Comparative Proteomic Analysis of Aminoglycosides Resistant and Susceptible Mycobacterium tuberculosis Clinical Isolates for Exploring Potential Drug Targets

Divakar Sharma¹, Bhavnesh Kumar¹, Manju Lata¹, Beenu Joshi², Krishnamurthy Venkatesan¹, Sangeeta Shukla³, Deepa Bisht¹*

¹ Department of Biochemistry, National JALMA Institute for Leprosy and Other Mycobacterial Diseases, Tajganj, Agra, India, ² Department of Immunology, National JALMA Institute for Leprosy and Other Mycobacterial Diseases, Tajganj, Agra, India, ³ School of Studies in Zoology, Jiwaji University, Gwalior, India

* abd1109@rediffmail.com

Abstract

Aminoglycosides, amikacin (AK) and kanamycin (KM) are second line anti-tuberculosis drugs used to treat tuberculosis (TB) and resistance to them affects the treatment. Membrane and membrane associated proteins have an anticipated role in biological processes and pathogenesis and are potential targets for the development of new diagnostics/vaccine/therapeutics. In this study we compared membrane and membrane associated proteins of AK and KM resistant and susceptible Mycobacterium tuberculosis isolates by 2DE coupled with MALDI-TOF/TOF-MS and bioinformatic tools. Twelve proteins were found to have increased intensities (PDQuest Advanced Software) in resistant isolates and were identified as ATP synthase subunit alpha (Rv1308), Trigger factor (Rv2462c), Dihydrolipoyl dehydrogenase (Rv0462), Elongation factor Tu (Rv0685), Transcriptional regulator MoxR1 (Rv1479), Universal stress protein (Rv2005c), 35kDa hypothetical protein (Rv2744c), Proteasome subunit alpha (Rv2109c), Putative short-chain type dehydrogenase/reductase (Rv0148), Bacterioferritin (Rv1876), Ferritin (Rv3841) and Alpha-crystallin/HspX (Rv2031c). Among these Rv2005c, Rv2744c and Rv0148 are proteins with unknown functions. Docking showed that both drugs bind to the conserved domain (Usp, PspA and SDR domain) of these hypothetical proteins and GPS-PUP predicted potential pupylation sites within them. Increased intensities of these proteins and proteasome subunit alpha might not only be neutralized/modulated the drug molecules but also involved in protein turnover to overcome the AK and KM resistance. Besides that Rv1876, Rv3841 and Rv0685 were found to be associated with iron regulation signifying the role of iron in resistance. Further research is needed to explore how these potential protein targets contribute to resistance of AK and KM.
Introduction

Mycobacterium tuberculosis is the etiological factor of tuberculosis (TB), causes significant morbidity and mortality worldwide. In 2013, WHO reported 8.6 million people developed TB and 1.3 million died from the disease [1]. Increasing spreads of multidrug-resistant tuberculosis (MDR-TB) has worsened the situation and treatment of MDR-TB leads to the use of second line drugs. Emergence of extensively drug resistant tuberculosis (XDR-TB) indicates not only search for new diagnostic markers, drugs, amendment in second line treatment regimens but also to explore the unknown mechanisms of resistance in *M. tuberculosis* for developing novel drug targets. Aminoglycosides, AK and KM are important anti-mycobacterial drugs for category-II TB patients. Category II TB patients include those who had failed previous TB treatment, relapsed after treatment, or defaulted during previous treatment. Cumulative mechanisms associated with resistance to aminoglycosides include majorly mutation in ribosomal protein/16S rRNA [2], cell wall impermeability [3], enzymatic inactivation of drugs [4], trapping of drug [5], decreased inner membrane transport and active efflux pumps [6]. Two-third of *M. tuberculosis* isolates showed KM and AK resistance due to rrs mutation, however remaining 1/3rd do not have these mutations suggesting the involvement of some other mechanism(s) for resistance. Developments in molecular and cellular biology have imposed doubts on the ability of genetic analysis alone to predict any complex phenotypes. As primarily proteins manifest most of the biological processes, information about the actual state of cell can be obtained by analyzing the protein patterns. 2-DE coupled with MALDI-TOF-MS and bioinformatic tools have now been accepted as major analytical tools for detection, identification and characterization of protein species [7–8]. Most of the published proteomic studies concentrate mainly on soluble proteins and there are few comprehensive reports [9–14] on membrane proteins. The identification and characterization of membrane or membrane associated proteins of *M. tuberculosis* is important due to their anticipated role in virulence and bacterial-host interactions. Membranes and membrane associated proteins are likely to function as enzymes, receptors, transporters or signal transducers that could be of vital importance to the microbe and hence could qualify as drug targets [15–18]. Comparative proteomic studies addressing whole cell proteins with second line aminoglycosides drug resistance isolates have been reported [8]. However, membrane and membrane associated proteome of aminoglycosides resistant *M. tuberculosis* isolates have not been addressed. To address this, we analyzed the membranes and membrane associated proteins of AM and KM resistant *M. tuberculosis* by proteomic and bioinformatic approach. Such information could be helpful for the development of newer diagnostics and therapeutic agents for better treatment particularly drug resistance TB.

Materials and Methods

M. tuberculosis isolates and drug susceptibility testing

Five total susceptible (rifampicin, isoniazid, ethambutol, pyrazinamide, streptomycin, kanamycin and amikacin) and five AK & KM resistant (sensitive to first line drugs) *M. tuberculosis* isolates were obtained from Mycobacterial Repository Centre of National JALMA Institute for Leprosy and Other Mycobacterial Diseases, Agra, India. Drug susceptibility testing (DST) for all the drugs were performed by LJ proportion [19] and REMA method [20–21]. REMA method uses the oxidation–reduction of colorimetric indicator resazurin for determination of drug resistance and minimal inhibitory concentration (MICs) of antimicrobial agents against *M. tuberculosis*. Resazurin, which is blue in its oxidized state, turns pink when reduced by viable cells.
Membrane and membrane associated protein fraction preparation

Mycobacterial cell lysate was prepared as described by [8 & 22] with slight modifications. Briefly, cells were suspended in sonication buffer with 1% v/v Triton X–100 and then broken by intermittent sonication at 4°C for 20 min. Homogenate was centrifuged at 12,000 g for 20 min at 4°C. Resulting supernatants were ultracentrifuged at 150,000 x g for 90 min, and the pellet (cell membrane) was collected, washed and dissolved in 2D rehydration buffer. Protein concentrations were estimated by Bradford method [23] using BSA as standard. Protein extractions were performed for three times in biological and technical replicas.

2DE, In gel digestion & MS

IEF & SDS-PAGE were carried out using the published protocol of ”in gel rehydration” with slight modifications [8 & 24]. Gel images were analyzed using PDQuest Advanced software version 8.0.0 (BIORAD, Hercules, CA, USA). Protein spots which showed increased intensities with more than 1.5 fold were selected for identification. Equal amount of proteins were loaded in all gels and experiments were repeated in biological and technical replicates at least three times. In-gel digestion of proteins and MALDI-TOF/MS was carried out using published protocol [8 & 25]. Mass spectra of digested proteins were acquired using Autoflex II TOF/TOF 50 (Bruker Daltonik GmbH, Leipzig, Germany).

Validation by MS/MS analysis

Matched precursor peptide ions of identified proteins were selected for subsequent fragmentation using PSD for MS/ MS. Lift_ATT.lift method was open in flex control software; parent peak mass spectrum was acquired by hitting laser for 400–550 shots followed by acquisition of fragments of selected precursor ion for the same no. of shots. Both parent and fragment spectrums were pooled to generate MS/MS spectrum of a particular peptide. MS/MS spectrum was submitted to database using MASCOT wizard described in MS protocol [8]. The same parameters were used for MS/MS search in addition with fragment mass tolerance from 0.2 to 1.0 Da.

Bioinformatic analysis

Protein sequences of selected proteins were retrieved from Tuberculist server http://tuberculist.epfl.ch/ and their probable functions were predicted using published protocol of BLASTp, InterProScan, KEGG, docking and GPS-PUP [26–31].

