저작자표시-비영리-변경금지 2.0 대한민국

이용자는 아래의 조건을 따르는 경우에 한하여 자유롭게

- 이 저작물을 복제, 배포, 전송, 전시, 공연 및 방송할 수 있습니다.

다음과 같은 조건을 따라야 합니다:

저작자표시. 귀하는 원작자를 표시하여야 합니다.

비영리. 귀하는 이 저작물을 영리 목적으로 이용할 수 없습니다.

변경금지. 귀하는 이 저작물을 개작, 변경 또는 가공할 수 없습니다.

- 귀하는 이 저작물의 재이용이나 배포의 경우, 이 저작물에 적용된 이용허락조건을 명확하게 나타내어야 합니다.
- 저작권자로부터 별도의 허가를 받으면 이러한 조건들은 적용되지 않습니다.

저작권법에 따른 이용자의 권리에 의한 내용에 의하여 영향을 받지 않습니다.

이것은 이용허락규약(Legal Code)을 이해하기 쉽게 요약한 것입니다.

Disclaimer ▪
Paracrine effect of the bone morphogeneticprotein-2 at the experimental site on healing of the adjacent control site: a study in the rabbit calvarial defect model
Paracrine effect of the bone morphogenetic protein-2 at the experimental site on healing of the adjacent control site: a study in the rabbit calvarial defect model

이 논문을 석사 학위논문으로 제출함

2015년 6월

연세대학교 대학원
치의학과
이 진욱
This certifies that the Master’s thesis of Jin-Wook Lee is approved.

Thesis Supervisor: Seong-Ho Choi

Kyoo-Sung Cho

Jung-Seok Lee

The Graduate School
Yonsei University
June 2015
Tables of contents

Figure legends ... ii
Table legends ... iii
Abstract ... iv
I. Introduction ... 1
II. Materials and methods .. 4
 2.1. Animals .. 4
 2.2. Materials ... 4
 2.3. Study design .. 5
 2.4. Surgical protocol ... 5
 2.5. Histologic processing .. 6
 2.6. Evaluation methods .. 7
 2.6.1. Clinical observations ... 7
 2.6.2. Histologic observations .. 7
 2.6.3. Histomorphometric analysis 7
 2.7 Statistical analysis ... 8
III. Results .. 9
 3.1. Clinical findings .. 9
 3.2. Histologic findings .. 9
 3.3. Histomorphometric analysis .. 9
IV. Discussions .. 11
References .. 14
Abstract (Korean) ... 18
Figures ... 20
Tables ... 24
Figure legends

Figure 1. Clinical photograph of the experiment 20

Figure 2. Schematic diagram of a calvarial defect 21

Figure 3. Representative photomicrographs obtained at 2 weeks
postoperatively ... 22

Figure 4. Representative photomicrographs obtained at 8 weeks
Postoperatively ... 23
Table legends

Table 1. Group assignment .. 24

Table 2. Histomorphometric measurements 25
ABSTRACT

Paracrine effect of the bone morphogeneticprotein-2 at the experimental site on healing of the adjacent control site: a study in the rabbit calvarial defect model

Jin-wook Lee, D.D.S.
Department of Dentistry, The Graduate School, Yonsei University
(Directed by Prof. Seong-Ho Choi, D.D.S., M.S.D., PhD.)

Purpose: The aim of this study was to assess the possible paracrine effect of bone morphogeneticprotein-2 (BMP-2) at the experimental site on the adjacent control site for validating a rabbit calvarial defect model as a means of verifying the effect of BMP-2.

Methods: Sixteen rabbits were divided into two groups (n=8 in each) according to whether or not BMP-2 would be used. Two circular defects (8 mm in diameter) were created side by side, 2 mm apart, in the calvarium of all of the rabbits. In each animal, one of the defects was grafted with either BMP-2-loaded carrier or carrier material alone. The control defects adjacent to these grafted defects, designated CB (the
nongrafted defect adjacent BMP-2-loaded carrier-grafted defect) and CC (the nongrafted defect adjacent to carrier only-grafted defect), respectively, were the focus of this study, and were filled only with a blood clot in all of the animals. Histologic observation and histomorphometric analysis were performed at 2 and 8 weeks (n=4 animals per point in time) after surgery.

Results: There was no noteworthy difference in the healing pattern, and no statistically significant differences in histomorphometric parameters such as the defect closure, new bone area, or total augmented area between the CC and CB groups.

