Constructing a multivariate distribution function with a vine copula: toward multivariate luminosity and mass functions

Tsutomu T. Takeuchi1,2* & Kai T. Kono1

1Division of Particle and Astrophysical Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan
2The Research Center for Statistical Machine Learning, the Institute of Statistical Mathematics, 10–3 Midori-cho, Tachikawa, Tokyo 190–8562, Japan

Accepted XXX. Received YYY; in original form ZZZ

ABSTRACT

The need for a method to construct multidimensional distribution function is increasing recently, in the era of huge multiwavelength surveys. We have proposed a systematic method to build a bivariate luminosity or mass function of galaxies by using a copula (Takeuchi 2010). It allows us to construct a distribution function when only its marginal distributions are known, and we have to estimate the dependence structure from data. A typical example is the situation that we have univariate luminosity functions at some wavelengths for a survey, but the joint distribution is unknown. Main limitation of the copula method is that it is not easy to extend a joint function to higher dimensions \((d > 2)\), except some special cases like multidimensional Gaussian. Even if we find such a multivariate analytic function in some fortunate case, it would often be inflexible and impractical. In this work, we show a systematic method to extend the copula method to unlimitedly higher dimensions by a vine copula. This is based on the pair-copula decomposition of a general multivariate distribution. We show how the vine copula construction is flexible and extendable. We also present an example of the construction of a stellar mass–atomic gas–molecular gas 3-dimensional mass function. We demonstrate the maximum likelihood estimation of the best functional form for this function, as well as a proper model selection via vine copula.

Key words: dust, extinction -- galaxies: star formation -- galaxies: starburst -- infrared: galaxies -- method: statistical -- ultraviolet: galaxies

1 INTRODUCTION

Galaxies evolve in various aspects. Individual galaxies change their physical properties by the merging of their host dark matter halos, merging of galaxies, star formation, chemical evolution, infall of matter from the large-scale structure, etc. This aspect of galaxy evolution is, say, a life history of galaxies. As a consequence of the life history of individual galaxies, combined with the evolving cosmological condition, drives the collective evolution of galaxies. To describe this "sociological" galaxy evolution, the luminosity function (LF) and/or mass function (MF) of galaxies play a fundamental role in a statistical analysis of galaxies (e.g., Binggeli, Sandage, & Tammann 1988; Takeuchi et al. 2000; Blanton et al. 2001; de Lapparent et al. 2003; Willmer et al. 2006; Johnston 2011; Moffett et al. 2016; Koprowski et al. 2017; Lake, et al. 2017; López-Sanjuan, et al. 2017; Wright, et al. 2017; Bhatawdekar, et al. 2019). Even though the LF (MF) is a result of highly complicated and entangled physical processes, still it is the first statistic to be examined from observations.

Now, the studies of galaxy evolution is facing the time for drastic change by multiband large surveys. Indeed, practically all the large surveys are performed at multiband. Connecting the LFs (MFs) obtained at different wavelengths is expected to provide us with a new insight to the fundamental physics to drive galaxy evolution (e.g. Mashian, Oesch & Loeb 2016; Vallini, et al. 2016; Caplar, Lilly & Trakhtenbrot 2018; Dutta, Khandai & Dey 2020, and references therein). However, it is not easy to determine the corresponding multivariate function from its marginal distributions, if the distribution is not multivariate Gaussian. As widely known, galaxy LFs are relatively well described by the Schechter function (Schechter 1976) (stellar and gas components) or double-power-law type function (e.g. Saunders et al. 2000; Takeuchi et al. 2003b) (dust, radio continuum and X-ray emission), both of which are far different from Gaussian. In such a case, there exist infinitely many distributions with the same marginals even if the correlation structure is specified. In astronomical applications, a multivariate distribution

* E-mail: takeuchi.tsutomu@g.mbox.nagoya-u.ac.jp

© 2015 The Authors
has been considered based on a primary-selection wavelength (e.g., Mobasher et al. 1993; Choloniwski 1985; Chapman et al. 2003; Schafer 2007; Calette et al. 2018; Rodriguez-Puebla, et al. 2020). A thorough and comprehensive discussion on this method is found in, for example, Rodriguez-Puebla, et al. (2020). Though these works are well designed in their own purposes, we often want to have a multivariate PDF estimation method without a specific primary selection in modern astrophysical analysis. Thus, a general method to construct a multivariate distribution function with pre-defined marginal distributions and dependence structure has long been desired.

Such a function has been commonly used to analyze two covariate random variable, particularly extensively in econometrics and mathematical finance. This is the so-called “copula”\(^1\). In a bivariate context, copulae are obviously useful to define nonparametric measures of dependence for pairs of random variables (e.g., Johnson & Kotz 1977; Trivedi & Zimmer 2005; for a recent review, see Lin et al. 2014). In astrophysics, however, copulae started to attract researchers’ attention relatively recently (e.g., Benabed et al. 2009; Jiang et al. 2009; Koen 2009; Scherrer et al. 2010; Takeuchi 2010). After a decade since then, the copula method is getting gradually known to the astronomical community: now it is applied to bivariate luminosity function of galaxies (e.g., Takeuchi, et al. 2013; Andreani, et al. 2014; Gunawardhana, et al. 2015; Andreani, et al. 2018; Yuan, et al. 2018), completeness problems in galaxy surveys (e.g., Johnston, Teodoro & Hendry 2012), cosmology with gravitational lensing (e.g., Sato, Ichiki & Takeuchi 2010, 2011; Lin & Kilbinger 2015; Simon & Schneider 2017), time series analysis of bivariate sequence (e.g., Jo 2019) and many other astrophysical applications (e.g., Jiang, Yeh & Hung 2015; Koen & Bere 2017; Jo, et al. 2019).

