Introduction

Prolongation of the QT interval can trigger erratic cardiac arrhythmias such as Torsade de Pointes (TdP). TdP, characterized by changes in amplitude and twisting of the QRS complex around the isoelectric line on an electrocardiogram (ECG), may result in deterioration due to ventricular tachycardia and fibrillation, leading to sudden cardiac death. The QT interval is the time in milliseconds (ms) between ventricular depolarization and repolarization, as measured by an ECG. Because the QT interval is inversely proportional to the heart rate, the corrected QT interval (QTc), an approximation of the QT
interval at a heart rate of 60 beats per minute, is used to assess abnormalities in the QT interval. The widely used formula for calculating QTc equates QTc to the QT interval divided by the square root of the cardiac cycle. Based on US Food and Drug Administration (FDA) guidance for industry on the clinical evaluation of QT/QTc interval prolongation, a prolonged QTc interval is defined by a 20-ms increase above the normal level, or >450 ms in men and >470 ms in women. A recent meta-analysis reported that QT prolongation increases both total mortality [relative risk (RR), 1.35; 95% CI, 1.24–1.46] and cardiac mortality (RR, 1.51; 95% CI, 1.29–1.78).

Postmarketing surveillance using large databases has provided evidence that QT prolongation and an increased risk of cardiac arrhythmia are associated with the use of certain antipsychotic drugs. A study monitoring intraindividual changes in ECGs reported 10- to 17-ms changes in the QTc in patients who took quetiapine, thioridazine, risperidone, haloperidol, clozapine, pimozide, ziprasidone, or chlorpromazine for an average of 0.8 years. Moreover, approximately 50% of patients exposed to these drugs had a QTc increase of 20 ms or more. A cross-sectional study of psychiatric services in Italy (n=2411) reported QTc prolongation >450 ms in 14.7% of men and 18.6% of women, and >500 ms in 1.3% of men and 1.0% of women when two or more antipsychotics were prescribed concomitantly. Among patients receiving antipsychotics with a known risk of QT prolongation, ventricular arrhythmia or sudden death rates of 0.14–0.67 per 100 person-years have been reported. A meta-analysis of six observational studies reported that quetiapine, olanzapine, haloperidol, risperidone, clozapine, and thioridazine were associated with increased sudden cardiac death with an odds ratio between 1.72 and 4.58.

Concomitant use of antipsychotics to improve treatment outcomes is common. For schizophrenia treatment, concomitant use of antipsychotics was found in 23% of patients in the US, and ranged from 26.2% to 74.0% in Hong Kong, Taiwan, China, Korea, Japan, and Singapore. Concomitant use of QT-prolonging antipsychotics and cytochrome P450 2D6 and 3A4 inhibitors such as fluoxetine, sertraline, azole antifungals, and protease inhibitors could potentiate the risk of QT prolongation. Apart from antiarrhythmics, other drugs, such as certain macrolides, antidepressants, and second- and third-generation quinolones, have been well documented to pose a risk of QT prolongation, and caution should be taken when coprescribing such drugs with antipsychotics. A limited number of studies have focused on QT prolongation associated with drugs interacting with antipsychotics. An analysis of Medicaid data during 2000–2003 in patients with schizophrenia in the US showed that 23% of the patients were exposed to potentially harmful drug interactions. The majority of the interactions occurred with prescriptions from the same physician or pharmacies. A study including six psychiatric hospitals in Belgium in 2008 found that 7.3% of patients were coprescribed antipsychotics or antidepressants with interacting drugs that posed a risk of prolonged QT, and that different precautionary approaches were implemented at different hospitals. A recent study from Pakistan reported that 51.7% of patients in the psychiatric wards of three hospitals in 2015–2016 were exposed to potential QT-prolonging drug interactions.

Several recommendations for dealing with antipsychotics that pose a risk of QT prolongation, as well as lists of potential drug–drug interactions, are presently available. After safety warnings on QT prolongation risk due to thioridazine and haloperidol were announced by regulatory agencies in the UK in 2000 and in Italy in 2007, prescription of these two antipsychotics decreased. In the era of computerized drug prescriptions, awareness of drug interactions and adherence to electronic warnings are expected to increase. However, trend analysis of QT-prolonging antipsychotic-drug interaction has never been reported, and variations in the problem across a large number of hospitals have rarely been analyzed.

With the increasing disease burden of psychiatric patients in Thailand, a number of patients with psychiatric disorders currently receive follow-up care in outpatient departments of general hospitals. In the last decade, computerized warning systems for drug interactions have been implemented widely in Thailand for hospitals to earn accreditation. Individual hospitals use their own discretion in selecting the drug lists to be monitored for potential interaction. In addition, the country’s regulatory agency has not addressed the
safety concerns about prescribing QT-prolonging antipsychotics. It is important to understand the proportion of coprescribing QT-prolonging antipsychotics and interacting drugs, especially those classified to have a severe level of drug–drug interaction.

This study aimed to determine the proportion of patients who were coprescribed antipsychotics with potentially interacting drugs, along with their risk of QT prolongation, in outpatient departments of nonpsychiatric hospitals. Exposure to potential drug interactions was examined for time trends and variation across hospitals. Findings from this study can signal an urgent need for strategies to improve awareness and preventive measures for QT-prolonging antipsychotic-drug interaction. Additionally, the evidence for QT changes and outcomes of ventricular arrhythmia and sudden death was reviewed to support the inclusion of study drugs.

Methods

Interactions of antipsychotics and drugs with potential QT prolongation risk

The AZCERT classification (version May 2015) was used to screen the 15 antipsychotics available at the study hospitals and prescribed for more than 50 patients during study period (2012–2015) for potential risk of QT interval prolongation. Four antipsychotics (chlorpromazine, haloperidol, pimozide, and thioridazine) were classified as known risk of TdP, and seven antipsychotics (aripiprazole, clozapine, olanzapine, paliperidone, quetiapine, risperidone, and ziprasidone) were classified as possible risk of TdP. The US FDA product information was used to select the study antipsychotics, and an extensive review of evidence indicating QT prolongation and clinical risks of the selected drugs was used for verification. Eight antipsychotics (haloperidol, pimozide, thioridazine, olanzapine, paliperidone, quetiapine, risperidone, and ziprasidone) were included in the present study. The supporting evidence for their inclusion is presented in Table 1. The US FDA designated pimozide, thioridazine, and ziprasidone as contraindicated for patients at high risk of QT interval prolongation, and the remaining five drugs were associated with a significant risk of QT prolongation. Aripiprazole was not selected because the US FDA has not issued any warning for the drug regarding QT prolongation. Although chlorpromazine has long been used, the US FDA indicated that it was associated with very few case reports of QT prolongation. Chlorpromazine and clozapine were not classified as having a significant risk of QT prolongation by the European Medicines Agency hence, they were excluded.

