Nonminimally coupled gravitational and electromagnetic fields: \(pp \)-wave solutions

Tekin Dereli*

Department of Physics, Koç University, 34450 Sarıyer, İstanbul, Turkey

Özcan Sert†

Department of Physics Engineering, İstanbul Technical University, 34469 Maslak, İstanbul, Turkey

(Received 21 October 2010; published 3 March 2011)

We give the Lagrangian formulation of a generic nonminimally extended Einstein-Maxwell theory with an action that is linear in the curvature and quadratic in the electromagnetic field. We derive the coupled field equations by a first-order variational principle using the method of Lagrange multipliers. We look for solutions describing plane-fronted Einstein-Maxwell waves with parallel rays. We give a family of exact \(pp \)-wave solutions associated with a partially massless spin-2 photon and a partially massive spin-2 graviton.

DOI: 10.1103/PhysRevD.83.065005

PACS numbers: 03.50.De, 04.30.Nk, 04.50.Kd

I. INTRODUCTION

The predictions of the classical laws of electrodynamics have been verified to high levels of accuracy. These are the laws that are usually extrapolated to describe astrophysical phenomena under extreme conditions of temperature, pressure, and density. Any departures from these laws under such extreme conditions may be ascribed to new types of interactions between the electromagnetic fields and gravity. Here we consider nonminimal couplings of gravitational and electromagnetic fields described by a Lagrangian density that involves generic \(RF^2 \) terms. Such coupling terms were first considered by Prasanna [1]. They were soon extended and classified by Horndeski [2] to gain more insight into the relationship between space-time curvature and electric charge conservation. It is remarkable that a calculation in QED of the photon effective action from 1-loop vacuum polarization on a curved background [3] contributed similar nonminimal couplings [4]. A variation of an arbitrary Lagrangian density that involves generic \(RF^2 \) terms.

In particular, we consider solutions describing plane-fronted Einstein-Maxwell waves with parallel rays in Ehlers-Kundt form [10,11]. We present a family of exact solutions describing plane-fronted Einstein-Maxwell waves with parallel rays in Ehlers-Kundt form [10,11]. We present a family of exact solutions describing plane-fronted Einstein-Maxwell waves with parallel rays in Ehlers-Kundt form [10,11]. We present a family of exact solutions describing plane-fronted Einstein-Maxwell waves with parallel rays in Ehlers-Kundt form [10,11]. We present a family of exact solutions describing plane-fronted Einstein-Maxwell waves with parallel rays in Ehlers-Kundt form [10,11].

II. NONMINIMALLY COUPLED EINSTEIN-MAXWELL FIELD EQUATIONS

We will derive our field equations by a variational principle from an action

\[
I(e^a, \omega^a_{\ b}, F) = \int_M L = \int_M \mathcal{L}^1, \tag{1}
\]

where \(\{e^a\} \) and \(\{\omega^a_{\ b}\} \) are the fundamental gravitational field variables and \(F \) is the electromagnetic field 2-form. The space-time metric \(g = g_{\ a\ b} e^a \otimes e^b \) with signature \((-\,\,\,\,+\,\,\,+)\) and we fix the orientation by setting \(*1 = e^0 \land e^1 \land e^2 \land e^3 \). Torsion 2-forms \(T^a \) and curvature 2-forms

\[
\text{II. NONMINIMALLY COUPLED EINSTEIN-MAXWELL FIELD EQUATIONS}
\]

We will derive our field equations by a variational principle from an action

\[
I[e^a, \omega^a_{\ b}, F] = \int_M L = \int_M \mathcal{L}^1, \tag{1}
\]

where \(\{e^a\} \) and \(\{\omega^a_{\ b}\} \) are the fundamental gravitational field variables and \(F \) is the electromagnetic field 2-form. The space-time metric \(g = g_{\ a\ b} e^a \otimes e^b \) with signature \((-\,\,\,\,+\,\,\,+)\) and we fix the orientation by setting \(*1 = e^0 \land e^1 \land e^2 \land e^3 \). Torsion 2-forms \(T^a \) and curvature 2-forms

\[
\text{II. NONMINIMALLY COUPLED EINSTEIN-MAXWELL FIELD EQUATIONS}
\]

