Variation in bovine leptin gene affects milk fatty acid composition in New Zealand Holstein Friesian × Jersey dairy cows

Ishaku Lemu Haruna, Huitong Zhou, and Jon G. H. Hickford
Faculty of Agriculture and Life Sciences, Lincoln University, Lincoln 7647, New Zealand

Correspondence: Jon G. H. Hickford (jonathan.hickford@lincoln.ac.nz)
Received: 28 September 2020 – Revised: 11 February 2021 – Accepted: 13 April 2021 – Published: 7 June 2021

Abstract. Leptin is a protein hormone secreted from white adipose tissue. It regulates food/feed intake, body weight, immune function and reproduction. In our investigation, the polymerase chain reaction (PCR) amplification coupled with single-strand conformational polymorphism (SSCP) analysis was used to reveal variation in bovine leptin gene (LEP) in New Zealand (NZ) Holstein Friesian (HF) × Jersey (J) dairy cows. Subsequent sequence analysis of a 430 bp amplicon spanning the entirety of exon 3 and part of the intron 2 region revealed three variant sequences (A3, B3 and C3) containing a total of five nucleotide substitutions, all of which have been reported previously. Using general linear mixed-effect model analyses, the presence of variant A3 (the most common variant) was associated with a decreased level of C15:1, C18:1 trans-11, C18:1 all trans, C18:2 trans-9, cis-12, C22:0 and C24:0 levels but increased levels of C12:1 and C13:0 iso (p<0.05). Variant B3 was associated with reduced levels of C6:0, C8:0, C11:0, C13:0 and C20:0 but increased C17:0 iso and C24:0 levels (p<0.05). Variant C3 was associated with decreased C17:0 iso levels but increased C20:0 (p<0.05) levels. In a genotype model, the A3B3 genotype was associated with increased levels of C22:0 and C24:0 but decreased C8:0, C10:0, C11:0, C13:0, C15:0 and grouped medium-chain fatty acid (MCFA) levels (p<0.05). Genotype A3C3 was found to be associated with decreased levels of C10:0, C11:0, C13:0 and grouped MCFA (p<0.05). This is the first report of findings of this kind in NZ HF × J cows, and they suggest that variation in exon 3 of bovine leptin gene could be explored as a means of decreasing the concentration of saturated fatty acids in milk.

1 Introduction

There has been a growing interest in genomic selection programmes aimed at modifying the composition of milk fatty acids (FAs) using candidate gene approaches. In this respect, several genes have been implicated in affecting milk FA composition, including the leptin gene (LEP).

Bovine LEP, previously known as OB, OBS and LEPD, has been mapped to chromosome 4 (Pomp et al., 1997) and it encodes the protein leptin. This protein is secreted from white adipose tissue and has been found to regulate feed intake, energy partitioning and metabolism (Liefers et al., 2002; Lagonigro et al., 2003), as well as lactogenesis (Feuermann et al., 2004).

The hypothalamus is identified as the main site of leptin’s activity in regulating food intake and energy expenditure. Leptin signals are converted into neural responses, and this results in changes in feed intake (Tang-Christensen et al., 1999). A neurotransmitter identified as neuropeptide Y (NPY) is associated with the regulation of food intake, and leptin exerts its effect by either stimulating or inhibiting the release of NPY. Among other things, this eventually results in a decrease in feed intake and an increase in energy expenditure (Houseknecht et al., 1998). There are also suggestions that leptin could also regulate fat mobilization (Halaas et al., 1995).

Previous reports have highlighted the effects of leptin gene variation on some livestock traits of economic value, such as the yield and quality of meat and milk obtained from farmed animals. For example, in sheep an effect of leptin gene variation on weaning weight was observed (Hajihosseinlo et al., 2012), while in cattle, leptin or leptin receptor gene polymor-
phisms have been associated with carcass FA composition (Kawaguchi et al., 2017), milk fat levels (Giblin et al., 2010; De Matteis et al., 2012) and milk FA composition (Pegolo et al., 2016).

Although the effects of bovine leptin variation on milk fat composition have been described in studies of other cattle breeds, so far there is no report of the effects of leptin gene variation on the composition of milk FA content or profile in New Zealand (NZ) Holstein Friesian × Jersey (HF × J) dairy cows that are permanently grazed outdoors on pasture. The aim of this study was therefore to investigate whether variation in the gene affected milk fat traits in these cows.

2 Materials and methods

2.1 The NZ dairy cattle investigated

This study was approved by the Lincoln University Animal Ethics Committee (AEC) under the provisions of the NZ Government’s Animal Welfare Act 1999. A total of 300 NZ HF × J dairy cows (alternatively known as KiwiCross™ cows) of variable and unknown breed proportion and of 3 to 9 years of age were used in this investigation. These cows were from two herds, and all of them were grazed outdoors on pasture (a mixture of perennial ryegrass and white clover) on the Lincoln University Dairy Farm (LUDF; Canterbury, NZ). All the cows calved over the months of August–September and were milked twice a day, in the morning and then in the afternoon.

2.2 Collection of milk samples for fatty acid analysis

The collection of milk samples from cows for FA analysis was carried out when they were 148 ± 19 d in milk (DIM) and in a single afternoon milking in mid-January. These samples were frozen at a temperature of −20°C, and then freeze-dried, before being individually ground to a fine powder for component analysis.

2.3 Gas chromatography of milk fatty acids

Prior to being analysed by gas chromatography (GC) as FA methyl esters (FAMEs), the milk FAs were methylated and then extracted in n-heptane. The methylation reactions were performed in 10 mL Kimax tubes. Individual freeze-dried and powdered milk samples (0.17 g) were dissolved in 900 µL of n-heptane (100 %, AR grade), before 100 µL of internal standard (5 mg/mL of C21:0 methyl ester in n-heptane) and 4.0 mL of 0.5 M NaOH (100 % anhydrous methanol) were added.

The tubes were vortexed prior to incubation in a block heater (Ratek Instruments, Australia) at 50°C for 15 min. After cooling to room temperature, another 2.0 mL of n-heptane and 2.0 mL of deionized water were added to each of the tubes. After vortexing, the tubes were centrifuged (MegaFuge 1.0R, Heraeus, Germany) for 5 min at 1500 × g. The top layer of n-heptane was transferred into a second Kimax tube, and 2.0 mL of n-heptane was added to each of the original tubes. The extraction was repeated, and the n-heptane aspirates were then pooled. Anhydrous sodium sulfate (10 mg) was added to the n-heptane extracts, to remove any residual water.

The GC analysis for milk FAs was carried out using a Shimadzu GC-2010 gas chromatograph (Shimadzu Corporation, Kyoto, Japan) equipped with a flame ionization detector and an AOC-20i autosampler. The output was analysed with GC Solution Software (Shimadzu). The analysis was carried out by injecting 1 µL of the n-heptane sample extract into a 100 m GC capillary column (250 µm × 0.25 µm, CP-Select, Varian) with a 1 : 60 split ratio. The separation was undertaken with a helium carrier gas, and it was run for 92 min. The temperature of both the injector and detector were set at 250°C, and the thermal profile of the column incubation consisted of 45°C for 4 min, followed by 27 min at 175°C (ramped at 13°C/min), 35 min at 215°C (ramped at 4°C/min), and a final temperature of 250°C for 5 min (ramped at 25°C/min).