When we have introduced the copula method to the galactic astrophysics and cosmology in Takeuchi (2010), practical application of the copula was restricted to a bivariate problem. This is because of the fact that the copula method was not easy to extend it to higher dimensions \((d > 2)\), except some special cases like Gaussian. Further, even if we find such a multivariate analytic function in some very fortunate case, it would be very probably inflexible and impractical, for example, to a realistic statistical estimation in galaxy surveys. Actually, however, a method to improve the copula method and resolve the difficulty to multivariate extension was introduced just some years before Takeuchi (2010). This is based on the decomposition of a general multivariate distribution: a multivariate probability density function can be factorized into a bivariate copulae and univariate density functions. Since we have a rich theoretical method of bivariate copulae, this means that we can extend our methodology to any higher dimension problems Aas et al. (e.g., 2009), and references therein). However, since this decomposition is not unique, we need to sort it out to have a systematic procedure. For this purpose, we introduce the concept of vine copula, invented in the field of graphical modeling (Bedford & Cooke 2002). In this work, we show a systematic method to extend the copula to unlimitedly higher dimensions by a vine copula method.

This paper is organized as follows: in Section 2 we briefly review the basics of copula. Then we introduce the central concept of this work, vines, and formulate the systematic construction of a multivariate copula with vines. In Section 3, we make use of these copulae to construct a MMF of galaxies. We discuss some implications and further applications in Section 3. Section 4 is devoted to summary and conclusions.

Throughout this paper, we adopt a cosmological model \((h, \Omega_{\text{M0}}, \Omega_{\Lambda0}) = (0.7, 0.3, 0.7)\) \((h \equiv H_0/100\text{[km s}^{-1}]\text{Mpc}^{-1})\).

2 FORMULATION

2.1 Copula

First we briefly review the concept of copula. In short, copulae are functions that joint multivariate distribution functions (DFs) to their one-dimensional marginal DFs\(^2\). Using a copula \(C\), any multivariate DF, \(G\), can be expressed with margins \(F_1, F_2, \ldots, F_d\) as

\[
G(x_1, \ldots, x_d) = C[F_1(x_1), \ldots, F_d(x_d)].
\]

This is guaranteed by Sklar’s theorem (Sklar 1959). Especially, if \(F_1, \ldots, F_d\) are continuous, then \(C\) is unique. A comprehensive proof Sklar’s theorem is found in e.g., Nelsen (2006). This theorem gives a basis that any multivariate DF with given margins is expressed with a form of eq. (1). If we want a more familiar form, a PDF of \(G(x_1, \ldots, x_d)\), \(g(x_1, \ldots, x_d)\), is written as

\[
g(x_1, \ldots, x_d) = \frac{\partial^d C[F_1(x_1), \ldots, F_d(x_d)]}{\partial x_1 \ldots \partial x_d} f_1(x_1) \ldots f_d(x_d) = c[F_1(x_1), \ldots, F_d(x_d)] f_j(x_1) \ldots f_d(x_d)
\]

where \(f_j(x_1), \ldots, f_d(x_d)\) are PDFs of \(F_1(x_1), \ldots, F_d(x_d)\), respectively. Here, a function \(c[F_1(x_1), \ldots, F_d(x_d)]\) is referred to as the copula density of \(C\). For a more detailed (but not too rigorous) definitions, readers are guided to Takeuchi (2010, hereafter T10).

The most important statistical aspect of bivariate DFs is their dependence properties between variables. Since the dependence can never be given by the marginals of a DF, this is the most nontrivial information which a bivariate DF provides. Since any bivariate DFs are described by Equation (1), all the information on the dependence is carried by their copulae.

For practical data analysis, a measure of dependence is useful for the interpretation of a result. The Pearson’s product-moment correlation

\(^1\) In Takeuchi (2010), we used “copulas” as its plural form. However, since this terminology is a Latin feminine noun, we should have used “copulae” instead of copulas, and we do so in this paper.

