Weighted zero-sum problems over C^r_3

Hemar Godinho, Abílio Lemos, Diego Marques

Communicated by L. A. Shemetkov

Abstract. Let C_n be the cyclic group of order n and set $s_A(C^r_n)$ as the smallest integer ℓ such that every sequence S in C^r_n of length at least ℓ has an A-zero-sum subsequence of length equal to $\exp(C^r_n)$, for $A = \{-1, 1\}$. In this paper, among other things, we give estimates for $s_A(C^r_3)$, and prove that $s_A(C^r_3) = 9$, $s_A(C^r_3) = 21$ and $41 \leq s_A(C^r_3) \leq 45$.

Introduction

Let G be a finite abelian group (written additively), and S be a finite sequence of elements of G and of length m. For simplicity we are going to write S in a multiplicative form

$$S = \prod_{i=1}^{\ell} g_i^{v_i},$$

where v_i represents the number of times the element g_i appears in this sequence. Hence $\sum_{i=1}^{\ell} v_i = m$.

Let $A = \{-1, 1\}$. We say that a subsequence $a_1 \cdots a_s$ of S is an A-zero-sum subsequence, if we can find $\epsilon_1, \ldots, \epsilon_s \in A$ such that

$$\epsilon_1 a_1 + \cdots + \epsilon_s a_s = 0 \text{ in } G.$$
Here we are particularly interested in studying the behavior of \(s_A(G) \) defined as the smallest integer \(\ell \) such that every sequence \(S \) of length greater than or equal to \(\ell \), satisfies the condition \((s_A) \), which states that there must exist an \(A \)-zero-sum subsequence of \(S \) of length \(\exp(G) \) (the exponent of \(G \)).

For this purpose, two other invariants will be defined to help us in this study. Thus, define \(\eta_A(G) \) as the smallest integer \(\ell \) such that every sequence \(S \) of length greater than or equal to \(\ell \), satisfies the condition \((\eta_A) \), which says that there exists an \(A \)-zero-sum subsequence of \(S \) of length at most \(\exp(G) \). Define also \(g_A(G) \) as the smallest integer \(\ell \) such that every sequence \(S \) of distinct elements and of length greater than or equal to \(\ell \), satisfies the condition \((g_A) \), which says that there must exist an \(A \)-zero-sum subsequence of \(S \) of length \(\exp(G) \).

The study of zero-sums is a classical area of additive number theory and goes back to the works of Erdős, Ginzburg and Ziv [6] and Harborth [9]. A very thorough survey up to 2006 can be found on Gao-Geroldinger [7], where applications of this theory are also given.

In [8], Grynkiewicz established a weighted version of Erdős-Ginzburg-Ziv theorem, which introduced the idea of considering certain weighted subsequence sums, and Thangadurai [13] presented many results on a weighted Davenport’s constant and its relation to \(s_A \).

For the particular weight \(A = \{-1,1\} \), the best results are due to Adhikari et al [1], where it is proved that \(s_A(C_n) = n + \lfloor \log_2 n \rfloor \) (here \(C_n \) is a cyclic group of order \(n \)) and Adhikari et al [2], where it is proved that \(s_A(C_n \times C_n) = 2n - 1 \), when \(n \) is odd. Recently, Adhikari et al proved that \(s_A(G) = \exp(G) + \log_2 |G| + O(\log_2 \log_2 |G|) \) when \(\exp(G) \) is even and \(\exp(G) \rightarrow +\infty \) (see [3]).

The aim of this paper is to give estimates for \(s_A(C_n^r) \), where as usual \(C_n^r = C_n \times \cdots \times C_n \) (\(r \) times), and here are our results.

Theorem 1. Let \(A = \{-1,1\}, n > 1 \) odd and \(r \geq 1 \). If \(n = 3 \) and \(r \geq 2 \), or \(n \geq 5 \) then

\[
2^{r-1}(n-1) + 1 \leq s_A(C_n^r) \leq (n^r - 1) \left(\frac{n-1}{2} \right) + 1.
\]

For the case of \(n = 3 \) we present a more detailed study and prove

Theorem 2. Let \(A = \{-1,1\} \) and \(r \geq 5 \).

