ON GROMOV’S SCALAR CURVATURE CONJECTURE

DMITRY BOLOTOV AND ALEXANDER DRANISHNIKOV

Abstract. We prove the Gromov conjecture on the macroscopic dimension of the universal covering of a closed spin manifold with a positive scalar curvature under the following assumptions on the fundamental group.

0.1. Theorem. Suppose that a discrete group π has the following properties:
1. The Strong Novikov Conjecture holds for π.
2. The natural map $\text{per}: \text{ko}_n(B\pi) \to KO_n(B\pi)$ is injective.
Then the Gromov Macroscopic Dimension Conjecture holds true for spin n-manifolds M with the fundamental group $\pi_1(M) = \pi$.

Contents

1. Introduction 1
2. Connective spectra and n-connected complexes 3
3. Inessential manifolds 4
4. The Main Theorem 7
References 9

1. Introduction

In his study of manifolds with positive scalar curvature M. Gromov observed some large scale dimensional deficiency of their universal coverings: For an n-dimensional manifold M, its universal covering has to be at most $(n - 2)$-dimensional from the macroscopic point of view. For example, the product of a closed $(n - 2)$-manifold N^{n-2} and the standard 2-sphere $M = N^{n-2} \times S^2$ admits a metric of positive scalar curvature.

Date: January 28, 2009.

2000 Mathematics Subject Classification. Primary 55M30; Secondary 53C23, 57N65.

Key words and phrases. Positive scalar curvature, macroscopic dimension, connective K-theory, Strong Novikov Conjecture.

1Supported by NSF, grant DMS-0604494.
scalar curvature (by making the 2-sphere small). The universal covering \(\tilde{M} = \tilde{N}^{n-2} \times S^2 \) looks like an \((n-2)\)-dimensional space \(\tilde{N}^{n-2} \). Gromov predicted similar behavior for all manifolds with positive scalar curvature. He stated it in \([G1]\) as the following.

1.1. Conjecture (Gromov). For every closed Riemannian \(n \)-manifold \((M, g)\) with a positive scalar curvature there is the inequality

\[
\dim_{mc}(\tilde{M}, \tilde{g}) \leq n - 2
\]

where \((\tilde{M}, \tilde{g})\) is the universal cover of \(M \) with the pull-back metric.

Here \(\dim_{mc} \) stands for the macroscopic dimension \([G1]\). First time this conjecture was stated in the famous “filling” paper \([G2]\) in a different language. In \([GL]\) the conjecture was proved for 3-manifolds.

1.2. Definition. A map \(f : X \to K \) of a metric space is called uniformly cobounded if there is \(D > 0 \) such that \(\text{diam}(f^{-1}(y)) \leq D \).

A metric space \(X \) has the macroscopic dimension \(\dim_{mc} X \leq n \) if there is a uniformly cobounded proper continuous map \(f : X \to K^n \) to an \(n \)-dimensional polyhedron.

In \([G1]\) Gromov asked the following questions related to his conjecture which were stated in \([B1]\),\([B2]\) in the form of a conjecture:

1.3. Conjecture (C1). Let \((M^n, g)\) be a closed Riemannian \(n \)-manifold with torsion free fundamental group, and let \(\tilde{M}^n \) be the universal covering of \(M^n \) with the pull-back metric. Suppose that \(\dim_{mc} \tilde{M}^n < n \). Then

(A) If \(\dim_{mc} \tilde{M}^n \leq n \) then \(\dim_{mc} \tilde{M}^n \leq n - 2 \).

(B) If a classifying the universal covering map \(f : M^n \to B\pi \) can be deformed to an map with \(f(M^n) \subset B\pi^{(n-1)} \), then it can be deformed to a map with \(f(M^n) \subset B\pi^{(n-2)} \).

The Conjecture C1 is proven for \(n = 3 \) by D. Bolotov in \([B1]\). In \([B2]\) it was disproved for \(n > 3 \) by a counterexample. It turns out that Bolotov’s example does not admit a metric of positive scalar curvature \([B3]\) and hence it does not affect the Gromov Conjecture 1.1.

