Study of $\Delta(1232)$ isobar electroproduction at VEPP-2M e^+e^- collider.

M.N.Achasov*, A.V.Bozhenok, A.D.Bukin, D.A.Bukin, S.V.Burdin, T.V.Dimova, S.I.Dolinsky, V.P.Druzhinin, M.S.Dubrovin, I.A.Gaponenko, V.B.Golubev, V.N.Ivanchenko, A.A.Korol, S.V.Koshuba, A.P.Lysenko, E.V.Pakhtusova, V.V.Shary, Yu.M.Shatunov, V.A.Sidorov, Z.K.Silagadze, S.I.Serednyakov, A.A.Valishev, Yu.V.Usov

G.I.Budker Institute of Nuclear Physics,
Siberian Branch of the Russian Academy of Sciences,
630090, Novosibirsk, Russia

Abstract

Results from the Spherical Nonmagnetic Detector (SND) on $\Delta(1232)$ isobar electroproduction in the collisions of beam electrons (positrons) and residual gas nuclei in the VEPP-2M e^+e^- collider are presented. On the basis of the obtained data the expected counting rate of this process in future high luminosity e^+e^- colliders (ϕ-, c-τ- and b-factories) was estimated.

*E-mail: achasov@inp.nsk.su, FAX: +7(383-2)35-21-63
PACS: 14.20.Gk, 13.60.Rj

Electron or positron beam propagating along the collider beam pipe can produce pions on nuclei of residual gas atoms. At a beam energy of $E_0 \approx 500\text{MeV}$ (ϕ-factory region) the main source of such pions is an electroproduction of $\Delta(1232)$ $I(J^P) = \frac{3}{2} (\frac{3}{2}^+)$ isobar state [1].

In an electron–nucleus collision a nucleon can convert into either Δ^+ ($ep \rightarrow e\Delta^+$) or Δ^0 ($en \rightarrow e\Delta^0$) with a subsequent decay of $\Delta(1232)$ into nucleon and pion: $\Delta^+ \rightarrow p\pi^0, n\pi^+$; $\Delta^0 \rightarrow p\pi^-, n\pi^0$. The total number of produced π^0 is twice higher than that of π^+ or π^-. At an electron energy of about 500MeV cross section of the isobar electroproduction is proportional to A, atomic weight of the target. But only those Δ-isobars, which were produced on the nucleus surface, would actually decay into $\Delta \rightarrow N\pi$. For Δ-s, produced inside the nucleus the $\Delta N \rightarrow NN$ reaction dominates. It means that the $eN \rightarrow e\Delta$, $\Delta \rightarrow \pi N$ cross section must be proportional to $A^{2/3}$.

The total cross section of the isobar electroproduction on a nucleon at electron energy of 510 MeV is about $3\mu\text{b}$. This reaction is a possible source of background at ϕ-factories [2]. It can be also an actual background in experiments at higher energies (its total cross section is about $8\mu\text{b}$ at a $c-\tau$-factory and $12\mu\text{b}$ in the b-factory energy region). This paper presents results of experimental study of $\Delta(1232)$ electroproduction with SND detector at VEPP-2M e^+e^- collider in Novosibirsk.

SND detector [3] consists of a drift chamber tracking system with an angular resolution $\sigma_\theta = 2.2^\circ$, $\sigma_\phi = 0.7^\circ$ and dE/dx resolution of about 30%, a three layer NaI(Tl) spherical electromagnetic calorimeter [4] with an angular resolution $\sigma_\theta = \sigma_\phi = 1.5^\circ$ and energy resolution $\sigma_E/E = 4.2\%/\sqrt{E(\text{GeV})}$ for photons, and a muon identification system.

The Δ-isobar electroproduction process was studied in $ep \rightarrow e\Delta^+$, $\Delta^+ \rightarrow p\pi^0$ channel, because of its very distinct signature: two photons from π^0-meson decay and two tracks from electron and proton. It is important that in this case photon
energies and invariant masses are known and electron/proton separation based on \(dE/dx\) measurements in the drift chambers is possible.

