Abstract: A few elementary estimates of a basic character sum over the prime numbers are derived here. These estimates are nontrivial for character sums modulo large q. In addition, an omega result for character sums over the primes is also included.

Mathematics Subject Classifications: Primary 11L20, 11L40; Secondary 11L03, 11L07.
Keyword: Character sums, Exponential sums, Gauss sums, Polya-Vinogradov inequality, Prime numbers.

1 Introduction
Let $q \geq 1$ be an integer, and let $\chi \neq 1$ be a nonprincipal character modulo q. The tasks of determining nontrivial estimates and explicit estimates of the basic character sums

$$\sum_{p \leq x} \chi(p), \quad \text{and} \quad \sum_{p \leq x} \chi(p)$$

over the primes, arithmetic progressions or the integers up to $x \geq 1$ are extensively studied problems in the analytic number theory literature, [KA], [GS], [GK], [GR], [PM], [TR], et alii.

The earliest nontrivial estimate of the basic character sum over the prime numbers, in the literature, seems to be the Vinogradov estimate

$$\sum_{p \leq x} \chi(p) = O(\pi(x)q^{-\delta})$$

for arbitrarily small real number $\varepsilon > 0$, all sufficiently large number $x > q^{1+\varepsilon}$, and $\delta = \delta(\varepsilon) > 0$, see [KA, p. 156]. This is slightly better than the trivial estimate $\sum_{p \leq x} \chi(p) \leq \pi(x)$, where $\pi(x) = \# \{ p \leq x : p \text{ prime} \}$.

Many other estimates of various forms such as $\sum_{p \leq x} \chi(p) = O(x / \log^B x)$, $B > 1$ constant, are available in the
literature, see [IK, p. 348], [FR], and similar references. A survey of open problems in exponential and character sums appears in [SK].

The elementary estimates and evaluation in Theorems 1, 2, 3, and 4 for character sums over the prime numbers are derived by elementary methods, and appear to be nontrivial for character sums over the prime numbers modulo large q.

2 Character Sums Over The Prime Numbers

There are various other related, and more sophisticated results available in the literature, confer the more recent works given in [KA], [FR], et alii. The estimates of character sums over the primes derived here, by elementary methods, are simpler, and similar to the Polya-Vinogradov inequality, and the Paley inequality in forms and the theoretical frameworks.

The proof uses a windowing technique to spread the calculations into two parts: the main component, and an error component. This spreading is intrinsic in the Fourier series of a window function. It closely follows the pattern of the proof of the Polya-Vinogradov inequality using a window function constructed in [PM], and attributed to Landau.

Theorem 1. Let $q \geq 3$ be a large integer, and let $\chi \neq 1$ be a nonprincipal character modulo q. Then

\[
\left| \sum_{p \leq x} \chi(p) \right| = O(q^{1/2+\varepsilon})
\]

for any large number $x \geq 1$ such that $x \leq q^{1-\varepsilon}$, and arbitrarily small $\varepsilon > 0$. In particular,

\[
\max_{1 \leq x \leq q^{1-\varepsilon}} \left| \sum_{p \leq x} \chi(p) \right| = O(q^{1/2+\varepsilon}).
\]

Proof: Utilize the window function $W(t)$, see Lemma 7, to rewrite the character sum over the primes as

\[
\sum_{p \leq x} \chi(p) = \frac{\chi(x)}{2} + \sum_{l \leq p < q} \chi(p) W \left(\frac{2\pi p}{q} \right)
\]

\[
= \frac{\chi(x)}{2} + \sum_{l \leq p < q} \chi(p) \left(a_0 + \sum_{m \geq 1} \left(a_m \cos \frac{2\pi mp}{q} + b_m \sin \frac{2\pi mp}{q} \right) \right)
\]

\[
= \frac{\chi(x)}{2} + \sum_{l \leq p < q} \chi(p) \left(a_0 + \sum_{k \geq 1} \left(a_m \cos \frac{2\pi mp}{q} + b_m \sin \frac{2\pi mp}{q} \right) \right)
\]

\[
+ \sum_{l \leq p < q} \chi(p) \left(\sum_{K \geq 1} \left(a_m \cos \frac{2\pi mp}{q} + b_m \sin \frac{2\pi mp}{q} \right) \right)
\]

\[
= P_K + Q_K + \frac{\chi(x)}{2} + \frac{x}{q} \sum_{l \leq p < q} \chi(p),
\]

where P_K and Q_K are the main and error components, respectively.
where the initial parameters are set to $M = 0$, $N = x$, and $a_0 = x/q$, see Lemma 7. Further, the parity of the character $\chi \neq 1$ classifies the character sum as one of the two types:

$$
\rho(\chi) \sum_{p \in \mathbb{P}} \chi(p) = \begin{cases}
\sum_{p \in \mathbb{P}} \sum_{t \equiv a \mod q} \overline{\chi}(t) \cos \frac{2\pi pt}{q}, & \text{if } \chi(-1) = 1 \text{ is even}, \\
\sum_{p \in \mathbb{P}} \sum_{t \equiv a \mod q} \overline{\chi}(t) \sin \frac{2\pi pt}{q}, & \text{if } \chi(-1) = -1 \text{ is odd},
\end{cases}
$$

(6)

where $\rho(\chi) = \sum_{p \in \mathbb{P}} \chi(p) e^{2\pi p/q}$ is the complete prime exponential sum, see Theorem 2, and Lemmas 5 and 6. In synopsis, this simplifies the analysis since the sine terms vanish if the character is even; likewise, the cosine terms vanish if the character is odd.

