Hexaaquazinc(II) dinitrate
bis[5-(pyridinium-3-yl)tetrazol-1-ide]

Ignacio Chi-Duran, Javier Enriquez, Andres Vega, Felipe Herrera and Dinesh Pratap Singh

Acta Cryst. (2018). E74, 1231–1234
Hexaaquazinc(II) dinitrate bis[5-(pyridinium-3-yl)-tetrazol-1-ide]

Ignacio Chi-Duran, Javier Enriquez, Andres Vega, Felipe Herrera and Dinesh Pratap Singh

Department of Physics, University of Santiago, Av. Ecuador 3493, Estación Central, Santiago, Chile, Departamento de Ciencias Químicas, Universidad Nacional Andres Bello, Av. República 275 1er Piso, Santiago, Region Metropolitana, Chile, and Millennium Institute for Research in Optics (MIRO), Chile. *Correspondence e-mail: singh.dinesh@usach.cl

Hexaaquazinc(II) dinitrate 5-(pyridinium-3-yl)tetrazol-1-ide, [Zn(H2O)6](NO3)2-2C6H5N5, crystallizes in the space group P1. The asymmetric unit contains one zwitterionic 5-(pyridinium-3-yl)tetrazol-1-ide molecule, one NO3 anion and one half of a [Zn(H2O)6]2+ cation (T symmetry). The pyridinium and tetrazolide rings in the zwitterion are nearly coplanar, with a dihedral angle of 5.4 (2)°. Several O—H···N and N—H···O hydrogen-bonding interactions exist between the [Zn(H2O)6]2+ cation and the N atoms of the tetrazolide ring, and between the nitrate anions and the N—H groups of the pyridinium ring, respectively, giving rise to a three-dimensional network. The 5-(pyridinium-3-yl)tetrazol-1-ide molecules show parallel-displaced π–π stacking interactions; the centroid–centroid distance between adjacent tetrazolide rings is 3.6298 (6) Å and that between the pyridinium and tetrazolide rings is 3.6120 (5) Å.

1. Chemical context

Tetrazole functional groups have attracted increased attention in recent years due to their use in drug design and their employment as isosteric substituents of carboxylic acids (Herr, 2002), as well as their ability to produce a large variety of metal–organic frameworks (MOFs) (Zhao et al., 2008; Chi-Duran et al., 2018). Push–pull tetrazole complexes with both electron-donor and electron-acceptor substituents have shown efficient second-order nonlinear optical activity in powdered samples (Masahiko et al., 1994), ferroelectric behaviour (Liu et al., 2015) and strong photoluminescence (Zhang et al., 2014).

The in-situ synthesis of tetrazole compounds can be realized by the Demko–Sharpless method, in which zinc salts catalyze the cycloaddition reaction between sodium azide and nitrile compounds to form the tetrazole ring (Demko & Sharpless, 2001). In this work, pyridyltetrazole, synthesized at low pH using the Demko–Sharpless method, is cocrystallized in the presence of [Zn(H2O)6]2+ and NO3− ions, to obtain the title compound (Fig. 1).

2. Structural commentary

The asymmetric unit of the title compound is composed of one 5-(pyridinium-3-yl)tetrazol-1-ide zwitterion, one NO3− anion and one half of a [Zn(H2O)6]2+ cation. The hexaaquazinc(II)
complex exhibits regular octahedral geometry (Table 1), and the tetrazolide and pyridinium rings of the zwitterion are close to being coplanar, with a dihedral angle of 5.4° (Fig. 2). The geometric parameters of the tetrazolide ring are comparable to those in other reported tetrazole compounds (Mu et al., 2010; Dai & Chen, 2011a,b). The H atom attached to the N atom of the pyridine ring could not be located in the Fourier density map. Therefore, the H atom was placed in accordance with similar reported structures containing [Mg(H2O)6]2+ (Xi et al., 2010; Dai & Chen, 2011a,b). The H atom was placed in accordance with similar reported structures containing [Mg(H2O)6]2+ (Xi et al., 2010; Dai & Chen, 2011a,b).

