Pragmatic Solutions for Stroke Recovery and Improved Quality of Life in Low- and Middle-Income Countries—A Systematic Review

Echezona Nelson Dominic Ekechukwu 1,2†, Paul Olowoyo 3,4†, Kingsley Obumneme Nwankwo 5,6, Olubukola A Olaleye 7, Veronica Ebere Ogbodo 6, Talhatu Kolapo Hamzat 7 and Mayowa Ojo Owolabi 5,9,10,11*

† These authors have contributed equally to this work and share first authorship

1 Department of Medical Rehabilitation, Faculty of Health Sciences and Technology, College of Medicine, University of Nigeria, Enugu, Nigeria, 2 LANCET Physiotherapy and Wellness and Research Centre, Enugu, Nigeria, 3 Department of Medicine, Federal Teaching Hospital, Ido Ekiti, Nigeria, 4 College of Medicine and Health Sciences, Ade Balolola University, Ado Ekiti, Nigeria, 5 Stroke Control Innovations Initiative of Nigeria, Abuja, Nigeria, 6 Fitness Global Consult Physiotherapy Clinic, Abuja, Nigeria, 7 Department of Physiotherapy, Faculty of Clinical Sciences, College of Medicine, University of Ibadan, Ibadan, Nigeria, 8 Department of Physiotherapy, University College Hospital, Ibadan, Nigeria, 9 Department of Medicine, Faculty of Clinical Sciences, College of Medicine, University of Ibadan, Ibadan, Nigeria, 10 University College Hospital, Ibadan, Nigeria, 11 Blossom Specialist Medical Centre, Ibadan, Nigeria

Background: Given the limited healthcare resources in low and middle income countries (LMICs), effective rehabilitation strategies that can be realistically adopted in such settings are required.

Objective: A systematic review of literature was conducted to identify pragmatic solutions and outcomes capable of enhancing stroke recovery and quality of life of stroke survivors for low- and middle- income countries.

Methods: PubMed, HINARI, and Directory of Open Access Journals databases were searched for published Randomized Controlled Trials (RCTs) till November 2018. Only completed trials published in English with non-pharmacological interventions on adult stroke survivors were included in the review while published protocols, pilot studies and feasibility analysis of trials were excluded. Obtained data were synthesized thematically and descriptively analyzed.

Results: One thousand nine hundred and ninety six studies were identified while 347 (65.22% high quality) RCTs were found to be eligible for the review. The most commonly assessed variables (and outcome measure utility) were activities of daily living [75.79% of the studies, with Barthel Index (37.02%)], motor function [66.57%; with Fugl Meyer scale (71.88%)], and gait [31.12%; with 6 min walk test (38.67%)]. Majority of the innovatively high technology interventions such as robot therapy (95.24 %), virtual reality (94.44%), transcranial direct current stimulation (78.95%), transcranial magnetic stimulation (88.0%) and functional electrical stimulation (65.00%) were conducted in high income countries. Several traditional and low-cost interventions such as constraint-induced movement therapy (CiMT), resistant and aerobic exercises (R&AЕ), task oriented therapy (TOT), body weight supported treadmill training (BWSTT) were reported to significantly contribute to the recovery of motor function, activity, participation, and improvement of quality of life after stroke.
Conclusion: Several pragmatic, in terms of affordability, accessibility and utility, stroke rehabilitation solutions, and outcome measures that can be used in resource-limited settings were found to be effective in facilitating and enhancing post-stroke recovery and quality of life.

Keywords: pragmatic solution, stroke recovery, quality of life, low- and middle-income countries, innovatively high technology interventions, systematic review

INTRODUCTION

Stroke is a major public health challenge in many Low- and Middle-Income Countries (LMICs) (1, 2). It is a leading cause of disability and premature mortality (3). Stroke is a common cause of severe financial hardship and poverty (4) and resources for stroke care and rehabilitation are sparse in LMICs (5). Rehabilitation services are typically limited and not easily affordable (6, 7). Although, there are several proven therapies and rehabilitation strategies for stroke in high income countries, these are not directly transferrable to LMICs (8). Many LMICs have minimal health care spending and any model of stroke rehabilitation for this region must not only be effective but practical and sustainable in terms of affordability, availability, accessibility and acceptability (7, 8). The global burden associated with stroke underscores the need for strategies to circumvent current trends and check the projected increase in stroke incidence in LMICs (1).

We conducted a systematic review of RCTs of interventions that addressed recovery of functioning, and enhancement of quality of life after stroke and discussed effective, cost-saving and practical rehabilitation models to improve clinical outcomes and quality of life among stroke survivors in LMICs (5). The two main objectives of the review are therefore:

1. To determine effective interventions/modes of care delivery that enhances post-stroke recovery and quality of life and the outcome measures utilized.
2. To identify effective stroke rehabilitation interventions that would constitute pragmatic (cost-effective, accessible, and utilizable) solutions in lower and middle income countries.

METHODS

This systematic review of literature was based on the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guideline. Ethical standards necessary for the conduct of a systematic review were maintained. The study was registered with PROSPERO (CRD42020138454).

Search Strategy

We conducted a search of PubMed, HINARI, and Directory of Open Access Journals (DOAJ) databases for articles published up to November 2018 using the Patient-Intervention-Comparison-Outcome (PICO) format with stroke (Patient Problem), non-pharmacologic stroke rehabilitation/neurorehabilitation strategies (Intervention), stroke recovery (Outcome) and quality of life (Outcome) as some of the keywords. We however did not specify comparison groups in the search strategy.

Eligibility Criteria

Only studies that were identified as completed randomized controlled trials (RCTs), that involved adult stroke survivors (age ≥ 18 years) who underwent non-pharmacological rehabilitation in both the intervention and comparison groups, and with available full text were included in this review. However, published protocols, pilot and feasibility studies, and non-English language articles were excluded.

Data Extraction

The titles and abstracts of articles were screened by the authors and studies that did not meet the eligibility criteria were excluded. Full texts of eligible studies were further scrutinized and the following information were obtained and recorded in prepared data extraction form: citation, number of study participants, purpose of the study (specific construct targeted), type of intervention, type of control, and outcome of intervention (between intervention and control groups difference) (see Supplementary Table).

Quality Appraisal

The quality of the articles was assessed using JADAD scale (9). The scale also known as the Oxford quality scoring system has 7 items with a maximum score of 5 and a minimum score of 0. For the purpose of this review, studies with JADAD scores <3 were rated as low quality while those with scores ≥3 were rated as high quality studies.

Data Synthesis

Thematic presentation of findings of the reviewed studies was done in line with the objectives of the review. Stroke recovery and their outcomes were operationalized using the broad categories of functioning based on the International Classification of Functioning, Disability and Health (ICF) conceptual framework (10). Thus, stroke rehabilitation interventions and outcomes assessed in the various studies were presented according to their effects on the recovery of body functions, activity and participation. The efficacy of trial interventions on quality of life was also presented as a separate theme. Stroke care models identified as effective in the reviewed articles were also presented as a specific theme. Summaries of the quality of studies that addressed each of the themes were presented.
RESULTS

A total of 1996 studies were obtained from the electronic searches of the databases, while the findings of 347 studies with available full text articles were synthesized and presented. One thousand, six hundred and thirty-five articles were excluded because they did not meet with the inclusion criteria while 15 articles that contained duplicate data were also excluded. Details are presented in the PRISMA flowchart (Figure 1).

Methodological Qualities of the Included Studies

In general, most of the studies (65.22%) included in this review were high quality trials (JEDAD Scores ≥3). Majority of the studies (>70.00%) with Transcranial Direct Current Stimulation (t-CDS), Virtual Reality (VR), Body Weight Supported Treadmill Training (BWSTT), mental practice, Task Oriented Therapy (TOT), muscle stretching exercises, speech therapy, participation based therapies, Community Based Rehabilitation (CBR), Home Based Rehabilitation (HBR), family/care-giver led therapy, and telerehabilitation were high quality trials. However, studies whose interventions hinged on robotics, Constraint Induced Movement Therapy (CIMT), Occupational Therapy (OT), Early Therapy, Cognitive Therapy, Quality of Life Centered Care were found to have an almost equal distributions in methodological quality as shown in Table 1.

Locations of Studies With Innovatively High Technology Interventions

A total of 40 studies (11–50) conducted in 15 countries made use of Robot Therapy (RT). Majority (95.24) of these RT studies were done in high income countries such as USA (33.33%), Italy (14.29%) Taiwan (11.90%) etc. Very few studies (4.76%)
were conducted in upper middle income countries (China and Georgia) while none was found in the lower middle and lower income countries. Also, of the 19 studies (16, 29, 51–64, 344) that compared the effects of transcranial direct current stimulation, 78.95% were conducted in high income countries, few (21.05%) in upper-middle-income countries, and none was found from lower-middle and lower income countries. Similarly, most of the trials on the effectiveness of virtual reality (94.44%), transcranial magnetic stimulation (88.0%) and functional electrical stimulation (85.00%) were conducted in high income countries as shown in Figure 2.

Outcome Measures Reported and Their Utility

Using the ICF classification model, 24 themes representing constructs in the function/structure (impairment) domain were found in the included studies. A total of 160 studies (66.57%) out of the 247 reviewed studies assessed motor function. Other outcomes such as balance (19.31%), muscle strength (16.43%), spasticity (12.39%), and depression (12.39%) were among the most assessed function/structure related outcomes. Majority (71.88%) of the studies that assessed motor function utilized Fugl-Meyer Assessment scale. Other frequently used tools for assessing motor function were Wolf Motor Function Test (16.25%), Action Meyer Assessment scale. Other frequently used tools for assessing gait outcomes, while Functional Ambulatory Capacity (31.2%) and 10 meters walk test (38.67%) were the most utilized tool for assessing gait. Functional Independence Measure (17.31%). In the same vein, 75 (255) of the included studies assessed gait and activity domain of the ICF classification system. A total of 208 studies (75.79%) out of the 347 studies in this review assessed ADL. Majority of these studies used Barthel Index or its modification (37.02%), Motor Activity Log (20.19%) and 255 (73.08) of the included studies assessed gait and mobility outcomes, respectively. Six minutes walk test (46.67%) and 10 meters walk test (38.67%) were the most utilized tool for assessing gait outcomes, while Functional Ambulatory Capacity (26.09%) and Rivermead Mobility Index (26.09%) were the most utilized outcomes for assessing post stroke mobility.

Quality of life (QoL), post stroke reintegration and stroke were conducted in upper middle income countries (China and Georgia) while none was found in the lower middle and lower income countries. Also, of the 19 studies (16, 29, 51–64, 344) that compared the effects of transcranial direct current stimulation, 78.95% were conducted in high income countries, few (21.05%) in upper-middle-income countries, and none was found from lower-middle and lower income countries. Similarly, most of the trials on the effectiveness of virtual reality (94.44%), transcranial magnetic stimulation (88.0%) and functional electrical stimulation (85.00%) were conducted in high income countries as shown in Figure 2.

Outcome Measures Reported and Their Utility

Using the ICF classification model, 24 themes representing constructs in the function/structure (impairment) domain were found in the included studies. A total of 160 studies (66.57%) out of the 247 reviewed studies assessed motor function. Other outcomes such as balance (19.31%), muscle strength (16.43%), spasticity (12.39%), and depression (12.39%) were among the most assessed function/structure related outcomes. Majority (71.88%) of the studies that assessed motor function utilized Fugl-Meyer Assessment scale. Other frequently used tools for assessing motor function were Wolf Motor Function Test (16.25%), Action Meyer Assessment scale. Other frequently used tools for assessing gait outcomes, while Functional Ambulatory Capacity (31.2%) and 10 meters walk test (38.67%) were the most utilized tool for assessing gait outcomes, while Functional Ambulatory Capacity (26.09%) and Rivermead Mobility Index (26.09%) were the most utilized outcomes for assessing post stroke mobility.

Quality of life (QoL), post stroke reintegration and stroke were conducted in upper middle income countries (China and Georgia) while none was found in the lower middle and lower income countries. Also, of the 19 studies (16, 29, 51–64, 344) that compared the effects of transcranial direct current stimulation, 78.95% were conducted in high income countries, few (21.05%) in upper-middle-income countries, and none was found from lower-middle and lower income countries. Similarly, most of the trials on the effectiveness of virtual reality (94.44%), transcranial magnetic stimulation (88.0%) and functional electrical stimulation (85.00%) were conducted in high income countries as shown in Figure 2.

Outcome Measures Reported and Their Utility

Using the ICF classification model, 24 themes representing constructs in the function/structure (impairment) domain were found in the included studies. A total of 160 studies (66.57%) out of the 247 reviewed studies assessed motor function. Other outcomes such as balance (19.31%), muscle strength (16.43%), spasticity (12.39%), and depression (12.39%) were among the most assessed function/structure related outcomes. Majority (71.88%) of the studies that assessed motor function utilized Fugl-Meyer Assessment scale. Other frequently used tools for assessing motor function were Wolf Motor Function Test (16.25%), Action Meyer Assessment scale. Other frequently used tools for assessing gait outcomes, while Functional Ambulatory Capacity (31.2%) and 10 meters walk test (38.67%) were the most utilized tool for assessing gait outcomes, while Functional Ambulatory Capacity (26.09%) and Rivermead Mobility Index (26.09%) were the most utilized outcomes for assessing post stroke mobility.

Quality of life (QoL), post stroke reintegration and stroke were conducted in upper middle income countries (China and Georgia) while none was found in the lower middle and lower income countries. Also, of the 19 studies (16, 29, 51–64, 344) that compared the effects of transcranial direct current stimulation, 78.95% were conducted in high income countries, few (21.05%) in upper-middle-income countries, and none was found from lower-middle and lower income countries. Similarly, most of the trials on the effectiveness of virtual reality (94.44%), transcranial magnetic stimulation (88.0%) and functional electrical stimulation (85.00%) were conducted in high income countries as shown in Figure 2.
studies (20.17% of the included studies) that assessed QoL, SF-36 (35.59%) and Stroke Impact Scale [SIS] (30.51%) were the most utilized outcome measures. Also, SIS (21.74%) was the most utilized outcome measure in assessing post-stroke reintegration. From the 32 studies that assessed stroke severity/recovery, NIH stroke scale (50.00%) was the most frequently used outcome measure. In the same vein, SIS (45.16%) was the most utilized tool for assessing stroke impact as shown in Table 4.

Synthesized Themes for Stroke Intervention

Motor Relearning Therapy (Motor Function, Muscle Strength, Balance and Muscle Tone, Activities of Daily Living, Gait, and Mobility)

