Phylogenomics reveals dynamic evolution of fungal nitric oxide reductases and their relationship to secondary metabolism

Running title: Phylogenomics link p450nor to secondary metabolism

Authors:
Steven A. Higgins1,3, Christopher W. Schadt1,2,3, Patrick B. Matheny4, and Frank E. Löffler1,2,3,5,6,7*

Author Affiliations:
1Department of Microbiology, University of Tennessee, Knoxville, TN, 37996, USA.
2University of Tennessee and Oak Ridge National Laboratory (UT-ORNL) Joint Institute for Biological Sciences (JIBS), Oak Ridge, Tennessee, USA.
3Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA.
4Department of Ecology and Evolutionary Biology, University of Tennessee, Knoxville, Tennessee, USA.
5Department of Civil and Environmental Engineering, University of Tennessee, Knoxville, Tennessee, USA.
6Department of Biosystems Engineering & Soil Science, University of Tennessee, Knoxville, Tennessee, USA.
7Center for Environmental Biotechnology, University of Tennessee, Knoxville, Tennessee, USA.

*Correspondence to:
Frank E. Löffler
706 Science and Engineering Building
1414 Circle Drive
Knoxville, TN 37996-2000
865-974-4933
frank.loeffler@utk.edu

Keywords:
P450nor, fungi, nitrous oxide, secondary metabolism, nitrogen cycle, nitric oxide, horizontal gene transfer
Abstract

Fungi expressing P450nor, an unconventional nitric oxide (NO) reducing cytochrome P450, are thought to be significant contributors to soil nitrous oxide (N₂O) emissions. However, fungal contributions to N₂O emissions remain uncertain due to inconsistencies in measurements of N₂O formation by fungi. Much of the N₂O emitted from antibiotic-amended soil microcosms is attributed to fungal activity, yet fungal isolates examined in pure culture are poor N₂O producers.

To assist in reconciling these conflicting observations and produce a benchmark genomic analysis of fungal denitrifiers, genes underlying fungal denitrification were examined in >700 fungal genomes. Of 167 p450nor–containing genomes identified, 0, 30, and 48 also harbored the denitrification genes narG, napA or nirK, respectively. Compared to napA and nirK, p450nor was twice as abundant and exhibited two to five-fold more gene duplications, losses, and transfers, indicating a disconnect between p450nor presence and denitrification potential.

Furthermore, co-occurrence of p450nor with genes encoding NO-detoxifying flavohemoglobins (Spearman r = 0.87, p = 1.6e⁻¹⁰) confounds hypotheses regarding P450nor’s primary role in NO detoxification. Instead, ancestral state reconstruction united P450nor with actinobacterial cytochrome P450s (CYP105) involved in secondary metabolism (SM) and 19 (11 %) p450nor-containing genomic regions were predicted to be SM clusters. Another 40 (24 %) genomes harbored genes nearby p450nor predicted to encode hallmark SM functions, providing additional contextual evidence linking p450nor to SM. These findings underscore the potential physiological implications of widespread p450nor gene transfer, support the novel affiliation of p450nor with fungal SM, and challenge the hypothesis of p450nor’s primary role in denitrification.
Importance

Fungi are considered substantial contributors to emissions of the greenhouse gas N₂O, owing to the nitric oxide reducing potential of an unusual cytochrome P450 (P450nor). Despite these findings, fungi do not satisfy criteria to be classified as respiratory denitrifiers and methodological biases confound fungal contributions to the N₂O budget. Phylogenetic and genomic analyses distanced N₂O-forming fungi from denitrification and supported a new link between P450nor and SM. Hence, N₂O formed by P450nor activity may be artificially induced or a byproduct of SM. Explorations of P450nor’s involvement in SM may facilitate the discovery of new compounds with potential applications in agricultural and pharmaceutical industries. Dissociating p450nor from denitrification also informs climate change models and directs research towards organisms and processes most relevant to in situ N₂O production.

Introduction

Increased human reliance on fixed nitrogen (N) from the Haber-Bosch process to meet the demands of sustaining an expanding global population has contributed to a 20% increase in atmospheric nitrous oxide (N₂O), a potent greenhouse gas with ozone destruction potential (1, 2). N₂O is primarily formed by denitrifying members of the Bacteria and Archaea (3), a prevailing view that has been challenged by experiments reporting that abundant soil- and sediment-inhabiting fungi contribute up to 89% of the total N₂O emitted from these systems (4–6). Notably, fungi cannot convert N₂O to inert N₂ like many denitrifying bacteria (7), suggesting their contributions to greenhouse effects and ozone destruction could be significant. Fungi are considered to be important sources of N₂O emissions from agroecosystems (8, 9), which are predicted to contribute up to two-thirds of the total N₂O emissions by 2030 (10). Studies of
model fungi show that N₂O formation is due to P450nor, a heme-containing cytochrome P450, that catalyzes the two electron reduction of nitric oxide (NO) to N₂O (11–13). N₂O formation by P450nor is thought to occur exclusively in fungi and the p450nor gene has been exploited as a distinctive biomarker in molecular assays to study fungal denitrifier diversity and abundance in the environment (14–16).

Despite these observations, the fungal contributions to N₂O emissions remain uncertain. For example, fungi do not satisfy criteria set forth to classify microorganisms as respiratory denitrifiers (17). N₂O-producing fungi in pure culture do not exhibit a balance between the inorganic N inputs and quantities of N₂O formed (18–20) and possess three to six orders of magnitude lower rates of N₂O production compared to denitrifying bacterial isolates under optimal conditions (4). Fungi also fail to generate anoxic growth yields proportional to the quantity of inorganic N reduced in pure culture (6, 21–23), and no significant relationship was detected between fungal denitrification activity and fungal biomass in anoxic soil incubations (24). Above all, partitioning techniques (antibiotic inhibition and isotope site preference) used to estimate fungal and bacterial contributions to N₂O emissions are biased and often lack corroborating evidence in conjunction with their application, suggesting fungal contributions to N₂O emissions are substantially inflated (5, 25–27). For example, antibiotics are often criticized for lacking both generality and specificity, but the expected biases resulting from the exclusive use of antibiotic inhibition techniques to assess fungal contributions to N₂O emissions remain unaccounted for. Bias could be interpreted by concurrently employing culture-independent techniques (i.e., multi-omics approaches); however, these practices are lacking in investigations of fungal denitrification, and the singular use of antibiotics to partition microbial activity casts
doubt on the quantitative value of observations derived from this approach regarding fungal
denitrification (25, 26).

The capacity for N\textsubscript{2}O-production conferred by \textit{p450nor} in fungi is a uniquely eukaryotic
trait, yet previous investigations have hypothesized an actinobacterial origin for \textit{p450nor} based
on sequence comparisons (7, 28–30). Of note, \textit{Actinobacteria} are not considered canonical
denitrifying bacteria, and only a few reports of their denitrification capacity exist (31–33). Most
members of the \textit{Actinobacteria} possess a truncated denitrification pathway or lack a canonical
nitric oxide reductase gene (\textit{nor}) (with the exception of \textit{Corynebacterium} and
\textit{Propionibacterium}) (32, 33). Hence, members of the Fungi and \textit{Actinobacteria} share an
incomplete denitrification pathway with a potentially limited capacity to perform denitrification.
Consistent with the horizontal gene transfer (HGT) hypothesis are sequence similarities between
fungal P450nor and actinobacterial P450s of the CYP105 family, many of which have been
investigated for their contributions to secondary metabolism (SM) (7, 34). Despite these
observations, the prevailing hypothesis regarding \textit{p450nor}’s evolution and function was its
acquisition from the \textit{Actinobacteria} and subsequent evolution to fill a novel role in
denitrification, specifically the reduction of NO to N\textsubscript{2}O (7, 29). The hypothesis that \textit{p450nor} was
acquired from one or more members of the \textit{Actinobacteria} and retained an ancestral function in
SM surprisingly remains unexplored.

Efforts associated with the 1,000 Fungal Genomes and Assembling the Fungal Tree of
Life (AFTOL) projects have resulted in a steady rise in genomic sequence data for members of
the fungal kingdom (35, 36). These large scale sequencing efforts facilitate comprehensive
phylogenomic investigations with the potential to uncover the causes and consequences of the
genomic architecture of fungi and assist in directing research efforts. Hence, the overarching
questions this study addresses are I) what is the breadth of denitrification genes across fungal
genomes and what are their evolutionary relationships, and II) can phylogenomic analyses
reconcile the conflict in fungal contributions to N₂O formation observed in laboratory and
environmental settings? Our comparative genomic and phylogenetic analyses identified a
disconnect between *p450nor* and denitrification gene presence and supported a role for P450nor
in SM rather than denitrification. Importantly, these results provide an explanation for the minor,
non-respiratory capacity of fungi to form N₂O, and suggests N₂O is a byproduct of active SM.
These findings transform our understanding of the ecological significance and environmental
consequences of *p450nor* presence/absence in fungal genomes.

Results

Infrequent co-occurrence among denitrification genes in fungi

Bioinformatic analyses identified homologs of canonical bacterial and fungal denitrification
genes (*narG, napA, norB, nirK, nosZ, p450nor*) in 712 fungal genomes. Of the denitrification
gene set investigated, only *narG, napA, nirK*, and *p450nor* were detected (Fig. 1). Genes
encoding the membrane bound respiratory nitrate reductase (*narG*) were detected in only three
fungal genomes (0.42 %) and were excluded from further analysis due to their low occurrence.
The genes predicted to encode the periplasmic nitrate reductase (*NapA*) and the copper-
containing nitrite reductase (*NirK*) were detected in 75 (10.5 %) and 82 (11.5 %) of the 712
fungal genomes analyzed, respectively (Fig. 1, Table S1). In contrast, P450nor gene sequences
occurred at approximately twice the frequency in 167 (23 %) of the fungal genomes analyzed,
supporting the claim that P450nor-mediated N₂O production may be widespread in fungi (Fig. 1)
(37). A breakdown of genus- and family-level denitrification gene abundances in fungal
genomes underscores the disparity in presence/absence of denitrification genes in fungi and is available in Supplemental Information (SI) (Dataset S1, Fig. S1).

