Combining prostate cancer radiotherapy with therapies targeting the androgen receptor axis

M. Ghashghaei MSc,† M. Kucharczyk MB Ch BAO,‡ S. Elakshar MD,† T. Muanza MD,‡+ and T. Niazi MD+†

ABSTRACT

Background Prostate cancer (pca) is the most common non-dermatologic cancer and the 3rd leading cause of male cancer mortality in Canada. In patients with high-risk localized or recurrent pca, management typically includes the combination of long-term androgen deprivation therapy (ADT) and radiotherapy (RT). New androgen-receptor-axis targeted therapies (ARATs), which await validation, offer an option to intensify therapy.

Methods In this narrative review, we report the relevant history that has supported combining ADT with RT. The literature in PubMed was searched for studies involving pca and novel ARATs (abiraterone acetate, enzalutamide, apalutamide, darolutamide) published between 1995 and 2019. Literature discussing clinical trials in which those modalities were combined was extracted and synthesized into a combined molecular and clinical discussion. Potential treatment intensification mechanisms and rationales are explored.

Results Early results from three phase I/II trials demonstrated that concurrent abiraterone acetate, ADT, and RT is safe, improves the extent of chemical castration, and is associated with limited treatment failures. A single in vitro study implies synergy for radiosensitization beyond that facilitated by conventional ADT. Studies investigating the combination of other ARATs with RT are under way, including multiple phase III trials, but short-term results are not yet available.

Key Words Androgen deprivation therapy, abiraterone acetate, apalutamide, darolutamide, enzalutamide, prostate cancer, radiation therapy, treatment intensification

INTRODUCTION

Prostate cancer (pca) is the most common non-dermatologic malignancy affecting men in both Europe and North America1. Given the broad range of prognoses for patients with localized pca, stratification into low-, moderate-, and high-risk groups is usually performed (Table 1). In high-risk pca, a common treatment approach is to combine radiotherapy (RT) with androgen deprivation therapy (ADT). Extensive evidence from randomized controlled trials and meta-analyses has demonstrated that ADT with RT—generally external-beam RT (EBRT)—provides benefit for the full spectrum of pertinent oncologic outcomes in localized pca: overall survival (os), metastasis-free survival, biochemical progression–free survival, and local failure2–10.

Even though multiple relevant endpoints have been observed to be improved with dose-escalated EBRT (DE-EBRT), patients in the highest-risk pca groups are still being considered for treatment intensification. Without such intensification, treatment with DE-EBRT and long-term ADT (LT-ADT) will have failed for almost 50% of those patients by 6 years11. To refine the ability to design trials that further intensify therapy, a better understanding is required of ADT’s mechanisms for sensitizing pca to RT. In the present review, we walk through the relevant history of that therapeutic combination, we explore the potential mechanisms for its synergy, and we consider strategies for improved therapeutic combinations.
Evidence Supporting Neoadjuvant and Adjuvant ADT with EBRT

Several phase III randomized trials have proved the benefit of combining neoadjuvant and adjuvant ADT with EBRT for patients with high-risk PCA2–6 (Table I). Although a meta-analysis showed that the addition of ADT significantly lowered the risk of biochemical failure, local failure, distant metastases, disease-specific survival, and OS, the studies used in the analysis were conducted in the era of conventional EBRT dosing (≤70 Gy)12.

Once DE-EBRT (≥74 Gy), relative to conventional doses, was noted to improve biochemical outcomes13, a demonstration that ADT still improved outcomes was necessary to justify the associated toxicity14. Two trials in combined populations of high- and intermediate-risk patients—the European Organisation for Research and Treatment of Cancer 22991 trial and the U.K. Medical Research Council RT01 trial—produced long-term results demonstrating that, compared with DE-EBRT alone, adding short-term ADT (ST-ADT) resulted in improved 5-year and 10-year biochemical progression-free survival (mature survival data are awaited)7,8. Preliminary results from phase III DE-EBRT trials (PCS III, GETUG 14) imply that adding ST-ADT to DE-EBRT produces only a biochemical progression-free survival benefit for patients with intermediate-risk PCA9,10.

Optimal Duration of ADT in Combination with EBRT

In four randomized trials, it was observed that at least 4–6 months of ADT were required for clinical benefit (Table III). In those heterogeneous trials involving intermediate- and high-risk patients, biochemical control rates with ST-ADT and with EBRT alone were compared. The Trans-Tasman Radiation Oncology Group 96.01 trial demonstrated that 3 months and 6 months of ADT were both superior to no ADT10. Quebec L-101 and L-200 compared 3–5 or 10 months of ADT, reporting improved biochemical control with both regimes15. However, only the Radiation Therapy Oncology Group 9910 trial performed inter-comparisons of ST-ADT durations. Extending ST-ADT to 9 months from 4 months was not found to further improve any biochemical or survival outcomes19.

The extension of ADT to its present standard of 24–36 months in high-risk PCA was largely based on the European Organisation for Research and Treatment of Cancer 22961 trial and the Radiation Therapy Oncology Group 9202 trial16,17,22. Those trials compared ST-ADT and LT-ADT with conventional-dose EBRT in patients with predominantly high-risk PCA. Both studies showed improved disease-specific survival and OS with LT-ADT (28–36 months) as opposed to ST-ADT (4–6 months).