The individual FAMEs were identified by comparing their peak retention times to commercially obtained external standards (ME61, ME93, BR3, BR2, ME100, GLC411 and GLC463; Larodan AB, Sweden). Quantification of the individual FAMEs was based on peak area assessment and comparison with the internal and external standards. The threshold for peak area determination on the chromatogram was a 500-unit count, and peaks under this threshold were ignored. The calculated minimum level of an individual FAME that could be identified was therefore 0.01 g per 100 g of total FA. After the FAs were individually measured, they were sorted into various groups and indices. These groups were the following: short-chain FAs (SCFAs) = C4:0 + C6:0 + C8:0; medium-chain FAs (MCFAs) = C10:0 + C12:0 + C14:0; long-chain FAs (LCFAs) = C15:0 + C16:0 + C17:0 + C18:0 + C19:0 + C20:0 + C22:0 + C24:0; omega-3 FAs = C18:3 cis-9, 12, 15 + C20:5 cis-5, 8, 11, 14 + C22:5 cis-7, 10, 13, 16, 19; omega-6 FAs = C18:2 cis-9, 12 + C18:3 cis-6, 9, 12 + C20:3 cis-8, 11, 14 + C20:4 cis-5, 8, 11, 14; monounsaturated FAs (MUFA) = C10:1 + C12:1 + C14:1 cis-9 + C15:1 + C16:1 cis-9 + C17:1 + C18:1 trans-11 + C18:1 cis-9 + C18:1 cis-(10 to 15) + C20:1 cis-5 + C20:1 cis-9 + C20:1 cis-11 + C22:1 trans-13; polyunsaturated FAs (PUFA) = C18:2 trans-9, 12 + C18:2 cis-9, trans-13 + C18:2 cis-9, trans-12 + C18:2 cis-9, cis-12 + C18:2 cis-9, 12 + C18:3 cis-6, 9, 12 + C18:3 cis-9, 12, 15 + conjugated linoleic acid (CLA) + C20:3 cis-8, 11, 14 + C20:4 cis-5, 8, 11, 14 + C20:5 cis-5, 8, 11, 14, 17 + C22:5 cis-7, 10, 13, 16, 19; and total branched FA = C13:0 iso + C13:0 anteiso + C15:0 iso + C15:0 anteiso + C17:0 iso.

Unsaturated FA indices were also calculated as follows: C12:1 index (C12:1 divided by the sum of C12:0 and C12:1);
C14:1 index (C14:1 cis-9 divided by the sum of C14:0 and C14:1 cis-9); C16:1 index (C16:1 cis-9 divided by the sum of C16:0 and C16:1 cis-9) and C18:1 index (C18:1 cis-9 divided by the sum of C18:0 and C18:1 cis-9). The method is as described by Li et al. (2019), with the un-adjusted mean levels in the 300 cows being calculated and used subsequently in the statistical analyses.

2.4 Blood sample collection

Using either the piercing of the animal’s ear or the tail vein (as approved under the Code of Welfare, section 75 and 76 of the NZ Animal Welfare Act 1999), blood samples were collected from each cow onto FTA™ cards (Whatman™, Middlesex, UK). The samples were air-dried and DNA purification was carried out using a two-step procedure described by Zhou et al. (2006).

2.5 Amplification with the polymerase chain reaction (PCR)

Using the following forward and reverse primers (5′-TTGCTCTCCCTTCTCCTTG-3′ and 5′-CTCAGGTCTTCTCCCTGAC-3′ respectively) adapted from the work of Haruna et al. (2020), the entirety of exon 3 and part of the intron 2 region of the bovine leptin gene was amplified. This region was selected for investigation because it is highly polymorphic in comparison to the exon 2 region, and previous report has revealed associations of exon 3 with FA composition in muscle (Orrù et al., 2011). The PCR reactions were undertaken in 15 µL volumes containing the genomic DNA on a 1.2 mm diameter disc of the FTA™ card, and the samples were air-dried and DNA purification was carried out using a two-step procedure described by Zhou et al. (2006).

2.6 Single-strand conformational polymorphism (SSCP) analyses

An SSCP technique was used to detect genetic variation in the amplicons obtained from the PCR reactions. The choice of SSCP was because it is inexpensive and can screen for variation in a large number of cattle breeds, thus giving a better representation of the entire breed. Also, it is a reliable, reproducible and effective analytical method for the detection of deletions, insertions or rearrangement in PCR-amplified DNA sequence. Briefly, following PCR amplification, a 0.7 µL aliquot of the PCR reactions was added to 7 µL of loading dye containing 10 mM ethylenediaminetetraacetic acid (EDTA), 0.025 % bromophenol blue, 0.025 % xylene cyanol, and 98 % formamide. The samples were then placed on a hot plate already set at 95 ºC, for 5 min to enable DNA denaturation. This was followed by snap chilling on wet ice. Samples were then loaded onto 16 cm × 18 cm, 10 % acrylamide : bisacrylamide (37 : 1) (Bio-Rad) gels containing 4 % glycerol. Electrophoresis was carried out using Protein II xi cells (Bio-Rad) for 24 h at 390 V and 15 ºC in 0.5 × Tris/Borate/EDTA running buffer.

To detect the SSCP banding patterns, the gels were silver-stained using a method described by Byun et al. (2009).

2.7 Nucleotide sequencing

Based on the PCR-SSCP patterns observed, cattle that were homozygous with unique banding patterns were sequenced directly. For heterozygous variants, the unique band(s) was excised from the wet gel, incubated in water at 69 ºC for 1 h, and subsequently amplified and sequenced based on the approach described by Gong et al. (2011). The sequences were then aligned, and other analyses were undertaken using DNAMAN (Version 5.2.10, Lynnon Biosoft, Vaudreuil, Canada) to enable identification of the position of the nucleotide variation.

2.8 Statistical analysis

The statistics software IBM SPSS version 22 (IBM, Armonk, NY, USA) was used to perform all statistical analyses, and an alpha level of $p<0.05$ was set as a threshold for acceptance of association.

The age of the cow expressed in an integer value of years (i.e. as a categorical variable in a range from 3 to 9 years of age), the number of days in milk for each cow (DIM; expressed as an integer value but entered into the model as a continuous trait) and herd (to correct for herd-specific effects) were fitted to the models as fixed explanatory factors.

Using general linear mixed-effects models (GLMMs), associations between LEP variants and variation in milk FA component levels were tested.

First, single-variant presence/absence models (each variant was coded as present (1) or absent (0) for each animal’s genotype) were used to ascertain which variant(s) should be analysed in subsequent multi-variant models. The multi-variant models included any variant that had a variant-FA trait association in the single-variant presence/absence analysis with a p value of less than 0.200. This is a low threshold for the inclusion of a possibly explanatory factor in the model. The multi-variant models were also corrected for the other factors described above.

For genotypes with a frequency greater than 5 % (thus having adequate sample size per group), the effect of variation in a cow’s LEP genotype on the component levels of individual and grouped FAs was tested using general lin-
ear mixed-effects models (GLMMs) and multiple pair-wise comparisons (least significant difference tests) with Bonferroni corrections.

The model was $Y_{ijkl} = \mu + G_i + A_j + D_k + H_l + e_{ijkl}$ for the genotype, where Y_{ijkl} is the observed trait value in the $ijkl$th cow; μ is the mean trait value for a given trait; G_i is the fixed effect of ith LEP genotype; A_j is the effect of age ($j = 3–9$ years); D_k the effect of the number of days the cow has produced milk (DIM: $k = 94–186$ d); H_l the fixed effect of lth farm ($l = 1$ or 2); and e_{ijkl} is the random error.

