Hepatotoxicity and Nephrotoxicity of Lead Nitrate in Toad *Bufo viridis*

Naz S. Rasheed¹, Dilshad H. Hassan² and Falah M. Aziz³

¹College of agriculture, Salahaddin University-Erbil, Kurdistan Region, Iraq
² Faculty of Science, Soran University-Erbil.
³ Department of Biology, College of Science, Salahaddin University-Erbil, Kurdistan Region, Iraq.

A R T I C L E I N F O

ABSTRACT

The present investigation dealt with the study of the effect of two doses of lead nitrate (40mg/kg and 80mg/kg) for three weeks on the liver and kidney of the male toad, *Bufo viridis*. Lead nitrate caused several histological alterations in the studied organs in a dose dependent pattern. The histological alterations included degeneration of hepatocytes, dilation of blood sinusoids, leucocytes infiltration in the liver and kidney, degeneration of kidney tubule epithelial lining cells. The most important finding was the significant dose dependent increase in number of melanomacrophage centers (MMGs) in the liver compared to control. The later results can be used as an important marker for water pollution by this heavy metal.

Keywords:
Liver; kidney; lead nitrate; melanomacrophage center

Corresponding Author:
Falah M. Aziz
falahl.aziz@su.edu.krd

1. INTRODUCTION

Lead (Pb) is a ubiquitous environmental pollutant, widely distributed, representing a high toxicological and ecotoxicological risk. Lead is in frighteningly large array of consumer products, from art supplies and automobile components to specialty paints, some hair dyes, and even candy especially the local Kirkuk oil refineries (Al-Dabbas et al., 2014, Al-Dabbas et al., 2012). Lead (Pb) exposure is also considered to be a major public health problem; therefore(Chiesa et al., 2006).

Lead has been found to induce a wide range of behavioral, biochemical and physiological effects. The liver, kidneys, and brain are considered to be the target organs for the toxic effects of lead (Jackie et al., 2011). Lead affects the metabolism of other minerals and has affinity for bone, where it acts by replacing calcium. Thus, the highest concentrations of lead are usually found in bone, kidney and liver (Gurer and Ercal, 2000, Al Zadjali et al., 2015).

Oxidative stress with subsequent lipid peroxidation (LP) induced by production of reactive oxygen species (ROS) has been reported to be one of the important
mechanisms involved in toxic effects of lead (Yin et al., 2008).

Amphibians are of interest, because during their development they move from aquatic to terrestrial habitats, which may be polluted by the metal since they are receptors of products generated by anthropogenic activities (Arrieta et al., 2004). The most previous researches concerning the effect of lead ions on the liver or/and kidney included the species Rana (Vogiatzis and Loumbourdis, 2001, Loumbourdis, 2003, Fenoglio et al., 2006, Jayawardena et al., 2017) and few were included Bufo (Enuneku and Ezemonye, 2012).

Melanomacrophage centers (MMGs) of the spleen, liver, and kidney as part of the defense system of fish, amphibians, and reptile (Steinel and Bolnick, 2017, Vaissi et al., 2017) are more and more often used as an object of micropathomorphological and toxicological studies (Pronina et al., 2014). A functional differences among MMGs of liver, kidney and spleen of fishes were determined (Ribeiro et al., 2011). The main functions of MMGs are the iron capture and storage in haemolytic diseases storage, antigen trapping and presentation to lymphocytes, sequestration of products of cellular degradation and potentially toxic tissue materials, such as melanins, free radicals and catabolic breakdown products, destruction and detoxification of endogenous and exogenous materials (Agius and Roberts, 2003). They are thought to be the site of primary melanogenesis rather than mere storage (Agius and Roberts, 2003). There is evidence that liver MMGs represent a metabolically (melanin synthesis/degradation) and cytokinetically (proliferation/death) active cell population during the annual cycle of the frog (Barni et al., 2002).

The aim of the present work was to investigate the hepatotoxicity and nephrotoxicity of lead giving as lead acetate in

Bufo viridis (Amphibia: Anura: Bufonidae) with special attention to the effect on the MMGs.

2. MATERIALS AND METHODS

In this study, male toad, *Bufo viridis*, weighing 25-27 g collected from certain pond in Erbil city, were used. The experiments were conducted at College of science, Salahaddin University, Erbil-Iraq. The animals were kept in convenient plastic boxes in an environment mimic the natural pond. The fifteen toads were randomly and equally divided to three groups: control group (G1) given 1mL distilled water by gavage, lead nitrate (40mg/kg) as group 2 and lead nitrate (80mg/kg) as group 3. All the animals were treated for 3 weeks and they have been sacrificed 24 hours after the last oral dose. The liver and kidney of all animals were removed and processed for the histological study.

