A Review of the Principles of Radiological Assessment of Skeletal Dysplasias

Yasemin Alanay1, Ralph S. Lachman2,3

1Pediatric Genetics Unit, Department of Pediatrics, Faculty of Medicine, Acibadem University, Istanbul, Turkey
2Professor Emeritus of Radiological Sciences and Pediatrics, UCLA School of Medicine, Los Angeles, California, Clinical Professor, Stanford University, Stanford CA, USA
3International Skeletal Dysplasia Registry, Genetics Institute, Cedars-Sinai Medical Center, Los Angeles, California, USA

Introduction
Skeletal dysplasias are disorders associated with a generalized abnormality in the skeleton. Although individually rare, the overall birth incidence is estimated to be 1/5000 live births (1). Today, there are more than 450 well-characterized skeletal dysplasias classified primarily on the basis of clinical, radiographic, and molecular criteria (2). Half a century ago, in the 1960s, individuals with disproportionate short stature were diagnosed either as achondroplasia (short-limbed dwarfism) or Morquio syndrome (short-trunked dwarfism). In time, delineation of numerous entities not fitting these two “disorders” led experts to come up with a systematic approach. The “International Nomenclature of Constitutional Diseases of Bone” group, since its first publication in 1970, has intermittently classified these disorders (1970-1977-1983-1992-2001-2005-2009) (3). In the 1970s, the categories were purely clinical and descriptive. This later evolved into a combination of clinical, radiological and molecular knowledge as the pathogenetic mechanisms of various entities have been revealed. In the latest 2010 revision of the Nosology and Classification of Genetic Skeletal Disorders, an increase from 372 to 456 disorders was noted in the four years since the classification was last revisited in 2007 (2,4). Of these conditions, 316 are associated with one or more of 226 different genes. This increase reflects the
continuing delineation of unique phenotypes among short stature conditions, which in aggregate represent about 5% of children with birth defects (1). Some of the increase has also been driven by technological improvements in our ability to define the molecular genetic basis of these conditions, which is now known for 316 of the disorders (215 in the prior revision), with defects in 226 (140 previously) different genes. Table 1 provides a list of main groups in the latest published classification (2).

In daily practice however, clinicians dealing with patients with short stature may be confused with the molecular listings. It is therefore important to remember that an accurate diagnosis of a skeletal dysplasia is still based on detailed evaluation of clinical and radiographic [as well as chondro-osseous] findings. This review aims to outline the diagnostic approach to disproportionate short stature with special emphasis on radiological findings.

Clinical Evaluation

The accurate history regarding time of onset of short stature is essential prior to physical examination. Among the nearly 400 skeletal dysplasias, 100 or so have prenatal onset, while others may only present either as newborns or beyond 2 to 3 years of age (5). Individuals with disproportionate short stature are likely to be affected by a skeletal dysplasia. However, the abnormal proportions may not be readily recognizable. Therefore, whenever an individual presents with short stature, it is essential to measure body proportions. This should be done keeping in mind that some generalized bone mineralization abnormalities such as osteogenesis imperfects (OI), some osteosclerotic disorders, and hypophosphatasia may present with near normal proportions.

Anthropometric measurements such as upper/lower segment (U/L) ratio, sitting height, and arm span are routinely measured when a patient with short stature is evaluated. Sitting height is the measurement of head and trunk, and may be difficult to measure accurately due to the need of special equipment. The lower segment, however, is easier to measure (from symphysis pubis towards the floor medially to the heel). The upper segment can then be easily calculated by subtracting the lower segment from total height. Upper and lower segment measurements can be made in a standing or supine position. The mentioned ratios change with age. U/L ratio is 1.7 in the newborn; approximately 1.0 between ages 2-8 years; 0.95 as an adult. A short statured patient with short trunk will have decreased a U/L ratio, while an individual with normal trunk and relatively short limbs will have an increased U/L ratio (6).

Clinical evaluation also includes description of the limb involvement. Depending on the primarily involved segment of the limb, the condition can be described as rhizomelic (humerus and femur), mesomelic (radius, ulna, tibia and fibula) and acromelic (hands and feet). These descriptions help in differential diagnosis. It is noteworthy that a careful examination by an experienced clinical geneticist can sometimes narrow the list of dysmorphic entities to be considered even before the skeletal radiographs are analyzed (7).

Other clinical assessments such as immunological /hematological data as well as hair quality, cleft palate, eye abnormalities (myopia) and even internal organ abnormalities (cystic kidneys, hepatosplenomegaly) are important in skeletal dysplasia evaluation.

After obtaining a thorough family history, constructing a detailed pedigree and performing clinical examination, radiological assessment is likely to close the case in most skeletal dysplasias as many have distinctive radiological features in growing bones.

Radiological Assessment

Before giving details of the stepwise radiographic analysis for skeletal dysplasias, we would like to emphasize that a complete “genetic skeletal survey” is not necessary in patients with proportionate short stature, in which the differential diagnosis consists of constitutional delay, familial short stature, a small group of endocrinopathies and some dysmorphic syndromes. Their initial imaging assessment may warrant a left hand and wrist radiograph for bone age determination. This will protect children from unnecessary radiation exposure.

The “genetic skeletal survey” should include anteroposterior (AP), and lateral views of the skull, AP and lateral views of the entire spine, and AP views of the pelvis and all four extremities, with separate AP views of the hands and feet [A lateral view of the knee can be helpful to diagnose a recessive form of multiple epiphyseal dysplasia (MED) associated with multilayered patella] (7). In adult patients, it is mandatory to try to obtain prepubertal skeletal radiographs. Once the epiphyses have fused to the metaphyses, diagnosis may be very difficult. After obtaining the radiographs, a three-step assessment will be helpful in trying to make a specific diagnosis.

