ASCL1 is a MYCN- and LMO1-dependent member of the adrenergic neuroblastoma core regulatory circuitry

Lu Wang1,2, Tze King Tan1, Adam D. Durbin3,4,5, Mark W. Zimmerman3, Brian J. Abraham6,7, Shi Hao Tan1, Phuong Cao Thi Ngoc1, Nina Weichert-Leahey3,4, Koshi Akahane3,8, Lee N. Lawton6, Jo Lynne Rokita9,10, John M. Maris9,11, Richard A. Young6,12, A. Thomas Look3,4* & Takaomi Sanda1,2*

A heritable polymorphism within regulatory sequences of the LMO1 gene is associated with its elevated expression and increased susceptibility to develop neuroblastoma, but the oncogenic pathways downstream of the LMO1 transcriptional co-regulatory protein are unknown. Our ChIP-seq and RNA-seq analyses reveal that a key gene directly regulated by LMO1 and MYCN is ASCL1, which encodes a basic helix-loop-helix transcription factor. Regulatory elements controlling ASCL1 expression are bound by LMO1, MYCN and the transcription factors GATA3, HAND2, PHOX2B, TBX2 and ISL1—all members of the adrenergic (ADRN) neuroblastoma core regulatory circuitry (CRC). ASCL1 is required for neuroblastoma cell growth and arrest of differentiation. ASCL1 and LMO1 directly regulate the expression of CRC genes, indicating that ASCL1 is a member and LMO1 is a coregulator of the ADRN neuroblastoma CRC.
Neuroblastoma is an embryonal tumor of the peripheral sympathetic nervous system, accounting for 7.5% of all cancer diagnoses in children1–3. The majority of children with neuroblastoma have highly invasive tumors, which are often metastatic at diagnosis. The outcome for high-risk neuroblastoma cases is very poor, with long-term survival less than 50%4,5. In childhood neuroblastoma, our previous genome-wide association study (GWAS) has shown that polymorphisms at the \textit{LMO1} gene locus are strongly associated with susceptibility to tumor formation6. Germline single nucleotide polymorphism (SNP) risk alleles are associated with increased \textit{LMO1} expression in neuroblastoma cell lines and primary tumors. Genetic knockdown of \textit{LMO1} inhibits the growth of neuroblastoma cells, whereas overexpression of \textit{LMO1} enhances proliferation in cells with low \textit{LMO1} expression8. The risk allele of SNP rs2168101 G>T, which is the most highly associated variant, creates a GATA motif, and

\textit{GATA3} binds at this locus9. This GATA3 binding is mediated by chromosomal translocation12,14. Point mutations in the noncoding elements that generate an enhancer driving overexpression of \textit{LMO2} have also been reported15. \textit{LMO1}, another member of the LMO family, is also frequently overexpressed in T-ALL due to chromosomal translocation or mutations in the enhance12,14. \textit{LMO3} is overexpressed in some T-ALL cases due to enhancer hijacking mediated by chromosomal translocation16. \textit{LMO1}, \textit{LMO2}, and \textit{LMO3} are considered to be functionally redundant oncogenes in T-ALL17.

In childhood neuroblastoma, our previous genome-wide association study (GWAS) has shown that polymorphisms at the \textit{LMO1} gene locus are strongly associated with susceptibility to tumor formation8. Germline single nucleotide polymorphism (SNP) risk alleles are associated with increased \textit{LMO1} expression in neuroblastoma cell lines and primary tumors. Genetic knockdown of \textit{LMO1} inhibits the growth of neuroblastoma cells, whereas overexpression of \textit{LMO1} enhances proliferation in cells with low \textit{LMO1} expression8. The risk allele of SNP rs2168101 G>T, which is the most highly associated variant, creates a GATA motif, and

\textit{GATA3} binds at this locus9. This GATA3 binding is essential for the creation of a super-enhancer that drives high levels of \textit{LMO1} expression and increases the proliferative fraction of sympathetic neuroblasts9. Subsequent studies showed that \textit{LMO1} overexpression significantly accelerates the latency, penetrance, and metastatic potential of \textit{MYCN}-induced neuroblastomas in a zebrafish transgenic model10. These findings implicate \textit{LMO1} as an oncogene that collaborates with \textit{MYCN} in neuroblastoma pathogenesis, causing arrest of neuroblast differentiation into chromafin cells or sympathetic ganglia within the adrenal medulla, and also driving rapid neuroblast proliferation10. However, molecular mechanisms by which \textit{LMO1} alters transcription to drive cellular proliferation and differentiation block remain to be identified.

Recent work has suggested that a small set of transcription factors cooperate to dominate regulation of the expression program of a given cell identity through binding the majority of expressed genes/enhancers18. These factors form the core regulatory circuitry (CRC), which consists of an interconnected auto-regulatory loop whereby their expression is driven by themselves and other members of the CRC5,19–21. CRC members can be identified as those that are associated with top ranked regulatory elements by active histone marks such as Histone H3 lysine-28 acetylation (H3K27ac) signals18. As one of first examples, we have demonstrated that \textit{TAL1}, \textit{GATA3}, \textit{RUNX1}, and \textit{MYB} form the \textit{CRC} in T-ALL cells12,22,23. In the ADRN subtype neuroblastoma, \textit{PHOX2B}, \textit{HAND2}, \textit{TBX2}, \textit{ISL1}, and \textit{GATA3} have been implicated as CRC members5,19–21. Meanwhile, \textit{MYCN} serves as an additional amplifier of the CRC24. However, the involvement of \textit{LMO1} in the neuroblastoma CRC has not been elucidated yet.

Here, we identify the transcriptional signature driven by \textit{LMO1} in combination with MYCN in neuroblastoma cells. \textit{LMO1} regulates genes in a tissue-specific manner and co-binds to the enhancers of genes regulated by the CRC transcription factors that underlie cell state in ADRN neuroblastoma. Intriguingly, \textit{LMO1} and the CRC members bind to enhancer elements and directly upregulate the \textit{ASCL1} gene, resulting in promotion of cell growth and repression of neuronal differentiation.

Results

\textbf{LMO1 regulates gene expression in a tumor-specific manner.}

To begin to understand the role of \textit{LMO1}-mediated transcriptional regulation, we first designed short-hairpin RNAs (shRNAs) to specifically knock down the expression of \textit{LMO1} (Fig. 1a and Supplementary Fig. 1a). We chose two representative neuroblastoma cell lines (Kelly and SH-SY5Y), both of which express high levels of \textit{LMO1} protein and harbor permissive SNP alleles8,9. To compare gene expression profiles of \textit{LMO1}-associated malignancies, we included the T-ALL cell line Jurkat, in which \textit{LMO1} is overexpressed due to a somatically acquired point mutation in the enhancer and participates with \textit{TAL1} to promote an oncogenic transcriptional regulatory program22. In this setting, knockdown of \textit{LMO1} significantly reduced cell growth in all three cell lines examined (Fig. 1b), supporting earlier findings8. \textit{LMO1} expression level was positively associated with the cellular growth rate, in which \textit{LMO1} shRNA #2 showed the greatest reduction of \textit{LMO1} expression levels (Fig. 1a) and the strongest inhibition of cell growth (Fig. 1b). The growth of neuroblastoma cell lines was more strongly inhibited by \textit{LMO1} knockdown than that of T-ALL cells, indicating that neuroblastoma cells are highly dependent on \textit{LMO1} expression for cell growth and survival.

