Fenótipo Cintura Hipertrigliceridêmica e Mudanças na Glicemia de Jejum e Pressão Arterial de Crianças e Adolescentes após um Ano de Seguimento

Hypertriglyceridemic Waist Phenotype and Changes in the Fasting Glycemia and Blood Pressure in Children and Adolescents Over One-Year Follow-Up Period

Priscila Ribas de Farias Costa,¹ Ana Marlúcia Oliveira Assis,¹ Carla de Magalhães Cunha,³ Emile Miranda Pereira,² Gabriela dos Santos de Jesus,¹ Lais Eloy Machado da Silva,² Wilanne Pinheiro de Oliveira Alves²

Universidade Federal da Bahia (UFBA);¹ Pós-graduação em Alimentos, Nutrição e Saúde da UFBA;² Universidade Federal do Recôncavo da Bahia,³ Salvador, BA – Brasil

Resumo

Fundamento: O fenótipo de cintura hipertrigliceridêmica (CHT) é definido como a presença simultânea de circunferência de cintura (CC) e níveis séricos de triglicérides (TG) aumentados e tem sido associado com risco cardiometabólico em crianças e adolescentes.

Objetivo: Avaliar a influência do fenótipo CHT na glicemia de jejum e na pressão arterial em crianças e adolescentes em um período de acompanhamento de um ano.

Métodos: Trata-se de um estudo de coorte envolvendo 492 crianças e adolescentes de 7 a 15 anos de ambos os sexos, que foram submetidos à avaliação antropométrica, bioquímica e clínica no início e também após 6 e 12 meses de seguimento. Os modelos de Equação de Estimulação Generalizada (GEE) foram calculados para avaliar a influência longitudinal do fenótipo CHT na glicemia e na pressão arterial ao longo de um ano.

Resultados: Foi observada uma prevalência de 10,6% (n = 52) do fenótipo CHT nos estudantes. Os modelos GEE identificaram que os estudantes com fenótipo CHT apresentaram aumento de 3,87 mg/dl na média de glicemia em jejum (IC: 1,68-6,05) e de 3,67 mmHg na pressão arterial sistólica media (PAS) (IC: 1,55-6,08) depois de um ano de acompanhamento, após ajuste para variáveis de confusão.

Conclusões: Os resultados deste estudo sugerem que o fenótipo CHT é um fator de risco para alterações longitudinalis da glicemia e da PAS em crianças e adolescentes em um período de um ano de seguimento. (Arq Bras Cardiol. 2017; 109(1):47-53)

Palavras-chave: Cintura Hipertrigliceridêmica; Fenótipo; Índice de Glicemia; Jejum; Pressão Arterial; Criança; Adolescente; Estudo de Coorte.

Abstract

Background: The hypertriglyceridemic waist (HTW) phenotype is defined as the simultaneous presence of increased waist circumference (WC) and serum triglycerides (TG) levels and it has been associated with cardiometabolic risk in children and adolescents.

Objective: The objective was to evaluate the influence of HTW phenotype in the fasting glycemia and blood pressure in children and adolescents over one-year follow-up period.

Methods: It is a cohort study involving 492 children and adolescents from 7 to 15 years old, both genders, who were submitted to anthropometric, biochemical and clinical evaluation at the baseline, and also after 6 and 12 months of follow-up. Generalized Estimating Equation (GEE) models were calculated to evaluate the longitudinal influence of the HTW phenotype in the glycemia and blood pressure over one-year.

Results: It was observed a prevalence of 10.6% (n = 52) of HTW phenotype in the students. The GEE models identified that students with HTW phenotype had an increase of 3.87 mg/dl in the fasting glycemia mean (CI: 1.68-6.05) and of 3.67 mmHg in the systolic blood pressure (SBP) mean (CI: 1.55-6.08) over one-year follow-up, after adjusting for confounding variables.

