Retrospective Study

Risk factors for delirium after surgery for craniocerebral injury in the neurosurgical intensive care unit

Ri-Yu Chen, Chang-Hui Zhong, Wei Chen, Ming Lin, Chang-Fu Feng, Chang-Neng Chen

Specialty type: Neurosciences
Provenance and peer review: Unsolicted article; Externally peer reviewed.
Peer-review model: Single blind Peer-review report’s scientific quality classification
Grade A (Excellent): 0
Grade B (Very good): B
Grade C (Good): 0
Grade D (Fair): 0
Grade E (Poor): 0

P-Reviewer: Cvijic M, Slovenia; Lenck S, France
A-Editor: Zhu JQ, China
Received: March 8, 2022
Peer-review started: March 8, 2022
First decision: April 13, 2022
Revised: May 6, 2022
Accepted: May 27, 2022
Article in press: May 27, 2022
Published online: July 26, 2022

Abstract

BACKGROUND
Postoperative delirium is common in patients who undergo neurosurgery for craniocerebral injury. However, there is no specific medical test to predict postoperative delirium to date.

AIM
To explore risk factors for postoperative delirium in patients with craniocerebral injury in the neurosurgery intensive care unit (ICU).

METHODS
A retrospective analysis was performed in 120 patients with craniocerebral injury admitted to Hainan People’s Hospital/Hainan Hospital Affiliated to Hainan Medical University, The First Affiliated Hospital of Hainan Medical University, and The Second Affiliated Hospital of Hainan Medical University between January 2018 and January 2020. The patients were categorized into groups based on whether delirium occurred. Of them, 25 patients with delirium were included in the delirium group, and 95 patients without delirium were included in the observation group. Logistic regression analysis was used to explore the association between sex, age, educational level, Glasgow coma scale (GCS), complications (with or without concussion, cerebral contusion, hypoxemia and ventricular compression) and site of injury and delirium.
RESULTS
The GCS score above 8 and concomitant disease of cerebral concussion, cerebral contusion, hypoxemia and ventricular compression, and damage to the frontal lobe were associated with delirium in patients admitted to neurosurgical intensive care unit (ICU) (all \(P < 0.05 \)). However, age, sex, administration more than three medicines, and educational level were not significantly associated with the onset of delirium in patients with craniocerebral injury in the neurosurgical ICU (\(P < 0.05 \)). Multivariate logistic regression analysis showed that GCS score above 8, cerebral concussion, cerebral contusion, hypoxemia, ventricle compression, and frontal lobe disorders were independent risk factors for delirium in patients with craniocerebral injury in the neurosurgical ICU (\(P < 0.05 \)).

CONCLUSION
GCS score, concussive concussion, cerebral contusion, hypoxemia, ventricle compression, and damage to frontal lobe are risk factors of postoperative delirium.

Key Words: Brain injury; Delirium; Neurosurgery; Intensive care unit; Risk factors

©The Author(s) 2022. Published by Baishideng Publishing Group Inc. All rights reserved.

Core Tip: Neurosurgical patients with craniocerebral injury are at high risk of developing postoperative delirium. Investigating predictive factors for postoperative delirium will aid in early implementation to greatly reduce the risk. This study analyzed the association between age, sex, use of medicines, Glasgow coma scale score (GCS), comorbid diseases, and injury sites and onset of delirium in patients with craniocerebral injury in the neurosurgical intensive care unit. The results of this study suggest that GCS score above 8, comorbid diseases of cerebral concussion, cerebral contusion, hypoxemia and ventricular compression, and frontal lobe injury might contribute to delirium in this population.

Citation: Chen RY, Zhong CH, Chen W, Lin M, Feng CF, Chen CN. Risk factors for delirium after surgery for craniocerebral injury in the neurosurgical intensive care unit. World J Clin Cases 2022; 10(21): 7341-7347

