Decreased hippocampal translocator protein (18kDa) expression in alcohol dependence: a \([11C]PBR28\) PET study

NJ Kalk\(^1\), Q Guo\(^2,3\), D Owen\(^4\), R Cherian\(^5\), D Erritze\(^3\), A Gilmour\(^6\), AS Ribeiro\(^3\), J McGonigle\(^3\), A Waldman\(^4\), P Matthews\(^4\), J Cavanagh\(^7\), I McInnes\(^8\), K Dar\(^9\), R Gunn\(^9\), EA Rabine\(^9\) and AR Lingford-Hughes\(^9\)

Repeated withdrawal from alcohol is clinically associated with progressive cognitive impairment. Microglial activation occurring during pre-clinical models of alcohol withdrawal is associated with learning deficits. We investigated whether there was microglial activation in recently detoxified alcohol-dependent patients (ADPs), using \([11C]PBR28\) positron emission tomography (PET), selective for the 18kDa translocator protein (TSPO) highly expressed in activated microglia and astrocytes. We investigated the relationship between microglial activation and cognitive performance. Twenty healthy control (HC) subjects (45 ± 13; M:F 14:6) and nine ADP (45 ± 6, M:F 9:0) were evaluated. Dynamic PET data were acquired for 90 min following an injection of 331 ± 15 MBq \([11C]PBR28\). Regional volumes of distribution \((V_T)\) for regions of interest (ROIs) identified \(a\) \(p\)riori \(w\)ere estimated using a two-tissue compartmental model with metabolite-corrected arterial plasma input function. ADP had an ~ 20% lower \([11C]PBR28\) \(V_T\) in the hippocampus \((F(1,24) = 5.694; P = 0.025)\), but no difference in \(V_T\) in other ROIs. Hippocampal \([11C]PBR28\) \(V_T\) was positively correlated with verbal memory performance in a combined group of HC and ADP \((r = 0.720, P < 0.001)\), an effect seen in HC alone \((r = 0.738; \ P = 0.001)\) but not in ADP. We did not find evidence for increased microglial activation in ADP, as seen pre-clinically. Instead, our findings suggest lower glial density or an altered activation state with lower TSPO expression. The correlation between verbal memory and \([11C]PBR28\) \(V_T\), raises the possibility that abnormalities of glial function may contribute to cognitive impairment in ADP.

Translational Psychiatry (2017) 7, e996; doi:10.1038/tp.2016.264; published online 10 January 2017

INTRODUCTION

Alcohol dependence can lead to cognitive impairment. Severe forms of alcohol-related brain damage are well recognized, but less often acknowledged is that even apparently functioning alcohol-dependent patients (ADPs) suffer from a range of cognitive deficits.\(^1,2\) These include problems with memory and executive function that persists for months.\(^2\) Though there is improvement after one year of abstinence, these deficits affect the ability of patients to engage with after-care and to remain abstinent.\(^3-6\)

Multiple causal factors contribute to alcohol-related brain damage including nutritional deficiencies, head injury and cirrhosis (reviewed in ref. 7), but cognitive impairment in this population can also occur in their absence.\(^3\) The mechanisms responsible for this cognitive impairment are not understood. Preventative interventions are limited to thiamine supplementation and relapse prevention. Each medicated detoxification is associated with progressively worsening withdrawal symptoms and progressive cognitive impairment.\(^8,9\) Detoxification is thus both a cause for clinical concern, and an important opportunity for intervention.

Microglia are specialized cells of macrophage lineage, highly responsive to their local environment.\(^10\) They become ‘activated’, a histological term describing the retraction of rami and basal microglial activation varies regionally. Microglia in the hippocampus express genes that suggest pro-inflammatory priming, even in the absence of disease.\(^12\)

Several functional states of activation are recognized, and two specifically named: an ‘M1’ neurotoxic phenotype that produces pro-inflammatory cytokines, reactive oxygen species\(^13\) and excitotoxins;\(^14\) and a neurotrophic ‘M2’ phenotype which secretes anti-inflammatory cytokines, nerve growth factors and clears debris via phagocytosis.\(^15\) It is hypothesized that further functional types of activated microglia exist\(^16\) and that the type of activation is contingent both upon the microenvironment,\(^19\) neuronal regulation\(^17\) and systemic inflammation.\(^18\) Either overactivity of the M1 phenotype or suppression of the M2 phenotype could be associated with exacerbation of an acute or chronic neural insult.

Pre-clinical models of alcohol dependence demonstrate microglial activation and expression of inflammatory mediators such as tumor necrosis factor-\(\alpha\) (TNF\(\alpha\)) and interleukin-6 (IL-6) both in the brain and peripheral blood during alcohol withdrawal.\(^19,20\) These changes are associated with neuronal death and learning deficits.\(^19\) There is evidence that similar processes may occur in humans. An increased density of microglia and increased expression of CCL2, an inflammatory chemokine, are found in the anterior cingulate cortex, midbrain and amygdala of ADPs postmortem.\(^21\) Pro-inflammatory cytokines including IL-6 and IL-10 are elevated in plasma (reviewed in ref. 22) and increased CCL2 is found in the cerebrospinal fluid\(^23\) in ADP during withdrawal.
Pre-clinically, hippocampal and piriform cortical microglial activation and proliferation are found during alcohol withdrawal19,24,25 and can persist for up to 3 weeks19,26. Microglial activation also is found in the cerebral cortex and cerebellum with chronic alcohol administration in pre-clinical models, and further increased after withdrawal.24

Glia cells, including microglia, can be detected \textit{in vivo} in humans using positron emission tomography (PET) radioligands binding to the 18 kDa mitochondrial translocator protein (TSPO), which is highly expressed in activated glia. Although increased TSPO expression is associated with histological cell changes consistent with activation, it does not distinguish between different activation functions, that is M1 or M2 activation. TSPO is also expressed in other central nervous system cell types, including activated astrocytes, endothelium and blood components such as acute phase proteins.27-29 Increased TSPO expression has been demonstrated pre-clinically using [3H]PK11195 autoradiography in chronic alcohol intake24 and withdrawal models.19,26 [11C]PK11195 binding was increased in a small clinical cohort with hepatic encephalopathy,30 three members of which had a history of alcohol dependence, though they were long abstinent. Activated microglia may therefore represent a target for intervention around the time of alcohol withdrawal.

