Structural bioinformatics

A random forest classifier for protein–protein docking models

Didier Barradas-Bautista1,*, Zhen Cao1, Anna Vangone2, Romina Oliva3,* and Luigi Cavallo @ 1,*

1Kaust Catalysis Center, Physical Sciences and Engineering Division, King Abdullah University of Science and Technology (KAUST), 23955-6900 Thuwal, Saudi Arabia, 2Pharma Research and Early Development, Therapeutic Modalities, Roche Innovation Center Munich Large Molecule Research, 82377 Penzberg, Germany and 3Department of Sciences and Technologies, University Parthenope of Naples, Centro Direzionale Isola C4, I-80143 Naples, Italy

*To whom correspondence should be addressed.

Abstract

Herein, we present the results of a machine learning approach we developed to single out correct 3D docking models of protein–protein complexes obtained by popular docking software. To this aim, we generated 3 × 10⁴ docking models for each of the 230 complexes in the protein–protein benchmark, version 5, using three different docking programs (HADDOCK, FTDock and ZDOCK), for a cumulative set of ≈7 × 10⁶ docking models. Three different machine learning approaches (Random Forest, Supported Vector Machine and Perceptron) were used to train classifiers with 158 different scoring functions (features). The Random Forest algorithm outperformed the other two algorithms and was selected for further optimization. Using a features selection algorithm, and optimizing the random forest hyperparameters, allowed us to train and validate a random forest classifier, named COnservation Driven Expert System (CoDES). Testing of CoDES on independent datasets, as well as results of its comparative performance with machine learning methods recently developed in the field for the scoring of docking decoys, confirm its state-of-the-art ability to discriminate correct from incorrect decoys both in terms of global parameters and in terms of decoys ranked at the top positions.

Software and data availability statement: The docking models are available at https://doi.org/10.5281/zenodo.4012018. The programs underlying this article will be shared on request to the corresponding authors.

1 Introduction

Protein–protein interactions (PPIs) are pivotal to the most diverse biological processes, including signal transduction, electron transfer and immune response. Proteins interact with each other in a specific manner and increasing evidence is revealing that perturbation of such interactions frequently leads to defective phenotypes. Mutations associated to human genetic disorders, for instance, commonly alter the interaction between proteins, rather than their folding and stability (Sahni et al., 2015). Moreover, it has been recently shown for 33 cancer types that amino acid substitutions in interacting proteins are significantly more frequently found in interface regions rather than in non-interface ones (Cheng et al., 2021). Targeting PPIs has thus become an essential strategy for the development of new drugs (Lu et al., 2020). For fully understanding the functional and dysfunctional biological processes driven by PPIs and to possibly interfere with them, the knowledge at atomic detail of the involved protein–protein complexes would be required. However, a dramatic disproportion still exists between the number of experimental structures solved for protein complexes and the number of characterized PPIs (Mosca et al., 2013). It has been estimated that only 7% of the known human interactome is structurally characterized to date. In this scenario, the structure prediction of protein–protein complexes by molecular docking becomes the method of choice in numerous cases of interest (Harmalkar and Gray, 2021; Lensink et al., 2018).

In a docking process, the searching step, consisting in the generation of 10⁷ – 10⁸ alternative poses to sample the conformational landscape, is followed by the scoring step, where the generated poses are evaluated in order to single out the correct solutions within the pool of generated poses. As the energetics governing the interaction is highly complex, scoring is a critical step in docking and has in fact become object of blind assessment in a separate challenge of the Critical Assessment of PRedicted Interactions (CAPRI) experiment (Lensink et al., 2007).
Traditionally, scoring functions for protein–protein docking poses are either energy-based or knowledge-based; the former approach using a linear combination of energy terms (which can be physics-based and/or empirical), the latter one embodying in atom–atom or residue–residue potentials the statistical occurrences observed in databases of experimental 3D structures (Huang, 2014; Moal et al., 2013; Vangone and Bonvin, 2017). However, over the years, a wide variety of biophysical functions and potentials have been developed, some of them combining the above potentials into a hybrid approach (Andrussier et al., 2007; Pierce and Weng, 2008; Vreven et al., 2012) or integrating them with evolutionary information (Andreani et al., 2013), some others based on alternative approaches, such as the consensus of the inter-residue contacts at the interface of the complex (Chermak et al., 2016; Oliva et al., 2013).

Nowadays, over 100 scoring functions are available from the CCharPPI web server (Moal et al., 2015), while more potentials can be obtained from other public sources. These are all descriptors of the protein–protein complexes, which can be in principle combined to gain an improved performance in assessing the quality of predicted 3D models. Some of them have been indeed tested for their predictive success rate alone or in pairs (Barradas-Bautista and Fernández-Recio, 2017) or used in machine learning (ML) models recently proposed for evaluating protein–protein docking models (DMs) (Cao and Shen, 2020a; Geng et al., 2020; Moal et al., 2017; Wang et al., 2020).

Herein, we present the results of an ML approach we developed to exploit all the scoring functions that we could collect from public sources (Fig. 1). To this aim, we generated overall a set of \(7 \times 10^6\) DMs with three different docking programs for the 230 complexes in the PPI benchmark 5 (BM5), which have high-quality structures available along with the unbound structures of their components (Vreven et al., 2015). Three different ML approaches were used to train classifiers with 138 different scoring functions (features). The large number of decoys used for training and validation, together with the high number of different features to describe them, is unprecedented in the field. After validation, features selection and hyperparameters optimization, a random forest (RF) classifier was selected, exhibiting the most satisfactory performance, that we named COnservation Driven Expert System (CoDES). Testing of CoDES on independent datasets, as well as results of its comparative performance with ML methods recently developed for the scoring of docking decoys in the field, confirm its state-of-the-art ability to discriminate correct from incorrect decoys both in terms of global parameters and in terms of decoys ranked at the top positions.