Two trials evaluated whether that length of ADT was still necessary for patients with high-risk PCA in the era of DE-EBRT. The DART 01/05 trial found that extending ADT to 28 months from 4 months improved biochemical control, metastasis-free survival, and OS20. The PCA IV trial was designed to show—and in fact showed—that intermediate-term ADT (18 months) was not inferior to LT-ADT (36 months) with respect to OS21. Given the gains in quality of life with a shorter course of ADT, those results have prompted consideration of intermediate-term ADT as a new standard of care for selected patients with high-risk PCA treated with DE-EBRT.

ADT Plus RT: Intracellular Mechanisms for Interaction

Numerous preclinical studies, in vitro and in vivo, have evaluated the interactions between ADT and RT. Based on patient specimens, ADT has been observed to induce apoptosis in epithelial cells and to inhibit proliferation23. In vitro studies of LNCaP cells (an androgen receptor [AR]–positive hormone-sensitive human PCA cell line) showed that more apoptosis was produced during treatment with ADT and RT than with either monotherapy24. Combination treatment with goserelin and RT using cultures of both LNCaP and PC3 (an AR-negative hormone-insensitive human PCA cell line) inhibited cell proliferation by inhibition of the epidermal growth factor receptor25. However, neither study demonstrated the statistically significant reduction in survival required to demonstrate radiosensitivity.

Zietman et al.26 were the first to show that ADT lowers the TCD50 (the dose of RT necessary to control 50% of cultured tumour). They hypothesized two nonexclusive molecular mechanisms for that radiosensitization: suppression of...
tumour neovascularization improves blood flow through the more competent vasculature, and apoptosis-induced cytoreduction facilitates vascular access to hypoxic tissues.

Tumour hypoxia has since been associated with impaired outcomes in PCA27. Mechanistically, hypoxia stimulates angiogenic factors (for example, vascular endothelial growth factor), impairing tumour oxygenation secondary to the formation of incompetent vasculature28. As ADT suppresses hypoxia-inducible factor activity, the subsequent inhibition of hypoxia-inducible factor transcription reduces the expression of vascular endothelial growth factor and limits neovascularization of hormone-sensitive PCA cells, providing in vitro support for the latter hypothesis29,30.

It is important to appreciate that RT initially upregulates AR expression, with preclinical studies showing that RT induces the expression of AR-regulated proteins31. Work by Goodwin et al.32 outlines how the addiction of castration-resistant PCA to AR influences DNA repair—and
thus, radioresistance. After RT, DNA double-strand breaks activate the AR to enhance expression of numerous DNA repair genes (PRKDC, KU70, PARP1) and DNA repair protein RAD51. More than 32 DNA repair genes contain AR binding sites in their enhancer sequences. Induction of those proteins can induce a positive feedback loop that causes radioresistance. Initially, RT recruits DNA protein kinase catalytic subunit (PKC) to a double-strand break. Subsequent activation of DNA PKCs also increases transcription of the AR. The AR then induces the expression and activity of additional DNA PKCs through AR-mediated DNA repair. Ultimately, the DNA PKCs and AR upregulate each other in a process that expedites repair of the RT-caused double-strand breaks. Importantly, intervention can interrupt the process. After castration, the decreased expression of KU70 in prostate tissue implies increased radiosensitivity of tumour.

Strategies for Improving Therapeutic Combinations of ADT and EBRT

Relative to older anti-androgens, which were efficacious despite achieving only partial antagonism of the AR, modern AR antagonists (for example, apalutamide, enzalutamide) have significantly improved binding affinity, can penetrate the cell for intracytosolic binding, and inhibit nuclear translocation of the AR. Preclinically, our group demonstrated that a modern AR antagonist induced radiosensitization beyond that seen with ADT alone. Enzalutamide alone potentiated the response to radiation in LNCaP cells and, in combination with ADT, in C4-2 hormone-resistant human PCA cells. Dose-enhancement factors were 1.75 and 1.30 respectively. Maximal radiosensitization was achieved when enzalutamide was given concurrently with—rather than before or after—RT, and increased expression of phosphorylated H2AX was consistent with enhanced DNA damage.

Table III
Clinical trials comparing various durations of androgen deprivation therapy (ADT), with conventional or dose-escalated radiotherapy (RT)

