Time-dependent three-dimensional Oldroyd-B nanofluid flow due to bidirectional movement of surface with zero mass flux

Manzoor Ahmad1, Sabir Ali Shehzad2, Asif Iqbal1 and Muhammad Taj1

Abstract
Unsteady three-dimensional flow of an incompressible Oldroyd-B nanomaterial is reported in this article. The origin of flow is time-dependent surface spreading in lateral directions transversely taking nanoparticles with zero mass flux. The formulated partial differential system is reframed by similarity variables into ordinary differential system. The obtained system is solved by the process of homotopy analysis for dimensional temperature and concentration of nanoparticles. Physical parameter behavior on temperature and concentrations of nanoparticles is examined using graph and tabular data. The surface temperature is also measured and evaluated, and it is found that the temperature is reduced for greater unsteadiness parameter values. We found that the higher β_1 enhances the curves of nanoparticle concentration and temperature while these curves retard for the incrementing values of β_2. The increasing nature of Brownian movement N_b and Lewis number Le corresponds to lower profiles of nanoparticles concentration.

Keywords
Unsteady flow, Oldroyd-B fluid, nanoparticles, heat transfer, series solutions

Date received: 30 November 2019; accepted: 26 February 2020

Handling Editor: James Baldwin

Introduction
Because of many uses in the fields of engineering, manufacturing, and biology, the study of non-Newtonian fluids has become significant in recent years. Such applications include industries such as meat, product processing, and cosmetics1. The equations governing non-Newtonian fluids are very nonlinear because of the complex geometry. The empirical equations that determine the non-Newtonian fluid’s mathematical description give the fluid’s rheology. Due to their nature, the non-Newtonian materials are usually categorized into three forms, that is, the type of rate, the type of differential form, and the type of the integral form. The Maxwell fluid is the simplest non-Newtonian rate type material which describes the nature of relaxation time phenomenon. But it cannot predict the time effects of retardation. The Oldroyd-B liquid is a sub-category of rate type materials that defines both the retardation and relaxation stress features. For two-dimensional flows configuration under distinct non-Newtonian fluid models, studies2–7 are reported and many therein. However, sometimes the flow is three-dimensional in practical applications. The three-dimensional flow was

1Department of Mathematics, University of Azad Jammu & Kashmir, Muzaffarabad, Pakistan
2Mathematics Department, COMSATS University Islamabad, Sahiwal, Pakistan

Corresponding author:
Manzoor Ahmad, Department of Mathematics, University of Azad Jammu & Kashmir, Muzaffarabad 13100, Pakistan.
Email: manzoorajku@gmail.com

Creative Commons CC BY: This article is distributed under the terms of the Creative Commons Attribution 4.0 License (https://creativecommons.org/licenses/by/4.0/) which permits any use, reproduction and distribution of the work without further permission provided the original work is attributed as specified on the SAGE and Open Access pages (https://us.sagepub.com/en-us/nam/open-access-at-sage).
studied by scientists of various flow geometries in view of this inspiration.7–10

For better cooling efficiency, an advanced category nanotechnology has been proposed as fluid cooling is the main issue in automated processes. Because of its huge implications in industrial, chemical, and technological processes, nanotechnology is an exciting field of research. The growth of processes for heat transfer is the primary focus of researchers working in this direction. Choi and Eastman11 and Buongiorno12 suggested the nanofluid concept for improving thermal performance by moving nanoparticles in the base fluid. Thermophoresis, nanoparticles length, volume fraction, and Brownian movement factors are the major factors for enhancing thermal conductivity. With Buongiorno’s12 introduction of a credible nanofluid model, nanofluids have become a highly interesting subject to investigators in recent years.13–18 Soret effect on mixed convection nanofluid flow with convective boundary conditions was explored by RamReddy et al.19 Rashad et al.20 considered mixed convection of non-Newtonian nanofluid flow in vertical porous surface. The non-similar solution of mixed convection along a wedge of a non-Newtonian nanofluid flow in a porous medium was studied by Chamkha et al.21 Ghalambaz et al.22 executed the analysis of nanofluid flow under different impacts of nanoparticles shapes and sizes. Some recent studies can be found in the literature.23–28

Multiple efforts have been presented and demonstrated to identify the behaviors of distinct Newtonian and non-Newtonian materials under various assumptions and geometries. For example, Wang29 first considered the three-dimensional flow due to stretching sheet. Heat transfer analysis due to bidirectional stretching sheet with variable thermal conditions was carried out by Liu and Andersson.30 Xu et al.31 performed the first analysis of time-dependent three-dimensional flows due to movement of surface. Hayat et al.32 reported the time-dependent nature of viscoelastic material flow induced by the movement of sheet. Awais et al.33 addressed the steady-state three-dimensional Maxwell fluid flow behavior. Magnetized time-dependent viscous fluid flow through porosity medium is executed by Ahmad et al.34 Ahmad et al.35,36 used the same principle to describe the nature of Maxwell and Oldroyd-B non-Newtonian fluids model. Due to bidirectional moving boundaries, there are limited works reported for nanofluid in literature. The effects of different thermal conditions on bidirectional stretching boundaries to analyze heat transport with nanoparticles are studied by Ahmad et al.37 for both Newtonian and non-Newtonian fluid steady and unstable boundary layer flows.

