Review

The Role of the Metzincin Superfamily in Prostate Cancer Progression: A Systematic-Like Review

Marley J. Binder and Alister C. Ward*

School of Medicine, Deakin University, Geelong, VIC 3216, Australia; m.binder@deakin.edu.au
* Correspondence: award@deakin.edu.au

Abstract: Prostate cancer remains a leading cause of cancer-related morbidity in men. Potentially important regulators of prostate cancer progression are members of the metzincin superfamily of proteases, principally through their regulation of the extracellular matrix. It is therefore timely to review the role of the metzincin superfamily in prostate cancer and its progression to better understand their involvement in this disease. A systematic-like search strategy was conducted. Articles that investigated the roles of members of the metzincin superfamily and their key regulators in prostate cancer were included. The extracted articles were synthesized and data presented in tabular and narrative forms. Two hundred and five studies met the inclusion criteria. Of these, 138 investigated the role of the Matrix Metalloproteinase (MMP) subgroup, 34 the Membrane-Tethered Matrix Metalloproteinase (MT-MMP) subgroup, 22 the A Disintegrin and Metalloproteinase (ADAM) subgroup, 8 the A Disintegrin and Metalloproteinase with Thrombospondin Motifs (ADAMTS) subgroup and 53 the Tissue Inhibitor of Metalloproteinases (TIMP) family of regulators, noting that several studies investigated multiple family members. There was clear evidence that specific members of the metzincin superfamily are involved in prostate cancer progression, which can be either in a positive or negative manner. However, further understanding of their mechanisms of action and how they may be used as prognostic indicators or molecular targets is required.

Keywords: metzincin; prostate cancer; Matrix Metalloproteinase; Tissue Inhibitor of Metalloproteinases; A Disintegrin and Metalloproteinase; A Disintegrin and Metalloproteinase with Thrombospondin Motifs

1. Introduction

Prostate cancer (PrCa) is one of the major causes of cancer-related morbidity in men worldwide [1,2]. The early stages of PrCa are androgen-dependent, but during PrCa progression, the tumors become independent of androgens [1,3]. The detection of PrCa is difficult, with symptoms often not being apparent until metastasis has occurred [1]. The use of the Prostate-Specific Antigen (PSA) test is considered a gold standard, yet remains flawed, with a considerable false-positive rate [1,4]. The survival rates for men diagnosed with PrCa have increased, although the treatment options can have significant side effects [1,2]. An increased understanding of the etiology of this disease provides the potential to develop more specific detection methods and/or alternative treatment modalities.

The metzincin superfamily represents a large group of proteases named after a specialized structural component, a zinc ion-binding methionine turn sequence within their catalytic domain [5–7]. The superfamily can be divided into families and subgroups on the basis of other structural and functional features (Figure 1). The Matrixin family consists of the soluble Matrix Metalloproteinase (MMP) and Membrane-Tethered Matrix Metalloproteinase (MT-MMP) subgroups that are principally regulated by the Tissue Inhibitor of Metalloproteinases (TIMP) family, and the Astracin family comprises the BMP1/TLL and Meprin subgroups, whereas the Adamalysin family consists of the A Disintegrin...
and Metalloproteinase (ADAM) and A Disintegrin and Metalloproteinase with Thrombospondin Motifs (ADAMTS) subgroups [8]. The metzincins are well-known for their roles in development and disease, largely through remodeling of the extracellular matrix (ECM) [9–13].

Figure 1. Structure of the metzincin superfamily members found in humans and their key regulators. Schematic representation of the structural components of the metzincin subgroups found in humans, grouped by family, along with the Tissue Inhibitor of Metalloproteinases (TIMP) family of regulators.

Members of the metzincin superfamily have been increasingly implicated in cancer progression, including a key role in the metastatic process via their ability to remodel the ECM of tumors [13–15]. However, the exact role varies, with some being tumor-promoting, others having an antitumorigenic function and others seemingly not playing a role [13,14,16–18]. The metzincin superfamily is therefore of interest as a potential source of biomarkers and/or targets for therapeutic interventions, although the results of the clinical trials to date have been discouraging [19]. However, given the pressing need for both biomarkers and therapeutics in PrCa, it is timely to conduct this systematic-like review in order to synthesize the role of the metzincin superfamily in this disease.

2. Results

Extensive database searching was undertaken to identify studies that investigated the role of metzincin superfamily members in PrCa progression, as described in Materials and Methods. This identified 205 articles that are presented in five tables, each covering a specific subgroup of the metzincin superfamily or their regulators—specifically, the Matrixin family subgroups MMPs and MT-MMPs, the TIMPs and the Adamalysin family subgroups ADAMs and ADAMTSs. A number of studies involved more than one of these groups and so are included in more than one table. No articles on the BMP/TLL or Meprin subgroups within the Astracin family were identified.
2.1. Soluble Matrix Metalloproteinases (MMPs)

The most extensively studied metzincin superfamily subgroup are the soluble MMPs, with 138 articles included (Table 1). Generally, MMPs have been demonstrated to act in a protumorigenic manner—particularly, MMP-2, MMP-7 and MMP-9, which have been the most widely studied of this subgroup.

Table 1. Studies on soluble Matrix Metalloproteinases (MMPs) in prostate cancer (PrCa).

Authors	Year	MMP	PrCa Platform	Role
Aalinkeel et al. [20]	2004	MMP-9 *	Yes—Prostate cell lines	MMP-9 expression increased in metastatic PrCa lines. Enforced expression of MMP-9 increased invasiveness, whereas ablation of expression decreased invasiveness.
Aalinkeel et al. [21]	2011	MMP-9	Yes—Prostate cell lines	Enforced expression of MMP-9 increased invasiveness, whereas ablation decreased invasiveness, with no change in migration.
Adabi et al. [22]	2015	MMP-2	Yes—Prostate cell lines	MMP-2 polymorphism not associated with PrCa risk or degree of metastasis.
Albayrak et al. [23]	2007	MMP-1	Yes—Prostate cell lines	MMP-1 polymorphism not associated with PrCa risk.
Assikis et al. [24]	2004	MMP-9	Yes—Prostate cell lines	MMP-9 expression low in PrCa.
Babichenko et al. [25]	2014	MMP-9*	Yes—Prostate cell lines	MMP-9 expression negatively correlated with Gleason score and proliferation index.
Baspinar et al. [26]	2017	MMP-9	Yes—Prostate samples	MMP-9 expression increased in samples with high metastatic potential scores and staging. Increased MMP-9-positive neutrophils in highly disseminated PrCa correlated with angiogenic potential.
Bekes et al. [27]	2011	MMP-9	Yes—Prostate cell lines	Polymorphism in MMP-7 (but not MMP-1, 2 and 13) correlated with increased PrCa risk. Active forms of MMP-2 and 9 present in late stage PrCa in mouse model, but MMP-3 not expressed and MMP-7 only focal expression.
Bialkowska et al. [28]	2018	MMP-1, 2, 7 and 13	Yes—Prostate samples	MMP-13 expression not changed in PrCa compared to healthy controls. Expression of MMP-9 (but not MMP-2, 3, 7, 13 or 19) negatively correlated with overall, recurrence-free and disease-specific survival.
Bok et al. [29]	2003	MMP-2, 3, 7& 9	Yes—Mice	MMP-2 expressed significantly in more advanced PrCa tumors, and MMP-9 significantly less. MMP-9 expression in osteoclasts contributed to PrCa tumor growth in the bone through increased angiogenesis.
Bonaldi et al. [30]	2015	MMP-13	Yes—Prostate samples	Expression of MMPs significantly increased in the epithelium than the stroma, and of MMP-7 and 9 (but not MMP-1) with Gleason score.
Boxler et al. [31]	2010	MMP-2, 3, 7, 9, 13 and 19	Yes—Prostate samples	Expression of MMP-2 and 9 negatively correlated with survival. Tumor-derived microvesicles induced MMP-9 expression that correlated with increased migration and resistance to apoptosis.
Brehmer et al. [32]	2003	MMP-2 and 9*	Yes—Prostate samples	MMP-1 and 9 differentially expressed following co-culture with metastatic PrCa.
Brunini-Cardoso et al. [33]	2010	MMP-9	Yes—Mice and rats	MMP-1 and 13 expression higher in more aggressive sublines Low serum MMP-2 (but not MMP-9) associated with increased risk of disease progression.
Cardillo et al. [34]	2006	MMP-1, 7 and 9*	Yes—Prostate samples	
Carozzi et al. [35]	2016	MMP-2 and 9	Yes—Prostate samples	
Castellana et al. [36]	2009	MMP-2, 3, 7, 9 and 13*	Yes—Prostate cell lines	
Coulson-Thomas et al. [37]	2010	MMP-1 and 9*	Yes—Prostate cell lines	
Daja et al. [38]	2003	MMP-1 and 13*	Yes—Prostate cell lines	
De Cicco et al. [39]	2008	MMP-2 and 9*	Yes—Prostate samples	
Authors	Year	MMP	PrCa Platform	Role
-----------------------------	-------	---------	--	--
Di Carlo et al. [40]	2010	MMP-2 and 9	Yes—Prostate samples/urine	Active MMP-9 in urine (but not MMP-2) decreased in PrCa versus benign prostatic hyperplasia.
Dong et al. [41]	2001	MMP-9	Yes—Prostate cell lines and mice	Pro-MMP-9 expression levels enhanced during PrCa co-culture, including in bone implants in mice.
dos Reis et al. [42]	2009	MMP-1, 2, 7 and 9	Yes—Prostate samples	Polymorphisms in MMP-1, 2 and 9 (but not MMP-7) lower in PrCa versus controls. Polymorphism in MMP-2 more frequent in PrCa, including in higher Gleason scores, compared to those in MMP-9 that were associated with lower scores.
dos Reis et al. [43]	2010	MMP-2	Yes—Prostate samples	Polymorphism in MMP-1, 2 and 9 (but not MMP-7) lower in PrCa versus controls.
dos Reis et al. [44]	2008	MMP-1, 2, 7 and 9	Yes—Prostate samples	Polymorphisms in MMP-1, 2 and 9 (but not MMP-7) lower in PrCa versus controls.
Eiro et al. [45]	2017	MMP-2, 9 and 11	Yes—Prostate samples	MMP-2 expression lower and MMP-11 higher in cancer-associated fibroblasts in PrCa.
El-Chaer et al. [46]	2020	MMP-1	Yes—Prostate samples/ Serum	Genotype adjusted MMP-1 expression higher in PrCa compared to benign prostatic hyperplasia.
Eryilmaz et al. [47]	2019	MMP-2 and 9	Yes—Prostate samples	MMP-2 expression associated with increased PrCa risk.
Escaff et al. [48]	2010	MMP-1, 2, 7, 9, 11 and 13 *	Yes—Prostate samples	Increased expression of MMP-11 and 13 associated with significant probability of biochemical recurrence.
Escaff et al. [49]	2011	MMP-1, 2, 7, 9, 11 and 13 *	Yes—Prostate samples	Expression of MMP-2 in fibroblasts and MMP-9 in mononuclear inflammatory cells associated with PrCa.
Escaff et al. [50]	2011	MMP-1, 2, 7, 9, 11 and 13 *	Yes—Prostate samples	Expression of MMP-9 and 13 in fibroblasts. MMP-13 in tumor cells associated with biological recurrence.
Favaro et al. [51]	2012	MMP-2	Yes—Prostate samples	MMP-2 expression increased in periacinar retraction during PrCa.
Fernandez-Gomez et al. [52]	2011	MMP-1, 2, 7, 9, 11 and 13 *	Yes—prostate samples	Expression of MMP-2 negatively associated with high tumor grade, MMP-7 expression negatively associated with Prostate-Specific Antigen (PSA), whereas MMP-13 expression positively associated with PSA.
Festuccia et al. [53]	1996	MMP-2 and 9	Yes—Prostate samples/ Serum	MMP-2 and 9 highly expressed in PrCa. High MMP-9 expression and activity relative to MMP-2 associated with high Gleason grade. Serum MMP-2 higher in patients with PrCa and higher in those with metastasis.
Gohji et al. [54]	1998	MMP-2	Yes—Prostate samples/ Serum	MMP-2 consistently secreted by PrCa, whereas MMP-9 secretion sporadic.
Gravina et al. [55]	2013	MMP-2 and 9 *	Yes—Prostate cell lines	MMP-7 expression associated with increased invasiveness.
Grindel et al. [56]	2014	MMP-7	Yes—Prostate cell lines	MMP-9 knockdown resulted in increased adhesion and cell spreading.
Gupta et al. [57]	2013	MMP-9	Yes—Prostate cell lines	MMP-9 activity increased in malignant PrCa tissue compared to benign.
Hamdy et al. [58]	1994	MMP-9	Yes—Prostate samples	MMP-2 and 9 expression higher in PrCa tissue. MMP-7 levels and MMP-7/TIMP-1 ratio higher in advanced PrCa, and correlated with pathological stage, lymph node metastasis, histological differentiation, as well as vascular and lymphatic invasion.
Hanqing et al. [59]	2003	MMP-2 and 9	Yes—Prostate samples	MMP-2 and 9 expression increased in PrCa versus controls.
Hashimoto et al. [60]	1998	MMP-7 (matrilysin) *	Yes—Prostate samples	MMP-2 and 9 expression increased in PrCa versus controls.
Authors	Year	MMP	PrCa Platform	Role
-------------------------	-------	--------------	-------------------------------	---
Incorvaia et al. [62]	2007	MMP-2 and 9	Yes—Prostate samples	Circulating MMP-9 (but not MMP-2) showed significant correlation with PSA.
Jaboin et al. [63]	2011	MMP-7	Yes—Prostate samples	MMP-7 polymorphism associated with PrCa recurrence.
Jedroszka et al. [64]	2017	MMP-2, 3 and 9	Yes—Prostate samples	Expression of MMP-2, 3 and 9 increased in Gleason grade 8 and 9 tissues.
Jernbacken et al. [65]	2006	MMP-2 and 9 *	Yes—Prostate cell lines	MMP-9 expression increased in PrCa, but MMP-2 expression not detected.
Jung et al. [66]	1998	MMP *	Yes—Prostate samples	MMP levels decreased but MMP/TIMP ratio increased in PrCa.
Jung et al. [67]	2003	MMP-2 and 9	Yes—Rats	Expression of MMP-9 (but not MMP-2) increased in advanced PrCa.
Jung et al. [68]	1997	MMP-1 and 3 *	Yes—Prostate samples	Platelet MMP-2 levels increased in metastatic versus localized PrCa.
Jurasz et al. [69]	2003	MMP-2	Yes—Prostate samples/Serum	MMP-13 highly expressed in PrCa tissue and associated with Gleason score.
Kalantari et al. [70]	2019	MMP-13	Yes—Prostate samples	PrCa conditioned medium increased MMP-1 expression in fibroblasts.
Kaminski et al. [71]	2006	MMP-1	Yes—Prostate cell lines	Serum MMP-2 increased in PrCa and bone metastasis, but not correlated with PSA.
Kanoh et al. [72]	2002	MMP-2	Yes—Prostate samples/Serum	MMP-7 expressed in PrCa.
Knox et al. [73]	1996	MMP-7	Yes—Prostate samples	MMP-1 and 2 expressed in PrCa, but only MMP-2 expression increased following implantation.
Koshida et al. [74]	2004	MMP-1 and 2	Yes—Prostate cell lines	Expression of MMP-2 and 9 in high grade tumors and associated with Gleason score.
Kuniyasu et al. [75]	2000	MMP-2 and 9	Yes—Prostate samples	Increased MMP/E-cadherin ratio correlated with increased stage.
Kuniyasu et al. [76]	2003	MMP-2 and 9	Yes—Prostate samples	High MMP-9 expression associated with poor prognosis.
Larsson et al. [77]	2020	MMP-9	Yes—Prostate samples, Prostate cell lines and mice	MMP-9 expressed in PrCa tissue.
Latil et al. [78]	2003	MMP-9	Yes—Patient samples	Plasma MMP-3 (but not MMP-2) increased in PrCa.
Lein et al. [79]	1999	MMP-2 and 3 *	Yes—Prostate samples/Serum	MMP-9 gene repositioned in PrCa and MMP-2 in both PrCa and hyperplasia.
Leshner et al. [80]	2016	MMP-2 and 9 *	Yes—Prostate samples	MMP-1 promoter polymorphisms not a risk factor for PrCa.
Liao et al. [81]	2018	MMP-1	Yes—Prostate samples/Serum	Expression of MMP-2 gene decreased and MMP-9 unchanged, but MMP-9 protein higher in cancerous tissue, with no change in MMP-2 protein.
Lichtinghagen et al. [82]	2002	MMP-2 and 9 *	Yes—Prostate samples	Expression of MMP-2 and 11 decreased, and MMP-9 increased in PrCa, but no correlations with grade, stage or PSA.
Lichtinghagen et al. [83]	2003	MMP-1, 2, 7, 9 and 11 *	Yes—Prostate samples	Expression of MMP-2, 7 and 9 increased with PrCa progression. MMP-2 knockout mice showed reduced tumor burden, prolonged survival, decreased lung metastasis, and decreased blood vessel density. Knockout of MMP-7 or MMP-9 did not impact tumor growth or survival but affected blood vessel formation.
Littlepage et al. [84]	2010	MMP-2, 7, 9 and 13 *	Yes—Mice	MMP-9 expression increased in metastatic cancer.
Liu et al. [85]	2017	MMP-9	Yes—Prostate samples and prostate cell lines	MMP-2 and 9 secretion, including of the active form of MMP-2, increased in neoplastic tissue.
Lokeshwar et al. [86]	1993	MMP-2 and 9 *	Yes—Prostate samples/Serum	MMP-2 secretion, including of the active form of MMP-2, increased in neoplastic tissue.
Table 1. Cont.

