Microbial communities associated with wet flue gas desulfurization systems

Bryan P. Brown1†, Shannon R. Brown2 and John M. Senko1,3*

1 Department of Biology, The University of Akron, Akron, OH, USA
2 Babcock & Wilcox Power Generation Group, Inc. Barberton, OH, USA
3 Department of Geology and Environmental Science, The University of Akron, Akron, OH, USA

*Correspondence: John M. Senko, Department of Geology and Environmental Science, The University of Akron, Akron, OH 44325-4101, USA. e-mail: senko@uakron.edu

INTRODUCTION

Sulfur-oxide gasses (mostly SO2) that are released during the combustion of fossil fuels (most notably from coal-fired electricity generation) are known to cause acid rain (Callis and Hirschler, 1980). To limit acid rain, flue gas desulfurization (FGD) systems (often referred to as “scrubbers”) are routinely used to remove SO2 from the exhaust of coal-fired electric power facilities (Pandy et al., 2005). For limestone-based wet FGD, coal combustion exhaust (flue gas) is diverted into absorber units and passed under a spray of crushed limestone-water slurry (Figure 1), whereupon, flue gas-associated SO2 dissolves in the water as sulfite (Equation 1).

\[
\text{SO}_2 + \text{H}_2\text{O} \rightarrow \text{SO}_3^{2-} + 2 \text{H}^+ \tag{1}
\]

Flue gas desulfurization (FGD) systems are employed to remove SOX gasses that are produced by the combustion of coal for electric power generation, and consequently limit acid rain associated with these activities. Wet FGDs represent a physicochemically extreme environment due to the high operating temperatures and total dissolved solids (TDS) of fluids in the interior of the FGD units. Despite the potential importance of microbial activities in the performance and operation of FGD systems, the microbial communities associated with these deposits are primarily composed of thermophilic bacterial lineages. These findings suggest that unique microbial communities develop in FGD systems in response to physicochemical characteristics of the different process points within the systems. The activities of the thermophilic microbial communities that develop within scale deposits could play a role in the corrosion of steel structures in FGD systems.

Keywords: flue gas desulfurization, thermophiles, microbially influenced corrosion

![Figure 1](https://example.com/figure1.png)
FGD and SO2 removal (Huber and Stetter, 1998). Furthermore, temperatures associated with FGD units, thermophilic microorganisms would be best suited for biotechnological approaches to FGD and SO2 removal (Huber and Stetter, 1998). Furthermore, the high TDS of slurry fluids will favor the activities of organisms that are capable of tolerating high osmotic strength fluids. Due to the required oxic conditions, relatively high operating temperatures, high Cl\(^{-}\), and SO\(_2\)\(^{-}\) concentration, and potentially low pH of FGD absorber slurries, they represent an extremely corrosive environment (Mansfield and Jeanjaquet, 1987; Hibner and Ross, 1988; Bordzilowski and Darowicki, 1998; Rajendran et al., 1999; Kim et al., 2010). As such, degradation of the steel walls and other structures is a significant concern for FGD operators. More recently, microbiologically influenced corrosion (MIC) has been proposed to be responsible for the deterioration of the steel walls and other structures associated with absorber units (Moskal, 2011).

Despite the potentially beneficial (i.e., enhanced SO\(_2\) removal) and detrimental (i.e., MIC) impacts of microbial activities in FGD systems, we are not aware of any studies of the microbiology of operating FGD units. In this study we evaluated the microbial communities associated with the fluids from the wet FGD systems of five coal-fired electric power generation facilities. Samples were collected from various process points, including source water, makeup, and reuse waters, and from slurries inside FGD absorber units (Figure 1). We hypothesized that the physicochemical differences among these various “process points” of the FGD systems would give rise to distinct microbial communities within the broader FGD system. These studies also included the characterization of microbial communities associated with scale deposits recovered from the steel walls of a severely corroded absorber unit and a unit that is not currently exhibiting signs of corrosion.

MATERIALS AND METHODS

FACILITIES, FGD UNITS, AND SAMPLING METHODS

Samples were collected from wet FGD systems of five coal-fired electric power facilities. Samples with their corresponding sample designations are included in Tables 1, 2. Three distinct process points within the FGD systems were sampled, including absorber slurries of Facilities A–E and makeup waters of Facilities A–D. Samples were collected from absorber slurries of two different FGD units at Facilities A–C. Scale deposits on the walls of absorbers at Facilities A and B were collected when these units were drained for periodic maintenance. Slurry samples from Unit 2 of Facilities A and B were collected approximately 1 month after maintenance activities and subsequent startup. Additionally, a sample was collected near the water intake for Facility A from a freshwater body that provides the source water for Facilities A and B. Source waters for Facilities C, D, and E were not sampled for this study. Raw makeup/reuse water, absorber slurry, and source water were collected by filling sterile bottles with operating process fluid by holding them under a flowing stream at the unit sampling port. Hard, mineralized scale deposits from the walls of absorber units that were likely derived from slurry solids were collected by scraping and transferring the deposits to sterile centrifuge tubes with a sterile plastic spatula. All samples were refrigerated and shipped via overnight courier to The University of Akron, where they were processed further. Subsamples for culture-dependent microbial enumerations and evaluation of solid-phase chemistry were stored at 4°C (for no more than 2 week) before further processing (described below). Subsamples for analysis of aqueous chemistry were immediately filter sterilized (0.2 μm pore size) upon receipt in the laboratory and stored at 4°C prior to analysis. Subsamples for nucleic acid-based microbial community analysis were transferred to a −80°C freezer before further processing (described below).

ANALYTICAL METHODS

The pH of source water, makeup waters, and absorber slurries was measured immediately upon receipt in the laboratory. Dissolved anions (Cl\(^{-}\), NO\(_3\), and SO\(_2\)\(^{-}\)) in filtered source water, makeup waters, and absorber slurries were quantified by ion chromatography using a Dionex DX-120 ion chromatography system fitted with an AS4 column and conductivity detector (Sunnyvale, CA). Carbonate alkalinity was determined by titration of the fluids with H\(_2\)SO\(_4\) to a pH of 4.5 (Greenberg et al., 1981). Filtered subsamples intended for analysis of dissolved cations were preserved in 0.5 M HCl, and subsequently analyzed for Fe\(^{2+}\) by ferrozine assay (Stookey, 1970) and dissolved Ca and Mn by atomic absorption spectrometry (AA), using a Perkin Elmer Analyst 700 (Waltham, MA). Solid-phases that were suspended in slurries or associated with scale deposits were digested...
The contents of absorber slurries were determined gravimetrically after Mn and Ca were quantified by AA, as described above. Solid contents of absorber slurries were determined gravimetrically after drying 5 ml of slurry.

CULTURE-DEPENDENT MICROBIAL ENUMERATIONS

Total aerobic organoheterotrophic microorganisms were enumerated using culture-dependent approaches with modified liquid Media. Modified Lept medium was buffered with piperazine-N,N′-bis(2-ethanesulfonic acid) (PIPES; pH 6.5) and contained Na₂SO₄ (250 mM), glucose (5 mM), MgSO₄ (0.8 mM), CaCl₂ (0.8 mM), yeast extract (0.5 g/l), casamino acids (0.5 g/l), and trace metals described by Tanner (1997). K medium was buffered with PIPES (pH 6.5) and contained Na₂SO₄ (250 mM), yeast extract, (0.5 g/l), yeast extract (0.5 g/l), and yeast extract (0.5 g/l). MPN cultures were incubated aerobically at 50°C. MPN dilution series were scored for heterotrophic growth based on the appearance of turbidity in the medium.

NUCLEIC ACID-BASED MICROBIAL COMMUNITY CHARACTERIZATION

In preparation for extraction of genomic DNA, solids that were suspended in slurry samples were concentrated by centrifugation and the supernatant was removed. Since the slurry solids retained a large volume of water, the remaining solids were lyophilized to maximize the amount of solids from which DNA could be extracted. DNA was subsequently extracted from slurry solid-associated microorganisms (~0.5 g of slurry solids) using MoBio PowerBiofilm DNA isolation kits (MoBio Laboratories, Inc., Carlsbad, CA). Planktonic microorganisms associated with makeup waters or source water were immobilized.

Table 1 | Aqueous chemical composition of source, makeup, reuse, and slurry fluids.

Sample	Sample designation	pH	Cl⁻ (mM)	NO₃²⁻ (mM)	SO₄²⁻ (mM)	Fe(II) (µM)	Mn (mM)	Ca (mM)	DOC (mg/l)	Carbonate Alkalinity (meq/l)
Facility A Unit 1 absorber slurry	A-U₁slurry	5.8	413	45	563	n/d	0.96	6.0	118	4.1
Facility A Unit 2 absorber slurry	A-U₂slurry	6.5	83	15	143	n/d	1.14	16.3	62	7.9
Facility A Unit 1 makeup water	A-U¹makeup	6.5	0.88	n/d	0.25	n/d	0.55	6.0	9.5	n/a
Facility A source water	A₅source	6.5	1.13	n/d	0.38	n/d	0.64	3.2	4.4	n/a
Facility B Unit 1 absorber slurry	B-U₁slurry	6.7	453	1	125	n/d	0.05	1.2	64	4.5
Facility B Unit 2 absorber slurry	B-U₂slurry	6.8	268	n/d	60	n/d	1.21	31.4	28	6.0
Facility B Unit 1 reuse water	B-U₁reuse	6.6	0.75	n/d	0.63	n/d	0.04	1.6	13	n/a
Facility C Unit 1 absorber slurry	C-U₁slurry	6.6	335	n/d	760	30	1.83	9.8	179	10.4
Facility C Unit 2 absorber slurry	C-U₂slurry	6.2	754	n/d	1623	500	0.97	4.7	191	13.5
Facility C Unit 1 makeup water	C-U₁makeup	6.5	n/d	n/d	n/d	49	n/d	0.6	7.9	n/a
Facility C Unit 2 makeup water	C-U₂makeup	7.3	n/d	n/d	n/d	55	n/d	0.6	9.3	n/a
Facility D Unit 1 absorber slurry	D-U₁slurry	6.8	73	10	15	n/d	16.9	6.0	3.5	n/a
Facility D Unit 1 makeup water	D-U₁makeup	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a	n/a
Facility E Unit 1 absorber slurry	E-U₁slurry	6.7	292	8	115	n/d	0.50	16.9	25	7.1

n/a, not analyzed; n/d, not detected.

