Overexpression of alpha-synuclein promotes both cell proliferation and cell toxicity in human SH-SY5Y neuroblastoma cells

Noela Rodríguez-Losada a,1, Javier de la Rosa b,1, María Larriva c, Rune Wendelbo d, José A. Aguirre a,2, Javier S. Castresana b, Santiago J. Ballaz e,⇑

a Dept. of Human Physiology & Physical Sports Education, Medical School, University of Málaga, Málaga, Spain
b Dept. of Biochemistry & Genetics, University of Navarra School of Sciences, Pamplona, Spain
c Dept. of Pharmacology & Toxicology, University of Navarra School of Pharmacy and Nutrition, Pamplona, Spain
d Abalonyx AS, Oslo, Norway
e School of Biological Sciences & Engineering, Yachay Tech University, Urcuquí, Ecuador

HIGHLIGHTS
• α-Synuclein (αS) is a synaptic protein up-regulated in Parkinson's disease.
• SH-SY5Y neuroblastoma cells were engineered to overexpress αS at low and high levels.
• High-αS overexpression stimulates cell proliferation and delay senescence.
• Low-αS overexpression causes toxicity, oxidative stress, and accelerates senescence.
• A fine-tuned up-regulation of αS is critical for neuronal maintenance and survival.

GRAPHICAL ABSTRACT

ARTICLE INFO
Article history:
Received 4 August 2019
Revised 14 January 2020
Accepted 20 January 2020
Available online 22 January 2020

Keywords:
Alpha-synuclein
SH-SY5Y cells
Rotenone
Graphene oxide
Parkinson's disease
Cell senescence

ABSTRACT
Alpha-Synuclein (αSyn) is a chameleon-like protein. Its overexpression and intracellular deposition defines neurodegenerative α-synucleinopathies including Parkinson’s disease. Whether αSyn up-regulation is the cause or the protective reaction to α-synucleinopathies remains unresolved. Remarkably, the accumulation of αSyn is involved in cancer. Here, the neuroblastoma SH-SY5Y cell line was genetically engineered to overexpress αSyn at low and at high levels. αSyn cytotoxicity was assessed by the MTT and vital-dye exclusion methods, observed at the beginning of the sub-culture of low-αSyn overexpressing neurons when cells can barely proliferate exponentially. Conversely, high-αSyn overexpressing cultures grew at high rates while showing enhanced colony formation compared to low-αSyn neurons. Cytotoxicity of αSyn overexpression was indirectly revealed by the addition of pro-oxidant rotenone. Pretreatment with partially reduced graphene oxide, an apoptotic agent, increased toxicity of rotenone in low-αSyn neurons, but, it did not in high-αSyn neurons. Consistent with their enhanced...
Introduction

Alpha-Synuclein (aSyn) is an intrinsically disordered and primarily monomeric protein in its soluble form. Usually 140 amino acids long, it is predominantly expressed in the presynaptic terminals and nuclei of neurons, reflected in its name synuclein [1]. This aggregation-prone protein shows the characteristic of structural plasticity, shifting from a disordered random coil in the cytosol to a tetrameric α-helix [2,3] when associated with membrane phospholipids [4]. The exact role of aSyn in the nervous system has not yet been completely elucidated. Under physiological conditions, the bulk of aSyn is present in neuronal processes and nerve terminals in close proximity with the plasmatic membrane. Accordingly, aSyn may play a role in synaptic vesicle release, synaptic plasticity, membrane trafficking [5,6], and neurotransmission [6].

aSyn came into the spotlight when its aggregation and deposition in the form of Lewy bodies (LBs) was found inside neurons and glial cells of a group of neurodegenerative diseases called α-synucleinopathies [7,8]. LBs are the pathological hallmark of Parkinson disease (PD), Parkinson disease with dementia; dementia with LBs, multiple system atrophy, and Hallervorden-Spatz’s disease [9]. Because multiplicity of the synuclein-alpha gene (i.e., the SNCA) gene coding for aSyn causes a juvenile form of PD [10,11], it is traditionally believed that abnormal accumulation of aSyn promotes its aggregation and neurotoxicity [12]. However, SCNA gene dosage does not always correlate with α-synucleinopathy [13–15]. aSyn aggregates and diffuse accumulation occurs with aging in neurologically healthy patients [16]. Although, it is presumed that aging-induced intracellular deposits of aSyn represent a pre-clinical stage of the synucleinopathy [8,17,18], some evidence also suggests that aging does not have an additive role in aSyn-induced neurodegeneration [19]. To address this contradiction, a multi-hit hypothesis [20] points to a combination of aSyn aggregation with several factors as the triggering factor of α-synucleinopathy. This raises the question of whether the formation of LBs is adaptive and neuroprotective [21] or by contrast, it is a pathological reaction [22] to the origin of α-synucleinopathy.

A neglected aspect in the analyses of α-synucleinopathies is why aSyn is also overexpressed in CNS tumors [23,24]. Neurodegeneration shares common pathways with oncopogenesis [25–31] and accordingly aSyn may be involved in both processes [32–34]. It has been suggested that levels of soluble aSyn may be pivotal for the balance between cell viability and cell death [19,35–37]. As a proof of concept, it was investigated if the levels of aSyn overexpression could alter the proliferation rate and cell viability of human SH-SYSY neuroblastoma cells, a cancer cell line frequently chosen to explore PD mechanisms because of its robust dopaminergic phenotype [38]. With this goal in mind, SH-SYSY cells were engineered ad hoc to permanently overexpress different quantities of wild-type aSyn.