(i) If \(r \) is odd then

\[
s_A(C_3^r) \geq 2^r + 2 \left(\frac{r-1}{2} \right) - 1.
\]
(ii) If r is even, with $m = \left\lfloor \frac{3r-4}{4} \right\rfloor$, then

(a) If $r \equiv 2 \pmod{4}$, then $s_A(C_r^n) \geq 2 \sum_{1 \leq j \leq m} \binom{r}{j} + 2\left(\frac{r-2}{2}\right) + 1$, where j takes odd values.

(b) If $r \equiv 0 \pmod{4}$, then $s_A(C_r^n) \geq 2 \sum_{1 \leq j \leq m} \binom{r}{j} + \binom{r}{2} + 1$, where j takes odd values.

It is simple to check that $s_A(C_3) = 4$, and it follows from Theorem 3 in [2] that $s_A(C_3^2) = 5$. Our next result presents both exact values of $s_A(C_r^n)$, and $r = 3, 4$ as well as estimates for $s_A(C_r^n)$, $r = 3, 4, 5$, for all $a \geq 1$.

Theorem 3. Let $A = \{-1, 1\}$. Then

(i) $s_A(C_3^3) = 9$, $s_A(C_3^4) = 21$, $41 \leq s_A(C_3^5) \leq 45$

(ii) $s_A(C_3^{3a}) = 4 \times 3^a - 3$, for all $a \geq 1$

(iii) $8 \times 3^a - 7 \leq s_A(C_3^{4a}) \leq 10 \times 3^a - 9$, for all $a \geq 1$

(iv) $16 \times 3^a - 15 \leq s_A(C_3^{5a}) \leq 22 \times 3^a - 21$, for all $a \geq 1$

1. Relations between the invariants η_A, g_A and s_A

We start by proving the following result.

Lemma 1. For $A = \{-1, 1\}$, we have

(i) $\eta_A(C_3) = 2$, $g_A(C_3) = 3$ and $s_A(C_3) = 4$, and

(ii) $\eta_A(C_3^n) \geq r + 1$ for any $r \in \mathbb{N}$.

Proof. The proof of item (i) is very simple and will be omitted. For (ii), the proof follows from the fact that the sequence $e_1 e_2 \cdots e_r$ with $e_j = (0, \ldots, 1, \ldots, 0)$, has no A-zero-sum subsequence.

Proposition 1. For $A = \{-1, 1\}$, we have $g_A(C_3^n) = 2\eta_A(C_3^n) - 1$.

Proof. The case $r = 1$ follows from Lemma 1. Let $S = \prod_{i=1}^{m} g_i$ of length $m = \eta_A(C_3^n) - 1$ which does not satisfy the condition (η_A). In particular S has no A-zero-sum subsequences of length 1 and 2, that is, all elements of S are nonzero and distinct. Now, let S^* be the sequence $\prod_{i=1}^{m} g_i \prod_{i=1}^{m} (-g_i)$. Observe that S^* has only distinct elements, since S has no A-zero-sum subsequences of length 2. It is easy to see that any A-zero-sum of S^* of length 3 is also an A-zero-sum of S, for $A = \{-1, 1\}$. Hence $g_A(C_3^n) \geq 2\eta_A(C_3^n) - 1$.
Let S be a sequence of distinct elements and of length $m = 2\eta_A(C^r_3) - 1$, and write

$$S = \prod_{i=1}^{t} g_i \prod_{i=1}^{t} (-g_i) \prod_{i=2t+1}^{m} g_i$$

where $g_r \neq -g_s$ for $2t+1 \leq r < s \leq m$. If $t = 0$, then S has no A-zero-sum of length 2, and 0 can appear at most once in S. Let S^* be the subsequence of all nonzero elements of S, hence $|S^*| = 2\eta_A(C^r_3) - 2 > \eta_A(C^r_3)$, for $r \geq 2$ (see Lemma 1(ii)), hence it must contain an A-zero-sum of length 3.