URL: https://www.wjgnet.com/2307-8960/full/v10/i21/7341.htm

DOI: https://dx.doi.org/10.12998/wjcc.v10.i21.7341

INTRODUCTION
Craniocerebral injury is a common surgical disease with high morbidity and mortality. Generally, patients with craniocerebral injury can be saved if rescued in a timely manner through surgical treatment[1,2]. However, some patients may suffer from delirium after surgery due to serious damage to brain tissues[3,4]. Delirium is an acute cognitive deficit with changes in arousal level. The development of delirium may cause secondary injury, which will lead to disability and even death[5,6]. Therefore, clinicians in the neurosurgery intensive care unit (ICU) should mainly focus on whether delirium may occur in this population. Some studies[7,8] have shown that patients with brain injury probably experience more craniocerebral trauma after surgery because of head injury caused by a direct or indirect outside force. This may lead to dysregulation of psychological activity and psychological deficit with manifestation of delirium. Research[9] has shown that the occurrence of delirium in patients in the ICU not only has a strong effect on treatment efficacy but also increases the incidence of complications and mortality. Moreover, delirium can hinder ongoing treatment for brain injury, resulting in extended ICU stay and increase in the health care expenditure burden[10-12].

This study discussed risk factors influencing the onset of delirium in patients with craniocerebral injury in the ICU after surgery.

MATERIALS AND METHODS

Participants
A retrospective analysis was conducted at Hainan People’s Hospital/Hainan Hospital Affiliated to Hainan Medical University, The First Affiliated Hospital of Hainan Medical University, and The Second Affiliated Hospital of Hainan Medical University between January 2018 and January 2020 including 120 patients with craniocerebral injury. Based on whether delirium occurred, these patients were categorized into different groups. Of them, 25 patients with delirium were included in a delirium group.
and 95 patients without delirium were included in the observation group. Patients included in the study were admitted to the neurosurgical ICU for craniocerebral injury. All patients and their family members provided written informed consent. Eligibility criteria were: patients admitted to the ICU for at least 24 h, patients aged 18 years to 78 years, and patients with a Glasgow coma scale (GCS) score of 5 to 13. Exclusion criteria were: patients with comorbidity of psychological disorders, patients with comorbidity of severe cardiovascular disease, and patients with poor basic physical performance. In the delirium group, 19 patients were male and 6 patients were female, aged 36 years to 72 years with an average age of 54.34 ± 11.09 years. In the observation group, 72 patients were male and 23 patients were female, aged 35 years to 73 years with an average age of 55.40 ± 10.93 years. The sex composition and age structure were comparable between the two groups (P > 0.05).

Methods
General information of the selected 120 participants were collected including sex, age, and education level. Meanwhile, clinical data were collected including GCS score; comorbid diseases of cerebral concussion, cerebral contusion, hypoxemia and ventricular compression; and site of injury. The confusion assessment method for the intensive care unit (CAM-ICU) was used to evaluate whether a patient had delirium. Logistic regression analysis was conducted to explore the association between sex, age, education level, GCS score, comorbid diseases and site of injury and delirium[13].

For the measure, CAM-ICU was used to assess acute change and fluctuations in cognitive state consciousness; attention deficit with either a Letters (auditory) test or a Pictures (visual) test; thought disorder; and clarity of consciousness. A positive CAM-ICU test result was defined as the conditions of both (1) and (2) as well as either (3) or (4) were fulfilled. Moreover, the judgement whether a patient had delirium was subject to the consistency of assessment by two researchers at the same time.

SPSS 22.0 was used as the statistical software for data analysis. Measurement data was expressed using mean ± SD and inter-group difference was compared using Student’s t test. Enumeration data was expressed using n (%) and inter-group difference was compared using χ². P < 0.05 represented there was a significant difference.

RESULTS
Potential risk factors for delirium
GCS score above 8; comorbid diseases of cerebral concussion, cerebral contusion, hypoxemia and ventricular compression; and frontal lobe injury were associated with delirium in patients admitted to the neurosurgical ICU (all P < 0.05). However, patient sex, age, education level and use more than three medicines were not associated with the occurrence of delirium in this population (P > 0.05). Table 1 showed the risk factors that might have an influence on the onset of delirium in patients with brain injury admitted to neurosurgical ICU (all P < 0.05).

Multivariate logistic regression analysis
Logistic analysis demonstrated that GCS score above 8; comorbid diseases of cerebral concussion, cerebral contusion, hypoxemia and ventricular compression and frontal lobe injury were independent risk factors for the onset of delirium in patients with brain injury admitted to neurosurgical ICU (all P < 0.05, Table 2 and Table 3).

