Parallel evolution controlled by adaptation and covariation in ammonoid cephalopods

Monnet, C ; De Baets, K ; Klug, C

Abstract: Background: A major goal in evolutionary biology is to understand the processes that shape the evolutionary trajectory of clades. The repeated and similar large-scale morphological evolutionary trends of distinct lineages suggest that adaptation by means of natural selection (functional constraints) is the major cause of parallel evolution, a very common phenomenon in extinct and extant lineages. However, parallel evolution can result from other processes, which are usually ignored or difficult to identify, such as developmental constraints. Hence, understanding the underlying processes of parallel evolution still requires further research. Results: Herein, we present a possible case of parallel evolution between two ammonoid lineages (Auguritidae and Pinacitidae) of Early-Middle Devonian age (405-395 Ma), which are extinct cephalopods with an external, chambered shell. In time and through phylogenetic order of appearance, both lineages display a morphological shift toward more involute coiling (i.e. more tightly coiled whorls), larger adult body size, more complex suture line (the folded walls separating the gas-filled buoyancy-chambers), and the development of an umbilical lid (a very peculiar extension of the lateral shell wall covering the umbilicus) in the most derived taxa. Increased involution toward shells with closed umbilicus has been demonstrated to reflect improved hydrodynamic properties of the shell and thus likely results from similar natural selection pressures. The peculiar umbilical lid might have also added to the improvement of the hydrodynamic properties of the shell. Finally, increasing complexity of suture lines likely results from covariation induced by trends of increasing adult size and whorl overlap given the morphogenetic properties of the suture. Conclusions: The morphological evolution of these two Devonian ammonoid lineages follows a near parallel evolutionary path for some important shell characters during several million years and through their phylogeny. Evolution of some traits (involution, umbilical lid) appears to be mainly driven by adaptation to improve the hydrodynamic properties of the shell, whereas other characters (sutural complexity) evolved due to covariation with features that play a central role in the morphogenesis of mollusc shells. This example provides evidence that parallel evolution can be driven simultaneously by different factors such as covariation (constructional constraints) and adaptation (natural selection).

DOI: https://doi.org/10.1186/1471-2148-11-115
Parallel evolution controlled by adaptation and covariation in ammonoid cephalopods

Claude Monnet, Kenneth De Baets and Christian Klug

Abstract

Background: A major goal in evolutionary biology is to understand the processes that shape the evolutionary trajectory of clades. The repeated and similar large-scale morphological evolutionary trends of distinct lineages suggest that adaptation by means of natural selection (functional constraints) is the major cause of parallel evolution, a very common phenomenon in extinct and extant lineages. However, parallel evolution can result from other processes, which are usually ignored or difficult to identify, such as developmental constraints. Hence, understanding the underlying processes of parallel evolution still requires further research.

Results: Herein, we present a possible case of parallel evolution between two ammonoid lineages (Auguritidae and Pinacitidae) of Early-Middle Devonian age (405-395 Ma), which are extinct cephalopods with an external, chambered shell. In time and through phylogenetic order of appearance, both lineages display a morphological shift toward more involute coiling (i.e. more tightly coiled whorls), larger adult body size, more complex suture line (the folded walls separating the gas-filled buoyancy-chambers), and the development of an umbilical lid (a very peculiar extension of the lateral shell wall covering the umbilicus) in the most derived taxa. Increased involution toward shells with closed umbilicus has been demonstrated to reflect improved hydrodynamic properties of the shell and thus likely results from similar natural selection pressures. The peculiar umbilical lid might have also added to the improvement of the hydrodynamic properties of the shell. Finally, increasing complexity of suture lines likely results from covariation induced by trends of increasing adult size and whorl overlap given the morphogenetic properties of the suture.

Conclusions: The morphological evolution of these two Devonian ammonoid lineages follows a near parallel evolutionary path for some important shell characters during several million years and through their phylogeny. Evolution of some traits (involution, umbilical lid) appears to be mainly driven by adaptation to improve the hydrodynamic properties of the shell, whereas other characters (sutural complexity) evolved due to covariation with features that play a central role in the morphogenesis of mollusc shells. This example provides evidence that parallel evolution can be driven simultaneously by different factors such as covariation (constructional constraints) and adaptation (natural selection).

Background

Independent evolution of similar biological traits in two different lineages branching off from the same ancestor defines parallel evolution [1-3]. It is a common phenomenon described for many animal clades (see e.g., [4-13]), including molluscs [1,14-19]. Repeated patterns of parallel evolutionary change of phenotypic traits are commonly regarded as evidence of adaptation under common selection pressures such as common environmental factors [20-22], therefore illustrating natural selection’s major role in shaping morphological evolution and the repeatability of evolutionary processes. Several additional processes have been proposed that could contribute to the fabric of parallel evolution. However, the contribution and conditions in which these various processes trigger parallel morphological evolution are still insufficiently investigated. Furthermore, understanding the processes involved in parallel evolution is also important for solving systematic problems and thus to estimate evolutionary rates and diversity [14].
Evolutionary steps in two independent lineages will never be absolutely identical [1,15,16,23,24]. Nevertheless, morphological (phenotypic) evolutionary trends do occur in independent lineages and can display striking parallel changes (for a recent mollusc example, see [17]). Here, the term parallel evolution is used in a broad sense, implying that not all parts of the organism undergo parallel evolutionary transformations and that the trends are nearly parallel, resulting in very similar organs/structures in a phylogenetic series of more than one species in at least two lineages.

Parallel evolution is often difficult to differentiate from convergence (evolution from two different stages of separate lineages toward an evolutionary stage that has evolved striking similarities among some phenetic, genetic or other traits; [25]) and some authors have even suggested a continuum between convergent and parallel evolution [2,26]. The distinction between convergent, parallel, and divergent evolution indeed requires the historical evolutionary aspect of studied lineages. Because it is the only direct evidence of evolution in the past over long time spans, palaeontological data can provide important insights into patterns and processes of parallel evolution.

In the fossil record, the Ammonoidea (Cephalopoda, Mollusca) are well-known to display large-scale morphological macroevolutionary trends [27-39]. These marine extinct cephalopods with an external, chambered shell have repeatedly been proven to be valuable study objects to develop or test evolutionary hypotheses [27,29,34-36,40-50]. Besides, ammonoids “are for palaeontologists what Drosophila is in genetics” [51]. Their usefulness in evolutionary biology originates in their high evolutionary rates, high taxonomic diversity and morphological disparity, and usually well-known stratigraphic (i.e. temporal) framework (see [52-54]). However, such morphological evolutionary trends among ammonoids have been rarely discussed and quantified in detail [38,39,47,55-58]. Knowledge of details in such lineages with seemingly “directed” morphological changes is of great interest, because not all evolutionary morphological changes in the ammonoid shell have the same causes. On the one hand, some evolutionary changes in ammonoid shell morphology may be constrained by covariation (e.g., Buckman’s laws of covariation [59]; see discussion) and may thus be a result of constructional and/or developmental constraints. On the other hand, cases of parallel evolution of owoxonic shells (i.e. slender, compressed conchs with acute venter) in various lineages of ammonoids have been repeatedly documented and interpreted as adaptations to rapid and/or improved swimming (e.g., [58,60-63] and see discussion) and thus as a result of natural selection.

We here report on a probable, recently discovered case of parallel evolution among ammonoids. It happened very early in the history and rapid diversification of the Ammonoidea during the Early and Middle Devonian in the time interval between about 405 and 395 Ma [64]. The ammonoid shell, which grew by accretion, consists of a roughly conic, chambered, calcified, often ornamented and (more or less regularly) coiled conch. Yet, during this early diversification phase, the history of ammonoids is characterized by a morphological macroevolutionary trend from straight-shelled ancestors (bactritoids; for a review of cephalopod phylogeny, see [65]) via loosely coiled earliest ammonoids toward completely tightly coiled forms with closed umbilicus (Figure 1; [58,66-70]). This major evolutionary trend is thought to have occurred in a time interval of only about 2 My (see [58,69]). This rather fast evolution is evidenced by the co-occurrence of loosely coiled primitive forms, which are associated with contemporaneous, more derived, coiled forms in several localities that yielded the earliest ammonoids [71-78]. Furthermore, this morphological evolutionary trend occurred during the most intense phase of the “Devonian nektom revolution” [79]. This macroecological event corresponds to an explosive trend from planktonic and demersal marine animals toward true nektom as represented by the great diversification of jawed fish and ammonoids, reflecting a selection for swimming capabilities. It coincided with macroevolutionary transformations among various mollusc groups: an increasing proportion of gastropods formed tightly coiled protoconchs [80]; some dacryoconarids [81,82], ammonoids [58] and some nautiloids [83,84] more or less simultaneously evolved coiled shells, mainly during the Early Devonian. Among ammonoids, these post-embryonic morphological transformations enhanced buoyancy and swimming capabilities [58,85].

