On perfect k-matchings

Hongliang Lu†
Department of Mathematics
Xi’an Jiaotong University, Xi’an 710049, PR China

Abstract

In this paper, we generalize the notions of perfect matchings, perfect 2-matchings to perfect k-matchings and give a necessary and sufficient condition for existence of perfect k-matchings. For bipartite graphs, we show that this k-matching problem is equivalent to that matching question. Moreover, for regular graphs, we provide a sufficient condition of perfect k-matching in terms of edge connectivity.

Keywords: matching; 2-matching; k-matching.

1 Introduction

All graphs considered are multigraphs (with loops) and finite. Let $G = (V(G), E(G))$ be a graph with vertex set $V(G)$ and edge set $E(G)$. The number of vertices of a graph G is called the order of G. Unless otherwise defined, we follow [3] for terminologies and definitions.

We denote the degree of vertex v in G by $d_G(v)$. For two subsets $S, T \subseteq V(G)$, let $e_G(S, T)$ denote the number of edges of G joining S to T. For a set X, we denote the cardinality of X by $|X|$. A vertex of degree zero is called an isolated vertex. Let $Iso(G)$ denote the set of isolated vertices of G and let $i(G) = Iso(G)$. Let $c_o(G)$ denote the number of odd components of G. Let $odd(G)$ denote the number of odd components with order at least three of G. For any subset X of vertices of G, we define the neighbourhood of X in G to be the set of all vertices adjacent to vertices in X; this set is denoted by $N_G(X)$.

A matching M of a graph G is a subset of $E(G)$ such that any two edges of M have no end-vertices in common. Let k be a positive. A k-factor of a graph G is a spanning subgraph H of G such that $d_H(x) = k$ for every $x \in V(G)$. A $\{K_2, C_{2t+1} \mid t \geq 1\}$-factor of

*This work is supported by the Fundamental Research Funds for the Central Universities.
†Corresponding email: luhongliang215@sina.com (H. Lu)
a graph G is a spanning subgraph of G such that each of its components is isomorphic to one of $\{K_2, C_{2t+1} \mid t \geq 1\}$.

Let $f : \{0, 1, \ldots, k\} \to E(G)$ be an assignment such that the sum of weights of edges incident with any vertex is at most k, i.e., $\sum_{e \sim v} f(e) \leq k$ for any vertex $v \in V(G)$. A k-matching is a subgraph induced by the edges with weight among $1, \ldots, k$ such that $\sum_{e \sim v} f(e) \leq k$. The sum of all weights, i.e., $\sum_{e \in E(G)} f(e)$, is called size of a k-matching f. A k-matching is perfect if $\sum_{e \sim v} f(e) = k$ for every vertex $v \in V(G)$. Clearly, a k-matching is perfect if and only if its size is $k|V(G)|/2$. If $k = 1$, then a perfect k-matching is called a perfect matching. If $k = 2$, then a perfect k-matching is called a perfect 2-matching.

For perfect matching of bipartite graphs, Hall obtained the next result in terms of isolated vertices.

Theorem 1.1 (Hall, [2]) Let $G = (X, Y)$ be a bipartite graph. Then G has a perfect matching if and only if $|X| = |Y|$ and for any $S \subseteq X$,

$$i(G - S) \leq |S|.$$

Tutte (1947) studied the perfect matching of general graphs and gave the sufficient and necessary condition.

Theorem 1.2 (Tutte, [4]) A graph G has a perfect matching if and only if for any $S \subseteq V(G)$,

$$c_o(G - S) \leq |S|.$$

For perfect 2-matching, Tutte (1953) gave the following result.

Theorem 1.3 (Tutte, [6]) Let G be a connected graph. Then the following statements are equivalent:

1. G has a perfect 2-matching;
2. $i(G - S) \leq |S|$ for all subsets $S \subseteq V(G)$;
3. G has a $\{K_2, C_{2t+1} \mid t \geq 1\}$-factor.

In the proof, we need the following technical theorems.

Theorem 1.4 (Tutte, [5]) Let G be a graph and k a positive integer. Then G has a k-factor if and only if, for all $D, S \subseteq V(G)$ with $D \cap S = \emptyset$,

$$\delta_G(D, S) = k|D| - k|S| + \sum_{v \in S} d_{G-D}(v) - \tau_G(S, T) \geq 0,$$

where $\tau_G(S, T)$ is the weight of a minimum weight k-factor that covers T and includes S as a subset. Theorem 1.4 provides the necessary condition for the existence of a k-factor, which is equivalent to the Tutte’s condition for perfect 2-matching.

