Transcriptome-wide isolation and expression profiles of NF-Y gene family in male cone development and hormone treatment of Chinese pine (Pinus tabuliformis)

CURRENT STATUS: POSTED

Yingtian Guo
Beijing Forestry University

Shihui Niu
Beijing Forestry University

Wei Li
bjfuwei@bjfu.edu.cn Corresponding Author

DOI:
10.21203/rs.3.rs-21552/v1

SUBJECT AREAS
Epigenetics & Genomics

KEYWORDS
Pinus tabuliformis, Conifers, NF-Y transcription factor, Bioinformatic analysis, Expression profiles
Abstract

Background
Conifers and angiosperms have difference in reproductive development, especially for flowering. It is known that NUCLEAR FACTOR Y (NF-Y) transcription factor play an important role in flowering, drought stress and GA, ABA signaling, but, little known in auxin, salicylic acid, jasmonic acid, etc. Moreover, the NF-Y genes family has been mainly analyzed in angiosperms, but it has not been comprehensively reported in conifers.

Results
In this study, we identified 9 NF-YA, 9 NF-YB, and 10 NF-YC genes in Pinus tabuliformis using Arabidopsis NF-Y protein sequences as queries. Besides, by comparing conserved regions and phylogenetic relationships of the PtNF-Ys, we found that the NF-Ys were both conserved and altered during evolution. PtTFL2, PtCO, PtNF-YC1 and PtNF-YC4 were exploited by expression profile in male cone development and the correlation analysis. In addition, NF-YC1/4 can interact with DPL by yeast two-hybrid assays and BiFC. The multiple types of phytohormones-responsive cis-elements (ABA, JA, IAA, SA) were present and many NF-Y genes responded positively to SA and as opposed to IAA and JA.

Conclusions
Twenty-eight PtNF-Ys were identified and bioinformatic characterization of NF-Y genes including conserved regions, phylogenetic relationships, gene-motifs, was carried out. Two candidate genes (NF-YC1 and NF-YC4) were found to be involved in the regulation of conifer flowering and gibberellin signalling. The cis-elements and hormone transcriptome analysis revealed that the potential role of NF-Ys in conifers resistance. This study provides the basis for improved understanding of NF-Y genes function in conifers.

Background
There are about 630 conifer species on earth, and they dominate many terrestrial ecosystems, especially in the Northern Hemisphere [1]. At the same time, conifers have great economic and ecological value. Reproductive organ development is an essential feature in the whole life cycle of seed plants. Considerable progress has been made over the past decade in understanding the molecular mechanisms underlying flower development for angiosperms. However, there is still a considerable lack of molecular biology research on the development and regulation of conifers male
Chinese pine (*Pinus tabuliformis*) of Pinaceae is an indigenous conifer species and widely distributed in 14 provinces and autonomous regions in northern China, with an ecological area of 3 million square kilometers [2, 3]. Moreover, Chinese pine has many favored economic and ecological traits, such as wood corrosion resistance, rich in resin and pollen as well as excellent tolerance to drought, wind, barren, pests and diseases, just like *Pinus sylvestris var. mongolica*, and *Pinus thunbergii*.

NUCLEAR FACTOR Y (NF-Y) transcription factors are almost found in all eukaryotes. NF-Y includes at least three subunits: NF-YA, NF-YB, and NF-YC, all of which can specifically bind to the CCAAT-box in eukaryotic promoters [4]. The core domain of NF-YA contains the NF-YB/C subdomain and the DNA binding domain. NF-YB and NF-YC which have the highly conserved histone-fold motif (HFM) are structurally similar to histone subunits H2B and H2A [5, 6]. NF-Ys should function in the form of a dimer or trimer. Initially, NF-YB and NF-YC dimerize in the cytoplasm, then move into the nucleus, recruit an NF-YA component, and subsequently bind DNA and affect transcription [7, 8].

The Nuclear Factor-F (NF-Y) has been reported that play an important role in flowering time [9, 10]. NF-YA, in complex with NF-YB/NF-YC proteins, can directly bind the distal CCAAT box and a non-canonical NF-CO complex binding at a proximal CORE site of the *FT* promoter which are positive regulators of flowering [11–13]. Also, CmNFYB8 can influences flowering time through directly regulating the expression of *cmo-MIR156* in the aging pathway in chrysanthemum [14]. NF-Y proteins of *Triticum monococcum* can interact with VRN2 in the regulation of flowering initiation by the integration of the vernalization and photoperiod seasonal signals [15]. NF-Y mediates the effect of photoperiod and GA signaling on *SOC1* expression partly through H3K27me3 demethylation [16]. These results show that NF-Y can participate in regulating flowering time via the aging pathway, the photoperiod, the vernalization and GA pathway. Besides, NF-Y genes have involved in other growth and developmental processes, such as endosperm development [17], seed germination [18], pollen tube growth [19], hypocotyl elongation [20], starch biosynthesis [21].

In addition to plant growth and development, NF-Y participates in stress response and hormone signaling. According to the reports, we find studies on NF-Y mainly focus on drought resistance
[22–24], ABA response [18, 22, 25] and salt stress [23, 26], a small part involving temperature [27], photoprotective [28, 29]. In brief, as an important transcription factor in response to drought stress, NF-Y is mainly regulated by miR169, ABA crossing signal and photosynthesis. However, related to biotic stress, such as pests and diseases and other hormones (auxin, salicylic acid, jasmonic acid, etc.) are also important research directions of plant life activities, and little is known about NF-Y. So, the role of NF-Y in other stresses, and other hormone signals, need to be further explored.