Table 2 | Solid-phase chemistry of suspended solids in slurry and wall scales from FGD absorber units.

Sample	Sample designation	HCl-extractable Fe(II) (µmol/g)	Hydroxylamine-HCl-extractable Fe(III) (µmol/g)	HCl-extractable Mn (µmol/g)	Hydroxylamine-HCl-extractable Mn (µmol/g)	HNO₃-extractable Ca (mmol/g)	
Facility A Unit 1 absorber slurry	A-U₁slurry	5	36	6	4	11	0.62
Facility A Unit 2 absorber slurry	A-U₂slurry	3	139	8	8	18	2.70
Facility A Unit 2 wall scale	A-U₂scale	4	21	7	7	34	5.50
Facility B Unit 1 absorber slurry	B-U₁slurry	4	20	2	2	5	0.36
Facility B Unit 2 absorber slurry	B-U₂slurry	34	87	5	5	10	1.60
Facility B Unit 1 wall scale	B-U₂scale	7	75	2	2	6	5.60
Facility C Unit 1 absorber slurry	C-U₁slurry	19	64	18	24	45	1.11
Facility C Unit 1 absorber slurry	C-U₂slurry	21	66	23	22	53	0.53
Facility D Unit 1 absorber slurry	D-U₁slurry	11	51	2	2	5	2.78
Facility E Unit 1 absorber slurry	E-U₁slurry	13	51	17	18	35	0.74

using 0.5 M HCl [operationally defined as solid-associated Fe(II)] Lovley and Phillips (1987) and Mn(II/III) Sutter et al. (1974), 0.25 M hydroxylamine-HCl in 0.25 M HCl (operationally defined as poorly crystalline Fe(III) Lovley and Phillips (1987) and Mn(III/IV) Sutter et al. (1974), and concentrated HNO₃ (operationally defined as total Mn and Ca), and remaining solids were removed from suspensions by centrifugation. Extracted Fe(II) was quantified by ferrozine assay (Stookey, 1970), and extracted Mn and Ca were quantified by AA, as described above. Solid contents of absorber slurries were determined gravimetrically after drying 5 ml of slurry.
on hydrophilic polyethersulfone membranes (0.2 μm pore size) by vacuum filtration. Approximately 0.51 of water was filtered, and approximately half of the 17 cm² filter was subjected to genomic DNA extraction using MoBio PowerBiofilm DNA isolation kits. DNA was quantified using a Nanodrop spectrophotometer (Thermo Scientific Inc., Waltham, MA) and yields ranged from 310 to 1800 ng DNA/sample. Partial sequences of bacterial 16S RNA genes were obtained using tag-encoded FLX amplicon pyrosequencing at Research and Testing Laboratories, Inc. (Lubbock, TX) as described by Dowd et al. (2008) using Gray28f (5′-TTTGATCCTGCGTCAAG-3′) and Gray519r (5′-GTNTTACNGGGCAGTCTG-3′) primers. Initial generation of the sequencing library utilized a one-step PCR with a total of 30 cycles, a mixture of HotStart and HotStar high fidelity tag polymerases, and amplicons originating and extending from the 28F position. Tag-encoded FLX amplicon pyrosequencing was conducted using a Roche 454 FLX pyrosequencer with Titanium reagents (Roche 454 Life Sciences, Branford, CT). Following sequencing, all failed sequence reads, low quality sequence ends, and tags and primers were removed. Non-bacterial ribosomal sequences and chimeras were removed using B2C2 (Gontcharov et al., 2010). Short reads (<150 bp), sequences with ambiguous bases, and sequences with homopolymers >6 bp were removed from the library. Nucleotide sequence libraries obtained in this work have been submitted to the Sequence Read Archive (SRA) under run accession numbers SRR609278 (Asource), SRR609277 (A-U1makeup), SRR609201 (A-U1slurry), SRR609275 (A-U2scale), SRR609221 (B-U1reuse), SRR609279 (B-U1slurry), SRR609280 (B-U2slurry), SRR609282 (B-U2scale), SRR609285 (C-U1makeup), SRR609283 (C-U1slurry), SRR609286 (C-U2makeup), SRR609284 (C-U2slurry), SRR609288 (D-U1makeup), SRR609287 (D-U1slurry), and SRR609292 (E-U1slurry).

To evaluate the diversity of the various FGD-associated systems, standard rarefaction curves (based on 97% sequence identity) were produced for each unique FGD environment (i.e., absorber scale, absorber slurry, makeup water, and source water) using the Ribosomal Database Project’s (http://www.rdp.cme.msu.edu) classification function with default parameters. Taxonomic assignments were made to OTUs using the RDP II classifier function against the Greengenes core set (DeSantis et al., 2006), filtered to remove gaps, and a phylogenetic tree was constructed using QIIME. In preparation for beta-diversity analyses, the OTU table from each sample was iteratively rarefied to 1009 sequences using jack-knife sampling in QIIME. A distance matrix was produced using the weighted UniFrac beta-diversity metric (Lozupone and Knight, 2005), and microbial communities associated with the samples were compared visually using Principal Coordinate Analysis (PCoA) (Lozupone and Knight, 2005).

RESULTS

CHEMICAL CHARACTERISTICS OF FGD FLUIDS AND SOLIDS

Asource, makeup, and reuse waters (referred to collectively as “fresh” waters) contained dissolved chemical species at similar concentrations (Table 1). B-U1reuse contained the highest concentrations of Cl⁻ and SO₄²⁻ (Table 1), which is likely attributable to the incomplete removal of these dissolved species by slurry water treatment. Slurry fluids contained higher concentrations of dissolved Ca than source waters and carbonate alkalinities ranging from 3.5 to 13.5 meq/l due to limestone dissolution (Table 1). Cl⁻, NO₃⁻, SO₄²⁻ concentrations in slurry fluids ranged from 73 to 754 mM, undetectable-45 mM, and 15–1623 mM, respectively (Table 1). WEB-PHREEQ-based geochemical modeling (Saini-Eidukat and Yahin, 1999) using the values contained in Table 1 suggested that all slurry fluids except B-U1slurry were supersaturated with respect to gypsum (CaSO₄·2H₂O), and all slurry fluids except A-U1slurry, B-U1slurry, and E-U1slurry were supersaturated with respect to anhydrite (CaSO₄). Slurry fluids were enriched in Mn in comparison to source, makeup, or reuse waters, though dissolved Fe(II) concentrations were generally low due to the abundance of oxygen in the fluids (Table 1). Absorber slurries contained considerably higher levels of DOC than “fresh” waters (Table 1), which is likely attributable to non- or partially combusted coal and ash that were not removed by the electrostatic precipitator and entered the absorber unit with the flue gas. HCl-extractable Fe(II) and Mn(II/III) contents of solids ranged from 20 to 34 μmol/g and 1.7 to 23 μmol/g, respectively (Table 2). Hydroxylamine-HCl-extractable Fe(III) and Mn contents of solids ranged from 20 to 139 μmol/g and 1.7 to 24.5 μmol/g, respectively (Table 2). The variability in concentrations of both dissolved and solid-phase chemical constituents is likely a reflection of variability in raw materials (e.g., water, coal, and limestone) used in the facilities. Electric power generation stations use water from nearby water supplies and frequently utilize locally sourced limestone. Differences in chemical composition of raw materials will in turn influence the chemical composition of absorber fluids. Facilities A and B are ~80 km apart, are owned by the same utility company, and use coal and limestone types, and source waters from the same large freshwater body. Facilities C, D, and E are each located more than 300 km apart, and use different source waters and limestone types.