Case of Even Character $\chi(-1) = 1$. In this case the expressions P_K and Q_K have the following upper bounds:

$$
P_K = \sum_{1 \leq p < q} \chi(p) \sum_{m \leq K} \left(a_m \cos \frac{2\pi mp}{q} + b_m \sin \frac{2\pi mp}{q} \right)
$$

$$
= \sum_{1 \leq p < q} \sum_{m \leq K} a_m \chi(p) \cos \frac{2\pi mp}{q}
$$

$$
= \rho(\chi) \sum_{m \leq K} a_m \overline{\chi}(m),
$$

(7)

refer to equations (5) and (6). Now, replacing the coefficients a_m, see Lemma 7, taking absolute value, and simplifying return

$$
|P_K| = \left| \rho(\chi) \sum_{m \leq K} a_m \overline{\chi}(m) \right|
$$

$$
= \left| \rho(\chi) \sum_{m \leq K} \left(\frac{1}{\pi m} \sin \frac{2\pi mx}{q} \overline{\chi}(m) \right) \right|
$$

$$
\leq q^{1/2} \sum_{m \leq K} \frac{1}{\pi m}
$$

$$
\leq c_0 q^{1/2} \log K,
$$

(8)

where $|\rho(\chi)| \leq \pi(q)^{1/2} \leq q^{1/2}$, see Theorem 2, and $c_0 > 0$ is a constant. A slightly different procedure is applied to the expression Q_K: replacing the coefficients a_m yields

$$
Q_K = \sum_{1 \leq p < q} \chi(p) \sum_{K < m} \left(a_m \cos \frac{2\pi mp}{q} + b_m \sin \frac{2\pi mp}{q} \right)
$$

$$
= \sum_{1 \leq p < q} \chi(p) \sum_{K < m} \left(\frac{-1}{\pi m} \cos \frac{2\pi mx}{q} \right) \cos \frac{2\pi mp}{q}
$$

$$
= \frac{-1}{\pi} \sum_{1 \leq p < q} \chi(p) \sum_{K < m} \frac{1}{m} \left(\sin \frac{2\pi (x - p)m}{q} + \sin \frac{2\pi mx}{q} \right),
$$

(9)
see equation (5), and Lemma 7. Now, taking absolute value, and simplifying return

\[
\left| Q_K \right| = \left| \frac{1}{\pi} \sum_{1 \leq p \leq q} \chi(p) \sum_{k \leq m} \frac{1}{m} \left(\sin \frac{2\pi(x-p)m}{q} + \sin \frac{2\pi mp}{q} \right) \right|
\]

\[
\leq 2 \left| \sum_{1 \leq p \leq q} \chi(p) \sum_{k \leq m} \frac{1}{\pi m} \left(\sin \frac{2\pi mp}{q} \right) \right|
\]

\[
\leq \frac{4}{\pi} \sum_{1 \leq p \leq q} \sum_{k \leq m} \left| \frac{1}{m} \sin \frac{2\pi mp}{q} \right|
\]

\[
\leq c_1 \frac{q}{K+1} \log K,
\]

where \(c_1 > 0 \) is a constant, this follows from the estimate of Lemma 8. Rearrange (5) as

\[
\mathcal{S}(x) = \frac{q}{q-x} \left(P_k + Q_k + \frac{\chi(x)}{2} \right),
\]

and consider the list of all the estimates:

\[
\left| P_k \right| \leq c_0 q^{1/2} \log K, \quad \left| Q_K \right| \leq c_1 \frac{q}{K+1} \log K, \quad \left| \frac{\chi(x)}{2} \right| \leq 1.
\]

Put \(K = K(x) \), for example, \(K = x^2 \) if \(x \geq q^{1/2} \), or \(K = x^4 \) if \(x \geq q^{1/4} \), etc. Then, it quickly follows that \(q/(q-x) \leq c_2 \) for any large number \(x \geq 1 \) such that \(x \leq q^{1-\varepsilon} \), \(c_2 > 0 \) constant. Lastly, applying the triangle inequality yields

\[
\left| \sum_{p \leq x} \chi(p) \right| \leq \frac{q}{q-x} \left(P_k + Q_k + \frac{\chi(x)}{2} \right) \leq c_3 q^{1/2+\varepsilon},
\]

where \(c_3 > 0 \) constant.

