Adverse Effects from Clenbuterol and Ractopamine on Nematode Caenorhabditis elegans and the Underlying Mechanism

Ziheng Zhuang1*, Yunli Zhao2*, Qiuli Wu2*, Min Li1,2,3, Haicui Liu4, Lingmei Sun2, Wei Gao3*, Dayong Wang2*

1 School of Pharmaceutical Engineering and Life Sciences, Changzhou University, Changzhou, China, 2 Key Laboratory of Environmental Medicine Engineering in Ministry of Education, Medical School of Southeast University, Nanjing, China, 3 Jiangsu Province Product Quality Supervision and Inspection Institute, Nanjing, China, 4 Xiuli Biological Technology Co., Ltd. Changzhou, China

Abstract

In the present study, we used Caenorhabditis elegans assay system to investigate in vivo toxicity from clenbuterol and ractopamine and the possible underlying mechanism. Both acute and prolonged exposures to clenbuterol or ractopamine decreased brood size and locomotion behavior, and induced intestinal autofluorescence and reactive oxygen species (ROS) production. Although acute exposure to the examined concentrations of clenbuterol or ractopamine did not induce lethality, prolonged exposure to 10 µg/L of clenbuterol and ractopamine reduced lifespan. At relatively high concentrations, ractopamine exhibited more severe toxicity than clenbuterol on nematodes. Overexpression of sod-2 gene encoding a Mn-SOD to prevent induction of oxidative stress effectively inhibited toxicity from clenbuterol or ractopamine. Besides oxidative stress, we found that clenbuterol might reduce lifespan through influencing insulin/IGF signaling pathway; however, ractopamine might reduce lifespan through affecting both insulin/IGF signaling pathway and TOR signaling pathway. Ractopamine more severely decreased expression levels of daf-16, skg-1, skn-1, and aak-2 genes than clenbuterol, and increased expression levels of daf-2 and age-1 genes at the examined concentration. Therefore, the C. elegans assay system may be useful for assessing the possible toxicity from weight loss agents, and clenbuterol and ractopamine may induce toxicity through different molecular mechanisms.

Introduction

Illegal or unsuitable use of weight loss agents has gradually become a public health concern [1–2]. Clenbuterol, a typical β2-adrenergic agonist, and was illegally used as a feed additive to improve production performance and a carcass composition in many countries [3–4]. With the increased use of internet sales, the internet has made this even banned product to be readily accessible for the aim of weight loss agents. These authors contributed equally to this work.

2-adrenoceptor, and was now widely used as a feed additive in the United States to promote a reduction in body fat and to enhance muscle growth in cattle, pigs, or turkeys [5].

Among the used weight loss agents, clenbuterol and ractopamine belong to products that may have health hazards upon accidental or intentional exposure and ingestion [2,6]. The in vitro study has indicated that clenbuterol exhibited potential toxicity on structure and function of tryptophan, an important digestive enzyme, and stimulated guinea-pig heart rate [4,7]. Following consumption of meat or liver from clenbuterol administrated cattle, intoxication cases were described [7]. Moreover, at least the toxic effects on cardiovascular systems (such as tachycardia and hypertension) are considered to be of clinical relevance [7–9]. More recently, it was further reported that ractopamine administration might cause the myocardial toxicity in dogs [5].

Several toxicological studies have been performed for clenbuterol. Administration of growth-promoting doses of clenbuterol adversely affected the liver function in female pigs [10]. Dietary administration of clenbuterol decreased androgen receptor (AR) expression in testicle, glucocorticoid receptor (GR) expression in lymphoid tissues, and β-adrenergic receptor (β-AR) expression in targeted organs of chickens [3]. Clenbuterol caused an impairment of collagen turnover by down-regulating MMP-9 activity [11]. Clenbuterol not only enhanced muscle fiber size but also increased expression of GATA-2 protein in skeletal muscle of rat uterus [12]. The preferential involvement of calpain 2 autolysis was found for clenbuterol-induced skeletal muscle remodelling in rats [13]. Overexpression of calpastatin in skeletal muscle of mice prevented clenbuterol-induced muscle hypertrophy and phenotypic shift...
Concentrations more than 0.01 and prolonged exposure to clenbuterol or ractopamine at concentrations more than 0.1 mg/L and prolonged exposure to clenbuterol or ractopamine at concentrations more than 1 mg/L and prolonged exposure to clenbuterol or ractopamine at concentrations more than 10 μg/L significantly induced the intestinal autofluorescence compared with control (Fig. 3A). In contrast, acute exposure to 5 mg/L of clenbuterol or ractopamine and prolonged exposure to clenbuterol or ractopamine at concentrations of 1–10 μg/L significantly induced the intestinal autofluorescence compared with control (Fig. 3A). More interestingly, we observed that acute exposure to 5 mg/L of ractopamine and prolonged exposure to 1–10 μg/L of ractopamine induced more pronounced intestinal autofluorescence than clenbuterol in nematodes (Fig. 3A).

