RESEARCH ARTICLE

Association of Cord Blood Levels of Lead, Arsenic, and Zinc and Home Environment with Children Neurodevelopment at 36 Months Living in Chitwan Valley, Nepal

Rajendra Prasad Parajuli1,2,3*, Masahiro Umezaki1, Takeo Fujiwara4, Chiho Watanabe1

1 Department of Human Ecology, Graduate School of Medicine, University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan, 2 International Institute for Child Rights and Development (IICRD), PO Box 8646 Victoria Main, Victoria, British Columbia, V8W 3S2, Canada, 3 Basu Laboratory, CINE Building, Macdonald Campus, Faculty of Agricultural and Environmental Sciences, McGill University, Montreal, Quebec, Canada, H9X 3V9, 4 Department of Social Medicine, National Research Institute for Child Health and Development, 2-10-1, Okura, Setagaya-ku, 157-8535 Tokyo, Japan

* rp.parajuli@mcgill.ca

Abstract

Background

Inconsistent results continue to be reported from studies linking low-level prenatal lead exposure and child development. Because of limited earlier epidemiological studies with birth cohort follow up design, it still remains inconclusive that either the associations of cord blood level of toxic, and essential elements, and postnatal raising environment on neurodevelopment of children remains constant throughout childhood or change over time.

Aims

This study aims to investigate the influence of in utero toxic [lead (Pb) and arsenic (As)] and essential elements [zinc (Zn)] levels on neurodevelopment of 36 months children in Chitwan valley, Nepal taking the postnatal environment into account.

Study Designs and Subjects

In this birth cohort study, participants (N=100 mother-infants’ pairs) were recruited in Chitwan district, Nepal. We measured Pb, As and Zn concentrations in cord blood. Postnatal raising environment (i.e., Home score or home environment hereafter) was evaluated using Home Observation for Measurement of Environment (HOME) scale. Neurodevelopment of children at 36 months of age (n=70) were assessed using Bayley Scale of Infant Development, Second Edition (BSID II). Multivariate regression was performed (n=70) to see the association of in utero toxic and essential elements level and home environment with neurodevelopment score adjusted for covariates.
Results
Cord blood levels of Pb, As and Zn were not associated with any BSID II cluster scores of 36 months children. The children with relatively superior HOME score and concurrent nutritional status (weight at 36 months) showed better cognitive development (i.e., MDI scores) and motor functions than their counterparts, respectively.

Conclusion
In this general population in Nepal, prenatal Pb, As and Zn levels are not important determinants of the neurodevelopment of 36-month-old children while a consistent beneficial effect of a stimulating home environment on neurodevelopmental indicators is continued.

Introduction
The detrimental effects of in utero toxic elements exposure with later neurodevelopment have been well established at higher exposure levels [1–3]. However, results of epidemiological studies on the association of in utero toxic elements exposure with later neurodevelopment at low levels still remain inconclusive [4–6]. For example, in a cohort in Krakow, Poland, cord blood Pb level (mean cord blood Pb = 12.1 μg/L) was inversely associated with the mental development index (MDI) score of the Bayley scale evaluated at 36 months among only boys [6]. In contrast, a cohort study in Boston, USA [7] could not detect such association between cord blood lead and cognitive development at 36 months with higher exposure levels (mean cord blood Pb = 65 μg/L) than the Krakow cohort. Hence, further investigation about the shape of the dose-effect relationship between lead exposure and neurodevelopment at quite low levels will be helpful to understand the controversies that continue to exist.

On the other hand, it remains inconclusive in lower exposure levels whether the associations between cord blood levels of toxic elements or neurodevelopment of children remains persistent throughout childhood or changes over time. For example, in the Krakow cohort [6], cord blood Pb was not associated with BSID II scores at 12 months. However, the association developed to borderline significance at 24 months. By 36 months, the association became significant among boys. In a New Mexico Cohort [8], cord blood Pb (mean cord blood Pb = 67 μg/L) was associated with the MDI score of the BSID II at 24 months. Though, the association became weak when children grow >3 years. In contrast, results from earlier cohort studies indicated that if the prenatal exposure level is high, an inverse association between in utero exposure of Pb and neurodevelopmental indicators continues to exist from birth to 3 years consistently [1–3]. We have recently reported the inverse association of in utero toxic elements exposure (e.g., Pb mean 20.6 μg/L and As 1.33 μg/L) with neurodevelopment of infants [9] but could not detect such an association at 6 [10] and 24 months [11]. However, it is not clear whether these associations remain constant throughout childhood or change (i.e., re-emerge as delayed onset) by the time of 36 months.

A growing number of epidemiological studies have been conducted to investigate the association between As exposure and neurodevelopment indicators among children [12–17]. Lack of association between maternal As level during pregnancy (i.e., urinary As level during the first, second, and third trimesters as a proxy of prenatal exposure) and neurodevelopmental indicators (BSID II) at 7, 18 and 60 (among boys only) months was reported in Bangladesh [18–20]. However, no study has investigated the association between cord blood As level, which is
considered a better bio-indicator of prenatal exposure [9], and the neurodevelopment of 36-month-old children, which is an important developmental milestone including mental and psychomotor development [21].

Regarding the association between in utero levels of Zn and neurodevelopment, randomized control trials showed that zinc supplementation to pregnant mothers and infants improves fine and gross motor skills of children in China [22], while some other studies could not detect such effects [23–25]. Inconsistencies among the studies may be attributable to the different levels of Zn, different settings and different populations.

