Reclassification of the nearest quasar pair candidate: SDSS J15244+3032 – RXS J15244+3032

E. P. Farina • R. Falomo • A. Treves1 • R. Decarli
• J. Kotilainen • R. Scarpa

Abstract We present optical spectroscopy of the nearest quasar pair listed in the 13th edition of the Véron-Cetty & Véron catalogue, i.e. the two quasars SDSS J15244+3032 and RXS J15244+3032 (redshift $z \approx 0.27$, angular separation $\Delta \theta \approx 7''$, and line-of-sight velocity difference $\Delta V \approx 1900 \text{km/s}$). This system would be an optimal candidate to investigate the mutual interaction of the host galaxies with ground based optical imaging and spectroscopy. However, new optical data demonstrate that RXS J15244+3032 is indeed a star of spectral type G.

This paper includes data gathered with the Asiago 1.82m telescope (Cima Ekar Observatory, Asiago, Italy).

Keywords galaxies: active — quasars: individual: SDSS J15244+3032, RXS J15244+3032

1 Introduction

In the last years, increasing attention has been given to the search for quasar pairs (i.e., two quasars close in the sky and with almost the same redshift) in order to assess the role of galaxy interactions in quasar ignition (e.g., Hennawi et al. 2006, 2010; Myers et al. 2007a,b, 2008; Foreman et al. 2009; Shen et al. 2010; Decarli et al. 2010; Farina et al. 2011; Kayo & Oguri 2012; Richardson et al. 2012). However, the discovery of these systems is challenging. Even the large spectroscopic quasar catalogue of Schneider et al. (2010) which holds more than ~ 100000 objects from the 7th data release of the Sloan Digital Sky Survey (SDSS, Abazajian et al. 2009), contains 22 quasars with angular separation $\Delta \theta < 15''$, and only 12 with $\Delta \theta < 10''$. This arises mainly as an effect due to the so-called fiber collision limit: the finite size of the fiber plugs prevents the collection of spectra of more than one object with separation below 55'' within the same SDSS plate (Blanton et al. 2003).

In order to increase the number of known small separation pairs, we have scrutinised the 13th edition of the Véron-Cetty & Véron quasar catalogue (Véron-Cetty & Véron 2010, hereafter, VCV10), where the effects of the fiber collision limits should be mitigated by the inhomogeneous origin of the listed sources. In this paper we present compelling evidences that one of the discovered systems: SDSS J15244+3032 and RXS J15244+3032 with $\Delta \theta = 7'' 6$ is instead a quasar-star pair.

Throughout this paper we consider a concordance cosmology with $H_0 = 70 \text{km/s/Mpc}$, $\Omega_m = 0.3$, and $\Omega_{\Lambda} = 0.7$.
quasars separated in the sky by $\Delta \theta = 6''5$ with redshift $z = 0.274$ for J1524Q \citep{Adelman-McCarthy2006} and $z = 0.282$ for J1524S \citep{Zhao2000}. The two sources were detected in IR by the Two Micron All Sky Survey (2MASS, \cite{Skrutskie2006}) with magnitudes: $J = 15.28$, $H = 14.47$, and $K = 13.50$ for J1524Q, and $J = 14.18$, $H = 13.68$, and $K = 13.70$ for J1524S. A source is present in the ROSAT All-Sky Survey Bright Source Catalogue \citep{Voges1999} at RA=15:24:28.6, DEC=+30:32:35. Both J1524Q and J1524S are within the positional error of $12''$ ($\sim 2''$ from J1524Q and $\sim 9''$ J1524S).

It is worth noting the presence of a galaxy at redshift $z = 0.0626$ (RA=15:24:30,DEC=+30:32:24.2, \cite{Aihara2011}, see Figure 1) located at 19'0 from the quasar J1524Q. The corresponding projected separations of 23kpc makes J1524Q a viable candidate to investigate the absorption features that the gaseous halos of the galaxy imprint on its spectra \citep[see e.g.,][]{Bahcall1969, Steidel1991}. Most prominent metal features are located in the Near UV, for instance the MgII doublet and the MgI line are shifted at 2974˚A and 3031˚A, respectively. Thus future observations with instruments like Hubble Space Telescope spectrographs STIS and COS, could increase the small number of metal absorption systems known at redshift $z < 0.1$, where exquisite details of the galaxy population have been recorded \citep[see e.g.,][]{Kacprzak2011, Landoni2012}.

3 Spectroscopic Data

J1524Q and J1524S were observed with the 1.82m Asiago telescope located at the Cima Ekar Observatory on 20th April 2010. Data were gathered with the Asiago Faint Object Spectrograph and Camera (AFOSC) mounted in long-slit spectroscopy configuration with grism #4 and 2'1 slit in the wavelength range from ~ 4300Å to ~ 6700Å. This yields a spectral resolution of $R \sim 300$. The targets are rather bright, thus the exposure time of 1800s (splitted into 3 exposures of 600s each) with a seeing of 2'5 achieved an average signal-to-noise ratio per pixel of ~ 30. The position angle of the slit was oriented so that the spectrum of the two objects could be acquired simultaneously (see Figure 1).