Material and methods

Reagents

Lipofectamine™ 2000 transfection reagent, Dulbecco’s modified Eagle minimum essential/Ham’s F-12 (DMEM/F12) plus Gluta-

max™ media, fetal bovine serum (FBS), sodium pyruvate, L-glutamine, penicillin G/streptomycin mix, RIPA buffer, and enzyme-free PBS-based cell dissociation buffer were purchased from Gibco (Carlshad, CA, USA). Noble agar, Crystal Violet dye, and 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bro-

mide (MTT); non-essential amino acids and protease inhibitor cocktail were acquired from Roche (Palo Alto, CA, USA). β-

Mercaptoethanol and rotenone (Rot) were purchased to Sigma-

Aldrich (St Louis, MO, USA). Partially reduced graphene oxide (PRGO) was prepared by Abalonyx AS (Oslo, Norway). Graphene oxide (GO) was prepared from natural graphite powder following the modification of the hummers method as follows. An aqueous slurry of GO was dried on a plastic substrate to prepare a GO film. This film was then heated slowly (1 °C/min) to 300 °C in open air to obtain the PRGO film.

Human SH-SYSY neuroblastoma cell cultures

In-house stock of the human neuroblastoma SH-SYSY cell line was routinely grown to reach the necessary confluence (over 80%) in DMEM/F12 + glutamax™ medium containing 10% fetal bovine serum (FBS), 4% non-essential amino acids, 1% penicillin/streptomycin, 4.5 g/l glucose, 0.1% amphotericin B, and sodium pyruvate. Cell cultures were maintained at 37 °C in normoxia (5% of CO₂). Medium was exchanged every 3 days during cell growth, and cultures were passed when confluent once or twice per week. Cells were harvested using enzyme-free PBS-based cell dissociation buffer. A collection of images was taken from living cell cultures after 2 weeks under a contrast phase filter using an inverted microscope (PrimoVert; Zeiss GmbH; Overkochen; Germany) and digital imaging software (Axiovision 40 V 4.2.8.0; Zeiss GmbH) when indicated.

Generation of stably aSyn-transfected cell lines

Untagged, full-length human aSyn (SNCA GenBank ID: BC108275) cDNA (Clone ID: 6147966), inserted into pcDNA™

3.1Zeo (+) plasmid was a generous gift from Prof. José González-Castaño (Universidad Autónoma de Madrid), SH-SYSY cells that underwent less than 5 passages after thawing of a stock culture were transfected with the wild-type human SNCA gene using the transfection reagent Lipofectamine™ 2000 according to the manufactur-

er’s protocol. A selection of aSyn stably-transfected SH-SYSY cells was made with Zeocin (200 ng/ml) according to manufac-

turer instructions. Zeocine resistant clones were picked up and veri-

fied for aSyn overexpression by immunoblotting using empty pcDNA™ 3.1Zeo (+) plasmid-transfected SH-SYSY cells as a control. The abundant bibliography on the subject focuses on the SNCA-gene transfection as a means to overexpress aSyn and mimic the pathological cellular environment that is characteristic of PD [20]. Herein it was made an ad hoc selection of those clones with the highest (high-aSyn) and the lowest (low-aSyn) expression of aSyn, which significantly differed from the basal aSyn expression found in empty plasmid-transfected cells.
Western blotting

De-attached cells were homogenized in ice-cold RIPA buffer containing sodium orthovanadate (1 mM) and the protease inhibitor cocktail (1% NP-40; 0.5% Na deoxycholate; 0.1% SDS; PMSF 100 μg/mL; aprotinin 30 μL/mL; Na orthovanadate 1 mM; 1% Vol/ Vol), incubated on ice for 30 min, and cleared by centrifugation (8000g for 10 min at 4 °C). Protein content was determined using the BCA assay (Bio-Rad, Hercules, CA; USA). Cell extract was heated at 95 °C for 10 min in the Laemmli buffer and β-mercaptoethanol, then loaded onto a 10% dodecyl sulfate (SDS)-polyacrylamide electrophoresis gel (40 μg protein/lane), electrophoresed with TRIS-glycine running buffer at 15 V/cm for 1 h, and finally transferred to a polyvinylidene difluoride membrane (Bio-Rad, Hercules, CA; USA). This membrane was incubated at room temperature in blocking buffer (0.1% of Tween 20 and 2.5% of bovine serum albumin or BSA in Tris-Buffered Saline (TBS) containing 5% of non-fat dry milk for 4 h. Subsequently, the membrane was incubated at 4 °C overnight with the primary antibodies for each antigen diluted in TBS containing 2.5% of BSA. As the primary antibodies rabbit anti-aSyn (1:1000; Millipore; AB5038P) was used; mouse monoclonal anti-SMP30 (1:500; Santa Cruz Biotechnology, G-10); and polyclonal rabbit anti-Ki-67 (1:5000; Millipore; AB260). Rabbit anti-β-actin (1:5000; Santa Cruz, sc-130656) was used as the loading control.

