COERCIVE INEQUALITIES AND U-BOUNDS

E. BOU DAGHER AND B. ZEGARLIŃSKI

Abstract. We prove Poincaré and Logβ-Sobolev inequalities for probability measures on step-two Carnot groups.

Contents

1. Introduction 1
2. Setup 3
3. U-Bound 5
4. Poincaré Inequality 10
5. ϕ-Logarithmic Sobolev Inequality 12
6. Appendix: Proof of Lemma 2 17
References 19

1. Introduction

Although the question of obtaining coercive inequalities such as the Poincaré or the Logarithmic Sobolev inequalities for a probability measure on a metric measure space has been a subject of numerous works, the literature on this topic in the setup Carnot groups is scarce.

In [13], L. Gross obtained the following Logarithmic Sobolev inequality:

\begin{equation}
\int_{\mathbb{R}^n} f^2 \log \left(\frac{f^2}{\int_{\mathbb{R}^n} f^2 d\mu} \right) d\mu \leq 2 \int_{\mathbb{R}^n} |\nabla f|^2 d\mu,
\end{equation}

where ∇ is the standard gradient on \mathbb{R}^n and $d\mu = e^{-|x|^2/2} d\lambda$ is the Gaussian measure.

In a setup of a more general metric space, a natural question would be to try to find similar inequalities with different measures of the form $d\mu = e^{-U(d)} Z d\lambda$, where U is a function of a metric d, and where the Euclidean gradient is replaced by a more general sub-gradient in \mathbb{R}^n.

Aside from their theoretical importance, such inequalities are needed because of their applications, some of which will be discussed briefly. L.Gross also pointed out ([13]) the importance of the inequality (1.1) in the sense that it can be extended to infinite dimensions with additional useful results. (See also works: [14, 5, 30, 27, 6, 34, 29].) He proved that if \mathcal{L} is the non-positive self-adjoint operator on $L^2(\mu)$ such that

\begin{equation}
(\mathcal{L}f, f)_{L^2(\mu)} = \int_{\mathbb{R}^n} |\nabla f|^2 d\mu,
\end{equation}

then (1.1) is equivalent to the fact that the semigroup $P_t = e^{t\mathcal{L}}$ generated by \mathcal{L} is hypercontractive: i.e. for $q(t) \leq 1 + (q - 1) e^{2t}$ with $q > 1$, we have $\| P_t f \|_q \leq \| f \|_q$ for all $f \in L^q(\mu)$. ([13])

Key words and phrases. Poincaré inequality, Logarithmic-Sobolev inequality, Carnot groups, sub-gradient, probability measures, Kaplan norm.
In [8], D. Bakry and M. Emery extended the Logarithmic Sobolev inequality for a larger class of probability measures defined on Riemannian manifolds under an important Curvature-Dimension condition. More generally, if (Ω, F, μ) a probability space, and L is a non-positive self-adjoint operator acting on $L^2(\mu)$, we say that the measure μ satisfies a Logarithmic Sobolev inequality if there is a constant c such that, for $f \in D(L)$,

$$\int f^2 \log \frac{f^2}{\mu} \, d\mu \leq c \int (-Lf) \, d\mu.$$

In this general setting, the connection between this inequality and the property of hypercontractivity was shown in [13].

Another generalisation, the so-called q-Logarithmic Sobolev inequality, in the setting of a metric measure space, was obtained by S. Bobkov and M. Ledoux in [19], in the form:

$$\int f^q \log \frac{f^q}{\mu} \, d\mu \leq c \int \|\nabla f\|^q \, d\mu,$$

where $q \in (1, 2]$. Here, on a metric space, the magnitude of the gradient is defined by

$$|\nabla f|(x) = \limsup_{d(x,y) \to 0} \frac{|f(x) - f(y)|}{d(x,y)}.$$

In [5], S. Bobkov and B. Zegarliński showed that the q-Logarithmic Sobolev inequality is better than the classical $q = 2$ inequality in the sense that one gets a stronger decay of tail estimates. In addition, when the space is finite, and under weak conditions, they proved that the corresponding semigroup P_t is ultracontractive i.e.

$$\|P_t f\|_\infty \leq \|f\|_p$$

for all $t \geq 0$ and $p \in [1, \infty)$.

We point out, that in [20], M. Ledoux made a connection between the Logarithmic Sobolev inequality and the isoperimetric problem. (See also: [3, 17, 8])

The important q-Poincaré inequality

$$\int |f - \int f \, d\mu|^q \, d\mu \leq c \int \|\nabla f\|^q \, d\mu$$

can be obtained from the q-Logarithmic Sobolev inequality by simply replacing f by $1 + \varepsilon f$ in that inequality, and letting $\varepsilon \to 0$.

In this paper, our primary interest is to prove the existence of coercive inequalities for different measures in the setting of step-two nilpotent Lie groups, whose tangent space at every point is spanned by a family of degenerate and non-commuting vector fields $\{X_i, i \in \mathcal{R}, 1 < |\mathcal{R}| < \infty\}$, where $|\mathcal{R}|$ is the cardinality of the index set \mathcal{R}. These inequalities, when satisfied, give us information about the spectra of the associated generators of the form

$$L = \sum_{i \in \mathcal{R}} X_i^2$$

where $|\mathcal{R}|$ is strictly less than the dimension of the space. (See also [12] and references therein)

Thus, by Hörmander’s result in [7], the sub-Laplacian (1.2) is hypoelliptic; in other words, every distributional solution to $Lu = f$ is of class C^∞ whenever f is of class C^∞.

We point out that, according to [32], if we have a uniqueness of solution in the space of square integrable functions for the Cauchy problem

$$\begin{cases}
\frac{d}{dt} u = Lu \\
u|_{t=0} = f,
\end{cases}$$

then the solution of the heat equation will be given by $u = P_t f$.
In the setting of step-two nilpotent Lie groups, since the Laplacian is of Hörmander type and has some degeneracy, D. Bakry and M. Emery’s Curvature-Dimension condition in [8] will no longer hold true. In [15], a method of studying coercive inequalities on general metric spaces that does not require a bound on the curvature of space was developed. Working on a general metric space equipped with non-commuting vector fields \(\{X_1, \ldots, X_n\} \), their method is based on U-bounds, which are inequalities of the form:

\[
\int f^q U(d) \, d\mu \leq C \int |\nabla f|^q d\mu + D \int f^q d\mu
\]

where \(d\mu = \frac{e^{-U(d)}}{Z} \, d\lambda \) is a probability measure, \(U(d) \) and \(\mathcal{U}(d) \) are functions having a suitable growth at infinity, \(\lambda \) is a natural measure like the Lebesgue measure for instance (which is the Haar measure for nilpotent Lie groups), \(d \) is a metric related to the gradient \(\nabla = (X_1, \ldots, X_n) \), and \(q \in (1, \infty) \).

It is worth mentioning that in the setting of nilpotent Lie groups, heat kernel estimates were studied to get a variety of coercive inequalities ([33, 21, 2, 28, 22, 23, 24, 25, 26, 10]). In our setting, we study coercive inequalities involving sub-gradients and probability measures on the group which is a difficult and much less explored subject. An approach, pioneered in [15], was used by J. Inglis to get Poincaré inequality in the setting of the Heisenberg-type group with measure as a function of Kaplan distance [16] and by M. Chatzakou et al. to get Poincaré inequality in the setting of the Engel-type group with a measure as a function of some homogeneous norm [9].

In section 2 we define the step-two Carnot group, and introduce \(N \), the homogeneous norm we are working with, that is of the form of the Kaplan norm in the Heisenberg-type group. Section 3 contains the main theorem, which is a proof of a U-Bound of the form

\[
\int g^p(N) f^q d\mu \leq C \int |\nabla f|^q d\mu + D \int f^q d\mu,
\]

where \(g(N) \) satisfies some growth conditions. In section 4, we apply this U-bound together with some results of [15] to get the \(q \)-Poincaré inequality with \(q \geq 2 \) for the measures \(d\mu = \frac{e^{-g(N)}}{Z} \, d\lambda \).

This generalises the result by J. Inglis [16] who, in the setting of the Heisenberg-type group, proved the \(q \)-Poincaré inequality for the measure \(d\mu = \frac{e^{-\alpha N^p}}{Z} d\lambda \), where \(p \geq 2, \alpha > 0 \), \(q \) is the finite index conjugate to \(p \), and with \(\tilde{N} \) the Kaplan norm. In section 5, we extend J. Inglis et al.’s Theorem 2.1 [17] who proved a \(\log^\beta – \text{Sobolev} \), \(\beta \in (0, 1) \) inequality in the context of the Heisenberg group. Recall that for density defined with a smooth homogeneous norm, \(\beta = 1 \) is not allowed ([15]). We extend the corresponding results to a \(\phi \)-Logarithmic Sobolev inequality, where \(\phi \) is concave, on step-two Carnot groups. Finally, we utilise the U-Bound to get to a \(\log^\beta – \text{Sobolev} \) inequality for \(d\mu = \frac{e^{-\alpha N^p}}{Z} d\lambda \), where \(p \geq 4, q \geq 2 \), and \(0 < \beta \leq \frac{p-3}{p} \), indicating also no-go zone of parameters where the corresponding inequality fails.

