A genomic approach to predict synergistic combinations for breast cancer treatment

R Soldi\(^1,4\), AL Cohen\(^2,3,4\), L Cheng\(^1\), Y Sun\(^3\), PJ Moos\(^1\) and AH Bild\(^1\)

\(^1\)Department of Pharmacology and Toxicology, University of Utah, Salt Lake City, UT, USA; \(^2\)Oncology Division, Department of Internal Medicine, University of Utah, Salt Lake City, UT, USA and \(^3\)Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA

Correspondence:
Professor AH Bild, Department of Pharmacology and Toxicology, University of Utah, 112 Skaggs Hall, Salt Lake City, UT 84112, USA.
E-mail: andreab@genetics.utah.edu

4These authors contributed equally to this paper.

Received 5 April 2011; revised 5 September 2011; accepted 26 September 2011; published online 15 November 2011

We leverage genomic and biochemical data to identify synergistic drug regimens for breast cancer. In order to study the mechanism of the histone deacetylase (HDAC) inhibitors valproic acid (VPA) and suberoylanilide hydroxamic acid (SAHA) in breast cancer, we generated and validated genomic profiles of drug response using a series of breast cancer cell lines sensitive to each drug. These genomic profiles were then used to model drug response in human breast tumors and show significant correlation between VPA and SAHA response profiles in multiple breast tumor data sets, highlighting their similar mechanism of action. The genes deregulated by VPA and SAHA converge on the cell cycle pathway (Bayes factor 5.21 and 5.94, respectively; \(P\)-value \(10^{-8.6}\) and \(10^{-9}\), respectively). In particular, VPA and SAHA upregulate key cyclin-dependent kinase (CDK) inhibitors. In two independent datasets, cancer cells treated with CDK inhibitors have similar gene expression profile changes to the cellular response to HDAC inhibitors. Together, these results led us to hypothesize that VPA and SAHA may interact synergistically with PD-033299. Experiments show that HDAC and CDK inhibitors have statistically significant synergy in both breast cancer cell lines and primary 3-dimensional cultures of cells from pleural effusions of patients. Therefore, synergistic relationships between HDAC and CDK inhibitors may provide an effective combinatorial regimen for breast cancer. Importantly, these studies provide an example of how genomic analysis of drug–response profiles can be used to design rational drug combinations for cancer treatment. The Pharmacogenomics Journal (2013) 13, 94–104; doi:10.1038/tpj.2011.48; published online 15 November 2011

Keywords: histone deacetylase inhibitors; cyclin-dependent kinase inhibitors; drug synergy; breast cancer

Introduction

Most clinical trials apply single-agent and combinatorial regimens to unselected patients in a random manner, diluting the ability to find successful treatment approaches. This indiscriminate approach has failed to identify curative regimens for many breast cancer patients. In fact, approximately 17% of women with regional breast cancer and 74% of women with metastatic breast cancer will die from their disease within 5 years.\(^1\) Advances using therapies targeted at deregulated pathways have had some successes, but the ability to systematically assess the sensitivity of individual cancers to effective drugs remains to be refined. As with chemotherapy, it is highly likely that combinations of targeted therapies will be critical for effective treatment of breast cancer.\(^2\) Furthermore, as more and more potent single-agent inhibitors are developed, the question becomes how to find useful combinations without resorting to large mechanism-blind clinical trials.
One class of drugs that we do not know appropriate combination regimens for is the histone deacetylase (HDAC) inhibitors. Epigenetic modifications affect a wide range of biological processes and have key roles in development and tumorigenesis. Among the key chromatin-modifying enzymes that affect epigenetic states and gene transcription are the HDACs. HDACs have been shown to impact tumor development and progression. Overexpression of HDACs are found in several cancers, including breast, colon and prostate cancer. Drugs that target HDACs have been used in clinical trials for multiple types of solid tumors with some success. We used gene expression profiling to explore the mechanism of action of HDAC inhibitors in order to rationally combine appropriate therapies.

The effects of HDAC inhibitors include induction of differentiation, arrest in cell cycle in G1 and/or G2 and induction of apoptosis. Cell cycle arrest at G1/S boundary can be associated with the induction of members of the CIP/KIP family of cyclin-dependent kinase (CDK) inhibitors, such as CDKN1A (p21, WAF1/CIP1) and CDKN1C (p57, KIP2). Induction of CDK inhibitors results in p53-independent hypophosphorylation of the tumor suppressor retinoblastoma gene product, the phosphorylation of which is required for the progression from G1 to S phase in the cell cycle. In vitro experiments with cell lines have shown that treatment with HDAC inhibitors can increase CDK inhibitor expression, including CDKN1C. In breast cancer, tumors do not typically express CDKN1C due to promoter hypermethylation and histone deacetylation. Importantly, low expression of CDKN1C is associated with poor clinical outcome, and the reinduction of CDKN1C expression in vitro results in suppression of cell transformation, suggesting that CDKN1C may function as a tumor suppressor in breast cancer.

Our overarching goal is to use genomics to rationally identify optimal combination regimens for cancer. In principle, two drugs that produce similar effects can be synergistic when used concurrently. We generate gene expression profiles of drug response to valproic acid (VPA) and suberoylanilide hydroxamic acid (SAHA), two HDAC inhibitors. In order to capture the diversity of breast cancer, we developed profiles using panels of breast cancer cell lines of various phenotypes that are sensitive to each specific drug profile. Examination of gene expression changes in response to HDAC inhibitors highlights the critical role of cell-cycle-regulated genes. These results led to the hypothesis that CDK inhibitors would synergize with HDAC inhibitors in the treatment of breast cancer. We demonstrate synergy between HDAC inhibitors and CDK inhibitors in breast cancer cell lines and primary patient tumors grown in three-dimensional (3-D) culture. Together, these results highlight a novel therapeutic combination rationally designed by genomic analysis.