Authors	Year	MMP	PrCa Platform	Role
London et al. [87]	2003	MMP-9	Yes—Prostate cell lines	Ablation of MMP-9 caused decreased tumor invasion, migration, and growth.
Lynch et al. [88]	2005	MMP-7 (matrilysin)	Yes—Rat	MMP-7 expression increased at tumor/bone interface. MMP-7 knockout mice showed reduced tumor-induced osteolysis.
Marin-Aguilera et al. [89]	2015	MMP-9	Yes—Prostate samples	MMP-9 upregulated in PrCa and correlated with poorer overall survival.
Maruta et al. [90]	2010	MMP-10	Yes—Prostate samples	MMP-10 expression correlated with stage, cell renewal and vascular invasion.
Medina-González et al. [91]	2020	MMP-2, 9, 11 and 13 *	Yes—Prostate samples	Expression of MMP-2 and 9 increased (but MMP-11 and 13 unchanged) in PrCa.
Miyake et al. [92]	2010	MMP-2 and 9	Yes—Prostate samples	MMP-2 and 9 expression correlated with stage, recurrence, proliferation, and invasion.
Montironi et al. [93]	1995	MMP-2 (type IV collagenase) *	Yes—Prostate samples	MMP-2 protein expression identified in cells in contact with the stroma
Montironi et al. [94]	1996	MMP-2 and 3 and 13 *	Yes—Prostate samples	MMP-2 expression correlated with progression.
Morgan et al. [95]	2005	MMP-2, 3 and 13 *	Yes—Prostate samples	Plasma levels of MMP-2 and 9 (but not MMP-13) increased in metastatic PrCa.
Moses et al. [96]	1998	MMP-2 and 9	Yes—Prostate samples	Active MMP-2 and 9 in urine were independent predictor of organ-confined PrCa.
Muñoz et al. [97]	2017	MMP-2 and 9	Yes—Prostate samples/Ur ine	No difference in urine levels of MMP-2 or MMP-9 species in PrCa.
Nabha et al. [98]	2006	MMP-9	Yes—Mice	MMP-9 knockout resulted in no difference in tumor incidence, growth or microvascularity.
Nagle et al. [99]	1994	MMP-7 (matrilysin)	Yes—Prostate samples	MMP-7 expression in PrCa located in dilated ducts when inflamed and atrophic glands.
Nalla et al. [100]	2010	MMP-9	Yes—Prostate cell lines	Ablation of MMP-9 reduced migration and invasion and induced apoptosis.
Neuhaus et al. [101]	2017	MMP-3, 7, 13 and 20 *	Yes—Prostate samples	Decreased MMP-3/TIMP ratio in PrCa, but other MMPs not altered.
Oguic et al. [102]	2014	MMP-2 and 9	Yes—Prostate samples	Higher MMP-2 and 9 expression in positive surgical margins. MMP-9 expression associated with biochemical recurrence.
Ok Atilgan et al. [103]	2020	MMP-9	Yes—Patient samples	MMP-9 expression positively associated with WHO grade, tumor stage, extracapsular extension, positive surgical margin lymphovascular, perineural invasion and decreased disease-free survival.
Ouyang et al. [104]	2001	MMP-7 (matrilysin)	Yes—Rats	MMP-7 expressed in premalignant and malignant tissue.
Ozden et al. [105]	2013	MMP-1 and 9 *	Yes—Prostate samples	MMP-1 expression in tumors correlated with higher grades and Gleason scores. MMP-9 expression in normal glands correlated with low PSA and Gleason scores.
Pajouh et al. [106]	1991	MMP-7 (matrilysin)	Yes—Prostate cell lines	MMP-7 expressed in invasive metastatic primary human PrCa.
Pang et al. [107]	2004	MMP-13	Yes—Prostate samples and prostate cell lines	MMP-13 expressed in PrCa.
Pettaway et al. [108]	2008	MMP-2 and 9	Yes—Prostate samples	MMP-2 and MMP-9/E-cadherin ratio increased at tumor edge and correlated with disease, biochemical recurrence, and pathological stage. MMP-9 expression higher in PrCa patients related to Gleason score and age, but not PSA, metastasis, or survival.
Pouyanfar et al. [109]	2016	MMP-9	Yes—Prostate samples	Enforced MMP-7 expression led to increased invasion.
Powell et al. [110]	1993	MMP-7 (matrilysin)	Yes—Prostate cell lines and mice	
Authors	Year	MMP	PrCa Platform	Role
--------------------------	------	------------	---------------	---
Prior et al. [111]	2010	MMP-2	Yes—Prostate samples	Increased MMP-2 levels in urine/blood associated with PrCa progression.
Reis et al. [112]	2012	MMP-2 *	Yes—Prostate samples	MMP-2 expression reduced in PrCa samples but increased in higher grades.
Reis et al. [113]	2015	MMP-2&9 *	Yes—Prostate samples	MMP-2 and 9 expressed in most PrCa but no prognostic value.
Reis et al. [114]	2011	MMP-9 *	Yes—Prostate samples	Higher MMP-9 expression associated with increased PSA and recurrence, but not Gleason score.
Riddick et al. [115]	2005	MMP-2, 10, 23 and 25 *	Yes—Prostate samples	Increased expression of MMP-10 and 25, but MMP-2 and 23 decreased in PrCa.
Ross et al. [116]	2003	MMP-2 *	Yes—Prostate samples	MMP-2 expressed in more advanced PrCa and correlated with prognostic variables.
Sakai et al. [117]	2005	MMP-2 and 9	Yes—Prostate samples	Increased expression of MMP-2 and 9 in peripheral zone cancers compared to transitional zone.
San Francisco et al. [118]	2004	MMP-9	Yes—Prostate cell lines	MMP-9 expression not changed in PrCa.
Sauer et al. [119]	2004	MMP-2 and 9	Yes—Prostate cell lines and Serum	MMP-9 serum levels increased in PrCa patients and correlated with grade, but tissue MMP-9 activity not related to stage or grade. MMP-2 activity correlated with disease progression.
Schäfer et al. [120]	2012	MMP-9	Yes—Prostate cell lines and mice	Enforced MMP-9 expression enhanced tumor regression and impacted metastasis. MMP-9 polymorphism and increased expression associated with PrCa, with polymorphism related to pathological stage and prognostic group, and expression with survival.
Schveigert et al. [121]	2013	MMP-9	Yes—Prostate samples	MMP-9 polymorphism associated with developing PrCa.
Sehgal et al. [122]	1998	MMP-9	Yes—Mice	Ablation of MMP-9 reduced metastatic potential. Expression of MMP-1 (but not MMP-2 or MMP-9) decreased in more metastatic PrCa.
Sehgal et al. [123]	2003	MMP-1, 2 and 9*	Yes—Prostate cell lines	MMP-9 expression not associated with Gleason score 4 and 5.
Serretta et al. [124]	2018	MMP-3	Yes—Prostate samples	MMP-9 polymorphism associated with increased risk of advanced PrCa.
Sfar et al. [125]	2007	MMP-9	Yes—Prostate samples	MMP-9 polymorphism associated with increased risk of developing PrCa.
Sfar et al. [126]	2009	MMP-9	Yes—Prostate samples	Increased MMP-9 expression in PrCa cells co-cultured with dermal lymphatic microvascular endothelial cells.
Shah et al. [127]	2016	MMP-9	Yes—Prostate cell lines	MMP-2 polymorphism not associated with PrCa risk.
Shajarehpoo Salavati et al. [128]	2017	MMP-2	Yes—Prostate sample	MMP-2 polymorphism associated with PrCa risk.
Shi et al. [129]	2017	MMP-9	Yes—Prostate samples/Urine	MMP-9 detected in urine of PrCa patients.
Silva et al. [130]	2015	MMP-2	Yes—Prostate samples	Increased MMP-2 expression in reactive stroma. MMP-2 polymorphism associated with PrCa risk but not staging.
Srivastava et al. [131]	2012	MMP-2 *	Yes—Prostate samples	MMP-2 expression increased in higher PrCa grades. MMP-2a expressed in glandular epithelial cells and increased in PrCa samples with high Gleason score.
Stearns et al. [132]	1996	MMP-2	Yes—Prostate samples and prostate cell lines	MMP-2 localized to malignant cells, with increased MMP-2/TIMP-2 ratio associated with high grade and stage.
Stearns et al. [133]	1996	MMP-2	Yes—Prostate samples	Serum MMP-7 level significantly higher in docetaxel-resistant PrCa and associated with poor survival.
Still et al. [134]	2000	MMP-2 *	Yes—Prostate samples	MMP-2 expression increased in higher PrCa grades.
Szarvas et al. [135]	2018	MMP-7 (matrilysin)	Yes—Prostate samples	MMP-2 polymorphism not associated with PrCa risk. MMP-2a expressed in glandular epithelial cells and increased in PrCa samples with high Gleason score.
Table 1. Cont.

Authors	Year	MMP	PrCa Platform	Role
Trudel et al.	2008	MMP-2 *	Yes—Prostate samples	MMP-2 expression in basal epithelial cells and stromal cells associated with shorter disease-free survival.
Trudel et al.	2003	MMP-2	Yes—Prostate samples	MMP-2 expression in malignant cells associated with disease-free survival.
Trudel et al.	2010	MMP-9	Yes—Prostate samples	MMP-9 expression correlated with Gleason score but not disease-free survival.
Tsuchiya et al.	2009	MMP-1	Yes—Prostate samples	MMP-1 promotor polymorphisms (and increased expression) associated with pathological stage but not PrCa susceptibility or progression.
Upadhyay et al.	1999	MMP-2 *	Yes—Prostate samples	MMP-2 localization altered in PrCa. MMP-2 (but not MMP-9) expressed in malignant cells.
Vallbo et al.	2005	MMP-2 and 9	Yes—Rat	MMP-1 expression significantly increased in PrCa and associated with higher Gleason score, metastasis and pathological stage, as well as reduced overall and recurrence-free survival.
Wang et al.	2014	MMP-1	Yes—Prostate samples	MMP-1 expression significantly increased in PrCa and associated with higher Gleason score, metastasis and pathological stage, as well as reduced overall and recurrence-free survival.
Wiesner C	2007	MMP-9	Yes—Prostate cell lines and mice	Epithelial cells secreted little MMP-2 or MMP-9, whereas pro-MMP-2 (but not MMP-9) secreted by stromal cells.
Wilson et al.	2002	MMP-2 and 9	Yes—Prostate samples and prostate cell lines	Expression of MMP-2 and 9 increased in malignant samples.
Wilson et al.	1993	MMP	Yes—Prostate cell lines and mice	MMP isoforms differentially altered in PrCa. Increased expression of MMP-2&9 in high grade samples.
Wood et al.	1997	MMP-2 and 9 *	Yes—Prostate samples	MMP-7 expression elevated in PrCa.
Xie et al.	2016	MMP-7 (matrilysin)	Yes—Mice	MMP-2 polymorphisms increased in PrCa patients. MMP-2 expressed in PrCa, but not altered across different types.
Xu et al.	2010	MMP-9	Yes—Prostate cell lines and mice	Expression of MMP-9 (but not MMP-2) increased in malignant samples.
Yaykašli et al.	2014	MMP-2 *	Yes—Prostate samples	Expression of MMP-2 and 9 increased in PrCa. Expression of MMP-1 increased in more metastatic lines. Ablation of MMP-1 decreased invasion and migration. Expression of MMP-26 (but not MMP-9) increased in PrCa. Blocking of either reduced invasion.
Zellweger et al.	2005	MMP-2	Yes—Prostate samples	Expression of MMP-1 increased in more metastatic lines. Ablation of MMP-1 decreased invasion and migration. MMP-2 expressed in stromal cells and MMP-7 expressed in epithelial cells. Differential expression between cell lines.
Zhang et al.	2002	MMP-2 and 7 *	Yes—Prostate samples and prostate cell lines	Expression of MMP-9 (but not MMP-2) increased in malignant samples.
Zhang et al.	2004	MMP-2 and 9	Yes—Prostate samples and prostate cell lines	MMP-1, 2 and 9 expression significantly higher in PrCa. MMP-2 expression correlated with TMN grade and Gleason score.
Zhang et al.	2008	MMP-2 and 9	Yes—Prostate samples and prostate cell lines	MMP-2 expression enhanced when PrCa co-cultured.
Zhao et al.	2018	MMP-1	Yes—Prostate cell lines	Expression of MMP-1 increased in more metastatic lines. Ablation of MMP-1 decreased invasion and migration. Expression of MMP-26 (but not MMP-9) increased in PrCa. Blocking of either reduced invasion.
Zhong et al.	2008	MMP-1, 2 and 9	Yes—Prostate samples	MMP-2 expression enhanced when PrCa co-cultured.
Zhu et al.	1999	MMP-2 and 9	Yes—Prostate cell lines	MMP-2 expression enhanced when PrCa co-cultured.

* Included in at least one other table.

The strongest evidence for protumorigenicity relates to MMP-9. Multiple publications have identified an increased expression in PrCa [59,61,78,83,109,113,129,153,156], including positive associations with more advanced PrCa [67,75,84,103] and, specifically, with higher grade/stage [26,34,53,92,138] and enhanced metastatic properties [20,21,58,65,85,146], as
well as increased recurrence [92,102] and poorer prognosis [35,77,89]. Others show no association [24,47,48,52,118], and a small number show negative associations [25,31,40] with PrCa progression, indicating that MMP-9 is not universally important. However, functional studies serve to confirm its significant role, particularly in PrCa spreading, with MMP-9 ablation repeatedly shown to decrease its invasion and/or migration [57,87,100,148]. Interestingly, no differences in tumorigenesis were observed in a mouse MMP-9 knockout model [98], suggesting that expression within the tumor is important for this enzyme.

Many studies similarly showed an increased expression of MMP-2 in PrCa [49,53,59,61,62,91,150,153,156]. This also generally correlated with more advanced PrCa [32,75,84,92,94,119,132,133,141,146], including metastatic disease [54,69], as well as increased risk [47] and decreased survival [35,52,136]. In contrast, other publications showed no association [67,79,97] or a negative association [52,82,83,112,115]. In this case, a mouse MMP-2 knockout model exhibited reduced tumor burden [84], suggesting expression within the tumor is not necessarily essential for MMP-2.

Several publications have also demonstrated increased MMP-7 in PrCa [34,56,73,84,99,104,147,151], including correlations with metastasis [106] and chemoresistance [135]. However, others have identified no change in expression in PrCa [42] or, indeed, a negative correlation with disease [52], including when examining the levels of the active form of this enzyme [29,101]. For MMP-7, gene polymorphisms may be important in terms of the risk of the disease [28] and recurrence [63], while the relative levels of the inhibitors may also influence the impact of MMP-7 on PrCa progression [60]. An enforced expression of MMP-7 in PrCa cells has been shown to mediate an increased invasion [110], while a mouse MMP-7 knockout model exhibited reduced tumor-induced osteolysis [88], indicating the source of this enzyme may not be critical.

For other MMPs, there was some limited evidence that they also may play a cancer-promoting role. This includes the association of expression with PrCa for MMP-3 [64,68,79,101], MMP-10 [90,115], MMP-23 [115] and MMP-25 [115], as well as MMP-26, for which some functional evidence also exists [155].

Finally, other MMPs appear to be less significantly involved in PrCa. Thus, most studies reported no association between PrCa and MMP-1 in terms of the expression [31,48,52,68,74,83], activation [29] or polymorphism [28,44,60,63,64,68,74,81,88,90,110,155]. However, other studies have reported associations between expression and PrCa [46], including grade/stage [105,139] and metastatic properties, with MMP-1 ablation shown to reduce invasion [154]. Similarly, MMP-13 expression has typically not been associated with PrCa [31,48,84,91,95], but some studies do provide evidence of this [50,52,70]. Publications investigating MMP-11 also range from identifying no correlation [91] to a negative correlation [83] to a positive correlation [45,48], while the only study on MMP-23 points toward a negative correlation [115].

