On the semiclassical treatment of anharmonic quantum oscillators via coherent states – The Toda chain revisited

John Schliemann and Franz G. Mertens

Physikalisches Institut, Universität Bayreuth, D-95440 Bayreuth, Germany

March 1999

Abstract

We use coherent states as a time–dependent variational ansatz for a semiclassical treatment of the dynamics of anharmonic quantum oscillators. In this approach the square variance of the Hamiltonian within coherent states is of particular interest. This quantity turns out to have a natural interpretation with respect to time–dependent solutions of the semiclassical equations of motion. Moreover, our approach allows for an estimate of the decoherence time of a classical object due to quantum fluctuations. We illustrate our findings at the example of the Toda chain.

1 Introduction

Coherent states are an important notion in quantum physics, in particular with respect to semiclassical approximations; for general references see [1, 2, 3]. The coherent states of the harmonic oscillator have been introduced by Schrödinger [4] and have been reexamined by Glauber [5] in circumstances of quantum optics. For spin systems, spin–coherent states, i. e. the coherent states of SU(2), have been introduced by Radcliffe [6]. These two types of coherent states provide an immediate connection to the classical limit of generic quantum systems and are the most important examples of coherent states in physics. The connection to the classical limit is obtained by using coherent states as a time–dependent variational ansatz to investigate the dynamics of a quantum system. Recently, this approach has been reconsidered by the present authors with respect to interacting spin systems given by a general Heisenberg model [7]. The central result in that work is the evaluation of the square variance of the Hamiltonian within coherent states. This quantity turns out to have a natural interpretation with respect to time–dependent spin structures and allows also for an estimate of the validity of the variational approach. In the present work we extend these results to the case of oscillator systems.

In classical nonlinear lattices and as well in classical spin systems certain nonlinear excitations like solitary waves are of particular interest. However, it is an open question whether such dynamic and spatially localized excitations can also exist in the corresponding quantum systems. The results of this work provide an estimate for the lifetime of such objects. We demonstrate this for the example of the Toda chain.

The outline of this paper is as follows: In section 2 we summarize the essential properties of the coherent states of the harmonic oscillator, and in section 3 we introduce the time–dependent
variational method in quantum mechanics. This method is used in the next section to treat a generic anharmonic oscillator. In particular, the square variance of the Hamiltonian is evaluated. This quantity shows very analogous properties to those obtained in [7] for the case of quantum spin systems. These findings can be extended to the case of several anharmonically coupled degrees of freedom; as an example we examine the quantum Toda chain in sections 5 and 6.

2 Coherent states of the harmonic oscillator

The Hamiltonian of the quantum harmonic oscillator is given in standard notation by

$$\mathcal{H}_h = \frac{p^2}{2m} + \frac{m\omega^2}{2}q^2 = \hbar\omega \left(a^+ a + \frac{1}{2} \right)$$

with

$$a = \frac{1}{\sqrt{2}} \left(\sqrt{\frac{m\omega}{\hbar}} q + \frac{i}{\sqrt{\hbar m \omega}} p \right), \quad a^+ = (a)^+$$

and the well-known commutation relations

$$[p, q] = \frac{\hbar}{i} \iff [a, a^+] = 1.$$

The quantities $\sqrt{\hbar/m \omega}$ and $\sqrt{\hbar m \omega}$ arising in the operators (2) are the characteristic length and momentum, respectively. The system has an equidistant spectrum. Eigenstates are naturally labelled by $n \in \{0, 1, 2, \ldots\}$,

$$\mathcal{H}_h |n\rangle = \hbar\omega \left(n + \frac{1}{2} \right) |n\rangle.$$

Coherent states of the harmonic oscillator are eigenstates of the lowering operator a with complex eigenvalues α,

$$a |\alpha\rangle = \alpha |\alpha\rangle.$$

They can be expressed as

$$|\alpha\rangle = \exp \left(\alpha a^+ - \alpha^* a \right) |0\rangle = \exp \left(-\frac{1}{2} |\alpha|^2 \right) \sum_{n=0}^{\infty} \frac{\alpha^n}{\sqrt{n!}} |n\rangle.$$

The parameter α is naturally decomposed into its real and imaginary part as

$$\alpha = \frac{1}{\sqrt{2}} \left(\sqrt{\frac{m\omega}{\hbar}} \xi + \frac{i}{\sqrt{\hbar m \omega}} \pi \right).$$

Denoting an expectation value within a coherent state (4) by $\langle \cdot \rangle$ it holds

$$\langle q \rangle = \xi, \quad \langle p \rangle = \pi.$$

Coherent states maintain their shape in the time evolution of the harmonic oscillator,

$$e^{-\frac{i}{\hbar} \mathcal{H}_h t} |\alpha\rangle = e^{-\frac{i}{2} \omega t} |\alpha e^{-i\omega t}\rangle,$$
and the time dependence of the expectation values follows exactly the classical motion of the harmonic oscillator. This fact justifies the term 'coherent states'. A further important property of these objects is their completeness,

\[\frac{1}{\pi} \int d^2 \alpha |\alpha\rangle\langle \alpha| = 1 , \]

but it should be mentioned that an arbitrary linear combination of coherent states does not have the property. Thus, the coherent states do not form a subspace of the Hilbert space but rather a submanifold.

