SARS-CoV-2 seroprevalence around the world: an updated systematic review and meta-analysis

Mobin Azami¹, Yousef Moradi²,³, Asra Moradkhani¹ and Abbas Aghaei²,³*

Abstract
Background: Covid-19 has been one of the major concerns around the world in the last 2 years. One of the challenges of this disease has been to determine its prevalence. Conflicting results of the serology test in Covid explored the need for an updated meta-analysis on this issue. Thus, this systematic review aimed to estimate the prevalence of global SARS-CoV-2 serology in different populations and geographical areas.

Methods: To identify studies evaluating the seroprevalence of SARS-CoV-2, a comprehensive literature search was performed from international databases, including Medline (PubMed), Web of Sciences, Scopus, EMBASE, and CINHAL.

Results: In this meta-analysis, the results showed that SARS-CoV-2 seroprevalence is between 3 and 15% worldwide. In Eastern Mediterranean, the pooled estimate of seroprevalence SARS-CoV-2 was 15% (CI 95% 5–29%), and in Africa, the pooled estimate was 6% (CI 95% 1–13%). In America, the pooled estimate was 8% (CI 95% 6–11%), and in Europe, the pooled estimate was 5% (CI 95% 4–6%). Also, the last region, Western Pacific, the pooled estimate was 3% (CI 95% 2–4%). Besides, we analyzed three of these areas separately. This analysis estimated the prevalence in subgroups such as study population, diagnostic methods, sampling methods, time, perspective, and type of the study.

Conclusion: The present meta-analysis showed that the seroprevalence of SARS-CoV-2 has been between 3 and 15% worldwide. Even considering the low estimate of this rate and the increasing vaccination in the world, many people are still susceptible to SARS-CoV-2.

Keywords: Covid-19, SARS-CoV-2, Global seroprevalence, Serum antibodies (IgG and/or IgM), Systematic review, Meta-analysis

Background
Scientists first reported infection due to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in Wuhan, China, in December 2019 [1], and due to its contagious nature, it rapidly spread throughout China and the world as the WHO declared a pandemic on March 11, 2020 [2, 3]. According to the World Health Organization (WHO), more than 220 million cases have been identified worldwide; more than 5 million have died [4]. The presented statistics show only a part of the total cases because the clinical manifestations of patients with SARS-CoV-2 vary from acute diseases with severe pneumonia, acute respiratory distress syndrome, or multiple organ failure up to asymptomatic infection. Asymptomatic carriers are essential sources of the infection spread during the incubation period and interfere with the prevention and control of the disease. So, this group of people is an important challenge in the current management of the pandemic [5–7].

*Correspondence: aqaei.a@gmail.com

¹ Department of Epidemiology and Biostatistics, Faculty of Medicine, Kurdistan University of Medical Science, Sanandaj, Iran

© The Author(s) 2022. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.
The ideal method for detecting Covid-19 is a real-time reverse transcription-polymerase chain reaction (RT-PCR). Still, the disease may not be detectable for various reasons, including low viral concentrations in the upper respiratory tract, non-standard sampling methods, and reduced viral load one week after the onset of symptoms. False-negative results may be reported [3, 8]. However, because SARS-COV-2 infection can induce innate and acquired immunity, resulting in widespread inflammatory responses in the disease [9], and neutralizing antibodies (Nabs) made against spike glycoprotein or SARS-CoV-2 nucleocapsid protein are often lead to a long-term immune response in viral infections which in most patients with different titers can be detected within 14 to 21 days after the onset of symptoms and at least for several months thereafter [8, 10], the method of serological testing replaces and complements molecular testing by detecting virus-specific antibodies in blood samples such as IgM and IgG and through commercially available tests including lateral flow immunoassays (LFIA), enzyme-linked immunoassays (ELISAs), fluorescence immunoassays (FIA), chemiluminescence assays (CLIA), electro-chemiluminescent immunoassay (ECLIA), and pseudovirus neutralization assays (PsVN assay or VN), and it is used to estimate the serum prevalence in the population and thus the total number of previous infections to diagnose asymptomatic cases, post-clinical convalescence, post-vaccine responses and as a diagnostic aid method in false-negative cases reported by PCR [11–13].

To date, epidemiologists from many countries conducted seroprevalence studies on different populations. The results are significantly different between studies, and in many cases, the actual number of patients is higher than the recorded cases. Therefore, they cannot be the exact measure of serum prevalence in the general population and the true extent of pandemic dynamics. As a result, differences in the presented statistics can lead to inappropriate policies and harm to public health [7, 8, 10]. Because Covid-19 has become a global threat and its spread depends on social interactions, population density, education, health promotion, and other related factors, determining the prevalence of infection and collective immunity against SARS-CoV-2 and the use of these data are necessary for making decisions about control measures, management, and assessment of epidemic risks. Therefore, in this meta-analysis, we aimed to estimate the prevalence of global SARS-CoV-2 serology in different populations and geographical areas and investigate the factors affecting it.

Methods
This systematic review and meta-analysis were based on PRISMA guidelines which are specific to the systematic review and meta-analysis of observational studies [14, 15].

Search strategy
All original articles published from December 2019 to December 2021 were searched without language restrictions in international databases, including Medline (PubMed), Web of Sciences, Scopus, EMBASE, and CINHAL. The search strategy in this study was performed using the main study keywords, including serologic tests (with synonyms of serologic, serology, serology studies) SARS-CoV-2 (with synonyms of Covid-19).

Gray Literature was then searched to access unpublished articles and dissertations or international reports. In addition, after the final selection of articles, a manual search was performed by reviewing the references of related articles. Also, medrxiv and bioRxiv websites were used for findings preprint studies related to seroprevalence of SARS-CoV-2 from inception to December 2021.

Study selection and eligibility criteria
The search strategy in international databases was independently performed by the two researchers (MA and AM), and the disputes were resolved by the third person (YM).

Inclusion criteria
In this meta-analysis, studies were considered whose main purpose was to determine the prevalence of positive serological tests in different communities; that is, after performing tests at different times in other communities, the prevalence of the number of positive tests was examined. Therefore, cohort and cross-sectional studies were included in this meta-analysis. The statistical population studied in these initial articles were all individuals, whether with a specific disease or healthy. There were no particular restrictions on the method of serological diagnosis of Covid-19 in this study for inclusion of studies, and various serological tests such as ELISA, LFIA, VN, CLIA, and ECLIA were included in the research. The definition of Covid-19 disease in this study was based on its international definition affected by the transmission of the SARS-CoV-2 virus.
Exclusion criteria
Other studies, including case reports or case series, systematic reviews, and meta-analyses, as well as letters or editorials, were excluded from this study.

Data extraction
To extract information, first, a checklist including questions on the first author’s name, date of publication, country, WHO region, type of sampling (random or non-random), duration of the study, type of the serological test, race, and ethnicity, age, gender (male, and female), number of positive tests and number of performed tests was designed. Then, information extraction based on the checklist was independently performed by the two authors (AM and MA), and disputes, if any, were resolved by the third person (YM).

Quality assessment
In this study, to evaluate the quality of included articles, the Joanna Briggs Institute (JBI) critical appraisal checklist was used for observational studies. JBI critical appraisal tools have been developed by the JBI and collaborators and approved by the JBI Scientific Committee following extensive peer review.

Statistical analysis
According to the extracted information, the Metaprop command was used to calculate the pooled prevalence,
Table 1 Characteristics of included studies