One hundred and sixty trials examined the effects of various neurorehabilitation techniques on trunk, upper and lower extremity motor function while 52, 50, and 41 studies were on muscle strength, balance and muscle tone, respectively. Also included in the motor relearning interventions were the 208 trials on Activities of Daily Living (ADL), 108 and 51 trials on gait and mobility, respectively. These neurorehabilitation techniques include innovatively high technology interventions such as robotic therapy (11–50), transcranial direct current stimulation (16, 29, 51–64, 344), transcranial magnetic stimulation (66–94), functional electrical stimulation (95–112), virtual reality (113–129), and video game (130–132). Many of these trials reported “within-group” improvement in motor functioning outcomes in both intervention and control groups (usually conventional therapy) with no “between-group differences” in these outcomes. Similarly, most of the identified traditional and relatively low-technology neurorehabilitation techniques such as body weight supported treadmill (133–143), occupational therapy (33, 56, 80, 123, 144–150), constraint induced movement therapy (23,
Construct	Outcome measure	$x + (y)$	f	%	Rel. %	References
Motor function	FMA	115(+0)	115	33.14	71.88	(11, 13, 14, 16, 17, 19, 24–27, 30–34, 46, 49, 50, 52, 54, 56–58, 60, 61, 63–66, 73, 76, 77, 81, 83, 85, 87, 88, 92, 93, 95, 97, 98, 100, 102, 104, 105, 109, 111, 112, 116, 121, 122, 129, 132, 135, 137, 140, 144, 145, 151, 154, 155, 157, 159, 162, 163, 165–167, 178–180, 184–191, 194, 197, 200, 202, 205, 206, 209, 215, 222, 246, 260, 265, 274, 295, 311, 318, 323, 327, 337, 343–347)
	WMFT	13(+13)	26	7.49	16.25	(31, 36, 60, 75, 79, 81, 83, 85, 88, 92, 93, 95, 97, 98, 100, 102, 104, 105, 109, 111, 112, 116, 121, 122, 129, 132, 135, 137, 140, 144, 145, 151, 154, 155, 157, 159, 162, 163, 165–167, 178–180, 184–191, 194, 197, 200, 202, 205, 206, 209, 215, 222, 246, 260, 265, 274, 295, 311, 318, 323, 327, 337, 343–347)
	BBT	4(+16)	20	5.76	12.50	(30, 34, 38, 40, 51, 88, 89, 104, 105, 114, 116, 120, 153, 156, 160, 161, 163, 166, 173–175, 215, 344, 346)
	ARAT	7(+15)	22	6.34	13.75	(24, 98, 109, 116, 121, 149, 153, 163, 172, 180, 187, 189–191, 195, 205, 207, 209, 220, 268)
	MAS	12(+2)	14	4.03	8.75	(22, 144, 176, 210, 211, 231, 250, 253, 277, 280, 281, 300, 307, 312)
	Mi	3(+6)	9	2.59	5.63	(44, 68, 88, 106, 116, 194, 251, 265, 282)
	(m)RS	0(+7)	7	2.02	4.38	(76, 104, 109, 116, 121, 163, 210)
	MSS	0(+3)	3	0.86	1.88	(25–27)
	EMG	0(+2)	2	0.58	1.25	(83, 87)
	RMA	2(+0)	2	0.58	1.25	(171, 204)
Others	4(+3)	7	0.29a	0.63a	SSS (133), FIM (193), AMAT (108), STREAM (269), [RPSS (112), MFT (203), CAHAI (262)]	
Total Motor		160 (+71)		46.11	100.00	
Muscle strength	MRC	12(+0)	12	3.46	23.08	(11, 26, 27, 34, 38, 43, 70, 76, 79, 83, 140, 144)
	Mi	4(+1)	5	1.44	9.62	(28, 32, 34, 106, 270)
	MPS	2(+0)	2	0.58	3.85	(24, 25)
	Peak torque	4(+0)	4	1.15	7.69	(48, 75, 108, 267)
	Dynamometer	14(+0)	14	4.03	26.92	(55, 63, 86, 96, 207, 214, 215, 218, 219, 227, 228, 278, 296, 317)
	EMG	3(+2)	5	1.44	9.62	(107, 200, 206, 218, 226)
	MMT	3(+0)	3	0.86	5.77	(121, 137, 208)
	Virgometer	2(+0)	2	0.58	3.85	(247, 250)
	1RM	1(+1)	2	0.58	3.85	(223, 226)
	Hand grip	3(+0)	3	0.86	5.77	(59, 69, 237)
Others	4 (+1)	5	0.29a	1.92a	HSS (80), KTPB (70), Pinch gauge (71), PGBT (120), Myometer (220)	
Total Muscle		52(+5)		14.99	100.00	
Balance	BBS	34(+0)	34	9.80	68.00	(11, 13, 22, 23, 92, 102, 103, 110, 119, 127, 129, 134, 135, 139, 144, 217, 222, 242, 247, 250, 265, 266, 270, 273, 276, 278, 279, 299, 306, 312, 314, 318, 323, 343)
	TUG	6(+6)	12	3.46	24.00	(5, 11, 36, 49, 103, 107, 110, 119, 124, 250, 265, 348)
	ABC	0(+2)	2	0.58	4.00	(129, 135)
	FRT	3(+1)	4	1.15	8.00	(119, 271, 281, 321)
	FTSTS	1(+1)	2	0.58	4.00	(48, 244)
	Fall calendar	2(+0)	2	0.58	4.00	(248, 316)
	LoS	1(+1)	2	0.58	4.00	(199, 273)
Others	3(+6)	9	0.29a	2.00a	BBA (102), PSV (110), COP (113), BPM (125) SQ (126), FASS (199), PASS (267), IMS (273), PPA (319)	
Total Balance		50(+17)		14.41	100.00	

(Continued)
Construct	Outcome measure	\(x + y \)	\(f \)	%	Rel. %	References
Muscle tone (spasticity)	mAS	37(+0)	37	10.66	90.24	(12, 14, 19, 24, 25, 27–29, 31, 32, 34, 41, 56, 63, 65, 66, 68, 73, 91, 96, 99, 112, 138, 145, 189, 192, 202, 204, 219, 230, 247, 250, 267, 312, 345, 346, 349)
	CSS	2(+0)	2	0.58	4.88	(107, 259)
	Others	2(+2)	4	0.29a	2.44a	EMG [68], H/M ratio [94], Pendulum Test [94], Myoton-3D [186]
Total (\(\Sigma f \))	41(+2)	\(\Sigma x = 41 \)	11.82	100.00		
Depression	HAD-S	16(+0)	16	4.61	38.10	(12, 216, 233, 236, 248, 260, 269, 277, 281, 291, 303, 308, 316, 328, 330, 332)
	CES-D	4(+0)	4	1.15	9.52	(21, 196, 289, 297, 319)
	BDI	4(+0)	4	1.15	9.52	(24, 89, 121, 300)
	GDS	7(+0)	7	2.02	16.67	(153, 214, 253, 283, 290, 299, 312)
	GHOQ	2(+0)	2	0.58	4.76	(142, 304)
	Others	9(+1)	10	0.29a	2.38a	SADQ-H [80], IMTEO [111], PHQ [222], ARS-D [244], STAI (299), Kessler-10 (289), MADS (292), DASS (309), Zungseas [349], SAS [216]
Total (\(\Sigma f \))	42(+1)	\(\Sigma x = 42 \)	12.10	100.00		
Pain	VAS	8(+0)	8	2.31	66.67	(28, 99, 183, 190, 231, 287, 295, 345)
	FMA	2(+0)	2	0.58	16.67	(24, 189)
	Others	2 (+1)	3	0.29a	8.33a	PNS [346], WBF [153], RAI [231]
Total (\(\Sigma f \))	12(+1)	\(\Sigma x = 12 \)	3.46	100.00		
Speech	WAB	2(+0)	2	0.58	12.50	(59, 72)
	ASRS	2(+0)	2	0.58	12.50	(80, 84)
	BDAE	2(+1)	3	0.86	18.75	(82, 84, 240)
	AAT	3(+0)	3	0.86	18.75	(67, 170, 238)
	PAS	2(+0)	2	0.58	12.50	(195, 224)
	Others	5 (+10)	14	0.29a	6.25a	TOM [239], COAST [37], CCAS [78], COM-B [350], DRS [68], VIDS [217], HSS [69], PICA [240], BNT [82], SVPN [82], CAL [170], Milan protocol [238], FCP [240], Token Test [238], CPNT [84]
Total (\(\Sigma f \))	16(+10)	\(\Sigma x = 16 \)	4.61	100.00		
Cognitive/Executive Fxn	ACER	2(+0)	2	0.58	7.69	(12, 118)
	TMT	4(+1)	5	1.44	19.23	(118, 234–236, 342)
	MMSES	5(+0)	5	1.44	19.23	(216, 232, 248, 293, 317)
	MCA	2(+1)	3	0.86	11.54	(216, 298, 308)
	Others	10 (11)	21	0.29a	3.85a	Token Test [138], THT [89], CL [197], SART [237], SPMSQ [289], PGCM [311], MAO [198], CTT [198], VDS [234], CT-60CT [313], WMIO [197], S-CNFT [89], CFQ [239], AVL1 [198], RBMT [197], Picture arrangement [118], OWST [234], BST [235], SPN [235], ESS [237], StSS [237]
Total (\(\Sigma f \))	26(+13)	\(\Sigma x = 26 \)	7.49	100.00		
Range of motion (ROM)	Goniometer	8(+0)	8	2.31	72.73	(66, 91, 100, 105, 229–231, 345)
	Others	3(+0)	3	0.29a	9.09a	MCoA [282], 3D-MA [210], Reaching [40]
Total (\(\Sigma f \))	11(+0)	\(\Sigma x = 11 \)	3.17	100.00		
CVS, hemat and respiratory function	VO2 max	3(+0)	3	0.86	21.43	(44, 134, 278)
	HR	2(+1)	3	0.86	21.43	(44, 108, 275)
	MIP	2(+0)	2	0.58	14.29	(224, 249)
	PCI	2(+0)	2	0.58	14.29	(271, 286)
Construct	Outcome measure	$x + (y)$	f	%	Rel. %	References
---------------------------------	-----------------	----------	-----	-------	--------	---
	Others	5(+14)	19	0.29^a	7.14^a	02 pulse (44), PC (255), IEM (249), BP (44), MPV (255), SBM+DOS (263), MEP (224), RPE (44), VFC (263), Vent Resp (44), CBF (232), FEVI (263), Borg's Scale (138), WBC (255), WHS (138), RBC (255), 2 MWT (348), Hg (255), FEV/FVC (263)
	Total (Σf)	14(+15)	$Σx = 14$	4.03	100.00	
	Structural					
dysfunction	X-ray	1(+0)	1	0.29	33.33	(99)
	fMRI	1(+0)	1	0.29	33.33	(151)
	LVM	1(+0)	1	0.29	33.33	(159)
	Total	3(+0)	$Σx = 3$	0.86	100.00	
	Cortical					
excitability	TMS	6(+0)	6	1.73	33.33	(58, 71, 90, 156, 187, 274)
	rMT	4(+2)	6	1.73	33.33	(88, 70, 80, 83, 90, 187)
	MEP	4(+4)	8	2.31	44.44	(62, 63, 70, 74, 83, 87, 90, 187)
	aMT	0(+2)	2	0.58	11.11	(70, 83)
	MAA	0(+2)	2	0.58	11.11	(68, 83)
	fMRI	4(+0)	4	1.15	22.22	(59, 210, 336, 349)
	Others	0(+2)	2	0.29^a	5.56^a	[SICL (67), ICF (67)]
	Total	18(+12)	$Σx = 18$	5.19	100.00	
	Perception and					
sensation	2PD	3(+0)	3	0.86	23.08	(176, 184, 251)
	Others	10 (+1)	11	0.29^2	7.69^a	
	Total	13(+1)	$Σx = 13$	3.74	100.00	(58, 71, 90, 156, 187, 274)
	Posture					
	TCT	3(+0)	3	0.86	60.00	(106, 138, 251)
	Others	2(+1)	3	0.29^4	20.00^4	PASS (102), SBMS (94), [mPSS (138)]
	Total	5(+1)	$Σx = 5$	1.44	100.00	
	Hemineglect					
	BIT	1(+0)	1	0.29	50.00	(191)
	Albert Test	1(+0)	1	0.29	50.00	(138)
	Total	2(+0)	$Σx = 2$	0.58	100.00	
	Attitude and					
belief	ABC	2(+0)	2	0.58	22.22	(216, 222)
	Others	7(+0)	7	0.29^4	11.11^4	SEEOE (203), LSES (284), FES (336), GSES (234), CABS (351), SEQ (262), SSEQ (333)
	Total	9(+0)	$Σx = 9$	2.59	100.00	
	Infection					
fatigue/Stress	FLUTS-Q	1(+0)	1	0.29	–	(226)
	flexi	1(+0)	1	0.29	–	(226)
	CSI	6(+0)	6	1.73	50.00	(303, 312, 317, 322, 330)
	CBS	2(+0)	2	0.58	16.67	(314, 328)
	Others	2(+2)	4	0.29^4	8.33	CIS-F (269), [GHQ (352), SOL-t (269), RSS (350)]
	Total	12(+0)	$Σx = 12$	3.46	100.00	
	Social support					
	PRO-85	1(+0)	1	0.29	–	(291)
	Fix	1(+0)	1	0.29	–	(303)
	COST	1(+0)	1	0.29	50.00	(345)
	Econ. Eval.	1(+0)	1	0.29	50.00	(312)
	Total	2(+0)	$Σx = 2$	0.58	100.00	

(Continued)
TABLE 2 | Continued

Construct	Outcome measure	x + (y)	f	%	Rel. %	References
Satisfaction	GAS	2(+)0	2	0.58	22.22	(185, 272)
Others	7(+1)	8	0.29	11.11		
Total (Σf)	9(+1)	Σx = 9	2.59	100.00		

n%, nO, each for the outcome measures; x, exclusive frequency; y, repeated frequency, f, sum of x and y; % = (f/nO)100; Rel. % = ([f/nO]100). FMA, Fugi Meyer Assessment Scale; WMFT, Wolf Motor Function Test; BBT, Box and Block Test; ARAT, Action Reach Arm Test; MAS, Motor Assessment Scale; MI, Motricity Index; mRS, (modified) Rankin Scale; MSS, Motor Status Scale; FIMA, Rivermead Motor Assessment AWAT; Action Reach Arm Test; RPSS, Reaching Performance Scale for Stroke; SSS, Scandinavian Stroke Scale; FRM, Functional Independence Measure; MFT, Motor Function Test; CAHAL, Chokehold and Hand Activity Inventory; STREAM, Stroke Rehabilitation Assessment for Movement; MRC, Medical Research Council Scale for Muscle Strength; MPS, Motor Power Scale; EMG, Electromyogram; MMT, Manual Muscle Test; 1RM, One Repetition Maximum; HSS, Hemiplegic Stroke Scale; KT PB, Keyboard Tapping and Peg Board Task; ROM, Range of Motion; BBS, Berg Balance Scale; TUG, Time Up and Go Test; ABC, Activity specific Balance confidence scale; FRT, Functional Reach Test; FTSTS, Five Times Sit to Stand Test; LoS, Level of Support; BBA, Brunel Balance Scale; PSV, Postural Say Velocity; CoP, Center of Pressure; BPM, Balance Performance Monitor; SQ, Semistructured Questionnaire; FABS, Fullerton Advanced Balance Scale; PASS, Postural Assessment Scale for Stroke; EMS, Balance Master System; PPA, Physiological profile assessment; mAS, (modified) Ashworth Scale; CSS, Composite Spasticity Scale; H-M ratio, Hoffman Reflect–Motor Response ratio; HAD-D, Hospital Anxiety and Depression Scale; CES-D, Center for Epidemiologic Studies Depression Scale; BDI, Beck's Depression Inventory; GDS, Geriatric Depression Scale; GHQ, General Health Questionnaire; SADQ-H, Stroke Aphasic Depression Questionnaire—Hospital Version; IMTEQ, Intrinsic Motivational Task Evaluation Questionnaire; PHQ, Patient Health Questionnaire; ASP-D, Aphasia Rating Scale for Depression; STAI, State Trait Anxiety Inventory; MADS, Montgomery-Asberg Depression Scale; DASS, Depression Anxiety Stress Scale; SAS, Self-rating Anxiety Scale; VAS, Visual Analog Scale; PNS, Pain Numerical Scale; WBFW, Wrong-Baker Faces Pain Scale; RAI, Resident Assessment Instrument; WBAB, Western Aphasia Battery; ASPRS, Apraxia of Speech Rating Scale; BDAE, Boston Diagnostic Aphasia Examination; AAT, Aachen Aphasia Test; PAS, Penetration Aspiration Scale; TOM, Therapy Outcome Measure; COAST, Communication Outcomes After Stroke Scale; CCAS, Concise Chinese Aphasia Scale; COM-B, Capability, Opportunity, Motivation—Behavior model; VIDS, Videofluoroscopic Dysphagia Scale; HSS, Hemiplegic Stroke Scale; PICA, Punch Index of Communicative Ability; BNT, Boston Naming Test; SVFN, Solutions with Virtual Private Networks; CAL, Communicative Activity Log; FCR, Functional Communication Profile; CPNT, Computerized Picture Naming Test; DPS, Dysphagia Rating Scale; ACE, Ardenbrooke’s Cognitive Examination; TMT, Trail Making Test; MMSE, Mini-Mental State Examination Scale; ROM, Range of Motion; MCA, Montreal Cognitive Assessment Scale; THT, Tower of Hanoi Task; CL, Cognitive Log; VMIQ, Validity of Movement Imagery Questionnaire; SART, Sustained Attention to Response Test; 2-CNT, Seoul Counted Neuropsychiatric Test; CFT, Cognitive Failure Questionnaire; SPMSQ, Short Portable Mental Status Questionnaire; PGCM, Philadelphia Geriatric Center Morale Scale; MAQ, Meta-memory in Adulthood Questionnaire; AVLT, Auditory Verbal Learning Test; CT, Color Test Trial; RBMT, Rivermead Behavioral Memory Test; VDS, Verbal Digital Test; CWST, Color-Word Stroop Test; BST, Block Span Test; Dgit, Digit Span Test; SPM, Standard Progressive Matrices; ESS, European Sleepiness Scale; SSS, Strattford Sleepiness Scale; CT-50 CT, CT-50 Cognitive Test; MCIQA, Motor Club Assessment; 3D-MA, 3D Motion Analysis; CV, Cardiovascular System; VO2Max, Maximal Oxygen Consumption; HR, Heart Rate; MP, Maximum Inspiratory Pressure; PC, Physiological Cost Index; PCT, Platelet Count; IMF, Inspiratory Muscle Function; MBP, Mean Platelet Volume; SMMRDS, Shortness of Breath Modified Borg Dyspnea Scale; MEP, Maximum Expiratory Pressure; PPE, Rate Perceived Exertion; FVC, Forced Vital Capacity; Vent-Respiratory Response; CBF, Cerebral Blood Flow; FEV1, Forced Expiratory Volume in 1s; WBC, White Blood Count; RBC, Red Blood Count; 2 MVT, 2 minute Walk Test; IFMRI, functional Magnetic Resonance Imaging; LVM, Longitudinal Voxel Morphology; TMS, Transcranial Magnetic Imaging; nMT, rest Motor Threshold; MEP, Motor Evoked Potential; aMT, active Motor Threshold; MMA, Motor Map Area; SCI, Short-Interval Intraarticular Inhibition; ICF, Intra-Cortical Facilitation; 2PD, Two point Discrimination; NS, Numerical Scale; RASP, Rivermead Assessment of Somatosensory Performance; NSA, Nottingham Sensory Assessment; CBS, Cerrhine Bergego Scale; SCT, Star Cancellation Test; NEI-VFD, National Eye Institute Visual functioning Questionnaire; TCT, Trunk Control Test; PASS, Posture Assessment Scale for Stroke; SBMS, Smart Balance Master System; BIT, Behavioral Inattention Test; SECEO, Self-Efficacy and Outcomes Expectations for Exercise; LSEQ, Liverpool Self-Efficacy Scale; FES, Falls Efficacy Scale; GES3, General Self-Efficacy Scale; CBSAS, Cerebrovascular Attitudes and Beliefs Scale; SEQ, Self-Efficacy Questionnaire; SSEQ, Stroke Self-Efficacy Questionnaire; FLUTS-Q, Female Lower Urinary Tract Symptoms Questionnaire; EFT, Enkisen Planker Test; CS, Ciner Strain Index; CBS, Caregiver Burden Scale; C-SI, Checklist Individual Strength—subscale fatigue; SOL-1, Self-observation List—fatigue subscale; RSS, Relatives’ Stress Scale; PRO-85, Bional Resource Questionnaire; IO, Impact Confidence Questionnaire; Fin Acct, Financial Account; Econ, Eval, Economic Evaluation; GAS, Goal Attainment Scale; SASS, Satisfaction-With-Stoke-Care questionnaire; WHQOL, WHO Quality of Life Scale; PSS, Patient Satisfaction with Services; SSMBP, Stroke Self-Management Behaviors Performance Scale; PrQoL, Pseudomanner Scale.

