"A model for the epigenetic switch linking inflammation to cell transformation: deterministic and stochastic approaches"

Gérard, Claude ; Gonze, Didier ; Lemaigre, Frédéric ; Novák, Béla

ABSTRACT

Recently, a molecular pathway linking inflammation to cell transformation has been discovered. This molecular pathway rests on a positive inflammatory feedback loop between NF-κB, Lin28, Let-7 microRNA and IL6, which leads to an epigenetic switch allowing cell transformation. A transient activation of an inflammatory signal, mediated by the oncoprotein Src, activates NF-κB, which elicits the expression of Lin28. Lin28 decreases the expression of Let-7 microRNA, which results in higher level of IL6 than achieved directly by NF-κB. In turn, IL6 can promote NF-κB activation. Finally, IL6 also elicits the synthesis of STAT3, which is a crucial activator for cell transformation. Here, we propose a computational model to account for the dynamical behavior of this positive inflammatory feedback loop. By means of a deterministic model, we show that an irreversible bistable switch between a transformed and a non-transformed state of the cell is at the core of the dynamical behavior of the positive feedback loop linking inflammation to cell transformation. The model indicates that inhibitors (tumor suppressors) or activators (oncogenes) of this positive feedback loop regulate the occurrence of the epigenetic switch by modulating the threshold of inflammatory signal (Src) needed to promote cell transformation. Both stochastic simulations and deterministic simulations of a heterogeneous cell population suggest that random fluctuations (due to molecular noise or cell-to-cell variability) are able to trigger cell transformation. Moreover, the model predicts that oncogenes/tumor sup...

CITE THIS VERSION

Gérard, Claude ; Gonze, Didier ; Lemaigre, Frédéric ; Novák, Béla. A model for the epigenetic switch linking inflammation to cell transformation: deterministic and stochastic approaches. In: PLoS Computational Biology, Vol. 10, no. 1, p. e1003455 (2014) http://hdl.handle.net/2078.1/140531 -- DOI : 10.1371/journal.pcbi.1003455
A Model for the Epigenetic Switch Linking Inflammation to Cell Transformation: Deterministic and Stochastic Approaches

Claude Gérard1,2, Didier Gonze3, Frédéric Lemaigre2, Béla Novák1

1 Oxford Centre for Integrative Systems Biology, Department of Biochemistry, University of Oxford, Oxford, United Kingdom, 2 de Duve Institute, Université Catholique de Louvain (UCL), Brussels, Belgium, 3 Faculté des Sciences, Université Libre de Bruxelles (ULB), Campus Plaine, Brussels, Belgium

Abstract

Recently, a molecular pathway linking inflammation to cell transformation has been discovered. This molecular pathway rests on a positive inflammatory feedback loop between NF-kB, Lin28, Let-7 microRNA and IL6, which leads to an epigenetic switch allowing cell transformation. A transient activation of an inflammatory signal, mediated by the oncprotein Src, activates NF-kB, which elicits the expression of Lin28. Lin28 decreases the expression of Let-7 microRNA, which results in higher level of IL6 than achieved directly by NF-kB. In turn, IL6 can promote NF-kB activation. Finally, IL6 also elicits the synthesis of STAT3, which is a crucial activator for cell transformation. Here, we propose a computational model to account for the dynamical behavior of this positive inflammatory feedback loop. By means of a deterministic model, we show that an irreversible bistable switch between a transformed and a non-transformed state of the cell is at the core of the dynamical behavior of the positive feedback loop linking inflammation to cell transformation. The model indicates that inhibitors (tumor suppressors) or activators (oncogenes) of this positive feedback loop regulate the occurrence of the epigenetic switch by modulating the threshold of inflammatory signal (Src) needed to promote cell transformation. Both stochastic simulations and deterministic simulations of a heterogeneous cell population suggest that random fluctuations (due to molecular noise or cell-to-cell variability) are able to trigger cell transformation. Moreover, the model predicts that oncogenes/tumor suppressors respectively decrease/increase the robustness of the non-transformed state of the cell towards random fluctuations. Finally, the model accounts for the potential effect of competing endogenous RNAs, ceRNAs, on the dynamics of the epigenetic switch. Depending on their microRNA targets, the model predicts that ceRNAs could act as oncogenes or tumor suppressors by regulating the occurrence of cell transformation.

Citation: Gérard C, Gonze D, Lemaigre F, Novák B (2014) A Model for the Epigenetic Switch Linking Inflammation to Cell Transformation: Deterministic and Stochastic Approaches. PLoS Comput Biol 10(1): e1003455. doi:10.1371/journal.pcbi.1003455

Editor: Vassily Hatzimanikatis, École Polytechnique Fédérale de Lausanne, Switzerland

Received May 11, 2013; Accepted December 10, 2013; Published January 30, 2014

Copyright: © 2014 Gérard et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: CG thanks the Foundation Philippe Wiener – Maurice Anspach for financial supports. The work in BN’s group was supported by the European Community’s Seventh Framework Programmes MitoSys (241548). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: claude.gerard@uclouvain.be

Introduction

The characteristics of cancer rest on many biological capabilities acquired during the multistep of the development of tumors [1]. These biological properties include sustaining proliferative signaling, evading growth suppressors, resisting cell death, allowing replicative immortality, promoting angiogenesis, and eliciting formation of metastasis [1]. The progression from normal cells to cancer could be strongly influenced by the tumor microenvironment. In that context, many studies have shown close relations between inflammation and different types of cancer [2–4]. Inflammatory molecules, such as the interleukin-6 (IL6) or the transcription factor NF-kB, could provide growth signals, which elicit the proliferation of malignant cells [5,6]. However, until recently, the molecular regulatory network linking inflammation to cell transformation was poorly understood.

To study the molecular link between inflammation and cancer, Iliopoulos and coworkers used an experimental model of oncogenesis, which involves a derivative of MCF10A, a spontaneous immortalized cell line derived from normal mammary epithelial cells containing ER-Src, a fusion of the oncprotein Src with the ligand binding domain of estrogen receptor [7]. They demonstrated that transient treatment with tamoxifen results in stable cell transformation, defined by their invasive capabilities, their increased motility, as well as their ability to form mammospheres (multicellular structure enriched in cancer stem cells). This stable cell transformation can be defined as an epigenetic switch, which corresponds to a stable cell change to another phenotype without any change in DNA sequence. The triggering event of the epigenetic switch is mediated by a transient inflammatory signal driven by the Src oncprotein [7]. After the triggering event, the transformed state of the cell mediated by the epigenetic switch is stable for many generations. A positive inflammatory feedback loop driven by the transcription factor NF-kB, the microRNA binding protein Lin28, the Let-7 microRNA, and IL6 is responsible for the maintenance of this transformed state [7].

Besides the critical role of microRNAs in the regulation of protein expression [8–10] or in conferring robustness of biological processes [11–14]; microRNAs, such as miR-122, are at the core of molecular regulatory feedback loop driving hepatocyte differ-
Author Summary

An increasing amount of evidence demonstrates a close relation between inflammation and cancer development, which reveals the importance of the tumor microenvironment for the development of cancers. Recently, a molecular pathway linking inflammation to cell transformation, which is a prerequisite to cancer development, has been discovered. This molecular pathway is based on a positive inflammatory feedback loop between NF-κB, Lin28, Let-7 microRNA and IL6, allowing the occurrence of an epigenetic switch leading to cell transformation. Here, we propose a computational model to account for the dynamics of this epigenetic switch. We show that an irreversible bistable switch is at the core of the dynamics of the system. The model further indicates that oncogenes (activators of the switch) and tumor suppressors (inhibitors of the switch) regulate the occurrence of cell transformation by modulating the threshold of inflammatory signal needed to induce the switch. Stochastic simulations of the model suggest that molecular fluctuations are able to trigger cell transformation, highlighting possible links between stochasticity and cancer development. Finally, the model predicts a crucial role of competing endogenous RNAs (ceRNAs) for the dynamics of the epigenetic switch and the occurrence of cell transformation.

entiation [15], or microRNAs, such as Let-7 microRNA family, are critical regulators in cancer development and progression [16–19]. The positive inflammatory feedback loop discovered by Iliopoulos and coworkers brings to light the importance of competing endogenous RNAs (ceRNAs) for the dynamics of the epigenetic switch and the occurrence of cell transformation.

Results

Model for the epigenetic switch linking inflammation to cell transformation

We propose a computational model for the epigenetic switch linking inflammation to cell transformation (see Fig. 1 as well as [7,20]). The model is based on a positive inflammatory feedback loop between NF-κB, Lin28, Let-7 microRNA and IL6. An inflammatory signal mediated by the oncoprotein Src activates NF-κB, which promotes the synthesis of Lin28. The microRNA-binding protein Lin28 rapidly reduces the synthesis of mature Let-7 microRNA, which ensures a higher production of IL6 than achieved directly by NF-κB. In turn, IL6 triggers the activation of NF-κB and promotes the synthesis of the transcription factor STAT3, whose activity is crucial to induce cell transformation [30–33]. As shown by Iliopoulos and coworkers [20], STAT3 is not only a downstream output of the inflammatory regulatory signal, but is part of the positive feedback loop linking inflammation to cancer. Indeed, STAT3 triggers the synthesis of miR-21 and miR-181b-1 microRNAs [20]. For simplicity, we only consider miR-21 in the model (see Fig. 1). The latter microRNA down-regulates the translation of the tumor suppressor PTEN, which is responsible for the inhibition of the activity of NF-κB (see Fig. 1 as well as [20,36,37]). Furthermore, we also consider the positive feedback loop between NF-κB, Lin28, Let-7 and the oncoprotein Ras. Indeed, NF-κB activates the synthesis of Lin28, which inhibits the synthesis of Let-7. The down-regulation of Let-7 prevents it to repress the synthesis of Ras, which promotes the activation of NF-κB (see Fig. 1).

In healthy cells, negative feedback loops between NF-κB and IL6 protein family control NF-κB oscillations and ensure the occurrence of a transient inflammatory response within the cell [30–42]. However in the immortalized cell line [7], it seems that NF-κB is rapidly activated through IκBα phosphorylation, but its activity remains elevated during all the cell transformation process. For this reason and in order to confine our model to the dynamics of the epigenetic switch, we do not consider negative feedback regulation between NF-κB and IL6.

The model proposed for the molecular mechanisms of the epigenetic switch, linking inflammation to a stable cell transformation, counts 14 kinetic equations describing the time evolution of the concentration of the different variables considered (see Section “Methods” here below, as well as Table 1 for a definition of the different variables of the model).

