Triggers and alleviating factors for fatigue in Parkinson’s disease

Iris Lin¹, Briana Edison¹, Sneha Mantri², Steven Albert³, Margaret Daeschler⁴, Catherine Kopil⁵, Connie Marras⁶, Lana M. Chahine*¹

¹ Department of Neurology, University of Pittsburgh, Pittsburgh, PA, United States of America, ² Department of Neurology, Duke University, Durham, NC, United States of America, ³ Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, United States of America, ⁴ Columbia University School of Social Work, New York, NY, United States of America, ⁵ The Michael J. Fox Foundation for Parkinson’s Research, New York, NY, United States of America, ⁶ Department of Neurology, University of Toronto, Toronto, Ontario, Canada

* ichahine2018@gmail.com

Abstract

Background
Fatigue is common in Parkinson’s Disease, but few effective treatments are available for it. Exploring triggers and alleviating factors, including effects of exercise, could inform development of management strategies for Parkinson’s Disease fatigue.

Objectives
To examine triggers and alleviating factors for fatigue reported by individuals with Parkinson’s Disease, including perceived effect of exercise.

Methods
A sample of individuals with self-reported Parkinson’s Disease participating in the study Fox Insight were administered an online survey. The survey included the Parkinson’s Fatigue Scale, the Physical Activity Scale for the Elderly, and multiple-choice questions about triggers and alleviating factors for fatigue.

Results
Among the sample of 1,029 individuals with Parkinson’s disease, mean (standard deviation (SD)) age was 67.4 (9.3) years, 44.0% were female. Parkinson’s Fatigue Scale score ranged from 16–80, mean (SD) 48.8 (16.2). Poor sleep (62.1%) and physical exertion (45.1%) were frequently reported triggers for fatigue. Coping strategies including sitting quietly (58.1%), laying down with or without napping, and exercise (20%). Physical Activity Scale for the Elderly scores were higher in those who reported that exercise alleviated their fatigue (49.7%) compared to those who reported it worsened their fatigue (18.9%) (mean (SD) score 158.5 (88.8) vs 119.8 (66.6) respectively; p<0.001).
Conclusions

Several behavioral and environmental triggers and alleviating strategies for fatigue are reported by individuals with Parkinson's disease. Many feel that exercise alleviates fatigue, though the relationship between exercise and fatigue in Parkinson's disease appears complex. This exploratory study may inform future development of treatments or coping strategies for Parkinson's disease fatigue.

Introduction

Fatigue in Parkinson's disease (PD) occurs in over half of patients and has significant negative impact on both quality of life and the ability of patients to carry out daily activities [1–6]. Many patients find fatigue to be one of their most bothersome symptoms [7–9], yet few effective interventions for PD fatigue exist [10–12]. The etiology and pathophysiology of fatigue in PD is likely multifactorial [13–16], contributing to the challenges of developing therapeutics. While wearing off of PD medications may be associated with fatigue [17], and fatigue is levo-dopa-responsive in at least some patients [18, 19], other precipitating and alleviating factors for fatigue in PD are not well described. In particular, physical activity, which may be neuroprotective and is a core component of PD management [20–23], appears to have mixed effects on fatigue [24–27], but data are limited. To address this gap in knowledge, and toward informing future development of therapeutics, we examined patient-reported triggers and alleviating factors for fatigue in PD. Given the integral role exercise has in PD management and its potential as a treatment for PD fatigue [28–34], as well as the potential for physical activity to precipitate fatigue, we focused on patient-perceived effects of exercise on their fatigue.

Materials and methods

Sample

This work occurred as part of the Michael J Fox Foundation’s Parkinson’s Disease Education Consortium (PDEC) 2018 research program on the experience and impact of fatigue in PD, as described previously in detail [35]. Briefly, the sample was drawn from the Fox Insight (FI) cohort. FI is an online-only study that includes individuals aged 18 and older with self-reported Parkinson’s disease [36]. De-identified data used in this analysis are available on Fox Den at foxden.michaeljfox.org. Individuals with PD who were residents of the United States and had completed the Physical Activity Score for the Elderly (PASE) and Geriatric Depression Scale-15 item (GDS-15) in the prior 90 days (as part of their FI study assessments) received an email inviting them to participate in a survey about PD fatigue. Of the 3,531 FI participants who received the email invitation, 1,036 completed the survey (response rate 29.3%). Seven respondents were excluded for missing data (age, sex, year of diagnosis); thus, a final sample of 1,029 are included in this analysis.

This study was performed in accordance with the Declaration of Helsinki. This study and the FI study are approved by the New England Institutional Review Board (IRB; IRB study number for this study: 1279414, IRB study number for FI: 120160179), and online consent is obtained from each participant at enrollment.

Assessments

Data collected as part of regularly-scheduled FI study assessments that were included in this analysis are:
- Demographics: age, sex, race
- PD disease duration (time from patient-reported month/year of diagnosis to month/year of survey participation)
- Movement Disorders Society Unified Parkinson’s Disease Rating Scale (MDS-UPDRS) part II, motor experiences of daily living [37]
- Geriatric Depression Scale-15 item (GDS-15) [38]
- Sleep and sleepiness were assessed with the Scale for Outcomes in Parkinson’s disease-SLEEP [39]. This scale is recommended for assessing sleep in PD [39, 40]. It asks about pertinent symptoms in the prior month. It has a nighttime subscale (SCOPA-NS), maximum score 15, higher scores indicating worse subjective nighttime sleep; and daytime sleepiness subscale (SCOPA-DS), maximum score 18, higher scores indicating more daytime sleepiness.
- PD Medications: Participants were presented with a list of PD medications and could pick one or more. For purposes of this analysis, medications were grouped into 3 categories: levodopa, dopamine agonist, and other (including monoamine oxidase inhibitors and amantadine).
- Physical Activity Scale of the Elderly (PASE): The PASE is a self-reported measure of subjects’ recent activities, with higher PASE scores (range 0 to 500) indicative of higher levels of overall physical activity [41]. Subscores for light, moderate, strenuous and strength / endurance exercise per week were generated: frequency of exercise x duration per bout of exercise.

The survey related to fatigue that was administered to eligible FI participants included the following:

- The Parkinson Fatigue Scale (PFS) [42, 43], a PD-specific scale recommended for the evaluation of fatigue in PD [44]. A total score is generated as the sum of individual items, range 16 to 80. Higher scores are indicative of higher levels of fatigue. As described in scoring methods [42], subjects with a modified total score of at least 8 were categorized as “fatigued;” all others were categorized as “not fatigued.”

