Widespread erosion on high plateaus during recent glaciations in Scandinavia

Jane L. Andersen, David L. Egholm, Mads F. Knudsen, Henriette Linge, John D. Jansen, Vivi K. Pedersen, Søren B. Nielsen, Dmitry Tikhomirov, Jesper Olsen, Derek Fabel & Sheng Xu

Glaciers create some of Earth’s steepest topography; yet, many areas that were repeatedly overridden by ice sheets in the last few million years include extensive plateaus. The distinct geomorphic contrast between plateaus and the glacial troughs that dissect them has sustained two long-held hypotheses: first, that ice sheets perform insignificant erosion beyond glacial troughs, and, second, that the plateaus represent ancient pre-glacial landforms bearing information of tectonic and geomorphic history prior to Pliocene–Pleistocene global cooling (~3.5 Myr ago). Here we show that the Fennoscandian ice sheets drove widespread erosion across plateaus far beyond glacial troughs. We apply inverse modelling to 118 new cosmogenic 10Be and 26Al measurements to quantify ice sheet erosion on the plateaus fringing the Sognefjorden glacial trough in western Norway. Our findings demonstrate substantial modification of the pre-glacial landscape during the Quaternary, and that glacial erosion of plateaus is important when estimating the global sediment flux to the oceans.
Ice has profoundly reshaped pre-glacial landscapes, as shown by the distinct glacial topography of many mid-latitude mountain ranges. However, at higher latitudes, glacial troughs and fjords are in many cases separated by extensive plateaus that, despite being overridden repeatedly by ice sheets, often display few signs of recent glacial erosion. Indeed, many plateaus host blockfield mantles indicative of prolonged subaerial weathering. In addition, the plateau surfaces frequently contain high abundances of cosmogenic nuclides produced in situ in the upper few metres of Earth’s surface by secondary cosmic rays. Preservation of cosmogenic nuclides formed during earlier ice-free periods confirms the lack of erosion by recent ice sheets on the plateaus. These observations have been used to suggest that high-latitude plateaus were protected from erosion by cold-based ice sheets over millions of years. In contrast, a recent modelling study of ice sheet erosion on passive margins suggests substantial (>100 mm kyr$^{-1}$), but decelerating, erosion rates on plateaus through the late Cenozoic, leading to a gradual emergence of the observed bimodal erosion pattern across the troughs and plateaus. Distinguishing between these scenarios is essential, not only to clarify the origin of the plateau landscapes found in many high-latitude regions on Earth, including Scandinavia, Scotland, Greenland, eastern Canada and Antarctica. It is also critical for disentangling the contribution from these extensive regions to the global sediment flux. This aspect is important in light of the recent discourse on the influence of late Cenozoic climatic cooling on the average pace of Earth surface erosion. As plateau landforms cover extensive parts of high-latitude continental margins, even small rates of plateau erosion could produce significant sediment contributions.

A key region in which contradicting views on late Cenozoic plateau erosion have collided is western Scandinavia, where summit plateaus have traditionally been interpreted as remnant palaeosurfaces with a pre-Quaternary origin. Several studies have applied a mass-balance approach to resolve the problem. Hinging upon the selective linear erosion paradigm, total glacial erosional output has been estimated by subtracting the present-day topography from the reconstructed palaeosurface envelope projected between the present plateau surfaces. However, revisiting this approach, a recent study found a large mismatch in the sediment volumes reconstructed from fjord erosion relative to the Pliocene–Pleistocene glaciogenic sediments offshore southern Norway. To balance the offshore sediment budget, an additional ~100–400 m of plateau erosion is required. Yet, others reject the need for significant plateau erosion by retrieving the missing sediment volume from the inner shelf and coastal zones.

Most plateau surfaces in southern Norway display some signs of glacial erosion (e.g., streamlined bedrock and lake basins), but it remains controversial whether this glacial imprint represents superficial scouring or deeper long-term reshaping by ice sheets. Without thorough quantification of recent glacial erosion rates, it is impossible to distinguish between end-member models for the impact of glaciations on these plateau surfaces.