RT type and reference (study name)	Population risk level	Study arms	Outcome
Conventional-dose RT			
Laverdiere et al., 200415 (Quebec L-101)	Intermediate and high-risk	(A) RT alone (B) RT plus 3 months of ADT (C) RT plus 10 months of ADT	bRFS: 42/66/69^b (7 years) Not reported
(Quebec L-200)	Low, intermediate and high-risk	(A) RT plus 5 months of ADT (B) RT plus 10 months of ADT	bRFS: 70/70^b (4 years) Not reported
Horwitz et al., 200816 (RTOG 9202)	High or locally advanced	(A) RT plus 4 months of ADT (B) RT plus 28 months of ADT	bRFS: 44/72 DM: 17/12 OS: 79/80^b
Bolla et al., 200917 (EORTC 22961)	High or locally advanced	(A) RT plus 6 months of ADT (B) RT plus 36 months of ADT	OS: 81/85 DSS: 95/97 DM: 6/14
Denham et al., 201118 (TROG 96.01)	Intermediate	(A) RT (B) RT plus 3 months of ADT (C) RT plus 6 months of ADT	bRFS: 32/49/52 DM: 19/22/13^a LF: 28/17/12
Pisansky et al., 201519 (RTOG 9910)	Intermediate	RT plus 9 months of ADT RT plus 4 months of ADT	Not reported
Zapatero et al., 201120 (DART01/05)	Intermediate or high-risk	(A) RT (70 Gy, 74 Gy, 78 Gy) plus 4 months of ADT (B) RT (70 Gy, 74 Gy, 78 Gy) plus 28 months of ADT	bRFS: 81/90 DMFS: 83/94 OS: 86/95
Nabid et al., 201321 (PCS IV)	High	(A) RT plus 36 months of ADT RT plus 18 months of ADT	OS: 91/86^b OS: 62/59^b

^a Nonsignificant between arms 1 and 2.
^b Nonsignificant.
bRFS = biochemical relapse-free survival; RTOG = Radiation Therapy Oncology Group; DM = distant metastases; OS = overall survival; LF = local failure; DSS = disease-specific survival; EORTC = European Organisation for Research and Treatment of Cancer; TROG = Trans-Tasman Radiation Oncology Group; DMFS = distant metastasis-free survival.
The other new agents in this class of modern ARs are abiraterone and darolutamide. Darolutamide is also an AR antagonist, but maintains efficacy against the AR F876L, AR W741L, and AR T877A resistance mutations that limit the efficacy of apalutamide and enzalutamide. Also, limited access by darolutamide to the cerebral circulation has produced a modest neurocognitive adverse effects profile. Abiraterone differs significantly in its mechanism. Despite the achievement of castrate levels of serum testosterone by ADT in most patients, production of intraprostatic or adrenal androgens (dehydroepiandrosterone and androstenedione) is sufficient to maintain expression of androgen-responsive genes. Abiraterone selectively and irreversibly reduces both of those androgen biosynthesis pathways by potent inhibition of CYP17A1, suppressing the predominant remaining pathway for androgen biosynthesis. Theoretically, that suppression could better potentiate the synergistic benefits seen with less-complete suppression of the androgen axis.

The most recent clinical trial investigating DE-EBRT and LT-ADT in a high-risk population in need of further intensification showed worrisome rates of relapse approaching 50% at 6 years after treatment. Although treatment intensification with chemotherapy can improve survival, the benefit came at the cost of increased toxicity, including treatment-related deaths. Implementing next-generation ARs offers a more tolerable route to treatment intensification in the localized setting, preserving docetaxel as an effective choice for metastatic PCA. Because the ARs have demonstrated clinical efficacy in more advanced clinical settings and there is preclinical evidence that these agents are radiosensitizers, their combination with RT is the next logical step for treatment intensification in patients with high-risk PCA.

METHODS

Relevant articles resulting from a literature search of PubMed for 1995–2019 were reviewed. These search terms and phrases were used individually and in combination: “localized prostate cancer,” “androgen deprivation therapy,” “radiation therapy,” “randomized trial,” “review,” “high-risk prostate cancer,” “intensification,” “enzalutamide,” “abiraterone acetate,” “apalutamide,” “darolutamide,” and “clinical trials.” All published, preclinical, review, high-risk prostate cancer, intensification, radiation therapy, randomized trial, completion therapy, radiation therapy, randomization showed worrisome rates of relapse approaching 50% at 6 years after treatment. Because the ARs have demonstrated clinical efficacy in more advanced clinical settings and there is preclinical evidence that these agents are radiosensitizers, their combination with RT is the next logical step for treatment intensification in patients with high-risk PCA.

RESULTS

Clinical Trials Combining Abiraterone Acetate with RT

Three trials of abiraterone combined with RT were found (Table IV). A single phase I study investigated the safety of combining abiraterone with salvage RT and two phase II trials evaluated efficacy based on the extent of castration as assessed by testosterone level. The two phase II trials varied in their populations and ADT durations. At a median follow-up of 21 and 23 months, a single treatment failure.
had occurred in the phase II studies. Notably, in the one 2-arm study, which compared abiraterone monotherapy with combined therapy using ADT, castration levels of testosterone were achieved in only 78% of men receiving monotherapy compared with 100% of those receiving combination therapy. Toxicity data showed a 64% cumulative incidence of grade 3 lymphopenia during DE-EBRT.32

Clinical Trials Combining Enzalutamide with RT
Eight ongoing clinical trials assessing the combination of enzalutamide with RT were found (Table vi), seven of which are phase II studies. The patient populations being evaluated have predominantly intermediate- and high-risk PCA, and in one trial (NCT02057939), patients are receiving salvage radiotherapy. The primary endpoints in most of the phase II trials are acute and late toxicities and biochemical endpoints.

