Strategy for the utilization of community forests land in Polewali Mandar Regency, West Sulawesi Province

M A Ramli¹, D Malamassam² and S A. Paembonan²

¹Forestry Science Study Program, Hasanuddin University Graduate School, Makassar
²Faculty of Forestry, Hasanuddin University, Makassar

Email: agusfartham@gmail.com

Abstract. This study aims to determine the management conditions and potential of community forest and formulate strategies for land utilization under community forest for support production optimization in Polewali Mandar Regency. The object research is the village community that applies the agroforestry pattern that is applied to community forests. The number of research samples is 30 people who have the type of community forest owner. The data obtained were identified and analyzed through the methods of Force Field Analysis and Process Hierarchy Analysis. The results showed that the people in the three villages applied the community forest pattern by cultivating plant species (Tectona grandis), (Gmelina arborea Robx), (Albizia chinensis), (Shorea johorensis), and (Vitex cofassus), in forest land community. Furthermore, it was also identified that the management of community forests in the three villages went through several issues related to the driving and inhibiting factors. The right strategy for the use of community forest land in Polewali Mandar Regency is an intensive strategy that is horizontally integrated. through the expansion of community activities and the construction of a network of information and communication systems, based on a plan involving all relevant parties.

1. Introduction

Community forests have become direct contributors to the economy of their owners and communities in the area. In community forest management, the community manages it independently of pure self-help without government interference, both in monoculture patterns and in patterns of mixed crops and agroforestry systems [1]. Both in monoculture & community forest management, the community manages the forest independently of pure self-help without government interference [2]. In addition, the area of community forests to date in Indonesia reached 1.5 million hectares in 2014, and the types of plants have been known to the public. Community forests also have a role in addition to producing wood, but they also produce fruits and other NTFP products in support of economic value and food security. Optimizing the use of community forest land by applying the agroforestry model. The agroforestry model is a combination of sustainable land-based agricultural businesses [3]. The agroforestry model is a combination of agriculture that can combine two types of agricultural and forestry crops for direct benefits to the community [4].

Community woods offer a lot of potential in terms of providing logs for both the logging sector and the community [4]. The types of wood harvested from community forests vary depending on the demand for naturally produced wood [5]. Each sort of wood has its unique characteristics or properties, which must be studied and known before the wood is utilized, as these attributes are what determine the wood's quality for a specific classification [6]. When it comes to planting species composition, community
forest land has not been utilized to its full potential [7]. A lack of public understanding of cultivation practices, such as setting cultivation patterns, spacing, and selecting plant species, becomes a barrier to optimizing the use of community forest areas [8]. In Polewali Mandar Regency, this study will investigate three methods of land used to support people's food security.

The method of managing community forest land use in the Polewali Mandar Regency is one of several obstacles in community forest management. Agroforestry planting practices such as proper layout and spacing patterns and species selection are still unknown to the general public [6]. Species selection in the agroforestry model incorporates the harvest age of the crop. Annual crops are short-term crops, medium-term intercrops, and long-term forest plantations. By applying this pattern from the income side, the community will get a sustainable harvest in every harvest season.

The purpose of this study was to determine the condition and potential of community forest management and formulating land-use strategies from the perspective of community forests to support production optimization in Polewali Mandar Regency.

2. Material and methods

2.1. Research site
This research was carried out in three locations, namely Mirring Village, Rea Village and Paku Village, Binuang District, Polewali Mandar Regency. The time taken by the researchers was from October to November 2019. The data were collected using a survey method with direct observation and interview techniques. Interviews were conducted with 30 respondents who were intentionally selected based on community forest patterns. The data collected takes the form of community forest characteristics and the drivers and inhibitors of community forest management.

2.2. Data collection
The research using tools and materials were: writing instruments, calculators, computers, questionnaires, digital cameras, voice recorders, and other support tools. Although the object of this research is a group of people who have access to community forest lands. The data types used for this research are primary and secondary data. Primary data is data obtained through interviews and discussions with specialists. Secondary data is data obtained from organizations or institutions related to this research. Secondary data collected includes library research related to the research, as well as special literature research conducted by reviewing documents that support community forestry research, including various laws and regulations that are considered to support the subject of the research.

