This paper is a part of the hereunder thematic dossier published in OGST Journal, Vol. 70, No. 1, pp. 3-211 and available online here.

Cet article fait partie du dossier thématique ci-dessous publié dans la revue OGST, Vol. 70, n°1, pp. 3-211 et téléchargeable ici.

IFP Energies nouvelles International Conference / Les Rencontres Scientifiques d’IFP Energies nouvelles
E-COSM’12 — IFAC Workshop on Engine and Powertrain Control, Simulation and Modeling
E-COSM’12 — Séminaire de l’IFAC sur le contrôle, la simulation et la modélisation des moteurs et groupes moto-propulseurs

Oil & Gas Science and Technology – Rev. IFP Energies nouvelles, Vol. 70 (2015), No. 1, pp. 3-211
Copyright © 2015, IFP Energies nouvelles
The transportation industry and, in particular, the automotive industry, is facing major challenges. The strong increase in the global demand for motorized mobility in the coming decades, the inevitable diversification of energy sources given the limited nature of fossil hydrocarbon reserves, the energy saving needs for a sustainable development and the environmental requirements both in terms of local pollution and of CO₂ emissions cannot be met in the medium to long term with the solutions offered by private and commercial vehicles equipped with classic gasoline or diesel engines.

Although these energy converters have significantly progressed, both in terms of engine architecture (supercharging, direct gasoline injection) and of exhaust gas aftertreatment (three-way catalyst, particulate filter, SCR (Selective Catalytic Reduction), etc.), tougher standards and economic imperatives require the rapid development of new solutions.

Vehicle electrification and in particular hybridization combining an internal combustion engine with an electric motor, provide a response to societal expectations. However, as the number of possible solutions and the number of variables to deal with literally exploded, manufacturers have had to develop new tools for the development, control and supervision based largely on electronics, computer simulation and real-time computing.

Electronics, initially applied to ignition and injection, is now combined to computing via micro-processors. This association has led to substantial progress in the control and supervision of engines in actual operation.

Computer technology has opened the field of component and system modeling. Modeling has made it possible to shorten the tedious experimental calibration phases and has also helped, through real-time simulations, to control engines more efficiently.

Thus, engine control has become over time a discipline in itself, integrated from the beginning in automotive design. It is no longer limited to the internal combustion engine, but looks at the whole powertrain, for example by providing solutions for transmission control and for energy management on board hybrid vehicles.

The E-COSM conferences, from the first edition in 2006, have followed the advances in engine control together with those in modeling and simulation. This special issue of OGST, dedicated to the 2012 edition of E-COSM, illustrates well the wide scope of engine control today. Beyond on-board energy management, engine control has also become a tool for emissions management. It is also successfully applied in efforts to recover wasted energies or in the management of increasingly complex transmission systems. And it will soon unleash the full potential of information and communications technology, in particular through communicating vehicles.
HIGHLIGHTS FROM E-COSM’12

This issue of OGST includes a selection of papers presented at E-COSM’12 – IFAC Workshop on Engine and Powertrain Control, Simulation and Modeling, held at IFP Energies nouvelles in Rueil-Malmaison, France, from 23 to 25 October 2012.

The third of a conference series begun in 2006, E-COSM’12 has been organized, as in 2009, in the framework of “Les Rencontres Scientifiques d’IFP Energies nouvelles”, under the auspices of IFAC (the International Federation of Automatic Control), and sponsored by SEE (Société de l’Électricité de l’Electronique et de Technologies de l’Information et de la Communication), GDR MACS (Groupe de Recherche du CNRS, en Modélisation, Analyse et Conduite des Systèmes dynamiques), the IFAC Technical Committee 7.1 on Automotive Control and four other IFAC Technical Committees.

E-COSM’12 has examined the most recent developments in the fields of engine and powertrain control and modeling, emphasizing the interplay between control design and validation on the one hand, and physical modeling and simulation on the other. As in the previous editions, the aim was to offer academic and industrial researchers and practitioners working in the automotive control sector an opportunity to meet one another and exchange views and ideas at a relatively small-scale event.