Concomitant prescribing among the eight selected antipsychotics (namely, antipsychotic polypharmacy) and those coprescribed with interacting drugs known to increase QT prolongation risk were examined. The interacting drugs were identified using both US FDA product information (in two sections, namely, Contraindications and Precautions and warnings) and the textbook *Drug Interaction Facts: the authority on drug interaction 2015*. The selected pairs of drug interactions must be assigned a significance rating of level 1 by the Drug Interaction Facts textbook, defined as a severe (referred to as life-threatening or permanent damage) and be a well-documented interaction.

Potential QT-prolonging drug interactions were divided into three types. The first (referred to as list A) was concomitant use among the eight study antipsychotic drugs. The second (list B) was the concomitant use of thioridazine or pimozide with contraindicated interacting drugs. The third (list C) was the concomitant use of the eight study antipsychotics with interacting drugs with precautions. The contraindication list B and precaution list C were based on drug interaction mechanisms derived from US FDA product information and the Drug Interaction Facts textbook. Other than thioridazine and pimozide, the other six study antipsychotics had only interacting drugs with precautions (list C) (Table 2). To facilitate data presentation for trend analysis, thioridazine and pimozide were in the first set, and all remaining drugs were assigned to the second set.

Data sources

We obtained data on antipsychotic prescriptions from a public health insurance scheme that covers approximately 5 million government employees, pensioners, and their dependents. The beneficiaries of this scheme tend to have a higher socioeconomic status than the average Thai population, and obtain access to health services and prescription drugs free of charge. The data were from 16 general hospitals and 10 university hospitals.
Table 1. Summary of evidence on risk of QT prolongation for study antipsychotics*.

Drug	Experiment	RCT	Meta-analysis of RCTs	Observational study	QT interval									
				VA or SD										
	N	Dose (mg/day)	QT change (ms, range)	QT prolongation, no. of studies (% of patients)	N RCTs	QT difference from placebo, SMD (95% CrI)	N	Incidence (per 1000 person-years, range)	Rate ratio (range)	N	Change, ms (95% CI)	Prolongation, % of patients†		
Haloperidol	230,26	4–5	3–4	338–40	1 (3%)	2167	0.11 (0.03, 0.19)	59–10, 48,49	2.7–6.7	1.6–2.5	14	12.3 (8.5, 16.1)	47.9%	
		337–29	10–30	5–7	230,26	7–10	19–24							
Pimozide	130	6	13.3	N/A	N/A	N/A	–	N/A	–	N/A	–	–		
		230,26	7–10	19–24										
Thioridazine	21,32	50	22–37	N/A	N/A	N/A	338–10	2.2–4.1	2.2–3.2	N/A	–	–		
	179	300	35.6											
Olanzapine	23,33	20	3–8	134–36	1 (3%)	1467	0.22 (0.11, 0.31)	338–10	2.8–3.4	1.4–2.0	N/A	–	–	
Paliperdone	134	4–8 (IR)	9–10	534,49,55–57	3–12 (ER)	1 (1%)	847	0.05 [0.18, 0.26]	N/A	–	N/A	–	–	
	136	12–18 (ER)	1–4											
Quetiapine	434,35–37	750–800	6–14	3448,58,59	307–543	1 (3%)	747	0.17 [0.06, 0.29]	338–10	2.3	1.4–1.8	14	10.1 (7.9, 12.2)	45.5%
Risperidone	179	16	11	843,49,54–44	4–8	2 (3%, 4.5%)	1167	0.25 [0.15, 0.36]	48–10,48	3.5–5.0	1.6–3.1	14	11.0 (8.7, 13.4)	49.0%
Ziprasidone	138	40	4.5	736,42,53,55–64	104–139	1 (1%)	447	0.61 [0.31, 0.51]	110	1.4	–	14	14.5 (10.7,18.3)	59.1%
	338,29,36	160–320	15–23											

CI, confidence interval; CrI, credible interval; ER, extended release; IR, immediate release; mg, milligram; ms, millisecond; N, number of studies; NA, not available; RCT, randomized controlled trial; SD, sudden cardiac death; SMD, standardized mean difference; VA, ventricular arrhythmia.

*The bibliographies of review articles, systematic reviews and meta-analysis of antipsychotics and QT change were manually scanned for relevant studies. An electronic search was conducted using PubMed and Google search engine up to April 30, 2018 for additional studies. The search terms included ‘antipsychotics’, ‘thioridazine’, ‘pimozide’, ‘haloperidol’, ‘olanzapine’, ‘paliperidone’, ‘quetiapine’, ‘risperidone’, ‘ziprasidone’, ‘QT change’, ‘ECG change’, ‘ventricular arrhythmia’, and ‘sudden death’.

$ QTc > 450 ms in men or > 470 ms in women, or an increase in QT interval > 10%.

† An increase in QT interval > 20 ms.
nationwide, at which outpatient drug expenditures accounted for approximately 70% of the scheme’s budget. These study hospitals are among the largest tertiary care facilities, with approximately 500–2000 beds and more than 100,000 outpatient visits each year. In Thailand, patients with psychiatric conditions can have their first visits and follow-up care in health care facilities other than psychiatric hospitals. Drug prescriptions are usually filled in the hospitals’ outpatient departments, and one prescription may contain more than one drug item. The data analyzed included drug names, prescribing dates, encrypted patient identification, and hospital codes that had been validated through the fee-for-service claim process. Different identification codes of individually prescribed drugs across hospitals were standardized using the Anatomical Therapeutic Chemical (ATC) classification system, based on ATC level 5, generic name equivalence. The analytic dataset consisted of adult (aged ≥18 years) patients receiving antipsychotics (ATC code, N05A) and possibly other drugs during 2012–2015. The authors could not obtain access to data on drug dosage regimens, patient demographics, diagnoses for visits, and identification of the doctors who prescribed the drugs. Previous studies on antipsychotic prescribing patterns in Thailand, which have typically been conducted in university hospitals, reported that most patients received drugs at low-to-moderate doses. Therefore, the analysis framework

Antipsychotics	Interacting drugs	Mechanism$_{14,15}$
Thioridazine	B duloxetine, fluoxetine, fluvoxamine, paroxetine, pindolol, propranolol	Inhibit CYP2D6 leading to delayed thioridazine metabolism.
Pimozide	B itraconazole, ketoconazole, amprenavir, atazanavir, darunavir, fosamprenavir, indinavir, lonavir/ritonavir, nefilnavir, ritonavir, saquinavir, nefazodone	Inhibit CYP3A4 leading to delayed pimozide metabolism.
	B azithromycin, clarithromycin, erythromycin, citalopram, escitalopram	Increase risk of QT prolongation
	B sertraline	Increase pimozide plasma level
	B aprepitant, fluoxetine, fluvoxamine, paroxetine	Inhibit CYP2D6 leading to delayed pimozide metabolism.
Haloperidol, Pimozide, Thioridazine, Olanzapine, Paliperidone, Quetiapine, Risperidone, Ziprasidone,	C amiodarone, disopyramide, dofetilide, procainamide, quinidine, sotalol, cisapride, gatifloxacin, levofloxacin, moxifloxacin, sparfloxacin, arsenic trioxide, chlorpromazine, droperidol, mefloquine, pentamidine, tacrolimus	Increase risk of QT prolongation.
Haloperidol, Pimozide, Thioridazine, Olanzapine, Paliperidone, Quetiapine, Risperidone, Ziprasidone,	C fluoxetine, paroxetine, sertraline	Inhibit CYP2D6 leading to delayed risperidone metabolism

*List B, contraindicated, interacting drugs; List C, interacting drugs with precautions. CYP, cytochrome P450.
focused on drug interaction patterns with respect to time trends and hospital variations. This study was approved by the Ethics Committee for Human Research, Khon Kaen University (HE592234).

