On instabilities of scalar hairy regular compact reflecting stars

Yan Peng1

1 School of Mathematical Sciences, Qufu Normal University, Qufu, Shandong 273165, China

Abstract

We study the system constructed by charged scalar fields linearly coupled to asymptotically flat horizonless compact reflecting stars. We obtain bounds on the charge of the scalar field, below which the scalar hairy star is expected to suffer from nonlinear instabilities. It means that scalar hairy regular configurations are unstable for scalar fields of small charge. For the highly-charged star, there are also bounds on radii of regular compact reflecting stars. When the star radius is below the bound, the hairy star is always unstable.

PACS numbers: 11.25.Tq, 04.70.Bw, 74.20.-z

* yanpengphy@163.com
I. INTRODUCTION

A well known characteristic of classical black holes is the no scalar hair theorem \cite{1, 2}, which states that static scalar fields cannot condense outside black holes in the asymptotically flat background, see references \cite{3, 4-9} and reviews \cite{10, 11}. And it was usually believed that this no hair property is due to the existence of black hole horizons, which can absorb matter fields and radiations. So it is interesting to further examine whether this no hair behavior is restricted to the spacetime with a horizon.

Hod firstly proved that the neutral static massive scalar field cannot condense outside the horizonless compact reflecting stars in the asymptotically flat gravity \cite{12}. And the asymptotically flat regular reflecting star also cannot support the neutral massless scalar field nonminimally coupled to the gravity \cite{13}. Including a positive cosmological constant, it was shown that there is also no hair theorem for the neutral scalar field in the asymptotically dS regular reflecting star spacetime \cite{14}. It means that the neutral scalar hair usually cannot form outside the reflecting star but the system composed of charged scalar fields and charged horizonless backgrounds is still to be studied. In fact, the regular configurations with charged scalar hair supported by a charged reflecting shell were constructed when the shell radius is below an upper bound and above the upper bound, the scalar field cannot exist outside the shell \cite{15, 17}. And in the reflecting star background, an upper bound for the radius of the charged star with charged hair was also obtained and the no scalar hair theorem still holds in the case that the star radius is above the upper bound \cite{18-25}.

On the other side, the general relativity predicts that closed light rings may exist outside compact objects, such as black holes and horizonless compact stars \cite{26, 30}. It was stated that horizonless compact stars with stable closed light rings are expected to develop nonlinear instabilities due to the fact that massless perturbation fields tend to pile up on stable null geodesics \cite{31, 33}. And it was shown that the innermost null circular geodesic of a horizonless compact object is stable \cite{34, 35}. So regular compact objects with outermost light rings above the object surface are dynamically unstable \cite{36}. We should emphasize that the dynamical instability is expected to develop for compact objects with stable null circular geodesics which are located inside the object. At present, various types of regular scalar hairy configurations supported by compact reflecting stars have been constructed, but to the best of knowledge, (in)stabilities of these scalar hairy stars hasn’t been studied. In this work, we plan to disclose the (in)stability of the hairy reflecting star through behaviors of light rings.
The rest of this work is planned as follows. In section II, we introduce the system constructed by a charged scalar field linearly coupled to a charged reflecting star. And in section III, we obtain bounds on the star radius and scalar field charge, which can be used to describe the instability of the hairy star. We will summarize main results at the last section.

II. THE SCALAR FIELD AND REFLECTING STAR GRAVITY SYSTEM

We are interested in the system constructed by a charged scalar field coupled to the charged compact reflecting star in the asymptotically flat background. And the matter field Lagrange density reads

\[\mathcal{L} = -\frac{1}{4} F^{MN} F_{MN} - |\nabla_\mu \psi - q A_\mu \psi|^2 - m^2 \psi^2. \] (1)

Here \(\psi(r) \) and \(A_\mu \) are the scalar field and Maxwell field respectively. We also label \(q \) as the scalar field charge and \(m \) as the scalar field mass.