147, 151–184), mirror therapy (39, 68, 185–197), mental therapy (145, 198–202), task oriented training (20, 24, 83, 123, 144–150) muscle strengthening and stretching exercises (73, 221–235) had significant effects on improving motor functioning.

Cognitive Therapy

Eight trials (116, 236–242) on the efficacy of post-stroke cognitive rehabilitation were reviewed. Three studies utilized technology-based techniques namely virtual reality (116), lumosity brain trainer (239), and continuous positive Airway Pressure (CPAP) (232). Other trials utilized relatively low technology interventions such as comprehensive rehabilitation training (236), experiential/traditional music therapy (84, 243–245), music and mindfulness training (237), aerobic exercise (238), lifestyle course (240), and workshop based intervention (242). While virtual reality and CPAP resulted in significantly better improvement in Neurocognitive functions when compared with conventional therapy, lumosity brain trainer had no significant effect on cognitive function. Among the relatively low technology interventions, comprehensive rehabilitation training, experiential/traditional music and language based interventions significantly improved cognitive function of stroke survivors more than conventional therapy.

Speech Therapy

Four studies (84, 243–245), on therapies for post-stroke aphasia and dysarthria were reviewed. One study (243), compared the effect of music therapy combined with Speech and Language Therapy (SLT) on aphasia with SLT alone and found that the combined therapy significantly improved speech and language functions of aphasic stroke patients. However, best practice communication therapy protocol delivered by speech and language therapist (244) and standard speech therapy (245) had no significantly different effect on functional communication ability of stroke survivors. Also, a trial that evaluated the effects of repetitive transcranial magnetic stimulation (rTMS) on aphasia...
TABLE 3 | Activity-related outcome measures and their utility scores (n = 347).

Construct	Outcome measure	x + (y)	f	%	Rel. %	References
ADL	FAS	1(+)2	3	0.86	1.44	(44, 161, 195)
	FIM	30(+6)	36	10.37	17.31	(19, 26, 42, 47, 49, 65, 66, 93, 112, 122, 132, 136, 137, 149, 153–155, 157, 164, 177, 179, 191, 192, 230, 237, 242, 244, 266, 277, 283, 285, 305, 317, 320, 348)
ABILhand		3(+3)	6	1.73	2.88	(15, 47, 114, 176, 186, 192)
(m)Bil		75(+2)	77	22.19	37.02	(1, 13, 28, 29, 34, 38, 42, 44, 53, 56, 61, 69, 70, 73, 76, 77, 88, 89, 92, 95, 100, 102, 109, 121, 138, 140, 144, 145, 152, 167, 185, 189, 197, 214, 231–233, 247, 248, 251, 253, 254, 260, 286, 267, 270, 272, 276, 282, 291, 293–295, 297, 298, 302–304, 306–308, 310, 312–314, 316, 320, 322, 328–332, 334, 340, 353)
MAL		39(+3)	42	12.10	20.19	(15, 17, 30, 33, 36, 37, 41, 43, 47, 59, 100, 110, 149, 154, 155, 157–162, 165, 167, 171–173, 176–180, 183, 186, 188, 195, 311, 345, 347)
ARAT		8(+)1	9	2.59	4.33	(14, 33, 37–39, 50, 52, 53, 311)
WMFT		5(+3)	8	2.31	3.85	(19, 40, 46, 52, 68, 87, 183, 251)
JTHFT		7	7	2.02	3.37	(54, 58, 120, 145, 211, 280, 335)
9HPT		6(+)3	9	2.59	4.33	(163, 166, 172, 214, 220, 268, 269, 299, 325)
IADL Scale		2(+1)	3	0.86	1.44	(129, 135, 165)
NEADL		2(+6)	8	2.31	3.85	(142, 146, 155, 157, 251, 277, 307, 328)
MFT		3(+0)	3	0.86	1.44	(99, 104, 149)
AMAT		2(+0)	2	0.58	0.96	(97, 98)
FAI		3(+)8	11	3.17	5.29	(22, 23, 149, 197, 282, 292, 293, 308, 310, 329, 332)
OAR		1(+2)	3	0.86	1.44	(247, 275, 276)
CMSA		3(+1)	4	1.15	1.92	(45, 124, 134, 237)
Purdue Pegbox		2(+0)	2	0.58	0.96	(55, 251)
mRS		2(+)2	4	1.15	1.92	(238, 291, 312, 337)
E-ADL		1(+1)	2	0.58	0.96	(304, 326)
SIS		1(+1)	2	0.58	0.96	(103, 122)
TEMPA		1(+1)	2	0.58	0.96	(214, 215)
Others		11(+9)	20	0.29²	0.48²	e-keyboard (57), SMPT (51), Pen Recorder (143), UMCIT (106), SST (281), SHIFT (176), AFT (194), HAP (286), YPAS (203), TUG (317), SIADL (252), BT (39), CAHAL (49), PPT (237), SOE (194), RMA (853), LHS (303), NHP (293), VAS (293), SAS (848)
Total (Σf)	208(+55)	Σx = 208	75.79	100.00		
Gait						
5 MWT		2(+)0	2	0.58	2.67	(22, 281)
10 MWT		29(+3)	29	8.36	38.67	(11, 29, 42, 48, 74, 92, 101, 103, 106, 119, 125, 129, 130, 136, 138, 139, 196, 241, 265, 270, 271, 277, 308, 314, 315, 323, 325, 348, 349)
6 MWT		23(+12)	35	10.09	46.67	(22, 23, 29, 42, 96, 101, 103, 129, 130, 132, 134–138, 212, 214, 219, 221, 223, 228, 237, 241, 247, 250, 266, 269, 276, 278, 279, 286, 314, 315, 323, 349)
FAC		3(+3)	6	1.73	8.00	(22, 44, 65, 88, 348, 349)
GAITrite		3(+3)	6	1.73	8.00	(22, 87, 103, 123, 215, 313)
RMI		0(+2)	2	0.58	2.67	(22, 349)
(m)EFAP		1(+4)	5	1.44	6.67	(23, 91, 106, 101, 103)
Camera		2(+1)	3	0.86	4.00	(175, 178, 186)
FGS		1(+1)	2	0.58	2.67	(219, 221)
Others		11(+7)	18	0.29²	1.33²	3 MWT (261), 50 MWT (106), Force plate (23), DMA (167), PSM (262), CGS (297), POMA (49), PMS (113), WGS (127), FSS (227), Digital Recording (181), PAV (261), Symmetry (88), PCI (108), SAM (136), mMMAS (125), RVGA (212), Paper walking print (213)
Total (Σf)	75(+33)	Σx = 75	31.12	100.00		

(Continued)
TABLE 3 | Continued

Construct	Outcome measure	x + (y)	f	%	Rel. %	References
Mobility	FAC 12(+0)	12	3.46	26.09	(115, 133, 136, 138, 139, 144, 193, 212, 261, 265, 267, 277)	
	TUG 7(+0)	7	2.02	15.22	(221, 241, 242, 247, 271, 277, 280)	
	(m)FIM 9(+3)	12	3.46	26.09	(227, 245, 251, 261, 265, 270, 272, 277, 298, 306, 310, 332)	
	Accelerometer 6(+0)	6	1.73	13.04	(36, 40, 71, 181, 197, 262)	
	STREAM 2(+0)	2	0.58	4.35	(214, 349)	
	Others 10(+2)	12	0.29a	2.17a	(RBCT [167], Independent walk [130], Video [203], Reaction time [182], HTM [201], MAC [258], Optotrack [219], 2 mWT [124], FQOM [324], mMMS [321], [UMT [168], PMV [182])	

| Total (Σf) | 46(+5) | Σx = 46 | 14.70 | 100.00 |

n, n% for each of the outcome measures; x, exclusive frequency; y, repeated frequency, f, sum of x and y; % = (Σx/46); Rel % = (Σ%x/100).

ADL, Activities of Daily Living; FAS, Functional Assessment Scale; FIM, Functional Independence Measure; (m)BI, (modified) Barthel Index; MAL, Motor Activity Log; ARAT, Action Research Arm Test; WMFT, Wolf Motor Function Test; JTHFT, Jebsen Taylor Hand Function Test; SHPT, Nine Hole Peg Test; IADL-Scale, Instrumental Activities of Daily Living Scale; NEDAL, Nottingham Extended Activities of Daily Living Scale; MFT, Manual Function Test; AMAT, Arm Motor Ability Test; FAL, Frenchay Activities Index; OAR, Older Americans Resources and Services; CMSA, Chedoke Master Stroke Assessment; mFAS, modified Rankin Scale; E-ADL, Extended Activities of Daily Scale; SIS, Stroke Impact Scale; SWIFT, Sequential Visual Isomeric Pinch Task; UMCIT, Upright Motor Control Test; SIT-Stand Test; SHFT, Sollerman Hand Function Test; AFT, Arm Functional Test; HAP, Human Activity Profile; YPAS, Yale Physical Activity Survey; TUG, Time Up and Go test; SIADL, Sunnas Index of Activity of Daily Living; BBT, Box and Block Test; CAHAL, Chedoke Arm & Hand Activity Inventory; PPT, Purdue Pegboard Test; SOE, Speed of Execution; RMA, Rivermead Motor Assessment scale; LHS, London Handicap Scale; NHP, Nottingham Health Profile; VAS, Visual Analog Scale; SAS, Stroke Activity Scale; 5 MWT, 5 minute Walk Test; 10 mWT, 10-Meter Walk Test; 6 MWT, 6 minute Walk Test; FAC, Functional Ambulatory Capacity; RM, Rivermead Mobility Index; (m)EFAP, (modified) Emory Functional Ambulatory Profile; FGS, Fast Gait Speed; 3 MWT, 3 minute Walk Test; 50-Meter Walk Test; DMT, Dartfish motion analysis software; PSM, Press Sensitive Mat; CGS, Comfortable Gait Speed; POMA, Performance-Oriented Mobility Assessment; PMS, Pressure Mat System; WGS, Wisconsin Gait Scale; FSS, Foot Steps Symmetry; PCI, Peak Angular Velocity; PCB, Physiological Cost Index; SAM, Step Activity Monitor; mMAS, modified Motor Assessment Scale; RYGA, Rivermead Visual Gait Assessment; STREAM, Stroke Rehabilitation Assessment of Movement; RBCT, Rhythmic Bimanual Coordination Tasks; HTM, Hand-To-Mouth task; MAC = Mobility Assessment Course; 2 mWT, 2-Meter Walk Test; FQOM, Functional Quality of Movement Scale; UMT, Unimotor Task; PMV, Peak Movement Velocity.

found no between- group difference between recipients of the intervention and those who received sham rTMS (84).

Aerobic Exercise/Physical Activity Based Training

Forty four studies (48, 51, 205, 237, 246–289) evaluated the effects of a variety of aerobic exercises and physical activity based interventions on different aspects of the activity construct. Activities examined in the reviewed studies included mobility (255, 258, 261, 263, 265, 269, 270, 272, 278, 281, 282), general activities of daily living as assessed with Barthel Index or its modification (257, 261, 265, 269, 272, 277, 282, 285, 287–289), or Functional Independence Measure (51, 264, 278); and upper limb functional activities (51, 256, 257, 261, 274).

The interventions trialed included body weight supported treadmill training (274), Bobath programme (280), proprioceptive neuromuscular facilitation (246), interval/continuous aerobic exercise (248), accelerometer mediated walking (259), intensive/regular exercises (261, 276, 277), early/late training (268), fast/slow training (263), motor imagery activities (269, 272), sit-to-stand-training (205, 273), transcranial direct current stimulation (51), hydrotherapy (247), acupuncture (286), orthotic device (260) augmented physiotherapy (257, 281, 282, 284, 290).

Other Therapies

These include participation based therapy (290–294), quality of life centered care (240, 295–310, 345), community based rehabilitation (311–315), home based rehabilitation (132, 193, 316–335), self-management (336, 337), family or caregiver led training (340–342, 350, 353, 354), telerehabilitation (317, 343, 346, 349), and early therapy/rehabilitation (174, 338, 339, 347, 348, 351, 352, 355, 356).

DISCUSSION

Interventions

Motor Relearning Therapy

Several motor relearning interventions have been proposed for use in stroke rehabilitation to enhance motor function, activity and participation recovery after stroke and these interventions can be broadly categorized as traditional/conventional and emerging trends. Many of the trials included in this review largely confirmed the efficacy of conventional (sometimes termed “usual care”) interventions for the improvement of upper and lower limb muscle strength, balance, and coordination. Interventions found to be effective include task-specific training (138), therapist-assisted locomotor training (144). The efficacy of other interventions that may not fit into the category of conventional therapies but which also do not necessarily require high instrumentation was also reported. These include constraint- induced movement therapy (164, 172, 178), mirror therapy (185, 196, 197), and task oriented training (209, 210, 215, 216). Although many of these interventions are not costly especially because they do not require high technology gadgets and equipments, they can however be labor intensive. In most Low and Middle Income Countries (LMICs) where gross shortage of qualified rehabilitation specialists and centers appears intractable, the utilization of effective but personnel-demanding rehabilitation strategies may not be sustainable and pragmatic. The difficulties associated with utilizing conventional and low technology therapies in LMICs are further made worse by the increasing incidence and prevalence of stroke in these settings (357). The provision of conventional rehabilitation after stroke in these resource-limited settings would therefore require an aggressive focus by all stakeholders including government of...
TABLE 4 | Participation-related outcome measures and their utility scores (n = 347).

Construct	Outcome measure	x + (y)	f	%	Rel. %	References
QoL	SIS	18(+0)	18	5.19	30.51	(17, 18, 21, 31, 43, 129, 149, 153, 154, 159, 179, 187, 189, 299, 306, 320, 328, 346)
	EuroQol	10(+0)	10	2.88	16.95	(37, 121, 190, 196, 227, 300, 302, 304, 305, 313)
	SF-36	18(+2)	21	6.05	35.59	(23, 37, 77, 264, 277, 288–291, 294, 296, 297, 301, 303, 307, 310, 315, 320, 332, 340)
	SSQoL	4(+0)	4	1.15	6.78	(66, 103, 235, 298)
	WHOQoL	0(+2)	2	0.58	3.39	(196, 296)
	NHP	4(+0)	4	1.15	6.78	(247, 248, 276, 292)
	SA-SIP	2(+0)	2	0.58	3.39	(319, 321)
	SSS	1(+2)	3	0.86	5.08	(109, 264, 294)
Others	1(+5)	6	0.29a	1.69a		EQVAS (309), HUI (18), RS (302), N-QoL (296), QoLI (303), GHQ (332)
Total (Σf)	59(+11)	Σx = 59	20.17	100.00		
Reintegration	SIS	5(+0)	5	1.44	21.74	(42, 203, 219, 221, 314)
	AAP	2(+0)	2	0.58	8.70	(129, 315)
	COPM	3(+0)	3	0.86	13.04	(141, 145, 235)
	NLO	2(+0)	2	0.58	8.70	(142, 148)
	RNLI	2(+0)	2	0.58	8.70	(289, 330)
Others	7(+3)	10	0.29a	4.35a		Social support gain (198), 0.8mss-2 mobilization (229), TRIP (206), RTWQ (298), LIFE-H (300), PASIP (279), LHS (332), [IPA (196), Pedometer (515)]
Total (Σf)	21(+2)	Σx = 21	6.63	100.00		
Stroke severity/Recovery	NIHSS	16(+0)	16	4.61	50.00	(22, 24, 28, 68, 69, 76, 80, 85, 86, 95, 148, 153, 187, 222, 311, 347)
	CNS	2(+0)	2	0.58	6.25	(29, 237)
	(m)RS	2(+2)	4	1.15	12.50	(187, 222, 313, 322)
	RLOC	2(+0)	2	0.58	6.25	(233, 281)
	SIAS	2(+0)	2	0.58	6.25	(84, 279)
	OPS	2(+0)	2	0.58	6.25	(320, 333)
Others	6(+3)	9	0.29a	3.19a		fMRI (58), NDS (353), GPES (266), PSQ (297), SSS (324), SOEQ (351), OAD (233), ESS (98), mBI (311)
Total (Σf)	32(+3)	Σx = 32	9.22	100.00		
Stroke impact	SIS	14(+0)	14	4.03	45.16	(24, 46, 96, 103, 115, 135, 150, 153, 163, 166, 208, 279, 284, 289)
	SF-36	4(+0)	4	1.15	12.90	(22, 236, 242, 286)
	BRS	5(+0)	5	1.44	16.13	(65, 86, 192, 193, 230)
	NHP	3(+0)	3	0.86	9.68	(252, 322, 326)
Death	2(+0)	2	0.58	6.45	(109, 294)	
Others	3(+0)	3	0.29a	9.68a		Complications (350), GHQ (148), SA-SIP (269)
Total (Σf)	31(+0)	Σx = 31	8.93	100.00		

n%, % for each of the outcome measures; x, exclusive frequency; f, repeated frequency; sum of x and y; % = (f/347)*100; Rel % = (f/Σx)*100).

