Weighted Supermembrane Toy Model

Douglas Lundholm*

Department of Mathematics, Royal Institute of Technology
SE-100 44 Stockholm, Sweden

Abstract

A weighted Hilbert space approach to the study of zero-energy states of supersymmetric matrix models is introduced. Applied to a related but technically simpler model, it is shown that the spectrum of the corresponding weighted Hamiltonian simplifies to become purely discrete for sufficient weights. This follows from a bound for the number of negative eigenvalues of an associated matrix-valued Schrödinger operator.

Mathematics Subject Classification (2000): 81Q10, 81Q60, 35P20.

Keywords: supersymmetric matrix models, matrix-valued Schrödinger operator, Cwikel-Lieb-Rozenblum inequality.

1 Introduction

There are many difficulties in the study of zero-energy states of supersymmetric matrix models. Some arise due to the fact that the spectrum of the associated Hamiltonian is continuous\(^1\), starting at zero. Accordingly, we expect it to be useful to shift to a weighted Hilbert space on which the corresponding operator has a discrete spectrum.

In this work we illustrate the applicability of the technique to a simplified model which, despite its technical simplicity, still shares many of the features (and difficulties) of the original matrix models. The spectral properties of this so-called supermembrane toy model, and its purely bosonic counterpart, has been previously studied in [1, 2, 3, 4, 5, 6, 7, 8], while the underlying geometry of the model was emphasized in [9]. Our results on the technically

*e-mail: dogge@math.kth.se

\(^1\)or purely essential, to be precise
much more complicated matrix models will be presented in a forthcoming paper.

In Section 2 we recall the formulation of the original toy model and introduce the weighted Hilbert space approach. In Sections 3 and 4 we investigate the spectral properties of the weighted model, and show that, under a certain condition on the parameter of the weight, the spectrum of the weighted model is in fact discrete. This is accomplished using a Cwikel-Lieb-Rozenblum-type bound for operator-valued potentials which is derived in Section 5 from a result in [10]. We also note that the technique we use could provide a geometric understanding of the eigenvalue asymptotics of the purely bosonic model.

2 The original and weighted models

The supermembrane toy model, also called the supersymmetric x^2y^2 potential, is defined by the Hamiltonian operator

$$H = -\Delta + V + H_F = -\partial_x^2 - \partial_y^2 + x^2y^2 + x\gamma_1 - y\gamma_2$$

(1)

(where γ_k are Pauli matrices), acting on the Hilbert space

$$\mathcal{H} = L^2(\mathbb{R}^2, dx dy) \otimes \mathbb{C}^2.$$

A corresponding hermitian supercharge operator is given by

$$Q = -i(\partial_x \gamma_1 + \partial_y \gamma_2) + xy\gamma_3,$$

such that $Q^2 = H \geq 0$.

The matrix-valued Schrödinger operator H can be formally defined as a self-adjoint operator through the closure of the quadratic form corresponding to the expression (1) on $C_0^\infty(\mathbb{R}^2) \otimes \mathbb{C}^2$. The spectrum of H is $\sigma(H) = [0, \infty)$ due to potential valleys along the coordinate axes, where the lower eigenvalue of the matrix potential,

$$V + (H_F)_- = x^2y^2 - \sqrt{x^2 + y^2},$$

tends to negative infinity – precisely cancelling the localization energy due to the narrowing of the valley.

We would like to make the spectrum of the model discrete by introducing a weighted Hilbert space. We define

$$\mathcal{H}_w := L^2(\mathbb{R}^2, \rho(x, y) dx dy) \otimes \mathbb{C}^2, \quad \rho(x, y) := (1 + x^2 + y^2)^{-\frac{3}{2}},$$
with \(\alpha \geq 0 \). The inner product on \(\mathcal{H}_w \) is then given by

\[
\langle \Phi, \Psi \rangle_w = \langle \Phi, \rho \Psi \rangle = \int_{\mathbb{R}^2} \frac{\langle \Phi(x, y), \Psi(x, y) \rangle C_2}{(1 + x^2 + y^2)^{\frac{\alpha}{2}}} \, dx \, dy.
\]

The corresponding self-adjoint operator \(\tilde{H} \) on \(\mathcal{H}_w \) is defined through the same quadratic form on \(C_0^\infty(\mathbb{R}^2) \otimes \mathbb{C}^2 \);

\[
\langle \Psi, \tilde{H} \Psi \rangle_w := \langle \Psi, H \Psi \rangle = \| Q \Psi \|_2^2 \geq 0.
\]

It follows that, if we define \(\tilde{Q} := \rho^{-\frac{1}{2}} Q \) (with adjoint w.r.t \(\mathcal{H}_w \) given by \(\tilde{Q}^* = \rho^{-\frac{1}{2}} Q \rho^\frac{1}{2} \)) we have

\[
\langle \Psi, \tilde{H} \Psi \rangle_w = \| \tilde{Q} \Psi \|_w^2.
\]

We observe in general that any solution of \(H \Psi = 0 \) in \(\mathcal{H} \) is also a solution of \(\tilde{H} \Psi = 0 \) in the weighted Hilbert space. On the other hand, finding a solution of \(\tilde{H} \Psi = 0 \) in \(\mathcal{H}_w \) does yield a (smooth\(^3 \)) solution to the differential equation \(H \Psi = 0 \), but its decay rate may be insufficient for square-integrability. For this particular model it is known \cite{7} that there is no solution in \(\mathcal{H} \).

3 Spectrum of \(\tilde{H} \) for \(\alpha < 2 \)

Continuity of the spectrum of \(H \) can be proved (see \cite{4}) by, for any \(\mu \geq 0 \), finding a Weyl sequence \((\Psi_t) \) in \(\mathcal{H} \) such that \(\| \Psi_t \| = 1 \) \(\forall t \) and

\[
\langle \Psi_t, (H - \mu)^2 \Psi_t \rangle \to 0, \quad t \to \infty.
\]

Explicitly (and for \(\mu = 0 \) for simplicity), we take

\[
\Psi_t(x, y) := \chi_t(x) \phi_x(y) \xi,
\]

where \(\chi_t \) is a cut-off function s.t. \(\chi_t(x) := t^{-\frac{1}{2}} \chi(x/t), \chi \in C_0^\infty[1, 2], \int_\mathbb{R} \chi^2 = 1 \), \(\phi_x \) is the normalized groundstate of the harmonic oscillator \(-\partial_y^2 + x^2 y^2 \),

\[
\phi_x(y) := \left(\frac{x}{\pi} \right)^{\frac{1}{4}} e^{-\frac{1}{2} y^2},
\]

and \(\xi \in \mathbb{C}^2 \) is a unit eigenvector, \(\gamma_1 \xi = -\xi \). One finds that \(\| \Psi_t \|^2 = 1 \) and

\[
\langle \Psi_t, H \Psi_t \rangle \leq \int |\chi_t \chi''_t| \, dx + c_1 \int x^{-1} |\chi_t \chi'_t| \, dx + c_2 \int x^{-2} |\chi_t|^2 \, dx \leq ct^{-2} \]

\(^3 \)by elliptic regularity
(here, and in the following, c, c_1, \ldots denote some positive constants).

