Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
Relationship of platelet counts, platelet volumes, and Curb-65 scores in the prognosis of COVID-19 patients

Yeşim İşler *,1, Halil Kaya 1

University of Health Sciences Turkey, Bursa Yuksek Ihtisas Training and Research Hospital, Department of Emergency Medicine, Bursa, Turkey

ARTICLE INFO

Article history:
Received 13 July 2021
Received in revised form 2 November 2021
Accepted 2 November 2021

Keywords:
COVID-19
Emergency department
Pneumonia
Platelet
Mean platelet volume

ABSTRACT

Objectives: This study investigated the relationship between 28-day mortality in patients with COVID-19 pneumonia and the CURB-65 score, platelet count (PLT), mean platelet volume (MPV), and MPV/PLT ratio (MPR).

Methods: A total of 247 patients with COVID-19 pneumonia who presented to the emergency department between March 15, 2020 and May 15, 2020 were retrospectively analyzed. The age, gender, clinical presentation, history of chronic disease, thoracic computed tomography findings, MPV, PLT, CURB-65 scores, and 28-day mortality of patients were recorded.

Results: The patients had a mean age of 51 years (IQR: 39–63 years) and 55.5% were females. The most common symptom was cough (30.4% of patients). The most common comorbidity was hypertension (13.4%), 49.8% of the cases showed intermediate involvement, and 7.7% of patients died within the first 28 days. The mean MPV was 9.71 ± 1.15, the mean PLT was 226.68 ± 83.82, and the mean MPR was 0.056 ± 0.12. There were significant correlations of 28-day mortality with the CURB-65 score, MPV, and MPR levels (p = 0.000, p = 0.034, and p = 0.034, respectively). No significant correlation was found between the PLT count and 28-day mortality (p = 0.105).

Conclusions: In addition to the CURB-65 score, MPV and MPR values can be used to predict 28-day mortality in patients with COVID-19 pneumonia.

© 2021 Elsevier Inc. All rights reserved.

1. Introduction

COVID-19 was declared a pandemic by the World Health Organization (WHO) [1]. The main presenting symptoms of COVID-19 are fever, cough and shortness of breath [2]. The clinical course and causative microorganisms are different between COVID-19 pneumonia and community-acquired pneumonia (CAP). COVID-19 pneumonia has a viral origin and can rapidly cause acute respiratory distress syndrome. Although polymerase chain reaction (PCR) is the standard diagnostic test for COVID-19, laboratory findings are important for confirming the diagnosis. Since COVID-19 is a dynamic disease that can lead to unexpected outcomes, laboratory findings are critical to assess the progression of COVID-19 and guide treatment interventions [3]. As such, it may be helpful that parameters checked upon admission have predictive value for COVID-19 disease progression and mortality.

During the progression of COVID-19, some blood parameters have been reported to decrease significantly, while others increase significantly [4]. The laboratory abnormalities predominantly found included hypoalbuminemia, elevated inflammatory markers, such as C reactive protein, lactate dehydrogenase, and erythrocyte sedimentation rate, among others. The frequency of lymphopenia found suggests that COVID-19 might act on lymphocytes, especially T lymphocytes, as does SARS-CoV, may be including. Görelik et al. demonstrated that the increase in mean platelet volume (MPV) strongly predicts in-hospital and long-term mortality [5]. Gölcük et al. also found that MPV is valuable for predicting mortality and disease severity at admission in patients with CAP [6]. COVID-19 pneumonia differs from CAP in terms of its features, but MPV remains a useful prognostic indicator for critically ill COVID-19 patients [7]. However, some studies showed a negative correlation between the MPV and platelet count (PLT) in severe COVID-19 patients [8]. It has also been reported that the combination of MPV and PLT may be clinically more significant than either parameter individually [8,9]. Inexpensive, accessible, and widely used laboratory tests of the severity of COVID-19 are important. MPV and PLT counts are widely and routinely used in clinical practice. The CURB-65 score can also be easily calculated in the emergency department. To our knowledge, there are no studies investigating the diagnostic value of the CURB-65 score, PLT, or...
MPV/PLT ratio (MPR) for COVID-19-associated mortality. Therefore, this study investigated whether the CURB-65 score, PLT count, MPV, and MPR are associated with 28-day mortality in COVID-19 pneumonia.