Case of Odd Character \(\chi(-1) = -1 \). The proof is similar.

For a fixed \(q \geq 3 \), and nonprincipal character \(\chi \neq 1 \) modulo \(q \), the prime character sum \(\sum_{p \leq x} \chi(p) \) is unbounded as \(x \to \infty \), see Theorem 4. But it has an upper bound on the interval \([1, x], x \leq q\). The norm of the complete prime exponential sum \(\rho(\chi) = \sum_{p \leq q} \chi(p)e^{2\pi p/q} \) is calculated below.
Theorem 2. Let \(q \geq 3 \) be a large integer, and let \(\chi \neq 1 \) be a character modulo \(q \). Then \(|\rho(\chi)| \leq \sqrt{q} \).

Proof: Let \(t \not= 0 \) be a parameter. By definition, the norm is given by

\[
|\rho(t, \chi)|^2 = \left(\sum_{p \leq q} \chi(p) e^{i2\pi pt/q} \right) \left(\sum_{r \leq q} \overline{\chi}(r) e^{-i2\pi rt/q} \right)
= \pi(q) + a + \sum_{p, r \leq q, \ p \neq r} \chi(pr^{-1}) e^{i2\pi (p-r)t/q},
\]

(14)

where \(p \) and \(r \) run over the prime numbers up to \(q \geq 3 \), \(\pi(q) \) denotes the number of primes counting function, \(\omega(n) = \# \{ p \mid n \} \), denotes the number of prime divisors counting function, and

\[
a = \begin{cases}
\omega(q) - 1 & \text{if } q \text{ is prime}, \\
\omega(q) & \text{if } q \text{ is composite}.
\end{cases}
\]

(15)

The averages of the norm \(|\rho(t, \chi)|^2 \) with respect to the variables \(t \) and \(\chi \) are:

\[
E_x = \frac{1}{q} \sum_{0 < \chi < q} |\rho(t, \chi)|^2 = \pi(q) + a, \quad \text{and} \quad E_y = \frac{1}{q(q-1)} \sum_{0 < \chi < q} |\rho(y, \chi)|^2 = \pi(q) + a
\]

(16)

respectively. These information shows that the norm \(|\rho(t, \chi)|^2 \) of any prime exponential sum \(\rho(t, \chi) \) is independent of the variables \(t \) and \(\chi \). Moreover, the oscillating error term in (14) is a complex number

\[
R(t, \chi) = \sum_{p, r \leq q, \ p \neq r} \chi(pr^{-1}) e^{i2\pi (p-r)t/q} = |R(t, \chi)| e^{i\theta}
\]

(17)

where the magnitude \(|R(t, \chi)| \geq 0 \), and the angle \(\theta = \theta(t, \chi) \) are functions of the variables \(t \) and \(\chi \). Since

\[
-|R(t, \chi)| \leq |R(t, \chi)| e^{i\theta} \leq |R(t, \chi)|,
\]

(18)

And the norm is nonnegative

\[
|\rho(t, \chi)|^2 = \pi(q) + a + |R(t, \chi)| e^{i\theta} \geq 0.
\]

(19)

It readily follows that the error term is bounded as \(|R(t, \chi)| \leq \pi(q) + a \). Therefore, the norm has the form

\[
|\rho(t, \chi)|^2 = \pi(q) + a + R(t, \chi) \leq q,
\]

(20)

with the error term \(|R(t, \chi)| = O(q / \log q) \).
3 Comparisons Of Character Sums Over The Primes And Integers

The two basic character sums (1) are linked via the formula

$$\sum_{p \leq x} \chi(p) = \sum_{n \leq x} \chi(n) \left(- \sum_{d|n} \mu(d) \frac{\log d}{\log n} \right) + O(x^{1/2}),$$

(21)

so it should not be surprising that these character sums have comparable upper bounds on the interval $[1, x]$. This relationship arises after an application of the Mobius inversion pair

$$\sum_{d|n} \Lambda(d) = \log n \quad \text{and} \quad \Lambda(n) = \sum_{d|n} \mu(d) \log n / d,$$

(22)

and the identity

$$\sum_{p \leq x} \chi(p) = \sum_{n \leq x} \chi(n) \frac{\Lambda(n)}{\log n} + O(x^{1/2}),$$

(23)

which decouples the complicated character sum over the primes into a product of two simpler character sums.

Furthermore, the mean square value basic character sum over the primes is given by

$$\sum_{\chi \in S(Q)} \left| \sum_{p \leq x} \chi(p) \right|^2 \leq c Q^{\beta+\epsilon},$$

(24)

where $S(Q)$ is the set of primitive characters of conductor up to Q, $\beta = \max \{ 1 + \alpha / 2, 1 / 2 + \alpha \}$, $0 < \alpha \leq 1$, and $c > 0$ constant, see [HB] for more general results. Compare this to (15).

