The existence of \(\{p, q\}\)-orientations in edge-connected graphs

Morteza Hasanvand

Department of Mathematical Sciences, Sharif University of Technology, Tehran, Iran
morteza.hasanvand@alum.sharif.edu

Abstract

In 1976 Frank and Gyárfás gave a necessary and sufficient condition for the existence of an orientation in an arbitrary graph \(G \) such that for each vertex \(v \), the out-degree \(d^+_G(v) \) of it satisfies \(p(v) \leq d^+_G(v) \leq q(v) \), where \(p \) and \(q \) are two integer-valued functions on \(V(G) \) with \(p \leq q \). In this paper, we give a sufficient edge-connectivity condition for the existence of an orientation in \(G \) such that for each vertex \(v \), \(d^+_G(v) \in \{p(v), q(v)\} \), provided that for each vertex \(v \), \(p(v) \leq \frac{1}{2} \Delta_G(v) \leq q(v) \), \(|q(v) - p(v)| \leq k \), and there is \(t(v) \in \{p(v), q(v)\} \) in which \(|E(G)| = \sum_{v \in V(G)} t(v) \). This result is a generalization of a theorem due to Thomassen (2012) on the existence of modulo orientations in highly edge-connected graphs.

Keywords:
Modulo orientation; edge-connectivity; out-degree; spanning tree.

1 Introduction

In this article, graphs have no loops, but multiple edges are allowed, and a general graph may have loops and multiple edges. Let \(G \) be a graph. The vertex set and the edge set of \(G \) are denoted by \(V(G) \) and \(E(G) \), respectively. We denote by \(d_G(v) \) the degree of a vertex \(v \) in the graph \(G \). If \(G \) has an orientation, the out-degree and in-degree of \(v \) are denoted by \(d^+_G(v) \) and \(d^-_G(v) \). For a vertex set \(A \) of \(G \) with at least two vertices, the number of edges of \(G \) with exactly one end in \(A \) is denoted by \(d_G(A) \). Also, we denote by \(e_G(A) \) the number of edges with both ends in \(A \). For each vertex, let \(L(v) \) be a set of integers. We denote by \(gap(L(v)) \) the maximum of all \(|a - b| \) taken over of consecutive integers in \(a, b \in L(v) \), and the denote by \(gap(L) \) the maximum of all \(gap(L(v)) \) taken over of all vertices \(v \). An orientation of \(G \) is said to be (i) \(L \)-orientation, if for each vertex \(v \), \(d^+_G(v) \in L(v) \), (ii) \(z \)-defective \(L \)-orientation, if for each vertex \(v \) with \(v \neq z \), \(d^+_G(v) \in L(v) \), (iii) \((p, q) \)-orientation, if for each vertex \(v \), \(p(v) \leq d^+_G(v) \leq q(v) \), where \(p \) and \(q \) are two integer-valued functions on \(V(G) \). Let \(k \) be a positive integer. The cyclic group of order \(k \) is denoted by \(\mathbb{Z}_k \).

An orientation of \(G \) is said to be \(p \)-orientation, if for each vertex \(v \), \(d^+_G(v) \equiv p(v) \), where \(p : V(G) \rightarrow \mathbb{Z}_k \) is a mapping. A graph \(G \) is called \(m \)-tree-connected, if it contains \(m \) edge-disjoint spanning trees. Note that by
the result of Nash-Williams [9] and Tutte [12] every 2m-edge-connected graph is m-tree-connected. A graph G is said to be (m, l_0)-partition-connected, if it can be decomposed into an m-tree-connected factor and a factor F having an orientation such that for each v, $d_G^+(v) \geq l_0(v)$, where l_0 is a nonnegative integer-valued function on $V(G)$. For a graph G with a vertex z, we denote by χ_z the mapping $\chi_z : V(G) \to \{0, 1\}$ such that $\chi(z) = 1$ and $\chi(v) = 0$ for all vertices v with $v \neq z$. Also, we define $\bar{\chi}_z = 1 - \chi_z$. For two edges xu and uy incident with the vertex u, lifting of xu and uy is an operation that removes xu and uy and adds a new edge xy (when the purpose is to generate a loopless graph we must not add the next edge xy when $x = y$). Throughout this article, all variables k and m are positive integers.

In 1965 Hakimi introduced the following criterion for the existence of an orientation with a given upper bound on out-degrees.

