Choline Glycerophosphate and Silymarin Modulate Brain and Intestinal Injuries in Rats Exposed to Gamma-Radiation

Nahed Abdel-Aziz (nahedabdelsamad@yahoo.com)
Egyptian Atomic Energy Authority

Ahmed A. Elkady
Egyptian Atomic Energy Authority

Eman M. Elgazzar
Egyptian Atomic Energy Authority

Research Article

Keywords: γ-radiation, Choline Glycerophosphate, Silymarin, Brain and intestinal injury, cholinergic anti-inflammatory pathway

Posted Date: October 27th, 2021

DOI: https://doi.org/10.21203/rs.3.rs-901368/v1

License: This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License
Abstract

This work aims to investigate the possible effect of choline glycerophosphate alone or combined with silymarin administration in modulating whole body gamma irradiation-induced brain and intestinal injuries in rats. Rats were irradiated with 7 Gy then subjected to choline glycerophosphate and/or silymarin for two weeks. At the end of the experiment, the animals were sacrificed and brain and intestine samples were dissected for biochemical, molecular and histopathological examinations. The results showed that choline glycerophosphate, alone or combined with silymarin, ameliorated the adverse effects of radiation as revealed by the inhibition of oxidative stress, apoptotic and inflammatory markers (MDA, Caspase 3, TNF alpha, IL-1β and NF-kB). However, TAC, anti-inflammatory marker, IL-10 and IκBa mRNA were increased. This was also accompanied by a significant increase in the Ach level, ChAT activity and α7 nAChR mRNA expression and a significant decrease in the activity of AChE as compared with the corresponding values of the irradiated group. Moreover, a reduction in the tissue lesions were observed in brain and intestinal tissues. In conclusion, choline glycerophosphate and silymarin exhibited modulating effect against detrimental effects of gamma radiation via cholinergic anti-inflammatory pathway.

Introduction

Radiotherapy is one of the commonly used modalities in the treatment of malignant tumors, but, it is associated with negative side effects on different organs of the body. Acute radiation can produce cellular damage in organs that having rapidly proliferating cells, such as the alimentary tract (Yu, 2013). Additionally, the brain, with its high oxygen consumption and lipid-rich content, is highly susceptible to oxidative stress (Salim, 2017). The cellular damage can be induced by direct or indirect effects of radiation. The direct effect is resulted from the interaction of radiation itself directly with the cellular molecules, however, the indirect effect can be caused by the interaction of radiation with cellular water to create free radicals and hydrogen peroxide. Due to their high reactivity, free radicals interact with the biological molecules, most importantly the DNA and may form additional free radicals (Ahmed et al., 2020).

Acute gastrointestinal injury may occurs shortly after the radiotherapy including nausea, vomiting, diarrhea and increased stool frequency. These symptoms may be related to oxidative stress and inflammation induced by ionizing radiation (Radwan & Karam, 2020). The enteric nervous system, a part of the peripheral nervous system that embedded within the gut wall and interconnected with the enteroendocrine and gastrointestinal immune system, and involved in the physiological functions of the gastrointestinal tract, has also been demonstrated to play a critical role in intestinal radiation injury (Moussa et al., 2016). In fact, the central nervous system cooperates with the immune system to regulate inflammation. Acetylcholine (ACh), an important neurotransmitter in the cholinergic system, is synthesized and released by cholinergic neurons, and exerts its effects on the central and peripheral nervous system through ACh receptors. Also, ACh is released by non-neuronal tissues where it is involved in controlling various functions such as cell proliferation, survival and apoptosis (Zoli et al., 2018).
Also, brain injury may occur as a result of head or whole body irradiation, including morphological and functional changes such as neuronal degeneration and neuroendocrine disturbance (El-Missiry et al., 2021, Abdel-Aziz et al., 2021).

Unfortunately, there are no safe and effective drugs to prevent the development of radiation damage after whole or partial body irradiation. Hence, there is an urgent need for safe agents to mitigate radiation injury in animal models. The ameliorating effect of antioxidants and anti-inflammatory agents has been hypothesized (Yahyapour et al., 2018).

Silymarin is a natural herbal product extracted from the seeds and fruits of Silybum marianum, commonly known as milk thistle, containing different flavonolignans (silibinin, isosilibinin, silichristin and silidianin) and has been long used to treat liver diseases (Gillessen and Schmidt, 2020). Several studies have shown a beneficial effect of Silymarin supplementation in various diseases such as diabetes, metabolic syndrome (Vahabzadeh et al., 2018), cardiovascular diseases (Taleb et al., 2018 & Zalat et al., 2021), memory impairments and depression (El-Elimat et al., 2019), in addition to its protective effect against sepsis-induced hepatic and renal injury (Al-Kadi et al., 2020). It was reported that silymarin may act as a chemopreventive agent and has a chemosensitizing activity against various cancers (Delmas et al., 2020).

Choline Glycerophosphate (GPC) is a choline donor compound, widely used as a food supplement (Tuboly et al., 2019). Under physiological conditions, GPC can be involved in maintaining the structural integrity of the biological membranes. It has been shown that exogenous GPC administration reduced the reactive oxygen and nitrogen species production caused by an ischemia-reperfusion insult (Tokes et al., 2015). Previous studies on rat models have demonstrated that GPC administration protected against the ethanol-induced hepatic mitochondrial electron transport chain dysfunction (Tuboly et al., 2017) and the double stress stimuli of noise and restraint-induced cognitive dysfunction (Yu et al., 2020). Moreover, clinical studies have shown the efficacy of Alpha-GPC in decreasing the cognitive decline in patients with Alzheimer’s disease or dementia (Traini et al., 2013) and epilepsy (Lee et al., 2017). The effect of GPC against ionizing radiation induced negative side effects on different organs of the body is rare. Plangar et al., 2014 and Tókés et al., 2014 investigated its protective effects against partial brain irradiation-induced cognitive decline and peripheral cytokine production. However, the modulating effect of GPC on the whole body irradiation induced brain and intestinal injury has, to the best of our knowledge, never been studied before.

Therefore, the current study aimed to investigate the modulatory role of choline glycerophosphate as a single agent and as a co-treatment with silymarine on the brain and intestinal injuries in rats exposed to whole body irradiation as well as the mechanisms by which choline glycerophosphate and silymarin could provide their potential amelioration actions.

Materials And Methods
Chemicals

Choline glycerophosphate and silymarin were purchased from Sigma-Aldrich Co. (St. Louis, MO, USA). All other reagents used in this study were of analytical grade.

