Simultaneous versus staged bilateral total hip arthroplasty: a systematic review and meta-analysis

Akam Ramezani¹, Amirhossein Ghaseminejad Raeini¹, Amirmohammad Sharafi¹, Mehrdad Sheikhvatan¹,², Seyed Mohammad Javad Mortazavi³ and Seyyed Hossein Shafiei¹*

Abstract

Background: Total hip arthroplasty is a common orthopedic surgery for treating primary or secondary hip osteoarthritis. Bilateral total hip replacement could be performed in a single stage or two separate stages. Each surgical procedure's reliability, safety, and complications have been reported controversially. This study aimed to review the current evidence regarding the outcomes of simultaneous and staged bilateral total hip arthroplasty.

Methods: We conducted a meta-analysis using MEDLINE, EMBASE, Web of Science, and Scopus databases. Eligible studies compared complications and related outcomes between simultaneous and staged bilateral THA. Two reviewers independently screened initial search results, assessed methodological quality, and extracted data. We used the Mantel–Haenszel method to perform the meta-analysis.

Results: In our study, we included 29,551 patients undergoing simBTHA and 74,600 patients undergoing stgBTHA. In favor of the simBTHA, a significant reduction in deep vein thrombosis (DVT) and systemic, local, and pulmonary complications was documented. However, we evidenced an increased pulmonary embolism (PE) and periprosthetic fracture risk in simBTHA. In the simBTHA, total blood loss, length of hospital stay, and total cost were lower.

Conclusion: This meta-analysis shows that simultaneous bilateral THA accompanies fewer complications and lower total cost. Well-designed randomized controlled trials are needed to provide robust evidence.

Keywords: Total hip arthroplasty, Meta-analysis, Bilateral total hip replacement, Cost–benefit analysis, Complications, Functional outcomes

Background

Total hip arthroplasty (THA) is one of the most common orthopedics surgeries. It is the preferred cost-effective treatment for osteoarthritis and other end-stage hip abnormalities. Patients experience a significant improvement in joint function as well as the quality of life following THA [1]. Studies suggest a rising trend in the number of performed THAs during the last decade [2]. From 2000 to 2014, the number of annual performed THAs increased by 105% in the USA. It is also projected that by 2030, this number will increase by 71.2%, reaching 635,000 procedures per year [3]. Total hip replacement also imposes a high economic burden on healthcare systems, with US hospitals bearing a staggering cost of $15 billion annually [4].

Patients scheduled for bilateral THA usually undergo two different timing sets of surgeries: simultaneous or staged. Simultaneous BTHA is performed in single hospital admission and under the same anesthesia. On
the other hand, staged BTHA is executed at separate intervals in two hospitalizations and under two distinct anesthesia [5]. In 1971, Charnley et al. introduced simultaneous THA for bilateral hip pathologies, a noteworthy revolution in orthopedic science [5, 6]. Since then, there has always been controversy over which method could have better outcomes.

In 2016, Shao et al. conducted a systematic review comparing simBTHA and stgBTHA. It was revealed that surgery time, deep vein thrombosis (DVT), and major systemic complications were significantly lower in simBTHA compared to stgBTHA [7]. In 2019, another systematic investigation performed by Huang et al. also demonstrated lower rates of DVT, pulmonary embolism (PE), and respiratory complications in simBTHA [8].

There is still debate concerning this critical issue, and many original studies have been conducted since the last published systematic review. Previous reviews have focused on systemic and surgical complications, blood loss, operation time, and mortality as their primary outcomes. Essential factors such as readmission, revision, hip joint function, and cost have been considered less. Thus, a thorough review of the available data is required to identify the best way to perform bilateral THAs. The forthcoming systematic review aims to make a more comprehensive and accurate comparison between simultaneous and staged BTHA with a higher sample size and additional related outcomes.

Method
The protocol of this study was registered on PROSPERO (CRD420222310240). We followed the Cochrane guidelines for meta-analysis during the process [9]. Our study phases were based on the Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) guidelines [10]. The PRISMA checklist is presented in Additional file 1.

Search strategy
We searched the electronic databases MEDLINE, Web of Science (WOS), Embase, and Scopus for relevant articles in any published language; the last updating search was performed on February 15, 2022. The keywords are exhibited in Additional file 2. In addition, we explored the reference part of the articles that fulfilled our eligibility criteria. We also used the “related articles” feature in PubMed to avoid probable missing.

Eligibility criteria
PICOS categories (population, intervention, comparator, outcomes, and study design) were applied to define our inclusion criteria. We included studies only if they were executed to compare mortality, complications, costs, or other possible outcomes between simBTHA and stgBTHA. Eligible study designs were randomized controlled trials (RCTs), non-randomized clinical trials, prospective and retrospective cohort studies, and case-control investigations. We did not impose any restrictions on the length of follow-up and year of publication. Exclusion criteria were reviews, research letters, conference abstracts, non-English articles, duplicate publications, irrelevant articles, non-human models, studies comparing simBTHA to unilateral THA, and resurfacing or revision surgery.

Systemic complications were defined as cardiovascular, pulmonary, gastrointestinal, urologic, and neurologic complications, hypotension, anemia, DVT, and PE. Notably, we did not include PE in the pulmonary complications in the meantime of analysis. Local complications in our study were defined as wound infection, decubitus ulcer, hematoma, dehiscence, neurapraxia, vascular injury, accidental laceration or puncture, chronic soft tissue pain, neuroma, wound drainage, superficial infection, and ectopic ossification.

Data extraction
We imported all the studies into Rayyan online tool [11] in order to screen conveniently. After resolving duplicates, two researchers (AR, AS) completed an initial independent review to determine if the studies met the inclusion criteria hinged upon the title and abstract. Then, the two prior reviewers (AR, AS) evaluated each in the full-text screening phase. In case of any discrepancy, a third reviewer (AG) became involved and resolved it.

We prepared an electronic spreadsheet according to the Cochrane's template for data extraction of intervention reviews. Two separate reviewers fulfilled the data extraction (AR, AG). We acquired the following data from the studies: first author's name, publication year, country, study design, the sample size, mean age, gender, mean body mass index (BMI), American Society of Anesthesiology (ASA) classification, the interval between stages, duration of follow-up, primary and secondary outcomes including mortality, DVT, PE, fracture, dislocation, deep infection, any other complications, revision, readmission, operation time, blood loss, blood transfusion, length of hospital stay (LOS), hospital cost, and functional measures. Raw data were reviewed by another researcher (AS) to settle any disagreement. We also tried to contact the corresponding authors of the included articles regarding raw data or missing information. Patients with an ASA score of 1 or 2 were categorized as ‘low risk,’ and patients with an ASA score of 3 or 4 were categorized as ‘high risk’ [12].
Methodology assessment
To assess the quality of each study, we employed the Newcastle–Ottawa Scale (NOS) for observational and non-randomized investigations. Briefly, the NOS evaluates a study according to three main characteristics: selection of groups, comparability, and outcome assessment [13]. We judged the quality of included studies according to the previous classification described in a meta-analysis by Simunovic et al. [14]. Studies with a score > 6 were categorized as high quality. Those with a score of 5 or 6 were classified as medium quality. Articles scored less than 5 were assigned as a low-quality study. Concerning randomized clinical trials (RCTs), we utilized the Cochrane Collaboration tool to assess the risk of bias. Two reviewers (AR, AS) independently assessed each study’s quality. Disagreements were determined by consensus or involvement of the corresponding author (SHS).

Statistical analysis
We performed meta-analysis using the Comprehensive Meta-Analysis software (Biostat, Englewood, NJ, USA, Version 3.3) if three or more studies reported a particular outcome. For dichotomous variables, odds ratios (ORs) were calculated and pooled for all investigations. Meta-analysis of dichotomous variables was committed through the Mantel–Haenszel (MH) method, with 95% confidence intervals (CI). Meta-analysis of continuous data was performed by applying the mean and standard deviation of outcome measures with 95% confidence intervals (CI). For studies that reported only data ranges without standard deviations, we calculated SDs using the formula suggested by Walter & Yao [15]. A p value less than 0.05 was considered statistically significant. We analyzed heterogeneity among the studies using the I^2 test [16]. $I^2 > 50\%$ with a p value < 0.05 suggested high heterogeneity. A fixed-effects model was utilized if low statistical heterogeneity among the studies was discovered ($I^2 < 50\%$). A random-effects model was used if high heterogeneity became proven. We also detected potential publication bias by using Begg’s funnel plots and the Egger test [17].

