A noncatalytic function of the topoisomerase II CTD in Aurora B recruitment to inner centromeres during mitosis

Heather Edgerton,1 Marnie Johansson,1 Daniel Keifenheim,1 Soumya Mukherjee,1 Jeremy M. Chacón,1 Jeff Bachant,2 Melissa K. Gardner,1 and Duncan J. Clarke1

1Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN 55455
2Department of Cell Biology and Neuroscience, University of California, Riverside, Riverside, CA 92521

Faithful chromosome segregation depends on the precise timing of chromatid separation, which is enforced by checkpoint signals generated at kinetochores. Here, we provide evidence that the C-terminal domain (CTD) of DNA topoisomerase IIα (Topo II) provides a novel function at inner centromeres of kinetochores in mitosis. We find that the yeast CTD is required for recruitment of the tension checkpoint kinase Ipl1/Aurora B to inner centromeres in metaphase but is not required in interphase. Conserved CTD SUMOylation sites are required for Ipl1 recruitment. This inner-centromere CTD function is distinct from the catalytic activity of Topo II. Genetic and biochemical evidence suggests that Topo II recruits Ipl1 via the Haspin–histone H3 threonine 3 phosphorylation pathway. Finally, Topo II and Sgo1 are equally important for Ipl1 recruitment to inner centromeres. This indicates H3 T3-Phos/H2A T120-Phos is a universal epigenetic signature that defines the euchromatic inner centromere and provides the binding site for Ipl1/Aurora B.

Introduction

For chromosomes to segregate equally during mitotic cell division, they must be bioriented on the spindle. This requires that the duplicated sister chromatids remain paired until anaphase. One mechanism of chromatid pairing is provided by the entanglement of the newly replicated sister DNA molecules (Holm et al., 1985; Cook, 1991). All of these entanglements (catenations), between every pair of sister chromatids, must then be removed to allow chromosome segregation in anaphase. DNA topoisomerase IIα (Topo II) catalyzes this resolving activity and is thus essential for mitosis in all eukaryotes (Nitis, 2009a). To achieve this, the Topo II enzyme performs a unique catalytic cycle known as the strand passage reaction (SPR), where a transient double-strand break in one double helix is made, a second helix is passed through the break, and then the first helix is religated (Wang, 2002). Extensive biochemical and structural studies of the catalytic core of Topo II have revealed the mechanism of the SPR but, intriguingly, have also revealed that the C-terminal domain (CTD) of Topo II is dispensable for the catalytic cycle (Jensen et al., 1996; Dickey and Osheroff, 2005). This is of interest because, in vivo, the CTD of Topo II is nevertheless required for faithful chromosome segregation from yeast to humans. The crucial function of the Topo II CTD remains to be elucidated (Bachant et al., 2002; Dickey and Osheroff, 2005; Lane et al., 2013).

The majority of DNA catenations are removed by Topo II during DNA replication and in the G2 phase of the cell cycle (Downes et al., 1994; Larsen et al., 1996). Congruent with this bulk activity, Topo II binds to sites throughout the genome during interphase (Fachinetti et al., 2010; Dykhuizen et al., 2013). In mitosis, however, Topo II redistributes to become most abundant at the centromere region of chromosomes, although no centromere or kinetochore function has been ascribed to the enzyme (Porter and Farr, 2004). Given that it is important for accurate chromosome segregation, one possible function of the Topo II CTD, independent of the catalytic cycle, is therefore at the centromere/kinetochore in mitosis. The unanswered questions are: What is the function of the Topo II CTD in chromosome segregation? What is the putative function at centromeres/kinetochores during mitosis?

As well as the physical linkages between sister chromatids that permit biorientation and are resolved by Topo II, successful mitosis depends on checkpoint controls that monitor biorientation. The spindle assembly checkpoint (SAC) monitors kinetochore–microtubule attachment (often termed kinetochore “occupancy”), whereas the tension checkpoint is thought to...
directly assess the tension on the kinetochore mediated by microtubules (Jia et al., 2013). Microtubules and kinesin 5 motors that exert force on the kinetochores are opposed by the physical pairing of the sister chromatids, and therefore, this architecture imparts a precise degree of mechanical tension on bioriented sister kinetochores (e.g., 4–6 pN tension in yeast; Chacón et al., 2014). The force is sensed by the tension checkpoint via Aurora B kinase, and this mechanism requires that Aurora B resides at the inner-centromere region of kinetochores in mitosis (Cheeseman et al., 2006; Cimini et al., 2006; Pinsky et al., 2006; Welburn et al., 2010; Jia et al., 2013). However, the mechanism of Aurora B recruitment to the inner centromere is only partly understood.

Aurora B is a component of the chromosomal passenger complex (CPC), also consisting of inner centromere protein (INCENP), Survivin, and Borealin (Klein et al., 2006). In higher eukaryotes, Aurora B–CPC redistributes in prometaphase to almost exclusively occupy binding sites at the inner centromere of chromosomes (Ainsztein et al., 1998; Adams et al., 2000; Kaitna et al., 2000; Gassmann et al., 2004; Nozawa et al., 2010). These precise binding sites are established epigenetically by a pair of inner-centromere–specific nucleosome modifications, phosphorylation of histone H3 threonine 3 (H3 T3-Phos), and histone H2A threonine 120 (H2A T120-Phos), both of which are required for Aurora B–CPC recruitment to inner centromeres (Kelly et al., 2010; Jeyparkash et al., 2011; Carmina et al., 2012; Sawicka and Seiser, 2014). First, the BIR domain of Survivin interacts with the AKT motif at the very N terminus of H3 specifically when T3 is phosphorylated (Kelly et al., 2010; Jeyparkash et al., 2011). Second, Shugoshin binds to H2A T120-Phos and then directly binds to Borealin (Kawashima et al., 2007; Tsukahara et al., 2010; Yamagishi et al., 2010). The histone marks themselves therefore coexist at, and in part establish the epigenetic identity of, the inner centromere (Yamagishi et al., 2010), and it is the intersection of these nucleosomes that form the Aurora B–CPC binding sites where Aurora B functions in tension sensing. H2A T120-Phos is generated by Bub1 kinase, which has a well-understood mechanism of inner-centromere association (Sawicka and Seiser, 2014). In contrast, H3 T3-Phos is generated by Haspin kinase (Dai and Higgins, 2005; Wang et al., 2010), but the mechanism of Haspin recruitment to inner centromeres is not known, and therefore, our understanding of the molecular requirements for tension checkpoint activation is incomplete. There is evidence that Top2 is required for the clustered kinetochores in almost all metaphase cells, each cluster of sister kinetochores being in line with the spindle axis (Fig. 1 A). Thus, there is no gross defect in kinetochore structure, and thereby the inner centromere, in the absence of Top2 catalytic activity.