2. Material and methods

A retrospective analysis of 7,138 patients who presented to the emergency department of the Bursa Yüksek İhtisas Training and Research Hospital between March 15, 2020 and May 15, 2020 was conducted. Of these patients, 5,517 with a negative PCR, and 1,621 with a positive PCR but no evidence of COVID-19 pneumonia were excluded from the study. Accordingly, a total of 247 patients were included. Approval was obtained from the ethics committee of the hospital during the planning stage of the study (2011-KAEK-25 2020/05-20).

Patient information was gathered from the hospital automation system and patient files. The assessment of the patients and files were made by 2 emergency medicine specialists and 2 emergency medical assistants who completed 2 years of training.

State chart abstractors were trained in chart abstraction prior to data collection, and the abstractors were not aware of the study objectives. The abstractors used the hospital information management system to obtain data, which were collected on data abstraction forms. Abstractor performance was monitored. However, interobserver reliability was not assessed. The study was carried out in accordance with the principles of the Declaration of Helsinki. All data pertaining to the study were obtained from electronic hospital records. (Hospital Information Management System).

The sampling method was described as retrospective study. Age, gender, clinical presentation, chronic disease history, computerized tomography (CT) findings, and 28-day mortality were recorded. COVID-19 pneumonia imaging findings of patients with CT were evaluated by the radiologist according to the Expert Consensus Statement on the Reporting of COVID-19-Related Chest CT Findings of the North American Society of Radiology [10].

MPV, PLT and MPR were calculated according to hemogram examination performed during the first evaluation in the emergency department. CURB 65 was calculated as the patients age, vital signs (respiratory rate and blood pressure), biochemistry analysis (blood urea nitrogen) and confusion. Missing data were excluded. The final diagnosis and hospitalization information were recorded, and the 28-day mortality rate was calculated.

Inclusion and exclusion criteria:
- Patients over 18 years of age and with a positive PCR, and evidence of COVID-19 pneumonia were included in the study.
- Patients under 18 years of age, and those who were pregnant, had a negative PCR result, or had no signs of pneumonia on CT data were excluded from the study.

2.1. Statistical analysis

Data were analyzed using SPSS 22.0 software for Windows (SPSS Inc., Chicago, IL, USA). Descriptive statistics are expressed as means ± standard deviation or median values, while categorical variables are expressed as numbers and percentages (%). The Kolmogorov-Smirnov test was used to analyze the normality of the distribution of the data. The Mann-Whitney U and Kruskal-Wallis tests were used to evaluate significant differences in continuous numerical variables between the groups, because the assumptions of parametric tests were not met. Spearman correlation analysis was used to investigate the relationships of the CURB-65 score with the other parameters. The Chi-square test and Fisher’s exact test were used to determine the relationships of categorical variables. Variables considered useful for predicting mortality were included in a logistic regression model using the “enter” method. A receiver operating characteristic (ROC) curve analysis was performed to determine the diagnostic value of the MPR value for predicting 28-day mortality. A p-value < 0.05 was considered statistically significant. The 95% confidence intervals (CIs) were also calculated.

3. Results

A total of 247 patients with positive PCR results for COVID-19 were included in the study. The median patient age was 51 years (IQR: 39–63). There were 137 (55.5%) females in the study. Cough was the most common symptom (n = 75, 30.4%). Of the 247 patients, 74 (30%) had comorbidities, among which hypertension (HT) was the most common (n = 33, 13.4%). CT revealed intermediate involvement in 123 (49.8%) of patients with pneumonia. While 15 patients (6.1%) died within the first 14 days, 19 (7.7%) died within the first 28 days. Patients vital signs, clinical and demographic data are shown in Tables 1 and 2.

The average MPV of patients was 9.71 ± 1.15 fL, the mean platelet level was 226.68 ± 83.82 μL, and the mean MPR was 0.056 ± 0.12 fL/μL.

The Mann-Whitney U test was performed to investigate whether there were relationships among the CURB-65 score, MPV, PLT, and SPO2: Oxygen saturation.

Table 1
Clinical and demographic data of the patients.

