Transgenes of genetically modified animals detected non-invasively via environmental DNA

Charles C. Y. Xu1,2*, Claire Ramsay2, Mitra Cowan3, Mehrnoush Dehghani2, Paul Lasko2, Rowan D. H. Barrett1,2

1 Redpath Museum, McGill University, Montreal, Quebec, Canada, 2 Department of Biology, McGill University, Montreal, Quebec, Canada, 3 McGill Integrated Core for Animal Modeling (MICAM), McGill University, Montreal, Quebec, Canada

* cong.xu3@mail.mcgill.ca

Abstract

We demonstrate that simple, non-invasive environmental DNA (eDNA) methods can detect transgenes of genetically modified (GM) animals from terrestrial and aquatic sources in invertebrate and vertebrate systems. We detected transgenic fragments between 82–234 bp through targeted PCR amplification of environmental DNA extracted from food media of GM fruit flies (Drosophila melanogaster), feces, urine, and saliva of GM laboratory mice (Mus musculus), and aquarium water of GM tetra fish (Gymnocorymbus ternetzi). With rapidly growing accessibility of genome-editing technologies such as CRISPR, the prevalence and diversity of GM animals will increase dramatically. GM animals have already been released into the wild with more releases planned in the future. eDNA methods have the potential to address the critical need for sensitive, accurate, and cost-effective detection and monitoring of GM animals and their transgenes in nature.

Introduction

Environmental DNA (eDNA) is DNA extracted from environmental samples such as soil, sediment, water, air, feces, dust, as well as bulk DNA from artificial and natural collectors like Malaise insect traps, ocean sponges, and spider webs [1–4]. eDNA techniques commonly employ PCR, qPCR, and recently ddPCR to amplify taxonomically informative DNA markers including 16S and 18S rRNA, cytochrome c oxidase I (COI), and the internal transcribed spacer (ITS) from traces of DNA found in the environment for detection of specific species [5, 6]. Compared to traditional methods, eDNA has proven to be more sensitive and accurate while requiring less time and lower costs [7, 8]. High-throughput next-generation sequencing of DNA markers and shotgun sequencing have also been utilized to generate large genetic data sets that span across taxonomic groups for community-level studies [9–13]. These eDNA methods have revolutionized biodiversity research and are increasingly used by academic biologists, environmental regulatory agencies, and private industry for biomonitoring purposes [14].
In parallel to the development of eDNA methods for biomonitoring, the advent of CRISPR-based genome-editing technologies have revolutionized molecular biology by vastly simplifying the process of creating genetically modified (GM) organisms, which has allowed transgenic research and production to advance dramatically [15]. This sudden democratization of genome-editing is leading to an explosion in the diversity of genetic modifications, the kinds of species targeted, and the contexts in which these methods are applied [16]. For example, do-it-yourself CRISPR kits are currently available for purchase online with little to no restriction [17]. Additionally, CRISPR-based gene drives have been developed that enable a transgene to quickly spread across a population by favoring the inheritance of the transgene over natural genes [18]. The use of GM animals outside laboratory environments has begun with AquaAdvantage® Atlantic salmon in the aquaculture industry [19]. GM mosquitoes have also been released in several locations around the world, and there are plans to release gene-driven GM white-footed mice onto human-populated islands [20–22]. Although the application of GM methods to animal populations in natural settings is expected to increase rapidly in the coming years, there are currently no methods to detect and track GM animals that are efficient, accurate, and sensitive [20, 23].

GM plants have been heavily utilized in agriculture and their transgenes have already been detected from environmental samples [24]. The environment has been found to serve as a reservoir for transgenes from GM plants with short-term persistence (hours to days) in aquatic environments and long-term persistence (days to years) in terrestrial soils [25]. However, to our knowledge, detection of transgenes via eDNA from GM animals in nature has yet to be reported in the literature despite their recent proliferation including insect vectors, livestock, and pets [20]. Because GM animals are indistinguishable from natural individuals based on appearance alone, eDNA methods could be especially useful for early detection and monitoring purposes. Just like wild species, GM animals are expected to shed eDNA through feces, skin cells, decomposition, and other natural processes that can be difficult if not impossible to control. Detectability, persistence, and environmental consequences of animal transgenes left in the environment are still unexplored issues.

