WHEN DID ROUND DISK GALAXIES FORM?

T. M. TAKEUCHI 1, K. OHTA 1, S. YUMA 2, AND K. YABE 3

1 Department of Astronomy, Kyoto University, Kyoto 606-8502, Japan; ohta@kusastro.kyoto-u.ac.jp
2 Institute for Cosmic Ray Research, The University of Tokyo, Kashiwa 277-8582, Japan
3 National Astronomical Observatory of Japan, Mitaka 181-8588, Japan

Received 2014 September 28; accepted 2014 December 13; published 2015 February 23

ABSTRACT

When and how galaxy morphology, such as the disk and bulge seen in the present-day universe, emerged is still not clear. In the universe at \(z \gtrsim 2 \), galaxies with various morphologies are seen, and star-forming galaxies at \(z \sim 2 \) show the intrinsic shape of bar-like structures. Then, when did the round disk structure form? Here we take a simple and straightforward approach to see the epoch when a round disk galaxy population emerged by constraining the intrinsic shape statistically based on the apparent axial ratio distribution of galaxies. We derived the distributions of the apparent axial ratios in the rest-frame optical light (\(~\sim 5000 \) Å) of star-forming main-sequence galaxies at \(2.5 > z > 1.4 \), \(1.4 > z > 0.85 \), and \(0.85 > z > 0.5 \), and found that their apparent axial ratios show peaky distributions at \(z \gtrsim 0.85 \), while a rather flat distribution at the lower redshift. By using a tri-axial model \((A > B > C) \) for the intrinsic shape, we found that the best-fit models give the peaks of the \(B/A \) distribution of \(0.81 \pm 0.04, 0.84 \pm 0.04 \), and \(0.92 \pm 0.05 \) at \(2.5 > z > 1.4 \), \(1.4 > z > 0.85 \), and \(0.85 > z > 0.5 \), respectively. The last value is close to the local value of 0.95. Thickness \((C/A) \) is \(~\sim 0.25 \) at all the redshifts and is close to the local value (0.21). The results indicate that the shape of the star-forming galaxies in the main sequence changes gradually, and that the round disk is established at around \(z \sim 0.9 \). The establishment of the round disk may be due to the cessation of a violent interaction between galaxies or the growth of a bulge and/or a supermassive black hole residing at the center of a galaxy that dissolves the bar structure.

Key words: galaxies: evolution – galaxies: formation – galaxies: structure

1. INTRODUCTION

When and how did disk galaxies form? At \(z \lesssim 1 \), disk galaxies exist that can be classified with Hubble’s tuning fork (e.g., Schade et al. 1995; Abraham et al. 1996; Lilly et al. 1998; Scarlata et al. 2007; Sargent et al. 2007); they are identified by their apparent morphologies, their surface brightness distributions, and/or empirical indices that describe features such as central condensation and asymmetry. Meanwhile, in the universe at \(z \gtrsim 3 \), galaxies with various morphologies are seen, and many of them show the presence of clumps and/or irregularity; though, the morphology is traced in the rest-frame UV (e.g., Giavalisco et al. 1996; Steidel et al. 1996). Hence, the emergence of morphology classified with Hubble’s tuning fork is considered to be around \(z \sim 1–3 \), and the formation of disk structures would also be expected at this epoch.

The Wide Field Camera 3 (WFC3) on the Hubble Space Telescope (HST) enables us to study the morphology of galaxies in the rest-frame optical light well up to \(z \sim 3 \). Conselice et al. (2011) studied morphology evolution based on eye inspection. They found that the disk population is gradually increasing with redshift and the population is very rare at \(z > 2 \). By using apparent morphology, a similar trend is reported by Cameron et al. (2011) for galaxies that have stellar masses with ranges of \(10^{10–12} M_\odot \) and by Talia et al. (2014). Mortlock et al. (2013) also studied the morphology evolution with eye inspection and a clearer emergence of the disk population at \(z \sim 2 \) is seen after correcting for the statistical morphology misclassification.

However, from the optical surface brightness distribution, the fraction of the disk galaxies is higher at \(z > 2 \) (Mortlock et al. 2013; Bruce et al. 2012; Buitrago et al. 2013). If the Sérsic index \((n) \) less than 2.5 is regarded as an indicator of disk galaxies, then the fraction of the disk population is larger at \(z > 2 \) and is decreasing with redshift, though the details of the evolutionary trend is not so simple; e.g., if irregular galaxies are included in the sample, the disk fraction is more constant against redshift (Buitrago et al. 2013), or the fraction is rather constant for less massive galaxies (\(~<10^{10.5} M_\odot;\) Mortlock et al. 2013). Bruce et al. (2012) tried to model the two-dimensional surface brightness distribution with two components, Sérsic indices of \(n = 1 \) and \(n = 4 \), and found that a fraction of the disk \((n = 1 \) component) dominated galaxies decreases at \(z \sim 2 \) rather sharply for stellar masses larger than \(10^{10.5} M_\odot \).

