Perfusion CT findings in liver of patients with tumor during chemotherapy

Qing Zhang, Zhen-Guo Yuan, Dao-Qing Wang, Zhi-Hui Yan, Jun Tang, Zuo-Qin Liu

AIM: To investigate the microcirculation changes in liver of patients with tumor during chemotherapy by perfusion computed tomography (CT).

METHODS: Sixty patients with tumor and 20 controls were enrolled in this study. Perfusion CT parameters of patients and controls were compared, including hepatic perfusion index (HPI), mean transit time (MTT), and permeability-surface area product (PS). Correlation between perfusion CT parameters, treatment cycle and alanine aminotransferase (ALT) level was studied.

RESULTS: No difference was found in HPI (25.68% ± 7.38% vs 26.82% ± 5.13%), MTT (19.67 ± 5.68 s vs 21.70 ± 5.43 s) and PS (17.00 ± 4.56 mL/100 mL per min vs 19.92 ± 6.35 mL/100 mL per min) between patients and controls. The HPI and MTT were significantly higher in patients undergoing 2 cycles of chemotherapy than those undergoing 1 cycle of chemotherapy (29.76% ± 5.87% vs 25.68% ± 7.38% and 25.35% ± 4.05%, and 25.61 ± 5.01 s vs 19.67 ± 5.68 s and 19.74 ± 4.54 s, respectively, P < 0.05). The HPI was higher in patients with hepatic steatosis than in controls and those without hepatic steatosis (30.85% ± 6.17% vs 25.68% ± 7.38% and 25.70% ± 4.24%, P < 0.05). Treatment cycle was well correlated with HPI and MTT (r = 0.40, r = 0.50, P < 0.01). ALT level was not correlated with perfusion CT parameters.

CONCLUSION: HPI and MTT are significantly increased in patients with tumor during chemotherapy and well correlated with treatment cycle. Chemotherapy affects hepatic microcirculation in patients with tumor. Changes in hepatic microcirculation can be quantitatively assessed by perfusion CT.

Zhang Q, Yuan ZG, Wang DQ, Yan ZH, Tang J, Liu ZQ. Perfusion CT findings in liver of patients with tumor during chemotherapy. World J Gastroenterol 2010; 16(25): 3202-3205 Available from: URL: http://www.wjgnet.com/1007-9327/full/v16/i25/3202.htm DOI: http://dx.doi.org/10.3748/wjg.v16.i25.3202

INTRODUCTION

Liver damage secondary to chemotherapy in patients with
tumor is common, and hepatic toxicity differs from mild inflammatory changes of nonspecific hepatitis to fibrosis and marked cirrhosis. Although early liver damage causes no symptoms and is reversible in most patients, it occasionally progresses to more severe liver impairment, which may be irreversible. It is, therefore, necessary to demonstrate the presence and severity of drug-related parenchymal changes with effective imaging.

Early liver damage cannot be demonstrated by traditional computed tomography (CT). Perfusion CT is a noninvasive method showing hemodynamic changes in living tissue and has been used in evaluation of liver diseases. However, microcirculation changes in liver on perfusion CT image during chemotherapy have not been described. In this study, we investigated the hemodynamic changes in liver during chemotherapy, and estimated the correlation between the perfusion CT parameters and alanine aminotransferase (ALT) level.

MATERIALS AND METHODS

Patients and study design
Eighty consecutive individuals including 60 patients with tumor and 20 controls were enrolled in this study. Although history, physical examination, laboratory test, and Doppler sonography of liver showed that the 20 controls including 8 women at a mean age of 47.3 ± 8.6 years (range 35-64 years) had no evidence of liver disease, they underwent abdominal perfusion CT for unrelated causes. Inclusion criteria included patients with tumor confirmed by appropriate clinical and laboratory examinations, those still on chemotherapy when perfusion CT was performed, those with hepatic carcinoma or metastasis who had an adequate space in liver parenchyma for later calculation, those who had no history of alcohol abuse, viral hepatitis, liver cirrhosis or other hepatic/biliary diseases, and those who had adequate heart, renal and liver function for perfusion CT. The 60 patients including 24 women at a mean age of 53.2 ± 7.1 years (range 25-71 years) met the criteria. All patients received 1-2 cycles of chemotherapy (6-8 courses in one treatment cycle). Perfusion CT parameters were compared between controls and patients. The diagnostic criteria for hepatic steatosis were the density of liver parenchyma lower than that of spleen or the CT value of liver parenchyma less than 40 Hu on CT image without contrast agent.