Two studies are randomized controlled trials: ENZARAD (NCT02446444, n=802, accrual complete) and NCT02203695 (target accrual n = 122). NCT02203696, a multicentre trial in patients who are receiving salvage RT and ST-ADT is randomizing participants to either enzalutamide or placebo and has a primary endpoint of biochemical control. The fully accrued phase III ENZARAD trial is randomizing patients with high-risk PCA to receive either enzalutamide or placebo for 24 months in addition to DE-EBRT and LT-ADT. Its primary outcome is OS, and based on the timing of its accrual, it is expected to be the first phase III trial to provide insight into whether an ARAT can safely and effectively intensify DE-EBRT and ADT.

Clinical Trials Combining Apalutamide with RT
Seven ongoing trials, all either phase I or II, are evaluating the combination of apalutamide with RT (Table vi). Three of the seven trials are combining apalutamide with DE-EBRT. Another two are the only trials identified in our search to be combining stereotactic body RT with a novel ARAT (NCT02772588, NCT03503344), and two trials are combining salvage radiotherapy with an ARAT (NCT03311555, NCT03141671). Notably, two phase III randomized controlled trials are including patients with high-risk PCA.

The fully accrued ATLAS trial has a primary outcome of metastasis-free survival, an established surrogate for OS.36 In ATLAS, the accepted standard of DE-EBRT and LT-ADT has been intensified, randomizing participants to either apalutamide or placebo bicalutamide. In contrast, the European Organisation for Research and Treatment of Cancer’s upcoming phase III randomized controlled trial limits ADT to the neoadjuvant and concurrent period, with a primary outcome of disease-free survival, but will not consider biochemical failure to be disease progression. Patients with intermediate- and high-risk PCA will receive ADT and DE-EBRT and will be randomized to receive either apalutamide or placebo while on ADT.

Clinical Trials Combining Darolutamide with RT
Our search methods did not identify any clinical trials combining darolutamide with RT directly. Outside our established search, abstracts made reference to the upcoming Darolutamide Augments Standard Therapy for Localized High-Risk Cancer of the Prostate, a randomized phase III trial in patients with high-risk PCA receiving RT. Participants will be randomized to receive concurrent darolutamide or placebo with RT and LT-ADT (Canadian Cancer Trials Group cctg). Darolutamide augments standard therapy for localized high-risk cancer of the prostate (DASL-hiCAP). Kingston, ON: cctg; 2019.

DISCUSSION
This review of the clinical and preclinical evidence highlights the influence of RT on AR-mediated protein expression and the AR’s role in enhancing DNA repair and radioresistance.31,32 Such data outline how the combination of ADT and RT can disrupt those interactions to facilitate the survival benefits seen in patients with PCA.33 Despite combination therapy, key trials still show that an unacceptable proportion of men with high-risk PCA will not achieve long-term disease control.11,16,57

Preclinical work has provided a limited demonstration that an ARAT can provide further synergy beyond ADT’s known potentiation of RT-mediated DNA damage. Combined with the known clinical efficacy of those agents, the rationale to combine them with RT to facilitate treatment intensification is strong. The review of the literature in the Results section demonstrate that a multitude of studies exploring this concept are under way. Although studies combining RT with abiraterone have been completed and have not been followed with phase III trials, randomized phase III trials are evaluating RT combined with apalutamide [ATLAS (NCT03488810)], darolutamide [Canadian Cancer Trials Group cctg]. Darolutamide augments standard therapy for localized high-risk cancer of the prostate (DASL-hiCAP). Kingston, ON; cctg; 2019, and enzalutamide [ENZARAD (NCT02446444)]. Of those trials, ATLAS and ENZARAD have both fully accrued, but even early results are still awaited. Another incidental observation is that upcoming assessments in oligometastatic PCA might also produce clinical data about subgroups that received an ARAT in combination with RT (NCT03784755). A notable absence is any phase III trial that is accruing patients exclusively in the salvage setting, although four randomized phase II trials are exploring that setting (NCT02057939, NCT02203695, NCT03311555, and NCT03141671).

Reflecting on past preclinical data can direct the field’s next steps to intelligently fill this rapidly crowding clinical trials space. In consideration of ADT and RT scheduling, the timing of bicalutamide treatment relative to RT affects the radiosensitivity of hormone-sensitive cell lines.34 Furthermore, our group’s preclinical work demonstrated that concurrent enzalutamide—compared with neoadjuvant enzalutamide, adjuvant enzalutamide, or ADT—provides the most potent radiosensitization.38

Such observations direct the field to a few key areas that should be considered for preclinical investigation before clinical trials:

- Establishing the most effective radiosensitizers of the novel ARATs
- Scheduling of the agents to optimize radiosensitization

