Towards the Definition of a Low-Cost Toolbox for Qualitative Inspection of Painted Historical Vaults by Means of Modified DSLR Cameras, Open Source Programs and Signal Processing Techniques

Luca Piroddi\(^1\)\(^{\text{(1)}}\), Sergio Vincenzo Calcina\(^1\)\(^{\text{(2)}}\), Antonio Trogu\(^1\)\(^{\text{(3)}}\), and Giulio Vignoli\(^1,2\)\(^{\text{(4)}}\)

1 Department of Civil Engineering, Environmental Engineering and Architecture, DICAAR-UniCA, Cagliari, Italy
lucapiroddi@yahoo.it

2 Geological Survey of Denmark and Greenland GEUS, Aarhus, Denmark

Abstract. Historical architecture is a primary element containing the identity values of a society. The wide diffusion of many ancient buildings gathering part of these values on painting walls over territories often characterized by poor technological or economic resources brings to consider the development of low-cost protocols to inspect valued surfaces and to give the authorities in charge of preservation and restoration adequate technical information. Here we present the preliminary results of a recent application of remote sensing micro-geophysical techniques to typical architectural targets such as vaults. A modified commercial Digital Single-Lens Reflex (DSLR) camera was used to acquire multispectral datasets on portions of a painted vault. Multispectral datasets were used raw or after the application of a pre-processing step with a Multi Images Stacking (MIS) algorithm. Multispectral images were then processed with spatial wavelet decomposition, histogram enhancing, thresholds application, image fusion, false colors compositing and Principal Component Analysis (PCA) techniques. Software used have been GNU Image Manipulation Program (GIMP) and Mathworks MATLAB (which can be substituted for the processing steps proposed by the built-in functions of GNU OCTAVE open-source software). Processed images were able to highlight features on vault paintings revealing details of the surface or its very shallow layers which were impossible or very difficult to distinguish in raw data. In fact, they emphasized low-visible details, differences in apparently similar finishes or pigments, cracks and probably details of surface preparation.

Keywords: Multispectral analysis · Digital image processing · PCA · Cultural heritage · Historical architecture · Painted walls inspection · Low cost diagnostics
1 Introduction

In this paper, we present a recent multispectral survey carried out within a monumental building in the historical center of Cagliari, Italy: the church of San Giuseppe Calasanzio (Fig. 1a). Built between XVII and XVIII centuries in a baroque style, like other Italian churches of the Piarists’ Order [1], together with the adjacent college. The church has a barrel-vaulted nave with three chapels intercommunicating on the sides and a deep presbytery, covered with a dome on an octagonal drum from which it is possible to laterally reach the sacristy and the building of the college (Fig. 1b); The complex is currently close because of long-lasting and incomplete restoration works with a general state of decay of the inner finishes. At ground level, the vault of the sacristy, indicated with red region in Fig. 1b and geometrically reconstructed in Fig. 2, has painting finishes with pictures of religious themes on the inner side, with decayed parts (Fig. 3a, b). First floor level over the sacristy is communicating with the college.

Fig. 1. Façade of the church of San Giuseppe Calasanzio (a) and plan of the ground level of the church with the connected sacristy indicated with a red region (b). (Color figure online)
Instrumental miniaturization has recently focused the interest of geophysical community to the application of micro-geophysics to also architectural elements [2–16].

The growing attention of our society to cultural heritage assets made possible an extension of traditional disciplinary limits to new methods and technology which, even with strong contribution from consolidated geophysical techniques, are developing aiming to resolve specific issues linked to the new diagnostic targets [17, 18].

In this context, an important role is being played by remote sensing techniques. Nowadays, remote sensing methods are an evolving research field taking advantage of the knowledge contamination from many specializations related to surveys and technology [19].

The most immediate demand for historical architecture documentation is the reconstruction of detailed and reliable 3D models of the monuments or their elements, that can be achieved with geomatic technologies such as photogrammetry through image-based modelling and Terrestrial Laser Scanner [20–26]. Structural analysis of cultural heritage assets is also possible by means of motion video magnification [27] or other photogrammetric techniques [28].