Theorem 1.1.([6]) Let G be a graph and let q be an integer-valued function on $V(G)$. Then G has an orientation such that for each $v \in V(G)$, $d_G^+(v) \leq q(v)$, if and only if $e_G(S) \leq \sum_{v \in S} q(v)$ for all $S \subseteq V(G)$.

In 1976 Frank and Gyárfás generalized Hakimi’s result to the following bounded out-degree version.

Theorem 1.2.([5]) Let G be a graph and let p and q be two integer-valued functions on $V(G)$ with $p \leq q$. Then G has an orientation such that for each $v \in V(G)$, $p(v) \leq d_G^+(v) \leq q(v)$, if and only if for all $S \subseteq V(G)$,

$$
e_G(S) \leq \min\{\sum_{v \in S} q(v) : \sum_{v \in S} (d_G(v) - p(v))\}.$$

In 2012 Thomassen gave a sufficient edge-connectivity condition for the existence of modulo orientations as the following theorem.

Theorem 1.3.([11]) Let G be a $(2k^2 + k)$-edge-connected graph and let $p : V(G) \to \mathbb{Z}_k$ be a mapping. Then G has a p-orientation if and only if $|E(G)| \equiv k \sum_{v \in V(G)} p(v)$.

In this paper, we provide a development for Thomassen’s result by giving a sufficient edge-connectivity for the existence of $\{p, q\}$-orientations as the following theorem.

Theorem 1.4. Let G be a $8k^2$-edge-connected graph and let p and q be two integer-valued functions on $V(G)$ in which for each vertex v, $p(v) \leq d_G(v)/2 \leq q(v)$ and $|q(v) - p(v)| \leq k$, Then G has an orientation such that for each vertex v, $d_G^+(v) \in \{p(v), q(v)\}$ if and only if there is an integer-valued function t on $V(G)$ in which $t(v) \in \{p(v), q(v)\}$ for each vertex v, and $|E(G)| = \sum_{v \in V(G)} t(v)$.

2
2 Edge-connected graphs: \((p, q)\)-orientations and \(\{p, q\}\)-orientations

2.1 \((p, q)\)-orientations

In this section, we are going to derive some corollary of the following reformulation of Hakimi’s Theorem. This version exhibits that why edge-connectivity plays an important role for finding orientations whose out-degrees are far from the half of the corresponding degrees in \(G\).

Theorem 2.1. (Hakimi [6]) Let \(G\) be a graph and let \(q\) be an integer-valued function on \(V(G)\). Then \(G\) has an orientation such that for all \(v \in V(G)\), \(d^+_G(v) \leq q(v)\), if and only if for all \(S \subseteq V(G)\),

\[
\sum_{v \in S} (d_G(v) - 2q(v)) \leq d_G(S),
\]

Furthermore, under this condition, \(d^+_G(v) = q(v)\) for all \(v \in V(G)\), if and only if \(|E(G)| = \sum_{v \in V(G)} q(v)\).

Proof. Apply Theorem 1.1 and the fact that \(\sum_{v \in S} d_G(v)/2 - d_G(S)/2 = e_G(S)\) for every vertex set \(S\). □

Another immediate consequence of Theorem 2.1 is given in the next corollary.

Corollary 2.2. Let \(G\) be a graph and let \(q\) be an integer-valued function on \(V(G)\) satisfying \(|E(G)| \leq \sum_{v \in V(G)} q(v)\). If \(G\) is \(\lambda\)-edge-connected, then it admits an orientation such that for each vertex \(v\), \(d^+_G(v) \leq q(v)\), where

\[
\lambda = \sum_{v \in V(G)} \max\{0, d_G(v) - 2q(v)\}.
\]

Furthermore, under this condition, \(d^+_G(v) = q(v)\) for all \(v \in V(G)\), if and only if \(|E(G)| = \sum_{v \in V(G)} q(v)\).

Proof. For every nonempty proper subset \(S\) of \(V(G)\), \(\sum_{v \in S} (d_G(v) - 2q(v)) \leq \sum_{v \in V(G)} \max\{0, d_G(v) - 2q(v)\} = \lambda \leq d_G(S)\). If \(S = V(G)\), then by the assumption, \(\sum_{v \in S} (d_G(v) - 2q(v)) \leq 0 = d_G(S)\). Now, it enough to apply Theorem 2.1. □

The following corollary makes an interesting tool for constructing orientations from a given orientation.