For the case $t \geq 1$, we may assume $g_j \neq 0$, for every $j = 2t+1, \ldots , m$ since otherwise, $g_l + (-g_l) + g_{j_0}$ is A-zero-sum subsequence of length 3. But now, either $t \geq \eta_A(C^r_3)$, so that $\prod_{i=1}^{t} g_i$ has an A-zero-sum of length 3, or $m - t \geq \eta_A(C^r_3)$, so that $\prod_{i=1}^{t} (-g_i) \prod_{i=2t+1}^{m} g_i$ has an A-zero-sum subsequence of length 3. \hfill \Box

Here we note that by the definition of these invariants and the proposition above, we have

$$s_A(C^r_3) \geq g_A(C^r_3) = 2\eta_A(C^r_3) - 1. \quad (1)$$

Proposition 2. For $A = \{-1, 1\}$, we have $s_A(C^r_3) = g_A(C^r_3)$, for $r \geq 2$.

Proof. From Theorem 3 in [2] we have $s_A(C^2_3) = 5$ and, on the other hand, the sequence $(1, 0)(0, 1)(2, 0)(0, 2)$ does not satisfy the condition (g_A), hence $s_A(C^2_3) = g_A(C^2_3)$ (see (1)). From now on, let us consider $r \geq 3$.

Let S be a sequence of length $m = s_A(C^r_3) - 1$ which does not satisfy the condition (s_A). In particular S does not contain three equal elements, since $3g = 0$. If S contains only distinct elements, then it does not satisfy also the condition (g_A), and then $m \leq g_A(C^r_3) - 1$, which implies $s_A(C^r_3) = g_A(C^r_3)$ (see (1)). Hence, let us assume that S has repeated elements and write

$$S = \ell^2 F = \prod_{i=1}^{t} g_i^2 \prod_{j=2t+1}^{m} g_j \quad (2)$$

where $g_1, \ldots , g_t, g_{2t+1}, \ldots , g_m$ are distinct. If for some $1 \leq j \leq m$ we have $g_j = 0$, then the subsequence of all nonzero elements of S has length at least equal to $s_A(C^r_3) - 3 \geq 2\eta_A(C^r_3) - 4 \geq \eta_A(C^r_3)$ for $r \geq 3$ (see Lemma 1 (ii)). Then it must have an A-zero-sum of length 2 or 3. And if the A-zero-sum is of length 2, together with $g_j = 0$ we would have an A-zero-sum of length 3 in S, contradicting the assumption that it does not satisfy the condition (s_A).

\textit{Weighed zero-sum problems over C^r_3}
Hence let us assume that all elements of S are nonzero. Observe that we can not have g in E and h in F (see (2)) such that $h = -g$, for $g + g - h = 3g = 0$, an A-zero-sum of length 3. Therefore the new sequence

$$R = \prod_{i=1}^{t} g_i \prod_{i=1}^{t} (-g_i) \prod_{i=2t+1}^{m} g_i$$

has only distinct elements, length $m = s_A(C_3^n) - 1$, and does not satisfy the condition (g_A). Hence $m \leq g_A(C_3^n) - 1$, and this concludes the proof according to (1).

\[\square\]

2. Proof of Theorem 1

2.1. The lower bound for $s_A(C_n^r)$

Let e_1, \ldots, e_r be the elements of C_n^r defined as $e_j = (0, \ldots, 0, 1, 0, \ldots, 0)$, and for every subset $I \subset \{1, \ldots, r\}$, of odd cardinality, define $e_I = \sum_{i \in I} e_i$ (e.g., taking $I = \{1, 3, r\}$, we have $e_I = (1, 0, 1, 0, \ldots, 0, 1)$), and let \mathcal{I}_m be the collection of all subsets of $\{1, \ldots, r\}$ of cardinality odd and at most equal to m.