Comparison of intestinal reactive oxygen species (ROS) production in clenbuterol or ractopamine exposed nematodes

In C. elegans, toxicants usually cause damage on animals by inducing oxidative stress [18,29,53]. We further examined the intestinal ROS production in clenbuterol or ractopamine exposed nematodes. After acute exposure, both clenbuterol and ractopamine at the concentration of 5 mg/L induced the significant intestinal ROS production, and acute exposure to ractopamine at the concentration of 5 mg/L resulted in more severe intestinal ROS production than clenbuterol (Fig. 3B). After prolonged exposure, similarly, both clenbuterol and ractopamine at the concentration of 10 μg/L caused significant intestinal ROS production, and prolonged exposure to ractopamine at the concentration of 10 μg/L induced more severe intestinal ROS production than clenbuterol (Fig. 3B). These data suggest that toxicity from clenbuterol or ractopamine may be closely associated with the induction of oxidative stress in nematodes.

Comparison of lifespan in clenbuterol or ractopamine exposed nematodes

We further investigated the effects of exposure to clenbuterol and ractopamine on lifespan in nematodes. Lifespan is an important endpoint and may reflect the long-term effects of a specific toxicant in nematodes [32,54]. Acute exposure to clenbuterol or ractopamine at the concentration of 5 mg/L did not significantly alter lifespan of nematodes (Figs. 4A and 4B). In contrast, prolonged exposure to clenbuterol or ractopamine at the concentration of 10 μg/L significantly reduced the lifespan of nematodes (Figs. 4C and 4D). Moreover, we found that prolonged exposure to ractopamine at the concentration of 10 μg/L more severely inhibited the lifespan of nematodes than clenbuterol (Figs. 4C and 4D).

Overexpression of SOD-2 prevented the toxicity of clenbuterol or ractopamine on nematodes

In C. elegans, sod-2 and sod-3 genes encode Mn-SODs, which function in protecting animals from the damage from oxidative stress [45,55]. Previous studies have demonstrated that

Reference: [14]. However, so far no toxicological study on ractopamine has been performed.
overexpression of Mn-SODs inhibited the oxidative stress and prevented the toxicity from metals and nanomaterials [45,55]. To examine the role of oxidative stress in inducing the toxicity from clenbuterol or ractopamine on nematodes, we investigated the effects of overexpression of sod-2 gene in all cells of nematodes (Ex[Pdpy-30-sod-2]) on toxicity from clenbuterol or ractopamine. Transgenic strain of Ex[Pdpy-30-sod-2] had no deficits in body length, brood size, head thrash, and body bend, and did not have significant intestinal autofluorescence and intestinal ROS production (Figs. 5A–5E). After prolonged exposure to 10 µg/L of clenbuterol or ractopamine, we did not detect the significant decreases in body length, brood size, head thrash, and body bend in nematodes overexpressing sod-2 gene compared with control (Figs. 5A–5C). Moreover, after prolonged exposure to 10 µg/L of clenbuterol or ractopamine, we did not observe the significant induction of both intestinal autofluorescence and intestinal ROS production in nematodes overexpressing the sod-2 gene compared with control (Figs. 5D and 5E). Nematodes overexpressing sod-2 gene had the similar lifespan to that of wild-type N2 (data not shown). After prolonged exposure to 10 µg/L of clenbuterol or ractopamine, our results further demonstrate that no significant reduction of lifespan was observed in nematodes overexpressing sod-2 gene compared with control (Fig. 5F).

Molecular mechanism for clenbuterol and ractopamine to reduce the lifespan of nematodes

In C. elegans, the aging process is under the control of three major endocrine- and nutrient-sensing signaling pathways, the insulin/insulin-like growth factor (IGF), target of rapamycin (TOR), and germline signaling pathways [56]. To determine the molecular mechanism for clenbuterol or ractopamine to reduce the lifespan of nematodes, we investigated the expression patterns of genes involved in these three signaling pathways in clenbuterol or ractopamine exposed nematodes. The insulin/IGF signaling pathway includes daf-2, age-1, daf-16, pdk-1, akt-1, akt-2, sgk-1, daf-18, prmt-1, rle-1, smk-1, hef-1, hsfl-1, skn-1, aak-2, and unc-51 genes (56; Table S1). After prolonged exposure, we found that 10 µg/L of clenbuterol decreased expression levels of daf-16, sgk-1, skn-1, and aak-2 genes (Fig. 6A). In contrast, after prolonged exposure, 10 µg/L of ractopamine not only decreased expression levels of daf-16, sgk-1, skn-1, and aak-2 genes, but also increased expression levels of daf-2 and age-1 genes (Fig. 6A). More interestingly, ractopamine more severely decreased the expression levels of daf-16, sgk-1, skn-1, and aak-2 genes than clenbuterol (Fig. 6A). TOR signaling pathway includes daf-15, rict-1, rga-1, theb-1, and pha-4 genes (56; Table S1). After prolonged expression, clenbuterol did not significantly affect TOR signaling; however, ractopamine increased expression levels of daf-15 and rict-1 genes (Fig. 6B). Germline signaling pathway includes tee-1, kri-1, daf-9, daf-36, daf-12, nhr-80, and phi-62 genes (56; Table S1). After prolonged expression, clenbuterol and ractopamine did not significantly influence the expression levels of genes in germine signaling pathway (Fig. 6C). Therefore, clenbuterol and ractopamine may affect the longevity through different molecular mechanisms in nematodes.