Perhaps the most famous conjecture on manifolds of positive scalar curvature is

The Gromov-Lawson Conjecture \([GL]\): A closed spin manifold \(M^n \) admits a metric of positive scalar curvature if and only if \(f_*([M]_{KO}) = 0 \) in \(KO_n(B\pi) \) where \(f : M^n \to B\pi \) is a classifying map for the universal covering of \(M^n \).
J. Rosenberg connected the Gromov-Lawson conjecture with the Novikov conjecture. Namely, he proved [R] that $\alpha f_*([M]_{KO}) = 0$ in $KO_n(C^*(\pi))$ in the presence of positive scalar curvature where α is the assembly map.

1.4. Conjecture (Strong Novikov Conjecture). The analytic assembly map

$$\alpha : KO_*(B\pi) \to KO_*(C^*(\pi))$$

is a monomorphism.

Then Rosenberg and Stolz proved the Gromov-Lawson conjecture for manifolds with the fundamental group π which satisfies the Strong Novikov conjecture and has the natural transformation map

$$per : ko_*(B\pi) \to KO_*(B\pi)$$

injective ([RS], Theorem 4.13).

The main goal of this paper is to prove the Gromov Conjecture 1.1 under the Rosenberg-Stolz conditions.

2. Connective spectra and n-connected complexes

We refer to the textbook [Ru] on the subject of spectra. We recall that for every spectrum E there is a connective cover $e \to E$, i.e., the spectrum e with the morphism $e \to E$ that induces the isomorphisms for $\pi_i(e) = \pi_i(E)$ for $i \geq 0$ and with $\pi_i(e) = 0$ for $i < 0$. By KO we denote the spectrum for real K-theory, by ko its connective cover, and by $per : ko \to KO$ the corresponding transformation (morphism of spectra). We will use both notations for an E-homology of a space X: old-fashioned $E_*(X)$ and modern $H_*(X; E)$. We recall that $KO_n(pt) = \mathbb{Z}$ if $n = 0$ or $n = 4 \mod 8$, $KO_n(pt) = \mathbb{Z}_2$ if $n = 1$ or $n = 2 \mod 8$, and $KO_n(pt) = 0$ for all other values of n. By S we denote the spherical spectrum. Note that for any spectrum E there is a natural morphism $S \to E$ which leads to the natural transformation of the stable homotopy to E-homology $\pi_*^s(X) \to H_*(X; E)$.

2.1. Proposition. Let X be an $(n - 1)$ connected $(n + 1)$-dimensional CW complex. Then X is homotopy equivalent to the wedge of spheres of dimensions n and $n + 1$ together with the Moore spaces $M(\mathbb{Z}_m, n)$.

Proof. It is a partial case of the Minimal Cell Structure Theorem (see Proposition 4C.1 and Example 4C.2 in [Ha]).

2.2. Proposition. The natural transformation $\pi_*^s(pt) \to ko_*(pt)$ induces an isomorphism $\pi_*^s(K/K^{(n-2)}) \to ko_n(K/K^{(n-2)})$ for any CW complex K.
Proof. Since π^s and ko are both connective, it suffices to show that
$$\pi^s_n(K^{(n+1)}/K^{(n-2)}) \to ko_n(K^{(n+1)}/K^{(n-2)})$$
is an isomorphism. Consider the diagram generated by exact sequences of the pair $(K^{(n+1)}/K^{(n-2)}, K^n/K^{(n-2)})$
$$\oplus \mathbb{Z} \longrightarrow \pi^s_n(K^n/K^{(n-2)}) \longrightarrow \pi^s_n(K^{(n+1)}/K^{(n-2)}) \longrightarrow 0$$
$$\oplus \mathbb{Z} \longrightarrow ko_n(K^n/K^{(n-2)}) \longrightarrow ko_n(K^{(n+1)}/K^{(n-2)}) \longrightarrow 0.$$ Since the left vertical arrow is an isomorphism and the right vertical arrow is an isomorphism of zero groups, it suffices to show That $\pi^s_n(K^n/K^{(n-2)}) \to ko_n(K^n/K^{(n-2)})$ is an isomorphism.
Note that $\pi^s_n(S^k) \to ko_n(S^k)$ is an isomorphism for $k = n, n - 1$. In view of Proposition 3.2 it suffices to show that $\pi^s_n(M(Z_m, n - 1)) \to ko_n(M(Z_m, n - 1))$ is an isomorphism for any m and n. This follows from the Five Lemma applied to the co-fibration $S^{n-1} \to S^{n-1} \to M(Z_m, n - 1)$.

3. INESSENTIAL MANIFOLDS

We recall the following definition which is due to Gromov.