The case of parallel evolution studied here includes two families of ammonoids, namely the Auguritidae and Pinacitidae (Figure 2A). These two ammonoid lineages are of Emsian and Eifelian age (~ 405-395 Ma; [86]) and have a widespread palaeogeographical distribution (Figure 2B). Their stratigraphy and taxonomy have been revised recently [77,87-91]. Representatives of the older lineage are very rare [77,78]. The study of recently discovered material [78] and reinvestigation of the most complete material available in museum collections yielded comprehensive morphometric data and revealed the presence of an umbilical lid (see below) in the auguritid lineage, previously only known in the pinacitid lineage [92]. Both lineages under consideration share a common ancestor (which probably resembled Convoluticeras lardeuxi, Figure 2A) and their end-members have a very similar morphology in post-embryonic ontogeny. Although closely related and in spite of their great morphological resemblance, there is clear evidence for these two families being distinct clades. For instance, the embryonic
shell was openly coiled in the auguritids [75,76,93] and became tightly coiled in later ammonoid evolution, including the pinacitids [88]; this is a character that was never reversed throughout ammonoid evolution, not even in Mesozoic ammonoids with uncoiled post-embryonic shells [45,94]. Additionally, the youngest representatives of the auguritids are at least 5 My older than the youngest representatives of the pinacitids. The evolutionary relationships of the auguritids and pinacitids were elucidated with a comprehensive cladistic analysis [89] that considered all currently known valid taxa (except Achguigites tafilaltensis [88] and Weyeroceras angustus [77], which were introduced later; for their phylogenetic position, see [95]). The resultant strict consensus is well resolved (Figure 2A). Both lineages are characterized at the end of their evolution by the development of a very peculiar morphological feature not known in this specific form in any other ammonoids (including forms with similar conch shapes). This peculiarity is the development of an umbilical lid (Figure 3), which is an extension of the lateral shell wall covering the umbilicus [92].

In the present ammonoid case study, we first describe and investigate the morphological evolutionary patterns of both families along their phylogenetic sequence (i.e. their phylogenetic order of appearance) with bivariate plots of quantitative characters of the ammonoid shell. Then, we identify and evaluate statistically the characters, which may have evolved in parallel and identically. Finally, we try to decipher the characters, which evolved identically because of covariation (constructional constraints) and/or because of adaptation (selective constraints).

Methods

To describe and analyze this case of parallel evolution of ammonoids, their shell geometry is here quantified by means of eight classical linear measurements, which characterize the major morphological features of the ammonoid shell (Figure 4; see also [47,96]).
- The maximal diameter (Dmx) is the maximal shell diameter known for each species and is used to approximate the adult body size of the ammonoid species under consideration.

- The whorl expansion rate (WER) is a measure of the proportional increase of shell diameter through growth (initially defined by [97,98], but we used the equation of [47], which is much easier to apply on actual specimens). It is considered one of the most important and biologically meaningful parameters because it roughly reflects the growth rates of the coiled shell tube and strongly correlates with body chamber length, soft part volume and the syn vivo-orientation of the shell [58,97-99].

- The whorl shape compression (WSC) is a measure of the ellipsoid of the whorl section of the ammonoid shell aperture, which is a very important ammonoid taxonomic character due to the accretionary growth of the shell.

- The umbilical width index (UWI) is the ratio between the umbilicus and the shell diameter and thus approximates the amount of shell coiling (degree of involution).

- The imprint zone rate (IZR) describes the relative overlap of two succeeding whorls in terms of height.

- The flank convergence index (FCI; modified after [100]) approximates the relative compression of the ventral part of the shell compared to its dorsal part (i.e. acute vs. low-arched rounded venter).
The number of lobes (NLb) approximates the inden-
tation of the suture line, which is the junction line of
the septa (chamber walls) with the internal side of the
shell. Here, we counted only the lobes on one flank,
including those in the plane of symmetry (i.e. internal
and external lobes).

Last, the relative depth of the lateral lobe (= “O-
lobe” of [101]; OLb), which is the ratio between width
and height of the lateral lobe, measured from the ap-
ertural apices of the neighbouring saddles (see Figure 4).

All available specimens of the two families have been
measured to quantify these characters. Most data are
based on own measurements and some were taken from
the literature [66,76,77,88,95]. The material referred to
in this paper is housed in the following institutional col-
clections: Palaeontological Institute, Moscow (PIN);
Palaeontological Institute and Museum, University of
Zürich (PIMUZ); National Museum, Prague (L 11705);
Institute for Geosciences, University of Tübingen
(GPIT).

Figure 3 Auguritidae and Pinacitidae showing the peculiar umbilical lid

- The number of lobes (NLb) approximates the inden-
tation of the suture line, which is the junction line of
the septa (chamber walls) with the internal side of the
shell. Here, we counted only the lobes on one flank,
including those in the plane of symmetry (i.e. internal
and external lobes).

- Last, the relative depth of the lateral lobe (= “O-
lobe” of [101]; OLb), which is the ratio between width
and height of the lateral lobe, measured from the ap-
ertural apices of the neighbouring saddles (see Figure 4).
The eight quantitative parameters are composed of one size measure (Dmx), six ratios (WSC, WER, UWI, IZR, FCI, OLb) and one ordinal count (NLb). For Dmx, FCI, NLb and OLb, only the adult value of each species is reported and not juvenile values, because these parameters always lie near structural boundaries at hatching (e.g., the suture is simple and will necessarily increase its complexity through growth; see discussion).

We here consider parallel evolution in a broad sense by assuming that not all characters are involved in the parallel evolution and by not assuming that evolutionary changes are accomplished by similar alterations in the developmental program (contra [2,102]). From these definitions, parallel evolution of some characters can be identified when the evolutionary trajectories of the studied lineages in the morphological space defined by this subset of characters (1) start with the same morphotypes, (2) evolve in parallel and are overlapping, and (3) end with the same forms. In other words, the evolutionary trajectories are identical in origin, magnitude and direction. This pattern of parallel evolution must be distinguished from parallelism in phenotypic space. This different phenomenon concerns lineages having parallel trajectories (same direction), but not necessarily the same origin and/or magnitude (for an example of parallelism but not parallel evolution, see [103], p. 828, figure 3C).

Before evaluating the parallel evolution of auguritids and pinacitids, we describe the patterns of morphological variation and evolution of these two lineages (Figures 5, 6, 7, 8). Patterns of morphological evolution are examined globally by means of a multivariate analysis based on the eight studied quantitative characters of the ammonoid shell (Figure 8). We perform a principal component analysis (PCA; [104]) to examine the variation of the variables within the sample and identify the characters that contribute to observed evolutionary changes by creating high variation. Since the studied characters are of different types (size, ratio, ordinal), the PCA has been performed on the correlation matrix (data standardized to mean zero and unit standard deviation) for all characters. Then, we examine the evolution of each quantitative shell character separately by means of bivariate plots depicting their distribution through the phylogenetic sequence for the two ammonoid lineages separately (Figures 5 and 6). These plots enable an empirical evaluation of the presence or absence of directed evolutionary changes (trends) for each character. Bivariate and multivariate exploratory analyses are performed by means of the versatile palaeontological data analysis freeware PAST ([105,106]; http://folk.uio.no/ohammer/past), as well as by scripts programmed by C.M. in MATLAB® (http://www.mathworks.com/).