In the present study, we targeted the Chitwan Valley in lowland (Terai) Nepal, because we found inverse associations between cord blood levels of As and Pb, and neurodevelopmental indicators (i.e., motor and state regulation cluster score, respectively) measured by the Brazelton Neonatal Behavioral Assessment Scale, third edition (NBAS III) at birth [9]. However such an association was not evident at 6 [10] and 24 months [11] evaluated by the BSID II. In the current study, we aimed to investigate the influence of in utero toxic elements exposure of Pb and As, and the essential element, Zn, considering the effect of home environment on neurodevelopment scores of 36 months old children in Chitwan district, Nepal. Further, this study looked at the time lag effect; i.e., whether the associations of cord blood level of toxic, and essential elements, and postnatal raising environment on neurodevelopment of children remain constant throughout childhood or can change over time.

Methods

Study sample

The eligibility criteria to participate in the present study were: living in the study area (i.e., Chitwan) for at least 2 years, at term pregnancy when the mothers visited the hospital (more than 37 weeks of gestation), aged 18 to 40 years, vaginal delivery, singleton, and no report of diabetes, hypertension, and preeclampsia. Two hundred pregnant mothers were approached from September 2008 to October 2008 in the Bharatpur General Hospital of Chitwan district. Among them, 119 were eligible. Mothers were informed of the background and objectives of the study, what they will experience during the study process, benefits to the participants, and potential risks (although not expected). One hundred women signed a letter of informed consent, i.e., participated (participation rate, 84%). The study protocol was approved by the ethics committees of the Graduate School of Medicine, the University of Tokyo (approval no #2244) and of the Bharatpur General Hospital, Chitwan, Nepal.

Measurements of cord blood elements levels

Cord blood was collected from the placenta by midwives following the common aseptic procedure. Cord blood (10 mL) was collected into a trace metal-free cryovial that contained ethylenediaminetetraacetic acid (EDTA) as an anticoagulant. Cord blood samples were stored in a freezer (-20°C) for less than 1 month, transported to the laboratory in Tokyo (kept frozen with dry ice), and stored in a deep freezer (-78°C) until analysis.

The levels of toxic elements (Pb, and As) and the essential element zinc were measured in cord blood samples in the department of Human Ecology, University of Tokyo. Homogenized whole cord blood (500 μL) was digested with 0.5 mL nitric acid (ultra-pure grade, Wako) in a gas-tight steel container (Uni-seal, San-ai Co. Ltd, Aichi, Japan) at 140°C for 3 h, and the concentrations of the elements were determined with an inductively coupled plasma mass spectrometer (ICP-MS; Agilent 7500 ce, Agilent Technology Tokyo, Japan). Methods and research findings from this cohort have been published previously [9,10,26,27]. The certified reference material (CRM), “Seronorm” trace elements whole blood level-1, lot MR 4206 (Sero AS,
Billingstad, Norway), was used. The observed values for each element were within the certified range. Randomly selected cord blood samples (20%) were analyzed twice for all elements. For all the elements measured, there was no statistical difference between the two measurements, and the correlations between them ranged from 0.90 to 0.95, depending on the element.

Of the 100 cord blood samples, 94 samples were used for measurement of toxic elements and the essential element zinc. It was not possible to identify 6 samples due to lack of ID information on the tube tag. In addition, due to limited sample volume, 15 cord blood Pb levels could not be re-measured; thus, 79 cord blood Pb data were used. Out of 94 samples, all cord blood levels for Pb, As and Zn were measured above the detection limit (i.e., 0.026, 0.006 and 2.46 μg/L, respectively).

Anthropometry of mothers and infants at birth 6, 24 and 36 months

The height and weight of mothers were recorded just before delivery. Body weight was recorded to the nearest 0.1 kg using a portable digital scale (Model BF-046 WH; Tanita, Tokyo Japan). Height was measured to the nearest 0.1 cm. Body mass index (BMI) was calculated by dividing weight (kg) by height squared (m²). Birth weight of newborns was obtained from hospital records. Infant’s height and weight were also measured at 6, 24, and 36 months using the same devices.

Interview at the day of delivery

The following information was collected by interview to mothers after delivery: mother’s age, parity, gender of baby, gestational age, time and date of delivery, educational level, annual income of family, smoking during pregnancy and drinking alcohol during pregnancy.

Postnatal home environment

The author (RPP) visited the house of each mother/infant pair after approximately 36 months (36.9 ± 0.4 months after their baby was born) after delivery and evaluated the postnatal home environment by the HOME scale [28]. The scale is the total evaluation (i.e., by both observation and interview) of the parent’s response to their child’s behavior, acceptance of child, organization of environment, learning material, parental involvement with the child, and opportunities of variety for babies by 45 items. Thus, possible scores range from 0 to 45, with scores < 25 indicating a less stimulating home environment [29]. Of the 100 mothers enrolled in the cohort, home environment of 74 houses was evaluated by a single evaluator (by one of the author: RPP).

Neurodevelopmental indicators of 36 month old children

The second edition of the Bayley scale of infant development (BSID II) [30] was used to assess neurodevelopmental status of 36 month old children. The BSID II scale has been frequently used in the field of neurotoxicology [6,29,31–37]. The BSID II provides two neurodevelopmental indicators: the MDI and the Psychomotor Development Index (PDI). MDI reflects the infant’s level of cognitive function, language, and personal or social development. PDI reflects the gross and fine motor functions.

