Long non-coding RNAs as novel therapeutic targets in juvenile myelomonocytic leukemia

Mattias Hofmans1,2, Tim Lammens1,3, Barbara Depreter4, Ying Wu5,6, Miriam Erlacher6,7, Aurélie Caye8, Hélène Cavé8, Christian Flotho6,7, Valerie de Haas9,10, Charlotte M. Niemeyer6,7, Jan Stary11, Filip Van Nieuwerburgh12, Dieter Deforce12, Wouter Van Loocke13, Pieter Van Vlierberghe3,13, Jan Philippé2,3 & Barbara De Moerloose1,3

Juvenile myelomonocytic leukemia (JMML) treatment primarily relies on hematopoietic stem cell transplantation and results in long-term overall survival of 50–60%, demonstrating a need to develop novel treatments. Dysregulation of the non-coding RNA transcriptome has been demonstrated before in this rare and unique disorder of early childhood. In this study, we investigated the therapeutic potential of targeting overexpressed long non-coding RNAs (lncRNAs) in JMML. Total RNA sequencing of bone marrow and peripheral blood mononuclear cell preparations from 19 untreated JMML patients and three healthy children revealed 185 differentially expressed lncRNA genes (131 up- and 54 downregulated). LNA GapmeRs were designed for 10 overexpressed and validated lncRNAs. Molecular knockdown (≥ 70% compared to mock control) after 24 h of incubation was observed with two or more independent GapmeRs in 6 of them. For three lncRNAs (Inc-THADA-4, Inc-ACOT9-1 and NRIR) knockdown resulted in a significant decrease of cell viability after 72 h of incubation in primary cultures of JMML mononuclear cells, respectively. Importantly, the extent of cellular damage correlated with the expression level of the lncRNA of interest. In conclusion, we demonstrated in primary JMML cell cultures that knockdown of overexpressed lncRNAs such as Inc-THADA-4, Inc-ACOT9-1 and NRIR may be a feasible therapeutic strategy.

Currently, hematopoietic stem cell transplantation (HSCT) is the established standard of care in juvenile myelomonocytic leukemia (JMML), a distinct myelodysplastic/myeloproliferative disorder of early childhood1. HSCT results in long-term overall survival (OS) of approximately 50–60% of patients8. Characteristic for JMML are proliferative features, such as monocytosis, splenomegaly, and a moderately elevated proportion of myeloblasts. These disease features are caused by clonal growth of an abnormal multipotent hematopoietic stem cell3,4. In approximately 90–95% of patients, canonical mutations in the NRAS and KRAS (20–25%), PTEN (35%), NF1 (10–15%) or CBL (10–15%) genes are observed, strongly linking the disorder to hyperactivation of the RAS/MAPK pathway. More recently, investigations of secondary mutations5,6, non-coding RNA expression7,8, and genomic DNA methylation9–11 have led to a better understanding of the pathobiology of the disease. The acquisition of secondary mutations and aberrant DNA methylation were found to be associated with unfavorable clinical characteristics and poor prognosis, and might be used in the future to guide treatment decisions5,12. Furthermore,
methyloprome studies encouraged the use of the DNA methyltransferase-inhibiting agent azacitidine as a bridge to HSCT, with promising results in single case reports and the first clinical trial15,16.

Long non-coding RNAs (lncRNAs) are RNA transcripts with a minimum length of 200 nucleotides and little or no evidence of protein-coding capacity. lncRNAs have emerged as an additional layer of gene expression regulation and were shown to play a role in normal and malignant hematopoiesis17,18. Dysregulation of key lncRNAs involved in processes such as maintenance and differentiation of hematopoietic stem cells can result in the development of hematological malignancies19. Interestingly, compared to protein-coding messenger RNAs (mRNAs), lncRNAs generally have a more tissue or cell-type specific expression pattern, making them ideal candidates for targeted therapies20,21.

