Production and Characterization of Exopolysaccharide from Novel Bacillus sp. M3 and Evaluation on Development Sub-Chronic Aluminum Toxicity Induced Alzheimer’s Disease in Male Rats

Mohsen M.S. Asker, Abeer Y. Ibrahim, Manal G. Mahmoud and Saher S. Mohamed

Article history
Received: 14-03-2015
Revised: 15-04-2015
Accepted: 06-05-2015

Abstract: The number of patients suffering from Alzheimer’s Disease (AD) all over the world is rising continually and becomes one of the biggest challenges for most societies throughout the world. The potential of peripheral biochemical markers as complementary tools in the neuron-phsychiatric evaluation of these patients has claimed further attention. The aims of our study were to isolate the bacteria that able to produce exo-polysaccharides and to characterize then exopolysaccharide producing strains by 16S rDNA sequencing method. The exopolysaccharide (MEPS) produced from a newly isolated Bacillus sp. M3 was obtained by ethanol precipitation (6.5 g L⁻¹ growth medium). The molecular masse of the MEPS was 1.45×10⁴ g/mol wherein FT-IR, UV-Vis spectral analyses revealed prevalence of characteristic belonged to α-type exopolysaccharide with a pyran ring. Further, HPLC analysis revealed its two monosaccharide constituents galacturonic acid and glucuronic acid at molar ratio of 1:1. The second stage was the evaluation of anti-intoxicated effect of MEPS against aluminum chloride induced Alzheimer in rat relevant to its effect on oxidative stress, antioxidant brain status, cholinergic markers and serum level of S100B protein together with polysaccharide sub-chronic toxicty at 1/10 LD₅₀ in both AD and control experimental animal groups to find their diagnostic value in this disease. MEPS ameliorated antioxidant status and reduced all oxidative stress parameters in brain tissue with decreasing S100B as compared to aluminum toxicant group with significant acetyl cholinesterase inhibition which increase acetylcholine concentration in brain tissue. No toxicity was observed for MEPS in sub-chronic toxicity study for 90 days in all rat organs or liver and kidney function.

Keywords: Bacillus sp. M3, Exopolysaccharides, Oxidative Stress, Alzheimer’s Disease

Introduction

Dysregulated activation of inflammation and oxidative stress has been recognized as one principal causes of inflammatory diseases such as rheumatoid arthritis, diabetes, Alzheimer’s disease and even cancers (Balkwill and Mantovani, 2012; Schacter and Weitzman, 2002). Exopolysaccharides (EPSs) contribute to various physiological activations in human beings as antitumor, antiviral, anti-inflammatory agents, cardio-vascular disease and antineurodegenerative disease specific Alzheimer’s disease (Calazans et al., 1997; Mahmoud et al., 2014).

Recently, major attention has been focused on polysaccharides from marine due their structural and functional diversity beside it is natural source compounds (Gutierrez et al., 2012). The novel active EPSs from marine bacteria hold a great potential...
application in biology and pharmacology such as antioxidant activity (Luo and Fang, 2008), immune stimulating effects (Xu et al., 2009), antitumor effects (Tong et al., 2009) and antiviral activity (Wang et al., 2007). Owing to the various functions of EPSs in marine ecosystem such as adhesion of bacteria, stabilization of biofilms and maintenance of symbiotic association with different species, investigation of EPSs producing marine bacteria was reviewed (Christensen et al., 1985; Decho, 1990; Holmstrom and Kjelleberg, 1999). The EPSs have many advantages, including non-toxic and safe, unique physical and chemical properties, simply separated from bacteria and can be produced at large scale (Czaczek and Myszka, 2007). Alzheimer’s Disease (AD) is a devastating neuron-degenerative disorder manifested by deterioration in memory and cognition, impairment in performing activities of daily living and many behavioral and neuro-psychiatric illnesses (Cummings, 2004). AD is the most common form of dementia in the old age. The percentage of persons with Alzheimer disease increases by a factor of two with every five years of age, so 1% of 60 year old and 30% of 85 year old have the Disease (Upadhaya et al., 2010). S100B is a calcium binding protein that in the nervous system is mainly concentrated in glial cells. It has both trophic and potentially toxic effects on neurons and neuritis, suggesting that S100B over expression plays an important role in the genesis of neuritic changes in amyloid-β plaques, in the progression of diffuse non-fibrillar amyloid deposits to neuritic forms and consequently in the progression of disease itself (Mark and Griffin, 2001). It is hypothesized that high concentrations of S100B act in the pathogenesis of neurodegenerative processes, possibly through oxidative stress mechanisms (Emanuele et al., 2011). Oxidative stress has been shown to be a prominent and early feature of vulnerable neurons in AD. Exposure to oxidative stress induces the accumulation of intracellular Reactive Oxygen Species (ROS), which in turn causes cell damage in the form of protein, lipid and DNA oxidations. Elevated ROS levels are associated with increased deposition of amyloid β and formation of senile plaques, a hallmark of AD brain. If enhanced ROS exceeds the basal level of cellular protective mechanisms, oxidative damage and cell death will result. Hence, substances that can reduce oxidative stress are thought as possible drug candidates for treatment or preventive therapy of neurodegenerative diseases such as AD (Nelson et al., 2009). Our study aims to isolate, partially characterize the exopolysa-carride from a newly isolated Bacillus sp. M3 (MEPS) and to evaluate anti-Alzheimer effect of MEPS in intoxicated animals with aluminum chloride with investigation of its sub-chronic toxicity in intoxicant and normal animals.