Now, the study of NF-Y genes mainly focus on angiosperms, only some studies have been reported on conifers. PwHAP5 and PwNF-YB3 (Picea wilsonii) can improve tolerance to salt and drought stress in Arabidopsis [30, 31], and PwHAP5 interacts with PwFKBP12 that play a role in pollen tube development and orientation regulation [19]. In addition, it has been discovered that HAP3A and HAP3B (Picea abies and Pinus sylvestris) are necessary to promote embryo maturation during conifer embryogenesis [32]. But, the study of NF-Y genes family in conifers has not been reported. Besides, one major difference between conifers and angiosperms is their reproductive development, and for example, FLOWERING LOCUS T (FT), the key activators of flowering, has no orthologues genes in conifers [1]. So, to clarify the role of NF-Y in conifer flowering is of great significance to enrich the evolution of conifer reproductive development. In the research, we took Chinese pine (Pinus tabuliformis) as the experimental material to exploit the role of NF-Y in this type of conifer. In our study, we identified 28 NF-Y genes of Pinus tabuliformis and performed a relatively complete bioinformatics analysis, including conserved regions, phylogenetic relationships, gene-motifs analysis. Moreover, we found NF-YC1 and NF-YC4 participating in male cones development and GA signal. Also, PtNF-Ys responded to ABA, JA, IAA and SA signals by the cis-elements and transcriptome analysis. Taken together, the results obtained here provide a comprehensive profile to a more complete understanding of the function of the NF-Y genes in conifers.

Results

Isolation of the NF-Y family in Pinus tabuliformis

We used Arabidopsis NF-Y protein sequences as queries to search Chinese pine NF-Y genes [33]. Sixty-nine candidate NF-Y genes were identified in Chinese pine by BLAST (blast-2.6.0+) [34]. Forty-
nine candidate genes were identified by HMMER [35]. The results of the two search methods were merged resulting in Sixty-nine candidate genes. By removing too long or too short or because they had improper domains and redundant sequences, 28 NF-Y genes were identified, including 9 NF-YA, 9 NF-YB, and 10 NF-YC genes (Table 1). The identified PtNF-Y genes encodes peptides ranging from 136 to 384 aa with the pl value varying from 4.55 to 9.76, and the molecular weight ranging from 14.88 to 41.86 KDa as estimated from ExPASy server (http://WWW.expasy.org/).

Conserved Regions And Phylogenetic Relationships Of The PtNF-Ys

To further investigate the conserved regions of PtNF-Ys, the protein sequences of 28 members were analyzed using MEGA7 [36]. Highly conserved domains were found among the members of each subunit as shown in Fig. 1. The NF-Y family should contain an interaction domain for interacting with other NF-Y subunits and a DNA binding domain for recognizing CCAAT binding sites [4]. The core conserved regions of the PtNF-YAs proteins were 55AAs but PtNF-YA4 (Fig. 1A). The NF-YB/C subdomain had 22 AAs and the DNA binding also had 22 AAs. The central domain of PtNF-YBs had 91AAs (Fig. 1B). Among PtNF-YBs, PtNF-YB1 had lower conserved domains than others.
domain of PtNF-YCs contained 82 AAs for interactions between subunits, but PtNF-YC9 and PtNF-YC10 had no DNA binding domain (Fig. 1C). Meanwhile, PtNF-YC2, PtNF-YC3 and PtNF-YC6 were slightly different from other NF-YCs. The above results suggested that PtNF-YAs were more evolutionarily conservative than other types of PtNF-Y subunits. Furthermore, the distributions of conserved motifs were assessed by MEME software. The results showed that the three PtNF-Y subunits have a unique motif distribution (Fig. 2). Motif 2 and motif 5 were unique to the PtNF-YAs. Motif 8 and motif 9 were present only in PtNF-YBs. Motif 3 was widely distributed in PtNF-Ys.

To predict the functions of PtNF-Y proteins, phylogenetic trees using the NF-Y protein sequences of Arabidopsis and Chinese pine were created by MEGA7 software with the neighbor-joining (NJ) criteria. The phylogenetic analysis showed that the 28 PtNF-Ys were divided into three groups (Fig. 3). The phylogenetic tree suggested close relationships among the candidate NF-Ys within each of the three subfamilies. In the three group, we found that there was only a pair of NF-Y orthologue protein, PtNF-YC6 and AtNF-YC13, suggested the similarity biological functions. Moreover, seven pairs of paralogues were identified: PtNF-YB5 and PtNF-YB4; PtNF-B9 and PtNF-YB7; PtNF-A2 and PtNF-YA3; PtNF-A5 and PtNF-YA6; PtNF-A4 and PtNF-YA7; PtNF-C2 and PtNF-YC3; PtNF-C9 and PtNF-YC10. But, the vast majority of PtNF-Ys had lower identities with other members, implying their diversity during the evolutionary process.

Analysis of cis-elements in the PtNF-Y promoters

To explore the potential function and regulation of PtNF-Y genes, the 2000 bp upstream sequence of PtNF-Y promoters were analyzed. The results were shown except for the core cis-elements, a total of 55 type cis-elements were found, that includes 30 light responsive, 10 phytohormones responsive, 8 plant growth, and 7 stress responsive (Fig. 4). Among the cis-elements, light- responsive elements accounted for the largest proportion. G-box, box-4, GT1-motif and TCT-motif that were critical elements of light responsive. In plant growth module, the O₂-site related to zein metabolism, CAT-box related to meristem expression and GCN4_motif related to endosperm expression were mainly detected. Besides, many stress-responsive elements and phytohormone-responsive were also present. For example, ARE related to anaerobic induction, MBS related to drought-inducibility and LTR
related to low-temperature responsive were mainly detected. Analysis phytohormone-responsive elements found that AuxRR-core, TGA-element and TGA-box are involved in auxin-responsive, GARE-motif, TATC-box and P-box are involved in gibberellin-responsive, TGACG-motif and CGTCA-motif are involved in MeJA-responsive, ABRE is involved in ABA-responsive. In conclusion, the above results indicate the potential role of \(PtNF-Y \) genes in response to a variety of hormone regulation.