In this study, we hypothesized that transgenes of GM animals are deposited in their environment and that this extra-organismal DNA could be used to detect the presence of GM animals. We report that fragments of transgenes from GM animals are indeed detectable non-invasively via environmental DNA across three different animal systems: invertebrates (fruit flies; Drosophila melanogaster), mammals (laboratory mice; Mus musculus), and fish (black tetras; Gymnocorymbus ternetzi) (Fig 1).

Methods

(a) Sample collection

For the invertebrate system, we extracted eDNA from approximately 3 g of food media from a laboratory fruit fly strain carrying a transgene encoding the green fluorescent protein fused to the vasa gene (eGFP-vas). The food media contained no observable flies or fly parts. The eGFP-tagged full length vasa gene was inserted using the attB/attP system. We used the FavorPrep Stool DNA Isolation Mini Kit (FAVORGEN Biotech) following the standard protocol except for a 90-minute (instead of 20-minute) incubation at 60˚C during the lysis step. We also included an extraction blank using the same extraction method. A positive control from fly tissue was extracted using the following protocol: 1) A single frozen fly was homogenized into buffer containing 10 mM Tris-HCl, 1 mM EDTA, 25 mM NaCl, and 200 μg/mL proteinase K, 2) Fly-buffer mixture was incubated at 37˚C for 20 minutes, 3) Supernatant was extracted and incubated at 95˚C for 1 minute, 4) DNA was stored at 4˚C.
For the mammalian system, we used a laboratory mouse strain carrying the tdTomato transgene (JAX stock number: 007905, Strain Name: B6;129S6-Gt(ROSA)26Sortm9(CAG-tdTomato)Hze/J) obtained from the McGill Integrated Core for Animal Modeling. We extracted non-invasive extra-organismal DNA from feces inside the housing cage, from ~0.2 mL of urine, and from a cotton oral swab (~ 30 seconds) collected from a single individual. While these samples are
technically not true eDNA samples, feces, urine, and saliva are animal eDNA sources in nature and thus provide a useful proof-of-concept since no transgenic mammals have been released to date. DNA extractions were conducted using the DNeasy PowerSoil Kit (QIAGEN) following the standard protocol. We also included an extraction blank and a positive control from an ear punch sample using the same extraction method.

For the fish system, we obtained water from a single 40-gallon aquarium containing approximately 40 GloFish Cosmic Blue, Electric Green, Galactic Purple, Moonrise Pink, Starfire Red, and Sunburst Orange tetras (GloFish LLC, hereafter called GloFish tetras) from a local pet store (Montreal, Quebec, Canada). We filtered approximately one liter of aquarium water through 0.22 μM and 0.7 μM polyethersulfone filter papers (Millipore) separately using a handpump (Mityvac). Both filter pore sizes were used to maximize detection probability since the particle size of transgenic eDNA is unknown. We extracted eDNA from filter papers using the DNeasy PowerWater Kit (QIAGEN) following the standard protocol. We also included an extraction blank using the same extraction method.

All sample collection was non-invasive and did not involve any entire living materials. This “A” level of invasiveness did not require animal use approval at McGill University.

(b) Primer design

We designed three different sets of primers to amplify 82–187 bp of the eGFP gene for detection of GM fruit flies (Table 1). A single pair of primers were used to amplify a 196 bp fragment of the tdTomato gene from GM laboratory mice (Table 1). For detection of GM GloFish tetras, we designed three sets of primers targeting: 1) 213 bp of dsRed2, 2) 210 bp of ZsGreen1, and 3) 234 bp of ZsYellow1 fluorescent genes [26] (Table 1). All primers were designed based on publicly available sequences obtained from the National Center for Biotechnology Information (NCBI) GenBank database using the Primer3 software [27, 28].

