Influence of dietary cation–anion difference in finishing diets fed to Holstein steers during periods of high ambient temperature on feedlot performance and digestive function

Carlos Antonio Pachecoa, Martin Francisco Montano-Gomezb, Noemi Guadalupe Torrenteraa, Jaime Salinas-Chavirab, Jose de Jesus Ortiza, Aris Bonel Canoa and Ricard Avery Zinn

aDepartment of Nutrition and Biotechnology of Ruminants, Instituto de Investigaciones en Ciencias Veterinarias – UABC, Mexicali, México; bDepartment of Animal Nutrition, Facultad de Medicina Veterinaria y Zootecnia, Universidad Autónoma de Tamaulipas, Cd. Victoria, México; cDepartment of Animal Science, University of California, Davis, CA, USA

ABSTRACT
One hundred twenty-six Holstein steers (457.1 ± 27.5 kg BW) were used in a 127-d experiment to evaluate the influence of dietary cation–anion difference (DCAD) on growth performance and carcass characteristics. Treatments consisted of steam-flaked corn-based diets supplemented to provide DCAD of 34, 84 or 134 mEq/kg diet DM. There was no treatment effect (P > .20) on ADG, DMI, gain efficiency or dietary NE. Six Holstein steers (196 ± 3 kg) with cannulas in rumen and proximal duodenum were used in a replicated 3 × 3 Latin Square design to evaluated treatment effects on digestion characteristics. The DCAD did not affect (P > .20) ruminal or total digestion of OM, NDF, starch and N, or ruminal pH and VFA molar proportions. It is concluded that increasing DCAD of Holstein steers fed a conventional steam-flaked corn-based diet under conditions of high ambient temperature will not enhance growth performance.

1. Introduction
The anion–cation difference (DCAD) is represented as the possible negative or positive charge produced by nonmetabolizable dietary ion mixtures (Tucker et al. 1988). In its simplest form, DCAD is the difference in concentration of the major cations (Na + K) and anions (Cl + S) per kg of diet DM (Block 1984; Beighle et al. 1988). Diets with low or negative DCAD decrease blood and urine pH, and increase blood Ca solubility (Apper-Bossard et al. 2006). Heat stress increases respiratory CO2 loss (respiratory alkalosis), and Na and K loss (coupled with bicarbonate ions) via elevated sweat and urine production. In principle, corrections in blood acid–base balance and associated electrolyte losses may be achieved through modification of the DCAD. Diets formulated with DCAD of 250 mEq/kg DM have been recommended for optimal growth in chickens (Mongin 1981) and pigs (Austic and Calved 1981; Patience et al. 1987), and 200–370 mEq/kg DM for optimal milk yield in lactating dairy cattle (Tucker et al. 1988; West et al. 1991). The DCAD is usually manipulated by the addition of weak buffers such as NaHCO3, KHCO3 and K2CO3. In ruminants, dietary modifications of this nature may, of themselves, directly alter ruminal pH, with associated effects on ruminal microbial efficiency, digestion and DMI. Changes in dietary salt concentrations to bring about modifications in DCAD may also directly affect diet palatability or acceptability, and hence, DMI. The influence of DCAD modifications on performance of feedlot cattle has received limited attention. Colgan and Mader (2007) evaluated effects of DCAD on ability of cross-bred yearling feedlot steers to cope with moderate (average maximum temperature, 29.4°C; average relative humidity, 74%) summer heat stress during the final 67 d on feed. Increasing DCAD of dry rolled corn-based finishing diet from 91 to 294 mEq/kg did not affect ADG, DMI or gain efficiency. Ross et al. (1994) evaluated effects of DCAD on 84-d feedlot performance of cross-bred steers fed a cracked corn-based finishing diet (climatic conditions or season were not specified). Increasing DCAD from approximately 40 to 350 mEq/kg decreased DMI and ADG, but did not affect gain efficiency.

The role of DCAD on growth performance of calf-fed Holstein steers has not been directly assessed. During periods of high ambient temperature characteristic of the desert Southwest (USA), DMI, and hence, ADG and gain efficiency of Holstein steers are markedly depressed. This depression is most apparent during the late finishing phase (Torrentera et al. 2017). The objective of this study was to evaluate the potential benefit of increasing DCAD in finishing diets on performance of Holstein steers when the late finishing phase coincides with the summer period of very high ambient temperature.

2. Materials and methods
All procedures involving animal care and management were in accordance with and approved by the University of California, Davis, Animal Use and Care Committee.