Conclusions: The results of this study suggest that rabbit calvarial defects separated by a distance of 2 mm are suitable for evaluating the effects of BMP-2 and the control defect can be regarded not to be affected by BMP-2 applied defect.

Key Words: Animal experimentation, Bone morphogenetic protein 2, Bone regeneration, Research design
Paracrine effect of the bone morphogenetic protein-2
at the experimental site on healing of the adjacent control site:
a study in the rabbit calvarial defect model

Jin-Wook Lee, D.D.S.

Department of Dentistry, The Graduate School, Yonsei University

(Directed by Prof. Seong-Ho Choi, D.D.S., M.S.D., PhD.)

I. INTRODUCTION

Numerous treatments have been developed to augment atrophic alveolar ridges, and their clinical efficacy has been demonstrated in both clinical and preclinical studies. However, defects with less osteogenic potential, such as vertical deficiencies, have been found to exhibit variable regenerative outcomes. Therefore, predictable measures for enhancing osteogenesis with a bone substitute have been sought. Among many efforts, the introduction of growth factors such as recombinant bone morphogenetic protein (BMP), vascular endothelial growth factor, and fibroblast growth factor have certainly raised the prospect of predictable bone regeneration (1-4),
and recombinant human BMP-2 (rhBMP-2) has been highlighted as a particularly promising candidate (5).

The rabbit calvarial model is one of the better-established models for evaluating the efficacies of bone substitutes. Several circular defects can be made on the rabbit calvarium, with the sizes of the defects being determined according to the characteristics of the biomaterials being used, the healing period, and more importantly, the aim of individual studies (6-8). For example, circular 8-mm defects were created for evaluating a newly developed bone-graft material, with the treatment modality and the number of defects created differing between studies (1, 6, 7). Rabbit calvaria have also been used for evaluating growth factors such as rhBMP-2 (2, 9). In order to accurately determine the effect of BMP-2, the experimental site grafted with carrier-material-loaded BMP-2 should have no or only a minimal effect on the adjacent, control site. Researchers ordinarily establish a negative control group, often a positive control group grafted with carrier only, and a group grafted with a well-documented carrier material loaded the growth factor to be tested. Moreover, individual differences among the experimental animals, even within the same species, must be taken into consideration. Therefore, all experimental groups are logically required to be tested on the same animal simultaneously. In this sense, where several defects are created on the rabbit calvarium, each defect is bound to be adjacent to another (2). This has raised concerns as to whether the BMP-2 grafted site has a paracrine effect on the adjacent, control defect, thus confounding the findings. If there
is such a paracrine effect, the influence of the tested growth factor—and especially a low dose thereof—would be underestimated, thus attenuating any measured statistically significant differences between findings at the control and experimental sites. However, not much is currently known about the possible effect of BMP-2 in an experimental site on the adjacent, control site.

The aim of this study was therefore to determine whether grafting of rhBMP-2 into an experimental site has a paracrine effect on the adjacent control site, thus validating the rabbit calvarial model as a means of verifying the effect of growth factors.
II. MATERIAL AND METHODS

1. Animals

Sixteen male New Zealand white rabbits (age, 9–20 months; body weight, 3–3.5 kg) were used in this study. The animals were housed in divided cages under standard laboratory conditions and fed a standard diet. The selection of experimental animals, their management, and the surgical protocol followed routines approved by the Institutional Animal Care and Use Committee of Yonsei Medical Center, Seoul, Korea.

2. Materials

BMP-2 was chosen as the growth factor because it is the most frequently used growth factor in the dental field. The BMP-2 used in this study was provided by Dentium (Seoul, Korea). Lyophilized BMP-2 was vortexed with distilled water, yielding a concentration of 0.05 mg/mL. Biphasic calcium phosphate (BCP) was used as the carrier material (OsteonII, Genoss, Suwon, Korea). OsteonII is composed of hydroxyapatite and beta-tricalciumphosphate at a ratio of 30:70, and has a particle diameter of 0.5–1.0 mm. OsteonII was loaded with growth factor by soaking it in 0.1 mL of BMP-2 for 5 minutes. The loading time was followed by previous studies (10, 11).
3. Study design

