Gene duplication in an African cichlid adaptive radiation

Heather E Machado1, Ginger Jui2, Domino A Joyce3, Christian RL Reilly III4, David H Lunt3 and Suzy CP Renn2*

Abstract

Background: Gene duplication is a source of evolutionary innovation and can contribute to the divergence of lineages; however, the relative importance of this process remains to be determined. The explosive divergence of the African cichlid adaptive radiations provides both a model for studying the general role of gene duplication in the divergence of lineages and also an exciting foray into the identification of genomic features that underlie the dramatic phenotypic and ecological diversification in this particular lineage. We present the first genome-wide study of gene duplication in African cichlid fishes, identifying gene duplicates in three species belonging to the Lake Malawi adaptive radiation (Metriaclima estherae, Protomelas similis, Rhamphochromis “chilingali”) and one closely related species from a non-radiated riverine lineage (Astatotilapia tweddlei).

Results: Using Astatotilapia burtoni as reference, microarray comparative genomic hybridization analysis of 5689 genes reveals 134 duplicated genes among the four cichlid species tested. Between 51 and 55 genes were identified as duplicated in each of the three species from the Lake Malawi radiation, representing a 38%–49% increase in number of duplicated genes relative to the non-radiated lineage (37 genes). Duplicated genes include several that are involved in immune response, ATP metabolism and detoxification.

Conclusions: These results contribute to our understanding of the abundance and type of gene duplicates present in cichlid fish lineages. The duplicated genes identified in this study provide candidates for the analysis of functional relevance with regard to phenotype and divergence. Comparative sequence analysis of gene duplicates can address the role of positive selection and adaptive evolution by gene duplication, while further study across the phylogenetic range of cichlid radiations (and more generally in other adaptive radiations) will determine whether the patterns of gene duplication seen in this study consistently accompany rapid radiation.

Background

Adaptive radiation, the evolution of genetic and ecological diversity leading to species proliferation in a lineage, is thought to be the result of divergent selection for resource specialization [1-3]. Differential selection in heterogeneous environments can result in adaptive radiation when there is a genetic basis for variability in organisms’ success in exploiting alternative resources [1-5]. Examples of such radiations include the Cambrian explosion of metazoans [6], the diversification of Darwin’s finches in the Galapagos [7], variations in amphipods and cottoid fishes in Lake Baikal [8], the Caribbean anoles [9], the Hawaiian Silverswords [10] and the explosive speciation of the cichlid fishes in the African Great Lakes [11].

The cichlid fishes are the product of an incredible series of adaptive radiations in response to the local physical, biological and social environment. While cichlids can be found on several continents [12], the most dramatic radiations are those of the haplochromine cichlids in the great lakes of East Africa. This speciose clade exhibits unprecedented diversity in morphological and behavioral characteristics [13] and accounts for ~10% of the world’s teleost fish. Interestingly, this clade also includes lineages that have remained in a riverine environment and have not radiated [14].

Classic work by Ohno [15] proposed a prominent role for gene duplication events in evolutionary expansion, despite their frequent loss due to drift [16]. Duplication makes extra gene copies available for dosage effects, subfunctionalization, or neofunctionalization [17], with the resultant phenotype potentially contributing to an
organism’s fitness (for review see [18]). Current genomic research (e.g. primates; [19,20]) supports this, but the ability to compare closely related cichlid lineages that have and have not undergone an evolutionary radiation provides a critical tool for testing the association of gene duplication with adaptive radiation.

We used array-based comparative genomic hybridization (aCGH) to identify gene duplications among 5689 genes for three Lake Malawi radiation species, which began accumulating molecular diversity approximately 5 million years ago [21] (M. estherae, P. similis, R. “chilingali”) and one closely related riverine species from a non-radiated lineage (A. tweddlei). While previous mitochondrial data suggested a bifurcation that separated the Lake Malawi radiation from the riverine species (Figure 1), more recent data based on ALFP data and single nucleotide polymorphisms derived from low coverage whole genome sequence [22-24] suggest that the Malawi flock is not monophyletic and that some of the riverine lineages may have contributed to Malawi genomes. These insights further support the use of A. burtoni as a reference to the three approximately equidistant test species. This is the first genome-wide study of gene duplication among haplochromine cichlids.

Results
aCGH identification of duplicated genes
Microarray features, representing a total of 5689 genes, passed quality control measures in all four test species. Among these, 145 array features (representing 134 genes) were determined to have an increased genomic content (i.e. copy number) for one or more heterologous species relative to A. burtoni (P < 0.1 FDR corrected) (Tables 1, 2). This included duplications of 54 genes in M. estherae, 51 in P. similis, and 55 in R. “chilingali”, compared to only 37 in A. tweddlei, the species from the non-radiated lineage (Figure 2). The number of duplicated genes identified for the species from the radiated lineage represents a 38%–49% increase relative to the number of duplicated genes identified in A. tweddlei. Consistent with their shared evolutionary history, shared duplications were prevalent among the three Lake Malawi species, with 11 duplications shared among all three and 16 duplications shared between two of the three species (Figure 2). Five

![Figure 1](http://www.biomedcentral.com/1471-2164/15/161)