Corollary 2.3. Let \(G\) be a graph with an orientation \(D\) and let \(\varepsilon\) be a rational number with \(0 \leq \varepsilon \leq 1\). Then \(G\) admits an orientation \(D_0\) such that for all \(v \in V(G)\), \(d^+_D(v) = \frac{1-\varepsilon}{2} d_G(v) + \varepsilon d^+_D(v)\) if and only if for all \(v \in V(G)\), \(\frac{1-\varepsilon}{2} d_G(v) + \varepsilon d^+_D(v)\) is integer.

Proof. By Theorem 2.1, for every vertex \(S\), we have \(d_G(S) \geq \sum_{v \in S} (d_G(v) - 2d^+_D(v)) \geq \sum_{v \in S} (\varepsilon d_G(v) - 2\varepsilon d^+_D(v)) = \sum_{v \in S} \varepsilon (d_G(v) - 2f(v))\), where \(f(v) = \frac{1-\varepsilon}{2} d_G(v) + \varepsilon d^+_D(v)\). If \(f\) is integer-valued, then by Theorem 2.1, one can deduce that there is an orientation \(D_0\) such that for all \(v \in V(G)\), \(d^+_D(v) = f(v)\). This can complete the proof. □
Corollary 2.4. Let G be a graph and let k and k_0 be two odd positive integers with $k_0 \leq k$. If G has an orientation D such that for all $v \in V(G)$, $d_D^+(v) - d_G(v)/2 \in \{0, \pm k/2\}$, then it has an orientation D_0 such that for all $v \in V(G)$, $d_{D_0}^+(v) - d_G(v)/2 \in \{0, \pm k_0/2\}$.

Proof. Apply Corollary 2.3 with $\varepsilon = k_0/k$. Note that if $d_D^+(v) = d_G(v)/2$, then $(1 - \varepsilon)d_G(v)/2 + \varepsilon d_D^+(v) = d_G(v)/2$, and if $d_D^+(v) = d_G(v)/2 \pm k/2$, then $(1 - \varepsilon)d_G(v)/2 + \varepsilon d_D^+(v) = d_G(v)/2 \pm k/2$. \Box

The following theorem is an edge-connected reformulation of Frank and Gyárfás’ Theorem.

Theorem 2.8. (5) Let G be a graph and let p and q be two integer-valued functions on $V(G)$ with $p \leq q$. Then G has an orientation such that for each vertex v, $p(v) \leq d_G^+(v) \leq q(v)$, if and only if for all $S \subseteq V(G)$.

$$\max\{\sum_{v \in S} (2p(v) - d_G(v)), \sum_{v \in S} (d_G(v) - 2q(v))\} \leq d_G(S),$$

Proof. Apply Theorem 1.2 and use the fact that $d_G(S) = e_G(S) - \sum_{v \in S} d_G(v)/2$. \Box

2.2 Defective $\{p, q\}$-orientations

In order to prove Theorem 1.4, we shall first formulate a weaker version. For this purpose, we need the following two lemmas. The first one guarantees the existence of modulo orientations with bounded out-degrees in edge-connected graphs which is a refinement of the main result in [10].

Lemma 2.6. (7) Let G be a graph, let n be a positive integer, and let $p : V(G) \to \mathbb{Z}_n$ be a mapping satisfying $|E(G)| \equiv \sum_{v \in V(G)} p(v)$. If G is $(3n-3)$-edge-connected, then it has a p-orientation such that for each vertex v, $|d_G^+(v) - d_G(v)/2| < n$. Furthermore, for an arbitrary vertex z, we can have $-x \leq d_G^+(z) - d_G(z)/2 < n-x$, where x is an arbitrary real number $x \in [0, n]$.

Lemma 2.7. (see [4]) Let G be a connected graph with $Q \subseteq V(G)$. If $|Q|$ is even, then G has a spanning forest F such that $Q = \{v \in V(F) : d_F(v) \text{ is odd}\}$.

The following theorem gives a sufficient edge-connectivity for the existence of defective $\{p, q\}$-orientations.