2.3. Research procedure
2.3.1. Data analysis AHP-FFA. Data processing is carried out using Force Field Analysis (FFA) and Analytical Hierarchy Process (AHP) methods. FFA is useful for studying situations that require strategic change for expert studies. An inventory of all the drivers and limiting factors for community forest management is presented in table form. After that, identifying the most important strengths and weaknesses in the effort to achieve by using a pairwise comparison matrix. Details are presented in the following description:
 a. Create a pairwise comparison matrix (pairwise matrix comparison) that describes the relative contribution or influence of each factor. The evaluation is carried out based on the choice or judgment of the expert when evaluating the level of importance of an element compared to other elements. The rating scale used is the saaty scale, with a value from 1 to 9.
 b. The normalization of the data consists of dividing the value of each factor in the matched matrix by the total value of each column.
 c. Find the eigenvalues of the vector and test its consistency. If it is not consistent, you need to repeat the data collection (preference).
 d. Repeat steps 1, 2, and 3 for all levels of hierarchy. Calculation of the eigenvectors of each pairwise comparison matrix the value of the eigenvector is the weight of each factor. This step
developed by Kurt Lewin. The distance used in monoculture pattern is 2x3 meters. Tectona grandis L.f and (Gmelina arborea Robx.) and (Vitex Gmelin) (Shorea johorensis Foxw.) (Theobroma cacao), (Aleurites moluccanus), (Syzygium aromaticum), and (Albizia Chinensis) are used among others in positioning the program in the Matrix Wheelen's External Internal.

2.3.2. Data Analysis IFAS-EFAS. To know the position of the progress of the strategy, land use under community forest stands, analysis of internal strategic factors and external. The internal strategic factor analysis (internal strategy factor analysis summary = IFAS) is the procedure to process strategic factors in the internal environment. While the factor analysis External Strategy (External Strategic Factor Analysis Summary = EFAS) in Evaluation of internal and external factors done giving weighting and classification in each strategic factor in a table view (IFAS EFAS table), according to the next steps (see Appendix 1) [9].

- Incorporate internal factors and external in column 1 of the IFAS-EFAS table.
- Give each factor a weighting strategy in column 2, with a scale of 1.0 (very important) to 0.0 (not important). All these weights do not exceed the total score = 1.00. The factors are given a weighting based on the influence of strategic position.
- Give a grade in column 3 for each factor with a scale from 4 (very strong) to 1 (weak), based on the influence of these factors on the condition in question.
- Multiply grade weights to get the value of each factor.
- Add the value of each factor (in column 4). This total value shows IFAS / EFAS values, which are used among others in positioning the program in the Matrix Wheelen's External Internal.

3. Result and discussion

3.1. Characteristics of community forest

The results showed that the utilization of the forest area of Polewali Mandar people who have a forest area of 1600 ha. Most farmers use the land to survive in people's forests. People's Forest in Polewali Mandar Regency in Rea Village and Paku Village is dominated by white Teak plants (Gmelina arborea Robx), while in Mirring Village the types planted are teak, (Tectona grandis Lf) (Gmelina arborea Robx), (Shorea johorensis Foxw) and (Vitex cofassus). The plant has a lifespan of 4 -5 years and 10 years. The area of people's forest management ranges from 0.5 - 3 hectares, the age of trees ± 5-10 years, and the distance used in the people's forest 2x3. The difference in planting patterns depends heavily on the ownership of people's forest land. The planting distance used in monoculture pattern is 2x3 meters while for agroforestry pattern and distance mixture used 3x4 meters. The results of the research showed that people's forest land managed by the community planted a variety of plantation crops and fruits so that the utilization of land is more optimal. Land under the establishment of the (Gmelina arborea Robx) stands, the community grows (Theobroma cacao), (Aleurites moluccanus), (Syzygium aromaticum), and fruits as an alternative source of income before planting wood, there are still no plants other than MPTS.

