Distribution, cytology, genetics and biotechnology of Ocimum Basilicum L. (Lamiaceae) for its commercial exploitation

Dr. Ashwini Kumar Sinha and Dr. TP Singh

DOI: https://doi.org/10.22271/23940522.2020.v7.i6a.811

Abstract

The aromatic genus Ocimum L. is commercially and medicinally important in the family Lamiaceae was known by 180 genera and 3500 species spread from tropical to sub-tropical parts of the world, of which Ocimum L. prefers both plains and high altitudes. The species is the most important of all as its various subspecies, varieties and chemotypes contain a number of terpenoids and phenols along with many other compounds of high medicinal and commercial values. It is a natural tetraploid (2n = 4x = 48 chromosomes) with almost normal mitosis and meiosis and belongs to the sub-genus Basilicum with basic chromosome number x =12. Free intervarietal hybridization in the species has resulted in a number of viable and stable chemotypes with methyl chavicol, linalool, eugenol, camphor and methyl cinnamate as main constituents of their essential oils, either occurring singly or in different combinations. This feature of the chemotypes has been suggested to be genic in nature as an alteration in their chromosome number and structure is a rare phenomenon. While α-phenylalanine has been found to be the precursor of terpenoids and phenols boch, monoterpenoid linalool has been considered to be the initial terpenoid in the biogenesis of the two compounds. A semblance in the biogenetic pathways of the said main compounds in the various species of the genus Ocimum, including the one understudy, with those of Mentha L. looks plausible, which throws light on homogeneity in the family Lamiaceae. Various aspects of the species, such as distribution, cytology, genetics, biogenesis, biotechnology, etc. of the commercially important species have been discussed in detail.

Keywords: cytology, genetics and biotechnology, commercial exploitation

Introduction

The genus Ocimum L. belongs to the family Lamiaceae, the mint family. The family has altogether 180 genera (Willis, 1973) of medicinal and aromatic importance. The genus Ocimum is one of them and possesses 160 species with a worldwide distribution. Of the various species of Ocimum, O. basilicum L., also known as French basil or Sweat basil or Common basil is medicinally and commercially very important. Altogether 6 sub-species and varieties of O. basilicum have so far been reported to grow in India, namely, O. basilicum ssp. Minimum Danert (Syn. O. minimum L.), O. basilicumvar. glabratum Benth. O. basilicumvar. majus Benth. (O. basilicum var. pilosum Benth. (Syn. O. pilosum Roxb.), O. basilicum var. purpurascens Benth. and O. basilicumvar. thyrsiflorus Benth. In addition to these, there are several varieties and chemotypes of the species with worldwide distribution.

Distribution

Over160 species of Ocimum has been reported to grow in different parts of the world including tropical Asia, Africa, America and sub-tropical regions occurring from sea level to an altitude of 1800m Sharma et al. 1987 [46-50, 51, 57]. The sub-species and varieties of O. basilicum are either cultivated or grown wild in France, Egypt, Hungary, Indonesia, Morocco, U.S.A., Nigeria, Tanzania Sicily, Italy, Pakistan, Senegal, Samoan Islands, erstwhile USSR, Latin America, Mexico, Seychelles and Greece including various states of India. The species prefers both plains and high altitudes. The herb Ocimum, including the species under study, is said to have three main centers of diversity - tropical parts of Africa, South America, possibly Brazil and Asia (Sobti et al. 1976) [40-42, 50-63], of which the former seems to be the place of origin as different species have migrated from the place to various parts of the world, evolving

~ 53 ~
simultaneously during the course of migration. Different varieties and their chemotypes have been shown in Table-1.