The aim of this study was therefore to investigate whether increased TSPO radioligand binding suggesting microglial activation is found in ADP who had recently undergone medically assisted withdrawal. A secondary objective was to explore the relationship between this measure of microglial activation and cognitive function. We hypothesized that increased [11C]PBR28 PET signal (measure as a volume of distribution, \(V_T\)) would be increased in the brains of ADP particularly in those regions associated with microglial activation in pre-clinical or postmortem samples (cerebellum, hippocampus, midbrain, thalamus and cingulate cortex).19,21,24,31 Given that microglial activation has been associated with neuronal damage in pre-clinical models of alcohol withdrawal,19 we hypothesized that there would be a negative correlation between TSPO expression and performance on tests of verbal and spatial memory and executive function, which are impaired in alcohol dependence.1

MATERIALS AND METHODS

ADP (DSM-IV) within 1 month of medically assisted withdrawal were recruited through local addiction services, healthy control participants (HC) via local volunteer databases, and HC data obtained from a concurrent recruitment actively drinking ADP of the severity encountered in local clinical services is technically challenging, as alcohol intoxication affects PET tracer delivery and the patients are likely to enter withdrawal during scanning, causing tremor, and potentially vomiting and seizures. We scanned people following completion of withdrawal when they were no longer tremulous, no longer taking benzodiazepines and able to tolerate study procedures.

Most ADP had undergone medically assisted detoxification with chlordiazepoxide \((n = 7)\) or diazepam \((n = 1)\) before the study. Although none were still taking benzodiazepines at the time of scanning (mean duration since last dose 14 days (range 6–29 days)), three had a positive urine screen for benzodiazepines, reflecting the long metabolite half-life. As metabolites of chlordiazepoxide and diazepam do not bind the TSPO, this was not a concern.31 All were prescribed thiamine and vitamin B complex tablets, three acamprosate and one disulfiram.

Exclusion criteria applying to both groups included major physical or psychiatric illness as assessed by the Mini-International Psychiatric Interview (M.I.P.I.).34 Apart from a history of depression or anxiety, alanine transaminase exceeding five times the upper limit of the normal range, abnormal clotting parameters and consumption of steroids or non-steroidal anti-inflammatory medication. All volunteers were tested for rs6971 TSPO genotype, as the non-synonymous polymorphism at this site leading to a single alanine to threonine substitution affects affinity of [11C]PBR28 for TSPO.35 Heterozygote ‘Mixed Affinity Binders’ (MABs) have an approximately 50% reduction in the binding relative to the alaala homozygotes (‘High Affinity Binders’, HABs)36 while threo/threo homozygote ‘Low Affinity Binders’ (LABs) have no detectable signal,37 so need to be excluded. In this study, both HABs and MABs were scanned. All the participants were required to produce a negative alcohol breath test on the day of the scan and the alcohol-dependent group to score less than 10 on the Clinical Assessment of Withdrawal from Alcohol scale.38 Dependence on other drugs, apart from tobacco, was an exclusion criterion for both groups, but recreational use was allowed in ADP. All the participants gave informed consent about data sharing and both studies received approval from local NHS Research Ethics Committees and ARSAC.

All participants were prescribed thiamine and vitamin B complex tablets, three acamprosate and one disulfiram.

The participants were scanned as described previously.32 Briefly, each participant received a 90 min [11C]PBR28 PET scan following a bolus injection of [11C]PBR28 (HC: mean 330.4 MBq, range: 312.4–347.3 MBq; ADP: mean 328.9 MBq, range: 302.7–346.5 MBq), after which dynamic three-dimensional PET data were acquired over 90 min. Continuous arterial blood samples were collected every second from the radial artery for the first 15 min. Discrete blood samples were manually withdrawn at 5, 10, 15, 20, 25, 30, 40, 50, 60, 70, 80 and 90 min after scan start to facilitate measurement of whole-blood and plasma activity. The participants also received a high-resolution T1-weighted magnetic resonance imaging (MRI) scan at Siemens Verio 3T scanner (Siemens Healthcare, Erlangen, Germany). A consultant neuroradiologist reviewed each MRI scan. Any subjects with clinically significant structural lesions were excluded from the analysis.

The PET images were reconstructed via filtered back projection with attenuation and scatter correction. Dynamic images were separated into 26 frames \((8 \times 1.5 \text{ s}, 3 \times 1 \text{ min}, 5 \times 2 \text{ min}, 5 \times 5 \text{ min}, 5 \times 10 \text{ min})\). A metabolite-corrected plasma input function was generated using a method described previously.32 The total plasma time activity curve was calculated by multiplying the whole blood curve by plasma-over-blood ratio, and the parent fraction data were fitted to a sigmoid model:

\[
f = \frac{1}{1 + \frac{c}{a}(1 + e^{-t/(b + c)})}
\]

where \(t\) is time and \(a, b\) and \(c\) are fitted parameters. The fitted parent fraction profile was multiplied by the total plasma curve and then smoothed post-peak using a tri-exponential fit to derive the required parent plasma input function. A time delay correction was applied to account for delays between blood sample measurement and tomographic tissue measurement.