Second, we assessed a functional aspect of kinetochore integrity by asking if the SAC protein Mad2 can be recruited to kinetochores in top2-4 cells. In untreated top2-4 metaphase cells, we observed the expected localization of Mad2-GFP at nuclear pore complexes, decorating the periphery of the nucleus (Fig. 1 B, left; Iouk et al., 2002). In the presence of nocodazole, which disrupts microtubules and therefore activates the SAC, we observed efficient relocalization of Mad2-GFP to the clustered kinetochores (Fig. 1 B), as previously reported for wild-type cells (Iouk et al., 2002). Therefore, the underlying structures and molecular cues required for Mad2-GFP recruitment to kinetochores are intact in the absence of Top2 catalytic activity.

Results

Yeast kinetochores assemble properly in top2 mutants

In mitosis, Top2 is most abundant at kinetochores, but no function within this complex has been revealed (Porter and Farr, 2004). A previous study of yeast Top2 (top2) mutants analyzed the attachment of a single chromosome to the mitotic spindle in prometaphase and found no gross defect in biorientation (Andrews et al., 2006). To extend this analysis, we asked if kinetochores assemble correctly in loss-of-function top2-4 mutants (Holm et al., 1985). We reasoned that proper localization of an outer-kinetochore protein, Nuf2-GFP, serves to indicate assembly of the underlying inner-centromere chromatin and central regions of the kinetochore. To identify mitotic cells, we simultaneously observed Spec110-mCherry, a component of spindle pole bodies. In both wild type and top2-4, grown at the nonpermissive temperature for top2-4, Nuf2-GFP localized to the clustered kinetochores in almost all metaphase cells, each cluster of sister kinetochores being in line with the spindle axis (Fig. 1 A). Thus, there is no gross defect in kinetochore structure, and thereby the inner centromere, in the absence of Top2 catalytic activity.

Top2 is required for inner-centromere localization of Ipl1 in mitosis

We then focused on Ipl1 (yeast Aurora B kinase), which localizes to the inner-centromere region underlying the kinetochores throughout the cell cycle in yeast and is required for the kinetochores to sense the mechanical tension that is imparted by spindle microtubules and motor proteins (Biggins and Murray, 2001; Pinsky et al., 2003, 2006). In interphase cells with a single spindle pole body, Ipl1-GFP localized to inner centromeres in almost all wild-type and top2-4 cells (Fig. 2 and Fig. S1). Strikingly, however, Ipl1-GFP was drastically delocalized from inner centromeres in metaphase top2-4 cells (Fig. 3). The phenotype was readily apparent based on classification of cells into categories of inner centromere, nucleoplasmic, partially diffuse, or diffuse Ipl1 (Fig. S2), the same criteria used in a previous study (Peplowska et al., 2014). For simplicity, however, and given that the phenotype in top2-4 cells was highly penetrant and resulted in dramatic loss of Ipl1 from inner centromeres, we will refer to Ipl1 localization as either centromeric or noncentromeric.

We also used a quantitative approach to measure whether the Ipl1 fluorescence was localized (Fig. 4 and Fig. S3; see Materials and methods; Chacón and Gardner, 2013). A strong localization pattern, with Ipl1 at centromeres, but not at poles or in the central region of the spindle, will yield two bright foci of GFP pixels surrounded by dim pixels. Together, these pixels will have a high standard deviation in pixel intensity. In
contrast, a diffuse localization pattern will have similar pixel intensities in the pixels from pole to pole and therefore a low standard deviation in pixel intensity. We measured this standard deviation, and it recapitulated the classification approach (Fig. S2). It revealed strong localization of Ipl1 in wild-type cells but a striking dispersal of Ipl1 in mitotic top2-4 cells (Fig. 4). As a control, to quantitatively compare this diffuse localization in top2-4 cells with that previously seen in a CPC mutant (Shimogawa et al., 2009), we analyzed brr1-107 cells at the nonpermissive temperature, which again revealed a diffuse localization pattern similar to top2-4 (Fig. 4).

To examine the top2-4 phenotype further in terms of mitotic stage, we then binned centromeric and noncentromeric Ipl1 cells according to spindle length, based on the distance between separated spindle pole bodies (Figs. 5 A and S3 B). This revealed that more cells with very short spindles had Ipl1 localized at inner centromeres compared with metaphase cells with slightly longer spindles. When mitotic spindles were 0.5–1.0 µm long, 37% of top2-4 cells had Ipl1 at inner centromeres. When mitotic spindles were 1.25–2.0 µm long, only 5% of top2-4 cells had Ipl1 at inner centromeres. Ipl1 was present in most inner centromeres in almost all wild-type cells at all spindle lengths. Thus, the need for Top2 to localize Ipl1 to inner centromeres increases throughout early mitosis to a maximum at full preanaphase spindle length, corresponding with prometaphase/metaphase in other eukaryotes. Therefore, expression of top2-4 is a loss-of-function allele; at the nonpermissive temperature, the Top2-4 enzyme is catalytically dead (Holm et al., 1985). To determine if the SPR enzyme cycle of Topo II is required for Ipl1 recruitment to inner centromeres, we asked if the phenotype in top2-4 could be rescued by expression of top2-Y782F, which carries a point mutation in the enzyme active site (Liu and Wang, 1998). Top2-Y782F can bind to DNA and undergo conformational changes associated with the enzyme cycle (e.g., opening and closure of the N-terminal gate of the enzyme) but is unable to break the helix bound at the catalytic core (Liu and Wang, 1998). Surprisingly, these properties of Top2-Y782F were sufficient to partially restore Ipl1 inner-centromere recruitment in top2-4 cells (Fig. 5, B and C). Therefore, Top2 may only need to be bound to DNA at inner centromeres, and not engaged in the catalytic cycle, in order to recruit Ipl1.

The conserved SUMOylation sites in the CTD of Top2 are required for mitotic inner-centromere localization of Ipl1

The ability of catalytically dead top2-Y782F to rescue Ipl1 inner-centromere localization indicated that this is a function independent of the SPR. To explore this further, we first examined strains where the CTD of Topo II had been deleted (residues 1,243 to the C terminus; top2ΔCTD). The CTD is dispensable for the SPR but is required for faithful chromosome segregation (Bachant et al., 2002; Dickey and Osheroff, 2005; Lane et al., 2013), indicating that it has an unknown function distinct from the catalytic cycle. Strikingly, top2ΔCTD had the same phenotype as top2-4: Ipl1 recruitment to inner centromeres was abolished, and specifically in prometaphase/metaphase (Fig. 6 A and Figs. S1–S3). Thus, the CTD of Topo II is required for Ipl1 recruitment to inner centromeres in mitosis. Further, expression of top2-Y782F was able to partially rescue Ipl1 inner-centromere localization in top2ΔCTD cells (Fig. 6 B). Therefore, a Top2 protein that possesses a CTD but is catalytically inactive is sufficient for Ipl1 recruitment. The data indicate that Top2 has a noncatalytic function in mitosis to recruit Ipl1 to inner centromeres.