Theorem 2.8. Let G be a graph with $z \in V(G)$, let k be a positive integer, and let p and q be two integer-valued functions on $V(G)$ in which for each vertex v, $p(v) \leq d_G(v)/2 \leq q(v)$ and $|q(v) - p(v)| \leq k$. If G is $(\frac{4}{3}k + 1)(k-1)$-tree-connected, then it has an orientation such that for each $v \in V(G) \setminus \{z\}$, $d_G^+(v) \in \{p(v), q(v)\}$.

Furthermore, for the vertex z, we can have $-x \leq d_G^+(z) - d_G(z)/2 < k-x$, where x is an arbitrary real number $x \in [0, k]$.
Proof. We may assume that \(k \geq 2 \), as the assertion trivially holds when \(k = 1 \). Since \(G \) is \(m \)-tree-connected, we can decompose \(G \) into \(k - 1 \) spanning trees \(T_2, \ldots, T_k \) and \(k - 1 \) factors \(H_2, \ldots, H_k \) such that every \(H_i \) is \((3i - 3)\)-tree-connected, where \(m = \sum_{2 \leq i \leq k} (3i - 3) + k - 1 \). For each \(i \in \{2, \ldots, k\} \), define
\[
V_i = \{ v \in V(G) \setminus \{z\} : |p(v) - q(v)| = i \},
\]
and \(U_i = V(G) \setminus (V_i \cup \{z\}) \). In addition, by Lemma 2.7, we can take \(F_i \) to be a spanning forest of \(T_i \) such that for each \(v \in U_i \), \(d_{F_i}(v) + d_{H_i}(v) \) is even and for each \(v \in V_i \), \(d_{F_i}(v) + d_{H_i}(v) \) and \(d_G(v) \) have the same parity. Note that the following upper bound of \(G \), \(\sum x_i \), since \(0 \leq x_n+1 < k \), since \(x_{n+1} = x_n + d_G^+(z) - d_G^-(z)/2 \). Let \(v \in V(G) \setminus \{z\} \) so that \(v \in V_i \) and \(1 \leq i \leq k \). Therefore,
\[
\begin{align*}
d_G^+(v) &= \sum_{1 \leq j \leq k} d_G^+(v) - d_G^+(v) + \sum_{1 \leq j \leq k, j \neq i} d_G^+(v)/2 = d_G^+(v)/2 - d_G^+(v)/2 \in \{p(v), q(v)\}.
\end{align*}
\]
Furthermore \(-x \leq d_G^+(z) - d_G^-(z)/2 < k - x \), since \(0 \leq x_{k+1} < k \). Hence the proof is completed. \(\square \)

2.3 \(\{p, q\} \)-orientations

In this section, we shall improve Theorem 2.8 by refining the condition for the vertex \(z \). To do this, we first form the following lemma for working with integer numbers. Note that the following upper bound of \(k(k-1) \) is sharp by setting \((m, n) = (k-1, k)\), \(x_i = k \), and \(y_j = k - 1 \), where \(1 \leq i \leq m \) and \(1 \leq j \leq n \).

Lemma 2.9. Let \(x_1, \ldots, x_m \) and \(y_1, \ldots, y_n \) be positive integers and let \(k \) be the maximum of them. If \(\sum_{1 \leq i \leq m} x_i = \sum_{1 \leq j \leq n} y_j \) and for any two integer sets \(I \subseteq \{1, \ldots, m\} \) and \(J \subseteq \{1, \ldots, n\} \) satisfying \(|I| + |J| < m + n\), \(\sum_{i \in I} x_i \neq \sum_{j \in J} y_j \), then
\[
\sum_{1 \leq i \leq m} x_i \leq k(k-1).
\]

Proof. We may assume that \(k \) is the maximum of \(y_1, \ldots, y_n \) and so \(\max_{1 \leq i \leq m} x_i < k \). Let \(I_0 = J_0 = \emptyset \) and \(g(0) = f(0) = 0 \). Let \(s \) be a positive integer. If \(I_1 \cup \cdots \cup I_{s-1} \neq \{1, \ldots, m\} \), then we recursively define
\(I_s \) to be a nonempty subset of \(\{1, \ldots, m\} \setminus (I_1 \cup \cdots \cup I_{s-1}) \) such that
\[
f(s-1) = \sum_{1 \leq t \leq s-2} \sum_{1 \leq j \in J_t} y_j \leq \sum_{1 \leq t \leq s} \sum_{1 \leq j \in J_t} x_i = g(s).
\]