Authors (years)	Country/WHO Regions	Study population	Sampling methods (random or non-random)	Study period	Type of detection methods	Race/ethnicity	Gender	Age	Seropositive people (based on months)	No. of people screened (sample size)	Seropositive people (total)		
Herzog et al. [40]	Belgium (European Region)	Individuals aged 0–101 years	Random	March–July, 2020	ELISA		1799 (46.0%)	Highest %	60–70Y	507 (13.0%)	30 March–5 April 113	16,532	840
								10–20Y	442 (13.0%)	20–26 April 204			
								10–20Y	431 (13.3%)	18–26 May 224			
								60–70Y	399 (13.5%)	8–13 June 163			
								10–20Y	413 (13.7%)	29 June–4 July 136			
Filho et al. [41]	Brazil (Region of the Americas)	Blood donors in Rio de Janeiro	Non-random	April, 2020	LFIA		1450	Highest %	30–49Y	1443 (3.7%)	2857	114 (4.0%)	
Silveira et al. [42]	Brazil (region of the Americas)	Individuals in Canoas, Caxias do Sul, Ijuí, Passo Fundo, Pelotas, Porto Alegre, Santa Cruz do Sul, Santa Maria and Uruguaiana	Random (multi-stage sampling)	March–May, 2020	LFIA		41.1%	Highest %	50–59	17.1%	4500	18	
Authors (years)	Country/WHO Regions	Study population	Sampling methods (random or non-random)	Study period	Type of detection methods	Race/ethnicity	Gender	Age	Seropositive people (based on months)	No. of people screened (sample size)	Seropositive people (total)		
----------------	---------------------	------------------	--	--------------	---------------------------	---------------	--------	-----	-------------------------------------	---------------------------------	--------------------------		
Torres et al. [43]	Chile (Region of the Americas)	Large School Community Subject	Non-random	April, 2020	LFIA	Students 54%	Mean 10.8	1009	100		235	39	
Chang et al. [44]	China (Western Pacific Region)	Blood donors in the cities of Wuhan, Shenzhen, and Shijiazhuang among 18–60-year-old adults	Non-random	January–April, 2020	VN	Wuhan Han 17,126 (96.2)	Median 33	11,077	62.3		17,794	515	
						Non-Han: 533 (3.0)							
						Missing data: 135 (0.8)							
						Shenzhen Han 6519 (95.7)	36	4428	65.0		6810	3	
						Non-Han: 274 (4.0)							
						Missing data: 17 (0.2)							
						Shijiazhuang Han 13,414 (99.1)	40	9542	70.5		13,540	1	
						Non-Han: 124 (0.9)							
						Missing data: 2 (0.0)							
To et al. [45]	China (Western Pacific Region)	In a hospital and university in Hong Kong	Random	December, 2019-February, 2020	ELISA	SERP	Median 59	1214	29		1214	29	
Authors (years)	Country/WHO Regions	Study population	Sampling methods (random or non-random)	Study period	Type of detection methods	Race/ethnicity	Gender	Age	Seropositive people (based on months)	No. of people screened (sample size)	Seropositive people (total)		
----------------	---------------------	------------------	--	--------------	--------------------------	---------------	--------	-----	-------------------------------------	-------------------------------	--------------------------		
Liang et al. [46]	China (Western Pacific Region)	Hospital visitors	Random	January–April, 2020	CLIA	Wuhan 41 (50.0) Guangzhou 42 (49.7)	Male	Median 55	63	8272	174		
Jerković et al. [47]	Croatia (European Region)	In industry workers in Split-Dalmatia and Šibenik-Knin	Non-random	April, 2020	LFIA	Split-Dalmatia	Male	Median 46	1316	13	8782	53	
Erikstrup et al. [48]	Denmark (European Region)	Blood donors aged 17–69 years	Non-random	April–May, 2020	LFIA	Knin	Median 54	1316	13	20,640	412		
Petersen et al. [49]	Denmark (European Region)	Individuals in Faroe Islands	Random	April–May, 2020	ELISA	White: 92,737 Mixed: 13,947	Female	Median 42	10,75	6	99,908	5,544	
Ward et al. [50]	England (European Region)	Age 18+ years in England	Non-random	June–July, 2020	LFIA	White: 92,737 Mixed: 13,947 Asian: 36,58 Black: 900 Other: 762	Male	Median 41	998	27			
Gallian et al. [51]	France (European Region)	In group O French blood donors	Non-random	March–April, 2020	VN		Female	Median 41	998	27			
Grzelak et al. [52]	France (European Region)	Hospitalized patients, pauci-symptomatic individuals and blood donors	Random	March, 2020	ELISA		Female	Median 18	200	3			
Fischer et al. [53]	Germany (European Region)	In blood donors located in three different federal states	Non-random	March–June, 2020	ELISA				3186	29			
Weis et al. [54]	Germany (European Region)	Individuals in the CoNAN study	Non-random	May, 2020	ELISA				562	51			
Bogogian-nidou et al. [55]	Greece (European Region)	People by using the leftover sampling methodology	Random	March–April, 2020	CLIA				6586	24			
Authors (years)	Country/WHO Regions	Study population	Sampling methods (random or non-random)	Study period	Type of detection methods	Race/ethnicity	Gender	Age	Seropositive people (based on months)	No. of people screened (sample size)	Seropositive people (total)		
----------------	---------------------	------------------	--	--------------	--------------------------	----------------	--------	-----	--	-------------------------------	--------------------------		
Merkely et al. [56]	Hungary (European Region)	Hungarian population included individuals aged 14 years or older, living in private households	Random	May, 2020	CLIA	486	Mean 48.7	10,474	69				
Shakiba et al. [57]	Iran (Eastern Mediterranean Region)	Individuals in Guilan province, Iran	Random	April, 2020	LFIA	270(49)	Highest % 18–60 343	551	117				
Percivalle et al. [58]	Italy (European Region)	In blood donors from the Lodi Red Zone in Lombardy, Italy	Non-random	January–February, 2020	VN	272 (70%)	Median 43	390	91				
Valenti et al. [59]	Italy (European Region)	Blood donors during the COVID-19 Milan outbreak	Random	February–April, 2020	LFIA	453	Mean 40.7	729	40				
Fiore et al. [60]	Italy (European Region)	In healthy blood donors in South Eastern Italy	Random	May, 2020	CLIA	665	Highest % 46–55 246	904	9				
Doi et al. [61]	Japan (Western Pacific Region)	Individuals in Kobe, Japan	Random	March–April, 2020	LFIA	486	Highest % 60–69 171	1000	33				
Takita et al. [62]	Japan (Western Pacific Region)	Individuals in primary care clinics in Tokyo, Japan	Random	March–April, 2020	LFIA	461	Highest % 35–54 653	1071	41				
Takita et al. [63]	Japan (Western Pacific Region)	Individuals at community clinics in Tokyo Authors:	Non-random	April–May, 2020	LFIA	87 (59%)	Highest % 40–49 58 (39)	147	7				
Uyoga et al. [64]	Kenya (African Region)	In Kenyan blood donors	Random	April–June, 2020	ELISA	2540	Highest % 25 to 34 1242	3098	174				
Authors (years) (R)	Country/WHO Regions	Study population	Sampling methods (random or non-random)	Study period	Type of detection methods	Race/ethnicity	Gender	Age	Seropositive people (based on months)	No. of people screened (sample size)	Seropositive people (total)		
---------------------	---------------------	------------------	--	--------------	--------------------------	---------------	--------	-----	--------------------------------------	----------------------------------	--------------------------		
Song et al. [65]	Korea (Western Pacific Region)	Individuals without a history of the coronavirus disease infection in Daegu, Korea	Random	May–June, 2020	LFIA	99 (50%)	Highest %	40–59	89		198	15 (7.6)	
Kammon et al. [66]	Libya (African Region)	Among public community and health-care workers in Alzintan City of Libya	Random	April–May, 2020	LFIA	103				130	6		
Snoeck et al. [67]	Luxembourg (European Region)	In the Luxembourghish population—the CON-VINCE study	Random	April–May, 2020	ELISA	911 (48.93)	Mean 47			1862	35		
Sam et al. [68]	Malaysia (Western Pacific Region)	Individuals in Kuala Lumpur and Selangor, Malaysia	Random	January–June, 2020	VN	448				816	3		
Pollán et al. [7]	Spain (European Region)	Spain population	Random	April–May, 2020	LFIA	Spanish: 57,838	29 349	Highest %	50–64 ≥ 65	15 094	61,075	3054	
Lundkvist et al. [69]	Sweden (European Region)	Two areas in Stockholm with different socio-economic conditions	Random	June, 2020	LFIA	Sweden as country of origin (%)	Djurgårds-staden 42% Tensta 71%	Mean 37			123	5	
Stringhini et al. [70]	Switzerland (European Region)	Former participants of the Bus Santé study and their household members	Random	April–May, 2020	ELISA	1312	Highest %	20–49 (n = 1096)			2766	219	
Table 1 (continued)

Authors (year)	Country/WHO Regions	Study population	Sampling methods (random or non-random)	Study period	Type of detection methods	Race/ethnicity	Gender	Age	Seropositive people (based on month)	No. of people screened (sample size)	Seropositive people (total)	
Bendavid et al. [71]	USA (Region of the Americas)	Adults and children in Santa Clara County	Random	April, 2020	LFIA	Non-Hispanic 21/16 White 6/3 Hispanic 26/6 Asian Other 3/0	Male 12/28 36.9%	Male	Highest	40–69 17/06	3330	50
Biggs et al. [72]	USA (Region of the Americas)	The Georgia shelter-in-place order for all residents (April 3–30)	Non-random	April–May, 2020	CLIA	White, non-Hispanic 3/29 Black, non-Hispanic 2/66 Hispanic 4/4 Asian/Pacific Islander, non-Hispanic 2/9 Multiple race/ Other/ Unknown 2/8	Male 31/7	Male	Highest	18–49 3/47	696	19
Bryan et al. [73]	USA (Region of the Americas)	Individuals in Boise, Idaho	Random	April, 2020	CLIA	White 3/15 (41.9) Hispanic 1/3 Black 3/4 White 3/36 (41.4) Hispanic 3/6 Other 3/86 (10.6)	Male	Male	Highest	1,142 (23.5)	4856	87
Dietrich et al. [74]	USA (Region of the Americas)	Children in Louisiana During the Stay at Home Order	Random	March–May, 2020	ELISA	Black 1/03 (49.6%) White 3/36 (41.4) Hispanic 3/6 Other 86 (10.6)	Male	Male	Median	11	812	62
Table 1 (continued)

Authors (years)	Country/WHO Regions	Study population	Sampling methods (random or non-random)	Study period	Type of detection methods	Race/ethnicity	Gender Male	Age	Seropositive people (based on months)	No. of people screened (sample size)	Seropositive people (total)	
Feehan et al. [38]	USA (Region of the Americas)	Individuals in New Orleans	Random	May, 2020	CLIA	White (1607) Black (828) Asian (130) Native American (14) Multiracial /other (58) Hispanic (293)	38.2% Mean 50.6				2640	181
Havers et al. [39]	USA (Region of the Americas)	Individuals in 10 Sites in the United States	Random	March–May, 2020	ELISA	Highest % ≥ 65 5802					16,025	515
McLaughlin et al. [75]	USA (Region of the Americas)	Individuals in a Ski Resort Community, Blaine County, Idaho, US	Random	May, 2020	CLIA	Hispanic or Latino 59 Non-Hispanic or Latino 735	438				917	208
Menachemi et al. [76]	USA (Region of the Americas)	Individuals in Indiana	Random	April, 2020	CLIA	White 33.73 (92) Nonwhite 281 (8)	1,656 (40)				3658	246
Ng et al. [77]	USA (Region of the Americas)	In donor and patient blood from the 2 San Francisco Bay Area	Random	March, 2020	CLIA						387	1
Table 1 (continued)