The general spherically symmetric compact star solution can be expressed as \[ds^2 = -e^{-2\chi} f dt^2 + \frac{dr^2}{f} + r^2 (d\theta^2 + \sin^2 \theta d\varphi^2). \] (2)

where \(\chi(r) \) and \(f(r) \) are metric functions satisfying \(\chi(r \to \infty) \to 0 \) and \(f(r \to \infty) \to 1 \). We define \(r_s \) as the star radius and there is \(f(r) > 0 \) for \(r \geq r_s \) since we study the regular compact star.

According to the Einstein equations \(G_{\mu\nu} = 8\pi T_{\mu\nu} \), the metric equations are

\[f' = -8\pi r [\rho + \frac{Q^2(r)}{8\pi r^4}] + (1 - f)/r, \] (3)

\[\chi' = -4\pi r (\rho + p)/f \] (4)

with \(T_t = -\rho, T_r = p \) and \(Q(r) \) is the electric charge contained within a sphere of area of radius \(r \).

In the present paper, we are interested in neglecting the scalar hair’s backreaction on the metric and there is \(\chi(r) = 0 \) and \(f(r) = 1 - \frac{2M}{r} + \frac{Q^2}{r^2} \) with \(M \) as the ADM mass and \(Q \) corresponding to the star charge. We also assume that the Maxwell field has only the nonzero \(t \) component in the form \(A_t = -\frac{Q}{r} dt \). And the equation of radial dependence scalar field \(\psi = \psi(r) \) is

\[\psi'' + \left(\frac{2}{r} + \frac{f'}{f} \right) \psi' + \left(\frac{q^2 Q^2}{r^2 f^2} - \frac{m^2}{f} \right) \psi = 0 \] (5)

with \(f = 1 - \frac{2M}{r} + \frac{Q^2}{r^2} \).

The compact star has a scalar reflecting surface that the scalar field vanishes at the star radius \(r_s \). At the infinity, the scalar field possesses the asymptotical behavior of \(\psi \sim A \cdot \frac{1}{r} e^{-mr} + B \cdot \frac{1}{r} e^{mr} \) with \(A \) and \(B \) as
integral constants. We set $B = 0$ to get the physical scalar field solution and boundary conditions of the scalar field are

$$\psi(r_s) = 0, \quad \psi(\infty) = 0.$$

(6)

According to the general relativity, closed light rings may exist outside compact stars. In this work, the outer light ring of the charged hairy compact star is $r_\gamma = \frac{1}{2}(3M + \sqrt{9M^2 - 8Q^2})$, which refers to the outer null circular geodesic above the surface of the compact object where the contribution of the linearized field to the spacetime metric is neglected [36]. In fact, the innermost circular light ring of a horizonless compact object is stable. And it was stated that horizonless compact stars are unstable if the stars possess stable closed light rings [31–33]. We realize that the former studies have shown that generic horizonless compact objects are characterized by an even number of light rings. Thus, the presence of a light ring outside the objects implies the presence of an inner light ring as well [34]. So we can disclose the stability of hairy stars by examining whether there is the outer light ring outside the star surface.

III. BOUNDS FOR THE CHARGE OF SCALAR FIELDS SUPPORTED BY REFLECTING STARS

A. Bounds of the scalar field charge in the case of $Q/M \leq 1$

Introducing a new radial function $\tilde{\psi} = \sqrt{r}\psi$, the scalar field equation (5) is transformed into

$$r^2\tilde{\psi}'' + \left(r + \frac{r^2 f'}{f}\right)\tilde{\psi}' + \left(\frac{1}{4} - \frac{rf'}{2f} + \frac{q^2Q^2}{f^2} - \frac{m^2r^2}{f}\right)\tilde{\psi} = 0,$$

(7)

where $f = 1 - \frac{2M}{r} + \frac{Q^2}{r^2}$.

