Effects of red and blue LEDs on in vitro growth and microtuberization of potato single-node cuttings

Lili CHEN¹, Xuzhang XUE², Yadong YANG¹, Fei CHEN², Jie ZHAO¹, Xiquan WANG¹, Alam Tariful KHAN¹, Yuegao HU (✉)¹

¹ College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
² Beijing Research Center for Information Technology in Agriculture, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China

Abstract The objectives of this study were to investigate the effects of red and blue LEDs on in vitro growth and microtuberization of potato (Solanum tuberosum) single-node cuttings. Explants were incubated under 6 light treatments: 100% red LEDs (R), 75% red LEDs + 25% blue LEDs (3RB), 50% red LEDs + 50% blue LEDs (RB), 25% red LEDs + 75% blue LEDs (R3B), 100% blue LEDs (B) and white LEDs (W). Most of the growth and physiological parameters were significantly higher in 3RB than W. Enhancement of leaf area and chlorophyll concentrations were obtained in B. Leaf stomata were elliptical with the lowest density in 3RB. However, those in W were round in shape, and those with the smallest size and the highest density were observed in R. Most of the characteristics of microtuberization were also improved in 3RB. The combined spectra of red and blue LEDs increased the number of large microtubers. The fresh weight of individual microtubers in R and W were increased, but not their number. These results suggest that, of the treatments assessed, 3RB is optimal for the in vitro growth of potato plantlets and the combination of red and blue LEDs is beneficial for microtuberization.

Keywords blue LED, microtuber, plant tissue culture, potato plantlets in vitro, red LED

1 Introduction

Potato (Solanum tuberosum L.) is now the third most important food crop after rice and wheat in the world in terms of human consumption according to International Potato Center⁰¹. However, this crop is vulnerable to virus infection when field propagated using potato tubers from the previous crop, giving rise to yield reduction, quality deterioration and germplasm degradation. It is important to propagate strong virus-free potato plantlets and/or microtubers used for certified seed tuber production⁰².

Light is a crucial environmental factor that influences the in vitro growth and development of potato plantlets, because they are strongly affected by the light spectrum⁰³. Light spectral quality prior to cryopreservation can influence potato growth characteristics in vitro, and the success of shoot tip cryopreservation and subsequent survival⁰⁵. It was reported that potato plantlets grown in vitro under red light were weak and slim with small leaves while those under blue light were short and sturdy with well-developed leaves⁰⁶. Microscopic studies revealed that cells were shorter when cultured under blue light compared to culturing under red light⁰⁷. The phototropic curvature of potato shoots grown in vitro was actively induced by unilateral blue light⁰⁸. When the total power consumption was equal, and red and blue lights illuminated simultaneously with lower photosynthetic photon flux density (PPFD) and longer time (16 h photoperiod), the potato plantlets grew better than with higher PPFD, shorter time, or alternate red-blue light illumination⁰⁹. The addition of green LEDs to the combination of red and blue LEDs lights promoted potato plantlet growth¹⁰.

Red and blue light are readily absorbed by plants and the combination of red and blue light provide an efficient light spectrum for photosynthesis and photomorphogenesis¹¹–¹³. However, the optimal ratio of red to blue light differs among plant species and cultivars under plant tissue culture conditions¹⁴–¹⁷. A red to blue LED light ratio of 9:1 was the most beneficial for potato shoot formation from shoot tips being revived after cryopreservation¹⁸. Nevertheless, little is known about the effects of different red and blue photon flux ratios on the growth and development of potato plantlets in vitro, and which ratio is optimal for growth of potato plantlets during propagation or after being transplanted ex vitro.

Received November 17, 2017; accepted December 27, 2017
Correspondence: huyuegao@cau.edu.cn

© The Author(s) 2018. Published by Higher Education Press. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0)
The axillary buds of single-node cuttings from potato plantlets grown in vitro can be induced to tuberize aerially under suitable conditions to produce microtubers. Previous research on microtuberization has concentrated on plant growth regulators, photoperiod, temperature and genotypes. It has been reported that red light inhibited and blue light promoted microtuberization. However, the inhibition of tuberization of day neutral potatoes under blue light has also been reported. White and green light increased the fresh weight of microtubers produced by single-node cuttings. However, there is limited information on the effects of different percentages of red and blue photon flux on the microtuberization. Therefore, the objectives of this study were to investigate (1) the growth and morphological characteristics of potato plantlets in vitro, and (2) the microtuberization of single-node cuttings exposed to different ratios of red and blue LED light.