Results

The main aim of the study was to compare the membranes and membrane associated proteins profiles of AM and KM resistant (lacks rrs mutation) with total sensitive isolates. rrs gene encoding 16S rRNA, have been associated with amikacin and kanamycin resistance. Results of DST by REMA methods are represented in Table 1. 2DE profile run in triplicates for all isolates was employed to compare the protein profiles and composite images are shown in Fig 1. Comparison of 2D gels by PDQuest Advanced software revealed seventeen protein spots (identified as twelve protein with its species) with consistently increased intensities in resistant as compared to sensitive isolates (cut limit ≥ 1.5 fold change in spot intensity). Student t-test was used for the statistical analysis by PDQuest Advanced software. The system picks up the spots with differential intensity of significant levels built in the system. To rule out the chance of any artifact, proteins showing equal intensity were considered as internal control (encircled in Fig 1). Protein spots encircled in Fig 1 were taken as internal controls to monitor the equal loading on the gels. Magnified regions of these protein spots are shown in Fig 2. Proteins spots of increased
intensities were identified by MALDI-TOF-MS (Table 2) and their identity were further revalidated by MS/MS (Table 3) taking at least three peptides to be matched. Detailed information of MS and MS/MS of all the proteins were shown in supporting files (S1 Text and S2 Text). The identified proteins were ATP synthase subunit alpha (Rv1308), Trigger factor (Rv2462c), Dihydrolipoyl dehydrogenase (Rv0462), Elongation factor Tu (Rv0685), Transcriptional regulator MoxR1 (Rv1479), Universal stress protein (Rv2005c), 35kDa hypothetical protein (Rv2744c), Proteasome subunit alpha (Rv2109c), Putative short-chain type dehydrogenase/reductase (Rv0148), Bacterioferritin (Rv1876), Ferritin (Rv3841) and Alpha-crystallin/HspX (Rv2031c). Out of twelve, Rv1308, Rv0462, Rv2109c, Rv0148, Rv1876 and Rv3841 belonged to intermediary metabolism and respiration, Rv2005c and Rv2031c to virulence/detoxification/adaptation, Rv2462c to cell wall and cell processes, Rv2744c to conserved hypothetical, Rv1479 to regulatory proteins and Rv0685 to information pathways categories. The level of difference in protein spot intensity has been represented as densitometric ratio in Table 2. These proteins were also reported in membrane fraction of *M. tuberculosis* complex by various authors [9–14].

BLAST and InterProScan analysis

BLASTP analysis was performed for proteins of unknown function. Rv0148 was found to be highly conserved in mycobacterial and bacterial species as putative short chain dehydrogenase/reductase protein. InterProScan analysis of Rv0148 showed motifs (PF00106) from residues 8–183 which provides a signature for short chain dehydrogenase. Rv2005c was found to be highly conserved in mycobacterial and bacterial species as universal stress protein, in some mycobacterial species it appeared as hypothetical protein with unknown function. InterProScan analysis of Rv2005c showed the presence of two signature motifs of Usp domain with amino acid residues from 3–242 (PF04012).

S. No.	Isolates Code	Drug susceptibility profile by Proportion method	MIC by REMA method							
		SM	RIF	INH	EMB	PZA	KM	SM μg/ml	AK μg/ml	KM μg/ml
1	H₃₇Rv	S	S	S	S	S	S	≤0.2	≤0.025	0.05
2	S 1	S	S	S	S	S	S	2.0	0.1	0.1
3	S 2	S	S	S	S	S	S	0.5	0.2	0.2
4	S 3	S	S	S	S	S	S	≤0.2	≤0.025	0.05
5	S 4	S	S	S	S	S	S	2.0	0.2	0.1
6	S 5	S	S	S	S	S	S	1.0	0.1	0.2
7	R 1	S	S	S	S	S	S	R	0.5	12
8	R 2	S	S	S	S	S	S	R	≤0.2	16
9	R 3	S	S	S	S	S	S	R	1.0	16
10	R 4	S	S	S	S	S	S	R	1.0	32
11	R 5	S	S	S	S	S	S	R	≤0.2	12

S: sensitive; R: resistant; Rifampicin (RIF), Isoniazid (INH), Ethambutol (EMB), Streptomycin (SM), Pyrazinamide (PZA), Amikacin (AK), Kanamycin (KM)

Table 1. Drug susceptibility profile of *M. tuberculosis* isolates included in this study.

S. sensitive; R: resistant; Rifampicin (RIF), Isoniazid (INH), Ethambutol (EMB), Streptomycin (SM), Pyrazinamide (PZA), Amikacin (AK), Kanamycin (KM)

doi:10.1371/journal.pone.0139414.t001
Multiple Sequence Alignment

Multiple sequence alignment of mtu (M. tuberculosis) proteins was performed for the set of five organism’s mbo (M. bovis), maf (M. africanum), mav (M. avium), mle (M. leprae) and hsa (Homo sapiens) [Table 4]. Results showed that hypothetical proteins (Rv0148, Rv2005c and Rv2744c) exhibited 100% homology (except Rv2744c- 99.60% and 99.30% homology) to their corresponding proteins in M. bovis and M. africanum which are members of tuberculosis complex. In M. avium, > 87% homology has been seen, except Rv2005c (64.40%). Less than 48% of homology has been seen with M. leprae and Homo sapiens to their corresponding proteins as well as with other proteins.

3D modeling and docking

Molecular docking analysis of selected 3D models (showing less than 2% discrepancy from Ramachandran plot) of hypothetical proteins was performed to detect their binding with AK and KM. Parameters used for selection of 3D models and molecular docking are represented in Table 5. Docking of Rv0148 and Rv2005c (Fig 3) showed the interaction of both drugs into the central cavity of conserved motif of SDR domain and Usp domain of hypothetical proteins.
respectively. Interacting residues were almost common for both drugs, which suggests similar binding site for both. Docking with Rv2744c show that both drugs interact at the similar interacting residue of conserved PspA domain of hypothetical protein. With Rv3841 both drugs interacted with amino acids of conserved ferritin domain as well as domain of unknown function.

Prediction of pupylation sites

By utilizing the default threshold (medium), GPS-PUP predicted six pupylation sites at position K7, K71, K94, K120, K134, and K135 in Rv2744c. Rv2005c and Rv0148 showed two pupylation sites at position K80, K248 and K280, K285 respectively (Table 6).

Discussion

In this study we used a proteomic approach to compare membrane and membrane associated proteins of AK and KM resistant and susceptible isolates by 2DE, MALDI-TOF/MS and
bioinformatic tools. Resistant isolates were also sequenced and analyzed for known rrs mutations. These isolates did not exhibit mutations at the reported sites. Proteins with increased intensities in the resistant isolates were identified, which might be used as diagnostic markers or drug targets for therapeutics. 2DE/MS has an advantage over the traditional methods (SDS-PAGE, chromatography and sequencing) as not only the identification of a large number of unknown proteins but also protein species separation. Several reports for identification of diagnostics and drug targets employing proteomic approaches exist \[32–33\]. However, to the best of our knowledge, no such membrane proteome analysis with AK & KM resistant *M. tuberculosis* isolates has been reported.

Table 2. Details of proteins identified by Mass Spectrometry.