2.2. Membrane-Tethered Matrix Metalloproteinases (MT-MMPs)

Thirty-four articles were identified detailed the role of membrane-type MMPs in PrCa (Table 2). The majority of these related to MT1-MMP (formerly MMP-14). There were conflicting reports about whether MT1-MMP was upregulated [38,65,158] or downregulated [78,112] in PrCa, which may be partially explained by studies describing its expression as being variable across the stages of PrCa progression [67,83,101,140], with PrCa cells eliciting altered MT1-MMP expression in surrounding noncancer cells [34,36,37,151]. However, functional studies have consistently shown MT1-MMP to contribute to a more invasive/migratory phenotype [158–162] and, potentially, tumor growth [163,164].
Authors	Year	MT-MMP	PrCa Platform	Role
Aalinkeel et al. [20]	2004	MT1- and MT4-MMP *	Yes—Prostate cell lines	MT4-MMP expression higher in metastatic PrCa cell lines.
Bair et al. [159]	2005	MT1-MMP	Yes—Prostate samples and prostate cell lines	Ablation of MT1-MMP decreased migration and invasion.
Bonfil et al. [163]	2007	MT1-MMP	Yes—Prostate samples and prostate cell lines	MT1-MMP expressed in PrCa bone metastasis. Enforced expression of MT1-MMP enhanced tumor growth and osteolysis.
Cao et al. [158]	2008	MT1-MMP	Yes—Prostate cell lines	MT1-MMP expression increased in PrCa. Enforced expression of MT1-MMP induced epithelial to mesenchymal transition associated with metastatic ability.
Cardillo et al. [34]	2006	MT1-MMP *	Yes—Prostate samples	MT1-MMP expression increased in epithelial and stromal tissues in PrCa.
Castellana et al. [36]	2009	MT1-MMP *	Yes—Prostate cell lines	MT1-MMP protein levels high in PrCa microvesicles.
Cheng et al. [165]	2017	MT6-MMP	Yes—Prostate samples/Serum	MT6-MMP expression upregulated in serum and tissue in PrCa.
Chu et al. [166]	2006	MT3-MMP	Yes—Prostate cell lines and mice	MT3-MMP expressed in PrCa tumors, especially in lymph node metastases. MT1-MMP expressed in the stromal cells during co-culture with metastatic PrCa cells, extending into the ECM MT1-3-MMP (but not MT2-MMP) expressed highly, particularly processed versions, in aggressive PrCa cell lines. MT1-MMP expression increased in more invasive PrCa subline. High levels of MT3-MMP associated with advanced tumor stage and metastasis. Ablation of MT3-MMP decreased migration. MT1 and 5-MMP expressed in most PrCa cell lines and prostate tissue, with variable expression in metastatic lines and malignant tumors, with no correlation to tumor classification. MT6-MMP expression up-regulated in high grade prostate intraepithelial neoplasia but decreased with PrCa progression, with MT6-MMP expressing cells prone to apoptosis.
Coulson-Thomas et al. [37]	2010	MT1-MMP *	Yes—Prostate cell lines	MT1-MMP expression increased in more invasive PrCa subline.
Daja et al. [38]	2003	MT1-, MT2- and MT3-MMP *	Yes—Prostate cell lines	MT3-MMP expression upregulated in serum and tissue in PrCa.
Jennbacken et al. [65]	2006	MT1-MMP *	Yes—Prostate cell lines	MT1-MMP expression increased in more invasive PrCa subline.
Jiang et al. [167]	2017	MT3-MMP	Yes—Prostate samples and prostate cell lines	MT1-MMP expression increased in more invasive PrCa subline.
Jung et al. [168]	2003	MT1- and MT5-MMP	Yes—Prostate samples and prostate cell lines	MT1-MMP expression increased in more invasive PrCa subline.
Khamis et al. [169]	2016	MT6-MMP	Yes—Prostate samples and prostate cell lines	MT1-MMP expression increased in more invasive PrCa subline.
Latil et al. [78]	2003	MT1-MMP *	Yes—Patient samples	MT1-MMP expression decreased in PrCa tissue. MT6-MMP expression increased in high-grade prostatic intraepithelial neoplasia but reduced in invasive cancer.
Lee et al. [170]	2006	MT6-MMP	Yes—Prostate samples	MT1-MMP expression observed in PrCa, but no correlation with grade, stage, or serum PSA.
Lichtinghagen et al. [83]	2003	MT1-MMP *	Yes—Prostate samples	MT1-MMP expression observed in PrCa, but no correlation with grade, stage, or serum PSA.
Lin et al. [171]	2013	MT3-MMP	Yes—Prostate samples	MT3-MMP single nucleotide polymorphisms associated with PrCa aggressiveness.
Lin et al. [172]	2016	MT3-MMP	Yes—Prostate samples	MT3-MMP expression associated with PrCa aggressiveness.
Table 2. Cont.

Authors	Year	MT-MMP	PrCa Platform	Role
Littlepage et al. [84]	2010	MT1-MMP *	Yes—Mice	Broad MMP inhibitor reduced tumor burden. MT1-MMP ablation reduced susceptibility to immune-mediated killing. MT1-MMP expression increased in more metastatic PrCa lines. MT1-MMP expression decreased in PrCa but increased in benign prostatic hyperplasia.
Liu et al. [173]	2010	MT1-MMP	Yes—Prostate cell lines	MT1-MMP ablation reduced susceptibility to immune-mediated killing.
Nagakawa et al. [174]	2000	MT1-MMP	Yes—Prostate cell lines	MT1-MMP expression increased in more metastatic PrCa lines. MT1-MMP expression decreased in PrCa but increased in benign prostatic hyperplasia.
Neuhaus et al. [101]	2017	MT1-MMP *	Yes—Prostate samples	Enforced MT1-MMP expression increased invasion.
Nguyen et al. [161]	2011	MT1-MMP	Yes—Prostate cell lines	MT1-MMP expression decreased in PrCa but increased in benign prostatic hyperplasia.
Reis et al. [112]	2012	MT1-MMP *	Yes—Prostate samples	MT1-MMP under-expressed in PrCa. MT1-MMP expression increased invasion. MT5-MMP expression correlated positively with Gleason score. MT1-MMP expression enhanced tumor migration.
Riddick et al. [115]	2005	MT2-, MT5- and MT6-MMP *	Yes—Prostate samples	Enforced MT1-MMP expression enhanced tumor migration. MT1-MMP expression in apical regions in PIN and PrCa. Ablation of MT1-MMP enhanced cell migration. MT1-MMP localized in benign glands changing to cytoplasmic staining and then heterogenous as PrCa progressed. Increased vasculature when MT1-MMP co-localized with MMP-2.
Sabbota et al. [160]	2010	MT1-MMP	Yes—Prostate cell lines	MT1-MMP expression increased in tumor cells. Enforced expression increased tumor growth in mice. MT1-MMP inhibition decreased cell migration, but not growth. MT1 and 3-MMP expressed in stromal and epithelial cells in PrCa.
Sroka et al. [175]	2008	MT1-MMP	Yes—Prostate samples and prostate cell lines	MT1-MMP expression increased in tumor cells. Enforced expression increased tumor growth in mice. MT1-MMP inhibition decreased cell migration, but not growth. MT1 and 3-MMP expressed in stromal and epithelial cells in PrCa.
Udayakumar et al. [176]	2003	MT1-MMP	Yes—cells and patients	MT1-MMP expressed in stromal and epithelial cells in PrCa. MT6-MMP highly expressed in PrCa samples. Inhibition of MT6-MMP decreased invasion.
Upadhyay et al. [140]	1999	MT1-MMP *	Yes—Prostate samples	MT1-MMP expression increased in tumor cells. Enforced expression increased tumor growth in mice. MT1-MMP inhibition decreased cell migration, but not growth. MT1 and 3-MMP expressed in stromal and epithelial cells in PrCa.
Wang et al. [164]	2009	MT1-MMP	Yes—Prostate cell lines and mice	MT1-MMP expression increased in tumor cells. Enforced expression increased tumor growth in mice. MT1-MMP inhibition decreased cell migration, but not growth. MT1 and 3-MMP expressed in stromal and epithelial cells in PrCa.
Zarrabi et al. [162]	2011	MT1-MMP	Yes—Prostate cell lines	MT1-MMP expression increased in tumor cells. Enforced expression increased tumor growth in mice. MT1-MMP inhibition decreased cell migration, but not growth. MT1 and 3-MMP expressed in stromal and epithelial cells in PrCa.
Zhang et al. [151]	2002	MT1- and MT3-MMP *	Yes—Prostate samples and prostate cell lines	MT1-MMP expression increased in tumor cells. Enforced expression increased tumor growth in mice. MT1-MMP inhibition decreased cell migration, but not growth. MT1 and 3-MMP expressed in stromal and epithelial cells in PrCa.
Zhao et al. [155]	2003	MT6-MMP *	Yes—Prostate samples and prostate cell lines	MT1-MMP expression increased in tumor cells. Enforced expression increased tumor growth in mice. MT1-MMP inhibition decreased cell migration, but not growth. MT1 and 3-MMP expressed in stromal and epithelial cells in PrCa.

* Included in at least one other table.

A single study reported that MT2-MMP is downregulated in PrCa [38], but in contrast, MT3-MMP expression was increased and correlated with enhanced aggressiveness/metastatic potential [38,166,167,172]. Likewise, MT6-MMP expression was generally observed to be increased in PrCa [155,165], including one study that indicated a correlation with the PrCa grade [115]. The sole functional study suggested that this MT-MMP also makes a contribution to enhanced invasion [155].

2.3. Tissue Inhibitors of Metalloproteinases (TIMPs)

The TIMPs represent direct regulators of the metzincin superfamily—particularly, members of the MMP subgroup (Table 3). Fifty-three studies investigated the role of TIMPs in PrCa progression, which collectively indicated that these proteins typically act to suppress PrCa progression. For TIMP-1, the expression was generally reduced in PrCa [66,82,95,123,146,177], including specifically in the transition from benign to neoplastic disease [25,55,178], and was also decreased in the recurrent [113] and metastatic [179] forms of the disease. However, some studies reported increased expression in more advanced/aggressive/malignant forms [20,38,48,60,68]. This difference may in part be due to its known upregulation by inflammatory cytokines [180] that might independently impact
the expression in more advanced PrCa, as well as the mode of analysis, with the protein and mRNA levels not always in correlation [82].

Table 3. Studies on the Tissue Inhibitor of Metalloproteinases (TIMPs) in PrCa.

Authors	Year	TIMP	PrCa Platform	Role
Aalinkeel et al. [20]	2004	TIMP-1, 3 and 4 *	Yes—Prostate cell lines	TIMP-1 and 4 (but not TIMP-3) expressed higher in more metastatic PrCa cells. TIMP-3 mouse knockout exhibited enhanced PrCa tumor growth and invasion. TIMP-1 expression down-regulated in the transition to PrCa.
Adissu et al. [181]	2015	TIMP-3	Yes—Mice	
Ashida et al. [178]	2004	TIMP-1	Yes—Prostate samples	
Babichenko et al. [25]	2014	TIMP-1 *	Yes—Prostate samples	
Baker et al. [182]	1994	TIMP-1 and 2 *	Yes—Prostate samples	
Brehmer et al. [32]	2003	TIMP-1 and 2 *	Yes—Prostate samples	
Daja et al. [38]	2003	TIMP-1 *	Yes—Prostate cell lines	
De Cicco et al. [39]	2008	TIMP-1 and 2 *	Yes—Prostate samples/Serum	
Deng et al. [183]	2006	TIMP-3	Yes—Prostate cell lines	
Escaff et al. [48]	2010	TIMP-1, 2 and 3 *	Yes—Prostate samples	
Escaff et al. [49]	2011	TIMP-1, 2 and 3 *	Yes—Prostate samples	
Fernandez-Gomez et al. [52]	2011	TIMP-1, 2 and 3 *	Yes—Prostate samples	
Gong et al. [184]	2015	TIMP-1	Yes—Prostate samples and prostate cell lines	
Gravina et al. [55]	2013	TIMP-1, 2 and 3 *	Yes—Prostate cell lines	
Gustavsson et al. [185]	2008	TIMP-2 and 3 *	Yes—Prostate cell lines and mice	
Hashimoto et al. [60]	1998	TIMP-1 *	Yes—Prostate samples	
Hoque et al. [186]	2005	TIMP-3	Yes—Prostate samples/Urine	
Jerónimo et al. [187]	2004	TIMP-3	Yes—Prostate samples	
Jung et al. [66]	1998	TIMP-1 *	Yes—Prostate samples	
Jung et al. [68]	1997	TIMP-1 *	Yes—Prostate samples	
Kamińska et al. [188]	2019	TIMP-2	Yes—Prostate cell lines	
Authors	Year	TIMP	PrCa Platform	Role
---------------------	-------	------	--------------------------------------	--
Karan et al. [189]	2003	TIMP-3 *	Yes—Prostate samples and prostate cell lines	TIMP-3 not expressed in PrCa cell lines, only in benign prostatic hyperplasia. TIMP-1 expression downregulated in metastatic PrCa.
Kim et al. [179]	2012	TIMP-1 *	Yes—Prostate samples	TIMP-2 over-expressed in PrCa tissue.
Kuefer et al. [190]	2006	TIMP-2 *	Yes—Prostate samples and prostate cell lines	TIMP-3 promoter more highly methylated in PrCa versus controls. TIMP-2 administration decreased tumor growth.
Kwabi-Addo et al. [191]	2010	TIMP-3	Yes—Patient samples	
Lee et al. [192]	2012	TIMP-2	Yes—Prostate cell lines and mice	
Lein et al. [79]	1999	TIMP-1 *	Yes—Prostate samples	TIMP-1 plasma concentration significantly higher in PrCa and correlated with tumor stage.
Leshner et al. [80]	2016	TIMP-2 and 3 *	Yes—Prostate samples	TIMP-2 and 3 genes do not reposition during PrCa progression.
Lichtinghagen et al. [82]	2002	TIMP-1 *	Yes—Prostate samples	TIMP-1 protein, but not mRNA, decreased in PrCa tissue.
Lichtinghagen et al. [83]	2003	TIMP-1, 2 and 3 *	Yes—Prostate samples	Expression of TIMP-2 and 3 (but not TIMP-1) decreased in PrCa tissue, with TIMP-2 correlating with stage.
Liu et al. [177]	2005	TIMP-1	Yes—Prostate samples	TIMP-1 protein levels decreased in PrCa samples, being located in secretory cells.
Lokeshwar et al. [86]	1993	TIMP *	Yes—Prostate samples	TIMP expression high in normal, but not neoplastic prostate.
Morgia et al. [95]	2005	TIMP-1 *	Yes—Prostate samples	TIMP-1 expression reduced in patients with metastatic PrCa.
Oh et al. [193]	2011	TIMP-1	Yes—Prostate samples	Elevated plasma TIMP-1 correlated with decreased survival in metastatic PrCa.
Ozden et al. [105]	2013	TIMP-1 *	Yes—Prostate samples	TIMP-2 expression in normal glands associated with lower Gleason grade.
Pulukuri et al. [194]	2007	TIMP-2	Yes—Prostate samples and prostate cell lines	Re-expression of TIMP-2 reduced tumor invasion.
Reis et al. [112]	2012	TIMP-2 *	Yes—Prostate samples	Reduced TIMP-1 expression associated with recurrence, whereas TIMP-2 expression negative in all cases.
Reis et al. [113]	2015	TIMP-1 and 2 *	Yes—Prostate samples	TIMP-1 under-expressed in PrCa samples but over-expressed in benign samples.
Reis et al. [114]	2011	TIMP-1 *	Yes—Prostate samples	TIMP-3 and 4 expression negatively correlated with Gleason score.
Riddick et al. [115]	2005	TIMP-3 and 4 *	Yes—Prostate samples	TIMP-2 expression correlated with advanced PrCa.
Ross et al. [116]	2003	TIMP-2 *	Yes—Prostate samples	TIMP-1 expression in blood cells upregulated in PrCa.
Ross et al. [195]	2012	TIMP-1	Yes—Prostate samples	TIMP-1 expression reduced in metastatic PrCa subline.
Sehgal et al. [123]	2003	TIMP-1 *	Yes—Prostate cell lines	TIMP-3 expression down regulated in PrCa versus normal due to promoter hypermethylation.
Shinojima et al. [196]	2012	TIMP-3	Yes—Prostate samples	
Srivastava et al. [131]	2012	TIMP-2 *	Yes—Prostate specimens	TIMP-2 GC polymorphism associated with PrCa progression not initiation, as well as cancer risk.
Stearns et al. [180]	1995	TIMP-1 *	Yes—Prostate cell lines	TIMP-1 expressed in PrCa cells.
Still et al. [134]	2000	TIMP-2 *	Yes—Prostate specimens	MMP-2/TIMP-2 ratio increased in tumors of higher grade and stage.
Table 3. Cont.

