Professional Engineering and World Class Perspectives of Industrial Engineering and Digital Transformation

K E N Soebandria*
Industrial Engineering Department, Faculty of Engineering, Bina Nusantara University, Jakarta, Indonesia 11480

*Corresponding author: Knugroho@Binus.edu

Abstract. This paper conveys the theoretical discourses of Industrial Engineering and Digital Transformation. It proposes perspectives of Professional Engineering and World Class’ Industrial implementation by combining Indonesian Local Wisdom and Global Benchmark Settings. The objective of this paper is to intertwine both theoretical and industrial implementation among Academician, Business and Government (ABG). Precisely, this harmonized industrial implementation is deemed indispensable by considering several pillars. First pillar constitutes the prior trigger of Industry 4.0 (IR 4.0), as one of Global Benchmark Settings. Subsequently, second pillar refers to the Indonesian Local Wisdom, in term of Making Indonesia 4.0 (MI 4.0). Ultimately, third pillars are pertaining global benchmark settings, in term of Industry X.0, Society 5.0, Hallyu 2.0. The research methodology in this paper refers to the quantitative method that enables the achievement of the objective of this paper. The discussion of this paper elaborates the methods and methodology to achieve the objective of this paper. Subsequently, the mentioned discussion proceeds to the necessity to have a holistic industrial implementation among ABG. The result of this paper is expected to equip current professional engineers and future generations. They are expected to be able to cope with new norm of new paradigm in the future.

1. Introduction
This paper conveys the theoretical discourses of Industrial Engineering and Digital Transformation. It proposes perspectives of Professional Engineering and World Class’ Industrial implementation by combining Indonesian Local Wisdom and Global Benchmark Settings.

Theoretical discourses of Industrial Engineering refer to the most cited scholarly works within Industrial Engineering, in particular within Industry 4.0 study, as illustrated in Table 1.

Those most cited scholarly works are originated mostly from the sources of the following but not limited to the Manufacturing Letters; Procedia CIRP; Business and Information Systems Engineering; Proceedings of 2014 IEEE Automation, Quality and Testing, Robotics, AQTR 2014; and eventually from IEEE International Conference on Industrial Engineering and Engineering Management.
Table 1. Most Cited Scholar Works within Industrial Engineering – Industry 4.0

No	Document title	Authors	Year	Sources	Number of Citation	Annual Citation
1	A Cyber-Physical Systems architecture for Industry 4.0-based manufacturing systems	Lee, J., Bagheri, B., Kao, H.-A. [1]	2015	Manufacturing Letters	583	194
2	Service innovation and smart analytics for Industry 4.0 and big data environment	Lee, J., Kao, H.-A., Yang, S. [2]	2014	Procedia CIRP	272	68
3	Industry 4.0	Lasi, H., Fettke, P., Kemper, H.-G., Feld, T., Hoffmann, M. [3]	2014	Business and Information Systems Engineering Proceedings of 2014 IEEE Automation, Quality and Testing, Robotics, AQTR 2014	245	61
4	Cyber physical systems in the context of Industry 4.0	Jazdi, N. [4]	2014	IEEE International Conference on Industrial Engineering and Engineering Management	109	27
5	Smart factories in Industry 4.0: A review of the concept and of energy management approached in production based on the Internet of Things paradigm	Shrouf, F., Ordieres, J., Miragliotta, G. [5]	2014		109	27

Furthermore, the subsequent theoretical discourses of Digital Transformation refer to the most cited scholar works within Digital Transformation, through the lens of its Digital Transformation’s Systematic Literature Review, as illustrated in Table 2 [6].

Table 2. Most Cited Scholar Works within Digital Transformation’s Systematic Literature Review

No	Document sources	Authors	Year	Number of Citation	Annual Citation
1	Business and information Systems Engineering	C.Matt et al. [7]	2015	114	28.50
2	Government Information Quarterly	T.Janowski et al.[8]	2015	96	24.00
3	MIS Quarterly Executive	T.Hess et al.[9]	2016	71	23.67
4	MIS Quarterly: Management Information Systems	A.Majchrzak et al [10]	2016	53	17.67
5	MIS Quarterly Executive	R.Hansen et al [11]	2015	43	10.75

The perspectives of Professional Engineering refer to the “primary project”, known as capstone project. As part of global citizen, professional engineers are required to perform several engineers’ quality of work. The aforementioned quality of work refers to the ability to solve a problem in which there are uncertain methods to implement, nor the appropriate solutions [12].

This paper is entitled Professional Engineering and World Class Perspectives of Industrial Engineering and Digital Transformation. The prior paragraphs elaborate Professional Engineering and its Perspectives of Industrial Engineering and Digital Transformation. Subsequently, the discourses of World Class Perspectives are as indispensable as the one of Professional Engineering’s Perspectives.
To some extent, the World Class Perspectives are intertwined with its orchestrated title with World Class Manufacturing, as the result of Bibliometric Analysis from 2000 until 2016. The aforementioned intertwined aspects refer to three categories. First, it refers to merely the Title of either Knowledge Management or World Class Manufacturing. Second, it refers to combination of Title, keyword or abstract of World Class Manufacturing. Third, it refers to the merely title of Knowledge Management and World Class Manufacturing. Fourth, it refers to the combination of Knowledge Management and World Class Manufacturing.

The Bibliometric Analysis from 2000 until 2016 is elaborated and discussed in its illustration within Table 3 pertaining the academic papers within scholar works. Its triangulation database and terms are further elaborated by discourses of World Class in term of sustainability [13] and [14].

Table 3. Academic Papers on Combination of Knowledge Management and World Class

DATABASE SOURCES	Knowledge Management (Merely Title)	World Class Manufacturing (Merely Title)	World Class Manufacturing (Combination of Title, keyword or abstract)	Knowledge Management + World Class Manufacturing (Merely Title)	Knowledge Management + World Class Manufacturing (Combination of Title, keyword or abstract)
Emerald	1375	11	110	0	5
SciELO	376	0	5	0	0
Spell	170	0	0	0	0
Ebsco	1880	7	24	0	0
Web of Science	3783	14	261	1	2
Scopus	6913	41	508	1	3
TOTAL	14497	73	908	2	10

2. Methodology

The research methodology in this paper refers to the quantitative method that enables the achievement of the objective of this paper. Subsequently, the quantitative method is augmented its quality through the bibliometric analysis to generate the timeline perspectives on the theoretical discourses and its empirical implementation [15], [16], [17], [18].

Both theoretical discourses and empirical implementations provide the cutting edge discussion in this paper toward the Professional Engineering and Digital Transformation Perspectives of Industrial Engineering and Digital Transformation.

The discussion of this paper elaborates the methods and methodology to achieve the objective of this paper. Subsequently, the mentioned discussion proceeds to the necessity to have a holistic industrial implementation among Academician, Business and Government.

The result of this paper is expected to equip current professional engineers and future generations. They are expected to be able to cope with new norm of new paradigm in the future.

3. Results and Discussion

The discussion of this paper elaborates the methods and methodology to achieve the objective of this paper. Subsequently, the mentioned discussion proceeds to the necessity to have a holistic
industrial implementation among ABG. The result of this paper is expected to equip current professional engineers and future generations. They are expected to be able to cope with new norm of new paradigm in the future.

This paper is entitled Professional Engineering and World Class Perspectives of Industrial Engineering and Digital Transformation. The prior paragraphs elaborate Professional Engineering and its Perspectives of Industrial Engineering and Digital Transformation. Subsequently, the discourses of World Class Perspectives are as indispensable as the one of Professional Engineering’s Perspectives.

Theoretical discourses of Industrial Engineering refer to the most cited scholar works within Industrial Engineering, in particular within Industry 4.0 study.

Those most cited scholarly works are originated mostly from the sources of the following but not limited to the Manufacturing Letters; Procedia CIRP; Business and Information Systems Engineering; Proceedings of 2014 IEEE Automation, Quality and Testing, Robotics, AQTR 2014; and eventually from IEEE International Conference on Industrial Engineering and Engineering Management.

To some extent, the World Class Perspectives are intertwined with its orchestrated title with World Class Manufacturing, as the result of Bibliometric Analysis from 2000 until 2016.

The discussion in prior paragraphs further more orchestrates the three pillars that were mentioned before. First pillar constitutes the prior trigger of Industry 4.0 (IR 4.0), as one of Global Benchmark Settings. Subsequently, second pillar refers to the Indonesian Local Wisdom, in term of Making Indonesia 4.0 (MI 4.0). Ultimately, third pillars are pertaining global benchmark settings, in term of Industry X.0, Society 5.0, Hallyu 2.0.

4. Conclusion

This paper conveys the theoretical discourses of Industrial Engineering and Digital Transformation. It proposes perspectives of Professional Engineering and World Class’ Industrial implementation by combining Indonesian Local Wisdom and Global Benchmark Settings.

