Prospective study of MMP7 serum levels in the diagnosis of cholangiocarcinoma

Kawin Leelawat, Siriluck Narong, Jerasak Wannapraserat, Thawee Ratanashu-ek

Kawin Leelawat, Siriluck Narong, Jerasak Wannapraserat, Thawee Ratanashu-ek, Department of Surgery, Rajavithi Hospital, Bangkok 10400, Thailand
Kawin Leelawat, Jerasak Wannapraserat, Thawee Ratanashu-ek, College of Medicine, Department of Surgery, Rangsit University, Bangkok 10400, Thailand

Author contributions: Leelawat K conceived, designed and coordinated the study and the statistical analysis and drafted the manuscript; Narong S carried out the MMP-7 assays and helped with the statistical analysis; Wannapraserat J and Ratanashu-ek T coordinated the study and helped with the statistical analysis.

Supported by The Thailand Research Fund (RSA52) and Rajavithi Hospital
Correspondence to: Kawin Leelawat, MD, PhD, Department of Surgery, Rajavithi Hospital, Bangkok 10400, Thailand. kawin.leelawat@gmail.com
Telephone: +66-2-3548080 Fax: +66-2-3548080
Received: April 24, 2010 Revised: July 6, 2010
Accepted: July 13, 2010
Published online: October 7, 2010

Abstract

AIM: To determine whether the serum level of matrix metalloproteinase-7 (MMP7) has the potential to diagnosis cholangiocarcinoma from benign biliary tract diseases.

METHODS: This study was performed according to the PROBE (a prospective-specimen-collection, retrospective-blinded-evaluation) design. A total of 187 patients with obstructive jaundice were consecutively enrolled. After the diagnostic status of these patients was ascertained, their levels of serum MMP7 were assayed and compared with serum carbohydrate antigen 19-9 (CA19-9). The sensitivity and specificity of serum MMP7 (cut-off value of 5.5 ng/mL) was 75% and 78%, respectively, while the sensitivity and specificity of serum CA19-9 (cut-off value of 100 U/mL) was 68% and 87%, respectively.

CONCLUSION: Serum values of MMP7 and CA19-9 appear to be useful biomarkers for differentiating cholangiocarcinoma from benign biliary tract obstructive diseases.

© 2010 Baishideng. All rights reserved.

Key words: Carbohydrate antigen 19-9; Cholangiocarcinoma; Matrix metalloproteinase-7; Sensitivity; Specificity; Tumor marker

Peer reviewers: Giedrius Barauskas, Professor, Department of Surgery, Kaunas University of Medicine, Evenius str. 2, Kaunas, LT-50009, Lithuania; Wen-Hsin Huang, MD, Division of Hepatogastroenterology, Department of Internal Medicine, China Medical University Hospital, No 2, Yuh-Der Road, Taichung 404, Taiwan, China

Leelawat K, Narong S, Wannapraserat J, Ratanashu-ek T. Prospective study of MMP7 serum levels in the diagnosis of cholangiocarcinoma. World J Gastroenterol 2010; 16(37): 4697-4703
Available from: URL: http://www.wjgnet.com/1007-9327/full/v16/i37/4697.htm DOI: http://dx.doi.org/10.3748/wjg.v16.i37.4697

INTRODUCTION

Cholangiocarcinoma is one of the most common causes of cancer-related mortality in Thailand[1]. The high mortality rate of cholangiocarcinoma is due to the aggressiveness of tumors that are often discovered at a late-stage...
of disease progression[5]. To improve the survival rate, the diagnosis and treatment of these patients should be performed as soon as possible. Bile duct obstruction is the focal symptom that the vast majority of patients with cholangiocarcinoma present with at hospital. However, there are many cases of benign biliary tract diseases including common bile duct stone and bile duct stricture. These other conditions often present with clinical symptoms similar to those of patients with cholangiocarcinoma. In addition, it is very difficult to obtain pathological tissue for the diagnosis of cholangiocarcinoma due to both the desmoplastic reaction and the tumor location[3,4].

