We focus on the comparative study of dosimetry protocols in radiotherapy for accelerated photon and electron beams delivered from medical linear accelerator (LINAC). In this study, a comparison between the protocols (TRS 398, DIN 6800-2 and TG 51) for both the electron and photon beams was performed using energies of 6 and 15 MV. We used photon beams with energies of 6 and 15 MV and electron beams of 4, 6, 9, 12, 15 and 18 MV for both Medical Linac. In case of Clinac the maximum deviations for the relative dose at Dmax for the photon beam (15 MV) among the protocols was observed to be 1.18% between TRS-398 and TG-51, 1.56% between TG-51 and DIN 6800-2; and 0.41% between TRS-398 and DIN 6800-2. Conversely, these deviations were 3.67% between TRS-398 and TG-51, 3.92% between TG-51 and DIN 6800-2 for 4 MeV and 0.95% between TRS-398 and DIN 6800-2 in the case of Clinac 2300 CD for the PTW Markus and Exradin A10. For the measurement of the maximum absorbed dose depth to water using three protocols, the maximum deviations were observed between TRS 398 and TG-51 as well as TG51 and DIN 6800-2.

KEYWORDS: TRS (Technical Report Series), TG (Task Group), DIN (Deutsches Institut für Normung).

Approximately 60% of cancer patients are referred for external beam radiotherapy, for which the most commonly used equipment is a medical LINAC that produces an electron beam and photon beam [1]. The precise planning of the treatment depends on the tumor type, size, position, stage, and health condition of patients [1, 2]. By considering various uncertainty components associated with beam calibration factors, a study of the uncertainty in determining of the absorbed dose to water was carried out by C. Pablo et al. [3] Their results showed a typical uncertainty in the determination of absorbed dose to water during beam calibration approximately 1.3% for photon beams and 1.5% for electron beams (k = 1 in both cases). M. S. Huq et al. [4] performed a study by comparing International Atomic Energy Agency Technical Report Series No. 398 (IAEA TRS-398) and AAPM TG-51 absorbed dose to water protocols in the dosimetry of high-energy photon and electron beams. They compared the two protocols in two ways: (i) by analyzing the differences of the basic data included in the two protocols for photon and electron beam dosimetry in detail and (ii) by performing experiments in clinically accelerated photon and electron beams and determining the absorbed dose to water following the recommendations of the two protocols [4]. For electron beams, the ratios TG-51/TRS-398, of the absorbed dose to water Dw were observed to be between 0.994 and 1.018 depending upon the chamber and electron beam energy used, with mean values of 0.996, 1.006, and 1.017 respectively, for the cylindrical, well-guarded and not well-guarded plane-parallel chambers [4]. A dosimetric study comparing NCS report-5, IAEA TRS-381, AAPM TG-51 and IAEA TRS-398 in three clinical electron beam energies was carried out by H. Palms et al. [5]. In their work, they compared dosimetry for three clinical electron beam energies using two NE2571-type cylindrical chambers, two Markus-type plane-parallel chambers and two NACP-02-type plane-parallel chambers [5]. Another comparison of high-energy photon and electron dosimetry for various dosimetry protocols was performed by F. Araki et al. [6] They calculated the absorbed dose to water calculated according to the Japanese Association of Radiological Physics, IAEA TRS-277 and IAEA TRS-398 protocols, and compared it to that calculated using the TG-51 protocol. A comparison of protocols for external beam radiotherapy beam calibrations was carried out by S S Al-Ahabi et al. [7] where they used the IAEA TRS-398, AAPM TG-51 and IPEM 2003 protocols. The comparisons were carried out by delivering electron beams of nominal energies of 6, 9, 12, 16 and 20 MeV using Physikalisch-Technische Bundesanstalt (PTW) Markus and NACP-02 plane-parallel chambers.

Different group of dosimetrists did experiments several times to ensure lower uncertainty, best suited protocols and improvement of protocols for the commissioning of medical Linac and more precisely healthcare purposes. The aims of our work is to analyze the dosimetry applying three different most preferable protocols maintaining the QA parameters for high energy photon and electron beams delivered from the medical linear accelerator (Clinac). Different ionization chambers were used to calculate the absorbed dose to water and a comparison among chambers was investigated. For each chamber the absorbed dose to water was calculated using three different protocols. Sometimes in same reference conditions absorbed dose differs from Clinac to Clinac because of wall material of jaws. To confirm that dose variations...
we use two different medical LINAC and same chamber response with LINAC in this research work. This study will be helpful for defining more accurate dosimetry and developing more general protocol for ensuring patient safety during treatment planning.

METHODS AND MATERIALS

Absorbed dose to water calibration in ⁶⁰Co

The calibrations in terms of absorbed dose to water are available only for ⁶⁰Co gamma radiation [8]. The reference point of the chamber was at 5g/cm² water depth. The size of the radiation field (50% isodose level) at the reference plane was 10 cm×10 cm [9 – 12]. The PTW Markus chamber was set up for determining the calibration factor in a water phantom, and then the Physikalisch-Techische Bundesanstalt (PTW) UNIDOSE electrometer was used to obtain the dose rate. From these dose rates the calibration factor was measured using the IAEA TRS-398 protocol. The same procedure was used to calibrate the Exradin A10 and IBA FC65-G (2009) chambers. The descriptions of different protocols are presented in Table 1.

RESULTS

Calibration of Ionization Chambers

The calibration factors of Markus, A10 and FC65-G are listed in Table 2.

Criteria	Chamber Type	TRS 398	AAPM TG-51	DIN 6800-2		
	Electron	Photon	Electron	Photon		
Chamber position	Cylindrical	At $Z_{ref} + r/2$	At Z_{ref}	At $Z_{ref} + r/2$		
	Plane parallel	At Z_{ref}	At Z_{ref}	At Z_{ref}		
Beam quality	Cylindrical	specified by the half-value of the depth dose in water R_{50}	specified by the tissue phantom ratio TPR$_{20,10}$	specified by the half-value of the depth dose in water R_{50}	specified by the half-value of the depth dose in water R_{50}	
	Plane parallel	specified by the half-value of the depth dose in water R_{50}	specified by the half-value of the depth dose in water R_{50}	specified by the half-value of the depth dose in water R_{50}	specified by $Q = 1.2661 \frac{M_{20}}{M_{20}} - 0.0595$	
Value of T_o	Cylindrical	20 °C	22 °C	20 °C		
	Plane parallel	20 °C	22 °C	20 °C		
Ion recombination correction factor	Cylindrical	$K_s = a_o + a_1 \left(\frac{M_1}{M_2} \right) + a_2 \left(\frac{M_1}{M_2} \right)^2$	$P_{ion} = 1 - \frac{V_i}{V_{ion}} - \frac{V_i}{V_{ion}}$	$K_s = \frac{u_i}{u_{ion}} - 1$		
	Plane parallel	$K_s = a_o + a_1 \left(\frac{M_1}{M_2} \right) + a_2 \left(\frac{M_1}{M_2} \right)^2$	$P_{ion} = 1 - \frac{V_i}{V_{ion}} - \frac{V_i}{V_{ion}}$	$K_s = \frac{u_i}{u_{ion}} - 1$		
Chamber positioning correction	Cylindrical	none	none	$K_r = 1 +	\delta	\cdot r/2$

Table 2. Calibration factors of Markus, A10 and FC65-G
Absorbed dose to water for Photon beam
Absorbed dose to water according to different protocols

| TRS 398 | $M_Q = M_{raw} \times K_{TP} \times K_{elec} \times K_{pol} \times K_s$
| | $D_{w,Q} = M_Q \times N_{D,w,Q_0} \times K_Q$ |
| TG 51 | $M = M_{raw} \times P_{TP} \times P_{elec} \times P_{pol} \times P_{ion}$
| | $K_Q = p_{g',s}^0 \times K_{Rs0}$
| | $K_{Rs0} = K_{Rs0}' \times K_{ecal}$
| | $D_{w,Q} = M \times N_{D,w,Q_0} \times K_Q$ |
| DIN 6800-2 | $M_Q = M \times K_p \times K_T \times K_f \times K_s$
| | $k_E = k_{E}' \times k_{E}''$
| | $k_{E}' = 1.106 - 0.1312 \times (R_{50})^{0.214}$
| | $k_{E}'' = 0.982 \times (P_{caiv})_{Rs0}$
| | $(P_{caiv})_{Rs0} = 1 - 0.037 \times e^{-0.27 R_{50}}$
| | $D_{w,Q} = M_Q \times N_{D,w,Q_0} \times K_Q$ |

a. Beam quality.
The measurement of K_Q using three different protocols are presented in Table 3.

Energy (MV)	IAEA TRS-398	AAPM TG-51	DIN 6800-2
6	0.996	0.992	0.993
15	0.981	0.976	0.977

b. Comparison among protocols.
To make a comparison among protocols, we considered three main correction factors: pressure temperature correction, ion recombination correction and polarity correction factors. The values of these parameters are listed in Table 4.

Chamber	IAEA TRS-398	AAPM TG-51	DIN 6800-2
FC65-G (2005)*	1.0078	1.0013	1.0081
FC65-G (2009)*	1.0080	1.0015	1.0082

Chamber	Energy (MV)	IAEA TRS-398	AAPM TG-51	DIN 6800-2
FC65-G (2005)*	6	1.0048	1.0050	1.0054
	15	1.0063	1.0065	1.0078
FC65-G (2009)*	6	1.0027	1.0028	1.0027
	15	1.0061	1.0064	1.0065

Chamber	Energy (MV)	IAEA TRS-398	AAPM TG-51	DIN 6800-2
FC65-G (2005)*	6	1.0018	1.0018	1.0011
	15	1.0009	1.0009	0.9993
FC65-G (2009)*	6	1.0017	1.0017	1.0011
	15	1.0009	1.0009	1.0006

*Here FC65-G (2005) and (2009) represents serial number.

A comparison of the maximum dose depths (D_{max}) measured with three different protocols is presented in Table 5.
Table 5. Comparison of maximum dose depth (D_{max}) measured with three different protocols

Chamber	Energy (MV)	D_{max}	Deviation (%) in between				
		IAEA TRS-398	AAPM TG51	DIN 6800-2	TRS-398 & AAPM TG51	AAPM TG51 & DIN6800-2	DIN 6800-2 & TRS-398
FC65-G (2005)	6	9.962×10^{-3}	9.859×10^{-3}	9.940×10^{-3}	1.03	0.82	0.22
	15	9.882×10^{-3}	9.765×10^{-3}	9.917×10^{-3}	1.18	1.56	0.36
FC65-G (2009)	6	9.847×10^{-3}	9.745×10^{-3}	9.872×10^{-3}	1.03	1.29	0.26
	15	9.816×10^{-3}	9.700×10^{-3}	9.856×10^{-3}	1.18	1.56	0.41

We found that the percentage of the depth dose increases with increasing of energy, and the maximum dose D_{max} decreases. This is because the main influencing correction factor K_{O} decreases with increasing energy. The variation of the maximum dose depth at D_{max} for FC65G (2005) and FC65G (2009) according to IAEA TRS 398 and AAPM TG 51 was found to be 1.18% and 1.03% in 15 and 6 MV photon energies respectively. However, in DIN 6800-2 the variation of dose at D_{max} for FC65G (2005) and FC65G (2009) was found to be less than 0.5% in both 6 and 15 MV photon energies.

Absorbed dose to water for Electron beam

a. **PDD Curves.**

The PDD curves were observed at energies of 4, 6, 9, 12 and 15 MeV for Clinac 2300CD, and at energies of 6, 9, 12 and 15 MeV for DHX-3186. All comparative curves for limited length are shown in Figures 1 and 2. Since the electron beam has significantly low penetration power the reference depth for an electron is close to the phantom water surface.

![Figure 1. PDD curves for 4, 6, 9, 12 and 15 MeV electron beams delivered from 2300CD Clinac](image1)

![Figure 2. PDD curves for 6, 9, 12, 15 and 18 MeV electron beams delivered from DHX-3186 Clinac](image2)

The dose percentage with respect to the energy and depth is presented in Table 6.
Table 6. Dose percentage with respect to energy and depth

Clinac	Energy (MV)	Z_{ref} (cm)	Dose (%)
2300CD	4	0.64	99.60
	6	1.29	99.70
	9	2.02	100.00
	12	2.89	99.50
	15	3.69	97.80
DHX-3186	6	1.29	99.80
	9	2.02	100.00
	12	2.89	99.50
	15	3.69	98.70

Comparison among protocols

The PTW TM23343 Markus chamber was used to compare three protocols IAEA TRS 398, AAPM TG51 and DIN 6800-2. The correction factors for the electron beam are listed in table 7.

Table 7. Measurement of the correction factors for the electron beam

k_s	Clinac	Energy (MV)	IAEA TRS 398	AAPM TG-51
	2300CD			
	4	1.0088	1.0084	
	6	1.0086	1.0089	
	9	1.0089	1.0092	
	12	1.0081	1.0083	
	15	1.0078	1.0080	
	DHX-3186			
	6	1.0099	1.0102	
	9	1.0110	1.0113	
	12	1.0082	1.0086	
	15	1.0123	1.0126	
	18	1.0073	1.0075	

K_Q	Clinac	Energy (MeV)	IAEA TRS-398	AAPM TG-51	DIN 6800-2
	2300CD				
	4	0.930	0.9705	0.9262	
	6	0.922	0.9507	0.9135	
	9	0.913	0.9356	0.9042	
	12	0.904	0.9226	0.8957	
	15	0.897	0.9129	0.8889	
	DHX-3186				
	6	0.922	0.9507	0.9135	
	9	0.913	0.9356	0.9042	
	12	0.904	0.9226	0.8957	
	15	0.897	0.9129	0.8889	
	18	0.892	0.9061	0.8838	

Uncertainty in Dose Measurement

For the photon beam the total uncertainty in the measurement of absorbed dose to water was approximately similar for FC65-G (2005) and (2009) which was ± 0.57% (k = 1) for both 6 and 15 MV. Our work provides better result than that of Castro P et al. For electron beam using the PTW TM23343 chamber, the total uncertainty in the absorbed dose to water in Clinac 2300CD were ± 1.74%, ± 1.09%, ± 0.92%, ± 0.85% and ± 0.82% for 4, 6, 9, 12 and 15 MeV respectively and that in Clinac DHX-3186 were ± 1.09%, ± 0.94%, ± 0.86%, ± 0.84% and ± 0.80% for 6, 9, 12, 15 and 18 MeV respectively (k = 1). In contrast using the Exradin A10 chamber for electron dosimetry, the total uncertainty in the absorbed dose to water in Clinac 2300CD were ± 1.67%, ± 0.97%, ± 0.78%, ± 0.69% and ± 0.65% for 4, 6, 9, 12 and 15 MeV respectively and that in Clinac DHX-3186 were ± 0.96%, ± 0.78%, ± 0.76%, ± 0.68% and ± 0.69% for 6, 9, 12, 15 and 18 MeV respectively (k = 1).
DISCUSSIONS

In general, the discrepancies in the beam quality, K_Q and D_{max} for various protocols exhibited in a decreasing trend for the electron beam with the increase of energy. In contrast, for the comparative study with various chambers, the variation in D_{max} also exhibited in a decreasing trend with energy for both the accelerated photon and electron. The vital influencing factor for deviations among the protocols as well as between the chambers was the beam quality conversion factor K_Q. The deviation can be resolved if the chambers can be calibrated at their respective electron or photon beam quality rather than at 60Co. Our measured correction factors, according to the TG-51, TRS-398 and DIN 6800-2 protocols were in good agreement with previous published works [4, 6, 14, 15, 16].

CONCLUSIONS

In this study, it was experimentally observed that the TRS 398 protocol is in good agreement with DIN 6800-2 rather than TG51 because of the measurement technique and correction factors included with the protocol. The experimental uncertainty (Type A and B) included in the measurement is below that of the previously published and recommended works [6, 17]. In this work we found that, some uncertainties would be minimized if the chambers calibrated with the photon beam delivered from the medical LINAC rather than the 60Co beam.

Compliance with Ethical Standards: This article does not contain any studies with human participants performed by any of the authors.

Funding: None

Conflict of Interest: All authors declare that they have no conflict of interest

ORCID IDs

AKM Moinul Haque Meaze, https://orcid.org/0000-0002-1526-2113; Santunu Purohit, https://orcid.org/0000-0002-0029-995X; Md. Shakilur Rahman, https://orcid.org/0000-0002-7873-7999; Abdus Sattar, https://orcid.org/0000-0003-3863-7253; SM Enamul Kabir, https://orcid.org/0000-0002-9684-4966; Kamrunnahar Kali, https://orcid.org/0000-0002-9284-9516; Md. Kawchar Ahmed Patwary, https://orcid.org/0000-0002-6150-9113; Md. Jubayer Rahman Akhand, https://orcid.org/0000-0002-4406-0369

REFERENCES

[1] K.A. Paskalev, J.P. Seuntjens, H.J. Patrocinio, and E.B. Podgorsak, Med Phys. 30(2), 111–118 (2003), https://doi.org/10.1118/1.1536290.
[2] A.J. Scott, A.E. Nahum, and J.D. Fenwick, Am. Assoc. Phys. Med. 35(10), 4671–4684 (2008), https://doi.org/10.1118/1.2975223.
[3] P. Castro, F.G Vicente, C. Minguez, A. Floriano, D. Sevilla no, L. Perez, and J.J. Torres. Appl. Clinical Medical Phys. 9(1), 70-86 (2008), https://dx.doi.org/10.1120/2Fjacmp.x91.2676.
[4] M.S. Huq, P. Andreo, and H. Song. Physics in Medicine and Biology, 46(11), 2985-3006 (2001), https://doi.org/10.1088/0031-9155/46/11/315.
[5] H. Pal mans, L. Nafaa, N. Patoul, J-M. Denis, M. Tomsej, and S. Vynckier, Physics in Medicine and Biology, 48(9), 1091-1107 (2003), https://doi.org/10.1088/0031-9155/48/9/301.
[6] F. Araki, and H.D. Kubo, Med Phys. 29(5), 857-868 (2002), https://doi.org/10.1118/1.1470208.
[7] S.S. Al-Ahbabi, D.A. Bradley, M. Beyomi, Z. Alkaitis, S. Adhaheri, M. Darmaki, and A. Nisbet, Appl Radiat. Isot. 70(7), 1331-1336 (2012), https://doi.org/10.1016/j.apradiso.2011.11.065.
[8] Radiotherapy Ionization Chamber Calibration Procedures at the IAEA Dosimetry Laboratory, http://www.naweb.iaea.org/nahu/dmrp/documents/DOLP.011_Appendix_3A_to_Calibration_certificate_rev6.pdf.
[9] J. Medin, P. Andreo, and S. Vynckier, Phys Med Biol. 45(11), 3195-3211 (2000), https://doi.org/10.1088/0031-9155/45/11/306.
[10] S.R.M. Mahdavi, M. Mahdavi, H. Alijanzadeh, M. Zabihzadeh, and A. Mosta ra, Iran J. Radiat. Res. 10(1), 43-51 (2012), https://www.sid.ir/FileServer/JE/92620120106.pdf.
[11] Absorbed Dose Determination in External Beam Radiotherapy: An International Code of Practice for Dosimetry based on Standards of Absorbed Dose to Water. TRS No.398. (International Atomic Energy Agency, Vienna, 2001), https://www-pub.iaea.org/MTCD/Publications/PDF/TRS398_scp.pdf.
[12] Calibration of dosimeters used in radiotherapy. TRS No.374. (International Atomic Energy Agency, Vienna, 1994), https://inis.iaea.org/collection/NCLCollectionStore/_Public/26/037/26037970.pdf.
[13] P.R. Almond, P.J. Biggs, B.M. Coursey, W.F. Hanson, M.S. Huq, R. Nath, and D.W.O. Rogers, Med Phys. 26(9), 1847-1870 (1999), https://doi.org/10.1118/1.598691.
[14] G.A. Zakaria, W. Schuette, and C. Younan, Biomed Imaging Interv. J. 7(2), 1–10 (2011), https://www.ncbi.nlm.nih.gov/ pmc/articles/PMC3265153/pdf/biij-07-e15.pdf.
[15] G.A. Zakaria, and W. Schütte, Zeitschrift für medizinische physic, 13(4), 281-289 (2003), https://doi.org/10.1078/0939-3889-00182.
[16] G.A. Zakaria, and W. Schütte, J. Med Phys. 32(1), 3-11 (2007), https://doi.org/10.1013/0971-6203.31143.
[17] D.I. Thwaites, B. Mijnheer, and J.A. Mills, in: Radiation Oncology Physics: A Handbook for Teachers and Students, edited by E.B. Podgorsak (International Atomic Energy Agency, Vienna, 2005), pp. 407-450, http://www.naweb.iaea.org/nahu/DMRP/documents/Chapter12.pdf.
ДОСЛІДЖЕННЯ ПРОТОКОЛІВ ДОЗИМЕТРІЇ ДЛЯ ПРИСКОРЕНИХ ФОТОНІВ І ЕЛЕКТРОНІВ
ВІД МЕДИЧНОГО ЛІНІЙНОГО ПРИСКОРЮВАЧА