As observed in the experiments [7], a transient inflammatory signal mediated by Src is sufficient to trigger the switch from an immortalized cell line to a stable transformed state (see Fig. 2). Time evolution of Let-7, Lin28, IL6, NF-κB and STAT3 is shown in the absence of Src (Fig. 2A), in the presence of a constant, low level of Src (Fig. 2B), in the presence of higher level of Src for only 5 min (Fig. 2C), or in the presence of a constant higher level of Src (Fig. 2D). In the absence of Src, a high level of Let-7 together with low levels of Lin28, IL6, NF-κB and STAT3 are observed (Fig. 2A). We define those expression levels as a normal, non-transformed state of the cell. However, with a constant level of Src (Fig. 2B, D) or with a transient level of Src for only 5 min (Fig. 2C), the model exhibits a switch-like behavior in the expression levels of Let-7, Lin28, IL6, NF-κB and STAT3. Indeed, the level of Let-7 is reduced while levels of Lin28, IL6, NF-κB and STAT3 are highly increased at about \(t = 35 \) h (Fig. 2B), \(t = 65 \) h (Fig. 2C), and \(t = 10 \) h (Fig. 2D). In the model, we define this switch as the passage to cell transformation. As in the experiments [7], the model shows that cell transformation can occur with an inflammatory signal of only 5 min. In the latter case, the occurrence of cell transformation is slow, and happens at \(t = 65 \) h instead of \(t = 36 \) h with a constant level of Src (compare Fig. 2B and 2C as well as [7]). The model is characterized by a biphasic regulation of the different variables. For instance, we can observe a first slow increase of IL6 followed by a boost of IL6 expression. This dynamical behavior may correspond to the experimental observation showing also a biphasic regulation of IL6 expression [7].
transcription of STAT3. The latter transcription factor elicits the synthesis of miR-21, which inhibits the translation of the tumor suppressor PTEN. The activity of NF-kB is down-regulated by low levels of NF-kB, the model predicts that a non-transformed state towards the inflammatory signal, Src, for different rates of synthesis of Let-7, IL6 and STAT3 together with a low level of Let-7 coexists with a transformed state characterized by high levels of NF-kB, IL6 and STAT3 together with a low level of Let-7. Depending on the value of initial conditions, the system reaches the non-transformed or the transformed state. In the presence of high level of Src, only the transformed state remains. The model suggests that Let-7 microRNA acts as a tumor suppressor because it moves the threshold leading to cell transformation to higher level of Src (see Fig. 3A–D when V_{SLET7} increases from 3 to 8). The model also predicts that, when the rate of synthesis of Let-7 is too small, only the transformed state is present (see curves in Fig. 3 when $V_{SLET7} = 1$).

Steady-state levels of Let-7 and IL6 vs Src illustrated for different rates of transcription of PTEN, V_{SMPTEN}, indicate that the tumor suppressor PTEN exhibits a similar effect as Let-7 on the dynamics of the epigenetic switch leading to cell transformation (see Fig. S2). Indeed, an increase in V_{SMPTEN} moves the threshold defining cell transformation to higher levels of Src.

Effect of the oncogene Ras on the epigenetic switch leading to a transformed state

Contrary to Let-7 and PTEN, Ras is a positive regulator of the epigenetic switch leading to cell transformation (see Fig. 1 as well as [7,43]). Bifurcation diagrams of Let-7, IL6 and Ras vs Src are shown for different rates of transcription of Ras, V_{SMRAS} in Fig. 4A–C, respectively. In the framework of the epigenetic switch linking inflammation to cancer, the model indicates that Ras acts as an oncogene by moving the threshold leading to cell transformation.

Furthermore, the model also accounts for the experimental observations showing that the positive feedback loop involving NF-kB, Lin28, Let-7, and IL6 is required for maintenance of the transformed state of the cell [7]. Indeed, from a stable transformed state, a transient inhibition of either NF-kB, Lin28, or IL6 (as in the experiments) abolishes the transformed state and brings back the normal, non-transformed state of the cell (see Fig. S1).

Effect of the tumor suppressors, Let-7 & PTEN, on the dynamics of cell transformation

Let-7 microRNA and PTEN are tumor suppressors and negative regulators of the epigenetic switch leading to cell transformation (see [7] as well as Fig. 1). By resorting to the computational model, we can assess the role of these tumor suppressors on the dynamics of the switch linking inflammation to cell transformation. To this end, we analyze the dynamical behavior of the model by means of bifurcation diagrams, which bring to light the steady-state levels of the system, i.e. equilibrium levels of the different variables of the model, as a function of a parameter value. In Fig. 3, the steady-state levels of NF-kB, Let-7, IL6 and STAT3 are shown as a function of the inflammatory signal, Src, for different rates of synthesis of Let-7, V_{SLET7}. The model indicates that the epigenetic switch linking inflammation to cell transformation behaves as an irreversible bistable switch towards the inflammatory signal, Src. Indeed, in the presence of low levels of Src, the model predicts that a non-transformed state defined by low levels of NF-kB, IL6 and STAT3 together with a high level of Let-7 coexists with a transformed state characterized by high levels of NF-kB, IL6 and STAT3 together with a low level of Let-7. Depending on the value of initial conditions, the system reaches the non-transformed or the transformed state. In the presence of high level of Src, only the transformed state remains.

The model suggests that Let-7 microRNA acts as a tumor suppressor because it moves the threshold leading to cell transformation to higher level of Src (see Fig. 3A–D when V_{SLET7} increases from 3 to 8). The model also predicts that, when the rate of synthesis of Let-7 is too small, only the transformed state is present (see curves in Fig. 3 when $V_{SLET7} = 1$).

Steady-state levels of Let-7 and IL6 vs Src illustrated for different rates of transcription of PTEN, V_{SMPTEN}, indicate that the tumor suppressor PTEN exhibits a similar effect as Let-7 on the dynamics of the epigenetic switch leading to cell transformation (see Fig. S2). Indeed, an increase in V_{SMPTEN} moves the threshold defining cell transformation to higher levels of Src.
Table 1. Variables of the model.

Symbol	Definition
NFkB	Transcription factor NF-κB
Lin28	MicroRNA binding protein Lin28
Let7	MicroRNA family Let-7, which represses the synthesis of IL6 and Ras
miL6	Messenger RNA of IL6
miL6Let7	Complex form between miL6 and Let7
IL6	Interleukin 6 protein, which promotes the epigenetic switch leading to cell transformation
mRas	Messenger RNA of Ras oncogene
mRasLet7	Complex form between mRas and Let7
Ras	Protein form of Ras oncogene
STAT3	Transcription factor STAT3, whose activity is crucial to promote cell transformation
miR21	MicroRNA miR21, which represses the translation of the tumor suppressor PTEN
mPTEN	Messenger RNA of the tumor suppressor PTEN
mRmpten	Complex form between mRmpten and miR21
PTEN	Protein form of the tumor suppressor PTEN (phosphatase and tensin homologue)

Addition of a competing endogenous RNA (ceRNA), which binds to Let-7 microRNA

- **ceRNA**: Competing endogenous RNA, which can bind to Let7
- **ceRNALet7**: Complex between ceRNA and Let7

Addition of PTEN1 mRNA, which binds to the microRNA miR-21

- **mPTEN**: Messenger RNA of PTEN1
- **mRmpten1**: Complex between mPTEN1 and miR21

transformation to smaller levels of the inflammatory signal, Src (see Fig. 4 when V_{SMRAS} increases from 0 to 0.027). For high level of Ras, i.e. $V_{SMRAS} = 0.03$, the model predicts that the cell is only present in a transformed state (low level of Let-7 together with high levels of IL6 and Ras) regardless of the level of Src.

Cell transformation driven by stochastic transitions

It has been shown in many biological systems that stochastic transitions may represent a driving force in development and in cell fate decisions [44]. Here, by resorting to a stochastic version of the model for the epigenetic switch linking inflammation to cancer (see Table S1 in Supporting Information), we assess the effect of stochastic fluctuations on the dynamics of the epigenetic switch. Deterministic (Fig. 5A) and the corresponding stochastic time evolution (Fig. 5C, D) of NF-κB, Lin28, Let-7, IL6 and STAT3 indicate that while deterministic transition to a transformed state of the cells occurs at about $t = 20$ h (Fig. 5A), stochastic fluctuations may prevent the occurrence of such transition (compare Fig. 5C and 5D). The opposite is also observed: stochastic fluctuations driving the occurrence of cell transformation while the deterministic version of the model predicts a non-transformed state (compare Fig. 5B with Fig. 5D and 5F).

Could the tumor suppressors, Let-7 microRNA and PTEN, or the oncogene Ras influence the occurrence of stochastic transitions in the model linking inflammation to cell transformation? To answer that question, we constructed deterministic as well as stochastic bifurcation diagrams of IL6 vs Src for different rates of synthesis of Let-7, PTEN, or Ras.

Deterministic bifurcation diagrams of IL6 vs Src are shown when the rate of synthesis of Let-7, V_{SLET7} is equal to 3, 3.5 and 4 in Fig. 6A, C, E, respectively. The corresponding stochastic bifurcation diagrams are illustrated in Fig. 6B, D, F, respectively. With the initial conditions used (see section: “Methods”), deterministic simulations indicate that the cell is always in a transformed state when $V_{SLET7} = 3$ or 3.5 (red dots in Fig. 6A, C); while, when $V_{SLET7} = 4$, the cell is in a non-transformed state for low levels of Src and in a transformed state for higher levels of Src (see red dots in Fig. 6E). The corresponding stochastic simulations for the same conditions indicate that for low levels of Src, the proportion of cells present in a non-transformed state is larger when V_{SLET7} increases (compare Fig. 6B, D and F). Thus, the model indicates that high levels of Let-7 may enhance the robustness of the non-transformed state to stochastic fluctuations by reducing the occurrence of stochastic switches leading to cell transformation. The fact that the deterministic unstable steady state is closer to the stable steady state with a low level of IL6 (non-transformed state) when V_{SLET7} is small is already an indication that the latter stable steady state may be less robust to stochastic fluctuations in the presence of low levels of Let-7 (compare dashed curves in Fig. 6A, C, E).

Similarly to Let-7 microRNA, the model shows that the tumor suppressor PTEN is also able to increase to robustness of the cell towards stochastic cell transformation (Fig. 6). Deterministic bifurcation diagrams of IL6 steady-state levels vs Src indicate that the stable steady state corresponding to a non-transformed state (low level of IL6) is larger when the rate of transcription of PTEN, V_{SMPTEN} is high (compare Fig. 6A, C). In the stochastic approach, the model shows that increasing the level of PTEN reduces the occurrence of cell transformation for low level of Src (compare Fig. 5B and 5D).

Deterministic and stochastic simulations performed for different rates of transcription of the oncogene Ras, V_{SMRAS} suggest that, contrary to Let-7 or PTEN, an elevated level of Ras increases the sensitivity of the switch to stochastic fluctuations for the occurrence of cell transformation (see Fig. 7). Indeed, deterministic bifurcation diagrams indicate that the stable steady state with a low level of Src
IL6 (corresponding to a non-transformed state) gets smaller when \(V_{SMRAS} \) increases from 0.005 to 0.027 (see Fig. 7A, C, E). The corresponding stochastic simulations suggest that a robust switch without transformed cells, for low level of Src, is present when \(V_{SMRAS} \) is small (Fig. 7B). By increasing the level of Ras, the switch leading to cell transformation becomes less robust to stochastic fluctuations and a significant proportion of transformed cells appear even for a low level of inflammatory signal, Src (Fig. 7D, F).

