Industry 4.0 maturity follow-up inside an internal value chain: a case study

Vítor Alcácer1,2,3,4 · João Rodrigues1 · Helena Carvalho1,2 · Virgílio Cruz-Machado1,2

Received: 16 April 2021 / Accepted: 27 November 2021 / Published online: 14 January 2022
© The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2021

Abstract
Social, economic, and technological developments are leading companies to face new production challenges. The use of information and communication technologies offers to companies physical and virtual structures, allowing cooperation and quick adaptation along all value chain. However, companies are using those technologies without a proper integration with business partners and even with internal departments. This is the research gap under analysis on this study. Using a readiness model to measure the status of the industry 4.0 enabling technologies adoption inside a company, is possible to transmite knowledge, and pathing initiatives to help on progress and monitorization. This study presents the industry 4.0 enabling technologies readiness level of three departments of one automotive company internal value chain, and discusses the limitations to reach better levels. It also presents the potential results if the benefits of industry 4.0 enabling technologies were reached on a company that assumes to be aligned with the industry 4.0 strategy.

Keywords Industry 4.0 · Maturity and readiness models · Business partners integration · Internal departments’ integration

1 Introduction

Recent environmental, social, economic, and technological developments have led production and manufacturing companies to face new challenges. Companies will need resources to manage their entire value chain in an agile and efficient way. Also, the companies will need physical and virtual structures to ease the cooperation and rapid adaptation throughout the entire product life cycle, from product innovation to production and distribution [1].

Today, we are experiencing and making part of the fourth industrial revolution, brought to the world by the German government in 2011, known as Industry 4.0 (I4.0), which features the development of Information and Communication Technologies (ICT). The I4.0 goal is to work with a high level of automation through systems called Cyber-Physical Systems (CPS), with decentralized control and advanced connectivity, to reach a high level of operational productivity, flexible custom mass production, and flexibility on the quantity of production.

The academia shows some recent and relevant studies on the automotive industry. Sanz et al. [2] shows a framework of an industrial CPS integrating computing, communication, and control, combining artificial intelligence and IIoT (Industrial Internet of Thing) through the I4.0 ecosystem and predictive maintenance. Neal et al. [3] demonstrate the implementation of a CPS to monitor and control the returnable transit items to improve quality assurance and also process compliance. However, most current Information Technology (IT) systems are not fully integrated. Supplier companies and customers rarely establish interpersonal relationships. The same goes for organizations’ internal departments, such as engineering, production, or services. With I4.0, these connections are expected to be established and to enable truly automated value chains [4].
No studies were found regarding the use of a maturity or readiness model analyzing a company’s internal value chain considering each department being an element of the value chain. The main objective of this study is to individually assess the level of technological maturity related to the I4.0 concepts, on a quantitative and qualitative matter, on three internal departments (designated by logistics, board-preparation, and plastics) of an automotive company that assumes to be aligned with the I4.0 strategy. A secondary objective of this study is to contribute for the identification of I4.0 enabling technologies that are used on each department to check the systems integration of the company.

The rest of this paper is structured as follows: Sect. 2 overviews the I4.0 environment, the adoption of I4.0 enabling technologies so far, and presents I4.0 maturity and readiness models; Sect. 3 exposes the case study and the research methodology followed on this research; Sect. 4 describes the analysis and discussion of this study; and the Sect. 5 outlines the conclusions, the research limitations and ongoing research.

2 The I4.0 environment overview

Industry 4.0 (I4.0) term was introduced by the German federal government, according to its high-tech strategy, in 2011. I4.0’s goal is to work at a higher level of automation, thus achieving a higher level of productivity and efficiency operational, connecting the “real” and “virtual” worlds [5]. According to Herman et al. [6], it is possible to define I4.0 as a collective term for value chain organization’s technologies and concepts. I4.0 describes the integration not only of all business areas with added value, but also of the entire value chain with the help of digitization [7]. In general, I4.0 intends to introduce the concept of digital manufacturing, better known as smart factory (SF).

SF represents smart grids, mobility, flexibility of industrial operations and their interoperability, integration with customers and suppliers, and the adoption of innovative businesses [8]. The components on an I4.0 factory are CPS as physical systems integrated with elements based on ICT. The term CPS describes a network of autonomous systems, which make their own decisions based on machine learning algorithms and real-time data collection [9]. The systems are able to work with increasing independence. Through human–machine interfaces, the “real” and “virtual” worlds can work together. A central information system manages smart grids and takes physical factors into account. The human being defines the requirements, while the process management takes place autonomously [10]. Within the I4.0 SF, CPS monitor physical processes create a virtual copy of the physical world and make decentralized decisions [6].

The intensive use of technological applications and the increasing use of wireless sensors and actuators contribute to the development of new applications on areas such as production processes, transport systems, logistics processes, autonomous vehicles, machine learning, and intelligent structures [8].

Consensually, there are nine main enabling technologies and development trends as showed on Fig. 1 that drives I4.0 [4, 5, 7].