Commercial importance
Of the many species of the genus, O. basilicum is commercially very important as it contains a number of phytochemical constituents, various terpenoids being the most significant ones. In addition to many other terpenoids, methyl chavicol, linalool, eugenol, camphor and methyl cinnamate are major ones, found in the sub-species and varieties of the plant. Aromatic compounds of the species are used variously as in medicines, perfumes, toiletries, food flavouring, etc. Its commercial importance can be estimated by the fact that the International price of the essential oil produced by the herb is US $90/kg (As of December 1995, Sharma et al. 1996) [46-50, 51, 57]. The volatile oils have been known to possess antibacterial and insecticidal properties (Khorana and Vangikar 1950, Sirsi et al. 1952, Kurup 1956, Jain and Jain 1972, Lahariya and Rao 1979) [20, 21, 43, 58]. Antitubercular and antimalarial actions of oils are reported by Spencer et al. (1947) [63], Ramaswami and Sirsi (1967) [43, 58]. The whole herb is used to treat snake bites and insect stings as reported by Mhaskar and Caius (1931) [34], Turowka et al. (1956) and Bhargava et al. (1979) [3]. The species is commonly used in traditional medicine to cure diseases, like bronchitis, chest and lungs complaints (Lubini 1990) [30], rheumatism and inflammation (Girach 1992) [13] and hypertension (Adjanohoun et al. 1989) [1]. The species is also used in 'Aromatherapy.

Cytology
Chromosome studies made in Ocimum spp. by various authors revealed the occurrence of two basic chromosome numbers, such as x=8 and 12 (Darlington and Wylie 1955) [10]. Findings

No.	Varieties	Chemotypes
1	O. basilicum L. var. basilicum	(Methyl chavicol – Linalool type)
2	O. basilicum var. crispa	(Methyl chavicol – Linalool type)
3	O. basilicum var. Darkopal (var cicutivar)	(Methyl chavicol type and Camphor type)
4	O. basilicum var. glabrum Benth.	(Methyl chavicol type and Camphor type)
5	O. basilicum var. majus Benth.	(Eugenol type)
6	O. basilicum var. minimum Danert.	(Eugenol type)
7	O. basilicum var. pilosum Benth.	(Geranyl acetate type)
8	O. basilicum var. purpurascens Benth.	(Methyl cinnamate type, Linol type and Eugenol-Linalool type)
9	O. basilicum var. thyrsiflorus Benth.	(Methyl cinnamate type)

by various later workers (Sobti and Pushpaganad 1977, Singh, 1987, 1995) [40-42, 59-62] have established the existence of two sub-genera in Ocimum, namely, Sanctum and Basilicum, having two different base numbers, x=8 and 12 chromosomes, respectively. However, lower basic chromosome numbers, such as x=4 and 6, have been suggested for the two sub-genera, respectively, by Stebbins (1971) [65]. Singh and Sharma (1981) [46-50, 51, 57] and Sharma and Singh (1981) [46-50, 51, 57]. These two small numbers might have been the progenitors of the aforesaid higher basic numbers (Singh 1995) [46, 48-57]. The species under review belongs to the sub-genera Basilicum. Somatic chromosome numbers in all the varieties of the species are 48, except a report of 52 in one of the populations by Singh (1987) [46, 48-57]. This indicates the species after attaining autotetraploid level got stabilised and any variations at varietal and chemotype levels are probably due to genetic alterations.

Meiosis of all the species of Ocimum, including O. basilicum, was almost normal with regular bivalent formation, barring a few stray abnormalities. The only exception is O kilimandscharicum Guerke which is an aneuploid (2n=6x=44+76 chromosomes), the x being 12 chromosomes (Singh 1990) [46, 48-57]. Cytological evolution in the Labiatae herbs growing in India, in general, has been reviewed by Saggoo and Bir (1985) [45, 50] and the genus Ocimum in particular by Singh and Sharma (1981) [46-50, 51, 57]. Somatic and meiotic chromosome numbers reported for O. basilicum have been compiled in Table-2