The BSID II test was administered to the children within 8 weeks of the target age group (i.e., 36 months ± 2 month; as accepted by BSID II manual) and the age of children in days were recorded. The BSID II assessment of all children was conducted in their own house by the author (RPP) blinded to the exposure status. Assessment of children in their own house judged to be convenient to the caregiver as well as for the cohort children (no shyness because of
familiar environment). Uniform assessment conditions [i.e., early information about assess-
ment, limited presence of family members or siblings, friendly approach of tester to children,
moderate light at the place of assessment, with fresh mood of children (i.e., no hunger or sleepi-
ness)] was maintained.

Statistical Analysis
Firstly, distribution of all the variables was examined for normality. Cord blood levels of toxic
and essential elements and annual family income were log-transformed.

Bivariate (Model 1) and multivariate (Model 2) analyses were conducted to examine the
(uneadjusted and mutually or fully adjusted association, respectively) associations between neu-
rodevelopment indicators and toxic (Pb and As) and the essential element zinc and the HOME
scale score [18,25,29,33,38,39] and covariates [mother’s age [40], parity [35–37], mothers edu-
cation level [6,34–37,41–44], family income [45], mother’s BMI just before birth [18], weight
of children at birth and at 36 months after birth [18,25,29,42], gestational age [18,46], and chil-
dren’ age at the time of BSID II assessment [29]] that are known to correlate with the neurode-
velopmental indicators. In Model 3, four covariates (i.e., parity, family income, mother’s BMI
just before delivery, and weight of the infant at birth) were dropped from the fully adjusted
model (Model 2) to see the “minimum” adjusted effect of explanatory variables and covariates,
on response variables.

The distribution of the covariate, age at BSID II assessment in days, was also normal. Smok-
ing during pregnancy and drinking alcohol during pregnancy were not analyzed because only
5 smoked and 4 drank out of 100 mothers.

The p-values less than 0.05 were considered as statistically significant. Statistical analyses
were performed using SPSS version 11.5 (SPSS Inc., Tokyo, Japan).

Results
Characteristics of mothers and children
Table 1 summarizes the characteristics of mothers and child pairs at birth, at 6, 24 and 36
months after birth. Maternal, household and newborns characteristics from this cohort have
been published previously [26,27]. Indicators for nutritional status of newborns (i.e., birth
weight, height) did not differ by sex. In contrast, weight of children at 36 months after birth dif-
fered by sex (p<0.03, i.e., boys were in average 670 grams heavier than girls, data not shown).
The mean body weight of the present study children at 36 months after birth was 12.7 kg (ran-
ged 9.6 kg to 16.5 kg). Body height became similar between girls and boys children at 36
months after birth.

Neurodevelopmental indicators of 36 month old children
All the children were evaluated by the BSID II scale at 36 months after birth (mean assessment
age = 36.9 months). These index scores of the cohort children were mostly normally distribut-
ed. The MDI score in the BSID II observed in this cohort [i.e., 95.1] was lower than the scores
reported by Krakow cohort [6] in Poland [i.e., 103.1] but similar to the MDI score reported in
the Mexico cohort [93.2] [47] and New York City cohort [90.0] [48]. The PDI score in this co-
hort [i.e., 114.6] was higher than previously reported scores [i.e., 95.8] in the Mexico Cohort
[47] and New York City cohort [i.e., 100.5] [48]. All the cluster scores did not differ by gender
(p>0.05, data not shown). According to criteria provided by the BSID II manual [30], MDI
score for 1 child (1.4%) fell into the "significantly delayed development" range (i.e. 69
and below), while 8 children (11.4%) fell into the range of "mildly delayed development"
Scores of PDI for 1 child (1.4%) was categorized as “significantly delayed development (i.e. 69 and below)” (data not shown).

Associations among cord blood level of toxic elements and the essential element zinc and BSID II index score

Table 2 summarizes the association among cord blood levels of toxic elements or the essential element zinc, and BSID II index scores. In the bivariate regression model, cord blood toxic elements levels (Pb and As) or the essential element zinc were not associated with any BSID II cluster scores.

Total HOME scale scores positively associated with MDI scores (Fig. 1). Weight of children at 36 months was positively associated with PDI scores, while age at BSID II assessment was inversely associated with MDI and PDI scores.

In the multivariate regression model (Table 2), cord blood toxic elements (Pb and As) levels or the essential element zinc were not associated with any BSID II cluster scores. Home environment remained positively associated with MDI score. Concurrent nutritional status of children (i.e., weight of children at the 3 year visit) also remained significantly associated with fine and gross motor functions of children (i.e., PDI score). In addition, the minimally adjusted model (Model 3) and fully adjusted model (Model 2) showed similar results in terms of direction and significance despite some differences in coefficients and R square values. There were no significant associations concerning interactions between toxicants (for example, Log Pb and
Table 2. Association of demographic and in utero chemical and home environmental variables with MDI and PDI scores of BSID II at 36 months from birth (n = 70).