Our analyses also revealed a low co-occurrence between $p450\text{nor}$ and additional fungal denitrification pathway markers. Since $p450\text{nor}$ is regarded as the sole trait encoding N_2O production in fungi, the co-occurrence of multiple denitrification gene markers would be indicative of a capacity for sequential respiratory denitrification, whereas isolated occurrences could be indicative of alternative processes such as detoxification. The three-gene set $\text{narG}/\text{nirK}/p450\text{nor}$ did not co-occur in any of the fungal genomes examined, whereas co-occurrence of the gene set $\text{napA}/\text{nirK}/p450\text{nor}$ was observed in 18 (10.8 %) of 167 $p450\text{nor}$-containing fungal genomes. Sets of at least two co-occurring denitrification traits (i.e., $\text{narG}/p450\text{nor}$, $\text{napA}/p450\text{nor}$, and $\text{nirK}/p450\text{nor}$) were found in 0, 18 and 29 % of fungal genomes, respectively. Of the napA-containing fungal genomes, 25 (33 %) also contained a nirK gene, whereas 30 % of the nirK-containing fungal genomes also harbored a napA gene.

Evolutionary correlation was strongly supported for the gene sets napA/nirK, $\text{napA}/p450\text{nor}$, and $\text{nirK}/p450\text{nor}$, with average log Bayes Factor values of 31.9 ± 0.60, 12.2 ± 0.11, and 31.3 ± 0.04, respectively. Hence, the genes napA, nirK, and $p450\text{nor}$ occur in related fungal taxa, but co-occurrences were infrequent within the individual fungal genomes analyzed.

Evolutionary forces acting upon denitrification traits within fungi

To identify evolutionary forces shaping the observed distribution of denitrification traits within fungi, comparisons between gene and species trees were assessed with phylogenetic tests and parsimony-informed models to quantify evolutionary events. Visual inspection of $p450\text{nor}$ gene and species trees indicated potential widespread HGT of $p450\text{nor}$ within fungi, examples of which included HGT of $p450\text{nor}$ from the phylum Ascomycota to members of the
Basidiomycota and within and among classes of ascomycetes (Fig. S2). Furthermore, the monophyly of five fungal classes containing \textit{p450nor} (Dothideomycetes, Eurotiomycetes, Leotiomycetes, Sordariomycetes, and Tremellomycetes) were not supported by approximately unbiased (AU) tests ($p \leq 0.05$, Table S2), indicative of dynamic evolution of \textit{p450nor} in most fungal lineages. Although co-phylogeny plots are suggestive of HGT, additional analysis using NOTUNG software was performed to model potential gene duplication (GD), gene transfer (GT), and gene loss (GL) events (38). Of the \textit{napA}, \textit{nirK}, and \textit{p450nor} genes analyzed, the \textit{p450nor} phylogenies had the greatest number of predicted GT events, ranging from 4 to 15 GT events despite applying stringent GT costs within NOTUNG software (Table S3). At GT costs below 9, no temporally consistent optimal solutions were reached, suggesting that GD and GL alone are insufficient to describe the evolutionary dynamics of \textit{p450nor} in fungi. Using the same stringent GT costs, the predicted number of GT events detected for \textit{napA} and \textit{nirK} were much lower, and ranged from 1 to 3 and 0 to 1 GT events for each gene, respectively (Table S3). The reduced number of GT events detected in \textit{napA} and \textit{nirK} phylogenies were also apparent from co-phylogeny plots of each gene (Fig. S3, S4) compared to co-phylogenetic plots for \textit{p450nor} (Fig. S2). Although GT events detected for \textit{napA} were lower than \textit{p450nor} at high GT costs, GT may still represent a significant evolutionary force contributing to the observed \textit{napA} distribution in extant fungal lineages (Table S3). For example, AU tests rejected the monophyly of three Ascomycota (Dothideomycetes, Leotiomycetes, and Sordariomycetes) and one Basidiomycota (Pucciniomycetes) lineage within the \textit{napA} phylogeny (Table S2, $P \leq 0.05$). Specific instances of predicted HGT events are outlined in Supplemental Information (SI) for each gene (Table S4, Fig. S5).

Fungal P450nor evolved from actinobacterial P450s involved in SM
Previous investigations have hypothesized an actinobacterial origin for \textit{p450nor} based on amino acid sequence alignments \cite{7,28,30}, but rigorous phylogenetic tests of \textit{p450nor}'s origins were lacking to support this hypothesis. Alignment of fungal P450nor amino acid sequences to the NCBI RefSeq protein database identified 230 bacterial sequences with significant sequence alignment (≥ 65 \% query coverage, ≥ 35 \% amino acid identity) to P450nor. Of note, \textit{p450nor} homologs were also detected within the genomes of three freshwater inhabiting green algae, \textit{Chlorella variabilis}, \textit{Chlamydomonas reinhardtii}, and \textit{Monoraphidium neglectum}, expanding the known distribution of \textit{p450nor} to photosynthetic eukaryotic microbes. Additional \textit{p450nor} homologs were not detected in archaea, plant, protist, or other lineages housed within the RefSeq database. Of the bacterial cytochrome P450 (hereafter P450) sequences identified, approximately 6 \% (n = 13) were proteobacterial in origin, whereas the remaining sequences belonged to members of the bacterial phylum \textit{Actinobacteria} \cite{Fig. S6}. Ancestral character state reconstruction of select P450 families on a subset of these sequences supported the monophyly of \textit{p450nor} and bacterial P450 gene sequences of the P450 family CYP105 \cite{Fig. 2} \cite{39}. The same relationships were preserved when phylogenetic reconstruction was performed using the complete set of 408 P450 amino acid sequences \cite{Fig. S7}. Importantly, NO-utilizing P450 sequences from the CYP107 family belonging to members of the \textit{Streptomyces} formed a larger monophyletic clade containing P450nor and other CYP105 sequences \cite{Fig S7}. The CYP107 family includes \textit{txtE} genes encoding nitrating enzymes that use NO as a substrate for the production of secondary metabolites and have no known role in respiratory denitrification or detoxification \cite{40,41}. Thus, P450nor and TxtE are related \cite{40,41}, yet TxtE is involved in SM and is the only other P450 observed to directly utilize NO as a substrate.
Sequences of the bacterial CYP105 family of P450s include diverse actinobacterial genera such as *Streptomyces* (n = 159), *Amycolatopsis* (n = 12), *Saccharothrix* (n = 5), *Streptacidiphilus* (n = 4), *Frankia* (n = 4), *Kutzneria* (n = 4), *Nocardia* (n = 3), and members from 17 additional actinobacterial genera (n = 39). The proteobacterial sequences were affiliated with members of the genera *Burkholderia* (n = 5), *Paracoccus* (n = 3), *Bradyrhizobium* (n = 3), *Pseudomonas* (n = 1), and *Halomonas* (n = 1). Bacterial P450 gene and species tree comparisons of 60% identity clustered P450 amino acid sequences (n = 57) and cognate 16S rRNA genes (n = 55) supported HGT of one or more actinobacterial P450 genes to members of the Alpha-, Beta-, and Gammaproteobacteria (Fig. S6). Furthermore, ancestral character state reconstruction overwhelmingly supported *Actinobacteria* as the root state (root probability = 0.99 ± 0.06) of the bacterial CYP105 family P450 phylogeny. When forcing the root state of the P450 phylogeny to be *Proteobacteria* (simple model) and comparing to the complex model where the root is allowed to vary, the simple model with a proteobacterial root was not supported (average log Bayes Factor = 0.03 ± 0.18). Therefore, *p450nor* likely evolved from one or more CYP105 family P450 genes found in members of the *Actinobacteria*. This finding underscores *p450nor*’s distinct origin compared to the fungal denitrification traits *napA* and *nirK*, which have a distinct proteobacterial ancestry consistent with the majority of bacterial denitrifiers (Fig. S8).

Widespread co-occurrence of *p450nor* and NO-detoxifying flavohemoglobins

Poor conversion of inorganic N-oxides to N₂O by fungal isolates supports the hypothesis that P450nor is involved in NO detoxification (7, 42). However, fungi also possess NO-detoxifying flavohemoglobins responsible for detoxification of NO to NO₃⁻ under oxic conditions or NO to N₂O under anoxic conditions (42–44). Flavohemoglobins were detected in 450 (63 %) fungal genomes investigated and were widespread within ascomycete and basidiomycete fungi. Within
p450nor-containing genomes, 125 (75 %) also possessed a flavohemoglobin gene (Fig. 1, Table S1). The number of genomes in fungal families containing p450nor and NO-detoxifying flavohemoglobin genes were significantly correlated (Spearman r = 0.87, p = 1.6e-10), and suggests p450nor’s primary function is not NO detoxification.

Evidence of a role for p450nor in secondary metabolism

p450nor is actinobacterial in origin, yet Actinobacteria are not considered canonical denitrifiers and evidence for their role in denitrification was lacking when p450nor was initially identified (29, 45). Subsequent investigations did not posit a role for p450nor in SM despite the affiliation of p450nor and CYP105 P450s with documented roles in SM (34, 46). To assess genomic evidence linking p450nor to SM, we queried genes encoded within genomic regions approximately 50 kb on either side of p450nor for functions related to SM. The biosynthetic gene cluster (BGC) prediction tool antiSMASH detected putative BGCs containing p450nor in 19 (11 %) of the 167 p450nor-containing genomes analyzed (Dataset S2). The number of open reading frames in a predicted SM cluster ranged from 34 to 97, spanning 21,086 to 55,473 nucleotides in length. Inspection of protein-coding genes surrounding p450nor using curated antiSMASH profile Hidden Markov Models (pHHMs) resulted in the identification of hallmark SM features (e.g., polyketide synthases (PKS), non-ribosomal peptide synthases (NRPS), terpene cyclases, dimethylallyl tryptophan synthases) in an additional 40 (24 %) of the 167 p450nor-containing genomes analyzed (Dataset S2) (see Materials and Methods for details). The distribution of automatic and manually curated protein-coding genes surrounding a subset of 32 p450nor-containing fungi suggests that p450nor-containing BGCs are structurally and functionally diverse (Fig. 3). An additional BGC prediction tool, CASSIS, which detects BGCs based on shared transcription factor binding sites upstream and downstream of a user specified
anchor gene (47), predicted as many as 105 (63 %) p450nor-containing gene regions to be BGCs (Dataset S3). Furthermore, CASSIS analysis corroborated 74 % of the 19 BGCs predicted by antiSMASH (Dataset S3). A detailed accounting of antiSMASH and CASSIS predictions, gene annotations, and gene organization surrounding p450nor in all 167 p450nor-containing genomes is available in the SI (Fig. S9, Dataset S2).