If \(J_1 \cup \cdots \cup J_{s-1} \neq \{1, \ldots, n\} \), then we recursively define \(J_s \) to be a nonempty subset of \(\{1, \ldots, n\} \setminus (J_1 \cup \cdots \cup J_{s-1}) \) such that
\[
g(s) = \sum_{1 \leq t \leq s} \sum_{1 \leq j \in J_t} x_i \leq \sum_{1 \leq t \leq s} \sum_{1 \leq j \in J_t} y_j = f(s).
\]

We consider \(I_s \) and \(J_s \) with the minimum size. These can imply that \(g(1) - f(0) = \min_{1 \leq i \leq m} x_i \leq k - 1 \) and \(g(s) - f(s-1) \leq \min_{i \in I_s} x_i - 1 \leq k - 1 \) when \(s > 1 \) and \(f(s) - g(s) \leq \min_{j \in I_s} y_j - 1 \leq k - 1 \). According to the assumption on summations of \(x_i \) and \(y_j \), we must also have \(f(s-1) \neq g(s) \) and \(g(s) \neq f(s) \).

Define \(g_d(s) = g(s) - f(s-1) \) and \(f_d(s) = f(s) - g(s) \). Assume that \(I_1 \cup \cdots \cup I_q = \{1, \ldots, m\} \) and \(J_1 \cup \cdots \cup J_q = \{1, \ldots, n\} \) so that
\[
0 = g(0) = f(0) < g(1) < f(1) < \cdots < f(q-1) \leq g(q) = \sum_{1 \leq i \leq m} x_i = \sum_{1 \leq j \leq n} y_j = f(q).
\]

Let \(s, s' \in \{1, \ldots, q\} \) with \(s \geq s' \). If \(f_d(s) = f_d(s') \), then
\[
\sum_{s' < t \leq s} \sum_{1 \leq i \in I_t} x_i = g(s) - g(s') = f(s) - f(s') = \sum_{s' < t \leq s} \sum_{1 \leq j \in J_t} y_j.
\]

According to the assumption on summations of \(x_i \) and \(y_j \), we must have \(s = s' \). Note that we consider \(J_q \) to be the empty, and consider \(I_q \) to be the empty set when \(g(q) = f(q-1) \). Similarly, if \(g_d(s) = g_d(s') \), then \(s = s' \). In other words, \(g_d \) and \(f_d \) are injective functions with the restricted domain \(\{1, \ldots, q\} \) and the co-domain \(\{0, 1, \ldots, k-1\} \). Therefore,
\[
\sum_{1 \leq i \leq m} x_i = g(q) = \sum_{1 \leq s \leq q} g_d(s) + \sum_{1 \leq s \leq q-1} f_d(s) \leq 2 \sum_{1 \leq i \leq k-1} i = k(k-1).
\]

Hence the proof is completed. \(\square \)

The following theorem gives a sufficient edge-connectivity for the existence of \(\{p, q\} \)-orientations...

Theorem 2.10. Let \(G \) be a \(4k^2 \)-tree-connected graph and let \(p \) and \(q \) be two integer-valued functions on \(V(G) \) in which for each \(v \in V(G) \), \(p(v) \leq d_G(v)/2 \leq q(v) \) and \(|q(v) - p(v)| \leq k \). Then \(G \) has an orientation such that for each \(v \in V(G) \),
\[
d_G^+(v) \in \{p(v), q(v)\},
\]
if and only if there is an integer-valued function \(t \) on \(V(G) \) in which \(t(v) \in \{p(v), q(v)\} \) for each \(v \in V(G) \), and \(|E(G)| = \sum_{v \in V(G)} t(v) \). Furthermore, for an arbitrary given vertex \(v \), we can have \(d_G^+(v) = t(v) \).