Thus, the opposite views are obtained in terms of the disk evolution. Other parameters characterizing the morphological features, such as central condensation, asymmetry, Gini, M20, etc., do not seem to be suitable to trace the morphology of galaxies in the distant universe (Wang et al. 2012; Mortlock et al. 2013; Talia et al. 2014).

On the other hand, studies of internal kinematics in star-forming galaxies such as BM/BX and star-forming BzK (sBzK) galaxies at \(z \sim 2 \) revealed that about one-third of them show a clear rotation kinematics (Forster Schreiber et al. 2009). This suggests that we are witnessing disk galaxies and that they may be progenitors of present-day disk galaxies; though, a fraction of them may evolve into the present-day elliptical galaxies through major mergers, particularly those with large stellar mass. Another suggestion regarding the disk progenitor scenario stems from the clustering property of sBzK galaxies: sBzK galaxies with \(K < 23 \) mag are considered to be progenitors of present-day disk galaxies with regard to their weak clustering strength (Hayashi et al. 2007). It would be reasonable to suppose that most of the sBzK galaxies in this magnitude range will evolve into present-day disk galaxies, though the brighter sBzK galaxies may be progenitors of elliptical galaxies.

Motivated by the finding of the presence of many rotating disks among sBzK galaxies and their clustering nature, we took a simple and straightforward approach to see whether the
The Astrophysical Journal, 801:2 (7pp), 2015 March 1

Takeuchi et al.

intrinsic shape of faint sBzK galaxies at $z \sim 2$ is disk-like or not, statistically based on the apparent axial ratio distribution. We studied the surface brightness distribution and the apparent axial ratio in both rest-frame UV and optical light for sBzK galaxies with $K_s < 24$ mag (Yuma et al. 2011, 2012). Yuma et al. (2011) and Yuma et al. (2012) revealed that their surface brightness distribution is characterized by a Sérsic index of $n \sim 1$, and the half-light radius and surface stellar mass density are similar to those in present-day disk galaxies (Barden et al. 2005). However, it turned out that the intrinsic shape of the sBzK galaxies is not a round disk (a round shape means an intrinsic axial ratio of $\sim 0.9-1.0$); their intrinsic shape is bar-like or oval (meaning an intrinsic axial ratio of $0.6-0.8$) with a thickness similar to that of the present-day disk galaxies. The intrinsic bar-like structure of star-forming galaxies at $z \sim 2$ is also pointed out by Law et al. (2012). It should be noted here that this bar-like structure does not imply a direct progenitor of the local barred galaxies as discussed later.

Then, when did round disk galaxies appear after $z \sim 2$? The emergence of the round disk population should reflect the evolution process of the disk structure. Hence, revealing the evolution of the intrinsic shape of the galaxies is expected to give us an insight into the physical process of the galaxy’s evolution. In this paper, we study the intrinsic shape of main-sequence galaxies with $K_s < 24$ mag in the redshift range from 2.5 to 0.5 using the same method as Yuma et al. (2011) and Yuma et al. (2012) to see the redshift at which the round disk galaxy population emerged. In the subsequent section, data sources and sample galaxies are summarized. In Section 3, we derive the surface brightness distributions and axial ratios of the galaxies. Then, in Section 4, we examine the distribution of the apparent axial ratios and constrain the intrinsic shape of the galaxies. Our conclusion and a discussion are given in Section 5.

We adopt a cosmology with $H_0 = 70$ km s$^{-1}$ Mpc$^{-1}$, $\Omega_m = 0.3$, and $\Omega_{\Lambda} = 0.7$. All magnitudes in this paper are given in the AB magnitude system.

2. DATA SOURCES AND SAMPLE GALAXIES

Sample galaxies in this study are collected from the Great Observatories Origins Deep Survey-South (GOODS-S\footnote[4]{http://www.sci.edu/science/goods}; Dickinson et al. 2003) and the Subaru XMM-$Newton$ Deep Survey (SXDS; Furusawa et al. 2008), which almost overlaps the Ultra Deep Survey (UDS) in the UK Infrared Telescope Infrared Deep Sky Survey (UKIDSS; Lawrence et al. 2007). The data sources are the same as those used by Yuma et al. (2012) and the details are described in the paper. Here we briefly summarize them. In the GOODS-S region, near infrared (NIR) images (J-, H-, and K_s-band images) were taken from GOODS/ISAAC (Infrared Spectrometer And Array Camera) data release final version (Retzlaff et al. 2010). The five sigma limiting K_s-band magnitude is 24.4 mag. NIR images taken with WFC3 on HST with F125W and F160W filters were obtained from Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey (CANDELS; Grogin et al. 2011; Koekemoer et al. 2011) data release version 0.5. Optical images were taken from version 2.0 data products of the GOODS HST/ACS (Advanced Camera for Surveys) treasure program (B_{435}, V_{606}, i_{775}, and z_{850}) (Giavalisco et al. 2004) and from ESO/GOODS program (U and R) (Nonino et al. 2009). Mid-infrared (MIR) images at 3.6 μm and 4.5 μm taken with the Infrared Array Camera (IRAC) on the Spitzer Space Telescope were from data releases 1 and 2 obtained in the Spitzer Legacy Science program. In the SXDS/UDS region, NIR images (J, H, and K_S) were taken from data release version 8 of UKIDSS UDS. The five sigma limiting magnitude is $K_S = 24.6$ mag. NIR images with HST/WFC3 with F125W and F160W filters were obtained from CANDELS data release version 1.0. Optical images were taken from the SXDS project (B, V, R_C, i', and z') (Furusawa et al. 2008). We used HST/ACS images taken with the F814W filter (i_{814}). MIR 3.6 μm and 4.5 μm images were taken from the SpitzerPublic Legacy Survey of UKIDSS UDS (PI: J. Dunlop). We also use the far-UV and near-UV data taken from Galaxy Evolution Explorer (Martin et al. 2005) archived image (GR6) and the u-band data of the Canada–France–Hawaii Telescope Legacy Survey wide field as supplemental information, though the limiting magnitudes are shallow.