Brush cytology has a sensitivity of only 62.5% for detecting cholangiocarcinoma[1]. Owing to the differences in treatment and prognosis between cholangiocarcinoma and benign biliary tract diseases, the most important issue is to obtain a reliable method to differentially diagnosis patients with cholangiocarcinoma from those with benign biliary tract diseases. Identification of tumor markers in the serum would aid in the accurate diagnosis of cholangiocarcinoma.

To date, carbohydrate antigen 19-9 (CA19-9) is used as a tumor marker for detecting cholangiocarcinoma. The sensitivity and specificity of CA19-9 in diagnosing cholangiocarcinoma were shown to be 53%-89% and 80.5%-86%, respectively[6,9]. Unfortunately, elevated serum levels of CA19-9 have also been found in patients with benign obstructive jaundice[10,11]. Due to this, CA19-9 is not a reliable marker for differentiating cholangiocarcinoma from benign obstructive jaundice.

Previous studies demonstrated that high expression of matrix metalloproteinase-7 (MMP7) could be readily detected in cholangiocarcinoma specimens[3,4,12-14]. We previously performed research to study the serum levels of CA19-9, CEA, MMP9 and MMP7 in patients with obstructive jaundice[3]. This previous study was performed using a case-control design and serum collected from a serum bank. The results showed that only the level of MMP7 was significantly higher in patients with cholangiocarcinoma compared to patients suffering from benign biliary tract disease. In addition, when comparing the areas under the curve of the receiver operating characteristic (ROC) for CEA, CA19-9 and MMP9, a ROC curve analysis demonstrated that the detection of MMP7 in serum was the most accurate for differentiating cholangiocarcinoma from benign biliary tract disease. This finding indicated that serum MMP7 should be used as a tumor marker for the diagnosis of cholangiocarcinoma in patients with obstructive jaundice.

According to the study of biomarker use, it is now widely appreciated that the evaluation of biomarker performance must be separated from biomarker discovery. In discovery research, its performance in samples may be biased in an overoptimistic direction. To estimate performance without bias, an independent dataset should be investigated[15-18]. Therefore, the aim of the present study was to evaluate the performance of serum MMP7 and CA19-9 for their potential in the diagnosis of cholangiocarcinoma. We used a new and independent dataset of prospective consecutive cases with evidence of bile duct obstruction due to various etiologies. This study was performed according to the PROBE (a prospective-specimen-collection, retrospective-blinded-evaluation) design[19]. We collected serum from a cohort that was representative of the target population (consecutive cases of obstructive jaundice who had undergone ERCP, PTBD or bile duct surgery). After the diagnostic status of these patients was ascertained, the levels of serum MMP7 and CA19-9 were assayed in a fashion that blinded the analysis to a case-control status. In addition, we implemented STARD statements (STAndards for the Reporting of Diagnostic accuracy studies)[16-18] to ensure standardization and transparency of our study.

MATERIALS AND METHODS

Patients and study design

This study was conducted within the Rajavithi Hospital Surgery Department located in Bangkok, Thailand. The local ethics committee approved the study protocol. Sample size was calculated on the basis of an expected area under the ROC curve of MMP7 serum levels (≥ 0.70) for the diagnosis of cholangiocarcinoma[6]. Using a significance level of 0.05 (two-sided) and a power of 0.95, a sample of 50 cholangiocarcinoma patients was required for the study[19]. From previous data, the prevalence of cholangiocarcinoma detection in patients with obstructive jaundice treated at our department was shown to be in the range of 27%-30%. Therefore, we prospectively included consecutive patients with symptoms of obstructive jaundice who had undergone ERCP, PTBD or bile duct surgery during the period from June of 2008 to July of 2009. Exclusion criteria included presence of other cancers, age less than 20 years and the presence of severe pulmonary fibrosis[20]. All patients gave written informed consent. The diagnosis of cholangiocarcinoma was carried out using one of the following tests[8]: (1) tissue biopsy; and (2) cytology plus radiological (helical CT scan or MRI) and clinical observation to identify tumor progression at a follow-up of at least two months. Patients with an inconclusive diagnosis were excluded from this study.

