U1 Adaptor Oligonucleotides Targeting \textit{BCL2} and \textit{GRM1} Suppress Growth of Human Melanoma Xenografts \textit{In Vivo}

Rafal Goraczniak\(^1\), Brian A Wall\(^2\), Mark A Behlke\(^3\), Kim A Lennox\(^3\), Eric S Ho\(^4\), Nikolas H Zaphiros\(^4\), Christopher Jakubowski\(^4\), Neil R Patel\(^5\), Steven Zhao\(^5\), Carlo Magaway\(^6\), Stacey A Subbie\(^6\), Lumeng Jenny Yu\(^7\), Stephanie LaCava\(^2\), Kenneth R Reuhl\(^8\), Suzie Chen\(^9\), and Samuel I Gunderson\(^1\)

U1 Adaptor is a recently discovered oligonucleotide-based gene-silencing technology with a unique mechanism of action that targets nuclear pre-mRNA processing. U1 Adaptors have two distinct functional domains, both of which must be present on the same oligonucleotide to exert their gene-silencing function. Here, we present the first \textit{in vivo} use of U1 Adaptors by targeting two different human genes implicated in melanomagenesis, \textit{B-cell lymphoma 2 (BCL2)} and metabotropic glutamate receptor 1 (\textit{GRM1}), in a human melanoma cell xenograft mouse model system. Using a newly developed dendrimer delivery system, anti-\textit{BCL2} U1 Adaptors were very potent and suppressed tumor growth at doses as low as 34 \(\mu\)g/kg with twice weekly intravenous (iv) administration. Anti-\textit{GRM1} U1 Adaptors suppressed tumor xenograft growth with similar potency. Mechanism of action was demonstrated by showing target gene suppression in tumors and by observing that negative control U1 Adaptors with just one functional domain show no tumor suppression activity. The anti-\textit{BCL2} and anti-\textit{GRM1} treatments were equally effective against cell lines harboring either wild-type or a mutant V600E B-RAF allele, the most common mutation in melanoma. Treatment of normal immune-competent mice (C57BL6) indicated no organ toxicity or immune stimulation. These proof-of-concept studies represent an in-depth (over 800 mice in ~108 treatment groups) validation that U1 Adaptors are a highly potent gene-silencing therapeutic and open the way for their further development to treat other human diseases.

\textit{Molecular Therapy–Nucleic Acids (2013) 2, e92; doi:10.1038/mtna.2013.24; published online 14 May 2013}

\textbf{Subject Category:} Antisense Oligonucleotides; Therapeutic Proof-of-Concept

\textbf{Introduction}

The ability to silence a single target gene with minimal toxicity and few off-target effects (OTEs) would offer the medical community new tools to combat a wide variety of diseases. Several hybridization-based technologies have been tested over the past 30 years that utilize synthetic oligonucleotides to suppress expression of a specific target gene. In broad terms, these technologies are based on a gene being targeted either by small interfering RNAs (siRNAs) which exploit the natural cellular RNA interference machinery\(^1,2\) or by an antisense oligonucleotide (ASO) that can function via a variety of mechanisms, including RNase H-mediated cleavage of mRNA, steric hindrance of mRNA translation, splice site switching, and miRNA antagonists.\(^3\) ASOs and siRNAs have struggled to produce commercially viable therapeutics, in spite of initial excitement and large-scale investment\(^6\) presenting an opportunity for alternative gene-silencing technologies.

U1 Adaptors are a recently invented gene-silencing technology that exploits the natural ability of the U1 small nuclear ribonucleoprotein (snRNP) splicing factor to inhibit genespecific polyA site activity of the target gene, a regulated nuclear pre-mRNA processing step obligatory for nearly all RNA Polymerase II genes.\(^7\) A U1 Adaptor is a synthetic oligonucleotide (typically 28–33 nucleotides) comprised of a 5’ target domain (TD), which binds to the target pre-mRNA, and a 3’ U1 domain (U1D), which binds to the 5’-end of the U1 small nuclear RNA subunit of U1 snRNP.\(^8\) Tethering of the U1 snRNP to a target pre-mRNA blocks maturation leading to reduced levels of mature mRNA. The U1D sequence is common to all U1 Adaptors and is defined by the U1 snRNP; design and chemical modification patterns have already been optimized.\(^7\) In contrast, the TD sequence is target-specific and hence unique to each U1 Adaptor. Like all other gene knockdown technologies, empiric testing is required for site selection and optimization. Extensive medicinal chemistry studies have been done in ASO and siRNA systems to find chemical modifications that improve nuclease stability, enhance potency, and reduce OTEs.\(^3,5,13–17\) Unlike siRNAs or RNase H-mediated ASOs, U1 Adaptors do not interact or function with any cellular enzymes (such as RNase H, Dicer, Argonaute 2, etc.) and thus can be made entirely using modified components, such as 2’-O-Methyl RNA (2’OMe) or locked nucleic acids (LNAs), with or without phosphorothioate (PS)-modified internucleotide linkages.\(^7\) All oligonucleotide-based silencing technologies have associated toxicities and U1 Adaptors are no exception, as evidenced by a recent report that showed significant OTEs when used at high doses.\(^18\) In a previous report, use of U1 Adaptors at a lower dose gave effective and specific silencing with few OTEs.\(^7\)

Here, we present the first report of \textit{in vivo} use of U1 Adaptors by targeting two human genes to suppress growth of human melanoma cells in a mouse xenograft model system.