For analysis, we used the PET data analysis and kinetic modelling toolkit, MIAKAT (www.miakat.org),37 which also uses software from SPMS (Wellcome Trust Centre for Neuroimaging) and FSL (FMRIB, University of Oxford). The PET data were corrected for motion via frame-by-frame co-registration to each participant’s T1 MRI. Anatomical ROIs were delineated by the application of the CIC neuroanatomical atlas,42 warped to the participant’s structural MRI scan. The ROIs were applied to the PET data to derive regional time activity curves.

We used a two-tissue compartmental model using a metabolite-corrected input function, with blood volume fixed at 5%, applied to
dynamic PET data as described.\(^4^9\) Volume of distribution (\(V_i\)) was estimated according to the following equation:

\[
V_i = \frac{K_1}{k_2} \left(\frac{1}{K_1} + \frac{k_3}{K_2} \right)
\]

where \(V_i\) is the regional volume of distribution, \(K_1\) and \(k_2\) are rate constants for the movement of \(^{11}C\)PBR28 from plasma to brain parenchyma and parenchyma to plasma respectively, and \(k_3\) and \(K_2\) are rate constants for the movement of \(^{11}C\)PBR28 from the nondisplaceable ligand in the tissue to bound to the specific target, and from bound to nondisplaceable, respectively. As several of the volumes of interest specified a priori—hippocampus, midbrain, thalamus—were relatively small volumes adjacent to cerebrospinal fluid, partial volume correction using LoReAN, a hybrid voxel-region-based algorithm,\(^5^0\) was undertaken.

Participants’ structural MRI scans were compared using voxel-based morphometry to establish whether there were volumetric differences in ROIs between groups. Following segmentation, segmented tissue maps of each subject were registered to their common average using DARTEL,\(^5^1\) then affine registered to the MNI space. The warped images were modulated with the Jacobian determinants of the deformations\(^5^2\) and smoothed with an isotropic Gaussian kernel with a full width at half maximum of 8 mm.

The sample size was informed by biomathematical modelling, because of the relative novelty of the tracer and uncertainty about the anticipated difference between groups.\(^5^3\) Demographic differences between groups were assessed using unpaired two-tailed \(t\)-tests applied to parametric data, and Mann–Whitney tests to non-parametric data. Analyses of covariance, implemented in SPSS 20.0 were performed to examine the effect of patient group on \(^{11}C\)PBR28 \(V_i\) across ROIs identified \(a\) priori. Genotype was included as a fixed factor in the analysis as it is known to influence \(V_i\). Age was included as a covariate as TSPO expression increases with age. 54 Lifetime dose (kg) was included as a covariate as TSPO expression increases with age. 54

RESULTS

Clinical characteristics

The clinical characteristics of the study sample are shown in Table 1. There were no significant group differences in educational attainment between ADP and HC. Most ADP had had at least one previous detoxification (median 1 (range 0–7)) and were moderately to severely dependent (Severity of Alcohol Dependence Questionnaire: 29 ± 9). ADP scored higher on measures of alcohol craving, depression and anxiety, and the Fatigue Severity Scale. ADP performed less well on tests of verbal and spatial memory, but there were no differences in performance on tests related to executive function.

Mean high-sensitivity C-reactive protein was within normal range in both the groups. Albumin was significantly lower in ADP and GGT significantly higher, but other liver function tests were within normal limits in both the groups (see Table 2). No diazepam or chlordiazepoxide was detectable in any blood samples, but desmethyl diazepam was detectable in three ADP (370 ± 148 ng). There was no significant difference \((P > 0.05)\) in concentrations of any of the cytokines measured (see Table 2).
Table 2. Blood results in ADP and HC

Standard clinical blood tests	Alcohol-dependent	Control	P
Haemoglobin	14.8 ± 1.2	14.6 ± 1.2	0.731
Mean cell volume	96.1 ± 6.1	84.9 ± 13.6	0.007**
White cell count	93.2 ± 2.0	65.1 ± 1.3	0.002**
Bilirubin	8.8 ± 5	12.8 ± 8	0.161
Alanine transaminase	56 ± 20	26 ± 8	0.110
Alkaline phosphatase	71.5 ± 50	68.5 ± 19	0.702
Gamma glutamyl transferase	134 (range 15–466)	30 ± 20	0.064
Albumin	4.0 ± 3	44.3 ± 3	0.004**
Adjusted partial thromboplastin time	26.6 ± 2.3	28 ± 2	0.086
C-reactive protein	3.0 ± 2.39	2.6 ± 3.63	0.775
Pro- and anti-inflammatory cytokines			
Tumour-necrosis factor α	0 (0–225.29)	0 (0–859.03)	0.776
Interleukin 1β	0 (0–414.77)	0 (0–1288.16)	0.776
Interleukin 1 receptor antibody	0 (0–518.83)	0 (0–1696.38)	0.776
Interleukin 6	0 (0–285.06)	0 (0–902.75)	0.882
Interleukin 10	130.31 (60.68–537.95)	74.00 (42.50–1283.45)	0.412
GM-CSF	61.64 (26.99–387.18)	41.69 (11.77–1173.56)	0.370
Type 1 interferons			
Interferon α	0 (0–305.73)	0 (0–902.75)	0.824
Cytokines related to T-cell activation			
IL-2	0 (0–292.86)	0 (0–866.97)	0.710
IL-7	32.89 (23.84–64.53)	36.60 (17.88–359.04)	0.552
IL-15	0 (0–916.53)	0 (0–2933.43)	0.766
IL-2R	21.87 (2.28–227.93)	12.15 (4.84–595.21)	1.000
Th1 cytokines			
IL-12	10 019 (4770–46 685)	10 205 (8258–29 077)	0.412
IFN-γ	0 (0–225.29)	0 (0–859.03)	0.766
Th2 cytokines			
IL-5	5.06 (3.51–560.75)	5.93 (3.1–1667.44)	1.000
IL-13	39.53 (0–1357.48)	26.59 (0–4083.75)	0.766
Th17 cytokines			
IL-17	22.89 (15.64–663.44)	19.39 (15.64–2174.24)	0.552
Chemokines			
CXCL8 (IL-8)	20.16 (10.68–1439.79)	11.6 (2.91–2808.70)	0.131
CXCL9 (MIG)	0 (0–1698.11)	0 (0–5066.90)	0.766
CXCL10 (IP-10)	170.46 (60.82–1088.97)	82.56 (3133.54)	0.131
CCL-2 (MCP-1)	0 (0–196.47)	0 (0–663.28)	0.710
CCL-3 (MIP-1a)	0.29 (0.19–595.03)	0.29 (0.19–2204.86)	0.824
CCL-4 (MIP-1β)	855.78 (218.01–2023.38)	399.59 (160.48–3672.07)	0.201
CCL-5 (RANTES)	189.59 (48.06–637.74)	105.53 (45.23–609.39)	0.295
CCL-11 (Enotin)	19.39 (10.56–839.90)	22.11 (7.41–2334.10)	0.656