Authors (years)	Country/WHO Regions	Study population	Sampling methods (random or non-random)	Study period	Type of detection methods	Race/ethnicity	Gender Male	Age	Seropositive people (based on months)	No. of people screened (sample size)	Seropositive people (total)
Rosenberg et al. [25]	USA (Region of the Americas)	Among a 15,101 patron convenience sample at 99 grocery stores in 26 counties throughout NYS	Random	April, 2020	MIA	Hispanic or Latino 17.4 NH-White 58.0 NH-Black/African American 13.9 NH-Asian 8.6 Multiracial/Other 2.1	47.6%	Highest % 55-36.1%	15,101	1887	
Sood et al. [26]	USA (Region of the Americas)	Among adults in Los Angeles County, California	Random	April, 2020	LFIA	Hispanic 190 White (non-Hispanic) 497 Black (non-Hispanic) 72 Other 104	347	Highest % 35-54 475	863	35	
Table 1 (continued)

Authors (years) (R)	Country/WHO Regions	Study population	Sampling methods (random or non-random)	Study period	Type of detection methods	Race/ethnicity	Gender	Age	Seropositive people (based on months)	No. of people screened (sample size)	Seropositive people (total)		
Akinbami et al. [78]	USA (Region of the Americas)	Among healthcare, first response, and public safety personnel, Detroit metropolitan area, Michigan	Non-random	May–June 2020	ELISA	No	% Seropositive	No	% Seropositive	Highest %	18–24	45–59	
						Non-Hispanic White 12,858	6.0	5,146 (31.4)	6.7	45–59	322 (31.9)	18–24	7.9
						Non-Hispanic Black 1,200	16.3						
						Non-Hispanic Asian 1,097	7.3						
						Hispanic 440	6.8						
						Other‡ 404	7.2						
						Declined to answer 398	7.0						
Berardis et al. [79]	Belgium (European Region)	In a Belgian cohort of patients with cystic fibrosis	Non-random	April–May 2020	CLIA	76	Mean	24.9		149	4 (2.7%)		
Borges et al. [80]	Brazil (Region of the Americas)	In an asymptomatic population in Sergipe	Random	May, 2020	LFIA	1469 (48.2%)	Mean	39		3046	IgM 347	IgG 218	
Borges et al. [81]	USA (Region of the Americas)	Among firefighters/paramedics of a US fire department	Non-random	April, 2020	LFIA	White 1,54 (78.2)	Highest %	41–50	67 (33.0)	203	18 (8.9)		

Note:
- CLIA: Chemiluminescent Immunoassay
- LFIA: Latex Agglutination Immunoassay
- ELISA: Enzyme-Linked Immunoabsorbent Assay
- IgM: Immunoglobulin M
- IgG: Immunoglobulin G
Table 1 (continued)

Authors (years)	Country/WHO Regions	Study population	Sampling methods (random or non-random)	Study period	Type of detection methods	Race/ethnicity	Gender	Age	Seropositive people (based on months)	No. of people screened (sample size)	Seropositive people (total)			
Clarke et al. [12]	United Kingdom (European Region)	In hemodialysis patients	Non-random	April–May, 2020	CLIA	+ (129) – (227)	Black 18	White 29	Indo-Asian 94	Other 44	Mean 46.5	356	129	
De Carlo et al. [82]	Italy (European Region)	In healthcare professionals of a Southern Italy hospital	Non-random	March–May, 2020	CLIA							3242	62	
Dingens et al. [83]	USA (Region of the Americas)	Among children visiting a hospital during the initial Seattle outbreak	Non-random	March–April, 2020	ELISA							1076	10	
Flannery et al. [84]	USA (Region of the Americas)	Among parturient women in Philadelphia	Non-random	April–June, 2020	ELISA	Black/Non-Hispanic 537	White/Non-Hispanic 447	Hispanic/Latino 123	Asian 106	Other/Unknown 78	0	Median 31	1293	80
Halatoko et al. [85]	Togo (African Region)	Among high-risk populations in Lome’ (Togo)	Random	April–May, 2020	ELISA							955	9	
Authors (years)	Country/WHO Regions	Study population	Sampling methods (random or non-random)	Study period	Type of detection methods	Race/ethnicity	Gender	Age	Seropositive people (based on months)	No. of people screened (sample size)	Seropositive people (total)			
----------------	---------------------	------------------	--	--------------	---------------------------	---------------	--------	-----	--------------------------------------	-------------------------------	--------------------------			
Hunter et al. [86]	USA (Region of the Americas)	Among healthcare workers with differing levels of coronavirus disease 2019 (Covid-19) patient exposure	Random	April–May, 2020	CLIA		30%	Mean 42.8		734	12			
Khan et al. [87]	India (South-East Asia Region)	Hospital visitors across District Srinagar	Non-random	July, 2020	CLIA		1463	Highest % 30–49 1424		2906	111			
Kobashi et al. [88]	Japan (Western Pacific Region)	Healthcare workers	Non-random	May, 2020	CLIA		154	24.18%	Median 44	637	IgM 2	IgG 6		
Lastrucci et al. [89]	Italy (European Region)	In different essential activities during the general lock-down phase in the province of Prato (Tuscany, Italy)	Random	May, 2020	ELISA		1532	(32.9%)	Median 49	4656	138 (3.0%)			
Mahajan et al. [90]	USA (Region of the Americas)	Among Adults Living in Connecticut	Random	June, 2020	ELISA	Hispanic 49	244	47%	Mean 50.1	567	23 (4.1%)			
Non-Hispanic White 470	Non-Hispanic Black 37	Non-Hispanic Asian 9	Non-Hispanic Other 5											
Mansour et al. [91]	USA (Region of the Americas)	Among Healthcare Workers at a Tertiary Academic Hospital in New York City	Non-random	March–April, 2020	ELISA		111	(5.4%)	Mean 38	285	93			
Matern et al. [92]	France (European Region)	Circulation of SARS-CoV-2 in a maternity ward in an area that has been significantly affected	Non-random	May, 2020	CLIA		0		Mean 33	249	20			
Authors (years)	Country/WHO Regions	Study population	Sampling methods (random or non-random)	Study period	Type of detection methods	Race/ethnicity	Gender	Age	Seropositive people (based on months)	No. of people screened (sample size)	Seropositive people (total)			
----------------	----------------------	------------------	--	--------------	--------------------------	---------------	--------	----	-----------------------------------	-------------------------------	-----------------------------			
McDade et al. [93] USA (Region of the Americas)	among household members of essential workers	Random	April–May, 2020	ELISA	105	Mean 37	232	30						
Naranbhai et al. [94] USA (Region of the Americas)	Chelsea residents, aged ≥ 18 years, with no current symptoms and no history of a positive SARS-CoV-2 PCR test	Non-random	April, 2020	ELISA	120 (60%)	Median 46	200	63						
Oliveira et al. [95] Brazil (Region of the Americas)	In outpatients of a large public university hospital in Sao Paulo, Brazil	Random	June–August, 2020	ECLIA	156 (35.5)	Highest % 40–59	439	61						
Pollán et al. [96] Spain (European Region)	Spanish population	Random	April–May, 2020	CLIA	29 349	Highest % 50–64 13 906	61 075	3054 (5%)						
Psichogiou et al. [97] Greece (European Region)	among health care workers in a country with low burden of Covid-19	Random	April–May, 2020	LFIA	453	Highest % 35–54 922	14 95	15						
Racine-Brazostek et al. [98] USA (Region of the Americas)	in New York City Health Care Workers	Random	April–May, 2020	ELISA	834	Mean 37	2 274	805						
Shields et al. [99] United Kingdom (European Region)	in healthcare workers	Random	April, 2020	ELISA	128 (24.8%)	Median 42	516	126						
Sood et al. [100] USA (Region of the Americas)	Among adults in Los Angeles County, California	Random	April, 2020	LFIA	Hispanic 190	Highest % 35–54 4 75	863	100						
Authors (years) (R)	Country/WHO Regions	Study population	Sampling methods (random or non-random)	Study period	Type of detection methods	Race/ethnicity	Gender Male	Age	Seropositive people (based on months)	No. of people screened (sample size)	Seropositive people (total)			
--------------------	---------------------	------------------	--	--------------	--------------------------	---------------	-------------	-----	--------------------------------------	----------------------------------	--------------------------			
Tang et al. [101]	China (Western Pacific Region)	In hemodialysis centers	Non-random	December, 2019- March, 2020	ELISA	619 (60.3%)	Mean 60.3	1027	47					
Younas et al. [21]	Pakistan (Eastern Mediterranean Region)	Among healthy blood donors in Karachi, Pakistan	Random	June,2020	ECLIA	380	Mean 30.6	380	128 (33.6%)					
Anna et al. [24]	France (European Region)	Individuals in Paris	Non-random	March–April 2020	ELISA	418	22.6%	Mean 38	1847	183				
Banjar et al. [102]	Saudi Arabia (Eastern Mediterranean Region)	Among blood donors in the early months of the pandemic in Saudi Arabia	Random	May,2020	ECLIA	796	Mean 33.3	837	12					
Coatsworth et al. [103]	Australia (Western Pacific Region)	In elective surgical patients in Australia	Non-random	June–July 2020	ELISA	1479	48.7%	Mean 54	3037	15				
Ebinger et al. [104]	USA (Region of the Americas)	In healthcare workers	Random	May,2020	CLIA	1876 (32)	73 (3.4)	Mean 41.6	6062	212				
Kantele et al. [105]	Finland (European Region)	Among healthcare workers at Helsinki University Hospital, Finland	Non-random	March–April 2020	ELISA	187	17.3%	Median 38	1095	33				
Table 1 (continued)