Animals

Adult male Wister rats weighing 180–220 g were used in this experiment, obtained from the animal house that belongs to the National Centre for Radiation Research and Technology (NCRRT), Cairo, Egypt. Rats were fed on a standard rodent diet and provided water ad libitum. The animals were maintained at 12 h light/dark cycle, at constant temperature (22 ± 2°C) and humidity (50 ± 5%). All experimental procedures were performed according to the international guidelines of animal handling and care of the National Institute of Health (NIH publication No. 85–23, 1996).

Radiation process

Whole-body gamma irradiation of the animals was performed at the NCCRT, Cairo, Egypt, using a Canadian Gamma Cell-40, (137Cs) irradiation unit. The rats were exposed to a single dose (7 Gy) with a dose rate of 0.38 Gy/min, according to the Dosimeter Department in the NCRRT at the time of the experiment.

Experimental design

The rats were divided into eight groups, 6 rats each. Group 1 (control) animals of this group were kept as control. Group 2 (GPC) animals were injected intraperitoneally with GPC at a dose level of 150 mg/kg (based on Tayebati et al., 2011) daily for two weeks. Group 3 (Sil) animals were orally supplemented with silymarin at a dose level of 50 mg/kg (based on Cruz et al., 2001 & Shokouhi et al., 2020) daily for two weeks. Group 4 (GPC + Sil) animals were injected intraperitoneally with GPC and orally supplemented with silymarin. Group 5 (Rad) rats were whole-body exposed to gamma radiation at a dose level of 7 Gy. Group 6 (Rad + GPC) animals were exposed to 7 GY gamma radiation and then received GPC 5 min after irradiation and continued for two week as group 2. Group 7 (Rad + Sil) animals were whole-body exposed to gamma radiation at a dose level of 7 Gy and orally supplemented with silymarin daily for two weeks after irradiation. Group 8 (Rad + Sil + Cit) rats were exposed to 7 Gy gamma radiation and received Sil and GPC for two weeks after irradiation.

Animals were sacrificed 24 h after the last dose of GPC or silymarine or two weeks after irradiation. The brain and intestine were immediately excised. Parts of the brain and intestine were preserved frozen at -80°C until used for Real-time PCR analysis and another parts were homogenized in phosphate-buffered saline (PBS) (1g tissue: 10 ml PBS), centrifuged at 5000 rpm for 15 minutes at 4°C, then the supernatant was collected and preserved frozen at -20°C until used for biochemical analyses. For histopathological examination parts of the brain and intestine were fixed in 10% formalin.

Biochemical analyses
Malondialdehyde (MDA) content was estimated in brain and intestine homogenates using Rat Malondialdehyde Quantikine Enzyme-Linked Immunosorbent Assay (ELISA-kit, Cat. No. LS-F28018) from LifeSpan BioSciences, Inc. USA, following the manufacturer's guideline. Total antioxidant capacity (TAC) was measured by ELISA kit (Cat. No. MBS733414_48T) from MyBioSource, Inc. USA.

The level of IL-1β and IL-10 were quantified in brain and intestine homogenates using specific enzyme-linked immunosorbent assay kits, Cat. No. MBS825017 and Cat.No: MBS034393, respectively (MyBioSource, Inc. USA) according to the manufacturer's instructions. Nuclear factor kappa B (NF-κB) and tumor Necrosis Factor-alpha (TNF-α) levels were measured using Rat NF-κB and TNF-α ELISA kits (Cat. No. MBS722386 and MBS355371, respectively), according to the manufacturer's directions.

Acetylcholine (ACh) was measured in brain and intestine homogenates using the EnzyChrom™ Acetylcholine Assay Kit, Cat. No: EACL-100 (BioAssay Systems) in accordance to the manufacturer's instruction. Choline Acetyltransferase (ChAT) and Acetylcholinesterase (AChE) activities were measured using Rat ELISA Kit (Cat. No: E-BC-K125-S and E-BC-K174-M, respectively), Elabscience Biotechnology Inc.

Detection of gene expression of Caspase 3, IKBα and α7 nAChR in brain and intestine tissues by Quantitative real time polymerase chain reaction

Total RNA was isolated using Qiagen tissue extraction kit (Qiagen, USA) according to the manufacturer's guideline. The isolated RNA was used for complementary DNA (cDNA) conversion using high capacity cDNA reverse transcription kit (Fermentas, USA). The amplification and analysis of real-time qPCR were performed using an Applied Biosystem with software version 3.1 (StepOne™, USA). The reaction contained SYBR Green Master Mix (Applied Biosystems), gene-specific primer pairs were designed with Gene Runner Software (Hasting Software, Inc., Hasting, NY) from RNA sequences from the gene bank. The relative expression of Caspase-3, IKBα and α7 nAChR was calculated according to Applied Biosystem software using the comparative threshold cycle method. All values were normalized to the beta actin gene as an endogenous control (reference gene).

Primer Sequences for the Genes Amplified: Caspase-3 F: 5'-GTGGAACGTGACGATGATGAC-3'
R: 5'-CGCAAAGTGACTGGATGAACC-3'

IkBa F ACCTGGTCTCGCTCTGTTG
R GCTCTCCTCATCCTCTCAGCGCGCG

α7nAChR F: 5'-GCAAAGAGCCATACCCAG-3'
R: 5'-CAGCAAGAATACCAGCAGAG-3'

b-actin F TTGTCCCTGTATGCTCTCT
R TAATGTCACGCACGCAGATTCC
Histopathological processing

Samples of brain (one hemisphere) and intestine tissues were collected from all groups, sliced, and fixed in 10% formalin solution. Paraffin blocks were prepared from those samples after a serial of dehydration, clearing and embedding. The paraffin-embedded material was prepared in 4–5 µm thick slices by microtome, mounted on microscope slides and stained with hematoxylin and eosin (Suvarna et al., 2013). Finally, it was examined under a light microscope to evaluate the histopathological changes.

Statistical analysis

Statistical analysis of the results was carried out using the SPSS computer program (version 20). All data were presented as mean values ± standard errors of the means. Statistical comparison between groups was done by using one-way analysis of variance (ANOVA) followed by a post hoc, LSD. Differences were considered significant at P < 0.05.

Results

Oxidative stress and apoptosis

In the brain, the results presented in Table 1 showed that supplementation of GPC to normal rats induced non-significant changes in the levels of TAC, MDA and caspase-3 mRNA compared to their normal control levels. However, administration of GPC and silymarin resulted in a significant (P < 0.05) elevation in the level of TAC together with a significant decrease in MDA level compared to their values of the control group. Whole body gamma irradiation (7 Gy) of rats has provoked oxidative stress in brain tissue, that has been demonstrated by a significant (P < 0.05) decrease in TAC together with a significant elevation in the level of MDA and the expression level of caspase-3 mRNA compared to their values of the normal control group. However, GPC or silymarin administration for two weeks post-irradiation induced a significant (P < 0.05) decrease in the levels of MDA & caspase-3 and a significant elevation in TAC compared to the corresponding values of the irradiated group. Also, the results revealed that the combined treatment of GPC and silymarin produced a better effect in reducing the oxidative stress and apoptosis (Table 1).
Table 1
Changes in brain total antioxidant capacity (TAC) and Malondialdehyde (MDA) levels and expression level of Caspase-3 mRNA of adult male albino rats in different groups.