Serum collection and the measurement of serum biochemistry

Five-milliliter samples of fasting peripheral venous blood were collected from the patients before ERCP, PTBD, or bile duct surgery were carried out, and their serum was separated and stored at -78°C within 2 h. Serum biochemical tests including albumin, globulin, aspartate aminotransferase (AST), alanine aminotransferase (ALT), total and direct bilirubin, alkaline phosphatase (ALP) and CA19-9 were measured using routine automated methods in Rajavithi Hospital Pathological Laboratory.

Measurement of serum MMP7 levels

The serum levels of MMP7 were measured using an enzyme-linked immunosorbent assay (ELISA) kit (R&D Sys-
tens, Minneapolis, MN, USA), as previously described.

Briefly, the diluted serum samples were added in duplicate
to 96-well plates coated with MMP7 antibody and then
incubated at room temperature for 2 h. After washing, the
conjugated secondary antibody was added, and the plate
was further incubated for another 2 h. Plates were washed
again prior to incubation with the substrate solution for 1 h.
Following termination of the reaction with the stop solution
(1 N sulfuric acid), the optical density was measured
at 490 nm using a spectrophotometric microplate reader.
The concentration of MMP7 in each sample was calcu-
lated from a standard curve. The scientist examining these
serum samples was unaware of the patient's diagnosis. In
addition, the MMP7 test results had no influence on the
clinical diagnosis of the patients in the study.

Statistical analysis
Data are presented as the mean ± SD, unless otherwise
mentioned. Comparisons between the quantitative variables
were performed using Mann-Whitney U or Student’s t-test,
as appropriate. One-way analysis of variance (ANOVA)
with multiple comparisons by the Post HOC Scheffe meth-
od or Kruskal Wallis test was used to compare each value
(MMP7, CA19-9) to the control early and late stage cholan-
giocarcinoma groups. Qualitative variables were reported as
counts, and comparisons between independent groups were
performed using Pearson Chi-square tests. Correlations
between MMP7 levels and other parameters were examined
using the Pearson correlation coefficient. A ROC curve was
generated by plotting the sensitivity against 1-specificity,
and the area under the curve with 95% confidence intervals
(CI) was calculated. The optimal cutoff points for MMP7
were selected based on the ROC curve analysis. Sensitivity,
specificity, positive predictive value and negative predictive
values were calculated using a 2 × 2 table of the collected
data. The data on various blood chemistries and levels of
CA19-9 and MMP7 that were significantly different be-
tween the control and cholangiocarcinoma groups were
analyzed by multiple logistic regression analysis.

RESULTS
Patient characteristics
A total of 230 patients with obstructive jaundice were con-
secutively enrolled. Twenty-four cases were excluded
according to their diagnosis of ampullary cancer (7 cases),
pancreatic cancer (9 cases), gall bladder cancer (3 cases),
duodenum cancer (2 cases), metastatic cancer from ovarian
cancer (1 case) and hepatocellular carcinoma (2 cases). In
addition, nineteen cases were excluded according to their
uncertain diagnosis. The 187 subjects studied included 128
patients with benign biliary tract diseases (control group)
which included intra-hepatic duct stones, common bile
duct stones, and benign bile duct strictures, and a total of
59 patients with cholangiocarcinoma. For cholangiocarci-
noma, 40 cases were diagnosed as perihilar-cholangiocarcin-
oma, 16 cases were diagnosed as intrahepatic cholangio-
carcinoma and 3 cases were diagnosed as distal common
bile duct cholangiocarcinoma (Figure 1).

Figure 1 A flow diagram of 187 obstructive jaundice patients who were
consecutively enrolled in this study.

Clinical characteristics of patients with benign biliary tract diseases (control) and cholangiocarcinoma
Age (yr)
Sex (M:F)
Albumin (mg/dL)
Globulin (mg/dL)
Total bilirubin (mg/dL)
AST (U/L)
ALT (U/L)
ALP (U/L)

AST: Aspartate aminotransferase; ALT: Alanine aminotransferase; ALP: Alkaline phosphatase.