Conclusions: The results of this study suggest that HTW phenotype is a risk factor for longitudinal changes in glycemia and SBP in children and adolescents over one-year follow-up period. (Arq Bras Cardiol. 2017; 109(1):47-53)

Keywords: Hypertriglyceridemic Waist, Phenotype; Glycemic Index; Fasting; Blood Pressure; Child; Adolescent; Cohort Studies.
Introdução

O fenótipo da cintura hipertrigliceridêmica (CHT) é definido como a presença simultânea de circunferência da cintura (CC) e níveis de triglicérides (TG) aumentados.¹ Este fenótipo tem sido associado ao risco cardiometabólico, com níveis elevados de insulina, apolipoproteína B, proteína C reactiva e colesterol LDL, aumentando o risco de doença arterial coronariana.²

A prevalência do fenótipo CHT tem sido amplamente investigada. Uma meta-análise realizada por Ren et al.,³ demonstraram variação na prevalência do fenótipo CHT de 4% para 47%, com prevalência combinada de 19% (95% IC 14-24%). Esmailzadeh et al.,⁴ verificaram prevalência de 6,5% para CHT em adolescentes iranianos (7,3% em meninos e 5,6% em meninas). No Brasil, estudos transversais com adolescentes de 10 a 19 anos identificaram prevalência de CHT variando de 6,4% a 20,7%.⁵⁻⁷ Entretanto, não foram identificados na literatura estudos longitudinais envolvendo crianças e adolescentes.

Evidências sugerem que indivíduos com fenótipo CHT têm maior probabilidade de desenvolver síndrome metabólica e fatores de risco para doenças cardiovasculares.⁸⁻¹⁰ Dentre estes fatores, estão o aumento da glicemia e a hipertensão arterial sistêmica, caracterizada por aumento da pressão arterial, com determinação multifatorial.⁸ Portanto, o CHT é um indicador simples e confiável para detectar essas doenças e os riscos metabólicos associados à obesidade visceral,⁹ podendo se tornar uma abordagem prática, viável e de baixo custo, especialmente na Atenção Primária.

Diante do exposto, e considerando a ausência de estudos de coorte envolvendo o assunto, este estudo teve como objetivo avaliar a influência do fenótipo da cintura hipertrigliceridêmica na glicemia de jejum e na pressão arterial dos estudantes após um ano de acompanhamento.

Métodos

Amostra e desenho do estudo

Trata-se de um estudo de coorte que incluiu 492 crianças e adolescentes de 7 a 15 anos de idade, de ambos os sexos, de 10 escolas públicas, urbanas e de meio período. Realizou-se uma amostragem aleatória simples, selecionando os alunos de cada escola de uma lista de alunos do ensino fundamental registrados no Departamento de Educação Municipal de um município da Bahia, Brasil, em 2006. Esta amostra tem poder de 97,6% para detectar uma alteração de 10% na glicemia de jejum média dos participantes, durante um período de 12 meses, considerando a média de 90,2 mg/dL ± 0,3 DE.² Para a pressão arterial sistêmica (PAS), a amostra tem potência de 95% para detectar alteração de 10% nos valores médios, considerando a média de 111,1 mmHg ± 12,9DE; E potência de 94% para detectar uma alteração de 10% na média da pressão arterial diastólica (PAD), considerando uma média de 70,3 ± 9,3 DE.¹¹ Os cálculos do poder de amostragem (1-β) foram baseados no nível de significância de 5% e em dois testes de cauda, indicando que esse tamanho da amostra é suficiente para realizar estimativas imparciais dos parâmetros da população estudada.

Todas as medidas foram coletadas no início e após 6 e 12 meses de acompanhamento.

Critérios de exclusão

Gravidez, lactação ou deficiência física que impediu a avaliação antropométrica foram adotados como critérios de exclusão. No entanto, essas condições não foram identificadas entre os alunos selecionados.