Recently, we documented the lncRNA landscape of JMML using microarray profiles from 44 untreated JMML patients and 7 healthy controls, and correlated lncRNA expression with clinical and molecular characteristics2. In addition, we discovered a subset of lncRNAs specifically overexpressed in JMML patients that could potentially serve as new therapeutic targets7.

GapmeRs, potent antisense oligonucleotides (ASOs), represent a unique tool to perturbate lncRNA expression, even more efficiently than RNA interference22. LNA GapmeRs were shown earlier to act in hematological and solid tumors. For example, we have shown that silencing of lncRNA Inc-RTN4R-1 induces cell death in ETV6-RUNX1 childhood B-cell precursor leukemia23. Likewise, Leucci et al. recently illustrated that silencing of the lncRNA SAMMSON, in Patient-Derived Xenograft models of melanoma, strongly decreases melanoma cell survival24.

Here, we further refined the lncRNA transcriptome in JMML patients using RNA sequencing (RNA-seq) and quantitative reverse transcriptase PCR (qPCR) and evaluated GapmeR ASOs as a therapeutic strategy targeting overexpressed lncRNAs in JMML.

Results

Patients characteristics. To identify differentially expressed lncRNAs in JMML, we profiled bone marrow (BM) (n = 15) or peripheral blood (PB) (n = 4) mononuclear cell preparations (MNCs) from 19 JMML samples and 3 BM samples from age-matched pediatric haematological normal patients (PNs) using total RNA-seq. The patient cohort consisted of 8 PTPN11, 4 KRAS, 5 NRAS and 2 NF1 mutated patients. Karyotypic abnormalities were detected in 6/19 patients, including monosomy 7 in four cases. The median age at diagnosis was 26 months (range 1–159 months). Seventeen out of 19 patients (89.5%) received HSCT. Relapse after HSCT occurred in 4/17 patients and one patient died of transplant-related toxicity. Detailed patient characteristics are summarized in Supplemental Table S1.

Differential RNA expression between JMML patients and normal bone marrow controls. In total, 167,569 genes were identified of which 58,096 corresponded to known Ensembl genes. Of these, 19,979 were coding, and 38,117 non-coding genes. Using edgeR, we identified 227 and 419 differentially expressed coding and non-coding genes, respectively.

The LNCipedia database was used to further identify 8559 known lncRNAs showing expression of ≥ 1 count per million in at least 2/3 of the patients or PN BM samples21. Principal component analysis (PCA), using this subset of lncRNAs showed clustering of PN BM samples and divergent of JMML patients (Fig. 1A). Within the JMML samples, heterogeneity can be observed. Moreover, a lncRNA signature was established, consisting of 185 differentially expressed lncRNA genes (131 up- and 54 downregulated) between JMML and PN BM (Fig. 1B, Supplemental Table S2). In silico analysis with pre-ranked gene set enrichment analysis and lncRNA pathway analysis (see Supplementary methods) identified pathways associated with JAK-STAT-MAPK signaling, cancer development, and systemic inflammation to be synergistically regulated by these differentially expressed lncRNAs in JMML patients.

Pairwise analyses between PTPN11 (n = 8), KRAS (n = 4), NRAS (n = 5) and NF1 (n = 2) patients and PN were subsequently performed. Although these subgroups are relatively small, these analyses revealed 29 (19 up- and 10 downregulated) lncRNAs to be deregulated in KRAS mutated patients, 61 (49 up- and 12 downregulated) in NRAS, 48 (32 up- and 16 downregulated) in PTPN11, and 113 (29 up- and 84 downregulated) in NF1 mutated patients compared to PN (Fig. 1C). Only Inc-ACOT9-1 and MKNL1-AS were significantly upregulated in all mutational subgroups compared to PN samples, making them potential therapeutic targets. Six lncRNAs (five upregulated: Inc-ACOT9-1, MKN1-AS, Inc-BCAR1-1, Inc-SM6G-2 and USPBP11 and one downregulated: SLCS5A4-AS1) showed differential expression in PTPN11, NRAS and KRAS mutated samples compared to PN samples. In total, 281 lncRNAs showed significantly differential expression in at least 1 molecular subgroup compared to PN (Supplemental Table S3). Only Inc-KIFAP3-2, showing upregulation in PTPN11 vs KRAS, was found differentially expressed between NRAS, KRAS and PTPN11 mutated patients, pointing to similar deregulated lncRNA profiles between these different molecular subgroups.

