On the attractiveness of working as a GP and rural doctor including admission pathways to medical school – results of a German nationwide online survey among medical students in their “Practical Year”

Abstract

**Background:** One of the aims of the German student selection network (Studierendenauswahl-Verbund, stav) is to review existing procedures for selecting medical students and to relate their effectiveness to students’ career aspirations as well as to their further careers. Against the background of changes in the selection procedures and the introduction of the rural doctor quota (Landarztquote), the study conducted here aims at contributing to the current discussion on the future of GP (general practitioners) care, especially in rural areas.

**Methods:** In 2019 and 2020, the stav conducted a German nationwide online survey among medical students towards the end of their “Practical Year” (Praktisches Jahr, final-year medical students in practical training). The associations between selection parameters and students’ interest in later working as a GP as well as students’ preference to later work in a place with a low population density were investigated. Furthermore, socio-demographic variables and variables related to medical studies were taken into account. Statistical comparisons were carried out using Chi² and Mann-Whitney U tests.

**Results:** A total of 1,055 students in their Practical Year (65.4% female, 27 years) completed the survey. As their final professional position, 12.1% aspired to own a GP practice or work as employed GP after completing medical specialist training in general medicine (interested students: 9.9%) or general internal medicine (interested students: 9.5%). Compared to their fellow students, those interested in working as a GP had been more often admitted to medical school via the waiting time quota and had more often already completed vocational training in a medical-related field. 39.1% of those interested in working as a GP wanted to work in a place with a low population density. Coming from a place with a low population density as well as completing the medical internship (Famulatur) for GP care in such a place turned out to be positive influencing factors.

**Discussion:** The observed associations between waiting time quota and interest in working as a GP as well as between origin from a place with a low population density and preferring to later work in such a place go hand in hand with changes in the access regulations for medical studies, which concern both the waiting time quota (abolition of the latter) and a regulation of the number of rural doctors (rural doctor quota). In order to evaluate the current changes in the access regulations for medical studies, longitudinal studies are desirable that cover the time from the application to study up to the medical specialist examination and further career.

**Keywords:** student selection medicine, general practice, primary care, GP, rural doctor quota
1. Background

Only a few studies are available for the German-speaking countries that examine the associations between the admission pathways to medical school and students’ desired and actual careers. Rarely have selection parameters such as the Abitur grade (German general higher education entrance qualification), admission rates or professional experience been related to later professional activity. Career choices of young doctors are of interest because of the imbalance in the sectoral and regional distribution of doctors in Germany. In particular, there has been a lack of doctors in GP care in rural areas and in the public health system for years [1], and surgery is also increasingly complaining about falling numbers of young doctors [2]. In addition, GP posts are increasingly going unfilled even in large cities, so that the shortage of GPs is no longer limited to rural areas [3]. Medical students in Germany decide primarily according to their personal interests which specialist training they will choose after completing their undergraduate studies and where they want to work later. The societal need for healthcare, demographic changes or other external factors play a minor role [4], [5]. In order to ensure GP care in the future, new models are being developed that include telemedicine and physician delegation of clinical tasks. Further measures will start during undergraduate education. For example, one of the goals of the Master Plan for Medical Studies 2020 (Masterplan Medizinstudium 2020) of the German Federal Ministry of Education and Research is to strengthen general medicine in education and training [6] which also opens up the possibility of a “rural doctor quota” ([6], p.12). This allows federal states to reserve study places for students who will complete specialist training in general medicine and then work for 10 years in an underserved region. The state of North Rhine-Westphalia was the first to introduce such a quota for the 2019/20 winter semester [7]. Bavaria [8], Saxony-Anhalt [9], Rhineland-Palatinate [10] and Saarland [11] followed as of the winter semester 2020/21. Since then, between 5% and 7.8% of medical study places have been reserved for the rural doctor quota in these five federal states. Baden-Württemberg decided to create 150 new medical study places for the winter semester 2020/21, 75 of which will go to future rural doctors [12]. Other federal states, such as Mecklenburg-Western Pomerania and Lower Saxony, are planning to introduce the rural doctor quota from the winter semester 2021/22. The rural doctor quota comes into force at a time when the procedure for selecting medical students is changing fundamentally. On 19 December 2017, the German Federal Constitutional Court (Bundesverfassungsgericht, BVerfG) ruled that essential contents of the procedure for allocating places in medical studies were in part not compatible with the German Basic Law [13]. In a subsequent jointly agreed state treaty, the federal states established a reform of the selection criteria from the summer semester 2020 [14]. This includes, among other things, an increase in the Abitur top quota (Abiturbestenquote) from 20% to 30%. The waiting time quota, by means of which 20% of places in medical studies were previously allocated, will be abolished. 60% of the study places will continue to be awarded via the selection procedures of the universities (Auswahlverfahren der Hochschulen, AdH). A subject-specific aptitude test is a compulsory part of this. New is the introduction of the additional aptitude quota (Zusätzliche Eignungsquote, ZEQ, 10%), for which aptitude tests can also be used. One of the few studies in the German-speaking countries that has so far examined the association between selection parameters and career aspirations is the study by Kesternich et al. [15]. The authors surveyed more than 1,300 Munich medical students in 2012 and 2014 and found that the desire to work as a rural doctor correlates significantly positively with relatively low Abitur grades. Furthermore, a higher (self-reported) risk aversion and the fact that at least one parent is a doctor increased the probability of preferring to work as a GP. The factor of rural origin, which is found in many international studies to be a prognostic factor for a later occupation as a rural doctor [16], [17], was not examined by Kesternich et al. [18].

2. Study aim

Against the background of the changes in the selection procedures and the introduction of the rural doctor quota, the study conducted here is intended to contribute to the current discussion on GP care, especially in rural areas. It examines the association between selection parameters and Practical Year students’ interest in working as a GP as well as their preference to work in a small town (<20,000 inhabitants) or rural region. Small towns and villages are often grouped together as forms of settlement in rural areas and are also referred to in the following as a “place with a low population density”. In addition to the influence of selection parameters, other factors such as gender, doctor as a parent are taken into account. Unlike in the study by Kesternich et al., regional origin is also included. Students in their Practical Year from all over Germany were invited to participate in the survey. The study was designed within the German student selection network (stav; [https://www.projekt-stav.de/]). One of the aims of the stav is to review existing instruments for selecting medical students and to relate their effectiveness to students’ career aspirations as well as their further careers.

3. Methods

3.1. Sample

In October 2019 and March 2020, all medical faculties in Germany were contacted by the German Association of Medical Faculties (Medizinischer Fakultätentag) with
the request to recruit their medical students towards the end of their Practical Year to participate in the study and to forward the corresponding survey link to them. 1,111 students participated in the survey (N=772 from 10/19–01/20; N=339 from 03–07/20). Before the start of the survey, students agreed to participate in the study and had the opportunity to provide an e-mail address at which they expected to be reachable after completing their studies. The aim of the stay is to conduct a new survey after about 1.5 years in order to examine, among other things, the implementation of students’ career aspirations stated in this survey. Ten ipads were raffled among all participants.

3.2. Survey instruments

Questions on career aspirations were taken from the survey instruments of the longitudinal KarMed observation study (2008-2015) [19]. Here, students were asked which specialist training they would like to pursue after completing their studies, in which sector of care they would like to finally work (own a GP practice, own a specialist practice, be employed as a GP, be employed as a specialist, specialist in a hospital, senior physician in a hospital, chief physician in a hospital, I don’t know [yet], other) and in which size of town they would prefer to work in the future (in a large city [>100,000 inhabitants], in a medium-sized town [20,000 - 100,000 inhabitants], in a small town [<20,000 inhabitants], in a rural region, I don’t know [yet]). The following socio-demographic variables were collected: age, gender, origin, parenthood, doctor as parent and whether vocational training in a medical-related field was completed. In addition, the respondents were asked to provide information on Abitur grade, admission pathway to medical school, place of study, type of study program and performance in the state examinations. They were also asked about the size of the town in which they completed their medical internship for GP care (in a large city [>100,000 inhabitants], in a medium-sized town [20,000 - 100,000 inhabitants], in a small town [<20,000 inhabitants], in a rural region). Attitudes towards life and working as a GP in rural areas were recorded using the questionnaire by Steiner-Hofbauer et al. [20], in which the response format consists of a five-point Likert scale from 1 (Strongly disagree) to 5 (Strongly agree). The survey was conducted online. The survey software used was limesurvey, version 2.62.2.

3.3. Statistical analyses

The questions were mostly compulsory. Not answering facultative questions was counted as missing values. For the statistical analyses, only data sets of participants who had completed the survey were considered. Statistical analyses were conducted using SPSS for Windows version 26. For the bivariate analysis, contingency tables were created and the stochastic independence was checked by Chi-square tests. The phi coefficient ($\phi$) is given here as a measure of the effect size. Furthermore, Mann-Whitney U tests were carried out for independent samples, for which the correlation coefficient ($r$) indicates the measure of effect size. Abitur grades and Physikum/M1 (first part of medical physician’s examination) grades included in the analyses were standardised by subtracting the mean and dividing by the standard deviation.

3.4. Ethics approval

The Local Psychological Ethics Committee (LPEK) at the Centre for Psychosocial Medicine of the University Medical Centre Hamburg-Eppendorf (UKE) has approved the study (LPEK-0042).

