α-Mg/C14-Mg2Ca 共晶合金のクリープ強度に及ぼすラメラ間隔の影響

大石航司*1 荒木聡司*2 寺田芳弘*3

東京工業大学物質理工学院材料系

J. Japan Inst. Met. Mater. Vol. 85, No. 6 (2021), pp. 223-228

© 2021 The Japan Institute of Metals and Materials

Effect of Lamellar Spacing on Creep Strength of α-Mg/C14-Mg2Ca Eutectic Alloy

Koji Oishi*1, Satoshi Araki*2 and Yoshihiro Terada*3

Department of Materials Science and Engineering, School of Materials and Chemical Technology, Tokyo Institute of Technology, Yokohama

J-STAGE Advance Publication date : April 23, 2021

Received January 26, 2021; Accepted March 11, 2021; Published April 23, 2021

Keywords: magnesium-calcium alloy, lamellar spacing, interface, creep, dislocation

1. 緒 言

マグネシウム合金は構造用金属系材料の中で軽量であり、燃焼を達成し二酸化炭素排出量を最小化することを目的として、自動車産業用および航空宇宙産業用部材への適用が有望視されている1)。マグネシウム合金の実質的な使用量を増やし、輸送機器の軽量化および高燃費化を推進するためには、室温部材だけでなく、高温部材に対しても適用を拡大することが必須となる2,3)。ここでは、純Mgの高温強度は低く4,5)。また、Mg中における合金元素の固溶限は大半の元素に対して非常に小さい4)。このため、耐熱マグネシウム合金の高温強度を高めるためには、熱的に安定な金属間化合物相を、析出分散相4)または被覆相9,10)として積極的に用活することが不可欠となる11,12)。

金属間化合物相を利用して高強度を高めるための第3の手法として、共晶反応を利用することにより、母相と金属間化合物相が層状となるような金属組織を制御することが挙げられる13-16)。Mg-Al-Ca系は、高価で供給安定な希土類元素を含まず難燃性能が高いことから、安価で汎用性の高いマグネシウム合金を開発するにあたり有望な合金系である17-21)。Mg-richな組成を有するMg-Al-Ca-3元系合金を溶製・铸造した場合、[Ca]/[Al]比に依存して冷却中に3種類の共晶反応(1) L → α-Mg + Al2-Mg12Al12、(2) L → α-Mg + C14-(Mg, Al)2Ca、(3) L → α-Mg + C14-Mg2Caが生じる22)。ここで、[Ca]/[Al] > 1.5となる組成領域ではL → α-Mg + C14-Mg2Caのみが生じ、生成するα/C14共晶組織は、α/A12およびα/C36共晶組織に比較して極めて微細となる23-24)

共晶組成(Mg-16.2 mass％Ca)の近い合金組成を有するMg-Ca2元系共晶合金を溶製し、鉄金型铸造した際に得られるα/C14共晶組織は、α-Mg相とC14-Mg2Ca相が導電的界面を有する層状組織(ラメラ組織)となり、ラメラ間隔は1μm以下のサブミクロンサイズとなる25)。前報では、α/C14ラメラ組織中における、α-Mgラメラとα/C14界面との結晶方位関係、および、α/C14ラメラ組織が形態安定となる温度領域を調査した25)。その結果、(1) α-Mgラメラ中における主すべり面(0001)は、α/C14界面に直行当たる向きに配向していること、および、(2) α/C14ラメラ組織は573K以上の高温において粗大化し、ラメラ間隔(δ)と時効時間(τ)との関にはδ2 = Axτ(ここで、A0はas-cast材におけるラメラ間隔、ΔTは温度に依存する定数である)なる定量的な関係が成すことが明らかとなった。

ラメラ組織を有する金属材料において、ラメラ間隔が小さくなるほど、室温強度が高まる事は広く知られていて25-29)。これに対し、高温クリープ強度に及ぼすラメラ間隔

*1 東京工業大学大学院生。現在：JFE スチール(株)(Graduate Student, Tokyo Institute of Technology, Present address: JFE Steel Corporation)
*2 東京工業大学大学院生(Graduate Student, Tokyo Institute of Technology)
*3 Corresponding author, E-mail: terada.y.a@mh.titech.ac.jp

doi:10.2320/jinstmet.J2021005
の影響は、マグネシウム合金において明らかにされていない。本研究では、a-C14 ラメラ組織を有する Mg-Ca 2 元系共晶合金について、以下の 3 点を明らかにすることを目的とする。まず最初に、(1) as-cast 材について広い温度・ひずみ速度条件にて引張試験を行って、共晶合金において塑性変形が生じる温度領域を調べ、クリープ試験温度を決定する。次に、(2) 高温の時効熱処理により α を制御した試料についてクリープ試験を実施し、クリープ強度と ε との関係を定量的に明らかにする。そして、(3) クリープ変形材について転位組織を調査し、クリーブ中の転位のすべて運動に及ぼす a/C14 界面の役割を明らかにする。