There is a natural isomorphism between the cyclic groups $C_n^r \cong (\mathbb{Z}/n\mathbb{Z})^r$, and this result here will be proved for $(\mathbb{Z}/n\mathbb{Z})^r$. Let $\phi : \mathbb{Z} \to \mathbb{Z}/n\mathbb{Z}$ be the canonical group epimorphism, and define $\varphi : \mathbb{Z}^r \to (\mathbb{Z}/n\mathbb{Z})^r$ as $\varphi(a_1, \ldots, a_r) = (\phi(a_1), \ldots, \phi(a_r))$. If $S = g_1 \cdots g_m$ is a sequence over the group \mathbb{Z}^r, let us denote by $\varphi(S)$ the sequence $\varphi(S) = \varphi(g_1) \cdots \varphi(g_m)$ of same length over the group $(\mathbb{Z}/n\mathbb{Z})^r$.

Let e_1^*, \ldots, e_r^* be the canonical basis (i.e., $e_j^* = (0, \ldots, 0, 1, 0, \ldots, 0)$) of the group \mathbb{Z}^r, and define, as above

$$e_I^* = \sum_{i \in I} e_i^*$$

Now consider the sequence

$$S = \prod_{I \in \mathcal{I}_r} (e_I^*)^{n-1},$$

of length $2^{r-1}(n - 1)$. We will prove that the corresponding sequence

$$\varphi(S) = \prod_{I \in \mathcal{I}_r} e_I^{n-1},$$

has no A-zero-sum subsequences of length n, which is equivalent to prove that given $A = \{-1, 1\}$ and any subsequence $R = g_1 \cdots g_n$ of S, it is not
possible to find \(\epsilon_1, \ldots, \epsilon_s \in A \) such that (with an abuse of notation)
\[
\epsilon_1 g_1 + \cdots + \epsilon_n g_n \equiv (0, \ldots, 0) \pmod{n}.
\]

Let us consider the sequence \(S = \phi(S) = \prod_{I \in \mathcal{J}} \phi I \), for some \(\phi \in \mathcal{J} \), for \(n = 3 \), we see that this does not satisfy the condition \((\eta_A)\). So \(\eta_A(C^r_n) \geq 2^{r-1} + 1 \) for any \(r \in \mathbb{N} \), which is an improvement of the item (ii) of the Lemma 1.

2.2. The upper bound for \(s_A(C^r_n) \)

Let us consider the set of elements of the group \(C^r_n \) as the union \(\{0\} \cup G^+ \cup G^- \), where if \(g \in G^+ \) then \(-g \in G^- \). And write the sequence \(S \) as
\[
S = 0^n \prod_{g \in G^+} (g^{v_g(S)}(-g)^{v_g(S)}).
\]
First observe that if for some g, $v_g(S) + v_{-g}(S) \geq n$, then we can find a subsequence $R = c_1 \cdots c_n$ of S, which is an A-zero-sum, for $A = \{-1, 1\}$, and any sum of n equal elements is equal to zero in C_n. Now consider $m \geq 1$ and $m + v_{g}(S) + v_{-g}(S) > n$, then we can find a subsequence $R = h_1 \cdots h_l$ of S of even length $t \geq n - m$ with $h_j \in \{-g, g\}$. Since $A = \{-1, 1\}$, this is an A-zero-sum. Hence, the subsequence $T = 0^{m^*}R$ ($m^* \leq m$) of S is an A-zero-sum of length n.