People's Forest in Mirring Village, Rea Village, and Paku Village, Polewali Mandar Regency has 3 planting patterns, namely 1. Monoculture planting pattern with (Gmelina arborea Robx) type, 2. Planting pattern mixed types of (Gmelina Arborea Robx) and (Albizia Chinensis) and, 3. Agroforestry
planting pattern that combines the types of (Gmelina Arborea Robx), (Syzygium aromaticum), (Theobroma cacao), (Coffea arabica), (Capsicum annuum). Based on the observation of planting patterns used by forest communities in Polewali Mandar Regency, namely in each different land, but the community prefers mixed patterns and agroforestry. Because of people's knowledge about monoculture, mixed and agroforestry planting patterns. As well as the types of plants developed, namely wood-producing fruits, medicinal plants, and food crops [10]. Field observations for the types of woody plants that are often found in community forests in three villages are teak, (Tectona grandis L.f) (Gmelina arborea Robx), (Shorea johorensis Foxw), and (Vitex cofassus). As for the type of fruit crops, namely (Cocos nucifera), (Lansium domesticum), (Durio zibethinus), (Mangifera indica), and the food crops are (Theobroma cacao) [6]. The main products of NTFP (non-timber forest products) developed as a source of income for farmers are (Theobroma cacao), (Arenga pinnata), (Syzygium aromaticum), and fruits [7].

Selection of crop types to be developed based on tree species and crops in the community and market availability [11]. If plants are managed properly, then the cost of weeding and maintenance of trees can be reduced by offsetting productivity lower [7]. According to research [6] that in the potential of food produced by the people's forest in Paku Village has great potential when assessed by the price of wood. Because the food needs in Paku Village are very high both for consumption directly to the community and to be commercialized. According to the research [12], the implementation of forest rights management in the Polewali Mandar Regency has not been running by the applicable provisions. The implementation process still needs to be reviewed and support the implementation of management. Technical guidance on forest products rights to realize the management of administrative, orderly, and controlled forest products. According to research [6] that in terms of the potential for food produced by community forests in Paku Village, it has great potential when judged by the price of the wood. The reason is, the need for food in Paku Village is very high, both for direct consumption to the community and for commercialization [12].

3.2. The socio-economic condition of community forest farmers

No.	Characteristic of respondent	Classification	Number of respondents	Percentage (%)
1.	Gender	Male	28	93.33
		Female	2	6.67
2.	Age, year	29-39	5	16.67
		40-48	12	40.00
		49-54	6	20.00
		55-65	4	13.33
		66-70	2	6.67
		>70	1	3.33
3.	Formal education	Illiterate	-	-
		Primary school	13	43.33
		Junior high school	4	13.33
		Senior high school	12	40.00
		Bachelor	1	3.33
4.	Main job	Farmer/farm worker	24	80.00
		Trader and other services	4	13.33
		civil servant	2	6.67
5.	Land Area	0,5	9	30.00
	Rice fields	1	10	33.33
		2	9	30.00
Table 1 shows that the age category of respondents falls within the productive and non-productive age restrictions. For the age that is classified as the largest productive age at the age of 40-48 years, namely (40%), there is usually enough potential to develop a region. Younger people are in good health and will accept ideas, and have breakthroughs or innovative ideas. The education level of respondents in three villages in Binuang sub-district mostly completed education only until elementary school (SD) which is as much as (43.33%), while for the undergraduate category only (3.33%). Table 1 shows that all villages in the Binuang sub-district have low levels of education. The results show that the level of public education will affect one's way of thinking in analyzing problems and making decisions or policies. The main source of income is done to meet the needs of his family. People's forest farmers in all three villages are dominated by the main source of livelihood as farmers, namely (80%) (BPS, 2018).

The number of dependents is all family members who are dependents of the head of the family including wives, children, grandchildren or parents, or relatives. Table 1 shows that the number of dependents in these three villages is very large, the number of dependents in one family is at most, 3-5, and the number of family members (70%). This will have an impact on the motivation and ability of the head of the household to create an idea. the more family members are covered, the greater the cost of fulfilling family needs. Most respondents had a rice field ownership area of 1 ha (33.33%), garden land of 2 ha (33.33%) and the forest land of the people in each village has an area of 1 ha (60%). Some of those who responded to the kisses have an area of 1 ha (33.33%) of rice fields, 2 ha of gardens (33.33%), and community forest lands in each 1 ha village (60%).