Response Variables	Mental Development Index Score	Psychomotor Development Index Score				
	Model 1a	Model 2b	Model 3c	Model 1a	Model 2b	Model 3c
Cord blood level of (log µg/L)	Estimated change (95% confidence interval) in the value of the response variable for a one unit increase of the explanatory variable	-	-	-	-	-
Lead (Pb)	5.21 (-2.80 to 13.22)	4.06 (-3.21 to 11.31)	4.46 (-2.46 to 11.37)	-1.77 (-9.16 to 5.62)	-2.56 (-9.71 to 4.59)	-1.68 (-8.42 to 5.06)
Arsenic (As)	1.63 (-11.09 to 14.34)	4.89 (-7.21 to 17.00)	2.55 (-9.07 to 14.17)	7.27 (-4.21 to 18.75)	7.34 (-4.58 to 19.26)	6.25 (-5.08 to 17.58)
Zinc (Zn)	12.14 (-12.64 to 36.91)	7.00 (-16.42 to 30.42)	2.29 (-19.81 to 24.40)	5.35 (-17.39 to 28.08)	-1.82 (-24.90 to 21.25)	-2.43 (-24.00 to 19.12)
HOME Score at 36 months	0.53 (0.23 to 0.84)	0.66 (0.27 to 1.05)	0.69 (0.31 to 1.07)	0.27 (-0.03 to 0.57)	0.22 (-0.16 to 0.60)	0.27 (-0.10 to 0.64)
Covariates	-	-	-	-	-	-
Mother's age (years)	-0.14 (-0.77 to 0.49)	-0.02 (-0.85 to 0.82)	-0.26 (-0.85 to 0.33)	-0.19 (-0.77 to 0.39)	0.07 (-0.75 to 0.89)	0.19 (-0.77 to 0.39)
Parity	-1.80 (-4.69 to 1.08)	-0.76 (-4.95 to 3.44)	-	-1.51 (-4.15 to 1.13)	-1.36 (-5.49 to 2.78)	-
Mothers education level (years)	0.60 (-0.05 to 1.24)	-0.10 (-0.91 to 0.71)	-0.14 (-0.85 to 0.58)	0.41 (-0.19 to 1.00)	0.11 (-0.69 to 0.90)	0.08 (-0.62 to 0.78)
Log annual family income (USD)	1.56 (-4.77 to 7.89)	-4.68 (-11.37 to 2.01)	-	2.98 (-2.76 to 8.73)	-3.32 (-9.91 to 3.27)	-
Mothers BMI (kg/m2) just before delivery	0.50 (-0.27 to 1.28)	0.39 (-0.37 to 1.16)	-	0.37 (-0.34 to 1.07)	0.36 (-0.39 to 1.11)	-
Birth weight (kg)	-0.63 (-5.85 to 4.59)	-1.92 (-7.04 to 3.19)	-	2.51 (-2.22 to 7.24)	1.37 (-3.66 to 6.41)	-
Weight of infants at 36 months (kg)	1.09 (-0.53 to 2.71)	1.26 (-0.32 to 2.85)	0.88 (-0.60 to 2.36)	2.13 (0.73 to 3.53)	2.15 (0.60 to 3.71)	2.10 (0.66 to 3.55)
Gestational age (week)	1.52 (-0.23 to 3.27)	0.99 (-0.62 to 2.59)	0.87 (-0.68 to 2.42)	1.40 (-0.20 to 3.00)	0.95 (-0.63 to 2.53)	0.86 (-0.65 to 2.37)
Age at BSID II assessment (days)	-7.67 (-13.65 to 1.70)	-12.06 (-18.06 to -6.06)	-11.40 (-17.09 to -5.71)	-5.24 (-10.81 to 0.33)	-9.28 (-15.19 to -3.37)	-8.54 (-14.09 to -2.99)
R²	0.423	0.389	-	0.329	0.302	-

Bivariate and multivariate associations between in utero chemical and home environmental variables and covariates with BSID II clusters were shown in the table.

Model 1a: Bivariate regression analysis was conducted to see the unadjusted association between all the “explanatory variables (in utero Pb, As, and Zn level and HOME Score)” and “covariates (i.e., mother’s age, parity, mother’s education level, family income, mother’s BMI just before delivery, weight of the infant at birth and 36 months after birth, gestational age and infant’s age at the time of BSID II assessment)”.

Model 2b: Multivariate regression model was conducted to see the mutually adjusted effect of explanatory variables, and covariates, on response variables. Out of 100 cohort mother infant pairs recruited, although cord blood Pb level was available for 79 participants, and HOME score was available for 74 participants, only 70 participants (n = 70) who had complete sets of data available for analysis were considered in the model.

Model 3c: In this model, “parity, family income, mother’s BMI just before delivery, weight of the infant at birth” were dropped from fully adjusted model (Model 2) to see the “minimum” adjusted effect of explanatory variables, and covariates, on response variables.

Log As) as well as interactions between HOME and the neurotoxins or the essential elements (for example, HOME score and Log Zinc level).

Discussion

In this cohort, cord blood levels of Pb, As and Zn were not associated with any BSID II cluster scores of 36 months old children in multivariate models. The children with relatively higher...
HOME scores and better concurrent nutritional status showed better cognitive development (i.e., MDI scores) and motor functions (i.e., PDI scores) than their counterparts, respectively.