\(^{1}\)Silagene Inc., Hillsborough, New Jersey, USA; \(^{2}\)Department of Chemical Biology, Rutgers University, Ernest Mario School of Pharmacy, Piscataway, New Jersey, USA; \(^{3}\)Integrated DNA Technologies Inc., Coralville, Iowa, USA; \(^{4}\)Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway, New Jersey, USA; \(^{5}\)Department of Pharmacology and Toxicology, Rutgers University, Ernest Mario School of Pharmacy, Piscataway, New Jersey, USA. Correspondence: Samuel I Gunderson, Department of Molecular Biology and Biochemistry, Rutgers University, 604 Allison Rd Room A322, Piscataway, New Jersey 08854, USA. E-mail: gunderson@biology.rutgers.edu or Mark A Behlke, Integrated DNA Technologies Inc., 1710 Commercial Park, Coralville, Iowa 52241, USA. E-mail: mbehlke@idtdna.com

\textbf{Keywords:} cancer therapy; dendrimer; gene silencing; oligonucleotide therapeutic; tumor targeting

Received 29 January 2013; accepted 3 April 2013; advance online publication 14 May 2013. doi:10.1038/mtna.2013.24
The antiapoptotic human B-cell lymphoma 2 (BCL2) gene has been a frequent target in studies using ASO and RNA interference technologies19–24 and plays a role in many cancers, including melanoma25–29 that has extraordinary intrinsic resistance to apoptotic cell death commonly induced by anticancer drugs, in part due to elevated levels of BCL2.28,29 We chose a human melanoma xenograft mouse system for its proven track record in predicting efficacy in clinical trials as evidenced by riluzole that has gone on to show efficacy in phase 0 and 2 human trials.30 Our second target, the metabotropic glutamate receptor 1 (GRM1) gene has only recently been established as an important factor in melanoma as well as other cancers.31–33 Using our novel tumor-specific dendrimer delivery vehicle, we demonstrate that very low doses of anti-BCL2 or anti-GRM1 U1 Adaptors are sufficient to reduce growth/progression of human melanoma xenografts with little apparent toxicity. These results offer proof-of-concept that U1 Adaptors are an effective gene-silencing therapeutic platform that can suppress tumor growth using doses far lower than expected based on published experience using other oligonucleotide-based methods.34 These results also lay a foundation for exploiting U1 Adaptors to target other genes as well as a wide variety of other human disorders.

Results

U1 Adaptor silencing of BCL2 in vitro

Twelve anti-human-BCL2 U1 Adaptors were screened for functional potency in C8161 melanoma cells (Supplementary Figure S1a,b). Two U1 Adaptors, BCL2-A and BCL2-B showed strong activity in reducing BCL2 mRNA levels (Supplementary Figure S1b,c) and were used in subsequent studies. LNA- and 2’OMe-modified variants of BCL2-A were compared for activity in C8161 cells (Figure 1a, Supplementary Figure S2a) and the LNA-modified variant BCL2-A\textsubscript{L2} showed the highest silencing activity at both protein (western immunoblots) and mRNA (reverse transcription-quantitative PCR) levels (Figure 1b lanes 5–6, Supplementary Figure S2b). To demonstrate that the silencing activity of BCL2-A\textsubscript{L2} is mediated via a U1 Adaptor mechanism, C8161 cells were transfected with matching control U1 Adaptors having either the inactivated TD or U1D by mutation or by unlinking the TD and U1D into two separate molecules called “half-Adaptors” (Figure 1a). In all cases, these negative controls failed to reduce BCL2 protein (Figure 1b) or mRNA (Supplementary Figure S2b) levels, strongly supporting a U1 Adaptor-based silencing mechanism, e.g., one where the U1 Adaptor oligonucleotide must tether the target pre-mRNA to the U1 sRNAP. Modification of BCL2-A with three PS linkages at each end to improve exonuclease resistance (BCL2-A\textsubscript{PS}) or a fluorescent label (Cy3-BCL2-A) did not alter potency compared with the parent compound (Supplementary Figure S2c).

Development of a tumor-targeting dendrimer nanoparticle

The cyclic RGD pentapeptide (RGD) was chosen as a tumor-targeting ligand because it is small, easy to conjugate, and specifically binds the \(\alpha_5\beta_3 \) splice variant of an integrin cell surface receptor that is overexpressed in a wide variety of cancer cells, including C8161.35,36 The particle was based on a generation 5 (G5) poly(propyleneimine) (PPI) dendrimer that was previously used to successfully deliver nucleic acid cargos in mouse xenograft models of human tumors.37–41 As RGD binds to its receptor with much higher affinity as a dimer,42,43 the RGD targeting ligand was coupled to the PPI G5 dendrimer in a final 2:1 molar ratio to give RGD-G5 (Figure 1c). Transfection of C8161 cells \textit{in vitro} with a BCL2-A:RGD-G5 complex demonstrated that RGD-G5 was active \textit{as a delivery vehicle, having potency comparable to transfection of BCL2-A with the cationic lipid reagent Lipofectamine 2000 (LF2000) (Figure 1d, Supplementary Figure S3a–c). Surprisingly, an anti-BCL2 Dicer-substrate siRNA that was effective using LF2000 transfection did not suppress BCL2 mRNA levels when used with the RGD-G5 dendrimer, suggesting this delivery vehicle is not compatible with siRNA class reagents (Figure 1d). Use of RGD to PPI G5 coupling ratios of 4:1 and 8:1 resulted in reduced efficacy \textit{in vitro} (Supplementary Figure S4).

BCL2-A is active \textit{in vivo} and uses a U1 Adaptor mechanism

Mice bearing established C8161 subcutaneous xenografts were administered BCL2-A:RGD-G5 or control complexes in phosphate-buffered saline (PBS) \textit{via} intravenous (iv) tail vein injection. Pilot studies (data not shown) established that effective tumor suppression could be achieved using 1.7 \(\mu \text{g} \) of the U1 Adaptor and a 1:1.3 Adaptor:RGD-G5 stoichiometry. Dynamic light scattering measurements indicated the particle size of the injected complex (~3.2 \(\mu \text{mL} \) U1 Adaptor and ~4 \(\mu \text{molL} \) RGD-G5 in 1x PBS) was 193 nm with a polydispersion index = 0.18 with little difference in size for different U1 Adaptor sequences (Supplementary Figure S5). Mice were given biweekly injections of various formulations for 3 weeks and the tumors were evaluated (Figure 2a). Tumor-bearing treatment group 2 (TG2) mice that were dosed with a 1.7 \(\mu \text{g} \) BCL2-A:2.4 \(\mu \text{g} \) RGD-G5 complex (68 \(\mu \text{g} \) Adaptor/kg) per injection exhibited ~70% tumor reduction (Figure 2a) for 3 weeks and the tumors were evaluated (Figure 2a). Tumor-bearing treatment group 2 (TG2) mice that were dosed with a 1.7 \(\mu \text{g} \) BCL2-A:2.4 \(\mu \text{g} \) RGD-G5 complex (68 \(\mu \text{g} \) Adaptor/kg) per injection exhibited ~70% tumor reduction compared with TG1, the vehicle control group \((P = 0.004).