2. 実験方法

供試材は、a-Mg3.8 mass% Ca 2 元系共晶合金である。共晶組成から Ca 量を 2.4 mass% 低めたのは、脆性的な初晶 C14-Mg$_2$Ca 相の晶出を避けるためである。Mg-13.8 mass% Ca 合金は、高純度溶解原料を用いてアルゴン製鍛造気流にて溶解した後、鍛造温度 1053 K において圧鰐鋼の金型にて重力鍛造し、100 × 160 × 20 mm3 の直方体試料をとった。なお、鍛造材 (as-cast 材) は、初晶 a-Mg 粒と a-C14 ラメラ組織の共存組織を有し、Mg-Ca 2 元系状態図から、この法則に基づくと、初晶 a-Mg 粒の重量比は 16% であり、ラメラ領域の重量比は 84% と見積もられた。また、as-cast 材の a-C14 ラメラ領域における ε は 0.9 µm となる。組織の大半を a-C14 ラメラ組織が占むことから、本合金を以後 a-Mg$_2$Ca-C14 共晶合金と称することとし、組織観察はすべて a-C14 ラメラ領域内にて行うものとする。

鍛造法により作製した直方体形状イゴットから、放電加工および機械研磨により平行部長さ 13.2 mm、平行部断面積 3 × 1 mm2 の引張試験片を作製した後、温度 298-473 K の 4 温度において、ひずみ速度 1.2 × 10$^{-3}$-1.2 × 10$^{-4}$s$^{-1}$ の範囲にて引張試験を行った。この実験を「ε」、最後に最大応力を示す前に破断した試験条件を「λ」、最大応力を示す時点で破断したものを「λ」、そして最大応力を越えた後に破断したものを「X」にて、それぞれ表示している。温度 423 K 以下の温度における 6 つの試験条件において、試験片はいずれも降伏前に破断し、塑性変形は生じない。これに対し、473 K では、試験を行ったいずれのひずみ速度においても塑性変形が生じるようになる。すなわち、ひずみ速度が 1.2 × 10$^{-4}$s$^{-1}$ および 6.0 × 10$^{-5}$s$^{-1}$ と比較的高い場合には、降伏試料は厚さ 90 μm まで機械研磨した後、ディンプルグラインダーを用いて円盤状薄試料の中心部を重点的にさらに薄くし、オインミリングを用いて薄膜中心部に微小な孔をあけた HRTEM 観察にあたっては、FEI 社製の収差補正走査透過程電子顕微鏡 Titan3 G2 60-300 を用い、電子線の加速電圧は 300 kV としている。

3. 実験結果および考察

3.1 応力-ひずみ曲線

a-Mg/C14-Mg$_2$Ca 共晶合金の、温度 373-473 K における応力-ひずみ曲線を Fig. 1 に示す。ひずみ速度が 1.2 × 10$^{-5}$s$^{-1}$ の場合、温度 373 K および 423 K では、降伏点を示す前段階である弾性変形領域内において試験片は破断し、塑性変形は生じない。これに対し、温度 473 K では、降伏後、ひずみの増加に伴い応力は連続的に増加し、最大値 132 MPa を示した後に 5% を越える塑性ひずみを示し破壊する。473 K において、ひずみ速度を 2.4 × 10$^{-4}$s$^{-1}$ と 2 倍に大きくすると、降伏後、ひずみの増加に伴う応力の増加は急となるもの。最大応力 143 MPa を示した時点で試験片は破断する。

a-Mg/C14-Mg$_2$Ca 共晶合金における引張特性を、温度およびひずみ速度に対してまとめた結果を Table 1 に示す。Table 1 において、降伏前と破断した試験条件を「ε」、降伏後新たに最大応力を示す前に破断した試験条件を「λ」、最大応力を示す時点で破断したものを「X」、そして最大応力を越えた後に破断したものを「λ」にて、それぞれ表示している。温度 423 K 以下における 6 つの試験条件において、試験片はいずれも降伏前に破断し、塑形変形は生じない。これに対し、473 K では、破壊を行ったいずれのひずみ速度においても塑性変形が生じるようになる。すなわち、ひずみ速度が 1.2 × 10$^{-4}$s$^{-1}$ および 6.0 × 10$^{-5}$s$^{-1}$ と比較的高い場合には、降伏