(c) PCR amplification and analysis of products

DNA concentrations of samples were quantified using the Quant-iT™ High-Sensitivity dsDNA Assay (Invitrogen). DNA samples were amplified in polymerase chain reactions (PCR) of 10 μL containing 6.36 μL of ultrapure water (Milli-Q), 1 μL of 10X PCR Buffer (Invitrogen),
0.3 μL of 50 mM MgCl₂ (Invitrogen), 0.3 μL of 10 mM dNTP Mix (Invitrogen), 0.5 μL 10 mM forward primer, 0.5 μL 10 mM reverse primer, 0.04 μL of Platinum® Taq DNA Polymerase (Invitrogen), and 1 μL (<0.2–102.16 ng/μL) of genomic DNA. Negative control reactions with ultrapure water instead of DNA were included in every PCR to test for contamination. Gel electrophoresis was conducted using 5 μL of PCR product mixed with 1 μL TriTrack DNA Loading Dye (6X) (Thermo Scientific) and amplicon length was estimated using GeneRuler 100 bp DNA ladder (Thermo Scientific). Bi-directional Sanger sequencing was conducted on an ABI 3730xl 96-capillary sequencer by the Centre d’expertise et de services Génome Québec. DNA sequences were aligned using BioEdit v.7.2.5 and ClustalW [29, 30].

Results

Genomic DNA concentrations of eDNA extractions ranged from <0.2 ng/μL (threshold of quantification assay) to 102.16 ng/μL. All target transgenes were successfully detected based on estimated amplicon sizes except for dsRed2 from the 0.7 μM filter while extraction blanks and PCR negative controls yielded no amplification (Fig 2). DNA sequences were obtained via Sanger sequencing. Forward and reverse reads of each sample were aligned, and primer sequences were then removed. Transgene identities of aligned amplicons were confirmed by NCBI BLAST using default settings and alignment with reference genes downloaded from the GenBank Nucleotide database [31]. All raw DNA sequences and reference alignments are accessible on DRYAD at https://doi.org/10.5061/dryad.866t1g1pp.

Discussion

Our results demonstrate that transgenes from a diversity of GM animals can be detected from non-invasive environmental DNA samples thus providing proof-of-concept that eDNA has the potential to be a powerful tool in biomonitoring of GM animals. The single failed amplification of dsRed2 from the 0.7 μM filter is likely due to low total DNA concentration (<0.2 ng/μL), which is consistent with weak amplification of ZsGreen1 and ZsYellow1 from the same sample. Despite DNA concentrations of less than the threshold of the quantification assay, the 0.7 μM filter along with the mouse urine and mouth swab samples still successfully amplified and produced clear chromatograms from Sanger sequencing suggesting that eDNA methods are highly sensitive in detecting transgenes. Our results also suggest that transgenes are more likely to be detected using 0.22 μM rather than 0.7 μM filters in aquatic environments. While both mouse urine and mouth swab samples yielded less than quantifiable amounts of total DNA, only the urine sample showed weak amplification, which indicates that concentration of transgenic DNA may not always correspond with total DNA concentration. This relationship is predicted to change depending on the type of eDNA sample collected and the amount of nontarget DNA present [25].

