A proposal for detecting second order topological quantum phase

Roman V. Buniy1,\,* and Thomas W. Kephart2,†

1Institute of Theoretical Science, University of Oregon, Eugene, OR 94703
2Department of Physics and Astronomy, Vanderbilt University, Nashville, TN 37235

(Dated: March 5, 2017)

Gaussian linking of a semiclassical path of a charged particle with a magnetic flux tube is responsible for the Aharonov-Bohm effect, where one observes interference proportional to the magnitude of the enclosed flux. We construct quantum mechanical wave functions where semiclassical paths can have second order linking to two magnetic flux tubes, and show there is interference proportional to the product of the two fluxes.

Topological phases can arise when a particle traverses semiclassical paths that cannot be deformed into each other due to some obstruction in an experimental setup, for example, paths that pass on opposite sides of an infinitely long solenoid. If the particle is charged, and there is a magnetic flux confined within the obstruction, then the two paths experience different vector potentials. This generates a phase difference for the two topologically different paths and causes interference when the particle is detected. The magnitude of the phase is a measure of the Gaussian linking of the particle path with the solenoid. What we have described here is the Aharonov-Bohm effect \cite{1}. But, this is not the full story, as we will now argue.

Higher order linking is possible. Consider the Borromean rings, an arrangement of three loops inextricably linked \cite{2} but with no first order (Gaussian) linking between any pair (see Fig. 1a). To see the higher order linking in more detail, we let ring C_3 be flexible and pull rings C_1 and C_2 apart while keeping their shapes fixed. This gives Fig. 1b. Next, we pinch the lines of ring C_3 in Fig. 1b together at point x_0 to form Fig. 1c. Now we follow the semiclassical path of ring C_3 to see how it is linked with rings C_1 and C_2. From Fig. 1c we see that we get four components: a_1, followed by a_2, followed by a_1^{-1}, and then by a_2^{-1}. Here a_1 links through C_1 and a_2 links through C_2 in the positive sense respectively, while a_1^{-1} and a_2^{-1} link through C_1 and C_2 in the negative sense \cite{4}. So the entire path C_3 runs through C_1 once in the positive and once in the negative sense for a total Gaussian linking of zero with C_1. Likewise, there is no Gaussian linking with C_2. But the total path C_3 is not trivial. This is because the paths a_1 and a_2 do not commute. In fact, C_3 is just the commutator, which we can write in multiplicative form as $C_3 = a_1 a_2 a_1^{-1} a_2^{-1}$. It is this commutator that leads to a new phase. To see this, we must introduce a physical system that displays the properties we have been describing. We need the topology of Fig. 1 but in such an arrangement that loop C_3 corresponds to the path of a particle and loops C_1 and C_2 to solenoids. This should not be difficult to arrange experimentally, and a sketch is provided in Fig. 2.

In the Aharonov-Bohm case, the wave function along a path Γ can be written as $\psi(A) = \psi(0) \exp(i \int_{\Gamma} A \cdot d\mathbf{x})$, where we are using natural units $\hbar = c = 1$ with unit charge to simplify the analysis, but will restore physical units when we reach our results. The interference

*Electronic address: roman@uoregon.edu
\dag Electronic address: tom.kephart@gmail.com
FIG. 1: (a) The Borromean rings. The topological significance of this arrangement is that while no pair of loops is linked, the triple of loops is linked. This is the simplest configuration with zero first order (Gaussian) linking and nonzero second order linking. (b) To obtain this figure from (a), pull C_1 and C_2 apart for flexible C_3. (c) To obtain this figure from (b), pinch C_3 at the point x_0 so that it becomes a commutator loop $C_3 = a_1a_2a_1^{-1}a_2^{-1}$.

between wave amplitudes from the two semiclassical paths C' and C'' around a closed path $C = C'C''^{-1}$ is

$$\psi(A) = \psi'(A) + \psi''(A) = e^{i\beta} \left[\psi'(0) + e^{i\phi} \psi''(0) \right],$$

where β is an overall irrelevant phase and the important relative phase is

$$\phi = \oint_{C=\partial S} A \cdot dx = \int_S B \cdot dS = \frac{e\Phi}{\hbar c}. \quad(2)$$

in SI units, where Φ is the magnetic flux enclosed in the solenoid.