Such structure for time-dependent Oldroyd-B nanofluid’s flow has not been previously been published to our knowledge in the literature. Although some studies are available in the literature dealing with the flow of different fluids over a stretching surface, the Oldroyd-B fluid’s unsteady three-dimensional flow phenomenon and other interesting features are not yet published. Therefore, present scientific calculations are conducted to fill this gap, and the reported results may be useful in improving thermal extrusion processes, solar energy system, and biofuels. We preferred to use the boundary conditions of nanoparticles with no mass flux to model the equations. The homotopy analysis method (HAM)38–42 is used to achieve nonlinear differential governance solutions. Convergence analysis has been performed through graphs and tabular data for developed series solutions. The impact of physical parameters appears numerically and graphically in the governing equations.

Modeling

Because of the unsteady lateral stretch of the surface where \(y\) and \(x\) axes are taken along surface and \(z\)–axis is adopted along vertical to the surface of incompressible Oldroyd-B nanofluid along thermophoresis and Brownian effects, the problem is based on a three-dimensional approach. The material velocities are \(V_w\) and \(U_w\) in the \(y\) and \(x\) directions, respectively, and \(z = 0\). Geometric description of the problem is shown in Figure 1. The equations developed for this case are using the boundary layer approach. Schlichting43

\[
\frac{\partial u_1}{\partial x} + \frac{\partial u_2}{\partial y} + \frac{\partial u_3}{\partial z} = 0
\]

\text{Figure 1. Physical adjustment of the problem.}
\[\frac{\partial u_1}{\partial t} + u_1 \frac{\partial u_1}{\partial x} + u_2 \frac{\partial u_1}{\partial y} + u_3 \frac{\partial u_1}{\partial z} + \lambda_1 \left(\frac{\partial^2 u_1}{\partial t^2} + \frac{\partial u_1}{\partial x} + \frac{\partial u_1}{\partial y} \right) = \nu \frac{\partial^2 u_1}{\partial z^2} + \lambda_2 \left(\frac{\partial^2 u_1}{\partial x^2} + \frac{\partial u_1}{\partial x} + \frac{\partial u_1}{\partial y} \right) \]

\[U_w = \frac{ax}{1 - ct}, \quad V_w = \frac{by}{1 - ct}, \quad T_w = T_\infty + \frac{T_0x}{1 - ct} \]

where \(a, b, x, C_0, \) and \(T_0 \) represent the constants. Introducing the dimensionless quantities as

\[\zeta = \frac{a}{\nu(1 - ct)} \zeta, \quad u_1 = \frac{ax}{1 - ct} f'(\zeta), \]

\[u_2 = \frac{ay}{1 - ct} g'(\zeta), u_3 = -\frac{a\nu}{1 - ct} (g(\zeta) + f(\zeta)) \]

\[\theta(\zeta) = \frac{T - T_\infty}{T_w - T_\infty}, f(\zeta) = \frac{C - C_\infty}{C_w - C_\infty} \]

Equation (1) is similarly satisfied, and after dimensional analysis, equations (2)-(7) take the form

\[f''' - f'' + A \left(\frac{\xi}{2} f'' + f' \right) + (f + g) f'' \]

\[- \beta_1 \left(\frac{\xi}{2} f'' + \frac{\xi}{2} g''' - 2(f + g) f'' + \frac{g'}{\xi} f''' \right) = 0 \]

\[+ \beta_2 \left(\frac{\xi}{2} f'' + \frac{\xi}{2} g''' - (f + g) f'' + (f'' + g') f'' \right) \]

\[g''' - g'' - A \left(\frac{\xi}{2} g'' + g' \right) + (f + g) g'' \]

\[- \beta_1 \left(\frac{\xi}{2} g'' + \frac{\xi}{2} g''' - 2(f + g) g'' + \frac{g'}{\xi} g''' \right) = 0 \]

\[+ \beta_2 \left(\frac{\xi}{2} f'' + \frac{\xi}{2} g''' - (f + g) g'' + A \left(\frac{\xi g'}{2} + \frac{g''}{2} \right) \right) \]

\[\theta'' + Pr \left(\frac{N_r}{N_b} \theta'' \right) + (f + g) \theta'' + N_r \phi'' - f' \theta + N_b \phi'' \]