With those studies completed, the duration and timing of a novel ARAT could be optimized and then compared...
ClinicalTrials.gov ID (study name)	Phase	Eligibility	Pts (n)	Study arms	Status	Primary	Secondary
NCT02023463	I	Intermediate-risk or high-risk PCa	25	Enzalutamide, ADT, and RT	Active, not recruiting	Acute toxicities	Serum PSA and quality of life
NCT02028988	II	Intermediate-risk PCa	64	Enzalutamide and RT	Active, not recruiting	Serum PSA after 6 months of enzalutamide therapy	Quality of life, hormone levels, and body fat
NCT02057939 (STREAM)	II	Biochemical relapse after partial response	38	Enzalutamide, ADT, and salvage RT	Active, not recruiting	Progression-free survival	Biochemical progression-free survival, progression-free survival, PSA <0.1 ng/mL, PSA nadir, and time to testosterone recovery
NCT02064582	II	High-risk PCa	9	Enzalutamide, ADT, and RT	Active, not recruiting	Assess the safety and tolerability of combining enzalutamide, ADT, and RT	Assessing intratumoral androgen-regulated gene expression before and after combination therapy
NCT02203695	II	Biochemical relapse after partial response	122	(A) Salvage RT and placebo (B) Salvage RT and enzalutamide	Recruiting	Freedom from PSA progression	Metastasis-free survival rate and local recurrence
NCT02446444 (ENZARAD) (ANZUP 1303)	III	High-risk PCa	802	(A) Enzalutamide, ADT, and RT (B) Nonsteroidal anti-androgen, ADT, and RT	Active, not recruiting	Overall survival	Biochemical progression-free survival, progression-free survival, and metastasis-free survival
NCT02508636	II	High-risk PCa	11	Enzalutamide, ADT, and RT	Active, not recruiting	Rate of acute toxicity Rate of late toxicity PSA complete response rate	Biochemical progression-free survival, disease-free survival, time to clinical progression, and quality of life
NCT03196388 (ENZART)	II	Intermediate-risk PCa	70	Enzalutamide and RT	Recruiting	80% Reduction from baseline PSA	

Pts = patients; PSA = prostate-specific antigen; ADT = androgen deprivation therapy.
ClinicalTrials.gov ID (study name)	Phase	Eligibility	Pts (n)	Study arms	Status	Endpoints
NCT02531516 (ATLAS)³⁵	III	High-risk and locally advanced PCa	1500	(A) Placebo, bicalutamide, ADT, and RT (B) Apalutamide, bicalutamide, ADT, and RT	Active, not recruiting	Metastasis-free survival, Time to locoregional recurrence, time to castration-resistant disease, time to distant metastasis, and overall survival
NCT02772588 (AASUR)	II	Very-high-risk PCa	58	(A) Apalutamide, AA, prednisone, ADT, and stereotactic body RT	Recruiting	Proportion of patients with biochemical failure
NCT03141671 (FORMULA-509)	II	Biochemical complete response after radical prostatectomy	190	(A) ADT, bicalutamide, and salvage RT (B) ADT, AA, apalutamide, prednisone, and salvage RT	Recruiting	Progression-free survival, PSA progression-free survival, overall survival, time to testosterone recovery, grades 1–5 toxicity, time to re-initiation of ADT, quality of life, and cardiovascular events consisting of myocardial infarction
NCT03311555 (STARTAR)	II	Biochemical complete response after radical prostatectomy	42	Apalutamide, ADT, docetaxel, and salvage RT	Recruiting	Progression-free survival, Proportion of participants with serum PSA < 0.1 ng/mL and testosterone recovery, time to testosterone recovery, biochemical progression-free survival, and median PSA nadir value
NCT03371719	II	Locally advanced PCa	324	(A) Placebo and RT (B) Apalutamide and RT	Recruiting	Biochemical progression-free survival, Distant metastasis, metastasis-free survival, disease-free survival, and cancer-specific mortality
NCT03488810	III	Intermediate-risk and high-risk PCa	990	(A) ADT and RT (B) Apalutamide, ADT, and RT	Not yet recruiting	Disease-free survival, Progression-free survival, distant metastasis-free survival, overall survival, serum PSA, and prostate cancer–specific survival
NCT03503344 (PILLAR)	II	Castration-resistant PCa	60	(A) Stereotactic body RT (B) Apalutamide and stereotactic body RT	Not yet recruiting	Proportion of patients with undetectable serum PSA, Time to PSA progression, progression-free survival, and incidence of adverse events

Pts = patients; ADT = androgen deprivation therapy.
with the various available agents. It would be reasonable to expect that maximally suppressing the androgen axis with the combination of abiraterone and a modern AR antagonist could further potentiate radiosensitization. Such preclinical studies could have a signal adequate to support a clinical trial.

The ongoing clinical work and the opportunities for preclinical studies hold great promise to direct and establish novel strategies that will enhance outcomes for patients with high-risk PCA.

CONCLUSIONS

Suppressing the function of the AR (historically with the use of ADT) remains an essential component in treating advanced PCA. Although ADT works synergistically with RT to provide further benefit, whether the use of novel ARAs could further potentiate that interaction is unknown. Early preclinical experiments and phase I/II studies have implied that such combinations might be efficacious. Multiple phase III trials in patients with high-risk PCA are ongoing and will more firmly address those hypotheses.

CONFLICT OF INTEREST DISCLOSURES

We have read and understood Current Oncology’s policy on disclosing conflicts of interest, and we declare that we have none.

