Prevalence and Characteristics of Chronic Pain in the Chinese Community-dwelling Elderly: A Cross-sectional Study.

Xiahui Li
West China School of Nursing, Sichuan University

Wei Zhu
West China Hospital, Sichuan University

Jiping Li (jp-li@163.com)
West China School of Nursing, Sichuan University https://orcid.org/0000-0002-8046-0271

Chan Huang
Chengdu University

Fan Yang
West China Second University Hospital, Sichuan University

Research article

Keywords: chronic pain, the elderly, community-dwelling, cross-sectional study

DOI: https://doi.org/10.21203/rs.3.rs-195416/v1

License: © This work is licensed under a Creative Commons Attribution 4.0 International License. Read Full License
Abstract

Background: Chronic pain has adverse impacts on health and daily life in the elderly. Gaining insight into chronic pain that affects the Chinese community-dwelling elderly is important for pain management in China, which possesses the largest elderly population in the world.

Methods: This was a cross-sectional design that followed the STROBE Guideline. A randomized cluster sampling method was used to recruit participants in the Sichuan Province from Dec 2018 to May 2019. Face-to-face interviews were performed in order to collect socio-demographic data, characteristics and health seeking behaviors of chronic pain through a self-designed questionnaire.

Results: A total of 1,381 older adults participated in this study. Among these participants, 791 (57.3%) had chronic pain. Here, prevalence and pain intensity were both found to increase from the 60-69 group to the 70-79 group, which then decreased in the ≥80 group with no significant differences in sex (p>0.05). The most common pain locations were observed to be in the legs/feet (53.5%), head (23.6) and abdomen/pelvis (21.1%). Among the elderly suffering from chronic pain, only 29.4% sought medical help while 59.2% received medication and 59.7% adopted non-drug therapy.

Conclusion: Chronic pain is a common health concern in the Chinese community-dwelling elderly, which possesses different characteristics compared to populations from other countries. In this regard, easier access to medication assistance and provision of scientific guidance for non-drug therapy may serve as satisfactory approaches in improving pain management.

Background

The International Association for the Study of Pain (IASP) has defined chronic pain as an unpleasant sensory and emotional experience associated with actual or potential tissue damage, which may also be described in term of such damage lasting for over 3 months [1]. As the population continues to age, a rise in prevalence for chronic and degenerated diseases is inevitable, which eventually leads to a high incidence of chronic pain in the elderly [2, 3]. Previous studies have investigated the incidence of chronic pain in the elderly, showing a prevalence ranging from 43.8–55.2% in elderly people residing in the east [4–7], being 40–66% prevalent in elderly people residing in the west [8, 9].

Chronic pain affirmatively impairs the health status and daily life of the elderly. Previous studies have found that chronic pain impairs the activities of daily living [10, 11], dignity [12], sleep quality [13] and quality of life [14]. Chronic pain was also reported to cause social isolation, fatigue and depression in the elderly [8, 15]. Moreover, chronic pain can increase the utilization of medical resources of society as well as the healthcare costs of individuals [14, 16]. Despite a series of studies have been conducted on chronic pain in the elderly, the prevalence and impacts of chronic pain in the elderly remain underestimated. Pain is always a recognized feature of old age to both physicians and caregivers [17]. In terms of the elderly, nociception may change with aging, and the affected elderly become accustomed to living with chronic pain, causing them not report their pain or seek medical attention [18]. Of course, the elderly populations in different cultures have different pain expression capacities that influences the results of the corresponding studies [19]. Hence, it is necessary to
gain insight into the prevalence of chronic pain in the elderly according to different cultural and economic backgrounds.

Chronic pain also serves as a major health problem in China as the country possesses the largest number of the elderly in the world. According to the National Bureau of Statistics of China, the proportion of people aged 60 years and above had reached 16% in 2015 [20]. Thus, researchers have conducted studies to investigate the prevalence of chronic pain in the Chinese elderly. Xue, Chu [21] investigated the prevalence of chronic pain in the elderly in those aged 80 years and above in four provinces in China, which found that 76.4% of participants suffered from chronic pain. Additionally, Wang, Xu [22] conducted a survey in elderly inpatients and reported that 55.5% of elderly inpatients had chronic pain. Accordingly, studies focusing on community-dwelling elderly mainly reported on the prevalence of chronic pain rather than on characteristics like interference with daily life, health seeking behaviors or conditions of medication use among the corresponding elderly [6, 23]. The aforementioned studies focused on specific subpopulations or prevalence of chronic pain that had limited insights into chronic pain.

