放射性セシウムで汚染した木質チップの再利用に係わる線量評価

高井 静霞*1, 関 優哉*, 木村 英雄*, 武田 聖司*

(2014年7月14日受理)
(2014年12月11日再受理)

Dose Estimation for the Reuse of Wooden Chips Contaminated by Radioactive Cesium

Shizuka Takai,*1 Masaya Seki,*1 Hideo Kimura,*1 and Seiji Takeda,*1

Wood and wooden wastes potentially contaminated by radioactive cesium released by Fukushima Daiichi Nuclear Power Plant have been reused for various purposes as wooden chips. The Ministry of the Environment indicated that the general disaster wastes including the wooden wastes were reusable with the criteria of total radioactive cesium (cesium-134 and cesium-137) concentration of 100 Bq/kg. The criteria were determined, based on the existing clearance level of concrete and metal generated at nuclear power plant and not on dose estimation for reuse of wooden chips. The purpose of this study is to confirm the validity of the criteria by the dose estimation approach. We investigated actual conditions of production and use for main five reuse purposes of wooden chips around Fukushima. On the basis of this investigation, exposure pathways and parameters for workers and public involved with the reuse of wooden chips were selected. We calculated dose for the exposure pathways and evaluated radioactive concentrations of wooden chips corresponding to dose criteria for safety reuse of radioactive materials. From the calculation result, all radioactive concentrations corresponding to the dose criteria are more than the reuse criteria of 100 Bq/kg, which ensures the validity of the criteria for the safety of present reuse of wood and wooden wastes.

KEY WORDS: dose estimate, wooden chips, radioactive cesium, reuse of wooden wastes, Fukushima Daiichi Nuclear Power Plant.

I 緒 論

福島第一原子力発電所事故に伴い大気中に放出された放射性セシウム（Cs-134，Cs-137）によって、福島県外を含む広範囲の周辺環境で汚染された。そのような環境中にある汚染物（震災による災害廃棄物を含む）は、その量が膨大であるため、物量減減及び資源の有効活用のために再利用が望まれてきた。

放射性核種で汚染された物質の再利用は、それを再利用することで受けた被ばく線量が自然界の放射線レベルに比較して十分小さく、人の健康への影響に対して無視できる程度であれば、可能であると考えられる。原子炉施設等ではこの考え方に基づき、施設の解体等により発生する金属やコンクリートを対象として、それらの再利用に特有な被ばく経路やパラメータを想定した詳細な線量評価を行うことにより、放射性セシウム（Cs-134及びCs-137）に対するクリアランスレベル（放射性物質として扱う必要がない物質中の濃度）を100 Bq/kgと設定している（以下「既往のクリアランスレベル評価」1, 2）。

この原子炉施設等におけるクリアランスレベルに基づき、環境省では東日本大震災により発生した災害廃棄物全般に対する再利用可能な放射性セシウムの濃度を100 Bq/kgと設定しているが、この対象となる災害廃棄物には既往のクリアランスレベル評価で対象としている金属やコンクリート以外の木質系災害廃棄物も含まれている3）。また木質系災害廃棄物だけでなく一般的な木く

*1（独）日本原子力研究開発機構安全研究センター環境影響評価研究グループ：茨城県那珂郡取石村白方白根水2-4（〒319-1115）
Environmental Safety Research Group, Nuclear Safety Research Center, Japan Atomic Energy Agency; 2-4 Shirakata-Shirane, Tokaimura, Naka-gun, Ibaraki 319-1115, Japan.
E-mail: takai.shizuka@jaea.go.jp
Dose Estimation for the Reuse of Wooden Chips Contaminated by Radioactive Cesium

木質チップの再利用用途は、元となる木材及び木質系廃棄物の発生形態によって異なり、その発生形態は大きく「建設発生木材」、「工場残材」、「間伐材」及び、「木質系災害廃棄物」の四つに分類できる。建設発生木材の主な再利用用途は、バーティクルボード、製紙、堆肥、バイオマス発電、マルチング材、応料である。「工場残材」は、大部分が工場内におけるボイラーや製紙等の原料として再利用されている。「間伐材」は現在利用率が低いものの、バイオマス発電の燃料としての再利用が期待されている。「木質系災害廃棄物」はポード等の材料及びバイオマス発電の燃料として再利用されている。

以上のことから、汚染された可能性のある木質チップの主な再利用用途は、バーティクルボード、製紙、堆肥、バイオマス発電、マルチング材、応料の6種類であると考えられる。これらのうち応料として使用される木質チップは、廃物の床に敷かれ使用した後、発酵させて堆肥となる。一方、堆肥として使用される木質チップは、発酵場に敷き詰められた後、発酵させて堆肥となる。そのため、汚染された木質チップを堆肥と応料に使用した場合で、作業者や公衆の被ばく経路は同様のものであると考えられる。また、応料と堆肥はともに原材料のうち木質チップが占める割合が施設または製品により大きく異なるが、福島県近隣における一戸あたりの年間応料使用量は、1戸あたりの飼育頭数及び1頭あたりの年間応料使用量から多くても10トン程度であると見積もられ、一方、汚染された木質系廃棄物の再利用に対する線量評価は現在までに行われていなかった。

そこで本研究では、木材及び木質系廃棄物の再利用に対する評価を行うことを目的として、木質チップの主要な再利用用途に対し、各用途における運搬から製品までの一連の作業工程と公衆の最終的な製品の利用実態を調査し、その調査結果をもとに各用途における作業者及び公衆の評価すべき被ばく経路を設定した。さらに、こうした実態調査の情報等により決定した評価パラメータの条件のもと、各被ばく経路による線量を算出し、上記の濃度基準値に基づき運用されている木質チップの再利用に対する安全性について検討した。

評価方法

1. 評価経路

木質チップの再利用用途は、元となる木材及び木質系廃棄物の発生形態によって異なり、その発生形態は大きく「建設発生木材」、「工場残材」、「間伐材」及び、「木質系災害廃棄物」の四つに分類できる。建設発生木材の主な再利用用途は、バーティクルボード、製紙、堆肥、バイオマス発電、マルチング材、応料である。「工場残材」は、大部分が工場内におけるボイラーや製紙等の原料や製紙等の原料として再利用されている。「間伐材」は現在利用率が低いものの、バイオマス発電の燃料としての再利用が期待されている。「木質系災害廃棄物」は、ハブ等の材料及びバイオマス発電の燃料として再利用されている。
Fig. 1  Description of process that worker and public are possibly exposed by recycling of wooden chips.
Table 1  Description of exposure pathways for particle board.

| No.   | Description                              | Radioactive source       | Exposed individual | Category of exposure |
|-------|------------------------------------------|--------------------------|--------------------|----------------------|
| 101   | Transportation                           | Worker                   | Public (child)     | External             |
| 102   | Residence near the transportation pass   | Worker                   | Public (child)     | External             |
| 103–105 | Unloading                              | Worker                   | Public (child)     | External, Inhalation, Ingestion |
| 106–108 | Work in a yard storing wooden chips    | Worker                   | Public (child)     | External, Inhalation, Ingestion |
| 109   | Work around a silo storing wooden chips | Worker                   | Public (child)     | External             |
| 110   | Work in a warehouse of particle board   | Particle board           | Public (child)     | External             |
| 111   | Residence near the particle board factory | A wooden chip yard           | Public (child)     | External             |
| 112   | Residence near the particle board factory | A wooden chip silo            | Public (child)     | External             |
| 113   | Residence near the particle board factory | A warehouse of particle board | Public (child)     | External             |
| 114–115 | Construction of a house             | Worker                   | Public (adult, child) | Inhalation, Ingestion |
| 116–117 | Use of particle board (house and furniture) | Residence near the construction site | Public (adult, child) | Inhalation, Ingestion |
| 118–119 | Residence in the house                | Worker                   | Public (adult, child) | External             |
| 120–121 | Use of bed                           | Worker                   | Public (adult, child) | External             |

Fig. 2  Paper manufacturing process (Flow of step 3 to 4).

