MULTIPLE ARRANGEMENTS

GÁBOR FEJES TÓTH

Abstract. This paper surveys the theory of multiple packings and coverings. The study of multiple arrangements started in the 60s of the last century, and it was restricted mostly to lattice arrangements on the plane or of general arrangements of balls. We emphasize two new topics which were intensively investigated recently: decomposition of multiple coverings into simple coverings and characterization of multiple tilings.

We say that a family of sets is a \(k \)-fold packing if every point of the space belongs to the interior of at most \(k \) sets. Quite analogously, we say that a family of sets forms a \(k \)-fold covering if every point of the space belongs to the closure of at least \(k \) sets. Let \(\delta_k(K) \) and \(\vartheta_k(K) \), respectively, denote the densities of the densest \(k \)-fold packing and the thinnest \(k \)-fold covering of the space with congruent copies of the convex body \(K \). Similarly we use the notation \(\delta^T_k(K) \), \(\vartheta^T_k(K) \), \(\delta^L_k(K) \) and \(\vartheta^L_k(K) \) for the optimum densities of the corresponding \(k \)-fold translative and lattice arrangements (compare the corresponding definitions of \(\delta \), \(\delta_T \), \(\delta_L \), \(\vartheta \), \(\vartheta_T \) and \(\vartheta_L \) above).

1. Multiple arrangements on the plane

The literature on multiple packing and covering is relatively extensive, and it mostly deals with arrangements of congruent copies of the circular disk \(B^2 \). The values of \(\delta_k(B^2) \) and \(\vartheta_k(B^2) \) are not known for any \(k > 1 \). We know that \(\delta^2(B^2) > 2\delta^1(B^2) \) and \(\vartheta^2(B^2) < 2\vartheta^1(B^2) \) as was shown by Heppes [1957] and Danzer [1960], respectively. G. Fejes Tóth [1976a] established the bounds

\[
\delta^k(B^2) \leq k \frac{\pi}{6} \cot \frac{\pi}{6k} \quad \text{and} \quad \vartheta^k(B^2) \geq k \frac{\pi}{3} \csc \frac{\pi}{3k}.
\]

Observe that \(\frac{\pi}{6} \cot \frac{\pi}{6k} \) and \(\frac{\pi}{3} \csc \frac{\pi}{3k} \) are equal to the density of a disk with respect to the circumscribed and inscribed regular \(6k \)-gon. For \(k = 1 \) these inequalities are sharp as they coincide with Thue’s and Kershner’s theorems.

Bolle [1976] proved that there are positive constants \(c_i \) such that

\[
k - c_1 k^{\frac{\pi}{6}} \leq \delta^k_L(B^2) \leq k - c_2 k^{\frac{\pi}{6}}
\]

and

\[
k + c_3 k^{\frac{\pi}{6}} \leq \vartheta^k_L(B^2) \leq k + c_4 k^{\frac{\pi}{6}}
\]
and showed in [1984] that the exponent $\frac{1}{4}$ is best possible in these inequalities. In [1989] he proved that for convex disks K with piecewise twice differentiable boundary there are positive constants $c(K)$ and $C(K)$ such that

$$\delta_k^L(K) \geq k - c(K)k^{\frac{1}{2}}$$

and

$$\vartheta_k^L(K) \leq k + C(K)k^{\frac{1}{2}}.$$

Moreover, for a polygon P the stronger inequalities

$$\delta_k^L(P) \geq k - c(P)k^{\frac{1}{3}}$$

and

$$\vartheta_k^L(P) \leq k + C(P)k^{\frac{1}{3}}$$

hold.

The exact values of $\delta_k^L(B^2)$ have been found for $k \leq 10$ (see Heppes [1959], Blundon [1963], Bolle [1970], Yakovlev [1983], Temesvári [1991] and Temesvári and Végh [1998]). The values of $\delta_k^L(B^2)$ are known for $k \leq 8$ (see Blundon [1957], Haas [1975], Subak [1960] and Temesvári [1984a, 1992a, 1992b, 1992c]. Linhart [1983] described an algorithmic approach for approximating the values of $\delta_k^L(B^2)$ with arbitrarily high accuracy. Elaborating on results by Yakovlev [1984] Temesvári, Hörváth and Yakovlev [1987] described a method for finding the densest k-fold lattice packing with circles. They reduced this task to a finite number of optimization problems, each over an explicitly given compact domain. A similar method for the thinnest k-fold lattice covering with circles was given by Temesvári [1988].