Now let us return to the Borromean ring configuration and follow the semiclassical path of a particle around the circuit C_3 where we now take C_1 and C_2 to be a pair of unlinked solenoids. If, and only if, the particle path has no net first order linking with either solenoid C_1 or C_2, will we then define a gauge $[6], [7]$ that describes the higher order linking $[8]$. That gauge is

$$A_{12} = \frac{1}{2} \left(\gamma_1 A_2 - \gamma_2 A_1 \right), \quad(3)$$

where subscripts 1 and 2 refer to the solenoids along C_1 and C_2, and

$$\gamma_k = \delta_k + \int_{C_k} A_k \cdot dx. \quad(4)$$
Table I: Phase components along the path C_3.

path segment Γ	γ_1	γ_2	$K^{-1}\phi_{12}(\Gamma)$
1	δ_1	δ_2	0
a_1	$\delta_1 + \Phi_1$	δ_2	$-\frac{1}{2}\Phi_1\delta_2$
$a_2a_1^{-1}$	$\delta_1 + \Phi_1$	$\delta_2 + \Phi_2$	$\frac{1}{2}[(\delta_1 + \Phi_1)\Phi_2 - \Phi_1\delta_2]$
$C_3 = a_1a_2a_1^{-1}a_2^{-1}$	δ_1	δ_2	$\Phi_1\Phi_2$

Here \mathbf{A}_1 and \mathbf{A}_2 are the vector potentials due to the two solenoids, and Γ is the path that will run along C_3.

We now want to calculate the overall phase difference $K^{-1}\phi_{12} = \int_{C_3} \mathbf{A}_{12} \cdot d\mathbf{x}$. (The K^{-1} normalization factor multiplying ϕ_{12} will be discussed below.) Table I follows the path step by step through the experimental setup along path C_3 using the gauge \mathbf{A}_{12}. The first column labels the current positions on the path, the next two columns are the cumulative values of γ_1 and γ_2 at these points, and the last column gives the value of $\phi_{12}(\Gamma)$ at these points. In the third row we have used a_1 to take us from x_0 around C_1 and back to x_0. In the process γ_1 has increased by Φ_1 since $\int_{\Gamma=a_1} \mathbf{A}_1 \cdot d\mathbf{x} = \Phi_1$ while γ_2 stays fixed since $\int_{\Gamma=a_1} \mathbf{A}_2 \cdot d\mathbf{x} = 0$. Hence we have

$$K^{-1}\phi_{12}(a_1) = \frac{1}{2}\gamma_1 \int_{\Gamma=a_1} \mathbf{A}_2 \cdot d\mathbf{x} - \frac{1}{2}\gamma_2 \int_{\Gamma=a_1} \mathbf{A}_1 \cdot d\mathbf{x} = -\frac{1}{2}\Phi_1\delta_2. \quad (5)$$

From here it is obvious how to generate the remaining entries in the table. An alternative representation of this information is given in Fig. 3. Here the path C_3 begins at the initial position (δ_1, δ_2). We first use a_1 to travel to $(\delta_1 + \Phi_1, \delta_2)$, picking up an area $\delta_2\Phi_1$, which corresponds to a contribution of $-\frac{1}{2}\delta_2\Phi_1$ to $K^{-1}\phi_{12}$ (see Eq. (3)). Next, a_2 takes us to $(\delta_1 + \Phi_1, \delta_2 + \Phi_2)$ and it generates a contribution $\frac{1}{2}(\delta_1 + \Phi_1)\Phi_2$. Next, a_1^{-1} takes us to $(\delta_1, \delta_2 + \Phi_2)$ and contributes $\frac{1}{2}\Phi_1(\delta_2 + \Phi_2)$. Finally, a_2^{-1} returns us to (δ_1, δ_2) and contributes $-\frac{1}{2}\delta_1\Phi_2$, for a total phase of $K^{-1}\phi_{12} = \Phi_1\Phi_2$ for traversing the full loop C_3. The last row of Table I (or the full loop in Fig. 11) gives the final result for the full path when $\Gamma = C_3$. We find

$$\phi_{12}(C_3) = K\frac{e^2}{\hbar^2 c^2}\Phi_1\Phi_2 \quad (6)$$

once physical units have been restored. Figure 2 provides a schematic of the Borromean ring experimental setup with two solenoidal rings and split charged particle path.

Equation (6) is our main result and may be surprising in several respects. First and foremost, $\phi_{12}(C_3)$ does not vanish, even though the wave function has no first order linking with either solenoid. Second, the overall phase is proportional to the product of the fluxes from the two solenoids. Third, the result is not difficult to generalize to more complicated paths with multiple second order linking as we will show below, and to higher order of linking as we will show elsewhere [9].

