Relationship Between Constipation and Medication

Tetsuya UEKI* and Mikiro NAKASHIMA

Abstract: Constipation is very common and can be caused by adverse drug reactions as a result of many drugs. While the adverse effects of several medications such as opioids and anticholinergic agents are well established and well known, other commonly prescribed drugs, such as hypnotics, are less well understood. This review presents the results of an analysis of the relationship between constipation and drugs.

Keywords: constipation, adverse drug reaction, opioid, anticholinergic agent, hypnotic.

Introduction

Constipation is one of the most common gastrointestinal complaints [1–10], and is associated with adverse implications for patients’ quality of life and economic costs [11–15]. Most epidemiological studies have reported prevalence rates between 14–30% in the general population [5–11]. These high rates make constipation a major public health issue.

In recent years, the relationship of constipation to cardiovascular disease and chronic kidney disease, independently of known risk factors, has been clarified [16–18]. Although commonly assumed to be benign, constipation was found to have an increased risk of poorer survival in a large population-based cohort study [19], so importance of the management of constipation is being recognized.

Generally, constipation occurs more frequently in older adults and females [1–10]. Secondary constipation is induced by diseases such as diabetes mellitus and hypothyroidism [1–7, 10]. Constipation is also an adverse effect of many drugs [1–7, 10, 20–23]. Adverse effects and the inappropriate use of drugs may be the principal causes of constipation [24–26], but little is known about the relative risks of individual drugs.

In this review, we present the results of an analysis of the relationship between constipation and drugs, including our own studies.

Relationship between constipation and medication in consideration of patient backgrounds

The causes of constipation are multi factorial and also commonly encountered as adverse drug reactions. Common medications implicated in the development of constipation are presented in Table 1 [1–7, 10, 20–23]. Opioid-induced constipation is the most prevalent and persistent adverse reaction [27–29], with some estimates being as high as 40–81% in patients receiving opioids [30, 31]. The cause of opioid-induced
constipation is the action of opioids on their receptors in the gastrointestinal tract. Anticholinergic agents such as tricyclic antidepressants and antipsychotics that possess high affinity for muscarinic cholinergic receptor are also known to cause constipation [32, 33].

Opioid-induced constipation appears obviously frequently [30, 31], but the relative risks of individual drugs other than opioids in the development of constipation are limited. Therefore we analyzed the relationship between constipation and drugs in consideration of patient backgrounds [21]. To clarify the relationship between constipation and various drugs, we investigated the defecation frequency and use of laxatives in 251 patients. The subjects were internal medicine and cardiovascular disease patients who were not using opioids. They were divided into a constipation group (n=73) and a non-constipation group (n=178) according to their defecation intervals and use of laxatives. The constipation group reported defecation intervals equal to or more than 3 days and/or the use of laxatives, and the non-constipation group reported both defecation intervals of less than 3 days and the non-use of laxatives. A comparison of the patient backgrounds of the two groups revealed significant differences in age, gender, number of drugs taken regularly, colon cancer, use of non-steroidal anti-inflammatory drugs (NSAIDs), and use of hypnotics, antidepressants, anti-anxiety drugs, and iron preparations. Multiple logistic regression analysis using these nine factors as autonomous variables showed that female gender (odds ratio [OR]: 2.01, 95% confidence interval [CI]: 1.06−3.81, \(P=0.033\)) and use of hypnotics (OR: 3.98, 95% CI: 1.40−11.28, \(P=0.010\)) were significantly related to constipation. An examination of the types of hypnotics showed a higher proportion of constipation in patients who took benzodiazepines rather than non-benzodiazepines such as zolpidem tartrate and zopiclone.

It has been reported that sleep disorders are associated with gastrointestinal symptoms [34–36], and epidemiological surveys have suggested a relationship between sleep disorder and abnormal defecation, including constipation [35, 36]. In our previous study, hypnotics were strongly related to constipation, but it was not clear whether this was due to the clinical condition of sleep disorder or an adverse effect of the hypnotics. Therefore we analyzed the relationship between constipation and drugs by considering the patients’ background, including sleep conditions [22], by investigating self-reported bowel habits, use of laxatives, and the sleep conditions in 344 patients.