The non-dimensionalized boundary conditions have the form
Here, $A, \beta_1, \beta_2, N_h, Pr, N_i, Le$, and λ are the unsteadiness parameter, relaxation parameter, retardation parameter, Brownian coefficient, Prandtl number, thermophoresis coefficient, Lewis number, and stretching variable, respectively. The prime symbolization indicated the derivative w.r.t. ξ and the above parameters are defined in dimensionless form as

$$A = \frac{c}{a}, \beta_1 = \frac{\lambda_1 a}{1 - ct}, \beta_2 = \frac{\lambda_2 a}{(1 - ct)},$$

$$\lambda = \frac{b}{a}, Pr = \frac{\nu}{\alpha}, N_h = \frac{(p_C)_1 D_0 (C_w - C_v)}{(p_C)_1 \nu},$$

$$N_i = \frac{(p_C)_1 D_T (T_v - T_\infty)}{(p_C)_1 T_v \nu}, Le = \frac{\alpha}{D_B} \tag{14}$$

The heat transport rate Nu_t at the wall is the physical quantity and can be described as

$$Nu_t = -\frac{x}{(T - T_\infty)} \left(\frac{\partial T}{\partial z} \right) \bigg|_{z=0} \tag{15}$$

The dimensionless pattern off the above relationship is

$$Re^{1/2} Nu_t = -\theta'(0) \tag{16}$$

where $Re = ux/\nu$ is the Reynolds number.

Homotopy analysis approach

The HAM $^{38-42}$ is used to solve the differential nonlinear equations (9)–(12) based on the limits (13). Using the HAM method, we select the initial assumptions $f_0(\xi), g_0(\xi), \theta_0(\xi)$, and $\phi_0(\xi)$ for the functions $f(\xi), g(\xi), \theta(\xi)$ and $\phi(\xi)$ meeting the limiting conditions (13)

$$f_0(\xi) = 1 - e^\xi, g_0(\xi) = \alpha (1 - e^{-\xi}),$$

$$\theta_0(\xi) = e^{-\xi}, \phi_0(\xi) = -\left(\frac{N_h}{N_i} \right) e^{-\xi} \tag{17}$$

and the auxiliary linear operator are

$$L_1 = f''' - f', \quad L_2 = \theta'' - \theta \tag{18}$$

Satisfying

$$L_1 (C_1 + C_2 e^\xi + C_3 e^{-\xi}) = 0, \quad L_2 (C_4 e^\xi + C_5 e^{-\xi}) = 0 \tag{19}$$

where C_i are arbitrary constants. From equations (9)–(12), the expressions for nonlinear operatives N_f, N_g, N_θ, and N_ϕ are

$$f'''(\xi, \kappa) - \left(\frac{f'}{(\xi, \kappa)} \right)^2 + \left(f(\xi, \kappa) + g(\xi, \kappa) \right) f''(\xi, \kappa)$$

$$\beta_1 \left(f(\xi, \kappa) + g(\xi, \kappa) \right)^2 f'''(\xi, \kappa)$$

$$\beta_2 \left(f(\xi, \kappa) + g(\xi, \kappa) \right)^2 g'''(\xi, \kappa)$$
The auxiliary parameters \(h_f, h_g, h_\theta, \) and \(h_{\phi} \) from equations (33)-(36) give the information of convergence of series solutions. Assuming that \(h_f, h_g, h_\theta, \) and \(h_{\phi} \) are selected such that the series in equations (33)-(36) is convergent at \(\kappa = 1 \). Thus

\[
\begin{align*}
\hat{f}(\xi, \kappa) &= f_0(\xi) + \sum_{m=1}^{\infty} f_m(\xi) \kappa^m, \quad f_m(\xi) = \frac{1}{m!} \partial^m \hat{g}(\xi, \kappa) \bigg|_{\kappa=0} \\
\hat{g}(\xi, \kappa) &= g_0(\xi) + \sum_{m=1}^{\infty} g_m(\xi) \kappa^m, \quad g_m(\xi) = \frac{1}{m!} \partial^m \hat{g}(\xi, \kappa) \bigg|_{\kappa=0} \\
\hat{\theta}(\xi, \kappa) &= \theta_0(\xi) + \sum_{m=1}^{\infty} \theta_m(\xi) \kappa^m, \quad \theta_m(\xi) = \frac{1}{m!} \partial^m \hat{\theta}(\xi, \kappa) \bigg|_{\kappa=0} \\
\hat{\phi}(\xi, \kappa) &= \phi_0(\xi) + \sum_{m=1}^{\infty} \phi_m(\xi) \kappa^m, \quad \phi_m(\xi) = \frac{1}{m!} \partial^m \hat{\phi}(\xi, \kappa) \bigg|_{\kappa=0}
\end{align*}
\]

