Abstract. We prove finiteness of the number of smooth blow-downs on Fano manifolds and boundedness results for the geometry of non projective Fano-like manifolds. Our proofs use properness of Hilbert schemes and Mori theory.

Introduction

In this Note, we say that a compact complex manifold \(X \) is a Fano-like manifold if it becomes Fano after a finite sequence of blow-ups along smooth connected centers, i.e if there exist a Fano manifold \(\tilde{X} \) and a finite sequence of blow-ups along smooth connected centers \(\pi : \tilde{X} \to X \). We say that a Fano-like manifold \(X \) is simple if there exists a smooth submanifold \(Y \) of \(X \) (\(Y \) may not be connected) such that the blow-up of \(X \) along \(Y \) is Fano. If \(Z \) is a projective manifold, we call smooth blow-down of \(Z \) (with an \(s \)-dimensional center) a map \(\pi \) and a manifold \(Z' \) such that \(\pi : Z \to Z' \) is the blow-up of \(Z' \) along a smooth connected submanifold (of dimension \(s \)). We say that a smooth blow-down of \(Z \) is projective (resp. non projective) if \(Z' \) is projective (resp. non projective).

It is well-known that any Moishezon manifold becomes projective after a finite sequence of blow-ups along smooth centers. Our aim is to bound the geometry of Moishezon manifolds becoming Fano after one blow-up along a smooth center, i.e the geometry of simple non projective Fano-like manifolds.

Our results in this direction are the following, the simple proof of Theorem 1 has been communicated to us by Daniel Huybrechts.

Theorem 1. Let \(Z \) be a Fano manifold of dimension \(n \). Then, there is only a finite number of smooth blow-downs of \(Z \).

Let us recall here that the assumption \(Z \) Fano is essential: there are projective smooth surfaces with infinitely many \(-1\) rational curves, hence with infinitely many smooth blow-downs.

Since there is only a finite number of deformation types of Fano manifolds of dimension \(n \) (see [KMM92] and also [Deb97] for a recent survey on Fano manifolds) and since smooth blow-downs are stable under deformations [Kod63], we get the following corollary (see section 1 for a detailed proof):

Corollary 1. There is only a finite number of deformation types of simple Fano-like manifolds of dimension \(n \).

The next result is essentially due to Wiśniewski ([Wis91], prop. (3.4) and (3.5)). Before stating it, let us define

\[
\text{d}_n = \max \{ (-K_Z)^n \mid Z \text{ is a Fano manifold of dimension } n \}
\]
and

\[\rho_n = \max \{ \rho(Z) := \text{rk}(\text{Pic}(Z)/\text{Pic}^0(Z)) \mid Z \text{ is a Fano manifold of dimension } n \} . \]

The number \(\rho_n \) is well defined since there is only a finite number of deformation types of Fano manifolds of dimension \(n \) and we refer to [Deb97] for an explicit bound for \(d_n \).

Theorem 2. Let \(X \) be an \(n \)-dimensional simple non projective Fano-like manifold, \(Y \) a smooth submanifold such that the blow-up \(\pi : \tilde{X} \to X \) of \(X \) along \(Y \) is Fano, and \(E \) the exceptional divisor of \(\pi \). Then

(i) if each component of \(Y \) has Picard number equal to one, then each component of \(Y \) has ample conormal bundle in \(X \) and is Fano. Moreover \(\deg_{-K_{\tilde{X}}}(E) \leq (\rho_n - 1)d_{n-1} \).

(ii) if \(Y \) is a curve, then (each component of) \(Y \) is a smooth rational curve with normal bundle \(O_{\mathbb{P}^1}(-1)^{n-1} \).

Finally, we prove here the following result:

Theorem 3. Let \(Z \) be a Fano manifold of dimension \(n \) and index \(r \). Suppose there is a non projective smooth blow-down of \(Z \) with an \(s \)-dimensional center. Then

\[r \leq (n - 1)/2 \text{ and } s \geq r. \]

Moreover,

(i) if \(r > (n - 1)/3 \), then \(s = n - 1 - r \);

(ii) if \(r < (n - 1)/2 \) and \(s = r \), then \(Y \simeq \mathbb{P}^r \).