Materials and methods

Cell cultures and drugs

Breast cancer cell lines HCC1143, HCC38, HCC1806, BT483, BT549, MDA-MB-435, MDA-MB-453, SKBR3 and T47D were maintained in culture in RPMI (Sigma, St Louis, MO, USA) containing 2 mM L-glutamine (Invitrogen, Carlsbad, CA, USA), 10 mM HEPES (Invitrogen), 1 mM sodium pyruvate (Invitrogen), 4.5 g L \(^{-1}\) glucose (Invitrogen) and 10% fetal bovine serum (Sigma). BT474, MDA-MB-361, CAMAI, MCF7 and Hs578t breast cancer cell lines were maintained in culture in Dulbecco's Modified Eagle's Medium (Sigma) containing 2 mM L-glutamine (Invitrogen), 1 mM NEAA (Invitrogen), 1 mM sodium pyruvate (Invitrogen), 4.5 g L \(^{-1}\) glucose (Invitrogen) and 10% fetal bovine serum (Sigma). Valproic acid (Sigma) was dissolved in water at stock concentration of 500 mM; SAHA (Cayman Chemical, Ann Arbor, MI, USA) was resuspended in dimethyl sulfoxide at stock concentration of 20 mM; PD-0332991 (Selleck, Houston, TX, USA) was dissolved in dimethyl sulfoxide at a stock concentration of 10 mM.

Generation of drug–response profiles for HDAC inhibitors

Breast cancer cell lines sensitive to HDAC inhibitors as determined by their EC50 (50% of cells respond) (HCC38, BT483, BT549, BT474, MDA-MB-361, MDA-MB-435, MDA-MB-453, SKBR3, ZR75, CAMAI, MCF7, Hs578t and T47D) and 1 μM SAHA. After 6 h, the cells were later hybridized to Affymetrix U133 microarrays (Affymetrix, Santa Clara, CA, USA) according to the manufacturer’s protocol. To verify VPA and SAHA efficacy on HDACs activity, a portion of each sample was subjected to RNA purification by RNAeasy Kit (Qiagen, Hilden, Germany), and 1 μg of each sample was hybridized to Affymetrix U133 microarrays (Affymetrix, Santa Clara, CA, USA) according to the manufacturer’s protocol. To verify VPA and SAHA efficacy on HDACs activity, a portion of each sample was subjected to histone purification (Active Motif, Carlsbad, CA, USA) and resolved by 15% SDS-PAGE. Western blots were hybridized with anti-acetyl-histone H4 (Millipore, Billerica, MA, USA) antibody to evaluate the histone acetylation status, and the proteins visualized with the ECL Plus Western Blot Detection system (GE Healthcare, Salt Lake City, UT, USA; data not shown).

Microarray data were analyzed as described in the Supplementary methods. In brief, microarray data were MAS 5.0 normalized, scaled by log base 2 and then quantile normalized. Distance-weighted discrimination was used to eliminate differences between the training cell lines and datasets. A Bayesian analysis binary regression model was then used to derive the profiles. To enable complete reproduction of our results, the input files, output files and the binary regression program used in this study are available at: http://io.genetics.utah.edu/files/Pharmacogenomics_synergy.

Western blot analysis of CDKN1C expression and activation following HDAC inhibitor treatment

Breast cancer cells were seeded in 100 mm plates in media containing 5% fetal bovine serum, at 75% density. After 24 h, 5 mM VPA or 1.5 μM SAHA was added to the media. After 24 and 48 h the cells were harvested and lysed in lysis buffer (50 mM Tris (pH 7.4), 150 mM NaCl, 1% NP-40, 0.5% sodium deoxycholate, 1 mM EDTA, 0.1% NP-40, 0.5% sodium deoxycholate, 1 mM EDTA, 0.1%
SDS) containing 0.1 mM sodium orthovanadate, 2 mM phenylmethanesulfonyl fluoride and 100 μM protease inhibitors cocktail (Sigma). After centrifugation at 14,000 r.p.m. for 20 min at 4°C, the protein yield was quantified by Bradford assay (Pierce, Rockford, IL, USA), and equivalent amounts of protein were resolved on a 10% SDS-PAGE gel and transferred to nitrocellulose. Total CDKN1C and CDKN1A expression was detected by primary antibody to CDKN1C (Cell Signaling, Danvers, MA, USA), and mouse p21 (Amersham, Piscataway, NJ, USA). GAPDH (Abcam, Cambridge, MA, USA) was used as loading control. Western blots were developed with the ECL Plus Western Blot Detection system.

