The complete sequences and gene organisation of the mitochondrial genomes of the heterodont bivalves *Acanthocardia tuberculata* and *Hiatella arctica* – and the first record for a putative *Atpase subunit 8* gene in marine bivalves

Hermann Dreyer* and Gerhard Steiner

Address: Emerging Focus Molecular Biology, Department of Evolutionary Biology, University of Vienna, 1090 Vienna, Austria

Email: Hermann Dreyer* - Hermann.Dreyer@univie.ac.at; Gerhard Steiner - Gerhard.Steiner@univie.ac.at

* Corresponding author

Abstract

Background: Mitochondrial (mt) gene arrangement is highly variable among molluscs and especially among bivalves. Of the 30 complete molluscan mt-genomes published to date, only one is of a heterodont bivalve, although this is the most diverse taxon in terms of species numbers. We determined the complete sequence of the mitochondrial genomes of *Acanthocardia tuberculata* and *Hiatella arctica*, (Mollusca, Bivalvia, Heterodonta) and describe their gene contents and genome organisations to assess the variability of these features among the Bivalvia and their value for phylogenetic inference.

Results: The size of the mt-genome in *Acanthocardia tuberculata* is 16,104 basepairs (bp), and in *Hiatella arctica* 18,244 bp. The *Acanthocardia* mt-genome contains 12 of the typical protein coding genes, lacking the *Atpase subunit 8* (*atp8*) gene, as all published marine bivalves. In contrast, a complete *atp8* gene is present in *Hiatella arctica*. In addition, we found a putative truncated *atp8* gene when re-annotating the mt-genome of *Venerupis philippinarum*. Both mt-genomes reported here encode all genes on the same strand and have an additional *tmM*. In *Acanthocardia* several large non-coding regions are present. One of these contains 3.5 nearly identical copies of a 167 bp motive. In *Hiatella*, the 3’ end of the NADH dehydrogenase subunit (*nad*)6 gene is duplicated together with the adjacent non-coding region. The gene arrangement of *Hiatella* is markedly different from all other known molluscan mt-genomes, that of *Acanthocardia* shows few identities with the *Venerupis philippinarum*. Phylogenetic analyses on amino acid and nucleotide levels robustly support the Heterodonta and the sister group relationship of *Acanthocardia* and *Venerupis*. Monophyletic Bivalvia are resolved only by a Bayesian inference of the nucleotide data set. In all other analyses the two unionid species, being to only ones with genes located on both strands, do not group with the remaining bivalves.

Conclusion: The two mt-genomes reported here add to and underline the high variability of gene order and presence of duplications in bivalve and molluscan taxa. Some genomic traits like the loss of the *atp8* gene or the encoding of all genes on the same strand are homoplastic among the Bivalvia. These characters, gene order, and the nucleotide sequence data show considerable potential of resolving phylogenetic patterns at lower taxonomic levels.
Background
Metazoan mitochondrial genomes are typically conserved in gene content and length. They are usually circular, 14 to 20 kb long, and encode for 13 proteins of the respiratory chain [cytochrome c oxidase subunits I-III (cox I – cox III), apocytochrome b (cytb), atpase subunits 6 and 8 (atp6, atp8), and NADH dehydrogenase subunits 1–6 and 4L (nad 1–6, nad 4L)] and 24 RNA genes of the translation system [small (S) and large (L) subunit ribosomal RNA (rrn) and 22 transfer RNAs] [1]. The high number of possible arrangements makes it very unlikely that identical gene orders arise by chance [2]. Such a complex character combined with a low frequency of gene rearrangements is highly valuable for reconstructing palaeozoic or even pre-Cambrian phylogenetic events. Examples for this situation are Vertebrata (over 540 species sequenced) and Arthropoda (over 100 species sequenced): both show few rearrangements within the phylum [3].

In contrast, only 30 complete mitochondrial genomes of Mollusca are published: ten Gastropoda, nine Bivalvia, one Polyplacophora, two Scaphopoda and eight Cephalopoda. However, even this small taxonomic sample reveals much greater variability of gene arrangements compared to vertebrates and arthropods and notable differences in rearrangement frequencies between phyla and also within the Mollusca [3]. Whereas the order of the protein coding and the rRNA (rrn) genes in the mt genomes of the polyplacophoran Katharina tunicata, the vetigastropod Haliotis rubra and the cephalopods Octopus vulgaris and Octopus ocellatus are identical and the apogastropod Ilyanassa obsoleta and the other cephalopods can be related to them, the euhenyuran gastropods, the scaphopods and the bivalves are highly rearranged.

An additional complication in the Bivalvia, termed doubly uniparental inheritance (DUI), is the existence of distinct male and female mitochondrial lineages [4-10]. It is not clear whether this mode of inheritance is characteristic for all bivalves, or if it contributes to the accelerated rearrangement rate in this group. There are yet more special features of molluscan mt genes. Hoffmann et al. [11] described an additional trn-Met in Mytilus edulis; Katharina tunicata has two additional tRNAs [12]. Some pulmonate gastropods have unusual tRNAs lacking the T-stem or the D-stem, similar to nematode mt tRNAs [13]. The atp6 and atp8 genes are separated in scaphopods [14,15] and most gastropods (only the prosobranch Littorina saxatilis, the vetigastropod Haliotis rubra and the apogastropod Ilyanassa obsoleta have adjacent atp6 and atp8). The published heterodont and pteriomorph bivalve sequences lack the atp8 gene altogether. This is unusual because the atp6 – atp8 cluster is common to most animal mitochondrial genomes, often with overlapping reading frames [3]. It is, thus, not clear for which molluscan taxa and on which systematic levels mitochondrial gene order data and genomic characters like those mentioned above are phylogenetically informative.

The phylogenetic relationships of the major taxa of the heterodont bivalves are only partly resolved. Molecular phylogenetic analyses [16,17] agreed on the exclusion of the Hiatellidae from the Myoida placing this taxon close to the base of the higher Heterodonta (“unnamed clade I” in [16] fig. 3.6). The latter clade also contains the Carditidae and Veneridae. With the complete mitochondrial sequences of one species of each Hiatellidae, Carditidae and Veneridae available for the present study we are able to test the monophyly and sistergroup relationships of the higher heterodonts, Acanthocardia and Venerupis.

