Application of Herbal Traditional Chinese Medicine in the Treatment of Acute Kidney Injury

Hai-Di Li1,2,3,4, Xiao-Ming Meng1,2,3,4, Cheng Huang1,2,3,4, Lei Zhang1,2,3,4, Xiong-Wen Lv1,2,3,4 and Jun Li1,2,3,4*

1 The Key Laboratory of Major Autoimmune Diseases, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China, 2 The Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Medical University, Hefei, China, 3 Institute for Liver Diseases, Anhui Medical University, Hefei, China, 4 Anhui Key Laboratory of Bioactivity of Natural Products, School of Pharmacy, Anhui Medical University, Hefei, China

Acute kidney injury (AKI) is a clinical syndrome characterized by a rapid loss of renal function, which may further develop into chronic kidney damage (CKD) or even end-stage renal disease (ESRD). AKI is a global health problem associated with high morbidity and costly treatments, and there is no specific or effective strategy to treat AKI. In recent years, Traditional Chinese Medicine (TCM) has attracted more attention, with lines of evidence showing that application of TCM improved AKI, and the mechanisms of action for some TCMs have been well illustrated. However, reviews summarizing the progress in this field are still lacking. In this paper, we reviewed TCM preparations and TCM monomers in the treatment of AKI over the last 10 years, describing their renal protective effects and mechanisms of action, including alleviating inflammation, programmed cell death, necrosis, and reactive oxygen species. By focusing on the mechanisms of TCMs to improve renal function, we provide effective complementary evidence to promote the development of TCMs to treat AKI. Moreover, we also summarized TCMs with nephrotoxicity, which provides a more comprehensive understanding of TCMs in the treatment of AKI. This review may provide a theoretical basis for the clinical application of TCMs in the future.

Keywords: acute kidney injury (AKI), traditional Chinese medicine (TCM), inflammation, apoptosis, nephrotoxicity

INTRODUCTION

Acute kidney injury (AKI), characterized by an abrupt decline of renal function, can be induced by numerous causes including renal ischemia reperfusion injury (IRI), nephrotoxic insults and infection of sepsis (Waikar et al., 2008; Linkermann, 2016). Accumulating evidence shows that AKI is a global public health concern and a pivotal threat to human health, especially in hospitalized patients, as it impacts more than 13 million patients per year (Chertow et al., 2005; Lameire et al., 2013; Thomas et al., 2015; Yang et al., 2015; Allison, 2016). Excessive inflammatory responses,
oxidative stress, and the imbalance of the damage and repair of renal tubules, are all highly involved in the pathological process of AKI, however, specific targets and effective therapies are still lacking (Sancho-Martinez et al., 2015; Yang et al., 2016; Zuk and Bonventre, 2016).

Traditional Chinese medicine (TCM) has been widely used for the treatment of AKI and its complications in China and neighboring countries, including Japan and Korea, for a long time. Some TCM-based therapies show good results and high efficacy in inhibiting inflammatory responses, programmed cell death and oxidative stress. In this regard, the therapeutic effects of TCMs have widely been tested in animal models of AKI and even in patients. For instance, the Xuebijing Injection is effective in improving clinical symptoms of sepsis-induced AKI patients after the Wenchuan Earthquake (Yuxi et al., 2017). Our recent study showed that wogonin not only protects cisplatin-induced AKI, but also preserves and even promotes the anti-tumor effect of cisplatin (Meng et al., 2018). However, it is noteworthy that some TCMs, such as aristolochic acids and other plant alkaloids, are nephrotoxic, (Yang et al., 2018). So, the application of TCM should be carefully evaluated.

In this paper, we reviewed the therapeutic effects of TCMs on AKI and the mechanism of action based on the assessment of evidence that supports hypotheses, additionally, TCMs with nephrotoxicity have also been discussed.

APPLICATIONS OF TCM IN AKI

TCM Preparations in AKI

Until now, several TCM preparations have been tested in the treatment of AKI. There are shown in Table 1.

**Astragalus membranaceus var. mongholicus and Angelica sinensis (A&A)**

Decoctions of roots from A&A can improve renal blood flow in a murine model of acute ischemic renal injury, possibly by increasing NO production by activating eNOS and scavenging ROS, therefore accelerating renal repair after ischemic injury (Meng et al., 2007). Moreover, the therapeutic effect of A&A may be JNK-dependent (Cai et al., 2001).

**Dahuang Fuzi Decoction (DFD)**

Dahuang Fuzi Decoction (DFD) consists of *Radix et Rhizoma Rhei*, *Radix Aconiti Lateralis Praeparata*, and *Radix et Rhizoma Asari*. Emerging evidence indicates that DFD attenuates adenine-triggered renal damage and tubular epithelial apoptosis, by blocking the activation of TGF-β1-JNK pathways (Tu et al., 2014).

**Xuebijing Injection**

It consists of *chuan dome, radix paeoniae rubra, safflower, Salvia miltiorrhiza, and Chinese angelica*. Administration of a Xuebijing injection can suppress the production and release of high mobility group box-1 protein (HMGB1) in the kidney, thereby alleviating serious scald injury-induced AKI (Wang et al., 2007). In addition, an intravenous injection of Xuebijing attenuates the inflammatory response in AKI rats with paraquat poisoning (Xu et al., 2017). Importantly, Xuebijing improved the clinical symptoms of patients with sepsis-induced AKI after the Wenchuan Earthquake (Yuxi et al., 2017).

**Huang-Lian-Jie-Du-Decoction (HLJDD)**

It is composed of *Rhizoma coptidis* (RC), *Cortex phellodendri* (CP), *Radix scutellariae* (RS), and *Fructus gardenia* by a weight ratio of 3:2:2:3. HLJDD effectively suppresses LPS-induced AKI by activating Akt/HO-1 pathway and inhibiting NF-κB and MAPK activation in mice (Li et al., 2017).

**Zhibai Dihuang Wan (ZDW)**

ZDW is a polyherbal formula mixed with *Rehmannia glutinosa* (Gaertn.), *baked (Radix Rehmanniae preparata)*, *Cornus officinalis* Siebold & Zucc., *Dioscorea oppositifolia* L., *Paeonia suffruticosa* Andrews, *Alisma plantago-aquatica* L., *rhizome (Rhizoma Alismatis)*, and *Poria cocos* (Schw.) Wolf. ZDW has been used to treat chronic kidney diseases, like diabetic nephropathy, for many years. A recent study revealed that ZDW also protected against gentamicin-induced AKI both in vivo and in vitro, because it attenuated apoptosis of renal tubular epithelial cells by limiting caspase-3 activation (Hsu et al., 2014).

**TCM Monomers in AKI**

Compared with TCM preparations, TCM Monomers have recently attracted more attention in the treatment of diseases because they have certain molecular structures, clear mechanisms of action, predicted pharmacological effects and less drug-drug interactions. In the kidney, numerous TCM monomers have been applied in treating renal diseases including AKI caused by different stimuli. Therefore, we list TCMs that have comprehensively been studied to protect against AKI in recent years.