Materials and Methods

Isolation of Exopolysaccharides Producing Bacterial Strain

Marine sediment samples (5 g) collected from mangrove (Alexandra, Egypt) were suspended in 95 mL sterile water. Serial dilutions of water samples were plated on marine nutrient agar plates. After incubation at 30°C for 72 h, cultural logographic bacterial colony was obtained. Purification of single colonies was done by dilution streaking on marine nutrient agar plates. Single colony cultures were maintained on marine nutrient agar. Pure colonies of each facultative logographic isolates (capable of forming mucous and ropy colonies) were then inoculated into 50 mL of screening marine nutrient medium in 250-mL Erlenmeyer flask, incubated at 37°C in a rotary shaker at 150 rpm for 48 h. After centrifugation at 5000 rpm for 20 min, the supernatant was mixed with three volumes of chilled ethanol. The precipitate was collected by centrifugation at 5000 rpm for 20 min and the pellets were dried at 40°C under vacuum. EPS production was determined by quantifying the carbohydrate content of the pellets as glucose equivalents using the phenol-sulfuric acid method (Dubois et al., 1956).

Strain Identification

Morphological and Biochemical Studies

Morphological, physiological and biochemical characterization for the high EPS producing bacterium NRC27 were carried out. Characteristics of the isolate were compared with data from (Holt, 1986).

Phylogenic Studies

The identification was confirmed with phylogenic analysis. Genomic DNA from the NRC27 was isolated and quality was evaluated on 1.2% agarose gel, a single band of high Mw DNA has been observed. A Polymerase Chain Reaction was performed using ITS1-5’TCCGTAGGTTAACTTGCGG3’ and ITS4-5’TTCCTCCGCTTATTGATATGC3’ primers (Gardes and Bruns, 1993). A single discrete PCR amplicon band was observed when resolved on agarose gel. The PCR amplicon was purified to remove contaminants. Forward and reverse DNA sequencing reaction of PCR amplicon was carried and then performs 35 amplification cycles at 94°C or 45 sec, 55°C for 60 sec and 72°C for 60 sec. DNA fragments are amplified about 1,400 bp in the case of bacteria. Include a positive control (E. coli genomic DNA) and a negative control in the PCR. Sequencing was performed by using Big Dye terminator cycle sequencing kit (Applied BioSystems, USA). Sequencing products were resolved on an Applied Bio-systems model 3730XL automated DNA sequencing system (Applied BioSystems, USA). Data were submitted to

93
Production and Isolation of Exopolysaccharide

Inoculums was prepared by transferring one loop full of culture from marine nutrient slant to an 250 mL conical flask containing 50 mL seed medium consisting of culture from marine nutrient slant to an 250 mL Erlenmeyer flask containing 50 mL of medium consisting of (g/L) sucrose 20, peptone 4, yeast extract 2 and dissolved in 75% seawater, pH 7.0. The fermentation cultures were then incubated at 37°C on a rotary shaker incubator at 150 rpm for 18 h. After incubation, 3 mL of the seed culture was transferred into a 250 mL Erlenmeyer flask containing 50 mL of fermentation medium consisting of (g/L) sucrose 20, peptone 4, yeast extract 2 and dissolved in 75% seawater, pH 7.0. The fermentation cultures were then incubated at 37°C with shaking at 150 rpm for 3 days. The EPS sample was prepared from strain NRC-27 by adding 0.1 M NaOH and dialyzed three times (1000 mL) against flowing tap-water using dialysis tubing (MWCO 1000). The deproteinated solution through precipitation with 1, 2, 3 and 4 volume chilled ethanol, pH 7.0, was 50, 100, 200, 400, 800, 1600, 2000 and 2500 mg kg$^{-1}$ body weight. All groups were observed for any gross effect or mortality during 48 h. Death of half of the examined animals was observed at 2 g kg$^{-1}$ body weight. This study was approved by Medical Research Ethics Committee, National Research Centre, Egypt, under registration no. 11015.

Experimental Design

Adult male sparge dawely rats (150-180 g) were obtained from the Animal House of National Research Centre, Egypt. Rats were fed on standard diet and maintained under laboratory conditions, temperature controlled at 23±2°C, relative humidity 60±5% and light/dark cycles (12/12 h). Animal were housed in polypropylene cages, each cage was contained eight or seven rats adapted for one week before starting the experiment. Animals were divided into four groups each contained 15 rats and they were treated as follows:

- **Group I**: Rats received 1 mL saline solution for 120 days in an oral route, control group for Alzheimer and sub-chronic toxicity experiments.
- **Group II**: Rats received ALC$_1$ orally at 17 mg kg$^{-1}$ body weight for 30 days, served as positive intoxicant control group (Krasovskii et al., 1979).
- **Group III**: Rats received saline for 30 days and then received MEPS orally at 200 mg kg$^{-1}$ body weight.
weight for 90 days, served as vehicle control group and as sub-chronic toxicity group.

Group IV: Rats received AlCl3 orally at 17 mg kg⁻¹ body weight for 30 and then treated with MEPS (200 mg kg⁻¹ body weight) for 90 days.