Recall that the index of a Fano manifold \(Z \) is the largest integer \(m \) such that \(-K_Z = mL \) for \(L \) in the Picard group of \(Z \).

Remarks.

a) For a Fano manifold \(X \) of dimension \(n \) and index \(r \) with second Betti number greater than or equal to 2, it is known that \(2r \leq n + 2 \) [Wi91], with equality if and only if \(X \simeq \mathbb{P}^{r-1} \times \mathbb{P}^{r-1} \).

b) Fano manifolds of even dimension (resp. odd dimension \(n \)) and middle index (resp. index \((n + 1)/2 \)) with \(b_2 \geq 2 \) have been intensively studied, see for example [Wis93]. Our Theorem 3 shows that there are no non projective smooth blow-down of such a Fano manifold, without using any explicit classification.

c) The assumption that there is a *non projective* smooth blow-down of \(Z \) is essential in Theorem 3: the Fano manifold obtained by blowing-up \(\mathbb{P}^{2r-1} \) along a \(\mathbb{P}^{r-1} \) has index \(r \).

1. **Proof of Theorem 1 and Corollary 1. An example.**

1.1. **Proof of Theorem 1.** Thanks to D. Huybrechts for the following proof.

Let \(Z \) be a Fano manifold and \(\pi : Z \to Z' \) a smooth blow-down of \(Z \) with an \(s \)-dimensional connected center. Let \(f \) be a line contained in a non trivial fiber of \(\pi \). Then, the Hilbert polynomial \(P_{-K_Z}(m) \) := \(\chi(f, m(-K_Z)f) \) is determined by \(s \) and \(n \) since \(-K_Z \cdot f = n-s-1 \) and \(f \) is a smooth rational curve. Since \(-K_Z \) is ample, the Hilbert scheme \(\text{Hilb}_{-K_Z} \) of curves in \(Z \) having \(P_{-K_Z} \) as Hilbert polynomial is a projective scheme, hence has a finite number of irreducible components. Since each curve being in the component \(\mathcal{H} \) of \(\text{Hilb}_{-K_Z} \) containing \(f \) is contracted by \(\pi \), there is only a finite number of smooth blow-downs of \(Z \) with an \(s \)-dimensional center. \[\blacksquare \]
1.2. Proof of Corollary 1. Let us first recall ([Deb97] section 5.2) that there exists an integer $\delta(n)$ such that every Fano n-fold can be realized as a smooth submanifold of \mathbb{P}^{2n+1} of degree at most $\delta(n)$. Let us denote by T a closed irreducible subvariety of the disjoint union of Chow varieties of n-dimensional subvarieties of \mathbb{P}^{2n+1} of degree at most $\delta(n)$, and by $\pi : X_T \rightarrow T$ the universal family.

Step 1 : Stability of smooth blow-downs. Fix t_0 in the smooth locus T_{smooth} of T and suppose that $X_{t_0} := \pi^{-1}(t_0)$ is a Fano n-fold and there exists a smooth blow-down of X_{t_0} (denote by E_{t_0} the exceptional divisor, P its Hilbert polynomial with respect to $O_{\mathbb{P}^{2n+1}}(1)$). Let S be the component of the Hilbert scheme of $(n-1)$-dimensional subschemes of \mathbb{P}^{2n+1} with Hilbert polynomial P and $u : \mathcal{E}_S \rightarrow S$ the universal family. Finally, let I be the following subscheme of $T \times S$:

$$I = \{(t, s) \mid u^{-1}(s) \subset X_t\}$$

and $p : I \rightarrow T$ the proper algebraic map induced by the first projection. Thanks to the analytic stability of smooth blow-downs due to Kodaira (see [Kod63], Theorem 5), the image $p(I)$ contains an analytic open neighbourhood of t_0 hence it also contains a Zariski neighbourhood of t_0. Moreover, since exceptional divisors are rigid, the fiber $p^{-1}(t)$ is a single point for t in a Zariski neighbourhood of t_0. Finally, we get algebraic stability of smooth blow-downs (the \mathbb{P}^r-fibered structure of exceptional divisor is also analytically stable - [Kod63], Theorem 4 - hence algebraically stable by the same kind of argument).