Figure 1 Maximum likelihood phylogeny illustrating the positions of experimental (stars) and reference (circle) taxa. The maximum likelihood tree is based on 1785 bp mitochondrial ND2. Nodes not supported by 50% maximum likelihood SH values collapsed and Lake Victoria, Lake Makgadikgadi, and Lake Tanganyika radiations are represented by triangles. The tree is rooted with Oreochromis and the scale bar indicates the mean number of nucleotide substitutions per site (DRYAD doi:10.5061/dryad.7vs2c).
GenBank	Homology	A.twe	M.est	P.sim	R.chi	BitScore					
CN468828/24	Adenine nucleotide translocator s598	ns	ns	ns	0.60	567					
					0.0019						
DY630000	Alcohol dehydrogenase Class VI	ns	ns	0.73	ns	379					
					0.0015						
DY630424	Alkylated DNA repair protein alkB homolog 7	ns	0.43	ns	ns	304					
					0.0002						
DY629046	Arsenic (+3 oxidation state) methyltransferase	ns	ns	ns	1.06	150					
					0.0031						
DY626788	ATPase, H+ transporting, lysosomal V0 subunit E	ns	0.76	ns	ns	87.8					
					0.0028						
DY628437	Claudin 29a (cldn29a) gene	ns	0.60	ns	ns	526					
					0.005						
DY632040	Coiled-coil domain containing protein 80	ns	ns	1.19	2.13	434					
					3E-05	5E-07					
DY629141	Crystallin gamma M2b	ns	ns	ns	0.43	829					
					0.0024						
DY626204/2	C-type lectin domain family 4 member C	ns	0.38	ns	ns	246					
					0.0039						
DY631088	Cystatin-B	0.45	ns	ns	ns	150					
					0.0016						
DY630353	Cytosolic sulfotransferase 3	ns	ns	0.62	0.64	713					
					0.0015	0.0013					
CN4707675	Dazl gene	ns	ns	ns	0.57	89.7					
					0.0040						
DY629967/9	Ferritin heavy subunit	ns	ns	ns	0.82	1160					
					8E-05						
DY631817	Fish virus induced TRIM protein	ns	ns	0.590	ns	170					
					0.0005						
DY626596	Fish virus induced TRIM protein	ns	ns	0.41	0.44	145					
					0.0045	0.0030					
DY628624	Gamma M7 crystallin	ns	ns	ns	0.42	169					
					0.0054						
DY630388	Glutamyl-tRNA(Gln) amidotransferase	0.48	ns	ns	ns	347					
					0.0016						
DY626115/2	GTPase IMAP family member 7	ns	1.14	ns	ns	370					
					0.0016						
CN471284	High-mobility group 208	0.60	ns	ns	ns	163					
					0.0004						
CN469367	Hox gene cluster	1.34	1.16	0.86	1.11	183					
					3E-05	9E-05					
					0.0006	0.0002					
DY627986	Hox gene cluster	1.81	1.12	0.80	1.22	95.1					
					3E-07	1E-05					
					0.0001	5E-06					
DY629113	Immunoglobulin light chain	ns	ns	0.65	ns	482					
					0.0025						
Gene ID	Description	p-value	Fold Change	q-value	p-value	Fold Change	q-value	Fold Change	q-value	Fold Change	q-value
------------	---	---------	-------------	---------	---------	-------------	---------	-------------	---------	-------------	---------
CN468953	Iron-sulfur cluster assembly enzyme ISCU	ns	ns	ns	0.86	610	0.0022				
DY628151	Kallikrein-8 precursor	1.02	ns	ns	ns	102					
DY627800	Kinesin-like protein 2 (knsl2)	ns	0.86	1.84	1.14	398					
CN469578	KLR1 gene	1.04	ns	ns	ns	154					
DY629760	LOC100150543, polyprotein	1.35	ns	0.65	0.79	141					
CN468718	LOC100151545, similar to Protein KIAA0284	0.72	0.0004	ns	ns	145					
DY629780	MHC class I	ns	0.84	1.26	1.05	161					
DY630620	MHC class IA antigen	ns	ns	0.42	ns	120					
DY630701	MHC class II alpha subunit	ns	ns	0.49	ns	764					
DY631898	MHC class II antigen alpha chain	ns	ns	0.94	ns	878					
DY631847	Mitotic spindle assembly checkpoint protein MAD2A	0.60	ns	ns	ns	374					
DY627079	Muscle-type creatine kinase CKM2	ns	0.41	ns	ns	787					
CN469375/2	Peptidyl-prolyl cis-trans isomerase NIMA-interacting	ns	0.69	ns	ns	663					
DY628779	Post-GPI attachment to proteins factor 2	ns	0.87	ns	ns	123					
DY626114/2	Ras association domain-containing protein 4	ns	0.82	ns	ns	1086					
DY630104	Ras-related C3 botulinum toxin substrate 2	1.44	0.83	1.47	1.90	331					
DY630508/1	Replication factor C subunit 5	1.04	ns	ns	ns	1234					
DY628495	Ribosomal protein, large P2 (60S)	ns	ns	1.01	ns	161					
DY630832/2	Ribosomal protein S20 (40S)	ns	0.65	ns	ns	663					
DY626643	Serine/threonine phosphatase gene	ns	0.57	0.57	0.54	878					
CN470072	Sestrin 3	ns	1.30	1.61	1.70	116					
DY629126	Short coiled-coil protein	ns	ns	0.59	ns	242					
DY630540	Small inducible cytokine SCYA102	ns	0.64	ns	ns	1204					

Table 1 Genes duplicated relative to *A. burtoni* with informative BLAST hits (Continued)
genes had greater gene copy number in all four species relative to *A. burtoni*. Genes found duplicated in only one of the four species were also identified. This included 27 genes in *M. estherae*, 20 in *P. similis*, 24 in *R. “chilingali”* and 27 in *A. tweddlei*.

In twenty cases, the gene identified as duplicated was represented on the array by multiple features. Five of these instances showed complete concordance among the two or three array features representing that gene such that all showed the same significant pattern across species. However, for some genes found to be duplicated, only one of the two (n = 8), one of the three (n = 4), two of three (n = 2) or in one case four of the eight array features representing that gene reached statistical significance. In most cases, those features that did not reach statistical significance followed a similar pattern (Additional file 1 Figure S1). However this was not always the case which may be due to different parts of the gene sequence being represented by the different features, high variance or poor quality for one of the features, miss-annotation of the array, or other technical reasons.