At the end of experiment, rats fasted overnight and were subjected to anesthesia to facilitate collection of blood samples while whole brain of each rat was rapidly dissected and washed with isotonic saline and dried on filter paper. Brain of each rat was weighed and homogenized to give 10% (w/v) homogenate in ice cold sucrose at pH, 7.4. The homogenate was centrifuged at 4°C. The supernatant was stored at -80°C and were used in biochemical analyses including oxidative stress biomarker (nitric oxide concentration by method of Montgomery and Dymock, 1961), hydrogen peroxide concentration, reduced glutathione concentration and cholinesterase activity, kits were purchased from Quimica Clinica Aplicada S.A.) and S100B in sera was estimated by Enzyme Linked Immunoassay (ELISA), the kit was derived from Dia Sorin, USA according to Gao et al. (1997). Brain total protein conc. was measured for calculation of enzyme specific activity (Sedlack and Lindsay, 1968). The assessments were done by ELISA reader (Dynatech laboratories MRW micro plate reader, 2CXB2445).

Biochemical Assessment of Sub-Chronic Toxicity Study

Blood samples were collected from the retro orbital plexus, centrifuged at 3000 rpm for 10 min to separate sera. The liver enzymatic activity was determined according to the colorimetric method described by Hannig et al. (2009). Reduced glutathione concentration was measured spectrophotometrically at 405 nm by the method of Plancarte and Hernandez (2004), while protein concentration (g dL⁻¹) was determined according to Okutucu et al. (2007). Total lipid concentration (mg dL⁻¹) was estimate by method of Vatassery et al. (1981). In addition, kidney function was assessed by measuring creatinine concentration (mg dL⁻¹) according to Demirovic et al. (2009), uric acid concentration (mg dL⁻¹) by the method of Carolina et al. (2005) also urea concentration (mmol L⁻¹) was estimated according to Yoneyame et al. (2001).

Effect on Vital Organs

At the termination of polysaccharide treatment on 90th day, vital organs (heart, lungs, liver, kidneys, spleen and testis, male sex organs, were harvested from sacrificed rats. These were carefully examined for gross lesions and weighed (Precisa digital weighing balance, Type 300-9213/E 125A, Switzerland). The weight of each organ was standardized to 100 g body weight of each animal.

Hematological Assessment

Blood samples were collected from rats into Ethylene Diamine-Tetra Acetate (EDTA) bottles after super- ficially anesthetized. Collected samples were analyzed for determination of Packed Cell Volume (PCV) (Dacie and Lewis, 1975), Red Blood Cell (RBC) count, hemoglobin (Anonymous, 1965), total and differential White Blood Cell (WBC) count percentage using standard methods (Ghai, 1995).

Statistical Analysis

The results obtained were presented as mean ± SD while analysis of variance was performed by one way ANOVA procedure (SPSS 09.05).

Results and Discussion

Screening for Bacterial Strains Producer of Exopolysaccharides

Marine bacteria have become ever more popular and novel sources of EPSs. Although many known marine bacteria can produce EPSs, few of the EPSs are of biotechnological importance, so the search of EPSS that might have innovative applications is still of potential interest (Llamas et al., 2010). The promising strain was selected based on the development of mucoid morphology because it was one of the fundamental screenings for isolation of EPS producing bacteria (Inmaculada et al., 2010; Parthiban et al., 2014). A total of thirteen bacterial isolates collected from various marine samples and exhibiting mucoidal morphology on marine agar media were inoculated into shake flasks containing 50 mL of fermentation broth medium. Marine bacterial isolates were screened for their capacity to produce EPS. The highest yield of EPS (6.01 g L⁻¹ growth medium) was obtained by a marine bacterium isolated from a mangrove sample.

Taxonomical Studies

Morphological Characterization

Identification of bacterial isolate NRC27 was carried out according to a great variety of morphological, cultural, physiological and biochemical features. The
isolate NRC27 had short rod shape and was Gram-positive, aerobic, catalase and oxidase-positive. The bacterial diameter was ranged from 0.3 to 0.5 and 0.9 to 3 µm. The organism was able to grow over a range of pH (from 5.0 to 7.0). It grew at temperatures ranging from 25 to 50°C and the optimal temperature was 40°C. It had the ability to utilize many carbohydrates as a sole carbon source including lactose, sucrose, glucose, fructose, glycerol (Table 1). It was sensitive to Cephalothin and Macillinam. The identification was confirmed by molecular analyses based on 16S rDNA.

Molecular Characterization

A molecular technique was used to prove and further confirm the identification of the isolate NRC27 to the species level. The partial 16S rDNA sequence was determined and was compared to the GenBank databases in the National Center for Biotechnology Information (NCBI) (http://www.ncbi.nlm.nih.gov) using the BLASTN 2.2.6 program. This isolate was found belonging to the genus Bacillus sp. with 99% homology level as depicted in the phylogenetic tree analysis. The isolate was identified as Bacillus sp. M3 (Fig. 1). The sequence was submitted to GenBank in NCBI (http://www.ncbi.nlm.nih.gov/nuccore/JQ425073) with the accession number KP09417.