No significant tumor suppression was seen with the two control U1 Adaptor cohorts, which were treated with either a TD-mutant BCL2-A (TG3) or a U1D-mutant BCL2-A (TG4). Thus disruption of either the TD or the U1D resulted in loss of activity, strongly arguing for a U1 Adaptor mechanism of action. The TG6 mice were dosed with a 1.7 \(\mu \text{g} \) BCL2-A:2.4 \(\mu \text{g} \) G5 complex, where G5 matches the RGD-G5 vehicle but lacks the RGD ligand. This cohort did not show reduction in tumor mass, demonstrating the importance of the targeting ligand. Use of a fivefold lower dose (0.34 \(\mu \text{g} \) BCL2-A:0.48 \(\mu \text{g} \) RGD-G5 complex) resulted in no inhibition of tumor growth (TG5), establishing that >0.34 \(\mu \text{g} \) Adaptor/dose was needed for tumor suppression.

Protein and RNA extracted from tumors of day 22 TG1-4 mice demonstrated that only the BCL2-A:RGD-G5–treated mice had reduced BCL2 protein (Figure 2b) and mRNA (Supplementary Figure S6a). Others have shown that therapeutic-based BCL2 silencing in xenograft mice by either ASOs or siRNAs increases the rate of apoptosis.19–21,23 Immunohistochemical analysis shown in Figure 2c demonstrated that BCL2-A–treated, but not the control animals, showed an increased number of positive, activated Caspase 3 stained...
cells. Furthermore, immunohistochemical analysis using the cell proliferation marker, Ki67, showed that BCL2-A–treated, but not the control animals, had a reduced number of actively proliferating cells (Figure 2d). Both visual and histopathological inspection of several organs including liver, kidney, spleen, heart, brain, and lung from the TG1-TG6 mice showed no evidence for tissue damage or toxicity (data not shown). None of the mice exhibited overt signs of toxicity such as lethargy, not eating or drinking, loss of body weight or ulceration of the transplanted tumor.

While the above data support that BCL2-A’s tumor suppression activity is likely to be mediated through reducing BCL2 mRNA levels, it did not rule out a possible contribution of an extracellular mechanism such as impaired tumor vascularization, a possible side effect of RGD targeting.36,38,42,43 This was addressed by showing that C8161 cells transfected with BCL2-A:RGD-G5 ex vivo before implantation led to significant tumor suppression (Figure 2e). The results of this ex vivo experiment strongly suggest that tumor suppression detected in vivo is primarily if not completely mediated through an intracellular mechanism and also demonstrate a long-lasting effect as the single ex vivo transfection of BCL2-A led to tumor suppression persisting at least through 23 days in vivo. C8161 cells transfected with RGD-G5:Adaptor complexes all had a similar doubling time and apoptosis rate (data not shown) independent of whether the Adaptor was

Figure 1 In vitro silencing activity of anti-BCL2 U1 Adaptors and a tumor-targeting nanoparticle. (a) Design and sequences of the BCL2-A and BCL2-B Adaptors, backbone-modified variants of BCL2-A and matching controls as well as an anti-BCL2 DsiRNA used as a positive control. The boxed region is to indicate a full set of matching control Adaptors. (b) The BCL2-A, U1 Adaptor reduces BCL2 protein. At 24 hours post-transfection of the indicated Lipofectamine 2000 (LF2000):Adaptor or LF2000:anti-BCL2 DsiRNA complexes, total C8161 lysates were prepared followed by western blot. Lanes 3–10 contain 50 μg/well while lane 2 has 17 μg of protein to show the dose response of the western blot signal. Tubulin was used to show equal loading (top panel) and the lower panel was probed for BCL2. Quantitation of the western signals is shown as a BCL2:tubulin ratio with lane 3 set to 1.0. (c) Schematic of RGD-G5 (MW ~9,600) that has a 2:1 RGD to PPIG5 conjugation ratio. For simplicity, only some of the 64 free amino groups of PPIG5 are shown. The attachment positions of the SM(PEG)3-target domain (TD) and U1 domain (U1D) are random and are shown here for illustrative purposes. (d) The RGD-G5 nanoparticle (right panel) is comparable to LF2000 (left panel) at delivering the BCL2-A Adaptor to C8161 cells as measured by RT-qPCR of BCL2 mRNA normalized to HPRT1. Note Cq values between the LF2000 control and RGD-G5 control were comparable. DsiRNA, Dicer-substrate small interfering RNA; LNA, locked nucleic acid; MW, molecular weight; RT-qPCR, reverse transcription-quantitative PCR.
capable of silencing BCL2 indicating in vitro results do not always predict in vivo activities.

Two chemically modified variants of BCL2-A were studied (BCL2-A_{U1} with terminal PS modification and BCL2-A_{TD} with LNA residues in the TD) in an attempt to increase potency in vivo (Figure 3a). Although BCL2-A_{U1} (TG9) gave significant tumor suppression as compared with the vehicle control (TG7), it was less active than BCL2-A (TG8). BCL2-A_{TD} (TG13) showed tumor suppression equal to BCL2-A, an observation that contrasts with its superior activity in vitro,
U1 Adaptors Suppress Tumor Growth In Vivo

Goraczniak et al.