Gender	n	%
Female	137	55.5
Male	110	44.5

Fever	n	%
No	181	73.3
Yes	66	26.7

Cough	n	%
No	172	69.6
Yes	75	30.4

Sore throat	n	%
No	234	94.7
Yes	13	5.3

Diarrhea	n	%
No	232	93.9
Yes	15	6.1

Weakness	n	%
No	223	94.3
Yes	14	5.7

Dyspnoea	n	%
No	221	89.5
Yes	26	10.5

Loss of smell-taste	n	%
No	219	88.7
Yes	28	11.3

Joint pain	n	%
No	206	83.4
Yes	41	16.6

Comorbidities	n	%
No	173	70
Yes	74	30

HT	n	%
No	214	86.6
Yes	33	13.4

DM	n	%
No	224	90.7
Yes	23	9.3

COPD /ASTHMA	n	%
No	227	91.9
Yes	20	8.1

CAD	n	%
No	236	95.5
Yes	11	4.5

Malignancy	n	%
No	241	97.6
Yes	6	2.4

Pneumonia	n	%
No	122	49.8
Yes	6	2.4

28-day mortality	n	%
No	228	92.3
Total	247	100

HT: Hypertension, DM: Diabetes Mellitus, COPD: Chronic Obstructive Pulmonary Disease, CAD: Coronary Artery Disease.
MPR levels in patients who died within 28 days. The CURB-65 score, MPV, and MPR were significantly different between patients who died within 28 days and those who did not ($p = 0.000$, $p = 0.034$, and $p = 0.034$, respectively) [Table 3].

In a logistic regression analysis, the presence of a comorbidity was a significant predictor of 28-day mortality ($\text{Exp beta} = 0.173$; [95% CI 0.063–0.473, $p = 0.001$] [Table 4]. No significant correlation was found between the CURB-65 score and MPR ($p > 0.05$) according to the Spearman’s rho test.

The CURB-65 score, MPV, PLT, and MPR did not differ by the type of pneumonia ($p > 0.05$) according to the Kruskal-Wallis test.

In the ROC curve analysis to identify predictors of 28-day mortality, the area under the curve (AUC) for the CURB-65 score was 0.988 (95% CI 0.966–1.000, $p < 0.001$) while that for the MPR was 0.647 (95% CI 0.496–0.797, $p < 0.05$) [Fig. 1].

When the cutoff value of the CURB-65 score for 28-day mortality was 2.5, it had a sensitivity of 94.7% and specificity of 95.7%. When the cutoff value was 3.5, the score had a sensitivity of 94.7% and specificity of 100.0%. A cutoff value of the MPR for 28-day mortality of 0.042 had a sensitivity of 73.7% and specificity of 42.1%. When the cutoff value was 0.048, the sensitivity was 52.6% and the specificity was 52.6% [Table 5].

The Chi-square test and Fisher’s exact test showed significant associations of HT, diabetes mellitus, and chronic renal failure with 28-day mortality ($p < 0.05$, $p < 0.05$, and $p < 0.05$, respectively) [Table 6].

4. Discussion

Since coronavirus disease 2019 (COVID-19), a life-threatening infectious disease sustained by the severe respiratory syndrome coronavirus 2 (SARS-CoV-2), is frequently complicated by thrombotic episodes, both venous and arterial [11]. We provide here an updated analysis of current scientific literature data exploring the association between CURB-65 score, PLT count, MPV, and MPR and 28-day mortality rate in patients with COVID-19.

The clinical symptoms of COVID-19 usually include fever, weakness, and dry cough [12]. Similar to other investigations, we found that the most common symptoms were cough and intermediate involvement [13].
Prior reports show comorbidities (HT, DM, COPD/Astma, CAD, Malignancy) were detected in 32% [14] of the elderly patients with COVID-19, and 26% [13] of those with underlying chronic diseases who died due to COVID-19 pneumonia.

We observed a 30% rate of comorbidities; hypertension was detected in 13.4% of patients, and thus represents an important risk factor for 28-day mortality caused by COVID-19 pneumonia. The presence of a comorbidity (HT, DM, COPD/Astma, CAD, Malignancy) was also an independent risk factor. However, while advanced age was an important risk factor for mortality in other studies, it was not an independent risk factor in this study [13].

