静脈血栓塞栓症の遺伝的リスクであるプロテイン S K196E 変異検出 ELISA の開発

丸山慶子

ELISA-based detection system for Protein S K196E mutation, a genetic risk factor for venous thromboembolism

Keiko MARUYAMA

Key words: Protein S, PS K196E mutation, venous thromboembolism, ELISA

1. はじめに

プロテイン S（PS）は、活性化プロテイン C（APC）や組織因子阻害インヒビター（TFPI）の補因子として働き、生体内での血管内凝固を抑制する重要な凝固制御因子である1). 日本の静脈血栓塞栓症（venous thromboembolism; VTE）の遺伝的リスクとして、PS K196E（Lys196Glu, K155E, Tokushima, rs12191847）変異が知られる（オッズ比：3.74–8.56）2–4). PS K196E変異ヘテロ接合性保有者の PS 活性は非保有者より平均値で約 16％低下しているが、ヘテロ保有者および非保有者の PS 活性値は大きくオーバーラップするため、活性測定では変異の有無を識別できな

2. プロテイン S

PS は分子量約 80 kDa のビタミン K 依存性 1 本鎖糖タンパク質である。APCや TFPI の補因子として働き、活性型第 V、第 VIII、および第 X 因子を不活性化する5). また PS はプロトロンビナーゼ複合体中の活性型第 V、第 VIII 因子に結合し、それらの活性を直接阻害し、生体内での血管内凝固を抑制する6). したがって、PS の欠損あるいは機能異常は VTE のリスクを増大させる。PS は、血中に約 20 μg/mL (300 nmol/L) 存在し、そのうち約 40％は遊離型として、約 60％は補体系制御因子 C4b 結合蛋白質 (C4BP) との結合型として存在する。C4BP 結合型 PS は遊離型 PS に比べて抗凝固活性が 6～8 倍低いため、PS の抗凝固活性は主に遊離型 PS が担っている7). さらに、PS は抗凝固作用以外に、受容体シグナーゼの TAM レセプターファミリー (Tyro3, Axl, Mer) の活性化リガンドとして働き、細胞保護作用や食食促進作用を示し、炎症、癌、自己免疫疾患など様々な病態に関与している8).

3. プロテイン S K196E 変異

PS K196E 変異は、日本人の VTE の遺伝的リスクである (オッズ比：3.74–8.56)2–4). PS K196E 変異マウスの解析からも本変異が VTE の増悪因子であるこ

*責任者連絡先：
国立循環器病研究センター分子病態部
〒 565-8565 大阪府吹田市藤白台 5-7-1
Tel: 06-6833-5012, Fax: 06-6835-1176
E-mail: keiko-maruyama@ncvc.go.jp
とが示されている9)。PS K196E 変異は、欧米人や中国人、韓国人にはみられず、日本人のみに約 55 人に 1 人の頻度で存在する10,11)。一方、欧米人の血栓症発症の二大遺伝性リスク因子として知られる Factor V Leiden 変異(FV Arg506Gln 変異)とプロトロンピン G20210A 変異は、日本人にはみられない12,13)。これらの変異はいずれも不育症の強いリスク因子ではないとしており14,15)、PS K196E 変異も不育症の遺伝的リスクではないことが報告された16)。

PS K196E 変異は、PS タンパク質分子の第 2 EGF ドメインにあるリジン16E3 がグルタミン酸に変異した分子異常症である。PS K196E 変異ヘテロ保有者は、血中の PS 抗原量の低下はみられないが、PS 抗凝固活性は非保有者より平均で約 16% 低下している。しかしながら、ヘテロ保有者の PS 活性は 40% から 110% まで幅広い範囲を示し、非保有者の PS 活性も 40% から 170% まで活性分布を示す17)。すなわち、ヘテロ保有者および非保有者の PS 活性値は大きくオーバーラップするため、PS 活性測定では変異の有無を識別できない。