Statistical analysis
Gene ontology calculations were carried out using http://gather.genome.duke.edu and were limited to genes significantly deregulated following drug treatment (P-value ≤ 0.001 by paired t-test). Bayes factors (the ratio of the posterior probability of associating a particular gene ontology category and the given gene list to the probability in a random gene list) and P-values were calculated. In all figures, error bars represent 95% confidence intervals unless otherwise noted. Bliss Interaction Index for dose d1 of drug A and dose d2 of drug B was calculated as:

\[I = \frac{f_{d1,A} \times f_{d2,B} - f_{d1,A} + f_{d2,B}}{f_{d1,A} \times f_{d2,B}} \]

where \(f_{d1,A} \) is the percent inhibition in cell number when treated with drug A at dose d1 and \(f_{d2,B} \) is the percent inhibition in cell number when treated with drug B at dose d2. Two drugs are synergistic if the Bliss Interaction Index is greater than 1 and antagonistic if it is less than 1. Each combination was tested in triplicate for two-dimensional cultures and duplicate for 3-D cultures, and variability of Bliss Interaction Index was confirmed by two-way analysis of variance. For those cell lines with two-way analysis of variance P-values < 0.05, Bonferroni post-testing was performed to compare each dose combination with a triplicate of 1 by a two-sided t-test with \(\alpha = 0.05 \). The P-value for the dose combination with the Bliss Interaction Index furthest from 1 is reported. Graphs and calculations were generated in MATLAB 2009 and Graphpad Prism v4.02 (Natick, MA, USA).

Analysis of CDK inhibition
Gene expression microarray CEL files were downloaded from GEO GSE18552 (ref. 29) and GSE15396. The GSE18552 data set contains gene expression data from an ovarian cancer cell line (A2780) and a breast cancer cell line (MCF-7), before and after treatment with a variety of CDK inhibitors (CDK-125, CDK-887 and CDK-509). The GSE15396 data set contains gene expression data from peripheral blood mononuclear cells, a prostate cancer cell line (DU145) and a colon cancer cell line (HCT116), before and after treatment with the CDK inhibitor R547 or dimethyl sulfoxide. The CEL files were MAS5 normalized, scaled by log base 2 and quantile normalized.

Analysis of synergistic effect of HDAC/CDK inhibitors
Breast cancer cell lines were seeded in 384-well plates (Nunc) in media (Dulbecco’s Modified Eagle’s Medium or RPMI) containing 5% fetal bovine serum, at a density to yield 80% confluence in control treated wells at t = 96 h post treatment (as determined by growth curves) in either triplicate or quadruplicate. After 24 h, VPA, SAHA and PD-0332991 were added singularly or in combination. The indicated doses were chosen within the average linear range of drug effect: VPA (64 mM to 0.25 mM), SAHA (3 μM to 0.05 μM) and PD-0332991 (100 μM to 0.05 μM). A BIOMEK 3000 (Beckman Coulter, Brea, CA, USA) robot was used to seed the cells and dispense the drugs. After 96 h, the cells were harvested and CellTiter-Blue reagent (Promega, Madison, WI, USA) was added to test cell viability. After 2 h of incubation at 37°C, the fluorescence was recorded (560(20)Ex/590(10)Em) using a Victor3V 1420 Multilabel Counter (PerkinElmer, Waltham, MA, USA) plate reader. The Bliss formula was used to calculate synergy (detailed below).

Breast cancer pleural effusion collection, growth in 3-D cultures and synergy assays
After obtaining informed consent, pleural effusion samples were collected by thoracentesis from breast cancer patients at the University of Utah. Three samples from breast reduction were also collected at the University of Utah as cancer-free controls. Samples were grown in a 24-well ultra low attachment tissue culture plate (Corning, Salt Lake City, UT, USA) for 24 h at 37°C, in 5% CO2, with Mammmary Epithelial Growth Medium in order to form organoid structures. Cells density was determined with a hemacytometer (Bright-line, St Louis, MO, USA). Cells were diluted in media and added to BD Matrigel Matrix, Growth Factor Reduced (BD Biosciences, Sparks, MD, USA) for total volume of 80% matrix to media. A total volume of 30 μl of the cocktail was seeded into a 96-well half-area assay plate (Corning) at a density of 8 × 10^3 organoids per well. After 24 h, the drugs were added at a range of dosages determined by our drug–response assay: VPA (4 mM and 1 mM), SAHA (0.3 and 1 μM) and PD-0332991 (1.5 and 5 μM). After 96 h, CellTiter-Blue reagent (Promega) was added to test viability. After 4 h of incubation at 37°C, the fluorescence was recorded (560(20)Ex/590(10)Em) using a Victor3V 1420 Multilabel Counter (PerkinElmer) plate reader. Synergy was calculated by the Bliss formula. The assay was performed in triplicates. At least two wells per experiment were treated with LIVE/DEAD Cell viability assay (Invitrogen) and the images were taken using an Olympus IX81-ZDC DSU with ORCAER camera (Olympus, Center Valley, PA, USA) and Slidebook 5.0 software (Denver, CO, USA).

Results

Generation and validation of drug–response profiles
To investigate patterns of response to drug treatment in breast cancer samples placed onto microarray, drug–response profiles for VPA and SAHA were created using a series of breast cancer cell lines that were sensitive to each drug. Importantly, our series of breast cancer cell lines
represents a diversity of breast cancer phenotypes, including estrogen-receptor-positive and -negative cells and human epidermal growth factor 2 (HER2)-positive cell lines. Although other studies have profiled gene expression changes following treatment with these inhibitors, only a couple of cell lines were used, which may not represent the gene expression changes across different tumor subtypes. Sensitivity for each cell line was determined using dose–response analysis on a panel of breast cancer cell lines listed in the Materials and methods section. Cell lines most sensitive to the drug (Figure 1a, dose–response curves highlighted in red) were then included in the generation of the profile. In order to generate the drug–response profiles, we treated sensitive cell lines with an HDAC inhibitor (5 mM VPA or 1.5 μM SAHA) and collected RNA 6 h later. Microarray analysis was performed, and the top 100 genes correlating to drug response across all cell lines were identified. Heatmaps and leave-one-out cross-validation curves for each profile are shown in Figure 1b. As shown, there are distinct sets of genes that reflect response to HDAC inhibitors in common to the sensitive breast cancer cell lines. Furthermore, leave-one-out cross-validation shows the robustness and internal consistency of the drug–response profiles. Next, profiles were validated by projecting them into samples from the Connectivity Map treated with VPA, a public data set of prostate cancer cells treated with SAHA (GSE9000), and a public data set of normal ovarian theca cells treated with VPA (GSE 1615). Results show that the VPA and SAHA response profiles generated above can accurately identify drug treatment in external data sets in which cells are treated with the inhibitors (Figure 1c).