4. Results

4.1. Study cohort

Of the 1,111 students in their Practical Year, 1,055 completed the survey. They can be assigned to 35 medical faculties and 14 federal states (see figure 1). 56 participants dropped out of the survey prematurely. Their answers were not included in the analyses. Among the responses of those who completed the survey, only a few missings were recorded and were neglected (age: N=1, gender: N=2, vocational training: N=4, parenthood: N=5 and Physikum/M1 grades: N=49).

Of the 1,055 students, 690 were female (65.4%), i.e. slightly more (3%) than the average in medical studies (2019 student figures [21]). The mean age was 27.2 years (SD=3.1, see table 1). 614 (58.2%) of the respondents stated that they had received their place at university via the selection procedure of their university (AdH). 152 (14.4%) had obtained their place via the Abitur top quota, 129 (12.2%) via the waiting time quota, with an average waiting time of 13.4 semesters (SD=1.8). The remainder were distributed among others (N=97; 9.2%; e.g. study place via the German Armed Forces, lottery procedure), second degree (N=25; 2.4%), hardship case (N=2; 0.2%) or stated “I don’t know” (N=36; 3.4%).

4.2. Interest in working as a GP

§ 73 par. 1 of the Fifth Social Code (SGB V) [22] regulates who is allowed to work as a GP in Germany. According to this, the following participate in GP care for adults: general practitioners and specialists in general internal medicine who have chosen to participate in GP care on the occasion of their outpatient work. Of the 1,055 respondents, 9.9% (N=104) were aiming for specialist training in general medicine, and a further 9.5% (N=100) for specialist training in general internal medicine. Of these 204, 128 (62.8%) wanted to work as a GP in the future (12.1% of the total group) – own a practice or be employed as a GP. 73% of those interested in working as a GP were female (see table 1).
The comparison between those interested in working as a GP and those not interested shows that those with an interest were disproportionately likely to have been admitted to university via the waiting time quota ($\chi^2(1)=8.873; p<.01; \varphi=0.10$). According to Cohen [23], this is a weak effect. Furthermore, these students more often than their fellow students who were not interested in working as a GP had already completed vocational training in a medical-related field, e.g. in health care and nursing or paramedicine ($\chi^2(1)=10.239; p=.001; \varphi=0.10$). Here, too, a weak effect can be observed. Moreover, significant differences emerged with regard to age ($U=51,167.5; p<.05; r=0.08$) and location of medical internship for GP care ($\chi^2(1)=4.870; p<.05; \varphi=0.07$), both with very low effect sizes. The group of students interested in working as GPs was further investigated in the following and considered in a differentiated manner with regard to location preference for the aspired career.

4.3. Interest in working as a GP – differentiated by preference for location size

Of the 128 students interested in working as a GP in the future, 39.1% (N=50) said they wanted to work in a place with a low population density later on. 46.9% (N=60) preferred towns with more than 20,000 inhabitants and...
Table 2: Students with an interest in working as a GP according to location preference

| Socio-demographics | Location preference for working as a GP | Characteristics related to medical school admission | Characteristics related to medical studies |
|--------------------|----------------------------------------|---------------------------------------------------|------------------------------------------|
|                    | < 20,000 inhabitants | > 20,000 inhabitants | Effect size | Training in model degree program | Physikum/M1 grade (Mean ± SD) | Medical internship for GP care in a place < 20,000 inhabitants | Effect size |
| Total              | 50 (80.0%)         | 60 (65.0%)     | ϕ = 0.17  | 6 (12.0%) | 2.35 ± 0.83 | 31 (62.0%) | 17 (28.3%)*** | ϕ = 0.34 |
| Women              | 40 (80.0%)         | 39 (65.0%)     | ϕ = 0.17  | 6 (12.0%) | 2.35 ± 0.83 | 31 (62.0%) | 17 (28.3%)*** | ϕ = 0.34 |
| At least one parent is a doctor | 6 (12.0%) | 15 (25.0%) | ϕ = 0.17  | 6 (12.0%) | 2.35 ± 0.83 | 31 (62.0%) | 17 (28.3%)*** | ϕ = 0.34 |
| Place of origin < 20,000 inhabitants | 36 (72.0%) | 18 (30.0%)*** | ϕ = 0.42  | 6 (10.0%) | 2.34 ± 0.83 | 27 (45.0%) | 16 (27.0%)*** | ϕ = 0.16 |
| Age in years (Mean ± SD) | 28.2 ± 3.9 | 27.8 ± 3.6 | r = 0.00  | 6 (10.0%) | 2.34 ± 0.83 | 27 (45.0%) | 16 (27.0%)*** | ϕ = 0.16 |
| Child(ren) living in household | 8 (16.0%) | 6 (10.0%) | ϕ = 0.09  | 6 (10.0%) | 2.34 ± 0.83 | 27 (45.0%) | 16 (27.0%)*** | ϕ = 0.16 |

14.0% (N=18) did not want to commit themselves yet. Characteristics of the students with an interest in working as a GP, differentiated according to location preference (except for the undecided), are shown in table 2. In contrast to students with an interest in working as a GP and a preference for location size of more than 20,000 inhabitants, students with an interest in working as a GP who wanted to work in a region with a low population density were disproportionately likely to have grown up in such a region themselves ($X^2(1)=19.250; p<.001; \phi=0.42$). According to Cohen [23], this is a medium effect size. In addition, they were more likely to already have completed their medical internship for GP care in such a region ($X^2(1)=12.568; p<.001; \phi=0.34$), for which a medium effect could also be demonstrated. With a weak effect, it was shown that those interested in working as a GP with a location preference for more than 20,000 inhabitants were more frequently selected via the AdH procedure than those who wanted to work in a region with a low population density ($X^2(1)=4.365; p<.05; \phi=0.20$). Attitudes towards living and working as a GP were then contrasted for those interested in working as a GP with a preference for large vs. small towns (see table 3). Those interested in working as a GP and preferring to work in a place with a low population density, who consider living in a village community more desirable than their fellow students ($U=753.5; p<.001; r=0.44$; medium effect), agreed more that living in the countryside offers advantages for families ($U=1,113.5; p<.05; r=0.23$). This is a weak effect. Those interested in working as a GP and preferring to work in a place with a higher population density, for whom an urban infrastructure is more indispensable than for their fellow students ($U=894.0; p<.001; r=0.36$; medium effect), agreed more that a GP in the countryside has longer working hours than in the city ($U=1,152.5; p<.05; r=0.21$). This is a weak effect. With regard to all other aspects, there were no differences in the evaluation by the subgroups with different preferences for location size.

5. Discussion

Of the medical students surveyed here who were about to complete their studies in Germany at the time of the study, 9.9% aspired to specialist training in general medicine, which corresponds to the results of comparable German surveys [24], [25], [26], [27]. The wish to work as a GP in the future was even expressed by 12.1% of all respondents, if the students opting for general internal medicine as their preferred specialist training were also taken into account.

5.1. Selection quotas

Compared to the students who were not interested in working as GPs later on, the students with an interest in working as a GP were more likely to have obtained their place at university via the waiting time quota and had more often already completed vocational training in a medical-related field. Both effects were weakly observed and cannot be interpreted independently of each other, because many applicants bridge the waiting period for a place at medical school by completing vocational training.
Table 3: Attitudes towards life and working as a GP in rural areas

| Location preference for working as a GP | < 20,000 inhabitants (N = 50) Mean (SD) | > 20,000 inhabitants (N = 60) Mean (SD) | Effect Size |
|----------------------------------------|----------------------------------------|----------------------------------------|-------------|
| 1. Country life offers many advantages for families. | 4.22 (0.91) | 3.83 (0.89)* | r = 0.23 |
| 2. Living in a village community is desirable for me. | 3.94 (1.10) | 2.85 (1.19)** | r = 0.44 |
| 3. My (future) partner would (probably) not find a suitable job in the countryside. | 3.24 (1.02) | 3.13 (1.21) | r = 0.12 |
| 4. There are no suitable educational institutions (schools) for children in rural areas. | 2.52 (1.11) | 2.75 (1.00) | r = 0.04 |
| 5. An urban infrastructure (culture, leisure facilities, etc.) is indispensable for me. | 2.50 (1.25) | 3.42 (1.17)** | r = 0.36 |
| 6. A GP in the countryside earns too little money. | 3.18 (1.38) | 2.85 (1.21) | r = 0.12 |
| 7. A GP in the countryside has longer working hours than in the city. | 3.52 (0.93) | 3.92 (0.96)* | r = 0.21 |
| 8. People who commit to practicing in rural areas for a certain period of time after graduation should be given advantages in study admissions. | 2.88 (1.32) | 2.50 (1.47) | r = 0.15 |
| 9. Personally, I would have committed to practicing in the countryside for a certain period of time if it would have increased my chances of being admitted to university. | 2.68 (1.46) | 2.37 (1.54) | r = 0.16 |

*p < .05; **p < .001
Mean; SD = Standard Deviation
Response options: 1=Strongly disagree, 2=Mostly disagree, 3=Neutral (part-part), 4=Mostly agree, 5=Strongly agree

and subsequent employment. They are also correspondingly older. In contrast to Kesternich et al. [15], we found no influence of the Abitur grade or the fact that one parent is a doctor on being interested in working as a GP. If those interested in working as a GP have disproportionately often been admitted to medical school via the waiting time quota, the question arises as to whether the abolition of the waiting time quota will lead to a decrease in the number of GPs in the future. It is possible that those who would like to study medicine and are interested in working as a GP in an underserved region will be admitted via the rural doctor quota. However, compared to those interested in working as a GP with a preference for a place with a higher population density, those interested in working as a GP in rural areas in our study did not state more frequently that they would have committed themselves to practicing in the countryside for a certain period of time if this had increased their chances of being admitted to medical school. It can be speculated that these students would have been more likely to seek their study place via the ZEQ or specific AdH sub-quotas. At most faculties, completed vocational training in a medical-related field (e.g., nursing) and/or a corresponding occupation are taken into account in AdH (sub)quotas and are included in the ZEQ in many faculties. The universities of Greifswald and Jena, for example, have set up AdH sub-quotas in which the criterion of recognized vocational training is even rated highest [28].

5.2. Experience and regional origin

Among those interested in working as a GP, the preference for later working in a place with a low population density was more frequent among those who had already completed their medical internship for GP care in such a place. In addition to the fact that it is precisely the students with an interest in working as a rural doctor from the outset who completed their internship for GP care in a rural area, the early contact with GP practice in a rural region may also have increased their interest in wanting to work as a rural doctor later on. Possible prejudices against working as a rural doctor could perhaps be reduced, e.g., the assumption of longer working hours than in the city. Observational studies abroad have also shown that internships or training periods in rural practices, hospitals or social institutions lead to more doctors working in rural areas [29], [30]. In this respect, it is to be welcomed that in Germany, too, medical curricula are increasingly oriented towards primary care per se and towards GP care in rural regions [31], [32], [33]. Another significant factor for preferring to later work as a GP in a place with a low population density turned out to be students’ biographical origin from such a region. This is in accordance with the results of many foreign studies [16], [17], [34]. In Japan and Australia, for example, origin from rural regions is therefore also used as an admission criterion [35]. In Germany, this is not conceivable because of the Principle of Equality according to article 3 of the German basic law.
6. Conclusion

The current changes in the admission regulations for medical studies are manifold. In addition to the abolition of the waiting time quota, faculty-specific ZEQ and AdH (sub)quotas as well as state-specific rural doctor quotas have created a wide variety of pathways for applicants to obtain a place at a medical school. In addition, faculties are given a great deal of leeway to determine and weight their own criteria for student selection. It remains to be seen how this will shape the composition of first-year students in the future and whether and how this will affect the career preferences of those with a certification to enter postgraduate medical education in Germany (Modification). A strong intention to complete specialist training in general practice could be used as a criterion for validating the changes in the admission rules or to evaluate faculty-specific selection procedures. Longitudinal studies that cover the period from the application to study up to the medical specialist examination and careers afterwards are desirable [18].

6.1. Strengths and limitations

The strengths of the study are its multicentricity and the sample size. Due to the high number of participating students from different parts of Germany, this study is of great relevance for examining associations between selection processes and career aspirations. Limitations of the study are that it cannot be ruled out that non-participation in the study was based on systematic characteristics. This could have led to biased results. Furthermore, it should be noted that the data are self-assessments of the students surveyed at the time towards the end of their Practical Year and do not reflect students’ actual career choice. Also, changes in specialist preference are not unusual in the course of specialist training. For general medicine, it could be shown that more than half of the physicians are career changers towards the end of their specialist training in general medicine [36]. One aim of the stav is to follow the students surveyed here longitudinally in order to investigate, among other things, the implementation of career aspirations.

Funding

The German student selection network (Studierendenauswahl-Verbund, stav) is funded by the Federal Ministry of Education and Research for the period 07.2018-12.2021 (Funding code 01GK1801A).

Competing interests

The authors declare that they have no competing interests.

References

1. Kaduszkiewicz H, Teichert U, van den Bussche H. Ärztemangel in der hausärztlichen Versorgung auf dem Lande und im Öffentlichen Gesundheitsdienst. Bundesgesundheitsblatt Gesundheitsforschung Gesundheitsschutz. 2018;61(2):187-194. DOI: 10.1007/s00103-017-2671-1

2. Schneider KN, Masthoff M, Goshger G, Schopow N, Theil JC, Marschall B, Zehrfeld J. Generation Y in der Chirurgie - der Konkurrenzkampf um Talente in Zeiten des Nachwuchsmangels. Chirurg. 2020;91:955-961. DOI: 10.1007/s00104-020-01138-2

3. Vele L. Hausarztversorgung in Berlin - Aktiv werden, bevor es zu spät ist. KV-BI Kassenärztliche Vereinigung Berlin. 2019;68(01):8-9. Zugänglich unter/available from: https://www.kvb.de/fileadmin/user_upload/kv_blatt/kv_blatt_1_2019.pdf

4. Gemeinsamer Bundesausschuss. Gutachten zur Weiterentwicklung der Bedarfsplanung i.S.d. §§ 99 ff. SGB V zur Sicherung der Vertragsärztlichen Versorgung. Berlin: Gemeinsamer Bundesausschuss; 2018.

5. Kistemann T, Schröer MA. Kleinräumige kassenärztliche Versorgung und objektives Standwartsdurchschnittsalter von Vertragsärzten in einem überversorgten Planungsgebiet. Gesundheitswesen. 2007;69(11):593-600. DOI: 10.1055/s-2007-991174

6. Bundesministerium für Bildung und Forschung. Masterplan Medizinstudium 2020. Berlin: Bundesministerium für Bildung und Forschung; 2017. Zugänglich unter/available from: https://www.bmbf.de/bmbf/sharedDocs/kurzmeldungen/de/masterplan-medizinstudium-2020.html

7. Nordrhein-Westfalen. Landarztgesetz. Düsseldorf: Landesregierung Nordrhein-Westfalen. Zugänglich unter/available from: https://www.tbg.nrw.de/lgag/

8. Freistaat Bayern. Landarztquote. München: Landesregierung Bayern. Zugänglich unter/available from: https://www.lanarztquote.bayern.de/

9. Sachsen-Anhalt. Landarztquote. Magdeburg: Landesregierung Sachsen-Anhalt. Zugänglich unter/available from: https://www.lanarztquote-sachsen-anhalt.de/

10. Rheinland-Pfalz. Landarztquote. Mainz: Landesregierung Rheinland-Pfalz. Zugänglich unter/available from: https://bewerbung.rip.de/go/landarztquote/4267401/

11. Saarland. Landarztquote. Saarbrücken: Landesregierung Saarland. Zugänglich unter/available from: https://www.saarland.de/las/DE/themen/landarztprogramme/landarztquote/landarztquote_node.html

12. Baden-Württemberg. Landarztquote beschlossen. Ärztetb Baden-Württemberg. 2020;75(02):77.

13. Bundesverfassungsgericht. Urteil des Ersten Senats vom 19. Dezember 2017 - 1 BvL 3/14 -Rn. (1-253). Karlsruhe: Bundesverfassungsgericht; 2017.

14. Bundestag. Staatsvertrag. Gesetz zu dem Staatsvertrag über die Hochschulzulassung und zur Änderung des Hochschulzulassungsgesetzes. Berlin: Bundestag; 2019. Zugänglich unter/available from: https://www.hochschulverband.de/fileadmin/redaktion/download/pdf/landesverband/BWUE/Hochschulzulassungsgesetzes.pdf

15. Kesternich I, Schumacher H, Winter J, Fischer MR, Holzer M. Student characteristics, professional preferences, and admission to medical school. GMS J Med Educ. 2017;34(1):Doc5. DOI: 10.3205/zma001082

16. Laven G, Wilkinson D. Rural doctors and rural backgrounds: How strong is the evidence? A systematic review. Aust J Rural Health. 2003;11(6):277-284. DOI: 10.1111/j.1440-1584.2003.00534.x
17. Senf JH, Campos-Outcalt D, Kutob R. Factors related to the choice of family medicine: a reassessment and literature review. J Am Board Fam Pract. 2003;16(6):502-512. DOI: 10.3122/jabfm.16.6.502

18. Hisbach J, Zimmermann S, Hampe W. Student selection cannot resolve the lack of general practitioners and country doctors. GMS J Med Educ. 2017;34(2):Doc16. DOI: 10.3205/zma001093

19. van den Bussche H, Boczor S, Siegert S, Nehls S, Selch S, Kocalevent D, Scherer M. Die Resultate von sechs Jahren Weiterbildung für die hausärztliche Versorgung in Deutschland-Ergebnisse der KarMed-Studie (Teil 2). ZFA (Stuttgart). 2019;95(01):9-13.

20. Steiner-Hofbauer V, Melser MC, Holzinger A. Allgemeinmedizin: attraktives Arbeitsfeld oder Stiefkind der Medizin? Prä-Gesundheitsf. 2019;15:143-150. DOI: 10.1007/s11553-019-00725-4

21. Statistisches Bundesamt. Amtliche Daten zu Studierendenzahlen. Wiesbaden: Statistisches Bundesamt; 2020. Available from: https://www.destatis.de/DE/Themen/Gesellschaft-Umwelt/Bildung-Forschung-Kultur/Hochschulen/Tabellen/irb0105.html

22. Sozialgesetzbuch (SGB). Fünftes Buch (V)-Gesetzliche Krankenversicherung-Artikel1 des Gesetzes v. 20. Dezember 1988. BGBl. 1988:2477.

23. Cohen J. Statistical power analysis for the behavioural sciences. Hillsdale, NJ: Laurence Erlbaum Associates; 1988.

24. Jacob R, Kopp J, Fellinger P. Berufsmonitoring Medizinstudierende 2018. Ergebnisse einer bundesweiten Befragung. Berlin: KBV, Kassenärztliche Bundesvereinigung; 2018.