Avaliação antropométrica

Para a medição do peso se utilizou uma balança portátil Filizola® com capacidade para 150 kg e 100 g de precisão, permitindo-se a variação de 100 g. A altura foi medida por um estadiômetro marca Leicester Height Measure, com uma medida realizada no milímetro mais próximo. Ambas as medidas foram realizadas em duplicata e a média das duas medidas foi adotada como medida final.¹² O estado antropométrico foi avaliado pelo Índice de Massa Corporal (IMC) por idade, tomando como referência as recomendações da Organização Mundial de Saúde¹¹ para indivíduos de 5 a 19 anos.

A circunferência da cintura (CC) foi medida no ponto médio entre a crista ilíaca e a face externa da última costela. As medidas foram efetuadas em duplicata e a média destas duas medidas foi adotada como definitiva. O corte adotado para classificar o excesso de gordura abdominal foi o percentil 90 da própria amostra, conforme proposto por Freedman et al.¹³

Dados sociodemográficos e de estilo de vida

A pessoa responsável pela criança / adolescente referiu esta informação. As variáveis sociodemográficas incluíram o sexo e a idade do aluno. O status socioeconômico incluiu o número de quartos na casa e as pessoas que moravam, a principal fonte de iluminação e a ocupação do chefe da família. Estas variáveis originaram o índice socioeconômico. O estado do abastecimento de água do domicílio, a fonte de água potável e o destino do lixo e resíduos foram utilizados para compor o índice ambiental. Estas variáveis apresentaram respostas variando de 0 (pior condição) a 4 (melhor classificação). Assim, os índices socioeconômicos e ambientais variaram de 0 a 16 e foram categorizados em terciles. Apesar de saber que a educação materna está associada a condições socioeconômicas, esta variável não foi incluída no índice socioeconômico e foi avaliada individualmente, uma vez que também representa os aspectos culturais e dietéticos da sociedade onde o indivíduo está inserido.

O nível de atividade física foi avaliado por meio de questionário estruturado com perguntas referentes à frequência de atividades físicas que não estavam incluídas no conteúdo pedagógico da escola, o qual é realizado uma vez por semana. Portanto, a prática de dois ou mais dias de atividade física fora da escola classifica o aluno como ativo; E menos de dois dias de atividade física fora da escola classifica o aluno como menos ativo / sedentário.

Pressão arterial

Para a medição da pressão arterial (PA) foi adotada a técnica recomendada pela 4ª Diretriz Brasileira de Hipertensão. O valor da PA foi classificado de acordo com o Grupo de Trabalho sobre Hipertensão em Crianças do Programa Nacional de Educação sobre Hipertensão Arterial,¹⁴ considerando níveis de pressão alta para crianças e adolescentes PA > p90, de acordo com idade, sexo e percentil de altura.
Fenótipo da cintura hipertrigliceridêmica

O fenótipo CHT foi definido pela presença de aumento da circunferência da cintura (> 90 percentil por idade e sexo da amostra em si) e aumento dos triglicerídeos séricos (> 100 mg/dL) simultaneamente.¹

Para avaliar os dados ajustados do modelo, se utilizou o critério de quase-verossimilhança no modelo de independência corrigido (QICc), que é uma modificação do critério de informação de Akaike (AIC) para a análise do GEE. O QICc é calculado a partir da comparação da quase-probabilidade do modelo de independência com a do modelo completo. Quanto menor o QICc, melhor o ajuste do modelo.²⁰

Todas as análises estatísticas foram realizadas no pacote estatístico Stata / IC para Mac (StataCorp, College Station), versão 12.0.

Resultados

Na Tabela 1 são apresentadas as características sociodemográficas, clínicas e antropométricas dos alunos, de acordo com o fenótipo CHT. Houve maior prevalência do fenótipo CHT entre os estudantes com menor status socioeconômico (14,3%), com glicemia de jejum acima de 100 mg/dL (22,9%) e com excesso de peso, segundo o IMC (31,1%).