The samples used in this study were collected under laboratory conditions and commercial settings, which likely biased detection success. Application of eDNA methods for detection of transgenes from GM animals in nature is expected to be more complicated due to environmental exposure and fluctuating conditions [32, 33]. Typical eDNA assays target short gene fragments because eDNA is readily susceptible to degradation, influenced by factors such as temperature, turbidity, acidity, salinity, and bacterial abundance [34]. Determining the particle size, degradation, persistence, and ecological fate of animal transgenes in the environment will be important in developing eDNA methods for tracking GM animals [25, 35, 36]. Nonetheless, this proof-of-concept demonstration is the first step towards future validation studies conducted in field settings using more sensitive methods such as qPCR and ddPCR.
Fig 2. Agarose gel electrophoresis showing A) amplification of egfp from genetically modified fruit fly (Drosophila melanogaster)– 1: fly tissue with egfp_F1/R1, 2: fly food media with egfp_F1/R1, 3: fly tissue with egfp_F2/R2, 4: fly food media with egfp_F2/R2, 5: fly tissue with egfp_F3/R3, 6: fly food media with egfp_F3/R3, B) amplification of tdTomato from feces, urine, and saliva of genetically modified mouse (Mus musculus)– 1,2: mouse feces from different cages, 3: mouse urine (weak amplification), 4: mouse mouth swab, 5: mouse ear punch, 6: DNA extraction negative control (no amplification), and C) amplification of dsRed2, ZsGreen1, and ZsYellow1 from filtered aquarium water of GloFish® tetr (Gymnocorymbus ternetzi)– 1: 0.22 μM filtered water with dsRed2 F1/R1, 2: 0.7 μM filtered water with dsRed2 F1/R1 (no amplification), 3: DNA extraction negative control (no amplification), 4: 0.22 μM filtered water with ZsGreen1 F1/R1, 5: 0.7 μM filtered water with ZsGreen1 F1/R1 (weak amplification, 6: DNA extraction negative control (no amplification), 7: 0.22 μM filtered water with ZsYellow1 F1/R1, 8: 0.7 μM filtered water with ZsYellow1 F1/R1 (weak amplification), 9: DNA extraction negative controls (no amplification). Gel images were captured using Quantum Vilber Lourmat (MBI) and were cropped to only relevant lanes.

https://doi.org/10.1371/journal.pone.0249439.g002
Metabarcoding and metagenomic methods also hold promise for simultaneous detection of multiple transgenes across multiple GM species [37].

One important factor affecting the sensitivity of eDNA methods is the copy number of the target DNA sequence. Most eDNA studies use mitochondrial DNA like 16S rRNA or the COI gene to maximize detection probability because of their high copy numbers per cell [38]. Additionally, eDNA studies using multicopy nuclear genes like 18S rRNA and ITS have also been successful [39]. While some transgenes are present in tandem multiple copy arrays across the nuclear genome, many are single genes that have either been edited or inserted [40]. Single transgenes may thus be relatively harder to detect than conventional eDNA markers due to copy number differences. Additionally, if the eDNA detection method targets a specific transgenic allele, genotype may also influence sensitivity (homozygous allele copy number is twice that of heterozygous and hemizygous alleles in diploid species) [41]. Transgenes are also often inserted inside transposons, which can lead to multiple independent insertion events and positively bias eDNA detection. Another unexplored research frontier is the consequence of newly available epigenome-editing tools on the efficiency of eDNA amplification and sequencing of epigenetically modified genes due to potential structural changes [42].

Concerns have been raised about the potential for transmission of transgenes from GM organisms and the subsequent ecological effects. Methods of transmission into unintended populations and species include cross-pollination, hybridization, and horizontal gene transfer (HGT) [43]. For example, despite the presence of a dominant lethal transgene, reportedly sterile GM mosquitoes in Brazil have been able to create viable hybrids with wild individuals [44]. Additionally, there are demonstrated ecological impacts of viable hybrids created from GM Atlantic salmon and wild brown trout, which are able to grow faster and competitively suppress both GM and wild salmon [45]. HGT through a natural ability to uptake naked plasmids and fragments of chromosomal DNA directly from the environment has been observed in many bacterial species across a variety of habitats [46]. While there has been no documented case of HGT from GM animals in nature, there is evidence for HGT of transgenes from GM plants to bacteria and fungi despite transmission and establishment barriers (although these events are rare and mostly limited to transgenes of bacterial origin that are often already abundant in the environment) [47]. Despite these valid concerns, GM organisms have many significant benefits for the environment, human health, agriculture, and industry that have improved global human well-being and have led to valuable scientific discoveries [20].