![Fig. 1 Stress-strain curves at temperatures between 373 and 473 K for the as-cast a-Mg/C14-Mg$_2$Ca eutectic alloy.](image-url)
伏後に最大応力を示す前に破断する。ひずみ速度の低下に伴い試験片が破断するひずみは大きく、ひずみ速度が最も低い1.2×10^{-3}s^{-1}において、破断は最大応力を示した後に生じるようになる。以上の結果から、\(\alpha\)-Mg/C14-Mg:Ca 共晶合金において、塑性変形が生じるのは473 K以上の高温帯域であり、ひずみ速度が低くなるほど塑性変形が高まることが明らかとなった。

3.2 クリープ強度とラメラ間隔

前節にて示した引張試験結果から、塑性変形が生じ得るところが明らかとなった473 Kにてクリープ試験を行った。なお、Fig. 1に示すひずみ速度1.2×10^{-3}s^{-1}における応力-ひずみ曲線から、\(\alpha\)-Mg/C14-Mg:Ca 共晶合金の473 Kにおける0.2% 塩性は84MPaと見積もられる。そこで、長時間のクリープ変形特性を評価するために、高い塑性変形が期待できる十分に小さい応力として、0.2% 塩性の半分以下である40MPaを負荷応力として選定した。

クリープ強度に及ぼす \(\alpha\)/C14 界面の影響を明らかにするために、673 Kおよび723 Kにて時効処理を施すことによりた \(\lambda\) を大きくした \(\alpha\)-Mg/C14-Mg:Ca 共晶合金の時効材について、473 K、応力40MPaにてクリープ試験を行った。なお、本合金における\(\alpha\)/C14 ラメラ組織は、473 Kにおいて形態安定である23)。Fig. 2は673 K、10 hおよび100 h時効材におけるクリープ速度-時間曲線であり、図中にはas-cast材の結果もあわせて示している。いずれの試料においても、クリープ速度-時間曲線は応力負荷から破断に至る全クリープ域において下の直線曲線を示す。すなわち、曲線は、通常型の遷移クリープ域の後に最小クリープ速度を示し、加速クリープ域を経て破断に至り、明確な定常クリープ域は認められない。as-cast材では、遷移域においてクリープ速度は2桁よりも低下し、8.0×10^{-5}s^{-1}(222 h)において最小クリープ速度(6.6×10^{-3}s^{-1})を示し、3.6×10^{-3}s(1006 h)にて破断に至ることを見て取れる。673 K、10 hおよび100 h時効材についても同様な現象を示し、安定型クリープ速度-時間曲線はas-cast材の曲線と相似形となるものので、673 Kにおける時効時間の増加に伴い最小クリープ速度は高くなり、遷移域におけるクリープ速度の減少幅は縮小する。

\(\alpha\)-Mg/C14-Mg:Ca 共晶合金のas-cast材および673 K時効材を、473 K、応力40MPaにてクリープ試験した時の、最小クリープ速度(\(\varepsilon_{\text{min}}\))、破断時間(\(\lambda_{\text{rup}}\))および、破断のび(\(\varepsilon_{\text{rup}}\))を、\(\lambda\)とあわせてまとめたものを Table 2に示す。なお、Table 2には、最小クリープ速度を確認した後よりクリープ試験を停止した723 K時効材の結果もあわせて示している。673 K時効材において、時効時間の増加に伴い \(\lambda\) が0.9μmから1.9μmおよび5.3μmへと増加すると、\(\varepsilon_{\text{min}}\)は高くなり、\(\lambda_{\text{rup}}\)は短くなることが見て取れる。また、\(\varepsilon_{\text{rup}}\)は673 K/10 h時効材において26.0%と最も大きく、\(\lambda\)が1.9μmより大きい場合、および、小さい場合のいずれにおいても \(\varepsilon_{\text{rup}}\)は小さくなる。