Figure 2 BCL2-A suppresses tumor growth in vivo. (a) The design and sequences of the BCL2-A and matching control U1 Adaptors are shown at the top. C8161 xenograft mice were treated when tumor volumes reached ~10 mm³, which is denoted as day 1. Each treatment group (TG) mouse was treated two times/week consisting of a tail vein injection of 50 μl 1x PBS containing BCL2-A or matching control U1 Adaptors in complex with the RGD-G5 vehicle or the G5 vehicle that lacked RGD (TG6). The only TG that showed significant tumor suppressive activity was TG2 in comparison with TG1. Note that 1.7 μg Adaptor is ~0.16 nmol, 2.4 μg RGD-G5 is 0.2 nmol. (b) Immunoprecipitation (IP)-western blot of day 22 excised tumor samples. Due to the low BCL2 signal in standard western blots using excised tumor lysates in comparison to cultured cells (compare lane 9 with lanes 7–8, 10-11), we performed anti-BCL2 IP in lanes 3–6 before the western blot. Antitubulin IP was also done in lanes 3–6 to internally control for IP efficiency. Lane 2 was antitubulin IP only to show the specificity of the BCL2 IP signals. Lane 1 had 3x less protein than lane 3 to show the dose response of the IP-western blot signals. Levels of BCL2 protein were comparable in TG1, TG3, and TG4 (lanes 3, 5, and 6) whereas TG2 (lane 4) BCL2 levels were barely detectable. Quantitation of the western signals is shown in lanes 3–6 as a BCL2:tubulin ratio with lane 3 set to 1.0. (c,d) Immunohistochemistry of day 22 excised tumor samples for TG1-4 mice with (c) activated Caspase 3 as a measure of cellular apoptosis and (d) Ki67 as a measure of proliferation. The entire slide (“Whole Tumor” image, x10 original magnification) was counted and the percent of positive cells is given below the image. The P value was only significant for TG2 as compared with TG1. The “Zoom” images are a representative x100 original magnification image of the whole tumor. In c and d, ***P < 0.0001 when compared with the TG1 vehicle control. (e) Tumor volumes of ex vivo-treated C8161 xenograft mice. One day before tumor cell implantation, C8161 were transfected as per Figure 1d with the following complexes: RGD-G5 as the vehicle control, BCL2-A/TDmt:RGD-G5 (TD-mutant BCL2-A) as an inactive Adaptor control, or BCL2-A:RGD-G5. After 24 hours, cells were prepared and 1 million cells were subcutaneously implanted into each flank of each mouse. Tumor growth was then monitored for 23 days when the experiment was terminated. ***P < 0.0001 when the tumor volumes of BCL2-A:RGD-G5 were compared with the RGD-G5 vehicle controls. MW, molecular weight.
Figure S9a). In contrast to previous observations using BCL2-A, the presence of PS end-modifications on the anti-GRM1 U1 Adaptors resulted in superior in vivo activity compared with the same oligonucleotides with phosphodiester end linkages (Supplementary Figure S9b).

No toxicity or immune stimulation was observed in U1 Adaptor-treated C57BL6 mice. It was important to examine the effects of U1 Adaptor administration in immune-competent mice (C57BL6) to directly assess whether the U1 Adaptor antitumor effects could in part be based on stimulation of the innate immune system, a complication observed using other gene-silencing therapeutics.48–50 Although a variety of receptors will recognize various forms of DNA and RNA, no receptors are known that recognize 2′OMe RNA or LNA residues, making it unlikely that the U1 Adaptors employed in the present study would trigger immune activation. BCL2-A and GRM1-Aps U1 Adaptor:RGD-G5 complexes were injected into C57BL6 mice; interleukin-12 (IL-12) and interferon-α (IFN-α) levels were measured.

Figure 3 Tumor suppression activity of various anti-BCL2 U1 Adaptors. (a) Tumor volumes of C8161 xenografts are shown with the Adaptor sequences given in Figure 1a. Except for the indicated differences, these tumor suppression experiments and statistics are as described in Figure 2a. The left and right panels are from experiments done at different times. Treatments of TG10 mice matched those of TG8 except the RGD-G5 vehicle had a 4:1 rather than 2:1 RGD:G5 ratio. The bracket is the P value of TG10 versus TG8. All other P values (***P < 0.0001 and **P < 0.001) were calculated as compared with either the TG7 vehicle control (left panel) or the TG11 vehicle control (right panel). (b) Dose response studies for treatment of C8161 xenografts. Except for the indicated differences, these tumor suppression experiments, statistical analysis, and symbols are as in Figures 2a and 3a. The bracket is the TG18 versus TG16 P value that shows a significant reduction in efficacy when using 3x more RGD-G5 vehicle than U1 Adaptor. All other P values (***P < 0.0001 and **P < 0.001) were calculated as compared with the TG14 vehicle control. (c) Shows the tumor suppression activity of BCL2-B in C8161 xenografts as compared with BCL2-A. Except for the indicated differences, these experiments are as described in Figures 2a and 3a. (d) Shown are the design and sequences of the BCL2-B and matching control U1 Adaptors and their in vivo tumor suppression activities in C8161 xenograft mice. Except for the indicated differences and the use of 8 µg (0.2 nmol) RGD-PAMAM-G5 nanoparticle in place of 2.4 µg (0.2 nmol) RGD-G5, these experiments and symbols are as described in Figures 2a and 3a and the P values calculated as compared with the vehicle only control. In c and d, ***P < 0.0001 and **P < 0.001 when compared with the corresponding vehicle control.
cytotoxicity, or immune activation. In the present study, we found evidence for induction of apoptosis and reduced cell division only in tumor-bearing animals treated with intact (non-mutated) anti-BCL2 or anti-GRM1 U1 Adaptors, which correlated with reduction of BCL2 or GRM1 levels in the tumor tissue. Treated animals showed no evidence for either general chemical toxicity from the administered compounds or immune activation. Further, tumor cells treated ex vivo with the U1 Adaptors before implantation showed marked growth retardation in animals that never received iv dosing of the U1 Adaptor:RGD-G5 complex, making it unlikely that disrupted vascularization contributed to tumor suppression.

U1 Adaptors are large, highly charged synthetic nucleic acids with a molecular weight of around 11,000 daltons. Molecules of this type do not readily enter most cell types without assistance, so use of an appropriate delivery vehicle is crucial to the success. The need for efficient delivery, one of the primary challenges of the oligonucleotide therapeutic field, continues to inspire production of an ever-widening variety of delivery systems ranging from cationic lipid or polymer-based nanoparticles, to antibody-protein fusion systems, to encapsulation of the oligonucleotide drug in exosomes or bacterial minicells. With the exception of delivery to liver,34,52,53 efficacious siRNA-based targeting using low microgram doses is usually not possible with systemic iv dosing and typically is only seen with local administration (e.g., direct intraocular or intratumoral injection). Use of dendrimers to deliver therapeutically oligonucleotides is relatively under-explored, although a recent report successfully used a PAMAM dendrimer to deliver therapeutic doses of multiple Dicer-substrate siRNAs at single digit microgram levels in a humanized mouse model of HIV1.54 Although the PPI dendrimer-based system employed here was useful in this proof-of-concept study and exhibited no detectable toxicity, it is clearly prudent to explore the compatibility of other delivery systems with U1 Adaptors. It is important to acknowledge the contribution of ligand targeting for the success we observed using the present dendraimer-based systems. The low-dose efficacy achieved here required the RGD targeting ligand and tumor suppression was lost when the RGD ligand was either omitted from the vehicle or substituted with the related but inactive RAD variant.