Indeed, among the 166 participants from 18 countries – mostly from France, Sweden, USA, Germany, Italy, Spain, UK, Austria, Netherlands and Switzerland – a significant share came from industry (more than 25%). Young authors and student participation was very strong with more than 50 PhD students registered. A well-balanced mix of contributions from universities, research institutes and industry, can also be found in the papers presented at the conference. Papers came mostly from France, Sweden, Germany, USA, Spain, Italy and Austria.

The conference covered not only the “traditional” engine and powertrain control, simulation and modeling topics which have been the focus of the previous editions of E-COSM, but also new ones as diagnostics, thermal management and vehicle dynamics control. Roughly one third of the papers were related to hybrid vehicles and electrification. The significant weight of these topics can be clearly seen in the tag cloud representing the relative frequency of the main keywords indicated in the submissions (Fig. 1).

The 63 regular papers (out of 73 submitted) were presented in 13 regular sessions plus a poster session. A special session was devoted to the presentation of the results of the PHEV Control Benchmark, a competition among research teams in industry and academia to find the best energy management strategy for a plug-in hybrid electric vehicle. Nine teams from eight institutions submitted a solution. The 2 000 € award, made available by the IFP School – Fondation Tuck Chair on Hybrid Vehicle and Energy Management, was won by the University of Linköping team, led by Martin Sivertsson, under the supervision of Prof. Lars Eriksson.

Figure 1

Tag cloud representing the relative frequency of the keywords in the papers submitted to E-COSM’12.
Interspersed throughout the program, a set of very interesting plenary lectures, with contributions from both university and industry, summarized results and open problems:

- **Challenging future for the IC engine: can control help?** - Carlos Guardiola, Universidad Politécnica de Valencia, Spain;
- **The art of control engineering: science meets industrial reality** - Urs Christen, Ford Motor Research, Germany;
- **Optimal energy management of hybrid electric vehicles: 15 years of development at the Ohio State University** - Giorgio Rizzoni, Ohio State University, USA;
- **Overview of the status of the automotive catalyst state diagnosis using microwave-based techniques** - Ralf Moos, University of Bayreuth, Germany;
- **Diesel engine transients: novel diagnostic technique and real-time emissions models for control** - Zoran Filipi, Clemson University, USA.

THE SELECTION FOR OGST

Due to the fairly high quality of the contributions, *E-COSM’12* has provided abundant material for journal publication. The most representative and best-reviewed regular papers have been selected and proposed for consideration in two journals: Control Engineering Practice and OGST. Out of this selection, peer-reviewed full versions of the original conference papers have eventually been published: 12 papers appeared in a special section of Volume 29 of Control Engineering Practice in August 2014 and seven others in this special issue of OGST. This *E-COSM’12* issue also contains the full version of the paper submitted for the PHEV Control Benchmark by the contest winner, and four keynote papers, for a total of 12 articles.

Let us start with the keynote paper from the lecture of F. Payri, J.M. Luján, C. Guardiola and B. Pla, “A Challenging Future for the IC Engine: New Technologies and the Control Role”, which perfectly sets the tone for this issue. The authors feel that the internal combustion engine will still be the dominant technology in automotive applications for the next decades and forecast that current technological over-diversification will persist over the mid-term. In this context, they consider engine control as an enabling tool not only at a subsystem level but also, and especially, at a system integration level. U. Christen and R. Busch’s second keynote paper, “The Art of Control Engineering: Science Meets Industrial Reality”, brilliantly illustrates the gap between what is considered the state of the art in control in academia and the way control is practiced in the automotive industry. By no means a dismissal of scientific advances, this article appeals for a fruitful dialog between academia and industry: industry should learn about the latest theoretical developments; academia should be aware of industrial practice and of tools that are missing for industrial applications. One of the examples discussed is energy management for hybrid electric vehicles, and the next paper, “Energy Management of Hybrid Electric Vehicles: 15 Years of Development at the Ohio State University”, from G. Rizzoni and S. Onori’s plenary lecture, is an excellent illustration of how such an important topic has been addressed in a top-level academic research center, providing solutions that, over time, are closer and closer to industrial application. The last of the keynote papers, “Automotive Catalyst State Diagnosis Using Microwaves” of R. Moos and G. Fischerauer, presents a novel approach to determine the catalyst state directly by a microwave-based technique. This is an illustrative example of a new technology studied in academia, which has the potential to superecede in the future some of the technologies currently used by manufacturers for exhaust gas aftertreatment diagnosis and control.

