Digenean species diversity in teleost fish from a nature reserve off Corsica, France (Western Mediterranean), and a comparison with other Mediterranean regions

PIERRE BARTOLI¹, DAVID I. GIBSON², & RODNEY A. BRAY²

¹Centre d’Océanologie de Marseille, UMR 6540 du CNRS, DIMAR, Campus Universitaire de Luminy, Case 901, F-13288 Marseille cédex 9, France, and ²Department of Zoology, The Natural History Museum, Cromwell Road, London SW7 5BD, UK

(Accepted 3 July 2003)

Abstract
Data on the digenean parasites of 2238 teleosts from the Scandola Nature Reserve off Corsica are presented. These represent the largest general survey of digenean parasites attempted in the Mediterranean region and is the result of major collections and systematic reports published over the past 20 years. The number of different digenean species recorded from 63 fish species was 102. Full parasite–host and host–parasite lists are presented, with information on the geographical distribution of the parasites, their site within the host and the prevalence, abundance and intensity of the infections. The digenean fauna of teleosts off Corsica is compared with that in other regions of the Mediterranean and the Black Sea. A more detailed analysis of the diversity of these parasites in sparid fishes indicates that the digenean diversity off Corsica is far greater than that in other parts of the Mediterranean.

Keywords: Digenean diversity, teleosts, Western Mediterranean Nature Reserve

Introduction
The present study is an attempt at a qualitative and quantitative approach to the study of the digenean fauna of marine teleosts from the Western Mediterranean. The study area is the Scandola Nature Reserve, located on the most western part of the coast of northern Corsica, France (42°23′N, 8°33′E). This nature reserve extends all along a steeply sloped, rocky, high-energy shore, widely exposed to the open sea, and is almost devoid of calm or euryhaline waters. This study is the result of a long research period, which began in 1986. During this period, numerous data have been published concerning the identification of the digeneans collected in teleosts from the Scandola Reserve (Bartoli 1987; Bartoli and Bray 1987, 1990, 1996, 2001; Bartoli et al. 1988, 1989a, 1989b, 1989c, 1989d, 1993, 1994, 2000a, 2000b, 2001, 2003a, 2003b; Bartoli and Gibson 1989, 1991, 1995, 1998, 2000, 2001; Gibson and Bray 1989; Holmes and Bartoli 1993; Bray and Bartoli 1996; Le Pommelet et al. 1997; Jousson and Bartoli 1999, 2000, 2001, 2002; Sasal et al. 1999; Jousson et al. 2000).
In the present study, we report on the quantitative results from 2238 autopsied fish belonging to 63 teleost species in which 102 digenean species have been recovered. In the literature, quantitative data on this group of parasites are usually reported from only a small number of host species. Nevertheless, more extensive data concerning the digenean fauna of teleosts from different areas of the Mediterranean and Black Seas are available in the literature (Vlassenko 1931; Pogorel’tseva 1952; Sey 1968, 1970; Papoutsoglou 1976; Orecchia and Paggi 1978; Fischthal 1980, 1982; Saad-Fares 1985; Radujkovic and Raibaut 1989; Radujkovic et al. 1989). In this study, we compare our data with those of these authors from different areas of the Mediterranean and Black Seas.

Material and methods

Sampling was carried out during summer (July to August) between 1986 and 2002, depending on the opportunities available for the collection of host fishes (by fishermen and diving colleagues). The autopsied fishes were always recently dead or killed using a heavy dose of anaesthetic, identified using Whitehead et al. (1986) and Froese and Pauly (2001), measured and weighed. The digestive tract was divided into various anatomical regions: stomach, pyloric caeca, duodenum, middle intestine, posterior intestine, rectum and gall-bladder. The digenean species were collected from each of these sections under a dissecting microscope. They were studied while still alive and later as permanent preparations. Individuals were fixed in Bouin’s fluid between slide and coverglass without pressure, stained in acetic carmine and mounted in Canada balsam. Type material of new taxa and voucher specimens of poorly known species have been deposited at The Natural History Museum, London.

Parasitological indices were calculated following Margolis et al. (1982). Authorities for the parasite taxa are given in Table I.

Results and discussion

A large number (2238) of fish from the Scandola Nature Reserve was examined, comprising 63 species from 44 genera and 26 families. Among the 102 digenean species collected from these fishes, 99 have been identified to specific level and three to generic level. In one case, due to difficulties with the identification of the *Helicometra* species complex (see Palombi 1931; Reversat et al. 1989, 1991), we prefer to use the terminology *Helicometra* form 1, form 2, etc. These 102 digenean species belong to 62 genera and 17 families (Table I). This is the first time that such a large number of digenean species has been reported from a single region of the Mediterranean.

During this period of research, nine species have been, or are in the process of being, described as new: *Cainocreadium dentecis*, *Deretrema scorpaenicola*, *Folliculovarium mediterraneum*, *Genitocotyle mediterranea*, *Macvicaria maillardi*, *Metadena phoceae*, *Monorchis blennii*, *Stephanostomum gaidropsari* and *Wardula sarguicola*; and *Opecoeloides columbellae* was previously unknown at the adult stage. Some other species, described in previous centuries and never, or very rarely, reported since their original description, have been found commonly in the Scandola Natural Reserve. These include: *Ancylocoelium typicum*, *Anisocladium gracile*, *Holorchis legendrei*, *Lecithochirium grandiporum*, *Macvicaria dubia*, *M. mormyri*, *Pachycreadium carnosum*, *Peracreadium characis*, *Paracryptogenimus aloysiae*, *Tergestia acanthocephala* and *Wardula capitellata*. Other species, such as *Aphallus rubalo*, *Hemiurus communis*, *Homalometron galacicus*, *H. senegalensis* and *Pseudopecoeloides chloroscombi*,
Table I. Digenean species collected from teleost fishes off Scandola Nature Reserve in family order and their distribution (recent references with useful descriptions or illustrations are provided).

Species Distribution Reference	Reference
ACANTHOCOLPIDAE Lühe, 1909	
Lepidauchen stenostoma Nicoll, 1913	M Bartoli and Bray (2001)
Stephanostomum bicoronatum (Stossich 1883)	W Bray and Bartoli (1996)
Stephanostomum cesticillum (Molin 1858)	M Bartoli and Bray (2001)
Stephanostomum gaidropsari Bartoli and Bray, 2001	M Bartoli and Bray (2001)
Stephanostomum minutum (Looss 1901)	M Bartoli and Bray (2001)
Stephanostomum pristis (Deslongchamps 1824)	W Bartoli and Bray (2001)
ACANTHOSTOMIDAE Poche, 1926	
Anisocladium fallax (Rudolphi 1819)	M Bartoli and Gibson (2000)
Anisocladium gracile (Looss 1901)	M Bartoli and Gibson (2000)
Anisocoelium capitellatum (Rudolphi 1819)	M Bartoli and Gibson (2000)
Timoniella praeteritum (Looss 1901)	M Maillard (1974)
APOCREAIDIIDAE Skrjabin, 1942	
Homalometron galaicus Sanmartin, Alvarez, Quinteiro and Paniagua, 1995	NEA+M Sanmartin et al. (1995)
Homalometron senegalense Fischthal and Thomas, 1972	NEA+M Bartoli et al. (2001)
BUCEPHALIDAE Poche, 1907	
Bucephalus baeri Maillard, 1976	M Maillard (1976)
Bucephalus labracis Paggi and Orecchia, 1965	M Paggi and Orecchia (1965)
Bucephalus marinus Vlassenko, 1931	M Vlassenko (1931)
Bucephalus minimus (Stossich 1887)	NEA+M Maillard (1976)
Folliculovarium mediterraneum	M Bartoli et al. (2003c)
Prosorhynchoides gracilescens (Rudolphi 1819)	W Overstreet and Curran (2002)
Prosorhynchus aculeatus Odhner, 1905	W Dawes (1968)
Prosorhynchus crucibulum (Rudolphi 1819)	W Bray (1973)
CRYPTOGONIMIDAE Ward, 1917	
Anoiktostoma coronatum (Wagener 1852)	M Bartoli and Gibson (1995)
Aphallus rubalo (Bray 1986)	W Bray (1986)
Aphallus tubarium (Rudolphi 1819)	NEA+M Bartoli and Bray (1987)
Metadena depressa (Stossich 1883)	M Bartoli and Bray (1987)
Metadena pauli (Vlassenko 1931)	NEA+M Bartoli and Gibson (1995)
Metadena phoceae Bartoli and Gibson, 2001	M Bartoli and Gibson (2001)
Paracryptogonimus aloysiae (Stossich 1885)	M Bartoli and Gibson (1995)
DEROGENIDAE Nicoll, 1910	
Arnola microcirrus (Vlassenko 1931)	M Kostadinova et al. (2004)
Derogenes latus Janiszewska, 1953	M Bartoli and Gibson (1991)
Derogenes varicus (Müller 1780)	W Gibson (1976)
Magnibursatus skrjabini (Vlassenko 1931)	M Kostadinova et al. (2003)
FAUSTULIDAE Poche, 1926	
Bacciger bacciger (Rudolphi 1819)	NEA+M Bray and Gibson (1980)
Bacciger israelensis Fischthal, 1980	M Dimitrov and Bray (1994)
FELLODISTOMIDAE Nicoll, 1913	
Monascus filiformis (Rudolphi 1819)	W Bray and Gibson (1980)
Proctoeces maculatus (Looss 1901)	W Bray and Gibson (1980)
Tergestia acanthocephala (Stossich 1887)	M Bartoli et al. (2003a)
Tergestia laticollis (Rudolphi 1819)	W Bartoli et al. (2003a)
HEMIURIDAE Lühe, 1901	
Aphanurus stossichi (Monticelli 1891)	W Looss (1907)
Dinosa sp.	W Gibson and Bray (1986)
Ectemnus lepidus Looss, 1907	W Gibson and Bray (1986)
Hemiurus communis Odhner, 1905	NEA+M Gibson and Bray (1986)
Hemiurus luehei Odhner, 1905	NEA+M Gibson and Bray (1986)
Lectichochirium fusiforme Lühe, 1901	NEA+M Gibson and Bray (1986)
Table I. (Continued).