The study was approved by the institutional ethics committee. Written informed consent was obtained from each patient or his or her family members after the study. The patients kept normal respiration during the perfusion study. The CT parameters used in this study were 120 kV, 250 mA, 5-mm slice thickness, 1-s cycle time and standard reconstruction algorithm.

After image acquisition, the data were transferred to an image processing workstation (AW4.1, GE Healthcare, Chalfont St. Giles, UK) and analyzed with the integrated software of CT Perfusion 3. Four regions of interest (ROI) were set on the abdominal aorta, portal vein trunk, spleen and right liver lobe. The ROI of right liver lobe was drawn on the whole visible right lobe carefully, avoiding blood vessels, margin of liver parenchyma and possible lesions. Hepatic perfusion index (HPI), mean transit time (MTT), and permeability-surface area product (PS) were calculated.

Statistical analysis
All data were expressed as mean ± SD. Independent-sample t-test was used to determine differences between patients and controls. Data about controls and patients were compared by one-way ANOVA. Spearman correlation coefficient was used to assess the correlation between perfusion parameters, treatment cycle and ALT level. All tests were two-tailed. P < 0.05 was considered statistically significant. Data processing and analysis involved use of SPSS v11.5 (SPSS Inc., Chicago, IL, USA).

RESULTS

Differences in perfusion parameters
No significant difference was found in HPI (25.68% ± 7.38% vs 26.82% ± 5.13%, t = 0.77, P = 0.44), MTT (19.67 ± 5.68 s vs 21.70 ± 5.43 s, t = 1.43, P = 0.16) and PS (17.00 ± 4.56 mL/100 mL per min vs 19.92 ± 6.35 mL/100 mL per min, t = 1.90, P = 0.06) between patients and controls.

Patients were divided into two subgroups: one receiving 1 cycle of chemotherapy (n = 40) and the other receiving 2 cycles of chemotherapy (n = 20). The HPI and MTT were higher in patients receiving 2 cycles of chemotherapy than in those receiving 1 cycle of chemotherapy and controls (29.76% ± 5.87% vs 25.35% ± 4.05% and 25.68% ± 7.38%, and 25.61 ± 5.01 s vs 19.74 ± 4.54 s and 19.67 ± 5.68 s, P < 0.05). No significant difference was observed in HPI and MTT between patients and controls receiving 1 cycle of chemotherapy and controls, and in PS between patients and controls (F = 1.78, P = 0.18) (Table 1).
Table 1 Comparison of perfusion parameters between controls and patients by treatment cycle (mean ± SD)

Parameters	Controls (n = 20)	1 cycle (n = 20)	2 cycles (n = 40)	F value	P value
HPI (%)	25.68 ± 7.36	25.35 ± 4.05	29.76 ± 5.87	4.62	0.01
MTT (s)	19.67 ± 5.68	19.74 ± 4.54	25.61 ± 5.01	10.59	<0.01
PS (mL/100 mL per min)	17.00 ± 4.56	19.95 ± 6.76	19.86 ± 5.60	1.78	0.18

Table 2 Comparison of perfusion parameters between controls and patients with or without hepatic steatosis (mean ± SD)

Parameters	Controls (n = 20)	Patients without steatosis (n = 47)	Patients with steatosis (n = 13)	F value	P value
HPI (%)	25.68 ± 7.38	25.70 ± 4.24	30.85 ± 6.17	8.13	0.009
MTT (s)	19.67 ± 5.68	21.33 ± 5.31	23.03 ± 5.83	4.32	0.044
PS (mL/100 mL per min)	17.00 ± 4.56	20.23 ± 6.08	18.79 ± 7.43	6.46	0.013

Of the 60 patients, 13 (21.7%) showed hepatic steatosis. The incidence of hepatic steatosis was higher in patients receiving 2 cycles of chemotherapy than in those receiving 1 cycle of chemotherapy (P = 0.01). The HPI was higher in patients with hepatic steatosis than in those without hepatic steatosis and controls (30.85% ± 6.17% vs 25.70% ± 4.24% and 25.68% ± 7.38%, P < 0.05). No significant difference was found in HPI between patients without hepatic steatosis and controls, and in MTT or in PS between patients and controls (Table 2).

Correlation between CT perfusion parameters, treatment cycle and ALT level

Treatment cycle was well correlated with HPI (r = 0.40, P < 0.01) and MTT (r = 0.50, P < 0.01) but not with PS (r = 0.02, P = 0.89). ALT level was not correlated with treatment cycle (r = -0.05), HPI (r = -0.06), MTT (r = 0.19), and PS (r = 0.18).