2 Materials and methods

2.1 Plant materials and growth conditions

Virus-free potato (cultivar Ke Xin 1) plantlets grown in vitro were supplied by the Institute of Vegetables and Flowers of the Chinese Academy of Agricultural Sciences. The experiments were performed in Beijing Academy of Agriculture and Forestry Sciences. Single-node cuttings (15 mm long) with one leaf from plantlets grown in vitro were inoculated vertically onto standard MS medium containing 30 g·L⁻¹ sucrose and 8 g·L⁻¹ agar under sterile conditions. The pH of MS medium was adjusted to 5.8 and 40 mL dispensed into 350 mL cylindrical transplant glass culture vessels before autoclaving at 121°C for 15 min. The explants were cultured at 23±1°C with 16 h photoperiod (6:00–22:00) and 70%±5% RH. After 4 weeks, mature potato plantlets were obtained.

2.2 Light treatments

There were 6 light treatments: 100% red LEDs (R); 75% red + 25% blue LEDs (3RB); 50% red + 50% blue LEDs (RB); 25% red + 75% blue LEDs (R3B); 100% blue LEDs (B) and white LEDs (W). The total PPFD was 75 µmol·m⁻²·s⁻¹ at the bottom of the vessels (measured with LI-250A; LI-COR Biosciences, Lincoln, NE, USA). The light spectrum of experiments is shown in Fig. 1.

Explants were incubated under the 6 light treatments at 23±1°C with 16 h photoperiod (6:00–22:00) and 70%±5% RH for 4 weeks. Some of the 4-week-old potato plantlets were used to measure the morphological and physiological parameters. The others were kept for another 2 weeks under the same conditions to obtain strong and vigorous plantlets. Single-node cuttings from the 6-week-old potato plantlets were inoculated onto MS medium with 80 g·L⁻¹ sucrose and 8 g·L⁻¹ agar (induction medium without plant growth regulators) and incubated under the same light treatment at 19±1°C with 8 h photoperiod for 8 weeks. Then microtubers were then harvested for assessment.

A single factor completely randomized block design was adopted. Each experiment was repeated two times. Each treatment included 15 vessels and each vessel contained 9 explants.

2.3 Growth parameters

For each treatment, 30 potato plantlets were sampled for biomass analysis. Plantlets were oven-dried at 85°C for 72 h to achieve constant weight. The fresh and dry weights were measured using an analytical balance. Plantlet height was determined from the bottom to the top of the main stem. Stem diameter of the third node from the bottom of the plantlets was measured with a vernier caliper. The number of nodes were recorded. The projection area of the leaves were obtained with the WinRHIZO (Regent Instruments, Montreal, QC, Canada). Each parameter was measured five times in each treatment. A health index was applied according to the methods of Ma et al.

2.4 Stoma observations

Fully expended leaf samples were taken from the fourth node (counting from the bottom) of 20 plantlets in each treatment for stomata observation. A thin layer of transparent nail polish was brushed evenly onto the lower side of the leaves. After the nail polish dried, transparent adhesive tape was pressed to the leaf surface, stripped and pressed onto a microscope slide to give temporary epidermal fingerprints. The fingerprints were examined under an optical microscope (Olympus CBB
microscope and Ken-a-vision 2100), and polar diameter (PD), equatorial diameter (ED) and density of the stomata measured under 40× magnification. PD/ED was calculated. Photographs of the stomata were taken with a Canon camera coupled to the microscope.