To analyze \textit{LMO1}-regulated genes and pathways, we then performed RNA-sequencing (RNA-seq) analysis after knockdown of \textit{LMO1} in Kelly and Jurkat cells using the sh\textit{LMO1} #2. We first selected genes that were significantly downregulated or upregulated after \textit{LMO1} knockdown compared with control samples (Supplementary Data 1). This analysis demonstrated that differentially expressed genes had limited overlap between Kelly and Jurkat cells (Fig. 1c). This is not surprising because \textit{LMO1} does not bind directly to promoter-enhancer DNAs but rather serves as a transcriptional adapter13,25–28. Thus, target loci of \textit{LMO1} depend on its binding to transcription factor partners that are expressed in a tissue-specific manner. Indeed, gene ontology (GO) analysis revealed that genes downregulated by \textit{LMO1} knockdown in Kelly cells were enriched in the GO biological processes associated with synaptic transmission (Fig. 1d), while none of these biological processes were enriched in the analysis of Jurkat cells (Supplementary Fig. 1b). In contrast, different GO biological processes such as positive regulation of cell proliferation were enriched in genes differentially expressed in Jurkat cells (Supplementary Fig. 1b). These results indicate that \textit{LMO1} regulates different sets of genes in neuroblastoma and T-ALL cells.

\textbf{LMO1 co-occupies targets with the members of the ADRN CRC.}

Since \textit{LMO1} is known to bind to transcription factors as an adapter to elicit oncogenic effects, we next examined the genome-
whole cell protein extract was harvested after 3 days of virus infection and were subjected to western blot analysis using antibodies specific for GATA3 and LDB1. Because GATA3 is a known member of the LMO1 binding motif family, we hypothesized that LMO1 might collaborate with GATA3 in neuroblastoma cells (Supplementary Fig. 2d). This is analogous to the mechanism in T-ALL, in which LMO1 or LMO2 binds to MYCN, which is a collaborating oncogenic transcription factor.

Strikingly, we observed a remarkable concordance of DNA occupancy by LMO1, GATA3, and MYCN proteins in Kelly cells and then analyzed the occupancy of GATA3 at the same regions. We also compared the result with DNA occupancy of the same target genes. However, there was very little overlap in the regulatory regions bound by LMO1 in Kelly and Jurkat cells. Since a relatively high level of background signal was observed with the LMO1 antibody, we combined the results from two independent ChIP-seq experiments (Supplementary Fig. 2a). Analysis of the top DNA-binding motifs enriched at the apex of the LMO1-binding peaks indicated that these regions typically contained GATA3 and LDB1 proteins when overexpressed in 293T cells (Supplementary Fig. 2c). Consistently, FLAG-tagged LMO1 could interact with endogenous GATA3 and LDB1 proteins when overexpressed in Kelly neuroblastoma cells (Supplementary Fig. 2d).

Because GATA3 is a known member of the GATA binding motif family, we hypothesized that LMO1 might collaborate with GATA3 in neuroblastoma cells (Supplementary Fig. 2d). This is analogous to the mechanism in T-ALL, in which LMO1 or LMO2 binds to GATA3 and LDB1. Because GATA3 is a known member of the CRC that underlies cell state in both T-ALL and neuroblastoma, and is required for cell growth in both tumor types, we next analyzed the co-occupancy of LMO1 with GATA3 by ChIP-seq.

We first selected all nonpromoter regions bound by LMO1 in Kelly cells and then analyzed the occupancy of GATA3 at the same regions. We also compared the result with DNA occupancy of MYCN, which is a collaborating oncogenic transcription factor of LMO1. Strikingly, we observed a remarkable concordance of DNA occupancy by LMO1, GATA3, and MYCN proteins in Kelly cells (Fig. 2a, left). This is analogous to the mechanism in T-ALL, in which LMO1 or LMO2 binds to GATA3 and LDB1. Because GATA3 is a known member of the CRC that underlies cell state in both T-ALL and neuroblastoma, and is required for cell growth in both tumor types, we next analyzed the co-occupancy of LMO1 with GATA3 by ChIP-seq.
these LMO1-bound regions between Kelly neuroblastoma and Jurkat T-ALL cells (Fig. 2a, right; Fig. 2b, right; and Supplementary Fig. 2e), indicating that LMO1 and GATA3 bind different lineage-specific enhancers.

We next analyzed the chromatin status at LMO1 target loci in neuroblastoma cells and found that LMO1-enriched regions were frequently associated with active histone marks (H3K27ac and H3K4me1) in Kelly cells (Fig. 2a, b). We also compared H3K27ac signals at regions bound by LMO1 in Kelly cells across a panel of neuroblastoma cell lines without MYCN amplification that expressed different levels of LMO1 (Fig. 2c and Supplementary Fig. 2f). This analysis revealed that cell lines that expressed high levels of LMO1 exhibited higher levels of H3K27ac signal at LMO1-bound regions, suggesting that these cell lines have a more similar cell identity to Kelly cells, as compared with the cell lines which express low levels of LMO1. These results indicated that LMO1 associates with distinct genomic regions in neuroblastoma and T-ALL cells, which primarily coincide with chromatin marks of activated gene expression.

ASCL1 is a downstream target gene regulated by LMO1 and MYCN. We next sought to identify the individual target genes directly regulated by LMO1 in neuroblastoma cells. By integrating the results of ChIP-seq and RNA-seq analyses in Kelly cells, we predicted genes that were likely direct targets of LMO1 in which they show significant downregulation by RNA-seq after knockdown of LMO1 and were also associated with binding sites for LMO1 and GATA3 proteins with an active histone mark (H3K27ac) by ChIP-seq (Supplementary Data 2). To confirm...
whether the expression of LMO1-bound genes was regulated by LMO1 in other cell line, we also performed gene expression profiling in SH-SY5Y cells by microarray after knockdown of LMO1 using shLMO1#2. The gene set enrichment analysis (GSEA) demonstrated that many predicted LMO1 targets that were downregulated or upregulated by LMO1 knockdown in Kelly cells were also downregulated or upregulated by LMO1 knockdown in SH-SY5Y cells (Supplementary Fig. 3a, b). This result showed a high level of correlation in gene expression changes between two cell lines.