As shown in Table 1, no statistically significant differ-
cences in gender, age, serum globulin and ALT levels were
identified among the data from the control patients when
compared to the cholangiocarcinoma patients. However,
the level of serum albumin, AST, bilirubin and ALP were
significantly higher in cholangiocarcinoma patients than in
the control patients (Mann-Whitney U test, P < 0.05).

Serum levels of CA19-9 and MMP7
The serum CA19-9 and MMP7 levels were compared
among disease groups. The median values of serum CA19-9
levels were 20.43 U/mL (range: 0.6-71 000 U/mL) in the
control group and 571.2 U/mL (range: 0.6-71 000 U/mL)
in the cholangiocarcinoma group. The mean values of se-
rum MMP7 levels were 3.7 ± 2.81 ng/mL in the control
group and 8.7 ± 4.56 ng/mL in the cholangiocarcinoma
group. As shown in Figure 2A and B, serum CA19-9 and
MMP7 values were significantly higher in cholangiocarci-
noma cases when compared to the control patients (CA19-9:
Mann-Whitney U test, P < 0.001 and MMP7: Student’s t-test,
P < 0.001).

Moreover, we also classified cholangiocarcinoma pa-
tients into two groups: early (TNM stage I and II; 11
patients) and advanced (TNM stage III and IV; 48 patients)
stages. Although the serum CA19-9 values in the early and
late stages of cholangiocarcinoma were significantly higher
than in the controls (Kruskal Wallis test, P < 0.001), the
values were not significantly different between the early
and late stages of cholangiocarcinoma (Figure 2C). The data shown in Figure 2D demonstrates that the MMP7 levels tended to increase according to the progression of cholangiocarcinoma. The serum MMP7 levels were significantly different between early and late stages of cholangiocarcinoma (ANOVA, \(P < 0.001 \)) but not significantly between the early stage cholangiocarcinoma and benign control patients (ANOVA, \(P = 0.47 \)).

Serum levels of CA19-9 and MMP7 for the diagnosis cholangiocarcinoma
To determine the diagnostic accuracy of serum CA19-9 and MMP7 levels for differentiating cholangiocarcinoma from benign biliary tract diseases, a ROC curve analysis was applied to calculate the area under the curve (AUC). These levels were determined to be 0.79 (95% CI: 0.708-0.868) and 0.84 (95% CI: 0.778-0.903) for CA19-9 and MMP7, respectively (Figure 3). The sensitivity, specificity, positive and negative predictive values for selected cut-off points of CA19-9 and MMP7 are presented in Table 2.

When the cut-off value of serum MMP7 was set at 5.5 ng/mL and serum CA19-9 values were set at 100 U/mL, the predictive probabilities for the diagnosis of cholangiocarcinoma could then be calculated from logistic regression analysis. As shown in Table 3, if the patients had a serum MMP7 and CA19-9 level higher than the cut-off values, the probability of a diagnosis of cholangiocarcinoma was equal to 86.12%. In addition, if the patients had a serum MMP7 and serum CA19-9 level less than the cut-off values, the probability of a positive diagnosis of cholangiocarcinoma was very low (< 6.4%).
Table 2 Performance of the biomarkers for the diagnosis of cholangiocarcinoma (%) (95% CI)

Tumor markers (cut-off value)	Sensitivity	Specificity	PPV	NPV	LR+	LR-
MMP7 (5.5 ng/mL)	75 (63-86)	78 (71-85)	61 (50-72)	87 (81-93)	3.41 (2.38-4.89)	0.33 (0.21-0.51)
MMP7 (6.5 ng/mL)	63 (50-75)	87 (81-93)	69 (56-81)	83 (77-90)	4.72 (2.91-7.66)	0.43 (0.31-0.66)
MMP7 (7.5 ng/mL)	53 (40-65)	92 (88-97)	76 (62-89)	81 (74-87)	6.73 (3.54-12.70)	0.53 (0.39-0.68)
CA19-9 (35 U/mL)	71 (60-83)	73 (66-81)	55 (44-66)	85 (78-91)	2.68 (1.93-3.73)	0.39 (0.26-0.59)
CA19-9 (100 U/mL)	68 (56-80)	87 (81-93)	70 (58-82)	85 (79-91)	5.1 (1.17-2.2)	0.57 (0.25-0.54)
CA19-9 (200 U/mL)	59 (47-72)	93 (89-97)	80 (68-91)	83 (77-89)	8.44 (4.34-16.40)	0.44 (0.32-0.60)

