Comparative Efficacy of Diode, Nd:YAG and Er:YAG Lasers Accompanied by Fluoride in Dentinal Tubule Obstruction

Shabnam Aghayan¹, Samaneh Fallah², Nasim Chiniforush¹*
¹Department of Periodontology, Faculty of Dentistry, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
²Faculty of Dentistry, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
³Laser Research Center of Dentistry, Dentistry Research Institute, Tehran University of Medical Sciences, Tehran, Iran

Abstract

Introduction: Recently, the management of dentin hypersensitivity by lasers has gained special attention. This study aimed to assess and compare the efficacy of the 980 nm diode, Nd:YAG and Er:YAG lasers accompanied by fluoride in dentinal tubule obstruction.

Methods: Twenty sound single-rooted human teeth were used for this invitro study. Forty dentinal discs were prepared of the roots and etched with 6% citric acid. One layer of fluoride varnish was applied over their surface. The sections were randomly allocated into 4 groups. The control group received no laser irradiation. Group 2 underwent 980 nm diode laser irradiation with 0.5 W power. Group 3 underwent Nd:YAG laser irradiation with 0.5 W power and group 4 underwent Er:YAG laser irradiation with 0.5 W power. All samples were then inspected under a scanning electron microscope, and the number of obstructed dentinal tubules and the diameter of open dentinal tubules in the field were determined. One-way ANOVA and Tukey’s test were used for data analysis at a significance level of 0.05.

Results: All three laser types decreased the number of open dentinal tubules significantly compared to the control group (P<0.05). No significant difference was noted in dentinal tubule obstruction between the three laser groups (P>0.05). The diameter of open tubules in the three laser groups did not show a significant difference from that in the control group.

Conclusion: All three types of lasers evaluated in this study can effectively obstruct the dentinal tubules.

Keywords: 980 nm Diode laser, Er:YAG laser, Nd:YAG laser, Dentin hypersensitivity, Fluoride

Introduction

Dentin hypersensitivity (DH) is a common clinical problem affecting all age groups.¹ It is more commonly seen in canine and premolar teeth of both jaws.² DH is determined with a short, sharp pain due to the reaction of exposed dentin to different stimuli such as heat, touch, osmotic pressure or chemical stimuli. This pain cannot be attributed to any dental problem or pathology.³

Numerous theories have been suggested for explaining the mechanisms of DH. Due to the hydrodynamic theory, which has the highest rate of acceptance, DH occurs when the stimulus causes the movement of intratubular fluid inward or outward and leads to the activation of pain receptors. According to this theory, an ideal treatment for DH should involve a reduction of intratubular fluid or blocking the pulpal nerve response.³

Many desensitizing agents such as potassium nitrate, formaldehyde, composite resins, and varnishes have been suggested to resolve DH.⁴ Recently, high-level and low-level laser systems were proposed to resolve DH. However, low-level lasers are more commonly used for this purpose due to their lower cost.⁵ A number of studies have evaluated DH and its efficient management⁶⁻⁸ and a few of them have evaluated the efficacy of different laser types for the resolution of DH, reporting contradictory results.⁹⁻⁷ Thus, comprehensive information is not available on the efficacy of different laser types for the obstruction of dentinal tubules and the resolution of DH. Lasers can be applied in both low-level power and medium-level power modes by their effect on the nervous medium-level power modes by their effect on the nervous system as well as the occlusion of dentinal tubules respectively.⁹

Considering the significance and relatively high prevalence of DH and the gap of information regarding the efficacy of different laser types for the resolution of DH, this study aimed to compare the efficacy of 980 nm diode, Nd:YAG and Er:YAG lasers in the obstruction of dentinal tubules of extracted human teeth.

Materials and Methods

This experimental study was in vitro. The single-rooted...
human teeth were examined under a stereo microscope, and the teeth with no internal/external root resorption, cracks or root caries were selected. The minimum sample size was considered to be 10 samples in each of the four groups (a total of 40) according to a study by Patil et al.10 using one-way ANOVA Power Analysis feature of PASS 11 software assuming alpha = 0.05, beta = 0.2, standard deviation of 3.71 and effect size of 0.55. The study was approved by the ethics committee of Azad University of Medical Sciences.

Twenty sound extracted single-rooted human teeth with no caries or restorations were collected. Soft tissue residues and debris were detached using a dental scaler. The coronal third and apical third of the teeth were cut by a diamond disc and low-speed handpiece under copious irrigation with sterile water. Two sections were made at the mesial and distal tooth surfaces measuring 2×2 mm with 2 mm thickness. All samples were then etched with 6% citric acid and rinsed with distilled water for 1 minute.