The CTD of Topo II is not required for the SPR, but it is subjected to multiple posttranslational modifications (Cardenas and Gasser, 1993; Isaacs et al., 1998; Bachant et al., 2002). Although the biological consequences of these modifications are largely unexplored, mutation of five conserved SUMOylation sites from lysine to arginine (the top2-SNM mutant) renders yeast cells with reduced fidelity of chromosome segregation (Bachant et al., 2002). To ask if SUMO modification plays a role in Ipl1 targeting, we examined this top2-SNM mutant, revealing that most mitotic cells failed to properly localize Ipl1 to the inner centromeres (Fig. 6 C and Figs. S2 and S3). As with top2-4 and top2ΔCTD cells, the phenotype was specific to prometaphase/metaphase cells and there was no defect in interphase (Figs. S1–S3). Together, the data suggest a noncatalytic
function of the Top2 CTD in mitotic Ipl1 localization, in particular mediated by SUMOylation of the Top2 CTD.

Top2 CTD SUMOylation is dispensable for chromatin association

One explanation for the CTD SUMOylation-dependent recruitment of Ipl1 to the inner centromeres in mitosis could be that these posttranslational modifications play a role in chromatin association of Topo II. To test this, we tagged the endogenously produced Top2, Top2ΔCTD, and Top2-SNM proteins with GFP to directly observe and quantify their abundance on chromatin. We prepared chromatin in situ by making spheroplasts and extracting with detergent. As a control, we observed a soluble GFP-tagged nuclear protein (TetR-GFP) that does not bind to chromatin and that was readily dispersed upon extraction (Fig. 7). In contrast, Top2 was robustly retained on chromatin after extraction, as was Top2-SNM (Fig. 7). Therefore, the SUMOylation sites that are important for Ipl1 recruitment to inner centromeres are not needed for the association of Top2 with chromatin. These data indicate Top2 that is associated with chromatin, but not necessarily engaged in the catalytic cycle, becomes SUMOylated to stimulate Ipl1 recruitment. Examination of Top2ΔCTD revealed a reduction in abundance on chromatin after detergent extraction (Fig. 7). Therefore, it is possible that CTD motifs other than the SUMOylation sites function in the association of Top2 with chromatin or in the residence time of Top2 on chromatin. This could potentially influence the capacity of Top2 to recruit Ipl1 to inner centromeres. However, SUMOylation of CTD lysines is likely to be the predominantly Ipl1 recruitment signal.
Top2 is not required for Sgo1 localization to inner centromeres in mitosis

Two pathways are implicated in Aurora B recruitment to inner centromeres in eukaryotes: the Sgo1–histone H2A T120-Phos pathway and the Haspin kinase–histone H3 T3-Phos pathway (Jia et al., 2013). In yeast, the Sgo1-dependent mechanism that relies on Bub1 phosphorylation of H2A was found to be important for Ipl1 recruitment to mitotic inner centromeres (Peplowska et al., 2014). We confirmed these data using sgo1Δ strains (Fig. 8 A and Figs. S1–S3). Importantly, these data also revealed that the phenotypes of sgo1Δ, top2-4, top2Δ CTD, and top2-SNM are similarly penetrant in terms of the Ipl1 localization to inner centromeres.

Figure 4. Analysis of Ipl1-GFP distribution between mitotic spindle poles. Computational analysis of Ipl1-GFP distribution between spindle poles in prometaphase/metaphase (1.25–2.0 µm spindles) wild type, top2-4, and bir1-107 strains. Images from the dataset in Fig. 3 were analyzed as described previously (Chacón and Gardner, 2013) to determine the standard deviation of normalized Ipl1-GFP pixel intensities along line scans between the spindle poles. Higher standard deviations indicate localized signals caused by dim regions near poles and bright regions near centromeres (see Materials and methods). From left to right: Merged, example merged image (Ipl1-GFP, Spc110-mCherry); Poles finder, algorithm to locate poles; Ipl1 line scans, image of Ipl1-GFP between poles with positions of line scans overlaid; Ipl1 intensity vector, plot of Ipl1-GFP intensity between poles; and deviation in signal, mean standard deviation of Ipl1-GFP pixel intensities between spindle poles. Bars, 0.5 µm. Analysis of the other strains used in this study is shown in Fig. S3. P-values for each mutant versus wild type are 0.00063 (top2-4) and 0.00009 (bir1-107), Student's t test. a.u., arbitrary units; st. dev., standard deviation.

Figure 5. Ipl1 is recruited to mitotic inner centromeres via a noncatalytic function of Top2. (A) Quantification of Ipl1-GFP localization to inner centromeres in cells binned according to spindle length (determined by measuring the distance between the centers of each spindle pole). Spindles 0.5–1.25 µm long correspond to stages from spindle pole separation to spindles in the process of assembly. Spindles 1.25–2.0 µm long correspond to prometaphase/metaphase. Yeast strains were grown at 30°C for 1 h (the nonpermissive temperature for top2-4) before imaging. Error bars, SEM. Representative images (B) and quantification (C) of Ipl1-GFP localization to inner centromeres in prometaphase/metaphase (0.5–2.0 µm spindles) cells of a top2-4 strain carrying an additional allele of catalytically dead top2-Y782F (grown at 30°C for 1 h; the nonpermissive temperature for top2-4). Bars, 1 µm. n is the total number of cells scored from three experimental repeats. Error bars, standard deviation. P-value for top2-4 versus top2-4 top2-YF is 0.04, Student’s t test.
localization defect at metaphase. In interphase, neither Top2 nor Sgo1 was required for Ipl1 localization. This suggests that Topo II and Sgo1 are equally important for Ipl1 localization to inner centromeres in mitosis. Top2 functions either in the Sgo1 pathway or in a parallel pathway that is equally crucial for Ipl1 localization. A simple explanation for Ipl1 mislocalization during mitosis in top2 mutants could be that Sgo1 fails to localize to inner centromeres. This would place Top2 upstream of Sgo1 and indicate that Top2 functions via the H2A T120-Phos pathway. To test this directly, we tagged endogenous Sgo1 with a three GFP fusion (3xGFP) at the C terminus of Sgo1. As seen in previous studies examining Sgo1-GFP (Peplowska et al., 2014), we observed that Sgo1-3xGFP was present within the foci of clustered centromeres in the majority (60–70%) of metaphase cells (Fig. 8 B). Robust localization to centromeres was also observed in top2-4 mutants grown at the nonpermissive temperature and top2∆CTD mutants (Fig. 8 B), under conditions identical to those where Ipl1-GFP was dramatically mislocalized. Therefore, Top2 is not needed for Sgo1 localization to the inner centromeres in mitosis. Top2 cannot act via Sgo1 recruitment in order to fulfill its function in Ipl1 recruitment.