Associations among cord blood levels of toxic elements and BSID II cluster score

Cord blood levels of toxic elements (i.e., Pb and As) were not associated with any BSID II cluster scores evaluated at 36 months. The cord blood levels of Pb and As showed a significant inverse association with the motor and regulation of state cluster score (NBAS III) of the cohort infants evaluated at birth [9] but such an association did not continue to exist at 6 [10] or 24 months [11]. In contrast, results from earlier cohort studies indicated a consistent inverse association between in utero exposure of Pb and neurodevelopmental indicators continued to exist from birth to 3 years in relatively higher (>63 μg/L) Pb exposure levels [1–3]. Hence, the harm of in utero exposure to Pb (20.6 μg/L) on the neurodevelopment of infants might be too small to persist until age 6 or 24 or 36 months. However, even in low exposure levels (12.3 μg/L), an inverse association between prenatal Pb level and BSID II scores at 36 months has been reported in the Krakow cohort study (among boys only) in Poland [6,36]. The possibility of lack of power [as inferred in the Mexico cohort (n = 83) [8,49]] because of a small sample size in our cohort (n = 70), compared to the bigger sample size (n = 457) in Krakow cohort, cannot be ignored for the negative finding.

The cord blood levels of Pb and As, showed a significant inverse association with the motor and regulation of state cluster score (NBAS III) of the cohort infants evaluated at birth [9]. Diminution of effect over time during postnatal period as inferred by Claus Henn et al. [50] by shedding (i.e., excretion) most of the As burden from the child body via urine [51] may be one possible pathway. Neuroplasticity of the immature brain might be another possible reason behind the diminution of effect over time [52]. A similar mechanism can be speculated for Pb as well.
Associations among cord blood levels of the essential element zinc and BSID II cluster score

Cord blood level of essential elements (i.e. Zn) was not associated with any BSID II cluster scores. Similar to earlier studies [23–25], children with higher in utero Zn levels did not show better neurodevelopment scores in this cohort. This may be because of good nutritional status of cohort babies as evident by their birth weight or the BSID scale is not able to recognize the subtle effect of Zn in its index score. Further, concurrent nutritional status (weight of children at 36 months) also contributed significantly in motor functions of 36 months old children.

Associations between the HOME scale score and BSID II cluster score

The HOME scale score was positively associated with gross and fine motor development (MDI) at 36 months after birth, which is in line with the observation in Mexico [29], but not in the United States cohort [32]. The positive association between the HOME scale score and neurodevelopmental indicators were also consistently reported among elder (18 to 24 months) Latino children in the United States [33] and children of native German families [54]. Interestingly, at 6 months the HOME scale score was positively associated with motor development (i.e., PDI score) while at 36 months it was associated with mental development (i.e., MDI score). This may be because of an increased capacity of children to interact with their surrounding environment with older age. At 6 months, home environment in terms of “organization of environment” and “learning material for babies” in the HOME cluster contributed to lower PDI scores [10]. However, at 36 months of age, we can speculate a better (than that of early age) children’s response towards the parental dealing (i.e., “response to child’s behavior,” “acceptance of child,” and “involvement with the child” aspects of the HOME scale) with children. At an older age, children can interact with ‘mentioned stimuli in terms of parental involvement’ for improved mental development (i.e., improved MDI). In addition, because of cultural assimilation among different cultural and religious groups such as the Hindus and Buddhists, Nepalese children are celebrating many festivals together, which involve different family visits. Such frequent family visits with babies might provide the babies with better “opportunities of variety” to learn as described in the HOME cluster scores.

Limitations

Several limitations should be considered before conclusion. First, the small sample size and hospital based sampling may limit the generalizability of the finding. In addition, the small sample size limits us in estimating an interaction effect between toxicants with confidence. Second, several potential confounders were not measured. They include prenatal exposure to mercury and pesticides [29,33]. They should be included in the future study. Third, applicability of the HOME scale in the Nepali context can be another problem. A few items (i.e., 5 out of 45 items) in the HOME scale e.g., “availability of specific toys” might cause underscoring for the HOME score since such toys are not common in Nepal. Yet, the HOME scale has been frequently used in developing countries [55–57]. Despite the ease in collection and frequent use, because of increased body fluid near the delivery, some concern has been raised for cord blood as an index for in utero exposure. However, the effect of increased body fluid near the delivery on metal concentration has not yet been precisely evaluated.

Nonetheless, this study has a number of strengths. This cohort is the first longitudinal birth cohort from Nepal for which considerable information was collected about environmental exposures and potential confounders. Our population had a wide range of and relatively higher average As and Pb levels than the exposure levels reported from population with background
exposure levels in developed countries. BSID II was evaluated by single tester at the participant’s home, which may avoid the inter-tester bias together with possible underperformance by children in a new assessment environment. Future epidemiological research should be conducted to evaluate the effect of in utero and postnatal exposure of toxic and essential elements on neurodevelopment in other populations from developing countries with different exposure/deficiency levels.

Conclusions

In a birth cohort study in the Terai region, lowland Nepal, exposure of Pb, As and deficiency of Zn were not high enough to cause detrimental effect on the neurodevelopment of 36 month old children in Nepal. While a consistent beneficial effect of a stimulating home environment on neurodevelopmental indicators is continued.

Acknowledgments

Special thanks are offered to the all participants, especially to those mothers who participate in the present study. We thank Ms. Toki Fillman (Master student at the University of Tokyo) for her help in English editing of the manuscript and to Dr. Keshav Raj Bhurtel, Senior gynecologist, Associate Professor of Chitwan Medical College, Dr. Shanti Regmi, Senior pediatrician at Bharatpur hospital and Dr. Hana Furusawa and Mr. Ping Ser Han for their support during this research.