Next, to identify genes most strongly dependent on MYCN for their expression among all direct targets of LMO1, we performed RNA-seq after MYCN knockdown (Supplementary Fig. 3c, d) and predicted genes that were directly regulated by MYCN in Kelly cells using the same criteria as for LMO1 predicted targets (Supplementary Data 2). By combining these filters, we derived a short list of genes (n = 42), which are displayed rank-ordered by fold-change after LMO1 knockdown as an expression heatmap in Fig. 3a. Interestingly, the transcription factor gene with the highest fold-change in response to both MYCN and LMO1 depletion was ASCL1 (Fig. 3a). ASCL1 encodes a bHLH transcription factor that has previously been implicated in neuronal cell development and neuroblastoma pathogenesis28,29. ASCL1 expression is more highly expressed in neuroblastoma and small cell lung cancer cell lines than other cancer types in the CCLE database (Supplementary Fig. 3e). In our recent CRISPR/Cas9 screen, the ASCL1 gene also showed selective dependency in neuroblastoma cell lines19. This gene was also significantly downregulated by LMO1 knockdown in SH-SY5Y cells (Supplementary Fig. 3f). In support of these findings, neuroblastoma cell lines displayed high level expression of ASCL1 together with LMO1 by western blot analysis; however, ASCL1 was not expressed by any T-ALL cell lines examined (Fig. 3b). It is noteworthy that ASCL1 protein expression was higher in the MYCN-amplified neuroblastoma cell lines, Kelly and CHP-134, than in the nonamplified cell lines, SK-N-SH and its subclone SH-SY5Y (Fig. 3b), which overexpress MYC (c-MYC)30. Consistently, analysis of primary neuroblastoma samples demonstrated that MYCN-amplified cases showed a higher level of ASCL1 expression than nonamplified cases (Fig. 3c). These results indicated that ASCL1 is a high-confidence target gene downstream of LMO1 and MYCN in neuroblastoma cells.

High ASCL1 expression is associated with inferior survival. Notably, analysis using the R2 database indicated that high ASCL1 expression was significantly associated with inferior survival of neuroblastoma patients in a cohort reported by Kocak et al. et al.31 (Fig. 3d). Two other cohorts reported by Versteeg et al.32 and the Neuroblastoma Research Consortium (NRC) also showed the same trend (Supplementary Fig. 3g, h), although these datasets did not show high statistical significance due to the small size of samples in cases with high ASCL1 expression. Importantly, high ASCL1 expression was significantly associated with inferior survival even in the absence of MYCN amplification (Fig. 3e). These data implicate ASCL1 as a prognostic factor in neuroblastoma.

LMO1, GATA3, and MYCN occupy the regulatory element of ASCL1. To verify that ASCL1 is directly regulated by LMO1, we analyzed the genomic loci bound by LMO1 in neuroblastoma cells. By ChIP-seq analysis, we observed four peaks of LMO1 (+55, +93, +141, and +143 kb) located 3' to the ASCL1 gene and associated with H3K27ac and H3K4me1 signals in Kelly cells (Fig. 4a, bottom). Similar H3K27ac profiles were observed at the same loci in multiple ADRN subtype neuroblastoma cell lines with high level of LMO1 expression but not in the MES subtype neuroblasticoma cell lines with low level of LMO1 expression or in the T-ALL Jurkat cell line (Supplementary Fig. 4a). Notably, only the +141 and +143 kb elements (peak 3a and 3b) were exceptionally enriched in binding of bound by LMO1, GATA3, and MYCN proteins (Fig. 4a, middle). The same loci were also co-occupied by several other transcription factor proteins (HAND2, PHOX2B, TBX2, and ISL1) that represent CRC members of the ADRN neuroblastoma5,19-21. We have confirmed the enrichment of GATA3 protein at the same element by ChIP-PCR in Kelly and SH-SY5Y cells (Supplementary Fig. 4b).

To further clarify whether these regions serve as distal enhancers regulating ASCL1 expression, we engineered Kelly cells stably expressing the catalytically-dead Cas9 (dCas9) protein fused to a transcriptional repressor peptide (KRAB) (Fig. 4b). We then transduced this clone with doxycycline (DOX)-inducible single guide RNAs (sgRNAs) targeting each of these peaks. This system permits guidance to blockage of specific genomic regions by dCas9 protein coupled with repression of transcription in surrounding regions by the KRAB repressor activity. We first confirmed that dCas9 protein bound to specific sites, directed by sgRNAs, by ChIP-qPCR (Supplementary Fig. 4c). In this setting, the blockage of each enhancer region resulted in the reduction of ASCL1 expression at the protein (Fig. 4c) and mRNA levels (Fig. 4d), indicating that each of these four enhancer regions contributes to ASCL1 expression. Knockdown of LMO1, GATA3, and MYCN each separately downregulated the expression of ASCL1 mRNA (Fig. 4e and Supplementary Fig. 4d). Down-regulation of ASCL1 protein expression was observed in multiple LMO1-positive neuroblastoma cell lines after LMO1 knockdown (Fig. 4f). Conversely, overexpression of LMO1 upregulated ASCL1 expression (Supplementary Fig. 4e, f). Taken together, these results indicated that LMO1 positively regulates the expression of ASCL1 in concert with the CRC members GATA3 and MYCN.

LMO1 and MYCN directly regulate the RET gene. Besides ASCL1, we found that the receptor tyrosine kinase gene RET was positively regulated by LMO1 and MYCN in neuroblastoma cells (Fig. 3a). RET has been implicated in neuroblastoma and shown to promote cell proliferation33,34. In our ChIP-seq analysis, multiple binding events of LMO1, GATA3, and MYCN proteins were observed upstream of the RET gene locus (Fig. 5a). The expression of RET was downregulated after knockdown of LMO1 at mRNA (Fig. 5b) and protein (Fig. 5c) levels in Kelly and SH-SY5Y cells. Phosphorylation of ERK1/2, which is a downstream effector of the MAP kinase pathway activated by RET kinase phosphorylation35, was decreased after knockdown of RET in the Kelly cells (Fig. 5d, e). Furthermore, knockdown of RET inhibited the growth and increased the fraction of Sub-G1 population in Kelly cells (Supplementary Fig. 5a, b), consistent with observations reported by others36. These results indicated that LMO1 and MYCN can promote cell growth and proliferation through upregulation of RET. However, it is noted that several LMO1-high cell lines did not express RET, whereas some LMO1-low cell lines also expressed this protein (Supplementary Fig. 5c). This suggested that LMO1 or MYCN may not be the primary determinant to induce RET expression, but they can positively regulate this gene when cooperating with other factors. Therefore, we highlighted ASCL1 for the downstream analysis.