Yeast Haspin kinase and histone H3 threonine 3 are required for mitotic inner-centromere localization of Ipl1

The mitotic role of Sgo1 in Ipl1 recruitment to the inner centromere has been largely described, and the data in Fig. 8 B demonstrated that Top2 does not contribute to Sgo1 inner-centromere localization. In contrast, the mechanism of Haspin-mediated H3 T3 phosphorylation and its contribution to Ipl1 recruitment to inner centromeres is less well understood. In *Saccharomyces cerevisiae* in particular, there is no evidence that Haspin kinase or H3 T3-Phos are involved in Ipl1 recruitment to inner centromeres. Interestingly, however, *Xenopus laevis* Haspin kinase coprecipitated with the Topo II CTD from *Xenopus* egg extract, and the Topo II CTD was required for recruitment of Haspin to centromeres (see Yoshida et al. in this issue). To determine if yeast Topo II might function via Haspin kinase and H3 T3-Phos, we first examined Haspin mutants. In strains lacking both Haspin orthologues (*alk1Δ* and *alk2Δ*), Ipl1 inner-centromere localization in mitosis was severely disrupted (Fig. 9 A), and once more, this phenotype was specific to prometaphase/metaphase cells (Figs. S1–S3). Importantly, the same phenotype was observed in yeast carrying a T3A substitution of the histone H3 gene, where phosphorylation of threonine 3 could not occur (*h3-T3A*; Fig. 9 A and Figs. S1–S3). Therefore, yeast Haspin kinases, and presumably phosphorylation of yeast H3 threonine 3 at inner centromeres, is required for Ipl1 recruitment in mitosis.
Topo II recruits Ipl1 to inner centromeres

This can be achieved using the \textit{mtw1-1} allele, with a temperature-sensitive mutation in a component of the MIND (Mtw1–Nnf1–Nsl1–Dsn1) kinetochore complex. To provide a negative control, we also constructed an \textit{mtw1-1 h3-T3A} mutant strain, in which histone H3 cannot be phosphorylated at threonine 3. Cultures were harvested after growth at the \textit{mtw1-1} nonpermissive temperature for 2 h, which was sufficient for mitotic arrest, and then cell extracts were subjected to SDS-PAGE and Western blotting. Under these conditions, H3 T3 phosphorylation was consistently observed in \textit{mtw1-1} extracts but was substantially reduced in \textit{mtw1-1 h3-T3A} extracts (Fig. 9 B). Because there was a residual signal even when threonine 3 could not be phosphorylated, the antibody must have a base level of affinity for H3 lacking the modification at T3. This control provided an important baseline of signal for subsequent analyses.

Having characterized the specificity of the antibody, we then asked if H3 T3 phosphorylation requires Haspin kinases in \textit{S. cerevisiae} by analyzing extracts from arrested \textit{mtw1-1 alk1Δ} extracts...
We next asked if expression of a phosphomimetic h3-T3E histone is able to alleviate the Haspin kinase and Topo II requirements for Ipl1 inner-centromere recruitment in mitosis. As predicted, if Haspin kinases are required for H3 T3 phosphorylation in S. cerevisiae, Ipl1 inner-centromere localization in mitosis was partly restored by h3-T3E histone in alk1Δ alk2Δ mutant cells (Fig. 10 B and Fig. S4). Importantly, when expressed in the top2ΔCTD mutant (Fig. S4), bypass of the requirement for the CTD was also observed, with Ipl1 localizing correctly in ~47% of cells 2 h after induction of the h3-T3E mutant (Fig. 10 C). These data therefore establish the window of time that is optimal for assessing rescue of Ipl1 inner-centromere localization in metaphase.

We next asked if expression of a phosphomimetic h3-T3E histone is able to alleviate the Haspin kinase and Topo II requirements for Ipl1 inner-centromere recruitment in mitosis. As predicted, if Haspin kinases are required for H3 T3 phosphorylation in S. cerevisiae, Ipl1 inner-centromere localization in mitosis was partly restored by h3-T3E histone in alk1Δ alk2Δ mutant cells (Fig. 10 B and Fig. S4). Importantly, when expressed in the top2ΔCTD mutant (Fig. S4), bypass of the requirement for the CTD was also observed, with Ipl1 localizing correctly in ~47% of cells 2 h after induction of the h3-T3E mutant (Fig. 10 C). These data therefore establish the window of time that is optimal for assessing rescue of Ipl1 inner-centromere localization in metaphase.

Discussion

The SPR of Topo II has been studied extensively using biochemical and structural approaches because it is the target of several important classes of antitumor drugs (Nitiss, 2009b). However, binding of Topo II to DNA occurs even in the absence of the catalytic activity of the enzyme, and it has remained unknown whether Topo II plays additional roles in cells that are not associated with the DNA topology changes induced by the SPR. In particular, an important region of the enzyme is the CTD, which is dispensable for the SPR but is nevertheless required for faithful chromosome segregation from yeast to human cells (Jensen et al., 1996; Bachant et al., 2002; Dickey and Osheroff, 2005;
The CTD of Topo II is heavily modified by posttranslational modifications. Of particular note are lysine residues prominently modified by SUMOylation. When five of these lysines are mutated in yeast cells (i.e., the top2-SNM mutant), one consequence is reduced chromosome segregation fidelity (Bachant et al., 2002; Takahashi et al., 2006). At the molecular level, however, there is no clear understanding of the role of these SUMOylated lysines or even of the CTD as a whole. Here, we set out to ask if Topo II may have an important function in chromosome segregation that is independent of the SPR. During mitosis, Topo II is enriched at the centromeres of chromosomes, and so we began by asking if we could detect any defects in kinetochore assembly. Based on the localization of outer kinetochore component Nuf2 and the recruitment of Mad2 to the kinetochore when microtubules were depolymerized, we did not observe obvious defects in kinetochore structure or function. However, the inner-centromere kinase Ipl1 (Aurora B) was drastically delocalized in top2 mutants, including top2ΔCTD, which has normal catalytic activity, and top2-SNM, which lacks the major CTD lysines that are modified by SUMOylation.