Taking the same sequence for the weighted case, we also find

$$\langle \Psi_t, \tilde{H} \Psi_t \rangle_w = \langle \Psi_t, H \Psi_t \rangle \leq ct^{-2}.$$

However, the norm is now

$$\|\Psi_t\|_w^2 = \int_x |\chi_t(x)|^2 \int_y \frac{|\phi_x(y)|^2}{(1 + x^2 + y^2)\tilde{\alpha}^2} dy dx$$

$$\geq c_1 \int_x \frac{|\chi_t(x)|^2}{(1 + 4t^2 + c_2t^{-1})\tilde{\alpha}^2} dx \geq c_3(1 + 4t^2)^{-\frac{\tilde{\alpha}}{2}},$$

so that, for $\alpha < 2$,

$$\frac{\langle \Psi_t, \tilde{H} \Psi_t \rangle_w}{\|\Psi_t\|_w^2} \leq c(1 + 4t^2)^{\frac{2}{\tilde{\alpha}}}, \quad t \to \infty.$$

Thus, Ψ_t still approximates a zero-energy eigenfunction, but since its support moves out to infinity, this indicates that the spectrum of \tilde{H} is still continuous for $0 \leq \alpha < 2$.

4 Spectrum of \tilde{H} for $\alpha > 2$

The spectrum of \tilde{H} is discrete if and only if, for all $\lambda > 0$, the rank of the spectral projection of \tilde{H} on $(-\infty, \lambda)$ is finite. Equivalently, if and only if

$$\sup_{W_\lambda} \dim W_\lambda < \infty,$$

where W_λ are subspaces of $C_\infty^0(\mathbb{R}^2) \otimes \mathbb{C}^2$ such that, for all $\Psi \in W_\lambda$,

$$\langle \Psi, \tilde{H} \Psi \rangle_w < \lambda \|\Psi\|_w^2.$$

Note that (2) is equivalent to

$$\langle \Psi, (H - \lambda \rho) \Psi \rangle < 0.$$

It follows that the spectrum of \tilde{H} is discrete if and only if the operator $H - \lambda \rho$, on the original Hilbert space \mathcal{H}, has finitely many negative eigenvalues for any $\lambda > 0$, or more precisely, $N(H - \lambda \rho) < \infty$, where we denote by $N(A)$ the (possibly infinite) rank of the spectral projection on $(-\infty, 0)$ of a self-adjoint operator A. We will prove the following theorem.
Theorem 1. For all $\lambda > 0$ and $\alpha > 2$, the operator

$$H_\lambda := H - \lambda \rho = -\partial_x^2 - \partial_y^2 + x^2 y^2 + x \gamma_1 - y \gamma_2 - \frac{\lambda}{(1 + x^2 + y^2)^\frac{\alpha}{2}}$$ \hspace{1cm} (3)$$

has finitely many negative eigenvalues. Furthermore, the number of negative eigenvalues is bounded by

$$N(H_\lambda) \leq C(\alpha) + \frac{2^{12} \pi C_3}{27(\alpha - 2)^3} \lambda^\frac{\alpha}{2} - \epsilon(\alpha),$$ \hspace{1cm} (4)$$

where $C(\alpha)$ and C_3 are positive constants, and $0 < \epsilon(\alpha) < \frac{1}{2}(\alpha - 2)$.

Our strategy is to prove this by splitting the domain of the operator into different regions – based on the geometry of the potential valleys – and introducing Dirichlet boundary conditions between these regions by means of a partition of unity. The unbounded region along the potential valley is then shown to admit only finitely many negative eigenvalues using a Cwikel-Lieb-Rozenblum bound for operator-valued potentials. In order to illustrate the latter part of this procedure, let us first prove that H_λ defined on the region $x > 1$ and with Dirichlet boundary condition at $x = 1$ has finitely many eigenvalues below zero when $\alpha > 2$. However, despite the fact that there is a reflection symmetry between x and y, this result cannot be directly applied to prove Theorem 1 because of inconvenient intersections between regions of this form. Instead, we will introduce a different set of coordinates and define the regions with respect to those.

4.1 Cartesian coordinates

In the cartesian coordinates (x, y) we consider the region $\Omega := (1, \infty) \times \mathbb{R}$ and the semi-bounded operator H_{xy}^{λ} defined by closure of the quadratic form corresponding to (3) on $C_0^\infty(\Omega) \otimes \mathbb{C}^2$. Note that, for $\Psi \in C_0^\infty(\Omega) \otimes \mathbb{C}^2$,

$$\int_{\Omega} \langle \Psi, H_{xy}^{\lambda} \Psi \rangle_{\mathbb{C}^2} dxdy \geq \int_{\Omega} \left\langle \Psi, \left(-\partial_x^2 - \partial_y^2 + x^2 \left(y - \frac{1}{2x^2} \gamma_2\right)^2 - \frac{1}{4x^2} - x - \frac{\lambda}{x^\alpha}\right) \Psi \right\rangle_{\mathbb{C}^2} dxdy.$$

Choosing the representation $\gamma_2 = \text{diag}(1, -1)$, and making separate coordinate transformations $\tilde{y} := y \pm \frac{1}{2x^2}$ in the integrals over the corresponding components of Ψ, we find

$$H_{xy}^{\lambda} \geq -\partial_x^2 - \frac{1}{4x^2} - \partial_y^2 + x^2 \tilde{y}^2 - x - \frac{\lambda}{x^\alpha}.$$
where the two-dimensional scalar Schrödinger operator on the r.h.s. can be considered as a Schrödinger operator on the interval \((1, \infty)\) with an operator-valued potential \(V(x) = -\partial_x^2 + x^2 \tilde{y}^2 - x - \lambda x^{-\alpha}\) acting on \(L^2(\mathbb{R}, d\tilde{y})\). This shifted harmonic oscillator, with the projection onto its \(k\):th eigenvector denoted \(P_k\), is bounded below by its negative part

\[
V(x)_- = \sum_{k=0}^{\infty} (2kx - \lambda x^{-\alpha})_+ P_k \geq -\lambda x^{-\alpha} \sum_{0 \leq k \leq \lambda/2} P_k.
\]

Applying Lemma 7 below (with a factor 2 coming from the trace over \(\mathbb{C}^2\)), we find

\[
N(H^{xy}_\lambda) \leq N \left(\left(-\partial_x^2 - \frac{1}{4x^2} \right) - \frac{\lambda}{x^\alpha} \sum_{0 \leq k \leq \lambda/2} P_k \right) \leq 8\pi C_3 \int_1^\infty (1 + \lambda/2) \left(\lambda x^{-\alpha} \right)^{3/2} x^2 (\ln x)^2 dx,
\]

which is finite for \(\alpha > 2\).