2 Materials and methods

2.1 ML approaches and evaluation metrics

We performed a data analysis and employed ML algorithms within the scikit learn python library (Pedregosa et al., 2011; Varoquaux et al., 2015) and within pyplot/seaborn for visualization (Hunter, 2007; Waskom et al., 2014). We initially selected three classic ML algorithms, RF, Support Vector Machines (SVMs) and single-layer Perceptron (PRC). The RF consists in a set of decision trees, SVMs are hyperplanes that try to best separate the feature space, and PRC is a one-layer neural network. In light of the good performance of the RF approach, we also tested four more tree-based algorithms: XgBoost, Gradient Boosting, Decision tree and AdaBoost. All these classifiers were initially trained with default parameters, the RF classifier was then optimized as detailed in Section 2.4.

\[
\text{Precision}(P) = \frac{TP}{TP + FP} \\
\text{Recall}(R) = \frac{TP}{TP + FN} \\
\text{Accuracy}(Acc) = \frac{TP + TN}{TP + TN + FP + FN} \\
F1\text{Score} = \frac{2 \times P \times R}{P + R}
\]

Fig. 1. An overview of the classifier development. \(10^7\) docking decoys were generated for the BM5 targets with FTDock, ZDOCK and HADDOCK. Based on the CAPRI quality criteria, they were labeled as correct or incorrect; where the ‘correct’ class includes the acceptable, medium- and high-quality ones. Decoys with a high number of clashes were removed. By undersampling, balanced and unbalanced (in terms of included correct and incorrect decoys) datasets were derived for training and validation. For each decoy, 158 features (scoring functions and complex descriptors) were calculated. Three different ML algorithms were applied, from which, upon validation, the RF one was selected. The optimized RF classifier, CoDES, was then independently tested.
where T_p stands for true positives, T_n for true negatives, F_p for false positives and F_n for false negatives. For the independent testing on the Score_set and the IRaPPA benchmarks (BMs) (see below), we also used the success rate, that is the number or percentage of correct solutions within the top-N positions.

2.2 DMs and datasets

2.2.1 DMs generation and quality assessment

For each of the 230 protein–protein complexes (targets) in the protein–protein docking BM5 (Vreven et al., 2015), we generated a total of 30 000 DMs with FTDock (Gaibb et al., 1997), ZDock (Chen et al., 2003) and HADDOCK (de Vries et al., 2007; Dominguez et al., 2003). To produce the DMs, we ran these rigid-body docking programs, starting with the unbound structures randomly rotated, according to the following setup. FTDock was used to generate a total of 10 000 DMs per target with electrostatic interactions switched on, a grid cell size of 0.7 Å, and surface thickness of 1.3 Å. ZDOCK, 3.0.1 was used to generate a total of 54 000 body docking programs, starting with the unbound structures ranked by the consensus CONSRANK score, based on the frequency of inter-residue contacts at the interface, and of the number of inter-residue contacts per class of involved amino acids (apolar, polar, aliphatic, aromatic and charged), using a 5 Å cut-off (see Supplementary Table S2). A total of 28 more features come from combined interface

2.2.2 Balanced dataset for ML analysis

Since databases containing DMs generated by docking software are highly unbalanced, to train the ML algorithms we built a ‘balanced’ dataset by applying a random undersampling selection of the incorrect DMs to match the number of correct ones. We performed this undersampling case by case, meaning that for each target we matched its number of correct DMs with the same number of randomly sampled incorrect DMs. In this way, we produced a balanced dataset, Bal-BM5, where each target has the same number of correct and incorrect DMs. The number of DMs per target is quite variable in the Bal-BM5 dataset, as it depends on the number of correct DMs available for each specific target. The choice of undersampling, in order to generate a balanced dataset, is due to the fact that oversampling generally relies on interpolation for generating new samples of the minority class, thus depending on the overlap of the label distributions. As the label distributions overlap differently here with the different features used, interpolation would risk to generate noise in the dataset.

The targets and DMs selected in the above steps were separated into training and validation sets using two different strategies. As a first strategy, all the 161 targets included in the benchmark 4 (BM4) were assigned to the training set, Bal-BM4, while the remaining 52 targets, corresponding to the BM5 update, relatively to BM4, were assigned to the validation set, Bal-BM5up. Alternatively, for the cross-validation (CV) approach, we randomly selected 64 targets from the Bal-BM5 dataset to produce a validation set, while the remaining 149 targets were used for training. This process was repeated 10 times.

2.2.3 3K unbalanced dataset for ML analysis

As the typical case in docking challenges is having a small fraction of correct DMs in the total ensemble of DMs, we decided to build unbalanced datasets for validation and testing of the trained ML models. To this end, we selected 3000 DMs per target, out of those generated in the docking step and that passed the check on clashes. For each target, we selected up to 600 DMs with acceptable or better quality, and picked up randomly incorrect DMs until 3000 DMs in total were collected into the 3K-BM5 dataset. We fixed a maximum value for the number of correct DMs, 600, to avoid biasing the training of the ML algorithms toward a few cases with a too large number of correct DMs. Strategies similar to those used to split the whole Bal-BM5 dataset into training and validation datasets were used to extract validation datasets from the 3K-BM5 dataset. Specifically, the 52 targets corresponding to the BM5 update were assigned to the 3K-BM5up dataset or, as an alternative, for the CV approach 64 targets were randomly selected to produce a validation dataset, repeating this process ten times.