Spot No.	Accession Number	Protein identified	MASCOT Score	Nominal Mass (Da)	pI	Sequence Coverage %	ORF No.	Densitometric ratio of protein intensity between sensitive and resistant isolates	Functional category *
D1	P63673 (ATPA_MYCTU)	ATP synthase subunit alpha	172	59252	5.03	35%	Rv1308	1: 1.54	1
D2	O53189 (TIG_MYCTU)	Trigger factor	55	50586	4.43	21%	Rv2462c	1: 1.80	2
D3	P66004 (DLDH_MYCTU)	Dihydrolipoyl dehydrogenase	125	49208	5.53	35%	Rv0462	1: 1.62	1
D4	P66004 (DLDH_MYCTU)	Dihydrolipoyl dehydrogenase	116	49208	5.53	35%	Rv0462	1: 1.53	1
D5	P66004 (DLDH_MYCTU)	Dihydrolipoyl dehydrogenase	52	49208	5.53	13%	Rv0462	1: 1.60	1
D6	P0A558 (EFTU_MYCTU)	Elongation factor Tu	193	43566	5.28	60%	Rv0685	1: 1.58	3
D7	P0A558 (EFTU_MYCTU)	Elongation factor Tu	143	43566	5.28	50%	Rv0685	1: 1.73	3
D8	Q79FN7 (Q79FN7_MYCTU)	Transcriptional regulator MoxR1	116	40738	5.96	32%	Rv1479	1: 1.52	4
D9	P64921 (Y2005_MYCTU)	Universal stress protein	61	30966	5.53	23%	Rv2005c	1: 1.99	5
D10	P0C5C4 (35KD_MYCTU)	35kDa protein	124	29240	5.71	33%	Rv2744c	1: 2.00	6,2
D11	P0C5C4 (35KD_MYCTU)	35kDa protein	79	29240	5.71	61%	Rv2744c	1: 1.69	6,2
D12	O33244 (PSA_MYCTU)	Proteasome subunit alpha	69	26865	5.41	27%	Rv2109c	1: 2.09	1
D13	P96825 (Y0148_MYCTU)	Putative short-chain type dehydrogenase/reductase	181	29760	5.26	59%	Rv0148	1: 1.91	1
D14	P63697 (BFR_MYCTU)	Bacterioferritin	54	18239	4.50	27%	Rv1876	1: 2.70	1
D15	P96237 (BFRB_MYCTU)	Ferritin	114	20429	4.73	38%	Rv3841	1: 1.83	1
D16	P0A587 (ACR_MYCTU)	Alpha-crystallin	148	16217	5.00	78%	Rv2031c	1: 1.64	5
D17	P0A587 (ACR_MYCTU)	Alpha-crystallin	93	16217	5.00	54%	Rv2031c	1: 1.98	5

Note: 1- intermediary metabolism and respiration, 2- cell wall and cell processes, 3- information pathways, 4- regulatory proteins, 5- virulence, detoxification, adaptation, 6- conserved hypothetical proteins

doi:10.1371/journal.pone.0139414.t002
Table 3. MS/MS analysis of identified proteins.

Spot No.	Peak Mass (Da)	Protein Identified	Nominal Mass	Mascot Score	pi	Sequence of peptides	ORF No.
D1	894.4477	ATP synthase subunit alpha	59252	25	5.03	LDLSQYR	Rv1308
	1264.7051	ATP synthase subunit alpha	59252	18	5.03	VVNPLGQPIDGR	Rv1308
	1289.6714	ATP synthase subunit alpha	59252	21	5.03	ASEEIEITEIR	Rv1308
	1297.7342	ATP synthase subunit alpha	59252	19	5.03	OGVKEPLOTGIG	Rv1308
	1313.7349	ATP synthase subunit alpha	59252	60	5.03	VHLIIFDDLT	Rv1308
	1319.7631	ATP synthase subunit alpha	59252	30	5.03	ALELOAPSVVHR	Rv1308
	1553.7943	ATP synthase subunit alpha	59252	48	5.03	EAYPGDVYFLHSR	Rv1308
	1602.9144	ATP synthase subunit alpha	59252	65	5.03	TGEVLSVPVGDGLR	Rv1308
	1747.9579	ATP synthase subunit alpha	59252	52	5.03	ASEEIEITEIROSOK	Rv1308
	1886.0888	ATP synthase subunit alpha	59252	98	5.03	LSDDLLGGSSLTGLPIETK	Rv1308
	2612.4725	ATP synthase subunit alpha	59252	51	5.03	GFAATGGGSVPDEHVEALDEKLAK	Rv1308
D2	1291.7448	Trigger factor	50586	25	4.43	NQLPTMFADV	Rv246c
	1378.8073	Trigger factor	50586	32	4.43	FNELLVEQGSSR	Rv246c
	1671.9877	Trigger factor	50586	81	4.43	EAMLDQINVDALPSR	Rv246c
	1801.1078	Trigger factor	50586	94	4.43	LIAGLDADVGSADESR	Rv246c
	1903.1486	Trigger factor	50586	109	4.43	INVEVPFAELEPDFOR	Rv246c
	2158.3327	Trigger factor	50586	29	4.43	VRINVEVPFAELEPDFQR	Rv246c
D3	1621.8785	Dihydrolipoyl dehydrogenase	49208	118	5.53	NYGVDVTIVFELPR	Rv0462
	1890.9713	Dihydrolipoyl dehydrogenase	49208	63	5.53	VLOAIGFAPVNGYGLDK	Rv0462
	1909.9795	Dihydrolipoyl dehydrogenase	49208	48	5.53	SIIGAGAIGMEFGYVLK	Rv0462
	1980.9351	Dihydrolipoyl dehydrogenase	49208	50	5.53	AFGISGEVTFDGYIAYDR	Rv0462
	2015.0726	Dihydrolipoyl dehydrogenase	49208	13	5.53	THYDVVVLGAGPGGYVAIR	Rv0462
	2276.1980	Dihydrolipoyl dehydrogenase	49208	100	5.53	LVPGTLSANVTYEEQILSR	Rv0462
	2688.4487	Dihydrolipoyl dehydrogenase	49208	25	5.53	LGVITLITATKVESIADGSQVTVTK.D	Rv0462
	2774.4226	Dihydrolipoyl dehydrogenase	49208	111	5.53	HEGELLGHGHLVHGHOELPELTLaQR	Rv0462
D4	1161.6462	Dihydrolipoyl dehydrogenase	49208	21	5.53	WDLTASELAR	Rv0462
	1171.6699	Dihydrolipoyl dehydrogenase	49208	39	5.53	NAELVHIKTF	Rv0462
	1621.9626	Dihydrolipoyl dehydrogenase	49208	51	5.53	NYGVDVTIVFELPR	Rv0462
	1891.1342	Dihydrolipoyl dehydrogenase	49208	85	5.53	VLOAIGFAPVNGYGLDK	Rv0462
	1981.1184	Dihydrolipoyl dehydrogenase	49208	14	5.53	AFGISGEVTFDGYIAYDR	Rv0462
	2015.2435	Dihydrolipoyl dehydrogenase	49208	15	5.53	THYDVVVLGAGPGGYVAIR	Rv0462
D5	895.5120	Dihydrolipoyl dehydrogenase	49208	19	5.53	FPFTANAK	Rv0462
	1161.7045	Dihydrolipoyl dehydrogenase	49208	28	5.53	WDLTASELAR	Rv0462
	1170.6847	Dihydrolipoyl dehydrogenase	49208	20	5.53	AHGVGDPSGFK	Rv0462
	1171.7299	Dihydrolipoyl dehydrogenase	49208	33	5.53	NAELVHIKTF	Rv0462
	1397.9056	Dihydrolipoyl dehydrogenase	49208	19	5.53	AALQLGSTAIEPK	Rv0462
D6	1404.5958	Elongation factor Tu	43566	24	5.28	AFDOIDNAPEER	Rv0685
	1413.7572	Elongation factor Tu	43566	67	5.28	QVGVPYILVALNK	Rv0685
	1555.7710	Elongation factor Tu	43566	34	5.28	VLHKDPFDNETK	Rv0685
	1701.8430	Elongation factor Tu	43566	28	5.28	GITINAHVEYQTDK	Rv0685
	1801.8729	Elongation factor Tu	43566	76	5.28	.ELAQAQEFDAPVVR	Rv0685
	2074.9777	Elongation factor Tu	43566	53	5.28	ADAVDDDEELLELVMEMR	Rv0685
	2195.1034	Elongation factor Tu	43566	31	5.28	ETDPKFLMPVEDVITITGR	Rv0685
	2356.1634	Elongation factor Tu	43566	34	5.28	WVASVEELMNVDESIPDVPV	Rv0685
D7	1404.6006	Elongation factor Tu	43566	28	5.28	AFDOIDNAPEER	Rv0685
	1413.7786	Elongation factor Tu	43566	70	5.28	QVGVPYILVALNK	Rv0685