	TAC (ng/g tissue)	MDA (ng/g tissue)	Caspase-3 mRNA
Control	7.33 ± 0.44 b	9.67 ± 0.44 b	1.03 ± 0.044 b
GPC	6.92 ± 0.47 b	9.83 ± 0.53 b	0.99 ± 0.026 b
Sil	7.67 ± 0.57 b	7.92 ± 0.58 ab	0.91 ± 0.037 b
GPC + Sil	8.83 ± 0.53 a b	6.58 ± 0.47 ab	0.85 ± 0.039 b
Rad	4.50 ± 0.41 a	20.42 ± 0.71 a	3.72 ± 0.174 a
Rad + GPC	6.10 ± 0.53 b	14.75 ± 0.63 abc	2.23 ± 0.131 abc
Rad + Sil	6.42 ± 0.50 b	13.08 ± 0.85 abc	2.17 ± 0.223 abc
Rad + GPC + Sil	6.70 ± 0.49 b	10.83 ± 0.60 b	1.75 ± 0.111 ab

Data are represented as means ± SE. a: Significantly different from the control group, b: Significantly different from the Rad group, c: Significant difference of Rad + GPC group or Rad + Sil group from Rad + GPC + Sil group. The mean difference is significant at the 0.05 level.

In the intestine, the results presented in Table 2 showed that administration of GPC to normal rats induced significant (P < 0.05) increase in the level of TAC compared to their normal control levels. Moreover, the combined treatment of GPC and silymarin resulted in a significant (P < 0.05) elevation in the level of TAC together with a significant decrease in MDA level compared to their values of the control group. Whole body gamma irradiation (7 Gy) of rats has instigated oxidative stress in the intestine tissue, that has been demonstrated by a significant (P < 0.05) elevation in the level of MDA associated with a significant decrease in TAC compared to their values of the control group. Also, a significant increase in the expression level of caspase-3 mRNA was detected. However, GPC or silymarin administration for two weeks post-irradiation induced a significant (P < 0.05) decrease in the levels of MDA & caspase-3 mRNA and a significant elevation in TAC compared to the corresponding values of the irradiated group. Also, the results indicated that the combined treatment of GPC and silymarin produced a better effect in reducing the oxidative stress and apoptosis (Table 2).
Table 2
Changes in intestine total antioxidant capacity (TAC) and Malondialdehyde (MDA) levels and expression level of Caspase-3 mRNA of adult male albino rats in different groups.

	TAC (ng/g tissue)	MDA (ng/g tissue)	Caspase-3 mRNA
Control	10.48 ± 0.47 b	07.32 ± 0.44 b	1.05 ± 0.12 b
GPC	12.20 ± 0.35 ab	07.17 ± 0.43 b	0.88 ± 0.06 b
Sil	12.95 ± 0.29 ab	06.57 ± 0.39 b	1.02 ± 0.05 b
GPC + Sil	14.12 ± 0.39 ab	05.72 ± 0.34 ab	0.88 ± 0.03 b
Radiation	07.12 ± 0.31 a	18.00 ± 0.61 a	3.65 ± 0.18 a
Rad + GPC	09.45 ± 0.47 bc	13.48 ± 0.58 abc	2.40 ± 0.15 abc
Rad + Sil	10.37 ± 0.41 b	12.58 ± 0.58 abc	2.25 ± 0.14 abc
Rad + GPC + Sil	10.68 ± 0.30 b	10.50 ± 0.65 ab	1.70 ± 0.17 ab

Data are represented as means ± SE. a: Significantly different from the control group, b: Significantly different from the Rad group, c: Significant difference of Rad + GPC group or Rad + Sil group from Rad + GPC + Sil group. The mean difference is significant at the 0.05 level.

Cholinergic and inflammatory markers

In the brain, the results in Tables 3 & 5 showed non-significant changes in the studied cholinergic and inflammatory markers upon administration of GPC and/or silymarin to normal rats compared to their normal control levels. Also, the results (Table 3) revealed that exposure to ionizing radiation resulted in a significant (P < 0.05) elevation in the levels of NF-κB and pro-inflammatory cytokines, TNF-α and IL-1β compared to their values of the control group. As well, a significant (P < 0.05) decrease in the level of IL-10 and the expression level of IkBa mRNA was observed two weeks after irradiation compared to their values of the control group. Administration of GPC and/or silymarin ameliorated the changes induced by exposure to radiation. The data presented in Table 5 indicated that whole body irradiation induced a significant (P < 0.05) decrease in the level of ACh & the activity of ChAT and the expression level of α7nAChR along with a significant increase in AChE activity compared to their values of the control group. However, GPC and/or silymarin administration ameliorated these changes.
Table 3
Changes in brain tumor necrosis factor-α (TNFα), Interleukin 1 beta (IL-1β), Interleukin 10(IL-10), and nuclear factor kappa (NF-κB) levels and expression level of IkBa mRNA of adult male albino rats in different groups.

	TNFα (pg/mg tissue)	IL-1β (pg/mg tissue)	IL-10 (pg/mg tissue)	NF-κB (pg/mg tissue)	IkB mRNA
Control	12.50 ± 0.76 b	15.83 ± 0.56 b	108 ± 5.20 b	18.25 ± 0.62 b	1.03 ± 0.044b
GPC	11.75 ± 0.63 b	14.92 ± 0.58 b	107 ± 6.89 b	17.02 ± 0.76 b	1.05 ± 0.048b
Sil	11.40 ± 0.96 b	15.25 ± 0.70 b	105 ± 6.74 b	16.17 ± 0.90 b	0.98 ± 0.042b
GPC + Sil	11.52 ± 0.88 b	14.92 ± 0.50 b	110 ± 7.60 b	17.00 ± 0.93 b	0.97 ± 0.051b
Rad	25.75 ± 0.63 a	30.50 ± 0.99 a	62.2 ± 3.79 a	37.57 ± 0.10 a	0.65 ± 0.029a
Rad + GPC	18.50 ± 0.76 ab	22.18 ± 0.89 abc	79.3 ± 3.70 ab	24.78 ± 0.76 abc	0.85 ± 0.0549ab
Rad + Sil	19.08 ± 0.58 ab	20.37 ± 0.75 ab	81.7 ± 4.45 ab	25.28 ± 0.82abc	0.83 ± 0.0418ab
Rad + GPC + Sil	17.25 ± 0.63 ab	19.28 ± 0.83 ab	91.1 ± 5.27ab	22.03 ± 0.94ab	0.93 ± 0.0295b

Data are represented as means ± SE. a: Significantly different from the control group, b: Significantly different from the Rad group, c: Significant difference of Rad + GPC group or Rad + Sil group from Rad + GPC + Sil group. The mean difference is significant at the 0.05 level.
Table 5
Changes in brain Acetylcholine (Ach) level, Choline Acetyltransferase (ChAT) activity, Acetylcholinesterase (AchE) activity and α7 nAChR mRNA levels of adult male albino rats in different groups.