SIS, Stroke Impact Scale; SF-36, 36-item Short Form Survey; NHP, Nottingham Health Profile; SA-SIP, Stroke Adapted Sickness Impact Profile; SSS, Scandinavian Stroke Scale; EQVAS, EuroQol visual analog scale; HUI, Health Utilities Index; NQoL, Nocturnal QoL Questionnaire; QoLI, Quality of Life Index; GHQ, General Health Questionnaire; AAP, Adelaide Activities Profile; COPM, Canadian Occupational Performance Measure; NLO, Nottingham Leisure Questionnaire; RNLI, Reintegration to Normal Living Index; TRIP, Test Ride for Investigating Practical fitness to drive; RTWQ, Return to Work Questionnaire; LIFE-H, Assessment of Life Habits; PASIP, Physical Activity Scale for individuals with Physical Disabilities; LHS, London Handicap Scale; IPA, the Impact on Participation and Autonomy; NIHSS, National Institute of Health Stroke Scale; CNS, Canadian Neurological Scale; m(mRS, Modified Ranking Scale; RLOC, Recovery Locus of Control Scale; BRS, Brunstrom Recovery Scale; SIAS, Stroke Impairment Assessment Set; OPS, Orpington Prognostic Scale; fMRI, functional Magnetic Resonance Imaging; NDS, Neurologic Deficit Scale; PSQ, Patient Satisfaction Questionnaire; SOEQ, Stages of Exercise Questionnaire; OAD, Observer Assessed Disability; ESS, European Stroke Scale; mBI, Modified Barthel Index.

those countries, policy-makers, the rehabilitation professionals, non-governmental organization and foreign collaborators on training and employment of needed rehabilitation manpower. It might be argued that while the findings of this review support the utility of pragmatic, conventional stroke rehabilitation solutions, there is a likelihood that what is considered conventional or routine care in many of the reviewed studies may not exactly depict usual care in LMICs. However, a recent systematic review

Frontiers in Neurology | www.frontiersin.org 12 June 2020 | Volume 11 | Article 337
of stroke rehabilitation interventions that are currently in use in LMICs provided evidence on the efficacy of low-cost physical rehabilitation interventions in improving post-stroke functional outcomes (358). Standardization of what constitutes effective conventional stroke therapies would therefore be required in LMICs and can be achieved by ensuring that training curricula for rehabilitation disciplines and relevant clinical practice guidelines place emphasis on effective evidence-based stroke rehabilitation interventions.

It is important to note that the shortage of rehabilitation professionals in LMICs is however not solely due to the non-availability of these professionals but also results from the limited employment opportunities or openings. Also worthy of mention is the limited or outright lack of utilization of lower grade health workers that could provide basic and less-specialized stroke treatments. A typical example is that of Nigeria, the most populous country on the African continent, where physiotherapy assistants are largely not in place in the country contrary to the practice in many high-income countries (359). Another case in point is the under-utilization of post-qualification internship programme that provides a pool of fresh graduates that can augment rehabilitation personnel requirements, with many health institutions grossly rationing the employment of interns due to lack of funds for remuneration and this renders such entry-level professionals under-employed and under-utilized. The adoption of a stroke quadrangle strategy (360), that proposes pragmatic solutions on issues of rehabilitation professional shortage is therefore required. However, another strategy that has gained traction in recent times is to circumvent manpower demanding conventional therapies and adopt technology driven alternatives.

Many emerging high technology stroke rehabilitation strategies have been trialed. In this review, we found several RCTs that evaluated the effect of robotic training, virtual reality training, transcranial direct current stimulation (tDCS), transcranial magnetic stimulation, functional electrical stimulation on various aspects of physical functioning. Many of these interventions are expensive and are not affordable in settings with insufficient financial resources. Although many of the trials show that these interventions despite their high cost are not more effective than conventional therapies, a likely advantage is that automated interventions like robotic therapies require minimal input from rehabilitation professionals in terms of time and efforts. Therefore, given the efficacy of robotic therapy and the fact that its utilization in stroke rehabilitation may mitigate the labor intensive and personnel tasking nature of many conventional therapies, affordable stroke rehabilitation robotics that are feasible for use in low-resource countries are being produced, and assessed for efficacy (361).

Cognitive Therapy
Cognitive reserve (defined as the ability to cope with brain damage) has been postulated to influence functional ability (362), and this buttresses the need for cognitive therapy during stroke rehabilitation. Similar to what obtains with the therapies for motor relearning, interventions that address post-stroke cognitive function are available in low technology and high technology forms (363). While virtual reality was reported to result in marked improvement in post-stroke cognitive functions (116), and interactive video game a potentially beneficial treatment (249), computer-based cognitive training was neither superior to mock training nor waiting list in its effect on subjective cognitive functioning (250). Hence, the utilization of technology in post-stroke cognitive rehabilitation may not guarantee a positive outcome. The use of aerobic exercise to address post-stroke cognitive impairment as was reported (238), may be considered as a more practical approach in LMICs. There is however a dearth of studies on effective post-stroke cognitive rehabilitation strategies from LMICs (1). Given the burden of post-stroke cognitive impairment especially in terms of its prevalence (364), and its potentially negative impact on other important constructs such as activities of daily living (365), participation (366), and quality of life (367), there is an urgent need to identify effective interventions that can be easily incorporated into real-life practice in LMICs.

Speech Therapy
The use of regular communication mechanism was found to be more effective in promoting recovery from aphasia compared to intensive aphasia therapy (251). Similarly, the use of enhanced communication therapy (245), and rTMS (84) to address the speech function of stroke patients with aphasia did not confer any additional advantage on its recipients. Although these findings may suggest that further studies are required to identify effective therapies for post-stroke speech impairments, it is important to note that the efficacy or otherwise of therapies for post-stroke speech impairments also depends on the lesion site (368) and severity of the brain injury. Therefore, identifying pragmatic solutions for recovery of speech function after stroke in LMICs may need to be accompanied by availability of neuroimaging equipment that will aid in accurately diagnosing and identifying the site and extent of the brain injury.

Quality of Life Centered Care
Quality of life of stroke patients represents a broad index of stroke recovery (369) and its improvement is considered as the ultimate goal of stroke rehabilitation (360). The findings of this review which showed that many of stroke trials targeting other constructs such as motor function (367), cognition (370), and functional activity (138) also evaluated the global effect of such interventions on the post-stroke quality of life is therefore not surprising. Many of the interventions that were effective in improving motor function, activity and participation were also found to improve quality of life. This is not unexpected as several observational studies have shown that many of these specific functioning constructs significantly influence or predict the multi-dimensional construct—quality of life even in other neurological conditions (371). Hence, since many of the interventions that were found to facilitate the various components of post-stroke functioning also resulted in significant improvement in post-stroke quality of life, pragmatic solutions for stroke recovery may also represent pragmatic solutions for improved quality of life after stroke.
Models of Stroke Rehabilitation

Task Shifting

Task shifting has been described as an attractive option for healthcare optimization and sustainability in LMICs (372, 373). It is a process of moving or shifting appropriate task to health workers with shorter training and fewer qualifications (371). Task shifting involves deliberate delegation of specific task(s) to the least costly health worker in order to free up specialists who are in limited supply to provide more complex care for people who critically require such care (374).

The need to explore task shifting of rehabilitation activities to non-health workers such as informal or family caregivers as a potentially sustainable alternative to conventional rehabilitation, and an affordable strategy in meeting rehabilitation demands in LMICs has also been identified (375–377). The trials included in this review however did not find sufficient evidence and justification for the adoption of such a task shifting model in stroke rehabilitation. The ATTEND trial in India (a middle-income country) examined the effectiveness of a family-led stroke rehabilitation model in improving clinical outcomes with the conclusion that the model was not superior to usual care in terms of important outcomes such as death, dependency and re-hospitalization, and potentially constitutes a waste of already limited resources (378). Similarly, the TRACS trial found no significant difference in stroke patients’ recovery, mood and quality of life, and caregivers’ burden and perceived cost-effectiveness of a stroke caregivers training programmes (379). In line with the suggestions of the authors of the ATTEND trial, future studies will be required to examine if task-shifting in stroke rehabilitation to healthcare assistants would yield better clinical outcomes. For example, the findings of a previous study in Nigeria showed that non-neurologist healthcare workers were receptive to, and substantially assimilated stroke-specific knowledge disseminated at a task shifting training workshop (380).

Community-/Home-Based Rehabilitation

Community rehabilitation may constitute a cost-effective and pragmatic model of stroke rehabilitation in LMICs. Traditionally, rehabilitation services for stroke patients are offered in hospitals which are largely urban-based and inaccessible to many stroke survivors, especially those in rural areas. Improving accessibility to rehabilitation services requires implementation of existing public health programmes developed by the World Health Organization for stroke prevention and treatment (381). These include primary health care and its community-based rehabilitation counterpart (382), and home-based rehabilitation. One of the trials we reviewed, the Locomotor Experience Applied Post-Stroke (LEAPS) trial, showed that home-administered strength and balance training resulted in improvement in functional walking among community-dwelling stroke survivors. Furthermore, the home-based exercise protocol utilized in the LEAPS trial was found to be as effective as the more expensive institutional-based body-weight-supported treadmill training and hence can be considered practical and feasible for adoption in LMICs (138).

An intervention programme comprising task-specific exercises was similarly associated with improvement in motor function, postural balance, community reintegration, quality of life, and walking speed among stroke survivors treated at a primary health center in Nigeria (383). Furthermore, the Nigerian study showed that physiotherapy services delivered at primary health centers in the community resulted in similar outcomes as home-based physiotherapy services (367). Thus, home exercise interventions seem a more pragmatic form of therapy for stroke survivors with a higher likelihood of compliance (138). Community-/home-based rehabilitation can therefore be regarded as effective models for improving access to stroke care, care efficiency, coordination, and continuity in LMICs.

Self-Management

Though rarely used in the context of stroke (384), application of self-management interventions for stroke rehabilitation has stimulated research interest in recent years (337). Despite the fact that stroke is an acute event, stroke survivors experience physical and psychosocial challenges in the recovery trajectory which renders stroke a chronic condition (385). Challenges faced include depression, functional and mobility disability, reduction in life roles, and a lack of social support (386). Yet, rehabilitation for stroke survivors is targeted at improving physical function, while minimal attention is given to the psychosocial consequences of stroke (385, 386). To overcome these challenges, rehabilitation strategies that support stroke survivors to manage their health and lives and maximize their full potentials are necessary (337). Self-management is an emerging strategy for engaging stroke survivors in their own care. Evidence suggests that self-management programmes can impact on clinical outcomes and psychological health of patients with a range of long-term conditions (387, 388). It could influence an individual’s ability to cope with their condition, and enhance quality of life (387). Self-management in stroke rehabilitation requires conscious effort by survivors themselves to deal with stroke-related disabilities, prevent stroke recurrence, and overcome challenges of long-term recovery (111). However, evidence base for its effectiveness in stroke care is still emerging (337, 389).

Tele-Rehabilitation

Tele-rehabilitation entails remote delivery and supervision of rehabilitation services (390). It can be considered as a viable rehabilitation alternative for stroke patients with limited access to usual rehabilitation services resulting from logistical, financial, and geographical barriers to rehabilitation centers (391). The studies included in this review showed that tele-rehabilitation was effective in improving falls efficacy (349), quality of life (390) and reducing depression (390), and carer stress (317) after stroke. Translation of these budding opportunities and existing evidence-based interventions into pragmatic and cost-effective solutions in LMICs remains a huge challenge. Research efforts are needed to develop cost-effective robotic devices that can perform the above functions in harsher environments characterized by extreme economic hardship (per country), intermittent electricity supply and limited expert supervisors (361). Technology assisted rehabilitation as a viable option to task-shifting is the subject of current trials (392). The feasibility
and acceptability of using smart phone for self-management of stroke patients has been evaluated (393).

Limitation
A major perceived limitation of this study is the loose thematic inclusion of some constructs such as quality of life, stroke severity, recovery, and impact under the participation component of ICF.

CONCLUSION
This review showed that various approaches to stroke rehabilitation that may be adopted in LMICs exist. These however must be considered within the context and framework of the health system and available resources. Studies on how to adapt existing approaches and to develop novel ones for stroke rehabilitation in LMICs are needed. However, since many of the expensive innovative stroke therapies obtained in the review lack comparative advantage over low-cost traditional ones in terms of efficacy, the emphasis in LMICs should be the strengthening and expansion of the rehabilitation workforce, and provision of adequate rehabilitation centers to ensure access to effective conventional stroke rehabilitation solutions in those settings. Efforts at designing and producing low-cost versions of the expensive innovative stroke rehabilitation solution that will be compatible with the socio-economic, built and energy environment of LMICs should however also be encouraged, supported and funded.

AUTHOR CONTRIBUTIONS
EE contributed in the conceptualization of this study, sorting and extraction of data, quantitative analysis, and editing of the final manuscript. PO contributed in the conceptualization, data sorting and extraction, and qualitative analysis and draft preparation. KN took part in the conceptualization of the study, data sorting and extraction, and editing of the manuscript. MO contributed in the literature search and writing of the discussion and conclusion. VO took part in the data sorting phase and in writing the introductory section. TH was involved in the conceptualization of study and consultation and mentoring. MO was involved with the conceptualization, organization of the team, consultation and mentoring, editing and final approval of the final version of the manuscript.

FUNDING
MO is supported by the NIH (SIREN U54HG007479, SIBS Genomics R01NS107900, ARISES R01NS115944-01, H3Africa CVD Supplement 3U24HG009780-0355, and CaNVAS R01NS114045-01).

