Analytic calculation of anomalous scaling in random shell models for a passive scalar

R. Benzi1, L. Biferale2,3, and A. Wirth4

1 AIPA, Via Po 14, 00100 Roma, Italy
2 Dept. of Physics, University of Tor Vergata, Via della Ricerca Scientifica 1, I-00133 Roma, Italy
3 Istituto Nazionale di Fisica della Materia, unità di Roma Tor Vergata
4 Observatoire de la Côte d’Azur, B. P. 229, 06304 Nice, France

(Received 19 November 1997)

An exact non-perturbative calculation of the fourth-order anomalous correction to the scaling behavior of a random shell-model for passive scalars is presented. Importance of ultraviolet (UV) and infrared (IR) boundary conditions on the inertial scaling properties are determined. We find that anomalous behavior is given by the null-space of the inertial operator and we prove strong UV and IR independence of the anomalous exponent. A limiting case where diffusive behavior can influence inertial properties is also presented.

Recently, there has been growing evidence, both numerically and experimentally, that fully developed turbulence is characterized by anomalous scaling of the velocity structure functions $F_p \equiv \langle |v(x + r) - v(x)|^p \rangle$. In particular, it has been shown that, within the inertial range (i.e. $\eta \ll r \ll L$, η being the Kolmogorov dissipation scale and L the outer length of external forcing) $F_p(r) \sim r^{\zeta_p}$, where ζ_p is a non linear function of p which do not follow dimensional counting, i.e. $\zeta_p \neq \frac{p}{2} \zeta_q$. One of the most challenging scientific issue is to develop a theory which allows a systematic computation of ζ_p by using the equation of motions.

Recently it has been shown that intermittency should be connected to some non trivial “toy model” introduced by Kraichnan, namely the advection of a passive scalar by a random, Gaussian velocity field, white-in-time and whose two-point velocity correlation function is given by: $\langle v_i(x, t)v_j(x', t') \rangle = \delta(t - t') D_{ij} (|x - x'|)$. Here, D is the d-dimensional velocity-field structure function: $D_{ij}(x) = D_{ij}(0) - D_{ij}(x)$, with $D_{ij}(x) = D_{ij}(|x|)$ and $D_{ij}(x) = D_{ij}(|x|)^{[d - 1 + \xi]} \delta_{ij} - \xi x_i x_j |x|^{-2}$. The main results presented in \[8\] were that: (i) the second order structure function has no anomalous scaling, i.e. $\zeta_2 = 2 - \xi$; (ii) all structure functions of order larger than two have anomalous corrections; (iii) anomalous behavior tends to vanish when approaching the laminar regime, $\xi = 2$. For all the three points the model agrees with the Kraichnan model.

The importance of UV and IR boundaries for the anomalous scaling was left unanswered in \[8\]. In particular, numerical simulations were unable to distinguish among contribution coming from the inertial null-space and possible singular behavior introduced by the boundary conditions.

In this letter we show how to compute exactly and non-perturbatively the inertial scaling behavior of the fourth-order structure functions. The main result is that the scaling properties are completely dominated by the null-space of the inertial linear operator and strongly universal. The signature of UV and IR cut-offs is due to the presence of sub-dominant terms which weakly perturb the pure-scaling behavior of the inertial operator.
Anomalous scaling is calculated for any $\xi > 0$. We also present some results which support the strong singular nature of the limit $\xi \to 0$. In this limit, due to the non-local nature of interactions, it is not possible to neglect UV effects if the diffusive scale, k_d, is taken fixed.