The advantages of using eDNA to detect GM organisms could synergize well with artificial DNA barcodes. Used as identification tags for transgenes, artificial DNA barcodes can be synthesized to contain a unique DNA sequence not found in nature [48, 49]. These silent barcodes are neither transcribed nor translated and their sole purpose is to track neighboring transgenes. Artificial DNA barcodes can be linked to metadata associated with the barcoded GM individual (e.g., identities and number of transgenes present, geographic location and date of creation, intended usage, etc.), and multiple barcodes within a single individual can also be used to independently track multiple transgenes using a metagenomics approach. The design of artificial DNA barcodes would incorporate primer binding sites to facilitate efficient eDNA detection, enabling sensitive, non-invasive, and ubiquitous biomonitoring of GM organisms. By providing a method for quick and easy differentiation of GM organisms, artificial DNA barcodes may help to alleviate public and governmental concerns and inform policies regarding their potential release. In addition, artificial DNA barcodes may be incorporated into gene-drives to track their spread across populations, which has been a major concern for application of gene-drives in nature [50]. Although the idea of artificial DNA barcodes is not new, and they have been used to ‘watermark’ artificially synthesized genomes, we are unaware of wide adoption by regulatory agencies or industry [51–53]. Further development of
biotechnologies like artificial DNA barcodes and their use with emerging biomonitoring methods like eDNA could become an important tool for transgenic producers and regulators to mitigate potential environmental and human health risks of creating and releasing GM animals.

Conclusion

Potential escape of GM animals from their intended locations and potential introgression of transgenes into unintended populations and species could have significant ecological, evolutionary, and bioethical implications. eDNA methods will improve our ability to locate and manage released GM animals and their transgenes across diverse species and environments in these scenarios.

Supporting information

S1 Raw images.

(ZIP)

Acknowledgments

In memory of Dr. Cameron R. Turner, a pioneer in eDNA research, mentor, and friend. Wherever you are now, we hope you are ‘living the dream’. We also thank Michelle Gros for filtration equipment and Nobuko Yamanaka for primer information.

Author Contributions

Conceptualization: Charles C. Y. Xu, Mitra Cowan, Rowan D. H. Barrett.

Data curation: Charles C. Y. Xu.

Formal analysis: Charles C. Y. Xu.

Funding acquisition: Rowan D. H. Barrett.

Investigation: Charles C. Y. Xu.

Methodology: Charles C. Y. Xu.

Project administration: Charles C. Y. Xu.

Resources: Claire Ramsay, Mitra Cowan, Mehrnoush Dehghani.

Supervision: Paul Lasko, Rowan D. H. Barrett.

Visualization: Charles C. Y. Xu.

Writing – original draft: Charles C. Y. Xu.

Writing – review & editing: Charles C. Y. Xu, Claire Ramsay, Mitra Cowan, Paul Lasko, Rowan D. H. Barrett.

References

1. Turner CR, Uy KL, Everhart RC. Fish environmental DNA is more concentrated in aquatic sediments than surface water. Biological Conservation. 2015; 183: 93–102. https://doi.org/10.1016/j.biocon.2014.11.017

2. Xu CCY, Yen IJ, Bowman D, Turner CR. Spider web DNA: a new spin on noninvasive genetics of predator and prey. PLoS ONE. 2015; 10: e0142503. https://doi.org/10.1371/journal.pone.0142503 PMID: 26808730
3. Taberlet P, Bonin A, Zinger L, Coissac E. Environmental DNA: For Biodiversity Research and Monitoring. Oxford University Press; 2018.

4. Mariani S, Baillie C, Colosimo G, Riesgo A. Sponges as natural environmental DNA samplers. Curr Biol. 2019; 29: R401–R402. https://doi.org/10.1016/j.cub.2019.04.031 PMID: 31163139

5. Giovannoni SJ, Britschgi TB, Moyer CL, Field KG. Genetic diversity in Sargasso Sea bacterioplankton. Nature. 1990; 345: 60–63. https://doi.org/10.1038/345060a0 PMID: 2330053

6. Doi H, Uchi K, Takahara T, Matsuhashi S, Yamanaka H, Minamoto T. Use of Droplet Digital PCR for Estimation of Fish Abundance and Biomass in Environmental DNA Surveys. PLOS ONE. 2015; 10: e0122763. https://doi.org/10.1371/journal.pone.0122763 PMID: 25799582

7. Rees HC, Maddison BC, Middleditch DJ, Patmore JRJ, Gough KC. REVIEW: The detection of aquatic animal species using environmental DNA—a review of eDNA as a survey tool in ecology. Journal of Applied Ecology. 2014; 51: 1450–1459. https://doi.org/10.1111/1365-2664.12306