3 The time–dependent variational method

The Schrödinger equation of quantum mechanics can be derived by extremizing the action functional

\[S = \int_{t_i}^{t_f} dt \langle \psi | i\hbar \frac{d}{dt} - \mathcal{H} | \psi \rangle \]

with respect to the quantum state \(|\psi(t)\rangle \) (or \(\langle \psi(t) | \)) which is kept fixed at the times \(t_i \) and \(t_f \). An approximate approach to the dynamics of a quantum system can be performed by restricting the states in \(S \) to a certain submanifold of the Hilbert space. In the context of semiclassical approximations coherent states are a natural choice. E. g. for a single particle moving in a potential the appropriate objects are coherent oscillator states as described in the foregoing section. Thus, our restricted action functional reads in this case

\[\tilde{S} = \int_{t_i}^{t_f} dt \langle \alpha | i\hbar \frac{d}{dt} - \mathcal{H} | \alpha \rangle = \int_{t_i}^{t_f} dt \left(\pi \partial_t \xi - \langle H \rangle \right) , \]

where we have left out a total time derivative in the last integrand. The coherent state \(|\alpha\rangle \) is employed here as a time–dependent variational ansatz, i.e. its time dependence is assumed to be given by time–dependent parameters \(\pi(t), \xi(t) \). This restricted variational principle can be recognized as the stationary phase condition for the quantum mechanical transition amplitude between fixed states \(|\alpha(t_i)\rangle \) and \(|\alpha(t_f)\rangle \) when expressed as a path integral over coherent states

\[U(t_i, t_f) = \int D\alpha \exp \left(\frac{i}{\hbar} \int_{t_i}^{t_f} dt \langle \alpha | i\hbar \frac{d}{dt} - \mathcal{H} | \alpha \rangle \right) . \]

The variational equations of motion obtained from \(\tilde{S} \) are

\[\partial_t \xi = \frac{\partial \langle H \rangle}{\partial \pi} , \quad \partial_t \pi = - \frac{\partial \langle H \rangle}{\partial \xi} , \]

which have the same form as the classical Hamilton equations.

The time–dependent variational ansatz of coherent states becomes exact if the potential in the Hamiltonian is harmonic. Therefore, our approximate description of the quantum dynamics should be valid for not too large anharmonicities. This will be examined further in the next section.
4 The anharmonic oscillator

Let us consider a generic anharmonic quantum oscillator

\[H = \frac{p^2}{2m} + \frac{m \omega^2}{2} q^2 + a \frac{q^3}{3} + b \frac{q^4}{4}. \]

With coherent states as a time–dependent variational ansatz we find for the expectation value of the energy

\[\langle H \rangle = \frac{1}{2m} \left(\pi^2 + \frac{1}{2} \hbar m \omega \right) + \frac{m \omega^2}{2} \left(\xi^2 + \frac{1}{2} \frac{\hbar}{m \omega} \right) + a \frac{3}{2} \left(\xi^3 + 3 \xi^2 \frac{\hbar}{m \omega} + 3 \frac{\hbar^2}{4 m \omega^2} \xi \right)^2, \]

which is of course constant in time. The variational equations of motion \[(14)\] read

\[\partial_t \xi = \pi, \quad \partial_t \pi = -m \omega^2 \xi - a \left(\xi^2 + \frac{1}{2} \frac{\hbar}{m \omega} \xi \right) - b \left(\xi^3 + 3 \frac{\hbar}{m \omega} \xi \right). \]

It is worthwhile to note that the same equations can be obtained from the Heisenberg equations of motion for the operators \(q \) and \(p \),

\[\partial_t q = \frac{i}{\hbar} [H, q], \quad \partial_t p = \frac{i}{\hbar} [H, p], \]

when the expectation values of both sides of the equations are taken within the state \(| \alpha \rangle \) and the same assumption about its time evolution is made as above. This approach has been used by Krivoshlykov et al. \[10\].

The equations \[(16)–(18)\] reduce to the classical ones in the limit \(\hbar \to 0 \). Therefore, the coherent states reproduce the classical limit.