Abbreviations: ADP, alcohol-dependent patients; GM-CSF, gray matter-cerebrospinal fluid; HC, healthy controls; IFN, interferon; IL, interleukin. For parametrically distributed data, mean ± s.d. is displayed. For non-parametrically distributed data, median (range) is displayed. **P < 0.01.

Group differences in [11C]PBR28 V₉
Hippocampal [11C]PBR28 V₉ (corrected for the effects of genotype and age) was 19% lower in ADP relative to HC (F(1,24) = 5.694; P = 0.025; partial η² = 0.192). Group mean time activity curves for the hippocampus are shown in Figure 1, with HABs and MABs shown separately. Mean V₉s in the hippocampus for all genotypes and groups are shown in Figure 2. Differences in other ROIs identified a priori—midbrain, thalamus, cerebellum and anterior cingulate cortex—did not reach statistical significance (midbrain: P = 0.061, partial η² = 0.139; thalamus: P = 0.091, partial η² = 0.115; cerebellum P = 0.100, partial η² = 0.108 and anterior cingulate cortex: P = 0.078, partial η² = 0.124; see Figure 3). The methods analysis undertaken to interrogate whether there was a significant patient group or an interaction between patient group and region, corrected for age and genotype, found no significant effect of patient group (F = 1.736; P = 0.200), but a significant effect of region (F = 10.610; P < 0.001) and a significant region × patient group interaction (F = 2.294; P = 0.002). There were no differences in the area under the curve of the input function between the groups (HAB HC: 2219 ± 334.6; HAB ADP: 2523.8 ± 686.8; MAB HC: 2436 ± 551.9; MAB ADP: 2475 ± 928.5; P = 0.566) or in free fraction (HAB HC: 0.0247 ± 0.0161; HAB ADP: 0.0115 ± 0.0046; MAB HC: 0.0176 ± 0.0115; MAB ADP: 0.0191 ± 0.0054, P = 0.424).

Exploratory correlates of [11C]PBR28 V₉
There were no significant correlations between peripheral cytokine concentrations and [11C]PBR28 V₉. Age and genotype were significantly associated with variation in [11C]PBR28 V₉ in all
the brain regions tested (for example, in the hippocampus: genotype $F(1,24)=8.190; P=0.009$; age: $F(1,24)=5.370; P=0.029$).

There was no patient group × genotype interaction ($P>0.05$). V_T was not associated with duration of abstinence in alcohol-dependent group in any ROI. Voxel-based morphometry conducted using the MRI structural images to establish whether there was atrophy in ADP revealed no significant differences between the groups (family-wise error corrected $P>0.05$; t-statistic threshold = 6.01). The peak t-statistics for the ROIs identified a priori were as follows: anterior cingulate cortex: 1.805; left hippocampus: 1.680; right hippocampus: 1.447; midbrain: 2.885; left thalamus: 2.031; right thalamus: 2.840; cerebellum: 2.312.

Hippocampal [11C]PBR28 V_T and cognitive performance measures

There was a positive correlation (after controlling for the effects of age and genotype) between hippocampal V_T and both WMS and ROCF performance (WMS: $r=0.720, P<0.001$; ROCF: $r=0.541, P=0.004$; see Figure 4) when ADP and HC were combined in one group. A positive correlation was also found in the HC group alone between hippocampal V_T and scores on the delayed WMS ($r=0.738; P<0.001$) but not scores on the delayed ROCF test ($r=0.445; P=0.073$). The ADP clustered at the lower end of

Figure 1. Time activity curves in the hippocampus. This figure shows mean time activity curves with error bars representing standard deviation, from the hippocampus in healthy controls, shown in black, and alcohol-dependent patients (ADPs), shown in red. HAB, high-affinity binder; MAB, mixed-affinity binder; SUV, standardized uptake value.

Figure 2. [11C]PBR28 V_T is lower in the hippocampi of alcohol-dependent patients (ADPs) than in controls (mean±s.d.). This figure shows V_T of individual participants grouped by genotype with ADPs shown as red squares and healthy controls (HCs) as blue circles. The bars show mean and standard deviation in each group. HAB, high-affinity binder; MAB, mixed-affinity binder.

Figure 3. Lower V_T in regions of interest (ROIs) apart from the hippocampus did not reach significance (mean±s.d.). This figure shows mean V_T and standard deviation in all the ROIs identified a priori. Healthy controls (HCs) are blue and alcohol-dependent patients (ADPs) are red. The bars reflect both patient group and genotype. ACC, anterior cingulate cortex; HAB, high-affinity binder; MAB, mixed-affinity binder.