The estimate of the basic character sum $\sum_{n \leq x} \chi(n)$ over the integers is given by the Polya-Vinogradov inequality.

Theorem 3. Let $q \in \mathbb{N}$ be a large integer, and let $\chi \neq 1$ be a character modulo q. Then

$$\left| \sum_{n \leq x} \chi(n) \right| \leq 2q^{1/2} \log q$$

(25)

for any real number such that $x > q^{1-\epsilon}$, $\epsilon > 0$.

Proof: Let $q \equiv 2 \mod 4$, and let $\chi \neq 1$ be a character modulo q. The basic character sum over the integers can be written as

$$\sum_{n \leq x} \chi(n) = \sum_{n \leq x} \frac{1}{\tau(\chi)} \sum_{t \leq q} \bar{\chi}(t) e^{2\pi i nt/q},$$

(26)

see Lemma 6. Rearrange and evaluate this representation into the form
\[\sum_{n \leq x} \chi(n) = \frac{1}{\tau(\chi)} \sum_{t \equiv q} \mathcal{X}(t) \left(e^{i2\pi (x+1)/t} - 1 \right), \]

(27)

where \(|\tau(\chi)| = \sqrt{q}\), or \(|\tau(\chi)| = \sqrt{2q}\). An upper estimate is

\[\left| \sum_{n \leq x} \chi(n) \right| \leq \frac{1}{\sqrt{q}} \sum_{t \equiv q} \frac{1}{|\sin \pi t / q|} \leq cq^{1/2} \log q, \]

(28)

where \(|\sin \pi t / q| \approx \pi t / q\) for \(1 \leq t < q\) was utilized, and \(c > 0\) is a constant.

The exceptional value \(q = 2 \mod 4\) stems from the vanishing of the Gaussian sum \(\sum_{0 \leq t < p} \chi(t) e^{i2\pi t / q} = 0\) whenever \(\chi \neq 1\) is a quadratic character modulo \(q = 2 \mod 4\), see Lemma 6. The numbers \(q = 2 \mod 4\) seem to be exceptional values of the Polya-Vinogradov inequality \(\sum_{n \leq x} \chi(n) \leq c q^{1/2} \log q, c > 0\) constant. But this seems to be irrelevant since there is different proof of the Polya-Vinogradov inequality, refer to [DW].

The Polya-Vinogradov estimate is nontrivial for any real number such that \(x > q^{1-x}, \varepsilon > 0\). The estimates of character sums over short intervals of length \(x < q^{1-x}\) are more delicate and complex. The analysis for the short range of values \(x < q^{1-x}\) are given in [GS], [GK], [GR], [BR], LZ and similar literature. The nontrivial estimates of \(\sum_{n \leq x, n \equiv a \mod q} \chi(n)\) over arithmetic progressions \(\{ p = qn + a : \gcd(a, q) = 1, n \geq 1 \}\) are given in [FR].

4 Omega Result For Character Sums Over The Prime Numbers

The Polya-Vinogradov inequality is about the best possible since the Paley inequality

\[\sum_{n \leq x} \chi(n) \geq cq^{1/2} \log \log q \]

(29)

holds for some characters \(\chi \neq 1\), and infinitely many primes \(q\), and \(c > 0\) constant, confer [MV, p. 312] for a proof. A similar omega result can be obtained for the basic character sums over the prime numbers.

Let \(q\) be a large integer, and let \(g\) be a primitive root modulo \(q\). For \(q \neq 2^m\), a multiplicative character has the form \(\chi_k(n) = e^{i2\pi k \text{Ind}_n / q(\phi(q))}\), where \(0 \leq k < q\), and \(\text{Ind}_n\) is the discrete logarithm modulo \(q\), see Section 6. The character \(\chi\) is called even if \(\chi(-1) = 1\), otherwise, it is odd and \(\chi(-1) = -1\). For example, every character such that \(\gcd(2, k) = 1\) is odd.

The cancelation mechanism of some Dirichlet characters springs from some unique pairwise partitions of the multiplicative group of the integers \(\mathbb{Z}_q\) modulo \(q\). Let the congruence \(p \equiv g^v \mod q, 0 \leq v < \varphi(q) - 1\), specifies the \(\varphi(q)\) equivalent classes of primes modulo \(q\). Some unique pairwise partitions of the multiplicative group modulo \(q\) are as follows:
(i) For odd character $\chi(-1) = -1$ modulo $q = 2m + 1$, the pairwise partition is
\[
\left(g^v, g^{v+\phi(q)/2}\right), \quad \text{for } 0 \leq v < \varphi(q)/2,
\]
(30)
(ii) For quartic character $\chi(\pm i) = -1$ modulo $q = 4m + 1$, the pairwise partition is
\[
\left(g^v, g^{v+\phi(q)/4}\right), \quad \left(g^{v+1+\phi(q)/2}, g^{v+1+3\phi(q)/4}\right), \quad \text{for } 0 \leq v < \varphi(q)/4,
\]
and similar pairwise partitions for some other $q = 2^n m + 1$, and $a > 2$, mutatis mutandis. In addition, the prime counting function on the arithmetic progression $\{ p = qn + a : \gcd(a, q) = 1, \text{ and } n \geq 1 \}$ is defined by
\[
\pi(x, a, q) = \# \{ p \leq x : p \equiv a \mod q \} = \varphi(q)^{-1}li(x) + E(x, a, q),
\]
where $li(x) = \int_1^x (\log t)^{-1} \, dt$ is the logarithmic integral, and $E(x, a, q)$ is the prime number theorem error term.