Results
Search results
After deleting duplications, we identified 5324 potentially relevant titles from the mentioned databases. Based on the titles and abstracts, 5236 publications were excluded. Full texts of 88 remaining publications were screened. Finally, in this systematic review, 38 studies, including 104,151 patients (29,551 simBTHA and 74,600 stgBTHA), were entered into the quantitative analysis. A flowchart summarizing the selection process is provided in Fig. 1.

Study characteristics
Among the 38 included studies, 2 studies [18, 19], including 348 patients, were RCTs and 36 studies were non-RCTs [20–55]. The baseline characteristics of the articles are displayed in Table 1. Studies were in the English language and were published from 1978 to 2022. The duration of follow-up was at least 3 months. The sample size of included studies ranged from 15 to 42,238. The mean age of participants was 57.6 years for simBTHA and 63.2 years for stgBTHA. The male-to-female ratio was 1:1.29. Raw data for ASA classification were reported in 14 studies [18, 19, 24, 25, 33–35, 37, 41, 42, 45–47, 49]. Regarding ASA score, 13% and 18% of patients in simBTHA and stgBTHA were considered high risk (ASA 3 or 4), respectively (Table 1).

Quality assessment
Randomization methods, outcome assessment blinding, incomplete outcome data, and selective data reporting were low risk for both RCTs. Although the allocation method was not reported in one RCT, all other included studies were observational, comprising one prospective cohort, seven registries, nineteen retrospective cohorts, and nine retrospective case controls. The risk-of-bias assessment results for both randomized and observational studies are summarized in Table 2.

Mortality and complications
Pooled analysis of 11 studies on DVT (OR = 0.639, $p = 0.044$, Fig. 2a), 12 studies on pulmonary complications (OR = 0.533, $p < 0.001$, Fig. 2c), 14 studies on systemic complications (OR = 0.803, $p = 0.048$, Fig. 3a), and 16 studies on local complications (OR = 0.736, $p < 0.00$, Fig. 3b) exhibited that these complications are lower in simBTHA. However, PE, reported in 12 studies (OR = 1.925, $p < 0.001$, Fig. 2b), and periprosthetic fracture, reported in 13 studies (OR = 1.306, $p = 0.049$, Fig. 4b), were higher in simBTHA. 90-day mortality, reported in eight studies (OR = 1.101, $p = 0.815$, Fig. 5), periprosthetic joint infection, reported in nine studies (OR = 1.112, $p = 0.508$, Fig. 4a), and dislocation, reported in 14 studies (OR = 0.760, $p = 0.153$, Fig. 4c), were similar between the two groups (Table 3).

Perioperative and postoperative relevant outcomes
The overall effect of included studies demonstrated that simBTHA was lower in terms of length of stay (MD = -4.777, $p < 0.001$, Fig. 6) (26 studies), operation cost (USD) (MD = -2464, $p < 0.001$, Fig. 7c) (11 studies),
and blood loss ($MD = -254.785, p < 0.001$, Fig. 7a) (12 studies). Pooled data of nine studies showed that the simBTHA group experiences a mean 1.37 point improvement over the stgBTHA group in postoperative Harris Hip Score (HHS) ($MD = 1.370, p = 0.006$, Fig. 8a).

There was no significant difference in the revision rate (OR = 1.033, $p = 0.572$, Fig. 9a) (ten studies), readmission rate (OR = 0.997, $p = 0.980$, Fig. 9b) (six studies), blood transfusion rate ($MD = 0.114, p = 0.286$, Fig. 7b) (12 studies), and postoperative limb length discrepancy

Fig. 1 PRISMA flowchart showing identification, screening, and inclusion of studies for review
Author (year)	Country	Study design	Simultaneous bilateral THA	Staged bilateral THA	Mean follow-up (range)			
			n	Age (mean, year)	Gender (male/female)	BMI (mean, Kg/m²)	ASA (1/2/3/4) (percentage)	Time interval between stages
Agarwal et al.	India	Retrospective cohort	48	52	20.28	-	-	4.2 days
Aghayev et al.	Switzerland	Registry	247	59	116.131	-	-	60 months
Alfaro-Adrián et al.	Brazil	Retrospective cohort	95	65	40.55	-	43/37/19/1	10.1 months
Berend et al.	USA	Retrospective cohort	167	52.7	100.67	29.7	-	8.1 months
Bhan et al.	India	Randomized clinical trial	83	46.6	54.29	-	59/31/10/0	3–7 months
Brown et al.	USA	Retrospective cohort	15	56.9	8.7	26.4	Mean = 1.8 ± 0.6	3 months
Calabro et al.	Australia	Registry	2779	-	6214.6145**	-	19/60/20/1	Minimum = 1.3 years
Eggli et al.	Switzerland	Prospective cohort	64	54	133.122**	-	191	96 days
Garland et al.	Sweden	Registry	1680	-	767.913	26.9	33/54/13/0	to the day of death
Goh et al.	USA	Retrospective cohort	220	60.8	341.330**	30	-	3 months
Guo et al.	China	Retrospective cohort	863	49	604.259	24.7	31/68/1/0	Minimum = 3 months
Hooper et al.	New Zealand	Registry	303	61	-	-	743	6 months
Hou et al.	China	Retrospective case control	100	54	30.7	24.6	100	-
Houdek et al.	USA	Retrospective case control	94	52.2	54.40	27.1	77/78/15/0	3 months

Table 1 Main baseline characteristics of the included studies
Author (year)	Country	Study design	Simultaneous bilateral THA	Staged bilateral THA	Mean follow-up (range)	
Inoue et al. (2021)	USA	Retrospective cohort	256 58.2 15.101 27.8 –	387 62.5 176.211 28.4 –	31.5 months 90 days	
Johnston et al. (2011)	Scotland	Retrospective cohort	68 61.5 26.42 27.4 –	526 66.5 208.318 27.2 –	1.5 years (24–108 months)	
Kamath et al. (2016)	Switzerland	Retrospective cohort	41 60.7 24.17 –	44 68.7 18.26 –	Mini- mum= 24 months	
Kim et al. (2017)	South Korea	Retrospective cohort	63 43.1 39.24 22.9 30/60/10 0	60 43.5 32.28 23.3 30/66/4/0	4.8 months 60.2 months	
Lindberg-Larsen et al. (2013)	Denmark	Registry	103 55.7 59.44 –	577 66.9 234.343 –	Max=415 days	
Lorenz et al. (1998)	USA	Retrospective case control	40 – 20.20 –	40 – 20.20 –	–	
Martin et al. (2016)	Canada	Retrospective case control	12 58.9 –	12 63.9 –	Mean=2.2±0.4 –	
Mou et al. (2021)	China	Retrospective cohort	11 – 10 1.1	12 – 10.2	22.7 –	40.8 days 80.9 months
Panchal et al. (2021)	India	Retrospective case control	54 – 27.27 –	54 – 27.27 –	–	
Partridge et al. (2019)	UK	Registry	2507 60.6 1178.13 29 –	9915 65.5 3966.59 49 –	–	
Parviz et al. (2006)	USA	Retrospective case control	98 53 53.45 28.8 11/72/17/0	98 65 46.52 30.2 1/51/48/0	138 days Mini- mum= 6 months	
Poultsides et al. (2017)	USA	Retrospective cohort	1946 56.3 1000.946 –	1839 63.1 746.1093 –	5–365 days –	
Table 1 (continued)