ASCL1 is a member of the CRC of ADRN neuroblastoma. Since LMO1 directly regulated ASCL1 expression, we sought to understand the role of ASCL1 in mediating LMO1-driven oncogenesis. ASCL1 has been known to be regulated in a stage-specific manner during neuronal differentiation26,29 (Fig. 6a). Analysis of available gene expression datasets indicated that
human ASCL1 expression was elevated in neural progenitor cells, compared with less differentiated neural crest cells or more differentiated chromaffin cells in the mature adrenal gland (Fig. 6b). Furlan et al. also reported that mouse Ascl1 expression begins before the lineage specification that gives rise to progenitor cells that differentiate into sympathoblasts and chromaffin cells. At the stage of E11.5, sympathoblasts start downregulating the expression of Ascl1, whereas chromaffin cells start downregulating the expression of Myc, which is consistent with the origin of most neuroblastomas from sympathetic nervous system progenitors.
ASCL1, LMO1, and MYCN were each more highly expressed in the ADRN subtype of neuroblastoma cell lines corresponding to sympathetic progenitors, but less in cell lines of the MES subtype, which appear to retain features of earlier migratory neural crest cells (Supplementary Fig. 6a). ADRN cases expressed higher levels of CRC member genes (HAND2, PHOX2B, TBX2, and ISL1) than the MES subtype, whereas MES cases commonly expressed MYC (c-MYC). Consistent with these findings, analysis of our previously established neuroblastoma zebrafish models30 demonstrated that mRNA expression levels of the zebrafish orthologues, namely ascl1a, lmo1, phox2bb, hand2, tbx2a, and isl1l, were higher in...
MYCN-induced tumors compared with the c-MYC-induced tumors (Supplementary Fig. 6b). Furthermore, the ASCL1 gene locus itself was associated with a regulatory region highly enriched for H3K27ac, indicative of an enhancer ranked in top 10% of enhancers in ADRN subtype cell lines but not in MES subtype cell lines (Fig.6c). This result suggested that ASCL1 is possibly involved in the ADRN CRC in neuroblastoma cells.

In fact, ChIP-seq analysis demonstrated that ASCL1 frequently co-occupies regions with LMO1, MYCN and members of the ADRN CRC in Kelly cells (Fig.6d). ASCL1 is bound to regions within regulatory elements of CRC genes at sites that were also bound by LMO1, HAND2, PHOX2B, GATA3, ISL1, TBX2, and MYCN in Kelly cells (Fig. 6c-i). The E-box motif that is recognized by type II bHLH proteins, such as ASCL1, as heterodimers with type I bHLH proteins, was significantly enriched in the ASCL1-bound regions (Supplementary Fig. 6c). These results indicated that ASCL1 is a member of CRC in ADRN neuroblastoma.

Of note, analysis of a dataset from single cells during neural crest development by Furlan et al.36, showed that mouse Ascl1 is expressed by a large fraction of the bridging cell population between Schwann cell precursors and chromafin cells (Supplementary Fig. 6d). There was some overlap of Phox2b, Hand2, and Isl1 expression with cells expressing Ascl1, although there was not a significant correlation between cells expressing the highest expression of Ascl1 and expression levels of ADRN CRC genes. Lmo1, Mycn, Tbx2, and Gata3 were only expressed by a small fraction of these cells. Thus, this bridging cell population is not governed by the ADRN neuroblastoma CRC. Other regulatory

Fig. 5 RET is directly regulated by LMO1 in neuroblastoma cells. a ChIP-seq gene tracks showing the binding locations of various transcription factors at the RET gene locus in Kelly cells. Red arrows (top) indicate regions associated with H3K27ac signals in Kelly cells. b mRNA expressions of RET after knockdown of LMO1 and MYCN in Kelly cells were analyzed by qRT-PCR. Data are represented as means ± SEM for three biological replicates. The p value by one-way ANOVA followed by Tukey’s multiple comparisons post hoc test are indicated. c Protein expressions of RET, LMO1, p-ERK, and total ERK were analyzed after transduction of different LMO1 shRNAs in three different neuroblastoma cell lines. α-tubulin was used as an internal control. d The mRNA expression of RET after RET knockdown were measured by qRT-PCR. Data are represented as mean of technical duplicates. The p values by one-way ANOVA followed by Tukey’s multiple comparisons post hoc test are indicated. e Protein expressions of RET, p-ERK, total ERK, and cleaved PARP were analyzed after transduction of different RET shRNAs in Kelly neuroblastoma cell line. α-tubulin was used as an internal control.
Fig. 6 ASCL1 is a member of CRC in the ADRN subtype of neuroblastoma.

a Schematic image for neural differentiation and ASCL1 expression.

b The mRNA expression of ASCL1 in normal neural crest, neural progenitor cells, adrenal gland, and neuroblastoma tumors (Kocak cohort) were analyzed by the R2 database. The sample numbers are indicated. Data are presented as box plots where the middle line indicates the median, the lower and upper hinges correspond to the first and third quartiles, the lowest datum indicates the minimum (within the 1.5 IQR of the lower quartile), and the highest datum indicate the maximum (within the 1.5 IQR of the upper quartile). The p value by one-way ANOVA followed by Tukey’s multiple comparisons post hoc test are indicated in **b** and **c**. ***p** value < 0.0001.

c The dot plot for enhancer ranking in neuroblastoma cell lines (24 ADRN subtype neuroblastoma cell lines, 4 intermediate subtype neuroblastoma cell lines, 3 MES subtype neuroblastoma cell lines). Enhancers were ranked based on H3K27ac signal from high to low. Data are represented as means ± SEM.

d The ASCL1-bound gene loci were first selected in Kelly cells. Density plots show the distribution of LMO1, MYCN, GATA3, H3K27ac, and H3K4me1 signals at the ASCL1-bound regions (±5 kb from binding sites) in Kelly cells. The color scale shows the intensity of the distribution signal. ChIP-seq gene tracks showing the binding locations of ASCL1 together with various transcription factors at the ASCL1 (**e**), GATA3 (**f**), LMO1 (**g**), PHOX2B (**h**), and HAND2 (**i**) gene loci in Kelly cells. Red arrows (top) indicate ASCL1-bound peak regions, which were determined by peak calling.
mechanisms may drive high levels of Ascl1 expression in this bridging cell population.

Ascl1 is involved in neuroblastoma differentiation status.

Lastly, we analyzed genes and pathways controlled by Ascl1 in neuroblastoma cells. We performed an RNA-seq analysis after Ascl1 knockdown in Kelly cells (Fig. 7a) and selected genes that were significantly downregulated after Ascl1 knockdown compared with control samples. GO term analysis revealed that many pathways involved in the sympathetic nervous system development and noradrenergic lineage commitment were enriched for the genes downregulated by Ascl1 knockdown (Fig. 7b).

Importantly, knockdown of Ascl1 resulted in the increased expression of genes that are normally upregulated during the transition from neural progenitor to differentiated neuronal cells, such as Ntrk1/TfrkA and Npy. The result was independently validated by qRT-PCR (Fig. 7c). As a positive control, proneural differentiation stimuli, such as all-trans retinoic acid (ATRA), also resulted in upregulation of these genes (Supplementary Fig. 7a). In addition, IGF2, which has been reported as a target of Ascl1, was upregulated after Ascl1 knockdown (Supplementary Fig. 7b). In contrast, Ascl1 knockdown resulted in a downregulation of several genes that are highly expressed in normal neuronal progenitor cells and are members of the neuroblastoma CRC, such as Phox2b and Hand2. The result was independently validated by qRT-PCR (Fig. 7d). These findings indicate that Ascl1 affects the cellular differentiation status in neuroblastoma cells.