BLAST comparison of array feature sequence similarity to the nucleotide database allows annotation and predicted function for discussion of possible adaptive processes. Based on these annotations, several candidate genes were identified as duplicated in and among lineages. Repeated similarities of functional annotations were noticed, particularly for genes involved in immune response, ATP metabolism and detoxification.

Quantitative PCR verification

Four loci found to be duplicated in one or more test species according to aCGH were chosen for quantitative PCR (qPCR) validation for their observed duplication patterns- one duplicated in all species relative to *A. burtoni*, two duplicated in all three Lake Malawi radiation species and one species-specific duplication (Table 2). Primer pairs that were designed to *A. burtoni* sequence successfully amplified product with a similar or slightly reduced efficiency in each heterologous species tested (Table 2). We estimated the copy number relative to *A. burtoni* for these loci based on the array hybridization ratio, and compared that to the copy number estimated from the qPCR results. Each duplication of a given locus as identified by the microarray analysis also showed significantly increased copy number according to the qPCR analysis (Figure 3). Furthermore, the pattern of relative copy number among test species observed in the qPCR analysis, reflected, with few exceptions, the pattern of relative copy number observed in the microarray analysis. The only notable discrepancy was an increased genomic content for gene DY631898 detected for *M. estherae* that was not found by microarray analysis.

Discussion

Gene duplication is an important source of functional novelty and has a demonstrated role in adaptive evolution [18]. Such adaptations can allow for niche diversification, as has been suggested for thermal adaptation (plants: [25], Antarctic ice fish: [26]) and for metabolic

Genes duplicated relative to *A. burtoni* with informative BLAST hits (Continued)
Gene
CN471492 Solute carrier family 9 (sodium/hydrogen exchanger)
CN471103^1/3 Ubiquitin
DY629776 UDP glycosyltransferase 2 family, polypeptide A1
CN469822 Vacuolar ATP synthase subunit G
DY632057 Pituitary adenylate cyclase activating polypeptide receptor 1A
DY626009 Non-LTR retrotransposon Rex1a
DY629391 Non-LTR retrotransposon Rex3_Tet
DY631649 SINE sequence

Genomic Content Value: Log2 Hybridization coefficients for each species relative to *A. burtoni* as estimated by the linear model following background correction and normalization followed by the uncorrected p-value for those significantly different (P < FDR 0.1). BitScore: the quality of the alignment for the annotated homology. *A. twe*: *A. tweddlei*; *M. est*: *M. estherae*; *P. sim*: *P. similis*; *R. chi*: *R. “chilingali”*; “ns”: not significant; superscript numbers: when multiple array features represent a gene, these numbers indicate the number of significant array features and the total number of array features for that gene represented in the table by a single GenBank number and data row.
Table 2 Genes duplicated relative to *A. burtoni* with no informative BLAST hit

GenBank	A. twe	M. est	P. sim	R. chi
CN469125	1.32	ns	ns	ns
	2E-5			
CN469431	ns	ns	ns	0.50
				0.0017
CN469460	ns	ns	0.64	ns
				0.0007
CN469913	ns	ns	ns	0.63
				0.0008
CN470216	ns	0.39	ns	ns
				0.0039
CN470402	ns	ns	0.48	0.45
				0.0034
CN470540	ns	ns	ns	0.60
				0.0051
CN470597	0.65	ns	ns	0.65
				0.0013
CN470646	0.73	ns	ns	ns
				0.0003
CN470701	ns	ns	ns	0.65
				0.0052
CN470713	ns	ns	0.68	ns
				0.0009
CN470724	1.02	ns	ns	ns
				0.0027
CN470781	0.58	ns	ns	ns
				0.0025
CN470835	ns	1.55	ns	ns
				0.0002
CN470857	ns	0.67	ns	0.96
				0.0006
CN470988	ns	1.28	ns	1.34
				0.0007
CN471261	ns	ns	0.93	ns
				0.001
CN471811	ns	1.35	1.22	ns
				6E-6
CN471851	ns	ns	0.47	ns
				1E-5
CN472050	ns	ns	0.70	ns
				0.0018
DY625804	ns	1.23	ns	ns
				0.0001

Table 2 Genes duplicated relative to *A. burtoni* with no informative BLAST hit (Continued)

GenBank	A. twe	M. est	P. sim	R. chi
DY625845	1.16	ns	ns	ns
DY625884	0.49	ns	ns	ns
DY625919	1.18	ns	ns	ns
DY626122	1.50	ns	ns	ns
DY626140	ns	1.05	ns	ns
				0.0036
DY626192	ns	0.75	ns	ns
				0.0002
DY626304	ns	ns	0.99	1.50
				4E-5
DY626389	ns	ns	0.57	ns
				0.0022
DY626428	ns	ns	ns	0.39
				0.0053
DY626737	ns	ns	0.79	ns
				0.0001
DY626766	ns	0.81	0.98	0.68
				0.0003
DY627085	ns	0.44	ns	ns
				0.0043
DY627087	1.15	ns	ns	ns
				3E-5
DY627338	0.72	ns	ns	ns
				0.0006
DY627361	ns	ns	ns	0.74
				0.0001
DY627641	ns	0.76	0.85	ns
				0.0012
DY627780	ns	1.51	ns	ns
				3E-6
DY627911	1.04	ns	0.87	0.49
				5E-5
DY628148	0.50	ns	ns	ns
				0.0012
DY628172	1.38	ns	ns	ns
				4E-6
DY628268	ns	ns	0.46	ns
				0.0017
DY628316	ns	0.64	ns	ns
				0.0026
The adaptive radiations of the African cichlid fishes exhibit remarkable niche exploitation in the presence of low levels of sequence divergence (reviewed by [13, 21]). However, little is known regarding the relative number of duplicated genes, nor the identity of duplicated genes, within this group. If there is an increased rate of gene duplication or gene duplicate retention in radiated lineages, or if

