Insecticide resistance and resistance mechanisms in bed bugs, *Cimex* spp. (Hemiptera: Cimicidae)

Kai Dang¹, Stephen L. Doggett², G. Veera Singham³ and Chow-Yang Lee¹*

Abstract

The worldwide resurgence of bed bugs [both *Cimex lectularius* L. and *Cimex hemipterus* (F.)] over the past two decades is believed in large part to be due to the development of insecticide resistance. The transcriptomic and genomic studies since 2010, as well as morphological, biochemical and behavioral studies, have helped insecticide resistance research on bed bugs. Multiple resistance mechanisms, including penetration resistance through thickening or remodelling of the cuticle, metabolic resistance by increased activities of detoxification enzymes (e.g. cytochrome P450 monooxygenases and esterases), and knockdown resistance by *kdr* mutations, have been experimentally identified as conferring insecticide resistance in bed bugs. Other candidate resistance mechanisms, including behavioral resistance, some types of physiological resistance (e.g. increasing activities of esterases by point mutations, glutathione S-transferase, target site insensitivity including altered AChEs, GABA receptor insensitivity and altered nAChRs), symbiont-mediated resistance and other potential, yet undiscovered mechanisms may exist. This article reviews recent studies of resistance mechanisms and the genes governing insecticide resistance, potential candidate resistance mechanisms, and methods of monitoring insecticide resistance in bed bugs. This article provides an insight into the knowledge essential for the development of both insecticide resistance management (IRM) and integrated pest management (IPM) strategies for successful bed bug management.

Keywords: Bed bug, *Cimex lectularius*, *Cimex hemipterus*, Insecticide resistance, Mechanism, Molecular basis, Resistance monitoring

Background

Chemical control remains the most important and widely used strategy against most insect pests around the world. However, studies have shown that multiple resistance mechanisms in insects confer resistance to a range of insecticide classes [1–7]. Recently, researchers have used new techniques and advances in genomic research (e.g. transcriptomic sequencing and whole-genome sequencing) to identify the mechanisms that govern insecticide resistance in bed bugs (Table 1). Previous bioassay, genetic, morphological, biochemical and behavioral studies, also have made significant progress in the understanding of bed bug insecticide resistance mechanisms such as penetration resistance, metabolic resistance and knockdown resistance.

This review focuses on resistance to different insecticide classes and the underlying mechanisms in bed bugs. Other potential candidate resistance mechanisms in bed bugs are also reviewed.

Bed bugs

The common bed bug *Cimex lectularius* L. and the tropical bed bug *C. hemipterus* (F.) (Hemiptera: Cimicidae) are two cryptic and nocturnal ectoparasites that have adapted to feed on human blood [8, 9]. *Cimex lectularius* is most prevalent in temperate regions, whereas *C. hemipterus* is found mainly in tropical and subtropical regions [8, 10]. However, there is overlap in the regions where both species can be found, such as Thailand [11, 12], Africa [13, 14], Australia [15–17] and more recently in Florida, USA [18]. Approximately 70% of people who are bitten by *C. lectularius* experience allergic reactions ranging from mild to severe, including itchiness, erythematous rash, or urticaria...
[19–22], although fewer people react on initial exposure. For *C. hemipterus*, the percentage of the population that produces a clinical reaction is unknown, with described skin reactions including the formation of papular lesions with associated itch, which resolve around 1 h after the bite [23]. In addition, scratching may lead to secondary bacterial infections such as cellulitis, impetigo, eczema, and lymphangitis [10, 21]. Only a small number of people may

Table 1 Progress in morphological, behavioral, biochemical, bioassay, and genetic characterization of insecticide resistance mechanisms in bed bugs (*Cimex* spp.)

Year	Characterization	Targets	Methods	Accession number*	Resistance mechanisms	Reference
2009	Behavioral	–	Bioassay: SC	–	Behavioral resistance	[89]
2009;2015	Bioassay	P450s; esterases	Bioassay (SC/T) plus synergists (e.g. PBO, PBH, EN16/5–1)	–	Metabolic resistance: P450s, esterases	[127, 128, 136]
2008;2011;	Biochemical	P450s; GSTs; esterases	Biochemical assays	–	Metabolic resistance: P450s, GSTs and esterases	[64, 113, 156]
2016	Morphological	Cuticle	SEM	–	Penetration resistance	[95]
2008	Genetic	VGSC	Cloning and sequencing (RACE)	FJ031996, FJ031997	Target site insensitivity: kdr	[156]
2011	Genetic	Transcriptome	454 pyrosequencing (Roche 454 GS FLX Titanium platform)	SRA024509	Metabolic resistance: P450s	[104]
2011	Genetic	Transcriptome	High-throughput sequencing (Roche 454 Titanium platform)	SRA043735	Metabolic resistance: P450s, GSTs and esterases; Target site insensitivity: kdr	[113]
2012	Genetic	RNA-seq	Illumina high-throughput sequencing (Illumina HiSeq platform)	GSE31823	Metabolic resistance: P450s, GSTs, ABC-transporters, esterases; Penetration resistance; Target site insensitivity: kdr	[92]
2012	Genetic	CICPR	Cloning and sequencing (RACE)	JQ178363	Metabolic resistance: P450s	[122]
2012	Genetic	CIACH1; CIACH2; ClSChE	Cloning and sequencing (RACE)	JN563927; GUS97837; GUS97838; GUS97839	–	[168]
2013	Genetic	CPRR	Data from NCBI	–	Penetration resistance	[94]
2013	Genetic	Transcriptome	454 pyrosequencing (Roche 454 GS FLX Titanium platform)	–	Metabolic resistance: P450s, esterases, ABC-transporters; Penetration resistance; Target site insensitivity: kdr	[90]
2016	Genetic	Genome	Illumina high-throughput sequencing (Illumina HiSeq2000s)	SRSS80017	Metabolic resistance: P450s, esterases, ABC-transporters, GSTs; Penetration resistance; Target site insensitivity: kdr	[197]
2016	Genetic	Genome; RNA-seq	Illumina high-throughput sequencing	SRR749263; SRR1790655	Target site insensitivity: kdr, putative GABA receptors; Metabolic resistance P450s, GSTs, esterases	[93]

C. lectularius

Year	Characterization	Targets	Methods	Accession number*	Resistance mechanisms	Reference
2016	Morphological	Cuticle	SEM	–	Penetration resistance	[95]

C. hemipterus

Year	Characterization	Targets	Methods	Accession number*	Resistance mechanisms	Reference
2011	Bioassay	P450s	Bioassay (SC) plus PBO	–	Metabolic resistance: P450s	[129]
2007	Biochemical	P450s; GSTs; Esterases	Biochemical assays	–	Metabolic resistance: GSTs, and esterases	[56]
2015	Genetic	VGSC (Part)	Sanger sequencing	–	Target site insensitivity: kdr	[17]

Abbreviations: EN16/5–1 6-[2-(2-butoxyethoxy) ethoxymethyl]-5-propyl-2, 3-dihydrobenzofuranby [127], PBH 3-Phenoxybenzyl hexanoate, a surrogate substrate for carboxylesterases and oxidases [136], SC surface contact, T topical application, SEM scanning electron microscope, CICPR *Cimex lectularius* NADPH-cytochrome P450 reductase [122], CPRR cuticular protein with the rebers and riddiford consensus [94], CIACH1, CIACH2 two *C. lectularius* acetylcholinesterases, CISChE *C. lectularius* salivary gland-specific cholinesterase-like protein [168], RACE rapid amplification of cDNA ends, ABC-transporters ATP-binding cassette (ABC) transporters *Data from GenBank at NCBI (National Center for Biotechnology Information)
have no visible effect after repeated bed bug bites, and this lack of response may depend on previous exposure, although some people never develop a reaction despite multiple bites over time [24, 25]. Controlled laboratory studies have shown that bed bugs are capable of transmitting Trypanosoma cruzi (the etiological agent of Chagas disease) and Bartonella quintana (the etiological agent of trench fever) [26, 27]. However, to date there is no evidence to support the premise that bed bugs transmit these or other pathogens to humans in their natural habitat [10, 19, 21, 27].

Bed bugs have a long association with humans and were widespread and common world wide before World War II [9]. Soon thereafter, modern insecticides such as the organochlorine dichloro-diphenyl trichloroethane (DDT) were discovered and became a fast and an inexpensive method to control insect pests, including bed bugs. As a consequence, bed bugs gradually became uncommon, especially in economically developed countries, in the latter half of the twentieth century [9, 21, 28]. Unfortunately, over the last 15–20 years bed bugs have made a resurgence around the world with multiple reports of their comeback in the published literature, and popular mainstream and social media (Table 2). Recent bed bug infestations have been reported from hotels, motels, homes and apartment complexes, cinemas, offices, retail outlets, public transportation, commercial flights, schools, and healthcare facilities (including neonatal units) [21, 28, 29]. Several factors, such as an increase in local and international travel, frequent exchange of second-hand items, poor pest management and insecticide resistance, have been suspected to be amongst the factors contributing to the global resurgence of bed bugs. Nevertheless, insecticide resistance has largely been incriminated as the main reason for the comeback of these nuisance pests [30].

Insecticide resistance in bed bugs

Insecticide resistance is defined by the Insecticide Resistance Action Committee (IRAC) [31] as ‘a heritable change in the sensitivity of a pest population that is reflected in the repeated failure of a product to achieve the expected level of control when used according to the label recommendation for that pest species’. In other words, it is an inherited ability of a population to survive a lethal concentration of an insecticide product that would normally kill a wild population. This is due to alleles that confer appropriate resistance factors, which subsequently increase in frequency in response to insecticide selection pressure. However, insecticide resistance is not to be confused with insecticide tolerance. Unlike insecticide resistance, the latter is the natural ability to withstand insecticide action, and is not the result of genetic changes caused by the insecticide selection pressure [32].

DDT resistance

DDT was a long-lasting, relatively inexpensive and unrestricted chemical that was used worldwide as an insecticide to control disease-carrying mosquitoes, flies, and lice during and after the World War II [33]. Beginning in 1942, DDT was heavily used to control bed bug infestations in military barracks [9]. The first case of control failure of DDT against C. lectularius was reported in 1947 from the barracks of the Naval Receiving Station in Pearl Harbor, Hawaii [34]. It is noteworthy that bed bugs may have started developing resistance to DDT within 5 years after the product was first used, and the rapid pace of resistance was probably due to the excessive and continuous use of the insecticide. By the 1950s, bed bug resistance to DDT was widespread (Table 3) [35–40]. During this period, cross-resistance to pyrethrin was also observed in both C. lectularius (from Israel) and C. hemipterus (from Tanzania) [35]. Although there is abundant literature demonstrating that bed bugs had developed marked resistance to DDT, bed bug infestations decreased dramatically and were effectively reduced to very low levels from the 1950s to the late 1970s in many developed countries. The repetitive and widespread use of DDT and subsequent insecticides (e.g. malathion, chlorpyrifos, and propoxur) had led to the significant decrease of bed bug infestations worldwide [9]. However, bed bug infestations were still a major problem in some developing countries, such as Sierra Leone [14], South Africa and rural Africa [13, 41, 42], as well as problematic in the poultry industry in many countries [8, 28, 43, 44].

Pyrethroid resistance

Pyrethroids, the synthetic analogues of pyrethrin in pyrethrum, an extract of Chrysanthemum cinerariaefolium flower, are a class of highly effective and extremely efficient neurotoxic insecticides [45, 46]. However, with the worldwide resurgence of bed bugs over the last two decades, resistance to pyrethroids (Table 4) has been documented in many parts of the world for both C. lectularius [16, 30, 47–54] and C. hemipterus [12, 16, 17, 55, 56].

Neonicotinoid resistance

Imidacloprid, a neonicotinoid was introduced into the market in 1991 [57]. The neonicotinoids are now widely used against a wide variety of chewing and sucking pests [58], including the bed bugs [59–63]. Over the last few years, neonicotinoids have been combined with pyrethroids in formulated products, such as Temprid® SC (beta-cyfluthrin + imidacloprid), Transport® Mikron (bifenthrin + acetamiprid) and Tandem® (lambda-cyhalothrin + thiamethoxam) [10, 60, 63], and with diatomaceous earth (e.g. Alpine Dust Insecticide, with dinofeturan) [64] for the control of bed bugs. However, in a recent study, C. lectularius collected from human dwellings in Cincinnati and Michigan, USA
Table 2 Reports of bed bug (*Cimex* spp.) resurgence from around the world since the beginning of the 21th century

Continent	Country	Species	Reference
Asia	One of the Arabian Gulf States	*Cimex* spp.\(^a\)	[205]
	Bangladesh	*C. hemipterus*	[206]
	China (Mainland)	*C. lectularius, C. hemipterus*	[207, 208]
	Taiwan	*C. hemipterus*	[209]
	India	*C. lectularius, C. hemipterus*	[207, 209]
	Iran	*C. lectularius*	[210]
	Israel	*C. lectularius, C. hemipterus*	[211, 212]
	Japan	*C. lectularius*	[213]
	Kuwait	*C. lectularius*	[214]
	Malaysia	*C. hemipterus*	[129, 215–217]
	Pakistan	*C. lectularius*	[218]
	Singapore	*C. hemipterus*	[215]
	South Korea	*C. lectularius*	[219]
	Sri Lanka	*C. hemipterus*	[56]
	Thailand	*C. lectularius, C. hemipterus*	[12, 220]
Africa	Ethiopia	*Cimex* spp.\(^a\)	[221]
	Kenya	*C. hemipterus*	[17]
	Nigeria	*C. lectularius, C. hemipterus*	[222, 223]
	Rwanda	*C. hemipterus*	[224]
	Sierra Leone	*C. lectularius, C. hemipterus*	[14]
	South Africa	*C. lectularius, C. hemipterus*	[13]
	Tanzania	*C. lectularius, C. hemipterus*	[55, 225]
	Uganda	*Cimex* spp.\(^a\)	[226]
Americas	Argentina	*C. lectularius*	[227]
	Brazil	*C. lectularius, C. hemipterus*	[228–230]
	Canada	*C. lectularius*	[231, 232]
	Chile	*C. lectularius*	[227]
	Colombia	*C. lectularius*	[233]
	Cuba	*C. hemipterus*	[209]
	Mexico	*Cimex* spp.\(^a\)	[28]
	Panama	*C. hemipterus*	[209]
	Peru	*C. lectularius*	[234]
	USA	*C. lectularius, C. hemipterus*	[18, 48, 157, 209, 235, 236]
	Venezuela	*C. lectularius, C. hemipterus*	[209, 237]
Europe	Austria	*C. lectularius*	[238]
	Czech Republic	*C. lectularius*	[205, 238]
	Denmark	*C. lectularius*	[239]
	France	*C. lectularius*	[158, 240, 241]
	Germany	*C. lectularius*	[159, 242–244]
	Hungary	*C. lectularius*	[245]
	Italy	*C. lectularius*	[246, 247]
	Norway	*C. lectularius*	[238]
	Poland	*C. lectularius*	[238]
	Spain	*C. lectularius*	[238]
have shown moderate to high levels of tolerance/resistance to various neonicotinoids [64]. Romero & Anderson [64] reported that resistance to neonicotinoids may likely be conferred by the increased enzymatic activities found in these populations. These findings indicate that tolerance or even resistance to neonicotinoids is now present in field bed bug populations.

Pyrrrole efficacy

Besides the conventional insecticides (e.g. pyrethroids, OPs, and carbamates), newer insecticide such as chlorfenapyr from the pyrrole class have also been evaluated [65, 66]. Pyrroles are a class of pro-insecticides that are activated by cytochrome P450 monooxygenases (P450s) to its more active metabolite [67]. Unlike neurotoxic insecticides (e.g. pyrethroids), pyrroles are mitochondrial electron transport inhibitors (METI) which disrupt the conversion of adenosine diphosphate (ADP) to adenosine triphosphate (ATP) (oxidative phosphorylation) in mitochondria of cells. This process results in loss of energy production, which leads to cell dysfunction and subsequent death of the organism [67]. Due to their novel mode of action, pyrroles (e.g. chlorfenapyr) are currently registered in more than 19 countries for the control of various insect and mite pests [68], especially against pyrethroid-resistant insect pests, including bed bugs [65, 66, 69, 70]. Nevertheless, there are increasing number of reports of insects and mites becoming resistant or cross-resistant to pyrroles [71–74], mainly due to metabolic resistance (e.g. P450s and esterases) [72, 75].

Despite no cases of resistance to chlorfenapyr has been reported in the bed bug so far, this compound has shown varying performance against bed bugs. While chlorfenapyr (Phantom®) was extremely slow-acting in laboratory residual bioassays [48], direct application of the product on the walls of infested apartments resulted in a 61% reduction in bed bug numbers in just 3 days [76]. Romero et al. [65] reported that chlorfenapyr is a non-repellent insecticide with long residual activity against *C. lectularius* based on laboratory studies. On the contrary, other researchers have found poor performance of this product even with laboratory susceptible bed bugs [21, 66]. In a field evaluation [69], Phantom® was widely sprayed throughout 15 apartments monthly for 5 months. The authors only achieved control in 12 units despite including a range of non-chemical means, yet three units remained infested. It is not possible to determine if this lack of complete control was due to poor product efficacy (and possible resistance) or due to bed bugs being reintroduced.

Resistance to other insecticides

Besides resistance to DDT, by the 1950s both bed bug species also had developed resistance to other chlorinated hydrocarbon compounds (OCs) [e.g *gamma*-HCH (1957), methoxychlor (1958), dieldrin (1958), aldrin (1958), and endrin (1958)] (Table 3) [35], organophosphates (OPs) (e.g. malathion) (1971) [77], and carbaryl (carbamate) (1972) [78]. Following the resurgence in the new millennia, resistance to OCs [56], OPs [12, 53, 56] and carbamates [12, 44, 49, 52] were also reported in bed bugs (Table 4). All these classes of insecticides have largely been banned for indoor use against bed bugs with exception to selected countries in Asia, Africa, and some countries in Latin America.

