Almost complex structures on connected sums of complex projective spaces

Oliver Goertsches and Panagiotis Konstantis

Abstract

We show that the m-fold connected sum $m \# \mathbb{CP}^{2n}$ admits an almost complex structure if and only if m is odd.

1 Introduction

A complex structure on a real vector bundle F over a connected CW complex X is a complex vector bundle E over X such that its underlying real vector bundle $E_{\mathbb{R}}$ is isomorphic to F. A stable complex structure on F is an complex structure on $F \oplus \varepsilon^d$, where ε^d is the d-dimensional real vector bundle over X. For X a manifold we say that X has an almost complex structure (respectively stable almost complex structure) if its tangent bundle admits an almost complex structure (respectively stable complex structure). Motivated by the question in [6] we consider in this paper the m-fold connected sum of complex projective spaces $m \# \mathbb{CP}^{2n}$.

As shown by Hirzebruch [4, Kommentare, p. 777], a necessary condition for the existence of an almost complex structure on a $4n$-dimensional compact manifold M is the congruence $\chi(M) \equiv (-1)^n \sigma(M) \mod 4$, where $\chi(M)$ is the Euler characteristic and $\sigma(M)$ the signature of M. Thus, for even m, the connected sums above cannot carry an almost complex structure. We will show that for odd m they do admit almost complex structures, thus showing

Theorem 1.1. The m-fold connected sum $m \# \mathbb{CP}^{2n}$ admits an almost complex structure if and only if m is odd.

In odd complex dimensions, the connected sums $m \# \mathbb{CP}^{2n+1}$ are Kähler, since \mathbb{CP}^{2n+1} admits an orientation reversing diffeomorphism and therefore $m \# \mathbb{CP}^{2n+1}$ is diffeomorphic to $\mathbb{CP}^{2n+1} \# (m-1)\mathbb{CP}^{2n+1}$ which is a blow–up of \mathbb{CP}^{2n+1} in $m-1$ points, hence Kähler. Furthermore Theorem 1.1 is known for $n = 1$ and $n = 2$, see [1] and [10] respectively. In both cases the authors use general results on the existence of almost complex structures on manifolds of dimension 4 and 8 respectively.

We will prove Theorem 1.1 as follows. In [12, Theorem 1.1] or in [14, Theorem 1.7] the authors showed

Theorem 1.2. Let M be a closed smooth $2d$-dimensional manifold. Then TM admits an almost complex structure if and only if it admits a stable almost complex structure E such that $c_d(E) = c(M)$, where c_d is the d–th Chern class of E and $c(M)$ is the Euler class of M.

In Section 2 we will describe the full set of stable almost complex structures in the reduced K–theory of $m \# \mathbb{CP}^{2n}$. In Section 3 we give, for odd m, an explicit example of a stable almost...
complex structure to which Theorem 1.2 applies. In Section 4 we give another argument for
the nonexistence of an almost complex structure for even \(m \) using Theorem 1.2.

Acknowledgements We wish to thank Thomas Friedrich for valuable comments on an earlier
version of the paper.

2 Stable almost complex structures on \(m\#\mathbb{CP}^{2n} \)

For a CW complex \(X \) let \(K(X) \) and \(KO(X) \) denote the complex and real \(K \)-groups respectively.
Moreover we denote by \(\tilde{K}(X) \) and \(\tilde{KO}(X) \) the reduced groups. Let \(r: K(X) \to KO(X) \) denote
the real reduction map, which can be restricted to a map \(\tilde{K}(X) \to \tilde{KO}(X) \). We denote the
restricted map again with \(r \). A real vector bundle \(F \) over \(X \) has a stable almost complex
structure if there is a an element \(y \in \tilde{K}(X) \) such that \(r(y) = F - \dim F \). Since \(r \) is a group
homomorphism, the set of all stable almost complex structures of \(F \) is given by

\[
y + \ker r \subset \tilde{K}(X),
\]

where \(y \) is such that \(r(y) = F - \dim F \). Let \(c: KO(X) \to K(X) \) denote the complexification
map and \(t: K(X) \to K(X) \) the map which is induced by complex conjugation of complex vector
bundles. The maps \(t \) and \(c \) are ring homomorphisms, but \(r \) preserves only the group structure.
The following identities involving the maps \(r, c \) and \(t \) are well known

\[
c \circ r = 1 + t: K(X) \to K(X),
\]

\[
r \circ c = 2: KO(X) \to KO(X).
\]

We will write \(\tilde{y} = t(y) \) for an element \(y \in K(X) \).

For two oriented manifolds \(M \) and \(N \) of same dimension \(d \), we denote by \(M\#N \) the connected
sum of \(M \) with \(N \) which inherits an orientation from \(M \) and \(N \). The stable tangent bundle
of \(M\#N \) is induced by \(p_M^*(TM) \oplus p_N^*(TN) \) in \(KO(M\#N) \), where \(p_M: M\#N \to M \) and
\(p_N: M\#N \to N \) are the smooth collapsing maps to each factor. Hence \(T(M\#N) - d = TM + TN - 2d \) in \(KO(M\#N) \), where \(TM \) and \(TN \) denote the elements in \(\tilde{KO}(M\#N) \) induced
by \(p_M^*(TM) \) and \(p_N^*(TN) \) respectively. This shows that if \(M \) and \(N \) admit stable almost complex
structures so does \(M\#N \) (cf. [3]). For \(M = N = \mathbb{CP}^{2n} \) we consider the natural orientation
induced by the complex structure of \(\mathbb{CP}^{2n} \).