**Astaxanthin (ATX)**

Astaxanthin (ATX) is a natural carotenoid extracted from marine organisms which are widely applied because of their strong antioxidant effect. Current studies demonstrate the renoprotective effects of ATX in many AKI models. ATX (5 mg/kg for 14 days via oral gavage) can improve I/R-induced AKI by exerting antioxidant activity and inhibiting tubular apoptosis/necrosis via scavenging free radicals (Qiu et al., 2015). Moreover, ATX (40 mg/kg for 5 days by intraperitoneal injection) attenuated arsenic-induced AKI by exerting antioxidant functions and reducing As accumulation (Wang et al., 2014), and ATX (50 mg/kg for 12 h by gavage) ameliorated HgCl₂-induced AKI by exerting anti-oxidant activity and preventing lipid and protein oxidation (Augusti et al., 2008). ATX (20 mg/kg 12 h via tail intravenous injection) consistently improved early AKI, following a severe burn, by modulating antioxidant activity and Akt/Bad/Caspases-mediated mitochondrial-apoptotic pathway (Guo et al., 2015).

**Baicalin**

Baicalin is a *Scutellaria baicalensis*-derived flavonoid which has been tested in multiple types of AKI models. In clinical
TABLE 1 | Application of TOM Preparations in the treatment of acute kidney injury.

| Names   | Origins                          | Models                          | Function                     | Mechanisms                                      |
|---------|----------------------------------|---------------------------------|------------------------------|-------------------------------------------------|
| A&A     | Astragalus membranaceus var. mongholicus and Angelica sinensis | I/R-induced kidney injury       | Decreasing cell necrosis     | By inducing JNK (Cai et al., 2001; Meng et al., 2007) |
| DFD     | Radix et Rhizoma Rhei, Radix Aconiti Lateralis Praeparata, and Radix et Rhizoma Asari | Adenine-induced renal injury    | Inhibiting apoptosis         | By blocking TGF-β1-JNK (Tu et al., 2014)          |
| Xuebing | Radix paeoniae rubra, Chuan dorne, Salvia miltiorrhiza, and Saflower, and Chinese angelica | Serious scald-induced renal injury | Alleviating renal function   | By suppressing HMGB1 (Wang et al., 2007)          |
| HLJDD   | Rhizoma coptidis (RC), Cortex phellodendri (CP), Radix scutellariae (RS), and Fructus gardenia | LPS-induced AKI                 | Attenuating apoptosis        | Activating the Akt/HD-1 pathway and inhibiting NF-κB and MAPK activation (Li et al., 2017) |
| ZDW     | Cornus officinalis Siebold & Zucc., Radix Rehmannia preparata, Dioscorea oppositifolia L., Cortex Phellodendri, rhizome, Moutan Cortex, Rhizoma Alismatis, and Wolf | Gentamicin-induced renal injury | Attenuating apoptosis        | By limiting caspase-3 activation (Hsu et al., 2014) |

Ginsenoside Rd (GSRd)
Ginsenoside Rd (GSRd) is isolated from the root of Panax ginseng and applied to protect cells in various types of diseases especially ischemia diseases (Ye et al., 2011). It is noteworthy that GSRd has an impact on different cell types which are involved in AKI. For instance, previous studies identified that GSRd (50 mg/kg i.p. for 2 days) prevented M1 macrophage polarization in I/R-injured kidney (Ren et al., 2016). Additionally, GSRd (5 mg/kg i.p. for 30 days) protected proximal tubule cells against I/R model-induced hypoxia-reoxygenation by inhibiting oxygen free radicals from attacking cell membranes (Yokozawa et al., 1998). The renoprotective effect of GSRd (5 mg/kg i.p. for 30 days) was further determined in cisplatin and glocerol-induced AKI models, treatment of GSRd decreased apoptosis-triggered DNA fragmentation and oxidative stress (Yokozawa and Liu, 2000; Yokozawa and Dong, 2001; Zhou et al., 2014). Other Ginsenosides, such as Rb1, Rgl1 (80 mg/L for 24 h) and Rg3 also proved to be effective in the treatment of AKI. It has been identified that administration of Ginsenoside Rb1 relieves apoptosis of HK-2 cells in response to serum from I/R AKI (Zhu et al., 2009). Ginsenoside Rgl1 reduces aldosterone-induced oxidative stress and abnormal autophagy correlates with AMPK/mTOR pathway. Ginsenosides 20(S)-Rg3 exerts therapeutic effects in both cisplatin (GSRd 250 μg/mL for 24 h) and LPS (GSRd 10 mg/kg i.p. for 15 days)-induced AKI by targeting JNK-p53-caspase-3 axis and NF-κB signaling pathway (Kang et al., 2007; Wang et al., 2015; Han et al., 2016).

Epigallocatechin Gallate (EGCG)
As a major component of green tea, EGCG is famous for its anti-inflammatory and anti-apoptotic properties. EGCG, as a potent inducer of HO-1, can suppress renal injury by reducing oxidative stress and inflammation in several AKI models induced by contrast (EGCG 20 mg/kg intravenously) (Gao Z. et al., 2016), I/R (EGCG 50 mg/kg i.p. for 24 h) (Lv et al., 2015) and cisplatin (EGCG 100 mg/kg i.p. for 12 days) (Salhin et al., 2010), respectively. Furthermore, underlying mechanisms have extensively been explored in cisplatin nephropathy, EGCG (100 mg/kg i.p. for 2 days) prevented activation of ERK, the NF-κB pathway and caspase-12 while down-regulating the Fas-conducted extrinsic pathway and Bcl-2/Bax ratio, thereby reducing the apoptosis of tubular epithelial cells (Zou et al., 2014; Chen B. et al., 2015; Pan et al., 2015).

Resveratrol (RSV)
Resveratrol (RSV), a popular natural phenolic compound which is abundant in wines and grape skins, protects against multiple types of AKI due to its low toxicity, powerful antioxidants, and anti-inflammatory properties. Resveratrol (100 mg/kg for 20 h by oral gavage) can attenuate LPS-induced AKI by suppressing inflammation and apoptosis driven by macrophages (Chen L. et al., 2015). Resveratrol (10 mg/kg i.p. for 12 h)
consistently protects against sepsis-induced tubular epithelium injury by restoring the renal microcirculation and scavenging reactive nitrogen species (Holthoff et al., 2012). In addition, resveratrol (3 mg/kg for 6 days via the forearm vein) ameliorates arsenic trioxide (As$_2$O$_3$)-induced nephrotoxicity by antagonizing oxidative stress and facilitating arsenic metabolism (Yu et al., 2013). Moreover, resveratrol is proven to be an anti-inflammatory agent in glycerol (RSV 25 mg/kg/day for 4 days via gastric intubation)- and cisplatin (RSV 25 mg/kg/day i.p. for 2/5 days)-induced AKI (de Jesus Soares et al., 2007; Do Amaral et al., 2008). Furthermore, previous studies demonstrated that resveratrol-mediated activation of SIRT1 improved cisplatin (RSV 10 mg/kg orally once a day for 7 days)-induced AKI by deacetylating p53 and reducing apoptosis (Kim et al., 2011), and RSV also inhibited sepsis (RSV 10 mg/kg i.p. for 3 days)-induced AKI and renal inflammation through NF-κB de-acetylation (Gan et al., 2017) or SIRT3-mediated deacetylation of SOD2 (Xu et al., 2016). Resveratrol (30 mg/kg i.p. for 12 h) protected against early sepsis-induced AKI by inhibiting the endoplasmic reticulum stress (IRE1)-activated NF-κB pathway (Wang et al., 2017). A previous study showed that RSV A405 (3 mg/kg i.p. for 24 h) and RSV A314 (3 mg/kg i.p. for 24 h), two biologically active resveratrol analogs (RSVs), attenuated I/R-induced AKI by exerting antioxidative and anti-inflammatory effects, indicating that RSV and its derivatives may be promising agents to prevent and/or treat AKI with high efficiency (Khader et al., 2015).