3. Supramolecular features

A three-dimensional network of hydrogen bonds involving the pyridinium–tetrazolide zwitterions, hexaaquazinc(II) complex cations and nitrate ions serves to hold the structure together (Table 2 and Fig. 3). The N atoms of the tetrazole ring interact with the octahedral complex, [Zn(H2O)6]2+, through O–H···N hydrogen bonds, exhibiting D···A distances in the range 2.7446 (17)–2.8589 (17) Å. Additionally, the pyridinium ring is involved in N–H···O hydrogen bonding to nitrate atom O4, with an N···O distance of 2.7384 (18) Å. These interactions are shown in the crystal packing diagram (Fig. 3). The structure also shows parallel-displaced π–π stacking interactions, which arise from partial overlap between the

Table 1
Selected geometric parameters (Å, °).

Bond/Distance	Value (Å)
Zn1–O3	2.0353 (11)
Zn1–O3’	2.0354 (11)
Zn1–O2	2.1011 (12)
Zn1–O2’	2.1011 (12)
O3–Zn1–O2	90.01 (5)
O3–Zn1–O2’	90.53 (4)
O3–Zn1–O1	90.47 (4)
O3–Zn1–O1’	92.10 (5)
O2–Zn1–O1	92.10 (5)
Zn1–O2	2.1011 (12)
Zn1–O1	2.1841 (11)
Zn1–O3	2.0354 (11)
Zn1–O1	2.1841 (11)

Symmetry code: (i) x, y + 2, z + 2.

Table 2
Hydrogen-bond geometry (Å, °).

Bond/Distance	Value (Å)		
O1–H1W···O5vii	0.85	1.96	2.8067 (17)
O2–H2W···N1i	0.85	1.96	2.8029 (17)
O2–H3W···N4x	0.85	2.02	2.8589 (17)
O2–H4W···O1v	0.85	2.08	2.9228 (17)
O3–H5W···N3i	0.85	1.91	2.7446 (17)
O3–H6W···N1ii	0.85	1.92	3.4294 (17)
O3–H6W···N2ii	0.85	1.97	2.8076 (17)
O5–H6N···O1v	0.82	2.21	3.344 (2)
O5–H6N···O5v	0.82	2.19	3.1347 (19)
C4–H4···O5iii	0.93	2.65	3.452 (2)
C5–H5···O4v	0.93	2.52	3.292 (2)
C5–H5···O6vi	0.93	2.52	3.22 (3)
C6–H6···O5v	0.93	2.41	3.047 (2)

Symmetry codes: (i) x, y + 1, z + 1; (ii) x, y + 1, −z + 1; (iii) x, y + 1, −z + 1; (iv) x, y + 1, z + 1; (v) x, y + 1, −z + 1; (vi) x, y + 1, z + 1; (vii) x, y + 1, z + 1; (viii) x, y + 1, z + 1; (ix) x, y + 1, z + 1; (x) x, y + 1, z + 1; (xi) x, y + 1, z + 1; (xii) x, y + 1, z + 1.

Figure 1
The molecular structure of the asymmetric unit (plus the three water molecules of the hexaaquazinc cation generated by symmetry), showing the atom labelling and displacement ellipsoids drawn at the 50% probability level. [Symmetry code: (i) −x, 2 − y, 2 − z.]

Figure 2
Partial crystal packing of the title compound, showing the hydrogen-bonding interactions between [Zn(H2O)6]2+ and the tetrazolide ring. [Symmetry codes: (ii) −x + 1, −y + 1, −z + 1; (iii) −x + 1, −y + 2, −z + 1; (iv) x, y − 1, z − 1; (xi) x + 1, y, z − 1.]

research communications

Chi-Duran et al. • [Zn(H2O)6][NO3]2·2C6H5N5

Acta Cryst. (2018). E74, 1231–1234
tetrazolide and pyridinium rings in adjacent zwitterions, and extend along the \(a\) axis parallel to the (010) plane. These parallel-displaced \(\pi-\pi\) interactions lead to interplanar distances of 3.21 (1) and 3.10 (3) Å, and two centroid–centroid distances (Table 3). The centroid–centroid distance between the tetrazolide groups is 3.6298 (6) Å and between the pyridinium and tetrazolide rings is 3.6120 (5) Å (Table 3 and Fig. 4).