To further confirm the functions of the dysregulated genes in regulating the toxicity formation from clenbuterol or ractopamine, we used the corresponding mutants to investigate the lifespans of these mutants exposed to clenbuterol or ractopamine. With the aid of lifespan as the endpoint, interestingly, we found that the daf-16(mu86), sgk-1(ok338), skn-1(zu67), and aak-2(ok324) mutants had the susceptible property to the toxicity of clenbuterol or ractopamine (Fig. 7). In contrast, the daf-2(e1370), age-1(hx546),
and *rict-1(mg360) mutants had the resistant property to the toxicity of ractopamine (Fig. 7). These data further confirm the involvement of the related signaling pathways in regulating the toxicity formation from clentuberol or ractopamine.

Discussion

In the present study, we first provide a series of evidence to indicate the usefulness of *C. elegans* assay system in assessing the *in vivo* toxicity of weight loss agents, such as clentuberol or ractopamine. With the aid of brood size, head thrash, body bend, intestinal autofluorescence, and intestinal ROS production as the endpoints, we detected the toxicity from acute exposure to clentuberol or ractopamine (Figs. 2 and 3). With the aid of body length, brood size, head thrash, body bend, intestinal autofluorescence, intestinal ROS production, and lifespan as the endpoints, we further detected the toxicity from prolonged exposure to clentuberol or ractopamine (Figs. 1–4). Using head thrash and body bend as the endpoints, we could observe the potential toxicity from acute exposure to 0.1 mg/L of clentuberol or ractopamine, and the potential toxicity from prolonged exposure to 0.01 µg/L of clentuberol or ractopamine (Fig. 2). Therefore, *C. elegans* may be a relatively sensitive assay system for toxicity assessment of food additives. Especially, the prolonged exposure assay system may be more suitable for detecting the potential toxicity of long-term adverse effects of weight loss agents. For example, prolonged exposure to 1–10 µg/L of clentuberol or ractopamine significantly decreased the body length of nematodes (Fig. 1). In contrast, acute exposure to all the examined concentrations of clentuberol or ractopamine did not noticeably influence the body length of nematodes (Fig. 1). Nevertheless, we did not observe the induction of lethality in nematodes exposed to clentuberol or ractopamine at the examined concentrations (Fig. 1).

The careful selection of suitable and sensitive endpoints for toxicity assessment of weight loss agents should be paid attention to, since the toxicity of illegal weight loss agents may be not so severe as heavy metals [21,23,25–30] or organic pesticides [33–34].

![Figure 2. Comparison of brood size and locomotion behavior in nematodes exposed to different concentrations of clenbuterol or ractopamine.](https://example.com/figure2.png)
Based on our data, we indicate that ractopamine may somewhat have more severe toxicity than clenbuterol in nematodes. With the aid of head thrash, body bend, intestinal autofluorescence, and intestinal ROS production as the endpoints, after acute exposure, we detected the toxicity differences between clenbuterol and ractopamine at concentrations of 1 and/or 5 mg/L (Figs. 2 and 3). With the aid of head thrash, body bend, intestinal autofluorescence, intestinal ROS production, and lifespan as the endpoints, after prolonged exposure, we observed the toxicity differences between clenbuterol and ractopamine at relatively high concentrations.

Figure 3. Comparison of intestinal autofluorescence (A) and ROS production (B) in nematodes exposed to clenbuterol or ractopamine. Exposures were performed from the young adult for 24-hr (acute exposure) or from L1-larvae to adult (prolonged exposure). Twenty nematodes were examined per treatment. Bars represent mean ± S.E.M. **P<0.01.
doi:10.1371/journal.pone.0085482.g003
Considering the fact that the toxicity for toxicants in *C. elegans* may be similar to that observed in mammals [16,19], our data here imply the possible potential more severe toxicity of ractopamine than clentuborol in mammals.

Oxidative stress is a key mechanism for toxicants to induce the damage on nematodes [16,18]. Our data demonstrate that both clentuborol and ractopamine induced the significant intestinal ROS production (Fig. 3B). Moreover, with the aid of the transgenic strain of *Ex(Pdpy-30-sod-2)*, we found that overexpression of sod-2 gene in all cells effectively prevented the potential toxicity from clentuborol or ractopamine on growth, reproduction, locomotion behavior, intestinal development and lifespan in nematodes (Fig. 5). Therefore, oxidative stress is an important mechanism for clentuborol and ractopamine to induce the damage on nematodes.

