Signals of Cardiovascular Issues with COVID19 Vaccines in VAERS

Matthew Clark (m.clark@elsevier.com)
Elsevier https://orcid.org/0000-0002-9348-3528

Brief Communication

Keywords: COVID-19 vaccine, cardiovascular safety, Vaccine Adverse Event Reporting System (VAERS)

Posted Date: May 7th, 2021

DOI: https://doi.org/10.21203/rs.3.rs-464549/v2

License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License
Signals of Cardiovascular Issues with COVID19 Vaccines in VAERS

Dr. Matthew Clark
16 April 2021

Elsevier Life Science Solutions
1601 JFK Blvd
Philadelphia PA 19146

Introduction
While COVID19 vaccines have been administered to over 100 million patients, a small minority (40,000) have reported adverse events, and an even smaller fraction have reported cardiovascular issues (~500). There have been reporting of a few unusual cardiovascular events associated with some varieties of COVID19 vaccines resulting in pauses of use.1,2 Here we analyze the reports of adverse events associated with the COVID19 vaccines in the FDA Vaccine Adverse Event Reporting System (VAERS) database to apply standard methods of detecting safety signals.3,4

In this work we apply this methodology to reports in the FDA VAERS database and have identified concerning signals for pulmonary embolism and myocardial infarction associated with COVID19 vaccines. These signals are compared with cardiovascular events reported in connection with influenza (FLU3) vaccines that are administered to a similar population. The comparison suggests that there are early signals of cardiovascular issues associated with COVID19 vaccines.

Methods
The US FDA VAERS reports were downloaded from the FDA website on 9-Apr-20215 Data received by VAERS from 11-Dec-2017 to 9-Apr-2021 were used for the analytics. The former date was chosen to provide sufficient data to compare to COVID19 vaccines which became available on 11-Dec-2020. However, the results are somewhat dependent on this choice. Including more historic data tends to amplify the safety signals.

The tables were loaded in to a PostgreSQL database system for convenient linking and querying of the tables with SQL to produce standard 2x2 contingency tables of counts of cases in each category and statistics were computed with R and the R openEBGM package.6,7,8

Since some events reported in VAERS are sequelae of the disease itself, and not the vaccine, the analysis omitted records where the patient was diagnosed with the disease intended to be prevented by the vaccine. In addition only events reported within 21 days of vaccine administration were considered. The resulting data was used to create a 2x2 contingency table for each vaccine-event combination with the cells filled with counts of patient cases in each category.
The Empirical Bayes Geometric Mean method (EBGM) was used to compute the relationship between vaccine and the symptoms reported.9,10 This method is generally accepted as the most robust way to compute therapeutic-adverse event relations, and has been used in other evaluations of vaccine adverse events.11 FDA guidelines suggest a value of 2.0 as the cutoff for a safety signal.12 In this study we use the lower boundary of the 90\% confidence (0.05 – 0.95 bounds) interval as a conservative estimate of risk, “EBGM .05” In this case the results were stratified by gender and age rounded to 20 year groups. Date stratification was not used because all of the COVID19 reports are grouped together in a limited date range. Therefore date stratification tends to treat date as a confounding variable and substantially lowers the safety signal.

Results

COVID19

Figure 1 shows the most prevalent events adverse events reported in VAERS for all COVID19 vaccines. The EBGM values near 1.0 suggest that the risk of experiencing these is similar to that of any other vaccine in the time period. The number of cases is high because each patient can report several of these events.

Symptom	Cases	EBGM 0.05
Headache	9,168	1.2
Pyrexia	7,381	1.0
Chills	7,375	1.2
Fatigue	6,599	1.2
Pain	6,347	0.9

Figure 1 Cases and Odds Ratios for the Most prevalent events reported for COVID19 vaccine. Multiple Adverse Events can be Reported for each Case.

Figure 2 shows selected significant cardiovascular events reported for COVID19 vaccine, stratified by age ranges to show age-related differences in risk. The EBGM values reflect the risk above all other vaccines in the time period, and values above 2.0 are considered a signal.

Age range	Pulmonary Embolism	Acute Myocardial Infarction	Cerebrovascular Accident		
Cases	EBGM .05	Cases	EBGM .05	Cases	EBGM .05
0-20	1	1	1	0	-
20-40	16	5	8	1.0	
40-60	31	10	28	1.3	
60-80	60	35	103	3.0	
80-100	22	20	109	1.8	
All	130	71	251	2.1	

Figure 2 Count of reports and Odds Ratios for Significant Cardiovascular Events Reported for COVID19 by Age Range, and for all ages combined
One can see from Figure 2 that the age range 60-80 may have a safety signal for these cardiovascular issues, while older and younger age ranges have EGBM values below the cutoff level of 2.0. With all ages combined the EGBM values also suggest signs of safety issues even with stratification by age, however these can be attributed mostly to the results from the 60-80 age group.