Proof. Since every 2-tree-connected graph has a spanning Eulerian subgraph [8], one can decompose \(G \) into a \(2k^2 \)-tree-connected graph \(G_0 \) and a \(2k^2 \)-edge-connected Eulerian graph \(H \). By Theorem 2.8, the
graph G_0 has an orientation such that for each $v \in V(G) \setminus \{z\}$, $d^+_G(v) = (p(v) - d_H(v)/2, q(v) - d_H(v)/2)$, and $|d^+_{G_0}(z) - d_{G_0}(z)|/2 \leq k$ in which $d^+_{G_0}(z) \geq d_{G_0}(z)/2$ if and only if $t(z) \geq d_G(z)/2$. For each vertex v, define $s(v) = t(v) - d^+_G(v) - d_H(v)/2$. According to this definition, for each $v \in V(G) \setminus \{z\}$, $s(v) = 0$ when $d^+_G(v) = t(v) - d_H(v)/2$, and $|s(v)| = |q(v) - p(v)| \leq k$ otherwise. In addition, $|s(z)| = |t(z) - d_G(z)/2 - (d^+_G(z) - d_{G_0}(z)/2)| \leq k$. Let S be a subset of $V(G)$ including z satisfying $\sum_{v \in S} s(v) = 0$. Note that $V(G)$ is a candidate for S, since

$$\sum_{v \in V(G)} s(v) = \sum_{v \in V(G)} (t(v) - d^+_G(v) - d_H(v)/2) = |E(G)| - |E(G_0)| - |E(H)| = 0.$$

Consider S with the minimum $|S|$. Thus for every nonempty proper subset S_0 of S, $\sum_{v \in S_0} s(v) \neq 0$. Otherwise, $\sum_{v \in S \setminus S_0} s(v) = 0$ which is a contradiction, because either S_0 or $S \setminus S_0$ includes z. Thus by Lemma 2.9 and the minimal property of S, one can conclude that $\sum_{v \in S} |s(v)| \leq 2k(k - 1)$. More precisely, variables x_i in Lemma 2.9 are those positive integers $|s(v)|$ with $s(v) > 0$ and variables y_j are those positive integers $|s(v)|$ with $s(v) < 0$, where $v \in S$. Since H is $2k(k - 1)$-edge-connected, by Corollary 2.2, it has an orientation such that for each $v \in S$, $d^+_H(v) = d_H(v)/2 + s(v)$ and for each $v \in V(G) \setminus S$, $d^+_H(v) = d_H(v)/2$. Note that $\sum_{v \in S} \max\{0, d_H(v) - 2(d_H(v)/2 + s(v))\} = \sum_{v \in S} |s(v)| \leq 2k(k - 1)$. Consider the orientation of G obtained from these orientations. For each vertex v,

$$d^+_G(v) = d^+_G(v) + d^+_H(v) = \begin{cases} d^+_G(v) + d_H(v)/2 + s(v) = t(v) \in \{p(v), q(v)\}, & \text{if } v \in S; \\ d^+_G(v) + d_H(v)/2 \in \{p(v), q(v)\}, & \text{otherwise}. \end{cases}$$

Hence the theorem holds.

Remark 2.11. We will use the above-mentioned theorem to refine some results in [1, 2] for edge-connected graphs. We will do it in a forthcoming paper.

3 Partition-connected graphs: orientations with sparse lists on out-degrees

In this subsection, we are going to prove the following assertion on the existence of orientations with sparse lists on out-degrees in partition-connected graphs. For dense lists in all graphs, it was investigated by Akbari, Dalirrooyfard, Ehsani, Ozeki, and Sherkati (2020) [3]. Before stating the main result, we need to recall the following lemma from [7].

Lemma 3.1. ([7]) Let G be a general graph with $z \in V(G)$ and let l_0 be a nonnegative integer-valued function on $V(G)$. Assume that z is not incident with loops. If G contains an (m, l_0)-partition-connected factor H with $d_G(z) \geq 2d_H(z) - 2l_0(z) - 2$, then there are $d_H(z) - l_0(z) - 1$ pair of edges incident with z such that by lifting them the resulting general graph G_0 with $V(G_0) = V(G) \setminus \{z\}$ is still (m, l_0)-partition-connected.

Now, are we are ready to prove the main result of this section.
Theorem 3.2. Let G be a general graph with $z \in V(G)$ and let $L: V(G) \to 2^{\mathbb{Z}}$ be a mapping satisfying \(\text{gap}(L) \leq k \) and \(\text{gap}(L(z)) = k \). Let s, s_0, and l_0 be three integer-valued functions on $V(G)$ satisfying $s(v) + s_0(v) + \text{gap}(L(v)) < d_G(v)$ and $\max\{s(v), s_0(v)\} \leq l_0(v) + (2k^2 - \text{gap}(L(v)) + 1)\chi_z(v)$ for each vertex v. If G is $(2k^2, l_0)$-partition-connected, then it admits a z-defective L-orientation such that for each vertex v,

\[s(v) \leq d^+_G(v) \leq d_G(v) - s_0(v). \]

Proof. We may assume that l_0 is nonnegative and G is loopless. The proof is by induction on $|V(G)|$. For $|V(G)| \leq 2$ the proof is straightforward. So, suppose $|V(G)| \geq 3$. For notational simplicity, let us define $m = 2k^2$. For proving the theorem, we shall consider the following four cases.