DISCUSSION
The specific mechanism for delirium caused by brain injury is unknown. It may be due to the involvement of the brainstem reticular formation and diffuse inhibition in the cerebral cortex[14,15]. The patients who underwent a surgery for brain injury are prone to displaying behaviors like quarrel and scold and self-harm. This may be associated with quick changes in patients’ conditions and tranquility after brain injury. One fourth patients with delirium die in the hospital compared with mortality of 1% in patients brain injury but without delirium[16-18]. Moreover, the length of ICU stay is long in patients with delirium. Duration of mechanical ventilation and the length of ICU stay is prolonged in patients with delirium compared with those without delirium[19,20]. Furthermore, delirium is associated with the onset of tube related adverse events such as unexpected extubation and tracheal intubation[21]. The present study discussed the risk factors for the onset of delirium in patients who underwent surgery for brain injury in neurosurgical ICU.

The results of the study showed that GCS score above 8; comorbid diseases of cerebral concussion, cerebral contusion, hypoxemia or ventricular compression; and frontal lobe injury were independent risk factors for the onset of delirium in patients with brain injury in the neurosurgical ICU. It can be interpreted as a low GCS score indicates a serious brain injury. If cerebral concussion, cerebral contusion, hypoxemia, and ventricular compression coincide with a low GCS score, it means the brain...
Table 1 Analysis of potential factors influencing delirium in patients admitted to neurosurgical intensive care unit

Relative factors	Delirium group, \(n = 25\)	Observation group, \(n = 95\)	\(\chi^2\) value	\(P\) value
Sex			0.135	0.804
Male	19	72		
Female	6	23		
Age in yr, mean ± SD	54.34 ± 11.09	55.40 ± 10.93	0.101	0.845
GCS score ≥ 8	12	70		
GCS score < 8	13	25		
Administration more than 3 medicines	18	65	3.024	0.052
Comorbid cerebral concussion	17	34	10.098	0.001
Comorbid cerebral contusion	15	28	9.075	0.001
Comorbid hypoxemia	17	35	7.865	0.001
Comorbid ventricular compression	16	27	12.096	0.001
Frontal lobe injury	18	30	9.763	0.001

GCS: Glasgow coma scale; SD: Standard deviation.

Table 2 Variate score setting for the logistic analysis

Variates	Score setting
GCS	1 indicated GCS score ≥ 8; 0 indicated GCS score between 5 and 8
Comorbid cerebral concussion	1 indicated presence of the comorbidity; 0 indicated absence of the comorbidity
Comorbid cerebral contusion	1 indicated presence of the comorbidity; 0 indicated absence of the comorbidity
Comorbid hypoxemia	1 indicated presence of the comorbidity; 0 indicated absence of the comorbidity
Comorbid ventricular compression	1 indicated presence of the comorbidity; 0 indicated absence of the comorbidity
Frontal lobe injury	1 indicated frontal lobe injury; 0 indicated injury of other sites of the brain

GCS: Glasgow coma scale.

Table 3 Multivariate logistic regression analysis of risk factors for the onset of delirium in patients with brain injury admitted to the neurosurgical intensive care unit

Variates	\(B\) value	\(SE\) value	Wald \(\chi^2\) value	\(P\) value	OR value	95%CI
GCS score	0.221	0.126	7.531	0.001	1.201	1.085-1.452
Comorbid cerebral concussion	0.189	0.223	6.542	0.001	1.154	1.058-1.503
Comorbid cerebral contusion	0.287	0.103	8.032	0.001	1.302	1.123-1.651
Comorbid hypoxemia	0.212	0.139	7.093	0.001	1.189	1.072-1.440
Comorbid ventricular compression	0.190	0.189	6.734	0.001	1.172	1.065-1.542
Frontal lobe injury	0.271	0.098	7.689	0.001	1.233	1.110-1.722

CI: Confidence interval; GCS: Glasgow coma scale; OR: Odds ratio.

had more severe injuries that may lead to acute stress-related disorders[22-23]. The key to controlling delirium is to discriminate the factors influencing the development of delirium and take preventative measures to reduce its occurrence. It was previously believed that medicines, metabolism, and brain parenchyma influence the occurrence of delirium[24]. This study demonstrated that using more than
three medicines was not significantly associated with the development of delirium, which may be attributed to the good basic physical performance of the participants in the study.