Understanding the entire picture of chronic pain, including its prevalence, characteristics, pain-related health seeking behaviors in community-dwelling elderly is crucial for policy making and chronic pain management. Thus, this study aimed to investigate the prevalence, characteristics and pain-related health seeking behaviors due to chronic pain in the elderly in China.

Objectives

This study aimed to investigate the prevalence, characteristics and pain-related health seeking behaviors in the Chinese community-dwelling elderly.

Methods

Study design

This was a cross-sectional study that followed the Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) statement.

Setting

This study was conducted in the Sichuan Province in west China from Dec 2018 to May 2019, where people aged 60 years old or above has exceeded 9% of the population.

Participants

The participants in this study were recruited through two stages. First, from 21 cities/autonomous prefectures in Sichuan Province, seven cities/autonomous prefectures were selected according to their socioeconomic status (Chengdu City, Luzhou City, Zigong City, Neijiang City, Nanchong City, Ganzi Autonomous Prefecture and Mianyang City). Second, a random cluster sampling method was used to recruit participants from 8 communities from the selected cities/autonomous prefectures. The inclusion criteria were: participants aged 60 years old over above and those who agree to participate in the study. The exclusion criteria were having
difficulties in communication and psychological diseases. The expected prevalence of chronic pain was set as 49.8%, according to a recent study in China [6]. A sample size of 1152 was calculated using the formula:

$$Z^2_{\alpha/2} p (1 - p) \text{DEFF} / d^2$$

in which $$\alpha = 0.05$$, $$p = 0.498$$, DEFF = 3, $$d = 0.05$$ [24]. In order to compensate for potential mistakes and missing values (10%), the final sample size was 1,267 participants. This study was approved by the Ethnic Committee of Chengdu University.

Data collection

A trained research assistant completed the face-to-face interviews. First, the research assistant explained the purpose and procedure of the study and obtained the participants’ written informed consent. Then, the research assistant conducted an investigation for about 30 minutes in a quiet room in the community hospital by the questionnaire developed for this study to collect socio-demographic data (age, sex, education level, living status, marital status, monthly income and comorbidities), characteristics of chronic pain (pain location, intensity, interference with daily life and precipitating factors), health seeking behaviors (usage of medication and non-drug therapy) and self-rated health. The completeness of the collected data was checked by the author after completing the interviews in each single community.

Measurements

Chronic pain

Chronic pain was measured by asking two questions: (1) “Did you have a pain experience?”; (2) “If yes, how long did you get the pain?”. In this study, pain lasting $$\geq$$ 3 months was defined as chronic pain following the IASP classification. Moreover, if participants experienced chronic pain, the pain location (eight locations based on a study from Mccarthy, Bigal [25]), precipitating factors for pain, usage of medication and non-drug therapy were also questioned and recorded.

Pain intensity

Pain Severity Subscale of the Brief Pain Inventory (BPI) [26] was used to evaluate pain intensity. This subscale is recommended for elderly pain assessment as it evaluates overall pain rather than site-specific pain [27]. Participants were asked to rate the severity of pain in the last week according to four aspects (worst pain, least pain, pain on average and pain right now) according to an 11-point numeric rating scale. The “0” indicated “no pain” while “10” indicated “severe or excruciating pain you cannot imagine”. A higher score signified more severe pain. This subscale has good internal consistency with a Cronbach’s alpha coefficient of 0.84 [28].

Interference of pain with daily life

In this study, interference of pain with daily life was evaluated using a single pain interference subscale extracted from BPI. This pain interference subscale consisted of seven items: general activity, mood, walk, working, relationship, sleep and enjoyment. Participants were asked to rate the degree of interference with daily life using an 11-point numeric rating scale, with “0” indicating “no interference” and “10” indicating “interference cannot tolerate”. The pain interference subscale also had good internal consistency with a Cronbach’s alpha coefficient of 0.94 [28].

Self-rated health
A single question was asked in order to assess the participants’ self-rated health status. The responses were “very bad”, “bad”, “general”, “good” and “very good”, for which participants had to choose a single option.

Data analysis

The descriptive statistics were displayed using the appropriate methods. The Chi-square test, Mann-Whitney U test, Kruskal-Wallis H test and ANOVA were used to compare the differences between different groups. Student-Newman-Keuls test and Bonferroni correction method were used to compare groups in pairs where three or more groups were compared. All data analyses were performed in SPSS 23.0 (Chicago, SPSS Inc).