8. Turner CR, Miller DJ, Coyne KJ, Corush J. Improved Methods for Capture, Extraction, and Quantitative Assay of Environmental DNA from Asian Bigheaded Carp (Hypophthalmichthys spp.). PLOS ONE. 2014; 9: e114329. https://doi.org/10.1371/journal.pone.0114329 PMID: 25474207

9. Lodge DM, Turner CR, Jerde CL, Barnes MA, Chadder ton L, Egan SP, et al. Conservation in a cup of water: estimating biodiversity and population abundance from environmental DNA. Molecular Ecology. 2012; 21: 2555–2558. https://doi.org/10.1111/j.1365-294X.2012.05600.x PMID: 22624944

10. Evans NT, Olds BP, Renshaw MA, Turner CR, Li Y, Jerde CL, et al. Quantification of mesocosm fish and amphibian species diversity via environmental DNA metabarcoding. Molecular Ecology Resources. 2016; 16: 29–41. https://doi.org/10.1111/1755-0998.12433 PMID: 26032773

11. Olds BP, Jerde CL, Renshaw MA, Li Y, Evans NT, Turner CR, et al. Estimating species richness using environmental DNA. Ecology and Evolution. 2016; 6: 4214–4226. https://doi.org/10.1002/ece3.2186 PMID: 27516876

12. Evans NT, Li Y, Renshaw MA, Olds BP, Deiner K, Turner CR, et al. Fish community assessment with eDNA metabarcoding: effects of sampling design and bioinformatic filtering. Can J Fish Aquat Sci. 2017; 74: 1362–1374. https://doi.org/10.1139/cjfas-2016-0306

13. Stat M, Huggett MJ, Bernasconi R, DiBattista JD, Berry TE, Newman SJ, et al. Ecosystem biomonitoring with eDNA: metabarcoding across the tree of life in a tropical marine environment. Scientific Reports. 2017; 7: 12240. https://doi.org/10.1038/s41598-017-12501-5 PMID: 28947818

14. Bohmann K, Evans A, Gilbert MTP, Carvalho GR, Creer S, Knapp M, et al. Environmental DNA for wildlife biology and biodiversity monitoring. Trends Ecol Evol. 2014; 29: 358–367. https://doi.org/10.1016/j.tree.2014.04.003 PMID: 24821515

15. Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E. A Programmable Dual-RNA-Guided DNA Endonuclease in Adaptive Bacterial Immunity. Science. 2012; 337: 816–821. https://doi.org/10.1126/science.1225829 PMID: 22745249

16. Kaufman, Leeor, Egender, Joe. Unnatural Selection. Netflix; 2019. https://www.radleystudios.tv/unnatural-selection-case-study

17. Smalley E. FDA warns public of dangers of DIY gene therapy. Nature Biotechnology. 2018; 36: 119–120. https://doi.org/10.1038/nbt0218-119 PMID: 29406512

18. Grunwald HA, Gantz VM, Poplawski G, Xu X-RS, Bier E, Cooper KL. Super-Mendelian inheritance mediated by CRISPR–Cas9 in the female mouse germline. Nature. 2019; 566: 105–109. https://doi.org/10.1038/s41586-019-0875-2 PMID: 30675057

19. Ledford H. Salmon approval heralds rethink of transgenic animals. Nature. 2015; 527: 417–418. https://doi.org/10.1038/527417a PMID: 26607518

20. Reardon S. Welcome to the CRISPR zoo. Nature News. 2016; 531: 160. https://doi.org/10.1038/531160a PMID: 26961640

21. Buchthal J, Evans SW, Lunshof J, Telford SR, Esvelt KM. Mice Against Ticks: an experimental community-guided effort to prevent tick-borne disease by altering the shared environment. Philos Trans R Soc Lond, B, Biol Sci. 2019; 374. https://doi.org/10.1098/rstb.2018.0105 PMID: 30805296

22. Waltz E. First genetically modified mosquitoes released in the United States. Nature News. 2021; 593: 175–176. https://doi.org/10.1038/d41586-021-01186-6 PMID: 33976429

