1. The current state of the $T-v$ relation and its use

The most important principle of cutting – a relation between the durability of a cutting tool and a cutting speed has been the subject of interest of research workers in the whole history of the process of a cutting acquisition as a technological method.

As early as in 1905, the American scientist TAYLOR defined the course of this relation and created it as a double logarithmic set; its mathematical formula was as follows:

$$ T = \frac{C_T}{v^m} $$

(1)

The formula has been used up to now [2,3.5]. Since that time, there were many, more or less successful, attempts to provide a more precise definition and mathematical description of this function. In 1933 SAFONOV [4] defined the relation:

$$ T = \frac{C_T}{v^b} $$

(2)

The relation describes $T-v$ relation more precisely, however, it is more complicated for practical use and it does not comprise a declining curve.

In 1957 TEMČIN successfully improved the TAYLOR’s relation by adding a term to a denominator:

$$ T = \frac{C_T}{v^{mb}} $$

(3)
kde \(T_m \) je maximálna hodnota trvanlivosti v celom rozsahu sledovaných rezných rýchlostí.

Celý vzťah potom nadobudne tvar:

\[
T = \frac{C_T}{v^n + \frac{C_T}{T_m}}
\]

(4)

Rozdiel oproti klasickému Taylorovmu vzťahu je ten, že pri malých hodnotách rezných rýchlostí veľkostou prevádza druhý člen v menovateľi a vzťah konverguje k priamke, rovnobéžnej s osou rezných rýchlostí. Naopak, pri dostatočne veľkej rezone rýchlosti je prvý člen v menovateľi výrazne väčší ako druhý a vzťah sa transformuje na Taylorov.

Ďalší pokus sa vzťahuje k japonskému autorovi VU [8], ktorý v r. 1963 definioval vzťah:

\[
T = \frac{C_T}{v_b + b_v}
\]

(5)

kde \(b_0 \) a \(b_1 \) sú konštanty.

V rovnakom roku GRANOVSKIJ [8] definioval vzťah:

\[
T = a_0 + a_1 \cos v + a_2 \cos 2v + \ldots + a_n \cos ny + b_0 \sin y + b_1 \sin 2y + \ldots + b_n \sin ny
\]

(6)

kde: \(y = \frac{2\pi(v - v_0)}{v_0 - v_n} \); pričom: \(v_n \leq v \leq v_n \)

KONEVŠOV a KSJUNINA [5] definiovali v r. 1964 nasledovný vzťah:

\[
T = 100e^{\sqrt{1 - \ln v - \ln v_n}}
\]

(7)

Z ďalších pokusov si pozornosť zaslúži MATCHISEN, ktorý v r. 1965 odvodil vzťah:

\[
T = \frac{C_T - av + bv^2}{v}
\]

(8)

Tým sa vša řeťaz neuzatvára. Spomedzi novších riešení treba uviesť autorov KÖNIG a DEPEREUX [1] s modifikovaným vzťahom:

\[
T = \frac{k}{(v + v_n)^2}
\]

(9)

a polškého autora FTOREKA s tromi vzťahmi [1]:

\[
T_e^{ov} = D
\]

(10)

\[
T_e^{ov} = E
\]

\[
T_e^{(v + v_n)} = H_o
\]

V r. 1981 BÉKES [1] publikoval vzťah:

\[
T = C_o + C_1v^2 + C_2f^2
\]

(11)

where \(T_m \) is maximal value of durability in the whole range of cutting speeds.

The whole relation is then as follows:

\[
T = \frac{C_T}{v^n + \frac{C_T}{T_m}}
\]

(4)

Compared to the classical Taylor's relation, the difference lies in the fact that with small values of cutting speeds, the second in the denominator prevails and the relation converts to a straight line which is parallel to the axis of the cutting speeds. On the contrary, if the cutting speed is sufficient, the first term in the denominator is considerably bigger than the second term and the relation converts to the Taylor’s one.

The next is connected with the name VU [8] who in 1963 defined the following relation:

\[
T = \frac{C_T}{v_b + b_v}
\]

(5)

In the same year GRANOVSKIJ [8] defined the relation:

\[
T = a_0 + a_1 \cos v + a_2 \cos 2v + \ldots + a_n \cos ny + b_0 \sin y + b_1 \sin 2y + \ldots + b_n \sin ny
\]

(6)

where: \(y = \frac{2\pi(v - v_0)}{v_0 - v_n} \), while: \(v_n \leq v \leq v_n \).