Step I (Assessment of Disproportion): An assessment of disproportion similar to the one made clinically is repeated looking at the radiographs. A quick look at the spine will readily help decide if there is platyspondyly leading to short-trunked disproportion. Similarly, looking at the
Name of Disorder	Inheritance	MIM No.	Locus	Gene	Protein
1. FGFR3 group					
Thanatophoric dysplasia type 1 (TD1)	AD	187600	4p16.3	FGFR3	FGFR3
Thanatophoric dysplasia type 2 (TD2)	AD	187601	4p16.3	FGFR3	FGFR3
SADDAN (severe achondroplasia-developmental delay- acanthosis nigricans)	AD	134934			
Achondroplasia	AD	100800	4p16.3	FGFR3	FGFR3
Hypochondroplasia	AD	146000	4p16.3	FGFR3	FGFR3
Hypochondroplasia-like dysplasia	AD, SP				
Camptodactyly, tall stature, and hearing loss syndrome (CATSHL)	AD	187600	4p16.3	FGFR3	FGFR3
2. Type 2 collagen group					
Achondrogenesis type 2 (ACG2; Langer-Saldino)	AD	200610	12q13.1	COL2A1	Type 2 collagen
Platyspondylic dysplasia, Torrance type	AD	151210	12q13.1	COL2A1	Type 2 collagen
Hypochondrogenesis	AD	200610	12q13.1	COL2A1	Type 2 collagen
Spondyloepiphyseal dysplasia congenital (SEDC)	AD	183900	12q13.1	COL2A1	Type 2 collagen
Spondyloepimetaphyseal dysplasia Strudwick type	AD	184250	12q13.1	COL2A1	Type 2 collagen
Kniest dysplasia	AD	156550	12q13.1	COL2A1	Type 2 collagen
Spondyloepiphyseal dysplasia	AD	271700	12q13.1	COL2A1	Type 2 collagen
Mild SED with premature onset arthrosis	AD	12q13.1	COL2A1	Type 2 collagen	
SED with metatarsal shortening (formerly Czech dysplasia)	AD	609162	12q13.1	COL2A1	Type 2 collagen
Stickler syndrome type 1	AD	108300	12q13.1	COL2A1	Type 2 collagen
3. Type 11 collagen group					
Stickler syndrome type 2	AD	604841	1p21	COL11A1	alpha-1 chain
Marshall syndrome	AD	154780	1p21	COL11A1	alpha-1 chain
Fibrochondrogenesis	AR	288520	1p21	COL11A1	alpha-1 chain
Otospondyloepiphysseal dysplasia (OSMED), recessive type	AR	215150	6p21.3	COL11A2	Type 11 collagen alpha-2 chain
Otospondyloepiphysseal dysplasia (OSMED), dominant type (Weissenbacher-Zweymüller syndrome, Stickler syndrome type 3)	AD	215150	6p21.3	COL11A2	Type 11 collagen alpha-2 chain
4. Sulphation disorders group					
Achondrogenesis type 1B (ACG1B)	AR	600972	5q32-33	DTDST	SLC26A2 sulfate transporter
Atelosteogenesis type 2 (AO2)	AR	256050	5q32-33	DTDST	SLC26A2 sulfate transporter
Diastrophic dysplasia (DTD)	AR	226900	5q32-33	DTDST	SLC26A2 sulfate transporter
MED, autosomal recessive type (rMED; EDM4)	AR	226900	5q32-33	DTDST	SLC26A2 sulfate transporter
SEMD, PAPSS2 type	AR	603005	10q23-q24	PAPSS2	PAPS-Synthetase 2
Table 1. (continued)

Disorder	Type	Chromosome	Genes or Proteins	Conditions
Chondrodysplasia with congenital joint dislocations, CHST3 type	AR	10q22.1	CHST3	Carbohydrate sulfotransferase 3; Chondroitin 6-sulfotransferase
Ehlers-Danlos syndrome, CHST14 type ("musculo-skeletal variant")	AR	15q14	CHST14	Carbohydrate sulfotransferase 14; Dermatan 4-sulfotransferase

5. Perlecan group

Disorder	Type	Chromosome	Genes or Proteins	Conditions
Dyssegmental dysplasia, Silverman-Handmaker type	AR	1q36-34	PLC (HSPG2)	Perlecan
Dyssegmental dysplasia, Roland-Desbuquois	AR	1q36-34	PLC (HSPG2)	Perlecan
Schwartz-Jampel syndrome (myotonic chondrodystrophy)	AR	1q36-34	PLC (HSPG2)	Perlecan

6. Aggrecan group

Disorder	Type	Chromosome	Genes or Proteins	Conditions
Dyssegmental dysplasia, Silverman-Handmaker type	AR	1q36-34	PLC (HSPG2)	Perlecan
Dyssegmental dysplasia, Roland-Desbuquois	AR	1q36-34	PLC (HSPG2)	Perlecan
Schwartz-Jampel syndrome (myotonic chondrodystrophy)	AR	1q36-34	PLC (HSPG2)	Perlecan

7. Filamin group and related disorders

Disorder	Type	Chromosome	Genes or Proteins	Conditions
Frontometaphyseal dysplasia	XLD	Xq28	FLNA	Filamin A
Osteodysplasty Melnick-Needles	XLD	Xq28	FLNA	Filamin A
Otopalatodigital syndrome type 1 (ODP1)	XLD	Xq28	FLNA	Filamin A
Otopalatodigital syndrome type 2 (ODP2)	XLD	Xq28	FLNA	Filamin A
Atelosteogenesis type 1 (AO1)	AD	3p14.3	FLNB	Filamin B
Atelosteogenesis type 3 (AO3)	AD	3p14.3	FLNB	Filamin B
Larsen syndrome	AD	3p14.3	FLNB	Filamin B
Spondylo-carpal-tarsal dysplasia	AR	5q35.1	SH3PD28	TKS4
Franck-ter-Haar syndrome	AD	5q35.1	SH3PD28	TKS4

8. TRPV4 group

Disorder	Type	Chromosome	Genes or Proteins	Conditions
Metatropic dysplasia	AD	12q24.1	TRPV4	Transient receptor potential cation channel, subfamily V, member 4
Spondyloepimetaphyseal dysplasia, Maroteaux type (Pseudo-Morquio syndrome type 2)	AD	12q24.1	TRPV4	Transient receptor potential cation channel, subfamily V, member 4
Spondylometaphyseal dysplasia, Kozlowski type	AD	12q24.1	TRPV4	Transient receptor potential cation channel, subfamily V, member 4
Brachyolmia, autosomal dominant type	AD	12q24.1	TRPV4	Transient receptor potential cation channel, subfamily V, member 4
Familial digital arthropathy with brachydactyly	AD	12q24.1	TRPV4	Transient receptor potential cation channel, subfamily V, member 4

