A TIGHTER BOUND FOR THE NUMBER OF WORDS
OF MINIMUM LENGTH IN AN AUTOMORPHIC ORBIT

Donghi Lee

Abstract. Let u be a cyclic word in a free group F_n of finite rank n that has the minimum length over all cyclic words in its automorphic orbit, and let $N(u)$ be the cardinality of the set \{ $v : |v| = |u|$ and $v = \phi(u)$ for some $\phi \in \text{Aut} F_n$ \}. In this paper, we prove that $N(u)$ is bounded by a polynomial function of degree $2n - 3$ in $|u|$ under the hypothesis that if two letters x, y with $x \neq y \pm 1$ occur in u, then the total number of $x \pm 1$ occurring in u is not equal to the total number of $y \pm 1$ occurring in u. We also prove that $2n - 3$ is the sharp bound for the degree of polynomials bounding $N(u)$. As a special case, we deal with $N(u)$ in F_2 under the same hypothesis.

1. Introduction

Let F_n be the free group of a finite rank n on the set \{ x_1, x_2, \ldots, x_n \}. We denote by Σ the set of letters of F_n, that is, $\Sigma = \{ x_1, x_2, \ldots, x_n \}^{\pm 1}$. As in [1, 6], we define a cyclic word to be a cyclically ordered set of letters with no pair of inverses adjacent. The length $|w|$ of a cyclic word w is the number of elements in the cyclically ordered set. For a cyclic word w in F_n, we denote the automorphic orbit \{ $\psi(w) : \psi \in \text{Aut} F_n$ \} by $\text{Orb}_{\text{Aut} F_n}(w)$.

The purpose of this paper is to present a partial solution of the following conjecture proposed by Myasnikov–Shpilrain [7]:

Conjecture. Let u be a cyclic word in F_n which has the minimum length over all cyclic words in its automorphic orbit $\text{Orb}_{\text{Aut} F_n}(u)$, and let $N(u)$ be the cardinality of the set \{ $v \in \text{Orb}_{\text{Aut} F_n}(u) : |v| = |u|$ \}. Then $N(u)$ is bounded by a polynomial function of degree $2n - 3$ in $|u|$.

This conjecture was motivated by the complexity of Whitehead’s algorithm which decides whether, for given two elements in F_n, there is an automorphism of F_n that takes one element to the other. Indeed, proving that $N(u)$ is bounded by a polynomial function in $|u|$ would yield that Whitehead’s...
algorithm terminates in polynomial time with respect to the maximum length of the two words in question (see [7, Proposition 3.1]).

Proposing this conjecture, Myasnikov–Shpilrain [7] proved that $N(u)$ is bounded by a polynomial in $|u|$ in F_2. Later, Khan [3] improved their result by showing that $N(u)$ has the sharp bound of $8|u| - 40$ for $|u| \geq 9$ in F_2, by which the conjecture was settled in the affirmative for F_2. For a free group of bigger rank, Kapovich–Schupp–Shpilrain [2] showed that $N(u)$ is bounded by a constant depending only on n for u contained in an exponentially generic subset of F_n, and the author [4] recently proved that $N(u)$ is bounded by a polynomial function of degree $n(5n - 7)/2$ in $|u|$ under the following

Hypothesis 1.1. (i) A cyclic word u has the minimum length over all cyclic words in its automorphic orbit $\text{Orb}_{\text{Aut} F_n}(u)$.

(ii) If two letters x_i (or x_i^{-1}) and x_j (or x_j^{-1}) with $i < j$ occur in u, then the total number of $x_i^{\pm 1}$ occurring in u is strictly less than the total number of $x_j^{\pm 1}$ occurring in u.

In the present paper, we prove under the same hypothesis that $N(u)$ is bounded by a polynomial function of degree $2n - 3$ in $|u|$, and that $2n - 3$ is the sharp bound for the degree of polynomials bounding $N(u)$:

Theorem 1.2. Let u be a cyclic word in F_n that satisfies Hypothesis 1.1. Then $N(u)$ is bounded by a polynomial function of degree $2n - 3$ in $|u|$.

Theorem 1.3. Let $n \geq 2$ be arbitrary. Then there exist a polynomial $p_n(t)$ of degree exactly $2n - 3$ in t and a sequence (u_l) of cyclic words in F_n satisfying Hypothesis 1.1 such that $|u_l| \to \infty$ as $l \to \infty$ and such that $N(u_l) \geq p_n(|u_l|)$. Thus $2n - 3$ is a sharp bound for the degree of a polynomial in $|u|$ bounding $N(u)$ from above, provided u is a cyclic word in F_n that satisfies Hypothesis 1.1.