(Numbers in parentheses behind each generated substances are cesium concentration on basis of that of wooden chips. 

(13)
（3）堆肥

木質チップから作られる堆肥は、一般に糞尿等を木質チップと混合し、発酵（一次発酵及び二次発酵）させることで作られる。堆肥の原材料等の緊密な混合割合は製品によって大きく異なるため、本評価では保守的に木質チップのみから作られる堆肥を想定とする。堆肥の製造工程は大きく分けて、
1. 木質チップの一次発酵場への運搬・積み下ろし
2. 一次発酵場での発酵及び解消のための摂拌作業
3. 一次発酵場から二次発酵場への移動
4. 二次発酵場での温度管理
5. 堆肥の袋詰め作業
6. 製品化された堆肥の倉庫内保管
の6つである。堆肥製造施設内での一次発酵場・二次発酵場の位置は施設によって異なるが、本評価では一次発酵場と二次発酵場が隣接しており、隣接した発酵場の間で②～⑤の作業を行う作業者が被ばくする場合を保守的に想定する。このとき、②～⑤の各作業で線源である発酵場と作業者の距離は同程度であると考えられる。③堆肥の袋詰め作業は機械によって行われるため、作業者が線源に接近する時間は他の時間に比べ小さい。また、②～④の作業の中で、作業回数・時間がもっとも長いのは②摂拌作業である。よって、②～⑤の作業に対する被ばくは、もっとも被ばく線量が大きいと考えられる②摂拌作業を評価し、その他の作業は評価対象から除外する。以上より、堆肥の製造に伴う被ばくは①木質チップの運搬・積み下ろし、②摂拌作業、⑥堆肥の倉庫内保管の作業を行う作業者の被ばく、及び、運搬経路と製造施設周辺居住者の被ばくを評価対象とする。

Table 2  Description of exposure pathways for paper.

| No.   | Description                          | Radioactive source       | Exposed individual | Category of exposure          |
|-------|--------------------------------------|--------------------------|--------------------|-------------------------------|
| 201   | Transportation                       |                         | Worker             | External                       |
| 202   | Residence near the transportation pass | wooden chips             | Public (child)     | External                       |
| 203–205 | unloading                          |                          |                    |                               |
| 206–208 | Work in a yard storing wooden chips | Black liquor             | Worker             | External, Inhalation, Ingestion |
| 209   | Work around a black liquor tank      |                         |                    |                               |
| 210–212 | Maintenance of a recovery boiler   | Ash in a recovery boiler |                    |                               |
| 213   | Residence near the paper factory    | A wooden chip yard       | Public (child)     | External                       |
| 214   | Use of paper (cartons)              | Paperboard               | Worker             | External                       |
| 215   | Residence near the paper factory    | A warehouse of rolls of paperboard | Public (child) | External                       |
製品化された堆肥は、主に畑に利用される。堆肥の利用に伴う被ばくは、堆肥を使用した農耕土壌での農耕作業者の被ばく及び、堆肥を用いて生産された農作物を摂取する公衆の被ばくを評価対象とする。

Table 3に、堆肥の再利用に対する評価経路を示す。

(4) バイオマス発電

木質チップを用いたバイオマス発電では、木質チップを直接燃焼して発生した高温高熱の蒸気で発電機を回し、電気を発生させる。バイオマス発電は、バイオマス発電所だけでなく、エネルギープロット及び製紙施設において自家バイオマス発電として行われている。福島県近隣におけるバイオマス発電所の規模に比べ、パーキングラウンド製紙施設での自家発電の規模は10分の1程度、製紙施設での自家発電の規模はバイオマス発電所と同程度である[40]。ただし、国内で製紙製造に用いる木質チップのうち約7割は輸入品であることから[41]、汚染された可能性のある木質チップの使用量はバイオマス発電所がもっとも大きいと考えられる。よって以下では、バイオマス発電所に対し評価を行う。バイオマス発電の作業工程は大きく分けて、
①木質チップの選搬・積み下ろし
②サイロ内での木質チップの保管
③木質チップのバイオマスへの燃焼
④ガスフィルターによる燃焼ガス中の飛灰の捕集
⑤蒸気タービン発電機による発電
⑥焼却灰のバイオマス内保管
⑦焼却灰の処分場への輸送
の7つである[42]。このうち、⑥及び⑦の焼却灰に係る作業は、現在焼却灰に対して一般廃棄物最終処分場で処分できる濃度が定められており[43]、発電所において焼却灰中の放射性物質の濃度測定等の管理が行われていることから、評価対象から除外する。また、③及び④の工程は機械により行われるため、作業者が直接である木質チップや焼却灰に接する時間は他の作業に比べ短い。しかし、⑤木質チップのバイオマスでの燃焼については、バイオマス発電を主力事業として行う発電所では一般にボイラーの大きさが高さ数十メートルを越え、ボイラー内に作業者が入って補修を行う可能性があり、その際にボイラーに付着した焼却灰により被ばくする可能性がある。よってバイオマス発電に伴う被ばくは、①木質チップの選搬・積み下ろし及び、②サイロ内での木質チップの管理。

また、汚染された木質チップを使用したバイオマス発電所から大気中に放出される微量の粉末に、放射性セシウムが含まれる可能性がある。よって、それに伴う公衆の被ばくとして、放出した粉末による被ばく。粉末が沈着した土壌からの被ばく。粉末が沈着した土壌で生産される農作物及びその農作物を飼料として生産された畜産物を摂取することによる被ばくを評価対象とする。Table 4に、バイオマス発電への再利用に対する評価経路を示す。

(5) マルチング材

木質チップは雑草侵入の抑制や鉢装等のために、さまざまな場所で土壌の表面に敷設され、マルチング材として利用される。木質チップをマルチング材に利用する際の作業工程は大きく分けて、
①敷設場所への木質チップの運搬・積み下ろし
②木質チップの敷設作業

Table 3 Description of exposure pathways for compost.

| No.   | Description                  | Radioactive source                  | Exposed individual | Category of exposure |
|-------|------------------------------|------------------------------------|--------------------|----------------------|
| 301   | Transportation               | wooden chips                       | Worker             | External             |
| 302   | Residence near the           | Kompost                            | Public (child)     | External             |
|       | transportation pass          |                                    |                    |                      |
| 303–305 | unloading                   |                                    |                    |                      |
| 306–308 | Mixing                      |                                    |                    |                      |
| 309   | Work in a warehouse of       | compost                            | Worker             | External, Inhalation, Ingestion |
|       | compost                     |                                    |                    |                      |
| 310   | Residence near the           | A place for fermentation            | Public (child)     | External             |
|       | compost factory              |                                    |                    |                      |
| 311–312 | Use of compost              | Agriculture                        | Worker             | External, Inhalation |
|       |                              | Soil contained the compost         |                    |                      |
| 313–314 | Ingestion of crops          | Crops cultivated with the compost  | Public (adult, child) | External |

Table 3 Description of exposure pathways for compost.
Table 4  Description of exposure pathways for biomass power generation.

| No. | Description                      | Radioactive source | Exposed individual | Category of exposure   |
|-----|----------------------------------|--------------------|--------------------|------------------------|
| 401 | Operation of a biomass power plant | Transportation     | Wooden chips       | Worker                 |
| 402 | Residence near the transportation pass | Wooden chips       | Public (child)     | External               |
| 403-405 | Work around a silo storing wooden chips | Ash in an incinerator | Worker | External, Inhalation, Ingestion |
| 409-411 | Maintenance of an incinerator | Wooden chip silo | Public (child) | External               |
| 412 | Residence near the biomass power plant | Dust in downwind plume released from the incinerator | Public (adult, child) | External, Inhalation |
| 413-416 | Around the plant | Soil in which dust deposited | Public (adult, child) | External |
| 417-418 | Ingestion of crops | Crops cultivated in the soil in which dust deposited | Public (adult, child) | Ingestion |
| 419-420 | Ingestion of livestock | Livestock grown with the feeds cultivated with the soil | Public (adult, child) | Ingestion |

