CRKL oncogene is downregulated by p53 through miR-200s

Miyuki Tamura, Yasushi Sasaki, Kenta Kobashi, Kousuke Takeda, Takafumi Nakagaki, Masashi Idogawa and Takashi Tokino

Department of Medical Genome Sciences, Research Institute for Frontier Medicine, Sapporo Medical University, Sapporo, Japan

Key words
Cell growth, CRKL, miR-200 family, p53, p53 family

Correspondence
Takashi Tokino and Yasushi Sasaki, Department of Medical Genome Sciences, Research Institute for Frontier Medicine, Sapporo Medical University, S-1, W-17, Chuo-ku, Sapporo 060-8556, Japan. Tel: 81-11-611-2111 (ext. 2410); Fax: 81-11-618-3313; E-mails: tokino@sapmed.ac.jp and yasushi@sapmed.ac.jp

Funding Information
This research was supported in part by MEXT KAKENHI Grant Number 221S0001 and JSPS KAKENHI Grant Number 2540115.

Received January 9, 2015; Revised May 26, 2015; Accepted May 30, 2015
Cancer Sci 106 (2015) 1033–1040
doi: 10.1111/cas.12713

Several tumor suppressive miRNAs are downregulated in cancers, and this downregulation enhances the expression of target oncogenes. Thus, molecular targeted therapy may be useful in the treatment of cancers in which tumor suppressive miRNAs are downregulated. However, the molecular mechanisms that underlie the downregulation of tumor suppressive miRNAs in cancers are still unclear. The p53 tumor suppressor can act as a sequence-specific transcription factor that regulates target gene transcription and expression to modulate various cellular processes. (1,2) Recent studies identified miRNAs induced by p53 that are important in cellular physiology, including cell growth, differentiation and death. (3) For example, miRNAs, including miR-34, miR-143, miR-145, miR-192 and miR-215, mediate p53-induced cell growth inhibition. The first identified p53-target miRNAs, the miR-34 family, target genes that are involved in cell cycle progression and apoptosis inhibition, such as CDK4, cyclin E2 and BCL2. (4–6) miR-192 and miR-215 also promote cell cycle arrest in response to p53 activation by targeting a number of regulators of DNA synthesis and cell cycle checkpoints (CDC7, LMNB2, MAD2L1 and CUL5) and DHFR. (7,8) p53 can repress c-Myc oncoprotein through the induction of miR-145 and miR-34. (9,10) In addition, miR-143/145 and miR-192/194/215 decrease MDM2 expression, which increases acetylated p53 levels and p53 activity and, in turn, induces apoptosis in a p53-dependent manner. (11,12) Thus, miRNAs are important components in p53-mediated gene repression. miR-200c, a p53-regulated miRNA, regulates epithelial to mesenchymal transition (EMT) by inhibiting ZEB1/2, which are transcriptional repressors of E-cadherin, a known epithelial cell marker. (13,14)

In the present study, we found that the p53 family downregulates the CRKL oncogene through miR-200b/200c/429 transactivation. miR-200b/200c/429 expression consistently downregulates CRKL via predicted binding sequences within the 3′-UTR region of the CRKL gene. The CRKL gene encodes an adaptor protein containing Src homology 2 and 3 (SH2/SH3) domains. (15) CRKL expression is increased in certain human solid tumors, including lung cancer, gastric cancer, breast cancer and bladder cancer as well as hematologic malignancies. (16–19) Moreover, CRKL amplification was previously reported in non-small cell lung and gastric cancers, and CRKL protein overexpression contributes to oncogenic phenotypes in cancer cells. (18,20) However, the mechanism underlying CRKL upregulation in solid tumors is largely unknown. Our data reveals that the p53 target miRNAs miR-200b/200c/429 are negative regulators of the actionable CRKL oncogene. Taken together, our results point toward a novel p53/miR-200/CRKL pathway in carcinogenesis and suggest that targeted therapy could be effective in this pathway, which includes an oncogene and tumor suppressive miRNAs.