Authors	Year	TIMP	PrCa Platform	Role
Trudel et al. [136]	2008	TIMP-2 *	Yes—Prostate specimens	Higher TIMP-2 expression associated with longer disease-free survival. TIMP-1 and 2 expressed in stromal inversely correlated with Gleason score, with reduced expression in metastatic PrCa samples. TIMP-3 promoter methylation low, and unchanged between PrCa and benign samples.
Wood et al. [146]	1997	TIMP-1 and 2 *	Yes—Prostate samples	TIMP-1 and 2 expressed in stromal inversely correlated with Gleason score, with reduced expression in metastatic PrCa samples. TIMP-3 promoter methylation low, and unchanged between PrCa and benign samples.
Yamanaka et al. [197]	2003	TIMP-3	Yes—Prostate samples	TIMP-2 polymorphism under-represented in PrCa patients. TIMP-1 and 2 expressed in both stromal and epithelial cells in PrCa, with no difference between fibroblasts and smooth muscle cells. Tendency for higher TIMP-2 expression in cells derived from malignant PrCa tissue.
Yaykaşlı et al. [149]	2014	TIMP-2 *	Yes—Prostate samples	TIMP-2 polymorphism under-represented in PrCa patients. TIMP-1 and 2 expressed in both stromal and epithelial cells in PrCa, with no difference between fibroblasts and smooth muscle cells. Tendency for higher TIMP-2 expression in cells derived from malignant PrCa tissue.
Zhang et al. [151]	2002	TIMP-1 and 2 *	Yes—Prostate samples and prostate cell lines	Enforced TIMP-3 expression inhibited proliferation, survival, migration, invasion, and adhesion of cells, with reduced incidence and size of tumors in mice.
Zhang et al. [198]	2010	TIMP-3	Yes—Prostate samples, Prostate cell lines and mice	Enforced TIMP-3 expression inhibited proliferation, survival, migration, invasion, and adhesion of cells, with reduced incidence and size of tumors in mice.

* Included in at least one other table.

For TIMP-2, the included studies typically reported a reduction in expression in PrCa [55,83,112,182,188], including a negative correlation of the expression to tumor grade [105,146] and metastasis [146], with promoter hypermethylation representing one mechanism by which the expression could be lost [188]. There were also a number of conflicting studies [116,151,185,190]. However, functional investigations have demonstrated that TIMP-2 administration reduced the tumor growth [192], and enforced TIMP-2 expression reduced the tumor invasion [194].

The publications on TIMP-3 provided a similar picture, with most showing a reduced expression in PrCa [20,55,189,196], including a negative correlation with the grade [115], and with promoter hypermethylation again representing a key mechanism [191], although a couple of studies were in disagreement with this interpretation [49,52]. The functional investigations were quite definitive, however, with the ablation of TIMP-3 in mice leading to enhanced tumor growth and invasion [181] and enforced expression decreasing the proliferation, survival, migration and invasion [198], as well as increasing apoptosis and chemosensitivity [183].

Finally, there were only two studies identified on TIMP-4, one of these demonstrating an increased expression in PrCa [20] and the other one indicating a negative correlation with the grade [115].

2.4. A Disintegrin and Metalloproteinases (ADAMs)

Twenty-two studies investigated members of the ADAM subgroup in the context of PrCa (Table 4). A number of these provided strong evidence of positive involvement in various aspects of the disease progression. Thus, ADAM-15 expression in PrCa positively correlated with the stage, grade, metastasis and recurrence, with its ablation decreasing both the migration and metastasis [190,199,200]. ADAM-17 expression was also shown to be significantly increased in PrCa and correlated with invasiveness, with ablation decreasing the proliferation and invasiveness [201,202]. ADAM-28 expression was similarly demonstrated to be higher in PrCa, with enforced expression enhancing the proliferation and migration [203].
Authors	Year	ADAM	PrCa Platform	Role
Arima et al. [204]	2007	ADAM-10	Yes—Prostate cell lines and prostate samples	ADAM-10 nuclear localization significantly increased in PrCa compared to benign and correlated with Gleason score. Ablation of ADAM-10 decreased cell proliferation. Serum and urine ADAM-12 levels significantly higher in PrCa patients compared to healthy controls, but no correlation with stage. ADAM-15 expression correlated to stage, Gleason grade, lymph node metastasis and PSA recurrence.
Bilgin Doğru et al. [205]	2014	ADAM-12	Yes—Prostate samples/urine	ADAM-8 expression correlated with higher Gleason score, but not PSA relapse-free survival. ADAM-9 expression significantly higher in PrCa compared to normal tissue, and associated with shortened PSA relapse-free survival, especially in androgen-ablated patients. ADAM-19 expression decreased in PrCa compared to normal tissue, and positively correlated with lower grade and reduced relapse. Over-expression of ADAM-19 reduced proliferation and migration, but increased cell death. Ablation of ADAM-9 increased apoptosis, increased sensitivity to radiation and chemotherapy, and induced epithelial phenotype.
Burdelski et al. [199]	2017	ADAM-15	Yes—Prostate samples	Expression of ADAM-17 (but not ADAM-9 or ADAM-10) increased in PrCa compared to benign samples. Expression of ADAM-15 significantly higher in PrCa and associated with increased Gleason score and angioinvasion. Enforced ADAM-17 expression increased cell proliferation. ADAM-9 expression reduced in castrate-resistant PrCa compared to hormone-sensitive PrCa, with low expression in castrate-resistant PrCa associated with shorter overall survival.
Fritzsche et al. [206]	2006	ADAM-8	Yes—Prostate samples	Expression of ADAM-9 increased proliferation in vivo and tumor growth in mice. ADAM-9, 10, 11, 15 and 17 expressed in PrCa cell lines, with androgens increasing expression of ADAM-9 and 10 while ADAM-17 was downregulated.
Fritzsche et al. [207]	2008	ADAM-9	Yes—Prostate samples	Expression of ADAM-9 increased proliferation in vivo and tumor growth in mice. ADAM-9, 10, 11, 15 and 17 expressed in PrCa cell lines, with androgens increasing expression of ADAM-9 and 10 while ADAM-17 was downregulated.
Hoyne et al. [208]	2016	ADAM-19	Yes—Prostate samples and prostate cell lines	Expression of ADAM-9 increased proliferation in vivo and tumor growth in mice. ADAM-9, 10, 11, 15 and 17 expressed in PrCa cell lines, with androgens increasing expression of ADAM-9 and 10 while ADAM-17 was downregulated.
Josson et al. [209]	2011	ADAM-9	Yes—cells	Expression of ADAM-9 increased proliferation in vivo and tumor growth in mice. ADAM-9, 10, 11, 15 and 17 expressed in PrCa cell lines, with androgens increasing expression of ADAM-9 and 10 while ADAM-17 was downregulated.
Karan et al. [189]	2003	ADAM-9, 10 and 17 *	Yes—cells and patients	Expression of ADAM-9 increased proliferation in vivo and tumor growth in mice. ADAM-9, 10, 11, 15 and 17 expressed in PrCa cell lines, with androgens increasing expression of ADAM-9 and 10 while ADAM-17 was downregulated.
Kuefer et al. [190]	2006	ADAM-15 *	Yes—Prostate samples and prostate cell lines	Expression of ADAM-9 increased proliferation in vivo and tumor growth in mice. ADAM-9, 10, 11, 15 and 17 expressed in PrCa cell lines, with androgens increasing expression of ADAM-9 and 10 while ADAM-17 was downregulated.
Lin et al. [201]	2012	ADAM-17	Yes—Prostate cell lines	Expression of ADAM-9 increased proliferation in vivo and tumor growth in mice. ADAM-9, 10, 11, 15 and 17 expressed in PrCa cell lines, with androgens increasing expression of ADAM-9 and 10 while ADAM-17 was downregulated.
Lin et al. [210]	2012	ADAM-9	Yes—Prostate samples	Expression of ADAM-9 increased proliferation in vivo and tumor growth in mice. ADAM-9, 10, 11, 15 and 17 expressed in PrCa cell lines, with androgens increasing expression of ADAM-9 and 10 while ADAM-17 was downregulated.
Liu et al. [211]	2013	ADAM-9	Yes—Prostate cell lines and mice	Expression of ADAM-9 increased proliferation in vivo and tumor growth in mice. ADAM-9, 10, 11, 15 and 17 expressed in PrCa cell lines, with androgens increasing expression of ADAM-9 and 10 while ADAM-17 was downregulated.
McCulloch et al. [212]	2000	ADAM-9, 10, 11, 15 and 17	Yes—Prostate cell lines	Expression of ADAM-9 increased proliferation in vivo and tumor growth in mice. ADAM-9, 10, 11, 15 and 17 expressed in PrCa cell lines, with androgens increasing expression of ADAM-9 and 10 while ADAM-17 was downregulated.
McCulloch et al. [213]	2004	ADAM-10	Yes—Prostate samples and prostate cell lines	Expression of ADAM-9 increased proliferation in vivo and tumor growth in mice. ADAM-9, 10, 11, 15 and 17 expressed in PrCa cell lines, with androgens increasing expression of ADAM-9 and 10 while ADAM-17 was downregulated.
Najy et al. [200]	2008	ADAM-15	Yes—Cells	Ablation of ADAM-15 reduced secretion in PrCa with additional basal cell in benign glands. Ablation of ADAM-15 reduced migration and adhesion in vitro and decreased bone metastasis in mice. ADAM-12 expressed in stromal cells adjacent to epithelial cells in PrCa. ADAM12 knock-out mice showed delayed tumor progression.
Peduto et al. [214]	2006	ADAM-12	Yes—Mice	ADAM-12 expressed in stromal cells adjacent to epithelial cells in PrCa. ADAM12 knock-out mice showed delayed tumor progression.
The results regarding ADAM-9 were more complex, with one study showing no change in expression in PrCa [189] and others showing an increased expression that correlates with malignancy and reduced survival [207,216] but another reporting a decrease in expression in castrate-resistant compared to androgen-sensitive PrCa [210]. However, the ablation of ADAM-9 reduced the proliferation and tumor growth and increased the differentiation, decreasing the metastatic ability while increasing the sensitivity to chemotherapeutic drugs [209]. For ADAM-10, the nuclear localization rather than expression was increased in PrCa, with ablation decreasing the growth [204]. For ADAM-12, the serum levels have been demonstrated to be increased in PrCa, with expression found in stromal tissue, and progression delayed in knockout mice [205,214].

The clear exception in this family was ADAM-19, which was found to be more highly expressed in normal tissue compared to PrCa and negatively correlated to the grade and relapse, with the enforced expression leading to decreased proliferation, metastatic ability and survival [208].

2.5. A Disintegrin and Metalloproteinase with Thrombospondin Motifs (ADAMTSs)

Eight studies were identified that related to the ADAMTS subgroup in PrCa progression (Table 5). The majority focused on ADAMTS-1, providing evidence of a tumor-suppressing function. ADAMTS-1 expression was typically decreased in PrCa samples, patients with metastatic disease, and a PrCa cell line variant with higher metastatic potential but elevated in slower-growing PrCa tumors in mice [65,179,219,220]. This was supported by functional data from the cells in which ADAMTS-1 expression had been modulated, which suggested a role in growth, although this appeared to depend on the cell line used [219]. ADAMTS-15 was also shown to be able to suppress tumor growth and migration, although it augmented survival [221]. Other members of the ADAMTS subgroup have also been shown to be expressed in PrCa cell lines, but their role in PrCa progression remains elusive [222].

Authors	Year	ADAM	PrCa Platform	Role
Peduto et al. [215]	2005	ADAM-9	Yes—Mice	ADAM-9 expression elevated in mouse PrCa model. ADAM-9 knock-out resulted in well differentiated tumors. Overexpression of ADAM-9 led to epithelial hyperplasia and intraepithelial neoplasia. ADAM-9 nuclear expression observed in hormone refractory PrCa and in relapse patients, with levels correlated with the risk of relapse. ADAM-28 expression increased in PrCa samples compared to normal tissue and in PrCa cell lines. Over-expression of ADAM-28 stimulated proliferation and migration, whereas ablation of expression or activity reduced these phenotypes.
Pen et al. [216]	2012	ADAM-9	Yes—Prostate samples, prostate cell lines and mice	ADAM-9 nuclear expression observed in hormone refractory PrCa and in relapse patients, with levels correlated with the risk of relapse.
Rudnicka et al. [203]	2016	ADAM-28	Yes—Prostate samples and prostate cell lines	ADAM-9 expression increased in PrCa samples compared to normal tissue and in PrCa cell lines. Over-expression of ADAM-28 stimulated proliferation and migration, whereas ablation of expression or activity reduced these phenotypes.
Shigemura et al. [217]	2007	ADAM-9	Yes—Prostate cell lines	ADAM-9 expressed in AR-positive PrCa cells. ADAM-9 expression elevated in in malignant compared to benign prostate tissue. ADAM-9 expression correlated to transition to androgen-independence and cellular stress.
Sung et al. [218]	2006	ADAM-9	Yes—Prostate samples and prostate cell lines	ADAM-9 expression correlated to transition to androgen-independence and cellular stress.
Xiao et al. [202]	2012	ADAM-17	Yes—Prostate cell lines	ADAM-17 expression correlated with invasiveness. Enforced expression of ADAM-17 increased invasiveness, whereas ablation decreased invasiveness.

* Included in at least one other table.
Table 5. Studies on A Disintegrin and Metalloproteinase with Thrombospondin Motifs (ADAMTSs) in PrCa.

Authors	Year	ADAMTS	PrCa Platform	Role
Binder et al. [221]	2020	ADAMTS-15	Yes—Prostate samples, prostate cell lines and mice	ADAMTS-15 expressed and active in PrCa samples. Enforced ADAMTS-15 expression decreased migration and proliferation but increased survival in vitro and suppressed tumor growth in mice.
Cross et al. [222]	2005	ADAMTS-1, 4, 5, 9 and 15	Yes—Prostate cell lines	ADAMTS-1, ADAMTS-4, ADAMTS-5, ADAMTS-9 and ADAMTS-15 expressed in PrCa.
Gustavsson et al. [185]	2008	ADAMTS-1 *	Yes—Prostate cell lines and mice	ADAMTS-1 expression decreased in PrCa cell line with enhanced angiogenic and tumorigenic properties, compared to parent.
Gustavsson et al. [220]	2009	ADAMTS-1	Yes—Prostate samples	ADAMTS-1 expression decreased in prostate cancer cells compared to benign prostate glands. No correlation with Gleason score, but expression lower in patients with metastatic disease.
Gustavsson et al. [219]	2010	ADAMTS-1	Yes—Prostate cell lines and mice	ADAMTS-1 ablation decreased tumor growth, but in other PrCa cells enforced expression inhibited tumor growth.
Jennbacken et al. [65]	2009	ADAMTS-1	Yes—Prostate cell lines and mice	ADAMTS-1 expression increased in slow growing tumors in mice.
Kim et al. [179]	2012	ADAMTS-1 *	Yes—Prostate samples	ADAMTS-1 mRNA overexpressed in PrCa samples.
Molokwu et al. [223]	2010	ADAMTS-1 and 15	Yes—Prostate cell lines	ADAMTS-15 (but not ADAMTS-1) expressed in PrCa.

* Included in at least one other table.

3. Discussion

3.1. Overview

This study used a systematic-like review strategy to identify publications examining the role of metzincins in PrCa progression. While limited to articles in PUBMED and MEDLINE and those written in English, this approach was likely to yield the vast majority of relevant research publications. It is evident from a close examination of the 205 articles identified that the contributions made by members of the metzincin superfamily to PrCa disease progression are complex. For many individual members and, indeed, the entire Astracin family, there is currently no evidence of involvement. However, a significant number of metzincins are positively associated with PrCa, supported by functional evidence in a number of cases, while others were negatively associated with this disease. The positive associations were particularly strong with specific members of the MMP, MT-MMP and ADAM subgroups, while those within the ADAMTS subgroup or the important TIMP family of regulators were more likely to show negative associations.

3.2. Positive Associations

The clearest evidence for positive contributions to PrCa and its progression was for MMP-2, MMP-7, MMP-9, MT1-MMP, ADAM-15, ADAM-17 and ADAM-28, with supporting evidence for MMP-1, MT3-MMP, MT6-MMP and ADAM-9 (Tables 1, 2 and 4). This is underpinned by studies that have identified associations between the expression and PrCa, which, in the case of MMP-7 expression [60,63,73,88,99,104,106,110,135,147] and ADAM-15 expression [190,199,200], correlated with the pathological stage and poorer outcomes for patients. This was supported by functional analyses that consistently identified enhancements in the proliferation, invasion/spread and metastasis/migration facilitated...
by them [56,106,110,200] (Figure 2). This identified these specific metzincins as likely tumor-promoting factors and so represented the obvious candidates as disease biomarkers or as potential targets for therapeutic agents.

Figure 2. Metzincins and their regulators in prostate cancer. Schematic representation of prostate cancer progression highlighting the key cellular functions that are modulated by the indicated metzincin superfamily members, along with the regulatory Tissue Inhibitor of Metalloproteinase (TIMP) proteins (green: Lumen, orange: Luminal cells, purple: Basal cells, and blue: Basement membrane).