Table 5 Description of exposure pathways for mulch.

| No. | Description                     | Radioactive source | Exposed individual | Category of exposure   |
|-----|---------------------------------|--------------------|--------------------|------------------------|
| 501 | transportation                  | Transportation     | Wooden chips       | Worker                 |
| 502 | Mulching a park                 | Mulching a park    | Public (child)     | External, Inhalation, Ingestion |
| 503-505 | Residence near the park | Public (child) | External, Inhalation, Ingestion |
| 506-508 | Use of the park            | Public (child)     | External, Inhalation, Ingestion |
| 509-510 | Mulching a pavement          | Public (child)     | External, Inhalation, Ingestion |
| 511-513 | Residence near the pavement  | Public (child)     | External, Inhalation, Ingestion |
| 514-516 | Mulching a pavement          | Public (child)     | External, Inhalation, Ingestion |
| 517-519 | Use of the pavement           | Public (child)     | External, Inhalation, Ingestion |



Table 4 Description of exposure pathways for biomass power generation.

| No. | Description                      | Radioactive source | Exposed individual | Category of exposure   |
|-----|----------------------------------|--------------------|--------------------|------------------------|
| 401 | Operation of a biomass power plant | Transportation     | Wooden chips       | Worker                 |
| 402 | Residence near the transportation pass | Wooden chips       | Public (child)     | External               |
| 409-411 | Maintenance of an incinerator | Ash in an incinerator | Worker | External, Inhalation, Ingestion |
| 412 | Residence near the biomass power plant | Dust in downwind plume released from the incinerator | Public (adult, child) | External, Inhalation |
| 413-416 | Around the plant | Soil in which dust deposited | Public (adult, child) | External |
| 417-418 | Ingestion of crops | Crops cultivated in the soil in which dust deposited | Public (adult, child) | Ingestion |
| 419-420 | Ingestion of livestock | Livestock grown with the feeds cultivated with the soil | Public (adult, child) | Ingestion |

Table 5 Description of exposure pathways for mulch.

| No. | Description                     | Radioactive source | Exposed individual | Category of exposure   |
|-----|---------------------------------|--------------------|--------------------|------------------------|
| 501 | transportation                  | Transportation     | Wooden chips       | Worker                 |
| 502 | Mulching a park                 | Mulching a park    | Public (child)     | External, Inhalation, Ingestion |
| 506-508 | Residence near the park | Public (child) | External, Inhalation, Ingestion |
| 509-510 | Use of the park            | Public (child)     | External, Inhalation, Ingestion |
| 511-513 | Mulching a pavement          | Public (child)     | External, Inhalation, Ingestion |
| 514-516 | Residence near the pavement  | Public (child)     | External, Inhalation, Ingestion |
| 517-519 | Use of the pavement           | Public (child)     | External, Inhalation, Ingestion |

その二つである。マルチング材の利用用途20)の中で、使用規模が大きくかつ作業者及び公衆への被ばくの影響が大きいと想定されるものに、公園及び道路がある。それらの施設作業に伴う作業者、及び、運搬経路と敷設場所周辺住民の被ばくを評価対象とする。また、マルチング材が敷設された公園及び道路の利用者の被ばくを評価する。Table 5に、マルチング材への再利用に対する評価経路を示す。

2. 評価モデル

木質チップの再利用に関する各評価経路のモデル式は、原子力施設等に対するクリアランスレベル算出に使用したモデル式2)及び災害廃棄物の処理・処分に係わる安全性評価のモデル式23)を基に、本評価経路に即した評価パラメータを用いてモデル式を作成した。木質チップの再利用の線量計算に使用した一連のモデル式を付録に示す。一連のモデル式による線量計算は、原子力機構で開発したPASCLR223)により行った。

また、外部被ばく線量の計算に必要な外部被ばく線量換算係数((Sv/h)/(Bq/kg))は、点滅放射線法による遮蔽計算コードQAD-CGGP2R23)を用いて算出したが、スパイシーフィールド計算の精度を考慮する必要がある場合は、3次元輸送計算コードMCNP524)を使用して算出した。

3. 評価パラメータ

本研究で木質チップの再利用に対する線量評価を行う際に使用するパラメータは、既往のクリアランスレベル評価1)を踏襲できると考えられるもの（内部被ばくに関するパラメータ（呼吸量や空气中ガス濃度など）や、発生に関するパラメータ（発生におけるCsの排気への
表6 主なパラメータ一覧

| パラメータ       | 単位 | 値 | 設定基準 |
|------------------|------|----|----------|
| 全使用 удал | | | |
| 木質チップの密度 | g/m³ | 0.22 | 木質チップ（水分含有率50%）は森林研究センター横浜で測定した。 |
| 入口チップの混入率 | b/h | 2,000 | 入口チップの混入率は、木質チップがバロチップとして混入する場合に設定。 |
| 紙ペレットの使用率 | b/h | 120,000 | 紙ペレットの使用率は、使用する最大値を基準に設定した。 |
| パーティクルボードの密度 | g/m³ | 0.5 | パーティクルボードの密度は、使用する最大値を基準に設定した。 |
| 館の密度 | g/m³ | 0.76 | 館の密度は、使用する最大値を基準に設定した。 |
| パーティクルボードの混入率 | b/h | 2 | パーティクルボードの混入率は、使用する最大値を基準に設定した。 |
| 紙の混入率 | g/m³ | 0.5 | 紙の混入率は、使用する最大値を基準に設定した。 |

| パーティクルボード | | | |
|------------------|------|----|----------|
| 黒煮出物の密度 | g/m³ | 1.4 | 黒煮出物の密度は、使用する最大値を基準に設定した。 |
| 用紙の混入率 | b/h | 100 | 用紙の混入率は、使用する最大値を基準に設定した。 |
| ラジオノクリド濃度 | 固 | 27 | ラジオノクリドは、使用する最大値を基準に設定した。 |
| ラジオノクリド濃度 | 固 | 200 | ラジオノクリドは、使用する最大値を基準に設定した。 |
| 汚水の混入率 | b/h | 120 | 汚水の混入率は、使用する最大値を基準に設定した。 |
| 用紙の混入率 | b/h | 0.001 | 用紙の混入率は、使用する最大値を基準に設定した。 |
| ラジオノクリド濃度 | 固 | 0.84 | ラジオノクリド濃度は、使用する最大値を基準に設定した。 |
| ラジオノクリド濃度 | 固 | 0.5 | ラジオノクリド濃度は、使用する最大値を基準に設定した。 |
| 深さ | cm | 10 | 深さは、使用する最大値を基準に設定した。 |
| 木質チップの使用量 | t/a | 8 | 木質チップの使用量は、使用する最大値を基準に設定した。 |
| 混入率 | t/a | 1 | 混入率は、使用する最大値を基準に設定した。 |
| 年間使用量 | t/a | 120,000 | 年間使用量は、使用する最大値を基準に設定した。 |
| 設備の混入率 | b/h | 120 | 設備の混入率は、使用する最大値を基準に設定した。 |
| ブラッシュの強度 | g/s | 4,200 | ブラッシュの強度は、使用する最大値を基準に設定した。 |

注1: 年間使用量は、木質チップの密度を考慮して決定した。
### Table 7 Effective dose conversion factors of external exposure pathways.

| No. | Conditions to estimate effective dose conversion factor of external exposure pathway (µSv/h per Bq/g) | Ce-134 | Conditions to estimate effective dose conversion factor of external exposure pathway (µSv/h per Bq/g) | Ce-137 |
|-----|-------------------------------------------------------------------------------------------------|--------|-------------------------------------------------------------------------------------------------|--------|
| 101 | A 12t track whose container is filled with contaminated wooden chips is assumed.                 | 1.2E-01| A black liquor tank with 5mm iron is assumed. Size of tank is cited from 1DP-TECDOC-1376.         | 1.0E-01|
| 401 | - Source size: length 9.5m x width 2.3m x height 2.5m (cuboid)                                 | 509    | - Source size: height and diameter 8.6m (cylinder)                                               | 1.4E-01|
| 501 | - Density: 0.226g/cm³                                                                           | 4.3E-02| - Evaluation point: 1m from edge of bottom face in the horizontal direction and 1m in height from the ground. | 5.7E-02|
| 102 | A 12t track whose container is filled with contaminated wooden chips is assumed.                 | 3.4E-02| A recovery boiler corresponding to generation rate of black liquor 1000t/d in the largest paper factory around Fukushima is assumed. Thickness and density of ash are cited from the conventional clearance level estimation. | 4.1E-02|
| 402 | - Source size: length 9.5m x width 2.3m x height 2.5m (cuboid)                                 | 508    | - Source size: ash of 2m thickness adhered with flooring and walls of recovery boiler (length 10m x width 10m x height 60 m (cuboid)) | 1.5E-02|
| 502 | - Density: 0.226g/cm³                                                                           | 4.0E-02| - Evaluation point: 1m in height from the center of flooring                                      | 7.8E-02|
| 103 | A 12t track whose container is filled with contaminated wooden chips is assumed.                 | 1.1E-01| A warehouse storing paper for a week production in the largest paper factory around Fukushima is assumed. | 2.4E-01|
| 403 | - Source size: length 9.5m x width 2.3m x height 2.5m (cuboid)                                 | 214    | - Source size: 2 walls of paperboard rolls placed with 5m interval                               | 9.6E-02|
| 503 | - Density: 0.226g/cm³                                                                           | 4.0E-02| - Evaluation point: 2m from edge of bottom face in the width direction and 1m in height from the ground. | 7.8E-02|
| 104 | A wooden chip yard storing usage of wooden chips for a week in the largest particle board factory around Fukushima is assumed. | 8.7E-01| A warehouse storing paper for a week production in the largest paper factory around Fukushima is assumed. | 7.8E-02|
| 404 | - Source size: top surface-90m square, bottom surface-100m square, height-6m (cuboid)           | 505    | - Source size: a warehouse with 5mm thickness iron wall (160m x 100m x 6m)                      | 6.1E-02|
| 504 | - Density: 0.226g/cm³                                                                           | 3.1E-02| - Source size: 10 units of stockpiled paperboard rolls placed with 5m interval                   | 3.7E-02|
| 111 | A wooden chip silo in a particle board factory around Fukushima is assumed.                     | 3.6E-02| - Evaluation point: 1m in height from the center of upper surface (112), 2m from edge of bottom face in the width direction and 1m in height from the ground. | 6.2E-03|
| 405 | - Source size: length 9.5m x width 2.3m x height 2.5m (cuboid)                                 | 3.6E-02| - Evaluation point: 1m from edge of bottom face in the horizontal direction and 1m in height from the ground. | 7.8E-02|
| 112 | A warehouse storing particle boards for a week production in the largest particle board factory around Fukushima is assumed. | 2.5E-01| A wooden chip silo with 5mm iron wall storing usage of wooden chips for a week in the largest particle board factory around Fukushima is assumed. | 1.4E-02|
| 406 | - Source size: 2 walls of stockpiled particle board placed with 5m interval (1 unit = 11m x 2m x 4m) | 3.5E-02| - Source size: number of 1 stockpile of compost (top surface-30m x 5m, bottom surface-40m x 10m, height-4.5m (quadrilateral frustum)) | 5.6E-03|
| 506 | - Density: 0.226g/cm³                                                                           | 4.0E-02| - Density: 0.5g/cm³                                                                             | 5.0E-03|
| 113 | A warehouse storing particle boards for a week production in the largest particle board factory around Fukushima is assumed. | 5.8E-02| - Evaluation point: 1m from edge of bottom face in the width direction and 1m in height from the ground. | 6.2E-03|
| 407 | - Source size: a warehouse with 5mm iron wall width 80m x height 50 m (cuboid)                  | 408    | - Source size: diameter 1km x height 10m (cylinder)                                              | 1.0E-01|
| 507 | - Density: 0.76g/cm³                                                                           | 5.5E-02| - Compost density=0.5g/cm³, soil density = 1.5g/cm³                                              | 5.0E-03|
| 114 | A warehouse storing particle boards for a week production in the largest particle board factory around Fukushima is assumed. | 5.8E-02| - Evaluation point: 1m in height from top surface.                                              | 1.3E-02|
| 408 | - Evaluation point: 1m from the wall of another wall and 1m in height from the ground           | 407    | - Evaluation point: 1m in height from the center of flooring                                      | 6.0E-02|
| 409 | - Source size: length 100m x width 5.5m x height 1.5m (cuboid)                                 | 503    | - Evaluation point: 1m from the center of upper surface (503, 509, 511), 1m in edge of bottom face in the horizontal direction and 1m in height from the ground (509, 507). | 1.2E-02|
| 509 | - Source size: length 1km x height 5cm (cylinder)                                               | 1.6E-02| - Evaluation point: 1m from edge of bottom face in the horizontal direction and 1m in height from the ground (408), 2m from long edge of bottom face in the width direction and 1m in height from the ground (412). | 2.5E-03|
| 115 | A room made of particle board is assumed. Size of room is cited from the conventional clearance level estimation. | 2.0E-03| An incinerator corresponding to usage of wooden chip 1000t/d in the largest biomass power plant around Fukushima is assumed. Thickness and density of ash are cited from the conventional clearance level estimation. | 3.6E-02|
| 116 | - Source size: ceiling and flooring: 9.0m x 9.0m x 2.0m walls: 0.15 surfaces: 9.0m x 4.2m x 2.0m | 508    | - Source size: ash of 2m thickness adhered with ceiling, flooring and walls of an incinerator (length 5.2m x width 5.2m x height 2.0m (cuboid)) | 3.6E-02|
| 508 | - Density: 0.76g/cm³                                                                           | 4.2E-02| - Evaluation point: 1m in height from the center of flooring                                      | 3.6E-02|
| 117 | A bed made of particle board is assumed. Size of bed is cited from the conventional clearance level estimation. | 4.4E-02| A black liquor tank with 5mm iron is assumed. Size of tank is cited from 1DP-TECDOC-1376.         | 9.0E-02|
| 118 | - Source size: length 2m x width 200m (A bed consists of upper and 4 side frames whose thickness are 2cm.) | 505    | - Source size: diameter 1km x height 5cm (cylinder)                                              | 5.3E-02|
| 505 | - Density: 0.226g/cm³                                                                           | 1.6E-02| - Density: 0.44g/cm³                                                                             | 5.0E-02|
| 119 | - Evaluation point: 10cm from the center of upper surface of the bed                            | 507    | - Evaluation point: 1m from the center of upper surface (503, 509, 511), 1m in edge of bottom face in the horizontal direction and 1m in height from the ground (509, 507). | 1.2E-02|
| 208 | A wooden chip yard in the largest paper factory around Fukushima storing usage of chips for a week is assumed. | 3.5E-02| A wooden chip yard in the largest paper factory around Fukushima storing usage of chips for a week is assumed. thickness is so small that calculated dose converges. Thickness of mulching is estimated to be 5cm by compressing from general maximum thickness 10cm. | 4.4E-02|
| 209 | - Source size: top surface-130m square, bottom surface-150m square, height-8.5m (quadrilateral frustum) | 3.5E-02| - Source size: length 100m x width 5.5m x height 1cm (cuboid)                                  | 3.0E-02|
| 210 | - Source size: length 9.5m x width 2.3m x height 2.5m (cuboid)                                 | 7.8E-02| - Evaluation point: 1m from the center of upper surface (514,520,522), 1m in edge of top face in the width direction and 1m in height from the ground (516,518). | 1.0E-02|
| 211 | - Density: 0.226g/cm³                                                                           | 2.9E-02| - Evaluation point: 1m from the center of upper surface (514,520,522), 1m in edge of top face in the width direction and 1m in height from the ground (516,518). | 1.0E-02|
た。全Cs濃度に対する被ばく線量は、Cs-134とCs-137のそれぞれに対して求めた被ばく線量を、事故当初のそれぞれの存在比が等しいと仮定した場合の事故2年後の存在比（Cs-134/Cs-137 = 0.535）を用いることで導出した。ここで、事故後の年数が経過するほど全Cs濃度が1 Bq/kgの場合に受ける被ばく線量は小さくなるので、事故2年後の結果はそれ以上の期間に対して保守的な結果となる。これは、事故後10年の評価時点が早いほどCs-137に対するCs-134の存在比が大きく、また、Cs-134はCs-137に比べ放出するγ線のエネルギーが高く影響が大きいためである。