- A series of multiple-choice questions (MCQs) were developed based on results of a pilot phase that included telephone interviews with patients about their experience with PD fatigue, as previously described [35]. Each of these MCQs included an accompanying definition of fatigue, stating, ‘There are many ways in which to define fatigue. For the purpose of this survey, please think of fatigue as “an abnormal and excessive lack of energy.”’ Table 1 includes the survey questions as administered to participants.

Data analysis

Descriptive statistics were used to summarize demographics and questionnaire responses. In light of different manifestations of fatigue in males vs females with PD [5, 35, 45, 46], and in younger (<65 years) vs older (≥65 years) age groups [47–49], we compared these groups to explore whether there are also demographic differences in triggers and alleviating factors for fatigue, using chi² test of homogeneity. Where the chi² test omnibus p-value < 0.05, adjusted residuals were compared post-hoc. A given demographic subgroup was considered significantly more likely to choose a given trigger or alleviating factor when the adjusted residual was >2.
Table 1. Fatigue survey MCQs.

Question	Answer choices
Which of the following experiences, if any, can trigger or bring on fatigue for you? Please select all that apply.	1] A poor night’s sleep
2] Physical exertion (e.g., from strenuous exercise or participating in sports)	
3] Emotions, either negative or positive (such as stress, anger, joy, excitement, etc.)	
4] Being overheated	
5] Taking medication for Parkinson’s disease	
6] A busy day	
7] Some other trigger(s) (Those selecting “other” could then specify with a free text response)	
8] Fatigue is not triggered by specific experiences for me	
When you experience fatigue, what strategies do you most often use to cope with or recover from your fatigue? Please select up to three strategies.	1] Sitting quietly (e.g., watching television, listening to the radio, reading, etc.)
2] Sleeping	
3] Laying down to rest (not sleeping)	
4] Exercising	
5] Meditating	
6] Sitting in a bath and/or a jacuzzi	
7] Drinking coffee / caffeine	
8] Taking medication	
9] Eating	
10] Some other coping strategy (Those selecting “other” could then specify with a free text response)	
Respondents who selected [5] Taking medication, were presented with an additional question:	1] Carbidopa-Levodopa (Sinemet, Sinemet CR, Sinemet Extended Release, Parcopa, Rytary, Stalevo, Duopa)
2] Entacapone (Comtan)	
3] Pramipexole (Mirapex or Mirapex ER)	
4] Ropinirole (Requip or Requip XL)	
5] Rotigotine (Neupro patch)	
6] Apomorphine (Apokyn)	
7] Amantadine (Symmetrel or Gocovri)	
8] Safinamide (Xadago)	
9] Selegiline (Deprenyl, Eldepryl, Zelapar) or Rasagiline	
10] Another medication (Please specify in the box below)	
Which medication(s) do you most often take to cope with or recover from your fatigue? Please select all that apply.	1] Carbidopa-Levodopa (Sinemet, Sinemet CR, Sinemet Extended Release, Parcopa, Rytary, Stalevo, Duopa)
2] Entacapone (Comtan)	
3] Pramipexole (Mirapex or Mirapex ER)	
4] Ropinirole (Requip or Requip XL)	
5] Rotigotine (Neupro patch)	
6] Apomorphine (Apokyn)	
7] Amantadine (Symmetrel or Gocovri)	
8] Safinamide (Xadago)	
9] Selegiline (Deprenyl, Eldepryl, Zelapar) or Rasagiline	
10] Another medication (Please specify in the box below)	
Many individuals with PD fluctuate between periods in which their symptoms are better controlled and periods during which symptoms return. We refer to the periods during which symptoms are better controlled as ON, and periods during which symptoms return as OFF. Based on this definition of OFF, do you experience OFF periods?	1] Yes
2] No	
Respondents who selected [1] Yes, were presented with an additional question:	1] I am more likely to experience fatigue during OFF periods than during ON periods.

(Continued)
To examine the relationship between exercise and fatigue, four groups were compared, defined according to their response on the question about perceived effect of exercise on fatigue (no effect, exercise improves fatigue, exercise worsens fatigue, or doesn’t exercise). Kruskal-Wallis was used to compare univariate differences in clinical characteristics and physical activity levels (PASE total score and subscores) among the four groups; based on Bonferroni adjustment, \(p < 0.0125 \) was considered statistically significant.

Data were analyzed using Stata/IC 12.1 (StataCorp LP, College Station TX).

Results

The final sample included 1,029 participants. Subject characteristics are shown in Table 2; mean (standard deviation) age was 67.4 (9.3) years, 56% were male, and mean disease duration

Total cohort N = 1029
Sex
Female, n (%)
Male, n (%)
Age in years, Mean (SD)
White or Caucasian, n (%)
Disease duration in years, Mean (SD)
PD Medications
Taking PD medications, n (%)
Levodopa, n (%)
Dopamine agonist, n (%)
Levodopa and dopamine agonist, n (%)
Other PD medication, n (%)
PFS score, Mean (SD)
MDS-UPDRS II score, Mean (SD)
GDS-15 score, Mean (SD)
SCOPA-NS, Mean (SD)
SCOPA-DS, Mean (SD)
PASE score, Mean (SD)
was 4.6 years. There was a range of fatigue in the cohort; 465 (45.2%) of the sample were categorized as having fatigue based on dichotomized PFS score.

Triggers of fatigue

Self-reported triggers for fatigue are shown in Table 3.

The most frequently reported triggers were a poor night’s sleep (62.1%), physical exertion from exercise or sports (45.1%), and a busy day (44.2%). Other reported triggers included emotions (30.5%) and being overheated (22.2%). Twelve percent could not identify a specific trigger for fatigue. A trigger that was significantly more likely to be cited by males compared to females was physical exertion (51.2% vs 37.3%), whereas triggers more commonly cited by females compared to males included a busy day (51.7% vs 38.4%) and emotions (38.4% vs 26.6%), being overheated (26.5% vs 20.0%), and taking PD medication (22.7% vs 16.9%) as a trigger for fatigue.

Table 3. Triggers and coping strategies for fatigue reported by cohort as a whole and in demographic subgroups.