For a triangle T, Sriamorn [2014] determined $\delta_k^L(T)$ and $\vartheta_k^L(T)$ for all k. Moreover, Sriamorn [2016] showed that

$$\delta_k^L(T) = \delta_1^L(T) = \frac{2k^2}{2k + 1}$$

and Sriamorn and Wetayawanich [2015] showed that

$$\vartheta_k^L(T) = \vartheta_1^L(T) = \frac{2k + 1}{2}$$

for all k.

It is worth mentioning that $\delta_k^L(B^2) = k\delta_1^L(B^2)$ for $k = 2, 3$ and 4, and also $\vartheta_k^L(B^2) = 2\vartheta_1^L(B^2)$. These equalities for the very same multiplicities have been extended to an arbitrary centrally symmetric convex disk in place of the circle by Dumir and Hans-Gill [1972a, 1972b] and G. Fejes Tóth [1984a]. The equality $\vartheta_k^L(B^2) = 2\vartheta_1^L(B^2)$ was further generalized by Temesvári, who proved in [1984a] that the density of a 2-periodic double covering by circles is at most $2\vartheta_1^L(B^2)$, and in [1994d] proved the analogous result for centrally symmetric convex disks. Recall from XX that an m-periodic arrangement is the union of m translates of a lattice arrangement.

2. Decomposition of multiple arrangements

The equalities $\delta_k^L(K) = 3\delta_1^L(K)$ and $\delta_k^L(K) = 4\delta_1^L(K)$ for centrally symmetric disks K were derived by noticing that every 3-fold lattice packing by such a disk is the union of three simple (1-fold) packings, and every such 4-fold packing is the union of two 2-fold packings. This observation belongs to the topic concerning
decompositions of multiple arrangements into simple ones, problems and results that focus on the combinatorial structure of such arrangements. Research in this direction was initiated by Pach [1985]. He proved, among other things, that every 2-fold packing with positively homothetic copies of a convex disk can be decomposed into four (simple) packings. For coverings, he made the conjecture that for every convex disk K there exists a minimal natural number $m(K)$ such that every $m(K)$-fold covering of the plane by translates of K can be decomposed into two coverings. In [1986] he proved this conjecture for centrally symmetric polygons. New interest arose in the topic after Tardos and Tóth [2007] proved the conjecture for triangles. Soon after, Pálvölgyi and Tóth [2010] proved the conjecture for every convex polygon P. Unfortunately, the number $m(K)$ increases with the number of sides of P, thus the attempt to extend the result to all convex disks through polygonal approximation fails. Still, it came as a surprise when Pálvölgyi [2013] (see also Pach and Pálvölgyi [2016]) disproved Pach’s conjecture by showing that it does not hold for the circle. For subsequent developments on decomposition of multiple arrangements we refer the reader to the survey article of Pach, Pálvölgyi and Tóth [2013].

3. Multiple arrangements in space

The densest 2-fold lattice packing and the thinnest 2-fold lattice covering of balls in three dimensions were determined by Few and Kanagasabapathy [1969] and Few [1967], respectively. Purdy [1973] constructed a threefold lattice packing of balls which he conjectured to be of maximum density. He supported the conjecture by proving that it provides a local maximum of the density among threefold lattice packings of balls.

Adapting Blichfeldt’s idea, Few [1964] gave the following upper bound for the k-fold packing density of the n-dimensional ball:

$$\delta_k(B^n) \leq (1 + n^{-1})(n + 1)^n k^{(k-1)n+1}.\]

This is better than the trivial bound k only for large values of n compared to k. By a further elaboration on the same idea for $k = 2$, Few [1968] obtained the stronger inequality

$$\delta_2(B^n) \leq \frac{4}{3} (n + 2) \left(\frac{2}{3}\right)^{n/2}.$$

G. Fejes Tóth [1979] gave a non-trivial upper bound for $\delta_k(B^n)$, as well as a non-trivial lower bound for $\vartheta_k(B^n)$ for every n and k.