Materials and Methods

Recombinant adenoviruses and plasmids. The construction, purification and infection of replication-deficient recombinant adenoviruses encoding human p53 family proteins fused to an
amino-terminal FLAG epitope (Ad-p53, Ad-p73α, Ad-p73β, Ad-p63γ and Ad-p63α) or the bacterial lacZ gene (Ad-lacZ) were performed as previously described. Relative adenovirus infection efficiencies in each cell line were determined by subjecting cells that were infected with control Ad-lacZ to X-gal staining; 90–100% of the cells were infected at an MOI of 12.5–100. To construct CRKL-expressing plasmids lacking its 3′-UTR, the entire coding region of a human CRKL cDNA was inserted in-frame into the pF5K-CMV-neo or pFN28K with an N-terminal Halo epitope tag (Promega, Madison, WI, USA), and the resulting constructs were designated pF5K-CRKL and pFN28K-CRKL, respectively.

Results

The p53 family upregulates the expression of the miR-200 family. The miR-200 family consists of five members clustered in two genomic loci: chromosome 1p36.33 (miR-200b, miR-200a and miR-429) and chromosome 12p13.31 (miR-200c and miR-141). We searched for p53 motifs across the entire human genome using an in silico approach and determined that p53 motifs are located around both clusters of the miR-200 family (Fig. S1). We then analyzed interactions between the p53 family proteins and these candidate p53-binding sequences using ChIP in Saos2 osteosarcoma cells that were infected with adenoviruses expressing FLAG-tagged p53 family genes (Ad-p53, Ad-p73α, Ad-p73β, Ad-p63γ and Ad-p63α) and a control adenovirus. ChIP analysis revealed that the p53 family directly binds to the predicted p53-binding sequences on both chromosomes 1 and 12 (Fig. S2a). We designated these candidate p53 response elements 200b/200a/429-RE and 200c/141-RE, respectively (Fig. S1b). A reporter assay demonstrated that the p53 family significantly increased the luciferase activity of vectors containing both binding sites. In contrast, mismatches in these p53-binding sequences (200b/200a/429-RE-mut and 200c/141-RE-mut) significantly abolished transactivation by the p53 family (Fig. S2b). We also confirmed the transactivation of the miR-200 family clusters by the p53 family in human cancer cells by real-time RT-PCR (Fig. 1). Taken together, these results indicate that the exogenous p53 family is a positive transcriptional regulator of the miR-200 family in human cancer cells.

Luciferase assay. The CRKL 3′-UTR fragment containing the miR-200b/200a/429 seed sequence (5′-GTGCTATAAAATTAACAGTTATTA-3′) and its mutant form (5′-GTGCTATATTAAATTAAACTGGGA-3′) were synthesized and cloned into the 3′end of the pMIR-REPORT luciferase vector (Ambion, Austin, TX, USA) at the HindIII and SpeI sites, and the resulting constructs were named pMIR-CRKL-3′-UTR and pMIR-CRKL-3′-UTR-mut. The inserted fragments were confirmed by sequencing. Cells in 24-well plates were transfected with a pMIR-REPORT luciferase reporter vector (100 ng) together with miR-mimics (100 nM) or control miRNA as a negative control using Lipofectamine 2000 (Invitrogen, Carlsbad, CA, USA). A Renilla luciferase vector pHRG-TK (2 ng) was co-transfected to normalize differences in transfection efficiency. Luciferase activity was measured using the Dual-Luciferase Reporter Assay (Promega).

Other methods are detailed in Data S1.