PPV: Positive predictive value; NPV: Negative predictive value; LR+: Positive likelihood ratio; LR-: Negative likelihood ratio; CI: Confidence interval; MMP7: Matrix metalloproteinase-7; CA19-9: Carbohydrate antigen 19-9.

Table 3 Predicted probability of the combination of serum carbohydrate antigen 19-9 and matrix metalloproteinase-7 for diagnosis of cholangiocarcinoma

CA19-9 (> 100 U/mL)	MMP7 (> 5.5 ng/mL)	Predicted probability (%)
-	-	6.40
-	+	36.10
+	-	42.84
+	+	86.12

Table 4 Pearson’s correlation coefficients of matrix metalloproteinase-7, carbohydrate antigen 19-9, albumin, total bilirubin, aspartate aminotransferase, alanine aminotransferase and alkaline phosphatase

Pearson correlation	CA19-9	Albumin	Total bilirubin	AST	ALT	ALP
MMP7	0.415	-0.577	0.328	0.154	-0.055	0.268
CA19-9	0.415	-0.370	0.356	0.064	-0.022	0.139

Table 5 Odd Ratios estimates for diagnosis of cholangiocarcinoma

Variables	OR (95% CI)	P
CA19-9 > 100 U/mL	15.2 (5.20-44.56)	< 0.001
MMP7 > 5.5 ng/mL	5.5 (1.87-16.03)	0.002
Albumin > 4 mg/dL	0.015 (0.01-0.15)	< 0.001
Total bilirubin > 5 mg/dL	2.4 (0.81-7.20)	0.115
AST > 100 ng/mL	1.2 (0.37-4.12)	0.738
ALP > 100 ng/mL	0.3 (0.09-1.05)	0.060

The significant parameters (P < 0.05) selected by the model are shown. OR: Odds Ratio; CI: Confidence Interval. CA19-9: Carbohydrate antigen 19-9; MMP7: Matrix metalloproteinase-7; ALP: Alkaline phosphatase; AST: Aspartate aminotransferase; ALT: Alanine aminotransferase.

Statistically significant, P < 0.05. AST: Aspartate aminotransferase; ALT: Alanine aminotransferase; ALP: Alkaline phosphatase; MMP7: Matrix metalloproteinase-7; CA19-9: Carbohydrate antigen 19-9.

Correlation between MMP7, CA19-9 and other blood chemistry

The correlations between the levels of serum albumin, AST, ALT, ALP, total bilirubin, CA19-9, and MMP7 were investigated. As presented in Table 4, the level of serum MMP7 was significantly correlated with serum albumin, AST, ALP, total bilirubin and CA19-9, although none of these parameters had a high Pearson correlation coefficient value (> 0.7). We suggest that the significant correlation of these blood chemistry levels with serum MMP7 was caused by the high number of samples analyzed in this study.

Evaluation of serum CA19-9 and MMP7 levels for the diagnosis of cholangiocarcinoma: Multiple logistic regression analysis

To determine whether the levels of serum CA19-9 and MMP7 were predictive of cholangiocarcinoma independent of the other blood chemistry levels that were significantly different between control and cholangiocarcinoma patients, we carried out a logistical regression analysis. In a multivariable model using CA19-9 (cut-off value = 100 ng/mL), MMP7 (cut-off value = 5.5 ng/mL), total bilirubin (cut-off value = 5 mg/dL), albumin (cut-off value = 4 mg/dL), AST (cut-off value = 100 U/L) and ALP (cut-off value = 200 U/L), CA19-9, MMP7 and albumin were shown to be independent predictors for cholangiocarcinoma. None of the other parameters (total bilirubin, AST and ALP) reached statistical significance (Table 5).