Genetics
Among the various species of the Lamiaceae family, genetic studies, with special reference to inheritance patterns of various compounds, have been made in some detail in Mentha L. only. Though, studies have been made in Ocimum spp., a lot needs to be investigated. Outbreeding within the population of a species is commonly observed in the species of Ocimum, such as O. americanum L. O. basilicum, O. canum Sims. and O. sanctum L. Sobti and Pushpaganad (1982) [40-42, 59-62] studied breeding in the genus and reported frequency of intravarietal hybrids in O. basilicum in the range of 5.8-18.5%. Naragund et al. (1979) [39] studied inheritance pattern in pigmentation of seedlings and adult plants of this species and valuable gene marker for seedling pigmentation. Genetics of inheritance pattern of different chemical constituents of essential oils from O. basilicum was studied by Sobti and Pushpaganad (1982) [40-42, 59-62] and Gupta (1994) [14-16] and reviewed by Sharma et al. (1987) [46-50, 51, 57]. Sobti and Pushpaganad (1982) [40-42, 59-62] showed that genes responsible for the synthesis of citral, Linalool, camphor, geraniol (all monoterpenoids) are independent of genes responsible for phenols, such as methyl chavicol and eugenol. Manitto et al. (1974, 1975) [31, 32] showed the existence of a dominant gene that inhibits the conversion of cinnamic acid into other components, such as, eugenol, ethyleugenol, chavicol and methyl chavicol. They also showed interference of this gene with the formation of some monoterpenoids of O. basilicum, namely, citral, linalool and camphor. They further showed that cinnamic acid is finally methylated to methyl cinnamate by the same gene meant for the methylation of eugenol and chavicol. Gupta (1994) [14-16] on the basis of hybridisation, the experiment carried out among three chemotypes, namely, methyl chavicol, eugenol and camphor, reported the existence of a gene M for the bio-synthesis of the aforesaid three major components in O. basilicum var. glabrum. The gene was suggested to occur in three or even more allelic forms: M0 responsible for the synthesis of methyl chavicol, M1 for eugenol and M2 for camphor. The gene M0 was found to be dominant over the M1 and the M2 over the M0. He suggested some other forms of alleles, such as, M3, M4... as well, which might be responsible for the biosyntheses of methyl cinnamate, methyl eugenol and some other aromatic compounds, like methyl salicylate, isoeugenol, acetyl eugenol, methylesovalrylate, methyl jasmonate, methyl
epijasmonate, trans-jasmine, 2-methoxy-3methyl pyrazene, tetramethylpyrazine, etc. (Hasegawa et al. 1997) [17].

Among the three chemotypes discussed, methyl chavicol type segregated into all the three types (methyl chavicol, eugenol and camphor), eugenol type segregated into eugenol itself and camphor, while camphor type did not segregate at all and progenies obtained were of parental type only. It was, therefore, suggested that while methyl chavicol and eugenol type existed in heterozygous forms, camphor type existed in the homozygous state. Pushpangadan and Sobti (1982) [40-42, 59-62] performed hybridization experiments between *O. canum* (a true diploid with 2n=2x=24 chromosomes) and *O. basilicum* (a natural tetraploid with 2n=4x=48 chromosomes). This resulted in a fertile F1, hybrids and, upon chromosome doubling, it gave a fertile hexaploid plant having 2n=72 chromosomes. It was phenotypically almost similar to *O. americanum*. The authors also claimed that this synthesized amphidiploid also inherited terpenoid constituents of both the parents. A report by one of the (TPS) the present author, however, regarding the existence of 2n=84 chromosomes in one Indian population from Allahabad from the state of Uttar Pradesh suggested an autopolyoid origin of the species. DNA estimation was carried out by Kundu (1987) [23] in *O. basilicum* (a tetraploid with 2n=48 chromosomes) along with three other species, namely, *O. canum* (a true diploid with 2n=24 chromosomes), *O. sanctum* (a tetraploid with 2n=32 chromosomes) and *O. viride* Willd. (a pentaploid with 2n=40 chromosomes). It was concluded that 4C DNA content per nucleus does not have a linear relationship with the diploid chromosome numbers of the species studied, supporting the well-known idea of the C-value paradox.