The effect of sire of cow could not be included in the GLMMs, because some semen straws (sire genetics) used in NZ dairy cattle artificial insemination-based breeding approaches contain mixed-sire semen purchased from commercial semen producers. In these cases, it is impossible to ascertain individual sire identity. However, since the straws were mixed-semen straws and because different sires are used for insemination, differences in different years, it is unlikely that sire was a strongly confounding effect. Cow age and herd might also be confounded with sire, but this cannot be confirmed.

3 Results

3.1 SNPs identified in the bovine leptin gene

Using the primers 5′-TTGCTCCCTCCTCCCTCTCTG-3′ and 5′-CTCAGTTCATCCTCCTTGAGAC-3′, a fragment of approximately 430 bp length and consisting of the entire exon 3 and part of intron 2 region of bovine leptin gene was amplified and analysed using the PCR-SSCP analyses. The PCR-SSCP analyses coupled with DNA sequencing revealed three banding patterns (A3, B3 and C3) with NCBI GenBank accession numbers MN119553, MN119554 and MN119555 respectively in the region investigated (Fig. 1). A total of five single-nucleotide substitutions – c.239C/T (p.Ala80Val), c.396C/T (p.Gly132Ser), c.399T/C (p.Pro165Leu), c.411T/C (p.Val133Glu) and c.495C/T (p.Pro165Leu) in exon 3 – were identified, all of which have been reported previously (Haruna et al., 2020).

3.2 Variant presence/absence models

The results of the general linear mixed effect models revealed that the presence (or absence) of variants A3, B3 and C3 in a cow’s genotype was associated with the quantity of milk FA methyl esters (FAMEs), with different variants having different effects as detailed in Table 1. The presence of variant A3 (the most common variant) was associated with decreased C15:1, C18:1 trans-11, C18:1 all trans, C18:2 trans-9, cis-12, C22:0 and C24:0 levels but increased levels of C12:1 and C13:0 iso ($p<0.05$). Variant B3 was revealed to be associated with reduced levels of C6:0, C8:0, C11:0, C13:0 and C20:0 but increased C17:0 iso and C24:0 levels ($p<0.05$). Variant C3 was associated with decreased C17:0 iso level but an increased level of C20:0 ($p<0.05$).

3.3 Genotype models

Only the genotypes A_3A_3 ($n = 70$), A_3B_3 ($n = 166$) and A_3C_3 ($n = 50$) with a frequency greater than 5% were analysed. The other genotypes B_3B_3 ($n = 11$) and C_3C_3 ($n = 3$) were not included in this model. The composition of milk fat was affected by genotype, and the results were consistent with the findings of the variant presence/absence models. Cows carrying the A_3A_3 (most common) genotype contained higher levels of saturated fatty acids (SFAs), but when one copy of the A_3 variant was replaced by B_3 or C_3, the resulting heterozygous genotype (A_3B_3 or A_3C_3) was associated with reduced levels of SFAs in milk. Cows carrying the A_3B_3 genotype was associated with increased levels of C22:0 and C24:0 but decreased C8:0, C10:0, C11:0, C13:0, C15:0 and grouped MCFA levels ($p<0.05$). A_3C_3 was found to be associated with decreased levels of C10:0, C11:0, C13:0 and grouped MCFA ($p<0.05$; Table 2).

4 Discussion

This is the first study investigating the effect of leptin gene variations in exon 3 with composition of milk FA in NZ HF × J cows farmed wholly outdoors on pasture. Overall, the results presented here revealed associations between variation in the leptin gene and the composition of milk fat. Cows carrying the A_3A_3 genotype had higher levels of SFAs, but when one copy of the A_3 variant is replaced by a B_3 variant, the resulting heterozygous genotype A_3B_3 had decreased levels of SFA.

In an analysis of the effect of LEP nucleotide sequence variation on the FA profile of cattle muscle fat, Orrù et al. (2011) investigated the effect of c.239C/T (p.Ala80Val – also identified in this study) in 103 Simmentals bulls. They re-
Table 1. Associations between bovine leptin gene variants with average quantity of individual and grouped milk fatty acid methyl ester (FAME) in New Zealand (NZ) HF × J cows.

Individual/grouped fatty acids	Variants	Other variants in model	Absent	Present	n	p
C4:0						
A₃	none	1.28 ± 0.035	14	1.27 ± 0.010	286	0.760
B₃	none	1.27 ± 0.013	123	1.26 ± 0.012	177	0.583
C₃	none	1.26 ± 0.010	247	1.28 ± 0.018	53	0.482
C6:0						
A₃	none	1.56 ± 0.032	14	1.56 ± 0.009	286	0.871
B₃	none	1.57 ± 0.011	123	1.55 ± 0.010	177	**0.038**
C₃	none	1.56 ± 0.009	247	1.56 ± 0.016	53	0.955
C8:0						
A₃	none	1.17 ± 0.026	14	1.18 ± 0.007	286	0.598
B₃	none	1.19 ± 0.010	123	1.17 ± 0.009	177	**0.048**
C₃	none	1.18 ± 0.008	247	1.17 ± 0.014	53	0.450
C10:0						
A₃	none	3.12 ± 0.100	14	3.25 ± 0.028	286	**0.193**
B₃	none	3.28 ± 0.036	123	3.21 ± 0.033	177	**0.083**
C₃	none	3.26 ± 0.029	247	3.19 ± 0.052	53	**0.194**
A₃	B₃C₃	3.12 ± 0.136	14	3.21 ± 0.098	286	0.323
B₃	A₃C₃	3.27 ± 0.090	123	3.14 ± 0.093	177	**0.005**
C₃	A₃B₃	3.28 ± 0.076	247	3.12 ± 0.089	53	**0.010**
C10:1						
A₃	none	0.27 ± 0.012	14	0.28 ± 0.003	286	0.188
B₃	none	0.28 ± 0.004	123	0.28 ± 0.004	177	0.366
C₃	none	0.28 ± 0.004	247	0.27 ± 0.006	53	0.129
A₃	C₃	0.27 ± 0.013	14	0.28 ± 0.005	286	0.200
C₃	A₃	0.28 ± 0.007	247	0.27 ± 0.008	53	0.135
C11:0						
A₃	none	0.06 ± 0.005	14	0.06 ± 0.001	286	0.469
B₃	none	0.06 ± 0.002	123	0.06 ± 0.002	177	**0.006**
C₃	none	0.06 ± 0.002	247	0.06 ± 0.003	53	0.465
C12:0						
A₃	none	3.70 ± 0.133	14	3.95 ± 0.037	286	0.067
B₃	none	3.98 ± 0.049	123	3.91 ± 0.044	177	0.215
C₃	none	3.96 ± 0.039	247	3.85 ± 0.069	53	0.127
A₃	C₃	3.69 ± 0.138	14	3.93 ± 0.055	286	0.072
C₃	A₃	3.88 ± 0.116	247	3.79 ± 0.128	53	0.141
C12:1						
A₃	none	0.08 ± 0.005	14	0.09 ± 0.001	286	**0.018**
B₃	none	0.09 ± 0.002	123	0.09 ± 0.002	177	0.988
C₃	none	0.09 ± 0.002	247	0.09 ± 0.003	53	0.091
A₃	C₃	0.08 ± 0.005	14	0.09 ± 0.002	286	**0.020**
C₃	A₃	0.09 ± 0.006	247	0.08 ± 0.006	53	0.107
C13:0 anteiso						
A₃	none	0.04 ± 0.001	14	0.04 ± 0.000	286	0.987
B₃	none	0.04 ± 0.000	128	0.04 ± 0.000	177	0.292
C₃	none	0.04 ± 0.000	260	0.04 ± 0.001	53	0.109
C13:0 iso						
A₃	none	0.07 ± 0.004	14	0.08 ± 0.001	286	**0.049**
B₃	none	0.08 ± 0.002	123	0.08 ± 0.001	177	0.515
C₃	none	0.08 ± 0.001	247	0.08 ± 0.002	53	0.119
A₃	C₃	0.07 ± 0.005	14	0.08 ± 0.002	286	0.053
C₃	A₃	0.08 ± 0.004	247	0.07 ± 0.005	53	0.134
C13:0						
A₃	none	0.12 ± 0.007	14	0.12 ± 0.002	286	0.954
B₃	none	0.12 ± 0.003	123	0.12 ± 0.002	177	**0.029**
C₃	none	0.12 ± 0.002	247	0.12 ± 0.004	53	0.328