To date, most reports targeting BCL2 with siRNAs and ASOs in tumor-bearing mice have involved injection of a naked oligonucleotide, precluding comparison with the work presented here. Systemic injection in tumor-bearing mice of 10 mg doses of a naked anti-BCL2 ASO was efficacious leading to phase 3 trials that ultimately failed due to poor efficacy.27 Systemic injection of a naked anti-BCL2 siRNA at 200 μg/kg daily for 24 days led to tumor suppression in human Panc1 (pancreatic) mouse xenografts.52,53 Of particular interest was a dual functional siRNA that suppressed BCL2 via an RNA interference mechanism while activating RIG-1 expression and an immune response through a 5’ end triphosphate group with a combined efficacy at 50 μg doses delivered on days 3, 6, and 9 in a mouse melanoma model in C57BL6 mice.55 However, the complex chemistry needed to produce triphosphate siRNAs may preclude the scale-up needed for clinical studies. While the RGD ligand used here was chosen for its simplicity and prior success when used at
very low doses to image human tumors growing in mice, there are many other tumor-targeting ligands that may prove superior. Although concern has been raised about the non-specific effects of RGD when used at high doses, this may be largely alleviated at far lower doses such as the ones reported here.

The achievement of proof-of-concept paves the way for future studies including exploration of pharmacodynamic and pharmacokinetic properties as well as expanded dose response studies and the use of other delivery systems/targeting ligands. Previous in vitro work found that, unlike siRNAs where the most potent siRNA in a pool appears to dominate the functional response, the combined use of several U1 Adaptors against the same target increased the level of gene suppression. The use of multiple U1 Adaptors against the same target may permit even lower dosing to be used, which could be beneficial if dose-related toxicity or other OTEs were found in a different system. Further,
Figure 4 Anti-GRM1 U1 Adaptors are active in vitro and suppress tumor growth in vivo. (a) The design and sequences of three anti-GRM1 U1 Adaptors made of 2′OMe RNA with three phosphorothioate internucleotide linkages at each end. (b) Western blot demonstrating the anti-GRM1 U1 Adaptors reduce GRM1 protein levels in cultured C8161 cells. Transfection and western blotting are as in Figure 1b except C8161 lysates were prepared at 72 hours post-transfection and 50 μg/lane were separated by 8% SDS-PAGE. The transfection and western blots were repeated three times with similar results. (c) Shown are the in vivo tumor suppression activities of the anti-GRM1 U1 Adaptors in C8161 xenograft mice. Except for the indicated differences, these experiments are as described in Figures 2a and 3a and the P values calculated as compared with the vehicle only control. The insert is a western blot of excised day 21 tumor samples with amounts of total tumor protein loaded per lane indicated (note, unlike Figure 2b for BCL2 where IP-western blot performed, this is a regular western blot). Lanes 1 and 2 contained less protein to show the dose response of the western blot signals. Tubulin was used to show equal loading. (d) The design and sequences of the GRM1-B and matching control U1 Adaptors and their in vivo tumor suppression activities in C8161 xenograft mice. Except for the indicated differences, these experiments are as described in Figures 2a and 3a and the P value calculated as compared with the vehicle only control. In c and d, ***P < 0.0001 when compared with the corresponding vehicle control. (e) To assess GRM1 expression, protein and RNA were extracted from excised (as shown in d) day 17 tumors and analyzed by RT-qPCR (upper panel) or western blot (lower panel). The experiments were done three times with similar results. GAPDH, glyceraldehyde 3-phosphate dehydrogenase; RT-qPCR, reverse transcription-quantitative PCR; TD, target domain; U1D, U1 domain.

Figure 5 Mechanism of anti-GRM1 U1 Adaptors. (a) Shown are the design and sequences of the GRM1-Aps and matching control U1 Adaptors and their in vivo tumor suppression activities in C8161 xenograft mice. Except for the indicated differences, these experiments and symbols are as described in Figures 2a and 3a and the P values calculated as compared with the vehicle only control. Treatments for the GRM1-Aps :RAD-G5 group matches that of the GRM1-Aps :RGD-G5 group except the RGD peptide was replaced with an RAD peptide that has lost binding to the receptor. Treatments for the GRM1-Aps :RAD-G5-SPDP linker group matches that of the GRM1-Aps :RGD-G5 group except the former nanoparticle had a far shorter linker and non-PEGylated chemistry as described in the text and Materials and Methods section. (b,c) IHC of excised day 17 tumor samples from Figure 5a mice to assess levels of (b) activated Caspase 3 as a measure of apoptosis and (c) Ki67 as a measure of proliferation. Symbols and quantitation are as described in Figure 2c,d. In a–c, ***P < 0.0001 when compared with the corresponding vehicle control. IHC, immunohistochemistry; TD, target domain; U1D, U1 domain.
considering that clinical responses are not durable and relapse is a near-certainty for most cancers using monotherapy, the possibility of simultaneous multi-gene targeting with multiple U1 Adaptors to achieve higher levels of tumor cell apoptosis and longer lasting tumor suppression is an attractive option. Combinational therapy combining U1 Adaptors and small molecule chemotherapeutic agents is also expected to provide enhanced therapeutic benefit, an approach already shown to be successful for siRNAs and ASOs.