2.2.4 Independent CAPRI score_set and IRaPPA test sets

For an independent testing, we used the CAPRI Score_set, made of 15 targets from the CAPRI Rounds 13–26, with a total of 19 013 DMs, of which 2166 (11%) are correct. This BM set contains DMs predicted by 47 different predictor groups including web servers, which use different docking and scoring procedures, being thus highly diverse, and include dimers and multimers (Lensink et al., 2016). For 13 of these targets at least one correct solution is available.

As another independent test dataset, we used the DMs generated with ZDOCK by the IRaPPA authors for validating their method (Mool et al., 2017) for all the 55 targets (30 of them including no correct solution) in the BM5 update. They include a total of 25 728 decoys (468 on average per target), of which 1097 (4.3%) classified as correct.

2.3 Scoring functions (features)

We analyzed DMs of the 213 targets from BM5 with a total of 158 descriptors (features). Ninety-two of such features come from the CCharPPI server (Moal et al., 2017) for all the 55 targets (30 of them including no correct solution) in the BM5 update. They include a total of 25 728 decoys (468 on average per target), of which 1097 (4.3%) classified as correct.

Mathematical expression

\[
\text{MCC} = \frac{T_p \times T_n - F_p \times F_n}{\sqrt{(T_p + F_p) \times (T_p + F_n) \times (T_n + F_p) \times (T_n + F_n)}},
\]

where T_p stands for true positives, T_n for true negatives, F_p for false positives and F_n for false negatives. For the independent testing on the Score_set and the IRaPPA benchmarks (BMs) (see below), we also used the success rate, that is the number or percentage of correct solutions within the top-N positions.
propensity per decoy scoring (CIPS) (Nadalín and Carbone, 2018), and represent sums and averages of the CIPS score over the different classes of residues at the interface (polar, apolar, polar aliphatic, aromatic and charged); 3 from the buried surface area, total, polar and apolar, calculated with FreeSASA (Mitternacht, 2016) and 2 are non-interacting surface terms (Kastritis et al., 2014), polar and apolar, calculated by Prodigy (Vangone and Bonvin, 2015).

The values of these scoring functions were normalized as Z-scores using Equation (6):
\[Z = \frac{x - \mu}{\sigma}, \]

where \(\sigma\) and \(\mu\) are the mean and the standard deviation of the corresponding scoring function on the training set.

2.4 Feature selection and optimization of the RF classifier

It is widely acknowledged that a feature selection step, i.e. the removal of irrelevant and weakly relevant features, may improve the performance of a predictor, in terms of accuracy, simplicity and/or speed (John et al., 1994). For the feature selection, we used the sequential forward feature selection method (Blum and Langley, 1997; Kudo and Sklansky, 2000; Marcano-Cedeno et al., 2010; Schenk et al., 2009). Specifically, we followed a bottom-up search procedure gradually adding features selected on the basis of their importance in the RF classifier. Accuracy and the Matthews correlation coefficient (MCC) were used as prediction evaluation metrics.

To fine tune the RF algorithm, we performed a series of tests to find the best combination of hyperparameters. Specifically, we varied over a regular grid the number of trees, the minimum number of samples to split the node, and the weight assigned to correct and incorrect models, as these parameters of the RF algorithm have a clear influence on the final prediction. To reduce the number of computational tests, the three hyperparameters were optimized independently.

3 Results and discussion

3.1 Training and optimization of the ML classifiers

3.1.1 Selecting a ML algorithm

Three ML algorithms, RF, SVM and PRC, were initially used to train a classifier for protein–protein DMs, using DMs for 213 targets from the PPI BM (Hwang et al., 2010; Vreven et al., 2015). This BM (Hwang et al., 2010; Vreven et al., 2015) is the gold standard in the field, widely used for testing protein–protein docking and scoring methods. It consists of non-redundant, high-quality structures of enzymes containing, antibody–antigen and other types of protein–protein complexes. Of the 213 complexes considered by us, 52 were added in the latest version 5 (Vreven et al., 2015) and are referred to in the following as BM5-update. All the other 161 complexes were already included in the BM version 4 and are referred to in the following as BM4.

Two main DMs datasets were used for the tests, the former (the balanced dataset) presenting a variable number of DMs per target (346 on average) but equally distributed between correct and incorrect DMs, the latter (the 3K dataset) consisting in a dataset of 3000 DMs on average) but equally distributed between correct and incorrect DMs, the latter (the 3K dataset) consisting in a dataset of 3000 DMs on average) but equally distributed between correct and incorrect DMs.

The performance of all the classifiers on the Bal-BM5up and 3K-BM5up datasets is reported in Supplementary Table S3. As the 3K-BM5up set is closer than the Bal-BM5up to a real-case scenario, the performance of the classifier on it deserves special attention. We observe that the lowest accuracy metric for it is in the precision in classifying correct DMs, implying a high number of false positives. This low precision clearly impacts the corresponding F1 score (F1_corr).

The performance of all the classifiers on the Bal-BM5up dataset is quite satisfactory, with MCC values ranging between 0.44 and 0.67, and differences between them become less dramatic. However, RF still significantly outperforms the SVM classifier, while performing slightly better than the PRC one.