A diversity of secondary metabolite biosynthesis pathways were predicted to be encoded by p450nor-containing BGCs, including nonribosomal peptides (n = 7), polyketides (n = 5), terpenes (n = 2), hybrid terpene-polyketide-indoles (n = 2), indoles (n = 1), or currently unclassifiable compounds (n = 2). Phylogenetic reconstruction of C-type and ketosynthase domains encoded by NRPS and PKS genes surrounding p450nor enabled the prediction of potential secondary metabolites encoded by fungal p450nor-containing BGCs (Fig. 4). For example, domains from NRPS and PKS sequences encoded nearby p450nor are affiliated with reference NRPS and PKS sequences known to produce cyclic tetrapeptides (HC-toxins) (n=7), aflatoxins (n=5), fumonisins (n=4), calcium-dependent antibiotics (n=1), and statins (n=1), suggesting a large variety of secondary metabolites are encoded by gene regions containing p450nor.

The formation of N₂O has previously been reported as highly variable among closely related fungi (37, 48), yet evidence suggesting a role for p450nor in this phenomenon is lacking. Of the 94 fungal genera harboring p450nor, 21 (22 %) contained species with and without a copy of p450nor (Table S5). For example, 15 out of 16 (94 %) Pseudogymnoascus genomes contained p450nor, whereas only 1 out of 7 (14 %) Exophiala genomes contained a p450nor gene. Nucleotide alignments of p450nor-containing genomic regions (81.3 ± 27.8 kb in length) against other fungal genomes revealed a disproportionately high nucleotide identity and alignment.
length between genomes with and without \textit{p450nor} from the same genus (Fig. 5A-C). For example, genomic regions surrounding \textit{p450nor} in \textit{Exophiala xenobiotica} are highly similar to other \textit{Exophiala} species without \textit{p450nor} (Fig. 5D), and additional examples of large, high identity regions between closely related fungal genomes with and without \textit{p450nor} are abundant (Fig. 5A-C, Dataset S4).

\textbf{Discussion}

\textbf{An evaluation of hypotheses regarding the biological role of \textit{p450nor}}

The three leading hypotheses regarding the biological role of fungal \textit{p450nor} are respiratory denitrification (7), NO detoxification (42), and now secondary metabolism. The respiratory denitrification hypothesis is dubious since evidence is lacking to classify fungi as respiratory denitrifiers (4, 17–19, 49). Furthermore, unaccounted for methodological biases inherent to partitioning techniques raises substantial concerns over the validity of fungal \textit{N}_2\textit{O} production \textit{in situ} (4, 25–27). The ineffectiveness of antibiotics to partition microbial respiration has been previously demonstrated (25, 26), yet antibiotics continue to be used to support the prevalence of fungal respiratory denitrification. In addition to antibiotic inhibition, site preference measurements of the intramolecular distribution of 15N within the linear \textit{N}_2\textit{O} molecule (i.e., \textit{N}_2\textit{O} isotopocules) of cultured microorganisms have been increasingly applied to partition microbial sources of \textit{N}_2\textit{O \textit{in situ}} (5, 50). Although promising, the limitations of \textit{N}_2\textit{O} isotopocule measurements used in isolation are becoming apparent (27, 51, 52). Of primary concern is the significant overlap in, and difficulty discretizing, site preference measurements of distinct processes or diverse microbial assemblages (51, 53, 54). Therefore, the respiratory denitrification
hypothesis is predicated on biased approaches used in isolation that are unable to correctly assess fungal contributions to denitrification.

Another alternative function suggested for P450nor is NO detoxification, which was initially postulated in experiments using the fungus Fusarium oxysporum strain 11n1 (55). This hypothesis was supported by low growth yields and a poor mass balance between the N-oxyanion inputs and N$_2$O formed (18, 56, 57). Although plausible, the NO detoxification hypothesis is confounded by extensive co-occurrence between $p450nor$ and genes encoding canonical NO-detoxifying flavohemoglobins, which also produce N$_2$O (44, 58) (Fig. 1, Table S1). Considering the extensive overlap in $p450nor$ and flavohemoglobin gene presence (Fig.1), the utility of site preference values derived from N$_2$O formed by fungi in pure culture is questionable. Furthermore, P450nor and flavohemoglobins would likely compete for NO under anoxic conditions, and experiments teasing apart their contributions to N$_2$O formation are necessary to support the postulated role of P450nor in NO detoxification. The reported Michaelis constant (K_m) of NO binding to P450nor ranges from 0.1 to 0.6 mM (11, 12) and is orders of magnitude higher than the 0.1 to 0.25 µM K_m reported for flavohemoglobins (59), suggesting flavohemoglobin would outcompete P450nor for NO binding. Hence, the higher affinity of flavohemoglobins for NO and their greater distribution in fungi would suggest a limited role for P450nor in NO detoxification (Table S1). Though fungi certainly detoxify NO, insufficient evidence exists to attribute this activity to P450nor.

The SM hypothesis has traction considering that P450nor is derived from CYP105 P450s (Fig. 2), all of which share a functional role in SM (34, 46, 60). Thus, the adaptation of P450nor to a novel niche in NO reduction and denitrification is unlikely. A more parsimonious hypothesis is that P450nor has maintained a role in SM as observed for related actinobacterial enzymes.
When \textit{p450nor} was originally described, members of the \textit{Actinobacteria} (e.g., \textit{Streptomyces}) were already well established secondary metabolite producers and their \textit{N}_2\textit{O} production was attributed to detoxification (45, 61). The monophyly of P450nor with the SM enzyme TxtE, the only other NO-utilizing P450, provides additional \textit{a priori} support for P450nor’s role in SM (Fig. S7). P450nor’s role in SM is further corroborated by SM prediction tools where a sizeable proportion (35 \%) of gene regions surrounding \textit{p450nor} contained genes predicted to encode hallmark SM functions, and as many as 105 (63 \%) \textit{p450nor}-containing genomic regions were automatically predicted to be involved in SM (Fig. 3). Moreover, the fact that antiSMASH flagged 11\% of \textit{p450nor}-containing genomic regions as putative BGCs suggests their organization and gene content is highly similar to other characterized BGCs. Although phylogenomic evidence supports a role for P450nor in the biosynthesis of secondary metabolites, direct physiological evidence should be a target for future research efforts. Emerging technologies enabling the expression of full length BGCs and metabolite identification should enable robust experimentation to test the SM hypothesis (62). Regardless, \textit{p450nor}-containing genomic regions were predicted to be BGCs encoding diverse metabolites including terpenoids, nonribosomal peptides, polyketides, indoles, and other complex metabolites (Fig. 4) consistent with its evolutionary origins (Fig. 2).

\textbf{Predicting P450nor’s role in secondary metabolism}

A variety of metabolites containing nitro functional groups have been detected in fungal genera known to harbor denitrifying representatives (63), yet mechanistic explanations for nitration reactions in fungi remain elusive. The addition of a nitro functional group to a metabolite represents a potential mechanism for enhancing its toxicity or functional specificity (64). The hypothesis of a role for P450nor in nitration, or possibly nitrosylation, of fungal metabolites is
attractive given P450nor’s affiliation with the nitrating enzyme TtxE. The inclusion of p450nor within BGCs may be adaptive in fungal lineages in which this gene was acquired due to the augmenting effects that nitro or nitroso groups impart on their substrates (64). Support for this hypothesis stems from the widespread distribution of p450nor within secondary metabolite producing members of the Ascomycota (65, 66), and previous reports of HGT between members of Actinobacteria and fungi in enhancing fungal SM (67). Furthermore, the high nucleotide identity shared between p450nor-containing genomic regions from closely related fungal species suggests p450nor gain or loss may have important consequences for the secondary metabolites potentially produced by p450nor-containing BGCs (Fig. 5D). Considering that 22 p450nor containing fungal genera display variability in p450nor presence/absence (Table S5), investigations regarding the impact of p450nor presence/absence on the secondary metabolite pool, fungal fitness, competition, or infectivity within closely related fungi is readily testable.

Additional unknowns related to P450nor’s role in SM are the identification of putative substrates and sources of NO required to fuel the hypothesized nitration or nitrosylation reactions. To date, P450nor is solely reported to bind the electron donors NADH or NADPH and the electron acceptor NO (7). However, N2O formation by P450nor is oxygen dependent (8, 22), suggesting O2 may be an additional substrate as observed for TtxE (40). TtxE and NovI, both P450s affiliated with P450nor, bind to and transform L-tryptophan and L-tyrosine to produce the secondary metabolites thaxtomin A and novobiocin, respectively (40, 68). It is conceivable that P450nor might also bind O2 and aromatic amino acids, but direct experimental evidence is required to support this hypothesis. A potential source of NO in fungi could result from nitrite reductase activity of the copper containing nitrite reductase, NirK. The NO synthase (TtxD) from Streptomyces turgidiscabies produces NO to fuel TtxE nitration of L-tryptophan (40), but txtD
homologs were not detected in the fungal genomes examined. Although evidence of NO
synthases in fungi exist, knowledge regarding their distribution is limited (69, 70). Given the
functional redundancy between NO synthases and NirK, it is conceivable that one of NirK’s
functions in fungi is to generate NO for use by P450nor in SM.