Data analysis

Coprescription of selected antipsychotics with drugs in lists A (antipsychotic polypharmacy), B (contraindicated interacting drugs), and C (interacting drugs with precautions) was identified when the drugs appeared in the same prescriptions. In an overall analysis, the patient cohort over 4 years of study period was accounted for those receiving antipsychotics and for those exposed to each drug pair of potential interactions. The number of patients receiving selected antipsychotics, and the proportion of those exposed to potential interactions with drugs in lists A, B, and C, were calculated yearly with respect to facility types (general hospitals and university hospitals). For patients exposed to more than one pair of drug interactions, each exposure was counted separately. Drug interactions were examined for trends using a time-series analysis. The percentages of patients receiving each of the eight antipsychotics and exposed to the drug interactions in each type (list A, B, or C) was regressed on yearly time points. To account for a serial correlation between observations in adjacent years, a generalized least square that accounted for the correlation was applied using Prais-Winsten transformation. Significant threshold (alpha level) for the statistical tests was set at 0.05. Variation across hospitals in 2015 in the overall drug interactions that led to potential risk of QT prolongation for each selected antipsychotic was examined. The percentage of hospitals with a presence of the coprescribing of antipsychotics was presented. In addition, median and interquartile range (IQR) across hospitals of the percentage of patients being exposed to the potential drug interactions were determined.

Results

In total, 156,615 antipsychotic prescriptions were written for 26,288 patients during the study period (2012–2015). There were 17 antipsychotics prescribed in total. The three most commonly prescribed antipsychotics were quetiapine (42.4%), risperidone (25.1%), and haloperidol (19.6%). The other five antipsychotics were each prescribed to less than 10% of patients: olanzapine (6.0%), thioridazine (3.2%), ziprasidone (1.2%), paliperidone (1.0%), and pimozide (0.3%).

The analytic dataset contained 22,397 patients with 128,333 prescriptions for the eight study antipsychotics with a risk of potential QT prolongation. Study patients having one, two, three, four, five, six, and more than six prescription visits accounted for 31.8%, 15.1%, 8.4%, 6.0%, 4.7%, 3.8%, and 30.1% of the prescriptions, respectively. The number of patients receiving each study drug over 4 years is presented in Table 3 (first column). The proportion of patients receiving antipsychotic polypharmacy with a risk of QT prolongation (list A) was highest for thioridazine (33.1%), followed by ziprasidone (25.5%), pimozide (24.7%), paliperidone (22.7%), olanzapine (16.9%), risperidone (10.4%), haloperidol (8.7%), and quetiapine (7.5%) (Table 3).

Of the 849 recipients of thioridazine, 4 received thioridazine and pimozide concomitantly. Apart from pimozide, the antipsychotics in list A that were most commonly prescribed with thioridazine were risperidone, haloperidol, and quetiapine. Apart from the antipsychotic polypharmacy, 9.7% of thioridazine recipients were prescribed concomitantly with contraindicated, interacting drugs (list B), and 2.1% of them were prescribed concomitantly with interacting drugs with precautions (list C). Among list B, fluoxetine and propranolol were the top two drugs prescribed concomitantly with thioridazine. Of the 73 recipients of pimozide, apart from the antipsychotic polypharmacy, 21.9% were prescribed concomitantly with drugs in list B and 5.5% were prescribed concomitantly with those in list C.

In addition to thioridazine and pimozide, the six antipsychotics (as in Table 3) were coprescribed with interacting drugs with precautions (list C) in the range between 2.8% of quetiapine recipients ($n = 11,144$) and 27.9% of risperidone recipients ($n = 6600$). By the number of patients receiving quetiapine, the top three coprescribed antipsychotics on list A were risperidone, haloperidol, and olanzapine; the top three coprescribed drugs on list C were levofloxacin, amiodarone, and chlorpromazine. For risperidone recipients, the top three coprescribed antipsychotics on list A apart from quetiapine were haloperidol and...
Table 3. Number of patients prescribed QT-prolonging antipsychotics with interacting drugs during study period.