For multiple lattice arrangements of balls, Bolle [1979, 1982] established sharper estimates. He proved that there are positive constants c_n and C_n such that

$$\frac{\delta_k(B^n)}{k} \leq 1 - c_n k^{\frac{n+1}{2}} \quad \text{and} \quad \frac{\vartheta_k(B^n)}{k} \geq 1 + c_n k^{\frac{n+3}{2n}}$$

when $n \equiv 1 \pmod{4}$ and

$$\frac{\delta_k(B^n)}{k} \leq 1 - c_n k^{\frac{n+3}{2n}} \quad \text{and} \quad \frac{\vartheta_k(B^n)}{k} \geq 1 + c_n k^{\frac{n+3}{2n}}$$

when $n \equiv 1 \pmod{4}$.

Extending the result of Schmidt [1961] to multiple arrangements, Florian [1978a] proved that $\delta_k(K) < k$ and $\vartheta_k(K) > k$ for every smooth convex body K without establishing a concrete bound.
By a Blichfeldt-type argument Few [1964] proved
\[\delta^k(B^n) \geq \delta(B^n) \left(\frac{2k}{k + 1} \right)^{n/2}. \]
In [1971] Few studied the multiplicity of partial coverings of space, and, as an application of a general theorem, obtained a better lower bound for \(\delta^k(B^n) \) for large values of \(k \) and \(n \).

Groemer [1986a] proved lower bounds for the \(k \)-fold lattice packing density of a convex body \(K \) involving the intrinsic volumes of \(K \). From his results follows the existence of positive constants \(c_n \) such that
\[\delta^k_L(K) \geq k - c_n k^{(n-1)/n} \]
for every convex body \(K \in \mathbb{E}^n \).

Cohn [1976] proved that
\[\vartheta^k_L(K) < [(k + 1)^{1/n} + 8n]^n = k(1 + O(n^2 k^{-1/n})) \]
as \(k \to \infty \) for every \(n \)-dimensional convex body \(K \).

The best known upper bound for \(\vartheta^k(K) \) is due to Naszódi and Polyanskii [2018] who, improving slightly on an earlier result by Frankl, Nagy and Naszódi [2018], proved that
\[\vartheta^k(K) \leq 3.153(1 + o(1)) \max\{n \ln n, k\} \]
for every convex body \(K \in \mathbb{E}^n \).

Blachman and Few [1963] gave bounds for the density of multiple packings of spherical caps. Also L. Fejes Tóth [1966a], Galiev [1996], Blinovsky [1999] and Blinovsky and Litsyn [2011] investigated multiple ball packings in spherical spaces.

4. Multiple tiling

A system of bodies forms a \(k \)-fold tiling if each point of the space is covered exactly \(k \) times, except perhaps the boundary points of the bodies. There are centrally symmetric polytopes that admit a translational \(k \)-fold tiling, but no simple tiling. The simplest example is perhaps the regular octagon of side-length 1, whose translates by the unit square lattice form a 7-fold tiling.

Bolle [1994] proved that a convex polygon that admits a \(k \)-fold tiling of the plane by translations is centrally symmetric. He also gave a characterization of those convex polygons that admit a \(k \)-fold lattice-tiling. Kolountzakis [2021] gave an algorithm which decides for a centrally symmetric convex polygon if it can tile the plane by translations at some level. His algorithm runs in polynomial time in the number of sides of the polygon. Yang and Zong [2019, 2021] characterized those convex polygons that admit two-, three-, four- or five-fold translational tiling. Only parallelograms and centrally symmetric hexagons admit a two-, three- or four-fold translational tiling. There are two more classes of polygons admitting five-fold tilings: the affine images of a special octagon and of a decagon.