(Continued)
Table 3. (Continued)

Spot No.	Peak Mass (Da)	Protein Identified	Nominal Mass	Mascot Score	pI	Sequence of peptides	ORF No.
1681.8413	Elongation factor Tu	43566	110	5.28	LLDDOQAGDNVGLLLR	Rv0685	
1801.8014	Elongation factor Tu	43566	57	5.28	ELAAQEFDEDAVPVR	Rv0685	
2033.8394	Elongation factor Tu	43566	15	5.28	HTPFFNYRPQFYPFR	Rv0685	
2074.8391	Elongation factor Tu	43566	48	5.28	ADAVDDEELLELVEEVIR	Rv0685	
2194.9570	Elongation factor Tu	43566	52	5.28	ETDKPFLMPVEDFTITGR	Rv0685	
2355.9810	Elongation factor Tu	43566	40	5.28	WVASVEELMNADESIPDPVR	Rv0685	
D8	1785.8129	Transcriptional regulator MoxR1	40738	27	5.96	IQFTPDLPVTDIGTR	Rv1479
1982.8948	Transcriptional regulator MoxR1	40738	29	5.96	DYVIPDQIVIPDVLR	Rv1479	
2196.0884	Transcriptional regulator MoxR1	40738	43	5.96	GRDYVIPDQIVIPDVLR	Rv1479	
2244.1285	Transcriptional regulator MoxR1	40738	94	5.96	LVLYTDALAIISPEIVINR	Rv1479	
2308.0928	Transcriptional regulator MoxR1	40738	37	5.96	LQEIAANNFVHQALVDYVVR	Rv1479	
2491.0784	Transcriptional regulator MoxR1	40738	21	5.96	EEFTEGVPVANLFLEAENR	Rv1479	
2832.2880	Transcriptional regulator MoxR1	40738	65	5.96	QGQEEFDTEGVPVANLFLEAENR	Rv1479	
D9	859.4570	Universal stress protein	30966	21	5.53	LAGWQER	Rv2005c
932.4974	Universal stress protein	30966	56	5.53	YPDVPVSR	Rv2005c	
1300.8178	Universal stress protein	30966	11	5.53	GLLGSVSSSSLR	Rv2005c	
1536.8154	Universal stress protein	30966	44	5.53	SASSQLQVSGHGR	Rv2005c	
1737.0408	Universal stress protein	30966	53	5.53	LAGWQERYPDVPVSR	Rv2005c	
1924.1982	Universal stress protein	30966	44	5.53	GGLTGMLGSVSNAILAAR	Rv2005c	
D10	1029.5576	35 kDa protein	29240	20	5.71	LLSQLEQAK	Rv2744c
1412.7607	35 kDa protein	29240	72	5.71	VQIQQAEEAQ	Rv2744c	
1424.7377	35 kDa protein	29240	13	5.71	TLHDQLSAAQAQ	Rv2744c	
1525.8869	35 kDa protein	29240	56	5.71	QLADIEKLQVNVR	Rv2744c	
1615.8335	35 kDa protein	29240	10	5.71	QALTLDQATAAEGAK	Rv2744c	
1822.9247	35 kDa protein	29240	132	5.71	YANIAIGSAELAESVQGR	Rv2744c	
2783.3882	35 kDa protein	29240	84	5.71	ATEYNNAEAEFAAQVLTAQSVEDLK	Rv2744c	
D11	1412.8493	35 kDa protein	29240	50	5.71	VQIQQAEEAQ	Rv2744c
1525.9723	35 kDa protein	29240	49	5.71	QLADIEKLQVNVR	Rv2744c	
1823.0114	35 kDa protein	29240	21	5.71	YANIAIGSAELAESVQGR	Rv2744c	
1864.0864	35 kDa protein	29240	136	5.71	THQALTQQAOAVGIGNR	Rv2744c	
D12	1054.5026	Proteasome subunit alpha	26865	25	5.41	FNEFDNLRI	Rv2109c
2020.1235	Proteasome subunit alpha	26865	74	5.41	SVVALAYAGGLVLFVAENPSR	Rv2109c	
2219.2512	Proteasome subunit alpha	26865	24	5.41	AKSSVALAYAGGLVLFVAENPSR	Rv2109c	
2924.3203	Proteasome subunit alpha	26865	29	5.41	AGSADTSGDQPTLGAVSLEAVLDAANPR	Rv2109c	
D13	884.4423	Putative short-chain type dehydrogenase/reductase	29760	13	5.26	WAETIDLSGAK	Rv0148
1190.5693	Putative short-chain type dehydrogenase/reductase	29760	27	5.26	VHLYGGYHLR	Rv0148	
1313.6913	Putative short-chain type dehydrogenase/reductase	29760	23	5.26	MSFENWDAVLK	Rv0148	
1339.6028	Putative short-chain type dehydrogenase/reductase	29760	53	5.26	LGLVGLINTLALEGAK	Rv0148	
1581.9283	Putative short-chain type dehydrogenase/reductase	29760	90	5.26	LGLVGLINTLALEGAK	Rv0148	
1748.8280	Putative short-chain type dehydrogenase/reductase	29760	14	5.26	DGTGAGSMAADEVVAEIR	Rv0148	
1921.9303	Putative short-chain type dehydrogenase/reductase	29760	36	5.26	AVANYSVATEDGAANIK	Rv0148	

(Continued)
Our study revealed twelve proteins with increased intensity in AM and KM resistant as compared to total susceptible isolates. Five spots matched with already identified protein species and therefore total seventeen protein spots were found to be upregulated. Out of twelve, Rv1308, Rv0462, Rv2109c, Rv0148, Rv1876 and Rv3841 belonged to intermediary metabolism and respiration, Rv2005c and Rv2031c to virulence/detoxification/adaptation, Rv2462c to cell wall and cell processes, Rv2744c to conserved hypothetical, Rv1479 to regulatory proteins and Rv0685 to information pathways categories. These proteins were membrane associated [9–14] but were not purely membrane proteins having transmembrane helix. This might be due to the selection of consistently increased intensities of spots in resistant as compared to sensitive isolates (cut limit /C21 1.5 fold changes in spot intensity). This suggests that membranes with transmembrane helix do not show consistently increased intensities up to 1.5 fold.

Table 3. (Continued)

Spot No.	Peak Mass (Da)	Protein Identified	Nominal Mass	Mascot Score	pI	Sequence of peptides	ORF No.
2162.1125	Putative short-chain type dehydrogenase/reductase	29760	102	5.26	EYALTAGEGASVVIDGLGAR	Rv0148	
2388.1836	Putative short-chain type dehydrogenase/reductase	29760	58	5.26	VALFNGDANFDKPPSVQDAAR	Rv0148	
D14	1414.6818	Bacterioferritin	18239	79	4.50	ILLDGLPNYOR	Rv1876
1776.6893	Bacterioferritin	18239	55	4.50	MQDNWGFTELAAHTR	Rv1876	
1924.8015	Bacterioferritin	18239	45	4.50	EQFEADLAIYDVLNR	Rv1876	
D15	932.4086	Ferritin	20429	31	4.73	NQFDRPR	Rv3841
1084.5530	Ferritin	20429	54	4.73	VEIPGVDTVR	Rv3841	
1228.6306	Ferritin	20429	27	4.73	EALALALDOER	Rv3841	
1265.5885	Ferritin	20429	19	4.73	HFYSQAVEER	Rv3841	
1550.8525	Ferritin	20429	105	4.73	AGANLFELENFVAR	Rv3841	
1632.8621	Ferritin	20429	15	4.73	EVDVAPASGAPHAAGGR	Rv3841	
D16	1095.5822	Alpha-crystallin	16217	36	5.00	TEQKDFDGR	Rv2031c
1162.6453	Alpha-crystallin	16217	66	5.00	SEFAYGSFVR	Rv2031c	
1715.0573	Alpha-crystallin	16217	42	5.00	GILTYSVAVSEPKTEK	Rv2031c	
1752.8950	Alpha-crystallin	16217	96	5.00	DFDFSEFAYGSFVR	Rv2031c	
1869.0448	Alpha-crystallin	16217	19	5.00	AELPGVDPDKVDMVR	Rv2031c	
2037.1053	Alpha-crystallin	16217	29	5.00	TVSLPVGADDDKATYDK	Rv2031c	
2950.6204	Alpha-crystallin	16217	13	5.00	SLFPESELAFAPSFAGLRTFDTR	Rv2031c	
D17	1162.4795	Alpha-crystallin	16217	65	5.00	SEFAYGSFVR	Rv2031c
1458.6522	Alpha-crystallin	16217	17	5.00	TVSLPVGADDKD	Rv2031c	
1714.8305	Alpha-crystallin	16217	43	5.00	GILTYSVAVSEPKTEK	Rv2031c	
1752.6882	Alpha-crystallin	16217	32	5.00	DFDFSEFAYGSFVR	Rv2031c	
1868.8202	Alpha-crystallin	16217	53	5.00	AELPGVDPDKVDMVR	Rv2031c	
2036.8814	Alpha-crystallin	16217	56	5.00	TVSLPVGAdddKATYDK	Rv2031c	
2293.0996	Alpha-crystallin	16217	17	5.00	ATYDKGILTYSVAVSEPKTEK	Rv2031c	