Authors (years)	Country/WHO Regions	Study population	Sampling methods (random or non-random)	Study period	Type of detection methods	Race/ethnicity	Gender	Age	Seropositive people (based on months)	No. of people screened (sample size)	Seropositive people (total)
Ladoire et al. [106]	France (European Region)	Among the staff and patients of a French cancer center after first lockdown	Non-random	May–June 2020	ECLIA	Employees (+) 139 (21.4%)	Mean (+) 35.3	38.6	663	12	
Laursen et al. [107]	Sweden-Denmark (European Region)	Among Danish and Swedish Falck Emergency and Non-Emergency Healthcare Workers	Random	June–August 2020	LFIA	Swedish 1248	Highest % 40–60	1732 (52.9)	3272	159 (4.9%)	
Lombardi et al. [108]	Italy (European Region)	Among healthcare workers of a large university hospital in Milan, Lombardy, Italy	Random	April–June 2020	CLIA	1232	Mean 44.8	4055	309		
Moncunill et al. [109]	Spain (European Region)	Among healthcare workers in a Spanish hospital after 3 months of follow-up	Random	April–May 2020	ELISA	206	Mean 42	565	82		
Pan et al. [110]	Taiwan (Western Pacific Region)	Among healthcare workers in a tertiary care hospital in Taiwan	Random	July–August 2020	ELISA	70	Mean 36.3	194	64		
Pereckait et al. [111]	Lithuania (European Region)	In healthcare workers of Kaunas Hospitals	Random	June–September 2020	LFIA	63	Mean 43.4	432	5		
McQuade et al. [112]	USA (Region of the Americas)	Among Outpatients in Virginia	Random	June–August, 2020	ELISA	Hispanic 396	Mean 48.8	4675	101		
Venugopal et al. [113]	USA (Region of the Americas)	Among health care workers in a New York City hospital	Random	March–May, 2020	ELISA	Hispanic 132 (28%)	Highest % 20–39	230	478	130	
Authors (years)	Country/WHO Regions	Study population	Sampling methods (random or non-random)	Study period	Type of detection methods	Race/ethnicity	Gender	Age	Seropositive people (based on months)	No. of people screened (sample size)	Seropositive people (total)
----------------	---------------------	------------------	--	--------------	---------------------------	----------------	--------	-----	--------------------------------	-----------------------------	--------------------------
Malagón-Rojas et al [114]	Colombia (Region of the Americas)	Healthcare workers in Colombia	Random	September–November 2020	CLIA	Afro-Colombian 216, White 995, Indigenous 112, Mestizo 2004, Raizal 19, Gipsy 6	788	36.45 ± 10.5	3296	1021	
Poustchi et al. [115]	Iran (Eastern Mediterranean Region)	High-risk occupational groups	Random	April 17 and June 2, 2020	ELISA	1795	Highest % 30–39	494			
Poulikakos et al. [116]	England (European Region)	Healthcare workers in a tertiary center in North West	Random	May 2020	ELISA	Black or BAME 55 (19.6%), did not declare ethnicity 25 (8.9%), DIPC 195 (69.4%)	205 (73%)	281	17		
Amendola et al. [117]	Italy (European Region)	Healthcare workers of the largest children hospital in Milan	Non-random	April 15, 2020	ELISA	108	Median 44	663	34		
Brandstetter et al. [118]	Germany (European Region)	Hospital staff	Random	March 2020	ELISA	30	Highest % 36–50	201	31		
Chibwana et al. [119]	Malawi (African Region)	Health Care Workers	Random	May 2020 to June 2020	ELISA	236	Median 31	500	84		
Table 2 Results of quality assessment based on JBI checklist

Inclusion criteria	Detailed description of the population	Exposure (validity and reliability)	Condition	Identification of confounding factors	Deal with confounding factors	Outcome	Statistical analysis
Herzog et al.	Yes	Yes	Yes	Unclear	Unclear	Yes	Yes
Filho et al.	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Silveira et al.	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Torres et al.	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Chang et al.	Yes	Yes	Yes	Yes	Yes	Yes	Yes
To et al.	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Liang et al.	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Jerković et al.	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Erikstrup et al.	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Petersen et al.	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Ward et al.	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Gallian et al.	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Grzelak et al.	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Fischer et al.	Yes	No	Yes	Yes	Unclear	Yes	Yes
Weis et al.	Yes	Unclear	Yes	Yes	Yes	Yes	Yes
Bogogiannidou et al.	No	Yes	Yes	Yes	Yes	Yes	Yes
Merkely et al.	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Shakiba et al.	Yes	Yes	Yes	Yes	Unclear	Yes	Yes
Percivalle et al.	Yes	Yes	Yes	Yes	Unclear	Yes	Yes
Valenti et al.	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Fiore et al.	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Doi et al.	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Takita et al.	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Takita et al.	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Uyoga et al.	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Song et al.	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Kammon et al.	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Snoeck et al.	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Sam et al.	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Pollán et al.	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Lundkvist et al.	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Stringhini et al.	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Bendavid et al.	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Biggs et al.	Yes	Yes	Yes	Yes	Unclear	Yes	Yes
Bryan et al.	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Dietrich et al.	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Feehan et al.	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Havers et al.	Yes	Yes	Yes	Yes	Yes	Yes	Yes
McLaughlin et al.	Yes	Yes	Yes	Yes	Unclear	Yes	Yes
Menachemi et al.	Yes	Yes	Yes	Yes	Unclear	Yes	Yes
Ng et al.	No	Yes	Yes	Yes	Yes	Yes	Yes
Rosenberg et al.	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Sood et al.	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Akinbami et al.	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Berardis et al.	Yes	Yes	Yes	Yes	Unclear	Yes	Yes
Borges et al.	Yes	Yes	Yes	Yes	Yes	Yes	Yes
Table 2 (continued)

Inclusion criteria	Detailed description of the population	Exposure (validity and reliability)	Condition	Identification of confounding factors	Deal with confounding factors	Outcome	Statistical analysis	
Caban-Martinez et al.	Yes	Yes	Yes	Yes	Yes	No	Yes	Yes
Clarke et al.	Yes							
De Carlo et al.	Yes							
Dingens et al.	Yes							
Flannery et al.	Yes	Yes	Yes	Yes	Unclear	Yes	Yes	Yes
Halatoko et al.	Yes							
Hunter et al.	Yes							
Khan et al.	Yes							
Kobashi et al.	Yes							
Lastrucci et al.	Yes							
Mahajan et al.	Yes	Yes	Yes	Yes	Unclear	Yes	Yes	Yes
Mansour et al.	Yes	Yes	Yes	Yes	Yes	Unclear	Yes	Yes
Mattern et al.	Yes	Yes	Yes	Yes	Yes	Unclear	No	Yes
McDade et al.	Yes	Yes	Yes	Yes	Yes	Yes	Unclear	Yes
Narainbhai et al.	Yes	Yes	Yes	Yes	Unclear	Yes	Yes	Yes
Oliveira et al.	Yes	Yes	Yes	Yes	Unclear	Yes	Yes	Yes
Psichogiou et al.	Yes							
Racine-Brzostek et al.	Yes	No						
Shields et al.	Yes	Yes	Yes	Yes	Yes	Unclear	Yes	Yes
Sood et al.	Yes	Unclear						
Tang et al.	Yes							
Younas et al.	Yes	No	Yes	Yes	Yes	Yes	Unclear	Yes
Anna et al.	Unclear	Yes	Yes	Yes	Yes	Unclear	Yes	Yes
Banjar et al.	Yes	Yes	Yes	Yes	Unclear	Unclear	Yes	Yes
Coatsworth et al.	Yes	Yes	Yes	Yes	Yes	Yes	Unclear	Yes
Ebinger et al.	Yes							
Kantele et al.	Yes							
Ladoire et al.	Yes							
Laursen et al.	Yes	Unclear						
Lombardi et al.	Yes	Yes	Yes	Yes	Yes	Unclear	Yes	Yes
Moncunill et al.	Yes	Yes	Yes	Yes	Yes	Yes	No	Yes
Pan et al.	Yes	Yes	Yes	Yes	Yes	Unclear	Yes	Unclear
Pereckait et al.	Yes	Yes	Yes	Yes	Unclear	Unclear	Yes	Unclear
McQuade et al.	Yes	Yes	Yes	Yes	Yes	Yes	No	Yes
Venugopal et al.	Yes							
Malagón-Rojas et al.	Yes	Yes	Yes	Yes	Yes	Unclear	Yes	Yes
Poustchi et al.	Yes	Yes	Unclear	Yes	Yes	Yes	Yes	Yes
Poulikakos et al.	Yes	Yes	Yes	No	Yes	No	Unclear	Yes
Amendola et al.	Yes							
Brandstetter et al.	Yes	Yes	Yes	Yes	Unclear	Yes	Unclear	Yes
Chibwana et al.	Yes							
and the results were analysed [16]. Cochrane Q and I2 tests were used to investigate the heterogeneity and variance between the studies selected for meta-analysis [17–20]. Funnel Plot and Egger test were used to evaluate the publication bias [19, 20]. Also, the meta-regression analysis and diagram were used to examine the association between important variables with the estimated pooled prevalence. Statistical analysis was performed using STATA 16.0.