9. Short-rib dysplasias (with or without polydactyly) group

Disorder	Type	Chromosome	Genes or Proteins	Conditions
Chondroectodermal dysplasia (Ellis-van Creveld)	AR	4p16	EVC1, EVC2	EvC gene 1, EvC gene 2
SRP type 1/3 (Saldino-Noonan/Verma-Naumoff)	AR	4p16	DYNC2H1	Dynein, cytoplasmic 2, heavy chain 1
SRP type 1/3 (Saldino-Noonan/Verma-Naumoff)	AR	3q25.33	IFT80	Intraflagellar transport 80 (homolog of)
SRP type 1/3 (Saldino-Noonan/Verma-Naumoff)	AR	3q25.33	IFT80	Intraflagellar transport 80 (homolog of)
SRP type 2 (Majewski)	AR	NEK1	Nima related kinase 1	
SRP type 4 (Beemer)	AR	269860		
Table 1. (continued)

Condition	Mode	Chromosome	Gene (Gene ID)	Description
Oral-Facial-Digital syndrome type 4 (Mohr-Majewski)	AR	11q22.3	DYNC2H1	Dynein, cytoplasmic 2, heavy chain 1
Asphyxiating thoracic dysplasia (ATD; Jeune)	AR	3q25.33	IFT80	Intraflagellar transport 80 (homolog of)
Asphyxiating thoracic dysplasia (ATD; Jeune)	AR	208500		
Thoracolaryngopelvic dysplasia (Barnes)	AD	187760		

10. Multiple epiphyseal dysplasia and pseudoachondroplasia group

Condition	Mode	Chromosome	Gene (Gene ID)	Description
Thoracolaryngopelvic dysplasia (Barnes)	AD	187760		

11. Metaphyseal dysplasias

Condition	Mode	Chromosome	Gene (Gene ID)	Description
Tiefenbacher type	AD	156500	COL10A1	Collagen 10 alpha-1 chain
Cartilage-hair-hypoplasia (CHH; metaphyseal dysplasia, McKusick type)	AR	250250	RMRP	RNA component of RNase H
Metaphyseal dysplasia, Jansen type	AD	156400	PTH1R	PTH/PTHrP receptor 1
Metaphyseal dysplasia with pancreatic insufficiency and cyclic neutropenia (Shwachman-Bodian-Diamond syndrome, SBDS)	AD	260400	SBDS	SBDS gene, function unclear
Metaphyseal anadysplasia type 1	AD/AR	309645	MMP13	Matrix metalloproteinase 13
Metaphyseal anadysplasia type 2	AR	20q13.12	MMP9	Matrix metalloproteinase 9
Metaphyseal dysplasia, Spahr type	AR	250400		
Metaphyseal acrocephalodyplasia (various types)	AR	250215		
Genochondromatosis (type1/type 2)	AD/SP	137360		
Metaphyseal chondromatosis with D-2-hydroxyglutaric aciduria	AR/SP	271550		

12. Spondylometaphyseal dysplasias (SMD)

Condition	Mode	Chromosome	Gene (Gene ID)	Description
Odontoachondrodysplasia (OCCD)	AR	184260		
Spondylometaphyseal dysplasia Kozlowski type	AD	184252		
Spondylometaphyseal dysplasia, Sutcliffe/corner fracture type	AD	184255		
SMD with severe genu valgum	AD	184253		
SMD with cone-rod dystrophy	AR	608940		
SMD with retinal degeneration, axial type	AR	602271		
Dysspondylochondromatosis	SP			
Chietro-spondylochondromatosis	SP			
Table 1. (continued)

13. Spondylo-epi(-meta)physeal dysplasias (SE(M)D)

Type	Mode	Chromosome	Gene/Location	Description
Dyggve-Melchior-Clausen dysplasia (DMC)	AR	18q12-21.1	DYM	Dymeclin
Immuno-osseous dysplasia (Schimke)	AR	2q34-36	SMARCAL1	SWI/SNF-related regulator of chromatin subfamily A-like protein 1
SED Wolcott-Rallison type	AR	2p12	EIF2AK3	Translation initiation factor 2-alpha kinase-3
SEMD Matrilin type	AD	11q22.3	MMP13	Matrix metalloproteinase 1
Metatropic dysplasia (various forms)	AD/AR	156530		
SED tarda, X-linked (SED-XL)	XLR	Xp22	SEDL	Sedlin
SPONASTRIME dysplasia	AR	271510		
SEMD short limb - abnormal calcification type	AR	1q23	DDR2	Discoidin domain receptor family, member2
SEMD with joint laxity (SEMD-JL) Beighton type	AR	271640		
Spondylo-megaepiphyseal-metaphyseal dysplasia (SMMD)	AR	4p16.1	NKX3	NK3 Homeobox
Spondyloepiphyseal Ehlers-Danlos syndrome	AR	11p.11.2	SLC39A13	Zinc transporter ZIP13
SEMD with joint laxity (SEMD-JL) leptodactylic or Hall type	AD	603546		
Platyspondly (brachyolmia) with amelogenesis imperfecta	AD	601216		
Late onset SED, autosomal recessive type	AR	609223		
Brachyolmia, Hobaek, and Toledo types	AR	271530, 271630		

14. Severe spondylodyplastic dysplasias

Type	Mode	Chromosome	Gene/Location	Description
Achondrogenesis type 1A (ACG1A)	AR	14q32.12	TRIP11	Golgi-microtubule-associated protein, 210-kDa; SMAP210
SMD Sedaghatian type	AR	250220		
Severe SMD Sedaghatian-like	AR	7q11	SBDS	SBDS gene, function still unclear
Opsismodyplasia	AR	258480		
Schneckenbecken dysplasia	AR	269250	1p31.3	SLC35D1