Equations (37)-(40) have the overall solutions in the forms

\[
\begin{align*}
f_m(\xi) &= f_m^{*}(\xi) + C_1 + C_2 e^{\xi} + C_3 e^{-\xi} \\
g_m(\xi) &= g_m^{*}(\xi) + C_4 + C_5 e^{\xi} + C_6 e^{-\xi} \\
\theta_m(\xi) &= \theta_m^{*}(\xi) + C_7 e^{\xi} + C_8 e^{-\xi} \\
\phi_m(\xi) &= \phi_m^{*}(\xi) + C_9 e^{\xi} + C_{10} e^{-\xi}
\end{align*}
\]

where \(f_m^{*}(\xi), g_m^{*}(\xi), \theta_m^{*}(\xi), \) and \(\phi_m^{*}(\xi) \) signify the special solutions.

Convergence

HAM’s developed equations (solutions) include auxiliary parameters such as \(h_f, h_g, h_\theta, \) and \(h_{\phi} \). Such parameters play a significant role in convergence and approximation rate. The right values for convergent solutions are the \(h \)-curves performed at
The convergence approximation order, and it can be noted that can see in Figure 2. Table 1 shows the solution convergence order, and it can be noted that the approach is compatible at approximations of the 25th order. The acceptable values ranges are \(-1.20 \leq h_f \leq -0.1\), \(-1.22 \leq h_g \leq 0\), \(-1.22 \leq h_0 \leq -0.5\), and \(-1.25 \leq h_R \leq h_R - 0.5\) as you can see in Figure 2. Table 1 shows the solution convergence approximation order, and it can be noted that the approach is compatible at approximations of the 25th order for the distributions of concentration and temperature while it converges at the 17th order for the flow analysis.

Discussion

The consequences of parameters arising such as unsteady parameter \(A\), ratio parameter \(\alpha\), Deborah numbers \(\beta_1\) and \(\beta_2\), thermophoresis \(N_t\), Brownian motion \(N_b\), and Prandtl number \(Pr\) on nanoparticle concentration \(\phi(\zeta)\) and temperature \(\theta(\zeta)\) fields are elaborated in this part. The nature of these constraints on the temperature \(\theta(\zeta)\) profile is sketched in Figures 3–9. The impact of unsteadiness constraint \(A\) is executed in Figure 3. This figure portrays a decrease in the temperature \(\theta(\zeta)\) and thermal layer of thickness by the improvement in the unsteadiness constraint. It relies on the thermal diffusivity due to the unsteady parameter. As we raise the unsteady parameter, the thermal diffusivity decreases and therefore temperature decreases. The influence of the stretching parameter \(\alpha\) on the temperature profile is examined via Figure 4. Here, temperature \(\theta(\zeta)\) decay and thickness of thermal layer are considered for larger stretching parameter values. Clearly, the layer thickness reduces due to the cooler-to-ambient liquid for greater values of stretching parameter. Figure 5 demonstrates the Deborah number \(\beta_1\) impacts on the temperature \(\theta(\zeta)\) distribution. This figure elucidates that the larger Deborah number values correspond to temperature rises. The higher relaxation time factor is responsible for augmentation in temperature \(\theta(\zeta)\). The nature of Deborah number \(\beta_2\) on temperature \(\theta(\zeta)\) is reported in Figure 6. Temperature \(\theta(\zeta)\) is a decreasing function of higher Deborah number values. This is because if we augment the Deborah number \(\beta_2\) values, the factor of retardation time is larger, which

Approximate order	\(-f''(0)\)	\(-g''(0)\)	\(-\theta''(0)\)	\(-\phi''(0)\)
1	-0.8248028	-0.361215	-1.189583	1.18958
5	-0.8443760	-0.360637	-1.314035	1.31404
10	-0.8443823	-0.360497	-1.312236	1.31224
15	-0.8443835	-0.360493	-1.312291	1.31229
17	-0.8443836	-0.360491	-1.312292	1.31229
20	-0.8443836	-0.360491	-1.312294	1.31229
25	-0.8443836	-0.360491	-1.312273	1.31227
30	-0.8443836	-0.360491	-1.312273	1.31227
35	-0.8443836	-0.360491	-1.312273	1.31227
40	-0.8443836	-0.360491	-1.312273	1.31227

![Figure 2](image2.png) **Figure 2.** The \(h\)-curve for \(f(\zeta)\), \(g(\zeta)\), \(\theta(\zeta)\), and \(\phi(\zeta)\).

![Figure 3](image3.png) **Figure 3.** Variations of \(A\) on \(\theta(\zeta)\).
produces a decrease in the temperature $\theta(\zeta)$. It is important to illustrate here that $\beta_1 = 0 = \beta_2$ corresponds to the case of viscous fluid and $\beta_2 = 0$ represents the state of Maxwell fluid flow.