Incubation with secondary antibodies was performed for 1 h at room temperature in TBS solution supplemented with 2.5% of BSA. The horseradish-peroxidase (HRP)-coupled anti-rabbit and antimouse IgG (1:10,000 in TBS plus 2.5% of BSA; Abcam) was used for secondary antibodies. Protein bands on the membrane were detected by the chemiluminescence method using the horseradish peroxidase Supersignal™ WEST Dura Extended Duration Substrate (Gibco, Carlsbad, CA, USA). The analysis of bands relied on the optical densitometry using the ChemiDoc™ detector and the Image Lab™ software (Bio-Rad, Hercules, CA; USA). Image analysis and quantification of bands were conducted using the Fiji-Imagej software (http://imagej.nih.gov/ij/).

Cytotoxic effects assessment

Harvested cells were seeded at a density of 5 × 10⁴ cells per cm² in 48-well microplates and their viability measured 24 h later. The reduction of the thiazolyl blue tetrazolium bromide (MTT) dye to formazan was taken as the initial indicator of cell viability [39]. A stock (5 mg/mL in PBS) of the MTT salt was diluted 10 folds in formazan was taken as the initial indicator of cell viability [39]. reduction of the thiazolyl blue tetrazolium bromide (MTT) dye to a concentration of 5 × 10⁴ cells per well in phenol red-free DMEM/F12 medium supplemented with FBS (10%) and sodium pyruvate (100 mM). Half of the plates were pretreated with PRGO, which was added fresh to the medium (50 μg/mL). PRGO was chosen because it is a form of graphene that differentiates cells into neuronal lineages [40,41]. After incubating the cells for 7 days, the medium was removed and the cells treated with Rot, which was diluted from a freshly made stock solution (0.5 mg/mL of pure DMSO) into the medium at 0; 0.1; 0.2; 0.4; and 1.2 μM concentrations (the final concentration of DMSO was 0.1%). After a 24-hour incubation, a stock of MTT reagent (5 mg/mL of PBS) was diluted 10 folds into the medium, the cells were incubated overnight, and the formazan precipitate solubilized in pure DMSO and quantified by colorimetry. Absorbance of wells having either medium or PRGO was set equal to 100% for each cell clone to normalize absorbance values of wells within the experimental treatments.

Proliferation assay

Cells were seeded in 96-well microplates (2 × 10³ cells/well) and incubated at 37 °C. Cell proliferation was quantified by the MTT method at 0, 24, 48, and 72 h after seeding cells as described above. Assuming that the metabolic activity of cells is stable within short periods of time, as we determined it to be the case, an increase in the absorbance should accurately reflect changes in cell proliferation. Absorbance at the seeding time (0 h) was therefore set equal to 100% to estimate cell growth at the times set above.

Adherent colony formation assay

This method assesses the reproductive viability (clonogenicity) of single cells. It is based on the capacity of adherent cells to produce progeny in a monolayer; i.e., a colony of approximately 50 cells derived from a single cell [42]. For each experimental condition, a total of three Petri plates, containing 10⁴ cells in 10 mL of medium each, were incubated in triplicate for 10 days at 37 °C in an atmosphere of 5% of CO₂ and protected from light. Some of the cells were incubated with a conditioned medium (Caₘ) obtained after a 24-hour incubation with SH-SYSY cells showing maximum overexpression of aSyn (i.e., high-aSyn). Prior to the incubation, the medium was centrifuged and filtered using a 0.2 μm Minisart™ Syringe filter (Biotech, Goettingen, Germany). At the end of incubation, plates were washed with PBS, incubated in 4%-parafomaldehyde saline buffer for 30 min, washed with PBS, and stained with crystal violet for 15 min. Once the stain was removed and plates were washed with distilled water, colonies were counted using a Colony Counter 560 (Suntex Instruments Co., Taiwan).

Soft agar colony formation assay

The soft agar assay for tumorigenicity is based on the ability of cells to proliferate in a semi-solid matrix [43]. A key advantage of this technique over the conventional 2D monolayer assay (the clonogenic assay) is that, under conditions of isolation, the lack of anchorage challenges the tumorigenic potential of cells. The plasmid or the SNCA-gene transfected SH-SYSY cells were mixed with Noble agar prepared at 0.3% in fresh culturing medium or conditioned (Caₘ) medium when indicated, and seeded into 6-well plates containing a solidified bottom layer (Noble agar dissolved at 0.6% in fresh culturing medium) at a density of 10⁴ cells/well. After 3 weeks of incubation, colonies were stained with crystal violet and counted using the Colony Counter 560 (Suntex Instruments Co., Taiwan).

Rotenone (Rot) and partially reduced graphene oxide (PRGO) treatments

SH-SYSY transfected clones were seeded in 96-well microplates at a concentration of 5 × 10⁴ cells per well in phenol red-free DMEM/F12 medium supplemented with FBS (10%) and sodium pyruvate (100 mM). Half of the plates were pretreated with PRGO, which was added fresh to the medium (50 μg/mL). PRGO was chosen because it is a form of graphene that differentiates cells into neuronal lineages [40,41]. After incubating the cells for 7 days, the medium was removed and the cells treated with Rot, which was diluted from a freshly made stock solution (0.5 mg/mL of pure DMSO) into the medium at 0; 0.1; 0.2; 0.4; and 1.2 μM concentrations (the final concentration of DMSO was 0.1%). After a 24-hour incubation, a stock of MTT reagent (5 mg/mL of PBS) was diluted 10 folds into the medium, the cells were incubated overnight, and the formazan precipitate solubilized in pure DMSO and quantified by colorimetry. Absorbance of wells having either medium or PRGO was set equal to 100% for each cell clone to normalize absorbance values of wells within the experimental treatments.