Fig. 1 Enabling technologies of I4.0
2.1 Industry 4.0 enabling technologies adoption

Several national governments keep on developing policies and measures to support financially (through funds) and structurally (through institutional actions) the digitalization path of companies, forecasting the relationship between all stakeholders inside each value chain, involving also within this value chain universities, intermediaries and innovative companies, and training programs [11].

Da Silva et al. [12] state that I4.0 is a reality on countries like Germany, France, the USA, the UK, China, Japan, and Brazil, among others, although it should be admitted that I4.0 enabling technologies’ implementation and adequacy could be a challenge for all stakeholders.

Systems integration is the first step to achieve I4.0 vision. Considering all productive flow, the systems are analyzed as a whole [13].

The systems integration, as shown in Fig. 2, can be understood as the linkage of system components (components like software, hardware, or other systems and subsystems), called vertical integration, two or more systems, called horizontal integration, and the system to provide interfaces linking physical and virtual objects of a system is called end-to-end engineering integration. These components interoperate and provide solutions according to collective or individual objectives. Technologies, like IoT, are integrated with these systems, enabling the interoperability between the “things” (data, people, and/or services) [14].

The vertical integration or intra-company integration (or internal integration mapping) consists of evaluating the system in a different manner to identify crucial areas for their assistance [13]. Corporate planning, manufacturing, production management, control, and actuators are examples of informational systems; subsystems and physical “things” are elements belonging on a typical manufacturing system. This integration on a manufacturing system allows flexibility and reconfigurability and a rapid adaptation to different product types. The vertical integration allows processing the collected massive information in a transparent process manner [15].

The horizontal integration or inter-company integration is based on the cooperation or collaboration between two or more companies, achieving common or individual objectives [14]. It allows an efficient ecosystem inside value networks related to information, finance, and material flows between companies [15].

The end-to-end engineering integration mixes virtual and real entities using connected devices to a network, sending information to a cloud or people and communicates with the system using human machine interface [14]. It is a process of product-centric value creation, involving customer requirements, design and development of products, production planning and engineering, associated services, maintenance, and recycle [15].

To be able to perform inside I4.0 environment, companies must have socio-technical environments, as well as the virtualization of physical objects with the use of smart systems [13]. The adoption of the I4.0 enabling technologies, from a socio-technical perspective, is not supported by itself. The socio-technical component is complemented with dimensions related to the technological aspect on the digitalization process to achieve the I4.0 implementation, as follows [16]:

- Work organization: Rethink how companies will operate with I4.0 enabling technologies.
- Human factors: New operator’s competences and skills are needed to operate with I4.0 enabling technologies.
- External environment: The adoption of I4.0 enabling technologies is maturity dependent where they are implemented.

2.2 Maturity and readiness models

A maturity model can be defined as a conceptual structure constituted by a development state of a specific area of interest, with the aim of describing and identifying processes, measuring the maturity of an organization on its current state, and guiding initiatives of improvement and control progress towards a desired future state [17, 18].

Models of I4.0 technological maturity for companies are based on self-assessment, with information collected mainly through online questionnaires or by telephone interviews [19]. Maturity can be assessed quantitatively or qualitatively, discretely, or continuously [1]. Maturity models generally contemplate dimensions and levels. Dimensions mean the grouping of readiness indicators
Commonly, maturity models are used to measure the maturity of a given system regarding to a specific target state. Maturity models capture the “as-it-is state” [1]. Reaching a given maturity level is the foundation for the evolution to the next maturity higher level that can be planned and further implemented. Thus, the maturity models quantify activities and make them mature along time. In order to assess maturity systems through levels, the maturity models are based on the idea of “state of being complete, prefect, or ready,” and it can be addressed as qualitative or quantitative, in a discrete or continuous manner.

As a close approach to maturity models, in order to assess readiness systems through levels, readiness models are based on the idea of “this is the starting point for,” allowing the preparation for the development process of the measured given system. The “readiness” term induces a tendency for change in the given system. Readiness models intend to assess the state of the system before the engagement into the maturity transformation process [1]. Readiness models to assess I4.0 on enterprises are based on self-assessment mostly in the collection of information via internet surveys or via phone interviews [19]. Mittal et al. [20] made an interesting review related to maturity and readiness models regarding small and medium-sized enterprises. Table 1 summarizes some relevant models based on a literature survey. The selected models are from academia and from practitioners (associations or providers), describing the type, application purpose, dimensions, application method, stages of maturity, evaluation of the model, and related comments.

The maturity and readiness models aforementioned are based on the same enabling technologies and concepts of I4.0. All aforementioned models consider the use of enabling technologies as a disruptive change, affecting the companies’ competitiveness, and also creating opportunities with new business models across all value chain and product lifecycle. It is clear in all presented models, the concern about the integrity issue, is one of the main aims of the usage of the enabling technologies of I4.0, namely, ICT and the Operational Technologies (OT).

This maturity model research was not restricted to the aforementioned models. Other models were investigated but the lack of information, e.g., scope or measurement criteria do not allow a direct debate on I4.0 modeling. It is expected that different models reach different maturity or readiness levels. Amaral and Peças’ [28] research is a practical example showing the application of two models at the same company and reached different levels.