2.5 Physiological parameters

2.5.1 Chlorophyll concentrations

To determine chlorophyll (Chl) concentrations, third and fourth leaves from 20 plantlets of each treatment were collected, and 0.1 g fresh weight (FW) of leaves put into centrifuge tubes with 30 mL (V) acetone (80% in the dark for 24 h until all the leaves turned white. Optical density at 665 (A665), 649 (A649) and 470 (A470) nm was measured with a UV-1200 spectrophotometer (UV-1600, Mei Puda Inc., Shanghai, China). Concentrations of Chl a and b, and carotenoids (Car) were calculated according to the following equations[25]:

\[
\begin{align*}
\text{Chl} \ a \ (\text{mg} \cdot \text{g}^{-1}) &= \frac{(12.72 \times A_{654} - 2.59 \times A_{649}) \ V}{1000\text{FW}} \\
\text{Chl} \ b \ (\text{mg} \cdot \text{g}^{-1}) &= \frac{(22.88 \times A_{649} - 4.67 \times A_{665}) \ V}{1000\text{FW}} \\
\text{Chl} \ (a + b) \ (\text{mg} \cdot \text{g}^{-1}) &= \text{Chl} \ a + \text{Chl} \ b \\
\text{Car} \ (\text{mg} \cdot \text{g}^{-1}) &= \frac{(1000 \times A_{470} - 3.27 \times \text{Chl} \ a - 104 \times \text{Chl} \ b) \ V}{229 \times 1000\text{FW}}
\end{align*}
\]

2.5.2 Root activity

The root activity were determined according to TTC method[26] and the following equation:

\[
\text{Root activity} \ (\text{mg} \cdot \text{g}^{-1} \cdot \text{h}^{-1}) = \frac{M_{\text{TTC}}}{\text{FW} \times T}
\]

where \(M_{\text{TTC}}\) indicates the reduction value of TTC, FW indicates the fresh weight of root and T indicates the reaction time.

2.5.3 Soluble protein, soluble sugar, and starch content

The concentrations of soluble protein were determined by the Coomassie Brilliant Blue G-250 method[27]. Soluble sugar and starch concentrations were determined by a modified method of Fairbairn[28].

2.6 Microtuber assessments

2.6.1 Tuberization degree

Types of microtubers were scored according to Veramendi et al.[29]. Tubered single-node cuttings were scored on a 0–4 scale: 0, neither stolon nor microtuber developed; 1, stolon developed; 2, apical or lateral microtuber developed on a shoot; 3, apical or lateral microtuber developed on a stolon; and 4, sessile microtubers. The degree of tuberization was estimated as the sum value for all microtubers divided by the total number of explants.

2.6.2 Tuberization percentage

The percentage of in vitro tuberization was calculated according to the number of tuberized single-node cuttings divided by the total number of the inoculated single-node cuttings.

2.6.3 Microtuber yield

After harvest, the fresh weight and diameter of microtubers from each vessel were measured. The number and weight of microtubers per vessel was recorded. The number of large microtubers per vessel (≥0.1 g) were also recorded. The microtuber yield per vessel was evaluated as the average number of microtuber per vessel multiplied by the average weight of individual microtubers.

2.7 Statistical analysis

Statistical analyses were performed with SPSS for Windows Version 21.0 (IBM, Armonk, NY, USA). Data were analyzed by one way analysis of variance. The statistically significant differences of means were tested by Tukey’s test (\(P < 0.05\)).

3 Results

3.1 Growth and morphology of potato plantlets grown in vitro under different light treatments

The light treatment had variable effects on the growth of potato plantlets in vitro (Table 1). Plant height, stem diameter, leaf area, node number, fresh and dry weight, and health index in 3RB were significantly greater than those in W. The height of plantlets in R were 2.8 times larger than those in B. In contrast, the largest leaf area was observed in B, 1.96 times that of R. In addition, a few of the plantlets in R produced axillary bud outgrowths on the bottom nodes (data not shown).

3.2 Physiological parameters of potato plantlets grown in vitro under different light treatments

The pigment concentration of potato plantlets grown in vitro varied with light treatment (Fig. 2a). Chl a and Chl (a + b) concentrations in B were significantly greater than in other treatments; the combined spectra of red and blue
LEDs showed no significant differences compared to W; R performed significantly lower than W. The concentrations of Chl b and Car showed no significant differences between the treatments. The root activity of the plantlets increased with the enhancement of the ratio of red LEDs (Fig. 2b). Treatments with red LEDs induced significantly more root activity than with W. The soluble protein and sugar concentrations of the plantlets were significantly higher in 3RB than those in other treatments (Fig. 2c and 2d). The greatest starch concentrations were found in R followed by 3RB (Fig. 2c).

