Feasibility Study on The Operation of Toboali Substation to Reduce The Use of Fossil Fuels as Power Plants and Energy Loss by Computer Simulation

To cite this article: Khoirun et al 2019 IOP Conf. Ser.: Earth Environ. Sci. 353 012022

View the article online for updates and enhancements.
Feasibility Study on The Operation of Toboali Substation to Reduce The Use of Fossil Fuels as Power Plants and Energy Loss by Computer Simulation.

Khoirun¹, Asmar¹, M Y Puriza¹, R Kurniawan¹, Y Tiandho² and E M Siregar³

¹Department of Electrical Engineering, Universitas Bangka Belitung, Indonesia
²Department of Physics, Universitas Bangka Belitung, Indonesia
³PT. PLN (Persero) UIW Babel-UP3 Bangka, Bangka Belitung, Indonesia

E-mail: yonggipuriza@yahoo.com

Abstract. This study discussed the analysis of load flow before and after the Toboali Substation (GI Toboali) - that is still in development process stage when the paper is written-. This study was operated in a computer simulation using ETAP Software. The Toboali substation needs to be built because Toboali diesel power plant will be shut down because the Toboali diesel power plant is a diesel power plant leased from PT. Megapower. From the simulation results it was found that before the Toboali substation operated the energy loss was 3,895.7 MWh/year and after the Toboali Substation operated an energy loss was 3,377.5 MWh/year and will reduce 20 tons/day usage of biodiesel. It is expected that when the Toboali substation operates it will reduce the energy loss and electricity dependence of the region on fossil energi and also it will increase power system reliability.

1. Introduction

Seeking from the future aspect, green energy is an alternative source for power generation that provides unlimited energy. The only need is to aware people for energy conservation along with environment. This is a step to generate different forms of energy in most of the field with clean source (less of fossil fuel use). Day by day the demand of clean energy is increasing; green energy will fulfill the need with more advanced technological systems. But it will take time when every single house operates their electrical appliances by using their own power producing system such as solar panels, small wind turbines etc. [1]

At present, Toboali substation is being carried out to reduce the operating, improve the power system reliability and rental cost of the Toboali diesel power plant and to improve the quality of the voltage and power losses and to support government programs so that they do not rely on fossil fuels fully. After Toboali sub-station operates, it is planned to divide the load. Previously, the Tukak Sadai was a stand alone feeder, so after the GI Toboali operated is divided into Tukak and Sadai feeders. Sukadamai feeder is divided into Sukadamai and Pemda feeders. The Tiram Puput express feeder is divided into Tiram express feeder and Puput express feeder. As well as the addition of two other express feeders [2].
In this study, load flow will be compared between before and after the operation of the Toboali substation. Some research used as a reference is about the analysis of load flow [3-9], planning the construction of substations and network reconfiguration [10-11], and about green energy [1]. Other studies use ETAP to compare various load flow methods [12-13]. Also, there are several books that discuss load flow [14-15].

2. Research Methodology

In this study, the results of the flow of power will be compared that includes the tip feeder voltage and power loss between before and after the substation operated. Load data used was the measurement data of the last distribution transformer loading. Voltage synchronization between systems was at a value of 20.6 kV. Simulation using ETAP software with Power Flow Analysis using Newton Raphson method. All data used field data so that the simulation results before Toboali substation operates will be very close to real conditions.

3. Results and Discussion

3.1. Simulation Analysis of System Condition Before Toboali Sub Station Operates

In load flow analysis, it will only be analyzed at a nominal voltage of 20 kV with a household load of 400/230 Volt. In the Toboali and Koba systems, both are synchronized 20.6 kV loaded to minimize end voltage that is too small with ETAP simulation results as follows

Feeder	Kota	Rindik	Bikang	Sukadamai	Tukak	Sadai	Tanjung	Labu	Express Feeder (EF)	Tiram Puput	Palas	Paku
Voltage (kV)	20.373	20.519	20.19	20.556	20.415	20.181	20.632	16.569	18.297			

The loss value obtained by calculating losses on line, on distribution transformers, and other installed components. The value of these losses was obtained from the report summary, which also includes losses on feeders. The value of Toboali’s system losses on software can be seen in Table 2.