KONEVŠOV and KSJUNINA [5] defined the following relation in 1964:

\[
T = 100e^{\sqrt{1 - \ln v - \ln v_n}}
\]

(7)

MATCHISEN also deserves attention as in 1965 he defined the following relation:

\[
T = \frac{C_T - av + bv^2}{v}
\]

(8)

The chain, however, had not been closed by this. Newer solutions are connected with the following authors: KÖNIG-DEPEREUX [1] with a modified relation

\[
T = \frac{k}{(v + v_n)^2}
\]

(9)

and Polish author FTOREK with three relations [1]:

\[
T_e^{ov} = D
\]

(10)

\[
T_e^{ov} = E
\]

\[
T_e^{(v + v_n)} = H_o
\]

In 1981 BÉKES [1] published the relation:

\[
T = C_o + C_1v^2 + C_2f^2
\]

(11)
Do komplexu treba uviest GRANOVSKÉHO [1], ktorý v r. 1985 uviedol nasledovný vzťah:

\[T = C_T v^p e^{-qv} \quad (12) \]

Zo súčasných pozícií predstavujú záujem najmä polynómy, s ktorými sa pomerne ľahko realizujú výpočty. Bez problémov sa diferencujú a sú známe aparáty na vypočítanie ich koeficientov a viac sú vhodné na použitie výpočtovej techniky.

Napriek uvedeným riešeniam možno pretrvávanie Taylorovho vzťahu zdôvodniť tým, že je jednoduchý pri praktických aplikáciách a to napriek argumentu, že súčasná výpočtová technika dokáže pracovať sa všetkymi lubovoľnej složitejšej zložitej. Základným postulátom pri definícii klasického Taylorovho vzťahu je správna voľba kritéria otupenia, pri ktorom ho definujeme. Toto kritérium vychádza z použitia nástroja, ktorý pracuje pri rezných rýchlostiach blizkej optimálnej, pri použití rezný materiál. Je zrejmé, že pri takejto voľbe nebude vzhľadom k definičnému kritériu otupenia a definovanej frekvencii výmeny nástrojov si žiada uplatniť nový pohľad na kritérium otupenia. V ideálnom prípade treba využiť každý nástroj do otupenia. V realizácii toho cieľa postupujeme v dalošom.

2. \(T-v \) závislosť s konštántnym kritériom otupenia

Ako je známe, klasický prístup k zostrojeniu \(T-v \) závislostí spočíva v získaní experimentálnej krivky \(VB = f(\tau) \) pri rozličných rýchlostiach.

Zo sústavy kriviek sa odčítajú trvanlivosti nástrojov pri konštántnom kritériu otupenia. Na obr. 1 je sústava takýchto experimentálnych kriviek, získaná za podmienok:
- rezný materiál: SK P 20
- obrábianý materiál: ocel 12 060.1
- nástrojový ortogonálny uhol čela: \(\gamma_o = 0^\circ \)
- nástrojový ortogonálny uhol chrbta: \(\alpha_o = 8^\circ \)
- nástrojový uhol nastavenia: \(\kappa_o = 60^\circ \)
- uhol sklonu rezone hrany: \(\lambda_o = 0^\circ \)
- polomer zaoblenia hrota noža: \(r_o = 1 \) mm
- \(a_p x f = 1 \times 0.31 \) mm

Na obr. 2 je zodpoveďajúca \(T-v \) závislosť. Krivka je nahradená Taylorovým vzťahom tak, že tento platí v rozsahu rezných rýchlostí nad 200 m.min\(^{-1}\).

To name all, in 1985 GRANOVSKIJ introduced the following relation [1]:

\[T = C_T v^p e^{-qv} \quad (12) \]

At present attention is especially drawn by polynóms, by the help of which calculations can be done easily. They are differentiated without any problems and there are apparatuses to calculate their coefficients. Moreover, they are suitable for the use of computer technique.