Identification and validation of lncRNAs overexpressed in JMML. The top-25 overexpressed lncRNAs together with other lncRNAs, based on log2 fold change (logFC) and previously discovered differential expression4, were selected for validation with quantitative reverse-transcriptase polymerase chain reaction (qPCR). In total, in house designed and validated primers were available for 45 lncRNAs (Supplemental Table S4). In our independent validation cohort (12 JMML patients and 6 PN), significant and near-significant (P ≤ 0.1) overexpression was confirmed for 10 and 4 lncRNAs respectively (31%) (Supplemental Figure S1). However, due to the small sample size of this cohort, not all molecular subgroups were represented in sufficient numbers. After expansion of the validation cohort with patients from the discovery cohort, more lncRNAs showed significant or near significant overexpression (12 [29%] and 6 [15%] lncRNAs respectively) (Fig. 2; Sup-
For 16/18 validated lncRNAs, sufficient data was present to perform a correlation analysis between RNA-seq and qPCR, and for 10/16 lncRNAs a significant and positive correlation could be observed (Supplemental Figure S2). Although upregulation was noted for both lnc-ACOT9-1 and MKLN1-AS in all mutational subgroups in our RNA-seq data, this was only validated for lnc-ACOT9-1 in the qPCR validation.

Detailed analysis of our qPCR results indicated that lnc-THADA-4 was low in all of the KRAS mutated samples from our cohort (P = 0.006), whereas lnc-EGR3-1 was overexpressed (> 3 SD above the average expression in PN) in all KRAS and NF1 mutated patients (P = 0.044), and LINC02217 in NRAS mutated patients (P = 0.02) (Supplemental Figure S3). None of the lncRNAs validated was associated with outcome in our cohort. However, MIR222HG overexpression was significantly associated with normal HbF levels (P = 0.032), overexpression of SH3RF3-AS1 with low platelet counts (P = 0.045), overexpression of LINC02218 with high platelet counts (P = 0.037) and overexpression of lnc-SPOPL-18 with low blast counts (P = 0.049) at diagnosis.

lncRNA knockdown in hematopoietic cell lines. Next, LNA GapmeRs were designed for each lncRNA with validated overexpression in JMML, to study the therapeutic potential and biological functions. To minimize off-target effects of individual GapmeRs, we aimed to evaluate a minimum of four different GapmeRs per lncRNA. For 8 lncRNAs it was not possible to design four LNA GapmeRs of sufficient predicted quality. For the remaining 10 lncRNAs (lnc-THADA-4, lnc-ACOT9-1, NRIR, lnc-ACSL1-1, lnc-EGR3-1, MIR222HG, LINC02217, lnc-CYP4F22-4, lnc-RUNX3-4 and MEG3), GapmeRs could be designed and subsequently tested.

Since no JMML cell lines are available to evaluate GapmeRs, we screened publicly available RNA-seq data from 934 human cancer cell lines from the Cancer Cell Line Encyclopedia (CCLE) to identify hematopoietic cell lines with overexpression of the lncRNAs validated. For all these lncRNAs, at least one cell line from another pediatric or adult hematopoietic malignancy was selected and expression verified with qPCR (Supplemental Figure S4; Supplemental Table S6).

After 24 h incubation of cells with individual GapmeRs at a concentration of 5 µM, expression of the targeted lncRNA was determined with qPCR and compared with cells treated with empty mock control. For six lncRNAs (lnc-THADA-4, lnc-ACOT9-1, NRIR, MIR222HG, LINC02217, and MEG3) a downregulation ≥70% of the level of expression of the targeted lncRNA for two or more GapmeRs could be observed (Supplemental Figure S5).