DISCUSSION

Our study demonstrates that serum MMP7 levels are significantly elevated in patients with a diagnosis of cholangiocarcinoma when compared to patients suffering from benign bile duct diseases. When we compared MMP7 to CA19-9, which is a common clinically-used biomarker of cholangiocarcinoma, the value of AUC from the ROC curve demonstrated that serum levels of MMP7 are better than CA19-9 for the diagnosis of cholangiocarcinoma. These results are consistent with our previous study, in which serum MMP7 was higher in cholangiocarcinoma than in benign obstructive jaundice patients. This suggested that serum MMP7 has the potential to be a tumor marker for cholangiocarcinoma in patients with obstructive jaundice.

Previous studies have demonstrated that MMP7 plays a key role in the mechanism of cancer invasion via proteolytic cleavage of the extracellular matrix tissues. It has also been shown to activate other MMPs, such as proMMP-2 and proMMP-9, and inhibit E-cadherin function by ectodomain shedding of E-cadherin. The results of several recent studies indicate that MMP7 is over-expressed in a...
variety of epithelial tumors including those of the esophagus, colon, pancreas, and cholangiocarcinoma tumors. In addition, several studies have shown that MMP7 could be detected in the serum of cancer patients, including patients with ovarian, colorectal and gastric cancer. This finding suggests that high levels of serum MMP7 are not specific to cholangiocarcinoma. It can be detected in many types of cancer. Therefore, it should be used with other diagnostic modalities (clinical presentation and imaging study) before making a diagnosis.

In this study, the levels of blood chemistry markers were shown to be significantly different between control and cholangiocarcinoma groups. Although several differences were observed, serum CA19-9 and MMP7 levels were shown to be predictors of cholangiocarcinoma, independent of other blood chemistry values. In addition, the present study is the first to demonstrate the probability of a diagnosis of cholangiocarcinoma using the combination of serum MMP7 and CA19-9 levels (Table 3). We suggest that the combination of these markers will aid the physician to identify cholangiocarcinoma from benign obstructive jaundice.

The values of AUC from the ROC curve for MMP7 and CA19-9 in this study were shown to be much higher than those observed in our previous study. The differences in the designs of these studies should be considered. Our previous study was designed as a retrospective case-control study for diagnostic accuracy. Therefore, some bias from the selection of samples may have occurred. A strength of the present study was the implementation of the strategies of the PRoBE designs to avoid the problems of bias that may affect the studies of the diagnostic test. We collected serum from all obstructive jaundice patients before the diagnosis of cholangiocarcinoma or benign biliary tract diseases was determined. This procedure assured that biases related to differences in sample collection and handling would be avoided. Limitations of this design include the fact that the majority of the study participants were in advanced stages of cholangiocarcinoma. The number of patients with early-stage cholangiocarcinoma was small (n = 11), and this number of patients would not have had the statistical power to detect a difference in mean value between these early stages of cholangiocarcinoma and the control group. Further studies, which should include an increased number of early-stage cholangiocarcinoma cases, need to be carried out before using MMP7 as a screening test for the detection of early stage cholangiocarcinoma. In addition, this study was performed in a referral center, which has a high prevalence of cholangiocarcinoma. As a result, the findings may not be broadly applicable to other hospitals that typically have a low volume of cholangiocarcinoma.

In conclusion, this study demonstrated that serum MMP7 levels are significantly elevated in cholangiocarcinoma patients. This marker has the potential to be used as a new tumor marker for discriminating cholangiocarcinoma patients from benign biliary tract disease patients.

ACKNOWLEDGMENTS
We thank Associate Professor Dr. Tawechai Teapongvachai and Professor Dr. Apiwat Mutirangura for their valuable contributions, and Dr. Chulaluk Komoltri, Dr. Somrat Lertrmaharit and Thai CERTC staff members for help with statistical analyses.