AUTHOR AFFILIATIONS

1 Lady Davis Institute for Medical Research, Sir Mortimer B. Davis Jewish General Hospital, 2Division of Experimental Medicine, McGill University, and 3Department of Radiation Oncology, Sir Mortimer B. Davis Jewish General Hospital, Montreal, QC.

REFERENCES

1. Wong MC, Goggins WB, Wang HH, et al. Global incidence and mortality for prostate cancer: analysis of temporal patterns and trends in 36 countries. Eur Urol 2016;70:862–74.
2. D’Amico AV, Manola J, Looffredo M, Renshaw AA, DellaCroce A, Kantoff PW. 6-Month androgen suppression plus radiation therapy vs radiation therapy alone for patients with clinically localized prostate cancer: a randomized controlled trial. JAMA 2004;292:821–7.
3. Pilepich M, Caplan R, Byhardt R, et al. Phase III trial of androgen suppression using goserelin in unfavorable-prognosis carcinoma of the prostate treated with definitive radiotherapy: report of Radiation Therapy Oncology Group Protocol 85-31. J Clin Oncol 1997;15:1013–21.
4. Bolla M, Collette L, Blank L, et al. Long-term results with immediate androgen suppression and external irradiation in patients with locally advanced prostate cancer (an EORTC study): a phase III randomised trial. Lancet 2002;360:103–8.
5. Pilepich MV, Winter K, John MJ, et al. Phase III Radiation Therapy Oncology Group (RTOG) trial 86-10 of androgen deprivation adjuvant to definitive radiotherapy in locally advanced carcinoma of the prostate. Int J Radiat Oncol Biol Phys 2001;50:1243–52.
6. Jones CU, Hunt D, McGowan DG, et al. Radiotherapy and short-term androgen deprivation for localized prostate cancer. N Engl J Med 2011;365:107–18.
7. Bolla M, Maingon P, Carrie C, et al. Short androgen suppression and radiation dose escalation for intermediate- and high-risk localized prostate cancer: results of EORTC trial 22991. J Clin Oncol 2016;34:1748–56.
8. Dearnaley DP, Iovic G, Syndikus I, et al. Escalated-dose versus control-dose conformal radiotherapy for prostate cancer: long-term results from the RTOG 0414 randomised controlled trial. Lancet Oncol 2014;15:464–73.
9. Nabid A, Carrier N, Viguneault E, et al. A phase III trial of short-term androgen deprivation therapy in intermediate-risk prostate cancer treated with radiotherapy [abstract 5019]. J Clin Oncol 2015;33:5019; [Available online at: https://ascopubs.org/doi/abs/10.1200/JCO.2015.33.15_suppl.5019; cited 27 August 2019]
10. Dubray BM, Salleron J, Guerif SG, et al. Does short-term androgen depletion add to high dose radiotherapy (80 Gy) in localized intermediate risk prostate cancer? Final analysis of GETUG 14 randomized trial (EU-20503/NCT00104741) [abstract 5021]. J Clin Oncol 2016;34:5021; [Available online at: https://ascopubs.org/doi/abs/10.1200/JCO.2016.34.15_suppl.5021; cited 27 August 2019]
11. Rosenthal SA, Hu C, Sartor O, et al. Effect of chemotherapy with docetaxel with androgen suppression and radiotherapy for localized high-risk prostate cancer: the randomized phase III EORTC study 30521 trial. J Clin Oncol 2019;37:1159–68.
12. Bria E, Cuppone F, Giannarelli D, et al. Does hormone treatment added to radiotherapy improve outcome in locally advanced prostate cancer? Meta analysis of randomized trials. Cancer 2009;115:3446–56.
13. Zietman AL, DeSilvio ML, Slater JD, et al. Comparison of conventional-dose vs high-dose conformal radiotherapy in clinically localized adenocarcinoma of the prostate: a randomized controlled trial. JAMA 2005;294:1233–9.
14. Zapatero A, Guerrero A, Maldonado X, et al. High-dose radiotherapy with short-term or long-term androgen deprivation in localised prostate cancer (NART01/05:GICO): a randomised, controlled, phase 3 trial. Lancet Oncol 2015;16:320–7.
15. Lavenderlie J, Nabid A, De Bedoya LD, et al. The efficacy and sequencing of a short course of androgen suppression on freedom from biochemical failure when administered with radiotherapy for T2–T3 prostate cancer. J Urol 2004;171:1137–40.
16. Horwitz EM, Bae K, Hanks GE, et al. Ten-year follow-up of Radiation Therapy Oncology Group protocol 92-02: a phase III trial of the duration of elective androgen deprivation in locally advanced prostate cancer. J Clin Oncol 2008;26:2497–504.
17. Bolla M, de Reijke TM, Van Tienhoven G, et al. Duration of androgen suppression in the treatment of prostate cancer. N Engl J Med 2009;360:2516–27.
18. Denham JW, Steigler A, Lamb DS, et al. Short-term neoadjuvant androgen deprivation and radiotherapy for locally advanced prostate cancer: 10-year data from the RT01 randomised trial. Lancet Oncol 2011;12:451–9.
19. Pisanskys TM, Hunt D, Gomella LG, et al. Duration of androgen suppression before radiotherapy for localized prostate cancer: Radiation Therapy Oncology Group randomized clinical trial 9910. J Clin Oncol 2015;33:332–9.
20. Zapatero A, Guerrero A, Maldonado X, et al. Phase II trial comparing long-term versus short-term androgen deprivation combined with high-dose radiotherapy for localized prostate cancer: gicor protocol NART01/05 [abstract 4580]. J Clin Oncol 2011:29; [Available online at: https://ascopubs.org/doi/abs/10.1200/JCO.2011.29.15_suppl.4580; cited 27 August 2019]
21. Nabid A, Carrier N, Martin AG, et al. Duration of androgen deprivation therapy in high-risk prostate cancer: a randomized trial [abstract LBA410]. J Clin Oncol 2013;31: [Available online at: https://ascopubs.org/doi/abs/10.1200/JCO.2013.31.18_suppl_lba410; cited 27 August 2019]
22. National Comprehensive Cancer Network (NCCN). NCCN Clinical Practice Guidelines in Oncology: Prostate Cancer.
Ver. 4.2019. Fort Washington, PA: nccn; 2019. [Current version available online at: https://www.nccn.org/professionals/physician_gls/pdf/prostate.pdf (free registration required); cited 17 April 2019]