Previous studies have shown that phosphorylation also modulates the function of Ascl1, and that the phosphorylated form of Ascl1 is associated with undifferentiated neuronal cells. Indeed, Ascl1 protein bands migrated faster after the treatment with lambda phosphatase in all cell lines examined (Supplementary Fig. 7c), suggesting that the predominant fraction is likely phosphorylated supporting the previous study by others. Conversely, the treatment of Kelly cells with Calyculin A, a protein phosphatase inhibitor, increased this fraction (Supplementary Fig. 7d). These results suggested that the Ascl1 protein is constitutively phosphorylated in neuroblastoma cells, affecting cell differentiation status and resulting in differentiation arrest of neuroblastoma cells.

In fact, knockdown of Ascl1 promoted axonal extension in the presence of NGF (Fig. 7e), which is a primary ligand for Ntrk1. This phenotype was intensified with the presence of low dose of ATRA. Ascl1 knockdown moderately inhibited the growth of Kelly cells (Fig. 7f), which was accompanied with a relative increase in percentage of cells in sub-G1 (Supplementary Fig. 7e). Similarly, the growth of SH-SY5Y cells, which does not possess Mycn amplification, was also inhibited by Ascl1 knockdown (Supplementary Fig. 7f,g). However, Ascl1 overexpression did not inhibit the cell growth inhibition caused by Lmo1 knockdown (Supplementary Fig. 7h-j), indicating that the effects of the CRC in maintaining neuroblastoma cell growth and survival depend on high levels of expression of each member of the CRC and the Lmo1 CRC coregulator acting in concert.

Taken together, our results indicate that Ascl1 contributes to the CRC with the other members to ensure viability and establish the ADRN neuroblastoma cell state (Fig. 8). In this context, Lmo1 is essential for the formation of CRC and Ascl1 expression. Because Lmo1 does not contain a DNA-binding domain, it does not qualify as a bona fide CRC transcription factor. Rather, it appears to operate as an auxiliary transcriptional cofactor involved in protein–protein interactions essential for CRC activities in the regulation of cell identity and the malignant cell state in neuroblastoma cells.

Discussion

Accumulating evidence implicates Lmo1 as a critical factor in the ADRN subtype of neuroblastoma. A large-scale neuroblastoma GWAS study demonstrated that a polymorphism within the LMO1 gene locus is strongly associated with the susceptibility of children to develop neuroblastoma. The crucial SNP mediating this neuroblastoma phenotype consists of an ancestral G permissive allele that forms a GATA DNA-binding motif. GATA3 then participates with other CRC transcription factors to generate a potent enhancer that activates LMO1 gene expression. The protective T allele at this SNP, which appeared during evolution in human populations, does not support GATA3 binding. As a member of the ADRN CRC, GATA3 binding is essential for the super-enhancer to form that drives high levels of LMO1 expression. Because LMO1 lacks a DNA-binding domain, it cannot be a member of the ADRN CRC in neuroblastoma, but rather it serves as an essential transcriptional regulatory cofactor for formation of the autoregulatory loop that comprises the CRC, and the absence of LMO1 expression leads to decreased levels of each of the ADRN CRC transcription factors.

Importantly, here we provide an insight into the mechanisms by which Lmo1 contributes to the ADRN neuroblastoma pathogenesis. Our study shows that Lmo1 is essential for proper expression of Ascl1, a newly identified ADRN CRC coregulator. It is noteworthy that we and other groups independently identified Phox2B and Hand2 as key components of the CRC in ADRN neuroblastoma cases. Our current results demonstrate that Ascl1 binds to the associated enhancers and regulates the expression of CRC members—Phox2b, Hand2, Gata3, Tbx2, and Isl1—in concert with LMO1 and MYCN. Each of these transcription factors are highly expressed in the ADRN subtype of neuroblastoma as compared with the MES subtype. Ascl1 co-binds with LMO1 at the loci of binding of the CRC transcriptional protein complex within regulatory elements of each CRC gene. This mechanism likely relates to the established proclivity of LMO1 to participate in transcriptional complexes containing the class II bHLH proteins (TAL1, TAL2, or LYL1) observed in T-ALL. Given that Ascl1 is also a selective neuroblastoma dependency gene whose locus is bound by the CRC delineated by our prior work, and whose product binds coordinately with the ADRN CRC members to enhancers controlling each of the CRC members and genes of the extended regulatory network, we propose that Ascl1 is also an essential transcription factor and member of the feed-forward autoregulatory loop that comprises the CRC in the ADRN subtype of neuroblastoma.

In this context, MYCN further promotes gene expression program induced by the ADRN CRC in neuroblastoma cells. A recent study suggests that “enhancer invasion” shapes MYCN-dependent transcriptional upregulation in neuroblastomas with MYCN gene amplification. Loss of MYCN leads to a global reduction in transcription, which is more evident at the MYCN target genes with the highest enhancer occupancy. In particular, tissue-specific enhancers define highly tumor-specific MYCN target genes. In fact, we observed that MYCN frequently co-occupies the enhancers of target genes with LMO1, including those of CRC members, which characterize the ADRN subtype neuroblastoma. Hence, when expressed at high levels, MYCN serves as an “enhancer invader” that reinforces the gene expression program of the entire adrenergic CRC, including LMO1 as a coregulator of this CRC.

During normal peripheral nervous system development, Ascl1 is expressed in sympathetic progenitor cells and extinguished when cells become differentiated into neurons or chromaffin cells. Narayan et al. reported that Ascl1 not only promotes the acquisition of a proneural phenotype in glioblastoma cells but also represses mesenchymal features. A
similar relationship may exist in neuroblastoma cells, in which the more neural crest-like mesenchymal cells do not express ASCL1, and ASCL1 expression is specifically upregulated as cells differentiate along the sympathetic lineage and express members of the ADRN CRC. In fact, our study demonstrated that ASCL1 can positively regulate CRC genes that are expressed in neuronal progenitor cells such as PHOX2B and HAND2 and also negatively regulates genes expressed in more differentiated cells such as NTRK1 and NPY. Thus, high levels of ASCL1 expression, along with LMO1 and MYCN, helps to mediate a differentiation arrest at the neural progenitor stage, which is an essential component of childhood neuroblastoma. Of note, comparisons shown in Supplementary Fig. 6d argue that, although many of the cells bridging Schwann cell precursors and chromaffin cells express high levels of Ascl1, this expression is not regulated by the CRC of the ADRN subset of human neuroblastoma. This finding is compatible with these bridging cells contributing to neuroblastoma through a different developmental CRC.

In this study, we also compared genomic loci bound by LMO1 and gene expression profiles after LMO1 knockdown between neuroblastoma and T-ALL cells. Although LMO1 frequently co-occupies target loci with GATA3 in both neuroblastoma and T-
293T cells were cultured in DMEM medium (BioWest) supplemented with 10% FBS (BioWest) and 1% penicillin/streptomycin (Thermo). Cells were incubated in 37 °C with 5% CO₂, ATRA, NGF, and DOX hydrochloride were purchased from Sigma and dissolved in DMSO.