3.3 The stomata observation of potato plantlets grown in vitro under different light treatment

The stomata density of the light treatments was not significantly different from W except for 3RB, which was lower by 3.2% (Table 2). Stomata in all treatments were elliptical in shape except for W, which were almost spherical (Fig. 3). Stomata in R with a narrower pore were smaller in size, while those in 3RB were larger in size with a wider pore (Fig. 3). PD, ED and PD/ED did not differ significantly between the combined spectra of red and blue LEDs. PD/ED was the largest in R and smallest in W (Table 2).

3.4 Microtuberization under different light treatment

Tuberization degree and percentage varied with light treatment (Fig. 4a–4b)). The greatest tuberization was observed in 3RB, followed by RB and R3B, and the least in R, B and W. Tuberization percentage in the treatments showed a similar trend to that of tuberization degree.

Microtuber yield was strongly influenced by light treatment (Table 3). Microtuber number per vessel was the greatest in 3RB, 2.6 times that of W, and the least in R, B and W. The average weight of individual microtubers was the greatest in R and W, followed by the mixture spectra of red and blue LEDs. The yield of microtuber per vessel was the greatest in 3RB (544 mg), intermediate in RB and R3B (365 and 370 mg, respectively), and the least in W, B and R (248, 224 and 200 mg, respectively). The number of large microtubers per vessel was highest in the combined spectra of red and blue LEDs (Fig. 4c).

4 Discussion

4.1 Effect of light treatments on the growth and physiology of potato plantlets grown in vitro

Various light regimes are sensed and absorbed by plants through their light receptors[30]. Potato plantlets grown in vitro and radish plants grown under pure red light have sufficient IAA to sustain stem elongation growth, while the opposite was found for those grown under pure blue light[6,31]. Histological observations showed that stems of potato plantlets grown in vitro under pure red light had shorter cells than those grown under blue light[7]. This may explain the height performance in R and B in our experiment. Red light (600–700 nm) and blue (400–500 nm) light are absorbed by phytochrome and cryptochrome, respectively[30]. Multiple molecular forms of these two light receptors have been identified with different spectrophotometric, biochemical and physiological characteristics, and the corresponding genes are believed to be expressed differentially in response to environmental and physiological signals[32,33]. It has also been demonstrated that light quality affected the metabolism and distribution of phytohormones in radish plants and potato plantlets grown in vitro[31,34]. It is possible that the outgrowth of axillary buds in R was related to the distribution of hormones in the potato plantlets.

RNA-Seq analysis of grape plantlets grown in vitro under red, blue, green and white LEDs revealed that the gene related to Chl synthesis was upregulated[35]. This is consistent with our finding that plantlets in B had the greatest Chl a and Chl (a + b) concentrations.

Leaf area of tissue cultured potato plantlets increased with increasing proportion of red light[4]. However, in our study the smallest leaf area was observed in R and the largest in B. Blue LEDs significantly increased the leaf area of both grape plantlets[35] and upland cotton[16] grown in vitro. However, Mortensen and Stromme[36] observed that blue light from high pressure sodium lamps (HPSL)

Table 1 Effects of red and blue LEDs on the growth of potato plantlets in vitro

Light treatment	Stem diameter/mm	Leaf area/cm²	Node number	Node length/cm	Dry weight/mg	Fresh weight/mg	Health index
R	1.17c	1.00c	8.00a	2.03a	68.37a	927.30a	0.61c
3RB	1.68a	1.14b	6.67ab	1.17b	61.97a	877.31ab	1.19a
RB	1.60ab	1.18b	5.17b	1.19b	30.20b	651.03b	0.79b
R3B	1.53ab	1.10b	4.67c	1.08b	30.20b	559.36b	0.94b
R	1.52ab	2.96a	4.33c	1.06b	32.77b	670.74b	1.06a
W	1.43b	1.04c	4.67c	1.91a	30.33b	399.75c	0.58c

Note: Different letters in each column indicate significant differences ($P < 0.05$).
Fig. 2 Effects of red and blue LEDs on the physiological parameters of potato plantlets in vitro. Different letters in each bar graph indicate significant differences ($P < 0.05$)