Results

As a result of searching the electronic databases, 3413 studies were obtained, and after removing duplicates, 2507 studies remained. After eliminating studies conducted before 2019, 1926 titles remained for review. In the last stage, after reviewing titles, abstracts, and full texts and considering the inclusion and exclusion criteria, 88 studies were selected for inclusion in the study (Fig. 1).

All 88 studies entered at different time intervals examined the prevalence of positive tests in various communities (Table 1). In total, 414,773 serological tests were performed in all studies. Studies have been reviewed in different countries and were also divided according to WHO classifications. In total, studies have been conducted in 34 countries, with 26 in the United States, 7 in Italy, 5 in France, 4 in each country of Japan, the United Kingdom, Brazil, and China, 3 in each country of Spain, Germany, and Denmark, and 2 in each country of Belgium, Iran, Greece, and Sweden, and 1 in each one of the other countries. According to the WHO classification, there were four studies in the Eastern Mediterranean, 4 in Africa, 31 in America, 35 in Europe, and 12 in Western Pacific.

The quality assessment checklist of the observational studies showed that most of these studies had a good quality. Except for a few of the studies had unknown parts in the checklist (Table 2).

Seropositive in Eastern Mediterranean population

Four studies with a total sample size of 5298 cases determined the prevalence of SARS-CoV-2 in this area. The lowest correlation belonged to the study of Banjar et al. with a prevalence of 1% (95% CI 1 to 2%), and the highest prevalence belonged to the study of Younas et al. with a prevalence of 34% (95% CI 29 to 39%). After combining the results of these studies, the pooled estimate was equal to 15%, with a 95% confidence interval of 5 to 29% (Figs. 2 and 7). The highest value was in Pakistan with a prevalence of 24% (95% CI 19 to 39%), and the lowest was in Saudi Arabia with a prevalence of 1% (95% CI 1 to 2%) (Table 3).

Seropositive in Africa population

Four studies with a total sample size of 5298 cases determined the prevalence of SARS-CoV-2 positive serological tests in this area. The lowest correlation belonged to the study of Halatoko et al. with a prevalence of 1% (95% CI 1 to 2%), and the highest prevalence belonged to the study of Younas et al. with a prevalence of 34% (95% CI 29 to 39%). After combining the results of these studies, the pooled estimate was equal to 15%, with a 95% confidence interval of 5 to 29% (Figs. 2 and 7). The highest value was in Pakistan with a prevalence of 24% (95% CI 19 to 39%), and the lowest was in Saudi Arabia with a prevalence of 1% (95% CI 1 to 2%) (Table 3).
Azami et al. European Journal of Medical Research (2022) 27:81

(Figs. 3 and 7). Also, among the countries in this region, the highest value was related to Malawi with a prevalence of 17% (95% CI 14 to 20%) and the lowest to Togo with a prevalence of 1% (95% CI 0 to 2%) (Table 3).

Seropositive in America population
Thirty-one studies determined the prevalence of SARS-CoV-2 positive serological tests in this area, with the lowest correlation belonging to the study of Ng et al. with a prevalence of 0% (95% CI 0 to 1%) and also the study of Silveira et al. with a prevalence of 0% (95% CI 0 to 1%). The highest prevalence belonged to the study of Racine-Brzostek et al., with a prevalence of 35% (95% CI 33 to 37%). After combining the results of these studies, the pooled estimate was equal to 8%, with a 95% confidence interval of 6 to 10% (Figs. 4 and 7). According to the analysis, among the countries in this region, the highest value was related to Colombia with a prevalence of 29% (95% CI 23 to 31%) and the lowest to Brazil with a prevalence of 7% (95% CI 2 to 12%) (Table 3).

In the subgroup analysis related to this area, the prevalence was also examined based on the population type (healthy and unhealthy), the diagnostic test type (ELISA–CLISA–LFIA), the sampling type (random and non-random), time (months after pandemic), the perspective (local–regional–national), and the type of the study (cohort–cross-sectional). According to the classification based on the type of population, the results showed that the serological test’s positivity was 5% in healthy people (95% CI 4 to 6%). In addition, the evaluation results differed according to the test type, and the prevalence of positive tests was 12% for ELISA (95% CI 10 to 15%), 6% for CLISA (95% CI 4 to 8), and 6% for LFIA (95% CI 4 to 9%). The results showed that the highest prevalence occurred in the diagnostic subgroup of ELISA. Also, depending on the type of sampling, in randomized studies, the prevalence was 9% (95% CI 7 to 11%), and in non-randomized studies, the prevalence was 10% (95% CI 7 to 13%). This indicated a higher prevalence in the non-randomized group. Based on the months after pandemic, the prevalence were 7% for 4 month (95% CI 3 to 12%), 8% for 5 month (95% CI 4 to 13%), 9% for 6 month (95% CI 6 to 14%), and 11% for 7 month (95% CI 0 to 32%). Over time, this prevalence increased. Prevalence based on perspective was 12% for local (95% CI 6 to 19%), 6% for regional (95% CI 4 to 10%), and 3% for national (95% CI 4 to 10%), which was higher in local studies. Also, prevalence was 7% for cohort (95% CI 2 to 14%), and 9% for cross-sectional (95% CI 6 to 12%). Prevalence was higher in cross-sectional studies (Table 4).

Seropositive in European population
In addition, 35 studies determined the prevalence of SARS-CoV-2 positive serological tests in this area with the lowest correlation belonging to the study of Fischer et al. with a prevalence of 01% (95% CI 01 to 01%) and also the study of Merkely et al. with a prevalence of 01%
The highest correlation belonged to the study of Clarke et al., with a prevalence of 36% (95% CI 31 to 41%). After combining the results of these studies, the pooled estimate was equal to 5% with a 95% confidence interval of 4 to 6% (Figs. 5 and 7). In addition, the highest value was related to the United Kingdom among the countries in this region, with a prevalence of 20% (95% CI 4 to 45%). The lowest was associated with Greece, with a prevalence of 1% (95% CI 0 to 2%) (Table 3).

In the subgroup analysis related to this area, the prevalence was also examined based on the population type (healthy and unhealthy), the diagnostic test type (ELISA–CLISA–LFIA–VN–ECLIA), and the sampling type (random and non-random), time (months after pandemic), the perspective (local–regional–national), and the type of the study (cohort–cross-sectional). The classification results by the population type showed the positivity of the serological test in the healthy and unhealthy populations at 5% (95% CI 4 to 6%) and 20% (95% CI 16 to 23%), respectively. Prevalence in the unhealthy population was higher. The results obtained based on the type of the diagnostic test were different, and the prevalence of positive tests was 6% for ELISA (95% CI 4 to 8%), 6% for CLISA (95% CI 3 to 9%), 4% for LFIA (95% CI 2 to 8%), 7% for VN (95% CI 5 to 8%), and 1% for ECLIA (95% CI 1 to 3%). The highest value was evaluated in VN type. Also, depending on the type of sampling, the prevalence in randomized studies was 5% (95% CI 4 to 6%), and in non-randomized studies, it was 6% (95% CI 3 to 8%). Prevalence was higher in non-randomized studies (Table 4). For the months after pandemic, the prevalence were 23% for 2 month (95% CI 19 to 28%), 5% for 3 month (95% CI 4 to 7%), 4% for 4 month (95% CI 2 to 7%), 6% for 5 month (95% CI 5 to 8%), 3% for 6 month (95% CI 2 to 6%), and 5% for 7 month (95% CI 3 to 7%). The highest prevalence was in the 2 months after the pandemic. Prevalence based on perspective was 8% for local (95% CI 6 to 11%), 6% for regional (95% CI 3 to 8%), and 3% for national (95% CI 2 to 4%) indicating higher prevalence in local studies. Prevalence based on type of study was 5% for cohort (95% CI 2 to 8%), and 6% for cross-sectional (95% CI 5 to 7%). Prevalence was higher in cross-sectional studies (Table 4).

Seropositive in Western Pacific population

Finally, 12 studies determined the prevalence of SARS-CoV-2 positive serological tests in this area, with the lowest correlation belonging to the study of Coatsworth et al. with a prevalence of 0% (95% CI 0 to 1%) and the highest correlation belonging to the study of Pan et al. with a prevalence of 33% (95% CI 27 to 40%). After combining the results of these studies, the pooled estimate was equal to 3%, with a 95% confidence interval of 2 to 4% (Figs. 6 and 7). Finally, among the countries in this region, the highest value was related to Taiwan with a prevalence of 33% (95% CI 23 to 40%), and the lowest was associated with Malaysia with a prevalence of 0% (95% CI 0 to 2%) (Table 3).

In the subgroup analysis related to this region, the prevalence was also examined based on the population type (healthy and unhealthy), the diagnostic test type
(ELISA–CLISA–LFIA–VN), and the sampling type (random and non-random). The classification results based on the population type showed that the serological test was positive in 3% of the healthy population (95% CI 2 to 5%) and 2% of the unhealthy population (95% CI 1 to 3%). It was higher in the healthy population than in the unhealthy one. The results obtained based on the type of diagnostic test were different. The prevalence of positive tests was 7% for ELISA (95% CI 3 to 10%), 1% for CLISA (95% CI 0 to 2%), 4% for LFIA (95% CI 3 to 5%) and 1% for VN (95% CI 0 to 2%). The highest value was observed in the ELISA group. Also, depending on the type of sampling, the prevalence was 4% in randomized studies (95% CI 2 to 5%), and in non-randomized studies, the prevalence was 2% (95% CI 0 to 4%). The prevalence in the randomized group was higher than that in the non-randomized one (Table 4).