Gene knockdown. The shRNA sequences were designed according to the RNA Consortium’s recommendation (http://www.broadinstitute.org/cgi-bin/rna/i/cr) and cloned into the lentiviral vector pLKO.1-puro at the Age I and EcoR I digestion site. Each individual shRNA vector (500 ng) was co-transfected into 293T cells with the packaging plasmids pMDLg/pRRE (250 ng) and pRSV-Rev (250 ng) together with the envelope plasmid pMD2.G (250 ng) into 293T cells (200,000 cells) seeded into six-well plate 24 h before transfection, using the FuGENE 6 transfection reagent (Roche) and Opti-MEM, according to the manufacturer’s instruction. Medium was changed 24 h after transfection. Supernatants containing lentivirus was then collected after 48 and 72 h post transfection, combined, and filtered through a 0.45 mm nitrocellulose filter (Thermo). The Jurkat cells were infected with lentivirus in the presence of polybrene (8 µg/ml: Millipore) by centrifugation at 1300 rcf for 1.5 h. Neuroblastoma cells were transduced with lentivirus in the presence of polybrene (8 µg/ml: Millipore) for 2 h incubation followed by toping up from medium. Approximately 500,000 cells were infected with 1 µl of virus medium. The cells were then selected by the addition of puromycin (0.7 µg/ml for Jurkat cell line; 0.5 µg/ml for neuroblastoma cell lines) for at least 36 h after infection. shRNA sequences are shown in Supplementary Data 3.

Gene overexpression. The LMO1 cDNA (CD5 region of LMO1 transcript, NM_001270428.1) was amplified and cloned into the pMSCV-IRE-SP-GFP retrovirus vector. Retroviral vector (1000 ng) was co-transfected into 293T cells (200,000 cells) seeded into six-well plate 24 h before transfection with the packaging plasmid pMD2.G (250 ng) and the envelope plasmid VSV-G (250 ng) using the FuGENE 6 reagent (Roche) and Opti-MEM. Approximately 500,000 cells were transduced with 1 µl retrovirus media in the presence of polybrene (8 µg/ml: Millipore) for 2 h incubation followed by toping up from medium. The cells that express GFP were then sorted by flow cytometry using the BD FACS Aria II (BD Biosciences).

Cell viability assay. Neuroblastoma cells were seeded into 96-well plates (2500 cells/well) at 24 h post virus infection. Cell viability was measured after 3, 5, 7, and 9 days, based on luminescence by the Cell Titer Glo assay (Promega) using the Tecan Infinite 200 PRO plate reader (Tecan).

RNA extraction and quantitative reverse transcriptase PCR (qRT-PCR). Total RNA was extracted using the NucleoSpin RNA kit (Macherey-Nagel). A total of 1000 ng of the purified RNA was reverse-transcribed into cDNA in 10 µl reaction and finally diluted to 50 µl with the QuantitTect kit (QIAGEN) according to manufacturer guidelines. PCR mix contains 2 µl cDNA, 10 µl Power SYBR Green PCR Master Mix (Roche), and 1 µl of each forward primer and reverse primer (final concentration of 500 nM). The mRNA expression levels of the genes of interest were evaluated by ΔΔ Ct method by performing qPCR analysis the Quant Studio 3 Real-Time PCR System (THERMO SCIENTIFIC) with following cycling condition: 2 min at 50 °C, 10 min at 95 °C, and 1 min at 60 °C, with ramping temperature 1.6 °C/s. Primers were tested for standard curve with serial diluted DNA to ensure efficiency between 90 and 110% and R² for standard curve greater than 0.95 and single peak for melt curve to ensure the primer specificity. Primer sequences for each individual gene are shown in Supplementary Data 4.

Protein extraction and western blot analysis. The cells were lysed in RIPA Buffer (20 mM Tris- HCl (pH 7.5), 150 mM NaCl, 1 mM Na₂EDTA, 1 mM EDTA, 1% NP-40, 1% sodium deoxycholate, 2.5 mM sodium pyrophosphate, 1 mM beta-glycerophosphate, 1 mM Na₂VO₄, 1 µg/mL leupeptin) (#9806, Cell Signaling Technology) with protease inhibitors (Roche). Equal amounts of protein was diluted in Laemmli sample buffer (Bio-Rad) with 10% β-mercaptoethanol and boiled for 10 min at 95 °C. Protein samples were resolved by SDS-PAGE gel using Bio-Rad system, with running buffer (Bio-Rad), and subsequently blotted onto a PVDF membrane (Bio-Rad). Membranes were block with 5% nonfat milk for 1 h and washed with washed buffer (TBS-Tween 0.1%) following incubation with primary antibody diluted in 5% BSA (Sigma) dissolved in washing buffer. Incubation at 4 °C. Incubation with secondary antibodies were performed after washing for 1 h at room temperature. HRP-labeled anti-rabbit (7074, Cell Signaling Technologies, 1:10,000 dilution) and anti-mouse (7076P, Cell Signaling, 1:10,000 dilution) antibodies were used. Proteins were visualized by enhanced chemiluminescence (Thermo). Antibodies used for immunoblotting were as follows: LMO1 (Bethyl Laboratories, #A300314A, 1:1000 dilution), ASCL1 (Santa Cruz, 1:200 dilution, sc-390794), MYCN (Cell Signaling Technologies, 1:1000 dilution, #84406), RET (Cell Signaling Technologies, 1:1000 dilution, #14299), ERK (Cell Signaling Technologies, 1:1000 dilution, #9102), phospho-ERK (Cell Signaling Technologies, 1:1000 dilution, #9101), α-tubulin (Cell Signaling Technologies, 1:1000 dilution, #2144) and β-actin (Cell Signaling Technologies, 1:1000 dilution, #4857). Original uncropped images are shown in Supplementary Fig. 8.
Blocking of genomic DNA elements. To express dCas9-KRAB protein, lentivirus was made using plV hU6-sgRNA hU6-cAS9-dCas9-KRAB-T2a-Puro lentivirus vector (500 ng; Addgene plasmid #17236) together with packaging plasmids pMDL/ pRRE (250 ng), PSR-Rev (250 ng) and the envelope plasmid pMD2.G (250 ng). Kelly cells were infected with virus medium using the same method mentioned in previous section. The cells were selected by puromycin (0.5 μg/mL) for 3 days. Subsequently, dCas9-KRAB expressing cells were transduced with an indiscernible sgRNA and a GFP gene. The sgRNA sequences were designed and cloned into FgH1UTG lentivus vector (Addgene #70185) at the BsmBI digestion site. Lentivirus were made using the vector by the method mentioned above. After 4 days of transduction of the sgRNA vector, the cells were selected by GFP signal by flow cytometry using the BD FACSAria II (BD Biosciences). The cells were then treated with 1000 ng/mL DOX to induce a sgRNA expression. The sgRNA sequences were designed using CRISPR Design Tool (http://crispr.mit.edu/) and shown in Supplementary Data 5.