Author (year)	Country	Study design	Simultaneous bilateral THA	Staged bilateral THA	Mean follow-up (range)									
			n	Age (mean, year)	Gender (male/female)	BMI (mean, Kg/m²)	ASA (1/2/3/4) (percentage)	n	Age (mean, years)	Gender (male/female)	BMI (mean, Kg/m²)	ASA (1/2/3/4) (percentage)	Time interval between stages	
Quadri et al. (2015)	Pakistan	Retrospective cohort	34	39	30.4	25	29/57/77	14	42	6.8	27	14/57/29/0	–	–
Rasouli et al. (2014)	USA	National database	14,798	58.4	–	–	–	1532	60.3	–	–	–	–	–
Reuben et al. (1998)	USA	Retrospective case control	7	49	4.3	–	Mean = 2.5 ± 0.5	8	57	1.7	–	Mean = 1.7 ± 0.7	–	–
Saito et al. (2010)	Japan	Retrospective case control	49	59	6.43	23.5	–	40	61.9	4.36	23.8	–	30.7 days	5.5 years (24–120 months)
Salvati et al. (1978)	USA	Retrospective cohort	122	–	–	–	–	339	–	–	–	–	–	36 months
Schlegelmilch et al. (2017)	Canada	Retrospective case control	26	–	–	–	–	6	–	–	–	–	–	12 months
Seol et al. (2015)	Korea	Retrospective cohort	147	41.9	112.35	23.7	54/41/5/0	59	46.3	45.14	23.8	46/46/8/0	18.7 months	34.4 months
Shih et al. (1985)	China	Retrospective cohort	20	40.7	17.3	–	–	15	46.6	13.2	–	–	–	365–530 days
Taheriazam et al. (2019)	Iran	Randomized clinical trial	90	59.3	59.31	28.4	score 1 or 2	90	59.1	52.38	28.7	score 1 or 2	6–12 months	24 months
Tan et al. (2019)	China	Retrospective cohort	256	52	143.113	23.8	41/49/8/2	256	54.9	120.136	23.8	38/54/7/1	–	3 months
Triantafyllopoulos et al. (2016)	USA	Retrospective cohort	1808	56.3	930.878	–	–	4842	62.3	1995.2847	–	–	249–1710 days	112.6 months
Villa et al. (2019)	USA	Retrospective cohort	61	55.4	40.21	27.5	15/69/16/0	143	63.1	63.80	27.7	7/69/24/0	461	–

THA: total hip arthroplasty, n: number, BMI: body mass index, ASA: American Society of Anesthesiology

**This is a report of the gender in whole sample size (not reported in separated groups)

Δ This is a report of the gender in whole total joint arthroplasty sample size (not reported in separated groups; THA and TKA)
Table 2 Quality assessment of the eligible studies

Author	Year	Study type	Random sequence generation	Allocation concealment	Blinding of participants and personnel	Blinding of outcome assessment	Incomplete outcome data	Selective reporting	Other bias
Bhan et al.	2006	Randomized clinical trial	Yes	Unclear	Unclear	Yes	Yes	Yes	No bias
Taheri azam et al.	2019	Randomized clinical trial	Yes	Yes	Unclear	Yes	Yes	Unclear	No bias

Newcastle–Ottawa Scale (NOS)

Study	Selection	Comparability	Exposure/Outcome	Total score
Agarwal et al.	3	1	2	6
Aghayev et al.	3	1	2	6
Alfaro-Adrián et al.	3	1	2	6
Berend et al.	3	1	2	6
Brown et al.	3	2	1	6
Calabro et al.	3	2	2	7
Eggli et al.	3	2	2	7
Garland et al.	3	1	2	6
Goh et al.	3	1	1	5
Guo et al.	3	1	2	6
Hooper et al.	3	1	2	6
Hou et al.	3	1	2	6
Houdek et al.	3	1	2	6
Inoue et al.	3	1	1	5
Johnston et al.	4	1	2	7
Kamath et al.	4	2	2	8
Kim et al.	3	2	2	7
Lindberg-Larsen et al.	4	1	2	7
Lorenze et al.	3	1	1	5
Martin et al.	4	1	0	5
Mou et al.	4	1	2	7
Panchal et al.	3	2	2	7
Partridge et al.	3	2	2	7
Parvizi et al.	3	1	2	6
Poultsides et al.	3	2	1	6
Quadri et al.	3	2	2	7
Rasouli et al.	3	1	2	6
Reuben et al.	3	1	1	5
Saito et al.	4	1	2	7
Salvati et al.	3	1	1	5
Schlegelmilch et al.	3	1	1	5
Seol et al.	3	1	1	5
Shih et al.	2	1	2	5
Table 2 (continued)

Newcastle–Ottawa Scale (NOS)	Selection	Comparability	Exposure/Outcome	Total score	
Tan et al. 2019	Retrospective cohort	3	2	1	6
Triantafyllopoulos et al. 2016	Retrospective cohort	3	1	2	6
Villa et al. 2019	Retrospective cohort	4	1	2	7

(LLD) (MD = −0.391, p = 0.312, Fig. 8b) (seven studies) (Tables 4 and 5).

Systematic review of heterogeneous data
Based on 12 studies [18–20, 24, 25, 29, 34, 37, 38, 41, 42, 54], the mean operation time was 171.4 min for simBTHA and 191.4 min for stgBTHA. Cumulative operation time for both surgeries in stgBTHA was longer than simBTHA operation time in all studies except the study by Kim et al. [42]. Although postoperative Western Ontario and McMaster Universities Arthritis Index (WOMAC) scores were reported to be similar between the two groups [35], two studies reported significantly higher scores of Oxford Hip Scores [56] or EuroQoL-5D index [42] in simBTHA compared to stgBTHA. In contrast, another study by Kamath et al. [37] stated no statistical difference between the two groups in mentioned functional outcomes. Functional recovery was faster in simBTHA, as walking without support started earlier [36] and walking capacity was better postoperatively [21, 28]. Rates of home-discharged patients for stgBTHA were higher in all studies [25, 26, 40, 41, 43, 49, 54].

For 90-day mortality, systemic complications, operation cost, LOS, blood loss, blood transfusion rate, HHS, LLD, and high heterogeneity existed between studies (I² ranged from 59.909 to 99.729%). Begg's funnel plots are shown in Additional file 3.

Discussion
SimBTHA has continued to attract attention since Charnley first introduced this type of orthopedic surgery. Many studies comparing simBTHA and stgBTHA have been conducted since then but, due to small sample size or other undetermined possible reasons, failed to obtain a definite conclusion. We conducted a comprehensive systematic review and meta-analysis of 38 comparative studies enrolling 104,151 patients. Findings of this updated meta-analysis generally concur and further extend that of previous reviews on the topic, providing several relevant results that have not been previously addressed.

Mortality and complications
The combined 90-day mortality rate was 0.22% for simBTHA and 1.57% for stgBTHA. Nonetheless, the 90-day mortality analysis failed to show any significant difference between the two groups. Since most included articles were retrospective studies, we should interpret the present results with caution. Previous studies have also posed no significant difference in mortality rate between the two groups [7, 32, 33, 48, 57].

Periprosthetic joint infection (PJI), as an uncommon complication of THA [58], can incur costs for the patient and healthcare system [59]. PJI can also lead to secondary surgery and even death [60]. No significant difference was observed regarding the PJI rate between the two groups. However, our results contrast with the previous review [7], which indicated a significantly higher infection rate in one-stage versus two-stage. Shao et al. [7] computed the risk in the cumulative number of superficial and deep infection cases, so their effect on subsequent procedures on hospitalization might be diverse. The overall PJI rate was 0.91% in the simBTHA group and 0.87% in the stgBTHA group. The overall PJI rate for both groups was higher than in previous studies [39, 61].

We investigated periprosthetic fracture between the two groups, and contrary to previous studies [5, 7, 41, 51], the incidence of fracture in simBTHA was higher than in stgBTHA. The unanticipated increased fracture risk in simBTHA can be attributed to the cemented or cementless fixation [62] and operation time in a single surgery. As in the previous meta-analyses [5, 7, 63], no clinically significant difference was seen in the occurrence of dislocation between the two groups in our study.