According to Schumacher et al. [1], the “IMPULS- Industrie 4.0 Readiness” model is based on a comprehensive set of data, and details are provided on the dimensions, items, and assessment approach that facilitate its implementation, in contrast to the other models presented in Table 1.

One of the reasons for choosing the IMPULS model in this study is due to the fact that Lichtblau et al. [29] demonstrate the model validity in a technical report, and since this model is a readiness model it presents the level of readiness for the adoption of the I4.0 environment. Moreover as indicated in Table 1, it is possible to access the online questionnaire which allows a global assessment of the readiness level technology on an organization. Finally, the IMPULS model was discussed and validated regarding theories and results through a series of workshops’ specialists [29].

The IMPULS readiness model as six dimensions, each one is divided into sub-dimensions, which are operationalized with appropriate indicators to measure the readiness at the level of organizations’ I4.0. Figure 3 gives a general idea of how this model is organized.

Jesus and Lima [30] defines IMPULS dimensions as following:

- “Strategy and organization” dimension leads to actions and plans for the I4.0 implementation.
- “Smart factory” dimension refers to the use of automation in production.
- “Smart operations” dimension checks the activities integration’ level.
- “Smart products” dimension verifies the possibility of using new product data driven services.
- “Data-driven services” dimension checks the possibility of added services to products.
- “Employees” dimension analyses the support to the digital transformation.

The IMPULS readiness model use six associated readiness levels applied to each dimension. Each level is characterized as follows:

- Level 0: Outsider (newcomers’ group) — A company that presents this level demonstrates that it does not meet any of the requirements of I4.0 or that it has marked the concept as unknown or irrelevant.
- Level 1: Beginner (newcomers’ group) — A company that presents this level is involved in I4.0, already taking pilot initiatives in several departments and investments in a single area. Only a few production processes are supported by IT systems. Information sharing in the company, integrated into the central system, is limited to some areas, and IT security solutions are still in the planning or implementation phase.
- Level 2: Intermediate (learners’ group) — A company that presents this level already integrates I4.0 in its develop-
| Model | Industry 4.0 Maturity Model [1] | SIMMI 4.0 [21, 22] | Industrie 4.0 Maturity Index from ACATECH (German National Academy of Science and Engineering) [23] | DREAMY – Digital REadiness Assessment MaturitY model [24, 25] | PwC – Industry 4.0 – Enabling Digital Operations [26] | The Connected Enterprise Maturity Model [27] |
|-------|---------------------------------|--------------------|-------------------------------------------------|-------------------------------------------------|-------------------------------------------------|----------------------------------|
| Type/application purpose | Maturity/descriptive | Maturity/descriptive | Maturity/descriptive | Readiness/descriptive and prescriptive | Maturity/comparative and prescriptive | Maturity/prescriptive |
| Dimensions | 1) Strategy 2) Leadership 3) Customers 4) Products 5) Operations 6) Culture 7) People 8) Governance 9) Technology | 1) Vertical integration 2) Horizontal integration 3) Digital product development 4) Cross-sectional technology criteria | 1) Resources 2) Information systems 3) Organizational structure 4) Organizational culture | 1) Process 2) Monitoring and control 3) Technology 4) Organization | 1) Business models, product, and service portfolio 2) Market and customer access 3) Value chains and processes 4) IT architecture 5) Compliance, legal, risk, security, and tax 6) Organization and culture | 1) Information infrastructure (hardware and software) 2) controls and devices (sensors, actuators, etc., that feed and receive data) 3) networks (that move all this information) 4) security policies (understanding, organization, enforcement) |
| Application method | Questionnaire integrated into a webpage, self-assessment tool | General questionnaire, third-party assisted | Questionnaire combined with visits | Questionnaire with normative answers | Online self-assessment tool, available at: https://i4-0-self-assessment.pwc.ai/i40/landing/ | Third-party assisted |
| Model | Industry 4.0 Maturity Model [1] | SIMMI 4.0 [21, 22] | Industrie 4.0 Maturity Index from ACATECH (German National Academy of Science and Engineering) [23] | DREAMY – Digital REadiness Assessment MaturitY model [24, 25] | PwC – Industry 4.0 – Enabling Digital Operations [26] | The Connected Enterprise Maturity Model [27] |
| Maturity stages | (Likert-scale) stages as: 1 not distinct to 5 very distinct | 1) Basic digitization level 2) Cross-departmental digitization 3) Horizontal and vertical digitization; 4) Full digitization 5) Optimized full digitization | 1) Computerization 2) Connectivity 3) Visibility 4) Transparency 5) Predictive capability 6) Adaptability | 1) Initial 2) Managed 3) Defined 4) Integrated and interoperable 5) Digital oriented | 1) Digital novice 2) Vertical integrator 3) Horizontal collaborator 4) Digital champion | 1) Assessment (existing OT/IT network) 2) Secure and upgraded network and controls 3) Defined and organized working data capital (WDC) 4) Analytics 5) Collaboration |
| Model application testing | Two case studies on industrial companies and the results of one Austrian manufacturing company are presented. This company was selected because it was already engaged with I4.0 transformation | Model evaluated in 6 German companies from manufacturing, services, and commerce sectors. These companies have already successfully implemented I4.0 projects | Example of model application in a German manufacturing company: Harting AG & CO. This company was already engaged with I4.0 requirements through the implementation of I4.0 pilots on their value chain | Model was applied on 3 case studies (two-day visits) to identify possible actions and to collect empirical evidence about the maturity model. Investigated domain areas were food industry, mechanical engineering industry, and electric power industry | Not available | Not available |
| Comments |
|------------------|
| Model developed by academia with tailored focus on manufacturing industry with a clear maturity and assessment. In this research, Schumacher et al. [1] stresses the importance on the questionnaire’s respondents. To better capture the I4.0 maturity enterprise assessment, it can be made workshops and meetings to leverage the respondents’ knowledge of I4.0 concepts. Schumacher et al. [1] do not present any description about the used dimensions, and the lack of some relevant information does not allow the holistic evaluation of the model and even its usage. Guidance or a roadmap to progress between the five stages was not found. |
| Model developed by academia with focus on IT and software perspective. Leyh et al. [21] presented key technological activities to guide companies to reach the higher level of cross-sectional technology. Organizational aspects such as company vision or employees and environmental aspects such as competitors or market structure are not assessed on this maturity model. |
| Model developed by academia (in a form of autonomous organization, representing the academic and technology interests) with the main focus on IT, also focusing the entire value chain (specific areas). Action plans will be designed and implemented on each specific area to increase growth. Moreover, if a company is mature at all dimensions, it means that the company will have a huge reduction on reaction time to any company incoming disrupts. On the other hand, this model has no specific dimension for product that is one of the I4.0 main requirements. |
| Model developed by academia with a “as-is scenario,” representing a manufacturing company into five main areas: design and engineering, production department, quality management, maintenance management, and logistic management. De Carolis et al. [25] noted the necessity of benchmark comparison with competitors. Companies really need to know how they stand in regard to competitors’ average position. |
| Model developed by practitioners (multinational professional services network company) focus on simplicity, wide audience, and “digitalization” strategies. This online tool assessment provides comments and short action plans, but no information was found with respect to the creation of the dimensions. Undefined maturity criteria and assessment tool not found. |