Antipsychotics (no. of patients)	Potential drug interaction	Concomitant drugs (no. of patients)*5
	List* No. of patients (%)	
Thioridazine (849)	A 281 (33.1) RPD [99], HAL [94], QTP [47], OZP [20], QTP + RPD [8], ZPS [3], HAL + ZPS [2], HAL + QTP [1], PPD [1], PMZ [1], PMZ + RPD [1], PMZ + QTP [1], OZP + RPD [1], HAL + RPD [1], PMZ + QTP + RPD [1]	
	B 82 (9.7) FOX [42], PPL [34], FVX [4], PRX [1], FVX + PPL [1]	
	C 18 (2.1) CPZ [12], LVF [5], AMD [1]	
Pimozide (73)	A 18 (24.7) RPD [5], QTP [4], HAL [2], OZP + QTP [1], TRZ + QTP + RPD [1], TRZ + QTP [1], TRZ + RPD [1]	
	B 16 (21.9) FOX [5], STL [5], ESC [3], FVX [3]	
	C 4 (5.5) CPZ [4]	
Quetiapine (11,144)	A 837 (7.5) RPD [382], HAL [213], OZP [119], TRZ [47], ZPS [30], PPD [16], TRZ + RPD [8], HAL + RPD [6], PMZ [4], RPD + PPD [2], OZP + QTP [3], HAL + TRZ [1], TRZ + PMZ [1], PMZ + OZP [1], QTP + PPD [1], ZPS + RPD [1], HAL + OZP [1], TRZ + PMZ + RPD [1]	
	B 311 (2.8) LVF [117], AMD [100], CPZ [67], MFX [22], CSP [3], TAC [2]	
	C 1,840 (27.9) STL [935], FOX [613], CPZ [167], PRX [32], LVF [22], CPZ + FOX [21], CPZ + STL [16], AMD [13], TAC [4], FOX + STL [4], AMD + STL [2], AMD + FOX [2], MFX [2], LVF + STL [2], AMD + MFX [1], MXF + STL [1], CSP [1], CPZ + PRX [1], PRX + STL [1]	
Risperidone (6600)	A 688 (10.4) QTP [382], TRZ [99], HAL [76], OZP [68], PPD [20], ZPS [14], TRZ + QTP [8], HAL + QTP [6], PMZ [5], QTP + PPD [2], OZP + QTP [3], TRZ + OZP [1], PMZ + TRZ [1], TRZ + HAL [1], ZPS + QTP [1], PMZ + QTP + TRZ [1]	
	C 215 (4.2) CPZ [171], LVF [22], AMD [17], TAC [3], MFX [2]	
Haloperidol (5148)	A 446 (8.7) QTP [213], TRZ [94], RPD [76], OZP [28], ZPS [18], QTP + RPD [6], PPD [4], TRZ + ZPS [2], PMZ [2], TRZ + QTP [1], TRZ + RPD [1], OZP + QTP [1]	
	C 53 (3.4) CPZ [35], LVF [14], AMD [3], TAC [1]	
Olanzapine (1572)	A 265 (16.9) QTP [119], RPD [68], HAL [28], TRZ [20], PPD [12], ZPS [9], QTP + RPD [3], PMZ [2], TRZ + RPD [1], PMZ + QTP [1], HAL + QTP [1], ZPS + PPD [1]	
	C 24 (7.4) CPZ [23], LVF [1]	
Ziprasidone (325)	A 83 (25.5) QTP [30], HAL [18], RPD [14], OZP [9], PPD [4], TRZ [3], HAL + TRZ [2], QTP + PPD [1], OZP + PPD [1], QTP + RPD [1]	
	C 24 (7.4) CPZ [23], LVF [1]	
Paliperidone (269)	A 61 (22.7) RPD [20], QTP [16], OZP [12], HAL [4], ZPS [4], QTP + RPD [2], TRZ [1], ZPS + QTP [1], ZPS + OZP [1]	
	C 24 (8.9) CPZ [21], LVF [2], AMD [1]	

*List A, Antipsychotic polypharmacy; List B, contraindicated, interacting drugs; List C, interacting drugs with precautions.
*A patient may have more than one type of drug interaction.
AMD, amiodarone; CPZ, chlorpromazine; CSP, cisapride; ESC, escitalopram, FOX, fluoxetine; FVX, fluvoxamine; HAL, haloperidol; LVF, levofloxacin; MXF, moxifloxacin; OZP, olanzapine; PMZ, pimozide; PPD, paliperidone; PPL, propranolol; PRX, paroxetine; QTP, quetiapine; RPD, risperidone; STL, sertraline; TAC, tacrolimus; TRZ, thioridazine; ZPS, ziprasidone.
olanzapine; the top three coprescribed drugs on list C were sertraline, fluoxetine, and chlorpromazine. For haloperidol recipients (n = 5148), the top three coprescribed antipsychotics on list A apart from quetiapine and risperidone were olanzapine; the top three coprescribed drugs on list C were chlorpromazine, levofloxacin, and amiodarone. For olanzapine recipients (n = 1572), the top three coprescribed drugs on list A were quetiapine, risperidone, and haloperidol, as previously stated; the top three coprescribed drugs on list C were chlorpromazine, levofloxacin, and amiodarone. For ziprasidone recipients (n = 325), the top three coprescribed drugs on list A were quetiapine, haloperidol, and risperidone. For paliperidone recipients (n = 269), the top three coprescribed drugs on list A were risperidone, quetiapine, and olanzapine. For ziprasidone and paliperidone, coprescribing with drugs in list C was found in 7.4% and 8.9%, respectively, where the most common interacting drug was chlorpromazine.

Figure 1 depicts trends in the number of patients receiving thioridazine or pimozide and the percentage of those exposed to QT-prolonging drug interactions during 2012–2015. The number of patients receiving thioridazine decreased gradually in both general hospitals and university hospitals. Pimozide was prescribed only in the university hospitals. For thioridazine recipients, an exposure to list A drug interactions of thioridazine increased in both hospital types from 9.4% to 11.9% or annually by 1.1 percentage points (% pt.) on average (p < 0.001) in general hospitals, and from 4.8% to 9.5% or annually by 1.4% pt. on average (p = 0.033) in university hospitals. For pimozide recipients in university hospitals, an exposure to list A drug interactions decreased from 12.0% to 10.0% from 2012 to 2015, while exposure to list B (from 22.0% to 26.7%) and list C (from 0.0% to 6.7%) drug interactions increased over the same period with zigzag trends.

Figure 2 depicts 2012–2015 trends in patients exposed to QT-prolonging interactions with drugs in list A or C among patients receiving six antipsychotics; the top three (quetiapine, risperidone, and haloperidol) are shown in Figure 2(a) and the bottom three antipsychotics (olanzapine, ziprasidone, and paliperidone) are shown in Figure 2(b). For quetiapine recipients, an exposure to drug interactions did not show a noticeable time trend: for list A, the time trend was approximately 7–9% in general hospitals and 4–6% in university hospitals, and for list C it was 1.2–2.1% in both hospital types (Figure 2a). Among risperidone recipients, those exposed to list A drug interactions increased modestly from 5.4% to 6.3% in general hospitals and from 7.3% to 10.5% in university hospitals from 2012 to 2015. However, an exposure to list C drug interactions of risperidone recipients increased from 18.8% to 27.3% or by the annual average rate of 2.6% pt. (p = 0.017) in general hospitals and from...
19.7% to 22.6% or by the annual average rate of 1.0% pt. \((p < 0.001)\) in university hospitals. For haloperidol recipients, an exposure to drug interactions was relatively stable in general hospitals for lists A and C, at approximately 4–7%. For university hospitals, haloperidol recipients exposed to list A drug interactions decreased from 7.8% to 5.5%, or by the annual average rate of 0.8% pt. \((p = 0.013)\); those exposed to list C decreased from 4.1% to 1.7% or by the annual average rate of 0.6% pt. \((p = 0.046)\).

For olanzapine recipients, an increasing trend in patients exposed to list A drug interactions was observed in general hospitals from 7.9% to 15.4% from 2012 to 2015, with an annual average change of 2.4% pt. \((p = 0.043)\), whereas those exposed to drug interactions in lists A and C were relatively stable in university hospitals (Figure 2b).

Even though the number of patients receiving ziprasidone and paliperidone was small, an exposure to drug interactions was high, except for list C in university hospitals. For ziprasidone, a zigzag trend was observed in patients exposed to drug interactions for list A, and an increasing trend of drug interactions for list C existed from 9.2% to 13.8% or by the annual average rate of 1.7% \((p < 0.001)\) in general hospitals. These results contrasted with a zigzag trend observed for list A and a decreasing trend identified for list C from 4.7% to 1.7% or by the annual average rate of 0.9% pt. \((p < 0.001)\) in university hospitals. Exposure to drug interactions with paliperidone in general hospitals had an inconsistent trend (4.1–20.8% for list A and 16.1–27.3% for list C), whereas those in university hospitals were relatively stable (19.2–20.8% for list A and 1.9–4.8% for list C).