As a special case, we deal with $N(u)$ in F_2:

Theorem 1.4. Let u be a cyclic word in F_2 that satisfies Hypothesis 1.1. Then $N(u) \leq 8|u| - 40$.
Moreover there exists a sequence \((u_l)\) of cyclic words in \(F_2\) satisfying Hypothesis 1.1 such that
\[|u_l| \geq 9, \quad |u_l| \to \infty \text{ as } l \to \infty \quad \text{and such that } \quad N(u_l) = 8|u_l| - 40. \]
Thus \(N(u)\) has the sharp bound of \(8|u| - 40\) for \(|u| \geq 9\).

The same technique as used in [4] is applied to the proofs of these theorems. The proofs will appear in Sections 3–5. In Section 2, we will establish a couple of technical lemmas which play an important role in the proof of Theorem 1.2.

Now we would like to recall several definitions. As in [4], a Whitehead automorphism \(\sigma\) of \(F_n\) is defined to be an automorphism of one of the following two types (cf. [5, 8]):

(W1) \(\sigma\) permutes elements in \(\Sigma\).

(W2) \(\sigma\) is defined by a set \(A \subset \Sigma\) and a letter \(a \in \Sigma\) with both \(a, a^{-1} \notin A\) in such a way that if \(x \in \Sigma\) then (a) \(\sigma(x) = xa\) provided \(x \in A\) and \(x^{-1} \notin A\); (b) \(\sigma(x) = a^{-1}xa\) provided both \(x, x^{-1} \in A\); (c) \(\sigma(x) = x\) provided both \(x, x^{-1} \notin A\).

If \(\sigma\) is of type (W2), we write \(\sigma = (A, a)\). By \((\bar{A}, a^{-1})\), we mean a Whitehead automorphism \((\Sigma - A - a \pm 1, a^{-1})\). It is then easy to see that \((A, a)(w) = (\bar{A}, a^{-1})(w)\) for any cyclic word \(w\) in \(F_n\).

We also recall the definition of the degree of a Whitehead automorphism of the second type (see [4]):

Definition 1.5. Let \(\sigma = (A, a)\) be a Whitehead automorphism of \(F_n\) of the second type. Put \(A' = \{i : \text{either } x_i \in A \text{ or } x_i^{-1} \in A, \text{ but not both}\}\). Then the degree of \(\sigma\) is defined to be \(\max A'\). If \(A' = \emptyset\), then the degree of \(\sigma\) is defined to be zero.

Let \(w\) be a fixed cyclic word in \(F_n\) that satisfies Hypothesis 1.1 (i). For two letters \(x, y \in \Sigma\), we say that \(x\) depends on \(y\) with respect to \(w\) if, for every Whitehead automorphism \((A, a)\) of \(F_n\) such that
\[a \notin \{x^\pm 1, y^\pm 1\}, \quad \{y^\pm 1\} \cap A \neq \emptyset, \quad \text{and } \exists v \in \text{Orb}_{\text{Aut}\, F_n}(w) : |(A, a)(v)| = |v| = |w|, \]
we have \(\{x^\pm 1\} \subseteq A\). Then, as shown in [4], if \(x\) depends on \(y\) with respect to \(w\), then \(y\) depends
on x with respect to w.

We then construct the dependence graph Γ_w of w as follows: Take the vertex set as Σ, and connect two distinct vertices $x, y \in \Sigma$ by a non-oriented edge if either $y = x^{-1}$ or y depends on x with respect to w. Let C_i be the connected component of Γ_w containing x_i. Clearly there exists a unique factorization

$$w = v_1 v_2 \cdots v_t \quad \text{(without cancellation)},$$

where each v_i is a non-empty (non-cyclic) word consisting of letters in C_j, with $C_j \neq C_{j+t} \mod t$. The subword v_i is called a C_j-syllable of w. By the C_k-syllable length of w denoted by $|w|_{C_k}$, we mean the total number of C_k-syllables of w. We also define $|w|_s$ as $|w|_s = \sum_{k=1}^n |w|_{C_k}$.