Table 2 Effects of red and blue LEDs on the stomata size and stomata density of lower epidermis of leaves of potato plantlets in vitro

Light treatment	PD (mg g⁻¹)	ED (mg g⁻¹)	PD/ED	Stomata density (number per mm²)
R	13.63b	3.05b	4.47a	53.61a
3RB	16.43ab	7.15a	2.29b	49.61c
RB	16.55a	7.31a	2.26b	51.96ab
R3B	16.45ab	7.48a	2.20b	51.94ab
B	16.19ab	7.18a	2.25b	50.12b
W	9.43c	7.06a	1.33c	51.26ab

Note: PD, polar diameter; ED, equatorial diameter; PD/ED, the ratio of PD/ED. Different letters in each column indicate significant differences ($P < 0.05$)
decreased the chrysanthemum leaf area. It is possible that the light spectrum from different light sources (for example, LEDs, fluorescent light and HPSL) effect plant leaf area differently. This could also be due to the response of different genotypes.

In our study, potato plantlets grown in vitro were photomixotrophic, which means that besides leaf photosynthesis, roots absorbed organic matter from the media to support growth and development. The greatest root activity was found in R followed by 3RB. This could explain why the greater fresh and dry weight were recorded in 3RB. Similar results were also observed in upland cotton plantlets grown in vitro16.

Carbohydrate metabolism in plants can be regulated by light quality37. Our results were consistent with Li et al.35, who demonstrated that red light contributes to the synthesis and accumulation of starch, and blue light facilitates synthesis and accumulation of soluble protein. The combination of red and blue LEDs is likely to induce the characteristics of both red and blue LEDs. Thus, in 3RB the plantlets had more carbohydrates and soluble proteins.

4.2 Effect of light treatments on stomata of potato plantlets grown \textit{in vitro}

Stomata with guard cells surrounding each pore regulate their turgor to optimize the influx and efflux of gases and act as hydraulic valves on the surface of above-ground parts of plants38. Normal and functional stomata in potato plantlets grown in vitro would have a greater influence on gas exchange and water uptake. The effects of different light treatments on stomatal conductance and size were observed, which could be due to the variation in red and blue light ratios and their influence on the growth and development of the plantlets.

Fig. 3 Effects of red and blue LEDs on the leaf stomata of potato plantlets \textit{in vitro}. Bar = 100 \(\mu\)m. (a) R; (b) 3RB; (c) RB; (d) R3B; (e) B; (f) W.
Plantlets grown in vitro were elliptical in shape, while dysfunctional stomata were round in shape\[^{39}\]. The stomata in the present study performed functionally except in W, with its near circular stomata (Fig. 3). This is confirmed by PD/ED values (Table 2); the closer the value is to unity, the closer the shape is to round. Blue light is directly received by phototropins and activates a signal cascade which results in stomata opening rapidly with a red light background\[^{30,33,37,38}\]. The percentage of blue light in W may have been too low, thus resulting in abnormal stomata. The stomata in R were the smallest (Fig. 3). This can be explained by the absence of blue light, because blue light is important for the development of plant stomata\[^{40,41}\]. The density and size of stomata were closely related to the in vitro environment in which plantlets are raised\[^{39}\]. Potato plantlets with larger and fewer normal stomata have been found to grow vigorously\[^{10,39}\]. A similar result was obtained in our study: the plantlets in 3RB had the lowest stomata density and largest stomata size and the highest health index. Meanwhile, Kim et al.\[^{15}\]

Table 3 Effects of red and blue LEDs on the yield of potato microtuber

Light treatment	Microtuber weight/mg	Microtuber number per vessel	Microtuber yield per vessel/mg
R	111.0a	1.8c	199.8
3RB	95.5b	5.7a	544.4
RB	89.4b	4.1b	364.9
R3B	84.1b	4.4b	370.0
B	80.1c	2.8c	224.3
W	112.5a	2.2c	247.5

Note: Different letters in the column indicate significant differences ($P < 0.05$).
and Li et al.[16] reported that plantlets treated with equal red and blue light had larger stomata, a lower stomata density and a faster growth rate.