Object detection was made based on a K_S-band image by using SEXTRACTOR (Bertin & Arnouts 1996). We made photometry using these data for each source detected in K_s images at the same position and derived total magnitudes using SEXTRACTOR. For the images taken with ACS and IRAC, we applied a correction for the aperture photometry to obtain a total magnitude following the manner of Yuma et al. (2012). Spectral energy distribution (SED) was constructed for each object from the photometry in all of the bands. Then photometric redshifts were derived by using HYPERZ (Bolzonella et al. 2000). Comparisons with spectroscopic redshifts available showed $\Delta z/(1+z) \sim 0.05$ and 0.03 in GOODS-S and SXDS, respectively. With the photometric redshifts, stellar mass, star-formation rate (SFR), and color excess $(E(B-V))$ were derived for each object through SED fitting by using the SEDfit program (Sawicki 2012). The SEDfit employs the population synthesis code of BC03 (Bruzual & Charlot 2003). The Salpeter initial mass function with a mass range of $0.1-100 M_{\odot}$ and the solar metallicity were assumed. The extinction law used was that by Calzetti et al. (2000). More details are described by Yuma et al. (2011, 2012) and Yabe et al. (2012, 2014).

Using these data, we selected galaxies brighter than $K_S = 24.0$ mag. We divided the galaxies into three epochs of $2.5 > z > 1.4$, $1.4 > z > 0.85$, and $0.85 > z > 0.5$ based on the photometric redshifts; these epochs are chosen to take a comparable duration (~ 2 Gyr) of the epochs in the cosmic age and to keep a reasonable sample size.

Figure 1 shows the distribution of the SFR against stellar mass in each epoch. Such as in other works (e.g., Noeske et al. 2007; Daddi et al. 2007), the SFRs are larger in more massive galaxies and they make a sequence referred to as the main sequence. The main sequence shows a gradual cosmological evolution down to $z \sim 0$, where we see disk galaxies in the sequence. Most of our sample galaxies at $2.5 > z > 1.4$ are also sBzK galaxies. Galaxies in the most massive part of the main sequence at higher redshifts may soon stop star formation and evolve into passive elliptical galaxies according to a simple theoretical expectation (e.g., Bouché et al. 2010). However, most of the sample galaxies occupy less massive parts of the main sequence and they are expected to reside in the main sequence at the present epoch. A branch seen above the main sequence consists of violently star-forming galaxies often under strong galaxy interaction (e.g., Daddi et al. 2007). Thus we selected star-forming galaxies in the main sequence bracketed by thresholds shown in Figure 1. The stellar mass limit at $5 \times 10^9 M_{\odot}$ is to avoid the inclusion of Magellanic-type galaxies that would tend to show bar-like structures even in the local universe. A star-forming
galaxy with a stellar mass of $\sim 5 \times 10^9 M_\odot$ at $z = 2.5$ is a progenitor of the Milky Way class galaxy (stellar mass of $5 \times 10^{10} M_\odot$) if we adopt the abundance matching in terms of the number density (van Dokkum et al. 2013). The ranges of the specific SFR (sSFR) that we use are $3 \times 10^{-11} - 2 \times 10^{-8}$ yr$^{-1}$ ($z = 1.4 - 2.5$), $3 \times 10^{-11} - 1 \times 10^{-8}$ yr$^{-1}$ ($z = 0.85 - 1.4$), and $2 \times 10^{-11} - 3 \times 10^{-9}$ yr$^{-1}$ ($z = 0.5 - 0.85$). SFR limit is just an additional threshold; SFR $> 2.0 M_\odot$ yr$^{-1}$ ($z = 1.4 - 2.5$), $> 0.6 M_\odot$ yr$^{-1}$ ($z = 0.85 - 1.4$), and $> 0.2 M_\odot$ yr$^{-1}$ ($z = 0.5 - 0.85$). A fraction (typically 10%–15%) of them show multiple-structure in the rest-frame optical HST images; if an object detected by SEXTRACTOR locates within a radius of median size (FWHM) of the galaxies in each epoch, we regard them as multiple. Such galaxies are not adequate to examine the shape and we discarded them in this study.