Figure 3 shows the counts used in the 2x2 tables that relate COVID19 vaccine to pulmonary embolism and acute myocardial infarction in the 60-80 age group, the figures reflecting the number of patients in each category.

	Pulmonary embolism	Other Events
COVID19	60	8615
Other Vaccines	10	31,791

	Acute myocardial infarction	Other Events
COVID19	35	8,640
Other Vaccines	2	31,799

Figure 3 2x2 Tables for COVID19 Vaccine and Pulmonary Embolism and Acute Myocardial Infarction for patients 60-80 years old for VAERS reports from 2017-2021.

Influenza

As a comparative control the same process was applied to the influenza FLU3 (trivalent) vaccine type, which has the most vaccine event reports in VAERS in the time period studied. The most common events associated with FLU3 vaccines are shown in Figure 4. As with COVID19 vaccines, these are common but not specifically more so for FLU3 than for other vaccines, as indicated by EGBM values close to 1.0.

Symptom	Cases	EBGM .05
Pain in extremity	771	1.1
Injection site pain	657	0.9
Pain	649	0.9
Injection site erythema	644	0.9
Pyrexia	586	0.7

Figure 4 Cases and Odds Ratios for the Most prevalent adverse events reported for FLU3 vaccine. Multiple Adverse Events can be Reported for each Case.

Figure 5 shows the 2x2 table for pulmonary embolism associated with FLU3 vaccine for the 60-80 year age range for comparison with the COVID19 data in Figure 3. The EGBM .05 value for this association is far below the threshold for significance at 0.23. (EBGM 0.5; 0.56) The comparison with all other vaccines administered to patients in this age range suggests that it is less likely than other vaccines to be associated with this issue. The median age for all FLU3 recipients is older than COVID19 recipients at 69 years, vs 48 years for COVID19. Thus the difference cannot be attributed solely to the difference in age distributions of the patient populations.
Pulmonary embolism & All other adverse events

	FLU3	All other vaccines
FLU3	2	3,415
All other vaccines	68	36,991

Figure 5 2x2 Table for FLU3 Vaccine and Pulmonary embolism for patients 60-80 years old for VAERS reports from 2017-2021.

Discussion

Conclusion of causality for cardiac events from vaccine administration is difficult. Various medical events may happen to occur fortuitously after vaccine administration, and even without vaccinations. The EGBM values computed from VAERS data represent the increased odds of experiencing the event \textit{above that experienced for other vaccines reported in VAERS – not absolute risk for the population}. The raw rate so far for pulmonary embolism after COVID19 vaccination for example is 130 cases out of 101 million doses – roughly 1 in 1 million – which is lower than the general population incidence worldwide.13

Nonetheless, the statistics show that cardiac events have been reported more often after COVID19 vaccine administration than for the other adverse event cases of administration of other vaccines. While this is not determinative for a connection it is concerning. The effects appear at this time to be focused in the age group of 60-80 years. The incidence of cardiovascular events may increase with age. However the EBGM statistical method compares the COVID19 vaccine with the experience of other vaccines in the same age group. Therefore the signal is specific for COVID19 vaccines in this age group.

There are several factors that may contribute to this. The medically infirm have been a priority for early COVID19 vaccination. In addition publicity may have created a reporting bias that did not exist for FLU3 vaccines, especially after publicly announced pauses related to cardiovascular effects. On the other hand the FLU3 influenza vaccine is administered annually to a generally older population than COVID19 without similar reporting rates of cardiac issues.

Work studying autoimmune events related to the HPV vaccine concluded that there were significant associations from similar counts of cases, from 7 to 40, with reporting odds ratios from 1 to 8.14 In this context the signals computed for cardiovascular effect for COVID19 vaccines are comparable to these studies.

The COVID19 vaccines are new entries in VAERS and as more reports of all kinds are collected the statistics for cardiovascular events may change. However this study suggests that cardiovascular safety should be carefully monitored for all COVID19 vaccines.

Conclusions

Application of signal detection algorithms for COVID19 vaccine reports in VAERS results in several signals linking them to cardiovascular adverse events in the 60-80 year age group. These signals are above those of other vaccines administered to a similar demographic, such as the trivalent influenza vaccine. Further data collected in VAERS in 2021 may change the outlook and clarify the overall risk conclusions.
1. Oxford/AstraZeneca vaccine: which countries have paused jab and why. *The Guardian* (2021). Available at: https://www.theguardian.com/world/2021/mar/16/oxford-astrazeneca-vaccine-update-pausing-jabs. (Accessed: 16th March 2021)

2. CDC. Recommendation to Pause Use of Johnson & Johnson’s Janssen COVID-19 Vaccine. (2021). Available at: https://www.cdc.gov/coronavirus/2019-ncov/vaccines/safety/JJUpdate.html. (Accessed: 15th March 2021)

3. Xu, R. & Wang, Q. Q. Large-scale combining signals from both biomedical literature and the FDA Adverse Event Reporting System (FAERS) to improve post-marketing drug safety signal detection. *BMC Bioinformatics* **15**, (2014).