Patient-Reported Triggers	n (% total cohort)	Male, n (% of total male)	Female, n (% of total female)	p-value (males vs females)	Age < 65, n (% of total age < 65)	Age ≥ 65, n (% of total age ≥ 65)	p-value (age < 65 vs age ≥65)
A poor night’s sleep	639 (62.1)	352 (61.1)	287 (63.4)	0.461	239 (69.5)	400 (58.4)	0.001
Physical exertion (e.g. strenuous exercise or participating in sports)	464 (45.1)	295 (51.2)	169 (37.3)	< 0.001	160 (46.5)	304 (44.4)	0.517
A busy day	455 (44.2)	221 (38.4)	234 (51.7)	< 0.001	186 (54.1)	269 (39.3)	< 0.001
Emotions, either negative or positive (stress, anger, joy, excitement, etc.)	314 (30.5)	159 (27.6)	155 (34.1)	0.022	132 (38.4)	182 (26.6)	< 0.001
Being overheated	228 (22.2)	119 (20.7)	109 (24.1)	0.192	91 (26.5)	137 (20.0)	0.019
Taking medication for PD	194 (18.9)	118 (20.5)	76 (16.8)	0.131	78 (22.7)	116 (16.9)	0.026
Fatigue is not triggered by specific experiences for me	128 (12.4)	71 (12.3)	57 (12.6)	0.902	30 (8.7)	98 (14.3)	0.010
Some other trigger(s)	78 (7.6)	35 (6.1)	43 (9.5)	0.040	27 (7.8)	51 (7.4)	0.818
Patient-Reported Coping Strategies							
Sitting quietly (e.g. watching TV, listening to radio, reading, etc.)	598 (58.1)	316 (54.9)	282 (62.3)	0.017	185 (53.8)	413 (60.3)	0.046
Laying down to rest (not sleeping)	541 (52.6)	286 (49.7)	255 (56.3)	0.034	195 (56.7)	346 (50.5)	0.061
Sleeping	495 (48.1)	300 (52.1)	195 (43.0)	0.004	176 (51.2)	319 (46.6)	0.164
Exercising	195 (19.0)	113 (19.6)	82 (18.1)	0.538	76 (22.1)	119 (17.4)	0.068
Drinking coffee / caffeine	169 (16.4)	99 (17.2)	70 (15.5)	0.456	79 (23.0)	90 (13.1)	< 0.001
Taking medication	104 (10.1)	56 (9.7)	48 (10.6)	0.644	43 (12.5)	61 (8.9)	0.071
Eating	91 (8.8)	52 (9.0)	39 (8.6)	0.814	27 (7.8)	64 (9.3)	0.426
Meditating	80 (7.8)	35 (6.1)	45 (9.9)	0.022	28 (8.1)	52 (7.6)	0.757
Some other coping strategy	65 (6.3)	36 (6.3)	29 (6.4)	0.921	21 (6.1)	44 (6.4)	0.843
Sitting in a bath and/or jacuzzi	48 (4.7)	16 (2.8)	32 (7.1)	0.001	18 (5.2)	30 (4.4)	0.540

*bold values denote significant difference in proportion reporting specified trigger or alleviating factor based on post-hoc comparison of adjusted residuals if chi-squared omnibus p < 0.05

https://doi.org/10.1371/journal.pone.0245285.t003
Mean (SD) PFS score was 49.9 (15.8) among the 789 respondents taking levodopa, 50.0 (15.7) among the 258 respondents taking dopamine agonists, and 48.0 (16.4) among the 337 respondents taking other PD medications. PD medications were selected as a trigger for fatigue by 194 of respondents. Comparing these 194 participants to the 835 who did not select PD medications as a trigger for their fatigue, the proportion who reported taking an agonist was higher (n = 63 (33% of 194) versus n = 195 (23% of 835) respectively, p = 0.008), as was the proportion taking levodopa (n = 164 (85% of 194) versus n = 625 (75% of 835), p = 0.004), but there was no significant difference in the proportion taking “other” PD medications (n = 75 (39% of 194) versus n = 262 (31% of 835), p = 0.052). Additionally, among the 686 participants who reported experiencing OFF periods, 42.8% of those reported being more fatigued during medication OFF periods, 4.6% reported being more fatigued during medication ON periods, and 35.1% reported no relationship between fatigue and ON/OFF periods.

Strategies for coping with fatigue
The most frequently reported coping strategies for fatigue (Table 3) were engaging in activities while sitting quietly (e.g. television or reading, 58.1%), laying down or resting without sleeping (52.6%), and sleeping (48.1%). A coping strategy that was more likely to be cited by males compared to females was sleeping (52.1% vs 43.0%), whereas coping strategies more commonly cited by females compared to males included sitting quietly doing an activity (62.3% vs 54.9%), laying down to rest without sleeping (56.3% vs 49.7%), meditating (9.9% vs 6.1%), and sitting in a bath or jacuzzi (7.1% vs 2.8%). Respondents <65 were more likely to employ drinking caffeine (23.0% vs 13.1%) as a coping strategy for fatigue. Of the 104 patients who reported that taking medications helped them cope with fatigue, 74 (71.2%) of those participants utilized formulations of levodopa, 7 (6.7%) utilized dopamine agonists (e.g. Pramipexole or Ropinirole), 5 (4.8%) utilized MAO-B inhibitors (Rasagiline or Selegiline), and 4 (3.8%) utilized benzodiazepines.

Effect of exercise on fatigue
As shown in Table 3, 45.1% of participants reported physical exertion (e.g. from strenuous exercise or participating in sports) as a trigger for fatigue, while 19.0% reported using exercising as a coping strategy for fatigue. 51.2% of males reported physical exertion as a trigger for fatigue, compared to 37.3% of females (p<0.0001).

When queried specifically regarding whether they felt that exercise improved or worsened fatigue levels, approximately half of participants (49.7%) reported feeling that exercise improved fatigue (Table 4). A smaller proportion reported feeling that exercise either did not affect fatigue (18.6%) or worsened fatigue (18.9%), or that they do not exercise (9.5%). Of the 200 who reported that exercise improved their fatigue, 173 (86.5%) indicated exercise as a coping strategy for their fatigue. There were no significant differences in age, sex, or disease duration between groups.

The group who reported that fatigue was improved by exercise had significantly lower MDS-UPDRS II score and GDS-15 score compared to all other groups (Table 4). They had significantly lower scores on SCOPA-DS compared to the groups who either felt that exercise worsened fatigue or did not exercise at all. PFS scores were lower in the group who felt that exercise helped their fatigue compared to those who felt that exercise worsened fatigue (mean PFS score 46.2 vs 55.2 respectively, p<0.001).

For the sample as a whole, PFS score and PASE total score were moderately inversely correlated (spearman’s ρ = -0.232, p<0.001). Those who felt that exercise helped their fatigue had significantly higher PASE scores compared to the other groups (Table 4). Of note however,
light and moderate activity levels were not different between those who felt exercise improves versus worsens fatigue.

Discussion

In this sample of individuals with PD with a range of fatigue severity, several triggers and alleviating factors for fatigue were identified. Physical activity emerged as both a trigger and alleviating factor for fatigue. Several of the triggers for fatigue that were reported may be modifiable. Poor sleep was cited in this study as a major contributor to fatigue, especially among respondents younger than 65, highlighting the importance of assessing nighttime sleep in PD [50]. Additionally, a busy day was cited as a frequent triggering factor; this was reported more commonly by female participants and those younger than 65 years of age. As for other triggers, one-third of participants noted emotions as triggering fatigue; these participants were also more likely to be female and younger than 65. This warrants further study, as does the potential for including coping strategies for emotional distress, such as cognitive-behavioral therapy [51], in the therapeutic approach to PD fatigue. About one-fifth of participants cited overheating as a trigger for their fatigue. Temperature dysregulation, including hypohidrosis, is seen in PD [52]. Counseling patients on the potential for high environmental temperatures to trigger fatigue may be warranted.