Interestingly, treatment of PEER (childhood T acute lymphoblastic leukemia) with a GapmeR against lnc-THADA-4 and treatment of K-562 (blastic chronic myelogenous leukemia) with GapmeRs against lnc-ACOT9-1 and NRIR, resulted in a significant reduction of cell viability after 96 h (~20% for GapmeR #4 against lnc-THADA-4 in PEER, ~45% for GapmeR #2 against NRIR in K-562, and ~30% for GapmeR #4 against lnc-ACOT9-1 in K-562) (Fig. 3). Moreover, a correlation between the level of expression and % apoptotic cell death could be observed (R = 0.85, 0.9 and 0.46 for lnc-ACOT9-1, NRIR and lnc-THADA-4, respectively). Of note, off-target effects were unlikely as these GapmeRs did not show effect in hematopoietic cell lines without expression of the targeted lncRNA (Fig. 3).
Figure 2. qPCR validation of the most significant differentially expressed lncRNAs discovered by RNA sequencing. qPCR confirmed significant upregulation of 12/45 (29%) and near significant upregulation of 6/45 (15%) lncRNA genes in JMML patients (n = 14 to 29) compared to PN (n = 6). One-sided P values were calculated by the Mann–Whitney U test. Median values and quartiles are shown by horizontal lines. The vertical axis (y-axis) corresponds to the calibrated normalized relative quantities (CNRQ). TBP, HPRT1 and GAPDH were used as internal reference genes. qPCR quantitative reverse transcriptase PCR, JMML juvenile myelomonocytic leukemia, PN pediatric normal, lncRNA long non-coding RNA, CNRQ calibrated normalized relative quantity.
lncRNA knockdown and effect on cell viability in JMML patient cells in vitro. As cell lines from other hematopoietic malignancies are no perfect disease models for JMML, we decided to study the effect of GapmeRs against lnc-THADA-4, lnc-ACOT9-1 and NRIR in primary JMML cultures. To this end, MNCs from three JMML patients were cultured. Confirming our previous observations, lnc-THADA-4 was highest expressed in the two PTPN11 mutated patients (D10 and G9), whereas lnc-ACOT9-1 was highest expressed in the KRAS mutated patient (D1). All three patients demonstrated variable expression of NRIR (Fig. 4A–C). Effect on cell death was subsequently evaluated after incubating the MNC cultures for 72 h with GapmeRs targeting lnc-ACOT9-1, NRIR and lnc-THADA-4. Treatment with GapmeR #4 targeting lnc-ACOT9-1 resulted in a significant reduction of viable cells in patient D10 (−30.7%), correlating with the level of expression (R = 0.88). Similarly, treatment with GapmeR #2 targeting NRIR also induced a significant reduction of viable cells in this patient (−49.7%), correlating with NRIR expression (R = 0.87). GapmeRs targeting lnc-THADA-4 caused a reduction of viability (−21.3% and −25.8% for D10 and G9, respectively) compared with a scrambled GapmeR, although not significant.

Discussion
JMML is a very rare pediatric disease in which HSCT remains the main option for cure, but is associated with major morbidity. In addition, many patients still experience relapse. Thus, the identification of novel therapeutic targets is warranted. Consensus is growing that lncRNAs are involved in solid and hematopoietic human cancers and that cancer-associated lncRNAs might reveal new prognostic biomarkers. Moreover, using RNA-based...
therapies, cancer-associated lncRNAs may serve as specific therapeutic targets. With this study, we demonstrate that lncRNA perturbation using LNA GapmeRs may serve as a novel therapeutic option in JMML in vitro.

Using total RNA-seq in a cohort of 19 JMML patients, we identified 185 differentially expressed lncRNAs. Despite the generally lower expression of lncRNAs, we were still able to validate approximately 45% of overexpressed lncRNAs with qPCR. Of note, 5/13 lncRNAs, i.e. lnc-THADA-4, previously identified as upregulated in JMML, could be confirmed in this study. RNA profiles may differ between BM and PB samples, and both BM (n = 15) and PB (n = 4) samples were present in our RNA-seq cohort. Nevertheless, differential expression analyses between BM and PB samples did not reveal differentially expressed lncRNAs.