Figure 2. Patients who received antipsychotics and were exposed to drug interactions, 2012–2015. General, general hospitals; HAL, haloperidol; List A, antipsychotics polypharmacy; List C, interacting drugs with precautions; OZP, olanzapine; PPD, paliperidone; QTP, quetiapine; RPD, risperidone; University, university hospitals; ZPS, ziprasidone.
The variations in the percentages of overall QT-prolonging drug interactions among general hospitals and university hospitals in 2015 are presented in Table 4. Almost all hospitals carried haloperidol, risperidone, quetiapine, and thioridazine, while few general hospitals had paliperidone and ziprasidone, and four university hospitals had pimozide. For all study drugs, the QT-prolonging interaction was found in 12.3% of patients of the median hospital (IQR, 9.9–19.5%). The overall interaction in the general hospitals (median 15.2%, IQR 11.3–21.9%) was higher than that in the university hospitals (median 10.0%, IQR 8.2–13.0%).

The QT-prolonging interactions were found in a majority of general hospitals, ranging from 75% for ziprasidone to 100% for haloperidol and paliperidone. Across general hospitals, wide variations in the percentages of drug interactions were observed among patients receiving thioridazine, ziprasidone, paliperidone, and olanzapine, as shown by a wide IQR, whereas small variations existed among patients receiving risperidone,
quetiapine and haloperidol. The proportion of university hospitals having patients exposed to QT-prolonging drug interactions ranged from 63% for ziprasidone to 100% for risperidone and quetiapine. Wide variations existed across university hospitals in the percentage of patients receiving paliperidone or pimozide with potential drug interactions.

Discussion

Coprescribing among the eight antipsychotics (list A) ranged from 7.5% for quetiapine to 33.1% for thioridazine. The rate of coprescription with contraindicated, interacting drugs (list B) was 9.7% for thioridazine and 21.9% for pimozide, and increased over the study period for thioridazine. Coprescription of interacting drugs with precautions (list C) was found in 27.9% of patients for risperidone and <10% of patients for other antipsychotics, with a significant increasing trend of risperidone. Significantly decreasing trends in coprescription of haloperidol (with list A drugs) and ziprasidone (with list C drugs) were observed at the university hospitals. The median percentage of patients prescribed QT-prolonging interactions with any of the study antipsychotics per hospital was 12.3% overall, and 15.2% and 10.0% among the general and university hospitals, respectively. Wide interhospital variation in the percentage of drug interactions was found for thioridazine, ziprasidone, paliperidone, and olanzapine at the general hospitals, and for paliperidone and pimozide at the university hospitals.

Similar to findings in other countries,12,13 the rate of concomitant prescribing of two or more QT-prolonging antipsychotics (list A) in Thailand was relatively high. Although QT-prolonging antipsychotics were known to clinicians, data on QT changes and clinical outcomes specific to each antipsychotic were scattered, and the associated risks were not presented in numerical formats. The relevant information, compiled in Table 1, was an attempt to fill knowledge gaps regarding the significance of QT-prolonging risk due to coprescribing of antipsychotics. Substitution of QT-prolonging antipsychotics with aripiprazole, which has no FDA warnings, is unlikely, as aripiprazole is a high-cost medicine without affordable generic versions. The relatively high percentage (22.7–33.1%) of coprescriptions for thioridazine, ziprasidone, and paliperidone was likely a reflection of the use of these drugs in a small group of patients not responding to conventional antipsychotics.

Coprescription of thioridazine with contraindicated, interacting drugs (list B) and risperidone with interacting drugs with precautions (list C) had not only a high prevalence but also an increasing trend. This finding reflected modest concerns of potential drug interactions by individual prescribers. Although computerized screening tools are widely available, individual hospitals may justify drug interaction lists based on their own circumstances. At present, there are no unified drug interaction lists in Thailand, and public advocacy on precautionary use of antipsychotics is rare. The Ministry of Public Health-sponsored campaign on rational drug use covered issues on drug interactions, but coprescribing of QT-prolonging antipsychotics was not a prioritized issue.75 The national programs on pharmaceutical care for noncommunicable, chronic diseases that have been implemented in public hospitals for psychiatric conditions are still in their infancy.76

The decreasing trend in the coprescription of interacting drugs with precautions (list C) with haloperidol or ziprasidone at university hospitals may be driven by increasing varieties of substitutes in an open academic environment. Higher interhospital variation in the prevalence of drug interactions among general hospitals is an indication that antipsychotics could be prescribed by physicians other than psychiatrists—a practice that was common at the general hospitals but less common at the university hospitals.

Psychiatric conditions are complex, and treatments require a trade-off between efficacy and safety. Many patients continue to experience psychiatric symptoms after standard regimens of treatment. Polypharmacy may be used to achieve a faster therapeutic response. Patients who continue to use the same antipsychotics over a very long period tend to be unwilling to switch medicines, even though they may face treatment complications. In this study, there were no financial barriers to patient access to study antipsychotics, which were fully covered by the patients’ insurance scheme. Therefore, the high prevalence of coprescription could probably be associated with use in low-risk patients as well as patient preference.

Some study limitations should be addressed. In this study, all selected antipsychotics were
prescribed in the outpatient setting. Even though health insurance claims are a valid data source for measuring drug exposure and associated risks, the prescription data used in this study limited further analyses of certain aspects. First, the antipsychotic exposure period could not be determined due to a lack of data on drug dosage regimens. The coprescribing rate reported in this study could be underestimated if the same patients were prescribed interacting drugs within the same exposure windows but not during the same prescription visits. Second, there were no linkable data on patient demographics, clinical conditions, laboratory results, or treatment outcomes. Future studies could complement the present study by using primary data collection from patients and prescribers to gain an understanding of the reasons behind the high coprescribing rates, and of the extent to which clinical and treatment conditions or lack of awareness among clinicians have contributed to the problem. In addition, whether the effect of drug interactions on QT prolongation varies with age, cardiovascular disease, smoking, alcohol, drug abuse, or other factors should be examined.

The findings in the present study touched upon clinically significant issues, since coprescription of antipsychotics with major drug interactions was analyzed and evidence supporting QT prolongation and associated clinical risks was summarized for the study antipsychotics. The study results could be generalized to outpatient care settings for the beneficiaries of this government employee scheme across the whole country since the study settings included a number of hospitals, mixed between the Ministry of Public Health’s general hospitals and university teaching hospitals nationwide. The study patients were covered by an insurance scheme that provided generous health benefits packages to the beneficiaries, who bear no prescription drug costs. Therefore, the prevalence of drug interactions was unlikely to be confounded by financial barriers on the patient side.