The experimental dynamic behavior of valuable historical slender structures, such as bridges, bell towers or other structures with one dimension prevailing on the others, can be assessed with ground-based remote sensing instruments simultaneously measuring structural vibrations of multiple backscattering points by means of Real Aperture Radar (RAR) interferometry [29–33].

Based on the radar interferometry, even slow movements of more complex building elements or parts of historical centers and Cultural Heritage sites are monitored using satellite Synthetic Aperture Radar [34–37].

Another emerging remote sensing technique in the field of Cultural Heritage inspection is the so called Terahertz (THz) technology, which, based on the recording of
Fig. 3. Details of the sacristy vault paintings on a corner at the set level (a) and in the middle at the keystone level (b).
electromagnetic (EM) waves of that bands, is used on various kinds of archaeological or historical items allowing, under specific experimental setups, to image studies bodies at various depths [38, 39].

Thermal infrared acquisitions allow the assessment of various issues linked to monuments studies, like detection of moisture presence, cracks, voids and anomalous elements in historical walls [21, 40–45]. The application of infrared thermography to small objects reliably identified hidden defects or invisible restoration works [38, 46–49].

Fig. 4. Schematic representation of the most important EM bands for remote sensing applications [50, 51]. The bands involved in this study are highlighted in yellow. (Color figure online)

Multispectral (MS) remote sensing mostly investigates the surface finishes through their interaction with the radiation from a range of wavelengths, both visible and invisible to the human eye, across the EM spectrum. Acquisition setup include camera, light sources, and filters parameters.

Multispectral images are usually composed by different monochrome images collected by filtering the electromagnetic signals reflected and/or emitted by the objects through narrow spectral bands (Fig. 4). In most cases, the images are acquired:

- at the spectral interval of the ultraviolet light, at wavelengths lower than 400 nm;
- at the visible frequencies, corresponding to the wavelength interval comprised between about 400 nm and 700 nm;
- and at several frequency bands of the infrared signals, typically in the spectral bands of
 - Near Infrared (NIR), between 700 nm and 1100 nm,
 - Short Wavelength Infrared (SWIR), between 1100 and 3000 nm,
 - Mid Wavelength Infrared (MWIR), from 3000 nm to 6000 nm,
 - Long Wavelength Infrared (LWIR), from 6000 to 15000 nm,
 - and Far/Extreme Infrared (TIR), from 15000 nm to 1000000 nm.

These EM bands sensing is also known as optical remote sensing and is sensitive to a wide range of applications [19].
We have already mentioned THz and thermographic techniques, which often constitute part of the multispectral protocols extended to all or most parts of the optical remote sensing bands [38, 45, 49].

Over the time, the multispectral analysis has been improved to study paintings, frescoes and historical documents [52]. Advances in this field of study allow the identification of the kind of material utilized by the artists and the detection of overlays, drawing additions, defects and past pictures not clearly readable by means of the visible light. Depending on the comparison of the energizing and the recorded spectrum, we can distinguish fluorescence or reflectometric surveys.

The most common experimental configurations are based on recording the reflection of a natural or artificial energizing flux, in bands from ultraviolet (UV) to near-infrared (NIR), (Fig. 5). Their use allows to study the most superficial layers of paintings and writings [53–57]. As predictable, the penetration depth of the different signals mainly depends on their wavelength. As shown in the scheme of Fig. 5, the investigation depth increases as the frequency of the electromagnetic wave decreases.

MS surveys are characterized by several parameters that influence the quality and the features of the experimental images. In the scientific literature different resolutions are defined. In particular, the spatial resolution indicates the size of a single pixel of the acquired data. The spectral resolution describes the width of the spectral bands that the sensor is suitable to record. The radiometric resolution defines the ability of the sensor to differentiate among small variations in the sensor incoming EM signal. In addition, the time resolution represents the time interval between two consecutive acquisitions [19].
In November and December 2017, the complex of San Giuseppe Calasanzio was the object of geophysical measurements as a preliminary step to develop a diagnostic protocol for the integrated knowledge of historical architectonic elements [11].

To test the usefulness of multispectral reflectometric methods for the inspection of precious inaccessible surfaces, this proximal sensing technique was applied to the sacristy painted vault. A set of low-cost hardware constitutes the acquisition instrumental fleet. Some processing steps are developed and proposed that can be easily implemented with open-source tools. Their preliminary application to the multispectral datasets is described to verify potentialities in detail enhancing, joint information retrieving and rough differentiation of apparently very similar pigments.