Results
Genome size, genes, base composition and codon usage
The size of the complete mt-genome of Acanthocardia tuberculata is 16.104 basepairs (bp) and has an overall A+T content of 59.6 %. All genes are on one strand (Fig. 1). The Acanthocardia genome features 1.751 non-coding bp. The largest non-coding region (Table 1), of 1.103 bp is located between trn-Met and trn-His. It contains a 599 bp fragment composed of 3.5 nearly identical copies of a 167 bp motive (Fig. 2). This repeat has an A+T content of 60 %. The other 23 non-coding regions range between 1 and 128 bp.

All but one (atp8) of the 37 typical mitochondrial genes are present, with an additional copy of the trn-Met (Fig. 3). The Acanthocardia mt-genome encodes for a total of 3.647 amino acids. The most frequent codon is TTT (Phe; n = 264), followed by TTA (Leu; n = 172). An A or T nucleotide is present at the third position in 2.269 codons (61.13%). Five of the 12 protein coding genes start with ATG or ATA (Table 2), six starts with the alternative start codon ATT (Isoleucine). The atp6 gene starts with a GTG codon. Eight genes are terminated by TAA and four by TAG. An incomplete stop codon is inferred from the alignment of the atp6 gene. The genes for trn-Gln and trn-Arg overlap by two 2 bp.

The mt-genome of Hiatella arctica is 18.204 bp in length and has an A+T content of 66.35 %. As in Acanthocardia, all genes are on the same strand (Fig. 1). The longest of the 30 non-coding regions (Tab 3) has 614 bp and is located between the genes for trn-Ala and atp8. The others range between 1 and 376 bp in length. Hiatella has two copies of a 121 bp motive (Fig. 4) starting in the 3’ end of the nad6 gene and extending into the non-coding region before the tRNA-Trp gene. The genes for trn-Leu I and trn-LeuII overlap by one nucleotide.
The Hiatella mt-genome contains all 37 mitochondrial genes including \textit{atp8} and a second copy of the \textit{trn-Met} (Fig. 4). A total of 3.985 amino acids are encoded. As in \textit{Acanthocardia}, the most frequent codons are TTT (Phe; \(n = 359\)) and TTA (Leu; \(n = 284\)). A or T are present in 2.873 third codon positions (72.09 \%). Seven of the 13 protein coding genes start with ATA, the other six genes with ATG. The codon ATT terminates seven, and the codon ATG four protein coding genes (Tab 4). Truncated stop codons (T) are inferred for the \textit{atp8} and the \textit{coxII} genes.

Phylogenetic analysis of nucleotide and protein coding sequences

The concatenated amino acid alignment of 28 species (Tab 5) consists of 5.004 positions of which 3.085 are parsimony-informative. The corresponding nucleotide alignment including the rrl sequences has 16.862 positions in total, 11.854 without 3rd codon positions, of which 7.130 are parsimony-informative. The Bayesian analyses resulted in almost fully resolved trees (Fig. 5) with total marginal -lnL of 156.458,59 for the amino acid data and 209.800,11 for the nucleotide data (arithmetic means). Most branches have posterior probabilities of 1.0. The deeper nodes tend to be less supported. The parsimony analyses of both data sets yielded a single most parsimonious tree each (amino acid data: tree length 31.163, consistency index 0.5819, rescaled consistency index 0.2719; nucleotide data: tree length 49.859, consistency index 0.3440, rescaled consistency index 0.1366; trees not shown). All Bayesian and parsimony analyses recover the three heterodont species as a robust monophylum. \textit{Acanthocardia} is the sister taxon of \textit{Venerupis} with high to moderate support (fig 5). The Pteriomorpha are resolved as monophyletic from the nucleotide data in the parsimony analysis only. In most analyses the two unionid species are separated from the remaining bivalves and placed in a more basal position in the tree. Only the Bayesian tree of the nucleotide data resolves monophyletic Bivalvia, although with low support (posterior probability 0.76). This is also the only tree showing monophyletic Scaphopoda and Pulmonata. The unstable position of the vetigastropod \textit{Haliotis}, near the base of the molluscan clade renders the Gastropoda diphylectic in all analyses. Cephalopoda are always robustly supported, and only the parsimony analysis of the amino acid data fails to resolve Mollusca as monophyletic. The exclusion of highly varia-
Figure 2 - Alignment of the large duplicated regions in *Acanthocardia tuberculata* and *Hiattella arctica.*

Tandem repeats in *Acanthocardia tuberculata* - Sequence position: 3389-3978

```
3379  TCCCCCTTAG
3389  TAAGGTTCCTAAAGCATCTAACCCTCACATCAGCAAAAAAAAAAGTTGATTTGATTGAATAATCG
1  TAAGGTTCCTAAAGCATCTAACCCTCACATCAGCAAAAAAAAAAGTTGATTTGATTGAATAATCG
3454  ACSCGCAATCTCTAGGCTTTTTTAAACAAATTTCCAGGAGATATTCAAGTGCTATTACTTCTCCGATG
66  ACSCGCAATCTCTAGGCTTTTTTAAACAAATTTCCAGGAGATATTCAAGTGCTATTACTTCTCCGATG
3519  GGAGTTTTTTATCTGTATTAGTAAAGACAAAAAAA
131  GGAGTTTTTTATCTGTATTAGTAAAGACAAAAAAA
3558  TAAGGTTCCTAAAGCATCTAACCCTCACATCAGCAAAAAAAAAAGTTGATTTGATTGAATAATCG
1  TAAGGTTCCTAAAGCATCTAACCCTCACATCAGCAAAAAAAAAAGTTGATTTGATTGAATAATCG
3623  ACSCGCAATCTCTAGGCTTTTTTAAACAAATTTCCAGGAGATATTCAAGTGCTATTACTTCTCCGATG
66  ACSCGCAATCTCTAGGCTTTTTTAAACAAATTTCCAGGAGATATTCAAGTGCTATTACTTCTCCGATG
3688  GGAGTTTTTTATCTGTATTAGTAAAGACAAAAAAA
131  GGAGTTTTTTATCTGTATTAGTAAAGACAAAAAAA
3725  TAAGGTTCCTAAAGCATCTAACCCTCACATCAGCAAAAAAAAAAGTTGATTTGATTGAATAATCG
1  TAAGGTTCCTAAAGCATCTAACCCTCACATCAGCAAAAAAAAAAGTTGATTTGATTGAATAATCG
3790  ACSCGCAATCTCTAGGCTTTTTTAAACAAATTTCCAGGAGATATTCAAGTGCTATTACTTCTCCGATG
66  ACSCGCAATCTCTAGGCTTTTTTAAACAAATTTCCAGGAGATATTCAAGTGCTATTACTTCTCCGATG
3855  GGAGTTTTTTATCTGTATTAGTAAAGACAAAAAAA
131  GGAGTTTTTTATCTGTATTAGTAAAGACAAAAAAA
3892  TAAGGTTCCTAAAGCATCTAACCCTCACATCAGCAAAAAAAAAAGTTGATTTGATTGAATAATCG
1  TAAGGTTCCTAAAGCATCTAACCCTCACATCAGCAAAAAAAAAAGTTGATTTGATTGAATAATCG
3957  ACSCGCAATCTCTAGGCTTTTTTAAACAAATTTCCAGGAGATATTCAAGTGCTATTACTTCTCCGATG
66  ACSCGCAATCTCTAGGCTTTTTTAAACAAATTTCCAGGAGATATTCAAGTGCTATTACTTCTCCGATG
```