Step 2 : Stratification of T by the number of smooth blow-downs. For any integer $k \geq 0$, let us define

$$U_k(T) = \{t \in T_{\text{smooth}} \mid X_t \text{ is a Fano manifold and there exists at least } k \text{ smooth blow-downs of } X_t\};$$

and $U_{-1}(T) = T_{\text{smooth}}$. Thanks to Step 1, $U_k(T)$ is Zariski open in T, and thanks to Theorem 1,

$$\bigcap_{k \geq -1} U_k(T) = \emptyset.$$

Since $\{U_k(T)\}_{k \geq -1}$ is a decreasing sequence of Zariski open sets, by noetherian induction, we get that there exists an integer k such that $U_k(T) = \emptyset$ and we can thus define

$$k(T) := \max\{k \geq -1 \mid U_k(T) \neq \emptyset\}, \quad U(T) := U_{k(T)}(T).$$

Finally, we have proved that $U(T)$ is a non empty Zariski open set of T_{smooth} such that for every $t \in U(T)$, Z_t is a Fano n-fold with exactly $k(T)$ smooth blow-downs ($k(T) = -1$ means that for every $t \in T_{\text{smooth}}$, X_t is not a Fano manifold).

Now let $T_0 = T$, and T_1 be any closed irreducible component of $T_0 \setminus U(T_0)$. We get $U(T_1)$ as before and denote by T_2 any closed irreducible component of $T_1 \setminus U(T_1)$, and so on. Again by noetherian induction, this process terminates after finitely many steps and we get a finite stratification of T such that each strata corresponds to an algebraic family of Fano n-folds with the same number of smooth blow-downs.

Step 3 : Conclusion. Since there is only a finite number of irreducible components in the Chow variety of Fano n-folds, each being finitely stratified by Step 2, we get a finite number of deformation types of simple Fano-like n-folds.

As it has been noticed by Kodaira, it is essential to consider only smooth blow-downs. A -2 rational smooth curve on a surface is, in general, not stable under deformations of the surface.

1.3. An example. Before going further, let us recall the following well known example. Let Z be the projective 3-fold obtained by blowing-up \mathbb{P}^3 along a smooth curve of type $(3, 3)$ contained in a smooth quadric \mathcal{Q} of \mathbb{P}^3. Let π denotes the blow-up $Z \rightarrow \mathbb{P}^3$. Then Z is a Fano manifold of index one and there are at least three smooth blow-downs of $Z : \pi$, which is projective, and two non projective smooth blow-downs consisting in contracting...
the strict transform Q' of the quadric Q along one of its two rulings (the normal bundle of Q' in Z is $O(-1,-1)$).

Lemma 1. There are exactly three smooth blow-downs of Z.

Proof: the Mori cone $\text{NE}(Z)$ is a 2-dimensional closed cone, one of its two extremal rays being generated by the class of a line f_π contained in a non trivial fiber of π, the other one, denoted by $[R]$, by the class of one of the two rulings of Q' (the two rulings are numerically equivalent, the corresponding extremal contraction consists in contracting Q' to a singular point in a projective variety, hence is not a smooth blow-down). If E is the exceptional divisor of π, we have

$$E \cdot [f_\pi] = -1, \ E \cdot [R] = 3, \ Q' \cdot [f_\pi] = 1, \ Q' \cdot [R] = -1.$$

Now suppose there exists a smooth blow-down τ of Z with a 1-dimensional center, which is not one of the three previously described. Let L be a line contained in a non trivial fiber of τ, then since $-K_Z \cdot [L] = 1$, we have $[L] = a[f_\pi] + b[R]$ for some strictly positive numbers such that $a + b = 1$. Since we have moreover

$$Q' \cdot [L] = a - b = 2a - 1 \in Z \text{ and } E \cdot [L] = 3b - a = 3 - 4a,$$

we get $a = b = 1/2$. Therefore $Q' \cdot [L] = 0$ hence L is disjoint from Q' (it can not be contained in Q' since $Q'_{|Q'} = O(-1,-1)$). It implies that there are two smooth blow-downs of Z with disjoint exceptional divisors, which is impossible since $\rho(Z) = 2$.