25. Paulmann V. Determinanten der Berufszufriedenheit von jungen Medizinerinnen und Medizinern. Ergebnisse der Absolventenbefragung der Medizinischen Hochschule Hannover 2010 bis 2014. Beitr Hochschulfo.orsch. 2016;38:82-107.

26. Boczor S, Kocalevent RD, Selch S, van den Bussche H. Welche beruflichen Präferenzen haben Ärztinnen und Ärzte nach sechs Jahren Weiterbildungszelt. Hamb Ärztebl. 2020;74(02):15-17.

27. Absolventenpanel 2017. Ergebnisse der Befragung der Absolventinnen und Absolventen des Prüfungsjahrzangs 2017 Staatsprüfung Medizin. Hamburg: Universität Hamburg, Servicestelle Evaluation; 2019.

28. Hochschulstart. Übersicht Auswahlkriterien AdH. Dortmund: Hochschulstart; 2020. Zugänglich unter/available from: https://hochschulstart.de/de/paper/hilfe21-22/adh/index.html?p=1

29. Isaac V, Watts L, Forster L, McLachlan CS. The influence of rural clinical school experiences on medical students' levels of interest in rural careers. Hum Resour Health. 2014;12(1):48. DOI: 10.1186/1478-4491-12-48

30. Eley D, Young L, Shrapnel M, Wilkinson D, Baker P, Hegney D. Medical students and rural general practitioners: congruent views on the reality of recruitment into rural medicine. Aust J Rural Health. 2007;15(1):12-20. DOI: 10.1111/j.1440-1584.2007.00844.x

31. Blozik E, Ehrhardt M, Scherer M. Förderung des allgemeinmedizinischen Nachwuchses. Bundesgesundheitsblatt Gesundheitsforschung Gesundheitsschutz. 2014;57(7):892-902. DOI: 10.1007/s00103-014-1984-6

32. Petruschke I, Schulz S, Kaufmann M, Hesse M, Bleidorn J. Ambulantes Quartal im Praktischen Jahr: Welches Fach würden Medizinstudierende wählen? Z Allgemeinmed. 2020;96(5):220-224.

33. Storr C, Bechtel U, Berberat PO, Barth N, Landendörfer P, Schneider A. Modellprojekt: Ausbildungskonzept Allgemeinmedizin im ländlichen Raum Bayerns - die medizinische "AKADemie" Dillingen. Z Allgemeinmed. 2017;93:39-43.

34. Holst J. Schlüssel für mehr Landärzte: Landärztliche Studieninhalte und Medizinstudierende vom Land. Z Allgemeinmed. 2019;95(2):80-86.

35. Matsumoto M, Inoue K, Kaji E. A Contract-Based training system for rural physicans; follow-up of Jichi Medical University graduates (1978-2006). J Rural Health. 2008;24(4):360-368. DOI: 10.1111/j.1748-0361.2008.00182.x

36. van den Bussche H, Boczor S, Siegert S, Nehls S, Selch S, Kocalevent RD, Scherer M. Die Resultate von sechs Jahren Weiterbildung für die hausärztliche Versorgung in Deutschland - Teil 1. ZFA (Stuttgart), 2018;94(9):362-366.

Corresponding author:
Dr. phil. Susan Selch
University Medical Centre Hamburg-Eppendorf, Institute of Biochemistry and Molecular Cell Biology, Martinistr. 52, D-20246 Hamburg, Germany, Phone: +49 (0)40/7410-58279
s.selch@uke.de

Please cite as
Selch S, Pilstäter-Heise S, Hampe W, van den Bussche H. On the attractiveness of working as a GP and rural doctor including admission pathways to medical school – results of a German nationwide online survey among medical students in their “Practical Year”. GMS J Med Educ. 2021;38(6):Doc102. DOI: 10.3205/zma001498, URN: urn:nbn:de:0183-zma0014982

This article is freely available from https://www.egms.de/en/journals/zma/2021-38/zma001498.shtml

Received: 2020-11-13
Revised: 2021-03-22
Accepted: 2021-04-26
Published: 2021-09-15

Copyright ©2021 Selch et al. This is an Open Access article distributed under the terms of the Creative Commons Attribution 4.0 License. See license information at http://creativecommons.org/licenses/by/4.0/.
Zur Attraktivität einer haus- und landärztlichen Tätigkeit unter Berücksichtigung der Zulassungswege zum Studium – Ergebnisse einer bundesweiten Onlineumfrage unter Medizinstudierenden im Praktischen Jahr

Zusammenfassung

Hintergrund: Der Studierendenauswahl-Verbund (stav) hat u.a. das Ziel, bestehende Instrumente zur Auswahl Medizinstudierender zu überprüfen und die Aussagekraft der Auswahlverfahren in Beziehung zu setzen zur angestrebten Berufstätigkeit bzw. zum Berufsverbleib. Vor dem Hintergrund der Neuerungen der Auswahlverfahren und Einführung der Landarztquote soll die hier durchgeführte Studie einen Beitrag leisten zur aktuellen Diskussion um die zukünftige hausärztliche Versorgung, v.a. in ländlich geprägten Gebieten.

Methoden: In 2019 und 2020 führte der stav eine bundesweite Onlineumfrage unter Medizinstudierenden gegen Ende ihres PJ durch. Es wurde untersucht, welcher Zusammenhang zwischen Auswahlparametern und dem Wunsch besteht, eine hausärztliche Tätigkeit anzustreben und in einem Ort mit geringer Bevölkerungsdichte zu arbeiten. Weiterhin wurden soziodemographische Faktoren und Merkmale zum Studium berücksichtigt. Statistische Vergleiche erfolgten mittels Chi-Quadrat- und Mann-Whitney-U-Tests.

Ergebnisse: Insgesamt 1.055 PJ-Studierende (65,4% weiblich, 27 Jahre) schlossen die Umfrage ab. Als endgültige berufliche Position erstrebten 12,1% eine Niederlassung oder eine Anstellung als Hausärzt*in nach absolviertem Weiterbildung in Allgemeinmedizin (interessierte PJ-Studierende: 9,9%) oder Innere Medizin ohne Schwerpunkt (interessierte PJ-Studierende: 9,5%). Im Vergleich zu ihren Kommiliton*innen hatten die Hausarztinteressierten ihren Studienplatz überzufällig häufig über die Wartezeitquote erhalten und hatten häufiger bereits eine medizinnahe Berufsausbildung abgeschlossen. In einem Ort mit geringer Bevölkerungsdichte zu arbeiten wünschten sich 39,1% der Hausarztinteressierten. Die Herkunft aus einem Ort mit geringer Bevölkerungsdichte sowie eine Ableistung der Famulatur zur hausärztlichen Patientenversorgung in einem solchen Ort stellten sich hier als positive Einflussfaktoren heraus.

Diskussion: Die beobachteten Zusammenhänge zwischen Wartezeitquote und Hausarztpräferenz sowie zwischen Herkunft aus einer dünn besiedelten Region und Landarztpräferenz gehen zeitlich einher mit Veränderungen in den Zugangsregelungen zum Medizinstudium, die sowohl die Wartezeitquote (Abschaffung dieser) als auch eine Regulierung der Landarztzahlen (Landarztquote) betreffen. Um die aktuellen Veränderungen der Zugangsregelungen zum Medizinstudium zu evaluieren, sind längsschnittliche Studien erstrebenswert, die die Zeit von der Studienbewerbung bis hin zur fachärztlichen Prüfung und dem Ort der Tätigkeit umfassen.

Schlüsselwörter: Studierendenauswahl Medizin, Allgemeinmedizin, Primärversorgung, Hausärzt*in, Landarztquote
1. Hintergrund

Für die Überprüfung eines Zusammenhangs zwischen dem Auswahlmodus von Medizinstudierenden und deren gewünschtem und realer Berufsverbleib liegen für den deutschsprachigen Raum nur wenige Studien vor. Seitens wurden Auswahlparameter wie die Abiturnote, Zulassungsquoten oder Berufserfahrung in Bezug auf dem späteren Berufsbetrieb. Die Frage nach dem Berufsverbleib junger Ärzt*innen interessiert wegen des Ungleichgewichts in der sektoralen und regionalen Verteilung der Ärzt*innen in Deutschland. Insbesondere in der hausärztlichen Versorgung auf dem Land und im öffentlichen Gesundheitswesen fehlt es seit Jahren an ärztlichem Personal [1] und auch die Chirurgie beklagt zunehmend sinkende Nachwuchszahlen [2].

2. Ziel der Studie

Vor dem Hintergrund der Neuerungen der Auswahlverfahren und der Einführung der Landarztquote soll die hier durchgeführte Studie einen Beitrag leisten zur aktuellen Diskussion um die hausärztliche Versorgung, v.a. in ländlich geprägten Gebieten. Zu untersuchen ist, inwiefern ungünstige Zahlen zur hausärztlichen Versorgung, v.a. in ländlich geprägten Gebieten, das Studieninteresse beeinflussen. Dazu werden die Studierenden im Rahmen der Auswahlverfahren unter Berücksichtigung der hausärztlichen Versorgung, v.a. in ländlich geprägten Gebieten, aufgefordert.

Die Studie ging von der Annahme aus, dass die Studierenden im Rahmen der Auswahlverfahren unter Berücksichtigung der hausärztlichen Versorgung, v.a. in ländlich geprägten Gebieten, aufgefordert werden. Dazu wurden die Studierenden im Rahmen der Auswahlverfahren unter Berücksichtigung der hausärztlichen Versorgung, v.a. in ländlich geprägten Gebieten, aufgefordert.