	Ach (nmol/g tissue)	ChAT (U/g tissue)	AchE (U/mg tissue)	α7 nAChR mRNA
Control	29.33 ± 1.87 b	32.33 ± 1.84 b	0.21 ± 0.017 b	1.04 ± 0.047 b
GPC	32.33 ± 1.52 b	33.17 ± 1.08 b	0.20 ± 0.017 b	0.98 ± 0.029 b
Sil	30.17 ± 1.72 b	32.17 ± 1.14 b	0.17 ± 0.018 b	1.00 ± 0.040 b
GPC + Sil	31.17 ± 1.08 b	32.50 ± 0.76 b	0.18 ± 0.022 b	1.02 ± 0.045 b
Rad	17.17 ± 0.95 a	19.33 ± 1.23 a	0.39 ± 0.013a	0.41 ± 0.010 a
Rad + GPC	24.67 ± 1.67 ab	24.97 ± 1.53 ab	0.25 ± 0.015 b	0.61 ± 0.011 abc
Rad + Sil	22.83 ± 1.54 ab	25.97 ± 1.51 ab	0.24 ± 0.017 b	0.56 ± 0.008 abc
Rad + GPC + Sil	26.50 ± 1.18 b	28.30 ± 1.14 ab	0.23 ± 0.012 b	0.77 ± 0.017 ab

Data are represented as means ± SE. a: Significantly different from the control group, b: Significantly different from the Rad group, c: Significant difference of Rad + GPC group or Rad + Sil group from Rad + GPC + Sil group. The mean difference is significant at the 0.05 level.

In the intestine, the results in Tables 4 & 6 showed non-significant changes in the studied cholinergic and inflammatory markers upon administration of GPC and/or silymarin to normal rats compared to their normal control levels. Exposure to ionizing radiation (Table 4) resulted in a significant (P < 0.05) elevation in the levels of NF-κB and pro-inflammatory cytokines, TNF-α and IL-1β compared to their values of the control group. As well, a significant (P < 0.05) decrease in the level of IL-10 and the expression level of IkBa mRNA was observed two weeks after irradiation compared to their values of the control group. Administration of GPC and/or silymarin ameliorated the changes induced by exposure to radiation. The data presented in Table 6 indicated that whole body irradiation induced a significant (P < 0.05) decrease in the Ach level & ChAT activity and the expression level of α7nAChR along with a significant increase in AChE activity compared to their values of the control group. However, GPC and/or silymarin ameliorated these changes. Moreover, the combined treatment of GPC and silymarin showed a better modulating effect on the Ach level and its receptor as compared with each of them separately.
Table 4
Changes in intestine tumor necrosis factor-α (TNFα), Interleukin 1 beta (IL-1β), Interleukin 10(IL-10), and nuclear factor kappa (NF-κB) levels and expression level of IkBa mRNA of adult male albino rats in different groups.

	TNFα (pg/mg tissue)	IL-1β (pg/mg tissue)	IL-10 (pg/mg tissue)	NF-κB (pg/mg tissue)	IkB mRNA
Control	14.27 ± 0.60 b	20.55 ± 0.67 b	96.68 ± 4.39 b	24.87 ± 0.77 b	1.06 ± 0.08 b
GPC	13.00 ± 0.52 b	19.07 ± 0.58 b	103.33 ± 4.41 b	22.83 ± 0.86 b	1.07 ± 0.07 b
Sil	13.17 ± 0.55 b	19.00 ± 0.78 b	98.63 ± 5.05 b	22.00 ± 1.08 b	1.03 ± 0.08 b
GPC + Sil	13.38 ± 0.76 b	19.78 ± 0.94 b	102.50 ± 5.28 b	21.50 ± 1.18 b	1.05 ± 0.06 b
Rad	24.50 ± 0.58 a	36.75 ± 1.17 a	55.83 ± 3.96 a	47.70 ± 0.78 a	0.64 ± 0.04 a
Rad + GPC	18.30 ± 0.48 ab	25.52 ± 0.71 ab	71.45 ± 3.50 ab	29.45 ± 0.73 abc	0.83 ± 0.03 ab
Rad + Sil	18.45 ± 0.71 ab	24.67 ± 0.82 ab	69.77 ± 4.46 ab	28.07 ± 1.48 b	0.84 ± 0.04 ab
Rad + GPC + Sil	17.45 ± 0.63 ab	23.22 ± 0.67 ab	79.67 ± 3.83 ab	25.35 ± 2.45 b	0.92 ± 0.08 b

Data are represented as means ± SE. a: Significantly different from the control group, b: Significantly different from the Rad group, c: Significant difference of Rad + GPC group or Rad + Sil group from Rad + GPC + Sil group. The mean difference is significant at the 0.05 level.
Table 6
Changes in intestine Acetylcholine (Ach) level, Choline Acetyltransferase (ChAT) activity, Acetylcholinesterase (AchE) activity and α7 nAChR mRNA levels of adult male albino rats in different groups.

	Ach (nmol/g tissue)	ChAT (U/g tissue)	AchE (U/mg tissue)	α7 nAChR mRNA
Control	29.67 ± 0.88 b	26.67 ± 1.28 b	0.17 ± 0.017 b	0.99 ± 0.037 b
GPC	30.17 ± 1.35 b	27.17 ± 1.25 b	0.18 ± 0.016 b	0.92 ± 0.026 b
Sil	27.50 ± 1.57 b	27.33 ± 1.02 b	0.16 ± 0.019 b	0.98 ± 0.048 b
GPC + Sil	31.00 ± 1.18 b	28.38 ± 1.37 b	0.17 ± 0.013 b	0.97 ± 0.033b
Rad	15.17 ± 0.95a	17.78 ± 0.77a	0.37 ± 0.021a	0.49 ± 0.017a
Rad + GPC	21.00 ± 1.81abc	21.32 ± 0.90ab	0.23 ± 0.016ab	0.71 ± 0.015abc
Rad + Sil	19.83 ± 0.95abc	20.28 ± 0.67a	0.24 ± 0.014ab	0.67 ± 0.014abc
Rad + GPC + Sil	25.00 ± 1.37ab	22.12 ± 0.99ab	0.22 ± 0.016b	0.84 ± 0.027ab

Data are represented as means ± SE. a: Significantly different from the control group, b: Significantly different from the Rad group, c: Significant difference of Rad + GPC group or Rad + Sil group from Rad + GPC + Sil group. The mean difference is significant at the 0.05 level.