Moreover, we found that clentuborol and ractopamine also induce the toxicity on nematodes through other mechanisms. In *C. elegans*, our data demonstrate that clentuborol and ractopamine caused the reduction in lifespan of animals possibly through different molecular mechanisms. Clentuborol might reduce the lifespan of nematodes through influencing the insulin/IGF signaling pathway; however, ractopamine might reduce the lifespan of nematodes through affecting both the insulin/IGF signaling pathway and the TOR signaling pathway (Fig. 6). In *C. elegans*, insulin/IGF-1 receptor (DAF-2) activates its tyrosine kinase activity and initiates a cascade of phosphorylation events that activate several kinases: phosphatidylinositol 3-kinase (PI3K/AGE-1), 3-phosphoinositide-dependent kinase 1 (PDK-1), and serine/threonine-protein kinase (SGK-1) [56]. Ultimately, SGK-1 phosphorylates and inactivates the FOXO transcription factor DAF-16 and thereby blocks the transcription of targeted genes [57]. The catalytic subunit of AMP-activated protein kinase, AAK-2, is necessary for the long lifespan of daf-2 mutants, which explains the energy mechanism [58]. TOR exists in two complexes, TORC1 and TORC2, and TORC1 and TORC2 contain different coactivators, DAF-15/Raptor and RICT-1/Rictor [59]. We hypothesize here that the more reduction in lifespan in ractopamine exposed nematodes than in clentuborol exposed nematodes may at least due to the induction of more severe alteration in genes required for aging control and the changes of more signaling pathways. Our data suggest that ractopamine more severely decreased the expression levels of *daf-16, sgk-1, skn-1*, and *aak-2* genes than clentuborol (Fig. 6A). In addition, ractopamine not only decreased the expression levels of *daf-16, sgk-1, skn-1*, and *aak-2* genes like clentuborol, but also increased the expression levels of *daf-2* and *age-1* genes (Fig. 6A).

Previous studies further imply the possible crosstalk between insulin/IGF signaling pathway and oxidative stress in clentuborol or ractopamine exposed nematodes. The transcription factor Skinhead (SKN-1) regulates resistance to oxidative stress and expression of detoxification genes in response to reduced insulin/IGF-1 signaling [60]. That is, the activated insulin/IGF signaling may at least partially contribute to the induction or regulation of oxidative stress in clentuborol or ractopamine exposed nematodes.

In conclusion, we provide the evidence in the present study to demonstrate that the *C. elegans* assay system was useful for assessment of possible in vivo toxicity from weight loss agents such as clentuborol and ractopamine. Our data imply that ractopamine exposure might induce more severe toxicity than clentuborol exposure in nematodes. Besides the oxidative stress, our results demonstrate that both insulin/IGF-1 signaling pathway and TOR signaling pathway were involved in the regulation of toxicity

Figure 4. Comparison of lifespan in nematodes exposed to clentuborol or ractopamine. (A and C) Lifespan curves of nematodes exposed to clentuborol or ractopamine. (B and D) Comparison of mean lifespans in nematodes exposed to clentuborol or ractopamine. Exposures were performed from the young adult for 24-hr (acute exposure) or from L1-larvae to adult (prolonged exposure). Thirty nematodes were examined per treatment. Bars represent mean ± S.E.M. *P*<0.05, **P*<0.01.

doi:10.1371/journal.pone.0085482.g004
Figure 5. Effects of overexpression of sod-2 gene on toxicity from clenbuterol or ractopamine in *C. elegans*. (A) Effects of overexpression of sod-2 gene on growth in clenbuterol or ractopamine exposed nematodes. Twenty nematodes were examined per treatment. (B) Effects of overexpression of sod-2 gene on brood size in clenbuterol or ractopamine exposed nematodes. Twenty nematodes were examined per treatment. (C) Effects of overexpression of sod-2 gene on locomotion behavior in clenbuterol or ractopamine exposed nematodes. Fifty nematodes were examined per treatment. (D) Effects of overexpression of sod-2 gene on intestinal autofluorescence in clenbuterol or ractopamine exposed nematodes. Twenty nematodes were examined per treatment. (E) Effects of overexpression of sod-2 gene on intestinal ROS production in clenbuterol or ractopamine exposed nematodes. Twenty nematodes were examined per treatment. (F) Effects of overexpression of sod-2 gene on lifespan in clenbuterol or ractopamine exposed nematodes. Thirty nematodes were examined per treatment. Exposures were performed from L1-larvae to adult (prolonged exposure) at the concentration of 10 µg/L. Bars represent mean ± S.E.M. **P<0.01.
doi:10.1371/journal.pone.0085482.g005
Nematodes used were wild-type N2, mutants of daf-2(31370), age-1(hc546), daf-16(e169), pdk-1(mg142), sgk-1(ak388), skn-1(zea77), aak-2(ak524), daf-15(m81), and rict-1(mg360), and transgenic strain of Ex[pyl-50-sod-2], which over-expresses the sod-2 gene in all cells. Nematodes were maintained on nematode growth medium (NGM) plates seeded with Escherichia coli OP50 at 20°C [15]. Gravid nematodes were washed off the plates into centrifuge tubes, and were lysed with a bleaching mixture (0.45 M NaOH, 2% HOCI). Age synchronous populations of L1-larvae or young adult nematodes were obtained by the collection [21]. Nematodes were washed with a modified K medium (50 mM NaCl, 30 mM KCl, 10 mM NaOAc, pH 5.5) [61]. Exposures were performed from young adult for 24-hr (acute exposure) or from L1-larvae to adult (prolonged exposure) in K medium of 12-well sterile tissue culture plates at 20°C incubator in the presence of food.