Since apparent trends in evolutionary series can be produced randomly [107-113], the previously and empirically identified evolutionary trends are tested statistically. Several methods exist, which are based on random walk
models, to test and characterize observed trends and to distinguish the three modes of evolutionary change commonly considered in palaeontological studies: directional change (GRW, general random walk), random walk (URW, unbiased random walk), and stasis [113-116]. The evolutionary changes of each character are here evaluated by means of the maximum likelihood method of [116-119]. The method is recognized to perform well even when evolutionary sequences are incompletely sampled, which is likely for empirical palaeontological sequences as documented here [116]. It has been implemented as a package (paleoTS, [116]) in the freely
available statistical environment R (http://www.r-project.org/). The method evaluates the maximum likelihood of producing the observed trends for three evolutionary modes (GRW, URW, and stasis). The relative support of each of these three models is assessed using well-established statistical means such as Akaike weights ([120]; for details, see [116-118]), which indicate the relative likelihood for each of the three evolutionary models (Figure 9).

Since auguritids and pinacitids branched off from the same origin, the characters displaying directed trends shared by both lineages and supported by the statistical analysis can potentially participate to a case of parallel evolution (Figure 9).

In order to assess the parallel evolution of the two studied lineages, we use two different approaches, both based on a multivariate analysis using the subset of characters

Figure 6 Evolution of WSC, WER, UWI and IZR in auguritids and pinacitids. Box plots of the evolution of whorl shape compression, whorl expansion rate, umbilical index and imprint zone rate through the phylogenetic sequence of the two studied ammonoid lineages, separately. Grey line indicates empirical evolutionary trend.
previously identified to be potentially involved in this case of parallel evolution. Note that univariate approaches can suffer from a “dimensionality bias” and similarities of trajectories in a morphospace should preferably be tested multivariately [121,122]. First, the parallel evolution of this subset of characters is evaluated by means of a method developed for comparing evolutionary trajectories of phenotypic change [123]. According to this method, the phenotypic evolution of a lineage is defined as a trajectory across a set of evolutionary levels in a multivariate morphological space. Attributes of these trajectories (magnitude, direction and shape) are quantified and statistically compared across pairs of taxa by means of a residual randomization permutation method [123,124], and a summary statistic is used to determine the extent to which patterns of phenotypic evolution are concordant. Note that the method currently requires that the compared trajectories have the same number of evolutionary levels (i.e. in our case the same number of species). Since more species of pinacitids have been described, the analysis is performed by first merging the data of the phylogenetically closest species of the pinacitid lineage in order to obtain the same number of studied evolutionary levels or steps for both families. The two species of *Pinacites* have thus
been merged, as well as *Foordites succedens* with *F. platypleurus* and *Achguigites* with *Fidelites*. This constraint of the method reduces the power of the test since the species of different lineages cannot be considered as equivalent.

The second method to test the parallel evolution of these Devonian ammonoids follows the approach proposed by [121] for comparing ontogenetic trajectories. This method is a permutation test based on within-lineage multivariate regression of the characters hypothesized to be involved in the parallel evolution. If the two lineages evolved in parallel, then their phylogenetic trajectories are identical in the morphological space defined by the subset of characters involved. To test this hypothesis, we first compute for each lineage separately a linear total least square regression, then we sum the squared orthogonal distance for each specimen from its nearest point on the regression curve. This sum provides the original test statistic for subsequent comparison. Then, we randomly resample without replacement a large number of times the taxonomic assignment of

Figure 8 Multivariate analysis of the eight measured shell parameters Results of the principal component analysis (PCA) based on the eight measured shell parameters. The PCA was done on a correlation matrix. The first three principal components axes account for about 80% of the total variation in shell morphology. Vectors of shell characters (length and direction compared to the PC axes) revealed that variation on PC1 is mainly associated with Dmx, WSC, NLb/OLb, FCI and UWI, PC2 with WER and IZR, and PC3 with WSC.
studied specimens to the two lineages and recompute the summed squared distances of these permuted families (this provides the permutation distribution). If the two studied lineages evolved in parallel, the original test statistic should not be an outlier in the permutation distribution of summed squared distances (see [121]). In other words, permuting specimens’ affiliation does not increase the residuals of the multivariate regressions and this is possible only if specimens of both families are close together in the studied morphological space.

Results

Evolution of Auguritidae (Early Devonian)

The evolution of shell characters through the phylogenetic sequence of the lineage that includes the Auguritidae is described and reported in Figures 5, 6, 7 and 8. Within this lineage, several evolutionary trajectories can be empirically suggested: the adult shell size (Dmx), whorl shape compression (WSC), number of lobes of the suture (NLb) and relative depth of the lateral lobe (OLb) increase simultaneously with decreasing umbilical diameter (more tightly coiled shells; UWI). The whorl expansion rate (WER) also increases slightly. The flank convergence index (FCI) and imprint zone rate (IZR) fluctuates without emerging trends.

Of great interest is the general trend of increasing involution (more tightly coiled shells as shown by the decreasing UWI, Figure 6). Indeed, most ammonoid specimens of lower Emsian age are very openly coiled and share a wide umbilical perforation [45]. It is striking
that all forms of this lineage are still associated with loosely coiled Anetoceratinae (Figure 3E; see references in the background section), which indicate that their evolution must have been comparably fast. In addition to this trend toward a closed umbilicus, the lineage is characterized by the appearance of an umbilical lid. Although the most derived forms of this lineage are rather rare, re-examination of the material from the Urals (Russian) and the Zeravshan Range (Uzbekistan) in the Palaeontological Museum of Moscow [75,93] and new specimens from Morocco [78] reveals that the two most derived genera *Weyeroceras* and *Celaeceras* both possess extensions of the lateral shell wall covering the umbilicus (i.e. umbilical lid; Figures 3, 7). This structure was previously known in this form only from the pinacitids [92]. Noteworthy, the trends toward more compressed (WSC) and more involute (UWI) shells levelled off with the appearance of the umbilical lid. The appearance of the umbilical lid is also associated with the smallest UWI (almost closed umbilicus).

Evolution of Pinacitidae (Early and Middle Devonian)

The evolution of shell characters for the lineage that includes the Pinacitidae and which evolved from the same remote ancestor of auguritids is reported in Figures 5, 6, 7 and 8. Within this lineage, the adult shell size (Dmx), the number of lobes of the suture (NLb) and their relative depth (OLb), as well as the acuteness of the venter (FCI) increased simultaneously, especially among the more derived species. The umbilical width index (UWI) and the imprint zone rate (IZR) also display trends but these occur only among the more primitive species. Evolutionary changes of whorl shape compression (WSC) and whorl expansion rate (WER) display different, slightly more complex evolutionary patterns: a quick increase in the most primitive species, an abrupt reset and then a slight increase in the most derived species, giving the trend a sigmoid course.

This lineage is better known, much more abundant and more diverse than auguritids. The pinacitids had a nearly cosmopolitan distribution during the Middle Devonian (see Figure 2B; [87,88]) and even the most derived representatives were locally quite common. Like in the auguritids, the derived species of pinacitids acquire more oxyconic shells and more complex sutures, as well as an umbilical lid. With the appearance of the umbilical lid, the trends toward greater involution (decreasing UWI) and whorl overlap (IZR) levelled off (Figure 6). This levelling off may correspond to a “left-wall” effect, i.e. the trend cannot go further once the umbilicus is closed, because the closure of the umbilicus marks a constructional boundary (whorls completely overlap).

Parallel evolution of the two lineages

The results of the morphological principal components analysis are plotted in Figure 8. The first three components extracted from the dataset accounted for 79.4% of the morphological variation. The PCA plots indicate which shell characters contribute to the morphological evolution of Devonian ammonoids by creating high variation. Vectors of shell characters (length and direction compared to the PC axes) revealed that variation on PC1 is mainly associated with Dmx, WSC, NLb/OLb, FCI and UWI, PC2 with WER and IZR, and PC3 with WSC. When viewed in the PC1/PC2 plot (Figure 8), the morphological evolutionary trajectories of Auguritidae and Pinacitidae display a seemingly pattern of parallelism. However, this pattern is absent on other PC axes and is thus an artefact of projection onto a reduced number of axes (compare figure 5 in [121]). Noteworthy, it does not reflect the case of parallel evolution discussed here, since this PCA is based on the eight quantitative characters and not only those really evolving in parallel (see below). Finally, this principal component analysis shows that the two studied clades are clearly distinct morphological clusters even if related to a common ancestor, because they occupy distinct areas of morphospace. Therefore, even if these lineages experience a parallel evolution of some characters (see below), each lineage is clearly distinct and has its own evolutionary history. The auguritid lineage has also a more irregular evolutionary trend than the pinacitid clade. This higher inter-specific variation probably originated from the poorer database and the fewer evolutionary steps for this rare family.