SUPPLEMENTARY MATERIAL
The Supplementary Material for this article can be found online at: https://www.frontiersin.org/articles/10.3389/fneur.2020.00337/full#supplementary-material

REFERENCES
1. Yan LL, Li C, Chen J, Miranda JJ, Luo R, Betgger J, et al. Prevention, management, and rehabilitation of stroke in low-and-middle-income countries. eNeurologicalSci. (2016) 2:21–30. doi: 10.1016/j.esnci.2016.02.011
2. Kim AS, Johnston SC. Temporal and geographic trends in the global stroke epidemic. Stroke. (2013) 44(Suppl. 1):S123–5. doi: 10.1161/STROKEAHA.111.00067
3. Kalkonde VV, Deshmukh MD, Sahane V, Puthran J, Kakarmath S, Agavane V, et al. Stroke is the leading cause of death in rural Gadchiroli, India: a prospective community-based study. Stroke. (2015) 46:1764– 8. doi: 10.1161/STROKEAHA.115.008918
4. Heeley E, Anderson CS, Huang Y, Jan S, Li Y, Liu M, et al. Role of health insurance in averting economic hardship in families after acute stroke in China. Stroke. (2009) 40:2149–56. doi: 10.1161/STROKEAHA.108.540054
5. Feigin VL, Forouzanfar MH, Krishnamurthi R, Mensah GA, Connor M, Bennett DA, et al. Global and regional burden of stroke during 1990-2010: findings from the global burden of disease study 2010. Lancet. (2014) 383:245–55. doi: 10.1016/S0140-6736(13)61953-4
6. Miranda JJ, Zaman M. Exporting “failure”: why research from rich countries may not benefit the developing world. Rev Saúde Pública. (2010) 44:185–9. doi: 10.1590/S0034-89102010000100020
7. Dieleman JL, Templin T, Sadat N, Reidy P, Chapin A, Foreman K, et al. National spending on health by source for 184 countries between 2013 and 2040. Lancet. (2016) 387:2521–35. doi: 10.1016/S0140-6736(16)30167-2
8. World Health Organization. World Report on Disability: World Health Organization, 2011. Geneva: WHO Press (2011).
9. Halpern SH, Douglas MJ. Appendix: Jadad scale for reporting randomized controlled trials. In: Halpern SH, Douglas MJ, editors. Evidence-Based Obstetric Anesthesia. Oxford: Blackwell Publishing Ltd. (2005). p. 237–8.
10. World Health Organization. International Classification of Functioning, Disability, and Health: Children & Youth Version: ICF-CY. World Health Organization (2007).
11. Park J, Chung Y. The effects of robot-assisted gait training using virtual reality and auditory stimulation on balance and gait abilities in persons with stroke. Neurorehabilitation. (2018) 43:1–9. doi: 10.3233/NRE-172415
12. Daunovariciene K, Adomaviciene A, Grigonyte A, Griskevicius J, Jucevicius A. Effects of robot-assisted training on upper limb functional recovery during the rehabilitation of poststroke patients. Technol Health Care. (2018) 26:533–42. doi: 10.3233/THC-182500
13. Villafañe JH, Taveggia G, Galeri S, Bissolotti L, Mullè C, Imperio G, et al. Efficacy of short-term robot-assisted rehabilitation in patients with hand paralysis after stroke: a randomized clinical trial. Hand. (2018) 13:95– 102. doi: 10.1177/1558944717692096
14. Han EY, Im SH, Kim BR, Seo MJ, Kim MO. Robot-assisted gait training improves brachial-ankle pulse wave velocity and peak aerobic capacity in subacute stroke patients with totally dependent ambulation: randomized controlled trial. Medicine. (2016) 95:e5078. doi: 10.1097/MD.0000000000005078
15. Morone G, Annicchiarico R, Iosa M, Federici A, Paolucci S, Cortés U, et al. Overground walking training with the i-Walker, a robotic servo-assistive device, enhances balance in patients with subacute stroke: a randomized controlled trial. J Neuroeng Rehabil. (2016) 13:47. doi: 10.1186/s12984-016-0155-4
16. Straudi S, Fregni F, Martinuzzi C, Pavarelli C, Salvioni S, Basaglia N. tDCS and robotics on upper limb stroke rehabilitation: effect modification by stroke duration and type of stroke. BioMed Res Int. (2016) 2016:5068127. doi: 10.1155/2016/5068127
17. Lee Y-Y, Lin K-C, Cheng H-J, Wu C-Y, Hsieh Y-W, Chen C-K. Effects of combining robot-assisted therapy with neuromuscular electrical stimulation on motor impairment, motor and daily function, and quality of life in...
52. Manji A, Amimoto K, Matsuda T, Wada Y, Inaba A, Ko S. Effects of transcranial direct current stimulation over the supplementary motor area body weight-supported treadmill gait training in hemiparetic patients after stroke. *Neurosci Lett.* (2016) 662:302–5. doi: 10.1016/j.neulet.2017.10.049
53. Oveisgharan S, Organi H, Ghorbani A. Enhancement of motor recovery through left and right prefrontal cortical stimulation after acute ischemic stroke. *J Stroke Cerebrovasc Dis.* (2018) 27:185–91. doi: 10.1016/j.jstrokecerebrovasdis.2017.08.026
54. Fan J, Vosin J, Milot MH, Higgins J, Boudrias MH. Transcranial direct current stimulation over multiple days enhances motor performance of a grip task. *Ann Phys Rehabil Med.* (2017) 60:329–333. doi: 10.1016/j.rehab.2017.07.001
55. Koh C-L, Lin J-H, Jeng J-S, Huang S-L, Hsieh C-L. Effects of transcranial direct current stimulation with sensory modulation on stroke motor rehabilitation: a randomized controlled trial. *Arch Phys Med Rehabil.* (2017) 98:2477–84. doi: 10.1016/j.apmr.2017.05.025
56. Ilić NV, Dubljanin-Raspopović E, Nedeljković U, Tomanović-Vujadinović S, Milanović SD, Petronović-Markević I, et al. Effects of anodal tDCS and occupational therapy on fine motor skill deficits in patients with chronic stroke. *Restor Neurol Neurosci.* (2016) 34:935–45. doi: 10.3233/RNN-160668
57. Allman C, Anadì N, Winkler AM, Wilkins L, Filippini N, Kischka U, et al. Ipsilateral anodal anodal tDCS enhances the functional benefits of rehabilitation in patients after stroke. *Sci Transl Med.* (2016) 8:330rep1. doi: 10.1126/scitranslmed.aaa5651
58. Au-Yeung SS, Wang J, Chen Y, Chua E. Transcranial direct current stimulation to primary motor area improves hand dexterity and selective attention in chronic stroke. *Am J Phys Med Rehabil.* (2014) 93:1057–64. doi: 10.1097/PHM.0000000000000127
59. Wu D, Qian L, Zorowitz RD, Zhang L, Qu Y, Yuan Y. Effects on decreasing upper-limb poststroke muscle tone using transcranial direct current stimulation: a randomized sham-controlled study. *Arch Phys Med Rehabil.* (2013) 94:1–8. doi: 10.1016/j.apmr.2012.07.022
60. Zimerman M, Heise KF, Hoppe J, Cohen LG, Gerloff C, Au-Yeung SS, Wang J, Chen Y, Chua E. Transcranial direct current stimulation with sensory modulation on stroke motor rehabilitation: a randomized controlled trial. *Arch Phys Med Rehabil.* (2017) 98:2477–84. doi: 10.1016/j.apmr.2017.05.025
61. A¸skin A, Tosun A, Demirdal ÜS. Effects of low-frequency repetitive transcranial magnetic stimulation on naming deficit in chronic stroke patients with non-fluent aphasia: a randomized, sham-controlled study. *Neurol Res.* (2013) 44:2240–5. doi: 10.1161/STROKEAHA.111.000574
62. Figlewski K, Blicher JU, Mortensen J, Severinsen KE, Nielsen JF, You DS, Kim D-Y, Chun MH, Jung SE, Park SJ. Cathodal transcranial magnetic stimulation over the left Wernicke’s area improves hand dexterity and performance of a grip task. *Neurorehabil Neural Repair.* (2014) 28:740–5. doi: 10.1177/1545968314521009
63. Zheng C-J, Liao W-J, Xia W-G. Effect of combined low-frequency repetitive transcranial magnetic stimulation and virtual reality training on upper limb function in subacute stroke: a double-blind randomized controlled trial. *J Huazhong Univ Sci Technol.* (2015) 35:248–54. doi: 10.1007/s11596-015-1419-0
64. Wang C-P, Hsieh C-Y, Tsai P-Y, Wang C-T, Lin F-G, Chan R-C. Efficacy of synchronous verbal training during repetitive transcranial magnetic stimulation in patients with chronic aphasia. *Stroke.* (2014) 45:3656–62. doi: 10.1161/STROKEAHA.114.007058
65. Wang C-C, Wang C-P, Tsai P-Y, Hsieh C-Y, Chan R-C, Yeh S-C. Inhibitory repetitive transcranial magnetic stimulation of the contralesional premotor and primary motor cortices facilitate poststroke motor recovery. *Restor Neurol Neurosci.* (2014) 32:825–35. doi: 10.3233/RNN-140410
66. Khedr EM, Abu El-Fetoh N, Ali AM, El-Hamady DH, Khalifa H, Atta H, et al. Dual-hemisphere repetitive transcranial magnetic stimulation for rehabilitation of poststroke aphasia: a randomized, double-blind clinical trial. *Neurorehabil Neural Repair.* (2014) 28:740–50. doi: 10.1177/1545968314512009
67. Galvão SCR, Dos Santos RBC, Dos Santos PB, Cabral ME, Monte-Silva K. Efficacy of coupling repetitive transcranial magnetic stimulation and physical therapy to reduce upper-limb spasticity in patients with stroke: a randomized controlled trial. *Arch Phys Med Rehabil.* (2014) 95:222–9. doi: 10.1016/j.apmr.2013.10.023
68. Abo M, Kakuda W, Momosaki R, Harashima H, Kojima M, Watanabe S, et al. Randomized, multicenter, comparative study of NEURO versus CIMT in poststroke patients with upper limb hemiparesis: the NEURO-VERIFY Study. *Int J Stroke.* (2014) 9:607–12. doi: 10.1111/ijst.12100
69. Barwood CH, Murdoch BE, Rick S, O’Sullivan JD, Wong A, Lloyd D, et al. Long term language recovery subsequent to low frequency rTMS in chronic non-fluent aphasia. *Neurorehabilitation.* (2013) 32:915–28. doi: 10.3233/NRE-130915
70. Thiel A, Hartmann A, Rubi-Fessen I, Anglade C, Kracht L, Weiduschat N, et al. Effects of noninvasive brain stimulation on language networks and recovery in early poststroke aphasia. *Stroke.* (2013) 44:2240–6. doi: 10.1161/STROKEAHA.111.000574
71. Sung W-H, Wang C-P, Chou C-L, Chen Y-C, Chang Y-C, Tsai P-Y. Efficacy of coupling inhibitory and facilitatory repetitive transcranial magnetic stimulation to enhance motor recovery in hemiplegic stroke patients. *Stroke.* (2013) 44:1375–82. doi: 10.1161/STROKEAHA.111.000522
72. Walsdowski K, Seniów J, Leśniak M, Iwański S, Czlonkowska A. Effect of low-frequency repetitive transcranial magnetic stimulation on naming hand rehabilitation of acute stroke patients. *Med Sci Mon.* (2018) 24:743. doi: 10.12659/MSM.905636
73. Chervyakov AV, Poydasheva AG, Lyukmanov RH, Suponova NA, Chernikova LA, Piradov MA, et al. Effects of navigated repetitive transcranial magnetic stimulation after stroke. *J Clin Neurophys.* (2018) 35:166–72. doi: 10.1097/W CN.0000000000000456
74. Watanabe K, Kudo Y, Sugawara E, Nakamizo T, Amari K, Takashiki K, et al. Comparative study of ipsilesional and contralesional repetitive transcranial magnetic stimulations for acute infarction. *J Neurol Sci.* (2018) 384:10–4. doi: 10.1016/j.jns.2017.11.001
75. Aşkin A, Tosun A, Demirdal ÜS. Effects of low-frequency repetitive transcranial magnetic stimulation on upper extremity motor recovery and functional outcomes in chronic stroke patients: A randomized controlled trial. *Somatosens Mot Res.* (2017) 34:102–7. doi: 10.1080/08990202.2017.1316254
76. Cho JY, Lee A, Kim MS, Park E, Chang WH, Shin Y-I, et al. Dual-mode noninvasive brain stimulation over the bilateral primary motor cortices in stroke patients. *Restor Neurol Neurosci.* (2017) 35:105–14. doi: 10.3233/RNN-160669
abilities in early-stroke aphasic patients: a prospective, randomized, double-blind sham-controlled study. *Scientific World J.* (2012) 2012:518568. doi: 10.1100/2012/518568.

85. Seniów J, Bilkí M, Leśniak M, Waldowski K, Iwaniski S, Członkowska A. Transcranial magnetic stimulation combined with physiotherapy in rehabilitation of poststroke hemiparesis: a randomized, double-blind, placebo-controlled study. *Neurorehabil Neural Repair.* (2012) 26:1072–9. doi: 10.1177/1545968312456365.

86. Sasaki N, Mizutani S, Kakuwa W, Abó M. Comparison of the effects of high- and low-frequency repetitive transcranial magnetic stimulation on upper limb hemiparesis in the early phase of stroke. *J Stroke Cerebrovasc Dis.* (2013) 22:413–8. doi: 10.1016/j.jstrokecerebrovasdis.2011.10.004.

87. Wang R-Y, Tseng H-Y, Liao K-K, Wang C-J, Lai K-L, Yang Y-R. Effectiveness of Faradic and Russian currents on plantar flexor muscle stimulation enhances motor performance and training effect of the paretic hand in patients with chronic stroke. *J Neurol Neurosurg Psychiatry.* (2013) 94:298–9. doi: 10.1136/jnnp.2009.188482.

88. Kim E, Abdel-Fadel M, Farghali A, Qaddoura M, El-Metwally M. Role of low-frequency rTMS on motor recovery in patients after subacute stroke. *J Rehabil Med.* (2010) 42:758–64. doi: 10.2340/16501977-0590.

89. Kim BR, Kim D-Y, Chun MH, Yi JH, Kwon JS. Effect of repetitive transcranial magnetic stimulation on cognition and mood in stroke patients: a double-blind, sham-controlled trial. *Am J Phys Med Rehabil.* (2010) 89:362–8. doi: 10.1097/PHM.0b013e3181d8a5b1.

90. Khedr EM, Abo-Elefth N. Therapeutic role of rTMS on recovery of dysphagia in patients with lateral medullary syndrome and brainstem infarction. *J Neurol Neurosurg Psychiatry.* (2010) 81:495–9. doi: 10.1136/jnnp.2009.188482.

91. Takeuchi N, Toda T, Yoshima M, Chuma T, Matsuo Y, Ikoma K. Inhibition of the unaffected motor cortex by 1 Hz repetitive transcranial magnetic stimulation enhances motor performance and training effect of the paretic hand in patients with chronic stroke. *J Rehabil Med.* (2008) 40:298–303. doi: 10.2340/16501977-0181.

92. Dujovčík SD, Malešević J, Malešević N, Vidaković AS, Bijelić G, Keller T, et al. Novel multi-pad functional electrical stimulation in stroke patients: a single-blind randomized study. *Neurorehabilitation.* (2017) 41:791–800. doi: 10.3233/NRE-172153.

93. Marquez-Chin C, Bagher S, Zivanovic V, Popović MR. Functional electrical stimulation therapy for severe hemiplegia: randomized control trial revisited: la simulation électrique fonctionnelle pour le traitement d’une hémiplégie sévère: un essai clinique aléatoire revisité. *CJOT.* (2017) 84:87–97. doi: 10.1177/0008417416668370.

94. Knutson JS, Gunzler DD, Wilson RD, Chae J. Contralaterally controlled functional electrical stimulation improves hand dexterity in chronic hemiparesis: a randomized trial. *Stroke.* (2016) 47:2596–602. doi: 10.1161/JSTROKEAHA.116.013791.

95. Carrico C, Chelette KC II, Westgate PM, Salmon-Powell E, Nichols L, Sawaki I. A randomized trial of peripheral nerve stimulation to enhance modified constraint-induced therapy after stroke. *Am J Phys Med Rehabil.* (2016) 95:397. doi: 10.1097/PHM.0000000000000476.

96. Jiang YY, Kim TH, Lee BH. Effects of brain-computer interface-controlled functional electrical stimulation training on shoulder subluxation for patients with stroke: a randomized controlled trial. *Occup Ther Int.* (2016) 23:175–85. doi: 10.1002/oti.1422.

97. Kim T, Kim S, Lee B. Effects of action observational training plus brain-computer interface-based functional electrical stimulation on paretic arm motor recovery in patient with stroke: a randomized controlled trial. *Occup Ther Int.* (2016) 23:39–47. doi: 10.1002/oti.1603.

98. Bethoux F, Rogers HL, Nolan KJ, Abrams GM, Annaswamy TM, Brandstader M, et al. Long-term follow-up to a randomized controlled trial comparing peroneal nerve functional electrical stimulation to an ankle foot orthosis for patients with chronic stroke. *Neurorehabil Neural Repair.* (2015) 29:911–22. doi: 10.1177/1545968315570325.

99. Chen D, Yan T, Li G, Li F, Liang Q. Functional electrical stimulation based on a working pattern influences function of lower extremity in subjects with early stroke and effects on diffusion tensor imaging: a randomized controlled trial. *Zhongguo Yi Xue Za Zhi.* (2014) 94:2886–92.

100. Bethoux F, Rogers HL, Nolan KJ, Abrams GM, Annaswamy TM, Brandstader M, et al. The effects of peroneal nerve functional electrical stimulation versus ankle-foot orthosis in patients with chronic stroke: a randomized controlled trial. *Neurorehabil Neural Repair.* (2014) 28:688–97. doi: 10.1177/1545968314521007.

101. Kim H, Lee G, Song C. Effect of functional electrical stimulation with mirror therapy on upper extremity motor function in poststroke patients. *J Stroke Cerebrovasc Dis.* (2014) 23:655–61. doi: 10.1016/j.jstrokecerebrovasdis.2013.06.017.

102. Lo H-C, Hsu Y-C, Hsueh V-H, Yeh C-Y. Cycling exercise with functional electrical stimulation improves postural control in stroke patients. *Gait Posture.* (2013) 35:506–10. doi: 10.1016/j.gaitpost.2011.11.017.

103. Solopova I, Tihonova D, Grishin A, Ivanenko Y. Assisted leg displacements and progressive loading by a tilt table combined with FES promote gait recovery in acute stroke. *Neurorehabilitation.* (2011) 29:67–77. doi: 10.3233/NRE-2011-0679.

104. Knutson JS, Harley MY, Hisel TZ, Hogan SD, Maloney MM, Chae J. Contralaterally controlled functional electrical stimulation for upper extremity hemiplegia: an early-phase randomized clinical trial in subacute stroke patients. *Neurorehabil Neural Repair.* (2012) 26:239–46. doi: 10.1177/1545968311419301.

105. Ambrosini E, Ferrante S, Ferrigno G, Molteni F, Pedrocchi A. Cycling induced by electrical stimulation improves muscle activation and symmetry during pedaling in hemiparetic patients. *IEEE Trans Neural Syst Rehabil Eng.* (2012) 20:320–30. doi: 10.1109/TNSRE.2012.2191574. 22514205.