2. Setup

Carnot groups are geodesic metric spaces that appear in many mathematical contexts like harmonic analysis in the study of hypoelliptic differential operators ([18, 32]) and in geometric measure theory (see extensive reference list in the survey paper [19]).
We will be working in the setting of \mathbb{G}, a step-two Carnot group, i.e. a group isomorphic to \mathbb{R}^{n+m} with the group law

$$(x, z) \circ (x', z') = \left(x_i + x'_i, z_j + z'_j + \frac{1}{2} < \Lambda^{(j)} x, x' > \right)_{i=1, \ldots, n; j=1, \ldots, m}$$

for $x, x' \in \mathbb{R}^n, z, z' \in \mathbb{R}^m$, where the matrices $\Lambda^{(j)}$ are $n \times n$ skew-symmetric and linearly independent and $<, >$ stands for the inner product on \mathbb{R}^n. One can verify that \mathbb{G} is a Lie group whose identity is the origin and where the inverse is given by $(x, z)^{-1} = -(x, z)$.

The dilation

$$\delta_\lambda : \mathbb{R}^{n+m} \rightarrow \mathbb{R}^{n+m}, \quad \delta_\lambda (x, z) = (\lambda x, \lambda^2 z)$$

is an automorphism of $(\mathbb{R}^{n+m}, \circ)$ for any $\lambda > 0$. Then, $\mathbb{G} = (\mathbb{R}^{n+m}, \circ, \delta_\lambda)$ is a homogeneous Lie group.

The Jacobian matrix at $(0, 0)$ of the left translation $\tau_{(x, z)}$ i.e the map

$$\mathbb{G} \ni (x', z') \rightarrow \tau_{(x, z)}((x', z')) := (x, z) \circ (x', z') \in \mathbb{G}$$

for fixed $(x, z) \in \mathbb{G}$ takes the following form

$$J_{\tau_{(x, z)}}(0, 0) = \begin{pmatrix} I_n & 0_{n \times m} \\ \frac{1}{2} \sum_{l=1}^n \Lambda^{(1)}_{1l} x_l & \cdots & \frac{1}{2} \sum_{l=1}^n \Lambda^{(1)}_{nl} x_l \\ \vdots & \ddots & \vdots \\ \frac{1}{2} \sum_{l=1}^n \Lambda^{(m)}_{1l} x_l & \cdots & \frac{1}{2} \sum_{l=1}^n \Lambda^{(m)}_{nl} x_l \\ I_m & 0_{m \times n} \end{pmatrix}.$$

Then, the Jacobian basis of \mathfrak{g}, the Lie algebra of \mathbb{G}, is given by

$$X_i = \frac{\partial}{\partial x_i} + \frac{1}{2} \sum_{k=1}^m \sum_{l=1}^n \Lambda^{(k)}_{il} x_l \frac{\partial}{\partial z_k} \quad \text{and} \quad Z_j = \frac{\partial}{\partial z_j}$$

for $i \in \{1, \ldots, n\}$ and $j \in \{1, \ldots, m\}$.

Let $\nabla \equiv (X_i)_{i=1, \ldots, n}$ and $\Delta \equiv \sum_{i=1, \ldots, n} X_i^2$ denote the associated sub-gradient and sub-Laplacian, respectively. We consider the following smooth homogeneous norm on \mathbb{G}

$$N \equiv (|x|^4 + a|z|^2)^{\frac{1}{4}}$$

with $a \in (0, \infty)$.

The motivation behind choosing such a norm is that in the setting of the Heisenberg-type groups (where we assume in addition that $\Lambda^{(j)}$ are orthogonal matrices and that $\Lambda^{(i)} \Lambda^{(j)} = -\Lambda^{(j)} \Lambda^{(i)}$ for every $i, j \in \{1, \ldots, m\}$ with $i \neq j$), $N \equiv (|x|^4 + 16|z|^2)^{\frac{1}{4}}$ is the Kaplan norm which arises from the fundamental solution of the sub-Laplacian. In other words, $\Delta N^{2-n-2m} = 0$ in $\mathbb{G} \setminus \{0\}$. Recall that J. Inglis, in [16], proved the q-Poincaré inequality in the setting of the Heisenberg-type group for the measure $d\mu = e^{-\alpha N^p} Z^{-1} d\lambda$, where $p \geq 2$, $\alpha > 0$, q is the finite index conjugate to p, and...
\(N \equiv (|x|^4 + 16|z|^2)^{\frac{1}{4}} \). We extend, giving a simpler proof, the result of J. Inglis by obtaining a q-Poincaré inequality in the setting of step-two Carnot groups for the measures \(d\mu = \frac{e^{-g(N)}}{Z} d\lambda \), with \(\frac{g''(N)}{N^2} \) an increasing function, \(q \geq 2 \), and where \(N \equiv (|x|^4 + a|z|^2)^{\frac{1}{4}} \).

Our first key result this paper is obtaining the following U-Bound (section 3):

\[
\int \frac{g'(N)}{N^2} |f|^q d\mu \leq C \int |\nabla f|^q d\mu + D \int |f|^q d\mu,
\]

under certain growth conditions for \(g(N) \). This U-bound is a useful tool to get a q-Poincaré inequality (section 4) and a \(\log^\beta \)-Sobolev inequality (section 5) for \(q \geq 2 \). We expect that this U-bound can be used to extend those coercive inequalities to (nonproduct) measures in an infinite dimensional setting. [35]

3. U-Bound

Theorem 1. Let \(N = (|x|^4 + a|z|^2)^{\frac{1}{4}} \) with \(a \in (0, \infty) \), and let \(g: [0, \infty) \rightarrow [0, \infty) \) be a differentiable increasing function such that \(g''(N) \leq g'(N)^3 N^3 \) on \(\{N \geq 1\} \). Let \(d\mu = \frac{e^{-g(N)}}{Z} d\lambda \) be a probability measure, where \(Z \) is the normalization constant. Then, given \(q \geq 2 \),

\[
\int \frac{g'(N)}{N^2} |f|^q d\mu \leq C \int |\nabla f|^q d\mu + D \int |f|^q d\mu
\]

holds for all locally Lipschitz functions \(f \), supported outside the unit ball \(\{N < 1\} \), with \(C \) and \(D \) positive constants independent of \(f \).

The proof of Theorem 1 uses the following properties of a smooth norm \(N \) proven in the Appendix.

Lemma 2. There exist constants \(A, C \in (0, \infty) \)

\[
(3.1) \quad A \frac{|x|^2}{N^2} \leq |\nabla N|^2 \leq C \frac{|x|^2}{N^2}
\]

and there exists a constant \(B \in (0, \infty) \) such that

\[
(3.2) \quad |\Delta N| \leq B \frac{|x|^2}{N^3}
\]

and

\[
(3.3) \quad \frac{x}{|x|} \cdot \nabla N = \frac{|x|^3}{N^3}.
\]

The other main tools we use are Hardy’s inequality (see [31] and references therein) and the Coarea formula (page 468 of [7]).

Proof of Theorem 1. First, we prove the result for \(q = 2 \):

We note that using integration by parts, one gets

\[
\int (\nabla N) \cdot (\nabla f) e^{-g(N)} d\lambda = - \int \nabla \left(\nabla Ne^{-g(N)} \right) f d\lambda = - \int \Delta N f e^{-g(N)} d\lambda + \int |\nabla N|^2 f g'(N) e^{-g(N)} d\lambda.
\]
Net, using (3.1) and (3.2),

\[
\int (\nabla N) \cdot (\nabla f) e^{-g(N)} d\lambda \geq -B \int \frac{|x|^2}{N^2} f e^{-g(N)} d\lambda + A \int \frac{|x|^2}{N^2} f g' (N) e^{-g(N)} d\lambda.
\]

Replacing \(f\) by \(\frac{f^2}{|x|^2}\):

\[
(3.4) \quad \int (\nabla N) \cdot \left(\nabla \left(\frac{f^2}{|x|^2} \right) \right) e^{-g(N)} d\lambda \geq \int f^2 \left(\frac{Ag' (N)}{N^2} - \frac{B}{N^3} \right) e^{-g(N)} d\lambda.
\]

As for the left-hand side of (3.4),

\[
\int (\nabla N) \cdot \left(\nabla \left(\frac{f^2}{|x|^2} \right) \right) e^{-g(N)} d\lambda = \int (\nabla N) \cdot \left[2 f \frac{\nabla f}{|x|^2} - \frac{2 f^2 \nabla |x|}{|x|^3} \right] e^{-g(N)} d\lambda
\]

\[
= \int \frac{2 f}{|x|^2} \nabla N \cdot \nabla f e^{-g(N)} d\lambda - 2 \int \frac{f^2}{N^3} e^{-g(N)} d\lambda.
\]

Using the calculation of \(\nabla N \cdot x\), from (3.3), we get:

\[
= \int \frac{2 f}{|x|^2} \nabla N \cdot \nabla f e^{-g(N)} d\lambda - 2 \int \frac{f^2}{N^3} e^{-g(N)} d\lambda
\]

\[
\leq \int \frac{2 f}{|x|^2} \nabla N \cdot \nabla f e^{-g(N)} d\lambda.
\]

Combining with (3.4),

\[
\int f^2 \left(\frac{Ag' (N)}{N^2} - \frac{B}{N^3} \right) e^{-g(N)} d\lambda \leq \int (\nabla N) \cdot \left(\nabla \left(\frac{f^2}{|x|^2} \right) \right) e^{-g(N)} d\lambda
\]

\[
\leq 2 \left| \int \frac{f}{|x|^2} \nabla N \cdot \nabla f e^{-g(N)} d\lambda \right|
\]

\[
\leq 2 \int \frac{f}{|x|^2} \nabla |N| \nabla f e^{-g(N)} d\lambda
\]

using (3.1),

\[
\leq 2 \sqrt{C} \int \frac{|f|}{|N||x|} \nabla f e^{-g(N)} d\lambda.
\]

Let \(E = \{ (x, z) : |x| \geq \frac{1}{\sqrt{g'(N)}} \}\) and \(F = \{ (x, z) : |x| < \frac{1}{\sqrt{g'(N)}} \}\).