Table 2. Total income of farmers (Rupiah)

Descriptions	Village Mirring (Rp)	Village Rea (Rp)	Village Paku (Rp)
Forest crop income	24,513,000.00	2,793,500.00	20,076,500.00
Income from agriculture	36,482,000.00	31,898,000.00	33,584,000.00

Source data: the results of the processed data, 2019.

The people's forest in Rea Village and Paku Village is dominated by plants (Gmelina Arborea Roxb) which are used to make furniture and used by the community. At the same time, Mirring Village grows a variety of crops ranging from (Tectona Grandis), (Gmelina Arborea Roxb), (Vitex Cofassus) and (Shorea johorensis). The price of plants (Tectona grandis) and (Vitex Cofassus) aged 5 years is Rp 1,200,000 per tree while the price of teak plants 10 years is Rp 1,300,000 per tree. Plants planted by the community have market guarantees in the future but because furniture entrepreneurs in the area still lack raw materials, they can guarantee the market in the future [13].
Farm revenue from the three research sites shows that Mirring Village has a fairly high total income, namely Mirring Village (Rp. 36,482,000) while Paku Village (Rp. 33,584,000) and Rea Village (Rp. 31,898,000). Farmers' income from the food crop sector in three research sites shows that the income level of the people in Mirring Village has the highest income (Rp 7,442,500) compared to Paku Village (Rp 6,459,000) and Rea Village (Rp 4,203,000). Based on the overall revenue results based on the appropriate strategic plan to (strategic plan) Forest Service / KPH Mapili is aimed as a reference for provincial forestry development by including improving the quality of forest resource productivity services (SDH) and lowering the rate of land degradation with the implementation of a governance system in forest management fairly, increasing the contribution of forests and the national economy in forest management and welfare of the surrounding communities. Based on the overall income of farmers from the forests of the people from three research sites in Binuang Regency (namely Mirring Village), income reached (Rp 79,445,625), Paku Village reached (Rp 57,322,125) and Rea Village (Rp 9,376,250).

This agroforestry system is also very good, because of the monthly economic value that can be obtained, compared to monoculture and mixed systems which can only be obtained every year [10]. Based on the results of field observations, there is an overall difference in the income of farmers in Rea Village because some farmers prefer to plant crops compared to wood crops. On the land they use, several types of commodities are grown from forest trees, plantations, and food crops.

3.3. Several Supporting Factors in optimizing the use of community forest land

The results of interviews and discussions with para-parties, agreed there are several factors in the optimization program of the utilization of people's forest land. These factors are government, society, and business world with a wide scope including regulation, agency programs, the capacity of actors, status and capacity of land support, market access, planting patterns, institutional, demand and supply of commodities, food security, potential conflicts, and so on. Furthermore, participatory factors are grouped into driving factors and inhibitory factors, as presented in Table 3 [14].

Driving Factors	Restraining Factors
Community forestry development program	Lack of technical assistance in forest management
Ministry of the Environment and Forestry of Community Model Forests	Lack of coordination between local government agencies and farmer groups in forest management
The existence of successful farmers as pioneers	People are used to the monoculture system
The existence of community forest land and land allocation for the community forest.	The condition of community forest land is quite diverse.
Community forest product marketing is available	Low farmer income
Economic motivation and community ecology	Lack of community knowledge about plant cultivation
There are clear land ownership rights.	Lack of capital in people's forests to the community
There are community institutions	Lack of public interest in plant commodities
There is a demand for local timber markets in community forests.	Potential conflicts over the boundaries of community forest and protected forest
There is an example of a community forest for an exemplary village	The condition of the forest managed by the community is partly community forest.
Existence of former HGU land use	There is no area protection and surveillance.
The development of community industry in wood-based	Community assistance in silvicultural management and techniques.
Increased demand for animal feed
Possible use of ex-HGU land
The development of the people's market industry for the wood base
Local government response to community food scarcity
The existence of local government regulations regarding community forests

Increased demand for animal feed	The timber marketing system is still lacking.
Possible use of ex-HGU land	There is a division of community forest management systems.
The development of the people's market industry for the wood base	Conversion of forest land use into agricultural land.
Local government response to community food scarcity	Attacks against pests and diseases
The existence of local government regulations regarding community forests	Lack of community to develop farming in increasing income.