Example 1.6. Consider the cyclic word $u = x_1^2x_2^3x_3^4x_4^5$ in F_4. Letting $v = (\{x_2^{\pm 1}\}, x_1)(u) = x_1x_2^2x_1x_3^4x_4^5$, v is an automorphic image of u with $|v| = |u|$ (hence $\Gamma_u = \Gamma_v$). This implies that both $x_3^{\pm 1}$ and $x_4^{\pm 1}$ do not depend on $x_2^{\pm 1}$. Also putting $v' = (\{x_2^{\pm 1}\}, x_3^{-1})(u)$, we have $|v'| = |u|$, so that $x_1^{\pm 1}$ does not depend on $x_2^{\pm 1}$. Hence the connected component C_2 of Γ_u containing x_2 consists of only $x_2^{\pm 1}$. This way we can show that the dependence graph $\Gamma_u = \Gamma_v$ has four distinct connected components, each C_i of which contains only $x_i^{\pm 1}$. Thus $|u|_{C_i} = 1$ for each $1 \leq i \leq 4$ and so $|u|_s = 4$, whereas $|v|_{C_i} = 2$, $|v|_{C_j} = 1$ for each $2 \leq j \leq 4$ and so $|v|_s = 5$.

Example 1.7. Consider the cyclic word $u = x_1^2x_2^3x_3^2x_4^4x_5^{-1}x_4x_3x_4^3$ in F_4, of which the dependence graph Γ_u has three distinct connected components $C_1, C_2, C_3 = C_4$. Putting $v = (\{x_2^{\pm 1}\}, x_3^{-1})(u) = x_1^2x_3^2x_2^3x_4x_3^{-1}x_4x_3x_4^3$, v is an automorphic image of u with $|v| = |u|$, so $\Gamma_u = \Gamma_v$. While $|u|_{C_i} = 1$ for each $1 \leq i \leq 4$ and so $|u|_s = 4$, $|v|_{C_1} = |v|_{C_2} = 1$, $|v|_{C_3} = |v|_{C_4} = 2$ and so $|v|_s = 6$.

2. Preliminary Lemmas

Throughout this section, when we say that $\sigma = (A,a)$ is a Whitehead automorphism of F_n of degree i, the following restriction is additionally imposed:

$$a = x_j^{\pm 1} \quad \text{with } j > i.$$
For two automorphisms ϕ and ψ of F_n, by writing $\phi \equiv \psi$ we mean the equality of ϕ and ψ over all cyclic words in F_n, that is, $\phi(v) = \psi(v)$ for any cyclic word v in F_n. For a cyclic word v in F_n, we define $M_k(v)$, for $k = 0, 1, \ldots, n - 1$, to be the cardinality of the set $\Omega_k(v) = \{\phi(v) : \phi$ can be represented as a composition $\phi = \alpha_t \cdots \alpha_1$ $(t \in \mathbb{N})$ of Whitehead automorphisms α_i of F_n of the second type such that $k = \deg \alpha_t \geq \deg \alpha_{t-1} \geq \cdots \geq \deg \alpha_1$ and $|\alpha_t \cdots \alpha_1(v)| = |v|$ for all $i = 1, \ldots, t\}.$

Lemma 2.1. Under the foregoing notation, $M_1(v)$ is bounded by a polynomial function of degree $n - 1$ in $|v|$.

Proof. Let ℓ_i be the number of occurrences of $x_i^{\pm 1}$ in v for $i = 1, \ldots, n$. Clearly

$$M_1(v) \leq M_1(x_1^{\ell_2} x_2^{\ell_3} \cdots x_{n-1}^{\ell_n} x_n^{\ell_1 + \ell_2 - 2}).$$

So it is enough to prove that $M_1(x_1^{\ell_2} x_2^{\ell_3} \cdots x_{n-1}^{\ell_n} x_n^{\ell_1 + \ell_2 - 2})$ is bounded by a polynomial function in $|v|$ of degree $n - 1$. Noting that $|x_1^{\ell_2} x_2^{\ell_3} \cdots x_{n-1}^{\ell_n} x_n^{\ell_1 + \ell_2 - 2}|_s = n$, put

$$\Lambda = \{v' : |v'|_s = n \text{ and } v' \in \Omega_0(x_1^{\ell_2} x_2^{\ell_3} \cdots x_{n-1}^{\ell_n} x_n^{\ell_1 + \ell_2 - 2})\}.$$

Obviously the cardinality of the set Λ is $(n - 1)!$.