The following two papers highlight the fundamental role of modeling for control. In “Control-Oriented Models for Real-Time Simulation of Automotive Transmission Systems”, the authors N. Cavina, E. Corti, F. Marcigliano, D. Olivi and L. Poggio present a Dual Clutch Transmission model, based on a detailed physical description of hydraulic circuit, clutches, synchronizers and gears, and simplified vehicle and internal combustion engine submodels. The model is able to reproduce the fast dynamics of the actuation system while maintaining a simulation step size large enough for real-time applications, and can thus be used to support the development of a
model-based controller and to assess its performance on a Hardware-in-the-Loop test bench. In “Combustion Noise and Pollutants Prediction for Injection Pattern and Exhaust Gas Recirculation Tuning in an Automotive Common-Rail Diesel Engine”, by I. Arsie, R. Di Leo, C. Pianese and M. De Cesare, a multi-zone model is developed to simulate engine combustion and predict noise and pollutant emissions depending on injection pattern and EGR rate. Models like this one, predictive, yet validated against a limited amount of experimental data, allow performing detailed analysis of the influence of engine control variables and can be used for EMS tuning. Modeling is also the focus of “Investigation of Cycle-to-Cycle Variability of NO in Homogeneous Combustion”, where the authors, A. Karvountzis-Kontakiotis and L. Ntzachristos, investigate cycle-to-cycle variability in spark ignition engines and present a detailed chemistry model for the prediction of NO formation in homogeneous engine conditions. Indeed, combustion variability, which may occur due to fluctuations in both early flame kernel development and in turbulent flame propagation has a significant impact on fuel consumption and emissions.

Pollutant emissions are not a major concern solely for conventional powertrains. When dealing with diesel hybrid electric vehicles, it is advisable to design energy management strategies which do not focus on fuel consumption reduction only, but also take into account pollutant emissions. In the paper “Energy Management Strategies for Diesel Hybrid Electric Vehicle”, O. Grondin, L. Thibault and C. Quérel propose an energy management strategy which succeeds in limiting the NOx emission both in steady-state and transient operating conditions, with a small impact on fuel consumption. In “Integrated Energy and Emission Management for Diesel Engines with Waste Heat Recovery Using Dynamic Models” by F. Willems, F. Kupper, G. Rascani and E. Feru, another non conventional powertrain is described where a trade-off between fuel consumption and pollutant emission must be sought: a heavy-duty Euro-VI diesel engine coupled with a Rankine-cycle waste heat recovery system. An integrated energy and emission management strategy is presented which optimizes the CO2-NOx trade-off by minimizing online the operational costs associated with fuel and AdBlue consumption.

Optimization is also at the core of the following two papers. T. Nilsson, A. Fröberg and J. Åslund, in “Development of Look-Ahead Controller Concepts for a Wheel Loader Application”, address the control of a multi-mode continuously variable transmission wheel loader, in order to minimize, or at least to reduce, fuel consumption without having a negative impact on drivability or performance of the machine. Two dynamic-programming-based strategies are developed and compared in simulation. In “Design Methodology of Camshaft Driven Charge Valves for Pneumatic Engine Starts”, by M.M. Moser, C. Voser, C.H. Onder and L. Guzzella, pneumatic engine starts using camshaft driven charge valves are discussed, as a lower-cost alternative to the electric start function commonly found in HEV. A general design methodology is presented, based on the minimization of the amount of air used for the start while limiting the time needed to reach the target engine speed at a prescribed value. The methodology is applied to a two-cylinder engine and the results are verified experimentally.