3. TWO-DIMENSIONAL SURFACE BRIGHTNESS FITTING

We made a two-dimensional surface brightness distribution fitting to the galaxies selected above. The images were taken with HST in the rest-frame optical wavelength ($\sim 0.5 \mu$m): F160W (H160) for $2.5 > z > 1.4$, F125W (J125) for $1.4 > z > 0.85$, and F850LP (z_{850}) in GOODS-S and F814W (i_{814}) in SXDS for $0.85 > z > 0.5$. Magnitude ranges for the sample galaxies in three epochs were virtually $H_{160} < 24$ mag and $J_{125} < 24$ mag, and $z_{850} < 25$ mag in GOODS-S and $i_{814} < 24$ mag in SXDS. Pixel scales after drizzle were 0.06, 0.06, and 0.03 in H_{160}, J_{125}, and z_{850}/i_{814}, respectively.

The radial distribution is fitted with the Sésic profile: $I(r) = I_e \exp \left[-\kappa_n \left(r/r_a \right)^1/n - 1 \right]$, where r is the half light radius, I_e is the surface brightness at r_a, and n characterizes the shape of the profile (Sésic index). A two-dimensional surface brightness fitting was made by using GALFIT version 3 (Peng et al. 2010). Initial guess parameters on the central position, axial ratio, position angle, and r_a are taken from the output parameters of SEXTRACTOR. The initial Sésic index was set to be 1.5, which does not affect the final results significantly. The point-spread functions in each image were constructed from 5×20 isolated unsaturated stars.

Figure 2 shows an example of the profile fitting. As seen in the figure, the surface brightness profiles extend to ~ 1 arcsec in radius corresponding to ~ 8 kpc at $z = 1.2$ and ~ 6 kpc at $z = 0.5$. The surface brightness we use to fit the model reaches $23.5 \sim 25$ mag arcsec$^{-2}$ in the rest-frame V band after correcting for the cosmological dimming. This level of the surface brightness can be regarded as the outskirts of galaxies, and is deep enough to confront with the shape of local disk galaxies. Considering the fading of galaxy luminosity to the present epoch, the value would be \sim 1 mag arcsec$^{-2}$ fainter at $z \sim 0$ (e.g., Brinchmann et al. 1998; Miller et al. 2011). We obtained r_a, n, and the apparent axial ratio (b/a, where a is a major axis and b is a minor axis) for each galaxy. About 60%–70% of the sample galaxies show $n = 0.5 - 2.5$. We then examined the distribution of r_a and the stellar mass of the sample galaxies with $n = 0.5 - 2.5$. In each epoch, the distribution of r_a against stellar mass is similar to that for local disk galaxies (Barden et al. 2005).

Accuracy for the Sésic index as well as for the axial ratio was examined by putting artificial objects into the images used for the analysis. The artificial objects were created by using ARTDATA/MKOBJECTS in IRAF. Mock galaxies with Sésic indices of 1 or 4 were generated in both GOODS-S and SXDS with half-light radius of $0.1' - 1'$ in a magnitude range of 20–25 mag. The ranges of input parameters are chosen to mimic those of the sample galaxies. Axial ratio and position angle are randomly chosen and the galaxies are put into H_{160}, J_{125}, z_{850}, and i_{814} images randomly. As we did for the real objects, we first used SEXTRACTOR to derive position, position angle, axial ratio, and FWHM. We then performed GALFIT with these parameters as well as $n = 1.5$, as the initial guess. Results for H_{160} (GOODS-S, SXDS/UDS) were presented by Yuma et al. (2012). Accuracy for the Sésic index in the H_{160} image is good enough (<10%) in this magnitude range in the case of $n = 1$. Even if the intrinsic n is 4, the misclassification into the $n = 1$ disk is negligible, though the accuracy is slightly worse in the z_{850} image (Yuma et al. 2011, 2012). We show the accuracy of the axial ratio derived for J_{125} (SXDS/UDS), z_{850} (GOODS-S), and i_{814} (SXDS/UDS) in case of $n = 1$ in Figure 3. In all the panels, the obtained axial ratios agree very well with those of the input value in the bright magnitude range, and the accuracy is getting worse for the fainter objects. However, at the faintest magnitude level of the sample galaxies in each band, the accuracy of the obtained axial ratio is less than 5% on average, which is smaller than the bin size of the histograms of the axial ratio distribution described below. The accuracy of the axial ratio in H_{160} (GOODS-S, SXDS/UDS) is presented by Yuma et al. (2012), and it is comparable to those in other bands. The detection rate in K_S-band image against the apparent axial ratio was also examined and the rate is almost constant in the range of $b/a = 0.2$ and 1.0 (Yuma et al. 2011).
Figure 2. Example of the surface brightness distribution fitting at $0.85 > z > 0.5$ (upper), $1.4 > z > 0.85$ (middle), and $2.5 > z > 1.4$ (lower). The images are taken with HST i_{814} (upper), WFC3 J_{125} (middle), and WFC3 H_{160} (lower). In each row, from left to right, the original image, best-fit model image, residual, and radial surface brightness profiles along the major axis are shown. In the rightmost panel, the observed surface brightness and the best-fitted profile smoothed with the point-spread function is shown by circles with error and solid curves, respectively. The point-spread function is shown by the thin solid curve.