The sections were randomly allocated into 4 groups (n = 10). Group 1 served as the control group and did not receive any laser irradiation. The samples in group 2 underwent 980nm diode laser (wiser II, Doctor Smile, Italy) irradiation with the flat top handpiece. The samples in group 3 underwent Nd:YAG laser (Lightwalker, Fotona, Slovenia) irradiation with the Genova handpiece, and the samples in group 4 were subjected to Er:YAG laser (Lightwalker, Fotona, Slovenia) irradiation with the bleaching handpiece. Table 1 shows the laser irradiation parameters in the three experimental groups.

The cross-sectional area of all laser hand-pieces was 1 cm\(^2\) and the distance from the tip of the laser hand-piece to the surface of the samples was 1 mm. The total irradiation time was 60 seconds, and irradiation was performed in three cycles, 20 seconds each, with 1-minute intervals.

Fluoride varnish (5% sodium fluoride, TCP and xylitol, Vericom CO LTD., Korea) was applied on the surface of all samples, and the samples in groups 2, 3 and 4 immediately underwent laser irradiation after the application of varnish. After the completion of irradiation, the varnish remained on the surface of the samples for 5 minutes. Excess varnish was then removed and the samples were immersed in artificial saliva. They were then dried using an air dry system, gold-plated and inspected under an electron microscope at ×2000 magnification (Vega/ Tescan – XMU, Tescan s.r.o, Czech Republic) to determine the number of obstructed dentinal tubules and the diameter of open dentinal tubules. The study was performed blindly in such a way that the technician who measured the number and diameter of dentinal tubules was blinded to the group allocation of the samples.

The percentage of open dentinal tubules and their diameter were compared between different groups using one-way ANOVA. Tukey’s HSD test was used for pairwise comparisons. The level of significance was considered as \(P < 0.05\).

Results

Table 2 shows the mean percentage of obstructed dentinal tubules. The percentage of obstructed dentinal tubules indicated a significant difference between the groups \((P < 0.05)\). The results of pairwise comparisons showed that the mean percentage of obstructed dentinal tubules in all three laser groups was significantly higher than that in the control (fluoride varnish) group \((P = 0.000)\). The mean percentage of obstructed dentinal tubules in the diode laser group was 4.00000 \(P = 0.236\) lower than that in the Er:YAG laser group and 2.30000 \(P = 0.688\) lower than that in the Nd:YAG laser group. The mean difference between the diode laser group and the control group was 49.00000 \(P = 0.000\). The difference in the mean percentage of obstructed tubules in the Er:YAG and Nd:YAG groups was 1.70000 \(P = 0.846\). The difference between the Er:YAG group and the control group in this regard was 53.00000 \(P = 0.000\). The difference in the mean percentage of obstructed tubules in the Nd:YAG and control groups was 51.30000. None of the differences were statistically significant \((P > 0.05)\).

Table 3 shows the diameter of open dentinal tubules in the groups. As shown, regarding the minimum diameter of open dentinal tubules, the smallest value was noted in the Er:YAG laser group while the largest value was noted in the control (fluoride varnish) group. Regarding the maximum diameter of open dentinal tubules, the highest value was noted in the control group while the smallest value was noted in the Nd:YAG laser group; however, these differences were not statistically significant \((P = 0.367)\).

Discussion

A significant correlation exists between DH and the presence of open dentinal tubules because exposure of open dentinal tubules to different stimuli would stimulate the pain receptors and lead to DH.2 DH can be effectively resolved by obstruction of dentinal tubules.11 This study assessed and compared the effects of a 980 nm diode laser, an Nd:YAG laser and an Er:YAG laser on dentinal

Laser Type	Exposure Settings
Diode	Flat-top hand-piece, 980 nm wavelength, continuous mode, 0.5 W power, 30 J/cm\(^2\) energy density
Nd:YAG	Genova hand-piece 1064 nm wavelength, 0.5 W power, 10 Hz frequency, 30 J/cm\(^2\) energy density, 100 ms pulse duration
Er:YAG	Bleaching Hand-piece 2940 nm wavelength, 0.5 W power, 10 Hz frequency, 30 J/cm\(^2\) energy density, 100 ms pulse duration
the similarity of our results to those of Chiga et al.16 The Nd:YAG laser was more effective than the other two. The difference between their results and ours may be attributed to higher laser power (1 W in their study compared to 0.5 W in ours) and distance from the tip of the laser hand-piece to the tooth surface (1 cm versus 2 mm) in their study compared to ours. In our study, all three laser types showed equal efficacy. However, it should be noted that the diode laser used in our study had a 980 nm wavelength, which was different from the wavelength of the diode laser used by Saluja et al.24 Öncü et al.25 evaluated the efficacy of different desensitizing agents and lasers for the obstruction of dentinal tubules. They concluded that the Er:YAG laser combined with Gluma had the highest efficacy for tubular obstruction, which was different from our results. The difference in desensitizing agents used in the two studies may explain the difference in the results. Studies on the efficacy of Gluma and fluoride for resolution of DH have shown that Gluma has a higher desensitizing effect than fluoride.22,28. Moreover, the higher frequency and power of lasers in the study by Öncü et al.25 can explain the difference in the results.