Meta-regression results

In this part, we analyzed the changes in SARS-CoV-2 seroprevalence in different WHO regions and worldwide based on the year from 2020 to 2021. The result in America (B: −0.03, SE: 0.05, P: 0.469), Europe (B: −0.01, SE: 0.02, P: 0.401), Western Pacific (B: −0.01, SE: 0.01, P: 0.430), Eastern Mediterranean (B: −0.19, SE: 0.08, P: 0.033) and around the World (B: −0.03, SE: 0.02, P: 0.122) was decreasing which in Western Pacific and World was significant. However, the result in Africa (B: 0.01, SE: 0.02, P: 0.854) was increased (Fig. 8).
Table 4 The subgroup analysis related to region, the prevalence was examined based on the population type (healthy and unhealthy), the diagnostic test type (ELISA–CLISA–LFIA–VN), and the sampling type (random and non-random)

Regions	Variables	Pooled prevalence (95% CI)	Heterogeneity assessment		
			I square	P heterogeneity	
Western Pacific	Study population	Healthy	3% (2–5%)	90.20%	0.000
		Un-healthy	2% (1–3%)	91.55%	0.000
	Diagnostic methods	ELISA	7% (3–10%)	17.03%	0.281
		CLIA	1% (0–2%)	0.00%	0.320
		LFIA	4% (3–5%)	41.35%	0.160
		VN	1% (0–2%)	55.02%	0.301
	Sampling methods	Random	4% (2–5%)	89.65%	0.000
		Non-random	2% (0–4%)	84.23%	0.000
	Time	2 months after pandemic	2% (1–3%)	93.20%	0.000
		4 months after pandemic	3% (2–5%)	–	–
		5 months after pandemic	4% (3–5%)	–	–
		6 months after pandemic	2% (1–3%)	–	–
		7 months after pandemic	1% (1–2%)	–	–
		8 months after pandemic	5% (4–6%)	–	–
	Perspective	Local	4% (2–6%)	91.05%	0.000
		Regional	3% (1–5%)	89.04%	0.000
		National	–	–	–
	Type of study	Cohort	2% (1–3%)	88.08%	0.000
		Cross-sectional	4% (2–6%)	91.90%	0.000
European	Study population	Healthy	5% (4–6%)	92.15%	0.000
		Un-healthy	20% (16–23%)	89.22%	0.000
	Diagnostic methods	ELISA	6% (4–8%)	78.65%	0.030
		CLIA	6% (3–9%)	79.99%	0.001
		LFIA	4% (2–8%)	90.36%	0.000
		VN	7% (5–8%)	77.00%	0.000
		ECLIAs	1% (1–3%)	–	–
	Sampling methods	Random	5% (4–6%)	97.68%	0.000
		Non-random	6% (3–8%)	90.22%	0.000
	Time	2 months after pandemic	23% (19–28%)	88.17%	0.000
		3 months after pandemic	5% (4–7%)	89.06%	0.000
		4 months after pandemic	4% (2–7%)	92.54%	0.000
		5 months after pandemic	6% (5–8%)	84.28%	0.000
		6 months after pandemic	3% (2–6%)	98.90%	0.000
		7 months after pandemic	5% (3–7%)	87.09%	0.000
	Perspective	Local	8% (6–11%)	89.00%	0.000
		Regional	6% (3–8%)	88.89%	0.000
		National	3% (2–4%)	83.49%	0.000
	Type of study	Cohort	5% (2–8%)	99.90%	0.000
		Cross-sectional	6% (5–7%)	98.56%	0.000
Due to the current Covid-19 pandemic, the prevalence and incidence of this disease are increasing worldwide. Because antibodies are produced in response to many pathogens, including Covid-19, and have a higher advantage than other diagnostic methods in determining the serology prevalence, here we have globally collected verified data (by September 2020) to contribute to a comprehensive understanding of the current pandemic by conducting a comprehensive review of the prevalence of Covid-19 serology in different populations and geographical areas. In this meta-analysis, the cumulative prevalence was calculated at 414,773 based on the studied research, and 25,065 people in the world were infected with Covid-19 by the date of this study.

The results obtained based on the study region showed that among the six regions of the WHO, Eastern Mediterranean and Western Pacific had the highest (15%) and lowest (3%) prevalence, respectively. The largest sample size and number of studies were related to the European Region, accompanied by other development characteristics in this region. It is also impossible to accurately assess the Covid-19 prevalence based on just one study at the local level. Still, one can imagine the general situation from these few studies, especially globally. Although the exact protective effect of antibodies against mutant variants has not been determined so far [21], it can be said that the differences observed in seroprevalence are probably related to differences in the disease transmission status in the community due to behavioral differences, the public health status, local resources, and environmental issues. Of course, there are other issues, such as altitude and climatic differences, and the relevant evidence is not yet complete [22, 23]. Differences in the volume, time, single approach, sampling method, missing samples, sample size, selection bias, greater participation of symptomatic individuals, the inclusion of minority populations, lack of validity and reliability of questionnaires in determining symptoms, accuracy of diagnostic kits, rate of decrease in the antibody titer, possible reinfection, the persistence of the virus in a large population of the society, and diversity of geographical and demographic characteristics (age, sex, race, ethnicity, etc.) were among the limiting factors in most studies [24–26].

In the present study, the lowest Covid-19 seroprevalence was in Western Pacific and African countries, followed by European and American ones, and was slightly higher in the Eastern Mediterranean. However, within each of the World Health Organization's geographical areas, there were significant differences. For example, the

Table 4 (continued)

Regions	Variables	Pooled prevalence (95% CI)	Heterogeneity assessment		
			I square	P heterogeneity	
America	Study population	Healthy	9% (8–12%)	92.19%	0.000
		Un-healthy	–	–	–
	Diagnostic methods	ELISA	12% (10–15%)	79.00%	0.001
		CLIA	6% (4–8%)	81.54%	0.001
		LFIA	6% (4–9%)	88.99%	0.000
		VN	–	–	–
	Sampling methods	Random	9% (7–11%)	97.22%	0.000
		Non-random	10% (7–13%)	98.48%	0.000
	Time	4 months after pandemic	7% (3–12%)	89.22%	0.000
		5 months after pandemic	8% (5–13%)	80.29%	0.000
		6 months after pandemic	9% (6–14%)	93.00%	0.000
		7 months after pandemic	11% (0–32%)	92.33%	0.000
	Perspective	Local	12% (6–19%)	99.52%	0.000
		Regional	6% (4–10%)	92.54%	0.000
		National	3% (4–10%)	–	–
	Type of study	Cohort	7% (2–14%)	79.90%	0.000
		Cross-sectional	9% (6–12%)	77.56%	0.000
estimated prevalence in Taiwan (33%) was much higher than that of other Western Pacific countries. The same difference existed in Europe, so the United Kingdom, with an estimated prevalence of 20%, was significantly different from its neighbors. In contrast, the differences in the Americas and Africa were relatively small, and the Covid-19 seroprevalence was moderate in these regions. Finally, in the Eastern Mediterranean region, Covid-19 seroprevalence was relatively high in Iran and Pakistan, except in Saudi Arabia. Similar studies that have mainly classified the prevalence based on countries’ income reported that in some cases, middle-income countries and, in other instances, high-income countries had reported a higher prevalence [27, 28]. So, we could not find a precise correlation between the income level of countries and the Covid-19 seroprevalence, which may be due to differences in the time of epidemic changes in these countries, sampling and laboratory methods, disease control policies, and vaccination in different populations.

Studies used different serological tests. Due to the many reasons presented for the difference in Covid-19 seroprevalence in additional studies and populations, it was impossible to precisely determine the effect of the test type on this rate. Various studies showed that the type of used antigen, the number of passed days since the onset of the patient’s initial symptoms, and the performance of the serological test itself affected the sensitivity
and specificity of various tests [29–31]. The reported sensitivity for different tests was from 66 to 97%, while the specificity of all tests was reported to be higher than 95% [32, 33].

Different demographic subgroups such as healthy and unhealthy individuals and the randomized and non-randomized sampling, in general, can affect the difference in seroprevalence. As stated in the present study, studies reported lower and higher seroprevalence in different geographic perspectives and time from the beginning of the pandemic areas in each category. For example, in the Western Pacific countries, the seroprevalence of healthy populations was higher than that of unhealthy ones. In cases with the random sampling method, it was more than the non-random one. Also, in our study, the seroprevalence increased from local to national perspectives, respectively, due to the impact of more facilities, effective health policies, and easier access to health care services at the national level. In general, the samples taken in our study were in the time period from 2 January to 21 September 2020. In this period, clinical management of the disease was based on symptomatic therapies. Still, non-pharmaceutical interventions (NPIs) such as physical distance in all settings, hand hygiene and use of protective equipment self and large-scale isolation, and closure of borders, schools, and workplaces play a critical role in preventing and controlling disease transmission. Therefore, problems with infrastructure, imports of some drugs, and strategies such as quarantine, proper promotion, or non-observance of the mentioned factors can change the prevalence of the disease months from the beginning of the pandemic. For example, the prevalence peaked in Western Pacific and European countries in April 2020.