Author Contributions

Conceived and designed the experiments: RPP MU CW. Performed the experiments: RPP CW. Analyzed the data: RPP MU TF CW. Contributed reagents/materials/analysis tools: MU RPP CW. Wrote the paper: RPP MU TF CW.

References

1. Factor-Litvak P, Wasserman G, Kline JK, Graziano J (1999) The Yugoslavia Prospective Study of environmental lead exposure. Environ Health Perspect 107: 9–15. PMID: 9872712
2. Wigg NR, Vimpani GV, McMichael AJ, Baghurst PA, Robertson EF, Roberts RJ (1988) Port Pirie Cohort study: childhood blood lead and neuropsychological development at age two years. J Epidemiol Community Health 42: 213–219. PMID: 3251001
3. Dietrich KN, Succop PA, Borrschein RL, Krafft KM, Berger O, Hammond PB, et al. (1990) Lead exposure and neurobehavioral development in later infancy. Environ Health Perspect 89: 13–19. PMID: 2088739
4. Koller K, Brown T, Spurgeon A, Levy L (2004) Recent developments in low-level lead exposure and intellectual impairment in children. Environ Health Perspect 112: 987–994. PMID: 15198918
5. Al-Saleh I, Nester M, Mashhour A, Moncari L, Shinwari N, Mohamed Gel D, et al. (2009) Prenatal and postnatal lead exposure and early cognitive development: longitudinal study in Saudi Arabia. J Environ Pathol Toxicol Oncol 28: 283–302. PMID: 20102326
6. Jedrychowski W, Perera F, Jankowski J, Mrozek-Budzyn D, Mroz E, Flak E, et al. (2009) Gender specific differences in neurodevelopmental effects of prenatal exposure to very low-levels: the prospective cohort study in three-year olds. Early Hum Dev 85: 503–510. doi:10.1016/j.earlhumdev.2009.04.006 PMID: 19450938
7. Bellinger D, Leviton A, Waterman C, Needleman H, Rabinowitz M (1987) Longitudinal analyses of prenatal and postnatal lead exposure and early cognitive development. N Engl J Med 316: 1037–1043. PMID: 3561456
8. Tellez-Rojo MM, Bellinger DC, Arroyo-Quiroz C, Lamadrid-Figueroa H, Mercado-Garcia A, Schnaas-Arrieta L, et al. (2006) Longitudinal associations between blood lead concentrations lower than 10 microg/dL and neurobehavioral development in environmentally exposed children in Mexico City. Pediatrics 118: e329–330. PMID: 16882776
9. Parajuli RP, Fujiwara T, Umezaki M, Watanabe C (2013) Association of cord blood levels of lead, arsenic, and zinc with neurodevelopmental indicators in newborns: A birth cohort study in Chitwan Valley, Nepal. Environ Res 121: 45–51. doi: 10.1016/j.envres.2012.10.010 PMID: 23164520

10. Parajuli RP, Fujiwara T, Umezaki M, Furusawa H, Watanabe C (2014) Home environment and prenatal exposure to lead, arsenic and zinc on the neurodevelopment of six-month-old infants living in Chitwan Valley, Nepal. Neurotoxicology and Teratology 41: 89–95. doi: 10.1016/j.ntt.2013.12.006 PMID: 24418190

11. Parajuli RP, Fujiwara T, Umezaki M, Watanabe C (2014) Home environment and cord blood levels of lead, arsenic, and zinc on neurodevelopment of 24 months children living in Chitwan Valley, Nepal. Journal of Trace Elements in Medicine and Biology.

12. Wright RO, Amarasiriwardena C, Woolf AD, Jim R, Bellinger DC (2006) Neuropsychological correlates of hair arsenic, manganese, and cadmium levels in school-age children residing near a hazardous waste site. Neurotoxicology 27: 210–216. PMID: 16310252

13. von Ehrenstein OS, Poddar S, Yuan Y, Mazumder DG, Eskenazi B, Basu A, et al. (2007) Children’s intellectual function in relation to arsenic exposure. Epidemiology 18: 44–51. PMID: 17149142

14. Calderon J, Navarro ME, Jimenez-Capdeville ME, Santos-Diaz MA, Golden A, Rodriguez-Leyva I, et al. (2001) Exposure to arsenic and lead and neuropsychological development in Mexican children. Environ Res 85: 69–76. PMID: 11161656

15. Rocha-Amador D, Navarro ME, Carrizales L, Morales R, Calderon J (2007) Decreased intelligence in children and exposure to fluoride and arsenic in drinking water. Cad Saude Publica 23 Suppl 4: S579–587. PMID: 18038039

16. Wasserman GA, Liu X, Parvez F, Ahsan H, Factor-Litvak P, van Geen A, et al. (2004) Water arsenic exposure and children’s intellectual function in Araihazar, Bangladesh. Environ Health Perspect 112: 1329–1333. PMID: 15345348

17. Dakeishi M, Murata K, Grandjean P (2006) Long-term consequences of arsenic poisoning during infancy due to contaminated milk powder. Environ Health 5: 31. PMID: 17076881

18. Tofail F, Vahter M, Hamadani JD, Nermell B, Yunus M, et al. (2009) Effect of arsenic exposure during pregnancy on infant development at 7 months in rural Matlab, Bangladesh. Environ Health Perspect 117: 288–293. doi: 10.1289/ehp.11670 PMID: 19270801

19. Hamadani JD, Grantham-McGregor SM, Tofail F, Nermell B, Fangstrom B, Huda SN, et al. (2010) Pre- and postnatal arsenic exposure and child development at 18 months of age: a cohort study in rural Bangladesh. International Journal of Epidemiology 39: 1206–1216. doi: 10.1093/ije/dyp369 PMID: 20085967

20. Hamadani JD, Tofail F, Nermell B, Gardner R, Shiraji S, Bottai M, et al. (2011) Critical windows of exposure for arsenic-associated impairment of cognitive function in pre-school girls and boys: a population-based cohort study. International Journal of Epidemiology 40: 1593–1604. doi: 10.1093/ije/dyr176 PMID: 22158669

21. CDC (2014) Important Milestones: Your Child at Three Years. Atlanta, USA: Centers for Disease Control and Prevention.