Species	Distribution	Reference
Lecithochirium grandiporum (Rudolphi 1819)	M	Looss (1907)
Lecithochirium musculus (Looss 1907)	NEA+M	Gibson and Bray (1986)
Lecithochirium rufoviride (Rudolphi 1819)	W	Gibson and Bray (1986)
Synaptobothrium caudiporum (Rudolphi 1819)	NEA+M	Gibson and Bray (1986)
LECITHASTERIDAE Odhner, 1905		
Aponurus laguncula Looss, 1907	W	Bray and MacKenzie (1990)
Lecithaster stellatus Looss, 1907	W	Bray et al. (1993)
Lecithaster sp.		
LEPOCREADIIDAE (Odhner 1905)		
Holorchis legendrei Dollfus, 1946	NEA+M	Bartoli and Bray (1996)
Holorchis micracanthum (Stossich 1888)	M	Bartoli and Bray (1996)
Holorchis pycnoporus Stossich, 1901	M	Bartoli and Bray (1996)
Lepocreadium album (Stossich 1890)	NEA+M	Saad-Fares (1985)
Lepocreadium pegorchis (Stossich 1901)	M	Bartoli (1983)
Prodistomum poloni (Molin 1859)	NEA+M	Bray and Gibson (1990)
MESOMETRIDAE Poche, 1926		
Centroderma spinosissima (Stossich 1883)	NEA+M	Bartoli (1987)
Elistia stossichianum (Monticelli 1892)	W	Bartoli (1987)
Mesometra brachycoelia Lühe, 1901	NEA+M	Bartoli (1987)
Mesometra orbicularis (Rudolphi 1819)	NEA+M	Bartoli (1987)
Wardula capitellata (Rudolphi 1819)	NEA+M	Bartoli (1987)
Wardula sarguicola Bartoli and Gibson, 1989	NEA+M	Bartoli and Gibson (1989)
MONORCHIIDAE Odhner, 1911		
Lasiotocus typicus (Nicoll 1912)	NEA+M	Bartoli and Bray (2004)
Lasiotocus multi (Stossich 1883)	M	Bartoli and Prévot (1966)
Monorchis blemii Jousson and Bartoli, 2002	M	Jousson and Bartoli (2002)
Monorchis monorchis (Stossich 1890)	NEA+M	Bartoli et al. (2000a)
Monorchis parvus Looss, 1902	NEA+M	Bartoli et al. (2000a)
Proctotrema bacilliovatum Odhner, 1911	M	Bartoli and Prévot (1966)
Timonia mediterranea Bartoli and Prévot, 1966	M	Bartoli and Prévot (1966)
OPECOELIDAE Ozaki, 1925		
Allopodocotyle jaffensis (Fischthal 1980)	M	Bartoli et al. (1989b)
Allopodocotyle pedicellata (Stossich 1887)	M	Bartoli et al. (1989b)
Bathycreadium elongata (Maillard 1970)	M	Maillard (1970)
Cainocreadium denteus Jousson and Bartoli, 2001	M	Jousson and Bartoli (2001)
Cainocreadium labracis (Dujardin 1845)	NEA+M	Bartoli et al. (1989c)
Gaeveskajatrema perezi (Mathias 1926)	NEA+M	Gibson and Bray (1982)
Genitocotyle mediterranea Bartoli, Gibson, and Riutort, 1994	NEA+M	Bartoli et al. (1994)
Helicometra Odhner, 1902, form 1		
Helicometra Odhner, 1902, form 2		
Helicometra Odhner, 1902, form 3		
Helicometra Odhner, 1902, form 4		
Macvicaria alacris (Looss 1901)	NEA+M	Gibson and Bray (1982)
Macvicaria crassigula (Linton 1910)	W	Bartoli et al. (1989a)
Macvicaria dubia (Stossich 1905)	M	Bartoli et al. (1989a)
Macvicaria maillardi Bartoli, Bray, and Gibson, 1989	M	Bartoli et al. (1989a)
Macvicaria mornymi (Stossich 1885)	M	Bartoli et al. (1993)
Macvicaria obovata (Molin 1859)	M	Bartoli et al. (1989a)
Opecoeloides columbellae (Pagenstecher 1863)	M	Jousson and Bartoli (2000)
Opecoeloides furcatus (Bremser in Rudolphi 1819)	W	Bartoli and Gibson (1991)
Pachycreadium carnosum (Rudolphi 1819)	M	Bartoli et al. (1988)
Peracreadium characis (Stossich 1886)	M	Bartoli et al. (1989c)
Peracreadium genu Nicoll, 1909	NEA+M	Gibson and Bray (1982)
Podocotyle novella (Maillard and Lambert 1978)	M	Bartoli et al. (2003b)
were new records for the Mediterranean. As can be seen in Table I, a large proportion (45.5%) of the digenean species found in the Scandola Nature Reserve are restricted to the Mediterranean.

In the teleosts from the Scandola Nature Reserve, opecoelids represent the most important digenean family (27 species = 26.5%) (Table I).

Of the 63 teleost species studied, only Gobius geniporus and Trachinus draco were entirely devoid of adult digeneans, and of the 2238 fish autopsied, 1097 (49.02%) were parasitized (Table II). The unparasitized fishes tended to be young individuals. One digenean species was found in 608 (55.4%) of the infected fishes, two digenean species in 298 (27.2%), three in 128 (11.7%), four in 45 (4.1%), five in 14 (1.3%) and six in four (0.4%).

Specimens of a given digenean species in numbers of 1–10 have been found in 695 fishes (63.3%), 11–100 in 342 fishes (31.1%), 101–1000 in 44 fishes (4%) and >1000 in 16 fishes (1.5%).

For each host species and for each of their digenean species, various parasitological indices and information on the site of the parasites are presented in Table II. This table shows that some digeneans were very prevalent and abundant, while others were very rare. With regard to the sites used by the parasites, all available niches were used by digeneans in Gaidropsarus mediterraneus, Mullus surmuletus, Scorpaena porcus and Serranus scriba. For all other hosts, some sites were never used, these usually being the stomach and gall-bladder. Nevertheless, the stomach only was occupied in Gobius cobitis, G. cruentatus, Salaria pavo and Spicara maena.

Some digenean species were very restricted in their distribution and were limited, for example, to: (1) the stomach for Arnola microcirrus, Hemius ruehei, Lecithochirium fusiforme, L. grandiporum, L. rufoviride and L. musculus (nevertheless, single individuals of L. musculus were found in the pyloric caeca of Serranus scriba, the middle intestine of Mullus surmuletus and in the posterior intestine of Symphodus tinca—according to Gibson and Bray (1986), L. musculus can occur in a range of teleosts which feed on gobies that harbour gravid worms in their body cavity; these accidental hosts may have these worms, at least temporarily, in the intestine); (2) the pyloric caeca for Bucephalus marinus, Monorchis monorchis, Podocotyle

Table I. (Continued).

Species	Distribution	Reference
Podocotyle scorpaenae (Rudolph 1819)	M	Bartoli and Gibson (1991)
Podocotyle temensis Fischthal and Thomas, 1970	NEA+M	Bartoli et al. (2003b)
Poracanthium furcatum Dollius, 1948	M	Bartoli and Gibson (1991)
Pseudopecoeloides chloroscombr (Fischthal and Thomas 1970)	NEA+M	Bartoli et al. (2003b)
Pseudopycnadenia fischthali Saad-Fares and Maillard, 1986	M	Bartoli et al. (1989d)
Pycnadenoides senegalensis Fischthal and Thomas, 1972	NEA+M	Bartoli et al. (1989d)
Pleorchidae (Poche 1926)	NEA+M	Bartoli et al. (2004)
Pleorchis polychi (Stossich 1889)	NEA+M	Bartoli et al. (2004)
Robphildollfusidae Paggi and Orecchia, 1963	NEA+M	Bartoli et al. (2004)
Robphildollfisium fractum (Rudolph 1819)	M	Bartoli (1987)
Zoogonidae Odhner, 1911	W	Bray and Gibson (1986)
Deretrema scorpaenica Bartoli and Bray, 1990	M	Bartoli and Bray (1990)
Diphterostomum brusinae (Stossich 1889)	W	Bray and Gibson (1986)
Lecithostephyllus retroflexus (Molin 1859)	NEA+M	Bartoli et al. (2003a)
Zoogonus rubellus (Olsson 1868)	NEA+M	Bray and Gibson (1986)

M, Mediterranean; NEA, north-eastern Atlantic; W, wider.
Table II. Parasitological indices for digeneans from teleost fishes off the Scandola Nature Reserve, Corsica (Western Mediterranean).