Results

Socio-demographic data and prevalence of chronic pain of participants

A total of 1,450 elderly individuals satisfied the inclusion criteria, and 1,403 of them agreed to participate in this study. Finally, 22 did not complete the interview, and 1,381 participants were finally enrolled. The participants mainly consisted of females (55.3%) and elderly aged from 60 to 69 years old (45.1%). The elderly participants with no education made up 26.1% of all participants. Most participants were located in urban areas (71.7%) and suffered from comorbidities (92.5%). Over 10% of participants only had a monthly disposable personal income of under 275 RMB. Table 1 shows the detailed data of participants with and without chronic pain. Among all samples, 791 participants suffered from chronic pain (57.3%). Participants living in rural areas, having lower monthly disposal personal income and comorbidities were more likely to have chronic pain ($p < 0.01$).
Table 1
Socio-demographic data of participants with or without chronic pain (N = 1381)

Characteristics	Total (N=1381)	Chronic pain (N=791)	No chronic pain (N=590)	χ^2/Z	P value
Sex					
Male	617 (44.7)	339 (42.9)	278 (47.1)	2.483	0.115
Female	764 (55.3)	452 (57.1)	319 (52.9)		
Age					
60-69	623 (45.1)	357 (45.1)	266 (45.1)	-0.42	0.675
70-79	541 (39.2)	302 (38.2)	239 (40.5)		
≥80	217 (15.7)	132 (16.7)	85 (14.4)		
Marital status					
Married	1023 (74.1)	594 (75.1)	429 (72.1)	3.104	0.212
Divorced/Widowed	256 (18.5)	147 (18.6)	109 (18.5)		
Unmarried	102 (7.4)	50 (6.3)	52 (8.8)		
Education level					
Illiteracy	360 (26.1)	225 (28.4)	135 (22.9)	5.502	0.064
Primary	494 (35.8)	276 (34.9)	218 (36.9)		
Secondary or above	527 (38.1)	290 (36.7)	237 (40.2)		
Residence location					
Urban area	990 (71.7)	527 (66.6)	463 (78.5)	23.38	<0.001
Rural area	391 (28.3)	264 (33.4)	127 (21.5)		
Living alone					
Yes	129 (9.3)	69 (8.7)	60 (10.2)	0.835	0.361
No	1252 (90.7)	722 (91.3)	530 (89.8)		
Monthly DPI (RMB)					
<275	188 (13.6)	139 (17.6)	49 (8.3)	-6.691	<0.001
275-1700	449 (32.5)	283 (35.8)	166 (28.1)		
≥1700	744 (53.9)	369 (46.6)	375 (63.6)		

Comorbidity

DPI: disposable personal income
Table 2 displays pain intensity and pain location of participants with chronic pain. There were no significant differences in pain intensity between male and female participants regardless of worst pain, least pain, pain on average and pain right now ($p > 0.05$). Participants in the 70–79 age group had significantly higher worst pain compared to both the 60–69 and ≥ 80 age groups ($p < 0.05$). Participants in the 60–69 age group had significant lower least pain and pain on average compared to the other two groups ($p < 0.05$). Participants in the 60–69 age group had significant lower pain right now compared to the 70–79 group ($p < 0.05$). The most common pain locations were found to be in the legs/feet (53.3%), head (23.6%) and abdomen/pelvis (21.1%). Females had a significantly higher incidence of neck/shoulder and legs/feet pain than males (22.6% vs 14.5%, $p < 0.01$; 58.8% vs 48.7%, $p < 0.01$). Participants in the ≥ 80 age group significantly reported less neck/shoulder pain compared to both the 60–69 and 70–79 age groups ($p < 0.05$). Furthermore, participants in the 70–70 age group had significantly more legs/feet pain ($p < 0.05$).
Table 2
Characteristics of chronic pain according to age and sex (N = 791)