Mechanisms of resistance

Insecticide resistance can be divided into two major types: behavioral resistance and physiological resistance [1, 79]. In behavioral resistance, the insect populations may develop the ability to avoid or reduce lethal insecticide exposure [79]. In contrast, physiological resistance refers to physiological modification mechanisms, including reduced cuticular penetration, increased metabolic detoxification, and decreased target site sensitivity. Behavioral and physiological resistance often coexist in insect pests [79, 80] and both forms could be involved with bed bug resistance (Table 5, Fig. 1). Herein the resistance mechanisms that have been reported in the bed bug are discussed, as well as candidate resistance mechanisms that are yet to be confirmed. So far, only penetration resistance, metabolic resistance (namely P450 and esterase), and target site insensitivity (namely kdr-type) have been found to confer resistance in bed bugs. Other resistance mechanisms that are yet to be detected in bed bugs are behavioral resistance, glutathione S-transferase (GST), altered acetylcholinesterase (ACHE), insensitive y-aminobutyric acid (GABA) receptor, altered nACHRs, and symbiont-mediated insecticide
Table 3 Reports of resistance to chlorinated hydrocarbons in bed bugs (*Cimex* spp.) by the 1970s

Species	Year	Chlorinated hydrocarbon	Location	Reference
C. lectularius	1947	DDT	USA (Hawaii)	[34]
	1949	DDT	Greece	[255–257]
	1952	DDT	USA (Ohio, Illinois, Indiana, Utah)	[36]
	1953	DDT	Belgian Congo	[258]
	1953	DDT	Israel	[259, 260]
	1953	DDT	Japan, Italy	[36]
	1954	HCH, dieldrin	Italy	[36]
	1955	DDT	USA (Colorado, Pennsylvania, Texas)	[36]
	1956	HCH, dieldrin	Israel	[36]
	1956	DDT	French Guiana	[261]
	1956	DDT	Iran	[262]
	1957	γ-HCH	Israel	[263]
	1957	DDT	Trinidad, Turkey	[36]
	1957	DDT, chlordane, dieldrin	Italy	[264]
	1958	Dieldrin, γ-HCH, aldrin, endrin, isodrin, α-chlordane, β-chlordane, methoxychlor, perthane, prolan	Israel	[35]
	1958	DDT	Lebanon	[265]
	1958	DDT	Japan, Korea, USA (Ohio, and two US naval vessels)	[266]
	1959	DDT	Hungary, Poland	[36, 40, 267]
	1960	HCH, dieldrin	Indonesia, Zambia, Rhodesia, Borneo	[37]
	1960	DDT	Borneo, Indonesia, Colombia	[36, 40]
	1960	DDT	Zimbabwe	[268]
	1961	DDT, HCH, dieldrin	South India	[36]
	1962	γ-HCH	India	[269]
	1962	DDT, HCH, dieldrin	South Africa	[37, 270]
	1963	DDT dieldrin	Gaza	[271]
	1967	DDT, HCH, dieldrin	Egypt	[37, 272]
	1971	γ-HCH	Zambia, Italy, Borneo	[40]
	1972	DDT	Papua-New Guinea	[273]
	1976	DDT, dieldrin	Almost everywhere	[38]
C. hemipterus	1955	DDT	West India	[36]
	1956	HCH, dieldrin	West India	[36]
	1956	DDT	Taiwan	[274]
	1956	DDT	India (Bombay State)	[275]
	1957	HCH, dieldrin	Tanzania, Kenya, Upper Volta	[37]
	1957	DDT	Hong Kong, Singapore	[264]
	1957	DDT	Kenya	[36]
	1957	Dieldrin	Ivory Coast	[35]
	1958	Dieldrin	Tanganyika	[276]
	1958	DDT	Mombasa, Somalia, Gambia, Hong Kong	[35]
	1958	Dieldrin	Mombasa, Gambia	[35]
	1958	γ-HCH	Mombasa, Somalia, Gambia	[35]
	1958	Methoxychlor	Mombasa, Somalia	[35]
	1959	DDT	Poland	[267]
resistance. The role of ATP-binding cassette (ABC) transporters in upregulation of toxicant removal from the target site will be discussed. For the ease of the flow of discussion, we shall discuss according to types of the resistance mechanisms (behavioural, metabolic, target site insensitivity, etc.) and will highlight resistance mechanisms that are yet to be detected in bed bugs as candidate mechanisms.

Behavioral resistance (candidate resistance mechanism)
Behavioral resistance can be divided into two broad categories: (i) stimulus-dependent behaviors (e.g. irritability and repellency), and (ii) stimulus-independent behavior (e.g. exophily, outside resting) [1, 79, 81]. Stimulus-dependent behaviors require sensory stimulation of the insect to detect a toxin-treated surface before acquiring a lethal dose, by which an avoidance response is elicited by the toxicant [79]. Such behaviors have been observed in a number of insect pests. The best known example is bait aversion to glucose in the German cockroach, Blattella germanica (L.), which was selected through field exposure to commercial cockroach baits [82–85]. Conversely, stimulus-independent behavior refers to insect behavior that prevents them from exposure to the toxicant [1]. These behaviors do not require sensory stimulation by the toxicant for avoidance to happen [79]. One example is ‘exophily’, which refers to the changes of behavior in anopheline mosquitoes from their regular habit of biting indoor, to biting outdoors [86]. This behavior decreases the prevalence of indoor mosquitoes, and hence reduces the potential for mosquitoes from contacting indoor insecticide applications [87, 88].

Although behavioral resistance has been documented in many insect pest groups, it has never been properly studied and confirmed in bed bugs. There were several studies that reported some behavioural observations in bed bugs in the presence of insecticides. One recent study showed that insecticide-susceptible and insecticide-resistant C. lectularius may either avoid resting on deltamethrin-treated filter paper, or increased their movement upon direct contact with sublethal doses of deltamethrin [89]. This possibly suggested excito-repellency, a form of behavioural resistance. In another study however, Moore & Miller [48] found that insecticide-susceptible and insecticide-resistant strains of C. lectularius did not avoid surfaces treated with lambda-cyhalothrin. Cimex lectularius also showed no avoidance behavior when exposed to chlorfenapyr [48, 65, 89]. Bed bugs are highly cryptic and often hide in dark areas and in cracks and crevices. This unique behavioral characteristic may protect them from contacting insecticide on treated surfaces, or being found during the inspection process [8, 10, 90].

Physiological resistance
In contrast to behavioral resistance, many studies have identified physiological resistance mechanisms in bed bugs (Table 1). Mamidala et al. [91, 92] recently found that metabolic detoxification, cuticular proteins, and knockdown resistance (kdr) mutations were associated with insecticide resistance in C. lectularius. Similarly, Zhu et al. [90] reported that there were kdr mutations and/or differentially expressed genes including metabolic genes (P450s, esterases, ABC transporters, and cuticular protein genes associated with insecticide resistance (pyrethroid resistance) in C. lectularius. Overall, three major physiological resistance mechanisms have been investigated in association with bed bug resistance to insecticides, namely penetration resistance, metabolic resistance, and target site insensitivity.

Penetration resistance
Contact insecticides must pass through the insect cuticle before reaching the target site [5]. Therefore, the cuticle serves as the first line of defence against insecticides [90, 93]. Resistant insects develop cuticular barriers by evolving a thicker cuticle or by altering the cuticular structure to reduce the penetration rate of insecticides into the insect body [94, 95]. Penetration resistance may provide protection to the insects against different classes of insecticides [96, 97]. Penetration resistance also works in combination with other resistance mechanism(s), as it has been hypothesized that decreased cuticular penetration could help to ‘buy more time’ for detoxifying enzymes to metabolize the insecticide or to allow the insect to excrete the insecticide before it reaches its target [90, 98]. Penetration resistance has been reported in various insect

Year	Insecticides	Location
1959	HCH, dieldrin	Dahomeh, Zanzibar
1960	DDT	Malaysia, Thailand
1960	HCH, dieldrin	Malaysia
1961	DDT, HCH, dieldrin	Madagascar, South India
1961	DDT	Tanzania (Zanzibar)
1962	Dieldrin	Tanzania (Magugu)
1970	DDT	Papua-New Guinea

Abbreviations: HCH hexachlorocyclohexane, γ-HCH gamma-hexachlorocyclohexane, also known as lindane, gammaxene, gammallin and sometimes incorrectly called benzene hexachloride (BHC)
Year	Insecticide	Method	Location/Strain	Susceptibility/efficacy	Resistance ratio	Reference
2006	α-cypermethrin^a	SC	UK (3 field strains)	Resistant –	–	[47]
2006	Bendiocarb^b	SC	UK (3 field strains)	Resistant –	–	[47]
2006	Deltamethrin^a	SC	USA (Arlington, VA)	Resistant >300	[48]	
2006	Chlorfenapyr^g	SC	Susceptible Harlan strain	Less effective	–	[48]
2007	Deltamethrin^a	SC	USA: Cincinnati, OH (CIN1, CIN2, CIN3); Lexington, KY (LEX1)	Resistant >12,765	[30]	
2007	λ-cyhalothrin^a	SC	USA (Cincinnati, OH (CIN1))	Resistant >6123	[30]	
2007	Deltamethrin^a	SC	USA (Los Angeles, CA [LA2]; Kissimmee, FL [KIS1]; Vienna, VA [VIN1])	Resistant –	[30]	
2007	Deltamethrin^a	SC	USA (Los Angeles, CA [LA1])	Susceptible	–	[30]
2008	Deltamethrin^a	SC	USA (New York City, NY [NY-BB])	Resistant >250	[156]	
2008	Bifenthrin^a	SC	USA (Arkansas: Washington, Carroll, Lafayette)	Susceptible	–	[44]
2008	λ-cyhalothrin^a	SC	USA (Arkansas: Washington, Carroll, Lafayette)	Susceptible	–	[44]
2008	Permethrin^e	SC	USA (Arkansas: Washington, Carroll, Lafayette)	Susceptible	–	[44]
2008	Carbaryl^h	SC	USA (Arkansas: Washington, Carroll, Lafayette)	Susceptible	–	[44]
2008	Imidacloprid^c	SC	USA (Arkansas: Washington, Carroll, Lafayette)	Susceptible	–	[44]
2008	Fipronil^f	SC	USA (Arkansas: Washington, Carroll, Lafayette)	Susceptible	–	[44]
2008	Diazinon^e	SC	USA (Arkansas: Washington, Lafayette)	Susceptible	–	[44]
2008	Diazinon^e	SC	USA (Arkansas: Carroll)	Resistant –	–	[44]
2008	Dichlorvos^e	SC	USA (Arkansas: Washington, Carroll, Lafayette)	Resistant –	–	[44]
2008	Spinosad^g	SC	USA (Arkansas: Washington, Lafayette)	Resistant 1,235,000	[49, 52]	
2008	Chlorfenapyr^g	SC	USA (Arkansas: Washington, Carroll, Lafayette)	Effective	–	[51, 51]
2008	Diazinon^e	T/SC	USA (New York City, NY)	Resistant –	–	[50, 51]
2008	Permethrin^c	SC	Australia (Sydney strain)	Susceptible 2.6	[49, 52]	
2008	Imidacloprid^c	T	Australia (Sydney strain)	Susceptible 2.6	[49, 52]	
2008	Bendiocarb^b	T	Australia (Sydney strain)	Resistant 250	[49, 52]	
2009	Deltamethrin^a	T	Australia (Sydney strain)	Resistant 370,000	[49, 52]	
2009	Permethrin^e	T	Australia (Sydney strain)	Resistant 1,235,000	[49, 52]	
2009	Diazinon^e	T/SC	Australia (Sydney strain)	Effective	–	[50, 51]
2009	Pyrethrins^a	T/SC	Australia (Sydney strain)	Resistant –	–	[50, 51]
2009	β-cyfluthrin^a	T/SC	Australia (Sydney strain)	Resistant –	–	[50, 51]
2009	Tetramethrin^a	T/SC	Australia (Sydney strain)	Resistant –	–	[50, 51]
2009	Deltamethrin^a	SC	USA (Cincinnati, OH [CIN-1])	Resistant >2588	[128]	
2009	Deltamethrin^a	SC	USA (Worcester, MA [WOR-1])	Resistant >2588	[128]	
2010	Deltamethrin^a	SC	USA (New York City, NY)	Resistant >9375	[162]	
2010	λ-cyhalothrin^a	SC	USA (New York City, NY)	Resistant 6990	[162]	
2010	Chlorfenapyr^g	SC	USA (Cincinnati, OH [CIN-1])	Effective –	–	[65]
2010	Chlorfenapyr^g	SC	USA (Worcester, MA [WOR-1])	Effective –	–	[65]
2010	Phenothrin^a	SC/T	Japan (four field strains)	Resistant –	–	[280]
2010	Permethrin^e	SC/T	Japan (four field strains)	Resistant –	–	[280]
2010	Dichlorvos^e	SC/T	Japan (four field strains)	Susceptible	–	[280]
2010	Fenitrothion^e	SC/T	Japan (four field strains)	Susceptible	–	[280]
2010	Propoxur^b	SC/T	Japan (four field strains)	Susceptible	–	[280]
Table 4 Published reports of insecticide resistance and product efficacy in modern bed bugs (*Cimex* spp.), post 2000 (Continued)

Year	Insecticide	Route	Location	Type	Efficacy	Reference
2010	Deltamethrin^a	SC	USA (Cincinnati, OH; Lexington, KY; Troy, MI; Dover, NJ; Frankfort, KY; Kalamazoo, MI; Worcester, MA; Smithtown, Plainview, New York, NY)	Resistant	–	[157]
2011	Deltamethrin^a	IT	USA (Richmond, VA)	Resistant	5167	[113]
2011	β-cyfluthrin^a	IT	USA (Richmond, VA)	Resistant	111	[113]
2011	Deltamethrin^a	SC	USA (Richmond, VA)	Resistant	390.5	[281]
2011	Deltamethrin^a	SC	USA (Cincinnati, OH)	Resistant	>340	[281]
2011	Deltamethrin^a	SC	USA (Arlington, VA; Kramer)	Resistant	339.6	[282]
2011	Permethrin^a	SC	USA (Arlington, VA; Kramer)	Resistant	>115.1	[282]
2011	Deltamethrin^a	SC	USA (Richmond, VA)	Resistant	390.5	[282]
2011	Permethrin^a	SC	USA (Richmond, VA)	Resistant	>291.7	[282]
2011	DDT^h	SC	Thailand (Chiang Mai)	Resistant	–	[12]
2011	Dieldrin^h	SC	Thailand (Chiang Mai)	Resistant	–	[12]
2011	Bendiocarb^b	SC	Thailand (Chiang Mai)	Resistant	–	[12]
2011	Propoxur^b	SC	Thailand (Chiang Mai)	Resistant	–	[12]
2011	Malathion^e	SC	Thailand (Chiang Mai)	Resistant	–	[12]
2011	Fenitrothion^e	SC	Thailand (Chiang Mai)	Resistant	–	[12]
2011	Cyfluthrin^a	SC	Thailand (Chiang Mai)	Resistant	–	[12]
2011	Deltamethrin^a	SC	Thailand (Chiang Mai)	Resistant	–	[12]
2011	Permethrin^a	SC	Thailand (Chiang Mai)	Resistant	–	[12]
2011	β-cyhalothrin^a	SC	Thailand (Chiang Mai)	Resistant	–	[12]
2011	Etofenprox^a	SC	Thailand (Chiang Mai)	Resistant	–	[12]
2011	Diazinon^e	Spray	Thailand (Chiang Mai)	Less effective	–	[12]
2011	Fenobucarb^b	Spray	Thailand (Chiang Mai)	Less effective	–	[12]
2011	Esfenvalerate^a	Spray	Thailand (Chiang Mai)	Less effective	–	[12]
2011	Cypermethrin^a	Spray	Thailand (Chiang Mai)	Less effective	–	[12]
2011	Bifenthrin^a	Spray	Thailand (Chiang Mai)	Less effective	–	[12]
2011	Chlorfenapyr^g	Spray	Thailand (Chiang Mai)	Less effective	–	[12]
2011	Fipronil^d	Spray	Thailand (Chiang Mai)	Less effective	–	[12]
2011	Imidacloprid^f	Spray	Thailand (Chiang Mai)	Efficient	–	[12]
2011	Permethrin^a	T, SC	Denmark	Resistant	–	[53]
2011	Deltamethrin^a	SC	Denmark	Resistant	–	[53]
2011	Chlorpyrifos^e	T, SC	Denmark	Effective	–	[53]
2012	Deltamethrin^a	SC	USA (Columbus, OH)	Resistant	–	[92]
2012	Pyrethrins^a	T	USA (New Haven, CT)	Resistant	–	[283]
2012	Cyfluthrin^a	T	USA (New Haven, CT)	Resistant	–	[283]
2012	λ-cyhalothrin^a	T	USA (New Haven, CT)	Resistant	–	[283]
2012	cis-cypermethrin^a	T	USA (New Haven, CT)	Resistant	–	[283]
2012	Deltamethrin^a	T	USA (New Haven, CT)	Resistant	–	[283]
2012	Deltamethrin^a	T	USA (Cincinnati, OH [CIN-1], Plainview, NY [NY-1])	Resistant	–	[122]
2012	Neopynamine^a	SC	France (Paris)	Resistant	–	[158]
2012	Sumithrin^a	SC	France (Paris)	Resistant	–	[158]
2013	Deltamethrin^a	SC	USA (CIN-1)	Resistant	51	[90]
2013	Deltamethrin^a	SC	USA (CIN-1 S)	Resistant	32,700,000	[90]
2013	Deltamethrin^a	SC	USA (NY-1)	Resistant	>300	[90]
2013	Deltamethrin^a	T	USA (Richmond, VA)	Resistant	>200,000	[94]
Year	Insecticide	Type	Location	Result	Reference	
------	-------------	------	----------	--------	-----------	
2013	β-cyfluthrin	T	USA (Richmond, VA)	Resistant >160,000	[94]	
2014	Deltamethrin	SC	Germany (Berlin)	Resistant 3.8–5.1	[159]	
2014	Deltamethrin	SC	USA: New York (Brooklyn)	Susceptible	[284]	
2015	Imidacloprid/β-cyfluthrin	SC	USA (Richmond and Epic Center strains)	Resistant E: 3–5; Fl: 121–493	[285]	
2015	Acetamiprid/bifenthrin	SC	USA (Richmond and Epic Center strains)	Resistant E: 39–1080; Fl: 99–1943	[285]	
2015	Deltamethrin	SC	USA (Epic Center strain)	Resistant 392	[285]	
2015	d-allethrin	SC	Australia (NSW: Sydney, North Parramatta, Northbridge, Redfern), Newcastle (Maryland), VIC: Melbourne (Ripponlea, South Yarra, Moonee Ponds), West Melbourne, WA: Perth (Cottesloe); NT: Alice springs; SA: Adelaide (Semaphore Park)	Resistant –	[16, 54]	
2016	Imidacloprid	T	USA (Jersey City, NJ)	Susceptible 2.0	[64]	
2016	Imidacloprid	T	USA (Troy, MI)	Resistant 462.6	[64]	
2016	Imidacloprid	T	USA (Cincinnati, OH)	Resistant 163.3	[64]	
2016	Acetamiprid	T	USA (Jersey City, NJ)	Resistant 31.7	[64]	
2016	Acetamiprid	T	USA (Troy, MI)	Resistant >33,333	[64]	
2016	Acetamiprid	T	USA (Cincinnati, OH)	Resistant >33,333	[64]	
2016	Thiamethoxam	T	USA (Jersey City, NJ)	Susceptible 2.4	[64]	
2016	Thiamethoxam	T	USA (Troy, MI)	Resistant 546	[64]	
2016	Thiamethoxam	T	USA (Cincinnati, OH)	Resistant 226.2	[64]	
2016	Dinotefuran	T	USA (Jersey City, NJ)	Resistant 46.8	[64]	
2016	Dinotefuran	T	USA (Troy, MI)	Resistant 198	[64]	
2016	Dinotefuran	T	USA (Cincinnati, OH)	Resistant 358.6	[64]	
2016	Deltamethrin	T	Australia: Parramatta (NSW), Alice Springs (NT) and Melbourne (VIC)	Resistant –	[127]	
2016	Deltamethrin	SC	Australia (Parramatta (NSW))	Resistant –	[95]	