Die Studie ging von der Annahme aus, dass die Studierenden im Rahmen der Auswahlverfahren unter Berücksichtigung der hausärztlichen Versorgung, v.a. in ländlich geprägten Gebieten, aufgefordert werden. Dazu wurden die Studierenden im Rahmen der Auswahlverfahren unter Berücksichtigung der hausärztlichen Versorgung, v.a. in ländlich geprägten Gebieten, aufgefordert.

Die Studie ging von der Annahme aus, dass die Studierenden im Rahmen der Auswahlverfahren unter Berücksichtigung der hausärztlichen Versorgung, v.a. in ländlich geprägten Gebieten, aufgefordert werden. Dazu wurden die Studierenden im Rahmen der Auswahlverfahren unter Berücksichtigung der hausärztlichen Versorgung, v.a. in ländlich geprägten Gebieten, aufgefordert.

Die Studie ging von der Annahme aus, dass die Studierenden im Rahmen der Auswahlverfahren unter Berücksichtigung der hausärztlichen Versorgung, v.a. in ländlich geprägten Gebieten, aufgefordert werden. Dazu wurden die Studierenden im Rahmen der Auswahlverfahren unter Berücksichtigung der hausärztlichen Versorgung, v.a. in ländlich geprägten Gebieten, aufgefordert.

Die Studie ging von der Annahme aus, dass die Studierenden im Rahmen der Auswahlverfahren unter Berücksichtigung der hausärztlichen Versorgung, v.a. in ländlich geprägten Gebieten, aufgefordert werden. Dazu wurden die Studierenden im Rahmen der Auswahlverfahren unter Berücksichtigung der hausärztlichen Versorgung, v.a. in ländlich geprägten Gebieten, aufgefordert.
3. Methodik

3.1. Stichprobe

Im Oktober 2019 sowie im März 2020 wurden alle medizinischen Fakultäten Deutschlands vom Medizinischen Fakultätentag mit der Bitte kontaktiert, ihre Medizinstudierenden gegen Ende ihres PJ für eine Beteiligung an der Studie zu gewinnen und den entsprechenden Umfragelink an diese weiterzuleiten. Es beteiligten sich 1.111 PJ-Studierende an der Umfrage (N=772 aus 10/19-01/20; N=339 aus 03-07/20). Vor Umfragestart willigten die Studierenden in die Studienteilnahme ein und hatten die Möglichkeit, eine e-mail-Adresse anzugeben, unter der sie nach Abschluss ihres Studiums voraussichtlich erreichbar sein werden. Ziel des stavistes, nach ca. 1,5 Jahren eine erneute Befragung durchzuführen, um u.a. die Umfelder der in der PJ-Befragung angegebenen beruflichen Zukunftsvorstellungen zu untersuchen. Unter allen Teilnehmenden wurden zehn ipads verlost.

3.2. Instrument

Fragen zu Zukunftswünschen entstammten den Befragungsinstrumenten der längerfristigen KarMed-Beobachtungsstudie (2008-2015) [19]. Hier wurde gefragt, welches fachärztliche Weiterbildung die Studierendennach Abschluss ihres Studiums anstreben, in welchem Sektor der Versorgung sie endgültig beruflich tätig sein wollen (Niederlassung als Hausärzt*in, Niederlassung als Spezialist*in, Anstellung als Hausärzt*in, Anstellung als Spezialist*in, Fachärzt*in im Krankenhaus, Oberärzt*in im Krankenhaus, Chefarzt*in im Krankenhaus, ich weiß es [noch] nicht, sonstiges) und in einem Ort welcher Größe sie zukünftig am liebsten arbeiten möchten (in einer Großstadt [>100.000 Einwohner], in einer Stadt mittlerer Größe [20.000 - 100.000 Einwohner], in einer Kleinstadt [<20.000 Einwohner], in einer ländlichen Region, ich weiß es [noch] nicht). Folgende soziodemographischen Merkmale wurden erhoben: Alter, Geschlecht, Herkunft, Elternschaft, Ärzt*in als Elternteil und ob eine medizinnahe Berufsausbildung abgeschlossen wurde. Darüber hinaus wurde um Auskunft zu Abiturnote, Zugangsweg zum Studium, Studienort, Art des Studiengangs und Leistungen in den Staatsprüfungen gebeten sowie erfragt, in einem Ort welcher Größe, die Famulatur zur hausärztlichen Patientenversorgung absolviert wurde (in einer Großstadt [>100.000 Einwohner], in einer Stadt mittlerer Größe [20.000 - 100.000 Einwohner], in einer Kleinstadt [<20.000 Einwohner], in einer ländlichen Region). Einstellungen zum Leben und zur hausärztlichen Tätigkeit auf dem Land wurden mit dem Befragungsinstrument von Steiner-Hofbauer et al. [20] erfasst, in dem das Antwortformat aus einer fünfstufigen Likert-Skala von 1 (ich stimme überhaupt nicht zu) bis 5 (ich stimme voll und ganz zu) besteht. Die Umfrage erfolgte online. Als Umfrage-Software wurde limesurvey, Version 2.62.2, genutzt.

3.3. Statistische Analysen

Die Fragen waren überwiegend obligatorisch. Nicht-Antworten auf fakultative Fragen wurden als missings gewertet. Für die statistischen Auswertungen wurden nur Datensätze der Teilnehmenden berücksichtigt, die die Umfrage abgeschlossen hatten. Die statistischen Analysen wurden mit SPSS für Windows Version 26 durchgeführt. Zur bivariaten Analyse wurden Kontingenztafeltabellen erstellt und die stochastische Unabhängigkeit durch Chi-Quadrat-Tests überprüft. Als Maß der Effektstärke wird hier der Phi-Koeffizient ($\phi$) angegeben. Weiterhin wurden Mann-Whitney-U-Tests für unabhängige Stichproben durchgeführt, für die der Korrelationskoefzient ($r$) das Maß der Effektstärke anzeigt. In die Analysen einbezogene Abiturnoten und Physikums-/M1-Noten wurden standardisiert, indem der Mittelwert abgezogen und durch die Standardabweichung geteilt wurde.

3.4. Ethik

Die Lokale Psychologische Ethikkommission (LPEK) am Zentrum für Psychosoziale Medizin des Universitätsklinikums Hamburg-Eppendorf (UKE) hat der Durchführung der Studie zugestimmt (LPEK-0042).

4. Ergebnisse

4.1. Studienkohorte

Von den 1.111 PJ-Studierenden schlossen 1.055 die Umfrage ab. Sie lassen sich 35 medizinischen Fakultäten und 14 Bundesländern zuordnen (siehe Abbildung 1). 56 Teilnehmende brachen die Umfrage vorzeitig ab. Ihre Antworten gingen nicht in die Auswertungen ein. Unter den Antworten derjenigen, die die Umfrage abschlossen, sind nur wenige missings zu verzeichnen und wurden vernachlässigt (Alter: N=1, Geschlecht: N=2, Berufsausbildung: N=4, Elternschaft: N=5 und Physikums-/M1-Noten: N=49). Von den 1.055 PJ-Studierenden waren 690 weiblich (65,4%), d.h. geringfügig mehr (3%) als durchschnittlich im Medizinstudium (Studierendenzahlen von 2019 [20]). Das mittlere Alter lag bei 27,2 Jahren (SD=3,1, siehe Tabelle 1). Ihren Studienplatz über das Auswahlverfahren ihrer Hochschule (AdH) erhalten zu haben, gaben 614 (58,2%) der Befragten an. Über die Abiturbestenquote hatten 152 (14,4%) ihren Studienplatz erhalten, über die Wartezeitquote 129 (12,2%) mit einer durchschnittlichen Wartezeit von 13,4 Semestern (SD=1,8). Die übrigen verteilten sich auf Sonstiges (N=97; 9,2%; z.B. Studienplatz über die Bundeswehr, Losverfahren), Zweitstudium (N=25; 2,4%), Härtefall (N=2; 0,2%) oder gaben „weiß ich nicht“ an (N=36; 3,4%).
4.2. Interesse an einer hausärztlichen Tätigkeit

Wer in Deutschland hausärztlich tätig werden darf, regelt § 73 Abs. 1 des Fünften Sozialgesetzbuches (SGB V) [22]. Demnach nehmen an der hausärztlichen Versorgung der Erwachsenen teil: Allgemeinarzt*innen sowie Internist*innen ohne Schwerpunktbezeichnung, die anlässlich ihrer ambulanten Tätigkeit die Teilnahme an der hausärztlichen Versorgung gewählt haben. Von den 1.055 hier Befragten strebten 9.9% (N=104) eine fachärztliche Weiterbildung in Allgemeinmedizin an, weitere 9.5% (N=100) in Innere Medizin ohne Schwerpunktzsetzung. Von diesen 204 wiederum wünschten sich 128 (62,8%), zukünftig eine hausärztliche Tätigkeit auszuüben (12,1% der Gesamtgruppe) – in Niederlassung oder Anstellung. 73% von diesen hausärztlich Interessierten waren weiblich (siehe Tabelle 1).