Finally, if there is a smooth blow-down $\tau : Z \to Z'$ of Z with a 0-dimensional center, then Z' is projective and τ is a Mori extremal contraction, which is again impossible since we already met the two Mori extremal contractions on Z. ■

2. **Non projective smooth blow-downs on a center with Picard number 1.**

Proof of Theorem 2.

The proof of Theorem 2 we will give is close to Wişniewski’s one but we give two intermediate results of independant interest.

2.1. **On the normal bundle of the center.** Let us recall that a smooth submanifold A in a complex manifold W is contractible to a point (i.e. there exists a complex space W' and a map $\mu : W \to W'$ which is an isomorphism outside A and such that $\mu(A)$ is a point) if and only if $N_{A/W}^*$ is ample (Grauert’s criterion [Gra62]).

The following proposition was proved by Campana [Cam89] in the case where Y is a curve and $\dim(X) = 3$.

Proposition 1. Let X be a non projective manifold, Y a smooth submanifold of X such that the blow-up $\pi : \tilde{X} \to X$ of X along Y is projective. Then, for each connected component Y' of Y with $\rho(Y') = 1$, the conormal bundle $N_{Y'/X}^*$ is ample.

Before the proof, let us remark that Y is projective since the exceptional divisor of π is.

Proof of Proposition 1: (following Campana) we can suppose that Y is connected.

Let E be the exceptional divisor of π and f a line contained in a non trivial fiber of π. Since $E \cdot f = -1$, there is an extremal ray R of the Mori cone $\text{NE}(\tilde{X})$ such that $E \cdot R < 0$.

Since $E \cdot R < 0$, R defines an extremal ray of the Mori cone $\text{NE}(E)$ which we still denote by R (even if $\text{NE}(E)$ is not a subcone of $\text{NE}(\tilde{X})$ in general!). Since $\rho(Y) = 1$, we have $\rho(E) = 2$, hence $\text{NE}(E)$ is a 2-dimensional closed cone, one of its two extremal rays being generated by f. Then:

- either R is not generated by f and $E|_E$ is strictly negative on $\text{NE}(E) \setminus \{0\}$. In that case, $-E|_E = O_E(1)$ is ample by Kleiman’s criterion, which means that $N_{Y'/X}^*$ is ample.
- or, R is generated by f. In that case, the Mori contraction $\varphi_R: \tilde{X} \to Z$ factorize through π:

$$\begin{array}{c}
\tilde{X} \\
\downarrow \varphi_R \\
Z \\
\downarrow \pi \\
X \\
\psi
\end{array}$$

where $\psi: X \to Z$ is an isomorphism outside Y. Since the variety Z is projective and X is not, ψ is not an isomorphism and since $\rho(Y) = 1$, Y is contracted to a point by ψ, hence $N_{Y/X}$ is ample by Grauert’s criterion.

Let us prove the following consequence of Proposition 1:

Proposition 2. Let X be a non projective manifold, Y a smooth submanifold of X such that the blow-up $\pi: \tilde{X} \to X$ of X along Y is projective with $-K_{\tilde{X}}$ numerically effective (nef). Then, each connected component Y' of Y with $\rho(Y') = 1$ is a Fano manifold.

Proof: we can suppose that Y is connected. Let E be the exceptional divisor of π. Since $-E|_E$ is ample by Proposition 1, the adjunction formula $-K_E = -K_{\tilde{X}|E} - E|_E$ shows that $-K_E$ is ample, hence E is Fano. By a result of Szurek and Wiśniewski [SzW90], Y is itself Fano.