Besides ‘intrinsic noise’ coming from molecular noise (stochastic fluctuations), the dynamics of the inflammatory network may be also influenced by ‘extrinsic noise’ originating from to cell-to-cell variability in a population. In that framework, recent studies have shown that the dynamics of activation of NF-\(\kappa \)B is heterogeneous within a cell population \([40,45,46]\). Those studies suggested that the dynamics of cell responding to inflammatory signaling is partly driven by stochastic processes, but seems mostly controlled by pre-existing variation in internal variables of the cells (extrinsic noise) \([40,45,46]\).

To address the issue of cell-to-cell heterogeneity on the dynamics of the network, we will study, in the next section, the dynamics of the epigenetic switch in a heterogeneous cell population.

Transformed versus non-transformed state of the cells in a heterogeneous cell population

In order to see if this epigenetic switch is relevant for human cancers, Iliopoulos and coworkers examined the expression levels of IL6 and Let-7 in cancer and normal breast, prostate, hepatocellular, and lung tissues \([7]\). They showed that cancer tissues have higher levels of IL6 and lower levels of Let-7 as compared to normal tissues. A negative correlation is also observed in the expression levels of Let-7 and IL6 for breast, prostate, and hepatocellular tissues \([7]\).

By resorting to the deterministic model proposed for the switch leading to cell transformation, we are able to reproduce qualitatively these experimental observations. To do so, we analyze the expression pattern of IL6 and Let-7 in a model for a heterogeneous cell population. For each cell in the population, which counts 100 cells, all the parameters values are chosen randomly with 10% of variation from their default value (see Fig. 8).

The model for the cell population shows that a normal, non-transformed state can be achieved with high levels of Let-7 together with low levels of IL6 (Fig. 8A). From that state, the model predicts that an increase in the level of the oncogene Ras triggers cell transformation in a significant proportion of cells in the population (see Fig. 8B), which results in a mixed population of non-transformed and transformed cells. A further increase in Ras almost completely switches the cell population to a transformed state, defined by high levels of IL6 and low levels of Let-7 (Fig. 8C).

The model indicates that by starting from a non-transformed state of the cell population (Fig. 8A), the switch of the cell population to a transformed state can be also triggered by reducing the rate of

Figure 2. Activation of the epigenetic switch by the Src oncoprotein. Time evolution of NF-\(\kappa \)B, Lin28, Let-7, IL6 and STAT3 in the absence of Src in A; in the presence of a constant, low level of Src (Src = 0.00005) in B; in the presence of a transient, higher level of Src (Src = 0.015 during 5 min from \(t = 0 \)) in C; and in the presence of a constant, higher level of Src (Src = 0.015) in D. (A) The absence of Src prevents the occurrence of an inflammatory response. Let-7 is present at a high level, while low levels of NF-\(\kappa \)B, Lin28, IL6 and STAT3 are observed. (B) The presence of Src generates an inflammatory response: a switch leading to cell transformation characterized by a low level of Let-7 together with high levels of NF-\(\kappa \)B, Lin28, IL6 and STAT3 occurs at \(t = 36 \) h. (C) 5 min of Src activation is sufficient to turn on the switch after \(t = 60 \) h. These time scales correspond to those observed in the experiments \([7]\). (D) The model predicts that, with a constant high level of Src, the switch occurs earlier. Parameter values used in the simulations are given in Table 2. Values for the initial conditions used can be found in the Section: “Methods”.

doi:10.1371/journal.pcbi.1003455.g002
Figure 3. Effect of Let-7 microRNA on the dynamical behavior of the epigenetic switch leading to cell transformation. Bifurcation diagrams showing the steady-state levels of NF-κB, Let-7, IL6 and STAT3 as a function of the inflammatory signal, Src, are shown in panels A to D, respectively. For each case, different rates of synthesis of Let-7, V_{SLET7} are considered: V_{SLET7} is equal to 1, 3, 4, 6 and 8. Solid curves correspond to stable steady states, while dashed curves represent unstable states. A transformed state of the cell defined by high levels of NF-κB, IL6 and STAT3 together with a low level of Let-7 is present regardless of the level of Src when V_{SLET7} is small, $V_{\text{SLET7}} = 1$. For higher rates of synthesis of Let-7 ($V_{\text{SLET7}} = 3$, 4 and 6), the system is defined by an irreversible bistable switch characterized by the coexistence of low and high levels of the different variables for small values of Src, and by a low level of Let-7 and high levels of NF-κB, IL6 and STAT3 at high values of Src. An increase in V_{SLET7} from 3 to 6 moves the switch leading to an inflammatory response and cell transformation to higher levels of Src. When V_{SLET7} is elevated, $V_{\text{SLET7}} = 8$, the inflammatory response is very weak, regardless of the level of Src. Note that in the upper branch of the bistable switch, we cannot distinguish the different curves because their levels are very close to each other. Parameter values used in the simulations are given in Table 2.

doi:10.1371/journal.pcbi.1003455.g003

The microRNA miR-21 is overexpressed and promotes invasion in pancreatic ductal adenocarcinoma [48]. Moreover, it was shown experimentally that miR-21 is an activator in the regulatory feedback loop linking inflammation to cell transformation [20]. Indeed, STAT3 promotes the expression of miR-21, which results in the down-regulation of the tumor suppressor PTEN leading to an activation of NF-κB [see Fig. 1]. A transient expression of miR-21 can induce the epigenetic switch, which

miR-21 may trigger cell transformation

The microRNA miR-21 is overexpressed and promotes invasion in pancreatic ductal adenocarcinoma [48]. Moreover, it was shown experimentally that miR-21 is an activator in the regulatory feedback loop linking inflammation to cell transformation [20]. Indeed, STAT3 promotes the expression of miR-21, which results in the down-regulation of the tumor suppressor PTEN leading to an activation of NF-κB [see Fig. 1]. A transient expression of miR-21 can induce the epigenetic switch, which
leads to cell transformation and formation of mammospheres in mouse xenografts [20]. The positive feedback loop between NF-κB, Lin28, Let-7, IL6 is crucial for this process of cellular transformation because the concomitant overexpression of miR-21 together with the inhibition of Lin28 considerably reduce cell transformation and mammospheres formation [20].

In the model, from a non-transformed state of the cell characterized by a high level of Let-7 and low levels of NF-κB, Lin28, IL6, and STAT3, the overexpression of miR-21 triggers the switch to cell transformation, which results in a low level of Let-7 and high levels of NF-κB, Lin28, IL6, and STAT3 (see Fig. 9A). The model qualitatively reproduces the experimental observation by showing that the concomitant overexpression of miR-21 together with a partial inhibition of Lin28 is not able to trigger the switch to cell transformation (Fig. 9B). Indeed, only a small increase in the level of NF-κB, Lin28, IL6, and STAT3 and a small decrease in Let-7 are observed (see Fig. 9B for t>100 h).

Iliopoulos and coworkers also showed, in colon adenocarcinomas, a positive correlation in the expression pattern of miR-21 and STAT3 as well as a negative correlation in the expression pattern of miR-21 and PTEN [20]. By resorting to the deterministic model for a heterogeneous cell population, we can reproduce qualitatively these expression patterns (see Fig. S6). A low rate of synthesis of miR-21 generates a mixed population of non-transformed and transformed cells (Fig. S6A, B). From that condition, an increase in the rate of synthesis of miR-21 switches the cell population to a transformed state characterized by high levels of miR-21 and STAT3 together with low levels of PTEN (Fig. S6C, D). From the latter condition, a reduction in the level of Lin28 brings back a large proportion of cells to a non-transformed state defined by low levels of miR-21 and STAT3 together with high levels of PTEN (Fig. S6E, F). This result supports the experimental observations showing the reduced number of mammospheres formation in the presence of Lin28 inhibition [20].

Control of cell transformation by competing endogenous RNA, ceRNA

Recent hypothesis suggests that some messenger RNAs, competing endogenous RNAs (ceRNA), could possess a regulatory role, independently of their protein-coding function, by their ability to compete for microRNA binding [26,27,29]. ceRNA could act as natural microRNA sponge [49]. In that context, by sharing the same microRNAs, it was shown that the expression of the tumor suppressor PTEN and its pseudogene PTENP1 are positively correlated. Indeed, even if the pseudogene PTENP1 does not encode a functional protein, PTENP1 mRNA may regulate the expression of the tumor suppressor PTEN by competing for their common microRNA [28]. It was also shown that the pseudogene PTENP1 is mutated in some cancers [28].

By resorting to our computational model linking inflammation to cell transformation, we will analyze here the regulatory role of a generic ceRNA, which could compete for the binding to Let-7 microRNA as well as the role of the pseudogene PTENP1, which competes with PTEN mRNA for the binding to miR-21 (see Methods for more details as well as the wiring diagram in Fig. 10).

Bifurcation analyzes of the steady-state levels of NF-κB, Lin28, Let-7, IL6, STAT3, and ceRNA as a function of Src for different rates of synthesis of ceRNA, V_{SCERNA}, suggest that a competing-endogenous RNA for the binding to Let-7 microRNA could act as an oncogene by promoting the switch to cell transformation (see Fig. S7). Indeed, the model predicts that an increase in V_{SCERNA} from 0 to 1 moves the switch from a non-transformed to a transformed state.
state to smaller levels of the inflammatory signal, Src. Furthermore, the model also shows that if the level of ceRNA is too high, i.e. $V_{SCERNA} = 2$, the cell is always present in a transformed state defined by high levels of NF-kB, Lin28, IL6, STAT3, and ceRNA together with a low level of Let-7.

By means of stochastic simulations, the model indicates that an elevated level of ceRNA decreases the robustness of the non-transformed state of the cell towards stochastic fluctuations (see Fig. S8). Indeed, by increasing V_{SCERNA}, the proportion of transformed cells at low levels of Src is larger (compare Fig. S8B, D, F).

The deterministic model for a heterogeneous cell population shows that, in the absence of ceRNA, the expression levels of Let-7 and IL6 are negatively correlated with high levels of Let-7 together with low levels of IL6, which corresponds to a non-transformed state of the cell population (Fig. 11A). An increase in ceRNA progressively promotes the switch of the cell population to a transformed state characterized by low levels of Let-7 together with high levels of IL6 (see Fig. 11B, C).

Thus, the model predicts that the effect of a ceRNA for Let-7 binding is very similar to the effect of Ras oncogene on the dynamics of the epigenetic switch leading to cell transformation.