Materials and methods

Xenografts in immunodeficient nude mice. All animal studies were approved by the Institutional Review Board for the Animal Care and Facilities Committee of Rutgers University. Male nude mice (5 weeks old) were purchased from Taconic (Hudson, NY). Human melanoma cells, C8161 or UACC903, were injected into the dorsal area at 10⁶ cells per site. Unless indicated, all treatment groups comprised 10 mice. Tumors were measured weekly with a Vernier caliper and tumor volume (V; cubed centimeters) was calculated by using the equation

\[V = \frac{d^2 \times D}{2} \]

where \(d\) (centimeters) and \(D\) (centimeters) are the smallest and largest perpendicular diameters. Once tumors reached ≈10 mm³, the animals were divided randomly into treatment groups so that the mean difference in tumor size between each group was <10%. Mice were killed after ~3 weeks (for C8161) or ~5 weeks (for UACC903) corresponding to when the tumor volume in the vehicle-treated group had reached the maximum size permitted by the institutional review board. The tumor xenografts were excised for further histological and molecular analyses. P values were calculated using Student’s two-tailed t-test.
Preparation and analysis of RNA, proteins, and source of oligonucleotides. RNA and protein levels from transfected cells and excised tumors from xenografts were determined by western blotting and reverse transcription-quantitative PCR as previously described7,31 except for the immunoprecipitation (IP) western blot (described below). The quantitative PCR primers, siRNAs, and gene-specific U1 Adaptors were manufactured by Integrated DNA Technologies (IDT, Coralville, IA) except for the LNA-containing Adaptors, which were purchased from Exiqon (Vedbaek, Denmark). The Control U1 Adaptor used is a 2\’OMe-modified oligonucleotide not complementary to human transcripts 5\’-GUCAGAAAUAACA CAAUACCUGCCAGGUAGUAU-3\’ derived from a reporter transcript described in ref. 7. Poly(I:C) (VacciGrade) was purchased from Invivogen (San Diego, CA).

Ips and western blots. IP of protein from excised tumors was done as follows with all steps done at 4 \(^\circ\)C. Protein G beads (catalog 17-9618-01; GE Healthcare, Pittsburgh, PA) were prepared by washing 3x in TNET (20 mM Tris pH 7.4, 150 mM NaCl, 1 mM EDTA, 1% Triton X-100), followed by 1 hour TNET + 1 mg/ml bovine serum albumin, followed by three washes in TNET and resuspended as a 50% slurry in TNET. Each IP sample contained 500 μg of tumor protein diluted to 500 μl with TNET containing protease cocktail inhibitors II, III, and IV (Calbiochem catalog nos. S24625, 539134, and S24628; Merck KGaA, Darmstadt, Germany) diluted as per the manufacturer’s instructions. To each IP sample in Figure 2b; lanes 3–6, was added 8 μl anti-BCL2 antibody (Invitrogen catalog 13-8800; Life Technologies, Carlsbad, CA) and 1 μl antitubulin antibody (catalog AB-2/DM1A; Abdcam, Cambridge, MA), except for lane 2 which had only antitubulin antibody. After gentle rocking for 4 hours, 20 μl protein G bead slurry (10 μl packed beads) was added and the sample gently rocked for four more hours. The beads were gently pelleted, the supernatant aspirated and the beads washed three times in TNET with a 5-minute rocking/wash. After removing the last of the supernatant, the beads were resuspended in laemmli loading buffer, heated and analyzed by 12% western blot. The upper half of the membrane was probed with anti-tubulin antibody. To avoid interference with the mouse light chain signal that migrates close to the BCL2 band, the lower half of the membrane was probed with anti-BCL2 from rabbit (SAB4300340; Sigma-Aldrich, St Louis, MO).

Immunohistochemistry. The Tissue Analytical Services at the Cancer Institute of New Jersey performed all the immunohistochemical staining of excised tumor xenografts to detect changes in the number of apoptotic and proliferating cells using the well-known activated Caspase 3 and Ki-67 markers, respectively. The number of stained cells was quantified using the well-known activated Caspase 3 and Ki-67 markers.

Statistics. The number of mice used for each experiment was determined with the help from the Biometrics Facility Core at the Cancer Institute of New Jersey. P values were determined using unpaired Student’s two-tailed t-test. Xenograft experiments comprised 10 mice/group except in a few cases where 5–8 mice/group were used. With 10 mice per group, a 35% treatment difference between control and tested group can be detected with 80% power at an α-level of 5% (two-sided test). A P value of <0.05 was considered significant.

Preparation of RGD-G5 nanoparticles. PPIG5 (SyMO-Chem, Eindhoven, Netherlands) was diluted to a 10 mM stock in water using HCI to bring the pH to 7.0 and stored in aliquots at −80 °C. cRGD and eRAD (Peptides International, Louisville, KY), and the SM(PEG)\(_5\) and LC-SPDP linkers (Thermo Scientific Pierce, Rockford, IL) were resuspended and stored as per the manufacturer’s instructions. Conjugation to make RGD-G5 was as follows: 24 μl of 200 mM SM(PEG)\(_5\) in DMSO was added to 6.1 ml of 0.25 mM PPIG5 in aqueous buffer containing 50 mM KCl, and incubated for 1 hour at room temperature, (SM(PEG)\(_5\)) was threefold excess over PPIG5. Glycine was then added to a final 3 mM concentration to neutralize any unreacted SM(PEG)\(_5\) and after 30 minutes the solution brought to 40 mM Tris pH 6.8 and a sixfold excess cRGD added to a final 1.5 mM concentration. After 1 hour of conjugation, excess cysteine was added to neutralize any unreacted groups and the sample extensively dialyzed 48 hours with three changes of buffer against 30 mM Hepes pH 7.9. The final sample was 200 μM RGD-G5 in 30 mM Hepes pH 7.9 and was stored in aliquots at −80 °C. Multiple freeze thawing (>20) had no detectable effect on activity.

Preparation of RGD-G5/SPDP, a short, non-PEG–containing linker version of RGD-G5. RGD-G5/SPDP was prepared as follows: 8 ml of 0.25 mM PPIG5 in 10 mM Hepes pH 7.9, 1 mM EDTA, and 1.5 mM LC-SPDP (added last) was incubated for 2 hours at room temperature. After overnight dialysis with two changes of buffer against 10 mM Hepes pH 7.9, 1 mM EDTA, a pyridine 2-thione release assay was done as per the manufacturer’s instructions to determine the conjugation efficiency. Then 500 μl of 5 mg/ ml cRGD freshly dissolved in 3% acetic acid was added to 7.3 ml of the activated PPIG5 and the reaction proceeded overnight at 4 °C. After overnight dialysis with two changes of buffer against 10 mM Hepes pH 7.9, 1 mM EDTA, a pyridine 2-thione release assay was done and the final samples stored in aliquots at −80 °C.