We found a significantly lower risk of DVT in simBTHA compared to stgBTHA. This finding is consistent with previous studies [7, 8]. Lower activity levels in stgBTHA due to pain in the contralateral hip can justify the elevated risk of DVT in stgBTHA [64]. Despite simBTHA patients having an associated lower risk of DVT, we observed an increased risk of PE in simBTHA compared to stgBTHA. Still, other investigations revealed no difference [5, 7, 57] or an elevated risk of PE in StgBTHA [8] PE, consuming a huge part of medical resources [65], can yield in-hospital and
Study name	**Statistics for each study**	**Events / Total**	**MH odds ratio and 95% CI**

a)

Study name	MH odds ratio	Lower limit	Upper limit	Z-Value	p-Value	Sim	Stg
Eggli	0.417	0.021	1.692	-0.575	0.565	0 / 64	3 / 191
Aghayev	0.109	0.007	1.799	-1.549	0.121	0 / 247	28 / 1572
Lindberg/Larsen	0.164	0.010	2.762	-1.254	0.210	0 / 103	16 / 577
Taheriazam	1.000	0.062	16.238	0.000	1.000	1 / 90	1 / 90
Tan	0.590	0.118	2.944	-0.644	0.520	3 / 432	3 / 256
Saito	2.505	0.099	63.183	0.558	0.577	1 / 49	0 / 40
Lorenze	1.000	0.060	16.562	0.000	1.000	1 / 40	1 / 40
Bhan	1.556	0.253	9.560	0.478	0.633	3 / 83	2 / 85
Hooper	0.612	0.068	5.496	-0.439	0.661	1 / 303	4 / 743
Alfaro-Adrián	0.120	0.006	2.266	-1.414	0.157	0 / 95	4 / 107
Guo	0.911	0.497	1.668	-0.303	0.762	42 / 863	15 / 282
	0.639	0.413	0.987	-2.019	0.044	52 / 2369	77 / 3983

OR = 0.639; 95% CI: 0.413 – 0.987; p = 0.044

Heterogeneity: I² = 0, p = 0.737

Study name	**Statistics for each study**	**Events / Total**	**MH odds ratio and 95% CI**

b)

Study name	MH odds ratio	Lower limit	Upper limit	Z-Value	p-Value	Sim	Stg
Eggli	1.200	0.227	6.342	0.215	0.830	2 / 64	5 / 191
Aghayev	0.332	0.044	2.493	-1.972	0.284	1 / 247	19 / 1572
Poultssides	1.378	0.638	2.976	0.815	0.415	16 / 1946	11 / 1839
Saito	2.505	0.099	63.183	0.558	0.577	1 / 49	0 / 40
Panizzi	3.031	0.122	75.313	0.676	0.499	1 / 98	0 / 98
Johnston	0.445	0.025	7.800	-0.554	0.580	0 / 68	8 / 526
Bhan	3.109	0.125	77.416	0.692	0.489	1 / 83	0 / 85
Villa	0.460	0.022	9.727	-0.499	0.618	0 / 61	2 / 143
Partridge	3.495	0.216	5.514	0.532	0.500	35 / 2567	40 / 9915
Hooper	2.457	0.153	39.408	0.635	0.525	1 / 303	1 / 743
Alfaro-Adrián	1.128	0.070	18.280	0.085	0.933	1 / 95	1 / 107
Guo	0.325	0.046	2.319	-1.121	0.262	2 / 863	2 / 282
	1.925	1.369	2.707	3.767	0.000	61 / 6384	89 / 15541

OR = 1.925; 95% CI: 1.369 – 2.707; p<0.001

Heterogeneity: I² = 30.762%, p = 0.145

Study name	**Statistics for each study**	**Events / Total**	**MH odds ratio and 95% CI**

c)

Study name	MH odds ratio	Lower limit	Upper limit	Z-Value	p-Value	Sim	Stg
Eggli	0.984	0.040	24.469	-0.010	0.992	0 / 64	1 / 191
Aghayev	0.161	0.010	2.674	-1.274	0.203	0 / 247	19 / 1572
Poultssides	0.552	0.036	0.829	-2.861	0.004	38 / 1946	64 / 1839
Panizzi	0.242	0.027	2.208	-1.258	0.209	1 / 98	4 / 98
Bhan	0.337	0.014	8.399	-0.663	0.508	0 / 83	1 / 85
Guo	0.688	0.294	1.612	-0.860	0.390	17 / 863	8 / 282
	0.533	0.375	0.757	-3.516	0.000	56 / 3301	97 / 4067

OR = 0.533; 95% CI: 0.375 – 0.757; p<0.001

Heterogeneity: I² = 0, p = 0.879

Fig. 2 Forest plot of **a** DVT, **b** PE, and **c** pulmonary complications. M-H, Mantel–Haenszel; OR, odds ratio; 95% CI, 95% confidence interval.
post-discharge mortality [66]. A large-scale data registry study by Partridge et al. [48] suggested that simBTHA is associated with a greater risk of developing PE. This study included more than half of our study population and maybe has shifted the results toward itself. However, the quality of this study was high and might not have imposed bias on the results. We should consider that pharmacological thromboprophylaxis can reduce thromboembolic events [67], and many risk factors affect PE incidence [68].

The stgBTHA was associated with a higher risk for postoperative pulmonary complications. Malcolm et al. also reported a 1.42% respiratory complication rate for THA, similar to the simBTHA group in our study [69]. In our study, the pulmonary complications rate in simBTHA and stgBTHA was 1.69% and 2.38%, respectively.
Fig. 4 Forest plot of a periprosthetic joint infection, b periprosthetic fracture, and c dislocation. M-H: Mantel–Haenszel; OR, odds ratio; 95% CI, 95% confidence interval.
On the other hand, a higher risk of systemic and local complications in the stgBTHA was evidenced. Similar results were reported by Aghayev et al. [28]. Poultsides et al. [43] and Guo et al. [47] also presented that the rate of systemic complications in simBTHA was lower than in stgBTHA.

Other outcomes

Combining the results of 10 studies revealed no significant differences in revision rate between the simBTHA and stgBTHA. Our findings are compatible with the previous study [46] published on this topic. Another study by Garland et al. [33] indicated a slightly higher risk of revision for stgBTHA. There were no significant differences among simBTHA and stgBTHA concerning readmission rates in keeping with previous studies [41, 47, 48].

Our research shows that simBTHA is superior to stgBTHA in terms of cumulative operation time, hospital cost, and LOS. The simBTHA surgery is performed in one session, while the stgBTHA surgery is performed in two sessions. Undergoing two operations, which obviously has a longer cumulative operation time, means a more extended anesthesia period which is correlated with increased risk of infection [70], venous thromboembolism (VTE) [71], neurologic deficit [72], revision, intraoperative blood loss, transfusion, and other critical adverse events [73, 74]. Operation time is a potentially modifiable risk factor that engages surgeons and healthcare systems interested in quality improvement. Sodhi et al. [75] saw that operation time is significantly associated with LOS, and LOS has also been a major driver of cost in THA [76]. Mean LOS for simBTHA was 4.8 days less than stgBTHA, which can justify more costs and complications in stgBTHA. However, operation time is varied by various factors such as operating technique, surgery approach, general or epidural anesthesia, patient’s demographics, and surgeon’s experience. Although almost all studies demonstrated a lower cost, and LOS in simBTHA, researchers utilized various methods to calculate these data. Therefore, high heterogeneity was observed in the pooled data.

The aggregate results of our study indicated that simBTHA outperformed stgBTHA in reducing perioperative total blood loss. Previous studies also showed a higher cumulative blood loss in stgBTHA compared to simBTHA [5, 18, 24]. Interestingly, in this meta-analysis, despite a lower total blood loss in simBTHA, analysis of transfusion units did not show any significant difference between the two groups. It should be taken into account that indications for blood transfusion in different studies were not the same. Another reason for similar rates of blood transfusion could be the interval between two operations in stgBTHA that provides enough time for hematopoiesis. In a retrospective study [39], comparing infection rates after THA, blood transfusion has found to be a powerful risk factor for PI, and patients who underwent simBTHA had a higher blood transfusion rate than stgBTHA. In contrast, another study by Parvizi et al. [25]...
Table 3 Summary of postoperative mortality and complications reported in each included study