4. Patadia, V. K. *et al.* Evaluating performance of electronic healthcare records and spontaneous reporting data in drug safety signal detection. *Int. J. Clin. Pharm.* **37**, 94–104 (2015).

5. FDA VAERS. Available at: https://vaers.hhs.gov/.

6. postgresql. (2020). Available at: https://www.postgresql.org/.

7. R Foundation for Statistical Computing, Vienna. A. R Core Team (2020). R: A language and environment for statistical computing.

8. Ihrie, J. EBGM Disproportionality Scores for Adverse Event Data Mining. (2019).

9. Fram, D. M., Almenoff, J. S. & Dumouchel, W. Empirical Bayesian data mining for discovering patterns in post-marketing drug safety. in *Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining* 359–368 (ACM Press, 2003). doi:10.1145/956750.956792

10. DuMouchel, W. & Pregibon, D. Empirical Bayes screening for multi-item associations. in *Proceedings of the Seventh ACM SIGKDD International Conference on Knowledge Discovery and Data Mining* 67–76 (Association for Computing Machinery (ACM), 2001). doi:10.1145/502512.502526

11. Lee, H., Kim, J. H., Choe, Y. J. & Shin, J. Y. Safety surveillance of pneumococcal vaccine using three algorithms: Disproportionality methods, empirical bayes geometric mean, and tree-based scan statistic. *Vaccines* **8**, (2020).

12. Szarfman, A., Machado, S. G. & O’Neill, R. T. Use of screening algorithms and computer systems to efficiently signal higher-than-expected combinations of drugs and events in the US FDA’s spontaneous reports database. in *Drug Safety* **25**, 381–392 (Adis International Ltd, 2002).

13. Bělohlávek, J., Dytrych, V. & Linhart, A. Pulmonary embolism, part I: Epidemiology, risk factors and risk stratification, pathophysiology, clinical presentation, diagnosis and nonthrombotic pulmonary embolism. *Exp. Clin. Cardiol.* **18**, 129–38 (2013).

14. Geier, D. A. & Geier, M. R. Quadrivalent human papillomavirus vaccine and autoimmune adverse events: a case–control assessment of the vaccine adverse event reporting system (VAERS) database. *Immunol. Res.* **65**, 46–54 (2017).
Figures

Table

Symptom	Cases	EBGM 0.05
Headache	9,168	1.2
Pyrexia	7,381	1.0
Chills	7,375	1.2
Fatigue	6,599	1.2
Pain	6,347	0.9

Figure 1

Cases and Odds Ratios for the Most prevalent events reported for COVID19 vaccine. Multiple Adverse Events can be Reported for each Case.

Age range	Pulmonary Embolism	Acute Myocardial Infarction	Cerebrovascular Accident			
	Cases	EBGM 0.05	Cases	EBGM 0.05	Cases	EBGM 0.05
0-20	1	0.5	1	0.5	0	-
20-40	16	1.4	5	1.0	8	1.0
40-60	31	1.3	10	0.9	28	1.3
60-80	60	**2.9**	35	**2.7**	103	**3.0**
80-100	22	1.3	20	1.3	109	1.8
All	130	2.12	71	2.0	251	2.1

Figure 2

Count of reports and Odds Ratios for Significant Cardiovascular Events Reported for COVID19 by Age Range, and for all ages combined

	Pulmonary embolism	Other Events	Acute myocardial infarction	Other Events
COVID19	60	8615	35	8,640
Other Vaccines	10	31,791	2	31,799
Figure 3

2x2 Tables for COVID-19 Vaccine and Pulmonary Embolism and Acute Myocardial Infarction for patients 60-80 years old for VAERS reports from 2017-2021.

Symptom	Cases	EBGM .05
Pain in extremity	771	1.1
Injection site pain	657	0.9
Pain	649	0.9
Injection site erythema	644	0.9
Pyrexia	586	0.7

Figure 4

Cases and Odds Ratios for the Most prevalent adverse events reported for FLU3 vaccine. Multiple Adverse Events can be Reported for each Case.

	Pulmonary embolism	All other adverse events
FLU3	2	3,415
All other vaccines	68	36,991

Figure 5

2x2 Table for FLU3 Vaccine and Pulmonary embolism for patients 60-80 years old for VAERS reports from 2017-2021.