In the proof, we need the following technical theorems.
where \(\tau_G(D, S) \) is the number of components \(C \) of \(G-(D\cup S) \) such that \(e_G(V(C), S)+k|C| \equiv 1 \pmod{2} \). Moreover, \(\delta_G(D, S) \equiv k|V(G)| \pmod{2} \).

2 Main Results

In this section, we gave a good characterization for perfect \(k \)-matchings.

Theorem 2.1 Let \(k \geq 4 \) be even. Then \(G \) contains a perfect \(k \)-matching if and only if \(G \) contains a perfect 2-matching.

Proof. Suppose that \(G \) contains a perfect 2-matching. By Theorem 1.3, \(G \) contains a \(\{K_2, C_{2t+1}\} \)-factor \(H \). We assign every isolated edge of \(H \) with weight \(k \) and the rest edge with weight \(k/2 \). Then we obtain a perfect \(k \)-matching of \(G \).

Conversely, suppose \(G \) that contains a perfect \(k \)-matching \(H \). Then there exists a function \(f : V(G) \to \{0, 1, \ldots, k\} \) such that \(\sum_{v\sim e} f(e) = k \) for all \(v \in V(G) \). We claim \(i(G - S) \leq |S| \) for all \(S \subseteq V(G) \). Otherwise, assume that there exists \(S \subseteq V(G) \) such that \(i(G - S) > |S| \). Then we have

\[
ki(G - S) = \sum_{e \in E_G(Iso(G - S), S)} f(e) > k|S|,
\]

a contradiction. So by Theorem 1.3, \(G \) contains a perfect 2-matching. \(\square \)

Corollary 2.2 Let \(k \geq 2 \) be even. Then a graph \(G \) contains a perfect \(k \)-matching if and only if \(i(G - S) \leq |S| \) for all \(S \subseteq V(G) \).

Theorem 2.3 Let \(k \geq 1 \) be odd. Then \(G \) contains a perfect \(k \)-matching if and only if

\[
odd(G - S) + ki(G - S) \leq k|S| \quad \text{for all subsets } S \subseteq V(G).
\]

Proof. We first prove the necessity. Suppose that \(G \) has a perfect \(k \)-matching and there exists \(S \subseteq V(G) \) such that

\[
odd(G - S) + ki(G - S) > k|S|.
\]

Let \(f : E(G) \to \{0, 1, \ldots, k\} \) such that \(\sum_{e\sim v} f(e) = k \) for all \(v \in V(G) \). Let \(m = odd(G - S) \) and let \(C_1, \ldots, C_m \) denote the odd components of \(G - S \) with order at least three. Let \(W = C_1 \cup \cdots \cup C_m \). Since \(k \) is odd, by parity, every odd component with order at least
three can't contain a perfect \(k \)-matching. So \(\sum_{e \in E_G(V(C_i), S)} f(e) \geq 1 \) for \(i = 1, \ldots, m \). Then we have

\[
k|S| = \sum_{e \in S} \sum_{e \sim v} f(e) \geq \sum_{e \in E_G(V(W), S)} f(e) + \sum_{e \in E_G(Iso(G-S), S)} f(e)
\]

\[
\geq odd(G - S) + ki(G - S) > k|S|,
\]
a contradiction. So the result is followed.

We next prove the sufficiency. Let \(G^* \) be obtained from \(G \) by changing every edge of \(G \) into \(k \) parallel edges. Then \(G \) contains a perfect \(k \)-matching if and only if \(G^* \) contains a \(k \)-factor. Conversely, suppose that \(G \) contains no perfect \(k \)-matchings. Then \(G^* \) contains no \(k \)-factors. By Theorem 1.4 there exist two disjoint subset \(D, S \subseteq V(G^*) \) such that

\[
k|D| - k|S| + \sum_{x \in S} d_{G^* - D}(x) - \tau < 0,
\]

where \(\tau \) denote the number of components \(C \) of \(G^* - D - S \) such that \(k|V(C)| + e_{G^*}(V(C), S) \equiv 1 \) (mod 2). Let \(C_1, \ldots, C_\tau \) denote those components and \(W = \bigcup_{i=1}^\tau C_i \). By Theorem 1.2 we can suppose that \(k \geq 3 \).