In Table 3, through the people's forest development plan, the driving factors that support the optimization of people's forest land use are listed in each UPT. This is in line with the model of people's forests developed by the community. The model is a combination of (Albizia chinensis) forestry plants (MPTS), hazelnuts with medicinal plants/spices such as ginger. The people's forest in Rea Village is dominated by teak plants that grow naturally, and plants should not grow under it, so the appeal of the community is reduced. Optimization of land use that is often found in Rea Village is by planting (Pennisetum purpureum) and (Gliricidia sepium) on the edge of the land for animal feed.

The main driving factor comes from the community as landowners. Therefore, it is necessary to maintain and develop the economic and ecological strength of the community to maintain the existence of people's forest areas. In addition to the guidance of the local government, one thing that can accelerate the implementation of the people's forest plan is the success of forest cultivation. In Mirring Village, the chairman of the farmer group led the planting of (Albizia chinensis), combined with crops, namely (Theobroma cacao). There is already a market for these two plants, namely (Albizia chinensis) (the tree is 5 years old at the time of research), which will be used by the community in building houses and improving community facilities and infrastructure such as mosques and bridges. While the cocoa harvest is purchased by the cocoa processing industry in Polewali Mandar. Development of agroforestry model as a form of land use of people's forests. The agroforestry model developed is combining with forestry plants, such as (Albizia chinensis), (Tectona Grandis), (Gmelina Arborea Roxb), and (Shorea johorensis) and other forestry plants with fruit trees such as (Theobroma cacao), (Mangifera indica), (Coconut nucifera), (Vigna radiata), (Lansium domesticum), (Nephelium lappaceum), (Artocarpus heterophyllus) dan (Capsicum frutescens), and other intercropping plants. People's forest areas are bordered by rice fields, and (Pennisetum purpureum) is planted on the border of rice fields for animal feed. The results of the interviews with UPT KPH Mapilli in the field of Forest Restoration and Protection indicate that the management company stopped operating considering the former land of HGU.

Development of agroforestry models as a way of using community forest land. The agroforestry model developed consists of combining forest plants, such as (Gmelina Arborea Roxb), (Shorea johorensis) and (Albizia chinensis) and other forest plants with fruit trees such as (Durio zibethinus), (Nephelium lappaceum) and (Artocarpus heterophyllus), (Coffea arabica. L) with (Theobroma cacao). Community forest areas with rice fields and elephants planted on the border for animal feed.

3.3.1. Analysis of external and internal strategic factors. Efas and IFAS analysis was conducted to determine the impact of the factors described in optimizing land use under people's forests. In this case, for example, if the weight or part of the factor is 1/11, 2/11, or 3/11 of the total factor, there are 12 factors. It then declares its weight as a decimal. Evaluation is determined based on the influence of various factors. This case uses 4 levels, namely 1 weak, 2 medium, 3 strong, and 4 very strong. The level is determined through discussion, which is a professional assessment. To get the value of each factor, the weight is multiplied by the rank. Then the value of each factor is summed up for the efas estimation. Similarly, with the procedure of determining EFAS values for IFAS analysis, the results are shown in Table 4. Internal factors are related to quantity, weight, and classification [14].
Table 4. Results of the factor analysis of external strategy (EFAS).