We will derive our field equations by a variational principle from an action

\[
I[e^a, \omega^a_{\ b}, F] = \int_M L = \int_M \mathcal{L}^1, \tag{1}
\]

where \(\{e^a\} \) and \(\{\omega^a_{\ b}\} \) are the fundamental gravitational field variables and \(F \) is the electromagnetic field 2-form. The space-time metric \(g = g_{\ a\ b} e^a \otimes e^b \) with signature \((-\,\,\,\,+\,\,\,+)\) and we fix the orientation by setting \(*1 = e^0 \land e^1 \land e^2 \land e^3 \). Torsion 2-forms \(T^a \) and curvature 2-forms

\[
\text{II. NONMINIMALLY COUPLED EINSTEIN-MAXWELL FIELD EQUATIONS}
\]

We will derive our field equations by a variational principle from an action

\[
I[e^a, \omega^a_{\ b}, F] = \int_M L = \int_M \mathcal{L}^1, \tag{1}
\]

where \(\{e^a\} \) and \(\{\omega^a_{\ b}\} \) are the fundamental gravitational field variables and \(F \) is the electromagnetic field 2-form. The space-time metric \(g = g_{\ a\ b} e^a \otimes e^b \) with signature \((-\,\,\,\,+\,\,\,+)\) and we fix the orientation by setting \(*1 = e^0 \land e^1 \land e^2 \land e^3 \). Torsion 2-forms \(T^a \) and curvature 2-forms

\[
\text{II. NONMINIMALLY COUPLED EINSTEIN-MAXWELL FIELD EQUATIONS}
\]

We will derive our field equations by a variational principle from an action

\[
I[e^a, \omega^a_{\ b}, F] = \int_M L = \int_M \mathcal{L}^1, \tag{1}
\]

where \(\{e^a\} \) and \(\{\omega^a_{\ b}\} \) are the fundamental gravitational field variables and \(F \) is the electromagnetic field 2-form. The space-time metric \(g = g_{\ a\ b} e^a \otimes e^b \) with signature \((-\,\,\,\,+\,\,\,+)\) and we fix the orientation by setting \(*1 = e^0 \land e^1 \land e^2 \land e^3 \). Torsion 2-forms \(T^a \) and curvature 2-forms

\[
\text{II. NONMINIMALLY COUPLED EINSTEIN-MAXWELL FIELD EQUATIONS}
\]

We will derive our field equations by a variational principle from an action

\[
I[e^a, \omega^a_{\ b}, F] = \int_M L = \int_M \mathcal{L}^1, \tag{1}
\]

where \(\{e^a\} \) and \(\{\omega^a_{\ b}\} \) are the fundamental gravitational field variables and \(F \) is the electromagnetic field 2-form. The space-time metric \(g = g_{\ a\ b} e^a \otimes e^b \) with signature \((-\,\,\,\,+\,\,\,+)\) and we fix the orientation by setting \(*1 = e^0 \land e^1 \land e^2 \land e^3 \). Torsion 2-forms \(T^a \) and curvature 2-forms
R^a_b of space-time are found from the Cartan-Maurer structure equations

$$de^a + \omega^a_b \wedge e^b = T^a,$$

(2)

$$d\omega^a_b + \omega^a_c \wedge \omega^c_b = R^a_b.$$

(3)

We consider the following Lagrangian density 4-form:

$$L = \frac{1}{2\kappa^2} R_{ab} \wedge (e^a \wedge e^b) - \frac{1}{2} F \wedge \star F + \frac{\gamma}{2} R_{ab} \wedge F^{ab} \wedge F,$$

(4)

where $\kappa^2 = 8\pi G$ is Newton’s universal gravitational constant ($c = 1$) and γ is a coupling constant. The field equations are obtained by considering the independent variations of the action with respect to $\{e^a\}$, $\{\omega^a_b\}$ and $\{F\}$. The electromagnetic field components are read from the expansion $F = \frac{1}{2} F_{ab} e^a \wedge e^b$. We will be working with the unique metric-compatible, torsion-free Levi-Civita connection. We impose this choice of connection through constrained variations by the method of Lagrange multipliers. That is, we add to the above Lagrangian density the following constraint terms:

$$L_C = (de^a + \omega^a_b \wedge e^b) \wedge \lambda_a + dF \wedge \mu,$$

(5)

where λ_a’s are Lagrange multiplier 2-forms whose variation imposes the zero-torsion constraint $T^a = 0$. We also use a first-order variational principle for the electromagnetic field 2-form F for which the homogeneous field equation $dF = 0$ is imposed by the variation of the Lagrange multiplier 2-form μ.