4. プロテイン S K196E 変異特異的抗体の作製

血中の PS K196E 変異体を同定するため、PS K196E 変異特異的モノクローナル抗体を作製した。今回、抗体作製には GANP マウス18)を用いた。GANP マウスでは、抗体可変領域に高頻度で突然変異が誘発され、通常のマウスに比べて多様な抗体産生細胞が出現する。抗原ペプチド C16KNGFVMLSNE 19)（下線で示す Glu 残基が変異部位）を共有結合したキーホールリンペットヘモシアニン 3 回免疫し、B 細胞より抗体産生ハイブリドーマを作製した。組換えヒト PS 野生型および K196E 変異型 EGF 様ドメイン 1-4 を HEK293S 細胞で発現精製し、これを用いてハイブリドーマのスクリーニングを行った。1,672 クローンを調べ、野生型 EGF 様ドメイン 1-4 には反応せず、変異型に反応する 3 クローン (4B1、15C8、16E3) を樹立した（トランスジェニック社に委託）。その後、ハイブリドーマの培養上清から抗体を精製した。次いで、組換えヒト PS 野生型全長および変異型全長を HEK293S 細胞で発現精製し、これを抗原に用いて上述 3 クローンに由来するモノクローナル抗体の特異性を検討した（図 1）。その結果、15C8 クローンの抗体が最も優れていたことより、15C8 抗体を以降の検討に用いた。ウェスタンプロットにおいても、15C8 抗体が組換えヒト変異型 PS のみを検出することを確認した。

5. プロテイン S K196E 変異検出法の確立

今回開発した PS K196E 変異検出法の概要を示す（図 2）。96 ウェルマイクロプレートに抗 PS ボリクローナル抗体（Dako、10 μg/mL）を固定化したのち、1% BSA-TBS でブロッキングする。その後、TBS にて 20 倍希釈した血漿サンプル 100 μL を添加し、室温で 1 時間反応させた後、洗浄する。次いで、horseradish peroxidase (HRP) 標識した PS K196E 変異特異的モノクローナル抗体 (15C8、0.5 μg/mL) 100 μL を添加し、室温で 1 時間反応させる。洗浄後、3,3',5,5'-tetramethylbenzidine (TMB) 質 100 μL を添加して反応させ、波長 450 nm での吸光度を測定する。

血漿検体として、金沢大学にて遺伝子解析により
PS K196E 変異の有無が調べられた 133 検体（ヘテロ変異保有者 11 名、非保有者 122 名）を用いた。検体は全てクエン酸加血血漿であり、測定に供するまで -80 度にて保存した。変異保有者 11 名のうち 2 名に血塩症の既往があった。1 名は肺血栓塞栓症を発症してハルファリンを服用しており、もう 1 名は妊娠を契機に右内頸静脈血塩性静脈炎を発症し、ヘパリン服用中であった。本検出法で測定した結果、変異保有者全検体の吸光度（0.30–1.00）は非保有者全検体の吸光度（-0.01–0.07）に比べて高かったため、全検体で変異の有無を識別できたことになる（図 3）。また、ハルファリン服用検体（吸光度 0.30）および妊娠検体（0.37）においても、非保有者に比べて高い吸光度を示した。以上の結果より、本検出法では遺伝子解析を行わずに血漿検体を用いて PS K196E 変異の有無を識別でき、さらにハルファリンや妊娠などの付加的要因により正確な PS 活性値が得られないような場合でも変異保有の有無を診断可能であることが示された。

本検出法では PS K196E 変異のホモ保有者とヘテロ保有者を識別できない可能性がある。今回の検討ではホモ保有者の検体がなかったため断言できないが、ヘテロ保有者 11 検体の PS 抗原量と本法での吸光度の間に相関がみられなかったためである。つまり、本法での吸光度は、検体中の変異型 PS 量を正確に反映しているとはいいがたい、おそらく検体に含まれる正常 PS の量の影響を受けるためと考えられる（後述参照）。方法を工夫することでホモ保有者とヘテロ保有者を識別できるようになる可能性もあるが、現時点では難しい。なお、本研究は国立循環器病研究センターおよび金沢大学大学院医薬保健学総合研究科の倫理委員会の承認のもとに実施した。