2.2. Proof of Theorem 2.

For the first assertion, we only have to prove that

$$\deg -K_{\tilde{X}}(E) \leq (\rho_n - 1)d_{n-1}.$$

Let Y' be a connected component of Y and $E' = \pi^{-1}(Y')$. Then, since $-E|_{E'}$ is ample:

$$\deg -K_{\tilde{X}}(E') = (-K_{\tilde{X}|E'})^{n-1} = (-K_{E'} + E|_{E'})^{n-1} \leq (-K_{E'})^{n-1} \leq d_{n-1}.$$

Now, if m is the number of connected components of Y, then

$$\rho(\tilde{X}) = m + \rho(X) \geq m + 1.$$

Putting all together, we get

$$\deg -K_{\tilde{X}}(E) \leq (\rho_n - 1)d_{n-1},$$

which ends the proof of the first point.

We refer to [Wis91] prop. (3.5) for the second point.

3. On the Dimension of the Center of Non Projective Smooth Blow-Downs.

Proof of Theorem 3.

Theorem 3 is a by-product of the more precise following statement and of Proposition 3 below:

Theorem 4. Let Z be a Fano manifold of dimension n and index r, $\pi: Z \to Z'$ be a non projective smooth blow-down of Z, $Y \subset Z'$ the center of π. Let f be a line contained in a non trivial fiber of π, then

(i) if f generates an extremal ray of $\text{NE}(Z)$, then $\dim(Y) \geq (n - 1)/2$.

(ii) if f does not generate an extremal ray of $\text{NE}(Z)$, then $\dim(Y) \geq r$. Moreover, if $\dim(Y) = r$, then Y is isomorphic to \mathbb{P}^r.

In both cases (i) and (ii), Y contains a rational curve.

The proof relies on Wiśniewski’s inequality (see [Wis91] and [AnW95]), which we recall now for the reader’s convenience: let $\varphi: X \to Y$ be a Fano-Mori contraction (i.e $-K_X$ is φ-ample) on a projective manifold X, $\text{Exc}(\varphi)$ its exceptional locus and

$$l(\varphi) := \min\{-K_X \cdot C; C \text{ rational curve contained in } \text{Exc}(\varphi)\}$$
its length, then for every non trivial fiber F:
\[
\dim \text{Exc}(\varphi) + \dim(F) \geq \dim(X) - 1 + l(\varphi).
\]

Proof of Theorem 4. The method of proof is taken from Andreatta’s recent paper [And99] (see also [Bon96]).

First case: suppose that a line f contained in a non trivial fiber of π generates an extremal ray R of $\text{NE}(Z)$. Then the Mori contraction $\varphi_R : Z \to W$ factorizes through π:

\[
Z \xrightarrow{\varphi_R} W \xrightarrow{\psi} Z',
\]

where ψ is an isomorphism outside Y. In particular, the exceptional locus E of π is equal to the exceptional locus of the extremal contraction φ_R.

Let us now denote by ψ_Y the restriction of ψ to Y, $s = \dim(Y)$, π_E and $\varphi_{R,E}$ the restriction of π and φ_R to E. Since Z' is not projective, ψ_Y is not a finite map. Since φ_R is birational, W is \mathbb{Q}-Gorenstein, hence K_W is \mathbb{Q}-Cartier and $K_{Z'} = \psi^*K_W$. Therefore, $K_{Z'}$ is ψ-trivial, hence $K_Y + \det N_{Y/Z'}^*\varphi$ is ψ_Y-trivial. Moreover, $O_E(1) = -E|_E$ is $\varphi_{R,E}$-ample by Kleiman’s criterion, hence $N_{Y/Z'}^*\varphi$ is ψ_Y-ample. Finally, ψ_Y is a Fano-Mori contraction, of length greater or equal to $n - s = \text{rk}(N_{Y/Z}^*)$. Together with Wiśniewski’s inequality applied on Y, we get that for every non trivial fiber F of ψ_Y

\[
2s \geq \dim(F) + \dim(\text{Exc}(\psi_Y)) \geq n - s + s - 1
\]

hence $2s \geq n - 1$. Moreover, $\text{Exc}(\psi_Y)$ is covered by rational curves, hence Y contains a rational curve.