Case 1. There is a vertex $u \in V(G) \setminus \{z\}$ with $d_G(u) = 2l_0(u) + 2m - r$ such that $0 < r \leq l_0(u) + m$ and $l_0(u) + m - i \in L(u)$, where $0 \leq i \leq \min\{r, \text{gap}(L(u)) - 1\}$.

By Lemma 3.1, there are $l_0(u) + m - r$ pair of edges incident with u such that by lifting them the resulting general graph H with $V(H) = V(G) \setminus u$ is still (m, l_0)-partition-connected. Obviously, $d_R(u) = d_G(u) - 2(l_0(u) + m - r) = r$, where R is the factor of G consisting of all edges incident with u that are not lifted. Since $i \leq r$, the edges of R can be orientated such that $d^+_R(u) + l_0 + m - r \in L(u)$. Define $s'(v) = s(v) - (l_0(u) + m - r)$ and $s'_0(u) = s_0(u) - (l_0(u) + m - r)$. By the assumption, we must have $\max\{s'(v), s'_0(u)\} \leq d_R(u) - \text{gap}(L(u)) - 1$, and $s'(v) + s'_0(u) \leq d_R(u) - \text{gap}(L(u)) - 1$. Therefore, if $d_R(u) \geq \text{gap}(L(u)) - 1$ then the orientation of R can be selected such that $s'(v) \leq d^+_R(u) \leq d_R(u) - s'_0(u)$. If $d_R(u) \leq \text{gap}(L(u)) - 1$, then we must automatically have

\[s'(v) \leq 0 \leq d^+_R(u) \leq d_R(u) \leq d_R(u) - s'_0(u). \]

Define $L'(v) = \{j - d^+_R(v) : j \in L(v)\}$, where $v \in V(H)$. Obviously, $\max\{s(v) - d^+_R(v), s_0(v) - d^+_R(v)\} \leq l_0(v) + m - (\text{gap}(L(v)) - 1)$ and $s(v) - d^+_R(v) + s_0(v) - d^+_R(v) + \text{gap}(L(v)) - 1 \leq d_H(v)$. Thus by the induction hypothesis, H has a z-defective L'-orientation such that for each $v \in V(H)$,

\[s(v) - d^+_R(v) \leq d^+_H(v) \leq d_H(v) - (s_0(v) - d^+_R(v)) = d_G(v) - s_0(v) - d^+_H(v). \]

This orientation induces a z-defective L-orientation for G such that for each $v \in V(H)$, $d^+_G(v) = d^+_H(v) + d^+_R(v)$, and also $d^+_G(u) = d^+_H(u) + l_0(u) + m - r$. This can complete the proof of Case 1. \hfill \Box

Case 2. $d_G(z) < 2l_0(z) + \text{gap}(L(z)) - 1$.

Since $d_G(z) \geq \text{gap}(L(z)) - 1$, we must have $l_0(z) > 0$ and hence there is an edge zu incident with z such that the graph G_0 is $(m, l_0 - \chi_z)$-partition-connected, where $G_0 = G - zu$.

First assume that $s(z) < l_0(z)$. Since $s(z) < l_0(z)$, we must have $s(z) \leq l_0(z) - \chi_z(z)$. Thus by the induction hypothesis, the graph G_0 has a z-defective $(L - \chi_u)$-orientation such that for each vertex v,

\[s(v) - \chi_u(v) \leq d^+_G_0(v) \leq d_G_0(v) - (s_0(v) - \chi_z(v)). \]

Now, this orientation induces the desired z-defective L-orientation for G by adding an edge directed from u to z.