Expression patterns of \(PtNF-Y \)s in different development stages of male cones

The pollen in the male cone is allergenic and potentially harmful to the health of allergic people [37]. In addition, pollen also has economic value. So, it is of great significance to clarify the male cones development of conifers. Also, the NUCLEAR FACTOR-Y (NF-Y) families of transcription factors are important regulators in flowering time [10]. To investigate the potential functions of \(PtNF-Y \) genes, we examined their gene expression profiles (TPM) using RNA-seq of male cones sampled at six different developmental stages (M1–M6) and vegetative buds (VB). Cluster analysis showed that 4 \(PtNF-Y \) genes (i.e., \(A1/B1/B3/C1/C4 \)) were highly expressed in male cones and 5 \(PtNF-Y \) genes (i.e., \(B4/B5/C1/C7/C8 \)) were high expression in late stages of male. In contrast, 4 genes (\(A4, A7, B8 \) and \(C2 \)) were in low expression in male cones and 5 genes (\(A5, A6, A8, A9 \) and \(B6 \)) were low expressed in late stages of male (Fig. 5A).

Furthermore, studies suggest that NF-Y regulation of \(FT \) is mediated through CONSTANS (CO) [38–40]. We selected \(PtTFL2 \) (no \(FT \) homologs in conifer) and \(PtCO \) from the transcriptome sequencing data. The expressions of the \(PtTFL2 \), the \(PtCO \), and the differentially expressed \(PtNF-Y \)s were determined by RNA-seq (Fig. 5A). The expression profile of \(PtCO \) was similar to that of \(PtNF-YA1, PtNF-YB1, PtNF-YB3, PtNF-YC1 \) and \(PtNF-YC4 \) in male cones (Fig. 5A, red black). However, the expression pattern of \(PtCO \) was the opposite of \(PtTFL2 \). Moreover, the correlation of \(PtTFL2, PtCO \) and \(PtNF-Y \)s in expression level are shown in Fig. 5B. \(PtCO \) showed positively correlation with \(PtNF-YC1 \) (\(r = 0.596 \)), \(PtNF-YC4 \) (\(r = 0.505 \)) and was negatively correlated with \(PtTFL2 \) (\(r = -0.881 \)). Also, \(PtTFL2 \) showed negatively correlation with \(PtNF-YC1 \) (\(r = -0.64 \)) and \(PtNF-YC4 \) (\(r = -0.475 \)) in male cones. But other three \(PtNF-Y \)s showed no correlation with \(PtTFL2 \) and \(PtCO \). Overall, \(PtTFL2, PtCO, PtNF-YC1 \) and \(PtNF-YC4 \) may have regulatory role in conifers flowering that need to be tested.
Previous study has shown that NF-Y can regulate flowering by GA signalling, and DELLA proteins are the key transcriptional regulators that regulate plant development by GA mediating [16]. So transcriptome analysis and yeast two-hybrid assays were performed to confirm if there is a relationship between DPL (DELLA protein-like) and NF-YC1/4. Transcriptome analysis showed no significant changes in the expression of \(PtNF-YC1 \) by gibberellins (\(GA_3 \) and \(GA_4 \)) and paclobutrazol (PAC) treatments. But, \(NF-YC4 \) was down-regulation by PAC treatment (Fig. 6A). However, we found NF-YC1/4 can interact with DPL via yeast two-hybrid assays (Fig. 6B). Also, Bimolecular fluorescence complementation (BiFC) assay showed that DPL-cYFP and NF-YC1/4-nYFP interacted in the nuclei of living tobacco cells (Fig. 6C). These results support that NF-YC1/4 can interact with DPL. Therefore, we can use NF-YC1/4 as candidate genes to study strobil development and GA signal transduction.

Gene expression analysis of PtNF-Ys in response to hormone treatments

Except for involving in flowering time, the function of NF-Y genes were in response to stress response (drought, salt, light and temperature) and hormone treatments (GA and ABA). But, NF-Y in other stresses, such as pests, diseases, and other hormone signals, such as auxin, salicylic acid, jasmonic acid, etc need to be explored. Promoter analysis showed that \(PtNF-Y \) genes had the potential to participate in ABA, IAA, JA and SA signal transduction. Hence, expression of \(PtNF-Y \) genes was measured under these hormone treatments. The results showed that \(PtNF-Y \) genes response to ABA, IAA, JA and SA vary in strength (Fig. 7). The genes that respond positively to SA were in the majority, and in which the \(NF-YC \) genes had a large proportion, then ABA was followed by. However, a great part of \(PtNF-Y \) genes were negative response to IAA and JA, and the patterns were similar. Moreover, we found that most NF-Ys respond to salicylic acid in contrast to auxin and jasmonic acid. All this suggests that \(PtNF-Y \) genes were broadly involved in different hormone-responsive.

Discussion

Although NF-Y transcription factors have been broadly studied in several plant species, such as *Arabidopsis thaliana* [41], *Glycine max* [42], *Oryza sativa* [43], *Zea mays* [29], *Triticum aestivum* [44], *Populus tomentosa* [45], *Picea wilsoni* [19]. However, the identification and characterization of NF-Y gene family in conifers are still no reports. Here we use *Pinus tabuliformis*, widely distributed in China,
to study the characteristics of NF-Y in conifers. Based on the results obtained from NF-Y transcription factors in *A. thaliana* by using BLAST (blast-2.6.0+) and HMMER, we identified 28 NF-Y genes based on the Chinese pine reference transcriptome (Table 2). Compared with the numbers of NF-Ys, such as 36 in Arabidopsis [33], 25 in castor bean [46], 59 in tomato [47], 32 in grape [48], 33 in walnut [49] and 46 in *Populus trichocarpa* [45] harbored a comparable number of genes. We constructed the phylogenetic tree to analyse NF-Y proteins in Chinese pine and *Arabidopsis*, and some studies suggest that the Arabidopsis NF-Y family may not consist of AtNF-YB11/12/13 and AtNF-YC10/11/13 because they do not include the proper structure [41]. Also, *PtNF-YC6, PtNF-YC2* and *PtNF-YC3* have a distant evolutionary relationship with the three clusters of NF-YA/B/C which were similar to the six Arabidopsis NF-Ys mentioned above. Multiple alignments and our phylogenetic tree can support this opinion (Fig. 1 and Fig. 3).