The behavior of temperature $\theta(\zeta)$ for distinct Brownian movement N_b and thermophoresis N_t values is designated in Figures 7 and 8. For greater Brownian movement constraint values, an augmentation is reported in the temperature $\theta(\zeta)$. The viscous forces decrease for higher values of Brownian movement and the Brownian diffusion factor improves due to which the boundary layer thickness and temperature $\theta(\zeta)$ increase. Figure 8 discloses that the temperature $\theta(\zeta)$ profile and thickness layer increase for higher thermophoresis values. Thermophoresis factor plays an important role in the temperature distribution. When we augment the thermophoresis, the thermophoretic forces enhance and the nanoparticles move from warm areas to cold areas because of these forces. The temperature and thickness of thermal layer decay due to enhancing values of Prandtl number Pr (see Figure 9). In addition, the Prandtl number increases or decreases as a result of increase or decrease in the fluid’s thermal diffusivity. For greater values of Prandtl number, the thermal diffusivity of the fluid increases, and it leads to decrease in the temperature $\theta(\zeta)$.

To observe the parametric behavior of unsteady constraint A, ratio parameter a, Deborah numbers β_1 and β_2, Brownian movement N_b, thermophoresis N_t, Prandtl number Pr, and Lewis number Le on nanoparticle concentration $\phi(\zeta)$ fields, we present Figures 10–17. The role of unsteady constraint A is seen in Figure 10. As a consequence of higher values of unsteady constraint, the profile of concentration $\phi(\zeta)$ and thickness of concentration layer are decreased. Figure 11 shows the nature of stretching constraint α on $\phi(\zeta)$. The nanoparticles concentration $\phi(\zeta)$ decreases due to improved stretching constraint. The activity of Deborah number β_1 is addressed in Figure 12. Improvement in the concentration profile and boundary thickness is observed...
for higher Deborah number β_1 values. Figure 13 shows the effect of Deborah number β_2 on the concentration profile. With higher values of β_2, the concentration of nanoparticles $\phi(\xi)$ retards. Figure 14 elucidates that the higher factor of Brownian movement leads to decaying trend of concentration profile $\phi(\xi)$. In the case of the thermophoresis constraint N_t, the reverse behavior of $\phi(\xi)$ is noted (see Figure 15). It is investigated that the parameter of thermophoresis influences the nanomaterial more compared to the parameter of Brownian motion. The influence of Prandtl number on the nanoparticles concentration $\phi(\xi)$ is sketched in Figure 16. It is worth mentioning that the concentration profile of nanoparticles is decreasing due to the higher Prandtl number values. It is due to the increased concentration of nanoparticles $\phi(\xi)$ near the surface for higher values of Prandtl number decreases the adjunct thickness of the boundary layer. Lewis number Le impact on $\phi(\xi)$ is displayed in Figure 17. A decrease in $\phi(\xi)$ is achieved for higher Lewis values. This happens because the diffusion factor is inversely related to Lewis number. Hence, weaker diffusion factor is occurred due to Larger Lewis number due to which nanoparticles concentration $\phi(\xi)$ profile is decreased.
Table 2 shows that the heat transport rate \(-\theta'(0)\) (Nusselt number) for distinct \(A, \alpha, \beta_1, \beta_2, Le, Nb, Nt,\) and \(Pr\). From tabular data, it can be seen that

\(-\theta'(0)\) increases for greater values of \(A, \alpha, \beta_2\) and decreases for the enlargement of the values of \(\beta_1, Le, Nt\). Table 2 clearly shows that the values of \(-\theta'(0)\) in case of Oldroyd-B fluid are higher as compared to Maxwell fluid. In order to check the accuracy of our method, the values of \(-f''(0), g''(0), f(\infty), g(\infty)\) for different values of stretching parameter are compared with Wang29 and Liu and Andersson30 for Newtonian fluids (Table 3). We observed that the solutions have excellent agreement with the previously published data in a limiting approach.

Conclusion

This work introduces the time-dependent phenomenon in three-dimensional Oldroyd-B nanomaterial flow generated by the unsteady bilateral moving sheet. Series solutions are obtained for the developed transformed differential expressions. The important points of this investigation are summarized as follows:
The decay in temperature \(u(z) \) and concentration \(f(z) \) distributions is significant for improving values of time-dependent constraint \(A \).

The larger Deborah number \(\beta_1 \) values strengthened the profiles of nanoparticle concentration \(f(z) \) and temperature \(u(z) \), while these curves are reducing for improving Deborah number \(\beta_2 \).