Table 2. Summary report of Toboali system condition before Toboali Substation operates from ETAP

Source (Swing Buses)	7.739	9.794	12.483
Source (Non-Swing Buses)	6.490	-0.708	6.528
Total Demand	14.229	9.086	16.883
Total Motor Load	3.938	2.410	4.616
Total Static Load	9.420	5.714	11.018
Total Continant I Load	0.000	0.000	0.000
Total Generic Load	0.000	0.000	0.000
Apparent Losses	0.872	0.962	
System Missmatch	0.000	0.000	
Number of Iterations	3		
From the summary of the simulation on the software, it can be seen that the value of the Toboali system loss conditions before the Toboali substation operates was 0.872 MW. The value of these losses was relatively high. But PLN itself does not have a standard for maximum losses allowed in a network. It can be calculated that energy losses for one year were 3,895,747 MWh/year. This value is still quite high, so it is necessary to build a Toboali substation, and the end voltage of Paku and Palas feeders are still below the standard, which is around 17 kV.

3.2. Simulation Analysis of System Condition After Toboali Sub Station Operates

In load flow analysis, it will only be analyzed at a nominal voltage of 20 kV with a household load at 400/230 Volt. When the Toboali substation has been operated, the Toboali diesel power plant will be shut down because the Toboali diesel power plant uses a 6 MW generator engine which is leased from PT. Megapower.

Table 3. End voltage of Toboali System before Toboali Sub station operates

Feeder	Kota	Rindik	Bikang	Sukadamai	Tukak	Sadai	Tanjung Labu	Pemda	EF Tiram	EF Puput	Palas	Paku
Voltage (kV)	20.056	20.204	20.053	20.499	20.548	20.497	20.189	20.577	20.598	20.598	17.393	17.705

The loss value obtained by calculating losses on the line, on the distribution transformer and other installed components. The value of these losses was obtained from the report summary, which also includes losses on feeders. The value of Toboali\'s system losses on software can be seen in the following Table 4.

Table 4. Summary report of Toboali system condition after Toboali substation operates from ETAP

Source (Swing Buses) :	7.598	9.448	12.124
Source (Non-Swing Buses) :	6.490	-0.753	6.533
Total Demand :	14.088	8.696	16.556
Total Motor Load :	3.954	2.420	4.636
Total Static Load :	9.378	5.691	10.970
Total Costant I Load :	0.000	0.000	0.000
Total Generic Load :	0.000	0.000	0.000
Apparent Losses :	0.756	0.585	
System Missmatch :	0.000	0.000	
Number of Iterations :	3		

From the summary of the simulation in Table 4, it can be seen that the value of the Toboali system power losses conditions before the Toboali substation operating was 0.756 MW. This loss value was relatively high. But PLN does not have a standard for maximum losses allowed in a network. And the Toboali system had a load of 14.088 MW. It can be calculated that the energy loss for one year was 3,377,5056 MWh / year and had a loss of 3.96%. If compared to the conditions before the Toboali Substation operates, a table can be made as follows:
Table 5. Comparison of end voltage of Toboali system between before and after Toboali substation operates

Feeder	Voltage (kV) Before	Voltage (kV) After
Kota	20.373	20.056
Rindik	20.519	20.204
Blikang	20.190	20.053
Sukadamai	20.556	20.499
Tukak	20.415	20.548
Sadai	20.181	20.497
Tanjung Labu	20.556	20.189
Pemuda	20.632	20.577
EF Tiram	20.632	20.598
EF Puput	16.569	20.598
Palas	18.297	17.393
Paku		17.705

From Table 5, it can be seen that Toboali substation construction causes the end voltage of feeder to be closer to the nominal voltage of 20 kV because Toboali diesel power plant will be turned off after the Toboali Substation operation. But this does not improve the quality of the voltage of Paku and Palas feeders supplied from Koba Substation. To improve the quality of end voltage of Koba substation, further studies are needed, but not discussed here.

After the Toboali substation operated, the energy loss also decreased, that was from 3895.7 MWh/year to 3377.5 MWh/year, or equivalent to reducing losses from 4.53% to 3.96%. In addition, it will certainly eliminate the price of biodiesel for the operation of the Toboali diesel power plant which requires approximately 20 tons of biodiesel every day or about save IDR 139,400,000 for a single day. It also will eliminate the cost of renting Toboali diesel power plant with the amount that is not calculated here.

It can be concluded that the Toboali Substation operation will cause the end voltage of feeder in Toboali to be close to the nominal voltage of 20 kV except for Palas and Paku feeders which remain below the standard.