Figure 3. Accuracy of the obtained axial ratio against the magnitude of the input artificial object in J_{125} (left), z_{850} (middle), and i_{814} (right). Error bars represent the 1σ dispersion of the distribution.

4. AXIAL RATIO DISTRIBUTION

4.1. Distribution of Apparent Axial Ratios

In order to see whether they have round disk structure, we take a simple and straightforward approach; i.e., we constrain the intrinsic shape of these galaxies statistically based on the distribution of apparent axial ratios of the sample galaxies at three epochs. Figure 4 (upper row) shows the apparent axial ratio distributions of the sample galaxies with $n = 0.5–2.5$ among galaxies selected in Section 2. If the intrinsic shape of disk galaxies is an infinitesimally thin circular disk, the apparent axial ratio distribution is exactly flat. In fact, the distribution for $\sim 300,000$ local disk galaxies is almost flat except around $b/a \sim 0$ and ~ 1 (Padilla & Strauss 2008), since real disks have a finite thickness and are not perfectly round. As seen in the right panel ($2.5 > z > 1.4$) of the upper row of Figure 4, the axial
ratio distribution peaks at ~0.45 and sharply decreases to both sides. In the middle panel (1.4 > z > 0.85), the distribution is slightly flatter, but still shows a slight peaky distribution. The histograms suggest that these galaxies do not have a round disk structure. Meanwhile, in the left panel (0.85 > z > 0.5), the distribution is rather flat and is close to that for the local disk galaxies, suggesting that they have the intrinsic shape of a round disk.

4.2. Intrinsic Axial Ratio Distribution

To quantitatively constrain the intrinsic shape, we employ a tri-axial model with axial lengths of A > B > C, following the method by Ryden (2004). The face-on ellipticity (ε = 1 - B/A) is assumed to be described by a log-normal distribution with a mean of μ(=ln ε) and dispersion of σ, while the edge-on thickness (C/A) is assumed to be described by a Gaussian distribution with a mean of μγ and a dispersion of σγ. With this parameter set, the expected apparent axial ratio distribution, seen from random viewing angles, can be calculated and compared with the observed apparent axial ratio distribution.

The model axial ratio distributions were calculated in a range of μ = −3.95 ~ −0.05, σ = 0.2 ~ 2.0, μγ = 0.1 ~ 0.98, and σγ = 0.01 ~ 0.35, with a step of Δμ = 0.15, Δσ = 0.01, Δμγ = 0.02, and Δσγ = 0.02. With these parameter sets, we searched for the best-fit parameter set using the χ^2 method with 1σ statistics by Gehrels (1986). To estimate the uncertainty of the best-fit parameters, we made a Monte Carlo realization of the observed histogram of the axial ratio 1000 times and derived the best-fit parameter set for each realization. We set a 68% confidence level as the uncertainty of the model parameter. The peak value of the distribution of intrinsic B/A is given by 1 − exp(μ − σ^2). The uncertainty on the peak B/A was calculated based on the propagation of errors with the uncertainty of μ and σ mentioned above.

The best-fit models are shown with solid curves in Figure 4 (upper row), and the best-fitted parameters as well as the uncertainties are shown in Table 1. Resulting distributions of intrinsic axial ratios at the epochs are shown in Figure 4 (bottom row). The best-fit model B/A peaks at 0.81 ± 0.04, 0.84 ± 0.04, and 0.92 ± 0.05 at 2.5 > z > 1.4, 1.4 > z > 0.85, and 0.85 > z > 0.5, respectively, and the last value of B/A is very close to that for the local disk galaxies (0.94; Padilla & Strauss 2008). The mean C/A is ~0.25 at all of the epochs and is close to that of the local disk galaxies (0.21) (Padilla & Strauss 2008). The intrinsic shape of the star-forming main-sequence galaxies...
at $2.5 > z > 0.85$ is bar-like or oval, while they have round disk structures at $z < 0.85$, i.e., the emergence of the round disk population is $z \sim 0.9$, though the precise redshift determination is difficult due to the gradual cosmological evolution and small sample size.

4.3. Robustness of the Results

In order to examine the robustness of the results, we constructed samples by slightly changing the selection criteria with respect to the K_S-band magnitude, stellar mass, sSFR, $i_{814}/\Delta z_{850}$, J_{125}/H_{160} magnitude, and Sérsic index, and made the same fitting to these samples.