3.3. Negative Associations

The strongest evidence for negative contribution to PrCa is for TIMP-2 and TIMP-3, as well as ADAM-19, ADAMTS-1 and ADAMTS-15 (Tables 3–5). Such a role for the ADAMTS proteins is somewhat counterintuitive, since these enzymes cleave ECM components like other metzincins [224], including those involved in PrCa disease progression [220,221]. However, the functional evidence points to these enzymes inhibiting key phenotypes, including proliferation and metastasis/migration, although not survival (Figure 2), presumably due to the different specificities for ECM components compared to other metzincins [220,221]. ADAM-19 was also implicated in the proliferation, metastasis/migration and survival (Figure 2), although this could relate to the known nonenzymatic functions for these enzymes. A negative role for the TIMP family was less surprising, given their primary role in the inhibition of MMP enzymes [225], with this impact extending across the entire gamut of relevant cell functions (Figure 2). These molecules can also be considered biomarker candidates to aid in prognosis. Therapeutic approaches targeting these proteins would likely be more limited, however, since they would need to augment, rather than inhibit, their function.

3.4. Mixed Associations

For other metzincins, the evidence for their involvement in PrCa was even more variable and contradictory, such as for MMP-11. Indeed, even those metzincins or regulators with consistent positive or negative correlations with PrCa were often reported in some studies to have no correlation or, indeed, the opposite correlation. This suggests a complex interplay between metzincins and PrCa.
3.5. Understanding the Complexity

In interpreting the variable and, at times, conflicting data, there are a number of factors that need to be considered. Firstly, different studies have utilized alternate approaches, such as analyzing the expression at the gene versus protein levels, that do not always correlate \[24,68,82,83,91,101,140,189\] or examining the enzymatic activity, which is not always reflective of metzincin expression \[119,226\], or, instead, considering the cellular localization \[140\]. Moreover, different samples have been analyzed in the literature, including plasma/serum, urine and tumor biopsies from PrCa patients, with several studies highlighting the differences between tissues \[119\], while the exact PrCa stage is also critical \[117\]. Other studies have employed PrCa cell lines and xenotransplanted tumors in mice, the relevance of which to human disease is assumed but not guaranteed. Secondly, it is clear that the factors controlling the expression of these enzymes and their regulators are complex. Thus, many metzincins have been demonstrated to be regulated by androgens \[107,213,217,223,227,228\], which can clearly be a complicating factor given the environment in which these cancers develop. In addition, expression is also impacted by oncogenes \[85,147\], inflammation and inflammatory cytokines \[99,229\], as well as angiogenic factors such as vascular endothelial factor \[216\], which are intrinsic features of any cancer. The cellular environment can further influence both expression \[127\] and activation \[143\]. Therefore, discerning the direction of causality between the expression and PrCa is not always straightforward.

In most cases, the effects of the metzincin superfamily member (or inhibitor) have been presumed to relate to the primary role for metzincins in regulating components of the ECM, which is known to be a particularly key element of metastasis \[9,13\]. However, which substrates are important? The cleavage of laminin \[159,176\], perlecan \[56\] and beta-4 integrin \[230\] have all been shown to correlate with the effects of protumorigenic metzincins, particularly on metastasis, whereas versican has been identified as a target of the antitumorigenic ADAMTS-15 \[221\]. Clearly, more research is required to understand this important aspect of metzincin pathobiology. Moreover, other roles should also be considered, especially given reports suggesting that nuclear localization may be important in some situations \[204,213,216\], with both ADAMs and ADAMTSs known to have nonenzymatic roles.

There also remains a lack of depth in our understanding of how metzincins are regulated at the protein level, including by other metzincins. TIMPs are clearly important for the negative regulation of MMPs \[114\]. TIMPs are typically downregulated as cancer progresses and can act as independent correlates of PrCa progression \[25,32,95,112,114,116,177–179\], especially when combined with MMP expression \[83,105,116\]. TIMP-2 and TIMP-3 have also been shown to inhibit ADAMTS-1 \[185\]. Are there equivalents for ADAM and other ADAMTS enzymes? In addition, MT1-MMP has been shown to exert its role at least in part through the direct activation of MMP-2 \[140,159\]. Is this crosstalk common across metzincins? More research is needed to gain further insight in this area.

4. Materials and Methods

This study represents a systematic-like review of the role of the metzincin superfamily of proteases in PrCa progression. The search terms were identified through a PCC (population, context and concept) format by the research team with keywords, Boolean operators, truncations and Medical Subject Headings (MeSH) used to develop a database search strategy in collaboration with a specialist health librarian. In reporting the review, the Preferred Reporting Items for Systematic Reviews and Meta-analysis (PRISMA) was utilized.

4.1. Search Strategy

A preliminary search was undertaken using MEDLINE and then a full search run through both the PUBMED and MEDLINE databases.
4.2. Inclusion and Exclusion Criteria

All studies were considered based on the inclusion and exclusion criteria shown in Table 6. Search terms for inclusion were “metzinzin”, “metalloproteases”, “metalloproteinase”, “MMP”, “TIMP”, “ADAM”, “ADAMTS”, “BMP1” or “meprin” and “neoplasm”, “neoplasia”, “cancer”, “tumor” or “cysts”. Reasons for exclusion after the full-text review are detailed in Figure 3. No restrictions were put on the date that articles were published.

Table 6. Search terms and inclusion/exclusion criteria used in this systematic-like review.
Population
Concept
Context

Figure 3. Preferred Reporting Items for Systematic Reviews and Meta-analysis (PRISMA) overview of the systematic-like review. Flow chart of the systematic-like review process undertaken, including the details of identification, screening and assessment for eligibility.
4.3. Study Selection and Data Extraction

Searches of the published literature were conducted by M.J.B. in collaboration with a specialist health librarian. Titles and abstracts were retrieved from the search and screened. Full-text article review and data extraction was then conducted, with the reasons for exclusion documented. The reference lists of the included articles were also reviewed to identify further potential articles for inclusion in the review.

4.4. Data Analysis

Database searching identified 10,443 publications. After duplicate removal, the titles and abstracts from 8327 were reviewed against the inclusion criteria. Full-text versions of 1248 articles were then further reviewed, identifying 205 articles for inclusion (Figure 2). The reasons for exclusion were a lack of focus on PrCa (n = 603) or the metzincin superfamily (n = 50) or the role of the metzincin superfamily family in PrCa progression (n = 98) or on the biology of the metzincin superfamily (n = 108) or not peer reviewed (n = 18) or being review articles (n = 173) or articles unable to be accessed or retracted (n = 11) or not in English (n = 3). The 205 included articles covered members of the Matrixin family subgroups MMP and MT-MMPs, the TIMPs and the Adamalysin family subgroups ADAMs and ADAMTSs, but there were none regarding the Astracin family subgroups BMP/TLL or Meprin.

Author Contributions: Conceptualization, M.J.B. and A.C.W.; methodology, M.J.B.; formal analysis, M.J.B.; data curation, M.J.B.; writing—original draft preparation, M.J.B. and writing—review and editing, M.J.B. and A.C.W. Both authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Acknowledgments: The authors would like to acknowledge and thank Rebecca Muir for her assistance with the search strategy.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Rawla, P. Epidemiology of prostate cancer. World J. Oncol. 2019, 10, 63–89. [CrossRef] [PubMed]
2. Sung, H.; Ferlay, J.; Siegel, R.L.; Laversanne, M.; Soerjomataram, I.; Jemal, A.; Bray, F. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2020. [CrossRef]
3. Saraon, P.; Drabovich, A.P.; Jarvi, K.A.; Diamandis, E.P. Mechanisms of androgen-independent prostate cancer. EJIFCC 2014, 25, 42–54.
4. Descotes, J.-L. Diagnosis of prostate cancer. Asian J. Urol. 2019, 6, 129–136. [CrossRef]
5. Gomis-Rüth, F.X. Structural aspects of the metzincin clan of metalloendopeptidases. Mol. Biotechnol. 2003, 24, 157–202. [CrossRef]
6. Stöcker, W.; Bode, W. Structural features of a superfamily of zinc-endopeptidases: The metzincins. Curr. Opin. Struct. Biol. 1995, 5, 383–390. [CrossRef] [PubMed]
7. Stöcker, W.; Grams, F.; Reinemer, P.; Bode, W.; Baumann, U.; Gomis-Rüth, F.-X.; Mckay, D.B. The metzincins—Topological and sequential relations between the astacins, adamaslyn, serralyns, and matrixins (collagenases) define a super family of zinc-peptidases. Protein Sci. 1995, 4, 823–840. [CrossRef] [PubMed]
8. Huxley-Jones, J.; Clarke, T.K.; Beck, C.; Toubaris, G.; Robertson, D.L.; Boot-Handford, R.P. The evolution of the vertebrate metzincins; insights from Ciona intestinalis and Danio rerio. BMC Evol. Biol. 2007, 7, 63. [CrossRef] [PubMed]
9. Bonnans, C.; Chou, J.; Werb, Z. Remodelling the extracellular matrix in development and disease. Nat. Rev. Mol. 2014, 15, 786–801. [CrossRef]
10. Lu, P.; Takai, K.; Weaver, V.M.; Werb, Z. Extracellular matrix degradation and remodeling in development and disease. Cold Spring Harb. Perspect. Biol. 2011, 3. [CrossRef] [PubMed]
11. Stamenkovic, I. Extracellular matrix remodelling: The role of matrix metalloproteinases. J. Pathol. 2003, 200, 448–464. [CrossRef]
12. Tang, B.L. ADAMTS: A novel family of extracellular matrix proteases. Int. J. Biochem. Cell Biol. 2001, 33, 33–44. [CrossRef]
13. Binder, M.J.; McCoombe, S.; Williams, E.D.; McCulloch, D.R.; Ward, A.C. The extracellular matrix in cancer progression: Role of hyalectan proteoglycans and ADAMTS enzymes. Cancer Lett. 2017, 385, 55–64. [CrossRef] [PubMed]
38. Daja, M.M.; Niu, X.; Zhao, Z.; Brown, J.M.; Russell, P.J. Characterization of expression of matrix metalloproteinases and tissue inhibitors of metalloproteinases in prostate cancer cell lines. *Prostate Cancer Prostatic Dis.* 2003, 6, 15–26. [CrossRef]

39. De Cicco, C.; Ravasi, L.; Zorzino, L.; Sandri, M.T.; Botteri, E.; Verweij, F.; Granchi, D.; de Cobelli, O.; Paganeli, G. Circulating levels of VCAM and MMP-2 may help identify patients with more aggressive prostate cancer. *Curr. Cancer Drug Targets* 2008, 8, 199–206. [CrossRef] [PubMed]

40. Di Carlo, A.; Mariano, A.; Terracciano, D.; Ferro, M.; Montanaro, V.; Marsicano, M.; Di Lorenzo, G.; Altieri, V.; Macchia, V. Matrix metalloproteinase-2 and -9 in the urine of prostate cancer patients. *OncoL. Rep.* 2010, 24, 3–8. [CrossRef] [PubMed]

41. Dong, Z.; Nemeth, J.A.; Cher, M.L.; Palmer, K.C.; Bright, R.C.; Fridman, R. Differential regulation of matrix metalloproteinase-9, tissue inhibitor of metalloproteinase-1 (TIMP-1) and TIMP-2 expression in co-cultures of prostate cancer and stromal cells. *Int. J. Cancer* 2001, 93, 507–515. [CrossRef] [PubMed]

42. Reis, S.T.; Pontes, J.; Villanova, F.E.; Borra, P.M.d.A.; Antunes, A.A.; Dall’oglio, M.F.; Srougi, M.; Leite, K.R.M. Genetic polymorphisms of matrix metalloproteinases: Susceptibility and prognostic implications for prostate cancer. *J. Urol.* 2009, 181, 2320–2325. [CrossRef] [PubMed]

43. Reis, S.T.; Villanova, F.E.; Andrade, P.M.; Pontes, J.; de Sousa-Canavez, J.M.; Sañudo, A.; Antunes, A.A.; Dall’oglio, M.F.; Srougi, M.; Moreira Leite, K.R. Matrix metalloproteinase-2 polymorphism is associated with prognosis in prostate cancer. *Urol. Oncol.* 2010, 28, 624–627. [CrossRef]

44. Reis, S.T.; Villanova, F.E.; de Andrade, P.M.; Pontes, J.; Silva, I.A.; Canavez, F.C.; Sañudo, A.; Srougi, M.; Leite, K.R.M. Polymorphisms of the matrix metalloproteinases associated with prostate cancer. *Mol. Med. Rep.* 2008, 1, 517–520. [CrossRef]

45. Eiro, N.; Fernandez-Gomez, J.; Sacristán, R.; Fernandez-Garcia, B.; Lobo, B.; Gonzalez-Suarez, J.; Quintas, A.; Escaf, S.; Vizoso, F.J. Stromal involvement in human prostate cancer development, progression and castration resistance. *J. Cancer Res. Clin. Oncol.* 2017, 143, 351–359. [CrossRef] [PubMed]

46. El-Chaer, W.K.; Tonet-Furioso, A.C.; Morais Junior, G.S.; Souza, V.C.; Avelar, G.G.; Henriques, A.D.; Franco Moraes, C.; Nóbrega, O.T. Serum Levels of Matrix Metalloproteinase-1 in Brazilian Patients with Benign Prostatic Hyperplasia or Prostate Cancer. *Curr. Gerontol. Geriatr. Res.* 2020, 2020, 6012102. [CrossRef]

47. Eryilmaz, I.E.; Aytaç Vuruskan, B.; Kaygısız, O.; Egeli, U.; Tunca, B.; Kordan, Y.; Cecener, G. RNA-based markers in biopsy cores with atypical small acinar proliferation: Predictive effect of T2E fusion positivity and MMP-2 upregulation for a subsequent prostate cancer diagnosis. *Prostate* 2019, 79, 195–205. [CrossRef] [PubMed]

48. Escaff, S.; Fernández, J.M.; González, L.O.; Suárez, A.; González-Reyes, S.; González, J.M.; Vizoso, F.J. Study of matrix metalloproteinases and their inhibitors in prostate cancer. *Br. J. Cancer* 2010, 102, 922–929. [CrossRef]

49. Escaff, S.; Fernández, J.M.; González, L.O.; Suárez, A.; González-Reyes, S.; González, J.M.; Vizoso, F.J. Comparative study of stromal metalloproteinases expression in patients with benign hyperplasia and prostate cancer. *J. Cancer Res. Clin. Oncol.* 2011, 137, 551–555. [CrossRef]

50. Escaff, S.; Fernández, J.M.; González, L.O.; Suárez, A.; González-Reyes, S.; González, J.M.; Vizoso, F.J. Collagenase-3 expression by tumor cells and gelatinase B expression by stromal fibroblast-like cells are associated with biochemical recurrence after radical prostatectomy in patients with prostate cancer. *World J. Urol.* 2011, 29, 657–663. [CrossRef]

51. Fávaro, W.J.; Hetzl, A.C.; Reis, L.O.; Ferreira, U.; Bills, A.; Cagnon, V.H. Periaccinar retraction clefting in nonneoplastic and neoplastic prostatic glands: Artifact or molecular involvement. *Pathol. Oncol. Res.* 2012, 18, 285–292. [CrossRef]

52. Fernandez-Gomez, J.; Escaf, S.; Gonzalez-Lopez, C.; Gonzalez-Reyes, S.; Gonzalez, J.; Miranda, O.; Vizoso, F.J. Relationship between metalloproteinase expression in tumour and stromal cells and aggressive behaviour in prostate carcinoma: Simultaneous high-throughput study of multiple metalloproteases and their inhibitors using tissue array analysis of radical prostatectomy samples. *Scand. J. Urol. Nephrol.* 2011, 45, 171–176. [CrossRef] [PubMed]

53. Festuccia, C.; Bologna, M.; Vicentini, C.; Tacconelli, A.; Miano, R.; Violini, S.; Mackay, A.R. Increased matrix metalloproteinase-9 secretion in short-term tissue cultures of prostatic tumor cells. *Int. J. Cancer* 1996, 69, 386–393. [CrossRef]

54. Gohji, K.; Fujimoto, N.; Hara, I.; Fujii, A.; Gotoh, A.; Okada, H.; Arakawa, S.; Kitazawa, S.; Miyake, H.; Kamidono, S.; et al. Matrix metalloproteinase-2 and its density in men with prostate cancer as a new predictor of disease extension. *Int. J. Cancer* 1998, 79, 96–1016. [CrossRef]

55. Gravina, G.L.; Mancini, A.; Ranieri, G.; Di Pasquale, B.; Marampon, F.; Di Clemente, L.; Ricevuto, E.; Festuccia, C. Phenotypic characterization of human prostatic stromal cells in primary cultures derived from human tissue samples. *Int. J. Oncol.* 2013, 42, 2116–2122. [CrossRef] [PubMed]

56. Grindel, B.J.; Martinez, J.R.; Pennington, C.L.; Muldoon, M.; Stave, J.; Chung, L.W.; Farach-Carson, M.C. Matrix/secretase/matrix metalloproteinase-7 (MMP7) cleavage of perlecan/HSPIG2 creates a molecular switch to alter prostate cancer cell behavior. *Matrix Biol.* 2014, 36, 64–76. [CrossRef] [PubMed]

57. Gupta, A.; Cao, W.; Sadashivaiah, K.; Chen, W.; Schneider, A.; Chellaiah, M.A. Promising noninvasive cellular phenotype in prostate cancer cells knocked down of matrix metalloproteinase 9. *Sci. World J.* 2013, 2013, 493689. [CrossRef]

58. Hamdy, F.C.; Fadlon, E.J.; Cottam, D.; Lawry, J.; Thurrell, W.; Silcohcs, P.B.; Anderson, J.B.; Williams, J.L.; Rees, R.C. Matrix metalloproteinase 9 expression in primary human prostate adenocarcinoma and benign prostatic hyperplasia. *Br. J. Cancer* 1994, 69, 177–182. [CrossRef]

59. Hanqing, Z.; Yajun, X.; Gongchen, L.; Yong, C. Immunohistochemical studies of the expression of matrix metalloproteinase-2 and metalloproteinase-9 in human prostate cancer. *J. Huazhong Univ. Sci. Technol.* 2003, 23, 373–374. [CrossRef]
60. Hashimoto, K.; Kihira, Y.; Matuo, Y.; Usui, T. Expression of matrix metalloproteinase-7 and tissue inhibitor of metalloproteinase-1 in human prostate. J. Urol. 1998, 160, 1872–1876. [CrossRef]

61. Hetzl, A.C.; Fävaro, W.J.; Billis, A.; Ferreira, U.; Cagnon, V.H.A. Steroid hormone receptors, matrix metalloproteinases, insulin-like growth factor, and dystroglycans interactions in prostatic diseases in the elderly men. Microsc. Res. Tech. 2012, 75, 1197–1205. [CrossRef]

62. Incorvaia, L.; Badalamenti, G.; Rini, G.; Arcara, C.; Fricano, S.; Sferrazza, C.D.D.T.; Gebbia, N.; Leto, G. MMP-2, MMP-9 and activin A blood levels in patients with breast cancer or prostate cancer metastatic to the bone. Anticancer Res. 2007, 27, 1519–1525.