3.1. Definition. An n-manifold M is called essential if it does not admit a map $f : M \to K^{n-1}$ to an $(n-1)$-dimensional complex that induces an isomorphism of the fundamental groups. Note that always one can take K^{n-1} to be the $(n-1)$-skeleton $B\pi^{(n-1)}$ of the classifying space $B\pi$ of the fundamental group $\pi = \pi_1(M)$.

If a manifold is not essential, it is called inessential.

The following is well-known to experts.

3.2. Proposition. An orientable n-manifold M is inessential if and only if $f_*([M]) \in H_n(B\pi)$ is zero for a map $f : M \to B\pi_1(M)$ classifying the universal covering of M.

Proof. If M admits a classifying map $f : M \to B\pi^{(n-1)}$, then clearly, $f_*([M]) = 0$.

Let $f_*([M]) = 0$ for some map $f : M \to B\pi_1(M)$ that induces an isomorphism of the fundamental groups. Let $o_n(f) \in H^n(M; \pi_{n-1}(F))$ be the primary obstruction to deform f to the $(n-1)$-dimensional skeleton $B\pi^{(n-1)}$ and let $o_n(1_{B\pi}) \in H^n(B\pi; \pi_{n-1}(F))$ be the primary obstruction to retraction of $B\pi$ to the $(n-1)$-skeleton. Here F denotes the homotopy fiber of the inclusion $B\pi^{(n-1)} \to B\pi$ and $\pi_{n-1}(F)$ is considered as a π-module. Since f_* induce an isomorphism of the fundamental groups,
\[f_* : H_0(M; \pi_{n-1}(F)) = \pi_{n-1}(F) \xrightarrow{\cong} H_0(B\pi; \pi_{n-1}(F)) = \pi_{n-1}(F) \] is an isomorphism. Then \(f_*([M] \cap o_n(f)) = f_*([M]) \cap o_n(1_{B\pi}) = 0. \) By the Poincare duality \(o_n(f) = 0. \)

3.3. Proposition
An orientable spin \(n \)-manifold \(M \) is inessential if \(f_*([M]_{ko}) \in ko_n(B\pi) \) is zero for a map \(f : M \to B\pi \) classifying the universal covering.

Proof. We assume that \(M \) is given a CW complex structure with one \(n \)-dimensional cell and \(f(M^{(n-1)}) \subset B\pi^{(n-1)} \). Let

\[c^n_f : C_n(M) = \pi_n(M, M^{(n-1)}) \to \pi_{n-1}(B\pi^{(n-1)}) \]

be the primary obstruction cocycle for extending \(f|_{M^{(n-1)}} \) to the \(n \)-cell. In view of the \(\pi \)-isomorphism \(\pi_n(B\pi, B\pi^{(n-1)}) = \pi_{n-1}(B\pi^{(n-1)}) \) we may assume that \(c^n_f : \pi_n(M, M^{(n-1)}) \to \pi_n(B\pi, B\pi^{(n-1)}) \) is the induced by \(f \) homomorphism of the homotopy groups. The class \(o^n_f = [c^n_f] \) of \(c^n_f \) lives in the cohomology group \(H^n(M; \pi_n(B\pi, B\pi^{(n-1)}) \) with coefficients in a \(\pi \)-module. By the Poincare duality \(H^n(M; \pi_n(B\pi, B\pi^{(n-1)})) = H_0(M; \pi_0(B\pi, B\pi^{(n-1)})) \) is equal to the group \(\pi_n(B\pi/B\pi^{(n-1)}) \). The later group is the group of \(\pi \)-invariants of \(\pi_n(B\pi, B\pi^{(n-1)}) \) which is equal to \(\pi_n(B\pi/B\pi^{(n-1)}) \). Then \(c^n_f \) in \(\pi_n(B\pi/B\pi^{(n-1)}) \) coincides with \(\bar{f}_*(1) \) where \(\bar{f} : \hat{M}/M^{(n-1)} = S^n \to B\pi/B\pi^{(n-1)} \) is the induced map.