Previous studies reported that the Arabidopsis NF-YB subunits can be divided into two classes, the LEC1-type and the non-LEC1-type [50]. The LEC1-type (AtNF-YB9 and AtNF-YB6) had Asp (D) residues where Lys (K) is found in mammals and most plants, and the aspartate at D55 site is necessary for LEC1 activity in embryogenesis [33]. In our study, *PtNF-YB5*|*Pita unigene27227* and *PtNF-YB4*|*Pita unigene6096* changed from Lys (K) to Asp (D) at this binding site (Fig. 1B). In addition, based on analysis of phylogenetic, *PtNF-YB5*|*Pita unigene27227* and *PtNF-YB4*|*Pita unigene6096* were most likely to be the two LEC1-type orthologs of AtLEC1(AtNF-YB9) and AtL1L (AtNF-YB6) that might share similar functions in regulating seed development and embryogenesis and like Arabidopsis (Fig. 3).

According to the expression profiles of NF-Y genes during the developmental process of male cones, six different developmental stages of male from phenotypic recognition to maturation were collected (Table 2). *PtNF-YB4* and *PtNF-YB5* were only up-regulated in later development of male cones which suggested they may be involve in pollen maturation which tube growth and sperm delivery of conifers are fundamentally different from that of angiosperms [19]. The study found that two conifer LEC1-type HAP3 genes, *HAP3A* and *HAP3B*, from *Picea abies* and *Pinus sylvestris* were high expression during early embryo development, but decreased during late embryogeny [32]. Also, we found that the sequence of *PtNF-YB4* had high homology (the similarity > 77%) by blast with *PsHAP3A* and
PaHAP3A and PtNF-YB5 was the same gene with PsHAP3A (Additional file 3) which suggested PtNF-YB4 and PtNF-YB5 may also participate embryo development. So, these results gave us the direction to study LEC1-type of NF-YBs in conifers.

NF-Y complexes can bind to CO proteins to activate the photoperiodic pathway and regulate FT expression in Arabidopsis [10]. CO accumulates during the day and its expression peaks at dusk; then CO can replace the NF-YA subunit of Arabidopsis to form a CO/NF-YB/NF-YC trimer (NF-CO) complex that promote the FT peak expression at dusk [11, 12, 51, 52]. We observed that PtCO expression was positively correlated with PtNF-YC1 and PtNF-YC4 in male cones, but was negatively correlated with PtTFL2 (Fig. 5). Because there are no FT orthologous gene members in conifer, and the FT/TFL1-like members are functionally repressors, meanwhile perennial characteristics of conifers [53]. The PtCO, NF-Ys (PtNF-YC1 and PtNF-YC4) and PtTFL2 may be have different regulatory mechanisms that compared with Arabidopsis. In addition, the discovery of the Arabidopsis NF-Y complex that can regulate flowering time by developmental signals, such as gibberellin pathway. So, we want to know PtNF-YC1 and PtNF-YC4, that participating in flowering, whether respond to gibberellin. Via yeast two-hybrid assays and bimolecular fluorescence complementation assay, we found that NF-YC1/4 can interact with DPL. But, PtNF-YC1 was no significant changes by gibberellins (GA₃ and GA₄) and paclobutrazol (PAC) treatments, and maybe it depends on the sampling time. In a word, we found PtNF-YC1 and PtNF-YC4 participate in flowering and gibberellin pathway, but further research is needed. Moreover, it provides a good direction whether NF-YC1/4 can regulate flowering time by gibberellin pathway in conifers to be tested.

NF-Y genes are not only involved in flowering time, early seedling development but also have roles in stress responses and hormone signaling [54]. The AtNF-YC (3/4/9) [55], and CdtNF-YC1 (Cynodon dactylon × Cynodon transvaalensis) [23], SlNF-YA-L1(Solanum pimpinellifolium) [26] and ZmNF-YA3 (Zea mays) [29] can result in enhanced drought tolerance. Over-expressing AtNF-YA2 or AtNF-YC1 displayed enhance tolerance against freezing stress [27, 56]. According to our analysis of cis-elements in the PtNF-Y promoters (Fig. 4), the promoter regions containing MBS related to drought-inducibility and LTR related to low-temperature responsive implied that PtNF-Ys can be involved in the
drought and low-temperature pathway. Moreover, we found multiple types of phytohormones-responsive cis-elements (ABA, JA, IAA, SA) suggested that PtNF-Ys might be involved in drought tolerance, pathogen and pest resistance and it conformed to the resistance characteristics of some conifers, such as *Pinus tabuliformis*, *Pinus sylvestris* var. *mongolica*, *Pinus thunbergii*. Besides, researches show that salicylic acid can inhibit pathogen growth through repression of the auxin signaling pathway [57], while JA and SA interact with each other in an antagonistic manner [58]. Based on an analysis of gene expression under hormone treatments, *NF-Y* genes can be in response to salicylic acid (SA), abscisic acid (ABA) and jasmonic acid (JA) treatment which were consistent with our analysis of cis-elements inference (Fig. 7). Also, many *NF-Y* genes responded positively to salicylic acid, as opposed to auxin and jasmonic acid. Our data suggest that PtNF-Y may control disease resistance by dynamically regulating SA, IAA and JA signaling. This study provided the possibility for further study of novel resistant pathways related to *NF-Y* genes in *Pinus tabuliformis* even for kinds of conifers.