4.3 Effect of light treatments on in vitro tuberization from single-node cuttings

Formation of potato microtubers is a complicated process controlled by many factors. The plant hormone, gibberellic acid (GA), is a key hormone that influences potato tuber induction and initiation[42]. Light spectral quality mediated the induction and development of microtubers by regulating hormone concentrations especially GA. High concentrations of GA prevents potato tuber induction and initiation. Previous research reported that blue light inhibited tuberization of day-neutral potato through increasing GA synthesis and accumulation[22]. This may explain the observed microtuberization in B. IAA is believed to enhance the sink capacity of plant organs[34,43].

The concentration of IAA in potato plantlets increased under red light[31]. Thus, the high IAA concentration may promote assimilates to flow into the tubers. That may be why R had a greater microtuber number (Table 3). It has also been reported that white light can increase potato microtuber fresh weight[23]. A similar result also occurred in W in our study. White light and the combined spectrum provided a range of light wavelengths. The development of microtubers may need a range of wavelengths in the light spectrum. That may explain the reason why the content of microtubers in W and the combined spectrum was found in the combined spectrum of red and blue LEDs (Fig. 4c; Table 3). Auxillary bud development from single-node cuttings was closely associated with the degree and percentage of in vitro tuberization[29]. A higher degree of tuberization was correlated with earlier maturing potato cultivars and higher concentrations of inducing substances[44].

However, Ke Xin 1 is a mid to late maturing cultivar. The highest degree and percentage of in vitro tuberization was observed in 3RB, which indicated that this treatment may lead to the accumulation of more inducing substances.

5 Conclusions

The present study indicates that, of the treatments assessed, the optimal ratio of red to blue LEDs for in vitro growth of potato plantlets was 3:1. Moreover, this ratio also promoted in vitro tuberization giving the greatest tuberization degree and yield. White and red light contributed to increasing the fresh weight of microtubers but did not increase microtuber numbers. The combination of red and blue LEDs enhanced the number of large microtubers. The combined spectrum of 3RB is recommended for in vitro micropropagation of potato plantlets and microtuber production systems.

Acknowledgements This work was supported by the National High Technology Research and Development Program of China (2013 AA 103005) and the Natural Science Foundation of Beijing (6144022).

Compliance with ethics guidelines Lili Chen, Xuzhang Xue, Yadong Yang, Fei Chen, Jie Zhao, Xiquan Wang, Alam Tariful Khan, and Yuegao Hu declare that they have no conflicts of interest or financial conflicts to disclose. This article does not contain any studies with human or animal subjects performed by any of the authors.

References

1. International Potato Center—Agricultural research for development. Cipotato website, available on January 14, 2017

2. Halteman D, Guenther J, Collinge S, Butler N, Douches D. Biotech potatoes in the 21st century: 20 years since the first biotech potato. American Journal of Potato Research, 2016, 93(1): 1–20

3. Charles G, Rossignol L, Rossignol M. Environmental effects on potato plants in vitro. Journal of Plant Physiology, 1992, 139(6): 708–713

4. Seabrook J E A. Light effects on the growth and morphogenesis of potato (Solanum tuberosum L.) in vitro: a review. American Journal of Potato Research, 2005, 82(5): 353–367

5. Edesi J, Pirttila A M, Haggman H. Modified light spectral conditions prior to cryopreservation alter growth characteristics and cryopreservation success of potato (Solanum tuberosum L.) shoot tips in vitro. Plant Cell, Tissue and Organ Culture, 2017, 128(2): 409–421

6. Aksenova N P, Konstantinova T N, Sergeeva L I, Machackova I, Golyanovskaya S A. Morphogenesis of potato plants in vitro. I. Effect of light quality and hormones. Journal of Plant Growth Regulation, 1994, 13(3): 143–146

7. Wilson D A, Weigel R C, Wheeler R M, Sager J C. Light spectral quality effects on the growth of potato (Solanum tuberosum L.) nodal cuttings in vitro. In vitro Cellular & Developmental Biology–Plant, 1993, 29(1): 5–8

8. Vinterhalter D, Vinterhalter B, Orbović V. Photo- and gravitropic bending of potato plantlets obtained in vitro from single-node explants. Journal of Plant Growth Regulation, 2012, 31(4): 560–569