2 Data Acquisition and Preprocessing

2.1 Data Acquisition

The multispectral images were collected in raw format using a digital single-lens reflex (DSLR) camera, Nikon D750, modified by removal of the internal bandpass EM original filter. This, permanent, operation allows the camera sensor to receive and record EM energy for a spectrum wider than the only visible band for which it was designed. To perform the multispectral over multiple narrower bands, five external optical filters were mounted, one by one, over the camera lenses (Fig. 6):

- an UV bandpass filter, with acquisition in the range 320–390 nm;
- a visible bandpass filter, in the range 390–700 nm;
- an IR high pass filter at 720 nm;
- an IR high pass filter at 850 nm;
- an IR high pass filter at 950 nm.

The camera setup was remotely controlled with a commercial acquisition software package distributed by the same manufacturer, the Nikon Camera Control Pro 2 (Fig. 7a). Raw images had been acquired at a resolution of 6016 by 4016 pixels, with the following acquisition setup:

- Bit range: 14 bit
- F-stop: f/8
- Sensitivity: ISO-800
- Focal distance: 42 mm
- Exposition time: variable

To make more uniform the target lighting and to guarantee an energization over the camera recording bands, four artificial halogen lights were utilized (960 W, in total), and natural light was reduced as much as possible.

The MS datasets were collected shots through four shots across the painted vault of the sacristy (Fig. 7b): the camera was positioned approximately at one meter from ground, with direction mostly perpendicular to the vault inspected regions.
Fig. 6. (a) Representation of multispectral bands configurations (black lines indicate the five EM filters), plotted over the sensitivity curves of the three RGB channels of a camera, the Nikon D200, similar to the one used during MS acquisition (RGB channels sensitivity from [42]). (b) Raw data example acquired within the multispectral survey.
Towards the Definition of a Low-Cost Toolbox for Qualitative Inspection

Fig. 7. (a) Setting up parameters and data preview through the acquisition software environment (courtesy F. Mura). (b) Regions of the painted vault surveyed by the four MS shots.
2.2 Pre-processing

Preliminarily to most processing steps, acquires datasets have been pre-processed with a Multi-Image Stacking (MIS) approach [45, 55–57]. Following this technique, raw MS images are acquired setting multiple camera exposition times for each combination of the other acquisition parameters (shot, optical filters, camera and light setups). Each RGB image, recorder with the given exposure, is then converted to a 16 bit grayscale image and then stacked with others at varying exposition time to produce an image (representative of the full stack images) which maintains a high level of details, optimized over each region of expositions (Fig. 8). This procedure is repeated for each spectral gathering of acquisitions (each EM passband filter) and for each shot, using free image conversion and common mathematical processing tools.

Fig. 8. The Multi Images Stacking (MIS) procedure: raw data (at varying exposure times of acquisition) on the left are the input to produce the stacked grayscale image on the right.

3 Data Processing

MS data are essentially images that can be processed as images or matrices with most common software tools for image editing (like GIMP, GNU Image Manipulation Program, or Photoshop by Adobe) and mathematical processing (like GNU Octave or MATLAB, MATrix LABoratory, by MathWorks).

The processing proposed in this study are feasible with both free and proprietary software, even though they are realized through GIMP and MATLAB.
3.1 Digital Image Processing and Spatial Filtering

One set of the processing steps implemented to enhance the qualitative interpretation of the MS datasets include most common functions in image editing, such as histogram enhancing, contrast magnification, color tuning, image fusion techniques, and others [58].

Furthermore, spatial signals in stacked grayscale images are evidenced using the Wavelet Decompose function [56], which is now included in the standard distribution of GIMP. The workflow for this processing step, illustrated in Fig. 9, can be summarized in:

- image spatial wavelet decomposition (6 levels), regional field removing (−1 level);
- histogram enhancing, contrast and brightness calibration, curve levels adjustments;
- merging of resulting high spatial frequency levels.