Causes and consequences of p450nor evolution in fungi

A limited understanding of p450nor evolution represented an impediment to our knowledge of
fungal N₂O formation. For example, closely related fungi vary in their ability to produce N₂O
(16, 37, 48, 56), and the evolutionary forces (e.g., HGT, gene gain/loss, and incomplete lineage
sorting) contributing to this observation were unexplored. For p450nor, many HGT events were
observed between distantly related fungal lineages using gene and species tree comparisons (Fig.
S2). Although HGT events are challenging to precisely quantify given the level of uncertainty in
deeply branching nodes of the functional gene trees reported here, a signal of potentially double
digit HGT events were observed using gene tree-species tree reconciliation (Table S3).

Moreover, genetic elements encoding pogo family transposases (N = 9), retrotransposons (N =
4), and reverse transcriptases (N = 1) were in some cases detected adjacent to p450nor and may
act as vehicles for dissemination of p450nor within fungi and between fungal chromosomes
(Dataset S2).

N₂O production was previously coined a widespread trait in fungi (37), yet genomic
analysis suggests fortuitous N₂O formation by fungi is largely restricted to members of the
Ascomycota. For example, of the 167 p450nor-containing fungal genomes identified, 163 were
affiliated with members of the Ascomycota and only four with members of the Basidiomycota.
N₂O production has been reported for fungal isolates assigned to the recently revised phylum
Mucoromycota (4, 71), yet no evidence of genes underlying denitrification were detected in
available genomes from members of this phylum (Fig. 1). Denitrification markers were also
absent from ascomycete yeast genomes (i.e., Candida, Yarrowia), though a number of N2O-
producing ascomycete yeasts have been reported (56). Even within the Basidiomycota, N2O
formation is restricted to a few taxa within the Tremellomycetes and Agaricomycetes (4), and at
least for members of the Tremellomycetes, was likely the result of HGT from one or more
members of the Ascomycota (Fig S2). The finding that genomes from fungi (e.g., ascomycete
yeasts) previously observed to produce N2O did not possess denitrification traits was unexpected
and suggests that experimental artifacts or other mechanisms, such as the NO-detoxifying
activity of flavohemoglobins, may also contribute to N2O formation in fungi. In addition to
fungi, species of green algae have been reported to produce small quantities of N2O, the
production of which could, at least in part, be attributed to the presence of p450nor within this
lineage (72–74). Despite these findings, green algae lack a mass balance between the inorganic N
added and the N2O formed (74) and display low rates and quantities of N2O production on par
with fungi (72), suggesting that N2O formation is not a respiratory process in these organisms.
Considering the lack of evidence of respiratory denitrification in green algae and genomic
evidence linking p450nor to SM in fungi, the SM hypothesis is an attractive explanation for the
presence of p450nor in green algae as well.

p450nor genes within fungi also have implications for fungal pathogenesis (4). At least
for some bacteria (e.g., Neisseria, Brucella, Mycobacterium), the presence of denitrification
genes has been demonstrated to enhance virulence or detoxification of N-oxides produced by the
host (75). Although the impact of denitrification gene acquisition on fungal pathogenesis is not
well established, there is growing evidence for P450nor involvement in fungal virulence (4, 7).
For example, p450nor gene expression is linked to Fusarium wilt in banana and cotton plants,
yet mechanistic explanations of P450nor’s function during plant infection are lacking (76, 77). Notably, more than half of all p450nor-containing fungal species are known plant pathogens (4), and the involvement of p450nor in SM is consistent with and would support the plant pathogenic life history strategies of many p450nor-containing fungi.

The diversity of denitrifying microorganisms and the modularity of the pathway has led to the view of denitrification as a community function (78–80). Therefore, limited co-occurrence and correlated evolution between napA, nirK, and p450nor might suggest mutualistic interactions occur between fungal or bacterial species performing denitrification. However, gene co-occurrences and evolutionary correlations should be interpreted with caution as additional factors (e.g., shared ecological niche, selection pressures) related to fungal life history strategies may explain their distribution equally well. For example, N\textsubscript{2}O-producing fungi are frequently detected in, and cultivated from, highly disturbed, N-amended agricultural soils (4, 9, 16) and detoxification or N-oxide utilization traits may merely co-occur more frequently due to selection imposed by episodic N addition. Fungi also contain genes homologous to bacterial denitrifiers, but their presence does not guarantee a role in respiratory denitrification. For example, the presence of genes homologous to the bacterial NO reductase (norB) is not sufficient evidence for respiratory denitrification potential in bacteria (17, 75). The same is true of the abundant napA gene homologs detected in fungal genomes, which would suggest a robust capacity of fungi to perform dissimilatory nitrate reduction. Yet this is not the case, and many fungi only produce N\textsubscript{2}O when NO2- is present (4, 18, 56).

In summary, fungi often produce little or no gaseous N from reduction of N-oxyanions and do not grow proportionally to the quantity of N-oxyanions consumed; thus, fungi cannot be classified as respiratory denitrifiers (17). Given the limited accounting of methodological bias in
the study of N₂O production by fungi (25–27), alternative explanations for the biological function of \(p450\text{nor} \) in fungi are likely and raises concerns over the validity of these techniques in estimating fungal contributions to N₂O emissions. Although the P450nor NO detoxification hypothesis is plausible, available data are insufficient at present to definitively support a role for P450nor in this process. Considering that many canonical denitrifying fungi are also plant disease causing secondary metabolite producers and agricultural pests, the affiliation of \(p450\text{nor} \) with non-denitrifying actinobacterial sequences involved in SM and their inclusion in BGCs strongly endorses a biological role for \(p450\text{nor} \) in SM.

Materials and Methods

Datasets

Draft and complete fungal, algal, and bacterial genomes were accessed from the National Center for Biotechnology Information and the Joint Genome Institute on March 16th, 2016 and downloaded from their respective database utilities. A list of fungal, algal, and bacterial genomes and their taxonomic and database affiliations can be found in the Supplemental Information (SI) (Dataset S5).

Gene marker identification

To identify gene markers within fungal genomes suitable for phylogenetic analysis, a database of 1,438 amino acid sequences of fungal single copy orthologs from the BUSCO tool v1.1b (81) were provided as queries to the genblastG search tool v1.0.138 (82). The genblastG tool performs amino acid alignment of protein queries against a six frame translated nucleotide subject sequence (genome) to find significant alignments and uses heuristic analysis to piece the appropriate gene models back together from high-scoring segment pairs identified using BLAST (83). Of the BUSCO gene models queried, 238 were used for phylogenetic tree reconstruction.
and were annotated using PfamScan against the Pfam A database and blastp against the uniprot database with default settings (84–87) (Dataset S6). The genblastG tool was also used to detect gene sequences involved in denitrification (NapA, NarG, NirK/NirS, NorB, P450nor, NosZ) from curated bacterial proteins in the FunGene repository (88) or proteins involved in NO detoxification (flavohemoglobins) identified in the literature (44). Denitrification gene models used in downstream phylogenetic analysis were manually curated against full length fungal reference sequences to ensure that accurate gene models were predicted for each organism in which the gene was detected. After identification of these genes in fungal genomes, alignment of the fungal NapA, NirK, NarG, and P450nor amino acid sequences with blastp against the plant, archaea, bacteria, protozoa, and fungi RefSeq protein databases (89) was performed to identify similar sequences in each taxonomic group. Protein sequences demonstrating significant alignment (≥ 60 % query coverage and ≥ 35 % amino acid identity) to fungal proteins were used in subsequent phylogenetic reconstructions.

Gene prediction for comparative genomic analyses

The *ab initio* gene predictor SNAP (90) was used to predict gene models in fungal genomes where no such information was available (e.g., some draft genomes). In this case, one or several closely related fungal genomes containing gene models were selected based on phylogenetic affiliation to train SNAP for gene prediction. Although this methodology is limiting when closely related genomes are unavailable, gene models from close relatives were available for *p450nor*-containing genomes lacking gene predictions.

Alien index calculations

The alien index (AI) was calculated as previously described and modified for use with a single gene (44). Briefly, pairwise amino acid sequence alignments were performed using blastp for
fungal NapA, NirK, and P450nor sequences. The in group was defined as the aligned sequence with the highest bitscore (excluding the query) belonging to the same taxonomic class as the query sequence. Accordingly, the out group was defined as the aligned sequence with the highest bitscore not belonging to the same taxonomic class as the query. The maximum bitscore was the bitscore derived from the alignment of the query to itself. Therefore, AI is calculated as follows:

\[AI = \frac{\text{out group bitscore}}{\text{max bitscore}} - \frac{\text{in group bitscore}}{\text{max bitscore}} \]

AI values range from 1 to -1. Values greater than zero are indicative of HGT or contamination of foreign DNA within the genome sequence being queried.