Fig. 1. Upregulation of miR-200 family members by the p53 family in human cancer cell lines. Cells were infected with recombinant adenoviruses encoding human p53 family at an MOI of 25 (H1299), 12.5 (Saos2) or 50 (U2OS) and harvested 24 h after infection. The relative gene expression levels were quantified using the ΔΔCt method via real-time RT-PCR, and the results were normalized to the expression of the housekeeping gene RNU6B. The data are shown as the mean ± standard error of three independent experiments and were normalized to their respective controls as 1.
CRKL is downregulated by miR-200b/200c/429. We searched for putative target genes for the miR-200 family using three algorithms; miRanda, PicTar and TargetScan. The 3′-UTR of the CRKL gene is responsive to miR-200b/200c/429. We then examined whether CRKL was downregulated by the miR-200 family in cancer cells. We transfected miRNA mimic oligonucleotides into the H1299 lung cancer cell line. The introduction of miR-200b, miR-200c or miR-429 mimics downregulated CRKL protein levels (Fig. 2b). Importantly, CRKL protein was not significantly decreased by miR-200a or miR-141 mimics, which have a one-base mismatch from the miR-200b/200c/429 seed sequence (Figs 2b and S1a). Similar patterns were observed in the Saos2 and U2OS cell lines. In contrast, ZEB1, a known miR-200 family target, was downregulated by all members of the miR-200 family in both cells (Fig. S3). Consistent with the reduced protein level, real-time RT-PCR analysis demonstrated that the forced expression of miR-200b/200c/429 also remarkably reduced CRKL mRNA levels in H1299 cells (Fig. 2c). A 3′-UTR luciferase reporter assay was also performed to demonstrate that the miRNA–mRNA interaction is direct. In this assay, the candidate miR-200b/200c/429 binding site in the CRKL 3′-UTR was cloned just downstream of the luciferase gene in the pMIR-REPORT vector (pMIR-CRKL-3′-UTR). The reporter plasmid and the miRNA mimics were co-transfected into H1299 cells, and luciferase reporter activity was monitored. Although the activity of the luciferase reporter with the CRKL 3′-UTR was downregulated upon co-transfection with miR-200b, miR-200c or miR-429 compared to transfection with control oligonucleotides, a reporter with a mutant miRNA binding site in the CRKL 3′-UTR abolished this regulation (CRKL-mut, Fig. 2d). Taken together, these results indicate that miR-200b/200c/429 negatively regulates CRKL by directly targeting its 3′-UTR region.

The p53 family downregulates CRKL protein and mRNA expression levels. To determine whether CRKL is downregulated by the p53 family, we examined CRKL protein expression levels after overexpression of p53 family in H1299, Saos2, U2OS, Kiku and U87MG cells. CRKL was clearly downregulated by p53, TAp73β and TAp63γ in all cell lines tested (Fig. 3a). CRKL mRNA was also decreased in the p53-transfected cells, TAp73-transfected cells and TAp63-transfected cells (Fig. 3b). The reduction in CRKL protein levels was observed as early as 48 h after p53 or TAp63γ overexpression (Fig. S4). We then assessed the effect of the p53 family on the miR-200b/200c/429 regulatory element in the CRKL 3′-UTR. As demonstrated in Figure 4, p53, TAp73 and TAp63 robustly decreased the activity of the CRKL 3′-UTR luciferase reporter. These observations indicate that p53 family members downregulate CRKL, at least partially through miR-200b/200c/429 transactivation, although we cannot rule out the possibility that p53 family downregulates CRKL through other mechanisms.

We next examined whether the activation of endogenous p53 can inhibit CRKL expression. Indeed, adriamycin-mediated p53 activation in the p53 wild-type osteosarcoma cell lines Kiku and U2OS decreased CRKL protein and mRNA expression levels (Fig. 5a,b), which was associated with an induction of miR-200b/200c/429 levels (Fig. 5c). This effect
was abolished when p53-null Saos2 and p53-mutated HOS cells were treated with adriamycin. We then examined CRKL expression levels in human lung cancer cell lines upon adriamycin or Nutlin-3 treatment. Although CRKL mRNA was slightly decreased in p53-null H1299 cells after adriamycin treatment, adriamycin or Nutlin-3 treatment resulted in an apparent decrease in CRKL expression in p53-wild type A549 cells (Fig. S5a,b). Therefore, wild type p53 is necessary for the downregulation of CRKL expression after DNA damage.

