Показатели физической работоспособности у потомства крыс с экспериментальной преэклампсией при ранней и поздней фармакологической коррекции производными ГАМК

Музыко Е.А., Перфилова В.Н., Суворин К.В., Тюренков И.Н.

Волгоградский государственный медицинский университет (ВолгГМУ)
Россия, 400131, г. Волгоград, площадь Павших Борцов, 1

РЕЗЮМЕ

Цель исследования – оценить изменения показателей физической работоспособности у потомства крыс с экспериментальной преэклампсией (ЭП) при ранней и поздней фармакологической коррекции производными гамма-аминомасляной кислоты (ГАМК).

Материалы и методы. Эксперименты выполнены на потомстве в возрасте 3 мес (n = 358), 18 (n = 288) и 25 мес (n = 138), рожденном белыми беспородными самками крыс с физиологической беременностью и ЭП, моделированной заменой питьевой воды 1,8%-м раствором натрия хлорида с 1-х по 21-е сут гестации. На первом этапе изучали физическую работоспособность 3- и 18-месячного потомства самок крыс с ЭП после ранней фармакологической коррекции с 40-х по 70-е сут жизни производными ГАМК сукцикардом (22 мг/кг), салифеном (7,5 мг/кг), фенибутом (25 мг/кг) и препаратом сравнения пантогамом (50 мг). На втором этапе изучали физическую работоспособность потомства крыс с ЭП, в течение 30 сут (с 24-го по 25-й мес жизни) вводили в желудок сукцикард (44 мг/кг), салифен (15 мг/кг), фенибут (50 мг/кг) или пантогам (100 мг). В исследовании использовали тесты «Удержание тела на горизонтальном веревочном канате» (УТнаГВК), «Ротарод» и «Вынужденное плавание с грузом» (ВПсГ).

Результаты. У потомства самок крыс с ЭП в возрасте 3, 18 и 25 мес уменьшилась мышечная сила, координационно-двигательная активность и аэробно-анаэробная выносливость в тестах УТнаГВК, «Ротарод» и ВПсГ по сравнению с показателями у животных, рожденных интактными крысами. Производное ГАМК сукцикард и препарат сравнения «Пантогам» были эффективны как при ранней, так и при поздней фармакологической коррекции, салифен и фенибут – только при введении в пубертатном периоде. С возрастом у потомства крыс с ЭП снижалась мышечная сила и координационно-двигательная активность, но аэробно-анаэробная выносливость увеличивалась.

Заключение. У потомства крыс, подвергнутых ЭП в возрасте 3, 18 и 25 мес ухудшалась физическая работоспособность. Фармакологическая коррекция производными ГАМК в адолесцентном периоде ослабляла последствия ЭП. При введении веществ в пубертатном периоде лечебное действие оказывали только сукцикард и препарат сравнения «Пантогам». Это предполагает возможность создания на основе сукцикарда препарата для превентивной коррекции последствий преэклампсии.

Ключевые слова: экспериментальная преэклампсия, потомство крыс, производные ГАМК, физическая работоспособность.

Конфликт интересов. Авторы декларируют отсутствие явных и потенциальных конфликтов интересов, связанных с публикацией настоящей статьи.

Источник финансирования. Авторы заявляют об отсутствии финансирования при проведении исследования.

Соответствие принципам этики. Исследование одобрено Региональным исследовательским этическим комитетом Волгоградской области (протокол № 2044-2017 от 25.12.2017).

* Музыко Елена Андреевна, e-mail: muzyko.elena@mail.ru.
Change in physical performance indicators of the progenies of rats with experimental preeclampsia in early and late pharmacological correction by GABA derivatives

Muzyko E.A.,Perfilova V.N.,Suvorin K.V.,Tyurenkov I.N.

Volgograd State Medical University
1, Pavshikh Bortsov Sq., Volgograd, 400131, Russian Federation

ABSTRACT

The aim of the study was to assess the changes in physical performance parameters in the progeny of rats with experimental preeclampsia (EP) undergoing early and late pharmacological treatment with gamma-aminobutyric acid (GABA) derivatives.