Lack of timely and effective health care may cause serious adverse outcomes such as disability and even death when patients with brain injury have delirium in the neurosurgical ICU. Therefore, the prevention of delirium and effective management should be highlighted in this population. Early preventive measures, diagnosis, and treatment can effectively prevent and reduce the incidence and duration of delirium in patients with a high risk of developing delirium to improve treatment outcomes and promote rehabilitation. A study\cite{25} showed that due to the high incidence of delirium and relevant adverse effects it caused, risk factors influencing the occurrence of delirium should be highly concerned and active quality health care should be provided to prevent and reduce the impact of delirium and promote beneficial outcomes in this population.

CONCLUSION

As discussed above, GCS score; comorbid diseases of cerebral concussion, cerebral contusion, hypoxemia and ventricular compression; and frontal lobe injury are risk factors for the onset of delirium in patients with brain injury and should be highly considered. Especially for patients with comorbid risks, appropriate nursing interventions should be implemented in the clinical treatment to reduce the incidence of delirium and improve clinical outcomes.

ARTICLE HIGHLIGHTS

Research background
Postoperative delirium is common in patients with brain injuries. Patients with delirium are more likely to experience increased complications such as cognitive dysfunction, disabilities, and morbidity. Predictors of postoperative delirium vary across inpatient settings. This study discussed the predictors of postoperative delirium in neurosurgical patients.

Research motivation
Exploring which factors play a part in the development of delirium helps to provide insights for clinicians and nurses to provide interventions at an early date to reduce the damage of disease in neurosurgery intensive care unit (ICU).

Research objectives
The study examined the predictors of postoperative delirium in patients who were hospitalized for brain injuries in neurosurgery ICU.

Research methods
This was a retrospective analysis. Data were collected including age, sex, years of education, the score of Glasgow coma scale (GCS), comorbid diseases, and injury sites in inpatients of the neurosurgery ICU who had brain injuries and underwent surgery. Logistic regression analysis was used to examine the association between the above factors and delirium in this population.

Research results
GCS score above 8; comorbid diseases of cerebral concussion, cerebral contusion, hypoxemia and ventricular compression; and frontal lobe injury were independent risk factors for the onset of delirium in patients with brain injury admitted to the neurosurgical ICU.

Research conclusions
Patients with GCS above 8; comorbid diseases of cerebral concussion, cerebral contusion, hypoxemia and ventricular compression; and frontal lobe injury are much more likely to develop delirium after surgery for brain injuries.

Research perspectives
Future studies in a larger sample size are warranted to understand the epidemiology of postoperative delirium in neurosurgical patients admitted to ICU.
FOOTNOTES

Author contributions: Chen RY and Zhong CH contributed equally to this manuscript, and considered as co-first authors; Chen W, Lin M, Feng CF, and Chen CN contributed to the writing of the manuscript; All authors have read and agreed to the published version of the manuscript.

Institutional review board statement: The study was reviewed and approved by the Hainan People’s Hospital/Hainan Hospital Affiliated to Hainan Medical University Institutional Review Board.

Informed consent statement: Patients were not required to give informed consent to the study because the analysis used anonymous clinical data that were obtained after each patient agreed to treatment by written consent.

Conflict-of-interest statement: The authors have no conflicts of interest to declare.

Data sharing statement: No additional data are available.

Open-Access: This article is an open-access article that was selected by an in-house editor and fully peer-reviewed by external reviewers. It is distributed in accordance with the Creative Commons Attribution NonCommercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: https://creativecommons.org/Licenses/by-nc/4.0/

Country/Territory of origin: China

ORCID number: Chang-Neng Chen 000-0002-2587-8771.

S-Editor: Wang JL
L-Editor: Filipodia
P-Editor: Wang JL

REFERENCES

1 Sun SM, Qu H, Jiang J. [Efficacy and safety of dexmedetomidine hydrochloride for use in postoperative sedation in patients with brain injury]. Chuaungshang Yu Weizhonghing Yixue 2021; 9: 294-297 [DOI: 10.16048/j.issn.2095-5561.2021.04.13]

2 Chen Y, Wang HL, Yao CS, Yu HQ. [Dexmedetomidine used for sedation in patients with craniocerebral injury and dysphoria in neurological intensive care unit]. Zhongguo Laonianxue Zazhi 2011; 31: 3500-3501 [DOI: 10.3969/j.issn.1005-9202.2011.18.029]