Mean ± SE (g/100 g milk FA)
Table 1. Continued.

Individual/grouped fatty acids²	Mean ± SE¹ (g/100 g milk FA)	Variants	Other variants in model	Absent	n	Present	n	p
C14:0		A_3 none	12.47 ± 0.232	14	12.48 ± 0.064	286	0.963	
		B_3 none	12.54 ± 0.084	123	12.43 ± 0.076	177	0.288	
		C_3 none	12.51 ± 0.068	247	12.35 ± 0.120	53	0.223	
C14:1		A_3 none	0.89 ± 0.067	14	0.96 ± 0.032	286	0.285	
		B_3 none	0.93 ± 0.036	123	0.97 ± 0.033	177	0.103	
		C_3 none	0.96 ± 0.033	247	0.93 ± 0.042	53	0.353	
C14:1 cis-9		A_3 none	0.88 ± 0.059	14	0.95 ± 0.016	286	0.221	
		B_3 none	0.93 ± 0.022	123	0.97 ± 0.019	177	0.122	
		C_3 none	0.96 ± 0.017	247	0.93 ± 0.031	53	0.368	
C15:0		A_3 none	1.50 ± 0.049	14	1.48 ± 0.014	286	0.664	
		B_3 none	1.50 ± 0.018	123	1.46 ± 0.016	177	0.063	
		C_3 none	1.48 ± 0.014	247	1.47 ± 0.025	53	0.880	
C15:0 anteiso		A_3 none	0.67 ± 0.026	14	0.64 ± 0.007	286	0.265	
		B_3 none	0.64 ± 0.009	123	0.64 ± 0.009	177	0.841	
		C_3 none	0.64 ± 0.008	247	0.62 ± 0.013	53	0.277	
C15:1		A_3 none	0.30 ± 0.009	14	0.28 ± 0.002	286	0.043	
		B_3 none	0.28 ± 0.003	123	0.28 ± 0.003	177	0.698	
		C_3 none	0.28 ± 0.003	247	0.28 ± 0.005	53	0.370	
C16:1 cis-9		A_3 none	1.25 ± 0.071	14	1.27 ± 0.020	286	0.792	
		B_3 none	1.26 ± 0.026	123	1.27 ± 0.023	177	0.948	
		C_3 none	1.26 ± 0.021	247	1.28 ± 0.037	53	0.672	
C17:0 iso		A_3 none	0.56 ± 0.019	14	0.55 ± 0.005	286	0.464	
		B_3 none	0.54 ± 0.007	123	0.56 ± 0.006	177	0.020	
		C_3 none	0.55 ± 0.005	247	0.53 ± 0.010	53	0.042	
		B_3 C_3	0.54 ± 0.007	123	0.56 ± 0.006	177	0.020	
		C_3 B_3	0.55 ± 0.007	247	0.54 ± 0.011	53	0.164	
C17:0		A_3 none	0.87 ± 0.023	14	0.87 ± 0.006	286	0.879	
		B_3 none	0.88 ± 0.008	123	0.87 ± 0.008	177	0.183	
		C_3 none	0.87 ± 0.007	247	0.88 ± 0.012	53	0.583	
C17:1		A_3 none	0.20 ± 0.007	14	0.20 ± 0.002	286	0.732	
		B_3 none	0.20 ± 0.003	123	0.20 ± 0.002	177	0.661	
		C_3 none	0.20 ± 0.002	247	0.20 ± 0.004	53	0.728	
C18:1 trans-5, 10		A_3 none	0.31 ± 0.012	14	0.30 ± 0.003	286	0.200	
		B_3 none	0.29 ± 0.004	123	0.30 ± 0.004	177	0.779	
		C_3 none	0.30 ± 0.004	247	0.30 ± 0.006	53	0.693	
C18:1 trans-11		A_3 none	3.17 ± 0.203	14	2.73 ± 0.056	286	0.031	
		B_3 none	2.75 ± 0.075	123	2.74 ± 0.067	177	0.897	
		C_3 none	2.76 ± 0.060	247	2.70 ± 0.106	53	0.583	
C18:2 trans-9, 12		A_3 none	0.42 ± 0.011	14	0.42 ± 0.003	286	0.921	
		B_3 none	0.42 ± 0.004	123	0.41 ± 0.004	177	0.523	
		C_3 none	0.41 ± 0.003	247	0.42 ± 0.006	53	0.642	
C18:2 cis-9, trans-12		A_3 none	0.08 ± 0.006	14	0.07 ± 0.002	286	0.291	
		B_3 none	0.07 ± 0.002	123	0.07 ± 0.002	177	0.300	
		C_3 none	0.07 ± 0.002	247	0.07 ± 0.003	53	0.847	
Table 1. Continued.