Assume that the obstruction \(o^n_f = [c^n_f] \neq 0. \) Then we claim that \(\bar{f}_* \) induces a nontrivial homomorphism for \(ko \) in dimension \(n \). In view of connectivity of \(ko \) it suffices to show this for the map \(\bar{f} : S^n \to B\pi^{(n+1)}/B\pi^{(n-1)}. \) By Proposition \(2.1 \) \(B\pi^{(n+1)}/B\pi^{(n-1)} = (\vee S^n) \vee (\vee M(Z_m, n)) \vee (\vee S^{n+1}). \) Thus, it suffices to show that a non-null homotopic maps \(S^n \to S^n \) and \(S^n \to M(Z_m, n) \) induce nontrivial homomorphisms for \(ko_n \). The first is obvious, the second follows from the homotopy excision and the Five Lemma applied to the following diagram.

\[
\begin{array}{cccccc}
\pi_n(S^n) & \longrightarrow & \pi_n(S^n) & \longrightarrow & \pi_n(M(Z_m, n)) & \longrightarrow & 0 \\
\downarrow & & \downarrow & & \downarrow & & \\
k_n(S^n) & \longrightarrow & k_n(S^n) & \longrightarrow & k_n(M(Z_m, n)) & \longrightarrow & 0.
\end{array}
\]

By the definition of the fundamental class the image of \([M]_{ko}\) is a generator in \(k_n(M, M^{(n-1)}) = k_n(M/M^{(n-1)}) = k_n(S^n) = \mathbb{Z}. \) Then
the following commutative diagram leads to the contradiction

\[
\begin{array}{ccc}
k\sigma_n(M) & \xrightarrow{f^*} & k\sigma_n(B\pi) \\
q_* & & p_* \\
k\sigma_n(M/M^{(n-1)}) & \xrightarrow{f^*} & k\sigma_n(B\pi/B\pi^{(n-1)})
\end{array}
\]

\[\square\]

There are many ways to detect essentiality of manifolds. One of them deals with the Lusternik-Schnirelmann category of \(X\), \(\text{cat}_{\text{LS}} X\), which is the minimal \(m\) such that \(X\) admits an open cover \(U_0, \ldots, U_m\) contractible in \(X\).

3.4. **Theorem.** A closed \(n\)-manifold is essential if and only if its Lusternik-Schnirelmann category equals \(n\).

We refer to [CLOT] for the proof and more facts about the Lusternik-Schnirelmann category. Note that \(\text{cat}_{\text{LS}} X\) is estimated from below by the cup-length of \(X\) possible with twisted coefficient and its estimated from above by the dimension of \(X\). The definition of the Lusternik-Schnirelmann category can be reformulated in terms of existence of a section of some universal fibration (called Ganea’s fibration). The characteristic class arising from the universal Ganea fibration over the classifying space \(B\pi\) is called the Berstein-Svartz class \(\beta_\pi \in H^1(\pi; I(\pi))\) of \(\pi\) where \(I(\pi)\) the augmentation ideal of the group ring \(\mathbb{Z}(\pi)\) (see [Ber], [Sv], [CLOT]. Formally, \(\beta_\pi\) is the image of the generator under connecting homomorphism \(H^0(\pi; \mathbb{Z}) \to H^1(\pi; I(\pi))\) in the long exact sequence generated by the short exact sequence of coefficients

\[0 \to I(\pi) \to \mathbb{Z}(\pi) \to \mathbb{Z} \to 0.\]

The main property of \(\beta_\pi\) is universality: Every cohomology class \(\alpha \in H^k(\pi; L)\) is the image of \((\beta_\pi)^k\) under a suitable coefficients homomorphism \(I(\pi)^k = I(\pi) \otimes \cdots \otimes I(\pi) \to L\). We refer to [DR] (see also [Sv]) for more details.

3.5. **Lemma.** Let \(M\) be a closed inessential \(n\)-manifold, \(n \geq 4\), supplied with a CW complex structure and let \(\pi = \pi_1(M)\). Then \(M\) admits a classifying map \(f : M \to B\pi\) of the universal covering such that \(f(M) \subset B\pi^{(n-1)}\) and \(f(M^{(n-1)}) \subset B\pi^{(n-2)}\).

Proof. Let \(f : M \to B\pi\) be the classifying map for the universal covering of \(M\). We may assume that \(f|_{M^{(2)}, M^{(2)}} \to B\pi^{(2)}\) is the identity map. First we show that \(f^*(\beta^{n-1}) = 0\) where \(\beta = \beta_\pi\) is the Berstein-Svarz class of \(\pi\). Assume that \(f^*(\beta^{n-1}) \neq 0\). Then \(a = [M] \cap f^*(\beta^{n-1}) \neq 0\)
by the Poincare Duality Theorem \cite{B}. There is \(u \in H^1(X; \mathcal{A}) \) such that \(a \cap u \neq 0 \) for some local system \(\mathcal{A} \) (see Proposition 2.3 \cite{DKR}). Then \(f^*(\beta)^{n-1} \cup u \neq 0 \). Thus the twisted cup-length of \(M \) is at least \(n \) and hence \(\text{cat}_{\text{LS}} M = n \). It contradicts to the Theorem 3.4.

