A Deep Learning Perspective on Dropwise Condensation

Youngjoon Suh, Jonggyu Lee, Peter Simadiris, Xiao Yan, Soumyadip Sett, Longnan Li, Kazi Fazle Rabbi, Nenad Miljkovic,* and Yoonjin Won*

Condensation is ubiquitous in nature and industry. Heterogeneous condensation on surfaces is typified by the continuous cycle of droplet nucleation, growth, and departure. Central to the mechanistic understanding of the thermofluidic processes governing condensation is the rapid and high-fidelity extraction of interpretable physical descriptors from the highly transient droplet population. However, extracting quantifiable measures out of dynamic objects with conventional imaging technologies poses a challenge to researchers. Here, an intelligent vision-based framework is demonstrated that unites classical thermofluidic imaging techniques with deep learning to fundamentally address this challenge. The deep learning framework can autonomously harness physical descriptors and quantify thermal performance at extreme spatio-temporal resolutions of 300 nm and 200 ms, respectively. The data-centric analysis conclusively shows that contrary to classical understanding, the overall condensation performance is governed by a key tradeoff between heat transfer rate per individual droplet and droplet population density. The vision-based approach presents a powerful tool for the study of not only phase-change processes but also any nucleation-based process within and beyond the thermal science community through the harnessing of big data.

1. Introduction

Condensation is an efficient mass-transfer process observed in nature and is essential to many industrial applications such as thermoelectric and nuclear power generation,[1] water harvesting systems,[2–6] heat exchangers,[7,8] and desalination plants.[9,10] Condensation involves the nucleation of droplets on a surface that can lead to significant heat and mass transfer improvement depending on the droplet dynamics.[11] Highly efficient dropwise condensation on nonwetting surfaces is characterized by the formation of discrete droplets that nucleate, grow, and depart from the surface in a cyclic manner.[12] While traditional dropwise condensing surfaces rely on gravity to remove droplets having high Bond number ($Bo \approx 1$), recent advances in surface structuring and nanomanufacturing have enabled droplet removal through unique condensate behaviors such as coalescence-induced droplet jumping at $Bo \approx 0.001$, and the synergistic combination of droplet and film dynamics.[18]

The dynamic behavior of individual droplet–droplet and droplet–surface interactions are the main contributing parameters that determine the local and overall heat and mass transfer.[16] Despite efforts to quantify condensation performance by linking droplet statistics with classical phase change theories,[19] obtaining the requisite data needed at small scales ($\approx \mu m$) remains a challenge.[20–25] Using physical sensors is impractical for collecting information due to the need for thousands of images, with each image containing thousands of droplets, totaling more than a million individual interactions for a one-hour experiment. As a result, the alternative approach for instance-level quantification has been leveraging standard computer vision algorithms such as thresholding, k-means clustering, edge...
2. Results

2.1. Artificial Intelligence-Enabled Computer Vision

We develop a modular framework that consists of AI-enabled object detection, object tracking, and data processing modules to extract meaningful features from image datasets. The object detection module (Figure 1) uses high-resolution droplet images and first passes them through a custom-trained instance segmentation model (Mask R-CNN) where droplet masks are assigned with unique identifiers (IDs). At this stage, the model records primitive spatial features such as equivalent diameter, pixel-wise area, eccentricity, orientation, solidity, and location. Following the object detection module, a separate object tracking module takes the detected masks and passes them through a tracking toolkit (TrackPy) where the identified spatial features are used as parameters for tracking via the k-dimensional (k-d) tree algorithm. During the droplet tracking process, potential errors are manually identified and corrected using a documented graphical user interface (GUI). The model accuracy from the object detection/tracking is validated by testing evaluation metrics such as recall, precision, accuracy, F1-score, and mean average pixel error (MAPE) (see Section S1 and Figure S1, Supporting Information). Last, a data processing module post processes the datasets to extract higher-level features such as individual droplet growth rates and temporal heat transfer, with visualization enabled with Matlab. We mitigate Mask R-CNN prediction fluctuations (± 300 nm) when processing the data by employing the moving average method over 10 frames. The extracted features are further treated by implementing in-house algorithms to acquire explicit experimental results. First, the algorithms filter peripheral droplets to avoid anomalies caused by clipped droplets (see Figure S2, Supporting Information). Furthermore, we isolate condensate growth from coalescence-induced droplet growth by setting model configurations to identify merging events with new droplet IDs. For example, if droplets having IDs of 1 and 2 coalesce, the model identifies the merged droplet with a new ID.