4.2 Parabolic coordinates

Consider the coordinate transformation (cp. [9])

\[
(x, y) \mapsto (u, v) := \left(\frac{1}{2}(x^2 - y^2), xy \right),
\]

which is conformal everywhere except at the origin, and maps e.g. the open right half-plane bijectively onto the whole plane with the negative real line removed. We introduce the regions (see Figure 1)

\[
\mathcal{A} : -M < u < M,
\]

\[
\mathcal{B}_1 : u > M, x > 0,
\]

and the corresponding reflections \(\mathcal{B}_{2,3,4}\) of \(\mathcal{B}_1\) in the symmetry lines \(x = 0\) and \(x = y\), together with their union \(\mathcal{B} := \bigcup_{j=1}^4 \mathcal{B}_j = \mathbb{R}^2 \setminus \mathcal{A}\). We will also make use of rescaled versions of these regions, e.g. \(\kappa \mathcal{A}\), with a fixed \(\kappa > 1\).

Take a partition of unity, \(1 = \chi^2_\mathcal{A} + \chi^2_\mathcal{B}\), such that \(\chi_{\mathcal{A},\mathcal{B}} \in C^\infty(\mathbb{R}^2; [0, 1])\), \(\chi_{\mathcal{A}} = 1\) on \(\mathcal{A}\), and \(\chi_{\mathcal{B}} = 1\) on \(\kappa \mathcal{B}\). It follows that, for any \(\Psi \in C^\infty_0(\mathbb{R}^2) \otimes \mathbb{C}^2\),

\[
\langle \Psi, H_\lambda \Psi \rangle = \langle \Psi, H_\lambda (\chi^2_\mathcal{A} + \chi^2_\mathcal{B}) \Psi \rangle = \langle \chi_\mathcal{A} \Psi, H_{\lambda A}^4 \chi_\mathcal{A} \Psi \rangle + \langle \chi_\mathcal{B} \Psi, H_{\lambda B}^B \chi_\mathcal{B} \Psi \rangle,
\]

where

\[
H_{\lambda A}^4 := H_\lambda - |\nabla \chi_{\mathcal{A}}|^2 - |\nabla \chi_{\mathcal{B}}|^2
\]
denotes the corresponding operator restricted to the domain κA resp. B with Dirichlet boundary condition at the boundary $|u| = \kappa^2 M$ resp. $|u| = M$. As we will see, the additional negative potential terms in (6), denoted $- V \chi$, will not cause any problems because they are supported on a region $\kappa A \cap B$ where the potential tends rapidly to infinity. Using that $N(A + B) \leq N(A) + N(B)$ for any two self-adjoint operators A, B, we obtain from the quadratic form expression (5) that

$$N(H_\lambda) \leq N(H_\lambda^A) + N(H_\lambda^B) = N(H_\lambda^A) + \sum_{j=1}^{4} N(H_\lambda^{B_j}).$$

Consider first the region B_1. Under the coordinate transformation, we find (cp. [9]) \(\Delta_{xy} = h^{-2} \Delta_{uv} \) and \(dxdy = h^2 dudv \), with scale factor \(h = (x^2 + y^2)^{-\frac{1}{2}} = 2^{-\frac{1}{4}}(u^2 + v^2)^{-\frac{1}{4}} \), so that for any $\Psi \in C^\infty_0(B_1) \otimes \mathbb{C}^2$

$$\int_{B_1} \langle \Psi, (-\Delta_{xy} + x^2 y^2 - x\gamma_1 - y\gamma_2 - \lambda \rho - V_\lambda) \Psi \rangle_{C^2} dxdy$$

$$= \int_{B_1} \langle \Psi, (-\Delta_{uv} + h^2 \rho^2 + h^2 \gamma_u - \lambda h^2 \rho - V^{uv}_\chi) \Psi \rangle_{C^2} dudv$$

$$\geq \int_{u=M}^{\infty} \int_{v=-\infty}^{\infty} \left\langle \Psi, \left(-\partial_u^2 - \partial_v^2 + \frac{v^2}{2u^2 + v^2} - \frac{1}{\sqrt{2(u^2 + v^2)}} \right)\lambda \right. \left. - \frac{1}{2\sqrt{u^2 + v^2}(1 + \sqrt{u^2 + v^2})^{\frac{3}{2}}} - V^{uv}_\chi \right\rangle_{C^2} dvdu,$$

where $\mu := h(x\gamma_1 - y\gamma_2)$, so that $\mu^2 = 1$. We have also used that

$$h^2 V_\chi = (h|\nabla_{xy} \chi A|)^2 + (h|\nabla_{xy} \chi B|)^2 = |\nabla_{uv} \chi A|^2 + |\nabla_{uv} \chi B|^2 = V^{uv}_\chi,$$

which (with a suitably chosen χA) is independent of v, bounded by c_1/M^2, and supported on $M \leq |u| \leq \kappa^2 M$.

7
Let us think of the resulting scalar Schrödinger operator in the r.h.s. of (7), call it \(H_{uv} \), as acting on \(L^2([M, \infty), du) \otimes \mathcal{H} \) with fiber \(\mathcal{H} = L^2(\mathbb{R}, dv) \).

Let

\[
H_u := -\frac{\partial^2}{\partial v^2} + \frac{v^2}{2(u^2 + v^2)^{1/2}} - \frac{1}{\sqrt{2(u^2 + v^2)^{1/2}}},
\]

(8)
denote part of the one-dimensional Schrödinger operator acting on \(\mathcal{H} \), and observe that

\[
H_{uv}^\lambda \geq -\frac{\partial^2}{\partial v^2} + \left(H_u - \frac{\lambda}{2u(1 + 2u)^{1/2}} - V_{\chi_{uv}} \right)_- \geq -\frac{\partial^2}{\partial v^2} + \left(H_u - \frac{\lambda}{u^{11/2}} - V_{\chi_{uv}} \right)_-,
\]

(9)

where \((A)_-\) denotes the spectral projection on the negative part of the spectrum of \(A \).