Materials and methods. At the first stage, physical performance of 3- and 18-month old progeny of female rats with EP after early pharmacological treatment (from 40th to 70th day of life) with GABA derivatives, succicard (22mg/kg), salifen (7.5 mg/kg), phenibut (25 mg/kg) and a comparator drug, pantogam (50 mg), was studied. At the second stage, succicard (44 mg/kg), salifen (15 mg/kg), phenibut (50 mg/kg) or pantogam (100 mg) were intragastrically administered in the progeny of rats with EP for 30 days (from 24th to 25th months of life). The horizontal rope walking test (HRWT), Rotarod performance test, Forced swim test with weight load (FSTwWL) were used in the study.

Results. The HRWT, Rotarod performance rest and FSTwWL showed a decrease in muscle strength, coordination and motor activity, and aerobic and anaerobic endurance in rats with EP aged 3, 18 and 25 months as compared to the values of the animals born to intact rats. Succicard, a GABA-derivative, and pantogam, a comparator drug, were effective both in early and late pharmacological interventions, whereas salifen and phenibut were effective only when administered during puberty. As the offspring of EP rats were aging, their muscle strength, coordination, and motor activity were decreasing, while their aerobic and anaerobic endurance was increasing.

Conclusion. Physical performance in the progeny of rats with induced EP aged 3, 18 and 25 months tended to decrease. Pharmacological treatment with GABA derivatives in the adolescent period attenuated EP consequences. When administered in the puberty period, only succicard and the comparator drug, pantogam, had a therapeutic effect. This fact provides evidence that a succicard-based drug can be developed for preventive management of preeclampsia consequences.

Key words: experimental preeclampsia, the progeny of rats, GABA derivatives, physical performance.

Conflict of interest. The authors declare the absence of obvious and potential conflicts of interest related to the publication of this article.

Source of financing. The authors received no specific funding for this work.

Conformity with the principles of ethics. The study was approved by the Regional Research Ethics Review Board (Protocol No. 2044-2017 of 25.12.2017).

For citation: Muzyko E.A.,Perfilova V.N.,Suvorin K.V.,Tyurenkov I.N. Change in physical performance indicators of the progenies of rats with experimental preeclampsia in early and late pharmacological correction by GABA derivatives. Bulletin of Siberian Medicine. 2021; 20 (1): 98–104. https://doi.org/10.20538/1682-0363-2021-1-98-104.
ВВЕДЕНИЕ
Прэклампсия является тяжелым мультисистемным патологическим состоянием беременности, которое увеличивает риск развития неблагоприятных последствий у потомства как на ранних этапах жизни, так и в отдаленные периоды. Нарушение формирования фетоплацентарного комплекса и эндотеллиальной дисфункции, характерные для прэклампсии, способствуют ухудшению кровообращения в системе «мать – плод», что влечет за собой недостаточную дозу питательных веществ плоду и развитие хронической гипоксии [1]. Прэклампсия во время критических периодов внутриутробного онтогенеза ребенка сопровождается патологическими изменениями в органах и тканях. Дети, рожденные матерями с данным заболеванием, теряют физическое развитие, у них повышается риск развития заболеваний в отдаленные периоды жизни и снижается физическая работоспособность [2].

В настоящее время не созданы лекарственные средства с доказанной эффективностью для коррекции постгипоксических нарушений, возникающих на разных этапах онтогенеза у детей, рожденных женщинами с прэклампсийей, не разработана стратегия лечения осложнений этого тяжелого состояния. Поиск безопасных и эффективных лекарственных средств для коррекции осложнений прэклампсии является актуальным в педиатрической и терапевтической практике.