Cytogenetics

Both auto-and allopolyploidy has played an important role in the speciation and evolution of *Ocimum* (Sobti and Pushpangadan 1982, Singh 1995) [40-42, 59-62] as evidenced by the presence of true diploid (O. *canum*: 2n=2x=24 chromosomes, x=8), tetraploids (O. *sanctum*: 2n=4x=32 chromosomes, x=8), pentaploids (O. *grattissimum* and O. *viride*Willd: 2n=5x=40 chromosomes, x=8), hexaploidy (O. *americanum*: 2n=6x=72 chromosomes, x=12) and hexaploid accompanied by aneuploidy (O. *kiliandscharicum*: 2n=6x+4=76 chromosomes, x=12) species. The species under discussion is a tetraploid (2n=4x=48 chromosomes, x =12) with the normal bivalent formation and least chromosomal abnormalities during meiosis, except the occasional occurrence of quadrivalents in some samples which comes to 17.3±1.48 in an Indian variety *Ocimum basilicum* var. *purpurascens* (authors, unpublished). Little work has so far been done on induced autopolyoid in the family Lamiaceae in general and *Ocimum* in particular. Species of the family subjected to chromosome doubling is *O. kiliandscharicum* Gurke (Kumar, Thombre, D’cruz 1957 and Bose and Choudhury 1959) [7, 25, 48]. The present authors carried out chromosome doubling work in *O. basilicum* var. *purpurascens* which showed significant improvement in relation to total herbage, total seed output and germination and terpenoid contents in the third generation autopolyoid (2n=8x=96 chromosomes). The contents of eugenol in leaves and linalool in inflorescences rose to 44.60% and 36.85%, respectively.

Biogenesis

Biogenetic pathways of terpenoids are known to a greater extent only in Mentha of the family. In *Ocimum*, no acceptable scheme has so far been proposed by any author. However, scattered reports are available on the biosynthetic pathways of its terpenoids (Dro and Hefendehl 1973; Manitto et al. 1974, 1975; Sobti 1976; Sharma et al., 1987; Gupta 1994) [51, 31, 32, 40-50, 51, 52], Dro and Hefendehl (1973) [11], though in *O. gratissimum*, belonging to the Sanctum sub-genus with x = 8 chromosomes, suggested biosyntheses of the terpenoids and phenols separately. However, Sobti (1976) [40, 42, 59-62] suggested the two pathways have originated after the formation of phenyl-alanine from which the aromatic ring of phenolics is considered to have derived. Biogenetic studies have been made in two varieties of commercially important species *O. basilicum*-O. *basilicum* var. *glabratum* and *O. basilicum* var. *purpurascens* (Sobti 1976) [40-42, 59-62]. Manitto et al. (1974, 1975) [31, 32] showed that L-phenyl-alanine is the precursor of terpenoids and phenols. The latter is synthesized by the loss of carboxylic C-atom and the introduction of an extra carbon atom without any skeletal rearrangement. Cinnamic acid and ferulic acid were intermediates in the syntheses of the compounds as labelled phenylalanine, cinnamic acid and ferulic acid were found incorporated.

Taking into consideration works carried out on the biogenetic pathways of terpenoids in *Mentha* spp. (Murray and Lincoln 1970, Lincoln et al. 1971, Murray et al. 1971, Hefendehl and Murray 1972, Murray and Hefendehl 1972, Murray et al. 1972. Murray and Hefendehl 1973, Singh and Sharma 1986) [37, 38, 46-50, 51, 57] and the frequent occurrence of acyclic monoterpenoid linalool, high or low in *Ocimum* spp. as well, Sobti (1976) and Thoppil (1996) [40-42, 59-62] suggested that the compound might be the initial one from which various other terpenoids and phenols might have been derived.