As JMML is a very rare disease it was not possible to establish an independent validation cohort of sufficient size for all molecular subgroups. However, when using 12 independent samples as validation cohort we found comparable although less powered results. In addition to the scarcity of diagnostic samples, no JMML specific cell lines are available for research. Therefore, it is still difficult to study novel therapies for this disease. We tackled this problem by using cell lines of other hematopoietic malignancies as surrogates and by generating primary JMML-cell cultures. We demonstrated that gymnastic delivery of LNA GapmeRs targeting overexpressed lncRNAs in JMML can decrease cell proliferation in both hematopoietic cell lines and primary MNC cultures of JMML patients. LNA GapmeRs against lnc-THADA-4, NRIR and lnc-ACOT9-1 could impact cell viability with effects of ≈ 30 to ≈ 50%, 72–96 h after a single dose. Moreover, we could demonstrate a correlation between GapmeR effect and the level of molecular expression of the lncRNA of interest.

For most lncRNAs functional characterization is still lacking. It is known that some lncRNAs can regulate local chromatin structure and the expression of neighboring genes through its ability to recruit regulatory factors to the locus and/or modulate their function. Interestingly, NRIR is located close to the protein-coding gene...
β-mercaptoethanol. Cell lines were incubated at 37 °C in 5% CO2 incubators. 100 µg/mL l-glutamine (200 mM, Invitrogen). For THP-1, medium was additionally supplied with 0.05 mM inosine according to supplier instructions, together with 100 U/mL Penicillin/Streptomycin (10,000 U/mL, Invitrogen) and 10% fetal bovine serum (PBS, Invitrogen) and L-glutamine (200 µM, Invitrogen) for 7 days.

Cell lines and primary JMML cell culture. Hematopoietic cell lines PEER, K-562, MONO-MAC-6, HL-60, OCI-AML3, JURKAT, DAUDI, KASUMI-1, LOUCY, MV-4-11, and THP-1 were available in house, DEL and JVM-2 were purchased at the DSMZ repository (Braunschweig, Germany), and KARPAS-422 at Sigma-Aldrich (Saint Louis, Missouri, USA). Cell lines were grown in RPMI medium (Invitrogen, Waltham, MA, USA) supplemented with 10% or 20% Fetal Calf Serum (FCS, ThermoFisher Scientific, Waltham, MA, USA), according to supplier instructions, together with 100 U/mL Penicillin/Streptomycin (10,000 U/mL, Invitrogen) and 100 µg/mL L-glutamine (200 mM, Invitrogen). For THP-1, medium was additionally supplied with 0.05 mM β-mercaptoethanol. Cell lines were incubated at 37 °C in 5% CO2 incubators.

Mononuclear cell preparations derived from spleen and PB from 3 JMML patients were primary cultured in StemSpan SFEM II medium (Stemcell Technologies, Vancouver, Canada) supplemented with recombinant human IL3 (0.01 µg/mL; PeproTech, London, UK), FLT3L (0.01 µg/mL; PeproTech, London, UK), TPO (0.01 µg/mL; PeproTech, London, UK) and SCF (0.025 µg/mL; PeproTech, London, UK) and incubated at 37 °C in 5% CO2 incubators.

RNA isolation, RNA sequencing, differential gene expression analysis, functional lncRNA analysis, complementary cDNA synthesis and quantitative reverse transcriptase PCR. Detailed information can be found in Supplementary Methods. Briefly, MNCs from JMML and PN BM were isolated and total RNA was extracted using TRIzol. Samples in the discovery cohort were used for total paired-end RNA-seq, whereas samples in the validation cohort were used for cDNA synthesis and qPCR.