The subjects were mostly internal medicine and cardiovascular disease patients, and only one patient was using opioids. Bowel habits were classified into five groups: “Normal”, “Constipation”, “Occasional constipation”, “Diarrhea”, and “Constipation and diarrhea”. Patients who reported “Diarrhea” and “Constipation and diarrhea” were excluded from the study. The sleep conditions were evaluated by the Athens Insomnia Scale (AIS), a self-administered psychometric instrument consisting of eight items. Each item was rated 0 to 3, (with 0 corresponding to “no problem at all” and 3 “very serious problem”); therefore, the total AIS score ranges from 0 (denoting absence of any sleep-related problem) to 24 (representing the most severe degree of insomnia) [37, 38].

Table 1. Medications associated with constipation

Medication Type
Opioids
Nonsteroidal anti-inflammatory agents
Tricyclic antidepressants
Antiparkinsonian drugs
Antipsychotics
Antispasmodics
Antihistamines
Anticonvulsants
Hypnotics
Calcium channel blockers
Diuretics
Centrally acting antihypertensive drugs
Antiarrhythmics
Beta-adrenoceptor antagonist
Bile acid sequestrants
Aluminum or calcium containing antacids
Iron supplements
Calcium supplements
Bismuth
Lithium
Vinca alkaloids
Alkylating agents
Sympathomimetics
Monoamine oxidase inhibitors
Bisphosphonates
5-hydroxytryptamine 3 receptor antagonists
The patients were then divided into a constipation group (n=161) and a non-constipation group (n=183). The constipation group reported “Constipation” or “Occasional constipation” and/or the use of laxatives, and the non-constipation group reported both “Normal” and the non-use of laxatives. Comparison of the backgrounds of the two patient groups revealed significant differences in age, gender, number of used drugs, AIS score, hypothyroidism, chronic obstructive pulmonary disease, use of diuretics, coronary vasodilators, thyroid hormones, nonsteroidal anti-inflammatory agents, proton pump inhibitors, antidepressants, anti-anxiety drugs, and hypnotics. Multiple logistic regression analysis using these fourteen factors as autonomous variables showed that age (OR: 1.03, 95% CI: 1.01–1.04, P = 0.007), female gender (OR: 1.96, 95% CI: 1.21–3.18, P = 0.006), the AIS score (OR: 1.10, 95% CI: 1.02–1.18, P = 0.010), and the use of hypnotics (OR: 2.33, 95% CI: 1.30–4.16, P = 0.004) were significantly related to constipation. Examination of the types of hypnotics showed a higher proportion of constipation in patients who took benzodiazepines rather than non-benzodiazepines.

Previous reports have shown that constipation can be induced by most central nervous system drugs [1–7, 10, 20]. For example, antidepressants and antipsychotics are known as drugs that cause constipation, while not much is known about hypnotics. Psychiatric patients and opioid users were not included in our studies, so it may be that the hypnotics were extracted from commonly used drugs.

One possible mechanism of constipation caused by hypnotics is based on anticholinergic and myorelaxant effects. The pharmacological actions of hypnotics are similar to those of anti-anxiety drugs, while their anticholinergic effects are weaker than those of antidepressants. One explanation of why our data showed that hypnotics were significantly related to constipation may be a difference in the timing of drug administration. Enterokinesis is active during sleep when the parasympathetic nervous system is dominant. This means that hypnotics taken before going to bed are maximally active during sleep; therefore they may inhibit enterokinesis and lead to the occurrence of constipation. Also, benzodiazepines showed a higher tendency to increase the proportion of constipation than non-benzodiazepines, which have lower myorelaxant effects [39]. Thus it seems that the pharmacological action of hypnotics affects the occurrence of constipation.