CULTURE-DEPENDENT MICROBIAL ENUMERATIONS

The chemical conditions in the absorber unit slurries represent an organic carbon-rich and osmotically challenging environment that is dramatically different from that of the “fresh” waters. Microorganisms are generally classified as halophilic/tolerant based on their ability to grow at high NaCl concentrations (Trüper and Galinski, 1986; Ventosa et al., 1998), and while Cl⁻ concentrations in FGD slurry fluids were quite high, SO₄²⁻ was generally the dominant anionic constituent (Table 1). As such,
we enumerated organotrophic microorganisms in all points of the FGD systems using two types of media that were incubated at 50°C and contained 250 mM Na₂SO₄ to specifically target organisms that were able to grow under the osmotic stress imposed by the high sulfate concentrations of the FGD slurry fluids. The physicochemical differences between “fresh” waters and the absorber slurries were reflected in the abundances of organotrophic bacteria detected. When cultured on modified K and Lept media, relatively few halotolerant microorganisms were detected in “fresh” waters in comparison to absorber slurries (Table 3), suggesting that the high temperature and solute concentrations of the absorber units enrich for halotolerant microorganisms. It is notable that of the “fresh” waters, B-U1reuse contained the highest number of halotolerant microorganisms (Table 3). Since B-U1reuse water is recycled absorber fluid, halotolerant microorganisms were retained in these fluids. While A-U2scale was enriched in halotolerant microorganisms in comparison to A-U2slurry and A-U2scale, B-U2scale contained comparable numbers of halotolerant organoheterotrophs to B-U1slurry and B-U2slurry (Table 3), which may also be attributable to the recirculation of halotolerant microorganisms in Facility B reuse water (Figure 1).

NUCLEIC ACID-BASED COMMUNITY PROFILING

The numbers of samples analyzed, numbers of OTUs, and diversity indices associated with bacterial communities in FGD systems are shown in Table 3. A total of 1,05769 sequences were analyzed from 16 samples, and average read length was 360 bp. Rarefaction analysis was used to compare the richness of bacterial communities associated with various process points of the FGD systems (Figure 2). While absorber slurries, wall scales, and B-U1reuse were sampled to saturation, source, and makeup waters were not (Figure 2). The highest numbers of OTUs were recovered in the four makeup waters sampled (Table 3), and while only 1009 sequences were obtained from Asource, this sample exhibited a similar rarefaction pattern to the makeup waters (Figure 2). Non-parametric indicators of diversity showed similar trends, with the highest Chao1 and Shannon richness estimates observed in the makeup waters (Table 3). These results suggest that more complex microbial communities are associated with the makeup and source waters than the more physicochemically extreme absorber units (slurry and scale samples), but B-U1reuse is a notable exception to this conclusion. Even though B-U1reuse had a similar chemical composition to source and makeup waters, bacterial communities associated with this system exhibited low Chao1 and Shannon diversity indices in a fashion similar to the slurries and scales (Table 3).

All FGD-associated microbial communities were compared using PCoA with the weighted UniFrac metric, which allows the simultaneous comparison of microbial communities present in several environments by evaluating the common evolutionary history of organisms present in those systems (Lozupone and Knight, 2005). Comparison of FGD-associated microbial communities visualized by plotting PC1 vs. PC2 revealed distinct clustering of “fresh” waters, slurries, and scales (Figure 3A). This clustering pattern may be attributable to the physicochemical conditions to which the microbial communities were exposed. The “fresh” waters were exposed to ambient air temperatures and contained low concentrations of dissolved solutes (Table 1). Slurry-associated microbial communities were exposed to higher concentrations of dissolved solutes (Table 1), and variably high

Table 3 | Microbial abundances and diversity estimates from FGD systems.

Sample	Culturable organotrophs (MPN*)	No. of sequences	OTU0.03 OTUs (%)	Genus level-assignable	Diversity indices	
	Modified	Modified				
	Lept medium	K medium				
A-U1slurry	1.1 x 10⁷	9.3 x 10⁵	11,908	184	86	2.3
A-U2scale	1.2 x 10⁸	5.2 x 10⁵	4954	236	22	3.09
A-U2slurry	1.5 x 10³	4.4 x 10⁵	6009	191	59	2.7
A-U1makeup	3.5 x 10²	3.5 x 10²	9381	1865	41	5.9
Asource	n/d	n/d	1009	335	51	4.1
B-U1slurry	2.1 x 10⁶	2.4 x 10⁷	5516	113	79	1.8
B-U2scale	7.6 x 10⁷	1.2 x 10⁵	9271	292	20	2.46
B-U2slurry	1.5 x 10⁵	4.4 x 10⁵	9634	284	79	3
B-U1reuse	2.4 x 10³	2.4 x 10³	6708	330	48	3.5
C-U1slurry	4.3 x 10⁶	9.3 x 10⁵	8016	163	75	2.4
C-U2slurry	7.5 x 10²	9.3 x 10²	4133	110	65	2.8
C-U1makeup	7.5 x 10³	n/d	8319	2260	57	6.3
C-U2makeup	2.3 x 10⁶	2.3 x 10⁰	7219	1692	41	5.5
D-U1slurry	2.3 x 10¹	2.1 x 10³	5355	123	61	2.4
D-U1makeup	n/a	n/a	3721	1047	41	5.6
E-U1slurry	2.1 x 10⁶	1.1 x 10⁷	5437	218	42	2.9

*Values represent MPN/g of scale and MPN/ml of water or slurry.

n/a, not analyzed; n/d, not detected.
and low temperatures as the slurries were circulated through the FGD absorber units (Figure 1). Scale-associated microorganisms were exposed to continuously high temperatures and solute concentrations, since they were not circulated through the units. Notably, the B-U1reuse community did not cluster with the makeup or source waters in the PC1 vs. PC2 plot, even though it was exposed to physicochemical conditions similar to those of the other “fresh” waters (Table 1). As was observed with the culture-dependent enumerations and diversity metrics, this appears to be a reflection of the fact that B-U1reuse is derived from treated absorber slurry. Indeed, the B-U1reuse community appeared to cluster with the slurry-associated communities in the plot of PC1 vs. PC2 (Figure 3A). Clustering of communities based on FGD unit sampling location (and associated differences in physicochemical conditions) was not as pronounced in the PC2 vs. PC3 plot (Figure 3B). It is notable that PC3 allowed clustering of B-U1reuse with the source/makeup waters, which had similar physicochemical conditions (Figure 4B). The scale-associated communities remained well-separated from those of the slurries and source/makeup/reuse microbial communities, though they were separated by PC3 into different quadrants (Figure 3B).

These results suggest that the variability in physicochemical environment to which the microbial communities are exposed leads to the development of microbial communities with differing structures. For instance, exposure of slurry-associated microbial communities to higher solute concentrations and periodically higher temperature induces structural shifts from the “fresh” water microbial communities. However, since the slurry is continually replenished with makeup or reuse water, the slurries retain some characteristics of the “fresh” waters. Microbial communities appear to develop in scales that are quite distinct from either the slurries or the makeup/source waters, since they are continuously exposed to higher temperatures and higher dissolved solute concentrations.

EVALUATION OF TAXA IN “FRESH” WATERS AND ABSORBER SLURRIES

Using the RDP classifier function (Wang et al., 2007) in the MacQIIME environment (Caporaso et al., 2010b), we were able to resolve 90–97%, 96–99.4%, and 96–97% of sequences to the phylum-level in “fresh” waters, slurries, and scales, respectively (Figures 4A–C). RDP classifier was able to assign as few as 41% of OTUs and as many as 86% of OTUs to the genus level in slurries and “fresh” water- and scale-associated bacterial communities using weighted UniFrac (Lozupone and Knight, 2005). Scatterplot of PC1 vs. PC2 is shown in (panel A), and scatterplot of PC2 vs. PC3 is shown in (panel B). Microbial communities observed in facilities (A, B, C, D, and E) are depicted using •, □, ●, △, and ▲, respectively. In cases where more than one unit from the same facility was evaluated, unit numbers are shown next to their respective shape. Ovals are used to aid in visualization of “clustering” of microbial communities.
FIGURE 4 | Phylum-level (and class-level in the cases of the Proteobacteria) bacterial 16S rRNA gene OTU abundances in (panels A and B) makeup, reuse, and source waters, (panel C) absorber slurries, and (panel D) wall scales recovered from FGD units.

Phylum	Relative Abundance (%)
Actinobacteria	50
Bacteroidetes	30
Alphaproteobacteria	20
Betaproteobacteria	10
Alpha proteobacteria	5
Beta proteobacteria	2
Unclassified bacteria	1

The majority of OTUs detected in the “fresh” waters were affiliated with Actinobacteria, Bacteroidetes, Alphaproteobacteria, Betaproteobacteria, Gammaproteobacteria, and Firmicutes (Figure 4A), though 15 other phyla were minimally abundant (i.e., ≤1%) in at least one of the “fresh” water settings (Figure 4B). These patterns of phylum-level distribution are similar to other freshwater systems (Burkert et al., 2003; Allgaier and Grossart, 2006; Newton et al., 2007; Mueller-Spitz...
OTUs in “fresh” waters, were enriched in B-U1slurry, B-U2slurry, which generally comprised a relatively small fraction of the total cycling of fluids into and out of the absorber unit as well as microbial communities. The high temperature and solute concentrations appear to be a partial reflection of the “fresh” water-associated absorber unit. Given the cosmopolitan genera associated with absorber slurries (Table A1), present in “fresh” waters were examined in more detail and are 436 438 mophilic representatives (Table A1), except for Limnobacter (A-U1slurry and A-U2slurry) and Cyanobacteria Group VIII-affiliated (A-U2slurry) phylotypes (Table A1). Limnobacter spp. are aerobic sulfur-oxidizing bacteria and may metabolize partially oxidized sulfur species in the absorber unit (Spring et al., 2001; Lu et al., 2010). The abundance of Cyanobacteria-affiliated OTUs in A-U2slurry was surprising since slurries are not exposed to sunlight, but this unit had started operation ∼1 month before samples were collected, so their presence may be attributable to the source water used to fill the absorber unit. Given the cosmopolitan genera associated with the absorber slurries, the slurry-associated microbial communities appear to be a partial reflection of the “fresh” water-associated microbial communities. The high temperature and solute concentrations of the absorber units induce shifts in the microbial communities, but these shifts may be minimized by the continuous replenishment of “fresh” water.