Second case: suppose that a line f contained in a non trivial fiber of π does not generate an extremal ray R of $\text{NE}(Z)$. In that case, since $E \cdot f = -1$, there is an extremal ray R of $\text{NE}(Z)$ such that $E \cdot R < 0$. In particular, the exceptional locus $\text{Exc}(R)$ of the extremal contraction φ_R is contained in E, and since f is not on R, we get for any fiber F of φ_R:

\[
\dim(F) \leq s = \dim(Y).
\]

By the adjunction formula, $-K_E = -K_{Z|E} - E|_E$, the length $l_E(R)$ of R as an extremal ray of E satisfies

\[
l_E(R) \geq r + 1,
\]

where r is the index of Z. Together with Wiśniewski’s inequality applied on E, we get :

\[
r + 1 + (n - 1) - 1 \leq s + \dim(\text{Exc}(R)) \leq s + n - 1.
\]

Finally, we get $r \leq s$, and since the fibers of φ_R are covered by rational curves, there is a rational curve in Y. Suppose now (up to the end) that $r = s$. Then E is the exceptional locus of the Mori extremal contraction φ_R. Moreover, $K_Z + r(-E)$ is a good supporting divisor for φ_R, and since every non trivial fiber of φ_R has dimension r, φ_R is a smooth projective blow-down. In particular, the restriction of π to a non trivial fiber $F \simeq \mathbb{P}^r$ induces a finite surjective map $\pi : F \simeq \mathbb{P}^r \to Y$ hence $Y \simeq \mathbb{P}^r$ by a result of Lazarsfeld [Laz83].

This ends the proof of Theorem 4. ■

The proof of Theorem 4 does not use the hypothesis Z Fano in the first case. We therefore have the following:

Corollary 2. Let Z be a projective manifold of dimension n, $\pi : Z \to Z'$ be a non projective smooth blow-down of Z, $Y \subset Z'$ the center of π. Let f be a line contained in a non trivial fiber of π and suppose f generates an extremal ray of $\text{NE}(Z)$. Then $\dim(Y) \geq (n - 1)/2$. Moreover, if $\dim(Y) = (n - 1)/2$, then Y is contractible on a point.
We finish this section by the following easy proposition, which combined with Theorem 4 implies Theorem 3 of the Introduction:

Proposition 3. Let Z be a Fano manifold of dimension n and index r, $\pi : Z \to Z'$ be a smooth blow-down of Z, $Y \subset Z'$ the center of π. Then $n - 1 - \dim(Y)$ is a multiple of r.

Proof. Write

$$-K_Z = rL \quad \text{and} \quad -K_Z = -\pi^*K_{Z'} - (n - 1 - \dim(Y))E$$

where E is the exceptional divisor of π. Let f be a line contained in a fiber of π. Then $rL \cdot f = n - 1 - \dim(Y)$, which ends the proof. ■

Proof of Theorem 3. Let Z be a Fano manifold of dimension n and index r and suppose there is a non projective smooth blow-down of Z with an s-dimensional center. By Proposition 3, there is a strictly positive integer k such that $n - 1 - kr = s$. By Theorem 4, either $n - 1 - kr \geq (n - 1)/2$ or $n - 1 - kr \geq r$. In both cases, it implies that $r \leq (n - 1)/2$ and therefore $s \geq r$. If $r > (n - 1)/3$, since $n - 1 \geq (k+1)r > (k+1)(n-1)/3$, we get $k = 1$ and $s = n - 1 - r$. ■

4. Rational curves on simple Moishezon manifolds.

The arguments of the previous section can be used to deal with the following well-known question: does every non projective Moishezon manifold contain a rational curve? The answer is positive in dimension three (it is due to Peternell [Pet86], see also [CKM88] p. 49 for a proof using the completion of Mori’s program in dimension three).

