Ficus (Moraceae) and fig wasps (Hymenoptera: Chalcidoidea) in Taiwan

Anthony Bain¹,², Hsy-Yu Tzeng³, Wen-Jer Wu⁴ and Lien-Siang Chou¹*

Abstract
Although *Ficus*-associated wasp fauna have been extensively researched in Australasia, information on these fauna in Taiwan is not well accessible to scientists worldwide. In this study, we compiled records on the *Ficus* flora of Taiwan and its associated wasp fauna. Initial agronomic research reports on *Ficus* were published in Japanese in 1917, followed by reports on applied biochemistry, taxonomy, and phenology in Chinese. On the basis of the phenological knowledge of 15 species of the *Ficus* flora of Taiwan, recent research has examined the pollinating and nonpollinating agaonid and chalcid wasps (Hymenoptera: Chalcidoidea). Updating records according to the current nomenclature revealed that there are 30 taxa (27 species) of native or naturalized *Ficus* with an unusually high proportion of dioecious species (78%). Four species were observed to exhibit mutualism with more than one pollinating wasp species, and 18 of the 27 *Ficus* species were reported with nonpollinating wasp species. The number of nonpollinating wasp species associated with specific *Ficus* species ranges from zero (*F. pumila*) to 24 (*F. microcarpa*). Approximately half of the Taiwanese fig tree species have been studied with basic information on phenology and biology described in peer-reviewed journals or theses. This review provides a solid basis for future in-depth comparative studies. This summary of knowledge will encourage and facilitate continuing research on the pollination dynamics of *Ficus* and the associated insect fauna in Taiwan.

Keywords: Chalcidoidea; *Ficus*; Fig wasp; Nomenclature; Taiwan

Review
Introduction
The pantropical genus *Ficus* (Moraceae) is the most speciose genus of woody plants, comprising 735 species known worldwide (Berg and Corner 2005). *Ficus* is characterized by their unique inflorescences, called figs, or syconia. Due to their essential role in tropical landscapes and their rich ecological relationships with numerous invertebrates and vertebrates, fig trees may be considered as keystone resources of tropical forests (Shanahan et al. 2001; Harrison 2005). Asia contains a wide diversity of *Ficus* flora, with 130 known species from Borneo (Berg and Corner 2005), 99 from China (Wu et al. 2003) and only 25 species common to the two areas.
The genus has attracted considerable attention among ecologists because of its obligate mutualism with pollinating wasps (Hymenoptera: Agaonidae: Agaoninae, Kradibiinae, Tetrapusiinae) (Crudiau et al. 2010; Heraty et al. 2013). Fig trees have become an essential model for studies on mutualism (Janzen 1979; Frank 1985), sex ratio theory (Herre 1985; Weiblen 2002), and coevolution processes (Anstett et al. 1997; Cook and Rasplus 2003).
Fig trees and their pollinators have long been used as an example of obligate mutualism. The pollinating wasps are the only organism pollinating the figs and these wasps can only lay eggs in fig ovules. The pollinators enter into the fig by a tight ostiole. Once inside the fig, wasps pollinate the flowers and lay eggs inside the fig ovules (Kjellberg et al. 2005). Then the larvae feed on gall tissue induced during the oviposition and mature along with the seeds and pollen grains of the fig. At maturity, fertilized female pollinating wasps leave the natal fig and transport pollen to another receptive fig on another tree (Kjellberg et al. 2005). Some pollinating fig wasps genera actively pollinate the styles of the ovules before oviposition. After mating, they open the anthers of their natal fig and collect pollen grains that are stored
in pollen pockets located on the ventral side of the mesosoma (Kjellberg et al. 2001). In contrast, passive pollination requires no specific behavior: The pollen grains simply stick to the wasp body and fertilize ovules when the pollinating wasps enter a fig. Though one *Ficus* species is associated with only one pollinating wasp species in most of the cases (Janzen 1979), some *Ficus* species have long been known to host additional pollinating wasp species (Galil and Eisikowitch 1967; Ramírez 1970; Molbo et al. 2003).

In addition to the pollinating wasp species, most of the *Ficus* species also host nonpollinating wasp species (Kjellberg et al. 2005). These wasps oviposit from the outside of the figs. The number of nonpollinating wasps (NPFW) species varies greatly between *Ficus* species (Kerdelhué et al. 2000). Their feeding regimes also vary: Some NPFW species gall the ovules similarly to the pollinating species, and some are parasitoids (Compton and van Noort 1992).

Over the past century, extensive research on various characteristics of the fig flora in Taiwan and its associated fauna has been conducted (Figure 1). Taiwan and its offshore islands are tropical and subtropical. Recently, 26 native and one introduced *Ficus* species have been reported (Tzeng 2004, in Chinese with English abstract). The first report on the *Ficus* genus in Taiwan was written in Japanese and focused on the cultivation of *Ficus pumila* var. *awkeotsang* (Takao 1917). The first taxonomic monograph was published in 1934 (Sata 1934), followed 10 years later, by a comparison of the fig flora in Taiwan and in the Philippines (Sata 1944). Later on, several studies addressing the biochemistry of an edible jelly produced from the dried seeds of *F. pumila* var. *awkeotsang* (Huang and Chen 1979; Huang et al. 1980; Lin et al. 1989; Liu et al. 1989, 1990) were published. This jelly, locally called “aiyu”, is a common ingredient of summer beverages in Taiwan.

Taxonomic research on the *Ficus* genus in Taiwan resumed 45 years after Sata’s final publication (Liao 1989), which has been recently updated by Tzeng (2004). The research performed by Tzeng (2004) is exhaustive and provides a clear understanding of the *Ficus* flora and its distribution around Taiwan.

The phenology of *Ficus* has been extensively studied (Hu et al. 1986; Ho 1987). Phenological research introduced a physiological point of view to the study of fig ecology. However, common fig-wasp interactions have rarely been reported in Taiwan. We here establish a framework for future work on Taiwan *Ficus* and its associated wasp fauna by providing an updated list of *Ficus* species and the associated wasp species in Taiwan. These wasp species include specific pollinators or groups of pollinator species (in a few cases) as well as nonpollinating fig wasps.

Figure 1 Taiwanese publications on fig and fig wasps since 1979. Each Taiwanese article has been classified under a discipline in which the journal they have been published in. The categories are the ones used in the ISI Web of KnowledgeSM. Nevertheless 18 of the 24 cited journals were not referenced by ISI Web of KnowledgeSM, then they have been categorized according to the journal description. For the journals having more than one category, value has been divided in equal parts. For example, a journal categorized in Forestry and Ecology would have counted as 0.5 in the two categories for this graph.
As part of a previous field study (Bain 2012), we collected figs from various sites throughout a lowland forest habitat on Taiwan as well as on Orchid and Green Islands off the southeast coast of Taiwan.