EVALUATION OF TAXA IN SCALES

While there appeared to be similarities between the “fresh” water and absorber slurry-associated microbial communities, UniFrac-based evaluation of the microbial communities indicated that scale-associated microbial communities were dramatically different from “fresh” waters or absorber slurries (Figure 3). These differences were also evident in the genera present in the scales. Genus-level assignments could only be made for ∼20% of the sequences recovered from the scale samples (Table 3), and in several cases, the numerically dominant OTUs within a phylum could not be resolved beyond the phylum-level using the RDP classifier function (e.g., Betaproteobacteria in A-U2scale and Firmicutes in B-U2scale). As such, unresolvable OTUs were evaluated in more detail using BLASTN (Altschul et al., 1990) to compare these OTUs to sequences in the GenBank database. While phyla associated with “fresh” waters and absorber slurries were also detected in scales, more detailed evaluation of 16S rRNA gene sequences recovered from A-U2scale and B-U2scale revealed that the majority (80 and 60%, respectively) of the OTUs were attributable to thermophilic lineages.

Four phyla (Bacteroidetes, Betaproteobacteria, Deinococcus-Thermus, and Firmicutes) comprised 90% of the OTUs detected in A-U2scale (Figure 4D). Deinococcus-Thermus-affiliated phylotypes were not detected in any of the “fresh” water or absorber slurries. All Deinococcus-Thermus-affiliated OTUs were Meiothermus- (99% similar to Meiothermus timidus; Pires et al., 2005) and Thermus- (100% similar to Thermus scotoductus; Gounder et al., 2011) affiliated phylotypes. Both of these species are thermophilic aerobic organotrophs, and T. scotoductus is capable of anaerobic respiration using Fe(III) and S0 as a terminal electron acceptors (Kieft et al., 1999; Pires et al., 2005). While Bacteroidetes-, Betaproteobacteria-, and Firmicutes-affiliated bacteria were detected in “fresh” water and absorber slurries, the predominant OTUs affiliated with these lineages were quite different from those detected in the “fresh” waters or absorber slurries. The most abundant Bacteroidetes-affiliated OTU in A-U2scale was 99% similar to an organism isolated from geothermal soil (Stott et al., 2008). The most abundant Betaproteobacterial OTU in A-U2scale was 92% similar to Hydrogenophilus thermoluteolus, a thermophilic H2-oxidizing bacterium (Hayashi et al., 1999). The most abundant Firmicutes-affiliated OTU from A-U2scale was 92% similar to 16S rRNA gene sequences recovered from composting operations in the thermophilic phase of operation (Partanen et al., 2010).

Firmicutes-affiliated OTUs were most abundant (61%) in B-U2scale, with lower abundances of Actinobacteria, Alphaproteobacteria, Betaproteobacteria, Gammaproteobacteria, Bacteroidetes, and Deinococcus-Thermus (Figure 4D). Approximately 58% of the total OTUs in B-U2scale were 95% similar to Alicyclobacillus pohliae, an aerobic, thermophilic Firmicutes isolated from geothermal soils (Imperio et al., 2008). Other thermophilic lineages that were detected in B-U2scale were Rubrobacter sp. (Stackebrandt and Schumann, 2006), Meiothermus sp. (da Costa et al., 2006), and Thermitiobacillus (Kelly and Wood, 2000), though these phylotypes were present in considerably lower abundances than the Alicyclobacillus-affiliated phylotypes. The remaining phylotypes detected in B-U2scale were generally cosmopolitan, mesophilic lineages, including phylotypes attributable to Flavobacterium, Hymenobacter, and Mucilaginobacter (Bacteroidetes), Corynebacterium and Arthrobacter (Actinobacteria), Pelomonas (Betaproteobacteria),
Stenotrophomonas and Pseudomonas (Gammaproteobacteria), and Rhodospirillum and Novospingobium (Alphaproteobacteria), which were also detected in “fresh” waters and absorber slurries.

DISCUSSION
IMPLICATIONS FOR WET FGD SYSTEM OPERATION AND PERFORMANCE
We observed three microbial community types associated with limestone forced air oxidation wet FGD systems that appeared to be controlled by the prevailing physicochemical conditions specific to the three process points evaluated in the FGD systems. Microbial communities associated with source and makeup waters were numerically dominated by phylotypes associated with mesophilic lineages of Actinobacteria, Bacteroidetes, Firmicutes, Alphaproteobacteria, Betaproteobacteria, and Gammaproteobacteria (Figure 4A), with similar phylum-level profiles to freshwater lakes and rivers (Burkert et al., 2003; Allgaier and Grossart, 2006; Newton et al., 2007; Mueller-Spitz et al., 2009; Clingenpeel et al., 2011).

Absorber slurry-associated microbial communities, which were exposed to higher dissolved solid concentrations and periodically higher temperatures, shared some characteristics with “fresh” FGD process waters, but were considerably less diverse. Absorber slurry microbial communities were numerically dominated by Actinobacteria-, Alphaproteobacteria-, Betaproteobacteria-, and Gammaproteobacteria-affiliated phylotypes, though the minimally abundant phylotypes that were detected in the “fresh” FGD process waters were not detected in absorber slurries, despite robust sampling effort. These results suggest that absorber slurry-associated microbial communities retain characteristics of “fresh” FGD process waters, but that the more extreme physicochemical conditions inside the absorber unit induce shifts in the microbial communities. Indeed, the finding of higher numbers of culturable halothermophilic/tolerant bacteria in absorber slurries than in “fresh” FGD process waters supports the hypothesis that “fresh” FGD process water-associated microbial communities adapt to the higher solute concentrations and temperatures of the FGD absorber units. The slurry-associated microbial community structure appears to be retained when slurry waters are treated and returned to circulation as reuse water. Despite the chemical similarities of B-U1reuse to other “fresh” process waters, the B-U1reuse-associated microbial communities exhibited diversity and UniFrac characteristics that were more similar to those of absorber slurry-associated communities, and retained relatively high numbers of culturable halothermophilic/tolerant microorganisms.

While absorber slurry-associated microbial communities differ from “fresh” water-associated communities, the retention of some phylotypes is attributable to the dynamics of absorber operation. Absorber units are initially filled with fresh waters, and during unit operation, the slurries are continuously circulated through the system (Figure 1). Slurry residence times in absorber units are typically 10–20 h (Sargent and Lundy, 2003), though this may vary depending on absorber unit size and design. Heat from the flue gas maintains temperatures of 50–80°C in the absorber unit, while fluids outside the unit (i.e., circulating slurry, freshly prepared limestone-water slurry, and source water) are subjected to ambient air temperatures (yearly averages of 10–15°C in the Midwestern United States). When slurries circulate out of the absorber units, they return to ambient temperature while a portion of slurry is diverted for gypsum recovery and water treatment. Slurry that is to be returned to the absorber unit is then amended with fresh limestone and “topped-off” with makeup or reuse water to account for fluid lost to gypsum recovery and evaporation (Figure 1). As such, slurry-associated microbial communities are not continuously exposed to high temperature, and are replenished with organisms associated with “fresh” FGD process waters.

Surprisingly few of the phylotypes detected in the FGD absorber slurries were affiliated with sulfur-metabolizing lineages, despite the abundance of sulfate (and likely partially reduced S species) and the application of robust sampling effort. The only phylotype detected in absorber slurries that was affiliated with an S-metabolizing bacterial lineage was attributable to S-oxidizing Limnobacter spp. in A-U1slurry (Table A1). Low numbers of phylotypes attributable to reduced S-oxidizing Thiobacillus spp., Thiothrix spp. (Lane et al., 1992), and Rhodopseudomonas spp. (Then and Trüper, 1981) were detected in “fresh” FGD process waters, but not in slurries. Similarly, phylotypes attributable to Firmicutes- and Deltaproteobacteria-affiliated sulfate-reducing bacteria (Muyzer and Stams, 2008) were detected in low numbers in “fresh” waters, but not at all in absorber slurries or scales. In thermal settings, S metabolism may be mediated by Archaea (Amend and Shock, 2001), which were not evaluated in this study, but the majority of phylotypes detected in the slurries were affiliated with aerobic organotrophic lineages (Table A1). Given the abundant organic carbon supplied by flue gas and abundant O2 supplied by forced air, it appears that aerobic organotrophy is the major mode of bacterial metabolism in the FGD slurries.

Scale-associated microbial communities were quite distinct from those of “fresh” FGD process waters and absorber slurries, with abundant phylotypes associated with thermophilic bacterial lineages. Microorganisms associated with absorber slurries are periodically exposed to temperatures of 50–80°C, but the duration of exposure to high temperature is apparently insufficient to induce shifts to the thermophilic microbial communities that we observed in scales recovered from FGD absorber walls. While microbial communities associated with both A-U2scale and B-U2scale were numerically dominated by thermophilic phylotypes, there were differences between the communities. A-U2scale included 16S rRNA gene sequences related to Hydrogenophilus, Thermus, and Meiothermus species as numerically dominant phylotypes, while the majority of 16S rRNA gene sequences detected in B-U2scale were attributable to the genus Alicyclobacillus.