15. Acromelic dysplasias

Type	Mode	Chromosome	Gene/Location	Description
Trichorhinophalangeal dysplasia types 1/3	AD	8q24	TRPS1	Zinc finger transcription factor
Trichorhinophalangeal dysplasia type 2 (Langer- Giedion)	AD	8q24	TRPS1, EXT1	Zinc finger transcription factor
Acrocapitofemoral dysplasia	AR	2q33-q35	IHH	Indian hedgehog
Cranioectodermal dysplasia (Levin-Sensenbrenner) type 1	AR	218330		
Cranioectodermal dysplasia (Levin-Sensenbrenner) type 2	AR	2p24.1	WDR35	WD repeat-containing protein 35
Geleophysic dysplasia	AR	9q34.2	ADAMTS2	ADAMTS-like protein 2
Geleophysic dysplasia, other types	AR			
Acromicric dysplasia	AD	102370		
Acrodysostosis	AD	101800		
Angel-shaped phalangeopiphysal dysplasia (ASPED)	AD	105835		
Acrolaryngeal dysplasia	AD			
Craniofacial conodysplasia	AD			
Familial digital arthropathy with brachydactyly	AD	606835		
Saldino-Mainzer dysplasia	AR	266920		
16. Acromesomelic dysplasias				
-------------------------------	------------------			
Acromesomelic dysplasia type Maroteaux	AR 602875 9p13-12 NPR2 Natriuretic peptide receptor 2			
Grebe dysplasia	AR 200700 20q11.2 GDF5 Growth and differentiation factor 5			
Fibular hypoplasia and complex brachydactyly (Du Pan)	AR 228900 20q11.2 GDF5 Growth and differentiation factor 5			
Acromesomelic dysplasia with genital anomalies	AR 609441 4q23-24 BMPR1B Bone morphogenetic protein receptor 1B			
Acromesomelic dysplasia, Osebold-Remondini type	AD 112910			

17. Mesomelic and rhizo-mesomelic dysplasias	
Dyschondrosteosis (Leri-Weill)	Pseudo-AD 127300 Xpter-p22.32 SHOX Short stature - homeobox gene
Langer type (homozygous dyschondrosteosis)	Pseudo-AR 249700 Xpter-p22.32 SHOX Short stature - homeobox gene
Robinow syndrome, recessive type	AR 268310 9q22 ROR2 Receptor tyrosine kinase-like orphan receptor 2
Robinow syndrome, dominant type	AD 180700
Mesomelic dysplasia, Korean type	AD 2q24-32
Mesomelic dysplasia, Kantaputra type	AD 156232 2q24-32
Mesomelic dysplasia, Nievergelt type	AD 163400
Mesomelic dysplasia, Kozlowski-Readon type	AD 249710
Mesomelic dysplasia with acral synostoses (Verloes-David-Pfeiffer type)	AD 600383 8q13 SULF1 and SLCOSA1 Heparan sulfatase 6-O-endosulfatase 1 and solute carrier organic anion transporter family member SA1
Mesomelic dysplasia, Savarirayan type (Triangular Tibia-Fibular Aplasia)	SP 605274

18. Bent bones dysplasias	
Campomelic dysplasia (CD)	AD 114290 17q24.3-25.1 SOX9 SRY-box 9
Stüve-Wiedemann dysplasia	AR 601559 5p13.1 LIFR Leukemia inhibitory factor receptor
Cumming syndrome	211890
Kyphomelic dysplasia, several forms	211350

Bent bones at birth can be seen in a variety of conditions, including Antley-Bixler syndrome, cartilage-hair hypoplasia, hypophosphatasia, osteogenesis imperfecta, dyssegmental dysplasia, and others

19. Slender bone dysplasia Group	
3-M syndrome (3M1)	AR 273750 6p21.1 CUL7 Cullin 7
3-M syndrome (3M2)	AR 619921 2q35 PBSL1 Obscurin-like 1
Kenny-Caffey dysplasia type 1	AR 244460 1q42-q43 TBCE tubulin-specific chaperone E
Kenny-Caffey dysplasia type 2	AD 127000
Microcephalic osteodysplastic primordial dwarfism type 1/3 (MOPD1)	AR 210710 2q
Microcephalic osteodysplastic primordial dwarfism type 2 (MOPD2; Majewski type)	AR 210720 21q PCNT2 Pericentrin 2
Microcephalic osteodysplastic dysplasia, Saul-Wilson type	AR
IMAGE syndrome (Intrauterine Growth Retardation, Metaphyseal Dysplasia, Adrenal Hypoplasia, and Genital Anomalies)	XL/AD 300290
extremities may help defining rhizomelia, mesomelia, and acromelia. It should be noted that these descriptive terms of limb segments may be more correct radiologically as the clinical visualization is accentuated by skin folds or other tissues rather than the length of the underlying bone. Rhizomelic chondrodysplasia punctata (CDP) is a good example of a rhizomelic skeletal dysplasia diagnosed with the additional radiological findings of punctate calcifications (stippling) and coronal clefted vertebrae (Figure 1). Mesomelia alone will suggest a long heterogeneous differential diagnosis list of mesomelic dysplasias. Presence of acromelia is important to recognize, as it may be an isolated finding. Presence of isolated acromelia may suggest skeletal dysplasias such as acromicric dysplasia, acrodysostosis, geleophysic dysplasia or nonskeletal dysplasias such as the brachydactilies. Brachydactyly type E, characterized by a short fourth metacarpal bone may support clinical or laboratory findings in Turner syndrome and pseudohypoparathyroidism, respectively. The absence of proportional acromelic shortening is also very important to remember in spondyloepiphyseal dysplasia congenita (and most forms of type II collagenopathies) (7).

