Acarologia is proudly non-profit, with no page charges and free open access

Please help us maintain this system by encouraging your institutes to subscribe to the print version of the journal and by sending us your high quality research on the Acari.

Subscriptions: Year 2023 (Volume 63): 450 €
http://www1.montpellier.inra.fr/CBGP/acarologia/subscribe.php
Previous volumes (2010-2021): 250 € / year (4 issues)
Acarologia, CBGP, CS 30016, 34988 MONTFERRIER-sur-LEZ Cedex, France
ISSN 0044-586X (print), ISSN 2107-7207 (electronic)

The digitalization of Acarologia papers prior to 2000 was supported by Agropolis Fondation under the reference ID 1500-024 through the « Investissements d’avenir » programme (Labex Agro: ANR-10-LABX-0001-01)

Acarologia is under free license and distributed under the terms of the Creative Commons-BY
FAVOGNATHUS HYRCANENSIS N. SP., A NEW SPECIES OF THE GENUS FAVOGNATHUS (ACARI: TROMBIDIFORMES: CRYPTOGNATHIDAE) FROM NORTHERN IRAN

Sheila Shirinbeik Mohajer¹, Mohammad Bagheri², Mohsen Yazdanian³, Alireza Saboori⁴ and Saeed Paktinat Saeji²

(Received 27 November 2013; accepted 23 February 2014; published online 30 June 2014)

¹ Department of Agriculture, Payame Noor University, PO BOX 19395-3697 Tehran, I.R. of Iran. shirinbeik.shila@gmail.com
² Department of Plant Protection, Faculty of Agriculture, University of Maragheh, Maragheh, Iran. mbagheri20022002@yahoo.com, saeedpaktinat@yahoo.com
³ Department of Plant Protection, Faculty of Plant Production, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran. mohsenyazdanian@gau.ac.ir
⁴ Department of Plant Protection, Faculty of Agriculture, University of Tehran, Karaj, Iran. saboori@ut.ac.ir

ABSTRACT — Favognathus hyrcanensis n. sp. (Acari: Cryptognathidae) is described and illustrated from adult specimens collected from soil in Golestan county, Iran.

KEYWORDS — Acariformes; Trombidiformes; Cryptognathidae; Favognathus hyrcanensis; new species; Iran

INTRODUCTION

The Cryptognathidae was erected by Oudemans (1902) with Cryptognathus Kramer, 1879 as type genus. Members of this family are recognized by the presence of a protective hood anterior of the propodosoma and extremely extendable gnathosomal base (Doğan, 2008). Although these small animals had been suggested as predatory mites (Baker and Wharton, 1952; Meyer and Ryke, 1960), their delicate mouth parts and their small size make it difficult to imagine the type of prey with which they might be associated. Their chelicerae are elongate, delicate and edentate, so they may be selective feeders on, say, fungal spores. The needle-like chelicerae may also be adopted to select algal cells or else, and this seems the best of several alternatives, to pierce plant cells and drain the contents (Luxton, 1973). Cryptognathidae comprises 57 species in three genera: Favognathus Luxton (35 species), Cryptognathus Kramer (20 species) and Cryptofavognathus Doğan and Dönel, 2010 (2 species) (Fan and Zhang, 2005; Khanjani and Ueckermann, 2008; Doğan 2008; Dönel and Doğan, 2011; Uluçay and Koç, 2013). Up to now 6 species of the genus Favognathus, namely; F. mirazii Khanjani and Ueckermann, 2008 and F. luxtoni Koç and Ayyildiz, 1999, F. pongolensis Meyer and Ueckermann, 1989, F. distortus Kuznetsov, 1974; F. amygdalus Doğan and Ayyildiz, 2004 and F. cordylus Luxton 1993 (Khanjani and Ueckermann 2008; Gheblealivand et al., 2011; Bagheri et al., 2013a, b and Rahmati et al., 2013) have been reported from
Iran. In this paper a new species, *Favognathus hyrcanensis* n.sp. is described and illustrated.

MATERIALS AND METHODS

Soil and rotten leaves samples were collected and mites were extracted by using a Berlese-Tullgren funnel. Collected specimens were cleared in Nesbitt’s fluid and mounted in Hoyer’s medium (Krantz and Walter, 2009), thus examined with a phase-contrast microscope and drawn. The length of the idiosoma was measured from the suture between the gnathosoma and idiosoma to the posterior margin of idiosoma; the width of the idiosoma was measured at the broadest part of the idiosoma and setae were measured from their insertion to their tips. Terminology follows that of Luxton (1973). Dorsal setal measured from their insertion to their tips. Termination follows that of Luxton (1973). Dorsal setal and leg setal designation follows Grandjean (1944) and dorsal setal Kethley (1990). All measurements are given in micrometers (µm).