CRKL regulates cancer cell growth and invasion. To examine the effects of CRKL on cancer cell growth, we transfected CRKL expression vectors into A549 lung cancer cells that express low levels of endogenous CRKL (Fig. 6a). Using colony formation and MTT assays, we demonstrated that the ectopic expression of CRKL significantly promoted cancer cell growth (Fig. 6b,c). Conversely, we knocked down the CRKL gene with siRNA vectors targeting CRKL in H1299, Saos2, U2OS, Kiku and U87MG cells (Fig. S6a). CRKL silencing suppressed the proliferation of cancer cells as assessed by MTT assays (Fig. S6b).

Because ectopic expression of the miR-200 family induced EMT and inhibited invasion of cancer cells, we addressed whether CRKL can block miR-200c-mediated inhibition of cancer cell invasion. Transfection of miR-200c in H1299 cells resulted in reduction of CRKL and ZEB1 as expected (Fig. S7a). Matrigel invasion assay revealed that miR-200c also inhibited cell invasion. This invasion-inhibiting effect of miR-200c was largely abolished by cotransfection with Halo-tagged CRKL transcript lacking its 3’-UTR (Fig. S7b). These results suggest that miR-200c regulates cancer cell invasion partially through targeting CRKL.

Association between CRKL mRNA levels and TP53 status in human cancer tissues. Using a collection of human cancer microarray data (Oncomine Database), we determined that CRKL is significantly overexpressed in cancer tissues in multiple microarray datasets (Fig. S8a). We also examined the relationship between CRKL expression and TP53 mutational status using the Oncomine Database. A large published dataset that includes 251 clinically annotated cases of breast cancer with RNA microarray and TP53 mutation data was interrogated from the Gene Expression Omnibus (GEO) database (dataset GSE3494). CRKL mRNA expression in these breast cancers was significantly correlated with mutant TP53 status (Fig. S8b, \(P = 0.0025 \)). Survivin and hepatoma-derived growth factor (HDGF), known targets that are negatively regulated by p53, are also significantly overexpressed in breast cancer tissues with mutant TP53 compared with wild type p53 breast cancer tissue (Fig. S8b and data not shown). Taken together,
these data suggest that CRKL expression is increased at least partially in a mutant TP53-dependent manner in human cancers. The relationship between the expression of CRKL and prognosis in cancer patients was examined using the PrognoScan database, which is a large collection of publicly available cancer microarray datasets with clinical annotation. As shown in Figure S9, the upregulation of CRKL correlated with poor prognosis in certain cancers.

Discussion

In addition to gene transactivation, p53 downregulates multiple genes that are involved in cell cycle progression, cell growth and anti-apoptosis. Several mechanisms can explain p53-mediated gene repression. We recently determined that p53 repressed HDGF transcription by altering HDAC-dependent chromatin remodeling. In addition, a growing list of p53 target miRNAs and their target mRNAs have been identified as newly downstream players of the p53 pathway. In the current study, we identified p53 response elements located around two miR-200 family clusters, both of which interacted with p53 family proteins (Fig. S2a,b). All five members of the miR-200 family (miR-200a, miR-200b, miR-200c, miR-141 and miR-429) were increased by p53, TAp73 and TAp63 in different cell types, albeit at varying degrees. Therefore, the p53 family might regulate two miR-200 clusters in a cell-specific manner, but our results suggest that the miR-200 family is a common target of p53 family members.