First, let us make a rough estimate of the spectrum of \(H_u \) to prove that this spectral projection is one-dimensional when \(u \) is sufficiently large. Splitting \(H_u \) into three regions (again using a partition of unity), \(v < -\delta u \), \(-u < v < u \), resp. \(v > \delta u \), with a fixed \(0 < \delta < 1 \) and Dirichlet boundary conditions at \(v = \pm u \) resp. \(v = \pm \delta u \), we find (with some constant \(c_2 \geq (1 - \delta)^2 \))

\[
H_u|_{|v| < u} \geq -\frac{\partial^2}{\partial v^2} + \frac{v^2}{2(u^2 + u^2)^2} - \frac{1}{\sqrt{2u}} - \frac{c_2}{u^2} = -\frac{\partial^2}{\partial v^2} + \frac{1}{2\pi u} v^2 - \frac{1}{\sqrt{2u}} - \frac{c_2}{u^2},
\]

whose spectrum is bounded below by \(\left\{ \frac{1}{\sqrt{2\pi u}} (2k + 1) - \frac{1}{\sqrt{2u}} - \frac{c_2}{u^2} \right\}_{k=0,1,2,...} \), while

\[
H_u|_{v > \delta u} \geq -\frac{\partial^2}{\partial v^2} + \frac{v^2}{2(\delta^2 - v^2 + v^2)^2} - \frac{1}{\sqrt{2u}} - \frac{c_2}{u^2} \geq \frac{\delta^2 u}{2\sqrt{2}} - \frac{1}{\sqrt{2u}} - \frac{c_2}{u^2},
\]

and similarly for \(H_u|_{v < -\delta u} \), so that

\[
N \left(H_u - \frac{\lambda}{u^{1+\frac{1}{2}}} \right) \leq N \left(H_u|_{v < -\delta u} - \frac{\lambda}{u^{1+\frac{1}{2}}} \right) + N \left(H_u|_{|v| < u} - \frac{\lambda}{u^{1+\frac{1}{2}}} \right) + N \left(H_u|_{v > \delta u} - \frac{\lambda}{u^{1+\frac{1}{2}}} \right) \leq 0 + 1 + 0
\]

for \(\alpha \geq 2 \) and \(u \) sufficiently large. Hence, only the ground state energy of \(H_u \) contributes to (9) when \(M \) is taken sufficiently large, e.g. \(M \geq (c_1 + c_2 + \lambda)^{\frac{1}{2}} \) with \(\delta = 0.8 \).

A sufficient bound for the ground state energy is provided by Proposition [2] below, showing that \(H_u \geq -\frac{1}{4u^2} \) for all \(u > 0 \), so that (9) becomes

\[
H_{uv}^\lambda \geq \left(-\frac{\partial^2}{\partial u^2} - \frac{1}{4u^2} \right) \otimes 1_\mathcal{H} - \left(\frac{\lambda}{u^{11/2}} + V_{\chi_{uv}} \right) \otimes P_0,
\]

8
where \(P_0 \) denotes the projection onto the ground state of \(H_u \). Applying Lemma 7, we find (after extending trivially to \([1, \infty)\))

\[
N(H_{uv}^\lambda) \leq 8\pi C_3 \int_M^{\infty} \left(\frac{\lambda}{u^{1+\frac{\alpha}{2}}} + V_{uv}^\lambda \right)^{\frac{3}{2}} u^2 \ln u^2 \, du
\leq c_3 \left(\lambda M^{-\frac{\alpha}{2}} + c_1 \right)^{\frac{3}{2}} (\ln \kappa^2 M)^2 + 8\pi C_3 \lambda^{\frac{3}{2}} \int_{\kappa M}^{\infty} u^{\frac{1}{2} - \frac{\alpha}{2}} \ln u^2 \, du,
\]

which is finite for \(\alpha > 2 \). This implies that \(N(H_{B1}^\lambda) < \infty \) and, by reflection symmetry, also \(N(H_{B1}^\lambda) < \infty \) for all \(\lambda > 0 \).

It remains to prove that \(N(H_{A2}^\lambda) < \infty \). Taking the scalar lower bound for the potential of \(H_{A2}^\lambda \),

\[
V_A^\lambda := x^2 y^2 - \sqrt{x^2 + y^2} - \lambda (1 + x^2 + y^2)^{-\frac{\alpha}{2}} - V_x,
\]

and using that \(V_x = (x^2 + y^2)V_{uv}^\lambda \leq 2\sqrt{u^2 + v^2}c_1 M^{-2} \), we have on the region \(\kappa A \)

\[
H_A^\lambda \geq -\Delta_{xy} + v^2 - \sqrt{2(\kappa^4 M^2 + v^2)^{\frac{1}{2}} - \frac{\lambda}{(1 + 2\sqrt{u^2 + v^2})^{\frac{\alpha}{2}}} - V_x
\geq -\Delta_{xy} + v^2 - \sqrt{2(\kappa^4 M^2 + v^2)^{\frac{1}{2}} - \lambda - 2\sqrt{\kappa^4 M^2 + v^2}c_1 M^{-2}},
\]

and since the potential of the Schrödinger operator on the right hand side tends to infinity as \(|x| \to \infty \Rightarrow |v| \to \infty \), it follows that the spectrum of \(H_A^\lambda \) is purely discrete, and \(N(H_A^\lambda) < \infty \).

We have proved the first statement of Theorem 1. The second statement follows from (10) with \(M = (c_1 + c_2 + \lambda)^{\frac{\alpha}{2}} \), together with the following bound for scalar Schrödinger operators in two dimensions (see e.g. Theorem 20, Chapter 8.4 in [11]):

\[
N(-\Delta + V) \leq 1 + C_q \int_{\mathbb{R}^2} |V(x)|^q \left(1 + \ln |x||^{2q-1} |x|^{2(q-1)} \, dx,
\]

with \(q > 1 \) and \(C_q \) a positive constant. Extending \(V_A^\lambda \) by zero outside \(\kappa A \), it follows that

\[
N(H_A^\lambda) \leq 2 + 2C_q \int_{\kappa A} |V_A(x)|^q \left(1 + \ln |x||^{2q-1} |x|^{2(q-1)} \, dx.
\]

\[3\text{Whether the bound } (12) \text{ extends to } q = 1 \text{ is currently unknown (we note that there is an error in [12]).}\]
Figure 2: The bounded region where $V^A < 0$.