External Strategy Factors	B	R	N
Opportunity			
Increased local timber market for community forests	0.18	4.00	0.72
There is an example of a community forest for an exemplary village	0.19	3.00	0.57
Increased demand for animal feed	0.02	1.00	0.02
Existence of land use of former HGU	0.06	2.00	0.12
Have a community industry in wood-based	0.13	3.00	0.39
Local government response to community food scarcity	0.08	3.00	0.24
The existence of local government regulations regarding community forests	0.10	3.00	0.30
Threat			
This type of commodity has promising prospects for the community	0.06	3.00	0.18
The emergence of conflicts over the boundaries of community forests and protected forests	0.12	4.00	0.48
There is a conversion of forest land use into agricultural land	0.07	2.00	0.14
The incidence of pests and diseases	0.04	2.00	0.08
The existence of local government regulations regarding community forests	0.06	3.00	0.18
Amount	1.05	3.42	

Table 5. Results of internal strategy factor analysis (IFAS).

Internal Strategy Factor	B	R	N
Strength			
There is a community forest development program	0.10	3.00	0.30
The existence of a community forest model of the Ministry of Environment and Forestry	0.08	4.00	0.32
There is an allocation of community forest land	0.06	3.00	0.18
Community forest product marketing available	0.13	2.00	0.26
Economic and ecological motivation in society	0.04	3.00	0.12
clear land ownership rights	0.03	2.00	0.06
the existence of institutions in society	0.04	2.00	0.08
Weakness			
Lack of technical assistance in forest management	0.10	4.00	0.40
Lack of coordination between local government and community	0.07	3.00	0.21
the community utilizes the monoculture cropping system	0.04	3.00	0.12
quite a variety of land conditions	0.03	2.00	0.06
Low farmer income	0.07	3.00	0.21
Lack of community knowledge about plant cultivation	0.09	3.00	0.27
lack of capital in community forests to the community	0.06	2.00	0.12
Amount	0.94	2.71	

According to the internal and external matrix model put forward by Wheelen (1995) in [14], the total IFAS value is 2.71 and the EFAS value is 3.42. Concentration through horizontal integration is a suitable strategy. Develop growth strategies by expanding community activities and building information and communication networks in regions that have similar plans.

3.3.2. Power Field Analysis (Force Field Analysis=FFA). Singer (2009) found that group discussions are necessary to clarify: (a) how to strengthen the driving factors against change and (b) how to minimize...
inhibition factors against change. Based on the FFA analysis phase, the driving and inhibitory factors can be shown in Figure 1. Compare the impact of these two factors on planned or ongoing activities (land use optimization). Under the forest of people's crops. From 1 to 5. The momentum factor is a combination of external strategic capability factors and internal strategic strength factors. The total value of the driving factor is obtained from the summation of the number of scores, which is 40. The inhibitory factor is a combination of external strategic threats and internal strategic weaknesses. The total value of the inhibitor is obtained from the summation of 31 inhibitors. The number of inhibitory factors indicates that the plan to optimize land use in people's forests can be implemented and well designed.

![Figure 1](image_url)

Figure 1. The influence of driving factors and inhibiting factors on optimizing land use under community forest stands.

As shown in Figure 1, there is an influence caused by the strength of the driving factors and their inhibitions, ranging from short (weak), medium (medium) to long (very strong). The more driving factors increase, the weaker the inhibitory effect, which affects both factors. Figure 1 shows several driving factors that need to be strengthened again, namely the existence of the Forest Model of the Ministry of Forestry, land use, previous commercial land use rights, and timber product marketing system. At the same time, there is a need to reduce barriers in people's forests, including changes in land use, potential conflicts in the community when determining people's forest boundaries, lack of technical assistance in the management of people's forests, and lack of coordination. Provincial Forest Service or KPH. Internal profit factors that play an important role in the utilization of people's forest land are central government support for forest management, the extent of land operated, types of commodities planted or self-help, and a low timber marketing system. The main disadvantages are internal institutional factors of the community in forest management, and external factors are a threat, especially the growing demand of farmers.

4. Conclusions

Based on the internal-external matrix model, with the sum of IFAS values = 2.68 and EFAS values = 3.24. While the appropriate strategy in the utilization of people's forest land in Polewali Mandar Regency should adopt a centralized strategy by expanding activities in the community and developing information and communication networks in areas that have the same program. The strategy of optimizing land use under the establishment of people's forests can strengthen internal driving factors,
in the form of people's forest land, people's forest candidates, land ownership rights status, and community institutions. In addition, strengthening external driving factors, namely ex-HGU land as a land source opportunity. Furthermore, minimizing the influence of internal inhibitory factors, namely land-use conversion and external inhibitory factors, potential conflicts of people's forest boundary and protected forests, lack of technical assistance in the management of people's forests, and lack of coordination between relevant agencies.