2.2. Acquisition of the High Spatio-Temporal Resolution Heat Flux

To identify parameters that govern the dropwise condensation, the framework was first used to map the spatio-temporal heat transfer by tracking individual droplet statistics from live images. The heat transfer rate per individual droplet \(q_i \) is a crucial parameter that is classically challenging to acquire using conventional methods. The \(q_i \) can be computed with an energy balance (\(q_i = m_i \dot{h}_{fg} + \rho_v \dot{h}_{fg} dV/dt \)), where the condensate mass accumulation rate is related to the growth rate of an individual droplet by \((1, 19) \)

\[
q_i = \pi \rho_v \dot{h}_{fg} (1 - \cos \theta_a)^2 (2 + \cos \theta_a) \frac{dr}{dt}
\]

where \(\dot{h}_{fg} \) is the latent heat of vaporization, \(\rho_v \) is the liquid density, \(r_i \) is the individual droplet radius, \(dr/dt \) is the individual...
Figure 1. Vision-based deep learning framework consisting of object detection, tracking, and data processing modules. High-resolution images are collected using high-speed optical imaging to create a large input image dataset. The images are then processed through an object detection module (orange frame) consisting of an integrating Mask R-CNN with a ResNet-101 backbone where objects are automatically detected to generate instance-segmented masks. The objects in the masks are then linked and tracked using a tracking module (green frame) based on TrackPy employing k-dimensional tree algorithms for object linkage. The tracked results are post-processed using a data processing module to extract multi-level physical descriptors such as droplet growth rate, heat flux, and droplet distributions (gray dotted frame). Images shown in the top left region contain droplets which range in size scale from 10 μm to 1 mm. Images are shown as exemplary datasets and are qualitative descriptors. Schematics are not to scale.

where Z is the total number of time steps. We apply our models to two experimental surfaces: i) a functionalized hydrophobic (HP) surface (θ_a = 118°) and ii) a nanotextured superhydrophobic (SHP) surface (θ_a = 169°). For each surface, images are captured over a 10 min measurement period, which is equivalent to roughly 220 000 instances per dataset.

2.3. Deep Learning Analysis of Dropwise Condensation on a Hydrophobic Surface

The hydrophobicity of the tested HP surface facilitates discrete droplet nucleation, growth, and coalescence, as shown in the time-lapse tracked results of Figure 2a and Movie S1 (Supporting Information). The HP surface did not show any droplet jumping phenomena. The horizontal orientation of the HP surface in this experiment prevents droplets from being removed via gravitational sweeping. As a result, droplets continuously grow from droplet nucleation (relative time = 0 s) until coalescence (Figure 2b). The droplet growth follows the power-law exponent model \(r \approx \alpha t^\beta \) \(^{16,49,50}\) where the exponent \(\beta = 1/3 \) \(^{16}\) adequately fits the experimental data when \(\alpha = 3.2 \pm 0.5 \). The relatively high growth rates approaching \(dr/dt = 0.2 \mu m/s \) during the early
The absence of droplet removal mechanisms inhibits rapid growth at early stages \((r < 10 \, \mu m)\) is due to the relative scale of the variable thermal resistances illustrated in the inset. Spatially resolved heat flux \(q_{ji}\) for multiple droplets as represented by d) 3D surface and e) 2D contour plots. The circles in the contour plot mark the centroid locations of individual droplets. The inset in (d) shows an optical image of the apparent advancing contact angle \((\theta_a = 118^\circ)\) of a water droplet residing on the HP surface.

Figure 2. Deep learning microscale droplet-resolved heat flux mapping. a) Time-lapse images of raw and tracked results for dropwise condensation on the HP surface. Scale bar represents 100 \(\mu m\) in all images with the time interval between each frame being \(\approx 30\) s. The gravitational vector points into the page. b) Time evolution of the average droplet diameter. The dotted lines represent the power law fit. Rapid growth at early stages \((r < 10 \, \mu m)\) is due to the relative scale of the variable thermal resistances illustrated in the inset. Spatially resolved heat flux \(q_{ji}\) for multiple droplets as represented by d) 3D surface and e) 2D contour plots. The circles in the contour plot mark the centroid locations of individual droplets. The inset in (d) shows an optical image of the apparent advancing contact angle \((\theta_a = 118^\circ)\) of a water droplet residing on the HP surface. Inset scale bar: 100 \(\mu m\).

2.4. Deep Learning Analysis of Droplet Jumping on Superhydrophobic Surfaces

Heat transfer can be further improved by facilitating the rapid removal of droplets at smaller length scales with the use of SHP surfaces (Figure 3a,b) that enable coalescence-induced droplet jumping (Figure 3c).\(^{[11]}\) Our deep learning results reveal that the overall heat transfer is governed by the combination of size-dependent heat transfer rate per droplet \(q_i(r)\) and the time-averaged droplet distribution \(N(r)\) as a function of droplet radius\(^{[24]}\).

\[
N(r) = \frac{\sum_{i=1}^{Z} \sum_{i=1}^{n} \left[\frac{r - \frac{1}{2} \Delta r < r_i < r + \frac{1}{2} \Delta r}{A \Delta r / Z} \right]}{A \Delta r / Z}
\]

where \(Z\) is the total number of time steps and \(\Delta r\) is the distribution bin width of 5 \(\mu m\). As evident in Figure 3d and Equation (1), \(q_i(r)\) is governed by droplet size and increases as the droplet grows. Our experimental \(N(r)\) matches well with the theoretical model proposed by Rose\(^{[31]}\) and is highly skewed toward small \((r < 12.5 \, \mu m)\) droplets, suggesting a tradeoff between \(q_i(r)\) and \(N(r)\).