63. Jaboin, J.J.; Hwang, M.; Lopater, Z.; Chen, H.; Ray, G.L.; Perez, C.; Cai, Q.; Wills, M.L.; Lu, B. The matrix metalloproteinase-7 polymorphism rs10895304 is associated with increased recurrence risk in patients with clinically localized prostate cancer. Int. J. Radiat. Oncol. Biol. Phys. 2011, 79, 1330–1335. [CrossRef] [PubMed]

64. Jedrzo, D.; Orzechowska, M.; Hamouz, R.; Gorniak, K.; Bednarek, A.K. Markers of epithelial-to-mesenchymal transition reflect tumor biology according to patient age and Gleason score in prostate cancer. PLoS ONE 2017, 12. [CrossRef]

65. Jennbacken, K.; Gustavsson, H.; Welén, K.; Vallbo, C.; Damber, J.-E. Prostate cancer progression into androgen independence is associated with alterations in cell adhesion and invasivity. Prostate 2006, 66, 1631–1640. [CrossRef] [PubMed]

66. Jung, K.; Lein, M.; Ulbrich, N.; Rudolph, B.; Henke, W.; Schnorr, D.; Loening, S.A. Quantification of matrix metalloproteinases and tissue inhibitors of metalloproteinase in prostatic tissue: Analytical aspects. Prostate 1998, 34, 130–136. [CrossRef]

67. Jung, K.; Krell, H.-W.; Ortel, B.; Hasan, T.; Römer, A.; Schnorr, D.; Loening, S.A.; Lein, M. Plasma matrix metalloproteinase 9 as biomarker of prostate cancer progression in Dunning (Copenhagen) rats. Prostate 2003, 54, 206–211. [CrossRef] [PubMed]

68. Jung, K.; Nowak, L.; Lein, M.; Priem, F.; Schnorr, D.; Loening, S.A. Matrix metalloproteinases 1 and 3, tissue inhibitor of metalloproteinase-1 and the complex of metalloproteinase-1/tissue inhibitor in plasma of patients with prostate cancer. Int. J. Cancer 1997, 74, 220–223. [CrossRef]

69. Jurasz, P.; North, S.; Venner, P.; Radomski, M.W. Matrix metalloproteinase-2 contributes to increased platelet reactivity in patients with metastatic prostate cancer: A preliminary study. Thromb. Res. 2003, 112, 59–64. [CrossRef]

70. Kalantari, E.; Abolhasani, M.; Roudi, R.; Farajollahi, M.M.; Farhad, S.; Madjd, Z.; Askarian-Amiri, S.; Mohsenzadegan, M. Co-expression of TLR-9 and MMP-13 is associated with the degree of tumour differentiation in prostate cancer. Int. J. Exp. Pathol. 2019, 100, 123–132. [CrossRef] [PubMed]

71. Kaminski, A.; Hahe, J.C.; Haddouti, E.-M.; Florin, A.; Wellmann, A.; Wernert, N. Tumour-stroma interactions between metastatic prostate cancer cells and fibroblasts. Int. J. Mol. Med. 2006, 18, 941–950. [CrossRef]

72. Kanoh, Y.; Akahoshi, T.; Ohara, T.; Ohtani, N.; Mashiko, T.; Ohtani, S.; Egawa, S.; Baba, S. Expression of matrix metalloproteinase-2 and prostate-specific antigen in localized and metastatic prostate cancer. Anticancer Res. 2002, 22, 1813–1817.

73. Knox, J.D.; Wolf, C.; McDaniel, K.; Clark, V.; Loriot, M.; Bowden, G.T.; Nagle, R.B. Matrilysin expression in human prostate carcinoma. Mol. Carcinog. 1996, 15, 57–63. [CrossRef]

74. Koshida, K.; Konaka, H.; Imao, T.; Egawa, M.; Mizokami, A.; Namiki, M. Comparison of two in vivo models for prostate cancer: Orthotopic and intratrabecular inoculation of LNCaP or PC-3 cells. Int. J. Urol. 2004, 11, 1114–1121. [CrossRef] [PubMed]

75. Kuniyasu, H.; Troncoso, P.; Johnston, D.; Bucana, C.D.; Tahara, E.; Figler, I.J.; Pettaway, C.A. Relative expression of type IV Collagenase, E-cadherin, and vascular endothelial growth factor/vascular permeability factor in prostatectomy specimens distinguishes organ-confined from pathologically advanced prostate cancers. Clin. Cancer Res. 2000, 6, 2295–2308. [PubMed]

76. Kuniyasu, H.; Ukai, K.; Johnston, D.; Troncoso, P.; Figler, I.J.; Pettaway, C.A. The relative mRNA expression levels of matrix metalloproteinase to E-cadherin in prostate biopsy specimens distinguishes organ-confined from advanced prostate cancer at radical prostatectomy. Clin. Cancer Res. 2003, 9, 2185–2194. [PubMed]

77. Larsson, P.; Syed Khaja, A.S.; Semenas, J.; Wang, T.; Sarwar, M.; Dizeyi, N.; Simoulis, A.; Hedblom, A.; Wai, S.N.; Ódum, N.; et al. The functional interlink between AR and MMP9/VEGF signaling axis is mediated through PIP5K1α/pAKT in prostate cancer. Int. J. Cancer 2020, 146, 1686–1699. [CrossRef]

78. Latil, A.; Bièche, I.; Chène, L.; Laurendeau, I.; Berthon, P.; Cussenot, O.; Vidaud, M. Gene expression profiling in clinically localized prostate cancer: A four-gene expression model predicts clinical behavior. Clin. Cancer Res. 2003, 9, 5477–5485.

79. Lein, M.; Nowak, L.; Jung, K.; Laube, C.; Ulbricht, N.; Schnorr, D.; Loening, S.A. Metalloproteinases and tissue inhibitors of matrix-metalloproteinases in patients with prostate cancer and in prostate cancer tissue. Ann. N. Y. Acad. Sci. 1999, 878, 544–546. [CrossRef]

80. Leshner, M.; Devine, M.; Roloff, G.W.; True, L.D.; Misteli, T.; Meaburn, K.J. Locus-specific gene repositioning in prostate cancer. Mol. Biol. Cell 2016, 27, 236–246. [CrossRef] [PubMed]

81. Liao, C.H.; Wu, H.C.; Hu, P.S.; Hsu, S.W.; Shen, T.C.; Hsia, T.C.; Chang, W.S.; Tsai, C.W.; Bau, D.T. The association of matrix metalloproteinase-1 promoter polymorphisms with prostate cancer in Taiwanese patients. Anticancer Res. 2018, 38, 3907–3911. [CrossRef]

82. Lichtinghagen, R.; Musholt, P.B.; Lein, M.; Römer, A.; Rudolph, B.; Kristiansen, G.; Hauptmann, S.; Schnorr, D.; Loening, S.A.; Jung, K. Different mRNA and protein expression of matrix metalloproteinases 2 and 9 and tissue inhibitor of metalloproteinases 1 in benign and malignant prostate tissue. Eur. Urol. 2002, 42, 398–406. [CrossRef]

83. Lichtinghagen, R.; Musholt, P.B.; Stephan, C.; Lein, M.; Kristiansen, G.; Hauptmann, S.; Rudolph, B.; Schnorr, D.; Loening, S.A.; Jung, K. mRNA expression profile of matrix metalloproteinases and their tissue inhibitors in malignant and non-malignant prostate tissue. Anticancer Res. 2003, 23, 2617–2624. [PubMed]
84. Littlepage, L.E.; Sternlicht, M.D.; Rougier, N.; Phillips, J.; Gallo, E.; Yu, Y.; Williams, K.; Brenot, A.; Gordon, J.L.; Werb, Z. Matrix metalloproteinases contribute distinct roles in neuroendocrine prostate carcinogenesis, metastasis, and angiogenesis progression. *Cancer Res.* 2010, 70, 2224–2234. [CrossRef] [PubMed]

85. Liu, B.; Gu, X.; Huang, T.; Luan, Y.; Ding, X. Identification of TMPRSS2-ERG mechanisms in prostate cancer invasiveness: Involvement of MMP-9 and plexin B1. *Oncol. Rep.* 2017, 37, 201–208. [CrossRef]

86. Lokeshwar, B.L.; Selzer, M.G.; Block, N.L.; Gunja-Smith, Z. Secretion of matrix metalloproteinases and their inhibitors (tissue inhibitor of metalloproteinases) by human prostate in explant cultures: Reduced tissue inhibitor of metalloproteinase secretion by malignant tissues. *Cancer Res.* 1993, 53, 4493–4498. [PubMed]

87. London, C.A.; Sekhon, H.S.; Arora, V.; Stein, D.A.; Iversen, P.L.; Devi, G.R. A novel antisense inhibitor of MMP-9 attenuates angiogenesis, human prostate cancer cell invasion and tumorigenicity. *Cancer Gene Ther.* 2003, 10, 823–832. [CrossRef]

88. Lynch, C.C.; Hikosaka, A.; Acuff, H.B.; Martin, M.D.; Kawai, N.; Singh, R.K.; Vargo-Gogola, T.C.; Begtrup, J.L.; Peterson, T.E.; Fingleton, B.; et al. MMP-7 promotes prostate cancer-induced osteolysis via the solubilization of RANKL. *Cancer Cell* 2005, 7, 485–496. [CrossRef]

89. Marín-Aguilera, M.; Reig, Ò.; Lozano, J.J.; Jiménez, N.; García-Recio, S.; Erill, N.; Gaba, L.; Tagliapietra, A.; Ortega, V.; Carrera, G.; et al. Molecular profiling of peripheral blood is associated with circulating tumor cells content and poor survival in metastatic castration-resistant prostate cancer. *Oncotarget* 2015, 6, 10604–10616. [CrossRef]

90. Maruta, S.; Miyata, Y.; Sagara, Y.; Kanda, S.; Iwata, T.; Watanabe, S.-i.; Sakai, H.; Hayashi, T.; Kanetake, H. Expression of matrix metalloproteinase-10 in non-metastatic prostate cancer: Correlation with an imbalance in cell proliferation and apoptosis. *Oncol. Lett.* 2010, 1, 417–421. [CrossRef]

91. Medina-González, A.; Eiro-Díaz, N.; Fernández-Gómez, J.M.; Ovídio-González, L.; Jalón-Monzón, A.; Casas-Nebra, J.; Escafl-Barmadah, S. Comparative analysis of the expression of metalloproteases (MMP-2, MMP-9, MMP-11 and MMP-13) and the tissue inhibitor of metalloproteinase 3 (TIMP-3) between previous negative biopsies and radical prostatectomies. *Actas Urol. Exp.* 2020, 44, 78–85. [CrossRef]

92. Miyake, H.; Muramaki, M.; Kurahashi, T.; Takenaka, A.; Fujisawa, M. Expression of potential molecular markers in prostate cancer. Correlation with clinicopathological features in patients undergoing radical prostatectomy. *Urol. Oncol.* 2010, 28, 145–151. [CrossRef]

93. Montironi, R.; Fabris, G.; Lucarini, G.; Biagini, G. Location of 72-kd metalloproteinase (Type IV Collagenase) in untreated prostatic adenocarcinoma. *Pathol. Res. Pract.* 1995, 191, 1140–1146. [CrossRef]

94. Montironi, R.; Lucarini, G.; Castaldini, C.; Galluzzi, C.M.; Biagini, G.; Fabris, G. Immunohistochemical evaluation of type IV collagenase (72-kd metalloproteinase) in prostatic intraepithelial neoplasia. *Anticancer Res.* 1996, 16, 2057–2062.

95. Morgia, G.; Falsaperla, M.; Malaponte, G.; Madonia, M.; Indelicato, M.; Travali, S.; Mazzarino, M.C. Matrix metalloproteinases as diagnostic (MMP-13) and prognostic (MMP-2, MMP-9) markers of prostate cancer. *Urol. Res.* 2005, 33, 44–50. [CrossRef] [PubMed]

96. Moses, M.A.; Wiederschain, D.; Loughlin, K.R.; Zurakowski, D.; Lamb, C.C.; Freeman, M.R. Increased incidence of matrix metalloproteinases in urine of cancer patients. *Cancer Res.* 1998, 58, 1395–1399. [PubMed]

97. Muñoz, D.; Serrano, M.K.; Hernandez, M.E.; Haller, R.; Swanson, T.; Slaton, J.W.; Sinha, A.A.; Wilson, M.J. Matrix metalloproteinase and heparin-stimulated serine proteinase activities in post-prostate massage urine of men with prostate cancer. *Exp. Mol. Pathol.* 2017, 103, 300–305. [CrossRef] [PubMed]

98. Nabha, S.M.; Bonfil, R.D.; Yamamoto, H.A.; Belizi, A.; Wiesner, C.; Dong, Z.; Cher, M.L. Host matrix metalloproteinase-9 contributes to tumor vascularization without affecting tumor growth in a model of prostate cancer bone metastasis. *Clin. Exp. Metastasis* 2006, 23, 335. [CrossRef] [PubMed]

99. Nagle, R.B.; Knox, J.D.; Wolf, C.; Bowden, G.T.; Cress, A.E. Adhesion molecules, extracellular matrix, and proteases in prostate carcinoma. *J. Cell Biochem.* Suppl. 1994, 19, 232–237.