2.1. Histological studies

For histological study, fresh removed organs pieces were fixed in 10% buffered formalin, dehydrated in ethanol and embedded in paraffin. Serial sections with 5 μm thickness were obtained using miritome (Bright Co.) and stained according to hematoxylin and eosin procedure (Kiernan, 1981). Certain tissue samples (size ≤ 1mm3) were fixed in 3% glutaraldehyde in cacodylate buffer then postfixed in 1% OsO4, dehydration, clear and then embedded in araldite mixture for preparing plastic blocks. Semithin sections were stained by 1% toluidine blue in 1% borax (Burns, 1978). Counting cell number and photography were undertaken by special digital camera microscope (Olympus) per mm2.
3. RESULTS AND DISCUSSION

Amphibians living in ponds and rivers may be exposed daily to environmental pollutants which may accumulate in their tissues and induce various histopathological alterations (Seixas Filho et al., 2017). In the present investigation, lead nitrate was used as pollutant to evaluate its hepatotoxicity and nephrotoxicity in toad, Bufo viridis collected in autumn from local ponds in Erbil city.

3.1. Hepatotoxicity

Lead is a widespread constituent of earth's crust (Needleman, 1999). It can cause hypertension, developmental defects, neurological problems, renal dysfunction, and anemia. The most important feature of lead hepatotoxicity in the toad was the dose dependent significant increase in the number of MMGs (Fig 1&2). As shown in Fig.3, this heavy metal was caused hepatocellular changes in the toad as compared with the normal histological structures in the control group. The low and high doses of the lead were found to induce several histological changes such as degeneration of the hepatocytes, dilation of blood sinusoids, congestion of blood vessels and the appearance of inflammatory infiltrated leukocytes.

Melanomacrophage centers are Melanophores exist mainly in the liver, kidney and spleen of fish (Agius and Roberts, 2003), frog and toad (Steinel and Bolnick, 2017). They are phagocytes that synthesize melanin (Gutierre et al., 2018). These cells respond to catabolism processes (Kalashnikova, 2000, Steinel and Bolnick, 2017), immunological disorders (Pronina et al., 2014, Steinel and Bolnick, 2017), Uv Uv exposure (Franco-Belussi et al., 2016) and hibernation (Barni et al., 2002). Preliminary histological analyses suggested that MMGs are structurally similar to the mammalian germinal center (GC), leading to the hypothesis that the MMGs plays a role in the humoral adaptive immune response (Steinel and Bolnick, 2017). Different sizes of these cells were detected in the liver (Fig 2) and although such size different has been detected in normal environmental condition, such increase in size or frequency was detected in conditions of environmental stress and have been suggested as reliable biomarkers for water quality in terms of both deoxygenation and iatrogenic chemical pollution (Agius and Roberts, 2003). An increase in their number was detected in response of the frog Rana (Pelophylax) ridibunda to insecticide exposure (Paunescu et al., 2010) and water polluted with fluoride (Bo et al., 2018). An increase in the number of these MMGs was also recently detected in the liver of carp fish in response to mercury chloride exposure (Tjahjaningsih et al., 2017) and liver, kidney and spleen of catfish, Clarias gariepinus, exposed to silver nanoparticles (Sayed and Younes, 2017) and this may rise the hypothesis of metal chelation by these cells and this should be confirmed by further investigations.

The degeneration of hepatocytes as a response to lead toxicity as revealed by the present investigation may be due to the oxidative stress which was considered as the main mechanism of lead induced toxicity in biological system (Flora et al., 2012).

3.2 Nephrotoxicity

As with the liver, the lead has been found to cause nephrotoxic effect on toad kidney (Fig 4). The features of the nephrotoxicity were the degeneration of the epithelial cells lining the kidney tubules especially in the cortex region and infiltrated inflammatory leukocytes near
the glomeruli and in the interstitial tissue between the renal tubules.

Similar to lead induced hepatotoxicity, it has been found that lead toxicity leads to kidney damage via two separate pathways: (1) the generation of reactive oxygen species (ROS) including hydroperoxides, singlet oxygen, and hydrogen peroxide and (2) the direct depletion of antioxidant reserves (Ercal et al., 2001).

The increase in MMGs noticed in liver couldn’t be observed in kidney and this indicates that functional differences among MMGs of liver, kidney and spleen of toads are exist (Ribeiro et al., 2011).

Fig (1): Number of MMGs in the liver of Bufo viridis exposed to lead nitrate Note: Columns superscript with different letters are significantly different at ($P \leq 0.05$)
Fig. (2): Sections in liver of toad after exposure to lead nitrate showing MMGs (arrows). a) Control group, b) 40mg/kg lead nitrate treated group shown higher number of MMGs (arrows), c) 80mg/kg lead nitrate treated group showing higher number of MMGs compared to both groups, notice the different sizes of MMGs. H&E.