C. hemipterus

Year	Insecticide	Type	Location	Result	Reference
2002	α-cypermethrin	SC	Tanzania	Resistant –	[55]
2002	Permethrin	SC	Tanzania	Resistant –	[55]
2007	DDT	SC	Sri Lanka	Resistant –	[56]
2007	Malathion	SC	Sri Lanka	Resistant –	[56]
2007	Propoxur	SC	Sri Lanka	Resistant –	[56]
2007	Deltamethrin	SC	Sri Lanka	Resistant –	[56]
2007	Permethrin	SC	Sri Lanka	Resistant –	[56]
2011	λ-cyhalothrin	SC	Malaysia (Kmelayu14); Singapore (Serangoon)	Effective –	[129]
2011	Bifenthrin	SC	Malaysia (Kmelayu14); Singapore (Serangoon)	Effective –	[129]
2011	Fenitrothion	SC	Malaysia (Kmelayu14); Singapore (Serangoon)	Effective –	[129]
2011	Fipronil	SC	Malaysia (Kmelayu14); Singapore (Serangoon)	Effective –	[129]
2011	Imidacloprid	SC	Malaysia (Kmelayu14); Singapore (Serangoon)	Effective –	[129]
2011	DDT	SC	Malaysia (Kmelayu14); Singapore (Serangoon)	Effective –	[129]
2011	DDT	SC	Thailand (Bangkok, Chonburi, Phuket, Krabi)	Resistant –	[12]
2011	Dieldrin	SC	Thailand (Bangkok, Chonburi, Phuket, Krabi)	Resistant –	[12]
2011	Bendiocarb	SC	Thailand (Bangkok, Chonburi, Phuket, Krabi)	Resistant –	[12]
2011	Propoxur	SC	Thailand (Bangkok, Chonburi, Phuket, Krabi)	Resistant –	[12]
2011	Malathion	SC	Thailand (Bangkok, Chonburi, Phuket, Krabi)	Resistant –	[12]
Table 4: Published reports of insecticide resistance and product efficacy in modern bed bugs (*Cimex* spp.), post 2000 (Continued)

Year	Insecticide	Type	Location	Status	Reference
2011	Fenitrothion*	SC	Thailand (Bangkok, Chonburi, Phuket, Krabi)	Resistant –	[12]
2011	Cyfluthrin*	SC	Thailand (Bangkok, Chonburi, Phuket, Krabi)	Resistant –	[12]
2011	Deltamethrin*	SC	Thailand (Bangkok, Chonburi, Phuket, Krabi)	Resistant –	[12]
2011	Permethrin*	SC	Thailand (Bangkok, Chonburi, Phuket, Krabi)	Resistant –	[12]
2011	λ-cyhalothrin*	SC	Thailand (Bangkok, Chonburi, Phuket, Krabi)	Resistant –	[12]
2011	Etofenprox*	SC	Thailand (Bangkok, Chonburi, Phuket, Krabi)	Resistant –	[12]
2011	Diazinon*	Spray	Thailand (Bangkok, Chonburi, Phuket, Krabi)	Less effective –	[12]
2011	Fenobucarb*	Spray	Thailand (Bangkok, Chonburi, Phuket, Krabi)	Less effective –	[12]
2011	Cypermethrin*	Spray	Thailand (Bangkok, Chonburi, Phuket, Krabi)	Less effective –	[12]
2011	Bifenthrin*	Spray	Thailand (Bangkok, Chonburi, Phuket, Krabi)	Less effective –	[12]
2011	Chlorfenapyr*	Spray	Thailand (Bangkok, Chonburi, Phuket, Krabi)	Less effective –	[12]
2011	Fipronil*	Spray	Thailand (Bangkok, Chonburi, Phuket, Krabi)	Less effective –	[12]
2011	Imidacloprid*	Spray	Thailand (Bangkok, Chonburi, Phuket, Krabi)	Effective –	[12]
2015	d-allethrin*	SC	Australia (North Queensland)	Resistant >130	[17]
2015	d-allethrin*	SC	Australia (Sydney, [NSW]: Auburn)	Resistant 37	[17]
2015	d-allethrin*	SC	Malaysia (Kuala Lumpur)	Resistant >130	[17]
2015	d-allethrin*	SC	Thailand (Bangkok, Chiang Mai)	Resistant >130	[17]
2015	d-allethrin*	SC	Africa (Kenya)	Resistant 30	[17]

Abbreviation: SC: Surface contact, T: Topical application, IT: Injection topical application [112]

*Pyrethroids
Carbamates
Neonicotinoids
Phenylpyrazoles
OPs
Spinosyn
Pyroles
Chlorinated hydrocarbons

Table 5: Resistance mechanisms (verified and candidate mechanisms) in bed bugs (*Cimex* spp.)

Mechanism	*C. lectularius*	*C. hemipterus*	Insecticide
Behavioral resistance	Candidate mechanism	Candidate mechanism	Pyrethroids
Penetration resistance	Verified by morphological study [95, 103]	Candidate mechanism	A broad spectrum of insecticide classes
Metabolic resistance	P450s	Verified by synergism studies [127]	Carbamates, OPs, pyrethroids, neonicotinoids and pyroles
Esterases	Verified by synergism studies [127]	Candidate mechanism	Carbamates, OPs, pyrethroids, neonicotinoids and pyroles
GSTs	Candidate mechanism	Candidate mechanism	OCs, OPs and pyrethroids
ABC-transporters	Verified by RNAI [90]	Candidate mechanism	Pyrethroids, OCs, OPs, carbamates, neonicotinoids and pyroles
Target site insensitivity	Kdr	Candidate mechanism	Pyrethroids and DDT
Altered AChEs	Verified by QS combined with FCVB [162]	Candidate mechanism	OPs and carbamates
Insensitive GABA receptors	Candidate mechanism	Candidate mechanism	Cyclodienes (OCs) and phenylpyrazoles
Altered nAChRs	Candidate mechanism	Candidate mechanism	Neonicotinoids
Symbiont-mediated resistance	Candidate mechanism	Candidate mechanism	OPs
pests, including the house fly Musca domestica (L.) [98–100], the German cockroach B. germanica [2, 101], the dengue mosquito Aedes aegypti (L.) [102], and the common bed bug, C. lectularius [94, 95, 103].

Penetration resistance plays a crucial role in insecticide resistance in bed bugs. Koganemaru et al. [94] demonstrated that the resistance ratio in the resistant Richmond C. lectularius strain that was topically applied with deltamethrin or beta-cyfluthrin onto the cuticle was 10^5 greater than that when applied subcuticularly, in comparison to the insecticide-susceptible Harlan strain. However, compared with other physiological resistance mechanisms, penetration resistance remains the least understood for many insect pests. Nevertheless recently, various RNA and genomic sequencing efforts have been made to identify the putative genes associated with cuticular penetration resistance in bed bugs [90, 92–94, 104]. Bai et al. [104] analysed using the 454-pyrosequencing technique the transcriptomic sequences of C. lectularius from the susceptible Harlan strain and one field-collected resistant strain and identified 45 putative cuticular protein genes that were possibly associated with insecticide resistance in bed bugs. Mamidala et al. [92] detected 46 cuticular protein genes that were upregulated in the deltamethrin-resistant strains of C. lectularius. Five cuticular protein genes [larval cuticle protein (LCP), pupal cuticle protein (PCP), chitin synthase (CHS), chitin deacetylase (CDA), and cuticular protein analogous to peritrophin (CPAP)] were further confirmed by quantitative real-time PCR (qRT-PCR) to be possibly associated with insecticide resistance in C. lectularius; these genes displayed higher transcript levels in resistant strains compared to those in susceptible strains [92]. Another 19 cuticular protein genes were similarly reported to be associated with insecticide resistance in C. lectularius, especially pyrethroid resistance [90, 94]. Overexpression of these genes were inferred to thicken or remodel the bed bug cuticle to reduce the insecticide penetration rate [94], which could prevent or slow the insecticide from reaching the target sites on nerve cells (Fig. 1b). These results suggested that penetration resistance significantly contributes to bed bug resistance to insecticides. Unfortunately, no study on penetration resistance in C. hemipterus has been reported so far.

Molecular assays such as dsRNA-mediated interference (RNAi) technique may not be able to verify the association between over-expression of cuticular genes and penetration resistance since the cuticle has been thickened or remodelled [90]. Nevertheless, more recently, a study examining the relationship between cuticular thickness of C. lectularius and insecticide residual bioassays, revealed a positive correlation between the thickened cuticle and insecticide resistance level [95]. The authors found that highly pyrethroid-resistant individuals of the Parramatta strain of C. lectularius possessed a significantly thicker cuticle compared with that of an insecticide susceptible strain. Also, the cuticle thickness of this resistant strain was positively correlated to time-to-knockdown in insecticide bioassays [95]. Future studies should be performed to provide direct evidence on penetration resistance in bed bugs through in vivo assay using radio-labelled insecticide [105].

Metabolic resistance

Metabolic resistance is considered a key resistance mechanism and has been well reviewed in past literature [4–7]. Mamidala et al. [91] also provided a review of metabolic resistance in bed bugs. Based on these reports, three
major groups of enzymes, namely P450s, esterases, and GSTs, as well as ABC transporters [90], are involved (Table 5) and may have a broad spectrum of activity against different insecticide classes [97]. Unfortunately, most of metabolic resistance research has been undertaken in C. lectularius; the studies on metabolic resistance in C. hemipterus are limited (Table 5).

P450s

P450s, the most important subset of the monoxygenase system, constitute one of the largest superfamilies of proteins found in all living organisms [106–108] and plays a significant role in the detoxification of insecticides [100, 109, 110]. Recently, more than 1700 genes of P450s were characterized from various insects [7, 111, 112], and 386 contigs of P450s associated with insecticide resistance were found in hematophagus insects [91].

There are two possible mechanisms attributed to up-regulation of P450 genes [112]: (i) constitutive transcriptional overexpression (miRNA levels), in which the gene is continually transcribed, and (ii) induced transcriptional overexpression, in which the expression of the gene is induced as needed. However, the factors regulating the overexpression of P450s in these two mechanisms are less known. The first mechanism is common in many insect pests, including bed bugs. Currently, the link between insecticide resistance and constitutive overexpression of P450s has been shown in C. lectularius [90, 92, 113]. Adelman et al. [113] found that the resistance ratios to deltamethrin and β-cyfluthrin in C. lectularius (Richmond strain, compared with susceptible Harlan strain) were 51 and 111, respectively. Biochemical assays revealed that the P450 activities of the Richmond strain were significantly enhanced by 41% compared to that of the Harlan strain. In addition, genetic studies revealed that three P450 genes, namely CYP397A1 (>36-fold), CYP6DM2 (>29-fold) and CYP400A1 (>18-fold), were all significantly overexpressed in the Richmond strain [113]. The Richmond strain showed high resistance to pyrethroids due to overexpressed P450 genes (and possible other mechanisms as well). In addition, four P450 genes (CYP9 [104], CYP397A1V2, CYP6A2 and CYP6A13 [92]) were found to be putatively responsible for C. lectularius resistance to pyrethroids. The dsRNA-mediated interference (RNAi) technique confirmed that another four P450 genes (CYP397A1, CYP398A1, CYP6DN1 and CYP4CM1) were involved in C. lectularius pyrethroid resistance, as these genes were up-regulated in resistant strain(s) [90]. Molecular docking studies revealed that the P450 genes may confer cross-resistance to the major classes of insecticides (e.g. OCs, pyrethroids and neonicotinoids) used to control bed bugs [92]. All these findings suggest that P450-mediated detoxification plays a key role in metabolic resistance to insecticides, especially the pyrethroids.

In the second mechanism, the expression of some P450 genes can be induced by exogenous and endogenous compounds which include insecticides [110] which led to increased resistance to insecticides [114, 115]. This phenomenon had been reported in several insect pests, including M. domestica [116, 117] and the mosquito Culex quinquefasciatus (Say) [118]. Additionally, both mechanisms (constitutive and induced overexpression) can be exhibited in same insect population within an area, such as M. domestica [117]. However, in comparison with the constitutive overexpression, the induction associated with insecticide resistance is less well known and not described in bed bugs to date. Further studies should be conducted to better understand the mechanism of induction in bed bugs.

Currently, the mixture insecticide products which contain a neonicotinoid and a pyrethroid, are used to control bed bugs, particularly in the USA and other parts of the world [119]. Constitutive or both constitutive and induced overexpression of P450 genes have been associated with neonicotinoid resistance in other insects [117, 120]. In the wake of neonicotinoid resistance in C. lectularius [64], further studies are warranted to determine the role of P450s, as well as potential cross-resistance in both species of bed bugs.

The reaction of the P450 system requires an electron transferred from nicotinamide adenine dinucleotide phosphate (NADPH) to the P450 heme centre by a cytochrome P450 partner enzyme, NADPH-cytochrome P450 reductase (CPR), and/or cytochrome bs reductase in microsomal systems, and by an adrenodoxin-like ferredoxin coupled to an adrenodoxin reductase in mitochondrial systems [121–124]. Recently, Zhu et al. [122] sequenced and characterized the gene of CPR from C. lectularius (CICPR) and found that RNAi suppressed the expression of CICPR, which led to the resistant CIN-1 strain (a field-collected C. lectularius strain collected in 2005 in Cincinnati, OH) showing increased susceptibility to deltamethrin. This finding verified at least a partial role of CPR in P450-mediated detoxification and indicated that P450-mediated metabolic resistance to pyrethroids occurred in the CIN-1 strain.

Piperonyl butoxide (PBO), a primary inhibitor of some cytochrome P450 monoxygenases, is used to characterize the possible involvement of P450-mediated detoxification as a resistance mechanism [125–127]. PBO could be included in formulations as a synergist of pyrethroid-based insecticides [128, 129] to enhance their efficacy. Romero et al. [128] used PBO to determine the role of P450s in deltamethrin resistance in two highly resistant C. lectularius strains (CIN-1: Cincinnati, OH, USA; WOR-1, collected in 2007 in Worcester, MA, USA). The results showed that the resistance level of CIN-1 and WOR-1 reduced from >2588-fold to 174-fold and from >2588-fold to 39-fold after treatment with PBO, respectively, when compared to the
corresponding results obtained with the Fort Dix (= Harlan) susceptible strain [128]. These results indicated that P450s contribute in part to the deltamethrin resistance in these strains of *C. lectularius*. Similar synergism studies were performed by How & Lee [129] and Lilly et al. [127] for two Southeast Asian *C. hemipterus* strains and four Australian *C. lectularius* strains, respectively. Both studies supported that P450-mediated metabolic resistance to pyrethroids occurred in bed bugs.