Table 2. Heat transport rate \(-\theta'(0) \) (Nusselt number) for multiple values \(A, \alpha, \beta_1, \beta_2, Le, N_t, N_b, \) and \(Pr \).

\(A \)	\(\alpha \)	\(\beta_1 \)	\(\beta_2 \)	\(Le \)	\(N_t \)	\(N_b \)	\(Pr \)	\(-\theta'(0) \)
0.0	0.5	0.2	0.3	1.0	0.1	0.1	1.0	0.825084
0.5	0.5	0.5	1.0	1.5	1.232875			
1.0	0.0	0.5	1.0	1.5	1.21124			
1.5	0.0	0.0	1.0	1.5	1.29571			
0.5	0.5	0.0	1.0	1.5	1.69026			
0.5	0.5	0.0	1.0	1.5	1.79571			
0.5	0.5	0.0	1.0	1.5	1.36879			
0.5	0.5	0.0	1.0	1.5	1.26071			
0.5	0.5	0.0	1.0	1.5	1.17786			
0.5	0.5	0.0	1.0	1.5	1.11739			
0.5	0.5	0.0	1.0	1.5	1.26071			
0.5	0.5	0.0	1.0	1.5	1.37215			
0.5	0.5	0.0	1.0	1.5	1.49512			
0.5	0.5	0.0	1.0	1.5	1.57675			
0.5	0.5	0.0	1.0	1.5	1.38586			
0.5	0.5	0.0	1.0	1.5	0.938207			
0.5	0.5	0.0	1.0	1.5	0.87859			
0.5	0.5	0.0	1.0	1.5	0.77637			
0.5	0.5	0.0	1.0	1.5	1.47228			
0.5	0.5	0.0	1.0	1.5	1.44559			
0.5	0.5	0.0	1.0	1.5	1.38295			
0.5	0.5	0.0	1.0	1.5	1.28195			
0.5	0.5	0.0	1.0	1.5	1.28193			
0.5	0.5	0.0	1.0	1.5	1.28184			
0.5	0.5	0.0	1.0	1.5	1.28176			
0.5	0.5	0.0	1.0	1.5	1.28171			
0.5	0.5	0.0	1.0	1.5	1.28171			
0.5	0.5	0.0	1.0	1.5	0.99462			
0.5	0.5	0.0	1.0	1.5	0.92444			
0.5	0.5	0.0	1.0	1.5	0.87295			
0.5	0.5	0.0	1.0	1.5	1.86627			

Table 3. Tabular data for the comparison of \(-f''(0), g''(0), f(\infty), \) and \(g(\infty) \) with Wang29 and Liu and Andersson30 for different values of stretching parameter \(\alpha \) in a limiting case when \(A = 0, \beta_1 = 0, \) and \(\beta_2 = 0 \).

\(\alpha \)	\(f''(0) \)	\(g''(0) \)	\(f(\infty) \)	\(g(\infty) \)	
Wang29	0	-1	0	1	
Liu and Andersson30	-1	0	1	0	
Present	-1	0	1	0	
Wang29	0.25	-1.048811	-0.194564	0.907075	
Liu and Andersson30	-1.048811	-0.194564	0.907046	0.257993	
Present	-1.048811	-0.194564	0.907069	0.257989	
Wang29	0.50	1.093097	-0.465205	0.842360	0.451663
Liu and Andersson30	1.093097	-0.465205	0.842361	0.451669	
Present	1.093097	-0.465205	0.842363	0.451669	
Wang29	1.0	-1.173270	-0.194564	0.907075	
Liu and Andersson30	-1.173270	-0.194564	0.907046	0.257993	
Present	-1.173270	-0.194564	0.907069	0.257989	
• An enhancement in Brownian movement N_b and thermophoresis N_t boost up the temperature $\theta(\xi)$ and its thermal thickness layer.
• Higher Brownian movement N_b and Lewis number Le correspond to weaker nanoparticle concentration profile.
• The situation of steady flow is retrieved for $A = 0$.
• Rate of heat transportation at the wall is increased for greater values of N_t, but remain constant for N_b.

Declaration of conflicting interests
The author(s) declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.

Funding
The author(s) received no financial support for the research, authorship, and/or publication of this article.