Gholami et al.8 compared the effect of Er:Cr:YSGG, Nd:YAG, CO₂ and diode lasers on dentinal tubules. They showed that although the mean reduction in diameter of dentinal tubules in the Nd:YAG laser group was higher than that in other groups, the reduction in tubular diameter in all groups was significant. In the current study, no significant difference was noted in this respect. Similar results obtained in our study and those in the study by Kurt et al.22 may be due to the equal wavelength of lasers and the medium short pulse. However, Kurt et al.22 did not assess the effect of the laser in combination with a desensitizing agent.

Saluja et al.24 assessed the effect of Nd:YAG, 810 nm diode and CO₂ lasers on exposed dentinal tubules of human teeth. They reported that all laser types effectively obstructed the dentinal tubules. However, the Nd:YAG laser was more effective than the other two. The difference between their results and ours may be attributed to higher laser power (1 W in their study compared to 0.5 W in ours) and distance from the tip of the laser hand-piece to the tooth surface (1 cm versus 2 mm) in their study compared to ours. In our study, all three laser types showed equal efficacy. However, it should be noted that the diode laser used in our study had a 980 nm wavelength, which was different from the wavelength of the diode laser used by Saluja et al.24 Öncü et al.25 evaluated the efficacy of different desensitizing agents and lasers for the obstruction of dentinal tubules. They concluded that the Er:YAG laser combined with Gluma had the highest efficacy for tubular obstruction, which was different from our results. The difference in desensitizing agents used in the two studies may explain the difference in the results. Studies on the efficacy of Gluma and fluoride for resolution of DH have shown that Gluma has a higher desensitizing effect than fluoride.22,28. Moreover, the higher frequency and power of lasers in the study by Öncü et al.25 can explain the difference in the results.

Gholami et al.8 compared the effect of Er:Cr:YSGG, Nd:YAG, CO₂ and diode lasers on dentinal tubules. They showed that although the mean reduction in diameter of dentinal tubules in the Nd:YAG laser group was higher than that in other groups, the reduction in tubular diameter in all groups was significant. In the current study, no significant difference was noted in the reduction of dentinal tubule diameter between the laser groups. This controversy in the results may be related to the higher power, energy density and frequency of lasers used by Gholami et al.8 compared to our study. Nandakumar and

Table 2. Mean Percentage of Obstructed Dentinal Tubules in the Study Groups (n = 10)

Group	Minimum	Maximum	Mean	Standard Deviation
Diode	7.40	93.00	87.2	4.96
Er:YAG	78.00	100.00	91.2	6.28
Fluoride (control)	33.00	45.00	38.2	4.13
Nd:YAG	86.00	93.00	89.5	2.27

Table 3. Diameter of open dentinal tubules (µm) in the study groups (n = 10)

Group	Minimum	Maximum	Mean	Standard Deviation
Diode	1.37	3.68	2.4180	0.84
Er:YAG	0.00	3.11	1.7980	0.98
Fluoride (control)	1.55	5.73	2.5120	1.36
Nd:YAG	1.49	2.90	2.1350	0.50
Iyer compared the efficacy of Er, Cr: YSGG and diode lasers and some desensitizing agents using an electron microscope. They observed a minimum percentage of open dentinal tubules in the Er, Cr: YSGG laser group with no desensitizing toothpaste, which was different from our result. This controversy can be due to shorter irradiation time and distance of the laser beam from the surface of samples as well as higher diode laser power and frequency of the Er, Cr: YSGG laser in their study compared to ours.

As the flat-top beam profile can create a homogeneous and constant power on the beam spot-area compared to the conventional Gaussian beam profile, it seems that irradiation with a flat-top handpiece can be more effective without producing a remarkable thermal increase. To our knowledge, this is the first study that evaluates the effect of the flat-top beam profile on dentinal obstruction. Further studies are needed to compare the flat top with the Gaussian beam profile on dentinal obstruction.

As this study was performed in vitro, the generalization of results to the clinical condition should be done with considerations. Further clinical studies are required to confirm the findings of this study.

Conclusion
980 nm diode, Nd: YAG and Er: YAG lasers accompanied by fluoride can effectively obstruct the dentinal tubules.

Conflict of Interests
The authors declare no conflict of interest.