In this study, we set out to resolve recent erosion rates on plateau surfaces by measuring in situ produced cosmogenic nuclide abundances along an ~200 km transect south of Sognefjorden in southern Norway (Figs. 1 and 2). To constrain potentially complex exposure and burial histories, we have measured 10Be and 26Al abundances in bedrock (60 samples) and boulder erratics (9 samples; Supplementary Table 1–3). We apply a Markov chain Monte Carlo inversion approach to this data set in order to quantify the pattern and depth of erosion on plateau surfaces along the fjord. The modelled erosion rates vary along our transect from >30 m Myr$^{-1}$ close to the coast to ~2–6 m Myr$^{-1}$ on the highest inland plateau sites. We also find that the contribution of sediment from the plateaus relative to the total sediment flux is at least 10% when integrating our results over the Quaternary period.

Results

A transect of cosmogenic 10Be and 26Al along Sognefjorden. Sognefjorden is the largest fjord system in Scandinavia, reaching
>1300 m below sea level, and its associated ice stream drained much of the southwestern sector of the Fennoscandian Ice Sheet. According to ice-flow models10,27, topographic steering would drive selective linear erosion and cause ice to thin across the adjacent plateaus. Although most plateaus along Sognefjorden could be classified as areally scoured28, surface characteristics of the plateaus vary from glacially sculpted sites near the coast to blockfields with few signs of glacial plucking on the highest inland sites. The bedrock samples in our transect span elevations from 660 m above sea level (m a.s.l.) near the coast to 1730 m a.s.l. at the site furthest inland, and have apparent 10Be exposure ages ranging from 8 to 43 kyr (Supplementary Table 1; Fig. 3a). We primarily targeted bedrock outcrops on top of the plateaus. However, for the easternmost locality, we also collected an elevation profile on bedrock from the plateau summit down to an adjacent glacial trough. The apparent exposure ages within this vertical profile follow a similar elevation trend as samples derived from plateau summits along the transect, for which elevation decreases towards the coast (Fig. 3a). Most boulder erratics and more than one-third of our bedrock samples yield apparent exposure ages that overlap (within 1σ) the timing of the last deglaciation, according to recent compilations (~9–12 kyr)29,30. For the glacially sculpted sites closest to the west coast, all apparent 10Be exposure ages match the deglaciation age (within 1σ), whereas nuclides inherited from previous interglacial periods seem to be present in one or more samples at all other sample sites (Fig. 2).

Plateau erosion rates derived from inverse modelling. To examine the longer-term history of erosion beneath glacial ice, we exploited the different decay rates of 10Be (half-life ~1.39 Myr) and 26Al (half-life ~0.702 Myr). We measured both 10Be and 26Al on 47 bedrock samples and two boulder erratics. To estimate rates of erosion from the 10Be and 26Al abundances, we applied a Markov chain Monte Carlo inversion approach36 to determine the most likely erosion rates averaged over the past 1 Myr (see Methods). These results provide the first direct and quantitative constraints on long-term erosion rates on southern Norway’s high-elevation plateaus. Modelled median rates of erosion vary from 2.4 m Myr−1 (interquartile range: 1.2–5.1 m Myr−1) to 93 m Myr−1 (interquartile range: 34–258 m Myr−1; Supplementary Table 3). Overall, the rates of erosion decrease with increasing elevation, although some low-elevation sites also feature slow (<15 m Myr−1) erosion (Fig. 4). There is also a systematic west–east gradient in the rate of erosion such that pre-LGM cosmogenic nuclide inventories were more-or-less removed during the last glaciation at sites near the west coast, while some degree of inheritance seems to occur as elevations increase eastward and inland (Fig. 3a). Note that for samples with apparent 10Be exposure ages overlapping the deglaciation age29,30 within uncertainties (see Methods), our inverse model is limited to resolving a minimum estimate of erosion rate (Fig. 4, dashed lines).

Although the plateaus in southern Norway clearly erode more slowly than the adjacent glacial troughs, they are in general eroding relatively fast when compared to a global compilation of cosmogenic nuclide-derived erosion rates from non-glacial settings31. Our slowest rates thus approximate the reported global median for bedrock outcrops of 5.4 m Myr−1. The modelled rates of erosion show only limited relation to surface characteristics on the sampled plateaus, as overlapping erosion rates were obtained from blockfield-covered (4–6 m Myr−1) and glacially sculpted (2–93 m Myr−1) sites (Fig. 4, Supplementary Fig. 4). Nevertheless, it is clear that erosion rates obtained from the blockfield-covered site generally are low compared to the wide range of rates obtained for glacially sculpted sites.