Conclusions

NF-Y transcription factors have been extensively recognized and classified in several plants. Although there have been some studies on *NF-Y* in conifer trees, most studies have focused on single genes and most family studies have focused on angiosperms. So, this research trend of *NF-Y* should been extended to conifer trees. Our study, carried out in *Pinus tabuliformis*, a conifer widely distributed in China can pay close attention to current research priorities. 28 *PtNF-Ys* were first identified in conifer trees and their evolutionary, structural were analyzed. Comparison of *NF-Ys* in Chinese pine and *Arabidopsis* can provide rudimentary understanding on the function between less studied *PtNF-Ys* and its known homologs. Moreover, by analyzing transcriptome data of male development and experimental verification, two candidate genes (*NF-YC1* and *NF-YC4*) were found to be involved in the regulation of conifer flowering and gibberellin. Furthermore, analysis the cis-elements combined with the hormone treatment transcriptome indicated the potential role of *NF-Y* in a class of conifer resistance. According these results, we found some special scientific problems that may contribute to further functional investigation of *NF-Y* family in conifers.
Methods

Identification of NF-Y family members in Pinus tabuliformis

The protein sequences of NF-Y genes (10 NF-YA genes, 13 NF-YB genes, and 13 NF-YC genes) in A.thaliana were retrieved from the TAIR (http://www.arabidopsis.org/) (Additional file 1). These sequences were used to search our Pinus tabuliformis transcriptome database (unpublished) with the blastx program in BLAST (blast-2.6.0+) and the E-value cut-off was set as 1e-10. In addition, hidden Markov model (HMM) for the NF-Y genes was constructed using HMMER package version 3.0. The results of the BLAST and HMMER searchers were merged, resulting in 69 candidate NF-Y genes in Pinus tabuliformis. The incomplete and redundant sequences were omitted. Finally, 28 unigenes were identified (Additional file 2).

Multiple Alignments And Phylogenetic Analysis

Multiple sequence alignments of identified NF-Ys in Pinus tabuliformis were constructed using ClustalX. The Neighbor-Joining tree was constructed using MEGA7.0.21 software with 1000 bootstrap replications. The phylogenetic tree constructed by MEGA was uploaded to iTOL (http://itol.embl.de/) for further editing. Motifs were predicted using MEME software (http://meme-suite.org/tools/meme).

Cis -elements of the PtNF-Y promoter

The promoter sequences (length, 2 kb) of PtNF-Ys were collected from the Genome Database of Pinus tabuliformis (has yet to genome annotation and obtained the promoter sequences based on the CDS alignment by blast). The cis-elements were analyzed in the PlantCARE program (http://bioinformatics.psb.ugent.be/webtools/plantcare/html/).

Transcriptome Plant Materials And Data Analysis

The seeds of Pinus tabuliformis were obtained from a primary clonal seed orchard located in Pingquan City, Hebei Province, China (40°99’ N, 118°45’ E, 560 m above sea level). The seeds of Pinus tabuliformis were sown on sphagnum moss soaked with water and then germinated for 14 days in a growth chamber under conditions of 22 °C 14 h light/10 h dark photoperiod. Then transferred in plastic pots and irrigated weekly according to the hormone types and concentrations in Table 2. After 50 days of treatment, needles were collected, liquid nitrogen quick-frozen, and stored at -80 °C.
Furthermore, the male cones development samples for RNA-Seq analysis were collected from individual trees at the botanical gardens in Beijing, China (116°33.91160’E, 40°00.08610’N and 44 m above sea level) and datas were deposited in the NCBI Sequence Read Archive (SRA) under the accession number SRA 056887. The RNA-seq datas (Additional file 4) were shown as heat map by TBtools toolkit [59]. Hierarchical clustering displays the expression profiles and the color scale indicating Normalize expression values. Also all the samples used for RNA-Seq analysis is this study are provided in Table 2.

Developmental stages	Analysis	Time point	Repetitions
Vegetative buds (VB)	RNA-seq	26 September 2012	3
Male cones (M)	RNA-seq	M1 (26 September 2012); M2–M6 (16 March 2013–every 9 d)	3
Hormone treatments	Analysis	Hormone concentration	Repetitions
Needles	RNA-seq	Water + ethyl alcohol (CK)	6
	RNA-seq	Abscisic acid (ABA)	10 µM
	RNA-seq	Auxin (IAA)	10 µM
	RNA-seq	Jasmonic acid (JA)	30 µM
	RNA-seq	Salicylic acid (SA)	100 µM

Yeast Two-hybrid Assay

The coding regions of NF-YC1, NF-YC4 and DPL were amplified and cloned into pGBK7 and pGAD7 (Clontech). Yeast two-hybrid assays were performed using the Yeastmaker Yeast Transformation System 2 (Clontech). Yeast AH109 cells were co-transformed with the specific bait and prey constructs. All yeast transformants were grown on SD/-Trp/-Leu or SD/-Trp/-Leu/-His/-Ade medium for selection or interaction test.

BiFC Analysis

For the bimolecular fluorescence complementation (BiFC) assay, DPL gene was cloned into the pSPYCE vector and NF-YC1/4 were cloned into the pSPYNE [60]. All expression vectors were introduced into A. tumefaciens LBA4404. Agrobacteria were incubated, harvested, and resuspended in agroinfiltration buffer (0.2 mM acetosyringone, 10 mM MgCl₂, and 10 mM MES). Agroinfiltration buffer was mixed with an equal volume of the protein mixture and injected into tobacco leaves using a syringe. Seventy two hours after infiltration, images were taken using a Leica TCS SP8 confocal.
Statistical Analysis
The data are statistically described as mean ± standard deviation (± SD) and visualization through GraphPad Prism 7.0. The correlation were analyzed by R 3.6.2.

Abbreviations
ABA: abscisic acid; IAA: auxin; JA: jasmonic acid; SA: salicylic acid; CO: CONSTANS; TFL2: TERMINAL FLOWER2; HMMs: Hidden Markov Models

Declarations

Ethics approval and consent to participate
Not applicable

Consent for publication
Not applicable

Availability of data and materials
All data analyzed during this study are included in this published article and its additional files.

Competing interests
The authors declare no conflict of interest.

Funding
This work was supported by grant from the National Natural Science Foundation of China (31770713).
The funding bodies had no role in the design of the study, collection, analysis, or interpretation of data or in the writing of the manuscript.

Authors’ contributions
YTG analyzed the data and wrote the manuscript, SHN collected data and samples in the field, WL modified the manuscript. All authors have read and agreed to the published version of the manuscript.

Acknowledgements
We are thankful to a primary clonal seed orchard located in Pingquan City, Hebei Province, China (40°99’ N, 118°45’ E, 560 m above sea level) for providing the seed material.

References
1. Nystedt B, Street NR, Wetterbom A, Zuccolo A, Lin Y, Scofield DG, et al. The Norway spruce genome sequence and conifer genome evolution. *NATURE*. 2013;497(7451):579–84.