Table 2 Genes duplicated relative to A. burtoni with no informative BLAST hit (Continued)
DY628477
DY628517
DY628561
DY628642
DY628702
DY628714
DY629058
DY629123
DY629387
DY629482
DY629717
DY629982
DY629912
DY630229
DY630284
DY630373
DY63067
DY630964
DY630993
DY631067
DY631315
DY631408

Genomic Content Value: Log2 Hybridization coefficients for each species relative to A. burtoni as estimated by the linear model following background correction and normalization followed by the uncorrected p-value for those significantly different. A.twe: A. tweediei; M.est: M. estherae; P.sim: P. similis; R.chi: R. chilingali; "ns": not significant; "**: the GenBank number is a representative for multiple array features for that gene.
particular duplications are associated with these lineages, then their pattern and identity could provide insight into the processes facilitating the rapid expansion of the African cichlids. The patterns reported and validated here indicate shared and increased gene duplication within the Lake Malawi radiation compared to a close non-radiating lineage. While three of the identified gene duplicates were annotated as mobile elements (retrotransposons or SINE element), the majority of the genes could be assigned functional annotation based on a manually curated homology search to UniProtKB/Swiss-Prot for those genes found to be duplicated. Based on individual gene names and functional annotations, several candidate genes, including those that are involved in immune response, ATP metabolism and detoxification, are identified as duplicated in and among lineages (Table 1). Some of these gene duplicates may underlie adaptive phenotypic change.

Immune response

The evolution of immune response is a potent factor contributing to the divergence of lineages, resulting from strong selection on certain loci [28-30]. A greater number of genes associated with immune response (4–9) are found to be duplicated in the Lake Malawi lineage as compared to the riverine species (2). This list includes two finTRIM genes (one duplicated in *P. similis* and the other in both *P. similis* and *R. “chilingali”*), a gene family that is known to play a role in immunity against viral infection, and several finTRIM paralogs have been found
in teleost fishes, resulting from duplication and positive selection (70 in trout, 84 in zebrafish) [31]. There are also five major histocompatibility complex (MHC) genes—two MHC class I, two MHC class II, and kinesin-like protein 2—found duplicated in one or more of the species from the radiated Lake Malawi lineage. The MHC gene family, in addition to being involved in immunity (salmon: [32]), has a history of expansion and contraction through duplication and deletion [33]. MHC gene families vary in size among teleosts, with particularly large families in cichlids [34-38]. Additional immune related genes duplicated in the Lake Malawi radiation include an immunoglobulin light chain, small inducible cytokine (associated with the MHC region in stickleback: [39]), and sestrin 3. In A. tweddlei, the test species from the non-radiated lineage, two immune genes, kallikrein-8 and natural killer cell lecin-type receptor, are also found to be duplicated. The identification of several duplicated immune function genes is consistent with previous work documenting size variability and rapid expansion of immune function gene families (Drosophila: [28], silkworm: [40]) that may allow species to invade new niches or better adapt to existing ones.

ATP metabolism

ATP metabolism and function is critical to many physiological processes. Two ATP synthases and one ATP transporter are found duplicated among the four species. Subunits G and E of vacuolar ATPases, which couple the energy of ATP hydrolysis to proton transport across intracellular and plasma membranes, are duplicated in A. tweddlei and M. estherae, respectively. In R. “chilingali”, the adenine nucleotide translocator (ANT) s598 is found duplicated. This mitochondrial transmembrane protein is the most abundant mitochondrial protein and is integral in the exchange of ADP and ATP between the mitochondria and the cytoplasm. Increased expression of mitochondrial ATP synthase has been found in cold acclimated carp [41] and ANT genes are being studied for their potential adaptive role in thermal acclimation (fugu: [42]). Given that these ATP synthase and transport genes are found duplicated in all 4 species of this study rather than showing enrichment only within the Lake species, they may represent an ancestral duplication, or deletion in A. burtoni, nonetheless, their retention may be associated with adaptation to ecological conditions.

Detoxification

Selection on duplicated detoxification genes (those involved in the breakdown of toxic compounds) can determine survival in particular environments or can contribute to expansion into new niches. One example is seen in plant-herbivore interactions, where gene duplication has been implicated in the ability of herbivores to detoxify plant defense compounds and prevent exclusion of the herbivore from that food source [43,44]. We detect duplication of detoxification genes in all three species from the radiated lineage. In P. similis and R. “chilingali”, the sulfotransferase (SULT) gene cytosolic sulfotransferase 3 is found duplicated. SULT genes are detoxifying enzymes that catalyze the transfer sulfonate groups to endogenous compounds and xenobiotics. Once sulfated, compounds may become more easily excreted from the body. In zebrafish, ten SULT proteins have been cloned, two of which show strong activity towards environmental estrogens [45]. Zebrafish SULTs have also been found to act on other xenobiotics [46]. In Atlantic cod, a SULT gene was found to be upregulated in response to polluted water [47]. In R. “chilingali”, two other genes involved in detoxification, arsenic methyltransferase and ferritin (heavy subunit), are found duplicated. Arsenic methyltransferase converts inorganic arsenic into less harmful methylated species, and ferritin is an iron storage protein that is essential for iron homeostasis, keeping iron concentrations at non-toxic levels. Another iron-related protein, the iron-sulfur cluster assembly enzyme, was also duplicated in R. “chilingali”. It is possible that some of these gene duplicates have been retained due to a selective advantage for metabolic breakdown of environmental compounds and toxins. Such duplicates may allow novel physiological interactions with the chemical, physical and pathogenic environment that may play a role in adaptive divergence as a lineage radiates to inhabit new niches such as those associated with the African Great Lakes.