Analysis of chromatin in situ demonstrated that Top2-SNM protein robustly associates with the chromatin. Therefore, if Top2 functions in the recruitment of Ipl1 to centromeres, the role of the CTD is not solely that of an anchor that tethers Top2 to chromosomes. These data are consistent with substantial evidence that SUMOylation is essential for accurate chromosome segregation (Tanaka et al., 1999; Biggins et al., 2001; Bachant et al., 2002; Azuma et al., 2003; Díaz-Martínez et al., 2006). Other evidence has revealed that vertebrate Topo II is primarily SUMOylated at the centromere region in mitosis (Azuma et al., 2005; Ryu et al., 2010a,b). Together, the data suggest that Topo II is a critical target of SUMO ligases that ensure mitotic fidelity. It is important to note that top2ΔCTD retains one SUMOylated lysine that is mutated in top2-SNM (K1220). It is therefore possible that K1220 is not a major SUMO acceptor site or that it is not sufficient for Ipl1 recruitment to inner centromeres.

In eukaryotes other than S. cerevisiae, determinants of inner-centromere targeting of the Ipl1 orthologue, Aurora B, have been described (Kelly et al., 2010; Jeyaprakash et al., 2011; Carmena et al., 2012; Sawicka and Seiser, 2014). The data indicate that two pathways contribute inner-centromere–specific localization of Aurora B.
epigenetic marks to provide the binding site for the CPC, of which Aurora B is a component (Fig. 10 D). Bub1 kinase phosphorylates histone H2A at threonine 120, facilitating interaction with Sgo1, which then binds directly to the CPC protein Borealin. In addition, Haspin kinase phosphorylates histone H3 at threonine 3, providing an interaction surface for the CPC protein Survivin. Consistent with these pathways being conserved in yeast, previous work demonstrated that sgo1Δ yeast mutants are defective in Ipl1 centromere targeting (Peplowska et al., 2014), and we observed similar defects in a Haspin kinase-deficient mutant (alk1 Δ alk2 Δ) and also an H3 mutant where threonine 3 could not be phosphorylated (h3-T3A).

The yeast top2, h3-T3A, and Haspin mutants were all specifically defective in mitotic Ipl1 inner-centromere localization: normal inner-centromere localization was observed in interphase cells with a single spindle pole body (Fig. S1). This is consistent with the restriction of H3 T3 phosphorylation to mitosis in other eukaryotes (Dai et al., 2005; Wang et al., 2010; Ghenoiu et al., 2013). Moreover, the data show that both Sgo1 and Topo II pathways are important for Ipl1 recruitment to inner centromeres in mitosis. Therefore, consistent with studies in higher eukaryotes (Yamagishi et al., 2010; Sawicka and Seiser, 2014), the H3 T3-Phos and H2A T120-Phos marks likely provide a conserved epigenetic feature to specify mitotic inner
centromeres. This conserved molecular mechanism of Ipl1 recruitment must also have arisen independently of whether a kinetochore is built upon a point centromere, in *S. cerevisiae*, or the greatly different regional centromeres found in most other eukaryotes (Steiner and Henikoff, 2015).

In *Xenopus* egg extract, the Topo II CTD promotes the recruitment of Haspin kinase to centromeres (Yoshida et al., 2016). We attempted to directly observe yeast Haspin kinases at centromeres by tagging Alk1 and Alk2 with 3xGFP. This revealed that both kinases are broadly distributed throughout the nucleus and cytoplasm (Fig. S4). These localization patterns indicate that Haspin kinases may have multiple substrates, consistent with their genetic and physical interaction maps (Stark et al., 2006; Gilmore et al., 2012). We did not observe any obvious changes in Alk1-3xGFP or Alk2-3xGFP localization in top2 mutants (Fig. S4), but typical of kinases, this could be explained if their association with centromeres is transient.

Several lines of genetic and biochemical evidence have placed Top2 in the Haspin-mediated pathway and not the Sgo1 pathway (Fig. 10 D). First, we determined that top2 mutants are not defective in Sgo1 recruitment to centromeres in mitotic yeast cells. Therefore, the function of Top2 in Ipl1 recruitment does not occur upstream of Sgo1 centromere targeting. Because Sgo1 bridges one of the interactions between Ipl1 and the inner centromere by binding directly to H2A T120-Phos and Borealin of the CPC, these data make it unlikely that Top2 influences Ipl1 localization via Sgo1. We attempted to perform epistasis analysis between top2 and sgo1Δ mutants, but after tetrad dissection, top2 sgo1Δ double mutants were viable at a very low frequency and the surviving isolates had a synthetic sick phenotype, making analysis of Ipl1 localization problematic (we have not been able to derive an Ipl1-ΔAAA mutants were viable at a very low frequency and the surviving plasmids were generated by cloning a C-terminal fragment of *ALK1*, *ALK2*, and *SGO1* into either p682(His) or p683(Ura), which are gifts from J. Berman. These constructs were then cut in the C-terminal fragment and used to transform yeast by a homologous recombination based protocol at the endogenous loci. Strains harboring *TOP2-GFP*, *top2-ΔCTD-GFP*, and *top2ΔCTD-GFP*, replacing TOP2 at the endogenous locus, were constructed using pGS001, pGS002, and pBN340, respectively. The top2ΔCTD-GFP allele encoded in pBN340 is truncated after amino acid 1,235. Yeast were grown in rich medium with yeast extract, peptone, and 2% glucose at 30°C, except where stated.

Analysis of Ipl1 localization

Yeast were grown at 26°C overnight in rich medium supplemented with additional adenine, diluted to an OD of 0.15–0.3 and cultured for 4 h, then shifted to 30°C for 1 h. Yeast were then washed and cultured in complete synthetic medium in a microfluidic chamber, as follows. Cells were immobilized on a coverslip following a method described previously (Chacón et al., 2014). Briefly, flow chambers were prepared with a washed (1 M NaOH-treated) 22 × 22-mm imaging coverslip, overlaid with thin strips of Parafilm, which were melted to attach an untreated 18 × 18-mm coverslip to form the top of the chamber. 0.5 mg/ml concanavalin A was flowed in and allowed to sit in the flow chamber for 20 min at room temperature, which bound to the imaging coverslip. Excess concanavalin A was then washed out of the chamber with water. Cells were pipetted into the chamber and adhered to the concanavalin A–coated imaging coverslip. Excess cells that did not adhere to the coverslip were removed with vacuum.

Unless otherwise stated, yeast cells were imaged using total internal reflection fluorescence (TIRF) microscopy with an Eclipse Ti microscope (Nikon) using 488- and 561-nm Sapphire lasers (Coherent) to visualize GFP and mCherry. A rapid switching FireWire setup allowed for near-simultaneous imaging between the red and green lasers. An electron-multiplying charge-coupled iXon3 camera (Andor Technology) fitted with a 2.5x projection lens was used to capture images with a 64-nm pixel size in the field of view. Cells were imaged with a CFI Apochromat 100×, 1.49-NA oil objective (Nikon). NIS Elements software (Nikon) was used for image acquisition, and all images were contrast enhanced using ImageJ (Fiji). All imaging was performed at 30°C except for the analysis of bir1-107, which was imaged at 37°C. Imaging medium was complete synthetic medium unless otherwise described.