Thus assume that, for every g in S we have $v_g(S) + v_{-g}(S) \leq n - m$, which gives

$$|S| \leq \begin{cases} \frac{m + n^{r-1}}{2}(n - m) & \text{if } m > 0 \text{ even} \\ m - 1 + \frac{n^{r-1}}{2}(n - m) & \text{if } m > 0 \text{ odd} \\ \frac{n^{r-1}}{(n - 1)} & \text{if } m = 0, \end{cases}$$

for $|G^+| = \frac{n^{r-1}}{2}$. We observe than in the case m even $m + \frac{n^{r-1}}{2}(n - m) \leq 2 + \frac{n^{r-1}}{2}(n - 2) \leq 2 + \frac{n^{r-1}}{2}(n - 2) + \frac{n^{r-1}}{2} - 1$ and the equality only happens when $n = 3$ and $r = 1$. In any case, if $|S| \geq \frac{n^{r-1}}{2}(n - 1) + 1$, it has a subsequence of length n which is an A-zero-sum.

Remark 2. For $n = 3$, the upper bound for $s_A(C_3^n)$ can be improved using the result of Meshulam[12] as follows. According to Proposition 2, $s_A(C_3^n) = g_A(C_3^n)$ for $r \geq 2$, and it follows from the definition that $g_A(C_3^n) \leq g(C_3^n)$, where $g(C_3^n)$ is the invariant $g_A(C_3^n)$ with $A = \{1\}$. Now we use the Theorem 1.2 of [12] to obtain $s_A(C_3^n) = g_A(C_3^n) \leq g(C_3^n) \leq 2 \times 3^{r}/r$.

3. Proof of Theorem 2

Now we turn our attention to prove the following proposition.

Proposition 3. If $r > 3$ is odd and $A = \{-1, 1\}$ then $\eta_A(C_3^n) \geq 2^{r-1} + \binom{r-1}{\delta}$, where

$$\delta = \delta(r) = \begin{cases} \frac{(r-3)}{2} & \text{if } r \equiv 1 \pmod{4} \\ \frac{(r-5)}{2} & \text{if } r \equiv 3 \pmod{4}. \end{cases} \tag{6}$$

Proof. We will prove this proposition by presenting an example of a sequence of length $2^{r-1} + \binom{r-1}{\delta} - 1$ with no A-zero-sum subsequences of length smaller or equal to 3. Let $\ell = \binom{r-1}{\delta}$, and consider the sequence

$$S = \mathcal{E} \cdot \mathcal{G} = \left(\prod_{i \in \mathcal{I}_{r-2}} e_i \right) \cdot g_1 \cdots g_\ell,$$
with

\[g_1 = (-1, -1, \ldots, -1, 1, 1, \ldots, 1) \]

\[\vdots \]

\[g_\ell = (-1, 1, \ldots, 1, -1, \ldots, -1) \],

where \(\epsilon_I \) and \(\mathcal{J}_{r-2} \) are defined in the beginning of section 2. Clearly \(S \) has no \(A \)-zero-sum subsequences of length 1 or 2 and also sum or difference of two elements of \(G \) will never give another element of \(G \), for no element of \(G \) has zero as one of its coordinates. Now we will consider \(\epsilon_s - \epsilon_t \), where \(\epsilon_s \) and \(\epsilon_t \) represent the \(\epsilon_I \)’s for which \(s \) coordinates are equal to 1 and \(t \) coordinates are equal to 1 respectively. Thus, we see that \(\epsilon_s - \epsilon_t \) will never be an element of \(G \) since it necessarily has either a zero coordinate or it has an odd number of 1’s and -1’s (and \(\delta + 1 \) is even).

Now, if for some \(s, t \) we would have

\[\epsilon_s + \epsilon_t = g_i, \]

Then \(\epsilon_t, \epsilon_s \) would have \(\delta + 1 \) nonzero coordinates at the same positions (to obtain \(\delta + 1 \) coordinates -1’s). Hence we would need to have

\[r + (\delta + 1) = s + t \]

Which is impossible since \(s + t \) is even and \(r + (\delta + 1) \) is odd, for \(\delta \) is odd in any of the two cases.

Thus, the only possible \(A \)-zero-sum subsequence of length 3 would necessarily include one element of \(E \) and two elements of \(G \).