Characteristics	Total	Male(N=339)	Female(N=452)	60-69 (N=357)	70-79 (N=302)	≥80 (N=132)
Pain intensity						
Worst pain	5.6±2.2	5.6±2.2	5.5±2.2	5.2±2.2	6.0±2.2	5.6±2.3**†
Least pain	2.2±1.8	2.2±1.9	2.2±1.7	1.9±1.6	2.5±2.0	2.3±1.8**†
Pain on average	3.7±1.7	3.7±1.8	3.6±1.7	3.3±1.5	4.2±1.9	3.9±1.7**†
Pain right now	2.9±2.0	2.9±2.1	3.0±1.9	2.7±1.8	3.2±2.1	2.9±2.0**†
Pain location						
Head	187(23.6)	85(25.1)	102(22.6)	91(25.5)	72(23.8)	24(18.2)
Face	26(3.3)	15(4.4)	11(2.4)	8(2.2)	12(4.0)	6(4.5)
Neck/shoulder	151(19.1)	49(14.5)	102(22.6)**	80(22.4)	59(19.5)	12(9.1)**‡
Back	114(14.4)	42(12.4)	72(15.9)	42(11.8)	49(16.2)	23(17.4)
Arms/hands	149(18.8)	55(16.2)	94(20.8)	71(19.9)	63(20.9)	15(11.4)
Legs/feet	431(53.5)	165(48.7)	266(58.8)**	177(49.6)	182(60.3)	72(54.5)**‡
Chest	124(15.7)	62(18.3)	62(13.7)	57(16.0)	45(14.9)	22(16.7)
Abdomen/pelvis	167(21.1)	82(24.2)	85(18.8)	80(22.4)	62(20.5)	25(18.9)

†: Student-Newman-Keuls; ‡: Bonferroni correction; **: p < 0.01; *: p < 0.05;

Impact of chronic pain on daily and self-rated health

Table 3 illustrates interference with daily life of chronic pain and self-rated health in participants with chronic pain. The most affected aspects of daily life were sleep (3.9±2.6), general activity (3.7±2.4) and walking (3.6±2.6). Participants in the 60–69 age group had significantly lower general activity, mood, walking, relationship and sleep score compared to the other two groups (p < 0.05). Moreover, participants in the 70–79 age group had significantly higher working scores compared to the other two groups (p < 0.05). Participants in the 70–79 age group had significantly higher enjoy scores compared to the 60–69 age group (p < 0.05). A total of 234 (29.6%) participants reported bad health conditions. Additionally, the proportion of participants with bad health was found to increase with aging.
Table 3
Impact of chronic pain on daily life and self-rated health according to age

Items	Total	60-69 (N=357)	70-79 (N=302)	≥80 (N=132)	F/H	P value
Daily activity						
General activity	3.7±2.4	3.3±2.2	4.2±2.5	3.9±2.5	25.793†	<0.001
Mood	3.5±2.4	3.0±2.1	3.9±2.5	3.6±2.3	26.907†	<0.001
Walk	3.6±2.6	3.0±2.3	4.1±2.7	4.3±2.8	40.149†	<0.001
Working	1.4±2.2	1.2±1.9	1.8±2.5	1.2±2.1	9.014†	0.011
Relationships	2.7±2.3	2.3±2.1	3.1±2.6	2.9±2.4	14.579†	0.001
Sleep	3.9±2.6	3.6±2.5	4.3±2.7	4.1±2.7	6.919†	0.001
Enjoy	3.0±2.4	2.6±2.1	3.4±2.5	3.0±2.4	15.371†	0.001
Self-rated health						
Very bad	33 (4.2)	11 (3.1)	13 (4.3)	9 (6.8)	17.265	<0.001
Bad	201 (25.4)	67 (18.8)	90 (29.8)	44 (33.3)		
General	331 (41.8)	161 (45.1)	123 (40.7)	47 (35.6)		
Good	91 (11.5)	48 (13.4)	28 (9.3)	15 (11.4)		
Very good	135 (17.1)	70 (19.6)	48 (15.9)	17 (12.9)		

†: Student-Newman-Keuls;

Excepted precipitating factors for chronic pain

The excepted precipitating factors for chronic pain were displayed in Table 4. Up to 35.5% of chronic pain was precipitated by chills, while 32.1% of chronic pain was precipitated by excessive fatigue. Humidity was also a common precipitating factor for chronic pain (19.7%). Moreover, over one-third (37.3%) of chronic pain was precipitated by unspecific factors.
Table 4
Excepted precipitating factors of chronic pain (N = 791)

Factors	Frequency	Percentage
Excessive fatigue	254	32.1
Chill	281	35.5
Humidity	156	19.7
Life event	39	4.9
Bad mood	44	5.6
Unspecific factors	295	37.3