Let \(g : M \to B\pi^{(n-1)} \) be a cellular classifying map. Consider the obstruction \(o^{n-1} \in H^{n-1}(M; \pi_{n-2}(B\pi^{(n-2)})) \) for extension of \(g|_{M^{(n-2)}} \) to the \((n-1)\)-skeleton \(M^{(n-1)} \). Here \(\pi_{n-2}(B\pi^{(n-2)}) \) is considered as a \(\pi \)-module. Note that \(o^{n-1} = g^*(o_B^{n-1}) \) where \(o_B^{n-1} \) is the obstruction for retraction of \(B\pi^{(n-1)} \) to \(B\pi^{(n-2)} \). In view of the universality of the Berstein-Svarz class there is a morphisms of \(\pi \)-modules \(I(\pi)^{n-1} \to \pi_{n-2}(B\pi^{(n-2)}) \) such that \(o_B^{n-1} \) is the image of \(\beta^{n-1} \) under the induced cohomology homomorphism. The square diagram induced by \(g \) and the fact \(g^*(\beta^n_{o}) = 0 \) imply that \(o^{n-1} = 0 \). Therefore there is a map \(f' : M^{(n-1)} \to B\pi^{(n-2)} \) that coincides with \(g \) on \(M^{(n-3)} \). Clearly, for \(n \geq 5 \), this map induces an isomorphism of the fundamental groups. It is still the case for \(n = 4 \), since \(g \) is the identity on the 1-skeleton and the 2-skeletons of \(M \) and \(B\pi \) are taken to be the same.

We show that there is an extension \(f : M \to B\pi^{(n-1)} \). It suffices to show that the inclusion homomorphism \(\pi_{n-1}(B\pi^{(n-2)}) \to \pi_{n-1}(B\pi^{(n-1)}) \) is trivial. This homomorphism coincides with the homomorphism

\[\pi_{n-1}(E\pi^{(n-2)}) \to \pi_{n-1}(E\pi^{(n-1)}). \]

Since \(E\pi^{(n-2)} \) is contractible in \(E\pi \), by the Cellular Approximation Theorem it is contractible in \(E\pi^{(n-1)} \). This implies that the inclusion homomorphism is zero.

\[\square \]

4. The Main Theorem

4.1. Lemma. Suppose that a classifying map \(f : M \to B\pi \) of a closed spin \(n \)-manifold, \(n > 3 \), takes the \(k_o \) fundamental class to 0, \(f_*([M]_{k_o}) = 0 \). Then \(f \) is homotopic to a map \(g : M \to B\pi^{(n-2)} \).

Proof. In view of Proposition 3.3 we may assume that \(f(M) \subset B\pi^{(n-1)} \).

In view of Lemma 3.5 we may additionally assume that \(f(M^{(n-1)}) \subset B\pi^{(n-2)} \). Also we assume that \(M \) has one \(n \)-dimensional cell. As in the proof of Proposition 3.3 we can say that the primary obstruction for moving \(f \) into the \((n-2)\)-skeleton is defined by the cocycle \(c_f : \pi_n(M, M^{(n-1)}) \to \pi_n(B\pi, B\pi^{(n-2)}) \) which defines the cohomology class \(o_f = [c_f] \) that lives in the group of coinvariants \(\pi_n(B\pi, B\pi^{(n-2)})_\pi = \pi_n(B\pi/B\pi^{(n-2)}) \) and is represented by \(\tilde{f}_*(1) \) for the homomorphism \(\tilde{f}_* : \pi_n(M/M^{(n-1)}) = \mathbb{Z} \to \pi_n(B\pi/B\pi^{(n-2)}) \) induced by the map of quotient spaces \(\tilde{f} : M/M^{(n-1)} \to B\pi/B\pi^{(n-2)} \).
We assume that the obstruction \([c_f]\) is nonzero. Show that \(\bar{f}_* : ko_n(S^n) \to ko_n(B\pi/B\pi^{n-2})\) is nontrivial to obtain a contradiction as in the proof of Proposition 3.3. Thus, \(\bar{f}_*(1)\) defines a nontrivial element of \(\pi_n(B\pi/B\pi^{(n-2)})\). The restriction \(n > 3\) implies that \(\bar{f}_*(1)\) survives in the stable homotopy group. In view of Proposition 2.2, the element \(\bar{f}_*(1)\) survives in the composition

\[
\pi_n(B\pi/B\pi^{(n-2)}) \to \pi^s_n(B\pi/B\pi^{(n-2)}) \to ko_n(B\pi/B\pi^{(n-2)}).
\]