### Tetramethylpyrazine (TMP)

Tetramethylpyrazine (TMP) is a natural product isolated from the Chinese herb *Ligusticum wallichii* Franch., which is famous for its antioxidative and anti-inflammatory effects. Previous studies showed that treatment with TMP protects against arsenic (TMP 100 µM for 6 h)-induced nephrotoxicity by targeting HO-1 and ARS2, which was further evidenced by the findings that TMP (20 mg/kg/day i.p. for 7 days) relieves gentamicin-induced AKI by enhancing Hax-1 mitochondrial localization in HO-1-dependent mechanisms (Sue et al., 2009; Gong et al., 2016). Additionally, by suppressing ROS production and the consequential inflammatory response, TMP protected against cisplatin (80 mg/kg/day orally for 7 days) or arsenic (100 µM for 24 h)-induced AKI (Ali et al., 2008; Gong et al., 2015). Moreover, a recent study showed that TMP (80 mg/kg/day i.p. for 4 days) suppressed the apoptosis of renal cells by targeting FoxO1, a pro-apoptotic transcription factor, to prevent contrast-induced AKI (Gong et al., 2013). Interestingly, TMP exerted a renoprotective role by downregulating P-selectin, which has been accepted as a key modulator of neutrophil infiltration in I/R kidney injury (Chen et al., 2003).

Our group also tested the therapeutic potential of traditional Chinese medicine in the treatment of AKI. We screened 10 kinds of Chinese herbal medicine with anti-inflammatory effects and found that wogonin and protocatechuic aldehyde had significant therapeutic effects. Wogonin inhibits cisplatin-induced renal damage by inhibiting RIPK1-mediated necroptosis and attenuates inflammation (Meng et al., 2018), whereas protocatechuic aldehyde (PA) not only inhibits necroptosis, but also effectively reduces cisplatin-induced over-production of ROS (Gao L. et al., 2016). Interestingly, we all know that cisplatin is commonly used as an anti-cancer drug in clinic, and these two TCMs could even promote anti-tumor effects of cisplatin, so wogonin and protocatechuic aldehyde may be renoprotective adjuvants for cisplatin-based anticancer therapy.

There are many other TCMs to treat AKI, and these are listed in Table 2.

### Mechanisms Involved in the Therapeutic Effect of TCMs in AKI

As shown in Figure 1, the TGF-β receptor, Toll-like receptors (TLRs), TNF receptor, and FASL/Death receptors are stimulated by LPS, cisplatin and I/R, etc., then these receptors activate downstream pathways, further triggering ROS production and inflammatory responses, eventually leading to kidney damage. TCMs suppress cisplatin/LPS/I/R-stimulated TLRs including TLR2/4, or by activating PPAR, further inhibiting the NF-κB pathway and reducing inflammation. Moreover, TCMs reduce apoptosis by inhibiting TGF-β, PI3K/AKT and ERK/INK/P38MARK pathways. In addition, TCMs inhibit autophagy by targeting AMPK/mTOR. In recent years, new cell death mechanisms like programmed necrosis and ferroptosis have also attracted attention. Wogonin and protocatechuic aldehyde can effectively inhibit RIPK1/RIPK3-mediated necroptosis. Breviscapine can reduce ferroptosis by increasing glutathione peroxidase levels. Additionally, TCMs can inhibit H$_2$O$_2$-induced endoplasmic reticulum (ER) stress and further reduce ROS production. In the AKI model, ROS, HMGB1, P53, Nr2, HO-1, and SIRT1/3 are regarded as potential therapeutic targets of TCMs.

### Nephrotoxicity of TCMs

It has been recorded that up to 25% of all cases of AKI may be correlated to nephrotoxic medications (Bentley et al., 2010). As shown in Table 3, previous studies indicate that some TCMs, including aristolochic acid, anthraquinones, flavonoids, and glycosides from herbs, non-steroidal anti-inflammatory drugs, aminoglycosides, cytostatic drugs, osmotic agents, radiocontrast, and phosphate salts, may lead to kidney damage and induce AKI (Liangos, 2012; Yang et al., 2018). Several reasons contributing to nephrotoxicity of TCMs include the intrinsic toxicity of herb medicines, incorrect dosing, interactions between herbs and medications, adulteration, incorrect processing and storage, and contamination by heavy metals (Yang et al., 2018).

It was reported that two patients took sciadopitysin, a kind of flavonoid extracted from *Taxus celebica* to treat diabetes mellitus, and suffered acute tubular necrosis and acute interstitial nephritis (Lin and Ho, 1994). Andrographolide (Chuan Xin Lian) is widely used in China for the treatment of dysentery and respiratory tract infection. It is noteworthy that a systemic analysis, based on clinical cases reported in Chinese literature from January 1978 to August 2013, revealed 26 patients with AKI induced by andrographolide. The major pathologic features in these patients were acute tubular necrosis. The mechanism is still obscure (Zhang et al., 2014). Aristolochias acids (AA) is
TABLE 2 | Application of TCM monomers in the treatment of acute kidney injury.