We proceed with recalling some basic facts on complex projective spaces. Let \(H \) be the
tautological line bundle over \(\mathbb{CP}^d \) and let \(x \in H^2(\mathbb{CP}^d; \mathbb{Z}) \) be the generator, such that the total
Chern class \(c(H) \) is given by \(1 + x \). The cohomology ring of \(\mathbb{CP}^d \) is isomorphic to \(\mathbb{Z}[x]/(x^{d+1}) \).
The \(K \) and \(KO \) theory of \(\mathbb{CP}^d \) are completely understood. Let \(\eta := H - 1 \in \tilde{K}(\mathbb{CP}^d) \) and
\(\eta_R := r(\eta) \in \tilde{KO}(\mathbb{CP}^d) \). Then we have

Theorem 2.1 (cf. [11] Theorem 3.9, [2] Lemma 3.5, [3] p. 170 and [13] Proposition 4.3).

(a) \(K(\mathbb{CP}^d) = \mathbb{Z}[\eta]/(\eta^{d+1}) \). The following sets of elements are an integral basis of \(K(\mathbb{CP}^d) \)

\[
(i) \ 1, \eta, \eta(\eta + \tilde{\eta}), \ldots, \eta(\eta + \tilde{\eta})^{r-1}, (\eta + \tilde{\eta}), \ldots, (\eta + \tilde{\eta})^r, \text{ and also, in case } d \text{ is odd, } \\
\eta^{2r+1} = \eta(\eta + \tilde{\eta})^r.
\]

\[
(ii) \ 1, \eta, \eta(\eta + \tilde{\eta}), \ldots, \eta(\eta + \tilde{\eta})^{r-1}, (\eta - \tilde{\eta})(\eta + \tilde{\eta}), \ldots, (\eta - \tilde{\eta})(\eta + \tilde{\eta})^{r-1}, \text{ and also, in case } d \text{ is odd, } \\
\eta^{2r+1}
\]

where \(r \) is the largest integer \(\leq d/2 \).
(b) (i) if \(d = 2r \) then \(KO(\mathbb{C}P^d) = \mathbb{Z}[\eta_R]/(\eta_R^{r+1}) \)
(ii) if \(d = 4r + 1 \) then \(KO(\mathbb{C}P^d) = \mathbb{Z}[\eta_R]/(\eta_R^{2r+1}, 2\eta_R^{2r+2}) \)
(iii) if \(d = 4r + 3 \) then \(KO(\mathbb{C}P^d) = \mathbb{Z}[\eta_R]/(\eta_R^{2r+2}) \).

(c) The complex stable tangent bundle is given by \((2n+1)\bar{\eta} \in \tilde{K}(\mathbb{C}P^{2n})\) and the real stable tangent bundle is given by \(r((2n+1)\bar{\eta}) \in \tilde{KO}(\mathbb{C}P^{2n}) \).

(d) The kernel of the real reduction map \(r: \tilde{K}(\mathbb{C}P^d) \to \tilde{KO}(\mathbb{C}P^d) \) is freely generated by the elements

\[
\begin{align*}
(i) & \quad \eta - \bar{\eta}, (\eta - \bar{\eta})(\eta + \bar{\eta}), \ldots, (\eta - \bar{\eta})(\eta + \bar{\eta})^{d-1}, \text{ if } d \text{ is even}, \\
(ii) & \quad \eta - \bar{\eta}, (\eta - \bar{\eta})(\eta + \bar{\eta}), \ldots, (\eta - \bar{\eta})(\eta + \bar{\eta})^{r-1}, 2\eta^d, \text{ if } d = 4r + 1, \\
(iii) & \quad \eta - \bar{\eta}, (\eta - \bar{\eta})(\eta + \bar{\eta}), \ldots, (\eta - \bar{\eta})(\eta + \bar{\eta})^{r-1}, \eta^d, \text{ if } d = 4r + 3.
\end{align*}
\]

Next we would like to describe the integer cohomology ring of \(m\# \mathbb{C}P^{2n} \). For that we introduce the following notation: Let \(\Lambda \) denote either \(\mathbb{Z} \) or \(\mathbb{Q} \). We define an ideal \(R_d(X_1, \ldots, X_m) \) in \(\Lambda[X_1, \ldots, X_m] \), where \(X_1, \ldots, X_m \) are indeterminants, as the ideal generated by the following elements

\[
X_i \cdot X_j, \quad i \neq j, \quad i \neq d \neq j, \\
X_i^d - X_j^d, \quad i \neq j, \\
X_{j+1}^d, \quad j = 1, \ldots, m.
\]

Hence we have

\[
H^*(m\# \mathbb{C}P^d; \Lambda) \cong \Lambda[x_1, \ldots, x_m]/R_d(x_1, \ldots, x_m)
\]

(1)
where \(x_j = p_j^*(x) \in H^2(m\# \mathbb{C}P^d; \Lambda) \), for \(x \in H^2(\mathbb{C}P^d; \Lambda) \) defined as above and \(p_j: m\# \mathbb{C}P^d \to \mathbb{C}P^d \) the projection onto the \(j \)-th factor. Note that \(p_j \) induces a monomorphism on cohomology.

The stable tangent bundle of \(m\# \mathbb{C}P^{2n} \) in \(\tilde{KO}(m\# \mathbb{C}P^{2n}) \) is represented by

\[
(2n+1) \sum_{j=1}^{m} r(\bar{\eta}_j)
\]

where \(\eta_j := p_j^*(\eta) \in \tilde{K}(\mathbb{C}P^{2n}) \) and \(r: \tilde{K}(m\# \mathbb{C}P^{2n}) \to \tilde{KO}(m\# \mathbb{C}P^{2n}) \) is the real reduction map.

Hence the set of stable almost complex structures on \(m\# \mathbb{C}P^{2n} \) is given by

\[
(2n+1) \sum_{j=1}^{m} \bar{\eta}_j + \ker r,
\]

(2)
For \(k \in \mathbb{N} \) and \(j = 1, \ldots, m \), set \(w_j^k = p_j^*(H)^k - p_j^*(H)^{-k} \), \(e_j^{n-1} = n_j(\eta_j + \bar{\eta}_j)^{n-1} \) and \(\omega = \eta_1^{2n} \).