RESULTS

Superfamily Raphignathoidea

Family Cryptognathidae

Genus Favognathus Luxton, 1973

Type species: *Cryptognathus cucurbita* Berlese, 1916.

Diagnosis — This genus can be easily distinguished from other genera of the family Cryptognathidae with the prosternal apron wedge-shaped, dimpled; two pairs of genital setae.

Favognathus hyrcanensis n. sp. Shirinbeik Mohajer and Bagheri (Figures 1-3)

Diagnosis — Anterior margin of the hood denticulated; dorsal shield completely ornamented with reticulations; reticular cells with 4 – 10 peripheral pores and short striae, pores distributed evenly in all reticulation cells; dorsally with four slit-like cupules; dorsum with two pairs of clusters; ventral shield with lateral reticulation, fine striae and pores; intercoxal area striae; femora I-IV: 4-3-2-2; genua I-IV: 5+(+ω)-4+(+ω)-2-3 tarsi I-IV: 15+(+ω1+ω2)-12+(ω1+ω2)-9+(ω)-9+(ω).

Description — Female (n=4)- Color red in life. Length of body (including gnathosoma) (the ranges of measurements are in the parentheses): 300 (313 – 345); Length of body (excluding gnathosoma): 260 (283 – 290); width of body: 195 (190 – 210); leg I: 225 (235 – 250), leg II: 175 (180 – 211), leg III: 188 (183 – 200), leg IV: 220 (208 – 233).

Dorsum (Fig. 1A) — Anterior margin of the hood denticulated; hood with 6-7 dimples in each longitudinal row. Dorsal shield completely ornamented with reticulations except region beside setae h1, reticular cells with 4-10 peripheral pores and short striae, pores distributed evenly in all reticulation cells; dorsum with 11 pairs of simple setae, one pair of eyes and one pair of postocular bodies laterally between setae sci and sce; dorsal body with three pairs of slit-like cupules as follows: ia between setae sce and c1, im beside seta e2 and ip beside setae h2; clusters of reticulated cells associated with setae c1 and d1 present, these rosette patterns consist of 6-8 cells, of which one of them arrange as central cell, anal opening dorsoventrally, with three pairs of setae (ps). Length of dorsal setae and their distances: vi: 17 (20 – 35); ve: 31 (30 – 34); sci: 35 (38 – 39); c1: 44 (43 – 45); sce: 28 (29 – 43); d1: 40 (45 – 50); e1: 45 (43 – 50); e2: 40 (38 – 52); f1: 43 (35 – 44); h1: 28 (35 – 41); h2: 30 (27 – 43); vi-vi: 32 (33 – 39); vi-ve: 17 (15 – 17); ve-ve: 34 (35 – 41); ve-sce: 10 (15 – 20); sci-sci: 52 (54 – 65); c1-c1: 64 (70 – 74); sce-sce 101 (102 – 110) c1-sce: 18 (18 – 22); d1-d1: 108 (120 – 130); d1-e1: 42 (50 – 54); e1-e1: 75 (80 – 90); e1-e2: 21 (20 – 23); e2-e2: 95 (95 – 114); e1-f1: 53 (50 – 60); f1-f1: 35 (35 – 45); f1-h1: 28 (34 – 35); h1-h1: 16 (15 – 19); h1-h2: 29 (21 – 30); h2-h2: 72 (70 – 78).

Venter (Fig. 1B) — Prosternal apron wedge-shaped with 13-15 foveolae; venter with 4 pairs of ventral setae (1a, 3a, 4a and 4c); genital opening with 2 pairs of genital (g1,2) and 2 pairs of aggenital (ag1,2) setae; ventral shield with lateral reticulation, fine striae and pores, intercoxal area striae and with a longitudinal row of pores; venter with cupule ih. Length of ventral setae: 1a 26 (24 – 27), 3a 21 (20 – 23), 4a 17 (18 – 20), 4c 17 (13 – 18), ag1 15 (13 – 15),
FIGURE 1: Favognathus hyrcanensis n. sp. (Female): A – Dorsal view of idiosoma; B – Ventral view of idiosoma.

Gnathosoma (Fig. 1B) — Hypostome narrow (Fig. 1B), with one pair of long setae m28 (30–34) and two pairs of adoral setae, or1 8 (7–10), or2 12 (10–14) (Fig. 1B); chelicerae: 105 (106–113); stylophore: 20 (18–30) (Fig. 2A); palp (Fig. 2B) 91 (85–98) long, palptarsus with four eupathidia, four simple setae and one solenidion; palptibia with three simple setae; palpgenu with two and palp femur with three simple setae. Palp trochanter without seta.