Figure 3e elucidates the tradeoff by plotting the heat transfer fraction \(f_j\), defined as the cumulative heat rate normalized by

It is essential to map individual droplet-resolved heat flux \(q_{ji}\) in order to understand the condensation dynamics and mechanisms that govern the collective assessment of the area-averaged heat flux \(q_{ji}\). Here, the droplet statistics are converted to spatio-temporal heat flux \(q_{ji}\) information using Equation (2) where \(r_{ji} \approx 0.92r_i\) is estimated via optical side view droplet images taken from a microgoniometer and shown in the inset of Figure 2d. Figure 2d,e shows a representative real-time surface and contour heat flux map at \(t = 25\) s. A bi-harmonic spline interpolation method is used to interpolate the irregularly spaced data points.\(^{[31]}\) In agreement with the overall surface heat flux curve shown in Figure 2c, higher heat fluxes at the early stages \(t < 24\) s are clearly shown in our time-lapse droplet-level heat flux mapping video (Movie S2, Supporting Information).
the total heat transfer rate \(\bar{q}_{i, \text{cumul}} \) as a function of droplet radius

\[
f = \frac{\bar{q}_{i, \text{cumul}}}{\bar{q}_{i}} = \frac{\sum_{j=1}^{Z} q_{i}(r_{j})}{\sum_{j=1}^{Z} q_{i}(r_{j})}
\]

where \(0 < r_{1} < r \) and \(0 < r_{2} < r_{\text{max}} \). The heat transfer fraction is \(f \approx 0.8 \) when the droplet radius is 12.5 \(\mu \text{m} \), meaning that the integrated heat transfer of droplets with radii less than 12.5 \(\mu \text{m} \) contribute to 80% of the total heat transfer, despite having low \(q_{i}(r) \) as shown in Figure 3d. We note that in contrast to the low \(q_{i}(r) \) of emergent droplets, the local heat flux at an instantaneous time \(j \) per droplet \(q_{i}^{j} \) is maximized during initial stages due to the minimal basal area \(A_{b,j} \) (Figure 3e). However, \(q_{i}^{j} \) becomes invariant with droplet radius after \(r > 7.5 \mu \text{m} \) as the increase in \(A_{b,j} \) and \(q_{i}(r) \) counterbalance each other. All analyzed experiments suggest that the generation of large populations of fresh droplets is favorable for maintaining high surface- and droplet-level heat transfer performance.

Figure 3f supports our findings by qualitatively visualizing the relationship between area-averaged heat flux at an instantaneous time \(j \), \(q''j \), and droplet population. Figure 3f shows that the SHP surface maintains a stable \(q''j \) throughout the measurement period when compared to the HP surface (Figure 2c). The constant heat transfer performance is attributed to the capability of the SHP surface to remove droplets via droplet jumping. In particular, we observe numerous cases where binary droplet–droplet coalescence events trigger serial interactions with adjacent droplets prior to jumping, leaving large dry patches for new droplets to nucleate (Figure 3f, inset). In agreement with this observation, we report the existence of heat flux surges when dry areas fill with dense populations of new droplets. Similar findings are reflected in the real-time surface and contour plots provided in Movie S3 (Supporting Information). The temporal area-averaged heat flux \(q''j \) is smoothed using a LOESS regression to clearly visualize the consistent heat fluxes over the time (Figure 3f) despite fluctuations stemming from dynamic changes in droplet sizes and corresponding heat transfer rates.