Statistics

Statistical analyses were carried out using SPSS 16.0 for Windows. One-way ANOVA followed by Bonferroni post hoc test were
used to determine protein differences in the WB assays. Viability (MTT) results were assessed by a two-way factorial (clone × passage) ANOVA. Student’s t-test was applied to Vital Dye Exclusion data. Two-way (clone × incubation time) ANOVA was used to analyze cell proliferation. Data from tumorigenicity and clonogenicity assays were analyzed by using one-way ANOVA. Neurotoxic treatments were scrutinized by a two-way factorial ANOVA followed by the Bonferroni test for planned post-hoc comparisons, with clone (plasmid vs. low-aSyn and high-aSyn) and treatment (vehicle & PRGO vs. Rot & Rot + PRGO) as between-subject factors. Alpha value was set at \(P < 0.05 \).

Results

Characterization of aSyn-overexpressing SH-SY5Y neurons

Fig. 1 shows the overexpression levels of aSyn in lysates of SNCA-transgenic SH-SY5Y cells (the aSyn clones) as a percentage of the basal expression shown by control cells transfected with empty plasmids (the plasmid clone). Based on the immunoblots (Fig. 1a), it was confirmed that SH-SY5Y cells were positively transfected with the SNCA gene (\(F(2,13) = 150.43, P < 0.0001 \); Fig. 1b). The intensity of the aSyn band changed from moderate to substantial as seen in the low-aSyn clone (125% of the plasmid clone, \(P < 0.05 \)) and the high-aSyn clone (750% of the plasmid clone, \(P < 0.0001 \)), respectively. Differences between both aSyn-overexpressing clones were statistically significant (\(P < 0.0001 \)).

Viability of aSyn-overexpressing SH-SY5Y neurons

The interest was to know to what extent differences in the levels of aSyn overexpression may affect cell viability and how the period of culturing impacted cell cultures, as the wellbeing of cultured cells may decline as a result of the progressive culture aging. Fig. 2a represents the viability, as determined by the MTT method, of aSyn clones at low passage (a second sub-culture following 1 freeze/thaw cycle) as well as at high passage (over 10 sub-cultures following at least two freeze/thaw cycles) compared to the plasmid clone. The two-way ANOVA revealed a statistically significant clone effect (\(F(2,97) = 64.98, P < 0.0001 \)), passage effect (\(F(1,97) = 147.55, P < 0.0001 \)), and passage-clone interaction (\(F(2,97) = 65.5, P < 0.0001 \)). Cell viability of the low-aSyn clone was reduced by 50%, but only at low passage (\(P < 0.0001 \) compared to plasmid). Moderate aSyn expression damaged cells just at low passage as confirmed in a separate set of experiments, where the ratio of Trypan blue-tangible (dead) cells was higher than plasmid-transfected cells (\(t(45) = 2.58; P < 0.0001 \); Fig. 2b). Nevertheless, viability of the low-aSyn clone in the MTT test improved as the number of culture passages increased (the high-passage condition) to the point of overcoming the viability of plasmid-transfected cells (\(P < 0.0001 \), Fig. 2a). Culture time was a determinant factor of the cytotoxicity of aSyn overexpression.

aSyn overexpression enhanced the proliferation rates of SH-SY5Y neurons

Next, it was measured the time-dependent variability in proliferation rates of the SCNA-gene and plasmid transfected clones. Fig. 3 shows the increment (%) of cell population during a 3-day incubation after one freeze/thaw cycle and two sub-culture rounds. The two-way factorial (clone × incubation time) ANOVA was preferred over the repeated-measures ANOVA analysis because sphericity was not assumed (Mauchly’s test of sphericity: \(P < 0.05 \)). Nevertheless, viability of the low-aSyn clone in the MTT test improved as the number of culture passages increased (the high-passage condition) to the point of overcoming the viability of plasmid-transfected cells (\(P < 0.0001 \), Fig. 2a). Culture time was a determinant factor of the cytotoxicity of aSyn overexpression.
growth rates of clones over time (clone \times incubation time interaction, $F(6,62) = 10.127$, $P < 0.0001$). Differences were observed following a 48-hour incubation when high-aSyn clone began to proliferate faster than low-aSyn and plasmid clones ($P < 0.0001$), whereas levels of proliferation of the low-aSyn clone approached those of the high-aSyn clone after a 72-hour incubation ($P < 0.0001$ compared to plasmid). A delayed proliferating response and subsequent amelioration of the low-aSyn clone during the culture time was thus confirmed.