2. Li W, Wang X, Li Y. Stability in and correlation between factors influencing genetic quality of seed lots in seed orchard of *Pinus tabuliformis* Carr. over a 12-year span. *PLOS ONE*. 2011;6(8):e23544.

3. CHEN K, ABBOTT RJ, MILNE RI, TIAN X, LIU J. Phylogeography of *Pinus tabulaeformis* Carr. (Pinaceae), a dominant species of coniferous forest in northern China. *MOL ECOL*. 2008;17(19):4276–88.

4. Mantovani R. The molecular biology of the CCAAT-binding factor NF-Y. *GENE*. 1999;239(1):15–27.

5. Romier C, Cocchiarella F, Mantovani R, Moras D. The NF-YB/NF-YC Structure Gives Insight into DNA Binding and Transcription Regulation by CCAAT Factor NF-Y. *J BIOL CHEM*. 2003;278(2):1336–45.

6. Sankar N, Maity A, Benoit, De et al. Role of the CCAAT-binding protein CBF/NF-Y in transcription. *TRENDS BIOCHEM SCI*. 1998;23(5):174–8.

7. Laloum T, De Mita S, Gamas P, Baudin M, Niebel A. CCAAT-box binding transcription factors in plants: Y so many? *TRENDS PLANT SCI*. 2013;18(3):157–66.

8. Hackenberg D, Wu Y, Voigt A, Adams R, Schramm P, Grimm B. Studies on Differential Nuclear Translocation Mechanism and Assembly of the Three Subunits of the *Arabidopsis thaliana* Transcription Factor NF-Y. *MOL PLANT*. 2012;5(4):876–88.

9. Gnesutta N, Mantovani R, Fornara F. Plant Flowering: Imposing DNA Specificity on Histone-Fold Subunits. *TRENDS PLANT SCI*. 2018;23(4):293–301.

10. Myers ZA, Holt BR. NUCLEAR FACTOR-Y: still complex after all these years? *CURR OPIN PLANT BIOL*. 2018; 45(2018):96–102.
11. Cao S, Kumimoto RW, Gnesutta N, Calogero AM, Mantovani R, Holt BF. A Distal CCAAT/NUCLEAR FACTOR Y Complex Promotes Chromatin Looping at the FLOWERING LOCUS T Promoter and Regulates the Timing of Flowering in Arabidopsis. Plant Cell. 2014;26(3):1009-17.

12. Siriwardana CL, Gnesutta N, Kumimoto RW, Jones DS, Myers ZA, Mantovani R, et al. NUCLEAR FACTOR Y, Subunit A (NF-YA) Proteins Positively Regulate Flowering and Act Through FLOWERING LOCUS T. PLOS GENET. 2016; 12(12):e1006496.

13. Kumimoto RW, Adam L, Hymus GJ, Repetti PP, Reuber TL, Marion CM, et al. The Nuclear Factor Y subunits NF-YB2 and NF-YB3 play additive roles in the promotion of flowering by inductive long-day photoperiods in Arabidopsis. PLANTA. 2008;228(5):709-23.

14. Wei Q, Ma C, Xu Y, Wang T, Chen Y, Lü J, et al. Control of chrysanthemum flowering through integration with an aging pathway. NAT COMMUN. 2017; 8(1).

15. Li C, Distelfeld A, Comis A, Dubcovsky J. Wheat flowering repressor VRN2 and promoter CO2 compete for interactions with NUCLEAR FACTOR-Y complexes. Plant J. 2011;67(5):763–73.

16. Hou X, Zhou J, Liu C, Liu L, Shen L, Yu H. Nuclear factor Y-mediated H3K27me3 demethylation of the SOC1 locus orchestrates flowering responses of Arabidopsis. NAT COMMUN. 2014; 5(1).

17. Xiong Y, Ren Y, Li W, Wu F, Yang W, Huang X, et al. NF-YC12 is a key multi-functional regulator of accumulation of seed storage substances in rice. J EXP BOT. 2019;70(15):3765–80.

18. Liu X, Hu P, Huang M, Tang Y, Li Y, Li L, et al. The NF-YC–RGL2 module integrates GA and ABA signalling to regulate seed germination in Arabidopsis. NAT COMMUN. 2016;7:12768.
19. Yu Y, Li Y, Huang G, Meng Z, Zhang D, Wei J, et al. PwHAP5, a CCAAT-binding transcription factor, interacts with PwFKBP12 and plays a role in pollen tube growth orientation in *Picea wilsonii*. J EXP BOT. 2011;62(14):4805–17.

20. Tang Y, Liu X, Liu X, Li Y, Wu K, Hou X. Arabidopsis NF-YCs Mediate the Light-Controlled Hypocotyl Elongation via Modulating Histone Acetylation. MOL PLANT. 2017;10(2):260–73.

21. Bai A, Lu X, Li D, Liu J, Liu C. NF-YB1-regulated expression of sucrose transporters in aleurone facilitates sugar loading to rice endosperm. CELL RES. 2016;26(3):384–8.

22. Sato H, Suzuki T, Takahashi F, Shinozaki K, Yamaguchi-Shinozaki K. NF-YB2 and NF-YB3 Have Functionally Diverged and Differentially Induce Drought and Heat Stress-Specific Genes. PLANT PHYSIOL. 2019;180(3):1677–90.

23. Wu X, Shi H, Guo Z. Overexpression of a NF-YC Gene Results in Enhanced Drought and Salt Tolerance in Transgenic Seashore Paspalum. FRONT PLANT SCI. 2018; 9.

24. Zhang X, Zou Z, Gong P, Zhang J, Ziaf K, Li H, et al. Over-expression of microRNA169 confers enhanced drought tolerance to tomato. BIOTECHNOL LETT. 2011;33(2):403–9.

25. Leyva-Gonzalez MA, Ibarra-Laclette E, Cruz-Ramirez A, Herrera-Estrella L. Functional and transcriptome analysis reveals an acclimatization strategy for abiotic stress tolerance mediated by Arabidopsis NF-YA family members. PLOS ONE. 2012;7(10):e48138.