All scale bars=20µm.
Fig. (3): Sections in the liver of toad after exposure to lead nitrate showing various histopathological alterations. a) a lot of MMGs (white arrows), dilated blood sinusoids(S), inverted section stained by toluidine blue, b) Some MMGs (arrows), portal vein (V) congested with blood cells and dilated blood sinusoids (S), paraffin section stained by H&E.

All scale bars=20µm.
Fig. (4): Sections in the kidney of lead nitrate treated toads. a) Control group showing normal histological structure in the cortex region with glomerulus (G) and renal tubules (T). b) 40mg/kg lead nitrate treated group showing renal tubules (T) lined by degenerated epithelial cells (arrows), plastic sections stained by toluidine blue. c) 80mg/kg lead nitrate treated group showing inflammatory infiltrated leukocytes (IF), normal (T) and abnormal renal tubules which are lined by degenerated cells (arrows), paraffin section stained by H&E. All scale bars= 20µm.
REFERENCES

AGIUS, C. & ROBERTS, R. 2003. Melano-macrophage centres and their role in fish pathology. Journal of fish diseases, 26, 499-509.

AL-DABBAS, M. A., ALI, L. A. & AFAJ, A. H. 2012. The effect of Kirkuk Oil Refinery on Air pollution of Kirkuk City-Iraq. Iraqi Journal of Science, 53, 8-18.

AL-DABBAS, M. A., HUSSAIN, G. A. & AL-JUBORY, M. E. 2014. The Effect of North Refineries Company on Soil pollution of Baiji City-Iraq. Iraqi Journal of Science, 55, 1319-1329.

AL ZADJALI, S., NEMMAR, A., FAHIM, M. A. A., AZIMULLAH, S., SUBRAMANIAN, D., YASIN, J., AMIR, N., HASAN, M. Y. & ADEM, A. 2015. Lead exposure causes thyroid abnormalities in diabetic rats. International journal of clinical and experimental medicine, 8, 7160.

ARRIETA, M. A., BRUZZONE, L., APARTÍN, C., ROSENBERG, C. E., FINK, N. E. & SALIBIÁN, A. 2004. Biosensors of inorganic lead exposure and effect in an adult amphibian. Archives of environmental contamination and toxicology, 46, 224-230.

BARNI, S., VACCARONE, R., BERTONE, V., FRASCHINI, A., BERNINI, F. & FENOGLIO, C. 2002. Mechanisms of changes to the liver pigmentary component during the annual cycle (activity and hibernation) of Rana esculenta L. Journal of anatomy, 200, 185-194.

BO, X., MU, D., WU, M., XIAO, H. & WANG, H. 2018. The morphological changes and molecular biomarker responses in the liver of fluoride-exposed Bufo gargarizans larvae. Ecotoxicology and environmental safety, 151, 199-205.

BURNS, W. A. 1978. Thick Sections: Technique and Applications”, Diagnostic Electron Microscopy, Ch. 4, B.F. Trump and R.J. Jones, eds., John Wiley & Sons, New York.

CHIESA, M. E., ROSENBERG, C. E., FINK, N. E. & SALIBIÁN, A. 2006. Serum protein profile and blood cell counts in adult toads Bufo arenarum (Amphibia: Anura: Bufonidae): Effects of sublethal lead acetate. Archives of environmental contamination and toxicology, 50, 384-391.

ENUNEKU, A. & EZEMONYE, L. 2012. Acute toxicity of cadmium and lead to adult toad Bufo maculates. Asian J Biol Life Sci, 1, 238-41.

ERCAL, N., Gurer-Orhan, H. & Aykin-Burns, N. 2001. Toxic metals and oxidative stress part I: mechanisms involved in metal-induced oxidative damage. Current topics in medicinal chemistry, 1, 529-539.

FENOGLIO, C., GROSSO, A., BONCOMPAGNI, E., MILANESI, G., GANDINI, C. & BARNI, S. 2006. Morphofunctional evidence of changes in principal and mitochondria-rich cells in the epidermis of the frog Rana kl. esculenta living in a polluted habitat. Archives of environmental contamination and toxicology, 51, 690.

FLORA, G., GUPTA, D. & TIWARI, A. 2012. Toxicity of lead: a review with recent updates. Interdisciplinary toxicology, 5, 47-58.

FRANCO-BELUSSI, L., SköLD, H. N. & DE OLIVEIRA, C. 2016. Internal pigment cells respond to external UV radiation in frogs. Journal of Experimental Biology, Jeb. 134973.