Analysis of SM gene clusters in fungi

Genomic regions 50 kb up- and downstream of a p450nor gene in each genome were subjected to gene cluster prediction with the antiSMASH and CASSIS tools with default settings (47, 91). Additionally, genes encoded +/- 10 genes up and downstream of p450nor were evaluated using PfamScan searches with default settings against the pHMMs of curated SM genes identified by antiSMASH (Dataset S2) (91). Protein sequences with significant alignment to antiSMASH pHMMs were given an “automatic” SM function status and were colored blue. In order to supplement the automated SM annotation, additional functional annotation was performed by hmmsearch searches with HMMER3 (92) against the eggNOG database (93). These functional annotations were manually flagged as related to SM if they possessed literature entries suggesting an involvement in SM or had functions related to methyl transfer, oxidation-reduction reactions, glycosyl transferases, fungal specific transcription factors, and other protein functions that may be important for SM outlined by antiSMASH (91). All manual SM annotations were colored light blue to indicate potential involvement in SM. All other annotations were colored grey when no evidence connecting the function to SM could be identified.
Additionally, ortholog clustering of protein-coding genes surrounding \textit{p450nor} was performed using OrthoFinder (94) with default settings. Ortholog clustering was performed using only a representative \textit{p450nor} loci in each fungal genome if multiple gene copies were present. A Shannon-like diversity index of fungal classes detected in each orthologous group was calculated as \(H' = -\sum (P_i * \ln(P_i)) \), where \(P_i \) is the fraction of fungal class \(i \) present in an orthologous group. Pairwise nucleotide alignments of \textit{p450nor}-containing genomic regions were performed as previously described (95). Briefly, the \textit{nucmer} utility of MUMmer v3.0 (96) was used to align \textit{p450nor}-containing genomic regions (~100 kb) against whole genomes of fungi with and without \textit{p450nor}. The average nucleotide identity (reported as ANIm) of the alignment was calculated from the resulting delta output file. The resulting data was plotted using Matplotlib (97) available for the python programming language (http://www.python.org).

\textit{Phylogenetic analysis}

Phylogenetic reconstruction of the fungal species tree was performed using concatenated amino acid sequences from 238 single copy orthologs found in \(\geq 90 \% \) of all genomes (Dataset S6). The genomes of \textit{Puccinia arachidis} and \textit{Microbotryum lycnidis-dioicae} strain p1A1 Lamole were excluded from further analysis due to an insufficient number of informative sites and inconsistent placement within the fungal tree. Alignment of amino acid sequences were performed individually on all 238 individual BUSCO gene models present within each organism using MAFFT v7.130b (98) with linsi alignment tuning parameters (--maxiterate 1000 and --localpair settings used). Individual alignments were concatenated using in-house python scripts, resulting in a 65,897 column alignment. Tree reconstruction was performed using FastTree2 (99) with refined tree reconstruction settings for slower, more exhaustive search of the tree space than default settings (-bionj -slow -gamma -spr 4 -lg -mlacc 2 and -slownni settings). For comparison
to tree reconstruction using a concatenated alignment, individual trees from each BUSCO alignment were also constructed using FastTree2 with identical settings as above. The resultant alignments and trees were subjected to coalescent tree reconstruction using ASTRAL-II software (100). Overall, both phylogenies largely agreed except for branching patterns of some lineages (e.g., Zoopagomycota and Mucoromycota) and are available online in a figshare repository (see Data Sharing below).

The predicted amino acid and intronless nucleotide sequences of fungal napA, nirK, and p450nor gene models were aligned using the MAFFT settings described above and manually refined in JalView and SeaView software (101, 102). Maximum-likelihood (ML) and Bayesian phylogenetic tree reconstruction was performed on both nucleotide and amino acid alignments using RAxML and MrBayes, respectively (103, 104). Selection of the optimal evolutionary model for ML tree reconstruction was performed using prottest (105) (amino acid alignment) and jmodeltest (106) (nucleotide alignment) software prior to ML tree reconstruction. Please refer to SI for additional details about evolutionary models used in phylogenetic analysis.

Phylogenetic analysis with RAxML was performed by sampling 20 starting trees and performing 1,000 replicate bootstrap analyses. The tree with the maximal negative log likelihood score was compared to 1,000 replicates in RAxML to generate the final tree. Bayesian tree construction was performed using 3 independent runs with 6 chains for 5,000,000 generations. Output from MrBayes was evaluated with the sump and sumt commands within the software to ensure Markov Chain Monte Carlo chain mixing and convergence (potential scale reduction factor of 1.0) and standard deviation of split frequencies ~ 0.01 or lower. MrBayes output was further visualized in the program Tracer (http://tree.bio.ed.ac.uk/software/tracer/) to ensure convergence was reached.
BayesTraits software was used to perform phylogenetically informed correlations between binary traits (i.e., the presence or absence of two denitrification markers) and ancestral state reconstruction (107). Please refer to SI for additional details on BayesTraits analyses.

Approximately unbiased (AU) tests were performed in the program CONSEL (108) using default settings. The negative log likelihood values from the observed nucleotide phylogenies input into CONSEL were -140,261, -37,782, -111,531 for napA, nirK and p450nor, respectively. The observed negative log likelihood scores for amino acid phylogenies of NapA, NirK, and P450nor were -65,158, -14,197, and -44,171, respectively. Species-tree gene-tree reconciliation was performed using NOTUNG software v2.9 (38, 109). Please see SI for further details on NOTUNG parameters.

Statistical analysis

All statistical analyses were carried out in R programming language (110) and significance of statistical tests were assessed using a p value cutoff ≤ 0.05.

Data sharing

All gene models, alignments, and trees discussed in the manuscript are made available in a figshare repository prepared by S.A.H. (https://doi.org/10.6084/m9.figshare.c.3845692).

Acknowledgements

We thank Gerald Bills, Gregory Bonito, Pedro Crous, Kathryn Bushley, Colleen Hansel, Patrik Inderbitzin, Gabor Kovacs, Bjorn Lindahl, Jon Magnuson, Francis Martin, Kerry O’Donnell, Nancy Nichols, Minou Nowrousian, and Joseph Spatafora for providing access to unpublished genome data produced by the U.S. Department of Energy Joint Genome Institute. The authors thank A. Frank for assistance with manuscript revisions. S.A.H. would like to acknowledge a Department of Energy Office of Science Graduate Student Research fellowship for support.
during preparation of the manuscript. Participation of C.W.S and F.E.L. was partially sponsored by the Laboratory Directed Research and Development Program of Oak Ridge National Laboratory, managed by UT-Battelle, LLC, for the U. S. Department of Energy. This research was partially supported by the US Department of Energy, Office of Biological and Environmental Research, Genomic Science Program, Award DE-SC0006662.

References

1. Canfield DE, Glazer AN, Falkowski PG. 2010. The evolution and future of Earth’s nitrogen cycle. Science 330:192–6.

2. Galloway JN, Townsend AR, Erisman JW, Bekunda M, Cai Z, Freney JR, Martinelli L a, Seitzinger SP, Sutton M a. 2008. Transformation of the nitrogen cycle: Recent trends, questions, and potential solutions. Science (80-.). 320:889–892.

3. Zumft WG. 1997. Cell biology and molecular basis of denitrification. Microbiol. Mol. Biol. Rev. 61:533–616.

4. Mothapo N, Chen H, Cubeta MA, Grossman JM, Fuller F, Shi W. 2015. Phylogenetic, taxonomic and functional diversity of fungal denitrifiers and associated N₂O production efficacy. Soil Biol. Biochem. 83:160–175.

5. Wankel SD, Ziebis W, Buchwald C, Charoenpong C, de Beer D, Dentinger J, Xu Z, Zengler K. 2017. Evidence for fungal and chemodenitrification based N₂O flux from nitrogen impacted coastal sediments 8:15595.

6. Cathrine SJ, Raghukumar C. 2009. Anaerobic denitrification in fungi from the coastal marine sediments off Goa, India. Mycol. Res. 113:100–109.

7. Shoun H, Fushinobu S, Jiang L, Kim S-W, Wakagi T. 2012. Fungal denitrification and nitric oxide reductase cytochrome P450nor. Philos. Trans. R. Soc. Lond. B. Biol. Sci. 367:1186–94.

8. Mothapo N V, Chen H, Cubeta MA, Shi W. 2013. Nitrous oxide producing activity of diverse fungi from distinct agroecosystems. Soil Biol. Biochem. 66:94–101.
9. Chen H, Mothapo N V, Shi W. 2014. The significant contribution of fungi to soil N\textsubscript{2}O production across diverse ecosystems. Appl. Soil Ecol. 73:70–77.

10. Hu H-W, Chen D, He J-Z. 2015. Microbial regulation of terrestrial nitrous oxide formation: understanding the biological pathways for prediction of emission rates. FEMS Microbiol. Rev. 39:729–749.

11. Shiro Y, Fujii M, Iizuka T, Adachi S, Tsukamoto K, Nakahara K, Shoun H. 1995. Spectroscopic and kinetic studies on reaction of cytochrome P450nor with nitric oxide: Implication for its nitric oxide reduction mechanism. J. Biol. Chem. 270:1617–1623.

12. Nakahara K, Tanimoto T, Hatano K, Usuda K, Shoun H. 1993. Cytochrome P-450 55A1 (P-450dNIR) acts as nitric oxide reductase employing NADH as the direct electron donor. J. Biol. Chem. 268:8350–8355.

13. Shimizu H, Park S-Y, Shiro Y, Adachi S. 2002. X-ray structure of nitric oxide reductase (cytochrome P450nor) at atomic resolution. Acta Crystallogr. Sect. D 58:81–89.

14. Novinscak A, Goyer C, Zebarth BJ, Burton DL, Chantigny MH, Filion M. 2016. Novel P450nor gene detection assay used to characterize the prevalence and diversity of soil fungal denitrifiers. Appl. Environ. Microbiol. 82:4560–4569.

15. Li Y, Liu Q, Liang X, Xiao Q, Fang Y, Wu Y. 2016. A new fluorescence biosensor for nitric oxide detection based on cytochrome P450 55B1. Sensors Actuators B Chem. 230:405–410.

16. Higgins SA, Welsh A, Orellana LH, Konstantinidis KT, Chee-Sanford JC, Sanford RA, Schadt CW, Löffler FE. 2016. Detection and diversity of fungal nitric oxide reductase genes (p450nor) in agricultural soils. Appl. Environ. Microbiol. 82:2919–2928.

17. Mahne I, Tiedje JM. 1995. Criteria and methodology for identifying respiratory denitrifiers. Appl. Environ. Microbiol. 61:1110–1115.