Health seeking behaviors of participants with chronic pain

Table 5 displays the health seeking behaviors of participants with chronic pain. Only 29.4% of participants had asked for medical help, and most (44.4%) chose to handle the pain by themselves. Moreover, up to 40.8% of participants with chronic pain did not receive medication. The medication use rate in rural areas was found to be significantly higher than that in urban areas ($p < 0.001$). The most popular non-drug therapies adopted were massages (21.4%), hot/cold compresses (16.4%) and acupuncture (13.8%). Those living in urban areas significantly intended to take acupuncture, cupping therapy, electrical stimulation and massage to cope with chronic pain compared to the participants in rural area.
Table 5
Health seeking behaviors and medication use of participants with chronic pain (N = 791)

Items	Total	Residence location	χ^2	P value	
		Urban (N=527)	Rural (N=264)		
Health seeking					
Enduring	207(26.2)	138(26.2)	69(26.1)	1.485	0.467
Handling by oneself	351(44.4)	227(43.1)	124(47.0)		
Seeking for medical help	233(29.4)	162(30.7)	71(26.9)		
Medication use					
Yes	468(59.2)	281(53.3)	187(70.8)	22.308	<0.001
No	323(40.8)	246(46.7)	77(29.2)		
Non-drug therapy adopted					
No	319(40.3)	200(38.0)	119(45.1)	3.711	0.054
Yes	472(59.7)	327(62.0)	145(54.9)		
Acupuncture	109(13.8)	84(15.9)	25(9.5)	6.196	0.013
Cupping therapy	71(9.0)	55(10.4)	16(6.1)	4.122	0.042
Electrical stimulation	48(6.1)	46(8.7)	2(0.8)	19.606	<0.001
Massage	169(21.4)	133(25.2)	36(13.6)	14.089	<0.001
Distraction	43(5.4)	33(6.3)	10(3.8)	2.094	0.148
Hot/cold compress	130(16.4)	80(15.1)	50(18.9)	1.81	0.179
Others	31(3.9)	25(4.7)	6(2.3)	2.852	0.091

Discussion

In this cross-sectional study, we learned the basic characteristics of chronic pain in the elderly community in Sichuan Province: 57.3% of community-dwelling older adults residing in west China were found to have chronic pain, which was mostly precipitated by chills and excessive fatigue. In addition, elderly individuals aged 60–69 years old were more likely to have mild pain. The first three common pain locations were observed to be in the legs/feet, head and abdomen/pelvis. The most affected aspect of daily life due to
chronic pain was sleep. Moreover, elderly aged between 60–69 years old were less affected by chronic pain according to general activity, mood, walk, relationship and sleep. Nearly half of those with chronic pain did not use medication, and over half adopted non-drug therapy.

Surprisingly, the prevalence of chronic pain in this study was found to be significant higher than previous studies conducted by Li, Chen [6] and Si, Wang [23], which respectively reported that the prevalence of chronic pain in Chinese community-dwelling elderly were 49.8% and 41.1%. The reasons for why the prevalence was higher in this study may be the gap of economic and medical resource between East China and West China. As we can see, Li, Chen [6] and Si, Wang [23] both recruited participants from East China whose economic and medical resources are much better than that of west China, and economic status was previously observed to influence the incidence of chronic pain [29]. Moreover, Si, Wang [23] only investigated samples from the capital city owning the best economic and medical resources in Shandong Province, which could lead to a lower incidence of chronic pain.

Interms to sex, most previous studies revealed that females were more likely to have chronic pain [8, 9, 23, 30], which was inconsistent with this study. It is generally believed that females are more sensitive to pain due to their unique biological or psychological mechanisms [31, 32]. Moreover, females usually live longer than males, hence, the difference increases with aging. In this respect, this study did not find any differences in the prevalence of chronic pain according to sex, highlighting that regional and cultural differences may need to be taken into account when the relationship between sex and chronic pain be examined.

As can be seen from the data in this study, pain intensity did not increase with aging and decreased after 80 years of age. Other studies have also found a decrease in pain prevalence with age up to 85 years[33, 34], which may be related to the decreased perception of pain caused by sensory dysfunction in people over 80 years old.

This study found that elderly living with lower monthly disposable personal incomes had a higher prevalence of chronic pain, which has been confirmed by other studies[4, 35, 36]. Socioeconomic factors have been associated with worse health outcomes, for those living in poverty, low incomes haunt each financial decision, and many are unable to consistently afford prescribed interventions such as medications and ongoing visits to health care providers to manage their health[37]. Therefore, it is important for policy makers to pay more attention to the elderly population.