Der Vergleich zwischen hausärztlich Interessierten und Nicht-Interessierten zeigt, dass diejenigen mit Wunsch nach einer hausärztlichen Tätigkeit ihren Studienplatz überzufällig häufig über die Wartezeitquote erhalten ha-
ben ($\chi^2(1)=8,873; p<0,01; \varphi=0,10$). Nach Cohen [23] handelt es sich hierbei um einen schwachen Effekt. Weiterhin hatten diese Studierenden häufiger als ihre nicht-hausärztlich interessierten Kommiliton*innen bereits eine Berufsausbildung mit einem engen fachlichen Bezug zum Medizinstudium abgeschlossen, z.B. in der Gesundheits- und Krankenpflege oder Rettungsdienstassistent ($\chi^2(1)=10,239; p=0,001; \varphi=0,10$). Auch hier ist ein schwacher Effekt zu verzeichnen. Überdies stellten sich signifikante Unterschiede hinsichtlich Alter ($U=51,167,5; p<0,05$; $r=0,08$) und Ort der Famulatur zur hausärztlichen Patientenversorgung ($\chi^2(1)=4,870; p<0,05; \varphi=0,07$) heraus, beide mit sehr niedrigen Effektstärken. Die Gruppe der Studierenden mit Interesse an einer hausärztlichen Tätigkeit wurde nachfolgend weiter untersucht und differenziert betrachtet hinsichtlich der Ortsgrößenpräferenz für den angestrebten Berufsverbleib.

4.3. Interesse an einer hausärztlichen Tätigkeit – differenziert nach Ortsgrößenpräferenz

Von den 128 Studierenden mit dem Wunsch nach einer zukünftigen hausärztlichen Tätigkeit gaben 39,1% an (N=50), später in einem Ort mit geringer Bevölkerungsdichte arbeiten zu wollen. 46,9% (N=60) bevorzugten Städte mit mehr als 20.000 Einwohnern und 14,0% (N=18) wollten sich noch nicht festlegen. Merkmale der Studierenden mit hausärztlichem Interesse, differenziert nach Ortsgrößenpräferenz (ausgenommen der Unentschiedenen), sind in Tabelle 2 dargestellt. Im Gegensatz zu Hausarztinteressierten mit einer Ortsgrößepräferenz mit mehr als 20.000 Einwohnern gaben Hausarztinteressierte, die in einer Region mit geringer Bevölkerungsdichte arbeiten wollen, überzufällig häufig an, selbst in einer solchen Region aufgewachsen zu sein ($\chi^2(1)=19,250; p<0,001; \varphi=0,42$). Nach Cohen [23] handelt es sich hierbei um eine mittlere Effektstärke. Zudem wurde von ihnen die Famulatur zur hausärztlichen Patientenversorgung häufiger bereits in einer solchen Region abgeleistet ($\chi^2(1)=12,568; p<0,001; \varphi=0,34$), wofür ebenfalls ein mittlerer Effekt nachzuweisen war. Mit einem schwachen Effekt zeigte sich, dass die Hausarztinteressierten mit einer Ortsgrößenpräferenz mit mehr als 20.000 Einwohnern häufiger über das AdH-Verfahren ausgewählt wurden als diejenigen, die in einer Region mit geringer Bevölkerungsdichte arbeiten wollen ($\chi^2(1)=4,365; p<0,05; \varphi=0,20$). Für die Hausarztinteressierten mit Präferenz für große vs. kleine Orte wurden anschließend Einstellungen zum Leben und zur hausärztlichen Tätigkeit auf dem Land gegenübergestellt (siehe Tabelle 3).

Hausarztinteressierte mit der Präferenz für einen Ort mit geringer Bevölkerungsdichte, die ein Leben in einer Dorfgemeinschaft für mehr erstrebenswert halten als ihre Kommiliton*innen (U=894,0; $p<0,01$; mittlerer Effekt), stimmten im Vergleich zu diesen mehr zu, dass das Landleben Vorteile für Familien bietet (U=1,113,5; $p<0,05$; $r=0,23$). Hierbei handelt es sich um einen schwachen Effekt. Hausarztinteressierte mit der Präferenz für einen Ort mit höherer Bevölkerungsdichte, für die eine städtische Infrastruktur unverzichtbar ist als für ihre Kommiliton*innen (U=1,152,5; $p<0,05$; mittlerer Effekt), stimmten im Vergleich zu diesen mehr zu, dass ein/e Hausärzt*in auf dem Land längere Arbeitszeiten als in der Stadt hat (U=1,152,5; $p<0,05$; $r=0,21$). Hierbei handelt es sich um einen schwachen Effekt. Hinsichtlich aller weiteren Aspekte zeigten sich keine Unterschiede in der Bewertung durch die Subgruppen mit unterschiedlicher Ortsgrößenpräferenz.

5. Diskussion

Von den hier befragten Medizinstudierenden, die zum Zeitpunkt der Untersuchung kurz vor Abschluss ihres Studiums in Deutschland standen, strebten 9,9% eine fachärztliche Weiterbildung in Allgemeinmedizin an, was den Ergebnissen vergleichbarer deutscher Befragungen entspricht [24], [25], [26], [27]. Den ausdrücklichen Wunsch, zukünftig eine hausärztliche Tätigkeit auszuüben, hatten sogar 12,1% aller Befragten, wenn zusätzlich die Studierenden mit Wunschfachrichtung Innere Medizin ohne Schwerpunktsetzung berücksichtigt wurden.

5.1. Auswahlquoten

Im Vergleich zu den Studierenden, die später nicht hausärztlich arbeiten wollten, hatten die Studierenden mit Hausarztpräferenz ihren Studienplatz überzufällig häufig über die Wartezeitquote erhalten und hatten häufiger bereits eine Berufsausbildung mit einem engen fachlichen Bezug zum Medizinstudium abgeschlossen. Beide Effekte wurden schwach beobachtet und sind nicht unabhängig voneinander zu interpretieren, denn viele Bewerber*innen überbrückten die Wartezeit auf einen Medizinstudienplatz durch die Wartezeitquote erhalten und häufiger als diejenigen, die in einer Region mit geringer Bevölkerungsdichte arbeiten wollen. Über die Wartezeitquote erhielten sie sich verpflichtet, eine bestimmte Zeitauf dem Land zu verbringen, wenn sie sich bereit waren, in einem Ort mit geringer Bevölkerungsdichte zu arbeiten. Es ist denkbar, dass sich Hausarztinteressierte, die ihre Bildung in einer Region mit geringer Bevölkerungsdichte absolvieren, eher für solche Orte entscheiden, die sich als interessant und attraktiv für die Hausarztpräferenzerten bewähren. Dies könnte auf eine gewisse Flexibilität in den Berufsverpflichtungen hinweisen.

Die schlechtere Auswahlquote der Hausarztinteressierten mit Hausarztpräferenz könnte auf eine gewisse Hemmschwelle hinsichtlich der Auswahlquote niedrigerer Orte zurückzuführen sein. Die Auswahlquote der Hausarztinteressierten hingegen war höher als diejenige der nicht-hausärztlich interessierten Kommiliton*innen. Dieser Effekt könnte auf eine gewisse Affinität der Hausarztinteressierten für die Auswahl von Orten mit geringer Bevölkerungsdichte zurückzuführen sein, die für sie als attraktiv und interessant angesehen werden. Allerdings ist zu beachten, dass die Auswahlquoten nicht nur von der hausärztlichen Tätigkeit abhängen, sondern auch von anderen Faktoren wie dem Alter, dem Geschlecht und der Bildungsniveau der Studierenden. Es ist daher notwendig, eine umfassende Analyse der Auswahlquoten durchzuführen, um die Zusammenhänge zwischen den verschiedenen Faktoren zu klären.
### Tabelle 2: Studierende mit hausärztlichem Interesse nach Ortsgrößenpräferenz

| Soziodemographische Merkmale | Ortsgrößenpräferenz für die hausärztliche Tätigkeit | Effektstärke |
|------------------------------|-----------------------------------------------|-------------|
|                              | < 20.000 Einwohner | > 20.000 Einwohner | |
| Anzahl | 50 | 60 | |
| Anteil Frauen | 40 (80,0%) | 39 (65,0%) | φ = 0,17 |
| mind. ein Elternteil ist Arzt/Ärztin | 6 (12,0%) | 15 (25,0%) | φ = 0,17 |
| Herkunftsort < 20.000 Einwohner | 36 (72,0%) | 18 (30,0%)*** | φ = 0,42 |
| Durchschnittsalter in Jahren (MW ± SD) | 28,2 ± 3,9 | 27,8 ± 3,6 | r = 0,00 |
| Kind(er) im Haushalt lebend | 8 (16,0%) | 6 (10,0%) | φ = 0,09 |

### Auswahlbezogene Merkmale

| Merkmal | < 20.000 Einwohner | > 20.000 Einwohner | Effektstärke |
|---------|-------------------|-------------------|-------------|
| Abiturnote (MW ± SD) | 1,66 ± 0,69 | 1,68 ± 0,69 | r = 0,03 |
| Studienplatz über ÄdH | 20 (40,0%) | 36 (60,0%)* | φ = 0,20 |
| Studienplatz über Abiturbestenquote | 10 (20,0%) | 6 (10,0%) | φ = 0,14 |
| Studienplatz über Wartezeitquote | 12 (24,0%) | 9 (15,0%) | φ = 0,11 |
| abgeschlossene medizinische Berufsausbildung | 17 (34,0%) | 12 (20,0%) | φ = 0,16 |