106. Embrey DG, Holtz SL, Alon G, Brandsma BA, McCoy SW. Functional electrical stimulation to dorsiflexors and plantar flexors during gait to improve walking in adults with chronic hemiplegia. *Arch Phys Med Rehabil.* (2010) 91:687–96. doi: 10.1016/j.apmr.2009.12.024.

107. Yan T, Hui-Chan CW, Li LS. Functional electrical stimulation improves motor recovery of the lower extremity and walking ability of subjects with first acute stroke: a randomized placebo-controlled trial. *Stroke.* (2005) 36:80–5. doi: 10.1161/01.STR.0000149623.24906.63.

108. Burridge J, Taylor P, Hagan S, Wood DE, Swain ID. The effects of common peroneal nerve stimulation on the effort and speed of walking: a randomized controlled trial with chronic hemiplegic patients. *Clin Rehabil.* (1997) 11:201–10. doi: 10.1080/026921597001100303.

109. Choi Y-H, Paik N-I. Mobile game-based virtual reality program for upper extremity stroke rehabilitation. *J Vis Exp.* (2018) 2016:e56241. doi: 10.3791/56241.

110. Aşkin A, Atatürk E, Koşyigit H, Tosun A. Effects of Kinect-based virtual reality game training on upper extremity motor recovery in chronic stroke. *Somatic Mot Res.* (2018) 35:25–32. doi: 10.1080/08990220.2018.144599.

111. Calabro RS, Naro A, Russo M, Leo A, De Luca R, Balletta T, et al. The role of virtual reality in improving motor performance as revealed by EEG: a randomized clinical trial. *J Neuroeng Rehabil.* (2017) 14:53. doi: 10.1186/s12984-017-0268-4.

112. Faria AL, Andrade A, Soares L, Badia SB. Benefits of virtual reality early stroke and effects on diffusion tensor imaging: a randomized controlled study. *J Neuroeng Rehabil.* (2017) 28:911–32. doi: 10.1186/s12984-016-0204-z.

Frontiers in Neurology | www.frontiersin.org 18 June 2020 | Volume 11 | Article 337

Pragmatic Stroke Rehabilitation for LMICs
Emmerson KB, Harding KE, Taylor NF. Home exercise programmes.

Yang S, Hwang WH, Tsai YC, Liu FK, Hsieh LF, Chern JS. Improving

Kim JH, Jang SH, Kim CS, Jung JH, You JH. Use of virtual reality

You SH, Jang SH, Kim Y-H, Lee WH. Virtual reality training with cognitive

Broeren J, Claesson L, Goude D, Rydmark M, Sunnerhagen KS. Virtual

Subramanian SK, Lourenço CB, Chilingaryan G, Sveistrup H, Lévêque

McEwen D, Taillon-Hobson A, Bilodeau M, Sveistrup H, Cho KH, Kim MK, Lee H-J, Lee WH. Virtual reality training with cognitive

Kong K-H, Loh Y-J, Thia E, Chai A, Ng C-Y, Soh Y-M, et al. Effectiveness of gait training with body weight support on a treadmill versus overground in individuals with stroke. Arch Phys Med Rehabil. (2010) 91:1237–42. doi: 10.1016/j.apmr.2010.02.017

Broersen J, Claesson L, Goude D, Rydmark M, Sunnerhagen KS. Virtual rehabilitation in an activity centre for community-dwelling persons with stroke. Cerebrovasc Dis. (2008) 26:289–96. doi: 10.1159/000104957

You SH, Jang SH, Kim Y-H, Hallett M, Ahn SH, Kwon Y-H, et al. Virtual reality-induced cortical reorganisation and associated locomotor recovery in chronic stroke: an experimenter-blind randomized study. Stroke. (2005) 36:1666–71. doi: 10.1161/01.STR.0000182715.43417.91

Rand D, Givon N, Avrech Bar M. A video-game group intervention: Experiences and perceptions of adults with chronic stroke and their therapists: intervention de groupe à l’aide de jeux vidéo: expériences et perceptions d’adultes en phase chronique d’un accident vasculaire cérébral et de leurs ergothérapeutes. Can J Occup Ther. (2018) 85:158–68. doi: 10.1177/0008417417733274

Dalal KK, Joshua AM, Nayak A, Mithra P, Misri Z, Unnikrishnan B. Effectiveness of prowling with proscriptive training on knee hyperextension among stroke subjects using videographic observation-a randomised controlled trial. Gait Posture. (2018) 61:232–7. doi: 10.1016/j.gaitpost.2018.01.018

Emmerson KB, Harding KE, Taylor NF. Home exercise programmes supported by video and automated reminders compared with standard paper-based home exercise programmes in patients with stroke: a randomized controlled trial. Clin Rehabil. (2017) 31:1068–77. doi: 10.1177/0269215516680856

Gama GL, Celestino ML, Barela JA, Forrester L, Whitall J, Barela AM. Effects of gait training with body weight support on a treadmill versus overground in individuals with stroke. Arch Phys Med Rehabil. (2017) 98:738–45. doi: 10.1016/j.apmr.2016.11.022

Srivastava A, Taly AB, Gupta A, Kumar S, Murali T. Bodyweight-supported treadmill training for retraining gait among chronic stroke survivors: A randomized controlled study. Ann Phys Rehab Med. (2016) 59:235–41. doi: 10.1016/j.rehab.2016.01.014

MacKay-Lyons M, McDonald A, Matheson J, Eskes G, Klus M-A. Dual effects of body-weight supported treadmill training on cardiovascular fitness and walking ability early after stroke: a randomized controlled trial. Neurorehabil Neural Repair. (2013) 27:64–74. doi: 10.1177/1545968313484809

Nadeau SE, Wu SS, Dobkin BH, Azen SP, Rose DK, Tilson JK, et al. Effects of task-specific and impairment-based training compared with usual care on functional walking ability after inpatient stroke rehabilitation: LEAPS Trial. Neurorehabil Neural Repair. (2013) 27:370–80. doi: 10.1177/1545968314518824

Hoyer E, Jahnens R, Stanghellie JK, Strand LI. Body weight supported treadmill training versus traditional training in patients dependent on walking assistance after stroke: a randomized controlled trial. Disabil Rehabil. (2012) 34:210–9. doi: 10.3109/09638288.2011.593681

Duncan P, Sullivan K, Behrman A, Azen S, Wu S, Nadeau S, et al. LEAPS investigative team. Body-weight-supported treadmill rehabilitation after stroke. N Engl J Med. (2011) 364:2026–36. doi: 10.1056/NEJMoa1010709

Daly J, Zimbelman J, Roenigk KL, McCabe JP, Rogers JM, Butler K, et al. Recovery of coordinated gait: randomized controlled stroke trial of functional electrical stimulation (FES) versus no FES, with weight-supported treadmill and over-ground training. Neurorehabil Neural Repair. (2011) 25:588–96. doi: 10.1177/1545968311400092

Dean CM, Ada L, Bampton J, Morris ME, Kattrak PH, Potts S. Treadmill walking with body weight support in subacute non-ambulatory stroke improves walking capacity more than overground walking: a randomised trial. J Physiother. (2010) 56:97–103. doi: 10.1111/j.1440-1844.2009.01507.x

Ada L, Dean CM, Morris ME, Simpson JM, Kattrak P. Randomized trial of treadmill walking with body weight support to establish walking in subacute stroke: the MOBILISE trial. Stroke. (2010) 41:1237–42. doi: 10.1161/STROKEAHA.109.569483

Franceschini M, Carda S, Agosti M, Antenucci R, Malgrati D, Cisari C. Walking after stroke: what does treadmill training with body weight support add to overground gait training in patients early after stroke? A single-blind, randomized, controlled trial. Stroke. (2009) 40:3079–85. doi: 10.1161/STROKEAHA.109.555540

Nilsson L, Carlsson I, Danielsson A, Fugl-Meyer A, Hellström K, Kristensen K, et al. Walking training of patients with hemiparesis at an early stage after stroke: a comparison of walking training on a treadmill with body weight support and walking training on the ground. Clin Rehabil. (2001) 15:515–27. doi: 10.1080/026921501680425234

Shin J-H, Ryu H, Jang SH. A task-specific interactive game-based virtual reality rehabilitation system for patients with stroke: a usability test and two clinical experiments. J Neuroeng Rehabil. (2014) 11:32. doi: 10.1186/1743-0003-11-32

Liang C-C, Hsieh T-C, Lin C-H, Wei Y-C, Hsiao J, Chen J-C. Effectiveness of thermal stimulation for the moderately to severely parietic leg after stroke: serial changes at one-year follow-up. Arch Phys Med Rehabil. (2012) 93:1903–10. doi: 10.1016/j.apmr.2012.06.016

Lin Z, Yan T. Long-term effectiveness of neuromuscular electrical stimulation for promoting motor recovery of the upper extremity after stroke. J Rehabil Med. (2011) 43:506–10. doi: 10.2340/16501977-0807

Hayner K, Gibson G, Giles GM. Comparison of constraint-induced movement therapy and bilateral treatment of equal intensity in people with chronic upper-extremity dysfunction after cerebrovascular accident. Am J Occup Ther. (2010) 64:528–39. doi: 10.5014/ajot.2010.08027

Logan PA, Gladman JR, Avery A, Walker MF, Dyas J, Groom L. Randomised controlled trial of an occupational therapy intervention to increase outdoor mobility after stroke. BMJ. (2004) 329:1372–5. doi: 10.1136/bmj.38264.679560.8F

Parker CJ, Gladman JR, Drummond AE, Dewey ME, Lincoln NB, Barer D, et al. A multicentre randomised controlled trial of leisure therapy and conventional occupational therapy after stroke. Total study group. Trial of occupational therapy and leisure. Clin Rehabil. (2001) 15:42–52. doi: 10.1080/02692150166968247

Nelson DL, Konosky K, Fleharty K, Webb B, Newer K, Hazboun VP, et al. The effects of an occupationally embedded exercise on bilaterally assisted
supination in persons with hemiplegia. Am J Occup Ther. (1996) 50:639–46. doi: 10.5014/ajot.50.8.639

151. Stock R, Thráne G, Anke A, Gjone R, Askim T. Early versus late-applied constraint-induced movement therapy: a multisite, randomized controlled trial with a 12-month follow-up. Physiother Res Int. (2018) 23:1531–60. doi: 10.1111/pepr.12227

152. Doussoulin A, Arancibia M, Saiz J, Silva A, Luengo M, Salazar AP. Recovering functional independence after a stroke through modified constraint-induced therapy. Neurorehabilitation. (2017) 40:243–9. doi: 10.3233/NRE-161409

153. Liu KP, Balderi K, Leung TL, Yue AS, Lam NC, Cheung JT, et al. A randomized controlled trial of self-regulated modified constraint-induced movement therapy in sub-acute stroke patients. Eur J Neurol. (2016) 23:1351–60. doi: 10.1111/ene.13037

154. Thrane G, Askim T, Stock R, Indredavik B, Gjone R, Erichsen A, et al. Efficacy of constraint-induced movement therapy in early stroke rehabilitation: a randomized controlled multisite trial. Neurorehabil Neural Repair. (2015) 29:517–25. doi: 10.1177/1545968315585899

155. Bang D-H, Shin W-S, Choi S-J. The effects of modified constraint-induced movement therapy combined with trunk restraint in subacute stroke: a double-blinded randomized controlled trial. Clin Rehabil. (2015) 29:561–9. doi: 10.1177/0269215514552034

156. van Delden AE, Beek PJ, Roerdink M, Kwakkel G, Peper CE. Unilateral and bilateral upper-limb training interventions after stroke have similar effects on bimanual coupling strength. Neurorehabil Neural Repair. (2015) 29:255–67. doi: 10.1177/1545968314543498

157. van Delden AE, Peper CE, Nienhuys KN, Zijp NI, Beek PJ, Kwakkel G. Unilateral versus bilateral upper limb training after stroke: the upper limb training after stroke clinical trial. Stroke. (2013) 44:2613–6. doi: 10.1161/STROKEAHA.113.001969

158. Fritz SL, Peters DM, Merlo AM, Donley J. Active video-gaming effects on balance and mobility in individuals with chronic stroke: a randomized controlled trial. Top Stroke Rehabil. (2013) 20:218–25. doi: 10.1310/tsr2033-218

159. Lang KC, Thompson PA, Wolfs LF. The EXCITE Trial: reacquiring upper extremity task performance with early versus late delivery of constraint therapy. Neurorehabil Neural Repair. (2013) 27:654–63. doi: 10.1177/1545968313481281

160. Treger I, Aidinof I, Lehrer H, Kalichman L. Modified constraint-induced movement therapy improved upper limb function in subacute poststroke patients: a small-scale clinical trial. Top Stroke Rehabil. (2012) 19:287–93. doi: 10.1310/tsr1904-287

161. Krawczyk M, Sidaway M, Radwanska A, Zaborska J, Ujma R, Czlonkowska AP. Recovering functional independence after a stroke through modified constraint-induced movement therapy: a multisite, randomized controlled trial with a 12-month follow-up. Am J Occup Ther. (2011) 65:1520. doi: 10.5014/ajot.650029

162. Brunner IC, Skouen JS, Strand LL. Is modified constraint-induced movement therapy more effective than bimanual training in improving arm motor function in the subacute post stroke phase? A randomized controlled trial. Clin Rehabil. (2012) 26:1078–86. doi: 10.1177/0269215512443318

163. Huseyninsoglu BE, Ozdincler AR, Krespi Y. Bobath concept versus constraint-induced movement therapy to improve arm functional recovery in stroke patients: a randomized controlled trial. Clin Rehabil. (2012) 26:799–809. doi: 10.1177/0269215512424661

164. Brunner IC, Skouen JS, Strand LL. Is modified constraint-induced movement therapy more effective than bimanual training in improving arm motor function in the subacute poststroke phase? A randomized controlled trial. Clin Rehabil. (2012) 26:1078–86. doi: 10.1177/0269215512443318

165. Wu C-Y, Chiang L-L, Lin K-C, Chen H-C, Tsay P-K. Randomized trial of distributed constraint-induced therapy versus bilateral arm training for the rehabilitation of upper-limb motor control and function after stroke. Neurorehabil Neural Repair. (2011) 25:130–9. doi: 10.1177/1545968310380868

166. Wolf SL, Thompson PA, Weinstein CJ, Miller JP, Blanton SR, Nichols-Larsen DS, et al. The EXCITE stroke trial: comparing early and delayed constraint-induced movement therapy. Stroke. (2010) 41:2309–15. doi: 10.1161/STROKEAHA.110.588723

167. Azab M, Al-Jarrah M, Nazzal M, Mayyah M, Abu Sambour M, Jamous M. Effectiveness of constraint-induced movement therapy (CMIT) as home-based therapy on Barthel index in patients with chronic stroke. Top Stroke Rehabil. (2009) 16:207–11. doi: 10.1310/tsr1603-207

168. Dromerick A, Lang C, Birkenmeier R, Wagner J, Miller J, Videen T, et al. Very early constraint-induced movement during stroke rehabilitation (VECTORS): a single-center RCT. Neurology. (2009) 73:195–201. doi: 10.1212/WNL.0b013e3181b2b27

169. Brogårdh C, Vestling M, Sjolund BH. Shortened constraint-induced movement therapy in subacute stroke-no effect of using a restraint: a randomized controlled study with independent observers. J Rehabil Med. (2009) 41:231–6. doi: 10.2340/16501977-0312

170. Lin KC, Chang Y-F, Wu C-Y, Chen Y-A. Effects of constraint-induced therapy versus bilateral arm training on motor performance, daily functions, and quality of life in stroke survivors. Neurorehabil Neural Repair. (2009) 23:441–8. doi: 10.1177/1545968308328719

171. Lin KC, Wu C-Y, Liu J-S, Chen Y-T, Hsu C-J. Constraint-induced therapy versus dose-matched control intervention to improve motor ability, basic/extended daily functions, and quality of life in stroke. Neurorehabil Neural Repair. (2009) 23:160–5. doi: 10.1177/1545968308320642

172. Sawaki I, Butler AJ, Leng X, Wassenaar PA, Mohammad YM, Blanton S, et al. Constraint-induced movement therapy results in increased motor map area in subjects 3 to 9 months after stroke. Neurorehabil Neural Repair. (2008) 22:505–13. doi: 10.1177/1545968308317531

173. Lin KC, Wu C-Y, Liu J-S. A randomized controlled trial of constraint-induced movement therapy after stroke. Reconnit Neurosurg. (2008) 101:61–4. doi: 10.1177/14744422(07)02929-6

174. Gauthier LV, Taub E, Perkins C, Oerttmann M, Mark VW, Uswatte G. Remodeling the brain plastic structural brain changes produced by different motor therapies after stroke. Stroke. (2008) 39:1520. doi: 10.1161/STROKEAHA.107.502229

175. Page SJ, Levine P, Leonard A, Szafiarski JP, Kissela BM. Modified constraint-induced therapy in chronic stroke: results of a single-blinded randomized controlled trial. Phys Ther. (2008) 88:333–40. doi: 10.2522/ptj.20060029

176. Wolf SL, Weinstein CJ, Miller JP, Thompson PA, Taub E, Uswatte G, et al. Retention of upper limb function in stroke survivors who have received constraint-induced movement therapy: the EXCITE randomized trial. Lancet Neurology. (2008) 7:33–40. doi: 10.1016/S1474-4422(07)70294-6

177. Lin KC, Wu CY, Wei TH, Lee CY, Liu JS. Effects of modified constraint-induced movement therapy on reach-to-grasp movements and functional performance after chronic stroke: a randomized controlled study. Clin Rehabil. (2007) 21:1075–86.