23. Komor AC, Badran AH, Liu DR. CRISPR-based technologies for the manipulation of eukaryotic genomes. Cell. 2017; 168: 20–36. https://doi.org/10.1016/j.cell.2016.10.044 PMID: 27866654

24. Widmer F, Seidler RJ, Watrud LS. Sensitive detection of transgenic plant marker gene persistence in soil microcosms. Mol Ecol. 1996; 5: 603–613. https://doi.org/10.1111/j.1365-294X.1996.tb00356.x

25. Barnes MA, Turner CR. The ecology of environmental DNA and implications for conservation genetics. Conserv Genet. 2016; 17: 1–17. https://doi.org/10.1007/s10592-015-0775-4
26. Blake A, Crockett R, Essner J, Hackett P, Nasevicius A. Recombinant constructs and transgenic fluorescent ornamental fish therefrom. US20100037331A1, 2010. https://patents.google.com/patent/US20100037331A1/en

27. Untergasser A, Cutcutache I, Koressaar T, Ye J, Faircloth BC, Remm M, et al. Primer3—new capabilities and interfaces. Nucleic Acids Res. 2012; 40: e115–e115. https://doi.org/10.1093/nar/gks596 PMID: 22730293

28. Sayers EW, Beck J, Brister JR, Bolton EE, Canese K, Comeau DC, et al. Database resources of the National Center for Biotechnology Information. Nucleic Acids Res. 2020; 48: D9–D16. https://doi.org/10.1093/nar/gkz899 PMID: 31602479

29. Hall TA. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser. [London]: Information Retrieval Ltd., c1979-c2000.; 1999. pp. 95–98. https://doi.org/10.1093/nar/gks596 PMID: 10780396

30. Thompson JD, Gibson TJ, Higgins DG. Multiple sequence alignment using ClustalW and ClustalX. Curr Protoc Bioinformatics. 2003; 00: 2.3.1–2.3.22. https://doi.org/10.1002/0471250953.bi0203s00

31. Barnes MA, Turner CR, Jerde CL, Renshaw MA, Chaderton WL, Lodge DM. Environmental Conditions Influence eDNA Persistence in Aquatic Systems. Environ Sci Technol. 2014; 48: 1819–1827. https://doi.org/10.1021/es404734p PMID: 24422450

32. Barnes MA, Chaderton WL, Jerde CL, Mahon AR, Turner CR, Lodge DM. Environmental conditions influence eDNA particle size distribution in aquatic systems. Environmental DNA. 2020 [cited 15 Apr 2021]. https://doi.org/10.1002/edn3.160

33. Harrison JB, Sunday JM, Rogers SM. Predicting the fate of eDNA in the environment and implications for studying biodiversity. Proc Royal Soc B. 2019; 286: 20191409. https://doi.org/10.1098/rspb.2019.1409 PMID: 31744434

34. Turner CR, Barnes MA, Xu CCY, Jones SE, Jerde CL, Lodge DM. Particle size distribution and optimal capture of aqueous macrobial eDNA. Methods in Ecology and Evolution. 2014; 5: 676–684. https://doi.org/10.1111/2041-210X.12206

35. Goldberg CS, Turner CR, Deiner K, Klymus KE, Thomsen PF, Murphy MA, et al. Critical considerations for the application of environmental DNA methods to detect aquatic species. Methods in Ecology and Evolution. 2016; 7: 1299–1307. https://doi.org/10.1111/2041-210X.12595

36. Garlapati D, Charankumar B, Ramu K, Madeswaran P, Ramana Murthy MV. A review on the applications and recent advances in environmental DNA (eDNA) metagenomics. Rev Environ Sci Biotechnol. 2019; 18: 389–411. https://doi.org/10.1007/s11157-019-09501-4

37. Thomsen PF, Willerslev E. Environmental DNA—An emerging tool in conservation for monitoring past and present biodiversity. Biological Conservation. 2015; 183: 4–18. https://doi.org/10.1016/j.biocon.2014.11.019

38. Drummond AJ, Newcomb RD, Buckley TR, Xie D, Dopheide A, Potter BC, et al. Evaluating a multigene environmental DNA approach for biodiversity assessment. GigaSci. 2015; 4: 46. https://doi.org/10.1186/s13742-015-0086-1 PMID: 26445670

39. Henikoff S. Conspiracy of silence among repeated transgenes. BioEssays. 1998; 20: 532–535. https://doi.org/10.1002/(SICI)1521-1878(199807)20:7<532::AID-BIES3>3.0.CO;2-M PMID: 9723001

40. Lodiﬁsh H, Berk A, Kaiser C, Krieger M, Bretschger A, Ploegh H, et al. Molecular cell biology. Ninth edition. New York: Macmillan International Higher Education; 2021.