両相ラメラ組織において、\(\lambda\)の値がN倍になると単位体積中に含まれる異相界面の面積はN分の一となることが形態学的に知られている23）。このため、\(\alpha\)-Mg/C14-Mg:Ca 共晶合金における \(\varepsilon_{\text{min}}\) と \(\lambda\)の定量的関係を記述するにあたっては、織形近似ではなく、べき乗近似にて評価することが適切であるものと判断される。\(\alpha\)-Mg/C14-Mg:Ca 共晶合金の473 K、応力40MPaにおける \(\varepsilon_{\text{min}}\)を \(\lambda\)に対して両対数グラフ上に整理したものをFig. 3に示す。\(\lambda\)の増加に伴い \(\varepsilon_{\text{min}}\)は単調に増加し、4つのプロットは類似1の直線で整理される。この結果から、\(\varepsilon_{\text{min}}\)と \(\lambda\)の関係がべき乗近似できることは明らかである。なお、最小二乗法により4つのプロットを直線近似する。
と、その傾きは0.89となる。\(\lambda\) が小さいほど \(\varepsilon_{\text{min}}\) が低下することから、\(\alpha/C14\) 界面はクリープ強度を高める組織因子（クリープ強化因子）であるという。微細なラメラ組織によって金属組織中に異相界面を導入することは、マグネシウム合金の高温クリープ強度を高めるための有効な手段となり得る。また、金属組織中に異相界面を導入することにより高温強度を高めるとする。新規な高温材強化機構を、異相界面強化（Interface Strengthening: IFS）と称することとする。

\(\alpha\)-Mg/C14-Mg2Ca 共晶合金におけるクリープの構成式を記述する場合、\(\varepsilon_{\text{min}}\) に及ぼす温度（\(T\)）および応力（\(\sigma\)）の影響33,34に加えて、ラメラコロニーサイズ（\(d\)）および \(\lambda\) といった組織を特徴づけるパラメータを、構成式中に含めることが必要となる。本合金における \(\varepsilon_{\text{min}}\) は、\(\sigma\)、\(T\)、\(d\) および \(\lambda\) の関数として式（1）のように表記される。

\[
\varepsilon_{\text{min}} = A(a/G)^b(b/d)^c(g/b)^d \exp(-Q_e/RT) \tag{1}
\]

ここで、\(A\) は材料固有の定数。\(G\) は剛性率。\(g\) は \(\alpha\)-Mg 相中のパーガーズベクトルの長さ。\(R\) は気体定数。\(Q_e\) はクリープの活性化エネルギー。および、\(a\)、\(n\)、\(m\)、\(p\) はそれぞれ定数である。Fig. 3 において \(\varepsilon_{\text{min}}\) と \(\lambda\) の関係を示す直線の傾きは、式（1）中における \(p\) 値に対応し、Fig. 3 の結果は、\(\alpha\)-Mg/C14-Mg2Ca 共晶合金において \(p = 1\) となることを示している。

3.3 クリープ変形材における転位組織

クリープ中における転位のすべり運動に及ぼす \(\alpha/C14\) 界面の役割を明らかにするために、473K。応力40MPaにてクリープ試験を行った \(\alpha\)-Mg/C14-Mg2Ca 共晶合金について転位組織を調査した。クリープ破断した as-cast 材における HRTEM 像を Fig. 4(a) に示す。なお、電子線の入射ベクトルは \(\alpha\)-Mg ラメラに対し \(B = [01\bar{1}1]\) とし、晶帯軸入射にて観察を行っている。\(\alpha\)-Mg ラメラ内部において、多数の転位が存在することが見て取れる。ここで、大半の転位は \(\alpha\)-Mg ラメラの一部を観察する。一部の転位は Fig. 4 (a) に示すような、\(\alpha\)-Mg ラメラを貫通するように一列に配列している。これに対して、C14-Mg2Ca ラメラ内部において、転位はほとんど観察されない。\(\alpha/C14\) 界面は、転位の活動を \(\alpha\)-Mg ラメラ内部のみに制限する役割を果たしているものといえる。