| Names          | Origins                     | Models                          | Functions                                                                                           | Mechanisms                                                                                                   |
|---------------|-----------------------------|---------------------------------|-----------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------|
| Alpinetin     | Alpinia katsumadai Hayata   | LPS-induced AKI                 | Inhibiting inflammation.                                                                            | By enhancing Nrf2 and HO-1 (Huang et al., 2015)                                                               |
| Astragaloside IV (AS-IV) | Astragaloside                | Cisplatin-induced AKI            | Inhibiting oxidative damage and inflammatory response.                                               | By activation of Nrf2 and suppression of NF-κB activation (Yan et al., 2017)                                   |
| Astaxanthin   | Carotenoid in marine organisms | I/R, As₂O₃, HgCl₂-induced AKI   | Antioxidant activity; Inhibiting apoptosis.                                                           | By Akt/Bad/caspases pathway (Augusti et al., 2008; Wang et al., 2014; Guo et al., 2015; Qu et al., 2015)      |
| Baicalin      | Scutellaria baicalensis     | H₂O₂-, induced AKI               | Blocking oxidative stress, ER stress and apoptosis.                                                  | By activating Nrf2 signaling (Li et al., 2014)                                                               |
|               |                             | I/R-induced AKI                 | Inhibiting inflammation and apoptosis.                                                               | Zhang Z. et al., 2017                                                                                         |
|               |                             | LPS-induced AKI                 |                                                                                                      | By inhibiting TLR2/4 and mitochondrial stress (Ji et al., 2014)                                               |
|               |                             |                                 |                                                                                                      | By activating PPARy and inhibiting NF-κB (Lim et al., 2012)                                                  |
| Breviscapine  | Erigeron breviscapus        | Cisplatin-induced AKI            | Inhibiting lipid peroxidation and ferroptosis.                                                       | By decreasing MDA, SOD, increasing glutathione peroxidase levels (Lee et al., 2015)                           |
| Chlorogenic Acid | Plant polyphenols          | LPS-induced AKI                 | Suppressing inflammation.                                                                            | By inhibiting TLR4/NF-κB signaling pathway (Ye et al., 2017)                                                |
| Cordyceps sinensis (CS) | An entomogenous fungus   | I/R-induced renal injury         | Inhibiting inflammation and apoptosis.                                                               | By modulating SDF-1/CXCR4-signaling, reducing TLR-4, increasing HIF-1α (Zhou and Hu, 2010; Yu et al., 2012; Wang et al., 2013) |
| (CSP)         | Cordyceps sobolifera       | LPS-induced AKI                 | Reducing autophagy and apoptosis.                                                                   | By reducing ED-1, GRP78 (Wu et al., 2011)                                                                   |
| Curcumin      | Curcuma longa               | Rhabdomyolysis (RM)-induced AKI  | Reducing renal oxidative stress.                                                                     | By enhancing TRMP6 and TRMP7 (Chyau et al., 2014)                                                           |
|               |                             | I/R-induced AKI                 |                                                                                                      | By inhibiting AMPK and Nrf2/HO-1 (Wu et al., 2017)                                                          |
|               |                             | Glycolerol-induced AKI          | Ameliorating cell apoptosis.                                                                         | By NMDA receptor antagonism (Kaur et al., 2016)                                                             |
|               |                             | Cisplatin-induced AKI           | Preventing renal alterations. Inhibiting inflammatory.                                                | By activating the PI3K/Akt pathway (Wu et al., 2017)                                                        |
| Emodin        | Rheum palmatum              | LPS-induced AKI                 | Inhibiting inflammatory.                                                                             | By inhibiting TLR2 (Li et al., 2015) or TLR4 (Zhu et al., 2015)                                              |
| Epigallocatechin gallate (EGCG) | Green tea                   | Contrast-induced AKI             | Allaying apoptosis, oxidative stress and inflammation.                                                | By modulating the AMPK/mTOR signaling (Liu et al., 2016)                                                    |
| Ginsenoside Rd (GSRd) | Panax ginseng              | I/R-induced AKI                 | Inhibiting inflammatory.                                                                             | By increasing HO-1 and Nrf2 (Gao Z. et al., 2016)                                                            |
| (Rb1, Rg1)    |                             | Cisplatin-induced AKI           | Inhibiting apoptosis and activating autophagy.                                                        | By activating HO-1 (Sahin et al., 2010; Lv et al., 2015; Pan et al., 2015)                                   |
| (Rg3)         |                             | Glycerol-induced AKI            | Preventing ERK.                                                                                      | By preventing ERK (Zou et al., 2014)                                                                         |
| Ginsenoside R (GSRd) | Panax ginseng              | I/R-induced AKI                 | Suppressing inflammatory.                                                                            | By inhibiting oxygen free radicals (Ye et al., 2011)                                                        |
| Esculentoside A (EsA) | Phytolacca esculenta      | LPS-induced AKI                 | Decreasing apoptosis.                                                                                 | Yokozawa and Liu, 2000                                                                                       |
|               |                             |                                 | Decreasing apoptosis.                                                                                 | Zhou et al., 2014                                                                                            |
|               |                             |                                 | Reducing renal oxidative stress.                                                                     | Zhu et al., 2009                                                                                            |
|               |                             |                                 | Reducing oxidative stress and autophagy.                                                              | By decreasing AMPK/mTOR pathway (Wang et al., 2015)                                                         |
|               |                             |                                 | Decreasing apoptosis.                                                                                 | By blocking the JNK-p53-caspase-3 signaling (Han et al., 2016)                                               |
|               |                             |                                 | Decreasing inflammatory.                                                                              | By inhibiting NF-κB (Kang et al., 2007)                                                                     |
|               |                             |                                 | Alleviating inflammation.                                                                             | By activating PPAR-γ (Chen et al., 2017)                                                                    |

(Continued)
TABLE 2 Continued

| Names          | Origins                                      | Models                              | Functions                                         | Mechanisms                                                                 |
|----------------|----------------------------------------------|-------------------------------------|---------------------------------------------------|-----------------------------------------------------------------------------|
| Galingin       | Propolis and Alpinia officinarum             | Cisplatin-induced AKI               | Attenuating oxidative stress, inflammation, and cell death.  | By inhibiting ERK, NF-κB and RIPK1-mediated necroptosis signaling pathways (Hu et al., 2017) |
| Ginkgetin glycone (GA) | Ginkgo biloba extract                        | LPS-induced AKI                     | Decreasing inflammatory.                          | By activating SIRT1 via inhibiting the NF-κB signaling pathway (Zhang J. et al., 2017) |
| Glycyrrhizin acid (GA) | Ingredient in licorice                      | LPS-induced renal injury            | Inhibiting cell apoptosis, oxidative stress.       | By activating ERK and inhibiting NF-κB (Zhao et al., 2016)                  |
|                 |                                               | I/R-induced renal injury           | Reducing tubular necrosis.                        | By inhibiting HMGB1 and enhancing Nrf2 (Lau et al., 2014)                   |
|                 | (GA, 18kGA)                                  |                                     |                                                   |                                                                             |
| Gypenoside (GP) | Gynostemma pentaphyllum                     | I/R-induced renal injury            | Attenuating inflammatory and oxidative stress.    | By inhibiting ERK signaling (Ye et al., 2016)                              |
| Hyperin        | Ericaceae, Guttifera, and Celastraceae       | Cisplatin-induced AKI               | Attenuating inflammatory.                        | By inhibiting NF-κB and activating nuclear factor E2-related factor-2 signaling pathways (Chao et al., 2016) |
| Honokiol       | Magnolia officinalis                         | LPS-induced AKI                     | Inhibition of oxidative stress and inflammation. | By inhibiting TLR2/4/MyD88 signaling pathway (Xia et al., 2019)             |
| Isoacteoside (ISO) | Monochasma savatieri                        | LPS-induced AKI                     | Attenuating inflammatory.                        | By inhibiting TLR4 dimerization to activate the MyD88-TAK1- NF-κB/MAPK signaling cascades and TRIF pathway (Gao et al., 2017) |
| Leonurine (LEO) | Leonurus cardiaca                           | LPS-induced renal injury            | Inhibiting inflammatory and oxidative stress.     | By down-regulating NF-κB (Xu et al., 2014)                                 |
| Ligustrazine (LIG) | Ligustrum wallchi Franch.                   | Cisplatin/I/R-induced renal injury  | Down-regulating oxidative stress and apoptosis, decreasing neutrophils infiltration. | Liu et al., 2008; Feng et al., 2011                                        |
| Loganetin      | Loganin                                      | Rhabdomyolysis-induced AKI          | Improving renal function.                        | By improve microcirculatory disorder (MCD) (Zhang et al., 2006)             |
| Luteolin       | Celery, Green pepper, and Chamomile          | 0-galactose-induced AKI             | Attenuating inflammatory and oxidative stress.    | By suppressing phosphorylation of p38 MAPK (Xu et al., 2015)                |
| Nerolidol      | Essential oil                               | LPS-induced AKI                     | Inhibiting inflammatory and cell death.           | By inhibiting NF-κB (Domitrovic et al., 2013)                               |
| Osthole        | Cnidium monnieri (L.) Cusson fruit           | LPS-induced AKI                     | Inhibiting inflammation.                        | By decreasing pS3 (Kang et al., 2011)                                      |
| Pachyonic acid (PA) | A lanostane-type triterpenoid from Poria cocos | Sepsis-induced AKI                  | Inhibiting inflammatory function and antioxidant effect via. | By inhibiting TLR4-NF-κB signal pathway (Zhang L. et al., 2017)             |
| Paienol        | Panax quinquefolius Sems                   | Endotoxin-induced AKI               | Alleviating inflammation.                        | By inhibiting TLR4-NF-κB signal pathway (Yu et al., 2017)                 |
| Panax quinquefolius (PQS) | Panax quinquefolius | Cisplatin-induced AKI               | Suppressing oxidative stress, inflammation, and apoptosis. | By activating JAK2/STAT3 signaling, NF-κB and activating PI3K/Akt signaling (Luo et al., 2016) |
| Paeonol        | Radix Paeoniae Rubra                         | Pancreatitis-induced AKI            | Alleviating inflammation.                        | By activating NF-κB-COX-2, and PI3K/Akt pathway (Fan et al., 2016)         |
| Panaxadiol Saponin (PDS) | Ginseng stem and leaves                  | ConA-induced renal injury           | Attenuating inflammatory response.                | By inhibiting CXCL3/CXCL11 (Cai et al., 2017)                               |
| Panax notoginseng saponins (PNS) | Panax notoginseng | LPS-induced AKI                     | Inhibiting inflammatory and oxidative stress.     | By blocking NF-κB pathway (Cai et al., 2017)                                |
|                 |                                               |                                     | Reducing renal tissue apoptosis.                  | By inhibiting the mitochondrial apoptosis (Liu et al., 2014)                |
|                 |                                               |                                     | Increasing mitochondrial autophagy.               | By enhancing HIF-1α/BNIP3 (Liu X. et al., 2015)                            |