For large λ, we have on the unbounded region $|v| \geq \kappa^2 M$ (similarly to (11)) that

$$V^A \geq v^2 - \sqrt{2}(2v^2)^{\frac{1}{4}} - \lambda(1 + 2|v|)^{-\frac{5}{2}} - 2(2v^2)^{\frac{1}{2}}c_1M^{-2} \geq 0.$$

Hence, the integral reduces to the bounded region $|u|, |v| < \kappa^2 M$, i.e.

$$N(H^A_{\lambda}) \lesssim \int_{x^2 + y^2 < \frac{1}{2} \kappa^2 M} (-V^A)^q \left(1 + \ln \sqrt{x^2 + y^2} \right)^{2q-1} (x^2 + y^2)^{q-1} dxdy$$

$$\leq \int_0^{c_1 \lambda^\frac{1}{4}} \int_{-\pi}^\pi \left(\frac{r^4}{4} \sin^2 2\varphi + r + \lambda(1 + r^2)^{-\frac{5}{2}} + r^2c_1M^{-2} \right)^{q} \cdot (1 + \ln r)^{2q-1} r^{2q-1} drd\varphi,$$

where we switched to polar coordinates (r, φ). Furthermore, this region increases in size with λ at a faster rate than the geometry of the potential valleys, so we can split the integral into a central part and four narrowing regions along the valleys (see Figure 2). We obtain the bound

$$2\pi \int_0^{r_{\lambda}} \left(r + \lambda(1 + r^2)^{-\frac{5}{2}} + r^2c_1\lambda^{-\frac{1}{2}} \right)^q (1 + \ln r)^{2q-1} r^{2q-1} dr$$

$$+ 8 \int_{r_{\lambda}}^{c_1 \lambda^\frac{1}{4}} \int_{-\varphi}^{\varphi} \left(r + \lambda(1 + r^2)^{-\frac{5}{2}} + r^2c_1\lambda^{-\frac{1}{2}} \right)^q (1 + \ln r)^{2q-1} r^{2q-1} drd\varphi,$$

where r_{λ} is the solution to

$$-\frac{1}{4}r^4 + r + \lambda(1 + r^2)^{-\frac{5}{2}} + r^2c_1M^{-2} = 0.$$
i.e. \(r_\lambda \sim \lambda^{\tfrac{4}{4+\alpha}} \), and \(\varphi_r \sim \tfrac{1}{r^4} (r + \lambda r^{-\alpha})^{\tfrac{3}{2}} \). The first integral is bounded by

\[
\int r_\lambda^2 \left(r_\lambda + \lambda + r_\lambda^2 c_1 \lambda^{-\tfrac{3}{2}} \right)^q (1 + \ln r_\lambda)^{2q-1} \leq c_6 \lambda^{\tfrac{4}{4+\alpha}} \ln^q \lambda^{2q-1},
\]

and the second by

\[
c_6 \int_{c_7 \lambda^{1+\alpha}}^{c_7 \lambda^{1+\alpha}} \frac{1}{r^2} \left(r + \lambda r^{-\alpha} + r^2 c_1 \lambda^{-\tfrac{3}{2}} \right)^q (r \ln r)^{2q-1} dr \leq \frac{c_8}{q-1} \lambda^{\tfrac{3}{4} q - \tfrac{1}{2}} \ln^q \lambda^{2q-1}.
\]

(14)

Now, for \(\alpha > 2 \) we can choose \(q \) sufficiently close to 1 to make these expressions dominated by \(o(\lambda^{\tfrac{4}{3}}) \). On the other hand, the first term of the r.h.s. of (10) is asymptotically bounded by

\[
c_9 \left(\lambda \cdot (\lambda^{2/3})^{1-\frac{4}{3q}} \right)^{\frac{3}{2}} \ln^2 \lambda = c_9 \lambda^{\tfrac{3}{4} - \tfrac{4}{3q} (\alpha - 2)} \ln^2 \lambda^2
\]

for \(2 < \alpha \leq 5 \) and by \(c_9 \ln^2 \lambda^2 \) otherwise, and for the second term we have, with \(\alpha = 2 + \frac{4}{3} a \) and any \(0 \leq \epsilon < 1 \),

\[
\int_{M}^\infty u^{-1-a}(\ln u)^2 du \leq M^{-\epsilon a} \int_{1}^\infty u^{-1-(1-\epsilon)a}(\ln u)^2 du \leq \lambda^{-\epsilon a} \cdot \frac{2}{((1-\epsilon)a)^3}.
\]

Summing up, we obtain

\[
N(H_\lambda) \leq C(\alpha) + 32\pi C_3 \lambda^{\tfrac{4}{2} - \epsilon(\alpha)} \cdot \frac{128}{27(\alpha - 2)^3} \forall \lambda > 0,
\]

for some constant \(C(\alpha) \) and sufficiently small \(\epsilon(\alpha) > 0 \).

It follows from Theorem 1 that the asymptotic eigenvalue distribution of the weighted Hamiltonian \(\tilde{H} \) is given by

\[
N(\tilde{H} - \lambda) \sim o(\lambda^{\tfrac{4}{3}}), \quad \lambda \to \infty,
\]

regardless of \(\alpha > 2 \). We note that the same approach can be applied to the purely bosonic model, i.e. the scalar Schrödinger operator \(H_B = -\Delta + x^2 y^2 \), with \(\alpha \geq 0 \). In this case there will be no contribution from the region \(B \) when \(M \sim \lambda^2 \), and the correct leading order eigenvalue asymptotics for \(\alpha = 0 \) (see [5]),

\[
N(H_B - \lambda) \sim \lambda^{\tfrac{4}{3}} \ln \lambda, \quad \lambda \to \infty,
\]

would be matched by the corresponding bound (13) for the central region with \(q = 1 \), while for the cut off valleys there is a bound analogous to (14).
with
\[
\int_{\lambda^{1/\alpha}}^{\lambda} \left(r^{-\alpha} + r^2 e_1 \lambda^{-4} \right)^{q+\frac{1}{2}} r^2 r^{-3} (\ln r)^{2q-1} \, dr \leq \frac{c_{10}}{q - 1} \lambda^{4q+2} + 2(q-1)(\ln \lambda)^{2q-1}.
\]

One could try to improve this by instead letting \(M \) be fixed and reconsidering the bound on the region \(B_1 \). In any case, we have for a nonzero weight that \(N(\tilde{H}_B - \lambda) \sim o(\lambda^{\frac{q}{2}}) \), \(\lambda \to \infty \).

4.2.1 Asymptotics of \(H_u \)

We conclude this section with some useful properties of the operator \(H_u \) in the limit \(u \to \infty \). By the change of variable \(v = u^{\frac{1}{4}} t \), we write
\[
\hat{H}(\epsilon) := -\partial_t^2 + \frac{t^2}{2(1 + \epsilon t^2)^{\frac{3}{4}}} - \frac{1}{\sqrt{(2(1 + \epsilon t^2)^{\frac{3}{4}}}}.
\]

Proposition 2. \(\hat{H}(\epsilon) \geq -\frac{\epsilon t^2}{4}, \) for all \(\epsilon > 0 \).