Proposition 2.2. The kernel of \(r: \tilde{K}(m\# \mathbb{C}P^{2n}) \to \tilde{KO}(m\# \mathbb{C}P^{2n}) \) is freely generated by

\[
(a) \quad \{w_j^k : k = 1, \ldots, n-1, j = 1, \ldots, m\} \cup \{e_1^{n-1} - e_j^{n-1} : j = 2, \ldots, m\} \cup \{2e_1^{n-1} - \omega\}, \text{ for } n \text{ even},
\]

\[
(b) \quad \{w_j^k : k = 1, \ldots, n, j = 1, \ldots, m\}, \text{ for } n \text{ odd}.
\]
Proof. Consider the cofiber sequence
\[\bigvee_{j=1}^{m} \mathbb{C}P^{2n-1} \xrightarrow{i} m \# \mathbb{C}P^{2n} \xrightarrow{\pi} S^{4n}. \] (3)

Note that the line bundle \(i^*p_j^*(H) \) is the tautological line bundle over the \(j \)-th summand of \(\bigvee_{j=1}^{m} \mathbb{C}P^{2n-1} \) and the trivial bundle on the other summands, since the first Chern classes are the same. For the reduced groups we have
\[\tilde{K} \left(\bigvee_{j=1}^{m} \mathbb{C}P^{2n-1} \right) \cong \bigoplus_{j=1}^{m} \tilde{K} \left(\mathbb{C}P^{2n-1} \right) \]
and \(i^*p_j^*(\eta) \) generates the \(j \)-th summand of the above sum according to Theorem 2.1. The long exact sequence in \(K \)-theory of the cofibration (3) is given by
\[\cdots \to \tilde{K}^{-1} \left(\bigvee_{j=1}^{m} \mathbb{C}P^{2n-1} \right) \to \tilde{K} \left(S^{4n} \right) \to \tilde{K} \left(m \# \mathbb{C}P^{2n} \right) \to \tilde{K} \left(\bigvee_{j=1}^{m} \mathbb{C}P^{2n-1} \right) \to \tilde{K}^{1} \left(S^{4n} \right) \to \cdots \] (4)

From Theorem 2 in [3] we have \(\tilde{K}^{-1} \left(\mathbb{C}P^{2n-1} \right) = 0 \), hence \(\tilde{K}^{-1} \left(\bigvee_{j=1}^{m} \mathbb{C}P^{2n-1} \right) = 0 \) and from Bott periodicity we deduce \(\tilde{K}^{1} \left(S^{4n} \right) = 0 \). So we obtain a short exact sequence
\[0 \to \tilde{K} \left(S^{4n} \right) \xrightarrow{\pi^*} \tilde{K} \left(m \# \mathbb{C}P^{2n} \right) \xrightarrow{j^*} \tilde{K} \left(\bigvee_{j=1}^{m} \mathbb{C}P^{2n-1} \right) \to 0. \]

which splits, since the involving groups are finitely generated, torsion free abelian groups. Let \(\omega_{\mathbb{C}} \) be the generator of \(\tilde{K} \left(S^{4n} \right) \), then the set
\[\{ \pi^*(\omega_{\mathbb{C}}) \} \cup \left\{ \eta_j^k : j = 1, \ldots, m, k = 1, \ldots, 2n-1 \right\} \]
is an integral basis of \(\tilde{K} \left(m \# \mathbb{C}P^{2n} \right) \). We claim that \(\eta_j^{2n} = \pi^*(\omega_{\mathbb{C}}) \) for all \(j \). Indeed, the elements \(\eta_j^{2n} \) lie in the kernel of \(\pi^* \), hence there are \(k_j \in \mathbb{Z} \) such that \(\eta_j^{2n} = k_j \cdot \pi^*(\omega_{\mathbb{C}}) \).