Notes on the taxonomy of Ficus (Moraceae)

In this present review, historical records were updated according to the current taxonomy and nomenclature guidelines to list 27 fig species (one species more than previously recorded) and 30 distinct taxa associated with the six subgenera present in Taiwan: *Urostigma* (5 taxa), *Pharmacosycea* (2), *Ficus* (8), *Synoezia* (6), *Sycidium* (6), and *Synoecia* (3) (Table 1).

Several species names from the studies of Liao (1989, 1995) and Tzeng (2004) were updated according to the recent taxonomic and nomenclatural knowledge. In the subgenus *Urostigma*, *F. subpisocarpa* has been subject to two recent revisions. Berg and Corner (2005) reinstated the species from *F. superba var. japonica*. Subsequently, by incorporating new observations from Thailand, Berg further divided the species into two subspecies: *F. subpisocarpa* subsp. *pubipoda* and *F. subpisocarpa* subsp. *subpisocarpa* (Berg 2007). Based on this knowledge, the Taiwanese taxon is *F. subpisocarpa* subsp. *subpisocarpa* (hereafter called *F. subpisocarpa*). Several taxonomic questions for this subgenus group remain unanswered. For example, the taxonomic position of *F. benjamina var. bracteata* is unclear. In 1983, Yamazaki described *F. benjamina var. bracteata* from Taiwan for the first time; subsequently, Berg and Corner (2005) assigned it a synonym: *F. benjamina*. In the studies conducted by Berg and Corner (2005) and Corner (1965), the analyzed *F. benjamina var. bracteata* samples were not obtained from Taiwan. Our observations from southern Taiwan reveal differences between *F. benjamina var. benjamina* and *F. benjamina var. bracteata* (Bain and Tzeng, pers. obs.). Despite these differences, until further research provides a new basis for a decision, we continue to list *F. benjamina var. bracteata* as a variety according to descriptions provided by Tzeng (2004). In addition, *F. religiosa* was not listed as a native species in the report of Sata (1934), but as introduced to Taiwan. Nevertheless, because the pollinating wasp species of *F. religiosa*, *Platyscapa quadraticeps*, has been observed in Taiwan, we consider *F. religiosa* a naturalized species (Chen and Chou 1997).

Two previously reported species of the subgenus *Pharmacosycea* from Taiwan have been reported (*F. nervosa* subsp. *nervosa* and *F. nervosa* subsp. *pubinervis*) have a debatable taxonomic status. Tzeng (2004) considered the aforementioned species as two distinct species whereas Berg and Corner (2005) listed them as subspecies. Both species are allopatric: *F. nervosa* subsp. *nervosa* is distributed in southern Taiwan and *F. nervosa* subsp. *pubinervis* is distributed only in Orchid Island (the island, located offshore on the Southeast of Taiwan Island, is also called Lanyu, 22°03′N; 121°32′E) (Tzeng 2004). The fact that they are pollinated by different agaonid wasp species (Table 1) provides additional evidence for distinguishing them as different species. According to pollen, pyrena and leaf morphology evidence (Chuang 2000; Tzeng 2004; Tzeng et al. 2009), *F. nervosa* subsp. *nervosa* and *F. nervosa* subsp. *pubinervis* are phylogenetically close, yet distinct species. Thus, in this study, we refer to *F. nervosa* subsp. *nervosa* and *F. nervosa* subsp. *pubinervis* as *F. nervosa* and *F. pubinervis*, respectively.

In the subgenus *Synoezia*, *F. tincctoria* subsp. *swinhoei* has been synonymized under *F. tincctoria* subsp. *tincctoria* (Berg and Corner 2005). The distribution of the former taxon is limited to southern Taiwan and Orchid Island, whereas *F. tincctoria* is widely distributed throughout Australasia (Berg and Corner 2005). Moreover, these two subspecies have different pollinators (J-Y Rasplus, pers. obs.). Therefore, on the basis of the study by Tzeng (2004), we continue to list *F. tincctoria* subsp. *swinhoei* as separated from *F. tincctoria* subsp. *tincctoria*. *Ficus tincctoria* and *F. virgata* are two species that require further taxonomic investigation. After solely studying herbarium samples, Berg and Corner (2005) could not clearly distinguish between Taiwanese *F. tincctoria* and *F. virgata*. However, according to local field observations, *F. virgata* can be clearly and unambiguously distinguished from other *Ficus* species (Liao 1989, 1995; Tzeng 2004). Thus, Taiwanese *F. virgata* and *F. tincctoria* subsp. *swinhoei* are here considered distinct species.

Furthermore, in the subgenus *Ficus*, *F. esquiroliana* has been synonymized under *F. triloba* subsp. *triloba* (Berg 2007). We support this decision because we found morphologically similar trees in Yunnan, China, and Taiwan (Bain and Tzeng, pers. obs.). In addition, *F. benguetensis* (subgenus *Synoecia*) has been reinstated as a full species (Tzeng 2004; Berg and Corner 2005). Previously, *F. benguetensis* was considered a variety, *F. fistulosa* var. *benguetensis* (Liao 1989, 1995); in addition, Berg (2011) amended its description.

Finally, *F. aurantiacea var. parvifolia* (subgenus *Synoezia*) has been synonymized under *F. punctata* (Berg and Corner 2005). Two forms of *F. aurantiacea var. parvifolia* have been described. The taxon distributed in Taiwan is listed under the “*aurantiacea form*” (i.e., *F. punctata f. aurantiacea*) (Chou and Yeh 1995).