Let $w \in \Omega_1(x_1^{\ell_2} x_2^{\ell_3} \cdots x_{n-1}^{\ell_n} x_n^{\ell_1 + \ell_2 - 2})$. Then for an appropriate $v' \in \Lambda$, there exist Whitehead automorphisms σ_i of degree 0 and τ_j of degree 1 such that

$$w = \tau_q \cdots \tau_1 \sigma_p \cdots \sigma_1 (v'),$$

where $|\sigma_i \cdots \sigma_1 (v')| = |v'|$ and $|\sigma_i \cdots \sigma_1 (v')|_s \geq |\sigma_{i-1} \cdots \sigma_1 (v')|_s$ for all $1 \leq i \leq p$, and $|\tau_j \cdots \tau_1 \sigma_p \cdots \sigma_1 (v')| = |v'|$ for all $1 \leq j \leq q$. Here, the same reasoning as in [4, Lemma 4.1] shows that $\sigma_i \sigma_{i'} \equiv \sigma_{i'} \sigma_i$ for all $1 \leq i, i' \leq p$. Furthermore, the chain $\tau_q \cdots \tau_1$ in (2.1) can be chosen so that, for $\tau_{ij} = (A_{ij}, a_{ij})$,

$$\tau_q \cdots \tau_1 = (\tau_{rq}, \cdots \tau_{r_1}) \cdots (\tau_{2q_2}, \cdots \tau_{2_2}) (\tau_{1q_1}, \cdots \tau_{11}),$$
where $A_{ij} = A_{ij'}$ for all $1 \leq j, j' \leq q$, and $x_1 \in A_{i1} \subset A_{i+11}$.

We may assume without loss of generality that the index r in (2.2) is minimum over all chains satisfying (2.1) and (2.2). Clearly in (2.1)–(2.2) the element v' in Λ, the Whitehead automorphisms $\sigma_1, \ldots, \sigma_p$, and the index r are determined by w; so we put

$$v'_w = v', \quad \psi_w = \sigma_p \cdots \sigma_1, \quad \text{and} \quad r_w = r.$$

It is easy to see that r_w is at most $n - 1$.

For $s = 1, \ldots, n - 1$, put

$$L_s = \text{the cardinality of the set } \{\psi_w(v'_w) : w \in \Omega_1(x_1^2 x_2^2 \cdots x_{n-1}^2 x_n^2 + x_{n+1}^2) \text{ with } r_w = s\}.$$

Then in view of (2.1)–(2.2), we have

$$M_1(x_1^2 x_2^2 \cdots x_{n-1}^2 x_n^2 + x_{n+1}^2) \leq 2^{(n-1)}|v|L_1 + 2^{2(n-1)}|v|^2 L_2 + \cdots + 2^{(n-1)^2}|v|^{n-1} L_{n-1},$$

since the number of possible A_{ij}'s and the indices q_i's in (2.2) are less than or equal to 2^{n-1} and $|v|$, respectively. Hence it is enough to prove that each L_s is bounded by a polynomial function in $|v|$ of degree $n - s - 1$. Due to the result of [4, Lemma 4.1], there is nothing to prove for $s = 1$.

So let $s \geq 2$ and put $E_i = A_{i1} - A_{i+11}$ for $i = 2, \ldots, s$. This can possibly happen only when $\psi_w = \sigma_p \cdots \sigma_1$ in (2.1) can be re-arranged so that, for $\sigma_j = (B_j, b_j)$,

$$(2.3) \quad \psi_w = (\sigma_{t_{s+1}} \cdots \sigma_{t_s+1}) \cdots (\sigma_{t_2} \cdots \sigma_2) \sigma_1,$$

where $b_1 \in \{x_1^{\pm 1}\}$, $b_j^{\pm 1} \in E_i$ and either $B_j \subseteq E_i$ or $B_j \cap E_i = \emptyset$ provided $t_{i-1} < j \leq t_i$ ($t_1 = 1$), and $b_j^{\pm 1} \notin (\bigcup_{i=2}^{s} E_i + x_1^{\pm 1})$ and either $B_j \subseteq (\bigcup_{i=2}^{s} E_i + x_1^{\pm 1})$ or $B_j \cap (\bigcup_{i=2}^{s} E_i + x_1^{\pm 1}) = \emptyset$ provided $t_s < j \leq t_{s+1}$.