Leaving out of the account the mentioned solutions, the topicality of the Taylor' relation can be explained by the fact that it is simple for practical applications in spite of fact that the latest computing technique is able to work with relation of any difficulty.

The basis postulate of the definition of the classical Taylor's relation is correct choice of the blunting through which it is defined. This criterion is based on the use of a tool working at a cutting speed, which is close to an optimal one for a used cutting material. It is obvious that which such a choice the other cutting tools will not be utilized until blunting appears, i.e. their cutting properties will not be utilized. The application of NC cutting tools, which leads to the applications of intensive cutting conditions as well as a defined frequency of tool change, requires a new approach to blunt criterion of blunting. Each cutting tool should be utilized until it is blunt. The realization of this aim is shown in the following.

2. \(T-v \) relation with constant blunt criterion

As it is known, the classical approach to a creation of the \(T-v \) relation is based on obtaining an experimental curve \(VB = f(\tau) \) with various cutting speeds.

From the set of curves the tools durability with a constant criterion of blunting is substracted. In Fig. 1 there is a set of such experimental curves obtained under the following conditions:
- cutting material: P 20
- worked material: steel 12 060.1
- tool orthogonal race angle: \(\gamma_o = 0^\circ \)
- tool orthogonal back angle: \(\alpha_o = 8^\circ \)
- tool aproach angle: \(\kappa = 60^\circ \)
- back slope angle: \(\lambda_o = 0^\circ \)
- point radius: \(r_o = 1 \) mm
- \(a_p x f = 1 \times 0.31 \) mm

In Fig. 2 shows a corresponding \(T-v \) relation.

The curve is substituted by Taylor’s relation so that it is valid within in the range of cutting speeds over 200 m.min\(^{-1}\).
3. T-v závislosť pri variabilnom kriéiriu otupenia

O možnosti, zostrojiť T-v závislosť s variabilnými kritériami otupenia sa objavuje zmienka v monografi GRANOVSKICH z t. 1985 [3]. Nebola však definovaná metóda, ako jednotlivé kritérija stanoviť. Blížšie štúdium veľkého množstva krieviek závislosti VB = f(t) vedie k záveru, že existuje pomerné presne definované kritérium otupenia, ktoré sa aplikuje pri „optimálnej“ reznej rýchlosti podľa metód ZOREVA a LARINA. Možno reálne očakávať, že tieto metódy sa dajú uplatniť aj pri nepriamých krieviek otupenia. Z toho vychádzajú aj ďalšie úvahy.

Zvolime si pre pokus súbor krieviek z obr. 1. Pri reznej rýchlosti 80 m.min⁻¹ je kritérium otupenia vizualne zrejmé a je v tom prípade VBₙₗ = 0,4 mm. Ak od tohto bodu preložíme priamku smerom k podobnému bodu na krivke pri rýchlosťi 60 m.min⁻¹ a ďalej, ohraničili sme „intuitívne“ kritérium otupenia aj pre ostatné rezne rýchlosti. Ak podľa nich zostrojíme krivku T-v, bude sa výrazne odišlovať od obr. 2. Jej priebeh je na obr. 3 (trojuholníky). Pri identifikácii uhlia sklonu T-v závislosti a exponentu m zisťujeme, že je menší. Ďalší rozdiel spočíva v tom, že pri menších rezných rýchlostiach (40 - 60 m.min⁻¹) sú zaznamenané výššie hodnoty trvanlivosti, ako pri klasickom postupe. Maximum trvanlivosti je menej výrazné. Všetky tieto odišnosti sú sprievodným znakom vyššieho kritéria otupenia, prakticky v celom rozsahu rezných rýchlostí.

As it can be seen, the exponent \(m = 5.7, C_v = 250. \)

Hence: \(C_T = C_v^m = 4.6 \times 10^{13}. \)

The experiment shows that outside the areas where the curve is substituted by a straight line, we make a serious mistake in the applications of the Taylor’s relation. This is in fact the reason why many authors are interested in this problem.