Platelet activation in viral pneumonia may cause lung damage by stimulating the respiratory inflammatory response [15]. The tendency toward temporarily lower PLT in patients with COVID-19 may indicate worsening of the thrombotic state, where a lower PLT is associated with increased mortality [16]. In a study conducted in Wuhan, China, thrombocytopenia on presentation to hospital in patients with COVID-19 was associated with a 4.24-fold increase in the risk of mortality [17].

Some studies found associations of thrombocytopenia with the severity of COVID-19 and associated mortality. It has been reported that as the PLT decreases, the mortality rate increases [18]. We did not find any relationship between PLT and mortality. Similarly, other studies have reported normal PLT in many patients at the time of hospitalization [19].

A decrease in the PLT increases MPV. Güçlü et al. found that a 1-unit decrease in the PLT increases MPV. Therefore, the use of the MPR is highly recommended as an indicator of platelet function [29]. Ranias et al. showed that an increase in MPV is associated with an increased risk of oxidative stress, thrombosis, and apoptosis in active platelets [27]. In many diseases, an increase in MPR is associated with an unfavorable prognosis, such as post-ischemic stroke, pneumonia, sepsis, critical illness, febrile epilepsy, and malignant tumors [28].

In severe COVID-19 patients, the MPV is negatively correlated with lung capacity, the MPV value could be used as an auxiliary marker to predict 30-day mortality [23]. In this study, we predicted a poor prognosis, and mortality, in patients with COVID-19 pneumonia patients.

The pathophysiological mechanism underlying the association of the MPR with COVID-19 prognosis is unclear but may involve the following. First, under inflammatory conditions, platelet production increases due to the increased thrombopoietin synthesis mediated by cytokines [25]. Second, the MPV reflects the metabolism, proliferation, and platelet production of megakaryocytes in the bone marrow [26]. Poor prognosis in patients with a low PLT count and high MPV may be associated with an increased risk of oxidative stress, thrombosis, and apoptosis in active platelets [27]. In many diseases, an increase in MPR is associated with an unfavorable prognosis, such as post-ischemic stroke, pneumonia, sepsis, critical illness, febrile epilepsy, and malignant tumors [28].

We determined that CURB-65 score, PLT count, MPV and MPR may be associated with 28-day mortality in COVID-19 pneumonia patients.

Availability of data and materials
The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

Competing interest
There is no financial and non-financial competing interest. There is no conflict of interest between authors.

Acknowledgment
We would like to thank Melih Yuksel for his contribution.

References
[1] WHO/Europe Coronavirus disease (COVID-19) outbreak- WHO announces COVID-19 outbreak-a pandemic https://www.euro.who.int/en/health-topics/health-emergencies/coronavirus-covid19/news/news/2020/3/who-announces-covid-19-outbreak-a-pandemic.
Y. Iyler and H. Kaya

American Journal of Emergency Medicine 51 (2022) 257–261

[2] Zhu N, Zhang D, Wang W, Li X, Yang B, Song J, et al. A novel coronavirus from patients with pneumonia in China, 2019. N Engl J Med. 2020;382(8):727–33.

[3] Kramer DG, Germano RCC, Mendes AS, Victor LS, Cavalcanti Jr GB, Oliveira LS. Laboratory parameters in COVID-19. Clin Case Stud. 2020;2:36.

[4] Rodríguez-Morales AJ, Cardona-Ospina JA, Gutiérrez-Ocampo E, Villamizar-Pena R, Holguín-Rivera Y, Escalera-Antezana JP, et al. Clinical, laboratory and imaging features of COVID-19: a systematic review and meta-analysis. Travel Med Infect Dis. 2020;34.

[5] Gorelik O, Tzur I, Barchel D, Sarafdan DA, Swarha M, Beberashvili I, et al. BMC Pulm Med. 2017;17:137.

[6] Golcuk Y, Golcuk B, Bilge A, Irik M, Dikmen O. Combination of mean platelet volume and the CURB-65 score better predicts 28-day mortality in patients with community-acquired pneumonia. Am J Emerg Med. 2015;33:648–52.

[7] Shin DH, Rhee SY, Jeon HJ, Park JY, Kang SW, Oh J. An in increase in mean platelet volume/platelet count ratio is associated with vascular Access failure in hemodialysis patients. PLoS One. 2017;12(1):e170357.