ORCID iDs
Manzoor Ahmad (9) https://orcid.org/0000-0003-3767-8731
Sabir Ali Shehzad (8) https://orcid.org/0000-0001-8359-9706

References
1. Larson RG. *The structure and rheology of complex fluids*. New York: Oxford University Press, 1999.
2. Bhatnagar RK, Gupta G and Rajagopal KR. Flow of an Oldroyd-B fluid due to a stretching sheet in the presence of a free stream velocity. *Int J Nonlin Mech* 1995; 30: 391–405.
3. Hayat T, Imtiaz M and Alsaedi A. Boundary layer flow of Oldroyd-B fluid by exponentially stretching sheet. *Appl Math Mech* 2016; 37: 573–582.
4. Niu J, Shi Z-H and Tan W-C. The viscoelastic effects on thermal convection of an Oldroyd-B fluid in open-top porous media. *J Hydrodyn* 2013; 25: 639–642.
5. Hayat T, Hussain T, Shehzad SA, et al. Flow of Oldroyd-B fluid with nanoparticles and thermal radiation. *Appl Math Mech* 2015; 36: 69–80.
6. Khan SU and Ali N. Unsteady hydromagnetic flow of Oldroyd-B fluid over an oscillatory stretching surface: a mathematical model. *Tech Sci* 2017; 20: 87–100.
7. Mustafa M, Hayat T and Alsaedi A. Rotating flow of Oldroyd-B fluid over stretchable surface with Cattaneo–Christov heat flux: analytic solutions. *Int J Numer Method H* 2017; 27: 2207–2222.
8. Gupta S and Gupta S. MHD three dimensional flow of Oldroyd-B nanofluid over a bidirectional stretching sheet: DTM-Pade Solution. *Nonlinear Eng* 2019; 8: 744–754.
9. Shehzad SA, Alsaedi A, Hayat T, et al. Three-dimensional flow of an Oldroyd-B fluid with variable thermal conductivity and heat generation/absorption. *PLoS ONE* 2013; 8: e78240.
10. Sulaiman M, Ali A and Islam S. Heat and mass transfer in three-dimensional flow of an Oldroyd-B nanofluid with gyrotactic micro-organisms. *Math Probl Eng* 2018; 2018: 6790420.
11. Choi SUS and Eastman JA. Enhancing thermal conductivity of fluids with nanoparticles. In: *Proceedings of the 1995 ASME international mechanical engineering congress and exposition*, San Francisco, CA, 12–17 November 1995, paper no. FED 231/MD, vol. 66, pp.99–105. New York: ASME.
12. Buongiorno J. Convective transport in nanofluid. *J Heat Trans: T ASME* 2006; 128: 240–250.
13. Turkyilmazoglu M. Mixed convection flow of magnetohydrodynamic micropolar fluid due to a porous heated/ cooled deformable plate: exact solutions. *Int J Heat Mass Tran* 2017; 106: 127–134.
14. Turkyilmazoglu M. Buongiorno model in a nanofluid filled asymmetric channel fulfilling zero net particle flux at the walls. *Int J Heat Mass Tran* 2018; 126: 974–979.
15. Abbasi FM, Gul M and Shehzad SA. Hall effects on peristalsis of boron nitride-ethylene glycol nanofluid with temperature dependent thermal conductivity. *Physica E* 2018; 99: 275–284.
16. Izadi M, Mehryan SAM and Shereemet MA. Natural convection of CuO-water micropolar nanofluids inside a porous enclosure using local thermal non-equilibrium condition. *J Taiwan Inst Chem E* 2018; 88: 89–103.
17. Abbasi FM, Shanakhat I and Shehzad SA. Entropy generation analysis for peristalsis of nanofluid with temperature dependent viscosity and Hall effects. *J Magn Magn Mater* 2019; 474: 434–441.
18. Waqas M, Shehzad SA, Hayat T, et al. Simulation of magnetohydrodynamics and radiative heat transport in convectively heated stratified flow of Jeffrey nanofluid. *J Phys Chem Solids* 2019; 133: 45–51.
19. RamReddy C, Murthy PVSN, Chamkha AJ, et al. Soret effect on mixed convection flow in a nanofluid under convective boundary condition. *Int J Heat Mass Tran* 2013; 64: 384–392.
20. Rashad AM, Chamkha AJ and Abdou MMM. Mixed convection flow of non-Newtonian fluid from vertical surface saturated in a porous medium filled with a nanofluid. *J Appl Fluid Mech* 2013; 6: 301–309.
21. Chamkha AJ, Rashad M and Gorla RSR. Non-similar solutions for mixed convection along a wedge embedded in a porous medium saturated by a non-Newtonian nanofluid: natural convection dominated regime. *Int J Numer Method H* 2014; 24: 1471–1766.
22. Ghalambaz M, Behseresht A, Behseresht J, et al. Effects of nanoparticles diameter and concentration on natural convection of the Al2O3–water nanofluids considering variable thermal conductivity around a vertical cone in porous media. *Adv Powder Technol* 2015; 26: 224–235.
23. Tilií I, Rashad AM, Khan WA, et al. Unsteady slip flow of a micropolar nanofluid over an impulsively stretched vertical surface. *Indian J Pure Ap Phy* 2019; 57: 773–782.
24. Kumar KG, Ramesh GK, Gireesha BJ, et al. On stretched magnetic flow of Carreau nanofluid with slip effects and nonlinear thermal radiation. *Nonlinear Eng* 2019; 8: 340–349.
25. Chamkha A, Abbasbandy S and Rashad AM. Non-Darcy natural convection flow for non-Newtonian nanofluid over cone saturated in porous medium with uniform heat and volume fraction fluxes. *Int J Numer Method H* 2015; 25: 422–437.