### Studium

| Merkmal | < 20.000 Einwohner | > 20.000 Einwohner | Effektstärke |
|---------|-------------------|-------------------|-------------|
| Ausbildung im Modellstudiengang | 6 (12,0%) | 10 (16,7%) | φ = 0,07 |
| Physikum-/M1-Note (MW ± SD) | 2,35 ± 0,83 | 2,34 ± 0,83 | r = 0,00 |
| Famulatur zur hausärztlichen Patientenversorgung in einem Ort < 20.000 Einwohner | 31 (62,0%) | 17 (28,3%)*** | φ = 0,34 |

*<p < .05; ***<p < .001

### Tabelle 3: Einstellungen zum Leben und zur hausärztlichen Tätigkeit auf dem Land

| Einstellung | Ortsgrößenpräferenz für die hausärztliche Tätigkeit | Effektstärke |
|-------------|-----------------------------------------------|-------------|
|              | < 20.000 Einwohner (N = 50) | > 20.000 Einwohner (N = 60) |
| 1. Das Landleben bietet viele Vorteile für Familien. | 4,22 (0,91) | 3,83 (0,89)* | r = 0,23 |
| 2. Ein Leben in einer Dorfgemeinschaft ist für mich erstrebenswert. | 3,94 (1,10) | 2,85 (1,19)*** | r = 0,44 |
| 3. Mein (zukünftige/r) Partner/in würde (vermutlich) auf dem Land keinen geeigneten Arbeitsplatz finden. | 3,24 (1,02) | 3,13 (1,21) | r = 0,12 |
| 4. Für Kinder gibt es keine geeigneten Ausbildungsstätten (Schulen) auf dem Land. | 2,52 (1,11) | 2,75 (1,00) | r = 0,04 |
| 5. Eine städtische Infrastruktur (Kultur, Freizeitangebot etc.) ist für mich unverzichtbar. | 2,50 (1,25) | 3,42 (1,17)*** | r = 0,36 |
| 6. Ein Hausarzt/eine Hausärztin auf dem Land verdient zu wenig Geld. | 3,18 (1,38) | 2,85 (1,21) | r = 0,12 |
| 7. Ein Hausarzt/eine Hausärztin auf dem Land hat längere Arbeitszeiten als in der Stadt. | 3,52 (0,93) | 3,92 (0,96)* | r = 0,21 |
| 8. Personen, die sich verpflichten, für eine bestimmte Zeit nach dem Studium auf dem Land zu praktizieren, sollten Vorteile bei der Studienzulassung erhalten. | 2,88 (1,32) | 2,50 (1,47) | r = 0,15 |
| 9. Ich persönlich hätte mich verpflichtet, eine bestimmte Zeit auf dem Land zu praktizieren, wenn meine Chancen bei der Studienzulassung dadurch gestiegen wären. | 2,68 (1,46) | 2,37 (1,54) | r = 0,16 |

*<p < .05; ***<p < .001

MW = Mittelwert; SD = Standardabweichung
Antwortoptionen: 1=stimme überhaupt nicht zu, 2=stimme eher nicht zu, 3=teils/teils, 4=stimme eher zu, 5=stimme voll und ganz zu
ausbildung, eine entsprechende Berufstätigkeit bzw. Dienste werden an den meisten Fakultäten in AdH-(Unter)Quoten berücksichtigt und erhalten vielerorts Einzug in der ZEQ. Die Universitäten Greifswald und Jena beispielsweise haben AdH-Unterquoten eingerichtet, in denen das Kriterium der anerkannten Berufsausbildung sogar am höchsten gewertet wird [28].

5.2. Erfahrung und regionale Herkunft

Unter den Hausarztinteressierten war der Wunsch, später in einem Ort mit geringer Bevölkerungsdichte zu arbeiten, bei denjenigen häufiger gegeben, die ihre Famulatur zur hausärztlichen Patientenversorgung bereits an einem solchen Ort absolviert hatten. Neben dem, dass es gerade die Studierenden mit von vorneherein landärztlichem Interesse sind, die ihre Famulatur hier absolvierten, kann auch der frühe Kontakt mit der hausärztlich-praktischen Arbeit in ländlicher Region das Interesse gesteigert haben, später landärztlich arbeiten zu wollen. Mögliche Vorurteile gegenüber der Landarztmitgliedschaft ließen sich vielleicht in den frühen Jahren der BDZ abschwächen, z.B. zur Annahme längerer Arbeitszeiten als in der Stadt. Auch ausländische Beobachtungsstudien konnten zeigen, dass Praktika bzw. Weiterbildungsabschnitte in ländlichen Praxen, Krankenhäusern oder sozialen Institutionen zu mehr Ärzt*innen auf dem Land führen [29], [30]. Insofern ist zu begrüßen, dass auch in Deutschland eine zunehmend stärkere Orientierung der medizinischen Curricula auf die Primärversorgung an sich und auf jene in ländlichen Regionen stattfindet [31], [32], [33].

Als weiterer wesentlicher Faktor für die Präferenz, später landärztlich in einem Ort mit geringer Bevölkerungsdichte zu arbeiten, stellte sich die biographische Herkunft aus einer solchen Region heraus. Auch dies stimmt mit den Erkenntnissen ausländischer Studien überein [16], [17], [34]. In Japan und Australien z.B. wird deshalb die Herkunft aus ländlichen Regionen als ausgewogene einbezogen [35]. In Deutschland ist dies wegen des Gleichheitsgebiets nach Art. 3 des Grundgesetzes nicht denkbar.

6. Schlussfolgerung

Die aktuellen Veränderungen in den Zugangsregelungen zum Medizinstudium sind vielfältig. Neben der Abschaffung der Wartezeitquote entstehen insbesondere durch fakultätsspezifische ZEQ- und AdH-(Unter)Quoten sowie länderspezifische Landarztquoten für Bewerber*innen unterschiedlichste Wege, um an einen Medizinstudienplatz zu gelangen. Zudem wird den medizinischen Fakultäten ein großer Spielraum eröffnet, eigene Kriterien für die Studierendauswahl zu bestimmen und zu gewichten. Wenn sich dadurch die Zusammensetzung der Studienanfänger*innen zukünftig gestalten wird und ob und wie sich dies auf die Berufspräferenzen der Approbierten auswirken wird, bleibt abzuwarten. Eine stärkere Entscheidung für die Weiterbildung Allgemeinmedizin bzw. für eine hausärztliche Tätigkeit könnte als ein Kriterium für die Validierung der Veränderungen der Zulassungsregeln herangezogen bzw. genutzt werden, um fakultätsspezifische Auswahlverfahren zu evaluieren. Erstrebenswert sind längsschnittliche Studien, die die Zeit von der Stu- denbewerbung bis hin zur fachärztlichen Prüfung und dem Berufsverbleib umfassen [18].

6.1. Stärken und Schwächen

Stärken der Studie sind die Multizentrizität und die Größe der Stichprobe. Aufgrund der hohen Teilnehmerzahl von PJ-Studierenden aus verschiedenen Teilen Deutschlands ist diese Studie von großer Relevanz für die Einschätzung eines Zusammenhangs von Auswahlverfahren und gewünschtem Berufsverbleib. Limitationen der Studie bestehen darin, dass nicht ausgeschlossen werden kann, dass eine Nicht-Teilnahme an der Studie anhand systematischer Merkmale erfolgte. Dies könnte Verzerrungen der Ergebnisse zur Folge haben. Weiterhin gilt zu beachten, dass es sich bei den Daten um Selbstbeurteilungen der befragten Studierenden zum Zeitpunkt gegen Ende ihres PJ und nicht um die tatsächliche Berufswahl handelt. Auch sind Änderungen der Facharztpräferenz im Verlauf der Weiterbildungszeit nicht ungewöhnlich. Für die Allgemeinmedizin konnte gezeigt werden, dass mehr als die Hälfte der Ärzt*innen gegen Ende ihrer allgemeinmedizinischen Weiterbildung Quereinsteiger sind [36]. Ein Ziel des Stav ist es, die hier befragten PJ-Studierenden longitudinal zu verfolgen, um u.a. die Umsetzung der beruflichen Zukunftsvorstellungen zu untersuchen.

Förderung

Der Studierendauswahl-Verbund (stav) wird gefördert vom Bundesministerium für Bildung und Forschung im Zeitraum 07.2018-12.2021 (Förderkennzeichen 01GK1801A).

Interessenkonflikt

Die Autor*innen erklären, dass sie keinen Interessenkonflikt im Zusammenhang mit diesem Artikel haben.

Literatur

1. Kaduszkiewicz H, Teichert U, van den Bussche H. Ärztemangel in der hausärztlichen Versorgung auf dem Lande und im Öffentlichen Gesundheitsdienst. Bundesgesundheitsblatt Gesundheitsforschung Gesundheitsschutz. 2018;61(2):187-194. DOI:10.1007/s00103-017-2671-1
2. Schneider KN, Masthoff M, Gosheger G, Schopow N, Theil JC, Marschall B, Zehrfeld J. Generation Y in der Chirurgie - der Konkurrenz Kampf um Talente in Zeiten des Nachwuchsmangels. Chirurg. 2020;91:955-961. DOI:10.1007/s00104-020-01138-2
3. Vele L. Hausarztsversorgung in Berlin - Aktiv werden, bevor es zu spät ist. KV-BI Kassenärzt. Verein Berlin. 2019;66(01):8-9. Zugänglich unter/available from: https://www.kvb.in.hk/fileadmin/user_upload/kvb-blatt/kvb_blatt_1_2019.pdf

4. Gemeinsamer Bundesausschuss. Gutachten zur Weiterentwicklung der Bedarfsplanung i.S.d. §§ 99 ff. SGB V zur Sicherung der Vertragsärztlichen Versorgung. Berlin: Gemeinsamer Bundesausschuss; 2018.