\(^2\) As in T10, the DF stands for a cumulative distribution function in statistical terminology. To avoid confusion, we use a term “probability density function (PDF)” to refer to a distribution function commonly used in physics. In this paper (and statistical literature in general), we distinguish a DF and PDF by an upper and lower case, respectively (e.g., \(F(x)\) stands for a certain DF, and \(f(x)\) is its PDF).
coefficient ρ is the most frequently used dependence measure for physical scientists (and others). For a while in this paragraph, we focus on the bivariate PDF since we consider correlation measures. The bivariate PDF of x_1 and x_2, $g(x_1, x_2)$, is written as

$$g(x_1, x_2) = \frac{\partial^2 C[F_1(x_1), F_2(x_2)]}{\partial x_1 \partial x_2} f_1(x_1)f_2(x_2).$$

Then the correlation coefficient ρ is expressed as

$$\rho = \frac{\int (x_1 - \bar{x}_1)(x_2 - \bar{x}_2)g(x_1, x_2)dx_1dx_2}{\sqrt{\int (x_1 - \bar{x}_1)^2f_1(x_1)dx_1 \int (x_2 - \bar{x}_2)^2f_2(x_2)dx_2}}.$$

We observe that Equation (4) depends not only on the dependence of two variables (copula part) but also its marginals $f_1(x_1)$, $f_2(x_2)$, i.e., the linear correlation coefficient ρ does not measure the dependence purely. Then, sometimes a genuine measure of dependence, e.g., Spearman’s ρ_S or Kendall’s τ would be more appropriate. Spearman’s rank correlation is a nonparametric version of Pearson’s correlation using a rank of data. The population version of Spearman’s ρ_S is expressed by copula as

$$\rho_S = 12 \int_0^1 \int_0^1 u_1u_2dC(u_1, u_2) - 3 = 12 \int_0^1 \int_0^1 C(u_1, u_2)du_1du_2 - 3.$$

Kendall’s τ is also expressed in a simple form in terms of copula as

$$\tau = 4 \int_0^1 \int_0^1 C(u_1, u_2)c(u_1, u_2)du_1du_2 - 1 = 4 \int_0^1 \int_0^1 C(u_1, u_2)c(u_1, u_2)du_1du_2 - 1.$$

The derivation of these equations are found in T10. In Equations (5) and (6) are independent of the distributions F_1, F_2, or G and depend only on the dependence structure, i.e., a copula. This is the reason why the two dependence measures are almost always used in the context of copulae in the literature.

What we have from surveys are usually multivariate datasets, and we do not know the functional form of a multivariate DF from which the data are sampled. Namely, there is infinite degrees of freedom for a set of copulae to choose. For a bivariate case, it might be still possible to restrict a class of functions for a copula (e.g. Takeuchi, et al. 2013; Andreani, et al. 2014; Gunawardhana, et al. 2015; Andreani, et al. 2018). However, it would be almost impossible to have an intuition to choose an appropriate family of a single multivariate copulae/copula densities for a certain survey data. To make the problem practically more accessible, we need a systematic construction method of a multivariate copula from a lower-dimensional information. We introduce such a method in the following.

2.2 Vine copula

Here we introduce a vine copula as a systematic method to factorize a multivariate PDF as above. A vine is a concept originally introduced in the field of graphical modeling (Bedford & Cooke 2002).

2.2.1 Factorization of a PDF

As we mentioned in 1, this is based on the decomposition of a general multivariate distribution. Let $f(x_1, \ldots, x_d)$ be a joint PDF of a set of d-dimensional vector stochastic variable $\hat{X} = (X_1, \ldots, X_d)$. First, recall the formula of conditional probability

$$f(A, B) = f(B|A)f(A),$$

where A and B are events. If we apply this formula to the above PDF, we have

$$f(x_1, \ldots, x_d) = f_{d|d-1}(f_{d-1|d-2}(f_{d-2|d-3}(\ldots f_2|1)(f_1))f_1(x_1))$$

which is known as the chain rule. We start from this well-known mathematical formula. By using a bivariate copula density

$$f_{2|1}(x_1, x_2) = c[F_1(x_1), F_2(x_2)] f_1(x_1)f_2(x_2).$$

the conditional probability can be expressed as

$$f_{2|1}(x_2|x_1) = \frac{f_{2|1}(x_1, x_2)}{f_1(x_1)} = c_{12}[F_1(x_1), F_2(x_2)] f_2(x_2).$$

Similarly, for $f_{23|1}$,

$$f_{23|1}(x_2, x_3|x_1) = c_{23|1}[F_{2|1}(x_2|x_1), F_{3|1}(x_3|x_1)] f_{2|1}(x_2|x_1)f_{3|1}(x_3|x_1).$$
Figure 1. An example of a tree graph.

\[
\frac{f_{3|12}(x_2, x_3|x_1)}{f_{2|1}(x_2|x_1)} = f_{3|12}(x_3|x_1, x_2), \quad (12)
\]

we obtain

\[
f_{3|12}(x_3|x_1, x_2) = c_{23|1} \left[F_{2|1}(x_2|x_1), F_{3|1}(x_3|x_1) \right] f_{3|1}(x_3|x_1) = c_{23|1} \left[F_{2|1}(x_2|x_1), F_{3|1}(x_3|x_1) \right] \left[F_{1}(x_1), F_{3}(x_1) \right] f_{3}(x_1). \quad (13)
\]

This is a purely mathematical, direct result of the formula of conditional probability.

We should note that such a decomposition is not unique if we consider a permutation of the labels of variables, and when \(d \) is large, the number of representations increases dramatically. Hence, we need a systematic procedure to choose which pair combinations should be used to describe the dependence. For this purpose, we introduce the concept of a vine. Since it was invented in the field of graphical modeling (Bedford & Cooke 2002), it is convenient to use diagrams referred to as graphs.