Individual/ grouped fatty acids	Variants	Other variants in model	Absent	Present	n	p
C18:2 *trans*-9, *cis*-12	A₃ none	0.54 ± 0.032	14	0.47 ± 0.009	286	0.029
	B₃ none	0.47 ± 0.012	123	0.47 ± 0.011	177	0.628
	C₃ none	0.47 ± 0.010	247	0.47 ± 0.017	53	0.769
C18:2 *cis*-9, 12	A₃ none	0.66 ± 0.022	14	0.69 ± 0.006	286	0.132
	B₃ none	0.68 ± 0.008	123	0.70 ± 0.007	177	0.055
	C₃ none	0.70 ± 0.006	247	0.68 ± 0.011	53	0.213
	A₃ B₃	0.66 ± 0.023	14	0.69 ± 0.010	286	0.103
	B₃ A₃	0.67 ± 0.019	123	0.69 ± 0.018	177	0.045
C18:2 *cis*-9, *trans*-13	A₃ none	0.29 ± 0.010	14	0.29 ± 0.003	286	0.954
	B₃ none	0.29 ± 0.004	123	0.29 ± 0.003	177	0.971
	C₃ none	0.29 ± 0.003	247	0.29 ± 0.005	53	0.796
C18:3 *cis*-9, 12, 15	A₃ none	0.76 ± 0.030	14	0.80 ± 0.008	286	0.154
	B₃ none	0.79 ± 0.011	123	0.81 ± 0.010	177	0.088
	C₃ none	0.80 ± 0.009	247	0.79 ± 0.016	53	0.258
	A₃ B₃	0.75 ± 0.032	14	0.80 ± 0.013	286	0.126
	B₃ A₃	0.77 ± 0.024	123	0.80 ± 0.023	177	0.075
C19:0	A₃ none	0.14 ± 0.008	14	0.14 ± 0.002	286	0.353
	B₃ none	0.14 ± 0.003	123	0.14 ± 0.002	177	0.906
	C₃ none	0.14 ± 0.002	247	0.14 ± 0.004	53	0.402
C20:0	A₃ none	0.13 ± 0.005	14	0.13 ± 0.001	286	0.932
	B₃ none	0.13 ± 0.002	123	0.13 ± 0.002	177	0.019
	C₃ none	0.13 ± 0.001	247	0.13 ± 0.002	53	0.027
	A₃ A₃	0.13 ± 0.002	123	0.13 ± 0.002	177	0.033
	B₃ C₃	0.13 ± 0.002	247	0.13 ± 0.003	53	0.073
C20:1 *cis*-5	A₃ none	0.07 ± 0.004	14	0.06 ± 0.001	286	0.099
	B₃ none	0.06 ± 0.002	123	0.06 ± 0.001	177	0.833
	C₃ none	0.06 ± 0.001	247	0.06 ± 0.002	53	0.989
C20:1 *cis*-9	A₃ none	0.15 ± 0.007	14	0.15 ± 0.002	286	0.772
	B₃ none	0.15 ± 0.002	123	0.15 ± 0.002	177	0.644
	C₃ none	0.15 ± 0.001	247	0.16 ± 0.003	53	0.303
C20:1 *cis*-11	A₃ none	0.07 ± 0.004	14	0.08 ± 0.001	286	0.222
	B₃ none	0.08 ± 0.001	123	0.08 ± 0.001	177	0.778
	C₃ none	0.08 ± 0.001	247	0.08 ± 0.002	53	0.454
C20:3 *cis*-8, 11, 14	A₃ none	0.03 ± 0.002	14	0.03 ± 0.000	286	0.300
	B₃ none	0.03 ± 0.001	123	0.03 ± 0.001	177	0.447
	C₃ none	0.03 ± 0.000	247	0.03 ± 0.001	53	0.859
C20:4 *cis*-5, 8, 11, 14	A₃ none	0.04 ± 0.002	14	0.03 ± 0.001	286	0.269
	B₃ none	0.03 ± 0.001	123	0.03 ± 0.001	177	0.978
	C₃ none	0.04 ± 0.001	247	0.03 ± 0.001	53	0.439
C20:5 *cis*-5, 8, 11, 14, 17	A₃ none	0.09 ± 0.003	14	0.08 ± 0.001	286	0.143
	B₃ none	0.09 ± 0.001	123	0.09 ± 0.001	177	0.893
	C₃ none	0.09 ± 0.001	247	0.09 ± 0.002	53	0.993
C22:0	A₃ none	0.08 ± 0.004	14	0.07 ± 0.001	286	0.003
	B₃ none	0.08 ± 0.001	123	0.08 ± 0.001	177	0.035
	C₃ none	0.07 ± 0.001	247	0.07 ± 0.002	53	0.666
	A₃ B₃	0.08 ± 0.004	14	0.08 ± 0.001	286	0.003
	B₃ A₃	0.07 ± 0.005	123	0.07 ± 0.005	177	0.053
Table 1. Continued.

Individual/grouped fatty acids2	Variants	Other variants in model	Absent	Present	n	p	
C22:1 trans-13	A$_3$	none	0.07 ± 0.004	0.07 ± 0.001	14	286	0.355
	B$_3$	none	0.07 ± 0.001	0.07 ± 0.001	123	177	0.642
	C$_3$	none	0.07 ± 0.001	0.07 ± 0.002	247	53	0.148
C24:0	A$_3$	none	0.05 ± 0.002	0.04 ± 0.001	14	286	0.006
	B$_3$	none	0.04 ± 0.001	0.05 ± 0.001	123	177	0.021
	C$_3$	none	0.04 ± 0.001	0.05 ± 0.001	247	53	0.891
	A$_3$	B$_3$	0.05 ± 0.003	0.04 ± 0.001	14	286	0.008
	B$_3$	A$_3$	0.05 ± 0.003	0.05 ± 0.003	123	177	0.031
C22:5 cis-7, 10, 13, 16, 19	A$_3$	none	0.13 ± 0.007	0.12 ± 0.002	14	286	0.315
	B$_3$	none	0.12 ± 0.002	0.12 ± 0.002	123	177	0.877
	C$_3$	none	0.12 ± 0.002	0.12 ± 0.003	247	53	0.213
SCFA	A$_3$	none	2.84 ± 0.063	2.82 ± 0.018	14	286	0.800
	B$_3$	none	2.84 ± 0.023	2.81 ± 0.021	123	177	0.177
	C$_3$	none	2.82 ± 0.018	2.83 ± 0.044	247	53	0.674
MCFA	A$_3$	none	20.46 ± 0.444	20.85 ± 0.123	14	286	0.369
	B$_3$	none	20.99 ± 0.161	20.73 ± 0.146	123	177	0.151
	C$_3$	none	20.91 ± 0.131	20.56 ± 0.230	247	53	0.152
	B$_3$	C$_3$	20.95 ± 0.393	20.40 ± 0.408	123	177	0.011
	B$_3$	A$_3$	21.01 ± 0.308	20.30 ± 0.373	247	53	0.011
LCFA	A$_3$	none	48.75 ± 0.739	48.93 ± 0.205	14	286	0.802
	B$_3$	none	48.94 ± 0.269	48.92 ± 0.243	123	177	0.938
	C$_3$	none	48.82 ± 0.217	49.37 ± 0.382	247	53	0.171
MUFA	A$_3$	none	20.36 ± 0.512	19.98 ± 0.142	14	286	0.457
	B$_3$	none	19.82 ± 0.186	20.12 ± 0.168	123	177	0.170
	C$_3$	none	20.00 ± 0.151	19.94 ± 0.265	247	53	0.829
PUFA	A$_3$	none	4.25 ± 0.132	4.08 ± 0.037	14	286	0.209
	B$_3$	none	4.07 ± 0.048	4.10 ± 0.044	123	177	0.475
	C$_3$	none	4.10 ± 0.039	4.03 ± 0.068	247	53	0.300
C18:1 all trans	A$_3$	none	3.48 ± 0.207	3.03 ± 0.058	14	286	0.029
	B$_3$	none	3.05 ± 0.076	3.048 ± 0.069	123	177	0.912
	C$_3$	none	3.05 ± 0.062	2.10 ± 0.108	247	53	0.607
all C18:3	A$_3$	none	0.83 ± 0.031	0.88 ± 0.009	14	286	0.165
	B$_3$	none	0.86 ± 0.011	0.88 ± 0.010	123	177	0.091
	C$_3$	none	0.88 ± 0.009	0.86 ± 0.016	247	53	0.277
	A$_3$	B$_3$	0.83 ± 0.033	0.87 ± 0.013	14	286	0.136
	B$_3$	A$_3$	0.85 ± 0.024	0.87 ± 0.023	123	177	0.079
Omega 3	A$_3$	none	0.10 ± 0.031	1.02 ± 0.009	14	286	0.353
	B$_3$	none	1.01 ± 0.011	1.03 ± 0.010	123	177	0.083
	C$_3$	none	1.03 ± 0.009	1.00 ± 0.016	247	53	0.173
	B$_3$	C$_3$	1.01 ± 0.011	1.03 ± 0.010	123	177	0.083
	C$_3$	B$_3$	1.03 ± 0.011	1.00 ± 0.017	247	53	0.281
Omega 6	A$_3$	none	0.80 ± 0.023	0.83 ± 0.007	14	286	0.211
	B$_3$	none	0.82 ± 0.009	0.84 ± 0.008	123	177	0.059
	C$_3$	none	0.83 ± 0.007	0.82 ± 0.012	247	53	0.223
	A$_3$	B$_3$	0.80 ± 0.025	0.83 ± 0.011	14	286	0.170
	B$_3$	A$_3$	0.81 ± 0.016	0.83 ± 0.016	123	177	0.052
revealed that the C allele (the allele with alanine at amino acid 80 – equivalent to the A3 variant here) was associated with increased meat C14:1 and C14 index. In contrast, our study revealed the presence of variant A3 was associated with increased C12:1 but decreased C15:1 and C18:1 all in it. In addition, the B3 variant identified in this study, which carries the T in the nucleotide substitution c.239C/T (has a valine residue at position 80), was associated with a decrease in some short- and medium-chain SFAs. Taken together, the observation that the C and T alleles of c.239C/T appeared to affect the composition of FAs in meat and milk differently suggests further investigation of this substitution and its effects is required.