We first introduce a simplified version of the shell model discussed in Ref. 3. The model is defined on terms of a shell-discretization of the Fourier space in a set of wavenumber defined on a geometric progression $k_n = \lambda^n$, with $\lambda > 1$. Passive increments at scale $r_n = k_n^{-1}$ are described by a complex variable $\theta_n(t)$. The time evolution is obtained according to the following criteria: (i) the linear term is a purely diffusive term given by $-k_n^2 \theta_n$; (ii) the advection term is a combination of the form $k_n \theta_n u_n'$; (iii) interacting shells are restricted to nearest neighbors of n; (iv) in the absence of forcing and damping the model preserves the volume in the phase-space and the passive-energy $E = \sum_n |\theta_n|^2$. Properties (i), (ii) and (iv) are valid also for the original equation of a passive scalar advected by a Navier-Stokes velocity field in the Fourier space, where property (iii) is an assumption of locality of interactions among modes. This assumption is rather well founded as long as $0 < \xi < 2$. The model is defined by the following equations ($m = 1, 2, \ldots$)

$$\frac{d}{dt} + k_n^2 \theta_m(t) = i[c_m \theta_{m+1}(t) u_m(t) + b_m \theta_{m-1}(t) u_{m-1}(t)] + \delta_{1m} f(t)$$

where the star denotes complex conjugation and $b_n = -k_n c_m = k_{m+1}$ for imposing energy conservation in the zero diffusivity limit. Boundary conditions are defined as: $u_0 = \theta_0 = 0$. The forcing term $\delta_{1m} f(t)$ is Gaussian and delta correlated: $\langle f(t) f(t') \rangle = F_1 \delta(t - t')$ acts only on the first shell. In numerical implementations, the model is truncated to a finite number of shells N with the additional boundary conditions $\theta_{N+1} = 0$.

Following Kraichnan 3 we assumed that the velocity variables $v_n(t)$ and the forcing term $f(t)$ are independent complex Gaussian and white-in-time, with scaling law: $\langle u_m(t) u_n(t') \rangle = \delta(t - t') \delta_{mn} d_m$, $d_m = k_m^{-\xi}$. Due to the delta-correlation in time, we can close the equations of motion for all structure functions. Numerical simulations show that the model has the same qualitative intermittency of the model studied in 3.

In this letter we concentrate on the non-perturbative analytic calculation of the fourth-order structure function $P_{mm} = \langle |\theta_n \theta_m|^2 \rangle \propto k_m^{-\xi_4}$ (the lowest order with non-trivial anomalous scaling). The closed equation satisfied by $P_{mq} = \langle |\theta_n \theta_q|^2 \rangle$ is,

$$\dot{P}_{mq} = (\delta_{1m} E_m + \delta_{1q} E_q) F_1 - \kappa (k_n^2 + k_q^2) P_{mq} + [-P_{mq} c_m^2 d_m (1 + \delta_{mq}) + \chi^{-2} (1 + \delta_{mq})] + P_{m+1,q} c_m^2 d_m (1 + \delta_{mq}) + P_{m-1,q} b_m^2 d_{m-1} (1 + \delta_{mq}) + (q \leftrightarrow m)$$

where $E_n = \langle \theta_n \theta_n^* \rangle$. We can symbolically represent eq. (3) as:

$$\dot{P}_{mq} = I_{mq,lp} P_{lp} + \kappa D_{mq,lp} P_{lp} + F_{mq}$$

where I and D are the inertial and the diffusive 4-order tensor and F is the forcing term.

Our main result is derived by using the following ansatz: the symmetric matrix P_{mq}, which fully determines the scaling properties for any fourth-order quantity in the model, can be described as:

$$P_{n,n+l} = C_l P_{n,n} (l \geq 0), \quad P_{n,n-l} = D_l P_{n,n} (l \geq 0)$$

The independency of C_l and D_l from n is equivalent to demand absence of strong boundary effects, i.e. the matrix is formally infinite-dimensional. Clearly this must be verified a posteriori showing that the solution we are going to present is UV and IR stable.

Using (3) we obtain:

$$\frac{C_{l+1}}{C_l} = \frac{D_{l+1}}{D_l}$$

which is equivalent to write: $P_{n,n+l} = k_l^{-\xi_4} P_{n,n}$ where $C_l / D_l = k_l^{-\xi_4}$ and $\xi_4 = (2 - \xi_1 - \rho_4)$. As usual we indicate by ρ_4 the anomalous correction to the scaling exponent.