Considerando a amostra inicial deste estudo, a perda de 37 (7,5%) indivíduos foi registrada após um ano de seguimento. A análise dos dados sociodemográficos e clínicos indicou que não houve diferenças estatísticas significativas entre esses fatores para os alunos perdidos e os que continuaram no estudo (dados não apresentados).

As variáveis de desfecho (glicemia de jejum, PA sistólica e PA diastólica) apresentaram distribuição normal, de acordo com o teste de Shapiro-Wilk; sendo aplicado o teste de Shapiro-Wilk para variâncias iguais e desiguais, adotando o valor p inferior a 0,05 como nível de significância.

Com o objetivo de avaliar a influência do fenótipo CHT na glicemia em jejum e na PA dos estudantes durante 12 meses, foram construídos Modelos de Equações de Estimativa Generalizada (GEE), os quais são adequados para respostas contínuas e medidas repetidas, refletindo a relação entre respostas variáveis e independentes, considerando a correlação entre as medidas em cada momento de tempo. Além disso, o modelo GEE não requer pressuposto de normalidade. Para o presente estudo, a matriz de correlação escolhida foi a autorregressiva, considerando que as medidas têm uma relação autorregressiva em função do tempo.¹⁹

Inicialmente, foi realizada a análise univariada, com o objetivo de selecionar as variáveis candidatas ao modelo multivariado, selecionando-se aquelas com valor p inferior a 20%. Estas variáveis foram incluídas no modelo como covariáveis. No modelo final, as demais variáveis foram aquelas que apresentaram nível de significância inferior a 5%.
Tabela 1 – Características sociodemográficas, antropométricas e clínicas na linha de base de estudantes de uma cidade da Bahia, Brasil, 2006

Fenótipo CHT N (%)	Total N	Ausente	Presente	Valor de p
Gênero				
– Feminino	492	255 (88,8)	32 (11,1)	0,620
– Masculino		185 (90,2)	20 (9,8)	
Idade				
– <10 anos	492	124 (90,5)	13 (9,5)	0,620
– ≥ 10 anos		316 (89,0)	39 (11,0)	
Índice ambiental				
– 3º Tercil	492	177 (88,9)	22 (11,1)	0,770
– 1º e 2º Tercis		263 (89,8)	30 (10,2)	
Índice socioeconômico				
– 3º Tercil	492	206 (94,1)	13 (5,9)	0,003*
– 1º e 2º Tercis		234 (85,7)	39 (14,3)	
Educação materna				
– ≥ 6 anos	439	171 (89,5)	20 (10,5)	0,090
– < 6 anos		233 (93,9)	15 (6,1)	
Atividade física				
– Ativo	492	133 (86,8)	20 (13,1)	0,113
– Baixa atividade / sedentarismo		284 (91,6)	26 (8,4)	
Pressão sanguínea				
– < P90	492	324 (91,0)	32 (9,0)	0,467
– ≥ P90		117 (86,0)	19 (14,0)	
Glicemia				
– <100 mg/dL	492	413 (90,4)	44 (9,6)	0,01*
– ≥ 100 mg/dL		27 (77,1)	8 (22,9)	
IMC/idade				
– < P85	492	369 (94,8)	20 (5,2)	0,000*
– ≥ P85		71 (68,6)	32 (31,1)	

* Valor p significativo para o chi-quadrado de Pearson; CHT: cintura hipertrigliceridêmica.

Tabela 2 – Teste de comparação média para as variáveis de interesse de acordo com o fenótipo da cintura hipertrigliceridêmica na linha de base após um ano de acompanhamento em estudantes de uma cidade da Bahia, Brasil, 2006

Linha de base	Após um ano de acompanhamento					
	CHT (-)	CHT (+)	Valor de p	CHT (-)	CHT (+)	Valor de p
	Média (DE)	Média (DE)		Média (DE) final	Média (DE) final	
Glicemia (mg/dL)	81,8 (10,2)	96,0 (11,7)	0,003	83,5 (10,3)	86,1 (11,6)	0,04
PA sistólica (mmHg)	101,3 (12,0)	105,1 (12,1)	0,03	101,3 (11,8)	104,1 (11,0)	0,10
PA diastólica (mmHg)	64,3 (10,1)	66,5 (10,3)	0,09	64,5 (10,6)	66,1 (10,6)	0,09