6. 精度評価

本検出法の精度を評価するため、同時再現性試験、日差再現性試験、希釈直線性試験および添加回収試験を行った。同時再現性試験では 3 種類の変異保有者検体を同時に行い 5 回ずつ測定し、日差再現性試験では 3 種類の変異保有者検体を日時を変えて 5 回ずつ測定し、それぞれ変動係数（coefficient variation; CV）を求めた。その結果、同時再現性の CV は 1.4–
図3 遺伝型が既知の血漿検体を用いた変異検出結果
K196E 変異ヘテロ保有者(KE)の吸光度は非保有者(KK)の吸光度に比べて高く、これらの検体では、感受度、特異度とも 100％であった。

3.1％、日差再現性的 CV は 8.1–14.7％であり、いずれも良好であった。

希釈直線性試験では、TBS、PS 欠乏血漿(TBS で 20 倍希釈)、および PS K196E 変異非保有者血漿(同希釈)のそれぞれに対し、組換えヒト全長 K196E 型 PS タンパク質を 0.25 μg/mL に段階添加し測定した(図4)。その結果、3 種類とも PS 添加量に対して吸光度は良好な直線性を示した(R²=0.99–1.00)。ただし、TBS および PS 欠乏血漿で作成した検量線はほぼ一直線であったが、変異非保有者血漿で作成した検量線は両者に比べて傾きが小さかった(吸光度が低かった)。変異非保有者血漿には正常 PS が含まれる。

本検出法はキャプチャー抗体として抗 PS ポリクローナル抗体を用いているため、血漿に含まれる正常 PS と添加した組換え K196E 型 PS がキャプチャー抗体上で競合するためと考えられた。つまり、本検出法では、血漿検体中の PS 総量や正常 PS 量によって変異型 PS に由来する吸光度が影響を受けるため、変異型 PS 量を正確に測定することは難しいと考えられる。変異のヘテロ保有者とホモ保有者を識別できないと前述したのは、このためである。

添加回収試験では、2 種類の変異保有者検体に組換えヒト全長 K196E 型 PS タンパク質を 2.5, 50, 100 ng ずつ添加し、添加量が正確に定量されることを、検量線(非保有者血漿検体に組換えヒト全長 K196E 型 PS タンパク質を添加して作成)から得られる回収率で評価した。その結果、95–106％の回収率を示し、良好であった。以上の結果より、本検出法は、感受度、特異度、再現性および希釈直線性が優れており、変異検出 ELISA として臨床検査に適応できる性能を有していると考えられた。

7. 今後の展望

本稿で紹介した検出法は結果が出るまでに 4 時間程度かかるため、実用化に向けて、より簡便に短時間で検出可能な方法への改良や、臨床検査室の自動分析装置にて測定可能なラテックス凝集法への応用に繋げていきたいと考えている。また、本検出法では妊娠中や抗凝固薬服用中の検体でも測定できる可能性が示されたので、妊娠や経口避妊薬服用による VTE 発症と PS K196E 変異の関連の研究等に活用していきたいと考えている。

8. おわりに

本研究では、PS K196E 変異特異的モノクローナル抗体を作製し、これを用いて血漿検体で変異保有者を同定する系を確立した。本測定法は、遺伝子解析を行わずに変異を同定できるため、臨床検査の現場で測定可能です。本邦における血栓症診断に有用であると考えられる。
謝辞

本研究は、国立循環器病研究センター分子病態部のみなさま、および金沢大学大学院医薬保健学総合研究科病態検査学の森下英理子教授ならびに関谷歯子助教にご指導、ご協力いただき遂行できました。この場をお借りして、厚く御礼申し上げます。