Applying Cauchy’s inequality with \(\epsilon : ab \leq \frac{a^2}{2} + \frac{b^2}{2\epsilon}\) with \(a = \frac{|f|}{N|x|} e^{-\frac{g(N)}{2}}\) and \(b = \sqrt{C} |\nabla f| e^{-\frac{g(N)}{2}}\), to obtain

\[
(3.5) \quad \int f^2 \left(\frac{Ag' (N)}{N^2} - \frac{B}{N^3} \right) e^{-g(N)} d\lambda \leq \epsilon \int \frac{|f|^2}{N^2|x|^2} e^{-g(N)} d\lambda + \frac{C}{\epsilon} \int |\nabla f|^2 e^{-g(N)} d\lambda
\]

\[
= \epsilon \int \frac{|f|^2}{N^2|x|^2} e^{-g(N)} d\lambda + \epsilon \int \frac{|f|^2}{N^2|x|^2} e^{-g(N)} d\lambda + \frac{C}{\epsilon} \int |\nabla f|^2 e^{-g(N)} d\lambda
\]

\[
\leq \epsilon \int \frac{|f|^2 e^{-g(N)} |x|^2}{N^2|x|^2} d\lambda + \epsilon \int \frac{g'(N)|f|^2}{N^2} e^{-g(N)} d\lambda + \frac{C}{\epsilon} \int |\nabla f|^2 e^{-g(N)} d\lambda.
\]
where (3.5) is the consequence of $E = \{(x, z) : |x| \geq \frac{1}{\sqrt{g(N)}}\}$.

The aim now is to estimate the first term on the right-hand side of (3.5). Consider $F_r = \{ |x| > \sqrt{g(N)} \}$, where $1 < r < 2$. Integrating by parts:

$$
eq \frac{\epsilon}{n-2} \int_{F_r} \nabla \left(\frac{f - g(N)}{N} \right)^2 \frac{x}{|x|^2} d\lambda + \frac{\epsilon}{n-2} \int_{\partial F_r} f^2 e^{-g(N)} \sum_{j=1}^{n} x_j < X_j I, \nabla_{\text{euc}} \left(|x| \sqrt{g(N)} \right) > dH^{n+m-1}$$

$$\leq \frac{2\epsilon}{n-2} \int_{F_r} \left(\frac{f - g(N)}{N} \right)^2 \frac{x}{|x|^2} d\lambda + \frac{2\epsilon}{(n-2)^2} \int_{F_r} \left| \frac{f - g(N)}{N} \right|^2 d\lambda$$

Integrating both sides of the inequality from $r = 1$ to $r = 2$, we get:

$$\epsilon \int_1^2 \int_{F_1} \left(\frac{f - g(N)}{N} \right)^2 \frac{x}{|x|^2} d\lambda d\lambda \leq \frac{4 \epsilon}{(n-2)^2} \int_{F_1} \left(\frac{f - g(N)}{N} \right)^2 \frac{x}{|x|^2} d\lambda$$

To recover the full measure in the boundary term, we use the Coarea formula:

$$\epsilon \int_{F_1} \left(\frac{f - g(N)}{N} \right)^2 \frac{x}{|x|^2} d\lambda \leq \frac{4 \epsilon}{(n-2)^2} \int_{F_2} \left(\frac{f - g(N)}{N} \right)^2 \frac{x}{|x|^2} d\lambda$$
\[A = \frac{4\varepsilon}{(n-2)^2} \int_{F_2} \left| \nabla \left(\frac{f e^{-\frac{g(N)}{2}}}{N} \right) \right|^2 \, d\lambda = \frac{4\varepsilon}{(n-2)^2} \int_{F_2} \left| \nabla f \left(\frac{e^{-\frac{g(N)}{2}}}{N} \right) - \frac{f g'(N) \nabla e^{-\frac{g(N)}{2}}}{2} \right|^2 \, d\lambda \]
\[\leq \frac{16\varepsilon}{(n-2)^2} \int_{F_2} |\nabla f|^2 e^{-g(N)} \, d\lambda + \frac{4\varepsilon}{(n-2)^2} \int_{F_2} f^2 g'(N)^2 \frac{|\nabla N|^2}{N^2} e^{-g(N)} \, d\lambda + \frac{16\varepsilon}{(n-2)^2} \int_{F_2} f^2 \frac{|\nabla N|^2}{N^4} e^{-g(N)} \, d\lambda \]

Using (3.1) and taking into consideration that \(N > 1 \) and on \(F_2, |\nabla N|^2 \leq \frac{C|x|^2}{N^2} \leq \frac{4C}{N^2 g'(N)} \),
\[A \leq \tilde{C} \int_{F_2} |\nabla f|^2 e^{-g(N)} \, d\lambda + \tilde{B} \int_{F_2} f^2 e^{-g(N)} \, d\lambda + \frac{16\varepsilon C}{(n-2)^2} \int_{F_2} f^2 \frac{g'(N)}{N^2} e^{-g(N)} \, d\lambda \]

We do not worry about the third term in this inequality since it is dominated by \(\int f^2 \frac{g'(N)}{N^2} e^{-g(N)} \, d\lambda \) for \(N > 1 \). For the second term of (3.6),
\[B = \frac{2\varepsilon}{n-2} \int_{\{1 < |x|/\sqrt{g(N)} \leq 2\}} \frac{f^2 e^{-g(N)}}{N^2 |x|^2} \sum_{j=1}^n x_j < X_j I, \nabla_{\text{euc}} \left(|x|/\sqrt{g(N)} \right) \, d\lambda. \]

For \(e_i \) the standard Euclidean basis on \(\mathbb{R}^{n+m} \),
\[X_j I \cdot e_i = \begin{cases} 0 & \text{for } i \neq j \text{ and } i \leq n \\ 1 & \text{for } i = j \text{ and } i \leq n \\ \frac{1}{2} \sum_{l=1}^n A_{jl} x_l & \text{for } n+1 \leq i \leq n+m. \end{cases} \]

\[\nabla_{\text{euc}} \left(|x|/\sqrt{g(N)} \right) \cdot e_i = \begin{cases} \frac{x_i \sqrt{g(N)}}{|x|} + \frac{|x|^3 g''(N)x_i}{2 \sqrt{g(N)} N^3} & \text{for } i = j \text{ and } i \leq n \\ \frac{a|x|g''(N)x_i}{2 \sqrt{g(N)} N^3} & \text{for } n+1 \leq i \leq n+m \end{cases} \]

Taking the dot product and summing,
\[\sum_{j=1}^n x_j < X_j I, \nabla_{\text{euc}} \left(|x|/\sqrt{g(N)} \right) > = \left| x \sqrt{g'(N)} + \frac{|x|^5 g''(N)}{2 \sqrt{g'(N)} N^3} \right| + \sum_{j=1}^n x_j \sum_{i=n+1}^{n+m} \left(\frac{a|x|g''(N)}{8 \sqrt{g'(N)} N^3} \right) z_i \sum_{l=1}^n A_{jl} x_l \]
\[= \left| x \sqrt{g'(N)} + \frac{|x|^5 g''(N)}{2 \sqrt{g'(N)} N^3} \right| + \sum_{j=1}^n \sum_{i=n+1}^{n+m} z_i A_{jl} x_l x_j \]
\[= \left| x \sqrt{g'(N)} + \frac{|x|^5 g''(N)}{2 \sqrt{g'(N)} N^3} \right|, \]

where \(\sum_{j=1}^n \sum_{l=1}^n A_{jl} x_l x_j = 0 \) since \(A_{jl} \) is skew symmetric.
Therefore, replacing,

\[
B = \frac{2\epsilon}{n-2} \int_{\{1<|x|\sqrt{g'(N)}<2\}} \frac{f^2 e^{-g(N)}}{N^2|x|^2} \sum_{j=1}^{n} x_j < X_j I, \nabla euc (|x|\sqrt{g'(N)}) > d\lambda
\]

\[
= \frac{2\epsilon}{n-2} \int_{\{1<|x|\sqrt{g'(N)}<2\}} \frac{f^2 \sqrt{g'(N)}}{N^2|x|} e^{-g(N)} d\lambda + \frac{2\epsilon}{n-2} \int_{\{1<|x|\sqrt{g'(N)}<2\}} \frac{f^2|x|^3 g''(N)}{2N^3 \sqrt{g'(N)}} e^{-g(N)} d\lambda.
\]