[8] Li J, Li Y, Sheng X, Wang F, Cheng D, Jian G, et al. Combination of mean platelet volume/platelet count ratio and the APACHE II score better predicts the short-term outcome in patients with acute kidney injury receiving continuous renal replacement therapy. Kidney Blood Press Res. 2018;43(2):479–89.

[9] Zhang F, Chen Z, Wang P, Hu X, Gao Y, He J. Combination of platelet count and mean platelet volume (COP-MPV) predicts postoperative prognosis in both resectable and advanced stage esophageal squamous cell cancer patients. TumourBiol. 2016;37(7):9323–31.

[10] Simpson S, Kay FU, Abbara S, Bhatt DL, Eikelboom JW, Konkle B, et al. Mean platelet volume as a predictor of cardiovascular risk: a systematic review and meta-analysis. J Thromb Haemost. 2010;8(1):148–56.

[11] Lippi G, Sanchis-Gomar F, Lavie CJ, Henry BM. Thrombocytopenia is associated with severe coronavirus disease 2019 (COVID-19) infections: a meta-analysis. ClinChimActa. 2020;506:145–8.

[12] Fan BE, Chong VCL, Chan SSW, Lim GH, Lim KGE, Tan GB, et al. Hematologic parameters in patients with COVID-19 infection. Am J Hematol. 2020;95(6):E131–4.

[13] Gökçü E, Kocayiğit H, Olan H, Erkökmez U, Yürümê Y, Yaylaci S, et al. Effect of COVID-19 on platelet count and its indices. Rev Assoc Med Bras. 2020 Aug;66(8):1122–7.

[14] Mirsaedi M, Peyrani P, Aliberti S, Filardo G, Bordon J, Blasi F, et al. Thrombocytopenia and thrombocytosis at time of hospitalization predict mortality in patients with community-acquired pneumonia. Chest. 2010;137(2):416–20.

[15] Chen J, Li Y, Zeng Y, Tian Y, Wen Y, Wang Z. High mean platelet volume associates with in-hospital mortality in severe pneumonia patients. Mediators Inflamm. 2020;2020:8720535.

[16] Man SY, Lee N, Ip M, Antonia GE, Chau SS, Mak P, et al. Prospective comparison of three predictive rules for assessing severity of community acquired pneumonia in Hong Kong. Thorax. 2007;62:348–53.

[17] Lee JH, Chung HJ, Kim K, Jo YH, Rhee JE, Kim YJ, et al. Red cell distribution width as a prognostic marker in patients with community-acquired pneumonia. Am J Emerg Med. 2013;31:72–9.

[18] Gorelik O, Izhakian S, Barchel D, Sarafdan DA, Tzur I, Swarha M, et al. Prognostic significance of platelet count changes during hospitalization for community-acquired pneumonia. Platelets. 2017;28(4):380–6.

[19] Pulavendran S, Rudd JM, Maram P, Thomas PG, Akhilesh R, Malayer JR, et al. Combination therapy targeting platelet activation and virus replication protects mice against lethal influenza pneumonia. Am J Respir Cell Mol Biol. 2019;61(6):689–701.

[20] Chu SC, Becker RC, Beiger PB, Bhatt DL, Eikelboom JW, Kostke B, et al. Mean platelet volume as a predictor of cardiovascular risk: a systematic review and meta-analysis. J Thromb Haemost. 2010;8(1):148–56.

[21] Martin-Garcia AC, Arachchilage DRJ, Kempny A, Gonzalez RA, Garcia AM, Uebing A, et al. Prospective comparison of three predictive rules for assessing severity of community acquired pneumonia in Wuhan, China. PLoS One. 2017;12(6):e0170357.

[22] Avalez DA, Tzur I, Swarha M, et al. Prognostic significance of platelet count changes during hospitalization for community-acquired pneumonia. Platelets. 2017;28(4):380–6.

[23] Chen J, Li Y, Zeng Y, Tian Y, Wen Y, Wang Z. High mean platelet volume associates with in-hospital mortality in severe pneumonia patients. Mediators Inflamm. 2020;2020:8720535.

[24] Lee JH, Chung HJ, Kim K, Jo YH, Rhee JE, Kim YJ, et al. Red cell distribution width as a prognostic marker in patients with community-acquired pneumonia. Am J Emerg Med. 2013;31:72–9.