Esterases

Esterases confer resistance to carbamates and OPs in many insect species [2, 4, 5, 7, 130–132] as well as to pyrethroids [127, 133], mainly due to the activity of carboxylesterases [134, 135] and only in a few rare cases by arylesterases (aromatic esterases) [2].

Esterases (especially carboxylesterases) mediate metabolic resistance by two main mechanisms: (i) increased level of gene expression (quantitative change), and (ii) mutations in coding gene sequences (qualitative changes) [4, 7]. In the first mechanism (quantitative change), resistant insects overproduce non-specific esterases or carboxylesterases by gene up-regulation to quickly sequester the insecticides (e.g. carbamates and OPs) [133]. This mechanism has been documented in numerous insect species including mosquitoes, cattle ticks, aphids, cockroaches [4], and both *C. hemipterus* [56] and *C. lectularius* [64, 90, 113], Adelman et al. [113] recently reported a significant increase in the general esterase activity (at least by 35%) based on the biochemical assays in a highly resistant Richmond *C. lectularius* strain, when compared to that of the susceptible Harlan strain. Their subsequent findings based on genetic studies (via RNA sequencing and relative gene expression based on qRT-PCR) identified that two esterase-encoding genes, *CE3959* and *CE21331*, were significantly overexpressed in the Richmond strain. These findings suggest that *CE3959* and *CE21331* may be candidate genes contributing to esterase-mediated resistance in *C. lectularius*. Zhu et al. [90] also found that the gene *CLCE21331* (also known as *CE21331*) was associated with *C. lectularius* pyrethroid resistance, due to overexpression in resistant strains. They subsequently determined that the gene *CLCE21331* showed maximum up-regulation (>50-fold) in most field populations (76.2% of 21 populations) compared with the susceptible LA-1 *C. lectularius* strain (collected in 2006 in Los Angeles, CA, USA [30]), that strongly suggests the importance of esterase-mediated metabolic resistance in bed bugs. Karunaratne et al. [56] found that elevated esterase mechanisms were present in *C. hemipterus* populations based on biochemical assays, and elevated levels of general esterases were similarly found to be associated with resistance to the neonicotinoids in *C. lectularius* [64]. However, further studies including the use of metabolism studies [105], should be attempted to experimentally validate the specific gene(s) encoding esterase mediated mechanism in bed bugs. Besides the biochemical assays and genetic studies on esterase-mediated resistance, researchers also have used bioassays in combination with synergists to investigate the activity levels of general esterases in resistant bed bug populations. Hardstone et al. [136] selected PBH (3-phenoxbenzyl hexanoate, a surrogate substrate for carboxylesterases and oxidases) as a metabolic synergist to suppress resistance to pyrethroids in *C. lectularius*. The authors found that PBH synergized the action of deltamethrin 6-fold on an insecticide-susceptible *C. lectularius* strain (FL-BB, collected from Gainesville, FL, USA, more than 20 years ago), and was 2.8-fold more synergistic than PBO. These findings suggested that esterases were involved in *C. lectularius* metabolic detoxification of deltamethrin. Similarly, Lilly et al. [127] employed a novel synergist, EN16/5-1 (6-[2-(2-butoxyethoxy) ethoxymethyl]-5-propyl-2, 3-dihydrobenzofuranly), which mainly inhibits the activity of esterases, to determine if esterase-mediated pyrethroid resistance exists in *C. lectularius*. They found that the resistance in three of four *C. lectularius* strains to deltamethrin was significantly suppressed by EN16/5-1, which strongly suggested that esterases conferred metabolic resistance to *C. lectularius* in Australia.

In the second mechanism (qualitative changes), resistant insects can increase esterase-mediated metabolism due to a single point mutation or substitution in the structural genes. For example, the *LcaE7* gene of the sheep blowfly *Lucilia cuprina* (Wiedemann) encodes a carboxylesterase. A single point mutation on the *LcaE7* gene changes glycine at residue site 137 to an aspartic acid and then converts the carboxylesterase to an organophosphorus hydrolase that confers organophosphorus resistance [137, 138]. However, limited reports about this mechanism are available worldwide [7]. This mechanism still is a candidate mechanism and yet to be reported in bed bugs.

GSTs (candidate resistance mechanism)

GSTs mediate metabolic resistance to organophosphates, chlorinated hydrocarbons, and pyrethroids through catalyzing the conjugation of electrophilic compounds by reduced glutathione (GSH) [7, 139–141]. On the other hand, some insect GSTs catalyse a dehydrochlorination reaction by using GSH as a cofactor rather than as a conjugate [7, 141, 142]. GSTs are also involved in detoxification via xenobiotic binding, intracellular transport of endogenous lipophilic compounds, or sequestration [7].

Using biochemical assays, Karunaratne et al. [56] found that DDT resistance in a Sri Lankan *C. hemipterus* strain was associated with high GST levels, as dehydrochlorination of DDT by GSTs is a major route of detoxification in insects [141]. Adelman et al. [113] found that one GST gene (*gsts1*) was putatively associated with pyrethroid resistance in the Richmond *C. lectularius* strain due to up-
regulated transcription, and three other GST genes were similarly identified by Mamidala et al. [92]. However, further studies on transgenic expression (such as those in *Drosophila* flies [143]) and metabolism studies [105], are urgently warranted to empirically confirm this mechanism in bed bugs.

ABC transporters

ATP-binding cassette transporters (ABC transporters) are one of the largest classes of transporters that are responsible for the ATP-powered translocation of many substrates across membranes. The function of ABC transporters is as either importers, which bring nutrients and other molecules into cells, or as exporters, which pump toxins, drugs and lipids across membranes [144–146]. In addition, ABC transporters were found to increase the efficiency of toxin removal from the targeted site. Hence, ABC transporters have been associated with resistance to major insecticide classes (Table 5) although not directly related to the detoxification of the compounds. In bed bugs, Mamidala et al. [92] suspected that ABC transporters were involved in metabolic resistance in *C. lectularius* due to overexpression of the genes encoding ABC transporters. Zhu et al. [90] confirmed the role of ABC transporters (e.g. *Abc 8* and *Abc 9*) mediated metabolic resistance to pyrethroids (β-cyfluthrin) in *C. lectularius*, via RNAi. In addition, the authors also identified this mechanism was widespread in the field populations (20/21) [90].

Biochemical and molecular assays have identified that P450s, esterases, and GSTs are associated with bed bug insecticide resisance. Synergism studies [95] and molecular assays based on RNAi [90] have confirmed that P450s and esterases as well as ABC transporters mediated resistance mechanisms exist to pyrethroids in *C. lectularius*. However, most of these mechanisms have yet to be demonstrated in *C. hemipterus*. In addition, further studies specifically involving metabolism experiments to empirically demonstrate the disappearance of the parent compound and an increase of metabolites in resistant strains would be helpful in clarifying the role of these mechanisms in bed bugs.

Target site insensitivity

Insecticides such as OPs, carbamates, DDT, and pyrethroids affect specific target sites (e.g. AChEs, VGSC, GABA receptor) (Table 5) that typically are associated with the insect nervous system [147]. Insecticide-resistant insects have evolved modifications at these target sites that allows for normal neurological function to occur, despite the presence of the toxicant. The four main types of target site insensitivity mechanisms in resistant insects are: (i) knockdown resistance (*kdr*-type), which causes resistance to pyrethroids and DDT; (ii) altered AChEs, which confer resistance to OPs and carbamates; (iii) insensitive GABA receptors (also known as *rdl*-mutation), which provide resistance to cyclodienes and phenylpyrazoles; and (iv) altered nAChRs, which confer resistance to neonicotinoids [6, 147, 148].

Kdr

VGSCs are essential for normal transmission of nerve impulses [149]. DDT and pyrethroids act on or bind to the VGSC proteins to disrupt the process, which is followed by knockdown, paralysis, and eventually death of the insect. Many insect pests have evolved moderate to high levels of resistance to DDT and pyrethroids by reducing target site sensitivity (so-called *kdr*) [150]. The first case of reduced neuronal sensitivity to DDT was reported in the 1950s in *M. domestica* [151]. The *kdr*-resistance is a recessive trait that confers cross-resistance to most pyrethroids as well as DDT and its analogues [46, 152].

The VGSC gene from *D. melanogaster* was originally cloned and sequenced in the late 1980s [153]. This study revealed how to sequence the VGSC gene of both resistant and susceptible insects. Several studies showed that *kdr*-type resistance to DDT and pyrethroids results from a single or multiple point mutations (also known as *kdr* mutations) in coding sequences of VGSC in various insect pests (Fig. 2) [46, 150, 154, 155], including bed bugs [17, 54, 156, 157]. Yoon et al. [156] first cloned and sequenced the coding gene of *C. lectularius* VGSC from both insecticide resistant and susceptible strains in the USA. Two *kdr* mutations (*V419L*: valine 419 to leucine, and *L925I*: leucine 925 to isoleucine) were linked to confer pyrethroid resistance in *C. lectularius* [156]. These two *kdr* mutations (either one or both) were found to be widely distributed across the USA in *C. lectularius* (88% of 117 strains [157] and 85.7% of 21 strains [90] in different studies). One hundred percent of the tested *C. lectularius* collected from Paris, France [158] and Berlin, Germany [159] only contained L925I. Of *C. lectularius* collected from various locations in Australia (25 strains), 96% possessed L925I [55], while from Israel (12 strains), 100% had L925I, of which, a few specimens from both countries had additional *V419L* [54, 160]. Based on the various genotypes of *V419L* and L925I mutations of 110 field-collected strains of *C. lectularius* in the USA, Zhu et al. [157] identified four haplotypes: haplotype A (without *V419L* and L925I mutations; 15.5% [17/110]), haplotype B (only L925I; 40.9% [45/110]), haplotype C (*V419L* and L925I; 40.9% [45/110]) and haplotype D (*V419L*; 2.7% [3/110]).

Recently, a novel mutation, I936F (isoleucine 936 to phenylalanine), was identified in the VGSC gene of one field-collected *C. lectularius* strain (from Adelaide in Australia) that was linked to low levels of resistance to d-allethrin [54]. This novel mutation was also found in museum preserved *C. lectularius* specimens collected over 1994–2002 from four disparate locations (4/7) and one
field-collected Perth *C. lectularius* strain (collected in 2007), all from Australia [54]. Interestingly, the museum preserved specimens and the Adelaide strain did not have the *kdr* V419L and L925I mutations (haplotype A). Only the Perth strain had the L925I mutation (haplotype B). The novel I936F mutation was probably once relatively prevalent in preserved Australian *C. lectularius* specimens (without V419 L and L925I) but largely disappeared after 2004, when the knowledge of bed bug control practices was improved [15, 54]. It is possible that I936F only conferred low levels of resistance and the populations with the mutation did not survive, as the Adelaide strain showed relatively higher susceptibility to d-allethrin than that in other strains with L925I or both V419L and L925I [54]. Although I936F mutation confers low levels of resistance, it may help other mutation(s) or other resistance mechanism(s) to evolve. The findings that the Australian Perth *C. lectularius* strain had L925I and both L925I and I936F mutations [54] may support this scenario.

Another recent study has identified four novel mutations in the VGSC genes of *C. hemipterus* collected from multiple countries, including Australia (L899V (leucine 899 to valine), M918I (methionine 918 to isoleucine), D953G (aspartic acid 953 to glycine) and L1014F (leucine 1014 to phenylalanine)], Thailand (M918I, D953G and L1014F), India (M918I and L1014F), Malaysia (L1014F) and Kenya (L1014F), of which, two mutations (M918I and L1014F) were associated with high resistance to pyrethroids in *C. hemipterus* [17]; however the presence of other resistance mechanisms were not excluded. These two sites are known to confer pyrethroid resistance in a wide range of insect pests (Fig. 2) [150, 157]. The I936F, M918I and L1014F mutations could be verified as *kdr* mutations in bed bugs by functional expression of each mutation individually and in combination using the *Xenopus* oocyte expression system with two-electrode voltage-clamp electrophysiology [161], although this has yet to be undertaken.

The reports of the various mutations in the VGSC genes suggest that *kdr*-resistance in *C. lectularius* and *C. hemipterus* is widespread. Seong et al. [162] found that deltamethrin resistance levels increased in *C. lectularius* with increasing frequency of the resistance allele (e.g. L925I mutation). The M918I mutation, which was always found together with the L1014F mutation, probably plays a synergistic role in enhancing pyrethroid resistance in *C. hemipterus* [17]. These findings may suggest that multiple *kdr* mutations play a significant role in bed bug resistance to pyrethroids and DDT.

It is noteworthy that the *kdr* mutations found in the two sympatric species (*C. hemipterus* and *C. lectularius*) have occurred at different regions in the genome and not identical between the two species. In contrast to *C. lectularius*, *kdr* mutations in *C. hemipterus* may likely have occurred from the malaria control programs (e.g. the widespread use of pyrethroid-treated bed-nets and indoor residual wall sprays of DDT/pyrethroid) in the tropics [12, 28, 55, 56]. *Cimex hemipterus* from Kenya (with L1014F), Malaysia (L1014F), India (M918I and L1014F) had similar mutations, in which, these mutations were also found in malaria vectors of *Anopheles* spp. [46, 163]. The presence of *kdr* mutations in *Anopheles* spp. could have severe consequences for the sustainable use of pyrethroids, especially when pyrethroids are presently used for treating bed nets [164]. On the other hand, mutations may be completely random, and the different *kdr* mutations occurring between *C. lectularius* and *C. hemipterus* may be a function of this randomness and completely unrelated to the use of a particular insecticide.

Fig. 2 *kdr* mutations in insect voltage-gated sodium channels implicated in pyrethroid/DDT resistance. All information of *kdr* mutation sites came from Davies & Williamson [150], Zhu et al. [157] and Dang et al. [17, 54]. I, II, III and IV, four homologous repeat transmembrane domains. One asterisk indicates *kdr* mutations (or putative *kdr* mutations) identified from both the common bed bug *C. lectularius* (V419L, valine to leucine; L925I, leucine to isoleucine; putative I936F, isoleucine to phenylalanine) and the tropical bed bug *C. hemipterus* (putative M918I, methionine to isoleucine; putative L1014F, leucine to phenylalanine). Two asterisks: V410 found in the tobacco budworm *Heliothis virescens* (F.) and V419 found in *C. lectularius* are the same residue.
Altered AChEs (candidate resistance mechanism)
The first report of insensitivity of AChE to OPs and carbamates was reported in the spider mite *Tetranychus urticae* (Koch), and subsequently reduced sensitivity of AChE was reported as a common OP/carbamate resistance mechanism in many insect species [4, 165–168].

The genetic study of the gene sequence and genomic structure encoding for AChE (symbol: Ace) in different insects revealed that sensitivity of AChE to inhibition was reduced by altered amino acids caused by point mutations on the Ace gene [169, 170], which is referred to as ‘altered AChE’. For example, the malathion-resistant MH19 strain of *D. melanogaster* was found to contain a single amino acid substitution, F368Y (phenylalanine 368 to tyrosine), caused by a point mutation in the Ace gene. This point mutation was found to confer resistance to malathion by P-element transformation experiments [165]. Subsequently, three other point mutations [phenylalanine 115 to serine (F115S), isoleucine 199 to threonine/valine (I199T/V), and glycine 303 to alanine (G303A)] in the Ace gene sequence of *D. melanogaster* were identified [171]. These four mutations in *D. melanogaster* associated with resistance to OPs and carbamates were verified using the *Xenopus laevis* oocyte expression system [171]. Furthermore, other mutations in the gene encoding AChE have been found in other insects [4, 170] which reduce the degree of AChE inhibition by insecticides. Additionally, like the *kdrl*-type resistance, insecticide resistance due to altered AChE may produce a broad range of cross-resistance among OPs and carbamates [172, 173].

Several studies have identified resistance to OPs and carbamates in both *C. lectularius* [11, 44, 47, 53] and *C. hemipterus* [12, 56, 129]. Karunarathne et al. [56] reported that 29–44% of Sri Lankan *C. hemipterus* populations showed target site AChE insensitivity, and this may be responsible for resistance to both OPs and carbamates.

Recently, Seong et al. [168] identified and characterized the full-length-cDNA sequences encoding two AChEs (CAChE1 and CAChE2) from *C. lectularius*. Hwang et al. [174] examined the molecular and enzymatic properties of these two AChEs. The relatively higher correlation between in vitro CAChE1 inhibition and in vivo toxicity suggested that CAChE1 is the more relevant toxicological target for OPs and carbamates in *C. lectularius*. These findings offer valuable insights into altered AChE-mediated resistance in bed bugs, although most of these AChE-inhibitor insecticides have been prohibited for usage indoor against bed bugs in many parts of the world.

Insensitive GABA receptor (candidate resistance mechanism)
The GABA-gated chloride channel, which is also known as the GABA receptor, is the validated target for cyclodiene (e.g. dieldrin) and phenylpyrazole (e.g. fipronil) [175–178]. Resistance to cyclodiienes in several insect pests is caused by a single mutation [A302S/G: alanine 302 to serine/glycine (residue 302 in *D. melanogaster*, and residue 296 in *An. gambiae* are the same residue)] in the GABA receptor [147, 179, 180]. The replacement of alanine 302 affects the binding site and destabilizes the preferred conformation of the receptor [181]. Furthermore, an additional mutation (V327T: valine to isoleucine) was detected in the same gene, and it was consistently associated with the mutation A296S (alanine 296 to serine) in resistant anophelines [182].