GURER, H. & ERCAL, N. 2000. Can antioxidants be beneficial in the treatment of lead poisoning? Free Radical Biology and Medicine, 29, 927-945.

GUTIERRE, R. C., JARED, C., ANTONIAZZI, M. M., COPPI, A. A. & EGAMI, M. I. 2018. Melanomacrophage functions in the liver of the caecilian Siphonops annulatus. Journal of anatomy, 232, 497-508.

JACKIE, T., HALEAGRAHARA, N. & CHAKRAVORPATHI, S. 2011. Antioxidant effects of Etilingera elatior flower extract against lead acetate-induced perturbations in free radical scavenging enzymes and lipid peroxidation in rats. BMC research notes, 4, 67.

JAYAWARDENA, U. A., ANGUNAWELA, P., WICKRAMASINGHE, D. D., RATNASOORIYA, W. D. & UDAGAMA, P. V. 2017. Heavy metal–induced toxicity in the Indian green frog: Biochemical and histopathological alterations. Environmental toxicology and chemistry, 36, 2855-2867.

KALASHNIKOVA, M. 2000. Ultrastructure of fish and amphibian liver during catabolism of degenerating erythrocytes. Bulletin of Experimental Biology and Medicine, 129, 101-104.

KIERNAN, J. A. 1981. Histological and Histochemistry Methods.: 1st ed. Pergomon press. Oxford.

LOUMBOURDIS, N. 2003. Nephrotoxic effects of lead nitrate in Rana ridibunda. Archives of toxicology, 77, 527-532.

NEEDLEMAN, H. L. History of lead poisoning in the world. International Conference on lead Poisoning Prevention and Treatment, Bangalore, 1999.

PAUNESCU, A., PONEPAL, C., GHICI, D. & GABRIEL, A. 2010. Liver histopathological alterations in the frog Rana (Pelephylax) ridibunda induce by the action of reldan 40EC. Inset Marines, Tom. XVII/1:166-169.
PRONINA, S., BATUEVA, M.-D. & PRONIN, N. 2014. Characteristics of melanomacrophage centers in the liver and spleen of the roach Rutilus rutilus (Cypriniformes: Cyprinidae) in Lake Kotokel during the Haff disease outbreak. *Journal of ichthyology*, 54, 104-110.

RIBEIRO, H., PROCÓPIO, M., GOMES, J., VIEIRA, F., RUSSO, R., BALZUWEIT, K., CHIARINI-GARCIA, H., CASTRO, A. C. S., RIZZO, E. & CORREA, J. D. 2011. Functional dissimilarity of melanomacrophage centres in the liver and spleen from females of the teleost fish Prochilodus argenteus. *Cell and tissue research*, 346, 417-425.

SAYED, A. & YOUNES, H. A. 2017. Melanomacrophage centers in Clarias gariepinus as an immunological biomarker for toxicity of silver nanoparticles. *Journal of Microscopy and Ultrastructure*, 5, 97-104.

SEIXAS FILHO, J. T. D., CAMARGO FILHO, C. B., PEREIRA, M. M., MARTINS, A. M. C. R. P., RIBEIRO FILHO, O. P., MELLO, S. C. R. P., CASSIANO, L. L. & HIPOLITO, M. 2017. Histopathological aspects of the liver of free-living and farmed bullfrogs (Lithobates catesbeianus). *Revista Brasileira de Zootecnia*, 46, 275-279.

STEINEL, N. C. & BOLNICK, D. I. 2017. Melanomacrophage centers as a histological indicator of immune function in fish and other poikilotherms. *Frontiers in immunology*, 8, 827.

TJAHJANINGSIH, W., PURSETYO, K. T. & SULMARTIWI, L. Melanomacrophage centers in kidney, spleen and liver: A toxic response in carp fish (Cyprinus carpio) exposed to mercury chloride. AIP Conference Proceedings, 2017. AIP Publishing, 020012.

VAISSI, S., PARTO, P. & SHARIFI, M. 2017. Anatomical and histological study of the liver and pancreas of two closely related mountain newts Neurergus microspilotus and N. kaiseri (Amphibia: Caudata: Salamandridae). *Zoologia (Curitiba)*, 34.

VOGIATZIS, A. K. & LOUMBOURDIS, N. S. 2001. Exposure of Rana ridibunda to lead II. Impact of lead on various parameters of liver metabolism of the frog Rana ridibunda. *Journal of Applied Toxicology: An International Journal*, 21, 269-274.

YIN, S.-T., TANG, M.-L., SU, L., CHEN, L., HU, P., WANG, H.-L., WANG, M. & RUAN, D.-Y. 2008. Effects of Epigallocatechin-3-gallate on lead-induced oxidative damage. *Toxicology*, 249, 45-54.