18. Shoun H. 1992. Denitrification by fungi. FEMS Microbiol. Lett. 94:277–281.

19. Tsuruta S, Takaya N, Zhang L, Shoun H, Kimura K, Hamamoto M, Nakase T. 1998. Denitrification by yeasts and occurrence of cytochrome P450nor in Trichosporon cutaneum. FEMS Microbiol. Lett. 168:105–110.
20. **Bleakley BH, Tiedje JM.** 1982. Nitrous oxide production by organisms other than nitrifiers or denitrifiers. Appl. Environ. Microbiol. 44:1342–1348.

21. **Stief P, Fuchs-Ocklenburg S, Kamp A, Manohar C-S, Houbraken J, Boekhout T, de Beer D, Stoeck T.** 2014. Dissimilatory nitrate reduction by *Aspergillus terreus* isolated from the seasonal oxygen minimum zone in the Arabian Sea. BMC Microbiol. 14:35.

22. **Zhou Z, Takaya N, Sakairi MAC, Shoun H.** 2001. Oxygen requirement for denitrification by the fungus *Fusarium oxysporum*. Arch. Microbiol. 175:19–25.

23. **Shoun H, Tanimoto T.** 1991. Denitrification by the fungus *Fusarium oxysporum* and involvement of cytochrome P-450 in the respiratory nitrite reduction. J. Biol. Chem. 266:11078–11082.

24. **Herold MB, Baggs EM, Daniell TJ.** 2012. Fungal and bacterial denitrification are differently affected by long-term pH amendment and cultivation of arable soil. Soil Biol. Biochem. 54:25–35.

25. **Rousk J, Demoling LA, Bååth E.** 2009. Contrasting short-term antibiotic effects on respiration and bacterial growth compromises the validity of the selective respiratory inhibition technique to distinguish fungi and bacteria. Microb. Ecol. 58:75–85.

26. **Ladan S, Jacinthe P-A.** 2016. Evaluation of antibacterial and antifungal compounds for selective inhibition of denitrification in soils. Environ. Sci. Process. Impacts.

27. **Phillips RL, Song B, McMillan AMS, Grelet G, Weir BS, Palmada T, Tobias C.** 2016. Chemical formation of hybrid di-nitrogen calls fungal codenitrification into question. Sci. Rep. 6:39077.

28. **Moktali V, Park J, Fedorova-Abrams N, Park B, Choi J, Lee Y-H, Kang S.** 2012. Systematic and searchable classification of cytochrome P450 proteins encoded by fungal and oomycete genomes. BMC Genomics 13:525.

29. **Kizawa H, Tomura D, Oda M, Fukamizu A, Hoshino T, Gotoh O, Yasui T, Shoun H.** 1991. Nucleotide sequence of the unique nitrate/nitrite-inducible cytochrome P-450 cDNA from *Fusarium oxysporum*. J. Biol. Chem. 266:10632–10637.

30. **Chen W, Lee M-K, Jefcoate C, Kim S-C, Chen F, Yu J-H.** 2014. Fungal cytochrome
P450 monooxygenases: their distribution, structure, functions, family expansion, and evolutionary origin. Genome Biol. Evol. 6:1620–1634.

31. Shoun H, Kano M, Baba I, Takaya N, Matsuo M. 1998. Denitrification by actinomycetes and purification of dissimilatory nitrite reductase and azurin from Streptomyces thioluteus. J. Bacteriol. 180:4413–4415.

32. Shapleigh JP. 2013. Denitrifying prokaryotes, p. 405–425. In Rosenberg, E, DeLong, EF, Lory, S, Stackebrandt, E, Thompson, F (eds.), The prokaryotes: Prokaryotic physiology and biochemistry. Springer Berlin Heidelberg, Berlin, Heidelberg.

33. Kumon Y, Sasaki Y, Kato I, Takaya N, Shoun H, Beppu T. 2002. Codenitrification and denitrification are dual metabolic pathways through which dinitrogen evolves from nitrate in Streptomyces antibioticus. J. Bacteriol. 184:2963–2968.

34. Moody SC, Loveridge EJ. 2014. CYP105—diverse structures, functions and roles in an intriguing family of enzymes in Streptomyces. J. Appl. Microbiol. 117:1549–1563.

35. Blackwell M, Hibbett DS, Taylor JW, Spatafora JW. 2006. Research coordination networks: a phylogeny for kingdom Fungi (Deep Hypha). Mycologia 98:829–837.

36. Martin F, Cullen D, Hibbett D, Pisabarro A, Spatafora JW, Baker SE, Grigoriev I V. 2011. Sequencing the fungal tree of life. New Phytol. 190:818–821.

37. Maeda K, Spor A, Edel-Hermann V, Heraud C, Breuil M-C, Bizouard F, Toyoda S, Yoshida N, Steinberg C, Philippot L. 2015. N$_2$O production, a widespread trait in fungi. Sci. Rep. 5.

38. Stolzer M, Lai H, Xu M, Sathaye D, Vernot B, Durand D. 2012. Inferring duplications, losses, transfers and incomplete lineage sorting with nonbinary species trees. Bioinforma. 28:i409–i415.

39. Nelson DR. 2009. The cytochrome P450 homepage. Hum. Genomics 4:59–65.

40. Barry SM, Kers JA, Johnson EG, Song L, Aston PR, Patel B, Krasnoff SB, Crane BR, Gibson DM, Loria R, Challis GL. 2012. Cytochrome P450–catalyzed L-tryptophan nitration in thaxtomin phytotoxin biosynthesis. Nat Chem Biol 8:814–816.

41. Dodani SC, Cahn JKB, Heinisch T, Brinkmann-Chen S, McIntosh JA, Arnold FH.
2014. Structural, functional, and spectroscopic characterization of the substrate scope of the novel nitrating cytochrome P450 TxtE. Chembiochem 15:2259–2267.

42. Morozkina E V., Kurakov A V. 2007. Dissimilatory nitrate reduction in fungi under conditions of hypoxia and anoxia: A review. Appl. Biochem. Microbiol. 43:544–549.

43. Poole RK, Hughes MN. 2000. New functions for the ancient globin family: bacterial responses to nitric oxide and nitrosative stress. Mol. Microbiol. 36:775–783.

44. Wisecaver JH, Alexander WG, King SB, Todd Hittinger C, Rokas A. 2016. Dynamic evolution of nitric oxide detoxifying flavohemoglobins, a family of single-protein metabolic modules in Bacteria and Eukaryotes. Mol. Biol. Evol.

45. Kasper HF. 1982. Nitrite reduction to nitrous oxide by propionibacteria: Detoxification mechanism. Arch. Microbiol. 133:126–130.

46. O’Keefe DP, Harder PA. 1991. Occurrence and biological function of cytochrome P450 monooxygenases in the actinomycetes. Mol. Microbiol. 5:2099–2105.

47. Wolf T, Shelest V, Nath N, Shelest E. 2016. CASSIS and SMIPS: promoter-based prediction of secondary metabolite gene clusters in eukaryotic genomes. Bioinforma. 32 :1138–1143.

48. Shoun H. 1992. Fungal denitrification and cytochrome P-450. J. Agric. Chem. Soc. Japan 66:154–157.

49. Guengerich FP, Munro AW. 2013. Unusual cytochrome P450 enzymes and reactions. J. Biol. Chem. 288:17065–17073.

50. Toyoda S, Yoshida N, Koba K. 2017. Isotopocule analysis of biologically produced nitrous oxide in various environments. Mass Spectrom. Rev. 36:135–160.

51. Yang H, Gandhi H, Ostrom NE, Hegg EL. 2014. Isotopic fractionation by a fungal P450 nitric oxide reductase during the production of N₂O. Environ. Sci. Technol. 48:10707–10715.

52. Decock C, Six J. 2013. How reliable is the intramolecular distribution of ^15N in N₂O to source partition N₂O emitted from soil? Soil Biol. Biochem. 65:114–127.
53. **Baggs EM.** 2008. A review of stable isotope techniques for N\textsubscript{2}O source partitioning in soils: recent progress, remaining challenges and future considerations. Rapid Commun. Mass Spectrom. **22:**1664–1672.

54. **Butterbach-Bahl K, Baggs EM, Dannenmann M, Kiese R, Zechmeister-Boltenstern S.** 2013. Nitrous oxide emissions from soils: how well do we understand the processes and their controls? Philos. Trans. Biol. Sci. **368:**1–13.

55. **Kurakov A V, Nosikov AN, Skrynnikova E V, L’vov NP.** 2000. Nitrate reductase and nitrous oxide production by *Fusarium oxysporum* 11dn1 under aerobic and anaerobic conditions. Curr. Microbiol. **41:**114–119.

56. **Tsuruta S, Takaya N, Zhang L, Shoun H, Kimura K, Hamamoto M, Nakase T.** 1998. Denitrification by yeasts and occurrence of cytochrome P450nor in *Trichosporon cutaneum*. FEMS Microbiol. Lett. **168:**105–110.

57. **Rohe L, Anderson T, Braker G, Flessa H, Giesemann A, Lewicka-Szczebak D, Wrase-Monnig N, Well R.** 2014. Dual isotope and isotopomer signatures of nitrous oxide from fungal denitrification - a pure culture study. Rapid Commun. Mass Spectrom. **28:**1893–1903.

58. **Zumft WG.** 2005. Nitric oxide reductases of prokaryotes with emphasis on the respiratory, heme–copper oxidase type. J. Inorg. Biochem. **99:**194–215.

59. **Gardner PR, Gardner AM, Martin LA, Dou Y, Li T, Olson JS, Zhu H, Riggs AF.** 2000. Nitric-oxide dioxygenase activity and function of flavohemoglobins: Sensitivity to nitric oxide and carbon monoxide inhibition. J. Biol. Chem. **275:**31581–31587.

60. **Yasutake Y, Imoto N, Fujii Y, Fujii T, Arisawa A, Tamura T.** 2007. Crystal structure of cytochrome P450 MoxA from *Nonomuraea recticatenae* (CYP105). Biochem. Biophys. Res. Commun. **361:**876–882.