著者の利益相反(COI)の開示：
本論文発表内容に関連して開示すべき企業との利益相反なし

文献
1) Garcia de Frutos P, Fuentes-Prior P, Hurtado B, Sala N: Molecular basis of protein S deficiency. Thromb Haemost 98: 543–556, 2007.
2) Kinoshita S, Iida H, Inoue S, Watanabe K, Kurihara M, Wada Y, Tsuda H, Kang D, Hamasaki N: Protein S and protein C gene mutations in Japanese deep vein thrombosis patients. Clin Biochem 38: 908–915, 2005.
3) Kimura R, Honda S, Kawasaki T, Tsuji H, Madoiwa S, Sakata Y, Kojima T, Murata M, Nishigami K, Chiku M, Hayashi T, Kokubo Y, Okayama A, Tomoike H, Ikeda Y, Miyata T: Protein S-K196E mutation as a genetic risk factor for deep vein thrombosis in Japanese patients. Blood 107: 1737–1738, 2006.
4) Ikejiri M, Wada H, Sakamoto Y, Ito N, Nishioka J, Nakatani K, Tsuji A, Yamada N, Nakamura M, Ito M, Nobori T: The association of protein S: Tokushima-K196E with a risk of deep vein thrombosis. Int J Hematol 92: 302–305, 2010.
5) Kimura R, Sakata T, Kokubo Y, Okamato A, Okayama A, Tomoike H, Miyata T: Plasma protein S activity correlates with protein S genotype but is not sensitive to identify K196E mutant carriers. J Thromb Haemost 4: 2010–2013, 2006.
6) Maruyama K, Akiyama M, Kokame K, Sekiya A, Morishita E, Miyata T: ELISA-based detection system for Protein S K196E mutation, a genetic risk factor for venous thromboembolism. PLoS ONE 10: e0133196, 2015.
7) Heeb MJ, Schuck P, Xu X: Protein S multimers and monomers each have direct anticoagulant activity. J Thromb Haemost 4: 385–391, 2006.
8) van der Meer JH, van der Poll T, van’t Veer C: TAM receptors, Gas6, and protein S: roles in inflammation and hemostasis. Blood 123: 2460–2469, 2014.
9) Banno F, Kita T, Fernández JA, Yanamoto H, Tashima Y, Kokame K, Griffin JH, Miyata T: Exacerbated venous thromboembolism in mice carrying a protein S K196E mutation. Blood 126: 2247–2253, 2015.
10) Liu W, Yin T, Okuda H, Harada KH, Li Y, Xu B, Yang J, Wang H, Fan X, Koizumi A, Miyata T: Protein S K196E mutation, a genetic risk factor for venous thromboembolism, is limited to Japanese. Thromb Res 132: 314–315, 2013.
11) Yin T, Miyata T: Dysfunction of protein C anticoagulant system, main genetic risk factor for venous thromboembolism in northeast Asians. J Thromb Thrombolysis 37: 56–65, 2014.
12) Fujimura H, Kambayash J, Monden M, Kato H, Miyata T: Coagulation factor V Leiden mutation may have a racial background. Thromb Haemost 74: 1381–1382, 1995.
13) Miyata T, Kawasaki T, Fujimura H, Uchida K, Tsushima M, Kato H: The prothrombin gene G20210A mutation is not found among Japanese patients with deep vein thrombosis and healthy individuals. Blood Coagul Fibrinolysis 9: 451–452, 1998.
14) Dizon-Townson D, Miller C, Sibai B, Spong CY, Thom E, Wendel G, Wenstrom K, Samuels P, Cotroneo MA, Moawad A, Sorokin Y, Meis P, Miodovnik M, O’Sullivan MJ, Conway D, Wapner RJ, Gabbe SG; National Institute of Child Health and Human Development Maternal-Fetal Medicine Units Network: The relationship of the factor V Leiden mutation and pregnancy outcomes for mother and fetus. Obstet Gynecol 106: 517–524, 2005.
15) Silver RM, Zhao Y, Spong CY, Sibai B, Wendel G, Wenstrom K, Samuels P, Caritis SN, Sorokin Y, Miodovnik M, O’Sullivan MJ, Conway D, Wapner RJ; Eunice Kennedy Shriver National Institute of Child Health and Human Development Maternal-Fetal Medicine Units (NICHD MFMU) Network: Prothrombin gene G20210A mutation and obstetric complications. Obstet Gynecol 115: 14–20, 2010.
16) Neki R, Miyata T, Fujita T, Kokame K, Fujita D, Isaka S, Ikeda T, Yoshimatsu J: Nonsynonymous mutations in three anticoagulant genes in Japanese patients with adverse pregnancy outcomes. Thromb Res 133: 914–918, 2014.
17) Sakaguchi N, Kimura T, Matsushita S, Fujimura S, Shibata J, Araki M, Sakamoto T, Minoda C, Kuvahara K: Generation of high-affinity antibody against T cell-dependent antigen in the Ganp gene-transgenic mouse. J Immunol 174: 4485–4494, 2005.