Theorem 4. Let $q \in \mathbb{N}$ be a fixed integer, and let $\chi = 1$ be an odd character modulo q. Then
\[
\sum_{p \leq x} \chi(p) = \Omega_z \left(\frac{x^{1/2} \log \log \log x}{\log x} \right)
\]
for some sufficiently large real number $x \geq q^{1-\varepsilon}$, and $\varepsilon > 0$ arbitrarily small. In particular,
\[
\sum_{p \leq x} \chi(p) = \Omega_z \left(q^{1/2} \log \log q / \log q \right)
\]
for infinitely many large q and odd character.

Proof: Let g be a primitive root modulo q, and choose an odd character $\chi(g^{\varphi(q)/2}) = \chi(-1) = -1$. Since $\chi(g^{i\varphi(q)/2}) = \chi(g^v)\chi(g^{\varphi(q)/2}) = -\chi(g^v)$, the partition pairing g^v, $g^{v+\varphi(q)/2}$ of residue classes, see (10?), yields
\[
\pi(x, g^v, q)\chi(g^v) + \pi(x, g^{v+\varphi(q)/2}, q)\chi(g^{v+\varphi(q)/2}) - \pi(x, g^v, q)\chi(g^v) = \left(E(x, g^v, q) - E(x, g^{v+\varphi(q)/2}, q) \right) \chi(g^v).
\]
(34)
Thus, it follows that the main terms $\pi(x, g^v, q) \sim \varphi(q)^{-1}li(x)$ and $\pi(x, g^{v+\varphi(q)/2}, q) \sim \varphi(q)^{-1}li(x)$ cancel pairwise, $0 \leq v < \varphi(q)/2$. As a consequence, the basic character sum over the primes collapses to
\[
\sum_{p \leq x} \chi(p) = \sum_{0 \leq v < \varphi(q)/2} \sum_{p \equiv g^v \mod q} \chi(p)
\]
\[
= \sum_{0 \leq v < \varphi(q)/2} \chi(g^v)\pi(x, g^v, q)
\]
\[
= \sum_{0 \leq v < \varphi(q)/2} \chi(g^v)E(x, g^v, q),
\]
(35)
which is a complex linear combination of the error terms \(E(x, g^v, q) \) of the \(q(q) \) equivalent classes of primes modulo \(q \). Now, the result follows from the Littlewood form of the prime number theorem

\[
\pi(x, a, q) = \frac{li(x)}{q(q)} + \Omega_x \left(\frac{x^{1/2} \log\log\log x}{q(q) \log x} \right),
\]

on the arithmetic progression \(\{ p = qn + a : \gcd(a, q) = 1, \text{ and } n \geq 1 \} \). Refer to [MV, p. 479], [IV, p. 51], and similar literature.

A few examples were computed to demonstrate the concept, and the challenges faced in estimating small character sums over the primes. Here, the congruence \(p \equiv g^v \mod q, 0 \leq v < q(q) - 1 \), specifies the \(q(q) \) equivalent classes of primes modulo \(q \), and the corresponding odd character \(\chi(g^{q(q)/2}) = \chi(-1) = -1 \).

1. \[\sum_{p \leq x} \chi(p) = \pi(x, 1, 3) - \pi(x, 2, 3) = \Omega_x \left(x^{1/2} \log\log\log x / \log x \right), \quad \text{for } q = 3, \ \chi_3(2^v) = (-1)^v, \ g^v \equiv 2^v \mod 3. \]

2. \[\sum_{p \leq x} \chi(p) = \pi(x, 1, 4) - \pi(x, 3, 4) = \Omega_x \left(x^{1/2} \log\log x / \log x \right), \quad \text{for } q = 4, \ \chi_4(3^v) = (-1)^v, \ g^v \equiv 3^v \mod 4. \]

3. \[\sum_{p \leq x} \chi(p) = \pi(x, 1, 5) + i\pi(x, 2, 5) - i\pi(x, 3, 5) - \pi(x, 4, 5) = \Omega_x \left(x^{1/2} \log\log\log x / \log x \right), \]

for \(q = 5, \ \chi_5(2^v) = i^v, \ g^v \equiv 2^v \mod 5 \).

Similar, and other related advanced topics in comparative number theory, are discussed in [RN, p. 275], [GM], [MJ], [RS], [SC], et alii.