LncRNA perturbation. For each lncRNA of interest, a minimum of four antisense LNA GapmeRs (Qiagen) were designed using the LNA GapmeR designer (Qiagen). GapmeRs were resuspended in Tris–EDTA buffer and stored at −20 °C. LncRNA expression of selected cell lines and primary cells was verified with qPCR. Cells from cell lines and MNCs from primary patients were plated in 96-well plates and incubated at 37 °C.
different concentrations of GapmeRs (typically 1–10 μM) for 96 h and 72 h, respectively. Molecular efficiency of GapmR treatment was assessed after 24 h with qPCR and knockdown was considered successful if down-regulation of ≥70% of the lncRNA could be observed compared to the mock control. To test the passive uptake process (gymnosis) and nuclear migration in each sample, GapmeRs against the nuclear lncRNA MALAT1 were used as positive control. Scrambled GapmeRs (Qiagen) were used as negative controls. The effect on cell viability was assessed using annexin-V and 7-AAD staining on a BD FACSCan II flow cytometer (BD, San Jose, USA).

Statistics. Graphics and statistical calculations were made in GraphPad Prism (version 5.04, La Jolla, CA, USA) and R bioconductor (version 3.11). Genes were considered differentially expressed if adjusted P value ≤ 0.05 and absolute log2 fold change (logFC) > 2. Unpaired Student’s T test or Mann–Whitney U test were used to compare continuous data between two groups. Pearson Chi-square test was used to compare categorical data. Statistical analyses involving more than two groups were performed by one-way analysis of variance (ANOVA) followed by Tukey’s multiple comparison test. Statistical significance was considered at P values < 0.05. Data are expressed as the mean ± standard error of mean (SEM) of three independent experiments, unless otherwise indicated.

Ethics approval. Approval for the study was granted from the institutional review committee at the Ghent university hospital (EC/2011/825) and at each participating center.

Informed consent. Written informed consent was obtained from the parents of the patients or the healthy children before sample collection.

Data availability. The datasets generated during and/or analysed during the current study are available in the National Center for Biotechnology Information (NCBI) Gene Expression Omnibus (GEO) database and are available at GEO (accession number GSE147523).

Received: 3 September 2020; Accepted: 20 January 2021
Published online: 02 February 2021