Let \(\widetilde{ch} : \tilde{K} (X) \to \tilde{H} (X; \mathbb{Q}) \) denote the Chern character for a finite CW complex \(X \), then \(\widetilde{ch} \) is a monomorphism for \(X = m \# \mathbb{C}P^d \) (since \(\tilde{H}^*(m \# \mathbb{C}P^d; \mathbb{Z}) \) has no torsion, cf. [7]) and an isomorphism for \(X = S^d \) onto \(\tilde{H}^*(S^d; \mathbb{Z}) \) embedded in \(\tilde{H}^*(S^d; \mathbb{Q}) \). Using the notation of (4) we have
\[\widetilde{ch}(\eta_j^{2n}) = (x_j^2)^2 = x_j^{2n}, \]
and using the naturality of \(\widetilde{ch} \)
\[\widetilde{ch}(\pi^*(\omega_{\mathbb{C}})) = \pi^*(\widetilde{ch}(\omega_{\mathbb{C}})) = \pm x_j^{2n} \]
since \(\pi^* \) is an isomorphism on cohomology in dimension \(2n \). We can choose \(\omega_{\mathbb{C}} \) such that \(\widetilde{ch}(\pi^*(\omega_{\mathbb{C}})) = x_j^{2n} \). This shows \(k_j = 1 \) for all \(j \) and \(\tilde{K} \left(m \# \mathbb{C}P^{2n} \right) \) is freely generated by
\[\left\{ \eta_j^k : j = 1, \ldots, m, k = 1, \ldots, 2n-1 \right\} \cup \left\{ \eta_1^{2n} \cdot \cdots \cdot \eta_m^{2n} \right\}. \]
Hence \(K(m \# \mathbb{C}P^{2n}) = \mathbb{Z}[\eta_1, \ldots, \eta_m]/R_{2n}(\eta_1, \ldots, \eta_m) \). Since \(p_j^*(H) \otimes p_j^*(\overline{H}) \) is the trivial bundle we compute the identity
\[\eta_j = \frac{-\eta_j}{1+\eta_j} = -\eta_j + \eta_j^2 - \cdots + \eta_j^{2n}. \]
The ring $\mathbb{Z}[\eta_1, \ldots, \eta_m]/R_{2n}(\eta_1, \ldots, \eta_m)$ is isomorphic to
\[
\left(\bigoplus_{j=1}^{m} \mathbb{Z}[\eta_j]/(\eta_j^{2n+1}) \right) / \langle \eta_j^{2n} - \eta_i^{2n} : j \neq i \rangle
\]
and from Theorem 2.1 the set Γ_j which contains the elements
\[
\eta_j, \eta_j(\eta_j + \bar{\eta}_j), \ldots, \eta_j(\eta_j + \bar{\eta}_j)^{n-1} \\
\eta_j - \bar{\eta}_j, (\eta_j - \bar{\eta}_j)(\eta_j + \bar{\eta}_j), \ldots, (\eta_j - \bar{\eta}_j)(\eta_j + \bar{\eta}_j)^{n-1}
\]
together with $\{1\}$ is an integral basis of $\mathbb{Z}[\eta_j]/(\eta_j^{2n+1})$. Thus the set $\Gamma_1 \cup \ldots \cup \Gamma_m \subset \widetilde{K}(m\#\mathbb{CP}^2)$ generates the group $\widetilde{K}(m\#\mathbb{CP}^2)$. Observe that
\[
(\eta_j + \bar{\eta}_j)^k = 2\eta_j(\eta_j + \bar{\eta}_j)^{k-1} - (\eta_j - \bar{\eta}_j)(\eta_j + \bar{\eta}_j)^{k-1},
\]
thus
\[
\eta_j^{2n} = (\eta_j + \bar{\eta}_j)^n = 2\eta_j(\eta_j + \bar{\eta}_j)^{n-1} - (\eta_j - \bar{\eta}_j)(\eta_j + \bar{\eta}_j)^{n-1}.
\]
We set $\omega := \eta_j^{2n}$ for any $j = 1, \ldots, m$ and
\[
e_j^k := \eta_j(\eta_j + \bar{\eta}_j)^k, \quad j = 1, \ldots, m, \quad k = 0, \ldots, n-1 \\
f_j^k := (\eta_j - \bar{\eta}_j)(\eta_j + \bar{\eta}_j)^k, \quad j = 1, \ldots, m, \quad k = 0, \ldots, n-2
\]
and in virtue of relation (6) the set
\[
B := \{\omega\} \cup \{e_j^k : j = 1, \ldots, m, k = 0, \ldots, n-1\} \cup \{f_j^k : j = 1, \ldots, m, k = 0, \ldots, n-2\}
\]
is an integral basis of $\widetilde{K}(m\#\mathbb{CP}^2)$.

We proceed with the computation of $KO(m\#\mathbb{CP}^2)$. We have a long exact sequence for \widetilde{KO}-theory like in [4]. From Theorem 2 in [3] we deduce $\widetilde{KO}^{-1}(\mathbb{CP}^2) = 0$ and therefore $\widetilde{KO}^{-1}\left(\bigoplus_{j=1}^{m} \mathbb{CP}^2\right) = 0$. Moreover $\widetilde{KO}^{-1}(S^{4n}) = \widetilde{KO}^{-1}(S^{8l}) = \widetilde{KO}(S^{8l+7}) = 0$ by Bott periodicity. Hence we obtain a short exact sequence
\[
0 \longrightarrow \widetilde{KO}(S^{4n}) \longrightarrow \widetilde{KO}(m\#\mathbb{CP}^2) \longrightarrow \widetilde{KO}(\bigoplus_{j=1}^{m} \mathbb{CP}^{2n-1}) \longrightarrow 0.
\]
Now we have to distinguish between the cases where n is even or odd. We first assume that $n = 2l$. In that case the ring $KO(\mathbb{CP}^{2n-1})$ is isomorphic to $\mathbb{Z}[\eta_R]/(\eta_R^{2l})$, see Theorem 2.1 (b). Hence all groups in (7) are torsion free. Therefore the kernel of $r: \widetilde{K}(m\#\mathbb{CP}^2) \to \widetilde{K}(m\#\mathbb{CP}^2)$ is the same as the kernel of
\[
\varphi := c \circ r = 1 + t: \widetilde{K}(m\#\mathbb{CP}^2) \to \widetilde{K}(m\#\mathbb{CP}^2)
\]
since $r \circ c = 2$ and thus c is a monomorphism of the torsion free part of $\widetilde{KO}(m\#\mathbb{CP}^2)$. Next we compute a basis of $\ker \varphi$. Using relation (5) we have $\varphi(\omega) = 2\omega$, $\varphi(e_j^k) = 2e_j^k - f_j^k$ and $\varphi(f_j^k) = 0$, thus if
\[
y = \lambda \omega + \sum_{j=1}^{m} \sum_{k=0}^{n-1} \lambda_j^k e_j^k
\]
then \(\varphi(y) = 0 \) if and only if \(\lambda_k^j = 0 \) for \(j = 1, \ldots, m, \ k = 1, \ldots, n - 2 \) and
\[
\sum_{j=1}^{m} \lambda_j^{n-1} + 2\lambda = 0.
\]