Histopathological examination

Brain of control rat’s showed normal histological structure (Fig. 1&2). Also, in both GPC and silymarin groups, brain tissues showed normal structure as the control (Fig. 3&4). In whole body irradiated rats the neuronophagia and the degenerative changes of brain tissue are not sever and appeared in different parts of the brain especially cerebrum, in all investigated rats of this group and epitomized by numerous pyknotic neurons with proliferation of glial cells in gray matter (Fig. 5). The white matter of irradiated rats showed spongiform degeneration (Fig. 6) and increasing of glia cells with or without dilated blood vessels. In Rad + GPC group, gray matter of some rats showed little degenerated pyramids neurons (Fig. 7), while it appeared normal in other rats. White matter of Radiation and silymarin group showed dilated blood vessel (Fig. 8) with microcavitation. Moreover, in the gray and white matter of rats treated with GPC and silymarin after irradiation, the majority of neurons, matrix, and nerve axons showed normal morphological structure (Fig. 9&10).

Intestine of control rat’s showed normal histological structure (Fig. 11). Also, both GPC and silymarin groups are showed normal structure as control. Intestine of irradiated rats showed marked villous tips loss (erosions), mucosal layer necrosis and inflammatory cell invasion of submucosal layer (Fig. 12). The intestine of rats treated with GPC and radiation showed histologically significant improvement than that’s of irradiated one, in some cases showed leukocytic infiltration around degenerated Bruner’s glands (Fig. 13). While in the group treated with silymarin and radiation the mucosa and submucosa showed still inflammation, edematous and dystrophic external muscular layer (Fig. 14). Intestine of rats treated by
GPC and silymarin after irradiation showed more improvement than those treated by GPC or silymarin separately, it appeared without any erosions or necrosis, in some cases there were dilated intestinal blood vessels or expanded intestinal gland (Fig. 15 &16).

Discussion

Exposure to ionizing radiation initiates a series of molecular and biochemical signaling events that may repair the damage or induce cell phenotypic modifications, depending on the dose of exposure and the sensitivity of exposed cells. The intestinal cells are among the most sensitive cells (Musa et al., 2019). The brain tissues are susceptible to oxidative damage due to its high oxygen utilization, lipid rich content and its low endogenous antioxidant content (Salim 2017). Previous studies showed that ionizing radiation enhanced reactive oxygen species (ROS) production, apoptosis and inflammation, and reduced Ach levels in brain and colon (Abdel-Aziz et al., 2021 and Song et al., 2020). Therefore, it was hypothesized that GPC - as a precursor of ACh- and silymarin - a strong natural antioxidant- might influence the radiation-induced oxidative stress, apoptosis, inflammation and cholinergic system disturbance in brain and intestinal tissues. The authors set out to investigate the consequences of GPC and silymarin administration on the markers of the oxidative stress and the cholinergic - anti-inflammatory pathway in rats exposed to whole-body gamma radiation.

The results of the present study showed that whole-body gamma irradiation (7 Gy) of male albino rats triggered oxidative stress indicated by a significant increase in MDA level as an index of lipid peroxidation and a significant decrease in total antioxidant capacity (TAC). This injurious effect of radiation is caused mainly by the over production of ROS which interact with cellular macromolecules producing harmful free radicals leading to lipid peroxidation in brain (El-Missiry et al., 2021), intestine (Musa et al., 2019) and liver (Hassan et al., 2021).

The excessive production of free radicals immediately after irradiation is considered as the first pro-inflammatory signal in irradiated tissues (Moussa et al., 2016). Free radicals interact with biological targets causing DNA damage which initiate apoptotic and inflammatory responses, characterized by the production of apoptotic markers (caspases −9 and −3) and pro-inflammatory cytokines, such as TNF-α, IL-1β and IL6 (El-Maraghi et al., 2020, Radwan & Karam, 2020). Besides, NF-κB is activated by the oxidative stress induced after irradiation, which in turn targets the production of many genes related to inflammation (Ismail & El-Sonbaty, 2016). It is well known that inactive NF-kB is located in the cytosol and is bound to an inhibitory protein, IκBa. However, the induced oxidative stress results in IκBa phosphorylation, dissociation from NF-kB, ubiquitination, and subsequent degradation. Consequently, NF-kB translocates to the nucleus, where the transcription process of certain cytokines (like IL-1, IL-6, TNF-α) is up-regulated (Saha et al., 2020).

In the present study, gamma radiation decreased the level of IL-10 and the expression level of IκBa, however, it elevated the levels of TNF-α, IL-1β & NF-κB and the expression levels of caspase-3 indicating the role of inflammatory cytokines and apoptotic markers in the radiation-induced brain and intestinal...
injury. These results were confirmed by the degenerated intestinal mucosa with inflammatory cells infiltration and degenerative changes in brain tissue that was demonstrated in the current histopathological study.

Whole-body irradiation induced a significant decrease in the level of ACh, the important neurotransmitter in the cholinergic system, ChAT, and the expression level of α7nAChR associated with a significant increase in the AChE level in brain and intestine (Tables 5 & 6). These results agree with that of Mansour et al. 2017 and El kiki & Galal 2018 who observed that whole-body irradiation (6Gy) induced a significant decrease in neurotransmitters and a significant increase in AChE activity in the rat brain. Erukainure et al., 2021 demonstrated that oxidative stress has been implicated in the elevation of AChE activity in testicular tissue. The significant decrease in ACh level observed in the current study may be attributed to the decrease in ChAT, the enzyme responsible for ACh synthesis, and the increase in AChE, the enzyme that hydrolyzes ACh. This disturbance may terminate the interaction between neurotransmitter, ACh and the corresponding receptor protein, α7 nAChR (Pal et al., 2017).

Since α7 nAChR is located on neuronal and non-neuronal cells such as immune cells, it was demonstrated that immune cells in the gut could be the target of ACh that act as an immune modulator (Brinkman et al., 2019). Indeed, the enteric nervous system is a large division of the peripheral nervous system embedded within the gut wall and regulates various physiological functions of the gastrointestinal tract such as mucus secretion, immunity, and inflammatory processes (Niesler et al., 2021). Evidence suggested that the enteric nervous system and its interactions with the immune system have a critical role in the early intestinal radiation response (Moussa et al., 2016).