Figure 5. Effect of stochastic fluctuations on the epigenetic switch leading to cell transformation. Deterministic (A and B) vs stochastic time evolution (C–F) of NF-kB, Lin28, Let-7, IL6 and STAT3. For the same conditions, as a result of stochastic fluctuations, the switch leading to cell transformation may or may not occur (compare the deterministic simulations in A with the corresponding stochastic simulations in C and E, as well as the deterministic time course in B with the corresponding stochastic time evolution in D and F). Stochastic simulations were performed by means of the Gillespie’s algorithm [63] using the stochastic version of the model for the epigenetic switch (see Table S1 in Supporting Information). The units on the axes for the stochastic curves are expressed in numbers of molecules. The corresponding concentrations for the deterministic trajectories are obtained by dividing the numbers of molecules by Ω expressed in units of 10^{6} L/NA, where NA is Avogadro’s number. Here, as well as in all stochastic simulations in this study, $\Omega = 100$. Parameter values are as in Table 2 with Src = 0.000001 and $V_{SLET7} = 3.5$ in panels A, C, E; and with Src = 0.00001 and $V_{SLET7} = 4$ in panels B, D, F.

doi:10.1371/journal.pcbi.1003455.g005
Finally, the model indicates that high levels of PTEN1 mRNA delay or eventually suppress the occurrence of cell transformation (see Fig. S9 where the time evolution of NF-κB, IL6, miR-21, and PTEN is represented for different rates of transcription of the pseudogene PTEN1, V_{SMPTEN1}). This supports the experimental observations showing that PTEN ceRNAs exhibit tumor-suppressive properties [50].

Discussion

Rudolf Virchow made the first connection between chronic inflammation and cancer in 1863 [5]. Nowadays, molecular links between inflammation and oncogenic transformation have been established [6]. However, until recently, the molecular pathways linking inflammation to cellular transformation were unknown [7].
In the latter study, the authors showed that ER-Src oncoprotein by treatment with tamoxifen could convert a non-transformed cell line to a transformed state within 24–36 h. They also demonstrated that this cell transformation is mediated by an inflammatory positive feedback loop driven by NF-κB, Lin28, Let-7, and IL6 (see [7] and Fig. 1).

Based on these experiments [7,20], we proposed here a computational model to account for the dynamics of the positive inflammatory feedback loop leading to cell transformation. The model includes the regulations between NF-κB, Lin28, Let-7, IL6, Ras, STAT3, miR-21, and PTEN (see Fig. 1).

First the model accounts for the experimental observations showing that the non-transformed state, characterized by low levels of activators of the switch (NF-κB, Lin28, IL6, and STAT3) together with high levels of inhibitors of the switch (Let-7 and PTEN), is stable without the inflammatory signal, Src (Fig. 2). As in the experiments, a transient activation of Src for only 5 min triggers cell transformation within 60 h, while a constant level of Src could not maintain cell transformation by itself (Fig. 2).

Figure 7. Effect of Ras oncogene on the robustness of the switch towards stochastic fluctuations. (A, C, E) Deterministic simulations. The steady-state level of IL6 vs Src is represented for $V_{\text{SMRAS}} = 0.005$ (A), 0.02 (C), and 0.027 (E). Red dots correspond to the steady state level of IL6 reached with the initial conditions considered (see Methods). Solid curves: stable steady states; dashed curves: unstable states. Stochastic simulations showing the proportion of transformed and non-transformed cells vs Src for the conditions of panels A, C, E are shown in panels B, D and F, respectively. For low levels of Src, the robustness of the non-transformed state decreases when the rate of synthesis of the oncogene Ras, V_{SMRAS}, increases (compare panels B, D and F). Indeed, even with a low level of Src, the proportion of transformed cells increases when V_{SMRAS} is high. Parameter values are as in Fig. 3 with $V_{\text{SLET7}} = 6$.

doi:10.1371/journal.pcbi.1003455.g007
Src may elicit the switch to a transformed state within 35 h (see Fig. 2). The model also accounts for the fact that maintenance of the transformed state needs the presence of the positive feedback loop between NF-κB, Lin28, Let-7, and IL6. Indeed, a transient inhibition of NF-κB, Lin28, or IL6 abolishes the transformed state of the cell (Fig. S1).

In the model, each component is embedded at least in one positive feedback (PF) loop (see wiring diagram in Fig. 1). The main PF loop is based on the regulations between NF-κB, Lin28, Let-7, and IL6. The second PF loop rests on the interactions between NF-κB, Lin28, Let-7 and Ras. The third PF loop is the mutual activation between NF-κB and IL6, while the fourth PF loop is driven by the regulatory interactions between NF-κB, IL6, STAT3, miR-21, and PTEN. Each component in the network can be clustered into one of the following two groups: activators (oncogenes such as NF-κB, Lin28, Ras, IL6, STAT3 and miR-21) or inhibitors of the switch leading to cell transformation (tumor suppressors such as Let-7 and PTEN).

By resorting to bifurcation analyzes, we show that an irreversible bistable switch between a transformed and a non-transformed state is at the core of the dynamics of the epigenetic switch linking inflammation to cancer (see Figs. 3, 4, S2).
model suggests that Let-7 and PTEN act as tumor suppressors by increasing the threshold of inflammatory signal, Src, at which the switch to cell transformation occurs (see Figs. 3 and S2, respectively). On the opposite, the model shows that Ras exhibits oncogenic properties by reducing the threshold of Src at which cell transformation happens (see Fig. 4).

Thus, at any moment, there is a sensitive balance in the relative levels of oncogenes and tumor suppressors that defines the state of the cell: non-transformed versus transformed.

The importance of stochastic gene expression and stochastic transitions has been highlighted in many different biological contexts. A study showed that a reduction of stochastic transitions could enhance cellular memory. Stochastic mechanisms have been involved in the differentiation of mature subsets of T lymphocytes. Stochastic gene fluctuations could drive the phenotype diversity in HIV-1, and stochastic epigenetic variation has been proposed to be a major force of developmental, evolutionary adaptation and disease. Stochastic phenomena could also play an important role in cancer. Indeed, stochastic appearance of mammary tumors has been observed experimentally. A model showed that the stochastic effect due to the finite size of active stem cell population could greatly influence the dynamics of cancer evolution. Stochastic fluctuations may also control nonheritable cell variability, which could drive the evolutionary rate of cancer progression. Finally, it was shown both theoretically and experimentally that stochastic state transitions generate phenotypic equilibrium in populations of cancer cells.

Here, we show that stochastic fluctuations may be responsible for transitions between a non-transformed and a transformed state of the cell. Furthermore, the model predicts that the tumor suppressors Let-7 and PTEN increase the robustness of the non-transformed state of the cell towards stochastic fluctuations. While, the oncogene Ras decreases this robustness. Thus, besides the crucial role of multiple and successive genetic mutations in the process of cell transformation and cancer development, the model points out, based on experimental observations, the important effect of epigenetic mechanisms and stochastic transitions on the dynamics of cell transformation.

The positive inflammatory feedback loop described here seems relevant in human cancers. Indeed, cancer tissues have lower levels of Let-7 and higher levels of IL6 as compared to normal tissues, and an inverse relationship is observed in the expression pattern of Let-7 and IL6 in prostate, breast, and hepatocellular tissues. Moreover, it was shown that a related microRNA inflammatory feedback loop controls hepatocellular oncogenesis. Here, deterministic simulations of the model in a heterogeneous cell population allow accounting qualitatively for these observations by showing this negative correlation in the expression of Let-7 and IL6. The model exhibits high levels of Let-7 and low levels of IL6 in normal conditions. As suggested by the model, an increase in the level of the oncogene Ras, in the level of Lin28 or a decrease in Let-7 triggers the switch of the cell population to a transformed state. While, from a transformed state, an increase in the tumor suppressor PTEN allows recovering a normal, non-transformed, state of the cell population.

Here, we consider separately the two kinds of noises that can emerge in such dynamical system: ‘intrinsic’, due to molecular and ‘extrinsic’, originating from cell-to-cell variability. Of course, in real, physiological conditions, these two kinds of noises combine within a cell population. Thus, a combination of both noises (intrinsic and extrinsic) may be a driving force to trigger, in a random manner, the occurrence of the switch leading to a transformed state of the cell. The latter source of noise resulting from cell-to-cell variability seems to have an important role leading to a heterogeneous activation of NF-kB under inflammatory signaling.

The model also accounts for the fact that miR-21 can be viewed as an oncogene. Moreover, the positive inflammatory feedback loop between NF-kB, Lin28, Let-7, and IL6 is important for the oncogenic property of miR-21. In the experiments, that an overexpression of miR-21 elicits cell transformation, while a concomitant overexpression of miR-21 together with an inhibition of Lin28 greatly impede this transformation. Finally, it was shown both theoretically and experimentally that stochastic state transitions generate phenotypic equilibrium in populations of cancer cells.
normal and pathological conditions, such as cancer or cell differentiation [27,61,62].

By using our computational model for the epigenetic switch linking inflammation to cancer, we analyzed the dynamical consequences on cell transformation of the addition of a ceRNA competing for the binding to Let-7 microRNA as well as the addition of the transcribed pseudogene PTEN1 (see wiring diagram in Fig. 10). The model shows that increasing the level of a ceRNA competing for Let-7 binding reduces the threshold of Src at which the switch to cell transformation occurs (Fig. S7). In the presence of ceRNA, the non-transformed state of the cell is also less robust towards stochastic fluctuations (Fig. S8). The dynamics of a heterogeneous cell population predicts that an elevated level of ceRNA leads to the switch of the cell population to a transformed state (Fig. 11). Thus, the model suggests that a ceRNA competing for Let-7 binding will sponge the available Let-7 microRNA, which promotes cell transformation. Such ceRNA may thus be viewed as an oncogene.

On the opposite, the model suggests that the addition of a ceRNA such as PTEN1 mRNA, competing with PTEN mRNA for binding to miR-21 microRNA, could act as a tumor suppressor inhibiting the occurrence of cell transformation (Fig. S9). This result holds with experimental observations showing the potential role of PTEN1 mRNA, or of other ceRNAs for PTEN, as tumor suppressors [26,28,50].

In summary, the model proposed here brings to light a comprehensive qualitative picture of the dynamics of the epigenetic switch linking inflammation to cell transformation and cancer. The model predicts that bistability is at the core of the underlying mechanism driving the switch between a non-transformed and a transformed state of the cell. Activators of the switch (oncogenes) and inhibitors of the switch (tumor suppressors) regulate the occurrence of cell transformation by modulating the threshold of inflammatory signal (Src) at which the switch occurs. The model also suggests that stochastic fluctuations could be a driving force for cell transformation, and predicts that tumors suppressors and oncogenes render the non-transformed state of the cell respectively more or less robust towards stochastic fluctuations. Finally, depending on their microRNA targets, the model shows that ceRNAs may act as oncogenes or as tumor suppressors, which points out the potential role of ceRNAs in the regulation of cell transformation.