В ранее проведенных исследованиях было показано, что производные гамма-аминомасляной кислоты (ГАМК) оказывают эндотелий-, нейро-, кардиопротекторное действие, обладают антиоксидантным эффектом, нарушают функцию свободных радикалов, уменьшают физическую работоспособность крыс [3–5]. Это данные предполагают возможность использования производных ГАМК для коррекции последствий прэклампсии у потомства.

Цель исследования – оценка показателей физической работоспособности у потомства крыс с прэклампсийей в различные периоды онтогенеза и определение возможности использования производных ГАМК в педиатрической и терапевтической практике.

МАТЕРИАЛЫ И МЕТОДЫ
Эксперименты выполнены на потомстве в возрасте 3 мес (n = 358), 18 (n = 288) и 25 мес (n = 138), рожденном белыми беспородными самками крыс с физиологической беременностью и ЭП, моделированной заменой питьевой воды 1,8%-м раствором натрия хлорида с 1-х по 21-е сут гестации [3]. Животным вводили производные ГАМК – сукинард (композиция 4-фенилпирацетам и янтарной кислоты в соотношении 2 : 1), фенибут (γ-амино-β-фенилмасляная кислота), салифен (композиция фенибута и салициловой кислоты в соотношении 2 : 1). Все субстанции синтезированы на кафедре органической химии РГПУ имени А.И. Герцена. Препаратом сравнения служил пантогам (гопантеновая кислота, ООО «ПИК-ФАРМА», Россия; сироп 100 мг/мл).

На 39-е сут после рождения потомство отсаживали от крыс самок. Исследование проводили в два этапа. На первом этапе были сформированы группы животных: 1, 2 – позитивный контроль – самцы (n = 30) и самки (n = 29), рожденные здоровыми крышами и получавшие дистиллированную воду; 3, 4 – негативный контроль – самцы (n = 30) и самки (n = 30), рожденные крышами с ЭП и получавшие дистиллированную воду; 5, 6, 7, 8, 9, 10, 11, 12 – опытные группы – самцы и самки (по 30 животных каждого пола), рожденные крышами с ЭП и получавшие ГАМК сукинардом, салигем, фенибутом и препаратом сравнения «Пантогам».

Показатели физической работоспособности у потомства крыс

Вуэтных получали из ФГУП «Питомник лабораторных животных Рапполово» (Ленинградская область). Содержание и уход за ними в условиях вивария ВолгГМУ осуществляли согласно рекомендациям национального стандарта Российской Федерации ГОСТ Р-33044-2014 «Принципы надлежащей лабораторной практики», Международных рекомендаций «Европейской конвенции о защите позвоночных животных, используемых для экспериментов или в иных научных целях» (1986). Исследование выполняли в соответствии с требованиями приказа МЗ РФ №199н от 01.04.2016 г. «Об утверждении правил лабораторной практики» и директивы 2010/63/EU Европейского парламента и Совета Европейского союза от 22.09.2010 г. по охране животных, используемых в научных целях. Исследование одобрено региональным исследовательским этическим комитетом Волгоградской области (протокол № 2044-2017 от 25.12.2017).

Животным вводили производные ГАМК – сукинард (композиция 4-фенилпирацетама и янтарной кислоты в соотношении 2 : 1), фенибут (γ-амино-β-фенилмасляная кислота), салифен (композиция фенибута и салициловой кислоты в соотношении 2 : 1). Все субстанции синтезированы на кафедре органической химии РГПУ имени А.И. Герцена. Препаратом сравнения служил пантогам (гопантеновая кислота, ООО «ПИК-ФАРМА»; Россия; сироп 100 мг/мл).

На 39-е сут после рождения потомство отсаживали от крыс самок. Исследование проводили в два этапа. На первом этапе были сформированы группы животных: 1, 2 – позитивный контроль – самцы (n = 30) и самки (n = 29), рожденные здоровыми крышами и получавшие дистиллированную воду; 3, 4 – негативный контроль – самцы (n = 30) и самки (n = 30), рожденные крышами с ЭП и получавшие дистиллированную воду; 5, 6, 7, 8, 9, 10, 11, 12 – опытные группы – самцы и самки (по 30 животных каждого пола), рожденные крышами с ЭП и получавшие ГАМК сукинардом, салифен, фенибутом и препаратом сравнения «Пантогам».