2.5. Deep Learning Analysis of Condensation Statistics

To quantify how the combination of size-dependent heat transfer rate per droplet \(q_{i}(r) \) and the droplet density affect the overall heat transfer performance, we used the deep learning methodology
Figure 4. Deep learning characterization of condensation dynamics. a) Time-averaged overall surface heat flux q'' averaged over the measurement time, showing higher heat fluxes for the SHP surface. The error bar represents one standard deviation. b) Droplet number density at different locations and surfaces. c) Histogram of the droplet size distribution averaged for a 10 min condensation interval. Inset: schematic of a droplet growth, jumping, and nucleation cycle on the SHP surface. d) Time-averaged droplet radius as a function of time. The average droplet size continuously increases for the HP surface as droplets continue to coalesce and grow. The SHP surface is able to maintain a relatively consistent droplet size due to jumping droplet removal. e) Comparison of individual droplet heat transfer rate for the HP and SHP surfaces revealing that the droplet-level heat transfer increases at different rates as the droplet radius increases. The heat transfer rate for the average droplet radius $q_i(\bar{r})$ for both surfaces is circled in red. The bottom subplot suggests that the difference in $q_i(\bar{r})$ is due to the distinctive growth rates dr/dt, where the HP surface exhibits an increase-decrease trend while the SHP surface remains steady. f) Schematics of the growth trends on the HP and SHP surfaces illustrating the evolution of the droplet wetting based on nucleation ($r < 5 \mu m$) and growth ($r > 5 \mu m$) stages. The mixture of partial wetting (PW) and suspended (S) droplets compensates for the low growth rate on the SHP surface.

to compare droplet statistics for the HP and SHP surface. Unlike the merging-dominated droplet interactions that occur on the HP surface, the stochastically cyclic droplet interactions on the SHP surface are more prone to exhibiting location-dependent heat transfer variation. To verify location-independence, we analyze four different locations on the SHP surface, as illustrated in Figure 3b. Our results show that sustainable dropwise condensation can be achieved on the SHP surface regardless of location, retaining a 35% higher time-averaged heat flux q'' of 89 Wm$^{-2}$ when compared to 66 Wm$^{-2}$ on the HP surface (Figure 4a). The droplet number density in the field of view ($560 \mu m \times 370 \mu m$) for the SHP surface is $\approx 800\%$ higher when compared to the HP surface (Figure 4b), with $> 90\%$ of the droplets having $r < 10 \mu m$ (Figure 4c). Figure 4d elucidates the effectiveness of the SHP surface at maintaining small droplet sizes over time, where a time-average droplet radius $\bar{r} \approx 22 \mu m$ and $\approx 7 \mu m$ is shown for the HP and SHP surfaces, respectively. Interestingly, we show that the drastic droplet density discrepancy for the HP and SHP surfaces (Figure 4b–d) is disproportionately reflected on the overall heat transfer performance (Figure 4a).

To investigate the mismatch between droplet statistics and heat transfer performance, we used the deep learning method to analyze and compare the heat transfer rate per average droplet radius $q_i(\bar{r})$ of the HP and SHP surfaces (Figure 4e). The distinctive heat transfer rate per individual droplet curves shown in Figure 4e are a result of surface-dependent droplet growth mechanisms. Figure 4e (bottom plot) quantifies dr/dt as a function of droplet radius, showing distinct droplet growth trends for the HP and SHP surfaces, which is caused by the interchanging surface-droplet thermal contact resistances (Figure 4f) explained in Section S2 (Figure S4) (Supporting Information) and reported elsewhere.$^{[16]}$ Due to these surface-dependent droplet growth mechanisms, it becomes imperative to understand which droplet size represents the total heat transfer performance the most. By assuming that the average droplet radius is the characteristic droplet size for each surface, the overall heat flux can be explicitly calculated by $q'' = P_{eq}(\bar{r})/A$, (see Section S3 in the Supporting Information for model development), where P is the number of droplets during the entire experimental period. Based on this calculation, we estimate that the SHP surface would require ≈ 6
times higher droplet number density to equate the $\frac{\Delta T}{T}$ to the HP surface (Figure 4e). Experimentally, we observe that the SHP has ≈ 9 times higher droplet population density than the HP surface (Figure 4b), such that the increase matches the increase in the overall heat flux shown in Figure 4a.

3. Discussion

The deep learning, vision-based framework we propose enables data-centric thinking and a comprehensive approach toward optimizing surface designs for condensation heat and mass transfer. Surface design rules for stable dropwise condensation are currently empirical due to the weak mechanistic connection between heat transfer and the large time- and length-scale bandwidth of droplet statistics. The ambiguity between the heat transfer and droplet statistics stems from the difficulty in measuring heat flux from condensation experiments operating in low superheats. As mentioned in past studies,[35] characterizing the heat flux from a condensing surface has posed a challenge for researchers for decades due to the small temperature differences ($\Delta T = 1–3$ K) that are measured, which are usually within the uncertainty of the thermocouples used for the measurement. The natural difficulty of extracting instance-level features from surfaces with large droplet densities has been an additional bottleneck for researchers. The capability of our framework to study the heat rate per individual droplet $q(t)$, not only offers a solution to both of these challenges, but also reveals the essential requirement to co-design the size-dependent heat transfer rate per droplet $q(t)$ and droplet number density to maximize the overall heat transfer performance. That is, instead of designing surfaces to target larger surface coverage of small droplets, we show that droplets should grow to an optimal size while achieving maximum allowable number density, which is potentially achievable with spatial control of droplet nucleation as well as apparent local contact angle.