61. **Stassi D, Donadio S, Staver MJ, Katz L.** 1993. Identification of a *Saccharopolyspora erythraea* gene required for the final hydroxylation step in erythromycin biosynthesis. J. Bacteriol. **175:**182–189.

62. **Clevenger KD, Bok JW, Ye R, Miley GP, Verdan MH, Velk T, Chen C, Yang K, Robey MT, Gao P, Lamprecht M, Thomas PM, Islam MN, Palmer JM, Wu CC, Keller NP, Kelleher NL.** 2017. A scalable platform to identify fungal secondary metabolites and their gene clusters. Nat Chem Biol **13:**895–901.
63. Chen S., Wang J., Lin X., Zhao B., Wei X., Li G., Kaliaperumal K., Liao S., Yang B., Zhou X., Liu J., Xu S., Liu Y. 2016. Chrysamides A–C, three dimeric nitrophenyl trans-epoxyamides produced by the deep-sea-derived fungus *Penicillium chrysogenum* SCSIO41001. *Org. Lett.* **18**:3650–3653.

64. Kovacic P., Somanathan R. 2014. Nitroaromatic compounds: Environmental toxicity, carcinogenicity, mutagenicity, therapy and mechanism. *J. Appl. Toxicol.* **34**:810–824.

65. Keller NP. 2015. Translating biosynthetic gene clusters into fungal armor and weaponry. *Nat Chem Biol* **11**:671–677.

66. Macheleidt J., Mattern DJ., Fischer J., Netzker T., Weber J., Schroekh V., Valiante V., Brakhage AA. 2016. Regulation and role of fungal secondary metabolites. *Annu. Rev. Genet.* **50**:371–392.

67. Janssen PH., Yates PS., Grinton BE., Taylor PM., Sait M. 2002. Improved culturability of soil bacteria and isolation in pure culture of novel members of the divisions *Acidobacteria, Actinobacteria, Proteobacteria*, and *Verrucomicrobia*. *Appl. Environ. Microbiol.* **68**:2391–2396.

68. Chen H., Walsh CT. 2001. Coumarin formation in novobiocin biosynthesis: β-hydroxylation of the aminoacyl enzyme tyrosyl-S-NovH by a cytochrome P450 NovI. *Chem. Biol.* **8**:301–312.

69. Ninnemann H., Maier J. 1996. Indications for the occurrence of nitric oxide synthases in fungi and plants and the involvement in photoconidiation of *Neurospora crassa*. *Photochem. Photobiol.* **64**:393–398.

70. Samalova M., Johnson J., Illes M., Kelly S., Fricker M., Gurr S. 2013. Nitric oxide generated by the rice blast fungus *Magnaporthe oryzae* drives plant infection. *New Phytol.* **197**:207–222.

71. Spatafora JW., Chang Y., Benny GL., Lazarus K., Smith ME., Berbee ML., Bonito G., Corradi N., Grigoriev I., Gryganskyi A., James TY., O’Donnell K., Roberson RW., Taylor TN., Uehling J., Vilgalys R., White MM., Stajich JE. 2016. A phylum-level phylogenetic classification of zygomycete fungi based on genome-scale data. *Mycol.* **108**:1028–1046.
72. **Weathers PJ.** 1984. N₂O evolution by green algae. Appl. Environ. Microbiol. **48**:1251–1253.

73. **Guieysse B, Plouviez M, Coilhac M, Cazali L.** 2013. Nitrous oxide (N₂O) production in axenic *Chlorella vulgaris* microalgal cultures: evidence, putative pathways, and potential environmental impacts. Biogeosciences **10**:6737–6746.

74. **Plouviez M, Wheeler D, Shilton A, Packer MA, McLenachan PA, Sanz-Luque E, Ocana-Calahorro F, Fernandez E, Guieysse B.** 2017. The biosynthesis of nitrous oxide in the green alga *Chlamydomonas reinhardtii*. Plant J.

75. **Philippot L.** 2005. Denitrification in pathogenic bacteria: for better or worst? Trends Microbiol. **13**:191–192.

76. **Myburg AA, den Berg N, Viljoen A.** 2013. Pathogenicity associated genes in *Fusarium oxysporum* f. sp. *cubense* race 4. S. Afr. J. Sci. **109**:1–10.

77. **McFadden HG, Wilson IW, Chapple RM, Dowd C.** 2006. Fusarium wilt (*Fusarium oxysporum* f. sp. vasinfectum) genes expressed during infection of cotton (*Gossypium hirsutum*)†. Mol. Plant Pathol. **7**:87–101.

78. **Jones CM, Welsh A, Throbäck IN, Dörsch P, Bakken LR, Hallin S.** 2011. Phenotypic and genotypic heterogeneity among closely related soil-borne N₂- and N₂O-producing *Bacillus* isolates harboring the *nosZ* gene. FEMS Microbiol. Ecol. **76**:541–52.

79. **Graf DRH, Jones CM, Hallin S.** 2014. Intergenomic comparisons highlight modularity of the denitrification pathway and underpin the importance of community structure for N₂O emissions. PLoS One **9**.

80. **Philippot L.** 2002. Denitrifying genes in bacterial and archaeal genomes. Biochim. Biophys. Acta - Gene Struct. Expr. **1577**:355–376.

81. **Simão FA, Waterhouse RM, Ioannidis P, Kriventseva E V, Zdobnov EM.** 2015. BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics **31**:3210–3212.

82. **She R, Chu JS-C, Uyar B, Wang J, Wang K, Chen N.** 2011. genBlastG: using BLAST searches to build homologous gene models. Bioinforma. **27**:2141–2143.
83. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. 1990. Basic local alignment search tool. J. Mol. Biol. 215:403–410.

84. Li W, Cowley A, Uludag M, Gur T, McWilliam H, Squizzato S, Park YM, Buso N, Lopez R. 2015. The EMBL-EBI bioinformatics web and programmatic tools framework. Nucleic Acids Res. 43:W580–W584.

85. Mistry J, Bateman A, Finn RD. 2007. Predicting active site residue annotations in the Pfam database. BMC Bioinformatics 8:298.

86. Finn RD, Mistry J, Tate J, Coggill P, Heger A, Pollington JE, Gavin OL, Gunasekaran P, Ceric G, Forslund K, Holm L, Sonnhammer ELL, Eddy SR, Bateman A. 2010. The Pfam protein families database. Nucleic Acids Res. 38:D211–D222.

87. 2015. UniProt: a hub for protein information. Nucleic Acids Res. 43:D204–D212.

88. Fish J, Chai B, Wang Q, Sun Y, Brown CT, Tiedje J, Cole J. 2013. FunGene: the functional gene pipeline and repository. Front. Microbiol. 4:291.

89. Pruitt KD, Tatusova T, Maglott DR. 2007. NCBI reference sequences (RefSeq): a curated non-redundant sequence database of genomes, transcripts and proteins. Nucleic Acids Res. 35:D61–D65.

90. Korf I. 2004. Gene finding in novel genomes. BMC Bioinformatics 5:59.

91. Inglis D, Binkley J, Skrzypek M, Arnaud M, Cerqueira G, Shah P, Wymore F, Wortman J, Sherlock G. 2013. Comprehensive annotation of secondary metabolite biosynthetic genes and gene clusters of Aspergillus nidulans, A. fumigatus, A. niger and A. oryzae. BMC Microbiol. 13:91.

92. Eddy SR. 2009. A new generation of homology search tools based on probabilistic inference. Genome Inform. 23:205–211.

93. Powell S, Szklarczyk D, Trachana K, Roth A, Kuhn M, Muller J, Arnold R, Rattei T, Letunic I, Doerks T, Jensen LJ, von Mering C, Bork P. 2012. eggNOG v3.0: orthologous groups covering 1133 organisms at 41 different taxonomic ranges. Nucleic Acids Res. 40:D284–D289.
94. **Emms DM, Kelly S.** 2015. OrthoFinder: solving fundamental biases in whole genome comparisons dramatically improves orthogroup inference accuracy. Genome Biol. **16**:1–14.

95. **Richter M, Rosselló-Móra R.** 2009. Shifting the genomic gold standard for the prokaryotic species definition. Proc. Natl. Acad. Sci. **106**:19126–19131.

96. **Kurtz S, Phillippy A, Delcher AL, Smoot M, Shumway M, Antonescu C, Salzberg SL.** 2004. Versatile and open software for comparing large genomes. Genome Biol. **5**:R12.

97. **Hunter JD.** 2007. Matplotlib: A 2D graphics environment. Comput. Sci. Eng. **9**:90–95.

98. **Katoh K, Asimenos G, Toh H.** 2009. Multiple alignment of DNA sequences with MAFFT. Methods Mol. Biol. **537**:39–64.

99. **Price MN, Dehal PS, Arkin AP.** 2010. FastTree 2 – approximately maximum-likelihood trees for large alignments. PLoS One **5**:e9490.

100. **Mirarab S, Warnow T.** 2015. ASTRAL-II: coalescent-based species tree estimation with many hundreds of taxa and thousands of genes. Bioinformatics **31**:i44–i52.

101. **Waterhouse AM, Procter JB, Martin DMA, Clamp M, Barton GJ.** 2009. Jalview Version 2—a multiple sequence alignment editor and analysis workbench. Bioinforma. **25**:1189–1191.

102. **Galtier N, Gouy M, Gautier C.** 1996. SEAVIEW and PHYLO_WIN: two graphic tools for sequence alignment and molecular phylogeny. Comput. Appl. Biosci. **12**:543–548.

103. **Stamatakis A.** 2006. RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics **22**:2688–90.

104. **Ronquist F, Teslenko M, van der Mark P, Ayres DL, Darling A, Höhna S, Larget B, Liu L, Suchard MA, Huelsenbeck JP.** 2012. MrBayes 3.2: efficient bayesian phylogenetic inference and model choice across a large model space. Syst. Biol. **61**:539–542.