(Continued)
high levels of AA (Drew et al., 2002). Triptolide, isolated from Aristolochia fangchi, within which aristolochic acid I (AAI) and aristolochic acid II (AAII) are well known. AA has widely been used as an anti-inflammatory agent. However, a series of studies demonstrated that AA could induce early and transient acute tubular necrosis and progressive tubulointerstitial injury, which finally lead to renal fibrosis (Sato et al., 2004; Debelle et al., 2008; Zhou et al., 2010; DeBroe, 2012). AA also caused nephropathy, by inducing DNA adduct formation (Allard et al., 2013). Some drugs related with AA are nephrotoxic due to the intrinsic toxicity of herbs and the misidentification of potentially toxic compounds. The root of asarum (also known as Xi Xin) contains low levels of AA and has widely been used as an analgesic for headache, toothache, and inflammatory diseases. But the whole asarum plant contains high levels of AA (Drew et al., 2002). Triptolide, isolated from Tripterygium wilfordii Hook.F (TWHf)-derived diterpenoid, has been commonly used for its immunosuppressive and anti-cancer properties (Carter et al., 2006). However, administration of triptolide may result in severe kidney injury by impairing the antioxidant system, promoting production of reactive oxygen species and inducing apoptosis of tubular epithelial cells, which may limit the application of triptolide in the clinic (Yang et al., 2011, 2012).

### Prevention and Treatment of TCMs-Induced AKI

The first principle of effective therapy is to acknowledge and prevent or minimize nephrotoxicity of TCMs. In this regard, several strategies should be applied: (1) In view of
Li et al. Application of Herbs in AKI

FIGURE 1 | The molecular pathways targeted by the TCMs covered in this review are summarized. TGF-β receptor, Toll-like receptors (TLRs), TNF receptor, and FASL/Death receptors are stimulated by LPS, cisplatin, I/R, etc. These receptors are then activated by the downstream pathway, further triggering ROS production and an inflammatory response, eventually leading to kidney damage. TCMs suppress cisplatin/LPS/I/R-stimulated Toll-like receptors (TLR2/4), or by activating PPAR-γ, further inhibiting the NF-κB pathway and reducing inflammation. Additionally, apart from targeting caspase3/9, TCMs reduce apoptosis by inhibiting the TGF-β receptor, the ERK/JNK/P38MARK pathway and by promoting PI3K/AKT. In addition, TCMs inhibit autophagy by targeting inhibition of AMPK/mTOR. In addition to the traditional apoptosis, autophagy, programmed necrosis and ferroptosis are also caused during AKI. Wogonin and protocatechuic aldehyde can effectively inhibit RIPK1 in the RIPK1/RIPK3/MLKL of necroptosis. TLR2/4-mediated TRAF2 has a stimulant effect on RIPK3. Induction of HMGB2 by necroptosis and TLR2/4-regulated MyD88 aggravates the inflammatory response of acute kidney injury, while TCMs significantly improve this phenomenon via direct or indirect effects. Breviscapine can reduce ferroptosis by increasing glutathione peroxidase levels. In acute kidney injury, the production of ROS, the multiple roles of P53, the protective effects of eNOS, Nrf2, HO-1, and SIRT1/3 all become therapeutic targets of TCMs.

the intrinsic toxicity of some herbs, researchers could modify molecular structure of TCMs to lower the toxic effects without affecting their therapeutic effects. It is essential to reveal the compound/phytochemicals present in the formulations which are correlated with the toxicity in AKI. (2) As for the incorrect identification, processing and storage, standardization of herbal products need to be emphasized. We should also ensure safe manufacturing processes to avoid contamination from heavy metals and other ingredients. (3) We should determine and limit the dosing and duration of drugs usage through adequate preclinical trials and dose conversions between animals and humans. Safe and effective dose ranges for humans as well as appropriate monitoring for adverse effects are also needed. (4) It is worth mentioning that pharmacists and doctors should clearly know the interactions between TCMs and other medications before prescribing these drugs to patients. (5) For patients with special conditions, like chronic kidney disease and liver disease, their medication needs to be carefully considered.

CONCLUSION AND PERSPECTIVES

Collectively, previous studies showed that numerous types of TCMs protect against AKI via different mechanisms of action,
including inhibiting inflammation, cell apoptosis, necroptosis, ferroptosis, and restraining oxidative stress etc. These data support the potential application of these TCMs as novel therapeutic agents in treating patients with AKI. Although some TCMs have entered preclinical trials, it is essential to initiate preclinical pharmacologic and toxicologic trials and clinical trials to evaluate the efficacy and safety of TCMs usage. Moreover, considering that some TCMs are deleterious to the kidney, they should be attracted more attention when utilized. In addition, it is believed that western medicines always relieve symptoms quickly while TCMs exert therapeutic effects gently and fundamentally. In this regard, the combination of TCMs and western medicines may become a promising treatment strategy for AKI by taking advantages of both and by limiting side effects. The interaction between medicines should also be considered. In conclusion, advantages of both and by limiting side effects. The interaction between medicines should also be considered. In conclusion, advantages of both and by limiting side effects.