Table 1 (continued)
opment strategy, with indicators considered adequate to measure the state of implementation, including with some investments made in this regard. Some of the production data is already collected automatically and used in a limited way. The equipment infrastructure does not meet all the requirements for future expansion. Information sharing is integrated with the central system to a certain extent, and solutions are already being implemented to integrate business partners.

- **Level 3: Experienced (leaders’ group)** — A company that presents this level has already formulated an I4.0 implementation strategy, making investments in several areas, guided by an innovation management department. IT systems, including cloud solutions, support production processes, with data collected automatically from the main areas. The equipment’s infrastructure is adaptable for future expansions. The sharing of information internally and between business partners is partly integrated into the central system, the necessary IT security solutions have been implemented, and cloud-based solutions are planned to accommodate future expansion;

- **Level 4: Expert (leaders’ group)** — A company that presents this level has already implemented an I4.0 strategy with investments made in all departments. IT systems cover all production, and the relevant data is all collected digitally and automatically. IT security solutions are in place and cloud-based solutions offer a flexible IT architecture. Some of the work areas already use automated guided vehicles (AGV) and autonomously reactive processes. Parts and products feature IT-based functionality used for product development, predictive maintenance, and sales support. Data-based services for customers represent a significant amount of the company’s revenues, with the producer being fully integrated with the customer.

The IMPULS model also includes the allocation of weighting factors for each dimension. These weighting factors were determined by Lichtblau et al. [29] by asking companies on manufacturing sector to assess the importance of each dimension on I4.0 implementation. From a total of 100 possible points, the weighting factors were assigned as follows:

- Strategy and organization: 25%
- Smart factory: 14%
- Smart products: 19%
• Smart operations: 10%
• Data-driven services: 14%
• Employees: 18%

Equation (1) shows how readiness level can be reach for global company score:

\[ N = \sum_{i=1}^{m} \text{Min}(D_i) \times f_i, \]  

(1)

where \( N \) represents the level of global readiness, \( D_i \) represents the dimension under analysis, \( f_i \) represents the weighting factor for the respective dimension, and \( m \) represents the total number of dimensions.

According to Amaral and Peças’ [28] survey, the IMPULS model is the most quoted on the literature because it refers to a set of challenges that companies need to face, and the IMPULS model provides guidelines for the achievement of higher readiness levels. Pessl et al. [31] had classified that IMPULS model has the most transparent and detailed model. Sony and Naik [32] state that IMPULS is the suitable model for many types of industries. Table 2 shows examples of using the IMPULS model, either because of its full implementation, or because it is used as a means of comparison for the development of new models proposed by some of the authors.