Several studies had identified resistance to dieldrin in both *C. lectularius* and *C. hemipterus* [38], but both cyclodiienes and phenylpyrazoles are currently not legally allowed to be used against bed bugs in most countries. Recently, the genome sequencing of *C. lectularius* was completed, and the resistance to dieldrin (*Rdl*) gene encoding the GABA receptor was identified [93]. This cyclodiene target site is a target site for phenylpyrazoles (e.g. fipronil) as well. Therefore, these data may provide an important clue to reveal the resistance mechanism of insensitive GABA receptor to both cyclodiienes and phenylpyrazoles in bed bugs in the future.

Altered nAChRs (candidate resistance mechanism)
Neonicotinoids are widely used to control a broad range of sucking insect pests in plants [58, 120]. Neonicotinoids act selectively on the insect central nervous system as agonists of the nAChRs, opening the channel and causing continuous depolarisation and firing of postsynaptic neurons resulting in paralysis and death [183]. With the increase of neonicotinoid usage, resistance to these insecticides has increasingly been reported, not only due to metabolic detoxification mechanism, such as P450s, but also due to the target-site mutation(s) on nAChRs [120, 184]. For example, the mutation R81T (arginine 81 to threonine) present in the β1 nAChR subunit confers high levels of resistance to imidacloprid in cotton-melon aphid, *Aphis gossypii* (Glover) [185] and green peach aphid, *Myzus persicae* (Sulzer) [186]. More recently, Romero & Anderson [64] reported high levels of neonicotinoid resistance in *C. lectularius*. Although metabolic resistance including general esterases may be involved [64], the role of altered nAChR has never been confirmed in the bed bug.

Symbiont-mediated insecticide resistance (candidate resistance mechanism)
Symbiotic relationships between animals and microorganisms are common in nature. Various microorganisms have established associations with animal hosts through parasitism, mutualism and commensalism, or by ectosymbiosis and endosymbiosis [187]. In insects, bacterial symbionts, such as *Wolbachia*, commonly associated with hosts, can manipulate insect host reproduction and nutritional mutualism [188]. Interestingly, bacterial symbionts have been
identified to be involved in insecticide resistance in some insect pests, which is termed ‘symbiont-mediated’ insecticide resistance [189, 190]. Kikuchi et al. [189] found that fenitrothion-degrading Burkholderia endosymbiont strains established a specific and beneficial symbiosis with the soybean bug Riptortus pedestris (F.) and conferred fenitrothion resistance. Apart from Burkholderia, a variety of organo-phosphorus degraders have been isolated and characterized from many bacterial genera [191]. In addition, bacterial symbionts can be involved in insect resistance to biological agent such as Bacillus thuringiensis Berliner [192] and the parasitoid wasp Aphidius ervi Haliday [193]. A recent study suggested a correlation between the high bacterial densities (e.g. Arsenophonus, Rickettsia, and Wolbachia) in whitefly Bemisia tabaci (Gennadius) and the insect’s ability to detoxify toxic compounds such as insecticides (e.g. thiamethoxam, imidacloprid, pyriproxyfen and spiromesifen) [194].

Recently, molecular studies identified various symbionts, especially the bacterial symbionts, in bed bugs [104, 188, 195–197], although the first endosymbiont, Rickettsia lectularia Arkwright et al. (= Symbiotes lectularius), was documented by light microscopy in C. lectularius almost 90 years ago [198]. Hypsa & Aksoy [195] first isolated two symbionts, Wolbachia (an alpha-proteobacterium) and a BEV-like symbiont (an unnammed gamma-proteobacterium) from ovary tissue of C. lectularius, which were later found to be responsible for manipulating reproduction of bed bugs [196]. Subsequently, Wolbachia was found to play an essential role in nutritional mutualism in C. lectularius [188]. A transcriptomic study by Bai et al. [104] identified a total of 14.24% of non-insect transcriptomic sequences (e.g. non-insect eukaryotes, 11.16%, fungi, 1.78%, bacteria, 1.21%, viruses, 0.04%, Archaea, 0.02%, and artificial sequences, 0.03%) in C. lectularius that probably belongs to various symbionts or pathogens in bed bugs. In fact, a genomic study by Benoit et al. [197] further demonstrated various sequences from multiple bacterial symbionts and/or possible pathogens, or opportunists in C. lectularius, for instance, Arsenophonus, Wolbachia, Sodalis, Hamiltonella, Peptoclostridium, Methanococcus, Serratia, Shewanella, and 81 other genera. Despite the presence of multiple functional symbionts in bed bugs, their potential role in mediating insecticide resistance in bed bugs is still undocumented and should be considered in future studies.

Monitoring insecticide resistance

Over the last few years, there have been many reports of insecticide resistance in bed bugs worldwide. Monitoring insecticide resistance status and resistance mechanisms in bed bugs is a proactive and essential approach to determine proper insecticide usage and to provide early warning for the need to modify chemical control strategies. Numerous studies on the methods of detecting and documenting insecticide resistance in pest populations have been evaluated. The three major methods of monitoring insecticide resistance are (i) conventional toxicity bioassays, (ii) biochemical assays, and (iii) molecular assays (Table 6).

Conventional toxicity bioassays

The standard bioassay that is routinely used to detect insecticide resistance involves collecting insects from the field and rearing them until sufficient numbers are available for testing. Mortality of nymphs or adults is then assessed after exposure to a range of doses of an insecticide. Subsequently, the LD$_{50}$, LC$_{50}$ or LT$_{50}$ values are determined using probit analysis. The results from field populations are then compared with those from a susceptible population, and a resistance ratio is calculated to estimate the susceptibility of field populations. The susceptibility of recent collected bed bugs to major insecticide classes (such as pyrethroids, OPs, carbamates, and neonicotinoids) have been evaluated using bioassays (Table 7) [30, 44, 48, 53, 64].

However, bioassays can be difficult to undertake. Normally this method requires a relatively large number of live bed bugs for the test, and obtaining such numbers is not always possible, especially when the number of bed bugs collected from field infestations can be relatively small [17, 162]. In addition, a standard susceptible strain is required for comparison, but many organisations do not have access to such a strain. A few susceptible C. lectularius strains are maintained in laboratories around the world, such as the Ft. Dix strain (= Harlan strain, established in 1973) [30, 113], FL-BB strain (early 1990s) [30, 136], LA-1 strain (2006) [30, 90], UBA strain of the Federal Environment Agency (since 1947) [159], and Monheim (Germany) strain (late 1960s) [53], but to date, no susceptible C. hemipterus strain is available. Other traditional bioassays, such as the use of discriminating concentrations which are based on previous studies on the dose–response curves of susceptible strains, could be an alternative option [16, 39], if there is no susceptible strain or sufficient number of live bed bugs available for testing. However, a single discriminating dose could only indicate whether resistance is present, but not the degree of resistance.

Most insecticide resistance monitoring depends on traditional bioassays, which use a fixed insecticide concentration (e.g. discriminating/diagnostic concentration) for a pre-determined exposure time in a chamber or on a filter paper impregnated with insecticides. The results are reported as percentage mortality and/or knockdown effect. For example, the diagnostic concentration (or WHO susceptibility test kit) defined by the World Health Organization (WHO) (e.g. twice the concentration/dosage that kills 100% of the susceptible insect strain) is widely
used to determine the susceptibility or resistance to major classes of insecticides in mosquito vectors [38, 39]. Several studies have investigated bed bug resistance using this method (Table 7). Myamba et al. [55] adapted the WHO mosquito test kit [199] to detect pyrethroid resistance in C. hemipterus in Tanzania. Karunaratne et al. [56] also adapted the WHO method [39] to determine resistance to several insecticides in C. hemipterus in Sri Lanka. Tawatsin et al. [12] examined the insecticide resistance of both C. lectularius and C. hemipterus in Thailand using the WHO test kit [200].

Similar to the WHO methods, many studies established the baseline susceptibility data (e.g. LC99/LD99) for insecticides that results in 99% or more mortality of susceptible bed bug strain(s) (Table 7) [30, 47, 53, 201, 202]. These data can serve as guidelines for selecting discriminating concentrations to screen for bed bug resistance to insecticides, even in the absence of a susceptible strain. For example, Boase et al. [47] established two different discriminating concentrations that produced 99% mortality in three susceptible C. lectularius strains in the United Kingdom to detect resistance to bendiocarb (carbamates) and alphacypermethrin (pyrethroids), respectively. Romero et al. [30] used a discriminating concentration (10-fold greater than the labelled rate of active ingredient in the commercial product and nearly 30-fold the dose required to kill 100% of the susceptible Ft. Dix C. lectularius strain) to evaluate resistance to deltamethrin in third-to-fifth instar C. lectularius of 10 field-collected populations. Zhu et al. [157] also used this discriminating concentration to assess resistance to pyrethroids in 17 C. lectularius populations. Kilpinen et al. [53] determined the C. lectularius resistance to permethrin by the discriminating concentration of 1.6-fold LD99 and chlorpyrifos by the concentration of 2-fold LD99, respectively. However, if the discriminating concentrations used are excessively high, this could potentially mask the detection of resistance, especially when the resistance level is still relatively low. Early detection of resistance is only possible if the diagnostic concentration is low enough (or a dose response curve undertaken). Otherwise, resistance could only be discovered after widespread field control failures are reported.

Once the resistance status is determined, the resistance mechanisms should next be characterized. A rapid and simple bioassay in combination with synergists could be used to detect some metabolic resistance mechanisms. Synergists serve as enzyme inhibitors of metabolic detoxification enzymes such as esterases, P450s, and GSTs (Table 8). Bioassays incorporating synergists have been used widely to detect the role of different resistance mechanisms in many insect pests. For example, synergists, such as PBO, have been incorporated in the control of bed bugs, and to detect potential resistance mechanisms [127–129, 136]. However, not all resistance mechanisms could be characterized using synergists. Therefore, biochemical assays and molecular assays must be employed along with insecticide bioassays to detect the specific resistance mechanisms (Tables 6, and 9).

Biochemical assays

Biochemical assays use model substrates to detect elevated activity of metabolic enzymes involved in insecticide resistance in individual insects. Over the last two decades, biochemical assays have been used successfully to detect and monitor insecticide resistance in numerous insects [203] especially in combination with insecticide bioassay. Karunaratne et al. [56] surveyed insecticide resistance and potential resistance mechanisms in Sri Lankan C. hemipterus based on toxicity bioassays [36, 39] and biochemical assays [203]. They found that C. hemipterus showed high levels of resistance to DDT and malathion, and detected elevated levels of GSTs and esterases as well. Yoon et al. [156] used biochemical assays to identify resistance mechanisms responsible for deltamethrin

Table 6 Methods used to monitor for insecticide resistance in bed bugs (Cimex spp.)

Method	Advantages	Disadvantages
Bioassays via dose/concentration-response assays	Provide levels of resistance	Require a susceptible strain, need large numbers of live bed bugs; regardless of mechanism(s)
Bioassays via discriminating concentration/dose assays	Standardized (e.g. WHO susceptibility test kits); simple to perform	Provide no information about levels of resistance and type of resistance mechanism(s) (except when using synergists); lack sensitivity
Biochemical assays	Require a small sample size; sensitive; provide indirect evidence on specific resistance mechanism(s)	Require sophisticated and costly equipment and the technology which pest managers do not have ready access to; require materials to be kept frozen
Molecular assays	Require a small sample size; very sensitive; provide informations on specific resistance mechanism(s); can detect resistance alleles (e.g. kdr mutations), even from dead body; could develop specific molecular markers to detect specific mechanism(s)	Require specific and costly equipment, high ongoing costs and the technology which pest managers may not have access to; costly reagents, require materials to be kept frozen

*Information from Ranson et al. [163], Seong et al. [162] and Dang et al. [16]
Table 7 Published discriminating doses and susceptibility baselines used to detect insecticide resistance in bed bugs (*Cimex* spp.)

Insecticide	Discriminating concentration	Assessment	Susceptibility baseline	Reference	
			LC50/LD50	LC90(99)/LD90(99)	
C. lectularius					
DDT	4%	5 d^f	–	–	[39]
Dieldrina	0.8%	2 d^f	–	–	[39]
Fenitrothion	1%	5 h^f	–	–	[39]
Malathion	5%	16 h^f	–	–	[39]
Trichlorfon	1%	5 h^f	–	–	[39]
Propoxur	0.8%	24 h^f	–	–	[39]
Permethrin	0.25%	C^f	–	–	[39]
Deltamethrin	0.025%	C^f	–	–	[39]
Dichlorvos	–	24 h^f	2.9 ppm	5.7 ppm	[202]
Pirimiphos-methyl	–	24 h^f	13.5 ppm	29.8 ppm	[202]
λ-cyhalothrin	–	24 h^f	22.2 ppm	357.7 ppm	[202]
Permethrin	–	24 h^f	71.4 ppm	201.7 ppm	[202]
Bendiocarb	–	24 h^f	47.1 ppm	95.9 ppm	[202]
Malathion	–	24 h^f	92 ppm	245 ppm	[202]
Carbaryl	–	24 h^f	166.3 ppm	245 ppm	[202]
Tetrachlorvinphos	–	24 h^f	252 ppm	472.7 ppm	[202]
Bendiocarb	35.3 M	48 h^f	–	35.3 M	[47]
α-cypermethrin	23.1 M	48 h^f	–	23.1 M	[47]
Deltamethrin	0.06%	C^f	–	–	[48]
Deltamethrin	1300 M (30 × LC50)	24 h^f	3.1 M	44 M	[30]
λ-cyhalothrin	–	24 h^f	2.16 M	66 M	[30]
Deltamethrin	1%	C^f	–	–	[156]
Deltamethrin	–	24 h^f	1.4 M	19.2 M	[201]
Bendiocarb	–	24 h^f	6.5 M	38.1 M	[201]
Pirimiphos-methyl	–	T, 24 h	0.11 U	–	[49, 52]
Imidacloprid	–	T, 24 h	0.0057 U	–	[49, 52]
Bendiocarb	–	T, 24 h	0.027 U	–	[49, 52]
Permethrin	–	T, 24 h	0.00044 U	–	[49, 52]
Deltamethrin	–	T, 24 h	0.00057 U	–	[49, 52]
Deltamethrin	–	1 h^f	18.1 ppm	81.8 ppm	[162]
Deltamethrin	–	12 h^f	3.2 ppm	26 ppm	[162]
λ-cyhalothrin	–	1 h^f	17.7 ppm	87 ppm	[162]
λ-cyhalothrin	–	12 h^f	3.4 ppm	30 ppm	[162]
Deltamethrin	1300 M (30 × LC50)	24 h^f	–	–	[157]
Deltamethrin	–	IT, 24 h	0.000003 U	–	[113]
β-cyfluthrin	–	IT, 24 h	0.000004 U	–	[113]
DDT	4%	C^f	–	–	[12]
Dieldrina	0.8%	C^f	–	–	[12]
Bendiocarb	0.1%	C^f	–	–	[12]
Propoxur	0.1%	C^f	–	–	[12]
Malathion	5%	C^f	–	–	[12]
Fenitrothion	1%	C^f	–	–	[12]
Table 7 Published discriminating doses and susceptibility baselines used to detect insecticide resistance in bed bugs (*Cimex* spp.) (Continued)

Insecticide	Discriminating Dose	Susceptibility Baseline
Cyfluthrin	0.15% C	–
Deltamethrin	0.05% C	–
Permethrin	0.75% C	–
α-cyhalothrin	0.05% C	–
Etofenprox	0.5% C	–
Permethrin	2.56 U (1.6 \(\times\) LC\(_{99}\)) T, 24/48 h	0.159 U 1.65 U
Permethrin	57.6 M C	40 min
Deltamethrin	19.6 M C	40 min
Chlorpyrifos	0.2 U (2 \(\times\) LC\(_{99}\)) T, 24/48 h	0.03 U 0.1 U
Chlorpyrifos	53 M C	40 min
Malathion	0.007% (2 \(\times\) LC\(_{99}\)) T	–
Diazinon	0.02% (2 \(\times\) LC\(_{99}\)) T	–
Trichlorfon	1.4% (2 \(\times\) LC\(_{99}\)) T	–
Chlorpyrifos	0.014% (2 \(\times\) LC\(_{99}\)) T	–
Permethrin	0.03% (2 \(\times\) LC\(_{99}\)) T	–
Cypermethrin	0.00009% (2 \(\times\) LC\(_{99}\)) T	–
α-cypermethrin	0.000001% (2 \(\times\) LC\(_{99}\)) T	–
Deltamethrin	0.00009% (2 \(\times\) LC\(_{99}\)) T	–
α-cyhalothrin	0.00005% (2 \(\times\) LC\(_{99}\)) T	–
Imidacloprid	0.0015% (2 \(\times\) LC\(_{99}\)) T	–
Acetamiprid	0.0044% (2 \(\times\) LC\(_{99}\)) T	–
Deltamethrin	1300 M (30 \(\times\) LC\(_{99}\)) 24 h	–
Deltamethrin	0.06 U (100 \(\times\) LD\(_{50}\)) T, 24 h	0.0006 U
Deltamethrin	– 24 h	30 M
Deltamethrin	– T	0.0004 U
β-cyfluthrin	– T	0.00308 U
Deltamethrin	– 24 h	2.58 M
d-allethrin	40 mg/mat 24 h	–
Imidacloprid	– T, 72 h	0.0023 U
Acetamiprid	– T, 72 h	0.0003 U
Thiamethoxam	– T, 72 h	0.0019 U
Dinotefuran	– T, 72 h	0.0145 U
C. hemipterus	DDT 2%	1 h
a-cypermethrin	20 M	72 h
Permethrin	200 M	72 h
Permethrin	0.75%	72 h
DDT	2%	24 h
Malathion	5%	16 h
Propoxur	0.8%	24 h
Deltamethrin	0.025%	C
Permethrin	0.25%	C
DDT	4%	C
Dieldrin	0.8%	C
resistance in a New York C. lectularius strain, although there were no differences in the activity of the enzymes evaluated. Adelman et al. [113] also used biochemical assays to detect the differential activity of detoxification enzymes, which suggested that metabolic resistance probably was associated with pyrethroid resistance in C. lectularius. Romero & Anderson [64] evaluated the activities of metabolic detoxification enzymes (P450s, GSTs, and esterases) in C. lectularius using biochemical assays. They found that metabolic resistance is probably involved in resistance to neonicotinoids. However, it is important to clarify that the presence of elevated levels of enzymes alone is not a direct evidence to demonstrate their involvements as resistance mechanisms, unless it could be shown through in vivo metabolism and/or syner-gism studies that these enzymes were involved [105].