4. Database survey

We found two previously reported structures that are closely related to the title compound. They both involve a hexaaquamagnesium(II) cation with a halide counter-ion [chloride (Dai & Chen, 2011b) or bromide (Dai & Chen, 2011a)] cocry stallized in the presence of 5-(pyridinium-3-yl)tetrazol-1-ide zwitterions (Dai & Chen, 2011a,b). There are more hydrogen-bonding interactions in our compound than in the \([\text{Mg(H}_2\text{O)}_6]\text{X}_2\text{C}_6\text{H}_5\text{N}_5\) structures, as more hexaaquazinc(II) complexes can interact with the N atoms of the tetrazole units. Parallel-displaced \(\pi-\pi\) stacking interactions occur in the title compound and in \([\text{Mg(H}_2\text{O)}_6]\text{X}_2\text{C}_6\text{H}_5\text{N}_5\). In \([\text{Mg(H}_2\text{O)}_6]\text{C}_1\text{C}_6\text{H}_5\text{N}_5\), the pyridinium–tetrazolide zwitterions have alternating orientations in the supramolecular arrangement, whereas in the title compound, the zwitterions are oriented in the same direction, allowing a possible coupling transition between dipole moments similar to J-aggregates (Spano, 2010).

Table 3

Centroid-centroid Distance	Tetrazolide interplane distance
\(Cg_{1}–Cg_{1}^{iv}\)	3.6298 (6) 3.23 (1)
\(Cg_{1}–Cg_{2}^{vii}\)	3.6120 (5) 3.10 (3)

Symmetry codes: (iv) \(-x+1, -y+1, -1+z\); (vii) \(x, y, z\).

Figure 4

Partial crystal packing, showing \(\pi-\pi\) interactions between tetrazole and pyridinium rings, with \(d_1 = 3.6298 (6)\) Å and \(d_2 = 3.6120 (5)\) Å. [Symmetry codes: (ii) \(-x+1, -y+1, -1+z\); (vii) \(x, y, z\).]
5. Synthesis and crystallization

All the reactants and chemicals were purchased from Sigma Aldrich and utilized without further purification. A mixture of 3-cyanopyridine (4 mmol), NaN₃ (6 mmol) and ZnCl₂ (2 mmol) were dissolved in 6 ml of distilled water. This mixture was transferred to a glass bottle and then heated at 378 K for 24 h. The pH was adjusted using a HNO₃ (66%) solution immediately after mixing the reactants, and was monitored with a pH meter (pH2700 Oakton) until reaching a pH of 2.0. The reaction mixture was then cooled to 318 K and kept at this temperature for 16 h. The colourless block-shaped crystals obtained were washed with ethanol to give 353 mg (yield 30%) of the title compound.

6. Refinement

Crystal data, data collection and structure refinement details are summarized in Table 4. All H atoms bonded to C atoms were positioned geometrically and treated as riding atoms, using C—H = 0.93 Å and $U_{iso}(H) = 1.2U_{eq}(C)$. Moreover, all H atoms in the hexaaquazinc(II) complex were refined with a distance restraint of O—H = 0.85 Å and with $U_{iso}(H) = 1.5U_{eq}(O)$.

Funding information

Funding for this research was provided by: Fondecyt Regular (award No. 1151527); Proyecto REDES ETAPA INICIAL, Convocatoria 2017 (award No. REDI170423); Millennium Institute for Research in Optics (MIRO); Basal USA (award No. 1799).