Before proceeding let us finally discuss normalization factor in the phase. Recall Dirac’s magnetic monopole requires a string (return flux tube). The string can be made unobservable if it carries an integer number of flux quanta. Likewise the Aharonov-Bohm phase is unobservable if the phase shift is a multiple of 2π, and the magnetic flux enclosed by the particle paths is an integer multiple of the flux quantum. In Fig. 2 we make a similar
FIG. 2: Shown is a schematic of a Borromean ring arrangement to detect the second order phase \(\phi_{12} \), where \(C_1 \) and \(C_2 \) are magnetic solenoids (leads not shown) carrying flux \(\Phi_1 \) and \(\Phi_2 \), and \(C'_3 \) and \(C''_3 \) correspond to two topologically distinct paths and are parts of the closed path \(C_3 = C'_3C''_3^{-1} \) of a charged particle path starting from the source and ending at the screen. To prevent second order (gaussian) linking of the wave function with the solenoids one would install a rectangular plate \(P \) in the plane of \(C_1 \) that covers the area between the two sides of \(C_1 \) and fills the region between the sides of \(C_2 \). For particle wave packets that do not spread much beyond the center of the region containing the plate, only second order linking will be detected at the screen.

requirement. If both \(C_1 \) and \(C_2 \) carry quantized flux, i.e., if both \(\frac{e\Phi_1}{\hbar c} \) and \(\frac{e\Phi_2}{\hbar c} \) are integer multiples of \(2\pi \), then we expect the second order linking to be unobservable [11]. This is the case if we include the \(K = \frac{1}{2\pi} \) normalization factor [12] in Eq. (6).

Before concluding let us explore the case of multiple second order linking. Again, consider two unlinked closed rings \(C_1 \) and \(C_2 \) and a third path \(C \) that will wrap around them. \(C \) starts at point \(x_0 \) and then wraps via subpaths \(a_1 \) and \(a_2 \) some number of times. We define a lattice space of paths where \(a_1, a_2, a_1^{-1} \) and \(a_2^{-1} \) are right, up, left, and down steps by one lattice spacing, respectively. For example, consider the first frame in Fig. 4 where \(\tilde{C} = a_1^3a_2^2a_1^{-2} \). The accumulated first order linking \(\tilde{\phi}_k \) is the total number of times \(C \) wraps around \(C_k \) \((k = 1, 2)\), i.e., the projected distance on the \(k \)-axis from the starting point. Here \(\tilde{\phi}_1 = 1 \) and \(\tilde{\phi}_2 = 2 \). But notice the path is not closed, and so \(A_{12} \) cannot be defined, and there can be no second order linking. Next note that any closed path has no net first order linking, i.e., the net numbers of horizontal and vertical moves are both zero, but this is just when we can define \(A_{12} \). Now consider the closed path in the second frame of Fig. 4 where \(C = a_1^3a_2^2a_1^{-2}a_2a_1^{-1}a_2^{-3} \). This path can be written as a product of commutators, \(C = C^{(1)}C^{(2)}C^{(3)} \), where the commutators are themselves closed paths (see the bottom row of Fig. 4). The total accumulated phase for \(C \) is the sum of those for \(C^{(1)}, C^{(2)}, C^{(3)} \); in this case, \(\phi_{12} = 6 - 2 + 3 = 7 \), and this corresponds to the total number of cells of the lattice enclosed by path \(C \). (Recall that the simple Borromean ring commutator is \(a_1a_2a_1^{-1}a_2^{-1} \), which encloses one lattice cell.) The result for enclosed flux by an arbitrary closed path \(C \) is

\[
\phi_{12} = nK \frac{e^2}{\hbar^2c^2} \phi_1 \phi_2, \tag{7}
\]
where \(n \) is the number of cells enclosed by the path.

In summary, first order (Gaussian) linking leads to interference with phase proportional to enclosed flux in the case of the Aharonov-Bohm effect. Higher order linking also leads to interference, but with phases proportional to products of fluxes from different solenoids. Even though path components \(a_1 \) and \(a_2 \) in the above example do not commute, the phase is still abelian as required \[13\]. Our analysis needs nothing more than quantum mechanics and a judicious choice of gauge, and our conclusions are easily testable with tabletop experiments using known techniques.
Acknowledgments

We thank Jason Cantarella for a useful discussion and for pointing out Ref. [7]. TWK thanks the Aspen Center for Physics for hospitality while this work was in progress. The work of RVB was supported by DOE grant number DE-FG06-85ER40224 and that of TWK by DOE grant number DE-FG05-85ER40226.