Gene family membership

Gene families by their very nature reveal a propensity for duplication and duplicate retention of certain genes. One study estimated that 38% of known human genes can be assigned to gene families, based on amino acid sequence similarity [48]. These gene families typically consist of two genes, but the largest gene families can have more than 100 members. In the present study, several of the genes found to be duplicated were members of large gene families, comprised of multiple known genes. These include 40 S and 60 S ribosomal proteins (duplicated in R. “chilingali” and M. estherae), claudin 29a (M. estherae), GTPase IMAP family member 7 (P. similis), C-type lectin domain family 4 (M. estherae), high-mobility group 20B (HMG20B) from HMG-box superfamily (A. tweddlet), and hox gene cluster genes (all species). Hox genes are important in the regulation of development, and have been found to be associated with differential jaw development in cichlid fishes [49,50]. An immunoglobulin light chain gene belonging to the largest gene family represented in this study was found duplicated in P. similis. Since large gene families are comprised of
multiple paralogs and may possess a greater tendency for expansion, it is not surprising that large gene families are well represented in our list of duplicated regions.

qPCR verification

The robust validation of aCGH results using quantitative PCR not only verifies the increased genomic content for all four loci analyzed in test species relative to A. burtoni, it also provides a complementary approach that may prove to be a more efficient means to survey candidate loci in future population level analyses. For each locus except DY631898, the pattern of copy number among the four test species relative to A. burtoni is similar to that found by aCGH. However, the copy number estimated by qPCR differs from that estimated with array results. This is particularly true of the DY626766 and DY632057 loci, which showed greater qPCR copy number than predicted, despite the underestimation bias possible for those loci. Similarly, in M. estherae, the DY631898 locus appeared to be substantially higher in copy number than predicted by the array results. This discrepancy could result from three factors. First, it may be due to the fact that aCGH will produce an underestimate of true copy number when there is sequence divergence of the heterologous species relative to the platform provided the primers are in a conserved sequence region. Second, while qPCR and microarray analyses both provide relative rather than absolute measures, the scale of the relationship measurements may differ due to the difference in normalization techniques applied to the raw data. Finally, particularly for the case of the DY631898 locus in M. estherae, the microarray analysis includes only two replicates for each species and is thus sensitive to technical error where technical failure of qPCR is more easily replicated. Nonetheless, even for the two instances in which reduced primer efficiency in the tested heterologous species would have been expected to result in an underestimate rather than an overestimate of copy number, the pattern identified by aCGH was upheld. Regardless of discrepancies in magnitude, our quantitative PCR results demonstrate, with the exception of one data point, both qPCR and aCGH are valid techniques for estimation of relative copy number in heterologous species. While aCGH allows one to survey a greater number of genes, the qPCR technique may provide an efficient means to assess copy number variation (CNV) of candidate loci within a larger population in order to illuminate the role of gene duplication on a microevolutionary scale.

Technical considerations

The use of aCGH was initially developed for cancer studies and has been applied to several within species studies, but has less frequently been used to assess between species patterns of gene duplication. Careful consideration of the technical biases and conservative interpretation of the results are warranted [51,52]. The array features analyzed represent only 5689 genes, a fraction (25-30% of a standard vertebrate genome) of predicted total gene content for these species. Furthermore, because genomic content for each gene has been assessed relative to the array platform species A. burtoni, any gene that has equivalent copy number (even if greater than 1) in both the platform and the heterologous species will go undetected. Similarly, those genes that appear to be duplicated in all heterologous species may actually represent a reduction in genomic content in A. burtoni due to gene deletion events. Furthermore, aCGH with spotted cDNA arrays does not allow quantification among different genes and it is therefore impossible to provide absolute copy numbers. We identify five such genes, two annotated as Hox gene cluster genes, one as a Ras-related C3 botulinum toxin substrate gene and two that lack annotation, that appear to be duplicated in all four test species, but which may in fact be deleted in A. burtoni. In our study we do not attempt to distinguish between these two scenarios.

The hybridization bias due to sequence divergence of the heterologous species from the platform species is another an important consideration for the interpretation of aCGH results. Diverged sequences will hybridize less well to the array feature than A. burtoni DNA. Therefore, it follows that duplicated genes for which the paralog is highly diverged will be less likely to be detected as duplicated than duplicated genes with paralogs that are less diverged from the platform species, as found by Machado and Renn [52]. Therefore, older gene duplication events, those with very little purifying selection pressure, and those with strong positive selection in the gene region represented on the array are less likely to be identified, while recent duplication events or highly conserved duplicates are more likely to be identified. Therefore, the results presented here represent a subset of the total gene duplicates that may differ from the subset of gene duplicates identified by other techniques such as sequence assembly or depth of coverage. Gene number and copy number identified by short read sequencing technology is prone to overestimation of copy number variation [53]. Nonetheless, the numbers reported here are clearly an under-representation of the total and may present a different phylogenetic pattern of retention than other subsets of gene duplicates.

In this study, we use a recent adaptive radiation so that, whilst strong positive selection on duplicates might be overlooked by the aCGH technique, the majority of very recent duplications are likely to be identified. We find a pattern of increased gene duplication in these Lake Malawi haplochromines, with 38-49% more genes duplicated than in the non-radiated lineage. Care
must be taken in interpreting this increase in the context of adaptive radiation, with four primary considerations. First, only a subset of genes (i.e. those present on the array with available sequence) was tested. Second, gene duplicates may have become fixed in ancestral populations due to neutral processes such as founder events, genetic bottlenecks or drift during the relatively recent evolutionary past. Sequence data from multiple species will be necessary to distinguish neutral vs. adaptive evolutionary processes. Third, due to the shared evolutionary history of the three Lake Malawi species, they cannot be considered independent. Fourth, the ecology of the species, lake versus riverine, is confounded with the tendency to radiate. Therefore, as tantalizing as these results are, our single comparison of radiated versus non-radiated lineages requires further support before general patterns associated with adaptive radiation can be rigorously discussed. Fortunately, the African cichlids provide such a system with which to undertake this [14].