МАТЕРИАЛЫ И МЕТОДЫ
Эксперименты выполнены на потомстве в возрасте 3 мес (n = 358), 18 (n = 288) и 25 мес (n = 138), рожденном белыми беспородными самками крыс с физиологической беременностью и ЭП, моделированной заменой питьевой воды 1,8%-м раствором натрия хлорида с 1-х по 21-е сут гестации [3]. Жи-
«Ротарод» [6] и «Вынужденное плавание с грузом» (ВПсГ) [7]. У самцов и самок в возрасте 18 мес группы позитивного контроля (n = 25 и n = 23), негативного контроля (n = 28 и n = 25) и опытных групп: 5 (n = 24), 6 (n = 27), 7 (n = 20), 8 (n = 21), 9 (n = 23), 10 (n = 24), 11 (n = 24), 12 (n = 24) выполняли эти же тесты.

На втором этапе исследования в течение 30 сут (с 24-й по 25-й мес жизни) самцам и самкам группы позитивного контроля (n = 11 и n = 11) и негативного контроля (n = 15 и n = 12) вводили в желудок дистиллированную воду, самцам и самкам опытных групп 5 (n = 16) и 6 (n = 9) – сукицикард дозе 44 мг/кг, 7 (n = 11) и 8 (n = 14) – салифен в дозе 15 мг/кг, 9 (n = 14) и 10 (n = 12) – фенибут в дозе 50 мг/кг, 11 (n = 7) и 12 (n = 6) – пантогам в дозе 100 мг. Физическую работоспособность крыс в возрасте 25 мес оценивали в тестах УТнаГВК, «Ротарод» и ВПсГ. Вещества вводили в эффективных для взрослых крыс дозах [3, 4].

Статистическую обработку результатов осуществляли с помощью пакета программ Statistica v.12.5, лицензионный номер 133-190-095 (StatSoft Inc., США) по U-критерию Манна – Уитни и t-критерию Стьюдента для парных сравнений, а также критерия Ньюмена – Кейлса, Краскела – Уоллиса и критерия Манна – Уитни с пост-тестом Даннета для множественных, с критерием Шапиро – Уилка. Различия статистически значимы при р < 0,05.

Данные представлены в виде M ± m, где M – среднее значение, m – ошибка среднего.

РЕЗУЛЬТАТЫ

У потомства крыс группы негативного контроля в возрасте 3, 18 и 25 мес время выполнения тестов УТнаГВК, «Ротарод» и ВПсГ было существенно меньше, чем у животных, рожденных здоровыми самками. Это свидетельствует о снижении на ранних и поздних этапах онтогенеза мышечной силы, способности к поддержанию равновесия и координации движений, аэробно-анаэробной выносливости (табл. 1, 2, рис.).

В тесте УТнаГВК у 3-месячного потомства, получавшего производные ГАМК, время удержания на горизонтальном канате удлинялось у самцов и самок, рожденных крысами с ЭП, и у самок, получавших салифен и фенибут. В возрасте 25 мес у крыс группы негативного контроля. В возрасте 18 мес время удержания увеличивалось у самцов, получавших сукицикард и пантогам, и у самок, получавших салифен и фенибут. В возрасте 25 мес удержание на горизонтальном канате уменьшилось у самцов, которым вводили сукицикард, фенибут и пантогам. Время выполнения теста статистически значимо сокращалось у потомства всех групп в возрасте 18 и 25 мес по сравнению с 3-месячными животными. У крыс в возрасте 25 мес по сравнению с 18-месячным потомством время удержания уменьшалось у самцов и самок, рожденных крысами с ЭП, и у самок, получавших салифен и фенибут (см. табл. 1).