Author	Year	Simultaneous bilateral THA	Staged bilateral THA																
		Mortality	Deep infection	Fracture	Dislocation	DVT	PE	Pulmonary complication	Local complications	Systemic complications	Mortality	Deep infection	Fracture	Dislocation	DVT	PE	Pulmonary complication	Local complications	Systemic complications
		(n)	(n)	(n)	(n)	(n)	(n)	(n)	(n)	(n)	(n)	(n)	(n)	(n)	(n)	(n)	(n)	(n)	(n)
Agarwal et al.	2016	1	1	0	0	3	0	–	–	1	1	1	0	0	2	0	–	–	2
Aghayev et al.	2010	–	16	4	0	1	24	26	–	–	87	16	28	19	19	201	260	–	–
Alfaro-Adrián et al.	1999	1	2	4	0	1	7	39	0	–	0	2	4	1	14	37	–		
Berend et al.	2007	–	–	4	–	–	–	–	–	–	–	–	–	–	–	–	–		
Bhan et al.	2006	0	2	1	0	3	1	11	0	1	1	1	2	0	1	3	6	–	–
Brown et al.	2017	–	–	–	0	0	–	–	–	–	–	–	–	–	–	0	–		
Calabro et al.	2020	3	24	34	10	–	–	–	–	5	95	95	91	–	–	–	–	–	–
Eggli et al.	1995	–	11	1	0	2	0	18	13	–	–	17	2	3	51	36	28		
Garland et al.	2015	26	–	–	–	–	–	–	–	1013	–	–	–	–	–	–	–		
Goh et al.	2022	–	–	–	–	–	–	–	–	–	–	–	–	–	–	–	–		
Guo et al.	2020	3	1	42	2	17	12	118	–	1	–	3	15	2	8	10	51	–	–
Hooper et al.	2009	0	16	–	–	–	–	2	2	1	15	–	4	1	–	–	5	–	–
Hou et al.	2021	–	–	–	–	–	–	–	–	–	–	–	–	–	–	–	–		
Houdek et al.	2017	0	3	6	5	–	–	–	10	2	0	3	7	4	–	–	18	2	–
Inoue et al.	2021	–	–	–	0	0	–	–	–	–	–	0	–	–	–	–	–		
Johnston	2011	–	–	4	0	0	4	–	–	–	–	17	0	8	8	–	–	–	–
Kamath et al.	2016	0	0	0	–	–	–	3	–	0	0	0	0	–	–	2	–		
Kim et al.	2017	2	10	0	–	–	–	–	1	2	7	0	–	–	–	–	–		
Lindberg-Larsen et al.	2013	0	1	0	–	–	–	2	2	–	5	–	16	–	–	–	–	–	–
Lorentz et al.	1998	–	0	1	1	0	0	1	1	–	0	1	0	1	0	1	1	1	–
Martin et al.	2016	–	–	–	–	–	–	–	–	–	–	–	–	–	–	–	–		
Mou et al.	2021	–	1	1	–	–	3	–	–	–	–	–	0	0	–	–	3	–	–
Panchal et al.	2021	0	0	0	–	–	–	1	0	–	0	–	0	0	–	–	–	–	–
Partridge et al.	2019	10	–	–	–	–	35	–	10	–	–	–	–	40	–	–	–	–	–
Parvi et al.	2006	0	–	–	1	1	–	12	0	–	–	–	0	4	–	–	30	–	–
Poultietes et al.	2017	1	–	–	16	38	6	279	0	–	–	–	11	64	7	374	–	–	–
Quadri et al.	2015	–	–	1	–	–	–	–	–	–	–	–	–	–	–	–	–		
Rasouli et al.	2014	15	–	–	600	4923	5	–	–	–	–	–	–	95	522	–	–	–	–
Reuben et al.	1998	–	–	–	–	–	–	–	–	–	–	–	–	–	–	–	–		
Author	Year	Simultaneous bilateral THA	Staged bilateral THA																
------------------	------	----------------------------	----------------------																
		Mortality	Deep infection	Fracture	Dislocation	DVT	PE	Pulmonary complication	Local complications	Systemic complications	Mortality	Deep infection	Fracture	Dislocation	DVT	PE	Pulmonary complication	Local complications	Systemic complications
Saito et al.	2010	0	–	–	1	1	–	–	–	–	–	–	–	–	–	–	–	–	–
Salvati et al.	1978	–	–	–	–	–	–	–	–	–	–	–	–	–	–	–	–	–	–
Schlegelmilch et al.	2017	–	–	–	–	–	–	–	–	–	–	–	–	–	–	–	–	–	–
Seol et al.	2015	0	1	–	0	–	–	–	–	–	0	2	–	0	–	–	–	0	–
Shih et al.	1985	1	1	0	–	–	–	–	–	–	0	0	0	0	–	–	1	0	–
Taheriiazam et al.	2019	0	0	0	1	0	2	1	1	0	1	0	0	1	0	–	0	1	–
Tan et al.	2019	0	–	–	3	0	–	3	5	–	0	–	–	3	0	–	1	3	–
Triantafyllopoulos et al.	2016	9	–	–	–	–	–	–	0	–	19	–	–	–	–	–	–	0	–
Villa et al.	2019	1	0	–	0	0	3	19	–	1	10	2	2	60	–	–	–	2	60

DVT deep vein thrombosis, *PE* pulmonary embolism, *n* number, *THA* total hip arthroplasty
revealed that the cumulative blood transfusion was lower in simBTHA compared with stgBTHA. As higher blood loss is accompanied by more need for blood transfusion in which itself is associated with a higher risk for infection [77], immunosuppression [78], and even death [79], blood loss stands as a significant concern in major orthopedic surgeries [80].

Although the pooled results of analysis favored simBTHA in terms of the postoperative HHS, but a 1.37 point improvement is not clinically significant based on the prior evidence [81]. Kim et al. [42] found that the mean postoperative HHS was significantly higher in simBTHA than in stgBTHA, and they mentioned that better functional outcomes in simBTHA could be because of the accuracy of surgery, earlier starting rehabilitation for both operated hips, and reduced time lost from work in a simultaneous procedure. The diversity of functional outcome measure types did not allow us concluding precisely regarding hip joint function. Using a comprehensive and unified tool that includes important items for hip joint function evaluation can help us decide more precisely which type of surgery is appropriate for specific situation.

Concomitant to our results, several studies have exhibited no difference in LLD between simBTHA and stgBTHA [36, 37, 40]. However, LLD can yield patient dissatisfaction after THA [82]. It also has been indicated that LLD can worsen functional outcomes such as Oxford Hip Score [83].

The strength points of this meta-analysis comprise peer-reviewed comparative studies and a rigorous assessment of the methodological quality of the currently available data. This study enhanced the power to compare the clinical outcomes of simBTHA and stgBTHA through more excellent details. With respect to the previous meta-analysis [8], we used explicit exclusion and inclusion criteria. We also utilized a robust search strategy spanned multiple databases, yielding 38 published studies on the topic, twice the number of included studies in the previous meta-analysis.
Fig. 7 Forest plot of a total blood loss, b blood transfusion need, and c total cost. MD, mean difference; 95% CI, 95% confidence interval.
Our study has several potential limitations. First, due to the limited number of RCTs, we included non-RCTs, too. As we know, retrospective studies vary in terms of quality, making our study susceptible to bias and confounding. Second, we also excluded non-English studies, which may cause language bias in our research. Third, lacking a specific definition for some outcomes like operation time and variety of measurements may bias our findings. Fourth, most of the studies did not report outcomes according to surgical approach, method of anesthesia, use of antibiotics and thrombosis prophylaxis, primary diagnosis, and demographic data. Although our goal was not to compare these data, they could have influenced the accuracy of our results. Fifth, some studies did not contain raw data for pooled analyses. Although we tried to contact the authors, we could not get these data. Sixth, each study's criteria for blood transfusion were different or not mentioned. Seventh, the number of participants varied considerably among the included studies, ranging from 15 to 42,238. Eighth, National registry data studies have some missing information about patients and these studies may also underestimate complications rates which could have influenced the final result. Ninth, follow-up periods were heterogeneous among studies. Tenth, HHS measurements were done at different times, which might have biased our results. At last, we combined different complications to obtain two categories: systemic and local. However, some studies avoided...
reporting complications separately, so they put together all of them without paying attention to the different severity, which limits the conclusion’s reliability.