Two circular defects (8 mm in diameter) were made side by side, 2 mm apart on each rabbit calvarium. The rabbits were divided into two groups: BMP-2+carrier and carrier only (n=8 animals in each group). Block randomization was performed for random allocation. The surgeon had not been informed of the allocation until the defects were created. In each animal, one of the defects was designated a control defect, and was filled with a blood clot only. The experimental sites were filled with either BCP carrier alone (BCP animals) or with BMP-2-loaded BCP carrier (BCP+BMP-2 animals). The control defects in each group were the subject of the present study, and were labeled as follows (Table 1):

- CC group: in the BCP (carrier)-only animals, the defect located adjacent to the BCP-grafted site.
- CB group: in the BCP+BMP-2 animals, the defect located adjacent to the site grafted with BMP-2-loaded BCP.

4. Surgical protocol

The rabbits were anesthetized using an intramuscular injection of 4:1 solution of ketamine hydrochloride (Ketalar, Yuhan, Seoul, Korea) and xylazine (Rompun, Bayer Korea, Seoul, Korea). The surgical site was shaved, then disinfected with povidone
iodine, and then infiltration anesthesia was induced by injection with 2% lidocaine (lidocaineHCl, Huons, Seoul, Korea). An incision was made in the sagittal plane, and a full-thickness flap was elevated. Two circular defects with a diameter of 8 mm were made with a trephine drill; the distance between the defects was set to 2 mm (Fig. 1). The assigned grafting material (i.e., BCP only or BCP+BMP-2) was grafted into one of the defects, and a blood clot was placed into each of the CC and CB defects. Barrier membrane was not used in this study because the membrane protection could make the favorable circumstance for bone formation like guided bone regeneration in each control defect. The flap was repositioned and sutured layer by layer using 4-0 glyconate absorbable monofilament (Monosyn, B. Braun Aesculap AG & Co KG, Tuttlingen, Germany). Postoperative antibiotics were administered by daily intramuscular injection of gentamicin (5 mg/kg body weight) for 1 week postoperatively. The stitches were removed 1 week after the operation. The animals in each group were sacrificed at either 2 weeks (n=4 per group) or 8 weeks (n=4 per group) postoperatively by an overdose of anesthetic.

5. Histologic processing

Blocks that included the adjacent tissues were harvested. The blocks were fixed in 10% buffered formalin for 10 days, decalcified in 5% formic acid for 14 days, and then embedded in paraffin. Serial sections were cut at 5 μm through the center of the
defects. The two center-most sections were selected from each block and stained with hematoxylin and eosin.

6. Evaluation methods

Clinical observations

The animals were carefully observed for any adverse signs such as inflammation, allergic reactions, and other complications throughout the postoperative healing periods.

Histologic observations

The specimens were examined using a binocular microscope (DM LB, Leica Microsystems, Wetzlar, Germany) equipped with a camera (DC300F, Leica Microsystems) by a single observer (J.W.L.) who was blinded to the experimental conditions.

Histomorphometric analysis

Histomorphometric data regarding the following parameters were obtained with an automated image-analysis system (Image-Pro Plus, Media Cybernetics, Silver Spring, MD, USA; Fig. 2): (1) the percentage of defect closure (DF, %)—the percentage of new bone in relation to the original defect length; (2) the total augmented area (TA,
mm2)—the sum of all tissues between the defect margins, including new bone, connective tissue, and vessels; and (3) new bone area (NB, mm2)—the area of new bone between the defect margins.

7. **Statistical analysis**

Independent-samples t-tests were conducted using SPSS ver. 12.0 (SPSS Inc., Chicago, IL, USA). The data are presented as mean±standard deviation values, and the cutoff for statistical significance was set at $P<0.05$.
III. RESULTS

1. Clinical findings

Healing was uneventful during the postoperative period, and no sign of adverse events was observed.

2. Histologic findings

The histologic features were generally similar in the two groups at both healing times. Most of the defects in both groups were largely filled with fibrous connective tissue at 2 weeks postoperatively, and were concave in shape. A minimal amount of wedge-shaped immature new bone was formed at the defect margins (Fig. 3); the amount of new bone was increased at 8 weeks postoperatively. A demarcating line was observed in the newly formed bone. Bone islets were observed in some samples. The defect closure in the 8-week group was greater than in the 2-week group (Fig. 4).