From the relation (6), we get the following boundary conditions

$$\tilde{\psi}(r_s) = 0, \quad \tilde{\psi}(\infty) = 0.$$

(8)

One extremum point $r = r_{\text{peak}}$ of the function $\tilde{\psi}$ exists between the star surface r_s and the infinity boundary. At this extremum point r_{peak}, the following relation holds

$$\{\tilde{\psi}' = 0 \quad and \quad \tilde{\psi}\tilde{\psi}'' \leq 0\} \quad \text{for} \quad r = r_{\text{peak}}.$$

(9)

With the relations (7) and (9), we obtain the inequality

$$-\frac{1}{4} - \frac{rf'}{2f} + \frac{q^2Q^2}{f^2} - \frac{m^2r^2}{f} \geq 0 \quad \text{for} \quad r = r_{\text{peak}}.$$

(10)
It can be transformed into
\[m^2 r^2 f(r) \leq q^2 Q^2 - \frac{r f'}{2} - \frac{1}{4} f^2 \quad \text{for} \quad r = r_{\text{peak}}. \] (11)

Firstly, we have \(r_s \geq M + \sqrt{M^2 - Q^2} \) since there is an horizon above the surface of the compact object in the case of \(r_s < M + \sqrt{M^2 - Q^2} \). Considering \(r_s \geq M + \sqrt{M^2 - Q^2} \), the following relations hold
\[r \geq r_s \geq M + \sqrt{M^2 - Q^2} \geq M \geq Q, \] (12)
\[f = 1 - \frac{2M}{r} + \frac{Q^2}{r^2} = \frac{1}{r^2} [(r - M)^2 - (M^2 - Q^2)] \geq 0, \] (13)
\[r f' = r \left(\frac{2M}{r^2} - \frac{2Q^2}{r^3} \right) = \frac{2M}{r} \left(\frac{Q}{r} \right) \geq 0, \] (14)
\[(r^2 f)' = (r^2 - 2Mr + Q^2)' = 2(r - M) \geq 0. \] (15)

From relations (11) and (15), \(r^2 f \) is an increasing function and we have
\[m^2 r_s^2 f(r_s) \leq m^2 r^2 f(r) \leq q^2 Q^2 - \frac{r f'}{2} - \frac{1}{4} f^2 \leq q^2 Q^2 \quad \text{for} \quad r = r_{\text{peak}}. \] (16)

According to (16), there is \(m^2 r_s^2 f(r_s) \leq q^2 Q^2 \) or
\[m^2 r_s^2 (1 - \frac{2M}{r_s} + \frac{Q^2}{r_s^2}) \leq q^2 Q^2. \] (17)

The inequality can also be transformed into
\[(m r_s)^2 - (2mM)(m r_s) + Q^2(m^2 - q^2) \leq 0. \] (18)

With the relation (18), we obtain bounds on radii of hairy stars as
\[m r_s \leq mM + \sqrt{m^2(M^2 - Q^2)} + q^2 Q^2, \] (19)
with dimensionless quantities according to the symmetry
\[r \rightarrow kr, \quad m \rightarrow m/k, \quad M \rightarrow kM, \quad Q \rightarrow kQ, \quad q \rightarrow q/k. \] (20)

In order to obtain the instability condition, we impose that the outer light ring is above the upper bound (19) in the form
\[mr_\gamma = \frac{1}{2} (3mM + \sqrt{9m^2M^2 - 8m^2Q^2}) \geq mM + \sqrt{m^2(M^2 - Q^2)} + q^2 Q^2. \] (21)

From (21), we get the upper bound for the charge of the scalar field as
\[\left(\frac{q}{m} \right)^2 \leq \frac{3M^2}{2Q^2} + \frac{M \sqrt{9m^2M^2 - 8Q^2}}{2Q^2} - 1 \] (22)

So for \(\frac{Q}{M} \leq 1 \) in this part, we find that the hairy star is unstable for small scalar field charge below the bound (22).
Now we extend the discussion of (in)stabilities of hairy reflecting stars to the range of $1 < \frac{Q}{M} \leq \sqrt{\frac{9}{8}}$. In the case of $r_s < \frac{Q^2}{M}$, there is

$$r_s = \frac{1}{2}(3M + \sqrt{9M^2 - 8Q^2}) \geq \frac{3M}{2} \geq \sqrt{\frac{8}{9}} Q = \sqrt{\frac{9}{8}} Q \geq \frac{Q}{M} Q > r_s.$$ \hspace{1cm} (23)

So the light ring r_γ is above the star radius r_s and the star is unstable.