Conclusion

Taken together, this meta-analysis demonstrated that simultaneous and staged THA have similar 90-day mortality, dislocation, and PJI rates. A statically significant risk reduction was identified in DVT, pulmonary, systemic, and local complications in the simBTHA group. Interestingly, stgBTHA is more promising in terms of PE and fracture rate. The present study also revealed that simBTHA is associated with lower total blood loss, length of stay, and total surgery cost. Reduced length of hospital stay and total surgery cost as essential advantages of simBTHA compared to stgBTHA may attract healthcare providers’ and policy-makers’ attention. After all, simBTHA remains noninferior to the stgBTHA in most postoperative outcomes. Anyhow, we recommend that well-designed randomized controlled trials should be conducted to elucidate the advantages of each surgery in order to help surgeons choose the proper surgical method hinged on their point of view and patient’s benefits.
Table 4 In-hospital important outcomes reported in each included study

Author	Year	Simultaneous bilateral THA	Staged bilateral THA									
		Operation time (min)	Hospital LOS (days)	Operation cost ($)	Transfusion (units)	Blood loss (ml)	Operation time (min)	Hospital LOS (days)	Operation cost ($)	Transfusion (units)	Blood loss (ml)	
Agarwal et al.	2016	–	5.6 ± 0.8	–	1.6 ± 1.1	280 ± 86.7	–	9 ± 10	–	2.2 ± 1.5	440 ± 120.0	
Aghayev et al.	2010	–	–	–	–	–	–	–	–	–	–	
Alfaro-Adrián et al.	1999	202.6 ± 52.5	17 ± 90	9300 ± 750.0	3.9 ± 2.0	1579 ± 590.3	20.9 ± 41.3	23 ± 80	11200 ± 860.0	2.7 ± 2.2	1862 ± 639.3	
Beend et al.	2007	–	3.9 ± 1.5	–	0.8 ± 1.1	–	–	5.6 ± 1.9	–	0.4 ± 0.8	–	
Bhan et al.	2006	207.42 ± 37.8	7.3 ± 13	–	2.4 ± 0.8	147.39 ± 517.1	215.6 ± 37.4	10 ± 17	–	1.8 ± 1.1	1997 ± 490.8	
Brown et al.	2017	–	5 ± 2.3	–	–	–	–	7.7 ± 2.8	–	–	–	
Calabro et al.	2020	–	–	–	–	–	–	–	–	–	–	
Eggli et al.	1995	–	14 ± 4.0	–	–	–	–	–	19.6 ± 7.6	–	–	–
Garland et al.	2015	–	–	–	–	–	–	–	–	–	–	
Goh et al.	2022	162 ± 9.0	–	23,863 ± 900.0	–	–	198 ± 6.5	–	26,320 ± 700.0	–	–	
Guo et al.	2020	–	11 ± 1.0	–	4 ± 0.7	–	–	20 ± 1.8	–	4 ± 1.0	–	
Hooper et al.	2009	–	–	–	–	–	–	–	–	–	–	
Hou et al.	2021	–	9 ± 0.7	14,503 ± 7560	–	–	15 ± 1.0	16,142 ± 1034.7	–	–		
Houdek et al.	2017	176 ± 53.0	4.6 ± 4.1	–	2 ± 1.3	211 ± 72.0	59 ± 2.4	–	1.9 ± 1.4	–		
Inoue et al.	2021	–	1.8 ± 0.8	–	–	–	–	2.8 ± 2.2	–	–	–	
Johnston et al.	2011	–	–	–	–	–	–	–	–	–	–	
Kamath et al.	2016	134.8 ± 29.1	11.2 ± 34	–	–	738.8 ± 519.2	151.5 ± 28.8	15.2 ± 5.8	–	–	9432 ± 423.0	
Kim et al.	2017	172 ± 24.0	10.5 ± 58	12,608 ± 2950	–	1037 ± 321.0	162 ± 400	18.7 ± 8.7	14,910 ± 4080.0	–	1145 ± 518.0	
Lindberg-Larsen et al.	2013	–	6.2 ± 18	–	–	–	–	6.7 ± 100	–	–	–	
Lorenze et al.	1998	–	10 ± 35	26,645 ± 3600	–	535 ± 105.0	–	16 ± 5.0	34,964 ± 51000	–	1100 ± 2700	
Martin et al.	2016	130.3 ± 19.9	2.2 ± 0.7	9831 ± 505.1	–	–	1394 ± 22.0	2.4 ± 0.2	11,544 ± 468.4	–	–	
Mou et al.	2021	–	–	17,139 ± 1015.0	3 ± 39	–	–	–	17,861 ± 1066	0.77 ± 2.0	–	
Panchal et al.	2021	–	–	–	–	–	–	–	–	–	–	
Partridge et al.	2019	–	8.9 ± 0.7	–	–	–	–	10.4 ± 1.2	–	–	–	
Parmizi et al.	2006	131.72 ± 24.4	4.3 ± 2.2	45,900	2.61 ± 1.8	443 ± 152.3	132.3 ± 62.6	8.1 ± 10.3	64600	3.5 ± 3.5	513 ± 629.0	
Poultsides et al.	2017	–	–	–	–	–	–	–	–	–	–	
Quadri et al.	2015	273 ± 58.2	8.1 ± 32	–	1.2 ± 1.3	358 ± 72.6	19.6 ± 5.0	–	2.3 ± 2.6	–		
Rasouli et al.	2014	–	–	–	–	–	–	–	–	–	–	
Reuben et al.	1998	–	7.6 ± 11	24,067 ± 4264.7	–	–	–	14.5 ± 1.8	28,404 ± 11463	–	–	
Saito et al.	2010	159 ± 32.0	39.6 ± 12	–	–	1018 ± 6090	179 ± 19.0	60.6 ± 65	–	–	1019 ± 358.0	
Author	Year	Simultaneous bilateral THA	Staged bilateral THA									
-----------------	------	-----------------------------	----------------------									
		Operation time (min)	Hospital LOS (days)	Operation cost ($)	Transfusion (units)	Blood loss (ml)	Operation time (min)	Hospital LOS (days)	Operation cost ($)	Transfusion (units)	Blood loss (ml)	
Salvati et al.	1978	–	–	1944 ± 694	–	2818 ± 900.0	–	–	1944 ± 694	–	2818 ± 900.0	
Schlegelmilch et al.	2017	–	–	5735 ± 100.0	–	–	–	–	10143 ± 346.0	–	–	
Seol et al.	2015	–	14.6 ± 8.1	9236 ± 1231.0	3.0 ± 2.6	253 ± 9.8	–	11,163 ± 1588.4	1.9 ± 2.2	–	978 ± 389.3	
Shih et al.	1985	148 ± 140	17.9 ± 6.0	1202 ± 332.0	245 ± 16.0	273 ± 109	–	1410 ± 2300	–	273 ± 109		
Taherazam et al.	2019	162 ± 180	49 ± 1.0	512 ± 45.0	1997 ± 16.0	98 ± 1.4	–	2.7 ± 2.1	538 ± 390.0	2.7 ± 2.1		
Tan et al.	2019	–	8.7 ± 5.3	19,627 ± 5441.0	–	12.1 ± 5.6	–	19,667 ± 5441.0	–	12.1 ± 5.6		
Triantafyllopoulos et al.	2016	–	5.2 ± 2.5	–	12 ± 1.1	–	–	–	1.8 ± 1.0	–		
Villa et al.	2019	–	2.6 ± 1.2	–	–	–	–	–	–	–		

THA total hip arthroplasty, LOS length of stay, min minute, ml milliliter
Table 5 Postoperative important outcomes reported in each included study