References
1. Niemeyer, C. M. RAS diseases in children. *Haematologica* **99**, 1653–1662. https://doi.org/10.3324/haematol.2014.114595 (2014).
2. Locatelli, F. & Niemeyer, C. M. How I treat juvenile myelomonocytic leukemia. *Blood* **125**, 1083–1090. https://doi.org/10.1182/blood-2014-08-550483 (2015).
3. Chang, T. Y., Dvorak, C. C. & Loh, M. L. Bedside to bench in juvenile myelomonocytic leukemia: Insights into leukemogenesis from a rare pediatric leukemia. *Blood* **124**, 2487–2497. https://doi.org/10.1182/blood-2014-03-300319 (2014).
4. Niemeyer, C. M. & Kratz, C. P. Paediatric myelodysplastic syndromes and juvenile myelomonocytic leukaemia: Molecular classification and treatment options. *Br. J. Haematol.* **140**, 610–624. https://doi.org/10.1111/j.1365-2141.2008.06958.x (2008).
5. Caye, A. et al. Juvenile myelomonocytic leukaemia displays mutations in components of the RAS pathway and the PRC2 network. *Nat. Genet.* **47**, 1334–1340. https://doi.org/10.1038/ng.3420 (2015).
6. Stieglitz, E. et al. The genomic landscape of juvenile myelomonocytic leukaemia. *Nat. Genet.* **47**, 1326–1333. https://doi.org/10.1038/ng.3400 (2015).
7. Hofmans, M. et al. The long non-coding RNA landscape in juvenile myelomonocytic leukemia. *Haematologica* **103**, e501–e504. https://doi.org/10.3324/haematol.2018.189977 (2018).
8. Leoncini, P. P. et al. MicroRNA fingerprints in juvenile myelomonocytic leukemia (JMLL) identified miR-150-5p as a tumor suppressor and potential target for treatment. *Oncotarget* **7**, 53595–535408. https://doi.org/10.18632/oncotarget.10577 (2016).
9. Olt-Batz, C. et al. Aberrant DNA methylation characterizes juvenile myelomonocytic leukemia with poor outcome. *Blood* **117**, 4871–4880. https://doi.org/10.1182/blood-2010-08-298968 (2011).
10. Lipka, D. B. et al. RAS-pathway mutation patterns define epigenetic subclasses in juvenile myelomonocytic leukemia. *Nat. Commun.* **8**, 2126. https://doi.org/10.1038/s41467-017-02177-w (2017).
11. Stieglitz, E. et al. Genome-wide DNA methylation is predictive of outcome in juvenile myelomonocytic leukemia. *Nat. Commun.* **8**, 2127. https://doi.org/10.1038/s41467-017-02178-9 (2017).
12. Hofmans, M. et al. Noonan syndrome-associated myeloproliferative disorder with somatically acquired monosomy 7: Impact on clinical decision making. *Br. J. Haematol.* https://doi.org/10.1111/bjh.16191 (2019).
13. Coeh, A. et al. Bridging to transplant with azacitidine in juvenile myelomonocytic leukaemia: A retrospective analysis of the EWWG-MDS study group. *Blood* **125**, 2311–2313. https://doi.org/10.1182/blood-2015-01-619734 (2015).
14. Furfan, I. et al. Intriguing response to azacitidine in a patient with juvenile myelomonocytic leukemia and monosomy 7. *Blood* **131**, 2867–2868. https://doi.org/10.1182/blood-2008-12-159693 (2009).
15. Kronsholz, C. F. et al. Azacitidine is effective for targeting leukemia-initiating cells in juvenile myelomonocytic leukaemia. *Leukemia* https://doi.org/10.1038/s41375-018-0343-2 (2019).
16. Niemeyer, C. M. et al. Upfront azacitidine (AZA) in juvenile myelomonocytic leukemia (JMLL): Interim analysis of the prospective AZA-JMML-001 study. *J. Clin. Oncol.* **37**, 10031–10031. https://doi.org/10.1200/JCO.2019.37.15_suppl.10031 (2019).
17. Alvarez-Dominguez, J. R. & Lodish, H. F. Emerging mechanisms of long noncoding RNA function during normal and malignant hematopoiesis. *Blood* **130**, 1963–1975. https://doi.org/10.1182/blood-2017-06-788695 (2017).
18. Dahariya, S. et al. Long non-coding RNA: Classification, biogenesis and functions in blood cells. *Mol. Immunol.* https://doi.org/10.1016/j.molimm.2019.04.011 (2019).
19. Delas, M. J. et al. lncRNA requirements for mouse acute myeloid leukemia and normal differentiation. *eLife* https://doi.org/10.7554/eLife.25607 (2017).
20. Derrien, T. et al. The GENCODE v7 catalog of human long noncoding RNAs: Analysis of their gene structure, evolution, and expression. *Genome Res.* **22**, 1775–1789. https://doi.org/10.1101/gr.132159.111 (2012).
21. Volders, P. J. et al. LNCipedia: A database for annotated human lncRNA transcript sequences and structures. *Nucleic Acids Res.* **41**, D246–251. https://doi.org/10.1093/nar/gko915 (2013).
22. Lennox, K. A. & Behlke, M. A. Cellular localization of long non-coding RNAs affects silencing by RNAi more than by antisense oligonucleotides. *Nucleic Acids Res.* [https://doi.org/10.1093/nar/gkv1206] (2016).

23. Ghazavi, F. et al. Unique long non-coding RNA expression signature in ETv6/RUNX1-driven B-cell precursor acute lymphoblastic leukemia. *Oncotarget* 7, 73679–73780. [https://doi.org/10.18632/oncotarget.12063] (2016).

24. Leucci, E. et al. Melanoma addiction to the long non-coding RNA SALLMSON. *Nature* 531, 518–522. [https://doi.org/10.1038/nature17161] (2016).

25. Carlevaro-Fita, J. et al. Cancer LncRNA Census reveals evidence for deep functional conservation of long noncoding RNAs in tumorigenesis. *Commun. Biol.* 3, 1–16. [https://doi.org/10.1038/s42003-019-0741-7] (2020).