3. T-v relation with a variable criterion of blunting

The possibility of creation of the T-v relation with a variable criteria of blunting appears in the monograph by GRANOVSKICH, 1985 [3]. However the method how to determine different criteria was not defined. Closer studies of a large number of the relation curves VB = f(t) lead to the conclusion that there is a relatively precise definition of the criterion of blunting which is applied with the “optimal” cutting speed according to the methods of ZOREV and LARIN. It can be actually expected that those methods can also be used also for incomplete wear curves. The following approaches are based on the above mentioned conclusions.

For the experiment, let us choose the set of curves from Fig.1. With the cutting speed 80 m.min⁻¹ the criterion the blunting is visually evident, and in this case it is VBₙₗ = 0.4 mm. If we draw a straight line from this point towards a similar point on the curve for speed 60 m-min⁻¹ and further on, we also bordered “intuitive” criterion of blunting for other cutting speeds. If we draw a T-v curve according to this, it will be very different from Fig. 2. Its course is in Fig. 3 (triangles). At the identification of the slope angle of the T-v relation and the exponent m, we find out that it is smaller.

The next difference is that with smaller cutting speeds (40 to 60 m.min⁻¹), higher durability than during a classical process are recordd. Durability maximum is less significant. All the differences is an
Pokúšame sa zvoliť kritériá otopenia odlišne. Na obr. 4 je hranicou križiaca. Zodpovedajúca $T-v$ závislosť je na obr. 3. Vznikla plynulejšia krivka, príčom exponent m má rovnakú hodnotu. Tento postup napovedá, že sa blížime ku správnu kritériu otopenia.

3.1. Zovšeobecné opis $T-v$ závislosti

Z obr. 3 vidno, že aplikácia klasického Taylorovho vzťahu by nepriniesla pokrok oproti doterajším postupom. Preto na opis $T-v$ závislosti sa použil TEMČINOV vzťah (4), ktorý bol úspešne aplikovaný aj v ďalších doterajších prácach [6, 8, 9, 10]. Jeho prednostou je skutočnosť, že je postavený na Taylorovom vzťahu, a pri nej sa vykoná experiment.

V predchádzajúcom experimente bola táto hodnotu T_m, ako maximálnu trvanlivosť, ktorá sa dosiahne v celom rozsahu rezných rýchlostí. Jej stanovenie súvisí s tým, ako presne sa odhadne reálna rýchlosť, ktoré zodpovedá maximálna trvanlivosť a pri nej sa vykoná experiment.

Dôležité je stanoviť hodnotu T_m, ako maximálnu trvanlivosť, ktorá sa dosiahne v celom rozsahu rezných rýchlostí. Jej stanovenie súvisí s tým, ako presne sa odhadne reálna rýchlosť, ktoré zodpovedá maximálna trvanlivosť a pri nej sa vykoná experiment.

Po dosadení do vzťahu (4) možno pre lubovoľné zvolené v vypočítať T. Výsledok je nasledovný:

$$C_T = \frac{T_m v^m}{T_m - T}$$

T a v sú konkrétné hodnoty trvanlivosti a rezné rýchlosti, odčítané z klesajúcej vetvy krivky a to z jej úseku, kde už prepočítaná platnosť Taylorovho vzťahu. V sledovanom prípade boli dosadené hodnoty: $v = 300$, $T = 25$, $T_m = 220$, $m = 4$, čo po dosadení dáva: $C_T = 2,3 \times 10^{11}$.

Po dosadení do vzťahu (4) možno pre lubovoľné zvolené v vypočítať T. Výsledok je nasledovný:

v, m.min$^{-1}$	39	60	80	100
T, min	220	219	214	203

Na obr. 3 je takto vypočítaná krivka znázornená plnou čiarou. Vďačíme dobrú zhodou tejto krivky s experimentom, neporovnateľne výničné, pri aplikácii Taylorovho vzťahu. Analýza viajúca

accompanying feature of a higher criterion of blunting practically in the whole range of cutting speeds.

Let us try to choose the criteria of blunting differently. In Fig. 4 the border of criteria is a circle. The corresponding $T-v$ relation can be seen in Fig. 3. A more fluent curve was created, while the exponent m has the same value. This approach indicates that we are approaching the correct criterion of blunting.
cerých prípadov ukázala, že maximálna chyba je len 8 %. Toto skutočnosť dáva reálnu nádej na aplikáciu použitého vzťahu v praxi.