Theorem 5. Let \(q \in \mathbb{N} \) be an integer, and let \(\chi \equiv 1 \) be a character modulo \(q \). Then

\[
\sum_{p \leq x} \chi(p) = \mathcal{O}\left(x e^{-c(\log x)^{3/2}} \right)
\]

for some sufficiently large real number \(x \geq x_0 \), and \(c > 0 \) constant.

Proof: Since \(\sum_{l \in \mathbb{Z} \cap p(q)} \chi(a) = 0 \), the basic character sum over the primes collapses to

\[
\sum_{p \leq x} \chi(p) = \sum_{l \in \mathbb{Z} \cap p(q)} \sum_{p \leq x, p \equiv a \mod q} \chi(p)
\]

\[= \sum_{l \in \mathbb{Z} \cap p(q)} \chi(a) \pi(x, a, q) \]

\[= \sum_{l \in \mathbb{Z} \cap p(q)} \chi(a) E(x, a, q), \]

9
which is a complex linear combination of the error terms \(E(x, a, q) \) of the \(\phi(q) \) equivalent classes of primes modulo \(q \). Now, the result follows from the delaVallee Poussin form of the prime number theorem

\[
\pi(x, a, q) = \frac{li(x)}{q(q)} + O\left(\frac{x e^{-\text{erf}(\frac{1}{2})}}{q(q)} \right),
\]

(40)
on the arithmetic progression \(\{ p = qn + a : \gcd(a, q) = 1, \text{ and } n \geq 1 \} \). Refer to [MV, p. 479], [IV, p. 51], and similar literature.

5. Elementary Foundation

This Section serves as a reference of some of the concepts used to complete the proof of the main results in previous Section.

5.1 A Few Arithmetic Functions

Let \(n = p_1^{v_1} \cdot p_2^{v_2} \cdots p_r^{v_r} \), let \(\omega(n) = \#\{ p \mid n \} \) be the number of prime divisors counting function, and let \(\Omega(n) = v_1 + v_2 + \cdots + v_r \). The Mobius function defined by

\[
\mu(n) = \begin{cases}
(-1)^{\omega(n)} & \text{if } \omega(n) = \Omega(n), \\
0 & \text{if } \omega(n) \neq \Omega(n),
\end{cases}
\]

(41)

the vonMangold function defined by

\[
\Lambda(n) = \begin{cases}
\log p & \text{if } n = p^k, \\
0 & \text{if } n \neq p^k,
\end{cases}
\]

(42)

where \(p^k \) is a prime power. And let the Euler function be defined by

\[
\varphi(q) = \prod_{p \mid q} (1 - 1/p),
\]

(43)

where \(p \) ranges over the prime divisors of \(q \). A few other number theoretical functions are also used throughout the paper.

5.2 Multiplicative Characters

A multiplicative character \(\chi \) is a periodic, complex valued and completely multiplicative function \(\chi : \mathbb{Z} \rightarrow \mathbb{C} \) on the integers. For each \(q \in \mathbb{N} \), the set of characters \(\hat{G} = \{ 1, \chi_1, \ldots, \chi_{\varphi(q)-1} \} \) is a group of order \(\varphi(q) \).

Lemma 6. If a function \(f : \mathbb{Z} \rightarrow \mathbb{C} \) satisfies \(f(n) \equiv 0 \mod q \) for \(\gcd(n, q) \neq 1 \), is periodic, and completely multiplicative, then \(f(n) = \chi(n) \) is a character modulo \(q \).
Properties of Nontrivial Characters

(i) $\chi(1) = 1$ and $\chi(s) \neq 1$, for $\gcd(s, q) > 1$,
(ii) $\chi(st) = \chi(s)\chi(t)$, multiplicative,
(iii) $\chi(s + k) = \chi(s)$, periodic of period $k \geq 1$,
(iv) $|\chi(s)| = 1$, a point in unit circle.

There are several forms of the multiplicative characters depending on the decomposition of the integer q.

For $q \neq 2^m$, $m \geq 1$. There are $\varphi(q)$ characters in $\hat{G} = \{1 = \chi_0, \chi_1, \ldots, \chi_{\varphi(q)-1}\}$, the principal character $\chi = 1$ and nonprincipal characters $\chi \neq 1$ are defined by

$$\chi_0(n) = \begin{cases} 1 & \text{if } \gcd(n, q) = 1, \\ 0 & \text{if } \gcd(n, q) \neq 1, \end{cases} \quad (44)$$

and

$$\chi_k(n) = \begin{cases} e^{2\pi i k \log(n)/\varphi(q)} & \text{if } \gcd(n, q) = 1, \\ 0 & \text{if } \gcd(n, q) \neq 1, \end{cases} \quad (45)$$

respectively. The notation $\log_q(n) = \text{Ind}_g(n)$ denotes the discrete logarithm with respect to some primitive root $g \mod q$.