Using the fact that we are integrating over \(\{1<|x|\sqrt{g'(N)}<2\}\),

\[
B \leq \frac{2\epsilon}{n-2} \int_{\{1<|x|\sqrt{g'(N)}<2\}} \frac{f^2 g'(N)}{N^2} e^{-g(N)} d\lambda + \frac{8\epsilon}{n-2} \int_{\{1<|x|\sqrt{g'(N)}<2\}} \frac{f^2 g''(N)}{N^3 g'(N)^2} e^{-g(N)} d\lambda.
\]

Using the condition of the theorem that \(g''(N) \leq g'(N)^3 N^3\), we get

\[
B \leq \frac{10\epsilon}{n-2} \int_{\{1<|x|\sqrt{g'(N)}<2\}} \frac{f^2 g'(N)}{N^2} e^{-g(N)} d\lambda.
\]

Inserting bounds on \(A\) and \(B\) in (3.6), we get:

\[
e \int F_1 |f e^{-\frac{e}{2} g(N)}|^2 d\lambda \leq \tilde{C} \int F_2 |\nabla f|^2 e^{-g(N)} d\lambda + \tilde{D} \int F_2 f^2 e^{-g(N)} d\lambda
\]

\[
+ \frac{16eC}{(n-2)^2} \int F_2 \frac{f^2 g'(N)}{N^4} e^{-g(N)} d\lambda + \frac{10\epsilon}{n-2} \int_{\{1<|x|\sqrt{g'(N)}<2\}} \frac{f^2 g'(N)}{N^2} e^{-g(N)} d\lambda.
\]

Using this last bound to estimate (3.5), we get:

\[
\int f^2 \left(\frac{Ag'(N)}{N^2} - \frac{B}{N^3} \right) e^{-g(N)} d\lambda \leq \tilde{C} \int |\nabla f|^2 e^{-g(N)} d\lambda + \tilde{D} \int f^2 e^{-g(N)} d\lambda + \frac{16eC}{(n-2)^2} \int \frac{f^2 g'(N)}{N^4} e^{-g(N)} d\lambda + \left(\frac{10\epsilon}{n-2} + \epsilon \right) \int \frac{f^2 g'(N)}{N^2} e^{-g(N)} d\lambda.
\]

On \(\{N > 1\}\), \(\int f^2 \left(\frac{B}{N^3} \right) e^{-g(N)} d\lambda\) and \(\frac{16eC}{(n-2)^2} \int \frac{f^2 g'(N)}{N^4} e^{-g(N)} d\lambda\) are of lower order. So, choosing \(\left(\frac{10\epsilon}{n-2} + \epsilon \right) \leq A\) we get

\[
\int f^2 \left(\frac{g'(N)}{N^2} \right) e^{-g(N)} d\lambda \leq C \int |\nabla f|^2 e^{-g(N)} d\lambda + D \int f^2 e^{-g(N)} d\lambda.
\]

Secondly, for \(q > 2\), replacing \(|f|\) by \(|f|^q\), we get:

\[
(3.7) \quad \int \frac{g'(N)}{N^2} |f|^q d\mu \leq C \int |\nabla |f|^\frac{q}{2}|^2 d\mu + D \int |f|^q d\mu.
\]

Calculating,

\[
\int \left| \nabla |f|^\frac{q}{2} \right|^2 d\mu = \int \left| \frac{q}{2} |f|^\frac{q-2}{2} \text{sgn}(f) \nabla f \right|^2 d\mu
\]

\[
\leq \frac{q^2}{4} \int |f|^{q-2} |\nabla f|^2 d\mu.
\]

Remark: We note that at this point we get the inequality which implies the necessary and sufficient condition for exponential decay in \(\mathbb{L}_p\) as described in [30].
Using Hölder’s inequality,

\[
\int |\nabla f|^\frac{2}{q} \, d\mu \leq \frac{q^2}{4} \left(\int |f|^q \, d\mu \right)^\frac{2}{q^2} \left(\int |\nabla f|^q \, d\mu \right)^\frac{2}{q} \tag{3.8}
\]

\[
\leq \frac{q(q - 2)}{4} \int |f|^q \, d\mu + \frac{q}{2} \int |\nabla f|^q \, d\mu.
\]

Where the last inequality uses \(ab \leq a^{p'} + b^{q'} \), with \(a = \left(\int |f|^q \, d\mu \right)^\frac{1}{q} \), \(b = \left(\int |\nabla f|^q \, d\mu \right)^\frac{1}{q} \), and \(p' \) and \(q' \) are conjugates.

Choosing \(p' = \frac{q}{q - 2} \), we obtain \(\frac{1}{q'} = 1 - \frac{q - 2}{q} \), so \(q' = \frac{q}{2} \). Using the inequalities (3.7) and (3.8), we get,

\[
\int \frac{g'(N)}{N^2} |f|^q \, d\mu \leq C \int |\nabla f|^\frac{2}{q} \, d\mu + D \int |f|^q \, d\mu
\]

\[
\leq C' \int |\nabla f|^q \, d\mu + D' \int |f|^q \, d\mu.
\]

\[\square\]

4. Poincaré Inequality

We now have the U-Bound (2.1) at our disposal and are ready to prove the q-Poincaré inequality using the method [15]:

Let \(\lambda \) be a measure satisfying the q-Poincaré inequality for every ball \(B_R = \{ x : N(x) < R \} \), i.e. there exists a constant \(C_R \in (0, \infty) \) such that

\[
\frac{1}{|B_R|} \int_{B_R} \left| f - \frac{1}{|B_R|} \int_{B_R} f \right|^q \, d\lambda \leq C_R \left| \frac{1}{|B_R|} \int_{B_R} \nabla f \right|^q \, d\lambda,
\]

where \(1 \leq q < \infty \).

Note that we have this Poincaré inequality on balls in the setting of Nilpotent lie groups thanks to J. Jerison’s celebrated paper [18]. With this we can use the following result:

Theorem 3 (Hebisch, Zegarliński [15]). Let \(\mu \) be a probability measure on \(\mathbb{R}^n \) which is absolutely continuous with respect to the measure \(\lambda \) and such that

\[
\int f^q \, d\mu \leq C \int |\nabla f|^q \, d\mu + D \int f^q \, d\mu
\]

with some non-negative function \(\eta \) and some constants \(C, D \in (0, \infty) \) independent of a function \(f \). If for any \(L \in (0, \infty) \) there is a constant \(A_L \) such that \(\frac{1}{A_L} \leq \frac{d\mu}{d\lambda} \leq A_L \) on the set \(\{ \eta < L \} \) and, for some \(R \in (0, \infty) \) (depending on \(L \)), we have \(\{ \eta < L \} \subset B_R \), then \(\mu \) satisfies the q-Poincaré inequality

\[
\mu |f - \mu f|^q \leq c \mu |\nabla f|^q
\]

with some constant \(c \in (0, \infty) \) independent of \(f \).
The role of \(\eta \) in Theorem 3 is played by \(\frac{g'(N)}{N^2} \) from the U-Bound of Theorem 1. Hence, we get the following corollaries:

Corollary 4. The Poincaré inequality for \(q \geq 2 \) holds for the measure \(\int f^q \, d\mu = \frac{\exp\left(-\cosh\left(N \lambda^k\right)\right)}{Z} d\lambda \), where \(\lambda \) is the Lebesgue measure, and \(k \geq 1 \) in the setting of the step-two Carnot group.

Proof. \(g(N) = \cosh\left(N \lambda^k\right) \), so \(g'(N) = kN^{k-1} \sinh\left(N \lambda^k\right) \), and \(g''(N) = k(k-1)N^{k-2} \sinh(N \lambda^k) + k^2 N^{2k-2} \cosh(N \lambda^k) \).

First, on \(\{N \geq 1\} \), \(g''(N) \leq k^3N^{3k} \sinh^3(N \lambda^k) = g'(N)^3N^3 \), so the condition of Theorem 1 is satisfied. Second,

\[
\int \frac{g'(N)}{N^2} f^q \, d\mu = \int f^q \left[kN^{k-3} \sinh(N \lambda^k) \right] \, d\mu \\
= \int \{N < 1\} f^q \left[kN^{k-3} \frac{e^{N \lambda^k} - e^{-N \lambda^k}}{2} \right] \, d\mu + \int \{N \geq 1\} f^q \left[kN^{k-3} \frac{e^{N \lambda^k} - e^{-N \lambda^k}}{2} \right] \, d\mu \\
\leq \int \{N < 1\} f^q \left[\frac{k e^{-1}}{2} \right] \, d\mu + C' \int \{N \geq 1\} \left| f \right|^q \, d\mu + D' \int \{N \geq 1\} \left| f \right|^q \, d\mu \\
\leq C \left| \nabla f \right|^q \, d\mu + D \int \left| f \right|^q \, d\mu.
\]

Thus, the conditions of Theorem 3 are satisfied for \(\eta = kN^{k-3} \sinh(N \lambda^k) \), and \(k \geq 1 \). So, the Poincaré inequality holds for \(q \geq 2 \).

The following corollary was proven in the setting of the Heisenberg-type group for the Kaplan norm \(N = (|x|^4 + 16|z|^2)^{\frac{1}{4}} \) by J. Inglis, Theorem 4.5.5 of [16].

In the setting of the step-two Carnot group, we obtain a generalised version for a similar homogeneous norm \(N = (|x|^4 + a|z|^2)^{\frac{1}{4}} \).