FUNDING

This study was supported by the National Natural Science Foundation of China (No. 81770609), Anhui University of Science and Technology (No. 1704a0802161), and technological Fund of Anhui Province for Outstanding Youth of China (Grant No. 1608085J07).

REFERENCES

Ali, R. H., Al-Moundhri, M., Eldin, M. T., Nemmar, A., Al-Siyabi, S., and Annamalai, K. (2008). Amelioration of cisplatin-induced nephrotoxicity in rats by tetramethylpyrazine, a major constituent of the Chinese herb Ligusticum wallichii. Exp. Biol. Med. 233, 891–896. doi: 10.3181/0711-RM-315

Allard, T., Wenner, T., Greten, H. J., and Effert, T. (2013). Mechanisms of herb-induced nephrotoxicity. Carr. Med. Chem. 20, 2812–2819. doi: 10.12741/0928673113120220006

Allison, S. J. (2016). Acute kidney injury: AlMing to enhance debris clearance and improve outcomes in AKI. Nat. Rev. Nephrol. 12:123. doi: 10.1038/nrneph.2016.3

An, X., and Shang, F. (2018). RA-XII exerts anti-oxidant and anti-inflammatory activities on lipopolysaccharide-induced acute renal injury by suppressing NF-kappaB and MAPKs regulated by HO-1/Nrf2 pathway. Biosci. Biophys. Res. Commun. 495, 2317–2323. doi: 10.1016/j.bbrc.2017.12.131

Arjumand, W., and Sultana, S. (2011). Glycyrrhizic acid: a phytochemical with a protective role against cisplatin-induced genotoxicity and nephrotoxicity. Life Sci. 89, 422–429. doi: 10.1016/j.lfs.2011.06.016

Augusti, P. R., Conterato, G. M., Somacal, S., Sobieski, R., Spohr, P. R., Torres, J. V., et al. (2008). Effect of astaxanthin on kidney function impairment and oxidative stress induced by mercuric chloride in rats. Food Chem. Toxicol. 46, 212–219. doi: 10.1016/j.fct.2007.08.001

Bentley, M. L., Corwin, H. L., and Dasta, J. (2010). Drug-induced acute kidney injury in the critically ill adult: recognition and prevention strategies. Crit. Care Med. 38, S169–S174. doi: 10.1097/CMM.0b013e3181d8e6c0

Cai, Q., Li, X., and Wang, H. (2001). Astragali and Angelica protect the kidney from cyclosporine-induced renal tubule dysfunction in rats. Exp. Biol. Med. 240, 114–123.

Cai, Z. Y., Sheng, Z. X., and Yao, H. (2017). Pachymic acid ameliorates sepsis-induced acute kidney injury by suppressing inflammation and activating the Nrf2/HO-1 pathway in rats. Eur. Rev. Med. Pharmacol. Sci. 21, 1924–1931.

Carter, B. Z., Mak, D. H., Schober, W. D., McQueen, T., Harris, D., Estrov, Z., et al. (2006). Tripolide induces caspase-dependent cell death mediated via the mitochondrial pathway in leukemic cells. Blood 108, 630–637. doi: 10.1182/blood-2005-09-3898

Chao, C. S., Tsai, C. S., Chang, Y. P., Chen, J. M., Chin, H. K., and Yang, S. C. (2016). Hyperin inhibits nuclear factor kappa B and activates nuclear factor E2-related factor-2 signaling pathways in cisplatin-induced acute kidney injury in mice. Int. Immunopharmacol. 40, 517–523. doi: 10.1016/j.intimp.2016.09.020

Chen, B., Liu, G., Zou, P., Li, X., Hao, Q., Jiang, B., et al. (2015). Epigallocatechin-3-gallate protects against cisplatin-induced nephrotoxicity by inhibiting endoplasmic reticulum stress-induced apoptosis. Exp. Biol. Med. 240, 1513–1519. doi: 10.10117/1535370215573394
Drew, A. K., Whyte, I. M., Bensoussan, A., Dawson, A. H., Zhu, X., and Myers, S. P. (2002). Chinese herbal medicine Toxicology database: monograph on Herba Asari, "xi xin". *J. Toxicol. Clin. Toxicol.* 40, 169–172. doi: 10.1080/CLIT-120004403

Fan, H. Y., Qiu, D., Yu, C., Zhao, F., Liu, T., Zhang, Z. K., et al. (2016). Panax notoginsenoside protects endotoxin-induced acute kidney injury: potential mechanism of inhibiting TLR4/NF-κB signaling pathway. *Oncoarget 7*, 39497–39510. doi: 10.18632/oncarget.8347

Feng, C., Xie, X., Wu, M., Li, C., Gao, M., Liu, et al. (2013). Tanshinone I protects mice from aristolochic acid I-induced kidney injury by induction of CYP1A. *Environ. Toxicol. Pharmacol.* 36, 850–857. doi: 10.1016/j.etap.2013.07.017

Feng, L., Ke, N., Cheng, F., Guo, Y., Li, S., Li, Q., et al. (2011). The protective effect of quercetin on the evolution of cisplatin-induced acute tubular necrosis. *Kidney Blood Press. Res.* 27, 148–158. doi: 10.1159/000078309

Fu, H., Hu, Z., Di, X., Zhang, Q., Zhou, R., and Du, H. (2016). Tenuigemin exhibits protective effects against LPS-induced acute kidney injury via inhibiting TLR4/NF-κB signaling pathway. *Eur. J. Pharmacol.* 791, 229–234. doi: 10.1016/j.ejphar.2016.08.013

Francescato, H. D., Coimbra, T. M., Costa, R. S., and Bianchi Mde, L. (2004). Protective effect of quercetin on the evolution of cisplatin-induced acute tubular necrosis. *Kidney Blood Press. Res.* 36, 298–305. doi: 10.1159/000078309

Gan, Y., Tao, S., Cao, D., Xie, H., and Zeng, Q. (2017). Protection of resveratrol against cisplatin-induced nephrotoxicity in LLC-PK1 cells. *Am. J. Nephrol.* 43, 747–753. doi: 10.1159/000475033

Huang, Y., Tsai, M. S., Hsieh, P. C., Shih, J. H., Wang, T. S., Wang, Y. C., et al. (2017). Galangin ameliorates cisplatin-induced nephrotoxicity by attenuating oxidative stress, inflammation and cell death in mice through inhibition of ERK and NF-κB signaling. *Toxicol. Appl. Pharmacol.* 329, 128–139. doi: 10.1016/j.taap.2017.05.034

Ji, H. L., Tong, L. G., Bai, C. Z., Song, M. Q., Chen, N. H., and Feng, M. L. (2014). [protective effect of baicalin against rotenone induced injury on PC12 cells]. *Zhongguo Zhong Yao Za Zhi* 39, 2947–2951.