The paper “Design and Evaluation of Energy Management using Map-Based ECMS for the PHEV Benchmark”, by M. Sivertsson and L. Eriksson, which describes the winning contribution in the PHEV Benchmark, concludes this E-COSM ‘12 issue of OGST. The control is an adaptive strategy based on a map-based Equivalent Consumption Minimization Strategy (ECMS) approach, developed and implemented in the simulator provided for the PHEV Benchmark. Very interestingly, the fuel consumption results obtained by this strategy in the benchmark are really close to the optimal ones, calculated offline with a foreknowledge of the driving cycles.

THE FUTURE OF E-COSM

Since the first E-COSM in 2006, the idea that the development of emerging automotive technologies must be accompanied (from the beginning) by the design of appropriate advanced control strategies has gained ground. The two following editions in 2009 and 2012 have confirmed that automatic control is a key success factor for demanding engine, powertrain and vehicle
technologies, provided that a solid support from physical modeling and simulation is available. However, if model-based control can now be considered mature as a whole, several promising approaches, largely successful in other industrial domains, still lack industrial strength. This is typically the case with the implementation of control strategies based on real-time optimization under constraints, which have an enormous potential for automotive applications. Moreover, the possibilities offered by multivariable control are still seldom exploited, despite the ever-increasing number of actuators and sensors. Advances in automatic control are encouraging, but it might prove necessary to rethink engine and powertrain torque control structures to fully benefit from them.

More generally, as not every innovation in the automotive industry has delivered on its promises, expectations in terms of improved reliability, reduced fuel consumption and pollutant emissions, at affordable costs, remain very high. And they must now be met throughout the life of a vehicle and in all cases of usage. On-board diagnostics, which plays an increasingly important role in modern vehicles, provides several new opportunities for research. In all domains, the focus is shifting from the component level to the system and inter-system levels, with important contributions from the new technologies of information and communication. These new trends, already present in the 2012 edition, are expected to be at the core of E-COSM’15, which will hopefully provide, once again, an interesting arena to discuss the latest academic research developments, as well as industrial experience in deploying “real-world” applications.
L’industrie du transport et en particulier l’industrie automobile est confrontée à des défis majeurs. Le fort accroissement de la demande de mobilité dans le monde dans les prochaines décennies, la diversification inévitable des sources d’énergie compte tenu du caractère limité des réserves d’hydrocarbures fossiles, les besoins d’économies d’énergie en vue d’un développement durable et les exigences environnementales tant en matière de pollution locale que d’émissions de CO₂ ne pourront être rencontrés sur le moyen-long terme avec les solutions offertes par les véhicules particuliers et commerciaux équipés des classiques moteurs à essence ou Diesel.

Bien que ces convertisseurs d’énergie aient beaucoup progressé, que ce soit en matière d’architecture moteur (suralimentation, injection directe essence, etc.) ou en matière de dépollution (catalyseur trois voies, filtre à particule, SCR (Selective Catalytic Reduction), etc.), la sévérisation des normes et les impératifs économiques imposent le développement rapide de nouvelles solutions.

L’électrification des véhicules et en particulier l’hybridation combinant un moteur thermique et un moteur électrique constituent une réponse aux attentes sociétales. Toutefois, le nombre de solutions possibles et le nombre de variables à gérer ayant littéralement explosé, les constructeurs ont été obligés de développer de nouveaux outils de mise au point, de contrôle et de supervision largement basés sur l’électronique, la simulation informatique et l’informatique temps réel.

L’électronique, appliquée initialement à l’allumage puis à l’injection, est maintenant combinée à l’informatique par microprocesseurs ce qui a permis des progrès substantiels pour le contrôle-commande des moteurs en fonctionnement réel.

L’informatique a de son côté ouvert le champ de la modélisation des équipements et des systèmes. Cette modélisation a permis de raccourcir les fastidieuses phases de mise au point expérimentales et a également, au travers des simulations temps réel, permis de commander plus efficacement les moteurs.

Le contrôle moteur est ainsi devenu au fil du temps une discipline à part entière, intégrée dès le début de la conception automobile. Elle ne se limite plus seulement à l’organe moteur, mais s’intéresse au groupe moto propulseur en entier, en fournissant par exemple des solutions pour le contrôle des transmissions et pour la gestion d’énergie à bord des véhicules hybrides.