Figure 4. Correlation between hippocampal V_T and verbal memory. This figure shows the positive relationship between hippocampal binding and performance on a verbal memory task. Healthy controls (HCs) are blue and alcohol-dependent patients (ADPs) are red. Filled squares/dots are HABs and unfilled squares/dots are MABs. HAB, high-affinity binder; MAB, mixed-affinity binder.
DISCUSSION

To the best of our knowledge, this is the first study to report changes in \(^{11}\text{C}\)PBR28 \(V_T\) in a cohort of otherwise healthy ADPs within the first few weeks of abstinence. Refuting our initial hypothesis, we found that \(^{11}\text{C}\)PBR28 \(V_T\) is decreased in the hippocampus in recently abstinent ADPs relative to healthy participants with no significant changes in other brain ROIs identified \textit{a priori}. In an exploratory analysis, we also found a positive relationship between hippocampal \(^{11}\text{C}\)PBR28 \(V_T\) and verbal memory in the healthy participants. When the patient and healthy control group were combined, the correlation remained and a significant positive correlation was found between hippocampal \(^{11}\text{C}\)PBR28 \(V_T\) and both verbal and spatial memory. We hypothesized that \(^{11}\text{C}\)PBR28 binding would be increased in alcohol withdrawal, based on pre-clinical evidence.\(^{19,20,25,26}\) However, our findings of a decrease are more consistent with either a decrease in expression of the protein or a loss of cells expressing the protein. TSPO is a mitochondrial protein and would therefore be expected to decrease with a reduction of mitochondrial density. Slight decreases in mitochondrial enzymes and uncoupling with production of potentially damaging free radicals have been reported in a pre-clinical chronic alcohol model.\(^{51}\)

Alternatively, decreases in the activation state, or absolute numbers of several populations of cells could explain the reduction seen. First, loss, or altered activation, of microglia or astrocytes could explain the change. The one existing stereological human postmortem study of microglia and astrocytes in ADP, which included data on the hippocampus supports this as there was selective loss of both astrocytes and microglia.\(^{56}\) Prior human magnetic resonance spectroscopic results showed no decreases in myo-inositol, a metabolic marker for activated astrocytes, in recently abstinent alcoholics\(^{57,58}\) making astrocytic changes around the time of withdrawal less likely than microglial changes. Pre-clinically, microglial activation during alcohol withdrawal has been reported to be M2 activation, raising the possibility that loss of such activation may hamper repair.\(^{25,26}\) Second, lower \(^{11}\text{C}\)PBR28 binding could relate to suppressed neurogenesis, as TSPO is also expressed by hippocampal neural stem cells.\(^{59}\) Pre-clinical findings regarding the effect of alcohol on neurogenesis have yet to be replicated in human postmortem samples, which showed no differences in numbers of neural progenitors between ADP and HC in the subventricular zone and olfactory bulb.\(^{60}\) Absolute numbers of neural progenitors are low in adult humans, making this unlikely.\(^{50}\) Finally, TSPO is also expressed in the endothelial cells,\(^{61}\) so microvascular changes could contribute to our findings. Changes in the hippocampal capillary lumen diameter and decrease in the length and density has been described in at least one pre-clinical chronic alcohol model.\(^{52}\)

The difference between pre-clinical findings and the outcome of this clinical study may relate to differences between pre-clinical models of alcohol dependence and clinical populations. Pre-clinical studies are performed in adolescent rodents, and periods of heavy alcohol exposure are relatively short (\(<\) 2 weeks). For logistical reasons, we were not able to scan patients during the first week of withdrawal. Some pre-clinical models show only very short-lived microglial activation,\(^{63,64}\) but others show activation at 3 weeks of abstinence.\(^{19}\) There was no relationship between duration of abstinence and \(^{11}\text{C}\)PBR28 \(V_T\) in our study, though it was not designed to investigate this. Of interest is that while pre-clinical studies in cocaine dependence have reported pro-inflammatory gene expression,\(^{64}\) clinical imaging has shown no difference in TSPO expression,\(^{65}\) suggesting there may be similar translational challenges across addictions.

Clinical populations in the United Kingdom are medicated with benzodiazepines during withdrawal. Suppression of microglial activation via GABA(A) transmission has been reported raising the possibility that microglial suppression by benzodiazepines explains the decrease.\(^{56}\) A direct effect of benzodiazepines binding the TSPO is however unlikely as only diazepam at high dose binds the TSPO and the only benzodiazepine present in the ADP plasma was the metabolite desmethyldiazepam, which does not bind the TSPO.\(^{33}\)

We found that hippocampal \(^{11}\text{C}\)PBR28 binding was positively associated with verbal memory in the sample considered as a whole and in healthy controls. Although ADPs clustered towards the lower end of the distribution, the relationship was not maintained in ADPs alone—probably because of small numbers, particularly small numbers of HABs, who have a higher signal-to-noise ratio. To detect a correlation of the strength of that seen in HC with 80% power, 11 HABs would have been needed.

The positive correlation between TSPO expression and memory could be attributed to the function of the protein itself or the cells which express it. TSPO over-expression has been found pre-clinically to protect against lipopolysaccharide induced memory dysfunction.\(^{67}\) The relationship between mitochondrial function, TSPO expression and memory function under healthy conditions has not been explored. Microglia and astrocytes are both involved in memory function in the healthy hippocampus: while microglia integrate neural progenitors into hippocampal circuits and undertake activity-related synaptic remodelling (reviewed in ref. 68), astrocytic release glutamate, adenosine triphosphate and cytokines helps to consolidate nascent synaptic connections.\(^{69}\) The positive correlation seen in healthy participants supports the importance of microglia and astrocytes, and perhaps TSPO itself, in the healthy functioning of the hippocampus.

Although we did not find a correlation in the ADPs alone, the finding of a positive relationship between memory performance and TSPO expression is intriguing. Verbal and spatial memory deficits, which relate to hippocampal function, are well described in alcohol dependence.\(^{12,20,71}\) We did not find brain volume changes in our small ADP sample, but larger volumetric studies have shown hippocampal atrophy in alcohol-dependent cohorts.\(^{72–75}\) No relationship between volume loss and memory has been demonstrated, raising the possibility that loss or dysfunction of cell subsets such as microglia or astrocytes is a more important determinant.