Next let us examine the square variance of the energy, i. e. \(\langle H^2 \rangle - \langle H \rangle^2 \). This quantity is non–zero only in the quantum case and, as well as \(\langle H \rangle \), strictly an invariant of the system, whatever the exact quantum mechanical time evolution of the coherent state is. The square variance can be written in the form

\[\langle H^2 \rangle - \langle H \rangle^2 = \Omega_1 + \Omega_2 \]

with

\[\Omega_1 = \frac{1}{2} \left((\hbar m \omega) \left(\frac{\pi}{m} \right)^2 + \frac{\hbar}{m \omega} \left(m \omega^2 \xi + a \left(\xi^2 + \frac{1}{2} \frac{\hbar}{m \omega} \xi \right) + b \left(\xi^3 + \frac{3}{2} \frac{\hbar}{m \omega} \xi \right)^2 \right) \right), \]

\[\Omega_2 = \frac{1}{2} \left(\frac{\hbar}{m \omega} \right)^2 \left(a \xi + \frac{3}{2} b \xi^2 \right) + \left(\frac{\hbar}{m \omega} \right)^3 \left(\frac{a^2}{12} + 2 b^2 \xi^2 + \frac{5}{4} a b \xi \right) + \left(\frac{\hbar}{m \omega} \right)^4 b^2 \frac{3}{8}. \]

The quantity \(\Omega_1 \) is of leading order \(\hbar \), while \(\Omega_2 \) contains only higher orders. The squared expressions in \(\Omega_1 \) can be recognized as the right hand sides of \[(17), (18)\]. Thus, we have

\[\Omega_1 = \frac{1}{2} \left((\hbar m \omega) (\partial_t \xi)^2 + \frac{\hbar}{m \omega} (\partial_t \pi)^2 \right). \]
Within our variational approach, the first order in h of the square variance of the Hamiltonian is purely due to the time dependence of the state vector. On the other hand, for a quantum state which has a non–trivial time evolution and is consequently not an eigenstate of the Hamiltonian, the energy must definitely have a finite uncertainty. Following this observation, the first order in (20) is not to be considered as a artifact of our variational ansatz, but as a physically relevant expression for the uncertainty of the energy for a time dependent solution to the variational equations of motion (17), (18). Therefore, the variational approach with coherent states does not only reproduce the classical limit, but is also meaningful for a semiclassical description of the anharmonic oscillator.

The contributions of higher order summarized in Ω_2 indicate limitations of our variational ansatz, i.e., they are a measure of decoherence effects due to the quantum mechanical time evolution. To clarify this, let us consider the temporal autocorrelation function

$$\langle \alpha|e^{-\frac{i}{\hbar}Ht}|\alpha\rangle, \quad (24)$$

i.e., the projection of the time–evolved state onto the initial coherent state. The modulus of this quantity depends on time for two different reasons: Firstly the quantum state has a non–trivial semiclassical time evolution described by the equations (17), (18). In real space the coherent state is represented by a Gaussian. Within our semiclassical description of the dynamics the wave function remains a Gaussian, but its center is moving. Therefore the overlap of the initial state and the time–evolved state is reduced. Secondly, defects of our variational approach, which lead to decoherence effects, also diminish the scalar product (24). Such quantum fluctuations affect the shape of the wave function which will not remain strictly of the Gaussian form under the exact quantum mechanical time evolution in the anharmonic potential. The latter effects become significant on a time scale given by the uncertainty relation, where the relevant contribution to the uncertainty of the energy is given by Ω_2,

$$\sqrt{\Omega_2}\Delta t \geq \frac{\hbar}{2}. \quad (25)$$

Alternatively one may consider the following correlation amplitude

$$C(t) := \langle \alpha(t)|e^{-\frac{i}{\hbar}Ht}|\alpha\rangle \quad (26)$$

with $\alpha(t)$ given by time–dependent functions $\xi(t)$ and $\pi(t)$ which are solutions of (17), (18) with the initial condition $\alpha(0) = \alpha$. This quantity is the projection of the coherent state evolved under the exact quantum mechanical time evolution onto the state given by the semiclassical time evolution. If the potential in the Hamiltonian is purely harmonic we have $|C(t)| = 1$ and Ω_2 vanishes. In this case our variational ansatz of coherent states is of course exact and no decoherence effects occur. This observation also supports our interpretation of the different contributions to $\langle \mathcal{H}^2 \rangle - \langle \mathcal{H} \rangle^2$.

Thus deviations of the modulus of (26) from unity measure decoherence effects due to the exact quantum mechanical time evolution under the anharmonic Hamiltonian. These effects manifest themselves in the additional contribution Ω_2 to the square variance of the energy. The leading order Ω_1 can be interpreted purely as an effect of the semiclassical time evolution which does not incorporate decoherence effects since it assumes the state vector to remain within the submanifold of coherent states throughout the time evolution.