Table 4. Characteristics and activity levels in relation to perceived effect of exercise on fatigue.

Clinical Characteristics	Group 1 No effect of exercise	Group 2 Exercise improves fatigue	Group 3 Exercise worsens fatigue	Group 4: Does not exercise	p-value	
n	191	511	194	98	—	
Age in years, Mean (SD)	68.3 (10.0)	66.9 (9.0)	67.0 (9.3)	68.9 (9.6)	0.055²	
Male n (% of total male)	105 (18.2)	274 (47.6)	126 (21.9)	52 (9.0)	0.048³	
Female n (% of total female)	86 (19.0)	237 (52.3)	68 (15.0)	46 (10.2)		
Disease duration in years, Mean (SD)	5.1 (6.0)	4.2 (5.0)	4.6 (4.8)	5.6 (6.0)	0.1146²	
PFS score, Mean (SD)	49.2 (16.5)	46.2 (14.9)	55.2 (14.9)	56.1 (15.2)	<0.0125⁶	d,e
MDS-UPDRS II score, Mean (SD)	12.4 (7.8)	9.8 (6.9)	14.1 (8.6)	16.3 (9.7)	<0.0125⁶	a,c,d,e
GDS-15 score, Mean (SD)	4.4 (3.7)	3.5 (3.2)	5.5 (4.0)	5.9 (4.2)	<0.0125⁶	a,b,c
SCOPA-NS score, Mean (SD)	6.0 (3.58)	5.90 (3.42)	6.80 (3.83)	7.11 (3.76)	<0.0125⁶	d,e
SCOPA-DS score, Mean (SD)	4.3 (3.5)	3.8 (3.0)	4.5 (3.6)	4.8 (3.4)	<0.0125⁶	d,e
Physical Activity						
PASE total score, Mean (SD)	144.8 (93.7)	158.5 (88.8)	119.8 (66.6)	85.2 (77.0)	<0.0125⁶	a,c,d,e,f
Light sport score, Median (IQR)	0 (0–2.3)	0 (0–2.3)	0 (0–2.3)	0 (0–0)	<0.0125⁶	a,c,d,e
Moderate sport score, Median (IQR)	0 (0–0.75)	0 (0–0.75)	0 (0–0)	0 (0–0)	<0.0125⁶	a,c,d,e
Strenuous sport score, Median (IQR)	0 (0–0.75)	0 (0–4.5)	0 (0–0)	0 (0–0)	<0.0125⁶	a,c,d,e,f
Strength and Endurance exercises score, Median (IQR)	0.75 (0–3.0)	1.8 (0–4.5)	0.75 (0–2.3)	0 (0–0)	<0.0125⁶	c,d,e,f

1 35 participants did not provide a response to the question regarding impact of exercise on fatigue.

2 p-value denotes any between-group differences per Kruskal-Wallis test. Significant differences (p < 0.0125) among pairs of groups denoted as follows: (a) Group 1 vs Group 2 (b) Group 1 vs Group 3 (c) Group 1 vs Group 4 (d) Group 2 vs Group 3 (e) Group 2 vs Group 4 (f) Group 3 vs Group 4

3 p-value as calculated with Fisher’s exact test

https://doi.org/10.1371/journal.pone.0245285.t004
As for strategies to cope with fatigue, the most common ones were not surprising: resting, with or without sleep. Our study suggests that males tend to prefer sleeping, whereas females tend to prefer resting without sleeping. These findings may reflect sex differences in napping propensity and the relationship between nighttime sleep, daytime sleepiness, and fatigue [53, 54]. Increasing data support the utility of daytime napping in PD [55], but the timing and duration of daytime naps needs to be balanced with potential effects on nighttime sleep. Caffeine is used to manage fatigue by a substantial minority in our sample, especially respondents younger than 65 years of age. This raises the possibility that caffeine may not only help daytime sleepiness but also fatigue in PD [56], and warrants further study.

Our results highlight a complex relationship between dopaminergic medications and fatigue in PD. Fatigue scores were similar among patients taking different types of PD medications (levodopa vs dopamine agonists vs other PD meds). Both intake of PD medications and wearing off of those medications emerged as a subjective trigger for fatigue. The proportion taking levodopa and dopamine agonist was higher among those who reported PD medication as a trigger for fatigue. These results must be interpreted with caution; whether these findings reflect medication-induced fatigue or whether disease severity or other patient characteristics confound the relationship between fatigue and medications requires further study. Nevertheless, sleepiness resulting from dopaminergic medications, especially dopamine agonists but also levodopa, is well documented [57]. Some patients may experience this as a sense of fatigue as well, or may not necessarily make a distinction between sleepiness and fatigue [35]. In a patient with PD fatigue, especially one being treated with a dopamine agonist, consideration for medication-induced hypersomnolence is important. A careful clinical history may help distinguish between hypersomnolence and fatigue. In some patients who cannot make this distinction, an adjustment of dopaminergic medication may still be considered. In addition, our findings reinforce the importance of assessing for non-motor symptoms such as fatigue as a manifestation of OFF periods [58, 59], and adjusting PD medications accordingly.

Half of participants reported that exercise improved fatigue levels and fatigue severity was lower in that group. Additionally, roughly one-fifth of participants reported using exercise as a coping strategy for fatigue; this did not vary significantly by sex or age. Our study design does not allow for examination of causality, but data from other patient populations indicates that exercise could have a potential benefit on fatigue. Exercise improves cancer-related fatigue [60] and chronic fatigue syndrome [61]. The potential utility of exercise to improve PD fatigue is important to explore further.

By contrast, nearly one in five participants reported that exercise worsens their fatigue. Total PASE scores were lower in the group that reported worsening of fatigue with exercise (though light/moderate exercise/activity levels were similar to those who feel that exercise improves their fatigue). Fatigue has been identified as a barrier to exercise in PD patients with fatigue [62], as has low outcome expectations, i.e. lack of expectation for exercise to derive benefit [63]. These factors could explain the lower levels of physical activity in the group who reported exercise worsens their fatigue. Fatigue occurring as a result of physical exercise is not unique to the PD population and has been reported by other disease populations [64–66]. In chronic fatigue syndrome, Black et al suggest that vigorous exercise or a 30% increase in activity can trigger a relapse [65]. On the other hand, those individuals who reported that exercise exacerbates their fatigue had more severe disease and it is likely that other factors besides fatigue contributed to low physical activity levels. For example, participants who were more depressed also tended to exercise less and to be less active. Daytime sleepiness is also an important non-motor symptom that can be difficult for patients to distinguish from fatigue; in our respondents, those with both worse subjective nighttime sleep and greater daytime sleepiness also tended to feel less positively about the effects of exercise on fatigue. A further exploration
of how other non-motor comorbidities may influence activity levels and perceived effects of exercise on PD fatigue, including not only depression [24] and sleep disturbances [50, 67], but also apathy and dysautonomia [68], is needed.