In light of the good performance exhibited by the RF classifier, four more tree-based approaches, XgBoost, Gradient Boosting, Decision tree and AdaBoost, were tested on the 3K-BM5up dataset. However, evaluation metrics (shown in Supplementary Table S4) show that the RF classifier outperforms overall all the other tree-based approaches. The RF classifier was therefore selected for further analyses.

3.1.2 CV testing on the RF classifier

As the RF classifier was more promising than the SVM and PRC ones, we further tested it using a CV approach. The results of a 10-fold CV on the whole Bal-BM5 dataset (Fig. 3) are compared with those previously obtained, by training on the Bal-BM4 dataset and

Figure 2 as radar plots. The RF classifier clearly outperforms the other two classifiers on both validation datasets. The difference in performance is particularly apparent on the 3K-BM5up dataset, especially in terms of precision at retrieving the correct solutions, recall of the incorrect solutions and overall accuracy, all reflected in the significantly higher MCC of the RF classifier (all the values are reported in Supplementary Table S3). As the 3K-BM5up set is closer than the Bal-BM5up to a real-case scenario, the performance of the classifier on it deserves special attention. We observe that the lowest accuracy metric for it is in the precision in classifying correct DMs, implying a high number of false positives. This low precision clearly impacts the corresponding F1 score (F1_corr).

The performance of all the classifiers on the Bal-BM5up dataset is quite satisfactory, with MCC values ranging between 0.44 and 0.67, and differences between them become less dramatic. However, RF still significantly outperforms the SVM classifier, while performing slightly better than the PRC one.

In light of the good performance exhibited by the RF classifier, four more tree-based approaches, XgBoost, Gradient Boosting, Decision tree and AdaBoost, were tested on the 3K-BM5up dataset. However, evaluation metrics (shown in Supplementary Table S4) show that the RF classifier outperforms overall all the other tree-based approaches. The RF classifier was therefore selected for further analyses.

3.1.2 CV testing on the RF classifier

As the RF classifier was more promising than the SVM and PRC ones, we further tested it using a CV approach. The results of a 10-fold CV on the whole Bal-BM5 dataset (Fig. 3) are compared with those previously obtained, by training on the Bal-BM4 dataset and
testing on the 3K-BM5up and Bal-BM5up datasets. Performance obtained with the two validation approaches is quite similar, both on the balanced and on the 3K dataset. For the balanced set, the larger differences are in the recall, which is decreased (from 0.797 to 0.720) for correct and increased (from 0.867 to 0.925) for the incorrect solutions. For the 3K set, the CV approach only affects the metrics for retrieving the correct solutions, by slightly increasing the precision (from 0.378 to 0.504) while decreasing the recall (from 0.798 to 0.734), eventually resulting in slightly enhanced F1 score and MCC values (to 0.802 and 0.584, respectively).

3.1.3 Selection of features for the RF classifier

An advantage of the RF is the possibility of retrieving the features important for classification. We used a forward selection protocol to determine the threshold of importance for a feature to influence the classification. We evaluated the importance of the features for the two different training approaches described before, which is training on Bal-BM4 with validation on the Bal-BM5up and 10-fold CV on Bal-BM5. Monitoring performance metrics showed that 1% is a suitable importance threshold to optimize the classifier performance (Fig. 4).

Overall, 16 features with an importance above 0.01 were common to the two selection approaches (see Supplementary Table S5) and were selected for further classification training. The ranking of the top ten important features was virtually the same for the two approaches, as can be seen in Table 1.

One feature has an importance around 0.2 for both the approaches, being one order of magnitude larger than any other one. It is the CONSRANK score, a consensus score, which reflects the conservation (or frequency) of the inter-residue contacts featured by a given model in the whole decoys ensemble it belongs to (Chermak et al., 2015) and Oliva et al. (2015, 2013), widely tested on CAPRI targets (Barradas-Bautista et al., 2020b; Lensink et al., 2019, 2016; Vangone et al., 2013).

Among the top ten scoring functions, after CONSRANK, we find AP_GOAP_DF, CP_TD, CP_D1 and CP_HLPL (Garcia-Garcia et al., 2010; Pokarowski et al., 2005), which was interestingly also among the 10 most successful scoring functions when applied alone to DMs from three different docking software in Barradas-Bautista and Fernández-Recio (2017), DDG_V, CP_MJ3h, pyDock_TOT, electrostatics, CP_SKOIP (Lu et al., 2003), all obtained from the CCharPPI server (Moua et al., 2015). They include four residue contact/step potentials (Garcia-Garcia et al., 2010; Pokarowski et al., 2005; Lu et al., 2003), one residue distance-dependent potential (Liu and Vakser, 2011), one atomic distance-dependent potential [in particular the DFIRE term in the GOAP energy (Zhou and Skolnick, 2011)] and one composite function (Cheng et al., 2007; Grosdidier and Fernández-Recio, 2008; Pons et al., 2011), the electrostatic component of the PyDock scoring function.

Feature	Bal-BM4/Bal-BM5up	Bal-10CV-BM5
CONSRANK score	0.2056	0.1978 ± 0.0074
AP_GOAP_DF	0.0275	0.0168 ± 0.0027
CP_TD	0.0247	0.0136 ± 0.0013
CP_D1	0.0240	0.0151 ± 0.0025
CP_HLPL	0.0225	0.0256 ± 0.0018
DDG_V	0.0225	0.0226 ± 0.0021
CP_MJ3h	0.0224	0.0229 ± 0.0031
pyDock_TOT	0.0223	0.0232 ± 0.0022
ELE	0.0177	0.0192 ± 0.0013
CP_SKOIP	0.0172	0.0233 ± 0.0039

Note: Features are sorted based on values of the second column. The mean importance value and associated standard deviation is reported in the last column.
Selected features thus include statistical potentials, energy-based potentials as well as consensus scores, i.e. they include scoring functions from all the representative approaches in the field (Huang, 2014; Moal et al., 2013; Vangone and Bonvin, 2017).