We then projected the profiles into two large independent gene expression data sets of primary breast tumors (GSE6532 and GSE5460, 539 tumors total). Across the 539 breast tumors analyzed for drug response, there is significant correlation between VPA and SAHA (Figures 2a and b). These results highlight the similar mechanisms of action of the two drugs, and their similar response profiles in breast tumors. When breast tumors were sorted by different clinical phenotypes (ER+/−, HER+/−, tumor size and tumor grade), no significant interaction between HDAC inhibitor response and subtype was found, suggesting that response to HDAC inhibitors is independent of these factors (Supplementary Table 1).

CDK inhibitors are upregulated in breast cancer cells following treatment with HDAC inhibitors

As genes involved in the cell cycle are significantly enriched following HDAC inhibitor treatment, we investigated individual cell-cycle-specific genes deregulated following response to VPA and SAHA that could be targets for potential synergistic therapeutic regimens. For this analysis, we calculated the average change after VPA or SAHA treatment in the eight breast cancer cell lines used in the HDAC inhibitor profiles for all CDK or CDK inhibitor genes. Those genes with highest significant change are shown in Figure 3a. In particular, CDKN1C (p57KIP2) was highly upregulated by both drugs. CDKN1C is a member of the CDKN1 family of CDK inhibitors, which, together with CDKN1A (p21CIP1) orchestrates the G0/G1–M phase transition by regulating cyclin/CDK interactions. The HDAC inhibitor-induced overexpression of CDKN1C is particularly interesting, as this CDK inhibitor is not normally expressed in human tumors due to promoter hypermethylation and histone deacetylation. Other CDK inhibitors were also upregulated following VPA and SAHA treatment, suggesting a key role for CDK inhibitors in drug response.

To assess whether the upregulation of CDK inhibitor expression seen on microarray corresponded to increased protein levels and activation, we next examined the protein level of CDKN1C and CDKN1A. As shown in Figure 3b, HDAC inhibitor treatment causes increased expression of CDK inhibitor protein levels, with large levels of CDKN1C upregulation. These data suggest that CDK inhibitors may have a crucial role in the HDAC inhibitor-dependent decrease in proliferation observed in breast cancer cells.

Correlation of HDAC inhibitor response and CDK inhibition

As our data suggests that VPA and SAHA function, at least in part, by deregulation of CDK-related pathways, we next tested whether HDAC inhibitors and drugs targeting CDKs have similar genomic profiles. To assess the relationship between HDAC inhibition and CDK inhibition, we projected the HDAC inhibitor drug–response profiles into two data sets of cells treated with various CDK inhibitors. If there are similar mechanisms of action, we expect the HDAC inhibitor signatures to correlate with drug response in CDK-inhibitor-treated cells. In particular, cancer cells treated with multiple CDK inhibitors (CDK-509, CDK-887 and CDK-125) have gene expression patterns significantly more similar to both VPA and SAHA than untreated controls (Figure 4a). Similarly, in an independent gene expression data set, cells treated with the CDK inhibitor R547 have gene expression patterns significantly more similar to both VPA and SAHA when the dose is high (IC90 or greater; Figure 4b). Interestingly, a similar effect was not seen for normal peripheral blood mononuclear cells (data not shown), suggesting that there may be a cancer-specific effect of HDAC inhibitors on CDK inhibition. Together, these results indicate some overlap in the mechanism of action for VPA, SAHA and CDK inhibitors, and suggest these compounds may be synergistic.

To confirm the relationship between HDAC inhibition and CDK inhibition, we examined the genes significantly (P-value <0.001) up- or downregulated on average after treatment with HDAC inhibitors VPA and SAHA. Genes that were significantly deregulated following VPA or SAHA treatment were then examined for enrichment of pathways using GATHER (Gene Annotation Tool to Help Explain Relationships, www.gather.genome.duke.edu). The top five gene ontologies significantly enriched in the cells treated with VPA/SAHA are given in Supplementary Table 2. The KEGG pathway analysis revealed a significant deregulation of cell-cycle-related genes for VPA and SAHA (Bayes factor 5.21 and 5.94, respectively; and P-value 10^{-8.6} and 10^{-9}, respectively).
Figure 1 Generation and validation of genomic signatures for valproic acid (VPA) and suberoylanilide hydroxamic acid (SAHA). (a) Eighteen breast cancer cell lines were tested for sensitivity to histone deacetylase (HDAC) inhibitors VPA and SAHA. Following treatment of cells with a range of doses, the effective concentration at which 50% of cells respond (EC50) is calculated. The cell lines with dose–response curves marked in red showed a higher sensitivity to the drugs compared with cell lines insensitive to drugs (marked in blue), and thus were subsequently used to evaluate the gene expression changes resulting upon drug treatment. (b) Heatmaps and leave-one-out cross-validation curves for each drug–response profile are shown. Genomic signatures are comprised of 100 genes significantly deregulated upon response to drug in sensitive cell lines identified above. Leave-one-out cross-validation shows the robustness and internal consistency of the drug–response profiles. (c) Validation of predictive accuracy of genomic signatures. Profiles were tested by predicting drug response in samples from three external and independent data sets, including the Connectivity Map treated with VPA, a public data set of prostate cancer cells treated with SAHA (GSE9000) and a public data set of ovarian theca cells treated with VPA (GSE1615).
respectively). Often, synergy between two drugs occurs when they target the same pathway. Therefore, we hypothesized that drugs targeting CDKs would be ideal candidates for combination with VPA/SAHA.