Gravin, Robins and Shiryaev [2012] proved that if translates of a convex polytope form a \(k \)-fold tiling of \(\mathbb{E}^n \), then it is centrally symmetric and its facets are centrally symmetric as well. This generalizes a theorem of Minkowski [1897] concerning simple tilings. For the three-dimensional case this means that only zonotopes admit a translational \(k \)-fold tiling. For rational polytopes Gravin, Robins
and Shiryaev also proved the converse of their above mentioned theorem: Every rational polytope in \(E^n \) that is centrally symmetric and has centrally symmetric facets admits a \(k \)-fold lattice tiling for some positive integer \(k \). For zonotopes, this was proved earlier by Groemer [1978].

A quasi-periodic set is a finite union of translated lattices, not necessarily of the same lattice. Kolountzakis [2000] proved that a \(k \)-fold tiling by translates of a convex polygon other than a parallelogram is quasi-periodic. Gravin, Kolountzakis, Robins and Shiryaev [2013] proved an analogous theorem for the three-dimensional case: A \(k \)-fold tiling by translates of a polytope that is not a two-flat zonotope is quasi-periodic. A two-flat zonotope is the Minkowski sum of two 2-dimensional symmetric polygons one of which may degenerate into a single line segment.

Gravin, Robins and Shiryaev [2012] raised the problem whether the following generalization of the Venkov-McMullen theorem holds: If translates of a polytope \(P \) form a \(k \)-fold tiling of \(E^n \), then \(P \) also admits an \(m \)-fold lattice tiling for some, possibly different, multiplicity. The two-dimensional case of this conjecture was confirmed independently by Liu [2021] and Yang [2019]. A further step in the direction of proving the conjecture was made by Chan [2015], who proved it for certain quasi-periodic \(k \)-fold tilings. Lev and Liu [2000] gave a characterization of those polytopes in \(E^n \) that tile with some multiplicity \(k \) by translations along a given lattice.

References

Blachman, N. M. and Few, L. [1963] Multiple packing of spherical caps. Mathematika 10 (1963) 84–88. MR0155234, DOI 10.1112/S0025579300003405

Blinovsky, V. [1999] Multiple packing of the Euclidean sphere. IEEE Trans. Inform. Theory 45 (1999) no. 4, 1334–1337. MR1686277, DOI: 10.1109/18.761296

Blinovsky, V. and Litsyn, S. [2011] New asymptotic bounds on the size of multiple packings of the Euclidean sphere. Discrete Comput. Geom. 46 (2011) no. 4, 626–635. MR2846172, DOI 10.1007/s00454-011-9336-x

Blundon, W. J. [1957] Multiple covering of the plane by circles. Mathematika 4 (1957) 7–16. MR0090823, DOI 10.1112/S0025579300001042

[1963] Multiple packing of circles in the plane. J. London Math. Soc. 38 (1963) 176–182. MR0149374, DOI 10.1112/jlms/s1-38.1.176

Bolle, U. [1976] Mehrfache Kreisrandordnungen in der euklidischen Ebene. Thesis, Universität Dortmund, 1976.

[1979] Dichtebeschätzungen für mehrfache gitterförmige Kugelanordnungen im \(R^m \). Studia Sci. Math. Hungar. 14 (1979) no. 1-3, 51–68. MR0645513

[1982] Dichtebeschätzungen für mehrfache gitterförmige Kugelanordnungen im \(R^m \) II. Studia Sci. Math. Hungar. 17 (1982) no. 1–4, 429–444. MR0761558

[1984] Über die Dichte mehrfacher gitterförmiger Kreisrandordnungen in der Ebene. Studia Sci. Math. Hungar. 19 (1984) no. 2-4, 275–284. MR0874495

[1989] On the density of multiple packings and coverings of convex discs. Studia Sci. Math. Hungar. 24 (1989) no. 2–3, 119–126. MR1051142

[1994] On multiple tiles in \(E^2 \). Intuitive geometry (Szeged, 1991), 39–43, Colloq. Math. Soc. János Bolyai, 63, North-Holland, Amsterdam, 1994. MR1383609