3 Cosar M, Eser O, Fidan H, Sahin O, Buyukbas S, Ely A, Yagmurca M, Ozem OA. The neuroprotective effect of dexmedetomidine in the hippocampus of rabbits after subarachnoid hemorrhage. Surg Neurol 2009; 71: 54-9; discussion 59 [PMID: 18207556 DOI: 10.1016/j.surneu.2007.08.020]

4 Xu XJ, Yang MS, Zhang B, Niu F, Dong JQ, Liu BY. Glucose metabolism: A link between traumatic brain injury and Alzheimer's disease. Chin J Traumatol 2021; 24: 5-10 [PMID: 33385332 DOI: 10.1016/j.cjtcn.2020.01.001]

5 Teshe J, Taghigibou C. The overlooked aspect of excitotoxicity: Glutamate-independent excitotoxicity in traumatic brain injuries. Eur J Neurosci 2019; 49: 1157-1170 [PMID: 30554430 DOI: 10.1111/ejn.14307]

6 Alawieh A, Langley EF, Weber S, Adkins D, Tomlinson S. Identifying the Role of Complement in Triggering Neuroinflammation after Traumatic Brain Injury. J Neurosci 2018; 38: 2519-2532 [PMID: 29437855 DOI: 10.1523/JNEUROSCI.2197-17.2018]

7 Cassidy JD, Carroll LJ, Peloso PM, Borg J, von Holst H, Holm L, Kraus J, Coronado VG; WHO Collaborating Centre Task Force on Mild Traumatic Brain Injury. Incidence, risk factors and prevention of mild traumatic brain injury: results of the WHO Collaborating Centre Task Force on Mild Traumatic Brain Injury. J Rehabil Med 2004; 28-60 [PMID: 15083870 DOI: 10.1080/16501960410023732]

8 Tang B, Wang XT, Chen WJ, Zhu SH, Chao YG, Zhu B, He W, Wang B, Cao FF, Liu YJ, Fan XJ, Yang H, Xu QH, Zhang H, Gong RC, Chai WZ, Zhang HM, Shi GZ, Li LH, Huang QB, Zhang LN, Yin WH, Shang XL, Liu B, Xu XJ, Yang MS, Zhang B, Niu F, Dong JQ, Liu BY. [Dexmedetomidine used for sedation in patients with craniocerebral injury and dysphoria in neurological intensive care unit]. Zhongguo Laonianxue Zazhi 2011; 31: 3500-3501 [DOI: 10.3969/j.issn.1005-9202.2011.18.029]

9 Azeem TMA, YouCEF, Alansary AM, Esmat IM, Mohamed AK. Dexmedetomidine vs morphine and midazolam in the prevention and treatment of delirium after adult cardiac surgery: a randomized, double-blinded clinical trial. Saudi J Anaesth 2018; 12: 190-197 [PMID: 29628826 DOI: 10.4103/ija.IJA_303_17]

10 Dillier J, DeSanto-Madeya S, Dottery R, Sullivan L, O'Donoghue SC. Improving the Accuracy of Delirium Assessments in Neuroscience Patients: Scaling a Quality Improvement Program to Improve Nurses' Skill, Compliance, and Accuracy in the Use of the Confusion Assessment Method in the Intensive Care Unit. Dimens Crit Care Nurs 2018; 37: 26-34 [PMID: 29194171 DOI: 10.1097/DCC.0000000000000277]

11 Denke C, Balzer F, Menk M, Szur S, Brosinsky G, Tafelski S, Wennecke KD, Deja M. Long-term sequelae of acute respiratory distress syndrome caused by severe community-acquired pneumonia: Delirium-associated cognitive impairment and post-traumatic stress disorder. J Int Med Res 2018; 46: 2265-2283 [PMID: 29609489 DOI: 10.1177/0300060518771745]
12 Rosa RG, Tonietto TF, da Silva DB, Gutierres FA, Ascoli AM, Madeira LC, Rutzen W, Falavigna M, Robinson CC, Salihu JI, Cavalcantí AB, Azevedo LC, Cremonese RV, Haack TR, Eugênio CS, Dornelles A, Bessel M, Teles JMM, Skrobik Y, Teixeira C. ICU Visits Study Group Investigators. Effectiveness and Safety of an Extended ICU Visitation Model for Delirium Prevention: A Before and After Study. *Crit Care Med* 2017; 45: 1660-1667 [PMID: 28671901 DOI: 10.1097/CCM.0000000000002588]