Site(s)	Prevalence (%)	Abundance	Mean	Range	
APOGONIDAE					
Apogon imberbis	B (CD)	100	18.2	18.2	2–52
Genitocotyle mediterranea					
ATHERINIDAE					
Atherina boyeri	C (D)	30.7	0.4	1.3	1–2
Bacciger bacciger					
Genitocotyle mediterranea	C (DE)	73.1	2.5	3.5	1–6
Lecithaster stellatus	F	3.8	0.04	1	1
BELONIDAE					
Belone belone gracilis	F	3.3	0.03	1	1
Lecithaster stellatus					
Lecithostaphylus retroflexus	CDE (F)	80	8.9	11.3	1–37
Tergestia acanthocephala	F	36.7	0.8	2.1	1–5
BLENNIIDAE					
Parablennius gattorugine	C	66.6	19.3	29	14–52
Monorchis blennii	F	16.6	3	18	18
Diptherostomum brusinae	F	16.6	4.2	25	25
Zoogonus rubellus	F	16.6	4.2	25	25
Salaria pavoi	A	50	1.5	3	3
Magnibursatus skrjabini	D	50	1.5	3	3
BOTHIDAE					
Bothus podas	CF	33.3	0.5	1.5	1–2
CARANGIDAE					
Trachurus mediterraneus	F (E)	7.4	1.7	23	1–45
Aphanurus stossichi	A	3.7	0.07	2	2
Hemius communis	A	3.7	0.15	4	4
Prodistomum polonii	B (CDE)	92.6	13.9	15	3–32
Pseudopeceloides chloroscombri	DE (C)	29.7	0.8	2.6	1–6
Tergestia laticollis	EF (D)	44.4	3.5	7.9	2–20
Trachurus picturatus	F (E)	47	2.4	5.1	1–14
Ectenurus lepidus	AB	8.3	0.8	1	1
Monascus filiformis	D (E)	41.7	0.5	1.2	1–2
Prodistomum polonii	B (CDE)	100	22.6	22.6	2–70
Pseudopeceloides chloroscombri	D (E)	35.3	0.7	2	1–3
Tergestia laticollis	E (DF)	47	2.4	5.1	1–14
Trachurus trachurus	F	8	0.1	1.5	1–2
Lasiotocus typicus	A	8	0.2	2	1–3
Monascus filiformis	D	4	0.04	1	1
Prodistomum polonii	B (AC)	72	8.1	11.2	1–38
Pseudopeceloides chloroscombri	DE (BC)	45.8	1	2.3	1–5
Tergestia laticollis	F (DE)	56	1.9	3.4	1–12
CENTRACANTHIDAE					
Spicara maena	A	33.3	2.7	8	8
Hemius communis	A	33.3	2.7	8	8
Spicara smaris	CD (E)	90	2.3	2.6	1–6
Lepocreadium album	D	50	1.5	3	3
Hemius communis	D	50	1.5	3	3
Table II. (Continued).

Site(s)	Prevalence (%)	Abundance	Mean	Range
CONGRIDAE				
Conger conger n=3				
Helicometra form 3	C	33.3	1.3	4
Lecithochirium fusiforme	A	100	39	39
Lecithochirium musculus	A	33.3	1	3
Lecithochirium rufoviride	A	33.3	1.7	5
Podocotyle novella	D (EF)	33.3	6	18
Prosorhynchus aculeatus	F	66.7	20	30
Prosorhynchus crucibulum	CD (E)	100	49.3	49.3
GOBIIDAE				
Gobius cobitis n=6				
Lecithochirium musculus	A	33.4	0.7	2
Gobius cruentatus n=1				
Lecithochirium musculus	A	100	8	8
Gobius geniporus n=17				
Gobius paganellus n=11				
Deretrema scorpaenicola	G	18.2	0.4	2
Lecithochirium musculus	A	36.4	0.4	1
Pomatoschistus marmoratus n=35				
Genitocotyle mediterranea	E (CD)	34.3	0.5	1.5
LABRIDAE				
Coris julis n=58				
Diphterostomum brusinae	F (E)	3.5	0.1	2
Labrus merula n=54				
Deretrema scorpaenicola	G	1.9	0.02	1
Diphterostomum brusinae	F	1.9	0.1	5
Helicometra form 2	E (CF)	9.3	0.3	3.4
Helicometra form 3	EF (CD)	9.6	1.2	4.2
Lepidacanthstenostoma	C (D)	5.6	0.1	2.3
Peracreadium genu	CDE (BF)	35.2	3.7	10.4
Proctoeces maculatus	F	3.7	0.04	1
Zoogonus rubellus	F	5.6	1.2	21
Labrus viridis n=19				
Deretrema scorpaenicola	D	5.3	0.05	1
Helicometra form 3	E (CF)	26.3	2.6	9.8
Peracreadium genu	CDE (F)	15.8	2.7	17.3
Symphodus cinereus n=82				
Gaevskijatrema perezi	D	1.2	0.01	1
Macvicaria alacris	C (D)	6.1	0.1	1.4
Symphodus mediterraneus n=17				
Helicometra form 4	D	5.9	0.1	1
Symphodus ocellatus n=302				
Deretrema scorpaenicola	G	0.7	0.01	1
Genitocotyle mediterranea	CD (E)	10	0.7	6.6
Helicometra form 3	C	2	0.04	2
Helicometra form 4	F	0.3	0.01	3
Lecithaster stellatus	F (E)	8.9	0.14	1.5
Macvicaria alacris	CDE	8.6	0.14	1.7
Symphodus roissali n=230				
Gaevskijatrema perezi	CDE (F)	21.7	2.8	12.7
Helicometra form 3	DE (F)	3	0.03	1
Holorchis pygnotorus	CDE	4.3	0.07	1.5
Symphodus rostratus n=41				
Deretrema scorpaenicola	G	2.4	0.1	5
Site(s)	Prevalence (%)	Abundance	Mean	Range
---	---	---	---	---
Helicometra form 4	CDEF	31.7	1.1	3.4
Macvicaria alacris	CDE	14.6	1.1	7.7
Symphodus tinca n=114				
Helicometra form 2	CDEF	7	0.18	2.6
Helicometra form 3	CDEF	6.1	0.24	3.9
Lectichirium musculus	E	0.8	0.01	1
Macvicaria alacris	CD (EF)	8.8	0.6	6.6
Proctoeces maculatus	F	3.5	0.04	1
Zoogonus rubellus	F	7.9	0.2	3
Thalassoma pavo n=2				
Helicometra form 3	C	50	1	2
Xyrichthyys novacula n=4				
Helicometra form 3	C	25	10.8	43

LOPHIIDAE

Site(s)	Prevalence (%)	Abundance	Mean	Range	
Aphallus tubarium	CDF	18.8	0.3	1.7	1–3
Derogenes latus	B	6.3	0.1	1	1
Dinosoma sp.	A	6.3	0.5	8	8
Lectichirium fusiforme	A	6.3	0.1	1	1
Lectichirium musculus	A	6.3	0.1	1	1
Proorhynchoides gracilescens	CD (BEF)	25	5.2	20.8	3–52
Proorhynchus acuteatus	C	6.3	0.2	3	3
Stephanostomum cesticillum	CDE (BF)	50	4.1	8.1	1–54
Synaptobothrium caudiporum	A	6.3	0.1	1	1

LOTIDAE

Site(s)	Prevalence (%)	Abundance	Mean	Range	
Bathycreadium elongata	B to F	23.5	2.1	9	6–13
Bucephalus marinus	B	5.9	0.2	3	3
Derogenes varicus	A	11.8	0.2	2	1–3
Deretrema scorpaenicola	G	5.9	0.1	1	1
Helicometra form 3	CDE (F)	35.3	2.8	7.8	1–22
Metadena phoceae	F	23.5	7.9	33.8	5–110
Opecoeloides columbellae	BC	58.8	46	78	5–177
Stephanostomum gaidropsari	CDE (F)	41.2	6.8	16.4	1–77

MORONIDAE

Site(s)	Prevalence (%)	Abundance	Mean	Range	
Bucephalus baeri	F	9.1	1.4	15	15
Bucephalus labracis	BC	9.1	15.9	175	175
Bucephalus minimus	DE	36.4	2.2	6	2–9
Cainocreadium labracis	CD	100	20.2	20.2	3–115
Timoniella praeteritum	C	9.1	0.2	2	2