Let us notice that (3) does not force the solution to have global scaling invariance: only the diagonal part is requested to have pure scaling.

Let us proceed by analyzing (3) restricted to the inertial operator and for the diagonal ($m = q$) and sub-diagonal terms ($q = m - 1$):

$$\dot{P}_{m,m} = 2P_{m,m} c_m^2 d_m (-1 - x + 2(C_{1} + D_{1} x))$$

$$\dot{P}_{m,m-1} = 2P_{m,m-1} c_m^2 d_m (-1 - 4x - x^2) + \frac{x + C_{2} + x^2 C_{3}}{C_{1}}$$

where we have posed $x = \lambda^{\xi_2 - 2}$ and $R = C_{1} / D_{1}$. By plugging the scaling (3) in (6) one obtains two equation in three unknowns which can be taken to be C_{1} and the ratios C_{2}/C_{1} and R. Numerical investigation suggest the following "scaling ansatz":

$$P_{n,n+l} = C_{l} P_{n,n}, \quad C_{l} = C_{1} k_{l-1}^{-\xi_2}$$

and

$$P_{n,n-l} = D_{l} P_{n,n}, \quad D_{l} = D_{1} k_{l-1}^{-(\xi_2 - \rho_4)}$$

where anomalous correction is felt only in the IR part of the matrix. By plugging this scaling in (3) we end up with two eqs. in two unknowns and we can calculate ρ_4. Let us anticipate that this (wrong) assumption gives results in very good agreement with the numerical simulations, indicating that the true solution is not
very far from having pure scaling behavior. In order to solve the full problem, without imposing any “pure scaling” behavior, we analyze the other entry of the matrix $P_{n,q}$ with $q \neq n$ and $q \neq n - 1$. Let us put $\gamma_l = D_{l+1}/D_l, \delta_l = C_{l+1}/C_l$.

It is then possible to show that for $l > 1$ by plugging the scaling ξ in the inertial part of $P_{l,n}$ and studying the equation for $P_{n,n+1}$ we obtain two recursion equations:

\[-(1+x)(1+x') + \gamma_l(R + x^{l+1}) + \frac{1}{\gamma_{l-1}}(x^l + \frac{x}{R}) = 0 \quad (10)\]

\[-(1+x)(1+x') - \lambda^{l-1} \gamma_l(R + x^{l+1}) - \frac{\lambda - \gamma_l}{\delta_{l-1}}(x^l + \frac{x}{R}) = 0 \quad (11)\]

These two relations can indeed be seen as two maps connecting successive values of γ_l and δ_l respectively. By iterating forward (backward) the map (10) we move from the diagonal (IR boundary) to the IR boundary (diagonal) along a row of the matrix $P_{l,n}$. By iterating forward (backward) the map (11) we move from the diagonal (UV boundary) to the UV boundary (diagonal) along a row of the matrix $P_{l,n}$.

Let us first note that the two maps are not independent, i.e. they satisfy our scaling ansatz $\delta_l = R^{-1} \gamma_l$ and therefore we are going to consider only one of the two in what follows. In order to test stability under weak perturbation of boundary conditions in the map (10) we are interested in the behavior by backward iterations, i.e. iterating from $l = \infty$ to $l = 0$. In the limit $l \rightarrow \infty$ and $\xi \neq 2$ the map (10) has only two fixed point corresponding to $\gamma_1^* = x/R$ and $\gamma_2^* = 1/R$. It turns out that γ_1^* is stable for back iterations, i.e. iterating from the IR boundary ($l > 1$) to the diagonal ($l = 0$). The global solution can now be obtained by a self-consistent method.