Jiang, C., Zhu, W., Shao, Q., Yan, X., Jin, B., Zhang, M., et al. (2016). Tanshinone IIA protects against folic acid-induced acute kidney injury. *Am. J. Chin. Med.* 44, 737–753. doi: 10.1162/s0217463X16500403

Kang, K. P., Park, S. K., Kim, D. H., Sung, M. J., Jung, Y. J., Lee, A. S., et al. (2011). Luteolin ameliorates cisplatin-induced acute kidney injury in mice by regulation of p53-dependent renal tubular apoptosis. *Nephr. Dial. Transplant.* 26, 814–822. doi: 10.1093/ndt/gfq528

Kang, K. S., Kim, H. Y., Yamabe, N., Park, J. H., and Yokozawa, T. (2007). Preventive effect of 20(S)-ginsenoside Rg3 against lipopolysaccharide-induced hepatic and renal injury in rats. *Free Radic. Res.* 41, 1181–1188. doi: 10.1080/10715760701581740

Kaur, A., Kaur, T., Singh, B., Pathak, D., Singh, H., Buttar, et al. (2016). Curcumin alleviates ischemia reperfusion-induced acute kidney injury through NMDA receptor antagonism in rats. *Ren. Fail.* 38, 1462–1467. doi: 10.1080/08868622.2016.1214892

Khader, A., Yang, W. L., Kuncewitch, M., Prince, J. M., Marambaud, P., Nicastro, J., et al. (2015). Novel resveratrol analogues attenuate renal ischemic injury in rats. *J. Surg. Res.* 193, 807–815. doi: 10.1016/j.jss.2014.08.015

Kim, D. H., Jung, Y. J., Lee, J. E., Lee, A. S., Kang, K. P., Lee, S., et al. (2011). SIRT1 activation by resveratrol ameliorates cisplatin-induced renal injury through degradation of p53. *Am. J. Physiol. Renal Physiol.* 301, F427–F435. doi: 10.1152/ajprenal.00258.2010

Kim, H., Ravichandran, K., Ozok, A., Wang, Q., He, Z., Jani, A., et al. (2014). The water-soluble triptolide derivative PG490-88 protects against cisplatin-induced acute kidney injury. *J. Pharmacol. Exp. Ther.* 349, 518–525. doi: 10.1124/jpet.114.213769

Lameire, N. H., Baga, A., Cruz, D., De Maeseneer, I., Endre, Z., Kellum, J. A., et al. (2013). Acute kidney injury: an increasing global concern. *Lancet* 382, 170–179. doi: 10.1016/S0140-6736(13)60647-9

Lau, A., Wang, S., Liu, W., Haig, A., Zhang, Z. X., and Jevnikar, A. M. (2014). Glycyrrhizin acid ameliorates HMGB1-mediated cell death and inflammation after renal ischemia reperfusion injury. *Am. J. Nephrol.* 40, 84–95. doi: 10.1159/000364908

Li, J., Tan, Y. J., Wang, M. Z., Sun, Y., Li, G. Y., Wang, Q. L., et al. (2019). MicroRNA-146a protects against cisplatin-induced acute kidney injury by regulating the TLR-like receptor 4 signalling pathway. *Br. J. Pharmacol.* doi: 10.1111/bph.14595 [Epub ahead of print].

Li, P., Liao, S. T., Wang, J. S., Zhang, Q. X., Xu, D. Q., Lv, Y., et al. (2017). Protection by Huang-Lian-Jie-Du decoction and its constituent herbs of lipopolysaccharide-induced acute kidney injury. *J. Toxicol. Clin. Toxicol.* 55, 202–208. doi: 10.1080/08915603.2017.1328068

Li, Y., Xiong, W., Yang, J., Zhong, J., Zheng, L., and Jiang, J. et al. (2015). Attenuation of inflammation by emodin in lipopolysaccharide-induced acute kidney injury via inhibition of toll-like receptor 2 signal pathway. *Iran. J. Kidney Dis.* 9, 202–208.

Liangos, O. (2012). Drugs and AKI. *Minerva Urol. Nefrol.* 64, 51–62.

Lim, H. A., Lee, E. K., Kim, J. M., Park, M. H., Kim, D. H., Choi, Y. J., et al. (2012). PPARgamma activation by baicalin suppresses NF-kappaB-mediated inflammation in aged rat kidney. *Biogerontology* 13, 133–145. doi: 10.1007/s10522-011-9361-4

Lin, J. L. and Ho, Y. S. (1994). Flavonoid-induced acute nephropathy. *Am. J. Kidney Dis.* 23, 433–440. doi: 10.1016/S0272-6386(12)81008-0

Lin, M., Li, L., Zhang, Y., Zheng, L., Xu, M., Rong, R., et al. (2014). Baicalin ameliorates H2O2 induced cytotoxicity in HK-2 cells through the inhibition of ERK and the activation of Nrf2 signaling. *Int. J. Mol. Sci.* 15, 12507–12522. doi: 10.3390/ijms150712507

Linkermann, A. (2016). Nonapoptotic cell death in acute kidney injury and transplantation. *Kidney Int.* 89, 46–57. doi: 10.1016/j.kint.2015.10.008
Liu, C., Cheng, Z., Wang, Y., Dai, X., Zhang, J., and Xue, D. (2015). Paeoniflorin exerts a nephroprotective effect on concanavalin A-induced damage through inhibition of macrophage infiltration. *Diagn. Pathol.* 10:120. doi: 10.1186/s13000-015-0347-4

Liu, H., Gu, L. B., Fu, Y., Hu, H., Huang, Y. R., and Sun, W. (2016). Emodin ameliorates cisplatin-induced apoptosis of rat renal tubular cells in vitro by activating autophagy. *Acta Pharmacol. Sin.* 37, 235–245. doi: 10.1038/aps.2015.114

Liu, H. B., Meng, Q. H., Huang, C., Wang, J. B., and Liu, X. W. (2015). Nephroprotective effects of polydatin against ischemia/reperfusion injury: a role for the PI3K/Akt signal pathway. *Oxid. Med. Cell. Longev.* 36:2158. doi: 10.1155/2015/362158

Liu, W. J., Tang, H. T., Jia, Y. T., Ma, B., Fu, J. F., Wang, Y., et al. (2010). Notoginsenoside R1 attenuates renal ischemia-reperfusion injury in rats. *Shock* 34, 313–320. doi: 10.1097/SHK.0b013e3181ceedee4

Liu, X., Huang, Z., Zou, X., Yang, Y., Qu, Y., and Wen, Y. (2014). Panax notoginseng saponins attenuates cisplatin-induced nephrotoxicity via inhibiting the mitochondrial pathway of apoptosis. *Int. J. Clin. Exp. Pathol.* 7, 8391–8400.