Table 2: Meiotic and somatic chromosome numbers in *O. basilicum*

S. No.	Species/Varieties	Chromosome number	Reference*	
1.	*O. basilicum*.....	48	VAARAMA1947	
		16	Sz-BORSOS1970	
		24	Mehra and Gill 1973 [11]	
		48, 52	Singh and Sharma 1983 [34-50, 51, 57]	
		24	Khoshla 1995	
2.	*O. basilicum* var. *glabratum* Bent.	48	Thoppil and Jose 1994 [40-42]	
		52	Singh 1987 [46, 48-50]	
3.	*O. basilicum* var. *pilosum* Bent.	48	Thoppil and Jose 1994 [40-42]	
4.	*O. basilicum* var. *pilosum* (Wild) Bent.	48	Singh 1987 [46, 48-50]	
5.	*O. basilicum* var. *purpurascens* Bent.	48	Thoppil and Jose 1994 [40-42, Authors]	
6.	*O. basilicum* var. *thyrsoides* Bent.	48	Thoppil and Jose 1994 [40-42]	

Available first report only considered
Biotechnology
Considering the commercial importance of essential oils of *O. basilicum*, Lange and Hoerster (1977) [21] studied the production and accumulation of the oil in its cell culture. They found free monoterpenoids and phenylpropanoid components and their glycosides in differentiated callus and suspension culture both. The chief glycoside components were linalool, borneol, eugenol and thymol glycosides and high content of monoterpenoid glycosides as well.

Essential oil-bearing plants possess a good number of chemotypes and even minor alterations in their genetic make-up is expected to result in a considerable impact on production and accumulation of secondary metabolites, chemical characteristics of essential oils are genetically determined and controlled (Erdtman 1962, Hefendehl and Murray 1976, Thoppil and Jose 1994) [11, 12, 18, 19, 55, 36].

Exploiting this rich biological behaviour of the herbs, Ahuja et al. (1982) [21] studied clonal propagation of some *Ocimum* species, including *O. basilicum*, and showed that after an initial lag-phase of 15-20 days, a uniform increase in the number of shoots per explant up to 40-45 days took place.

Chlorophyll production and photosynthetic development in *O. basilicum* were studied by Dalton (1983, 1984) [6, 9]. Its cell-suspension were cultured in the glucose limiting conditions batch cultures and glucose-excess conditions of both cultures. Of the two, the former had a higher production rate of total chlorophyll and also a higher photosynthetic rate. However, a later report by Banthorpe et al. (1986) [4] showed callus culture of *O. basilicum* maintained under different regimes of media, temperature and illumination, not have any detectable accumulation of monoterpenoids in the callus or in the media. On the other hand, it’s culture yielded cell-free extracts having prenyltransferase and isomerising system with the media. On the other hand, it’s culture yielded cell detectable accumulation of monoterpenoids in the callus or in callus culture of *O. basilicum* subcultured under glucose limiting conditions.

Bhargava KS, Dixit SN, Dubey NK. Characteristic components found in the essential oil of *Ocimum Basilicum* L. Flavour and Fragr. J 1997;12:195-200.

Hasegawa Y, Tajima K, Toi N, Sugimura Y. Characteristic components found in the essential oil of *Ocimum Basilicum* L. Flavour and Fragr. J 1997;12:195-200.

Khosla MK, Sobti SN. Cytogenetic studies in the Genus *Ocimum*: Interspecific hybrids and Induced amphidiploid of O. gratissimum (2n=40) X O. viridiflora Wildld. (2n=40), Cytologia 1986;51:225-234.

Kundu AK. Interspecific variation in the amount of DNA in *Ocimum* E Current Science 1987;56:34.

Kumar LSS, Hombre MV, D’ Cruz R. Autopolyploidy in *Ocimum* kom and scharicum Guerke. J Univ. Poona Sci. Technol 1957;12:1.

Kumar LSS, Hombre MV, D’ Cruz R. Autopolyploidy in *Ocimum* kom and scharicum Guerke. J Univ. Poona Sci. Technol 1957;12:1.

Laharia AK, RAO KJT. In vitro antimicrobial studies of the essential oils of *Cyperuspercariousus* and *Ocimum Basilicum*. Indian Drugs 1979;16(7):150-152.