Also, specific mutations in the SARS-CoV-2 genome over time impacted diagnostics, transmissibility, and treatment. And the first variant (alpha) was identified in late 2020, so the obtained seroprevalence pattern cannot be justified by Covid-19 variants [34, 35]. Hence, there were no effective and available vaccines or drugs against Covid-19 in our study period. The first public vaccine was given to a 91-year-old woman in The UK named Margaret Keenan on 8th December 2020 [36]; the results of the current meta-analysis may be less justified by vaccination and viral variants, so conducting such seroprevalence studies would need to be done again carefully.

In the meta-regression performed based on the observed changes in Covid-19 seroprevalence over time,
it was found that other countries showed a downward trend despite our expectation of this increase over time, except in the subgroup of African countries in Covid-19 seroprevalence. This may be due to differences in sampling times in different countries due to the peak of the disease and changes in prevention systems in these countries on the one hand and the instability of Covid-19 specific antigens over time on the other hand.

One of the strengths of this study was the global review of Covid-19 seroprevalence studies. Also, in this research, studies were aggregated by different regions of the World Health Organization, while in similar studies, classification was more based on the income level of countries [27, 28]. Also, in this study, changes in the seroprevalence time of populations were presented first. On the other hand, one of the weaknesses of the research was the lack of a sample study from all people and countries of the world to better estimate global seroprevalence. Also, some countries had only one study on the existing cases, and others reported several ones. Indeed, the prevalence of Covid-19 varies in different subgroups and varies according to epidemic changes and prevention policies. Therefore, with a small number of studies, the demographic and temporal generalizability of the findings is problematic. Also, different sampling methods, tests, different times passed from the onset of symptoms in different people, and other antigens make it challenging to interpret the findings uniformly. The probability of underestimating seroprevalence in the world is high. If the prevalence is higher with confirmed cases, a lower death rate can be found in all cases of infection [26]. According to the findings of the studies, the highest prevalence was seen in ethnic and racial minorities such as Blacks and South Asians than Whites. Factors related to this finding include various determinants of health inequality, including discrimination, access to health care, the employment status and its related factors, financial and educational gaps, the housing status and the number of household members, and in general, occupational, social, and environmental variables [37–39].
Conclusion
The present research performed on 88 studies showed that the seroprevalence of Covid-19 has been between 3 and 15% worldwide, and even considering the low estimate of this rate and the increasing vaccination in the world, a large number of people are still susceptible to Covid-19. Countries need to implement prevention policies with greater sensitivity and follow-up, especially those with low Covid-19 serology prevalence and vaccination coverage.
Abbreviations
WHO: World Health Organization; SARS-CoV-2: Severe acute respiratory syndrome coronavirus 2; RT-PCR: Real-time reverse transcription-polymerase chain reaction; PCR: Polymerase chain reaction; Nab: Neutralizing antibodies; LFIA: Lateral flow immunoassays; ELISA: Enzyme-linked immunosorbent assay; FIA: Fluorescence immunoassays; CLIA: Chemiluminescence assays; PSV: Pseudo-virus neutralization assay; VN: Virus neutralization assay; PRISMA: Preferred Reporting Items for Systematic Reviews and Meta-analyses; BJI: Joanna Briggs Institute; CI: Confidence interval; CINAHL: Cumulative Index to Nursing and Allied Health Literature; EMBASE: Excerpta Medica database.

Acknowledgements
Not applicable.

Author contributions
AA conceptualized the idea for this review, formulated the review question and objectives, assisted with the development of the final search strategy, contributed to the data analysis/interpretation, and writing the manuscript. YM, MA, and AM contributed to the conceptualization of the final review question, formulation of the review objectives, data analysis/interpretation, and writing the manuscript. All authors read and approved the final manuscript.

Funding
This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Availability of data and materials
Input data for the analyses are available from the corresponding author on request.

Declarations
Ethics approval and consent to participate
This work was recorded in the Research of Kurdistan University of Medical Sciences.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Author details
1Student Research Committee, Kurdistan University of Medical Sciences, Sanandaj, Iran. 2Department of Epidemiology and Biostatistics, Faculty of Medicine, Kurdistan University of Medical Science, Sanandaj, Iran. 3Social Determinants of Health Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran.

Received: 11 March 2022 Accepted: 16 May 2022 Published online: 02 June 2022

References
1. Bubba L, Simmonds P, Fischer TK, Harvala H. Mapping of serological testing and SARS-CoV-2 seroprevalence studies performed in 20 European countries, March–June 2020. J Glob Health. 2021;11:05014. https://doi.org/10.7189/jogh.11.05014.
2. Galanis P, Vraka I, Fragkou D, Bilali A, Kaitelidou D. Seroprevalence of SARS-CoV-2 antibodies and associated factors in healthcare workers: a systematic review and meta-analysis. J Hosp Infect. 2021;108:120–34. https://doi.org/10.1016/j.jhin.2021.01.008.
3. Qin X, Shen J, Dai E, Li H, Tang G, Zhang L, et al. The seroprevalence and kinetics of IgM and IgG in the progression of COVID-19. BMC Immunol. 2021;22(1):14. https://doi.org/10.1186/s12865-021-00404-0.
4. World Health Organization. COVID-19 weekly epidemiological update, 3 November 2020. https://apps.who.int/iris/bitstream/handle/10665/336478/nCoV-weekly-strep01Nov20-eng.pdf.
5. Shakiba M, Nazempour M, Heidarzadeh A, Mansournia MA. Prevalence of asymptomatic COVID-19 infection using a seroepidemiological survey. Epidemiol Infect. 2020;148:e500. https://doi.org/10.1017/S0950268820002745.
6. Tsai PH, Lai WY, Lin YY, Luo YH, Lin YT, Chen HK, et al. Clinical mani- festation and disease progression in COVID-19 infection. J Chin Med Assoc. 2021;84(1):3–8. https://doi.org/10.1097/JCM.0000000000000463.
7. Pollán M, Pérez-Gómez B, Pastor-Barriuso R, Oteo J, Hernán MA, Pérez-Olmeda M, et al. Prevalence of SARS-CoV-2 in Spain (ENE-COVID): a nationwide, population-based seroepidemiological study. Lancet. 2020;396(10250):535–44.
8. McConnell D, Hickey C, Bargany N, Teela-Larsen L, Walsh C, Barry M, et al. Understanding the challenges and uncertainties of seroprevalence studies for SARS-CoV-2. Int J Environ Res Public Health. 2021. https://doi.org/10.3390/ijerph18094640.
9. Anka AU, Tahir MI, Abubakar SO, Alsaleh BH, Mian Z, Hamedfar H, et al. Coronavirus disease 2019 (COVID-19): An overview of the immunopathology, serological diagnosis and management. Scand J Immunol. 2021;93(4):e12998. https://doi.org/10.1111/sji.12998.
10. Chvatá-Mediná M, Mendez-Cortina Y, Patrihoj PJ, Velíška PA, Rugeles MT. Antibody responses in COVID-19: a review. Front Immunol. 2021;12:633184. https://doi.org/10.3389/fimmu.2021.633184.
11. Higgins JV, Fabros A, Kulasingam Y. Quantitative measurement of anti-SARS-CoV-2 antibodies: analytical and clinical evaluation. J Clin Microbiol. 2021. https://doi.org/10.1128/jcm.03149-20.
12. Clarke C, Prenedecki M, Dhuta A, Ali MA, Sajjad H, Shivakumar O, et al. High prevalence of asymptomatic COVID-19 infection in hemodialysis patients detected using serologic screening. J Am Soc Nephrol. 2020;31(9):1969–75.
13. James J, Rhodes S, Ross CS, Skinner P, Smith SP, Shipley R, et al. Comparison of serological assays for the detection of SARS-CoV-2 antibodies. Viruses. 2021. https://doi.org/10.3390/v13040713.
14. Moher D, Altman DG, Liberati A, Tetzlaff J. PRISMA statement. Epidemiology. 2011;22(1):128.
15. Tricco AC, Lillie E, Zarin W, O’Brien KK, Colquhoun H, Levac D, et al. PRISMA extension for scoping reviews (PRISMA-ScR): checklist and explanation. Ann Intern Med. 2018;169(7):467–73.
16. Nyaga VN, Arbyn M, Aerts M. Metaprop: a stata command to perform meta-analysis of binomial data. Arch Public Health. 2014;72(1):1–10.
17. Barendregt JJ, Doi SA, Lee YY, Norman RE, Vos T. Meta-analysis of prevalence. J Epidemiol Commun Health. 2008;62(8):633–40.
18. Anna F, Goyard S, Lalanne AI, Nevo F, Gransagne M, Souque P, et al. High seroprevalence of SARS-CoV-2 antibodies among healthy blood donors in Paris, France. Transfusion. 2020;60(9):10292. https://doi.org/10.1111/trf.15923.
19. Yao Y, Pan J, Liu Z, Meng X, Wang W, Kan H, et al. No association of COVID-19 transmission with temperature or UV radiation in Chinese cities. Eur Respir J. 2020;55(5):2000517.
20. Biggerstaff BJ, Jackson D. The exact distribution of Cochran’s heterogeneity statistic in one-way random effects meta-analysis. Stat Med. 2008;27(29):6093–110.
21. Guzzo RA, Jackson SE, Katzell RA. Meta-analysis analysis. Res Organ Behav. 1987;9(1):407–42.
22. Hedges LV. Meta-analysis. J Educ Stat. 1992;17(4):279–96.
23. Higgins JPT, Thompson SG, Deeks JJ, Altman DG. Comparison of serological assays for the detection of SARS-CoV-2 antibodies. J Clin Microbiol. 2021. https://doi.org/10.1128/jcm.03149-20.
24. Anna F, Goyard S, Lalanne AI, Nevo F, Gransagne M, Souque P, et al. High seroprevalence of SARS-CoV-2 antibodies among healthy blood donors in Karachi, Pakistan. Transfus Apher Sci. 2020;60(6):10292. https://doi.org/10.1111/trf.15923.
25. Yao Y, Pan J, Liu Z, Meng X, Wang W, Kan H, et al. No association of COVID-19 transmission with temperature or UV radiation in Chinese cities. Eur Respir J. 2020;55(5):2000517.
26. Biggerstaff BJ, Jackson D. The exact distribution of Cochran’s heterogeneity statistic in one-way random effects meta-analysis. Stat Med. 2008;27(29):6093–110.
27. Guzzo RA, Jackson SE, Katzell RA. Meta-analysis analysis. Res Organ Behav. 1987;9(1):407–42.
28. Hedges LV. Meta-analysis. J Educ Stat. 1992;17(4):279–96.
29. Higgins JPT, Thompson SG, Deeks JJ, Altman DG. Comparison of serological assays for the detection of SARS-CoV-2 antibodies. J Clin Microbiol. 2021. https://doi.org/10.1128/jcm.03149-20.
community and health-care workers in Alzintan City of Libya. medRxiv. 2020.