Ethical Considerations
This study was in vitro.

Funding
None.

References
1. Khoubrouypak Z, Hasani Tabatabaei M, Chini forush N, Moradi Z. Evaluation of the Effects of 810 nm Diode Laser Alone and in Combination with Gluma® and Chromophore on Dentinal Tubule Occlusion: A Scanning Electron Microscopic Analysis. J Lasers Med Sci. 2020;11(3):268-273. doi: 10.34172/jlms.2020.45.

2. Tabatabaei MH, Chini forush N, Hashemi G, Valizadeh S. Efficacy Comparison of Nd:YAG laser, diode laser and dentine bonding agent in dentine hypersensitivity reduction: a clinical trial. Laser Ther. 2018;31(27(4):265-270. doi: 10.5978/islsm.27.18-OR-24.

3. West NX, Lussi A, Seong J, Hellwig E. Dentin hypersensitivity: pain mechanisms and aetiology of exposed cervical dentin. Clin Oral Investig. 2013;17(Suppl 1):S9-19. doi: 10.1007/s00784-012-0887-x.

4. Porto IC, Andrade AK, Montes MA. Diagnosis and treatment of dentinal hypersensitivity. J Oral Sci. 2009;51(3):323-32. doi: 10.2334/josnusd.51.323.

5. Sgolastra F, Petrucci A, Gatto R, Monaco A. Effectiveness of laser in dentinal hypersensitivity treatment: a systematic review. J Endod. 2011;37(3):297-303. doi: 10.1016/j.
Diode, Nd:YAG and Er:YAG Lasers in Tubule Obstruction

in vitro study. Photomed Laser Surg. 2005;23(5):504-8. doi: 10.1089/pho.2005.23.504.

19. Al-Saud LM, Al-Nahedh HN. Occluding effect of Nd: YAG laser and different dentin desensitizing agents on human dentinal tubules in vitro: a scanning electron microscopy investigation. Oper Dent. 2012;37(4):340-55. doi: 10.2341/10-188-L.

20. Badran Z, Boutigny H, Struillou X, Baroth S, Laboux O, Soueidan A. Tooth desensitization with an Er: YAG laser: in vitro microscopical observation and a case report. Lasers Med Sci. 2011;26(1):139-42. doi: 10.1007/s10103-010-0835-4.

21. Idon PI, Esan TA, Bamise CT. Efficacy of Three In-Office Dentin Hypersensitivity Treatments. Oral Health Prev Dent. 2017;15(3):207-214. doi: 10.3290/j.ohpd.a38523.

22. Sivaramakrishnan G, Sridharan K. Fluoride varnish versus glutaraldehyde for hypersensitive teeth: a randomized controlled trial, meta-analysis and trial sequential analysis. Clin Oral Investig. 2019;23(1):209-220. doi: 10.1007/s00784-018-2428-8.

23. Kurt S, Kurtloğlu T, Yılmaz NA, ErtAŞ E, Oruçoğlu H. Evaluation of the effects of Er: YAG laser, Nd: YAG laser, and two different desensitizers on dentin permeability: in vitro study. Lasers Med Sci. 2018 ;33(9):1883-1890. doi: 10.1007/s10103-018-2546-1.

24. Saluja M, Grover HS, Choudhary P. Comparative morphologic evaluation and occluding effectiveness of Nd: YAG, CO2 and diode lasers on exposed human dental tubules: an invivo SEM study. J Clin Diagn Res. 2016;10(7):ZC66-70. doi: 10.7860/JCDR/2016/18262.8188.

25. Öncü E, Karabekiroğlu S, Ünlü N. Effects of different desensitizers and lasers on dentine tubules: An in-vitro analysis. Microsc Res Tech. 2017;80(7):737-744. doi: 10.1002/jemt.22859.

26. Abuzinadah SH, Alhaddad AJ. A randomized clinical trial of dentin hypersensitivity reduction over one month after a single topical application of comparable materials. Sci Rep. 2021;11(1):6793. doi: 10.1038/s41598-021-86258-3.

27. Nandakumar A, Iyer VH. In vitro analysis comparing efficacy of lasers and desensitizing agents on dentin tubule occlusion: a scanning electron microscope study. Int J Laser Dent. 2014;4(1):1-7. doi: 10.5005/jp-journals-10022-1048

28. Abdel Hamid MA, Zaied AA, Zayet MK, Abdelmageed H, Hassan EA, Amariol A. Efficacy of Flat-Top Hand-Piece Using 980 nm Diode Laser Photobiomodulation on Socket Healing after Extraction: Split-Mouth Experimental Model in Dogs. Photochem Photobiol. 2021;97(3):627-633. doi: 10.1111/php.13356.