MULLIDAE

Site(s)	Prevalence (%)	Abundance	Mean	Range	
Aponurus laguncula	A	1.5	0.04	2.5	2–5
Derogenes latus	G	6.2	0.1	2	1–6
Holorhichis legendreii	F (CDE)	13.8	0.4	2.8	1–22
Lasiotocus multi	F	27.7	5.4	19.6	1–118
Lectichirium musculus	D	0.7	0.01	1	1
Opecoeloideis furcatus	BC (DEF)	44.6	6	13.4	2–92
Poracanthium furcatum	CDE (BF)	50	14	28	1–202
Proctotrema bacilliovarum	F (B)	33.1	4.1	12.3	1–170
Timonia Mediterranea	B	10.8	1	9.2	1–30
Site(s)	Prevalence (%)	Abundance	Mean	Range	
--------------	----------------	-----------	------	-------	
MURAENIDAE					
Muraena helena n=10					
Lecithochirium grandiporum	A 100	9	9	3–23	
Lecithochirium musculus	A 10	0.1	2	2	
Lecithochirium rufoviride	A 20	0.2	1	1	
Follicularium mediterraneum	DE 20	0.8	4	2–6	
PHYCIDAE					
Phycis phycis n=10					
Bathycracium elongata	D (CE) 50	2	4	1–9	
Derogetes varicus	A 10	0.2	2	2	
Lecithochirium musculus	A 40	2.8	7	3–14	
Stephanostomum pristis	B (C) 80	9.3	11.6	1–25	
SCIAENIDAE					
Sciaena umbra n=41					
Aonikostoma coronatum	F 85.4	476	558	18–2920	
Metadenia pauli	BCDE 68.3	1176	1722	2–6270	
Paracryptogonimus aloysiae	BCD 14.6	1	7.2	2–22	
Pleorchis polyorchis	C (D) 19.5	0.5	2.6	1–4	
Stephanostomum bicornatum	F 24.4	4.6	19	1–111	
Umbrina cirrosa n=1					
Lepocreadium pegorchis	CDE 100	284	284	284	
Pycnadenoides umbrinae	CD 100	4	4	4	
SCORPAENIDAE					
Scorpaena notata n=5					
Lecithochirium musculus	A 40	1.4	3.5	1–6	
Podocotyle scoraepaeae	D 20	0.6	3	3	
Scorpaena porcus n=70					
Deretremia scorpaenicola	G 21.4	0.3	1.4	1–4	
Helicometra form 2	BCD (AEF) 55.7	5.3	9.5	1–46	
Lecithochirium musculus	A 20	0.6	3.2	1–15	
Podocotyle scoraepaeae	CD 21.4	0.6	2.7	1–6	
Scorpaena scrofa n=11					
Helicometra form 2	BC (DE) 36.4	1.5	4.3	1–14	
Lecithochirium musculus	A 36.4	1.5	4	1–10	
Podocotyle scoraepaeae	BC (AD) 33.3	3.1	11.3	3–26	
SERRANIDAE					
Epinephelus marginatus n=1					
Podocotyle tenemesis	B 100	23	23	23	
Serranuss cabrilla n=15					
Deretrema scorpaenicola	G 20	0.3	1.7	1–2	
Helicometra form 1	BDF 26.7	0.5	1.8	1–3	
Serranuss scriba n=46					
Deretrema scorpaenicola	G 4.3	0.04	1	1	
Helicometra form 1	BCD (EF) 80.4	5.6	6.9	1–36	
Lecithochirium musculus	A (B) 28.3	1.5	5.3	1–16	
SOLEIDAE					
Monochirus hispidus n=3					
Homalometron galacticus	C 100	6.7	6.7	2–15	
Synaptaura kleinii n=8					
Homalometron senegalense	C (DE) 100	24.4	24.4	2–41	
SPARIDAE					
Boops boops n=13					
Aphanurus stossichi	A (B) 84.6	12.6	14.9	4–32	
Arnola microcirrus	A 30.8	0.9	3	1–7	
Site(s)	Prevalence (%)	Abundance	Mean	Range	
--------	----------------	-----------	------	-------	
Bacciger israelensis	B (C)	61.5	2.5	4.1	1–9
Hemiuus communis	A	76.9	7.5	9.8	4–32
Robphildillus fractum	D (C)	69.2	9	13	2–38
Dentex dentex n=13					
Allopodocaule jaffensis	E	7.7	0.15	2	2
Aphallus rubulco	CF	15.4	0.5	3.5	2–5
Aphallus tubarium	EF	84.6	18.8	22.2	1–71
Cainocreadium dentexis	BCD	76.9	8.2	10.6	1–34
Hemiuus communis	A	7.7	0.4	5	5
Metadenia depressa	BCD (E)	30.8	2.4	7.8	2–14
Pachycreadium carnosum	CDE	23.1	0.7	3	1–3
Diplodus annularis n=54					
Diphtherostomum brasinae	F	53.7	2	3.7	1–14
Lecthohirium musculus	A	1.8	0.04	2	2
Lepocreadium pegorhisis	B	1.8	0.2	1	1
Macvicaria crassigula	CDE (F)	29.6	1	3.7	1–6
Monorchis parvus	BC	72.2	11.7	16.2	1–122
Pseudopycnadenia fischthali	DE	3.7	0.1	2.5	1–4
Diplodus puntazzo n=31					
Monorchis monorchisis	B	12.9	0.1	1	1
Peracreadium characis	BC (D)	71	4.3	6	1–32
Pseudopycnadenia fischthali	CDE	9.6	0.1	1	1
Diplodus sargus n=69					
Diphtherostomum brasinae	F	31.9	7.2	22.5	1–92
Holorchis pyconos	CDEF	20.3	1.1	5.4	1–26
Lepidauchen stenomotoma	C	1.5	0.01	1	1
Lepocreadium album	CD	2.9	0.06	2	1–2
Macvicaria crassigula	CD (BE)	24.6	0.7	2.8	1–11
Monorchis parvus	B	20.2	3.7	15.2	1–17
Proctoeces maculatus	DEF	7.2	0.2	2.6	1–9
Pseudopycnadenia fischthali	DE	4.3	0.1	1.3	1–2
Wardula sarguicola	F	6	0.1	1.5	1–2
Zoogonus rubellus	F	13	2.6	20.2	1–120
Diplodus vulgaris n=43					
Diphtherostomum brasinae	F	34.9	9.2	26.3	1–93
Holorchis pyconos	CDEF (F)	16.3	1.3	8	1–24
Lepocreadium album	B	2.3	0.07	3	3
Macvicaria crassigula	CDE (B)	27.9	1.16	4.2	1–11
Monorchis parvus	B (C)	11.6	1.6	13.8	1–42
Proctoeces maculatus	F	2.3	0.02	1	1
Pseudopycnadenia fischthali	DE	13.9	0.1	0.8	1
Pychnadenoides senegalensis	E	2.3	0.02	1	1
Wardula sarguicola	F	2.3	0.02	1	1
Zoogonus rubellus	F	7	0.8	11.7	4–25
Lithognathus mormyrus n=52					
Derogenes iatus	G	1.9	0.02	1	1
Diphtherostomum brasinae	F	3.8	0.06	1.5	1–2
Holorchis pyconos	CDEF	50	2.1	4.2	1–17
Lepocreadium pegorhisis	B (C)	5.8	0.7	12.7	1–21
Macvicaria mormyri	CD	25	0.4	1.5	1–2
Pychnadenoides senegalensis	CD	3.8	0.15	4	1–4
Oblada melanura n=22					
Hemiuus communis	B	4.5	0.05	1	1
Lepocreadium album	BC	31.8	6	19	2–42
Table II. (Continued).

Species	Site(s)	Prevalence (%)	Abundance	Mean	Range
Macvicaria dubia	CDE	31.8	0.7	2.1	1–4
Pagellus erythrinus n=92					
Allopodocotyle jaffensis	E	2.2	0.02	1	1
Hemiusurus communis	ACD	3.3	0.15	4.7	2–8
Hemiusurus luehei	A	2.2	0.1	3	2–4
Holorchis micracanthum	CDE	10.9	0.3	2.3	1–4
Holorchis pycnoporus	CD (E)	19.6	0.8	4	1–25
Lepidauchen stenostoma	D	1.1	0.01	1	1
Lepocreadium album	C	4.3	0.04	2.8	1–5
Macvicaria crassigula	CD	9.8	0.2	1.7	1–7
Pachycreadium carnosum	CD (E)	28.3	0.5	1.7	1–4
Pagrus pagrus n=59					
Allopodocotyle jaffensis	DEF	16.9	0.3	1.6	1–3
Aphallus rubalo	E	1.7	0.05	3	3
Hemiusurus communis	AC (D)	5.1	0.1	2.3	2–4
Hemiusurus luehei	A	1.7	0.07	4	4
Holorchis micracanthum	D	1.7	0.02	1	1
Holorchis pycnoporus	DEF	15.3	0.4	2.7	1–12
Lecithochirium musculus	A	3.4	0.03	1	1
Macvicaria crassigula	CD (E)	27.1	1	3.6	1–18
Pachycreadium carnosum	CD (E)	25.4	0.5	2.1	1–9
Zoogonus rubellus	F	3.4	0.05	1.5	1–2
Sarpa salpa n=9					
Centroderma spinossima	CDE	44.4	13.6	30.5	1–60
Elstia stossichiana	DE	11.1	3.6	32	32
Lepocreadium pegorchis	B	22.2	0.4	2	1–3
Mesometra brachycoelia	BCDE	55.6	17.7	31.8	1–60
Mesometra orbicularis	BCDE	77.8	11.2	14.4	1–53
Robphildollfustum fractum	DE (CF)	77.8	34.3	44.1	2–112
Wardula capitellata	E	44.4	1.2	2.8	2–5
Sparus auratus n=19					
Allopodocotyle pedicellata	EF	57.9	3.3	5.7	2–12
Diphterostomum brusinae	F (E)	26.3	6.7	25.6	6–78
Macvicaria maillardi	CDE	52.7	1.5	2.9	1–12
Macvicaria obovata	CDE (F)	52.7	3	5.8	1–10
Pycnadenoides senegalense	CD (E)	26.3	2.3	8.8	1–14
Zoogonus rubellus	F	10.5	1	9.5	1–18
Spondyliosoma cantharus n=108					
Arnola microcirrus	A	0.9	0.01	1	1
Hemiusurus communis	A	2.8	0.1	3.3	1–8
Lepocreadium album	BC	2.8	0.1	3	1–5
Macvicaria crassigula	DE	2.8	0.03	1	1
Monorchis monorchis	B	7.4	0.4	4.8	1–18
SYNODONTIDAE					
Synodus saurus n=29					
Aphanus stossichi	A	3.5	0.03	1	1
Derogenes varicus	A	3.5	0.03	1	1
Helicometra form 3	D	3.5	0.07	2	2
Hemiusurus communis	A	17.2	0.2	1	1
Lecithaster sp.	D	3.5	0.03	1	1
Lecithochirium musculus	A	31	0.8	2.5	1–8

Digean species diversity in teleosts 57
temensis and Timonia mediterranea; (3) the duodenum for Homalometron galaicus, Monorchis blennii, Prosorhynchus crucibulum and Timoniella praeteritum; (4) the rectum for Diphterostomum brusinae, Lasiotocus mulli, Lecithaster stellatus, Metadena phoceae, Prosorhynchus aculeatus, Stephanostomum minutum, Tergestia acanthocephala, Wardula sarguicola and Zoogonus rubellus; and (5) the gall-bladder for Derogenes latus (but a single individual was recovered from the pyloric caeca of Lophius piscatorius), Deretrema scorpaenicola (but a single individual was found in the middle intestine of Labrus viridis) and Anisocoelium capitellatum.