[1] Y. Aharonov and D. Bohm, Phys. Rev. 115, 485 (1959).
[2] D. Rolfsen, Knots and Links, Publish or Perish, Wilmington, DE, 1976.
[3] A. Hatcher, Algebraic topology, Cambridge University Press, Cambridge, 2002.
[4] a_1 and a_2 are generators of the fundamental group $\pi_1(M)$ of the space $M = \mathbb{R}^3 - (C_1 \cup C_2)$. If C_1 and C_2 are unlinked, then $\pi_1(M) = \mathbb{Z} \ast \mathbb{Z}$, where \ast indicates the free product [10]. Paths with vanishing first order linking correspond to elements of the commutator subgroup of $\pi_1(M)$.
[5] T. T. Wu and C. N. Yang, Phys. Rev. D 12, 3845 (1975).
[6] W. S. Massey, Symp. Int. Topologia Algebraica, Mexico, 145 (1959); W. S. Massey, Proc. Conf. on Algebraic Topology, Chicago, University of Illinois at Chicago, p. 174 (1968); D. Kraines, Trans. Amer. Math. Soc. 124, 431 (1966); E. J. O’Neill Trans. Amer. Math. Soc. 248, 37 (1979); R. A. Fenn, Techniques of Geometric Topology, Cambridge University Press, Cambridge, 1983; M. I. Monastyrsky and V. S. Retakh, Commun. Math. Phys. 103, 445 (1986).
[7] M. A. Berger, J. Phys. A, 23, 2787 (1990).
[8] a_1 is a closed path for the (first order) choice of gauge used in the Aharonov-Bohm case, but it is only part of the path C_3. At second order, a closed path is a commutator of the generators of closed paths at first order. When the phase depends on the choice of the point x_0 and we do not have a closed path, we are not measuring interference since we have not recombined the two halves of the wave function. So one can argue that if we are looking for interference, then we should look for a gauge where we have closed paths, and a_1, a_1a_2, and $a_1a_2a_1^{-1}$ are not closed for A_{12}. Since for the AB gauge choice a_1, a_1a_2, and $a_1a_2a_1^{-1}$ deliver interference, while in A_{12} they give results dependent on the location of the point x_0, we see A_{12} may be an allowed gauge choice, but it is not a good choice for these paths. It only becomes a good choice when we are looking at the full commutator path.
[9] R. V. Bunyi and T. W. Kephart, in preparation.
[10] W. Magnus, A. Karrass, D. Solitar, Combinatorial Group Theory: Presentations of Groups in Terms of Generators and Relations, Interscience, New York, 1966.
[11] Further discussion of the normalization of generalized phases is in order. For the magnetic field in tube C_1 choose a gauge A_1, such that A_1 vanishes everywhere except in the disk S_1 bounded by C_1, and such that $\int_{C_1} A_1 \cdot dx$ picks up a contribution Φ_1 when C punches through the disk. Likewise choose A_2 to be nonzero only in the disk S_2 bounded by C_2. Then along the intersection line $S_1 \cap S_2$ there is a virtual flux tube carrying a total generalized flux $\Phi_V \propto \Phi_1\Phi_2$ of generalized magnetic field $F_{12} = A_1 \times A_2$ directed along the intersection line. In Fig. 2 this corresponds to having a virtual flux tube running along the the long symmetry axis of the curve C_1. Having the path C_3 linking with Φ_V generates the phase ϕ_{12}. Now imposing the Dirac string condition separately on Φ_1 and Φ_2, i.e., Φ_1 is unobservable if $\frac{\Phi_1}{\hbar c}$ is an integer multiple of 2π, likewise for Φ_2, and simultaneously imposing the requirement (à la Dirac) that
the phase ϕ_{12} be unobservable and the enclosed generalized flux a multiple of 2π, when the "subfluxes" Φ_1 and Φ_2 are unobservable, fixes the normalization and gives $\phi_{12} = \frac{1}{2\pi} \frac{e\phi_1}{\hbar c} \frac{e\phi_2}{\hbar c}$.

However, this generalized Dirac condition and its normalization must ultimately be checked by experiment.

[12] Similarly, we expect higher order cases where the phases are proportional to the product of n fluxes to have normalization factors $(2\pi)^{1-n}$ as will be discussed in [9].

[13] L. S. Schulman, J. Math. Phys. 12, 304 (1971); M. G. G. Laidlaw and C. M. DeWitt, Phys. Rev. D 3, 1375 (1971); L. S. Schulman, Techniques and Applications of Path Integration, Wiley-Interscience, New York, 1981.