Let \(v, w \) be elements of \(G \). Now it simple to verify that (the calculations are modulo 3) either \(v + w \) or \(v - w \) have two of their entries with opposite signs (for \(\delta(r) < (r - 1)/2 \) and hence either of them can not be added to an \(\pm \epsilon_I \) to obtain an \(A \)-zero-sum, since all its nonzero entries have the same sign.

Proposition 4. Let \(r > 4 \) be even, \(m = \left\lfloor \frac{3r-4}{4} \right\rfloor \) and \(A = \{-1, 1\} \). Then

\[\eta_A(C_r^3) \geq \sum_{\substack{j=1 \atop j \text{ odd}}}^{m} \binom{r}{j} + \ell(r) + 1, \]

where

\[\ell(r) = \begin{cases} \binom{r-2}{2} & \text{if } r \equiv 2 \pmod{4}, \\ \binom{r}{2}/2 & \text{if } r \equiv 0 \pmod{4}. \end{cases} \]
Proof. Consider the sequence \(K = g_1 \cdots g_\tau \) with
\[
g_1 = (-1, \ldots, -1, 1, 1, \ldots, 1)
\]
\[
\vdots
\]
\[
g_\tau = (1, 1, \ldots, 1, -1, \ldots, -1)
\]
where
\[
\tau = \begin{cases} \ell(r) & \text{if } r \equiv 2 \pmod{4} \\ 2\ell(r) & \text{if } r \equiv 0 \pmod{4} \end{cases}
\]
and \(\delta = \begin{cases} \frac{r-2}{2} & \text{if } r \equiv 2 \pmod{4} \\ \frac{r}{2} & \text{if } r \equiv 0 \pmod{4} \end{cases} \)
and rearrange the elements of the sequence \(K \), and write it as
\[
K = \prod_{i=1}^{\tau/2} g_i \prod_{i=1}^{\tau/2} (-g_i) = K^+K^-.
\]
It is simple to observe that if \(r \equiv 2 \pmod{4} \), then \(\tau = \ell \) and \(K^- = \emptyset \).

Now define the sequence
\[
S = \left(\prod_{I \in \mathcal{I}_m} \epsilon_I \right) G,
\]
where \(G = K \) if \(r \equiv 2 \pmod{4} \) or \(G = K^+ \) if \(r \equiv 0 \pmod{4} \), and \(m = \left\lfloor \frac{3r-4}{4} \right\rfloor \), a sequence of length \(|S| = \sum_{j=1}^{m} \binom{r}{j} + \ell(r) + 1 \).

The first important observation is that \(S \) has no \(A \)-zero-sum subsequences of length 1 or 2. And also sum or difference of two elements of \(G \) will never be another element of \(G \), for it necessarily will have a zero as coordinate. Also \(\epsilon_I - \epsilon_J \) will never be an element of \(G \) since it necessarily has either a zero coordinate or it has an odd number of 1's and -1's (and \(\delta \) is even). Now, if for some \(s, t \) (both defined as in the proof of the Proposition 3) we would have
\[
\epsilon_s + \epsilon_t = \pm g_j, \quad \text{for some } j
\]
then \(\epsilon_t, \epsilon_s \) would necessarily have \(\delta \) nonzero coordinates at the same positions (to obtain \(\delta \) coordinates -1's). But then
\[
s + t = r + \delta \geq \frac{3r-2}{2}, \quad \text{for any value of } \delta
\]
which is impossible since
\[s + t \leq 2m \leq \frac{3r - 4}{2}. \]

Thus the only \(A \)-zero-sum subsequence of length 3 possible necessarily includes an element \(e_t \) and two elements of \(G \).