Some other digenean species were much less restricted in their distribution and were found all along the digestive tract of their host apart from the stomach and gall-bladder: Bathycreadium elongata, Helicometra form 1, Helicometra form 2, Holorchis pycnoporus, Opecoeloides furcatus, Peracreadium genu, Poracanthium furcatum and Stephanostomum cesticillum.

In Table III, we present a parasite–host list. Of the 102 digenean species found in the teleosts from Scandola, 55 were oioxenic (53.9%), 13 stenoxenic (12.7%) and 34 (33.3%) euryxenic (terminology of Euzet and Combes 1980). Of the 34 euryxenic species, nine were restricted to sparids (five digenean species found in two hosts, three in three hosts, one in six hosts), 17 were parasites of two to five unrelated fish host species, six of six to 10 unrelated hosts and two of >11 unrelated hosts. These latter two cases refer to Lecithochirium musculus and forms of Helicometra (which will probably prove to be a species complex).

With the exception of the nine euryxenic species found in sparids, all of the other 25 euryxenic species are found in unrelated fish families. Among these 25 euryxenic digeneans: 14 parasitize fish hosts belonging to two different families, six parasitize fish hosts belonging to three different families, two parasitize fish hosts belonging to four
Parasite	Hosts
Allopodocotyle jaffensis	Dentex dentex, Pagellus erythrinus, Pagrus pagrus
Allopodocotyle pedicellata	Sparus auratus
Anisocladium fallax	Uranoscopus scaber
Anisocladium gracile	Uranoscopus scaber
Anisocoelium capitellatum	Uranoscopus scaber
Anoikstostoma coronatum	Sciaena umbra
Aphallus rubalo	Dentex dentex, Pagrus pagrus
Aphallus tubarium	Dentex dentex, Lophius piscatorius
Aphanurus stossichi	Boops boops, Synodus saurus, Trachurus mediterraneus
Aponurus laguncula	Mullus surmuletus
Arnola microcirrus	Boops boops, Spondyliosoma cantharus
Bacciger bacciger	Atherina boyeri
Bacciger israelensis	Boops boops
Bathycreadium elongata	Gaidropsarus mediterraneus, Phyctis phycis
Bucephalus baeri	Dicentrarchus labrax
Bucephalus labracis	Dicentrarchus labrax
Bucephalus marinus	Gaidropsarus mediterraneus
Bucephalus minimus	Dicentrarchus labrax
Cainocreadium dentecis	Dentex dentex
Cainocreadium labracis	Dicentrarchus labrax
Centrodera spinossissima	Sarpa salpa
Deretrama scorpaenicola	Gaidropsarus mediterraneus, Gobius paganellus, Labrus merula, L. viridis, Serranus cabrilla, S. sriba, Scorpaena porcus, Symphodus ocellatus, S. rostratus
Derogenes latus	Lithognathus mormyrus, Lophius piscatorius, Mullus surmuletus
Derogenes varicus	Gaidropsarus mediterraneus, Phyctis phycis, Synodus saurus
Dinosoma sp.	Lophius piscatorius
Diptherostomum brasimae	Coris julis, Diplodus annularis, D. sargus, D. vulgaris, Labrus merula, Lithognathus mormyrus, Parablenius gattorugine, Sparus auratus
Ectenurus lepidus	Trachurus picturatus, T. trachurus
Elstia stossichianum	Sarpa salpa
Folliculocystarium mediterraneum	Muraena helena
Gaevskajatrema perezi	Symphodus cinereus, S. roissali
Genicocotyle mediterranea	Apogon imberbi, Atherina boyeri, Pomatoschistus marmoratus, Symphodus ocellatus
Helicometra form 1	Serranus cabrilla, S. sriba
Helicometra form 2	Labrus merula, Scorpaena porcus, S. scrofa, Symphodus tinca
Helicometra form 3	Bothus podas, Chelidonichthys lucerna, Conger conger, Gaidropsarus mediterraneus, Labrus merula, L. viridis, Symphodus ocellatus, S. roissali, S. tinca, Synodus saurus, Thalassoma pavo, Xyrichtys novacula, Zeus faber
Helicometra form 4	Symphodus mediterraneus, S. ocellatus, S. rostratus
Hemiurus communis	Boops boops, Dentex dentex, Oblada melanura, Pagellus erythrinus, Pagrus pagrus, Spicara maena, S. maris, Spondyliosoma cantharus, Synodus saurus, Trachurus mediterraneus
Hemiurus luehet	Pagellus erythrinus, Pagrus pagrus, Trachinus araneus
Holorchis legendrei	Mullus surmuletus
Holorchis microcanthus	Pagellus erythrinus, Pagrus pagrus
Holorchis pycnoporus	Diplodus sargus, D. vulgaris, Lithognathus mormyrus, Pagellus erythrinus, Pagrus pagrus, Symphodus roissali
Homalometron galaicus	Monochirus hispidus
Homalometron senegalense	Synaptura kleinii
Lasiotocus mulli	Mullus surmuletus
Lasiotocus typicus	Trachurus mediterraneus, T. trachurus
Parasite	Hosts
--------------------------------	--
Lecithaster stellatus	Atherina boyeri, Belone belone, Symphodus ocellatus
Lecithaster sp.	Synodus saurus
Lecithochirium fusiforme	Conger conger, Lophius piscatorius
Lecithochirium grandiporium	Muraena helena
Lecithochirium musculus	Chelidonichthys lucerna, Conger conger, Diplodous annularis, Gobius
	cobitis, G. cruciatatus, G. pugnax, Lophius piscatorius, Mullus
	surmuletus, Muraena helena, Pagrus pagrus, Physicus physicus, Scorpaena
	notata, S. porcus, S. scrofa, Serranis scribes, Symphodus tinca, Synodus
	saurus
Lecithochirium rufoviride	Conger conger, Muraena helena
Lecithostaphylus retroflexus	Belone belone
Lepidacthen stenostoma	Diplodous sargus, Labrae merula, Pagellus erythrinus
Lepocreadum album	Diplodous sargus, D. vulgaris, Oblada melanura, Pagellus erythrinus,
	Spicaia maris, Spondylosos cantharus
Lepocreadum pegorchis	Diplodous annularis, Lithognathus mormyrus, Umbrina cirrosa, Sarpa
	salpa
Macvicaria alacris	Symphodus cinereus, S. ocellatus, S. rostratus, S. tinca
Macvicaria crassigula	Diplodous annularis, D. sargus, D. vulgaris, Pagellus erythrinus, Pagrus
	pagrus, Spondylosos cantharus
Macvicaria dubia	Oblada melanura
Macvicaria maillardi	Sparus auratus
Macvicaria mormyris	Lithognathus mormyrus
Macvicaria oboeata	Sparus auratus
Magnibrutatus shirabini	Salaria parvo
Mesometra brachycoelia	Sarpa salpa
Mesometra orbicularis	Sarpa salpa
Metadena depressa	Dentex dentex
Metadena pauli	Sciaena umbra
Metadena phoceae	Gaidropsaros mediterraneus
Monasus filiformis	Trachurus picturatus
Monorchis blennii	Parablenius gattergine
Monorchis monorchis	Diplodous puntazzo, Spondylosos cantharum
Monorchis parvus	Diplodous annularis, D. sargus, D. vulgaris
Opecoeloides columbellae	Gaidropsaros mediterraneus
Opecoeloides furcatus	Mullus surmuletus
Pachycreadium carnosum	Dentex dentex, Pagellus erythrinus, Pagrus pagrus
Paracryptogonimus alosiae	Sciaena umbra
Peracreadium characis	Diplodous puntazzo
Peracreadium generi	Labrae merula, L. viridis
Pleorchis polyorchis	Sciaena umbra
Podocotyle nocirella	Conger conger
Podocotyle scroaenae	Scorpaena notata, S. porcus, S. scrofa
Podocotyle tennensis	Epinephelus marginatus
Poracanthium furcatum	Mullus surmuletus
Proctoeces maculatus	Diplodous sargus, D. vulgaris, Labrae melanura, Symphodus tinca
Protectrema baciliformatum	Mullus surmuletus
Predistomum poloni	Trachurus mediterraneus, T. picturatus, T. trachurus
Prosorhynchoides gracilescens	Lophius piscatorius
Prosorhynchus aculeatus	Conger conger, Lophius piscatorius
Prosorhynchus crucibulum	Conger conger
Pseudoopoleoides chloroscombri	Trachurus mediterraneus, T. picturatus, T. trachurus
Pseudopycnadenia fischthali	Diplodous annularis, D. sargus, D. vulgaris, D. puntazzo
Pycnadenoides senegalensis	Diplodous vulgaris, Lithognathus mormyrus, Sparus auratus
Pycnadenoides umbrinæ	Umbrina cirrosa
Rhophodolus fususum fractum	Boops boops, Sarpa salpa
Stephanostomum bicoronatum	Sciaena umbra
different families, one parasitizes fish hosts belonging to five different families, one parasitizes fish hosts belonging to nine different families and one parasitizes fish hosts belonging to 12 different families. Nevertheless, two digenean species are found in the family pair Congridae–Lophiidae, two others are in the pair Triglidae–Lophiidae and two others in the Labridae–Sparidae–Blenniidae. For these euryxenic species, the relationships between the parasites and their hosts probably have an ecological basis (e.g. foodwebs).