Tandem repeats in *Hiattella arctica* - Sequence position: 15349--15596

```
15339  TTAGGATAAA
15349  AAAAAAAAACTAGATTTGTTTCTACTAGAAGCCTGTTGTTATGATATGTTATCTTGCTGATG
1  AAAAAAAAACTAGATTTGTTTCTACTAGAAGCCTGTTGTTATGATATGTTATCTTGCTGATG
15414  TAAAGGATTTTTGTTGCTACTAGAGCTA-GTAAGGGTTAGTATT-TCAGGAGCTTCTTCTCTTG
66  TAAAGGATTTTTGTTGCTACTAGAGCTA-GTAAGGGTTAGTATT-TCAGGAGCTTCTTCTCTTG
15470  AAAAAAAAGTAGTTTGGTCTCTACTAGAGCTA-GTAAGGGTTAGTATT-TCAGGAGCTTCTTCTCTTG
1  AAAAAAAAGTAGTTTGGTCTCTACTAGAGCTA-GTAAGGGTTAGTATT-TCAGGAGCTTCTTCTCTTG
15533  AGTACGACTATTTTCTAAGT-GAAAAGGTTTTAAGGCTTTCAAGGCTTCTGAG
64  AGTACGACTATTTTCTAAGT-GAAAAGGTTTTAAGGCTTTCAAGGCTTCTGAG
15591  AAAAA
1  AAAAA
15597  GTAAGCAGTA
```

Figure 2
Alignment of the large duplicated regions in *Acanthocardia tuberculata* and *Hiattella arctica.*
More unusual is the duplication in although the copies are 79% identical the second repeat 12 bases upstream of the 3' end of the repeats of a 79 bp motive between Venerupis also present in other bivalve mitochondrial genomes: the regions in The functional and selective significance of the duplicated is unclear. Tandem repeats are more rapidly due to relaxed selection and, thus, lost the reading frame. Nearly identical duplications of complete genes occur in mt-genomes of the cephalopods and has no open reading frame. It is likely that this non-functional copy of the coding part accumulated substitutions more rapidly due to relaxed selection and, thus, lost the reading frame. Nearly identical duplications of complete genes occur in mt-genomes of the cephalopods Watasenia and Todarodes [19,20].

Acanthocardia and Hiatella mt genomes encode 23 transfer RNA genes which can be folded in a typical secondary structure. Both genomes have an additional tRNA for Methionine. A second Methionine tRNAs is present in the mt genome of Acanthocardia tuberculata. Mytilus galloprovincialis [7], Crassostrea virginica [21], Placopesten magellanicus [18] and Venerupis philippinarum [9]. Overlaps of tRNA genes as observed in Acanthocardia and Hiatella are a common feature in mt-genomes [1].

Table 1: Non-coding regions and overlaps in the mitochondrial genome of Acanthocardia tuberculata

Position	between	between
Non-coding	COI/tRNA-Pro	5
1594–1598	tRNA-Pro/ND4I	37
4920–4927	ND3/tRNA-MetII	8
5064	tRNA-MetII/tRNA-Trp	8
5197–5226	tRNA-Leu/ND1	30
6139–6148	ND1/tRNA-Phe	10
7041–7070	12S rRNA/tRNA-Gln	30
8099–8104	tRNA-SerI/tRNA-Thr	1
8238–8293	tRNA-Thr/ND5	56
10005–10006	tRNA-Cys/tRNA-SerII	2
12521–12648	tRNA-Ase/ND4	128
13990–13994	ND4/tRNA-MetI	5
14060–14064	tRNA-Tyr/Atp6	5
14777–14884	Atp6/tRNA-Glu	108
14944–14995	tRNA-Glu/tRNA-Gly	52
15067–15099	tRNA-Val/ND2	33
16027–16104	ND2/COI	78
Overlapping	tRNA-Gln/tRNA-Arg	2