In our study, significant relationship between the prevalence of chronic pain and education level had not been seen, which was inconsistent with previous studies that reported a lower level of education indicated a higher incidence of chronic pain [23, 30]. They believed that patients with low education level may delay the visit or treatment due to insufficient health awareness, who fail to treat chronic pain-related illnesses early[38]. Therefore, the results of this study may imply that older people with higher education in western China still lack sufficient health awareness. However, there was also a point of view that a higher prevalence of chronic pain was observed in elderly with a lower level of education, which may be associated with the wrong perception that chronic pain are due to low education levels rather than low socio-economic status [30].

This study also found that elderly living in rural areas had a lower prevalence of chronic pain, it was not consistent with earlier findings that older people living in poorer neighborhoods are more likely to suffer from
chronic pain[37, 39]. As was known to all, the economic conditions and medical conditions in urban areas are better than those in rural areas in western China, the reason for this paradoxical result may be because older people living in cities have a modern way of life, which is not healthy and leading to increased risk for kinds of chronic disease including chronic pain[40]. Studies have shown that the health care costs was higher in developed cities[41], which may lead to the lack of treatment for pain due to the heavy economic burden of disease treatment in some elderly people.

In this study, the most common pain locations were found to be in the legs/feet, head and abdomen/pelvis. The ranking of the reported pain locations was observed to vary greatly across different studies. For example, Korean elderly individuals most frequently reported back pain [42]. Moreover, elderly from the UK and Spain mostly reported lower limb pain [43, 44], while the Polish elderly mainly suffered from pain in their lumbar regions [17].

In regard to interference with daily life, chronic pain was found to interfere with it mainly in sleep, general activity and walk in this study. Si, Wang [23] also found a strong association between sleep disturbance, decreased physical activity and chronic pain in the elderly, which may be due to functional changes in the nervous system, where pain and sleep are both modulated due to long-term chronic pain [45]. It was previously found to be necessary to focus on the sleep quality of elderly with chronic pain. In terms of activity, fear of pain made them avoid exercising, daily selfcare, even any move. [46], which could endanger their independence and quality of life, with reduced levels of fitness and function leading to increased levels of disability[47]. Therefore, it is important for health care providers to educate older people to maintain and increase physical activities.

Unsurprisingly, only 29.4% of participants in this study actively sought medical help, and over 40% did not receive medication. The corresponding result was similar to that of Liberman, Freud [48], who reported that only 41.1% of elderly used medication. However, over half of participants in this study adopted non-drug therapies such as massages, hot/cold compresses, and acupuncture, which may have reduced the medication use rate, especially in elderly living in urban areas. Thus, providing easy access to medication assistance and scientific non-drug therapy guidance to elderly suffering from chronic pain may benefit and improve pain management.

There were some limitations in this study. First, this was a cross-sectional study conducted in west China, where economic and medical statuses differed from other parts of China. Thus, the representativeness of the sample was limited because the prevalence and characteristics of chronic pain were influenced by economic and medical resources. Second, precipitating factors and medication use for chronic pain may vary according to the different biological or pathological characteristics of chronic pain. In this study, we could not verify these variations, hence, researchers should be cautious in generalizing the results of the precipitating factors, pain locations and medication use conditions.

Conclusion

Chronic pain is a common health concern in the Chinese community-dwelling elderly with a prevalence of 57.3%. The prevalence and intensity of chronic pain did not increase with aging and showed no differences
with respect to sex. Pain in the legs/feet was the most reported pain location in both males and females. Furthermore, easier access to medication assistance and scientific guidance for non-drug therapy may be helpful in improving pain management in this population.

Abbreviations

IASP
International Association for the Study of Pain.
STROBE
Strengthening the Reporting of Observational Studies in Epidemiology.
BPI
Brief Pain Inventory.
RMB
Renminbi.
DPI
disposable personal income.
UK
United Kingdom.

Declarations

Ethics approval and consent to participate

The study procedure was approved by the the Ethnic Committee of Chengdu University. Written informed consent was obtained from all participants before they took part in the study, and all participants were informed that they have the right not to participate in the study. All information obtained in the study was kept confidential.

Consent for publication

Not applicable.

Availability of data and materials

The data that supports the findings in this study can be made available through contacting the corresponding author under reasonable request.

Competing interests

The authors declare that they have no competing interests.

Funding

Not applicable.
Authors’ Contributions

JL and XL developed the proposal and designed the protocol, WZ were involved in revising the proposal and design. XL WZ and CH were involved in data collection, and analysis. XL and WZ drafted the manuscript. JL and FY revised the analysis and helped in the preparation of the manuscript. All the authors have read and approved the final version of the manuscript.