Lethality and growth

Lethality was evaluated by the percentage of survival animals. Following exposure, inactive ones were scored under a dissecting microscopy and nematodes were judged to be dead if they did not respond to stimulus using a small, metal wire. Fifty nematodes were examined per treatment. Growth was assessed by the body length, which was determined by measuring the flat surface area of nematodes using the Image-Pro® Express software. Twenty nematodes were examined per treatment. Three replicates were performed.

Brood size and locomotion behavior

Reproduction was assessed by the brood size of adult nematodes. To assess brood size, we counted the number of offspring at all stages. Nematodes were transferred daily to new agar plates, until the completion of the egg laying period. Hatched progeny were allowed to grow to L1/L2 stage and counted manually. Twenty nematodes were examined per treatment. Three replicates were performed.

Locomotion behaviors of nematodes were evaluated by head thrash and body bend [62]. To assay head thrash, every examined nematode was transferred into a microtiter well containing 60 μL of modified K medium on the top of agar, and head thrashes were counted for 1-min after a 1-min recovery period. A thrash was defined as a change in the direction of bending at the mid body. To assay body bend, nematodes were picked onto a second plate manually. Twenty nematodes were examined per treatment. Three replicates were performed.

Intestinal autofluorescence

Intestinal autofluorescence caused by lysosomal deposits of lipofuscin can accumulate over time in aging nematodes [63–64]. Images were collected for endogenous intestinal fluorescence using a 525-nm bandpass filter and without automatic gain control in order to preserve the relative intensity of different animal’s fluorescence. Observations of fluorescence were recorded and color images subjected to a common exposure time were taken for the documentation of results with Magnafire® software (Olympus, Irving, TX, USA). Lipofuscin levels were measured using ImageJ Software (NIH Image) by determining average pixel intensity in each animal’s intestine. Twenty nematodes were examined per treatment. Three replicates were performed.

Materials and Methods

Reagents and strain preparation

Clentuberol and ractopamine were obtained from Sigma-Aldrich (St. Louis, MO, USA), and their purities were 95% and 99.5%, respectively. Exposure concentrations for clentuberol or ractopamine were 0.01–5 mg/L (acute exposure) or 0.01–10 μg/L (prolonged exposure).

induction from clentuberol or ractopamine in nematodes. Moreover, we hypothesize that clentuberol and ractopamine might induce the toxicity on nematodes through different molecular mechanisms. Our data here will be helpful for our further understanding the potential damage from illegal use of weight loss agents on health of human and animals and the future design of effective strategies against the adverse effects from weight loss agents.
To quantify whether the clenbuterol or ractopamine exposure activated the oxidative damage, ROS production was assayed. The examined nematodes were transferred to M9 buffer containing 1 mM of 5-(and-6)-chloromethyl-2', 7'-dichlorodihydrofluorescein diacetate, acetyl ester (CM-H2DCFDA) to pre-incubate for 3-h at 20°C, and then mounted on agar pads for examination with a laser scanning confocal microscope (Leica, TCS SP2, Bensheim, Germany) at 488 nm of excitation wavelength and 510 nm of emission filter. Relative fluorescence intensities of the intestines were semi-quantified as

Figure 7. Lifespans in wild-type and mutants exposed to clenbuterol or ractopamine. Exposures were performed from L1-larvae to adult (prolonged exposure) at the concentration of 10 μg/L. Thirty nematodes were examined per treatment. clen, clenbuterol; rac, ractopamine. Bars represent mean ± S.E.M. **P<0.01. doi:10.1371/journal.pone.0085482.g007
described previously [30]. The semiquantified ROS was expressed as relative fluorescent units (RFU). Twenty nematodes were examined per treatment. Three replicates were performed.

Lifespan assay

Lifespan assay was performed basically as described [65–66]. In the test, the hermaphrodites were transferred daily for the first 4 days of adulthood. Nematodes were checked every day and would be scored as dead when they did not move even after repeated taps with a pick. Thirty nematodes were examined per treatment. For lifespan, graphs are representative of at least three trials.