Dynamic light scattering. Particle size of the injected formulation at standard dose either a 1.7 μg (3.2 μmol/l) U1 Adaptor:2.4 μg (4 μmol/l) RGD-G5 complex in 1X PBS or a 1.7 μg (3.2 μmol/l) U1 Adaptor:8 μg (4 μmol/l) RGD-PAMAM-G5 complex in 1X PBS was determined by a DLS apparatus (Malvern Zetasizer; Malvern Instruments, Westborough, MA). Several dilutions of the sample were analyzed by automatic
measurement setting comprised of the average of runs, each run having 30 measurements of 5 seconds per measurement.

Preparation of RGD-PAMAM-G4 and RGD-PAMAM-G5. PAMAM-G4 and PAMAM-G5 (Dendritech, Midland, MI) were diluted to a 2 mmol/l stock in water using HCl to bring the pH to 7.0 and stored in aliquots at −20 °C. RGD-PAMAM-G4 was prepared as follows: 1 ml of 0.2 mmol/l PAMAM-G4 in 25 mmol/l Hepes pH 7.9, 1 mmol/l EDTA, 150 mmol/l NaCl, and 1.2 mmol/l LC-SPDP (added last) was incubated for 2 hours at room temperature. After overnight dialysis with two changes of buffer against 25 mmol/l Tris pH 8.0, 1 mmol/l EDTA, and 150 mmol/l NaCl, a pyridine 2-thione release assay was done as per the manufacturer’s instructions to determine the LC-SPDP conjugation efficiency. Then 23.2 μl of 25 mg/ml cRGD freshly dissolved in 3% acetic acid was added to 1.3 ml of the activated PAMAM-G4 and the reaction allowed to proceed overnight at 4 °C. A pyridine 2-thione release assay was done to measure cRGD coupling efficiency. After overnight dialysis with two changes of buffer against 1x PBS, the final samples were stored in aliquots at −80 °C. The same protocol was used to prepare RGD-PAMAM-G5.

Calculation of the RGD:PPIG5 ratio. The number of RGD’s linked to PPIG5 was determined in several ways. First, the colorimetric bicinchoninic acid protein assay (Thermo Scientific Pierce) that measures reduction of Cu²⁺ to Cu⁺ by the RGD peptide was used. Second, RGD-G5 and RGD-G5/SPDP underwent MALDI-MS analysis using as a matrix 2,4,6-Trihydroxyacetophenone (THAP) in 50% acetonitrile with two changes of buffer against 1x PBS, the final samples were stored in aliquots at −80 °C. The same protocol was used to prepare RGD-PAMAM-G5.

Cell culture and transfection. C8161 and UACC903 cells were grown in RPMI medium supplemented with 10% fetal bovine serum and antibiotics. Cationic lipid-based transfection was done as per the manufacturer’s instructions to determine the LC-SPDP conjugation efficiency. Then 23.2 μl of 25 mg/ml cRGD freshly dissolved in 3% acetic acid was added to 1.3 ml of the activated PAMAM-G4 and the reaction allowed to proceed overnight at 4 °C. A pyridine 2-thione release assay was done as per the manufacturer’s instructions. All of these methods led to close agreement that an average of two RGD’s were coupled to each PPIG5.

