Step Size Matters in Deep Learning

Kamil Nar Shankar Sastry

Neural Information Processing Systems
December 4, 2018
Gradient Descent: Effect of Step Size

Example

\[
\min_{x \in \mathbb{R}} (x^2 + 1)(x - 1)^2(x - 2)^2
\]

From random initialization

- Converges to \(x_1^* = 1 \) only if \(\delta \leq 0.5 \).
- Converges to \(x_2^* = 2 \) only if \(\delta \leq 0.2 \).

If the algorithm converges with \(\delta = 0.3 \), the solution is \(x_1^* = 1 \).
Gradient Descent: Effect of Step Size

Example

\[\min_{x \in \mathbb{R}} (x^2 + 1)(x - 1)^2(x - 2)^2 \]

From random initialization

- converges to \(x_1^* = 1 \) only if \(\delta \leq 0.5 \)
- converges to \(x_2^* = 2 \) only if \(\delta \leq 0.2 \)
Gradient Descent: Effect of Step Size

Example

\[
\min_{x \in \mathbb{R}} (x^2 + 1)(x - 1)^2(x - 2)^2
\]

From random initialization

- converges to \(x_1^* = 1\) only if \(\delta \leq 0.5\)
- converges to \(x_2^* = 2\) only if \(\delta \leq 0.2\)

If the algorithm converges with \(\delta = 0.3\), the solution is \(x_1^*\).
Deep Linear Networks

\[x \mapsto W_L W_{L-1} \cdots W_2 W_1 x \]
Deep Linear Networks

\[x \mapsto W_L W_{L-1} \cdots W_2 W_1 x \]

- Cost function has infinitely many local minimum
- Different dynamic characteristics at different optima
Lyapunov Stability of Gradient Descent
Deep Linear Networks

Proposition

- $\lambda \in \mathbb{R}$ and $\lambda \neq 0$
- λ is estimated as multiplication of scalar parameters $\{w_i\}$

$$\min_{\{w_i\}} \frac{1}{2} (w_L \ldots w_2 w_1 - \lambda)^2.$$
Proposition

- $\lambda \in \mathbb{R}$ and $\lambda \neq 0$
- λ is estimated as multiplication of scalar parameters $\{w_i\}$

$$\min_{\{w_i\}} \frac{1}{2} (w_L \ldots w_2 w_1 - \lambda)^2.$$

For convergence to $\{w_i^*\}$ with $w_L^* \ldots w_2^* w_1^* = \lambda$, step size must satisfy

$$\delta \leq \frac{2}{\sum_{i=1}^{L} \left(\frac{\lambda}{w_i^*} \right)^2}.$$
• δ needs to be very small for equilibria with disproportionate $\{w_i^*\}$

• For each δ, the algorithm can converge only to a subset of optima
Lyapunov Stability of Gradient Descent
Deep Linear Networks

- δ needs to be very small for equilibria with disproportionate $\{w_i^*\}$
- For each δ, the algorithm can converge only to a subset of optima
- No finite Lipschitz constant for the gradient on the whole parameter space
Deep Linear Networks

Theorem

- \(\{x_i\}_{i \in [N]} \) satisfies \(\frac{1}{N} \sum_{i=1}^{N} x_i x_i^\top = I \)
- \(R \) is estimated as multiplication of \(\{W_j\} \) by

\[
\min_{\{W_j\}} \frac{1}{2N} \sum_{i=1}^{N} \|Rx_i - W_L W_{L-1} \cdots W_2 W_1 x_i\|_2^2
\]
Deep Linear Networks

Theorem

- \(\{x_i\}_{i \in [N]} \) satisfies \(\frac{1}{N} \sum_{i=1}^{N} x_i x_i^\top = I \)
- \(R \) is estimated as multiplication of \(\{W_j\} \) by

\[
\min_{\{W_j\}} \frac{1}{2N} \sum_{i=1}^{N} \|Rx_i - W_L W_{L-1} \cdots W_2 W_1 x_i\|_2^2
\]

Assume the gradient descent algorithm with random initialization has converged to \(\hat{R} \). Then,

\[
\rho(\hat{R}) \leq \left(\frac{2}{L\delta} \right)^{L/(2L-2)} \text{ almost surely.}
\]
Deep Linear Networks

Theorem

- \(\{x_i\}_{i \in [N]} \) satisfies \(\frac{1}{N} \sum_{i=1}^{N} x_i x_i^\top = I \)
- \(R \) is estimated as multiplication of \(\{W_j\} \) by

\[
\min_{\{W_j\}} \frac{1}{2N} \sum_{i=1}^{N} \|Rx_i - W_L W_{L-1} \cdots W_2 W_1 x_i\|_2^2
\]

Assume the gradient descent algorithm with random initialization has converged to \(\hat{R} \). Then,

\[
\rho(\hat{R}) \leq \left(\frac{2}{L\delta} \right)^{L/(2L-2)} \text{ almost surely.}
\]

- Step size bounds the Lipschitz constant of the estimated function
Deep Linear Networks

Theorem

- \(\{x_i\}_{i \in [N]} \) satisfies \(\frac{1}{N} \sum_{i=1}^{N} x_i x_i^\top = I \)
- \(R \) is estimated as multiplication of \(\{W_j\} \) by

\[
\min_{\{W_j\}} \frac{1}{2N} \sum_{i=1}^{N} \|Rx_i - W_L W_{L-1} \cdots W_2 W_1 x_i\|_2^2
\]

Assume the gradient descent algorithm with random initialization has converged to \(\hat{R} \). Then,

\[
\rho(\hat{R}) \leq \left(\frac{2}{L\delta} \right)^{L/(2L-2)} \text{ almost surely.}
\]

- **Step size** bounds the Lipschitz constant of the estimated function
- **Contrary to ordinary-least-squares**
Deep Linear Networks

Symmetric PSD matrices:

- The bound is tight with identity initialization
- **Identity initialization allows convergence with the largest step size**
Two-layer ReLU network:

\[x \mapsto W(Vx - b)_+ \]

Theorem

Let \(f : \mathbb{R}^n \to \mathbb{R}^m \) be estimated by

\[
\min_{W, V} \frac{1}{2} \sum_{i=1}^{N} \| W(Vx_i - b) + f(x_i) \|_2^2.
\]

If the algorithm converges, then the estimate \(\hat{f}(x_i) \) satisfies

\[
\max_{i \in [N]} \| x_i \| \| \hat{f}(x_i) \| \leq \delta
\]

almost surely.
Nonlinear Networks

Two-layer ReLU network:

\[x \mapsto W(Vx - b)_+ \]

Theorem

Let \(f : \mathbb{R}^n \rightarrow \mathbb{R}^m \) be estimated by

\[
\min_{W, V} \frac{1}{2} \sum_{i=1}^{N} \|W(Vx_i - b)_+ - f(x_i)\|_2^2.
\]
Two-layer ReLU network:

\[x \mapsto W(Vx - b)_+ \]

Theorem

Let \(f : \mathbb{R}^n \to \mathbb{R}^m \) be estimated by

\[
\min_{W,V} \frac{1}{2} \sum_{i=1}^{N} \|W(Vx_i - b)_+ - f(x_i)\|_2^2.
\]

If the algorithm converges, then the estimate \(\hat{f}(x_i) \) satisfies

\[
\max_{i \in [N]} \|x_i\| \|\hat{f}(x_i)\| \leq \frac{1}{\delta}
\]

almost surely.