Table 2: Organisation of the mitochondrial genome of Acanthocardia tuberculata

Gene	Position	Strand	Start	Stop			
COI	I–1593	+	ATA	TAG			
tRNA-Pro	1599–1662	+	ATT	TAA			
tRNA-Leu	2001–2065	+	ATT	TAA			
ND6	2066–2527	+	ATT	TAA			
COII	2532–3254	+	ATT	TAA			
tRNA-Asp	3255–3317	+	ND3	4572–4919	+	ATG	TAA
tRNA-MetII	4928–4991	+	ND1	5227–6138	+	ATG	TAG
tRNA-Trp	5000–5063	+	tRNA-Phe	6149–6216	+		
tRNA-Lys	5065–5132	+	tRNA-Thr	6217–7040	+		
tRNA-LeuI	5133–5196	+					
ND3	5227–6138	+	tRNA-Phe	6149–6216	+		
tRNA-Thr	6217–7040	+					
tRNA-Glu	7071–7133	+					
tRNA-Arg	7132–7196	+					
tRNA-Ile	7197–7261	+					
COIII	7262–8098	+	tRNA-SerI	8105–8173	+		
tRNA-Thr	8175–8237	+	tRNA-Thr	8175–8237	+		
tRNA-LeuII	8238–8293	+	tRNA-Thr	8175–8237	+		
tRNA-Lys	8294–9940	+	tRNA-LeuII	5133–5196	+		
ND5	8294–9940	+	tRNA-LeuII	5133–5196	+		
tRNA-Cys	9941–10004	+	tRNA-LeuII	5133–5196	+		
tRNA-SerII	10007–10074	+	tRNA-LeuII	5133–5196	+		
tRNA-Asp	10075–11232	+	tRNA-SerII	10007–10074	+		
tRNA-Glu	11233–12455	+	tRNA-SerII	10007–10074	+		
ND2	11233–12455	+	tRNA-Asp	10075–11232	+		
tRNA-Val	12456–12520	+	tRNA-Asp	10075–11232	+		
tRNA-Glu	12520–12648	+	tRNA-Asp	10075–11232	+		
ND4	12520–12648	+	tRNA-Asp	10075–11232	+		
tRNA-Pro	12649–13989	+	tRNA-Pro	12649–13989	+		
tRNA-Tyr	12649–13989	+	tRNA-Pro	12649–13989	+		
Atp6	14065–14993	+	tRNA-Tyr	13995–14059	+		
tRNA-Glu	14993–15007	+	tRNA-Glu	14885–14943	+		
tRNA-Glu	15007–15066	+	tRNA-Glu	14885–14943	+		
tRNA-Ala	15066–16026	+	tRNA-Glu	14885–14943	+		
tRNA-Asp	16029–16092	+	tRNA-Asp	16029–16092	+		
The *atp6* gene of *Acanthocardia* lacks a Methione or Isoleucine at the putative 5' end and a complete stop codon. The first ATN codon is 48 bp downstream of the putative point of start as inferred from the alignment of the molluscan *atp6* genes. The assumed start codon is GTG as in the *nad* 2 gene of polyplacophore *Katharina tunicata* [12].
Figure 4
Cloverleaf structures of the 23 tRNA genes in the mitochondrial genome of Hiattella arctica.
Table 3: Non-coding regions and overlaps in the mitochondrial genome of *Hiatella arctica*

Position	between	Length
Non-coding	COI/Atp6	166
1664–1819	tRNA-Phe	166
2603–2609	tRNA-Phe/tRNA-Lys	7
2674–2678	tRNA-Lys/tRNA-Met	5
2743	tRNA-Met/COI	1
2809	COII/12S rRNA	376
3894–4270	COII/12S rRNA	60
5235–5294	tRNA-His/NDS	21
6963–6983	NDS/NdI	1
7929	ND I/tRNA-Gly	7
7992–7998	tRNA-Gly/tRNA-Asp	43
8063–8105	tRNA-Asp/tRNA-Tyr	14
8166	tRNA-Tyr/NdD	1
9529–9533	ND4/tRNA-Met	1
9601–9621	tRNA-Pro/tRNA-Thr	60
9682–8690	tRNA-Thr/tRNA-Ala	641
9753–10366	tRNA-Ala/Atp8	1
10527–10730	Atp8/tRNA-Ile	204
10679–10800	tRNA-Ile/tRNA-Leu	5
10939–10993	tRNA-Leu/tRNA-Val	2
11062	tRNA-Arg/tRNA-Cys	6
11124–11129	tRNA-Cys/tRNA-Asn	1
11094–11311	tRNA-Asn/Nd4	218
11612–11672	Nd4/Nd3	61
12030–12055	ND3/tRNA-SerI	26
13707–13924	tRNA-Gln/COIII	218
14753–14878	COII/Nd6	126
15482–15722	ND6/tRNA-MetI	241
15585–15875	tRNA-Trp/tRNA-SerII	21
15931–16000	tRNA-SerI/Cytb	70
18197–18244	ND2/COI	48
Overlapping	tRNA-Leul/tRNA-Leull	1

Table 4: Organisation of the mitochondrial genome of *Hiatella arctica*

Gene	Position	Strand	Start	Stop
COI	1–1653	+	ATG	TAG
Atp6	1820–2602	+	ATG	TAA
tRNA-Phe	2610–2673	+	tRNA-Lys	2679–2743
rRNA-Lys	2745–2808	+	rRNA-Met	2810–3893
rRNA-Met	3894–4270	+	nd1	TAA
rRNA-His	5235–5294	+	tRNA-Gly	7930–7991
7999–8062	+	tRNA-Asp	8106–8165	
tRNA-Tyr	8167–9528	+	ND4	TAA
9534–9600	+	tRNA-Pro	9622–9681	
tRNA-Thr	9691–9752	+	tRNA-Ala	10367–10526
Atp8	10801–10864	+	tRNA-Leu	10864–10931
tRNA-Leu	10934–10998	+	tRNA-Val	10999–11061
tRNA-Arg	11063–11123	+	tRNA-Cys	11130–11193
tRNA-Asn	11130–11193	+	ND4	TAA
11192–11611	+	tRNA-SerII	12056–12125	
12126–12191	+	tRNA-Glu	12192–13638	
165 rRNA	13639–13706	+	tRNA-Gln	14879–15481
tRNA-MetI	15273–15788	+	tRNA-Trp	15789–15854
tRNA-SerII	15876–15930	+	tRNA-Phe	16001–17155
Cytb	17156–18196	+	ND2	TAA
1820–18196	+	18916–18916	+	18916–18916

Hiatella arctica is the first marine bivalve reported to have a complete atp8 gene consisting of 53 amino acids. The alignment of this atp8 gene (Fig. 6) shows a Methionine at the start and a truncated stop codon T. We also identified a putative atp8 gene in the mt-genome of Venerupis, between the genes *rrnL* and *nad4* at positions 5,974 to 6,088. Although this region was annotated as part of the *rrnL* by the authors [9], it represents an open reading frame encoding for only 37 amino acid positions. It starts with Leucine instead of Methionine, but ends with a complete stop codon. The more conserved 5′ region of the gene resembles other molluscan atp8 genes in amino acid sequence (Fig. 6) and in the hydrophilicity profile. The positively charged 3′ region of the gene, which is known to vary greatly in length and composition [23,24], is reduced to a few residues in Venerupis. This is confirmed by the alignment of the amino acid sequence corresponding to the conserved atp8 profiles in other metazoans [25]. It remains open, however, whether this gene is functional. Dreyer and Steiner [15] reported a comparably short atp8 gene for the scaphopod *Siphonodentalium lobatum*. Serb and Lydeard [26] discuss a non functional version of the atp8 gene in the freshwater mussel *Inversidens*, and Milbarry and Gaffney [21] describe a potential remnant of the atp8 gene in the eastern oyster *Crassostrea virginica*.