Acknowledgements

We would like to thank all the participants in the study for taking part in the study.

References

1. IASP, Classification of chronic pain: Descriptions of chronic pain syndromes and definitions of pain terms. Pain, 1986. Suppl 3: p. 226-226.
2. Santos, A.M.B., et al., Prevalence of fibromyalgia and chronic widespread pain in community-dwelling elderly subjects living in Sao Paulo, Brazil. Maturitas, 2010. 67(3): p. 251-255.
3. Pereira, L., et al., Prevalence and intensity of chronic pain and self-perceived health among elderly people: a population-based study. Revista latino-americana de enfermagem, 2014. 22(4): p. 662-9.
4. Nakai, Y., et al., Association between Chronic Pain and Physical Frailty in Community-Dwelling Older Adults. International Journal of Environmental Research and Public Health, 2019. 17(1): p. 1330.
5. Kirubakaran, S. and A.R. Dongre, Chronic musculoskeletal pain among elderly in rural Tamil Nadu: Mixed-method study. Journal of family medicine and primary care, 2019. 8(1): p. 77.
6. Li, J., et al., Chronic pain and its association with obesity among older adults in China. Archives of Gerontology and Geriatrics, 2018. 76: p. 12-18.
7. Inoue, S., et al., Chronic Pain in the Japanese Community—Prevalence, Characteristics and Impact on Quality of Life. PLOS ONE, 2015. 10(6).
8. Rapopylkko, S., M. Haanpaa, and H. Liira, Chronic pain among community-dwelling elderly: a population-based clinical study. Scandinavian Journal of Primary Health Care, 2016. 34(2): p. 159-164.
9. Miro, J., et al., Pain in older adults: a prevalence study in the Mediterranean region of Catalonia. European Journal of Pain, 2007. 11(1): p. 83-83.
10. Eggermont, L.H.P., et al., Depressive Symptoms, Chronic Pain, and Falls in Older Community-Dwelling Adults: The MOBILIZE Boston Study. Journal of the American Geriatrics Society, 2012. 60(2): p. 230-237.
11. Buchman, A.S., et al., Musculoskeletal pain and incident disability in community-dwelling older adults. Arthritis Care and Research, 2010. 62(9): p. 1287-1293.
12. Herr, K. and L. Garand, Assessment and measurement of pain in older adults. Clinics in Geriatric Medicine, 2001. 17(3): p. 457-478.
13. Miu, D.K.Y. and K.C. Chan, Under-detection of pain in elderly nursing home residents with moderate to severe dementia. Journal of Clinical Gerontology and Geriatrics, 2013. 5.
14. Bernfort, L., et al., Severity of chronic pain in an elderly population in Sweden—impact on costs and quality of life. Pain, 2015. 156(3): p. 521.
15. Ohayon, M.M., Specific characteristics of the pain/depression association in the general population. Journal of Clinical Psychiatry, 2004. 65(Suppl 12): p. 5-9.

16. Pizzi, L.T., et al., Work Loss, Healthcare Utilization, and Costs among US Employees with Chronic Pain. Disease Management & Health Outcomes, 2005. 13(3): p. 201-208.

17. Elzbieta, K.S., et al., Prevalence of chronic pain in the elderly Polish population – results of the PolSenior study. Archives of Medical Ence Ams, 2017. 13: p. 1197-1206.

18. Sofaer, B., et al., Chronic pain as perceived by older people: a qualitative study. Age & Ageing, 2005.

19. Campbell, C. and R.R. Edwards, Ethnic differences in pain and pain management. Pain management, 2012. 2(3): p. 219-230.

20. Statistics, C.N.B.o., China statistical yearbook. 2016, National Bureau of Statistics of China.

21. Xue, G., et al., The survey of rural elderly with chronic pain among border regions of four provinces: Hunan, Hubei, Chongqing, and Guizhou. Chinese Journal of Gerontology, 2012. 32(17): p. 3744-3746.

22. Wang, Y., J. Xu, and H. Song, Prevalence and risk factors of chronic pain in the elderly inpatients. Health Vocational Education, 2017. 35(5): p. 139-141.

23. Si, H., et al., Prevalence, Factors, and Health Impacts of Chronic Pain Among Community-Dwelling Older Adults in China. Pain Management Nursing, 2019. 20(4): p. 365-372.