The findings of high prevalence and increasing trends in the coprescribing rates for selected antipsychotics, and of wide variation across hospitals where computerized screening systems are available, implies that the issues of lack of awareness and knowledge in the medical community are applicable to Thailand. Medical education on the QT prolongation risk of antipsychotics could be integrated into the existing national rational drug use campaign, which has been successful in decreasing drug interactions with statins. Protocols using appropriate risk scoring systems for identifying high-risk patients should be developed and implemented throughout the existing pharmaceutical care programs. In addition to increasing clinicians’ awareness and knowledge, it is necessary to develop unified drug interaction lists to decrease variation across prescribers and health care settings.

Conclusion
A large proportion of Thai patients received antipsychotics with a risk of drug interactions that could increase their risk of QT prolongation. Increasing trends of prescribing QT-prolonging drugs with drug interactions were found for three antipsychotics: thioridazine, risperidone, and ziprasidone. A variation in the percentage of drug interactions across hospitals was observed. A standard list of antipsychotics prone to QT-prolonging drug interactions along with a computerized warning system should be developed and implemented nationwide. In addition, supporting evidence on QT prolongation risk of antipsychotics and potential drug interactions should be integrated into the existing national rational drug use campaign.

Acknowledgements
The authors thank Dr Glenn Neville Borlace for providing editing assistance.

Author contributions
OW contributed to the study concept and design, analysis and interpretation of the data, and drafting of the paper. CL contributed to the study concept and design, analysis and interpretation of the data, drafting of the paper, and revising it critically for intellectual content. TR contributed to the analysis and interpretation of the data and the drafting of the paper. All authors were involved in final approval of the version to be published, and agreed to be accountable for all aspects of the work.

Funding
This research was supported by Faculty of Pharmaceutical Sciences, Khon Kaen University, Thailand. The funding source had no role in the preparation of this article.
Conflict of interest statement
The authors declare that there is no conflict of interest.

ORCID iD
Chulaporn Limwattananon https://orcid.org/0000-0002-6744-8198

References
1. Drew BJ, Ackerman MJ, Funk M, et al. Prevention of torsade de pointes in hospital settings: a scientific statement from the American heart association and the American college of cardiology foundation. Circulation 2010; 121: 1047–1060.

2. Davey P. How to correct the QT interval for the effects of heart rate in clinical studies. J Pharmacol Toxicol Methods 2002; 48: 3–9.

3. Nachimuthu S, Assar MD and Schussler JM. Drug-induced QT interval prolongation: mechanisms and clinical management. Ther Adv Drug Saf 2012; 3: 241–253.

4. US Food and Drug Administration. E14 Clinical evaluation of QT/QTc Interval prolongation and proarrhythmic potential for non-antiarrhythmic drugs, https://www.fda.gov/downloads/Drugs/GuidanceComplianceRegulatoryInformation/Guidances/ucm073153.pdf (accessed 29 August 2015).

5. Zhang Y, Post WS, Blasco-Colmenares E, et al. Electrocardiographic QT interval and mortality: a meta-analysis. Epidemiology 2011; 22: 660–670.

6. Iribarren C, Round AD, Peng JA, et al. Validation of a population-based method to assess drug-induced alterations in the QT interval: a self-controlled crossover study. Pharmacoepidemiol Drug Saf 2013; 22: 1222–1232.

7. Nosè M, Bighelli I, Castellazzi M, et al. Prevalence and correlates of QTc prolongation in Italian psychiatric care: cross-sectional multicentre study. Epidemiol Psychiatr Sci 2016; 25: 532–540.

8. Hennessy S, Bilker WB, Knauss JS, et al. Cardiac arrest and ventricular arrhythmia in patients taking antipsychotic drugs: cohort study using administrative data. BMJ 2002; 325: 1070–1072.

9. Ray WA, Chung CP, Murray KT, et al. Atypical antipsychotic drugs and the risk of sudden cardiac death. N Engl J Med 2009; 360: 225–235.

10. Leonard CE, Freeman CP, Newcomb CW, et al. Antipsychotics and the risks of sudden cardiac death and all-cause death: cohort studies in Medicaid and dually-eligible Medicaid-Medicare beneficiaries of five states. J Clin Exp Cardiolog Suppl 2013; 10: 1–9.

11. Salvo F, Pariente A, Shakir S, et al. Sudden cardiac and sudden unexpected death related to antipsychotics: a meta-analysis of observational studies. Clin Pharmacol Ther 2016; 99: 306–314.

12. Fisher MD, Reilley K, Isenberg K, et al. Antipsychotic patterns of use in patients with schizophrenia: polypharmacy versus monotherapy. BMC Psychiatry 2014; 14: 341.

13. Xiang YT, Chiu HF, Ungvari GS, et al. QTc prolongation in schizophrenia patients in Asia: clinical correlates and trends between 2004 and 2008/2009. Hum Psychopharmacol 2015; 30: 94–99.

14. U.S. Food and Drug Administration. FDA approved drug products, https://www.accessdata.fda.gov/scripts/cder/daf/ (accessed 29 August 2015).

15. Tatro DS (ed.). Drug interaction facts: the authority on drug interaction 2015. United States: Facts & Comparisons Publishing Group, 2015.

16. Guo JJ, Wu J, Kelton CM, et al. Exposure to potentially dangerous drug-drug interactions involving antipsychotics. Psychiatr Serv 2012; 63: 1080–1088.

17. Vandael E, Marynissen T, Reyntens J, et al. Frequency of use of QT-interval prolonging drugs in psychiatry in Belgium. Int J Clin Pharm 2014; 36: 757–765.

18. Khan Q, Ismail M, Haider I, et al. Prevalence of QT interval prolonging drug-drug interactions (QT-DDIs) in psychiatry wards of tertiary care hospitals in Pakistan: a multicenter cross-sectional study. Int J Clin Pharm 2017; 39: 1256–1264.

19. European Medicines Agency. Medicines, https://www.ema.europa.eu/en/medicines (accessed 29 August 2015).

20. CredibleMeds®. QT Drugs Lists, https://www.crediblemeds.org (accessed 29 May 2015).

21. Oteri A, Mazzaglia G, Pecchioli S, et al. Prescribing pattern of antipsychotic drugs during the years 1996–2010: a population-based database study in Europe with a focus on torsadogenic drugs. Br J Clin Pharmacol 2016; 82: 487–497.

22. Department of Mental Health. Health care utilization statistics, https://www.dmh.go.th/report/datacenter/map/reds.asp (accessed 29 August 2016).
23. Chlorpromazine. Product information. https://pdf.hres.ca/dpd_pm/00002958.PDF (accessed 29 August 2015).