The objective of this paper is to intertwine both theoretical and industrial implementation among Academician, Business and Government (ABG). Precisely, this harmonized industrial implementation is deemed indispensable by considering several pillars. First pillar constitutes the prior trigger of Industry 4.0 (IR 4.0), as one of Global Benchmark Settings. Subsequently, second pillar refers to the Indonesian Local Wisdom, in term of Making Indonesia 4.0 (MI 4.0). Ultimately, third pillars are pertaining global benchmark settings, in term of Industry X.0, Society 5.0, Hallyu 2.0.

Theoretical discourses of Industrial Engineering refer to the most cited scholar works within Industrial Engineering, in particular within Industry 4.0 study.

Those most cited scholarly works are originated mostly from the sources of the following but not limited to the Manufacturing Letters; Procedia CIRP; Business and Information Systems Engineering; Proceedings of 2014 IEEE Automation, Quality and Testing, Robotics, AQTR 2014; and eventually from IEEE International Conference on Industrial Engineering and Engineering Management.

To some extent, the World Class Perspectives are intertwined with its orchestrated title with World Class Manufacturing, as the result of Bibliometric Analysis from 2000 until 2016.

The discussion of this paper elaborates the methods and methodology to achieve the objective of this paper. Subsequently, the mentioned discussion proceeds to the necessity to have a holistic industrial implementation among Academician, Business and Government.

The result of this paper is expected to equip current professional engineers and future generations. They are expected to be able to cope with new norm of new paradigm in the future.
References

[1] Lee, J, Kao H A and Yang S 2014 Service innovation and smart analytics for Industry 4.0 and big data environment 6th CIRP Conference on Industrial Product Service Systems 4-8

[2] Cohen Y, Faccio M, Galizia F G, Mora C and Pilati F 2017 Assembly system configuration through Industry 4.0 principles: the expected change in the actual paradigms IFAC-PapersOnLine 50 (1) 14958–14963

[3] Jazdi N 2014 Cyber physical systems in the context of Industry 4.0 International Conference on Automation, Quality and Testing, Robotics) 1–4

[4] Shrouf F, Ordieres J and Miragliotta G 2014 Smart factories in Industry 4.0: A review of the concept and of energy management approached in production based on the Internet of Things paradigm International Conference on Industrial Engineering and Engineering Management 697–701

[5] Gorecky D, Schmitt M, Loskyll M and Zühlke D 2014 Human-machine-interaction in the industry 4.0 era 12th IEEE International Conference on Industrial Informatics 289–294

[6] Mahraz I, Benabbou L and Berrado A 2019 A Systematic literature review of Digital Transformation Proceedings of the International Conference on Industrial Engineering and Operations Management Toronto 1–4

[7] Matt C 2015 Digital Transformation Strategies Business and Information Systems Engineering 57 (5) 339-343

[8] Jedlowski A 2015 Across media: Mobility and transformation of cultural materials in the digital age Journal of African Media Studies 7 (1) 3-9

[9] Hess T 2016 Options for formulating a digital transformation strategy MIS Quarterly Executive 15 (2) 123-139

[10] Majchrzak A 2016 Designing for digital transformation: Lessons for information systems research from the study of ICT and societal challenges MIS Quarterly: Management Information Systems 40 (2) 267-277

[11] Hansen R 2015 Hummel's digital transformation toward omnichannel retailing: Key lessons learned MIS Quarterly Executive 14 (2) 51-66

[12] Gratton P M and Gratton G B 2020 Achieving Success with The Engineering Dissertation Switzerland: Springer Nature

[13] World Class Manufacturing: an initial approach based on a literature review Perspectivas em Ciência da Informação 22 244-263

[14] Fu R, Tang Y and Chen G 2020 Chief sustainability officers and corporate social (Ir) responsibility Strat Mgmt J 41 656–680

[15] Basias N and Pollais Y 2018 Quantitative and Qualitative Research in Business & Technology: Justifying a Suitable Research Methodology Review of Integrative Business and Economics Research 7 91-105

[16] Goertz G and Mahoney J 2012 A Tale of Two Cultures: Qualitative and Quantitative Research in the Social Sciences New York: Princeton University Press.

[17] Martin W and Bridgmon K 2012 Quantitative and Statistical Research Methods. From Hypothesis to Results New York: John Wiley & Sons

[18] Yin, R 2011 Applications of Case Study Research New Yoek: SAGE Publication