Both ammonoid lineages display empirical morphological evolutionary trends of some shell characters. Their statistical evaluation by means of the method of [116] is illustrated and reported in Figure 9. Among the three tested evolutionary patterns (directed trend, GRW; random trend, URW; stasis), the studied quantitative characters are mainly characterized by random trends and/or stasis (Akaike weights of URW or Stasis > 0.5). The only well-supported directional trend (GRW > 0.5) is for UWI (increasing involution) in the pinacitids, as well as in the auguritids if we remove one “outlier species” (Figure 9). Hence, this suggests that, except for UWI, the two ammonoid lineages have no directed evolutionary changes of their morphology. However, we must acknowledge that the power of this statistical test is reduced by the current state of our data. First, although we managed to acquire a comprehensive dataset from a palaeontological point of view, the number of species and specimens in the studied dataset remains low. Second, the studied ammonoids display important ontogenetic changes [88,125], which largely increase the
variance and range of studied characters. However, the scarcity of well-preserved, adult specimens of these earliest ammonoids prevents using only adult values. If we relax the necessary statistical support, two studied shell characters may display possible directed trends for both lineages: Dmx and NLb, which have negligible values for stasis and low but not negligible support for GRW. By comparison with other ammonoid groups [28,29,31-33, 35,36,39], trends in these two characters are expectable, but it remains to be tested by additional material in the future. Nevertheless, all other characters remain devoid of directional trends. Thus, the two studied lineages share the same directed trends for UWI with certainty, and more hypothetically for Dmx and NLb. Finally, it also appears plausible that the evolutionary trajectories for these three characters end with forms having equal means: for UWI, the last auguritid and the last pinacitid have no significant difference in their mean (Welch $t = -1.588, p = 0.139$); for Dmx, the last auguritid has the same value has the penultimate pinacitid but the last pinacitid is larger than the last auguritid; and for NLb, both lineages have at the end the same number of suture elements. This is also suggested graphically in Figure 9.

Since auguritids and pinacitids originated from the same ancestor, had possible directional trends in UWI, Dmx and NLb, and finally ended with similar values for these three characters, auguritids and pinacitids may have a parallel evolution for three quantifiable traits (coiling, adult size, and suture complexity). There is, however, also the evolution of the umbilical lid, which is a presence/absence character and does not influence the quantitative results. The hypothesis of parallel evolution of the measurable characters is tested by two permutation methods based on the character subset made by UWI, Dmx and NLb (Figure 10). Using the trajectory approach of [123], it appears that there are no significant differences in the magnitude ($MD_{size} = 0.103, P_{size} = 0.920$) and in the direction ($\theta_{direction} = 14.735, P_{dir} = 0.087$) of phenotypic evolution between the two lineages (Figure 10A). However, there are significant differences in the shape of the two evolutionary trajectories ($D_{shape} = 0.586,$)

Figure 10 Evolutionary trajectories of Auguritidae and Pinacitidae in the morphological space defined by the three characters involved in the case of parallel evolution. A, Statistical evaluation of the parallel evolution by means of the trajectory approach of [123]. Plot of the first and second principal components estimated from the correlation matrix for auguritids and pinacitids based on the three standardized characters UWI, Dmx, and NLb. Statistical evaluation of the parallel evolution is indicated with and without the auguritid outlier taxon Weyeroceras angustus (dashed line). Parameters with more than minimal support are in bold. There are no significant differences in magnitude and direction of the trajectories, but they are different in shape. B, Statistical evaluation of the parallel evolution by means of the regression approach of [121]. The phylogenetic trajectory of each lineage is fitted by a linear total least square regression. The statistical evaluation is indicated without the auguritid outlier taxon. The p-value of the test ($p = 0.0197$) is low, but the hypothesis of parallel trajectories could not be rejected by the permutation test.
such as chance, genetic heritage, covariation/developmental constraints, and/or adaptation/selection. In the context of cases of protracted parallel evolution of more or less complex structures or organs, which comprise many taxa in the lineages under consideration, the likelihood is very low that this parallel evolution is a result of sheer chance. Therefore, it is necessary to determine which causes contributed how, and to what degree to the documented evolutionary parallel and identical trends. In the case of auguritids and pinacitids, covariation of some traits is evident while we can suggest adaptation for other morphological aspects of the shell.

Functional traits (adaptation)
Among the documented parallel morphological evolutionary trends, the most important are: increasing involution (more tightly coiled whorls toward a closed umbilicus); development of an oxyconic shell (more compressed shell and/or more acute venter); larger shell diameters (body size); and the terminal acquisition of an umbilical lid.

The increasing body size of both studied lineages constitutes an example of Cope’s rule, known as the widespread tendency of animal groups to evolve toward larger body size [126-129]. This type of trend has been attributed to certain advantages of size increase such as increased defence against predation, increased food competition, increased success in mating, increased individual longevity, and better energy use [20,126-128,130-132]. Since the lineage starts with small shells, the observed trend toward a larger shell size conforms to the traditional gradualist and adaptive interpretation that large-scale evolutionary trends result from persistent selection within long-ranging lineages. Several authors have illustrated examples of increasing ammonoid shell size during initial radiation of a group [46,129,133,134]. However, [135] found no evidence for Cope’s rule among Early Jurassic ammonoids, after the initial recovery radiation following the Triassic/Jurassic boundary extinction.

The persistent increasing involution (i.e. more tightly coiled whorls toward a closed umbilicus) coupled with the oxyconic shell as displayed by the auguritids and pinacitids is surely one of the most frequently observed large-scale morphological evolutionary trends among ammonoids [27,28,31-33,38,39,66,136-139]. This highly recurrent trend among numerous and distantly related ammonoid clades (thus independent of phylogeny) suggests that it may have a strong adaptive significance due to functional constraints [140,141]. Since ammonoids are an extinct group, we have no direct evidence of the cause and advantage of this possible adaptation. However, thanks to mechanical experiments on shell models and analytical calculations of shell hydrodynamics [61-63, 99,142-144], as well as by analogy with Recent nautiloids (the only extant cephalopod with a chambered external
shell; see [145,146]), numerous studies evaluated the hydrodynamic performances (locomotion) of the ammonoid shell shape. It has been widely demonstrated that, for shells with oxyconic shell shapes, the energy consumption for swimming is the lowest and potential maximal swimming speed is the highest. Maneuverability is best with roughly horizontal apertures at relatively short body chambers and more or less high whorl expansion rates [58,60,62,63,147]. Indications for a link between water energy, facies and conch form are not rare but only few publications on that matter are available [55,57,88,139,148-155]. Increased involution of the shell (decreased UWI) therefore appears to represent a consistent adaptation toward improved hydrodynamic properties of the shell (decreased drag, increased streamlining) and consequently probably improved predation efficiency, increased food competition, increased predator escape, and/or improved search for mating partners and suitable spawning regions. Hence, the parallel and identical trend of ammonoid shell involution in the Auguritidae and Pinacitidae is here suggested to be best and most plausibly explained by functional adaptation.

Finally, both studied lineages evolved a peculiar morphological trait, the umbilical lid. This shell modification occurred only among the most derived species of both studied evolutionary lineages. This umbilical lid represents an extension of the lateral shell wall, passing across the umbilical shoulder toward the coiling axis and consequently more or less completely occludes the umbilicus of the ammonoid shell. This construction of the umbilical lid is a unique feature of the two studied lineages and is not known in this form from any younger ammonoid group, not even in groups having similar shell shapes. Other ammonoid groups do occasionally possess morphological features occluding the umbilicus [92,95,156], but in these cases, the structure is only superficially similar and results from a different origin (e.g., thickened umbilical walls and/or reduced umbilical width [92]). Since there are countless taxa with an overall shell shape (oxyconic shell with a very narrow umbilicus) roughly resembling that of auguritids and pinacitids, the appearance of this morphological structure (the umbilical lid) cannot be simply explained by covariation, thus making an adaptive explanation most likely. The parallel evolution of umbilical lids could be functionally explained by different, not mutually exclusive hypotheses.