Chromatin immunoprecipitation-quantitative PCR (ChIP-qPCR). Approximately 10 million cells were crosslinked with 1% formaldehyde (80 μg/mL) for 10 min by inverting flasks at room temperature and quenched with 250 mM Glycine. The cells pellets were washed in PBS and then stored at −80 °C. The pellets were lysed in lysis buffer I (50 mM HEPES-KOH pH 7.5, 140 mM NaCl, 1 mM EDTA pH 8.0, 10% Glycerol, 0.5% NP-40, 0.25% Triton X-100, and complemented with protease inhibitor cocktail) for 10 min. After centrifugation, supernatant was discarded and the pellet was lysed in lysis buffer II (10 mM Tris-HCl pH 8.0, 200 mM NaCl, 1 mM EDTA pH 8.0, 0.5% SDS buffer, 1% Triton-X, and complemented with protease inhibitor cocktail) for 10 min. After centrifugation, supernatant was discarded and the pellet was lysed in lysis buffer III (10 mM Tris-HCl, 100 mM NaCl, 1 mM EDTA pH 8.0, 0.1% SDS buffer, 1% Triton-X, and complemented with protease inhibitor cocktail) and subject to sonication. Chromatin was sheared by the Bioruptor Plus sonicator (Diagenode) at high power for 50 cycles of 30 s, with a 30 s pause between cycles. Sheared chromatin was incubated with primary antibody bound to the Dynabeads Protein G (Thermo Fisher Scientific) overnight, followed by elution and reverse crosslinking at 65 °C for 15 h. TE-buffer was added in DNA elution buffer followed by RNase treatment (0.45 mg/mL) at 37 °C for 2 h and by proteinase K treatment (0.5 μg/mL) at 55 °C for 30 min. DNA was isolated using 400 μL of the separated lower layer of the Phenol-Chloroform-isooctylalcohol mixture. DNA was dissolved in RNase/DNase free water. Antibodies used for ChIP-qPCR were as follows: LMO1 (Bethyl Laboratories, #A300314A), Flag (Sigma, #F1804), H3K27ac (Abcam), and IgG (Santa Cruz). After the purification of DNA, quantitative PCR was performed using the Quant Studio 3 Real-Time PCR System (Thermo Fischer Scientific) with purified DNA, Power SYBR Green PCR Master Mix (Roche) and PCR primers designed for the genomic regions of interest. PCR primer sequences were shown in Supplementary Data 6.

Chromatin immunoprecipitation sequencing (ChIP-seq). For each ChIP, 10 μg of antibody was conjugated to 2 mg of M200 epoxy beads and added to 3 ml of sonicated nuclear extract. Anti-LMO1 antibody (Bethyl Laboratories, #A300314A) and anti-ASCL1 antibody (Santa Cruz, sc-390794) were used for ChIP. Purified DNA was prepared according to a modified version of the Solexa Genomic DNA protocol. Fragmented DNA was end repaired and subjected to linker-mediated PCR using oligos from Illumina. Amplified fragments were purified and applied to the flow-cell using the Solexa Cluster Station fluidics device. Samples were then subjected to sequencing according to Illumina’s standard protocols. All ChIP-seq reads were mapped to the hg19 human reference genome using bowtie2 with default parameters. Duplicates were removed from aligned ChIP-seq reads using the samtools rmdup command. Duplicate reads were called by MACS1 (version 1.4.2) and ASCL1 peaks (P < 1e−9) called by MACS2 (version 2.1.2). Enrichment peaks for broad region with log 2 fold-change < −1 for broad region and q-value < 1e−1 for broad region with —keep dup = 1 and—broad. Enhancers were identified using ROSE v0.1 by merging H3K27ac peaks within 12.5 kb between each other, those were fully contained within ± 2 kb from TSS and ranked them along the x-axis based on H3K4me1 enrichment plotted on the y-axis (https://bitbucket.org/youngcomputation/rose). All enhancers were assigned responsible to the nearest RefSeq gene. The percentile of ASCL1 enhancer was measured by ordering the ranking index and calculating the top ranking of ASCL1 enhancer among all other enhancers in each cell line.

RNA-sequencing (RNA-seq). Total RNA was extracted from control and knockeddown samples using the QIAzol lysis reagent (Qiagen) and cleaned using the RNeasy kit (Qiagen). Samples were treated with the TURBO DNase (TURBO DNA-free kit; Ambion) and cleaned using the RNeasy MiniElute Cleanup kit (Qiagen). Strand-specific library construction and sequencing of ~100 M paired-end 100-bp-long reads by Illumina HiSeq or BGISEQ were performed at the BGI Biotech Solutions Co. Ltd. (Hong Kong, China). RNA-seq reads were aligned to the hg19 human reference genome using STAR 2.5.2a with outFilterMultimapNmax set to 1. Total mapped reads were quantified using htseq-count version 0.6.1, and count tables were generated based on Ensembl hg19 gene annotation gtf files. Differential expression analysis was conducted using the Bioconductor package DESeq2 version 1.12.4. Gene expression for each neuroblastoma cell line was estimated in transcripts per million (TPM) using Kallisto software version 0.43.1. All RNA-seq data were normalized using the Sleuth R package from Patchek lab42. Selected gene expression from sleuth normalized TPM were used to generate heatmaps using web-based heatmap tools, heatmapper43. Genes differentially expressed after knockdown of each transcription factor were selected using the following criteria: adjusted p value < 0.05, log 2 fold change −< 0.5 or >0.5, and TPM > 3.

GO analysis. GO analysis was performed using the Enrichr tool (http://amp.pharm.mssm.edu/Enrichr/). Combined scores were calculated by multiplying the p value computed by Fisher’s exact test by the z-score of the deviation from the expected rank.

Immunostaining. CHP-134 cells were treated with or without NGF (100 ng/mL) or ATRA (100 nM) after transduction of shRNAs. The cells were stained with an antineurofilament antibody (Cell Signaling, #2837).

Statistics and reproducibility. All the statistical analyses were done in GraphPad Prism software. A p value less than 0.05 was considered statistically significant. The details of methods used can be found in each figure legend. Experiments in Figs. 1a, b, 3b, 4b, d, e, 5b, 7a, c were repeated three or more times. Experiments in Figs. 4c, 5c–e were repeated two times. The numbers of experiments conducted in Supplementary Figures were stated in Supplementary Methods section and Supplementary Figure Legends.

Reporting summary. Further information on research design is available in the Nature Research Reporting Summary linked to this article.

Data availability. ChIP-seq dataset for LMO1 and ASCL1 in Kelly cells have been deposited in the GEO database (GSE120074). ChIP-seq datasets of PHOX2B, HAND2, GATA3, MYCN, ISL1, and TBX2, H3K27ac and H3K4me1 in Kelly cells were obtained from the GEO database (GSE94824 and GSE62726)44. ChIP-seq datasets of H3K27ac in various neuroblastoma cell lines were obtained from the GEO database (GSE86672 and GSE90683)44. ChIP-seq datasets of LMO1, GATA3, H3K27ac and H3K4me1 in Jurkat cells were obtained from the GEO database (GSE94391, GSE68976, and GSE50622, GSE119439)44–46. RNA-seq data for Kelly cells after LMO1 knockdown and ASCL1 knockdown were deposited in the GEO database (GSE132760). Microarray data for SH-SY5Y cells after LMO1 knockdown was deposited in the GEO database (GSE130747). RNA-seq data for Jurkat after LMO1 knockdown has been reported by us and deposited in the GEO database (GSE97514)48. RNA-seq data for zebrafish neuroblastoma samples reported by us were obtained from the GEO database (GSE107518). RNA-seq dataset for various neuroblastoma cell lines was obtained from the GEO database (GSE90683)42,45. Single cell sequencing dataset for mouse neuronal cells was obtained from the GEO database (GSE99939)42. The single cell sequencing datasets for primary neuroblastoma cases reported by the Kokac et al.31 (GSE45547), Versteeg et al.32 (GSE14467) and the NRC (GSE85047) were analyzed by the R2 database (http://hsgserver1.amc.nl/cgi-bin/r2/main.cgi). The cancer cell line dataset is derived from CCLE database (https://portals.broadinstitute.org/ccle). Detailed information is also shown in Supplementary Data 7. All other methods used for Supplementary Figures are described in the Supplementary Methods section.