3.1.4 Tuning of the RF classifier hyperparameters

The hyperparameters that can be optimized to improve the performance of a RF classifier are: the number of trees, the minimum number of samples to split the nodes and the weights assigned to each class. We tested different values for all these three hyperparameters, finding out that the number of trees does not affect significantly the performance of our classifier; therefore, it was kept at the default value of 100 in sklearn. The optimal value for the minimum number of samples to split the nodes was instead found to be 10, versus a default value of 2 from sklearn, while the optimal weights for the Class 0 (incorrect) and Class 1 (correct) were identified as 1.2 and 0.1, respectively. These optimal values were used for the training of the final classifier (see below).

3.1.5 Training and testing of the final classifier (CoDES)

After selecting the features and optimizing the RF hyperparameters, we trained our final RF classifier, that we named CoDES, with selected features and optimal hyperparameter values, on the Bal-BM4 dataset. Evaluation of the features importance in the final classifier showed a substantial agreement with the trend we had found on the preliminary classifier, with the CONSRANK score still having by far the highest importance and three common features with the Bal-BM4/Bal-BM5up in the top five positions for importance (in addition to the CONSRANK score, AP_GOAP_DF and CP_D1, see Supplementary Table S5).

We tested CoDES in different conditions. First, we evaluated the performance of CoDES using the unbalanced validation set 3K-BM5up. Results are shown in Figure 5a in the form of a radar plot. Again, due to the imbalance on both sets, retrieval of correct models is the real challenge, as reflected by the corresponding F1 score (0.43). While the recall of correct solutions is even enhanced for the Score_set (0.98 versus 0.90, Fig. 5), the precision drops from 0.46 to 0.28. This is reflected in the overall MCC value, which however stays at a satisfying value of 0.43. When excluding from the analysis, the highly unbalanced targets, i.e. the targets featuring no more than 2.5% of correct DMs, the F1 score for the correct class retrieval increases to 0.56, due to a gain in the corresponding recall, and especially of the precision, increasing to 0.39. The MCC on these targets is as high as 0.49.

3.1.6 Comparative performance of CoDES with other ML methods

A widely used metric for evaluating the performance of a scoring function is the ability to have correct DMs ranked at the top-N positions for each target. This kind of metric responds to the demand from researchers to have a limited number of putative solutions to be further explored by computational or experimental approaches. It can also be referred to as the ‘success rate’ and is the standard metric in the CAPRI experiment. Several recently developed ML methods for the scoring of DMs have been evaluated/tested in terms of success rate, therefore, we will use in the following such a metric for comparing the CoDES performance with them, on datasets for which their results have been made available.

Table 2. Comparison of CoDES with other ML classifiers, GraphRank, iScore and with the CAPRI best performing group per target on the CAPRI score set

Target	CoDES	GraphRank	iScore	CAPRI best	% Correct
T29	10/7**	4	4	9/5**	8.0
T30	0	0	0	0	0.15
T32	1/1**	4/1**	4/1**	2	2.5
T35	0	0	0	1	0.60
T37	10/1**/6**	2/1**	4/2**	6/1**	6.6
T39	0	0	0	0.29	
T40	7/3**/3**	4/3**	4/1**	10/10**	27
T41	5/2**	8	10/2**	10/2**	31
T46	2	3	4	1.4	
T47	9/3**/16**	8/5**/3**	10/6**/4**	10/10**	58
T50	4/2**	0	4/3**	7/6**	9.2
T53	2/1**	5/1**	5/1**	8/3**	9.3
T54	0	0	0	1.4	
Total	9/3**/15**	8/1**/4**	9/2**/5**	10/4/3**	—

Note: Only the top 10 models are evaluated. The scoring performance for each target is reported as the number of acceptable or better models (hits), followed by the number of high (indicated with **) or medium-quality models (**). In the last row, the overall performance of each method on all 13 targets is reported in a similar way. The total number of targets for which at least one correct/high/medium (**) quality model is ranked among the top 10 is given. Note that the ‘CAPRI best’ column corresponds to results from 37 different groups. The last column reports the percentage of correct models available in the ensemble of models per target.
Performance in terms of top-10 success rate is available for two recently developed ML algorithms (Geng et al., 2020) (see Table 2), for the 13 targets in the Score_set BM having at least 1 correct model available. One algorithm, GraphRank, is a scoring function using a graph representation of the complex interface together with a measure of evolutionary conservation; the second algorithm, iScore, combines GraphRank with classical HADDOCK energy terms. For the iScore’s evaluation, the authors obtained clusters of at least four members, based on the fraction of common contacts (Rodrigues et al., 2012), then selected the top two DMs of the top five clusters for each target. For our evaluation, instead, for each target, we ranked all the DMs with CoDES, then, we straightforwardly selected the 10 top ranked DMs. The same results are obviously also available for all the scoring groups participating in the corresponding CAPRI rounds.