2.2.2 Vine

In order to define it, we have to introduce some graph-theoretical terminologies. We start from the definition of a tree in graph theory.

Definition 1. (tree)

Consider a set of \(d \) nodes. When a graph \(T \) is connected and has no cycles, \(T \) is a tree.

An example of a tree is presented in Fig. 1.

Based on the concept of tree graph, we define a vine.

Definition 2. (vine)

A vine \(V \) on \(d \) elements \(\{1, 2, \ldots, d\} \) is a set of trees \(T_i \) \((i = 1, \ldots, d - 1) \), which satisfies the following conditions:

(i) \(T_1 \) is a connected tree that have \(\{1, 2, \ldots, d\} \) as a set of nodes and \(E_1 \) as a set of edges,

(ii) For \(i = 2, \ldots, d - 1 \), \(T_i \) is a tree that have \(E_{i-1} \) as a set of nodes and \(E_i \) as a set of edges.

Definition 3. (regular vine)

If two nodes in tree \(T_{i+1} \) are joined by an edge, the corresponding edges in tree \(i \) share a node. This is referred to as the proximity condition.

Following discussions will be restricted to regular vines without any loss of generality, since the class of regular vines is still so large that it can treat most of the practical cases. The structure of a regular vine is schematically described in Fig. 2. The term “vine” is named after the fact that its botryoidal structure looks similar to a cluster of grapes in its appearance (see Fig. 2; e.g., Chapter 1 of Kurowicka & Joe 2011). We note that the tree structure is not strictly necessary for applying the pair-copula methodology, but it helps identifying the different pair-copula decompositions (Aas et al. 2009).
In practice, two subclasses of vines are frequently used. They are so called “D-vine” and “C-vine”, introduced as follows.

2.2.3 Frequently used vines

In practice, two subclasses of vines are frequently used. They are so called “D-vine” and “C-vine”, introduced as follows.

Definition 4. D (drawable)-vine

Any joint PDF $f(x_1, \ldots, x_d)$ can be written down by D-vine as follows.

$$f(x_1, \cdots, x_d) = \prod_{j=1}^{d-1} \prod_{i=1}^{d-j} c_i(i+j)(i+1, \ldots, (i+j-1)) \prod_{k=1}^{d} f_k(x_k),$$

where index j identifies the trees, and i runs over each tree (Bedford & Cooke 2001).

The definition of D-vine means that for any tree T_i, the number of edges connected to each node never exceeds 2. To have a concrete idea, we present examples for $d = 3, 4$, and 5.

$$f(x_1, x_2, x_3) = c_{13|2} [F(x_1|x_2)F(x_3|x_2)]$$

$$+ c_{12} [F_1(x_1), F_2(x_2)] c_{23} [F_2(x_2), F_3(x_3)]$$

$$f_1(x_1)f_2(x_2)f_3(x_3).$$

(16)

$$f(x_1, x_2, x_3, x_4) = c_{14|23} [F(x_1|x_2, x_3)F(x_4|x_2, x_3)]$$

$$+ c_{13|2} [F(x_1|x_2), F_5(x_3|x_2)] c_{24|3} [F(x_3|x_2), F(x_4|x_3)]$$

$$+ c_{12} [F_1(x_1), F_2(x_2)] c_{23} [F_2(x_2), F_3(x_3)] c_{34} [F_3(x_3), F_4(x_4)]$$

$$f_1(x_1)f_2(x_2)f_3(x_3)f_4(x_4).$$

(17)

$$f(x_1, x_2, x_3, x_4, x_5) = c_{15|234} [F(x_1|x_2, x_3, x_4)F(x_5|x_2, x_3, x_4)]$$

$$+ c_{14|23} [F(x_1|x_2, x_3)F(x_4|x_2, x_3)] c_{25|34} [F(x_2|x_3, x_4)F(x_5|x_3, x_4)]$$

$$+ c_{13|2} [F(x_1|x_2), F_5(x_3|x_2)] c_{24|3} [F(x_3|x_2), F(x_4|x_3)] c_{35|4} [F(x_3|x_4), F(x_5|x_4)]$$

$$+ c_{12} [F_1(x_1), F_2(x_2)] c_{23} [F_2(x_2), F_3(x_3)] c_{34} [F_3(x_3), F_4(x_4)] c_{45} [F_4(x_4), F_5(x_5)]$$

$$f_1(x_1)f_2(x_2)f_3(x_3)f_4(x_4)f_5(x_5).$$

(18)

A diagrammatic representation of a D-vine with five variables is shown in Fig. 3. This describes the dependence structure of the D-vine well. In this case it has four layers of tree structure, labelled as $T_i(i = 1, \ldots, 4)$. Each edge is associated with a pair copula.

Definition 5. C (canonical)-vine

Any joint PDF $f(x_1, \ldots, x_d)$ can be written down by C-vine as follows.

$$f(x_1, \cdots, x_d) = \prod_{j=1}^{d-1} \prod_{i=1}^{d-j} c_{i,j+i,j}(i+1, \ldots, j-1) \prod_{k=1}^{d} f_k(x_k).$$

(19)

Each tree T_j has a unique node connected to $d - j$ edges.