Without loss of generality, among all such subsets, we choose subsets \(D \) and \(S \) such that \(S \) is minimal. We have \(S \neq \emptyset \), otherwise, \(k|D| < \tau \) and \(|V(C_i)| \) is odd for \(i = 1, \ldots, \tau \). So we have

\[
k|D| - ki(G - D) - odd(G - D) \leq k|D| - \tau < 0,
\]
a contradiction. Let \(M = G^* - D - S - V(W) \).

Claim 1. \(G[S] \) consists of isolated vertices.

Otherwise, let \(e = uv \in G[S] \). Let \(|N_G(v) \cap V(W)| = m \). Let \(D' = D \) and \(S' = S - v \). Let \(\tau' \) denote the number of components \(C \) of \(G^* - D' - S' \) such that \(k|V(C)| + e_{G^*}(V(C), S') \equiv 1 \) (mod 2). Then we have

\[
k|D'| - k|S'| + \sum_{x \in S'} d_{G^* - D'}(x) - \tau' \leq k|D| - k(|S| - 1) + \sum_{x \in S - v} d_{G^* - D}(x) - (\tau - m)
\]

\[
\leq k|D| - k|S| + k + \sum_{x \in S} d_{G^* - D}(x) - d_{G^* - D}(v) - (\tau - m)
\]

\[
\leq k|D| - k|S| + \sum_{x \in S} d_{G^* - D}(x) - k(m + 1) - \tau + m
\]

\[
\leq k|D| - k|S| + \sum_{x \in S} d_{G^* - D}(x) - \tau < 0,
\]

contradicting to the minimality of \(S \). This completes the claim.
With the similar proof of Claim 1, we obtain the following claim.

Claim 2. \(e_G(S, V(M)) = \emptyset. \)

Claim 3. \(|N_G(x) \cap V(W)| \leq 1\) for all \(x \in S. \)

Otherwise, suppose that there exists \(v \in S \) such that \(m = |N_G(v) \cap V(W)| \geq 2. \) Let \(D'' = D \) and \(S'' = S - v. \) Let \(\tau'' \) denote the number of components \(C \) of \(G^* - D'' - S'' \) such that \(k|V(C)| + e_{G^*}(V(C), S'') \equiv 1 \) (mod \(2. \)) Then we have

\[
|D''| - |S''| + \sum_{x \in S''} d_{G^* - D''}(x) - \tau'' \leq |D| - |S| - 1 + \sum_{x \in S - v} d_{G^* - D}(x) - (\tau - m)
\]

\[
\leq |D| - |S| + k + \sum_{x \in S} d_{G^* - D}(x) - d_{G^* - D}(v) - (\tau - m)
\]

\[
\leq |D| - |S| + k + \sum_{x \in S} d_{G^* - D}(x) - km - \tau + m
\]

\[
= |D| - |S| + \sum_{x \in S} d_{G^* - D}(x) - \tau - (k - 1)(m - 1) + 1
\]

\[
\leq |D| - |S| + \sum_{x \in S} d_{G^* - D}(x) - \tau < 0,
\]

contradicting to the minimality of \(S. \) This completes the claim.

Claim 4. \(E_G(S, V(W)) = \emptyset. \)

Otherwise, by Claim 2, suppose that there exists an edge \(uv \in E_G(S, V(W)), \) where \(v \in S \) and \(u \in V(W). \) Let \(D''' = D \) and \(S''' = S - v. \) Let \(\tau''' \) denote the number of components \(C \) of \(G^* - D''' - S''' \) such that \(k|V(C)| + e_{G^*}(S''', V(C)) \equiv 1 \) (mod \(2. \)). Without loss of generality, suppose that \(u \in C_1. \) By Claims 1, 2 and 3, then \(G^*[V(C_1) \cup \{v\}] \) is a component of \(G^* - D''' - S'''. \) Note that

\[
k|V(C_1) \cup \{v\}| + e_{G^*}(S''', V(C_1) \cup \{v\}) \equiv k|V(C_1)| + e_{G^*}(S, V(C_1)) \equiv 1 \text{ (mod } 2). \]