Methods

The model is described by a set of 14 kinetic equations (see first subsection below: “Kinetic equations of the model”) representing the time evolution of the concentration of the main variables driving the dynamics of the epigenetic switch linking inflammation to cell transformation. The different variables of the model are defined in Table 1, while the description of the parameters, together with their numerical values used in the simulations, are found in Table 2. The stochastic version of the model is presented in Table S1 (see Supporting Information). It consists of a set of reactions, which are directly related to the deterministic kinetic reactions and is simulated with the Gillespie algorithm [63].

A description of the effect of a competing endogenous RNA, ceRNA, for Let-7 microRNA, as well as the effect of PTEN1 mRNA on the dynamics of the epigenetic switch can be found in subsection 2: “Effect of competing endogenous RNA, ceRNA, binding to Let-7 microRNA on the dynamics of the epigenetic switch leading to cell transformation”; and in subsection 3: “Role of PTEN1 mRNA in cell transformation”; respectively. The values for the initial conditions used in the simulations can be found in subsection 4: “Initial conditions”.
1. Kinetic equations of the model

In the model, we consider for simplicity a constant total concentration of NF-\(\kappa\)B, \(NF\kappa B\). Activation and inactivation reactions of NF-\(\kappa\)B behave as Goldbeter-Koshland switches [64]. All other processes of the model rest on mass-action kinetics.

\[
\frac{dNFKB}{dt} = (k_{A1NFKB} \cdot Src + k_{AA2NFKB} \cdot IL6 + k_{AA3NFKB} \cdot Ras) \cdot \left(\frac{K_{IP}}{K_{IP} + PTEN} \right) \left(\frac{NFKB}{K_{ANFKB} + NFKB} \right) - V_{DNFKB} \left(\frac{NFKB}{K_{INFKB} + NFKB} \right)
\]

(1)

\[
\frac{dLin28}{dt} = V_{SLIN28} \left(\frac{NFKB}{K_{A1NF} + NFKB} \right) - k_{DLIN28} \cdot Lin28
\]

(2)

\[
\frac{dLet7}{dt} = V_{SLET7} \left(\frac{K_{ILET}}{K_{ILET} + Lin28} \right)
\]

\[- k_1 \cdot mIL6 \cdot Let7 + k_2 \cdot mIL6 \cdot Let7\]

\[- k_3 \cdot mRas \cdot Let7 + k_4 \cdot mRas \cdot Let7 - k_{DLET7} \cdot Let7\]

(3)

\[
\frac{dmIL6}{dt} = V_{S1MIL6} + V_{S2MIL6} \cdot \left(\frac{NFKB}{K_{A1NF} + NFKB} \right) - k_1 \cdot mIL6 \cdot Let7 + k_2 \cdot mIL6 \cdot Let7 - k_{DMIL6} \cdot mIL6
\]

(4)

\[
\frac{dmIL6Let7}{dt} = k_1 \cdot mIL6 \cdot Let7
\]

\[- k_2 \cdot mIL6 \cdot Let7 - k_{DILLET} \cdot mIL6 \cdot Let7\]

(5)

\[
\frac{dIL6}{dt} = k_{SMIL6} \cdot mIL6 - k_{DIL6} \cdot IL6
\]

(6)

\[
\frac{dmRas}{dt} = V_{SMRAS} - k_3 \cdot mRas \cdot Let7 + k_4 \cdot mRas \cdot Let7 - k_{DMRAS} \cdot mRas
\]

(7)

\[
\frac{dmRasLet7}{dt} = k_3 \cdot mRas \cdot Let7
\]

\[- k_4 \cdot mRas \cdot Let7 - k_{DRASLET} \cdot mRas \cdot Let7\]

(8)

\[
\frac{dRas}{dt} = k_{SRAS} \cdot mRas - k_{DRAS} \cdot Ras
\]

(9)

\[
\frac{dSTAT3}{dt} = V_{SSTAT} \left(\frac{IL6}{K_{AIL6} + IL6} \right) - k_{DSTAT} \cdot STAT3
\]

(10)
Table 2. Parameters of the model.

Symbol	Definition	Numerical value
$k_{AA1NFKB}$	Rate constant for the activation of NFKB by Src	10
$k_{AA2NFKB}$	Rate constant for the activation of NFKB by IL6	0.09
$k_{AA3NFKB}$	Rate constant for the activation of NFKB by Ras	1
K_{PTEN}	Michaelis constant for the inhibition of NFKB activation by PTEN	5
V_{DNFKB}	Maximum rate for NFKB inactivation	0.01
Src	Src kinase oncoprotein (signal triggering an inflammatory response leading to an activation of the epigenetic switch)	
K_{ANFKB}	Michaelis constant for the activation of NFKB	0.01
K_{INFKB}	Michaelis constant for the inhibition of NFKB	0.02
$NFKB$	Total concentration of NFKB	1
$V_{IL6mRNA}$	Maximum rate of synthesis of IL6 mRNA, mIL6	0.012
K_{A1IL6}	Michaelis constant for the activation of Lin28 synthesis by NFKB	0.01
K_{IL28}	Michaelis constant for the repression of Let7 synthesis by Lin28	0.1
k_{DLin28}	Rate constant for the degradation of Lin28	0.002
$V_{Let7mRNA}$	Maximum rate of synthesis of Let7 microRNA	3
k_{DLet7}	Rate constant for the degradation of Let7 microRNA	0.01
V_{IL6}	Independent rate of synthesis of IL6 mRNA, mIL6	0.1
$V_{IL6mRNA}$	Maximum rate of synthesis of IL6 mRNA depending on NFKB	0.01
K_{A2IL6}	Michaelis constant for the activation of mIL6 synthesis by NFKB	5
K_{IL6}	Michaelis constant for the activation of Lin28 synthesis by NFKB	0.01
$V_{IL6mRNA}$	Rate constant for the degradation of IL6 mRNA	0.01
V_{IL6}	Rate constant for the degradation of the complex between Let7 and mIL6	10
$V_{IL6mRNA}$	Rate constant for the synthesis of IL6 protein	1.2
K_{IL6}	Rate constant for the degradation of IL6 protein	0.1
V_{Ras}	Rate constant for the degradation of mRas	0.005
K_{mRas}	Rate constant for the degradation of mRas	0.01
V_{Ras}	Rate constant for the degradation of the complex between Let7 and mRas	0.5
V_{Ras}	Rate constant for the synthesis of Ras protein	1
V_{Ras}	Rate constant for the degradation of Ras protein	0.1
V_{STAT}	Maximum rate of synthesis of STAT3	0.5
K_{IL6}	Michaelis constant for the activation of STAT3 synthesis by IL6	40
K_{IL6}	Rate constant for the degradation of STAT3	0.1
V_{mRas}	Maximum rate of synthesis of mRas mRNA, mRas	4
K_{mRas}	Michaelis constant for the activation of mRas mRNA by STAT3	5
V_{mRas}	Rate constant for the degradation of mRas	0.2
V_{mPTEN}	Rate of synthesis of PTEN mRNA, mPTEN	0
K_{mPTEN}	Rate constant for the degradation of mPTEN	0.01
V_{mRas}	Rate constant for the degradation of the complex between mPTEN and mRas	0.01
K_{mPTEN}	Rate constant for the synthesis of PTEN protein	0.05
K_{mPTEN}	Rate constant for the degradation of PTEN protein	0.1

Addition of a competing endogenous RNA (ceRNA), which can bind to Let-7 microRNA

Symbol	Definition	Numerical value
V_{cERNA}	Rate of synthesis of ceRNA	
k_f	Bimolecular rate constant for binding of Let7 to ceRNA	10
k_b	Rate constant for dissociation of complex (ceRNA:Let7) between Let7 and ceRNA	0.01
k_{DCERNA}	Rate constant for the degradation of ceRNA	0.01
Table 2. Cont.

Symbol	Definition	Numerical value
f_{DCLET7}	Rate constant for the degradation of the complex ceRNAlet7	0.01

Addition of PTEN1 mRNA, which can bind to the microRNA mir-21

Symbol	Definition
v_{PTEN1}	Rate of synthesis of PTEN1 mRNA, mPTEN1
k_9	Bimolecular rate constant for binding of mPTEN1 to mir21
k_{10}	Rate constant for dissociation of complex (mirRmPTEN1) between mPTEN1 and mir21
f_{DMPTEN}	Rate constant for the degradation of mPTEN1
f_{dmRmPTEN}	Rate constant for the degradation of mirRmPTEN1

Note: Because many of the parameters have not been determined experimentally, and since the study focuses on the dynamic implications of the regulatory structure of the epigenetic switch linking inflammation to cell transformation—in i.e., its wiring diagram, or topology, which is crucial for the network behavior [see (65)]—the numerical values have been selected so as to yield a non-transformed state without the inflammatory signal, Src, or a transformed state within 36 h–60 h depending on the duration of the transient inflammatory signal [see Fig. 2 as well as experimental observations in Ref. [7]]. The time units for the parameters in the model are expressed in minutes, while the concentrations are expressed in μM.

The mechanisms of control of miRNA degradation are complex and not fully understood [66]. To keep the model simple, we hypothesize that each complex between a messenger RNA and its regulating miRNA is rapidly targeted for degradation.

Moreover, the rates of synthesis and degradation of messenger RNAs and proteins considered in the model are in the same order of magnitude as observed experimentally in a global quantification of mammalian gene expression control [67]. Finally, to compensate for our lack of knowledge about parameter values, we performed many bifurcation analyses, which bring to light the dynamical behaviors of the model as parameter values vary. In our experience, the dynamical properties of such models depend more on its network structure than on precise values of the parameters.

doi:10.1371/journal.pcbi.1003455.t002

\[
\frac{d\text{miR}_21}{dt} = v_{\text{SMIR}_21} \left(\frac{\text{STAT}_3}{K_{\text{STAT}} + \text{STAT}_3} \right) - k_5 \cdot m\text{PTEN} \cdot \text{miR}_21 + k_6 \cdot \text{miRmPTEN} - k_{\text{DMIR}_21} \cdot \text{miR}_21
\]

\[
\frac{d\text{PTEN}}{dt} = v_{\text{SPPTEN}} - k_5 \cdot m\text{PTEN} \cdot \text{miR}_21 + k_6 \cdot \text{miRmPTEN} - k_{\text{DMPTEN}} \cdot \text{miR}_21
\]

\[
\frac{d\text{miRmPTEN}}{dt} = k_5 \cdot m\text{PTEN} \cdot \text{miR}_21 - k_6 \cdot \text{miRmPTEN} - k_{\text{DMIR}_M} \cdot \text{miRmPTEN}
\]

With the following conservation equation:

\[NFKB_t = NFKB - NFKB\]

The ‘ode’ code of the deterministic model can be found in Supporting Information (Model S1). Such code can be run quite easily with the program XPP/XPPAUT (http://www.math.pitt.edu/~bard/xpp/xpp.html).