If one inserts a generic time–dependent solution $\xi(t)$, $\pi(t)$ of the semiclassical equations of
motion \((17), (18)\) in \(\Omega_1\) and \(\Omega_2\) these quantities will not be constant in time separately (although their sum \(\Omega_1 + \Omega_2\) strictly is constant in the exact quantum mechanical time evolution). However, as an approximation, one may use in (25) the value of \(\Omega_2\) given by the initial value of \(\xi\). This is justified if the semiclassical motion of the particle is not too fast, i.e. the semiclassical momentum \(\pi\) is not too large. In particular, if the initial coherent state is chosen to have \(\pi(0) = 0\) and a certain value of \(\xi\), the particle will move in the semiclassical description to smaller \(\xi(t)\) because of the attractive potential. In this case the \(\Omega_2\) evaluated for the initial value \(\xi(0)\) is an upper bound for \(\Omega_2\) evaluated for later times, since this quantity grows with increasing \(\xi\). Reversely speaking, quantum fluctuations summarized in the quantity \(\Omega_2\) becomes larger if the \(\xi\) approaches the turning point of the semiclassical motion governed by the equations \((17), (18)\). This feature is well–known from the usual WKB–approximation and therefore consistent with the interpretation of \(\Omega_2\) given above. Moreover, in the following we will also examine other systems which exhibit stationary semiclassical dynamics with \(\Omega_1\) and \(\Omega_2\) being constant in time separately.

Another example where the validity of our considerations can be checked explicitly is the free particle with \(H = p^2 / 2m\). Let the particle be initially in a coherent state with the wave function
\[
\langle q|\alpha\rangle = \left(\frac{m\omega}{\pi \hbar}\right)^{1/4} \exp\left(-\frac{m\omega}{2\hbar} (q - \xi)^2 + \frac{i}{\hbar} \pi \left(q - \frac{\xi}{2}\right)\right).
\]

The quantity \(\omega\) is not a frequency here but a parameter which determines the localization of the particle in real and momentum space around the expectation values \((8)\). The square variance of the Hamiltonian reads the same as in (20) with
\[
\Omega_1 = \frac{1}{2} \hbar m \omega \left(\frac{\pi}{m}\right)^2, \quad \Omega_2 = \frac{1}{8} (\hbar \omega)^2.
\]

Since the expectation value of the momentum is constant for such a translationally invariant system, \(\Omega_1\) and \(\Omega_2\) are conserved separately. The time–evolved wave function can be obtained readily as
\[
\langle q|e^{-\frac{i}{\hbar}Ht}|\alpha\rangle = \left(\frac{m\omega/\pi \hbar}{1 + (\omega t)^2}\right)^{1/4} \exp\left(-\frac{m\omega}{2\hbar} \frac{(q - \xi - \frac{\pi}{\omega} t)^2}{1 + (\omega t)^2}\right) e^{i\varphi(q,t)}
\]

with a real phase \(\varphi(q,t)\). Thus, the width of the wave function increases, i.e. its spatially localized structure is smeared out, on a time scale of \(\Delta t = 1/\omega\), which is consistent with the estimate given by (25). This result also strongly supports the above interpretation of the quantities \(\Omega_1\) and \(\Omega_2\).

In the next section we will make further use of the estimate of the decoherence time \(\Delta t\) provided by (25). The findings described above are completely analogous to the results obtained recently on interacting spin systems with spin–coherent states as a time–dependent variational ansatz \([7]\). The particular case corresponding to the harmonic limit of an oscillator is given here by a paramagnet, where all spins are independent of each other and coupled only to a static magnetic field. In this case all spins perform a Larmor precession around the field axis, and this motion is described exactly by spin–coherent states. A further common aspect of the harmonic oscillator and a spin in a magnetic field is the equidistance of the spectra of both systems.
5 Anharmonic lattices: The Toda chain

It is an obvious idea to generalize the results of the foregoing section to systems with many anharmonically coupled degrees of freedom. Let us consider an Hamiltonian $\mathcal{H} = \mathcal{T} + \mathcal{V}$ with

$$\mathcal{T} = \sum_{n=0}^{N-1} \frac{p_n^2}{2m}, \quad \mathcal{V} = \sum_{n=0}^{N-1} V(q_n - q_{n-1}),$$

(30)

where N is the number of degrees of freedom and periodic boundary conditions are imposed. The 2–particle potential $V(x)$ contains in general anharmonic terms. To give a semiclassical description of the dynamics, one may proceed similarly as for the single anharmonic oscillator, but for a general potential $V(x)$ such an approach leads to quite complicated expressions, in particular for the square variance of the energy. Fortunately, a special case exists where the results can be given in a concise form. This case is the Toda chain, which is well–known in the theory of nonlinear lattices [11],

$$V(x) = \frac{\eta}{\gamma} \left(e^{-\gamma x} + \gamma x - 1 \right) = \frac{m\omega^2 e^{-\gamma \lambda}}{\gamma^2} \left(e^{-\gamma x} + \gamma x - 1 \right).$$

(31)