Molecular assays

Detection of insecticide resistance using molecular assays could provide early warning of the development of insecticide resistance and the specific resistance mechanism, which would allow the choice of insecticides to be decided more accurately. For example, kdr-resistance mutations could be identified in many DDT- and/or pyrethroid-resistant insects. Multiple molecular assays have been developed to detect kdr mutations, such as direct DNA sequencing analysis, allele-specific PCR (AS-PCR), Heated Oligonucleotide Ligation Assay (HOLA), Sequence Specific Oligonucleotide Probe Enzyme-linked ImmunoSorbent Assay (SSOP-ELISA), PCR-Dot Blot, Fluorescence Resonance Energy Transfer/Melt Curve Analysis (FRET/MCA), High Resolution Melt (HRM), and TaqMan Real-Time PCR assays, in a range of insect pests [204], including bed bugs (Table 9) [17, 54, 90, 92, 113, 157–159, 162]. Direct DNA sequencing analysis, including QS (Quantitative Sequencing) [160, 162] is the most common molecular assay used to identify kdr mutations (e.g. V419L, L925I) in field-collected bed bug strains (Table 9) [54, 92, 113, 157, 158]. However, this analysis is not practical for studying large-scale populations. Other assays such as AS-PCR [90, 157] can be used to detect kdr mutations in field-collected strains (Table 9). As noted by Bass et al. [204], a more

Table 7	Published discriminating doses and susceptibility baselines used to detect insecticide resistance in bed bugs (Cimex spp.) (Continued)			
Insecticide	Discriminating	Susceptibility	Baseline	
	dose (mg/m²)	dose (µg/µL)	dose (µg/m²)	
Bendiocarb	0.1%	–	–	[12]
Propoxur	0.1%	–	–	[12]
Malathion	5%	–	–	[12]
Fenitrothion	1%	–	–	[12]
Cyfluthrin	0.15%	–	–	[12]
Deltamethrin	0.05%	–	–	[12]
Permethrin	0.75%	–	–	[12]
λ-cyhalothrin	0.05%	–	–	[12]
Etofenprox	0.5%	–	–	[12]
d-allethrin	40 mg/m²	24 h^i	–	[16, 17]

Abbreviations: T topical application, IT injection topical application [113], C continuous exposure, d days, h hours, M mg AI m⁻², µg µL⁻¹ or µg insect⁻¹

Table 8	Synergists as inhibitors of major metabolic detoxification enzymes	
Insecticide	Synergists/inhibitors^a	
	P450s	GSTs
Cytochrome P450	PBO, sesamex	DEM, EA and CF
monoxygenases		
(P450s)		
Esterases	EN16/5–1, DEF, TPP, IBP, K-1, K-2, sesamex, and SV-1	
Glutathione S-transferases (GSTs)	DEM, EA and CF	

Abbreviations: DEF 5,5,5-tributylphosphorotrithioate, TPP triphenyl phosphate, IBP S-benzyl diisopropyl phosphorothiolate, K-1 (2-phenyl-4H-1,3,2-benzodioxaphosphorin 2-oxide, sesamex 5-(1-(2-(2-ethoxyethoxy) ethoxy)ethoxy)1,3-benzodioxole, SV-1, O,O-diethyl O-phenyl phosphorothiolate, DEM diethyl maleate, EA ethacrynic acid, CF chlorfenethol

^aData sourced from Brogdon & Chan [286], Heong et al. [147] and Lilly et al. [127]
Resistance mechanism	Gene	Molecular assay	Primer sequence (5′-3′)	Reference
kdr	V419 L	PCR and sequencing	F: AACCCTGGATATATCATGCCCTTCAGG; R: TGATGGAGATTTTGCCACTGCAG	[54, 157]
L925; I936F	PCR and sequencing	F: GGAATGGAAGCTGCCATGAAATG; R: TGATGGAGATTTTGCCACTGAG	[54, 157]	
V419L	AS-PCR	F(V): ATTCCTGGAGCTATCTCAG; F(L): ATTCCTGGAGCTATCTCAG; R: TGATGGAGATTTTGCCACTGAG	[90, 157]	
L925I	AS-PCR	F(L): ATTATGCGGCAAGAAGTGAGGCTGC; F(I): ATTATGGCAGAAGATGGAGGCTAG; R: TGCTATTTGCTGCAAACTCAG	[90, 157]	
V419L	QS	F: GTCCGTGGCACATGGTTCTCA; R: CTGATGGAGATTTTGCCACTGAG; R: CCTCTTCAGCAGCTTCTTCTTCTT (for sequencing)	[160, 162]	
L925I	QS	F: GGTCTATCGTTTGGAGTGCTACTCA; R: GGAGTTCGCCATCAGGGAATCTAT; F: GTGTTTAAGCTGGCTAAGTCATGGCC (For sequencing)	[160, 162]	
Penetration resistance	Contig_1766 (CDA)	qRT-PCR	F: TGAATTGCTATAAAGAATCGTA; R: ATTACCAATACACCAACAA	[92]
	Contig_1762 (CHS)	qRT-PCR	F: TAATGAAGCGAAGGACTA; R: AATACCCACCCAGCTACC	[92]
	Contig_48951 (CPAP)	qRT-PCR	F: GTCCTCAGCGACCAATCGGT; R: GTGTGGGAACTGGTGATG	[92]
	Contig_17694 (LCP)	qRT-PCR	F: GCCACATTCTATAACAGAG; R: ATTACCCATCCAGATTG	[92]
	Contig_21630 (PCP)	qRT-PCR	F: CCAGATAATTTCAAGGAGAT; R: AGTCTAATCCTGAGTTAT	[92]
	Contig_24229	qRT-PCR	F: CGCCAGGGCCGAGGAGTATG; R: AGGCGGTCCAGGCTGGTCTAGT	[94]
	Contig_24231	qRT-PCR	F: CGAGGATCTATCCCCAATACAGGTT; R: AGGGCGGGGTATCCAGGACCACA	[94]
	Contig_24227	qRT-PCR	F: TTTTCTTTGGCAGCTTGGTGTAG; R: CCTGCTTTCCTGGCTGATG	[94]
	Contig_24230	qRT-PCR	F: GACCTAAGGGCCACGAGAACG; R: AGTATTATGATATGATTAC	[94]
	Contig_24228	qRT-PCR	F: CCCCCCTGTTACCAAGACTCAATG; R: GGCAAAAGCGACTGAGGTTGAT	[94]
	Contig_2034	qRT-PCR	F: TACCGTTATATGCTGACTACCA; R: TCCAGGGCGAGAAAACCAC	[94]
	Contig_1629	qRT-PCR	F: AGGGCGGTCCACACACAA; R: TGCTGCTGCTCATTCCCTC	[94]
	Contig_3037	qRT-PCR	F: ACGCCAGGAGTGGCTGAGGTATG; R: AGGACGAGGGGGCGGGTGTTGTTT	[94]
	Contig_3222	qRT-PCR	F: CGAACCCTGGCGAAATGTGACATAA; R: TTGGGCTGGTGTAGTACTGAGGTTG	[94]
	Contig_773	qRT-PCR	F: GCCGGTTAGCGAGCCAGGTA; R: GCGTGGGCGAAGAAGGATT	[94]
	Contig_2220	qRT-PCR	F: ATGCCACGAGAGGGGCAAATCT; R: GGACTGCTGGGCTGCTCTGT	[94]
	Contig_1833	qRT-PCR	F: ACAATTTCTGGGTCGGTCCCTTCTT; R: TCGGGAGGCTGACCTGACCTG	[94]
	Contig_820	qRT-PCR	F: ATCAGCAGGCAAGTGAGGAGGC; R: GGAGGGCTGAGTGGTTGCTC	[94]
Table 9: Published molecular markers of genes putatively involved in resistance mechanisms of bed bugs (*Cimex* spp.) (Continued)

Contig	Method	F	R	Reference		
934	qRT-PCR	F: ACACCACTCCCGTCCCATCGT;	R: CGTCTCGTCGCCGGTATGAGTCA	[94]		
2492	qRT-PCR	F: CGGTATCTCGGCGAAGGAACAG;	R: GCGGCGTAGGGGAGATGAGCA	[94]		
22513	qRT-PCR	F: CGACGGAACATACAACTGGGTA;	R: ATGCCCGTACGCGGGGATCTTCC	[90]		
15313	qRT-PCR	F: ACGGAACCCATCCCGATCCTA;	R: ATGCCGTTACCGGTTTTGCTTGA	[90]		
8158	qRT-PCR	F: CCAAGCGGTCAAAGCAGCACAT;	R: AGCCTAGCGAGAAGCTTGTGAA	[90]		
Contig_934	qRT-PCR	F: ACACCACTCCCGTCCCATCGT;	R: CGTCTCGTCGCCGGTATGAGTCA	[94]		
Contig_2492	qRT-PCR	F: CGGTATCTCGGCGAAGGAACAG;	R: GCGGCGTAGGGGAGATGAGCA	[94]		
Contig_22513	qRT-PCR	F: CGACGGAACATACAACTGGGTA;	R: ATGCCCGTACGCGGGGATCTTCC	[90]		
Contig_15313	qRT-PCR	F: ACGGAACCCATCCCGATCCTA;	R: ATGCCGTTACCGGTTTTGCTTGA	[90]		
Contig_8158	qRT-PCR	F: CCAAGCGGTCAAAGCAGCACAT;	R: AGCCTAGCGAGAAGCTTGTGAA	[90]		
Metabolic resistance	[1] P450s	CYP9	qRT-PCR	N/A	[104]	
		CYP6DM2	qRT-PCR	F: CCCCCTTATGCTACCCGTTTGA;	R: TTCGTCCTTTTTATGTCCGTCTGC	[113]
		CYP397A1	qRT-PCR	F: CTCGGGCTCACCACTCTCAACA;	R: ACCGTCATGCTCCGGTCACAG	[113]
		CYP400A1	qRT-PCR	F: CTCGGGCTCACCACTCTCAACA;	R: ACCGTCATGCTCCGGTCACAG	[113]
		Contig_19601	qRT-PCR	F: TCGGAGGAATGGAAGAAG;	R: CGTCATGGTATGGATGGT	[92]
		Contig_103	qRT-PCR	F: AAGTGGTCTAGTAGGTG;	R: GAGATATGGCGTGAATGTC	[92]
		Contig_22399	qRT-PCR	F: CGTCATGGTATGGATGGT;	R: TCGGAGGAATGGAAGAAG	[92]
		Contig_11345	qRT-PCR	F: TATTTGAGTGACAGCGGCTTGA;	R: TCGGAGGAATGGAAGAAG	[90]
		Contig_03764	qRT-PCR	F: TCGGAGGAATGGAAGAAG;	R: CGTCATGGTATGGATGGT	[92]
		Contig_04099	qRT-PCR	F: ATGGTAAACATTGGAGGCCCTGG;	R: AATGCCCGATTACGATGTCAGG	[90]
		CICPR	qRT-PCR	F: TATGCACCAGAATCCACAGCAACTC;	R: ACCTGCAAAATTCTTCACCAGTGCC	[122]
		CE3959	qRT-PCR	F: ACCTGGAGGAGGCCGACGGTGA;	R: TCGGAGGAATGGAAGAAG	[90]
		CE21331	qRT-PCR	F: ACCTGGAGGAGGCCGACGGTGA;	R: TCGGAGGAATGGAAGAAG	[90]
		gsts 1	qRT-PCR	F: AAGAGAGCCATTAGATTAGTT;	R: AAGAGAGCCATTAGATTAGTT	[113]
		Contig_1346	qRT-PCR	F: TGTCACACATTACATTGCA;	R: GTAGGACCGGTATGAGTGA	[92]
		Contig_08506	qRT-PCR	F: ATCCGTAGGGGCGAGGTAAACCC;	R: TTTGAGGGTACCCGTAAGTTTGT	[90]
		Contig_02154	qRT-PCR	F: TTAGCACCAGGATGACGCAAG;	R: TGGAGGAGGGTAGTACGGAAC	[90]
		Contig_05955	qRT-PCR	F: TCAAGAGCCTCTCTCGGATTCT;	R: AACTTCTGGCGGACCATGGAAC	[90]
		Contig_09403	qRT-PCR	F: ATCCGTAGGGGCGAGGTAAACCC;	R: TTTGAGGGTACCCGTAAGTTTGT	[90]

Abbreviation N/A Not applicable, AS-PCR Allele-Specific PCR, QS Quantitative Sequencing qRT-PCR quantitative Real-Time PCR, F Forward primer, R Reverse primer
sensitive and specific molecular assay (e.g. TaqMan Real-Time PCR assay) should be developed to identify kdr mutations.

The recent transcriptome and genomic studies in bed bug populations have revealed that multiple candidate genes that putatively mediate resistance mechanisms may be present in bed bug populations (Table 1) [90, 92, 93, 113, 197]. In these studies, overexpression of genes that encode metabolic enzymes (e.g. P450s, esterases, and GSTs) and genes that encode cuticular proteins for thickening or remodelling cuticle to reduce the insecticide penetration rate, were used as discriminating criteria to identify genes that are likely associated with insecticide resistance, especially with pyrethroid resistance, in bed bugs [90, 92, 94, 104, 113], although they need to be further experimentally validated. Based on the quantitative RT-PCR technology, many molecular markers have been developed to monitor those putative resistance-associated genes based on these studies (Table 9) [90, 92]. Additionally, RNAi techniques also provide a promising approach to further validate the gene(s) that governs resistance in bed bugs [90, 122]. Lastly, other approaches, such as transgenic expression [143] and metabolism studies [105], can be conducted to directly validate the gene(s) governing resistance in bed bugs.

Conclusions
Over the last two decades, bed bugs have undergone a major resurgence around the world. The widespread presence of insecticide resistance in field bed bug populations may be the single most important factor responsible for the bed bug resurgence. Transcriptional and genomic studies have significantly revolutionized insecticide resistance research in bed bugs over recent years. Multiple physiological-based mechanisms are putatively associated with bed bug insecticide resistance. These mechanisms include reduced penetration by thickening or remodelling cuticle (e.g. upregulation of cuticular-related protein genes), metabolic resistance (e.g. increased metabolic activities of detoxification enzymes), and target site insensitivity (kdr mutations). However, the involvement of most of the candidate genes associated with insecticide resistance found through transcriptional and genomic approaches still need to be verified by empirical functional approaches such as RNAi, gene functional characterization, metabolism/biotransformation studies, and neurophysiological studies. The progress in understanding insecticide resistance mechanisms mentioned herein is mainly focused on the common bed bug C. lectularius. Little is known on insecticide resistance mechanisms in the tropical bed bug C. hemipterus, although it is likely to share similar mechanisms. Bioassay methods are relatively simple to perform and provide standardized data to monitor insecticide resistance. However, they have several practical limitations. For instance, bioassays require a susceptible strain for comparison and a large quantity of insects for testing. Ideally, biochemical, molecular assays and insecticide bioassays could be concerted performed to detect insecticide resistance and its mechanisms. The latter two assays have advantages, such as requiring a smaller sample size, and could accurately identify the gene(s) that is/are associated with the resistance mechanisms. However, these assays require sophisticated and costly equipment and reagents to perform which may not be readily available in developing countries. In addition, it would be counter-productive to use biochemical and molecular monitoring assays as a standalone approach without empirical validation of resistance status.

Abbreviations
ABC-transporters: ATP-binding cassette transporters; AChEs: Acetylcholinesterases; ADP: Adenosine diphosphate; ATP: Adenosine triphosphate; BHC: Benzene hexachloride; CDA: Chitin deacytelase; CF: Chlorfenothol; CHS: Chitin synthase; CIN-1: A Cimex lectularius strain collected in 2005 in Cincinnati, OH; CPAP: Cuticular protein analogous to peritrophin; CPR: NADPH-Cytochrome P450 Reductase; CRRP: Cuticular protein with the rebers and riddiford consensus; DDT: Dichloro-diphenyl trichloroethane; DDVP: Dichlorvos; DEF: S,S,S-tributylphosphorotrithionate; DEM: Diethyl maleate; EA: Ethacrynic acid; EN16/5-1: 6-[2-(2-butoxyethoxy) ethoxymethyl]-5-propyl-2, 3-dihydrobenzofuranby; FCVB: Filter Contact Vial Bioassay; FL-BB: A susceptible C. lectularius strain collected from Gainesville, Florida; FRET/IFCA: Fluorescence Resonance Energy Transfer/Melt Curve Analysis; GABA receptor: γ-aminobutyric acid receptor; gamma-HCH: gamma-hexachlorocyclohexane; GSH: Reduced glutathione; GSTs: Glutathione S-transferases; HOLA: Heated Oligonucleotide Ligation Assay; HRM: High Resolution Melt; IBP: S-benzyl diisopropyl phosphorothiolate; IRAC: Insecticide Resistance Action Committee; IRM: Insecticide resistance management; K-1: (2-phenyl-4H-1,3,2-benzodioxaphosphorothiolate); K-2: 2-phenoxy-4H-1,3,2-benzodioxaphosphorin 2-oxide; kdr: knockdown resistance; LA-1: A susceptible C. lectularius strain collected in 2006 in Los Angeles, CA; LCP: Larval cuticle protein; METI: Mitochondrial electron transport inhibitors; nAChRs: Nicotinic acetylcholine receptors; NADPH: Nicotinamide Adenine Dinucleotide Phosphate; OCs: Organochlorines; OPs: Organophosphates; P450s: Cytochrome P450 monoxygenases; PRH: 3-Phenoxbenzyl hexanate, a surrogate substrate for carboxylesterases and oxidases; PBO: Piperonyl butoxide; PCP: Pupal cuticle protein; qRT-PCR: Quantitative Real-Time PCR; QS: Quantitative Sequencing; RACE: Rapid amplification of cDNA ends; RNAi: dsRNA-mediated interference; SEM: Scanning electron microscope; sesame: 5-1-[1-(2-(2-ethoxyethoxy) ethoxyethoxy)-1,3-benzodioxole; SOOP-ELISA: Sequence Specific Oligonucleotide Probe Enzyme-linked Immuno Sorbent Assay; SV-1: O,O-diethyl-O-phenyl phosphorothiolate; TPP: Triphenyl phosphate; VGSC: Voltage-gated sodium channel; WOR-1: A C. lectularius strain collected in 2007 in Worcester, MA

Acknowledgments
The authors thank Universiti Sains Malaysia for the post-doctoral fellowship to Kai Dang, and Bayer Environmental Science for research support.