26. Filichkin SA, Ansariola M, Fraser VN, Megraw M. Identification of transcription factors from NF-Y, NAC, and SPL families responding to osmotic stress in multiple tomato varieties. PLANT SCI. 2018;274:441–50.

27. Gyula P, Baksa I, Tóth T, Mohorianu I, Dalmay T, Szitty G. Ambient temperature regulates the expression of a small set of sRNAs influencing plant development through NF-YA2 and YUC2. Plant, Cell & Environment. 2018; 41(10):2404-17.
28. Tokutsu R, Fujimura-Kamada K, Matsuo T, Yamasaki T, Minagawa J. The CONSTANS flowering complex controls the protective response of photosynthesis in the green alga *Chlamydomonas*. NAT COMMUN. 2019;10(1):4010–99.

29. Su H, Cao Y, Ku L, Yao W, Cao Y, Ren Z, et al. Dual functions of ZmNF-YA3 in photoperiod-dependent flowering and abiotic stress responses in maize. J EXP BOT. 2018;69(21):5177–89.

30. Zhang T, Zhang D, Liu Y, Luo C, Zhou Y, Zhang L. Overexpression of a NF-YB3 transcription factor from *Picea wilsonii* confers tolerance to salinity and drought stress in transformed *Arabidopsis thaliana*. PLANT PHYSIOL BIOCH. 2015;94:153–64.

31. Li L, Yu Y, Wei J, Huang G, Zhang D, Liu Y, et al. Homologous HAP5 subunit from *Picea wilsonii* improved tolerance to salt and decreased sensitivity to ABA in transformed *Arabidopsis*. PLANTA. 2013;238(2):345–56.

32. Uddenberg D, Valladares S, Abrahamsson M, Sundström JF, Sundås-Larsson A, von Arnold S. Embryogenic potential and expression of embryogenesis-related genes in conifers are affected by treatment with a histone deacetylase inhibitor. PLANTA. 2011;234(3):527–39.

33. Siefers N, Dang KK, Kumimoto RW, William EBI, Tayrose G, Ben FHI. Tissue-Specific Expression Patterns of *Arabidopsis* NF-Y Transcription Factors Suggest Potential for Extensive Combinatorial Complexity. PLANT PHYSIOL. 2009;149(2):625–41.

34. Camacho C, Coulouris G, Avagyan V, Ma N, Papadopoulos J, Bealer K, et al. BLAST+: architecture and applications. BMC BIOINFORMATICS. 2009;10(1):421.

35. Eddy SR. Profile hidden Markov models. BIOINFORMATICS. 1998;14(9):755–63.

36. Kumar S, Stecher G, Tamura K. MEGA7: Molecular Evolutionary Genetics Analysis Version 7.0 for Bigger Datasets. MOL BIOL EVOL. 2016;33(7):1870-4.

37. Schwietz LA, Goetz DW, Whisman BA, Reid MJ. Cross-reactivity among conifer pollens.
Ann Allergy Asthma Immunol. 2000;84(1):87-93.

38. Ben Naim O, Eshed R, Parnis A, Teper Bamnolker P, Shalit A, Coupland G, et al. The CCAAT binding factor can mediate interactions between CONSTANS-like proteins and DNA. Plant J. 2006;46(3):462-76.

39. Kumimoto RW, Zhang Y, Siefers N, Holt BF. NF-YC3, NF-YC4 and NF-YC9 are required for CONSTANS-mediated, photoperiod-dependent flowering in Arabidopsis thaliana. Plant J. 2010;63(3):379-91.

40. Brambilla V, Fornara F. Y flowering? Regulation and activity of CONSTANS and CCT-domain proteins in Arabidopsis and crop species. Biochimica et Biophysica Acta (BBA) - Gene Regulatory Mechanisms. 2017; 1860(5):655-60.

41. Zhao H, Wu D, Kong F, Lin K, Zhang H, Li G. The Arabidopsis thaliana Nuclear Factor Y Transcription Factors. FRONT PLANT SCI. 2016; 7:2045.

42. Ni Z, Hu Z, Jiang Q, Zhang H. GmNFYA3, a target gene of miR169, is a positive regulator of plant tolerance to drought stress. PLANT MOL BIOL. 2013;82(1-2):113-29.

43. Das S, Parida SK, Agarwal P, Tyagi AK. Transcription factor OsNF-YB9 regulates reproductive growth and development in rice. PLANTA. 2019.

44. Stephenson TJ, McIntyre CL, Collet C, Xue G. TaNF-YB3 is involved in the regulation of photosynthesis genes in Triticum aestivum. Funct Integr Genomics. 2011;11(2):327-40.

45. Li J, Gao K, Khan WU, Yang X, Yang X, Zhao T, et al. Genome-wide analysis of the poplar NF-Y gene family and its expression in floral bud development of Populus tomentosa. Trees. 2020;34(1):285-96.

46. Wang Y, Xu W, Chen Z, Han B, Haque ME, Liu A. Gene structure, expression pattern and interaction of Nuclear Factor-Y family in castor bean (Ricinus communis).
47. Li S, Li K, Ju Z, Cao D, Fu D, Zhu H, et al. Genome-wide analysis of tomato NF-Y factors and their role in fruit ripening. BMC GENOMICS. 2016; 17(1).

48. Ren C, Zhang Z, Wang Y, Li S, Liang Z. Genome-wide identification and characterization of the NF-Y gene family in grape (*vitis vinifera* L.). BMC GENOMICS. 2016; 17(1).

49. Quan S, Niu J, Zhou L, Xu H, Ma L, Qin Y. Identification and characterization of NF-Y gene family in walnut (*Juglans regia* L.). BMC PLANT BIOL. 2018; 18(1).

50. Lee H, Fischer RL, Goldberg RB, Harada JJ. Arabidopsis. LEAFY COTYLEDON1 Represents a Functionally Specialized Subunit of the CCAAT Binding Transcription Factor. P NATL ACAD SCI USA. 2003; 100(4):2152–6.