Now, for $i = 2, \ldots, s$, let

$$h_i$$

be the half of the cardinality of the set E_i.

Put \(h = \sum_{i=2}^{s} h_i \). It then follows from the result of [4, Lemma 4.1] that the number of cyclic words obtained by \(\sigma_{t_{j+1}} \cdots \sigma_{t_j+1} \) applied to \((\sigma_{t_j} \cdots \sigma_{t_{j-1}+1}) \cdots (\sigma_{t_2} \cdots \sigma_2)\sigma_1(v'_w)\) is bounded by \(|v|^{h_{j+1}-1} \) provided \(j = 1, \ldots, s-1 \) and by \(|v|^{n-(h+1)-1} \) provided \(j = s \). Moreover the number of cyclic words derived from \(\sigma_1 \) applied to \(v'_w \) is bounded by \(n - 2 \). Therefore we have from (2.3) that

\[
L_s \leq (n - 1)! (n - 2)|v|^{h_2-1} \cdots |v|^{h_s-1}|v|^{n-h-2} = (n - 1)! (n - 2)|v|^{n-s-1},
\]

which is a polynomial function in \(|v|\) of degree \(n - s - 1 \), as required. \(\square \)

Remark. The proof of Lemma 2.1 can be applied without further change if we replace consideration of a single cyclic word \(v \), the length \(|v|\) of \(v \), and the total number of occurrences of \(x_j^{\pm 1} \) in \(v \) by consideration of a finite sequence \((v_1, \ldots, v_m)\) of cyclic words, the sum \(\sum_{i=1}^{m} |v_i| \) of the lengths of \(v_1, \ldots, v_m \), and the total number of occurrences of \(x_j^{\pm 1} \) in \((v_1, \ldots, v_m)\), respectively.

Lemma 2.2. Under the foregoing notation, for each \(k = 2, \ldots, n - 1 \), \(M_k(v) \) is bounded by a polynomial function of degree \(n + k - 2 \) in \(|v|\).

Proof. Let \(\ell_i \) be the number of occurrences of \(x_i^{\pm 1} \) in \(v \) for \(i = 1, \ldots, n \). Since

\[
M_k(v) \leq M_k(x_1^2 \cdots x_k^{\ell_{k+1}} \cdots x_n^{\ell_{n-1}} x_n^{\ell_1+\cdots+\ell_k-2k}),
\]

it suffices to show that \(M_k(x_1^2 \cdots x_k^{\ell_{k+1}} \cdots x_n^{\ell_{n-1}} x_n^{\ell_1+\cdots+\ell_k-2k}) \) is bounded by a polynomial function in \(|v|\) of degree \(n + k - 2 \). As in the proof of Lemma 2.1, put \(\Lambda = \{v' : |v'|_s = n \) and \(v' \in \Omega_0(x_1^2 \cdots x_k^{\ell_{k+1}} \cdots x_n^{\ell_{n-1}} x_n^{\ell_1+\cdots+\ell_k-2k})\}).

Let \(w \in \Omega_k(x_1^2 \cdots x_k^{\ell_{k+1}} \cdots x_n^{\ell_{n-1}} x_n^{\ell_1+\cdots+\ell_k-2k}) \). Then for an appropriate \(v' \in \Lambda \), there exist Whitehead automorphisms \(\gamma_i \) of \(F_n \) such that

\[
(2.4) \quad w = \gamma_q \cdots \gamma_{p+1} \gamma_p \cdots \gamma_1(v'),
\]

where the length of \(v' \) is constant throughout the chain on the right-hand side, \(\deg \gamma_i = 0 \) provided \(1 \leq i \leq p \), \(\deg \gamma_i > 0 \) provided \(p < i \leq q \), and \(|\gamma_j \cdots \gamma_1(v')|_s \geq |\gamma_{j-1} \cdots \gamma_1(v')|_s \) for all \(1 \leq j \leq p \).
Here, since $\gamma_i \gamma_i' \equiv \gamma_i' \gamma_i$ for all $1 \leq i, i' \leq p$ by the same reasoning as in [4, Lemma 4.1], we may assume that either none of γ_i for $1 \leq i \leq p$ has multiplier x_1 or x_1^{-1} or only γ_1 has multiplier x_1 or x_1^{-1}. So (2.4) can be re-written as

$$w = \gamma_q \cdots \gamma_{p+1} \gamma_p \cdots \gamma_1 \gamma_0(v'),$$

where γ_0 is either the identity or a Whitehead automorphism of F_n of degree 0 with multiplier x_1 or x_1^{-1}, and none of γ_j for $1 \leq j \leq q$ has multiplier x_1 or x_1^{-1}.