\textbf{aSyn overexpression stimulates the formation of adherent cell colonies}

It could be argued that the MTT assay captures cell metabolic activity better than cell proliferation. Therefore, effects of aSyn overexpression in cell viability was reevaluated by measuring the formation of adherent colonies (clonogenicity, Fig. 4a). Conditioned medium (C_m) from high-aSyn cell cultures was introduced as an additional treatment to investigate whether the proliferative effects of high-aSyn overexpression could be controlled by paracrine ways. In attachment-dependent conditions, clonogenicity was linked to the aSyn overexpression in the SH-SY5Y clones ($F(4,14) = 184.1$, $P < 0.0001$; low-aSyn and high-aSyn clones were higher compared to plasmid; $P < 0.0001$). These effects, however, were not specific because replication viability of the low-aSyn clone was moderately higher compared to the high-aSyn clone ($P < 0.01$), a difference that was even larger after incubation with C_m (low-aSyn clone + C_m compared to the low-aSyn clone; $P < 0.01$).
Effects of αSyn overexpression in colony formation in agar (CFA)

To assess tumorigenicity, cell cultures were grown on agar to measure proliferation in attachment-independent conditions. The CFA assay rigorously tests cell proliferation and migration, which depend on floating cancer stem cells. This assay confirmed that αSyn overexpression stimulated the production of colony formation units (Fig. 4b; $F(4,19) = 140.45, P < 0.0001$; low-αSyn and high-αSyn clones compared to the plasmid clone; $P < 0.0001$). In contrast to clonogenicity, tumorigenicity in the high-αSyn clone was higher than in the low-αSyn clone ($P < 0.0001$). Likewise clonogenicity, culturing with Cm, increased the tumorigenicity of low-αSyn (the highest CFA rate), and the plasmid clone ($P < 0.0001$ vs. non-conditioned counterparts) probably by paracrine action.

αSyn overexpression precipitates Rot toxicity in SH-SY5Y neurons

Viability of the transfected clones was challenged with Rot, a complex I inhibitor and potent pro-oxidant agent. Pretreatment with PRGO is deemed to promote cell aging. Fig. 5 represents the cytotoxic effects of (a) increasing concentrations of Rot and (b) the effects of 50 μg/mL of PRGO pretreatment in the cytotoxicity produced by Rot. As shown in Fig. 5a, there was a statistically significant clone effect ($F(2,302) = 15.32, P < 0.0001$), a treatment effect ($F(3,302) = 57.63, P < 0.0001$), and a clone x treatment interaction ($F(6,302) = 15.53, P < 0.0001$). The treatment with Rot significantly damaged the low-αSyn clone ($P < 0.0001$ compared to Vehicle, $P < 0.0001$ compared to plasmid) and the high-αSyn clone ($P < 0.0001$ compared to Vehicle, $P < 0.0001$ compared to plasmid), whereas the plasmid clone was not affected.

The combination of the Rot with PRGO treatments (Fig. 5b) exhibited synergy and exacerbated cytotoxicity in the low-αSyn clone ($P < 0.0001$ compared to the PRGO, plasmid, and high-αSyn groups), as well as it finally caused damage to the plasmid clone ($P < 0.0001$ compared to PRGO). The Rot + PRGO treatment, however, showed no evident changes in the viability of the high-αSyn clone compared to the Rot treatment. Absence of a clear dose-toxicity relationship was likely due to floor effects.

Cell senescence is retarded in high-αSyn SH-SY5Y neurons

Finally, αSyn overexpression effects in specific markers of senescence (SMP30) and mitosis (Ki-67) were investigated. At the same time, it was double checked if both αSyn clones kept overexpressing the transected SCNA gene. As shown in the Fig. 6a and b, αSyn transgenesis was not lost throughout freeze/thaw cycling (clone effect; $F(2,37) = 15.74, P < 0.0001$; high-αSyn: $P < 0.01$ compared to plasmid; low-αSyn: $P < 0.05$ compared to plasmid; and high-αSyn: $P < 0.01$ compared to low-αSyn). αSyn overload increased the expression of SMP30, a protein deemed to be decreased by aging (clone effect: $F(2,20) = 6.02, P < 0.05$; high-αSyn: $P < 0.01$ compared to plasmid; low-αSyn: $P < 0.01$ compared to plasmid). In parallel, the cell proliferation marker Ki-67 differed across clones ($F(2,26) = 3.773, P < 0.05$) and its expression was increased in high-αSyn neurons ($P < 0.05$ compared to plasmid).

Discussion

This research showed the dual consequences (cell toxicity and cell proliferation) of αSyn overexpression in the same in vitro model of human dopaminergic-like SH-SY5Y neurons. While αSyn overexpression made cells be more susceptible to oxidative stress, especially at moderate increments of αSyn, a larger amount of protein stimulated tumorigenicity of this cancer cell line, thus rejuvenating the culture. Dependence of the above effects on αSyn levels implies a critical role for αSyn overexpression in neuronal regenerative vigor and aging.