When we know a particular variable is a key that governs the interaction in the dataset, the C-vine has a great advantage. We can decide this...
but for a C-vine with five variables.

A diagrammatic representation of a D-vine with five variables. It contains four trees and ten edges. Each edge is associated with a pair copula.

For the case of \(d = 3\), the general expression for vine structure is expressed as eq. (16) or (20). It is valid for both D- and C-vines. There are six ways with a permutation between \(x_1, x_2,\) and \(x_3\), but only three of them yield different pair-copula decompositions. Further, each of the three correspond both to D- and C-vine. Namely, both D- and C-vines cover the whole possible structures of pair copula decompositions for
2.3 Likelihood for vines

Practically, we can safely restrict the pair-copula decompositions to D- and C-vines. When we have \(n \) data sample \(\{ x_m \} = \{(x_{m,1}, x_{m,2}, \ldots, x_{m,d})\} \) \((m = 1, \ldots, n)\), the log likelihood of a D-vine for the statistical estimation is

\[
\ln L(\tilde{\theta}; \tilde{x}_m, m = 1, \ldots, n) = \sum_{m=1}^{n} \ln f(\tilde{\theta}; \tilde{x}_m)
\]

where we denote the parameter vectors for copulae and marginals in a symbolic way to save space. Similarly, the log likelihood of a C-vine is

\[
\ln L(\tilde{\theta}; \tilde{x}_m, m = 1, \ldots, n) = \sum_{m=1}^{n} \ln f(\tilde{\theta}; \tilde{x}_m)
\]

We should maximize the log likelihood eq. (23) or (24) to estimate the parameter set \(\tilde{\theta} = [\tilde{\theta}(\text{copula}), \tilde{\theta}(\text{marginal})] \). In principle, both \(\tilde{\theta}(\text{copula}) \) and \(\tilde{\theta}(\text{marginal}) \) can be estimated simultaneously. In the research fields like economics, however, the likelihood estimation of the marginals is often difficult, then they do not use the exact form of the likelihood but maximize the so-called pseudo-likelihood, instead (Aas et al. 2009). In astrophysics, we have a rich field of research on the estimation of the marginals, e.g., the LF or MF of galaxies at a certain observed wavelength (e.g. Takeuchi et al. 2000; Johnston 2011). Then, we can simply use the estimated marginals and plug in them for the log-likelihood. Namely, we can omit the estimation step for the marginals when we try to estimate copula parameters in a different sense from other research fields.

2.4 Model selection with vines

The likelihood estimation we discussed above is only one of the steps of the full estimation problem. Schematically, the model to be specified has a following structure as

\[
\text{Model} = \text{structure (trees)} + \text{copula families} + \text{copula parameters}.
\]

Namely, for the estimation procedure we should consider

(i) selection of a specific decomposition,

(ii) choice of pair-copula types,

(iii) estimation of the copula parameters.

This is schematically described in Fig. 5. As for the copula types, since we have infinitely large degree of freedom for the choice of copulae, the model selection is fundamentally important.

Often we have to choose an optimal model from large choice of candidate models with different number of parameters. In such a case, usual goodness-of-fit method does not work, since obviously more parameters give a better fit. For such a case, a model selection procedure should be used instead. The most popular tool for the model selection is the information criterion (e.g. Takeuchi 2000, and references therein). One of the information criteria, first and most widely used one, is Akaike’s Information Criterion (AIC: Akaike 1974),

\[
\text{AIC}(q) = -2[\ln L(\hat{\theta}) - q]
\]
Figure 5. A schematic example for the description of the estimation with vines. Gaussian, Clayton, and Gumbel stand for three popular copula types often used in practice. Each of them has some specifying parameters, and they are estimated by usual statistical procedure in Step iii.

\[\hat{\theta} \] stands for the parameter that maximizes the likelihood, and \(q \) is the number of parameters. The model that gives the smallest AIC is selected. This is a natural extension of the classical maximum likelihood estimation, corrected for the bias introduced by the parameter estimation step (Akaike 1974). Some other information criteria are also used. Among them, the Bayesian Information Criterion (BIC)

\[\text{BIC}(q) = -2 \ln \mathcal{L}(\hat{\theta}) - \frac{q}{2} \ln n \] (27)

(\(n \): sample size) is also often used (Schwarz 1978). This model selection is performed in the step of copula selection. Each copula is determined by the evaluation of such information criterion among all possible copula types.

As we saw in Section 2.2, the tree determination and subsequent specification of copulae would be computationally heavy because of the factor \(d!/2 \). Thanks to the present-day development of software, we can treat a problem with a dimension up to \(d \sim 500 \). Some software packages are available for this problem (e.g. Brechmann & Schepsmeier 2013). The construction and estimation of a multivariate PDF based on the vine copula is completed by this step.

3 APPLICATION TO CONSTRUCT A MULTIVARIATE MASS FUNCTION (MF) OF GALAXIES

The relation between stars, atomic gas, and molecular gas mass is one of the most important issues in galaxy evolution, and studied very extensively. For this aim, a multivariate MF is obviously a fundamental tool (see e.g., an elaborate work of Rodriguez-Puebla, et al. 2020).
Here we present one astrophysically interesting example of multivariate mass function, a three-variate mass function of stellar, atomic gas, and molecular gas mass. The formal procedure is exactly the same for the case of luminosity functions.