References

Bruker (2008). SMART, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
Chi-Duran, I., Enriquez, J., Manquian, C., Wrighton-Araneda, K., Cañon-Mancisidor, W., Venegas-Yazigi, D., Herrera, F. & Pratap Singh, D. (2018). ACS Omega, 3, 801–807.
Dai, J. & Chen, X.-Y. (2011a). Acta Cryst. E67, m113.
Dai, J. & Chen, X.-Y. (2011b). Acta Cryst. E67, m171.
Demko, Z. P. & Sharpless, K. B. (2001). J. Org. Chem. 66, 7945–7950.
Herr, R. J. (2002). Bioorg. Med. Chem. 10, 3379–3393.
Liu, D.-S., Sui, Y., Chen, W.-T. & Feng, P. (2015). Cryst. Growth Des. 15, 4020–4025.
Masahiko, S., Hideki, I., Shinichi, Y., Fumihide, F., Masanao, E., Katsuya, W. & Nobuo, S. (1994). Jpn J. Appl. Phys. 33, 169–170.
Mu, Y.-Q., Zhao, J. & Li, C. (2010). Acta Cryst. E66, m1667.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122.
Sheldrick, G. M. (2015). Acta Cryst. C71, 3–8.
Spano, F. C. (2010). Acc. Chem. Res. 43, 429–439.
Zhang, Q., Chen, D., He, X., Huang, S., Huang, J., Zhou, X., Yang, Z., Li, J., Li, H. & Nie, F. (2014). CrystEngComm, 16, 10485–10491.
Zhao, H., Qu, Z.-R., Ye, H.-Y. & Xiong, R.-G. (2008). Chem. Soc. Rev. 37, 84–100.
Hexaaquazinc(II) dinitrate bis[5-(pyridinium-3-yl)tetrazol-1-ide]

Ignacio Chi-Duran, Javier Enriquez, Andres Vega, Felipe Herrera and Dinesh Pratap Singh

Computing details
Data collection: SMART (Bruker, 2008); cell refinement: SMART (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXTL (Sheldrick, 2008); program(s) used to refine structure: SHELXL2014 (Sheldrick, 2015); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Hexaaquazinc(II) dinitrate bis[5-(pyridinium-3-yl)tetrazol-1-ide]

Crystal data

\[
\begin{align*}
&[\text{Zn(H}_2\text{O)}_6]\text{(NO}_3\text{)}_2\cdot2\text{C}_6\text{H}_5\text{N}_5 \\
&M_r = 591.81 \\
&\text{Triclinic, } P\bar{1} \\
&a = 5.6582 (11) \text{ Å} \\
&b = 8.4632 (16) \text{ Å} \\
&c = 12.046 (2) \text{ Å} \\
&\alpha = 97.209 (2)^\circ \\
&\beta = 91.123 (2)^\circ \\
&\gamma = 93.949 (2)^\circ \\
&V = 570.67 (19) \text{ Å}^3 \\
&Z = 1 \\
&F(000) = 304 \\
&D_s = 1.722 \text{ Mg m}^{-3} \\
&\text{Mo } \text{K}\alpha \text{ radiation, } \lambda = 0.71073 \text{ Å} \\
&\text{Cell parameters from 7831 reflections} \\
&\theta = 2.8–29.5^\circ \\
&\mu = 1.16 \text{ mm}^{-1} \\
&T = 293 \text{ K} \\
&\text{Block, colorless} \\
&0.49 \times 0.21 \times 0.09 \text{ mm}
\end{align*}
\]

Data collection

Bruker SMART CCD area detector diffractometer

Radiation source: sealed tube

phi and \(\omega\) scans

Absorption correction: numerical

(SADABS; Bruker, 2008)

\[T_{\text{min}} = 0.742, \ T_{\text{max}} = 0.903\]

\[4429 \text{ measured reflections} \]

Refinement

Refinement on \(F^2\)

Least-squares matrix: full

\[R(F^2) = 0.022\]

\[wR(F^2) = 0.054\]

\[S = 1.08\]

\[2217 \text{ reflections} \]

198 parameters

13 restraints

Hydrogen site location: mixed

H atoms treated by a mixture of independent and constrained refinement

\[w = 1/[\sigma^2(F^2) + (0.0254P)^2 + 0.1986P]\]

where \(P = (F^2 + 2F^3)/3\)

\[(\Delta\sigma/\sigma)_{\text{max}} < 0.001\]

\[\Delta\rho_{\text{max}} = 0.37 \text{ e Å}^{-3}\]

\[\Delta\rho_{\text{min}} = -0.35 \text{ e Å}^{-3}\]