The infinitesimal variations of the total Lagrangian density $L + L_C$ (modulo a closed form) are found to be

$$\delta L + \delta L_C = \frac{1}{2\kappa^2} \delta R^{bc} \wedge e_{abc} + \frac{1}{2} \delta e^a (\iota_a F \wedge \star F - F \wedge \iota_a \star F) + \delta e^a \wedge D\lambda_a - \frac{\gamma}{4} \delta e^a \wedge (\iota_a R_{bc} \wedge F^{bc} \wedge F - R_{bc} \wedge F^{bc} \iota_a \star F$$

$$+ \delta R_{bc} \wedge F_{ab} \wedge F^{ab} - F_{bc} \wedge F^{ab} \iota_a \star F) + \lambda_a \wedge T^a + \frac{1}{2} \omega_{ab} \wedge (e^b \wedge \lambda_a - e^a \wedge \lambda_b) + \frac{\gamma}{2} \omega_{ab} \wedge D(F^{ab} \wedge F) - \dot{F} \wedge \star F$$

$$+ \frac{\gamma}{2} \dot{F} \wedge F^{ab} \wedge R_{ab} + \frac{\gamma}{2} F \wedge \dot{F} \wedge R_{ab} - \dot{F} \wedge d\mu,$$

(6)

where a dot over a field variable denotes infinitesimal variations and we use shorthand notation $e^a \wedge e^b \wedge \cdots \equiv e^{ab\cdots}$. Lagrange multiplier 2-forms λ_a are solved from the connection variation equations

$$e_a \wedge \lambda_b - e_b \wedge \lambda_a = \gamma D(F_{ab} \wedge F).$$

(7)

It turns out that

$$\lambda_a = \gamma e^b D(F_{ba} \wedge F) - \frac{\gamma}{4} e_a \wedge \iota^b D(F_{bc} \wedge F).$$

(8)

Thus the Einstein field equations are

$$- \frac{1}{2\kappa^2} R^{bc} \wedge e_{abc} = \frac{1}{2} (\iota_a F \wedge \star F - F \wedge \iota_a \star F)$$

$$- \frac{\gamma}{4} (\iota_a R_{bc} \wedge F^{bc} \wedge F - R_{bc} \wedge F^{bc} \iota_a \star F + \delta F_{bc} \wedge F_{ab} \wedge F^{ab} - F_{bc} \wedge F^{ab} \iota_a \star F)$$

$$+ \gamma F_{ab} \iota_b F \wedge \star R^{bc} + \gamma D(e^b D(F_{bc} \wedge F)) - \frac{\gamma}{4} e_a \wedge D(\iota^b D(F_{bc} \wedge F)),$$

(9)

while the Maxwell equations read

$$dF = 0, \quad d \wedge (F - \gamma F_{ab} R^{ab}) = 0.$$

(10)

Electromagnetic constitutive equations

In general one may encode the effects of nonminimal couplings of the electromagnetic fields to gravity into the definition of a constitutive tensor. Maxwell’s equations for an electromagnetic field F in an arbitrary medium can be written as

$$dF = 0, \quad \ast d \ast G = J,$$

(11)

where G is called the excitation 2-form and J is the source electric current density 1-form. The effects of gravitation and electromagnetism on matter are described by G and J. To close this system we need electromagnetic constitutive relations relating G and J to F. Here we consider only the source-free interactions, so that $J = 0$. Then we take a simple linear constitutive relation

$$G = Z(F),$$

(12)

where Z is a type-(2,2)-constitutive tensor. For the above theory we have

065005-2
The electric field \(e \) and magnetic induction field \(b \) associated with \(F \) are defined with respect to an arbitrary unit future-pointing timelike 4-velocity vector field \(U \) ("inertial observer") by
\[
e = \iota_U F, \quad b = \iota_U \ast F.
\]
Since \(g(U, U) = -1 \), we have
\[
F = e \wedge \tilde{U} - \ast(b \wedge \tilde{U}).
\]

Likewise the electric displacement field \(d \) and the magnetic field \(h \) associated with \(G \) are defined with respect to \(U \) as
\[
d = \iota_U G, \quad h = \iota_U \ast G.
\]
Thus
\[
G = d \wedge \tilde{U} - \ast(h \wedge \tilde{U}).
\]

It is sometimes convenient to work in terms of polarization 1-forms \(p = d - e = -\gamma(\iota_U R_{ab}) F^{ab} \) and magnetization 1-forms \(m = b - h = \gamma(\iota_U \ast R_{ab}) F^{ab} \).