Corollary 5. The Poincaré inequality for \(q \geq 2 \) holds for the measure \(\int f^q \, d\mu = \frac{\exp\left(-N \lambda^k\right)}{Z} d\lambda \), where \(\lambda \) is the Lebesgue measure, and \(k \geq 4 \) in the setting of the step-two Carnot group.

Proof. Let \(g(N) = N^k \), so \(g'(N) = kN^{k-1} \), and \(g''(N) = k(k-1)N^{k-2} \). First, on \(\{N \geq 1\} \), \(g''(N) \leq k^3N^{3k} = g'(N)^3N^3 \), so the condition of Theorem 1 is satisfied. Second,

\[
\int \frac{g'(N)}{N^2} f^q \, d\mu = \int f^q \left[kN^{k-3} \right] \, d\mu \\
= \int \{N < 1\} f^q \left[kN^{k-3} \right] \, d\mu + \int \{N \geq 1\} f^q \left[kN^{k-3} \right] \, d\mu \\
\leq \int \{N < 1\} kf^q \, d\mu + C' \int \{N \geq 1\} \left| f \right|^q \, d\mu + D' \int \{N \geq 1\} \left| f \right|^q \, d\mu \\
\leq C \left| \nabla f \right|^q \, d\mu + D \int \left| f \right|^q \, d\mu.
\]
Thus, the conditions of Theorem 3 are satisfied for \(\eta = kN^{k-3} \), and \(k \geq 4 \). So, the Poincaré inequality holds for \(q \geq 2 \). \(\square \)

The following corollary improves Corollary 5 in an interesting way. Namely, at a cost of a logarithmic factor, we now get the Poincaré inequality for polynomial growth of order \(k \geq 3 \).

Corollary 6. The Poincaré inequality for \(q \geq 2 \) holds for the measure \(\mu = \exp\left(-\frac{N^k \log(N + 1)}{Z}\right) d\lambda \), where \(\lambda \) is the Lebesgue measure, and \(k \geq 3 \) in the setting of the step-two Carnot group.

Proof. Let \(g(N) = N^k \log(N + 1) \), so \(g'(N) = kN^{k-1} \log(N + 1) + \frac{N^k}{N + 1} \), and

\[
g''(N) = (k - 1)N^{k-2}\log(N + 1) + \frac{2kN^{k-1}}{N + 1} - \frac{N^k}{(N + 1)^2}.
\]

First, on \(\{ N \geq 1 \} \),

\[
g''(N) \leq k^3 N^{3k+3}(N + 1) + \frac{N^{2k+3}}{(N + 1)^3}\]

so the condition of Theorem 1 is satisfied. Second,

\[
\int \frac{g''(N)}{N^2} |f|^q d\mu = \int f^q \left[kN^{k-3}\log(N + 1) + \frac{N^{k-2}}{N + 1} \right] d\mu
\]

\[
= \int_{\{ N < 1 \}} f^q \left[kN^{k-3}\log(N + 1) + \frac{N^{k-2}}{N + 1} \right] d\mu + \int_{\{ N \geq 1 \}} f^q \left[kN^{k-3}\log(N + 1) + \frac{N^{k-2}}{N + 1} \right] d\mu
\]

\[
\leq \int_{\{ N < 1 \}} (k\log(2) + 1) f^q d\mu + C' \int_{\{ N \geq 1 \}} |\nabla f|^q d\mu + D' \int_{\{ N \geq 1 \}} |f|^q d\mu
\]

\[
\leq C \int |\nabla f|^q d\mu + D \int |f|^q d\mu.
\]

Hence, the Poincaré inequality holds for \(q \geq 2 \). \(\square \)

5. \(\phi \)-Logarithmic Sobolev Inequality

After proving the \(q \)-Poincaré inequality for measures as a function of the homogeneous norm \(N = \langle |x|^4 + a|z|^2 \rangle ^{\frac{1}{4}} \), a natural question would be if one could obtain other coercive inequalities.

J.Inglis et al.’s Theorem 2.1 [17] proved that, for the measure \(\mu = \exp\left(-\frac{e^{-U} d\lambda}{Z}\right) \), provided we have the U-Bound

\[
\mu(|f|)|U|^\beta + |\nabla U|) \leq \mu|\nabla f| +
\]

one obtains

\[
\mu \left(|f| \frac{|\log \frac{|f|}{\mu|f|}|^\beta}{\mu|f|} \right) \leq C \mu|\nabla f| + B\mu|f|.
\]

We will first extend their theorem, and then we will use Theorem 1 to get more general coercive inequalities.
Theorem 7. Let U be a locally lipschitz function on \mathbb{R}^N which is bounded below such that $Z = \int e^{-U} d\lambda < \infty$ and $d\mu = \frac{e^{-U}}{Z} d\lambda$. Let $\phi : [0, \infty) \to \mathbb{R}^+$ be a non-negative, non-decreasing, concave function such that $\phi(0) > 0$, and $\phi'(0) > 0$. Assume the following classical Sobolev inequality is satisfied:

$$\left(\int |f|^q d\lambda \right)^\frac{1}{q} \leq a \int |\nabla f|^q d\lambda + b \int |f|^q d\lambda$$

for some $a, b \in [0, \infty)$, and $\epsilon > 0$. Moreover, if for some $A, B \in [0, \infty)$, we have:

$$\mu(|f|^q(\phi(U) + |\nabla U|^q)) \leq A\mu|\nabla f|^q + B\mu|f|^q,$$

Then, there exists constants $C, D \in [0, \infty)$ such that:

$$\mu\left(|f|^q \left(\log \frac{|f|^q}{\mu|f|^q} \right) \right) \leq C\mu|\nabla f|^q + D\mu|f|^q,$$

for all locally Lipschitz functions f.

Proof. First of all, we remark that for a concave function ϕ as in our assumptions, we have

$$\phi(y) - \phi(x) \leq \phi'(0)(y - x). \tag{5.1}$$

Suppose first that $\int |f|^q = 1$, and let $E = \{ x \in \mathbb{R}^N : |\log|f|| > U \}$.

$$\int |f|^q \phi(|\log|f||) d\mu = \int_E |f|^q \phi(|\log|f||) d\mu + \int_{E^c} |f|^q \phi(|\log|f||) d\mu$$

$$= \int_E |f|^q \phi(|\log|f||) - \phi(U) d\mu + \int_E |f|^q \phi(U) d\mu + \int_{E^c} |f|^q \phi(|\log|f||) d\mu$$

$$\leq \phi'(0) \int_E |f|^q (|\log|f|| - U) d\mu + \int_E |f|^q \phi(U) d\mu + \int_{E^c} |f|^q \phi(U) d\mu,$$

where the last inequality uses (5.1) on E, and uses the fact that ϕ is non-decreasing on E^c, hence, $|\log|f|| < U$. Let $E_1 = \{ |f|^q > U \}$, $E_2 = \{ |f|^q < -U \}$, and $c = \int_{E_1} |f|^q e^{-U} d\lambda$.

$$\int |f|^q \phi(|\log|f||) d\mu \leq \frac{c\phi'(0)}{e} \int_{E_1} \left(\frac{|f|^q}{e^U} \right)^q \log \left(\frac{|f|^q}{e^U} \right) d\lambda + \phi'(0) \int_{E_2} e^{-U} d\mu + \int |f|^q \phi(U) d\mu$$

Using Jensen’s inequality,

$$\leq \frac{c\phi'(0)(q + \epsilon)}{Ze} \log \left(\int_{E_1} \left(\frac{|f|^q}{e^U} \right)^{q+\epsilon} d\lambda \right)^\frac{1}{q+\epsilon} + \phi'(0) \int_{E_2} 1 d\mu + \int |f|^q \phi(U) d\mu$$

$$\leq \frac{c\phi'(0)(q + \epsilon)}{Ze} \log \left(\int \left(|f|^q \right)^{q+\epsilon} d\lambda \right)^\frac{1}{q+\epsilon} + \phi'(0) Z + \int |f|^q \phi(U) d\mu$$
Using classical Sobolev inequality,

\[\leq a \int \|f\|^q d\mu + b \int \left| \nabla (f e^{-\frac{u}{q}}) \right|^q d\lambda + \phi'(0) Z + \int |f|^q \phi(U) d\mu \]

\[= a + \phi'(0) Z + b \int \frac{f}{q} \nabla (f) e^{-\frac{u}{q}} d\lambda + \int |f|^q \phi(U) d\mu \]

\[\leq a + \phi'(0) Z + b Z \int |\nabla f|^q d\mu + \frac{Z b^q - 1}{q^q} \int |f|^q \nabla U d\mu + \int |f|^q \phi(U) d\mu \]

Using the U-bound in the Theorem’s condition

\[\leq A + B \int |\nabla f|^q d\mu \]

Finally, replace \(|f|^q\) by \(\frac{|f|^q}{\mu|f|^q}\) to get the desired inequality. \(\square\)

Corollary 8. \(\phi(x) = (1 + x)^2\), for \(\beta \in (0, 1)\) is non-negative, non-decreasing, and concave function satisfying \(\phi(0) = 1 > 0\), and \(\phi'(0) = \beta > 0\). Therefore, Theorem 7 applies, and

\[\mu \left(\left| f \right|^q \log \left(\frac{|f|^q}{\mu|f|^q} \right)^\beta \right) \leq \mu \left(\left| f \right|^q \left(1 + \log \left(\frac{|f|^q}{\mu|f|^q} \right) \right)^\beta \right) \leq C \mu|\nabla f|^q + D \mu|f|^q. \]

Corollary 9. Let \(h^{(1)}(x) = \log(\alpha + x)\), where \(\alpha > 1\). Define recursively

\(h^{(n)}(x) = \log(\alpha + h^{(n-1)}(x))\). Then, for all \(n \geq 1\), \(h^{(n)}(x) = \phi(x)\) of Theorem 7. Therefore, we obtain

\[\mu \left(\left| f \right|^q \log^{*(n)} \left(\frac{|f|^q}{\mu|f|^q} \right) \right) \leq \mu \left(\left| f \right|^q h^{(n)} \left(\frac{|f|^q}{\mu|f|^q} \right) \right) \leq C \mu|\nabla f|^q + D \mu|f|^q, \]

where \(\log^{*(n)}\) is the positive part of \(\log^{(n)}\).