This implies that the set
\[
\{f^k_j : j = 1, \ldots, m, \ k = 0, \ldots, n - 2\} \cup \{e_1^{n-1} - e_j^{n-1} : j = 2, \ldots, m\} \cup \{2e_1^{n-1} - \omega\},
\]
is an integral basis of \(\ker \varphi \). Note that from (6) we have \(2e_1^{n-1} - \omega = (\eta_1 - \bar{\eta}_1)(\eta_1 + \bar{\eta}_1)^{n-1} \). By an inductive argument we see that
\[
(\eta_j - \bar{\eta}_j)(\eta_j + \bar{\eta}_j)^k w_j^{k+1} + \text{linear combinations of } w_j^1, \ldots, w_j^k
\]
and
\[
e_j^{n-1} - e_j^{n-1} = \eta_1^{2n-1} - \eta_j^{2n-1}.
\]
Thus an integral basis of the kernel, in case \(n \) is even, is given by
\[
\{w^k_j : j = 1, \ldots, m, \ k = 1, \ldots, n - 1\} \cup \{w_1^n\} \cup \{\eta_1^{2n-1} - \eta_j^{2n-1} : j = 2, \ldots, m\}.
\]
Now let us assume that \(n = 2l + 1 \). Consider the commutative diagram
\[
\begin{array}{cccccc}
0 & \longrightarrow & \widehat{K}(S^{4n}) & \stackrel{\pi^*}{\longrightarrow} & \widehat{K}(m#CP^{2n}) & \stackrel{i^*}{\longrightarrow} & \widehat{K}(\vee_{j=1}^{m} CP^{2n-1}) & \longrightarrow & 0 \\
\downarrow & & \downarrow & & \downarrow & & \downarrow & & \\
0 & \longrightarrow & \widehat{KO}(S^{4n}) & \stackrel{\pi^*}{\longrightarrow} & \widehat{KO}(m#CP^{2n}) & \stackrel{i^*}{\longrightarrow} & \widehat{KO}(\vee_{j=1}^{m} CP^{2n-1}) & \longrightarrow & 0
\end{array}
\]
The map \(r_S : \widehat{K}(S^{8l+4}) \rightarrow \widehat{KO}(S^{8l+4}) \) is an isomorphism and therefore \(i^*|_{\ker r_\#} : \ker r_\# \rightarrow \ker r_\vee \) is an isomorphism, hence the rank of \(\ker r_\# \) is \(mn \). We see that the set
\[
\{f^k_j : j = 1, \ldots, m, \ k = 0, \ldots, n - 2\} \cup \{2e_j^{n-1} : j = 1, \ldots, m\} \cup \{\omega\}
\]
is an integral basis of \((i^*)^{-1} (\ker r_\vee) \), which follows because \(e_j^{n-1} = \eta_j^{2n-1} - (n-1)\omega \) and the structure of the kernel of \(r_\vee \), see Theorem 2.1 (d) (ii). The elements \(f^k_j \) for \(j = 1, \ldots, m \) and \(k = 0, \ldots, n - 2 \) lie in the kernel of \(r_\# \). Let
\[
y = \lambda \omega + \sum_{j=1}^{m} \lambda_j^{n-1}2e_j^{n-1}
\]
for \(\lambda, \lambda_j^{n-1} \in \mathbb{Z} \) and suppose \(r_\#(y) = 0 \). From \(\varphi(\omega) = 2\omega \) and \(\varphi(e_j^{n-1}) = (\eta_j + \bar{\eta}_j)^n = \eta_j^{2n} = \omega \) it follows that
\[
\lambda + \sum_{j=1}^{m} \lambda_j^{n-1} = 0.
\]
Hence \(\ker r_\# \) is freely generated by the elements \(f^k_j \) and \(2e_j^{n-1} - \omega \). Observe from (6) that \(2e_j^{n-1} - \omega = (\eta - \bar{\eta})(\eta + \bar{\eta})^{n-1} \). Thus in case of \(n \) odd we deduce like in (8) that the kernel of \(r_\# \) is freely generated by \(w_j^k \) for \(j = 1, \ldots, m \) and \(k = 1, \ldots, n \). ■
Hence by Equation (2), stable almost complex structures of $m\#\mathbb{CP}^{2n}$ for n even are given by elements of the form

$$y = (2n + 1) \sum_{i=1}^{m} \bar{a}_i + \sum_{j=1}^{m} \sum_{k=1}^{n-1} a_j^k w_k^j + a^n w^n + \sum_{j=2}^{m} b_j (\eta_1^{2n-1} - \eta_2^{2n-1}).$$ \hspace{1cm} (9)$$

and for n odd

$$y = (2n + 1) \sum_{i=1}^{m} \bar{a}_i + \sum_{j=1}^{m} \sum_{k=1}^{n} a_j^k w_k^j$$ \hspace{1cm} (10)$$

for $a_j^k, b_j \in \mathbb{Z}$. For Theorem 1.2 we have to compute the $(2n)$-th Chern class $c_{2n}(E)$ of a vector bundle E representing an element of the form (9) and (10). Let $\eta_1^{2n-1} - \eta_2^{2n-1}$ denote also a vector bundle over $m\#\mathbb{CP}^{2n}$ which represents the element $\eta_1^{2n-1} - \eta_2^{2n-1}$ in $\tilde{K}(m\#\mathbb{CP}^{2n})$. The total Chern class of $\eta_1^{2n-1} - \eta_2^{2n-1}$ can be computed through the Chern character: We have

$$\tilde{c}(\eta_1^{2n-1} - \eta_2^{2n-1}) = \tilde{c}(\eta_1)^{2n-1} - \tilde{c}(\eta_2)^{2n-1} = x_1^{2n-1} - x_2^{2n-1}.$$

The elements of degree k in the Chern character are given by $\nu_k(c_1, \ldots, c_k)/k!$ where ν_k are the Newton polynomials. The coefficient in front of c_k in $\nu_k(c_1, \ldots, c_k)$ is k (see [9], p 195) and the other terms are products of Chern classes of lower degree, hence the only non-vanishing Chern class is given by

$$c_{2n-1}(\eta_1^{2n-1} - \eta_2^{2n-1}) = (2n - 2)! (x_1^{2n-1} - x_2^{2n-1}).$$