III. PLANE-FRONTED WAVE SOLUTIONS

We seek solutions that describe plane-fronted waves with parallel rays (\(pp \) waves). A generic \(pp \)-wave metric in Ehlers-Kundt form [10] is given by
\[
g = 2dudv + dx^2 + dy^2 + 2H(u, x, y)du^2.
\]

\(H \) is a smooth function to be determined. A convenient choice of orthonormal coframes is going to be used,
\[
e^0 = \frac{H - 1}{\sqrt{2}} du + dv, \quad e^1 = dx,
\]
\[
e^2 = dy, \quad e^3 = \frac{H + 1}{\sqrt{2}} du + dv.
\]

We may also exploit the advantages of complex coordinates in transverse plane by letting
\[
g = 2dudv + 2dzd\bar{z} + 2H(u, z, \bar{z})du^2,
\]
where
\[
z = \frac{x + iy}{\sqrt{2}}, \quad \bar{z} = \frac{x - iy}{\sqrt{2}}.
\]

The nonvanishing Levi-Civita connection 1-forms are
\[
\omega^0_1 = -\omega^1_3 = \frac{H_z}{2}(e^3 - e^0), \quad \omega^0_2 = -\omega^2_3 = \frac{H_y}{2}(e^3 - e^0).
\]

Then the Einstein 3-forms \(G_a = -\frac{1}{2} R^{bc} \wedge \ast e_{abc} \) become
\[
G_0 = -G_3 = \frac{H_{xz} + H_{yy}}{2} (e^3 - e^0), \quad G_1 = 0 = G_2.
\]

We consider an electromagnetic potential 1-form given as \(A = a(u, x, y)du \) or \(A = a(u, z, \bar{z})du \) for \(pp \) waves. Then
\[
F = dA = a_x dx \wedge du + a_y dy \wedge du
\]
\[
= a_z dz \wedge du + a_{\bar{z}} d\bar{z} \wedge du.
\]

We substitute these into (9) and (10) and after a lengthy calculation reach the final form of the nonminimally coupled Einstein-Maxwell equations,
\[
H_{xz} + H_{yy} = -\kappa^2(a_x^2 + a_z^2)
\]
\[
+ \kappa^2 \gamma((a_x^2)_{xz} + 2(a_x a_y)_{xy} + (a_y^2)_{yy}),
\]
\[
a_{xx} + a_{yy} = 0.
\]

These equations can be rewritten in an invariant form on the transverse \(xy \) plane [11,12],
\[
\Delta H = -\kappa^2|\nabla a|^2 + \kappa^2 \gamma \text{Hess}(a)
\]
\[
- 2\kappa^2 \gamma (\Delta(a \Delta a) - a \Delta(\Delta a) + (\Delta a)^2)
\]
\[
\Delta a = 0,
\]
where
\[
\Delta = \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2}
\]
is the two-dimensional Laplacian,
\[
|\nabla a|^2 = \left(\frac{\partial a}{\partial x}\right)^2 + \left(\frac{\partial a}{\partial y}\right)^2
\]
\[
\text{is the norm-squared of the two-dimensional gradient, and}
\]
\[
\text{Hess}(a) = \begin{vmatrix} a_{xx} & a_{xy} \\ a_{xy} & a_{yy} \end{vmatrix} = a_{xx}a_{yy} - (a_{xy})^2
\]
is the two-dimensional Hessian operator. In terms of complex coordinates, (25) simply reads
\[
H_{zz} = -\kappa^2a_z a_{\bar{z}} + \kappa^2 \gamma a_z a_{\bar{z}} a_{zz}, \quad a_{zz} = 0.
\]

A nontrivial solution that depends on the coupling constant \(\gamma \) is obtained by letting
\[
a(u, z, \bar{z}) = f_1(u)z + \bar{f}_1(u)\bar{z} + f_2(u)z^2 + \bar{f}_2(u)\bar{z}^2.
\]