26. Reddy PS and Chamkha AJ. Soret and Dufour effects on MHD convective flow of Al2O3–water and TiO2–water nanofluids past a stretching sheet in porous media with heat generation/absorption. *Adv Powder Technol* 2016; 27: 1207–1218.

27. Reddy PS, Sreedevi P and Chamkha AJ. MHD boundary layer flow, heat and mass transfer analysis over a rotating disk through porous medium saturated by Cu-water and Ag-water nanofluid with chemical reaction. *Powder Technol* 2017; 307: 46–55.

28. Rashad AM, Khan WA, EL-Kabeir SM, et al. Mixed convective flow of micropolar nanofluid across a horizontal cylinder in saturated porous medium. *Appl Sci* 2019; 9: 5241.

29. Wang CY. The three-dimensional flow due to a stretching flat surface. *Phys Fluids* 1989; 27: 1915–1917.

30. Liu IC and Andersson I. Heat transfer over a bidirectional stretching sheet with variable thermal conditions. *Int J Heat Mass Tran* 2008; 51: 4018–4024.

31. Xu H, Liao SJ and Pop I. Series solutions of unsteady three-dimensional MHD flow and heat transfer in the boundary layer over an impulsively stretching plate. *Ear J Mech B: Fluid* 2007; 26: 15–27.

32. Hayat T, Mustafa M and Hendi AA. Time-dependent three-dimensional flow and mass transfer of elasto-viscous fluid over unsteady stretching sheet. *Appl Math Mech* 2011; 32: 167–178.

33. Awais M, Hayat T, Alsaedi A, et al. Time-dependent three-dimensional boundary layer flow of a Maxwell fluid. *Comput Fluids* 2014; 91: 21–27.

34. Ahmad I, Ahmad M and Sajid M. Heat transfer analysis of MHD flow due to unsteady bidirectional stretching sheet through porous space. *Therm Sci* 2016; 20: 1913–1925.

35. Ahmad M, Ahmad I and Sajid M. Magnetohydrodynamic time-dependent three-dimensional flow of Maxwell fluid over a stretching surface through porous space with variable thermal conditions. *J Braz Soc Mech Sci* 2016; 38: 1767–1778.

36. Ahmad M, Ahmad I, Sajid M, et al. Flow of an Oldroyd-B fluid past an unsteady bidirectional stretching sheet with constant temperature and constant heat flux. *J Appl Fluid Mech* 2016; 9: 1329–1337.

37. Ahmad M, Taj M, Abbasi A, et al. Time-dependent 3D flow of Maxwell nanofluid due to an unsteady stretching surface through porous space. *J Braz Soc Mech Sci* 2019; 41: 452.

38. Liao SJ. *The proposed homotopy analysis method for the solution of nonlinear problems*. PhD Thesis, Shanghai Jiao Tong University, Shanghai, China, 1992.

39. Turkyilmazoglu M. Solution of the Thomas-Fermi equation with a convergent approach. *Commun Nonlinear Sci* 2012; 17: 4097–4103.

40. Abbasbandy S, Hashemi MS and Hashim I. On convergence of homotopy analysis method and its application to fractional integro-differential equations. *Quaest Math* 2013; 36: 93–105.

41. Hayat T, Kiyani MZ, Ahmad I, et al. On analysis of magneto Maxwell nano-material by surface with variable thickness. *Int J Mech Sci* 2017; 131: 1016–1025.

42. Shehzad SA. Magnetohydrodynamic Jeffrey nanoliquid flow with thermally radiative Newtonian heat and mass species. *Rev Mex Fis* 2018; 64: 628–633.

43. Schlichting H. *Boundary-layer theory*. New York: McGraw-Hill, 1964.

Appendix I

Notation

Symbol	Description
(a, b)	constants
A	unsteadiness parameter
C	concentration profile
C∞	atmospheric concentration
DB	Brownian motion constant
DT	thermophoretic diffusion coefficient
Le	Lewis number
Nsb	Brownian motion
Nr	thermophoresis parameter
Pr	Prandtl number
T	nanoparticle temperature
T∞	atmospheric temperature
(u1, u2, u3)	velocity component
α	stretching parameter
α1	thermal diffusivity
β1	Deborah number in terms of relaxation time
β2	Deborah number in terms of retardation time
η	similarity variable
λ1	retardation time coefficient
λ2	retardation time
ρf	nanoparticle density