Группа животных	Пол	Возраст 3 мес	Возраст 18 мес	Возраст 25 мес
Позитивный контроль				
Самцы	50,27 ± 1,58	10,08 ± 0,83 &	7,60 ± 0,91 &	
Самки	62,03 ± 1,80	6,83 ± 0,73 &	6,82 ± 0,87 &	
Негативный контроль				
Самцы	27,31 ± 1,61 *	6,46 ± 0,64 &<	3,80 ± 0,31 &<	
Самки	37,07 ± 1,99 *	6,33 ± 0,45 &	4,50 ± 0,31 &<	
Потомство крыс с экспериментальной преморбидностью, получавшее сукицикард				
Самцы	42,07 ± 1,66 #	8,50 ± 0,69 &<	8,33 ± 0,62 &<	
Самки	57,09 ± 1,77 #	7,19 ± 0,53 &	6,43 ± 0,53 &<	
Потомство крыс с экспериментальной преморбидностью, получавшее салифен				
Самцы	41,31 ± 1,35 #	6,25 ± 0,69 &<	5,55 ± 0,55 &<	
Самки	56,37 ± 1,62 #	11,57 ± 0,85 &<	5,71 ± 0,60 &<	
Потомство крыс с экспериментальной преморбидностью, получавшее фенибут				
Самцы	43,55 ± 1,19 #	6,39 ± 0,61 &	6,38 ± 0,43 &<	
Самки	52,13 ± 1,55 #	9,61 ± 0,74 &<	6,00 ± 0,51 &<	
Потомство крыс с экспериментальной преморбидностью, получавшее пантогам				
Самцы	34,48 ± 1,60 #	8,54 ± 0,68 &<	6,57 ± 0,75 &<	
Самки	51,38 ± 1,49 #	6,96 ± 0,48 @	5,83 ± 0,48 &	

Таблица 1

Примечание. Различия статистически значимы (р < 0,05) по сравнению с группой позитивного контроля: $ – по критерию Манна – Уитни, * – по критерию Стьюдента; по сравнению с группой негативного контроля: ^ – по критерию Краскела – Уоллиса с пост-тестом Даннета, # – по критерию Ньюмена – Кейлса; по сравнению с потомством в возрасте 3 мес: @ – по критерию Манна – Уитни, & – по критерию Стьюдента; по сравнению с потомством в возрасте 18 мес: > – по критерию Манна – Уитни, < – по критерию Стьюдента.

Бюллетень сибирской медицины. 2021; 20 (1): 98–104
При оценке способности к удержанию равновесия и координации в тесте «Ротарод» было показано, что в возрасте 3 мес самцы, получавшие салифен и фенибут, значительно дольше удерживались на вращающемся стержне, чем животные группы негативного контроля. В возрасте 18 мес длительнее удерживались самцы, которым вводили сукцикард, салифен и пантогам, и самки, получавшие пантогам. В возрасте 25 мес время удержания повышалось у самцов, которым вводили сукцикард и пантогам, и самок, получавших сукцикард. Время выполнения теста у 18- и 25-месячного потомства всех групп было меньше, чем у крыс в возрасте 3 мес (см. рис.).

В тесте ВПсГ 3-месячные самцы, получавшие сукцикард, салифен и пантогам, а также самки, которым вводили сукцикард, салифен и фенибут, плавали дольше, чем крысы в возрасте 3 мес (см. рис.).