Table 4. Multiple sequence alignment of the hypothetical proteins with defined set of organisms.

ORF Number	Mbo (M. bovis)	Maf (M. africanum)	Mav (M. avium)	Mle (M. leprae)	Has (Homo. sapiens)
Rv0148	100%	100%	87.30%	23.42%	47.50%
Rv2005c	100%	100%	64.40%	28.10%	21.70%
Rv2744c	99.6%	99.30%	88.00%	26.60%	24.60%

doi:10.1371/journal.pone.0139414.t003

doi:10.1371/journal.pone.0139414.t004
Rv1308 (ATP synthase subunit alpha) is a regulatory subunit that produces ATP in the presence of proton gradient across the membrane. Mycobacteria reside in specialized niches and may require adaptations in the energy metabolism. It has been reported that it not only stipulates in replicating mycobacteria, but also in the dormant state [34–36]. Rv0462 (Dihydrolipoyl dehydrogenase/Lpd) is involved in energy metabolism and antioxidant defense. It is the third enzyme of \(M. \) \(\text{tuberculosis} \)'s pyruvate dehydrogenase complex and first enzyme of peroxynitrite reductase/peroxidase, which helps \(M. \) \(\text{tuberculosis} \) to resist host reactive nitrogen intermediates. Without Lpd, \(M. \) \(\text{tuberculosis} \) cannot metabolize branched-chain amino acids and potentially toxic branched-chain intermediates accumulate [37]. Heo et al [38] reported that this protein induces dendritic cells maturation, Th1-mediated responses and may contribute to vaccine development against \(M. \) \(\text{tuberculosis} \) infection. Rv2109c (Proteasome subunit alpha) is involved in protein degradation and required for the virulence of \(M. \) \(\text{tuberculosis} \). It not only degrades proteins that are toxic due to oxidative or nitrosative damage but also allows other proteins to participate in NO detoxification or repair of macromolecules [39]. Fortune et al [40] reported its involvement in regulating the synthesis of secreted or surface proteins that alter host immunity and thus favor persistence. Discovery of pepyloyme in \(M. \) \(\text{tuberculosis} \) [41] and other

Table 5. 3D modeling and docking parameters used for bioinformatic analysis.

ORF No.	TM-score	RMSD value (Å)	Drug	Global Energy	Attractive Vander wall forces	Repulsive Vander wall forces	ACE	Interacting amino acids	Remarks
Rv0148	0.81 ±0.09	4.6 ±3.0Å	AK	-29.30	-20.55	19.86	-10.46	18,99,123,149,150,152,153,158,161,164,168,194−196,198,200 & 201	AK binds properly within the central cavity of conserved SDR domain
Rv0148	0.81 ±0.09	4.6 ±3.0Å	KM	-45.45	-22.03	10.90	-14.08	99,103,123,149,150−152,164,168,194−196,198,200 & 201	KM also binds within the central cavity of conserved SDR domain
Rv2005c	0.95 ±0.05	2.8 ±2.0Å	AK	-32.66	-20.26	8.27	-06.23	15,16,42,43,44,44,64,67,71,100,101,120,121 & 130−132	AK binds in central cavity of conserved motif of Usp domain
Rv2005c	0.95 ±0.05	2.8 ±2.0Å	KM	-31.64	-18.15	3.76	-05.29	14,15,16,42,43,44,44,64,67,71,100,120,121 & 122	KM also binds in central cavity of conserved motif of Usp domain of hypothetical protein
Rv2744c	0.30 ±0.10	15.3 ±3.4Å	AK	-22.56	-22.44	7.00	00.59	19,20,22,25,29,36,38,39,40,41 & 44	AK interact to conserved motif of PspA domain
Rv2744c	0.30 ±0.10	15.3 ±3.4Å	KM	-25.82	-16.56	2.90	-03.51	19,20,22,25,29,36,38,39,40,41,44 & 230	KM also interact to conserved motif of PspA domain of hypothetical protein
Rv3841	0.92 ±0.06	2.3 ±1.7Å	AK	-26.34	-16.62	4.97	-7.23	134,137,138,141,144,163,164,165,166,167,168,169 & 170	AK binds to close vicinity of conserved ferritin domain & domain of unknown function
Rv3841	0.92 ±0.06	2.3 ±1.7Å	KM	-34.66	-19.57	7.05	-9.35	134,135,137,138,141,144,163,164,165,166,167,168,169 &170	KM also binds to close vicinity of conserved ferritin domain & domain of unknown function

Rv1308 (ATP synthase subunit alpha) is a regulatory subunit that produces ATP in the presence of proton gradient across the membrane. Mycobacteria reside in specialized niches and may require adaptations in the energy metabolism. It has been reported that it not only stipulates in replicating mycobacteria, but also in the dormant state [34–36]. Rv0462 (Dihydrolipoyl dehydrogenase/Lpd) is involved in energy metabolism and antioxidant defense. It is the third enzyme of \(M. \) \(\text{tuberculosis} \)'s pyruvate dehydrogenase complex and first enzyme of peroxynitrite reductase/peroxidase, which helps \(M. \) \(\text{tuberculosis} \) to resist host reactive nitrogen intermediates. Without Lpd, \(M. \) \(\text{tuberculosis} \) cannot metabolize branched-chain amino acids and potentially toxic branched-chain intermediates accumulate [37]. Heo et al [38] reported that this protein induces dendritic cells maturation, Th1-mediated responses and may contribute to vaccine development against \(M. \) \(\text{tuberculosis} \) infection. Rv2109c (Proteasome subunit alpha) is involved in protein degradation and required for the virulence of \(M. \) \(\text{tuberculosis} \). It not only degrades proteins that are toxic due to oxidative or nitrosative damage but also allows other proteins to participate in NO detoxification or repair of macromolecules [39]. Fortune et al [40] reported its involvement in regulating the synthesis of secreted or surface proteins that alter host immunity and thus favor persistence. Discovery of pepyloyme in \(M. \) \(\text{tuberculosis} \) [41] and other
conserved proteasomal components like proteasome b/a subunits, recognition ATPase, pupylase, and depupylome revealed the protein regulation and turnover through proteasome. Identity of these proteins began to explain why defects in protein degradation attenuate virulence in vivo [42–43]. Rv0148 has been identified as probable short-chain dehydrogenases/reductases and possess two binding domains- NAD and substrate. M. tuberculosis acquires Rv0148 gene via horizontal gene transfer from eukaryotics. As the gene has been retained in the genome through selective advantage, it might play a key role in pathogenesis and immunomodulation [44].