In another study (Avondo et al., 2019), the effects of variation in a LEP intron 1 microsatellite sequence and its interaction with milk FA composition, diet, milk traits, and metabolic state in Girgentana lactating goats at mid-lactation were investigated. It was revealed that the composition of milk FA was strongly influenced by LEP genotype. Goats with the homozygous genotype 266 bp/266 bp (L genotype) had lower levels of SFA but increased levels of MUFA and PUFA, compared to goats with the heterozygous genotype 266 bp/264 bp (H genotype). Although our results also showed a decrease in the levels of SFA, it is difficult to specifically link our results to the work of Avondo et al. (2019) because of the differences in the gene regions studied and the species investigated. In the Avondo et al. (2019) study, the differences described between the LEP genotypes suggested that the L genotype could be associated with a higher utilization of body fat reserves. This is consistent with the finding of higher levels of MUFA and PUFA and lower levels of SFA found with the increased mobilization of FAs from adipose tissue in other studies (Palmquist et al., 1993; Vrankovic et al., 2017). It may also be consistent with the hypothesis of increased demand for energy as reported by Di Gregorio et al. (2014) for the L genotype.

The leptin gene from both cattle and goats map to chromosome 4, and on that chromosome there are quantitative trait loci (QTLs) for fat yield and percentage in milk (Cattle QTL database https://www.animalgenome.org/cgi-in/QTLdb/BT/index, last access: 10 July 2020) and FA composition (Li et al., 2014). This suggests it would be worthwhile undertaking further research into the role of bovine LEP and variation in the gene in the mobilization and utilization of body fat reserves.

These previous reports, along with the findings we report, appear to contradict the findings of Marchitelli et al. (2013). Their study did not reveal any association between the p.Arg25Cys SNP in LEP exon 2 and milk FA traits in Jersey, Piedmontese and Valdostana cattle breeds. A number of...

Table 1. Continued.

Individual/grouped fatty acids²	Variants	Other variants in model	Absent	n	Present	n	p
C10:1 index	A₃	none	7.85 ± 0.384	14	8.05 ± 0.107	286	0.591
	B₃	none	7.87 ± 0.139	123	8.18 ± 0.126	177	0.052
	C₃	none	8.07 ± 0.113	247	7.95 ± 0.199	53	0.550
C12:1 index	A₃	none	2.07 ± 0.099	14	2.25 ± 0.028	286	0.074
	B₃	none	2.21 ± 0.036	123	2.26 ± 0.033	177	0.227
	C₃	none	2.25 ± 0.029	247	2.19 ± 0.052	53	0.243
C14:1 index	A₃	none	6.60 ± 0.434	14	7.11 ± 0.120	286	0.236
	B₃	None	6.92 ± 0.158	123	7.23 ± 0.143	177	0.081
	C₃	none	7.12 ± 0.128	247	6.10 ± 0.225	53	0.595
C16:1 index	A₃	none	3.24 ± 0.160	14	3.26 ± 0.044	286	0.926
	B₃	None	3.26 ± 0.058	123	3.26 ± 0.053	177	0.962
	C₃	none	3.26 ± 0.047	247	3.27 ± 0.083	53	0.880
CLA cis-9, trans-11	A₃	none	1.14 ± 0.085	14	0.99 ± 0.024	286	0.090
	B₃	none	0.99 ± 0.031	123	1.00 ± 0.028	177	0.762
	C₃	none	1.00 ± 0.025	247	0.97 ± 0.044	53	0.484

¹ Predicted means and standard error of those means derived from general linear mixed-effects models (GLMMs). Cow age (categorical variable), LEP variants (categorical variable), herd (categorical variable) and days in milk (continuous variable) were fitted to the model as fixed effects. 0.05< p< 0.2 in italics, p<0.05 in bold. 2 SCFA – short-chain fatty acid; MCFA – medium-chain fatty acid; LCFA – long-chain fatty acid; MUFA – monounsaturated fatty acid; PUFA – polyunsaturated fatty acid; UFA – unsaturated fatty acid; SFA – saturated fatty acid. The unit (g/100 g milk FA) applied to all FAs except for the FA indices which had a unit of %.

https://doi.org/10.5194/aab-64-245-2021 Arch. Anim. Breed., 64, 245–256, 2021
Table 2. Associations between milk fatty acid levels and leptin genotypes.

Individual/grouped fatty acids	Mean ± SE (g/100 g milk FA)	p		
	A1A1	A1B1	A1C1	
C4:0	1.27 ± 0.016			
C6:0	1.58 ± 0.015			
C8:0	1.21 ± 0.012^a	0.013		
C10:0	3.36 ± 0.046^a			
C10:1	0.28 ± 0.006			
C11:0	0.07 ± 0.002^a			
C12:1	0.09 ± 0.002			
C13:0 iso	0.08 ± 0.002			
C13:0 anteiso	0.04 ± 0.001			
C13:0	0.13 ± 0.003^a	0.002		
C14:0	12.67 ± 0.107			
C14:1 cis-9	0.93 ± 0.027			
C15:0	1.52 ± 0.023^a	0.040		
C15:1	0.29 ± 0.004			
C16:0	37.28 ± 0.383			
C16:1 cis-9, 12	1.25 ± 0.033			
C17:0 iso	0.55 ± 0.009			
C17:0	0.88 ± 0.011			
C18:1 trans-11	2.82 ± 0.094			
C18:2 trans-9, 12	0.42 ± 0.005			
C18:2 cis-9, trans-13	0.29 ± 0.004			
C18:2 cis-9, trans-12	0.07 ± 0.003			
C18:2 cis-9, cis-12	0.48 ± 0.015			
C18:2 cis-9, 12	0.68 ± 0.010			
C18:3 cis-6, 9, 12	0.07 ± 0.001			
C18:3 cis-9, 12, 15	0.79 ± 0.014			
C19:0	0.15 ± 0.004			
C20:0	0.13 ± 0.002			
C20:1 cis-5	0.06 ± 0.002			
C20:1 cis-9	0.15 ± 0.003			
C20:1 cis-11	0.08 ± 0.002			
C20:4 cis-5, 8, 11, 14	0.04 ± 0.001			
C22:0	0.06 ± 0.002^a	0.032		
C24:0	0.04 ± 0.001^a	0.026		
C22:5 cis-7, 10, 13, 16, 19	0.12 ± 0.003			
SCFA	2.85 ± 0.029			
MCFA	21.31 ± 0.205^a	0.015		
LCFA	48.55 ± 0.337			
MUFA	19.78 ± 0.234			
PUFA	4.11 ± 0.061			
C18:1 all trans	3.11 ± 0.097			
all C18:3	0.86 ± 0.015			
Omega 3	1.02 ± 0.015			
Omega 6	0.82 ± 0.011			
branched FA	1.60 ± 0.019			
Total C18:2	2.96 ± 0.058			
Total C18:3	0.86 ± 0.015			
Total UFA	23.89 ± 0.280			
Total SFA	68.84 ± 0.304			
unsaturated index	25.77 ± 0.305			
C18:1 index	7.80 ± 0.179			
C12:1 index	2.23 ± 0.046			
C14:1 index	6.84 ± 0.201			
C16:1 index	3.25 ± 0.074			
C18:1 index	59.78 ± 0.463			
CLA cis-9, trans-11	1.01 ± 0.040			