2. Effect of competing endogenous RNA, ceRNA, binding to Let-7 microRNA on the dynamics of the epigenetic switch leading to cell transformation

To account for the effect of a competing endogenous RNA, ceRNA, binding to Let-7 microRNA on the dynamics of the epigenetic switch, we add two kinetic equations describing the time evolution of ceRNA (see Eq. (15)) as well as the time evolution of the inhibitory complex between ceRNA and Let-7, ceRNAlet7 (see Eq. (16)). Moreover, we include the terms of association and dissociation of Let-7 to ceRNA in the kinetic equation describing the time evolution of Let-7 in Eq. (3) (see new Eq. (3’)).

\[
\frac{d\text{ceRNA}}{dt} = v_{\text{SCERNA}} - k_7 \cdot \text{Let}_7 \cdot \text{ceRNA} + k_8 \cdot \text{ceRNAlet7} - k_{\text{DCELET7}} \cdot \text{ceRNAlet7}
\]

\[
\frac{d\text{ceRNAlet7}}{dt} = k_7 \cdot \text{Let}_7 \cdot \text{ceRNA} - k_8 \cdot \text{ceRNAlet7} - k_{\text{DCELET7}} \cdot \text{ceRNAlet7}
\]

\[
\frac{d\text{Let}_7}{dt} = v_{\text{SLET}_7} \left(\frac{K_{\text{LET}_7}}{K_{\text{LET}_7} + \text{Lin}_{28}} \right) - k_1 \cdot \text{mL6} \cdot \text{Let}_7 + k_2 \cdot \text{mL6} \cdot \text{Let}_7 - k_3 \cdot \text{mRas} \cdot \text{Let}_7 + k_4 \cdot \text{mRas} \cdot \text{Let}_7 - k_{\gamma} \cdot \text{Let}_7 \cdot \text{ceRNA} + k_8 \cdot \text{ceRNAlet7} - k_{\text{DLET}_7} \cdot \text{Let}_7
\]

3. Role of PTEN1 mRNA in cell transformation

In a similar manner, to account for the effect of PTEN1 mRNA, mPTEN1, on the dynamics of the epigenetic switch, we add two kinetic equations describing the time evolution of mPTEN1 (see Eq. (17)) as well as the time evolution of the inhibitory complex between mPTEN1 and the microRNA mir-21, mirRmPTEN1 (see Eq. (18)). Moreover, we include the terms of association and dissociation of mirR21 to mPTEN1 in the kinetic equation describing the time evolution of miR-21 in Eq. (11) (see new Eq. (11’)).
\[
\frac{dmPTEN}{dt} = V_{SMPTEN} - k_9 mPTEN \cdot miR21
\]
\[
+ k_{10} miRmPTEN - k_{DMPTEN} \cdot mPTEN
\]
(17)
\[
\frac{dmiRmPTEN}{dt} = k_9 mPTEN - k_{DMPTEN} \cdot mPTEN
\]
\[
-k_{10} miRmPTEN - k_{DMPTEN} \cdot mPTEN
\]
(18)
\[
\frac{dmiR21}{dt} = V_{SMIR21} \frac{STAT3}{K_{STAT} + STAT3}
\]
\[
-k_3 mPTEN \cdot miR21 + k_6 miRmPTEN
\]
\[
-k_9 mPTEN \cdot miR21 + k_{10} miRmPTEN
\]
\[
-k_{DMIR21} \cdot miR21
\]
(11')

4. Initial conditions

In the simulations of Figs. 2 and S1, with the parameter values of Table 2 and with Src = 0, the following initial conditions have been chosen so as to reach a non-transformed state of the cell characterized by high levels of Let-7 and PTEN together with low levels of NF-κB, Lin28, IL6 and STAT3.

\[NF\text{kB} = 0.01; \quad Lin28 = 0.01; \quad Let7 = 1; \quad mIL6 = 0.01; \quad IL6 = 0.01; \quad mRas = 0.01; \quad Ras = 0.01; \quad STAT3 = 0.01; \quad mPTEN = 0.01; \quad mRas\cdot Let7 = 0; \quad mIL6\cdot Let7 = 0; \quad mR21 = 0; \quad PTEN = 0; \quad MeRn\cdot PTEN = 0.\]

For the same conditions on the parameters, the following initial conditions have been chosen in all the other figures, giving rise to a switch at about \(t = 20\) h.

\[NF\text{kB} = 0.5; \quad Lin28 = 0.5; \quad Let7 = 1; \quad mIL6 = 0.5; \quad IL6 = 0.5; \quad mRas = 0.5; \quad Ras = 0.5; \quad STAT3 = 0.5; \quad mPTEN = 0.01; \quad mRas\cdot Let7 = 0; \quad mIL6\cdot Let7 = 0; \quad mR21 = 0; \quad PTEN = 0; \quad MeRn\cdot PTEN = 0; \quad CeRNA\cdot Let7 = 0; \quad mPTEN = 0; \quad MeRn\cdot PTEN = 0.\]

Because the dynamics of the model for the epigenetic switch linking inflammation to cell transformation rests on an irreversible bistable switch, such dynamics will be sensitive to the value of the initial conditions of the different variables defining the system. For the same parameter values, depending on the values of the initial conditions, the system may tend to a transformed or a non-transformed state of the cell (not shown).

Supporting Information

Figure S1 Importance of the positive inflammatory feedback loop to maintain the transformed state of the cell. Time evolution of NF-κB, Lin28, Let7, IL6 and STAT3 is shown in the presence of transient inhibition of NF-κB (A), Lin28 (B), or IL6 (C). In each case, from \(t = 0\), 5 minutes of Src signaling is sufficient to trigger cell transformation at \(t = 60\) h (same condition as in Fig. 2C). From 100 h to 130 h, a transient inhibition of NF-κB \((\delta_{Lin28} = \delta_{IL6} = \delta_{STAT3} = 0)\) in A, of Lin28 \((\delta_{Lin28} = 0)\) in B, or of IL6 \((V_{SMIL6} = V_{SMIL6} = 0)\) in C is sufficient to abolish the transformed state and to recover a normal, non-transformed state, characterized by a high level of Let-7 together with low levels of Lin28, IL6, NF-κB and STAT3. Other parameter values are as in Fig. 2C. (TIF)

Figure S2 Effect of the tumor suppressor PTEN on the dynamical behavior of the switch linking inflammation to cell transformation. Steady-state levels of Let-7 and IL6 are represented as a function of Src in panels A and B respectively, for different rates of transcription of PTEN, \(V_{SMPTEN}\). Solid curves: stable steady states, dashed curves: unstable states. A non-transformed state of the cell is associated with high levels of Let-7 together with low levels of IL6, while low levels of Let-7 together with high levels of IL6 characterize a transformed state. By increasing \(V_{SMPTEN}\) from 0.01 to 0.5, the threshold for cell transformation moves to higher values of Src, which might correspond to experimental observations showing the tumor-suppressive properties of PTEN (see Ref. [47]). Parameter values are as in Fig. 3 with \(V_{SMIL6} = 6\) and \(V_{SMRAS} = 0.03\). (TIF)

Figure S3 Effect of PTEN on the robustness of the epigenetic switch towards stochastic fluctuations. Deterministic steady state levels of IL6 vs Src are shown for a low, \(V_{SMPTEN} = 0.01\) in A, and for a high rate of synthesis of PTEN mRNA, \(V_{SMPTEN} = 0.05\) in C. Red dots correspond to the stable steady state reached with the initial conditions used. The corresponding stochastic simulations illustrate the proportion of transformed vs non-transformed cells as a function of Src in B and D. The proportion of cells is calculated with 50 stochastic cells for each condition (see also Figs. 6 and 7). An increase in the level of PTEN enhances the robustness of the switch towards stochastic fluctuations by decreasing the proportion of transformed cells at low values of Src (compare B and D). Parameter values are as in Table 2 with \(V_{SMPTEN} = 3.5\). (TIF)

Figure S4 Robustness of the epigenetic switch leading to cell transformation in a heterogeneous cell population. Expression levels of Let-7 and IL6 are represented in normal, non-transformed conditions (see conditions of Fig. 8A and panels A, D, G, J); in presence of high levels of Ras (see conditions of Fig. 8C and panels B, E, H, K); and in the presence of high levels of Ras together with high levels of PTEN (see conditions of Fig. 8F and panels C, F, I, L). For each case, random variation of 5% (A, B, C), 10% (D, E, F), 25% (G, H, I), and 50% (J, K, L) are applied on every parameters of the model. For each simulation, 100 cells are considered. Other parameter values are as in Fig. 8. (TIF)

Figure S5 Digital, on-off response of NF-κB in a heterogeneous cell population. Expression levels of Let-7 and NF-κB are illustrated for increasing levels of the inflammatory signal, Src. Src is equal to 0.00001 in A, 0.0001 in B, and 0.001 in C. In each condition, 25% of random variation on every parameter value of the model is applied. For each simulation, 100 cells are considered. Other conditions are as in Fig. 8A. (TIF)

Figure S6 Role of miR-21 for the dynamics of cell transformation in a heterogeneous cell population. miR-21 vs STAT3 levels as well as miR-21 vs PTEN levels are represented in the presence of a low, \(V_{SMIR21} = 4\) in A, B, and a high rate of synthesis of miR-21, \(V_{SMIR21} = 4000\) in C, D; as well as in the presence of a high rate of synthesis of miR-21, \(V_{SMIR21} = 4000\), together with a low rate of synthesis of Lin28, \(V_{SMLIN28} = 0.008\) (E, F). As observed in the experiments (see Ref. [20]), the expression levels of miR-21 and STAT3 are positively correlated, while the expression levels of miR-21 and PTEN are negatively correlated. (A, B) A mixed population of non-transformed (low levels of miR-21 and STAT3 together with a high level of PTEN) and transformed cells (high levels of miR-21 and STAT3 together with a low level of PTEN) is present. (C and D) From the condition in A and B, an increase in \(V_{SMIR21}\) triggers the switch of nearly all cells in the population to a transformed state. (E and F) From condition in C and D, a reduction in the level of Lin28 destabilizes the positive inflamm-
tory feedback loop, which brings back a large proportion of cells in the population to a non-transformed state (see also Ref. [20]). In each case, 100 cells are considered with 10% of random variation from the default value on all parameters. Other default parameter values are as in Fig. 9.

Figure S7 Effect of a ceRNA, which binds to Let-7 microRNA, on the dynamics of the switch leading to cell transformation. Steady-state levels of NF-κB, Lin28, Let-7, IL6, STAT3 and ceRNA as a function of the inflammatory signal, Src, are shown in panels A to F, respectively. For each case, different rates of synthesis of ceRNA, \(V_{\text{SCERNA}} \) are considered. Here again, an irreversibly bistable behavior characterizes the epigenetic switch leading to cell transformation. Solid curves: stable steady states; dashed curves: unstable states. A progressive increase in \(V_{\text{SCERNA}} \) from 0 to 1 moves the threshold associated with cell transformation to smaller values of Src. When \(V_{\text{SCERNA}} \) is large (\(V_{\text{SCERNA}} = 2 \), only the transformed state of the cell persists regardless of the level of Src. Parameter values are as in Table 2 with \(V_{\text{SLET7}} = 6 \).