3 Research methodology

The present study has a main objective to carry out an evaluation of a company’s systems integration that allows to verify the level of technological readiness related to the I4.0 concept, quantitatively and qualitatively, on three departments of one automotive company. A secondary objective of this study is to contribute to the identification of the used I4.0 enabling technologies on each department, using the IMPULS readiness model questionnaire, which allows a survey of these technologies. Thus, the chosen methodology is a case study since it allows applicability on a real context.

Three department were analysed: the logistic department and two production lines named as board-preparation and the plastic injection departments. The head of each department answered to the questionnaire, making it possible to assess the level of I4.0 technological readiness of each one, and to do a comparative analysis of the results.

Moreover, shopfloor visits were made to each department, to survey their processes, as well as, the technologies under use. During these visits, interviews were carried out with employees who perform tasks on the production lines and on the logistics warehouse (operators, maintenance technicians, and process engineers), because these employees establish connections with the existing technologies.

Each department was assessed autonomously and according to the IMPULS readiness model levels, allowing to understand on which dimensions there is an opportunity for improvement and if the levels of I4.0 implementation differ between departments. The collected data was analysed and the results with the levels’ attribution for each dimension and the overall assessment of the department discussed.

3.1 Company characterization

This anonymous company is a worldwide supplier dedicated to car cockpit electronics and has one of the largest product portfolio on this segment. This company is uniquely positioned to meet the needs of smart digital cockpit manufacturers for electric and automated vehicles. In 2017, this company had sales greater than US $ 3.000 billion and approximately 10 000 employees, on more than forty facilities located in eighteen countries.

This company operates on the industrial installations for the assembly, manufacture, manufacture and processing of electronic, electrical and electro-mechanical devices, namely for the manufacture of radios, graphic equalizers and amplifiers for automobiles. The facilities located in Portugal have several departments, essential for its business model. On this study, three departments were analyzed to assess the level of technological maturity of each one individually, making it possible to draw comparative conclusions from the I4.0 development status.

3.2 Data collection

Processes were monitored for the logistics, board-preparation, and plastic injection departments. It was possible to verify

| Author | IMPULS model application |
|--------|--------------------------|
| Lichtblau et al. [29] | Model creation, development, and application on 232 companies on mechanical engineering and manufacturing industry |
| Hamidi et al. [18] | Model application on 250 small and medium-sized companies in the industrial sector in Malaysia |
| Maasz and Darwish [33] | Model application on 7 companies on mining sector in South Africa |
how it is made the reception of materials, components and products for production, as well as, how the production lines establish communication with other departments for assuring on-time line supply. For a better understanding of the production flow, 26 informal interviews were carried out with employees (technicians, operators, and engineers) who operate on each evaluated department: logistics department - 18 employees were interviewed; board-preparation department - 5 employees, 1 maintenance technician, and 2 process engineers plastics’ department - 4 employees and 2 process engineers. These interviews allowed to assess, not only the way that employees establish connections with the enabling technologies, but also to collect information on how production processes work.

On the second phase, after 37 direct observations made on the shop floor, the department managers were questioned, according to the IMPULS questionnaire. It was possible to individually evaluate each department and quantify the dimensions presented in the IMPULS model based on the collected data.

The first respondent is responsible for logistics’ warehouse, a professional with more than 11 years of experience on the area and also on the company. The second respondent is responsible for the production line on the board-preparation department, graduated with engineering degree with more than 3 years of experience on this company. The last respondent is responsible for the plastics department, with 23 years of professional experience on the area and on this company.

### 4 Results and discussion

The first part of the assessment aims to know the knowledge level of each of the respondents related to I4.0 concept. Table 3 allows visualizing the answers given by each respondent, with no quantitative assessment being made in relation to the answers presented.

The logistics department presents itself as the department with the highest business volume, since it establishes links with other production departments, assuring the on-time supply of all materials necessary for production. It is possible to observe that the responses of the production departments (board-preparation and plastics) are identical, and that there is an adaptation to the concept due to market competition. In relation to the logistics department, due to the lack of proximity of the interviewee with the I4.0 concept, the answers are different from other respondents.

The last question on the first part of this assessment is related to I4.0 planned activities, underway or implemented on each department as Table 4 shows.

It was not possible to make a qualitative assessment regarding the I4.0 activities on the logistics department due to the lack of information that the respondent has about the existence of these activities. The higher level of knowledge

---

**Table 3** Characterization of departments and familiarity with the i4.0 concept

| Question                                                                 | Logistics | Board-preparation | Plastics                      |
|-------------------------------------------------------------------------|-----------|------------------|-------------------------------|
| What is the approximate number of employees on the department?          | 250 or more employees | 250 or more employees | From 50 to 249 employees      |
| What was the turnover in 2018?                                         | Above € 50 million     | Between 10 and € 50 million | Between 2 and € 10 million   |
| What is your knowledge about I4.0 concept?                              | Superficially and I want to know more to assess I4.0 performance on the company | Enough to already have some pilot projects underway | Enough to already have some pilot projects underway |
| What motivates the department to embrace I4.0 challenges?               | The department has an innovative spirit aligned with new concepts experiments | Market requirements and competitive pressure | Market requirements and competitive pressure |
| Which objectives do you intend to achieve with the adoption of I4.0 concepts? | Increased efficiency of the manufacturing system | Increased efficiency of the manufacturing system | Increased efficiency of the manufacturing system |