入射ベクトル \(B = [01\bar{1}1]\) において、回折ベクトルを \(g = 01\bar{1}2\) としたときに、\(a\)、\(a + c\) および \(c\) のパーガーズベクトル \(b\) を対する完全転位が観察可能かどうかについて、消滅則に基づいて \(g\cdot b\) 値を計算した結果を Table 3 に示す。回折ベクトルを \(g = 01\bar{1}2\) とすると、\(b = 1/3[1120]\) および \(b = 1/3[1210]\) の \(a\) 転位。すべての \(a + c\) 転位および \(c\) 転位が観察可能となる。これに対し、\(b = 1/3[2110]\) の \(a\) 転位は観察されない。Fig. 4(a) と同一の観察において、回折ベクトルを \(g = 01\bar{1}2\) とした時の HRTEM 像を Fig. 4(b) に示す。回折ベクトルを \(g = 01\bar{1}2\) とした場合、晶帯軸入射 Fig. 4(a) に示される \(\alpha\)-Mg ラメラ内部の転位はほとんど観察されなくなる。この結果から、\(\alpha\)-Mg/C14-Mg2Ca 共晶合金のクリープ中における
転
1
多
とした
µm
判
してはたらき
は

723 K において 1 h の時効熱処理を施することにより 1 = 1.3
μm とした試料を、473 K、応力 40 MPa にてクリープ変形を
加えた時の α/C14 界面における HRTEM 像を Fig. 5 に示す。
なお、クリープ試験は、最小クリープ速度を確認した直後に
対応するひずみ 1.3% にて停止している。α/C14 界面上には
多くの鞍位が認められ、それらはランダムに分布しており、
転位の最配列は生していない。以上に示すクリープ変形に
おける転位組織観察結果から、α/C14 界面は α-Mg ラメラ内
部を活性する a 転位の障害としてはたらき、a/C14 界面上では
は、結晶粒界にて生じような転位の消滅、および、サブパ
ウンダリーにて生じるような転位の最配列は生じないものと
判断される。

結晶粒界は、クリープ変形中において転位の消滅サイトと
してはたらき、クリープ速度を低下させる組織因子（クリ
ープ弱化因子）となるものと、一般に理解されている 33)。これ
に対し、α/C14 界面は、クリープ変形中において転位のすべ
りの障害としてはたから、転位が消滅または最配列するサイ
トとして機能しないため、クリープ強化因子となるものと推
察される。IFS が、マグネシウム系以外の共晶合金において
も、高温材料強化機構として有効に機能するか否かについて
検証することは、今後の課題であるといえる。

4. 結 言

Mg-13.8 mass% Ca 2 元系共晶合金（組織の大半を α/C14
ラメラ組織が占めることから本論文では α-Mg/C14-Mg2Ca
共晶合金と称する）について引張試験を行い、本合金におい
て塑性変形が生じる温度領域を調査した。as-cast 材および時
効熱処理材についてクリープ試験を実施し、クリープ強度に
及ぼす α/C14 界面の影響を評価すると共に、クリープ変形
材について HRTEM による転位組織観察を行った。本研究に
おいて得られた結果を以下に総括する。

（1）α-Mg/C14-Mg2Ca 共晶合金について引張試験を行う
と、423 K 以下の低温度領域では、降伏現象が生じる前に試
験片は破断し、塑性変形は生じない。これに対し、473 K 以
上の中高温度領域においては塑性変形が生じ、ひずみ速度の低
下に伴い塑性変形能は高くなる。

（2）α-Mg/C14-Mg2Ca 共晶合金について、473 K、応力
40 MPa にてクリープ試験を行うと、クリープ曲線は、通常型
の遷移域の後に最小クリープ速度を示し、加速度域を経て破断
に至る。ラメラ間隔が小さいほど最小クリープ速度が低下す
ることから、α/C14 界面は高温クリープ強度の向上に有効に
作用し、クリープ強化因子とみなすことができる。

（3）α-Mg/C14-Mg2Ca 共晶合金のクリープ中において、転
位の活動は主に α-Mg ラメラ内部にて生じ、転位の大きさは同
一のハニターやベクトルを有する a 転位となる。また、a/
C14 界面上で、転位はランダムに分布している。a/
C14 界面は α-Mg ラメラ内部における a 転位のすべり運動の
障害としてはたらき、α/C14 界面上で転位の消滅およ
び最配列は生じない。

本研究を遂行するにあたり、三井金属鉱業株式会社より試
料の提供をいただいたものである。また、本研究は科学研究費
助成事業（基盤研究（C）（19K05054）および公益財団法人鈴
金属学会研究助成金の助成を受けて実施されたものであ
り、ここに謝意を表します。本研究の一部は北海道大学にお
いて文部科学省ナノテクノロジープラットフォーム事業を通
じた技術の支援を受け実施され、電子頭微鏡観察に
あたり御協力頂いた北海道大学大久保賢二氏、大多亮氏に対
し感謝の意を表します。