Таблица 2

Группа животных	Пол крысы	Возраст 3 мес	Возраст 18 мес	Возраст 25 мес
Позитивный контроль	Самцы	129,72 ± 2,97	155,88 ± 8,56 &	166,50 ± 7,20 @
	Самки	153,38 ± 3,78	189,61 ± 11,48 &	193,56 ± 9,30 &
Негативный контроль	Самцы	92,23 ± 2,78 $	125,74 ± 5,02 * &	134,53 ± 4,95 * &
	Самки	99,67 ± 2,79 $	148,71 ± 4,17 * &	166,67 ± 4,90 * &
Потомство крыс с экспериментальной прэклампсией, получавших сукцикард	Самцы	108,52 ± 3,41 ^	140,51 ± 5,77 # &	144,47 ± 4,40 # &
	Самки	111,93 ± 2,98 #	166,33 ± 9,48 &	173,00 ± 12,08 # &
Потомство крыс с экспериментальной прэклампсией, получавших фенибут	Самцы	127,40 ± 7,78 ^	150,05 ± 8,58 # &	147,40 ± 8,83
	Самки	121,53 ± 3,23 #	161,74 ± 9,66 @	153,92 ± 9,07 # &
Потомство крыс с экспериментальной прэклампсией, получавших пантогам	Самцы	109,84 ± 3,24 ^	156,08 ± 8,30 # &	135,71 ± 7,97 &
	Самки	99,38 ± 2,32	169,43 ± 9,52 &	174,20 ± 11,06 # &

Примечание. Различия статистически значимы ($p < 0,05$) по сравнению с группой позитивного контроля: $-$ по критерию Манна — Уитни, * по критерию Стьюдента; по сравнению с группой негативного контроля: ^ - по критерию Краскела — Уоллиса с пост-тестом Даннета, # - по критерию Ньюмена — Кейлса; по сравнению с потомством в возрасте 3 мес: @ - по критерию Манна — Уитни, & - по критерию Стьюдента; по сравнению с потомством в возрасте 18 мес: > - по критерию Манна — Уитни, < - по критерию Стьюдента.
значительно дольше, чем животные группы негативного контроля. В возрасте 18 мес время плавания уве-
личивалось у самцов, получавших все исследуемые производные ГАМК и препарат сравнения «Панто-
gам», и у самок, которым вводили салифен. В возрас-
te 25 мес продолжительность плавания станови-
лась больше у самок, получавших сукцикард и пантогам. Время выполнения теста у крыс всех групп в возрас-
te 18 и 25 мес по сравнению с 3-месячным потомством. Время плавания крыс в возрасте 25 мес по сравнению с 3-
месячным потомством возрастало по сравнению с 3-месячным потомством. Время выполнения теста у крыс всех групп в возрас-
te 18 и 25 мес возрастало по сравнению с 3-месяч-
ным потомством. Время плавания крыс в возрасте 25
мес по сравнению с 18-месячными крысами стати-
стически значимо снижалось только у самок группы негативного контроля и животных, получавших са-
лифен (см. табл. 2).

ОБСУЖДЕНИЕ

При преклампсии нарушается поступление пи-
tательных веществ и кислорода к формирующимся
плоду. Изменение метаболизма сопровождается аци-
dозом и окислительным стрессом, которые способ-
ствуют разрушению клеточных структур и фермен-
tов органов и тканей, что в постнатальном онтогенезе
может привести к их дисфункции [2]. Увеличивается
вероятность формирования заболеваний нервной,
сердечно-сосудистой, эндокринной, дыхательной и
других систем [8–11] со снижением физической ра-
ботоспособности в разные периоды жизни.

В результате проведенных экспериментов было
установлено, что потомство самок с ЭП имеет более
низкую по сравнению с животными, рожденными
здоровыми крысами, физическую работоспособ-
ность, как на ранних (3 мес) этапах онтогенеза, так
и в отдаленные периоды (18 и 25 мес), о чем свиде-
тельствуют изменения времени выполнения тестов
УТнаГВК, «Ротарод» и ВПсГ. Известно, что произ-
водные ГАМК положительно влияют на параметры
физической работоспособности и адаптацию к фи-
зическим нагрузкам, увеличивают физическую вы-
носливость крыс к форсированным динамическим и
статическим нагрузкам [5].