In Table IV, we compare the data collected from each teleost species studied in the Scandola Nature Reserve with those reported from the same teleost species in other areas of the Mediterranean and the Black Seas. Such a comparison is not easy because: (1) the sample size varies; and (2) the digenean species reported are sometimes different. In this study, the validity and synonymy of the different digenean species reported by the various authors are not discussed.

In a specific geographical area, the ratio of the total number of the digenean species found in all fish species studied (\(N \)) to the number of fish species examined (\(N' \)), which corresponds to the mean number of digenean species per host species, i.e. \(M = N/N' \), is a reflection of digenean species diversity. Table IV shows that the highest ratio (3.8) is observed off the Scandola Nature Reserve. By contrast, the lowest ratio is reported for the Adriatic (1.9; 2.0; 0.6: the last value could be wrong due to the nature of the data provided by Radujkovic and Raibaut 1989), while an intermediate situation is observed for the Eastern Mediterranean (2.6; 2.9; 2.1).

If we compare the data reported for the Sparidae, a family which has been well studied throughout the Mediterranean (Table V), we obtain similar results: a high mean number of digenean species per host species occurs off the Scandola Nature Reserve, a much lower level in the Adriatic and an intermediate situation for the Eastern Mediterranean. Fredj et al. (1992) have shown that biodiversity in general is high in the Western Mediterranean, lower in the Adriatic and even lower in the Eastern Mediterranean. The high digenean diversity observed for the Scandola region is in accordance with Fredj et al. (1992), but the lower diversity for the Adriatic as compared with the Eastern Mediterranean differs somewhat from the findings of these authors. The higher digenean diversity observed in the Eastern Mediterranean \(\text{vis-à-vis} \) the Adriatic could be related to the encroachment of the Red Sea digenean fauna carried by Red Sea immigrant teleost hosts. In the Western Mediterranean, the high value of the ratio \(N/N' \) found off the Scandola Nature Reserve (3.8) strongly contrasts with a lower one (2.0) indicated by Orecchia and Paggi (1978) for

Parasite	Hosts
Stephanostomum cesticillum	Lophius piscatorius, Zeus faber
Stephanostomum gaidropsari	Gaidropsarus mediterraneus
Stephanostomum minutum	Uranoscopus scaber
Stephanostomum pristis	Phycis phycis
Synaptobothrium caudiporum	Chelidomichthys lucerna, Lophius piscatorius
Tergestia acanthocephala	Belone belone
Tergestia laticollis	Trachurus mediterraneus, T. picturatus, T. trachurus
Timonidia mediterranea	Mullus surmuletus
Timoniella praeteritum	Dicentrarchus labrax
Wardula capiellata	Sarpa salpa
Wardula sargicula	Diplodus sargus, D. vulgaris
Zoogonus rubellus	Diplodus sargus, D. vulgaris, Labrus merula, Pago pagrus, Parablennius gattorugine, Sparus auratus, Symphodus tinca

Table III. (Continued).
Table IV. Number of digenean species from teleost fishes off the Scandola Nature Reserve (Corsica) compared, where available, with data from the same host species from other areas of the Mediterranean and Black Seas (bold type indicates the highest number of digenean species reported in the host fish; the sample size is given in parentheses).

	Western Mediterranean	Adriatic	Eastern Mediterranean						
	Scandola	Split	Montenegro	Greece	Lebanon	Israel	Black Sea		
Present work	1^	2	3	4	5	6	7	8	9
APOGONIDAE									
Apogon imberbis	1 (9)	–	–	–	–	–	–	–	
ATHERINIDAE									
Atherina boyeri	3 (26)	–	–	2 (78)	2	2	–	–	–
BELONIDAE									
Belone belone	3 (30)	–	1 (2)	–	0	1	–	–	0 (13)
BLENNIIDAE									
Parablennius gattorugine	3 (6)	4 (34)	2 (7)	–	0	1	–	–	–
Salaria pavo	1 (2)	1 (112)	–	–	0	–	0 (12)	–	–
BOTHIDES									
Bothus podas	1 (6)	0 (17)	1 (2)	–	–	2	–	–	–
CARANGIDAE									
Trachurus spp.	8 (69)	2 (66)	2 (21)	2 (15)	2	6	3 (24)	–	6 (18)
CENTRACANTHIDAE									
Spicara maena	1 (5)	–	2 (20)	–	–	2	–	1 (80)	1 (38)
Spicara smaris	2 (10)	–	3 (16)	–	0	3	1 (50)	–	–
CONGRIDAE									
Conger conger	7 (3)	1 (106)	–	1 (6)	1	5	–	–	–
GOBIIDAE									
Gobius cobitis	1 (6)	3 (107)	–	–	–	–	–	1 (23)	–
Gobius crucatus	1 (1)	–	1 (2)	–	0	1	–	–	–
Gobius geniporus	0 (17)	–	1 (3)	–	–	–	–	–	–
Gobius paganellus	2 (11)	1 (4)	–	–	–	–	–	–	–
Pomatoschistus marmoratus	1 (35)	–	–	–	–	–	–	–	–
Table IV. (Continued).

	Western Mediterranean	Adriatic	Eastern Mediterranean						
	Scandola	Split	Montenegro	Greece	Lebanon	Israel	Black Sea		
Present work	1†	2	3	4	5	6	7	8	9
LABRIDAE									
Coris julis	1 (58)	–	1 (6)	–	–	0	–	–	–
Labrus merula	7 (54)	–	1 (1)	–	–	4	–	–	–
Labrus viridis	3 (19)	–	–	–	–	–	–	–	–
Symphodus cinereus	2 (82)	–	–	5 (74)	–	0	–	–	2 (13)
Symphodus mediterraneus	1 (17)	–	–	–	0	5	–	–	–
Symphodus ocellatus	5 (302)	–	–	–	–	–	–	–	–
Symphodus roissali	3 (230)	0 (105)	1 (4)	–	2	–	2 (9)	1 (21)	
Symphodus rostratus	3 (41)	–	–	–	3	–	–	–	–
Symphodus tinca	5 (114)	–	3 (11)	3 (63)	3	2	–	3 (16)	3 (22)
Thalassoma pavo	1 (2)	–	–	–	0	0	1 (3)	–	–
Xyrichtys novacula	1 (4)	–	–	–	0	–	–	–	–
LOPHIIDAE									
Lophius piscatorius	9 (16)	1 (10)	1 (4)	–	–	5	–	–	–
LOTIDAE									
Gaidropsarus mediterraneus	8 (17)	–	1 (2)	–	–	5	–	4 (12)	–
MORONIDAE									
Dicentrarchus labrax	5 (11)	4 (200)	–	0	2	1 (1)	0 (2)	–	–
MULLIDAE									
Mullus surmuletus	9 (129)	1 (110)	1 (1)	2 (2)	2	3	2 (26)	6 (14)	4 (65)
MURAENIDAE									
Muraena helena	4 (10)	–	1 (1)	–	0	1	–	–	–
PHYCIDAE									
Phycis phycis	4 (10)	–	–	–	0	3	–	–	–
Table IV. (Continued).

Western Mediterranean	Adriatic	Eastern Mediterranean							
Scandola	Split	Montenegro	Greece	Lebanon	Israel	Black Sea			
Present work	1†	2	3	4	5	6	7	8	9

SCIAENIDAE
- *Sciaena umbra* 5 (41) – 1 (1) – 0 – – 0 (3) 3 (26) 1 (7)
- *Umbrina cirrosa* 2 (1) 2 (114) – – – 0 2 – 5 (17) 1 (1) 2 (3)

SCORPAENIDAE
- *Scorpaena notata* 2 (5) – – – – 0 – – 0 (1) – –
- *Scorpaena porcus* 4 (70) – – – 0 1 – 0 (14) 2 (75) 3 (35)
- *Scorpaena scrofa* 3 (11) – – – 0 1 – 0 (2) – –

SERRANIDAE
- *Epinephelus marginatus* 1 (1) – – – 0 – 1 (17) 1 (15) – –
- *Serranus cabrilla* 2 (15) – 1 (3) 1 (23) 1 3 – – – –
- *Serranus scriba* 3 (46) – 2 (11) – 0 3 – – – 0 (5)

SOLEIDAE
- *Monochirus hispidus* 1 (3) – 1 (3) – – 0 – – – –
- *Synaptaura kleinii* 1 (8) – – – – – – – –

SPARIDAE
- *Boops boops* 5 (13) 3 (142) 5 (32) – 0 4 3 (266) 5 (32) – –
- *Dentex dentex* 7 (13) 2 (111) – 0 1 – – – –
- *Diplodus annularis* 6 (54) – 6 (46) 4 (85) 4 8 0 (27) – 3 (42) 2 (28)
- *Diplodus puntazzo* 3 (31) – – – 0 5 – 0 (1) – –
- *Diplodus sargus* 10 (69) – 1 (4) – 0 1 4 (252) 5 (44) – –
- *Diplodus vulgaris* 10 (43) 2 (41) 2 (10) 1 (2) 1 5 4 (202) 4 (15) – –
- *Lithognathus mormyrus* 6 (52) – – 3 (15) 3 2 5 (420) 3 (40) – –
- *Oblada melanura* 3 (22) – 1 (11) – 0 3 2 (92) 3 (16) – –
- *Pagellus erythrinus* 9 (92) 3 (260) 1 (18) 2 (40) 2 5 8 (306) – –
- *Pagrus pagrus* 10 (59) – – – – – – 2 (40) 2 (10) – –
- *Sarpa salpa* 7 (9) 6 (250) 4 (12) – – 4 – 5 (24) – –
- *Sparus auratus* 6 (19) 3 (100) – 1 (2) 1 3 – 3 (8) – –
Table IV. (Continued).