**Table 4** Planned I4.0 activities

| Activities                                                                 | Logistics                  | Board-preparation | Plastics |
|---------------------------------------------------------------------------|----------------------------|-------------------|----------|
| Digitization of processes with the implementation of information systems   | Don’t know how to answer   | Ongoing           | Implemented |
| Integration between systems and/or machines using IoT                     | Don’t know how to answer   | Planned           | Implemented |
| Systems implementation that allows efficient control of processes, products, and services and performance analysis in real time | Don’t know how to answer   | Ongoing           | Implemented |
| Hiring essential technicians for digital transformation                   | Don’t know how to answer   | Planned           | Not relevant |
| Conversion of technicians to respond to the digital transformation         | Don’t know how to answer   | Ongoing           | Ongoing    |
revealed on the other two departments makes it possible to know that: on the board-preparation department these activities are all ongoing or planned; on the plastics department, most of the activities have already been implemented or are in progress and hiring technicians for digital transformation is not relevant for the plastic injection department.

4.1 Global assessment

According to IMPULS readiness model on Table 5, the plastic injection department has a greater I4.0 readiness obtaining a score of 3.14 and clearly distancing itself from the other departments. The logistics and the board-preparation departments scores are very similar, being 1.91 and 1.84, respectively. The scores were rounded according to the IMPLUS readiness model. Figure 4 shows the obtained readiness levels for the department under study, considering each IMPULS dimension. Matching the Table 5 with the Fig. 4 allows to conclude that the weight of 25% of Strategy and Organization dimension is determinant for a higher overall evolution score as the readiness levels of the other dimensions are almost similar.

4.2 Improvement opportunities

The main factors that limit an higher final readiness score on the logistics department are the absence of a defined I4.0 strategy, lack of indicators to monitor the state of implementation, and the lack of I4.0 investment. The lack of more ICT-based functionalities is another relevant factor.

The absence of a defined I4.0 strategy, lack of indicators to monitor the state of implementation, and the lack of I4.0 investment are the main factors that limit a higher final readiness level on the logistics department. Another factor that penalizes the final level on this department, is related to the lack of more ICT-based functionalities. Finally, the least significant factor is related to information sharing with customers and suppliers. The I4.0 implementation strategy, the definition of indicators allowing the monitor of the state of I4.0 strategy development needs to be developed and the start of investment to be carried out at the level of I4.0 are activities related to the same dimension (Strategy and Organization) and were classified as readiness level 0.

| Activities                        | Logistics | Board-preparation | Plastic injection |
|----------------------------------|-----------|-------------------|-------------------|
| Strategy and organization        | 0         | 1                 | 4                 |
| Smart factory                    | 3         | 2                 | 3                 |
| Smart operations                 | 2         | 2                 | 0                 |
| Smart products                   | 1         | 3                 | 4                 |
| Data-driven services             | 4         | 0                 | 3                 |
| Employees                        | 3         | 3                 | 3                 |
| \( N = \sum_{i=1}^{m} \text{Min}(D_i) \times f_i \) | 1.91      | 1.84              | 3.14              |
| Overall evolution                | 2         | 2                 | 3                 |

Fig. 4 Comparison of all levels on each department

Table 5 Readiness level of each department
On the board-preparation department, the main factor that limits a higher level of readiness is the lack of services based on data collection and the client’s integration, since the other departments already implement technologies supporting this functionality. The absence of indicators to monitor the state of 4.0 strategy implementation is another factor with an opportunity to improve increasing the final readiness level. Finally, the fact that the infrastructure features are poorly adaptable and scalable also limits a better final assessment, although it is the field that has the least impact on an opportunity for improvement.

On plastics department, the main factor that does not allow a better final evaluation lies on the fact that the internal information shared between departments is not integrated with the company’s central system.

5 Conclusions

I4.0 refers on particular to recent technological advances, where its enabling technologies are the foundations for the integration of physical objects, smart machines, production lines, logistics, and processes, thus creating a smart network. Most of the organization’s current IT systems are not integrated with its customers and suppliers, nor with its internal departments. I4.0 then expects to establish full integration within an organization and also with its business partners.

With the application of maturity and readiness assessment models, it is possible to measure the current state of a company to guide improvement initiatives and to monitor progress towards a future state. In a case study approach, three department of one company belonging to the Portuguese automotive industry, were analysed: the logistic, the board-preparation and the plastic injection departments. Data were collected on shop floor to understand the sequence of operations in each analyzed department, as well as, to map the enabling technologies under use. Also, interviews were carried out with managers of three departments to assess the each department’s readiness level.

On logistics department, the most limiting field for a more positive assessment of technological development level are related in particular to the absence of an I4.0 implementation strategy with its indicators to monitor the development status of a company’s future strategy and investments on that direction. Other less significant, but also important factors are the lack of a more varied range of ICT-based functionalities on the products involved on this department and the information sharing with its business partners.