В наших экспериментах раньше (с 40-х по 70-е
сут жизни) и поздняя (с 24-го по 25-й мес жизни)
фармакологическая коррекция производным ГАМК
суцикардом увеличивала мышечную силу, коорди-
национно-двигательную активность, аэробно-
анаэробную выносливость в тестах УТнаГВК, «Рота-
род» и ВПсГ соответственно у 3-, 18- и 25-
месячно-
го потомства по сравнению с показателями в группе
негативного контроля. Мыщечная сила и аэробно-
анаэробная выносливость у 3- и 18-
месячных крыс,
которым с 40-х по 70-е сут жизни вводили салифен
и фенибут, были существенно больше, чем у живот-
ных, рожденных самками с ЭП. Поздняя фармако-
логическая коррекция этими производными ГАМК
не оказывала значительного влияния на физическую
работоспособность потомства крыс с ЭП. Препарат
сравнения пантогам оказывал подобное сукцикардну
действие.

Таким образом, сукцикард и препарат сравне-
ния пантогам оказались эффективны как при ранней
(с 40-х по 70-е сут жизни), так и при поздней фарма-
кологической коррекции (с 24-го по 25-й мес жизни),
суцикард и фенибут – только при введении в пубер-
tатном периоде.

Терапевтическое влияние производных ГАМК
связано с их полипропным фармакологическим дей-
ствием. Вещества этой группы обладают эндотелий-,
нейро-, кардиопротекторным, антигипоксическим и
антиоксидантным эффектами [3, 4]. Кроме того, про-
изводные ГАМК оказывают влияние на транспорт и
utилизацию глюкозы, увеличивают синтез адено-
зитрифосфата в условиях гипоксии, устраивают де-
фицит энергии в клетках, участвуют в регуляции
мышечных сокращений [5, 12]. Все это способствует
росту физической работоспособности у потомства
самок с ЭП.

С возрастом у крыс всех групп снижалась мы-
шечная сила и координационно-двигательная актив-
ность, напротив, аэробно-анаэробная выносливость
увеличивалась. Возможно, на показатели теста ВПсГ
повлияло его проведение еще и в возрасте 6 и 12 мес,
что может служить для животных тренировкой [13].

В возрасте 18 и 25 мес физическая работоспособ-
ность значительно снижалась у животных группы
негативного контроля и крыс, получавших салифен
и фенибут. Это свидетельствует о негативном влия-
нии ЭП на мышечную силу, способность удерживать
равновесие и координацию, аэробно-анаэробную
выносливость потомства, а также подтверждает не-
эффективность поздней (с 24-го по 25-й мес жизни)
фармакологической коррекции последствий ЭП са-
лифеном и фенибутом.

ЗАКЛЮЧЕНИЕ

У животных, рожденных крысами с ЭП, в воз-
rасте 3, 18 и 25 мес уменьшается физическая ра-
ботоспособность по сравнению с работоспособно-
стью у потомства здоровых самок. Производные
ГАМК сукцикард, салифен и фенибут уменьшают
негативное влияние ЭП на мышечную силу, способность удерживать
равновесие и координацию, аэробно-анаэробную
выносливость потомства, а также подтверждает не-
fективность поздней (с 24-го по 25-й мес жизни)
фармакологической коррекции последствий ЭП са-
лифеном и фенибутом.
превентивной коррекции последствий преэклампсии у потомства.