Morphological studies have facilitated the confirmation of the classification of Taiwanese *Ficus* (Shieh 1964; Chuang 2000; Tseng et al. 2000; Bai 2002; Chuang et al. 2005; Chang et al. 2009; Tzeng et al. 2001, Tzeng et al. 2005b, Tzeng et al. 2006a, Tzeng et al. 2009). Among these studies, pollen (Tzeng et al. 2009) and pyrena (Chuang 2000; Chuang et al. 2005; Tzeng et al. 2006a) morphologies
Ficus	Fig wasps	References
Subgenus Urostigma (monoecious)		
F. benjamina L. var. bracteata Corner	Eupristina koninsberga*	Grandi 1916
	Philotrypesis distillatoria	Grandi 1926; Chou and Wong 1997
	Micranisa sp1 Sycoryctini sp.	Bain A. unpublished data; Segar et al. 2012
F. caulocarpa Miq.	Platyscampa fischeri*	Webes 1977; Yokoyama and Iwatsuki 1998
	Platyscampa hsui*	Chen and Chou 1997
	Camarothorax sp2*	Yokoyama and Iwatsuki 1998
	Otitesella clareae*	Webes 1977; Yokoyama and Iwatsuki 1998
F. microcarpa L. f.	Eupristina verticillata*	Waterston 1921; Chen and Chou 1997
	Walkerella kurandensis	Bouček 1988; Chen et al. 1999
	Walkerella microcarpae	Bouček 1993; Yang H-W unpublished data
	Acophila microcarpa	Chen et al. 1999
	Bruchophagus sensoriae	
	Meselatus bicolor	
	Micranisa degastris	
	Ormyrus lini	
	Philotrypesis taiwanensis	
	Sycophila curta	
	Sycophila maculafacies	
	Sycophila petiolata	
	Sycoryctes moneres	
	Odontofraggatia quinifuniculus	Feng and Huang 2010; Yang H-W unpublished data
	Philotrypesis emeryi	Grandi 1926; Chen et al. 1999
	Eufroggattisca okivanensis	Ishii 1934; Chen et al. 1999
	Odontofraggatia gajimaru	
	Philotrypesis okinavensis	
	Sycoscapter gajimaru	
	Micranisa yashiro*	Ishii 1934; Yokoyama and Iwatsuki 1998; Beardsley 1998
	Conidarnes sp1	Cruaud et al. 2011
	Odontofraggatia corneri	Webes 1980; Chen et al. 1999
	Odontofraggatia galii	
	Odontofraggatia ishii	
F. subpisocarpa Gagnep.	Platyscampa ishiiana*	Grandi, 1923; Chen and Chou, 1997
subsp. subpisocarpa Corner	Otitesella ako	Ishii, 1934; Bain A. unpublished data
	Acophila mikii	
	Philotrypesis sp1*	Yokoyama and Iwatsuki 1998
	Sycoscapter sp1*	
	Camarothorax sp1*	
	Camarothorax sp2, sp3	Bain A. unpublished data
F. subpisocarpa Gagnep.	Micranisa sp1	Bain A. unpublished data
subsp. subpisocarpa	Ormyrus sp1, sp2	
Corner	Philotrypesis sp1	
	Sycophila sp1, sp2, sp3, sp4, sp5	
	Walkerella sp1	
Table 1 Taiwan *Ficus* taxa and their associated pollinating and non-pollinating wasp species (Continued)

Species	Pollinators	Notes
F. religiosa L.	*Platyscapa quadraticeps*^P	Mayr 1885; Chen and Chou 1997
	Oritesella digitata⁺	Westwood 1883; Wiebes 1966
	Oritesella religiosa⁺	
	Sycoscapter gracilipes⁺	
	Sycoscapteridea monilifera⁺	
	Philotryptes anguliceps⁺	Westwood 1883; Wiebes 1966; Bouček 1988
Subgenus Ficus (dioecious)		
F. erecta Thunb. var. *beecheyana* King	*Blastophaga niponica*^P	Grandi 1921; Chen and Chou 1997
	Sycoscapter inuliae, sp1	Ishii 1934; Tzeng et al. 2006b, Tzeng et al. 2008
F. formosana Maxim.	*Blastophaga taiwanensis*^P	Chen and Chou 1997
	Sycoscapter sp1, sp2	Tzeng et al. 2008
F. pedunculosa Miq. var. *pedunculosa*	*Blastophaga pedunculosae*^P	Chen and Chou 1997
	(Parasitic fauna unknown)	
F. pedunculosa Miq. var. *meamsii* Comer	*Blastophaga pedunculosae*^P	Chen and Chou 1997
	Apocryta sp.	Bain, unpublished data
F. ruficaulis Merr.	*Valisia filippina*^P	Wiebes 1993; Chen and Chou 1997; Cruaud et al. 2010
	(Parasitic fauna unknown)	
F. tannoensis Hay.	*Blastophaga tannoensis*^P	Chen and Chou 1997
F. triloba Buch.-Ham. subsp. *triloba* Comer	*Valisia esquiriolanae*^P	Chen and Chou 1997; Cruaud et al. 2010
	Sycoryctini sp.	Segar et al. 2012; Bain A. pers. obs.
F. vaccinoides Hemsl.	*Blastophaga yen*^P	Chen and Chou 1997
	(Parasitic fauna unknown)	
Subgenus Pharmacosycea (monoeocious)		
F. nervosa subsp. *nervosa* Heyne	*Dolichoris nervosae nervosae*^P	Hill 1967
	Philotryptes sp1	
	Sycoscapter sp1	
F. nervosa subsp. *pubinervis* Blume	*Dolichoris valentine*^P	Grandi 1916
	(Parasitic fauna unknown)	
Subgenus Synoezia (dioecious)		
F. pumila L. var. *pumila*	*Webesia pumilae*^P	Hill 1967; Chen and Chou 1997
	Webesia sp.^P	Wang et al. 2013
	No parasitic wasp in Taiwan	
F. pumila L. var. *awkeotsang* Corner	*Webesia pumilae*^P	Hill 1967
	Webesia sp.^P	Wang et al. 2013
	No parasitic wasp in Taiwan	
F. punctata Thunb. f. *aurantiacea* Corner	*Webesia contubernalis*^P	Grandi 1927a; Chen and Chou 1997
	Sycoscapter sp.	Chou and Yeh 1995
Table 1 Taiwan *Ficus* taxa and their associated pollinating and non-pollinating wasp species (Continued)