Isolation and Chemical Structural of MEPS

Many marine bacteria could produce EPSs, such as Paenibacillus polymyx, Edwardsiella tarda and Alteromonas (Guo et al., 2010). EPS production from Bacillus sp. M3 reached a maximum of 6.5 g of crude product per liter of growth medium after 3 day. The main fraction MEPS was obtained after fractionation with ethanol precipitation from the crude exopolysaccharide. The MEPS was collected for further analysis of structure and biological activity. It appeared as a white powder, with a negative response to the Bradford test. The fact that no absorption was detected by the UV spectra at both 260 and 280 nm indicated the absence of nucleic acids and protein. The monosaccharide of MEPS hydrolysate was determined by HPLC, wherein galacturonic acid: glucuronic acid: glucosamine:mannose was 1:1:1:1, respectively. FT-IR analysis showed a broadly stretched intense peak at around 3428 cm⁻¹ indicating the presence of O-H bonding. The strong absorption at 1649.8 cm⁻¹ was due to the stretching vibration of C = O and COO⁻. The absorptions around 1456.69 cm⁻¹ represented CH₃ and O-H bonding. The strong absorption at 1068.08 cm⁻¹ was dominated by glycosidic linkage υ(C–O–C)-stretching vibration (Sun et al., 1998). In addition, the band at 836.95 cm⁻¹ indicated the α-pyranose form of the glycosyl residue. Therefore, the IR analysis suggested that it was highly likely that the MEPS belonged to α-type heteropolysaccharide with a pyran ring (Cheng et al., 2008). The MEPS was analyzed by GPC. The MEPS in the GPC chromatogram (Fig. 2) was widely dispersed molecules polydispersity index (Mw/Mn) of the MEPS was 2.5, the ratio of weight average molecular weight to number average molecular weight) and had an overall weight average molecular weight (Mw) of 1.45×10⁶ g mol⁻¹ and number average molecular weight (Mn) of 5.7×10⁵ g mol⁻¹. The molecular weight of MEPS from Bacillus sp.1-450 was 2.2×10⁶ Da and the functional groups in the molecular chains of the EPS are important determinants for biological activity (Kumar et al., 2004).

Sub-Chronic Toxicity Study

Owing to the extensive use of aluminum in treatment of drinking water and industrial purposes accidental and/or prolonged exposure of both animals and human can lead to great economic losses in the animal wealth and toxicological hazards for human health. Heavy metal when consumed in considerable amount can result in damage or reduce mental and central nervous function, damage to blood composition, lung, kidneys, liver and other vital organs. Long term exposure may result in muscular and neurological disorder that mimic the AD, Parkinson’s disease and muscular dystrophy (Shafii et al., 2011). The safety and toxicity information of herbal medicine or natural are required prior to expanded clinical studies and to support the registration of herbal and/or natural product with drug control agency. Sub-chronic toxicity study was carried out to observe any progressive effect of MEPS administration through the experimental period as compared to negative control rats and AlCl₃-intoxicant rats. Administration of AlCl₃ showed significant enlargement in heart (0.42 g/100 g), liver (3.75 g/100 g) and spleen (0.39 g/100 g) as compared to control group (0.37, 3.10 and 0.3 g/100 g, respectively) while other organs, lung, testis and brain were shrank (0.50, 0.57

Characteristics	Bacterial isolate
Morphology	Gram-positive, short rods, non-spore forming
Motile	Non-motile
Cultural	Circular, smooth, mucous, white
Physiological	Aerobic, catalase positive, halophilic

Table 1. Morphological, cultural and physiological characteristics of the bacterial isolate
and 0.30 g/100 g, respectively) (Table 2). Administration of MEPS at 1/10 of LD₅₀ didn’t produce any adverse effect on heart, lung, liver, kidney, testis or brain (Table 2), they remained near to controls. However, treating AlCl₃-intoxicante animals for 90 days improved organs weight. It decreased the enlargement levels produced by AlCl₃ intoxication (0.38, 3.31 and 0.32 g/100 g for heart, liver and spleen, respectively). These findings are compatible with those of recorded hematomal parameters. AlCl₃ administration produced significant increments in hemoglobin, PCV and white blood cell count also it was observed in augmentation of neutrophiles count, basophiles and eosinophiles. These increments were accompanied with significant decrease in red blood cell count, monocyte and eosinophiles (Table 3).

Fig. 1. Phylogenetic tree of the partial sequence of 16S rDNA of the local isolate NRC27 with respect to closely related sequences available in GenBank databases

Fig. 2. Molecular weight distributions of MEPS production by Bacillus sp. M3
Treated intoxicant 0.38 ± 0.05
MEPS group 0.35 ± 0.06

also increased the red blood cell count to reach the
40.11 mm for treated and control groups, respectively)
administration for 90 days after aluminum intoxication
dL
As well as enhancing hemoglobin concentration (14.45 g
216
Table 3. Effect of MEPS on hematological parameters in male rats
Treated intoxicant 14.21 ± 1.33
ALCl
Group (g dL
MEPS 14.00 ± 2.01

Data are presented as mean of 15 animals ± SD. Groups have the same letter have insignificant difference p<0.05

Table 3. Effect of MEPS on rat organs weights (per 100 g body weight)

Table 2. Effect of MEPS on rat organs weights (per 100 g body weight)

DOI: 10.3844/ajbbsp.2015.92.103
Mohsen M.S. Asker

Treated intoxicant 0.42 ± 0.01 0.50 ± 0.02 3.75 ± 0.95 0.38 ± 0.04 0.30 ± 0.06 0.70 ± 0.18 1.00 ± 0.12
ALCl
Group (g dL
MEPS 0.35 ± 0.06 0.62 ± 0.10 3.18 ± 0.87 0.37 ± 0.04 0.31 ± 0.01 0.70 ± 0.01

Data presented in Table 3 showed that administration
of MEPS as positive control did not affect differential
induced lymphocyte production (65.08 and 52.33% for
treated and intoxicant group, respectively) to rearrange
the differentials count to reach nearly levels to control.
On the other hand, administration of aluminum chloride
significantly increased AST and ALT activity
(210.74 and 180.66 U mL
1
, respectively) and lipid production (9.02 g dL
1
and 206.23 mg dL
−1
, respectively) with augmentation of creatinine level, uric
acid and urea concentration (18.11 mg dL
−1
, 3.02 and 5.15 mg dL
−1
in intoxicated rats, respectively,
to 2.10 and 3.25 mg dL
−1
in treated group. Generally,
administration of polysaccharide after aluminum toxicity
ameliorated all determined liver and kidney functions as
a part of sub-chronic toxicity study.