The LGM ice sheet was evidently more erosive on lower-lying plateaus towards the western ice margin than on the higher plateau surfaces inland. Nonetheless, our results show that the pre-glacial landscape was modified by substantial glacial erosion.
a process that may have started prior to the onset of the Quaternary. The widespread erosion of plateau surfaces along Sognefjorden, which exceeds 10 m Myr$^{-1}$ in most places (62 % of samples) and 30 m Myr$^{-1}$ in many cases (27 % of samples; Fig. 4c), thus seems incompatible with the notion of pristine paleosurfaces left untouched by glacial erosion. On the other hand, our erosion rates are generally lower than the proposed average plateau erosion rate of 130 m Myr$^{-1}$ over the past 2.8 Myr derived from an onshore-offshore mass balance study.

Discussion

The apparent cosmogenic 10Be and 26Al exposure ages measured in bedrock samples from plateaus surrounding Sognefjorden are younger than those reported from mountain peaks elsewhere in southern Norway. Cosmogenic nuclide abundances show that these, often blockfield-covered peaks were not deeply eroded during the most recent glacial cycles. Yet, very high apparent 10Be exposure ages in southern Norway seem to be confined to summits, like...
Gustavstøppen (>70 kyr) and Solen (>160 kyr)33, which stand high above the plateaus. In contrast, bedrock samples from upland plateaus in eastern Canada34,35,36, Greenland37, and northern Scandinavia38,39 often yield high apparent cosmogenic nuclide ages and low 26Al/10Be ratios. This indicates limited plateau erosion by recent ice sheets in these regions. Thus, cold-based conditions on summits and high plateaus are often associated with scenarios where ice sheets mainly erode in troughs, just as proposed by the selective linear erosion concept17–19. The results presented here do not oppose the concept of selective linear erosion, but demonstrate that high plateaus are not necessarily associated with non-erosive ice. In fact, our results contribute towards quantifying and understanding the degree of selectivity associated with glacial erosion of passive margins. Our results also open the possibility that high plateaus in Arctic regions, which currently experience low erosion rates, eroded more efficiently under former ice sheets prior to the periods that can be constrained by cosmogenic nuclides10.

We propose that vast high-elevation, low-relief areas in southern Norway were not covered by cold-based and non-erosive ice sheets throughout the Quaternary. Instead, our results imply that these areas could have contributed significantly to the net delivery of sediments to the oceans and the proposed global trend of increased late Cenozoic sedimentation12,14,35–37. To provide a first-order assessment of the contribution from these plateau surfaces, we estimate the total Quaternary erosion output from the part of the Sognefjorden drainage basin that is above sea level (see Methods). Interpolating our modelled erosion rates, we find a total sediment yield of 650 km3. Previous estimates of fjord excavation in Sognefjorden are ~6000–8000 km3 (refs 11,20); hence, we suggest that plateau erosion accounts for ~10% of the total sediment flux. We note that this estimate is less than that previously suggested for plateau erosion in western Scandinavia (~45–65%) based on the mass balance between fjord excavation and offshore sediment volumes from the late Pleistocene and Quaternary (last 2.8 Myr)11. However, at least three factors may work towards converging these estimates. Firstly, for one-third of our samples, our method is limited to resolving erosion rate minima; hence, our sediment yield estimate is a minimum. Second, our estimated fractional contribution from plateaus would likely be larger if integrated over all of southern Norway, since the fjord-to-plateau surface area ratio is higher in the Sognefjorden than in the wider region. Finally, inherent to our inversion modelling is an approach known as ’twostage unitiformitarianism’26 in which previous glacial periods share a common erosion rate (i.e., varying from place to place but constant through time) and likewise for interglacial periods. The assumption that recent glaciations were equally effective at eroding the plateaus is justifiable over a restricted timescale, although we anticipate that glacial trough-deepening over the Quaternary may have steered progressively more ice discharge into the fjords and away from plateaus10,27. Given that thin ice promotes less erosive, frozen-bed conditions, the development likely caused a gradual deceleration of glacial erosion over the plateaus10. Considering these aspects, our modelled predictions of the pace of plateau erosion should be regarded as minimum estimates. We expect that as glacial troughs deepened over time, the disparity in erosion rates between troughs and plateaus became more pronounced. Resolving whether these factors can bridge the gap between disparate plateau erosion estimates requires more widespread quantification of erosion rates in western Scandinavia, preferably on longer timescales. However, the results presented in this study clearly demonstrate that the plateaus in western Scandinavia are actively eroding landscapes and as such are continuously remoulded by surface processes. Inferences about pre-glacial topography based on the present-day morphology should thus be filtered for the effect of glacial (and periglacial) erosion during the Pleistocene.