CONTACT Martin Francisco Montano-Gomez martinmg@uabc.edu.mx Department of Nutrition and Biotechnology of Ruminants, Instituto de Investigaciones en Ciencias Veterinarias – UABC, Mexicali, Baja California, México

© 2017 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Experiment 1: Influence of dietary cation–anion balance in finishing diets during a period of high ambient temperature on growth performance, dietary energetics and carcass characteristics

Experimental location
This trial was conducted at the Desert Research Center of the University of California, Davis, during the period of (May–September) (127-d feeding trial). The Desert Research Center is located in the Imperial Valley, California (32° 47′ 31″ N and 115° 33′ 47″ W). It is about 16 m below sea level and under Sonoran desert conditions (BW classification according to Köppen). This region is characterized as dry and arid with extreme temperatures in summer (≥42°C), and an average annual precipitation of 85 mm.

Weather measurement and THI estimation
Climatic variables (ambient temperature, relative humidity, solar radiation, black globe temperature and wind speed) were obtained every 30 min from an on-site weather station (UC Agriculture Field station) throughout the experimental period. The temperature humidity index was calculated using the following formula:
\[\text{THI} = 0.81 \times T + \text{RH} \left(T - 14.40 \right) + 46.40 \]
(Mader et al. 2006).

Animal management
One hundred twenty-six calf-fed Holstein steers (457.1 ± 27.5 kg BW) were used in a 127-d experiment to evaluate the influence of increasing levels of dietary cation–anion balance (DCAD) during the seasonally hot months of May through September on growth performance and carcass characteristics. Steers were blocked by weight and randomly assigned within weight groupings to 18 pens (7 steers per pen). Pens were 43 m² with 22 m² overhead shade, automatic waterers and 2.4 m fence-line feed bunks.

Treatments
Three dietary DCAD levels were evaluated: 34, 84 and 134 mEq/kg diet DM, where DCAD = (Na + K)−(Cl + S). Dietary DCAD levels were obtained by supplementation of a steam-flaked corn-based finishing diet with 0, 5 or 10 g KHCO₃/kg DM, respectively (Table 1). Steers were allowed ad libitum access to feed and water. Fresh feed was added twice daily. On day 35, steers were implanted Synovex-Plus® (Zoetis Inc., Kalamazoo, MI). Water. Fresh feed was added twice daily. On day 35, steers were implanted Synovex-Plus® (Zoetis Inc., Kalamazoo, MI).

Estimations of performance and dietary energy
Energy gain (EG, Mcal/d) was calculated by the equation:
\[\text{EG} = \text{ADG} \times 0.0557 \times (NRC 1984). \]
Maintenance energy (EM, Mcal/d) was calculated by the equation:
\[\text{EM} = 0.084 \times W^{0.75} \text{(Lofgreen and Garrett 1968).} \]
From the derived estimates of energy required for maintenance and gain, the NEm and NEg values of the diet were obtained using the quadratic formula:
\[x = \frac{(-b \pm \sqrt{b^2 - 4ac})}{2a}, \text{ where } a = -1.716EM, b = 0.877EM + 1.716DMI + EG \] and
\[c = -0.877DMI, \text{ and } \text{NEg} = 0.877, \text{ NEm} = -1.716 \text{ (Zinn and Shen 1998).} \]

Statistical analyses
For calculating steer performance, initial and final full weights were reduced 4% to account for digestive tract fill. Pens were used as experimental units (six pens per treatment). Data were analysed as a randomized complete block design experiment (Hicks 1973) using the GLM procedure (SAS Inst. Inc., Cary, NC). The effects of increasing levels of DCAD in diet on response variables were tested for linear and quadratic components by means of polynomial contrasts, with contrast coefficients adjusted for unequal spacing.

Item	DCAD, mEq/kg DM		
34	0.00	5.00	10.0
84	0.00	5.00	10.0
134	0.00	5.00	10.0

- **Table 1. Composition of experimental diets fed to steers (Experiments 1 and 2)**
- **Table 2. Nutrient composition, g/kg DM basis**

Experiment 2, influence of dietary cation–anion balance in finishing diets on digestion characteristics

Animals and sampling
Six Holstein steers (196 ± 3 kg) with cannulas in rumen and proximal duodenum were used in a replicated 3 x 3 Latin Square Design to evaluate treatment effects on characteristics of digestion. Diets were the same as in Experiment 1 with the addition of 0.4% chromic oxide as a digestion marker. Steers were maintained in individual pens with access to water at all times. Diets were fed at 08:00 and 20:00 daily. Dry matter intake was restricted to 22 g feed/kg BW.