Thus the total Chern class of a vector bundle E representing an element of the form (9) is given by

$$c(E) = (1 - (x_1 + \ldots + x_m))^{2n+1}$$

$$\cdot \left(1 + \frac{n x_1}{1 - n x_1}\right)^a \prod_{j=2}^{m} \left(1 + (2n - 2)! (x_1^{2n-1} - x_2^{2n-1})\right)^{b_j} \prod_{j=1}^{m} \prod_{k=1}^{n-1} \left(1 + k x_j\right)^{a_j^k}$$

and for (10)

$$c(E) = (1 - (x_1 + \ldots + x_m))^{2n+1} \prod_{j=1}^{m} \prod_{k=1}^{n} \left(1 + k x_j\right)^{a_j^k}$$

where the coefficient in front of $x_1^{2n} = \ldots = x_m^{2n}$ is equal to $c_{2n}(E)$.

Remark 2.3. Note that for $m = 1$ (and complex projective spaces of arbitrary dimension) this total Chern class was already computed by Thomas, see [13, p. 130].

3 The case m odd

We now describe an explicit stable almost complex structure on $m\#\mathbb{CP}^{2n}$, where $m = 2u + 1$, for which the assumptions of Theorem 1.2 are satisfied, thereby producing an almost complex structure on $m\#\mathbb{CP}^{2n}$. We choose, in the notation of (9) and (10), $a_j^k = 2$ for $j = 1, \ldots, u$ and $k = 1$, and all other coefficients 0. Then the top Chern class is as desired:

Proposition 3.1. Let $m = 2u + 1$ be an odd number. In the cohomology ring of $m\#\mathbb{CP}^{2n}$, the coefficient c_{2n} of $x_1^{2n} = \cdots = x_k^{2n}$ of the class

$$c = (1 - (x_1 + \cdots + x_{2u+1}))^{2n+1} \prod_{r=1}^{u} \left(1 + \frac{x_r}{1 - x_r}\right)^2$$

for $u \geq 1$.
is
\[c_{2n} = m(2n - 1) + 2 = \chi(m\#\mathbb{C}P^{2n}). \]

Proof. As \(x_i \cdot x_j = 0 \) for \(i \neq j \), we have
\[
(1 - (x_1 + \cdots + x_{2u+1}))^{2n+1} = \sum_{j_0=0}^{2n+1} (-1)^{j_0} \binom{2n+1}{j_0} x_1^{j_0} + \cdots + x_{2u+1}^{j_0}.
\]

Thus,
\[
c = \prod_{r=1}^{u} (1 - x_r)^{2n-1} (1 + x_r)^2 \prod_{s=u+1}^{2n+1} (1 - x_s)^{2n+1}.
\]
The factors \((1 - x_s)^{2n+1}\) contribute \(2n + 1\) to \(c_{2n}\), whereas the factors \((1 - x_r)^{2n-1}(1 + x_r)^2\) contribute \(2n - 3\). Thus,
\[
c_{2n} = u(2n - 3) + (u + 1)(2n + 1) = (2u + 1)(2n - 1) + 2 = \chi((2u + 1)\#\mathbb{C}P^{2n}).
\]

\[\blacksquare\]

4 The case \(m \) even

As already explained in the introduction, the congruence \(\chi(M) \equiv (-1)^n \sigma(M) \mod 4 \) immediately shows the other implication of Theorem 1.1. In this section we give an alternative argument, using only Theorem 1.2 and the description of the total Chern class of a general stable almost complex structures we obtained in Section 2. For \(k \in \mathbb{N} \) and \(a \in \mathbb{Z} \) consider the rational function
\[
\left(\frac{1 + kx}{1 - kx} \right)^a
\]
and its power series
\[
\sum_{m \geq 0} p^k_m(a)x^m.
\]

Proposition 4.1. The coefficients \(p^k_m(a) \) are even for all \(k \in \mathbb{N} \), \(a \in \mathbb{Z} \) and \(m > 0 \). Moreover we have
\[
\frac{1}{2} \cdot p^k_m(a) \equiv ka \quad \text{mod} \ 2
\]
for \(m \geq 1 \).

Proof. Define \(g(x) = \left(\frac{1 + kx}{1 - kx} \right)^a \), then
\[
g(x) = \left(\frac{1 + kx}{1 - kx} \right)^a = (f_\varepsilon(x))^{[a]}
\]
where \(f_\varepsilon(x) = \left(\frac{1 + kx}{1 - kx} \right)^\varepsilon \) and \(\varepsilon = 1 \) if \(a \geq 0 \) and \(\varepsilon = -1 \) if \(a < 0 \). We have
\[
p^k_m(a) = \frac{1}{m!} g^{(m)}(0) = \frac{1}{m!} (f_\varepsilon^{[a]})^{(m)}(0)
\]
hence $f^{(m)}(0) = 2\varepsilon^m k^m m! \ (m > 0)$. Recall that for functions f_1, \ldots, f_l we have the generalized Leibniz rule

$$(f_1 \cdots f_l)^{(m)} = \sum_{|j|=m, j \in \mathbb{N}^l} \binom{m}{j} \prod_{1 \leq t \leq m} f_t^{(j_t)}$$

where $j = (j_1, \ldots, j_l), |j| = \sum_{t=1}^l j_t$ and $\binom{m}{j} = \frac{m!}{j_1! \cdots j_l!}$. Applying this to g we obtain

$$p_k^m(a) = \frac{1}{m!} \sum_{|j|=m, j \in \mathbb{N}^{|a|}} \binom{m}{j} \prod_{1 \leq t \leq |a|} f_t^{(j_t)}(0). \tag{11}$$