Rv1876 (bacterioferritin) and Rv3841 (ferritin), unique for iron homeostasis and are increased intensities under iron-rich and decreased under iron deprived conditions [45]. Very little is known about the protein-protein interactions that carry iron for storage or promote the mobilization of stored iron from ferritin like molecules. Iron assimilation and utilization in M. tuberculosis plays a crucial role in growth, virulence and latency. Function of these may not be just limited to iron uptake; they may be contributing to other metabolic activities, the mechanism of which is still unclear. Pandey and Rodriguez [46] suggested that ferritin (bfrB) is mandatory to maintain iron homeostasis in M. tuberculosis and ferritin lacking bacilli are more susceptible to killing by antibiotics. Our results showed increased intensities of both ferritin and bacterioferritin in membrane fraction. Earlier we reported that only bacterioferritin intensity increased in whole cell lysate and suggested its role in imparting resistance to AK and KM [8]. It is assumed that the heme group present might seize its site of action by providing abnormal site for binding or modulating the protein to block its binding site which needs to be further explored. Although the pathways and enzymes involved in iron metabolism in M. tuberculosis are well established, still our information on iron dependent post-transcriptional, translational regulations, outer membrane iron transporters, trafficking and partitioning of siderophores/Fe-loaded apoproteins in mycobacteria is inadequate. Consequently, it can be a promising antimycobacterial target.

Rv2031c (Alpha-crystallin/HspX), a heat shock protein and Rv2005c (universal stress protein) are not only involved in cell protection to diverse stimuli like stress, dormancy, heat, drug and hypoxia by preventing protein aggregation but have established roles in resistance/stress/virulence/dormancy [47]. Rv2031c is regulated by the two-component regulatory system

Table 6. Predicted / identified pupylation sites within identified proteins.

ORF No.	Position of lysine residue undergoes pupylation	Peptide	Score	Cut-off
Rv2005c	80	ANAVKLKEAVGADR	3.488	2.452
	248	VCDRPAKLVQKSAS	3.858	2.452
Rv0148	280	ITDLSGAKIAFKL*	3.11	2.452
	285	GAKIAGFKL*****	2.748	2.452
Rv2744c	7	*MANPVIKAWKYLMA	3.15	2.452
	71	RQLADIEKLVNVRQ	3.315	2.452
	94	TAAGDAAKATEYNYNA	2.787	2.452
	120	EQSVEDLKTLDQAL	3.063	2.452
	134	LSAAAQAACKAVERNA	2.835	2.452
	135	SAAQAACKAVERNAM	2.496	2.452

doi:10.1371/journal.pone.0139414.t006
(DosR/DevR regulon) and is a latency stage disease marker [48–49]. Heat shock proteins assist in *M. tuberculosis* survival and also provide signal to the immune response [50]. Rv2031c and Rv2005c were predicted as a strong vaccine candidate by Zvi A et al [51].

Rv2462c (trigger factor), involved in protein export, acts as chaperone by maintaining the newly synthesized protein in an open conformation. It was reported to have increased intensity during nutrient deprivation in *M. tuberculosis* [52]. Rifat et al [53] reported that its intensity is regulated by inorganic phosphate limitation and suggested to play an important role in the survival of *M. tuberculosis* during chronic infection.

Rv2744c (35-kDa antigen), a hypothetical protein, is homologous to phage shock protein A (PspA) of *E. coli* and a predominant binding partner and substrate of PepD for proteolysis [54]. It was found to exhibit increased intensity upon exposure to vancomycin and cell wall damaging antibiotics suggesting their role in resistance to cell envelope stress [55]. PepD proteolytically regulates Rv2744c levels to maintain cell wall/cell envelope homeostasis in *M. tuberculosis*. It is also speculated that cleavage of Rv2744c by PepD may represent a mechanism for terminating the membrane stress response following cessation of the inducing stimulus. Future studies are aimed at delineating the specific mechanism by which it participates in cell wall homeostasis, and defining the other factors that participate in this stress response pathway.

Rv1479 (MoxR1) is a probable transcriptional regulator involved in regulatory function. Jungblut et al [56] found that four MoxR protein species were with different mobility. Hu et al [57] reported that MoxR1 m-RNA expression was more than four-fold in persisters compared to stationary phase of mycobacteria. Recently Rv1479 has been reported in *M. tuberculosis* pellets [58]. Our study assumes that increased intensity of this protein overcomes the burden of the transcriptional regulation.

Rv0685 (Elongation factor–Tu) is a conserved protein involved in the elongation phase of translation and post-translational modifications. It also has RNA chaperone activities, ensuring that tmRNA adopts an optimal conformation during aminoacylation [59]. Ef-Tu phosphorylation is implicated in acclimation to the stress conditions encountered during the course of infection. *M. tuberculosis* phosphoproteome revealed Ef-Tu to be phosphorylated, Sajid et al [60] reported that phosphorylation of Ef-Tu by Protein Kinase B reduced its interaction with GTP, suggesting reduction in protein synthesis. In our study intensity of Rv0685 might be increased due to interruption of translational steps (primary target sites of aminoglycosides) and accumulation of Rv0685 might occur.

In the present study we observed that on performing docking analysis, both drugs interacted with conserved residues of Usp, SDR, PspA and ferritin domain of Rv2005c, Rv0148, Rv2744c and Rv3841 respectively which might alter their functions. It is predicted that these proteins might be exhibiting increased intensities to compensate the effect of drugs. Further we also found pupylation sites in Rv0148, Rv2005c and Rv2744c. Pupylation is a PTM through which small disordered protein Pup is conjugated to lysine residues of proteins marking them for proteasomal degradation. As modification with pup is reversible, pupylation is also likely to have a regulatory role [42]. Pup-proteasome system controlled by pupylation contributes to the virulence/survival strategy of *M. tuberculosis* in the host and makes the bacteria more resistant to various stresses [61]. Therefore it is assumed that pupylation of modulated protein (drug-protein complex) might be undergo turnover by proteasome machinery to overcome stress through protein-protein interaction. We assume that increased intensities of proteins might be contributing in imparting resistance against AK and KM. Further, detailed study in this direction may help in searching for new targets for drug development.
Conclusion

In a nutshell, this is the first report on the membrane and membrane associated proteins of AK and KM resistance in *M. tuberculosis* using proteomic coupled with bioinformatic approaches. Among the twelve proteins which were found to have increased intensities only nine were with defined roles and three with unknown functions. Molecular docking showed proper interaction of both drugs with hypothetical proteins (Rv2005c, Rv2744c and Rv0148) as well as ferritin. GPS-PUP analysis suggested presence of pupylation sites within these proteins. It is depicted that increased intensities of these proteins and proteasome sub unit alpha might not only be neutralizing/modulating the drug molecules but are also involved in protein turnover to overcome AK and KM resistance. Apart from that we found three proteins—ferritin, bacterioferritin and elongation factor-Tu, involved in iron storage, homeostasis, detoxification, and regulation/metabolism. We assume that iron regulation/metabolism might be playing some crucial role in contributing resistance to AK and KM. Increased elongation factor-Tu (Rv0685) might be due to interruption of translational steps by these drugs. These findings need further exploitation for the development of newer therapeutic agents or molecular markers which can directly be targeted to a gene/protein responsible for resistance so that an extreme condition like XDR-TB can be prevented, which could ultimately lead to broaden the narrow gauge of new or existing therapeutics.

Supporting Information

S1 Text. MS and MS/MS -. (RAR)
S2 Text. MS and MS/MS -. (RAR)

Acknowledgments

The authors are grateful to Director, NJIL & OMD for the support. DS is SRF (ICMR, New Delhi). We thank Mr. Jaypal for assistance.

Author Contributions

Conceived and designed the experiments: DS DB. Performed the experiments: DS BK ML. Analyzed the data: DS DB. Contributed reagents/materials/analysis tools: DB BJ. Wrote the paper: DS DB BJ KV SS.