22. Sandstead HH, Penland JG, Alcock NW, Dayal HH, Chen XC, Li JS, et al. (1998) Effects of repletion with zinc and other micronutrients on neuropsychologic performance and growth of Chinese children. Am J Clin Nutr 68: 470S–475S. PMID: 9701162

23. Tamura T, Goldenberg RL, Ramey SL, Nelson KG, Chapman VR (2003) Effect of zinc supplementation of pregnant women on the mental and psychomotor development of their children at 5 y of age. Am J Clin Nutr 77: 1512–1516. PMID: 12791632

24. Taneja S, Bhandari N, Bahl R, Bhan MK (2005) Impact of zinc supplementation on mental and psychomotor scores of children aged 12 to 18 months: a randomized, double-blind trial. J Pediatr 146: 506–511. PMID: 15812454

25. Black MM, Sazawal S, Black RE, Khosla S, Kumar J, Menon V (2004) Cognitive and motor development among small-for-gestational-age infants: impact of zinc supplementation, birth weight, and caregiving practices. Pediatrics 113: 1297–1305. PMID: 15121945

26. Parajuli RP, Fujiwara T, Umezaki M, Furusawa H, Ser PH, Watanabe C (2012) Cord Blood Levels of Toxic and Essential Trace Elements and Their Determinants in the Terai Region of Nepal: A Birth Cohort Study. Biol Trace Elem Res.

27. Parajuli RP, Fujiwara T, Umezaki M, Watanabe C (2014) Impact of caste on the neurodevelopment of young children from birth to 36 months of age: a birth cohort study in Chitwan Valley, Nepal. BMC Pediatr 14: 56. doi: 10.1186/1471-2431-14-56 PMID: 24571600

28. Caldwell BM, Bradley RH (1984) Home Observation for Measurement of the Environment Comprehensive edition. Little, Rock: University of Arkansas
29. Torres-Sanchez L, Rothenberg SJ, Schnaas L, Cebrian ME, Osorio E, Del Carmen Hernandez M, et al. (2007) In utero p,p’-DDE exposure and infant neurodevelopment: a perinatal cohort in Mexico. Environ Health Perspect 115: 435–439. PMID: 17431495

30. Bayley N (1993) Bayley Scales of Infant Development (2nd ed.). Psychological Corporation.

31. Ribas-Fito N, Cardo E, Sala M, Eulalia de Muga M, Mazon C, Verdu A, et al. (2003) Breastfeeding, exposure to organochlorine compounds, and neurodevelopment in infants. Pediatrics 111: e580–585. PMID: 12728113

32. Eskenazi B, Marks AR, Bradman A, Fenster L, Johnson C, Barr DB, et al. (2006) In utero exposure to dichlorodiphenyltrichloroethane (DDT) and dichlorodiphenylchloroethylene (DDE) and neurodevelopment among young Mexican American children. Pediatrics 118: 233–241. PMID: 16818570

33. Torres-Sanchez L, Schnaas L, Cebrian ME, Hernandez Mdel C, Valencia EO, Garcia Hernandez RM, et al. (2009) Prenatal dichlorodiphenyltrichloroethylene (DDE) exposure and neurodevelopment: a follow-up from 12 to 30 months of age. Neurotoxicology 30: 1162–1165. doi: 10.1016/j.neuro.2009.08.010 PMID: 19733589

34. Surkan PJ, Schnaas L, Wright RJ, Tellez-Rojo MM, Lamadrid-Figueroa H, Hu H, et al. (2008) Maternal self-esteem, exposure to lead, and child neurodevelopment. Neurotoxicology 29: 278–285. doi: 10.1016/j.neuro.2007.11.006 PMID: 18261800

35. Jedrychowski W, Perera F, Jankowski J, Rauh V, Flak E, Caldwell KL, et al. (2007) Fish consumption in pregnancy, cord blood mercury level and cognitive and psychomotor development of infants followed over the first three years of life: Krakow epidemiologic study. Environ Int 33: 1057–1062. PMID: 17643489

36. Jedrychowski W, Perera FP, Jankowski J, Mrozek-Budzyn D, Mroz E, Flak E, et al. (2009) Very low prenatal exposure to lead and mental development of children in infancy and early childhood: Krakow prospective cohort study. Neuroepidemiology 32: 270–278. doi: 10.1159/000203075 PMID: 19223686

37. Jedrychowski W, Perera FP, Jankowski J, Maugeri U, Mrozek-Budzyn D, Mroz E, et al. (2010) Early wheezing phenotypes and cognitive development of 3-yr-olds. Community-recruited birth cohort study. Pediatr Allergy Immunol 21: 550–556. doi: 10.1111/j.1399-3038.2009.00905.x PMID: 19548966

38. Austin AMB, Blevins-Knabe B, de Aquino CN, de Burró EU, Park K E, Bayley B, et al. (2006) Parent Socialization, Family Economic Well-being, and Toddlers’ Cognitive Development in Rural Paraguay. Journal of Research in Childhood Education 20: 255–274.