The experiment consisted of 3 experimental periods of 14 d each; 10-d diet adjustment followed by 4-d collection. During the collections, duodenal and fecal samples were taken from each steer, twice daily over a period of 4 successive days as follows: day 1, 07:50 and 13:50; day 2, 09:00 and 15:00; day 3, 10:50 and 16:50; and day 4, 12:00 and 18:00. Individual samples consisted of approximately 500 mL duodenal chyme and 200 g (wet basis) fecal material. Samples from each steer and within each collection period were composited for analysis. During the final day of each collection period, ruminal samples were obtained from each steer at approximately 4 h after feeding for ruminal pH, and subsequently, 2 mL of freshly prepared 25%
Metaphosphoric acid was added to 8 mL of strained ruminal fluid. Samples were then centrifuged (17,000× g for 10 min) and supernatant fluid stored at −20°C for VFA analysis.

Sample analysis and calculations
Upon completion of the trial, ruminal fluid was obtained from all steers and composited for isolation of ruminal bacteria via differential centrifugation (Bergen et al. 1968). Feed, duodenal and fecal samples were oven dried at 105°C until no further weight was lost, ground in a lab mill (Micro-Mill; Bel-Arts Products, Pequannock, NJ) and stored in tightly sealed glass jars for further analysis. Samples were subjected to all or part of the following analysis: DM (oven drying at 105°C until no further weight loss); ash; ammonia N; Kjeldahl N (981.10; AOAC 1986); aNDFom (Van Soest et al. 1991); purines (Zinn and Owens 1986); chromic oxide (Hill and Anderson 1958); starch (Zinn 1990). Microbial OM (MOM) and N (MN) leaving the abomasum minus ammonia-N and MN and, thus, includes any endogenous contributions.

Methane production was calculated based on the theoretical fermentation balance for observed molar distribution of VFA and OM fermented in the rumen (Wolin 1960). Primary assumptions are that VFA, CO₂ and methane are the sole end products of fermentation and that glucose represents the fermentable substrate (OM fermented is expressed as glucose equivalent).

Data analysis and statistics
Data were analysed as a replicated 3 × 3 Latin Square Design (Hicks 1973) using the GLM procedure (SAS Inst. Inc., Cary, NC). The effects of increasing levels of DCAD in diet on response variables were tested for linear and quadratic components by means of polynomial contrasts with contrast coefficients adjusted for unequal spacing.

Results and discussion

Experiment 1
There was no precipitation during the study. Relative humidity averaged 38%. Minimum and maximum ambient temperatures
Table 3. Treatment effects on characteristics of ruminal and total tract digestion (Experiment 2).

Item	DCAD, mEq/kg DM	34	84	134	Linear	Quadratic	SEM
Steer replications		3	3	3			
Intake, g/d							
DM a	4309	4309	4309				
OM a	4045	4045	4045				
NDF	647	647	647				
N	83	83	83				
Starch	2011	2011	2011				
Flow to the duodenum, g/d							
OM	2275	2275	2275		0.91	0.83	104
NDF	418	394	394		0.67	0.43	30
N	98.4	94.3	95.5		0.71	0.70	4.2
Microbial N	58.3	55.7	56.2		0.71	0.75	3.0
Non-ammonia N	94.8	91.0	91.9		0.71	0.73	4.2
N	36.5	35.3	35.7		0.81	0.77	1.7
Ruminal digestion, g/kg							
OM	582	582	571		0.76	0.87	19
NDF	354	391	359		0.63	0.47	43
N	704	688	673		0.58	0.99	28
Feed N	563	577	572		0.81	0.77	21
Microbial efficiencyb	25.6	24.0	24.3		0.71	0.75	1.9
Protein efficiencyc	1.14	1.09	1.10		0.71	0.73	0.05
Fecal excretion, g/d							
DM	876	868	915		0.63	0.63	46.8
OM	770	752	795		0.77	0.68	45.3
NDF	328	315	341		0.79	0.52	25.1
Starch	24.7	35.4	52.0		0.25	0.86	10.5
N	22.9	29.7	307		0.63	0.97	1.4
Total tract digestion, g/kg							
DM	660	664	652		0.71	0.73	3.0
OM	770	752	795		0.77	0.68	45.3
NDF	328	315	341		0.79	0.52	25.1
N	988	944	920		0.22	0.82	13
Non-ammonia N	699	680	678		0.47	0.71	14
N	672	659	654		0.63	0.97	17

a Dry matter intake was restricted to 22 g feed/kg BW.
b Microbial N, g/kg OM fermented.
c Non-ammonia N flow to the small intestine as a fraction of N intake.

averaged 20.5 and 38.8°C, respectively. The daily average and maximum THI were 76.2 ± 3.7 and 82.6 ± 2.9, respectively (Figure 1). In accordance with nominal coding (Normal THI < 74; Alert 75 < THI < 78; Danger 79 < THI < 83; and Emergency THI > 84; Mader et al. 2006), cattle experienced ‘alert’ or greater ambient conditions throughout the course of the study.