Two independent methods were used to analyze Ipl1 localization: (1) subjective categorization and (2) quantification. For subjective categorization, images were binned into the following categories (see Fig. S1 B): (a) centromeric (inner centromere), where the GFP signal was restricted to two compact foci clustered within the spindle axis;
were recovered by brief centrifugation and washed into 100 μl YPD 50 µg/ml nocodazole for 2 h at 30°C. Cells from 1 ml of the culture YPD media supplemented with 20 µg/ml adenine were arrested in JCB • Volume 213 • Number 6 • 2016

To analyze Top2 chromatin association, OD 600 0.6–0.8 cultures in experimental repeats to calculate a mean and standard deviation.

For kinetochore localization, the Mad2-GFP was tightly clustered within the center of the poles in the segmented image. This automation sorted images by spindle length, allowing subsequent rapid analysis of Ipl1 localization according to cells binned by spindle length.

Analysis of Ipl1 localization after histone H3 allele induction Strains carrying a centromeric plasmid harboring histone H3 or the mutant T3E derivative, both under control of the GAL10 promoter, were grown in synthetic medium with 4% raffinose and lacking tryptophan or uracil at 26°C. The histone H3 genes were induced with 2% galactose for spheroplasting varied for different preparations of Zymolyase and is a crucial variable. After spheroplasting, 1 ml PBS (150 mM NaCl and 50 mM KPO₄ 7.5) containing 0.5 M sorbitol and protease inhibitors (PBS-SI) was added to the reaction, and the spheroplasts were recovered by centrifugation for 3 min at 3,000 rpm. The pellet was washed with an additional 1 ml PBS-SI and resuspended in 100 µl PBS-SI. For detergent extraction, 5 µl of 10% Triton X-100 was added to 45 µl of the resuspended spheroplasts. Cell permeabilization was performed at ambient temperature for 5 min, and 1 ml of PBS-SI was added immediately to the sample, which was then centrifuged at 3,000 rpm for 3 min. The resulting pellet was gently rinsed without resuspension using 1 ml PBS-SI and gently resuspended in 20 µl PBS-SI. For microscopy, 5 µl of each sample was spotted onto a 0.1% polylysine-coated slide, along with 5 µl of mounting medium supplemented with DAPI (Vectashield; Vector Laboratories). Slide preparations remained suitable for microscopy for at least 3 d when the slides were stored at 4°C.

Statistical analysis

To determine the statistical significance of differences in Ipl1 inner-centromere localization between strains, t tests were performed, yielding the following values: Fig. 3, top2-4 versus wild type (P = 0.0002); Fig. 4, wild type versus top2-4 (P = 0.00063), wild type versus bir1-107 (P = 0.00009), Fig. 5, top2-4 versus top2-4 top2-2Y (P = 0.04), Fig. 6, top2ACTD versus wild type (P = 0.0004), top2ACTD vs. top2ACTD top2-2Y (P = 0.002); Fig. 8, sgo1A vs. wild type (P = 0.0004); Fig. 9, alkΔΔ alk2A versus wild type (P = 0.0005), hh2-3A versus wild type (P = 0.0001); Fig. 10, hh2-T3A plus GAL10-HHT2 (0 h vs. 1 h induction, P = 0.2; 2 h induction, P = 0.005; 3 h induction, P = 0.009; 4 h induction, P = 0.2), alkΔΔ alk2A plus GAL10-hh2-T3E (0 vs. 2 h induction, P = 0.00882), and top2ACTD plus GAL10-hh2-T3E (0 h vs. 2 h induction, P = 0.009).

Western blotting of histone H3 Yeast cells were lysed in lysis buffer (1% deoxycholic acid, 1% Triton X-100, 0.1% SDS, 50 mM Tris-HCl, pH 7.5, 1 mM sodium pyrophosphate, and 250 mM NaCl) supplemented with Complete protease inhibitor cocktail (one tablet per 50 ml, #11697498001; Roche), PhosStop phosphatase inhibitor cocktail (one tablet per 10 ml, #04906837001; Roche), and phosphatase inhibitor cocktail 3 (100 μl in 10 ml, #P0044; Sigma-Aldrich). Protein concentration was quantified using the Bio-Rad Protein Assay (#500-00006), and an equal amount of protein from each sample was loaded onto a 12% SDS-PAGE and run for 1.5 h at 150 V on a Bio-Rad Mini Protein II apparatus. The proteins were transferred onto a PVDF membrane using CAPSO transfer buffer (10 mM CAPSO salts, pH 10, and 20% methanol) on a Bio-Rad Mini Protein II transfer apparatus at 150 V for 1 h. Blots were blocked with 3% BSA-TBST for 1 h. Anti-Histone H3 Phos phosphatase inhibitor (Abcam), Anti-Histone H3 antibody (#ab1791, 1:10,000; Abcam), anti-tubulin antibody (#ab80779, 1:10,000; Abcam) were diluted in 3% BSA-TBST and used for protein detection. A goat anti-rabbit secondary antibody (HRP conjugated, #31463, 1:15,000; Thermo Fisher Scientific) was used to detect the H3 and H3T3-Phos primary antibodies. A goat anti–mouse secondary antibody (HRP conjugated, #031430, 1:15,000; Pierce) was used to detect the tubulin primary antibody. The secondary antibodies were detected using the SuperSignal West Femto Maximum Sensitivity Substrate (#34095; Thermo Fisher Scientific). ImageJ was used to quantify signals on exposed film.
Online supplemental material

This material includes analysis of Ipl1 inner-centromere localization in interphase cells, categorization and computation of mitotic Ipl1 localization defects, mitotic Ipl1 localization in cells bisected by spindle length, analysis of GAL10-HHT2 and GAL10-hht2-T3E induction, and visualization of Alk1-3xGFP and Alk2-3xGFP in live yeast cells. Online supplemental material is available at http://www.jcb.org/cgi/content/full/jcb.201511080/DC1.

Acknowledgments

We thank the Clarke, Gardner, Titus, and Lutxon laboratories at the University of Minnesota, the Azuma laboratory at the University of Kansas, and the Stark laboratory at the University of Dundee for continued discussions during the course of this work. We are especially grateful to the Azuma laboratory for delaying publication of their study while we completed revisions to our manuscript. We thank S. Biggs, T. Tanaka, T. Davis, J. Berman, M. Stark, C. Moore, G. Zeng, and Z. Storchova for providing strains and reagents.

Funding was provided by National Institutes of Health grant GM112793. J. Bachant acknowledges funding from the California Cancer Research Coordinating Committee that contributed to this work. The authors declare no competing financial interests.

Submitted: 23 November 2015
Accepted: 25 May 2016

References

Adams, R.R., S.P. Wheatley, A.M. Gouldsworth, S.E. Kandels-Lewis, M. Caravella, C. Smythe, D.L. Gerloff, and W.C. Earnshaw. 2000. INCENP binds the Aurora-related kinase AKR2 and is required to target it to chromosomes, the central spindle and cleavage furrow. Curr. Biol. 10:1075–1078. http://dx.doi.org/10.1016/S0960-9822(00)00673-4

Ainstein, A.M., S.E. Kandels-Lewis, A.M. Mackay, and W.C. Earnshaw. 1998. INCENP centrosome and spindle targeting: identification of essential conserved motifs and involvement of heterochromatin protein HP1. J. Cell Biol. 143:1763–1774. http://dx.doi.org/10.1083/jcb.143.10.1763

Andres, C.A., A.C. Vás, B. Meier, J.F. Giménez-Abián, L.A. Díaz-Martínez, J. Green, S.L. Erickson, K.E. Vandewaal, W.S. Hsu, and D.J. Clarke. 2006. A mitotic topoisomerase II checkpoint in budding yeast is required for genome stability but acts independently of Pds1/securin. Genes Dev. 19:472–488. http://dx.doi.org/10.1101/gad.1267105

Díaz-Martínez, L.A., J.F. Giménez-Abián, Y. Azuma, V. Guacci, G. Giménez-Martin, L.M. Lanier, and D.J. Clarke. 2006. PIASgamma is required for faithful chromosome segregation in human cells. PLoS One. 1:e53. http://dx.doi.org/10.1371/journal.pone.0000553

Aschaffenburg et al. 663

Dacie, J.S., and N. Osheroff. 2005. Impact of the C-terminal domain of topoisomerase Ilalpha on the DNA cleavage activity of the human enzyme. Biochemistry. 44:11546–11554. http://dx.doi.org/10.1021/bi0508111

Downes, C.S., D.J. Clarke, A.M. Mullinger, J.F. Giménez-Abián, A.M. Creighton, and R.T. Johnson. 1994. A topoisomerase II-dependent G2 cycle checkpoint in mammalian cells. Nature. 372:467–470. http://dx.doi.org/10.1038/372467a0

Fachetti, D., R. Bermejo, A. Cocito, S. Minardi, Y. Katou, Y. Kanoh, K. Shirahige, A. Azvolinsky, V.A. Zakian, and M. Foiani. 2010. Replication termination at eukaryotic chromosomes is mediated by Top2 and occurs at genomic loci containing pausing elements. Mol. Cell. 39:595–605. http://dx.doi.org/10.1016/j.molcel.2010.07.024

Gassmann, R., A. Carvalho, A.J. Henzing, S. Ruchaud, D.F. Hudson, R. Honda, E.A. Nigg, D.L. Gerloff, and W.C. Earnshaw. 2004. Borealin: a novel chromosomal passenger required for stability of the bipolar mitotic spindle. J. Cell Biol. 166:179–191. http://dx.doi.org/10.1083/jcb.200404001

Ghreoui, C., M.S. Wheeler, and H. Funabiki. 2013. Autoinhibition and Polo-dependent multisite phosphorylation restrict activity of the histone H3 kinase Haspin to mitosis. Mol. Cell. 52:734–745. http://dx.doi.org/10.1016/j.molcel.2013.10.002

Gilmore, J.M., M.E. Sardi, S. Venkatesh, B. Stutzman, A. Peak, C.W. Seidel, J.L. Workman, L. Flores, and M.P. Washburn. 2012. Characterization of a highly conserved histone related protein, YD156w, and its functional associations using quantitative proteomic analyses. Mol. Cell. Proteomics. 11:MI11.011544. http://dx.doi.org/10.1074/mcp.M111.011544

Helm, C., T. Goto, J.C. Wang, and D. Botstein. 1985. DNA topoisomerase II is required at the time of mitosis in yeast. Cell. 41:553–563. http://dx.doi.org/10.1016/0092-8674(85)90283-8

Jouk, T., O. Kerscher, R.J. Scott, M.A. Basrai, and R.W. Wozniak. 2002. The spindle assembly checkpoint. J. Cell Biol. 143:1763–1774. http://dx.doi.org/10.1083/jcb.143.10.1763

Dai, J., and J.M. Higgins. 2005. Haspin: a mitotic histone kinase required for metaphase chromosome alignment. Cell Cycle. 4:665–668. http://dx.doi.org/10.4161/cc.4.6.665

Dai, J., S. Sultan, S.S. Taylor, and J.M. Higgins. 2005. The kinase haspin is required for mitotic histone H3 Thr3 phosphorylation and normal metaphase chromosome alignment. Genes Dev. 19:472–488. http://dx.doi.org/10.1101/gad.1267105

Cook, P.R. 1991. The nucleoskeleton and the topology of replication. Cell. 66:627–635. http://dx.doi.org/10.1016/0092-8674(91)90109-C