The source of the thermophilic bacteria detected in the scales is unclear. Endolithic thermophiles entrained in the limestone feed (Amend and Shock, 2001; Horath and Bacherowen, 2009) may have served as an inoculum for the scales, though we were unable to obtain limestone samples from the power generation facilities. It is notable that the thermophilic lineages detected in the scales were not detected in the “fresh” waters, or even in the slurries. The detection of mesophilic phylotypes in scales suggests some influence of the “fresh” process water microbial communities on scale-associated community composition, and it is possible...
that thermophiles were present in “fresh” waters, but were not detected in due to the application of insufficient sampling effort to “fresh” waters. Thermophilic bacteria have been isolated from temperate soils, and may maintain some level of metabolic activity at relatively low temperatures (i.e., ≤25°C; Marchant et al., 2002, 2008; Hubert et al., 2010; Portillo et al., 2012). These findings suggest that some thermophilic microorganisms may be cosmopolitan components of non-thermal ecosystems (albeit in low abundance), as members of the “rare biosphere” (Sogin et al., 2006; Elshahed et al., 2008; Galand et al., 2009). Indeed, *Thermus*-affiliated species were isolated from hot-water heaters that received water from municipal wells (Brock and Boylen, 1973), suggesting that non-thermal source waters may provide an inoculum for the thermophilic scale-associated communities. While halothermophilic/tolerant organisms were not detected in *A*source, they were detected in low abundances in several of the makeup and reuse water samples (Table 3).

The corrosion of steel structures associated with FGD systems is an increasingly prevalent problem (Mansfield and Jeañuet, 1987; Hibner and Ross, 1988; Bordziłowski and Darowicki, 1998; Kim et al., 2010). The high solute concentrations and DO of the absorber unit fluids makes them aggressively corrosive solutions, and may give rise to severe pitting corrosion, which has been reported for FGD structures (including systems evaluated in this study) and is often associated with MIC (Franklin et al., 1991; Strehblow, 2007; Moskal, 2011). The FGD units at Facility A have not yet experienced serious corrosion problems, but Facility B units have experienced severe problems with corrosion, despite the fact that both units were constructed using the same type of steel. The potential for MIC in FGD systems has been recognized, though studied in minimal detail (Moskal, 2011), and it is difficult to definitively determine the contribution of MIC to the deterioration of the absorber units at Facility B or industry-wide. Nevertheless, any MIC occurring in FGD systems is likely to be driven primarily by the distinct thermophilic microbial communities that develop on steel surfaces in the absorber unit wall scale.

Both *A*-U2scale and *B*-U2scale contained abundant phylotypes attributable to thermophilic bacterial lineages, but the metabolism of organisms associated with the lineages are quite different. Cultivated representatives of the genera *Meiothermus* and *Thermus* are obligately aerobic organotrophs (Loginova et al., 1995; Chung et al., 1997; Chen et al., 2002; Pires et al., 2005; da Costa et al., 2006), though *Thermus scotoductus* is a facultative anaerobe capable of oxidation of organic carbon or H2 with Fe(III) reduction (Kieft et al., 1999), and cultured representatives of the genus *Hydrogenophilus* are aerobic H2-oxidizing thermophiles (Hayashi et al., 1999). Hydrogenotrophic consumption of cathodically produced H2 is a major mechanism of steel corrosion under anaerobic conditions (Kielmoes et al., 2000; Jack, 2002; Uchiyama et al., 2010; Davidova et al., 2012), but the role of this process under aerobic conditions is unclear, and it appears unlikely to be occurring to any substantial extent in *A*-U2scale, since no corrosion has been reported at this facility thus far. *Alicyclobacillus* species, such as those detected in *B*-U2scale, metabolize carbohydrates to organic acids, and several species oxidize Fe(II) and reduced sulfur species (Dufresne et al., 1996; Jiang et al., 2008; Imperio et al., 2008; Guo et al., 2009). The abundance of phylotypes attributable to *Alicyclobacillus* in *B*-U2scale is quite striking, and both organotrophic (organic acid production) and lithotrophic (Fe(II) oxidation) activities are substantial contributors to steel corrosion (Rao et al., 2000; Starosvetsky et al., 2001; Pecar et al., 2011). Indeed, slightly higher Fe(III) concentrations were detected in *B*-U2scale than in *A*-U2scale (Table 2), which may indicate Fe(II)-oxidizing activities.

Our results suggest that unique microbial communities develop in physicochemically distinct process points within FGD systems. Microbial communities associated with makeup waters have characteristics typical of freshwater bodies. Microbial communities associated with slurries bear some resemblance to the makeup waters, but are influenced by the high dissolved solute concentration of the slurry fluids, giving rise to more abundant halophilic/tolerant microorganisms. Microbial communities associated with scale deposits are quite unique, with abundant phylotypes attributable to thermophilic bacterial lineages. Ultimately, activities of the scale-associated microbial communities will be the predominant drivers of MIC in FGD systems, and the dynamics of their activities will need to be evaluated in more detail to determine their contribution to the corrosion of steel structures within these facilities.

ACKNOWLEDGMENTS

This work was funded by the Babcock & Wilcox Power Generation Group, Inc. We thank the operators of the electric power generation facilities for allowing us to collect samples from their FGD systems.

REFERENCES

Allgaier, M., and Grossart, H.-P. (2006). Diversity and seasonal dynamics of *Actinobacteria* populations in four lakes in Northeastern Germany. *Appl. Environ. Microbiol.* 72, 3489–3497.

Alschul, S. F., Gish, W., Miller, W., Myers, E. W., and Lipman, D. J. (1990). Basic local alignment search tool. *J. Mol. Biol.* 215, 403–410.

Amend, J. P., and Shock, E. L. (2001). Energetics of overall metabolic reactions of thermophilic and hyperthermophilic Archaea and Bacteria. *FEMS Microbiol. Rev.* 25, 175–243.

Bordziłowski, J., and Darowicki, K. (1998). Anti-corrosion protection of chimneys and flue gas ducts. *Anti-Corrosion Methods Mater.* 45, 388–396.

Brock, T. D., and Boylen, K. L. (1973). Presence of thermophilic bacteria in laundry and domestic hot-water heaters. *Appl. Microbiol.* 25, 72–76.

Burkert, U., Warnecke, F., Babenzen, D., Zwirnmann, E., and Pernthaler, J. (2003). Members of a readily metabolized Proteobacterial clade are common in surface waters of a humic lake. *Appl. Environ. Microbiol.* 69, 6550–6659.

Caporaso, J. G., Bittinger, K., Bushman, F. D., DeSantis, T. Z., Andersen, G. L., and Knight, R. (2010a). PyNAST: a flexible tool for aligning sequences to a template alignment. *Bioinformatics* 26, 266–267.

Caporaso, J. G., Kuczynski, J., Stombaugh, J., Bittinger, K., Bushman, F. D., Costello, E. K., et al. (2010b). QIIME allows analysis of high-throughput community sequence data. *Nat. Methods* 7, 335–336.

Chen, M.-Y., Lin, C.-H., Lin, Y.-T., and Tsai, S.-S. (2002). *Meiothermus tainwanensis* sp. nov., a novel filamentous, thermophilic species isolated in Taiwan. *Int. J. Syst. Evol. Microbiol.* 52, 1647–1654.

Chung, A. P., Rainey, F., Nobre, M. F., Burghardt, J., and da Costa, M. S. (1997). *Meiothermus cerebrus* sp. nov., a new slightly thermophilic species with high levels of 3-Hydroxy Fatty Acids. *Int. J. Syst. Evol. Microbiol.* 47, 1225–1230.
Brown et al. Microbial communities of FGDs

Claus, D., Fritzke, D., and Kocur, M. (2006). "Genera related to the genus Bacillus – Sporolactobacillus, Sporosarcina, Planococcus, Filibacter and Caryophanon," in The Prokaryotes. Bacteria: Firmicutes, Cyanobacteria, Vol. 4, 3rd Edn, eds M. Dworkin, S. Falkow, E. Rosenberg, H.-K. Schleifer, and E. Stackebrandt (New York, NY: Springer), 631–653.

Clingenpeel, S., Macur, R. E., Kan, J., Inseep, W. P., Lovaldo, D., Varley, J., et al. (2011). Yellowstone Lake: high-energy geochemistry and rich bacterial diversity. Environ. Microbiol. 13, 2172–2185.

Cole, J. R., Wang, Q., Cardenas, E., and new tools for rRNA analysis. Project: improved alignments of specific populations by D141–D145.

D141–D145.

D141–D145.

D141–D145.

D141–D145.

D141–D145.

D141–D145.

D141–D145.

D141–D145.

D141–D145.
Mansfield, F. and Jeanjaquet, S. L. (1987). Effects of trace elements on the corrosion behavior or flue gas desulfurization materials. Corrosion 43, 298–304.

Marchant, R., Banat, I. M., Rahman, T. J., and Berzano, M. (2002). The frequency and characteristics of highly thermophilic bacteria in cool soil environments. Environ. Microbiol. 4, 595–602.

Marchant, R., Franzetti, A., Pavlostathis, S. G., Ts, D. O., Erdbrügger, L., Unyayar, A., et al. (2008). Thermophilic bacteria in cool temperate soils: are they metabolically active or continually added by global atmospheric transport? Appl. Microbiol. Biotechnol. 78, 841–852.