線量の評価結果から、木質チップの各再利用用途に対し、作業者及び公衆の被ばくを抑制するために満たすべき基準線量に対応する木質チップ中の全Cs濃度を算出し、その中でもっとも低い全Cs濃度の結果を各再利用用途に対する濃度のめやす値として求めめた。基準線量については、原子力安全委員会の考え方34）では、汚染した廃棄物の処理等にあたる作業者や処理に伴って周辺住民の受けた影響については、合理的に達成できる限り低くなるよう対策が講じられることが重要と述べた上で、具体的には1 mSv/年を超えないようにすることが必要となっている。また、再生利用で産生された製品についてはクリアランスレベルを準用し、市場に流通する前に10 μSv/年以下とすることが必要であると述べられている。本研究ではこの考え方に基づき、木質チップを利用した製品の製造に係る作業者・一般公衆に対しては1 mSv/年、木質チップを利用した製品の使用に係る作業者・一般公衆に対しては10 μSv/年を基準線量とした。以下に各再利用用途に対する評価結果を示す。

1. パーティクルボード

パーティクルボードに対する線量評価の結果を、Table 8 に示す。Table 8において、経路番号が白抜きで表されている経路（No. 101 ~ 113）は基準線量を1 mSv/y、経路番号が灰色で表されている経路は基準線量を10 μSv/yと設定した。以下の再利用用途についても、各経路に対する基準線量を表中に同様に示す。

木質チップのパーティクルボードへの再利用において、年間被ばく線量が高かったのは、木質チップ製造施設の周辺居住者の外部被ばく（No. 110, 111, 112）であった。これらの被ばく経路で線量が高いのは、被ばく時間（=居住時間を8,760 h/年=24時間×365日仮定した）が他の被ばく経路に比べて長いためである。一方、核燃料棒の内部被ばくや経口摂取による内部被ばくは、外部被ばくに比べて数倍程度小さくなる傾向が確かめられた。（たとえば経路 No. 103, 104, 105（木質チップの

| No. | Exposure pathway | Annual effective dose (Sv/y per Bq/kg) | Radioactive concentration of wooden chips corresponding to standard dose (Bq/kg) |
|-----|------------------|--------------------------------------|--------------------------------------------------------------------------------|
| 101 | Transportation of wooden chips (external) | 1.1E-01 8.8E+03 | |
| 102 | Residence near the transportation pass (child, external) | 1.6E-03 6.6E+05 | |
| 103 | Loading and unloading of wooden chips (external) | 5.2E-02 1.9E+14 | |
| 104 | Loading and unloading of wooden chips (inhalation) | 1.7E-05 5.8E+07 | |
| 105 | Loading and unloading of wooden chips (ingestion) | 2.8E-04 3.6E+06 | |
| 106 | Working near a wooden chip yard (external) | 7.6E-02 1.6E+04 | |
| 107 | Working near a wooden chip yard (inhalation) | 1.7E-05 5.8E+07 | |
| 108 | Working near a wooden chip yard (ingestion) | 2.8E-04 3.6E+06 | |
| 109 | Working near a wooden chip silo (external) | 4.3E-02 2.2E+04 | |
| 110 | Working in a warehouse of particle board (external) | 1.2E-01 8.2E+03 | |
| 111 | Residence near the wooden chip yard (child, external) | 4.1E-03 2.2E+03 | |
| 112 | Residence near the wooden chip silo (child, external) | 4.2E-01 2.4E+03 | |
| 113 | Residence near the warehouse (child, external) | 4.2E-03 2.4E+03 | |
| 114 | Building a house with the particle board (inhalation) | 1.6E-05 6.3E+05 | |
| 115 | Building a house with the particle board (ingestion) | 2.6E-04 3.8E+14 | |
| 116 | Residence near the construction site (adult, inhalation) | 7.7E-05 1.3E+05 | |
| 117 | Residence near the construction site (child, inhalation) | 2.0E-05 4.9E+05 | |
| 118 | Residence in the house (adult, external) | 8.6E-03 1.2E+03 | |
| 119 | Residence in the house (child, external) | 1.1E-02 8.9E+02 | |
| 120 | Use of a bed made of the particle board (adult, external) | 6.5E-02 1.5E+02 | |
| 121 | Use of a bed made of the particle board (child, external) | 8.5E-02 1.2E+02 | |
積み下ろし作業者の被ばく）では、内部被ばく線量（No. 104, 105）は外部被ばく線量（No. 103）に比べ2～3桁程度小さかった。（）
基準線量に対する木質チップ中の全 Cs 濃度がもっと低かったのは、ベッドの使用者（子ども）に対する外部被ばく（No. 121）の120 Bq/kgであった。この濃度は、パーティクルボードへの再利用に対する木質チップ中の全 Cs 濃度のめやす値である。120 Bq/kg以下の木質チップならば、パーティクルボードに再利用してもすべての被ばく経路で作業者及び公衆が受ける被ばく線量が基準線量を下回る。ベッドの使用者（子ども）に対する外部被ばく（No. 121）がこのめやす値を決める経路となっ
たのは、この経路に対する基準線量が10 μSv/yであり、さらに、ベッドと使用者の距離が近い（ベッド表面から10 cmの位置に使用者がいると仮定した）ため、被ばく線量が大きいためである。

2. 製紙
製紙に対する線量評価の結果を、Table 9 に示す。
木質チップの製紙への再利用において、作業者の年間被ばく線量が高かったのは、黒液タンク周辺作業者（No. 209）及び回収ボイラーの補修作業者（No. 210）の外部被ばくであった。これらの経路で被ばく線量が高くなっ
たのは、木質チップに対する黒液及び回収ボイラー内の

| No. | Exposure pathway                              | Annual effective dose (Sv/y per Bq/kg) | Radioactive concentration of wooden chips corresponding to standard dose (Bq/kg) |
|-----|-----------------------------------------------|----------------------------------------|--------------------------------------------------------------------------------|
| 201 | Transportation of wooden chips (external)     | 1.1E-01                                | 8.8E+03                                                                    |
| 202 | Residency near the transportation pass (child, external) | 4.1E-03                                | 2.4E+05                                                                    |
| 203 | Loading and unloading of wooden chips (external) | 5.2E-02                                | 1.9E+04                                                                    |
| 204 | Loading and unloading of wooden chips (inhalation) | 1.7E-05                                | 5.8E+07                                                                    |
| 205 | Working near a wooden chip yard (external)    | 2.8E-04                                | 5.6E+07                                                                    |
| 206 | Working near a wooden chip yard (inhalation)  | 1.7E-05                                | 5.8E+07                                                                    |
| 207 | Working near a wooden chip yard (ingestion)   | 2.8E-04                                | 5.6E+07                                                                    |
| 208 | Working near a black liquor tank (external)   | 1.8E-05                                | 1.2E+06                                                                    |
| 211 | Maintenance of a recovery boiler (inhalation) | 4.1E-04                                | 2.4E+06                                                                    |
| 212 | Maintenance of a recovery boiler (ingestion)  | 6.7E-03                                | 1.5E+05                                                                    |
| 213 | Residency near the wooden chip yard (child, external) | 3.6E-01                                | 2.8E+03                                                                    |
| 214 | Working in a warehouse of rolls of paperboard (external) | 1.5E-04                                | 6.6E+04                                                                    |
| 215 | Residency near the warehouse (child, external) | 3.3E-04                                | 3.1E+04                                                                    |