24. Leponex (clozapine). Committee for proprietary medicinal product: summary information on referral opinion following arbitration pursuant to article 30 of council directive. http://www.ema.europa.eu/docs/en_GB/document_library/Referrals_document/Leponex_30/WC500010966.pdf (accessed 29 August 2015).

25. Fulop G, Phillips RA, Shapiro AK, et al. ECG change during haloperidol and pimozide treatment of Tourette’s disorder. Am J Psychiatry 1987; 144: 673–675.

26. Shapiro E, Shapiro AK, Fulop G, et al. Controlled study of haloperidol, pimozide and placebo for the treatment of Gilles de la Tourette’s syndrome. Arch Gen Psychiatry 1989; 46: 722–730.

27. Desai M, Tanus-Santos JE, Li L, et al. Pharmacokinetics and QT interval pharmacodynamics of oral haloperidol in poor and extensive metabolizers of CYP2D6. Pharmacogenomics J 2003; 3: 105–113.

28. Miceli JJ, Tensfeldt TG, Shiovitz T, et al. Effects of oral ziprasidone and oral haloperidol on QTc interval in patients with schizophrenia or schizoaffective disorder. Pharmacotherapy 2010; 30: 127–135.

29. US Food and Drug Administration. Psychopharmacological Drugs Advisory Committee briefing document for ziprasidone HCl capsules, https://www.accessdata.fda.gov/drugsatfda_docs/nda/2001/20-825_Geodan_pmntbl.pdf (accessed 29 August 2015).

30. Desta Z, Kerbusch T and Flockhart DA. Effect of clarithromycin on the pharmacokinetics and pharmacodynamics of pimozide in healthy poor and extensive metabolizers of cytochrome P450 2D6 (CYP2D6). Clin Pharmacol Ther 1999; 65: 10–20.

31. Salih IS, Thanacoody RH, McKay GA, et al. Comparison of the effects of thioridazine and mesoridazine on the QT interval in healthy adults after single oral doses. Clin Pharmacol Ther 2007; 82: 548–554.

32. Hartigan-Go K, Bateman DN, Nyberg G, et al. Concentration-related pharmacodynamic effects of thioridazine and its metabolites in human. Clin Pharmacol Ther 1996; 60: 543–553.

33. Czekalla J, Beasley CM Jr, Dellva MA, et al. Analysis of the QTc interval during olanzapine treatment of patients with schizophrenia and related psychosis. J Clin Psychiatry 2001; 62: 191–198.

34. Invega (paliperidone). Extended-release tablets. Product information, http://www.janssen.com/canada/sites/www_janssen_com_canada/files/prod_files/live/invega_cpm.pdf (accessed 29 August 2015).

35. Hough DW, Natarajan J, Vandebosch A, et al. Evaluation of the effect of paliperidone extended release and quetiapine on corrected QT intervals: a randomized, double-blind, placebo-controlled study. Int Clin Psychopharmacol 2011; 26: 25–34.

36. Potkin SG, Preskorn S, Hochfeld M, et al. A thorough QTc study of 3 doses of iloperidone including metabolic inhibition via CYP2D6 and/or CYP3A4 and a comparison to quetiapine and ziprasidone. J Clin Psychopharmacol 2013; 33: 3–10.

37. Jensen KG, Gärnner S, Correll CU, et al. Change and dispersion of QT interval during treatment with quetiapine extended release versus aripiprazole in children and adolescents with first-episode psychosis: results from the TEA trial. Psychopharmacology 2018; 235: 681–693.

38. Brook S, Walden J, Benattia I, et al. Ziprasidone and haloperidol in the treatment of acute exacerbation of schizophrenia and schizoaffective disorder: comparison of intramuscular and oral formulations in a 6-week, randomized, blinded-assessment study. Psychopharmacology 2005; 178: 514–523.

39. Kane JM, Carson WH, Saha AR, et al. Efficacy and safety of aripiprazole and haloperidol versus placebo in patients with schizophrenia and schizoaffective disorder. J Clin Psychiatry 2002; 63: 763–771.

40. Kasper S, Lerman MN, McQuade RD, et al. Efficacy and safety of aripiprazole vs. haloperidol for long-term maintenance treatment following acute relapse of schizophrenia. Int J Neuropsychopharmacol 2003; 6: 325–337.

41. Beasley CM, Hamilton SH, Crawford AM, et al. Olanzapine versus haloperidol: acute phase results of the international double-blind olanzapine trial. Eur Neuropsychopharmacol 1997; 7: 125–137.

42. Breier A, Berg PH, Thakore JH, et al. Olanzapine versus ziprasidone: results of a 28-week double-blind study in patients with schizophrenia. Am J Psychiatry 2005; 162: 1879–1887.

43. Conley RR and Mahmoud R. A randomized double-blind study of risperidone and olanzapine in the treatment of schizophrenia or...
schizoaffective disorder. *Am J Psychiatry* 2001; 158: 765–774.

44. Fleischhacker WW, McQuade RD, Marcus RN, *et al.* A double-blind, randomized comparative study of aripiprazole and olanzapine in patients with schizophrenia. *Biol Psychiatry* 2009; 65: 510–517.

45. Grootens KP, van Veelen NM, Peuskens J, *et al.* Ziprasidone vs olanzapine in recent onset schizophrenia and schizoaffective disorder: results of an 8-week double-blind randomized controlled trial. *Schizophr Bull* 2011; 37: 352–361.

46. Kane J, Canas F, Kramer M, *et al.* Treatment of schizophrenia with paliperidone extended-release tablets: a 6-week placebo-controlled trial. *Schizophr Res* 2007; 90: 147–161.

47. Kwon JS, Mittoux A, Hwang JY, *et al.* The efficacy and safety of 12 weeks of treatment with sertindole or olanzapine in patients with chronic schizophrenia who did not respond successfully to their previous treatments: a randomized, double-blind, parallel-group, flexible-dose study. *Int Clin Psychopharmacol* 2012; 27: 326–335.

48. Lieberman JA, Stroup TS, McEvoy JP, *et al.* Effectiveness of antipsychotic drugs in patients with chronic schizophrenia. *N Engl J Med* 2005; 353: 1209–1223.

49. Marder SR, Kramer M, Ford L, *et al.* Efficacy and safety of paliperidone extended-release tablets: results of a 6-week, randomized, placebo-controlled study. *Biol Psychiatry* 2007; 62: 1363–1370.

50. Meltzer HY, Cucchiaro J, Silva R, *et al.* Lurasidone in the treatment of schizophrenia: a randomized, double-blind, placebo- and olanzapine-controlled study. *Am J Psychiatry* 2011; 168: 957–967.

51. Mortimer A, Martin S, Loo H, *et al.* A double-blind, randomized comparative trial of amisulpride versus olanzapine for 6 months in the treatment of schizophrenia. *Int Clin Psychopharmacol* 2004; 19: 63–69.