5. Kistemann T, Schröer MA. Kleinräumig kassenärztliche Versorgung und subjektives Standortwahlverhalten von Vertragsärzten in einem überversorgten Planungsgebiet. Gesundheitswesen. 2007;69(11):593-600. DOI: 10.1055/s-2007-991174

6. Bundesministerium für Bildung und Forschung, Masterplan Medizinstudium 2020. Berlin: Bundesministerium für Bildung und Forschung; 2017. Zugänglich unter/available from: https://www.bmbf.de/bmbf/shreddedocs/zoommeldungen/de/masterplan-medizinstudium-2020.html

7. Nordrhein-Westfalen, Landarztgesetz. Düsseldorf: Landesregierung Nordrhein-Westfalen. Zugänglich unter/available from: https://www.lrg.nrw.de/lag/

8. Freistaat Bayern, Landarztquote. München: Landesregierung Bayern. Zugänglich unter/available from: https://www.landarztquote.bayern.de/

9. Sachsen-Anhalt, Landarztquote. Magdeburg: Landesregierung Sachsen-Anhalt. Zugänglich unter/available from: https://www.landarztquote-sachsen-anhalt.de/

10. Rheinland-Pfalz, Landarztquote. Mainz: Landesregierung Rheinland-Pfalz. Zugänglich unter/available from: https://bewerbung.rlp.de/go/landarztquote/4267401/

11. Saarland, Landarztquote, Saarbrücken: Landesregierung Saarland. Zugänglich unter/available from: https://www.saarland.de/ias/DE/themen/landarztprogramme/landarztquote/landarztquote_node.html

12. Baden-Württemberg, Landarztquote beschlossen. Ärztebl Baden-Württemberg. 2020;75(02):77.

13. Bundesverfassungsgericht. Urteil des Ersten Senats vom 19. Dezember 2017. - BVerfG 1 BvL 3/14-3Rn. (1-253). Karlsruhe: Bundesverfassungsgericht; 2017.

14. Bundestag. Staatsvertrag. Gesetz zu dem Staatsvertrag über die Hochschulzulassung und zur Änderung des Hochschulzulassungsgesetzes. Berlin: Bundestag; 2019. Zugänglich unter/available from: https://www.bundesverband.de/fileadmin/redaktion/download/pdf/landesverband/BWUE/Hochschulzulassungsgesetzes.pdf

15. Kesternich I, Schumacher H, Winter J, Fischer MR, Holzer M. Student characteristics, professional preferences, and admission to medical school. GMS J Med Educ. 2017;34(1):Doc5. DOI: 10.3205/zma001082

16. Laven G, Wilkinson D. Rural doctors and rural backgrounds: how strong is the evidence? A systematic review. Aust J Rural Health. 2003;11(6):277-284. DOI: 10.1111/j.1440-1584.2003.00534.x

17. Senf JH, Campos-Outcalt D, Kutoh R. Factors related to the choice of family medicine: a reassessment and literature review. J Am Board Fam Pract. 2003;16(6):502-512. DOI: 10.3122/jabfm.16.6.502

18. Hissbach J, Zimmermann S, Hampe W. Student selection cannot resolve the lack of general practitioners and country doctors. GMS J Med Educ. 2017;34(2):Doc16. DOI: 10.3205/zma001093

19. van den Bussche H, Boczor S, Siegert S, Nehls S, Selch S, Kocalevent D, Scherer M. Die Resultate von sechs Jahren Weiterbildung für die hausärztliche Versorgung in Deutschland Ergebnisse der KarMed-Studie (Teil 2). ZFA (Stuttgart). 2019;95(01):9-13.

20. Steiner-Hofbauer V, Melser MC, Holzinger A. Allgemeinmedizin: attraktives Arbeitsfeld oder Stiefkind der Medizin? Prav Gesundheitsf. 2019;15:143-150. DOI: 10.1007/s11553-019-00725-4

21. Statistisches Bundesamt. Amtliche Daten zu Studierendenzahlen. Wiesbaden: Statistisches Bundesamt; 2020. Zugänglich unter/available from: https://www.destatis.de/DE/Themen/Gesellschaft-Umwelt/Bildung-Forschung-Kultur/Hochschulen/Tabellen/tbbl0105.html

22. Sozialgesetzbuch (SGB). Fünftes Buch (V) - Gesetzliche Krankenversicherung - Artikel 1 des Gesetzes v. 20. Dezember 1988. BGBl. 1988;2:2477.

23. Cohen J. Statistical power analysis for the behavioural sciences. Hillsdale, NJ: Laurence Erlbaum Associates; 1988.

24. Jacob R, Kopp J, Fellinger P. Berufsmonitoring Medizinstudierende 2018. Ergebnisse einer bundesweiten Befragung. KBV, Kassenärztliche Bundesvereinigung; 2018.

25. Paulmann V. Determinanten der Berufszufriedenheit von jungen MedizinerInnen und Medizinern. Ergebnisse der Absolventenbefragung der Medizinischen Hochschule Hannover 2010 bis 2014. Beitr Hochschulforsch. 2016;38:82-107.

26. Boczor S, Kocalevent RD, Selch S, van den Bussche H. Welche beruflichen Präferenzen haben ÄrztInnen und Ärzte nach sechs Jahren Weiterbildungsjahr. ZA, Arbeit, Beruf, Chancen 2020;74(02):15-17.

27. Absolventenpanel 2017. Ergebnisse der Befragung der AbsolventInnen und Absolventen des Prüfungsjahrgangs 2017 Staatsprüfung Medizin. Hamburg: Universität Hamburg, Servicestelle Evaluation; 2019.

28. Hochschulstart, Übersicht Auswahlkriterien AdH. Dortmund: Hochschulstart; 2020. Zugänglich unter/available from: https://www.hochschulstart.de/epaper/hilfe21-22/adh/index.html?p=1

29. Isaac V, Watts L, Forster L, McLachlan CS. The influence of rural clinical school experiences on medical students’ levels of interest in rural careers. Hum Resour Health. 2014;12(1):48. DOI: 10.1186/1478-4491-12-48

30. Eley D, Young L, Shrapnel M, Wilkinson D, Baker P, Hegney D. Medical students and rural general practitioners: congruent views on the reality of recruitment into rural medicine. Aust J Rural Health. 2007;15(1):12-20. DOI: 10.1111/j.1440-1584.2007.00844.x

31. Slozik F, Ehhrhardt M, Scherer M. Förderung des allgemeinmedizinischen Nachwuchses. Bundesgesundheitsblatt Gesundheitsforschung Gesundheitsschutz. 2014;57(7):892-902. DOI: 10.1007/s00103-014-1984-6

32. Petruschke I, Schütz S, Kaufmann M, Hesse M, Bleidorn J. Ambulantes Quartal im Praktischen Jahr: Welches Fach würden Medizinstudierende wählen? Z Allgemeinmed. 2020;96(5):220-224.

33. Storr C, Bechtel U, Berberat PO, Barth N, Landendörfer P, Schneider A. Modellprojekt: Ausbildungskonzept Allgemeinmedizin im ländlichen Raum Bayerns - die medizinische "AKADemie" Dillingen. Z Allgemeinmed. 2017;93:39-43.

34. Holst J. SchlüsselfürmehrLandärzte:Landärztliche Versorgung und subjektives Standortwahlverhalten von Vertragsärzten in einem überversorgten Planungsgebiet. Gesundheitswesen. 2007;69(11):593-600. DOI: 10.1055/s-2007-991174

35. Matsumoto M, Inoue K, Kajii E. A Contract-Based trainingsystem for ruralphysicians: follow-up of JichiMedicalUniversity Graduates (1978-2006). JRuralHealth. 2008;24(4):360-368. DOI: 10.1111/j.1748-0361.2008.00182.x
van den Bussche H, Boczor S, Siegert S, Nehls S, Selvch S, Kocalevent RD, Scherer M. Die Resultate von sechs Jahren Weiterbildung für die hausärztliche Versorgung in Deutschland - Teil 1. ZFA (Stuttgart). 2018;94(9):362-366.

Korrespondenzadresse:
Dr. phil. Susan Selch
Universitätsklinikum Hamburg-Eppendorf, Institut für Biochemie und Molekulare Zellbiologie, Martinistr. 52, 2046 Hamburg, Deutschland, Tel.: +49 (0)40/7410-58279
s.selch@uke.de

Bitte zitieren als
Selch S, Pfisterer-Heise S, Hampe W, van den Bussche H. On the attractiveness of working as a GP and rural doctor including admission pathways to medical school – results of a German nationwide online survey among medical students in their “Practical Year”. GMS J Med Educ. 2021;38(6):Doc102.
DOI: 10.3205/zma001498, URN: urn:nbn:de:0183-zma0014982
Artikel online frei zugänglich unter
https://www.egms.de/en/journals/zma/2021-38/zma001498.shtml

Eingereicht: 13.11.2020
Überarbeitet: 22.03.2021
Angenommen: 26.04.2021
Veröffentlicht: 15.09.2021

Copyright
©2021 Selch et al. Dieser Artikel ist ein Open-Access-Artikel und steht unter den Lizenzbedingungen der Creative Commons Attribution 4.0 License (Namensnennung). Lizenz-Angaben siehe http://creativecommons.org/licenses/by/4.0/.