Methods

Sampling. We targeted high-elevation low-relief areas with quartz-bearing lithologies spanning a large area and wide elevation range along Sognefjorden. Bedrock samples were collected in sets of two to six per site, each sample spaced by a few metres to some hundred metres apart to evaluate local variations in cosmogenic nuclide abundances. Wherever possible, one to two glacial boulder erratics were sampled at the same sites. The lithologies in the area are predominantly granitc to dioritic gneisses. Depending on the estimated quartz content, 1–4 kg of rock was collected, typically by cutting out surface blocks with a diamond-blade rock saw, but in some instances by manually chiselling quartz veins. Site location, shielding measurements, surface inclination, sample thickness and surface attributes (lithology, lichen cover, geometry and degree of weathering) were recorded in the field. We preferentially aimed for local high points in the landscape to minimise cosmic-ray shielding due to snow and sediment coverage. The majority of samples had minimal topographic shielding, only a thin lichen cover and were taken from flat and horizontal rock surfaces with comparatively wide fracture spacing.

Laboratory Procedures. All rock samples were crushed and sieved to extract the 250–500 μm size fraction. To isolate quartz, a series of mineral separation processes were applied, including aqua regia leaching, floatation, magnetic separation and flotation in phosphoric acid. Quartz was then sequentially leached in 2% HF/2% HNO3, for a minimum of 3–5 days. Be and Al isotope extraction chemistry was conducted at the Scottish Universities Environmental Research Centre (SUERC), Glasgow, and at the university laboratories in Aarhus and Bergen, following standard procedures38–41. One processing blank followed each batch of 9–15 units. About 200–260 μg of SF26 (3.8%) (Schlauri BE03460100 at Aarhus) was added to each sample and the processing blank. On the basis of ICP-OES (inductively coupled plasma optical emission spectrometer) analysis of the quartz, the approximate native Al content was determined and, if necessary, samples were spiked with Al carrier (Fischer-Schlundt-Glasgow, and at the university laboratories in Aarhus and Bergen, following standard procedures38–41). The 26Al/27Al ratios of measured samples varied from 7.8 × 10–15 to 1.1 × 10–14, with errors ranging from 1.5 to 3.9% (1 SD, n = 41). Be results were normalised to ICN standard 01-5-4 with a 10Be/9Be ratio of 2.851 × 10–12 (ref. 17; sample errors include 1.1% uncertainty of the ICN standard). The average machine background was 5.45 ± 2.95 × 10–15 (1 SD, n = 5), while the average processing blank ratio was 2.4 ± 1.7 × 10–15 (1 SD, n = 7). Energy spectra at the rare isotope detector indicated efficient separation of 10Be from 11Be; therefore, no isotopic corrections are required. The 39Al/41Al ratios of measured samples vary from 0.407 ± 0.006 to 4.860 ± 0.13 (1 SD), with errors ranging from 1.8 to 5.0% (1 SD). Al results were normalised to ICM standard 01-4-3 with a 26Al/27Al ratio of 10.65 ± 0.12 (ref. 42; sample errors include 1.2% uncertainty of the ICM standard). The average machine background was 9.17 ± 4.81 × 10–16 (1 SD, n = 6), while the average processing blank ratio was 3.3 ± 1.8 × 10–15 (1 SD, n = 7). At SUERC, the 10Be/9Be and 26Al/27Al isotopic ratios were measured with a 5 MV NEC accelerator mass spectrometer. The 10Be/9Be ratios of measured samples varied from 7.8 × 10–11 to 1.1 × 10–12, with errors ranging from 1.5 to 5.0% (1 SD, n = 28). Be results were normalised to NIST SRM4325, with a ratio of 2.79 ± 10–11 (ref. 17). The average processing blank ratio was 7.2 ± 6.1 × 10–15 (1 SD, n = 2). The 26Al/27Al ratios of measured samples varied from 1.7 ± 10–12 to 4.7 ± 10–12, with errors ranging from 2.4 to 2.9% (1 SD, n = 8). Al results were normalised to 292-0222, with a ratio of 4.11 ± 10–12. The average processing blank ratio was 9.9 ± 7.1 × 10–13 (1 SD, n = 2).