References

1. WHO Report 2013. Global tuberculosis control 2013. Available from: http://apps.who.int/iris/bitstream/10665/91355/1/9789241564656_eng.pdf.
2. Beauclerk AAD, and Cundliffe E. Site of action of two ribosomal RNA methylases responsible for resistance to aminoglycoside. J Mol Biol. 1987; 193: 661–671. PMID: 2441068
3. Nikaido H. Molecular basis of bacterial outer membrane permeability revisited. Microbiol Mol Biol Rev. 2003; 67: 593–656. PMID: 14665678
4. Welch KT, Virga KG, Whittermore NA, Ozen C, Wright E, Brown CL, et al. Discovery of non-carbohydrate inhibitors of aminoglycoside-modifying enzymes. Bioorg Med Chem. 2005; 13: 6252–6363. PMID: 16140014
5. Magnet S, Courvalin P, Lambert T. Resistance modulation cell division type efflux pump involved in aminoglycoside resistance in *Acinetobacter baumannii* BM4454. Antimicrob Agents Chemother. 2001; 45: 3375–3380. PMID: 11709311
6. Magnet S, Smith TA, Zheng R, Nordmann P, Blanchard JS. Aminoglycosides resistance resulting from tight drug binding to an altered aminoglycosides acetyl transferase. Antimicrob Agents Chemother. 2003; 47: 1577–1583.

7. Singhal N, Sharma P, Kumar M, Joshi B, Bisht D. Analysis of intracellular expressed proteins of Mycobacterium tuberculosis clinical isolates. Proteome Sci. 2006; 10:14.

8. Kumar B, Sharma D, Sharma P, Katoch VM, Venkatesan K, Bisht D. Proteomic analysis of Mycobacterium tuberculosis isolates resistant to kanamycin and amikacin. J proteomics 2013; 94: 68–77. doi: 10.1016/j.jprot.2013.08.025 PMID: 24036035

9. Gu S, Chen J, Dobos KM, Bradbury EM, Belisle JT, Chen X. Comprehensive proteomic profiling of the membrane constituents of a Mycobacterium tuberculosis strain. Mol Cell Proteomics 2003; 2:1284–96. PMID: 14532352

10. Sinha S, Arora S, Kosala K, Namane A, Pym AS, Cole ST. Proteome analysis of the plasma membrane of Mycobacterium tuberculosis. Comp Funct Genomics 2002; 2:470–83. doi: 10.1002/cfg.211 PMID: 18629250

11. Xiong Y, Chalmers MJ, Gao FP, Cross TA, Marshall AG. Identification of Mycobacterium tuberculosis H37Rv integral membrane proteins by one-dimensional gel electrophoresis and liquid chromatography electrospray ionization tandem mass spectrometry. J Proteome Res 2005; 4: 855–861. PMID: 15952732

12. Mattow J, Siejak F, Hagens K, Schmidt F, Koehler C, Treumann A, et al. An improved strategy for selective and efficient enrichment of integral plasma membrane proteins of mycobacteria. Proteome 2007; 7:1687–1701. PMID: 17436267

13. Malen H, De Souza GA, Pathak S, Softeland T, Wiker HG. Comparison of membrane proteins of Mycobacterium tuberculosis H37Rv and H37Ra strains. BMC Microbiology 2011; 11: 18. doi: 10.1186/1471-2180-11-18 PMID: 21261938

14. de Souza GA, Amtzen MO, Fortuin S, Schurch AC, Malen H, McEvoy CR, et al. Proteogenomic analysis of polymorphisms and gene annotation divergences in prokaryotes using a clustered mass spectrometry-friendly database. Mol Cell Proteomics 2011; 10(1):M110.002527. doi: 10.1074/mcp.M110.002527 PMID: 21030493

15. Sigler K, and Hofer M. Biotechnological aspects of membrane function. Crit. Rev. Biotechnol. 1997; 17: 69–86. PMID: 9192471

16. Hoffmann C, Leis A, Niederweis M, Plitzko JM, Engelhardt H. Disclosure of the mycobacterial outer membrane: cryo-electron tomography and vitreous sections reveal the lipid bilayer structure. Proc. Natl. Acad. Sci. 2008; 105: 3963–3967. doi: 10.1073/pnas.0709530105 PMID: 18316738

17. Zuber B, Chami M, Houssin C, Dubocchet J, Griffiths G, Daffe M. Direct visualization of the outer membrane of mycobacteria and corynebacteria in their native state. J Bacteriol 2008; 190: 5672–5680. doi: 10.1128/JB.01919-07 PMID: 18567661

18. Velayati AA, Farnia P, Ibrahim TA, Haroun RZ, Kuan HO, Ghanavi J, et al. Differences in cell wall thickness between resistant and nonresistant strains of Mycobacterium tuberculosis: Using transmission electron microscopy. Chemother 2009; 55: 303–307.

19. Canetti G, Fox W, Khomenko A, Mahler HT, Menon NK, Mitchison DA, et al. Advances in techniques of testing mycobacterial drug sensitivity, and the use of sensitivity tests in tuberculosis control programmes. Bull World Health Organ 1969; 41: 21–43. PMID: 5309084

20. Palomino JC, Martin A, Camacho M, Guerra H, Swings J, Portaels P. Resazurin microtitre assay plate: simple and inexpensive method for detection of drug resistance in Mycobacterium tuberculosis. Antimicrob Agents Chemother 2002; 44: 2720–2.

21. Jadaun GP, Agarwal C, Sharma H, Ahmed Z, Upadhya Y, Faujdar J, et al. Determination of ethambutol MICs for Mycobacterium tuberculosis and Mycobacterium avium isolates by resazurin microtitre assay. J. Antimicrob. Chemother. 2007; 60: 152–155. PMID: 17483147

22. Brodie AF, Kalra VK, Lee SH, Cohen NS. Properties of energy-transducing systems in different types of membrane preparations from Mycobacterium phlei-preparation, resolution, and reconstitution. Methods Enzymol. 1979; 55: 75–200. PMID: 156832

23. Bradford MM. A rapid and sensitive method for quantitation of microgram quantities of protein utilizing the principle of protein-dye-binding. Anal. Biochem. 1976; 72: 248–254. PMID: 942051

24. Gorg A, Obermaier C, Boguth G, Harder A, Scheibe B, Wildgruber R, et al. The current state of two-dimensional electrophoresis with immobilized pH gradients. Electrophoresis 2000; 21: 1037–1053. PMID: 10786879