REFERENCES
1. Sripa B, Pairojkul C. Cholangiocarcinoma: lessons from Thailand. Curr Opin Gastroenterol 2008; 24: 349-356
2. Bridgewater J, Imber C. New advances in the management of biliary tract cancer. HPB (Oxford) 2007; 9: 104-111
3. Blechacz BR, Gores GJ. Cholangiocarcinoma. Clin Liver Dis 2008; 12: 131-150, ix
4. Byrnes V, Afdhal N. Cholangiocarcinoma of the Hepatic Hilum (Klatskin Tumor). Curr Treat Options Gastroenterol 2002; 5: 87-94
5. Furmanycz PS, Grieco V, Agoff SN. Biliary brush cytology and the detection of cholangiocarcinoma in primary sclerosing cholangitis: evaluation of specific cytomorphologic features and CA19-9 levels. Am J Clin Pathol 2005; 124: 355-360
6. Leelawat K, Sakchinabut S, Narong S, Wannaprasert J. Detection of serum MMP-7 and MMP-9 in cholangiocarcinoma patients: evaluation of diagnostic accuracy. BMC Gastroenterol 2009; 9: 30
7. Nichols JC, Gores GJ, LaRusso NF, Wiesner RH, Nagorney DM, Ritts RE Jr. Diagnostic role of serum CA 19-9 for cholangiocarcinoma in patients with primary sclerosing cholangitis. Mayo Clin Proc 1993; 68: 874-879
8. Leelawat K, Leelawat S, Ratanachu-Ek T, Trubwongchareon S, Wannaprasert J, Tripongkaruna S, Chantawibul S, Tepakorn P. Circulating hTERT mRNA as a tumor marker in cholangiocarcinoma patients. World J Gastroenterol 2006; 12: 4195-4198
9 Patel AH, Harnois DM, Klee GC, LaRusso NF, Gores GJ. The utility of CA 19-9 in the diagnoses of cholangiocarcinoma in patients without primary sclerosing cholangitis. Am J Gastroenterol 2000; 95: 204-207

10 Ong SL, Sachdeva A, Garcea G, Gravante G, Metcalfe MS, Lloyd DM, Berry DP, Dennison AR. Elevation of carbohydrate antigen 19.9 in benign hepatobiliary conditions and its correlation with serum bilirubin concentration. Dig Dis Sci 2008; 53: 3213-3217

11 Principe A, Del Gaudio M, Grazl GL, Paolucci U, Cavallari A. Mirizzi syndrome with cholecyсто-choledocal fistula with a high CA19-9 level mimicking biliary malignancies: a case report. Hепатогastroenterology 2003; 50: 1259-1262

12 Itatsu K, Zen Y, Yamaguchi J, Ohira S, Ishikawa A, Ikeda H, Sato Y, Harada K, Sasaki M, Sasaki M, Sakamoto H, Nagino M, Nimura Y, Ohta T, Nakayama Y. Expression of matrix metalloproteinase 7 is an unfavorable postoperative prognostic factor in cholangiocarcinoma of the perihilar, hilar, and extrahepatic bile ducts. Hum Pathol 2008; 39: 710-719

13 Itatsu K, Zen Y, Ohira S, Ishikawa A, Sato Y, Harada K, Ikeda H, Sasaki M, Nimura Y, Nakayama Y. Immunohistochemical analysis of the progression of flat and papillary preneoplastic lesions in intrahepatic cholangiocarcinogenesis in hepatolithiasis. Liver Int 2007; 27: 1174-1184

14 Miwa S, Miyagawa S, Soeda J, Kawasaki S. Matrix metalloproteinase-7 expression and biologic aggressiveness of cholangiocellular carcinoma. Cancer 2002; 94: 428-434

15 Pepe MS, Feng Z, Janes H, Bossuyt PM, Potter JD. Pivotal evaluation of the accuracy of a biomarker used for classification or prediction: standards for study design. J Natl Cancer Inst 2008; 100: 1432-1438