Write

(2.5) $\gamma_0(v') = x_1 u_1 x_1 u_2$ without cancellation.

(Note that u_1 and u_2 are non-cyclic subwords in $\{x_2, \ldots, x_n\}^{\pm 1}$.) Let F_{n+1} be the free group on the set $\{x_1, \ldots, x_{n+1}\}$. From (2.5) we construct a pair (v_1, v_2) of cyclic words v_1, v_2 in F_{n+1} with $|v_1| + |v_2| = 2|v|$ as follows:

$$v_1 = x_1 u_1 x_{n+1} u_1^{-1} \quad \text{and} \quad v_2 = x_1 u_2 x_{n+1} u_2^{-1}.$$

For each $\gamma_j = (D_j, d_j)$ for $1 \leq j \leq q$, define a Whitehead automorphism ε_j of F_{n+1} as follows:

- if $x_1^{\pm 1} \in D_j$, then $\varepsilon_j = (D_j + x_1^{\pm 1}, d_j)$;
- if only $x_1 \in D_j$, then $\varepsilon_j = (D_j + x_1^{-1}, d_j)$;
- if only $x_1^{-1} \in D_j$, then $\varepsilon_j = (D_j - x_1^{-1} + x_1^{\pm 1}, d_j)$;
- if $x_1^{\pm 1} \notin D_j$, then $\varepsilon_j = (D_j, d_j)$.

Then arguing as in the proof of [4, Lemma 4.2], we have $|\varepsilon_j \cdots \varepsilon_1(v_1)| + |\varepsilon_j \cdots \varepsilon_1(v_2)| = 2|v|$ for all $1 \leq j \leq q$. Moreover, by the construction of ε_j, ε_j is a Whitehead automorphism of F_{n+1} of degree at most k, and the defining set of ε_j contains either both of $x_1^{\pm 1}$ or none of $x_1^{\pm 1}$. This yields the same situation as for a chain of Whitehead automorphisms of F_{n+1} of maximum
degree \(k - 1 \). Hence by the induction hypothesis together with the Remark after Lemma 2.1,
\[
M_k(x_1^2 \cdots x_k^{\ell_k+1} \cdots x_{n-1}^{\ell_{n-1}+\ell_1+\cdots+\ell_k-2})
\]
is bounded by \((n - 2)\) times a polynomial function in \(2|v| \) of degree \((n + 1) + (k - 1) - 2 = n + k - 2 \), as required.

\[\square\]

3. Proof of Theorem 1.2

Without loss of generality we may assume that \(u \) satisfies further

(i) The \(C_n \)-syllable length \(|u|_{C_n} \) of \(u \) is minimum over all cyclic words in the set \(\{ v \in \text{Orb}_{\text{Aut} F_n}(u) : |v| = |u| \} \).

(ii) If the index \(j \) \((1 \leq j \leq n - 1)\) is such that \(C_j \neq C_k \) for all \(k > j \), then the \(C_j \)-syllable length \(|u|_{C_j} \) of \(u \) is minimum over all cyclic words in the set \(\{ v \in \text{Orb}_{\text{Aut} F_n}(u) : |v| = |u| \text{ and } |v|_{C_k} = |u|_{C_k} \text{ for all } k > j \} \).

(Namely, we may assume that \(u \) satisfies further the conditions in [4, Hypothesis 1.3].) Let \(u' \in \text{Orb}_{\text{Aut} F_n}(u) \) be such that \(|u'| = |u| \). Due to the result of [4, Theorem 1.4], there exist Whitehead automorphisms \(\pi \) of the first type and \(\tau_1, \ldots, \tau_s \) of the second type such that

\[u' = \pi \tau_s \cdots \tau_1(u),\]

where \(n - 1 \geq \deg \tau_s \geq \deg \tau_{s-1} \geq \cdots \geq \deg \tau_1 \), and \(|\tau_i \cdots \tau_1(u)| = |u| \) for all \(i = 1, \ldots, s \). This implies that

\[
N(u) \leq C(M_0(u) + M_1(u) + \cdots + M_{n-1}(u)),
\]

where \(C \) is the number of Whitehead automorphisms of \(F_n \) of the first type (which depends only on \(n \)), and \(M_k(u) \) is as defined in Section 2. The result of [4, Lemma 4.1] shows that \(M_0(u) \) is bounded by a polynomial function in \(|u| \) of degree \(n - 2 \). Also by Lemmas 2.1 and 2.2, \(M_k(u) \) for each \(k = 1, \ldots, n - 1 \) is bounded by a polynomial function in \(|u| \) of degree \(n + k - 2 \). Then the required result follows from (3.1).