Many metazoan mt genomes have neighbouring *atp6* and atp8 genes on the same strand. This arrangement is likely to be selected for, if the uncleaved transcripts are co-trans-
Figure 5

Phylogenetic analyses. Bayesian trees of the amino acid sequences of all protein coding genes (left) and nucleotide sequences of the protein coding genes and the *rrnL* gene (right). Bivalve species are in black font (Heterodonta in bold), Gastro-poda in green, Cephalopoda in blue, Scaphopoda in magenta, Polyplacophora in red and the outgroup taxa in grey font. Posterior probabilities (above) and parsimony bootstrap values (below) are given for each branch.

Figure 6

Alignment of the *atp8* genes of *Hiatella arctica*, *Venerupis philippinarum* and *Katharina tunicata*.
lated [25,2]. Several taxa lacking this gene arrangement in the mt genome, e.g. Plathyhelminthes, Nematoda, Annelida, Sipunculida, the brachiopods *Laqueus* [27] and *Terebratalia* [28], and, among Mollusca, Bivalvia and Scaphopoda. Of these genomes, Plathyhelminthes, Nematoda except for *Trichinella*, and the pteriomorph bivalves lack *atp8* altogether. The disparate distribution of this feature clearly indicates that the loss of the *atp6* – *atp8* coupling and the loss of *atp8* occurred several times independently in metazoan evolution. This is corroborated by finding truncated *atp8* genes separated from the *atp6* gene in the nematode *Trichinella* and in the scaphopod *Siphonodentalium*. It is possible that this situation represents an evolutionary stepping stone from the fully functional *atp6* – *atp8* coupling, via decoupled but complete genes like in annelids and the scaphopod *Graptacme*, and the complete loss of *atp8*.

The location of all mt-genes on the same strand, as in *Acanthocardia* and *Hiatella*, is uncommon among Metazoa, but is reported for several taxa [28] including all published marine bivalves. Only in the unioiid freshwater bivalves *Lampsilis ornata* and *Inversidens japonensis* genes are located on both strands. Under the Heteroconchia concept postulating a sister group relationship of Unionida and Heterodonta, the "all-on-one-strand" situation either evolved independently in Heterodonta and Pteriomorph or was lost in the Unionida.

Table 5: List of taxa used in the phylogenetic analysis

Taxon	Classification	GenBank Accession number
Outgroup		
Terebratulina retusa	Brachiopoda	AJ245743
Lumbricus terrestris	Annelida, Clitellata	U24570
Platyneris dumerilii	Annelida, Polychaeta	AF178678
Clymenella torquata	Annelida, Polychaeta	AF741661
Polyplacophora		
Katharina tunicata	Mollusca, Polyplacophora, Neocoleoida	U09810
Gastropoda		
Haliothis rubra	Mollusca; Gastropoda, Orthogastropoda, Vetigastropoda	AYS88938
Aplysia californica	Mollusca; Gastropoda, Orthogastropoda, Apogastropoda	AYS69552
Pupa striosa	Mollusca; Gastropoda, Orthogastropoda, Apogastropoda	ABO29237
Rabaosta europaesa	Mollusca; Gastropoda, Orthogastropoda, Apogastropoda	AY083457
Bimaphalaira glabrata	Mollusca; Gastropoda, Pulmonata, Basammatophora	AY380531
Albinaria coerulae	Mollusca; Gastropoda, Pulmonata, Stylommatophora	X83390
Cepaea nemoralis	Mollusca; Gastropoda, Pulmonata, Stylommatophora	U233045
Scaphopoda		
Graptacme eborea	Mollusca, Scaphopoda, Dentaliida	AY484748
Siphonodentalium lobatum	Mollusca, Scaphopoda, Gadillida	AY342055
Cephalopoda		
Octopus vulgaris	Mollusca, Cephalopoda, Coleoidea, Neocoleoidea, Octopodiformes	AB158363
Loligo blekeri	Mollusca, Cephalopoda, Coleoidea, Neocoleoidea, Decapodiformes	ABO292616
Todarodes pacificus	Mollusca, Cephalopoda, Coleoidea, Neocoleoidea, Decapodiformes	AB158364
Watasenia scintillans	Mollusca, Cephalopoda, Coleoidea, Neocoleoidea, Decapodiformes	ABO862023
Bivalvia		
Placopecten magellonicus	Mollusca, Bivalvia, Pteriomorphia, Pectinoida	DQ080274
Mytius galloprovincialis	Mollusca, Bivalvia, Pteriomorphia, Mytioida	AY497292
Mytius edulis	Mollusca, Bivalvia, Pteriomorphia, Mytioida	AY484747
Crassostrea gigas	Mollusca, Bivalvia, Pteriomorphia, Ostreoida	AF177276
Crassostrea virginica	Mollusca, Bivalvia, Pteriomorphia, Ostreoida	AY905542
Lampsilis ornata	Mollusca, Bivalvia, Palaeoheterodonta, Unionida	AY365191
Inversidens japonensis	Mollusca, Bivalvia, Palaeoheterodonta, Unionida	ABO05525
Venerupis philippinarius	Mollusca, Bivalvia, Heterochonchia, Veneroida	ABO65375
Acanthocardia tuberculata	Mollusca, Bivalvia, Heterochonchia, Veneroida	DQ 632743 this study
Hiatella arctica	Mollusca, Bivalvia, Heterochonchia, Myoida	DQ 632742 this study

Comparing the gene arrangements of *Acanthocardia* and *Venerupis* no identities are apparent, if the tRNA genes are included. The tRNAs are more variable because the secondary structure allows them to translocate more frequently [12]. Even after excluding the tRNAs from the comparison the two mt-genomes show few identical gene junctions. These are limited to the block containing the *Cytb* – *rrnL* – *nad4* – *atp6* genes in *Acanthocardia*, although this is interrupted by the putative *atp8* gene in *Venerupis*. This gene order may be inherited from the common ancestor of *Acanthocardia* and *Venerupis*, with the apomor-
phic loss of \(\text{atp8} \) in \textit{Acanthocardia}. The mt-genome of \textit{Hiatella} appears almost completely rearranged. Only the neighbourhood of the \(\text{nad2} \) and \(\text{cox1} \) genes is present in other molluscs like \textit{Katharina}, \textit{Haliotis} and \textit{Octopus} and may represent a plesiomorphic trait.