The potential V contains the two parameters η and γ; for further convenience we have rewritten η in terms of the new parameters ω and λ to be determined below. In the limit $\gamma \to 0$ the system is just the harmonic chain having independent phonon modes labelled by the wave number k with the acoustic phonon dispersion $\omega(k) = 2\omega \sin(|k|/2)$. The usual phonon operators read

$$b_k = \frac{1}{\sqrt{2N}} \sum_{n=0}^{N-1} \left[\sqrt{\frac{m\omega(k)}{\hbar}} q_n + \frac{i}{\sqrt{m\omega(k)}} p_n \right] e^{-i\kappa n}, \quad b_k^+ = (b_k)^+.$$

(32)

An appropriate variational ansatz is given by coherent phonon states,

$$|\beta\rangle = \bigotimes_{k \in 1, BZ} |\beta_k\rangle,$$

(33)

where the coherent state of the mode k fullfills $b_k|\beta_k\rangle = \beta_k|\beta_k\rangle$ and the tensor product runs over the first Brillouin zone. Again we denote expectation values within (33) by $\langle \cdot \rangle$. The parameters β_k are related to the local expectation values $\langle q_n \rangle = \xi_n, \langle p_n \rangle = \pi_n$ by

$$\beta_k = \frac{1}{\sqrt{2N}} \sum_{n=0}^{N-1} \left[\sqrt{\frac{m\omega(k)}{\hbar}} \xi_n + \frac{i}{\sqrt{m\omega(k)}} \pi_n \right] e^{-i\kappa n}. $$

(34)

Such an approach to the dynamics of the quantum Toda chain has been performed by Dancz and Rice [12], and by Göhmann and Mertens [13]. Here we add instructive results on the square variance of the Hamiltonian.

The expectation value of the Hamiltonian reads

$$\langle \mathcal{H} \rangle = \sum_{n=0}^{N-1} \frac{\pi_n^2}{2m} + \sum_{n=0}^{N-1} \frac{m\omega^2}{\gamma^2} e^{-\gamma (\lambda - \frac{\pi}{2})} \left(e^{-\gamma (\xi_n - \xi_{n-1})} - 1 \right),$$

(35)
where Δ_0 is a correlation in the phononic vacuum $|0\rangle$. More generally, one has

$$
\Delta_p := \langle 0 | (q_{n+p} - q_{n+p-1}) (q_n - q_{n-1}) | 0 \rangle
= \frac{\hbar}{m \omega} \frac{1}{2N} \sin \left(\frac{\pi}{N} \right) \sin \left(\frac{2p+1}{2N} \pi \right) \rightarrow -\frac{1}{4p^2 - 1} \frac{2 \hbar}{\pi m \omega},
$$

(36)

where the following relations hold:

$$
\sum_{p=0}^{N-1} \Delta_p = 0, \quad \sum_{p=0}^{N-1} (\Delta_p)^2 = \frac{1}{2} \left(\frac{\hbar}{m \omega} \right)^2.
$$

(37)

The expectation value (35) has the same form as the classical Toda Hamiltonian up to a renormalization of the parameter λ. The equations of motion are obtained analogously as in (14) and have therefore also the same functional form as the classical ones. It was shown in [13] that this is a peculiarity of the Toda potential.

From the equations of motion one obtains

$$
\sum_k \left[\hbar^2 (\partial_t \beta_k) (\partial_t \beta_k^*) \right] = \sum_{n,n'} \left[\frac{\pi_n}{m} \left(m^2 \omega^2 \Delta_{n-n'} \right) \frac{\pi_{n'}}{m} \right]
+ \left(\frac{m^2 \omega^2}{\gamma} e^{-\gamma (\lambda - \frac{2}{3} \Delta_0) - \gamma (\xi_n - \xi_{n-1})} \right) \left(\Delta_{n-n'} \right)
+ \left(\frac{m^2 \omega^2}{\gamma} e^{-\gamma (\lambda - \frac{2}{3} \Delta_0) - \gamma (\xi_{n'} - \xi_{n'-1})} \right) \right].
$$

(38)

Note that the left hand side of (38) is of leading order \hbar, since the parameters β_k contain a factor $1/\sqrt{\hbar}$ (cf. (34)).

The square variance of the Hamiltonian reads

$$
\langle H^2 \rangle - \langle H \rangle^2 = R_1 + R_2 + R_3
$$

(39)

with

$$
R_1 = \langle T^2 \rangle - \langle T \rangle^2
= \sum_{n,n'} \left[\frac{\pi_n}{m} \left(m^2 \omega^2 \Delta_{n-n'} \right) \frac{\pi_{n'}}{m} \right] + \frac{N}{4} (\hbar \omega)^2,
$$