Monte Carlo simulation of the \(\Delta\)-isobar electroproduction on a single proton, based on formulae from \([2]\), was used for studying selection criteria and detection efficiency. Passage of particles through the detector was simulated using UNIMOD2 code \([3]\).

Experimental data collected in 1996 in the energy range \(2E_0 = 1.00 \div 1.04\text{GeV}\) \([4]\), with an integrated luminosity of \(L = 0.5\text{pb}^{-1}\) were processed. Events with two charge particles and two photons were selected for further analysis. To suppress the background from decays of copiously produced \(\phi\)-mesons (\(\phi \rightarrow 3\pi, K_SK_L, K^+K^-, \) etc.) the following selection criteria were applied: total energy deposition in the calorimeter is less than the beam energy \(E_0\), the angle between charged particles is smaller than 150 degrees, which greatly reduces \(K^+K^-\) and \(K_SK_L\) background, and \(dE/dx\) of one of the charged particles is at least twice larger than that of a minimum ionizing particle.

Coordinate of a \(\Delta\)-isobar production point along the beam was reconstructed using charged particles tracks. Then the kinematic fit was performed under following constraints: the particle with a larger \(dE/dx\) was considered as proton; total transverse momentum \(p_\perp = 0\); longitudinal momentum \(p_\parallel = E_0/c\), photons originate from \(\pi^0 \rightarrow \gamma\gamma\) decay, and the total energy \(E = E_0 + m_p c^2\), where \(m_p\) is a proton mass.

Eighty events consistent with these assumptions were found. Their production points are uniformly distributed along the beam direction within 20 cm fiducial length in contrast with background, peaked at the beams collision point. The dependence of \(dE/dx\) on reconstructed charged particle momentum is shown in Fig. 1. Electrons and protons are well separated and momentum dependence of the proton specific ionization losses is clearly seen. The characteristic feature of the \(\Delta \rightarrow \pi N\) decay is that \(\pi\)-mesons are emitted at large angles with respect to the beam direction \([2]\). The experimental and simulated distributions, shown in
Fig. 2 are in a good agreement. The proton–pion invariant mass spectra (fig. 3) are peaked between $1200 \div 1250\text{MeV}$. The peaks are located at $1218 \pm 6\text{MeV}$ and $1235 \pm 2\text{MeV}$ in experimental and simulated distributions respectively.

The expected number of selected experimental events can be written as:

$$N = \frac{I}{e} \cdot t \cdot \sigma \cdot N_p \cdot l \cdot \epsilon,$$

(1)

where $I = 30\text{mA}$ is an average beam current, e – electron charge, $t = 7 \cdot 10^5 \text{s}$ – total data acquisition time, $l = 20\text{cm}$ – fiducial length, $\sigma = 2\mu\text{b}$, N_p – effective density of protons, $\epsilon = 0.026$ – detection efficiency. Number of observed experimental events is $N = 80 \pm 9$ (statistical) ± 10 (systematic). It corresponds to $N_p = 6 \cdot 10^{14}/\text{m}^3$. The residual gas pressure $P = nkT$, where k is the Boltzmann constant, $T = 300\text{K}$ and n is the density of residual gas molecules. The expected composition of the residual gas is $H_2 – 30\%$, $CH_4 – 10\%$, $CO – 20\%$ and $CO_2 – 40\%$. In this case $N_p = 6n$, and P, calculated using expression (1), is equal to 3 ± 0.4(statistical) ± 2(systematic) nTorr. This value agrees with direct pressure measurements: $P = 3 \pm 2$ nTorr. The large systematic error in the former value is due to uncertainty in residual gas composition.