Step II (Assessment of Epiphyseal/Metaphyseal/ Diaphyseal Ossification): Abnormal development of epiphyses, metaphyses, and diaphyses has given rise to the original nomenclature using those site names (Figure 2). An overall look at the radiological survey will suggest epiphyseal dysplasias by the presence of very small (delayed ossification) and/or irregularly ossified epiphyses (Figure 3a). If the metaphyses are widened, flared, and/or irregular, the diagnosis of a form of metaphyseal dysplasia is established (Figure 3b, 3c and Figure 4). Diaphyseal dysplasia is present when there is diaphyseal widening and/or cortical thickening or marrow space expansion or restriction. Isolated vertebral involvement without changes in the growth plate region in a patient with short-trunked

Table 1. (continued)

Dysplasias with multiple joint dislocations
Desbuquois dysplasia (with accessory ossification center in digit 2)
Desbuquois dysplasia with short metacarpals and elongated phalanges
Desbuquois dysplasia (other variants with or without accessory ossification center)

Pseudodiastrophic dysplasia
AR

Modified and reproduced from Warman ML et al. Nosology and Classification of Genetic Skeletal Disorders: 2010 Revision. Am J Med Genet 155A:943-988.
short stature should suggest brachyolmia (Figure 5a and 5b). Figure 3 helps to combine the aforementioned skeletal involvement, such as forms of spondyloepiphyseal dysplasia and the group of spondylo-epi-(meta)-physeal dysplasias.

Figure 3. a,b,c. Radiographic manifestations of the dysplasias

Figure 4. Radiographic abnormalities helpful in classification of skeletal dysplasias

Figure 5. a,b. Brachyolmia. Note platyspondyl and overfaced pedicles

Figure 6. Fractures in Osteogenesis Imperfecta

Figure 7. Osteopetrosis, generalized osteosclerosis
dysplasias [SEiMDs]. Fractures can be seen in all types of OI (Figure 6), osteosclerotic disorders including osteopetrosis (Figure 7) and severe hypophosphatasia (Figure 8) (7).

Following the evaluation of limb segments and the epiphyseal growth plate, focus on all the skeletal structures available in the genetic skeletal survey is mandatory to recognize a well-described skeletal dysplasia from a previous broad categorization into a specific group. This precise evaluation will include a search for pathognomonic findings, such as snail-shaped iliac bones of Schneckenbecken dysplasia (Figure 9), “lacy” appearance of iliac crest in Dyygve-Melchior-Clausen syndrome (Figure 10), and loss of mandibular angle accompanied by wormian bones and acroosteolysis in pycnodysostosis (Figure 11 a,b,c) (7).

Step III (Differentiation of Normal Variants from Pathological Abnormalities): This last step requires experience in the field of pediatric radiology. It essentially involves recognition of normal variation from pathological abnormalities in the growing skeleton. Every portion of every bony structure should be looked at in an effort to combine the clinical, often dysmorphic findings previously noted in evaluation of the patient. Pathognomonic findings help to narrow the group of differential diagnosis leading to a specific entity.

At this point, having had a thorough clinical and radiographic assessment, even a simple radiographic grouping can be helpful to the clinician for the establishment of clinical care and follow-up. Table 2 provides a list of the grouping mentioned with common specific entities to consider (7). If a specific diagnosis cannot be made, it is expedient to send the case to a local expert, or an expert group in Skeletal Dysplasias such as the International Skeletal Dysplasia Registry at Cedars Sinai MC [www.csmc.edu/skeletaldysplasia].

Figure 8. Infantile hypophosphatasia

Figure 9. Schneckenbecken dysplasia. Note severe platyspondyly, thin ribs and snail-shaped iliac bones

Figure 10. Dyygve-Melchior-Clausen syndrome. Note “lacy” iliac crest

Figure 11. a,b,c. Pycnodysostosis. Loss of mandibular angle with wormian bones, large fontanelle and acroosteolysis in distal phalanges of hand
Radiological Groups	Common Entities	Radiological Findings
Achondroplasia	**Thanatophoric Dysplasia**	Skull: Proportionately large skull, narrow skull base, kleeblattschadel Spine: flat, small vertebral bodies with rounded anterior ends Pelvis: small, flared iliac bones; very narrow sacrosciatic notches; flat, dysplastic acetabula Extremities: generalized micromelia: French telephone receiver femurs, round proximal femoral metaphyses with medial spike
	Achondroplasia	Skull: enlarged, midface hypoplasia; rarely hydrocephalus, tight foramen magnum Thorax: small; shortened and anteriorly splayed ribs Spine: slight platyspondyly, short and anteriorly round vertebral bodies that normalize from childhood on; very short pedicles with decreased interpedicular distance marked in lumbar spine; posterior vertebral scalloping that persists through life Pelvis: flared, superiorly and laterally flattened ilia (elephant ear-shaped iliac wings), narrow sacrosciatic notches, flat acetabular roofs Extremities: rhizo-, meso-, and acromelia Hands: brachydactyly, metacarpal metaphyseal cupping, phalangeal metaphyseal widening Knees: proximal femoral fade-out (infancy); hemispheric capital femoral epiphyses, short femoral necks Arms: prominent deltoid insertion area
	Hypochondroplasia	The radiological findings are identical to achondroplasia but to a milder degree. All cases exhibit interpedicular narrowing in the lumbar spine. There may be brachydactyly, fibular overgrowth, short femoral necks. Other achondroplasia-like changes may or may not be present.
Metatropic Dysplasia	**Metatropic Dysplasia**	Thorax: small; short ribs Spine: dense wafer vertebral bodies (newborn), platyspondyly (child, adult), scoliosis (adult) Pelvis and Hips: short, squared iliac wings; flat irregular acetabular roof; narrow sacrosciatic notches; halberd (hunting ax)-shaped proximal femurs Extremities: trumpet-shaped metaphyses (newborn), dumbbell-shaped short tubular bones of hand and feet
Short-Rib Polydactyly	**Short-Rib (With or Without)-Polydactyly Dysplasia**	Thorax: small; extremely short horizontal ribs Spine: relatively normal Pelvis: small, dysplastic ilia Extremities: micromelia; round-ended femora; ovoid or tiny normal-shaped tibiae; severe brachydactyly with hypoplastic middle and distal phalanges; polydactyly common, not essential
	Asphyxiating Thoracic Dysplasia (Jeune’s syndrome)	Thorax: long and barrel shaped, handlebar clavicles, short horizontal ribs with bulbous anterior ends Pelvis: normal Extremities: generalized shortening, precocious proximal femoral epiphyseal ossification, cone-shaped epiphyses in hand
	Chondroectodermal Thorax (Ellis van Creveld) Dysplasia	Thorax: small, moderately short ribs Pelvis: small; short, flared iliac wings; Trident acetabula; narrowed sacrosciatic notches Spine: normal Extremities: generalized shortening with meso- and acromelia; premature ossification of capital femoral epiphyses, humeral and femoral bowing Hands: characteristic-postaxial polydactyly, capitate/hamate (and other carpal) fusions, extra carpal bone, cone-shaped epiphyses Arms: polydactyly
Table 2. (continued)