For both 10Be and 26Al samples, we subtracted the processing blank ratio from sample ratios on a batch-by-batch basis and propagated uncertainties including batch error. The processing blank used to perform blank correction for each sample is reported in Supplementary Table 2. 26Al blank corrections were insignificant for all samples (0.1–1.1%), while 10Be blank corrections were insignificant for most samples (0.1–2.3%), whereas a few were more significant, although not enough to affect our data interpretations: SF01 (3.8%), SF26 (14.7%) and SF34-SF41 (4.3–8%).

For 26Al measurements, the total Al content (native + carrier), determined by ICP-OES, was used to calculate the 26Al concentration. For samples prepared in...
Bergen and Aarhus, we assessed the accuracy of the total Al determination by performing repeat measurements of an independent multielement ICP-standard. Results typically fell within a few percent of the certified value. The actual vs. expected content in the processing blank samples yielded an average of 99.5% (n = 7), while the concurrent measurement of Be in processing blanks and samples yielded an average of 97.5% (n = 48) of the expected content. For the Al samples prepared at SUERC (n = 8), we unfortunately do not have independent quality control of the ICP measurements. However, the ratios obtained from these samples do not stand out compared to samples prepared in Aarhus and Bergen, and removing them from the analysis would have no bearing on our conclusions.

Calculation of Apparent exposure ages. All apparent exposure ages derive from the online calculators formerly known as the CRONUS-Earth online calculators’ Calculation of Apparent exposure ages expected content in the processing blank samples yielded an average of 99.5%

Results typically fell within a few percent of the certi

Bergen and Aarhus, we assessed the accuracy of the total Al determination by

ARTICLE NATURE COMMUNICATIONS | DOI: 10.1038/s41467-018-03280-2

REFERENCES

1. Sugden, D. E. The selectivity of glacial erosion in the Cairngorm Mountains, Scotland. Trans. Inst. Brit. Geogr. 45, 79–92 (1968).

2. Bierman, P. R., Marsella, K. A., Patterson, C., Davis, P. T. & Caffee, M. Mid-Pleistocene cosmogenic minimum-age limits for pre-Wisconsinan glacial surfaces in southwestern Minnesota and southern Baffin Island: a multiple nuclide approach. Geomorphology 27, 25–39 (1999).

3. Paqa, D. et al. Landscape preservation under Fennoscandian ice sheets determined from in situ produced 39Be and 26Al. Earth Planet. Sci. Lett. 201, 397–406 (2002).

4. Staiger, J. K. et al. Quaternary retreat history by polychromatic glacier ice. Earth Surf. Process. Landf. 30, 1145–1159 (2005).

5. Briner, J. P., Müller, G. H., Davis, P. T. & Finkel, R. C. Cosmogenic radionuclides from fiord landscapes support differential erosion by overriding ice sheets. Geol. Soc. Am. Bull. 118, 406–420 (2006).

6. Stroeven, A. P. et al. Slow, patchy landscape evolution in northern Sweden despite repeated ice sheet glaciation. GSA Spec. Pap. 398, 387–396 (2006).

7. Corbett, L. B., Bierman, P. R., Grayly, J. A., Neumann, T. A. & Rood, D. H. Constraining landscape history and glacial erosion using paired cosmogenic nuclides in Upernavik, northwest Greenland. GSA Bull. 125, 1539–1553 (2013).

8. Marquette, G. C. et al. Felsenmeer persistence under non-erosive ice in the Tornøgat and Kaumajet mountains, Quebec and Labrador, as determined by soil weathering and cosmogenic nuclide exposure dating. Can. J. Earth Sci. 41, 19–38 (2004).

9. Goodfellow, B. W. Reticulated glacial surfaces in formerly glaciated landscapes. Earth Sci. Rev. 80, 47–73 (2007).

10. Egholm, et al. Formation of plateau landscapes on glaciated continental margins. Nat. Geosci. 10, 592–597 (2017).

11. Veit, P., Huismans, R., Valla, P. G., Gac, S. & Herman, F. Bimodal Plio-Quaternary glacial erosion of Fiords and low-relief surfaces in Scandinavia. Nat. Geosci. 5, 635–639 (2012).

12. Hay, W. W., Sloan, J. L. & Wold, C. N. Mass/age distribution and composition of sediments on the ocean floor and the global rate of sediment subduction. JGR: Solid Earth 93, 14933–14940 (1988).

13. Willenbring, J. K. & von Blanckenburg, F. Long-term stability of global erosion rates and weathering during late Cenozoic cooling. Nature 465, 211–214 (2010).