On board-preparation department, the lack of services provision based on data collection presents itself as the field with the most impact as an opportunity for improvement, added to its integration with customers. The lack of indicators to monitor the state of I4.0 strategy development and the low adaptability of functionalities of the current infrastructures are the other fields where there are also opportunities for improvement.

The plastic injection department has the best final evaluation where the real opportunity for improvement is related to the integration of the information shared between the department with the central system of the organization.

The lack of information of the respondents or the relevance (perceived by the respondents) of some questions for the department is an important limitation of this study. This can led to data bias, since some responses given by the respondents may not be representative of the current reality. The IMPULS model was used to study three of the company’s departments but in future studies it is possible to use it in all departments. The use of the IMPULS model gives the opportunity to make respondents reflect about how their department technologies and systems are, or should be, integrated and how they can be improved to meet the I4.0 requirements. This fact leads to an important barrier on the adoption of the I4.0 environment placing the human being at the center of this digital transformation, needing to be I4.0 skilled.

Acknowledgements Special thanks to AISET for this good partnership; to Freepik for providing vectors/icons for some figures, available at www.flaticon.com; and to all reviewers for their valuable feedback.

Author contribution Vítor Alcácer designed and coordinated this study. João Rodrigues drafted the manuscript. Helena Carvalho supervised and revised the manuscript. Virgílio Cruz-Machado supervised the project and the manuscript. All authors read and approved the manuscript.

Funding This research was funded by Fundação para a Ciência e Tecnologia (FCT-MCTES) via the project UIDB/00667/2020 (UNIDEMI).

Availability of data and materials All datasets and datasheets used to support the discussion and conclusions on this study are available upon request to the corresponding author.

Declarations

Ethics approval All surveyed respondents are anonymous and have given their consents to participate on this study under the General Data Protection Regulation (GDPR).

Consent to participate All surveyed respondents have agreed on participating, and they have understood the aim of the study. All participants have given their consents to use surveyed data on this study on an anonymous manner.

Consent for publication The publication of the manuscript is consented by all authors, which include all relevant details of this research such as figures, tables, or all relevant information to be published on The International Journal of Advanced Manufacturing Technology.