3.2 Exaktné kritériá otupenia

Voľba kritérií otupenia podľa predchádzajúceho postupu sa vyznáca nepresnosťou a subjektívnosťou. Preto cieľom ďalších aktivít bol najskôr exaktnejší postup. Návodom sa stal LARINOV postup stanovenia optimálneho otupenia [7]. Ako je známe, tento postup spočíva v nasledovnom:

Je potrebné definovať hrúbku reznej platničky \(b \), ktorú možno odstrániť pri preostrovaní. Pre tento účel môže byť volená ľubovoľne, pretože nám nejde o kontrén hodnotu počtu preostrení, ale hľadané lokálne maximum.

Pre zvolené hodnoty kritéria otupenia (napr. 0,1; 0,2; 0,3 ... mm) sa určí teoretický počet preostrení nástroja \(n \), podľa vzťahu:

\[
 n = \frac{b}{VB_k}
\]

Napr.: Ak hodnota, ktorú možno odohrať je 3 mm, bude počet preostrení pre jednotlivé \(VB_k \) nasledovný:

\(VB_k \)	0,1	0,2	0,3	0,4	0,5	0,6	0,7	0,8	0,9	1
\(n \)	30	15	10	7,5	6	5	4,3	3,8	3,3	3

Pochopiteľne, \(n \) nemusí byť celé číslo.

V daliom sa zostroji závislosť: \(nT=f(VB_k) \) pre každú reznú rýchlosť, pričom \(T \) je vždy zodpovedajúca trvanlivosť pri konkrétom \(VB_k \) a \(v \).

Tento postup bol uplatnený pre niektoré krivky z obr. 1. Výsledok je na obr. 5. Ide v podstate o závislosť životnosti nástroja na zvolenom kritériu \(VB_k \). Z každej krivky je vyhodnotené maximálnu a jemu zodpovedajúcu optimálne \(VB_k \). Hodnoty konkrétnych \(VB_k \) sú spätne vynesené na krivky otupenia a dostávame si situáciu podľa obr. 6.

Je viditeľné, že predchádzajúce pokusy sa len priblížili k tejto situácii. Zatiaľ nie je cieľom určiť rovnicu tejto špecifiky. Dôležité je, že tento postup možno považovať za exaktný, pretože je súčasne do úvahy reálné zloženie procesu obrábania.

Komplexný výsledok je na obr. 7, kde je krivka závislosti \(T-v \) vytvorená na základe obr. 6 a jej vyhodnotenie podľa uvedeného článku. Pre vznikne prvej krivky, ktorá je závislosť

\[
 V_b \quad 0,1 \quad 0,2 \quad 0,3 \quad 0,4 \quad 0,5 \quad 0,6 \quad 0,7 \quad 0,8 \quad 0,9 \quad 1
\]

| \(n \) | 30 | 15 | 10 | 7,5 | 6 | 5 | 4,3 | 3,8 | 3,3 | 3 |

Of course, \(n \) does not have to be a whole number.

In the following the relation is determined for each cutting speed: \(nT=f(VB_k) \) whereas \(T \) is always a corresponding durability of a concrete \(V_b \) and \(v \).

This approach was applied to some curves from Fig. 1. The result is shown in Fig. 5. It is necessary to define thickness of the cutting plate \(b \) which can be removed during the re-sharpening. For this purpose it can be chosen freely because we do not consider a concrete value of the re-sharpening number, but the we searched local maximum.

For the selected values of the criterion of blunting (e.g. 0.1; 0.2; 0.3 ... mm) a theoretical number of re-sharpenings of a tool \(n \) is determined according to the relation:

\[
 n = \frac{b}{VB_k}
\]

For example: If the value which can be removed from the plate by grinding is 3 mm, the number of the re-sharpening for the individual \(VB_k \) is as follows:

Výsledok je na obr. 5. Ide v podstate o závislosť životnosti nástroja na zvolenom kritériu \(VB_k \). Z každej krivky je vyhodnotené maximálnu a jemu zodpovedajúcu optimálne \(VB_k \). Hodnoty konkrétnych \(VB_k \) sú spätne vynesené na krivky otupenia a dostávame si situáciu podľa obr. 6.
ného postupu. Chyba nie je váčšia, ako je rozptyl nameraných hodnôt trvanlivosti.