3.1 Multivariate MF

First we prepare some notations for the multivariate MF. A mass function of galaxies is defined as a number density of galaxies whose mass lies between a logarithmic interval $\log M, \log M + d\log M$:

$$\phi^{(1)}(M) \equiv \frac{dn}{d\log M}.$$

(28)

For mathematical simplicity, we define the as being normalized, i.e.,

$$\int \phi^{(1)}(M)d\log M = 1.$$

(29)

Hence, this corresponds to a PDF. We also define the cumulative MF as

$$\Phi^{(1)}(M) \equiv \int_{\log M_{\text{min}}}^{\log M} \phi^{(1)}(M')d\log M'.$$

(30)

where M_{min} is the minimum mass of galaxies considered. This corresponds to the DF.

If we denote univariate MFs as $\phi^{(1)}_{k}(M_{k})$ ($k = 1, \ldots, d$), the joint multivariate PDF $\phi^{(d)}(M_{1}, \ldots, L_{d})$ is described by a differential copula $c(u_{1}, \ldots, u_{d})$ as

$$\phi^{(d)}(M_{1}, \ldots, M_{d}) \equiv c\left[\Phi^{(1)}_{1}(M_{1}), \ldots, \Phi^{(1)}_{d}(M_{d})\right] \phi^{(1)}_{1}(M_{1}) \cdots \phi^{(1)}_{d}(M_{d}).$$

(31)

For this analysis, we made use of the R package VineCopula3 (Aas et al. 2009). It provides statistical inference of C- and D-vine copulae. This package enables us to construct copula density and tree structures from multivariate data. The optimal combination of copulae and their parameters are chosen through AIC, BIC and maximum likelihood estimation with RVineStructureSelect function.

3.2 The stellar–atomic gas–molecular gas multivariate MF

As marginals of the multivariate MF, we should determine the univariate MFs for stellar mass, atomic gas mass, and molecular gas mass, respectively. The univariate MF for atomic gas mass, and molecular gas mass are known to be well described by the Schechter function (Schechter 1976).

$$\phi^{(1)}(M) = (\ln 10) \phi_{\ast} \left(\frac{M}{M_{\ast}}\right)^{1-\alpha} \exp \left[-\left(\frac{M}{M_{\ast}}\right)\right].$$

(32)

For the atomic gas mass, we took the parameters from Jones, et al. (2018) but in a normalized form with eq. (29), i.e., we did not use the normalization factor ϕ_{H_\ast}. Similarly, we took the Schechter function parameters for the molecular gas from Keres, Yun & Young (2003). These parameters are summarized in Table 1.

Recent studies revealed that the stellar MF is, however, better described by a double Schechter function (e.g. D’Souza, Vegetti & Kauffmann 2015)

$$\phi^{(1)}(M) = \phi_{1\ast} \left(\frac{M}{M_{1\ast}}\right)^{-\alpha_{1}} \exp \left[-\left(\frac{M}{M_{1\ast}}\right)\right] + \phi_{2\ast} \left(\frac{M}{M_{2\ast}}\right)^{-\alpha_{2}} \exp \left[-\left(\frac{M}{M_{2\ast}}\right)\right].$$

(33)

We should note that D’Souza, Vegetti & Kauffmann (2015) defined the double Schechter function (eq. (33)) for a linear mass interval dM, not $d\log M$. The parameters are shown in Table 2.

Table 1. Parameters for the gas mass function

MF	α	ϕ_{\ast} [Mpc$^{-3}$ dex$^{-1}$]	M_{\ast} [M_{\odot}]	Reference
Atomic gas	-1.25 ± 0.02	$(4.5 \pm 0.2) \times 10^{-3}$	8.7×10^{5}	Jones, et al. (2018)
Molecular gas	-1.30 ± 0.16	$(5.9 \pm 2.8) \times 10^{-3}$	9.4×10^{5}	Keres, Yun & Young (2003)

3 We denote $\log x \equiv \log_{10} x$ and $\ln x \equiv \log_{e} x$.

4 https://github.com/tnagler/VineCopula.
Table 2. Parameters for the stellar mass function

α_1	ϕ_1^*	M_1^*	α_2	ϕ_2^*	M_2^*	Reference
1.082	6.0×10^{-2}	4.1×10^{10}	1.120	2.5×10^{-3}	9.9×10^{10}	D’Souza, Vegetti & Kauffmann (2015)

3.3 Data

In this work, we used a subsample of the combined dataset compiled by Calette, et al. (2018). Their original sample consists of Golden, Silver, and Bronze Categories both for H$^\text{I}$ and H$_2$. Full details of the original sample are found in Appendix of Calette, et al. (2018). We briefly describe the dataset used here.

3.3.1 The compiled galaxy sample with H$^\text{I}$ information

We used the following datasets for H$^\text{I}$ information.