Let \(v, w \) elements of \(G \). First, observe that if they do not have \(-1\)'s in common positions, then \(v + w \) has an even amount of zeros and an even amount of \(-1\)'s (since \(r \) and \(\delta \) are both even), i.e., \(v + w \neq \pm e_I \). If we make \(v - w \) also have an even amount of nonzero coordinates, i.e., we haven’t \(\pm e_I \). Now, assuming that \(v, w \) have at least a \(-1\) in same position, it simple to verify that (the calculations are modulo 3) either \(v + w \) or \(v - w \) have two or more of their entries with opposite signs and hence either of them can not be added to an \(\pm e_I \) to obtain an \(A \)-zero-sum, since all its nonzero entries have the same sign. \(\square \)

Theorem 2 now follows from propositions 1, 2, 3 and 4.

4. Proof of Theorem 3

We start by proving the following proposition.

Proposition 5. For \(A = \{-1, 1\} \), we have

(i) \(\eta_A(C_3^2) = 3 \);
(ii) \(\eta_A(C_3^3) = 5 \);
(iii) \(\eta_A(C_3^4) = 11 \);
(iv) \(21 \leq \eta_A(C_3^5) \leq 23 \).

Proof. By Propositions 1 and 2, we have that \(s_A(C_3^r) = g_A(C_3^r) = 2\eta_A(C_3^r) - 1 \), for \(r > 1 \), and by definition, we have \(g_A(C_3^r) \leq g(C_3^r) \) resulting in \(\eta_A(C_3^r) \leq \frac{g(C_3^r)+1}{2} \), for \(r > 1 \). It follows from

\[g(C_3^2) = 5 \ (|10|), g(C_3^3) = 10, g(C_3^4) = 21 \ (|11|), g(C_3^5) = 46 \ (|5|), \]

that \(\eta_A(C_3^2) \leq 3, \eta_A(C_3^3) \leq 5, \eta_A(C_3^4) \leq 11 \) and \(\eta_A(C_3^5) \leq 23 \). It is easy to see that the sequences \((1, 0)(0, 1)\) and \((1, 0, 0)(0, 1, 0)(0, 0, 1)\) (1, 1, 1) has no \(A \)-zero-sum of length at most three, so \(\eta_A(C_3^2) = 3 \) and \(\eta_A(C_3^3) = 5 \). It is also simple to check that following sequences of lengths 10 and 20 respectively do not satisfy the condition (\(\eta_A \)):

\[
\begin{align*}
(1, 1, 0, 0) & \cdots (0, 0, 1, 1)(1, 1, 1, 0) \cdots (0, 1, 1, 1) \\
(1, 1, 0, 0, 0) & \cdots (0, 0, 0, 1, 1)(1, 1, 1, 0, 0) \cdots (0, 0, 1, 1, 1),
\end{align*}
\]

(7)
hence $\eta_A(C_3^4) = 11$ and $\eta_A(C_3^5) \geq 21$.

Proposition 5 together with propositions 1 and 2 gives the proof of item (i) of Theorem 3. The proof of the remaining three items is given in Proposition 7 below.

Before going further, we need a slight modification of a result due to Gao et al for $A = \{1\}$ in [4]. Here we shall use it in the case $A = \{-1, 1\}$. The proof in this case is analogous to the original one, and shall be omit it.

Proposition 6. Let G be a finite abelian group, $A = \{-1, 1\}$ and $H \leq G$. Let S be a sequence in G of length

$$m \geq (s_A(H) - 1) \exp(G/H) + s_A(G/H).$$

Then S has an A-zero-sum subsequence of length $\exp(H) \exp(G/H)$. In particular, if $\exp(G) = \exp(H) \exp(G/H)$, then

$$s_A(G) \leq (s_A(H) - 1) \exp(G/H) + s_A(G/H).$$

Proposition 7. For $A = \{-1, 1\}$, we have

(i) $s_A(C_{3^a}^3) = 4 \times 3^a - 3$, for all $a \geq 1$;

(ii) $8 \times 3^a - 7 \leq s_A(C_{3^a}^4) \leq 10 \times 3^a - 9$, for all $a \geq 1$;

(iii) $16 \times 3^a - 15 \leq s_A(C_{3^a}^5) \leq 22 \times 3^a - 21$, for all $a \geq 1$.