Another key aspect to understand in the relationship between exercise and fatigue is the influence of intensity of exercise. Physical exertion at an intensity or duration which exceeds the individual’s capabilities can exacerbate fatigue [65, 69]. While high intensity exercise may offer therapeutic benefits on motor function and progression beyond low-intensity exercise, [30, 70–73], the effects of high intensity exercise on PD fatigue are less understood. It is likely that there are subgroups of PD patients that vary according to perceived and physiological effects of exercise on their motor and non-motor symptoms and especially fatigue, and understanding the determinants of this is critical. This in turn can inform individualized exercise prescriptions, which account for patient characteristics, comorbidities, fatigue severity, and other non-motor symptoms, in order to maximize the benefits of exercise in PD while avoiding exacerbating fatigue, or even potentially helping it.

There are several limitations to our study. Our study lacks a healthy control group, and conclusions cannot be drawn regarding whether the experiences of fatigue captured in our sample of PD patients is significantly similar or different from fatigue experienced by the general non-PD population. Because the study was conducted via online survey, we were only able to capture data from PD patients with the technological and socioeconomic ability to access the internet. The respondents on Fox Insight were predominantly white [36], and results may not be broadly applicable to all racial groups. Our survey response rate of 29.3% also limits generalizability. The PASE is self-administered in our study, as opposed to being conducted via interview with a trained administrator; however, in other instances where PASE was self-administered, subjects were as likely to over-categorize as under-categorize their activity level, and the magnitude of miscategorization was small [74]. The survey did not query the dosages of medications that respondents are taking, limiting our ability to examine the dose-dependent relationships between fatigue and dopaminergic medication. Similarly, the survey did not query the specific types of exercises that respondents are employing as coping strategies for fatigue. Both of these domains would be valuable to investigate in future research. And finally, due to the observational, cross-sectional nature of the study, we are unable to draw conclusions regarding causality of associations.

Conclusion

Our study describes some of the self-reported factors that affect fatigue in PD patients. Many different factors were reported by patients to worsen fatigue, including physical activity, poor sleep, and medication wearing off. Exercise was also reported to help fatigue in half of patients but was perceived to worsen fatigue in others. From a practical standpoint, our results demonstrate that some patients can often identify triggers for their fatigue; counseling patients to keep symptom diaries or otherwise explore their individual habits may in turn allow them to avoid triggers or to institute interventions. Similarly, patients use a variety of coping mechanisms for their fatigue. Our results suggest several potential strategies that require further investigation, including strategic daytime napping, the use of caffeine, exercise, and strategies to cope with emotions. Demographic differences in triggers and coping strategies indicate that a personalized approach may be important, and clinical trials investigating treatments for PD fatigue may benefit from stratifying by age and sex when examining treatment effects. The perceived effect of exercise was more mixed; additional study is needed to further elucidate the effects of exercise upon fatigue in PD patients, and especially to determine how exercise programs need to be tailored for PD subgroups in relation to their fatigue.
Acknowledgments
We would like to thank the Parkinson’s community for participating in this study to make this research possible.

Author Contributions
Conceptualization: Iris Lin, Briana Edison, Sneha Mantri, Steven Albert, Margaret Daeschler, Catherine Kopil, Connie Marras, Lana M. Chahine.

Data curation: Iris Lin, Briana Edison, Lana M. Chahine.

Formal analysis: Iris Lin, Briana Edison, Lana M. Chahine.

Funding acquisition: Catherine Kopil.

Investigation: Lana M. Chahine.

Methodology: Lana M. Chahine.

Project administration: Margaret Daeschler, Catherine Kopil, Lana M. Chahine.

Supervision: Lana M. Chahine.

Writing – original draft: Iris Lin, Lana M. Chahine.

Writing – review & editing: Iris Lin, Briana Edison, Sneha Mantri, Steven Albert, Margaret Daeschler, Catherine Kopil, Connie Marras, Lana M. Chahine.

References
1. Gallagher DA, Lees AJ, Schrag A. What are the most important nonmotor symptoms in patients with Parkinson’s disease and are we missing them? Mov Disord. 2010; 25(15):2493–500. https://doi.org/10.1002/mds.23394 PMID: 20922807

2. Lou JS, Kearns G, Oken B, Sexton G, Nutt J. Exacerbated physical fatigue and mental fatigue in Parkinson’s disease. Mov Disord. 2001; 16(2):190–6. https://doi.org/10.1002/mds.1042 PMID: 11295769

3. Karlsen K, Larsen JP, Tandberg E, Jorgensen K. Fatigue in patients with Parkinson’s disease. Mov Disord. 1999; 14(2):237–41. https://doi.org/10.1002/1531-8257(19990314:2<237::aid-mds1006>3.0. co;2-x PMID: 10091615

4. Alves G, Wentzel-Larsen T, Larsen JP. Is fatigue an independent and persistent symptom in patients with Parkinson disease? Neurology. 2004; 63(10):1908–11. https://doi.org/10.1212/01.wnl. 0000144277.06917.cc PMID: 15557510

5. Barone P, Antonini A, Colosimo C, Marconi R, Morgante L, Avarrello TP, et al. The PRIAMO study: A multicenter assessment of nonmotor symptoms and their impact on quality of life in Parkinson’s disease. Mov Disord. 2009; 24(11):1641–9. https://doi.org/10.1002/mds.22643 PMID: 19514014

6. Kluger BM, Herlufson K, Chou KL, Lou JS, Goetz CG, Lang AE, et al. Parkinson’s disease-related fatigue: A case definition and recommendations for clinical research. Mov Disord. 2016; 31(5):625–31. https://doi.org/10.1002/mds.26511 PMID: 26879133

7. Herlufson K, Ongre SO, Enger BK, Tysnes OB, Larsen JP. Fatigue in early Parkinson’s disease. Minor inconvenience or major distress? Eur J Neurol. 2012; 19(7):963–6. https://doi.org/10.1111/j.1468-1331. 2012.03663.x PMID: 22340430

8. Miwa H, Miwa T. Fatigue in patients with Parkinson’s disease: impact on quality of life. Intern Med. 2011; 50(15):1553–8. https://doi.org/10.2169/internalmedicine.50.4954 PMID: 21804280