In order to confirm the quasar association and to measure the relative systemic velocities from [OIII] lines \citep[see][]{Mortlock1999, Green2011} we observed with the 1.82m Asiago telescope the two quasars SDSS J15244+3032 (hereafter J1524Q) and RXS J15244+3032 (hereafter J1524S), the nearest pair we have found (see Figure 1). In the VCV10 catalogue, it appears as a system of two bright radio quiet...
alignment and combination were performed with the \texttt{ccdred} package. Cosmic rays were cleaned by combining different exposures with the \texttt{crreject} algorithm. The \texttt{twodspec} and the \texttt{onedspec} packages were employed for the spectral extraction, the background subtraction and the calibrations both in wavelength and in flux. Residuals in wavelength calibrations are $\sim 0.2 \, \text{Å}$.

The spectra obtained are presented in Figure 2.

4 Reclassification of the pair

The spectra of J1524S clearly shows a number of absorption features, the most noticeable of which are the rest-frame hydrogen and metal lines, indicating that it is likely a star of spectral type G (see Figure 2). The erroneous classification of the source is confirmed by the study of Pickles & Depagne (2010), who, from the analysis of the 2MASS and SDSS photometry, estimate that this object is a K0V star. We can argue that, although the finding chart published by Zhao et al. (2000) seems to point to J1524S, the authors have probably switched the two sources, and the X-ray emission observed by ROSAT was indeed associated with J1524Q. This is also supported by the lack of other sources within 20'' from J1524S that have colour consistent with those of a quasar at $z \sim 0.28$.

It is well known that the different quasar emission lines can lead to redshift that differ by up to 1000 km/s (e.g., Tytler & Fan 1992). The most reliable estimate of the systemic redshift (z_{sys}) comes from narrow forbidden lines, the most prominent of which are the [OIII] doublet at $\lambda = 4949 \, \text{Å}$ and $\lambda = 5007 \, \text{Å}$ (e.g., Bonning et al. 2007; Hewett & Wild 2010). By measuring the position of the [OIII]$_{5008}$ line in our spectrum of J1524Q, we obtain $z_{\text{sys}} = 0.2735 \pm 0.0003$ (see Table 1). This agrees to 200 km/s with the systemic redshift inferred from the SDSS spectrum by Hewett & Wild (2010, $z_{\text{sys}} = 0.2743 \pm 0.0004$). The two redshift estimates are therefore marginally consistent within the uncertainties. This value contrasts with the redshift presented by Zhao et al. ($z = 0.282$). However, since the authors did not publish any indication on the uncertainty associated with their measure, we are not able to directly compare the two estimates.

5 Summary and Conclusions

In order to probe the physical association of the alleged low redshift quasar pair J1524QS present in the VCV10 catalogue, we have observed the two sources with the Asiago telescope. The optical spectrum of J1524S shows a number of absorption features typical of a G spectral type star, ruling out the quasar classification proposed by Zhao et al. (2000) for this object.

It is worth noting that some other similar reclassification of alleged quasars in the Véron-Cetty & Véron catalogues are present in the literature (e.g., Decarli et al. 2009, Cupani et al. 2011). Moreover, Flesch (2012) shows that ~ 450 quasars listed in the
catalogue have erroneous astrometry by more than 8" or are incorrect duplication of the same objects. This suggests that, for the study of binary systems, one must take special care when considering the classification, the position, and the redshift of the sources listed in this catalogue, especially when no spectrum is publicly available.

Acknowledgements We would like to thank the referee, A. D. Myers, for carefully reading our manuscript. For this work EPF was supported by Società Carlo Gavazzi S.p.A. and by Thales Alenia Space Italia S.p.A. RD acknowledges funding from Germany’s national research centre for aeronautics and space (DLR, project FKZ 50 OR 1104). This research has made use of the NASA/IPAC Extragalactic Database (NED) which is operated by the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration. This research has made use of the VizieR catalogue access tool, CDS, Strasbourg, France. Funding for SDSS-III has been provided by the Alfred P. Sloan Foundation, the Participating Institutions, the National Science Foundation, and the U.S. Department of Energy Office of Science. The SDSS-III web site is http://www.sdss3.org/. SDSS-III is managed by the Astrophysical Research Consortium for the Participating Institutions of the SDSS-III Collaboration.