16 Bossuyt PM, Reitsma JB. The STARD initiative. Lancet 2003; 361: 71

17 Bruns DE. The STARD initiative and the reporting of studies of diagnostic accuracy. Clin Chem 2003; 49: 19-20

18 Bossuyt PM. STARD statement: still room for improvement in the reporting of diagnostic accuracy studies. Radiology 2008; 248: 713-714

19 Hanley JA, McNeil BJ. A method of comparing the areas under receiver operating characteristic curves derived from under receiver. Radiology 1983; 148: 899-843

20 Huh JW, Kim DS, Oh YM, Shim TS, Lim CM, Lee SD, Koh Y, Kim WS, Kim WD, Kim KR. Is metalloproteinase-7 specific for idiopathic pulmonary fibrosis? Chest 2008; 133: 1101-1106

21 Li M, Yamamoto H, Adachi Y, Maruyama Y, Shinomura Y. Role of matrix metalloproteinase-7 (matrilysin) in human cancer invasion, apoptosis, growth, and angiogenesis. Exp Biol Med (Maywood) 2006; 231: 20-27

22 Noi V, Fingleton B, Jacobs K, Crawford HC, Vermeulen S, Steelant W, Bruyneel E, Matsrian LM, Mareel M. Release of an invasion promoter E-cadherin fragment by matrilysin and stromelysin-1. J Cell Sci 2001; 114: 111-118

23 Yamamoto H, Adachi Y, Itoh F, Iku S, Matsuno K, Kusano M, Arimura Y, Endo T, Hinoda Y, Hosokawa M, Imai K. Association of matrilysin expression with recurrence and poor prognosis in human esophageal squamous cell carcinoma. Cancer Res 1999; 59: 3313-3316

24 Adachi Y, Yamamoto H, Itoh F, Hinoda Y, Okada Y, Imai K. Contribution of matrilysin (MMP-7) to the metastatic pathway of human colorectal cancers. Gut 1999; 45: 252-258

25 Yamamoto H, Iku S, Adachi Y, Isumran A, Taniguchi H, Nosho K, Min Y, Horiiuchi S, Yoshida M, Itoh F, Imai K. Association of trypsin expression with tumour progression and matrilysin expression in human colorectal cancer. J Pathol 2003; 199: 176-184

26 Jones LE, Humphreys MJ, Campbell F, Neoptolemos JP, Boyd MT. Comprehensive analysis of matrix metalloproteinase and tissue inhibitor expression in pancreatic cancer: increased expression of matrix metalloproteinase-7 predicts poor survival. Clin Cancer Res 2004; 10: 2832-2845

27 Palmer C, Duan X, Hawley S, Scholler N, Thorpe JD, Sahota RA, Wong MQ, Wray A, Bergan LA, Drescher CW, McIntosh MW, Brown PO, Nelson BH, Urban N. Systematic evaluation of candidate blood markers for detecting ovarian cancer. PLoS One 2008; 3: e2633

28 Maurel J, Nadal C, Garcia-Albeniz X, Gallego R, Carcereny E, Almendro V, Már mol M, Gallardo E, Maria Augé J, Longarón R, Martínez-Fernández A, Molina R, Castells A, Gascón P. Serum matrix metalloproteinase 7 levels identifies poor prognosis advanced colorectal cancer patients. Int J Cancer 2007; 121: 1066-1071

29 Yeh YC, Sheu BS, Cheng HC, Wang YL, Yang HB, Wu JJ. Elevated serum matrix metalloproteinase-3 and -7 in H pylori-related gastric cancer can be biomarkers correlating with a poor survival. Dig Dis Sci 2010; 55: 1649-1657

30 Biesheuvel CJ, Vergouwe Y, Oudega R, Hoes AW, Grobbee DE, Moons KG. Advantages of the nested case-control design in diagnostic research. BMC Med Res Methodol 2008; 8: 48

S-Editor Wang JL I-Editor Webster JR E-Editor Ma WH