1 Predicted means and standard error of those means derived from general linear mixed-effects models (GLMMs). Cow age (categorical variable), leptin genotypes (categorical variable), herd (categorical variable) and days in milk (continuous variable) were fitted to the model as fixed effects. Means within a row that do not share a superscript letter (a or b) are separated by Bonferroni test at p < 0.05. 0.05 < p < 0.02 in italics, while p < 0.05 is in bold. 2 SCFA – short-chain fatty acids; MCFA – medium-chain fatty acids; LCFA – long-chain fatty acids; MUFA – monounsaturated fatty acids; PUFA – polyunsaturated fatty acids; UFA – unsaturated fatty acids; SFA – saturated fatty acids. The unit (g/100 g milk FA) applied to all FAs except for the FA indices which had a unit of %. 3
factors may have been responsible for this disparity in findings, including the obvious difference in gene region examined and the potential effect of breed differences. While Marchitelli et al. (2013) investigated the effect of the exon 2 region carrying the non-synonymous p.Arg25Cys SNP on milk FA traits, our study examined the effect of exon 3 carrying the non-synonymous p.Ala80Val SNP. Even though both nucleotide sequence variations are non-synonymous, it is likely that these SNPs will affect the concentration of milk FAs differently, since they are located on different parts of the gene. Also, while we investigated 300 NZ cross-bred HF × J cows (albeit of no fixed breed proportion), Marchitelli et al. (2013) investigated 90 cows in total which included the Italian Piedmontese, Valdostana and Jersey breeds. These breeds differ in terms of milk-related traits, especially in the composition of milk FAs. For example, milk from Jersey cows contains higher concentrations of some short- and medium-chain SFA but lower concentrations of some UFA (Arnould and Soyeurt, 2009). Other studies have also suggested that breed is an important factor that affects milk FA content (Karijord et al., 1982; Lawless et al., 1999). It therefore seems plausible that differences in breed may underlie the discrepancies in findings.

Another possible reason for the differences in findings can be attributed to diet. In our investigation, the NZ HF × J dairy cows were all grazed on pasture (a mixture of perennial ryegrass and white clover), whereas the cows chosen by Marchitelli et al. (2013) were fed with “unifeed” (corn silage and concentrates). The pasture-based production system increases the amount of PUFA and conjugated linoleic acids (CLAs) in the milk as suggested by Chilliard et al. (2001) and Dewhurst et al. (2006). In this context, differences in diet may have contributed to the disparity between our findings and those of Marchitelli et al. (2013), especially considering a previous report that suggested diet may affect the production of milk fat (Stelwagen, 2011).

5 Conclusions

The findings here suggest that cows carrying the variant leptin genotype A3B3 (where the B3 variant in exon 3 with accession number MN119554 carries the p.Ala80Val SNP) are associated with decreased SFA levels in milk. Since heterozygous cows A3B3 had reduced SFA levels, cows with the B3B3 genotype might therefore have much lower levels of SFA in their milk. Unfortunately, since there were insufficient cattle with the homozygous genotypes B3B3 in the cattle investigated, further studies involving larger sample sizes across different farms and breeds are needed to validate this claim.

Data availability. The original data are available upon request to the corresponding author.

Author contributions. ILH carried out the experiment and the statistical analysis and wrote the paper. JGHH and HZ designed and supervised the experiment, helped with interpretation of the results, and edited the paper. All authors reviewed and approved the final paper.

Competing interests. The authors declare that they have no conflict of interest.

Acknowledgements. The authors will like to thank the staff of the Gene-Marker Laboratory at Lincoln University for technical support and facilities provided.

Review statement. This paper was edited by Steffen Maak and reviewed by Marcella Avondo and Ankit Magotra.

References

Arnould, V. M. R., and Soyeurt, H.: Genetic variability of milk fatty acids, J. Appl. Genet., 50, 29–39, https://doi.org/10.1007/BF03195649, 2009.
Avondo, M., Trana, A. D., Valenti, B., Criscione, A., Bordonaro, S., Angelis, A. D., Giorgio, D., and Gregorio, P. D.: Leptin Gene Polymorphism in Goats Fed with Diet at Different Energy Levels: Effects on Feed Intake, Milk Traits, Milk Fatty Acids Composition, and Metabolic State, Anim., 9, 424, https://doi.org/10.3390/ani9070424, 2019.
Byun, S. O., Fang, Q., Zhou, H., and Hickford, J. G. H.: An effective method for silver-staining DNA in large numbers of polyacrylamide gels, Anal. Biochem., 385, 174–175, https://doi.org/10.1016/j.ab.2008.10.024, 2009.
Chilliard, Y., Ferlay, A., and Doreau, M.: Effect of different types of forages, animal fat or marine oils in cow’s diet on milk fat secretion and composition, especially conjugated linoleic acid (CLA) and polyunsaturated fatty acids, Livest. Prod. Sci., 70, 31–48, https://doi.org/10.1016/S0301-6226(01)00196-8, 2001.
Dewhurst, R. J., Shingfield, K. J., Lee, M. R. F., and Scollan, N. D.: Increasing the concentrations of beneficial polyunsaturated fatty acids in milk produced by dairy cows in high-forage systems, Anim. Feed Sci. Technol., 131, 168–206, https://doi.org/10.1016/j.anifeedsci.2006.04.016, 2006.
De Matteis, G., Scatà, M. C., Grandoni, F., Petrella, F., Abeni, F., Catillo, G., Napolitano, F., and Moioli, B.: Association analyses of single nucleotide polymorphisms in the leptin and leptin receptor genes on milk and morphological traits in Holstein cows, Open J. Anim. Sci., 2, 174–182, https://doi.org/10.4236/ojas.2012.23024, 2012.
Di Gregorio, P., Di Trana, A., Celi, P., Claps, S., and Rando, A.: Comparison of goat, sheep, cattle and water buffalo leptin (LEP) genes and effects of the Intron 1 microsatellite polymorphism in goats, Anim. Prod. Sci., 54, 1258–1262, https://doi.org/10.1071/AN14101, 2014.
Feuermann, Y., Mabjeesh, S. J., and Shamay, A.: Leptin affects prolactin action on milk protein and fat synthesis in
the bovine mammary gland, J. Dairy Sci., 87, 2941–2946, https://doi.org/10.3168/jds.S0022-0302(04)73425-6, 2004.