Legs (Figures 3A-D) — Setal formulae of leg segments (solenidia in parentheses and not included): coxae 2-1-2-1; trochanters 1-1-2-1; femora 4-3-2-2; genua 5(+κ)-4(+κ)-2-3; tibiae 5(+φ+φp)-5(+φp)-4(+φp)-3; tarsi 15(+ω1+ω2)-12(+ω1+ ω2)-9(+ω)-9(+ω).

Male and immature stages — Unknown.

Etymology — This species is named F. hyrcanensis n. sp., because Hyrcana is the ancient name of our city, Gorgan, where we found this species.

Type material — Holotype and three paratype of Favognathus hyrcanensis n.sp. were collected.
Figure 2: Favognathus hyrcanensis n. sp. (Female): a – Chelicerae; b – Palpus.

Table 1: Comparative characters between Favognathus hyrcanensis n. sp. and closely related species.

Species/Characters	Anterior margine of hood	Tarsi I,II	Tibia III,IV	Genua I,II	Femur I	Trochanter I,IV	Intercoxal area	Striae
F. hyrcanensis n. sp.	denticulate	15(+2)−12(+2)	4(+1)−3	5(+1)−4(+1)	4	1,1,2,1	striae	
F. bafranus	smooth	14(+2)−10(+2)	4(+1)−3	5(+1)−5 or 4(+1)	4	1,1,2,1	striae	
F. luxtoni	smooth	14(+2)−12(+2)	4(+1)−3	5(+1)−4	3	1,1,1,0	striae	
F. observabilis	smooth or denticulate	15(+2)−12(+2)	4(+1)−3	5(+1)−4	3	1,1,2,1	smooth	
F. pictus	smooth	14(+2)−12(+2)	4(+1)−2(+1)	5 or 6(+1)−5(+1)	4	1(0),1,2,1	striae	
from soil on 25th May, 2010, Gorgan city, Golestan province, Iran, by Sheila Shirinbeik Mohajer. The holotype and one paratype will be deposited to Jalal Afshar Zoological Museum, Department of Plant Protection, Faculty of Agriculture, University of Tehran, Karaj, Iran and two paratypes were deposited to the Acarological Collection, Department of Plant Protection, Faculty of Plant Protection, University of Gorgan, Iran.

Remarks — This new species is closely related to *F. bafranus* Doğan 2008; *F. luxtoni* Koç and Ayyıldız, 1999; *F. observabilis* Kuznetsov, 1974 and *F. pictus* Summers and Chaudhri, 1965 in having same dorsal and ventral shields patterns and in the presence of rosettes; however, it can be distinguished by the combination of characters provided in Table 1.

Key to the Iranian species of *Favognathus*

1. Dorsum without rosette patterns 2
 — Dorsum with rosette patterns 3

2. Sternocoxal region with a pair of angular condyles *F. cordylus* Luxton
 — Sternocoxal region without angular
condyles……. F. mirazii Khanjani and Ueckermann

3. Dorsum partly reticulated …………………… 4 — Dorsum completely reticulated …………………… 5

4. Setal formula of tarsi 17-14-10-10. …………………... F. pongolensis Meyer and Ueckermann — Setal formula of tarsi 16-14-10-10. …………………… F. amygdalus Doğan and Ayyildiz

5. Anterior margine of hood denticulated……………… F. hyrcanensis n. sp. — Anterior margine of hood smooth …………… 6

6. Setal formula of tarsi 16-14-10-10, pores are present in the centre of each cell, intercoxal area striated……………… F. luxtoni Koç and Ayyildiz — Setal formula of tarsi 17-14-10-10, 3-6 pores present in the corner of each cell, intercoxal area smooth ………………… F. distortus (Kuznetzov)

ACKNOWLEDGEMENTS
This project was supported by the research division of Gorgan University of Agricultural Sciences and Natural Resources which is greatly appreciated.

REFERENCES
Bagheri M., Maleki N., Gharekhani Gh., Ahani-azad M. 2013a — Cryptognathid mites (Acari: Trombidiformes: Cryptognathidae) of north-west Iran — 2nd Intern Persian Congr Acarol, Karaj, Iran, p. 6, Abstract available from: (http://acarology.ir/2nd%20IPCA%20Program%20Abstract%20book.PDF)

Bagheri M., Paktinat Saeie S., Shirinbeik Mohajer Sh. 2013b — New species and records of family Cryptognathidae (Acari: Prostigmata: Cryptognathiidae) from Iran — 2nd Intern Persian Congr Acarol, Karaj, Iran, p. 6, Abstract available from: (http://acarology.ir/2nd%20IPCA%20Program%20Abstract%20book.PDF)

Baker E.W. and Wharton G.W. 1952 — An Introduction to Acarology — MacMillan, New York: Publisher. pp. 465.