For $q = 2^v$, $v \geq 1$. A character is realized by one of the three forms described below.

Case $v = 1$, there is a single character in $\hat{G} = \{1 = \chi_0\}$, and it is defined by

$$\chi(n) = \begin{cases} 1 & \text{if } n \equiv 1 \mod 2, \\ 0 & \text{otherwise.} \end{cases} \quad (46)$$

Case $v = 2$. There are two characters in $\hat{G} = \{1 = \chi_0, \chi\}$, the nontrivial character is defined by

$$\chi(n) = \begin{cases} 1 & \text{if } n \equiv 1 \mod 4, \\ -1 & \text{if } n \equiv 3 \mod 4, \\ 0 & \text{if } n \equiv 0, 2 \mod 4. \end{cases} \quad (47)$$

Case $v > 2$. There are $\varphi(q)$ characters in $\hat{G} = \{1 = \chi_0, \chi_1, \ldots, \chi_{\varphi(q)-1}\}$, and a nontrivial character is defined by

$$\chi_s(n) = \begin{cases} (-1)^s e^{2\pi i t/\varphi(q)} & \text{if } n \equiv 1 \mod 2, \\ 0 & \text{if } n \equiv 0 \mod 2, \end{cases} \quad (48)$$

for some $0 \leq s, t < \varphi(q)$. The integer n is represented as $n \equiv (-1)^s 5^t \mod 2^v$ in the multiplicative group of units $\{-1, 1\} \times \{5^t : 0 \leq t < \varphi(2^v)\}$ of \mathbb{Z}_q, where $\delta = 0$ if $n \equiv 1 \mod 4$ or $\delta = 1$ if $n \equiv 3 \mod 4$. This is due to the fact that this multiplicative group is not cyclic.
A character χ is even if $\chi(t) = \chi(-t)$, otherwise $\chi(t) = -\chi(-t)$, and the character is odd. The binary variable $\delta_t = 0$, 1 tracks the even odd condition, specifically, $\chi(-n) = (-1)^{\delta_t} \chi(n)$. A character χ is primitive if no proper subgroup of the group $\hat{G} = \{1 = \chi_0, \chi_1, \ldots, \chi_{\varphi(q)-1}\}$ contains it. Under this condition the conductor of a character is the integer $f = q$.

Lemma 7. (Orthogonal relations) For $a \geq 1$, and the set of characters modulo q, the followings hold.

\begin{align*}
(i) & \sum_{1 \leq n < q} \chi(n) = \begin{cases}
q & \text{if } \chi = \chi_0, \\
0 & \text{if } \chi \neq \chi_0.
\end{cases} \\
(ii) & \sum_{\chi \mod q} \chi(n) = \begin{cases}
q & \text{if } n = 0 \mod q, \\
0 & \text{otherwise}.
\end{cases}
\end{align*}

A Gauss sum is defined by the exponential sum

$$
\tau_a(\chi) = \sum_{n=1}^{q} \chi(n)e^{\frac{2\pi i an}{q}}, 0 \leq a < q.
$$

Lemma 8. Let $\chi \neq \chi_0$ be a nontrivial character modulo q, and let $\tau(\chi) = \tau_1(\chi)$. Then

\begin{align*}
(i) & \quad \tau_a(\chi) = \chi(a)\tau(\chi), \\
(ii) & \quad \tau_a(\chi)\tau_a(\chi) = q, \\
(iii) & \quad \tau_a(\chi) = \begin{cases}
(1+i)q^{1/2} & \text{if } q \equiv 0 \mod 4, \\
q^{1/2} & \text{if } q \equiv 1 \mod 4, \\
0 & \text{if } q \equiv 2 \mod 4, \\
iq^{1/2} & \text{if } q \equiv 3 \mod 4.
\end{cases}
\end{align*}

Let $q \equiv 2 \mod 4$, and let $\chi \neq 1$ be a nonprincipal character modulo q. The Fourier transform

$$
\chi(n) = \frac{1}{\tau(\chi)} \sum_{t=1}^{q} \overline{\chi}(t)e^{-\frac{2\pi i nt}{q}}
$$

is a complex-valued function that interpolates the Dirichlet character χ form \mathbb{N} to \mathbb{C}. For $q \equiv 2 \mod 4$, it is undefined. The interpolation formula has a simpler form identified by the parity of the character:

$$
\tau(\chi)\chi(n) = \begin{cases}
\sum_{t \equiv 0 \mod q} \overline{\chi}(t)\cos \frac{2\pi mt}{q} & \text{if } \chi(-1) = 1 \text{ is even}, \\
\sum_{t \equiv 0 \mod q} \overline{\chi}(t)\sin \frac{2\pi mt}{q} & \text{if } \chi(-1) = -1 \text{ is odd}.
\end{cases}
$$

5.3 Window Function, and Estimate of Trigonometric Series

Windowing schemes are widely used in signal analysis and number theory. For a pair of integers $M < N$, defines the window function
on the interval $[0, 2\pi)$.