Our data are in accordance with those of Sallam et al.
(2005) who reported that treatment with AlCl
3
 resulted in significant decrease in body weight, feed intake,
drinking water, nitrogen balance, digestibility coeffi-
cients. Also, treatment had significant effects on the
activities of Aspartate Aminotransferase (AST), Alanine
Amino Transferase (ALT), Alkaline Phosphatase (AIP),
Acid Phosphatase (AcP) and the concentration of
Thiobarbituric Acid-Reactive Substances (TBARS)
plasma enzymes activity.

Anti-Alzheimer Effect of MEPS on Male Rats

Oxidative stress parameters were decreased by MEPS
administration as vehicle group. It reduced production of
malondialdehyde (3.61 nmol mg
−1 protein), hydrogen
peroxide (3.61 nmol mg
−1 protein) and nitric oxide (1.11 µmol mg
−1 protein) also it stimulated antioxidant
parameters as catalase activity (6.99 U mg
−1 protein),
superoxide dismutase (4.38 U mg
−1 protein) and total
antioxidant capacity (14.99 mmol mg
−1 protein) deter-
mined in brain tissue while aluminum chloride adminis-
tration enhance all oxidative stress parameters. It
augmented production of malondialdehyde (11.26
mmolmg
−1 protein) and hydrogen peroxide (10.41 nmol
mg
−1 protein) and nitric oxide conc. (9.23 µmolmg
−1 protein) as well as depression in catalase activity (3.26
U mg
−1 protein) and SOD activity (2.81 U mg
−1 protein)
which highly lowered total antioxidant capacity (6.48
mmolmg
−1 protein) (Table 5). When intoxicated animals
with MEPS, it inhibited the production of oxidative stress molecules in cells, therefore malon-
dialdehyde were decreased to reach 5.99 nmol mg\(^{-1}\) protein, hydrogen peroxide to be 5.13 nmol mg\(^{-1}\) protein and nitric oxide to 1.61 µmol mg\(^{-1}\) protein with stimulation of antioxidant parameters. The MEPS enhanced the activity of catalase (5.46 U mg\(^{-1}\) protein) and SOD (3.77 U mg\(^{-1}\) protein) with amelioration in total antioxidant capacity (10.58 mmol mg\(^{-1}\) protein). Tissue damage resulting from an imbalance between reactive oxygen species generating and scavenging systems (oxidative stress) has been implicated in the pathogenesis of a variety of disorders, including degenerative disorders of the CNS such as Alzheimer’s disease (Harman, 1993).

Animals intoxicated with aluminum chloride have high acetyl cholinesterase activity (91.54 U mg\(^{-1}\) protein) with low acetylcholine concentration (5.76×10\(^{-2}\) mmol mg\(^{-1}\) protein) with elevation in calcium binding protein accumulation (52.77 ng mL\(^{-1}\)) determined in these animals sera. On the other hand, oral administration of polysaccharide showed inhibitory effect on acetyl cholinesterase activity (306.21 U mg\(^{-1}\) protein) which increased acetylcholine concentration in brain cell (8.87×10\(^{-2}\) mmol mg\(^{-1}\) protein) with reduction calcium binding protein accumulation in serum (23.43 ng mL\(^{-1}\)) (Table 6). Treating intoxicant animals with polysaccharide showed positive effect on acetylcholine biomarkers. It inhibited acetyl cholinesterase activity (510.55 U mg\(^{-1}\) protein) that increases accumulation of acetylcholine in brain cells (7.36×10\(^{-2}\) mmol mg\(^{-1}\) protein). This plausible effect was accompanied with decreasing in Ca-binding protein concentration 33.92 ng mL\(^{-1}\). The bioactivities of polysaccharides can be affected by many factors including chemical comp-onents, molecular weight, configuration and isolation methods (Xu et al., 2011). The research on chemical characterization and antioxidant properties of polysacchar-rides from Sargassum fusiforme found that a relatively low molecular weight and a relatively high uronic acid content could increase the antioxidant activity (Zhou et al., 2008). Likewise, it had been reported that there was a direct relationship between the uronic acid contents and the radical scavenging effects of tea polysaccharide conjugates (Chen et al., 2004; 2008).

Inhibition of Acetyl Cholinesterase (AChE), the key enzyme in the breakdown of Acetylcholine (ACh), is considered as a promising strategy for the treatment of neurological disorders such as AD, senile dementia, ataxia, and myasthenia gravis. Principal role of AChE is the termination of nerve impulse transmission at the cholinergic synapses by rapid hydrolysis of ACh. Inhibition of AChE serves as a strategy for the treatment of AD, senile dementia, ataxia, myasthenia gravis and Parkinson’s disease (Rahman and Choudhary, 2001).