Table 10 Annual effective dose for wooden chips of 1 Bq/kg of Cs (134+137) and radioactive concentration of wooden chips for compost corresponding to dose criteria.

| No.  | Exposure pathway                              | Annual effective dose (Sv/y per Bq/kg) | Radioactive concentration of wooden chips corresponding to standard dose (Bq/kg) |
|------|-----------------------------------------------|----------------------------------------|--------------------------------------------------------------------------------|
| 153  | Transportation of wooden chips (external)     | 1.1E-01                                | 8.8E+03                                                                    |
| 154  | Residency near the transportation pass (child, external) | 4.1E-03                                | 2.4E+05                                                                    |
| 155  | Loading and unloading of wooden chips (external) | 5.2E-02                                | 1.9E+04                                                                    |
| 156  | Loading and unloading of wooden chips (inhalation) | 1.7E-05                                | 5.8E+07                                                                    |
| 157  | Working near a wooden chip yard (external)    | 2.8E-04                                | 5.6E+07                                                                    |
| 158  | Working near a wooden chip yard (inhalation)  | 1.7E-05                                | 5.8E+07                                                                    |
| 159  | Working near a wooden chip yard (ingestion)   | 2.8E-04                                | 5.6E+07                                                                    |
| 160  | Working near a black liquor tank (external)   | 1.8E-05                                | 1.2E+06                                                                    |
| 161  | Maintenance of a recovery boiler (inhalation) | 4.1E-04                                | 2.4E+06                                                                    |
| 162  | Maintenance of a recovery boiler (ingestion)  | 6.7E-03                                | 1.5E+05                                                                    |
| 163  | Residency near the wooden chip yard (child, external) | 3.6E-01                                | 2.8E+03                                                                    |
| 164  | Working in a warehouse of rolls of paperboard (external) | 1.5E-04                                | 6.6E+04                                                                    |
| 165  | Residency near the warehouse (child, external) | 3.3E-04                                | 3.1E+04                                                                    |
Table 11  Annual effective dose for wooden chips of 1 Bq/kg of Cs (134+137) and radioactive concentration of wooden chips for biomass power generation corresponding to dose criteria.

| No.  | Exposure pathway                      | Annual effective dose (Sv/y) per Bq/kg | Radioactive concentration of wooden chips corresponding to standard dose (Bq/kg) |
|------|--------------------------------------|---------------------------------------|----------------------------------------------------------------------------------|
| 401  | Transportation of wooden chips (external) | 1.1E-01                              | 8.8E+03                                                                          |
| 402  | Residence near the transportation pass (child, external) | 1.5E-03                              | 6.6E+05                                                                          |
| 403  | Loading and unloading of wooden chips (external) | 5.2E-02                              | 1.9E+04                                                                          |
| 404  | Loading and unloading of wooden chips (inhalation) | 1.7E-05                              | 5.8E+07                                                                          |
| 405  | Loading and unloading of wooden chips (ingestion) | 2.8E-04                              | 3.6E+06                                                                          |
| 406  | Working near a wooden chip silo (external) | 2.1E-02                              | 4.7E+04                                                                          |
| 407  | Working near a wooden chip silo (inhalation) | 1.7E-05                              | 5.8E+07                                                                          |
| 408  | Working near a wooden chip silo (ingestion) | 2.8E-04                              | 3.6E+06                                                                          |
| 409  | Maintenance of an incinerator (external) | 4.6E-01                              | 2.2E+03                                                                          |
| 410  | Maintenance of an incinerator (inhalation) | 8.2E-04                              | 1.2E+06                                                                          |
| 411  | Maintenance of an incinerator (ingestion) | 6.7E-03                              | 1.5E+05                                                                          |
| 412  | Residence near the wooden chip silo (child, external) | 9.2E-01                              | 3.1E+03                                                                          |
| 413  | Residence near the plant (dust plume) (adult, external) | 9.9E-08                              | 1.0E+08                                                                          |
| 414  | Residence near the plant (dust plume) (adult, inhalation) | 6.9E-05                              | 1.4E+05                                                                          |
| 415  | Residence near the plant (dust plume) (child, inhalation) | 1.3E-07                              | 8.0E+07                                                                          |
| 416  | Residence near the plant (dust plume) (child, ingestion) | 1.8E-05                              | 5.5E+07                                                                          |
| 417  | Residence near the plant (soil) (adult, external) | 1.3E-03                              | 7.5E+03                                                                          |
| 418  | Residence near the plant (soil) (child, external) | 1.7E-03                              | 5.8E+03                                                                          |
| 419  | Ingestion of crops (adult, ingestion) | 4.8E-06                              | 2.1E+06                                                                          |
| 420  | Ingestion of crops (child, ingestion) | 1.8E-06                              | 5.5E+06                                                                          |
| 421  | Ingestion of livestock (adult, ingestion) | 7.6E-06                              | 1.3E+06                                                                          |
| 422  | Ingestion of livestock (child, ingestion) | 3.9E-06                              | 2.6E+06                                                                          |
この組織がもっとも線量が高く、濃度のめやす値を決め
る結果となったのは、燃焼に伴う体積の減少により、焼
却灰中の重量面あたりの放射性セシウム濃度が木質チップ
中の濃度が増加するので、焼却灰が付着した燃焼廃中の
空間線量が高くなるためである。またこのめやす値は
バーティクルボードや製紙におけるめやす値より高い値
であるため、バーティクルボードや製紙等で行われる
自家バイオマス発電に対しても、バーティクルボードや
製紙に対して求めた濃度のめやす値により安全が担保
されているといえます。

5. マルチング材

マルチング材に対する線量評価の結果を、Table 12 に
示す。木質チップのマルチング材への再利用において、
年間被ばく線量がもっとも高かったのは、木質チップ
の運搬作業者の外部被ばく（No. 501）であった。これは、
他の作業に比べ作業時間が長い（2,000 h/y と設定した）
ためである。また、マルチング材への再利用に対する木
質チップ中の全 Cs 濃度のめやす値は、公園の周辺住
者（子ども）の外部被ばくに対する 260 Bq/kg であった。
この経路が濃度のめやす値を決め結果となったのは、
この経路に対する基準線量が 10 μSv/y であること、周
辺居住者の年間被ばく時間が長く、線源との距離が近い
（敷設された公園の端から高さ 1 m に居住していると想
定）ためである。

IV 結 論

福島第一原子力発電所事故に伴い大気中に放出された
放射性セシウムにより汚染された可能性のある木材及び
木質系廃棄物は、チップ化され木質チップとしてさまざまな
用途に再利用されている。しかし、汚染された木材
の再利用に対する線量評価は今まで行われておらず、現
在それらの再利用は原子炉廃棄物等で発生する金属やコン
クリートに対するクリアランスレベルに基づき、放射性
セシウムに対し 100 Bq/kg を基準として行われている。
そこで本評価では、汚染された可能性のある木材及び木
質系廃棄物の再利用に対する評価を行うことを目的とし
て、木質チップの主な 5 種類の再利用用途（バーティク
ルボード、製紙、堆肥、バイオマス発電、マルチング材）
に対し綿密的な被ばく経路を設定した上で線量評価を行
い、作業者や公衆の被ばくを抑えるために満たすべき基
準線量に対応する木質チップ中の放射性セシウム濃度を
各再利用用途に対して算出した。またその結果から、各
再利用用途において、安全に再利用を行うための木質

Table 12 Annual effective dose for wooden chips of 1 Bq/kg of Cs (134+137) and radioactive
concentration of wooden chips and bark chips for mulch corresponding to dose criteria.