9. Muller B, Assmus J, Herlufson K, Larsen JP, Tysnes OB. Importance of motor vs. non-motor symptoms for health-related quality of life in early Parkinson’s disease. Parkinsonism Relat Disord. 2013; 19 (11):1027–32. https://doi.org/10.1016/j.parkreldis.2013.07.010 PMID: 23916654

10. Seppi K, Weintrob D, Coelho M, Perez-Llort S, Fox SH, Katzschlager R, et al. The Movement Disorder Society Evidence-Based Medicine Review Update: Treatments for the non-motor symptoms of Parkinson’s disease. Mov Disord. 2011; 26 Suppl 3:S42–80. https://doi.org/10.1002/mds.23884 PMID: 22021174
11. Elbers RG, Verhoef J, van Wegen EE, Berendse HW, Kwakkel G. Interventions for fatigue in Parkinson's disease. Cochrane Database Syst Rev. 2015(10):CD010925. https://doi.org/10.1002/14651858.CD010925.pub2 PMID: 26447539

12. Franssen M, Winward C, Collett J, Wade D, Dawes H. Interventions for fatigue in Parkinson's disease: A systematic review and meta-analysis. Mov Disord. 2014; 29(13):1675–8. https://doi.org/10.1002/mds.26030 PMID: 25234443

13. Herlofson K, Kluger BM. Fatigue in Parkinson's disease. J Neurol Sci. 2017; 374:38–41. https://doi.org/10.1016/j.jns.2016.12.061 PMID: 28087059

14. Pavese N, Metta V, Bose SK, Chaudhuri KR, Brooks DJ. Fatigue in Parkinson’s disease is linked to striatal and limbic serotoninergic dysfunction. Brain: a journal of neurology. 2010; 133(11):3434–43. https://doi.org/10.1093/brain/awq268 PMID: 20884645

15. Tessitore A, Giordano A, De Micco R, Ciazzio G, Russo A, Cirillo M, et al. Functional connectivity underpinnings of fatigue in "Drug-Naive" patients with Parkinson's disease. Mov Disord. 2016; 31(10):1497–505. https://doi.org/10.1002/mds.26650 PMID: 27145402

16. Olivola E, Brusa L, Rocchi C, Schiacci O, Liguori C, Cerroni R, et al. Does fatigue in Parkinson's disease correlate with autonomic nervous system dysfunction? Neurol Sci. 2018; 39(12):2169–74. https://doi.org/10.1007/s10072-018-3569-x PMID: 30255487

17. Franke C, Storch A. Nonmotor Fluctuations in Parkinson's Disease. International review of neurobiology. 2017; 134:947–71. https://doi.org/10.1016/bs.irn.2017.05.021 PMID: 28805590

18. Fu R, Luo XG, Ren Y, He ZY, Lv H. Clinical characteristics of fatigued Parkinson's patients and the response to dopaminergic treatment. Transl Neurodegener. 2016; 5:9. https://doi.org/10.1186/s40035-016-0056-2 PMID: 27175281

19. Schifitto G, Friedman JH, Oakes D, Shulman L, Comella CL, Marek K, et al. Fatigue in levodopa-naive subjects with Parkinson disease. Neurology. 2008; 71(7):481–5. https://doi.org/10.1212/01.wnl.0000324862.29733.69 PMID: 18695158

20. Ahlskog JE. Does vigorous exercise have a neuroprotective effect in Parkinson disease? Neurology. 2011; 77(3):288–94. https://doi.org/10.1212/2010.WNL.0b013e318225ab66 PMID: 21768599

21. Rafferty MR, Schmidt PN, Luo ST, Li K, Marras C, Davis TL, et al. Regular Exercise, Quality of Life, and Mobility in Parkinson's Disease: A Longitudinal Analysis of National Parkinson Foundation Quality Improvement Initiative Data. J Parkinsons Dis. 2017; 7(1):193–202. https://doi.org/10.3233/JPD-160912 PMID: 27858719

22. Factor SA, Bennett A, Hohler AD, Wang D, Miyasaki JM. Quality improvement in neurology: Parkinson disease update quality measurement set: Executive summary. Neurology. 2016; 86(24):2278–83. https://doi.org/10.1212/2010.WNL.0b013e318225ab66 PMID: 21768599

23. Amara AW, Chahine L, Seedoff N, Caspell-Garcia CJ, Coffey C, Simuni T, et al. Self-reported physical activity levels and clinical progression in early Parkinson's disease. Parkinsonism Relat Disord. 2019; 61:118–25. https://doi.org/10.1016/j.parkreldis.2018.11.006 PMID: 30554993

24. Winward C, Sackley C, Meek C, Izadi H, Barker K, Wade D, et al. Weekly exercise does not improve fatigue levels in Parkinson's disease. Mov Disord. 2012; 27(1):143–6. https://doi.org/10.1002/mds.23966 PMID: 21953509

25. Elbers RG, Van Wegen EE, Rochester L, Hetherington V, Nieuwboer A, Willems M, et al. Is Impact of Fatigue an Independent Factor Associated with Physical Activity in Patients with Idiopathic Parkinson's Disease? Movement Disorders. 2009; 24(10):1512–8. https://doi.org/10.1002/mds.23664 PMID: 19514069

26. Landers MR, Navalta JW, Murtishaw AS, Kinney JW, Pirio Richardson S. A High-Intensity Exercise Boot Camp for Persons With Parkinson Disease: A Phase II, Pragmatic, Randomized Clinical Trial of Feasibility, Safety, Signal of Efficacy, and Disease Mechanisms. Journal of neurologic physical therapy: JNPT. 2019; 43(1):12–25. https://doi.org/10.1097/NPT.0000000000000249 PMID: 30531382

27. Lindholm B, Hagell P, Hansson O, Nilsson MH. Factors associated with fear of falling in people with Parkinson's disease. BMC Neurol. 2014; 14:19. https://doi.org/10.1186/1471-2377-14-19 PMID: 24456482

28. Dashti pour K, Johnson E, Kani C, Kani K, Hadi E, Ghamasy M, et al. Effect of exercise on motor and nonmotor symptoms of Parkinson's disease. Parkinsons Dis. 2015; 2015:586378. https://doi.org/10.1155/2015/586378 PMID: 25722915

29. Corcos DM, Robichaud JA, David FJ, Leurgans SE, Vaillancourt DE, Poon C, et al. A two-year randomized controlled trial of progressive resistance exercise for Parkinson's disease. Mov Disord. 2013; 28(9):1230–40. https://doi.org/10.1002/mds.25380 PMID: 23536417