Supplementary material
Figure S1. In vitro silencing activity of anti-BCL2 U1 Adaptors.
Figure S2. In vitro silencing activity of variants of the BCL2-A Adaptor.
Figure S3. In vitro dose response silencing activity of the BCL2-A Adaptor complexed with the RGD-G5 nanoparticle.
Figure S4. In vitro silencing activity of various dendrimer:BCL2-A Adaptor complexes.
10. Gunderson, SI, Polycarpou-Schwarz, M and Mattaj, IW (1998). U1 snRNP inhibits pre-mRNA polyadenylation through a direct interaction between U1 70K and poly(A) poly-
merase. Mol Cell 1: 255–264.
11. Proudfit, NJ, Burger, A and Dye, MJ (2002). Integrating mRNA processing with transcrip-
tion. Cell 109: 501–512.
12. Danekward, S, Hentze, MW and Kulozik, AE (2008). ‘3’ end mRNA processing: molecular
mechanisms and implications for health and disease. EMBO J 27: 482–498.
13. Levin, AA (1999). A review of the issues in the pharmacokinetics and toxicology of phos-
phorothioate antisense oligonucleotides. Biochim Biophys Acta 1469: 69–84.
14. Prakash, TP (2011). An overview of sugar-modified oligonucleotides for antisense therape-
utics. Chem Biodivers 8: 1616–1641.
15. Guga, P and Koziolekiewicz, M (2011). Phosphorothioate nucleotides and oligonucleotides
- recent progress in synthesis and application. Chem Biodivers 8: 1642–1681.
16. Yoo, BH, Bokhareva, E, Bokharev, A, Mou, TC and Gray, DM (2004). 2’-O-methyl-modi-
fied phosphorothioate antisense oligonucleotides have reduced non-specific effects in vitro.
Nucleic Acids Res 32: 2008–2016.
17. Behlke, MA (2008). Chemical modification of siRNAs for in vivo use. Oligonucleotides 18:
305–319.
18. Thliveris, TA, Sabapour, M and Crooke, ST (2011). U1 adaptors result in reduction of mul-
tiple pre-mRNA species principally by sequestering U1RNP. EMBO J 20: 552–562.
19. McGill, GG, Horstmann, M, Widlund, HR, Du, J, Motyckova, G, Nishimura, EK et al. (2002).
Bcl2 regulation by the melanocyte master regulator MIT modulates lineage survival and melanoma cell viability. Cell 109: 707–718.
20. Zhao, H, Peng, P, Longley, C, Zhang, Y, Borowski, V, Mehlig, M et al. (2007). Delivery of
G3139 using releasable PEG-linkers: impact on pharmacokinetic profile and anti-tumor
efficacy. J Control Release 119: 143–152.
21. Loriot, Y, Mordant, P, Brown, BD, Bourhis, J, Soria, JC and Deutsch, E (2010). Inhibition of
BCL-2 in small cell lung cancer cells with oblimersen, an antisense BCL-2 oligodeoxy-
nucleotide (ODN): in vitro and in vivo in enhanced radiation response. Anticancer Res 30:
3893–3879.
22. Ocker, M, Neureiter, D, Lueders, M, Zoep, S, Ganser, M, Hahn, EH et al. (2005). Variants of
bcl-2 specific siRNA for silencing antiapoptotic bcl-2 in pancreatic cancer. Gastroenterology
54: 1298–1308.
23. Okamoto, K, Ocker, M, Neureiter, D, Dietze, O, Zoep, S, Hahn, EH et al. (2007). bcl-2-specific
siRNAs restore gemcitabine sensitivity in human pancreatic cancer cells. J Cell Mol Med 11:
349–361.
24. Jansen, B, Wacheck, V, Heere-Ress, E, Schlagbauer-Wadl, H, Hoelter, C, Lucas, T et al. (2000).
Chemosenstituation of malignant melanoma by BCL2 antisense therapy. Lancet 356: 1728–1732.
25. Yi, WP and Reed, JC (2008). Bcl-2 family proteins and cancer. Oncogene 27: 6398–6406.
26. Gross, A, McDonnell, JM and Korsmeyer, SJ (1999). BCL-2 family members and the mito-
chondria in apoptosis. Genes Dev 13: 1899–1911.
27. Jansen, B, Schlagbauer-Wadl, H, Brown, BD, Bryan, RN, van Elsas, A, Muller, M et al. (1998).
bcl-2 antisense therapy chemosenstizes human melanoma in SCID mice. Nat Med 4: 232–234.
28. Danial, NN and Korsmeyer, SJ (2004). Cell death: critical control points. Cell 116: 205–219.
29. Miller, AJ and Mitho, MC Jr (2008). Melanoma. N Engl J Med 359: 51–65.
30. Yi, D, Le, MN, Chan, JL, Lee, JH, Mehnert, JA, Yudd, A et al. (2009). A phase 0 trial of ri-
zuol in patients with resectable stage III and IV melanoma. Clin Cancer Res 15: 3896–3902.
31. Pollock, PM, Cohen-Solal, K, Sood, R, Namkoong, J, Martino, JJ, Koganti, A et al. (2007).
Melanoma mouse model implicates metabotropic glutamate signaling in melanocytic neoplas-
ias. Nat Genet 39: 108–112.
32. Lee, JH, Wall, BA, Wangari-Talbot, J, Shin, SS, Rosenberg, S, Chan, JL et al. (2011). Glu-
tamatergic pathway targeting in melanoma: single-agent and combinatorial therapeutics. Clin
Cancer Res 17: 7080–7092.
33. Robbins, M, Judge, A, Ambega, E, Choi, C, Yaworski, E, Palmer, L et al. (2008). Misinter-
preting the therapeutic effects of small interfering RNA caused by immune stimulation. Hum
Gene Ther 19: 991–999.
34. Robbins, M, Judge, A and MacLachlan, I (2009). siRNA and innate immunity. Oligonucle-
otides 19: 89–102.
35. Kegg, AM (2008). Therapeutic potential of Toll-like receptor 9 activation. Nat Rev Drug Dev
7: 471–484.
36. Fujimoto, C, Nakagawa, Y, Ohara, K and Takahashi, H (2004). Polyribosinobispyrrol-
ocytylcytidic acid [poly(C)/TLR3 signaling allows class I processing of exogenous protein
and induction of HIV-specific CD8+ cytotoxic T lymphocytes. Int Immunol 16: 55–63.
37. Sempol, SC, Aino, A, Chen, J, Sandhu, AP, Mul, SL, Cho, CK et al. (2010). Rational design of
cationic lipids for siRNA delivery. Nat Biotechnol 28: 172–176.
38. Love, KT, Mahon, PK, Levins, CG, Whitehead, KA, Querbes, W, Dorink, JR et al. (2010).
Lipid-like materials for low-dose, in vivo gene silencing. Proc Natl Acad Sci USA 107:
1864–1869.
39. Zhou, J, Neff, CP, Liu, X, Zhang, J, Li, H, Smith, DD et al. (2011). Systemic administration of
combinatorial dsRNAs via nanoparticles efficiently suppresses HIV-1 infection in humanized
mice. Mol Ther 19: 2228–2238.
40. Pecok, H, Besch, R, Mahoeter, C, Renn, M, Tomo, D, Morskaya, SS et al. (2008). S-Tri-
Peptide/bcl-2 siRNA: turning gene silencing and Rig-I activation against melanoma. Nat
Med 14: 1256–1263.
41. Manzoni, L, Belhii, L, Aroisi, D, Bartolomeo, MP, Bianchi, A, Bioschi, C et al. (2012).
Synthesis of Gd and (68)Ga complexes in conjugation with a rationally optimized RGD sequence as potential MRI and PET tumor-imaging probes. ChemMedChem 7:
1084–1093.
42. Castañoto, D, Sakurai, K, Lingeman, L, Li, H, Shively, L, Aagaard, L et al. (2007). Combi-
natorial delivery of small interfering RNAs reduces RNAi efficacy by selective incorporation
into RISC. Nucleic Acids Res 35: 5154–5164.
43. Vickers, TA, Lima, WF, Nichols, JG and Crooke, ST (2007). Reduced levels of Ago2 expres-
sion result in increased siRNA competition in mammalian cells. Nucleic Acids Res 35:
6598–6610.
44. Wu, TY, Saw, CL, Khor, TO, Pung, D, Boyanapalli, SS and Kong, AN (2012). In vivo phar-
macodynamics of indole-3-carbinol in the inhibition of prostate cancer in transgenic adenoc-
ecarcinoma of mouse prostate (TRAMP) mice: involvement of Nrf2 and cell cycle apoptosis
signaling pathways. Mol Carcinog 51: 761–770.

Supplementary Information accompanies this paper on the Molecular Therapy–Nucleic Acids website (http://www.nature.com/mtna)