(1) The umbilical lid could represent an adaptation for the improvement of the hydrodynamic properties of the shell. Indeed, it has been shown repeatedly that the size and shape of the umbilicus in combination with the overall shell geometry has a profound influence on the hydrodynamic properties of the shell [57,61-63,142]. For instance, forms with a closed umbilicus reduce added mass (such as the water trapped by the umbilicus) and confer better acceleration and deceleration during swimming [63]. In this context, this hypothesis supports the adaptation to improve swimming, but it does not explain completely why the umbilical lid is constructed in such a peculiar way in only these two groups.

(2) In addition to the previous hypothesis, the umbilical lid could act as a device directing water into the mantle cavity from behind when swimming backwards by means of jet propulsion. Indeed, most cephalopods swim “backwards” by taking in water into the mantle cavity and by expelling this water by mantle cavity compression through the hyponome (e.g., [157]; for a discussion on the functional analogy between ammonoids and Nautilus, the only extant cephalopod with an external shell, see [63,146]). Note that all recent and all fossil cephalopods still have or had a hyponome [158]. This is corroborated by the presence of a hyponomic sinus in our forms just like in Nautilus [146]. In this case, the umbilical lid has hydrodynamic advantages because the water enters from the swimming direction and leaves in the opposite direction (i.e. in the direction of the aperture, where the animal came from) with a deviation through the mantle cavity where it is accelerated by the animal’s musculature (Figuer 11). Furthermore, the umbilical lid is not formed at the beginning of ontogeny but rather at a diameter of about 5 mm. This roughly coincides with the size when swimming movements become more effective in the course of ammonoid development [62,63], thus supporting a link between shell hydrodynamics and the evolution of the lid. True evidence for this function is missing, but both lineages...
lived in a time when a general increase in mobility among swimming animals occurred [79].

(3) Finally, the umbilical lid might have been caused by, or linked to, features unrelated to the hard parts (e.g., soft-tissues, genes). For instance, the parallel evolution of an umbilical lid may speculatively result from the repetitive loss of expression of regulatory Hox genes (e.g., [159]; for the description of such a case in the evolution of crustacean maxillipeds, see [7]) or the repeated selection of developmental genes (see e.g., [10,160]). Logically, this is impossible to test on Devonian fossils. Furthermore, the genetic underpinnings of parallel and convergent evolution are generally unknown in Recent organisms [161]. Although it is not yet possible to find evidence for another function of this lid, it appears likely that it served indeed as a structure to improve swimming abilities.

Covarying traits (constructional constraints)
Among the documented parallel morphological evolutionary trends, some can be explained as covarying traits, meaning that some morphological trends can result from constructional constraints [39,162-165]. The characters involved in such indirectly triggered trends are important to identify because, in this case, there is no need to search for an adaptive or genetic explanation.

Covariation of shell characters is well-known for ammonoids [166]. For instance, the intraspecific variation of an ammonoid species is usually expressed by the following gradient: the more evolute the shell, the thicker the whorl shape, and the more robust the ornamentation. It is referred to as Buckman’s first law of covariation [59,163,167,168] and has been abundantly documented and discussed (e.g., [38,169-174]). Shape and differentiation of suture lines (i.e. the kind and degree of folding of the phragmocone chamber walls) also covary with shell shape and shell size (Buckman’s second law of covariation). More precisely, the number of suture elements (frilling of the suture line) increases with the size of the shell (whorl height) and/or with the compression of the shell. This is evidenced by the widely documented increase in the suture complexity through ontogeny of the ammonoid shell (for Devonian taxa see, e.g., [47,66,93]; see also inside frame of Figure 7). Furthermore, both patterns are usually linked because in most ammonoid ontogenies, a more or less rapid change from more circular to either compressed or depressed apertures happened (see Figure 7). During this change in whorl section, the relative number of suture elements changes in such way that less suture elements occur when the whorl cross section is closer to a circle, and vice versa [51,175]. Both patterns are abundantly documented for all ammonoid groups (e.g., [44,47,55,60,66,93,95,176-184]).

The function of the septal folding is the subject of much debate (e.g., [150,185,186]) and many hypotheses have been proposed, such as buttressing [144,187,188], muscle attachment [189], cameral liquid transfer [190], metabolic effect [191], developmental epiphenomena [175,192-194], and/or locomotion [195]. Nevertheless, the increase with size and through ontogeny is expected because septal formation behaves like a “viscous fingering” phenomenon (see review of [175]); in this morphogenetic model, the details (not the general outline) of the suture pattern depend on the space and shape available for the suture during its formation (“domain effect”).

Both studied lineages are no exception to this rule of covariation. The two lineages are characterized by the parallel and identical evolution toward an increasing number of lobes (Figure 5). In the case of pinacitids and auguritids, new lobes and saddles were especially inserted dorsally and ventrally, where the shell void was the narrowest (Figure 7). Note that in the two derived species Weyeroceras angustum (Auguritidae) and Exopinacites singularis (Pinacitidae) the siphuncle shifted to a subventral position causing the formation of an additional lobe [78,92]. Both lineages are also characterized by an increasing adult size and an increasing oxyconic character of the shell (more compressed shell and/or more acute venter; Figures 5 and 6). Hence, in the case of these Devonian ammonoids, the trends toward increasing number of suture line elements are likely to be induced by covariation as corroborated by the strong correlation of NLb with IZR, FCI and WSC (Figure 12). This covariation of NLb with WSC and FCI is not the indirect result of parallel evolution, because the two studied lineages display different trends for WSC and FCI (neither parallel, nor identical; Figures 5, 6, 9). Hence, both studied lineages experienced a parallel and identical trend toward more complex suture patterns, both by covariation with other evolutionary trends of the shell shape, but this is achieved differently in both lineages (mainly WSC for auguritids and FCI for pinacitids).

Conclusions
Very early in the course of the evolution of the Ammonoidea, the two families Auguritidae and Pinacitidae evolved independently but display a striking pattern of probably parallel morphological evolution. These two families share several essential morphological traits such as shell shape, suture line course, and the presence of an umbilical lid, which is an extension of the lateral shell wall and is unknown in this form from any other ammonoid lineage. The similar and parallel evolution of both lineages toward large, involute shells with more complex suture lines and with closed umbilicus including the formation of an umbilical lid can be explained best by selection for enhanced hydrodynamic properties.
of the shell (selective/adaptive constraints). Speculatively, the umbilical lid might have facilitated the intake of water from the swimming direction during repulsion swimming. Some other shell parameters also show a parallel evolution, but most likely due to covariation (constructional constraints). The increase in sutural complexity represents a typical case of covariation induced by the evolution toward involute and larger shells with acute venter and deep imprint zone.

Covariation and adaptive constraints are thus not mutually exclusive and both can contribute to parallel evolution of ammonoid lineages. Constructional constraints belong therefore to the primary factors governing evolutionary trends of the ammonoid shell, indirectly triggered by adaptive trends. Furthermore, this underlines that form, and the controls upon it, can never be truly understood in isolation from functional adaptation and constructional covariation. Distinction between covariation and adaptation in the process of evolutionary trends is also important in order to avoid over-interpretation of the patterns; in such cases, detailed studies of convergent or parallel evolutionary trends can contribute important impetus toward a decision for either cause. For instance, some authors have interpreted the adaptive signification of sutural complexity, especially to water depth against implosion (for a discussion and references, see e.g., [144,190,197]). Such interpretations are questionable because trends in suture complexity may be (at least partially) a side effect and not the target of evolution. Furthermore, several studies also tried to demonstrate the increasing complexity of life by focusing on the ammonoid suture complexity (e.g., [36,198,199]). All these studies resulted in more or less equivocal results and this may be explained by the fact that many changes in suture patterns can be induced by covariation. It is thus crucial for phylogenetic analyses, especially at higher systematic ranks [200], to understand the driving factors behind evolutionary morphological modifications, whether they are driven by some selective force, sheer covariation or even random processes.