Les conférences E-COSM, dès la première édition en 2006, ont suivi les progrès du contrôle moteur en lien étroit avec ceux de la modélisation et de la simulation. Ce numéro spécial d’OGST dédié à l’édition 2012 d’E-COSM illustre bien le large domaine couvert par le contrôle moteur aujourd’hui. Dépassant la gestion de l’énergie à bord, le contrôle moteur est également devenu un outil pour le management des émissions polluantes. Il est aussi appliqué avec succès
dans les efforts de récupération des énergies perdues ou dans la gestion de systèmes de transmission de plus en plus complexes. Et il pourra bientôt exploiter tout le potentiel offert par les technologies de l’information et de la communication, notamment au travers des véhicules communicants.

TEMPS FORTS D’E-COSM’12

Ce numéro d’OGST comprend une sélection de papiers présentés à E-COSM’12 – Séminaire de l’IFAC sur le contrôle, la simulation et la modélisation des moteurs et groupes motopropulseurs – qui s’est tenu à Rueil-Malmaison, France, du 23 au 25 octobre de 2012, dans les locaux d’IFP Energies nouvelles.

Troisième d’une série de conférences commencée en 2006, E-COSM’12 a été organisée, comme en 2009, dans le cadre des « Rencontres Scientifiques d’IFP Energies nouvelles », sous les auspices de l’IFAC (Fédération internationale d’automatique), et parrainée par la SEE (Société de l’Électricité de l’Électronique et de Technologies de l’Information et de la Communication), le GDR MACS (Groupe de Recherche du CNRS, en Modélisation, Analyse et Conduite des Systèmes dynamiques), le Comité technique 7.1 de l’IFAC sur le contrôle automobile et quatre autres comités techniques de l’IFAC.

E-COSM’12 a examiné les développements les plus récents dans les domaines du contrôle et de la modélisation des moteurs et des transmissions, mettant l’accent sur l’interaction entre la conception et la validation du contrôle d’une part, et la modélisation physique et la simulation de l’autre. Comme dans les éditions précédentes, l’objectif était d’offrir aux chercheurs académiques et industriels et aux praticiens travaillant dans le secteur du contrôle de l’automobile une occasion de se rencontrer et d’échanger des vues et des idées dans une manifestation à une échelle adaptée.

En effet, parmi les 166 participants venus de 18 pays – principalement de France, Suède, États-Unis, Allemagne, Italie, Espagne, Royaume-Uni, Autriche, Pays-Bas et Suisse – une partie significative provenait de l’industrie (plus de 25 %). La participation d’étudiants et jeunes auteurs a été très importante avec plus de 50 doctorants inscrits. Dans les papiers présentés à la conférence, on retrouve un mélange bien équilibré de contributions provenant d’universités, d’instituts de recherche et de l’industrie. Les papiers proviennent principalement de France, de Suède, d’Allemagne, des États-Unis, d’Espagne, d’Italie et d’Autriche.

La conférence a traité non seulement les sujets « traditionnels » du contrôle moteur et du groupe motopropulseur, de simulation et de modélisation (qui ont fait l’objet de précédentes éditions de E-COSM), mais aussi de nouveaux sujets tels que le diagnostic, la gestion thermique et le contrôle de la dynamique du véhicule. Environ un tiers des papiers portait sur les véhicules hybrides et l’électrification. Le poids important de ces sujets est clairement montré par le nuage de tags représentant la fréquence relative des principaux mots-clés indiqués dans les communications soumises (Fig. 1).
Les 63 papiers « réguliers » (sur 73 soumis) ont été présentés dans 13 sessions orales et une session de posters. Une session spéciale a été consacrée à la présentation des résultats du PHEV Control Benchmark, une compétition entre équipes de recherche dans l’industrie et le milieu universitaire pour trouver la meilleure stratégie de gestion de l’énergie pour un véhicule électrique hybride plug-in. Neuf équipes de huit institutions différentes ont proposé une solution. Le prix de 2 000 €, mis à disposition par l’IFP School – Chaire de la Fondation Tuck sur le véhicule hybride et gestion de l’énergie, a été remporté par l’équipe de l’Université de Linköping, équipe menée par Martin Sivertsson, sous la supervision du professeur Lars Eriksson. Disséminées dans le programme, une série de conférences plénières très intéressantes, avec des contributions tant universitaires qu’industrielles, a synthétisé résultats et problèmes ouverts:

- Un futur de grands défis pour le moteur à combustion interne : peut-on les relever à l’aide du contrôle? - Carlos Guardiola, Universidad Politècnica de Valencia, Espagne ;
- L’art du génie automatique : la science confrontée à la réalité industrielle - Urs Christen, Ford Motor Research, Allemagne ;
- Gestion énergétique des véhicules hybrides électriques : 15 ans de développement à l’université d’état de l’Ohio - Giorgio Rizzoni, Ohio State University, États-Unis ;
- Panorama du développement des techniques de diagnostic de l’état de catalyseurs automobiles à l’aide de micro-ondes - Ralf Moos, University of Bayreuth, Allemagne ;
- Transitoires des moteurs diesel : une nouvelle technique de diagnostic et nouveaux modèles d’émissions temps réel pour le contrôle - Zoran Filipi, Clemson University, États-Unis.

LA SÉLECTION POUR OGST

En raison de la qualité élevée des contributions, E-COSM’12 a fourni un abondant matériel pour publication dans une revue. Les papiers les plus représentatifs et les mieux évalués ont été sélectionnés et proposés pour examen à deux revues : Control Engineering Practice et OGST. Sur la base cette sélection, des versions complètes des papiers d’origine ont finalement été publiées, après relecture : douze articles sont parus dans une section spéciale du volume 29 de Control Engineering Practice en août 2014 et sept autres dans ce numéro spécial d’OGST. Ce numéro spécial E-COSM’12 contient également une version complète du papier présenté par le gagnant du concours traitant du PHEV Control Benchmark, et quatre papiers issus des conférences plénières, pour un total de douze articles.

Commençons par le papier de la conférence de F. Payri, J.M. Luján, C. Guardiola et B. Pla, « Un challenge pour le futur du moteur à combustion interne : nouvelles technologies et rôle du contrôle moteur », qui donne parfaitement le ton pour ce numéro.

Les auteurs estiment que le moteur à combustion interne restera la technologie dominante dans les applications automobiles pour les décennies à venir et prévoient que la sur-diversification technologique actuelle va persister sur le moyen terme. Dans ce contexte, ils considèrent le contrôle moteur comme un outil de développement essentiel, non seulement au niveau sous-système, mais aussi, et surtout, au niveau d’intégration système. Ensuite le papier « L’art du génie automatique : science en rencontre avec la réalité industrielle » d’U. Christen et R. Busch, illustre brillamment l’écart entre ce qui est considéré comme l’état de l’art en automatique dans le milieu universitaire et sa pratique au quotidien dans l’industrie automobile. Loin de vouloir minimiser l’importance des avancées scientifiques en automatique, cet article est un vibrant appel au dialogue entre le monde académique et l’industrie : l’industrie devrait en apprendre davantage sur les derniers développements théoriques ; le milieu universitaire devrait mieux connaître la pratique industrielle et les outils qui manquent pour les applications industrielles. L’un des exemples cités est la gestion de l’énergie pour les véhicules électriques hybrides, et l’article suivant, « Gestion énergétique des véhicules hybrides électriques : 15 ans
de développement à l’université d’État de l’Ohio », issu de la conférence plénière de G. Rizzoni et S. Onori, est une excellente illustration de comment un sujet aussi important a été abordé dans un centre de recherche universitaire de haut niveau, fournissant des solutions qui, au fil du temps, sont de plus en plus proches de l’application industrielle. Le dernier papier présenté en conférence plénière, « Diagnostic de l’état de catalyseurs d’automobiles à l’aide de micro-ondes » de R. Moos et G. Fischerauer, décrit une nouvelle approche pour déterminer directement l’état du catalyseur par une technique basée sur les micro-ondes. Il s’agit d’un très bon exemple de nouvelle technologie étudiée dans le milieu universitaire, ayant le potentiel de remplacer à l’avenir des technologies actuellement utilisées par les constructeurs pour le diagnostic et le contrôle des systèmes de post-traitement des gaz d’échappement.