From the above results, it is thought that the oxidative stress, and the consequent inflammation and cholinergic system disturbance are the probable pathogenic mechanisms in the radiation-induced brain and intestinal injury. Hence, stimulation of the cholinergic anti-inflammatory pathway plays an important role in controlling the inflammatory response which is mediated by increasing the release of ACh and activation of α7nAChR on the surface of macrophages. Particularly, ACh, the essential neurotransmitter in the vagus nerve, inhibits the production of pro-inflammatory cytokines through a mechanism dependent on the α7nAChR (Chen et al., 2020). Moreover, previously, it was described the anti-inflammatory role of ACh in the modulation of the inflammatory response through inhibition of AChE (Rosas-Ballina and Tracey 2009).

GPC and / or silymarin administration after whole-body irradiation helped to minimize the oxidative stress, the results indicated by the significant increase of TAC and the significant decrease of MDA levels (Tables 1 & 2) in the brain and intestinal tissues as compared to the corresponding values of the irradiated group. These results are in agreement with the previous studies which indicated that silymarin attenuated the oxidative stress in the brain of rats intoxicated with AlCl3 (Aboelwafa et al., 2020) and inhibited the toxic effect of microcystin-LR on mice by increasing the reduced glutathione which may reduce reduced lipid peroxidation and protein carbonyl content in the spleen and intestine (Al-hazmi et al. 2019). Due to the presence of phenolic hydroxyl groups in its structure, silymarin could attenuate the oxidative stress
through scavenging free radicals, inhibiting the free radical formation and preserving the cellular antioxidant status, thus preventing peroxidation of membrane lipids (Zalat et al., 2021). Likewise, GPC administration reduced the reactive oxygen and nitrogen species production in rodent models of intestine and liver ischemia-reperfusion injuries (Tokes et al., 2015 and Strifler et al., 2016). The current observation of the reduction of caspase-3 mRNA expression by GPC and/or silymarin treatment after irradiation indicates their role as anti-apoptotic agents. This effect may be related to their ability to reduce ROS and MDA production and maintain the structural integrity of the biological membranes.

Moreover, GPC and/or silymarin administration after whole-body irradiation modulated the inflammation and the enzymes responsible for ACh synthesis and hydrolysis, and increased the level of ACh and the expression level of its receptor, α7 nAChR, as compared to the corresponding values of the irradiated group (Tables 3–6). The anti-inflammatory effect of these agents may takes place via the inhibition of NF-κB signaling pathway and increase the anti-inflammatory cytokine, IL-10. Recently, it was described that dietary choline supplement improved the immune function and restrained the NF-κB signaling pathway by up-regulating the expression level of IkBα and down-regulating NF-κBp65, and NF-κBp52 expression as well as decreasing the mRNA level of pro-inflammatory cytokines, TNF-α, IL-1β, and IL-6, and increasing the mRNA abundance of anti-inflammatory cytokines, IL-10 (Yuan et al., 2021).

Consequently, the pro-inflammatory cytokine production and the occurrence of inflammation are inhibited. Regarding the cholinergic anti-inflammatory pathway, GPC administration increased the release of ACh that inhibited macrophage likely by activation of α7 nAChR expressed on the cell surface of the macrophage (Kimura et al., 2019). Additionally, GPC protected against cognitive decline, cellular damage (Planga´r et al., 2014) and peripheral cytokine production (Tőkéš et al., 2014) induced after partial brain irradiation. Moreover, it has been reported that silymarin can resist the inflammatory response of the nervous system and can also increase the ACh content by inhibiting cholinesterase activity (Guo et al., 2019, Aboelwafa et al., 2020). Thus, modulation of the cholinergic signaling pathway, including the inhibition of AchE, the activation of ChAT, and the promotion of ACh synthesis, may serve as a strategy for the treatment of whole body gamma irradiation-induced brain and intestinal injuries. The histopathological examination of the brain and intestinal tissues supported the biochemical results and confirmed the ameliorative effect GPC and silymarin against ionizing radiation.

Conclusion

According to the results obtained in this study, GPC - as a precursor of ACh- and silymarin - a strong natural antioxidant- exhibited modulating effect against detrimental effects of gamma radiation in rats via cholinergic anti-inflammatory pathway. This effect might be attributed to the activation of antioxidative, anti-apoptotic, and anti-inflammatory mechanisms. Therefore, GPC and silymarin might be suggested to serve as a strategy for the treatment of the negative side effects induced by the exposure to ionizing radiation. However, further studies are required to support these results before a clinical application can be recommended.
Declarations

Author contributions: Nahed Abdel-Aziz, Ahmed A. Elkady & Eman M. Elgazzar contributed to the achievement of the research, analysis of the results, and writing of the manuscript.

Data availability: The data and materials used in the present study are available from the corresponding author on reasonable request.

Ethical approval: This experiment was carried out according to the international guidelines of animal handling and care (NIH no. 85:23, 1996).

Human participants, human data or human tissue are not applicable.

Consent for publication: Cover letter of author’s agreements as attached document.

Competing Interests: The authors declare that they have no conflict of interest.

Funding: This article received no specific gift from any funding agency in the public, commercial, or not-for-profit sectors.

References

1. Abdel-Aziz N, Moustafa EM, Saada HN (2021) The impact of citicoline on brain injury in rats subjected to head irradiation. Environ Sci Pollut Res 28(8):9742–9752
2. Aboelwafa HR, El-Kott AF, Abd-Ella EM, Yousef HN (2020) The possible neuroprotective effect of silymarin against aluminum chloride-prompted Alzheimer’s-like disease in Rats. Brain Sciences 10(9):628
3. Ahmed AQ, Salman AY, Hassan AB, Abojassim AA, Mraity HAA (2020) The impact of Gamma Ray on DNA molecule. International Journal of Radiology Radiation Oncology 6(1):011–013
4. Al-hazmi A, Alomery A, Abderrahim LA (2019) Silymarin as a therapeutic extract for intestinal and splenic injuries induced by microcystin-LR in mice. Journal of King Saud University-Science 31(4):1414–1417
5. Al-Kadi A, Ahmed AS, El-Tahawy NFG, Khalifa MMA, El-Daly M (2020) Silymarin protects against sepsis-induced acute liver and kidney injury via anti-inflammatory and antioxidant mechanisms in the rat. Journal of advanced Biomedical and Pharmaceutical Sciences 2020;3(4):190–197
6. Brinkman DJ, Ten Hove AS, Vervoordeldonk MJ, Luyer MD, de Jonge WJ (2019) Neuroimmune interactions in the gut and their significance for intestinal immunity. Cells 8(7):670
7. Chen F, Wei X, Chen X, Xiang L, Meng X, Feng J (2020) The role of the α7nAChR-mediated cholinergic anti-inflammatory pathway in Hirschsprung associated enterocolitis. DOI: 10.21203/rs.3.rs-17106/v1
8. Cruz T, Gálvez J, Crespo E, Ocete MA, Zarzuelo A (2001) Effects of silymarin on the acute stage of the trinitrobenzenesulphonic acid model of rat colitis. Planta Med 67(01):94–96
9. Delmas D, Xiao J, Vejux A, Aires V (2020) Silymarin and cancer: A dual strategy in both in chemoprevention and chemosensitivity. Molecules 25(9):2009. https://doi.org/10.3390/molecules25092009