Fig. 9. Spatial wavelet decomposition of a stacked NIR image (bordered with violet) into low (red) and high (cyan) frequency components, with the application of histogram enhancing and grain fusion over high frequency levels. (Color figure online)
Finally, spectral dimension of experimental datasets can be explored, inside image editing environment, using popular tools like RGB channel combination or levels merging with the possibility to set up many parameters.

3.2 Principal Component Analysis of the MS Datasets

The second set of experimented processing steps was realized inside less user friendly but more powerful and flexible platforms, like the mathematical programming environments which however maintain a certain easy to use with respect to programming languages.

Most of the processing developed inside GIMP can be repeated even inside MATLAB environment, and some were, but with a little bigger difficulty due to the substantial absence of a graphical interface to tune many of the processing parameters. At least for beginners. Nevertheless, mathematical processing platforms flexibly allow to implement most complex processing like Principal Component Analysis, which is quite common in multispectral and hyperspectral remote sensing protocols so much that is available in specialized environmental remote sensing software (e.g. the open source SNAP by ESA).

The Principal Component Analysis (PCA) is a linear transformation implemented with the purpose to reduce multidimensional data in a few dimensions data set. The principle at the base of this technique considers that in many cases the data show correlations between their different dimensions. Through the PCA, the data are projected in a new set of axes. The new reference system is composed by the fewest possible dimensions. Therefore, this procedure consists of a coordinate transformation that allows to plot the original data in a new reference system of orthogonal axes with a minimum correlation between the variables. The first axis, derived from the PCA process, is oriented in the direction of the most variation, the second, in the direction of the new-most variation, etc. In order to calculate the new set of axes, the eigenvalues-eigenvectors decomposition is utilized. The eigenvectors are unit vectors pointing in the direction of the new axes of the reference system. The axis with the highest eigenvalue corresponds to the axis explaining the most variation of data set [59].

4 Results

4.1 Digital Image Processing and Spatial Filtering

Various sets of digital image processing were applied to the sample datasets, revealing great potentialities on their use to have a quick access to interpretable data through free software of generalist use. Images in Fig. 10 and their magnification in Fig. 11 show how is possible to quite simply obtain enhanced images where many details previously unrecognizable are revealed and interpretation of the inspected surfaces is aided.
Fig. 10. Example of Digital Image Processing results on shot 1 dataset: visible (a) and NIR 720 nm (b) stacked data on the top images, and enhanced image (c) obtained by visible merging with the isolated and emphasized high spatial frequency signals of NIR image, on the bottom.
Fig. 11. Enlarged example of Digital Image Processing results on shot 1 dataset, at the bottom corner on the left: visible (a) and enhanced image (b), showing a larger amount of details recognizable in the latter and the possibility to read painted subjects previously erroneously interpretable as noise or dirt on the paints.
Global view of Fig. 10 allows to evaluate the great quantity of informative data that appear to the watcher in terms of color lost drawings, minor cracks, surface roughness, to name some. Looking at a sample magnification, in Fig. 11, it is possible to notice a lot of the features of the original paints, revealing many details of leaves and decorations or evidencing an element previously imperceptible like the tape indicated by the white arrow.

4.2 Principal Component Analysis of the MS Datasets

Principal Component Analyses were applied to the four shots MS data, both raw, stacked and their combination. Here are presented some results from the processing of mixed datasets, with raw RGB visible images converted to bit depth homogeneous to grayscale UV and NIR data. In these conditions, we have input multidimensional matrices consisting in three layers for each acquisition at visible band for varying exposure times, plus one stacked UV layer and three stacked NIR layers (720, 850 and 950 nm filters). The layers identities are the vector base to which the eigenvectors proposed by the PCA are projected in the coordinates contained in the coefficient vectors matrix. For each eigenvector or Principal Component (PC), the dataset has a new coordinate per pixel, the eigenvalue or score matrix, consisting in the eigenvalues of the PCA transformation.