178. Wu C-Y, Chen C-L, Tang SF, Lin K-C, Huang Y-Y. Kinematic and clinical analyses of upper-extremity movements after constraint-induced movement therapy in patients with stroke: a randomized controlled trial. Arch Phys Med Rehabil. (2008) 89:964–70. doi: 10.1016/j.apmr.2007.05.012

179. Wolf SL, Weinstein CJ, Miller JP, Taub E, Uswatte G, Morris D, et al. Effect of constraint-induced movement therapy on upper extremity function 3 to 9 months after stroke: the EXCITE randomized clinical trial. JAMA. (2006) 296:2905–14. doi: 10.1001/jama.296.17.2905

180. Page SJ, Sisto S, Levine P, McGrath RE. Efficacy of modified constraint-induced movement therapy in chronic stroke: a single-blinded randomized controlled trial. Arch Phys Med Rehabil. (2004) 85:14–8. doi: 10.1002/sms.19993(03)00481-7
184. Van der Lee JH, Wagenaar RC, Lankhorst GJ, Vogelaar TW, Devillé WL, Bouter LM. Forced use of the upper extremity in chronic stroke patients: results from a single-blind randomized clinical trial. Stroke. (1999) 30:1261–7. doi: 10.1161/01.STR.30.11.2369

185. Arya KN, Pandian S, Purī V. Mirror illusion for sensori-motor training in stroke: a randomized controlled trial. J Stroke Cerebrovasc Dis. (2018) 27:3236–46. doi: 10.1016/j.jstrokecerebrovasdis.2018.07.012

186. Schick T, Schlake H-P, Kallusky J, Hohlfeld G, Steinmetz M, Tripp F, et al. Synergy effects of combined multichannel EMG-triggered electrical stimulation and mirror therapy in subacute stroke patients with severe or very severe arm/hand paresis. Restor Neurol Neurosci. (2017) 35:319–32. doi: 10.3233/RNN-160710

187. Harmsen WJ, Bussmann JB, Selles RW, Hurkmans HL, Ribbers GM. A mirror therapy-based action observation protocol to improve motor learning after stroke. Neurorehabil Neural Repair. (2015) 29:509–16. doi: 10.1177/1545968314558598

188. Selles RW, Michielsen ME, Bussmann JB, Stam HJ, Hurkmans HI, Heijnen I, et al. Effects of a mirror-induced visual illusion on a reaching task in stroke patients: implications for mirror therapy training. Neurorehabil Neural Repair. (2014) 28:652–9. doi: 10.1177/1545968314521005

189. Lin KC, Huang PC, Chen YT, Wu CY, Huang WL. Combiningafferent stimulation and mirror therapy for rehabilitating motor function, motor control, ambulation, and daily functions after stroke. Neurorehabil Neural Repair. (2014) 28:153–62. doi: 10.1177/1545968313508468

190. Stinear CM, Petoe MA, Anwar S, Barber PA, Byblow WD. Bilateral priming accelerates recovery of upper limb function after stroke: a randomized controlled trial. Stroke. (2014) 45:205–10. doi: 10.1161/STROKEAHA.113.003537

191. Wu CY, Huang PC, Chen YT, Lin KC, Yang HW. Effects of mirror therapy on motor and sensory recovery in chronic stroke: a randomized controlled trial. Arch Phys Med Rehabil. (2013) 94:1023–30. doi: 10.1016/j.apmr.2013.02.007

192. Thieme H, Baym M, Wurg M, Zange C, Pohl M, Behrens J. Mirror therapy promotes recovery from severe hemiparesis: a randomized controlled trial. Clin Rehabil. (2013) 27:314–24. doi: 10.1177/0269215512455651

193. Michielsen ME, Selles RW, van der Geest JN, Eckhardt M, Yavuzer G, Stam HJ, et al. Motor recovery and cortical reorganization after mirror therapy in chronic stroke patients: a phase II randomized controlled trial. Neurorehabil Neural Repair. (2011) 25:223–33. doi: 10.1177/1545968310385127

194. Caccio A, De Blasis E, De Blasis V, Santilli V, Spacca G. Mirror illusion for sensori-motor training in stroke: a randomized controlled trial. Stroke Cerebrovasc Dis. (2018) 27:3236–46. doi: 10.1016/j.jstrokecerebrovasdis.2018.07.012

195. Schick T, Schlake H-P, Kallusky J, Hohlfeld G, Steinmetz M, Tripp F, et al. Synergy effects of combined multichannel EMG-triggered electrical stimulation and mirror therapy in subacute stroke patients with severe or very severe arm/hand paresis. Restor Neurol Neurosci. (2017) 35:319–32. doi: 10.3233/RNN-160710

196. Harmsen WJ, Bussmann JB, Selles RW, Hurkmans HL, Ribbers GM. A mirror therapy-based action observation protocol to improve motor learning after stroke. Neurorehabil Neural Repair. (2015) 29:509–16. doi: 10.1177/1545968314558598

197. Lin KC, Huang PC, Chen YT, Wu CY, Huang WL. Combining afferent stimulation and mirror therapy for rehabilitating motor function, motor control, ambulation, and daily functions after stroke. Neurorehabil Neural Repair. (2014) 28:153–62. doi: 10.1177/1545968313508468

198. Stinear CM, Petoe MA, Anwar S, Barber PA, Byblow WD. Bilateral priming accelerates recovery of upper limb function after stroke: a randomized controlled trial. Stroke. (2014) 45:205–10. doi: 10.1161/STROKEAHA.113.003537

199. Wu CY, Huang PC, Chen YT, Lin KC, Yang HW. Effects of mirror therapy on motor and sensory recovery in chronic stroke: a randomized controlled trial. Arch Phys Med Rehabil. (2013) 94:1023–30. doi: 10.1016/j.apmr.2013.02.007

200. Thieme H, Baym M, Wurg M, Zange C, Pohl M, Behrens J. Mirror therapy promotes recovery from severe hemiparesis: a randomized controlled trial. Clin Rehabil. (2013) 27:314–24. doi: 10.1177/0269215512455651

201. Michielsen ME, Selles RW, van der Geest JN, Eckhardt M, Yavuzer G, Stam HJ, et al. Motor recovery and cortical reorganization after mirror therapy in chronic stroke patients: a phase II randomized controlled trial. Neurorehabil Neural Repair. (2011) 25:223–33. doi: 10.1177/1545968310385127

202. Caccio A, De Blasis E, De Blasis V, Santilli V, Spacca G. Mirror therapy in complex regional pain syndrome type 1 of the upper limb in stroke patients. Neurorehabil Neural Repair. (2009) 23:792–9. doi: 10.1177/1545968309359397

203. Dohle C, Pullen J, Nakaten A, Kust J, Rietz C, Karbe H. Mirror therapy promotes recovery from severe hemiparesis: a randomized controlled trial. Neurorehabil Neural Repair. (2009) 23:209–17. doi: 10.1177/1545968308324786

204. Yavuzer G, Selles R, Sezer N, Subeyaz S, Bussmann JB, Kosoglu F, et al. Mirror therapy improves hand function in subacute stroke: a randomized controlled trial. Arch Phys Med Rehabil. (2008) 89:393–8. doi: 10.1016/j.apmr.2007.08.162

205. Subeyaz S, Yavuzer G, Sezer N, Kosoglu BF. Mirror therapy enhances lower-extremity motor recovery and motor functioning after stroke: a randomized controlled trial. Arch Phys Med Rehabil. (2007) 88:555–9. doi: 10.1016/j.apmr.2007.02.034

206. Aben L, Heijenbrok-Kal MH, Ponds RW, Busschbach JI, Ribbers GM. Long-lasting effects of a new memory self-efficacy training for stroke patients: a randomized controlled trial. Neurorehabil Neural Repair. (2014) 28:199–206. doi: 10.1177/1545968314374847

207. Timmermans AA, Verbunt JAJA, van Woerden R, Moennekens M, Pernot DH, Seelen HA. Effect of mental practice on the improvement of function and daily activity performance of the upper extremity in patients with subacute stroke: a randomized clinical trial. J Am Med Dir Assoc. (2013) 14:204–12. doi: 10.1016/j.amjmed.2012.10.010

208. Riccio I, Iolascon G, Barillari M, Gimigliano R, Gimigliano F. Mental practice is effective in upper limb recovery after stroke: a randomized single-blind cross-over study. Eur J Phys Rehabil Med. (2010) 46:19–25.
222. Rose DK, Nadeau SE, Wu SS, Tilson JK, Dobkin BH, Pei Q, et al. Locomotor training versus progressive resistive exercise. Arch Phys Med Rehabil. (2004) 85:1613–8. doi: 10.1016/j.apmr.2004.01.028

223. Eom MJ, Chang MY, Oh DH, Kim HD, Han NM, Park JS. Effects of resistance exercise on inspiratory muscle strength training in elderly patients with dyspnic stroke. Neurorehabilitation. (2011) 27:47–52. doi: 10.3233/NRE-110747

224. Rose DK, Nadeau SE, Wu SS, Tilson JK, Dobkin BH, Pei Q, et al. Locomotor training and strength and balance exercises for walking recovery after stroke: response to number of training sessions. Phys Ther. (2017) 97:1066–74. doi: 10.1093/ptj/pzx079

225. Ivey FM, Prior SJ, Hafer-Macko CE, Katzel LI, Macko RF, Ryan AS. Strength training for skeletal muscle endurance after stroke. J Stroke Cerebrovasc Dis. (2017) 26:787–94. doi: 10.1016/j.jstrokecerebrovasdis.2016.10.018

226. Guillon-Sola A, Messagi Sartor M, Bofill Soler N, Duarte E, Barrera MC, Marco E. Respiratory muscle strength training and neuromuscular electrical stimulation in subacute dyspnic stroke patients: a randomized controlled trial. Clin Rehabil. (2017) 31:761–71. doi: 10.1177/0269215516655246

227. Aidar FJ, de Oliveira RJ, de Matos DG, Mazini Filho ML, Moreira OC, de Oliveira CEP, et al. A randomized trial investigating the influence of strength training on quality of life in ischemic stroke patients. Top Stroke Rehabil. (2016) 23:84–9. doi: 10.1080/10749357.2015.1110307

228. Lee MJ, Kilbreath SL, Singh MF, Zeman B, Lord SR, Raymond M, et al. Respiratory muscle strength training and neuromuscular electrical stimulation after stroke: a randomized controlled trial. J Physiother Rehabil Sci. (2018) 41:343–8. doi: 10.1097/MRR.0000000000000309

229. Johnston M, Bonetti D, Joice S, Pollard B, Morrison V, Francis J, et al. Recovery from disability after stroke as a target for a behavioural intervention: results of a randomized controlled trial. Disabil Rehabil. (2007) 29:1117–27. doi: 10.3109/02692150600950411

230. Flagello O, Oasi O, Gianotti M, Rossi A, Goulene K, Stramba-Badiale M. Improvement of spontaneous language in stroke patients with chronic aphasia treated with music therapy: a randomized controlled trial. Int J Neurosci. (2016) 126:343–52. doi: 10.1177/00207454.2015.1010647

231. Movement. A randomized controlled trial. Lancet. (1984) 1:1197–200. doi: 10.1016/S0140-6736(84)91690-8

232. Kim BR, Kang TW. The effectiveness of proprioceptive neuromuscular facilitation exercises on walking and balance functions of patients with hemiplegia: a randomized controlled trial. Arch Phys Med Rehabil. (2016) 52:508–15.

233. Kim BR, Kang TW. The effectiveness of proprioceptive neuromuscular facilitation exercises on walking and balance functions of patients with hemiplegia: a randomized controlled trial. Arch Phys Med Rehabil. (2016) 23:389–97. doi: 10.1016/j.jstrokecerebrovasdis.2018.05.038

234. Crotty M, van den Berg M, Hayes A, Chen C, Lange K, George S. Computerized training in poststroke aphasia: what about the long-term effects of interval and continuous aerobic training on haematological variables post-stroke-a randomized clinical trial. J Physiother Rehabil Sci. (2017) 9:1–8. doi: 10.4314/japs.v9i1-2

235. Selection. June 2020 | Volume 11 | Article 337

236. Selection. June 2020 | Volume 11 | Article 337

237. Selection. June 2020 | Volume 11 | Article 337

238. Selection. June 2020 | Volume 11 | Article 337

239. Selection. June 2020 | Volume 11 | Article 337

240. Selection. June 2020 | Volume 11 | Article 337

241. Selection. June 2020 | Volume 11 | Article 337

242. Selection. June 2020 | Volume 11 | Article 337

243. Selection. June 2020 | Volume 11 | Article 337

244. Selection. June 2020 | Volume 11 | Article 337

245. Selection. June 2020 | Volume 11 | Article 337

246. Selection. June 2020 | Volume 11 | Article 337

247. Selection. June 2020 | Volume 11 | Article 337

248. Selection. June 2020 | Volume 11 | Article 337

249. Selection. June 2020 | Volume 11 | Article 337

250. Selection. June 2020 | Volume 11 | Article 337

251. Selection. June 2020 | Volume 11 | Article 337

252. Selection. June 2020 | Volume 11 | Article 337
effects? A randomized clinical trial. J Stroke Cerebrovasc Dis. (2018) 27:2271–6. doi: 10.1016/j.jstrokecerebrovasdis.2018.04.019

254. Ten Brink AF, Visser-Meily JMA, Schut MJ, Kounwenhoven M, Eijsackers ALH, Nijboer TCW. Prism adaptation in rehabilitation? No additional effects of prism adaptation on neglect recovery in the subacute phase after stroke in a randomized controlled trial. Neurorehabil Neural Repair. (2017) 31:1017–28. doi: 10.1177/1545968317744277

255. Kerr A, Dawson J, Robertson C, Rowe P, Quinn TJ. Sit to stand activity during stroke rehabilitation. Top Stroke Rehabil. (2017) 24:562–6. doi: 10.1080/10704935.2017.1547667

256. Hammerbeck U, Younis N, Hoad D, Greenwood R, Diedrichsen J, Rothwell JC. Chronic stroke survivors improve reaching accuracy by reducing movement variability at the trained movement speed. Neurorehabil Neural Repair. (2017) 31:499–508. doi: 10.1177/1545968317693112

257. Ballester BR, Maier M, San Segundo Mozo RM, Castañeda V, Duff A, Verschure PEMJ. Counterfacturing learned non-use in chronic stroke patients with reinforcement-induced movement therapy. J Neuroeng Rehabil. (2016) 13:74. doi: 10.1186/s12984-016-0178-x

258. Pomeroy VM, Rowe P, Clark A, Walker A, Kerr A, Chandler E, et al. A randomized controlled evaluation of the efficacy of an ankle-foot cast on walking recovery early after stroke: swift cast trial. Neurorehabil Neural Repair. (2016) 30:40–8. doi: 10.1177/1545968315583724

259. Mansfield A, Wong JS, Bryce J, Brunton K, Inness EL, Knorr S, et al. Use of accelerometer-based feedback of walking activity for appraising progress with walking-related goals in inpatient stroke rehabilitation: a randomized controlled trial. Neurorehabil Neural Repair. (2015) 29:847–57. doi: 10.1177/1545968314567968

260. Kim J, Park JH, Yim J. Effects of respiratory muscle and endurance training using an individualized training device on the pulmonary function and exercise capacity in stroke patients. Med Sci Monit. (2014) 20:2543–9. doi: 10.2165/MSM.891112

261. Langhammer B, Lindmark B, Stanghelline JK. Physiotherapy and physical functioning post-stroke: exercise habits and functioning 4 years later? Long-term follow-up after a 1-year long-term intervention period: a randomized controlled trial. Brain Inf. (2014) 28:1396–405. doi: 10.1097/01.SRT.2014.919534

262. Logan PA, Armstrong S, Avery TJ, Barer D, Barton GR, Darby J, et al. Rehabilitation aimed at improving outdoor mobility for people after stroke: a multicentre randomised controlled study (the Getting out of the House Study). Health Technol Assess. (2014) 18:1–113. doi: 10.3310/hta18290

263. van Nuenen MP, Gerrits KH, Konijnembelt M, Janssen TW, de Haan A. Recovery of walking ability using a robotic device in subacute stroke patients: a randomized controlled study. Disabil Rehabil Assist Technol. (2010) 5:114–8. doi: 10.1080/17483501003638710

264. Monticone M, Ambrosini E, Ferrante S, Colombo R. ‘Regent Suit’ training activity during stroke rehabilitation. J Neuroeng Rehabil. (2017) 24:533–42. doi: 10.1177/1743739817693112

265. Kerr A, Dawson J, Robertson C, Rowe P, Quinn TJ. Sit to stand activity during stroke rehabilitation. Top Stroke Rehabil. (2017) 24:562–6. doi: 10.1080/10704935.2017.1547656

266. Morris JH, Van Wijck F. Responses of the less affected arm to noxious versus innocuous thermal stimulation on lower extremity motor recovery 3 months after stroke: a randomized controlled study. Neurorehabil Neural Repair. (2017) 30:40–8. doi: 10.1016/j.mayisfr.2016.01.0178-x

267. Glasgow Augmented Physiotherapy Study (GAPS) group. Can augmented physiotherapy input enhance recovery of mobility after stroke? A randomized controlled trial. Clin Rehabil. (2008) 22:1335–45. doi: 10.1080/026921550801895423

268. Mead GE, Greig CA, Cunningham I, Lewis SJ, Dinan S, Saunders DH, et al. Stroke: a randomized trial of exercise or relaxation. J Am Geriatr Soc. (2007) 55:892–9.