Define a map $\nu: \mathbb{N}^{|a|} \to \mathbb{N}$ such that $\nu(j)$ is the cardinality of non–zero entries of j. Now, Equation (11) can be rewritten as

$$p_k^m(a) = \sum_{|j|=m, j \in \mathbb{N}^{|a|}} 2^{\nu(j)} \varepsilon^{|j|} = \varepsilon^m k^m \sum_{|j|=m, j \in \mathbb{N}^{|a|}} 2^{\nu(j)}.$$

From now on we assume without loss of generality that a is positive. We will establish a recursive formula for $p_k^m(a)$. Let $E_a^t = \{ j \in \mathbb{N}^a : |j|=m \}$, then we can express E_a^{m+1} as the disjoint union of the following three sets

$$A_{m+1}^{m-1} = \left\{ j \in \mathbb{N}^a : (j_1, \ldots, j_{m-1}, 0), \sum_{t=1}^{m-1} j_t = m+1 \right\}$$

$$\bigcup_{l=1}^{m} B_{m+1-l}^{m-1} = \bigcup_{l=1}^{m} \left\{ j \in \mathbb{N}^a : (j_1, \ldots, j_{m-1}, m+1-l), \sum_{t=1}^{m-1} j_t = l \right\}$$

$$C_{m+1}^1 = \{(0, \ldots, 0, m+1)\}$$

hence

$$E_a^{m+1} = A_{m+1}^{m-1} \cup C_{m+1}^1 \cup \bigcup_{l=1}^{m} B_{m+1-l}^{m-1}.$$

With this decomposition we obtain

$$p_k^m(a) = k^{m+1} \sum_{|j|=m+1, j \in \mathbb{N}^a} 2^{\nu(j)} = k^{m+1} \sum_{j \in E_a^{m+1}} 2^{\nu(j)}$$

$$= k^{m+1} \left(\sum_{j \in A_{m+1}^{m-1}} 2^{\nu(j)} + \sum_{j \in C_{m+1}^1} 2^{\nu(j)} + \sum_{l=1}^{m} \sum_{j \in B_{m+1-l}^{m-1}} 2^{\nu(j)+1} \right)$$

$$= p_k^m(a-1) + 2k^{m+1} + \sum_{l=1}^{m} 2k^{m+1-l} p_l^k(a-1).$$

Repeating this identity $(a-1)$–times we end up with

$$p_k^m(a) = p_{m+1}(1) + 2k^{m+1}(a-1) + 2 \sum_{l=1}^{a-1} \sum_{s=1}^{m-l} k^{m+1-l} p_l^s(s)$$

$$= 2 \left(ak^{m+1} + \sum_{l=1}^{a-1} \sum_{s=1}^{m-l} k^{m+1-l} p_l^s(s) \right)$$

9
since $p_{m+1}(1) = 2k^{m+1}$. This shows that $p_{m+1}^k(a)$ is even for all $k, m, a \in \mathbb{N}$. Moreover it follows that
\[
\frac{1}{2} \cdot p_{m+1}^k(a) \equiv ka \mod 2
\]
since $p(k)$ are even for all $1 \leq l \leq m$, $1 \leq s \leq a - 1$ and $k \in \mathbb{N}$. □

Proposition 4.2. Let m be an even number. Consider, in the cohomology ring of $m\#\mathbb{C}P^{2n}$ the coefficient c_{2n} of $x_{1}^{2n} = \cdots = x_{m}^{2n}$ of the total class c, which for odd n is of the form
\[
c = (1 - (x_1 + \cdots + x_m))^{2n+1} \prod_{r=1}^{m} \prod_{k=1}^{n} \left(\frac{1 + kx_r}{1 - kx_r} \right)^{a_r^k}
\]
and for even n of the form
\[
c = (1 - (x_1 + \cdots + x_m))^{2n+1} \cdot \left(\frac{1 + nx_1}{1 - nx_1} \right)^{a_1^n} \prod_{j=2}^{m} (1 + (2n - 2)! (x_{2j-1}^{2n-1} - x_j^{2n-1})) \prod_{j=1}^{n} \prod_{k=1}^{m} \left(\frac{1 + kx_j}{1 - kx_j} \right)^{a_j^k}
\]
Then c_{2n} is even and
\[
\frac{1}{2} \cdot c_{2n} \equiv \frac{m}{2} \mod 2.
\]

On the other hand, the Euler characteristic of $m\#\mathbb{C}P^{2n}$ is $\chi(m\#\mathbb{C}P^{2n}) = m(2n - 1) + 2$, hence
\[
\frac{1}{2} \chi(m\#\mathbb{C}P^{2n}) = \frac{1}{2} m(2n - 1) + 1 \equiv \frac{m}{2} + 1 \mod 2.
\]

Proof. We consider the case n odd first. As in the proof of Proposition 3.1 we compute
\[
(1 - (x_1 + \cdots + x_m))^{2n+1} = \sum_{r=1}^{m} \sum_{j=0}^{2n+1} (-1)^j \binom{2n+1}{j} x_r^j = \sum_{r=1}^{m} (1 - x_r)^{2n+1}.
\]
This implies
\[
c_{2n} = \sum_{r=1}^{m} \sum_{|j|=2n,j \in \mathbb{N}^{n+1}} (-1)^{j_0} \binom{2n+1}{j_0} \prod_{i=1}^{n} p_{j_i}^i(a_i^j)
\]
where $j = (j_0, j_1, \ldots, j_n) \in \mathbb{N}^{n+1}$. Because the summand for $j = (2n, 0, \ldots, 0)$ is $2n + 1$,
\[
c_{2n} = m(2n + 1) + \sum_{r=1}^{m} \sum_{|j|=2n,j \in \mathbb{N}^{n+1},j_0<2n} (-1)^{j_0} \binom{2n+1}{j_0} \prod_{i=1}^{n} p_{j_i}^i(a_i^j).
\]
By Proposition 1.1 we have that $p_{j_i}^i(a_i^j)$ is even as long as $j_i > 0$, so the products $\prod_{i=1}^{n} p_{j_i}^i(a_i^j)$ are even, and because m is even as well, so is c_{2n}. We divide the expression by 2, and use that
\(\frac{1}{2} p_j^i (a_i^j) \equiv i \cdot a_i^j \mod 2 \) by Proposition 4.1