(40)

$$
R_2 = \langle V^2 \rangle - \langle V \rangle^2
= \sum_{n,n'} \left[\left(\frac{m^2 \omega^2}{\gamma} e^{-\gamma (\lambda - \frac{2}{3} \Delta_0) - \gamma (\xi_n - \xi_{n-1})} \right) \left(e^{\gamma^2 \Delta_{n-n'}} - 1 \right)
+ \left(\frac{m^2 \omega^2}{\gamma} e^{-\gamma (\lambda - \frac{2}{3} \Delta_0) - \gamma (\xi_{n'} - \xi_{n'-1})} \right) \right],
$$

(41)

$$
R_3 = \langle TV + VT \rangle - 2 \langle T \rangle \langle V \rangle
= -\frac{1}{2} \sum_n \left[e^{-\gamma (\lambda - \frac{2}{3} \Delta_0) - \gamma (\xi_n - \xi_{n-1})} \right].
$$

(42)
These expressions can be derived by similar methods as described in [13]. The technical advantage of the Toda potential lies in the fact that the contribution R_2 has a comparatively simple form and can be obtained via the Baker–Campbell–Hausdorff–identity. Expanding the factor $(\exp(\gamma^2 \Delta_{n-n'}) - 1)$ in (41) and using the equations (38), (37) one can rewrite these formulae as

$$\langle H^2 \rangle - \langle H \rangle^2 = \sum_{\mu=1}^{\infty} \Omega_{\mu},$$

with

$$\Omega_1 = \sum_k \hbar^2 \left(\partial_t \beta_k^* \right) \left(\partial_t \beta_k^* \right),$$

$$\Omega_2 = \frac{1}{2} \sum_{n,n'} \left(\frac{m \omega^2}{\gamma^2} \left(e^{-\gamma(\lambda - \frac{\gamma}{2} \Delta_0) - \gamma(\xi_n - \xi_{n-1})} - 1 \right) \right) \left(\gamma^2 \Delta_{n-n'} \right)^2$$

$$\cdot \left(\frac{m \omega^2}{\gamma^2} \left(e^{-\gamma(\lambda - \frac{\gamma}{2} \Delta_0) - \gamma(\xi_{n'} - \xi_{n'-1})} - 1 \right) \right),$$

and for $\mu > 2$

$$\Omega_\mu = \sum_{n,n'} \left[\left(\frac{m \omega^2}{\gamma^2} e^{-\gamma(\lambda - \frac{\gamma}{2} \Delta_0) - \gamma(\xi_n - \xi_{n-1})} \right) \frac{1}{\mu!} \left(\gamma^2 \Delta_{n-n'} \right)^\mu$$

$$\cdot \left(\frac{m \omega^2}{\gamma^2} e^{-\gamma(\lambda - \frac{\gamma}{2} \Delta_0) - \gamma(\xi_{n'} - \xi_{n'-1})} \right) \right].$$

Each term Ω_μ is of leading order \hbar^μ because $\Delta_{n-n'} \propto \hbar$. As seen from (44) the lowest order in \hbar in the square variance of the Hamiltonian is purely given by the time dependence of the semiclassical variables. Therefore, the same conclusions apply as in the foregoing section. Note also that again in the harmonic limit $\gamma \to 0$ all Ω_μ for $\mu > 1$ vanish and the variational ansatz is exact.

We have demonstrated the result given in the equations (43), (44) for the Toda chain as an example, mostly to reduce technical difficulties. In fact, from the experience with an analogous semiclassical treatment of quite general Heisenberg spin models in arbitrary spatial dimension [7], these findings are expected to hold for more general lattice models.

6 Decoherence effects to semiclassical solitary waves in the Toda chain

In the last decades an immense literature has emerged on solitons in solid state physics. In those publications, the solid is usually modelled (at least effectively) as a classical system, while in fact it carries generally quantum degrees of freedom. We will see below how our approach can be used to make contact between the classical and the quantum mechanical description. In particular, the validity of theories based on classical solitary excitations can be estimated.