So \(\tau = \tau'''. \) Hence

\[
k|D'''| - |S'''| + \sum_{x \in S'''} d_{G^* - D'''}(x) - \tau''' = |D| - |S| + \sum_{x \in S - v} d_{G^* - D}(x) - \tau
\]

\[
\leq |D| - |S| + k + \sum_{x \in S} d_{G^* - D}(x) - d_{G^* - D}(v) - \tau
\]

\[
\leq |D| - |S| + \sum_{x \in S} d_{G^* - D}(x) - \tau < 0,
\]

contradicting to the minimality of \(S. \) This completes the claim.
Since \(e_{G^*}(V(C_i), S) + k|V(C_i)| \equiv 1 \pmod{2}\) and \(k\) is odd, by Claim 4, we have \(|V(C_i)| \equiv 1 \pmod{2}\) for \(i = 1, \ldots, \tau\). By Claims 1, 2, and 4, we have

\[
0 > k|D| - k|S| + \sum_{x \in S} d_{G^* - D}(x) - \tau \\
= k|D| - k|S| - \tau \\
\geq k|D| - ki(G - D) - \text{odd}(G - D).
\]

Hence we have \(k|D| < ki(G - D) + \text{odd}(G - D)\), a contradiction. We complete the proof. \(\square\)

Theorem 2.4 Let \(G = (U, W)\) be a bipartite graph, where \(|U| = |W|\). Then \(G\) contains a perfect matching if and only if \(G\) contains a perfect \(k\)-matching.

Proof. Necessity is obvious. Now we prove the sufficiency. Suppose that \(G\) contains a perfect \(k\)-matching. Let \(f : E(G) \to \{0, 1, \ldots, k\}\) such that \(\sum_{v \sim e} f(e) = k\) for all \(v \in V(G)\).

Then for all independent set \(S\), we have

\[
k|S| = \sum_{v \in S} \sum_{v \sim e} f(e) \leq \sum_{e \in E_G(S, N(S))} f(e) \leq k|N(S)|.
\]

So we have \(i(G - S) \leq |S|\) for all \(S \subseteq U\). By Theorem 1.1, \(G\) contains a perfect matching. This completes the proof. \(\square\)

Corollary 2.5 Let \(k \geq 1\) be an odd integer and \(G\) be an \(r\)-regular, \(\lambda\)-edge-connected graph. Suppose that

\[
\lambda = \begin{cases}
\left\lceil \frac{r}{k} \right\rceil - 1 & \text{if } \left\lceil \frac{r}{k} \right\rceil \equiv r \pmod{2} \\
\left\lceil \frac{r}{k} \right\rceil & \text{if } \left\lceil \frac{r}{k} \right\rceil \not\equiv r \pmod{2}.
\end{cases}
\]

Then \(G\) contains a perfect \(k\)-matching.

Proof. Suppose that the result doesn’t hold. By Theorem 2.3, there exists a subset \(S \subseteq V(G)\) such that

\[
\text{odd}(G - S) + ki(G - S) > k|S|.
\]

Let \(m = \text{odd}(G - S)\). Let \(C_1, \ldots, C_m\) denote these odd components with order at least three of \(G - S\). Since \(r|C_i| - e_G(V(C_i), S) = \sum_{x \in V(C_i)} d_{G^*}(x)\) is even, so \(e_G(V(C_i), S) \equiv r\). Since \(G\) is an \(r\)-regular, \(\lambda\)-edge-connected graph, so if \(\left\lceil \frac{r}{k} \right\rceil \equiv r \pmod{2}\), then \(e_G(V(C_i), S) \geq \lambda + 1\) for \(i = 1, \ldots, m\). So we have

\[
r|S| \geq \left\lceil \frac{r}{k} \right\rceil \text{odd}(G - S) + ri(G - S).
\]
Hence,

\[kr|S| \geq k\left\lceil \frac{r}{k} \right\rceil odd(G - S) + kri(G - S) \]
\[\geq rodd(G - S) + kri(G - S) > kr|S|, \]

a contradiction. This completes the proof. \(\Box \)

Corollary 2.6 (Bäbler, [1]) Let \(G \) be an \(r \)-regular, \((r-1)\)-edge-connected graph with even order. Then \(G \) contains a perfect matching.

References

[1] F. Bäbler, Über die zerlegung regulärer streckenkomplexe ungerader ordnung, Comment. Math. Helvetici, 10 (1938), 275-287.

[2] P. Hall, On representatives of subsets, J. London Math. Soc., 10 (1935), 26-30.

[3] L. Lovász and M. D. Plummer, Matching Theory, Ann. Discrete Math., 29 North-Holland, Amsterdam, 1986.

[4] W. T. Tutte, The factorization of linear graphs, J. London Math. Soc., 22 (1947), 107-111.

[5] W. T. Tutte, The factors of graphs, Can. J. Math., 4 (1952), 314-328.

[6] W. T. Tutte, The 1-factors of oriented graphs, Proc. Amer. Math. Soc., 4 (1953), 922-931.