Strange two-baryon interactions using chiral effective field theory

H. Polinder *

Institut für Kernphysik (Theorie), Forschungszentrum Jülich, D-52425 Jülich, Germany

Abstract. We have constructed the leading order strangeness $S = -1, -2$ baryon-baryon potential in a chiral effective field theory approach. The chiral potential consists of one-pseudoscalar-meson exchanges and non-derivative four-baryon contact terms. The potential, derived using SU(3)$_f$ symmetry constraints, contains six independent low-energy coefficients. We have solved a regularized Lippmann-Schwinger equation and achieved a good description of the available scattering data. Furthermore a correctly bound hypertriton has been obtained.

1 Introduction

The derivation of nuclear forces from chiral effective field theory (EFT) has been discussed extensively in the literature since the work of Weinberg [1]. An underlying power counting allows to improve calculations systematically by going to higher orders in a perturbative expansion. In addition, it is possible to derive two- and corresponding three-nucleon forces as well as external current operators in a consistent way. For reviews we refer the reader to [2]. Recently the nucleon-nucleon (NN) interaction was described to a high precision in chiral EFT [3, 4].

As of today, the strangeness $S = -1$ hyperon-nucleon (YN) interaction ($Y = \Lambda, \Sigma$) was not investigated extensively using EFT [5]. The strangeness $S = -2$ hyperon-hyperon (YY) and cascade-nucleon (ΞN) interactions had not been investigated using chiral EFT so far. In this contribution we show selected results for the recently constructed chiral EFT for the $S = -1, -2$ baryon-baryon (BB) channels [6, 7]. At leading order (LO) in the power counting, the YN, YY and ΞN potentials consist of four-baryon contact terms without derivatives and of one-pseudoscalar-meson exchanges, analogous to the NN potential of [4]. The potentials are derived using SU(3) constraints. We solve a coupled channels Lippmann-Schwinger (LS) equation for the LO potential and fit to the low-energy YN scattering data.

*E-mail address: h.polinder@fz-juelich.de
2 Formalism

We have constructed the chiral potentials for the \(S = -1, -2 \) sectors at LO using the Weinberg power counting, see [6]. The LO potential consists of four-baryon contact terms without derivatives and of one-pseudoscalar-meson exchanges. The LO SU(3)\(_f\) invariant contact terms for the octet baryon-baryon interactions that are Hermitian and invariant under Lorentz transformations were discussed in detail in [6]. The pertinent Lagrangians read

\[
\mathcal{L}^1 = C^1_i \langle \bar{B}_a B_b (\Gamma_i B)_b (\Gamma_i B)_a \rangle , \quad \mathcal{L}^2 = C^2_i \langle \bar{B}_a (\Gamma_i B)_a \bar{B}_b (\Gamma_i B)_b \rangle , \\
\mathcal{L}^3 = C^3_i \langle \bar{B}_a (\Gamma_i B)_a \rangle \langle \bar{B}_b (\Gamma_i B)_b \rangle .
\]

(1)

As discussed in [6], in LO the Lagrangians give rise to six independent low-energy coefficients (LECs): \(C^1_S, C^1_T, C^2_S, C^2_T, C^3_S \) and \(C^3_T \), where \(S \) and \(T \) refer to the central and spin-spin parts of the potential respectively. The contribution of one-pseudoscalar-meson exchanges is discussed extensively in the literature. We do not discuss it here, instead we refer the reader to e.g. [6]. We solve the LS equation for the \(YN, YY \) and \(\Xi N \) systems. The potentials in the LS equation are cut off with a regulator function, \(\exp \left[-\frac{1}{2} \frac{p^A}{\Lambda^A} \right] \), in order to remove high-energy components of the baryon and pseudoscalar meson fields.

3 Results and discussion

Because of SU(3)\(_f\) symmetry, only five of the LECs can be determined in a fit to the \(YN \) scattering data. A good description of the 35 low-energy \(YN \) scattering data has been obtained for cut-off values \(\Lambda = 550, \ldots, 700 \) MeV and for natural values of the LECs. The results are shown in Fig. 1. See [6] for more details. The \(YN \) interaction based on chiral EFT yields a correctly bound hypertriton, also reasonable \(\Lambda \) separation energies for \(\frac{3}{2} \) H have been predicted [6, 10].

![Figure 1](image)

Figure 1. \(YN \) integrated cross section \(\sigma \) as a function of \(p_{lab} \). The band is the chiral EFT for \(\Lambda = 550, \ldots, 700 \) MeV, the solid and dashed curves are the Jülich ’04 meson-exchange model [8] and Nijmegen NSC97I meson-exchange model [9] respectively.

The sixth LEC is only present in the isospin zero \(S = -2 \) channels. There is scarce experimental knowledge in these channels. In the \(\Lambda \Lambda \) system, we as-
Figure 2. YY and ΞN integrated cross section σ as a function of p_{lab}. The band shows the chiral EFT for variations of the sixth LEC, as discussed in the text.

sume a moderate attraction and exclude bound states or near-threshold resonances. Based on these considerations the sixth LEC was varied in the range of $2.0, \ldots, -0.05$ times the natural value. Various cross sections for $\Lambda = 600$ MeV are shown in Fig. 2. See [7] for more details.

Our findings have shown that the chiral EFT scheme, successfully applied in [4] to the NN interaction, also works well for the $S = -1, -2 BB$ interactions in LO. It will be interesting to perform a combined NN and YN study in chiral EFT, starting with a next-to-leading order (NLO) calculation. Work in this direction is in progress.

Acknowledgement. I thank Johann Haidenbauer and Ulf-G. Meißner for collaborating on this work. Also I am very grateful to Andreas Nogga for providing me with the hypernuclei results.

References

1. S. Weinberg, Phys. Lett. B 251 (1990) 288; Nucl. Phys. B 363 (1991) 3.
2. P. F. Bedaque, U. van Kolck, Annu. Rev. Nucl. Part. Sci. 52 (2002) 339; E. Epelbaum, Prog. Nucl. Part. Phys. 57 (2006) 654.
3. D. R. Entem, R. Machleidt, Phys. Rev. C 68 (2003) 041001.
4. E. Epelbaum, W. Glöckle, U.-G. Meißner, Nucl. Phys. A 747 (2005) 362.
5. M. J. Savage, M. B. Wise, Phys. Rev. D 53 (1996) 349; C. L. Korpa, A. E. L. Dieperink, R. G. E. Timmermans, Phys. Rev. C 65 (2001) 015208; H. W. Hammer, Nucl. Phys. A 705 (2002) 173; S. R. Beane, P. F. Bedaque, A. Parreño, M. J. Savage, Nucl. Phys. A 747 (2005) 55.
6. H. Polinder, J. Haidenbauer and U.-G. Meißner, Nucl. Phys. A 779 (2006) 244.
7. H. Polinder, J. Haidenbauer and U.-G. Meißner, Phys. Lett. B 653 (2007) 29.
8. J. Haidenbauer, U.-G. Meißner, Phys. Rev. C 72 (2005) 044005.
9. T. A. Rijken, V. G. J. Stoks, Y. Yamamoto, Phys. Rev. C 59 (1999) 21.
10. A. Nogga, nucl-th/0611081.