Ficus taxa	Pollinating wasps	Non-pollinating wasps
F. sarmentosa var. nipponica	Wiebesia callida^a	Grandi 1927a; Chen and Chou 1997
F. trichocarpa Blume	*Wiebesia vechti*[*]	Wiebes 1993
Subgenus Sycidium (dioecious)		
F. amelas Burm. f.	*Krabidia sumatrana*^a	Wiebes 1993; Chen and Chou, 1997
	Philotrypesis distallatioria	Grandi 1926; Chang 2003
	Philotrypesis jacobsoni	Grandi 1926; Chou and Wong 1997
	Epichrysomallinae sp.	Chang 2003
F. cumingii Miq.	*Krabidia pancholi*^a	Wiebes 1993; Chen and Chou, 1997
	(Parasitic fauna unknown)	
F. heteroflora Blume	*Krabidia dubium*[*]	Grandi 1926; Cruaud et al. 2010
	(Parasitic fauna unknown)	
F. irisana Elm.	*Krabidia commuta*^a	Wiebes 1993; Chen and Chou, 1997
	Herodotia sp.	Chen 1998
	Philotrypesis sp1, sp2	
	Sycophila sp1, sp2	
	Sycoscapter sp.	
F. tinctoria G. Forst. subsp.	*Krabidia gibbosa*^a	Hill 1967; Chen and Chou 1997; Cruaud et al. 2010
swinhoei King	*Neosycophila sp.*	Huang 2007
	Philotrypesis sp1, sp2	
	Sycoscapter sp.	
	Eufroggatisca sp.*	Tzeng H-Y unpublished data
	Sycophila sp.	
F. virgata Reinw.	*Krabidia philippinensis*^a	Hill 1969; Chen and Chou 1997; Cruaud et al. 2010
F. virgata Reinw.	*Krabidia virgatae*^a	Hill 1969; Cruaud et al. 2010
	Krabidia sessili^a	
Subgenus Sycocorus (dioecious)		
F. benguetensis Merr.	*Ceratosolen wui*^a	Chen and Chou 1997
	Philotrypesis sp1, sp2	Bain A. unpublished data
	Sycoscapter sp1, sp2	
F. septica Burm.	*Ceratosolen bisulcatus bisulcatus*[*]	Mayr 1885; Wiebes 1994
	Ceratosolen bisulcatus jucundus^a	Grandi 1927b; Wiebes 1994; Lin et al. 2011
	Ceratosolen sp.^a	
	Sycophaga sp.	Bain A. unpublished data; Cruaud et al. 2011
	Philotrypesis sp1, sp2	Ho 2009
	Sycoscapter sp.	
	Philotrypesis spinipes	Mayr 1885; Chou and Wong 1997
	Philotrypesis bimaculata	
were interpreted systematically. For example, the morphology of pyrena (fig seed) is different for each Ficus subgenus. Moreover, the rough surface of the Ficus from the subgenus Sycomorus can be linked with their dispersers: Fruit bats (Lee et al. 2009). Pollen shape lends insight into pollination patterns. Emarginate-ellipse and truncate-ellipse pollen types indicate passive pollination, whereas the truncate-rhombus pollen type indicates active pollination (Kjellberg et al. 2001).

Phenology, ecology, and biology of figs and fig wasps

Ficus ecology, particularly the interspecific mutualism between _Ficus_ and fig wasps, began to receive attention in the early 1990s. Since then, several studies on this interspecific mutualism have been conducted (see Kjellberg et al. 2005 for review).

Prior knowledge of phenology is essential for studies on mutualism. _Ficus_ trees differ from most of other tree species: the figs they produced host their mutualistic pollinators. Thus the _Ficus_ reproductive phenology is not constant as other tree species (Bain et al. 2014a) that are, for example, bound to seasons (spring bloom). Numerous phenological studies of _Ficus_ trees have been conducted in Taiwan. The subgenus _Urostigma_ includes monoecious taxa, whereas all other subgenera in Taiwan are dioecious, having separate male and female trees. The latter produce only seeds whereas the figs of the former produce both pollen and pollen dispersers (pollinating fig wasp). Among the six subgenera in Taiwan, phenological data on all subgenera, except for the subgenus _Pharmacosyceoa_, have been collected. Finally, among the 30 _Ficus_ taxa, only half of them have seen their phenology examined. The most studied taxon is _F. erecta_ var. _beecheyana_, which has been described in six reports. In Taiwan, most phenological research has been undertaken as a part of graduate thesis work, and, therefore, is found mainly in Chinese language theses and remains unpublished in peer-reviewed journals. Nevertheless, data from this phenological research provides a strong basis for further study.

The monoecious _F. microcarpa_ has been a study subject of four theses in Taiwan (Hsieh 1992; Chen 1994; Chen 2001; Yang 2011). _Ficus microcarpa_ is the most studied species worldwide because of its common occurrence in cities and campuses, and its invasive status in several continents (Beardsley 1998; Farache et al 2009; Doğanlar 2012). Reports on fig production are in agreement with the aforementioned studies. Each of these three studies surveyed the _F. microcarpa_ population on the National Taiwan University campus in different years. Fig trees were found to bear figs almost constantly throughout the year, with a decrease in fig yield observed from the beginning of autumn (Hsieh 1992; Yang et al. 2013) and some years, no figs were observed on the trees (Chen et al. 2004). In all of the aforementioned studies, the fig yield was the lowest in the winter season. Moreover, the number of crops per year varied greatly from zero to four. In addition, fig bearing in the _F. microcarpa_ population was highly asynchronous as no distinct seasonal or annual pattern was identified in any of the studies. However, the genetic diversity seems to determine the phenological diversity of the _F. microcarpa_ trees (Yang et al. 2014).

In addition to _F. erecta_, numerous dioecious species have been surveyed to determine fig production patterns (Tzeng et al. 2003, 2005a; 2006b; Bain et al. 2014a). In northern Taiwan, dioecious species were found to have similar phenological patterns across the genus. First, male trees consistently began bearing figs at the beginning of spring every year; female trees began their fig production a few weeks later. Second, a noticeable second production peak occurred in September and October. Third, rarer winter figs have a longer maturation period. Similar to the _F. microcarpa_ population, other fig tree populations produced figs asynchronously. Although there was a peak production period, the production of figs was not simultaneous. The production of some trees can be delayed for a few weeks (Yao 1998; Bain et al. 2014a). After the spring crop, the populations bore a low number of figs until autumn, when the male trees again preceded the female trees with a production a few weeks earlier. Finally, in winter, the trees were barest throughout Taiwan (Ho 1991; Chen 1998; Yao 1998; Chang 2003; Huang 2007; Ho et al. 2011; Chen 2012; Chiu 2012; Bain et al. 2014a).

Nevertheless, some inter- and intraspecific variations were observed. The duration of the spring crop and the

Table 1 Taiwan Ficus taxa and their associated pollinating and non-pollinating wasp species (Continued)

F. variegata Blume	Ceratosolen appendiculatus*	Mayr 1885; Chen and Chou 1997
Apocrypta caudata*		Weiblen et al. 1995
Sycophaga spinifera*		Mayr 1885; Rasplus J.-Y. pers. obs.
Sycosculator patellaris*	(www.figweb.org/Fig_wasps/Faunal_assemblages/Indo-Australasia/China); Cruaud et al. 2011	

The pollinating wasps are noted with a superscripted *p whereas the wasp species not yet observed in Taiwan but reported elsewhere for these fig taxa are noted with an asterisk (*). The last column displays the references of the description, the name modifications of the given species and/or the observations on these species.
Pollinating fig wasps (Hymenoptera: Agaonidae)

According to the phylogenetic nomenclature of Cruaud et al. (2010), we have noticed two changes in the former Taiwanese fig wasp nomenclature. First, the wasps belonging to the genus Blastophaga subgenus Valisia have been listed under the new genus Valisia. Therefore, pollinators of *F. triloba* and *F. ruficaulis* are now known as *Valisia esquierlianae* and *V. filippina*. Second, the genus Liporrhopalum has been synonymized under the genus Krabidia. Thus, all Agaonidae wasps pollinating the *Ficus* species from the subgenus Sycidium have been moved to the genus *Krabidia* (Table 1).