Extinction correction: SHELXL2014 (Sheldrick, 2015),

\(F_c^\prime = kF_c[1+0.001xF_c^2/\sin(2\theta)]^{-1/4}\)

Extinction coefficient: 0.009 (2)
Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å²)

	x	y	z	Uiso*/Ueq
Zn1	0.0000	1.0000	1.0000	0.02186 (9)
O1	0.25606 (19)	1.00502 (12)	0.86692 (9)	0.0269 (2)
H1W	0.226 (4)	0.9463 (19)	0.8050 (8)	0.044 (6)*
H2W	0.303 (3)	1.0972 (10)	0.8515 (16)	0.041 (5)*
O2	0.2699 (2)	1.10732 (13)	1.11255 (11)	0.0345 (3)
H3W	0.307 (4)	1.2067 (5)	1.1282 (17)	0.048 (6)*
H4W	0.401 (2)	1.065 (3)	1.116 (2)	0.065 (7)*
O3	0.0981 (2)	0.78032 (12)	1.02590 (10)	0.0293 (2)
H5W	0.187 (3)	0.725 (2)	0.9825 (14)	0.051 (6)*
H6W	−0.008 (3)	0.7116 (19)	1.0423 (19)	0.059 (7)*
N1	0.5987 (2)	0.68143 (14)	0.16630 (10)	0.0246 (3)
N2	0.7365 (2)	0.58336 (15)	0.10516 (11)	0.0270 (3)
N3	0.6508 (2)	0.43523 (15)	0.10431 (11)	0.0296 (3)
N4	0.4544 (2)	0.43180 (14)	0.16488 (11)	0.0269 (3)
N5	−0.0918 (2)	0.58146 (17)	0.38266 (11)	0.0315 (3)
H5N	−0.180 (3)	0.5136 (17)	0.4067 (15)	0.042 (5)*
C1	0.4273 (2)	0.58463 (16)	0.20195 (12)	0.0212 (3)
C2	0.2376 (2)	0.64009 (17)	0.27458 (11)	0.0218 (3)
C3	0.2065 (3)	0.80168 (18)	0.30257 (13)	0.0284 (3)
H3A	0.3075	0.8778	0.2748	0.034*
C4	0.0250 (3)	0.8491 (2)	0.37189 (14)	0.0334 (4)
H4	0.0048	0.9570	0.3914	0.040*
C5	−0.1243 (3)	0.7363 (2)	0.41142 (14)	0.0345 (4)
H5	−0.2470	0.7668	0.4578	0.041*
C6	0.0827 (3)	0.53073 (19)	0.31686 (13)	0.0279 (3)
H6	0.0997	0.4219	0.2996	0.033*
N6	0.6295 (3)	0.22071 (16)	0.38657 (12)	0.0353 (3)
O4	0.5953 (2)	0.34960 (14)	0.44531 (11)	0.0442 (3)
O5	0.8117 (2)	0.21012 (15)	0.33009 (11)	0.0431 (3)
O6	0.4892 (4)	0.1062 (2)	0.38679 (19)	0.1001 (8)

Atomic displacement parameters (Å²)

	U11	U22	U33	U12	U13	U23
Zn1	0.02070 (14)	0.01556 (13)	0.02905 (15)	0.00093 (8)	0.00394 (9)	0.00145 (9)
O1	0.0295 (6)	0.0203 (5)	0.0304 (6)	−0.0002 (4)	0.0092 (4)	0.0015 (4)
O2	0.0292 (6)	0.0230 (6)	0.0485 (7)	−0.0009 (5)	−0.0073 (5)	−0.0031 (5)
O3	0.0283 (6)	0.0193 (5)	0.0419 (6)	0.0056 (4)	0.0149 (5)	0.0063 (5)
N1	0.0232 (6)	0.0217 (6)	0.0282 (6)	−0.0018 (5)	0.0064 (5)	0.0013 (5)