Proposition 4. Let Z be a projective manifold, $\pi : Z \to Z'$ be a non projective smooth blow-down of Z. Then Z' contains a rational curve.

Proof. With the notations of the previous section, it is clear in the first case where a line f contained in a non trivial fiber of π generates an extremal ray R of $\text{NE}(Z)$ (in that case, the center of π contains a rational curve). In the second case, since f is not extremal and K_Z is not nef, there is a Mori contraction φ on Z such that any rational curve contained in a fiber of φ is mapped by π to a non constant rational curve in Z'. ■

References

[And99] M. Andreatta. Moishezon manifolds. Math. Zeitschrift, 230, 713-726 (1999).
[AnW95] M. Andreatta, J. Wiśniewski. A view on contractions of higher-dimensional varieties. Algebraic geometry—Santa Cruz, 153–183, (1995) Proc. Sympos. Pure Math., 62, Part 1, Amer. Math. Soc., Providence, RI, (1997).
[Bon96] L. Bonavero. Sur des variétés de Moishezon dont le groupe de Picard est de rang un. Bull. Soc. Math. Fr. 124, No.3, 503-521 (1996).
[Cam89] F. Campana. Critère de projectivité de la transformation élémentaire d’une variété projective de dimension 3. C. R. Acad. Sci., Paris, Ser. I 309, No.14, 863-866 (1989).
[CKM88] H. Clemens, J. Kollár, S. Mori. Higher dimensional complex geometry. Société Mathématique de France, Astérisque 166 (1988).
[Deb97] O. Debarre. Variétés de Fano. Séminaire Bourbaki. Volume 1996/97. Exposés 820–834. Paris, Société Mathématique de France, Astérisque 245, 197-221, Exp. No.827 (1997).
[Gra62] H. Grauert. Ueber Modifikationen und exzeptionelle analytische Mengen. Math. Ann. 146, 331-368 (1962).
[Kod63] K. Kodaira. On stability of compact submanifolds of complex manifolds. Amer. J. Math., 85, 79-94 (1963).
[KMM92] J. Kollár, Y. Miyaoka, S. Mori. Rational connectedness and boundedness of Fano manifolds. J. Diff. Geom. 36, 765-769 (1992).
[Laz83] R. Lazarsfeld. Some applications of the theory of positive vector bundles. Complete intersections, Lect. 1st Sess. C.I.M.E., Acireale/Italy 1983, Lect. Notes Math. 1092, 29-61 (1984).
[Pet86] T. Peternell. Rational curves on a Moishezon 3-fold. Complex Analysis and Algebraic Geometry. Springer LN 1194, 133-144 (1986).
[SzW90] M. Szurek, J. Wiśniewski. Fano bundles over P^3 and Q^3. Pac. J. Math. 141, No.1, 197-208 (1990).
[Wis91] J. Wiśniewski. On contractions of extremal rays of Fano manifolds. *J. Reine Angew. Math.* 417, 141-157 (1991).

[Wi91] J. Wiśniewski. On Fano manifolds of large index. *Manuscripta Math.* 70, no. 2, 145–152 (1991).

[Wis93] J. Wiśniewski. A report on Fano manifolds of middle index and $b_2 \geq 2$. *Mathematica Gottingensis, Schriftenreihe des Sonderforschungsbereichs Geometrie und Analysis.* Heft 16 (1993).

L.B.: Institut Fourier, UMR 5582, Université de Grenoble 1, BP 74, 38402 Saint Martin d’Hères, FRANCE

e-mail: bonavero@ujf-grenoble.fr

S.T.: Department of Mathematics, Graduate School of Science, Osaka University. Toyonaka, Osaka, 560-0043 JAPAN.

e-mail: taka@math.sci.osaka-u.ac.jp