During the late finishing phase (last 127 d on feed), and notwithstanding the elevated THI, increasing DCAD did not affect (P > .20) ADG, DMI, gain efficiency or dietary NE (Table 2). Colgan and Mader (2007) observed that addition of 2.1% KHCO3 to increase the DCAD of a dry rolled corn-based finishing diet from 91 to 294 mEq/kg did not affect ADG or gain efficiency of Angus-cross steers during their late finishing phase (average daily THI, 71.4). The addition of KHCO3 did, however, increase water intake 22% (from 2.92 to 3.61 L/kg DMI). In contrast, the addition of 1.1% NaCl did not affect water intake. Likewise, Luebbe et al. (2011) did not observe an effect of DCAD (~160 vs +200 mEq/kg DM) on growth performance of feedlot steers during a summer finishing period (June through October). In a 113-d trial conducted during the summer months of June through September, Sexson et al. (2010) observed that increasing the DCAD level from 37 to 102 mEq/kg DM in a steam-flaked corn-based finishing diet did not affect ADG. However, it increased (3.2%) estimated dietary NE. They attributed this response to a potential buffering effect of the added K2CO3, as increasing DCAD also tended to reduce the incidence of liver abscess. Ross et al. (1994) evaluated effects of DCAD on 84-d feedlot performance of cross-bred steers fed a cracked corn-based finishing diet (climatic conditions or season were not specified). Increasing DCAD from approximately 40 to 350 mEq/kg decreased DMI and ADG, but did not affect gain efficiency.

Experiment 2

Increasing DCAD did not affect (P > .20) ruminal or total digestion of DM, OM, NDF, N or starch (P > .20; Table 3). The influence of DCAD, on site and extent of digestion of feedlot diets has received limited attention. Likewise, increasing DCAD of a steam-flaked corn-based finishing diet from 16 to 104 mEq/kg did not influence ruminal site and extent of digestion of OM, fibre, starch or N (Zinn 1991; Zinn and Borquez 1993).

There were no treatment effects (P > .20) on ruminal pH, total VFA, or molar proportions of acetate, propionate and butyrate, or estimated methane production (Table 4). Ross et al. (1994) did not observe an effect of increasing DCAD from –9 to +350 mEq/kg in a cracked corn-based finishing diet on ruminal pH and VFA molar concentrations. Likewise, Zinn and Borquez (1993) observed that increasing DCAD of a steam-flaked corn-based finishing diet from 16 to 104 mEq/kg did not influence ruminal pH, VFA molar proportions or estimated methane production. In other instances (Russell et al. 1980; Zinn 1991), the increasing DCAD (from approximately 15 to 120 mEq/kg) in high grain finishing diets increased ruminal pH and decreased propionate molar proportions.

4. Conclusion

During periods of high ambient temperature, increasing DCAD from 34 to 134 mEq/kg in a steam-flaked corn-based finishing diet did not appreciably influence feedlot growth performance of Holstein steers or characteristics of ruminal and total tract digestion.

Table 4. Treatment effects on ruminal pH and VFA molar proportions and estimated methane production (Experiment 2).

Item	DCAD, mEq/kg DM	34	84	134	Linear	Quadratic	SEM
Ruminal pH	5.80	6.03	5.99		0.35	0.42	0.10
Total VFA, mM	71.6	69.2	66.8		0.42	0.99	3.0
Ruminal VFA, mol/100 mol							
Acetate	61.9	61.9	59.7		0.40	0.61	1.2
Propionate	29.1	28.6	29.5		0.91	0.84	1.9
Butyrate	9.0	9.5	10.8		0.28	0.71	0.7
Acetate/propionate	2.1	2.4	2.04		0.82	0.52	0.3
Methaneb	0.51	0.52	0.50		0.76	0.79	0.02

a Dry matter intake was restricted to 2.2% of BW.
b Methane production (mol/mol glucose equivalent fermented) was estimated based on the theoretical fermentation balance for observed molar distribution of VFA (Wolin 1960).
Disclosure statement
No potential conflict of interest was reported by the authors.