Proof. The proof proceeds by induction. For \(n = 1\), \(h^{(1)}(x) = \log(\alpha + x)\), so \(h^{(1)}(x)' = \frac{1}{\alpha + x}\), and \(h^{(1)}(x)'' = \frac{-1}{(\alpha + x)^2}\). \(h^{(1)}(0) = \log(\alpha) > 0\), and \(h^{(1)}(0)' = \frac{1}{\alpha} > 0\). In addition, \(h^{(1)}(x)\) is non-negative, non-decreasing, and concave; hence the conditions of Theorem 7 are satisfied.

Assume it is true for \(n = k\), prove it is true for \(n = k + 1\) : \(h^{(k+1)}(x) = \log(\alpha + h^{(k)}(x))\), so

\(h^{(k+1)}(x)' = \frac{h^{(k)}(x)'}{\alpha + h^{(k)}(x)}\), and \(h^{(k+1)}(x)'' = \frac{h^{(k)}(x)''}{\alpha + h^{(k)}(x)} - \frac{h^{(k)}(x)'}{(\alpha + h^{(k)}(x))^2}\). The result follows directly. \(\square\)

Returning to the measure as a function of the homogeneous norm \(N = (|x|^4 + a|z|)^\frac{1}{2}\), \(d\mu = e^{-\frac{Np}{Z}} d\lambda\), we will prove using Theorems 1 and 7, that the \(L^p\)-Sobolev inequality \((0 < \beta \leq 1)\) (Corollary 8) holds for \(q \geq 2\), yet fails for \(1 < q < \frac{2p\beta}{p - 1}\). To start with, we will show why the \(L^p\)-Sobolev inequality fails for \(1 < q < \frac{2p\beta}{p - 1}\). The proof uses the idea of Theorem 6.3 of [15].
Theorem 10. Let G be a stratified group, and N be a smooth homogenous norm on G. For $\alpha > 0$, $p \geq 1$, let $d\mu = \frac{e^{-\alpha N^p}}{Z}d\lambda$, where Z is the normalization constant. The measure μ satisfies no Log$^\beta$-Sobolev inequality ($0 < \beta \leq 1$) for $1 < q < \frac{2p\beta}{p-1}$.

Proof. The proof is by contradiction. Let x_0 be such that $(\nabla N)(x_0) = 0$. For $t > 0$ put $r = t^{\frac{p+1}{p-1}}$, and

$$f = \max \left[\min \left(\frac{2 - d(x,tx_0)}{r}, 1 \right), 0 \right].$$

On $B(tx_0, 2r) = \{ x : d(x,tx_0) \leq 2r \}$, by homogeneity, by Lemma 6.3 of [15], and by the fact that $(\nabla N)(x_0) = 0$, we have $|N(x) - N(tx_0)| \leq c_1 r^2$, so $|N(x)^p - N(tx_0)^p| \leq c_2$. Consequently, the exponential factor in μ is comparable to a constant on the support of f. Also, $|\nabla f| \leq \frac{1}{t}$, and

\begin{align*}
\mu[|f|^q] &\approx r^q \left(e^{-\alpha N^p(tx_0)} \right) \\
log(\mu[|f|^q]) &\approx -t^p \\
\mu[|\nabla f|^q] &\approx r^{-q} r^q e^{-\alpha N^p(tx_0)}
\end{align*}

Choose t large enough so that $r < \frac{2}{t}$. On $B(tx_0, 2r)$, $2 - d(x,tx_0) \geq 2 - 2r \geq r$. Thus, we have $f = \max \left[\min \left(\frac{2 - d(x,tx_0)}{r}, 1 \right), 0 \right] = 1$, and consequently $log|f|^q = 0$.

$$\mu \left(\left| f \right|^q \left| \log \left(\frac{|f|^q}{\mu[|f|^q]} \right) \right|^{\beta} \right) = \mu \left(\left| f \right|^q \left(|log|f|^q - \log \mu[|f|^q] \right) \right) = \mu \left(\left| f \right|^q \left(|log\mu[|f|^q] \right) \right)$$

by (5.3),

$$\approx \mu[|f|^q t^{p\beta}]$$

by (5.2)

$$\approx t^{p\beta} r^q e^{-\alpha N^p(tx_0)}.$$

Assuming we have β–logarithmic Sobolev inequality, and using (5.4), we get:

$$t^{p\beta} r^q e^{-\alpha N^p(tx_0)} \leq M r^{-q} r^q e^{-\alpha N^p(tx_0)}$$

since $r = t^{\frac{p+1}{p-1}}$,

$$t^{p\beta} \leq M t^{-q} \left(\frac{p+1}{p-1} \right).$$

For t large enough, we get a contradiction when $p\beta > \frac{q(p-1)}{2}$ i.e. for $q < \frac{2p\beta}{p-1}$. So, the measure μ satisfies no β–logarithmic Sobolev inequality for $1 < q < \frac{2p\beta}{p-1}$. \hfill \Box

Now we prove that for $q \geq 2$, Log$^\beta$-Sobolev inequality holds true for $d\mu = \frac{e^{-\alpha N^p}}{Z}d\lambda$, where $N = (|x|^4 + a|x|^2)^\frac{1}{2}$ and $0 < \beta \leq \frac{p-3}{p}$.
Theorem 11. Let \mathcal{G} be an step-two Carnot group. Consider the probability measure given by

$$d\mu = \frac{e^{-g(N)}}{Z} d\lambda,$$

where Z is the normalization constant and $N = (|x|^4 + a|x|^2)^{\frac{1}{4}}$ with $a \in (0, \infty)$. Let $g : [0, \infty) \to [0, \infty)$ be a differentiable increasing function such that $g'(N)$ is increasing, $g(N) \leq \left(\frac{g'(N)}{N^2}\right)^{\frac{1}{2}}$, and $g''(N) < dg'(N)^2$ on $\{N \geq 1\}$, for some constants $c, d \in (0, \infty)$. Then

$$\mu \left(|f|^q \left\|\log \left(\frac{|f|^q}{\|f\|^q}\right)\right\|^2\right) \leq C \mu|\nabla f|^q + D \mu|f|^q,$$

for C and D positive constants and for $q \geq 2$.

Proof. On $\{N \geq 1\}$, $g''(N) < dg'(N)^2 \leq g'(N)^3 N^3$, so the condition of Theorem 1 is satisfied. Thus, on $\{N \geq 1\}$, we have the U-bound (2.1):

$$\mu \left(\frac{g'(N)}{N^2} |f|^q \right) \leq C \mu|\nabla f|^q + D \mu|f|^q.$$

By the condition $g(N) \leq \left(\frac{g'(N)}{N^2}\right)^{\frac{1}{2}}$, we obtain $\phi(g(N)) = (1 + g(N))^2 \leq \frac{g'(N)}{N^2}$ on $\{N \geq 1\}$. Hence, since $g(N)$ is increasing and using the U-bound, we have

$$\mu (\phi(g(N)) |f|^q) \leq \int_{\{N \geq 1\}} \left(\frac{g'(N)}{N^2} |f|^q\right) d\mu + \int_{\{N < 1\}} \phi(g(N)) |f|^q d\mu$$

$$\leq \int_{\{N \geq 1\}} \left(\frac{g'(N)}{N^2} |f|^q\right) d\mu + \int_{\{N < 1\}} (1 + g(1))^2 |f|^q d\mu$$

$$\leq C \mu|\nabla f|^q + D \mu|f|^q.$$

In order to use Theorem 7, it remains to prove:

$$\mu(|f|^q |\nabla g(N)|^q) \leq C \mu|f|^q + D \mu|\nabla f|^q.$$

On $\{N < 1\}$, since $g'(N)$ is increasing and using (3.1),

$$\int_{\{N < 1\}} (|f|^q |\nabla g(N)|^q) d\mu = \int_{\{N < 1\}} (|f|^q g'(N) |\nabla N|^q) d\mu \leq C^2 \int_{\{N < 1\}} |f|^q |g'(1)|^q d\mu.$$