Conclusions
Only recently have studies begun to examine the patterns of gene duplication and copy number polymorphism across species in natural systems, beyond primates (e.g. [26,54-56]). While other studies have examined specific genes (e.g. [57-59]), we present the largest analysis (e.g. [26,54-56]). While other studies have examined species in natural systems, beyond primates (e.g. [26,54-56]). While other studies have examined species in natural systems, beyond primates (e.g. [26,54-56]).

Methods

aCGH identification of duplicated genes

Genomic DNA, extracted from ethanol-preserved field tissue samples (n = 2 per species) by standard ProteinaseK/Phenol protocol, was size reduced by Hydroshear (Genome Solutions/Digilab) to 1–5 Kb. DNA (4 μg) and labeled with Alexa-Fluors (555 & 647) conjugated dCTP by Klenow polymerization (Invitrogen, BioPrime® Direct Array CGH Genomic Labeling System catalog# 18095–011). Each species was hybridized twice (once with each individual) (in dye swap) against a reference pool of A. burtoni genomic DNA using the A. burtoni cDNA PCR product spotted microarray which contains ~20,000 features, representing ~16,000 unique sequences of which ~65% have available EST sequence [60] (GEO platform GPL6416). After a 16 hour hybridization (67.5°C, 3.4× SSC, 0.15% SDS, 1 mM DTT, Cot-1DNA), arrays were washed and scanned (Axon 4100B, Genepix).

Microarray data (GEO series GSE19368) were filtered by omitting features with a lack of sequence information, known ribosomal content, or that had faint array signal (<2 SD above background). Only features that survived this quality control for all eight microarrays were analyzed. Data were corrected for background intensity (“minimum”) and were loess normalized within array using 250 conserved features [60]. This corrects for bias introduced by sequence divergence under standard normalization [61]. Duplicated genes were identified as those with increased fluorescence according to the “lmFit” statistical model with “eBayes” correction and FDR adjustment for P < 0.1 significance level [62]. The reported results are underestimates of duplication levels, due to the fact that diverged duplicates are less likely to be detected [52]. GEL_50 measurements [63] indicated that experiments were of similar statistical power (M. estherae: 1.80,

Table 3 Oligonucleotide primers used for qPCR designed against GenBank sequence available for microarray features

GenBank	Primer sequence	Homology	Predicted length	Primer efficiency	Test species
DY626766	F: TCAGTCTCCATTAAAACCAGATG	No Hit	193	86	A. burtoni
	R: CTGAGTTTGCTGCCCAGTAA			(P. similis)	
DY627986	F: ACCAAACCCCTAGCCGAAAC	Hox gene cluster	222	100	A. burtoni
	R: GGGTCCAGCACATGAAGCTGT			(M. estherae)	
DY631898	F: CTGCCACGTGAGGGTGAGGG	MHC class II antigen	161	82	M. estherae
	R: TGAGCTGTGAGGTTGAGGCC			(R. “chilingali”)	
DY632057	F: ATACTGCAGTTCCGCCTCA	Pituitary adenylate cyclase activating	150	91	A. burtoni
	R: CTGCCCGCTGAAAGAAACAGA	polypeptide receptor 1A		(A. tweddlei)	

Primer Efficiency: percent is based on 4-fold template dilutions for A. burtoni and one heterologous test species indicated in parentheses.
P. similis: 1.95, **R. "chilingali"**: 1.61, **A. tweedlei**: 1.89). The automated annotations available from DFCI were not used in this study because many proved to be uninformative. Instead, functional annotations for genes were gathered only for identified duplicates using BLASTn to compare EST sequences to the UniProtKB/Swiss-Prot database. The top 100 hits were returned in order to identify informative annotations and infer function based on homology. Bit scores are reported for these annotations. No filtering or masking was applied during the BLASTn thus annotations for repetitive sequences and transposons are included.

Quantitative PCR

Genomic content was validated for four genes using qPCR (Table 3). gDNA concentration was quantified with 1.5× SYBR Green I (Roche Applied Science) on a Nanodrop 3300 (Thermosavant). Triplicate qPCR reactions (Opticon MJ Research) contained 0.75× SybrGreen, 1× Immomix (Biolabs), 200–500 nM primers and 0.2 ng sample DNA in 10 μl reactions (95°C– 10 min; 35 cycles of: 94°C– 2 min, 60°C– 20 sec, 72°C– 15 sec, and 2 min extension). Copy number relative to *A. burtoni* was calculated as CT, the cycle number at a set threshold relative to the *A. burtoni* standard curve, standardized to an *A. burtoni* copy number of 1. Primer efficiency was calculated with a dilution series for *A. burtoni* DNA and one test species (Additional file 2: Table S2).

Availability of supporting data

The data sets supporting the results of this article are available in the GEO repository, [GSE19368](http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE19368) and DRYAD (doi:10.5061/dryad.7vs2c) [Additional file 1](http://www.biomedcentral.com/content/additionalfiles/doi:10.5061/dryad.7vs2c).

Additional files

Additional file 1: Figure S1. Genes Identified as duplicated that are represented on the array by more than one microarray feature. Those with perfect concordance for significance calls (n = 5) are not shown. In each plot, the y-axis represents Log2 hybridization ratios for the heterologous species relative to *A. burtoni*. Each line indicates an individual microarray feature that is statistically significant (P < FDR 0.1, black), marginally significant (P < FDR 0.2, grey) or not significant (grey dashed) for genes represented by 2 microarray features (A–H), 3 microarray features (I–N) and 8 microarray features (O). AT: *A. tweedlei*; ME: *M. estherae*; PS: *P. similis*; RC: *R. chilingali*.

Additional file 2: Table S2. Oligonucleotide primers and efficiency used for qPCR designed against GenBank sequence available for microarray features.