Funding
Not applicable.

Availability of data and materials
Not applicable.
Authors’ contributions
KD and CYL wrote the manuscript, GVS and SLD further improved the content of the manuscript. All authors read and approved the final manuscript.

Competing interests
The authors declare that they have no competing interests.

Consent for publication
Not applicable.

Ethics approval and consent to participate
Not applicable.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Author details
1Urban Entomology Laboratory, Vector Control Research Unit, School of Biological Sciences, Universiti Sains Malaysia, 11800 Penang, Malaysia.
2Department of Medical Entomology, NSW Health Pathology, Westmead Hospital, Westmead, NSW 2145, Australia.
3Centre for Chemical Biology, Universiti Sains Malaysia, 10 Persiaran Bukit Jambul, 11900 Penang, Malaysia.

Received: 1 August 2016 Accepted: 6 June 2017

Published online: 29 June 2017

References
1. Georgiou GP. The evolution of resistance to pesticides. Annu Rev Ecol Syst. 1972;3:133–68.
2. Lee CY. Insecticide resistance and its underlying mechanisms in the German cockroach, Blattella germanica (Linne) (Dictyoptera: Blattellidae). J Biosci. 1997;21(1):56–72.
3. Hemingway J, Field L, Vontas J. An overview of insecticide resistance. Science. 2002;298:96–7.
4. Hemingway J, Hawkins NJ, McCarroil L, Ranson H. Molecular basis of insecticide resistance in mosquitoes. Insect Biochem Mol. 2004;34:653–65.
5. Liu N, Zhu F, Xu Q, Pridgeon JW, Gao X. Behavioural change, physiological modification, and metabolic detoxification: mechanisms of insecticide resistance. Acta Entomol Sin. 2006;49(6):671–9.
6. Liu N. Insecticide resistance in mosquitoes: impact, mechanisms, and research directions. Annu Rev Entomol. 2015;60:537–59.
7. Li X, Shuler MA, Berenbaum M. Molecular mechanisms of metabolic resistance to synthetic and natural xenobiotics. Annu Rev Entomol. 2007;52:231–53.
8. Usinger RL. Monograph of Cimicidae (Hemiptera-Heteroptera), Thomas Say Foundation, vol. 7. College Park: Entomological Society of America; 1966.
9. Potter MF. The history of bed bug management: with lessons from the past. Am Entomol. 2011;57:14–25.
10. Koganeman R, Miller DM. The bed bug problem: past, present, and future control methods. Pestec Biochem Physiol. 2013;106:177–89.
11. Suwananyod S, Changbang Y, Buranapanichpan S. The life cycle and effectiveness of insecticides against the bed bugs of Thailand. Southeast Asian J Trop Med Public Health. 2010;41(4):548–54.
12. Tawatsin A, Thavara U, Chompoosri J, Phusup Y, Jonjang N, Khumsawads C. Insecticide resistance in bedbugs in Thailand and laboratory evaluation of insecticides for the control of Cimex hemipterus and Cimex lectularius (Hemiptera: Cimicidae). J Med Entomol. 2007;42(1):1023–30.
13. Newberry K, Jansen EJ, Thibaud GR. The occurrence of the bedbugs Cimex hemipterus and Cimex lectularius in northern Natal and KwaZulu, South Africa. Trans R Soc Trop Med Hyg. 1987;81:431–3.
14. Gbakima AA, Terry BC, Kanja F, Kortequeue S, Dukuley I, Sahr F. High prevalence of bedbugs Cimex hemipterus and Cimex lectularius in camps for internally displaced persons in Freetown, Sierra Leone: a pilot humanitarian investigation. West Afr J Med. 2002;21:268–71.
15. Doggett SL, Russell RC. The resurgence of bed bugs, Cimex spp. (Hemiptera: Cimicidae) in Australia: experiences from down under. In: Robinson WH, Bajomi D, editors. Proceedings of the 6th International Conference on Urban Pests, Budapest, Hungary, 13 to 16 July 2008. Pápai: OOK-Press; 2008. p. 407–25.
16. Dang K, Lilly DG, Bu W, Doggett SL. Simple, rapid and cost-effective technique for the detection of pyrethroid resistance in bed bugs, Cimex spp. (Hemiptera: Cimicidae). Austral Entomol. 2015;54:191–6.
17. Dang K, Toi CS, Lilly DG, Lee CY, Naylor R, Tawatsin A, et al. Identification of putative kdr mutations in the tropical bed bug, Cimex hemipterus (Hemiptera: Cimicidae). Pest Manag Sci. 2015;71:1015–20.
18. Campbell BE, Koehler PG, Russ LJ, Baldwin RW. Recent documentation of the tropical bed bug (Hemiptera: Cimicidae) in Florida since the common bed bug resurgence. Fla Entomol. 2016;99:549–51.
19. Birchard K. Bed bugs biting in Britain: only rarely used pesticides effective. Med Post. 1998;34:55.
20. Potter MF, Haynes KF, Connelly K, Deutsch M, Hardebeck E, Partin D, et al. The sensitivity spectrum: human reactions to bed bug bites. Pest Control Technol. 2010;38:70–4.
21. Doggett SL, Dwyer DE, Peñas PF, Russell RC. Bed bugs: clinical relevance and control options. Clin Microbiol Rev. 2012;25:164–92.
22. Minocha R, Wang C, Dang K, Webb C, Fernandez-Penas P, Doggett SL. Systemic erythematous reactions following repeated exposure to bites from the common bed bug Cimex lectularius (Hemiptera: Cimicidae). Austral Entomol. 2016; doi:10.1111/aen.12250.
23. Rahim AHAR, Zahran Z, Majid AHA. Human skin reactions towards bites of tropical bed bug, Cimex hemipterus F. (sic) (Hemiptera: Cimicidae): a preliminary case study. Asian Pac J Trop Dis. 2016;6:366–71.
24. Goddard J, DeShazo R. Bed bugs (Cimex lectularius) and clinical consequences of their bites. Jama. 2009;301:1358–66.
25. Reinhart K, Kempe D, Naylor RA, Siva-Jothy MT. Sensitivity to bites by the bed bug, Cimex lectularius. Med Vet Entomol. 2009;23:163–6.
26. Leulmi H, Bitam I, Berenger JM, Lepidi H, Rolain JM, Almeras L, et al. Competence of Cimex lectularius bed bugs for the transmission of Bartonella quintana, the agent of trench fever. PLoS Negl Trop Dis. 2015;9:e0003789.
27. Sentana-Liedo D, Barbu CM, Ngo MN, Wu Y, Sethuraman K, Levy MZ. Seasons, searches, and intentions: what the internet can tell us about the bed bug (Hemiptera: Cimicidae) epidemic. J Med Entomol. 2016;53:116–21.
28. Davies TGE, Field LM, Williamson MS. The re-emergence of the bed bug as a nuisance pest: implications of resistance to the pyrethroid insecticides. Med Vet Entomol. 2012;26:241–54.
29. Bandypadhyay T, Kumar A, Saill A. Bed bug outbreak in a neonatal unit. Epidemiol Infect. 2015;143:2865–70.
30. Romero A, Potter MF, Potter OA, Haynes KF. Insecticide resistance in the bed bug: a factor in the pest’s sudden resurgence? J Med Entomol. 2007;44:175–8.
31. IRAC. The IRAC register. http://www.irac-online.org. Accessed 12 June 2017.
32. Zhu KY. Insecticide resistance. In: Capinera JL, editor. Encyclopedia of entomology. 2nd ed. New York: Springer; 2008. p. 1979–81.
33. WHO. Environmental health criteria for DDT and its derivatives. Geneva: World Health Organization; 1979.
34. Johnson MS, Hill AJ. Partial resistance of a strain of bed bugs to DDT residual. Med News. 1948;12:26–8.
35. Busvine JR. Insecticide-resistance in bed-bugs. Bull World Health Organ. 1958;19:1041–52.
36. WHO. Insecticide resistance and vector control. Thirteenth report of the WHO expert committee on insecticides. In: WHO Technical Report Series, vol. No. 265. Geneva: World Health Organization; 1963.
37. WHO. Insecticide resistance and vector control. Seventeenth report of the WHO expert committee on insecticides, WHO Technical Report Series, vol. No. 433. Geneva: World Health Organization; 1970.
38. WHO. Resistance of vectors and reservoirs of disease to pesticides. Twenty-second report of the WHO expert committee on insecticides, WHO Technical Report Series, vol. No. 585. Geneva: World Health Organization; 1976.
39. WHO. Vector resistance to Pesticides. Fifteenth report of the WHO Expert Committee on Vector Biology and control. Geneva: World Health Organization; 1992.
40. Brown AWA, Pal R. Insecticide resistance in Arthropods. 2nd ed. Geneva: World Health Organization; 1971.
41. Newberry K, Mchuun ZM. Changes in the relative frequency of occurrence of infestations of two sympatric species of bedbug in northern Natal and KwaZulu, South Africa. Trans R Soc Trop Med Hyg. 1989;83:262–4.
42. Newberry K, Mchuun ZM, Cebikhuul SQ. Bedbug reinfestation rates in rural Africa. Med Vet Entomol. 1991;5:503–5.
43. Axtell RC, Arends JJ. Ecology and management of arthropod pests of poultry. Annu Rev Entomol. 1990;35:101–26.
44. Steelman CD, Szalanski AL, Trout R, McKern JA, Solorzano C, Austin JW. Susceptibility of the bed bug Cimex lectularius L. (Hemiptera: Cimicidae) collected in poultry production facilities to selected insecticides. J Agr Urban Entomol. 2008;25:41–51.

45. Elliott M, Janes NF. Synthetic pyrethrins - a new class of insecticide. Chem Soc Rev. 1978;7:475–505.

46. Davies TGE, Field LM, Usherwood PNR, Williamson MS, DDT, pyrethrins, pyrethroids and insect sodium channels. IUBMB Life. 2007;59:151–62.

47. Boase C, Small G, Naylor R. Interim report on insecticide susceptibility status of UK bedbugs. Professional Pest Controller. 2006; p. 6–7.

48. Moore DJ, Miller DM. Laboratory evaluations of insecticide product efficacy for control of Cimex lectularius. J Econ Entomol. 2006;99:2080–8.

49. Lilly DG, Doggett SL, Orton C, Russell RC. Bed bugs that bite back, confirmation of insecticide resistance in the common bed bug, Cimex lectularius. Prof Pest Manag. 2009;12:2–4.

50. Lilly DG, Doggett SL, Orton C, Russell RC. Bed bug product efficacy under the spotlight, part 1. Prof Pest Manag. 2009;13:14–19.

51. Lilly DG, Doggett SL, Orton C, Russell RC. Bed bug product efficacy under the spotlight, part 2. Prof Pest Manag. 2009;13:14–15:18.

52. Dang K, Toi CS, Lilly DG, Bu W, Doggett SL. Detection of knockdown resistance mutations in the common bed bug, Cimex lectularius (Hemiptera: Cimicidae). In Australia. Pestman Sci. 2015;5:496–9.

53. Klippen O, Kristensen M, Jensen KM. Resistance differences between chlorpyrifos and synthetic pyrethroids in Cimex lectularius population from Denmark. Parasitol Res. 2011;109:461–4.

54. Dang K, Toi CS, Lilly DG, Bu W, Doggett SL. Confirmation of insecticide resistance in Cimex lectularius Linnaeus (Hemiptera: Cimicidae) in Australia. Austral Entomol. 2015;54:996–9.

55. Myamba J, Maxwell CA, Asidi A, Curtis CF. Pyrethroid resistance in tropical bed bugs, Cimex hemipterus, associated with use of treated bednets. Med Vet Entomol. 2002;16:448–51.

56. Karanarathne SHPP, Damayanthi BT, Fareena MHJ, Imbuldeniya V, Hemingway J. Insecticide resistance in the tropical bedbug Cimex hemipterus. Pestic Biochem Physiol. 2007;88:108–12.

57. Jeschke P, Nauen R. Neonicotinoids from zero to hero in insecticide chemistry. Pest Manag Sci. 2008;64:1084–92.

58. Jeschke P, Nauen R, Shindler M, Elbert A. Overview of the status and global strategy for neonicotinoids. J Agric Food Chem. 2010;59:2897–908.

59. Potter MF, Haynes KE, Gordon JR, Hardebeck E, Wickemeyer W. Dual-action bed bug killers. Pest Control Technol. 2012;24:62–8. 75–6.

60. Gordon JR, Goodman MH, Potter MF, Haynes KE. Population variation in and selection for resistance to pyrethroid-neonicotinoid insecticides in the bed bug. Sci Rep. 2014;4:3836.

61. Gordon JR, Potter MF, Haynes KE. Insecticide resistance in the bed bug comes with a cost. Sci Rep. 2015;5:10807.

62. Wang C, Singh N, Cooper R, Liu C, Buczkowski G. Evaluation of an insecticide dust band treatment method for controlling bed bugs. J Econ Entomol. 2013;106:347–52.

63. Wang C, Singh N, Cooper R. Field study of the comparative efficacy of three pyrethroid/neonicotinoid mixture products for the control of the common bed bug, Cimex lectularius L. to insecticides. Bull Soc Entomol Egypt. 1972;25:235–43.

64. Lockwood JA, Sparks TC, Sory RN. Evolution of insect resistance to insecticides: a reappraisal of the roles of physiology and behavior. Bull Entomol Soc Am. 1984;30:41–51.

65. Sparks T, Lockwood JA, Byford RL, Graves JB, Leonard BR. The role of behavior in insecticide resistance. Pest Sci. 1989;26:385–99.

66. Chareonwityaphat T, Bangs MJ, Suwonked W, Kongme W, Corbel V, Ngoen-Klan R. Review of insecticide resistance and behavioural avoidance of vectors of human diseases in Thailand. Parasit Vectors. 2013;6:280.

67. Silverman J, Bieman DN. Glucose aversion in the German cockroach, Blattella germanica. J Insect Physiol. 1993;39:925–33.

68. Silverman J, Ross MH. Behavioral resistance of field-collected German cockroaches (Blattellas: Blattellidae) to baits containing glucose. Environ Entomol. 1994;23:425–30.

69. Ross MH. Evolution of behavioral resistance in German cockroach (Dictyoptera: Blattellidae) selected with a toxic bait. J Econ Entomol. 1997;90:1482–5.

70. Wada-Katsumata A, Silverman J. Changes in taste neurons support the emergence of an adaptive behavior in cockroaches. Science. 2013;340:972–5.

71. Willis AT, Chir B. The problem of exophily in Anopheles gambiae. Bull World Hlth Organ. 1956;15:437–49.

72. Mbogo CNM, Baya NM, Ofulla AO, Githure JI, Snow RW. The impact of permethrin-impregnated bednets on malaria vectors of the Kenyan coast. Med Vet Entomol. 1996;10:251–9.

73. Mathenge EM, Gimeng JE, Kolczak M, Ombok M, Irungu LW, Hawley WA. Effect of permethrin-impregnated nets on exiting behavior, blood feeding success, and time of feeding of malaria mosquitoes (Diptera: Culicidae) in western Kenya. J Med Entomol. 2001;38:531–6.

74. Romero A, Potter MF, Haynes KE. Behavioral responses of the bed bug to insecticide residues. J Med Entomol. 2009;46:51–7.

75. Zhu F, Gujar H, Gordon JR, Haynes KE, Potter MF, Paoli SR. Bed bugs evolved unique adaptive strategy to resist pyrethroid insecticides. Sci Rep. 2013;3:1456.

76. Maridima P, Jones SC, Mitpallo O. Metabolic resistance in bed bugs. Insects. 2012;3:236–48.

77. Maridima P, Wijeratne AJ, Wijeratne S, Komacke S, Sudhamalla B, Rivera-Vega LJ, et al. RNA-Seq and molecular docking reveal multi-level pesticide resistance in the bed bug. BMC Genomics. 2012;13:36.

78. Rosenfeld JA, Reeves D, Brugler MR, Narechania A, Simon S, Durrett R, et al. Genome assembly and geospatial phylogenomics of the bed bug Cimex lectularius. Nat Commun. 2016;7:10164.