Proof. We use that for any \(f = f(t) \)
\[
(-i \partial_t + i f)(-i \partial_t - i f) \geq 0,
\]
i.e. \(-\partial_t^2 + f^2 - f' \geq 0 \). As a first attempt, let
\[
f_0 := \frac{t}{\sqrt{2(1 + \epsilon t^2)^{\frac{3}{4}}}},
\]
resulting in
\[
\hat{H}(\epsilon) \geq -\frac{\epsilon t^2}{2\sqrt{2}(1 + \epsilon t^2)^{\frac{3}{4}}}. \tag{16}
\]

While the r.h.s. is bounded and vanishes as \(\epsilon \to 0 \) pointwise, it does not so uniformly. Consider instead \(f = f_0 + \epsilon f_1 \), with
\[
f_1 := -\frac{t}{4(1 + \epsilon t^2)}.
\]

We so get the bound \((16)\) pushed to \(O(\epsilon) \):
\[
\hat{H}(\epsilon) \geq -\frac{\epsilon t^2}{2\sqrt{2}(1 + \epsilon t^2)^{\frac{3}{4}}} - 2\epsilon f_0 f_1 - \epsilon^2 f_1^2 + \epsilon f_1'
\]
\[
= -\epsilon^2 f_1^2 + \epsilon f_1' = -\epsilon \cdot \frac{1 - \frac{3\epsilon t^2}{4(1 + \epsilon t^2)^2}}{4} \geq -\frac{\epsilon}{4}.
\]
\[\square\]
Let \hat{P}_0 denote the projection onto the ground state of $\hat{H}_0 := \hat{H}(0)$, i.e.

$$(P_0\psi)(t) = \varphi_0(t) \int \overline{\varphi_0(\tau)}\psi(\tau) d\tau,$$

where $\varphi_0(t) = (\sqrt{2\pi})^{-\frac{1}{4}}e^{-t^2/(2\sqrt{2})}$ is its normalized wave function, and let $\hat{P}_0^\perp := 1 - \hat{P}_0$. Note that

$$\hat{H}(\epsilon) - \hat{H}_0 = -\frac{t^2}{2} \left(1 - (1 + \epsilon t^2)^{-\frac{1}{2}} \right) + \frac{1}{\sqrt{2}} \left(1 - (1 + \epsilon t^2)^{-\frac{1}{2}} \right)$$

and

$$\langle \varphi_0, \hat{H}(\epsilon)\varphi_0 \rangle = -\frac{\epsilon}{4} + o(\epsilon). \tag{17}$$

Proposition 3. $\hat{H}(\epsilon) \geq \left(-\frac{\epsilon}{4} + o(\epsilon) \right) \hat{P}_0 + c\hat{P}_0^\perp$, as $\epsilon \to 0$, where $c > 0$.

We start with

Lemma 4. For small $\epsilon > 0$,

$$\hat{P}_0^\perp \hat{H}(\epsilon)\hat{P}_0^\perp \geq \frac{\sqrt{2}}{2} \hat{P}_0^\perp.$$

*(Note: $\sqrt{2}$ is the excitation energy of \hat{H}_0.)

Proof. We again use a partition of unity and let $\tilde{f}_i = \tilde{f}_i(s)$, $(i = 1, 2)$ be smooth functions with $\tilde{f}_1^2 + \tilde{f}_2^2 = 1$, $\tilde{f}_2(s) = 0$ for $|s| \leq 1$, and $\tilde{f}_1(s) = 0$ for $|s| \geq 2$. Set $f_i(t) = \tilde{f}_i(t/R)$. Then

$$\hat{H}(\epsilon) = f_1\hat{H}(\epsilon)f_1 + f_2\hat{H}(\epsilon)f_2 + O(R^{-2}).$$

For large R, that error is $\leq \sqrt{2}/10$ and

$$\|[f_1, \partial_t^2]\hat{P}_0\|, \quad \|(1 - f_1)\hat{P}_0\|$$

have the same bound (for later use). The potential of $\hat{H}(\epsilon)$ in (15), denote it $V(\epsilon, t)$, satisfies

$$V(\epsilon, t) \geq \frac{t^2}{2(1 + t^2)^{\frac{1}{2}}} - \frac{1}{\sqrt{2}}$$

for $0 < \epsilon < 1$. This is $\geq \sqrt{2}$ for $t \in \text{supp } f_2$ if R is large enough. Hence, we obtain $f_2\hat{H}(\epsilon)f_2 \geq \sqrt{2}f_2^2$. Now, for fixed R,

$$f_1\hat{H}(\epsilon)f_1 = f_1\hat{H}_0f_1 + O(\epsilon),$$

13
and we take \(\epsilon \) small enough that \(|O(\epsilon)| \leq \sqrt{2}/10 \). We consider
\[
\hat{P}_0^+ f_1 \hat{H}_0 f_1 \hat{P}_0^+ = f_1 \hat{P}_0^+ \hat{H}_0 \hat{P}_0^+ f_1 + (\hat{P}_0^+ f_1 - f_1 \hat{P}_0^+) \hat{H}_0 f_1 \hat{P}_0^+ + f_1 \hat{P}_0^+ \hat{H}_0 (f_1 \hat{P}_0^+ - \hat{P}_0^+ f_1).
\]
(18)

Using \(\hat{H}_0 \hat{P}_0 = 0 \) we have
\[
\hat{H}_0 (f_1 \hat{P}_0^+ - \hat{P}_0^+ f_1) = \hat{H}_0 (\hat{P}_0 f_1 - f_1 \hat{P}_0) = (f_1 \hat{H}_0 - \hat{H}_0 f_1) \hat{P}_0 = [f_1, -\partial^2_{\varphi}] \hat{P}_0
\]
for the last term of (18), and similarly for the second. Together with the bound \(\hat{P}_0^+ \hat{H}_0 \hat{P}_0^+ \geq \sqrt{2} \hat{P}_0^+ \) we conclude
\[
\hat{P}_0^+ \hat{H}(\epsilon) \hat{P}_0^+ \geq \sqrt{2}(f_1 \hat{P}_0^+ f_1 + f_2^2) - \frac{\sqrt{2}}{10} (1 + 1 + 2).
\]