Lange E, Hoerster H. Sugar bound regular monoterpenes Part II. Studies and production and accumulation of essential oils in *O. basilicum* cell cultures. Plantu Med 1977;31:112-118.

Lemberkovics E, Nguyen H, Mathé JJ, Tarr K, Petri G, Vitaney G. Formation of essential oil and Phenolic compounds during the vegetative period in *Ocimum Basilicum*. Planta Med 1993;59(Supplement Issue).

Lincoln DE, Marble PM, Cramer EJ, Muray MJ. Genetic Basis for high limonene-cineole content of exceptional *M. citrata* hybrids. Theoretical and Applied Genetics
30. Lubini A. Les plantesutilisées en médecine traditionnelle pour les Yansi de l'EntreKwuila- Kamisha (Zaire) Mitt. Inst. Allg. Bot. Hamburg 1990;23(b):1007-1020.
31. Manitto P, Manti D, Gramatica P. Biosynthesis of phenylpropanoid compounds. I. Biosynthesis of eugenol in *Ocimum Basilicum*. J Chem. Soc. Perkin Trans 1974;1:1548.
32. Manitto P, Manti D, Gramatica P. Biosynthesis of phenylpropanoid compounds. II. Incorporation of specifically labelled cinnamic acid into eugenol. J Chem. Soc. Perkin Trans 1975;1:1548.
33. Mehra PN, Gill LS. Cytology of West Himalayan Labiatae Tribe Ocimoideae. Cytologia 1972;37:53-57.
34. Mhaskar KS, Caius JF. Indian plant remedies used in snake bite. Indian Med. Res. Mem 1931;19:58.
35. Muray MJ, Hefendehl FW. Changes in monoterpen composition of *M. Aquatica* produced by gene substitution from *M. Avenisiis*. Phytochemistry 1972;11:2469-2474.
36. Muray MJ, Hefendehl FW. Changes in monoterpen composition of *M. Aquatica* produced by gene substitution from a high limonene strain of *M. citrata*. Phytochemistry 1973;12:1875-1880.
37. Muray MJ, Lincoln DE. The genetic basis of acyclic oil constituents in *M. citrata* Ehrh. Genetica 1970;65:457-471.
38. Muray MJ, Lincoln DE, Marble PM. The oil composition of *M. Avenisiis* X M. spicata Fr hybrids in relation to the origin of *M. Piperita*. Can. J Genet. Cytol 1972;14:13-29.
39. Naragund VR, Krishna R, Kumar TV. Inheritance of pigmentmentation in *Ocimum Basilicum*. Linn. Curr. Sci 1979;48:822.
40. Pushpangadan P, Sobti SN. Cyto genetical studies in the genus *Ocimum*. I. the origin of O. americanum, Cytotaxonomical and experimental proof. Cytologia 1982;47:575-583.
41. Pushpangadan P, Sobti SN, Khan R. Inheritance of major essential oil constituents in *Ocimum Basilicum*) var. galbanum Benth. (French basil). Indian J Exp. Biol 1975;13(5):520-521.
42. Pushpangadan P, Sobti SN, Khan R. Karyomorphological studies in the genus *Ocimum*. I. Basilum cum group. Nucleus (Calcutta) 1975;18:231.
43. Ramaswami AS, Siri S. The antitubercular activity of some natural products. Indian J Pharm 1967;2915:157-159.
44. Ravid U, Putievsky E, Katzir I, Lewinson E. Enantiomeric composition of Linalool in the essential oils of *Ocimum* species and commercial Basil oils Flavour and Fragr 1997;12:293.
45. Ggoo MLS, Bir SS. Cytological evolution in the Indian Labiatae. Trends PL. Res 1985, P367-396.
46. Sharma AK, Singh TP. Correlation of cytology and phytochemical constituents in Labiatae. Bol. Soc. Broteriana 1981;53:1257-1286.
47. Sharma A, Twari R, Virmani OP. French Basil (*Ocimum basilicum*) L.A review CROMAP 1987;9:136-151.