At DAΦNE ϕ-factory [7] ($I = 5\text{A}$, $P = 1$ nTorr) the rate of $ep \rightarrow e\Delta^+$, $\Delta^+ \rightarrow p\pi^0$ reaction is $\sim 1.2\text{Hz/m}$. Taking into account $\Delta^+ \rightarrow n\pi^+$ decay and Δ^0 electroproduction on the neutrons the counting rate raises up to 4Hz/m. This value agrees with estimation in [2].

ϕ-factory experimental program includes CP-violation in kaon decays, rare decays of ϕ-meson, two-photon processes and $e^+e^- \rightarrow$ hadrons annihilation at low energies [8]. The $\Delta(1232)$ electroproduction process could be considerable source of background, for instance, for two-photon processes (the counting rate for $\gamma\gamma \rightarrow \pi^0$ is expected to be 0.2Hz) [9]. Its counting rate is also comparable with the rate of the ϕ-meson rare decays $\phi \rightarrow \gamma\eta', \gamma f_0(980), \gamma a_0(980) \leq 0.5\text{Hz}$, or with $K_L \rightarrow \pi\pi$ decays $\leq 2\text{Hz}$. On the other hand $\sim 4 \cdot 10^7$ events of $\Delta(1232)$ decays would be produced at the
φ-factory per effective year (10^7 s) per one meter of fiducial length. This means, that in addition to e^+e^- physics, experiments in the field of nuclear physics, e.g. studies of collective effects in nuclei (so-called Δ–h states [10]), are possible.

This work was supported in part by the Russian Foundation of Basic Research, Grant No. 96-15-96327, 97-02-18561, and by International Scientific Foundation, Grant No RPX000 and RPX300.

References

[1] K.N.Mukhin and O.O.Patarakin, Usp. Fiz. Nauk, 165, 843 (1995)

[2] M.N.Achasov, N.N.Achasov, V.B.Golubev, et al., Pis’ma Zh. Eksp. Teor. Fiz., 65, 295 (1997)
M.N.Achasov, N.N.Achasov, V.B.Golubev, et al., Phys. Lett. B, 404, 173 (1997)

[3] V.M.Aulchenko, et al., Proc. of Workshop on Physics and Detectors for DAΦNE, Frascati, April 1991, p.605.

[4] M.N.Achasov, A.D.Bukin, D.A.Bukin, et al., Nucl Instr and Meth. A, 401, 179 (1997)

[5] A.D.Bukin, et al., Proc. of Workshop on Detector and Event Simulation in High Energy Physics, The Netherlands, Amsterdam, 8-12 April 1991, NIKHEF, p.79.

[6] M.N.Achasov, et al., Proc. of the 7th International Conference on Hadron Spectroscopy, Brookhaven National Laboratory, US, August 25-30, 1997.

[7] G.Vignola, Proc. of Workshop on Physics and Detectors for DAΦNE, Eds. L.Maiani, G.Pancheri, N.Paver, LNF, Frascati, Italy, April 7-14, 1995, p.19
[8] *THE SECOND DAΦNE PHYSICS HANDBOOK, V.I,II, /Eds L. Maiani, G. Pancheri, N. Paver, dei Laboratory Nazionali di Frascati, Frascati, Italy, May 1995.*

[9] F.Anulli, et al., *THE SECOND DAΦNE PHYSICS HANDBOOK, V.II, /Eds L. Maiani, G. Pancheri, N. Paver, dei Laboratory Nazionali di Frascati, Frascati, Italy, May 1995.* p.607.

[10] E.A.Strokovsky, F.A.Gareev, and Yu.L. Ratis, Fiz. Elem. Chast. At. Yadra, 24, 603 (1993)
Figure 1: dE/dx, specific ionization losses of electrons and protons, produced in $\Delta(1232)$ decays. Crosses - electrons, stars - protons

Figure 2: The π^0 polar angle distribution in $\Delta(1232)$ decay.

Figure 3: The $p\pi^0$ invariant mass distribution in the process of $\Delta(1232)$ electro-production.
Figure 3: