Emptiness formation in polytropic quantum liquids

Dimitri M. Gangardt,

In collaboration with

Hsiu-Chung Yeh
Alex Kamenev

J. Phys. A, 55 064002
Large deviations
- emptiness formation probability

Imagine a Fermi gas on a line

What is the probability to have region of size R empty of particles in the ground state?

$$P_{\text{EFP}}(R) = \int_{|x_i| > R} d^N x |\Psi_{\text{GS}}(x_1, x_2, \ldots, x_N)|^2$$

Abanov 2003
Path integral

\[P_{\text{EFP}}(R) = \lim_{\beta \to \infty} \frac{1}{Z} \text{Tr} \left(e^{-\beta H} |2R\rangle \langle 2R| e^{-\beta H} \right) \]

Hydrodynamic description

\[R \gg \xi, \rho_0^{-1} \]

\[P_{\text{EFP}}(R) = \frac{1}{Z} \int \mathcal{D}[\rho, j] e^{-S[\rho, j]} \]

\[S[\rho, j] = \frac{\rho_0 R^2}{\xi} \int dt dx \left[\frac{j^2}{2\rho} + V(\rho) \right] \]

Eq. of state: pressure-density relation at \(T = 0 \)

\[P(\rho) = \rho \partial_\rho V(\rho) - V(\rho) \]
Optimal fluctuation – instanton of hydrodynamical fields

\[P_{\text{EFP}}(R) \sim e^{-S_{\text{opt}}} \]

Abanov 2003

\[S_{\text{opt}} = \frac{\pi \rho_0^3}{2} \times R \times R/v_0 \gg 1 \]

\[\sim \text{ area in space-time, \# of missing particles} \]

Boundary is an astroid

\[x^{2/3} + \tau^{2/3} = R^{2/3} \]

Courtesy of chabad.org
Previous results

- Random Matrices
- Spin chains
- Weakly interacting Bose gas

In all cases

\[S_{opt} \sim \frac{\rho_0 R^2}{\xi} \]

for \(R \gg \xi, \rho_0^{-1} \)

This talk — Polytropic Quantum Liquid

\[V(\rho) \sim \rho^\gamma \]

\[S_{opt} = f(\gamma) \frac{\rho_0 R^2}{\xi} \]

known values

\[f(3) = \frac{\pi}{2} \] free fermions, RMT

\[f(2) = 1.70(1) \] weakly interacting bosons

Yeh & Kamenev 2202
Main Result

\[f(\gamma) = \frac{\pi \cdot 2^{\frac{\gamma-5}{\gamma-1}} \left[\Gamma \left(\frac{\gamma+1}{\gamma-1} \right) \right]^2}{\Gamma \left(\frac{3\gamma-1}{2\gamma-2} \right) \left[\Gamma \left(\frac{\gamma+1}{2\gamma-2} \right) \right]^3} \]
Looking for optimal solution

Hydrodynamical equations of motion in imaginary time

continuity

\[\partial_\tau \rho + \partial_x (\rho v) = 0 \]

Euler

\[\partial_\tau v + v \partial_x v = \rho^{\gamma-2} \partial_x \rho \]

+ boundary conditions imposed in distant past and future

Riemann invariant

\[\lambda(x, \tau) = v + i \frac{2}{\gamma - 1} \rho^{\frac{\gamma-1}{2}} \]

Complex velocity

\[w(x, \tau) = v + i \rho^{\frac{\gamma-1}{2}} \]

\[\partial_\tau \lambda + w(\lambda, \bar{\lambda}) \partial_x \lambda = 0 \]

\[\partial_\tau \bar{\lambda} + \bar{w}(\lambda, \bar{\lambda}) \partial_x \bar{\lambda} = 0 \]

Free fermions \(\gamma = 3 \quad w = \lambda \quad > \quad \) Complex Burgers \(\partial_\tau \lambda + \lambda \partial_x \lambda = 0 \)
Hodograph Transform

\[\lambda(x, \tau), \bar{\lambda}(x, \tau) \longrightarrow x(\lambda, \bar{\lambda}), \tau(\lambda, \bar{\lambda}) \]

\[\partial_{\bar{\lambda}} x - w(\lambda, \bar{\lambda}) \partial_{\bar{\lambda}} \tau = 0 \]
\[\partial_{\lambda} x - \bar{w}(\lambda, \bar{\lambda}) \partial_{\lambda} \tau = 0. \]

free fermions \(w = \lambda \) solve the equations with

characteristics \(x - \lambda \tau = \partial_{\lambda} \mathcal{V} \)

\[\mathcal{V}(\lambda, \bar{\lambda}) = F_0(\lambda) + G_0(\bar{\lambda}) \]
\[F_0(\lambda) = \overline{G_0(\bar{\lambda})} = \sqrt{\lambda^2 + 1} \]

found from an electrostatic (RH) problem corresponding to the emptiness boundary condition at \(\tau = 0 \)
Ballistic Ansatz for general γ

$$x - w\tau = \partial_\lambda \mathcal{V}$$
$$x - \bar{w}\tau = \partial_{\bar{\lambda}} \mathcal{V}$$

Consistency condition (Euler-Poisson eq)

$$\partial_\lambda \partial_{\bar{\lambda}} \mathcal{V} = \frac{n}{\lambda - \bar{\lambda}} \left(\partial_\lambda \mathcal{V} - \partial_{\bar{\lambda}} \mathcal{V} \right)$$

$$\gamma = \frac{2n + 3}{2n + 1}$$

For $n = 0$ - Laplace equation (free fermions)

For $n =$ integer >0 a closed form solution can be found (Kamchatnov’s book)

Strategy: solve for infinite sequence of γ corresponding to integer n and continue analytically for any value of γ
Solution for \(n = 0, 1, 2, \ldots \)

\[
\mathcal{V} = \frac{F_0(\lambda) + G_0(\bar{\lambda})}{(\lambda - \bar{\lambda})^n} + \sum_{m=1}^{n-1} a_m \frac{F_m(\lambda) + (-1)^m G_m(\bar{\lambda})}{(\lambda - \bar{\lambda})^{n+m}}
\]

\[
F_{m-1} = \partial_{\lambda} F_m \quad G_{m-1} = \partial_{\bar{\lambda}} G_m
\]

\[
a_m = -\frac{(n + m - 1)(n - m)}{m} a_{m-1} \quad a_0 = 1
\]

\[n = 0 \quad \mathcal{V} = F_0(\lambda) + G_0(\bar{\lambda})\]

\[n = 1 \quad \mathcal{V} = \frac{F_0(\lambda) + G_0(\bar{\lambda})}{\lambda - \bar{\lambda}}\]
Boundary conditions in \((\lambda, \bar{\lambda})\) plane

\[x - w\tau = \partial_\lambda \mathcal{V} \]

1. Particles accumulate avoiding emptiness region

\[\partial_\lambda \mathcal{V} \big|_{|\lambda| \to \infty} = \pm 1 \]

2. Density decays as

\[\rho \to 1 + 1/x^2 \text{ for } x \to \infty \]

\[\partial_\lambda \mathcal{V} \big|_{\lambda \to i(2n+1)} \sim \frac{1}{\sqrt{\lambda^2 + (2n + 1)^2}} \]

Branch points at \(x = \pm 1\) for complex functions

\[\lambda(x, \tau = 0), \bar{\lambda}(x, \tau = 0) \]
Dynamic density profile

\[F_{n-1} = \frac{\lambda}{n!} \left[\lambda^2 + (2n + 1)^2 \right]^{\frac{2n-1}{2}} \]

\[G_{n-1} = (-1)^n F_{n-1} \]

\[
\begin{align*}
 n = 0 & \quad \nu = F_0 + G_0 \\
 n = 1 & \quad \nu = \frac{F_0 + G_0}{\lambda - \bar{\lambda}} \\
 n = 2 & \quad \nu = \frac{F_0 + G_0}{(\lambda - \bar{\lambda})^2} - 2 \frac{F_1 + G_1}{(\lambda - \bar{\lambda})^3}
\end{align*}
\]

\[
\begin{align*}
 F_0 &= G_0(\lambda) = \sqrt{\lambda^2 + 1} \\
 F_0 &= -G_0(\lambda) = \lambda \sqrt{\lambda^2 + 9} \\
 F_1 &= G_1(\lambda) = \frac{\lambda}{2} (\lambda^2 + 25)^{3/2} \\
 F_0 &= G_0(\lambda) = \partial_\lambda F_1
\end{align*}
\]

Solving \(x - w \tau = \partial_\lambda \nu \) for \(\lambda, \bar{\lambda} \) and extracting \(\rho(x, \tau) \)
Inside Emptiness

\[\rho = 0 \quad \Rightarrow \quad \lambda = \bar{\lambda} = w = \bar{w} = v(x, \tau) \]

Ballistic evolution \[x - v\tau = X_n(v) \]

\[X_0(v) = \frac{v}{\sqrt{v^2 + 1}} \]
\[X_1(v) = \frac{3v}{\sqrt{v^2 + 9}} - \frac{v^3}{2(v^2 + 9)^{3/2}} \]
\[X_2(v) = \frac{15v}{8\sqrt{v^2 + 25}} - \frac{5v^3}{4(v^2 + 25)^{3/2}} + \frac{3v^5}{8(v^2 + 25)^{5/2}} \]

\[X_n(v) \sim 1 + \frac{1}{v^{2n+2}} \quad \text{as} \quad v \to \infty \]
Boundary of emptiness region (tangent method)

\[x - v \tau = X(v) \] defines a surface \[\nu(x, \tau) \]