АКМ Мойнул Гаку Миза, Сантуну Пурохіта, М. Шакілур Рахмана, Абдус Саттара, С.М. Енамул Кабіра,
М. Кавчар Ахмед Патварі, Камруннахар Калі, М. Джубайер Рахман Аханца

Фізичний факультет, Університет Чіттагонгу, Бангладеш

Друга стандартна дозиметрична лабораторія, Комісія з атомної енергії Бангладеш, Савар, Дакка, Бангладеш

Національний інститут досліджень раку, Дакка, Бангладеш

Фізичний факультет, Університет Комілла, Бангладеш

Військова Академія Бангладеш, Бхатіарі, Чіттагонг, Бангладеш

Особливу увагу в цій статті зосереджено на порівняльному дослідженні дозиметричних протоколів променевої терапії для прискорених фотонів та електронів, що надходять з лінійного медичного прискорювача (LINAC). У цьому дослідженні було проведено порівняння між протоколами (TRS 398, DIN 6800-2 і TG 51) як для електрона, так і для фотона, що надійшли з Clinac 2300CD і Clinac DHX 3186. Ми використовували пучки фотонів з енергіями 6 та 15 МВ та електронні пучки з енергіями 4, 6, 9, 12, 15 та 18 МеВ для обох медичних лінійних прискорювачів. У випадку з Clinac максимальні відхилення відносної дози при Dmax для пучка фотонів (15 MB) серед протоколів становило 1,18% між TRS-398 і TG-51, 1,56% між TG-51 і DIN 6800-2, та 0,41% між TRS-398 та DIN 6800-2. І навпаки, ці відхилення становили 3,67% між TRS-398 і TG-51, 3,92% між TG-51 і DIN 6800-2 для 4 MeВ, і 0,95% між TRS-398 і DIN 6800-2 у випадку Clinac 2300 CD для PTW Markus та Exradin A10. При вимірюванні максимальної глибини поглинотої дози у воді за допомогою трьох протоколів спостерігалися максимальні відхилення між TRS 398 та TG-51, а також TG51 та DIN 6800-2.

КЛЮЧОВІ СЛОВА: TRS (Серія технічних звітів), TG (Цільова група), DIN (Німецький інститут стандартизації).