269. Pang MY, Eng JJ, Dawson AS, McKay HA, Harris JE. A community-based fitness and mobility exercise program for older adults with chronic stroke: a randomized, controlled trial. J Am Geriatr Soc. (2005) 53:1667–74. doi: 10.1111/j.1532-5415.2005.53521.x

270. Erel S, Uygur F, Engin Simsek I, Yakut Y. The effects of dynamic ankle-foot orthoses in chronic stroke patients at three-month follow-up: a randomized controlled trial. Clin Rehabil. (2011) 25:251–23. doi: 10.1177/0269215510390719

271. Britto RB, Rezende NR, Marinho KC, Torres JL, Parreira VE, Teixeira-Salmela LF. Inspiratory motor imagery training in chronic stroke survivors: a randomized controlled trial. Arch Phys Med Rehabil. (2009) 91:198–90. doi: 10.1016/j.apmr.2010.09.029

272. Hui E, Lum CM, Woo J, Or KH, Kay RL. Outcomes of elderly stroke patients. Day hospital versus conventional medical management. Stroke. (1995) 26:1616–9. doi: 10.1161/01.STR.26.9.1616
296. Ada L, Foongchomcheay A, Langhammer B, Preston E, Stanton R, Pan R, Zhou M, Cai H, Guo Y, Zhan L, Li M, et al. A randomized controlled trial of Wong FK, Yeung SM. Effects of a 4-week transitional care programme for patients with ischemic stroke: a randomized controlled trial. J Neurosurg Psychol. (1992) 55:530–5. doi: 10.1136/jnp.55.5.530

298. Graven C, Brock K, Hill KD, Cotton S, Joubert L. First year after stroke: an integrated approach focusing on participation goals aiming to reduce depressive symptoms. Stroke. (2016) 47:2820–7. doi: 10.1161/STROKEAHA.116.013081

299. DePippo KL, Holas MA, Reding MJ, Mandel FS, Lesser ML. Dysphagia after stroke: a randomized controlled trial of a modified wheelchair arm-support to reduce shoulder pain in stroke patients. Clin Rehabil. (2018) 32:37–47. doi: 10.1177/026921551774830

300. Ntsiea MV, Van Aswegen H, Lord S, Olorunju SS. The effect of interprofessional stroke rehabilitation for stroke survivors using home care and quality of life outcomes. Top Stroke Rehabil. (2017) 53:416–25. doi: 10.1377/tshr.2016.01037

301. Indredavik B, Bakke F, Slerdahl SA, Rokseth R, Håheim LL. Stroke unit treatment improves long-term quality of life: a randomized controlled trial. Stroke. (1998) 29:779–84. doi: 10.1161/01.STR.29.4.779

302. Beinotti F, Christofoletti G, Correia N, Borges G. Effects of horseback riding on the quality of life of patients with stroke. Arch Phys Med Rehabil. (2004) 85:2867–81. doi: 10.1016/j.apmr.2007.08.127

303. Donnelly M, Power M, Russell M, Fullerton K. Randomized controlled trial of an early discharge rehabilitation service: the belfast community stroke trial. Stroke. (2004) 35:127–33. doi: 10.1161/01.STR.0000106911.96026.8F

304. Zondervan DK, Friedman N, Chang E, Zhao X, Augsburger R, Reinkensmeyer DJ, et al. Home-based hand rehabilitation after chronic stroke: randomized controlled single-blind trial comparing the musicmobile with a conventional exercise program. J Rehabil Res Dev. (2016) 53:457–72. doi: 10.1682/JRRD.2015.04.0057

305. Chen J, Jin W, Dong WS, Jin Y, Qiao FL, Zhou YF, et al. Effects of home-based telesupervision rehabilitation on physical function for stroke survivors with hemiplegia: a randomized controlled trial. Am J Phys Med Rehabil. (2017) 96:152–160. doi: 10.1097/PHM.0000000000001059

306. Rasmussen RS, Østergaard A, Kjær P, Skerris A, Skou C, Christoffersen J, et al. Stroke rehabilitation at home before and after discharge reduced disability and improved quality of life: a randomized controlled trial. Clin Rehabil. (2016) 30:225–36. doi: 10.1177/0269215515575165

307. Sulch D, Perez J, Murbourn A, Kalra L. Randomized controlled trial of integrated (managed) care pathway for stroke rehabilitation. Stroke. (2000) 31:1929–34. doi: 10.1161/01.STR.31.18.1929

308. Klein T, Mørkved S, Engen A, Roos K, Aas T, Indredavik B. Effects of a community-based intensive motor training program combined with early supported discharge after treatment in a comprehensive stroke unit: a randomized, controlled trial. Stroke. (2010) 41:1697–703. doi: 10.1161/STROKEAHA.110.584284

309. Sultan A, Tinson DJ, Bradley EL, Fletcher D, Langton Hewer R, Wade DT. Enhanced physical therapy improves recovery of arm function after stroke: a randomized controlled trial. J Neurosurg Psychol. (1992) 63:476–81. doi: 10.1136/jnp.63.5.889737

310. Pan R, Zhou M, Cai H, Guo Y, Zhan L, Li M, et al. A randomized controlled trial of a modified wheelchair arm-support to reduce shoulder pain in stroke patients. Clin Rehabil. (2018) 32:37–47. doi: 10.1177/026921551774830

311. Khan F, Amatya B, Elmalik A, Lowe M, Ng L, Reid I, et al. An enriched environmental programme during inpatient neurorehabilitation: a randomized controlled trial. J Rehabil Med. (2016) 48:417–25. doi: 10.2340/16501977-2081

312. Rasmussen RS, Østergaard A, Kjær P, Skerris A, Skou C, Christoffersen J, et al. Stroke rehabilitation at home before and after discharge reduced disability and improved quality of life: a randomized controlled trial. Clin Rehabil. (2016) 30:225–36. doi: 10.1177/0269215515575165

313. Lincoln NR, Walker MF, Dixon A, Knights P. Evaluation of a multi-professional community stroke team: a randomized controlled trial. Clin Rehabil. (2004) 18:80–7. doi: 10.1177/0269215504043700

314. Donnelly M, Power M, Russell M, Fullerton K. Randomized controlled trial of an early discharge rehabilitation service: the belfast community stroke trial. Stroke. (2004) 35:127–33. doi: 10.1161/01.STR.0000106911.96026.8F

315. Green J, Forster A, Bogle S, Young J. Physiotherapy for patients with mobility problems more than 1 year after stroke: a randomized controlled trial. Lancet. (2002) 359:199–203. doi: 10.1016/S0140-6736(02)07443-3

316. Zondervan DK, Friedman N, Chang E, Zhao X, Augsburger R, Reinkensmeyer DJ, et al. Home-based hand rehabilitation after chronic stroke: randomized controlled single-blind trial comparing the musicmobile with a conventional exercise program. J Rehabil Res Dev. (2016) 53:457–72. doi: 10.1682/JRRD.2015.04.0057

317. Chen J, Jin W, Dong WS, Jin Y, Qiao FL, Zhou YF, et al. Effects of home-based telesupervision rehabilitation on physical function for stroke survivors with hemiplegia: a randomized controlled trial. Am J Phys Med Rehabil. (2017) 96:152–160. doi: 10.1097/PHM.0000000000001059

318. Rasmussen RS, Østergaard A, Kjær P, Skerris A, Skou C, Christoffersen J, et al. Stroke rehabilitation at home before and after discharge reduced disability and improved quality of life: a randomized controlled trial. Clin Rehabil. (2016) 30:225–36. doi: 10.1177/0269215515575165

319. Zondervan DK, Augsburger R, Bodenhofer B, Friedman N, Reinkensmeyer DJ, Cramer SC. Machine-based, self-guided home therapy for individuals with severe arm impairment after stroke: a randomized controlled trial. Neurorehabil Neural Repair. (2015) 29:395–406. doi: 10.1177/1545968314550368

320. Wang TC, Tsaic AC, Wang JY, Lin YT, Lin KL, Chen JJ, et al. Caregiver-mediated intervention can improve physical functional recovery of patients with chronic stroke: a randomized controlled trial. Neurorehabil Neural Repair. (2015) 29:3–12. doi: 10.1177/1545968314532030

321. Choiyawat P, Kulkarnakorn K. Randomized controlled trial of home rehabilitation for patients with ischemic stroke: impact upon usability and elderly depression. Psychogeriatrics. (2012) 12:193–9. doi: 10.1111/j.1479-8301.2012.00412.x

322. Dean CM, Rissel C, Sherrington C, Sharkey M, Cumming RG, Lord SR, et al. Exercise to enhance mobility and prevent falls after stroke: the community stroke club randomized trial. Stroke. (2012) 43:1604–11. doi: 10.1161/STROKEAHA.110.600441

323. Choiyawat P, Kulkarnakorn K. Effectiveness of home rehabilitation program for ischemic stroke upon usability and quality of life: a randomized controlled trial. Clin Neurol Neurosurg. (2012) 114:866–70. doi: 10.1016/j.clineuro.2012.01.018
324. Mayo NE, Scott SC, Ahmed S. Case management poststroke did not induce response shift: the value of residuals. J Clin Epidemiol. (2009) 62:1148–56. doi: 10.1016/j.jclinepi.2009.03.020

325. Crotty M, Giles LC, Halbert J, Harding J, Miller M. Home versus day rehabilitation: a randomised controlled trial. Age Ageing. (2008) 37:628–33. doi: 10.1093/ageing/afn014

326. Page SJ, Levine P, Teepen J, Hartman EC. Resistance-based, reciprocal upper and lower limb locomotor training in chronic stroke: a randomized, controlled crossover study. Clin Rehabil. (2008) 22:610–7. doi: 10.1177/0269215508088898

327. Desrosiers J, Noreau L, Rochette A, Carbonneau H, Fontaine L, Viscogliosi C, et al. Effect of a home leisure education program after stroke: a randomized controlled trial. Arch Phys Med Rehabil. (2007) 88:1095–100. doi: 10.1016/j.apmr.2007.06.017

328. Studenks S, Duncan PW, Perera S, Reker D, Lai SM, Richards D. Daily functioning and quality of life in a randomized controlled trial of therapeutic exercise for subacute stroke survivors. Stroke. (2005) 36:1764–70. doi: 10.1161/01.STR.01.001741.82788.77

329. McClellan R, Ada L. A six-week, resource-efficient mobility program after discharge from rehabilitation improves standing in people affected by stroke: placebo-controlled, randomized trial. Aust J Physiother. (2004) 50:163–7. doi: 10.1093/ageing/afn141

330. Askim T, Rohwedger G, Lydersen S, Indredavik B. Evaluation of an extended stroke unit service with early supported discharge for patients living in a rural community. A randomized controlled trial. Clin Rehabil. (2004) 18:238–48. doi: 10.1191/0269215504cc752oa

331. Duncan P, Studenks S, Richards L, Gollub S, Lai SM, Reker D, et al. Randomized clinical trial of therapeutic exercise in subacute stroke. Stroke. (2003) 34:2173–80. doi: 10.1161/01.STR.01.000836.90535.f2

332. Andersen HE, Eriksen K, Brown A, Schultz-Larsen K, Forchhammer BH. Follow-up for services survivors after hospital discharge—a randomized control study. Clin Rehabil. (2002) 16:593–603. doi: 10.1097/10.1093/clinre/16.6.593

333. Roderick P, Low J, Day R, Peasgood T, Mullee MA, Turnbull JC, et al. Stroke self-management for stroke patients with severe motor deficit. J Neurol Neurosurg Psychiatry. (2008) 79:628–33. doi: 10.1136/jnnp.56.9.960

334. Sorbello D, Dewey HM, Churilov L, Thrift AG, Collier JM, Donnan G, et al. Neurophysiological and behavioral effects of tDCS combined with constraint-induced movement therapy in poststroke patients. Neurorehabil Neural Repair. (2011) 25:819–29. doi: 10.1177/1090379811411056

335. Mant J, Carter J, Wade DT, Winner S. The impact of an information pack on patients with stroke and their carers: a randomized controlled trial. Clin Rehabil. (1998) 12:465–76. doi: 10.1080/02692155868972226

336. Carey JR, Durfee WK, Bhatt E, Nagpal A, Weinstein SA, Anderson KM, et al. Comparison of finger tracking versus simple movement training via telerehabilitation to alter hand function and cortical reorganization after stroke. Neurorehabil Neural Repair. (2007) 21:216–32. doi: 10.1177/1557603106293851

337. Faulkner J, Tzeng YC, Lambrecht D, Woolley B, Allan PD, O’Donnell T, et al. A randomized controlled trial to assess the central hemodynamic response to exercise in patients with transient ischaemic attack and minor stroke. J Hum Hypertens. (2017) 31:172–7. doi: 10.1038/jhh.2016.72

338. Pan XL. Efficacy of early rehabilitation therapy on movement ability of hemiplegic lower extremity patients with acute cerebrovascular accident. Medicine. (2018) 97:e9544. doi: 10.1097/MD.0000000000009544

339. Chumbler NR, Li X, Quigley P, Morey MC, Rose D, Griffiths P, et al. A randomized controlled trial on stroke telerehabilitation: the effects on falls self-efficacy and satisfaction with care. J Telemed Telecare. (2015) 21:139–43. doi: 10.1258/jtet.2015.015773

340. Torres-Arelea Ldl P, Dubouva Dubova SV, Hernandez SF, Torres-Valdez LE, Constantino-Casas NP, Garcia-Contreras F, et al. Effectiveness of two rehabilitation strategies provided by nurses for stroke patients in Mexico. J Clin Nurs. (2009) 18:2993–3002. doi: 10.1111/j.1365-2702.2009.02862.x

341. Lui N, Cadillac DA, Andrew NF, Zheng L, Li Z, Li J, et al. Randomized controlled trial of early rehabilitation after intracerebral hemorrhage stroke: difference in outcomes within 6 months of stroke. Stroke. (2014) 45:3502–7. doi: 10.1161/STROKEAHA.114.005561

342. Draper B, Bowring G, Thompson C, Van Heyst J, Conroy P, Thompson J. Stress in caregivers of aphasic stroke patients: a randomized controlled trial. Clin Rehabil. (2007) 21:122–30. doi: 10.1080/02692155007601251

343. Forster A, Dickerson J, Young J, Patel A, Kalra L, Nixon J, et al. A cluster randomised controlled trial and economic evaluation of a structured training programme for caregivers of inpatients after stroke: the TRACS trial. Health Technol Assess. (2013) 17:1–216. doi: 10.3310/hta17460

344. Harris JE, Eng JJ, Miller WC, Dawson AS. The role of caregiver involvement in upper-limb treatment in individuals with subacute stroke. Phys Ther. (2010) 90:1302–10. doi: 10.2522/ptj.20090349

345. Cumming TB, Thrift AG, Collier JM, Churilov L, Dewey HM, Donnan GA, et al. Very early mobilisation after stroke: fast tracks return to walking: further results from the phase II AVERT randomized controlled trial. Stroke. (2011) 42:153–8. doi: 10.1161/STROKEAHA.110.594598

346. Sorbello D, Dewey HM, Churilov L, Thrift AG, Collier JM, Donnan G, et al. Very early mobilisation and complications in the first 3 months after stroke: further results from phase ii of a very early rehabilitation trial (AVERT). Cerebrovasc Dis. (2009) 28:378–83. doi: 10.1159/000230712

347. Ezejimofo MC, Chen YE, Kandala NB, Ezejimofo BC, Ezeabasili AC, Stranges S, et al. Stroke survivors in low-and middle-income countries: a meta-analysis of prevalence and secular trends. J Neurol Sci. (2016) 364:68–76. doi: 10.1016/j.jns.2016.03.016

348. Lee M, Lennon O, O’Sullivan C. A systematic review of physical rehabilitation interventions for stroke in low and lower-middle income countries. Disab Rehabil. (2020) 42:473–501. doi: 10.1080/09638288.2018.1510617

349. Obembe AO, Onigbinde AT, Adegboyin RA, Adegbamila OG. Opinion of a section of Nigerian physiotherapists on training and utilization of middle level workers. J Nigeria Soc Physiother. (2009) 16:23–30. doi: 10.1186/s12913-019-3994-4