V súvislosti s týmto výsledkom sa natíska možnosť aplikovať tuto novú T-v závislosť na bežné výpočty v technológii obrábania. Takto by bolo možné spresniť pojem obrábateľnosť materiálu a reznosť nástroja.

V ďalšej sérii skúšok sa budeme venovať verifikácii naznačenejho postupu v rozličných prípadoch obrábania a stanovenia metodiky zostrojenia exaktnej T-v závislosti.

3.3 Verifikácia postupu zostrojenia T-v závislosti a návrh metódiky

Na obr. 8 je priebeh piatich krviek opotrebenia, ktoré boli získané v uvedených podmienkach. V spodnej časti je diagram závislosti: nT = f(VB), s výhodnotením jednotlivých VBk.

Na obr. 9 je výsledná T-v závislosť, pričom kružkami sú znázornené experimentalne hodnoty. Výsledok je v podstate zhodný s predchádzajúcim. Naprieč menšiu počtom rezných rýchlostí je T-v závislosť dostatočne presná. Naznačuje to možnosť zmenšiť rozsah experimentálnych skúšok.

Na obr. 10 je súbor štyroch kriviek opotrebenia, získaných podrobným meraním (po 10 minútach obrábania).

V dolnej časti je diagram nT = f(VB) pri troch rezných rýchlostiach. Zhoda je podobná ako v predchádzajúcich prípadoch.

Fig. 8 shows the course of the five wear curves which were obtained under the given conditions. In the lower part, there is a diagram of the relation nT = f(VB) with the individual VBk evaluation.

In Fig. 9 there is a final T-v relation while the circles mark the experimental values. The result is, in fact, identical with the previous one. In spite of a lower number of cutting speeds, the T-v relation is sufficiently precise. It shows the possibility of decreasing range of experimental tests.

In Fig. 10 there is a set of four wear curves obtained by a detailed measuring (after 10 minutes of cutting).

In the lower part, there is a diagram nT = f(VB) with 3 cutting speeds.

Referring to this results, the possibility of the application of this new T-v relation with the common calculations of the cutting technology appears. Thus, is would be possible to specify the term “cutting” of the material as well as a “cutting tool efficiency”.

The following series of tests deals with the verification of the outlined procedure with the various cases of cutting and the determination of the methodology of the creation of the exact T-v relation.

3.3 Verification of the creations procedure of the T-v relation and the methodology proposal

Fig. 8 shows the course of the five wear curves which were obtained under the given conditions. In the lower part, there is a diagram of the relation nT = f(VB) with the individual VBk evaluation.

In Fig. 9 there is a final T-v relation while the circles mark the experimental values. The result is, in fact, identical with the previous one. In spite of a lower number of cutting speeds, the T-v relation is sufficiently precise. It shows the possibility of decreasing range of experimental tests.

In Fig. 10 there is a set of four wear curves obtained by a detailed measuring (after 10 minutes of cutting).

In the lower part, there is a diagram nT = f(VB) with 3 cutting speeds.
Ďalší príklad experimentu je na obr. 11. Ukazuje na ďalšiu možnosť skrátenia skúšok, ktorá spočíva v nasledovnom:

- zostrojiť krivku opotrebenia pri reznej rýchlosti, ktorú pre daný rezný materiál podľa skúsenosti a údajov výrobcu možno považovať za optimálnu, dávajúcu maximálnu trvanlivosť. Z tejto krivky možno stanoviť \(T_m \) a \(VB_k \).

Another example of the experiment is in Fig. 11. It shows another possibility of the tests shortening which lies in the following:

- to set a wear curve at a cutting speed which for a given cutting material, according to the experience as well as the information from the producer, can be considered as optimal and, at the same time, providing a maximum durability. This curve is used to derive \(T_m \) and \(VB_k \).
- zostrojiť dve krivky opotrebenia pri rezných rýchlostiach, výrazne vyšších od \(v_1 \). Z kriviek možno určiť \(VB_k \) (pre obe rezné rýchlosti) a \(m \).

Na obr. 12 je \(T-v \) závislosť.