26. Xu, Y., Johansson, M. & Karlsson, A. Human UMP-CMP Kinase 2, a novel nucleoside monophosphate kinase localized in mitochondria. *J. Biol. Chem.* [https://doi.org/10.1074/jbc.M707997200] (2008).

27. Cheng, X. et al. PKR inhibits the DNA damage response, and is associated with poor survival in AML and accelerated leukemia in NHD13 mice. *Blood* 126, 1585–1594. [https://doi.org/10.1182/blood-2015-03-635227] (2015).

28. Liu, Y. et al. Genome-wide screening for functional long noncoding RNAs in human cells by Cas9 targeting of splice sites. *Nat. Biotechnol.* [https://doi.org/10.1038/nbt.4283] (2018).

29. Kamola, P. J. et al. In silico and in vitro evaluation of exonic and intronic off-target effects form a critical element of therapeutic aso gapmer optimization. *Nucleic Acids Res.* [https://doi.org/10.1093/nar/gkv857] (2015).

30. Swayze, E. E. et al. Antisense oligonucleotides containing locked nucleic acid improve potency but cause significant hepatotoxicity in animals. *Nucleic Acids Res.* [https://doi.org/10.1093/nar/gki1071] (2007).

31. Stanton, R. et al. Chemical modification study of antisense gapmers. *Nucleic Acid Therap.* [https://doi.org/10.1089/nat.2012.0366] (2012).

32. Krombholz, C. F. et al. Long-term serial xenotransplantation of juvenile myelomonocytic leukemia recapitulates human disease in Rag2−/−gammac−/− mice. *Haematologica* 101, 597–606. [https://doi.org/10.3324/haematol.2015.138545] (2016).

33. Yoshimi, A. et al. Robust patient-derived xenografts of MDS/MPN overlap syndromes capture the unique characteristics of CMMI and JMML. *Blood* [https://doi.org/10.1182/blood-2017-01-763219] (2017).

34. Caye, A. et al. Despite mutation acquisition in hematopoietic stem cells, JMML-propagating cells are not always restricted to this compartment. *Leukemia* [https://doi.org/10.1038/s41375-019-0662-y] (2019).

Acknowledgements

This work was supported by the Foundation against Cancer (2016-113, BDM), the Cancer Plan, action 29 (KP_29_020, JP), vzw Kinderkankerfonds—a non-profit childhood cancer foundation under Belgian law (Grant to TL), the Foundation Against Cancer (STK, Grant 2018-109) and the German Research Foundation (ER599/3-2 to ME). The sponsors of this study are public or nonprofit organizations that support science in general. They had no role in gathering, analyzing, or interpreting the data. We thank the Center for Biological Resources (CRB-cancer) (BB-0033-00076) of the Robert Debré hospital. MH is a PhD candidate at Ghent University and this work is submitted in partial fulfilment of the requirement for the PhD.

Author contributions

M.H. performed all in vitro cell line and JMML experiments. B.D. assisted with cell line experiments and qPCR analysis. F.V.V. and W.V.L. performed bioinformatics analysis. Y.W. and M.E. performed key experiments regarding primary culture of JMML cells. H.C., C.F., V.D.H., T.L., B.D.M. and J.P. conceived and supervised the study. M.H. performed all in vitro cell line and JMML experiments. B.D. assisted with cell line experiments and qPCR analysis. P.V.V. and W.V.L. performed bioinformatics analysis. Y.W. and M.E. performed key experiments regarding primary culture of JMML cells. H.C., C.F., V.D.H., T.L., B.D.M. and J.P. conceived and supervised the study. M.H. analyzed data and wrote the manuscript with contributions from all authors. All authors read and approved the final manuscript.

Competing interests

The authors declare no competing interests.

Additional information

Supplementary Information The online version contains supplementary material available at https://doi.org/10.1038/s41598-021-82509-5.

Correspondence and requests for materials should be addressed to M.H.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2021