Those evolutionary trends which are not parallel between the two studied groups also highlights that these are independent characters of the ammonoid shell. Hence, although adaptation and covariation largely shape the morphological evolution of ammonoids, the still divergent evolution of several shell characters of both lineages in our case of parallel evolution imply that the unique histories of organisms still play a large role in shaping the evolutionary trajectory of clades [2]. As large-scale macroevolutionary studies can only proceed gradually, we hope that further fossil discoveries and the application of new methods and better knowledge of mollusc shell morphogenesis (see e.g., [164,165]) will help to test the hypotheses advocated in this paper, and

Figure 12 Covariation of suture line geometry and shell geometry. Bivariate plots of IZR, FCI and WSC versus number of lobes (NLb); the number of lobes increased throughout the phylogeny of both lineages.
continue to reveal information about the evolutionary history of this major marine extinct group, the ammonoids.

Acknowledgements
The field work in Morocco was kindly supported by the Swiss National Science Foundation (project number: 200021-113956) to CK. The Moroccan colleagues of the Ministère de l’Energie et des Mines (Rabat and Midelt) and the Uzbek colleagues from the State Committee on Geology and Mineral Resources of the Republic of Uzbekistan (Tashkent) and the Kitab State Geological Reserve benignly provided permits for the field work and for the export of samples. We greatly appreciate the patient help of N. A. Meshankina, F. A. Salimova (Tashkent), U. D. Rakhmonov (Kitab) during our field work in the Kitab State Geological Reserve (Uzbekistan). V. Konovalova, S. Nikolaeva and T. Leonova (all Moscow) supported us during our visit at the Paleontological Institute in Moscow. V. Turek (Prague) kindly examined and photographed the holotype of Giliceras praematurum for us and also supported us during our museum visit in Prague. R. Montesinos (A Coruña) kindly supplied photos of the Spanish Weyeraspecimens. M. Wasmier and J. Rath are thanked for donations of ammonoid specimens. L. Wilson (Zürich) kindly corrected the English of the manuscript. The constructive comments of an anonymous reviewer and of A.J. McGowan have been greatly appreciated and contributed to improve this manuscript.

Authors’ contributions
CK designed the study. CK and KDB collected the data (field, museum, literature) and made the morphometric measurements. CM performed the phylogenetic analyses and edited the text. CM, CK and KDB wrote the paper. All authors participated in the interpretation of the data. All authors read, discussed and approved the final manuscript.

Received: 13 September 2010 Accepted: 29 April 2011
Published: 29 April 2011

References
1. Serb JM, Ermisse DJ: Charting evolution’s trajectory: using Mullerian eye diversity to understand parallel and convergent evolution. Evolution 2008, 1:439-447.
2. Gould SJ: The structure of evolutionary theory. Cambridge, Harvard University Press; 2002.
3. Revell LJ, Johnson MA, Schulte JA, Kolbe JJ, Losos JB: A phylogenetic test for adaptive convergence in rock-dwelling lizards. Evolution 2007, 61:2898-2912.
4. Palmer AR: Parallel gradualistic evolution of Ordovician trilobites. Systematic Zoology 1984, 33:432-454.
5. Haas O, Simpson GG: The major features of evolution New York, Columbia University Press, 1953.
6. Reznick DN, Rodd FH, Cardenas M: Life-history evolution in guppies. Evolutionary Ecology Research 2007, 9:289-315.
7. Sañudo P, Lopéz MD, Blázquez D: Parallel evolution of character displacement driven by competitive selection in terrestrial salamanders. BMC Evolutionary Biology 2010, 10:72.
8. Kyj CJ, Boulding EG: Molecular genetic evidence for parallel evolution in a marine gastropod, Littorina subrotundata. Proceedings of the Royal Society Biological Sciences 1998, 265:303-308.
9. Jackson DJ, McDougall C, Woodcraft B, Moore P, Rose RA, Kube M, Reinhardt R, Roehrer DS, Montagnani C, Jouvert C, Pigneur O, Degnan BM: Parallel evolution of nacre building gene sets in mussels. Molecular Biology and Evolution 2009, 27:591-608.
10. Cimino G, Gieselin MT: Chemical defense and evolution in the Sacoglossa (Mollusca: Gastropoda: Opisthobranchia). Chemoecology 1998, 81:5-60.
11. Ponder WF, Lindberg DR: Phylogeny and evolution of the Mollusca Berkeley, University of California Press, 2008.
12. van Moorsel CHM, Dijkstra EGM, Gittenberger E: Molecular evidence for repetitive parallel evolution of shell structure in Clausilidæ (Gastropoda, Pulmonata), Molecular Phylogenetics and Evolution 2000, 17:200-208.
13. Simpson GG: The major features of evolution New York, Columbia University Press, 1953.
14. Schluter JA: Natural selection in the wild. Princeton, Princeton University Press, 1986.
15. Schluter D, Kingsley DM: Parallel evolution of nacre building gene sets in mussels. Molecular Biology and Evolution 2009, 27:591-608.
42. Landman NH: Heterochrony in ammonites. In Heterochrony in evolution. Edited by: McKinney NL. New York, Plenum Press, 1988:159-182.
43. Korn D: Impact of environmental perturbations on development in Palaeozoic ammonoids. In Evolutionary change and heterochrony. Edited by: Michalas KJ. Chichester, Wiley 1995:245-260.
44. Korn D: Typosphism in Palaeozoic ammonoids. Paläont Zeit 2003, 77:445-470[http://www.springerlink.com/content/c536721013s6551/].
45. House MR: Juvenile goniatite survival strategies following Devonian extinction events. In Bionic recovery from mass extinction events. Volume 102. Edited by: Hart MB. Geological Society Spec. Pub, 1996:163-185.
46. Guex J: A generalization of Cope’s rule. Bull Soc géol France 2003, 174:449-452.
47. Korn D, Klug C: Morphological pathways in the evolution of Early and Middle Devonian ammonoids. Paleobiology 2003, 29:329-348.
48. Gerber S, Eble GJ, Neige P: Allometric space and allometric disparity: a developmental perspective in the macroevolutionary analysis of morphological disparity. Evolution 2008, 62:1450-1457.
49. Brayard A, Escarguel G, Bucher H, Monnet C, Brühwiler T, Goudemand N, Galletti T, Guex J: Good Genes and Good Luck: Ammonoid Diversity and the End-Permian Mass Extinction. Science 2009, 325:1118-1121.
50. De Baets K, Klug C, Kom D: Devonian pearls and ammonoid-endoparasite co-evolution. Acta Palaeontologica Polonica 2011, 56:159-180.
51. Seilacher A: Why are nautiloid and ammonoid sutures so different? N Jb Geol Paläont Abh 1988, 177:41-69.
52. Stanley SM: Macroevolution: pattern and process. Columbus OH: The Ohio State University Press, 1975.
53. Sepkoski JJ: Achilles’ heel: a critical review of the statistical methods used to testRaiford H. Stanley’s work. Geol Soc Am Bull 2007, 119:1392-1406.
54. Foote M, Sepkoski JJ: Rates of speciation in the fossil record. Paleobiology 1992, 18:155-160.
55. Bayer U, McGhee GR: Absolute measures of the completeness of the fossil record. Proc Nat Acad Sci USA 1992, 89:11754-11759.
56. Klug C, Korn D: Heterochrony in evolution. In Heterochrony in evolution. Edited by: McNamara KJ. Chichester, Wiley 1995:245-260.
57. House MR: Juvenile goniatite survival strategies following Devonian extinction events. In Bionic recovery from mass extinction events. Volume 102. Edited by: Hart MB. Geological Society Spec. Pub, 1996:163-185.
58. Guex J: A generalization of Cope’s rule. Bull Soc géol France 2003, 174:449-452.
59. Korn D, Klug C: Morphological pathways in the evolution of Early and Middle Devonian ammonoids. Paleobiology 2003, 29:329-348.
60. Gerber S, Eble GJ, Neige P: Allometric space and allometric disparity: a developmental perspective in the macroevolutionary analysis of morphological disparity. Evolution 2008, 62:1450-1457.
61. Bravard A, Escarguel G, Bucher H, Monnet C, Brühwiler T, Goudemand N, Galletti T, Guex J: Good Genes and Good Luck: Ammonoid Diversity and the End-Permian Mass Extinction. Science 2009, 325:1118-1121.
62. De Baets K, Klug C, Kom D: Devonian pearls and ammonoid-endoparasite co-evolution. Acta Palaeontologica Polonica 2011, 56:159-180.
63. Seilacher A: Why are nautiloid and ammonoid sutures so different? N Jb Geol Paläont Abh 1988, 177:41-69.
64. Stanley SM: Macroevolution: pattern and process. Columbus OH: The Ohio State University Press, 1975.
65. Nishiguchi MK, Mapes RH: Heterochrony in evolution. In Heterochrony in evolution. Edited by: McNamara KJ. Chichester, Wiley 1995:245-260.
66. Erben HK: Über den Ürsprung der Ammonoidea. N Jb Geol Paläont Abh 1966, 115:641-658.
67. Erben HK: Korn D: Heterochrony in evolution. In Heterochrony in evolution. Edited by: McNamara KJ. Chichester, Wiley 1995:245-260.
A user

Jackson JE:

Stayton CT:

Raup DM:

Random walk and the biometrics of morphological phyletic size increase, an important trend illustrated by fossil samples. BMC Evolutionary Biology. 2011, 11:115

Newell ND: Phylgetic size increase, an important trend illustrated by fossil invertebrates. Evolution 1949, 9:103-124.