In another case of $r_s \geq \frac{Q^2}{M}$, we have

$$Q^2 - M^2 \geq 0,$$ \hspace{1cm} (24)

$$1 - \frac{Q}{r M} \geq 1,$$ \hspace{1cm} (25)

$$r \geq r_s \geq \frac{Q^2}{M} \geq Q \geq M.$$ \hspace{1cm} (26)

And the following relations exist

$$f = 1 - \frac{2M}{r} + \frac{Q^2}{r^2} = \frac{1}{r^2} [(r - M)^2 + Q^2 - M^2] \geq 0,$$ \hspace{1cm} (27)

$$r f' = r \left(\frac{2M}{r^2} - \frac{2Q^2}{r^3} \right) = \frac{2M}{r} \left(1 - \frac{Q}{r M} \right) \geq 0,$$ \hspace{1cm} (28)

$$(r^2 f)' = (r^2 - 2Mr + Q^2)' = 2(r - M) \geq 0.$$ \hspace{1cm} (29)

Following approaches in part A, we again obtain the upper bound for hairy star radius

$$m r_s \leq mM + \sqrt{m^2(M^2 - Q^2) + q^2 Q^2}.$$ \hspace{1cm} (30)

The same upper bound was obtained in [22] on conditions that $\frac{Q}{M} \leq 1$, which was also shown in (19) of part A. Here we find that the same bound holds in the other case of $1 < \frac{Q}{M} \leq \sqrt{\frac{9}{8}}$.

And we also arrive at the bound on the scalar field charge the same as (22) in the form

$$\left(\frac{q}{m} \right)^2 \leq \frac{3M^2}{2Q^2} + \frac{M\sqrt{9M^2 - 8Q^2}}{2Q^2} - 1.$$ \hspace{1cm} (31)

It is well known that the neutral scalar field usually cannot exist around reflecting stars and charge scalar fields may condense outside the reflecting star. In this part with $1 < \frac{Q}{M} \leq \sqrt{\frac{9}{8}}$, we show that the hairy star is always unstable on the condition $r_s < \frac{Q^2}{M}$ and when $r_s \geq \frac{Q^2}{M}$, the hairy star is still unstable for small charge of scalar fields below the bound (31).
IV. CONCLUSIONS

We studied the system of charged scalar fields linearly coupled to regular reflecting stars. In a parameter range of \(Q/M \leq \sqrt{9/8} \), we obtained upper bounds for hairy star radii as \(m r_s \leq m M + \sqrt{m^2(M^2 - Q^2) + q^2Q^2} \), where \(m \) and \(q \) are the mass and charge of the scalar field respectively, \(M \) serves as the ADM mass and \(Q \) corresponds to the star charge. Scalar fields can condense only when the star radius is below the upper bound. And we mainly further investigated (in)stabilities of hairy reflecting stars. We divided the discussion into two cases as follows.

1. In the first case of \(Q/M \leq 1 \), the hairy star is expected to suffer from nonlinear instabilities when the charge of the scalar field is small expressed with dimensionless quantities as \((\frac{q}{m})^2 \leq \frac{3M^2}{2Q^2} + \frac{M\sqrt{9M^2-8Q^2}}{2Q^2} - 1 \).

2. In the second case of \(1 < Q/M \leq \sqrt{9/8} \), we found an upper bound for the hairy star radius as \(r_s < \frac{Q^2}{M} \), below which the hairy star is unstable and when the star radius is above this bound, the hairy star is still unstable in the case that the charge of the scalar field satisfies \((\frac{q}{m})^2 \leq \frac{3M^2}{2Q^2} + \frac{M\sqrt{9M^2-8Q^2}}{2Q^2} - 1 \).