Martin, E., Klug, K., Frischmann, A., Busse, H. J., Kämpfer, P., and Jackel, U. (2011). Jisti gallicus coquina sp. nov. and Jisti gallicus aerolatus sp. nov., isolated from poultry houses. Int. J. Syst. Evol. Microbiol. 61, 237–241.

Moskal, M. (2011). EPRI corrosion of wet flue gas desulfurization systems. Conduit 11, 1–2.

Mueller-Spitz, S. R., Goetz, G. W., and McLellan, S. L. (2009). Temporal and spatial variability in nearshore bacterioplankton communities of Lake Michigan. FEMS Microbiol. Ecol. 67, 511–522.

Muyzer, G., and Stams, A. J. M. (2008). The ecology and biotechnology of sulfur-reducing bacteria. Nat. Rev. Microbiol. 6, 441–454.

Newton, R. I., Jones, S. E., Helmus, M. R., and McMahon, K. D. (2007). Phylogenetic ecology of the freshwater Actinobacteria acl lineage. Appl. Environ. Microbiol. 73, 7169–7176.

Nygaard, H. G., Kiil, S., Johnsson, J. E., Jensen, J. N., Hansen, I., Fogh, F., et al. (2004). Full-scale measurements of SO2 gas phase concentrations and slurry compositions in a wet flue gas desulfurization spray absorber. Fuel 83, 1151–1164.

Pandy, R. A., Biwas, R., Chakraborti, T., and Devotta, S. (2005). Flue gas desulfurization: pyrochemical and biotechnological approaches. Crit. Rev. Environ. Sci. Technol. 35, 571–622.

Parshina, S. N., Kijlstra, S., Henstra, A. M., Sipma, J., Pluigge, C. M., and Stams, A. J. M. (2005). Carbon monoxide conversion by thermophilic sulfate-reducing bacteria in pure culture and in co-culture with Carnobacterium hydrogenoformans. Appl. Microbiol. Biotechnol. 68, 390–396.

Parshina, S. N., Sipman, J., Henstra, A. M., and Stams, A. J. M. (2010). Carbon monoxide as an electron donor for biological reduction of sulfate. Int. J. Microbiol. 2010, 319527.

Portillo, M. C., Santana, M., and Gonzalez, J. M. (2012). Presence and potential role of thermophilic bacteria in temperate terrestrial environments. Naturwissenschaften 99, 43–53.

Rajendran, N., Rathn, G., Ravichandran, K., and Rajeswari, S. (1999). Flue gas desulfurization systems – a review. Corros. Rev. 17, 443–465.

Rao, T. S., Sairam, T. N., Viswanathan, B., and Nair, K. Y. K. (2000). Carbon steel corrosion by iron oxidizing and sulfate reducing bacteria in a freshwater cooling system. Corros. Sci. 42, 1417–1430.

Sari, E., Eidukat, B., and Yahin, A. (1999). Web-phreeqc: a WWW instructional tool for modeling the distribution of chemical species in water. Comput. Geosci. 25, 347–353.

Sargent, and Lundy, L. C. (2003). Wet Flue Gas Desulfurization Technology Evaluation. Project Number 11311-000, Prepared for National Lime Association, Chicago, IL. Available online at: www.graymont.com/technical/WetFlueGasDesulfurizationTechnologyEvaluation.pdf

Sogin, M. L., Hedges, C. K., Huber, J. A., Welch, D. M., Huse, S. M., Neal, P. R., et al. (2006). Microbial diversity in the deep sea and the underexplored “rare biosphere.” Proc. Natl. Acad. Sci. U.S.A. 103, 12115–12120.

Spring, S., Kämpfer, P., and Schleifer, K. H. (2001). Linnobacter thiooxidans gen. nov., sp. nov., a novel thiosulfate-oxidizing bacterium isolated from freshwater lake sediment. Int. J. Syst. Evol. Microbiol. 2001, 1463–1470.

Stackebrandt, E., and Schumann, P. (2006). “Introduction to the taxonomy of Actinobacteria,” in The Prokaryotes: Volume 3, Archaea. Bacteria: Firmicutes, Actinomycetes, 3Edn. eds M. Dworkin, S. Falkow, E. Rosenberg, H.-K. Schleifer, and E. Stackebrandt (New York, NY: Springer), 297–321.

Starosvetsky, D., Armon, Y., Yahalom, J., and Starosvetsky, J. (2001). Pitting corrosion of carbon steel caused by iron bacteria. Int. Biodeterior. Biodegradation 47, 79–87.

Stokey, L. L. (1970). Ferrozine – a new spectrophotometric reagent for iron. Anal. Chem. 42, 779–781.

Stott, M. B., Crowe, M. A., Mountain, B. W., Smirnova, A. V., Hou, S., Alam, M., et al. (2008). Isolation of novel bacteria, including a candidate division from geothermal soil in New Zealand. Environ. Microbiol. 10, 2030–2041.

Strehlow, H. H. (2007). “Pitting corrosion,” in Encyclopedia of Electrochemistry, Corrosion and Oxide Films, Vol. 4, eds M. Stratman and G. S. Frankel (Weinheim, Germany: Wiley-UCH GmbH and Co.), 308–343.

Sutter, J. H., Colquitt, K., and Sutter, J. R. (1974). Kinetics of the disproportionation of manganate in acid solution. Inorg. Chem. 13, 1444–1446.

Tanner, R. S. (1997). “Cultivation of bacteria and fungi,” in Manual of Environmental Microbiology, eds C. J. Hurst, G. R. Knudsen, M. J. Mcinerney, L. D. Stettenbach, and M. V. Walter (Washington, DC: American Society for Microbiology), 52–59.

Templeton, A. S., Staudigel, H., and Tebo, B. M. (2005). Diverse Mn(II)-oxidizing bacteria isolated from submarine basalts at Loihi Seamount. Geomicrobiol. J. 22, 127–139.

Tenreiro, S., Nobre, M. F., and da Costa, J. I., Nobre, M. F., Empadinhas, I., Nobre, M. F., et al. (2004). Full-scale measurement of manganate in acid solution. Inorg. Chem. 43, 1463–1470.

Trenero, S., Nobre, M. F., and da Costa, M. S. (1995). Thermus silvianus sp. nov. and Thermus chlorophilus sp. nov., two new species related to Thermus ruber but with lower growth temperatures. Int. J. Syst. Bacteriol. 45, 653–659.

Then, J., and Truper, H. G. (1981). “The role of thiosulfate in sulfur metabolism of Rhodopseudomonas globiformis.” Arch. Microbiol. 130, 143–146.

Trüper, H. G., and Galinski, E. A. (1986). Concentrated brines as habitats for microorganisms. Experien. 42, 1182–1187.

Uchiyama, T., Ito, K., Mori, K., Tsurumaru, H., and Harayama, S. (2010). Iron-corroding methanogen isolated from a crude-oil storage tank. Appl. Environ. Microbiol. 76, 1783–1788.

Van Ginkel, S. W., Zhou, C., Lien, M., and Rittmann, B. E. (2011). Hydrogen-based nitrate and selenium bioreductions in flue-gas desulfurization brine. J. Environ. Eng. 137, 63–68.

Ventosa, A., Nieto, J. I., and Oren, A. (1998). Biology of moderately halophilic aerobic bacteria. Microbiol. Mol. Biol. Rev. 62, 504–544.

Wang, L., Garrity, G. M., Tiedje, J. M., and Cole, J. R. (2007). Naïve Bayesian classifier for rapid assignment of RNA sequences into the new bacterial taxonomy. Appl. Environ. Microbiol. 73, 5261–5267.

Yoon, J.-H., Lee, K.-C., Weiss, N., Kang, K. H., and Park, Y.-H. (2003). Jisti gallicus halotolerans gen. nov., sp. nov. and Jisti gallicus psychrophilus sp. nov., isolated from the traditional Korean fermented seafood jeotgal. Int. J. Syst. Evol. Microbiol. 53, 595–602.

Conflict of Interest Statement:

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Received: 15 August 2012; accepted: 14 November 2012; published online: 30 November 2012.