Diastrophic Dysplasia Group	**Diastrophic Dysplasia**	**MED-Multilayered Patellae/Brachydactyly/Clubfeet**	**Type II Collagenopathies**	**Spondyloepiphyseal Spine: mild platyspondyly with centrally humped end plates with intervertebral disc space narrowing**	**Kniest Dysplasia**	**Other Spondylo-Epi-(Meta)Physeal Dysplasias**	**Multiple Epiphyseal Dysplasia and Pseudoachondroplasia Group**	**Chondrodysplasia Punctata Group**	
Diastrophic Dysplasia	Head: ear pinna calcification	Thorax: moderately small	Spine: oval vertebral bodies (newborn), anteriorly rounded platyspondyly (later)	Thorax: small, short ribs	Spine: mild platyspondyly with centrally humped end plates with intervertebral disc space narrowing	Skull: microcephaly	Skull: normal	Skine: coronal clefs (newborn), platyspondyly with end plate irregularity (later)	
Dysplasia	Thorax: moderately small	Head: ear pinna calcification	Pelvis: absent pubic ossification (newborn and infancy)	Spine: oval vertebral bodies (newborn), anteriorly rounded platyspondyly (later)	Extremities: mild-moderate “epiphyseal dysplasia” (small and irregular epiphyseal centers), sparing hands and feet	Thorax: broad; anterior rib widening	Thorax: mild anterior rib widening	Extremities: small, irregular, flattened ossification centers (epiphyses); small, irregular carpal (and tarsal) centers	
Diastrophic	Spine: progressive scoliosis, kyphosis, odontoid hypoplasia, cervical kyphosis	Extremities: micromelia; short, thick tubular bones; generalized bony dystrophy-short ovoid first metacarpal, twisted metatarsal, accessory and irregular carpal bones; epiphyseal dysplasia, joint dislocations	Pelvis: small, rounded posteriorly convex vertebrae with anterior central tongue, mild anterior rib widening	Spine: double-humped vertebral bodies with end plate notching and posterior scalloping	Extremities: moderate shortening with epiphysis/metaphysis changes, generalized brachydactyly with cone-shaped epiphyses and small carpal bones	Pelvis: small iliac wings with irregularly calcified “lacy” manubrium	Pelvis: rounded iliac wings, hypoplastic, poorly formed acetabular roofs	Extremities: mini-epiphyses in the hips, moderate-severe generalized epiphyseal dysplasia (small, irregular, poorly ossified), metaphyseal widening and irregularity in the knees, proximally rounded metacarpals with mini-epiphyses in the hands, irregular carpal/tarsal bones	
Dysplasia	Extremities: micromelia; short, thick tubular bones; generalized bony dystrophy-short ovoid first metacarpal, twisted metatarsal, accessory and irregular carpal bones; epiphyseal dysplasia, joint dislocations	Epiphyseal dysplasia especially at hips (half/quarter moon shaped)	Extremities: normally modeled but shortened long bones, significant generalized ossification delay (early) and hypoplastic/dysplastic epiphyses (later), unossified talus/calcaneus in the newborn, normal hands and feet with ossification delay	Extremities: small to normal	Extremities: double-layered patella (lateral knee radiograph)	Extremities: mild brachydactyly	Extremities: twisted metatarsals		
Diastrophic Head: ear pinna calcification	Patellae/Brachydactyly/Clubfeet	Mild brachydactyly	Thorax: small, short ribs	Thorax: broad; anterior rib widening	Double layered patella (lateral knee radiograph)	Clubfeet/ twistetmetatarsals			
Dysplasia Thorax: moderately small	**Kniest Dysplasia**	**Other Spondylo-Epi-(Meta)Physeal Dysplasias**	**Spondyloepiphyseal**	**Dyggve-Melchior-Clausen Syndrome**	**Multiple Epiphyseal Dysplasia and Pseudoachondroplasia Group**	**Chondrodysplasia Punctata Group**	**Multiple Epiphyseal Dysplasia**	**Pseudoachondroplasia**	**Rhizomelic Chondrodysplasia**
Spine: progressive scoliosis, kyphosis, odontoid hypoplasia, cervical kyphosis	**Spondyloepiphyseal**	**Dyggve-Melchior-Clausen Syndrome**	**Spondyloepiphyseal**	**Multiple Epiphyseal Dysplasia**	**Pseudoachondroplasia**	**Rhizomelic Chondrodysplasia**			
Extremities: micromelia; short, thick tubular bones; generalized bony dystrophy-short ovoid first metacarpal, twisted metatarsal, accessory and irregular carpal bones; epiphyseal dysplasia, joint dislocations	**Congenita**	**Skull:** microcephaly	**Tarda**	**Skull:** normal	**Skull:** normal	**Skine:** coronal clefs (newborn), platyspondyly with end plate irregularity (later)			
	Thorax: moderately small	**Thorax:** broad; anterior rib widening	**Skull:** microcephaly	**Skull:** normal	**Skull:** normal	**Skine:** coronal clefs (newborn), platyspondyly with end plate irregularity (later)			
	Spine: progressive scoliosis, kyphosis, odontoid hypoplasia, cervical kyphosis	**Thorax:** broad; anterior rib widening	**Skull:** microcephaly	**Skull:** normal	**Skull:** normal	**Skine:** coronal clefs (newborn), platyspondyly with end plate irregularity (later)			
	Extremities: micromelia; short, thick tubular bones; generalized bony dystrophy-short ovoid first metacarpal, twisted metatarsal, accessory and irregular carpal bones; epiphyseal dysplasia, joint dislocations	**Spine:** double-humped vertebral bodies with end plate notching and posterior scalloping	**Skull:** microcephaly	**Skull:** normal	**Skull:** normal	**Skine:** coronal clefs (newborn), platyspondyly with end plate irregularity (later)			
		Pelvis: small iliac wings with irregularly calcified “lacy” manubrium	**Skull:** microcephaly	**Skull:** normal	**Skull:** normal	**Skine:** coronal clefs (newborn), platyspondyly with end plate irregularity (later)			
		Extremities: moderate shortening with epiphysis/metaphysis changes, generalized brachydactyly with cone-shaped epiphyses and small carpal bones	**Skull:** microcephaly	**Skull:** normal	**Skull:** normal	**Skine:** coronal clefs (newborn), platyspondyly with end plate irregularity (later)			
			Skull: normal	**Skull:** normal	**Skull:** normal	**Skine:** coronal clefs (newborn), platyspondyly with end plate irregularity (later)			
				Skull: normal	**Skull:** normal	**Skine:** coronal clefs (newborn), platyspondyly with end plate irregularity (later)			
					Skull: normal	**Skine:** coronal clefs (newborn), platyspondyly with end plate irregularity (later)			
						Skine: coronal clefs (newborn), platyspondyly with end plate irregularity (later)			
							Skine: coronal clefs (newborn), platyspondyly with end plate irregularity (later)		
Table 2. (continued)									