Competing interests The authors declare no competing interests.
References

1. Schumacher A, Erol S, Sihn W (2016) A maturity model for assessing Industry 4.0 readiness and maturity of manufacturing enterprises. Procedia CIRP 52:161–166. https://doi.org/10.1016/j.procir.2016.07.040
2. Sanz E et al. (2021) BiDrac Industry 4.0 framework: application to an automotive paint shop process. Control Eng Pract 109:104757. https://doi.org/10.1016/j.conengprac.2021.104757. https://www.sciencedirect.com/science/article/pii/S0967066121000344?via%3Dihub
3. Neal et al (2021) The potential of industry 4.0 cyber physical system to improve quality assurance: an automotive case study for wash monitoring of returnable transit items. CIRP J Manuf Sci Technol 32:461–475. https://doi.org/10.1016/j.cirp.2020.07.002
4. Rüßmann M, Lorenz M, Gerbert P, Walder M, Justus J, Engel P, Harnisch M (2015) Industry 4.0. The Boston consulting group, Eng Sci Technol Int J 22:899–919. https://doi.org/10.1016/j.jestch.2019.01.006
5. Hermann M, Pentek T, Otto B (2016) Design principles for industri 4.0 scenarios. Proceedings of the annual Hawaii international conference on system sciences, 2016–March, 3928–3937. https://doi.org/10.1109/HICSS.2016.488
6. Rodić B (2017) Industry 4.0 and the new simulation modelling paradigm. Organizacija 50:193–207. https://doi.org/10.1515/organa-2017-0017
7. Barreto L, Amaral A, Pereira T (2017) Industry 4.0 implications in logistics: an overview. Procedia Manuf 13:1245–1252. https://doi.org/10.1016/j.promfg.2017.09.045
8. Rojko A (2017) Industry 4.0 concept: background and overview. Int J Interact Mob Technol 11:77–90. https://doi.org/10.3991/ijim.v11i5.7072
9. KPMG (2016) The factory of the future - Industry 4.0: the challenges of tomorrow. KPMG Website: https://assets.kpmg.com/content/dam/kpmg/pdf/2016/05/factory-future-industry-4.0.pdf. Accessed 20 Sep 2020
10. Agostini L, Nosella A (2019) The adoption of Industry 4.0 technologies in SMEs: results of an international study. Manag Decis 4:625–643. https://doi.org/10.1108/MD-2019-08-0973
11. Da Silva V, Kovaleski J, Pagani R, De Matos SJ, Corsi A (2020) Implementation of Industry 4.0 concept in companies: empirical evidences. Int J Comput Integr Manuf 33:325–342. https://doi.org/10.1080/09511922.2019.1699258
12. Přerovská M, Sádek M, Marmolejo-Saucedo J et al (2020) Vertical and horizontal integration systems in Industry 4.0. Wirel Netw 26:4767–4775. https://doi.org/10.1007/s11226-018-1873-2
13. Sanchez M, Esposito E, Aguiar J (2020) Industry 4.0: survey from a system integration perspective. Int J Comput Integr Manuf 33(10–11):1017–1041. https://doi.org/10.1080/09511922.2020.1775295
14. Wang S, Wan J, Li D, Zhang C (2016) Implementing smart factory of Industrie 4.0: an outlook. Int J Distrib Sens Netw. https://doi.org/10.1155/2016/3159805
15. Dalenogare L, Benitez G, Ayala N, Frank A (2018) The expected contribution of Industry 4.0 technologies for industrial performance. Int J Prod Econ 204:383–394. https://doi.org/10.1016/j.ijpe.2018.08.019
16. Santos R (2018) Proposta de modelo de avaliação de maturidade da Indústria 4.0. Instituto Superior de Engenharia de Coimbra. http://hdl.handle.net/10400.20/25346. Accessed 20 Sep 2020
17. Hamidi S, Aziz A, Shuhidan S, Aziz A, Mokhlin M (2018) SMEs maturity model assessment of BRA4.0 digital transformation. Proceedings of the 7th International Conference on Kansei Engineering and Emotion Research 721–732. https://doi.org/10.1007/978-981-10-8612-0_75
18. Rajani Z, Kocsis I (2018) Assessing industry 4.0 readiness of enterprises. 2018 IEEE 16th World Symposium on Applied Machine Intelligence and Informatics (SAMI) 225–230. https://doi.org/10.1109/SAMI.2018.8324844
19. Mittal S et al (2018) A critical review of smart manufacturing & Industry 4.0 maturity models: implications for small and medium-sized enterprises (SMEs). J Manuf Syst 49:194–214. https://doi.org/10.1016/j.jmsy.2018.10.005
20. Leyh C, Schläffer T, Bley K, Forstenhübsler S (2016) SIMMI 4.0 – a maturity model for classifying the enterprise-wide IT and software landscape focusing on Industry 4.0. Proceedings of the 2016 Federated Conference on Computer Science and Information Systems. 8:1297–1302. https://doi.org/10.15439/2016F478
21. Leyh C, Bley K, Schläffer T, Bay L (2017) The application of the maturity model SIMMI 4.0 in selected enterprises, 23rd Americas Conference on Information Systems, AMICS 2017, Boston, MA, USA. http://aisel.aisnet.org/amcis2017/Enterprise/Presentations/6. Accessed 20 Sep 2020
22. Schuh G, Anderl R, Gaussemeier J, Wahlster W (2017) Industrie 4.0 maturity index – managing the digital transformation of companies, acatech - National Academy of Science and Engineering. https://en.acatech.de/publication/industrie-4.0-maturity-index-managing-the-digital-transformation-of-companies/. Accessed 15 Sep 2020
23. De Carolis A, Macchi M, Negri E, Terzi S (2017) A maturity model for assessing the digital readiness of manufacturing companies, in advances in production management systems. The Path to Intelligent, Collaborative and Sustainable Manufacturing, Cham 13–20. https://doi.org/10.1007/978-3-319-66923-6_2
24. De Carolis A, Macchi M, Negri E, Terzi S (2017) Guiding manufacturing companies towards digitalization: a methodology for supporting manufacturing companies in defining their digitalization roadmap, 2017 International Conference on Engineering, Technology and Innovation (ICE/ITMC), 487–495. https://doi.org/10.1109/ICE.2017.8279925
25. PwC (2018) Industry 4.0 - enabling digital operations: self-assessment. https://i4-0-self-assessment.pwc.nl/#!/landing/. Accessed 15 Sep 2020
26. Rockwell Automation (2014) The connected enterprise maturity model. https://literature.rockwellautomation.com/idc/groups/literature/documents/indus/rockw/lite7180_en.pdf
27. Amaral A, Peças P (2021) A framework for assessing manufacturing SMEs Industry 4.0 maturity. Appl Sci. https://doi.org/10.3390/app1113127
28. Lichtblau K et al (2015) Industrie 4.0 readiness. http://www.impulstiftung.de/documents/35813724875823/Industrie+4.0+Readiness+IMPULS+Studio+Oktober+2015_eng.pdf. 476b43ea-7181-4c47-9c56-f373d3e27187;jsessionid=584DBDB35362D8015559DF56E6BED082. Accessed 15 Sep 2020
29. Jesus C, Lima R (2020) Literature search of key factors for the development of generic and specific maturity models for Industry 4.0. Appl Sci. https://doi.org/10.3390/app10158285
30. Pessl E, Sorko S, Mayer B (2017) Roadmap Industry 4.0 – implementation guideline for enterprises. JSSTS 5:193–202. https://doi.org/10.1164/j.jssts.20170506.14
31. Sony M, Naik S (2020) Key ingredients for evaluating Industry 4.0 readiness for organizations: a literature review. BJ 27:2213–2232. https://doi.org/10.1016/BJ-09-2018-0284
32. Maasz GJ, Darwesh H (2018) Towards an initiative-based industry 4.0 maturity improvement process: master drilling as a case study. S Afr J Ind Eng 29:92–107. https://doi.org/10.7166/29-3-2052

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.