The study by Chen and Chou (1997) was one of the few studies that attempted to describe all pollinating wasp species from Taiwan. In their study, 24 species (seven newly described species) from eight genera were observed in Taiwan (Chen and Chou 1997). Their study still observed the 1:1 species specificity rule between fig trees and pollinating wasps. However, recently, a genetic study on the pollinating wasp species of *Ficus septica* concluded that it has three pollinator species with different distributions in Taiwan (Lin et al. 2011). One species was strictly limited to Orchid Island and the extreme south of Taiwan. The second species was limited only to Orchid Island and was considered rare. The third species was widely observed throughout Taiwan. Furthermore, genetic results showed weak differentiation among the fig wasp populations on the island, suggesting that the gene flow is high within the *F. septica* population in Taiwan (Lin et al. 2008). This trend was previously observed in other *Ficus* species, fig wasps, and other locations (Compton et al. 2000; Harrison and Rasplus 2006; Ahmed et al. 2009; Kobmoo et al. 2010). In addition, *Wiebesia pumilae* and *Wiebesia* sp., the pollinators of *F. pumila* var. *pumila* and *F. pumila* var. *awkeotsang*, were morphologically and genetically distinct (Lee 2009; Jiang 2011). These two wasp species have been observed in the figs of both varieties of *F. pumila* (Lu et al. 1987; Jiang 2011).

In addition to taxonomic studies, since the late 1990s, studies on the population dynamics of pollinators associated with *Ficus* phenology have been conducted (Chen et al. 2004). The most recent phenological study on *F. microcarpa* in Taipei City provided data on the size of the pollinating wasp population (Yang et al. 2013). The population size varied greatly during a year. During winter, the pollination rate of figs was low whereas in summer the size of the pollinating wasp population was great and the number of founresses could reach 19 in one single fig. These data have been used to estimate the total population of female wasps living around the studied group of *F. microcarpa* trees in Taipei (Yang et al. 2013). Yang et al. (2013) showed marked variation in the dynamics of the founress population size from 0 to 40,000 within one season for the 29 studied trees. Although there was a winter trough in the number of pollinators, the pollinator population could exhibit a high recovery rate in the spring season and still reach the peak during the summer-fall season.

Nonpollinating fig wasps (Hymenoptera)

Nonpollinating fig wasps (NPFWs) are categorized in three trophic categories: the gallers that induce a gall from the plant tissue, their larva feeds on the growing gall tissue; the parasitoids that lay their eggs on other larvae which feed on the host larva; and the kleptoparasites that kill galler larvae to feed on the induced gall tissues.
The NPFWs belong to three families (Eurytomidae, Ormyrionidae, and Torymidae) and seven subfamilies (Colotrechinae, Epichrysomallinae, Otitessellinae, Pteromalinae, Sycoecinae, Sycopephaginiae, and Sycoholicidae). The recent molecular phylogeny of the superfamily Chalcidoidea (Munro et al. 2011), which includes all of the aforementioned groups, has shown that four groups are monophyletic (Agaonidae, Epichrysomallinae, Pteromalinae, and Sycopephaginiae), whereas the other groups are paraplectic. In addition, phylogenies of the subfamilies Sycophaginiae (Cravaud et al. 2011) and Sycorycteridae (Segar et al. 2012) have been established. As we previously modified the names of pollinating wasp species, we here display the names of the Taiwanese species on the basis of the recent updates (Cravaud et al. 2011; Segar et al. 2012). First, the genus Apocryptophagus forms a single taxon with the genus Sycophaga, and consequently, it has been considered a junior synonym of Sycophaga and then synonymized under the genus Sycophaga (Cravaud et al. 2011). Therefore, the former Apocryptophagus wasps are currently named Sycophaga. Second, the Sycoscapter wasps once formed a group that was synonymized by Bouček (1988), all of the former names were reinstated by Segar et al. (2012): Sycoscapter, Sycoryxetes, Arachonion, Sycoscapteridea, and Sycorycteridea. Nevertheless, some Sycoscapter wasps listed in Table 1 and cited from other studies may be still grouped under Sycoscapter sensu Bouček (1988).

The first and only taxonomic publication on Taiwanese NPFW addressed the F. microcarpa wasp community (Chen et al. 1999). Studies examining NPFWs have been ecological studies, such as a study of the feeding regime (galler or parasitoid) of some Sycoscapter larvae (Tzeng et al. 2008). Conversely, the ecology of Taiwanese NPFW has been thoroughly studied. First, regarding F. microcarpa, to determine whether some NPFW are galler species (gallers produce plant galls that contain a growth of tissue to feed their larvae), the fig ostiole (i.e., the only entry of the fig) was sealed to avoid the entry of the pollinating wasps (Chen et al. 2001). Without the agaonid wasps, two NPFW species laid eggs inside the fig ovules from the outside: Odontofroggattia sp. (Epichrysomallinae) and Walkeraella kurandensis (Otitessellinae). Chen et al. (2001) showed that these two species were undoubtedly gallers. Second, regarding F. formasana, the exclusion of the two Sycoscapter species showed that they had a negative effect on the pollinating wasp population (Tzeng et al. 2008). In another study, Tzeng et al. (2014) showed that the fig wall thickness is a factor affecting the NPFW oviposition. Moreover, the timing of oviposition of these NPFW clearly indicated that the wasps were parasitoids.

Recent observations have shown that the NPFW species occurring on F. pedunculosa var. mearnsii belong to the genus Apocrypta (Bain, unpublished data). This genus was reported to feed on the larvae of pollinating wasps from the genus Ceratosolen (Ulenberg 1985), all pollinators of the fig subgenus Sycomorus (Rønsted et al. 2005). However, F. pedunculosa var. mearnsii belongs to the subgenus Ficus and is pollinated by Blastophaga wasps, but not by Ceratosolen wasps. Therefore, this observation is unexpected and should be further confirmed by studying more trees and by covering a larger area.

Finally, NPFWs are the prey of numerous ant species (Formicidae). Such ant species have been observed foraging inside figs of F. tinctoria subsp. swinhoei, F. septica, F. benguetensis, and F. subpisocarpa (Bain et al. 2014b). Ants enlarged the wasp exit hole and entered inside the figs to prey on the remaining fig wasps. On F. subpisocarpa, ants live more closely on the tree nesting inside the living branches of the tree (Bain et al. 2012). In these nests, numerous bodies of nonpollinating and pollinating wasps have been collected. Nevertheless, the foraging and hunting behaviors of the ants seem to be species dependent as wasp bodies have not been found in the nests of every ant species (Bain et al. 2012).