In addition to providing a deep and quantitative explanation about droplet condensation mechanisms, our framework converging computer vision and data science is a powerful tool for the potential application to other image-based thermofluidic measurements (Figure 5). The primary advantage of employing teachable models is their capability to learn and adjust with additional data. By implementing our framework, we showcase several other configurations, including shedding dynamics during condensation on a lubricant-infused surface (LIS; Figure 5a,b), side-view droplet jumping dynamics (Figure 5c–e), and shedding dynamics during external tube condensation (Figure 5f–h). Figure 5a,b demonstrate the high-fidelity measurement of droplet distributions despite the co-existence of large and small droplets, where large droplets are shed due to gravity. In Figure 5c–e, we demonstrate a means for our deep learning method to save hundreds of hours of manual labor for analyzing side-view jumping droplet characteristics, such as droplet trajectory, velocity, or shape. In Figure 5f–h, we use our deep learning methodology to compare shedding characteristics of textured and nontextured copper tubes by extracting droplet statistics, departure diameters, and their shedding frequency. Further details are provided in Section S4 (Supporting Information). Our demonstrations synergistically combine intelligent vision and data mining, which enables the experimental acquisition of high-resolution spatio-temporal information reflecting condensation mechanisms. With the advances reported here and recent breakthroughs in deep learning-based visualization strategies,[36] we expect accelerated progress in pushing the knowledge boundaries of thermofluidic science by enabling the rapid and accurate analysis of massive image datasets.

4. Experimental Section

Model Training: Pixel-wise masks were created from image inputs (Figure S1b–d, Supporting Information) by using Mask R-CNN to further identify object information. A custom Mask R-CNN model was trained on a custom-built image inventory consisting of thousands of droplet images acquired over years of condensation experiments conducted in various lighting, surfaces, and orientations. Image annotation, the process of manually labeling images to train the model, was performed by a group of trained annotators over the course of six months using commercial annotation software (Supervise.ly, San Jose, CA, USA). The generalizability of the annotated images was maximized through data augmentation techniques, where the original data were transformed into new, increased, and slightly modified versions. Further details of the data augmentation process were discussed in a previous work.[37] 80% (1968 images) and 20% (492 images) of the augmented dataset images were used for training and testing, respectively. The Mask R-CNN model used for this study was trained for 100 epochs using stochastic gradient descent with a learning rate of 0.0012 and momentum of 0.9. To increase detection accuracy, the results of two models were averaged with tests of loss of ≈ 0.1 and 0.11 at epochs 98 and 100, respectively (Figure S1e, Supporting Information).

Model Evaluation: The model performance was evaluated by analyzing multiple metrics such as recall, precision, accuracy, F1-score, and mean average pixel error (MAPE; Section S1 and Figure S1f,g, Supporting Information). The model demonstrated exceptional detection capabilities with values $> 96\%$ for conventional metrics and a low MAPE of 3%.

Top View Optical Microscopy of Water Vapor Condensation: Top view condensation experiments were conducted on a customized top-view optical microscopy setup implemented with a temperature controllable cold-stage. A high-resolution camera (DS-Qi2, Nikon) was attached to an upright microscope (Eclipse LV100, Nikon) equipped with a 20X (TU Plan Fluor EPI, Nikon) objective lens and records condensing droplet images at 1–10 fps. Test samples were horizontally mounted onto a cold-stage (PE-120, Linkam) and the sample surface temperature was set to $1 \pm 0.5 $ °C for condensation experiments. All the experiments were performed in ambient laboratory temperature. Relative humidity of environment was controlled by a commercial humidifier and the humidity level was recorded and logged by a temperature and relative humidity transmitter (Hx93BdV0, Omega). A more detailed description of the experimental setup could be found in previous works.[57,58]

Front View Optical Imaging of Ethanol Condensation Dynamics: To characterize the low surface tension liquid droplet size measurement and distribution (Figure 5a), dropwise condensation experiments of ethanol (200 proof, $\geq 99.5\%$, liquid–vapor surface tension 23.03 mN m$^{-1}$ at 10 °C, Sigma-Aldrich, CAS No. 64-17-5) on the flat LIS sample were conducted following procedure described in a previously reported work.[24] A digital single-lens reflex (DSLR) camera (Canon 6D) mounted with objective lenses (Nikon, Plan Fluor) of 20x magnification was employed for imaging.