Then
\[
\frac{1}{\kappa^2} H(u, z, \bar{z}) = f_3(u)z^2 + \bar{f}_3(u)\bar{z}^2 - |f_1(u)|^2 |z|^2
\]
\[
- |f_2(u)|^2 |z|^4 - f_1(u)\bar{f}_2(u)z\bar{z}|z|^2
\]
\[
- f_2(u)\bar{f}_1(u)z^2|z|^2 + 4\gamma |f_2|^2 |z|^2.
\]

We note that the nonminimal coupling \(\gamma \) between the gravitational and electromagnetic waves is carried in the last term on the right-hand side of the expression above and affects only the space-time metric. Both the polarization
\(p = 0 \) and the magnetization \(m = 0 \) identically in the \(pp \)-wave geometry. We write
\[
A = \mathcal{A}_{1+} + \mathcal{A}_{1-} + \mathcal{A}_{2+} + \mathcal{A}_{2-},
\]
where
\[
\mathcal{A}_{1+} = f_1(u)z^2 du = \bar{\mathcal{A}}_{1-},
\]
\[
\mathcal{A}_{2+} = f_2(u)z^2 du = \bar{\mathcal{A}}_{2-},
\]
and introduce \(z = re^{i\theta} \) to show that
\[
L_{(1/0)(\partial/\partial \theta)} \mathcal{A}_{1\pm} = \pm \mathcal{A}_{1\pm}
\]
\[
L_{(1/0)(\partial/\partial \theta)} \mathcal{A}_{2\pm} = \pm \mathcal{A}_{1\pm}.
\]
\(\mathcal{L}_X \) denotes the Lie derivative along the vector field \(X \). Hence \(\mathcal{A}_{1\pm}, \mathcal{A}_{2\pm} \) are null photon helicity eigentensors. Similarly, the metric tensor decomposes as
\[
g = \eta + G_0 + G_{1+} + G_{1-} + G_{2+} + G_{2-},
\]
where \(\eta \) is the metric of Minkowski space-time and
\[
G_{1+} = -\bar{f}_1(u)f_2(u)z^2 du \otimes du = \bar{G}_{1-},
\]
\[
G_{2+} = \bar{f}_2(u)z^2 du \otimes du = \bar{G}_{2-},
\]
\[
G_0 = (-|f_1(u)|^2 - |f_2(u)|^2 z^4 + 4 \gamma |f_2(u)|^2 z^2) du \otimes du.
\]
The \(G_{1\pm}, G_{2\pm} \) are null \(g \)-wave helicity eigentensors for linearized gravitation about \(\eta + G_0 \),
\[
L_{(1/0)(\partial/\partial \theta)} G_{1\pm} = \pm G_{1\pm}
\]
\[
L_{(1/0)(\partial/\partial \theta)} G_{2\pm} = \pm 2 G_{2\pm}.
\]
This is a configuration associated with a partially massless spin-2 photon [13,14] and a partially massive spin-2 graviton.

\section*{IV. CONCLUSION}

We have derived the field equations of a nonminimally coupled Einstein-Maxwell theory by a first-order variational principle using the method of Lagrange multipliers in the language of exterior differential forms. We give a class of exact, nontrivial \(pp \)-wave solutions. These solutions describe parallel propagating plane-fronted gravitational and electromagnetic waves that do not interact with each other in the Einstein-Maxwell theory. Here if only the standard degrees of polarization (\(\pm 1 \) for the photon and \(\pm 2 \) for the graviton) are kept, no contribution arises from the nonminimal coupling constant \(\gamma \). It is interesting to note, however, that if \(\gamma \) is kept it brings in \(\pm 2 \) polarization degrees of freedom for the photon together with \(\pm 1 \) polarization degrees of freedom for the graviton. The notion of a partially massless (spin-2) photon had been introduced before by Deser and Waldron [13,14]. On the other hand, the partially massive (spin-2) graviton here is new and it may find some observational evidence in the future. We wish to conclude by a few comments.