The comparative performance of CoDES, GraphRank, iScore and the best CAPRI scorer, for each target in the respective CAPRI round, is reported in Table 2. Although CoDES is a binary classifier, assigning DMs to either the correct or to the incorrect class, we kept in the table the classical CAPRI subclassification of correct DMs in: acceptable, medium- and high quality, in order of increasing closeness to the real structure. Table 2 presents results of such analyses. CoDES is able to rank at least one correct solution within the top 10 positions for all the targets, but T30, T35, T39 and T54. These targets all feature a percentage of correct solutions extremely low (between 0.15 and 1.4%) and not surprisingly all the other scoring approaches also failed on them, with the exception of T35 for which 1 only scorer in CAPRI could rank 1 acceptable model among the top 10 positions. Overall, with its nine targets having at least one correct model, of which three of high- and five of medium quality, CoDES slightly outperforms GraphRank, while equaling the performance of iScore (with one target more having high- instead of medium-quality solutions top ranked). This performance is better than that of any single scorer in the corresponding CAPRI Rounds (Geng et al., 2020) and only slightly worse than that of the best CAPRI scorers per target taken all together.

A further comparison can be made with other two ML methods for which less detailed results on the Score_set, i.e. the total number of targets with at least one correct, high- or medium-quality DMs ranked within the top-10 positions, are available. These methods are: a RF classifier being a combination of eight energy potentials (Cao and Shen, 2020b); and an energy-based graph convolutional network (EGCN) (Cao and Shen, 2020a). Of them, the best performance was achieved by EGCN with 7/12/4 targets having at least one correct/high/medium-quality DM. CoDES thus clearly outperformed also the above methods on this test set.

Testing on Score_set showed overall that CoDES is not only able to rank top correct solutions, but also to single out DMs of medium- and high-quality. This outcome, maybe unexpected as the classifier was trained to only distinguish correct decoys from the incorrect ones independently from their detailed quality, could actually reflect overall an effective distinction between good and bad decoys, hidden in the features used for training the model.

A comparison similar to those above was also feasible with the recently developed IRApPA ML method, combining physico-chemical and statistical potential descriptors for the scoring of DMs, using ranking SVM, an efficient approach for information retrieval (Moal et al., 2017). The IRApPA approach was developed independently for DMs from four different docking programs, including ZDOCK (Chen et al., 2003). The IRApPA performance was measured in terms of success rate on the top-1, top-10 and top-100 positions, not distinguishing between DMs of acceptable, medium- or high-quality. In addition, we used the classic metrics to compare results of CoDES with those of IRApPA-ZDOCK and of the original ZDOCK scoring function, on the ZDOCK DMs generated for the 55 targets of the BM5-update and used by the IRApPA authors for the method training and validation. For 30 of these 55 targets, however, no correct DM was included in the dataset; therefore, a success rate of 45% (25 over 55 targets) corresponds to the maximum performance achievable. Results are reported in Figure 6 and show that at least 1 correct DM was ranked within the top-10 solutions for 17 targets (31% of the total 55 targets) by CoDES, for 16 targets (29%) by IRApPA-ZDOCK and for 11 targets (20%) for ZDOCK.

At the top-1 position, CoDES could locate correct DMs for 8 targets, which compare with the 3 of ZDOCK and the 11 of IRApPA-ZDOCK, while at the top-100 positions CoDES had 23 targets with at least 1 correct DM, versus the 20 targets of ZDOCK and the 25 targets of IRApPA-ZDOCK. CoDES therefore outperformed the original ZDOCK scoring function on this set for all the metrics, and performed slightly worse than IRApPA-ZDOCK on it, as concerns the top-1 and top-100 positions, while having a slightly better performance at the top-10 positions. It is however worth noting that IRApPA-ZDOCK is specific to ZDOCK, while CoDES is a non-specific method, trained and applicable on models from different sources.

4 Conclusion

While application of ML is dramatically boosting the efficiency of structural bioinformatics tools (Gauza et al., 2020; Sato et al., 2021; Senior et al., 2020; Singh et al., 2019; Xu, 2019), several ML methods are being developed for addressing one of the open challenges in the field, that is the recognition of the few correct solutions among the multitude of generated DMs for protein–protein complexes (scoring problem). Herein, we present a RF classifier selected and optimized after testing of three different ML approaches. For the initial training of the classifier, 158 features, the largest number used to the aim to date, have been collected by public sources, and an initial dataset of \(\approx 7 \times 10^4 \) DMs has been generated with three popular docking programs, FTDock, HADDOCK and ZDOCK. From them, a subset of \(\approx 7 \times 10^5 \) DMs, Bal-BM5, has been used for training and one of \(\approx 7 \times 10^5 \) DMs, 3K-BM5, for validation. To our knowledge, these are the largest datasets used to develop a ML classifier in this field. We decided to make them open access, labeled with their respective quality assignment (incorrect, acceptable, medium- and high-quality, according to the CAPRI criteria) and complete with the values of calculated features. Properly designed as they are to represent a typical balanced or unbalanced scenario—in terms of number of correct and incorrect models—we believe they can become reference BMs both for developing and comparing different scoring methods, we used the classic empirical potentials, and for the training of ML-based methods. The final RF classifier was named CoDES, as, within the 16 selected features optimizing its performance, the one having by far the highest importance is the CONSRANK score, which represents the average conservation (frequency) of the inter-residue contacts featured by a given DM, relatively to the set of models it
belongs to. Testing of CoDES on the CAPRI Score Set showed it to outperform any single scorer in the corresponding CAPRI Rounds, and to be able to top rank not just correct but medium- and high-quality DMs. Overall testing on independent datasets resulted in CoDES equaling or exceeding the performance of the few state-of-the-art ML methods available in literature.