Quantitative real-time polymerase chain reaction (PCR)

Total RNA was extracted using RNaseasy Mini Kit (Qiagen). Total nematode RNA (~1 μg) was reverse-transcribed using a cDNA Synthesis kit (Bio-Rad Laboratories). Quantitative reverse transcription PCR (RT-PCR) was run at the optimized annealing temperature of 58°C. Relative quantification of the targeted genes in comparison to the reference act-1 gene was determined, and the final results were expressed as the relative expression ratio (between targeted genes and reference gene). The designed primers for targeted genes and reference act-1 gene were shown in Table S2.

DNA construct and germline transformation

To construct plasmid of Pdy-39-sod-2, dpy-30 gene promoter fragment (1907 bp, PstI/BamHI) was subcloned into the pPD9575 vector, and the full length of sod-2 cDNA was inserted into the site of Smal/KpnI of the pPD9575 vector behind Pdpy-30 fragment. Transgenic nematodes of Ex(Pdy-39-sod-2) were generated as described [67]. Plasmids were injected as a mix at 20 ng/μL using Pdop-1:nlp as a transgenic marker.

Statistical analysis

All data were expressed as means ± standard error of the mean (S.E.M.). Statistical analysis was performed using SPSS 12.0 (SPSS Inc., Chicago, IL, USA). Analysis of variance (ANOVA) followed by Tukey post-hoc test was used to determine the significance of differences between the groups. Probability levels of 0.05 and 0.01 were considered statistically significant. The lifespan data were statistically analyzed using a 2-tailed 2 sample t-test (Minitab Ltd., Coventry, UK).

Supporting Information

Table S1 Information for genes required for aging control in C. elegans.

Table S2 Primers used for quantitative real-time polymerase chain reaction (PCR).

Author Contributions

Conceived and designed the experiments: WG DW. Performed the experiments: ZZ QW YZ ML HL. Analyzed the data: LS. Contributed reagents/materials/analysis tools: ZZ WG. Wrote the paper: DW.