97. Raup DM: Geometric analysis of shell coiling: general problems. J Paleont 1966, 40:1178-1190.

98. Raup DM: Geometrical analysis of shell coiling: coiling in ammonoids. J Paleont 1967, 41:43-65.

99. Saunders WB, Shapiro EA: Calculation and simulation of ammonoid hydrostastics. Paleobiology 1986, 12:64-79.

100. Kern D, Klug C: Conch form analysis, variability, and morphological disparity of a Frasnian (Late Devonian) ammonoid assemblage from Coonmac (Montagne Noire, France), In Cephalopods - Present and Past. Edited by: Landman NH, Davis RA, Manger W, Napès RH. New York, Springer, 2007:57-86.

101. Ruzhencev VE: Filogeneticheskaya sistema paleozoyskikh ammonoidy. Byulleten Moskovskogo obshchestva opyatetye prirody, novaya seriya, otdel geologicheskii 1957, 3:19-64.

102. Wake DB: Homoplasy: the result of natural selection or evidence of design constraints? American Naturalist 1991, 138:543-567.

103. Stayton CT: Testing hypotheses of convergence with multivariate data: morphological and functional convergence among herbivorous lizards. Evolution 2006, 60:824-841.

104. Jackson JE: A user’s guide to principal components New York, John Wiley;

105. Hammer Ø, Harper DAT, Ryan PD: PAST, Paleontological Statistics Software Package for Education and Data Analysis. Paleontologia Electronica 2001, 4(1).

106. Hammer Ø, Harper DAT: Paleontological data analysis Oxford, Blackwell Publishing, 2005.

107. Raup DM, Crick RE: Evolution of single characters in the Jurassic ammonite Kosmoceras. Paleobiology 1981, 7:200-215.

108. Bookstein FL: Random walk and the existence of evolutionary rates. Paleobiology 1987, 13:446-464.

109. Bookstein FL: Random walk and the biometrics of morphological characters. Evolutionary Biology 1988, 9:369-398.

110. Raup DM: Stochastic models in evolutionary paleobiology. In Patterns of evolution as illustrated by the fossil record. Edited by: Halam A. Amsterdam, Elsevier; 1997:59-78.

111. Raup DM, Gould SJ: Evolutionary size increase and longevity in Jurassic bivalves and ammonoids. Nature 1975, 258:493-496.

112. Thierry J: Rythme d’évolution des caractères morphologiques chez les Macrocephalitidae (Cephalopoda, Ammonitina, Jurassic moyen). In Modaúltes, rythmes, mécanismes de l’évolution biologique. Volume 330. Edited by: Chaline J. Paris, Editions du CNRS, Colloques internationaux du Centre National de la Recherche Scientifique; 1982:211-218.

113. Sheets HD, Mitchell CE: Body size, ecological dominance and cope’s rule. Nature 1986, 324:248-250.

114. Hunt G: Evolution toward a new adaptive optimum: A general framework for the analysis of phenotypic trajectories in evolutionary studies. Evolution 2000, 54:244-258.

115. Hunt G, Bell MA, Travis MP: Phenotypic variation in fossil samples: modeling the consequences of time-averaging. Paleobiology 2005, 30:436-443.

116. Hunt G, Crick RE: Evolution of single characters in the Jurassic ammonite Kosmoceras. Paleobiology 1981, 7:200-215.

117. Hunt G: Observations sur la répartition biostratigraphique des ammonites de l’éracleien supérieur de l’Aveyron (France). Bull Lab Géol Minéral Géophys Univ Lausanne 1973, 207:1-14.

118. Hunt G: Associations virtuelles et discontinuités dans la distribution des espèces fossiles: un exemple intéressant. Bull Soc Vaud Sci Nat 1981, 359:179-193.

119. Donovan DT: Ammonite shell form and transcription in the British Lower Jurassic. In Sedimentary and evolutionary cycles. Volume 1. Edited by: Bayer U, Seilacher A. Lecture Notes in Earth Sciences; 1985:164-220.

120. Saunders WB, Work DM, Nikolaeva SV: The evolutionary history of shell geometry in Paleozoic ammonoids. Paleobiology 2004, 30:19-43.

121. Saunders WB, Greenfeld-Almog L, Work DM, Nikolaeva SV: Morphologic and taxonomic history of Paleozoic ammonoids in time and morphospace. Paleobiology 2008, 34:128-154.

122. Elmi S: Loi des aires, couche-limite et morphologie fonctionnelle de la coquille des cephalopods (ammonoïdes). Géobios, Mémoire spécial 1993, 15:121-138.

123. Seki K, Tanabe K, Landman NH, Jacobs DK: Hydrodynamic analysis of Late Cretaceous desmoceramite ammonites. Revue Paléobiologie, Volume spécial 2000, 8:141-155.

124. De Blasio FV: The role of suture complexity in diminishing strain and stress in ammonoid phragmocones. Lethaia 2008, 41:15-24.

125. Ward PD: In search of Nautilus New York, Simon and Schuster, 1988.

126. Jacobs DK, Landman NH: Kroulis, a poor model for the function and behavior of ammonoids? Lethaia 1995, 28:101-111.

127. Rensch B: Evolution above the species level New York, Columbia University Press; 1959.

128. Gould SJ: Allometry and size in ontogeny and phylogeny. Biological Reviews 1966, 41:587-640.

129. Stanley SM: An explanation for cope’s rule. Evolution 1973, 27:1-26.

130. Kurten B: On the variation and population dynamics of fossil and Recent mammal populations. Acta Zool Fennica 1953, 76:1-122.

131. Brown JH, Maurer BA: Body size, ecological dominance and cope’s rule. Nature 1986, 324:248-250.

132. Hone DWE, Benton MJ: The evolution of large size: how does Cope’s Rule work? Trends in Ecology & Evolution 2005, 20:6-6.

133. Hallam A: Evolutionary size increase and longevity in Jurassic bivalves and ammonoids. Nature 1975, 258:493-496.

134. Thierry J: Rythme d’évolution des caractères morphologiques chez les Macrocephalitidae (Cephalopoda, Ammonitina, Jurassic moyen). In Modaúltes, rythmes, mécanismes de l’évolution biologique. Volume 330. Edited by: Chaline J. Paris, Editions du CNRS, Colloques internationaux du Centre National de la Recherche Scientifique; 1982:211-218.

135. Dommeques JL, Montaire S, Neige P: Size patterns through time: the case of the Early Jurassic ammonite radiation. Paleobiology 2002, 28:423-434.

136. Hyatt A: Genesis of the Anetiididae. Smithsonian Contributions to Knowledge 2005, 673:1-238.

137. Guex J: Observations sur la répartition biostratigraphique des ammonites du Toarcien supérieur de l’Aveyron (France). Bull Lab Géol Minéral Géophys Univ Lausanne 1973, 207:1-14.

138. Guex J: Associations virtuelles et discontinuités dans la distribution des espèces fossiles: un exemple intéressant. Bull Soc Vaud Sci Nat 1981, 359:179-193.
Monnet et al. BMC Evolutionary Biology 2011, 11:115
http://www.biomedcentral.com/1471-2148/11/115
Page 21 of 21

161. Olóriz F, Palmqvist P, Pérez-Claras A: Morphostructural constraints and phylogenetic overprint on sutural frilling in Late Jurassic ammonites. Lethaia 2002, 35:158-168.