Doğan S. 2008 — A catalogue of cryptognathid mites (Acari: Prostigmata, Cryptognathiidae) with the description of a new species of Favognathus Luxton and newly discovered male of F. amygdalus Doğan & Ayyildiz from Turkey — J Natur Hist, 42: 1665-1686.

Doğan S., Ayyildiz N. 2004 — Mites of the genus Favognathus (Acari: Cryptognathiidae) from Erzurum Province, Turkey — Intern J Acarol, 30:123-130.

Doğan S., Donel G. 2010 — Cryptofavognathus, a new genus of the family Cryptognathidae Oudemans (Acari, Raphignathoidea) with the description of a new species from Turkey — Zootaxa, 2533: 36-42.

Dönel G., Doğan S. 2011 — A systematic investigation on cryptognathid mites (Acari: Cryptognathiidae) of Kelkit Valley (Turkey) — Türkiye Entomoloji Dergisi, 35: 361-380.

Fan Q.-H., Zhang Z.-Q. 2005 — Raphignathoidea (Acari: Prostigmata), fauna of New Zealand — Lincoln, Canterbury, New Zealand: Publisher. pp. 399.

Gheblealivand S.-S., Bagheri M., Ghorbani H. 2011 — Raphignathoidea (Acari: Trombidiformes) mite fauna of Bonab and Malekan orchards and crop fields — 2nd Iranian Pest Management Conference, Kerman, Iran, p. 69, Abstract available from: (http://www.civilica.com/EnPaper—PESTMAN02_064.html)

Grandjean F. 1944 — Observations sur les acariens de la famille des Stigmaeidae — Arch. Sci. Phys. Nat Genève, 26: 103-131.

Kethley J. 1990 — Acarina: Prostigmata (Actinedida). In: Dindal DL, ed. Soil Biology Guide — New York: John Wiley and Sons: Publisher. pp. 667-756.

Khanjani M., Ueckermann, E.-A. 2008 — New species of the genus Favognathus Luxton (Acari, Cryptognathiidae) from Iran — Acarologia, 48: 177-186.

Koc K., Ayyildiz N. 1999 — Some species of Favognathus Luxton, 1973 (Acari: Actinedida: Cryptognathiidae) from Turkey — J. Natur. Hist., 33: 621-628. doi:10.1080/0022293999300263

Krantz G.-W., Walter D.-E. 2009 — A Manual of Acarology — 3rd edition, Lubbock: Texas Technology University Press:Publisher. pp. 704.

Kuznetsov N.-N. & Livshitz I.-Z. 1974 — Raphignathoide mites of Crimea. I. The family Cryptognathidae Oudemans — Zoologisch Zhur, 53: 1721-1726.

Luxton M. 1973 — Mites of the genus Cryptognathus from Australia, New Zealand and Niue Island — Acarologia, 15: 53-75.

Luxton M. 1993 — New species cryptognathid mites from Israel (Acari: Prostigmata: Cryptognathiidae) — J Natur Hist, 27:1213-1217. doi:10.1080/00222939300770711
Meyer M.-K.-P., Ryke P.-A.-J. 1960 — Mites of the superfamily Raphignathoidea (Acarina: Prostigmata) associated with South African plants — Ann Mag Natur Hist, 13: 209-234.

Meyer M.-K.-P. & Ueckermann E.-A. 1989 — African Raphignathoidea (Acari: Prostigmata) — Entomology Memoir, Dept of Agricultural Technical Services, Republic of South Africa, 74: 1-58.

Oudemans A.-C. 1902 — Acari, neue Arten, Klassifikation — Tijdschr Entomol, 45: 50-64.

Rahmati M., Kheradmand K., Jafari Sh., Bagheri M. 2013 — Faunistic study of the families Raphignathidae and Cryptognathidae (Acari: Trombidiformes) from Lorestan Province, Iran — 2nd Intern Persian Congr Acarology, Karaj, Iran, p. 30, Abstract available from: (http://acarology.ir/2nd%20IPCA%20Program%20book.PDF)

Summers F.-M., Chaudhri W.-M. 1965 — New species of the genus Cryptognathus Kramer (Acarina: Cryptognathidae) — Hilgardia, 36:313-326.

Uluçay I., Koç K. 2013 — Some cryptognathid mites (Acari: Cryptognathidae) from Kütahya Province (Turkey) — Persian J Acarol, 2(3): 487-502.

COPYRIGHT

Mohajer S.S. et al. Acarologia is under free license. This open-access article is distributed under the terms of the Creative Commons-BY-NC-ND which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original author and source are credited.