References

1. Chan TY (1999) Health hazards due to clenbuterol residues in food. J Toxicol Clin Toxicol 37: 517–519.
2. Yen M, Esfahl MB (2012) Toxicity of weight loss agents. J Med Toxicol 8: 145–152.
3. Badino P, Odore R, Pagliasso S, Schiavone A, Girardi C, et al. (2008) Steroid and beta-adrenergic receptor modifications in target organs of broiler chickens fed with a diet containing beta2-adrenergic agents. Food Chem Toxicol 46: 2239–2243.
4. Chai J, Xu Q, Dai J, Liu R (2013) Investigation on potential enzyme toxicity of clenbuterol to trypsin. Spectrochim Acta A Mol Biomol Spectrosc doi: 10.1016/j.saa.2012.12.017.
5. Yang MJ, Mallin K, Enesly SM, Ware WA, Slavin RE (2012) Myocardial toxicity in a group of greyhounds administered racanotropine. Vet Pathol 49: 569–573.
6. Lust EB, Barthold C, Malesker MA, Wichman TO (2011) Human health hazards of veterinary medications: information for emergency departments. J Emerg Med 40: 191–207.
7. Mazzanti G, Di Sotto A, Daniele C, Batinelli L, Brambilla G, et al. (2007) A pharmacodynamic study on clenbuterol-induced toxicity: beta1- and beta2-adrenoceptors involvement in guinea-pig tauchichy cardia in an in vitro model. Food Chem Toxicol 45: 1604–1609.
8. Hoffman RJ, Hoffman RS, Freyberg CL, Poppenha RH, Nelson LS (2001) Clenbuterol ingestion causing prolonged tachycardia, hypokalemia, and hypophosphatemia with confirmation by quantitative levels. J Toxicol Clin Toxicol 39: 339–344.
9. Bilkoo P, Thomas J, Riddle CD, Kagaoan G (2007) Clenbuterol toxicity: an in vitro model of recovery. Arch Environ Contam Toxicol 53: 763–769.
10. Avila D, Helmcke K, Aschner M (2012) The C. elegans model as a reliable tool in neurotoxicology. Human Exp Toxicol 31: 236–243.
11. Patiyal SN, Katoch SS (2005) Beta-adrenoceptor agonist clenbuterol down-regulates matrix metalloproteinase (MMP-9) and results in an impairment of collagen turnover in mice left ventricle. Jpn J Physiol 55: 165–172.
12. Donkin SG, Dusenbery DB (1993) A soil toxicity test using the nematode Caenorhabditis elegans and an effective method of recovery. Environ Toxicol Pharmacol 372.
13. Donkin SG, Olejnik N, Cinar HN, Ferguson M (2009) A method to rank order water soluble compounds according to their toxicity using Caenorhabditis elegans, a Complex Object Parametric Analyzer and Sorteer, and axenic liquid media. Food Chem Toxicol 7: 722–728.
14. Benedetto A, Au C, Avila DS, Milatovic D, Aschner M (2010) Extracellular metal exposure causes transferable defects of AFD neurons in the nematode Caenorhabditis elegans: an emerging model in biomedical and environmental toxicology. Toxicol Sci 106: 5–20.
15. Bilkoo P, Thomas J, Riddle CD, Kagaoan G (2007) Clenbuterol toxicity: an emerging model. Food Chem Toxicol 7: 722–728.
16. Hoffman RJ, Hoffman RS, Freyberg CL, Poppenga RH, Nelson LS (2001) Clenbuterol toxicity: an emerging model in biomedical and environmental toxicology. Toxicol Sci 106: 5–20.
17. Zhou Y-L, Wang D-Y (2012) Formation and regulation of adaptive response in nematode Caenorhabditis elegans. Oxid Med Cell Longev 2012: 569095.
18. Zhou Y-L, Wu Q-L, Li Y-P, Wang D-Y (2013) Translocation, transfer, and in vivo safety evaluation of engineered nanomaterials in the non-mammalian alternative toxicity assay model of nematode Caenorhabditis elegans. RSC Adv 3: 5741–5757.
19. Sprando RL, Olejnik N, Cinar HN, Ferguson M (2009) A method to rank order water soluble compounds according to their toxicity using Caenorhabditis elegans, a Complex Object Parametric Analyzer and Sorteer, and axenic liquid media. Food Chem Toxicol 7: 722–728.
20. Avila D, Helmcke K, Aschner M (2012) The C. elegans model as a reliable tool in neurotoxicology. Human Exp Toxicol 31: 236–243.
21. Donkin SG, Dusenbery DB (1993) A soil toxicity test using the nematode Caenorhabditis elegans and an effective method of recovery. Arch Environ Contam Toxicol 25: 145–151.
22. Wang D-Y, Yang P (2007) Silver exposure causes transferable defects of phenotypes and behaviors in nematode Caenorhabditis elegans. Environ Bioc 2: 89–98.
23. Hu Y-O, Wang Y, Ye B-P, Wang D-Y (2008) Phenotypic and behavioral defects induced by iron exposure can be transferred to progeny in Caenorhabditis elegans. Biomed Environ Sci 21: 467–473.
24. Xing XJ, Du M, Xu X-M, Rui Q, Wang D-Y (2009) Exposure to metals induces morphological and functional alteration of AFD neurons in nematode Caenorhabditis elegans. Environ Toxicol Pharmacol 28: 104–110.
25. Xing XJ, Wang D-Y (2009) The lethality toxicities induced by metal exposure during development in nematode Caenorhabditis elegans. Bull Environ Contam Toxicol 83: 536–546.
26. Benedetto A, Au C, Avila DS, Milatovic D, Aschner M (2010) Extracellular dopamine potentiates Mn-induced oxidative stress, lifespan reduction, and dopaminergic neurodegeneration in a BL6-3-dependent manner in Caenorhabditis elegans. PLoS Genes 6: e1001084.
27. Zhang YF, Ye B-P, Wang D-Y (2010) Effects of metal exposure on associative learning behavior in nematode Caenorhabditis elegans. Arch Environ Contam Toxicol 59: 129–136.
20. Jiang B, Ren C, Li Y, Li W, et al. (2011) Sodium sulfite is a potential hypoxia inducer that mimics hypoxic stress in nematode Caenorhabditis elegans. J Biol Inorg Chem 16: 267–274.

21. Liu P-D, He K-W, Li Y-X, Wu Q-L, Yang P, et al. (2012) Exposure to mercury causes formation of microtubule-disruptive structural deficits by inducing oxidative damage in nematodes. Ecotoxicol Environ Safety 79: 90–100.

22. Wu Q-L, Qu Y-Y, Li X, Wang D-Y (2012) Chromium exhibits adverse effects at environmental relevant concentrations in chronic toxicity assay system of nematode Caenorhabditis elegans. Environ Sci Technol 43: 3933–3940.

23. Yu Z, Zhang J, Yin D (2012) Toxic and recovery effects of copper on Caenorhabditis elegans by various food-borne and water-borne pathways. Chemosphere 87: 1361–1367.

24. Li Y-H, Ye Y-V, Qi M, Zhang Y-F, Ye B-P, et al. (2009) Induction of chemotaxis to sodium chloride and diacyt and thermotaxis defects by microcrystin-LR exposure in nematode Caenorhabditis elegans. J Environ Sci 21: 971–979.

25. Ju J-J, Ruan Q-L, Li X-R, Liu R, Li Y-H, et al. (2013) Neurototoxicological evaluation of microcystin-LR exposure at environmental relevant concentrations on nematode Caenorhabditis elegans. Environ Sci Pollut Res 20: 1823–1830.