Liu, X., Huang, Z., Zou, X., Yang, Y., Qu, Y., and Wen, Y. (2015). Possible mechanism of PNS protection against cisplatin-induced nephrotoxicity in rat models. *Toxicol. Mech. Methods* 25, 347–354. doi: 10.3109/15376516.2015.1006492

Liu, X. H., Li, J., Li, Q. X., Ai, Y. X., and Zhang, L. (2008). Protective effects of ligustriucone on cisplatin-induced oxidative stress, apoptosis and nephrotoxicity in rats. *Environ. Toxicol. Pharmacol.* 28, 49–55. doi: 10.1016/j.etap.2008.01.006

Lou, X. Y., Cheng, J. L., and Zhang, B. (2015). Therapeutic effect and mechanism of brevicsapine on cisplatin-induced nephrotoxicity in mice. *Asian Pac. J. Trop. Med.* 8, 873–877. doi: 10.1016/j.ajtmh.2015.09.017

Luo, L. N., Xie, Q., Zhang, X. G., and Jiang, R. (2016). Osthole decreases renal ischemia-reperfusion injury by suppressing JAK2/STAT3 signaling activation. *Exp. Ther. Med.* 12, 2009–2014. doi: 10.3892/etm.2016.3603

Lv, J., Feng, M., Zhang, L., Wan, X., Zeng, Y. C., Liang, P. F., et al. (2015). Protective effect of epigallocatechin gallate, a major constituent of green tea, against cisplatin-induced kidney inflammation through inhibiting Mincle-maintained M1 macrophage phenotype. *Phytomedicine* 52, 284–294. doi: 10.1016/j.phymed.2018.09.210

Thomas, M. E., Blaine, C., Dawney, A., Devonald, M. A., Fouhou, S., Laing, C., et al. (2015). The definition of acute kidney injury and its use in practice. *Kidney Int.* 87, 62–73. doi: 10.1038/ki.2014.328

Tu, Y., Sun, W., Wan, Y. G., Gao, K., Liu, H., Yu, B. Y., et al. (2014). Dahuang Fuzi Decoction ameliorates tubular epithelial apoptosis and renal damage via inhibiting TGF-beta-JNK signaling pathway activation in vivo. *J. Ethnopharmacol.* 156, 115–124. doi: 10.1016/j.jep.2014.08.035

Waikar, S. S., Liu, K. D., and Chertow, G. M. (2008). Diagnosis, epidemiology and outcomes of acute kidney injury. *Clin. J. Am. Soc. Nephrol.* 3, 844–861. doi: 10.2215/CJN.05191107

Wu, H. P., Liu, C. W., Chang, H. W., Tsai, J. W., Sung, Y. Z., and Chang, L. C. (2013). *Cordyceps sinensis* protects against renal ischemia/reperfusion injury in rats. *Mol. Biol. Rep.* 40, 2347–2355. doi: 10.1007/s11033-012-2316-2

Wu, L., Mao, N., Tan, R. Z., Wang, H. L., Wen, J., Liu, Y. H., et al. (2015). Ginsenoside Rg1 reduces aldosterone-induced autophagy via the AMPK/nTOR pathway in NRK-52E cells. *Int. J. Mol. Med.* 36, 518–526. doi: 10.3892/ijmm.2015.2242

Wang, N., Mao, L., Yang, L., Zou, J., Liu, K., Liu, M., et al. (2017). Resveratrol protects against early polymicrobial sepsis-induced acute kidney injury through inhibiting endoplasmic reticulum stress-activated NF-kappaB pathway. *Oxid. Med. Cell. Longev.* 8, 36449–36461. doi: 10.18632/oxidmed.16860

Wang, P., Wang, W., Shi, Q., Zhao, L., Mei, F., Li, C., et al. (2016). Paeoniflorin ameliorates acute necrotizing pancreatitis and pancreatitis induced acute renal injury. *Mol. Med. Rep.* 14, 1123–1131. doi: 10.3892/mmr.2016.5351

Wang, Q., Yao, Y. M., Wang, W. J., Xian, L. M., Dong, N., Xu, S., et al. (2007). [Effect of Xuebijing injection on renal high mobility group box-1 protein expression and acute kidney injury in rats after scald injury]. *Zhongguo Yi Xue Ke Xue Ye Yuan Xue Bao* 29, 478–483.

Wang, X., Zhao, H., Shao, Y., Wang, P., Wei, Y., Zhang, W., et al. (2014). Nephroprotective effect of astaxanthin against trivalent inorganic arsenic-induced acute renal injury in wistar rats. *Nutr. Res. Pract.* 8, 46–53. doi: 10.4162/nrp.2014.8.1.46

Wang, Y., Feng, F., Liu, M., Xue, J., and Huang, H. (2018). Resveratrol ameliorates sepsis-induced acute kidney injury in a pediatric rat model via Nrf2 signaling pathway. *Exp. Ther. Med.* 16, 3233–3240. doi: 10.3892/etm.2018.653

Wu, C. H., Chen, A. Z., and Yen, G. C. (2015). Protective effects of glycyrrhizin and 18beta-glycyrrhetinic acid against cisplatin-induced nephrotoxicity in BALB/c mice. *J. Agric. Food Chem.* 63, 1209–1209. doi: 10.1021/acs.jafc.5b05471

Wu, J., Pan, X., Fu, H., Zheng, Y., Dai, Y., Yin, Y., et al. (2017). Effect of curcumin on glycerol-induced acute kidney injury in rats. *Sci. Rep.* 7:10114. doi: 10.1038/s41598-017-10693-4

Wu, M. F., Li, P. C., Chen, C. C., Ye, S. S., Chien, C. T., and Yu, C. C. (2011). *Cordyceps sobolifera* extract ameliorates lipopolysaccharide-induced renal dysfunction in the rat. *Am. J. Chin. Med.* 39, 523–535. doi: 10.1142/S0129049711009007
Xia, S., Lin, H., Liu, H., Lu, Z., Wang, H., Fan, S., et al. (2019). Honokiol attenuates sepsis-associated acute kidney injury via the inhibition of oxidative stress and inflammation. *Inflammation* doi: 10.1007/s10753-018-0937-x [Epub ahead of print].

Xu, D., Chen, M., Ren, X., and Wu, Y. (2014). Leonurine ameliorates LPS-induced acute kidney injury via suppressing ROS-mediated NF-kappaB signaling pathway. *Fitoterapia* 97, 148–155. doi: 10.1016/j.fitote.2014.06.005

Xu, J. J., Zhen, J. T., Tang, L., and Lin, Q. M. (2017). Intravenous injection of *Xu*, J. J., Zhen, J. T., Tang, L., and Lin, Q. M. (2017). Intravenous injection of *Xu*, J. J., Zhen, J. T., Tang, L., and Lin, Q. M. (2017). Intravenous injection of *Xu*, J. J., Zhen, J. T., Tang, L., and Lin, Q. M. (2017). Intravenous injection of *Xu*, J. J., Zhen, J. T., Tang, L., and Lin, Q. M. (2017). Intravenous injection of *Xu*, J. J., Zhen, J. T., Tang, L., and Lin, Q. M. (2017). Intravenous injection of *Xu*, J. J., Zhen, J. T., Tang, L., and Lin, Q. M. (2017). Intravenous injection of *Xu*, J. J., Zhen, J. T., Tang, L., and Lin, Q. M. (2017). Intravenous injection of *Xu*, J. J., Zhen, J. T., Tang, L., and Lin, Q. M. (2017). Intravenous injection of *Xu*, J. J., Zhen, J. T., Tang, L., and Lin, Q. M. (2017). Intravenous injection of *Xu*, J. J., Zhen, J. T., Tang, L., and Lin, Q. M. (2017). Intravenous injection of...