100. Nalla, A.K.; Gorantla, B.; Gondi, C.S.; Lakka, S.S.; Rao, J.S. Targeting MMP-9, uPAR, and cathepsin B inhibits invasion, migration and activates apoptosis in prostate cancer cells. *Cancer Gene Ther.* 2010, 17, 599–613. [CrossRef]

101. Neuhaus, J.; Schiffer, E.; Mannello, F.; Horn, L.-C.; Ganzer, R.; Stolzenburg, J.-U. Protease expression levels in prostate cancer tissue can explain prostate cancer-associated seminal biomarkers—an explorative concept study. *Int. J. Mol. Sci.* 2014, 15, 262195. [CrossRef]

102. Oguic, R.; Mozetic, V.; Cini Tešar, E.; Fučkar Ćupić, D.; Mustać, E.; Dordević, G. Matrix metalloproteinases 2 and 9 immunexpression in prostate carcinoma at the positive margin of radical prostatectomy specimens. *Pathol. Res. Int.* 2014, 2014, 262195. [CrossRef]

103. Ok Atilgan, A.; Özdemir, B.H.; Yılmaz Akçay, E.; Tepeoğlu, M.; Börek, P.; Dirim, A. Association between focal adhesion kinase and matrix metalloproteinase-9 expression in prostate adenocarcinoma and their influence on the progression of prostate adenocarcinoma. *Ann. Diagn. Pathol.* 2020, 45, 151480. [CrossRef]

104. Ouyang, X.S.; Wang, X.; Lee, D.T.; Tao, S.W.; Wong, Y.C. Up-regulation of TRPM-2, MMP-7 and ID-1 during sex hormone-induced prostate carcinogenesis in the Noble rat. *Carcinogenesis* 2001, 22, 965–973. [CrossRef]

105. Özdin, M.; Saygin, C.; Uzunslan, D.; Oral, B.; Durak, H.; Aki, H. Expression of MMP-1, MMP-9 and TIMP-2 in prostate carcinoma and their influence on prognosis and survival. *J. Cancer Res. Clin. Oncol.* 2013, 139, 1373–1382. [CrossRef]
106. Pajouh, M.S.; Nagle, R.B.; Breathnach, R.; Finch, J.S.; Brawer, M.K.; Bowden, G.T. Expression of metalloproteinase genes in human prostate cancer. J. Cancer Res. Clin. Oncol. 1991, 117, 144–150. [CrossRef]

107. Pang, S.T.; Flores-Morales, A.; Skoog, L.; Chuan, Y.C.; Nordstedt, G.; Pousette, A. Regulation of matrix metalloproteinase 13 expression by androgen in prostate cancer. Oncol. Rep. 2004, 11, 1187–1192. [CrossRef] [PubMed]

108. Pettaway, C.A.; Song, R.; Wang, X.; Sanchez-Ortiz, R.; Spiess, P.E.; Strom, S.; Troncoso, P. The ratio of matrix metalloproteinase to E-cadherin expression: A pilot study to assess mRNA and protein expression among African American prostate cancer patients. Prostate 2005, 68, 1467–1476. [CrossRef] [PubMed]

109. Pouyanfar, N.; Monabbati, A.; Shariﬁ, A.A.; Dianatpour, M. Expression levels of MMP9 and PIWIIL2 in prostate cancer: A case-control study. Clin. Lab. 2016, 62, 651–657. [CrossRef] [PubMed]

110. Powell, W.C.; Knox, J.D.; Navre, M.; Grogan, T.M.; Kittelson, J.; Nagle, R.B.; Bowden, G.T. Expression of the metalloproteinase matrixisin in DU-145 cells increases their invasive potential in severe combined immunodeﬁcient mice. Cancer Res. 1993, 53, 417–422. [PubMed]

111. Prior, C.; Guillen-Grima, F.; Robles, J.E.; Rosell, D.; Fernandez-Montero, J.M.; Agirre, X.; Catena, R.; Calvo, A. Use of a combination of biomarkers in serum and urine to improve detection of prostate cancer. World J. Urol. 2010, 28, 681–686. [CrossRef]

112. Reis, S.T.; Antunes, A.A.; Pontes-Junior, J.; Sousa-Canavez, J.M.d.; Dall’Oglio, M.F.; Piantino, C.B.; Cruz, J.A.S.d.; Morais, D.R.; Srougi, M.; Leite, K.R.M. Undereexpression of MMP-2 and its regulators, TIMP2, MT1-MMP and IL-8, is associated with prostate cancer. Int. Braz. J. Urol. 2012, 8, 167–174. [CrossRef]

113. Deng, S.T.; Viana, N.J.; Icrafe, A.; Pontes-Junior, J.; Dip, N.; Antunes, A.A.; Guimarães, V.R.; Santana, I.; Nahas, W.C.; Srougi, M.; et al. Loss of TIMP-1 expression and tumor recurrence in localized prostate cancer. Int. Braz. J. Urol. 2015, 41, 1088–1095. [CrossRef] [PubMed]

114. Reis, S.T.; Pontes-Junior, J.; Antunes, A.A.; de Sousa-Canavez, J.M.; Dall’Oglio, M.F.; Passerotti, C.C.; Abe, D.K.; Crippa, A.; da Cruz, J.A.; Teixeira, A.; Madrigal, R.; et al. MMP-9 overexpression due to TIMP-1 and RECK underexpression is associated with progression in prostate cancer. Int. J. Biol. Markers 2011, 26, 255–261. [CrossRef]

115. Riddick, A.C.; Shukla, C.J.; Pennington, C.J.; Bass, R.; Nuttall, R.K.; Hogan, A.; Sethia, K.K.; Ellis, V.; Collins, A.T.; Maitland, N.J.; et al. Identification of degradation components associated with prostate cancer progression by expression analysis of human prostatic tissues. Br. J. Cancer 2005, 92, 2171–2180. [CrossRef]

116. Ross, J.S.; Kaur, P.; Sheehan, C.E.; Fisher, H.A.G.; Kaufman, R.A.; Kallakury, B.V.S. Prognostic signiﬁcance of matrix metalloproteinase 2 and tissue inhibitor of metalloproteinase 2 expression in prostate cancer. Mod. Pathol. 2003, 16, 198–205. [CrossRef] [PubMed]

117. Sakai, I.; Harada, K.-I.; Harada, I.; Eto, H.; Miyake, H. A comparison of the biological features between prostate cancers arising in the transition and peripheral zones. BJU Int. 2005, 96, 528–532. [CrossRef] [PubMed]

118. San Francisco, I.F.; DeWolf, W.C.; Peehl, D.M.; Olumi, A.F. Expression of transforming growth factor-beta 1 and growth in soft agar differentiate prostate carcinoma-associated fibroblasts from normal prostate fibroblasts. Int. J. Cancer 2004, 112, 213–218. [CrossRef] [PubMed]

119. Sauer, C.G.; Kappeler, A.; Späth, M.; Mayer, D.; Bleyl, U.; Grobholz, R. Expression and activity of matrix metalloproteinases-2 and -9 in serum, core needle biopsies and tissue specimens of prostate cancer patients. Virchows Archiv 2004, 444, 518–526. [CrossRef] [PubMed]

120. Schäfer, S.; Weibel, S.; Donat, U.; Zhang, Q.; Aguilar, R.J.; Chen, N.G.; Szalay, A.A. Vaccinia virus-mediated intratumoral expression of matrix metalloproteinase 9 enhances oncolysis of PC-3 xenograft tumors. BMC Cancer 2012, 12, 366. [CrossRef]

121. Schveigert, D.; Valuckas, K.P.; Kovalcis, V.; Ulys, A.; Chvatovic, G.; Didziapetriene, J. Significance of MMP-9 expression and matrix metalloproteinases-2 and -9 in serum, core needle biopsies and tissue specimens of prostate cancer patients. Anticancer Res. 2003, 23, 39–42. [PubMed]

122. Sereiss, V.; Abrate, A.; Siracusano, S.; Gesolfo, C.S.; Vella, M.; Di Maida, F.; Cangemi, A.; Cicero, G.; Barresi, E.; Sanfilippo, C.; et al. Identification of degradation products associated with prostate cancer progression by expression analysis of human prostatic tissues. Br. J. Cancer 2005, 92, 2171–2180. [CrossRef]

123. Sehgal, G.; Hua, J.; Bernhard, E.J.; Sehgal, I.; Thompson, T.C.; Muschel, R.J. Requirement for matrix metalloproteinase-9 (gelatinase B) expression in metastasis by murine prostate carcinoma. Am. J. Pathol. 1998, 152, 591–596. [PubMed]

124. Sehgal, I.; Forbes, K.; Webb, M.A. Reduced secretion of MMPs, plasminogen activators and TIMPS from prostate cancer cells derived by repeated metastasis. Anticancer Res. 2003, 23, 39–42. [PubMed]

125. Serretta, V.; Abrate, A.; Siracusano, S.; Gesolfo, C.S.; Vella, M.; Di Maida, F.; Cangemi, A.; Cicero, G.; Barresi, E.; Sanfilippo, C.; et al. Clinical and biochemical markers of visceral adipose tissue activity: Body mass index, visceral adiposity index, leptin, adiponectin, and matrix metalloproteinase-3. Correlation with Gleason patterns 4 and 5 at prostate biopsy. Urol Ann. 2018, 10, 280–286. [CrossRef] [PubMed]

126. Sfar, S.; Saad, H.; Mosbah, F.; Gabbouj, S.; Chouchane, L. TSP1 and MMP9 genetic variants in sporadic prostate cancer. Cancer Genet. Cytogenet. 2007, 172, 38–44. [CrossRef]

127. Sfar, S.; Saad, H.; Mosbah, F.; Chouchane, L. Combined effects of the angiogenic genes polymorphisms on prostate cancer susceptibility and aggressiveness. Mol. Biol. Rep. 2009, 36, 37–45. [CrossRef] [PubMed]

128. Shah, T.; Wildes, F.; Kakkar, S.; Artemov, D.; Bhujwalla, Z.M. Lymphatic endothelial cells actively regulate prostate cancer cell invasion. NMR Biomed. 2016, 29, 904–911. [CrossRef]
153. Zhang, S.; Qi, L.; Li, M.; Zhang, D.; Xu, S.; Wang, N.; Sun, B. Chemokine CXCL12 and its receptor CXCR4 expression are associated with perineural invasion of prostate cancer. *J. Exp. Clin. Cancer Res.* 2008, 27, 62. [CrossRef]

154. Zhang, S.; Zheng, C.; Yao, S.; Wang, Z.; Xu, L.; Yang, R.; Meng, X.; Wu, J.; Zhou, L.; Sun, Z. Proteomic analysis of human prostate cancer PC-3M-1E8 cells and PC-3M-2B4 cells of same origin but with different metastatic potential. *PLoS ONE* 2018, 13. [CrossRef] [PubMed]

155. Zhao, Y.G.; Xiao, A.Z.; Newcomer, R.G.; Park, H.I.; Kang, T.; Chung, L.W.; Swanson, M.G.; Zhou, H.E.; Kurhanewicz, J.; Sang, Q.X. Activation of pro-gelatinase B by endometase/matrilysin-2 promotes invasion of human prostate cancer cells. *J. Biol. Chem.* 2003, 278, 15056–15064. [CrossRef] [PubMed]

156. Zhu, B.; Block, N.L.; Lokeshwar, B.L. Interaction between stromal cells and tumor cells induces chemoresistance and matrix metalloproteinase secretion. *Ann. N. Y. Acad. Sci.* 1999, 878, 642–646. [CrossRef]

157. Cao, J.; Chiarelli, C.; Richman, O.; Zarrabi, K.; Kozarek, P.; Zucker, S. Membrane type 1 matrix metalloproteinase induces epithelial-to-mesenchymal transition in prostate cancer. *J. Biol Chem.* 2008, 283, 6232–6240. [CrossRef] [PubMed]

158. Zarrabi, K.; Dufour, A.; Li, J.; Kuscu, C.; Pulksosi-Gross, A.; Zhi, J.; Hu, Y.; Sampson, N.S.; Zucker, S.; Cao, J. Inhibition of matrix metalloproteinase 14 (MMP-14)-mediated cancer cell migration. *J. Biol. Chem.* 2011, 286, 33167–33177. [CrossRef] [PubMed]

159. Bonfil, R.D.; Dong, Z.; Trindade Filho, J.C.; Sabbota, A.L.; Zhe, X.; Fridman, R.; Bonfil, R.D.; Cher, M.L. Shedding of RANKL by tumor-associated MT1-MMP activates Src-dependent prostate cancer cell migration. *Cancer Res.* 2010, 70, 5558–5566. [CrossRef] [PubMed]

160. Khamis, Z.I.; Iczkowski, K.A.; Man, Y.-G.; Bou-Dargham, M.J.; Ewing, S.L.; Pei, D. Increased aggressiveness of human prostate PC-3 tumor cells expressing cell surface localized membrane type-1 matrix metalloproteinase (MT1-MMP). *J. Androl.* 2009, 30, 259–274. [CrossRef]

161. Cheng, T.; Li, F.; Wei, R.; Lv, M.Q.; Zhou, Y.; Dai, Y.; Yuan, Y.; Jiang, G.Y.; Ma, D.; Gao, Q.L. MMP26: A potential biomarker for prostate cancer. *Oncology* 2003, 64, 642–646. [CrossRef]

162. Zhu, B.; Block, N.L.; Lokeshwar, B.L. Interaction between stromal cells and tumor cells induces chemoresistance and matrix metalloproteinase secretion. *Ann. N. Y. Acad. Sci.* 1999, 878, 642–646. [CrossRef]

163. Zhang, S.; Qi, L.; Li, M.; Zhang, D.; Xu, S.; Wang, N.; Sun, B. Chemokine CXCL12 and its receptor CXCR4 expression are associated with perineural invasion of prostate cancer. *J. Exp. Clin. Cancer Res.* 2008, 27, 62. [CrossRef]

164. Zarrabi, K.; Dufour, A.; Li, J.; Kuscu, C.; Pulksosi-Gross, A.; Zhi, J.; Hu, Y.; Sampson, N.S.; Zucker, S.; Cao, J. Inhibition of matrix metalloproteinase 14 (MMP-14)-mediated cancer cell migration. *J. Biol. Chem.* 2011, 286, 33167–33177. [CrossRef] [PubMed]

165. Bonfil, R.D.; Dong, Z.; Trindade Filho, J.C.; Sabbota, A.; Osenkovski, P.; Nabha, S.; Yamamoto, H.; Chinini, S.R.; Zhao, H.; Mobashery, S.; et al. Prostate cancer-associated membrane type 1-matrix metalloproteinase: A pivotal role in bone response and intraosseous tumor growth. *Am. J. Pathol.* 2007, 170, 2100–2111. [CrossRef]

166. Wang, X.; Wilson, M.J.; Slaton, J.W.; Sinha, A.A.; Ewing, S.L.; Pei, D. Increased aggressiveness of human prostate PC-3 tumor cells expressing cell surface localized membrane type-1 matrix metalloproteinase (MT1-MMP). *J. Androl.* 2009, 30, 259–274. [CrossRef]

167. Jiang, C.; Wang, J.; Dong, Z.; Trindade Filho, J.C.; Sabbota, A.; Osenkovski, P.; Nabha, S.; Yamamoto, H.; Chinini, S.R.; Zhao, H.; Mobashery, S.; et al. Prostate cancer-associated membrane type 1-matrix metalloproteinase: A pivotal role in bone response and intraosseous tumor growth. *Am. J. Pathol.* 2007, 170, 2100–2111. [CrossRef]

168. Cheng, T.; Li, F.; Wei, R.; Lv, M.Q.; Zhou, Y.; Dai, Y.; Yuan, Y.; Jiang, G.Y.; Ma, D.; Gao, Q.L. MMP26: A potential biomarker for prostate cancer. *Oncology* 2003, 64, 642–646. [CrossRef]

169. Zhu, B.; Block, N.L.; Lokeshwar, B.L. Interaction between stromal cells and tumor cells induces chemoresistance and matrix metalloproteinase secretion. *Ann. N. Y. Acad. Sci.* 1999, 878, 642–646. [CrossRef]

170. Cao, J.; Chiarelli, C.; Richman, O.; Zarrabi, K.; Kozarek, P.; Zucker, S. Membrane type 1 matrix metalloproteinase induces epithelial-to-mesenchymal transition in prostate cancer. *J. Biol Chem.* 2008, 283, 6232–6240. [CrossRef] [PubMed]

171. Jiang, C.; Wang, J.; Dong, Z.; Trindade Filho, J.C.; Sabbota, A.; Osenkovski, P.; Nabha, S.; Yamamoto, H.; Chinini, S.R.; Zhao, H.; Mobashery, S.; et al. Prostate cancer-associated membrane type 1-matrix metalloproteinase: A pivotal role in bone response and intraosseous tumor growth. *Am. J. Pathol.* 2007, 170, 2100–2111. [CrossRef]

172. Liu, A.Y.; Zhang, H.U.I.; Sorensen, C.M.; Diamond, D.L. Analysis of prostate cancer by proteomics using tissue specimens. *J. Urol.* 2005, 173, 73–78. [CrossRef]
178. Ashida, S.; Nakagawa, H.; Katagiri, T.; Furihata, M.; iiizumi, M.; Anazawa, Y.; Tsunoda, T.; Takata, R.; Kasahara, K.; Miki, T.; et al. Molecular features of the transition from prostatic intraepithelial neoplasia (PIN) to prostate cancer: Genome-wide gene-expression profiles of prostate cancers and PINs. Cancer Res. 2004, 64, 5963–5972. [CrossRef]

179. Kim, Y.; Ignatchenko, V.; Yao, C.Q.; Kalatskaya, I.; Nyalwidhe, J.O.; Lance, R.S.; Gramolini, A.O.; Troyer, D.A.; Stein, L.D.; Boutros, P.C.; et al. Identification of differentially expressed proteins in direct expressed prostatic secretions of men with organ-confined versus extracapsular prostate cancer. Mol. Cell Proteomics 2012, 11, 1870–1884. [CrossRef]

180. Stearns, M.E.; Wang, M.; Stearns, M. II-10 blocks collagen IV invasion by “invasion stimulating factor” activated PC-3 ML cells: Upregulation of TIMP-1 expression. Oncol. Res. 1995, 7, 157–163.