Author	Year	Simultaneous bilateral THA	Staged bilateral THA						
		Revision (n)	Readmission (n)	Postoperative LLD (mm)	Postoperative HHS	Revision (n)	Readmission (n)	Postoperative LLD (mm)	Postoperative HHS
Agarwal et al. 2016	–	–	10 ± 3.0	92.3 ± 1.2	9 ± 3.5	90.8 ± 1.1			
Aghayev et al. 2010	–	–	–	94.2 ± 2.0	–	– 91 ± 3.0			
Alfaro-Adrián et al.	1999	5	–	7	–	–			
Berend et al. 2007	–	13	–	– 1	–	–			
Bhan et al. 2006	3	–	4.5 ± 4.4	82 ± 5.0	3	5 ± 4.6	83.5 ± 6.0		
Brown et al. 2017	–	–	3.5 ± 2.7	–	–	3.8 ± 3.0	–		
Calabro et al. 2020	121	–	–	– 500	–	–			
Eggli et al. 1995	–	–	2.2 ± 1.8	–	–	2.2 ± 1.4	–		
Garland et al. 2015	240	–	–	4897	–	–			
Goh et al. 2022	–	–	–	–	–	–			
Guo et al. 2020	14	–	–	– 5	–	–			
Hooper et al. 2009	–	–	–	–	–	–			
Hou et al. 2021	–	–	–	–	–	–			
Houdek et al. 2017	7	9	–	13 15	–	–			
Inoue et al. 2021	–	–	–	–	–	–			
Johnston et al. 2011	1	16	–	78.9 ± 10.3	8	142	82.2 ± 13.4		
Kamath et al. 2016	–	–	1.1 ± 1.8	–	–	1.3 ± 1.7	–		
Kim et al. 2017	2	–	2.1 ± 2.0	95.9 ± 4.8	4	4.3 ± 3.2	90.7 ± 8.2		
Lindberg-Larsen et al. 2013	–	2	–	– 33	–	–			
Lorenze et al. 1998	–	–	–	–	–	–			
Martin et al. 2016	–	–	–	–	–	–			
Mou et al. 2021	–	–	4.8 ± 3.9	84 ± 2.8	–	4.5 ± 3.1	83.4 ± 2.0		
Panchal et al. 2021	–	–	–	–	–	–			
Partridge et al. 2019	55	–	–	– 198	–	–			
Parvizi et al. 2006	0	–	–	91 ± 3.0	3	– 89.3 ± 3.0			
Poulsides et al. 2017	–	–	–	–	–	–			
Quadri et al. 2015	0	–	–	1	–	–			
Rasouli et al. 2014	–	–	–	–	–	–			
Reuben et al. 1998	–	–	–	–	–	–			
Saito et al. 2010	–	–	87.8 ± 4.0	–	–	87.3 ± 2.6			
Salvati et al. 1978	–	–	–	–	–	–			
Schlegelmilch et al.	2017	–	–	–	–	–			
Seol et al. 2015	–	–	96.4	–	–	94.8			
Shih et al. 1985	–	–	–	–	–	–			
Taheri et al. 2019	0	–	84.1 ± 3.0	0	–	82.6 ± 3.1			
Tan et al. 2019	1	–	–	1	–	–			
Triantafyllopoulos et al. 2016	–	–	–	–	–	–			
Villa et al. 2019	–	–	–	–	–	–			

THA total hip arthroplasty, **HHS** Harris hip score, **LLD** leg length discrepancy, **n** number
Abbreviations
THA: Total hip arthroplasty; simBTHA: Simultaneous bilateral THA; stgBTHA: Staged bilateral THA; DVT: Deep vein thrombosis; PE: Pulmonary embolism; Venous thromboembolism; BMI: Body mass index; ASA: Classification: American Society of Anesthesiology; LOS: Length of hospital stay; HHS: Harris hip score; WOMAC: The Western Ontario and McMaster Universities Arthritis Index; LLD: Limb length discrepancy; VTE: Venous thromboembolism; PJI: Periprosthetic joint infection.

Supplementary Information
The online version contains supplementary material available at https://doi.org/10.1186/s13018-022-03281-4.

Acknowledgements
Not applicable.

Author contributions
Study concept and design were performed by SHS and SMJM. Literature review, collection, extraction, analysis, and interpretation of data were performed by AR, AS, AGR, and MS. The first draft of the manuscript was written by AR, AS, AGR, and MS. Critical revision of the manuscript for important intellectual content was performed by SHS, SMJM, and MS. All authors read and approved the final manuscript.

Funding
This research received no fund from any funding agency in the public, commercial, or not-for-profit sectors.

Availability of data and materials
The datasets used and/or analyzed during the current study are available from the corresponding author on reasonable request.

Declarations
Ethical approval and Consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors have no relevant financial or non-financial interests to disclose.

Author details
1 Orthopedic Department, Orthopedic Surgery Research Center (OSRC), Sina University Hospital, Tehran University of Medical Sciences, Tehran, Iran. 2 Heidelberg Medical Hospital, Heidelberg, Germany. 3 Joint Reconstruction Research Center (JRRC), Tehran University of Medical Sciences, Tehran, Iran.

Received: 10 June 2022 Accepted: 6 August 2022

Published online: 13 August 2022

References
1. Learmonth ID, Young C, Rorabeck C. The operation of the century: total hip replacement. Lancet. 2007;370:1508–19. https://doi.org/10.1016/S0140-6736(07)60457-7.
2. Kurtz S, Ong K, Lau E, Mowat F, Halpern M. Projections of primary and revision hip and knee arthroplasty in the United States from 2005 to 2030. J Bone Joint Surg Am. 2007;89:780–S. https://doi.org/10.2106/jbjs.f.00222.
3. Sloan M, Premkumar A, Sheth NP. Projected volume of primary total joint arthroplasty in the U.S., 2014 to 2030. J Bone Joint Surg Am. 2018;100:1455–60. https://doi.org/10.2106/jbjs.17.01617.
4. Lavermia CJ, Hernandez VH, Rossau MD. Payment analysis of total hip replacement. Curr Opin Orthop. 2007;18:23–7. https://doi.org/10.1097/BCOB.0b013e32801a270.
5. Tisiris E, Pavlou G, Charitis J, Tisiris E, Gie G, West R. The safety and efficacy of bilateral simultaneous total hip replacement: an analysis of 2063 cases. J Bone Joint Surg Br. 2008;90:1005–12. https://doi.org/10.1302/0301-620x.90b8.20552.
6. Sarmiento A, Sir John Charnley and his legacy to total hip arthroplasty, 1970–1993. Curr Orthop Pract. 2014;25:115–8. https://doi.org/10.1016/j.jbonejointinf.2013.09.022.
7. Huang L, Xu T, Li F, Xu Y, Xia L, Zhao Z. Comparison of mortality and complications between bilateral simultaneous and staged total hip arthroplasty: a systematic review and meta-analysis. Medicine. 2019;98:e16774. https://doi.org/10.1097/md.0000000000016774.
8. Higgins JPT TJ, Chandler J, Mumpton M, Li T, Page MJ, Welch VA (editors). Cochrane Handbook for Systematic Reviews of Interventions version 6.3 (updated February 2022). Cochrane, 2022 Available from www.training.cochrane.org/handbook.
9. Moher D, Liberati A, Tetzlafl F, Altman DG. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. BMJ (Clinical research ed). 2009;339:b2535. https://doi.org/10.1136/bmj.b2535.
10. Ouzannzi M, Hammady H, Fedorowicz Z, Elmagarmid A. Rayyan—a web and mobile app for systematic reviews. Syst Rev. 2016;5:210. https://doi.org/10.1186/s13643-016-0384-4.
11. Fritz-Henry J. The ASA classification and peri-operative risk. Ann R Coll Surg Engl. 2011;93:185–7.
12. Wells GA SB, O’Connell D, et al. The Newcastle-Ottawa Scale (NOS) for assessing the quality of nonrandomised studies in meta-analyses - 2011. Available from http://www.ohri.ca/programs/clinical_epidemiology/oxford.asp. Available from URL: http://www.ohri.ca/programs/clinical_epidemiology/oxford.asp.
13. Simonovic N, Devereaux PJ, Spurgeon S, Guyatt GH, Schemitsch E, Debeer J, Bhandari M. Effect of early surgery after hip fracture on mortality and complications: systematic review and meta-analysis. Can Med Assoc J. 2010;182:1609–16. https://doi.org/10.1503/cmaj.092220.
14. Walter SD, Yac X. Effect sizes can be calculated for studies reporting ranges for outcome variables in systematic reviews. J Clin Epidemiol. 2007;60:849–52. https://doi.org/10.1016/j.jclinepi.2006.11.003.
15. Higgins JPT, Thompson SG, Deeks JJ, Altman DG. Measuring inconsistency in meta-analyses. BMJ (Clinical research ed). 2003;327:557–60. https://doi.org/10.1136/bmj.327.7414.557.
16. Egger M, Davey Smith G, Schneider M, Minder C. Bias in meta-analysis: detection by a simple, graphical test. BMJ (Clinical research ed). 1997;315:629–34. https://doi.org/10.1136/bmj.315.7097.629.
17. Bhan S, Pankaj A, Malhotra R. One- or two-stage bilateral total hip arthroplasty: a prospective, randomised, controlled study in an Asian population. J Bone Joint Surg Br. 2006;88:298–303. https://doi.org/10.1302/0301-620x.88b3.17048.
18. Taheri-Zaam A, Mohseni G, Esmailiejah AA, Safdari F, Abrishakhmardzeh H. Bilateral total hip arthroplasty: one-stage versus two-stage procedure. Hip Int. 2019;29:141–6. https://doi.org/10.1177/1713370719873427.
19. Shih CH, Ho WB. One-stage versus two-stage bilateral autophore ceramic total hip arthroplasty. Clin Orthop Relat Res. 1985;193:141–5.
20. Egli S, Huckell CB, Ganz R. Bilateral total hip arthroplasty: one stage versus two stage procedure. Clin Orthop Relat Res. 1996;328:108–18.
21. Lorenze M, Hua MH, Zatorski LE, Keggi KJ. A comparison of the cost effectiveness of one-stage versus two-stage bilateral total hip replacement. Orthopedics. 1998;21:1249–52.
22. Reuben JD, Meyers SJ, Cox DD, Elliott M, Watson M, Shim SD. Cost comparison between bilateral simultaneous, staged, and unilateral total joint arthroplasty. J Arthroplasty. 1998;13:172–9. https://doi.org/10.1016/s0883-5403(98)00095-x.
23. Alfaro-Adrian J, Bayona F, Rech JA, Murray DW. One- or two-stage bilateral total hip replacement. J Arthroplasty. 1999;14:439–45. https://doi.org/10.1016/s0883-5403(99)00099-2.
61. Ong KL, Kurtz SM, Lau E, Bozic KJ, Berry DJ, Parvizi J. Prosthetic joint infec-
tion risk after total hip arthroplasty in the Medicare population. J Arthroplasty. 2009;24:105–9. https://doi.org/10.1016/j.arth.2009.04.027.