Front View Optical High-Speed Imaging of Water Droplet Coalescence Induced Jumping: Front view imaging of droplet jumping was captured by employing a microdroplet dispensing and manipulating system. (Figure 5c).[13] A high-speed camera (Phantom v711, Vision Research) was interfaced with a piezoelectric microgoniometer (MCA-3, Kyowa Interface Science). The piezoelectric dispenser was frequency-controlled and the dispensing model was performed at 7 V, 100–200 Hz. The addition of the dispersed microdroplets showed negligible effects on target droplet
Figure 5. Deployment of the deep learning framework for novel tasks. The proposed framework was expanded to address visual tasks in alternate condensation applications. (a) Time-lapse front-view images of sliding ethanol condensate droplets on a lubricant-infused surface (LIS). The tracked droplets overlay the image with added bounding boxes for clearer visualization. The scale bar represents 300 μm. (b) Droplet distribution for the process shown in (a) as calculated using Equation (5) and showing the statistics gathered over 141838 instances. Inset: Number of droplets per frame was a function of time, showing the higher fluctuation on the LIS surface when compared to the HP and SHP surfaces due to active shedding dynamics. (c) Time-lapse side-view images of coalescence induced water droplet jumping. The scale bar represents 800 μm. (d) Vertical droplet jumping trajectories. (e) Normalized eccentricity and velocity evolution of the jumping droplet shown in (c). (f) Instantaneous image with tracking results for external condensation of steam on a horizontal SHP tube sample. (g) Cumulative departure volume per unit area shows that the CuO SHP surface sheds droplets at a higher rate than the HP Cu surface. (h) Average departure diameter and shedding frequency of both Cu and CuO surfaces where filled colored bars represent the departure diameter (left axis) and hatched bars represent shedding frequency (right axis). The error bars represent one standard deviation.

Front View Optical Imaging of Steam Condensation Dynamics on a Horizontal Tube: The experimental setup for external tube condensation consisted of an environmentally controlled chamber having an internal diameter of 0.305 m and length of 0.559 m. In brief, the chamber was initially evacuated to $P_v = \approx 2$ Pa to remove the noncondensable gases. During the pump down process, steam was generated in a separate smaller stainless-steel pressure vessel. Valves were incorporated into all fluid lines to control flow in and out of the vapor generator. A chilled water flow loop was used to cool the tube samples to promote condensation on the tube outer surface. The water flow rate was measured using an electromagnetic flowmeter and the inlet–outlet temperatures into the test section were measured using class A resistance temperature detectors (RTDs). Visual recordings of the condensation process were captured with a high-speed camera (Phantom v7.1, Vision Research) and a digital SLR camera (Pentax K-50), which were placed in line with two different viewports. Details regarding the experimental setup and procedure could be found elsewhere.\(^{[59,60]}\)

Fabrication of the Hydrophobic Silicon Surface: To fabricate the hydrophobic (HP) silicon surface, a polished silicon wafer ($<100>$, 350 μm, 444, University Wafer) was functionalized with (heptadecafluoro-1,1,2,2-tetrahydrodecyl) trimethoxysilane (HTMS, CAS No. 83048-65-1, SIH5841.5, Gelest) via chemical vapor deposition (CVD).\(^{[61]}\) The silicon wafer samples were placed in a beaker container with a vial of 1 mL of HTMS-toluene mixture solution (5% v/v). An aluminum foil lid was placed on top to seal the beaker, followed by heating in an atmospheric pressure oven (Thermo Scientific BFS1732C-1) at $85 \pm 1 ^\circ C$ for 3 h. The advancing contact angle of the hydrophobic silicon wafer surface was measured to be 118° as shown in Figure 2d.

Fabrication of the Superhydrophobic Surface: A polished silicon wafer (P/B type, $<100>$) was sonicated in an acetone solution followed by sonicating with isopropyl alcohol (IPA), deionized (DI) water, and IPA for 5 min, respectively. The samples were then dried under a clean nitrogen gas flow. The cleaned silicon wafer was then immersed in a composite solution of silver nitrate (AgNO₃), DI water, and hydrogen fluoride (HF) for 2 min to deposit Ag nanoparticles on the silicon surface as an etching mask. Then, the wafer was immersed into another composite solution of DI water, HF, and hydrogen peroxide (H₂O₂) for metal-assisted electrodeless etching for 5 min to create silicon nanowires. Silver dendrites on the
surfaces were removed by immersing the wafer into a solution of nitric acid (HNO₃) solution followed by immersion in DI water and drying on a hot plate. The fabricated silicon nanowire surface had nanowire diameters of 100 nm and lengths of ≈2 μm, verified using an SEM characterization technique (Hitachi S-4800). The silicon nanowire surface was then functionalized to become superhydrophobic using the identical functionalization method described for the HP surface. The apparent advancing contact angle of water droplet on the SHP silicon wafer surface was 169°.