Citation: Brown BP, Brown SR and Senko JM (2012) Microbial communities associated with wet flue gas desulfurization systems. Front. Microbiol. 3:412. doi: 10.3389/fmicb.2012.00412

This article was submitted to Frontiers in Microbiology, a specialty of Frontiers in Microbiology. Copyright © 2012 Brown, Brown and Senko. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in other forums, provided the original authors and source are credited and subject to any copyright notices concerning any third-party graphics etc.
Slurry sample	Phylum	Predominant genus	Halophilic	Thermophilic	Comments
A-U1 slurry	Alphaproteobacteria (37%)	*Sphingopyxis* (99%)	+1	-	Aerobic organoheterotrophs; isolated from soil, activated sludge, and marine systems¹⁻⁴
	Gammaproteobacteria (25%)	*Stenotrophomonas* (97%)	+5	-	Common soil and sediment-associated bacteria; also isolated from saline industrial settings⁵
	Betaproteobacteria (20%)	*Limonobacter* (99%)	-	-	Aerobic, thiosulfate oxidizers; isolated from freshwater lakes and fresh volcanic deposits^{6, 7}
	Actinobacteria (16%)	*Soilvibrobacter* (99%)	-	-	Mesophilic soil bacteria^{8, 9}
A-U2 slurry	Cyanobacteria (31%)	Group VIII* (100%)	+10, 11	+12	Oxygenic phototrophs
	Alphaproteobacteria (21%)	*Paracoccus* (84%)	+13-15	-	Encountered in soil aquatic and industrial settings
	Actinobacteria (18%)	*Arthrobacter* (62%)	+16-18	-	Aerobic soil organotrophs⁶⁻¹⁸
	Propionibacterium (21%)	-	+13	-	Associated with animals, plants; dairy industrial importance; strains shown to tolerate temperatures as high as 90°¹⁹
	Betaproteobacteria (17%)	*Limonobacter* (41%)	-	-	Aerobic, thiosulfate oxidizers; isolated from freshwater lakes and fresh volcanic deposits^{6, 7}
	Ralstonia (24%)	-	+20	-	Common in soil; found in saline soil²⁰
	Aquabacterium (20%)	-	-	-	Isolated from drinking water and freshwater springs²¹⁻²³
	Gammaproteobacteria (55%)	*Stenotrophomonas* (75%)	+5, 24	-	Widely distributed in soil and aquatic settings^{5, 24}
	Entrobacteriaceae * (21%)	*Enterobacteriaceae*	+5, 25	+5	Widely distributed, including halophilic and thermophilic representatives in industrial settings⁵
	Alphaproteobacteria (30%)	*Phyllobacterium* (92%)	-	-	Aerobic organotrophic isolates from soil, water, and plants²⁶
	Firmicutes (13%)	*Salinicoccus* (99%)	+27	-	Halophilic genus²⁷
B-U1 slurry	Firmicutes (43%)	*Streptococcus* (81%)	-	+28	Normally plant- or animal-associated; thermophilic/tolerant strains resistant to pasteurization^{28, 29}
	Sporosarcina (29%)	-	+30-34	+70	Oral bacteria⁷²
	Veillonella (29%)	-	-	-	Associated with animals, plants; dairy industrial importance; strains shown to tolerate temperatures as high as 90°¹⁹
	Actinobacteria (24%)	*Propionibacterium* (97%)	-	+19	Widespread in soil, sediment, and aquatic systems; includes halophilic^{35, 36} and thermophilic³⁷ representatives
B-U2 slurry	Gammaproteobacteria (21%)	*Acinetobacter* (35%)	+36, 36	+37	Widely distributed in soil and aquatic settings^{5, 24}
	Betaproteobacteria (8%)	*Stenotrophomonas* (22%)	+5, 24	-	Aerobic, thiosulfate oxidizers; isolated from freshwater lakes and fresh volcanic deposits^{6, 7}
C-U1 slurry	Alphaproteobacteria (28%)	*Bradyrhizobium* (92%)	+36	-	Widespread in soil; one halophilic isolate³⁸
	Betaproteobacteria (28%)	*Ralstonia* (97%)	+20	-	Common in soil; found in saline soil²⁰

(Continued)
Slurry sample	Phylum	Predominant genus	Halophilic	Thermophilic	Comments
Actinobacteria (22%)	Solirubrobacter (53%)	-	-	Mesophilic soil bacteria^{8, 9}	
	Marmoricola (43%)	⁴⁰	-	All isolated Marmoricola spp. from marine settings or moderately halophilic^{39, 40}	
Gammaproteobacteria (19%)	Enterobacteriaceae* (97%)	⁵, ²⁵	⁵	Widely distributed, including halophilic and thermophilic representatives in industrial settings⁵	
Actinobacteria (27%)	Propionibacterium (89%)	-	¹⁹	Associated with animals, plants; dairy industrial importance; strains shown to tolerate temperatures as high as 90°C¹⁹	
Alphaproteobacteria (23%)	Acetobacteraceae* (88%)	-	⁴³	Genus-level assignment not possible; OTUs 98–99% similar to sequences detected in non-saline soil^{44–47}	
Betaproteobacteria (20%)	Aquabacterium (92%)	-	-	Isolated from drinking water and freshwater springs^{21–23}	
Firmicutes (16%)	Jeotgalicoccus (74%)	^{48–52}	-	All Jeotgalicoccus sp. described are halophilic^{48–62}	
Gammaproteobacteria (10%)	Enterobacteriaceae* (64%)	⁵, ²⁵	⁵	Widely distributed, including halophilic and thermophilic representatives in industrial settings⁵	
D-U1slurry	Gammaproteobacteria (27%)	Pseudomonas (60%)	¹⁶	⁵⁶	Widespread in soil, sediment and aquatic settings
		Enterobacteriaceae* (39%)	⁴	⁵	Widespread in soil, including halophilic and thermophilic representatives in industrial settings⁵
Bacteroidetes (17%)	Flavobacterium (100%)	¹⁶	-	Aerobic organotrophic bacteria common to freshwater and soil⁶⁵	
Gammaproteobacteria (40%)	Enterobacteriaceae* (81%)	⁵	⁵	Widely distributed, including halophilic and thermophilic representatives in industrial settings⁵	
Fimricutes (14%)	Pseudomonas (10%)	¹⁶	⁵⁶	Widespread in soil, sediment and aquatic settings	
	Clostridium (53%)	^{59–61}	^{62–64}	Organotrophic anaerobic bacteria	
	Streptococcus (41%)	-	²⁸	Normally plant- or animal-associated; thermophilic/tolerant strains resistant to pasteurization^{28, 29}	
E-U1slurry	Bacteroidetes (11%)	Flavobacterium (100%)	¹⁶	-	Aerobic organotrophic bacteria common to freshwater and soil⁶⁵
	Betaproteobacteria (11%)	Ralstonia (98%)	²⁰	-	Common in soil; found in saline soil²⁰
	Actinobacteria (10%)	Propionibacterium (40%)	-	¹⁹	Associated with animals, plants; dairy industrial importance; strains shown to tolerate temperatures as high as 90°C¹⁹
Alphaproteobacteria (8%)	Dietzia (25%)	⁶⁶	-	Isolates recovered from soil and freshwater settings⁷¹	
	Roseomonas (94%)	⁶⁷	⁶⁸	Aerobic isolates from soil, sediments, industrial, and freshwater settings; plant and animal hosts⁶⁹	

*Genus-level taxonomic assignments could not be made using the Ribosomal Database Project II Classifier function⁷³ in the MacQIIME environment²⁹.
REFERENCES

1. Yoon, J.-H., and Oh, T.-K. (2005). *Sphingopyxis favaminaris* sp. nov., isolated from seawater of the Yellow Sea in Korea. *Int. J. Syst. Evol. Microbiol.* 55, 369–373.

2. Ting, L., Williams, T. J., Cowley, M. J., Mauro, F. M., Guilhaud, M., Rafferty, M. J., et al. (2010). Cold adaptation in the marine bacterium *Sphingopyxis alaskensis*, assessed using quantitative proteomics. *Environ. Microbiol.* 12, 2658–2676.

3. Lee, M., Ten, N. L., Lee, H.-W., Oh, H.-W., Im, W.-T., and Lee, S.-T. (2008). *Sphingopyxis ginsengsoli* sp. nov., isolated from soil of a ginseng field in South Korea. *Int. J. Syst. Evol. Microbiol.* 58, 2342–2347.

4. Kämper, P., Witzenberger, R., Denner, E. B. M., Busse, H.-J., and Neef, A. (2002). *Sphingopyxis westfalensis* sp. nov., isolated from activated sludge. *Int. J. Syst. Evol. Microbiol.* 52, 2029–2034.

5. Zhuang, X., Han, Z., Bai, Z., Zhuang, M., Ten, L. N., Lee, H.-W., Oh, Y.-O., and Oh, T.-K. (2005). www.frontiersin.org

Brown et al. Microbial communities of FGDs

2658–2676.

6. Biotic, A., Ramos, V., Seabra, R., Santos, A., Santos, C. L., Lopo, M., et al. (2012). Culture-dependent characterization of cyanobacterial diversity in the intertidal zones of the Portuguese coast: a polyphyletic study. *Syst. Appl. Microbiol.* 35, 110–119.

7. Jonescu, D., Hindiyeh, M., Malkawi, H., and Oren, A. (2010). Biogeography of thermophilic cyanobacteria: insights from the Zerka Ma'in hot springs (Jordan). *FEBS Microbiol. Ecol.* 72, 103–113.

8. Hochstein, L. I., and Lomlinson, G. A. (1984). The growth of *Paracoccus halodenitrificans* in a defined medium. *Can. J. Microbiol.* 30, 837–840.

9. Lee, J. H., Kim, Y. S., Choi, T.-J., Lee, W. J., and Kim, Y. T. (2004). *Paracoccus halodenitrificans* sp. nov., a Gram-negative, halophilic, astaxanthin-producing bacterium. *Int. J. Syst. Evol. Microbiol.* 54, 1699–1702.

10. Wang, Y., Tang, S.-K., Lou, K., Mao, P.-H., Jin, X., Jiang, C.-L., et al. (2009). *Paracoccus saliphilus* sp. nov., a halophilic bacterium isolated from a saline pool. *Int. J. Syst. Evol. Microbiol.* 59, 1924–1928.

11. Ventosa, A., Nieto, J. J., and Oren, A. (1998). Biology of moderately halophilic aerobic bacteria. *Microbiol. Mol. Biol. Rev.* 62, 504–544.

12. Reddy, G. S. N., Aggarwal, R. K., Matsumoto, G. I., and Shival, S. (2000). *Arthrobacter flavedus* sp. nov., a psychrophilic bacterium isolated from a pond in McMurdo Dry Valley, Antarctica. *Int. J. Syst. Evol. Microbiol.* 50, 1533–1561.