Competing interests

The authors declare that they have no competing interests.

Authors’ contributions

SCPR, DHL, DJ conceived of the project. HEM, CRLR, GJ performed the experiments. SCPR, HEM, DHL prepared the manuscript. All authors read and approved the final manuscript.

Acknowledgements

Funded by Murdock Charitable Life Trust and NSF-OIS 0818957. Thanks to Martin J Genner for *Rhamphochromis “chilingali”* samples.

Author details

1. Department of Biology, Stanford University, Stanford, CA 94305, USA.
2. Department of Biology, Reed College, Portland, OR 97202, USA.
3. School of Biological Biomedical and Environmental Science, University of Hull, Hull HU6 7RX, UK.
4. Santa Catalina School, Monterey, CA 93940, USA.

Received: 27 September 2013 Accepted: 19 February 2014 Published: 26 February 2014

References

1. Dobzhansky T: Genetics of the evolutionary process. New York: Columbia University Press; 1937.
2. Mayr E: Animal species and evolution. Cambridge, Massachusetts: Belknap Press of Harvard University Press; 1963.
3. Schluter D: The Ecology of Adaptive Radiation. Oxford, UK: Oxford University Press; 2000.
4. Stankin M: Ecological Character Displacement. Ecology 1980, 61:163–177.
5. Smith JM: Sympatric speciation. Am Nat 1996, 100:637.
6. Gould SJ: Wonderful Life: The Burgess Shale and the Nature of History. New York: W.W. Norton & Company; 1989.
7. Darwin C: The Origin of Species. New York: Bantam Books; 1859.
8. Fryer G: Comparative aspects of adaptive radiation and speciation in Lake Malawi and the great rift lakes of Africa. Hydrobiologia 1990, 211:137–146.
9. Losos JB, Jackman TR, Larson A, de Queiroz K, Rodrigues S: Contingency and determinism in replicated adaptive radiations of island lizards. Science 1998, 279:2115–2118.
10. Baldwin BG, Sanderson MJ: Age and rate of diversification of the Hawaiian silversword alliance (Compositae). Proc Natl Acad Sci U S A 1998, 95(16):9402–9406.
11. Fryer G, Iles TD: The cichlid fishes of the Great Lakes of Africa. Their biology and evolution. Edinburgh: Oliver & Boyd; 1972.
12. Farias IP, Ortí G, Meyer A: Total evidence: molecules, morphology, and the phylogenetics of cichlid fishes. J Exp Zool 2000, 288(1):76–92.
13. Kocher TD: Adaptive evolution and explosive speciation: the cichlid fish model, Nat Rev Genet 2004, 5(4):288–298.
14. Seehausen O: African cichlid fish: a model system in adaptive radiation research. Proc R Soc Lond B Biol Sci 2006, 273(1597):1987–1998.
15. Ohno S: Evolution by Gene Duplication. New York: Springer-Verlag; 1970.
16. Lynch M, Conery JS: The evolutionary fate and consequences of duplicate genes. Science 2000, 290(5494):1151–1155.
17. Force A, Lynch M, Pickett FB, Amores A, Yan YL, Peterson DA, Presler PB: Preservation of duplicate genes by complementary, degenerative mutations. Genetics 1999, 151(3):1311–1319.
18. Taylor JS, Raes J: Duplication and divergence: the evolution of new genes and old ideas. Annu Rev Genet 2004, 38:615–643.
19. Fortna A, Kim Y, MacLaren E, Marshall K, Hahn G, Meltesen L, Benton M, Hink R, Burgers S, Hernandez-Boussard T, Karimpour-Fard A, Gueck D, McGowan L, Berry R, Pollack J, Skleta J: Lineage-specific gene duplication and loss in human and great ape evolution. PLoS Biol 2004, 2(7):937–954.
20. Marques-Bonet T, Kidd JM, Ventura M, Graves TA, Cheng Z, Hiller LW, Jiang ZS, Baker C, MaFaxon-Bora J, Fulton LA, Alkan C, Aksay G, Girirajan S, Stawara P, Chen L, Cardone MF, Navarro A, Mardis ER, Wilson RK, Eichler EE: A burst of segmental duplications in the genome of the African great ape ancestor. Nature 2009, 457(7231):877–881.
21. Genner MJ, Seehausen O, Lust DH, Joyce DA, Shaw PW, Carvalho GR, Turner GF: Age of cichlids: new dates for ancient lake fish radiations. Mol Biol Evol 2007, 24(5):1269–1282.
22. Joyce DA, Lust DH, Genner MJ, Turner GF, Bills R, Seehausen O: Repeated colonization and hybridization in Lake Malawi cichlids. Curr Biol 2011, 21(3):R108–R109.
23. Loh YH, Bezault S, Muenzel F, Roberts R, Snowford R, Barluenga M, Kidd C, Howe A, Di Palma F, Lindblad-Toh K, Hey J, Seehausen O, Salzburger W, Kocher TD, Streeanman JT: Origins of Shared Genetic Variation in African Cichlids. Mol Biol Evol 2013, 30:906–917.
24. Loh YH, Katz LS, Mims MC, Kocher TD, Yi SJ, Streeanman JT: Comparative analysis reveals signatures of differentiation amid genomic polymorphism in Lake Malawi cichlids. Genome Biol 2008, 9(7):R133.
25. Sandve SR, Rudi H, Asp T, Rognli OA: Tracking the evolution of a cold stress associated gene family in cold tolerant grasses. BMC Evol Biol 2008, 8:245.

26. Chen ZZ, Zheng CHG, Zhang JF, Cao LX, Chen L, Zhou LH, Jin YD, Ye H, Deng C, Dai ZH, Xu X, Hu P, Sun S, Shen Y, Chen L: Transcriptomic and genomic evolution under constant cold in Antarctic nototheniid fish. Proc Natl Acad Sci U S A 2008, 105(16):6344–6349.