| No. | Exposure pathway                                    | Annual effective dose (μSv/y per Bq/kg) | Radioactive concentration of wooden chips corresponding to standard dose (Bq/kg) |
|-----|-----------------------------------------------------|----------------------------------------|----------------------------------------------------------------------------------|
| 501 | Transportation of wooden chips (external)           | 1.1E-01                               | 8.8E+03                                                                          |
| 502 | Residence near the transportation pass (child, external) | 2.7E-04                               | 3.7E+06                                                                          |
| 503 | Mulching a park (external)                          | 4.6E-02                               | 2.1E+04                                                                          |
| 504 | Mulching a park (inhalation)                        | 1.7E-05                               | 5.8E+07                                                                          |
| 505 | Mulching a park (ingestion)                         | 3.0E-02                               | 3.8E+02                                                                          |
| 506 | Residence near the park (child, external)           | 1.7E-05                               | 6.6E+05                                                                          |
| 507 | Residence near the park (child, inhalation)         | 3.9E-02                               | 2.6E+02                                                                          |
| 508 | Residence near the park (child, ingestion)          | 4.3E-06                               | 2.3E+06                                                                          |
| 509 | Use of the park (adult, external)                    | 1.9E-02                               | 5.2E+02                                                                          |
| 510 | Use of the park (adult, inhalation)                  | 7.6E-07                               | 1.3E+07                                                                          |
| 511 | Use of the park (child, external)                    | 2.5E-04                               | 4.6E+02                                                                          |
| 512 | Use of the park (child, inhalation)                  | 2.0E-07                               | 5.6E+07                                                                          |
| 513 | Use of the park (child, ingestion)                   | 2.0E-04                               | 5.6E+04                                                                          |
| 514 | Mulching a pavement (external)                       | 2.3E-02                               | 4.3E+04                                                                          |
| 515 | Mulching a pavement (inhalation)                     | 1.7E-05                               | 5.8E+07                                                                          |
| 516 | Mulching a pavement (ingestion)                      | 2.6E-02                               | 3.8E+02                                                                          |
| 517 | Residence near the pavement (child, external)        | 1.7E-05                               | 6.6E+05                                                                          |
| 518 | Residence near the pavement (child, inhalation)      | 3.4E-02                               | 2.9E+02                                                                          |
| 519 | Residence near the pavement (child, ingestion)       | 4.3E-06                               | 2.3E+06                                                                          |
| 520 | Use of the pavement (adult, external)                | 9.3E-03                               | 1.1E+03                                                                          |
| 521 | Use of the pavement (adult, inhalation)              | 7.6E-07                               | 1.3E+07                                                                          |
| 522 | Use of the pavement (child, external)                | 1.2E-02                               | 8.2E+02                                                                          |
| 523 | Use of the pavement (child, inhalation)              | 2.0E-07                               | 5.6E+07                                                                          |
| 524 | Use of the pavement (child, ingestion)               | 2.0E-04                               | 5.6E+04                                                                          |
チップ中の放射性セシウム濃度のめやす値を求めた。その結果、各再利用用途に対する木質チップ中の全Cs濃度のめやす値がもっとも低かったのは、パーティックルボードへの再利用に対する120 Bq/kg（バーティックルボードを利用作られたペッド使用者の（子どもの）外部被ばく経路（基準線量：10 μSv/h）に対する値）であった。これは上述した100 Bq/kgというクリアランスレベルに基づく現在の基準値を上回っており、当該基準値が木質チップの再利用に対する作業者及び公衆の安全性を担保していることを確かめられた。

また、堆肥に対しては農林水産省が肥料等の基準価を400 Bq/kgと設定しているが、この基準に対する線量評価による安全性の評価は行われていなかった。今回の評価結果では、堆肥の再利用に対する基準線量に対する木質チップ中の全Cs濃度のめやす値は、2,700 Bq/kg（堆肥を使用する農業者等の外部被ばく経路（基準線量：10 μSv/h）に対する値）であった。この2,700 Bq/kgという値は、堆肥を汚染した木質チップのみから製造すると仮定した保守的な評価結果であるにもかかわらず、農林水産省が定めた暫定許容値の400 Bq/kgに比べ7倍程度高い値であり、肥料等への再利用の基準値が安全性を担保していることを確認した。

参考文献

1) 原子力安全委員会：原子炉施設及び核燃料使用施設の解体等に伴って発生するものうち放射性廃棄物として取り扱う必要のないものの放射能濃度について（平成16年12月、平成17年3月17日一部訂正及び修正）(2004)。
2) 文部科学省科学技術・学術政策局放射線安全規則検討会：放射線障害防止法に規定するクリアランスレベルについて（平成22年11月、平成24年3月一部訂正）（2010）。
3) 環境省：災害廃棄物の処理に関する総合政策の推進について（平成10年3月17日）。
4) 中央テクノス（株）：平成24年度放射性物質の影響を受けた廃棄物の発生と再利用に関する調査（2013）。
5) 林野庁：平成24年度森林・林業白書（2013）。
6) 国土交通省総合政策局：建設リサイクルに関する今後の動向（2005）。
7) 農林水産省：製造物生産物産統計（平成24年度）（2012）。
8) 鮫川村豊かな土づくりセンターゆうきの郷土（さと）ホームページ。http://www.vill.samegawa.fukushima.jp/page/page000697.html、閲覧2014年6月4日。
9) DIFFENBACHE Particleboard lines、http://www.dieffenbacher.de/en/wood-based-panel-division/particleboard-lines.html、閲覧2014年6月4日。
10) （財）日本住宅・木材技術センター：木材需給と木材工業の現況（平成23年版）、p.139 (2011)。
11) 日本製紙グループ、紙の豆知識、http://www.nipponpapergroup.com/npi_name/tip/factry1.html、閲覧2014年6月4日。
12) IAEA-TECDOC-1376, Assessing radiation doses to the public from radionuclides in timber and wood products (2003)。
13) A. RAVILA, E. HOLM; Radioactive elements in the forest industry, Sci. Total Environ., 157, 339-356 (1994)。
14) K. HAAGA; Development path of Recovery Boilers from small ones to big ones and how we made it to happen,http://www.blcolloquium.eng.ufmg.br/files/presentations/S3/A9_Kari_Haaga.pdf、閲覧2014年6月4日。
15) 経済産業省：経済産業省生産動態統計（平成26年度）（2014）。
16) 環境省：平成24年度バイオマス発電燃料等に関する廃棄物処理法の判断事例集（2013）。
17) 日本製紙連合会、製紙産業の現状、http://www.jpa.gr.jp/states/index.html、閲覧2014年6月4日。
18) （株）ウッドパワー、（株）白河ウッドパワー大信発電所概要、http://www.fesco.co.jp/business/download/pdf/SWP.pdf、閲覧2014年6月4日。
19) 環境省：一般廃棄物焼却施設における焼却灰の測定及び当面の取り扱いについて（2011）。
20) 群馬県環境森林部廃棄物・リサイクル課、群馬県産業廃棄物情報ホームページ、http://www.gunma-sanai.jp/gp06003.htm、閲覧2014年6月4日。
21) 日本原子力研究開発機構安全研究センター：福島県の浜通り及び中通り地方（避難区域及び計画的避難区域を除く）の災害廃棄物の処理・処分における放射性物質による影響の評価について、災害廃棄物安全評価検討会（第3回）資料4、平成23年6月19日（平成23年11月15日一部改正及び修正）、災害廃棄物安全評価検討会（第9回）資料11-1（2011）。
22) S. TAKEDA, M. KANNO, T. SASAKI, N. MINASE and H. KIMURA; Development of PASCLCR code system version 2 to drive clearance levels of uranium and trans uranium...
付 録

木質チップの再利用において線量計算に使用した一連のモデル式を付録に示す。

1. 木質チップ由来の評価対象物質中の核種濃度
時刻 \( t \) における木質チップ中の核種 \( i \) の濃度 \( C_i(t) \) (Bq/kg) は、次のように表される。

\[
C_i(t) = C_i(0) \exp(-\lambda_i t)
\]