Acknowledgements

The IRaPPA dataset was a courtesy of the method’s authors, Iain H. Moal and Juan Fernandez-Recio. L.C. thanks the Supercomputing Laboratory at the King Abdullah University of Science and Technology (KAUST) for technical support and access to the Shaheen facilities.

Funding

D.B.-B. was supported by funding from the AI Initiative at KAUST.

Conflict of Interest: none declared.

References

Andreani,J., et al. (2013) InterEVScore: a novel coarse-grained interface scoring function using a multi-body statistical potential coupled to evolution. Bioinformatics, 29, 1742–1749.

Andrusier,N., et al. (2007) FireDock: fast interaction refinement in molecular docking. Proteins, 69, 139–159.

Barradas-Bautista,D. and Fernández-Recio,J. (2017) Docking-based modeling of protein–protein interfaces for extensive structural and functional characterization of missense mutations. PLoS One, 12, e0183643.

Barradas-Bautista,D. et al. (2020) The CAPS13-CAPRI targets as case studies to illustrate a novel scoring pipeline integrating CONSANK with clustering and interface analyses. BMC Bioinformatics, 21, 262.

Blum,A.L. and Langley,P. (1997) Selection of relevant features and examples in machine learning. Artif. Intell., 97, 245–271.

Cao,Y. and Shen,Y. (2020a) Bayesian active learning for optimization and uncertainty quantification in protein docking. J. Chem. Theory Comput., 16, 5334–5347.

Cao,Y. and Shen,Y. (2020b) Energy-based graph convolutional networks for scoring protein docking models. Proteins, 88, 1091–1099.

Chen,R. et al. (2003) ZDOCK: an initial-stage protein-docking algorithm. Proteins, 52, 80–87.

Cheng,F. et al. (2021) Comprehensive characterization of protein–protein interactions perturbed by disease mutations. Nat. Genet., 53, 342–353.

Cheng,T.M. et al. (2007) pyDock: electrostatics and desolvation for effective scoring of rigid-body protein-protein docking. Proteins, 68, 503–515.

Cherkashin,D. et al. (2015) CONSANK: a server for the analysis, comparison and ranking of docking models based on inter-residue contacts. Bioinformatics, 31, 1481–1483.

Cherkashin,D. et al. (2016) Introducing a clustering step in a consensus approach for the scoring of protein–protein docking models. PLoS One, 11, e0166460.

de Vries,S.J. et al. (2007) HADDOCK versus HADDOCK: new features and performance of HADDOCK2.0 on the CAPRI targets. Proteins, 69, 726–733.

Dominguez,C. et al. (2003) HADDOCK: a protein-protein docking approach based on biochemical or biophysical information. J. Am. Chem. Soc., 125, 1731–1737.

Gabb,H.A. et al. (1997) Modelling protein docking using shape complementarity, electrostatics and biochemical information. J. Mol. Biol., 272, 106–120.

Gainza,P. et al. (2020) Deciphering interface fingerprints from protein molecular surfaces using geometric deep learning. Nat. Methods, 17, 184–192.

Garcia-Garcia,J. et al. (2010) Biana: a software framework for compiling biological interactions and analyzing networks. BMC Bioinformatics, 11, 56.

Geng,C. et al. (2020) Score: a novel graph kernel-based function for scoring protein–protein docking models. Bioinformatics, 36, 112–121.

Grosdidier,S. and Fernández-Recio,J. (2008) Identification of hot-spot residues in protein–protein interactions by computational docking. BMC Bioinformatics, 9, 447.

Harmalkar,A. and Gray,J.J. (2021) Advances to tackle backbone flexibility in protein docking. Curr. Opin. Struct. Biol., 67, 178–186.

Huang,S.-Y. (2014) Search strategies and evaluation in protein-protein docking: principles, advances and challenges. Drug Discov. Today, 19, 1081–1096.

Hunter,J.D. (2007) Matplotlib: a 2D graphics environment. Comput. Sci. Eng., 9, 90–95.

Hwang,H. et al. (2010) Protein-docking benchmark version 4.0. Proteins, 78, 3111–3114.

John,G.H. et al. (1994) Irrelevant features and the subset selection problem. In: Cohen,W.W. and Hirsh,H. (eds) Machine Learning Proceedings 1994. Morgan Kaufmann, San Francisco, CA, pp. 121–129.

Kabrits,P.L. et al. (2014) Proteins feel more than they see: fine-tuning of binding affinity by properties of the non-interacting surface. J. Mol. Biol., 426, 2653–2652.

Kudo,M. and Sklansky,J. (2000) Comparison of algorithms that select features for pattern classifiers. Pattern Recognit., 33, 25–41.

Lensink,M.F. et al. (2007) Docking and scoring protein complexes: CAPRI 3rd edition. Proteins, 69, 704–718.

Lensink,M.F. et al. (2016) Prediction of homoprotein and heteroprotein complexes by protein docking and template-based modeling: a CASP-CAPRI experiment. Proteins, 84, 323–348.

Lensink,M.F. et al. (2018) The challenge of modeling protein assemblies: the CASP12-CAPRI experiment. Proteins, 86, 257–273.

Lensink,M.F. et al. (2019) Blind prediction of homo- and hetero-protein complexes: the CASP13-CAPRI experiment. Proteins, 87, 1200–1221.

Li,S. and Vakser,I.A. (2011) DECK: distance and environment-dependent, coarse-grained, knowledge-based potentials for protein-protein docking. BMC Bioinformatics, 12, 280.

Lu,H. et al. (2003) Development of unified statistical potentials describing protein-protein interactions. Biophys. J., 84, 1895–1901.