The moderately to severely dependent drinkers that we studied were challenging to recruit and retain as they were relatively unstable and at high risk of disengagement from treatment. Recruitment challenges affected both statistical power to detect the group differences and stringency of inclusion and exclusion criteria. The study is therefore affected by limitations mainly around size and design. Our patient sample is small, was scanned on average 3 weeks from cessation of alcohol, were receiving relapse prevention medications and were more likely to be smokers. The small sample meant we were unable to interrogate the possible contribution of these factors. Another limitation is that the majority of the patient group had undergone medicated detoxification, raising the possibility that changes are seen related to medications taken during detoxification or other non-specific effects.

We found a statistically significant decrease in \(^{11}\text{C}\)PBR28 \(V_T\) in the hippocampus of ADPs shortly following alcohol withdrawal consistent with microglial or astrocytic loss or functional change, or changes in TSPO expression related to oxidative stress or mitochondrial pathology. This finding is supported by a previous postmortem study showing hippocampal microglial and astrocytic...
loss in ADP. Hippocampal [13] CYP2B8 V1, indicative of TSPO expression was positively correlated with performance on a delayed memory task, suggesting this may be of clinical relevance. This relates to pre-clinical research suggesting that microglial activation may be related to homeostatic functions rather than inflammatory functions in the hippocampus under healthy conditions. Binding was not higher in the alcohol-dependent participants, raising questions about microglial and mitochondrial function in this context and how this may translate into treatment targets. It remains to be established whether an increase in TSPO expression occurs in humans during chronic drinking, or in binge alcohol exposure, which more closely resembles animal models.

CONFLICT OF INTEREST

NK was supported by a Wellcome Trust GlaxoSmithKline (GSK) Translational Medicine Training Fellowship to perform this research for her PhD and GSK supplied funds for the PET scans. JC is funded by the Wellcome Trust, Medical Research Council, the Chief Scientific Office of the Scottish Government and Pfizer. JC holds a recent Wellcome Trust award that involves collaboration with GSK, Lundbeck and Janssen & Janssen. ER is an employee of Imanova and an ex-GSK employee and GSK share holder. ER is a consultant for Opian Pharma. PM was an employee of GSK while the study was being performed and owns stock in the company. Honoraria or educational grants have been paid to Imperial College for activities undertaken by PM for Biogen, Novartis, Roche, IXICO, Transparency Life Sciences and Adelphi Communications. PM receives research support from Biogen and GSK. AL-H has received research funding/support from Lundbeck and GSK, and honoraria for talks from Lundbeck. The remaining authors declare no conflict of interest.

ACKNOWLEDGMENTS

The study was funded by a Wellcome Trust GlaxoSmithKline Translational Medicine Training Fellowship. Scanning costs were supported by GlaxoSmithKline. Support also was supplied by the Imperial College Healthcare Trust Biomedical Research Training Fellowship. Scanning costs were supported by GlaxoSmithKline. Support of training for radiochemistry contributing to this study and to the Edmond J Safra Foundation and Lily Safra for personal support.

REFERENCES

1 Davies SJ, Pandit SA, Feeney A, Stevenson BJ, Kerwin RW, Nutt DJ et al. Is there cognitive impairment in clinically ‘healthy’ abstinent alcohol dependence? Alcohol Alcohol 2005; 40: 498–503.

2 Stavro K, Pelletier J, Potvin S. Widespread and sustained cognitive deficits in alcoholism: a meta-analysis. Addict Biol 2013; 18: 203–213.

3 Bowden SC, Crews FT, Bates ME, Fals-Stewart W, Ambrose ML. Neurotoxicity and neurocognitive impairments with alcohol and drug-use disorders: potential roles in addiction and recovery. Alcohol Clin Exp Res 2001; 25: 317–321.

4 Allsop S, Saunders B, Phillips M. The process of relapse in severely dependent male problem drinkers. Addiction 2000; 95: 95–106.

5 Blume AW, Schmaling KB, Marlatt GA. Memory, executive cognitive function, and readiness to change drinking behavior. Addict Behav 2005; 30: 301–314.

6 Bartels C, Kunert HJ, Stawicki S, Kroner-Herwig B, Ehrenreich H, Krampe H. Recovery of hippocampus-related functions in chronic alcoholics during monitored long-term abstinence. Alcohol Alcohol 2007; 42: 92–102.

7 Zahr NM, Kaufman KL, Harper CG. Clinical and pathological features of alcohol-related brain damage. Nat Rev Neurol 2011; 7: 284–294.

8 Duka T, Townshend MJ, Collier K, Stephens DN. Impairment in cognitive functions after multiple detoxifications in alcoholic inpatients. Alcohol Clin Exp Res 2003; 27: 1563–1572.

9 Duka T, Gentry J, Malcolm R, Ripleey TL, Borlikova G, Stephens DN et al. Consequences of multiple withdrawals from alcohol. Alcohol Clin Exp Res 2004; 28: 233–246.

10 Nimmerjahn A, Kirchhoff F, Helmchen F. Resting microglial cells are highly dynamic surveillance of brain parenchyma in vivo. Science 2005; 308: 1314–1318.

11 Galey I, Bechmann I, Perry VH. What is immune privilege (not?) Trends Immunol 2007; 28: 153–160.

12 Grabert K, Michel T, Karavolos MH, Clohissey S, Baillie JK, Stevens MP et al. Microglial brain region-dependent diversity and selective regional sensitivities to aging. Nat Neurosci 2016; 19: 504–516.

13 Chao CC, Hu S, Morlitor TW, Shaskan EG, Peterson PK. Activated microglia mediate neuronal cell injury via a nitric oxide mechanism. J Immunol 1992; 149: 2736–2741.