Fig. 12. Visible band raw image of the shot 4.
Fig. 13. PCA results on the shot 4 multispectral dataset: (a) 6-th principal component scores with the application of a visualization threshold aiming at contrast enhancement; (b) RGB false color combination of three principal components scores (R #4, G #5, B #6) with the superimposition of their coefficients (eigenvectors) plots: the white arrows indicate two angels’ vests with quite similar color at visible wavelength but very different on PC5 (green) and PC6 (blue) projections. (Color figure online)
Figure 12 shows an RGB visible image acquired for shot 4. Figure 13 reports some results for the MS mixed dataset of the same shot. Figure 13a is the map of the 6-th PC score matrix, to which a threshold definition is applied to enhance the image contrast: many high frequency spatial features are evidenced, with respect to the RGB visible image, that can be reconducted to a subsurface roughness potentially related even to preparatory works. Figure 13b is an RGB false color combination of three principal components scores (R: PC #4; G: PC #5; B: PC #6) used here to differentiate two pigments with almost the same color, indicated by the white arrows. In the same figure, the coefficients of the three used PCs are plotted over part of the RGB false color image: the plot evidence that PC5 and PC6 have almost the same behavior over the original RGB axes constituted by two RGB acquisitions at visible band, but differ each other a lot for original coordinates corresponding to UV, NIR1 (720 nm) and NIR3 (950 nm) acquisitions. As a graphical validation we can see, in the map on the same figure, that the two angels’ vests on the left of the image are represented with different behavior, being PC5 (green) prevalent for one and PC6 (blue) for the other. Despite of this, they are very similar in the visible band image (reported also inside Fig. 13b in the white bordered square on the top-right).

5 Conclusion

The paper presents a first approach towards the definition of a low-cost toolbox for qualitative inspection of valued painted surfaces. Most of the elements (low-cost modified DLSR cameras, pre-processing algorithms, digital image elaboration commands, signal processing techniques) were already existing before this application and are proposed here with the aim of a possible flexible integration in the context of the (qualitative) analysis of valued historical surfaced. The low-cost approach is essential to give a useful set of hardware and software tools which could be applied even to case studies of historical importance but with minor budget availability.

Processed images were able to highlight features on the vault paintings revealing details of the surface or its very shallow layers which were impossible or very difficult to distinguish in raw data. In fact, they emphasized low-visible details, differences in apparently similar finishes or pigments, cracks and probably details of surface preparation.

Acknowledgements. The authors gratefully acknowledge the essential help of L. Noli and M. Sitzia during data acquisition and instrumental setup. They also would like to thank F. Mura for the photo of Fig. 7.a. Finally, a special thanks to prof. D.R. Fiorino and the local prefecture for permitting the access to the San Giuseppe monumental structure.

References

1. Fiorino, D.R., Bagnolo, V., Grillo, S., Nonne, S., Schirru, M.: Integrated sciences for heritage reuse: interdisciplinary studies on the piarist college of San Giuseppe in Cagliari (Italy). Int. J. Heritage Archit. 1(4), 517–537 (2017)
2. Arosio, D., Hojat, A., Munda, S., Zanzi, L.: High-frequency GPR investigations in Saint Vigilius Cathedral, Trento. In: 24th European Meeting of Environmental and Engineering Geophysics, Houten, The Netherlands, pp. 1–5. EAGE (2018)

3. Binda, L., Lualdi, M., Saisi, A., Zanzi, L.: Radar investigation as a complementary tool for the diagnosis of historic masonry buildings. Int. J. Mater. Struct. Integr. 5(1), 1–25 (2011)

4. Capizzi, P., Cosentino, P.L.: Electromagnetic and ultrasonic investigations on a Roman marble slab. J. Geophys. Eng. 8(3), S117–S125 (2011)

5. Cardarelli, E., De Donno, G., Scatigno, C., Oliveti, I., Martinez, M.P., Prieto-Taboada, N.: Geophysical and geochemical techniques to assess the origin of rising damp of a Roman building (Ostia Antica archaeological site). Microchem. J. 129, 49–57 (2016)

6. Cosentino, P.L., Capizzi, P., Fiandaca, G., Martorana, R., Messina, P.: Advances in microgeophysics for engineering and cultural heritage. J. Earth Sci. 20(3), 626–639 (2009)

7. Cosentino, P.L., Fiandaca, G., Messina, P., Martorana, R., Capizzi, P., Amoroz, I.R.: Method for detecting a sonic imprint of a three-dimensional object and related apparatus. U. S. Patent No. 8,166,820, 1 May 2012

8. Deiana, R., Leucci, G., Martorana, R.: New perspectives on geophysics for archaeology: a special issue. Surv. Geophys. 39(6), 1035–1038 (2018)