If we take samples in each epoch with 0.5 mag brighter or fainter in K_S band, virtually all of the best-fit parameters are within a 1σ error. The peak values of the intrinsic axial distribution (B/A) agree with the best-fit value within 1σ error. If we take a massive sample (with a stellar mass larger than $1.0 \times 10^{10} M_\odot$), then the results mostly agree within a 1σ error. If we include less massive galaxies (with stellar masses larger than $3 \times 10^9 M_\odot$), then peak values of B/A agree within the error, but the resulting parameters for the highest-redshift bin change by more than 1σ. It should be noted that even in the local universe such less massive galaxies often show bar-like structures, such as those of Magellanic irregular galaxies. We also test the dependence on sSFR by taking 3×10^{-11} yr$^{-1} < \text{sSFR} < 2 \times 10^{-8}$ yr$^{-1}$ at $z = 2.5$–1.4, 3×10^{-11} yr$^{-1} < \text{sSFR} < 5 \times 10^{-9}$ yr$^{-1}$ at $z = 1.4$–0.85, and 3×10^{-11} yr$^{-1} < \text{sSFR} < 7 \times 10^{-9}$ yr$^{-1}$ at $z = 0.85$–0.5. Almost all of the obtained best-fit parameters, as well as the peak values of B/A, agree within 1σ error. If we take the threshold SFR two to three times larger, the resulting parameters are almost within 1σ. The axial ratios are derived by using i_{814}, Δz_{850}, J_{125}, and H_{160} images. More accurate axial ratios are expected to be obtained with the brighter sample. Hence we take about 0.5 mag brighter samples ($i_{814} < 23.5$ mag, $\Delta z_{850} < 24.5$ mag, $J_{125} < 23.5$ mag, and $H_{160} < 23.5$ mag) from the $K_S < 24.0$ mag sample. The resulting peak axial ratios are within or marginally within a 1σ uncertainty, and the conclusion in this study does not change. We also make samples with Sérsic index of 0.5–1.5 and 0.5–3.5, and find again that the conclusion does not change.

Dust obscuration may affect the axial ratio distribution; the redder disk galaxies tend to show the smaller axial ratios in the local universe as well as at $z = 0.6$–0.9 (e.g., Padilla & Strauss 2008; Patel et al. 2012). This trend is considered to be due to the larger dust obscuration in more inclined galaxies. In order to see the effect, we divided the sample into two subsamples with smaller or larger color excesses ($E(B-V)$) at each epoch. The color excess was derived from the SED fitting mentioned in Section 2, and we divided the sample at around the median $E(B-V)$ of 0.2 or 0.25 mag. Resulting histograms of the axial ratios show that a slight excess at the smaller axial ratio ($b/a \sim 0.2$–0.4) is seen at $z = 0.5$–0.85 but such a clear trend is not seen at the higher redshifts. We made the model fitting to the subsamples. About half of the best-fit μ and σ values agree with those of the total sample within the uncertainty for the total sample. However, it should be noted that the uncertainty for the subsamples is large due to the smaller sample sizes. We also derived the peak B/A with the subsamples. The peak B/A values in the smaller color excess (larger color excess) are 0.81 (0.93) at $2.5 > z > 1.4$, 0.91 (0.78) at $1.4 > z > 0.85$, and 0.99 (0.97) at $0.85 > z > 0.5$. Thus the increasing trend of B/A with decreasing z is still seen, except for the B/A for the larger color excess at $2.5 > z > 1.4$.

5. CONCLUSION AND DISCUSSION

We constrain the intrinsic shape of the star-forming main-sequence galaxies at $z = 2.5$ to 0.5, based on the distributions of the apparent axial ratios, by employing the tri-axial model of $A > B > C$. At $z \geq 0.9$, their intrinsic shape is bar-like or oval with $B/A \sim 0.8$, while at $z \lesssim 0.9$, B/A is 0.92, which is close to the value for the local galaxies (0.95). Hence, the emergence of the round disk can be regarded as $z \sim 0.9$, though the precise redshift determination is difficult due to the gradual evolution and the small sample size. The thickness (C/A) is about 0.25 and does not show significant cosmological evolution down to $z \sim 0$. A similar result has been obtained very recently by adopting a slightly different model for the intrinsic shape; the triaxiality of star-forming galaxies with stellar mass larger than $10^{10.5} M_\odot$ is large at $z \gtrsim 1$, but small at $z \lesssim 1$ (van der Wel et al. 2014). It is worth noting that the bar-like structure we see at high redshifts is unlikely to be a direct progenitor of bar structure in the present-day barred galaxies because the apparent axial ratios are mainly obtained from outside, beyond the bar region in the present-day barred galaxies. The bar region in a present-day barred galaxy is brighter than ~ 22 mag arcsec$^{-2}$ in the V band (Ohta et al. 1990, 2007). Furthermore, large barred galaxies are disappearing as redshift increases (van den Bergh et al. 1996): its fraction among disk galaxies is only 10%–20% at $z = 0.8$–1.0 (Sheth et al. 2008; Melvin et al. 2014).