(i) It is possible to write an arbitrary linear combination of all \(RF^2 \)-type invariants [2] as additional terms in the Lagrangian density 4-form
\[
L' = \frac{\gamma_2}{2} i^a F \wedge \mathcal{R}_a \wedge *F + \frac{\gamma_3}{2} \mathcal{R} F \wedge *F
\]
\[
+ \frac{\gamma_4}{2} R_{ab} F^{ab} F \wedge *F + \frac{\gamma_5}{2} i^a F \wedge \mathcal{R}_a \wedge F
\]
\[
+ \frac{\gamma_6}{2} \mathcal{R} F \wedge F,
\]
where \(\mathcal{R}_a = \epsilon_b R^b_a \) are the Ricci 1-forms and \(\mathcal{R} \) is the curvature scalar. Now the variational field equations become a lot more complicated but no essential insight is gained by such a generalization as far as the \(pp \)-wave solutions above are concerned.

(ii) A conformally scale invariant nonminimal coupling is achieved (for the case \(\omega = -\frac{3}{2} \)) by considering
\[
L = \frac{\phi}{2} R_{ab} \wedge *e^{ab} - \frac{\omega}{2\Phi} d\Phi \wedge *d\Phi - \frac{1}{2} F \wedge *F
\]
\[
+ \frac{\gamma}{2\Phi} C_{ab} \wedge F^{ab} *F,
\]
where \(\phi \) is the dilaton and
\[
C_{ab} = R_{ab} - \frac{1}{2}(e_a \wedge \mathcal{R}_b - e_b \wedge \mathcal{R}_a) + \frac{1}{6} \mathcal{R} e_{ab}
\]
are the Weyl conformal curvature 2-forms (\(\gamma_2 = \gamma, \gamma_3 = \frac{1}{2}, \gamma_4 = \gamma_5 = \gamma_6 = 0 \)).

(iii) One may give up the zero-torsion constraint and vary the action (4) with respect to the metric and connection treated as independent variables. The equations resulting from the connection variations can be solved for the torsion 2-forms,
\[
T_a = \kappa^2 \gamma \epsilon^b D(\bar{F}_{ab} \wedge F) + \frac{1}{4} \kappa^2 \gamma \epsilon_a \wedge \epsilon^b D(\bar{F}^{bc} \wedge F).
\]
Here we use the expansion \(*F = \frac{1}{2} \bar{F}_{ab} \epsilon^{ab} \). The exterior covariant derivatives on the right-hand side implicitly involve the contortion 1-forms. Therefore, the algebraic equations (40) admit a unique solution for the torsion 2-forms in terms of the tensor \(\bar{D}(\bar{F}_{ab} \wedge F) \), but an explicit formula is not easy to obtain.

\section*{ACKNOWLEDGMENTS}

T.D. gratefully acknowledges partial support from The Turkish Academy of Sciences (TUBA). The research of Ö. S. is supported by a grant from The Turkish Scientific and Technological Research Council (TUBITAK).
[1] A. R. Prasanna, Phys. Lett. \textbf{37A}, 331 (1971).
[2] G. W. Horndeski, J. Math. Phys. (N.Y.) \textbf{17}, 1980 (1976).
[3] I. T. Drummond and S. J. Hathrell, Phys. Rev. D \textbf{22}, 343 (1980).
[4] H. A. Buchdahl, J. Phys. A \textbf{12}, 1037 (1979).
[5] F. Müller-Hoissen, Classical Quantum Gravity \textbf{5}, L35 (1988).
[6] T. Dereli and G. Üçoluk, Classical Quantum Gravity \textbf{7}, 1109 (1990).
[7] A. B. Balakin and J. P. S. Lemos, Classical Quantum Gravity \textbf{18}, 941 (2001).

[8] A. B. Balakin and J. P. S. Lemos, Classical Quantum Gravity \textbf{19}, 4897 (2002).
[9] A. B. Balakin and J. P. S. Lemos, Classical Quantum Gravity \textbf{22}, 1867 (2005).
[10] J. Ehlers and W. Kundt, in \textit{Gravitation: An Introduction to Current Research}, edited by L. Witten (Wiley, New York, 1962).
[11] P. C. Aichelburg, Acta Phys. Austriaca \textbf{34}, 279 (1971).
[12] T. Dereli and R. W. Tucker, Classical Quantum Gravity \textbf{21}, 1459 (2004).
[13] S. Deser and A. Waldron, Phys. Rev. D \textbf{74}, 084036 (2006).
[14] Yu. M. Zinoviev, Nucl. Phys. \textbf{B821}, 431 (2009).