159. Kawabe F: Relationship between mid-Cretaceous (upper Albian-Cenomanian) ammonoid facies and lithofacies in the Yezo forearc basin, Hokkaido, Japan. Cretaceous Research 2003, 24:751-763.

160. Tozer ET: Observations on the shell structure of Triassic ammonoids. Palaeontology 1972, 15:637-654.

162. Packard A, Bone Q, Hignette M: Breathing and swimming movements in a captive Notial. J Marine Biol Assoc United Kingdom 1980, 60:315-327.

158. Engeser T: The position of the Ammonoidea within the Cephalopoda. In Ammonoid paleobiology. Volume 13. Edited by: Landman NH, Tanabe K, Davis RA. New York, Plenum Press, Topics in Geobiology, 1996:3-19.

163. Prudhomme B, Kempel N, Rokas A, Kassner VA, Williams TM, Yeh SD, True JR, Caroli SB: Repeated morphological evolution through cis-regulatory changes in a pleiotropic gene. Nature 2006, 440:1050-1053.

164. Lindsey CC: Experimental study of meristic variation in a population of threespine sticklebacks, Gasterosteus aculeatus. Can J Zool 1966, 40:271-312.

165. Minelli A: Perspectives in animal phylogeny and evolution. Oxford, Oxford University Press, 2009.

166. Seilacher A: Fabricational noise in adaptive morphology. Systematic Zoology 1973, 222:451-465.

167. Hammer Ø, Bucher H: Buckman’s first law of covariation - a case of proportionality. Lethaia 2005, 38:67-72 [http://onlinelibrary.wiley.com/doi/10.1080/02411600510119619/abstract]

168. Urdy S, Goudemand N, Bucher H, Chirat R: Allometries and the morphogenesis of the molluscan shell: a quantitative and theoretical model. J Exp Zool (Mol Dev Evol) 2010, 314B:283-303.

169. Urdy S, Goudemand N, Bucher H, Chirat R: Growth-dependent phenotypic variation of mollusc shells: implications for allometric data interpretation. J Exp Zool (Mol Dev Evol) 2010, 314B:303-326.

170. Buckman SS: A monograph of the ammonites of the Inferior Oolite Series London, Palaeontographical Society, 1892.

171. Guex J, Koch A, D'Agosthery L, Bucher H: A morphogenetic explanation of Buckman's law of covariation. Bull Soc géol France 2003, 174:603-606.

172. Yacobucci MM: Buckman's paradox: variability and constraints on ammonoid ornament and shell shape. Lethaia 2004, 37:57-69 [http://onlinelibrary.wiley.com/doi/10.1080/024116004100045755/abstract].

173. Reeside JB, Cobbán WA: Studies of the Mowry Shale (Cretaceous) and contemporary formations in the United States and Canada. US Prof Pap Geol Surv 1960, 351:1-126.

174. Kennedy WJ, Cobbán WA: Aspects of ammonite biogeography, biogeography, and biostatigraphy. Spec Pap Palaeontol 1976, 17:1-94.

175. Silberling NJ, Nichols KM: Middle Triassic molluscan fossils of biostatigraphic significance from the Humboldt Range, north-western Nevada. US Prof Pap Geol Surv 1982, 1207:1-79.

176. Daggys A, Weischet W: Intraspecific variation in Boreal Triassic ammonoids. Géobios 1993, 26:107-109.

177. Kaplan P: Buckman’s rule of covariation and other trends in Paleozoic Ammoniacea; morphological integration as key innovation. Geological Society of America, Abstracts with Programs 1999, 31:172.

178. Ronald A, Guex J: Ontogeny and covariation in the Toarcian genus Opioperioceras (Ammonitacea). Bull Soc géol France 2003, 174:607-615.

179. Checa AG, García-Ruiz JM: Morphogenesis of the septum in ammonoids. In Ammonoid paleobiology. Edited by: Landman NH, Tanabe K, Davies RA. New York, Plenum Press, 1996:253-296.

180. Korn D: A modified Balloon model for septa of early ammonoids. Lethaia 1997, 30:39-40.

181. Dommergues JL, Dommergues CH, Meister C: Exploration of the Oxynoteratidae ornamental morphospace using the discrete cosine transform (DCT) to analyze rib patterns. Paleobiology 2006, 32:628-651.

182. Pérez-Claras A, Olóriz F, Palmqvist P: Sutural complexity in Late Jurassic ammonites and its relationship with phragmocone size and shape: a multidimensional approach using fractal analysis. Lethaia 2007, 40:255-272.

183. Boockwinkel J, Becker RT, Ebbsöhnau V: Upper Givetian ammonoids from Dar Koaui (Taflaït, SE Anti-Atlas, Morocco). Berliner Paläobiologische Abhandlungen 2009, 1061-128.

184. Brownlee T, Bucher H, Goudemand N: Smithian (Early Triassic) ammonoids from Tulong, South Tibet. Globios 2010, 43:403-431.

185. Saunders WB: The ammonoid suture problem: relationships between shell and septum thickness and suture complexity in Paleozoic ammonoids. Paleobiology 1995, 21:343-355.

186. Checa AG: Fabrication and function of ammonite septa, comment on Lewy. J Palaeont 2003, 77:790-791.

187. Hewitt RA, Westermann GEG: Function of complexly fluted septa in ammonoid shell. II. Septal evolution and conclusion. N Jb Geol Paläontol Abh 1986, 174:135-169.

188. Hewitt RA, Westermann GEG: Mechanical significance of ammonoid septa with complex sutures. Lethaia 1997, 30:205-212.

189. Henderson RA: A muscle attachment proposal for septal function in Mesozoic ammonites. Paleontology 1984, 27:461-486.

190. Daniel TL, Helmuth BS, Saunders WB, Ward PD: Septal complexity in ammonoid cephalopods increased mechanical risk and limited depth. Paleobiology 1997, 23:470-481.

191. Pérez-Claras A: Allometric and fractal exponents indicate a connection between metabolism and complex septa in ammonites. Paleobiology 2003, 31:221-232.

192. García-Ruiz JM, Checa A: A model for the morphogenesis of ammonoid septal sutures. Globios, Milmemo Special 1993, 15:157-162.

193. García-Ruiz JM, Checa A, Rivas P: On the origin of ammonite sutures. Paleobiology 1990, 16:349-354.

194. Hammer Ø: The development of ammonoid septa: an epithelial invagination process controlled by morphogens? Historical Biology 1999, 13:153-171.

195. Selacher A, LaBarbera M: Ammonites as Cartesian divers. Palsios 1995, 10:493-506.

196. Selacher A: Arbeitskonzept zur Konstruktions-Morphologie. Lethaia 1970, 3:393-396.

197. Hewitt RA: Architecture and strength of the ammonoid shell. In Ammonoid paleobiology. Volume 13. Edited by: Landman NH, Tanabe K, Davis RA. New York, Paläontologische Gesellschaft, 1996:297-339.

198. Saunders WB, York DM: Shell morphology and suture complexity in Upper Carboniferous ammonoids. Paleobiology 1996, 22:189-218.

199. Allen EG: Understanding ammonoid sutures. New insights into the dynamic evolution of Paleozoic suture morphology. In Cephalopods Present and Past: new insights and fresh perspectives. Edited by: Landman NH, Davis RA, Mapes RH. Dordrecht, Springer, 2007:159-180.

200. Willmer P: Convergence and homplasy in the evolution of organisinal form. In Origination of organisinal form. Edited by: Muller GB, Newman SA. Massachusetts, MIT Press, The Vienna series of theoretical biology, 2003:33-50.

201. Shigeno S, Sasaki T, Boletzky SV: Origins of cephalopod body plans: A geometrical and developmental basis for the evolution of vertebrate-like organ systems. In Cephalopods Present and Past. Edited by: Tanabe K, Shigeta Y, Sasaki T, Hirano H. Tokai University Press, 2010:23-34.

202. Lardeux H, Morzadec P, Bultynck P, Walisser OH: La Grange Limestone. In Massif Armorican, Field Excursion Guidebook. Edited by: Lardeux H, Morzadec P. International Subcommission on Devonian Stratigraphy, 1979:5-7.

203. Scottie CR: Digital Paleogeographic Map Archive on CD-ROM Arlington, Texas, PALEOMAP Project, 2001.