Table 1 Properties of the detected emission lines in the spectra of J1524Q. Element (01); peak wavelength of the line (02); rest frame FWHM (03); rest frame equivalent width of the line (04); and estimated redshift (05)

line	λ_{peak}	FWHM	EW	z
	[Å]	[km/s]	[Å]	
(OIII)$_{\lambda 5008}$	6378±1	600±100	7±1	0.2735
Hβ (broad)	6190±3	3500±200	62±12	0.273
Hγ (broad)	5530±2	3200±250	20±5	0.274
Hδ (broad)	5226±3	3500±400	6±2	0.274
References

Adelberger, K. L., Shapley, A. E., Steidel, C. C., et al. 2005, Astrophys. J., 629, 636
Abazajian, K. N., Adelman-McCarthy, J. K., Agüeros, M. A., et al. 2009, Astrophys. J. Suppl. Ser., 182, 543
Adelman-McCarthy, J. K., Agüeros, M. A., Allam, S. S., et al. 2006, Astrophys. J. Suppl. Ser., 162, 38
Aihara, H., Allende Prieto, C., An, D., et al. 2011, Astrophys. J. Suppl. Ser., 193, 29
Bahcall, J. N., & Spitzer, L., Jr. 1969, Astrophys. J. Lett., 156, L63
Blanton, M. R., Lin, H., Lupton, R. H., et al. 2003, Astron. J., 125, 2276
Bonning, E. W., Shields, G. A., & Salviander, S. 2007, Astrophys. J. Lett., 666, L13
Chen, H.-W., Lanzetta, K. M., & Webb, J. K. 2001, Astrophys. J., 556, 158
Chen, H.-W., Helsby, J. E., Gauthier, J.-R., et al. 2010, Astrophys. J., 714, 1521
Cupani, G., Cristiani, S., D’Odorico, V., Milvang-Jensen, B., & Kroeger, J.-K. 2011, Astron. Astrophys., 529, A99
Decarli, R., Falomo, R., Kotilainen, J., et al. 2009, The Open Astronomy Journal, 2, 23
Decarli, R., Falomo, R., Treves, A., et al. 2010, Astron. Astrophys., 511, A27
Farina, E. P., Falomo, R., & Treves, A. 2011, Mon. Not. R. Astron. Soc., 415, 3163
Farina, E. P., Falomo, R., Decarli, R., Treves, A., & Kotilainen, J. K. 2012, Mon. Not. R. Astron. Soc., 369
Flesch, E. 2012, [arXiv:1206.1144]
Foreman, G., Volonteri, M., & Dotti, M. 2009, Astrophys. J., 693, 1554
Green, P. J., Myers, A. D., Barkhouse, W. A., et al. 2010, Astrophys. J., 710, 1578
Green, P. J., Myers, A. D., Barkhouse, W. A., et al. 2011, Astrophys. J., 743, 81
Healey, S. E., Romani, R. W., Cotter, G., et al. 2008, Astrophys. J. Suppl. Ser., 175, 97
Hennawi, J. F., Strauss, M. A., Oguri, M., et al. 2006, Astron. J., 131, 1
Hennawi, J. F., Myers, A. D., Shen, Y., et al. 2010, Astrophys. J., 719, 1672
Hewett, P. C., & Wild, V. 2010, Mon. Not. R. Astron. Soc., 405, 2302
Kacprzak, G. G., Churchill, C. W., Barton, E. J., & Cooke, J. 2011, Astrophys. J., 733, 105
Kayo, I., & Oguri, M. 2012, Mon. Not. R. Astron. Soc., 424, 1363
Landoni, M., Falomo, R., Treves, A., et al. 2012, Astron. Astrophys., 543, A116
Mortlock, D. J., Webster, R. L., & Francis, P. J. 1999, Mon. Not. R. Astron. Soc., 309, 836
Myers, A. D., Brunner, R. J., Nichol, R. C., et al. 2007a, Astrophys. J., 658, 85
Myers, A. D., Brunner, R. J., Richards, G. T., et al. 2007b, Astrophys. J., 658, 99
Myers, A. D., Richards, G. T., Brunner, R. J., et al. 2008, Astrophys. J., 678, 635
Pickles, A., & Depagne, É. 2010, Publ. Astron. Soc. Pac., 122, 1437
Richardson, J., Zheng, Z., Chatterjee, S., Nagai, D., & Shen, Y. 2012, Astrophys. J., 755, 30
Schneider, D. P., Richards, G. T., Hall, P. B., et al. 2010, Astron. J., 139, 2360
Shen, Y., Hennawi, J. F., Shankar, F., et al. 2010, Astrophys. J., 719, 1693
Skrutskie, M. F., Cutri, R. M., Stiening, R., et al. 2006, Astron. J., 131, 1163
Steidel, C. C., & Sargent, W. L. W. 1991, Astron. J., 102, 1610
Tytler, D., & Fan, X.-M. 1992, Astrophys. J. Suppl. Ser., 79, 1
Véron-Cetty, M.-P., & Véron, P. 2010, Astron. Astrophys., 518, A10
Voges, W., Aschenbach, B., Boller, T., et al. 1999, Astron. Astrophys., 349, 389
Zhao, Y.-H., Shi, J.-R., & Zhao, G. 2000, Acta Astrophysica Sinica, 20, 109

This manuscript was prepared with the AAS L\LaTeX macro v5.2.