文 献

1) S.R. Agnew and J.F. Nie: Scr. Mater. 63 (2010) 671-673.
2) A.A. Luoc: Int. Mater. Rev. 19 (2004) 13-30.
3) S.M. Zhu, B.L. Mordike and J.F. Nie: Mater. Sci. Eng. A 483-484
（2008）583-586。
4) S.S. Vagaitel and T.G. Langdon: Acta Metall. 29 (1981) 1969-1982.
5) L. Shi and D.O. Northwood: Acta Metall. Mater. 42 (1994) 871-877.
6) T.B. Massalski, H. Okamoto, P.R. Subramanian and L. Kacprzak
（eds.): Binary Alloy Phase Diagrams, 2nd ed. (ASM International,
Materials Park, OH, 1990)。
A. Suzuki, N.D. Saddock, J.R. TerBush, B.R. Powell, J.W. Jones and T.M. Pollock: Metall. Mater. Trans. A 39 (2008) 696–702.
8) J.F. Nie: Metall. Mater. Trans. A 43 (2012) 3891–3939.
9) A.A. Luo, B.R. Powell and M.P. Balogh: Metall. Mater. Trans. A 33 (2002) 567–574.
10) Y. Terada, N. Ishimatsu and T. Sato: Mater. Trans. 48 (2007) 2329–2335.
11) N. Hort, Y. Huang and K.U. Kainer: Adv. Eng. Mater. 8 (2006) 235–240.
12) T.M. Pollock: Science 328 (2010) 986–987.
13) A. Misra and R. Gibala: Intermetallics 8 (2000) 1025–1034.
14) S. Milenkovic and M. Palm: Intermetallics 16 (2008) 1212–1218.
15) J.H. Perepezko: Science 326 (2009) 1068–1069.
16) N. Takata, T. Okano, A. Suzuki and M. Kobashi: Intermetallics 95 (2018) 48–58.
17) A. Suzuki, N.D. Saddock, J.W. Jones and T.M. Pollock: Metall. Mater. Trans. A 37 (2006) 975–983.
18) A.A. Luo, B.R. Powell and A.K. Sachdev: Intermetallics 24 (2012) 22–29.
19) Y. Terada, Y. Murata and T. Sato: Mater. Sci. Eng. A 613 (2014) 136–140.
20) S. Kashiwase, M. Unekawa, H. Hisazawa and Y. Terada: Mater. Trans. 60 (2019) 2048–2052.
21) S. Kashiwase, M. Unekawa, H. Hisazawa and Y. Terada: Mater. Trans. 61 (2020) 375–380.
22) A. Suzuki, N.D. Saddock, J.W. Jones and T.M. Pollock: Acta Mater. 53 (2005) 2823–2834.
23) S.W. Xu, K. Oh-ishi, S. Kamado, H. Takahashi and T. Homma: Mater. Sci. Eng. A 542 (2012) 71–78.
24) M. Zubair, S. Sandlöbes, M.A. Wollenweber, C.F. Kusche, W. Hildebrandt, C. Broeckmann and S. Korte–Kerzel: Mater. Sci. Eng. A 756 (2019) 272–283.
25) S. Abe, K. Oishi and Y. Terada: J. Japan Inst. Met. Mater. 84 (2020) 399–405.
26) K.K. Ray and D. Mondal: Acta Metall. Mater. 39 (1991) 2201–2208.
27) P.J. Maziasz and C.T. Liu: Metall. Mater. Trans. A 29 (1998) 105–117.
28) I. Baker and F. Meng: Acta Mater. 95 (2015) 124–131.
29) Q. Lei, B.P. Ramakrishnan, S. Wang, Y. Wang, J. Mazumder and A. Misra: Mater. Sci. Eng. A 706 (2017) 115–125.
30) N. Ishimatsu, Y. Terada, T. Sato and K. Ohori: Metall. Mater. Trans. A 37 (2006) 243–248.
31) Y. Terada, T. Enokida and T. Sato: Mater. Trans. 50 (2009) 2351–2354.
32) R.T. DeHoff and F.N. Rhines: Quantitative Microscopy, (McGraw-Hill, New York, 1968).
33) J. Čadek: Creep in Metallic Materials, (Elsevier, Amsterdam, 1988).
34) M.E. Kassner and M.T. Perez-Prado: Fundamentals of Creep in Metals and Alloys, (Elsevier, Amsterdam, 2004).