Acknowledgments

We would like to thank the anonymous referee for the constructive suggestions to improve the manuscript. This work was supported by the Shandong Provincial Natural Science Foundation of China under Grant No. ZR2018QA008.

[1] J. D. Bekenstein, Transcendence of the law of baryon-number conservation in black hole physics, Phys. Rev. Lett. 28, 452 (1972).
[2] J. E. Chase, Commun. Math. Phys. 19, 276 (1970); C. Teitelboim, Lett. Nuovo Cimento 3, 326 (1972); J. D. Bekenstein, Physics Today 33, 24 (1980).
[3] R. Ruffini and J. A. Wheeler, Introducing the black hole, Phys. Today 24, 30 (1971).
[4] S. Hod, Stationary Scalar Clouds Around Rotating Black Holes, Phys. Rev. D 86, 104026 (2012).
[5] C. A. R. Herdeiro and E. Radu, Kerr black holes with scalar hair, Phys. Rev. Lett. 112, 221101 (2014).
[6] C. L. Benone, L. C. B. Crispino, C. Herdeiro, and E. Radu, Phys. Rev. D 90, 104024 (2014).
[7] C. Herdeiro, E. Radu, and H. Runarsson, Non-linear QQ-clouds around Kerr black holes, Phys. Lett. B 739, 302 (2014).
[8] P. V. P. Cunha, C. A. R. Herdeiro, Shadows of Kerr black holes with scalar hair, E. Radu, and H. F. Rúnarsson, Phys. Rev. Lett. 115, 211102 (2015).
[9] Y. Brihaye, C. Herdeiro, and E. Radu, Inside black holes with synchronized hair, Phys. Lett. B 760, 279 (2016).
[10] J. D. Bekenstein, Black hole hair: 25-years after, arXiv:gr-qc/9605059.
[11] Carlos A. R. Herdeiro, Eugen Radu, Asymptotically flat black holes with scalar hair: a review, Int. J. Mod. Phys. D 24(2015)09,1542014.
[12] S. Hod, No-scalar-hair theorem for spherically symmetric reflecting stars, Physical Review D 94, 104073 (2016).
[13] S. Hod, No nonminimally coupled massless scalar hair for spherically symmetric neutral reflecting stars, Physical Review D 96, 024019 (2017).
[14] Srijit Bhattacharjee, Sudipta Sarkar, No-hair theorems for a static and stationary reflecting star, Physical Review D 95, 084027 (2017).
[15] S. Hod, Charged massive scalar field configurations supported by a spherically symmetric charged reflecting shell, Physics Letters B 763, 275 (2016).
[16] S. Hod, Marginally bound resonances of charged massive scalar fields in the background of a charged reflecting shell, Physics Letters B 768 (2017) 97-102.
[17] Yan Peng, Bin Wang, Yunqi Liu, Scalar field condensation behaviors around reflecting shells in Anti-de Sitter spacetimes, Eur. Phys. J. C 78 (2018) no. 8, 680.
[18] S. Hod, Charged reflecting stars supporting charged massive scalar field configurations, Eur. Phys. J. C 78 (2018) no. 3, 173.
[19] Shahar Hod, Stationary bound-state scalar configurations supported by rapidly-spinning exotic compact objects, Physics Letters B 770 (2017) 186.
[20] Shahar Hod, Ultra-spinning exotic compact objects supporting static massless scalar field configurations, Physics Letters B 774 (2017) 582.
[21] Shahar Hod, Onset of superradiant instabilities in rotating spacetimes of exotic compact objects, JHEP 06 (2017) 132.
[22] Yan Peng, Scalar field configurations supported by charged compact reflecting stars in a curved spacetime, Physics Letters B 780 (2018) 144-148.
[23] Yan Peng, Scalar condensation behaviors around regular Neumann reflecting stars, Nucl. Phys. B 934 (2018) 459-465.