51. Myers ZA, Kumimoto RW, Siriwardana CL, Gayler KK, Risinger JR, Pezzetta D, et al. NUCLEAR FACTOR Y, Subunit C (NF-YC) Transcription Factors Are Positive Regulators of Photomorphogenesis in *Arabidopsis thaliana*. PLOS GENET. 2016; 12(9):e1006333.

52. Gnesutta N, Kumimoto RW, Swain S, Chiara M, Siriwardana C, Horner DS, et al. CONSTANS imparts DNA sequence-specificity to the histone-fold NF-YB/NF-YC dimer. The Plant Cell. 2017:864–2016.

53. Klintenäs M, Pin PA, Benlloch R, Ingvarsson PK, Nilsson O. Analysis of conifer *FLOWERING LOCUS T/TERMINAL FLOWER1*-like genes provides evidence for dramatic biochemical evolution in the angiosperm *FT* lineage. NEW PHYTOL. 2012;196(4):1260–73.

54. Petroni K, Kumimoto RW, Gnesutta N, Calvenzani V, Fornari M, Tonelli C, et al. The Promiscuous Life of Plant NUCLEAR FACTOR Y Transcription Factors. Plant Cell. 2013;24(12):4777–92.

55. Hwang K, Susila H, Nasim Z, Jung J, Ahn JH. *Arabidopsis* ABF3 and ABF4 Transcription
Factors Act with the NF-YC Complex to Regulate SOC1 Expression and Mediate Drought-Accelerated Flowering. MOL PLANT. 2019;12(4):489–505.

56. Shi H, Ye T, Zhong B, Liu X, Chan Z. AtHAP5A modulates freezing stress resistance in Arabidopsis through binding to CCAAT motif of AtXTH21. NEW PHYTOL. 2014;203(2):554–67.

57. Wang D, Pajerowska-Mukhtar K, Culler AH, Dong X. Salicylic Acid Inhibits Pathogen Growth in Plants through Repression of the Auxin Signaling Pathway. CURR BIOL. 2007;17(20):1784–90.

58. Han G. Evolution of jasmonate biosynthesis and signaling mechanisms. J EXP BOT. 2016:w470.

59. Chen C, Xia R, Chen H. TBtools, a Toolkit for Biologists integrating various HTS-data handling tools with a user-friendly interface. bioRxiv. 289660.

60. Walter M, Chaban C, Schütze K, Batistic O, Weckermann K, Näke C, et al. Visualization of protein interactions in living plant cells using bimolecular fluorescence complementation. Plant J. 2004;40(3):428–38.

Additional Files

Additional file 1: Full length sequences of the Arabidopsis.

Additional file 2: CDS sequences and translated amino acid sequences of 28 Chinese pine NF-Ys.

Additional file 3: Sequence alignment of PtNF-YB4, PtNF-YB5, PsHAP3A and PaHAP3A proteins.

Additional file 4: Transcriptome data (TPM) of PtNF-Ys in different development stages of male cones and hormone treatments.

Figures
Multiple alignments of *Pinus tabuliformis* NF-Y family members. Multiple alignment of (A) PtNF-YA proteins, (B) PtNF-YB proteins, and (C) PtNF-YC proteins. Amino acids critical for distinguishing between LEC1 and non-LEC1 are indicated by black box.
Motif distributions of NF-YA, NF-YB, NF-YC subfamilies in Chinese pine proteins. Ten motifs were identified through MEME tool search and indicated with different colors.
Figure 3

Phylogenetic analysis of NF-Y proteins in Chinese pine and Arabidopsis. The phylogenetic tree was constructed by protein sequences of 28 NF-Ys in Chinese pine and 36 NF-Ys in Arabidopsis. Among, AtNF-YB6 and AtNF-YB9, which are marked by red circles, represent AtL1L and AtLEC1, respectively. Purple, orange and green indicate the NF-YA, NF-YB, and NF-YC subfamilies, respectively. The bootstrap values are shown on branches.
Figure 4

Heat map of cis-elements in the promoter region of PtNF-Ys. Color bars and circle sizes indicate the numbers of cis-elements. Yellow box indicates MeJA-responsive, black box indicates gibberellin-responsive, red box indicates ABA-responsive, gray box indicates SA-responsive and blue box indicates auxin-responsive in phytohormone-responsive module. Red box indicates drought-responsive and blue box indicates low temperature-responsive in stress-responsive module.
Figure 5

Expression patterns of PtNF-Ys and correlations in expression levels between PtCO, PtTFL2 with PtNF-Ys in different development stages of male cones. (A) Expression patterns of PtNF-Ys. (B) Correlations in expression levels. VB represents vegetative bud, M1-M6 represent male cones sampled at consequential developmental stages. The color scale indicates fold-change values (normalize expression values of TPM) with red representing increased transcript abundance and blue indicating decreased transcript abundance.
NF-YC1/4 physically interact with DPL in vivo. (A) Transcriptomic analysis of NF-YC1/4 in response to GA and PAC. Red histogram represents NF-YC4 expression level, and blue histogram represents NF-YC1 expression level. (B) Yeast two-hybrid assays show the interactions between NF-YC1/4 and DPL. Transformed yeast cells were grown on SD/-Trp/-Leu/-His/-Ade and SD/-Trp/-Leu medium. (C) BiFC analysis of the interactions between NF-YC1/4 and DPL in tobacco epidermal cells. YFP, fluorescence of yellow fluorescent protein; BF, bright field; Merge, merge of YFP and bright field. Scale bar, 50 μm.
Figure 7

Expression patterns of PtNF-Ys in response to hormone treatments. ABA, IAA, JA, SA treatments of needles in Chinese pine are shown. The color scale indicates fold-change values (normalize expression values of TPM) with red representing increased transcript abundance and blue indicating decreased transcript abundance.

Supplementary Files

This is a list of supplementary files associated with this preprint. Click to download.

AdditionalFiles1.docx
Additionalfiles3.xlsx
Additionalfiles4.xlsx
Additionalfiles2.docx