Fabrication of the Superhydrophobic CuO Surface and LIS Surface: The fabrication steps of LIS consisted of surface cleaning, copper oxide (CuO) nanostructure fabrication, hydrophobic functionalization, and lubricant impregnation. Initially, the Cu plates were cleaned by sonicating them sequentially in acetone, ethanol, and isopropanol alcohol for 10 min at room temperature. After cleaning, the surfaces were rinsed with deionized water and dried with nitrogen. Subsequently, the samples were immersed in 2.0 M diluted hydrochloric acid for 10 min to remove native oxides that were present on the surface, rinsed with deionized water, and thereafter dried with nitrogen. The CuO nanostructure fabrication was carried out by immersing the cleaned copper samples for 25 min into a pool of alkaline solution maintained at 90 ± 3 °C. The alkaline solution consisted of a mixture of 3.75 wt% NaClO₂, 5 wt% NaOH, 10 wt% Na₃PO₄·12H₂O, and 100 wt% deionized water. Subsequently, the CuO nanostructures were functionalized by chemical vapor deposition of heptadecafluorodecyltrimethoxysilane at atmospheric pressure. The functionalization was carried out by first placing the samples and 5 mL of HTMS-toluene solution (5% v/v) in a sealed container. The container was placed inside a furnace at 90 °C for 3 h resulting in the deposition of a silane monolayer of HTMS molecules on the sample surfaces. Finally, to develop LIS, the functionalized CuO nanostructured samples were immersed into a lubricant bath (perfluorinated vacuum grade oil Krytox VPF 1525) for 10 min. Subsequently, the samples were removed from the lubricant bath and left vertically in ambient temperature for 24 h to allow excess lubricant to be drained by gravity.

Supporting Information
Supporting Information is available from the Wiley Online Library or from the author.

Acknowledgements
Y.S. is thankful for the financial support from the UC Irvine Mechanical and Aerospace Engineering Department Graduate Fellowship. N.M. gratefully acknowledges funding support from the National Science Foundation under Grant No. 1554249, the Office of Naval Research (ONR) under grant No. N00014-16-1-2625, and the International Institute for Carbon Neutral Energy Research (WPI-I2CNER), sponsored by the Japanese Ministry of Education, Culture, Sports, Science and Technology. This work was sponsored by the National Science Foundation (NSF) (CBET-TTP 1752147, Thermal Transport Processes).

Conflict of Interest
The authors declare no conflict of interest.

Data Availability Statement
The data that support the findings of this study are available from the corresponding author upon reasonable request.

Keywords
AI computer vision, deep learning, droplet statistics, dropwise condensation, real-time heat transfer mapping

Received: April 29, 2021
Revised: July 14, 2021
Published online: September 24, 2021