Multiplying again with \(\hat{P}_0^+ \) and using
\[
\hat{P}_0^+ f_1 \hat{P}_0^+ f_1 \hat{P}_0^+ = \hat{P}_0^+ f_1^2 \hat{P}_0^+ - \hat{P}_0^+ f_1 \hat{P}_0 f_1 \hat{P}_0^+, \quad \text{and} \quad -\hat{P}_0^+ f_1 \hat{P}_0 = \hat{P}_0^+ (1 - f_1) \hat{P}_0,
\]
we obtain
\[
\hat{P}_0^+ \hat{H}(\epsilon) \hat{P}_0^+ \geq \sqrt{2} \hat{P}_0^+ (f_1^2 + f_2^2) \hat{P}_0^+ - \frac{\sqrt{2}}{2} \hat{P}_0^+.
\]

\[\square \]

Proof of Proposition

We decompose
\[
\hat{H}(\epsilon) = \hat{P}_0 \hat{H}(\epsilon) \hat{P}_0 + \hat{P}_0^+ \hat{H}(\epsilon) \hat{P}_0^+ + \hat{P}_0^+ (\hat{H}(\epsilon) - \hat{H}_0) \hat{P}_0 + \hat{P}_0 (\hat{H}(\epsilon) - \hat{H}_0) \hat{P}_0^+,
\]

since \(\hat{P}_0^+ \hat{H}_0 \hat{P}_0 = 0 \). The first two terms are greater than \(-\frac{\sqrt{2}}{2} \hat{P}_0 + o(\epsilon) \) by (17), resp. \(\frac{\sqrt{2}}{2} \hat{P}_0^+ \) by Lemma 5. Expectations of the third one are bounded as
\[
|\langle \psi, \hat{P}_0^+ (\hat{H}(\epsilon) - \hat{H}_0) \hat{P}_0 \psi \rangle| \leq \| \hat{P}_0^+ \psi \| \| (\hat{H}(\epsilon) - \hat{H}_0) \hat{P}_0 \psi \| \leq c\| \hat{P}_0^+ \psi \| \| \hat{P}_0 \psi \| \\
\leq c\epsilon \left(\epsilon^{-\frac{1}{2}} \| \hat{P}_0^+ \psi \|^2 + \epsilon^\frac{1}{2} \| \hat{P}_0 \psi \|^2 \right),
\]
and so for the fourth one. Therefore,
\[
\hat{H}(\epsilon) \geq \left(-\frac{\epsilon}{4} + o(\epsilon) \right) \hat{P}_0 + \left(\frac{1}{\sqrt{2}} - c\epsilon^\frac{3}{2} \right) \hat{P}_0^+,
\]
where the second bracket is positive for \(\epsilon \) small enough. \[\square \]
5 CLR bound for operator-valued potentials

Given a separable Hilbert space \mathfrak{h}, we denote by $\mathcal{S}^p(\mathfrak{h})$ the set of compact symmetric operators A on \mathfrak{h} s.t. $\text{tr}_\mathfrak{h} |A|^p = \text{tr}_\mathfrak{h} (A^* A)^{p/2} < \infty$. The following theorem is given as Corollary 2.4 in [10] (see also [14]):

Theorem 5. Let \mathfrak{h} be some auxiliary Hilbert space and V a potential in $L^{d/2}(\mathbb{R}^d, S^{d/2}(\mathfrak{h}))$, $d \geq 3$. Then

$$N(-\Delta \otimes 1_\mathfrak{h} + V) \leq C_d \int_{\mathbb{R}^d} \text{tr}_\mathfrak{h} |V(x)|^\frac{d}{2} \, dx$$

for some positive constant C_d.

It is also noted in [10] that the operator $H_d := -\Delta \otimes 1_\mathfrak{h} + V$ is self-adjoint and semi-bounded from below on the corresponding Sobolev space $H_1(\mathbb{R}^d; \mathfrak{h})$, and that $\sigma_{\text{ess}}(H_d) \subseteq [0, \infty)$.

From the above theorem we can derive the following [15]:

Lemma 6. Assume \mathfrak{h} is an auxiliary Hilbert space and $V : [0, \infty) \to S^{\frac{d}{2}}(\mathfrak{h})$ a smooth operator-valued potential. Let $H_1 := -\partial^2 \otimes 1_\mathfrak{h} + V$ be self-adjoint and defined by Friedrichs extension on $C_0^\infty(\mathbb{R}^d; \mathfrak{h})$. Then

$$N(H_1) \leq 4\pi C_3 \int_0^\infty \text{tr}_\mathfrak{h} |V(x)| \frac{3}{2} x^2 \, dx.$$

Proof. Consider $N(H_1) = \sup_{W \in \mathcal{W}_1} \dim W$, where \mathcal{W}_1 denotes the set of linear subspaces $W \subseteq C_0^\infty(\mathbb{R}^d; \mathfrak{h}) \subseteq L^2(\mathbb{R}^d; \mathfrak{h})$ s.t. $\langle u, H_1 u \rangle < 0 \forall u \in W$. For $u \in W \in \mathcal{W}_1$ and $x \in \mathbb{R}^3$, $r := |x|$, we let $\psi(x) := \frac{1}{r} u(r)$. Then $\psi \in C_0^\infty(\mathbb{R}^3; \mathfrak{h})$ and

$$\langle \psi, H_3 \psi \rangle = \int_{\mathbb{R}^3} \langle \psi, (-\Delta_{\mathbb{R}^3} \otimes 1_\mathfrak{h} + V(|x|)) \psi \rangle_\mathfrak{h} \, dx$$

$$= |S^2| \int_0^\infty \left\langle \frac{1}{r} u(r), \left(-\frac{1}{r} \frac{\partial^2}{\partial r^2} r \otimes 1_\mathfrak{h} + V(r) \right) \frac{1}{r} u(r) \right\rangle_\mathfrak{h} \, r^2 \, dr$$

$$= 4\pi \int_0^\infty \langle u(r), \left(-\partial^2_r \otimes 1_\mathfrak{h} + V(r) \right) u(r) \rangle_\mathfrak{h} \, dr$$

$$= 4\pi \langle u, H_1 u \rangle < 0.$$

Hence, $\psi \in W' \in \mathcal{W}_3$ for some W', where \mathcal{W}_3 denotes the corresponding set of linear subspaces $W' \subseteq C_0^\infty(\mathbb{R}^3; \mathfrak{h}) \subseteq L^2(\mathbb{R}^3; \mathfrak{h})$ s.t. $\langle \psi, H_3 \psi \rangle < 0 \forall \psi \in W'$. Also, if u_1, u_2 in $W \in \mathcal{W}_1$ are orthogonal, then so are the associated ψ_1, ψ_2.
in $W' \in \mathcal{W}_3$, so that to each $W \in \mathcal{W}_1$ there corresponds a $W' \in \mathcal{W}_3$ with
$\dim W' \geq \dim W$. Hence,

$$N(H_1) = \sup_{W \in \mathcal{W}_1} \dim W \leq \sup_{W' \in \mathcal{W}_3} \dim W' = N(H_3)$$

$$\leq C_3 \int_{\mathbb{R}^3} \text{tr}_x |V(x) - \frac{3}{2} x^2| dx = 4\pi C_3 \int_0^\infty \text{tr}_r |V(r) - \frac{3}{2} r^2| r^2 dr,$$

by Theorem 5.