Lemma 9. The Fourier series of the window function $W(x)$ is given by

$$W(x) = a_0 + \sum_{m=1} \left(a_m \cos mx + b_m \sin mx \right),$$

where the first coefficient is $a_0 = (N - M)/q$, and for $m \geq 1$, the coefficients are given by

$$a_m = \frac{1}{\pi m} \left(\sin \frac{2\pi Nm}{q} - \sin \frac{2\pi Mm}{q} \right), \quad \text{and} \quad b_m = -\frac{1}{\pi m} \left(\cos \frac{2\pi Nm}{q} - \cos \frac{2\pi Mm}{q} \right).$$

The pair of functions (48) and (49) is a Fourier pairs. Other well known Fourier pairs are the followings:

$$f(t) = \begin{cases} 0, & \text{if } |t| > 1, \\ 1, & \text{if } |t| < 1, \\ 1/2, & \text{if } |t| = 1, \end{cases} \quad \text{and} \quad \hat{f}(s) = \frac{\sin 2\pi s}{\pi s},$$

and

$$g(t) = \max \{ 1 - |t|, 0 \} \quad \text{and} \quad \hat{g}(s) = \left(\frac{\sin \pi s}{\pi s} \right)^2,$$

for $t \in \mathbb{R}$, and $s \in \mathbb{C}$. Other versions and proofs of Lemmas 7 and 8 are discussed in [PM, p. 4].

Lemma 10. Let $q \geq 3$ be an integer, and let $K > 1$ be a large number. Then

$$\sum_{1 \leq n \leq q} \left| \sum_{k \leq m/q} \frac{1}{m} \sin(mn/q) \right| \leq c \frac{q}{K+1} \log K,$$

where $c > 0$ is a constant.
6 References

[BR] Jonathan Bober, Leo Goldmakher, The distribution of the maximum of character sums, arXiv:1110.0078.

[DW] Dobrowolski, Edward; Williams, Kenneth S. An upper bound for the sum $\sum^{a+H}_{n=a+1} f(n)$ for a certain class of functions f. Proc. Amer. Math. Soc. 114 (1992), no. 1, 29–35.

[FD] Ford, Kevin Vinogradov's integral and bounds for the Riemann zeta function. Proc. London Math. Soc. (3) 85 (2002), no. 3, 565–633.

[FR] J. B. Friedlander, K. Gong, I. E. Shparlinski; Character sums over shifted primes, Math. Notes 88 (2010), no. 4, 585–598.

[GK] Leo Goldmakher, Multiplicative mimicry and improvements of the Polya-Vinogradov inequality, arXiv:0911.5547v2 [math.NT].

[GM] Granville, Andrew; Martin, Greg Prime number races. Amer. Math. Monthly 113 (2006), no. 1, 1–33.

[GR] Gallagher, P. K.; Montgomery, Kh. L. On the Burgess estimate. (Russian) Mat. Zametki 88 (2010), no. 3, 355–364.

[GS] Granville, Andrew; Soundararajan, K. Large character sums: pretentious characters and the Pólya-Vinogradov theorem. J. Amer. Math. Soc. 20 (2007), no. 2, 357–384.

[HB] Heath-Brown, D. R. A mean value estimate for real character sums. Acta Arith. 72 (1995), no. 3, 235–275.

[KA] Karatsuba, Anatolij A. Sums of characters with prime numbers and their applications. Number theory (Liptovský Ján, 1999). Tatra Mt. Math. Publ. 20 (2000), 155–162.

[LZ] Y. Lamzouri, The distribution of short character sums, Preprint, Available at www.

[MJ] Greg Martin, Justin Scarfy, Comparative prime number theory: A survey arXiv:1202.3408.

[MV] Montgomery, Hugh L.; Vaughan, Robert C. Multiplicative number theory. I. Classical theory. Cambridge Studies in Advanced Mathematics, 97. Cambridge University Press, Cambridge, 2007. ISBN: 978-0-521-84903-6; 0-521-84903-9.

[PM] C. Pomerance, Remarks on the Polya-Vinogradov inequality, http://65.54.113.26/Publication/7017477/.

[RN] Ribenboim, Paulo The new book of prime number records. Springer-Verlag, New York, 1996. ISBN: 0-387-94457-5.

[RS] Rubinstein, Michael; Sarnak, Peter Chebyshev's bias. Experiment. Math. 3 (1994), no. 3, 173–197.

[SC] Jan-Christoph Schlage-Puchta, Sign changes of $\pi(x, q) - \pi(x, q, a)$, arXiv:1105.1619.

[SK] Igor E. Shparlinski, Open Problems on Exponential and Character Sums, web.science.mq.edu.au/~igor/CharSumProjects.pdf.

[TR] Enrique Trevino, Numerically Explicit Estimates For Character Sums, Dartmouth College, Thesis, 2011.