14. Herman, F. et al. Worldwide acceleration of mountain erosion under a cooling climate. Nature 504, 423–426 (2013).

15. Willenbring, J. K. & Jerolmack, D. J. The null hypothesis: globally steady rates of erosion, weathering fluxes and shelf sediment accumulation during Late Cenozoic mountain uplift and glaciation. Terra Nova 28, 11–18 (2016).

16. Norton, K. P. & Schlenegger, F. Lack of a weathering signal with increased Cenozoic erosion? Terra Nova 29, 265–272 (2017).

17. Hall, A. M., Ebert, K., Kleman, J., Nesje, A. & Ottesen, D. Selective glacial erosion on the Norwegian passive margin. Geology 41, 1203–1206 (2013).

18. Udler–Bergström, K., Bierman, P. R. & Lapan, J. Landscape evolution analysis and geomorphological paradigms: Scandinavia as an example of Phanerozoic uplift and subsidence. Glob. Planet. Change 100, 153–171 (2013).

19. Bonow, J. M., Lindmar–Bergström, K. & Näslund, J. O. Palaeosurfaces and glacial erosion and deposition in Fennoscandia and a theoretical framework for understanding the landscape evolution of landscape margins driven by topographic steering of ice. Can. J. Earth Sci. 113 (2015).

20. Nielsen, S. B. et al. The evolution of western Scandinavian topography: pre-glacial weathering versus glacial erosion. Earth Surf. Process. Landf. 30, 123–142 (2005).

21. Nielsen, S. B. et al. Patterns of Cenozoic sediment transport from western Scandinavia. Basin Res. 26, 72–95 (2009).

22. Gogolewski, B., Nielsen, S. B. & Clausen, O. R. Patterns of Cenozoic sediment flux from western Scandinavia. Basin Res. 24, 377–400 (2012).

23. Sugden, D. E., Balco, G., Cowdery, S. G., Stone, J. O. & Sass, L. C. Selective glacial erosion and weathering zones in the coastal mountains of Marie Byrd Land, Antarctica. Geomorphology 67, 317–334 (2005).

24. Kleman, J., Stroeven, A. P., Kaersut, J., Patterns of Quaternary ice sheet erosion and deposition in Fennoscandia and a theoretical framework for explanation. Geomorphology 97, 73–90 (2008).

25. Krabbendam, M. & Bradwell, T. Quaternary evolution of glaciated glacial environments: pre-glacial weathering versus glacial erosion. Quat. Sci. Rev. 95, 38–62 (2014).

26. Knudsen, M. F. et al. A multi-nuclide approach to constrain landscape evolution and past erosion rates in previously glaciated terrains. Quat. Geochronol. 30, 100–113 (2015).

27. Kessler, M. A., Anderson, R. S. & Briner, J. P. Fjord insertion into continental margins driven by topographic steering of ice. Nat. Geosci. 1, 365–369 (2008).

28. Sugden, D. Glaclial erosion by the Laurentide ice sheet. J. Glaciol. 26, 367–391 (1978).
29. Hughes, A. L., Gyllencreutz, R., Lohne, O. S., Mangerud, J. & Svendsen, J. I. The last Eurasian ice sheets – a chronological database and time-slice reconstruction, DATED-1. Boreas 45, 1–45 (2016).

30. Stroeven, A. P. et al. Deglaciation of Fennoscandia. Quat. Sci. Rev. 147, 91–121 (2015).

31. Portenga, E. W. & Bierman, P. R. Understanding Earth’s eroding surface with 10 Be. GSA Today 21, 4–10 (2011).

32. Brook, E. J., Nesje, A., Lehman, S. J., Raisbeck, G. M. & Yiou, F. Cosmogenic nuclide exposure ages along a vertical transect in western Norway: implications for the height of the Fennoscandian ice sheet. Geology 24, 207–210 (1996).

33. Linge, H. et al. In situ 10Be exposure ages from southeastern Norway: implications for the geometry of the Weichselian Scandinavian ice sheet. Quat. Sci. Rev. 25, 1097–1109 (2006).

34. Goehring, B. M., Brook, E. J., Linge, H., Raisbeck, G. M. & Yiou, F. Eryllium-10 exposure ages of erratic boulders in southern Norway and implications for the history of the Fennoscandian Ice Sheet. Quat. Sci. Rev. 27, 320–336 (2008).