The mitochondrial genome sequence data confirm previous results [16,17] on the monophyly of Cardiidae and Veneridae relative to the Hiatellidae. Their common branch and the heterodont clade are robustly supported in all analyses. Similarly, the clade uniting Heterodonta and Pteriomorpha is well supported, although to the exclusion of the unionid branch. This is in accordance with the topology of Giribet and Distel [16] but contrasts that of Waller [29] and Steiner and Hammer [30] supporting the Heteroconchia clade (Unionida + Heterodonta). The Bivalvia clade is resolved by the Bayesian analysis of the nucleotide data only. This may indicate the higher potential of recovering correct topologies by this method or the superiority of nucleotide substitution models over amino acid substitution models or a combination of these factors. Note that the Bayesian nucleotide analysis also succeeds in resolving the pteriomorph, scaphopod, and pulmonate branches.

What could cause the unexpected position of the Unionida rendering the Heteroconchia diphyletic? In both amino acid and nucleotide-based trees the unionid species have conspicuously shorter branches compared to the other bivalves. Although the present data set is not large enough for statistical assessment, such obvious differences in substitution rates may cause phylogenetic analyses to find incorrect trees, as previously documented for Bivalvia [30]. In addition to lower substitution rates, different substitution patterns in the unionids may confound phylogenetic analyses. All bivalve mt-genomes have the genes encoded on the same strand, except for those of the unionids where three to four genes are encoded on the opposite strand. Due to the asymmetric replication process the strands show different substitution skews. Hassanin \textit{et al.}[31] showed that skew differences may influence phylogenetic analyses.

The mitochondrial gene order in the Bivalvia is too divergent and the present taxon set too small to make use of this character set for phylogenetic inference at this point. In addition, the substitution models for phylogenetic inference presently do not take strand specific patterns into account. Similarly, gene rearrangement models are limited to one type of rearrangement only, either translocation or inversion. However, with a growing set of mt-genomes – their nucleotide and gene sequences – we are likely to enhance our understanding of patterns and modes of nucleotide substitutions and gene rearrangements. This will help to improve phylogenetic reconstructions by refining the models for these evolutionary processes. Improved taxon sampling and refined phylogenetic inference models are likely to resolve more open questions of bivalve phylogeny and evolution than with previously used markers.

Table 6: Amplification primers used in this study
Species

Both species
Acanthocardia tuberculata
Hiatella arctica

\(^{a}\)Folmer et al. [47]
\(^{b}\)modified after Palumbi et al. [48]
\(^{c}\)Simon et al. [49]
Methods

Material, DNA isolation, PCR, sequencing

Hiatella arctica (Linneé, 1767) and Acanthocardia tuberculata (Linneé, 1758) were collected in the Adriatic Sea (Rovinj, Croatia) and frozen in liquid nitrogen. Total DNA was isolated with the DNeasy Tissue Kit (Qiagen).

Partial cox I, rrmL and rrmS genes were amplified (Acanthocardia rrmL and cox I, Hiatella rrmS and rrmL) using the primers HCO2198/LCO 1490, 16Sfmwg/16Srmwg and 12SaI/12Sbi (Table 6). The PCR was done on a Primus 96 Advanced Gradient (Peqlab) in a 30 µl reaction containing 1.5 mM MgCl2, each dNTP at 250 µM, each primer at 0.5 µM, 0.6 units Taq polymerase (Biotaq Red, Bioline) and the supplied buffer at 1× concentration. The PCR cycle conditions were: Initial denaturation step of 2 min at 94°C, 35 cycles of 30 sec denaturation at 94°C, 40 sec annealing at 48°C and 2 min (HCO2198/16Sbr) or 45 sec primer extension at 72°C followed by a final primer extension step at 72°C for 7 min. PCR products were purified with the E.Z.N.A Cycle-Pure Kit (Peqlab, Germany). PCR products were sequenced automatically with the amplification primers on an ABI-capture-sequencer at Eurofins-Medigenomix GmbH (Martinsried, Germany).

The sequences were used to design sets of long range primers (12SrRNA, COI, 16SrRNA Primer see table 3) to amplify the whole mitochondrial Genome in three fragments with the Takara LA Taq polymerase (Takara) on a Primus 96 Advanced Gradient (Peqlab, Germany). The primer extension at 72°C followed by a final primer extension at 72°C for 7 min. PCR products were sequenced automatically with the amplification primers on an ABI-capture-sequencer at Eurofins-Medigenomix GmbH (Martinsried, Germany). The sequences were used to design sets of long range primers (12SrRNA, COI, 16SrRNA Primer see table 3) to amplify the whole mitochondrial Genome in three fragments with the Takara LA Taq polymerase (Takara) on a Primus 96 Advanced Gradient (Peqlab, Germany). The primer extension at 72°C followed by a final primer extension at 72°C for 7 min. PCR products were sequenced automatically with the amplification primers on an ABI-capture-sequencer at Eurofins-Medigenomix GmbH (Martinsried, Germany). The sequences were used to design sets of long range primers (12SrRNA, COI, 16SrRNA Primer see table 3) to amplify the whole mitochondrial Genome in three fragments with the Takara LA Taq polymerase (Takara) on a Primus 96 Advanced Gradient (Peqlab, Germany). The primer extension at 72°C followed by a final primer extension at 72°C for 7 min. PCR products were sequenced automatically with the amplification primers on an ABI-capture-sequencer at Eurofins-Medigenomix GmbH (Martinsried, Germany). The sequences were used to design sets of long range primers (12SrRNA, COI, 16SrRNA Primer see table 3) to amplify the whole mitochondrial Genome in three fragments with the Takara LA Taq polymerase (Takara) on a Primus 96 Advanced Gradient (Peqlab, Germany). The primer extension at 72°C followed by a final primer extension at 72°C for 7 min. PCR products were sequenced automatically with the amplification primers on an ABI-capture-sequencer at Eurofins-Medigenomix GmbH (Martinsried, Germany). The sequences were used to design sets of long range primers (12SrRNA, COI, 16SrRNA Primer see table 3) to amplify the whole mitochondrial Genome in three fragments with the Takara LA Taq polymerase (Takara) on a Primus 96 Advanced Gradient (Peqlab, Germany). The primer extension at 72°C followed by a final primer extension at 72°C for 7 min. PCR products were sequenced automatically with the amplification primers on an ABI-capture-sequencer at Eurofins-Medigenomix GmbH (Martinsried, Germany).