25. Samanovic MI, Li H, Darwin KH. The Pup-Proteasome System of Mycobacterium tuberculosis. Subcell Biochem. 2013; 66: 267–95. doi: 10.1007/978-94-007-5940-4_10 PMID: 23479444
40. Fortune SM, Solache A, Jaeger A, Hill PJ, Belisle JT, Bloom BR, et al.
41. Vandal OH, Roberts JA, Odaira T, Schnappinger D, Nathan CF, Ehrt S. Acid-susceptible mutants of
26. Pearce MJ, Mintseris J, Ferreyra J, Gygi SP, Darwin KH. Ubiquitin-like protein involved in the protea-
42. Samanovic MI, Li H, Darwin KH. The Pup-Proteasome System of
43. Burns KE, Cerda-Maira FA, Wang T, Li H, Bishai WR, Darwin KH. Depupylation of prokaryotic ubiqui-
44. Pearson WR and Lipman DJ. Improved tools for biological sequence comparison. Proc Natl Acad Sci
27. 1990; 215: 403–410. PMID:2231712
28. Schneidman-Duhovny D, Inbar Y, Nussinov R, Wolfson HJ. PatchDock and SymmDock: servers for rigid and symmetric docking. Nucleic Acids Res 2005; 33 Web Server: W363–367. PMID:15980490
29. Andrusier N, Nussinov R, Wolfson HJ. FireDock: Fast interaction refinement in molecular docking. Proteins 2007; 69: 139–159. PMID:17598144
30. Mashiach E, Schneidman-Duhovny D, Andrusier N, Nussinov R, Wolfson HJ. FireDock: A Web server for fast interaction refinement in molecular docking. Nucleic Acids Res 2008; 36 Web Server: W229–232. doi: 10.1039/nar/gkn186 PMID: 18424796
31. Liu Z, Ma Q, Cao J, Gao X, Ren J, Xue Y. GPS-PUP: computational prediction of pupylation sites in prokaryotic proteins. Mol Biosyst. 2011; 7: 2737–2740. doi: 10.1039/c1mb00521a PMID: 21850344
32. Zhang J, Wang K, Zhang J, Liu SS, Dai L, Zhang JY. Using proteomic approach to identify tumor-associated proteins as biomarkers in human esophageal squamous cell carcinoma. J. Proteome Res. 2011; 10: 2863–72. doi: 10.1021/pr200141c PMID: 21517111
33. Zhang L, Wang Q, Wang W, Liu Y, Wang J, Yue J, et al. Identification of putative biomarkers for the serodiagnosis of drug-resistant Mycobacterium tuberculosis. Proteome Sci. 2012; 10: 12. doi: 10.1186/1477-5966-10-12 PMID: 22364187
34. Koul A, Vanack L, Dendouga N, Balemans W, Van den Wyngaert I, Vergauwen K, et al. Diarylquinolines are bactericidal for dormant mycobacteria as a result of disturbed ATP homeostasis. J. Biol. Chem. 2008; 283: 25273–25280. doi: 10.1074/jbc.M803899200 PMID: 18625705
35. Koul A, Arnoult E, Lounis N, Guillemont J, Andries K. The challenge of new drug discovery for tuberculosis. Nature 2011; 469: 483–490. doi: 10.1038/nature09657 PMID: 21270896
36. Rao SP, Alonso S, Rand L, Dick T, Pethe K. The proton motive force is required for maintaining ATP homeostasis and viability of hypoxic, non replicating Mycobacterium tuberculosis. Proc Natl Acad Sci USA 2008; 105: 11945–11950. doi: 10.1073/pnas.0711697105 PMID: 18697942
37. Venugopal A, Bryk R, Shi S, Rhee K, Rath P, Schnappinger D, et al. Virulence of Mycobacterium tubercu-
losis depends on lipoamide dehydrogenase, a member of three multienzyme complexes. Cell Host Microbe. 2011; 9: 21–31. doi:10.1016/j.chom.2010.12.004 PMID: 21298944
38. Heo DR, Shin SJ, Kim WS, Noh K, Park JW, Son KH, et al. Mycobacterium tuberculosis lipdC, Rv0462, induces dendritic cell maturation and Th1 polarization. Biochem Biophys Res Commun. 2011; 411: 642–7. doi: 10.1016/j.bbrc.2011.07.013 PMID: 21782792
39. Vandal OH, Roberts JA, Odaira T, Schnappinger D, Nathan CF, Ehts S. Acid-susceptible mutants of
41. Mayeux, AR, Haggard, CL, Bishai, WR. Mycobacterium tuberculosis and oxidants: a review of the possible mechanisms. J Infect Dis 2001; 183: 1107–1113. doi:10.1086/321801 PMID: 11416222
42. Bums KE, Cerda-Maira FA, Wang T, Li H, Bishai WR, Darwin KH. Depupylation of prokaryotic ubiqui-
43. Samanovic MI, Li H, Darwin KH. The Pup-Proteasome System of Mycobacterium tuberculosis. Subcell Biochem 2013; 66: 267–95. doi:10.1007/978-94-007-5940-4_10 PMID: 23479444
44. Kinlessi RJ, and McInerney JO. Eukaryotic genes in Mycobacterium tuberculosis? Possible alternative explanations. Trends Genet 2003; 12: 687–689.
45. Hwang SA, and Actor JK. Lactoferrin modulation of BCG-infected dendritic cell functions. Int. Immunol. 2009; 21: 1185–1197. doi: 10.1093/intimm/dxp084 PMID: 19692539
46. Pandey R, and Rodriguez GM. A ferritin mutant of Mycobacterium tuberculosis is highly susceptible to killing by antibiotics and is unable to establish a chronic infection in mice. Infect. Immun. 2012; 80: 3650–3659. doi: 10.1128/IAI.00229-12 PMID: 22802345
47. Sherman DR, Voskuil M, Schnappinger D, Liao R, Harrell MI, Schoolnik GK. Regulation of the Myco-
bacterium tuberculosis hypoxic response gene encoding alpha-crystallin. Proc Natl Acad Sci USA 2001; 98: 7534–7539. PMID: 11416222

Proteome of Aminoglycosides Resistant M. tuberculosis
48. Geluk A, Lin MY, van Meijgaarden KE, Leyten EM, Franken KL, Ottenhoff TH, et al. T-cell recognition of the HspX protein of Mycobacterium tuberculosis correlates with latent M. tuberculosis infection but not with M. bovis BCG vaccination. Infect Immun 2007; 75: 2914–2921. PMID: 17387166

49. Gautam US, Sikri K, Tyagi JS. The residue threonine 82 of DevR (DosR) is essential for DevR activation and function in Mycobacterium tuberculosis despite its atypical location. J Bacteriol. 2011; 193:4849–58. doi: 10.1128/JB.05051-11 PMID: 21764934

50. Roupie V, Romano M, Zhang L, Korf H, Lin MY, Franken KL, et al. Immunogenicity of eight dormancy regulon-encoded proteins of Mycobacterium tuberculosis in DNA-vaccinated and tuberculosis-infected mice. Infect. Immun. 2007; 75: 941–949. PMID: 17145953

51. Zvi A, Ariel N, Fulkerson J, Sadoff JC, Shafferman A. Whole genome identification of Mycobacterium tuberculosis vaccine candidates by comprehensive data mining and bioinformatic analyses. BMC Med. Genomics 2008; 1: 18. doi: 10.1186/1755-8794-1-18 PMID: 18505592

52. Hampshire T, Soneji S, Bacon J, James BW, Hinds J, Laing K, et al. Stationary phase gene expression of Mycobacterium tuberculosis following a progressive nutrient depletion: a model for persistent organisms? Tuberculosis 2004; 84: 228–238. PMID: 15207492

53. Rifat D, Bishai WR, Karakousis PC. Phosphate depletion: a novel trigger for Mycobacterium tuberculosis persistence. J. Infect. Dis. 2009; 200: 1126–1135. doi: 10.1086/605700 PMID: 19686042

54. White MJ, Savaryn JP, Bret DJ, He H, Penoske RM, Terhune et al. The HtrA-like serine protease PepD interacts with and modulates the Mycobacterium tuberculosis 35-kDa antigen outer envelope protein. PLoS One 2011; 6(3): e18175. doi: 10.1371/journal.pone.0018175 PMID: 21445360

55. Provedi R, Boldrin F, Falciani F, Palù G, Manganelli R. Global transcriptional response to vancomycin in Mycobacterium tuberculosis. Microbiology 2009; 155: 1093–102. doi: 10.1099/mic.0.024802-0 PMID: 19332811

56. Jungblut PR, Schaible UE, Mollenkopf HJ, Zimny-Arndt U, Raupach B, Mattow J, et al. Comparative proteome analysis of Mycobacterium tuberculosis and Mycobacterium bovis BCG strains: towards functional genomics of microbial pathogens. Mol. Microbiol. 1999; 33: 1103–1117. PMID: 10510226

57. Hu Y, and Coates AR. Increased levels of sigJ mRNA in late stationary phase cultures of Mycobacterium tuberculosis detected by DNA array hybridization. FEMS Microbiol Lett. 2001; 202: 59–65. PMID: 11506908

58. Kems PW, Ackhart DF, Basaraba RJ, Leid JG, Shirliff ME. Mycobacterium tuberculosis pellucides express unique proteins recognized by the host humoral response. Pathog Dis 2014; 70:347–358. doi: 10.1111/2049-632X.12142 PMID: 24453174

59. Corvaisier S, Bordave V, Felden B. Inhibition of transfer messenger RNA aminoclaylation and trans-translation by aminoglycoside antibiotics. J. Biol. Chem. 2003; 278: 14788–14797. PMID: 12588865

60. Sajid A, Arora G, Gupta M, Singhal A, Chakraborty K, Nandicoori VK, et al. Interaction of Mycobacterium tuberculosis elongation factor Tu with GTP is regulated by phosphorylation. J Bacteriol 2011; 193 (19): 5347–5358. doi: 10.1128/JB.05469-11 PMID: 21803988

61. Darwin KH, Eht S, Gutierrez-Ramos JC, Weich N, Nathan CF. The proteasome of Mycobacterium tuberculosis is required for resistance to nitric oxide. Science 2003; 302: 1963–1966. PMID: 14671303