HDAC inhibitors synergize with a CDK inhibitor in breast cancer cell lines

Our global gene expression analysis strongly suggests that cell cycle regulation and CDK inhibition are important...
components of cellular response to HDAC inhibitors. From these results, we hypothesized that inhibition of multiple targets in the CDK pathway would synergistically decrease breast cancer cell proliferation. To verify whether the combination of HDAC inhibition and CDK inhibition leads to a synergistic response in breast cancer, we tested the potency of combination therapy with VPA or SAHA, and the CDK inhibitor PD-0332991. PD-0332991 targets the CDK4- and CDK6-containing complexes. For these studies, we chose to use HER2-positive cells (BT474 and MDA-MB-361), ER-positive cells (MCF7 and T47D) and negative for hormone receptors and HER2, that is, triple-negative (HCC1806, BT549, HCC1143, HCC38 and MDA-MB-453). All tested cell lines are shown. These cell lines were treated with a range of doses with each drug alone or with a combination CDK inhibitor–HDAC inhibitor regimen.

Additivity occurs when the Bliss Interaction Index equals one, and synergy occurs when the Bliss Interaction Index is greater than one. Using the replicates for each combination of doses and each cell line, we calculated the average Bliss Interaction Index. In order to control for multiple comparisons, we first used two-way analysis of variance to

Figure 4 Response to histone deacetylase (HDAC) inhibitors correlates with cyclin-dependent kinase (CDK) inhibition. (a) The histone deacetylase (HDAC) inhibitor signatures were projected into a data set of cancer cell lines treated with CDK-125, also known as PHA-848125, CDK-509, also known as PHA-690509, and CDK-887, also known as PHA-793887. Each point is an individual sample, and the horizontal line indicates the median. (b) The HDAC inhibitor signatures were projected into a data set of normal cells and cancer cell lines treated with different concentrations of the CDK inhibitor R547.
determine whether the distribution of Bliss Interaction Index across all the doses for each cell line differed significantly, additivity, that is, from a distribution in which all the dose combinations had Bliss Interaction Index equal to all ones. One HER2-positive cell line showed significant synergy for both SAHA and VPA; Figure 5). Both of the ER-positive cell lines showed significant synergy for VPA but not for SAHA. All of the triple-negative cell lines showed significant synergy with VPA, but some did not show significant synergy for SAHA (Figure 5). Indeed, most cell lines had some drug combination with Bliss Interaction Index greater than 2. The highest synergy was often seen when the VPA dose was \(\sim 0.25 \text{ mM} \) or the SAHA dose was \(\sim 0.3 \text{ mM} \). These are doses well below the EC50 of these drugs, which is not surprising because showing synergy at doses at which most cells are killed is difficult. Importantly, these are clinically achievable serum concentrations of these drugs with few side-effects. These results highlight the importance of identifying tumors sensitive to specific drugs and the ability to rationally identify effective synergistic regimens using drug–response profiles.

HDAC inhibitors synergize with a CDK inhibitor in patient tumors grown in 3-D culture

To further validate the synergistic effect of the two classes of drugs in actual patient tumors, we used short-term, 3-D cultures of patient breast tumor samples from pleural effusions. The 3-D culture microenvironment more closely resembles the *in vivo* cellular microenvironment and provides a more biologically relevant growth setting than the standard two-dimensional microenvironments. Furthermore, as breast cancer cell lines commonly gain additional genetic variation not found in the primary tumors due to long-term growth in culture, testing drug sensitivity in fresh patient samples that have not been grown in culture may be closer to the clinic.

Dose–response assays in 3-D growth conditions were performed for normal breast tissue from breast reductions and for tumors representing various subtypes of breast cancer shown. Samples were treated at doses expected to be synergistic based on the two-dimensional culture assays. All samples tested are shown in Figure 6. Importantly, no synergy was observed in the normal breast samples, showing that this drug regimen specifically targets tumor cells. The average Bliss Interaction Index in the primary tumor samples was 2.2 (95% confidence interval 1.3–3.2). Synergy was seen in HER2\(^+\) samples, triple-negative samples and the ER-positive sample. Bliss Interaction Index and confidence intervals for the individual samples are shown in Figure 6a. The effect of drug treatment on the tumor organoids was also assessed visually by light microscopy.
with fluorescent dyes to identify live (green) and dead cells (red) (Figure 6b). Tumor organoids treated with VPA/PD0332991 or SAHA/PD0332991 exhibited reduced structural integrity and increased cellular scatter with increasing concentrations of the drugs. A marked increase in Ethidium bromide uptake was observed concomitantly with the loss of organoid integrity, demonstrating a cytotoxic effect of the drugs on the primary tumor organoids. Again, minimal cytotoxicity was seen in the normal breast samples. Together, these results strongly support the synergistic effect of an HDAC inhibitor–CDK inhibitor regimen on aggressive breast tumors and the ability of using gene expression profiles to identify efficacious regimens.