Figure S8 Effect of a ceRNA binding to Let-7 on the robustness of the epigenetic switch towards stochastic fluctuations. Deterministic steady state levels of IL6 vs. Src are shown when \(V_{\text{SCERNA}} = 0, 0.1 \) and 0.15 in panels A, C and E, respectively. Red dots indicate the stable steady states reached with the initial conditions used. The corresponding stochastic simulations showing the proportion of non-transformed and transformed cells vs. Src are illustrated in panels B, D and F. The proportion of cells is calculated with 50 panels B, D and F. The proportion of cells is calculated with 50.

References

1. Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144: 666-674.
2. Chiba T, Marusawa H, Ushijima T (2012) Inflammation-associated cancer development in digestive organs: mechanisms and roles for genetic and epigenetic modulation. Gastroenterology 143: 550-563.
3. Sun B, Karin M (2012) Obesity, inflammation, and liver cancer. J Hepatol 56: 704-713.
4. Martin M, Heceg Z (2012) From hepatitis to hepatocellular carcinoma: a proposed model for cross-talk between inflammation and epigenetic mechanisms. Genome Med 4: 8.
5. Balkwill F, Mantovani A (2001) Inflammation and cancer: back to Virchow? Lancet 357: 539-545.
6. Ballyk F, Coussens LM (2004) Cancer: an inflammatory link. Nature 431: 405-406.
7. Iliopoulos D, Hirsch HA, Struhl K (2009) An epigenetic switch involving NF-kappaB, Lin28, Let-7, MicroRNA, and IL6 links inflammation to cell transformation. Cell 139: 693-706.
8. Carthew RW, Sontheimer EJ (2009) Origins and Mechanisms of miRNAs and siRNAs. Cell 136: 642-655.
9. Mukherji S, Ebert MS, Zheng GX, Tsang JS, Sharp PA, et al. (2011) MicroRNAs can generate thresholds in target gene expression. Nat Genet 43: 854-859.
10. Selbach M, Schoenhauer B, Thiefelder N, Fang Z, Khasin R, et al. (2008) Widespread changes in protein synthesis induced by microRNAs. Nature 455: 56-63.
11. Tsang J, Zhu J, van Oudenaarden A (2007) MicroRNA-mediated feedback and feedforward loops are recurrent network motifs in mammals. Mol Cell 26: 753-767.
12. Herranz H, Cohen SM (2010) MicroRNAs and gene regulatory networks: managing the impact of noise in biological systems. Genes Dev 24: 1339-1344.
13. Oella M, Bosia C, Cora D, Caselle M (2011) The role of incoherent microRNA-mediated feedforward loops in noise buffering. PLoS Comput Biol 7: e1001011.
14. Ebert MS, Sharp PA (2012) Roles for microRNAs in conferring robustness to biological processes. Cell 149: 515-524.
15. Laudasdo I, Manfroid I, Abououi Y, Schmidt D, Wilson MD, et al. (2012) A feedback loop between the liver-enriched transcription factor network and miR-122 controls hepatocyte differentiation. Gastroenterology 142: 119-129.
16. Barb D, Malliotra R, Ravi B, Sghirliini P (2010) MicroRNA let-7: an emerging next-generation cancer therapeutic. Curr Oncol 17: 70-80.
17. Kumar MS, Erkeland SJ, Peter RE, Chen CY, Ebert MS, et al. (2008) Suppression of non-small cell lung tumor development by the let-7 microRNA family. Proc Natl Acad Sci U S A 105: 3903-3908.
18. Peter ME (2009) Let-7 and miR-200 microRNAs: guardians against pluripotency and cancer progression. Cell Cycle 8: 843-852.
19. Moos P, Zhou D, Esteller M (2012) Epigenetic alterations involved in cancer stem cell reprogramming. Mol Oncol 6: 620-636.
20. Hatzipapastou M, Bieposoulos D (2011) Epigenetic aberrations during oncogenesis. Cell Mol Life Sci 68: 1601-1702.
21. Vincent A, Van Seuningen I (2012) On the epigenetic origin of cancer stem cells. Biochim Biophys Acta 1826: 83-98.
22. Goldberg AD, Alisi CD, Bernstein E (2007) Epigenetics: a landscape takes shape. Cell 128: 635-638.
23. Poliseno L, Salmena L, Zhang J, Carver B, Haveman VJ, et al. (2010) A coding-independent function of gene and pseudogene miRNAs regulates tumour biology. Nature 465: 1035-1038.
24. Salmena L, Poliseno L, Tay Y, Kast L, Pandolfini PP (2011) A ceRNA hypothesis: the Rosetta Stone of a hidden RNA language? Cell 146: 353-358.
44. Feinberg AP, Irizarry RA (2010) Evolution in health and medicine Sackler
43. Shields DJ, Murphy EA, Desgrosellier JS, Mielgo A, Lau SK, et al. (2011)
42. Basak S, Behar M, Hoffmann A (2012) Lessons from mathematically modeling
41. Rao P, Hayden MS, Long M, Scott ML, West AP, et al. (2010) IkappaBbeta acts
40. Ashall L, Horton CA, Nelson DE, Paszek P, Harper CV, et al. (2009) Pulsatile
39. Kearns JD, Basak S, Werner SL, Huang CS, Hoffmann A (2006) IkappaBepsi-
38. Hoffmann A, Levchenko A, Scott ML, Baltimore D (2002) The IkappaB-NF-
36. Garcia MG, Alaniz LD, Cordo Russo RI, Alvarez E, Hajos SE (2009) PI3K/Akt
33. Yu H, Pardoll D, Jove R (2009) STATs in cancer inflammation and immunity: a
32. Niu G, Wright KL, Huang M, Song L, Haura E, et al. (2002) Constitutive Stat3
31. Schwanhausser B, Busse D, Li N, Dittmar G, Schuchhardt J, et al. (2011) Global
30. Ploegh HL, Hueck CC (2000) The NF-kappaB pathway: Immunol Rev 246: 221–238.
29. Poliseno L (2012) Pseudogenes: newly discovered players in human cancer. Sci
28. Tay Y, Kats L, Salmena L, Weiss D, Tan SM, et al. (2011) Coding-independent regulation of the tumor suppressor PTEN by competing endogenous mRNAs. Cell 147: 334–345.
27. Tan SM, Tay Y, Nocka K, Kim J, Haffner JP, et al. (2010) Cancer co-suppression mediated by microRNA-21. Nature 466: 919–923.
26. Peltier A, Lyon-Caen O, Signoreau T, Le Ray P, Balavoine G, et al. (2011) A single miRNA promotes cell death in cancer. Cell 144: 185–198.
25. Poliseno L, Caponigro G, Lassmann T, Canzoniero L, Hariharan I, et al. (2013) A global code for cancer gene expression. Cell 154: 529–545.
24. Ploegh HL, Hueck CC (2000) The NF-kappaB pathway: Immunol Rev 246: 221–238.
23. Tan SM, Tay Y, Nocka K, Kim J, Haffner JP, et al. (2010) Cancer co-suppression mediated by microRNA-21. Nature 466: 919–923.
22. Peltier A, Lyon-Caen O, Signoreau T, Le Ray P, Balavoine G, et al. (2011) A single miRNA promotes cell death in cancer. Cell 144: 185–198.
21. Poliseno L, Caponigro G, Lassmann T, Canzoniero L, Hariharan I, et al. (2013) A global code for cancer gene expression. Cell 154: 529–545.
20. Tay Y, Kat L, Salmena L, Weiss D, Tan SM, et al. (2011) Coding-independent regulation of the tumor suppressor PTEN by competing endogenous mRNAs. Cell 147: 334–345.
Effect of PTEN on the epigenetic switch

A

Different V_{SMPTEN}

B

Different V_{SMPTEN}

Let-7 vs. Src

IL6 vs. Src
Effect of PTEN on the epigenetic switch

Deterministic simulations

A

Stochastic simulations

B

C

D
Role of miR-21 as an oncogene

A. Low rate of synthesis of miR-21, V_{SMIR21}

B. Low rate of synthesis of miR-21, V_{SMIR21}

C. High rate of synthesis of miR-21, V_{SMIR21}

D. High rate of synthesis of miR-21, V_{SMIR21}

E. High miR-21 & low Lin28

F. High miR-21 & low Lin28
Effect of ceRNA on the epigenetic switch

A

Different V_{SCERNA}

NFKB

Src

10
1
0.1
0.01
0.001
0.0001
0.01

B

Different V_{SCERNA}

Lin28

Src

10
1
0.1
0.01
0.001
0.01

C

Different V_{SCERNA}

Let-7

Src

1000
10
1
0.1
0.01
0.001

D

Different V_{SCERNA}

IL6

Src

10
1
0.1
0.01
0.001

E

Different V_{SCERNA}

STAT3

Src

10
1
0.1
0.01
0.001

F

Different V_{SCERNA}

ceRNA

Src

1000
10
1
0.1
0.01
0.001
Effect of ceRNA on the epigenetic switch

Deterministic simulations

A

Stochastic simulations

B

C

D

E

F

\[V_{\text{SCERNA}} = 0 \]

\[V_{\text{SCERNA}} = 0.1 \]

\[V_{\text{SCERNA}} = 0.15 \]
PTEN1 mRNA as a tumor suppressor

A

Different V_{SMPTEN1}

NFKB

Time (h)

0
5
10
15
20
25
30
35
40

0.5
0
0.15
0.2

B

Different V_{SMPTEN1}

IL6

Time (h)

0
5
10
15
20
25
30
35
40

0
20
40
60
80
100

0.5
0
0.15
0.2

C

Different V_{SMPTEN1}

miR-21

Time (h)

0
5
10
15
20
25
30
35
40

0.5
0
0.15
0.2

D

Different V_{SMPTEN1}

PTEN

Time (h)

0
5
10
15
20
25
30
35
40

0
200
400
600
800
1000

0.5
0
0.15
0.2
Model for the epigenetic switch linking inflammation to cell transformation
Gérard C., Gonze D., Lemaigre F., and Novak B.