The one–dimensional Toda lattice is an integrable system in the classical [11, 14] as well as in the quantum mechanical case [15]. Moreover, a formal identification can be made between
the dispersion law of the 1–soliton solution of the classical system and a certain branch of
the excitation system of the quantum model, which is obtained by the Bethe ansatz [16].
Both dispersions are identical in form, and in this sense the quantum analogue of a classical
soliton may be viewed as a certain stationary state of the quantum system; see also [17] for a
discussion of that issue in a semiclassical context. Nevertheless, such an eigenstate obtained
from the Bethe ansatz is not a dynamical object and naturally translationally symmetric, i.e.
not localized like a classical soliton. Moreover, such an explicite identification is in general only
possible if the quantum and the classical system are both integrable. Therefore the question
arises whether quantum states exist which have the essential properties of classical solitary
waves, which are required in many classical descriptions of phenomena like energy transport
etc. As such a quantum state is not translationally symmetric, it cannot be expected to be
an eigenstate of the quantum system. Moreover, its time evolution is in general not fully
coherent, but decoherence effects due to quantum fluctuations cause a finite lifetime of such a
localized state. In the following we give an estimate for this lifetime of semiclassical solitary
waves build up from coherent states in the quantum Toda chain. Let us first consider the
variational ground state of the Toda chain with $\xi_n = \pi_n = 0$ for all n. Here we clearly have
$\Omega_1 = 0$, and for Ω_2 we find
$$
\Omega_2 = \frac{N}{4} \left(\frac{h\omega}{\gamma} \right)^2 \left(1 - e^{-\gamma(\lambda - \frac{\pi}{2} \Delta_0)} \right)^2,
$$
which is also zero for $\lambda = (\gamma/2) \Delta_0$. With respect to the parameter η entering the potential
(31) this means
$$
m\omega^2 \exp \left(-\frac{\gamma^2}{2} \frac{\hbar}{m\omega} \frac{1}{N} \frac{\sin(\pi/N)}{1 - \cos(\pi/N)} \right) = \eta.
$$
This relation determines the frequency ω which enters the variational ansatz (33) via the
phonon dispersion $\omega(k)$. One obviously has always a non–negative solution ω for any non–negative η. Note that with this choice for ω the quantum corrections in the exponential factor
in the variational expression (35) and also in the equations of motion cancel with the paramet-
er λ, but are of course present compared with the original Hamiltonian. However, the higher
order terms Ω_μ with $\mu > 2$ are in general non–zero for this classical ground state solution.
Thus, our variational ground state approximates the exact ground state within the first two
orders of \hbar. To account for higher corrections one has to implement a more complicated state
than (33). Therefore, in the spirit of the WKB approximation scheme we can be confident to
give a valid description of the quantum system within the first two orders of \hbar.
Let us now turn to solitary solution to the variational equations of motion (which are prac-
tically the same as the classical equations). As mentioned above, such solutions do not cor-
respond to (approximate) eigenstates of the system like the variational ground state, but
suffer decoherence effects in their time evolution. Nonlinear excitations in the classical Toda
chain with periodic boundary conditions are so–called cnoidal waves which can be expressed
in terms of Jacobi elliptic functions. As a limiting case, a pulse soliton arises which is given
by elementary expressions [11],
$$
\pi_n = \pm \frac{\nu m}{\gamma} \left(\tanh (\kappa(n - 1) \pm \nu t) - \tanh (\kappa n \pm \nu t) \right),
$$
$$
e^{-\gamma(\xi_{n+1} - \xi_n)} - 1 = \frac{\sinh^2 \kappa}{\cosh^2 (\kappa n \pm \nu t)}.
$$
with the soliton parameter \(\kappa \), which is the inverse soliton width, and \(\nu = \omega \sinh \kappa \). Although this solution of the variational equations of motion is, strictly speaking, not compatible with periodic boundary conditions, it is an excellent numerical approximation for the cnoidal waves for large wave length and system size. For simplicity, we shall concentrate on the above expressions in the following. With this solution the quantities \(\Omega_\mu \) can be written as

\[
\Omega_\mu = (\hbar \omega)^2 \left(\frac{m\omega^2/\gamma^2}{\hbar \omega} \right)^{2-\mu} Q_\mu(\kappa),
\]

where the \(Q_\mu \) depend only on \(\kappa \). In particular, the \(Q_\mu \) (and therefore the \(\Omega_\mu \)) are time–independent since our soliton solution describes a stationary movement, where a translation in time is equivalent to a translation in space. Therefore the time dependence drops out when the summations over the system in the equations (44)–(46) are performed. The dimensionless quantity \((m\omega^2/\gamma^2)/(\hbar \omega) \) is the ratio of the energy scales of the nonlinear interaction and of the linear phonon excitations. In a semiclassical regime this quotient is large and suppresses all orders \(\Omega_\mu \) with \(\mu > 2 \) (which are not considered here further, cf. above). For \(\mu = 2 \) we have for an infinite system

\[
Q_2(\kappa) = \frac{4 \sinh^4 \kappa}{\pi^2} \sum_{l=-\infty}^{\infty} \frac{1}{4l^2 - 1} \left[\sum_{n=-\infty}^{\infty} \frac{1}{\cosh^2(\kappa n) \cosh^2(\kappa (n-l))} \right].
\]

The above summations are non–elementary. The largest contribution stems from the summand with \(l = 0 \). Replacing the remaining sum over \(n \) by an integral, one concludes that this quantity should scale approximately like \(1/\kappa \). Indeed, a numerical evaluation of the full double sum for \(\kappa \in [0, 0.5] \) shows that a very accurate value for this expression is \((4/3\kappa) \); deviations from this occur only for large \(\kappa \) and are of order \(10^{-5} \). Therefore, we may write in a very good approximation

\[
\Omega_2 = (\hbar \omega)^2 \frac{4 \sinh^4 \kappa}{\pi^2} \frac{4}{3\kappa},
\]

and the estimate of the decoherence time according to (25) is

\[
\Delta t \geq \frac{1}{\omega} \sqrt{\frac{3}{8}} \frac{\sqrt{\kappa}}{\sinh^2 \kappa}.
\]