Discussion

Breast cancer is the most common female cancer, but despite advances in early detection and systemic treatment approximately 40,000 women per year in the United States die of breast cancer. Numerous therapeutic approaches have been used with some success in breast cancer to target hormone-responsive breast cancers with estrogen antagonists or aromatase inhibitors, and to target tumors that overexpress the HER2 with trastuzumab or lapatinib. Unfortunately, metastatic breast cancer is still an incurable disease, highlighting the need for more effective regimens that selectively interfere with the key cancer cell targets to ensure a more positive clinical outcome.

The recent findings that HDAC inhibitors have anticancer properties in various cancer types have opened new options in the malignancies treatment. In clinical trials, VPA has promising activity against breast cancer in combination with anthracyclines or demethylating agents. However, the optimal combinations containing HDAC inhibitors are not known. One of the mechanisms behind the anticancer properties of HDAC inhibitors may involve overexpression of cyclin-dependent kinase inhibitors, a large family of proteins that regulates cell cycle progression, proliferation and differentiation.

Because of the success of gene expression profiles in elucidating the other aspects of breast cancer biology, including molecular subtypes, we examined gene expression profiles of breast cancer cell lines treated with valproate or SAHA to explore the cellular response to HDAC inhibition. Our analysis shows a marked upregulation of numerous CDK inhibitors in breast tumor cells of diverse phenotypes. The inhibitory effect of the CIP/KIP family affects the kinase activity of preactivated G1 protein complexes such as cyclin E-CDK2 and cyclin D-CDK4/6. Thus, we hypothesized that dual inhibition of CDKs by epigenetic induction of CDK inhibitor proteins combined with a pharmacological CDK inhibitor would synergistically affect tumor cell growth. Synergistic combinations of CDK inhibitors with an HDAC inhibitor may facilitate the use of these drugs in broader settings, as currently CDK inhibitors have limited use in cancer patients due to relatively high toxicity.

The prospect of HDAC inhibitor/CDK inhibitor combination treatment is extremely attractive if HDAC inhibition can increase cell cycle inhibition and decrease apoptotic threshold, thereby reducing the necessary CDK inhibitor dosage to a more tolerable level. In this context, we analyzed combination therapy of HDAC inhibitors with PD0332991, a small molecule competitive inhibitor of the ATP-binding site of CDK2, currently in clinical trials as single agents and combined with other targeted agents. Our findings show that in breast cancer cells, HDAC inhibitors and CDK inhibitors synergistically affect cell
proliferation. Combinations of HDAC inhibitors and CDK inhibitors produced a striking response observed in primary cells from breast cancer patients grown in a 3-D system, suggesting an acceptable therapeutic index. It is possible that the synergistic inhibition of cyclin–CDK complex formation due to overexpression of CDKN1C is sufficient to induce a cytotoxic effect in tumor tissue originally lacking of the enzyme. We do not see cytotoxicity in normal breast tissue treated with HDAC/CDK inhibitors; therefore, it is possible that in healthy tissue, in which CDKN1C is normally expressed, the additional expression is not sufficient to affect the regulation of the cell cycle progression.

In conclusion, the data presented in our study support the use of gene expression analysis of drug response to uncover effective combination therapeutic regimens in a rational manner. This approach will be particularly important for drugs such as VPA and SAHA, in which the mechanism of action is not well defined. By investigating the genes central to drug response using global gene expression profiling, we can identify key targets for therapeutic selection of combination therapies that may be synergistic. As an example, we generate profiles of drug response for VPA and SAHA, and identify pathways central to drug response. Specifically, the assessment of genes and pathways affected by VPA and SAHA treatment resulting from the microarray analysis suggests a deregulation of CDK inhibitors, leading to the hypothesis that combinational therapeutic treatment HDAC inhibitors with inhibitors of specific CDK may represent a new therapeutic approach to the treatment of breast cancer. We validate the synergistic effects of this combination therapy regimen in both breast cancer cell lines and primary patient tumors grown in 3-D culture. We conclude that additional clinical studies of HDAC/CDK inhibitors are warranted. Importantly, we show that analysis of gene expression profiles can identify synergistic drug combinations.

Conflict of Interest
The authors declare no conflict of interest.

Acknowledgments
This study was funded by the National Institute of Health (R01GM085601, AHB); the Pharmaceutical Research and Manufacturers of America (AHB); a Multidisciplinary Cancer Research Training Program award (T32 CA93247, RS and AC) and an award from the MIDT cancer center support grant. The Breast Interdisciplinary Group of the University of Utah is acknowledged for their assistance in breast tumor collection.

Author Contributions
AHB and RS designed the study. AHB, ALC and RS wrote the manuscript. RS and LC performed the in vitro experiments. ALC and YS performed the microarray analysis, profile generation and profile validation. ALC and AHB performed the gene ontology analysis. ALC, PM and AHB performed the data analysis, statistical analysis and synergy calculations.