4. Conclusion

Based on the results of the Toboali system load flow analysis between before and after the operation of Toboali substation, the following conclusions can be drawn:

1. Based on the results of the load flow analysis between the conditions before the Toboali substation operation and after the Toboali substation operation it was found that the end voltage of each feeder will be close to the nominal voltage on the busbar which is 20 kV, except for Palas and Paku feeders because the supply is obtained from Koba substation. However, change in the value of the load flow is not so significant.

2. Energy losses can be reduced when Toboali Substation is operational, from 872 kW/year to 757 kW/year. And the percentage of losses will be reduced when the Toboali substation is operating, from 4.53% to 3.96%.

3. The operation of Tobolali substation can reduce costs because of the lease of Toboali diesel power plant and the operation of the diesel-fueled Toboali diesel power plant so that it is more environmentally friendly. It also reduces fuel for Toboali power plant that requires approximately 20 tons of biodiesel every day and it can save money about IDR 139,400,000 just for the Toboali diesel power plant fuel.

References

[1] Kalyani V L, Dudy M K and Pareek S 2015 Green Energy: The Need of the World International Journal of Computer Science and Information Security 2 pp. 18-26
[2] PLN ULP Toboali 2018 Dokumen Konlis (Bangka Belitung: PLN ULP Toboali)
[3] Dharamjit and Tanti D K 2013 Load Flow Analysis on IEEE 30 bus System International Journal of Scientific and Research Publications 2 pp. 1-6.
[4] Ghiasi M 2018 A Detailed Study for Load Flow Analysis in Distributed Power System International Journal of Industrial Electronics, Control and Optimization 1 pp. 153-161. doi: 10.22111/IECO.2018.24423.1027

[5] Malik M N, Toor A I, Siddiqui M A, Husain N and Nadeem A 2016 Load Flow Analysis of an EHT Network Using ETAP Journal of Multidisciplinary Engineering Science and Technology (JMEST) 3 pp. 4979-4984.

[6] Patil B and Namekar S 2018 Load Flow & Short Circuit Analysis of 132/33/11 kV Substation using ETAP International Journal of Applied Engineering Research 13 pp. 9943-9952.

[7] Suresh V 2019 Comparison of Solvers Performance for Load Flow Analysis Transactions on Environment and Electrical Engineering 3 pp. 1-6. doi: 10.22149/tee.2019v3i1.131

[8] Kapahi R 2013 Load Flow Analysis of 132 kV substation using ETAP Software International Journal of Scientific & Engineering Research 4 pp. 1-5.

[9] Idoniboyeobu D C and Ibeni C 2017 Analysis for Electrical Load Flow Studies in Port Harcourt, Nigeria, Using Newton Raphson Fast Decoupled Techniques American Journal of Engineering Research (AJER) 6 pp. 230-240.

[10] Zaiduddin M 2016 Analisa Masuknya Gardu Induk Anggrek Dan Rekonfigurasi Jaringan Terhadap Kualitas Tegangan Dan Rugi-Rugi Daya (Studi Kasus PLN Rayon K wandang Area Golontalo) (Gorontalo : Program Studi Teknik Elektro, Fakultas Teknik Universitas Ichasan)

[11] Perrnata S I 2017 Analisis Perencanaan Pembangunan Gardu Induk dan Rekonfigurasi Jaringan 20 kV pada PLN Rayon Pangkalpinang, (Balunijuk: Jurusan Teknik Elektro UBB)

[12] Afolabi O, Ali W, Cofie P, Fuller J, Obiomon P. and Kolawole E. 2015 Analysis of the Load Flow Problem in Power System Planning Studies. Energy and Power Engineering, 7, pp. 509-523. doi: 10.4236/ep.2015.710048.

[13] Ghiasi M 2018 A Comparative Study On Common Load flow Techniques in the Power Distribution System of the Tehran Metro Tehnički Glasnik 12 pp. 244-250. doi : 10.31803/tg-20180630204718.

[14] Stevenson W D and Grainger J J 1994 Power System Analysis (New York : McGraw Hill)

[15] Gonen T 1986 Electrical Power Distribution System Engineering (New York : McGraw Hill)

Acknowledgments

We gratefully acknowledge the support from USAID through the SHERA program - Centre for Development of Sustainable Region (CDSR). In year 2017-2021 CDSR is led by Center for Energy Studies – UGM.