SNCA (or PARK1) was the first gene linked to autosomal-dominant PD [44]. Up-regulation of the wild-type αSyn as a result of abnormal gene dosage contributes to PD [10]. Point-mutations

![Fig. 5. Rotenone-induced neurotoxicity in αSyn overexpressing neurons and worsening effects of PRGO. (a) Cytotoxicity of rotenone (Rot) in SH-SY5Y neurons. The 24-hour treatment with Rot damaged only αSyn-overexpressing neurons. (b) Pretreatment with 50 μg/mL of partially reduced graphene oxide (PRGO) triggers Rot cytotoxicity in plasmid-transfected cells while worsening the conditions for low-αSyn cells. Grey bars represent the viability (100%) in vehicle control. Cell viability was calculated as the percentage of vehicle control of each clone type. Data represent the mean ± SD of 8 independent experiments with Bonferroni post hoc tests: ***$P < 0.001$ compared to Plasmid; +++$P < 0.001$ compared to low-αSyn.](image-url)
in the SNCA gene (A53T and A30P) linked to idiopathic PD, consistently yield neurotoxicity [45] and increased aSyn fibril formation [46] when overexpressed in SH-SY5Y cells. In contrast, the viability of cells overexpressing wild-type aSyn hardly differs from non-transgenic cells [45]. Likewise, wild-type aSyn overexpression in transgenic mice cannot efficiently mimic synucleinopathies [47,48]. Only doxycycline-inducible gene expression and transient transfection [49–51] with the SCNA gene in SH-SY5Y cells, and adenovirus-mediated SCNA gene delivery in whole animals [52] reliably induce neurotoxicity, but only after switching on the expression of the wild-type aSyn. In agreement with Kanda et al. [45], we found that wild-type aSyn overexpression was not directly neurotoxic. Moderate aSyn overexpression triggered levels of cell death (~20% of the total cells) similar to those of other reports [49–51,53], but only when cells were still recovering from thawing. In this vein, low-aSyn and plasmid-transfected cells showed delayed growth at logarithmic rate with respect to high-aSyn cells (the proliferation assay), likely because they fell short of releasing enough growth factor to the culture medium.

This hypothesis was confirmed in the tumorigenicity experiment, in which low-aSyn and plasmid-transfected cells responded to the medium drawn from actively growing high-aSyn cells. Although, replication viability (clonogenicity) was not directly proportional to the levels of aSyn overexpression, pro-invasive capacity (tumorigenicity) of high-aSyn cells support the role of enhanced aSyn via paracrine, in tumorigenic progression found in some human malignancies [31,54–56]. The discrepancies in the effects of aSyn overexpression across clonogenicity (low-aSyn > high-aSyn) and tumorigenicity (high-aSyn > low-aSyn) assays may imply different forms of aSyn fibrils, depending on its concentration, which is important to aSyn cytotoxicity [7,57]. aSyn possesses chaperone activity, which is greater in the fibrillar form [58]. A limited overexpression of aSyn could then alter the dynamics of the protein and its chaperone activity. Characterization of aggregated forms of aSyn needs further research.

Up-regulation of two proteins may explain why cell proliferation and senescence occurred at the same time in high-aSyn overexpressing cells, the Ki-67 protein, which is strictly associated with cell proliferation [59] and the senescence marker protein-30 (SMP30 or regucalcin) and which is down-regulated by aging [60]. Similarly, to aSyn, both proteins can be found in membranes [61,62] and they play regulatory roles in intracellular calcium signaling [61,63]. Because of the augmented Ki-67 expression and tumorigenicity of the high-aSyn cell lineage, and to a somewhat lesser extent in low-aSyn cells, aSyn may stimulate mitosis in neuroblastoma stem cells in the same way it does in neural stem cells in the adult brain [64]. SMP30 and aSyn share some functional features. Extracellular aSyn, which is not always lethal to neurons [57], promotes dopaminergic neuronal survival [65] whereas SMP30 prevents cells from senescing [60]. Similarly, aSyn overexpression favored tumorigenesis, and to a lesser degree clonogenicity, of neuroblastoma cells, probably by paracrine control. There is evidence that aSyn is secreted to the extracellular milieu [66,67] by means of exosomes [68]. Our results therefore agree with the hypothesis that a rise in aSyn expression over basal levels could have a protective effect against aging, rather than being its detrimental consequence [25,65,69,70]. Our results also are in accordance with evidence that suggests that aging-induced accumulation of aSyn is not linked to the progression of PD [16].

To confirm that aSyn overexpression represents a two-edged sword to neural survival, the neurotoxicity of the pro-oxidant Rot was evaluated [71], either alone or in combination with PRGO, a graphene-based nanomaterial known to be a potent accelerator and inducer of neuronal differentiation [72]. aSyn overexpression reduces intracellular antioxidant-defense systems [73] making SH-SY5Y cells more vulnerable to oxidative stress and cell aging
Cytotoxicity by Rot [71,77] only affected αSyn-transgenic cells. While Rot works by interfering with the electron transport chain in mitochondria, αSyn overexpression could also have a direct impact on mitochondrial integrity and the cellular energy status [78]. GO and its reduced form PRGO induce apoptosis in cancer stem cells [40,79] and neuronal cell lines [41] by arresting the cell cycle at the G0/G1 phase. The PRGO treatment prior to the addition of Rot severely worsened the viability of the low-αSyn cells, but not of the high-αSyn cells, a finding accounted for by the protective role of wild-type αSyn against cell senescence in the presence of oxidative stress [48,80–85]. Indeed, the inhibition of αSyn basal production can even kill SH-SY5Y cells [86]. The neurotoxic consequences of the αSyn overexpression in PD may not be as direct as initially thought [13–15,86–88].

Conclusion
The present study demonstrates that αSyn overexpressed at different levels produce different effects in the same model of human dopaminergic-like SH-SY5Y neurons. It is suggested that the maintenance of adequate levels of αSyn overexpression with aging rather than αSyn up-regulation itself should be the target in PD research.