References
1. Altekruse S, Kosary C, Krapcho M, Neyman N, Aminou R, Waldron W et al. SEER Cancer Statistics Review 1975–2007. National Cancer Institute: Bethesda, MD, http://seer.cancer.gov/csr/1975_2007/, Access based on November 2009 SEER data submission, posted to the SEER website, 2010.
2. Woodcock J, Griffin JP, Behrmann RE. Development of novel combination therapies. N Engl J Med 2011; 364: 985–987.
3. Hanahan D, Weinberg RA. The hallmarks of cancer. Cell 2000; 100: 57–70.
4. Lund AH, van Lohuizen M. Epigenetics and cancer. Genes Dev 2004; 18: 2315–2335.
5. Baylin SB, Ohm JE. Epigenetic gene silencing in cancer—a mechanism for early oncogenic pathway addiction? Nat Rev Cancer 2006; 6: 107–116.
6. Roth SY, Denu JM, Allis CD. Histone acetyltransferases. Annu Rev Biochem 2001; 70: 81–120.
7. Marks PA, Jiang X. Histone deacetylase inhibitors in programmed cell death and cancer therapy. Cell Cycle 2005; 4: 549–551.
8. Bolden JE, Peart MJ, Johnstone RW. Anticancer activities of histone deacetylase inhibitors. Nat Rev Drug Discov 2006; 5: 769–784.
9. Zhang Z, Yamashita H, Toyama T, Sugihara H, Omoto Y, Ando Y et al. HDAC6 expression is correlated with better survival in breast cancer. Clin Cancer Res 2004; 10: 5446–5456.
10. Wilson AJ, Byun DS, Popova N, Murray LB, L’italien K, Sowa Y et al. Histone deacetylase 3 (HDAC3) and other class I HDACs regulate colon cell maturation and p21 expression and are deregulated in human colon cancer. J Biol Chem 2006; 281: 13548–13558.
11. Zhang Z, Yamashita H, Toyama T, Sugihara H, Ando Y, Mita K et al. Quantification of HDAC1 mRNA expression in invasive carcinoma of the breast*. Breast Cancer Res Treat 2005; 94: 11–16.
12. Halkidou K, Gaughan L, Cook S, Leung HY, Neal DE, Robson CN. Upregulation and nuclear recruitment of HDAC1 in hormone refractory prostate cancer. Prostate 2004; 59: 177–189.
13. Carew JS, Giles FJ, Nawrocki ST. Histone deacetylase inhibitors: mechanisms of cell death and promise in combination cancer therapy. Cancer Lett 2008; 269: 7–17.
14. Marks PA, Richon VM, Kelly WK, Chiao JH, Miller T. Histone deacetylase inhibitors: development as cancer therapy. Novartis Foundation Symposium 2004; 259: 269–281; discussion 281-286.
15. Kelly WK, O’Connor OA, Marks PA. Histone deacetylase inhibitors: from target to clinical trials. Expert Opin Investig Drugs 2002; 11: 1695–1713.
16. Takai N, Desmond JC, Kumagai T, Gui D, Said JW, Whittaker S et al. Histone deacetylase inhibitors have a profound antogrowth activity in endometrial cancer cells. Clin Cancer Res 2004; 10: 1141–1149.
17. Haggarty SJ, Koellner KM, Wong JC, Grozinger CM, Schreiber SL. Domain-selective small-molecule inhibitors of histone deacetylase 6 (HDAC6)-mediated tubulin deacetylation. Proc Natl Acad Sci USA 2003; 100: 4389–4394.
18. Cucilliola V, Porrierlo A, Crisculo M, Sinisa AA, Bencivenga D, Tramontano A et al. Histone deacetylase inhibitors upregulate p57Kip2 level by enhancing its expression through Sp1 transcription factor. Carcinogenesis 2008; 29: 560–567.
19. Faikla L, Liu X, Lou S, Pan S, Zhang K, Lyman E et al. Dual regulation of c-Myc by p300 via acetylation-dependent control of Myc protein turnover and coactivation of Myc-induced transcription. Mol Cell Biol 2005; 25: 10220–10234.
20. Monks A, Hose CD, Pezzoli P, Kondapaka S, Vansant G, Petersen KD et al. Gene expression-signature of belinostat in cell lines is specific for histone deacetylase inhibitor treatment, with a corresponding signature in xenografts. Anticancer Drugs 2009; 20: 682–692.
21. Glaser KB, Staver MJ, Waring JF, Stender J, Ulrich RG, Davidsen SK. Gene expression profiling of multiple histone deacetylase (HDAC) inhibitors: defining a common gene set produced by HDAC inhibition in T24 and MDA carcinoma cell lines. Mol Cancer Ther 2003; 2: 151–163.
22. Yang X, Karuturi RK, Sun F, Aau M, Yu K, Shao R et al. CDKN1C (p57) is a direct target of EZH2 and suppressed by multiple epigenetic mechanisms in breast cancer cells. PLoS One 2009; 4: e5011.
23. Kikuchi T, Toyota M, Itoh F, Suzuki H, Obata T, Yamamoto H et al. Inactivation of p57Kip2 by regional promoter hypermethylation.
and histone deacetylation in human tumors. *Oncogene* 2002; 21: 2741–2749.

24 Pateras IS, Apostolopoulou K, Koutsami M, Evangelou K, Tsantoulis P, Liloglou T et al. Downregulation of the KIP family members p27(KIP1) and p57(KIP2) by SKP2 and the role of methylation in p57(KIP2) inactivation in nonsmall cell lung cancer. *Int J Cancer* 2006; 119: 2546–2556.

25 Hayslip J, Montero A. Tumor suppressor gene methylation in follicular lymphoma: a comprehensive review. *Mol Cancer* 2006; 5: 44.

26 Algar EM, Muscat A, Dagar V, Rickert C, Chow CW, Biegel JA et al. Imprinted CDKN1C is a tumor suppressor in rhabdoid tumor and activated by restoration of SMARCB1 and histone deacetylase inhibitors. *PLoS One* 2009; 4: e4482.