The five miRNAs in the miR-200 family contain very similar seed sequences (Fig. S1a). The conservation of their seed sequences suggests that miR-200b/200c/429 share identical mRNA targets, whereas miR-141/200a targets may have slightly different sequences. Several software programs for target prediction indicate that a sequence complementary to the miR-200b/200c/429 seed sequence is present in the 3′-UTR of CRKL mRNA. miR-200b/200c/429 expression suppressed CRKL levels in several cancer cells and negatively regulated the CRKL 3′-UTR in reporter assays. We also determined that the overexpression of CRKL stimulated cancer cell growth. Conversely, the inactivation of CRKL inhibited cell growth, indicating that CRKL is a novel target for miR-200c-mediated inhibition of cancer cell invasion.

To date, several studies have demonstrated that the members of the miR-200 family are important mediators of tumor suppression. They have been implicated in the regulation of
Recent studies have demonstrated that CRKL, best known as a substrate of the BCR-ABL kinase in pathways in response to growth factors and cytokines and is involved in several signal transduction proteins via their N-terminal SH3 domain. CRK family proteins thus transmit cellular signals to target subcellular pathways. CRK family proteins have been identified as a key downstream target of CRKL, and its expression is associated with resistance to kinase inhibitors in NSCLC patients. We determined genetic alterations in genes involved in the receptor tyrosine kinase (RTK)/RAS-BRAF signal transduction pathway in cell lines used in this study using a next-generation sequencer (Table S1). We showed the miR-200s induction and CRKL suppression by p53 in cancer cells independent of the activation of this pathway. We also found that knockdown of CRKL significantly inhibited the growth of cell lines without RAS family mutations. Our study provides evidence that miR-200b/200c-429 are directly involved in the regulation of a key anticancer target CRKL.

A peptide inhibitor that selectively targets the CRKL SH3 domain can block primary CML blast cell proliferation by interacting with a target kinase BCR-ABL. Moreover, the dual Src/BCR-ABL inhibitor dasatinib can suppress the viability of gastric cancer cells with the CRKL gene amplification by inhibiting CRKL phosphorylation. Dasatinib affected the stability of protein interactions downstream of BCR-ABL, including CRKL, suggesting that the treatment of live cells affects both direct target proteins and downstream effectors. These studies suggest that CRKL can serve as an "actionable" therapeutic target in p53-mutated cancers. The studies outlined herein clearly identify the CRKL oncogene as a key downstream effector of the p53 pathway in cancer (Fig. S10).

Acknowledgments

This research was supported in part by MEXT KAKENHI Grant Number 221S0001 and JSPS KAKENHI Grant Number 25430115.
Disclosure Statement

The authors have no conflict of interest to declare.