DISCUSSION

Hepatic toxicity is often encountered in patients with tumor following chemotherapy. Chemotherapy agents can impair many vital functions of liver cells and cause their death[3]. Severe cell death is followed by nodular regeneration and obstruction of sinusoids, including transformation of fenestrated sinusoids into continuous capillaries and deposition of collagen in extravascular tissue spaces located between sinusoidal endothelium and hepatocytes[6,7]. These morphologic alterations modify blood transit time and distribution volume of small and large molecules[6,7], increase vascular resistance and reduce portal perfusion[8,9]. The reduction in portal perfusion is then buffered by liver arterialization, thereby increasing the arterial fraction of liver perfusion[8,9,10]. These alterations following chemotherapy are non-specific and can mimic any form of acute or chronic liver disease.

Perfusion CT can be used to evaluate the hemodynamic changes in liver disease. However, since the results of previous studies are varied[10-13], no established conclusion is available on the change in liver perfusion, especially in early chronic liver disease. Some studies showed that HPI and MTT values were significantly increased in patients or rats with chronic liver disease[10,12-13]. However, another study showed that the MTT is lower while the PS is higher in patients than in controls[14]. In the present study, the hepatic HPI and MTT values were higher in patients during chemotherapy than in controls, and well correlated with treatment cycle. No significant difference was observed in PS between patients and controls.

Steatosis is a common manifestation of drug hepatotoxicity and a form of liver damage most readily recognized on CT image. Several studies have shown that the incidence of hepatic steatosis is increased in patients undergoing chemotherapy[15-18]. In this study, hepatic steatosis was observed in 13 (21.7%) of the 60 patients, which was higher in patients receiving 2 cycles of chemotherapy than in those receiving 1 cycle of chemotherapy. The HPI was higher in patients with hepatic steatosis than in those without hepatic steatosis and controls. No difference was found in MTT or in PS between patients and controls.

At present, ALT level is the main index of drug-induced hepatic damage[14]. However, the ALT level was found to be a less sensitive index of hepatic damage and could not thoroughly reflect hepatic toxicity in this study. In clinical practice, many liver function tests remain normal despite obvious liver changes seen on CT images. In the present study, only 4 of 13 patients with hepatic steatosis had abnormal ALT, which was not correlated with HPI, MTT or PS. However, it has been shown that perfusion CT parameters are correlated with the severity of hepatic disease[13], indicating that further study is needed to classify the severity of liver damage with perfusion CT parameters.

Our study has some limitations. First, the injection rate of contrast agent was low. Because the detection of perfusion parameters is affected by many factors such as the type and injection rate of contrast agent, drawing of ROI and calculation method[20,21], the low injection rate may be a major obstacle to comparison with other results. Second, our sample size was small. Third, we only investigated the changes in perfusion CT in liver of patients during chemotherapy, and did not observe the entire changing characteristics of hepatic microcirculation during and after chemotherapy.

In conclusion, hepatic microcirculation is changed in patients with tumor during chemotherapy and can be quantitatively assessed by perfusion CT. Perfusion CT may be used as a noninvasive tool in detection of hepatic toxicity.

ACKNOWLEDGMENTS

The authors thank Ji-Quan Du, Hospital of Shandong Armed Police Forces for his efforts in the research, and
Liver damage is common in patients with tumor following chemotherapy. Although early liver damage causes no symptoms and is reversible in most patients, it occasionally progresses to more severe liver impairment, which may be irreversible, it is thus necessary to demonstrate the presence and severity of drug-related parenchymal changes.

Research frontiers

Hepatic microcirculation changes in patients with tumor undergoing chemotherapy were evaluated by perfusion computed tomography (CT). The hotspot of this research is whether hepatic microvascular changes can be quantified with perfusion CT and what kind of modifications can be detected.

Innovations and breakthroughs

At present, alanine aminotransferase (ALT) level is the main index in diagnosis of drug-induced hepatic damage. In this study, however, ALT level was found to be a less sensitive index and could not thoroughly reflect hepatic toxicity. The aim of this study was to investigate the microcirculation changes in liver of patients with tumor during chemotherapy, showing that hepatic perfusion index and mean transit time are significantly increased in patients undergoing 2 cycles chemotherapy.

Applications

The findings of this study may underscore the possibility of using perfusion CT parameters as indicators of hepatic microcirculation alteration in drug-induced liver damage. Perfusion CT may be used as a noninvasive tool in detection of hepatic toxicity.

Peer review

The paper is a concise documentation of a good study.