Giblin, L., Butler, S. T., Kearney, B. M., Waters, S. M., Callanan, M. J., and Berry, D. P.: Association of bovine leptin polymorphisms with energy output and energy storage traits in progeny tested Holstein-Friesian dairy cattle sires, BMC Genet., 11, 73, https://bmcgenet.biomedcentral.com/articles/10.1186/1471-2156-11-73 (last access: 17 March 2020), 2010.

Gong, H., Zhou, H., and Hickford, J. G. H.: Diversity of the glycine/tyrosine-rich keratin-associated protein 6 gene (KAP6) family in sheep, Mol. Biol. Rep., 38, 31–35, https://doi.org/10.1007/s11303-010-0074-6, 2011.

Hajhosseinio, A., Hashemi, A., and Sadeghi, S.: Association between polymorphism in exon 3 of leptin gene and growth traits in the Makooei sheep of Iran, Livest. Res. Rural Dev., 24, 543–546, 2012.

Halaas, J. L., Gajiwala, K. S., Maffei, M., Cohen, S. L., Chait, B. T., Rabinowitz, D., Lallone, R. L., Burley, S. K., and Friedman, J. M.: Weight-reducing effects of the plasma protein encoded by the obese gene, Science, 269, 543–546, https://doi.org/10.1126/science.7624777, 1995.

Haruna, I. L., Hadebe, S. A., Oladosu, O. J., Mahmoud, G., Zhou, H., and Hickford, G. H. J.: Identification of novel nucleotide sequence variations in an extended region of the bovine leptin gene (LEP) across a variety of cattle breeds from New Zealand and Nigeria, Arch. Anim. Breed., 63, 241–248, https://doi.org/10.5194/aab-63-241-2020, 2020.

Hauseknecht, K. L., Baile, C. A., Matteri, R. L., and Spurlock, M. E.: The biology of leptin: A review, J. Anim. Sci., 76, 1405–1420, https://doi.org/10.2527/1998.7651405x, 1998.

Karirjod, O., Standal, N., and Systad, O.: Sources of variation in composition of milk fat, Z. Tierz. Zuchtungsbio., 99, 81–93, 1982.

Kawaguchi, F., Okura, K., Oyama, K., Mannen, H., and Sasazaki, S.: Identification of leptin gene polymorphisms associated with carcass traits and fatty acid composition in Japanese Black cattle, Anim. Sci. J., 88, 433–438, https://doi.org/10.1111/asj.12672, 2017.

Lagonigro, R., Wiener, P., Pilla, F., Woolliams, J. A., and Williams, J. L.: Short Communication: A new mutation in the coding region of the bovine leptin gene associated with feed intake, Anim. Genet., 34, 371–374, https://doi.org/10.1046/j.1365-2052.2003.01028.x, 2003.

Lawless, F., Stanton, C., Escop, P., Devery, R., Dillon, P., and Murphy, J. J.: Influence of breed on bovine milk cis-9, trans-11-conjugated linoleic acid content, Livest. Prod. Sci., 62, 43–49, https://doi.org/10.1016/S0301-6226(99)00053-6, 1999.

Li, C., Sun, D., Zhang, S., Wang, S., Wu, X., Zhang, Q., Liu, L., Li, Y., and Qiao, L.: Genome Wide Association Study Identifies 20 Novel Promising Genes Associated with Milk Fatty Acid Traits in Chinese Holstein, PLoS ONE, 9, e96186, https://doi.org/10.1371/journal.pone.0096186, 2014.

Li, Y., Zhou, H., Cheng, L., Edwards, G. R., and Hickford, J. G. H.: Effect of DGAT1 variant (K232A) on milk traits and milk fat composition in outdoor pasture-grazed dairy cattle, New Zealand J. Agr. Res., 64, 101–113, https://doi.org/10.1080/00288283.2019.1589537, 2019.

Liefers, S. C., te Pas, M. F. W., Veerkamp, R. F., and van der Lende, T.: Associations between leptin gene polymorphisms and production, live weight, energy balance, feed intake, and fertility in Holstein heifers, J. Dairy Sci., 85, 1633–1638, https://doi.org/10.3168/jds.S0022-0302(02)74235-5, 2002.

Marchietelli, C., Contarini, G., De Matteis, G., Crisa, A., Pariset, L., Scata, M. C., Catillo, G., Napolitano, F., and Moioli, B.: Milk fatty acid variability: Effect of some candidate genes involved in lipid synthesis, J. Dairy Res., 80, 165–173, https://doi.org/10.1017/S002202991300006X, 2013.

Orrù, L., Cifuni, G. F., Piasentier, E., Corazzin, M., Bovolenta, S., and Moioli, B.: Association analyses of single nucleotide polymorphisms in the LEP and SCDI genes on the fatty acid profile of muscle fat in Simmental bulls, Meat Sci., 87, 344–348, https://doi.org/10.1016/j.meatsci.2010.11.009, 2011.

Palmquist, D. L., Beaulieu, A. D., and Barbano, D. M.: Feed and Animal Factors Influencing Milk Fat Composition, J. Dairy Sci., 76, 1753–1771, https://doi.org/10.3168/jds.S0022-0302(93)77508-6, 1993.

Pegolo, S., Cecchinato, A., Mele, M., Conte, G., Schiavon, S., and Bittante, G.: Effect of candidate gene polymorphisms on the detailed fatty acids profile determined by gas chromatography in bovine milk, J. Dairy Sci., 99, 4558–4573, https://doi.org/10.3168/jds.2015-10420, 2016.

Pomp, D., Zou, T., Clutter, A. C., and Barendse, W.: Rapid communication: mapping of leptin to bovine chromosome 4 by linkage analysis of a PCR-based polymorphism, J. Anim. Sci., 75, 14–27, https://doi.org/10.2527/1997.7551427x, 1997.

Stelwagen, K.: Mammary Gland, Milk Biosynthesis and Secretion Lactose, in: Encyclopedia of Dairy Science, edited by: Fuquay, J. W., San Diego, Academic Press, 367–372, 2016.

Tang-Christensen, M., Havel, P. J, Jacobs, R. R., Larsen, P. J., Stelwagen, K.: Mammary Gland, Milk Biosynthesis and Secretion Lactose, in: Encyclopedia of Dairy Science, edited by: Fuquay, J. W., San Diego, Academic Press, 367–372, 2016.

Tang-Christensen, M., Havel, P. J, Jacobs, R. R., Larsen, P. J., and Cameron, J. L.: Central administration of leptin inhibits food intake and activates the sympathetic nervous system in rhesus macaques, J. Clin. Endocrinol. Metab., 84, 711–717, https://doi.org/10.1210/jcem.84.2.5458, 1999.

Vrankovic, I., Aladrovic, J., Otenjak, D., Bijelic, D., Cvetnic, L., and Stojevic, Z.: Milk fatty acid composition as an indicator of energy status in Holstein dairy cows, Arch. Anim. Breed., 60, 205–212, https://doi.org/10.5194/aab-60-205-2017, 2017.

Zhou, H., Hickford, J. G. H., and Fang, Q.: A two-step procedure for extracting genomic DNA from dried blood spots on filter paper for polymerase chain reaction amplification, Anal. Biochem., 354, 159–161, https://doi.org/10.1016/j.ab.2006.03.042, 2006.

https://doi.org/10.5194/aab-64-245-2021