9. Martinho, E., Dionisio, A.: Main geophysical techniques used for non-destructive evaluation in cultural built heritage: a review. J. Geophys. Eng. 11(5), 053001 (2014)

10. Pirinu, A., Balia, R., Piroddi, L., Trogu, A., Utzeri, M., Vignoli, G.: Deepening the knowledge of military architecture in an urban context through digital representations integrated with geophysical surveys. the city walls of Cagliari (Italy). In: 2018 Metrology for Archaeology and Cultural Heritage, New York, USA, pp. 211–215. IEEE (2018)

11. Piroddi, L., Vignoli, G., Trogu, A., Deidda, G.P.: Non-destructive diagnostics of architectonic elements in San Giuseppe Calasanzi’s Church in Cagliari: a test-case for micro-geophysical methods within the framework of holistic/integrated protocols for artefact knowledge. In: 2018 IEEE International Conference on Metrology for Archaeology and Cultural Heritage, pp. 17–21, New York, USA. IEEE (2018)

12. Ranieri, G., et al.: Method and system for activating and controlling a water-repelling process in walls. European Patent EP3040490B1, priority 2014-12-30, grant 2017 (2014)

13. Ranieri, G., Trogu, A., Loddo, F., Piroddi, L., Cogoni, M.: Digital museum from integrated 3D aerial photogrammetry, laser scanner and geophysics data. In: Proceedings of 24th European Meeting of Environmental and Engineering Geophysics, September 2018, Houten, The Netherlands, pp. 1–5. EAGE (2018)

14. Sambuelli, L., Comina, C., Catanzariti, G., Barsuglia, F., Morelli, G., Porcelli, F.: The third KV62 radar scan: searching for hidden chambers adjacent to Tutankhamun’s tomb. J. Cult. Herit. 39, 288–296 (2019)

15. Tsourlos, P.I., Tsokas, G.N.: Non-destructive electrical resistivity tomography survey at the south walls of the Acropolis of Athens. Archaeol. Prospect. 18(3), 173–186 (2011)

16. Valluzzi, M.R., Lorenzoni, F., Deiana, R., Taffarel, S., Modena, C.: Non-destructive investigations for structural qualification of the Sarno Baths Pompeii. J. Cult. Herit. 40, 280–287 (2019)

17. Piro, S., et al.: Geophysics and cultural heritage: a living field of research for Italian geophysicists. First Break 33(8), 43–54 (2015)

18. Porcelli, F., et al.: Integrated geophysics and geomatics surveys in the valley of the kings. Sensors 20(6), 1552 (2020)