We now need to consider $\{N \geq 1\}$:

$$\int |f|^q |\nabla g(N) \cdot V - \nabla \cdot V| d\mu = \int \nabla |f|^q \cdot V d\mu \leq \frac{\epsilon}{p} \int |f|^q |V|^p d\mu + \frac{1}{\epsilon} q^{q-1} \int |\nabla f|^q d\mu,$$

where the last inequality uses $ab \leq \frac{\epsilon a^p}{p} + \frac{b q^{q-1}}{q}$, where $a = |f|^q |V|$, and $b = q |\nabla f|$. Let $V = \nabla N |x|^{-2} g'(N)^q - 1$. Since $\nabla g(N) = g'(N) \nabla N$, then $\nabla g(N) \cdot V = |\nabla g(N)|^q$, which is the term on the left hand side of
(5.6). Using the inequality (3.1) on the first term on the right hand side of (5.7) we get
\[\frac{\epsilon}{p} \int |f|^q |V|^p d\mu = \frac{\epsilon}{p} \int |\nabla N|^p |f|^q |x|^{(q-2)p} g'(N)^q \frac{N_{q-2}}{N_{q-2}p} d\mu \]
\[\leq \frac{\epsilon C^2}{p} \int |f|^q |x|^{q} g'(N)^q \frac{N_{q}}{N_{q}} d\mu \]
which can subtracted from the left hand side of (5.7) since by choosing \(\epsilon \) small enough and noting that using (3.1), one has
\[\nabla g(N) \cdot V = |\nabla N|^2 |x|^{q-2} g'(N)^q \geq A \frac{|x|^q}{N_q} g'(N)^q. \]

It remains to compute \(\nabla \cdot V \). Using \(|\Delta N| \leq B \frac{|x|^2}{N_q} \), (3.2), and \(\frac{x}{|x|} \cdot \nabla N = \frac{|x|^3}{N_q} \), (3.3), we have
\[\nabla \cdot V = \Delta N \frac{|x|^{q-2}}{N_q} g'(N)^{q-1} + (q-2) \frac{|x|^q g'(N)^{q-1}}{N_{q+1}} - (q-2) \frac{|\nabla N|^2 |x|^{q-2} g'(N)^{q-1}}{N_{q-2}} \]
\[+ (q-1) g'(N)^{q-2} g''(N) \frac{|x|^{q-2} |\nabla N|^2}{N_{q-2}} \]
and hence
\[|\nabla V| \leq B \frac{|x|^q}{N_{q+1}} g'(N)^{q-1} + (q-2) \frac{|x|^q g'(N)^{q-1}}{N_{q+1}} + (q-2) \frac{C|\nabla N|^2 |x|^q g'(N)^{q-1}}{N_{q+1}} + C(q-1) g'(N)^{q-2} g''(N) \frac{|x|^q}{N_q}. \]

All terms can be absorbed by the first term in (5.7). Using (5.5) and (5.6), the condition of Theorem 7 is satisfied, and we obtain \(\log \alpha \)-Sobolev inequality:
\[\mu \left(|f|^q \log \left(\frac{|f|^q}{\mu|f|^q} \right) \right) \leq C \mu|f|^q + D \mu|\nabla f|^q \]
for \(C \) and \(D \) positive constants. \(\square \)

Corollary 12. Let \(G \) be a step-two Carnot group and \(N = \left(|x|^4 + a|x|^2 \right)^{\frac{1}{2}} \) with \(a \in (0, \infty) \). Let the probability measure be \(d\mu = e^{-\beta N} \frac{Z}{Z} d\lambda \), where \(Z \) is the normalization constant. Then, for \(p \geq 4 \) and \(0 < \beta \leq \frac{p-3}{p} \),
\[\mu \left(|f|^q \log \left(\frac{|f|^q}{\mu|f|^q} \right) \right) \leq C \mu|f|^q + D \mu|\nabla f|^q, \]
for \(C \) and \(D \) positive constants and for \(q \geq 2 \).

6. **Appendix: Proof of Lemma 2**

Proof. We first compute \(\nabla N = \left(X_i N \right)_{i=1,...,n} \)
\[X_i N = N^{-3} \left(|x|^2 x_i + \frac{a}{4} \sum_{k=1}^{m} \sum_{l=1}^{n} \Lambda^{(k)}_{il} x_{i} x_{l} \right). \]
Therefore,

\[(6.1)\]
\[
|\nabla N|^2 = N^{-6} \left(|x|^6 + \frac{a_2}{2} \sum_{i=1}^{m} \sum_{l=1}^{n} \Lambda_{kl}^{(k)} |x|^2 x_i x_l z_k + \sum_{i=1}^{n} \frac{a_1^2}{16} \sum_{k,k'=1}^{m} \sum_{l,l'=1}^{n} \Lambda_{kl}^{(k)} \Lambda_{l'l'}^{(k')} x_i x_l z_k z_{k'} \right)
\]

= \[
N^{-6} \left(|x|^6 + \frac{a_2^2}{16} \sum_{i=1}^{m} \sum_{k,k'=1}^{m} \sum_{l,l'=1}^{n} \Lambda_{kl}^{(k)} \Lambda_{l'l'}^{(k')} x_i x_l z_k z_{k'} \right)
\]

= \[
\frac{|x|^2}{N^2} N^{-4} \left(|x|^4 + \frac{a^2}{16} \sum_{i=1}^{n} \sum_{k,k'=1}^{m} \sum_{l,l'=1}^{n} \Lambda_{kl}^{(k)} \Lambda_{l'l'}^{(k')} x_i x_l z_k |x|) \right),
\]

where we used that for each skew-symmetric matrix \(\Lambda^{(k)}\), all \(k \in \{1, ..., m\}\), we have that

\[
\sum_{i=1}^{n} \sum_{k=1}^{m} \Lambda_{kl}^{(k)} x_l x_i = 0.
\]

From (6.1), that with some constants \(A, C \in (0, \infty)\), we have

\[
A \frac{|x|^2}{N^2} \leq |\nabla N|^2 \leq C \frac{|x|^2}{N^2}.
\]

By choosing \(a \in (0, \infty)\) sufficiently small, we can ensure that \(C \leq 1\). We note that using antisymmetry of matrices \(\Lambda_{kl}^{(k)}\) we get

\[
\frac{x}{|x|} \cdot \nabla N = \sum_{i=1}^{n} \frac{x_i}{|x|} N^{-3} \left(|x|^2 x_i + \frac{a}{4} \sum_{k=1}^{m} \sum_{l=1}^{n} \Lambda_{kl}^{(k)} x_l z_k \right)
\]

Next we compute

\[
X_i^2 N = \left(\frac{\partial}{\partial x_i} + \frac{1}{2} \sum_{k=1}^{m} \sum_{l=1}^{n} \Lambda_{kl}^{(k)} x_l \frac{\partial}{\partial z_k} \right) \left(N^{-3} \left(|x|^2 x_i + \frac{a}{4} \sum_{k=1}^{m} \sum_{l=1}^{n} \Lambda_{kl}^{(k)} x_l z_k \right) \right)
\]

= \[
-3 \left(N^{-7} \left(|x|^2 x_i + \frac{a}{4} \sum_{k=1}^{m} \sum_{l=1}^{n} \Lambda_{kl}^{(k)} x_l z_k \right) \right)
\]

+ \[
\left(N^{-3} \left(|x|^2 + 2x_i^2 + \frac{a}{4} \sum_{k=1}^{m} \sum_{l=1}^{n} \Lambda_{kl}^{(k)} \delta_{kl} z_k \right) \right)
\]

+ \[
\left(N^{-3} \left(\frac{1}{2} \sum_{k=1}^{m} \sum_{l=1}^{n} \Lambda_{kl}^{(k)} x_l z_k \right) \right)
\]

Hence we obtain

\[
\Delta N = \sum_{i=1}^{n} X_i^2 N
\]

= \[
-3 \left(N^{-7} \left(|x|^6 + \frac{2a}{4} \sum_{k=1}^{m} \sum_{l=1}^{n} \Lambda_{kl}^{(k)} |x|^2 x_l x_i z_k \right) \right)
\]

+ \[
\frac{a^2}{16} \sum_{k=1}^{m} \sum_{l=1}^{n} \sum_{k'=1}^{m} \sum_{l'=1}^{n} \Lambda_{kl}^{(k')} \Lambda_{l'l'}^{(k')} x_l x_l z_k z_{k'} \right)
\]

+ \[
\left(N^{-3} \left((n+2)|x|^2 + \frac{a}{4} \sum_{k=1}^{m} \sum_{l=1}^{n} \Lambda_{kl}^{(k)} \delta_{kl} z_k \right) \right)
\]