ЛИТЕРАТУРА
1. Phipps E.A., Thadhani R., Benzing T., Karumanchi S.A. Pre-eclampsia: pathogenesis, novel diagnostics and therapies. *Nature Reviews Nephrology.* 2019; 15 (5): 275–289. DOI: 10.1038/s41581-019-0119-6.
2. Stojanovska V., Scherjon S.A., Plösch T. Preeclampsia as modulator of offspring health. *Biology of Reproduction.* 2016; 94 (3): 53. DOI: 10.1095/biolreprod.115.135780.
3. Тюренков И.Н., Перфилова В.Н., Кармышева В.И., Попова Т.А., Лебедева С.А., Михайлова Л.И., Жакупова Г.А. Гравидопротекторное действие фенибута при экспериментальной преэклампсии. *Экспериментальная и клиническая фармакология.* 2014; 77 (11): 6–10.
4. Tyurenkov I.N., Perfilova V.N., Reznikova L.B., Smirnova L.A., Kuznetsov K.A. GABA derivatives citrocard and salifen reduce the intensity of experimental gestosis. *Bulletin of Experimental Biology and Medicine.* 2014; 157 (1); 42–44. DOI: 10.1007/s10517-014-2487-z.
5. Багметова В.В., Кривицкая А.Н., Тюренков И.Н., Берестовицкая В.М., Васильева О.С. Влияние фенибута и его соли с янтарной кислотой на устойчивость животных к форсированной динамической и статической физической нагрузке. *Фундаментальные исследования.* 2012; 4 (2): 243–246.
6. Миронов А.Н. Руководство по проведению доклинических исследований лекарственных средств. Часть 1: М: Гриф и К, 2012: 944.
7. Maher G.M., O'Keeffe G.W., Kenny L.C., Kearney P.M., Dinan T.G., Khashan A.S. Hypertensive disorders of pregnancy and risk of neurodevelopmental disorders in the offspring: a systematic review and meta-analysis protocol. *British Medical Journal.* 2017; 7 (10): e018313. DOI: 10.1136/bmjop-en-2017-018313.
8. De Souza Rugolo L.M.S., Bentlin M.R., Trindade C.E. Pre-eclampsia: early and late neonatal outcomes. *Neoreviews.* 2012; 13 (9): 532–541. DOI: 10.1542/neo.13-9-e532.
9. Bertagnolli M., Lui T.M., Lewandowski A.J., Leeson P., Nuyt A.M. Preterm birth and hypertension: is there a link? *Current Hypertension Reports.* 2016; 18 (4): 28. DOI: 10.1007/s11906-016-0637-6.
10. Lin S., Leonard D., Co M.A., Mukhopadhyay D., Giri B., Perger L., Beerman M.R., Kuehl T.J., Uddin M.N. Pre-eclampsia has an adverse impact on maternal and fetal health. *Translational Research.* 2015; 165 (4): 449–463. DOI: 10.1016/j. trsl.2014.10.006.
11. Зайцева М.С., Иванов Д.Г., Александровская Н.В. Работоспособность крыс в тесте «Вынужденное плавание с грузом» и причины ее вариабельности. *Биомедицина.* 2015; 4: 30–42.

Вклад авторов
Музыко Е.А. – написание статьи, анализ и интерпретация данных, проведение основных этапов эксперимента. Перфилова В.Н. – анализ и интерпретация данных, проверка критически важного интеллектуального содержания, утверждение для публикации рукописи. Суворин К.В. – проведение основных этапов эксперимента. Тюренков И.Н. – разработка концепции и дизайна, проверка критически важного интеллектуального содержания, окончательное утверждение для публикации рукописи.

Сведения об авторах
Музыко Елена Андреевна, аспирант, кафедра фармакологии и фармации института, ВолгГМУ, г. Волгоград. ORCID 0000-0003-0535-9787.
Перфилова Валентина Николаевна, д-р биол. наук, профессор, кафедра фармакологии и фармации института, ВолгГМУ, г. Волгоград. ORCID 0000-0002-2457-8486.
Суворин Кирилл Витальевич, студент 6-го курса педиатрического факультета, ВолгГМУ, г. Волгоград.
Тюренков Иван Николаевич, д-р мед. наук, профессор, член-корр. РАН, зав. кафедрой фармакологии и фармации, заслуженный работник высшей школы РФ, заслуженный деятель науки РФ, ВолгГМУ, г. Волгоград. ORCID 0000-0001-7574-3923.

(✉) Музыко Елена Андреевна, e-mail: muzyko.elena@mail.ru

Поступила в редакцию 24.04.2020
Подписана в печать 29.09.2020

Bulletin of Siberian Medicine. 2021; 20 (1): 98–104