Table 4. Liver and kidney functions of rats administered MEPS for 90 days

Group	AST (U mL\(^{-1}\))	ALT (U mL\(^{-1}\))	Protein (g dL\(^{-1}\))	Total lipid (mg dL\(^{-1}\))	Glutathione (mg dL\(^{-1}\))	Creatinine (mg dL\(^{-1}\))	Uric acid (mg dL\(^{-1}\))	Urea (mmol L\(^{-1}\))
Control	100.56±2.44	79.20±2.83	7.23±0.29	154.40±3.11	3.74±0.43	09.34±0.56	1.68±0.15	2.23±0.83
AlCl\(_3\) - intoxicated	210.74±3.01*	180.66±4.67*	9.02±1.06*	206.23±2.94*	0.88±0.08*	18.11±1.13*	3.02±0.24*	5.15±0.09*
MEPS	106.00±2.87	82.33±3.01	7.31±1.02	160.18±2.54	4.12±0.19	09.02±1.02	1.59±0.28	2.21±0.07
Treated intoxicant	156.24±1.06b	100.00±1.02b	8.14±1.10b	180.06±3.06b	2.11±0.04b	12.41±2.06b	2.10±0.11b	3.25±0.13b

Data are presented as mean of 15 replicates ± SD
a; significant change at p<0.05 for control group
b; significant with Al-intoxicant control group

Table 5. Effect of MEPS on brain oxidative stress biomarkers and brain antioxidant status in normal and Al-intoxicant groups

Groups	MDA (nmol mg\(^{-1}\))	H\(_2\)O\(_2\) (nmol mg\(^{-1}\))	NO\(_2\) (µmol mg\(^{-1}\))	CAT (U mg\(^{-1}\))	SOD (U mg\(^{-1}\))	T-AOC (mmol mg\(^{-1}\))
Control	0.41±1.37	0.38±1.06	1.91±1.13	5.46±0.65	3.11±0.91	12.46±1.22
AlCl\(_3\) -intoxicated	11.26±2.63*	10.41±1.97*	9.23±1.52*	3.26±2.11*	2.81±0.99*	06.48±1.94*
MEPS	0.36±0.91*	3.42±1.42*	1.11±0.86*	6.99±0.94*	4.38±0.79*	14.99±0.05*
Treated intox.	0.59±1.94*	5.13±1.18*	1.61±0.31*	5.46±0.97*	3.77±0.81*	10.58±1.23*

Data are presented as mean of 15 replicates ± SD
a; significant change at p<0.05 for control group
b; significant with Al-intoxicant control group

Table 6. Effect of MEPS on Ca binding protein and acetylcholine biomarkers

Groups	Ach (nmol mg\(^{-1}\))	AChE (U mg\(^{-1}\))	$\text{S100B (ng mL}^{-1}\text{)}$
Control	7.69×10\(^{-2}\)±3.11	498.56±2.27	24.75±1.01
AlCl\(_3\) -intoxicated	5.76×10\(^{-2}\)±5.34*	915.34±3.41*	52.77±3.21*
MEPS	8.87×10\(^{-2}\)±2.43*	306.21±2.38*	23.43±2.24
Treated intox.	8.26×10\(^{-2}\)±1.76*	510.55±2.15*	33.92±3.16*

Data are presented as mean of 15 replicates ± SD
a; significant change at p<0.05 for control group
b; significant with Al-intoxicant control group
There are a few synthetic medicines, e.g., tacrine, donepezil and the natural product-based rivastigmine for treatment of cognitive dysfunction and memory loss associated with AD (Oh et al., 2004). These compounds have been reported to have their adverse effects including gastrointestinal disturbances and problems associated with bioavailability (Schulz, 2003) which necessitates the interest in finding better AChE inhibitors from natural resources. The EPS attenuated the LPS-induced release of pro-inflammatory factors possibly via suppressing the activation of NF-κB and ASK1-p38/JNK signaling and reduced the LPS-induced intracellular ROS accumulation which may possibly at least in part contribute to the suppression of NF-κB and ASK1-p8/JNK and then to the reduced productions of pro-inflammatory cytokines (Diao et al., 2014). Generally, MEPS showed potent anti-Alzheimer effect as well as it didn’t have any chronic toxicity through the experimen-tal period. These findings suggest that polysaccharide isolated from Bacillus sp. M3 may be a good natural source for Alzheimer disease therapy.

Conclusion

The water soluble exopolysaccharide coded as MEPS isolated from a newly Bacillus sp. M3 contained galacturonic acid and gluconic acid with molecular masse of 1.45×10⁶ g/mol. FT-IR, UV-Vis spectral analyses revealed prevalence of characteristic primary belonged to α-type with a pyranose ring. The MEPS ameliorated antioxidant status and reduced all oxidative stress parameters in brain tissue with decreasing S100B as compared to aluminum toxicant group with significant acetyl cholinesterase inhibition which increase acetyl choline concentration in brain tissue.

Acknowledgement

The authors extend their appreciation to the National Research Centre, Egypt for funding this work as a part of National Research Centre activities.

Funding Information

This work was performed and funded as a part of National Research Centre plan to support the use of natural sources in treating diseases.

Author’s Contributions

MMSA, MGM and SSM designed the study. Isolation, screening, identification of bacterial strain and MEPS was prepared by bacteria. Chemical characterization of MEPS was carried by MMSA and MGM. Animal study experiments were carried out by AYI. The data were analyzed by MMSA, MGM, AYI and SSM. The manuscript was written by MMSA with contributions from MGM and AYI.

Ethics

This study was approved by Medical Research Ethics Committee, National Research Centre, Egypt, under registration no. 11015.

References

Anonymous, 1965. Recommendations and requirements for hemoglobinometry in human blood. J. Clin. Pathol., 18: 335-338.