14 Piani D, Spranger M, Frei K, Schaffner A, Fontana A. Macrophage-induced cytotoxicity of N-methyl-D-aspartate receptor positive neurons involves excitatory amino acids rather than reactive oxygen intermediates and cytokines. Eur J Immunol 1992; 22: 2429–2436.

15 Morgan SC, Taylor DL, Pocock JM. Microglia release activators of neuronal pro- liferation mediated by activation of mitogen-activated protein kinase, phospho- tyrosininositol-3-kinase/Akt and delta-Notch signalling cascades. J Neurochem 2004; 90: 89–101.

16 Perry VH, Nicoll JA, Holmes C. Microglia in neurodegenerative disease. Nat Rev Neurosci 2010; 6: 193–204.

17 Nakajima K, Toyohama Y, Maeda S, Kohsaka S, Kurihara T. Neuronal regulation by which microglia enhance the production of neurotrophic factors for GABAergic, catecholaminergic, and cholinergic neurons. Neuroimmunomodulation 2007; 10: 807–820.

18 Wright GA, Sharifi Y, Newman TA, Davies N, Vairapann B, Perry VH et al. Characterisation of temporal microglia and astrocyte immune responses in bile duct- ligated rat models of cirrhosis. Liver Int 2014; 34: 1184–1191.

19 Obrenia JR, White AM, Swartzwelder HS, Crews FT. Cognitive deficits and CNS damage after a 4-day binge ethanol exposure in rats. Pharmacol Biochem Behav 2002; 72: 521–532.

20 Qin L, He J, Hanes RN, Pluzarcz O, Hong JS, Crews FT. Increased systemic and brain cytokine production and neuronal inflammation by endotoxin following ethan- ol treatment. J Neuroinflammation 2008; 5: 10.

21 He J, Overstreet DH, Crews FT. Abstinence from moderate alcohol self-administration alters progenitor cell proliferation and differentiation in multiple brain regions of male and female rats. Alcohol Clin Exp Res 2009; 33: 129–138.

22 Achur RN, Freeman WM, Vrana KE. Circulating cytokines as biomarkers of alcohol abuse and alcoholism. J Neuroimmune Pharmacol 2010; 5: 83–91.

23 Umhau JC, Schwandt M, Solomon MG, Yuan P, Nugent A, Zarate CA et al. Cerebrospinal fluid monocyte chemoattractant protein-1 in alcoholics: support for a neuroinflammatory model of chronic alcoholism. Alcohol Clin Exp Res 2014; 38: 1301–1306.

24 Tamborska E, Marangoz PJ. Brain benzodiazepine binding sites in ethanol dependent and withdrawal states. Life Sci 1986; 36: 465–472.

25 Nixon K. Alcohol and adult neurogenesis: roles in neurodegeneration and recovery in chronic alcoholism. Hippocampus 2006; 16: 287–295.

26 Marshall SA, McClain JA, Kelso ML, Hopkins DM, Pauly JR, Nixon K. Microglial activation is not equivalent to neuroinflammation in alcohol-induced neurode- generation: the importance of microglia phenotype. Neurobiol Dis 2013; 54: 239–251.

27 Lavisse S, Guillemier M, Herard AS, Petit F, Delahaye M, Van Camp N et al. Reactive astrocytes overexpress TSPO and are detected by TSPO positron emission tomography imaging. J Neurosci 2012; 32: 10809–10818.

28 Turkheimer FE, Edison P, Pasevne N, Roncadori F, Anderson AN, Hammers AN et al. Reference and target region modeling of [11C]-PK11195 brain studies. J Nucl Med 2007; 48: 158–167.

29 Lockhart A, Davis B, Matthews JC, Rahmoune H, Hong G, Gee A et al. The peripheral benzodiazepine receptor ligand PK11195 binds with high affinity to the acute phase reactant alpha-hyaluronidase protein: implications for the use of the ligand as a CNS inflammatory marker. Nucl Med Biol 2003; 30: 199–206.

30 Cagnin A, Taylor-Robinson SD, Forton DM, Banati RB. In vivo imaging of cerebral “peripheral benzodiazepine binding sites” in patients with hepatic encephalopathy. Gut 2006; 55: 547–553.

31 Rikonen J, Jaatinen P, Rintala J, Porsti I, Karjala K, Hervonen A. Intermittent ethanol exposure increases the number of cerebellar microglia. Alcohol Alcohol 2002; 37: 421–426.

32 Owen DR, Guo Q, Kalk NJ, Colasanti A, Kalganionippolou D, Dimber R et al. Determination of [13C]PK1128 binding potential in vivo: a first human TSPO blocking study. J Cereb Blood Flow Metab 2014; 19.

33 Kalk NJ, Owen DR, Tyacke RJ, Reynolds R, Rabiner EA, Lingford-Hughes AR et al. Are prescribed benzodiazepines likely to affect the availability of the 18 kDa translocator protein (TSPO) in PET studies? Synapse 2013; 67: 909–912.

34 Sheehan DV, Lecrubier Y, Sheehan KH, Amorim P, Janavs J, Weiller E et al. The Mini-International Neuropsychiatric Interview (M.I.N.I.): the development and validation of a structured diagnostic psychiatric interview for DSM-IV and ICD-10. J Clin Psychiatry 1998; 59 (Suppl 20): 22–33.

35 Owen DR, Yeo AJ, Gunn RN, Song K, Wadsworth G, Lewis A et al. An 18-kDa translocator protein (TSPO) polymorphism explains differences in binding affinity of the PET radioligand PBR28. J Cereb Blood Flow Metab 2012; 32: 1–5.