References

AOAC. 1986. Official methods of analysis, 14th ed. Washington, DC: Association of Official Analytical Chemists. 155.
Apper-Bossard E, Peyraud JL, Faverdin P, Meschy F. 2006. Changing dietary cation–anion difference for dairy cows fed with two contrasting levels of concentrate in diets. J Dairy Sci. 89:749–760.
Austic RE, Calved CC. 1981. Nutritional interrelationships of electrolytes and amino acids. Fed Proc. 40:63.
Beighle DE, Tucker WB, Hemken RW. 1988. Interactions of dietary cation–anion balance and phosphorus: effects on growth and serum inorganic phosphorus in dairy calves. J Dairy Sci. 71:3362–3368.
Bergen WG, Purser DB, Cline JH. 1968. Effect of ration on the nutritive quality of rumen microbial protein. J Anim Sci. 27:1497–1501.
Block E. 1984. Manipulating dietary anions and cations for prepartum dairy cows to reduce incidence of milk fever. J Dairy Sci. 67:2939–2948.
Colgan S, Mader TL. 2007. Feeding potassium bicarbonate and sodium chloride in finishing diets. Nebraska Beef Cattle Rep., 82:77–79. http://digitalcommons.unl.edu/animalscinenber/82
Hicks CR. 1973. Fundamental concepts in the design of experiments. New York: Holt, Rinehart and Winston.
Hill FN, Anderson DL. 1958. Comparison of metabolizable energy and productive determinations with growing chicks. J Nutr. 64:587–603.
Lofgreen GP, Garrett WN. 1968. A system for expressing net energy requirements and feed values for growing and finishing beef cattle. J Anim Sci. 27:793–806, 1968.
Luebbe MK, Erickson GE, Klopfenstein TJ, Greenquist MA, Benton JR. 2011. Effect of dietary cation–anion difference on urinary pH, feedlot performance, nitrogen mass balance, and manure pH in open feedlot pens. J Anim Sci. 89:489–500.
Mader TL, Davis MS, Brown-Brandl T. 2006. Environmental factors influencing heat stress in feedlot cattle. J Anim Sci. 84:712–719.
Mongin P. 1981. Recent advances in dietary anion–cation balance: applications in poultry. Proc Nutr Sac. 40:285–294.
NRC. 1996. Nutrient requirement of beef cattle. 6th Rev. Ed. Washington, DC: National Academy Press.
Patience JF, Austic RE, Boyd RD. 1987. Effect of dietary electrolyte balance on growth and acid–base status in swine. J Anim Sci. 64:457.
Ross JG, Spears JW, Garlich JD. 1994. Dietary electrolyte balance effects on performance and metabolic characteristics in finishing steers. J Anim Sci. 72:1600–1607.
Russell JR, Young AW, Jorgensen NA. 1980. Effect of sodium bicarbonate and limestone additions to high grain diets on feedlot performance and ruminal and fecal parameters in finishing steers. J Anim Sci. 51:996–1002.
Sexton JL, Wagner JJ, Engle TE, Spears JW. 2010. Effects of water quality and dietary potassium on performance and carcass characteristics of yearling steers. J Anim Sci. 2009. 88:296–305.
Torrentera N, Plascencia A, Salinas-Chavira J, Zinn RA. 2017. Influence of implant strategy on growth performance and carcass characteristics of calf-fed Holstein steers. Prof Anim Sci. 33:327–333.
Tucker WB, Harrison GA, Hemken RW. 1988. Influence of dietary cation–anion balance on milk, blood, urine, and rumen fluid in lactating dairy cattle. J Dairy Sci. 71:346–354.
Van Soest PJ, Robertson JB, Lewis BA. 1991. Methods for dietary fibre, neutral detergent fibre and non-starch polysaccharides in relation to animal nutrition. J Dairy Sci. 74:3583–3597.
West JW, Mullinix BG, Sandifer TG. 1991. Changing dietary electrolyte balance for dairy cows in cool and hot environments. J Dairy Sci. 74:1662–1674.
Wolin MJ. 1960. A theoretical rumen fermentation balance. J Dairy Sci. 43:1452–1459.
Zinn RA, Borquez JL. 1993. Influence of sodium bicarbonate and monensin on utilization of a fat-supplemented, high-energy growing-finishing diet by feedlot cattle. J Anim Sci. 7:18–25.
Zinn RA, Owens FN. 1986. A rapid procedure for purine measurement and its use for estimating net ruminal protein synthesis. Can J Anim Sci. 66:157–166.
Zinn RA. 1990. Influence of steaming time on site digestion of flaked corn in steers. J Anim Sci. 68:776–781.
Zinn RA. 1991. Comparative feeding value of steam-flaked corn and sorghum in finishing diets supplemented with or without sodium bicarbonate. J Anim Sci. 69:905–916.
Zinn RA, Shen Y. 1998. An evaluation of ruminally degradable intake protein and metabolizable amino acid requirements of feedlot calves. J Anim Sci. 76:1280–1289.