Multiplying with the soliton velocity \(c = \nu/\kappa \) one finds for the decoherence length \(\Delta l = c \Delta t \) for small \(\kappa \)

\[
\Delta l \geq \frac{\pi \sqrt{3}}{8} \kappa^{-3/2}.
\]

Remarkably, no system parameter or Planck’s constant itself, but only the soliton width enters (55). The decoherence length is large for small \(\kappa \), i.e. broad solitons. For instance, a soliton with a width of 100 lattice units may travel (at least) about ten times this distance until decoherence effects become significant. With respect to the classical picture of solitons, this appears rather restrictive. On the other hand, the relation (55) provides only a lower bound for the coherence length; e.g. in the classical limit \(\hbar \to 0 \) all decoherence effects vanish and the decoherence length becomes infinite. However, for not too large values of the ratio \((m\omega^2/\gamma^2)/(\hbar \omega) \) the decoherence length should be assumed to be of the order of the right hand side of (55), at least as a ‘conservative’ estimate.
7 Conclusions

In this work we have examined coherent states as a time–dependent variational ansatz for a semiclassical description of anharmonic oscillators. In particular, the square variance of the Hamiltonian $\langle H^2 \rangle - \langle H \rangle^2$ within coherent states is considered. For a single anharmonic oscillator, the first order in \hbar of this quantity turns out to be purely given by the variational time dependence of the quantum state, cf. equations (20)–(23). Therefore, this contribution has a natural interpretation, which can be confirmed rigorously in the case of the harmonic oscillator and the free particle. Compared with recent results on spin–coherent states [7] this appears to be a general property of coherent states with respect to generic quantum systems. The remaining contributions to $\langle H^2 \rangle - \langle H \rangle^2$ can be used to estimate decoherence effects which arise from quantum fluctuations. In the foregoing section we have illustrated this by the example of the Toda chain. We have chosen this system, because it provides comparatively simple expressions for the quantities considered here, and explicit solitary solutions of the classical equations are available. In fact, we expect our approach to be useful for much more general anharmonic lattices.

References

[1] A. Perelomov, Generalized Coherent States and Their Applications, Springer (1986)
[2] J. R. Klauder, B. S. Skagerstam, Coherent States, World Scientific, Singapore (1985)
[3] W.-M. Zhang, D. H. Feng, R. Gilmore, Rev. Mod. Phys. 62, 867 (1990)
[4] E. Schrödinger, Naturwissenschaften 14, 664 (1926)
[5] R. J. Glauber, Phys. Rev. 131, 2766 (1963)
[6] J. M. Radcliffe, J. Phys. A: Math. Gen. 4, 313 (1971)
[7] J. Schliemann, F. G. Mertens, J. Phys.: Condens. Matter 10, 1091 (1998)
[8] P. Kramer, M. Saraceno, Geometry of the Time–Dependent Variational Principle in Quantum Mechanics (Springer Lecture Notes in Physics 140), edited by J. Ehlers et al., Springer (1981)
[9] J. R. Klauder, Continuous Representations and Path Integrals, revisited, in Proceedings of the NATO Advanced Summer Institute, edited by G. J. Papadopoulos and J. T. Devreese, Plenum (1978);
 J. R. Klauder, Phys. Rev. D 19, 2349 (1979)
[10] S. G. Krivoshlykov, V. I. Man'ko, I. N. Sissakian, Phys. Lett. 90A, 165 (1982)
[11] M. Toda, Theory of Nonlinear Lattices (Springer Series in Solid–State Sciences 20), Springer (1981)
[12] J. Dancz, S. A. Rice, J. Chem. Phys 67, 1418 (1977)
[13] F. Göhmann, F. G. Mertens, J. Phys. A: Math. Gen. 25, 649 (1992)
[14] H. Flaschka, Phys. Rev. B 9, 1924 (1974);
 S. V. Manakov, Sov. Phys. JETP 67, 269 (1974)

[15] M. A. Olshanetsky, A. M Perelomov, Lett. Math. Phys. 2, 7 (1977);
 E. K. Sklyanin, Non–Linear Equations in Classical and Quantum Field Theory in Springer
 Lecture Notes in Physics 226, edited by N. Sanchez, Springer (1985)

[16] B. Sutherland, Rocky Mountain J. Math. 8, 413 (1978);
 F. G. Mertens, Z. Phys. B 55, 353 (1984);
 R. Siddharthan, B. S. Shastry, Phys. Rev. B 55, 12196 (1997)

[17] F. Göhmann, W. Pesch, F. G. Mertens, J. Phys A 26, 7589 (1993)