19. Lillesand, T., Kiefer, R.W., Chipman, J.: Remote Sensing and Image Interpretation. Wiley, Hoboken (2015)

20. Bernardini, F., et al.: Early Roman military fortifications and the origin of Trieste, Italy. Proc. Natl. Acad. Sci. 112(13), E1520–E1529 (2015)
21. Costanzo, A., Minasi, M., Casula, G., Musacchio, M., Buongiorno, M.F.: Combined use of terrestrial laser scanning and IR thermography applied to a historical building. Sensors 15(1), 194–213 (2015)
22. Fiorino, D.R., Giannattasio, C., Grillo, S., Pintus, V., Porcu, M., Quaquero, E., Vacca, G.: The management of the restoration site. Diagnostic techniques, problems and perspectives. In: GEORES 2019 2nd International Conference on “Cultural Heritage: challenges, new perspectives and technology innovation”. Springer, Heidelberg (2019)
23. Salonia, P., Scolastico, S., Pozzi, A., Marcolongo, A., Messina, T.L.: Multi-scale cultural heritage survey: quick digital photogrammetric systems. J. Cult. Herit. 10, e59–e64 (2009)
24. Shi, R., Xu, M., Zhu, L.: New techniques of remote sensing in the university of architecture and planning. In: 2009 IEEE International Geoscience and Remote Sensing Symposium, New York, vol. 2, p. II-642. IEEE (2009)
25. Xu, Z., Wu, L., Shen, Y., Li, F., Wang, Q., Wang, R.: Tridimensional reconstruction applied to cultural heritage with the use of camera-equipped UAV and terrestrial laser scanner. Remote Sens. 6(11), 10413–10434 (2014)
26. Yastikli, N.: Documentation of cultural heritage using digital photogrammetry and laser scanning. J. Cult. Herit. 8(4), 423–427 (2007)
27. Fioriti, V., Roselli, I., Tati, A., Romano, R., De Canio, G.: Motion magnification analysis applied to the dynamic identification of historic constructions. IOP Conf. Ser. Mater. Sci. Eng. 364(1), 012001 (2018). IOP Publishing
28. Mistretta, F., Sanna, G., Stochino, F., Vacca, G.: Structure from motion point clouds for structural monitoring. Remote Sens. 11(16), 1940 (2019)
29. Calcina, S.V., Piroddi, L., Ranieri, G.: Fast dynamic control of damaged historical buildings: a new useful approach for Structural Health Monitoring after an earthquake. ISRN Civ. Eng. 2013, 1–6 (2013). Article ID 527604
30. Calcina, S.V., Piroddi, L., Ranieri, G.: Vibration analysis of historic bell towers by means of contact and remote sensing measurements. Nondestr. Test. Eval. 31(4), 331–359 (2016)
31. Marchisio, M., et al.: Applications of new technologies of ground-based interferometric radar to the study of cultural heritage buildings. In: 14th European Meeting of Environmental and Engineering Geophysics, Houten, The Netherlands, pp. 1–4, EAGE (2008)
32. Marchisio, M., Piroddi, L., Ranieri, G., Calcina, S.V., Farina, P.: Comparison of natural and artificial forcing to study the dynamic behaviour of bell towers in low wind context by means of ground-based radar interferometry: the case of the Leaning Tower in Pisa. J. Geophys. Eng. 11(5), 055004 (2014)
33. Piroddi, L., Calcina, S.V.: Integrated vibration analysis for historical dome structures: a complementary approach based on conventional geophysical methods and remote sensing techniques. In: Gervasi, O. (eds.) ICCSA 2020, LNCS, vol. 12255, pp. 928–943. Springer, Heidelberg (2020)
34. Cigna, F., Lasaponara, R., Masini, N., Milillo, P., Tapete, D.: Persistent scatterer interferometry processing of COSMO-SkyMed StripMap HIMAGE time series to depict deformation of the historic centre of Rome, Italy. Remote Sens. 6(12), 12593–12618 (2014)
35. Milillo, P., Giardina, G., DeJong, M.J., Perissin, D., Milillo, G.: Multi-temporal InSAR structural damage assessment: The London crossrail case study. Remote Sens. 10(2), 287 (2018)
36. Tapete, D., Casagli, N., Luzzi, G., Fant, R., Gigli, G., Leva, D.: Integrating radar and laser-based remote sensing techniques for monitoring structural deformation of archaeological monuments. J. Archaeol. Sci. 40(1), 176–189 (2013)
37. Mazzanti, P., Brunetti, A., Scarascia Mugnozza, G.: Mode TinSAR: an ESA incubation project dedicated to the terrestrial SAR interferometry. In: Proceedings of “Fringe 2011 Workshop”, Frascati, Italy, 19–23 September 2011, ESA SP-697, January 2012

38. Bendada, A., Sfarra, S., Ibarra, C., Akhloufi, M., Pradere, C., Maldague, X.: Subsurface imaging for panel paintings inspection: a comparative study of the ultraviolet, the visible, the infrared and the terahertz spectra. Opto-Electron. Rev. 23(1), 90–101 (2015)

39. Cosentino, A.: Terahertz and cultural heritage science: examination of art and archaeology. Technologies 4(1), 6 (2016)

40. Avdelidis, N.P., Moropoulou, A.: Applications of infrared thermography for the investigation of historic structures. J. Cult. Herit. 5(1), 119–127 (2004)

41. Carломagno, G.M., Di Maio, R., Meola, C., Roberti, N.: Infrared thermography and geophysical techniques in cultural heritage conservation. Quant. InfraRed Thermogr. J. 2(1), 5–24 (2005)

42. Arndt, R.W.: Square pulse thermography in frequency domain as adaptation of pulsed phase thermography for qualitative and quantitative applications in cultural heritage and civil engineering. Infrared Phys. Technol. 53(4), 246–253 (2010)