Acknowledgements
We thank Prof. María Javier Ramirez, and Prof. José González-Castaño for their technical assistance. We also thank David Montenegro for the proofreading. This work was supported by the Fundación Universidad de Navarra, Universidad de Malaga, Campus de Excelencia Internacional Andalucía Tech, and Andalucía Government PAIDI-CTS1516, Spain. Javier de la Rosa was granted with a predoctoral fellowship from the Asociación de Amigos de la Universidad de Navarra, Spain.

Compliance with Ethics requirements
The authors have read and abided by the statement of Ethics in publishing and Ethical guidelines for journal publication.

Declaration of Competing Interest
Author Rune Wendelbo is the CEO of the Abalonyx Co. All other the authors have no conflict of interests to report.

References
[1] Maroteaux L, Campanelli JT, Scheller RH. Synuclein: a neuron-specific protein localized to the nucleus and presynaptic nerve terminal. J Neurosci 1988;8:2804–15.
[2] Dedmon MM, Lindorf-Larsen K, Christodoulou J, Vendruscolo M, Dobson CM. Mapping long-range interactions in alpha-synuclein using spin-label NMR and ensemble molecular dynamics simulations. J Am Chem Soc 2005;127:476–7.
[3] Delevensnjder A, Gerard M, Debryier Z, Baekelandt V. The remarkable conformational plasticity of alpha-synuclein: blessing or curse?. Trends Mol Med 2013;19:368–77.
[4] Fusco G, Chen SW, Williamson PTF, Cascella R, Perni M, Jarvis JA, et al. Structural basis of membrane disruption and cellular toxicity by β-αSyn oligomers. Science 2017;358:1440–3.
[5] Fortin DL, Nenami VM, Nakamura K, Edwards RH. The behavior of α-Synuclein in neurons. Mov Disord 2010;25:521–6.
[6] Emanuele M, Chiaregati E. Mechanisms of alpha-synuclein action on neurotransmission: cell-autonomous and non-cell-autonomous role. Biomolecules 2015;5:386–92.
[7] Duda JE, Lee VM. Trojanowski JQ. Neuropathology of synuclein aggregates. J Neurosci Res 2000;51:121–7.
[8] McCann H, Stevens CH, Cartwright H, Halliday GM. α-Synucleinopathy phenotypes. Parkinsonism Relat Disord 2014;20(Suppl. 1):S62–7.
[9] Jellinger KA. Neuropathological spectrum of synucleinopathies. Mov Disord 2003;Suppl. 6:52–512.
[10] Eriksen JL, Przedborski S, Petrucelli L. Gene dosage and pathogenesis of Parkinson’s disease. Trends Mol Med 2005;11:91–6.
[11] Konno T, Ross OA, Puschmann A, Dickson DW, Wiszek ZK. Autosomal dominant Parkinson’s disease caused by SNCA duplications. Parkinsonism Relat Disord 2016;Suppl. 1:S1–6.
[12] Waxman EA, Giasson BI. Molecular mechanisms of alpha-synuclein in neurodegeneration. Biochim Biophys Acta 2009;1792:1716–26.
[13] Johnson J, Hague SM, Hanson M, Gibson A, Wilson KE, Evans EW, et al. SNCA multiplication is not a common cause of Parkinson disease or dementia with Lewy bodies. Neurology 2004;63:554–6.
[14] Hofer A, Berg D, Asimus F, Niwar M, Ransmayr G, Riemenschneider M, et al. The role of alpha-synuclein gene multiplications in early-onset Parkinson’s disease and dementia with Lewy bodies. J Neurotransm (Vienna) 2005;112:1249–54.
[15] Nishioka K, Hayashi S, Farrer MJ, Singleton AB, Yoshino H, Imai H, et al. Clinical heterogeneity of alpha-synuclein gene duplication in Parkinson’s disease. Ann Neurol 2006;59:298–309.
[16] Jellinger KA. Lewy body-related alpha-synucleinopathy in the aged human brain. J Neurol Trans (Vienna) 2004;111:1219–35.
[17] Markesbery WR, Jicha GA, Liu H, Schmitt FA. Lewy body pathology in normal elderly subjects. J Neuropath Exp Neurol 2009;68:816–22.
[18] Frigerio R, Fujishiro H, Abn TB, Josephs KA, Maraganore DM, DelleDonne A, et al. Incidental Lewy body disease: do some cases represent a preclinical stage of dementia with Lewy bodies?. Neurobiol Aging 2011;32:857–63.
[19] Chu Y, Kordover JH. Age-associated increased of alpha-synuclein in monkeys and humans are associated with nigrostriatal dopamine depletion: is this the target for Parkinson’s disease?. Neurol Dis 2014;15:334–49.
[20] Wong YC, Krainc D. α-Synuclein toxicity in neurodegeneration: mechanism and therapeutic strategies. Nat Med 2017;23:1–13.
[21] Tanaka M, Kim YM, Lee G, Junn E, Iwasubo T, Mouradian MM. Aggresomes formed by alpha-synuclein and synphilin-1 are cytotoxic. J Biol Chem 2004;279:4625–31.
[22] Shults CW. Lewy bodies. Proc Natl Acad Sci USA 2007;103:1661–8.