13 Lobo-Valbuena B, Gordo F, Abella A, Garcia-Manzanedo S, Garcia-Arias MM, Torrejón I, Varillas-Delgado D, Molina R. Risk factors associated with the development of delirium in general ICU patients. A prospective observational study. *PLoS One* 2021; 16: e0255522 [PMID: 34473734 DOI: 10.1371/journal.pone.0255522]

14 Ganau M, Lavinio A, Prisco L. Delirium and agitation in traumatic brain injury patients: an update on pathological hypotheses and treatment options. *Minerva Anestesiol* 2018; 84: 632-640 [PMID: 29479930 DOI: 10.23736/S0375-9393.18.12294-2]

15 Hollinger A, Ledergerber K, von Felten S, Sutter R, Ruegg S, Gantner L, Zimmermann S, Blum A, Steiner LA, Marsch S, Siegemund M. Comparison of propofol and dexmedetomidine infused overnight to treat hyperactive and mixed ICU delirium: a protocol for the Basel ProDex clinical trial. *BMJ Open* 2017; 7: e015783 [PMID: 28710219 DOI: 10.1136/bmjopen-2016-015783]

16 Li X, Wang Y, Liu J, Xiong Y, Chen S, Han J, Xie W, Wu Q. Effects of perioperative interventions for preventing postoperative delirium: A protocol for systematic review and meta-analysis of randomized controlled trials. *Medicine (Baltimore)* 2021; 100: e26662 [PMID: 34398027 DOI: 10.1097/MD.00000000000026662]

17 Wen J, Zeng H, Li Z, He G, Jin Y. Pharmacologic interventions for preventing delirium in adult patients after cardiac surgery: Protocol of a systematic review and network meta-analysis. *Medicine (Baltimore)* 2018; 97: e13881 [PMID: 30593196 DOI: 10.1097/MD.0000000000013881]

18 Adeola M, Azad R, Kassie GM, Shirkey B, Taffet G, Liebl M, Agarwal K. Multicomponent Interventions Reduce High-Risk Medications for Delirium in Hospitalized Older Adults. *J Am Geriatr Soc* 2018; 66: 1638-1645 [PMID: 30053315 DOI: 10.1111/jgs.15438]

19 Rodríguez AMM. Two different looks facing delirium in the hospital: family caregiver and immigrant. *Index De Enfermería* 2013; 22: 127-131 [DOI: 10.4321/S1132-12962013000200003]

20 Cho HY, Song X, Piao J, Jin Y, Lee SM. Automatic delirium prediction system and nursing-sensitive outcomes in the medical intensive care unit. *Clin Nurs Res* 2015; 24: 29-50 [PMID: 24532670 DOI: 10.1177/1054773813520003]

21 Rosenblom DA, Fick DM. Nurse/family caregiver intervention for delirium increases delirium knowledge and improves attitudes toward partnership. *Geriatr Nurs* 2014; 35: 175-181 [PMID: 24582390 DOI: 10.1016/j.gerinurse.2013.12.004]

22 Brummel NE, Jackson JC, Pandharipande PP, Thompson JL, Shintani AK, Dittus RS, Gill TM, Bernard GR, Ely EW, Girard TD. Delirium in the ICU and subsequent long-term disability among survivors of mechanical ventilation. *Crit Care Med* 2014; 42: 369-377 [PMID: 24158172 DOI: 10.1097/CCM.0b013e3182a645bd]

23 Oosterhouse KJ, Vincent C, Foreman MD, Gruss VA, Corte C, Berger B. Intensive Care Unit Nurses' Beliefs About Delirium Assessment and Management. *AACN Adv Crit Care* 2016; 27: 379-393 [PMID: 27959294 DOI: 10.4037/aacnacc2016535]

24 Ma Y. [Effects of cluster-based management strategies on duration of mechanical ventilation and incidence of delirium in postoperative tracheotomized patients with serious craniocerebral injury]. *Linchuang Yanjiu* 2020; 28: 195-197

25 Yang K, Wang Y. Risk factors and nursing strategies for delirium in critically ill patients. *Hushi Jinxiu Zazhi* 2016; 31: 1493-1495 [DOI: 10.16821/j.cnki.hsjx.2016.16.020]