\[\square\]
4. Proof of Theorem 1.3

In [7], Myasnikov–Shpilrain pointed out that experimental data provided by C. Sims show that the maximum value of \(N(u) \) in \(F_3 \) is 48\(|u|^3 - 480|u|^2 + 1140|u| - 672 \) if \(|u| \geq 11 \) and this maximum value is attained at \(u = x_1^2x_2^2x_3x_2^{-1}x_3x_2^\ell \) with \(\ell \geq 3 \). Inspired by this observation, we let

\[
u = x_1^2x_2(x_2x_nx_2^{-1}x_n)x_2x_3(x_3x_nx_3^{-1}x_n)^2x_3\cdots x_{n-1}(x_{n-1}x_nx_{n-1}^{-1}x_n)^{n-2}x_{n-1}x_n^\ell
\]

with \(\ell \gg 1 \) in \(F_n \). Note that \(u \) satisfies Hypothesis 1.1. For this \(u \), we will prove that \(N(u) \) cannot be bounded by a polynomial function in \(|u|\) of degree less than \(2n - 3 \). For each \(i = 2, \ldots, n-1 \) and \(j = 1, \ldots, n-1 \), let

\[
\sigma_i = (\{x_1^{\pm 1}, \ldots, x_n^{\pm 1}\}, x_n^{-1}) \quad \text{and} \quad \tau_j = (\{x_j, x_j^{\pm 1}, \ldots, x_{n-1}^{\pm 1}\}, x_n^{-1});
\]

then \(\sigma_i \) and \(\tau_j \) are Whitehead automorphisms of \(F_n \) of degree 0 and degree \(j \), respectively. Then the total number of cyclic words derived from automorphisms of \(F_n \) of the form \(\tau_{n-1}^{m_{n-1}} \cdots \tau_1^{m_1}\sigma_{n-1}^{k_{n-1}} \cdots \sigma_2^{k_2} \),

where \(k_i, m_j \leq \frac{\ell}{2n-3} \), applied to \(u \) is \((\frac{\ell}{2n-3})^{2n-3}\). Hence \(N(u) \) is at least \((\frac{\ell}{2n-3})^{2n-3}\), which completes the proof.

\[\square\]

5. Proof of Theorem 1.4

Let us assume that \(u \) satisfies further

(i) The \(C_2 \)-syllable length \(|u|_{C_2} \) of \(u \) is minimum over all cyclic words in the set \(\{v \in \text{Orb}_{\text{Aut}}F_n(u) : |v| = |u|\} \).

(ii) If \(C_1 \neq C_2 \), then the \(C_1 \)-syllable length \(|u|_{C_1} \) of \(u \) is minimum over all cyclic words in the set \(\{v \in \text{Orb}_{\text{Aut}}F_n(u) : |v| = |u| \text{ and } |v|_{C_2} = |u|_{C_2}\} \).

(Namely, assume that \(u \) satisfies further the conditions in [4, Hypothesis 1.3].) Note that \(M_0(u) = 1 \) in \(F_2 \), where \(M_0(u) \) is as defined in Section 2. Also every Whitehead automorphism of \(F_2 \) of degree 1 is equal to either \(\{x_1\}, x_2 \) or \(\{x_1, x_2^{-1}\} \) over all cyclic words in \(F_2 \). Hence, in view of
[4, Theorem 1.4], \(N(u) \) is the same as the cardinality of the set \(\{ v : v = \pi \tau^k(u) (k \geq 0) \} \), where \(\pi \) is a permutation on \(\Sigma \) and \(\tau \) is either \((\{x_1\}, x_2) \) or \((\{x_1\}, x_2^{-1}) \) such that \(|\tau^i(u)| = |u| \) for all \(i = 1, \ldots, k \). Let

\[
\Lambda(u) = \{ v : v = \tau^k(u) (k \geq 0) \}, \text{ where } \tau \text{ is as above}. \]