The surface has folds when \[-\tau = \partial_v X(v) \]

Emptiness boundary \[x(\tau) \] is Legendre Transform of \[X(v) \]

Higher singularities – *cusps* – appear when two folds coalesce

“A transparent torus is rarely seen. Let us consider a different transparent body – a bottle (preferably milk). In Fig. 5 two cusp points are visible. By moving the bottle a little we may satisfy ourselves that the cusp singularity is stable. So we have convincing experimental confirmation of Whitney’s theorem.”

Vladimir Arnold, “Catastrophe Theory”
Universal behaviour near cusps

We have two types of cusps

Soft \(v \to 0 \) \((x, \tau) \to (0, \pm \tau_c) \)

\[
x = (\tau - \tau_c)v - b_n v^3 \Rightarrow \tau - \tau_c \propto |x|^{2/3}
\]

Hard \(v \to \infty \) \((x, \tau) \to (\pm 1, 0) \)

\[
\tau = \frac{1}{v}(x - 1) + \frac{c_n}{v^{2n+3}} \Rightarrow 1 - x \propto |\tau|^{2n+2 \over 2n+3}
\]

For free fermions: symmetry between soft and hard cusps

\[
x \to \tau
\]

\[
v \to 1/v
\]
Universal density profiles near emptiness boundary

\[\tau \neq 0 \quad \rho \propto (x - x(\tau))^{1/(\gamma - 1)}, \quad x > x(\tau), \]

– same as exponent predicted by Thomas-Fermi at \(\tau = 0 \)

\[\tau = 0 \quad \rho \propto (x - x(0))^{-2/(\gamma + 1)}, \quad x > 1 \]

NB: Don’t trust the polytropic law down to zero density: square root density profile near the boundary
Calculation of Emptiness Probability – Instanton action

From density asymptotics

\[\rho(x, 0) = 1 + \frac{\alpha}{x^2} + \mathcal{O}\left(\frac{1}{x^4}\right) \]

and correlation length

\[\frac{1}{\xi} = \rho_0^{1/(2n+1)} \]

\[\partial_{\rho_0} S_{\text{opt}} = \frac{\pi R^2}{\xi} \alpha \]

\[\alpha = \frac{1}{2(2n+1)} \left[\frac{(2n+1)!!}{2^n n!} \right]^2 \]

is extracted from the divergence

\[x \sim \frac{(2n-1)!!}{n!} \frac{\lambda^{n+1}}{(\lambda - \bar{\lambda})^n \sqrt{\lambda^2 + (2n+1)^2}} \]

as \(\lambda \to i(2n+1) \)
Result for Polytropic Emptiness

\[S_{\text{opt}} = \frac{\rho_0 R^2}{\xi} f(n) \]

\[f(n) = \frac{\pi \Gamma^2 (2n + 2)}{2^{4n+1} \Gamma(n + 2) \Gamma^3(n + 1)} \]

The result can be analytically continued to any real \(n \)

\(n \)	\(n = 0 \) (\(\gamma = 3 \))	\(n = 1 \) (\(\gamma = 5/3 \))	\(n = 2 \) (\(\gamma = 7/5 \))
\(f(n) \)	1.56 \(\pm \) 0.02	1.76 \(\pm \) 0.02	1.85 \(\pm \) 0.02
Eq. (52)	\(\pi/2 \approx 1.571 \)	\(9\pi/16 \approx 1.767 \)	\(75\pi/128 \approx 1.841 \)

\[f(\gamma) = \frac{\pi \ 2^{\gamma-5}}{\Gamma \left(\frac{3\gamma-1}{2\gamma-2} \right) \Gamma \left(\frac{\gamma+1}{2\gamma-2} \right)} \left[\Gamma \left(\frac{\gamma+1}{\gamma-1} \right) \right]^2 \]

\[\Gamma \left(\frac{\gamma+1}{\gamma-1} \right) \]
Conclusions

- First calculation of EFP in polytropic quantum liquid as a function of polytropic index.
- Example of interacting system, beyond free fermionic models
- Universal features, including shape of Emptiness Boundary singularities

Outlook

- Calculation of subleading terms (logarithmic for both fermions and weakly interacting bosons)
- Statistical models with polytropic coarse grained e.o.s?
- Real time dynamics from $\tau \rightarrow it$? Loschmidt echo, return probability
- Other physical models: magnetic impurities in SC

Cheers!