Golden Category

- **GALEX** Arecibo SDSS Survey (GASS; Catinella, et al. 2013): an optically-selected subsample of 760 galaxies more massive than $10^{10} M_\odot$ taken from a parent SDSS DR6 sample volume limited in the redshift range $0.025 < z < 0.05$ and cross-matched with the ALFALFA and GALEX surveys.
- Field galaxies from the Herschel Reference Survey (HRS; Boselli, et al. 2010; Boselli, Cortese & Boquien 2014; Boselli, et al. 2014b): a K-band volume limited ($15 \leq D \ [\text{Mpc}] \leq 25$) sample of 323 galaxies complete to $K_s = -12$ and -8.7 mag for late type galaxies and early type galaxies, respectively.
- Field early type galaxies from the ATLAS3D HI sample (Serra, et al. 2012): a sample of 166 local early type galaxies observed in detail with integral field unities (IFUs; Cappellari et al. 2011). The distance range of the sample is between 10 and 47 Mpc; the sample includes 39 galaxies from the Virgo Cluster, but for the Golden category, the early type galaxies in the Virgo cluster core were excluded by Calette, et al. (2018).

Bronze Category

- Analysis of the interstellar Medium of Isolated GAlaxies (AMIGA; Lisenfeld, et al. 2011): a redshift-limited sample ($1500 \leq \nu_{\text{rec}} [\text{km s}^{-1}] \leq 5000$) consisting of 273 isolated galaxies with reported multi-band imaging and CO data.

3.3.2 The compiled galaxy sample with CO (H$_2$) information

We used the following datasets for H$_2$ information.

Golden Category

- Field galaxies from the Herschel Reference Survey (HRS): the same sample described above (excluding Virgo Cluster core), with 155 galaxies with available CO information (101 detections and 54 non-detections).
- CO Legacy Legacy Database for GASS (COLD GASS; Saintonge, et al. 2011): a program aimed at observing CO(1–0) line fluxes with the IRAM 30 m telescope for galaxies from the GASS survey described above. From the CO fluxes, the total CO luminosities, (and hence the H$_2$ masses) were calculated for 349 galaxies.
- Field early type galaxies from the ATLAS3D H$_2$ sample (Young, et al. 2011): the same sample described above (excluding the Virgo Cluster core) but with observations in CO using the IRAM 30 m Radio Telescope. The sample amounts for 243 early type galaxies with CO observations.

Bronze Category

- Analysis of the interstellar Medium of Isolated GAlaxies (AMIGA; Lisenfeld, et al. 2011: the same sample described above. The authors carried out their own observations of CO(J : 1–0) with the IRAM 30 m or the 14 m FCRAO telescopes for 189 galaxies; 87 more were compiled from the literature.

3.4 Result

We present the constructed $M_*-M_{\text{HI}}-M_{\text{H}_2}$ MF with a 3-dim vine copula. The $M_*-M_{\text{HI}}-M_{\text{H}_2}$ MF is described by a C-vine copula. The structure is presented in Fig. 6. The structure of the estimated C-vine is labelled as (3,1), (3,2), and (2,1|3) in Fig. 6. Here, 1 corresponds to M_*, 2 to M_{HI}, and 3 to M_{H_2}, respectively.
Figure 6. Vine copulae estimated from the $M_* - M_{HI1} - M_{HI2}$ data. Top-left: the estimated copula for $M_{HI1} - M_*$ relation, Top-right: the estimated copula for $M_{HI1} - M_{HI2}$ relation, Bottom-left: the estimated conditional copula for $M_* - M_{HI1}$ relation with M_{HI2} given, and Bottom-right: tree structure of vine copulae. The structure of the estimated C-vine is labelled as (3, 1), (3, 2), and (2, 1| 3), where node 1 corresponds to M_*, node 2 to M_{HI2}, and node 3 to M_{HI1}, respectively.

The relation between M_* and M_{HI2} was well described by the BB8 copula

$$C(u_1, u_2; \theta, \delta) = \frac{1}{\delta} \left\{ 1 - \frac{1}{1 - (1 - \delta)^\theta} \left[(1 - (1 - \delta) u_1)^\theta \right. \left. \left(1 - (1 - \delta) u_2 \right)^\theta \right] \right\}^{\frac{1}{\theta}}, \quad (\theta \geq 1, \delta \in (0, 1]),$$

(34)

with parameters $\theta = 6.00$ and $\delta = 0.49$. Kendall’s τ of this pair is 0.35, reflecting the broad distribution with a loose correlation.

In contrast, the relation between M_{HI1} and M_{HI2} was found to be reproduced by the Frank copula,

$$C(u_1, u_2; \delta) = \frac{1}{\delta} \log \left\{ 1 - \frac{e^{-\delta u_1} - 1}{e^\delta - 1} \right\}, \quad (\delta \in \mathbb{R} \setminus \{0\}),$$

(35)

with a parameter $\delta = 8.80$. Kendall’s τ of this pair is 0.63. The scatter plot of the data on the $M_{HI1} - M_{HI2}$ plane, and the corresponding bivariate PDF are presented in Fig. 8. On this plane, we see a moderately strong dependence between these two variables, reflected to $\tau = 0.63$.