Chan, Swee Hong
[2015] Quasi-periodic tiling with multiplicity: A lattice enumeration approach. Discrete Comput. Geom. 54 (2015) 647–662. MR3392970, DOI 10.1007/s00454-015-9713-y

COHN, M. J. [1976] Multiple lattice coverings of space. Proc. London Math. Soc. (3) 32 (1976) 117–132. MR0389773, DOI 10.1112/plms/s3-32.1.117

DANZER, L. [1960] Drei Beispiele zu Lagerungsproblemen. Arch. Math. (Basel) 11 (1960) no. 1, 159–165. MR1552702, DOI 10.1007/BF01236925

DUMIR, V. C. and Hans-Gill, R. J. [1972a] Lattice double coverings in the plane. Indian J. Pure Appl. Math. 3 (1972) no. 3, 466–480. MR0308057

[1972b] Lattice double packings in the plane. Indian J. Pure Appl. Math. 3 (1972) no. 3, 481–487. MR0308058

FEJES TÓTH, G. [1976a] Multiple packing and covering of the plane with circles. Acta Math. Acad. Sci. Hungar. 27 (1976) no. 1-2, 135–140. MR0417930, DOI 10.1007/BF01902605

[1979] Multiple packing and covering of spheres. Acta Math. Acad. Sci. Hungar. 34 (1979) no. 1-2, 165–176. MR0546731, DOI 10.1007/BF01902605

[1984a] Multiple lattice packings of symmetric convex domains in the plane. J. London Math. Soc. (2) 29 (1984) no. 3, 556–561. MR0754941, DOI 10.1112/jlms/s2-29.3.556

FEJES TÓTH, L. [1966a] Mehrfache Kreisunterdeckungen und Kreisüberdeckungen auf der Kugel. Elem. Math. 21 (1966) 34–35. MR0192414

Few, L. [1964] Multiple packing of spheres. J. London Math. Soc. 39 (1964) 51–54. MR0161228, DOI 10.1112/jlms/s1-39.1.51

[1967] Double covering with spheres. Mathematika 14 (1967) 207–214. MR0228443, DOI 10.1112/S002557930000382X

[1968] Double packing of spheres: A new upper bound. Mathematika 15 (1968) 88–92. MR0234359, DOI 10.1112/S0025579300002424

[1971] The multiplicity of partial coverings of space. Acta Arith. 18 (1971) no. 1, 213–219. MR0290253, DOI 10.4064/aa-18-1-213-219

Few, L. and Kanagasabapathy, P. [1969] The double packing of spheres. J. London Math. Soc. 44 (1969) 141–146. MR0243430, DOI 10.1112/jlms/s1-44.1.141

FLORIAN, A. [1978a] Mehrfache Packung konvexer Körper. Österreich. Akad. Wiss. Math.-Natur. Kl. Sitzungsber. 11186 (1978) no. 8–10, 373–384. MR0510352

FRANKL, N.; NÁGY, J. and NASZÓDI, M. [2018] Coverings: Variations on a result of Rogers and on the Epsilon-net theorem of Haussler and Welzl. Discrete Math. 341 (2018) no. 3, 863–874. MR3754400, DOI 10.1016/j.disc.2017.11.017

GALIEV, Sh. I. [1996] Multiple packings and coverings of a sphere. (Russian) Diskret. Mat. 8 (1996) no. 3, 148–160; translation in Discrete Comput. Appl. 6 (1996) no. 4, 413–426. MR1422355, DOI 10.4213/dm531

GRAVIN, N.; KOLOUNTZAKIS, M.; ROBINS, S. and SHIRYAEV, D. [2013] Structure results for multiple tilings in 3D. Discrete Comput. Geom. 50 (2013) no. 4, 1033–1050. MR3138144, DOI 10.1007/s00454-013-9548-3

GRAVIN, N.; ROBINS, S. and SHIRYAEV, D. [2012] Translational tilings by a polytope, with multiplicity. Combinatorica 32 (2012) no. 6, 629–649. MR3063154, DOI 10.1007/s00493-012-2860-3

GROEMER, H. [1978] On multiple space subdivisions by zonotopes. Monatsh. Math. 86 (1978/79) no. 3, 185–188. MR0517024, DOI 10.1007/BF01659718
MULTIPLE ARRANGEMENTS

[1986a] Multiple packings and coverings. Studia Sci. Math. Hungar. 21 (1986), no. 1-2, 189–200. MR0898856

HAAS, A.
[1976] Die dünnste siebenfache gitterförmige Überdeckung der Ebene durch kongruente Kreise. Dissertation, Universität Wien, 1976.