References

1 Nakamura Y. Isolation of p53-target genes and their functional analysis. Cancer Sci 2004; 95: 7–11.
2 Vogelstein B, Lane D, Levine AJ. Surfing the p53 network. Nature 2000; 408: 307–10.
3 Feng Z, Zhang C, Wu R et al. Tumor suppressor p53 meets microRNAs. J Mol Cell Biol 2011; 3: 4–40.
4 Bommer GT, Gerin I, Feng Y et al. p53-mediated activation of miRNA34 candidate tumor-suppressor genes. Curr Biol 2007; 17: 1298–307.
5 He L, He X, Lim LP et al. A microRNA component of the p53 tumour suppressor network. Nature 2007; 447: 1130–4.
6 Tazawa H, Tsutuiya N, Izumiya M et al. Tumor-suppressive miR-34a induces senescence-like growth arrest through modulation of the E2F pathway in human colon cancer cells. Proc Natl Acad Sci USA 2007; 104: 15472–7.
7 Georges SA, Biery MC, Kim SY et al. Coordinated regulation of cell cycle transcripts by p53-induced microRNAs, miR-192 and miR-215. Cancer Res 2008; 68: 10105–12.
8 Song B, Wang Y, Kudo K et al. miR-192 Regulates dihydrofolate reductase and cellular proliferation through the p53-microRNA circuit. Clin Cancer Res 2008; 14: 8080–6.
9 Christoffersen NR, Shalgi R, Frankel LB et al. p53-dependent upregulation of miR-34a during oncogene-induced senescence represses MYC. Cell Death Differ 2010; 17: 236–45.
10 Sachdeva M, Zhu S, Wu F et al. p53 represses c-Myc through induction of the tumor suppressor miR-145. Proc Natl Acad Sci USA 2009; 106: 3207–12.
11 Pichiorri F, Suh SS, Rocci A et al. Downregulation of p53-inducible microRNAs 192, 194, and 215 impairs the p53/MDM2 autoregulatory loop in multiple myeloma development. Cancer Cell 2010; 18: 367–81.
12 Zhang J, Sun Q, Zhang Z et al. Loss of microRNA-143/145 disturbs cellular growth and apoptosis of human epithelial cancers by impairing the MDM2-p53 feedback loop. Oncogene 2013; 32: 61–9.
13 Shimono Y, Zabala M, Cho RW et al. Downregulation of miRNA-200c links breast cancer stem cells with normal stem cells. Cell 2009; 138: 592–603.
14 Wellner U, Schubert J, Burk UC et al. The EMT-activator ZEB1 promotes tumorigenesis by repressing stemness-inhibiting microRNAs. Nat Cell Biol 2009; 11: 1487–95.
15 Feller SM. Crk family adaptors-signalling complex formation and biological roles. Oncogene 2001; 20: 6348–71.
16 Han B, Luai L, Xu X et al. Clinical significance and biological roles of CRKL in human bladder carcinoma. Tumour Biol 2013; 35: 4101–6.
17 Lin F, Chengyao X, Qingshang L et al. CRKL promotes lung cancer cell invasion through ERK-MMP9 pathway. Mol Carcinog 2014; 53: E35–44.
18 Natsuma H, Shinmura K, Tao H et al. The CRKL gene encoding an adaptor protein is amplified, overexpressed, and a possible therapeutic target in gastric cancer. J Transl Med 2012; 10: 97.
19 Zhao T, Miao Z, Wang Z et al. Overexpression of CRKL correlates with malignant cell proliferation in breast cancer. Tumour Biol 2013; 34: 2891–7.
20 Kim YH, Kwe KA, Girard L et al. Genomic and functional analysis identifies CRKL as an oncogene amplified in lung cancer. Oncogene 2010; 17: 1285–95.
21 Fomenkov A, Zangen R, Huang YP et al. RACK1 and stratifi target Del-tap63alpha for a proteasome degradation in head and neck squamous cell carcinoma cells upon DNA damage. Cell Cycle 2004; 3: 1251–5.
22 Stiewe T. The p53 family in differentiation and tumorigenesis. Nat Rev Cancer 2007; 7: 165–8.
23 Wu N, Rollin J, Masse L et al. p63 regulates human keratinocyte proliferation via MYC-regulated gene network and differentiation commitment through cell adhesion-related gene network. J Biol Chem 2012; 287: 5627–38.
24 Idogawa M, Ohashi T, Sasaki Y et al. Identification and analysis of large intergenic non-coding RNAs regulated by p53 family members through a genome-wide analysis of p53-binding sites. Hum Mol Genet 2014; 23: 2847–57.
25 Chang CJ, Chao CH, Xia W et al. p53 regulates epithelial–mesenchymal transition and stem cell properties through modulating miRNAs. Nat Cell Biol 2011; 13: 317–23.