Conradi-Hünermann Syndrome/Dysplasia	Spine: diffuse stippling, scoliosis in childhood, abnormal vertebral body formation Extremities: mild symmetric or asymmetric shortening, diffuse generalized stippling in epiphyseal areas; hands and feet-normal aside from stippling **stippling resolves during infancy to develop normal or malformed epiphyseal centers**								
Brachytelephalangic Chondrodysplasia Punctata	Spine: hypoplastic vertebral bodies with posterior scalloping and anterior rounding; stippling, especially in the sacrococcygeal area Extremities: normal length (mildly short), brachydactyly with hypoplastic tufts and deformed hypoplastic proximal phalanx of the second digit in the hand and first metatarsal of the foot								
Jansen-Type Metaphyseal Chondrodysplasia	Skull: Brachycephaly, platybasia, small mandible Thorax: normal size; expanded irregular anterior rib ends Extremities: extensive irregularity of markedly expanded metaphyses- wide separation of epiphyses from metaphyses								
McKusick-Type Metaphyseal Chondrodysplasia	Skull: Brachycephaly, platybasia, small mandible Thorax: normal size; expanded irregular anterior rib ends Extremities: extensive irregularity of markedly expanded metaphyses- wide separation of epiphyses from metaphyses								
Schmid-Type Metaphyseal Chondrodysplasia	Skull: Brachycephaly, platybasia, small mandible Thorax: normal size; expanded irregular anterior rib ends Extremities: extensive irregularity of markedly expanded metaphyses- wide separation of epiphyses from metaphyses								
Kozlowski-Type Spondylometaphyseal Dysplasia	Spine: severe platyspondyly, anteriorly rounded/wedged vertebral bodies, increased intervertebral disc spaces, overfaced pedicles Pelvis: short, flared iliac wings; irregular hypoplastic acatabular roof Extremities: widening, sclerosis and irregularity of metaphyses; hemispheric capital femoral epiphysis and widened proximal femoral growth plate with irregularity on both sides; hands-mild shortening with metaphyseal cupping and irregularity , marked carpal ossification delay								
Dyschondrosteosis	Extremities: symmetrical bowing and shortening of both radii, shortened ulnae, radiographic Madelung’s deformity changes, variable tibial and fibular shortening								
Trichorhinophalangeal Syndrome Type I and II Acromesomelic Dysplasia of Maroteaux	Spine: oval vertebral bodies (early), anterior beaking and posterior wedging (later), gibbus and/or kyphoscoliosis ultimately Extremities: shortening of all tubular bones, especially radius/ulna and tibia/fibula; very short tubular bones of hand and feet with cone-shaped epiphyses and large great toes								
Cleidocranial Dysplasia	Skull: large, brachycephalic; wormian bones; wide sutures; persistently open anterior fontanelle Thorax: absence/hypoplasia of clavicles, mildly shortened ribs with downward slope, 11 ribs Spine: significant posterior wedging of thoracic vertebrae Pelvis: high narrow iliac wings, absence/hypoplasia of pubic bones Extremities: numerous pseudoepiphyses of metacarpals and tapered distal phalanges in the hands								
Table 2. (continued)									
---------------------------	---								
Bent Bone Dysplasia									
Group									
Campomelic Dysplasia	Skull: enlarged, narrow with a small face								
	Thorax: mildly short ribs, 11 ribs; severe hypoplasia of the bodies of scapulae								
	Spine: nonossification of thoracic pedicles, cervical kyphosis, hypoplasia of cervical vertebral bodies								
	Pelvis: narrow, tall, iliac wings								
	Extremities: proportionately long, bowed femurs, short tibiae; short long bones of upper extremity								
Dysostosis Multiplex									
Group									
Dysostosis Multiplex	Skull: enlarged neurocranium, abnormal J-shaped sella								
	Thorax: short, thick clavicles; paddle (oar)-shaped ribs; hypoplastic glenoid								
	Spine: gibbus, superior notched (inferior beaked) thoracolumbar vertebral bodies, upper cervical subluxation								
	Pelvis: flared, small iliac wings with inferior tapering, steep acetabular roofs								
	Extremities: diaphyseal widening of long bones (marrow expansion); dysplastic epiphyses; characteristic hand-brachydactyly, proximal metacarpal “pointing” diaphyseal widening of metacarpals and proximal/middle phalanges, small irregular carpal bones								
Morquio’s Syndrome	Skull: no J-shaped sella								
(MPS IVA, B)	Thorax: widened, not oar shaped ribs								
	Spine: middle tonguing, not inferior beaking								
	Pelvis: no tapering of ileum								
	Extremities: proximal metacarpal rounding, not pointing, of hands								
Mucolipidosis II	Extremities: severe osteopenia, poorly defined cortices, “periosteal cloaking” (newborn); rickets-like appearance in distal ulna and radius (infancy)								
(I Cell Disease)	Dysostosis multiplex occurs later								
Dysplasias With Decreased Bone Density									
Osteogenesis	Skull: very poor to no ossification								
imperfecta	Thorax: small, narrow chest; beaded ribs								
type II, perinatal lethal	Spine: severe deossification, collapsed vertebral bodies								
Osteogenesis	Skull: wormian bones (>8 to 10), variable decreased ossification								
Imperfecta-other types	Spine: wedged or collapsed vertebrae								
	Remaining skeleton: osteoporosis and pathological fractures								
Dysplasias With Defective Mineralization									
Hypophosphatasia	Perinatal lethal/Infantile:								
	Skull: decreased ossification with single island-like centers for frontal occipital and parietal bones								
	Thorax: poorly ossified ribs; sporadic dropout of ribs; thin, wavy, fractured ribs								
	Spine: sporadic ossified vertebral bodies, dense and osteopenic vertebrae, butterfly shaped vertebral bodies								
	Extremities: generalized decreased ossification, chromosome-shaped femurs, metaphyseal cupping and irregularity, central lucent defect, bowed femora								
	*clavicles are not affected; infantile form is less severe								
	Adult								
	Generalized osteopenia								
	Extremities: metaphyseal widening (rickets-like chages), punched-out metaphyseal lesions, pathologic fractures								
Increased Bone Density Without Modification of Bone Shape Group									
Osteopetrosis	Generalized increased bone density								
	Skull: thick and dense, especially at the base								
	Thorax: splayed anterior ribs								
	Spine: “sandwich” vertebral bodies								
	Extremities: splayed metaphyses, bone-within-bone configuration, dense metaphyseal bands								
Table 2. (continued)