Risk factors for the development of constipation in the hospital setting

Constipation is a common problem and more frequently occurs in hospitalized patients [40–42]. The prevalence in hospitalized patients aged over 65 years is estimated at 50% [41], and one third of hospitalized older patients need a laxative at least once every 3 days [42]. Constipation occurs much more frequently in critically ill patients, and its incidence has been reported to be 70–83% [43, 44]. Constipation may also be associated with prolonged intensive care unit (ICU) stay, increased infection rates, and increased ICU mortality [45, 46].

Factors known to increase the risk of constipation are age, diet, being bedridden, and drugs [40, 47–51]. However, there is limited data on the degree of influence of the various factors in the development of constipation, and little is known about the relative risks among individual drugs in the hospital setting. Therefore we performed a study on the factors affecting the development of constipation in hospitalized patients [23] by investigating laxative administration during hospitalization in 165 patients who were not laxative users on admission. The subjects, who were admitted to the internal medicine ward or cardiovascular disease ward, were divided into constipation (n=35) and non-constipation (n=130) groups according to the administration of laxatives. Newly administrated drugs were surveyed retrospectively from the day of laxative administration in the constipation group and from the day of discharge in the non-constipation group. Comparison of the patient backgrounds in the two groups revealed significant differences in the activities of daily living (dependence), length of fasting, rest level on admission (bed rest), cerebrovascular disease, and administration of hypnotics. Multiple logistic regression analysis using these five factors as autonomous variables showed that administration of hypnotics (OR, 2.79; 95% CI, 1.10–7.06; P = 0.031) was significantly related to laxative use. Examination of the types of hypnotics revealed a higher proportion of constipation in patients who had been injected with a drug such as midazolam. Benzo-
diazepines also showed a higher tendency to increase the proportion than non-benzodiazepines.

Our data indicated a causal relation between hypnotics and the use of laxatives. A few reports have shown that the constipating drugs in hospital settings are muscle relaxants in the elderly and sedatives in ICU patients [46, 50]. The pharmacological actions of these drugs are similar to those of hypnotics. In fact, the development of constipation in hospitalized patients is caused by multiple factors and therefore does not result from a single factor. A comparison of the constipation and non-constipation groups showed significant differences in the patient backgrounds of activities of daily living, days of fasting, rest level, and cerebrovascular disease, which are already known to cause constipation. Taking these factors into consideration, it is suggested that hypnotics may contribute strongly to the development of constipation.

Conclusion

This review summarized the relationship between constipation and medication. Adverse drug reactions as the causes of constipation are commonly encountered. Thus, the administration of constipating drugs may be undesirable for patients who should avoid the occurrence of constipation, such as ileus patients [52]. In the real world, the prescription of many anticholinergics is highly prevalent, despite these drugs being undesirable in older patients [24, 25, 53–56]. Care should be taken to prevent drug-induced constipation.

Results from our previous studies showed that the drugs that are related to constipation are hypnotics. This evidence is being recognized slightly [50, 57]. However, new types of ramelteon (a selective melatonin receptor agonist) and suvorexant (an orexin receptor antagonist) were not used in our studies [58, 59]. More study needs to be done on the new hypnotics, which have little affinity for other receptors, including acetylcholine and few myorelaxant effects, and therefore might have a low risk for the development of constipation.

Conflict of Interest

The authors declare that there is no conflict of interest regarding the publication of this article.