39. Hamadani JD, Baker-Henningham H, Tofail F, Mehrin F, Huda SN, Grantham-McGregor SM (2010) Validity and reliability of mothers’ reports of language development in 1-year-old children in a large-scale survey in Bangladesh. Food Nutr Bull 31: S198–206. PMID: 20716604

40. Tian LL, Zhao YC, Wang XC, Gu JL, Sun ZJ, Zhang YL, et al. (2009) Effects of gestational cadmium exposure on pregnancy outcome and development in the offspring at age 4.5 years. Biol Trace Elem Res 132: 51–59. doi: 10.1007/s12011-009-8391-0 PMID: 19404590

41. Dreher MC, Nugent K, Hudgins R (1994) Prenatal marijuana exposure and neonatal outcomes in Jamaica: an ethnographic study. Pediatrics 93: 254–260. PMID: 8121737

42. Wu YT, Tsou KI, Hsu CH, Fang LJ, Yao G, Jeng SF (2008) Brief report: Taiwanese infants’ mental and motor development—6–24 months. J Pediatr Psychol 33: 102–108. PMID: 17715148

43. Wang JD, Shy WY, Chen JS, Yang KH, Hwang YH (1989) Parental occupational lead exposure and cord blood mercury level and cognitive and psychomotor development of infants followed over the first three years of life: Krakow epidemiologic study. Environ Int 33: 1057–1062. PMID: 17643489

44. Janssen AJ, Nijhuis-van der Sanden MW, Akkermans RP, Oostendorp RA, Kollee LA (2008) Influence of behaviour and risk factors on motor performance in preterm infants at age 2 to 3 years. Dev Med Child Neurol 50: 926–931. doi: 10.1111/j.1469-8749.2008.03108.x PMID: 18811709

45. Black MM, Hess CR, Berenson-Howard J (2000) Toddlers from Low-Income Families Have Below Normal Mental, Motor, and Behavior Scores on the Revised Bayley Scales. Journal of Applied Developmental Psychology 21: 655–666.

46. Hutton JL, Pharoah PO, Cooke RW, Stevenson RC (1997) Differential effects of preterm birth and small gestational age on cognitive and motor development. Arch Dis Child Fetal Neonatal Ed 76: F75–F81. PMID: 9135284

47. Claus Henn B, Schnaas L, Ettinger AS, Schwartz J, Lamadrid-Figueroa H, Hernandez-Avila M, et al. (2012) Associations of early childhood manganese and lead coexposure with neurodevelopment. Environ Health Perspect 120: 126–131. doi: 10.1289/ehp.1003300 PMID: 21885384

48. Rauh VA, Garfinkel R, Perera FP, Andrews HF, Hoepner L, Barr DB, et al. (2006) Impact of prenatal chlorpyrifos exposure on neurodevelopment in the first 3 years of life among inner-city children. Pediatrics 118: e1845–1859. PMID: 1716700

49. Hu H, Tellez-Rojo MM, Bellinger D, Smith D, Ettinger AS, Lamadrid-Figueroa H, et al. (2006) Fetal lead exposure at each stage of pregnancy as a predictor of infant mental development. Environ Health Perspect 114: 1730–1735. PMID: 17107860
50. Claus Henn B, Schnaas L, Ettinger AS, Schwartz J, Lamadrid-Figueroa H, Hernández-Avila M, et al. (2011) Associations of Early Childhood Manganese and Lead Coexposure with Neurodevelopment. Environ Health Perspect 120.

51. Concha G, Vogler G, Nermell B, Vahter M (1998) Low-level arsenic excretion in breast milk of native Andean women exposed to high levels of arsenic in the drinking water. Int Arch Occup Environ Health 71: 42–46. PMID: 9523248

52. Bulas D, Glass P (2005) Neonatal ECMO: Neuroimaging and neurodevelopmental outcome. Seminars in Perinatology 29: 58–65. PMID: 15921154

53. Badr Zahr LK (2001) Quantitative and qualitative predictors of development for low-birth weight infants of Latino background. Appl Nurs Res 14: 125–135. PMID: 11481591

54. Walkowiak J, Wiener JA, Fastabend A, Heinzow B, Kramer U, Schmidt E, et al. (2001) Environmental exposure to polychlorinated biphenyls and quality of the home environment: effects on psychodevelopment in early childhood. Lancet 358: 1602–1607. PMID: 11716887

55. Baker-Henningham H, Hamadani JD, Huda SN, Grantham-McGregor SM (2009) Undernourished children have different temperaments than better-nourished children in rural Bangladesh. J Nutr 139: 1765–1771. doi: 10.3945/jn.109.106294 PMID: 19605526

56. Black MM, Baqui AH, Zaman K, Ake Persson L, El Arifeen S, Le K, et al. (2004) Iron and zinc supplementation promote motor development and exploratory behavior among Bangladeshi infants. Am J Clin Nutr 80: 903–910. PMID: 15447897

57. Lozoff B, Park AM, Radan AE, Wolf AW (1995) Using the HOME inventory with infants in Costa Rica. Int J Behav Dev 18: 277–295. PMID: 12290749