181. Adissu, H.A.; McKerlie, C.; Di Grappa, M.; Waterhouse, P.; Xu, Q.; Fang, H.; Khokha, R.; Wood, G.A. Timp3 loss accelerates tumour invasion and increases prostate inflammation in a mouse model of prostate cancer. Prostate 2015, 75, 1831–1843. [CrossRef] [PubMed]

182. Baker, T.; Tickle, S.; Wasan, H.; Docherty, A.; Isenberg, D.; Waxman, J. Serum metalloproteinases and their inhibitors: Markers for malignant potential. Br. J. Cancer 1994, 70, 506–512. [CrossRef]

183. Deng, X.; Bhagat, S.; Dong, Z.; Mullins, C.; Chinni, S.R.; Cher, M. Tissue inhibitor of metalloproteinase-3 induces apoptosis in prostate cancer cells and confers increased sensitivity to paclitaxel. Eur. J. Cancer 2006, 42, 3267–3273. [CrossRef] [PubMed]

184. Gong, Y.; Chippada-Venkata, U.D.; Galsky, M.D.; Huang, J.; Oh, W.K. Elevated circulating tissue inhibitor of metalloproteinase 1 (TIMP-1) levels are associated with neuroendocrine differentiation in castration resistant prostate cancer. Prostate 2015, 75, 616–627. [CrossRef] [PubMed]

185. Gustavsson, H.; Jennbacken, K.; Welén, K.; Damber, J.-E. Altered expression of genes regulating angiogenesis in experimental androgen-independent prostate cancer. Prostate 2008, 68, 161–170. [CrossRef] [PubMed]

186. Hoque, M.O.; Topaloglu, O.; Begum, S.; Henrique, R.; Rosenbaum, E.; Criklinge, W.V.; Westra, W.H.; Sidransky, D. Quantitative methylation-specific polymerase chain reaction gene patterns in urine sediment distinguish prostate cancer patients from control subjects. J. Clin. Oncol. 2005, 23, 6569–6575. [CrossRef] [PubMed]

187. Jerónimo, C.; Henrique, R.; Hoque, M.O.; Mambo, E.; Ribeiro, F.R.; Varzim, G.; Oliveira, J.; Teixeira, M.R.; Lopes, C.; Sidransky, D. A quantitative promoter methylation profile of prostate cancer. Clin. Cancer Res. 2004, 10, 8472–8478. [CrossRef] [PubMed]

188. Kamiriska, K.; Bialkowska, A.; Kowalewski, J.; Huang, S.; Lewandowska, M.A. Differential gene methylation patterns in cancerous and non-cancerous cells. Oncol. Rep. 2019, 42, 43–54. [CrossRef] [PubMed]

189. Karan, D.; Lin, F.C.; Bryan, M.; Ringel, J.; Moniaux, N.; Lin, M.F.; Batra, S.K. Expression of ADAMs (a disintegrin and metalloproteinases) and TIMP3 (tissue inhibitor of metalloproteinase-3) in human prostatic adenocarcinomas. Int. J. Oncol. 2003, 23, 1365–1371. [CrossRef] [PubMed]

190. Kuefer, R.; Day, K.C.; Kleer, C.G.; Sabel, M.S.; Hofer, M.D.; Varambally, S.; Zorn, C.S.; Chinni, A.M.; Rubin, M.A.; Day, M.L. ADAM15 disintegrin is associated with aggressive prostate and breast cancer disease. Neoplasia 2006, 8, 319–329. [CrossRef]

191. Kwabi-Addo, B.; Wang, S.; Chung, W.; Tsunoda, T.; Takahashi, H.; Suzuki, H.; Ito, H.; Tsukino, H.; Katoh, T.; et al. Identification of differentially methylated genes in normal prostate tissues from African American and Caucasian men. Clin. Cancer Res. 2010, 16, 3539–3547. [CrossRef] [PubMed]

192. Lee, M.S.; Jung, J.-I.; Kwon, S.-H.; Lee, S.-M.; Morita, K.; Her, S. TIMP-2 fusion protein with human serum albumin potentiates anti-angiogenesis-mediated inhibition of tumor growth by suppressing MMP-2 expression. PLoS ONE 2012, 7. [CrossRef] [PubMed]

193. Oh, W.K.; Vargas, R.; Jacobus, S.; Leitzel, K.; Regan, M.M.; Hamer, P.; Pierce, K.; Brown-Shimer, S.; Carney, W.; Ali, S.M.; et al. Elevated plasma tissue inhibitor of metalloproteinase-1 levels predict decreased survival in castration-resistant prostate cancer patients. Cancer 2011, 117, 517–525. [CrossRef]

194. Pulukuri, S.M.; Patibandla, S.; Patel, J.; Estes, N.; Rao, J.S. Epigenetic inactivation of the tissue inhibitor of metalloproteinase-2 (TIMP-2) gene in human prostate tumors. Oncogene 2007, 26, 5229–5237. [CrossRef] [PubMed]

195. Ross, R.W.; Galsky, M.D.; Scher, H.I.; Magidson, J.; Wassmann, K.; Lee, G.S.; Katz, L.; Subudhi, S.K.; Anand, A.; Fleisher, M.; et al. A whole-blood RNA transcript-based prognostic model in men with castration-resistant prostate cancer: A prospective study. Lancet Oncol. 2012, 13, 1105–1113. [CrossRef]

196. Shinojima, T.; Yu, Q.; Huang, S.K.; Li, M.; Mizuno, R.; Liu, E.T.; Hoon, D.S.; Lessard, L. Heterogeneous epigenetic regulation of TIMP3 in prostate cancer. Epigenetics 2012, 7, 1279–1289. [CrossRef] [PubMed]

197. Yamanaka, M.; Watanabe, M.; Yamada, Y.; Takagi, A.; Murata, T.; Takahashi, H.; Suzuki, H.; Ito, H.; Tsukino, H.; Katoh, T.; et al. Altered methylation of multiple genes in carcinogenesis of the prostate. Int. J. Cancer 2003, 106, 382–387. [CrossRef]

198. Zhang, L.; Zhao, L.; Zhao, D.; Lin, G.; Guo, B.; Li, Y.; Liang, Z.; Zhao, X.J.; Fang, X. Inhibition of tumor growth and induction of apoptosis in prostate cancer cell lines by overexpression of tissue inhibitor of matrix metalloproteinase-3. Cancer Gene Ther. 2010, 17, 171–179. [CrossRef] [PubMed]

199. Burdelski, C.; Fitzner, M.; Hube-Magg, C.; Kluth, M.; Heumann, A.; Simon, R.; Krech, T.; Clauditz, T.; Büscheck, F.; Steurer, S.; et al. Overexpression of the a disintegrin and metalloproteinase ADAM15 is linked to a small but highly aggressive subset of prostate cancers. Neoplasia 2017, 19, 279–287. [CrossRef]

200. Naity, A.J.; Day, K.C.; Day, M.L. ADAM15 supports prostate cancer metastasis by modulating tumor cell–endothelial cell interaction. Cancer Res. 2008, 68, 1092–1099. [CrossRef]
201. Lin, P.; Sun, X.; Feng, T.; Zou, H.; Jiang, Y.; Liu, Z.; Zhao, D.; Yu, X. ADAM17 regulates prostate cancer cell proliferation through mediating cell cycle progression by EGFR/PI3K/AKT pathway. Mol. Cell Biochem. 2012, 359, 235–243. [CrossRef] [PubMed]

202. Xiao, L.-J.; Lin, P.; Lin, F.; Liu, X.; Qin, W.; Zou, H.-F.; Guo, L.; Liu, W.; Wang, S.-J.; Yu, X.-G. ADAM17 targets MMP-2 and MMP-9 via EGFR-MEK-ERK pathway activation to promote prostate cancer cell invasion. Int. J. Oncol. 2012, 40, 1714–1724. [CrossRef] [PubMed]

203. Rudnicka, C.; Mochizuki, S.; Okada, Y.; McLaughlin, C.; Leedman, P.J.; Stuart, L.; Epis, M.; Hoyne, G.; Boulou, S.; Johnson, L.; et al. Overexpression and knock-down studies highlight that a disintegrin and metalloproteinase 28 controls proliferation and migration in human prostate cancer. Medicine 2016, 95. [CrossRef] [PubMed]

204. Arima, T.; Enokida, H.; Kubo, H.; Kagara, I.; Matsuda, R.; Toki, K.; Nishimura, H.; Chiyomaru, T.; Tatarano, S.; Idesako, T.; et al. Nuclear translocation of ADAM-10 contributes to the pathogenesis and progression of human prostate cancer. Cancer Sci. 2007, 98, 1720–1726. [CrossRef]

205. Bilgin Do˘ gru, E.; Dizdar, Y.; Akşit, E.; Ural, F.; Şanlı, Ö.; Yasasever, V. EMMPRIN and ADAM12 in prostate cancer: Preliminary results of a prospective study. Tumour Biol. 2014, 35, 11647–11653. [CrossRef]

206. Fritzsche, F.R.; Jung, M.; Xu, C.; Rabien, A.; Schickthanz, H.; Stephan, C.; Dietel, M.; Jung, K.; Kristiansen, G. ADAM8 expression in prostate cancer is associated with parameters of unfavorable prognosis. Virchows Arch. 2006, 449, 628–636. [CrossRef]

207. Fritzsche, F.R.; Jung, M.; Tölle, A.; Wild, P.; Hartmann, A.; Wassermann, K.; Rabien, A.; Lein, M.; Dietel, M.; Pilarsky, C.; et al. ADAM9 expression is a significant and independent prognostic marker of PSA relapse in prostate cancer. Eur. Urol. 2008, 54, 1097–1108. [CrossRef] [PubMed]

208. Hoyne, G.; Rudnicka, C.; Sang, Q.-X.; Roycik, M.; Howarth, S.; Leedman, P.; Candy, P.; Matthews, V. Genetic and cellular studies highlight that a disintegrin and metalloproteinase 19 is a protective biomarker in human prostate cancer. BMC Cancer 2016, 16, 151. [CrossRef]

209. Josson, S.; Anderson, C.S.; Sung, S.Y.; Johnstone, P.A.; Kubo, H.; Hsieh, C.L.; Arnold, R.; Gururajan, M.; Yates, C.; Chung, L.W. Inhibition of ADAM9 expression induces epithelial phenotypic alterations and sensitizes human prostate cancer cells to radiation and chemotherapy. Prostate 2011, 71, 232–240. [CrossRef]

210. Lin, G.-W.; Yao, X.-D.; Ye, D.-W.; Zhang, S.-L.; Dai, B.; Zhang, H.-L.; Ma, C.-G. ADAM9 decreases in castration resistant prostate cancer and is a prognostic factor for overall survival. Chin. Med. J. 2012, 125.

211. Liu, C.-M.; Hsieh, C.-L.; He, Y.-C.; Lo, S.-J.; Liang, J.-A.; Hsieh, T.-F.; Josson, S.; Chung, L.W.K.; Hung, M.-C.; Sun, S.-Y. In vivo targeting of ADAM9 gene expression using lentivirus-delivered shRNA suppresses prostate cancer growth by regulating REG4 dependent cell cycle progression. PLoS ONE 2013, 8. [CrossRef] [PubMed]

212. McCulloch, D.R.; Harvey, M.; Herington, A.C. The expression of the ADAMs proteases in prostate cancer cell lines and their regulation by dihydrotestosterone. Mol. Cell Endocrinol. 2000, 167, 11–21. [CrossRef]

213. McCulloch, D.R.; Akl, P.; Samarutunga, H.; Herington, A.C.; Odorico, D.M. Expression of the disintegrin metalloproteinase, ADAM-10, in prostate cancer and its regulation by dihydrotestosterone, insulin-like growth factor I, and epidermal growth factor in the prostate cancer cell model LNCaP. Clin. Cancer Res. 2004, 10, 314–323. [CrossRef] [PubMed]

214. Peduto, L.; Reuter, V.E.; Sehara-Fujisawa, A.; Shaffer, D.R.; Scher, H.I.; Blobel, C.P. ADAM12 is highly expressed in carcinoma-associated stroma and is required for mouse prostate tumor progression. Oncogene 2006, 25, 5462–5466. [CrossRef] [PubMed]

215. Peduto, L.; Reuter, V.E.; Shaffer, D.R.; Scher, H.I.; Blobel, C.P. Critical function for ADAM9 in mouse prostate cancer. Cancer Res. 2005, 65, 9312–9319. [CrossRef] [PubMed]

216. Pen, C.C.; Liu, C.M.; Lin, C.C.; Lin, C.C.; Hsieh, T.F.; Josson, S.; He, Y.C.; Chung, L.W.; Lin, K.L.; Sung, S.Y. Combined dynamic alterations in urinary VEGF levels and tissue ADAM9 expression as markers for lethal phenotypic progression of prostate cancer. Chin. J. Physiol. 2012, 55, 390–397. [CrossRef]

217. Shigemura, K.; Sung, S.-Y.; Kubo, H.; Arnold, R.S.; Fujisawa, M.; Gotoh, A.; Zhu, H.E.; Chung, L.W.K. Reactive oxygen species mediate androgen receptor- and serum starvation-elicited downstream signaling of ADAM9 expression in human prostate cancer cells. Prostate 2007, 67, 722–731. [CrossRef]

218. Sung, S.Y.; Kubo, H.; Shigemura, K.; Arnold, R.S.; Logani, S.; Wang, R.; Konaka, H.; Nakagawa, M.; Mousses, S.; Amin, M.; et al. Oxidative stress induces ADAM9 protein expression in human prostate cancer cells. Cancer Res. 2006, 66, 9519–9526. [CrossRef]

219. Gustavsson, H.; Tesan, T.; Jennbacken, K.; Kuno, K.; Damber, J.; Welén, K. ADAMTS1 alters blood vessel morphology and TSP1 levels in LNCaP and LNcap-19 prostate tumors. BMC Cancer 2010, 10, 288. [CrossRef]

220. Gustavsson, H.; Wang, W.; Jennbacken, K.; Welén, K.; Damber, J.-E. ADAMTS1, a putative anti-angiogenic factor, is decreased in prostate cancer. Mol. Cell Biochem. 2012, 359, 288. [CrossRef]

221. Binder, M.J.; McCoombes, S.; Williams, E.D.; McCulloch, D.R.; Ward, A.C. ADAMTS-15 has a tumor suppressor role in prostate cancer. Biomolecules 2020, 10, 1. [CrossRef] [PubMed]

222. Cross, N.A.; Chandrasekharan, S.; Yokonya, N.; Fowles, A.; Hamdy, F.C.; Buttle, D.J.; Eaton, C.L. The expression and regulation of ADAMTS-1, -4, -5, -9, and -15, and TIMP-3 by TGFβ1 in prostate cells: Relevance to the accumulation of versican. Prostate 2005, 63, 269–275. [CrossRef] [PubMed]

223. Molokwu, C.N.; Adeniji, O.O.; Chandrasekharan, S.; Hamdy, F.C.; Buttle, D.J. Androgen regulates ADAMTS15 gene expression in prostate cancer cells. Cancer Invest. 2010, 28, 698–710. [CrossRef]

224. Rienks, M.; Barollobre-Barreiro, J.; Mayr, M. The emerging role of the ADAMTS family in vascular diseases. Circ. Res. 2018, 123, 1279–1281. [CrossRef]
225. Arpino, V.; Brock, M.; Gill, S.E. The role of TIMPs in regulation of extracellular matrix proteolysis. *Matrix Biol.* **2015**, *44–46*, 247–254. [CrossRef] [PubMed]

226. Wilson, M.J.; Jiang, A.; Wiehr, C.; Wang, X.; Sinha, A.A.; Pei, D. Limited processing of pro-matrix metalloprotease-2 (Gelatinase A) overexpressed by transfection in PC-3 human prostate tumor cells: Association with restricted cell surface localization of membrane-type matrix metalloproteinase-1. *J. Androl.* **2004**, *25*, 274–285. [CrossRef] [PubMed]

227. Liao, X.; Thrasher, J.B.; Pelling, J.; Holzbeierlein, J.; Sang, Q.X.; Li, B. Androgen stimulates matrix metalloproteinase-2 expression in human prostate cancer. *Endocrinology* **2003**, *144*, 1656–1663. [CrossRef]

228. Li, B.Y.; Liao, X.B.; Fujito, A.; Thrasher, J.B.; Shen, F.Y.; Xu, P.Y. Dual androgen-response elements mediate androgen regulation of MMP-2 expression in prostate cancer cells. *Asian J. Androl.* **2007**, *9*, 41–50. [CrossRef]

229. Montico, F.; Kido, L.A.; Hetzl, A.C.; Lorencini, R.M.; Cândido, E.M.; Cagnon, V.H.A. Antiangiogenic therapy effects on age-associated matrix metalloproteinase-9 (MMP-9) and insulin-like growth factor receptor-1 (IGFR-1) responses: A comparative study of prostate disorders in aged and TRAMP mice. *Histochem. Cell Biol.* **2014**, *142*, 269–284. [CrossRef]

230. Von Bredow, D.C.; Nagle, R.B.; Bowden, G.T.; Cress, A.E. Cleavage of β4 Integrin by Matrilysin. *Exp. Cell Res.* **1997**, *236*, 341–345. [CrossRef]