[24] Yan Peng, Static scalar field condensation in regular asymptotically AdS reflecting star backgrounds, Physics Letters B 782 (2018) 717-722.
[25] Yan Peng, Hair formation in the noncommutative reflecting star background [arXiv:1809.05329] [gr-qc].
[26] S. Chandrasekhar, The Mathematical Theory of Black Holes, (Oxford University Press, New York, 1983).
[27] S. L. Shapiro and S. A. Teukolsky, Black Holes, White Dwarfs and Neutron Stars: The Physics of Compact Objects, 1st ed. (Wiley-Interscience, 1983).
[28] S. Hod, Extremal Kerr-Newman black holes with extremely short charged scalar hair, Phys. Lett. B 751, 177 (2015).
[29] V. Cardoso, L. C. B. Crispino, C. F. B. Macedo, H. Okawa, and P. Pani, Light rings as observational evidence for event horizons: long-lived modes, ergoregions and nonlinear instabilities of ultracompact objects, Phys. Rev. D 90, 044069 (2014).
[30] P. Grandclément, Light rings and light points of boson stars, Phys. Rev. D 95, 084011 (2017).
[31] J. Keir, Slowly decaying waves on spherically symmetric spacetimes and ultracompact neutron stars, Classical Quantum Gravity 33, 135009 (2016).
[32] V. Cardoso, A.S. Miranda, E. Berti, H. Witek, and V.T. Zanchin, Geodesic stability, Lyapunov exponents and quasinormal modes, Phys. Rev. D 79, 064016 (2009).
[33] S. Hod, Upper bound on the radii of black-hole photonspheres, Phys. Lett. B 727, 345 (2013).
[34] P. V. P. Cunha, E. Berti, and C. A. R. Herdeiro, Light-Ring Stability for Ultracompact Objects, Phys. Rev. Lett. 119 (2017) 251102.
[35] S. Hod, On the number of light rings in curved spacetimes of ultra-compact objects, Phys. Lett. B 776, 1 (2018).
[36] S. Hod, Upper bound on the gravitational masses of stable spatially regular charged compact objects, Phys. Rev. D 98, 064014 (2018).
[37] Dario Núñez, Hernandez Quevedo, Daniel Sudarsky, Black holes have no short hair, Phys. Rev. Lett. 76 (1996) 571-574.
[38] S. Hod, hairy Black Holes and Null Circular Geodesics, Phys. Rev. D 84 (2011) 124030.
[39] A.E. Mayo and J.D. Bekenstein, No hair for spherical black holes: Charged and nonminimally coupled scalar field with selfinteraction, Phys. Rev. D 54 (1996) 5059-5069.
[40] H. Bondi, Anisotropic spheres in general relativity, Mon. Not. R. Astron. Soc. 259, 365 (1992).
[41] Pallab Basu, Chethan Krishnan, P. N. Bal Subramanian, Hairy Black Holes in a Box, JHEP 11 (2016) 041.
[42] Nicolas Sanchis-Gual, Juan Carlos Degollado, Pedro J. Montero, Jos A. Font, Carlos Herdeiro, Explosion and final state of an unstable Reissner-Nordström black hole, Phys. Rev. Lett. 116 (2016) 141101.
[43] Sam R Dolan, Supakchai Ponglertsakul, Elizabeth Winstanley, Stability of black holes in Einstein-charged scalar field theory in a cavity, Phys. Rev. D 92 (2015) 124047.
[44] Yan Peng, Studies of a general flat space/boson star transition model in a box through a language similar to holographic superconductors, JHEP 07 (2017) 042.
[45] Yan Peng, Bin Wang, Yunqi Liu, On the thermodynamics of the black hole and hairy black hole transitions in the asymptotically flat spacetime with a box, Eur. Phys. J. C 78 (2018) no. 3, 176.