62. Hailer NP, Garellick G, Kärrholm J. Uncemented and cemented primary total hip arthroplasty in the Swedish Hip Arthroplasty Register. Acta Orthop. 2010;81:34–41. https://doi.org/10.3109/17453671003685400.

63. Wang T, Shao L, Xu W, Chen H, Huang W. Comparison of morphological changes of gluteus medius and abductor strength for total hip arthroplasty via posterior and modified direct lateral approaches. Int Orthop. 2019;43:2467–75. https://doi.org/10.1007/s00264-019-04331-z.

64. van Stralen KJ, Le Cessie S, Rosendaal FR, Doggen CJ. Regular sports activities decrease the risk of venous thrombosis. J Thromb Haemost. 2007;5:2186–92. https://doi.org/10.1111/j.1538-7836.2007.02732.x.

65. Cohen AT, Tapson VF, Bergmann JF, Goldhaber SZ, Kakkar AK, Deslandes B, Huang W, Zayaruzny M, Emery L, Anderson FA Jr. Venous thromboembolism risk and prophylaxis in the acute hospital care setting (ENDOPRE study): a multinational cross-sectional study. Lancet (London, England). 2008;371:387–94. https://doi.org/10.1016/S0140-6736(08)60602-0.

66. Pannucci CJ, Laird S, Dimick JB, Campbell DA, Henke PK. A validated risk model to predict 90-day VTE events in postsurgical patients. Chest. 2014;145:567–73. https://doi.org/10.1378/chest.13-1553.

67. Kapoor A, Ellis N, Shaffer N, Gurwitz J, Ishak A, Okubanjo T, Michota F, Hylek E, Trikalinos TA. Comparative effectiveness of venous thromboembolism prophylaxis options for the patient undergoing total hip and knee replacement: a network meta-analysis. J Thromb Haemost. 2017;15:284–94. https://doi.org/10.1111/jth.13566.

68. Barrett MC, Whitehouse MR, Blom AW, Kunutsor SK. Host-related factors for venous thromboembolism following total joint replacement: a meta-analysis of 89 observational studies involving over 14 million hip and knee replacements. J Orthop Sci. 2020;25:267–75. https://doi.org/10.1016/j.jos.2019.04.003.

69. Malcolm TL, Knezevic NN, Zouki CC, Tharian AR. Pulmonary complications after hip and knee arthroplasty in the United States, 2004–2014. Anesth Analg. 2020;130:917–24. https://doi.org/10.1213/ane.0000000000004265.

70. Wang Q, Goswami K, Shohat N, Aalirezaie A, Mannique J, Parvizi J. Longer operative time results in a higher rate of subsequent periprosthetic joint infection in patients undergoing primary joint arthroplasty. J Arthroplasty. 2019;34:947–53. https://doi.org/10.1016/j.arth.2019.01.027.

71. Jaffer AK, Barsoum WK, Krebs V, Hurbaneck JG, Morra N, Brotman DJ. Duration of anesthesia and venous thromboembolism after hip and knee arthroplasty. Mayo Clin Proc. 2005;80:732–8. https://doi.org/10.1016/s0025-6196(11)61526-7.

72. Horlocker TT, Hebel JR, Gali B, Jankowski CJ, Burke CM, Berry DJ, Zepeda FA, Stevens SR, Schroeder DR. Anesthetic, patient, and surgical risk factors for neurologic complications after prolonged tourniquet time during total knee arthroplasty. Anesth Analg. 2006;102:950–5. https://doi.org/10.1213/ane.0000000000004587.

73. Bohl DD, Ondeck NT, Darrith B, Hannon CP, Fillingham YA, Della Valle CJ. Impact of operative time on adverse events following primary total joint arthroplasty. J Arthroplasty. 2018;33:2256–62.e2254. https://doi.org/10.1016/j.arth.2018.11.015.

74. Surace P, Sultan AA, George J, Samuel LT, Khlopas A, Molloy RM, Stearns KL, Mont MA. The association between operative time and short-term complications in total hip arthroplasty: an analysis of 89,802 surgeries. J Arthroplasty. 2019;34:426–32. https://doi.org/10.1016/j.arth.2018.02.037.

75. Meyers SJ, Reuben JD, Cox DD, Watson M. Inpatient cost of primary total joint arthroplasty. J Arthroplasty. 1996;11:281–5. https://doi.org/10.1016/0883-5403(96)80079-9.

76. Murphy P, Heal JM, Blumberg N. Infection or suspected infection after hip replacement surgery with autologous or homologous blood transfusions. Transfusion. 1999;39:1217–22. https://doi.org/10.1046/j.1537-2995.1999.313391165169.x.

77. Innerhofer D, Walczec K, Luz G, Hobisch-Hagen P, Benzer A, Stockl B, Hessenberger G, Nussbaumer W, Schobesberger W. Transfusion of buffy coat-depleted blood components and risk of postoperative infection in orthopedic patients. Transfusion. 1999;39:625–32. https://doi.org/10.1046/j.1537-2995.1999.39060625.x.

78. Madjidpour C, Spahn DR. Allogeneic red blood cell transfusions: efficacy, risks, alternatives and indications. Br J Anaesth. 2005;95:33–42. https://doi.org/10.1093/bja/aeh290.

79. Rosencher N, Kerkmann HEM, Macheras G, Munuera LM, Menichelli G, Barton DM, Cremer S, Abraham IL, Investigation FTO. Orthopedic Surgery Transfusion Hemoglobin European Overview (OSTHEO) study: blood management in elective knee and hip arthroplasty in Europe*. Transfusion. 2003;43:459–69. https://doi.org/10.1046/j.1537-2995.2003.00348.x.

80. Singh JA, Schleck C, Harmsen S, Lewallen D. Clinically important improvement thresholds for Harris Hip Score and its ability to predict revision risk after primary total hip arthroplasty. BMC Musculoskelet Disord. 2016;17:1–8.

81. Mancuso CA, Jout J, Salvati EA, Scoluto TP. Fulfillment of patients’ expectations for total hip arthroplasty. JBJS. 2009;91:2073–8.

82. Konyves A, Bannister G. The importance of leg length discrepancy after total hip arthroplasty. J Bone Joint Surg Br. 2005;87:155–7.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.