References

1. Basilisco G & Coletta M (2013): Chronic constipation: A critical review. Dig Liver Dis 45: 886–893
2. Mearin F, Ciriza C, Minguez M, Rey E, Mascort JJ, Peña E, Cañones P & Júdez J (2016): Clinical Practice Guideline: Irritable bowel syndrome with constipation and functional constipation in the adult. Rev Esp Enferm Dig 108: 332–363
3. Sbahi H & Cash BD (2015): Chronic constipation: A review of current literature. Curr Gastroenterol Rep 17: 47
4. Lindberg G, Hamid SS, Malfertheiner P et al (2011): World Gastroenterology Organisation global guideline: Constipation – a global perspective. J Clin Gastroenterol 45: 483–487
5. Bharucha AE, Pemberton JH & Locke GR 3rd (2013): American Gastroenterological Association technical review on constipation. Gastroenterology 144: 218–238
6. De Giorgio R, Ruggeri E, Stanghellini V, Eusebi LH, Bazzoli F & Chiarioni G (2015): Chronic constipation in the elderly: A primer for the gastroenterologist. BMC Gastroenterol 15: 130
7. Vazquez Roque M & Bouras EP (2015): Epidemiology and management of chronic constipation in elderly patients. Clin Interv Aging 10: 919–930
8. Suares NC & Ford AC (2011): Prevalence of, and risk factors for, chronic idiopathic constipation in the community: Systematic review and meta-analysis. Am J Gastroenterol 106: 1582–1591
9. Peppas G, Alexiou VG, Mourtzoukou E & Falagas ME (2008): Epidemiology of constipation in Europe and Oceania: A systematic review. BMC Gastroenterol 8: 5
10. Krogh K, Chiarioni G & Whitehead W (2017): Management of chronic constipation in adults. United European Gastroenterol J 5: 465–472
11. Nellesen D, Yee K, Chawla A, Lewis BE & Carson RT (2013): A systematic review of the economic and humanistic burden of illness in irritable bowel syndrome and chronic constipation. J Manag Care Pharm 19: 755–764
12. Wald A & Sigurdsson L (2011): Quality of life in children and adults with constipation. Best Pract Res Clin Gastroenterol 25: 19–27
13. Chevalier P, Lamotte M, Joseph A, Dubois D & Boeckxstaens G (2014): In-hospital costs associated with chronic constipation in Belgium: A retrospective data-
14. Sethi S, Mikami S, Leclair J et al (2014): Inpatient burden of constipation in the United States: An analysis of national trends in the United States from 1997 to 2010. Am J Gastroenterol 109: 250–256

15. Bruce Wirta S, Hodgkins P & Joseph A (2014): Economic burden associated with chronic constipation in Sweden: A retrospective cohort study. Clinicoecon Outcomes Res 6: 369–379

16. Salmoirago-Blotcher E, Crawford S, Jackson E, Ockene J & Ockene I (2011): Constipation and risk of cardiovascular disease among postmenopausal women. Am J Med 124: 714–723

17. Honkura K, Tomata Y, Sugiyama K, Kahiyo Y, Watanabe T, Zhang S, Sugawara Y & Tsuji I (2016): Defecation frequency and cardiovascular disease mortality in Japan: The Ohsaki cohort study. Atherosclerosis 246: 251–256

18. Sumida K, Molnar MZ, Potuckchi PK, Thomas F, Lu JL, Matsushita K, Yamagata K, Kalantar-Zadeh K & Kovesdy CP (2017): Constipation and incident CKD. J Am Soc Nephrol 28: 1248–1258

19. Chang JY, Locke GR 3rd, McNally MA, Halder SL, Schleck CD, Zinsmeister AR & Talley NJ (2010): Impact of functional gastrointestinal disorders on survival in the community. Am J Gastroenterol 105: 822–832

20. Philpott HL, Nandurkar S, Lubel J & Gibson PR (2014): Drug-induced gastrointestinal disorders. Frontline Gastroenterol 5: 49–57

21. Ueki T, Tasaki N, Yoshida T, Ooe N, Nishida K, Nakamura J & Nakashima M (2008): Cross-sectional study on relationship between constipation and medication. Iryo Yakugaku (Jpn J Pharm Health Care Sci) 34: 865–870

22. Ueki T, Nagai K, Mizukami Y, Takahashi A, Ooe N, Nakashima MN, Nishida K, Nakamura J & Nakashima M (2011): Cross-sectional study on relationship between constipation and medication in consideration of sleep disorder. Yakugaku Zasshi 131: 1225–1232

23. Ueki T, Nagai K, Ooe N, Nakashima MN, Nishida K, Nakamura J & Nakashima M (2011): Case-controlled study on risk factors for the development of constipation in hospitalized patients. Yakugaku Zasshi 131: 469–476

24. Ferret L, Ficheur G, Delavieze E, Luycxx M, Quenton S, Beuscct R, Chazard E & Beuscct JB (2018): Inappropriate anticholinergic drugs prescriptions in older patients: Analysing a hospital database. Int J Clin Pharm 40: 94–100