[1] A. T. Paxson, J. L. Yague, K. K. Gleason, K. K. Varanasi, Adv. Mater. 2014, 26, 418.
[2] D. Seo, J. Lee, C. Lee, Y. Nam, Sci. Rep. 2016, 6, 23736.
[3] J. Lee, J. So, W. G. Bae, Y. Won, Adv. Mater. Interfaces 2020, 7, 1902150.
[4] N. Hanikul, M. S. Prevot, O. M. Yaghi, Nat. Nanotechnol. 2020, 15, 348.
[5] F. Fatihieh, M. J. Kalmuztski, E. A. Kapustin, P. J. Waller, J. J. Yang, O. M. Yaghi, Sci. Adv. 2018, 4, eaat3198.
[6] X. M. Dai, N. Sun, S. O. Nielsen, B. B. Stogin, J. Wang, S. K. Yang, T. S. Wong, Sci. Adv. 2018, 4, eaao0919.
[7] H. J. Cho, D. J. Preston, Y. Zhu, E. N. Wang, Nat. Rev. Mater. 2016, 2, 16092.
[8] N. S. Singh, J. T. Zhang, J. Stafford, C. Anthony, N. Gao, Adv. Mater. Interfaces 2020, 8, 2001442.
[9] T. Humplik, J. Lee, S. C. O’Hern, B. A. Fellman, M. A. Baig, S. F. Hasman, M. A. Atieh, F. Rahman, T. Laoui, R. Karnik, E. N. Wang, Nanotechnology 2011, 22, 292001.
[10] Z. X. Wang, T. Horsemone, A. P. Straub, N. Y. Yip, D. Y. Li, M. Elimelech, S. H. Lin, Sci. Adv. 2019, 5, eaax0763.
[11] N. Miljkovic, R. Enright, Y. Nam, K. Lopez, N. Dou, J. Sack, E. N. Wang, Nano Lett. 2013, 13, 179.
[12] R. Enright, N. Miljkovic, N. Dou, Y. Nam, E. N. Wang, J. Heat Transfer 2013, 135, 091304.
[13] X. Yan, L. Zhang, S. Sett, L. Feng, C. Zhao, Z. Huang, H. Vahabi, A. K. Kota, F. Chen, N. Miljkovic, ACS Nano 2019, 13, 1309.
[14] J. C. Ma, S. Sett, H. Cha, X. Yan, N. Miljkovic, Appl. Phys. Lett. 2020, 116, 260501.
[15] M. D. Mulrooe, B. R. Srijanto, S. F. Ahmadadi, C. P. Collier, J. B. Boreyko, ACS Nano 2017, 11, 8499.
[16] N. Miljkovic, R. Enright, E. N. Wang, ACS Nano 2012, 6, 1776.
[17] H. Vahabi, W. Wang, J. M. Mabry, A. K. Kota, Sci. Adv. 2018, 4, eaau3488.
[18] Y. M. Hou, M. Yu, X. M. Chen, Z. K. Wang, S. H. Yao, ACS Nano 2015, 9, 71.
[19] P. Birbarah, S. Chavan, N. Miljkovic, Longmuir 2019, 35, 10309.
[20] Y. J. Suh, H. Gowda, Y. J. Won, J. Colloid Interface Sci. 2020, 576, 195.
[21] Y. Suh, C. H. Lin, H. Gowda, Y. Won, J. Electron. Packag. 2020, 142, 031105.
[22] J. L. Zhu, L. A. Zhang, X. Y. Li, K. L. Wilke, E. N. Wang, L. L. Goddard, Adv. Sci. 2020, 7, 2001268.
[23] Y. Suh, C.-H. Lin, H. Gowda, Y. Won, in Proc. the ASME 2019 International Technical Conference and Exhibition on Packaging and Integration of Electronic and Photonic Microsystems, Anaheim, California, USA 2019, V001T06A002.
[24] J. Ho, K. Rabbi, S. Sett, T. Wong, N. Miljkovic, Int. J. Heat Mass Transfer 2021, 172, 121149.
[25] P. B. Weisensee, Y. B. Wang, H. L. Qian, D. Schultz, W. P. King, N. Miljkovic, Int. J. Heat Mass Transfer 2017, 109, 187.
[26] H. Martin, S. B. Barati, J.-C. Pinoli, S. Valette, Y. Gavet, Int. J. Comput. Inf. Eng. 2018, 12, 753.
[27] Y. Suh, Q. Pham, B. W. Shao, Y. Won, Small 2019, 15, 5622.
[28] T. Bangira, S. M. Alfieri, M. Menenti, A. van Niekerk, Remote Sens. 2019, 11, 1351.
[29] Y. Oktar, D. Karakaya, O. Ulucan, M. Turkan, arXiv:1912.10201, V1, (accessed: December 2019).
[30] S. Srinivas, R. K. Sarvadevabhatla, K. R. Mopuri, N. Prabhu, S. S. S. Kruthiventi, R. V. Babu, Deep Learning in Medical Image Analysis, Elsevier, Amsterdam, The Netherlands 2017.
[31] J. P. Horwath, D. N. Zakharov, R. Megret, E. A. Stach, *NPJ Comput. Mater.* 2020, 6, 1
[32] Y. Suh, R. Bostanabad, Y. Won, *Sci. Rep.* 2021, 11, 1.
[33] M. Ziatdinov, O. Dyck, S. Jesse, S. V. Kalinin, *Adv. Funct. Mater.* 2019, 29, 1904480.
[34] J. Min, H. Im, M. Allen, P. J. McFarland, I. Degani, H. Yu, E. Normandin, D. Pathania, J. M. Patel, C. M. Castro, R. Weissleder, H. Lee, *ACS Nano* 2018, 12, 9081.
[35] L. Himanen, A. Geurts, A. S. Foster, P. Rinke, *Adv. Sci.* 2020, 7, 1900808.
[36] M. J. Abedin, T. Barua, M. Shaibani, M. Majumder, *Adv. Sci.* 2020, 7, 2001600.
[37] Y. Jiang, C. Li, *Plant Phenomics* 2020, 2020, 415816.
[38] M. Ziatdinov, O. Dyck, A. Maksov, X. Li, X. Sang, K. Xiao, R. R. Unocic, R. Vasudevan, S. Jesse, S. V. Kalinin, *ACS Nano* 2017, 11, 12742.
[39] B. Midtvedt, E. Olsen, F. Eklund, F. Hook, C. B. Adiels, G. Volpe, D. Midtvedt, *ACS Nano* 2021, 15, 2240.
[40] D. Schofield, A. Nagrani, A. Zisserman, M. Hayashi, T. Matsuzawa, D. Biro, S. Carvalho, *Sci. Adv.* 2019, 5, eaaw0736.
[41] M. J. Abedin, T. Barua, M. Shaibani, M. Majumder, *Adv. Sci.* 2020, 7, 2001600.
[42] Y. Jiang, C. Li, *Plant Phenomics* 2020, 2020, 415816.