The Bacterial Community in the Western Region of North Pacific Intermediate Water

Maki Teramoto,a Ayumi Komatsu,a Kouhei Ohnishi

aOceanography Section, Kochi University, Nankoku, Kochi, Japan
bResearch Institute of Molecular Genetics, Kochi University, Nankoku, Kochi, Japan

ABSTRACT The bacterial composition in North Pacific Intermediate Water (NPIW) was investigated in three different years and compared with that in other seawaters around Japan. The results indicated that bacterial composition was surprisingly stable at the same point in a mesopelagic water mass throughout the years and supported previous physicochemical observations that NPIW is distributed to Kumejima, Japan.

Bacterial distribution is related to hydrography and water masses in deep-sea environments (1, 2). However, long-term changes in bacterial distribution remain largely unknown in mesopelagic water masses (200 to 1,000 m depth). Therefore, in this study, bacterial composition was investigated in a mesopelagic water mass, North Pacific Intermediate Water (NPIW), at Muroto in Japan (3) in three different years. For comparison, other mesopelagic water masses, the Rausu water mass and Japan Sea Proper Water (3), as well as surface seawaters around Japan were also investigated.

The analyzed seawaters are summarized in Table 1. Mesopelagic waters were sampled by local facilities such as the Kochi Prefectural Deep Seawater Laboratory. Microorganisms in seawater (12 to 30 liters for mesopelagic water and 2 to 6 liters for surface seawater) were collected on a filter with 0.22-μm pores (Express Plus; Millipore) immediately after fresh seawater was obtained or stored at 4°C overnight. The bacteria on the filters were immediately stored at −80°C or dried at 55°C and kept dry before storage at −80°C until DNA extraction.

DNA extraction, PCR amplification of the V1 to V3 region of the 16S rRNA bacterial gene, emulsion-based clonal amplification using a Lib-A kit (Roche), and sequencing on the GS Junior 454 system (Roche) were conducted as described previously (4). Tag and primer regions used for PCR were removed from the sequences by QIIME (http://qiime.org/) (5) and manually in Se-Al after alignment in ClustalX (version 2.1) (6). Chimeric sequences were checked and removed by either Bellerophon (7) and Mallard (8) or DECIPHER (9) and USEARCH 6.0 (http://fungene.cme.msu.edu/FunGenePipeline/chimera_check/form.spr) (10, 11) programs. Furthermore, sequences considered non-bacterial by the Ribosomal Database Project Classifier with a confidence threshold of 80% (12, 13) were removed. Then, the remaining 65,672 sequences were analyzed in this study.

QIIME version 1.9 was used for clustering the 65,672 sequences into operational taxonomic units (OTUs; maximum distance of 0.03, grouping at the species level) using uclust (10), selecting representative sequences from each OTU (10), and assigning their taxonomy (14, 15) against the BLAST database (16). Based on the percent OTU composition profiles of waters, a nonmetric multidimensional scaling (NMDS) plot based on Bray-Curtis similarity was constructed using the PAST software (version 3.14a) (17) and R software (version 3.5.0) (18).
2.15) (17). Default parameters were used for all software programs, unless otherwise stated.

NMDS and abundant OTU results showed that bacterial species composition was quite stable in NPIW at Muroto through seasons and years, indicating that the composition was stable at the same point in a mesopelagic water mass through the years. The results also showed that the composition at Kumejima was closely related to that in NPIW at Muroto, supporting previous physicochemical data that NPIW is distributed to Kumejima.

Characteristically abundant OTUs in (probable) NPIW belonged to *Pelagibacteraceae*, *Piscirickettsiaceae*, SAR406, and SAR202. SUP05 bacteria (18–21) seemed to be highly abundant in probable NPIW at Suruga.

Data availability. The sequences used were deposited in the DDBJ Sequence Read Archive under the accession numbers listed in Table 1.

ACNOWLEDGMENTS

We thank Satoru Ibuki and Takahiro Tsushima for water from Muroto, Yuusuke Sakashita and Noto Deep Sea Water Center for water from Noto, Fishery Research Institute of Shizuoka Prefecture for surface water from Suruga, Hideki Yamaishi for water from Rausu, Takuma Kawaminami for water from Iwanai, Rina Yasui for mesopelagic water from Okinawa, and Hiroyuki Yoritaka for helping us understand the water mass distribution.

This study was performed through the Program to Disseminate Tenure Tracking System of the Ministry of Education, Culture, Sports, Science and Technology (MEXT), Japan.