Conclusion
This paper presents and organizes the abundant and previously difficult-to-access research data on Ficus species and fig wasps in Taiwan. This paper compiles data from internationally accessible English language journal articles as well as local theses and dissertations, mostly in Chinese. In addition, this paper includes data from recent research conducted by the authors of this paper and presents an elaborate picture of the insect communities living on fig trees. The number and diversity of fig wasp fauna as well as the wide taxonomical range of Ficus warrant further comparative studies on the insect communities. Moreover, the high proportion of dioecious species enables investigating the sexual differences and adaptations of the two sexes. In summary, this paper provides comprehensive information on Ficus flora and wasp fauna in Taiwan, establishing a basis for understanding fig wasp survival and interspecific interaction in community ecology. Compared with other regions in the world, Taiwan provides an excellent foundation for continued ecological investigations of Ficus species and their associated communities.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
AB carried the writing of the early draft and the gathering of the fig wasp bibliography. THY, WWJ and CLS verified all the data and conceived the final version of the review. All authors read and approved the final manuscript.

Acknowledgements
We dedicate this article to Professor Cornelis C. Berg, who passed away in August, 2012. His research provided the deep foundations of the Ficus taxonomy. We acknowledge the ANR-NSC grant (ANR-09-BLAN-0392-CSD 7, NSC 99-2923-B-002-001-MY3) for providing funding for this work. We are very
grateful to the permission on collecting fig samples issued by the Hengchun Research Center of Taiwan Forestry Research Institute, the National Parks in Kenting and Yangmingshan. For assistance with identifying and naming fig wasps, we are deeply grateful to J-Y Rasplus and F Kjellberg. We also thank H-W Yang, M Peng and Y-P Chiang for help uncovering the rich Taiwan fig literature.

Author details

1Institute of Ecology and Evolutionary Biology, College of Life Science, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei 10617, Taiwan.
2Centre d'Ecologie Fonctionnelle et Evolutive CEFE, Univ. CNRS, 1919 route de Mende, 34293 Montpellier, France.
3Department of Forestry, National Chung-Hsing University, 250 Kuwang Road, Taichung 40227, Taiwan.
4Department of Entomology, National Taiwan University, No. 1, Sec. 4, Roosevelt Rd., Taipei 10617, Taiwan.

Received: 9 December 2014 Accepted: 27 April 2015
Published online: 16 May 2015

References

Ahmed S, Compton SG, Buttlin RK, Gillmartin PW (2009) Wind-borne insects mediate directional pollen transfer between desert fig trees 160 kilometres apart. P Natl Acad Sci USA 106(48):20342–20347, doi:10.1073/pnas.0902213106
Anstett M-C, Hossaert-McKey M, Kjellberg F (1997) Figs and fig pollinators: evolutionary conflicts in a coevolved mutualism. Trends Ecol Evol 12:94–99, doi:10.1016/S0169-5347(97)01046-1
Bai J-T (2002) The systematic wood anatomy of the Ficus (Moraceae) in Taiwan. Master Thesis. National Chung Hsing University, Taichung, Taiwan [in Chinese with English abstract]
Bain A (2012) Colonization and adaptations of Ficus in Taiwan. Dual-Degree PhD Dissertation. National Taiwan University & Université Montpellier 2, Taipei, Taiwan & Montpellier, France
Bain A, Chantarawusun B, Hossaert-McKey M, Schatz B, Kjellberg F, Chou L-S (2012) A new case of ants nesting within branches of a fig tree: the case of Ficus subpisocarpa in Taiwan. Sociobiology 59(1):415–434
Bain A, Chou L-S, Tseng H-Y, Ho Y-C, Chiang Y-P, Chen W-H et al. (2014a) Plasticity and diversity of the phenology of dioecious Ficus species in Taiwan. Acta Oecologica 57:124–134, doi:10.1016/j.actao.2013.10.006
Bain A, Harrison RD, Schatz B (2014b) How to be an ant on figs. Acta Oecologica 57:97–108, doi:10.1016/j.actao.2013.05.006
Beasley JF (1998) Chalcid wasps (Hymenoptera: Chalcidoidea) associated with fruit of Ficus microcarpa in Hawaii. P Hawaii Entomol Soc 57:97–108
Berg CC (2007) Precurory taxonomic studies on Ficus (Moraceae) for the Cruaud A, Jabour-Zahab Flora of Thailand. Thai Forest Bull Bot 3:45–28
Berg CC (2011) Invasive notes on the Malaisei membre of the genus Ficus (Moraceae). Blumea 56:161–164, doi:10.3767/000651911X592128
Berg CC, Corner EIH (2005) Moraceae (Ficus). In: Nuteboom HP (ed) Flora Malesiana, vol 17, Series I - Seed plants. National Herbarium Nederland, Leiden
Bouček Z (1988) Australasian Chalcidoidae (Hymenoptera): a biosystematic revision of genera of fourteen families, with a reclassification of species. CAB, International, Wallingford, UK
Bouček Z (1993) The genera of chalcidid wasps from Ficus fruit in the New World. J Nat Hist 27:173–217, doi:10.1080/00222939300770071
Chang W-C (2003) Floral phenology and pollination ecology of Ficus ampelopoda Burm. at Chiayi. Master Thesis, National Chiayi University, Chiayi, Taiwan [in Chinese with English abstract]
Chang W-C, Lu F-Y, Ho K-Y, Tseng H-Y (2009) Morphology of syconium of Ficus ampelopoda Burm. 34:1–16 [in Chinese with English abstract]
Chen Y-R (1997) Phenology and interaction of fig wasps and Hawaiian figs (Ficus microcarpa). Evol Biol 11:178–192
Chen Y-R, Wu W-J, Lu W-J, Chen W-H (2004) Synchronization of fig (Ficus microcarpa L.) abundance and pollinator (Exopristina verticillata: Agaoninae) population dynamics in northern Taiwan. J Natl Taiwan Mus 57(2):23–36
Chiu Y-T (2012) Phenology and population genetic variation of Ficus pedalulosa var. mearnii. Master Thesis. National Chung Hsing University, Taichung [in Chinese with English abstract]
Chou L-Y, Wong C-Y (1997) New records of three Philotrypesis species from Taiwan (Hymenoptera: Agaonidae: Sycocini). Chinese J Entomol 17:182–186
Chou L-S, Yeh H-M (1995) The pollination ecology of Ficus aurantiaca var. parvifolia. Acta Zool Taiwan 6(1):1–12
Chung J-C (2000) Studies on the morphology of pyrene of the fig species in Taiwan. Master Thesis, National Chung Hsing University, Taichung [in Chinese with English abstract]
Chuang A-C, Tseng H-Y, Lu F-Y, Du C-H (2005) Study on the morphology of pyrene of Ficus in Taiwan - Subgenus Eriocarpus, Ficus and Synocrea. J Chinese Forest 38:1–18 [in Chinese with English abstract]
Compton SG, van Noort S (1992) Southern African fig wasps (Hymenoptera: Chalcidoidea): resource utilization and host relationships. P K Ned Akad C Biol 95(4):423–435
Compton SG, Ellwood MDF, Davis AJ, Welch K (2000) The flight heights of chalcid wasps (Hymenoptera, Chalcidoidea) in a lowland Bornean rain forest: fig wasps are the high fliers. Biotropica 32(3):515–522, doi:10.2307/2419529
Cook JM, Rasplus J-Y (2003) Mutualists with attitude: coevolving fig wasps and figs. Trends Ecol Evol 18:241–248, doi:10.1016/S0169-5347(03)00062-4
Corner EIH (1965) Check-list of Ficus in Asia and Australasia with keys to identification. Gard B Sing 21:1–186
Cruaud A, Jabour-Zahab R, Genson G, Cruaud C, Couloux A, Kjellberg F, et al. (2010) Laying the foundations for a new classification of Agaonidae (Hymenoptera: Chalcidoidea), a multilocus phylogenetic approach. Cladistics 26(4):359–387, doi:10.1111/j.1096-0021.2009.00291.x
Cruaud A, Jabour-Zahab R, Genson G, Kjellberg F, Komboob N, van Noort S et al. (2011) Phylogeny and evolution of life-history strategies in the Sycomorininae: non-pollinating fig wasps (Hymenoptera, Chalcidoidea). Evol Biol 11:178–192, doi:10.1086/471-2148-11-178
Doogan M (2012) Occurrence of fig wasps (Hymenoptera: Chalcidoidea) in Ficus var. carica and F. microcarpa in Hatay, Turkey. Turk J Zool 36(5):721–724
Farache HHA, VT O, Pereira RA (2009) New occurrence of non-pollinating fig wasps (Hymenoptera: Chalcidoidea) in Ficus microcarpa in Brazil. Neotrop Entomol 38(3):683–685, doi:10.1590/S1174-74452009000300020
Feng G, Huang D-W (2010) Description of a new species of Odontoptergia (Chalcidoidea, Ephrynomallinae) associated with Ficus microcarpa (Moraceae) with a key to the species of the genus. Zootaxa 2355:40–48
Frank SA (1985) Hierarchical selection theory and sex ratios. II. On applying the theory, and a test with fig wasps. Evolution 39(5):949–964
Gaill J, Esikowitch D (1967) On the pollination ecology of Ficus sycomorus in East Africa. Ecology 49(2):259–269
Grandi G (1916) Contributo alla conoscenza degli Agaonini (Hymenoptera, Chalcididae) di Ceylon e dell’India. B Lab Zool Portici 11:183–234 [in Italian]
Grandi G (1921) Diagnosi preliminari di Imenotteri dei fichi. Ann Mus Civ Stor Nat Genova 49:304–316 [in Italian]
Grandi G (1923) Imenotteri dei fichi dell’alga olarctica e Indo-malese. Ann Mus Civ Stor Nat Genova 51:101–108 [in Italian]
Grandi G (1926) Hierarchical selection theory and sex ratios. II. On applying the theory, and a test with fig wasps. Evolution 39(5):949–964
Heraty JM, Burks RA, Cruaud A, Gibson GAP, Liljeblad J, Munro J, et al. (2013) A phylogenetic analysis of the megadivergence Chalcidoidea (Hymenoptera). Cladistics 29(3):466–542, doi:10.1111/cl3.12006
Ficus pumila