References
[1] Widarti A 2015 Kontribusi hutan rakyat untuk kelestarian lingkungan dan pendapatan I 1622–6
[2] Achmad F and Zunariyah S 2015 Modal Sosial Masyarakat Dalam Pengelolaan Hutan Rakyat (Studi Fenomenologi Hutan Rakyat di Kelurahan Selopuro, Kecamatan Batuwarno, Kabupaten Wonogiri) J. Sosiol. DILEMA 30 40–9
[3] Ruhimat, I S 2017 Peningkatan Kapasitas Kelembagaan Kelompok Tani Dalam Pengembangan Usahatani Agroforestry: Studi Kasus Di Desa Cukangkawung, Kecamatan Sodonghilir, Kabupaten Tasikmalaya, Provinsi Jawa Barat J. Penelit. Sos. dan Ekon. Kehutanan. 14 1–17
[4] Annisa W R and Zunariyah S 2018 Perubahan Pola Pengelolaan Hutan Oleh Masyarakat Di Desa Kaligunting (Studi Kasus PHBM di Desa Kaligunting, Kecamatan Mejayan, Kabupaten Madiun, Jawa Timur) J. Dev. Soc. Chang. 1 76–86
[5] Halim A and Moenir N 2017 Panduan pelaksanaan ToT kader SHK melalui Kelompok tani hutan Konsorium Kp SHK, IPB pres Printing, Bogor Indonesia pp 1–47
[6] Idris A I 2019 Pola Dan Motivasi Agroforestry Serta Kontribusinya Terhadap Pendapatan Petani Hutan Rakyat Di Kabupaten Polewali Mandar J. Hutan dan Masy. 11 92
[7] Fauzi H 2017 Pengetahuan Penyuluh Kehutanan Sebagai Pelaku Pemberdayaan Masyarakat Dalam Pengelolaan Hutan J. Hutan Trop. 5 14–21
[8] Kambey S Y 2015 Pembagian Urusan Pemerintahan Di Bidang Kehutanan (Antara Pemerintah Pusat, Pemerintah Daerah Provinsi, Dan Pemerintah Daerah Kabupaten/Kota) Katalogis 3
[9] Riyanto S 2018 Pengambilan Keputusan Strategis Berbasis EFAS/IFAS/SFAS dan AHP (Bandung: Paramedia Komunikatama)
[10] Irundu D and Fatmawati D 2019 Potensi Hutan Rakyat Sebagai Penghasil Pangan di Desa Paku Kabupaten Polman, Sulawesi Barat J. Hutan dan Masy. 41–8
[11] Mardyantoro A, Mustaqien Z and Lidiawati I 2015 Kajian Kontribusi Sisitem Agroforestri Terhadap Pendapatan Petani (Studi kasus: Desa Cibatok Dua, Kecamatan Cibungbulang, Kabupaten Bogor, Provinsi Jawa Barat) J. Nusa Sylva 15 11–6
[12] Arafat A, Jusuf Y, Junus M and Sabar A 2017 Implementasi Penatausahaan Hasil Hutan Hak di Kabupaten Polewali Mandar Sulawesi Barat J. Hutan dan Masy. 9 22–8
[13] Yuwono S B and Hilmanto R 2015 Pengelolaan hutan rakyat oleh kelompok pemilik hutan rakyat di desa bandar dalam kecamatan sidomulyo kabupaten lampung selatan J. sylva lestari 3 99–112
[14] Hikmah N, Mahbub A S and Supratman 2018 Strategi Pengembangan Program Pemberdayaan Masyarakat Hutan Kemasyarakatan di Desa Gunung Silanu Kecamatan Bangkala Kabupaten Jeneponto J. Hutan dan Masy. 10 246–56