30. Shulman LM, Katzel LI, Ivey FM, Sorkin JD, Favors K, Anderson KE, et al. Randomized clinical trial of 3 types of physical exercise for patients with Parkinson disease. JAMA Neurol. 2013; 70(2):183–90. https://doi.org/10.1001/jamaneurol.2013.646 PMID: 23128427
31. van der Kolk NM, King LA. Effects of exercise on mobility in people with Parkinson’s disease. Mov Disord. 2013; 28(11):1587–96. https://doi.org/10.1002/mds.25658 PMID: 24132847

32. Rodrigues de Paula F, Teixeira-Salmela LF, Coelho de Morais Faria CD, Rocha de Brito P, Cardoso F. Impact of an exercise program on physical, emotional, and social aspects of quality of life of individuals with Parkinson’s disease. Mov Disord. 2006; 21(8):1073–7. https://doi.org/10.1002/mds.20763 PMID: 16637049

33. Reynolds GO, Otto MW, Ellis TD, Cronin-Golomb A. The Therapeutic Potential of Exercise to Improve Mood, Cognition, and Sleep in Parkinson’s Disease. Mov Disord. 2016; 31(1):23–38. https://doi.org/10.1002/mds.26484 PMID: 26715466

34. Goodwin VA, Richards SH, Taylor RS, Taylor AH, Campbell JL. The effectiveness of exercise interventions for people with Parkinson’s disease: a systematic review and meta-analysis. Mov Disord. 2008; 23(5):631–40. https://doi.org/10.1002/mds.21922 PMID: 18181210

35. Mantri S, Klawson E, Albert S, Nabieva K, Lepore M, Kahl S, et al. Understanding the Lexicon of Fatigue in Parkinson Disease. Journal of Parkinsons Disease. 2020; online ahead of print.

36. Smolensky L, Amondar N, Crawford K, Neu S, Kopil CM, Daeschler M, et al. Fox Insight collects online, longitudinal patient-reported outcomes and genetic data on Parkinson’s disease. Sci Data. 2020; 7(1):67. https://doi.org/10.1038/s41597-020-0401-2 PMID: 32094335

37. Goetz CG, Tilley BC, Shaftman SR, Thimms GT, Fahn S, Martinez-Martin P, et al. Movement Disorder Society-sponsored revision of the Unified Parkinson’s Disease Rating Scale (MDS-UPDRS): scale presentation and clinimetric testing results. Mov Disord. 2008; 23(15):2129–70. https://doi.org/10.1002/mds.22340 PMID: 19025984

38. Sheikh JI, Yesavage JA. Geriatric Depression Scale (GDS): Recent evidence and development of a shorter version. Clinical Gerontologist: The Journal of Aging and Mental Health. 1986; 5(1–2):165–73.

39. Marinus J, Visser M, van Hilten JJ, Lammers GJ, Stiggelbout AM. Assessment of sleep and sleepiness in Parkinson disease. Sleep. 2003; 26(8):1049–54. https://doi.org/10.1093/sleep/26.8.1049 PMID: 14746389

40. Hogl B, Arnulf I, Comella C, Ferreire J, Iranzo A, Tilley B, et al. Scales to assess sleep impairment in Parkinson’s disease: critique and recommendations. Mov Disord. 2010; 25(16):2704–16. https://doi.org/10.1002/mds.23190 PMID: 20931631

41. Washburn RA, McAuley E, Katula J, Mihalko SL, Boileau RA. The physical activity scale for the elderly (PASE): evidence for validity. J Clin Epidemiol. 1999; 52(7):643–51. https://doi.org/10.1016/s0895-4356(99)00049-9 PMID: 10391658

42. Brown RG, Dittner A, Findley L, Wessely SC. The Parkinson fatigue scale. Parkinsonism Relat Disord. 2005; 11(1):49–55. https://doi.org/10.1016/j.parkreldis.2004.07.007 PMID: 15619463

43. Friedman JH, Alves G, Hagell P, Marinus J, Marsh L, Martinez-Martin P, et al. Fatigue rating scales critique and recommendations by the Movement Disorders Society task force on rating scales for Parkinson’s disease. Mov Disord. 2010; 25(7):805–22. https://doi.org/10.1002/mds.22989 PMID: 20461797

44. Grace J, Mendelsohn A, Friedman JH. A comparison of fatigue measures in Parkinson’s disease. Parkinsonism Relat Disord. 2007; 13(7):443–5. https://doi.org/10.1016/j.parkreldis.2006.09.001 PMID: 17055331

45. Barone P, Poewe W, Albrecht S, Debieuvre C, Massey D, Rascol O, et al. Pramipexole for the treatment of depressive symptoms in patients with Parkinson’s disease: a randomised, double-blind, placebo-controlled trial. Lancet Neurol. 2010; 9(6):573–80. https://doi.org/10.1016/S1474-4422(10)70106-X PMID: 20452823

46. Bryant MS, Rintala DH, Hou JG, Rivas SP, Fernandez AL, Lai EC, et al. The relation of falls to fatigue, depression and daytime sleepiness in Parkinson’s disease. Eur Neurol. 2012; 67(6):326–30. https://doi.org/10.1159/000335877 PMID: 2255623

47. Solla P, Cannas A, Mulas CS, Perra S, Corona A, Bassareo PP, et al. Association between fatigue and other motor and non-motor symptoms in Parkinson’s disease patients. J Neurol. 2014; 261(2):382–91. https://doi.org/10.1007/s00415-013-7207-5 PMID: 24375016

48. Chou KL, Kotagal V, Bohnen NI. Neuroimaging and clinical predictors of fatigue in Parkinson disease. Parkinsonism Relat Disord. 2016; 23:45–9. https://doi.org/10.1016/j.parkreldis.2015.11.029 PMID: 26683744

49. Skovranek M, Nagyova I, Rosenberger J, Krokavcova M, Ghorbani Saedian R, Groothoff JW, et al. Clinical determinants of primary and secondary fatigue in patients with Parkinson’s disease. J Neurol. 2013; 260(6):1554–61. https://doi.org/10.1007/s00415-012-6828-4 PMID: 23299623

50. Friedman JH, Brown RG, Comella C, Garber CE, Krupp LB, Lou JS, et al. Fatigue in Parkinson’s disease: a review. Mov Disord. 2007; 22(3):297–308. https://doi.org/10.1002/mds.21240 PMID: 17133511
51. Lopez C, Antoni M, Penedo F, Weiss D, Cruss E, Segotas MC, et al. A pilot study of cognitive behavioral stress management effects on stress, quality of life, and symptoms in persons with chronic fatigue syndrome. J Psychosom Res. 2011; 70(4):328–34. https://doi.org/10.1016/j.jpsychires.2010.11.010 PMID: 21414452