* Acta Cryst. (2018). E74, 1231-1234 sup-2
Supporting Information

N2	0.0232 (6)	0.0257 (7)	0.0315 (7)	0.0011 (5)	0.0082 (5)	0.0013 (5)
N3	0.0282 (7)	0.0241 (6)	0.0360 (7)	0.0024 (5)	0.0095 (6)	0.0006 (5)
N4	0.0268 (7)	0.0199 (6)	0.0333 (7)	−0.0005 (5)	0.0086 (5)	0.0006 (5)
N5	0.0275 (7)	0.0374 (8)	0.0295 (7)	−0.0062 (6)	0.0086 (6)	0.0067 (6)
C1	0.0217 (7)	0.0197 (7)	0.0214 (7)	−0.0017 (5)	0.0015 (5)	0.0014 (5)
C2	0.0218 (7)	0.0228 (7)	0.0199 (7)	−0.0015 (5)	0.0018 (5)	0.0002 (5)
C3	0.0311 (8)	0.0239 (7)	0.0285 (8)	−0.0041 (6)	0.0076 (6)	−0.0004 (6)
C4	0.0373 (9)	0.0279 (8)	0.0332 (8)	0.0044 (7)	0.0079 (7)	−0.0049 (6)
C5	0.0283 (8)	0.0457 (10)	0.0284 (8)	0.0044 (7)	0.0092 (6)	−0.0015 (7)
C6	0.0279 (8)	0.0255 (8)	0.0297 (8)	−0.0030 (6)	0.0055 (6)	0.0033 (6)
N6	0.0398 (8)	0.0279 (7)	0.0346 (8)	−0.0094 (6)	0.0107 (6)	−0.0048 (6)
O4	0.0508 (8)	0.0301 (6)	0.0480 (7)	−0.0067 (5)	0.0237 (6)	−0.0080 (5)
O5	0.0428 (7)	0.0333 (6)	0.0502 (8)	−0.0024 (5)	0.0194 (6)	−0.0063 (6)
O6	0.0959 (14)	0.0607 (11)	0.1238 (16)	−0.0531 (10)	0.0672 (13)	−0.0446 (11)

Geometric parameters (Å, °)

Zn1—O3	2.0353 (11)	N4—C1	1.3345 (19)
Zn1—O3i	2.0354 (11)	N5—C6	1.339 (2)
Zn1—O2	2.1011 (12)	N5—C5	1.339 (2)
Zn1—O2i	2.1011 (12)	N5—H5N	0.8201 (11)
Zn1—O1i	2.1841 (11)	C1—C2	1.463 (2)
Zn1—O1	2.1841 (11)	C2—C6	1.381 (2)
O1—H1W	0.8500	C2—C3	1.391 (2)
O1—H2W	0.8499	C3—C4	1.385 (2)
O2—H3W	0.8499	C3—C3A	0.9300
O2—H4W	0.8499	C4—C5	1.367 (2)
O3—H5W	0.8499	C4—H4	0.9300
O3—H6W	0.8501	C5—H5	0.9300
N1—C1	1.3384 (18)	C6—H6	0.9300
N1—N2	1.3405 (18)	N6—O6	1.210 (2)
N2—N3	1.3113 (18)	N6—O5	1.2485 (18)
N3—N4	1.3421 (18)	N6—O4	1.2525 (18)
O3—Zn1—O3i	180.0	N2—N3—N4	109.65 (12)
O3—Zn1—O2	90.01 (5)	C1—N4—N3	104.64 (12)
O3—Zn1—O2i	89.99 (5)	C6—N5—C5	122.90 (14)
O3—Zn1—O2i	89.99 (5)	C6—N5—H5N	117.6 (14)
O3—Zn1—O2i	90.01 (5)	C5—N5—H5N	119.5 (14)
O2—Zn1—O2i	180.0	N4—C1—N1	111.53 (13)
O3—Zn1—O1i	90.53 (4)	N4—C1—C2	124.52 (13)
O3—Zn1—O1i	89.47 (4)	N1—C1—C2	123.93 (13)
O2—Zn1—O1i	92.10 (5)	C6—C2—C3	118.26 (14)
O2—Zn1—O1i	87.90 (5)	C6—C2—C1	119.94 (13)
O3—Zn1—O1	89.47 (4)	C3—C2—C1	121.80 (13)
O3—Zn1—O1	90.53 (4)	C4—C3—C2	119.93 (14)
O2—Zn1—O1	87.90 (5)	C4—C3—H3A	120.0
O2—Zn1—O1	92.10 (5)	C2—C3—H3A	120.0