Phylogenetic analysis

Deduced amino acid sequences were aligned with CLUSTAL X 1.83 [40] at default settings followed by manual correction. The nucleotide alignment was based on the amino acid alignment. All protein coding and the rrmL gene sequences of 24 molluscs (10 bivalves, 4 cephalopods, 2 scaphopods, 7 gastropods and 1 polyplacophore [tab 6]) were concatenated in a single Nexus file. Three annelids and one brachiopod served as outgroups. Separate analyses were run with all positions and with hyper-variable positions excluded with GBlocks 0.91 [41]. We used PAUP+ 4.0b10 [42] for equally weighted parsimony analyses with the heuristic search option and 50 random addition sequences with TBR branch swapping. Bootstrap support was assessed by 10.000 (amino acid data) or 20.000 replicates (nucleotide data) with three random addition sequences each. Bayesian inference was performed with MRBAYES 3.1 [43,44] on the Schrödinger II cluster of the Univ. Vienna computing facility under the Mtrev+Γ+I substitution model for the amino acid data set. The AIC criterion implemented in MODELTEST 3.06 [45] returned the GTR+Γ+I model as most appropriate for the nucleotide data set. We used separate and unlinked partitions for each gene and 2 × 4 chains of 5 × 105 generations, sampling every 100th tree. Burnin estimation by lnL and convergence diagnostics were used as implemented in the software. We excluded 3rd codon positions from the nucleotide analyses to reduce phylogenetic noise due to substitution saturation. Trees were visualized with TREEVIEW 1.6.6 [46].

Competing interests

The author(s) declare that they have no competing interests.

Authors’ contributions

HD carried out the genome sequencing and annotation, contributed to the phylogenetic analyses and drafted parts of the manuscript. GS designed the study, collected the animals, carried out the phylogenetic analyses, drafted parts of the manuscript and is responsible for the final editing.

Acknowledgements

This study was supported by the Austrian Science Fund (FWF) project no. P16954.

References

1. Wolstenholme DR. Animal mitochondrial DNA: Structure and evolution. Int Rev Cytol 1992, 141:173-216.
2. Boore JL, Staton JL. The mitochondrial genome of the sipunculid Phascolopsis gouldii supports its association with Annelida rather than Mollusca. Mol Biol Evol 2002, 19:127-137.
3. Boore JL: Animal mitochondrial genomes. Nucleic Acids Res 1999, 27:1767-1780.
4. Stewart DT, Saavedra C, Stanwood RR, Ball AO, Zouros E: Male and female mitochondrial DNA lineages in the Blue Mussel Mytilus. Mol Biol Evol 1995, 12:735-747.
5. Hoeh WR, Stewart DT, Sutherland BE, Zouros E: Multiple origins of gender-associated mitochondrial DNA lineages in bivalves (Mollusca). Evolution 1996, 50:2276-2286.

6. Liu HP, Minton JB, Wu SK: Paternal mitochondrial DNA differentiation far exceeds maternal mitochondrial DNA and allozyme differentiation in the freshwater mussel, *Anodonta grandis grandis*. Evolution 1996, 50:952-957.

7. Pizzi A, Zouros E, Moschonas N, Rodakis GC: The complete maternal and paternal mitochondrial genomes of the Mediterranean mussel *Mytilus galloprovincialis* : Implications for the doubly uniparental inheritance mode of mtDNA. Mol Biol Evol 2005, 22:952-967.

8. Breton S, Burger G, Stewart DT, Blier PU: Comparative analysis of gender-associated complete mitochondrial genomes in marine mussels (*Mytilus spp*). Genetics 2006, 172:1107-1119.

9. Okazaki M, Ueshima R: *Gender-associated mtDNA of Tapes philippinarum*. http://www.ncbi.nlm.nih.gov/. (unpublished, Genbank [AB005624], [AB005623]).

10. Okazaki M, Ueshima R: Evolutionary diversity between the gender-associated mitochondrial DNA genomes of freshwater mussels. http://www.ncbi.nlm.nih.gov/. (unpublished, Genbank [AB005624], [AB005623]).

11. Hoffmann R, Boore JL, Brown WM: A novel mitochondrial genome organization for the Blue Mussel, *Mytilus edulis*. Genetics 1992, 131:397-412.

12. Boore JL, Brown WM: The complete DNA sequence of the mitochondrial genome of the black chiton *Tachidion tunicatum*. Genetics 1994, 138:423-443.

13. Yamazaki N, Ueshima R, Terrett JA, Yokobori SI, Kafiu M, Segawa R, Kobayashi T, Nunami KI, Ueda T, Nishikawa K, Watanabe K, Thomas RH: Evolution of pulmonate gastropod mitochondrial genomes: Comparisons of gene organizations of *Euhadra*, *Cepeoidea* and Abalone and implications of unusual tRNA secondary structures. Genetics 1997, 145:749-758.

14. Boore JL, Medina M, Rosenberg LA: Complete sequences of the highly rearranged mulluscan mitochondrial genomes of the scallop *Grottoprion ebroe* and the bivalve *Mytilus edulis*. Mol Biol Evol 2004, 21:1492-1503.

15. Dreyer H, Steiner G: The complete sequence and gene organization of the mitochondrial genome of the gilled scaphopod *Siphonodontellum lobatum* (*Mollusca*). Mol Phylogenet Evol 2006, 38:468-468.

16. Giribet G, Distel DL: Bivalve phylogeny and molecular data. In *Molecular Systematics and Phylogeny of Mollusks* Edited by: Lydeard C, Lindberg DR. Washington and London: Smithsonian Books; 2003:45-90.