41. Pulecio J, Verma N, Mejía-Ramírez E, Huangfu D, Raya A. CRISPR/Cas9-Based Engineering of the Epigenome. Cell Stem Cell. 2017; 21: 431–447. https://doi.org/10.1016/j.stem.2017.09.006 PMID: 28985525

42. Traavik T. Too early may be too late: ecological risks associated with the use of naked DNA as a tool for research, production and therapy. Trondheim, Norway: Directorate for Nature Management; 1999.

43. Evans BR, Kotsakiozi P, Costa-da-Silva AL, Ioshino RS, Garziera L, Pedrosa MC, et al. Transgenic Aedes aegypti mosquitoes transfer genes into a natural population. Sci Rep. 2019; 9: 13047. https://doi.org/10.1038/s41598-019-49660-6 PMID: 31506595

44. Oke KB, Westley PAH, Moreau DTR, Fleming IA. Hybridization between genetically modiﬁed Atlantic salmon and wild brown trout reveals novel ecological interactions. Proceedings of the Royal Society B: Biological Sciences. 2013; 280: 20131047. https://doi.org/10.1098/rspb.2013.1047 PMID: 23720549

45. Johnsburg O, Eldholm V, Hävarstein LS. Natural genetic transformation: prevalence, mechanisms and function. Research in Microbiology. 2007; 158: 767–778. https://doi.org/10.1016/j.resmic.2007.09.004 PMID: 17997281
47. Keese P. Risks from GMOs due to horizontal gene transfer. Environ Biosafety Res. 2008; 7: 123–149. https://doi.org/10.1051/ebr:2008014 PMID: 18801324

48. Gressel J, Ehrlich G. Universal inheritable barcodes for identifying organisms. Trends Plant Sci. 2002; 7: 542–544. https://doi.org/10.1016/s1360-1385(02)02364-6 PMID: 12475495

49. Marillonnet S, Klimyuk V, Gleba Y. Encoding technical information in GM organisms. Nat Biotechnol. 2003; 21: 224–226. https://doi.org/10.1038/nbt0303-224 PMID: 12610560

50. Oye KA, Esvelt K, Appleton E, Catteruccia F, Church G, Kuiken T, et al. Regulating gene drives. Science. 2014; 345: 626–628. https://doi.org/10.1126/science.1254287 PMID: 25035410

51. Gibson DG, Glass JI, Lartigue C, Noskov VN, Chuang R-Y, Algire MA, et al. Creation of a Bacterial Cell Controlled by a Chemically Synthesized Genome. Science. 2010; 329: 52–56. https://doi.org/10.1126/science.1190719 PMID: 20488990

52. Gibson DG, Benders GA, Andrews-Pfannkoch C, Denisova EA, Baden-Tillson H, Zaveri J, et al. Complete Chemical Synthesis, Assembly, and Cloning of a Mycoplasma genitalium Genome. Science. 2008; 319: 1215–1220. https://doi.org/10.1126/science.1151721 PMID: 18218864

53. Arita M, Ohashi Y. Secret Signatures Inside Genomic DNA. Biotechnol Prog. 2004; 20: 1605–1607. https://doi.org/10.1021/bp049917i PMID: 15458352

54. Madisen L, Zwingman TA, Sunkin SM, Oh SW, Zariwala HA, Gu H, et al. A robust and high-throughput Cre reporting and characterization system for the whole mouse brain. Nat Neurosci. 2010; 13: 133–140. https://doi.org/10.1038/nn.2467 PMID: 20023653