Condition	Description
Pyknody sostosis	Generalized osteosclerosis Skull: marked delay in closure of fontanelles and sutures, wormian bones, obtuse or absent mandibular angle, dense skull Thorax: resorbed acromial ends of clavicles Extremities: resorbed phalangeal tufts
Craniotubular Dysplasias	
Craniodiaphyseal Dysplasia	Skull: marked thickening and sclerosis of calvarium and facial bones, obliteration of foramina and sinuses Thorax: diffusely widened, sclerotic ribs and clavicles Extremities: straightened, undermodeled long bones diaphyses with metaphyseal sparing; sclerosis (cortical thickening) of the short tubular bones of hands
Craniometaphyseal Dysplasia	Skull: diffuse hyperostosis of cranial vault base and facial bone, obliterated dysplasia paranasal sinuses Extremities: sclerosis of diaphyses (early), undermodeled flared metaphyses of long bones (later)
Pyle Disease	Skull: Mild skull and facial involvement, minimal base-of-skull sclerosis, prominent supraorbital ridging Thorax: mildly thick clavicles and ribs Pelvis: thickened ischium and pubis Extremities: marked undertubulation of long bones, especially distal femurs (Erlenmeyer flask deformity); distal flaring of metacarpals and proximal flaring of phalanges
Disorganized Development of Cartilaginous Bony and Fibrous Components of the Skeleton	
Spondyloenchondrodysplasia	Spine: severe platyspondyly with end plate irregularity Extremities: enchondromata at distal and proximal ends of long bones, hands and feet are rarely affected
Dysspondyloenchondromatosis	Spine: vertebral anomalies, hemivertebrae, anisospondyly and end plate irregularity Extremities: typical enchondromata, including hands and feet, with long bone asymmetry
Osteolysis Group	
Multicentric Carpal/Tarsal Osteolysis With or Without Nephropathy	Extremities (wrist and ankles): deossification of carpal bones, loss of carpal/tarsal contours, bone resorption and collapse, sclerosis sometimes extending into adjacent short tubular bones
Patellar Dysplasia Group	
Nail-Patella Syndrome	Spine: normal Pelvis: iliac horn in the center of the iliac wing extending posteriorly Extremities: (knees and elbows) hypoplastic or absent patella’s, radial head and capitellum hypoplasia/effusion dislocation

Conclusion

The complete group of osteochondrodysplasias, although individually rare, is an important group of disorders for healthcare providers who deal with individuals with short stature. These individuals present with significant morbidities due to destruction of bone and cartilage caused by defects in linear growth, bone modeling and regeneration. Regardless of the specific diagnosis, skeletal dysplasias in general share clinical and radiological findings helping us to group them in several ways. In this review, we aimed to focus on the radiological aspect of assessment of skeletal dysplasias. We also included an outline of the basic clinical approach to an individual with a suspected skeletal dysplasia. The recent advances in the field of molecular pathogenetic mechanisms underlying skeletal dysplasias are beyond the scope of this review. However, we would like to emphasize that accurate clinical, radiological and finally molecular diagnosis of skeletal dysplasias is more important than ever in this era of up-to-date genetic counseling, prenatal, preimplantation genetic diagnoses and hopefully, molecularly targeted therapeutics in the future.
Acknowledgement

RSL, is supported by NIH GRANT# HD 22657.

References

1. Orioli IM, Castilla EE, Barbosa-Neto JG. The birth prevalence rates for skeletal dysplasias. J Med Genet 1986;23:328-332.
2. Warman ML, Cormier-Daire V, Hall C, Krakow D, Lachman R, LeMerrer M, Mortier G, Mundlos S, Nishimura G, Rimoin DL, Robertson S, Savarirayan R, Silence D, Spranger J, Unger S, Zabel B, Superti-Furga. Nosology and classification of genetic skeletal disorders: 2010 revision. Am J Med Genet 2011;155:943-968.
3. Unger S, Lachman RS, Rimoin DL. Chondrodysplasias. In: Rimoin DL, Connor JM, Pyeritz RE, Korf B (eds) Emery and Rimoin’s Principles and Practice of Medical Genetics, 5th ed., vol. 3. Elsevier, Philadelphia, PA, USA, 2007:3709-3753.
4. Superti-Furga A, Unger S. Nosology and classification of genetic skeletal disorders: 2006 revision. Am J Med Genet A 2007;143:1-18.
5. Krakow D, Rimoin DL. The skeletal dysplasias. Genet Med 2010;12:327-341.
6. Mortier GR. The diagnosis of skeletal dysplasias: a multidisciplinary approach. Eur J Radiol 2001;40:161-167.
7. Lachman RS. Taybi and Lachman’s Radiology of Syndromes, Metabolic Disorders and Skeletal Dysplasias, 5th ed., Elsevier, Philadelphia, PA, USA, 2007.