Ficus L. var. var.

68

in L.

Ficus racemosa

Symbiosis 45:129

et al. Botanical Studies

Ficus awkeotsang

Ficus

572

Ficus formosana

of the Philippine and Formosa. Res.

Ficus pumila

Ficus

. Master Thesis. National Sun Yat-sen University, 76

2599, doi:10.1098/rspb.2005.3249

32 [in Chinese with English abstract]

in southern Taiwan. Biotropica 43(2):200–207, doi:10.1111/j.1744-744X.2010.00680.x

Lu C-C, Huang R-S, Hu T-W (1980) Vegetative propagation of carrying-leaf-cutting from Ficus awkeotsang Makino. B Taiwan Forest Res Inst 42(71–76

[in Chinese with English abstract]

Lu C-C, Lin T-P, Huang R-S, Lee M-S (1990) Developmental biology of female syconium of Ficus awkeotsang Makino: changes in the quantities of pectinmethylesterase, pectin, methylxylan and arachine. B Taiwan Forest Res Inst 53(3):209–215 [in Chinese with English abstract]

Lu F-Y, Ou C-H, Liao C-C, Chen M-A (1987) Study of pollination ecology of climbing fig (Ficus pumila L.). B Exp Forest Natl Chung Hsing Univ 8:31–42 [in Chinese with English abstract]

Mayr G (1885) Felgeninsekten. Ver Zool-Bot Gesell 35:147–250 [in German]

Molbo D, Machado CA, Seversten JS, Herre EA (2003) Cryptic species of fig-pollinating wasps: implications for the evolution of the fig-wasp mutualism, sex allocation, and precision of adaptation. P Natl Acad Sci USA 100:5872–5875, doi:10.1073/pnas.0930903100

Munro JB, Heraty JM, Burks RA, Hawkins D, Mottern J, Cruaud A, et al. (2011) A molecular phylogeny of the Chalcidoidea (Hymenoptera). PLoS One 6(11):e27023, doi:10.1371/journal.pone.002703

Ramirez WB (1970) Host specificity of fig wasps (Agaonidae). Evolution 24(4):680–691

Ranstedt NW, Wedel GB, Cook JM, Salamin N, Machado CA, Savolainen V (2005) 60 million years of co-divergence in the fig–wasp symbiosis. P Roy Soc B 272:2593–2599, doi:10.1098/rspb.2005.3249

Sata T (1934) An enumeration of Formosan Ficus j Trop Agr Soc Formos 617–28

Sata T (1944) Classification of the species of Philippine island plants. 1: on Ficus (Moricandia), a comparative study of Ficus of the Philippine and Formosa. Res. Survey 143 and 144 Bureau of Foreign Affairs, Govt. Gen. Formosa, pp 1–73

Segar ST, Lopez-Vaamonde C, Rasplus J-Y, Cook JM (2012) The global phylogeny of the subfamily Sycomorinae (Pteromalidae): parasites of an obligate mutualism. Mol Phylogenet Evol 65(1):100–121, doi:10.1016/j.ympev.2012.05:030

Shanahan M, So S, Compton SG, Corlett RT (2001) Fig-eating by vertebrate frugivores: a global review. Biol Rev 76:529–572, doi:10.1017/s1464793100003760