References
subunit of the chromosomal passenger complex. Structure. 19:1625–1634. http://dx.doi.org/10.1016/j.str.2011.09.002
Jia, L., S. Kim, and H. Yu. 2013. Tracking spindle checkpoint signals from kinetochores to APC/C. Trends Biochem. Sci. 38:302–311. http://dx.doi.org/10.1016/j.tibs.2013.03.004
Kaitna, S., M. Mendoza, V. Jantsch-Plunger, and M. Glotzer. 2000. Incenp and an aurora-like kinase form a complex essential for chromosome segregation and efficient completion of cytokinesis. Curr. Biol. 10:1172–1181. http://dx.doi.org/10.1016/S0960-9822(00)00721-1
Kawashima, S.A., T. Tsukahara, M. Langegger, S. Hauf, T.S. Kitajima, and Y. Watanabe. 2007. Shugosin enables tension-generating attachment of kinetochores by loading Aurora to centromeres. Genes Dev. 21:420–435. http://dx.doi.org/10.1101/gad.1497307
Kelly, A.E., C. Ghenoiu, J.Z. Xue, C. Zierhut, H. Kimura, and H. Funabiki. 2006. Targeting DNA topoisomerase II in cancer chemotherapy. Adv. Cancer Res. 98:78–83. http://dx.doi.org/10.1016/S0065-2344(0547-0547)
Klein, U.R., E.A. Nigg, and U. Gruneberg. 2006. Centromere targeting of the chromosomal passenger complex requires a ternary subcomplex of Borealin, Survivin, and the N-terminal domain of INCENP. Mol. Biol. Cell. 17:2547–2558. http://dx.doi.org/10.1091/mbc.e05-12-1133
Lane, A.B., J.F. Giménez-Abián, and D.J. Clarke. 2013. A novel chromatin tether domain controls topoisomerase IIR dynamics and mitotic chromosome formation. J. Cell Biol. 203:471–486. http://dx.doi.org/10.1083/jcb.201303045
Larsen, A.K., A. Skladanowski, and K. Bojanowski. 1996. The roles of DNA topoisomerase II during the cell cycle. Prog. Cell Cycle Res. 2:229–239. http://dx.doi.org/10.1007/978-1-4615-5873-6_22
Liu, Q., and J.C. Wang. 1998. Identification of active site residues in the “GyrA” half of yeast DNA topoisomerase II. J. Biol. Chem. 273:20252–20260. http://dx.doi.org/10.1074/jbc.273.32.20252
Nitiss, J.L. 2009b. DNA topoisomerase II and its growing repertoire of biological functions. Nat. Rev. Cancer. 9:327–337. http://dx.doi.org/10.1038/nrc2608
Nitiss, J.L. 2009b. Targeting DNA topoisomerase II in cancer chemotherapy. Nat. Rev. Cancer. 9:338–350. http://dx.doi.org/10.1038/nrc2607
Nozawa, R.S., K. Nagao, H.T. Masuda, O. Iwasaki, T. Hirota, N. Nozaki, H. Kimura, and C. Obuse. 2010. Human POZGZ modulates dissociation of HP1alpha from mitotic chromosome arms through Aurora B activation. Nat. Cell Biol. 12:719–727. http://dx.doi.org/10.1038/ncb2075
Panigada, D., P. Gintari, A. Nespoli, G. Rotondo, D.G. Castro, R. Quadri, S. Peplowska, K.A. Collins, and S. Biggins. 2003. An Mtw1 complex promotes kinetochore biorientation that is monitored by the Ipl1/Aurora protein kinase. Dev. Cell. 5:735–745. http://dx.doi.org/10.1016/S1534-5807(03)00322-8
Peplowska, K., A.U. Wallek, and Z. Storchova. 2014. Sgo1 regulates both the centromere and chromosome bi-orientation that is monitored by the Ipl1/Aurora protein kinase. Dev. Cell. 33:231–235. http://dx.doi.org/10.1016/j.devcel.2013.07.013
Porter, A.C., and C.J. Farr. 2004. Topoisomerase II: untangling its contribution at the centromere. Chromosome Res. 12:569–583. http://dx.doi.org/10.1023/B:CHRO.0000036608.91085.d1
Ryu, H., G. Al-Ani, K. Deckert, D. Kirkpatrick, S.P. Gygi, M. Dasso, and Y. Azuma. 2010a. PIASy mediates SUMO-2/3 conjugation of poly(ADP-ribosyl)polymerase (PARP) 1 in mitotic chromosomes. J. Biol. Chem. 285:14415–14423. http://dx.doi.org/10.1074/jbc.M109.074583
Ryu, H., M. Furuta, D. Kirkpatrick, S.P. Gygi, and Y. Azuma. 2010b. PIASy-dependent SUMOylation regulates DNA topoisomerase IIA/hlp2 activity. J. Cell Biol. 191:783–794. http://dx.doi.org/10.1083/jcb.201004033
Sawicka, A., and C. Seiser. 2014. Sensing core histone phosphorylation: a matter of perfect timing. Biochem. Biophys. Acta. 1839:711–718. http://dx.doi.org/10.1016/j.bbagen.2014.04.013
Shimogawa, M.M., P.O. Widlund, M. Riffle, M. Ess, and T.N. Davis. 2009. Brl1 is required for the tension checkpoint. Mol. Cell. 20:915–923. http://dx.doi.org/10.1016/j.mcp.2009.07.023
Singh, R.K., D. Liang, U.R. Gajjalaiahvari, M.H. Kabbaj, J. Paik, and A. Gunjan. 2010. Excess histone levels mediate cytotoxicity via multiple mechanisms. Cell Cycle. 9:4236–4244. http://dx.doi.org/10.4161/cc.9.20.13636
Steiner, F.A., and S. Henikoff. 2015. Diversity in the organization of centromeric chromatin. Curr. Opin. Genet. Dev. 31:28–35. http://dx.doi.org/10.1016/j.gde.2015.03.010
Takahashi, Y., V. Yong-Gonzalez, Y. Kikuchi, and A. Strunnikov. 2006. SI Zw/ SI Z2 control of chromosome transmission fidelity is mediated by the sumoylation of topoisomerase II. Genetics. 172:783–794. http://dx.doi.org/10.1534/genetics.105.074167
Tanaka, K., J. Nishiide, K. Okazaki, H. Kato, O. Niwa, T. Nakagawa, H. Matsuda, M. Kawakami, and Y. Murakami. 1999. Characterization of a fission yeast SUMO-1 homologue, pmt3p, required for multiple nuclear events, including the control of telomere length and chromosome segregation. Mol. Cell. Biol. 19:8660–8672. http://dx.doi.org/10.1128/MCB.19.12.8660
Tsukahara, T., Y. Tanno, and Y. Watanabe. 2010. Phosphorylation of the CPC by Cdk1 promotes chromosome bi-orientation. Nature. 467:719–723. http://dx.doi.org/10.1038/nature09390
Wang, J.C. 2002. Cellular roles of DNA topoisomerases: a molecular perspective. Nat. Rev. Mol. Cell Biol. 3:430–440. http://dx.doi.org/10.1038/nrm831
Wang, F., J. Dai, J.R. Daum, E. Niedzialkowska, B. Banerjee, P.T. Stutenberg, G.J. Borisy, and J.M. Higgins. 2010. Histone H3 Thr-3 phosphorylation by Haspin positions Aurora B at centromeres in mitosis. Science. 330:231–235. http://dx.doi.org/10.1126/science.1189435
Waris, T.H., M.S. Navarro, and J. Bachtan. 2008. DNA topoisomerase II is a determinant of the tensile properties of yeast centromeric chromatin and the tension checkpoint. Mol. Cell. Biol. 19:4421–4433. http://dx.doi.org/10.1099/mcb.08-05-0547
Weilburn, J.P., M. Vleugel, D. Liu, J.R. Yates III, M.A. Lampson, T. Fukagawa, and J.M. Cheeseman. 2010. Aurora B phosphorylates spatially distinct targets to differentially regulate the kinetochore-microtubule interface. Mol. Cell. 38:383–392. http://dx.doi.org/10.1016/j.molcel.2010.02.034
Yamagishi, Y., T. Honda, Y. Tanno, and Y. Watanabe. 2010. Two histone marks establish the inner centromere and chromosome bi-orientation. Science. 330:239–243. http://dx.doi.org/10.1126/science.1194498
Yoshida, M.M., L. Ting, S.P. Gygi, and Y. Azuma. 2016. SUMOylation of DNA topoisomerase Ila regulates histone H3 kinase Haspin and H3 phosphorylation in mitosis. J. Cell Biol. http://dx.doi.org/10.1083/jcb.201511079