36 Kreil WC, Jenko KJ, Hines CS, Lyoo CH, Corona W, Morse CL et al. A genetic polymorphism for translocator protein 18 kDa affects both in vitro and in vivo radioligand binding in human brain to this putative biomarker of neuroinflammation. J Cereb Blood Flow Metab 2013; 33: 53–58.
Kreisl WC, Fujita M, Fujimura Y, Kimura N, Jenko KJ, Kannan P et al. Comparison of [(11)C-(R)-PK 11195 and [(11)C]PBR28, two radioligands for translocator protein (18 kDa) in human and monkey: implications for positron emission tomographic imaging of this inflammation biomarker. Neuroimage 2010; 49: 2924–2932.

Sullivan JT, Szkyora K, Schneiderman J, Naranjo CA, Sellers EM. Assessment of alcohol withdrawal: the revised clinical institute withdrawal assessment for alcohol scale (CIWA-Ar). Br J Addict 1989; 84: 1353–1357.

Skeen HA, Sheu WJ. Reliability of alcohol use indices. The Lifetime Drinking History and the MAST. J Stud Alcohol 1982; 43: 1157–1170.

Spilberger C. Manual for the State–Trait Anxiety Inventory. Consulting Psychologists Press: Palo Alto, CA, USA, 1983.

Beck AT, Ward CH, Mendelson M, Mock J, Erbaugh J. An inventory for measuring depression. Arch Gen Psychiatry 1961; 4: 561–571.

Knupp LB, LaRocca NG, Murash N, Steinberg AD. The fatigue severity scale. J Clin Neurophysiol 1998; 15: 463–467.

Korbo L. Glial cell loss in the hippocampus of alcoholics. J Cereb Blood Flow Metab 1994; 14: 1164–1167.

Guo Q, Owen DR, Inoue M, Sugahara T, Takeda H et al. Protein kinase C expression in human brain correlates with age and cognitive performance. Neuroimage 2011; 54: 225–231.

Reitan RM. Validity of the Trail Making test as an indicator of organic brain damage. Percept Mot Skills 1958; 8: 271–276.

Osterrieth PA. The test of copying a complex figure: a contribution to the study of perception and memory. Arch Psychol 1944; 30: 286–356.

Weschler D. The Weschler Memory Scale - revised San Antonio. Psychological Corporation: San Antonio, TX, USA, 1987.

Searle GE. Kinetic analysis of [(11)C]-IMA107, a novel PET radiotracer for PDE10A. J Nucl Med Meeting Abstracts 2014; 55: 204.

Tzirtzio AC, Searle GE, Tzimopoulou S, Salinas C, Beaver JD, Jenkinson M. The effects of chronic alcoholism on cell proliferation in the human brain. Alcohol Clin Exp Res 2015; 39: 1351–1361.

Kumar A, Muzik O, Shandal V, Chugani D, Chakraborty P, Chugani HT. Evaluation of the methods of TSPO imaging with positron emission tomography. Biochem Soc Trans 2015; 43: 586–592.

Kraszpulski M, Tukac C, Wizolkowa T. Hippocampal capillaries in different age groups of chronically ethanol-intoxicated rats. Morphometric studies. Folia Morphol (Warsz) 2000; 59: 121–129.

Zhao YN, Wang F, Fan YX, Peng GF, Yang JY, Wu CF. Activated microglia are implicated in cognitive deficits, neuronal death, and successful recovery following intermittent ethanol exposure. Behav Brain Res 2013; 236: 270–282.

Clark KH, Wiley CA, Bradberry CW. Psychostimulant abuse and neuroinflammation: emerging evidence of their interconnection. Neurotox Res 2013; 23: 174–188.

Narendran R, Jedema HP, Lopresti BJ, Mason NS, Himes ML, Bradberry CW. Decreased vesicular monoamine transporter type 2 availability in the striatum following chronic cocaine self-administration in nonhuman primates. Biol Psychiatry 2015; 77: 488–492.

Fontainhas AM, Wang M, Liang KJ, Chen S, Mettu P, Damani M et al. Microglial morphology and dynamic behavior is regulated by ionotropic glutamatergic and GABAergic neurotransmission. PLoS One 2011; 6: e15973.

Zhang H, Ma L, Yin YL, Dong LQ, Cheng GG, Ma YQ et al. Over-expression of TSPO in the hippocampal CA1 area alleviates cognitive dysfunction caused by lipopolysaccharide in mice. Brain Res 2016; 1646: 402–409.

Salter MW, Beggs S. Sublime microglia: expanding roles for the guardians of the CNS. Cell 2014; 158: 15–24.

Ota Y, Zanetti AT, Hallock RM. The role of astrocytes in the regulation of synaptic plasticity and memory formation. Neuron Plast 2013; 2013: 185463.

Matthews DB, Morrow AL. Effects of acute and chronic ethanol exposure on spatial cognitive processing and hippocampal function in the rat. Hippocampus 2000; 10: 122–130.

Fama R, Rosenblloom MJ, Nichols BN, Pfefferbaum A, Sullivan EV. Working and episodic memory in HIV infection, alcoholism, and their comorbidity: baseline and 1-year follow-up examinations. Alcohol Clin Exp Res 2009; 33: 1815–1824.

Sullivan EV, Marsh L, Mathalon DH, Lim KO, Pfefferbaum A. Anterior hippocampal volume deficits in nonanomies, aging chronic alcoholics. Alcohol Clin Exp Res 1995; 19: 110–122.

Sullivan EV, Marsh L, Mathalon DH, Lim KO, Pfefferbaum A. Relationship between alcohol withdrawal seizures and temporal lobe white matter volume deficits. Alcohol Clin Exp Res 1996; 20: 348–354.

Agartz I, Mominan R, Ravalins FR, Kerich MJ, Hommer DW. Hippocampal volume in patients with alcohol dependence. Arch Gen Psychiatry 1999; 56: 356–363.

Laakso MP, Vauro O, Savolainen L, Repo E, Soininen H, Aronen HJ et al. A volumetric MRI study of the hippocampus in type 1 and 2 alcoholism. Behav Brain Res 2000; 109: 177–186.