67. Snoeck CJ, Vaillant M, Abdelrahman T, Satagopam V, Turner J, Beaumont Sam I-C, Chong YM, Tan CW, Chan YF. Low postpandemic wave SARS-CoV-2 in Kuala Lumpur and Selangor, Malaysia. J Med Virol. 2021;93(2):647–8. https://doi.org/10.1002/jmv.26266.

68. Lundkvist Å, Hansson S, Olsten B. Pronounced difference in covid-19 antibody prevalence indicates cluster transmission in Stockholm, Sweden. Infect Econ Epidemiol. 2020;10(1):1806505.

69. Stringhini S, Wisniak A, Piumatti G, Azman AS, Lauer SA, Baysson H, Bryan A, Pepper G, Wener MH, Fink SL, Morishima C, Chaudhary Dietrich ML, Norton EB, Elliott D, Smira AR, Rouelle JA, Bond NG, et al. Seroprevalence of anti-SARS-CoV-2 IgG antibodies in Geneva, Switzerland (SEROCoV-POP); a population-based study. Lancet. 2020;396(10247):313–9. https://doi.org/10.1016/S0140-6736(20)31304-7.

70. Bendavid E, Muleaney B, Sood N, Shah S, Bromley-Duffano R, Lai C, et al. COVID-19 antibody seroprevalence in Santa Clara County, California. Int J Epidemiol. 2021;50(2):410–9.

71. Biggs HM, Harris JB, Breakwell L, Dahlgren FS, Abedi GR, Szablewski CM, et al. Estimated community seroprevalence of SARS-CoV-2 antibodies—two Georgia counties, April 28–May 3, 2020. Morb Mortal Wkly Rep. 2020;69(29):969E.

72. Bryan A, Pepper G, Wener MH, Fink SL, Morishima C, Chaudhary et al. Performance characteristics of the abott architect SARS-CoV-2 IgG assay and seroprevalence in Boise, Idaho. J Clin Microbiol. 2020;58(8):e00941-e1020.

73. Dietrich ML, Norton EB, Elliott D, Smira AR, Rouelle JA, Bond NG, et al. The difference between IgM and IgG antibody prevalence in different serological assays for COVID-19; lessons from the examination of healthcare workers. Int Immunopharmacol. 2020;92:107360. https://doi.org/10.1016/j.intimp.2020.107360.

74. Iuliano AD, Lorini C, Riccio MO, Gori E, Chiesi F, Santor G, et al. Sars-cov-2 seroprevalence survey in people involved in different essential activities during the general lock-down phase in the province of Prato (Tuscany, Italy). Vaccines. 2020;8(4):1–9. https://doi.org/10.3390/vaccines8040778.

75. Majahan S, Srivinasa Redd J, Huston SX, Anastasio KM, Cashman L, et al. Seroprevalence of SARS-CoV-2-specific IgG antibodies among adults living in Connecticut; post-infection prevalence (PIP) study. Am J Med. 2020. https://doi.org/10.1016/j.amjmed.2020.09.024.

76. Mattm L, Vaujoloup-Felloux C, Zakaria H, Benachi A, Carrara J, Letourneau A, et al. Post Lockdown COVID-19 seroprevalence and circulation at the time of delivery. France. PLoS ONE. 2020;15(10):e0240782. https://doi.org/10.1371/journal.pone.0240782.

77. McDade TW, McNally EM, Zelikovich AS, D’Aquilla R, Mustanski B, Miller AJ, et al. High seroprevalence for SARS-CoV-2 among household members of essential workers detected using a dried blood spot assay. PLoS ONE. 2020;15(8):e0237833. https://doi.org/10.1371/journal.pone.0237833.

78. Naranbhavi V, Chang CC, Beltran WFG, Miller TE, Astudillo MG, Villalba JA, et al. Antibodies against SARS-CoV-2 among healthcare workers: a cross-sectional study. Occup Environ Med. 2020;77(12):857–61. https://doi.org/10.3390/ijerph17249324.

79. Racine-Brozetsk SE, Yang HS, Chadburn A, Olender D, An A, Campion TR, et al. COVID-19 Viral and serology testing in New York City health-care workers: a cross-sectional study. Thorax. 2020;75(12):1089–94. https://doi.org/10.1136/thoraxjnl-2021-215414.

80. Pollan M, Pérez-Gómez B, Pastor-Barrero R, Otero J, Hernán MA, Pérez-Olmeda M, et al. Prevalence of SARS-CoV-2 in Spain (ENCE-COVID): a nationwide, population-based seroepidemiological study. Lancet (London, England). 2020;396(10250):535–44. https://doi.org/10.1016/S0140-6736(20)31483-5.
100. Sood N, Simon P, Ebner P, Eichner D, Reynolds J, Bendavid E, et al. Seroprevalence of SARS-CoV-2-specific antibodies among adults in Los Angeles County, California, on April 10–11, 2020. JAMA. 2020;323(23):2425–7. https://doi.org/10.1001/jama.2020.8279.

101. Tang H, Tian JB, Dong JW, Tang XT, Yan ZY, Zhao YY, et al. Serologic detection of SARS-CoV-2 infections in hemodialysis centers: a multicenter retrospective study in Wuhan, China. Am J Kidney Dis. 2020;76(4):490-9.e1. https://doi.org/10.1053/j.ajkd.2020.06.008.

102. Banjar A, Al-Tawfiq JA, Alruwaily A, Alserehi H, Al-Qunaibet A, Alaswad R, Coatsworth N, Myles PS, Mann GJ, Cockburn IA, Forbes AB, Gardiner EB, et al. Seroprevalence of antibodies to SARS-CoV-2 among blood donors in the early months of the pandemic in Saudi Arabia. Int J Infect Dis. 2021;104:452–7. https://doi.org/10.1016/j.ijid.2021.01.028.

103. Coatsworth N, Myles PS, Mann GJ, Coburn IA, Forbes AB, Gardiner EE, et al. Prevalence of asymptomatic SARS-CoV-2 infection in elective surgical patients in Australia: a prospective surveillance study. ANZ J Surg. 2021;91(1–2):27–32. https://doi.org/10.1111/ans.16564.

104. Ebinger JE, Botwin GJ, Albert CM, Alotaibi M, Arditi M, Berg AH, et al. Kantele A, Lääveri T, Kareinen L, Pakkanen SH, Blomgren K, Mero S, et al. Ladoire S, Goussot V, Redersdorff E, Cueff A, Ballot E, Truntzer C, et al. Lombardi A, Mangioni D, Consonni D, Cariani L, Bono P, Cantù AP, et al. Moncunill G, Mayor A, Santano R, Jiménez A, Vidal M, Tortajada M, et al. Pan SC, Huang YS, Hsieh SM, Chen YC, Chang SY, Chang SC. Seroprevalence of SARS-CoV-2 infection among healthcare workers of a large university hospital in Milan, Lombardy, Italy: a cross-sectional study. BMJ Open. 2021;11(2):e043584. https://doi.org/10.1136/bmjopen-2020-043584.

105. Poulikakos D, Sinha S, Kalta PA. SARS-CoV-2 antibody screening in healthcare workers in a tertiary centre in North West England. J Clin Virol. 2021;129:104545.

106. Amendola A, Tanz E, Folgori L, Barcellini L, Bianchi S, Gori M, et al. Low seroprevalence of SARS-CoV-2 infection among healthcare workers of the largest children hospital in Milan during the pandemic wave. Infect Control Hosp Epidemiol. 2020;41(12):1468–9.

107. Brandstetter S, Roth S, Harner S, Buntrock-Dopke H, Toncheva AA, Borchers N, et al. Symptoms and immunoglobulin development in hospital staff exposed to a SARS-CoV-2 outbreak. Pediat Allergy Immunol. 2020;31(7):841–7.

108. Chibwana MG, Jere KC, Kamngona R, Mandolo J, Katunga-Phiri V, Tembo D, et al. High SARS-CoV-2 seroprevalence in health care workers but relatively low numbers of deaths in urban Malawi. medRxiv. 2020. https://doi.org/10.1101/2020.07.30.20164970.

Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.