake, Yanyun Fu, Weiping Han, William E. Hughes and Peter R. Shepherd

J. Biol. Chem. published online October 24, 2016

Access the most updated version of this article at doi: 10.1074/jbc.M116.758516

Alerts:
- When this article is cited
- When a correction for this article is posted

Click here to choose from all of JBC's e-mail alerts