+ \[
\left(N^{-3} \left(\frac{1}{2} \sum_{k=1}^{m} \sum_{l=1}^{n} \Lambda_{kl}^{(k)} x_l z_k \right) \right)
\].
which after simplifications yields
\[
\Delta N = \sum_{i=1}^{n} X_i^2 N
\]
\[
= -3 \left(N^{-7} \left(|x|^6 + \frac{a^2}{16} \sum_{k=1}^{m} \sum_{l=1}^{n} \sum_{k'=1}^{m} \sum_{l'=1}^{n} \Lambda_{ll'}^{(k)} \Lambda_{l'l}^{(k')} x_l x_{l'} x_k x_{k'} \right) \right) + (n-2) \left(N^{-3} \left((n+2)|x|^2 \right) \right) + \left(N^{-3} \left(\frac{a}{8} \sum_{k=1}^{m} \sum_{l=1}^{n} \sum_{k'=1}^{m} \sum_{l'=1}^{n} \Lambda_{ll'}^{(k)} \Lambda_{l'l}^{(k')} x_l x_{l'} \right) \right).
\]
Thus we get
\[
\Delta N = \frac{|x|^2}{N^3} \left[-3 \left(N^{-4} \left(|x|^4 + \frac{a^2}{16} \sum_{k=1}^{m} \sum_{l=1}^{n} \sum_{k'=1}^{m} \sum_{l'=1}^{n} \Lambda_{ll'}^{(k)} \Lambda_{l'l}^{(k')} x_l x_{l'} |x|^2 z_k z_{k'} \right) \right) + (n+2) \sum_{k=1}^{m} \sum_{l=1}^{n} \sum_{k'=1}^{m} \sum_{l'=1}^{n} \Lambda_{ll'}^{(k)} \Lambda_{l'l}^{(k')} \right].
\]
which can be represented as follows
\[
\Delta N = (n-1) \frac{|x|^2}{N^3} + \frac{|x|^2}{N^3} \left[-3 \left(N^{-4} \left(-a|x|^2 + \frac{a^2}{16} \sum_{k=1}^{m} \sum_{l=1}^{n} \sum_{k'=1}^{m} \sum_{l'=1}^{n} \Lambda_{ll'}^{(k)} \Lambda_{l'l}^{(k')} x_l x_{l'} |x|^2 z_k z_{k'} \right) \right) \right] + \frac{a}{8} \sum_{k=1}^{m} \sum_{l=1}^{n} \sum_{k'=1}^{m} \sum_{l'=1}^{n} \Lambda_{ll'}^{(k)} \Lambda_{l'l}^{(k')} \frac{x_l x_{l'}}{|x||x|}.
\]
Hence, there exists a constant \(B \in (0, \infty) \) such that
\[
|\Delta N| \leq B \frac{|x|^2}{N^3}
\]
Remark: If \(a > 0 \) is small, \(\Delta N \geq 0 \). For large \(a \), in some directions \(\Delta N \) can be negative. \(\square \)

References

[1] D. Bakry and M. Émery. *Diffusions hypercontractive*. In Séminaire de Probabilités, XIX, 1983/84, number 1123 in Lecture Notes in Math., pages 177–206. Springer, Berlin, 1985.

[2] D. Bakry, F. Baudoin, M. Bonnefont, D. Chafai. *On gradient bounds for the heat kernel on the Heisenberg group*. J. Funct. Anal. 255, 1905–1938 (2008).

[3] F. Barthe, P. Cattiaux, and C. Roberto. *Interpolated inequalities between exponential and Gaussian, Orlicz hypercontractivity and isoperimetry*. Rev. Mat. Iberoamericana 22 (2006), no. 3, 993–1067.

[4] S. Bobkov and M. Ledoux. *From Brunn-Minkowski to Brascamp-Lieb and to logarithmic Sobolev inequalities*. Geom. Funct. Anal., 10(5):1028–1052, 2000.

[5] S. Bobkov and B. Zegarlinski. *Entropy bounds and isoperimetry*. Mem. Amer. Math.Soc., 176(829), 2005.

[6] Th. Bodineau and B. Helffer. *On Log-Sobolev inequalities for unbounded spin systems*. J. Funct. Anal. 166 (1999), 168-178.

[7] A. Bonfiglioli, E. Lanconelli, and F. Uguzzoni. *Stratified Lie Groups and Potential Theory for their Sub-Laplacians*. Springer Monographs in Mathematics. Springer, 2007.

[8] L. Capogna, D. Danielli, S.D. Pauls, and J. Tyson. *An introduction to the Heisenberg group and the sub-Riemannian isoperimetric problem*. Progress in Mathematics, 259. Birkhäuser Verlag, Basel, 2007. xvi+223 pp. ISBN: 978-3- 7643-8132-5.
[9] M. Chatzakou, S. Federico, B. Zegarlinski. \textit{q-Poincaré inequalities on Carnot Groups with a filiform Lie algebra.} arXiv:2007.04689v2 [math.FA].

[10] W.S. Cohn, G. Lu, and P. Wang. \textit{Sub-elliptic global high order Poincaré inequalities in stratified Lie groups and applications.} (English summary) J. Funct. Anal. 249 (2007), no. 2, 393–424.

[11] B.K. Driver and T. Melcher. \textit{Hypoelliptic heat kernel inequalities on Lie groups.} Stoch. Process. Appl. 118, 368–388 (2008).

[12] F. Gong and L. Wu. \textit{Spectral gap of positive operators and applications.} J. Math. Pures Appl. (9) 85 (2006), no. 2, 151-191.

[13] L. Gross. \textit{Logarithmic Sobolev inequalities.} Amer. J. Math., 97:1061–1083, 1975.

[14] A. Guionnet and B. Zegarlinski. \textit{Lectures on logarithmic Sobolev inequalities.} Séminaire de Probabilités, XXXVI, 1-134, Lecture Notes in Math., 1801, Springer, Berlin, 2003.

[15] W. Hebisch and B. Zegarlinski. \textit{Coercive inequalities on metric measure spaces.} J. Funct. Anal., 258:814–851, 2010.

[16] J. Inglis. \textit{Coercive Inequalities for Generators of Hörmander Type.} Doctor of Philosophy of the University of London and the Diploma of Imperial College, Department of Mathematics Imperial College, 2010.

[17] J. Inglis, V. Kontis, B. Zegarlinski. \textit{From U-Bounds to Isoperimetry with Applications.} J. Funct. Anal., 260 (2011) 76-116.

[18] J. Jerison. \textit{The Poincaré inequality for vector fields satisfying Hörmander’s condition.} Duke Math. J. 53 (1986), no. 2, 505-523.

[19] E. Le Donne. \textit{A Primer on Carnot Groups: Homogenous Groups, Carnot-Carathéodory Spaces, and Regularity of Their Isometries.} Anal. Geom. Metr. Spaces 2017; 5:116–137.

[20] M. Ledoux. \textit{A simple analytic proof of an inequality by P. Buser.} Proc. Amer. Math. Soc., 121(3):951–959, 1994.

[21] H.Q. Li. \textit{Estimation optimale du gradient du semi-groupe de la chaleur sur le groupe de Heisenberg.} J. Funct. Anal. 236, 369–394 (2006).

[22] X. Li, C.Z. Lu, and H.L. Tang. \textit{Poincaré inequalities for vector fields satisfying Hörmander’s condition in variable exponent Sobolev spaces.} Acta Math. Sin. (Engl. Ser.) 31 (2015), no. 7, 1067–1085.

[23] G. Lu. \textit{Local and global interpolation inequalities on the Folland-Stein Sobolev spaces and polynomials on stratified groups.} (English summary) Math. Res. Lett. 4 (1997), no. 6, 777–790.

[24] G. Lu. \textit{Polynomials, higher order Sobolev extension theorems and interpolation inequalities on weighted Folland-Stein spaces on stratified groups.} (English summary) Acta Math. Sin.(Engl. Ser.) 16 (2000), no. 3, 405–444.

[25] G. Lu and R.L. Wheeden. \textit{High order representation formulas and embedding theorems on stratified groups and generalizations.} Studia Math. 142 (2000), no. 2, 101–133. (Reviewer: G. B. Folland).

[26] G. Lu and R.L. Wheeden, R. \textit{Simultaneous representation and approximation for- mula and high-order Sobolev embedding theorems on stratified groups.} (English summary) Constr. Approx. 20 (2004), no. 4, 647–668.

[27] P. Ługiewicz and B. Zegarliński. \textit{Coercive Inequalities for Hörmander Type Generators in Infinite Dimensions.} J. Funct. Anal. 247 (2007), 438-476.

[28] T. Mechler. \textit{Hypoelliptic heat kernel inequalities on Lie groups.} Stochastic Process. Appl. 118 (2008), no.3, 368-388 (Reviewer: T. Coulhon).

[29] J. Rosen, \textit{Sobolev inequalities for weight spaces and supercontractivity.} Trans. Amer. Math. Soc. 222 (1976), 367-376.

[30] C. Roberto and B. Zegarliński. \textit{Orlicz-Sobolev inequalities for sub-Gaussian measures and ergodicity of Markov semi-groups.} J. Funct. Anal. 243. (2006) 28-66.
[31] M. Ruzhansky and N. Yessirkegenov. Factorization and Hardy-Rellich Inequalities on Stratified Groups. arXiv:1706.05108 (2017).

[32] E. Stein. Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals. Princeton University Press, Princeton, New Jersey, 1993.

[33] N.T. Varopoulos, L. Saloff-Coste and T. Coulhon. Analysis and Geometry on Groups. Cambridge Tracts in Mathematics, 100, Cambridge University Press, Cambridge (1992).

[34] N. Yosida. The log-Sobolev inequality for weakly coupled lattice fields. Probab. Theor. Relat. Field 115 (1999) 1-40.

[35] B. Zegarliński. Entropy bounds for Gibbs measures with non-Gaussian tails. J. Funct. Anal. 187 (2) (2001) 368-395.

Esther Bou Dagher:
Department of Mathematics
Imperial College London
180 Queen’s Gate, London SW7 2AZ
United Kingdom
Email address: esther.bou-dagher17@imperial.ac.uk

Bogusław Zegarliński:
Department of Mathematics
Imperial College London
180 Queen’s Gate, London SW7 2AZ
United Kingdom
Email address: b.zegarlinski@imperial.ac.uk