27 Larson PS, Schlechter BL, King CL, Yang Q, Glass CN, Mack C et al. DNA methylation inhibitor hydralazine and the histone deacetylase inhibitor translate to candidate pharmacodynamic biomarkers in phase I patients. *Mol Cancer Ther* 2009; 8: 2517–2525.

28 Tallarida RJ. Drug synergism: its detection and applications. *J Pharmacol Exp Ther* 2001; 298: 865–872.

29 Iorio F, Bosotti R, Scacheri E, Belcastro V, Mithbaokar P, Ferriero R et al. Discovery of drug mode of action and drug repositioning from transcriptional responses. *Proc Natl Acad Sci USA* 2010; 107: 14621–14626.

30 Berkofsky-Fessler W, Nguyen TQ, Delmar P, Molnos J, Kanwal C, DePinto W et al. The Connectivity Map: using gene-expression signatures to connect small molecules, genes, and disease. *Science* 2006; 313: 1929–1935.

31 Lamb J, Crawford ED, Peck D, Modell JW, Blat IC, Wrobel MJ et al. The Connectivity Map: use of drug synergy: its detection and applications. *J Pharmacol Exp Ther* 2001; 298: 865–872.

32 Welsbie DS, Xu J, Chen Y, Borsu L, Scher HI, Rosen N et al. Histone deacetylases are required for androgen receptor function in hormone-sensitive and castrate-resistant prostate cancer. *Cancer Res* 2009; 69: 958–966.

33 Wood JR, Nelson-Degrave VL, Jansen E, McAllister JV, Mosselman S, Strauss III JF. Valproate-induced alterations in human theca cell gene expression: clues to the association between valproate use and metabolic side effects. *Physiol Genomics* 2005; 20: 233–243.

34 Meijer L, Borgne A, Mulner O, Chong JP, Blow JJ, Inagaki N et al. Biochemical and cellular effects of roscovitine, a potent and selective inhibitor of the cyclin-dependent kinases cdk2, cdk2 and cdk5. *Eur J Biochem* 1997; 243: 527–536.

35 Fry DW, Harvey PJ, Keller PR, Elliott WL, Meade M, Trachet E et al. Specific inhibition of cyclin-dependent kinase 4/6 by PD 0332991 and associated antitumor activity in human tumor xenografts. *Mol Cancer Ther* 2003; 2: 1427–1438.

36 Neve RM, Chin K, Fridlyand J, Yeh J, Baehner FL, Fevr T et al. A collection of breast cancer cell lines for the study of functionally distinct cancer subtypes. *Cancer Cell* 2006; 10: 515–527.

37 Bissell MJ, Labarge MA. Context, tissue plasticity, and cancer: are tumor stem cells also regulated by the microenvironment? *Cancer Cell* 2005; 7: 17–23.

38 Griffith LG, Swartz MA. Capturing complex 3D tissue physiology in vitro. *Nat Rev Mol Cell Biol* 2006; 7: 211–224.

39 American Cancer Society. *Cancer Facts & Figures*. American Cancer Society: Atlanta, 2011.

40 Buzdar AU. Role of biologic therapy and chemotherapy in hormone receptor- and HER2-positive breast cancer. *Ann Oncol* 2009; 20: 993–1005.

41 Munster P, Marchion D, Bicaku E, Lavecic M, Kim J, Centeno B et al. Clinical and biological effects of valproic acid as a histone deacetylase inhibitor on tumor and surrogate tissues: phase I/II trial of valproic acid and epirubicin/FEC. *Clin Cancer Res* 2009; 15: 2488–2496.

42 Travaglini L, Vian L, Billi M, Grignani F, Nervi C. Epigenetic reprogramming of breast cancer cells by valproic acid occurs regardless of estrogen receptor status. *Int J Biochem Cell Biol* 2009; 41: 225–234.

43 Chavez-Blanco A, Perez-Plasencia A, Perez-Cardenas E, Carrasco-Legleu C, Rangel-Lopez E, Segura-Pacheco B et al. Antineoplastic effects of the DNA methylation inhibitor hydralazine and the histone deacetylase inhibitor valproic acid in cancer cell lines. *Cancer Cell Int* 2006; 6: 2.

44 Candelaria M, Gallardo-Rincon D, Arce C, Cetina L, Aguilar-Ponce JL, Arrieta O et al. A phase II study of epigenetic therapy with hydralazine and magnesium valproate to overcome chemotherapy resistance in refractory solid tumors. *Ann Oncol* 2007; 18: 1529–1538.

45 Munster P, Marchion D, Bicaku E, Schmitt M, Lee JH, DeConti R et al. Phase I trial of histone deacetylase inhibition by valproic acid followed by the topoisomerase II inhibitor epirubicin in advanced solid tumors: a clinical and translational study. *J Clin Oncol* 2007; 25: 1979–1985.

46 Arce C, Perez-Plasencia C, Gonzalez-Fierro A, de la Cruz-Hernandez E, Revilla-Vazquez A, Chavez-Blanco A et al. A proof-of-principle study of epigenetic therapy added to neoadjuvant doxorubicin cyclophosphamide for locally advanced breast cancer. *PLoS One* 2006; 1: e98.

47 Perou CM, Sorlie T, Eisen MB, van de Rijn M, Jeffrey SS, Rees CA et al. Molecular portraits of human breast tumours. *Nature* 2000; 406: 747–752.

Supplementary Information accompanies the paper on the The Pharmacogenomics Journal website (http://www.nature.com/tpj)