52. Schoemaker J, Naber D, Vrijland P, *et al.* Long-term assessment of asenapine vs. olanzapine in patients with schizophrenia or schizoaffective disorder. *Pharmacopsychiatry* 2010; 43: 138–146.

53. Simpson GM, Glick ID, Weiden PJ, *et al.* Randomized, controlled, double-blind multicenter comparison of the efficacy and tolerability of ziprasidone and olanzapine in acutely ill inpatients with schizophrenia or schizoaffective disorder. *Am J Psychiatry* 2004; 161: 1837–1847.

54. Tran PV, Hamilton SH, Kuntz AJ, *et al.* Double-blind comparison of olanzapine versus risperidone in the treatment of schizophrenia and other psychotic disorders. *J Clin Psychopharmacol* 1997; 17: 407–418.

55. Canuso CM, Lindenmayer JP, Kosik-Gonzalez C, *et al.* A randomized, double-blind, placebo-controlled study of 2 dose ranges of paliperidone extended-release in the treatment of subjects with schizoaffective disorder. *J Clin Psychiatry* 2010; 17: 587–598.

56. Canuso CM, Schooler N, Carothers J, *et al.* Paliperidone extended-release in schizoaffective disorder: a randomized, controlled study comparing a flexible dose with placebo in patients treated with and without antidepressants and/or mood stabilizers. *J Clin Psychopharmacol* 2010; 30: 487–495.

57. Coppola D, Melkote R, Lannie C, *et al.* Efficacy and safety of paliperidone extended release 1.5 mg/day - a double-blind, placebo- and active-controlled, study in the treatment of patients with schizophrenia. *Psychopharmacol Bull* 2011; 44: 1–19.

58. Borison RL, Arvanitis LA and Miller BG. ICI 204,636 an atypical antipsychotic efficacy and safety in a multicenter placebo-controlled trial in patients with schizophrenia. *J Clin Psychopharmacol* 1996; 16: 158–169.

59. Small JG, Hirsch SR, Arvanitis LA, *et al.* Quetiapine in patients with schizophrenia: a high-and low-dose comparison with placebo. *Arch Gen Psychiatry* 1997; 54: 549–557.

60. Addington DE, Pantelis C, Dineen M, *et al.* Efficacy and tolerability of iloperidone versus risperidone in patients with acute exacerbation of schizophrenia or schizoaffective disorder: an 8-week, double-blind, multicenter trial. *J Clin Psychiatry* 2004; 65: 1624–1633.

61. Azorin JM, Strub N and Loft H. A double-blind, controlled study of sertindole versus risperidone in the treatment of moderate-to-severe schizophrenia. *Int Clin Psychopharmacol* 2006; 21: 587–598.

62. Chan HY, Lin WW, Lin SK, *et al.* Efficacy and safety of aripiprazole in the acute treatment of schizophrenia in Chinese patients with risperidone as an active control: a randomized trial. *J Clin Psychiatry* 2007; 68: 29–36.

63. Emsley RA and Group RW. Risperidone in the treatment of first-episode psychotic patients: a double-blind multicenter study. *Schizophr Bull* 1999; 25: 721–729.
64. Heinrich K, Klieser E, Lehmann E, et al. Risperidone versus clozapine in the treatment of schizophrenic patients with acute symptoms: a double blind, randomized trial. Prog Neuropsychopharmacol Biol Psychiatry 1994; 18: 129–137.

65. Daniel DG, Zimbroff DL, Potkin SG, et al. Ziprasidone 80 mg/day and 160 mg/day in the acute exacerbation of schizophrenia and schizoaffective disorder: A 6-week placebo-controlled trial. Neuropsychopharmacology 1999; 20: 491–505.

66. Keck P, Buffenstein A, Ferguson J, et al. Ziprasidone 40 and 120 mg/day in the acute exacerbation of schizophrenia and schizoaffective disorder: a 4-week placebo controlled trial. Psychopharmacology 1998; 140: 173–184.

67. Leucht S, Cipriani A, Spineli L, et al. Comparative efficacy and tolerability of 15 antipsychotic drugs in schizophrenia: a multiple-treatments meta-analysis. Lancet 2013; 382: 951–962.

68. Maust DT, Kim HM and Seyfried LS. Antipsychotics, other psychotropics, and the risk of death in patients with dementia: number needed to harm. JAMA Psychiatry 2015; 72: 438–445.

69. Wu CS, Tsai YT and Tsai HJ. Antipsychotic drugs and the risk of ventricular arrhythmia and/or sudden cardiac death: a nation-wide case-crossover study. J Am Heart Assoc 2015; 4: e001568.

70. WHO Collaborating Centre for Drug Statistics Methodology. ATC/DDD index 2016, http://www.whocc.no/atc_ddd_index (accessed 29 August 2016).

71. Udomratn P and Vasiknanonte S. Pattern of prescribing antipsychotic drugs in Thailand. ASEAN Journal of Psychiatry 2009; 10: 75–82

72. Sanguanvichaikul T, Arunpongpaisal S and Paholpak P. Antipsychotic drug prescription pattern for patients with schizophrenia who admitted at Srinagarind Hospital. J Psychiatr Assoc Thailand 2013; 58: 41–56.

73. Park YC, Yang SY, Chong MY, et al. Differences in high dose antipsychotic prescriptions in patients with schizophrenia in Asian countries/areas: findings from the REAP-AP study. Psychiatry Investig 2018; 15: 1007–1008.

74. Judge GG, Griffiths WE, Hill RC, et al. The Theory and practice of econometrics. New York: John Wiley and Sons, 1985.

75. Chongtrakul P. RDU Hospital: the pathway to rational drug use. Thai J Pharmaco 2015; 37: 48–62.

76. Chaiyakunapruk N, Jones SM, Dhippayom T, et al. Chapter 1: Pharmacy Practice in Thailand. In: Fathelrahman A, Ibrahim M and Wertheimer A (eds) Pharmacy practice in developing countries: achievements and challenges. Massachusetts: Academic Press, 2016, pp. 3–22.

77. Rattanachotphanit T, Limwattananon C and Waleekhachonloet O. Trends and variations in outpatient coprescribing of simvastatin or atorvastatin with potentially interacting drugs in Thailand. Ther Adv Drug Saf 2019; 10: 2042098618820502.

78. Tisdale JE, Jaynes HA, Kingery JR, et al. Development and validation of a risk score to predict QT interval prolongation in hospitalized patients. Circ Cardiovasc Qual Outcomes. 2013; 6: 479–487.

79. Vandael E, Vandenberg B, Willems R, et al. Risk management of hospitalized psychiatric patients taking multiple QTc-prolonging drugs. J Clin Psychopharmacol 2017; 37: 540–545.

80. Haugaa KH, Bos JM, Tarrell RF, et al. Institution-wide QT alert system identifies patients with a high risk of mortality. Mayo Clin Proc 2013; 88: 315–325.