27. Monrow RK: Gene duplication, neo-functionalization, and the evolution of C-4 photosynthesis. Int J Plant Sci 2003, 164(3):543–554.

28. Sackton TB, Lazzaro BP, Schlenke TA, Evans JD, Hultmark D, Clark AG: Dynamic evolution of the innate immune system in Drosophila. Nat Genet 2007, 39(12):1461–1468.

29. Barreiro LB, Quintana-Murci L: From evolutionary genetics to human immunology: how selection shapes host defence genes. Nat Rev Genet 2010, 11(1):157–30.

30. Lazzaro BP, Little TJ: Immunity in a variable world. Philos Trans R Soc Lond B Biol Sci 2009, 364(1513):15–26.

31. van der Aa LM, Levraud JP, Yahmi M, Lauret E, Briolat V, Herbomel P, Benmansour A, Boudinot P: A large new subset of TRIM genes highly diversified by duplication and positive selection in teleost fish. BMC Genomics 2009, 10:7.

32. Lukacs AC, Harstad H, Grimholt U, Beetz-Sargent M, Cooper GA, Reid L, Yu SM, Liu MC: Increased levels of mitochondrial ATP synthase beta-subunit in fast skeletal muscle of carp acclimated to cold temperature. BMC Genomics 2009, 10:8.

33. Persson AC, Stet RJM, Pilstrom L: Recent duplication and inter-locus differentiation of copy number polymorphisms within and between breeds of the Gadus morhua. Mol Mar Biol Biotechnol 2009, 18(6):921–932.

34. Malaga-Trillo E, Zaleska-Rutczynska Z, McAndrew B, Vincek V, Figueroa F, Yoshiyama M, Kaneko Y, Iwasaki T, Sunagawa T, Yamaji K, Asaoka A, Mita K, Tomimatsu T: A large new subset of TRIM genes highly diversified by duplication and positive selection in teleost fish. BMC Genomics 2009, 10:8.

35. van Hijum S, Baerends RJS, Zomer AL, Karsens HA, Martin-Requena V, Trelles O, Kok J, Kuipers OP: Annotation Using CAFE 3. BMC Bioinformatics 2008, 9:49.

36. Persson AC, Stet RJM, Pilstrom L: Characterization of MHC class I and beta(2)-microglobulin sequences in Atlantic cod reveals an associated gene family in cold tolerant grasses. Aquat Toxicol 2009, 91(2):110–120.

37. Sato A, Figueroa F, O'Machado HE, Jones A, Son I, Kulathinal R, Hofmann HA: Using comparative genomic hybridization to survey genomic sequence divergence across species: a proof-of-concept from Drosophila. BMC Genomics 2010, 11:271.

38. Sato A, Dongak R, Hao L, Shintani S, Sato T: Evolutionary analyses of the CYP6B3 of the black swallowtail (Papilio polyxenes) and its novel host plant detoxification gene in butterflies. EvoDevo 2011, 2:1.

39. Reusch TBH, Schaschl H, Wegner KM: Gene duplication, neofunctionalization, and the evolution of C-4 photosynthesis. Int J Plant Sci 2003, 164(3):543–554.

40. Sugahara T, Yano YS, Li CC, Pai TG, Liu MC: Sulphonation of dehydroepiandrosterone and neurosteroids: molecular cloning, expression, and functional characterization of a novel zebrafish SULT2 cystic fibrosis transmembrane conductance regulator. Biochem J 2003, 373:785–791.

41. Lie KK, Lanzen A, Breidel H, Otvos PA: Gene expression profiling in Atlantic cod (Gadus morhua L) from two contaminated sites using a custom-made CDNA microarray. Environ Toxicol Chem 2009, 28(8):1711–1721.

42. Li WH, Gu ZL, Wang HD, Nekrutenko A: Evolutionary analyses of the human genome. Nature 2001, 409(6822):847–849.

43. In Fabic P, Stellwag El, Scenama JL: Embryonic Development and Skeletonogenesis of the Pharyngeal Jaw Apparatus in the Cichlid Nile Tilapia (Oreochromis niloticus). Anat Rec (Hoboken) 2009, 292(11):1780–1800.

44. Fraser GL, Hulsey CD, Bloomquist RF, Uyeguy K, Manley NR, Steelman JT: An Ancient Gene Network Is Co-opted for Teeth on Old and New Jaws. PLoS Biol 2009, 7(2):233–247.

45. Renn SCP, Machado HE, Jones A, Son I, Kulathinal R, Hofmann HA: Using comparative genomic hybridization to survey genomic sequence divergence across species: a proof-of-concept from Drosophila. BMC Genomics 2010, 11:271.

46. Sufkon M, Carter G, Liu MC: Evolutionary genetics to human immunology: how selection shapes host defence genes. Nat Rev Genet 2010, 11(1):157–30.

47. Han MK, Thomas GWC, Lugo-Martinez J, Hahn WM: Estimating Gene Gain and Loss Rates in the Presence of Error in Genome Assembly and Annotation Using CAFE 3. Mol Biol Evol 2013, 30(8):1987–1997.

48. Dopman EB, Harte DL: A portrait of copy-number polymorphism in Drosophila melanogaster. Proc Natl Acad Sci U S A 2007, 104(50):19920–19925.

49. le Pabic P, Stellwag EJ, Scemama JL: Gene duplication, neofunctionalization, and the evolution of C-4 photosynthesis. Int J Plant Sci 2003, 164(3):543–554.

50. Sugahara T, Yano YS, Li CC, Pai TG, Liu MC: Sulphonation of dehydroepiandrosterone and neurosteroids: molecular cloning, expression, and functional characterization of a novel zebrafish SULT2 cystic fibrosis transmembrane conductance regulator. Biochem J 2003, 373:785–791.