At $z \geq 3$, most star-forming galaxies show a Sérsic index of ~ 1 in the rest-frame UV (Ravindranath et al. 2006) and in the rest-frame optical (Akiyama et al. 2008). However, the distribution of the apparent axial ratios is not flat, suggesting the elongated intrinsic structure (Ravindranath et al. 2006). The results obtained here reveal that although the disk-like structure is seen among star-forming galaxies at $z \geq 1$, its intrinsic shape is bar-like or oval. The physical mechanisms that create such a structure are not clear, but they may be bar-like due to galaxy interaction and/or minor merging (Noguchi 1987; Berentzen et al. 2004), or the baryonic matter might have already been highly concentrated in a dark matter halo, resulting in the bar instability (Ostriker & Peebles 1973).

Then how did they become round? Numerical simulations show that a central mass condensation (either of a bulge and/or a super-massive black hole (SMBH)), with a mass fraction of 1%–10%, of a disk dissolves the bar-like structure (Athanassoula et al. 2005; Hozumi 2012). Thus the emergence of the round disk population may be related to the growth of a central bulge and/or an SMBH. According to the simulations by Athanassoula et al. (2005), the bar-like structure gradually evolves into a round disk with a timescale of a few gigayears, which is comparable to the elapsed time from $z = 1.5$ to 0.9 (~ 2 Gyr). However, an eye inspection of our sample galaxies at $z = 0.85$–0.5 suggests that bulge dominated galaxies are not the majority. The two-component model fit to discriminate the bulge and disk in a galaxy is not straightforward and it is beyond the scope of this study. Active galactic nucleus number density peaks at $z = 1$–2 (e.g., Ueda et al. 2003; Hasinger et al. 2005), suggesting the rapid growth of SMBHs during the epoch. The growth of an SMBH may also play a role for dissolving the bar structure, though the mass fraction may not be large enough. Alternatively, the gradual cessation of galaxy interaction may make a round disk. If this is the case, the epoch of the round disk population at $z \sim 0.9$ would indicate that the major galaxy interaction mostly ceased around this redshift and the galaxy morphology is rather stable after this. Further studies of the link between the intrinsic shape of the disk and the growth of
We thank the referee for useful comments. K.O.’s efforts are supported by the Grant-in-Aid for Scientific Research (24540230) and the Grant-in-Aid for Scientific Research on Innovative Area (24103003) from the Japan Society for the Promotion of Science. This work is partially based on observations taken by the CANDELS Multi-Cycle Treasury Program with the NASA/ESA HST, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS5-26555. Parts of the observations in GOODS-S have been carried out using the Very Large Telescope at the ESO Paranal Observatory under Program ID 168.A-0485. Based on observations obtained with MegaPrime/MegaCam, a joint project of CFHT and CEA/IRFU, at the Canada–France–Hawaii Telescope (CFHT) which is operated by the National Research Council (NRC) of Canada, the Institut National des Sciences de l’Univers of the Centre National de la Recherche Scientifique (CNRS) of France, and the University of Hawaii. This work is based in part on data products produced at Terapix available at the Canadian Astronomy Data Centre as part of the Canada–France–Hawaii Telescope Legacy Survey, a collaborative project of NRC and CNRS.

REFERENCES

Abraham, R. G., Tanvir, N. R., Santiago, B. X., et al. 1996, MNRAS, 279, L47
Akiyama, M., Minowa, Y., Kobayashi, N., et al. 2008, ApJ, 675, 1
Athanassoula, E., Athanassoula, E., Heller, C. H., & Fricke, K. J. 2004, MNRAS, 347, 220
Bertin, E., & Arnouts, S. 1996, A&AS, 117, 393
Bolzonella, M., Miralles, J.-M., & Pelló, R. 2000, A&A, 363, 476
Bouché, N., Dekel, A., Genzel, R., et al. 2010, ApJ, 718, 1001
Brinchmann, J., Abraham, R., Schade, D., et al. 1998, ApJ, 499, 112
Bruce, V. A., Dunlop, J. S., Cirasuolo, M., et al. 2012, MNRAS, 427, 1666
Bruzual, G., & Charlot, S. 2003, MNRAS, 344, 1000
Buitrago, F., Trujillo, I., Conselice, C. J., & Häußler, B. 2013, MNRAS, 428, 1460
Calzetti, D., Armus, L., Bohlin, R. C., et al. 2000, ApJ, 533, 682
Cameron, E., Carollo, C. M., Oesch, P. A., et al. 2011, ApJ, 743, 146
Conselice, C. J., Bluck, A. F. L., Ravindranath, S., et al. 2011, MNRAS, 417, 2270

a bulge/SMBH as well as galaxy interactions are desirable to disclose the evolution of disk galaxies.