Lemma 7. With κ and V as above, let $H_2 := (-\partial_x^2 - \frac{1}{4x^2}) \otimes 1_x + V$ be self-adjoint and defined by Friedrichs extension on $C_0^\infty((1, \infty); \kappa)$. Then

$$N(H_2) \leq 4\pi C_3 \int_1^\infty \text{tr}_x |V(x) - \frac{3}{2} x^2| dx.$$

Proof. We have for $u \in C_0^\infty((1, \infty); \kappa)$ that

$$\langle u, H_2 u \rangle = \int_1^\infty \left(\|u'(x)\|_\kappa^2 - \frac{1}{4x^2}\|u(x)\|_\kappa^2 + \langle u(x), V(x)u(x) \rangle_\kappa \right) dx.$$

Note that

$$\| (\partial_x - \frac{1}{2x}) u(x) \|_\kappa^2 = \|u'(x)\|_\kappa^2 - \frac{1}{2x} (\langle u'(x), u(x) \rangle_\kappa + \langle u(x), u'(x) \rangle_\kappa) + \frac{1}{4x^2}\|u(x)\|_\kappa^2,$$

so that after integrating by parts,

$$\langle u, H_2 u \rangle = \int_1^\infty \left(\| (\partial_x - \frac{1}{2x}) u(x) \|_\kappa^2 + \langle u(x), V(x)u(x) \rangle_\kappa \right) dx.$$

We can write $u(x) = x^{1/2} v(x)$, with $v \in C_0^\infty((1, \infty); \kappa)$, implying

$$\langle u, H_2 u \rangle = \int_1^\infty \left(\|x^{1/2} v'(x)\|_\kappa^2 + \langle v(x), xV(x)v(x) \rangle_\kappa \right) dx.$$

Put $t := \ln x$ and $w(t) := v(e^t)$. Then $w \in C_0^\infty((0, \infty); \kappa)$ and

$$\langle u, H_2 u \rangle = \int_0^\infty \left(\|w'(t)\|_\kappa^2 + \langle w(t), e^{2t}V(e^t)w(t) \rangle_\kappa \right) dt = \int_0^\infty \langle w(t), (-\partial_t^2 \otimes 1_x + e^{2t}V(e^t)) w(t) \rangle_\kappa dt.$$
We also note that there is a 1-to-1 correspondence between linearly independent sets of such \(u \in C_0^\infty((1, \infty); \hat{h}) \) and \(w \in C_0^\infty((0, \infty); \hat{h}) \). Applying Lemma [8] with the potential \(W(x) = e^{2x}V(e^x) \) we find

\[
N(H_2) = N \left(-\partial_x^2 \otimes 1 + e^{2x}V(e^x) \right)
\leq 4\pi C_3 \int_0^\infty \text{tr}\left| (e^{2x}V(e^x))_+ \right|^\frac{3}{2} x^2 \, dx
= 4\pi C_3 \int_1^\infty \text{tr}\left| V(s)_- \right|^\frac{3}{2} s^2 (\ln s)^2 \, ds,
\]

where we substituted \(s := e^x \).

Acknowledgements

I would like to express my sincere thanks to Oleg Safronov for initiating this approach and pointing out the CLR bound of Lemma [7]. I would also like to thank Gian Michele Graf (in particular in connection with Propositions [2] and [3]), Jens Hoppe, and Ari Laptev for useful discussions and valuable suggestions, as well as Giovanni Felder and ETH Zürich for hospitality. This work was supported by the Swedish Research Council and the European Science Foundation activity MISGAM.

References

[1] J. Hoppe, *Two Problems in Quantum Mechanics*, Master of Science Thesis, MIT, 1980.

[2] B. Simon, *Some Quantum Mechanical Operators with Discrete Spectrum but Classically Continuous Spectrum*, Ann. Phys. 146 (1983), 209-220.

[3] B. Simon, *Nonclassical Eigenvalue Asymptotics*, J. Func. Anal. 53 (1983), 84-98.

[4] B. de Wit, W. Lüscher, H. Nicolai, *The supermembrane is unstable*, Nucl. Phys. B320 (1989) 135-159.

[5] A. Koubek, *Das Potential \(x^2y^2 \) und seine supersymmetrische Erweiterung*, Diplomarbeit, Graz, Univ., 1990.

[6] D. Hasler, *Ground state properties of supersymmetric matrix models*, Ph.D. Thesis, ETH Zürich, 2002.
[7] G. M. Graf, D. Hasler, J. Hoppe, *No Zero Energy States for the Supersymmetric x^2y^2 Potential*, Lett. Math. Phys. 60 (2002) 191-196, [arXiv:math-ph/0109032](https://arxiv.org/abs/math-ph/0109032).

[8] P. Korcyl, *Classical trajectories and quantum supersymmetry*, Phys. Rev. D 74 (2006) 115012, [arXiv:hep-th/0610105](https://arxiv.org/abs/hep-th/0610105).

[9] D. Lundholm, *On the Geometry of Supersymmetric Quantum Mechanical Systems*, J. Math. Phys. 49, 062101 (2008), [arXiv:0710.2881](https://arxiv.org/abs/0710.2881).

[10] D. Hundertmark, *On the number of bound states for Schrödinger operators with operator-valued potentials*, Ark. Mat. 40 (2002) 73-87.

[11] Y. V. Egorov, V. A. Kondratiev, *On spectral theory of elliptic operators*, Operator Theory: Advances and Applications, 89, Birkhäuser Verlag, Basel, 1996.

[12] Y. V. Egorov, V. A. Kondrat'ev, *Estimates of the negative spectrum of an elliptic operator*, Spectral theory of operators (Novgorod, 1989), 111-140, Am. Math. Soc. Transl. Ser. 2, 150, Am. Math. Soc., Providence, RI, 1992.

[13] G. M. Graf, personal communication, March, 2009.

[14] R. L. Frank, E. Lieb, R. Seiringer, *Number of Bound States of Schrödinger Operators with Matrix-Valued Potentials*, Lett. Math. Phys. 82 (2007) 107-116.

[15] O. Safronov, personal communication, November, 2008.