13. Chen, Y.-G., Tang, S.-K., Zhang, Y.-Q., Li, Z.-Y., Yi, L.-B., Wang, Y.-X., et al. (2009). *Arthrobacter halodurans* sp. nov., a new halotolerant bacterium isolated from sea water. *Antonie Van Leeuwenhoek* 96, 63–70.

14. Kusano, K., Yamada, H., Niwa, M., and Yamasoto, K. (1997). *Propionibacterium cyclohexanicum* sp. nov., a new acid tolerant *O* -cyclohexyl fatty acid-containing *Propionibacterium* isolated from spoiled orange juice. *Int. J. Syst. Evol. Microbiol.* 47, 825–831.

15. Kleinsteuber, S., Riis, V., Fetzner, I., Harm, H., and Müller, S. (2006). Population dynamics within a microbial consortium during growth on diesel fuel in saline environments. *Appl. Environ. Microbiol.* 72, 3531–3542.

16. Kalmbach, S., Manz, W., Wecke, J., and Siewzyk, U. (1999). *Aqabacterium gen.* nov., with description of *Aqabacterium citritrophicum* sp. nov., *Aqabacterium parvum* sp. nov. and *Aqabacterium commune* sp. nov., three in situ dominant bacterial species from the Berlin drinking water system. *Int. J. Syst. Evol. Microbiol.* 49, 769–777.

17. Lin, M.-C., Jiang, S.-R., Chou, J.-H., Arun, A. B., Young, C.-C., and Chen, W.-M. (2009). *Aqabacterium fontiphilum* sp. nov., isolated from spring water. *Int. J. Syst. Evol. Microbiol.* 59, 681–685.

18. Chen, W.-M., Cho, N.-T., Yang, S.-H., Arun, A. B., Young, C.-C., and Sheu, S.-Y. (2012). *Aqabacterium limnoticum* sp. nov., isolated from a freshwater spring. *Int. J. Syst. Evol. Microbiol.* 62, 698–704.

19. Roder, A., Hoffmann, E., Hagermann, M., and Berg, G. (2005). Synthesis of the compatible solutes gluco-lycerglycol and trehalose by salt-stressed cells of *Stenotrophomonas* stains. *FEMS Microbiol. Lett.* 243, 219–226.

20. JayasingheArachichi, H. S., Sarma, P. M., Singh, A., Singh, S., Mandal, A. K., and Lal, B. (2009). Fermentative hydrogen production by two novel strains of *Enterobacter aerogenes* HGN-2 and HT 34 isolated from sea buried crude oil pipelines. *Int. J. Hydrogen Energy* 34, 7197–7207.

21. Mantelin, S., Fischer-Le Saux, M., Zakhia, F., Bena, G., Bonneau, S., Jeder, H., et al. (2006). Emended description of the genus *Phyllobacterium* and description of four novel species associated with plant roots: *Phyllobacterium bourgognense* sp. nov., *Phyllobacterium iraiiyayense* sp. nov., *Phyllobacterium leguminus* sp. nov. and *Phyllobacterium brasiilicense* sp. nov. *Int. J. Syst. Evol. Microbiol.* 56, 827–839.

22. Chen, Y.-G., Cui, X.-L., Wang, Y.-X., Zhang, Y.-Q., Li, Q.-Y., Liu, Z.-X., et al. (2009). *Salinicoccus albus* sp. nov., a halophilic bacterium from salt marsh soils. *Syst. Appl. Microbiol.* 4, 496–506.

23. Yoon, J.-H., Kim, I.-G., and Oh, T.-K. (2007). *Acinetobacter marinus* sp. nov. and *Acinetobacter solanensis* sp. nov., isolated from seawater of the Yellow Sea in Korea. *J. Microbiol.* Biotechnol. 17, 1743–1750.

24. Onishii, H., and Hidaka, O. (1978). Purification and properties of amylose produced by a moderately halophilic *Acinetobacter* sp. *Can. J. Microbiol.* 24, 1017–1023.

25. Zhao, Z., and Wong, J. (2009). Biosurfactants from *Acinetobacter calcoaceticus* B803 enhance the solubility and biodegradation of phenanthrene. *Environ. Technol.* 30, 291–299.

26. Sutrisno, A., Ueda, M., Abe, Y., Nakazawa, M., and Miyake, T. (2004). A chitinase with high activity toward N-acetylated chitosan from a new, moderately thermophilic, chitin-degrading bacterium, *Ristonia* sp. *A471. Appl. Microbiol. Biotechnol.* 63, 398–406.

27. Lee, S. D. (2007). *Marmoricola aquaeorsus* sp. nov., a novel actinobacterium isolated from marine sediment. *Int. J. Syst. Evol. Microbiol.* 57, 1391–1395.
species are predominant bacteria cultured from granular activated carbon filters in water treatment. J. Appl. Microbiol. 107, 1457–1467.

Reddy, P. V. V., Rao, S. S. S. N., Pratibha, M. S., Sailaja, B., Kavya, B., Manorama, R. R., et al. (2009). Bacterial diversity and bioimpacting for cold-active enzymes from culturable bacteria associated with sediment from a melt water stream of Midlter Lovemn glacier, an Arctic glacier. Res. Microb. 160, 538–546.

Oren, A. (1983). Clostridium lortetii sp. nov., a halophilic obligatory anaerobic bacterium producing endospores with attached gas vacuoles. Arch. Microbiol. 136, 42–48.

Fendrich, C., Hippe, H., and Gottschalk, G. (1990). Clostridium halophilum sp. nov. and C. stitale sp. nov., an obligate halophilic and a marine species degrading butane in the Strickland reaction. Arch. Microbiol. 154, 127–132.

Brisbarre, N., Fardeau, M.-L., Cuffe, V., Cayol, J.-L., Barbier, G., Cilia, V., et al. (2003). Clostridium caminithermale sp. nov., a slightly halophilic and moderately thermophilic bacterium isolated from an Atlantic deep-sea hydrothermal chimney. Int. J. Syst. Evol. Microbiol. 53, 1043–1049.

Tanner, R. S., Miller, L. M., and Yang, D. (1993). Clostridium ljungdahlii sp. nov., an acetogenic species in Clostridial RNA homology Group I, Int. J. Syst. Evol. Microbiol. 43, 232–236.

Patel, B. K. C., Monk, C., Littleworth, H., Morgan, H. W., and Daniel, R. M. (1987). Clostridium ferdvus sp. nov., a new chemoorganotrophic acetogenic thermophile. Int. J. Syst. Evol. Microbiol. 37, 123–126.

Johnson, E. A., Madia, A., and Demain, A. L. (1981). Chemically defined minimal medium for growth of the anaerobic cellulosytic thermophile Clostridium thermocellum. Appl. Environ. Microbiol. 41, 1060–1062.

Shewan, J. M., and McMeekin, T. A. (1983). Taxonomy (and ecology) of Flavobacterium and related genera. Ann. Rev. Microbiol. 37, 233–252.

Plakunov, V. K., Zhurina, M. V., and Belyaev, S. S. (2008). Resistance of the oil-oxidizing microorganism Dietzia sp. to hypoxic shock in reconstituted biofilms. Microbiology 77, 515–522.

Vankata, R. V., Sasikala, C., Takaichi, S., and Ramana, C. V. (2010). Roseomonas aestuarii sp. nov., a bacteriochlorophyll-a containing alaphoproteobacterium isolated from an estuarine habitat in India. Syst. Appl. Microbiol. 33, 198–203.

Kodari, M., Nautinen, J., Rainey, F. A., and Salkinoja-Salonen, M. S. (2003). Colored moderately thermophilic bacteria in paper machine biofilms. J. Ind. Microbiol. Biotecnol. 30, 225–238.

Kim, M. S., Baik, K. S., Park, S. C., Rhee, M. S., Oh, H.-M., and Seong, C. N. (2009). Rosemonas frigidaeae sp. nov., isolated from a water cooling system. Int. J. Syst. Evol. Microbiol. 59, 1630–1634.

Kämpfer, P., Falsen, E., Lodders, N., and Schumann, P. (2010). Sporosarcina contaminans sp. nov. and Sporosarcina thermonolans sp. nov., two endospore-forming species. Int. J. Syst. Evol. Microbiol. 60, 1353–1357.

Yamamura, H., Lisiyanti, P., Ridwan, R., Ratnakomola, S., Sarawati, R., Lestari, Y., et al. (2010). Dietzia timorensis sp. nov., isolated from soil. Int. J. Syst. Evol. Microbiol. 60, 451–454.

Marchandin, H., Teyssier, C., Simeon De Buuchberg, M., Jean-Pierre, H., Carriere, C., and Jumas-Bilak, E. (2003). Intrachromosomal heterogeneity between the four 165 rRNA gene copies in the genus Veillonella: implications for phylogeny and taxonomy. Microbiology 149, 1493–1501.

Wang, Q., Garrity, G. M., Tiedje, J. M., and Cole, J. R. (2007). Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl. Environ. Microbiol. 73, 5261–5267.

Caporaso, J. G., Kuczynski, J., Stombaugh, J., Bittinger, K., Bushman, F. D., Costello, E. K., et al. (2010). QIME allows analysis of high-throughput community sequence data. Nat. Methods 7, 335–336.