105. **Abascal F, Zardoya R, Posada D.** 2005. ProtTest: selection of best-fit models of protein evolution. Bioinforma. **21**:2104–2105.
106. **Posada D.** 2008. jModelTest: Phylogenetic model averaging. Mol. Biol. Evol. **25**:1253–1256.

107. **Pagel M, Meade A, Barker D.** 2004. Bayesian estimation of ancestral character states on phylogenies. Syst. Biol. **53**:673–684.

108. **Shimodaira H, Hasegawa M.** 2001. CONSEL: for assessing the confidence of phylogenetic tree selection. Bioinformatics **17**:1246–1247.

109. **Chen K, Durand D, Farach-Colton M.** 2000. NOTUNG: A program for dating gene duplications and optimizing gene family trees. J. Comput. Biol. **7**:429–447.

110. **Team RDC.** 2012. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria.
Figure 1. Maximum-Likelihood phylogeny of the kingdom Fungi inferred from a concatenated alignment of 238 single copy marker gene amino acid sequences (see Materials and Methods). Black circles marking branches indicate nodes with bootstrap percentages below 90%. Colored markers outside taxon names specify the presence or absence of each gene (narG, napA, nirK, p450nor, flavohemoglobin) within a fungal genome. Flavohb, flavohemoglobin genes involved in NO detoxification. The scale bar (center of tree) represents amino acid substitutions per site. A high-resolution file of the tree is available at https://doi.org/10.6084/m9.figshare.c.3845692.
Figure 2. Midpoint-rooted Bayesian phylogeny of select families of cytochrome P450 amino acid sequences from fungi, algae, and bacteria. Ancestral state reconstruction was performed using CYP55 (orange), CYP105 (green), and other CYPs (purple) to uncover the shared ancestry of algal and fungal N₂O-producing cytochrome P450s with their most recent common bacterial ancestor. The scale bar indicates substitutions per site and posterior probability values < 1 are displayed above branches of the Bayesian MCMC analysis. Numbers in parentheses next to collapsed clades indicate the number of sequences in the clade. Values in pie charts are average probabilities of each character state across one representative Bayesian MCMC analysis.
Figure 3. SM gene cluster predictions for a subset of 32 (167 total) p450nor-containing fungi. The boxes to the right of the rooted Maximum-Likelihood phylogeny indicate whether the p450nor-containing genomic region was predicted by antiSMASH (blue squares) or CASSIS (red squares) to be an SM gene cluster. White squares indicate no prediction. Colored arrows indicate protein-coding genes surrounding p450nor that were automatically predicted (dark blue arrow), manually predicted (light blue arrow) or not predicted (grey arrow) to be involved in SM (see Materials and Methods for details). The black stars next to species names are individuals chosen for in depth presentation of the genes surrounding p450nor (Fig. S9).
Figure 4. Maximum-Likelihood phylogenetic trees of non-ribosomal peptide synthase and polyketide synthase domains encoded within p450nor-containing genomic regions. Each phylogeny displays relationships of C-type condensation (C-type) (A) or ketosynthase (KS) domains (B) detected in non-ribosomal peptide and polyketide synthase amino acid sequences, respectively, encoded within p450nor-containing genomic regions. A black star next to taxa indicates C-type or KS domains identified in fungal genomes nearby p450nor. The NCBI or JGI accession numbers are shown in parentheses next to taxa with black stars. Taxa without black stars are reference amino acid sequences of C-type and KS domains curated by the NAPDOS database, and their NAPDOS accession numbers are indicated in parentheses. Proteins from species without accession numbers were predicted ab initio using SNAP (90) (see Materials and Methods for details). Chemical structures and names of secondary metabolites produced by NAPDOS reference sequences are indicated and highlighted distinct colors for clarity. Scale bars indicate amino acid substitutions per site. Values along branches indicate bootstrap support for the adjacent node.
Figure 5. Within genera alignments of *p450nor*-containing genomic regions (N = 136) from species with and without *p450nor*. Alignment of two species with *p450nor*-containing genomic regions (red circles) (A) or between two species where only one member possesses *p450nor* (teal circles) (B). The overlay of the two plots in (C) indicates conservation of genomic architecture regardless of *p450nor* presence or absence. The size of the circles is proportional to the square root of the aligned length of the genomic regions. The gene synteny plot (D) highlights conservation of genomic architecture using a *p450nor*-containing genomic region from *Exophiala xenobiotia* aligned to three additional closely-related *Exophiala* species that do not possess *p450nor*. The arrows represent gene models within the gene region displayed. Both arrows and connecting lines above and below arrows are colored according to Figure 3 (see Materials and Methods for details). Lines connecting arrows between species indicate the genes are homologous. The scale bars (left to right) in (D) indicate substitutions per site and genome size in kilobases, respectively. The location of *p450nor* in *E. xenobiotica* is indicated in red font. The labels in black font describes the putative functions of proteins encoded by each gene. PKS - polyketide synthase, hyp – hypothetical protein, PGA2 – protein trafficking protein, MMS1_N – MMS1-like protein, dehyd – dehydrogenase, F-box – F-box domain containing protein, Mre-11 – double strand break repair protein Mre-11, Upf3 – nonsense mediated mRNA decay protein 3, MPP – metallophosphatase, AAA – ATPase, CAD1 – cinnamyl alcohol dehydrogenase, MHR TF – middle homology region transcription factor, P450 – cytochrome P450 reductase, Zn Pep – zinc peptidase superfamily protein, UvdE – UV-endonuclease, C2H2 – zinc finger C2H2 type, DAO – D-amino acid oxidase, endogluc – endoglucanase.
List of Supplemental Materials

Table S1. Counts of denitrification traits and their co-occurrences in fungal genomes.

Table S2. Results from approximately unbiased tests for the monophyly of fungal classes within *napA*, *nirK*, and *p450nor* gene trees. Where indicated, the monophyly of two lineages was also assessed. Bold font data indicate that the AU test rejected the monophyly of the taxa. Test significance was evaluated at $p \leq 0.05$.

Table S3. Results from species-tree gene-tree reconciliation using NOTUNG software for *napA*, *nirK*, and *p450nor* genes in fungi. Values are averages of solutions with standard deviations reported in parentheses.

Table S4. Predicted horizontal gene transfers of fungal *p450nor*, *napA*, and *nirK* genes based on alien index algorithm.

Table S5. List of genera containing species with and without *p450nor*.

Figure S1. Gene abundances of *narG*, *napA*, *nirK*, *p450nor*, and flavohemoglobins (colored bars) mapped on to fungal families (cladogram, left). Relationships among fungal families in the cladogram were derived from the NCBI taxonomy using the online tool phyloT (http://phylot.biobyte.de/index.html).

Figure S2. Maximum-Likelihood phylogenies connecting fungal species with their respective NO reductase (*p450nor*) gene sequence(s). On the left, an amino acid phylogeny of 238 concatenated single copy orthologues from fungal species in which one or more *p450nor* gene(s) were detected. The *p450nor* nucleotide phylogeny (right) demonstrates many instances of incongruence with the fungal species phylogeny. Black dots in each phylogeny represent bootstrap percentages greater than or equal to 90%. Scale bars represent amino acid (left tree) and nucleotide (right tree) substitutions per site. A high-resolution file of the tree is available at https://doi.org/10.6084/m9.figshare.c.3845692.

Figure S3. Cophylogenetic plot of *napA*-containing fungal species (left, N = 75) and the *napA* nucleotide tree (right, N = 78). Both are midpoint rooted Maximum-Likelihood trees where black dots represent bootstrap percentages ≥90%. Scale bars indicate substitutions per site for the concatenated amino acid species phylogeny and nucleotide phylogeny, respectively. A high-resolution file of the tree is available at https://doi.org/10.6084/m9.figshare.c.3845692.

Figure S4. Cophylogenetic plot of *nirK*-containing fungal species (left, N = 82) and the *nirK* nucleotide tree (right, N = 83). Both are midpoint rooted Maximum-Likelihood trees where black dots represent bootstrap percentages ≥90%. Scale bars indicate substitutions per site for the concatenated amino acid species phylogeny and nucleotide phylogeny, respectively. A high-resolution file of the tree is available at https://doi.org/10.6084/m9.figshare.c.3845692.

Figure S5. Plot of alien index values observed for *p450nor* genes (N = 178). Points above the hashed line at the origin are indicative of HGT. Names of fungal species with alien index values
above zero are ordered as their points appear on the graph. Thick horizontal lines represent the median alien index value. See Materials and Methods in the main text for details on alien index calculations.

Figure S6. Bayesian tree reconstruction of actinobacterial and proteobacterial 16S rRNA genes (left, N = 55) and cytochrome P450 family 105 amino acid sequences (right, N = 57). Both phylogenies represent 50% majority-rule consensus trees. The tree on the left is rooted with proteobacterial sequences as outgroup to the *Actinobacteria*. The tree on the right is midpoint rooted. Nodes with posterior probabilities ≥ 0.95 are indicated by black circles on an adjacent branch.

Figure S7. Midpoint rooted Bayesian (left) and Maximum-Likelihood phylogenies (right) of cytochrome P450 sequences (N = 408) demonstrating the affiliation of P450nor with other sequences belonging to members of the bacterial phyla Actinobacteria and Proteobacteria. Cyanobacterial cytochrome P450 sequences were included as outgroups. Black squares on branches (left tree) indicate ≥0.95 posterior probability or ≥90 % bootstrap replication (right tree). The colored legend indicates the cytochrome P450 family specified by shared amino acid identity of ≥40 % (D.R. Nelson, Hum Genomics 4:59-65, 2009).

Figure S8. Bayesian and Maximum-likelihood phylogenies of NapA, NirK, and P450nor amino acid sequence homologs extracted from the RefSeq protein database. A high-resolution file of these trees are available at https://doi.org/10.6084/m9.figshare.c.3845692.

Figure S9. Genome regions chosen for in depth presentation of protein coding genes surrounding *p450nor* in predicted BGC regions. Labels above genes are functional annotations from alignments to the eggNOG database. NCBI gene loci accessions are labeled below each gene.