For the conditional copula between M_* and M_{HI1} for given M_{HI2}, the Student-t copula

$$C(u_1, u_2; \rho, \nu) = \int_{-\infty}^{u_1} \int_{-\infty}^{u_2} \frac{1}{2\pi \sqrt{1 - \rho^2}} \left(1 + \frac{s^2 + t^2 - 2\rho st}{\nu (1 - \rho^2)} \right)^{-\frac{\nu + 1}{2}} dsdt, \quad (\rho \in (-1, 1), \nu > 2),$$

(36)

MNRAS 000, 000–000 (2015)
Figure 7. Relation between M_* and $M_{\rm H_2}$. Left: the data distribution on the $M_* - M_{\rm H_2}$ plane. Right: estimated bivariate PDF. The selected copula is the BB8 copula with a parameter of $\theta = 6.00$ and $\delta = 0.49$. Data are taken from Calette, et al. (2018).

Figure 8. Relation between $M_{\rm HI}$ and $M_{\rm H_2}$. Left: the data distribution on the $M_{\rm HI} - M_{\rm H_2}$ plane. Right: the corresponding bivariate PDF. The selected copula is the Frank copula with a parameter of $\delta = 8.80$. Data are taken from Calette, et al. (2018).

was selected as the appropriate copula.

Though it is not easy to visualize the 3-d structure of the PDF, its heavily asymmetric structure is well described in Fig. 9. Of course it requires a further analysis for a physical interpretation, the copula method can provide us with a fundamentally important tool to understand the physical processes behind the multivariate LF/MF. The result here is just a demonstration how the vine copula performs well for the multidimensional LF/MF estimation. More physical discussion is planned to be presented in our next work.

If we go to much higher dimensions, human-intuitive approach may not work anymore even for a simple visualization. Very plausibly, we will confront the need for such a tremendously large data analysis. A machine-aided method will be a promising way to address such issues. We will discuss such a strategy in our future works.
4 SUMMARY AND CONCLUSIONS

We have proposed a systematic method to build a bivariate luminosity or mass function of galaxies by using a copula (Takeuchi 2010: T10). It allows us to construct a distribution function when only its marginal distributions are available and the dependence structure should be estimated from data.

Though T10 proposed a promising way to construct multivariate PDFs by a copula, main limitation of the method is that it is not easy to extend a joint function to higher dimensions \(d > 2 \), except some special cases like Gaussian. Even if we find such a multivariate analytic function in some special case, it would be very probably inflexible and impractical. In this work, we introduced a systematic method to extend the copula to unlimitedly higher dimensions by a pair-copula decomposition method, referred to as the vine copula.

The vine copula method is extremely flexible because all the dependence structures are decomposed and reduced into pair dependence relations. We first formulated the factorization of a multidimensional DF/PDF. This factorization is not unique, and we introduced a vine structure as a systematic method to sort out the complicated structure. The vine copula can be described intuitively by a diagrammatic method, as shown in Figs. 2, 3, and 4. We also presented that the likelihood parameter estimation of each copula and the model selection procedure can be performed simultaneously.

Then, as an interesting and important example, we applied the vine copula PDF method to estimate the 3-d PDF of \(M_\ast, M_{\text{HI}}, \) and \(M_{\text{H}_2} \). The vine copula can describe the PDF very well, and it can be used for the physical interpretation of the PDF as well as the evaluation of the complicated selection effect. We conclude that the vine copula method provides us with a promising way for the data analysis of unprecedentedly large surveys in the future. A machine-aided method will be a promising way to tackle such problems.

ACKNOWLEDGEMENTS

We are grateful to the members at the Institute for Statistical Mathematics, Shiro Ikeda, Satoshi Kuriki, Kenji Fukumizu, Yoh-ichi Mototake, Hideitsu Hino, and Mirai Tanaka for enlightening discussions. We also thank Masami Ouchi, and Kaiki Taro Inoue for fruitful comments. This work has been supported by JSPS Grants-in-Aid for Scientific Research (17H01110 and 19H05076). This work has also been supported in part by the Sumitomo Foundation Fiscal 2018 Grant for Basic Science Research Projects (180923), and the Collaboration Funding of the Institute of Statistical Mathematics “New Development of the Studies on Galaxy Evolution with a Method of Data Science”.

REFERENCES

Aas, K., Czado, C., Frigessi, A & Bakken, H., 2009, Insurance: Mathematics and Economics, 44, 182
Akaike, H. 1974, IEEE Trans. Autom. Contrib., 19, 716
Andreani P., et al., 2014, A&A, 566, A70
Andreani P., Boselli A., Ciesla L., Vio R., Cortese L., Buat V., Miyamoto Y., 2018, A&A, 617, A33
Bedford, T. & Cooke, R. M., 2001, Annals of Mathematics and Artificial Intelligence, 32, 245
Bedford, T., & Cooke, R. M., 2002, Ann.Stat., 30, 1031
Benabed K., Cardoso J.-F., Prunet S., Hivon E., 2009, MNRAS, 400, 219

MNRAS 000, 000–000 (2015)
Yuan Z., Wang J., Worrall D. M., Zhang B.-B., Mao J., 2018, ApJS, 239, 33