\[
\frac{1}{2} c_{2n} \equiv \frac{m}{2} + \sum_{r=1}^{m} \sum_{l=1}^{n} \sum_{j_0+j_r=2n, j_r \neq 0}^{n} \left(\frac{2n+1}{j_0} \right) \frac{1}{2} p_j^i (a_i^j) \mod 2 \\
\equiv \frac{m}{2} + \sum_{r=1}^{m} \sum_{l=1}^{n} \sum_{j_0+j_r=2n, j_r \neq 0}^{n} \left(\frac{2n+1}{j_0} \right) la_r^l \mod 2 \\
\equiv \frac{m}{2} + \sum_{r=1}^{m} \sum_{l=1}^{n} la_r^l \sum_{j_0=0}^{2n-1} \left(\frac{2n+1}{j_0} \right) \mod 2 \\
\equiv \frac{m}{2} + \sum_{r=1}^{m} \sum_{l=1}^{n} la_r^l \left(2^{2n+1} - 2(n+1) \right) \mod 2 \\
\equiv \frac{m}{2} \mod 2.
\]

This shows the claim for odd \(n \). For even \(n \), the structure of \(c_{2n} \) is similar. The main difference is the appearance of the factor

\[
\prod_{j=2}^{m} (1 + (2n-2)! (x_1^{2n-1} - x_j^{2n-1}))^{b_j} = \prod_{j=2}^{m} (1 + b_j (2n-2)! (x_1^{2n-1} - x_j^{2n-1})) \\
= 1 + (2n-2)! \sum_{j=2}^{m} b_j (x_1^{2n-1} - x_j^{2n-1}).
\]

Note that the prefactor \((2n-2)! \) is, except for \(n = 2 \), divisible by 4, which directly implies that this factor has no effect on \(\frac{1}{2} \cdot c_{2n} \mod 2 \) for \(n \geq 4 \). But this is true for arbitrary \(n \): by Proposition 4.1, the degree one coefficients \(p_j^i (a) \) of the factors of the form \(\left(\frac{1+b_k}{1+k} \right)^a \) are even, so multiplied with \((2n-2)! \) they always result in a number divisible by 4. Further, we have

\[
(1 - (x_1 + \cdots + x_m))^{2n+1} = 1 - (2n+1)(x_1 + \cdots + x_m) + \cdots,
\]

and

\[
(x_1 + \cdots + x_m) (x_1^{2n-1} - x_j^{2n-1}) = 0,
\]

so no further summands result from multiplication with the factor \((1 - (x_1 + \cdots + x_m))^{2n+1} \).

In total, the result \(\frac{1}{2} \cdot c_{2n} \equiv \frac{m}{2} \mod 2 \) remains true for even \(n \).

The above proposition together with Theorem 1.2 shows that \(m\# \text{CP}^{2n} \) admits no almost complex structure for \(m \) even.

References

[1] Audin, M. Exemples de variétés presque complexes. *Enseign. Math. (2)* 37, 1-2 (1991), 175–190.

[2] Fujii, M. \(K_U \)-groups of Dold manifolds. *Osaka J. Math.* 3 (1966), 49–64.

[3] Fujii, M. \(K_O \)-groups of projective spaces. *Osaka J. Math.* 4 (1967), 141–149.

[4] Hirzebruch, F. *Gesammelte Abhandlungen. Band I, II.* Springer-Verlag, Berlin, 1987. 1951–1962, 1963–1987.
Kahn, P. J. Obstructions to extending almost X-structures. *Illinois J. Math.* 13 (1969), 336–357.

Miller, M. Does $\mathbb{C}P^{2n}\#\mathbb{C}P^{2n}$ ever support an almost complex structure? http://mathoverflow.net/questions/216272/does-bbbcp2n-bbbcp2n-ever-support-an-almost-complex-structure.

Milnor, J. W., and Kervaire, M. A. Bernoulli numbers, homotopy groups, and a theorem of Rohlin. In *Proc. Internat. Congress Math. 1958*. Cambridge Univ. Press, New York, 1960, pp. 454–458.

Milnor, J. W., and Stasheff, J. D. *Characteristic classes*. Princeton University Press, Princeton, N. J.; University of Tokyo Press, Tokyo, 1974. Annals of Mathematics Studies, No. 76.

Milnor, J., and Toda, H. Topology of Lie groups. I, II, vol. 91 of *Translations of Mathematical Monographs*. American Mathematical Society, Providence, RI, 1991. Translated from the 1978 Japanese edition by the authors.

Müller, S., and Geiges, H. Almost complex structures on 8-manifolds. *Enseign. Math.* (2) 46, 1-2 (2000), 95–107.

Sanderson, B. J. Immersions and embeddings of projective spaces. *Proc. London Math. Soc. (3) 14* (1964), 137–153.

Sutherland, W. A. A note on almost complex and weakly complex structures. *J. London Math. Soc.* 40 (1965), 705–712.

Thomas, A. Almost complex structures on complex projective spaces. *Trans. Amer. Math. Soc.* 193 (1974), 123–132.

Thomas, E. Complex structures on real vector bundles. *Amer. J. Math.* 89 (1967), 887–908.