25. Niwata S, Yamada Y & Ikegami N (2006): Prevalence of inappropriate medication using Beers criteria in Japanese long-term care facilities. BMC Geriatr 6: 1

26. Fosnes GS, Lydersen S & Farup PG (2011): Constipation and diarrhoea - common adverse drug reactions? A cross sectional study in the general population. BMC Clin Pharmacol 11: 2

27. Farmer AD, Holt CB, Downes TJ, Ruggeri E, Del Vecchio S & De Giorgio R (2018): Pathophysiology, diagnosis, and management of opioid-induced constipation. Lancet Gastroenterol Hepatol 3: 203–212

28. Müller-Lissner S, Bassotti G, Coffin B, Drewes AM, Breivik H, Eisenberg E, Emmanuel A, Laroche F, Meissner W & Morlion B (2017): Opioid-induced constipation and bowel dysfunction: A clinical guideline. Pain Med 18: 1837–1863

29. Nelson AD & Camilleri M (2016): Opioid-induced constipation: Advances and clinical guidance. Ther Adv Chronic Dis 7: 121–134

30. Pappagallo M (2001): Incidence, prevalence, and management of opioid bowel dysfunction. Am J Surg 182(5A Suppl): 11S–18S

31. Bell TJ, Panchal SJ, Miaskowski C, Bolge SC, Milanova T & Williamson R (2009): The prevalence, severity, and impact of opioid-induced bowel dysfunction: Results of a US and European Patient Survey (PROBE 1). Pain Med 10: 35–42

32. Feighner JP (1999): Mechanism of action of antidepressant medications. J Clin Psychiatry 60(Suppl 4): 4–11

33. De Hert M, Hudyna H, Dockx L, Bernagie C, Sweers K, Tack J, Leucht S & Peuskens J (2011): Second-generation antipsychotics and constipation: A review of the literature. Eur Psychiatry 26: 34–44

34. Cremonini F, Camilleri M, Zinsmeister AR, Herrick LM, Beebe T & Talley NJ (2009): Sleep disturbances are linked to both upper and lower gastrointestinal symptoms in the general population. Neurogastroenterol Motil 21: 128–135

35. Ono S, Komada Y, Ariga H, Tsutsumi H & Shirakawa S (2004): Survey of relationships between sleep health and bowel habits of women living in the Tokyo metropolitan area. Jpn J Physiol Anthropol 9: 15–21 (in Japanese)
36. Ono S, Komada Y, Ariga H, Tsutsumi H & Shirakawa S (2005): An epidemiological study of the relationship between bowel habits and sleep health of adult women living in the Tokyo metropolitan area. J Jpn Soc Psychosom Obstet Gynecol 10: 67–75 (in Japanese)

37. Soldatos CR, Dikeos DG & Paparrigopoulos TJ (2000): Athens Insomnia Scale: Validation of an instrument based on ICD-10 criteria. J Psychosom Res 48: 555–560

38. Soldatos CR, Dikeos DG & Paparrigopoulos TJ (2003): The diagnostic validity of the Athens Insomnia Scale. J Psychosom Res 55: 263–267

39. Sanger DJ (2004): The pharmacology and mechanisms of action of new generation, non-benzodiazepine hypnotic agents. CNS Drugs 18 (Suppl 1): 9–15

40. Kinnunen O (1991): Study of constipation in a geriatric hospital, day hospital, old people’s home and at home. Aging (Milano) 3: 161–170

41. Linton A (2014): Improving management of constipation in an inpatient setting using a care bundle. BMJ Qual Improv Rep 3: u201903.w1002

42. Cardin F, Minicuci N, Droghi AT, Inelmen EM, Sergi G & Terranova O (2010): Constipation in the acutely hospitalized older patients. Arch Gerontol Geriatr 50: 277–281

43. Mostafa SM, Bhandari S, Ritchie G, Gratton N & Wenstone R (2003): Constipation and its implications in the critically ill patient. Br J Anaesth 91: 815–819