TABLE 1

Seawater samples analyzed in this study and the number of 16S rRNA gene fragment sequences analyzed and species-level OTUs found for the sequences from each seawater sample

Sample type by location (depth [m])	Coordinates	Mesopelagic water mass^a	Time (mo/yr)	Temp (°C)^b	No. of 16S rRNA gene fragment sequences^c	No. of OTUs^d	DDBJ accession no.
Pacific							
Muroto, Kochi							
Mesopelagic (320)	33°18’N, 134°14’E	NPIW	7/2011	ND	7,746	2,331	DRA0001052
Mesopelagic (320)	33°18’N, 134°14’E	NPIW	1/2012	ND	1,321	650	DRA005075
Mesopelagic (320)	33°18’N, 134°14’E	NPIW	11/2013	ND	1,404	543	DRA005076
Surface (0.5)	33°18’N, 134°11’E	NPIW	7/2011	25.7	7,513	2,853	DRA001054
Surface (0.5)	33°18’N, 134°11’E	NPIW	11/2011	21.3	7,119	2,375	DRA001053
Okinawa							
Mesopelagic at Kumejima (612)	26°23’N, 126°48’E	“NPIW”	11/2013	ND	1,629	586	DRA005079
Surface at Okinawa Main Island (0)	26°23’N, 127°59’E	“NPIW”	10/2013	25.2	1,675	550	DRA005081
Surface at Ishigaki Island (0)	24°27’N, 124°9’E	“NPIW”	4/2013	22.3	867	337	DRA005080
Suruga, Shizuoka							
Mesopelagic (397)	34°51’N, 138°21’E	“NPIW”	11/2011	ND	7,769	2,811	DRA001055
Surface (0)	34°38’N, 138°24’E	“NPIW”	11/2011	23.5	9,048	1,723	DRA001056
Rausu, Hokkaido							
Mesopelagic (350)	44°37’N, 145°14’E	“Rausu”	11/2013	ND	1,329	533	DRA005078
Japan Sea							
Noto, Ishikawa							
Mesopelagic (320)	37°17’N, 137°16’E	“JSPW”	11/2011	ND	8,445	2,288	DRA001057
Surface (0)	37°18’N, 137°14’E	“JSPW”	11/2011	20.5	8,008	1,442	DRA001058
Iwanai, Hokkaido							
Mesopelagic (300)	43°00’N, 140°25’E	“JSPW”	11/2013	ND	1,799	796	DRA005077
Total					65,672	15,520	

^aThe original water masses were deduced from the description by Taniguchi (3) and from temperature-salinity data, close to the sampling locations, from Argo JAMSTEC (https://www.jamstec.go.jp/J-ARGO/index_e.html). NPIW, North Pacific intermediate water; “NPIW”, probably NPIW; “Rausu”, probably Rausu water mass; “JSPW”, probably Japan Sea Proper Water.

^bND, no data available.

^cThe gene fragment sequences ranged in size from 230 to 562 bp.

^dOTUs were detected using QIIME version 1.9 for all seawater samples (65,672 sequences) and not for each seawater sample.
REFERENCES

1. Galand PE, Potvin M, Casamayor EO, Lovejoy C. 2010. Hydrography shapes bacterial biogeography of the deep Arctic Ocean. ISME J 4:564–576. https://doi.org/10.1038/ismej.2009.134.

2. Huber JA, Cantin HV, Huse SM, Welch DR, Sogin ML, Butterfield DA. 2010. Isolated communities of *Epsilonproteobacteria* bacteria in hydrothermal vent fluids of the Mariana Arc seamounts. FEMS Microbiol Ecol 73:538–549. https://doi.org/10.1111/j.1574-6941.2010.00910.x.

3. Taniguchi M. 2007. Chapter 1. Seawater and deep seawater, p 2–33. In Okoshi K (ed), Marine minerals (umi no mineral gaku). Seizando-Shoten Publishing, Tokyo, Japan.

4. Teramoto M, Queck SY, Ohnishi K. 2013. Specialized hydrocarbonoclastic bacteria prevailing in seawater around a port in the Strait of Malacca. PLoS One 8:e66594. https://doi.org/10.1371/journal.pone.0066594.

5. Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, Fierer N, Pena AG, Goodrich J, Gordon JI, Huttley GA, Kelley ST, Knights D, Koenig JE, Ley RE, Lunde CA, McDonald D, Muegge BD, Pirrung M, Reeder J, Sevinsky JR, Turnbaugh PJ, Walters WA, Widmann J, Yatsunenko T, Zaneveld J, Knight R. 2010. QIIME allows analysis of high-throughput community sequencing data. Nat Methods 7:335–336.