35. Peizhen, Z., Molnar, P. & Downs, W. R. Increased sedimentation rates and grain sizes 2–4 Myr ago due to the influence of climate change on erosion rates. Nature 410, 891–897 (2001).

36. Molnar, P. Late Cenozoic increase in accumulation rates of terrestrial sediment: How might climate change have affected erosion rates? Annu. Rev. Earth Planet. Sci. 32, 67–89 (2004).

37. Herman, F. & Champagnac, J. D. Plio-Pleistocene increase of erosion rates in mountain belts in response to climate change. Terra Nova 28, 2–10 (2016).

38. Kohl, C. P. & Nishizumi, K. Chemical isolation of quartz for measurement of in-situ-produced cosmogenic nuclides. Geochim. Cosmochim. Acta 56, 3583–3587 (1992).

39. Child, D., Elliott, G., Mifsud, C., Smith, A. M. & Fink, D. Sample processing for earth science studies at ANTARES. Nuc. Instr. Method Phys. Res. B 172, 856–860 (2000).

40. Heinemeier, J., Olsen, J., Klein, M. & Mous, D. The new extended HVE 1MV multi-element AMS system for low background installed at the Aarhus AMS Dating Centre. Nuc. Instr. Method Phys. Res. B 361, 143–148 (2015).

41. Nishizumi, K. et al. Absolute calibration of 10Be AMS standards. Nuc. Instr. Meth. Phys. Res. B 258, 403–413 (2007).

42. Nishizumi, K. Preparation of 26Al AMS standards. Nuc. Instr. Meth. Phys. Res. B 223, 388–392 (2004).

43. Xu, S., Dougans, A. B., Freeman, S. P., Schnabel, C. & Wäckén, K. M. Improved 10Be and 26Al-AMS with a 5MV spectrometer. Nuc. Instr. Meth. Phys. Res. B 265, 738–739 (2009).

44. Balco, G., Stone, J. O., Lifton, N. A. & Dunai, T. J. A complete and easily accessible means of calculating surface exposure ages or erosion rates from 10Be and 26Al measurements. Quat. Geochronol. 3, 174–195 (2008).

45. Borchers, B. et al. Geological calibration of spallation production rates in the CRONUS-Earth project. Quat. Geochronol. 31, 188–198 (2016).

46. Lal, D. Cosmic ray ray labeling of erosion surfaces: in situ nuclide production rates and erosion models. Earth Planet Sci. Lett. 104, 424–439 (1991).

47. Stone, J. O. Air pressure and cosmogenic isotope production. JGR 105, 23753–23759 (2000).

48. Young, N. E., Schaefer, J. M., Briner, J. P. & Goehring, B. M. A 10Be production-rate calibration for the Arctic. J. Quat. Sci. 28, 515–526 (2013).

49. Lisiecki, L. E., & Raymo, M. E. A Pliocene-Pleistocene stack of 57 globally distributed benthic δ18O records. Paleoceanography 20, 1–17 (2005).

50. Corbett, L. B. et al. Cosmogenic 26Al/10Be surface production ratio in Greenland. Geophys. Res. Lett. 44, 1350–1359 (2017).

Acknowledgements
We acknowledge funding from the Danish Council for Independent Research (grant DFF-6108-00226) and Aarhus University Research Foundation. J.D.J. was supported by the Australian Research Council (DP130104023) at the University of Wollongong and by a Marie Skłodowska-Curie Fellowship at the University of Potsdam. V.K.P. acknowledges financial support from the Research Council of Norway. We thank Maria M. Rodriguez for careful guidance in preparation of the first batch of cosmogenic nuclide samples and Lars Frye for conscientiously performing the ICP analyses at University of Bergen. We thank the reviewers for highly constructive and helpful reviews.

Author contributions
J.L.A., D.L.E., S.B.N. and M.F.K. designed the study. J.L.A., D.L.E., M.F.K., V.K.P. and J.D.J. collected the samples. J.L.A. and H.L. prepared the samples. D.T. and J.O. performed AMS measurements at AARAMS, S.X. and D.F. at SUERC. J.L.A. and D.L.E. carried out the data analysis. All authors contributed to the writing of the paper.

Additional information
Supplementary Information accompanies this paper at https://doi.org/10.1038/s41467-018-03280-2.

Competing interests: The authors declare no competing interests.

Reprints and permission information is available online at http://npg.nature.com/reprintsandpermissions/

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.