First, let us take as initial value for R the value that one would have guessed from imposing “pure scaling” as discussed previously, then we can iterate (10) from the boundary toward the diagonal and finding the value for C_2/C_1. This value can be used to close (10) exactly. Next, with the improved value for R, one can restart the full procedure getting a new improved value of R and so on up to the moment when the new value of R reach it fixed point.

In figure 1 we show the computation of ρ_4 obtained by numerical integration of equation (11) as a function of ξ. In the same figure we plot the ρ_4 as a function of ξ obtained by the analytical solution previously discussed. As one can see, the agreement is perfect. Let us notice that it is impossible to go by numerical simulations to values of ξ very near zero because of strong diffusive effects which completely destroy scaling behavior.

Let us notice that it is the strong stability under UV and IR perturbations that allows us to iterate consistently the procedure. We have therefore proved that anomalous scaling comes only from the inertial operator and that it shows a very strong degree of universality as a function of the forcing and dissipative mechanisms, at least as far as the situation with $\xi = const. > 0$ and molecular diffusivity $\kappa \rightarrow 0$ is considered.

Some new and interesting phenomenum happens when we are in the other possible asymptotic limit ($\xi \rightarrow 0$) and fixed molecular diffusivity. A simple dimensional argument tell us that the following relation holds:

$$\kappa = const. k_d^{-\xi}, \quad (12)$$

where with k_d we mean a preassigned diffusive scale such that all the inertial dynamics is at $k \ll k_d$. One can show that in such a situation the diffusive operator D in (11) gives a contribution of the form

$$\dot{P}_{n,n} = -const. (\rho_4/k_d)^\xi k_n^{2-\xi} P_{n,n} \quad (13)$$

Therefore, the diffusive perturbation is absolutely negligible in the case when $\xi \neq 0$ is fixed and $k_d \rightarrow \infty$ while it becomes a singular perturbation when k_d is kept fixed and $\xi \rightarrow 0$. A detailed analysis of relations (12) shows that in the singular limit $\xi \rightarrow 0$ there appear an infinitesimal interval of values of $\xi \sim 0$ where $\rho_4 \rightarrow 0$, i.e. the anomalous correction tends to vanish with a particular shape which depends on the constants appearing in relation (12).

This concludes the presentation of our results.

Let us remark that the perfect agreement of our inertial null-space solution with the numerical simulation performed with finite diffusivity and in presence of forcing is the clear demonstration that the scaling behavior is completely dominated by the inertial operator. For any finite system, IR and UV effect weakly perturb the pure scaling solution. Our result shows that the inertial operator is perfectly suitable for picking all anomalous aspects but in the case where strong non local interactions (dynamically produced) completely destroy inertial properties introducing diffusive effects at all scales ($\xi \rightarrow 0$ and k_d fixed).

Discussions with B. Dubrulle, G. Falkovich, U. Frisch, I. Procaccia and M. Vergassola are kindly acknowledged.

Figure caption

Fig1: analytical ansatz (continous line) and numerical results (squares) for ρ_4 are plotted for various values of ξ.

[1] R.H. Kraichnan, Phys. Rev. Lett. **72**, 1016 (1994).
[2] K. Gawedzki and A. Kupiainen, Phys. Rev. Lett. **75**, 3834 (1995).
[3] M. Chertkov, G. Falkovich, I. Kolokolov and V. Lebedev, Phys. Rev. **E52**, 4924 (1995).
[4] A.L. Fairhall, O. Gat, V. L’vov and I. Procaccia, “Anomalous scaling in a model of passive scalar advection: exact results” Phys. Rev. E in press (1996).
[5] G. L. Eyink, “Intermittency and anomalous scaling of passive scalars in any space dimension”, preprint (1996).
[6] R.H. Kraichnan, Phys. of Fluids 11, 945 (1968).
[7] M. Vergassola, Phys. Rev. E 53 R 3021 (1996).
[8] A. Wirth and L. Biferale, Phys. Rev E 54, 4982 (1996).