Lu,H. et al. (2020) Recent advances in the development of protein–protein interactions modulators: mechanisms and clinical trials. Signal Transduct. Target Ther., 5, 213.

Marcano-Cedeno,A. et al. (2010) Feature selection using Sequential Forward Selection and classification applying Artificial Metaplasticity Neural Network. In: IECON 2010 - 36th Annual Conference on IEEE Industrial Electronics Society, pp. 2845–2850. IEEE, Glendale, AZ, USA.

Mendez,R. et al. (2003) Assessment of blind predictions of protein-protein interactions: current status of docking methods. Proteins, 52, 51–67.

Mitternacht,S. (2016) FreeSASA: an open source C library for solvent accessible surface area calculations. F1000Res., 5, 189.

Moal,L. et al. (2013) The scoring of poses in protein-protein docking: current capabilities and future directions. BMC Bioinformatics, 14, 286.

Moal,L.H. et al. (2013) Scoring functions for protein–protein interactions. Curr. Opin. Struct. Biol., 23, 862–867.

Moal,L.H. et al. (2015) CChApPI web server: computational characterization of protein-protein interactions from structure. Bioinformatics (Oxford, England), 31, 123–125.

Moal,L.H. et al. (2017) IRaPPA: information retrieval based integration of biophysical models for protein assembly selection. Bioinformatics, 33, 1806–1813.

Mosca,R. et al. (2013) Interactome3D: adding structural details to protein networks. Nat. Methods, 10, 475–483.

Nadalin,F. and Carbone,A. (2018) Protein-protein interaction specificity is captured by contact presence and interface composition. Bioinformatics, 34, 459–468.

Oliva,R. et al. (2013) Ranking multiple docking solutions based on the conservation of inter-residue contacts. Proteins, 81, 1571–1584.

Oliva,R. et al. (2015) Analysis and ranking of protein-protein docking models using inter-residue contacts and inter-molecular contact maps. Molecules, 20, 12045–12060.

Pedregosa,F. et al. (2011) Scikit-learn: machine learning in Python. J. Mach. Learn. Res., 12, 2825–2830.

Pierce,B. and Weng,Z. (2008) A combination of rescoring and refinement significantly improves protein docking performance. Proteins, 72, 270–279.

Pokarowski,P. et al. (2005) Inferring ideal amino acid interaction forms from statistical protein contact potentials. Proteins, 59, 49–57.

Pons,C. et al. (2011) Scoring by intermolecular pairwise propensities of exposed residues (SIPPER): a new efficient potential for protein-protein docking. J. Chem. Inf. Model., 51, 370–377.

Rodrigues,J.P.G.L.M. et al. (2012) Clustering biomolecular complexes by residue contacts similarity. Proteins, 80, 1810–1817.

Sahni,N. et al. (2015) Widespread macromolecular interaction perturbations in human genetic disorders. Cell, 161, 647–660.

Sato,K. et al. (2021) RNA secondary structure prediction using deep learning with thermodynamic integration. Nat. Commun., 12, 941.
Schenk, J. et al. (2009) Selecting features in on-line handwritten whiteboard note recognition: SFS or SFFS? In: 2009 10th International Conference on Document Analysis and Recognition. Barcelona, Spain: IEEE, pp. 1251–1254.

Senior, A.W. et al. (2020) Improved protein structure prediction using potentials from deep learning. Nature, 577, 706–710.

Singh, J. et al. (2019) RNA secondary structure prediction using an ensemble of two-dimensional deep neural networks and transfer learning. Nat. Commun., 10, 5407.

Vangone, A. and Bonvin, A. (2017) PRODIGY: a contact-based predictor of binding affinity in protein–protein complexes. Bio-Protocol, 7, e2124.

Vangone, A. and Bonvin, A.M. (2015) Contacts-based prediction of binding affinity in protein–protein complexes. Elife, 4, e07454.

Vangone, A. et al. (2011) COCOMAPS: a web application to analyze and visualize contacts at the interface of biomolecular complexes. Bioinformatics, 27, 2915–2916.

Vangone, A. et al. (2012) CONS-COCOMAPS: a novel tool to measure and visualize the conservation of inter-residue contacts in multiple docking solutions. BMC Bioinformatics, 13, S19.

Vangone, A. et al. (2013) Using a consensus approach based on the conservation of inter-residue contacts to rank CAPRI models: a consensus approach for ranking CAPRI models. Proteins, 81, 2210–2220.

Varoquaux, G. et al. (2013) Scikit-learn. GetMobile: Mobile Computing and Communications, 19, 29–33.

Vreven, T. et al. (2012) Prediction of protein–protein binding free energies. Protein Sci., 21, 396–404.

Vreven, T. et al. (2015) Updates to the integrated protein–protein interaction benchmarks: docking benchmark version 5 and affinity benchmark version 2. J. Mol. Biol., 427, 3031–3041.

Wang, X. et al. (2020) Protein docking model evaluation by 3D deep convolutional neural networks. Bioinformatics, 36, 2113–2118.

Waskom, M. et al. (2014) Seaborn: V0.5.0. https://doi.org/10.5281/zenodo.12710 (14 November 2014, date last accessed).

Xu, J. (2019) Distance-based protein folding powered by deep learning. Proc. Natl. Acad. Sci. USA, 116, 16856–16865.

Zhou, H. and Skolnick, J. (2011) GOAP: a generalized orientation-dependent, all-atom statistical potential for protein structure prediction. Biophys. J., 101, 2045–2052.