Asker, M.M.S., Y.M. Ahmed and M.F. Ramadan, 2009. Chemical characteristics and antioxidant activity of exopolysaccharide fractions from Microbacterium terregens. Carbohydrate Polymers, 77: 563-567. DOI: 10.1016/j.carbpol.2009.01.037

Balkwill, F.R. and A. Mantovani, 2012. Cancer-related inflammation: Common themes and therapeutic opportunities. Seminars Cancer Biol., 22: 33-40. DOI: 10.1016/j.semcancer.2011.12.005

Beers, R.F. and I.W. Sizer, 1952. A spectrophotometric method for measuring the breakdown of hydrogen peroxide by catalase. J. Biol. Chem., 195: 133-140. PMID: 14938361

Bremer, P.J. and G.G. Geesey, 1991. An evaluation of biofilm development utilizing non-destructive attenuated total reflectance Fourier transform infrared spectroscopy. Biofouling, 3: 89-100. DOI: 10.1080/08927019109378165

Bruce, R.D., 1985. An up-and-down procedure for acute toxicity testing. Fundamental Applied Toxicol., 5: 151-157. DOI: 10.1016/0272-0590(85)90059-4

Calazans, G.M.T., C.E. Lopes, R.M.O.C. Lima and F.P. de Franc, 1997. Antitumour activities of levans produced by Zymomonas mobilis strains. Biotech-nol. Letter, 19: 19-21. DOI: 10.1023/A:101850617120

Carolina, A.A., D. Oliveira, V.C. Assis, M. Auxiliadora and C. Matos et al., 2005. Flow-injection system with glucose oxidase immobilized on a tubular reactor for determination of glucose in blood samples. Analytical Chim. Acta., 535: 213-217. DOI: 10.1016/j.aca.2004.11.053

Chen, H.X., M. Zhang, Z.S. Qu and B.J. Xie, 2008. Antioxidant activities of different fractions of polysaccharide conjugates from green tea (Camellia Sinensis). Food Chem., 106: 559-563. DOI: 10.1016/j.foodchem.2007.06.040

Chen, H.X., M. Zhang and B.J. Xie, 2004. Quantification of uronic acids in tea polysaccharide conjugates and their antioxidant properties. J. Agric. Food Chem., 52: 3333-3336. DOI: 10.1021/jf0349679

Cheng, A., F. Wan, Z. Jin, J. Wang and X. Xu, 2008. Nitrite oxide and inductive nitric oxide synthase were regulated by polysaccharides isolated from Glycyrrhiza uralensis Fisch. J. Ethnopharmacol., 118: 59-64. DOI: 10.1016/j.ejep.2008.03.002
Christensen, B.E., J. Kjosbakken and O. Smidsrod, 1985. Partial chemical and physical characterization of two extracellular polysaccharides produced by marine, periphytic pseudomonas sp. strain NCMB 2021. Applied Environ. Microbiol., 50: 837-845.

Cummings, J.L., 2004. Alzheimer's disease.

Demirovic, J.A., A.B. Pai and M.P. Pai, 2009. Estimation of creatinine clearance in morbidly obese patients. Am. J. Health Syst. Pharm., 66: 642-648. DOI: 10.2146/jhsp080200

Diao, Y., Y. Xin, Y. Zhou, N. Li and X. Pan et al., 2014. Extracellular polysaccharide from Bacillus sp. strain LBPI3 prevents LPS-induced inflammation in RAW 264.7 macrophages by inhibiting NF-κB and MAPKs activation and ROS production. Int. Immunopharmacol., 18: 12-19. DOI: 10.1016/j.intimp.2013.10.021

Debois, M., K.A. Gilles, J.K. Hamilton, P.A. Rebers and F. Smith, 1956. Colorimetric method for determination of sugars and related substances. Analytical Chem., 28: 350-356. DOI: 10.1021/ac60111a017

El-Samei and M.M.S. Asker, 2005. Studies on the production of sulfated polysaccharide by locally isolated bacteria. Egyptian Pharmaceutical J., 4: 439-452.

Emanuele, E., V. Martinelli, M. Carlin, V. Fugazza and E. Barale et al., 2011. Serum levels of soluble Receptor for Advanced Glycation Endproducts (sRAGE) in patients with diabetic nephropathies. Neurosci. Letter, 487: 99-102. DOI: 10.1016/j.neulet.2010.10.003

Gao, F., D.N.F. Harris and S. Sapsed-Byrne, 1997. Neurone-specific enolase and Sangtec 100 assays during cardiac surgery: Part I-the effects of heparin, protamine and propofol. Perfusion, 12: 163-165. DOI: 10.1177/026765919701200303

Gardes, M. and T.D. Bruns, 1993. ITS primers with enhanced specificity for basidiomycetes-application to the identification of mycorrhhizae and rusts. Molecular Ecol., 2: 113-118. DOI: 10.1111/j.1365-294X.1993.tb00005.x

Griffith, O., 1980. Determination of glutathione and glutathione disulfide using glutathione reductase and 2-vinylpyridine. Analytical Biochem., 106: 207-212. DOI: 10.1016/0003-2697(80)90139-6

Guo, S.D., W.J. Mao and Y. Han, 2010. Structural characteristics and antioxidant activities of the extracellular polysaccharides produced by marine bacterium Edwardsiella tarda. Bioreource Technol., 101: 4729-4732. DOI: 10.1016/j.biortech.2010.01.125

Gutierrez, R.M., A.M. Gonzalez and A.M. Ramirez, 2012. Compounds derived from endophytes: A review of phytochemistry and pharmacology. Curr. Med. Chem., 19: 2992-3030. DOI: 10.2174/092986712800672111

Hannig, C., B. Spitzmuller and M. Hannig, 2009. Transaminases in the acquired pellicle. Arch. Oral Biol., 54: 445-448. DOI: 10.1016/j.archoralbio.2009.02.005

Harman, D., 1993. Free radical theory of aging: A hypothesis on pathogenesis of senile dementia of the Alzheimer's type. AGE, 16: 23-30. DOI: 10.1007/BF02436127

Holmstrom, C. and S. Kjelleberg, 1999. Marine Pseudoalteromonas species are associated with higher organisms and produce biologically active extracellular agents. FEMS Microbiol. Ecol., 28: 73-154.