HEPPES, A.
[1955] Mehrfache gitterför mige Kreislagerungen in der Ebene. Acta Math. Acad. Sci. Hungar. 10 (1959) 141–148. MR0105066
[1959] Über mehrfache Kreislagerungen. Elem. Math. 10 (1955) 125–127. MR0074015

KOLOUNTZAKIS, M.
[2000] On the structure of multiple translational tilings by polygonal regions. Discrete Comput. Geom. 23 (2000) no. 4, 537–553. MR1753701
[2021] Deciding multiple tiling by polygons in polynomial time. Period. Math. Hungar. 83 (2021) no. 1, 32–38. MR4260146

LEV, N. and LIU, B.
[2000] Multi-tiling and equidecomposability of polytopes by lattice translates. Bull. London Math. Soc. 51 (2019) no. 6, 1079–1098. MR4041013

LINHART, J.
[1983] Eine Methode zur Bestimmung der Dichte einer dichtesten gitterförmigen k-fachen Kreispackung. Arbeitsber. Math. Inst. Univ. Salzburg, 1983.

LIU, B.
[2021] Periodic structure of translational multi-tilings in the plane. Amer. J. of Math. 143 (2021) no. 6, 1841–1862. DOI 10.1353/ajm.2021.0047

MINKOWSKI, H.
[1897] Allgemeine Lehrsätze über die konvexen Polyeder. Nachr. Kgl. Ges. Wiss. Göttingen Math.-phys. Kl. 1897, 198–219. Ges. Abh. Leipzig: Teubner, 1911. Bd. 2. S. 109–127. Ausgewählte Arbeiten zur Zahlentheorie und zur Geometrie 121–139. Teubner-Archiv zur Mathematik, vol 12. Springer, Vienna. DOI 10.1007/978-3-7091-9536-9

NASZÓDI, M. and POLYANSKI, A.
[2018] Approximating set multi-covers. European J. Combin. 67 (2018) 174–180. MR3707225

PACH, J.
[1985] A note on plane covering. Diskrete Geometrie, 3. Kolloq., Salzburg 1985, 207-216 (1985). Zbl 0573.52023
[1986] Covering the plane with convex polygons. Discrete Comput. Geom. 1 (1986) no. 1, 73–81. MR0824109

PACH, J. and PÁLVÖLGYI, D.
[2016] Unsplittable coverings in the plane. Advances in Mathematics 302 (2016) 433–457. MR3545936

PACH, J.; PÁLVÖLGYI, D. and TÓTH, G.
[2013] Survey on decomposition of multiple coverings. Geometry—Intuitive, Discrete, and Convex 219–257, Bolyai Society Mathematical Studies vol. 24, János Bolyai Math. Soc., Budapest, 2013. MR3204561

PÁLVÖLGYI, D.
[2013] Indecomposable coverings with unit discs. arXiv:1310.6900v1 [math.MG] 25 Oct 2013

PÁLVÖLGYI, D. and TÓTH, G.
[2010] Convex polygons are cover-decomposable. Discrete Comput. Geom. 43 (2010) no. 3, 483–496. MR2587832

PURDY, G. B.
[1973] The lattice triple packing of spheres in Euclidean space. Trans. Amer. Math. Soc. 181 (1973) 457–470. MR0377706

SCHMIDT, W. M.
[1961] Zur Lagerung kongruenter Körper im Raum. Monatsh. Math. 65 (1961) 154–158. MR0126215

SIAMORN, K.
Multiple lattice packings and coverings of the plane with triangles. arXiv:1412.5096v2, 2014.