Let \(m \) be the number of occurrences of \(x_1^{\pm 1} \) in \(u \). First consider the maximum value \(N(u) \) over all \(u \) with \(m = 2 \). If \(m = 2 \), then \(u \) is of the form either \(x_1 x_2 x_1^{-1} x_2^{-1} \) or \(x_1^2 x_2^2 \). Then the cardinality of \(\Lambda(x_1 x_2 x_1^{-1} x_2^{-1}) \) equals 1 and that of \(\Lambda(x_1^2 x_2^2) \) equals \(|u| - 1 \). Hence \(N(u) \) has the maximum value at \(u = x_1^2 x_2^2 \). For \(u = x_1^2 x_2^2 \) with \(\ell \geq 3 \), \(N(u) = 4(|u| - 1) \), since there are 8 permutations on \(\Sigma \) and \(\tau^j(x_1^2 x_2^2) = \pi \tau^{j-\ell}(x_1^2 x_2^2) \) for \(j \geq \ell/2 \), where \(\tau = (\{x_1\}, x_2^{-1}) \) and \(\pi \) is the permutation that fixes \(x_1 \) and maps \(x_2 \) to \(x_2^{-1} \).

Next consider the maximum value of \(N(u) \) over all \(u \) with \(m = 4 \). (Here note that if \(m \) is odd, then any Whitehead automorphism of degree 1 cannot be applied to \(u \) without increasing \(|u| \); hence the cardinality of \(\Lambda(u) \) equals 1.) It is not hard to see that \(\Lambda(u) \) has the maximum cardinality \(|u| - 5 \) at \(u = x_1^2 x_2 x_1^{-1} x_2 x_1 x_2^\ell \). For \(u = x_1^2 x_2 x_1^{-1} x_2 x_1 x_2^\ell \) with \(\ell \geq 3 \), \(N(u) = 8(|u| - 5) \), since 8 permutations on \(\Sigma \) applied to the elements of \(\Lambda(x_1^2 x_2 x_1^{-1} x_2 x_1 x_2^\ell) \) induce all different cyclic words. Obviously this is the maximum value of \(N(u) \) over all \(u \) with \(m = 4 \).

Finally note that the cardinality of \(\Lambda(u) \) cannot be greater than nor equal to \(|u| - 5 \) for any \(u \) with \(m > 4 \). This means that \(N(u) < 8(|u| - 5) \) for every \(u \) with \(m > 4 \). Therefore, the maximum value of \(N(u) \) over all \(u \) is \(8(|u| - 5) \), which is attained at \(u = x_1^2 x_2 x_1^{-1} x_2 x_1 x_2^\ell \) with \(\ell \geq 3 \). \(\square \)

Acknowledgements

The author is grateful to the referee for many helpful comments and suggestions. This work was supported by Pusan National University Research Grant, 2004.

References
1. P. J. Higgins and R. C. Lyndon, Equivalence of elements under automorphisms of a free group, *J. London Math. Soc.* **8** (1974), 254–258.

2. I. Kapovich, P. E. Schupp and V. Shpilrain, Generic properties of Whitehead’s Algorithm and isomorphism rigidity of random one-relator groups, *Pacific J. Math.* **223** (2006), 113–140.

3. B. Khan, The structure of automorphic conjugacy in the free group of rank two, Computational and experimental group theory, 115–196, *Contemp. Math.*, 349, Amer. Math. Soc., Providence, RI, 2004.

4. D. Lee, Counting words of minimum length in an automorphic orbit, preprint; http://www.arxiv.org/math.GR/0311410

5. R. C. Lyndon and P. E. Schupp, “Combinatorial Group Theory”, Springer-Verlag, New York/Berlin, 1977.

6. J. McCool, A presentation for the automorphism group of a free group of finite rank, *J. London Math. Soc.* **8** (1974), 259–266.

7. A. G. Myasnikov and V. Shpilrain, Automorphic orbits in free groups, *J. Algebra* **269** (2003), 18–27.

8. J. H. C. Whitehead, Equivalent sets of elements in a free group, *Ann. of Math.* **37** (1936), 782–800.

Department of Mathematics, Pusan National University, Jangjeon-Dong, Geumjung-Gu, Pusan 609-735, Korea

E-mail address: donghi@pusan.ac.kr