26 Kim T, Veronese A, Pichiorri F et al. p53 regulates epithelial–mesenchymal transition through microRNAs targeting ZEB1 and ZEB2. J Exp Med 2011; 208: 875–83.
27 Knouf EC, Garg K, Arroyo JD et al. An integrative genomic approach identifies p73 and p53 as activators of miR-200 microRNA family transcription. Nucleic Acids Res 2012; 40: e499–510.
28 John B, Enright AJ, Aravin A et al. Human MicroRNA targets. PLoS Biol 2004; 2: e363.
29 Krek A, Grun D, Poy MN et al. Combinatorial microRNA target predictions. Nat Genet 2005; 37: 495–500.
30 Lewis BP, Burge CB, Bartel DP. Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell 2005; 120: 15–20.
31 Sasaki Y, Negishi H, Idogawa M et al. p53 negatively regulates the heatmap growth factor HDGF. Cancer Res 2011; 71: 7038–47.
32 Mizuno H, Kitada K, Nakai K et al. PrognoScan: a new database for meta-analysis of the prognostic value of genes. BMC Med Genomics 2009; 2: 18.
33 Ho J, Benchimol S. Transcriptional repression mediated by the p53 tumour suppressor. Cell Death Differ 2003; 10: 404–8.
34 Tamura M, Sasaki Y, Koyama R et al. Forkhead transcription factor FOXFI1 is a novel target gene of the p53 family and regulates cancer cell migration and invasiveness. Oncogene 2014; 33: 4837–46.
35 Birge RB, Kalodimos C, Inagaki F et al. Crk and CrkL adaptor proteins: networks for physiological and pathological signaling. Cell Commun Signal 2009; 7: 13.
36 Prosser S, Sorokina E, Pratt P et al. CrkIII: a novel and biologically distinct member of the Crk family of adaptor proteins. Oncogene 2003; 22: 4799–806.
37 Mayer BJ, Hamaguchi M, Hanafusa H. A novel viral oncogene with structural similarity to phospholipase C. Nature 1988; 332: 272–5.
38 Liu CH, Chen TC, Chau GV et al. Analysis of protein-protein interactions in cross-talk pathways reveals CRKL protein as a novel prognostic marker in hepatocellular carcinoma. Mol Cell Proteomics 2013; 12: 1335–49.
39 Wang Y, Dong QZ, Fu L et al. Overexpression of CRKL correlates with poor prognosis and cell proliferation in non-small cell lung cancer. Mol Carcinog 2013; 52: 890–9.
40 Cheung HW, Du J, Boehm IS et al. Amplification of CRKL induces transformation and epidermal growth factor receptor inhibitor resistance in human non-small cell lung cancers. Cancer Discov 2011; 1: 608–25.
41 Cheng S, Guo J, Yang Q et al. Crk-like adapter protein regulates CCL19 /CCR7-mediated epithelial-to-mesenchymal transition via ERK signaling pathway in epithelial ovarian carcinomas. Med Oncol 2015; 32: 47.
42 Feng R, Chen X, Yu Y et al. miR-126 functions as a tumour suppressor in human gastric cancer. Cancer Lett 2010; 298: 50–63.
43 Hamada S, Satoh K, Fujibuchi W et al. MiR-126 acts as a tumour suppressor in pancreatic cancer cells via the regulation of ADAM9. Mol Cancer Res 2011; 13: 1255784.
44 Savitski MM, Reinhard FB, Franken H et al. Proteomics. Tracking cancer drugs in living cells by thermal profiling of the proteome. Science 2014; 346: 1255784.

Supporting Information

Additional supporting information may be found in the online version of this article:

Fig. S1. miR-200 family members.
Fig. S2. miR-200 family members are direct targets of the p53 family.

Fig. S3. CRKL protein is downregulated by miR-200b/200c/429 in Saos2 and U2OS cells.

Fig. S4. Downregulation of CRKL by p53 and TAp63γ.

Fig. S5. Endogenous p53 downregulates CRKL protein and mRNA levels in human lung cancer cells.

Fig. S6. Downregulation of CRKL by siRNA inhibits cancer cell growth.

Fig. S7. CRKL prevents miR-200c-mediated inhibition of cell invasion.

Fig. S8. CRKL expression profiles in human tumors using published human oncology microarray data in Oncomine.

Fig. S9. The correlation between CRKL expression and prognosis among cancer patients.

Fig. S10. A model for CRKL downregulation by p53 via miR-200s in normal and cancer cells.

Table S1. Summary of mutated genes detected in cell lines used in this study.

Data S1. Supplementary materials and methods.