Proof. It follows of (i) from Theorem 3 that $s_A(C_3^3) = 4 \times 3 - 3 = 9$. Now assume that $s_A(C_{3^a-1}^3) = 4 \cdot 3^{a-1} - 3$. Thus, Proposition 6 yields

$$s_A(C_{3^a}^3) \leq 3 \times (s_A(C_{3^a-1}^3) - 1) + s_A(C_3^3) \leq 4 \times 3^a - 3.$$

On the other hand, Theorem 1 gives $s_A(C_{3^a}^3) \geq 4 \times 3^a - 3$, concluding the proof of (i).

Again by (i) from Theorem 3, we have that $s_A(C_3^4) = 10 \times 3 - 9 = 21$. Now, assume that $s_A(C_{3^a-1}^4) \leq 10 \cdot 3^{a-1} - 9$. It follows from Proposition 6 that

$$s_A(C_{3^a}^4) \leq 3 \times (s_A(C_{3^a-1}^4) - 1) + s_A(C_3^4) \leq 10 \times 3^a - 9.$$

On the other hand, Theorem 1 gives the lower bound $s_A(C_{3^a}^4) \geq 8 \times 3^a - 7$, concluding the proof of (ii). The proof of item (iii) is analogous to the proof of item (ii), again using (i) of the Theorem 3 and Theorem 1.

References

[1] S. D. Adhikari, Y. G. Chen, J. B. Friedlander, S. V. Konyagin, F. Pappalardi. Contributions to zero-sum problems. Discrete Math., 306:1-10, 2006.

[2] S. D. Adhikari, R. Balasubramanian, F. Pappalardi, P. Rath. Some zero-sum constants with weights. Proc. Indian Acad. Sci. (Math. Sci.), 128 (2):183-188, 2008.

[3] S. D. Adhikari, D. J. Grynkiewicz, Zhi-Wei Sun. On weighted zero-sum sequences. arXiv:1003.2186v1 [math.CO] 10 Mar 2010.

[4] R. Chi, S. Ding, W. Gao, A. Geroldinger, W. A. Schmid. On zero-sum subsequence of restricted size. IV. Acta Math. Hungar., 107(4):337-344, 2005.

[5] Y. Edel, S. Ferret, I. Landjev, L. Storme. The classification of the largest caps in $AG(5, 3)$. J. Comb. Theory, 99:95-110, 2002.

[6] P. Erdős, A. Ginzburg and A. Ziv. Theorem in the additive number theory. Bulletin Research Council Israel 10F, 41-43, 1961.

[7] W. Gao, A. Geroldinger. Zero-sum problem in finite abelian groups: A survey. Expo. Math., 24(6): 337-369, 2006.

[8] D. J. Grynkiewicz. A weighted Erdős-Ginzburg-Ziv theorem. Combinatorica 26, no. 4, 445-453, 2006.

[9] H. Harborth. Ein Extremal Problem für Gitterpunkte. J. Reine Angew. Math., 262: 356-360, 1973.

[10] A. Kemnitz. On a lattice point problem. Ars Combinatoria, 16: 151-160, 1983.

[11] D. E. Knuth, Computerprograme, http://www-cs-faculty.stanford.edu/~knuth/programs/setset-all.w.

[12] R. Meshulam. On subsets of finite abelian groups with no 3-term arithmetic progressions. J. Comb. Theory, Ser. A, 71: 168-172, 1995.

[13] R. Thangadurai. A variant of Davenport’s constant. Proc. Indian Acad. Sci. (Math. Sci.), 117: 147-158, 2007.

Contact Information

H. Godinho, D. Marques
Departamento de Matemática, Universidade de Brasília, Brasília-DF, Brazil
E-Mail: hemar@mat.unb.br, diego@mat.unb.br

A. Lemos
Departamento de Matemática, Universidade Federal de Viçosa, Viçosa-MG, Brazil
E-Mail: abiliolemos@ufv.br

Received by the editors: 13.12.2011
and in final form 26.06.2012.