REFERENCES

1. **Hutter RV**, Shipkey FH, Tan CT, Murphy ML, Chowdhury M. Hepatic fibrosis in children with acute leukemia: a complication of therapy. *Cancer* 1960; 13: 288-307

2. **Perry MC**. Hepatotoxicity of chemotherapeutic agents. *Semin Oncol* 1982; 9: 65-74

3. **Kaplowitz N**, Aw TY, Simon FR, Stolz A. Drug-induced hepatotoxicity. *Ann Intern Med* 1986; 104: 826-839

4. **Horn T**, Christoffersen P, Henrikson JH. Alcoholic liver injury: defenestration in noncirrhotic livers—a scanning electron microscopic study. *Hepatology* 1987; 7: 77-82

5. **Martinez-Hernandez A**. The hepatic extracellular matrix. II. Electron immunohistochemical studies in rats with CCl4-induced cirrhosis. *Lab Invest* 1985; 53: 166-186

6. **Huet PM**, Goresky CA, Villeneuve JP, Marleau D, Lough JO. Assessment of liver microcirculation in human cirrhosis. *J Clin Invest* 1982; 70: 1234-1244

7. **Varin F**, Huet PM. Hepatic microcirculation in the perfused cirrhotic rat liver. *J Clin Invest* 1985; 76: 1904-1912

8. **Leen E**, Goldberg JA, Anderson JR, Robertson J, Moule B, Cooke TG, McArdie CS. Hepatic perfusion changes in patients with liver metastases: comparison with these patients with cirrhosis. *Gut* 1993; 34: 554-557

9. **Tsushima Y**, Blomley JK, Kusano S, Endo K. The portal component of hepatic perfusion measured by dynamic CT: an indicator of hepatic parenchymal damage. *Dig Dis Sci* 1999; 44: 1632-1638

10. **Kleber G**, Steudel N, Behrmann C, Zipprich A, Hübner G, Lotterer E, Fleig WE. Hepatic arterial flow volume and reserve in patients with cirrhosis: use of intra-arterial Doppler and adenosine infusion. *Gastroenterology* 1999; 116: 906-914

11. **Lautt WW**. Mechanism and role of intrinsic regulation of hepatic arterial blood flow: hepatic arterial buffer response. *Am J Physiol* 1985; 249: G549-G556

12. **Guan S**, Zhao WD, Zhou KR, Peng WJ, Mao J, Tang F. CT perfusion at early stage of hepatic diffuse disease. *World J Gastroenterol* 2005; 11: 3465-3467

13. **Van Beers BE**, Leconte I, Materne R, Smith AM, Jamart J, Horsmans Y. Hepatic perfusion parameters in chronic liver disease: dynamic CT measurements correlated with disease severity. *AJR Am J Roentgenol* 2001; 176: 667-673

14. **Chen ML**, Zeng QY, Hua JW, Yin XM, Li BP, Liu JX. Assessment of the hepatic microvascular changes in liver cirrhosis by perfusion computed tomography. *World J Gastroenterol* 2009; 15: 3532-3537

15. **Koooby DA**, Feng Y, Suriawinata A, Gonen M, Allen PJ, Klimestra DS, DeMatteo RP, D’Angelica M, Blumgart LH, Jarnagin WR. Impact of steatosis on perioperative outcome following hepatic resection. *J Gastrointest Surg* 2003; 7: 1034-1044

16. **Moertel CG**, Fleming TR, MacDonald JS, Haller DG, Laurie JA. Hepatic toxicity associated with fluorouracil plus le-mansilo adjuvant therapy. *J Clin Oncol* 1995; 11: 2386-2390

17. **Peppercorn PD**, Reznik RH, Wilson P, Slevin ML, Gupta RK. Demonstration of hepatic steatosis by computerized tomography in patients receiving 5-fluorouracil-based therapy for advanced colorectal cancer. *Br J Cancer* 1998; 77: 2008-2011

18. **Sørensen P**. Edal AL, Madsen EL, Fenger C, Poulsen MR, Petersen OF. Reversible hepatic steatosis in patients treated with interferon alpha-2a and 5-fluorouracil. *Cancer* 1995; 75: 2592-2596

19. **Bénichou C**. Criteria of drug-induced liver disorders. Report of an international consensus meeting. *J Hepatol* 1990; 11: 272-276

20. **Kapanen M**, Halavaara J, Häkkinnen AM. Comparison of liver perfusion parameters studied with conventional extra-vascular and experimental intravascular CT contrast agents. *Acad Radiol* 2007; 14: 951-958

21. **Nakashige A**, Horiguchi J, Tamura A, Asahara T, Shimamoto F, Ito K. Quantitative measurement of hepatic portal perfusion by multidetector row CT with compensation for respiratory misregistration. *Br J Radiol* 2004; 77: 729-734

S-Editor Tian L. L-Editor Wang XL. E-Editor Ma WH