Les deux articles suivants mettent en évidence le rôle fondamental de la modélisation pour le contrôle. Dans « Modélisation orientée-contrôle pour la simulation en temps réel des systèmes de transmission automobile », les auteurs N. Cavina, E. Corti, F. Marcigliano, D. Olivi et L. Poggio présentent un modèle de transmission à double embrayage, basé sur une description physique détaillée du circuit hydraulique, des embrayages, des synchroniseurs et des trains d’engrenages, et des sous-modèles simplifiés du véhicule et du moteur. Le modèle est capable de reproduire la dynamique rapide du système d’actionnement, tout en gardant un pas de simulation suffisamment grand pour les applications en temps réel, et peut donc être utilisé pour développer un système de contrôle basé sur modèle et en évaluer les performances sur un banc d’essai hardware-in-the-loop. Dans « Prédiction du bruit de combustion et des polluants pour le réglage des paramètres d’injection et de l’EGR (Exhaust Gas Recirculation) dans un moteur Diesel Common-Rail pour l’automobile », par I. Arsie, R. Di Leo, C. Pianese et M. De Cesare, un modèle multizone est développé pour simuler la combustion d’un moteur Diesel et pour prédire le bruit et les émissions de polluants en fonction de la séquence d’injection et du taux EGR. Des modèles comme celui-ci, prédictifs bien que validés à partir seulement d’un nombre limité de données expérimentales, permettent de réaliser une analyse détaillée de l’influence des variables de contrôle du moteur et peuvent être utilisés pour la calibration du calculateur. La modélisation est également le sujet de « Enquête de la variabilité cycle-à-cycle du NO dans la combustion homogène », où les auteurs, A. Karvountzis-Kontakiotis et L. Ntziachristos, étudient la variabilité cycle-à-cycle dans les moteurs à allumage commandé et présentent un modèle chimique détaillé pour la prédiction de la formation de NO dans des conditions homogènes. En effet, la variabilité de la combustion, qui peut être liée à des fluctuations à la fois dans les phases initiales du développement du noyau de flamme et dans la propagation turbulente de la flamme, s’avère avoir un impact significatif sur la consommation de carburant et les émissions.

Les émissions de polluants ne sont pas une préoccupation majeure seulement pour les groupes motopropulseurs classiques. Pour des véhicules électriques hybrides Diesel, il convient de concevoir des stratégies de gestion de l’énergie qui ne sont pas axées sur la réduction de la consommation de carburant seulement, mais prennent également en compte les émissions de polluants. Dans le papier « Lois de gestion de l’énergie pour le véhicule hybride Diesel », O. Grondin, L. Thibault, et C. Quéré proposent une stratégie de gestion de l’énergie qui parvient à limiter les émissions de NOx en fonctionnement stationnaire et transitoire à la fois, avec un faible impact sur la consommation de carburant. Dans « Une stratégie intégrée de gestion des émissions et de l’énergie pour un moteur Diesel avec un système WHR (Waste Heat Recovery) », par F. Willems, F. Kupper, G. Rascanu et E. Feru, un autre groupe motopropulseur non conventionnel est décrit pour lequel doit être recherché un compromis entre la consommation de carburant et les émissions de polluants : un moteur Diesel de poids-lourd Euro-VI couplé avec un système de récupération de la chaleur perdue par cycle de Rankine. Une stratégie intégrée de gestion énergétique et gestion des émissions est présentée qui optimise le compromis CO2-NOx en minimisant en ligne les coûts opérationnels associés à la consommation de carburant et d’AdBlue.