Inmaculada, L., A.M. Juan, T. Richard, B. Philippe and C. María et al., 2010. Characterization of the exopolysaccharide produced by salipiger mucosus A3, a halophilic species belonging to the alphaproteobacteria, isolated on the Spanish Mediterranean seaboard. Mar Drugs, 8: 2240-2251.

Holt, J.G., 1986. Bergey's Manual of Systematic Bacteriology. 1st Edn., Williams and Wilkins, Baltimore U.A., ISBN-10: 0683078933, pp: 2648.

Innmaculada, L., A.M. Juan, T. Richard, B. Philippe and C. María et al., 2010. Characterization of the exopolysaccharide produced by salipiger mucosus A3, a halophilic species belonging to the alphaproteobacteria, isolated on the Spanish Mediterranean seaboard. Mar Drugs, 8: 2240-2251.

Jin, L., L. Jiangguang, Y. Hong, S. Yi and L. Zhaoxin et al., 2009. Production, characterization and anti-oxidant activities in vitro of exopolysaccharides from endophytic bacterium paenibacillus polymyxa EJS-3. Carbohydrate Polymers, 78: 275-281. DOI: 10.1016/j.carbpol.2009.03.046

Kakkar, P., B. Das and P. Viswanathan, 1984. A modified spectrophotometric assay of superoxide dismutase. Ind. J. Biochem. Biophys., 21: 130-132. PMID: 6490072

Kampani, P., R.S. Kumar, N. Yuvaraj, K.A. Parri and V. Pattukumar et al., 2011. Production and purification of a novel exopolysaccharide from lactic acid bacterium Streptococcus phocae P180 and its functional characteristics activity in vitro. Bioresource Technol., 102: 4827-4833. DOI: 10.1016/j.biortech.2010.12.118
Tamura, K., D. Peterson, N. Peterson, G. Stecher and M. Nei et al., 2011. MEGA5: Molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance and maximum parsimony methods. Molecular Biol. Evolut., 28: 2731-2739. DOI: 10.1093/molbev/msr121

Tong, H., F. Xia, K. Feng, G. Sun and X. Gao, 2009. Structural characterization and in vitro antitumor activity of a novel polysaccharide isolated from the fruiting bodies of Pleurotus ostreatus. Bioresource Technol., 100: 1682-1686. DOI: 10.1016/j.biortech.2008.09.004

Upadhyaya, P., S. Vikas and A. Mushtaq, 2010. Therapy of Alzheimer’s disease: An update. Afr. J. Pharmacy Pharmacol., 4: 408-421.

Vatassery, G.T., M.A. Sheridan, A.M. Krezowski, A.S. Divine and H.L. Bach, 1981. Use of the sulfo-phospho-vanillin reaction in a routine method for determining total lipids in human cerebrospinal fluid. Clin. Biochem., 14: 21-24. DOI: 10.1016/0009-9120(81)90120-X

Wang, H., E.V. Ooi and P.O. Ang, 2007. Antiviral polysaccharides isolated from Hong Kong brown seaweed Hydroclathrus clathratus. Sci. China, 50: 611-618. DOI: 10.1007/s11427-007-0086-1

Xu, R.H., Q. Shen, X.L. Ding, W.G. Gao and P.L. Li, 2011. Chemical characterization and antioxidant activity of an exopolysaccharide fraction isolated from Bifidobacterium animalis RH. Eur. Food Res. Technol., 232: 231-241. DOI: 10.1007/s00217-010-1382-8

Xu, W., F. Zhang, Y. Luo, L. Ma and X. Kou et al., 2009. Antioxidant activity of a water-soluble polysaccharide purified from Pteridium aquilinum. Carbohydrate Res., 344: 217-222. DOI: 10.1016/j.carres.2008.10.021

Yoneyame, K., Y. Fujino, T. Osaka and I. Satoh, 2001. Amperometric sensing system for the detection of urea by a combination of the pH-stat method and flow injection analysis. Sens Acutat., 76: 152-157. DOI: 10.1016/S0925-4005(01)00613-X

You, L., G. Qing, F. Mengying, Y. Bao and R. Jiaoyan et al., 2013. Structural characterisation of polysaccharides from Tricholoma matsutake and their antioxidant and antitumour activities. Food Chem., 138: 2242-2249. DOI: 10.1016/j.foodchem.2012.11.140

Zhou, J., N. Hu, Y.L. Wu, Y.J. Pan and C.R. Sun, 2008. Preliminary studies on the chemical characterization and antioxidant properties of acidic polysaccharides from Sargassum fusiforme. J. Zhejiang Univ. Sci. B, 9: 721-727. DOI: 10.1631/jzus.B0820025