The commutative diagram

\[
\begin{array}{ccc}
\pi_n(S^n) & \xrightarrow{\bar{f}_*} & \pi_n(B\pi/B\pi^{(n-2)}) \\
\cong & & \cong \\
\pi^s_n(S^n) & \xrightarrow{f_*} & \pi^s_n(B\pi/B\pi^{(n-2)}) \\
\cong & & \cong \\
ko_n(S^n) & \xrightarrow{\bar{f}_*} & ko_n(B\pi/B\pi^{(n-2)})
\end{array}
\]

implies that \(f_*(1) \neq 0\) for \(ko_n\). Contradiction.

The Strong Novikov Conjecture is connected to the Gromov Conjecture by means of the following theorem which is due to J. Rosenberg.

4.2. **Theorem** ([R]). Suppose \(M^n\) is a spin manifold with a fundamental group \(\pi\). Let \(f\) be classifying map \(f : M^n \to B\pi\). If \(M^n\) is a positive scalar curvature manifold then \(\alpha f_*([M^n]_{KO}) = 0\) where \(\alpha : KO_*(B\pi) \to KO_*(C_r^*(\pi))\) is the analytic assembly map.

4.3. **Theorem.** Suppose that a discrete group \(\pi\) has the following properties:

1. The Strong Novikov Conjecture holds for \(\pi\).
2. The natural map \(\text{per} : ko_n(B\pi) \to KO_n(B\pi)\) is injective.

Then the Gromov Conjecture holds for spin \(n\)-manifolds \(M\) with the fundamental group \(\pi_1(M) = \pi\).

Proof. Let \(M\) be a closed spin \(n\)-manifold that admits a metric with positive scalar curvature. By Theorem 4.2 \(\alpha \circ \text{per} \circ f_*([M]_{ko}) = 0\). The conditions on \(\pi\) imply that \(f_*([M]_{ko}) = 0\) for the classifying map \(f : M \to B\pi\). Then by Lemma 4.1 \(f\) is homotopic to \(g : \tilde{M} \to B\pi^{(n-2)}\). The induced map of the universal covering spaces \(\tilde{M} \to E\pi^{(n-2)}\) produces the inequality \(\dim_{mc} \tilde{M} \leq n - 2\).

4.4. **Corollary.** The Gromov Conjecture holds for spin \(n\)-manifolds \(M\) with the fundamental group \(\pi_1(M) = \pi\) having \(\text{cd}(\pi) \leq n + 3\) and satisfying the Strong Novikov Conjecture.
Proof. We show that per is an isomorphism in dimension n in this case. Let $\mathbf{F} \to k_0 \to KO$ be the fibration of spectra induced by the morphism $k_0 \to KO$. Then $\pi_k(\mathbf{F}) = 0$ for $k \geq 0$ and $\pi_k(\mathbf{F}) = \pi_k(KO) = KO_k(pt) = 0$ if $k = -1, -2, -3 \mod 8$. The Atiyah-Hirzebruch F-homology spectral sequence for $B\pi$ implies that $H_n(B\pi; \mathbf{F}) = 0$ since all entries on the n-diagonal in the E^2-term are 0. Then the coefficient exact sequence for homology $H_n(B\pi; \mathbf{F}) \to k_0n(B\pi) \to KO_n(B\pi) \to \ldots$ implies that $\text{per} : k_0n(B\pi) \to KO_n(B\pi)$ is a monomorphism.

We note that this Corollary for $\text{cd}(\pi) \leq n - 1$ first was proven in [B3].

4.5. Corollary. The Gromov Conjecture holds for spin n-manifolds M with the fundamental group $\pi_1(M) = \pi$ having finite $B\pi$ and with $\text{asdim} \pi \leq n + 3$.