8
Now, assume that \(s(z) = l_0(z) \). This implies that \(s_0(z) < l_0(z) \), because \(s(z) + s_0(z) + \text{gap}(L(z)) - 1 \leq d_G(z) \) and \(d_G(z) < 2l_0(z) + \text{gap}(L(z)) - 1 \). Thus by the induction hypothesis, the graph \(G_0 \) has a \(z \)-defective \((L - \chi_z) \)-orientation such that for each vertex \(v \), \(s(v) - \chi_z(v) \leq d^+_{G_0}(v) \leq d_{G_0}(v) - (s_0(v) - \chi_u(v)) \). Now, this orientation induces the desired \(z \)-defective \(L \)-orientation for \(G \) by adding an edge directed from \(z \) to \(u \). This completes the proof of Case 2. □

Now, by applying Theorem 2.8, the graph \(G \) has an orientation such that \(|d^+_{G_0}(z) - d_G(z)/2| \leq k/2 \) and for all \(v \in V(G) \setminus \{z\} \), \(d^+_{G_0}(z) \in \{p(v), q(v)\} \), where \(p(v) \) and \(q(v) \) are the integers in \(L(v) \) with the smallest \(|q(v) - p(v)| \) such that \(p(v) \leq d_G(v)/2 \leq q(v) \). According to Case 2, \(d_G(z) \geq 2l_0(z) + m - (k - 1) \), which implies that \(s_0(z) \leq l_0(z) \leq d^+_{G_0}(z) \leq d_G(z) - l_0(z) \leq d_G(z) - s_0(z) \). Let \(v \in V(G) \setminus \{z\} \). If \(d_G(v) \geq 2l_0(v) + 2m \), then we must have
\[
s(v) \leq \lfloor d_G(v)/2 \rfloor - (\text{gap}(L(v)) - 1) \leq d^+_G(v) \leq \lfloor d_G(v)/2 \rfloor + (\text{gap}(L(v)) - 1) \leq d_G(v) - s_0(v).
\]
Otherwise, \(d_G(v) = 2l_0(v) + 2m - r \) in which \(0 < r < \text{gap}(L(v)) - 1 \). According to Case 1, \(\{l_0(v) + m - i : 0 \leq i \leq r\} \cap L(v) = \emptyset \), which implies that
\[
l_0(v) + m - \text{gap}(L(v)) < p(v) \leq d^+_{G_0}(v) \leq q(v) < l_0(v) + m - r + \text{gap}(L(v)) = d_G(v) - (l_0(v) + m - \text{gap}(L(v))),
\]
and so \(s(v) \leq d^+_{G_0}(v) \leq d_G(v) - s_0(v) \). Hence the proof is completed. □

References

[1] L. Addario-Berry, K. Dalal, C. McDiarmid, B.A. Reed, and A. Thomason, Vertex-colouring edge-weightings, Combinatorica 27 (2007) 1–12.

[2] L. Addario-Berry, K. Dalal, and B.A. Reed, Degree constrained subgraphs, Discrete Appl. Math. 156 (2008) 1168–1174.

[3] S. Akbari, M. Dalirrooyfard, K. Ehsani, K. Ozeki, and R. Sherkati, Orientations of graphs avoiding given lists on out-degrees, J. Graph Theory 93 (2020) 483–502.

[4] J. Edmonds and E.L. Johnson, Matching, Euler tours and the Chinese postman, Mathematical Programming 5 (1973) 88–124.

[5] A. Frank and A. Gyárfás, How to orient the edges of a graph? in Combinatorics, Coll Math Soc J Bolyai 18 (1976) 353–364.

[6] S.L. Hakimi, On the degrees of the vertices of a directed graph, J. Franklin Inst. 279 (1965) 290–308.

[7] M. Hasanvand, Modulo orientations with bounded out-degrees, arXiv:1702.07039.

[8] F. Jaeger, A note on sub-Eulerian graphs, J. Graph Theory 3 (1979) 91–93.
[9] C.St.J.A. Nash-Williams, Edge-disjoint spanning trees of finite graphs, J. London Math. Soc. 36 (1961) 445–450.

[10] L.M. Lovász, C. Thomassen, Y. Wu, and C.-Q. Zhang, Nowhere-zero 3-flows and modulo k-orientations, J. Combin. Theory Ser. B 103 (2013) 587–598.

[11] C. Thomassen, The weak 3-flow conjecture and the weak circular flow conjecture, J. Combin. Theory Ser. B 102 (2012) 521–529.

[12] W.T. Tutte, On the problem of decomposing a graph into n connected factors, J. London Math. Soc. 36 (1961) 221–230.