V dalšom príklade je pokus o overenie metodiky s použitím troch kriviek opotrebenia. Na obr. 13 sú krivky opotrebenia pri rôznych rezných rýchlostiach: 70, 100 a 130 m.min\(^{-1}\). Ako obrábany materiál bola použitá vývojová oceľ pre valivé ložiská (NLO), ktorá má vyššiu pevnosť a asi o triedu horšiu obrábateľnosť sústružením ako klasická (14 109.3) - obr. 9. Z hľadiska metodiky skúšok vidno, že nebolo potrebné sledovať krivku opotrebenia nad \(VB = 0.4 \) mm. Skúšky pri viacerých rezných rýchlostiach vyžadovali pomerne krátky čas.

Krivky pre \(z = nT = f(VB) \) boli zostrojené len prvé dve rezné rýchlosti, čo na základe skusenosti postačuje na zostrojenie \(T-v \) závislosti, ktorá je na obr. 14.

4. Záver

Naznačený postup na získanie \(T-v \) závislosti možno úspešne použiť miesto klasického skúšky pri konštantnom kritérii otupenia. Prítom časové a materiálové nároky na jeho realizáciu zodpove-

- to set two wear curves with cutting speeds which are much higher than \(v_1 \). The curves are used to determine \(VB_k \) (for both cutting speeds) and \(m \).

In Fig. 12 there is the \(T-v \) relation.

The following example presents a test which was carried out to verify the methodology with the use of three wear curves. In Fig. 13 there are wear curves at different cutting speeds 70, 100 and 130 m.min\(^{-1}\). As a cutting material, research steel for bearing parts (NLO) was used. This steel has a higher strength and approximates one class worse as regards worse workability by turning than the classical one (14209.3) - Fig. 9. From the point of view of the methodology of tests it follows that is was not necessary to observe the wear line over \(VB = 0.4 \) mm. The tests with higher cutting speeds required relatively short time.

Curves for \(z = f(VB) \) were created only for two cutting speeds which is sufficient for creation of the \(T-v \) relation which is in Fig. 14.

4. Conclusion

The outlined procedure of obtaining the \(T-v \) relation can be successfully used instead of a classical test with a constant criterion of blunting. At the same time, the material and the time require-
ments for its realization correspond with, for example, a well known test of BEZPROZVANNYJ, or a test with a lower criterion of blunting. Comparing to them, the suggested approach shows a considerably higher accuracy.

Reviewed by: J. Zongor, J. Salaj

5. Literatúra - References

[1] BÉKÉS, J.: Inžinierska technológia obrábania kovov. Bratislava Alfa, 1981, 398 s.
[2] BUDA, J., SOUČEK, J., VASILKO, K.: Teória obrábania. Bratislava Alfa, 1988, 391 s.
[3] DMOCHVSKI, J.: Podstawy obróbki skawanjem. Warszawa. Państwowe wydawnictwo naukowe, 1987, 586 s.
[4] GILMAN, A. M. et al.: Optimizaciju režimov obrabotki na metallorežuščích stankach. Moskva: Mašinostrojenije, 1975, 304 s.
[5] GRANOVSKIJ, G. I., GRANOVSKIJ, V. G.: Rezanije metallov. Moskva: Mašinostrojenije, 1975, 304 s.
[6] KĽUŠIN, M. I.: Obobščennyje zavisimosti dlja razčeta režima rezanija. In: Fizika rezanija metallov. AN Armenskoj SSR, Jerevan, 1971
[7] LARIN, M. N.: Osnovy frezerovanija. Moskva, Mašgiz, 1947
[8] PODURAJEV, V. N.: Avtomatičeskije reguliruyuščie i kombinirovannyje processy rezanija. Moskva: Mašinostrojenije, 1977, 302 s.
[9] VASILKO, K., HRUBÝ, J., LIPTÁK, J.: Technológia obrábania a montáže. Bratislava: Alfa, 1991, 494 s.
[10] VASILKO, K., BOKUČAVA, G.: Presnejšie vyjadrenie Te závislostí. Náradie 19, 1989, č. 4
[11] ZOREV, N. N.: Metod opredelenija optimaľnogo iznosa i optimaľnoj stojkosti po krivym iznosa. Stanki i instrument, 1949, č. 8.