3. Histomorphometric analysis

A summary of the histomorphometric analysis is given in Table 2. DF, NB, and TA
all increased with healing time, with differences over time reaching statistical significance ($P<0.05$). However, there were no significant differences for each variable between the BCP- and BMP-2+BCP-grafted defects and the CC and CB defects, respectively, at either healing time.
IV. DISCUSSION

This study evaluated the possible paracrine effect of BMP-2 grafted into an experimental site on the adjacent control site in a rabbit calvarial model. This model has frequently been used because it is relatively easily handled, the bone healing rate is good, and the marrow space is sufficient for stimulating new bone formation (12, 13). Critical-size defects (CSDs) must be created to evaluate biomaterials. A CSD is defined as the smallest defect that would not heal spontaneously without intervention for a certain period of healing (14), or which results in less than 10% bone healing during the remaining life span of the experimental animal (15). The size of CSDs in the rabbit is reportedly up to 17 mm × 17 mm (16); however, many studies have adopted circular 8-, 6-, and even 5-mm defects (2, 7, 17, 18). Circular 8-mm diameter defects were chosen for the present study. Although an 8-mm defect is smaller than some other CSDs, this size of defect has been suggested to be appropriate for evaluating the early phase of bone healing (8), and it has been shown that 8-mm defects do not fully heal within 8 weeks (8). The proportions of defect closure and new bone were approximately 65% and 39%, respectively. Therefore, the bone-regenerative potential can be evaluated after a healing period of 8 weeks.

The advent of the growth factor era has led to some side effects when they are used in certain procedures, such as when BMP-2 is used in bone regeneration. After spinal fusion surgery using BMP-2, ectopic bone formation was observed in a remote site
that was not related to the surgery (19, 20). Accordingly, it is logical to suspect that a
grafted growth factor could also affect the area adjacent to the surgical site. Moreover,
in experimental research using growth factors, it is possible that, for example, BMP-2
grafted into experimental sites could leak into other sites, such as neighboring
negative or positive control sites. This is a particularly important issue given that
researchers often establish experimental and control sites in the same bony structures.
If, as is often the case, four 8-mm circular defects are created in the rabbit calvarium,
the distance between each defect margin would typically be 2–4 mm, and possibly
smaller with inexperienced surgeons.

We set the distance between each defect margin at 2 mm in the present study.
Histologic and histomorphometric evaluations after 2 and 8 weeks did not reveal any
differences in either the healing pattern or the characteristics of each variable. Sohn et
al. [8] studied various sizes of circular defect in the rabbit calvarium. At 2 weeks, the
authors reported almost 1.9 mm2 of NB and a DF of 41%, which is higher than the
present study; however, this does not indicate that the present study was inappropriate.
Rather, the difference might stem from the healing potentials of the individual
animals. At 8 weeks, the NB and DF measured in this study (CC group: 3.26 mm2 and
66.03%, respectively; CB group: 3.13 mm2 and 59.28%, respectively) were similar to
those reported by Sohn et al. [8] (3.2 mm2 and 65%, respectively).

In the present study, the BCP carrier material was soaked in 0.05 mg/mL BMP-2
solution for use in the BCP+BMP-2 experimental animals. At 2 and 8 weeks, the
defect grafted with the carrier-loaded BMP-2 demonstrated statistically significant new bone formation compared to the defect grafted with the carrier only (data not shown). These results indicate that the dose of BMP-2 used in the present study was effective, and support the minimal influence of BMP-2 on the adjacent control (CB) defect.

Within the limitations of the present study, BMP-2 application to experimental defects did not have a significant influence on the healing of the adjacent control defects in a rabbit calvarial model. Therefore, it can be concluded that rabbit calvarial defects that are separated by more than 2 mm are suitable for evaluating the effects of BMP-2. Future studies should assess this issue with other kinds of growth factor, lower doses of BMP-2, and extended healing periods.
REFERENCES

1. Kim JW, Choi KH, Yun JH, Jung UW, Kim CS, Choi SH, et al. Bone formation of
block and particulated biphasic calcium phosphate lyophilized with Escherichia
coli-derived recombinant human bone morphogenetic protein 2 in rat calvarial
defects. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2011;112(3):298-306.

2. Kim JW, Jung IH, Lee KI, Jung UW, Kim CS, Choi SH, et al. Volumetric bone
regenerative efficacy of biphasic calcium phosphate-collagen composite block
loaded with rhBMP-2 in vertical bone augmentation model of a rabbit calvarium. J
Biomed Mater Res A. 2012;100(12):3304-13.