48. Sharma JR, Sharma A, Singh AK, Kumar S. Economic potential and improved varieties of aromatic plants of India. Journal of Medicinal and Aromatic Plant Sciences 1996;18:512-522.
49. Singh TP, Sharma AK. Cytotypes and phenotypes in *Ocimum sanctum* - their characteristics. Cytologia 1981;46:723-729.
50. Singh TP, Sharma AK. Karyomorphological studies in *Ocimum gratissimum* L. and O. viridif Willd. J. Cytol. Genet 1986;21:15-20.
51. Singh TP, Sharma AK. Secondary constriction in the chromosomes of *Ocimum* and its significance in species stability. Current Approaches in Cyto genetics (eds. R.P. Sinha and U. Sinha) 1983, P83-86.
52. Singh TP. Chromosome studies in *Ocimum*. Curr. Sci 1978;47(23):915-916.
53. Singh TP. Improved technique for chromosome study in some members of Labiatae. Curr. Sci 1985;54(5):242-243.
54. Singii TP. Karyomorphological studies in *O basilicum* L. utilized in an effort to solve the taxonomic status of O. carnosum Link. et Otto. J. Indian bot. Soc 1987;66:402-407.
55. Singh TP. Karyomorphological studies in the populations of *Ocimum* kilmandscharium Guerre J Indian bot. Soc 1990;69:431-434.
56. Singh TP. Alterations in the basic chromosome numbers as a means of speciation in *Labiatae*. Feddes Repertorium 1995;106(1&2):39-47.
57. Singh TP, Sharma AK. Mentha-Taxonomic status as interpreted through cytology, Genetics and Phytochemistry. Indian J Genet 1986;46(Suppl.):198-208.
58. Sirsi M, Kale L, Natrajan S, Nayak UB. Studies on the antimicrobial activity and pharmacological properties of some essential oils extracted from locally cultivated plants. J Indian Inst. Sci 1952;34A(3):261-267.
59. Sobti SN, Pushpangadan P. Cytotaxonomical studies in genus *Ocimum*: In Taxonomy, Cyto genetics, Cytotaxonomy of Plants (ed. S. S. Bir). Kalyani Publishers, New Delhi 1977, P373-377.
60. Sobti SN, Pushpangadan P. Studies in the genus *Ocimum*: Cytogenetic breeding and production of new strains of economic importance. In: Cultivation and Utilization of Aromatic Plant. Eds. Atal, C.K. and Kapoor, B.M., RRL, Jammu 1982, P457-482.
61. Sobti SN. Genetical basis of chemical constituents in some of the essential oils, 3rd Seminar on Current Developments in Essential Oils, Fragrances and Flavours 12-13 November, Calcutta 1976, P45-50.
62. Sobti SN, Pushpangadan P, Atal CK. Genus *Ocimum* - a potential source of new essential oils, Indian Perfumer 1976;20:59-68.
63. Spencer CF, Koniuszy FR., Roger EF, Shavel J, Easton NR, Kaczka EA. Survey of plants for antimalarial activity. Lloydia 1947;10(3):145-174.
64. Srivastava AK. French Basil and its cultivation in India. Farm Bulletin No.-16, CIMAP, Lucknow 1980, P1-15.
65. Stebbins GL. Chromosomal Evolution in Higher Plants. Arnold, London 1971.
66. Sz. Boros O. Contribution to the knowledge on the chromosome numbers of Phanerogams growing in Hungary and South-Eastern Europe. Acta Bot. Acad. of Sci. Hungry 1970;16:255.
67. Thoppi J, Jose J. Intraspecific Genetic Control of major essential oil constituents in *Ocimum Basilicum* Linn. Nucleus 1994;37:30-38.
68. Hoppil JE. Contribution to the study of essential oil biosynthesis in eight varieties of O basilicum L. Acta Pharmaceutica 1996;46(3):195-199.