9. Jao R C, Fang W. Growth of potato plantlets in vitro is different when provided concurrent versus alternating blue and red light photoperiods. HortScience, 2004, 39(2): 380–382

10. Ma X F, Wang Y P, Liu M X, Xu J M, Xu Z G. Effects of green and red lights on the growth and morphogenesis of potato (Solanum tuberosum L.) plantlets in vitro. Scientia Horticulturae, 2015, 190: 104–109

11. Hernández R, Kubota C. Physiological responses of cucumber seedlings under different blue and red photon flux ratios using LEDs. Environmental and Experimental Botany, 2016, 121: 66–74

12. Hernández R, Eguchi T, Deveci M, Kubota C. Tomato seedling physiological responses under different percentages of blue and red photon flux ratios using LEDs and cool white fluorescent lamps. Scientia Horticulturae, 2016, 213: 270–280

13. Fan X X, Xu Z G, Liu X Y, Tang C M, Wang L W, Han X L. Effects of light intensity on the growth and leaf development of young tomato plants grown under a combination of red and blue
light. *Scientia Horticulturae*, 2013, **153**: 50–55

14. Poudel P R, Kataoka I, Mochioka R. Effect of red- and blue-light-emitting diodes on growth and morphogenesis of grapes. *Plant Cell, Tissue and Organ Culture*, 2008, **92**(2): 147–153

15. Kim S J, Hahn E J, Heo J W, Peak K Y. Effects of LEDs on net photosynthetic rate, growth and leaf stomata of chrysanthemum plantlets in *vitro*. *Scientia Horticulturae*, 2004, **101**(1–2): 143–151

16. Li H M, Xu Z G, Tang C M. Effect of light-emitting diodes on growth and morphogenesis of upland cotton (*Gossypium hirsutum* L.) plantlets in *vitro*. *Plant Cell, Tissue and Organ Culture*, 2010, **103**(2): 155–163

17. Li H M, Tang C M, Xu Z G. The effects of different light qualities on rapeseed (*Brassicanapus* L.) plantlet growth and morphogenesis in *vitro*. *Scientia Horticulturae*, 2013, **150**: 117–124

18. Edesil J, Kottak P, Pirttila A M, Haggman H. Does light spectral quality affect survival and regeneration of potato (*Solanum tuberosum* L.) shoot tips after cryopreservation? *Plant Cell, Tissue and Organ Culture*, 2014, **119**(3): 599–607

19. Dhital S P, Lim H T. Microtuberization of potato (*Solanum tuberosum* L.) shoot tips after cryopreservation? *Tissue and Organ Culture*, 2008, **103**(2): 143–151

20. Zhang Z J, Zhou W J, Li H Z, Zhang G Q, Subrahmaniyan K, Yu J Q. Effect of jasmonic acid on *in vitro* explant growth and microtuberization in potato. *Biologia Plantarum*, 2006, **50**(3): 453–456

21. Nistor A, Campeanu G, Atanasiu N, Chiru N, Karacsonyi D. Influence of genotype on *in vitro* production of microtubers. *Romanian Biotechnological Letters*, 2010, **15**(3): 5317–5324

22. Fixen K R, Thomas S C, Tong C B S. Blue light inhibition of tuberization in a day neutral potato. *Journal of Plant Growth Regulation*, 2012, **31**(3): 342–350

23. Ali F H M, Esmail M A. The impact of microtubers on *in vitro* light quality on potato microtuberization from single node cuttings. *Acta Horticultrum*, 2011, (923): 73–77

24. Murashige T, Skoog F. A revised medium for rapid growth and bioassays with tobacco tissue cultures. *Physiologia Plantarum*, 1962, **15**(3): 473–497

25. Arnon D I. Copper enzyme in isolated chloroplast polyphenol oxidase in *Beta vulgaris*. *Plant Physiology*, 1949, **24**(1): 1–15

26. Zhang Y S, Huang X C. Experimental course of plant physiology. Beijing: *Higher Education Press*, 2009 (in Chinese)

27. Bradford M M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. *Analytical Biochemistry*, 1976, **72**(1–2): 248–254