Western Mediterranean	Adriatic	Eastern Mediterranean							
Scandola	North-western Italian coast	Split	Montenegro	Greece	Lebanon	Israel	Black Sea		
Present work	1†	2	3	4	5	6	7	8	9

SYNODIDAE

Spondylosoma cantharus
(108) – 1 (2) – 0

SYNODIDAE

Synodus saurus
6 (29)

TRACHINIDAE

Trachinus araneus
1 (4)

Trachinus draco
0 (2) 1 (21) 1 (6) – 0

TRIGLIDAE

Chelidonichthys lucerna
4 (5)

URANOSCOPIDAE

Uranosco pus scaber
4 (49) 2 (100) 3 (43) 2 (7) 2

ZEIDAE

Zeus faber
2 (12) 0 (100) 2 (11) – 0

No. of fish examined	2238	2110	390	338	?	?	1767	304	310	346
No. of digenean species reported (N)	234	42	60	24	24	122	40	47	32	28
No. of fish host species studied (N')	61	21	32	12	41	47	14	22	12	13
N/N'	3.8	2	1.9	2	0.6	2.6	2.9	2.1	2.7	2.2

†References: 1, Orecchia and Paggi 1978; 2, Sey 1968, 1970; 3, Radujkovic et al. 1989; 4, Radujkovic and Raibaut 1989 (sample value not given); 5, Papoutsoglou 1976 (sample value not given); 6, Saad-Fares 1985; 7, Fischthal 1980, 1982; 8, Vlassenko 1931; 9, Pogoreltseva 1952.
the north-western coast of Italy (Table IV). These two places are not widely distant and the striking contrast appears not to be related to sampling effort, since the sample numbers are similar in these two areas (2238 fish for Scandola 2110 for the north-western coast of Italy). As an example, eight digenean species were found in 69 specimens of three *Trachurus* spp. (i.e. 27 *T. mediterraneus* + 17 *T. picturatus* + 25 *T. trachurus* = 69; often these three species are reported as ‘*T. trachurus’*), but only two from 66 along the western coast of Italy. For a particular host fish, the number of digenean species recovered tends to increase in step with the sample size. Nevertheless, we have found seven digenean species in three *Conger conger* from off Scandola, while only one has been reported in 106 *C. conger* from western Italy. Similarly, seven digenean species were found in 13 *Dentex dentex* from off Scandola, while only two were reported from 111 of these fishes from the western Italian coast.

Table VI shows a comparison of the digenean fauna for the same 21 teleost species (i.e. restricted to those hosts recorded by the Italians) studied both off Scandola and the north-western coast of Italy (see list in Table IV). The ratio value (*N/N*') for off the Scandola Nature Reserve (4.8) is much higher than that for the north-western coast of Italy (2.0), even though the sampling numbers in the first area (742) are significantly lower than that of the second (2110).

The very high digenean species diversity observed off the Scandola Nature Reserve is probably related to the high general level of biodiversity reported in the region (Miniconi et al. 1990; Verlaque 1990; Merella 1991; Verlaque et al. 1999). This high level of biodiversity is related to the stability of the equilibrium of the ecosystem in this well-preserved area (protected for 25 years), which is devoid of major pollutants and opens

Table V. Digenean species diversity in the well-studied sparid fishes (data from table IV).

Region	N	N'	N/N'
Western Mediterranean			
Scandola Nature Reserve	87	13	6.7
North-western Italian	19	6	3.2
Adriatic			
Split (Sey 1968, 1970)	21	8	2.6
Montenegro (Radujkovic et al. 1989)	11	5	2.2
Montenegro (Radujkovic and Raibaut 1989)	11	11	1
Eastern Mediterranean			
Saronicos, Greece (Papoutsoglou 1976)	45	12	3.8
Lebanon (Saad-Fares 1985)	32	9	3.6
Israel (Fischthal 1980, 1982)	30	9	3.3

* N, Total number of all digenean species reported from all sparid species; N', total number of sparid species.

Table VI. Comparison of the digenean diversity from the same 21 teleost species (see Table IV) studied off the Scandola Nature Reserve (SNR) and off the north-western Italian coast (data from Orecchia and Paggi 1978).

Region	n	N	N'	N/N'
SNR (Corsica)	742	101	21	4.8
NW Italian coast	2110	42	21	2

n, Total number of fishes examined; *N*, total number of digenean species reported; N', total number of fish species.
directly to the Western Mediterranean basin. A high level of biodiversity and favourable environmental factors will promote the successful completion of the digenean life-cycle.

Acknowledgements

Fieldwork on Corsica was carried out under the auspices of the Comité Scientifique de la Réserve Naturelle de Scandola, and P.B. was funded by the French Ministère de l’Environnement and by the Régional Authorities of Corsica.

References

Bartoli P. 1983. Populations ou espèces? Recherches sur la signification de la transmission de Trématodes Lepocreadiinae (T. Odhner 1905) dans deux écosystèmes marins. Annales de Parasitologie Humaine et Comparée 58:117–139.

Bartoli P. 1987. Caractères adaptatifs originaux des Digènes intestinaux de Sarpa salpa (Teleostei, Sparidae) et leur interprétation en termes d’évolution. Annales de Parasitologie Humaine et Comparée 62:542–576.

Bartoli P, Bray RA. 1987. Redescription of two cryptogonimid digeneans from the fish Dentex dentex (L. 1758) (Sparidae) in the Mediterranean Sea. Systematic Parasitology 10:117–127.

Bartoli P, Bray RA. 1990. Deretrema (Spinoderetrema) scorpaenicola n. sp. (Digenea: Zoogonidae) from the gall-bladder of western Mediterranean teleosts. Bulletin du Museum National d’Histoire Naturelle, Paris, sér. 4 12A(1):43–50.

Bartoli P, Bray RA. 1996. Description of three species of Holorchis Stossich, 1901 (Digenea: Lepocreadiidae) from marine fishes off Corsica. Systematic Parasitology 35:133–143.

Bartoli P, Bray RA. 2001. Contribution to the knowledge of species of the genus Stephanostomum Looss, 1899 (Digenea: Acanthocolpidae) from teleosts of the Western Mediterranean, with the description of S. gaidropsari n. sp. Systematic Parasitology 49:159–188.

Bartoli P, Bray RA. 2004. Ancylocoelium typicum Nicoll, 1913 (Digenea, Monorchiidae), a poorly known parasite of Trachurus spp. (Teleostei, Carangidae) from the Western Mediterranean and north-eastern Atlantic, and observations on its taxonomic position. Systematic Parasitology 58:23–39.

Bartoli P, Gibson DI. 1989. Wardula sarguicola n. sp. (Digenea, Mesometridae), a rectal parasite of Diplodus sargus (Teleostei, Sparidae) in the western Mediterranean. Annales de Parasitologie Humaine et Comparée 64:20–29.

Bartoli P, Gibson DI. 1991. On Podocotyle scorpaeae, Poracanthium furcatum and Derogenes latus, three poorly known digenean parasites of western Mediterranean teleosts. Systematic Parasitology 20:29–46.

Bartoli P, Gibson DI. 1995. Three rare and little known cryptogonimid digeneans from the sciaenid fish Sciaena umbra (L.) in the western Mediterranean. Systematic Parasitology 30:121–139.

Bartoli P, Gibson DI. 1998. A new acanthoculpid cercaria (Digenea) from Cantharus dorbignyi (Prosobranchia) in the Western Mediterranean. Systematic Parasitology 40:175–184.

Bartoli P, Gibson DI. 2000. Three little known acanthostomine digeneans from Uranoscopus scaber L. in the Western Mediterranean. Systematic Parasitology 46:123–141.

Bartoli P, Gibson DI. 2001. Metadena phoecea n. sp. (Digenea: Cryptogonimidae), a rectal parasite of the shore rockling Gaidropsarus mediterraneus (Teleostei: Lotidae) in the Western Mediterranean. Systematic Parasitology 50:53–62.

Bartoli P, Prévot G. 1966. Contribution à l’étude des Monorchiidae (T. Odhner 1911) parasites des Poissons du genre Mullus en Méditerranée; description de Timonia mediterranea n. gen., n. sp. (Trematoda, Digenea). Annales de Parasitologie Humaine et Comparée 41:397–412.

Bartoli P, Gibson DI, Bray RA. 1988. The Opecoelidae (Digenea) of sparid fishes of the western Mediterranean. I. Pachycreadium Manter, 1954. Systematic Parasitology 12:231–239.

Bartoli P, Bray RA, Gibson DI. 1989a. The Opecoelidae (Digenea) of sparid fishes of the western Mediterranean. III. Macrocercaria Gibson & Bray, 1982. Systematic Parasitology 13:167–192.

Bartoli P, Bray RA, Gibson DI. 1989b. The Opecoelidae (Digenea) of sparid fishes of the western Mediterranean. V. Allopodocotyle Pritchard, 1966. Systematic Parasitology 14:69–77.