6. Huber T, Faulkner G, Hugenholtz P. 2004. Bellerophon: a program to detect chimeric sequences in multiple sequence alignments. Bioinformatics 20:2317–2319.

7. Huber T, Faulkner G, Hugenholtz P. 2004. Bellerophon: a program to detect chimeric sequences in multiple sequence alignments. Bioinformatics 20:2317–2319. https://doi.org/10.1093/bioinformatics/bth226.

8. Ashelford KE, Chuzhanova NA, Fry JC, Jones AJ, Weightman AJ. 2006. New screening software shows that most recent large 16S rRNA gene clone libraries contain chimeras. Appl Environ Microbiol 72:5734–5741. https://doi.org/10.1128/AEM.00556-06.

9. Wright ES, Yilmaz LS, Noguera DR. 2012. DECIPHER, a search-based approach to chimera identification for 16S rRNA sequences. Appl Environ Microbiol 78:717–725. https://doi.org/10.1128/AEM.06516-11.

10. Edgar RC. 2010. Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26:2460–2461. https://doi.org/10.1093/bioinformatics/btp461.

11. Edgar RC, Haas BJ, Clemente JC, Quince C, Knight R. 2011. UCHIME improves sensitivity and speed of chimera detection. Bioinformatics 27:2194–2200. https://doi.org/10.1093/bioinformatics/btr381.

12. Wang Q, Garrity GM, Tiedje JM, Cole JR. 2007. Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl Environ Microbiol 73:5261–5267. https://doi.org/10.1128/AEM.00662-07.

13. Cole JR, Wang Q, Cardenas E, Fish J, Chai B, Farris RJ, Kulam-Syed-Mohideen AS, McGill-D, Marsh T, Garrity GM, Tiedje JM. 2009. The Ribosomal Database Project: improved alignments and new tools for rRNA analysis. Nucleic Acids Res 37:D141–D145. https://doi.org/10.1093/nar/gkn879.

14. McDonald D, Price MN, Goodrich J, Nawrocki EP, DeSantis TZ, Probst A, Andersen GL, Knight R, Hugenholtz P. 2012. An improved Greengenes taxonomy with explicit ranks for ecological and evolutionary analyses of bacteria and archaea. ISME J 6:610–618. https://doi.org/10.1038/ismej.2011.139.

15. Werner JJ, Koren O, Hugenholtz P, DeSantis TZ, Walters WA, Caporaso JG, Angenent LT, Knight R, Ley RE. 2012. Impact of training sets on classification of high-throughput bacterial 16S rRNA gene surveys. ISME J 6:94–103. https://doi.org/10.1038/ismej.2011.82.

16. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. 1990. Basic local alignment search tool. J Mol Biol 215:403–410. https://doi.org/10.1016/S0022-2836(05)80360-2.

17. Hammer O, Harper DAT, Ryan PD. 2001. PAST: paleontological statistics software package for education and data analysis. Paleontol Electron 4:9.

18. Sunamura M, Higashi Y, Mihako C, Ishibashi J, Maruyama A. 2004. Two bacteria phylotypes are predominant in the Suiyo seamount hydrothermal plume. Appl Environ Microbiol 70:1190–1198. https://doi.org/10.1128/AEM.70.2.1190-1198.2004.

19. Marshall KT, Morris RM. 2013. Isolation of an aerobic sulfur oxidizer from the SUP05/Arcctic96BD-19 clade. ISME J 7:452–453. https://doi.org/10.1038/ismej.2012.78.

20. Tsunogai U, Ishibashi J, Wakita H, Gamo T, Watanabe K, Kajimura T, Kamanaka S, Sakai H. 1994. Peculiar features of Suiyo Seamount hydrothermal fluids, Izu-Bonin Arc: differences from subaerial volcanism. Earth Planet Sci Lett 122:289–301. https://doi.org/10.1016/0012-821X(94)90113-9.

21. Swan BK, Martínez-García M, Preston CM, Sczyrba A, Woyke T, Lamy D, Reithaler T, Poulton NJ, Masland ED, Gomez ML, Sieracki ME, Delong EF, Herndl GJ, Stepanauskas R. 2011. Potential for chemolithoautotrophy among ubiquitous bacteria lineages in the dark ocean. Science 333:1296–1300. https://doi.org/10.1126/science.1203690.