10. El-Elimat T, Alzoubi KH, AbuAlSamen MM, Al Subeh ZY, Graf TN, Oberlies NH (2019) Silymarin prevents memory impairments, anxiety, and depressive-like symptoms in a rat model of post-traumatic stress disorder. Planta Med 85(01):32–40

11. Elkiki S, Galal S (2018) Panax ginseng Extract Modulates Cerebral Damage Caused by Gamma Irradiation in Male Albino Rats. Egyptian Journal of Radiation Sciences Applications 31(2):111–124

12. El-Maraghi EF, Abdel-Fattah Kl, Soliman SM, El-Sayed WM (2020) Taurine abates the liver damage induced by γ-irradiation in rats through anti-inflammatory and anti-apoptotic pathways. International Journal of Radiation Biology 2020;96(12):1550–1559

13. El-Missiry MA, Shabana S, Ghazala SJ, Othman Al, Amer ME (2021) Melatonin exerts a neuroprotective effect against γ-radiation-induced brain injury in the rat through the modulation of neurotransmitters, inflammatory cytokines, oxidative stress, and apoptosis. Environ Sci Pollut Res Int 28(24):31108–31121. doi:10.1007/s11356-021-12951-5

14. Erukainure OL, Atolani O, Banerjee P, Abel R, Pooe OJ, Adeyemi OS, Preissner R, Chukwuma CI, Koorbanally NA, Islam MS (2021) Oxidative testicular injury: effect of l-leucine on redox, cholinergic and purinergic dysfunctions, and dysregulated metabolic pathways. Amino Acids 53(3):359–380

15. Gillessen A, Schmidt HHJ (2020) Silymarin as supportive treatment in liver diseases: A narrative review. Advances in therapy 37(4):1279–1301

16. Guo H, Cao H, Cui X, Zheng W, Wang S, Yu J, Chen Z (2019) Silymarin’s inhibition and treatment effects for Alzheimer's disease. Molecules 24(9):1748

17. Hassan AA, Moustafa EM, El-khashab IH, Mansour SZ (2021) Mangosteen Hinders Gamma Radiation-Mediated Oxidative Stress and Liver Injury by Down-Regulating TNF-α/NF-κB and Pro-Fibrotic Factor TGF-β1 Inducing Inflammatory Signaling. Dose Response 19(2):15593258211025190. doi:10.1177/15593258211025190

18. Ismail AF, El-Sonbaty SM (2016) Fermentation enhances Ginkgo biloba protective role on gamma-irradiation induced neuroinflammatory gene expression and stress hormones in rat brain. J Photochem Photobiol B 158:154–163

19. Kimura H, Imura YK, Tomiyasu H, Mihara T, Kaji N, Ohno K, Unno T, Tanahashi Y, Jan TR, Tsubone H, Ozaki H (2019) Neural anti-inflammatory action mediated by two types of acetylcholine receptors in the small intestine. Scientific reports 9(1):1–11

20. Lee SH, Choi BY, Kim JH, Kho AR, Sohn M, Song HK, Choi HC, Suh SW (2017) Late treatment with choline alfoscerate (l-alpha glycerylphosphorylcholine, α-GPC) increases hippocampal neurogenesis and provides protection against seizure-induced neuronal death and cognitive impairment. Brain research 1654:66–76

21. Mansour SZ, El-Marakby SM, Moawed FS (2017) Ameliorative effects of rutin on hepatic encephalopathy-induced by thioacetamide or gamma irradiation. J Photochem Photobiol B 172:20–
22. Moussa L, Usunier B, Demarquay C, Benderitter M, Tamarat R, Sémont A, Mathieu N (2016) Bowel radiation injury: complexity of the pathophysiology and promises of cell and tissue engineering. Cell Transplant 25(10):1723–1746
23. Musa AE, Shabeeb D, Alhifli HSQ (2019) Protective effect of melatonin against radiotherapy-induced small intestinal oxidative stress: biochemical evaluation. Medicina 55(6):308
24. Niesler B, Kuerten S, Demir IE, Schäfer KH (2021) Disorders of the enteric nervous system—a holistic view. Nature Reviews Gastroenterology Hepatology 18(6):393–410
25. Pal A, Kumar KH, Bhushan B, Saharan V (2017) Ashwagandha Root Extract Inhibits Acetylcholine Esterase, Protein Modification and Ameliorates H 2 O 2-Induced Oxidative Stress in Rat Lymphocytes. Pharmacognosy Journal 9(3)
26. Plangár I, Szabó ER, Tőkés T, Mán I, Brinyiczki K, Fekete G, Németh I, Ghyczy M, Boros M, Hideghéty K (2014) Radio-neuroprotective effect of L-alpha-glycerylphosphorylcholine (GPC) in an experimental rat model. Journal of neuro-oncology 119(2):253–261
27. Radwan RR, Karam HM (2020) Resveratrol attenuates intestinal injury in irradiated rats via PI3K/Akt/mTOR signaling pathway. Environmental toxicology 35(2):223–230
28. Rosas-Ballina M, Tracey KJ (2009) Cholinergic control of inflammation. Journal of internal medicine 265(6):663–679
29. Saha S, Buttari B, Panieri E, Profumo E, Saso L (2020) An overview of Nrf2 signaling pathway and its role in inflammation. Molecules 25(22):5474
30. Salim S (2017) Oxidative stress and the central nervous system. J Pharmacol Exp Ther 360(1):201–205
31. Shokouhi G, Kosari-Nasab M, Salari AA (2020) Silymarin sex-dependently improves cognitive functions and alters TNF-α, BDNF, and glutamate in the hippocampus of mice with mild traumatic brain injury. Life Sci 257:118049
32. Song C, Gao X, Song W, Zeng D, Shan S, Yin Y, Li Y, Baranenko D, Lu W (2020) Simulated spatial radiation impacts learning and memory ability with alterations of neuromorphology and gut microbiota in mice. RSC Advances 10(27):16196–16208
33. Strifler G, Tuboly E, Görbe A, Boros M, Pécz D, Hartmann P (2016) Targeting Mitochondrial Dysfunction with L-Alpha Glycerylphosphorylcholine. plos one 11(11):e0166682. doi:10.1371/journal.pone.0166682. eCollection
34. Suvarna KS, Layton C, Bancroft JD (2013) Bancroft's Theory and Practice of Histological Techniques, 7th Edition, Churchill Livingstone, USA, 766
35. Taleb A, Ahmad KA, Ihsan AU, Qu J, Lin N, Hezam K, Koju N, Hui L, Qilong D (2018) Antioxidant effects and mechanism of silymarin in oxidative stress induced cardiovascular diseases. Biomed Pharmacother 102:689–698
36. Tayebati SK, Tomassoni D, Di Stefano A, Sozio P, Cerasa LS, Amenta F. (2011) Effect of choline-containing phospholipids on brain cholinergic transporters in the rat. Journal of the neurological sciences 302(1–2):49–57