23. Westin P, Statin P, Damber JE, Bergh A. Castration therapy rapidly induces apoptosis in a minority and decreases cell proliferation in a majority of human prostastic tumors. Am J Pathol 1995;146:1368–75.

24. Pollack A, Salem N, Ashoori F, et al. Lack of prostate cancer radiosensitization by androgen deprivation. Int J Radiat Oncol Biol Phys 2001;51:1002–7. [Erratum in: Int J Radiat Oncol Biol Phys 2002;53:1422]

25. Hermann RM, Schwarten D, Fister S, et al. No supra-additive effects of goserelin and radiotherapy on clonogenic survival of prostate carcinoma cells in vitro. Radiat Oncol 2007;2:31.

26. Zietman AL, Prince EA, Nakfoor BM, Park JJ. Androgen deprivation and radiation therapy: sequencing studies using the Shionogi in vivo tumor system. Int J Radiat Oncol Biol Phys 1997;38:1067–70.

27. Vergis R, Corbishley CM, Norman AR, et al. Intrinsic markers of tumour hypoxia and angiogenesis in localised prostate cancer and outcome of radical treatment: a retrospective analysis of two randomised radiotherapy trials and one surgical cohort study. Lancet Oncol 2008;9:342–51.

28. Ghafar MA, Anastasiadis AG, Chen MW, et al. Acute hypoxia increases the aggressive characteristics and survival properties of prostate cancer cells. Prostate 2003;54:58–67.

29. Horii K, Suzuki Y, Kondo Y, et al. Androgen-dependent gene expression of prostate-specific antigen is enhanced synergistically by hypoxia in human prostate cancer cells. Mol Cancer Res 2007;5:383–91.

30. Stewart BJ, Panigrahy D, Flynn E, Folkman J. Vascular endothelial growth factor expression and tumor angiogenesis are regulated by androgens in hormone responsive human prostate carcinoma: evidence for androgen dependent stabilization of vascular endothelial growth factor transcripts. J Urol 2001;165:688–93.

31. Spratt DE, Evans MJ, Davis BJ, et al. Androgen receptor up-regulation mediates radioresistance after ionizing radiation. Cancer Res 2015;75:4688–96.

32. Goodwin JF, Schiewer MJ, Dean JL, et al. A hormone–DNA repair circuit governs the response to genotoxic insult. Cancer Discov 2013;3:1254–71.

33. Polkinghorn WR, Parker JS, Lee MX, et al. Androgen receptor signaling regulates DNA repair in prostate cancers. Cancer Discov 2013;3:1245–53.

34. Quéro L, Giocanti N, Henneguin C, Favaudon V. Antagonistic interaction between bicalutamide (Casodex) and radiation in androgen-positive prostate cancer LNCaP cells. Prostate 2010;70:401–11.

35. McPartlin AJ, Glicksman R, Pintilie M, et al. VEM 9907: long-term outcomes of a randomized phase 3 study of short-term bicalutamide hormone therapy and dose-escalated external-beam radiation therapy for localized prostate cancer. Cancer 2016;122:2595–603.

36. Tran C, Ouk S, Clegg NJ, et al. Development of a second-generation antiandrogen for treatment of advanced prostate cancer. Science 2009;324:787–90.

37. Clegg NJ, Wongvipat J, Joseph J, et al. ARN-509: a novel anti-androgen for prostate cancer treatment. Cancer Res 2012;72:1494–503.

38. Ghashghaie M, Palouras M, Heravi M, et al. Enhanced radiosensitization of enzalutamide via schedule dependent administration to androgen sensitive prostate cancer cells. Prostate 2018;78:64–75.

39. Moilanen AM, Riikonen R, Oksala R, et al. Discovery of ODM-201, a new-generation androgen receptor inhibitor targeting resistance mechanisms to androgen signaling–directed prostate cancer therapies. Sci Rep 2015;5:12007.