43. Sfarra, S., Marcucci, E., Ambrosini, D., Paoletti, D.: Infrared exploration of the architectural heritage: from passive infrared thermography to hybrid infrared thermography (HIRT) approach. Materiales de Construcción 66(323), 094, 1–16 (2016)

44. Perilli, S., Sfarra, S., Ambrosini, D., Paoletti, D., Mai, S., Scozzafava, M., Yao, Y.: Combined experimental and computational approach for defect detection in precious walls built in indoor environments. Int. J. Therm. Sci. 129, 29–46 (2018)

45. Piroddi, L., Calcina, S.V., Fiorino, D.R., Grillo, S., Trogu, A., Vignoli, G.: Geophysical and remote sensing techniques for evaluating historical stratigraphy and assessing the conservation status of defensive structures heritage: preliminary results from the military buildings at San Filippo bastion, Cagliari, Italy. In: Gervasi, O., et al. ICCSA 2020, LNCS, vol. 12255, pp. 944–959. Springer, Heidelberg (2020)

46. Mercuri, F., Zammit, U., Orazi, N., Paoloni, S., Marinelli, M., Scudieri, F.: Active infrared thermography applied to the investigation of art and historic artefacts. J. Therm. Anal. Calorim. 104(2), 475 (2011)

47. Orazi, N., et al.: Thermographic analysis of bronze sculptures. Stud. Conserv. 61(4), 236–244 (2016)

48. Di Tuccio, M.C., Ludwig, N., Gargano, M., Bernardi, A.: Thermographic inspection of cracks in the mixed materials statue: Ratto delle Sabine. Herit. Sci. 3(1), 1–8 (2015). https://doi.org/10.1186/s40494-015-0041-6

49. Peeters, J., et al.: IR Reflectography and active thermography on artworks: the added value of the 1.5–3 μm Band. App. Sci. 8(1), 50 (2018)

50. Stillman, G.E., Van Valkenburg, M.E.: Reference Data for Engineers: Radio, Electronics. Computers and Communications. Elsevier, Amsterdam (2001)

51. Verhoeven, G.: Basics of photography for cultural heritage imaging. In: Stylianidis, E., Remondino, F. (eds.) 3D Recording, Documentation and Management of Cultural Heritage, pp. 127–251. Whittles Publishing, Dunbeath (2016)

52. Marengo, E., et al.: Development of a technique based on multi-spectral imaging for monitoring the conservation of cultural heritage objects. Anal. Chim. Acta 706, 229–237 (2011)

53. Lerma, J.L.: Automatic plotting of architectural facades with multispectral images. J. Surv. Eng. 131(3), 73–77 (2005)

54. Remondino, F., Rizzi, A.: Reality-based 3D documentation of natural and cultural heritage sites—techniques, problems, and examples. Appl. Geomat. 2(3), 85–100 (2010)
applicazioni termografiche e multispettrali nell’ipogeo di San Salvatore di Sinis in Cabras. M.Sc. thesis, academic year 2014/15

56. Piroddi, L., Ranieri, G., Cogoni, M., Trogu, A., Loddo, F.: Time and spectral multiresolution remote sensing for the study of ancient wall drawings at San Salvatore hypogeum, Italy”. In: Proceedings of the 22nd European Meeting of Environmental and Engineering Geophysics, Near Surface Geoscience 2016, Houten, The Netherlands, pp. 1–5. EAGE (2016)

57. Trogu, A., Cogoni, M., Ranieri, G., Piroddi, L., Loddo, F.: Invisible but not lost. The recovery of the wall drawings of the hypogeum of San Salvatore di Sinis (Sardinia, Italy). In: Proceedings of 24th Annual Meeting of the European Association of Archaeologists, vol. 1, p. 489. Edicions de la Universitat de Barcelona, Barcelona (2018)

58. Whitt, P.: Beginning Photo Retouching and Restoration using GIMP. Apress, New York (2014)

59. Wallisch, P.: Principal components analysis. In: Wallisch, P., Lusignan, M.E., Benayoun, M. D., Baker, T.I., Dickey, A.S., Hatsopoulos, N.G. (eds.) MATLAB for Neuroscientists, pp. 305–315. Academic Press, Cambridge (2014)