3. Kuhn LT, Ou G, Charles L, Hurley MM, Rodner CM, Gronowicz G. Fibroblast
growth factor-2 and bone morphogenetic protein-2 have a synergistic stimulatory
effect on bone formation in cell cultures from elderly mouse and human bone. J
Gerontol A Biol Sci Med Sci. 2013;68(10):1170-80.

4. Li P, Bai Y, Yin G, Pu X, Huang Z, Liao X, et al. Synergistic and sequential effects
of BMP-2, bFGF and VEGF on osteogenic differentiation of rat osteoblasts. J
Bone Miner Metab. 2013.

5. de Freitas RM, Spin-Neto R, Junior EM, Pereira LA, Wikesjo UM, Susin C.
Alveolar Ridge and Maxillary Sinus Augmentation Using rhBMP-2: A Systematic
Review. Clin Implant Dent Relat Res. 2013.

6. Hwang JW, Park JS, Lee JS, Jung UW, Kim CS, Cho KS, et al. Comparative
evaluation of three calcium phosphate synthetic block bone graft materials for bone regeneration in rabbit calvaria. J Biomed Mater Res Part B Appl Biomater. 2012;100(8):2044-52.

7. Lim HC, Sohn JY, Park JC, Um YJ, Jung UW, Kim CS, et al. Osteoconductive effects of calcium phosphate glass cement grafts in rabbit calvarial defects. J Biomed Mater Res Part B Appl Biomater. 2010;95(1):47-52.

8. Sohn JY, Park JC, Um YJ, Jung UW, Kim CS, Cho KS, et al. Spontaneous healing capacity of rabbit cranial defects of various sizes. J Periodontal Implant Sci. 2010;40(4):180-7.

9. Guda T, Darr A, Silliman DT, Magno MH, Wenke JC, Kohn J, et al. Methods to Analyze Bone Regenerative Response to Different rhBMP-2 Doses in Rabbit Craniofacial Defects. Tissue Eng Part C Methods. 2014.

10. Ahn SH, Kim CS, Suk HJ, Lee YJ, Choi SH, Chai JK, et al. Effect of recombinant human bone morphogenetic protein-4 with carriers in rat calvarial defects. J Periodontol. 2003;74(6):787-97.

11. Pang EK, Im SU, Kim CS, Choi SH, Chai JK, Kim CK, et al. Effect of recombinant human bone morphogenetic protein-4 dose on bone formation in a rat calvarial defect model. J Periodontol. 2004;75(10):1364-70.

12. Gilsanz V, Roe TF, Gibbens DT, Schulz EE, Carlson ME, Gonzalez O, et al. Effect of sex steroids on peak bone density of growing rabbits. Am J Physiol. 1988;255(4 Pt 1):E416-21.
13. Castaneda S, Largo R, Calvo E, Rodriguez-Salvanes F, Marcos ME, Diaz-Curiel M, et al. Bone mineral measurements of subchondral and trabecular bone in healthy and osteoporotic rabbits. Skeletal Radiol. 2006;35(1):34-41.

14. Caplanis N, Lee MB, Zimmerman GJ, Selvig KA, Wikesjo UM. Effect of allogeneic freeze-dried demineralized bone matrix on regeneration of alveolar bone and periodontal attachment in dogs. Journal of clinical periodontology. 1998;25(10):801-6. Epub 1998/10/31.

15. Schmitz JP, Hollinger JO. The critical size defect as an experimental model for craniomandibulofacial nonunions. Clinical orthopaedics and related research. 1986(205):299-308. Epub 1986/04/01.

16. Hassanein AH, Couto RA, Kurek KC, Rogers GF, Mulliken JB, Greene AK. Experimental Comparison of Cranial Particulate Bone Graft, rhBMP-2, and Split Cranial Bone Graft for Inlay Cranioplasty. Cleft Palate Craniofac J. 2013;50(3):358-62.

17. Schmidlin PR, Nicholls F, Kruse A, Zwahlen RA, Weber FE. Evaluation of moldable, in situ hardening calcium phosphate bone graft substitutes. Clin Oral Implants Res. 2013;24(2):149-57.