Proof. This is a combination of the fact that the Strong Novikov conjecture holds true for such groups π ([Ba, DF], the above Corollary, and the inequality $\text{cd}(\pi) \leq \text{asdim} \pi$ proven in [Dr].

4.6. Corollary. The Gromov conjecture holds for spin n-manifolds M with the fundamental group $\pi_1(M)$ equal the product of free groups $F_1 \times \cdots \times F_n$. In particular, it holds for free abelian groups.

Proof. The formula for homology with coefficients in a spectrum \mathbf{E}:

$$H_i(X \times S^1; \mathbf{E}) \cong H_i(X; \mathbf{E}) \oplus H_{i-1}(X; \mathbf{E})$$

implies that if $k_0s(X) \to KO_s(X)$ is monomorphism, then $k_0s(X \times S^1) \to KO_s(X \times S^1)$ is a monomorphism. By induction on m using the Mayer-Vietoris sequence this formula can be generalize to the following

$$H_i(X \times (\bigvee_m S^1); \mathbf{E}) \cong H_i(X; \mathbf{E}) \oplus \bigoplus_m H_{i-1}(X; \mathbf{E}).$$

Therefore,

$$k_0s(X \times (\bigvee_m S^1)) \to KO_s(X \times (\bigvee_m S^1))$$

is a monomorphism.

References

[Ba] A. Bartels, Squeezing and higher algebraic K-theory, K-theory vol 28 (2003), 19-37.

[Ber] Berstein, I: On the Lusternik-Schnirelmann category of Grassmannians. Math. Proc. Camb. Philos. Soc. 79 (1976) 129–134.
D. Bolotov, Macroscopic dimension of 3-Manifolds, Math. Physics, Analysis and Geometry 6 (2003), 291 - 299

D. Bolotov, Gromov’s macroscopic dimension conjecture, Algebraic and Geometric Topology 6 (2006), 1669 - 1676

D. Bolotov, Macroscopic dimension of certain PSC-manifolds, AGT 9, (2009) 31-27.

G. Bredon, Sheaf Theory, Graduate Text in Mathematics, 170, Springer, New York Heidelberg Berlin, 1997.

O. Cornea, G. Lupton, J. Oprea, D. Tanré, D.: Lusternik-Schnirelmann category. Mathematical Surveys and Monographs, 103, American Mathematical Society, Providence, RI, 2003

A. Dranishnikov, Cohomological approach to asymptotic dimension, Geom. Dedicata, (2009).

A. Dranishnikov, S. Ferry, and S. Weinberger, An Etale approach to the Novikov conjecture, Pure Appl. Math. 61 (2008), no. 2, 139-155.

A. Dranishnikov, M. Katz, and Yu. Rudyak, Small values of the Lusternik-Schnirelman category for manifolds, Geometry and Topology 12 (2008) issue 3, 1711-1728.

A. Dranishnikov, Yu. Rudyak, On the Berstein-Švarc Theorem in dimension 2, Math. Proc. Cambridge Phil. Soc. to appear

M. Gromov, Positive curvature, macroscopic dimension, spectral gaps and highre signatures, Functional analysis on the eve of the 21st century. Vol II, Birhauser, Boston, MA, 1996.

M. Gromov, Filling Riemannian manifolds, J. Diff. Geom. 18 (1983), 1-147.

M. Gromov, H.B. Lawson, Positive curvature and the Dirac operator on complete Riemannian manifolds, Publ. Math. I.H.E.S 58 (1983), 295 - 408

A. Hatcher, Algebraic Topology, Cambridge University Press, 2002.

J. Rosenberg, C*-algebras, positive scalar curvature, and the Novikov conjecture, III, Topology 25 (1986), 319 - 336

J. Rosenberg and S. Stolz, Metric of positive scalar curvature and connection with surgery Surveys on Surgery Theory, vol 2, Princeton University Press, 2001, 353-386.

A. Svarc, The genus of a fiber space, Amer. Math. Soc. Transl. Series 2, 55 (1966), 49–140.

Yu. Rudyak, On Thom spectra, orientability, and cobordism, Springer, 1998

Dmitry Bolotov, Verkin Institute of Low Temperature Physics, Lenina Ave, 47, Kharkov, 631103, Ukraine
E-mail address: bolotov@univer.kharkov.ua

Alexander N. Dranishnikov, Department of Mathematics, University of Florida, 358 Little Hall, Gainesville, FL 32611-8105, USA
E-mail address: dranish@math.ufl.edu