Received: 8 January 2019; Accepted: 11 November 2019; Published online: 09 December 2019

References
1. Maris, J. M., Hogarty, M. D., Baggett, R. & Cohn, S. L. Neuroblastoma. *Lancet* 369, 2106–2120 (2007).
2. Brodeur, G. M. Neuroblastoma: biological insights into a clinical enigma. Nat. Rev. Cancer 3, 203–216 (2003).
3. Maris, J. M. Recent advances in neuroblastoma. N. Engl. J. Med. 362, 2202–2211 (2010).
4. Pinto, N. R. et al. Advances in risk classification and treatment strategies for neuroblastoma. J. Clin. Oncol. 33, 3008–3017 (2015).
5. van Groningen, T. et al. Neuroblastoma is composed of two super-enhancer-associated differentiation states. Nat. Genet. 49, 1261–1266 (2017).
6. Pugh, T. J. et al. The genetic landscape of high-risk neuroblastoma. Nat. Genet. 45, 279–284 (2013).

7. Brodeur, G. M., Seeger, R. C., Schwab, M., Varmus, H. E. & Bishop, J. M. Amplification of N-myc in untreated human neuroblastomas correlates with advanced disease stage. Science 224, 1121–1124 (1984).
8. Wang, K. et al. Integrative genomics identifies LMO1 as a neuroblastoma oncogene. Nature 469, 216–220 (2011).
9. Oldridge, D. A. et al. Genetic predisposition to neuroblastoma mediated by a LMO1 super-enhancer polymorphism. Nature 528, 418–421 (2015).
10. Zhu, S. et al. LMO1 synergizes with MYCN to promote neuroblastoma initiation and maturation. Cancer Cell 32, 310–323 e315 (2017).
11. Matthews, J. M., Lester, K., Joseph, S. & Curtis, D. J. LIM-domain-only proteins in cancer. Nat. Rev. Cancer 13, 111–122 (2013).
12. Rabbitts, T. H. LMO T-cell translocation oncogenes typify genes activated by chromosomal translocations that alter transcription and developmental processes. Genes Dev. 12, 2651–2657 (1998).
13. Chambens, J. & Rabbitts, T. H. LMO2 at 25 years: a paradigm of chromosomal translocation proteins. Open Biol. 5, 150062 (2015).
14. Murre, C. Intertwining proteins in thymocyte development and cancer. Nat. Immunol. 1, 97–99 (2000).
15. Abraham, B. J. et al. Small genomic insertions form enhancers that misregulate oncogenes. Nat. Commun. 8, 14385 (2017).
16. Sinomion, M. et al. High-resolution identification of balanced and complex chromosomal rearrangements by 4C technology. Nat. Methods 6, 837–842 (2009).
17. Tremblay, M. et al. Modeling T-cell acute lymphoblastic leukemia – a perspective. Cancer Cell 22, 209–221 (2012).
18. Mansour, M. R. et al. Oncogene regulation. An oncogenic super-enhancer formed through somatic mutation of a noncoding intergenic element. Science 346, 1373–1377 (2014).
19. Zeid, R. et al. Enhancer invasion shapes MYCN-dependent transcriptional amplification in neuroblastoma. Nat. Genet. 50, 515–523 (2018).
20. El Omari, K. et al. Structural basis for LMO2-driven recruitment of the SCL: mesenchymal gene NDRG1. J. Cell Biol. 204, 1454–1458 (2016).
21. Kwiatkowski, N. et al. Targeting transcription regulation in cancer with a covalent CDK7 inhibitor. Nature 511, 616–620 (2014).
22. Leong, W. Z. et al. ARID5B as a critical downstream target of the TAL1 complex that activates the oncogenic transcriptional program and promotes T-cell leukemogenesis. Genes Dev. 31, 2343–2360 (2017).

Acknowledgements
We thank members of the Young, Maris, Look and Sandy laboratories for discussions. We thank Shao-Chien Ling and Wan Yun Ho for helping immunostaining. We are grateful to the Whitehead Genome Technology Core for assistance with ChIP-Seq. We acknowledge the RNAi Consortium for providing lentivirus shRNA constructs. This work is supported by grants from the National Cancer Institute, National Institute of Health, including K99 CA157951 (T.S.) and R01 CA186092 (J.M.M./A.T.L.), and the American Lebanese Syrian Associated Charities (ALSAC). T.S. is supported by the National Research Foundation (NRF), Prime Minister’s Office, Singapore under its Competitive Research Programme (NRF-NRFPR2013-02), and Ministry of Education (MOE), Singapore (FRC TI-2015 Sept-07). This work is also supported by the NRF and MOE under its Research Centres of Excellence initiative. A.D.D. and M.W.Z are Damon Runyon–Sooh Pediatric Fellows supported by the Damon Runyon Cancer Research Foundation, DRG-24-18 (A.D.D.), DBS9-9-14 (M.W.Z.). A.D.D., M.W.Z, I.R. are recipients of Alex’s Lemonade Stand Foundation Young Investigator Awards. A.D.D. is the recipient of an American Society for Clinical Oncology Young Investigator Award, and a Young Investigator Award from the Rally Foundation for Childhood Cancer Research. M.W.Z. is supported by the Claudia Adams Barr Program for Innovative Cancer Research.

Author contributions
L.W., A.D.D., M.W.Z., A.T.L., and T.S. designed this study. L.W., A.D.D., M.W.Z., S.H.T., N.W., K.A., and I.N.L performed experiments. T.K.T., B.J.A., P.C.T.N., and J.R. performed bioinformatics analysis. J.M.M., R.A.Y., and A.T.L supervised the study.

Competing interests
R.A.Y. is a founder and shareholder of Syros Pharmaceuticals, which is discovering and developing therapeutics directed at transcriptional pathways in cancer. B.J.A. is a shareholder of Syros Pharmaceuticals. No other potential conflicts of interest are declared.
Supplementary information is available for this paper at https://doi.org/10.1038/s41467-019-13515-5.

Correspondence and requests for materials should be addressed to A.T.L. or T.S.

Peer review information Nature Communications thanks the anonymous reviewer(s) for their contribution to the peer review of this work.

Reprints and permission information is available at http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.