L’optimisation est également au cœur des deux articles suivants. T. Nilsson, A. Fröberg et J. Åslund, dans « Développement de concepts d’une commande prédictive, destinée à une
application pour charger sur pneus», abordent le contrôle d’un chargeur sur pneu à transmission continuum variable multimode, afin de minimiser, ou au moins de réduire, la consommation de carburant sans avoir d’impact négatif sur la maniabilité ou les performances de la machine. Deux stratégies basées sur la programmation dynamique sont développées et comparées en simulation. Dans « Méthodologie pour le design des valves de chargement opérées par arbre à cames », par M.M. Moser, C. Voser, C.H. Onder et L. Guzzella, on étudie des démarrages moteur pneumatiques utilisant des valves de chargement opérées par arbre à cames, une alternative « low-cost » au démarrage électrique habituel dans les véhicules hybrides. Une méthodologie de conception générale est présentée, basée sur la minimisation de la quantité d’air utilisée pour le démarrage, tout en limitant à une valeur prescrite le temps nécessaire pour atteindre le régime moteur cible. La méthode est appliquée à un moteur à deux cylindres et les résultats sont vérifiés expérimentalement.

L’article « Conception et évaluation de la gestion de l’énergie en utilisant l’ECMS (stratégie de minimisation de la consommation équivalente) basée sur des cartes, afin de tester les véhicules hybrides électriques rechargeables », de M. Sivertsson et L. Eriksson, qui décrit la solution gagnante pour le PHEV Control Benchmark, clôt ce numéro spécial E-COSM’12 de OGST. Le contrôle est une stratégie adaptative basée sur l’approche ECMS (stratégie de minimisation de la consommation équivalente), développée et mise en œuvre dans le simulateur fourni pour le benchmark. Il est intéressant de noter que les résultats de consommation de carburant obtenus par cette stratégie dans le benchmark sont très proches de l’optimum, calculé hors ligne avec une connaissance préalable du cycle de conduite.

LE FUTUR D’E-COSM

Depuis la première conférence E-COSM en 2006, l’idée que le développement de nouvelles technologies automobiles doit être accompagné (dès le début) par la conception de stratégies de contrôle avancées appropriées a gagné du terrain. Les deux éditions successives de 2009 et 2012 ont confirmé que la commande automatique est un facteur clé de succès pour les technologies du moteur, du groupe motopropulseur et du véhicule, pourvu qu’un solide support de simulation et de modélisation physique soit disponible. Toutefois, si la commande basée sur un modèle peut désormais être considérée comme mûre dans son ensemble, plusieurs approches prometteuses, largement couronnées de succès dans d’autres domaines, ne font toujours pas partie de la pratique industrielle des constructeurs automobiles. C’est typiquement le cas de la mise en œuvre des stratégies de contrôle basées sur l’optimisation en temps réel sous contraintes, qui ont pourtant un énorme potentiel pour les applications automobiles. Par ailleurs, les possibilités offertes par la commande multivariable sont encore peu exploitées, malgré le nombre sans cesse croissant des actionneurs et des capteurs. Les progrès en matière d’automatique sont encourageants, mais il pourrait s’avérer nécessaire de repenser les structures de contrôle en couple pour le moteur et le groupe motopropulseur pour en profiter pleinement.

Plus généralement, étant donné que toutes les innovations dans l’industrie automobile n’ont pas tenu leurs promesses, les attentes en termes d’amélioration de la fiabilité, de réduction de la consommation et des émissions de polluants, à des coûts abordables, restent très élevées. Et elles doivent maintenant être satisfaites tout au long de la vie d’un véhicule et dans tous les cas d’utilisation. L’OBD (On-Board Diagnostics, diagnostic à bord), qui joue un rôle de plus en plus important dans les véhicules modernes, offre plusieurs nouvelles possibilités pour la recherche. Dans tous les domaines, l’accent se déplace du niveau composant au niveau système et intersystème, avec des contributions importantes des nouvelles technologies de l’information et de la communication. Ces nouvelles tendances, déjà présentes dans l’édition 2012, seront certainement au cœur d’E-COSM’15, qui saura encore une fois, on l’espère, fournir un excellent cadre pour discuter à la fois d’avancées de la recherche académique et de retours d’expériences industriels dans le déploiement des applications.