Bartoli P, Gibson DI, Bray RA. 1989c. The Opecoelidae (Digenea) of sparid fishes of the western Mediterranean. IV. Peracreadium Nicoll, 1909 and Cainocreadium Nicoll, 1909. Systematic Parasitology 14:53–67.
Bartoli P, Gibson DI, Bray RA, Maillard C, Lambert M. 1989d. The Opecoelidae (Digenea) of sparid fishes of the western Mediterranean. II. *Pycnadenoides* Yamaguti, 1938 and *Pseudopycnadenia* Saad-Fares & Maillard, 1986. Systematic Parasitology 13:35–51.

Bartoli P, Gibson DI, Bray RA. 1993. The Opecoelidae (Digenea) of sparid fishes of the western Mediterranean. VI. A redescription of *Macvicaria mormyri* (Stossich 1885) n. comb. and a key to the opecoelids from the western Mediterranean sparids. Systematic Parasitology 26:59–67.

Bartoli P, Gibson DI, Bray RA. 2004. Redescription of *Pleorchis polyorchis* (Stossich 1889) (Digenea: Acanthocolpidea), a rare and poorly known parasite of the intestine of *Sciaena umbra* L. (Perciformes: Sciaenidae) from the western Mediterranean Sea. Systematic Parasitology 58:81–90.

Bartoli P, Gibson DI, Riutort J-J. 1994. *Genitocotyle mediterranea* n. sp. (Digenea, Opecoelidae) from *Symphodus ocellatus* (Teleostei, Labridae) in the Western Mediterranean. Parasite 1:365–370.

Bartoli P, Jousson O, Russell-Pinto F. 2000a. The life cycle of *Monorchis parvus* (Digenea: Monorchidiidae) demonstrated by developmental and molecular data. Journal of Parasitology 86:479–489.

Bartoli P, Morand S, Riutort JJ, Combes C. 2000b. Acquisition of parasites correlated with social rank and behavioural changes in a fish species. Journal of Helminthology 74:289–293.

Bartoli P, Cribb TH, Bray RA. 2001. A redescription of *Homalometron senegalense* Fischthal & Thomas, 1972 (Digenea: Apocreadiidae) from *Synaptura kleinii* (Teleostei) of the Western Mediterranean. Systematic Parasitology 50:135–141.

Bartoli P, Bray RA, Gibson DI. 2003a. *Lecithostaphylus retroflexus* (Molin 1859) (Zoogonidae) and *Tergestia acanthocephala* (Stossich 1887) (Fellodistomidae) (Digenea) from the epipelagic teleost *Belone belone* (L.) in the Western Mediterranean. Systematic Parasitology 54:131–143.

Bartoli P, Bray RA, Gibson DI. 2003b. Opecoelidae (Digenea) from western Mediterranean fishes: three rare species. Systematic Parasitology 55:81–95.

Dawes B. 1968. The Trematoda with Special Reference to British and Other European Forms. Cambridge: Cambridge University Press. 644 p.

Dimitrov GI, Bray RA. 1994. A redescription and a new geographical record in the Black Sea of *Bacciger israelensis* Fischthal, 1980 (Trematoda: Fellodistomidae). Folia Parasitollogica 41:75–79.

Euzet L, Combes C. 1980. Les problèmes de l'espèce chez les animaux parasites. Bulletin de la Société Zoologique de France 40:239–285.

Froese R, Pauly D. 2001. Fishbase. http://www.fishbase.org.

Gibson DI. 1976. Monogenea and Digenea from fishes. Discovery Reports 36:182–266.
Gibson DI, Bray RA. 1982. A study and reorganization of *Plagioporus* Stafford, 1904 (Digenea: Opecoelidae) and related genera, with special reference to forms from European Atlantic waters. Journal of Natural History 16:529–559.

Gibson DI, Bray RA. 1986. The *Hemiuridae* (Digenea) of fishes from the north-east Atlantic. Bulletin of the British Museum (Natural History), Zoology Series 51:1–125.

Gibson DI, Bray RA. 1989. The taxonomic status of *Distomum umbrinae* Stossich, 1885 (Digenea: Opecoelidae) from the sciaenid fish *Umbrina cirrosa* (L.) in the Mediterranean Sea. Systematic Parasitology 13:63–70.

Holmes J, Bartoli P. 1993. Spatio-temporal structure of the communities of helminths in the digestive tract of *Sciaena umbra* L. 1758 (Teleostei). Parasitology 106:519–525.

Jousson O, Bartoli P. 1999. The life-cycle of three species of the *Mesometridae* (Digenea) with comments on the taxonomic status of this family. Systematic Parasitology 44:217–228.

Jousson O, Bartoli P. 2000. The life cycle of *Opecoeloides columbellae* comb. nov. (Digenea, Opecoelidae): evidence from molecules and morphology. International Journal for Parasitology 30:747–760.

Jousson O, Bartoli P. 2001. Molecules, morphology and morphometrics of cryptic *Cainocreadium* species (Digenea: Opecoelidae) parasitic in marine fishes with a description of *Cainocreadium dentecis* n. sp. International Journal for Parasitology 31:706–714.

Kostadinova A, Power AM, Balbuena JA, Raga JA, Gibson DI. 2003. Three species of *Magnibursatus* Naidenova, 1969 (Digenea: Hemiuridae) from Black Sea marine teleosts. Folia Parasitologica 50:202–210.

Looss A. 1907. Beiträge zur Systematik der Distomen. Zur kenntnis der Familie Hemiuriidae. Zoologischer Jahrbücher (Systematik) 26:63–180.

Maillard C. 1974. Cycle évolutif de *Timoniella praeteritum* (Looss 1901) (Trematoda, Acanthostomidae) parasite de *Morone labrax* (Teleostei, Serranidae). Bulletin de la Société Zoologique de France 99:245–257.

Maillard C. 1976. Distomatoses de poissons en milieu lagunaire. Thesis, Université des Sciences et Techniques du Languedoc, Montpellier, France, 383 p.

Margolis L, Esch GW, Holmes JC, Kuris AM, Schad GA. 1982. The use of ecological terms in parasitology (report of an *ad hoc* committee of the American Society of Parasitologists). Journal of Parasitology 68:131–133.

Palombi A. 1931. Il polimorfismo nei trematodi. Ricerche sperimentali su *Helicometra fasciata* (Rud.) = *H. pulchella* (Rud.) = *H. sinuata* (Rud.). Annuario del Museo Zoologica della R. Università di Napoli, n.s. 6:1–8.

Papoutsoglou SE. 1976. Metazoan parasites of fishes from Saronicos Gulf Athens-Greece. Thalassographica 1:69–102.
Pogorelt’seva TP. 1952. Parasites of fish of the north-eastern part of the Black Sea. Trudy Instituta Zoologii, Kiev 8:100–120 [in Russian].

Radujkovic BM, Raibaut A. 1989. Parasites des poissons marins du Montenegro: liste des espèces de poissons avec leurs parasites. Acta Adriatica 30:307–320.

Radujkovic BM, Orecchia P, Paggi L. 1989. Parasites des poissons marins du Montenegro; Digènes. Acta Adriatica 30:137–187.

Reversat J, Renaud F, Maillard C. 1989. Biology of parasite populations: the differential specificity of the genus *Helicometra* Odhner, 1902 (Trematoda: Opecoelidae) in the Mediterranean Sea, demonstrated by enzyme electrophoresis. International Journal for Parasitology 19:885–890.

Reversat J, Maillard C, Silan P. 1991. Polymorphismes phénotypique et enzymatique: intérêt et limites dans la description d’espèces d’*Helicometra* (Trematoda: Opecoelidae), mésoparasites de téléostéens marins. Systematic Parasitology 19:147–158.

Saad-Fares A. 1985. Trématodes de poissons des côtes du Liban. Spécificité, transmission et approche populationnelle. Thesis, Université des Sciences et Techniques du Languedoc, Montpellier, France, 435 p.

Sanmartin ML, Alvarez F, Quinteiro P, Paniagua A. 1995. *Apocreadium galaicus* sp. n. (Digenea: Apocreadiidae), a parasite of the thickback sole *Microchirus variegatus* (Soleidae, Osteichthyes) from N.W. Spain. Parasite 2(Suppl. 2):211–216.

Sasal P, Niquil N, Bartoli P. 1999. Community structure of digenean parasites of sparid and labrid fishes of the Mediterranean sea: a new approach. Parasitology 119:635–648.

Sey O. 1968. Parasitic helminths occurring in Adriatic fishes. Part I (flukes). Acta Adriatica 13(4):3–14.

Sey O. 1970. Parasitic helminths occurring in Adriatic fishes. Part II (flukes and tapeworms). Acta Adriatica 13(6):3–15.

Verlaque M. 1990. Flore marine de la région de Galeria. Travaux Scientifiques du Parc Naturel Régional et des Réserves Naturelles de Corse 29:77–88.

Verlaque M, Francour P, Sartoretto S. 1999. Evaluation de la valeur patrimoniale des biocénoses marines de la face ouest de l’îlot de Gargalù (Réserve intégrale de Scandola). Travaux Scientifiques du Parc Naturel Régional et des Réserves Naturelles de Corse 59:121–168.

Vlassenko PV. 1931. On the parasitic worm fauna of fishes of the Black Sea. Trudy Karadah’s’koyi Nauchnoyi Stantsiyi imeni T.I. Vyazem’s’koho 4:88–136 [in Russian and German].

Whitehead PJP, Bauchot ML, Hureau JC, Nielsen J, Tortonese E. 1986. Fishes of the North-eastern Atlantic and the Mediterranean. Vols I–III, Paris: UNESCO. 1473 p.