Sheh WC (1964) Studies on the pollen grain morphology in the genus Ficus in Taiwan. J Sci & Eng 1:67–173 [in Chinese with English abstract]

Takao Y (1917) On the characteristics of pectate of Ficus pumila var. awkeotsang aceshes. Res Rep Taiwan Gov-Gen Off 491–6 [in Japanese]

Tzeng H-Y, Ou CH, Lu FY, Tzeng H-Y (2000) Study of the development and morphology of syconium of Ficus formosana. Q J Taiwan Mus 223:55–68 [in Chinese with English abstract]

Tzeng H-Y (2004) Taxonomic study of the genus Ficus in Taiwan. PhD Dissertation. National Chung-Hsin University, Taichung, Taiwan [in Chinese with English abstract]

Tzeng H-Y, Ou CH, Lu FY (2001) Morphological study on the syconia of Ficus erecta var. beecheyanus. Taiwan J Forest Sci 16(4):295–306 [in Chinese with English abstract]

Tzeng H-Y, Ou CH, Lu FY (2003) Syconium phenology of Ficus erecta var. beecheyanus at Hue-Sun Forest Station. Taiwan J Forest Sci 18(4):273–282 [in Chinese with English abstract]

Tzeng H-Y, Lu FY, Ou CH, Lu K-C, Tzeng L-J (2005a) Phenology of Ficus formosana Maxim. at Guandaushi Forest Ecosystem. J Chinese Forest 38:377–395 [in Chinese with English abstract]

Tzeng H-Y, Lu FY, Ou CH, Lu K-C, Tzeng L-J (2005b) Syconium production of Ficus formosana Maxim. at Hue-Sun Forest Station. J Forest Sci 27:47–60 [in Chinese with English abstract]

Tzeng H-Y, Chang J-C, Ou CH, Lu FY (2006a) Study of the morphology of pyrenes of Ficus in Taiwan in the subgenera of Sydmac and Sycomorus. Taiwan J Forest Sci 18:273–282

Tzeng H-Y, Lu F-Y, Ou C-H, Lu K-C, Tzeng L-J (2006b) Pollination-mutualism strategy of Ficus erecta var. beecheyanus and Blastophaga nigonioides in seasonal Guandaushi Forest Ecosystem, Taiwan. Bot Stud 47:307–318

Tzeng H-Y, Tzeng L-J, Ou C-H, Lu K-C, Lu F-Y, Chou L-S (2008) Confirmation of the parasitoid feeding habit in Sycomorus, and their impact on pollinator abundance in Ficus formosana. Symbiosis 45:129–134

Tzeng H-Y, Ou CH, Lu FY, Wang CC (2009) Pollen morphology of Ficus L. (Moraceae) in Taiwan. Q J Forest Res 33:34–46 [in Chinese with English abstract]
Tzeng H-Y, Ou C-H, Lu F-Y, Bain A, Chou L-S, Kjellberg F (2014) The effect of fig wall thickness in Ficus erecta var. beecheyana on parasitism. Acta Oecologica 57:38–43, doi:10.1016/j.actao.2013.06.007

Ullenborg S (2014) The phylogeny of the genus Apocrypta Coquerel in relation to its hosts Ceratosolen Mayr (Agaonidae) and Ficus L. V K Ned Akad W, A Nat, Tweed Reeks 83:149–176

Wang H-Y, Hsieh C-H, Huang C-G, Kong S-W, Chang H-C, Lee H-H, et al. (2013) Genetic and physiological data suggest demographic and adaptive responses in complex interactions between populations of figs (Ficus pumila) and their pollinating wasps (Wiebesia pumilae). Mol Ecol 22:3814–3832, doi:10.1111/mec.12236

Waterston J (1921) On some Bornean fig-insects (Agaonidae - Hymenoptera Chalcidoidea). B Entomol Res 12:35–40

Weiblen G (2002) How to be a fig wasp. Annu Rev Entomol 47:299–330, doi:10.1146/annurev.ento.47.091201.145213

Weiblen GD, Flick B, Spencer H (1995) Seed set and wasp predation in dioecious Ficus variegata from an Australian wet tropical forest. Biotropica 27(3):391–394

Westwood JO (1883) Further descriptions of insects infesting figs. T Ray Entomol Soc London 31(1):29–47, doi:10.1111/j.1365-2311.1883.tb02938.x

Wiebes JT (1966) Provisional host catalogue of fig wasps (Hymenoptera, Chalcidoidea). Zool Verh 83:3–44

Wiebes JT (1977) Agaonid fig wasp from Ficus salicifolia Vahl and some related species of the genus Platyscapa Motschoulsky (Hym., Chalc.). Neth J Zool 27:209–223, doi:10.1163/002829677X00045

Wiebes JT (1980) The genus Odontofroggatia Ishii (Hymenoptera Chalcidoidea, Pteromalidae Ephrysomallinae). Zool Meded, Leiden 56:1–6

Wiebes JT (1993) Agaonidae (Hymenoptera Chalcidoidea) and Ficus (Moraceae): fig wasps and their figs, X (Wiebesia). P K Ned Akad C Biol 96:91–114

Wiebes JT (1994) The Indo-Australian Agaoninae (pollinators of figs). North-Holland, Amsterdam

Wu H-F (1996) The symbiosis between Ficus erecta Thumb var. beecheyana and Blastophaga nipponica at Yang-Ming Shan. Master Thesis. National Taiwan University, Taipei, Taiwan [in Chinese with English abstract]

Wu Z, Raven PH, Hong D (2003) Flora of China. Volume 5: Ulmaceae through Basellaceae. Missouri Botanical Garden Press, Beijing and St. Louis

Yang H-W (2011) Variation in the phenology and population interactions between Ficus microcarpa L. f. and its pollinating wasp, Eupristina verticillata. Master Thesis. National Taiwan University, Taipei

Yang H-W, Tzeng H-Y, Chou L-S (2013) Phenology and pollinating wasp dynamics of Ficus microcarpa L. f. adaptation to seasonality. Bot Stud 54(1):e11, doi:10.186/1999-3110-54-11

Yang H-W, Bain A, Garcia M, Chou L-S, Kjellberg F (2014) Genetic influence on flowering pattern of Ficus microcarpa. Acta Oecologica 57:117–123, doi:10.1016/j.actao.2013.12.004

Yao J-C (1998) Mutualism between Wiebesia pumilae (Hill) and Ficus pumila var. pumila. L. National Taiwan University, Taipei, Taiwan [in Chinese with English abstract]

Yokoyama J, Iwatsuki K (1998) A faunal survey of fig-wasps (Chalcidoidea: Hymenoptera) distributed in Japan and their associations with figs (Ficus: Moraceae). Entomol Sci 1(1):37–46