Acta Cryst. (2018). E74, 1231-1234 sup-3
O1—Zn1—O1 180.0 C5—C4—C3 119.67 (15) 119.67 (15)
Zn1—O1—H1W 118.9 (14) C5—C4—H4 120.2 119.30 (15) 120.2
Zn1—O1—H2W 115.7 (13) C3—C4—H4 120.2 120.3 120.3
H1W—O1—H2W 107.0 (18) N5—C5—C4 119.93 (15) 120.03 120.3
Zn1—O2—H3W 123.7 (14) N5—C5—H5 120.3 120.0 120.0
Zn1—O2—H4W 120.1 (17) C4—C5—H5 120.3 120.0 120.0
H3W—O2—H4W 104 (2) N5—C6—C2 119.93 (15) 120.33 (15) 120.02 (15)
Zn1—O3—H5W 123.7 (14) N5—C6—H6 120.0 119.63 (13)
Zn1—O3—H6W 118.5 (15) C2—C6—H6 120.0
H5W—O3—H6W 103 (2) O6—N6—O5 120.33 (15)
C1—N1—N2—N3 0.11 (16) N1—C1—C2—C3 7.1 (2) 0.5 (2)
N1—N2—N3—N4 −0.01 (17) C6—C2—C3—C4 −179.80 (14) 0.5 (3)
N2—N3—N4—C1 −0.09 (17) C1—C2—C3—C4 0.5 (3)
N3—N4—C1—N1 0.17 (17) C2—C3—C4—C5 −0.7 (3)
N3—N4—C1—C2 −178.53 (13) C3—C4—C5—C6 0.2 (3)
N2—N1—C1—N4 −0.18 (16) C5—N5—C6—C2 −0.7 (2)
N2—N1—C1—C2 178.53 (13) C6—N5—C6—C2 0.2 (2)
N4—C1—C2—C6 5.4 (2) C3—C2—C6—N5 −179.53 (13)
N1—C1—C2—C6 −173.17 (14) C1—C2—C6—N5 7.1 (2)
N4—C1—C2—C3 −174.32 (15)

Symmetry code: (i) −x, −y+2, −z+2.

Hydrogen-bond geometry (Å, °)

D—H···A	D—H	H···A	D···A	D—H···A
O1—H1W···O5a	0.85	1.96	2.8067 (17)	172
O1—H2W···N1iii	0.85	2.02	2.8589 (17)	170
O2—H3W···N4a	0.85	1.91	2.7446 (17)	168
O3—H5W···N3a	0.85	2.72	3.4294 (17)	142
O3—H6W···N1vi	0.85	1.97	2.8076 (17)	169
O3—H6W···N2vi	0.85	2.61	3.344 (2)	149
N5—H5N···N6ii	0.82	2.61	3.344 (2)	149
N5—H5N···O4viii	0.82	1.92	2.7384 (18)	173
N5—H5N···O5vii	0.82	2.62	3.1347 (19)	123
C4—H4···O5viii	0.93	2.65	3.452 (2)	145
C5—H5···O4a	0.93	2.52	3.292 (2)	141
C5—H5···O6a	0.93	2.52	3.422 (3)	165
C6—H6···O5vii	0.93	2.41	3.047 (2)	126

Symmetry codes: (ii) −x+1, −y+1, −z+1; (iii) −x+1, −y+2, −z+1; (iv) x, y+1, z+1; (v) −x+1, −y+2, −z+2; (vi) x+1, y, z+1; (vii) x−1, y, z; (viii) x−1, y+1, z; (ix) −x, −y+1, −z+1.