37. Tőkés T, Varga G, Garab D, Nagy Z, Fekete G, Tuboly E, Plangár I, Mán I, Szabó RE, Szabó Z, Volford G, Ghyczy M, Kaszaki J, Boros M, Hideghéty K. (2014) Peripheral inflammatory activation after hippocampus irradiation in the rat. Int J Radiat Biol 90(1):1–6. doi:10.3109/09553002.2013.836617

38. Tőkés T, Tuboly E, Varga G, Major L, Ghyczy M, Kaszaki J, Boros M. (2015) Protective effects of L-alpha-glycerylphosphorylcholine on ischaemia–reperfusion-induced inflammatory reactions. Eur J Nutr 54(1):109–118

39. Traini E, Bramanti V, Amenta F. (2013) Choline alphoscerate (alpha-glyceryl-phosphoryl-choline) an old choline-containing phospholipid with a still interesting profile as cognition enhancing agent. Curr Alzheimer Res 10(10):1070–1079

40. Tuboly E, Gáspár R, Ibor MO, Gömöri K, Kiss B, Strifer G, Hartmann P, Ferdinandy P, Bartekova M, Boros M, Görbe A. (2019) L-Alpha-glycerylphosphorylcholine can be cytoprotective or cytotoxic in neonatal rat cardiac myocytes: A double-edged sword phenomenon. Molecular cellular biochemistry 460(1):195–203

41. Tuboly E, Molnár R, Tőkés T, Turányi RN, Hartmann P, Mészáros AT, Strifer G, Földesi I, Siska A, Szabó A, Mohácsi Á. (2017) Excessive alcohol consumption induces methane production in humans and rats. Scientific reports 7(1):1–10

42. Vahabzadeh M, Amiri N, Karimi G. (2018) Effects of silymarin on metabolic syndrome: a review. J Sci Food Agric 98(13):4816–4823

43. Xu ZQ, Zhang WJ, Su DF, Zhang GQ, Miao CY. (2021) Cellular responses and functions of α7 nicotinic acetylcholine receptor activation in the brain: a narrative review. Annals of Translational Medicine 9(6)

44. Yahyapour R, Shabeeb D, Cheki M, Musa AE, Farhood B, Rezaeyan A, Amini P, Fallah H, Najafi M. (2018) Radiation protection and mitigation by natural antioxidants and flavonoids: implications to radiotherapy and radiation disasters. Curr Mol Pharmacol 11(4):285–304

45. Yu J. (2013) Intestinal stem cell injury and protection during cancer therapy. Translational cancer research 2(5):384

46. Yuan ZH, Feng L, Jiang WD, Wu P, Liu Y, Jiang J, Kuang SY, Tang L, Zhou XQ. (2021) Dietary Choline-Enhanced Skin Immune Response of Juvenile Grass Carp Might Be Related to the STAT3 and NF-κB Signaling Pathway (Ctenopharyngodon idella). Front Nutr. https://doi.org/10.3389/fnut.2021.652767

47. Zalat ZA, Kohaf NA, Alm El-Din MA, Elewa HA, Abdel-Latif MM. (2021) Silymarin: A promising cardioprotective agent. Azhar Int J Pharm Med Sci 1(1):13–21

48. Zoli M, Pucci S, Vilella A, Gotti C. (2018) Neuronal and Extraneuronal Nicotinic Acetylcholine Receptors. CurrNeuropharmacol 16(4):338–349. doi:10.2174/1570159X15666170912110450
Figures

Figure 1

Cerebrum gray matter of control rat showing normal structure (H &E x 400).

Figure 2
Cerebrum white matter of control rat showing normal structure (H &E x 400).

Figure 3

Cerebrum gray matter of GPC treated rat showing normal structure (H &E x 400).

Figure 4
Cerebrum white matter of silymarin treated rat showing normal structure (H &E x 400).

Figure 5

Cerebrum gray matter of irradiated rat showing numerous pyknotic neurons with proliferation of glia cells. (H &E x 400).

Figure 6
Cerebrum white matter of irradiated rat showing spongiform degeneration (H &E x 400).

Figure 7

Cerebrum gray matter of rat treated with GPC and radiation showing little degenerated pyramids neurons (H &E x 400).
Figure 8

Cerebrum white matter of rat treated with silymarin and radiation showing dilated blood vessel (H &E x 400).

Figure 9

Cerebrum gray matter of rat treated with GPC, silymarin and radiation. The majority of neurons and matrix with the normal morphological picture (H &E x 400).
Figure 10

Cerebrum white matter of rat treated with GPC, silymarin and radiation. The majority of nerve axons with the normal morphological picture (H &E x 400).
Figure 11

Intestine of control rat showing normal intestinal villi (H& E × 400).
Figure 12

Intestine of irradiated rat showing severe erosion, necrosis of the mucosal layer, swelling and invasion of inflammatory cells of the submucosal layer (H&E × 400).
Figure 13

Intestine of rat treated with GPC and radiation. showing leuckocytic infiltration around degenerated Bruner’s glands. (H& E × 400).
Figure 14

Intestine of rat treated with silymarin and radiation. showing The mucosa and submucosa show still inflammation, edematous and dystrophic external muscular layers (H& E × 400).
Figure 15

Intestine of rat treated with GPC, silymarin and radiation showing dilated blood vessels (H& E × 400).
Figure 16

Intestine of rat treated with GPC, silymarin and radiation showing normal or slightly expanded intestinal glands (H& E × 400).