\( \lambda_i \) : 核種 \( i \) の崩壊定数 (/y)。各評価経路において評価対象とする物質（木質チップが再利用されてきた製品など）中の濃度を \( C_M \) とする。\( C_M \) は、他の材料との混合、化学的な製造プロセス、焼却に伴う重量の変化に伴い、元の木質チップ中の濃度から変化しうるので、それらを以下のように表す。

\[
C_M(t) = C_i(t) \cdot MR \cdot CF \cdot DM
\]

\( MR \) : 他の材料との混合による希釈係数（－）
\( CF \) : 化学的な反応による濃縮または希釈係数（－）
\( DM \) : 焼却に伴う減量比（－）

2. 被ばく線量評価モデル
木質チップの再利用における、核種 \( i \) による年間被ばく線量の評価モデルを示す。被ばく形態は、外部被ばく、粉塵吸入による内被ばく、汚染物の経口摂取による内被ばくであり、既往のクリアランスレベル評価及び災害廃棄物等の安全評価に使用されているモデルと共通である。また、これらの評価モデル式において評価開始時期を \( t = 0 \) とし、評価期間 \( t = 1 \) 年の間に受ける線量を導出する。

(1) 外部被ばく
外部被ばく線量は、次式で計算する。

\[
D_{ext}(t) = C_M(0) \cdot F_r \cdot t \cdot DF_{ext} \cdot \frac{1 - \exp(-\lambda_i t)}{\lambda_i t}
\]

(3) \( D_{ext}(t) \) : 評価期間 \( t \) 中の外部被ばく線量 (Sv/y)
\( F_r \) : 遮へい係数（－）
\( t \) : 被ばく時間 (h/y)
\( DF_{ext} \) : 外部被ばく線量換算係数 ((Sv)/(Bq/kg))

(2) 粉塵吸入による内被ばく
粉塵吸入による内被ばく線量は、次式で計算する。
D_{inh,i}(t) = \frac{C_{at}(0) \cdot C_s \cdot R_s \cdot t_s \cdot DF_{inh,i} \cdot \frac{1 - \exp(-\lambda_i t)}{\lambda_i t}}{\exp(-\lambda_i t)} (4)

D_{mg,i}(t) = \text{評価期間の塵埃吸入による内部被ばく線量} (\text{Sv/y})

C_s : \text{空気中のダスト濃度 (kg/m}^3\text{)}
R_s : \text{換気率 (m}^3/\text{h)}
DF_{inh,i} : \text{塵埃吸入による内部被ばく線量換算係数 (Sv/Bq)}

(3) 経口摂取による内部被ばく

経口摂取による内部被ばく線量は、次式で計算する。

D_{mg,i}(t) = C_{at}(0) \cdot Q_t \cdot t_t \cdot DF_{mg,i} \cdot \frac{1 - \exp(-\lambda_i t)}{\lambda_i t} (5)

D_{mg,i}(t) : \text{評価期間の塵埃摂取による内部被ばく線量 (Sv/y)}
Q_t : \text{飲食度}
DF_{mg,i} : \text{経口摂取による内部被ばく線量換算係数 (Sv/Bq)}

(4) 農作物摂取による被ばく

木質チップの堆肥への再利用では、堆肥を使用した畑で耕作されたさまざまな種類の農作物を摂取することによって被ばくが起こりうる。農作物摂取による内部被ばく線量は、次式で計算する。

D_{mg,i}(t) = \sum C_{at}(0) \cdot \text{TF}_v \cdot Q_v \cdot G_v \cdot DF_{mg,i} \cdot \frac{1 - \exp(-\lambda_i t)}{\lambda_i t} \cdot \exp(-\lambda_i t) (6)

D_{mg,i}(t) : \text{評価期間の農作物の経口摂取による内部被ばく線量 (Sv/y)}
\text{TF}_v : \text{土壌から農作物への移行係数 ((Bq/kg)/kg/m)}
Q_v : \text{農作物の摂取量 (kg/kg)}
G_v : \text{農作物の市場係数} (-)
\text{t}_v : \text{農作物の輸送時間} (-)

(5) バイオマス発電所からの排気に係わる被ばく評価モデル

バイオマス発電所からの排気に係わる被ばく評価モデル

D_{mg,i}(t) = \text{評価期間の農作物の経口摂取による内部被ばく線量 (Sv/y)}
Q_v : \text{農作物の摂取量 (kg/kg)}
G_v : \text{農作物の市場係数} (-)
\text{t}_v : \text{農作物の輸送時間} (-)

(6) 大気中の放射能濃度

C_{at}(t) = \chi \cdot f_i \cdot R \cdot MR \cdot C_i(t)

\chi : \text{大気中の放射能濃度 (Sv/m}^3\text{)}
f_i : \text{核種iの排気筒から放出される割合} (-)
R : \text{換気値} (m^3/h)
MR : \text{換気時の汚染した木質チップ混合割合} (-)

C_i(t) = V_s \cdot f_i \cdot f_{G,i}(t) \cdot t (8)

V_s : \text{核種iの範囲 (m/s)}
f_i : \text{農作物表面への摂取割合} (-)
\text{f}_{G,i} : \text{摂取した核種の内吸収割合} (-)

放出した核種を含むブームや、それが付着した土壌からの外部被ばく・内部被ばくは、再利用シナリオの外部被ばく・内部被ばくの評価式において、C_i を C_{at,i} C_{at,i} に置きかえて計算することで求められる。

また、汚染された木質チップを使用するバイオマス発電設設計定されている農作物を摂取することによって被ばくが起こりうる。周辺で栽培されている農作物への汚染は、換気筒に引き排気筒から放出される核種が農作物の表面に付着すること、及び、それらが栽培されている土壌に付着した核種が農作物へ移行することで起こる。農作物中の核種iの濃度 C_{si}(t) (Bq/m^3) を、以下のよう示される。

C_{si}(t) = \left[ \frac{C_{at}(t) \cdot \text{TF}_v \cdot f_i + V_y \cdot C_{at,i}(t) \cdot f_{G,i} \cdot t}{P} + t \cdot f_{G,i} \right] \cdot f_{G,i} (9)

P : \text{土壌実効表面密度 (kg/m}^3\text{)}
f_i : \text{核種iの農作物表面への摂取割合} (-)
\text{f}_{G,i} : \text{農作物表面への摂取した核種の可食部分への移行割合} (-)
\text{Y}_s : \text{農作物の栽培密度 (kg/m}^3\text{)}
f_i : \text{農作物の栽培期間年割合} (-)
\text{t}_v : \text{農作物の栽培期間 (y)}
\text{f}_{G,i} : \text{調理前洗浄等による粒子状物質の残留比} (-)

D_{mg,i}(t) = \frac{1}{t} \int_{t_h}^t dt' C_{si}(t') \cdot Q_v \cdot G_v \cdot DF_{mg,i} \cdot \exp(-\lambda_i t') (10)

(10) 式で定義した換気シナリオにおける農作物摂取による内部被ばく線量は、t_h = 0から評価期間t = 1年間がもっとも高い年間被ばく線量になるとは限らないため、t_h = 0から経時変化させ、Cs-134 と Cs-137 に対する被ばく線量の合計がもっとも高くなるときの年間被ばく線量を求める。
また、汚染された農作物を飼料として育てられた畜産物を摂取することによる被ばくが起こり得る。そのような畜産物中の核種の濃度を以下のように表す。

\[ C_n(t) = C_{n0}(t) \cdot TF_{n,i} \cdot MR \cdot Q_{vn} \]  \( t_n \)  は畜産物の輸送時間 (y)

焼却シナリオにおける畜産物摂取による内部被ばく線量についても、農作物摂取と同様に \( t_n = 0 \) から経時変化させてももっと高い年間被ばく線量を求める。

高井 静霞  (たかい  しずか)
東北大学大学院物理学専攻修士課程修了後、(独)日本原子力研究開発機構に入所。現在の所属は安全研究センター環境影響評価研究グループ。1F事故により汚染した廃棄物の再利用に係る線量評価、地層処分の安全評価（地下水流動解析）に関する研究に従事。
takai.shizuka@jaea.go.jp