On the multiple packing densities of triangles. Discrete Comput. Geom. 55 (2016) no. 1, 228–242. MR3439266, DOI 10.1007/s00454-015-9748-0

On the multiple covering densities of triangles. Discrete Comput. Geom. 54 (2015) no. 3, 717–727. MR3392975, DOI 10.1007/s00454-015-9711-0

On the multiple packing densities of triangles. Discrete Comput. Geom. 55 (2016) no. 1, 228–242. MR3439266, DOI 10.1007/s00454-015-9748-0

On the multiple covering densities of triangles. Discrete Comput. Geom. 54 (2015) no. 3, 717–727. MR3392975, DOI 10.1007/s00454-015-9711-0

Subak, H.

Mehrfache gitterförmige Überdeckungen der Ebene durch Kreise. Dissertation, Universität Wien, 1960.

Tardos, G. and Tóth, G.

Multiple coverings of the plane with triangles. Discrete Comput. Geom. 38 (2007) no. 2, 443–450. MR2343315, DOI 10.1007/s00454-007-1345-4

Temesvári, A. H.

Die dünnste gitterförmige 5-fache Kreisüberdeckung der Ebene. Studia Sci. Math. Hungar. 19 (1984) no. 2-4, 285–298. MR0874496

Die dünnste 2-fache doppelpackung der Ebene. Studia Sci. Math. Hungar. 19 (1984) no. 1, 109–116. MR787792

Eine Methode zur Bestimmung der dünnsten gitterförmigen 5-fachen Kreisüberdeckungen. Studia Sci. Math. Hungar. 23 (1988) no. 1-2, 23–35. MR9962429

Die dünnste gitterförmige 6-fache Kreisüberdeckung. Berzsenyi Dániel Tanárk. Főisk. Tud. Közl., Termüld. 8 (1992) 93-112. Zbl 0806.52015

Die dünnste gitterförmige 7-fache Kreisüberdeckung. Berzsenyi Dániel Tanárk. Főisk. Tud. Közl., Termüld. 8 (1992) 113-125. Zbl 0806.52016

Die dünnste gitterförmige 8-fache Kreisüberdeckung der Ebene. Studia Sci. Math. Hungar. 29 (1994) no. 3-4, 323–340. MR1304886

Die dünnste gitterförmige 9-fache Kreispackung. Rad Hrvatske Akad. Znan. Umjet. No. 467 (1994) 95–110. MR1362504

Die dünnste 2-fache doppelpackung der Ebene mit einem zentralsymmetrischen konvexen Bereich. Festschrift on the occasion of the 65th birthday of Otto Krötener. Beiträge Algebra Geom. 35 (1994) no. 1, 45–54. MR1287196

A method for finding the densest lattice k-fold packing of circles. (Russian) Mat. Zametki 41 (1987) no. 5, 625–636, 764. English translation: Math. Notes 41 (1987) no. 5-6, 349–355. MR0898123, DOI 10.1007/BF01159857

Die dünnste gitterförmige 10-fache Kreispackung. Berzsenyi Dániel Tanárk. Főisk. Tud. Közl., Térmtud. 6 (1998) 3–20.

The densest lattice 8-packing on a plane. (Russian) Vestnik Moskov. Univ. Ser. I Mat. Mekh. (1983) no. 5, 8–16. English translation in Moscow Univ. Math. Bull. 38 (1983) no. 5, 7–16. MR0722442

A method of finding the densest lattice k-packing on a plane. (Russian) Functional analysis and its applications in mechanics and probability theory (Moscow, 1983) 170–171, Moskov. Gos. Univ., Moscow, 1984. MR0845122

On multiple translative tiling in the plane. arXiv:1809.04272v4 [math.MG] 30 Sep 2019.

Multiple lattice tilings in Euclidean spaces. Canad. Math. Bull. 62 (2019) no. 4, 923–929. MR4028498, DOI 10.4153/S000843951800103

Characterization of the two-dimensional five-fold translative tiles. Bull. Soc. Math. France 149 (2021) no. 1, 119–153.

Alfréd Rényi Institute of Mathematics, Reáltanoda u. 13-15., H-1053, Budapest, Hungary

Email address: gfejes@renyi.hu