44. Nassar AP Jr, da Silva FM & de Cleva R (2009): Constipation in intensive care unit: Incidence and risk factors. J Crit Care 24: 630.e9–630.e12

45. Gacouin A, Camus C, Gros A, Isslame S, Marque S, Lavoué S, Chimot L, Donnio PY & Le Tulzo Y (2010): Constipation in long-term ventilated patients: Associated factors and impact on intensive care unit outcomes. Crit Care Med 38: 1933–1938

46. Fukuda S, Miyauchi T, Fujita M, Oda Y, Todani M, Kawamura Y, Kaneda K & Tsuruta R (2016): Risk factors for late defecation and its association with the outcomes of critically ill patients: A retrospective observational study. J Intensive Care 4: 33

47. Iovino P, Chiarioni G, Bilancio G, Cirillo M, Mekjavic IB, Pisot R & Ciacci C (2013): New onset of constipation during long-term physical inactivity: A proof-of-concept study on the immobility-induced bowel changes. PLoS One 8: e72608

48. Greenfield SM (2007): The management of constipation in hospital inpatients. Br J Hosp Med (Lond) 68: 145–147

49. Tariq SH (2007): Constipation in long-term care. J Am Med Dir Assoc 8: 209–218

50. Gau JT, Acharya UH, Khan MS & Kao TC (2015): Risk factors associated with lower defecation frequency in hospitalized older adults: A case control study. BMC Geriatr 15: 44

51. Gau JT, Walston S, Finamore M, Varacallo CP, Heh V, Kao TC & Heckman TG (2010): Risk factors associated with stool retention assessed by abdominal radiography for constipation. J Am Med Dir Assoc 11: 572–578

52. Nielsen J & Meyer JM (2012): Risk factors for ileus in patients with schizophrenia. Schizophr Bull 38: 592–598

53. Kara Ö, Arik G, Kızılarbulanğlu MC et al (2016): Potentially inappropriate prescribing according to the STOPP/START criteria for older adults. Aging Clin Exp Res 28: 761–768

54. Ferret L, Ficheur G, Delavieze E, Luyckx M, Quenton S, Beuscarr R, Chazard E & Beuscarr JB (2018): Inappropriate anticholinergic drugs prescriptions in older patients: Analysing a hospital database. Int J Clin Pharm 40: 94–100

55. Ness J, Hoth A, Barnett MJ, Shorr RI & Kaboli PJ (2006): Anticholinergic medications in community-dwelling older veterans: Prevalence of anticholinergic symptoms, symptom burden, and adverse drug events. Am J Geriatr Pharmacother 4: 42–51

56. Hamano J & Tokuda Y (2014): Inappropriate prescribing among elderly home care patients in Japan: Prevalence and risk factors. J Prim Care Community Health 5: 90–96

57. Chokhavatia S, John ES, Bridgeman MB & Dixit D (2016): Constipation in elderly patients with noncancer pain: Focus on opioid-induced constipation. Drugs Aging 33: 557–574

58. Liu J & Wang LN (2012): Ramelteon in the treatment of chronic insomnia: Systematic review and meta-analysis. Int J Clin Pract 66: 867–873

59. Citrome L (2014): Suvorexant for insomnia: A systematic review of the efficacy and safety profile for this newly approved hypnotic – what is the number needed to treat, number needed to harm and likelihood to be helped or harmed? Int J Clin Pract 68: 1429–1441
便秘と服用薬剤の関連性

植木 哲也1, 中嶋 幹郎2

1産業医科大学病院 薬剤部
2長崎大学大学院 医歯薬学総合研究科 展開医療薬学講座

要 旨：便秘は、非常に一般的であり、多くの薬剤の有害反応によって引き起こされる。オピオイドや抗コリン剤などの薬剤の有害作用に関する知識と認識は確立されているが、睡眠剤などの一般的に処方されている薬剤についてはあまりよく理解されていない。本総説では、便秘と薬剤との関連性を分析した結果を提示する。

キーワード：便秘, 薬物有害反応, オピオイド, 抗コリン剤, 睡眠剤。