18. Jiang ZQ, Liu HY, Zhang LP, Wu ZQ, Shang DZ. Repair of calvarial defects in rabbits with platelet-rich plasma as the scaffold for carrying bone marrow stromal cells. Oral Surg Oral Med Oral Pathol Oral Radiol. 2012;113(3):327-33.

19. Tannoury CA, An HS. Complications with the use of bone morphogenetic protein
2 (BMP-2) in spine surgery. Spine J. 2014;14(3):552-9.

20. Deutsch H. High-dose bone morphogenetic protein-induced ectopic abdomen bone growth. Spine J. 2010;10(2):e1-4.
국문 요약

토끼 두개골 결손 모델에서 제2형 골형성단백질 작용이 인접 영역에 미치는 영향

목적: 본 연구의 목적은 실험 부위의 제2형 골형성단백질 2형 (BMP-2)이 인접한 결손부위의 치유에 미칠 수 있는 영향을 평가하여, 토끼 두개골 결손부 모델이 BMP-2의 효과를 확인하는데 유용한 수단인지 입증하는 것이다.

실험 재료 및 방법: 16마리의 토끼를 BMP-2 적용 유무에 따라 2개의 집단으로 분류하였다. 각각의 토끼 두개골에 8mm 직경의 2개 원형 결손부를 2mm 간격으로 나란히 형성하였다. 실험군에는 하나의 결손부에 BMP-2가 적용된 골이식재를 이식하였고, 대조군에는 골이식재만 이식하였다. BMP-2가 적용된 군은 CB군으로, 골이식재만 적용된 군은 CC군으로 각각 명명하였다. CB, CC군에서 골이식재가 이식된 인접 대조 결손부를 서로 비교하였다. 두군의 인접 대조 결손부에 대한 조직학적 분석과 조직계측학적 분석이 이식 2주, 8주 후에 각각 행해졌다.

결과: 실험군, 대조군 모두에서 2주차 조직표본에서는 섬유성 결합조직이 관찰되었고, 8주차 조직표본에서는 결손부 변연에서 미성숙 신생골이 관찰되었다. 조직계측학적 분석에서 2주차, 8주차 모두에서 defect closure,
new bone area, total augmented area 값에 있어 실험군, 대조군간 통계적
으로 유의한 차이가 존재하지 않았다.

결론: 2mm 간격의 인접한 두 결손부에서 실험부위에 BMP-2를 적용하는 것
은 인접한 결손부위의 치유에 영향을 미치지 않았으므로, 본 연구는 토끼
두개골 결손부 모델이 BMP-2의 효과를 평가하는데 적절한 모델임을 제안한
다.
Figure 1. Clinical photograph of the experiment. Two 8-mm diameter defects were made, 2 mm apart, in the calvaria of 16 rabbits.
Figure 2. Schematic diagram of a calvarial defect showing the parameters that were analyzed histomorphometrically. The calculations for various measurements are shown.
Figure 3. Representative photomicrographs obtained at 2 weeks postoperatively: the CC group (A) and the CB group (B) (A, B: H&E, ×40). CC: control defect adjacent to a defect grafted with biphasic calcium phosphate carrier only, CB: control defect adjacent to a defect grafted with biphasic calcium phosphate carrier loaded with bone morphogenetic protein-2.
Figure 4. Representative photomicrographs obtained at 8 weeks postoperatively: the CC group (A) and the CB group (B) (A, B: H&E, ×40).
TABLES

Table 1. Group assignment

	Treatment for the defect	Treatment for the adjacent defect
CC	Blood clot only	BCP only
CB	Blood clot only	BCP + BMP-2

CC: control defect adjacent to a defect grafted with biphasic calcium phosphate carrier only, CB: control defect adjacent to a defect grafted with biphasic calcium phosphate carrier loaded with bone morphogenetic protein-2.
Table 2. Histomorphometric measurements.

	DF (%)	NB (mm2)	TA (mm2)			
CC	2 Weeks	8 Weeks	2 Weeks	8 Weeks	2 Weeks	8 Weeks
	24.8±5.24	66.03±3.35a	0.62±0.25	3.26±0.14a	1.06±0.32	3.58±0.27a
CB	22.6±1.78	59.28±1.43a	0.67±0.19	3.13±0.28a	1.25±0.28	3.75±0.43a

Values are presented as mean±standard deviation.

DF: defect closure, NB: new bone area, TA: total augmented area

aStatistically significant difference compared to the 2-week group ($P<0.05$).