Daddi, E., Dickinson, M., Morrison, G., et al. 2007, ApJ, 670, 156
Dickinson, M., Giavalisco, M., & GOODS Team. 2003, in The Mass of Galaxies at Low and High Redshift, ed. R. Bender & A. Renzini (Berlin: Springer), 324
Förster Schreiber, N. M., Genzel, R., Bouché, N., et al. 2009, ApJ, 706, 1364
Furusawa, H., Kosugi, A., Akiyama, M., et al. 2008, ApJS, 176, 1
Gehrels, N. 1986, ApJ, 303, 336
Giavalisco, M., Ferguson, H. C., Koo, S. M., et al. 2004, ApJL, 600, L93
Giavalisco, M., Steidel, C. C., & Macchetto, F. D. 1996, ApJ, 470, 189
Grogin, N. A., Kocevski, D. D., Faber, S. M., et al. 2011, ApJ, 197, 35
Hasinger, G., Miyaji, T., & Schmidt, M. 2005, A&A, 441, 417
Hayashi, M., Shimasaku, K., Motohara, K., et al. 2007, ApJ, 660, 72
Houzumi, S. 2012, PASJ, 64, 5
Koekemoer, A. M., Faber, S. M., Ferguson, H. C., et al. 2011, ApJ, 197, 36
Law, D. R., Steidel, C. C., Shapley, A. E., et al. 2012, ApJ, 745, 85
Lawrence, A., Warren, S. J., Almaini, O., et al. 2007, MNRAS, 379, 1599
Lilly, S., Schade, D., Ellis, R., et al. 1998, ApJ, 500, 75
Martin, D. C., Fanson, J., Schiminovich, D., et al. 2005, ApJL, 619, L1
Melvin, T., Masters, K., Lintott, C., et al. 2014, MNRAS, 438, 2882
Miller, S. H., Bundy, K., Sullivan, M., Ellis, R. S., & Treu, T. 2011, ApJ, 741, 115
Mortlock, A., Conselice, C. J., Hartley, W. G., et al. 2013, MNRAS, 433, 1185
Noeske, K. G., Weiner, B. J., Faber, S. M., et al. 2007, ApJL, 660, L43
Noguchi, M. 1987, MNRAS, 228, 635
Nonino, M., Dickinson, M., Rosati, P., et al. 2009, ApJS, 183, 244
Ohta, K., Aoki, K., Kawaguchi, T., & Kiuchi, G. 2007, ApJ, 696, 1
Ohta, K., Hamabe, M., & Wakamatsu, K. 1999, ApJ, 528, 71
Ostriker, J. P., & Peebles, P. J. E. 1973, ApJ, 186, 467
Padilla, N. D., & Strauss, M. A. 2009, MNRAS, 388, 1321
Patel, S. G., Holden, B. P., Kelson, D. D., et al. 2012, ApJL, 748, L27
Peng, C. Y., Ho, L. C., Impey, C. D., & Rix, H.-W. 2010, AJ, 139, 2097
Ravindranath, S., Giavalisco, M., Ferguson, H. C., et al. 2006, ApJ, 652, 963
Retzlaff, J., Rosati, P., Dickinson, M., et al. 2010, A&A, 511, 50
Ryden, B. S. 2004, ApJ, 601, 214
Sargent, M. T., Carollo, C. M., Lilly, S., et al. 2007, ApJS, 172, 434
Sawicki, M. 2012, PASP, 124, 1208
Scarlata, C., Carollo, C. M., Lilly, S., et al. 2007, ApJS, 172, 406
Schade, D., Lilly, S. J., Cranton, D., et al. 1995, ApJ, 451, L1
Sheth, K., Elmegreen, D., Elmegreen, B. G., et al. 2008, ApJ, 675, 1141
Staël, C. C., Giavalisco, M., Dickinson, M., & Adeleberger, K. L. 1996, AJ, 112, 352
Talia, M., Cimatti, A., Mignoli, M., et al. 2014, A&A, 562, A113
Ueda, Y., Akiyama, M., Ohta, K., & Miyaji, T. 2003, ApJ, 598, 886
van den Bergh, S., Abraham, R. G., Ellis, R. S., et al. 1996, AJ, 112, 359
van der Wel, A., Chang, Y.-Y., Bell, E. F., et al. 2014, ApJL, 792, L6
van Dokkum, P. G., Leja, J., Nelson, E. J., et al. 2013, ApJL, 771, L35
Wang, T., Huang, J.-S., Faber, S. M., et al. 2012, ApJ, 752, 134
Yabe, K., Ohta, K., Iwamuro, F., et al. 2012, PASJ, 64, 60
Yabe, K., Ohta, K., Iwamuro, F., et al. 2014, MNRAS, 437, 3647
Yuma, S., Ohta, K., & Yabe, K. 2012, ApJL, 761, 19
Yuma, S., Ohta, K., Yabe, K., Kajisawa, M., & Ichikawa, T. 2011, ApJ, 736, 92