26. Rui Q, Lu Q, Wang D-Y (2009) Administration of Buthochangthu Tang alleviates the UV-B-induced and oxidative stress-induced lifespan defects in nematode Caenorhabditis elegans. Front Med China 3: 76–90.

27. Shashikumar S, Rajini PS (2011) α-Tocopherol ameliorates cypermethrin-induced toxicity and oxidative stress in the nematode Caenorhabditis elegans. J Toxicol Environ Health A 72: 746–751.

28. Boyd WA, Smith MV, Kissling GE, Rice JR, Snyder DW, et al. (2009) Application of a mathematical model to describe the effects of chlorpyrifos on Caenorhabditis elegans development. PLoS ONE 4: e7204.

29. Leung MCK, Goldstone JV, Boyd WA, Freedman JH, Meyer JN (2010) Application of a mathematical model to describe the effects of chlorpyrifos on Caenorhabditis elegans development. PLoS ONE 4: e6622.

30. Liu P-D, He K-W, Li Y-X, Wu Q-L, Yang P, et al. (2012) Exposure to mercury induces reproductive senescence. PLoS ONE 7: e44688.

31. Lu X, Sato M, Honda D, Ueno Y, Seki M, et al. (2013) GTP-binding protein 13 (G13), a novel Rac-activating GEF, is a key regulator of Caenorhabditis elegans female fertility. J Biol Chem 288: 23350–23358.

32. Ju J-J, Ruan Q-L, Li X-B, Liu R, Li Y-H, et al. (2013) Neurotoxicological evaluation of microcystin-LR exposure at environmental relevant concentrations in chronic toxicity assay system of nematode Caenorhabditis elegans. Environ Sci Technol 43: 3933–3940.

33. Boyd WA, Smith MV, Kissling GE, Rice JR, Snyder DW, et al. (2009) Application of a mathematical model to describe the effects of chlorpyrifos on Caenorhabditis elegans development. PLoS ONE 4: e7204.

34. Boyd WA, Smith MV, Kissling GE, Rice JR, Snyder DW, et al. (2009) Application of a mathematical model to describe the effects of chlorpyrifos on Caenorhabditis elegans development. PLoS ONE 4: e7204.

35. Boyd WA, Smith MV, Kissling GE, Rice JR, Snyder DW, et al. (2009) Application of a mathematical model to describe the effects of chlorpyrifos on Caenorhabditis elegans development. PLoS ONE 4: e7204.

36. Ju J-J, Ruan Q-L, Li X-B, Liu R, Li Y-H, et al. (2013) Neurotoxicological evaluation of microcystin-LR exposure at environmental relevant concentrations on nematode Caenorhabditis elegans. Environ Sci Pollut Res 20: 1823–1830.

37. Rui Q, Lu Q, Wang D-Y (2009) Administration of Buthochangthu Tang alleviates the UV-B-induced and oxidative stress-induced lifespan defects in nematode Caenorhabditis elegans. Front Med China 3: 76–90.

38. Shashikumar S, Rajini PS (2011) α-Tocopherol ameliorates cypermethrin-induced toxicity and oxidative stress in the nematode Caenorhabditis elegans. J Toxicol Environ Health A 72: 746–751.

39. Leung MCK, Goldstone JV, Boyd WA, Freedman JH, Meyer JN (2010) Application of a mathematical model to describe the effects of chlorpyrifos on Caenorhabditis elegans development. PLoS ONE 4: e6622.

40. Leung MCK, Goldstone JV, Boyd WA, Freedman JH, Meyer JN (2010) Application of a mathematical model to describe the effects of chlorpyrifos on Caenorhabditis elegans development. PLoS ONE 4: e6622.

41. Leung MCK, Goldstone JV, Boyd WA, Freedman JH, Meyer JN (2010) Application of a mathematical model to describe the effects of chlorpyrifos on Caenorhabditis elegans development. PLoS ONE 4: e6622.

42. Ju J-J, Ruan Q-L, Li X-B, Liu R, Li Y-H, et al. (2013) Neurotoxicological evaluation of microcystin-LR exposure at environmental relevant concentrations on nematode Caenorhabditis elegans. Environ Sci Pollut Res 20: 1823–1830.

43. Rui Q, Lu Q, Wang D-Y (2009) Administration of Buthochangthu Tang alleviates the UV-B-induced and oxidative stress-induced lifespan defects in nematode Caenorhabditis elegans. Front Med China 3: 76–90.

44. Leung MCK, Goldstone JV, Boyd WA, Freedman JH, Meyer JN (2010) Application of a mathematical model to describe the effects of chlorpyrifos on Caenorhabditis elegans development. PLoS ONE 4: e6622.

45. Leung MCK, Goldstone JV, Boyd WA, Freedman JH, Meyer JN (2010) Application of a mathematical model to describe the effects of chlorpyrifos on Caenorhabditis elegans development. PLoS ONE 4: e6622.