40. Fizazi K, Shore N, Tammela TL, et al. Darolutamide in non-metastatic, castration-resistant prostate cancer. N Engl J Med 2019;380:1235–46.

41. Port JD, Lin DW, Mostaghel EA, et al. Persistent intraprostatic androgen concentrations after medical castration in healthy men. J Clin Endocrinol Metab 2006;91:3850–6.

42. Stanbrough M, Bubley GJ, Ross K, et al. Increased expression of genes converting adrenal androgens to testosterone in androgen-independent prostate cancer. Cancer Res 2006;66:2815–25.

43. Ferraldeschi R, Sharifi N, Aucus RJ, Attard G. Molecular pathways: inhibiting steroid biosynthesis in prostate cancer. Clin Cancer Res 2013;19:3353–9.

44. James ND, Sydes MR, Clarke NW, et al. On behalf of the STAMPEDE investigators. Addition of docetaxel, zoleodronic acid, or both to first-line long-term hormone therapy in prostate cancer (STAMPEDE): survival results from an adaptive, multiarm, multistage, platform randomised controlled trial. Lancet 2016;387:1163–77.

45. Gravis G, Fizazi K, Joly F, et al. Androgen-deprivation therapy alone or with docetaxel in non-castrate metastatic prostate cancer (GETUG–AF15): a randomised, open-label, phase 3 trial. Lancet Oncol 2013;14:149–58.

46. Sweeney CJ, Chen YH, Carducci M, et al. Chemohormonal therapy in metastatic hormone-sensitive prostate cancer. N Engl J Med 2015;373:737–46.

47. Armstrong AJ, Szmuilewitz RZ, Petrylak DP, et al. Phase III study of androgen deprivation therapy (ADT) with enzalutamide (ENZA) or placebo (PBO) in metastatic hormone-sensitive prostate cancer (mHSPC): the ARMS trial [abstract 687]. J Clin Oncol 2019;37:. [Available online at: https://ascopubs.org/doi/abs/10.1200/JCO.2019.37.7_suppl.687?af=R; cited 27 August 2019]

48. James ND, de Boni JS, Spears MR, et al. On behalf of the STAMPEDE investigators. Abiraterone for prostate cancer not previously treated with hormone therapy. N Engl J Med 2017;377:338–51.

49. Smith MR, Saad F, Chowdhury S, et al. On behalf of the SPARTAN investigators. Apalutamide treatment and metastasis-free survival in prostate cancer. N Engl J Med 2018;378:1408–18.

50. Fizazi K, Tran N, Fein L, et al. Abiraterone acetate plus prednisone in patients with newly diagnosed high-risk metastatic castration-sensitive prostate cancer (LATITUDE): final overall survival analysis of a randomised, double-blind, phase 3 trial. Lancet Oncol 2019;20:686–700.

51. Ryan CJ, Smith MR, Fizazi K, et al. On behalf of the COU-AA-302 investigators. Abiraterone acetate plus prednisone versus placebo plus prednisone in chemotherapy-naïve men with metastatic castration-resistant prostate cancer (COU-AA-302): final overall survival analysis of a randomised, double-blind, placebo-controlled phase 3 study. Lancet Oncol 2015;16:152–60.

52. Cho E, Mostaghel EA, Russell KJ, et al. External beam radiation therapy and abiraterone in men with localized prostate cancer: safety and effect on tissue androgens. Int J Radiat Oncol Biol Phys 2015;92:236–43.

53. Koontz BF, Hoffman KE, Healy P, et al. Phase II trial of 6 months ADT/abiraterone acetate plus prednisone (AAP) and definitive radiotherapy (abir) for men with intermediate to high risk localized prostate cancer [abstract 11]. J Clin Oncol 2018;36:. [Available online at: https://ascopubs.org/doi/abs/10.1200/JCO.2018.36.6_suppl.11; cited 27 August 2019]

54. Supiot S, Campion L, Pommier P, et al. Combined abiraterone acetate plus prednisone, salvage prostate bed radiotherapy and LH–RH agonists (Carlha-GEP12) in biochemically-relapsing prostate cancer patients following prostatectomy: a phase I study of the GETUG-AFP5. Oncotarget 2018;9:22147–57.
55. Sandler HM, McKenzie MR, Tombal BF, et al. ATLAS: a randomized, double-blind, placebo-controlled, phase 3 trial of apalutamide (ARN-509) in patients with high-risk localized or locally advanced prostate cancer receiving primary radiation therapy [abstract TPS5087]. *J Clin Oncol* 2016;34:. [Available online at: https://ascopubs.org/doi/abs/10.1200/JCO.2016.34.15_suppl.TPS5087; cited 27 August 2019]

56. Smith MR, Saad F, Chowdhury S, et al. on behalf of the spartan investigators. Apalutamide treatment and metastasis-free survival in prostate cancer. *N Engl J Med* 2018;378:1408–18.

57. Bolla M, Gonzalez D, Warde P, et al. Improved survival in patients with locally advanced prostate cancer treated with radiotherapy and goserelin. *N Engl J Med* 1997;337:295–300.