CHT: cintura hipertrigliceridêmica.

aumento de 2,97 mmHg na média desta medida após um ano de acompanhamento, quando comparados com indivíduos sem este fenótipo. Esse aumento na PAS significou aumento de 3,67 mmHg em indivíduos com fenótipo CHT após um ano de acompanhamento, quando ajustado pelas variáveis sociodemográficas, IMC e nível de atividade física (p = 0,02).
Os modelos apresentados foram bem ajustados aos dados, de acordo com o critério QICc, considerando que houve uma redução desse indicador nos modelos finais quando comparados aos modelos brutos (Tabela 3). Não foram identificadas alterações estatísticas significativas na média da PAD em crianças e adolescentes com fenótipo CHT após os 12 meses de seguimento.

Discussão

Os resultados desta investigação indicam maior prevalência de fenótipo CHT em escolares com menor nível socioeconômico, com glicemia de jejum alterada e excesso de peso, indicando importante componente ambiental neste fenômeno. Além disso, a presença de fenótipo CHT favoreceu o aumento dos valores médios de glicemia e PA sistólica após um ano, especialmente após o ajuste por variáveis sociodemográficas, IMC e nível de atividade física.

A prevalência do fenótipo CHT identificado neste estudo foi maior do que a encontrada em crianças e adolescentes no Irã (3,3% e 8,5%, respectivamente) e no Reino Unido (variando de 6,3% a 8,2%). Pesquisas envolvendo adolescentes brasileiros constaram a ocorrência de fenótipo CHT de 2,6% a 20,7%.

Essas diferenças entre a prevalência do fenótipo CHT e glicemia de jejum identificados neste estudo. Embora algumas evidências tenham identificado a associação entre fenótipo CHT e alterações lipídicas e na hiperglicemia em crianças e adolescentes, a relação entre o fenótipo CHT e a glicemia de jejum em crianças e adolescentes, a relação entre o fenótipo CHT e a glicemia de jejum após um ano de acompanhamento quando comparado com os indivíduos sem o fenótipo CHT. Trata-se de uma situação clínica importante entre a população estudada, pois a glicemia está relacionada à obesidade visceral, favorecendo o maior risco de desenvolver outras doenças crônicas e não transmissíveis com expressão na vida adulta. No entanto, diferentes estudos não encontraram a relação entre o fenótipo CHT e a glicemia de jejum em crianças e adolescentes, que o percentil 90º para idade, sexo e altura, foi observado transversal. No estudo realizado por Kelishadi et al., o excesso de ácidos graxos livres proporciona feedback negativo da glicogênio sintase, que pode induzir resistência periférica à insulina e intolerância à glicose, tanto no músculo quanto no fígado, o que pode explicar a relação longitudinal entre o fenótipo CHT e a glicemia identificados neste estudo. Os dados deste estudo indicam que o fenótipo CHT aumenta a média de glicemia de jejum após um ano de acompanhamento quando comparado com os indivíduos sem o fenótipo CHT.

Tabela 3 – Modelos de Equação de Estimativa Generalizada para a relação entre fenótipo CHT e glicemia de jejum, pressão arterial sistólica e diastólica após um ano de acompanhamento em estudantes de uma cidade da Bahia, Brasil, 2006

Fenótipo CHT	Coeficiente (IC95%); Valor P*	Coeficiente (IC95%); Valor P*
Presente	Referência	Referência
QICc	3,11 (1,35-4,86); 0,001	3,87 (1,66-6,05); 0,001
Ausente		
	128,540	112,716

Fenótipo CHT	Coeficiente (IC95%); Valor P*
Presente	Referência
QICc	2,97 (-0,11- 6,06); 0,06
Ausente	
	125,375

Fenótipo CHT	Coeficiente (IC95%); Valor P*
Presente	Referência
QICc	1,43 (-1,20- 4,05); 0,28
Ausente	
	90,724

Tamanho da amostra - 492; CHT: cintura hipertriglicerídêmica. *Equação de Estimativa Generalizada - GEE; †Ajustado por gênero, idade, escolaridade materna; Nível socioeconômico e nível de atividade física; ‡QICC: quase-verossimilhança corrigida sob o critério do modelo de Independência.

Arq Bras Cardiol. 2017; 109(1):47-53

Costa et al

Fenótipo CHT em crianças e adolescentes

Artigo Original

51
A prevalência de hipertensão arterial em pessoas com fenótipo CHT é de 2 a 3 vezes maior quando comparada àqueles que não apresentam este fenótipo.4,28 Em geral, esta associação enfracece ou se torna estatisticamente insignificante quando se ajusta o IMC, sugerindo que a obesidade pode influenciar intensamente a pressão arterial e a distribuição de gordura isolada.

Embora seja um estudo de coorte, sabe-se que não é possível estabelecer completamente uma relação causal, sendo necessário realizar estudos confirmatórios sobre essas relações identificadas no presente estudo. Além disso, talvez o período de seguimento não tenha sido suficiente para identificar as variáveis de resultado nesta população. No entanto, o estudo foi metodologicamente bem desenhado, foram adotadas técnicas estatísticas robustas e, além disso, os resultados são biologicamente plausíveis e consistentes com as evidências científicas sobre este tema.

Portanto, no presente estudo, a relação longitudinal entre o fenótipo CHT e a PAS foi mais forte após um ano de acompanhamento, mesmo quando ajustada pelo IMC. Este pode ser o reflexo da força de um estudo de coorte e sugere que a presença do fenótipo é caracterizada como fator de risco para aumento progressivo da PAS neste grupo. Essa relação pode estar relacionada à presença de níveis séricos mais altos de insulina em pessoas com obesidade abdominal, independentemente do peso corporal,26 uma vez que a hormona insulina induz vários sinais que promovem aumento da PA, que inclui indução de vasoconstrição e proliferação de células de músculo liso em vasos sanguíneos; promoção da atividade pró-inflamatória; estímulo da absorção renal de sódio e resposta simpática.30,32

Conclusões
Os resultados do estudo sugerem que o fenótipo CHT é um fator de risco para alterações longitudinais na glicemia e a PAS em crianças e adolescentes. Considerando-se que os componentes deste fenótipo já estão presentes no início da vida, o monitoramento do fenótipo CHT deve ser adoptado no grupo pediátrico, uma vez que é uma ferramenta simples e de triagem de baixo custo para identificação de risco cardiometabólico, e o diagnóstico do risco fornecido prematuramente pode favorecer intervenções nutricionais e de estilo de vida, promoção da saúde e prevenção de doenças crônicas não-transmissíveis na idade mais avançada.

Contribuição dos autores
Concepção e desenho da pesquisa, Obtenção de dados: Costa PRF, Assis AMO; Análise e interpretação dos dados, Análise estatística, Redação do manuscrito e Revisão crítica do manuscrito quanto ao conteúdo intelectual importante: Costa PRF, Assis AMO, Cunha CM, Pereira EM, Jesus GS, Silva LEM, Alves WPO; Obtenção de financiamento: Assis AMO.

Potencial conflito de interesses
Declaro não haver conflito de interesses pertinentes.

Fontes de financiamento
O presente estudo foi financiado pelo FAPESB.

Vinculação acadêmica
Não há vinculação deste estudo a programas de pós-graduação.

Referências
1. Lemieux I, Pasquot A, Couillard C, Lamarche B, Tchernof A, Alméras N, et al. Hypertriglyceridemic waist: a marker of the atherogenic metabolic triad (hyperinsulinemia; hyperapolipoprotein B; small, dense LDL) in men/ Circulation. 2000;102(2):179-84.
2. Haack RL, Horta BL, Gigante DP, Barros FC, Oliveira I, Silveira VM. Hypertriglyceridemic waist phenotype: effect of birthweight and weight gain in childhood at 23 years old. PLoS One. 2015;10(8):e0134121.
3. Ren Y, Luo X, Wang C, Yin L, Pang C, Feng T, et al. Prevalence of hypertriglyceridemic waist and association with risk of type 2 diabetes mellitus: a meta-analysis. Diabetes Metab Res Rev. 2016;32(4):405-12.
4. Esmaillzadeh A, Mirrirmar P, Azadbakht L, Azizi F. Prevalence of the hypertriglyceridemic waist phenotype in iranian adolescents. Am J Prev Med. 2006;30(1):52-8.
5. Pereira PF, Faria FR, Faria ER, Hermosdorff FH, Peluzio MC, Franceschini SC, et al. Indicadores antropométricos para identificar síndrome metabólica e fenótipo cintura hipertrigliceridêmica: uma comparação entre as três fases da adolescência. Rev Paul Pediatr. 2015;33(2):194-203.
6. Guilherme FR, Molena-Fernandes CA, Hintze LJ, Fávero MT, Cuman RK, Rinaldi W. Hypertriglyceridemic waist and metabolic abnormalities in Brazilian schoolchildren. PLoS One. 2014;9(11):e111724. Erratum in: PLoS One. 2014;9(12):e116445.
7. Conceição-Machado ME, Silva LR, Santana ML, Pinto EJ, Silva RC, Moraes LT, et al. Hypertriglyceridemic waist phenotype: association with metabolic abnormalities in adolescents. J Pediatr (Rio J). 2013;89(1):56-63.
8. Solati M, Ghanbarian A, Rahmani M, Sarbazi N, Allahverdian S, Azizi F. Cardiovascular risk factors in males with hypertriglyceridemic waist (Tehran Lipid and Glucose Study). Int J Obes (Lond). 2004;28(5):706-9.
9. Gomez-Huelgas R, Bernal-López MR, Villalobos A, Mancera-Romero J, Baca-Osorio AJ, Jansen S, et al. Hypertriglyceridemia: an alternative to the metabolic syndrome? Results of the IMAP Study (multidisciplinary intervention in primary care). Int J Obes (Lond). 2011;35(2):292-9.
10. Buchanan DS, Boddie LM, Despres JP, Grace FM, Sculthorpe N, Mahoney C, et al. Utility of the hypertriglyceridemic waist phenotype in the cardiometabolic risk assessment of youth stratified by body mass index. Pediatr Obes. 2016;11(4):292-8.
11. Guimarães IC, de Almeida AM, Santos AS, Barbosa DB, Guimarães AC. Blood pressure: effect of body mass index and of waist circumference on adolescents. Arq Bras Cardiol. 2008;90(6):426-32.
12. Lohman TG, Roche AF, Martorell R. Anthropometric standardization reference manual. Champaign (IL): Human Kinetics Books; 1988.
13. de Onis M, Onyango AW, Borghi E, Siyam A, Nishida C, Siekmann J. Development of a WHO growth reference for school-aged children and adolescents. Bull World Health Organ. 2007;85(9):660-7.

14. Freedman DS, Serdula MK, Srinivasan SR, Berenson GS. Relation of circumferences and skinfold thicknesses to lipid and insulin concentrations in children and adolescents: the Bogalusa Heart Study. Am J Clin Nutr. 1999;69(2):308-17.

15. National High Blood Pressure Education Program Working Group on High Blood Pressure in Children and Adolescents. The Fourth Report on the diagnosis, evaluation, and treatment of high blood pressure in children and adolescents. Pediatrics. 2004;114(2):555-77.

16. Sociedade Brasileira de Diabetes. Diretrizes da Sociedade Brasileira de Diabetes (2015-2016). SBD [Internet]. São Paulo; 2015. [Atualizado 2015; jul 16, 2016]. http://www.diabetes.org.br/sbdonline/images/docs/DIRETRIZES-SBD-2015-2016.pdf

17. Giuliano IC, Caramelli B, Pellanda L, Duncan B, Mattos S, Fonseca FH, et al; Brazilian Society of Cardiology; Brazilian Society of Pediatrics; Brazilian Society of Endocrinology and Metabolism; Brazilian Society of Hypertension. I Guideline for preventing atherosclerosis in childhood and adolescence. Int J Atheroscler. 2006;1(1):1-30.

18. Rothman KJ, Greenland S, Lash TL. Modern Epidemiology. 3rd ed. Philadelphia: Lippincott Williams & Wilkins; 2008.

19. Twisk JWR. Applied longitudinal data Analysis for epidemiology. 2nd ed. England: Cambridge University Press; 2013

20. Cui J. QIC program and model selection in GEE analyses. The Stata Journal. 2007;7(2):209-20.

21. Alavian SM, Motlagh ME, Ardalan G, Motaghpian M, Davarpanah AH, Kelishadi R. Hypertriglyceridemic waist phenotype and associated lifestyle factors in a national population of youths: CASPIAN Study. J Trop Pediatr. 2008;54(3):169-77.

22. Bailey DP, Savory LA, Denton SJ, Davies BR, Kerr CJ. The hypertriglyceridemic waist, waist-to-height ratio, and cardiometabolic risk. J Pediatr. 2013;162(4):746-52.

23. Kelishadi R, Jamshidi F, Qorbani M, Motlagh ME, Heshmat R, Ardalan G, et al. Association of hypertriglyceridemic-waist phenotype with liver enzymes and cardiometabolic risk factors in adolescents: the CASPIAN-III study. J Pediatr (Rio J). 2016;92(5):512-20.

24. Perger RN, Melo ME, Halpern A, Mancini MC. Is a diagnosis of metabolic syndrome applicable to children? J Pediatr (Rio J). 2010;86(2):101-8.

25. Wang C, Li J, Yue H, Li Y, Huang J, Mai J, et al. Type 2 diabetes mellitus incidence in Chinese: contributions of overweight and obesity. Diabetes Res Clin Pract. 2015;107(3):424-32.

26. World Health Organization. (WHO). Obesity - Europe; 2016. [Cited in 2016 Nov 10]. Available from: http://www.euro.who.int/en/health-topics/noncommunicable-diseases/obesity.

27. Patel P, Abate N. Role of subcutaneous adipose tissue in the pathogenesis of insulin resistance. J Obes. 2013;2013:489187.

28. Gomez-Huelgas R, Bernal-López MR, Villalobos A, Mancera-Romero J, Baca-Osorio AJ, Jansen S, et al. Hypertriglyceridemic waist: an alternative to the metabolic syndrome? Results of the IMAP Study (multidisciplinary intervention in primary care). Int J Obes (Lond). 2011;35(2):292-9.

29. Marrodán Serrano MD, Cabreras Armesilla MD, Carmenate Moreno MM, González-Montero de Espinosa M, López-Ejeda N, Martínez Álvarez JR, et al. Association between adiposity and blood pressure levels between the ages of 6 and 16 years. Analysis in a student population from Madrid, Spain. Rev Esp Cardiol (Engl Ed). 2013;66(2):110-5.

30. Zhou MS, Wang A, Yu H. Link between insulin resistance and hypertension: What is the evidence from evolutionary biology? Diabetol Metab Syndr. 2014;6(1):12.

31. López-Jiménez F, Cortés-Bergoderi M. Update: systemic diseases and the cardiovascular system (I): obesity and the heart. Rev Esp Cardiol. 2011;64(2):140-9.

32. Yeste D, Carrascosa A. Complicaciones metabolicas de la obesidad infantil. An Pediatr (Barc). 2011;75(2):135.e1-135.e9.