Model S1

Initial conditions for Figures 2 and S1:
init NFKB=0.01, LIN28=0.01, let7=1, mIL6=0.01, IL6=0.01,
init mRas=0.01, Ras=0.01, STAT3=0.01, mPTEN=0.01,

Initial conditions for other figures:
init NFKB=0.5, LIN28=0.5, let7=1, mIL6=0.5, IL6=0.5, mRas=0.5, Ras=0.5,
STAT3=0.5, mPTEN=0,

activation of Src
\[tm = \text{mod}(t, \text{period}) \]
\[\text{tmtest} = \text{tm} - \text{period} \times X \]
\[\text{forcing} = 1 - \text{heav}(\text{tmtest}) \]
\[\text{Src1} = \text{Srcmin} + \text{forcing} \times (\text{Srcmax} - \text{Srcmin}) \]
\[\text{aux Src} = \text{Src1} \]

parameters
\[\text{param period}=10000, X=1, \text{Srcmin}=0, \text{Srcmax}=0, \]

kinetic equations
\[\frac{d\text{NFKB}}{dt} = (\text{kaa1nfkb} \times \text{Src1} + \text{kaa2nfkb} \times \text{IL6} + \text{kaa3nfkb} \times \text{Ras}) \times (\text{Kipten}/(\text{Kipten} + \text{PTEN})) \times (\text{NFKBi}/(\text{Kanfkb}+\text{NFKBi})) - \text{Vdnfkb} \times (\text{NFKB}/(\text{Kinfkb}+\text{NFKB})) \]
\[\frac{d\text{LIN28}}{dt} = \text{Vslin28} \times (\text{NFKB}/(\text{Ka1nf}+\text{NFKB})) - \text{kdlin28} \times \text{LIN28} \]
\[\frac{d\text{let7}}{dt} = \text{Vslet7} \times (\text{Kilet7}/(\text{Kilet7}+\text{LIN28})) - \text{k1} \times \text{mIL6} \times \text{let7} + \text{k2} \times \text{mIL6let7} - \text{k3} \times \text{mRas} \times \text{let7} + \text{k4} \times \text{mRaslet7} - \text{kdlet7} \times \text{let7} \]
\[\frac{d\text{mIL6}}{dt} = \text{Vs1mil6} + \text{Vs2mil6} \times (\text{NFKB}/(\text{Ka2nf}+\text{NFKB})) - \text{k1} \times \text{mIL6} \times \text{let7} + \text{k2} \times \text{mIL6let7} - \text{kdmlin6} \times \text{mIL6} \]
\[\frac{d\text{mIL6let7}}{dt} = \text{k1} \times \text{mIL6} \times \text{let7} - \text{k2} \times \text{mIL6let7} - \text{kdillet} \times \text{mIL6let7} \]
\[\frac{d\text{IL6}}{dt} = \text{ksil6} \times \text{mIL6} - \text{kdil6} \times \text{IL6} \]
\[\frac{d\text{mRas}}{dt} = \text{Vsmras} - \text{k3} \times \text{mRas} \times \text{let7} + \text{k4} \times \text{mRaslet7} - \text{kdmras} \times \text{mRas} \]
\[\frac{d\text{mRaslet7}}{dt} = \text{k3} \times \text{mRas} \times \text{let7} - \text{k4} \times \text{mRaslet7} - \text{kdraslet} \times \text{mRaslet7} \]
\[
\frac{d\text{Ras}}{dt} = ksras \cdot m\text{Ras} - kdras \cdot \text{Ras}
\]

\[
\frac{d\text{STAT3}}{dt} = ksstat \cdot (\text{IL6}/(Kail6+\text{IL6})) - kdstat \cdot \text{STAT3}
\]

\[
\frac{d\text{miR21}}{dt} = Vsmir21 \cdot (\text{STAT3}/(Kastat+\text{STAT3})) - k5 \cdot \text{mPTEN} \cdot \text{miR21} + k6 \cdot \text{miRmpten} - kdmir21 \cdot \text{miR21}
\]

\[
\frac{dm\text{PTEN}}{dt} = Vsmpten - k5 \cdot \text{mPTEN} \cdot \text{miR21} + k6 \cdot \text{miRmpten} - kdmpten \cdot \text{mPTEN}
\]

\[
\frac{d\text{miRmpten}}{dt} = k5 \cdot \text{mPTEN} \cdot \text{miR21} - k6 \cdot \text{miRmpten} - kdmiRmp \cdot \text{miRmpten}
\]

\[
\frac{d\text{PTEN}}{dt} = kspten \cdot \text{mPTEN} - kdpten \cdot \text{PTEN}
\]

\[
\text{NFKBi} = \text{NFKBT} - \text{NFKB}
\]

parameters

param kaa1nfkb=10, kaa2nfkb=0.09, kaa3nfkb=1, Kanfkb=0.01, Kinfkb=0.02,
param Vdnfkb=0.01, NFKBT=1, Kasrc=2, Ka1il6=10, Kail6=40, Karas=10,
Kipten=5,
param Vslin28=0.012, kdlin28=0.002, Ka1nf=0.01,
param Vslet7=3, Kilet7=0.1, kdlet7=0.01,
param k1=10, k2=0.01, Vs1mil6=0.1, Vs2mil6=0.01, kdmil6=0.01, kdillet=0.5,
Ka2nf=5,
param ksil6=1.2, kdil6=0.1,
param Vsmras=0.005, k3=10, k4=0.01, kdmras=0.01,
param kdraslet=0.5, ksras=1, kdras=0.1,
param ksstat=0.5, kdstat=0.1,
param Vsmir21=4, Kastat=5, k5=10, k6=0.01, k7=10, k8=0.01, kdmir21=0.2,
param Vsmpten=0, kdmpten=0.01,
param kdmiRmp=0.01, kspten=0.05, kdmpten=0.1,

@ Total=4500, meth=stiff, bound=10000, maxstor=100000

done
Table S1: Stochastic version of the model

Reaction number	Reaction	Propensity of reaction	
1	$NFKB_i \xrightarrow{src} NFKB$	$w_1 = k_{AANFKB} \cdot \Omega \cdot \left(\frac{K_{IPten} \cdot \Omega}{K_{IPten} \cdot \Omega + PTEN} \right) \cdot \left(\frac{NFKB_i}{K_{ANFKB} \cdot \Omega + NFKB_i} \right)$	
2	$NFKB_i \xrightarrow{IL6} NFKB$	$w_2 = k_{AANFKB} \cdot IL6 \cdot \left(\frac{K_{IPten} \cdot \Omega}{K_{IPten} \cdot \Omega + PTEN} \right) \cdot \left(\frac{NFKB_i}{K_{ANFKB} \cdot \Omega + NFKB_i} \right)$	
3	$NFKB_i \xrightarrow{Ras} NFKB$	$w_3 = k_{AANFKB} \cdot Ras \cdot \left(\frac{K_{IPten} \cdot \Omega}{K_{IPten} \cdot \Omega + PTEN} \right) \cdot \left(\frac{NFKB_i}{K_{ANFKB} \cdot \Omega + NFKB_i} \right)$	
4	$NFKB \longrightarrow NFKB_i$	$w_4 = V_{DFKB} \cdot \Omega \cdot \left(\frac{NFKB}{K_{DFKB} \cdot \Omega + NFKB} \right)$	
5	$\xrightarrow{NFKB} Lin28$	$w_5 = V_{SLIN28} \cdot \Omega \cdot \left(\frac{NFKB}{K_{SLIN28} \cdot \Omega + NFKB} \right)$	
6	$Lin28 \longrightarrow$	$w_6 = k_{DLIN28} \cdot Lin28$	
7	$\longrightarrow Let7$	$w_7 = V_{SLIT7} \cdot \Omega \cdot \left(\frac{K_{LET7} \cdot \Omega}{K_{LET7} \cdot \Omega + Lin28} \right)$	
8	$mIL6, Let7 \longrightarrow mIL6let7$	$w_8 = \frac{k_1}{\Omega} \cdot mIL6 \cdot Let7$	
9	$mIL6let7 \longrightarrow mIL6, Let7$	$w_9 = k_2 \cdot mIL6let7$	
10	$mRas, Let7 \longrightarrow mRaslet7$	$w_{10} = \frac{k_3}{\Omega} \cdot mRas \cdot Let7$	
11	$mRaslet7 \longrightarrow mRas, Let7$	$w_{11} = k_4 \cdot mRaslet7$	
12	Let7 \longrightarrow	$w_{12} = k_{DLIT7} \cdot Let7$	
13	$\longrightarrow mIL6$	$w_{13} = V_{SIMIL6} \cdot \Omega$	
14	$\xrightarrow{NFKB} mIL6$	$w_{14} = V_{SMIL6} \cdot \Omega \cdot \left(\frac{NFKB}{K_{ANFKB} \cdot \Omega + NFKB} \right)$	
15	$mIL6 \longrightarrow$	$w_{15} = k_{DMIL6} \cdot mIL6$	
16	$mIL6let7 \longrightarrow$	$w_{16} = k_{DLIL6} \cdot mIL6let7$	
17	$\longrightarrow IL6$	$w_{17} = k_{SL6} \cdot mIL6$	
18	$IL6 \longrightarrow$	$w_{18} = k_{DL6} \cdot IL6$	
19	$\longrightarrow mRas$	$w_{19} = V_{SMRAS} \cdot \Omega$	
---	---	---	---
20	mRas	\rightarrow	$w_{20} = k_{DMRAS} \cdot mRas$
21	mRaslet7	\rightarrow	$w_{21} = k_{DRASLET} \cdot mRaslet7$
22	Ras	\rightarrow	$w_{22} = k_{SRAS} \cdot mRas$
23	Ras	\rightarrow	$w_{23} = k_{DRAS} \cdot Ras$
24	\rightarrowSTAT3	IL6	$w_{24} = V_{STAT} \cdot \Omega \left(\frac{IL6}{K_{AIL6} + IL6} \right)$
25	STAT3	\rightarrow	$w_{25} = k_{DSTAT} \cdot STAT3$
26	\rightarrowmiR21	STAT3	$w_{26} = V_{SMIR21} \cdot \Omega \left(\frac{STAT3}{K_{ASTAT} + STAT3} \right)$
27	miR21,PTEN	\rightarrow	$w_{27} = k_{6} \cdot mPTEN \cdot miR21$
28	miRmPTEN	\rightarrow	$w_{28} = k_{6} \cdot miRmPTEN$
29	miR21	\rightarrow	$w_{29} = k_{DMIR21} \cdot miR21$
30	mPTEN	\rightarrow	$w_{30} = V_{SMPTEN} \cdot \Omega$
31	miRmPTEN	\rightarrow	$w_{31} = k_{DMPTEN} \cdot mPTEN$
32	PTEN	\rightarrow	$w_{32} = k_{DMIRMP} \cdot miRmPTEN$
33	PTEN	\rightarrow	$w_{33} = k_{SPPTEN} \cdot mPTEN$
34	PTEN	\rightarrow	$w_{34} = k_{DPTEN} \cdot PTEN$

Addition of a competing endogenous RNA (ceRNA), which can bind to Let-7 microRNA

35	\rightarrow	ceRNA	$w_{35} = V_{SCERNA} \cdot \Omega$
36	ceRNA,Let7	\rightarrow	$w_{36} = k_{6} \cdot \frac{Let7 \cdot ceRNA}{\Omega}$
37	ceRNAlet7	\rightarrow	$w_{37} = k_{6} \cdot ceRNAlet7$
38	ceRNA	\rightarrow	$w_{38} = k_{DCERNA} \cdot ceRNA$
39	ceRNAlet7	\rightarrow	$w_{39} = k_{DCELET7} \cdot ceRNAlet7$