52. Swinn L, Schrag A, Viswanathan R, Bloem BR, Lees A, Quinn N. Sweating dysfunction in Parkinson’s disease. Mov Disord. 2003; 18(12):1459–63. https://doi.org/10.1002/mds.10586 PMID: 14673882

53. Boccabella A, Malouf J. How Do Sleep-Related Health Problems Affect Functional Status According to Sex? J Clin Sleep Med. 2017; 13(5):685–92. https://doi.org/10.5664/jcsm.6584 PMID: 28260591

54. Milner CE, Cote KA. Benefits of napping in healthy adults: impact of nap length, time of day, age, and experience with napping. J Sleep Res. 2009; 18(2):272–81. https://doi.org/10.3233/JCS-2009-00718x PMID: 19645971

55. van Gilst MM, Louter M, Bauman CR, Bloem BR, Overeem S. Sleep benefit in Parkinson’s disease: time to revive an enigma? J Parkinsons Dis. 2012; 2(2):167–70. https://doi.org/10.3233/JPD-2012-12087 PMID: 23939441

56. Postuma RB, Anang J, Pelletier A, Joseph L, Moscovich M, Grimes D, et al. Caffeine as symptomatic treatment for Parkinson disease (Cafe-PD): A randomized trial. Neurology. 2017; 89:1795–803. https://doi.org/10.1212/WNL.0000000000004568 PMID: 28954882

57. Yeung EYH, Cavanna AE. Sleep Attacks in Patients With Parkinson’s Disease on Dopaminergic Medications: A Systematic Review. Mov Disord Clin Pract. 2014; 1(4):307–16. https://doi.org/10.1002/mdc3.12063 PMID: 30363881

58. Storch A, Schneider CB, Wolz M, Sturwald Y, Nebe A, Odin P, et al. Nonmotor fluctuations in Parkinson disease: severity and correlation with motor complications. Neurology. 2013; 80(9):800–9. https://doi.org/10.1212/25W.0b013e318285c0ed PMID: 23365054

59. Witjas T, Kaphan E, Azulay JP, Blin O, Ceccaldi M, Pouget J, et al. Nonmotor fluctuations in Parkinson disease: Severity and correlation with motor complications. Neurology. 2002; 59:408–13. https://doi.org/10.1212/25W.0b013e3182889181 PMID: 12177375

60. Cramp F, Byron-Daniel J. Exercise for the management of cancer-related fatigue in adults. Cochrane Database Syst Rev. 2012; 11:CD006145. https://doi.org/10.1002/14651858.CD006145.pub3 PMID: 23152233

61. Larun L, Brurberg KG, Odgaard-Jensen J, Price JR. Exercise therapy for chronic fatigue syndrome. Cochrane Database Syst Rev. 2016; 2:CD003200. https://doi.org/10.1002/14651858.CD003200.pub4 PMID: 26852189

62. Afshari M, Yang A, Bega D. Motivators and Barriers to Exercise in Parkinson’s Disease. J Parkinsons Dis. 2017; 7(4):703–11. https://doi.org/10.3233/JPD-171173 PMID: 29103050

63. Ellis T, Boudreau JK, DeAngelis TR, Brown LE, Cavanaugh JT, Earhart GM, et al. Barriers to exercise in people with Parkinson disease. Phys Ther. 2013; 93(5):628–36. https://doi.org/10.2522/ptj.20120279 PMID: 23288910

64. Hewlett S, Cockshott Z, Byron M, Kitchen K, Tipler S, Pope D, et al. Patients’ perceptions of fatigue in rheumatoid arthritis: overwhelming, uncontrollable, ignored. Arthritis Rheum. 2005; 53(5):697–702. https://doi.org/10.1002/art.21450 PMID: 16208668

65. Black CD, O’Connor P J, McCully KK. Increased daily physical activity and fatigue symptoms in chronic fatigue syndrome. Dyn Med. 2005; 4(1):3. https://doi.org/10.1186/1476-5918-4-3 PMID: 15745455

66. Ramdharry GM, Thornhill A, Mein G, Reilly MM, Marsden JF. Exploring the experience of fatigue in people with Charcot-Marie-Tooth disease. Neuromuscul Disord. 2012; 22 Suppl 3:S208–13. https://doi.org/10.1016/j.nmd.2012.10.016 PMID: 23182641

67. van Dijk JP, Havlíkova E, Rosenberger J, Nagyova I, Skorvanek M, Gdovinova Z, et al. Influence of disease severity on fatigue in patients with Parkinson’s disease is mainly mediated by symptoms of depression. Eur Neurol. 2013; 70(3–4):201–9. https://doi.org/10.1159/000351779 PMID: 23969578

68. Low DA, Vichyanrat E, Iodice V, Mathias CJ. Exercise hemodynamics in Parkinson’s disease and autonomic dysfunction. Parkinsonism Relat Disord. 2014; 20(5):549–53. https://doi.org/10.1016/j.parkreldis.2014.02.006 PMID: 24637120

69. Njøs J, Paul L, Wallman K. Chronic fatigue syndrome: an approach combining self-management with graded exercise to avoid exacerbations. J Rehabil Med. 2008; 40(4):241–7. https://doi.org/10.1016/j.j Parkinsonism Relat Disord. 2014; 20(5):549–53. https://doi.org/10.1016/j.parkreldis.2014.02.006 PMID: 24637120

70. Fisher BE, Wu AD, Salem GJ, Song J, Lin CH, Yip J, et al. The effect of exercise training in improving motor performance and corticomotor excitability in people with early Parkinson’s disease. Arch Phys Med Rehabil. 2008; 89(7):1221–9. https://doi.org/10.1016/j.apmr.2008.01.013 PMID: 18534554
71. Kelly NA, Ford MP, Standaert DG, Watts RL, Bickel CS, Moellering DR, et al. Novel, high-intensity exercise prescription improves muscle mass, mitochondrial function, and physical capacity in individuals with Parkinson’s disease. J Appl Physiol (1985). 2014; 116(5):582–92.

72. Ridgel AL, Vitek JL, Alberts JL. Forced, not voluntary, exercise improves motor function in Parkinson’s disease patients. Neurorehabilitation and neural repair. 2009; 23(6):600–8. https://doi.org/10.1177/1545968308328726 PMID: 19131578

73. Moore CG, Schenkman M, Kohrt WM, Delitto A, Hall DA, Corcos D. Study in Parkinson disease of exercise (SPARX): translating high-intensity exercise from animals to humans. Contemp Clin Trials. 2013; 36(1):90–8. https://doi.org/10.1016/j.cct.2013.06.002 PMID: 23770108

74. Mantri S, Fullard ME, Duda JE, Morley JF. Physical Activity in Early Parkinson Disease. J Parkinsons Dis. 2018; 8(1):107–11. https://doi.org/10.3233/JPD-171218 PMID: 29480222