[23] Kawashima M, Suzuki SO, Dohura K, Iwaki T. α-Synuclein is expressed in a variety of brain tumors showing neuronal differentiation. Acta Neuropathologica 2000;99:154–60.
[24] Fung RM, Rorke LB, Giasson B, Lee VM, Trojanowski JQ. Expression of α-, β-, and γ-synuclein in glial tumors and medulloblastomas. Acta Neuropathol 2003;106:167–75.
[25] da Costa CA, Anicolio K, Cheekler F. Wild-type but not Parkinson’s disease-related ala-53 → Thr mutant alpha-synuclein protects neuronal cells from cell death stimuli. J Biol Chem 2000;275:24065–9.
[26] El-Geundi N, Rangnekar VM. Apoptosis by Par-4 in cancer and neurodegenerative diseases. Exp Cell Res 2003;283:51–66.
[27] Bajai A, Driver J, Schernhammer E. Parkinson’s disease and cancer risk: a systematic review and meta-analysis. Cancer Causes Control 2010;21:697–707.
[28] Morris LG, Veeriah S, Chan TA. Genetic determinants at the interface of cancer and neurodegenerative disease. Oncogene 2010;29:3433–64.
[29] Shi HJ, Tang B, Liu YW, Wang MF, Chen GJ. Alzheimer’s disease and cancer risk: a meta-analysis. J Cancer Res Clin Oncol 2015;141:485–94.
[30] Engel PA. Is age-related failure of metabolic reprogramming a principal mediator in idiopathic Parkinson’s disease? Implications for treatment and inverse cancer risk. Med Hypotheses 2016;93:154–60.
[31] Inzelberg R, Flash S, Friedman E, Azizi E. Cutaneous malignant melanoma and Parkinson disease: common pathways?. Ann Neurol 2016;80:811–20.
[32] Israeli E, Yakunin E, Zarby Y, Hacobon-Solovich A, Kisos H, Loeb V, et al. α-Synuclein expression selectively affects tumorigenesis in mouse modeling Parkinson’s disease. PLoS One 2011;6:e19622.
[33] Fan T, Zhu J, Hwo WJ, Jankovic J. The role of alpha-synuclein in melanin synthesis in melanoma and dopaminergic neuronal cells. PLoS One 2012;7:e45183.
[34] da Costa CA, Duplan E, Checker F. α-Synuclein and p53 functional interplay in physiopathological contexts. Oncotarget 2017;8:9001–19.
[35] See JH, Rah JC, Choi SH, Shin JK, Min K, Kim HS, et al. α-Synuclein regulates neuronal survival via Bcl-2 family expression and PI3/Akt pathway. PASEB J 2002;16:1826–8.
[36] Musgrove RE, King AE, Dickson TC. Neuroprotective upregulation of endogenous α-synuclein precedes ubiquitination in cultured dopaminergic neurons. Neurotox Res 2011;19:592–602.
[37] Kim HJ, Jeon BS, Yoon MY, Park SS, Lee KW. Increased expression of α-synuclein by SNCA duplication is associated with resistance to toxic stimuli. J Mol Neurosci 2012;47:249–55.
[38] Xicoy H, Wieringa B, Martens GJ. The SH-SYSY cell line in Parkinson’s disease research: a systematic review. Mol Neurodegeneration 2017;12:10.
[39] Guiderdoni T. Rapid colorectal assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods 1983;65:53–63.
[40] Jaworski S, Sadowsz E, Kutwin M, Wierzbicki M, Hinzmann M, Grodzik M, et al. In vitro and in vivo effects of graphene oxide and reduced graphene oxide on glioblastoma. Int J Nanomed 2015;10:1585–96.
[41] Kang Y, Liu J, Wu J, Yin Q, Liang H, Chen A, et al. Graphene oxide and reduced graphene oxide induced neural pheochromocytoma-derived PC12 cell lines apoptosis and cell cycle alterations via the ERK signaling pathways. Int J Nanomed 2017;12:5501–10.
Shi X, Sun Y, Wang P, Gu L, Wang L, Yang H, et al. The interaction between

Pérez-Sánchez F, Milán M, Buendía P, Cano-Jaimez M, Ambrosio S, Rosenthal A,

Kholodilov NG, Neystat M, Oo TF, Lo SE, Larsen KE, Sulzer D, et al. Increased

expression of rat synuclein in the substantia nigra pars compacta identified by

mRNA differential display in a model of developmental target injury. J

Neurochem 1999;73:2386–95.

Chandra S, Gallardo G, Fernández-Chacón R, Schlüter OM, Südhof TC. Alpha-

synuclein cooperates with CSPalpha in preventing neurodegeneration.

Cell 2005;123:93–86.

Hongo H, Kihara T, Kume T, Izumi Y, Niidome T, Sugimoto H, et al. Glycogen

synthase kinase-3β activation mediates rotenone-induced cytotoxicity with

the involvement of microtubule destabilization. Biochem Biophys Res

Commun 2012;426:94–9.

Defterali C, Verdejo R, Pepin L, Martin ED, Martín-Murillo R, López-

Machado MA, et al. Thermally reduced graphene is a permissible material for

neurodegeneration. J Neurochem 2010;97:2134–32.