17. Dreyer H, Steiner G, Harper EM: Molecular phylogeny of *Anomalodesmata* (*Mollusca: Bivalvia*) inferred from 18S rRNA sequences. Zool J Linn Soc 2003, 139:229-246.

18. La Roche J, Snyder M, Cook DI, Fuller K, Zouros E: Molecular characterization of a repeat element causing large-scale size variation in the mitochondrial DNA of the sea scallop *Placopecten magellanicus*. Mol Biol Evol 1990, 7:45-64.

19. Akasaka T, Nikaido M, Tsuchiya K, Segawa S, Hasegawa M, Okada N: Extensive mitochondrial gene arrangements in coleoid Cephalopoda and their phylogenetic implications. Mol Phylogenet Evol 2006, 38:468-468.

20. Yokobori S, Fukuda N, Nakamura M, Aoyama T, Oshima T: Long-term conservation of six duplicated structural genes in cephalopod mitochondrial genomes. Mol Biol Evol 2004, 21:2034-2046.

21. Murphy CA, Gaffney PM: Complete mitochondrial DNA sequence of the eastern oyster *Crassostrea virginica*. Mar Biotechnol 2005, 7:697-712.

22. Ojala D, Monroya J, Attardi G: tRNA punctuation model of RNA processing in human mitochondria. Nature 1981, 290:470-474.

23. Gray MW, Lang BF, Cedercren RG, Golding GB, Lemieux C, Sarkoff D, Turmel M, Brossard N, Delage E, Littlejohn TG, Plante I, Rioux P, Saint-Louis D, Zhu Y, Burger G: Genome structure and gene content in protist mitochondrial DNAs. Nucleic Acid Res 1998, 26:865-878.

24. Gissi C, Iannelli F, Pesole G: Complete mtDNA of *Ciona intestinalis* Reveals Extensive Gene Rearrangement and the Presence of an atp8 and an Extra trnM Gene in Ascidians. J Mol Evol 2004, 58:376-389.

25. Watkins RF, Beckenbach AT: Partial sequence of a sponge mitochondrial genome reveals similarity to cnidaria in cytochrome oxidase II, but not large ribosomal RNA subunits. J Mol Evol 1999, 48:542-554.

26. Serb JM, Lydeard C: Complete mtDNA sequence of the North American freshwater mussel, *Lampsilis ornata* (*Unionidae*): An examination of the evolution and phylogenetic utility of mitochondrial genome organization in Bivalvia (*Mollusca*). Mol Biol Evol 2003, 20:1854-1866.

27. Noguchi Y, Endo K, Tajima F, Ueshima R: The mitochondrial genome of the brachiopod *Laqueus rubellus*. Genomics 2000, 155:245-259.

28. Höhleben KG, Brown WM, Boore JL: The Complete Mitochondrial Genome of the Articulate Brachiopod *Terebratalia transversa*. Mol Biol Evol 2001, 18:1734-1744.

29. Waller TR: Origin of the mulluscan class Bivalvia and a phylogeny of major groups. In *Bivalves: An eon of Evolution – Paleobiology, Studies honors*. Edited by: Johnston PA. Haggart. University of California Press; 1998:1-47.

30. Steiner G, Hammer S: Molecular phylogeny of *Bivalvia (Mollusca)* inferred from 18S rDNA sequences with particular reference to the Pteriomorphia. In *The Evolutionary Biology of the Bivalvia* Edited by: Harper R, Taylor JD, Cramer JA. Geological Society of London Special Publications 77: 2000:11-29.

31. Hassanin A, Léger N, Deutsch J: Evidence for Multiple Reversals of Asymmetric Mutational Constraints during the Evolution of the Mitochondrial Genome of Metazoa, and Consequences for Phylogenetic Inferences. Systemet Biol 2005, 54:277-298.

32. NCBI Open Reading Frame Finder http://www.ncbi.nlm.nih.gov/.

33. The Basic Local Alignment Search Tool (BLAST) http://www.ncbi.nlm.nih.gov/.

34. tRNAscan-SE Search Server [http://www.genetics.wustl.edu/eddy/tRNAscan-SE/].

35. Wyman SK, Jansen RK, Boore JL: Automatic annotation of organelar genomes with DOGMA. Bioinformatics 2004, 20:3252-3255.

36. codonw: Correspondence Analysis of Codon Usage [http://bioweb.pasteur.fr/seqanal/interfaces/codonw.html].

37. Benson G: Tandem repeats finder: a program to analyze DNA sequences. Nucleic Acids Res 1999, 27:573-580.

38. Kyte J, Doolittle RF: A simple method for displaying the hydrophobic character of a protein. J Mol Biol 1982, 157:105-142.

39. Hall TA: BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Sym Ser 1999, 3:51-58.

40. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG: The Clustal X windows interface: flexible strategies for multiple sequence alignment by quality analysis tools. Nucleic Acids Res 1997, 25:4876-4882.

41. Castresana J: Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Mol Biol Evol 2000, 17:540-552.

42. Swofford DL: PAUP**: Phylogenetic Analysis Using Parsimony (* and other methods), version 4beta10. Sunderland, MA: Sinauer; 2002.

43. Ronquist F, Huelsenbeck JP: MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 2003, 19:1572-1574.

44. Altekar G, Dwarkadas S, Huelsenbeck JP, Ronquist F: Parallel Metropolis-coupled Markov chain Monte Carlo for Bayesian phylogenetic inference. Bioinformatics 2004, 20:607-615.

45. Posada D, Crandall KA: Modeltest: testing the model of DNA substitution. Bioinformatics 1999, 14:817-818.

46. Page RDM: TREEVIEW: An application to display phylogenetic trees on personal computers. Computer Applications in the Biosciences 1996, 12:357-358.

47. Folmer O, Black M, Hoeh R, Lutz R, Vrijenhoek R: DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Mol Mar Biol and Biotech 1994, 3:294-299.

48. Palumbi SR: *Nucleic Acids II: The Polymerase Chain Reaction*. In *Molecular Systematics 2nd edition*. Edited by: Hillis, DM, Moritz C, Mable BK. Sunderland, MA: Sinauer; 1996:205-247.

49. Simon C, Frati F, Beckenbach A, Crespi B, Liu H, Flok P: Evolution, weighting, and phylogenetic utility of mitochondrial gene
sequences and a compilation of conserved PCR primers.
Annals Entomol Soc Am 1994, 87:651-701.