28. Fairbairn N J. A modified anthrone regent. *Chemistry & Industry*, 1953, **4**: 86–86

29. Veramendi J, Sota V, Fernández-San Millán A, Villafranca M J, Martin-Closas L, Pelacho A M, Mingo-Castel A M. An *in vitro* tuberization bioassay to assess maturity class of new potato clones. *Journal of Horticultural Science & Biotechnology*, 2000, **75**(6): 733–738

30. Smith H. Sensing the light environment: the functions of the phytochrome family. Dordrecht: Springer, 1993

31. Segeeva L I, Machackova I, Knostantinova T N, Golyanovskaya S A, Eder J, Zaltsman O O, Aksehova N P. Morphogenesis of potato plants in *vitro*. II. endogenous levels, distribution, and metabolism of IAA and cytokinins. *Journal of Plant Growth Regulation*, 1994, **13**(3): 147–152

32. Huché-Thélier L, Crespel L, Gourrierec J L, Morel P, Sakr S, Leduc N. Light signaling and plant responses to blue and UV radiations perspectives for applications in horticulture. *Environmental and Experimental Botany*, 2016, **121**: 22–38

33. Cope K R, Snowden M C, Bugbee B. Photobiological interactions of blue light and photosynthetic photon flux: effects of monochromatic and broad-spectrum light sources. *Photochemistry and Photobiology*, 2014, **90**(3): 574–584

34. Kara A N, Kotov A A, Bukhov N G. Specific distribution of gibberellins, cytokinins indole-3-acetic acid, and abscisic acid in radish plants closely correlates with photomorphogenetic responses to blue or red light. *Journal of Plant Physiology*, 1997, **151**(1): 51–59

35. Li C X, Xu Z G, Dong R Q, Chang S X, Wang L Z, Khalil-Ur-Rehman M, Tao J M. An RNA-Seq analysis of grape plantlets grown in *vitro* reveals different responses to blue, green, red LED light, and white fluorescent light. *Frontiers in Plant Science*, 2017, **8**(78): 78

36. Mortensen L M, Stromme E. Effects of light quality on some greenhouse crops. *Scientia Horticulturae*, 1987, **33**(1–2): 27–36

37. Kowallik W. Blue light effects on respiration. *Plant Physiology*, 1982, **33**(1): 51–72

38. Outlaw W H Jr. Integration of cellular and physiological functions of guard cells. *Critical Reviews in Plant Sciences*, 2003, **22**(6): 503–529

39. Mohamed M A H, Alsadon A A. Influence of ventilation and succrose on growth and leaf anatomy of micropropagated potato plantlets. *Scientia Horticulturae*, 2010, **123**(3): 295–300

40. Shimazaki K, Doi M, Assmann S M, Kinoshita T, Shimamoto K, Taoka K I. Potato tuber induction is regulated by endogenous gibberellins, cytokinins indole-3-acetic acid, and abscisic acid in radish plants closely correlates with photomorphogenetic responses to blue or red light. *Journal of Plant Physiology*, 1997, **151**(1): 51–59

41. Chistov A, Prokudin A, Zuev A, Belachew T, Khulan N, Tougas S, et al. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. *Analytical Biochemistry*, 1976, **72**(1–2): 248–254

42. Roumeliotis E, Visser R G, Bachem C W. A crosstalk of auxin and cytokinins. *Plant & Cell Physiology*, 2003, **44**(1): 51–72

43. Shimazaki K, Doi M, Assmann S M, Kinoshita T. Light regulation of stomatal movement. *Annual Review of Plant Biology*, 2007, **58**(1): 219–247

44. Kisselovitch E, Visser R G, Bachem C W. A cross talk of auxin and GA during tuber development. *Plant Signaling & Behavior*, 2012, **7**(10): 1360–1363

45. Lorenzen J H, Ewing E E. Changes in tuberization and assimilate partitioning in potato (*Solanum tuberosum* L.) during the first 18 days of photoperiodic treatment. *Annals of Botany*, 1990, **66**(4): 456–464

46. Teo C J, Takahashi K, Shimizu K, Shimamoto K, Taoka K I, Shimamoto, Taoka K. Potato tuber induction is regulated by interactions between components of a tuberigen complex. *Plant & Cell Physiology*, 2017, **58**(2): 365–374