79. Koganemaru R, Miller DM, Adelman ZN. Robust cuticular penetration resistance in the common bed bug (Cimex lectularius L) correlates with increased steady-state transcript levels of CPR-type cuticle protein genes. Pestic Biochem Physiol. 2013;105:190–7.
212. Mumcuoglu KY, Shalom U. Questionnaire survey of common bedbug infestations in aphids confer resistance to parasitic wasps. Proc Natl Acad Sci U S A. 2003;100:1803–7.

213. Ghani M, Kontsedalov S. Susceptibility to insecticides in the Q biotype of *Bemisia tabaci* is correlated with bacterial symbiont densities. Pest Manag Sci. 2009;65:939–42.

214. Higo V, Asey A. Phylogenetic characterization of two transovarially transmitted endosymbionts of the bedbug *Cimex lectularius* (Heteroptera: Cimicidae). Insect Mol Biol. 1997;6:301–4.

215. Sakamoto JM, Rasgon JL. Endosymbiotic bacteria of bed bugs: evolution, ecology and genetics. Am Entomol. 2006;52:119–22.

216. Benoit JB, Adelman ZN, Reinhardt K, et al. Unique features of a global bed bug (*Cimex lectularius*) population. Trop Dis. 2014;4(Suppl 2):786–9.

217. Arkvright JA, Atkin EE, Bacot A. An hereditary Ricketsia-like parasite of the bed bug (*Cimex lectularius*). Parasitology. 1921;13:37–36.

218. Nalwanga E, Ssempebwa JC. Knowledge and practices of in-home pesticide use: a community survey in Uganda. J Environ Public Health. 2011;2011:230894.

219. Lee IY, Ree H, An SJ, Linton JA, Yong TS. Reemergence of the bedbug (*Cimex lectularius*), infestation in some homes and hostels in Gboko, Benue State, Nigeria. Psyche. 2014;Article ID 762704, 5 pages. doi:10.1155/2014/762704.

220. Angelakis E, Soccolich C. Short report: Bartonella quintana in *Cimex hemipterus*, Rwanda. Am J Trop Med Hyg. 2013;89:986–7.

221. Faundez EI, Carvajal MA, Bed bugs are back and also arriving is the southernmost record of *Cimex lectularius* (Heteroptera: Cimicidae) in South America. J Med Entomol. 2014;51:1073–6.

222. Nascimento L. Investigation of occurrence of infestation by *Cimex lectularius* (Heteroptera: Cimicidae) in the metropolitan region of São Paulo, in the period 2004–2009 (Masters dissertation). São Paulo: Universidade de São Paulo; 2010. (In Portuguese).

223. Criado PR, Belda V, Criado RFJ, Silva RVE, Vasconcellos C. Bed bugs (*Cimicidae* infestation): the worldwide renaissance of an old partner of human kind. Braz J Infect Dis. 2011;15:74–80.

224. Bernardes Filho F, Quaresma MV, Aveleira JCR, Assis BQ, Assis JAR, et al. Bed bug dermatitis, description of two cases in Rio de Janeiro, Brazil. An Bras Dermatol. 2015;90:240–3.

225. Myles T, Brown B, Bedard B, Bhooi R, Bruyere K, Chua AL, et al. Bed bugs in Toronto. University of Toronto, Centre for Urban and Community Studies Research Bulletin. 2003;191:1–4.

226. Hwang SW, Svoboda TJ, Jorg UJD, Kabasele KJ, Gogosis E. Bed bug infestations in an urban environment. Emerg Infect Dis. 2005;11:533–8.

227. Posso CE, Wolff M, de Ulloa PC. The bed bugs (*Cimex lectularius*): urban problem in the Andean region of Colombia. In: Robinson WH, Bajomi D, editors. Proceedings of the 6th International Conference on Urban Pests, Budapest, Hungary, 13 to 16 July 2008. Pápai: OOK-Press; 2008. p. 105–11.

228. Miller D. Bed bugs (Hemiptera: Cimicidae). In: Capinera JL, editor. Encyclopedia of Entomology. 2nd ed. New York: Springer; 2008. p. 405–17.

229. Bass C, Nikou D, Donnelly MJ, Williamson MS, Russon H, Ball A, et al. Detection of knockdown resistance (kdr) mutations in *Anopheles gambiense*: a comparison of two new high-throughput assays with existing methods. Malar J. 2007;6:111.

230. Boase C. Bedbugs - back from the brink. Pestic Outlook. 2001;12:159–62.

231. Khan HR, Rahman MM. Morphology and biology of the bed bug, *Cimex hemipterus* (Hemiptera: Cimicidae) in the laboratory. Dhaka Univ J Biol Sci. 2015;92:331–3.

232. Hwang SW, Svoboda TJ, Jorg UJD, Kabasele KJ, Gogosis E. Bed bug (*Cimex lectularius*) infestation: the worldwide renaissance of an old partner of human kind. Braz J Infect Dis. 2011;15:74–80.

233. Criado PR, Belda V, Criado RFJ, Silva RVE, Vasconcellos C. Bed bugs (*Cimicidae* infestation): the worldwide renaissance of an old partner of human kind. Braz J Infect Dis. 2011;15:74–80.

234. Bernardes Filho F, Quaresma MV, Aveleira JCR, Assis BQ, Assis JAR, et al. Bed bug dermatitis, description of two cases in Rio de Janeiro, Brazil. An Bras Dermatol. 2015;90:240–3.

235. Myles T, Brown B, Bedard B, Bhooi R, Bruyere K, Chua AL, et al. Bed bugs in Toronto. University of Toronto, Centre for Urban and Community Studies Research Bulletin. 2003;191:1–4.

236. Hwang SW, Svoboda TJ, Jorg UJD, Kabasele KJ, Gogosis E. Bed bug infestations in an urban environment. Emerg Infect Dis. 2005;11:533–8.

237. Passo CE, Wolff M, de Ulloa PC. The bed bugs (*Cimex lectularius*): urban problem in the Andean region of Colombia. In: Robinson WH, Bajomi D, editors. Proceedings of the 6th International Conference on Urban Pests, Budapest, Hungary, 13 to 16 July 2008. Pápai: OOK-Press; 2008. p. 105–11.

238. Miller D. Bed bugs (Hemiptera: Cimicidae). In: Capinera JL, editor. Encyclopedia of Entomology. 2nd ed. New York: Springer; 2008. p. 405–17.

239. Bass C, Nikou D, Donnelly MJ, Williamson MS, Russon H, Ball A, et al. Detection of knockdown resistance (kdr) mutations in *Anopheles gambiense*: a comparison of two new high-throughput assays with existing methods. Malar J. 2007;6:111.

240. Levy Bencheton A, Berenger JM, Del Giudice P, Delaunay P, Pages F, et al. Resurgence of bedbug (*Cimex lectularius*) in the laboratory. Dhaka Univ J Biol Sci. 2015;92:331–3.

241. Akhoundi M, Kengne P, Cannet A, Brengues C, Berenger J, Izri A, et al. Bed bug (*Cimex lectularius*) infestation in Qatar: the worldwide renaissance of an old partner of human kind. Braz J Infect Dis. 2011;15:74–80.

242. Seidel C, Reinhardt K. Bugging forecast: Unknown, disliked, occasionally intimate. Bed bugs in Germany meet unprepared people. PLoS One. 2013;8:e51083.

243. Levy Bencheton A, Berenger JM, Del Giudice P, Delaunay P, Pages F, et al. Resurgence of bedbug (*Cimex lectularius*) in the laboratory. Dhaka Univ J Biol Sci. 2015;92:331–3.

244. Levy Bencheton A, Berenger JM, Del Giudice P, Delaunay P, Pages F, et al. Resurgence of bedbug (*Cimex lectularius*) in the laboratory. Dhaka Univ J Biol Sci. 2015;92:331–3.

245. Asoost AJ. Bed bugs epidemic in the United States. Entomol Ornithol Herpetol. 2015;4:143.

246. Reyes-Lugo M, Rodríguez-Acosta A. Is the infestation by bedbug (*Cimex lectularius Linnaeus, 1758*) extinct in Venezuela? Rev Cientif FCVLUZ. 2002;12:182–5.

247. Sadilek D, Stáhlavský F, Villimová J, Zima J. Extensive fragmentation of the X chromosome in the bed bug (*Cimex lectularius Linnaeus, 1758*) (Heteroptera, Cimicidae): a survey across Europe. Comp Cytogenet. 2013;7:253–69.

248. Klippen O, Jensen K, Kristensen M. Bed bug infestations in Denmark, with a European perspective. In: Robinson WH, Bajomi D, editors. Proceedings of the 6th International Conference on Urban Pests, Budapest, Hungary, 13 to 16 July 2008. Pápai: OOK-Press; 2008. p. 395–9.

249. Levy Bencheton A, Berenger JM, Del Giudice P, Delaunay P, Pages F, Morand JJ. Resurgence of bedbugs in southern France: a local problem or the tip of the iceberg? J Eur Acad Dermatol Venereol. 2011;25:599–602.

250. Akhoundi M, Kengne P, Cannet A, Berenger J, Izri A, et al. Spatial genetic structure and restricted gene flow in bed bugs (*Cimex lectularius*) populations in France. Infect Genet Evol. 2015;34:236–43.

251. Siedel C, Reinhardt K. Bugging forecast: Unknown, disliked, occasionally intimate. Bed bugs in Germany meet unprepared people. PLoS One. 2013;8:e51083.

252. Kuhn C, Vander PA. The worldwide expansion of bed bugs also constitutes a problem in Germany. Bundesgesundheitsblatt Gesundheitsforschung Gesundheitsschutz. 2014;57:524–30.
244. Vander PA. Studies on the pyrethroid resistance in the bed bug, Cimex lectularius in Berlin, Germany (PhD Dissertation). Berlin Free University Berlin. 2015.

245. Papp G, Madarécz L, Bajomi D. Occurrence of bed bug in Budapest, Hungary. In: Muller G, Posspichl R, Robinson WH, editors. Proceedings of the 6th International Conference on Urban Pests, Zurich, Switzerland, 20 to 23 July 2014. Pápia: OOK-Press; 2014. p. 81–8.

246. Masetti M, Brusch F. Bedbug infestations recorded in Central Italy. Parasitol Int. 2007;56:81–3.

247. Giorda F, Guardone L, Vancini M, Accorsi A, Macchioni F, Mignone W. Cases of bed bug (Cimex lectularius) infestations in northwest Italy. Vet Ital. 2013;49:335–40.

248. Roslavska SA. Bed bugs – the problem in Russia. In: Robinson WH, Carvalho Campos AE, editors. Proceedings of the 7th International Conference on Urban Pests, Ouro Preto, Brazil, 7 to 10 July 2011. São Paulo: Instituto Biológico; 2011. p. 372.

249. Roslavska SA, Alekseev MA, Polupanov DA. The problem of increasing the number of bed bugs in the world and their resistance to insecticides. Proceeding of the International Conference in Memoriam of Prof. Yuri S. Balashov, a Corresponding Member of the RAS. “Fundamental and Applied Aspects of the Study of Parasitic Arthropods in the XXI Century”, St. Petersburg, Russia, 21 to 25 October, 2013. p. 135–137.

250. Mueller G, Luescher IL, Schmidt M. Temporal changes in the incidence of household arthropod pests in Zurich, Switzerland. In: Robinson WH, Bajomi D, editors. Proceedings of the 6th International Conference on Urban Pests, Budapest, Hungary, 13 to 16 July 2008. Pápia: OOK-Press; 2008 p. 15–21.

251. Boase C. Bed bug (Hemiptera: Cimicidae): an evidence-based analysis of the current situation. In: Robinson WH, Bajomi D, editors. Proceedings of the 6th International Conference on Urban Pests, Budapest, Hungary, 13 to 16 July 2008. Pápia: OOK-Press; 2008. p. 8–14.

252. Doggett SL, Geary MJ, Crowe WJ, Wilson P, Russell RC. Has the tropical bed bug, Cimex hemipterus (Hemiptera: Cimicidae), invaded Australia? Environ Health. 2003;8:2–2.

253. Doggett SL, Geary MJ, Russell RC. The resurgence of bed bugs in Australia, with notes on their ecology and control. Environ Health. 2004;4:30–8.

254. Norah L. Dealing with bed bugs when travelling. 2012. http://www.dh.gov.uk/assetRoot/04/54/54/54/235743/bed-bugs-travelling.pdf.

255. Livadas GA. Do anophelines acquire resistance to DDT? 1951. (unpublished working document WHO/Mal/74).

256. Livadas GA, Georgopoulos G. Development of resistance to DDT by Anopheles sacharovi in Greece. Bull World Health Organ. 1953;8:497–511.

257. Hess AD. Current status of insecticide resistance in insects of public health importance. Am J Trop Med Hyg. 1953;2:311–8.

258. Simmons SW. Public health significance of insect resistance to insecticides in arthropods of public health importance in 1956. Am J Trop Med Hyg. 1953;2:311–8.

259. Simmons SW. Public health significance of insect resistance to insecticides and future orientation of vector control programmes. Document EUR/Insects/6 of WHO Symposium on the Control of Insect Vectors of Disease, and future orientation of vector control programmes. Document EUR/Insects/6 of WHO Symposium on the Control of Insect Vectors of Disease, October 26–31, Rome; 1953. p. 33.

260. Levinson HZ. The control of bed bugs (Cimex lectularius L) with DDT and GBH in Israel. Riv Parasitol. 1953;54:38–9.

261. Gratz NG. A survey of bed bug resistance to insecticides in Israel. Bull World Health Organ. 1959;20:383–40.

262. Floch H. Déletrésistances. Archives de l'Institut Pasteur de la Guyane et du Territoire de l'Illini. 1956;3:512–3.

263. Mofidi C, Samimi B. Preliminary experiments on the susceptibility of Cimex lectularius to insecticides in Tehran. Institute of Parasitology and Malariology, Tehran. Mimeographed document. 1956. May. 5 pp.

264. Civicki R, Mer GG, Meron AV. Bed bugs resistant to gamma-BHC (Lindane) in Israel. Nature. 1957;179:636–7.

265. Busvine JR. Recent progress in the eradication of bed bugs. Sanitarian. 1957; 65:365–9.

266. Quarterman KD, Schoof HF. The status of insecticide resistance in arthropods of public health importance in 1956. Am J Trop Med Hyg. 1958;7:74–83.

267. Lofgren CS, Keller JC, Burden GS. Resistance tests with bed bug and evaluation of insecticides for its control. J Econ Entomol. 1958;51:1241–4.

268. Brown AWA. Report on a visit to eastern European countries. World Health Organization. 1959;WHO/Insects/95. (Mimeographed document).

269. Reid ET. Insecticide resistance. Cent Afr J Med. 1960;6:528–34.

270. Whitehead GB. A study of insecticide resistance in a population of bed bugs, Cimex lectularius L, and a method of assessing effectiveness of control measures in houses. J Entomol Soc S Afr. 1962;25:121–7.

271. Sharma MID. Studies on the susceptibility of bed bugs to DDT, Dieldrin and Dizinon in Gaza. World Health Organization. 1963;WHO/Vector Control/48.

272. Radwan WA, Gurney AM, Sollman AA. On the susceptibility of the bed bug, Cimex lectularius L. to insecticides. Bull Entomol Soc Egypt Econ Ser. 1972;6:73–7.

273. Ewers WH. Parasites of man in Papua-New Guinea. Southeast Asian J Trop Med Public Health. 1972;3:79–86.

274. Chen HH, Tseng PT, Pletsch DJ. DDT resistant bedbugs (Cimex hemipterus Fabr.) found in an army camp in southern Taiwan, China. J Formos Med Assoc. 1956;55:143–8.

275. Rea TR, Halgan AV. A note on resistance of bed bugs to DDT in Bombay State. Indian J Malarial. 1956;10:49–54.

276. Smith A. Dieldrin-resistance in Cimex hemipterus Fabricius in the Pare Area of North-East Tanganyika. Bull World Health Organ. 1958;49:1124–5.

277. Gratz NG. Insecticide resistance in bed-bugs and flies in Zanzibar. Bull World Health Organ. 1961;24:668–70.

278. Armstrong JA, Bransby-Williams WR, Huddleston JA. Resistance to dieldrin in Cimex hemipterus (Fabricius). Nature. 1962;193:499–501.

279. Bourke TV. Some aspects of insecticide application in malaria control programmes other than the effect on the insect vectors. Papua New Guinea Agric J. 1973;24:33–40.

280. Watanabe M. Insecticide susceptibility and effect of heat treatment on bed bug, Cimex lectularius L. Med Entomol Zool. 2010;61:239–44.

281. Polanco AM, Miller DN, Brewster CC. Survivorship during starvation for Cimex lectularius L. Insects. 2011;2:232–24.

282. Polanco AM, Brewster CC, Miller DN. Population growth potential of the bed bug Cimex lectularius L: a life table analysis. Insects. 2011;2:73–85.

283. Anderson JF, Cowles RS. Susceptibility of Cimex lectularius (Hemiptera: Cimicidae) to pyrethroid insecticides and to insecticidal dusts with or without pyrethroid insecticides. J Econ Entomol. 2012;105:1789–95.

284. Tahir HM, Malik HT. Susceptibility of Cimex lectularius L. (Heteroptera: Cimicidae) to Deltamethrin. Pak J Zool. 2014;46:288–90.

285. Campbell BE, Miller DM. Insecticide resistance in eggs and first instars of the bed bug Cimex lectularius (Hemiptera: Cimicidae). Insects. 2015;6:122–32.

286. Brodgon WK, Chan A. Guidelines for evaluating insecticide resistance in vectors using the CDC bottle bioassay. Ctr Dis Control Prev. 2010; https://www.cdc.gov/malaria/resources/pdf/fsp/ir_manual/ir_cdc_bioassay_en.pdf. Accessed 30 Jun 2016.