24. Gorstein, J., et al., Indicators and Methods for Cross-Sectional Surveys of Vitamin and Mineral Status of Populations. 2007.

25. McCarry, L.H., et al., Chronic Pain and Obesity in Elderly People: Results from the Einstein Aging Study. Journal of the American Geriatrics Society, 2008. 57(1): p. 115-119.

26. Poquet, N. and C. Lin, The Brief Pain Inventory (BPI). Journal of physiotherapy, 2016. 62(1): p. 52.

27. Keller, S., et al., Validity of the brief pain inventory for use in documenting the outcomes of patients with noncancer pain. The Clinical journal of pain, 2004. 20(5): p. 309-18.

28. Gjeilo, K.H., et al., Validation of the Brief Pain Inventory in Patients Six Months After Cardiac Surgery. Journal of Pain & Symptom Management, 2007. 34(6): p. 648-656.

29. Brooks, P.M., Issues with chronic musculoskeletal pain. Rheumatology, 2005. 44(7): p. 831-833.

30. Satghare, P., et al., Prevalence and Correlates of Pain in People Aged 60 Years and above in Singapore: Results from the WiSE Study. Pain research & management, 2016. 2016: p. 7852397.

31. Breivik H, et al., Survey of chronic pain in Europe: prevalence, impact on daily life, and treatment. Eur J Pain, 2006. 10(4): p. 287-333.

32. Tsang, A., et al., Common chronic pain conditions in developed and developing countries: gender and age differences and comorbidity with depression-anxiety disorders. The journal of pain : official journal of the American Pain Society, 2008. 9(10): p. 883-91.

33. Won, A.B., et al., Persistent Nonmalignant Pain and Analgesic Prescribing Patterns in Elderly Nursing Home Residents: (See editorial comments by Dr. Debra Weiner on pp 1020–1022). Journal of the American Geriatrics Society, 2004.

34. Carmaciu, C., et al., Health risk appraisal in older people 3: prevalence, impact, and context of pain and their implications for GPs. Br J Gen Pract, 2007. 57(541): p. 630.
35. Janevic, M.R., et al., *Racial and Socioeconomic Disparities in Disabling Chronic Pain: Findings From the Health and Retirement Study.* Journal of Pain Official Journal of the American Pain Society, 2017. **18**(12).

36. Ikeda, T., et al., *Socioeconomic inequalities in low back pain among older people: the JAGES cross-sectional study.* International Journal for Equity in Health, 2019. **18**(1).

37. Maly, A. and A.H. Vallerand, *Neighborhood, Socioeconomic, and Racial Influence on Chronic Pain.* Pain Manag Nurs, 2018. **19**(1): p. 14-22.

38. Siciliani, L. and R. Verzulli, *Waiting times and socioeconomic status among elderly Europeans: evidence from SHARE.* Health Economics, 2009.

39. Feldman, C.H., et al., *Association between socioeconomic status and pain, function and pain catastrophizing at presentation for total knee arthroplasty.* BMC Musculoskeletal Disorders, 2015. **16**.

40. **,** **,** and **,**. 2012, **,**.

41. **,** **,** and **,**, **,**, 2013. **024**(002): p. 100-102.

42. Baek, S.R., et al., *Prevalence of musculoskeletal pain in an elderly Korean population: results from the Korean Longitudinal Study on Health and Aging (KLoSHA).* Archives of Gerontology and Geriatrics, 2010. **51**(3).

43. Catala, E., et al., *Prevalence of pain in the Spanish population: telephone survey in 5000 homes.* European Journal of Pain, 2002. **6**(2): p. 133-140.

44. Parsons, S., et al., *Prevalence and comparative troublesomeness by age of musculoskeletal pain in different body locations.* Family Practice, 2007. **24**(4): p. 308-316.

45. Haack, M., et al., *Pain Sensitivity and Modulation in Primary Insomnia.* European Journal of Pain, 2012. **16**(4): p. 522-533.

46. Larsson, C., et al., *Impact of pain characteristics and fear-avoidance beliefs on physical activity levels among older adults with chronic pain: a population-based, longitudinal study.* BMC Geriatrics, 2016. **16**(1): p. 50.

47. Abdulla, A., et al., *Guidance on the management of pain in older people.* Age Ageing, 2013. **42** Suppl 1: p. i1-57.

48. Liberman, O., et al., *Chronic pain and geriatric syndromes in community-dwelling patients aged ≥65 years.* Journal of Pain Research, 2018. **11**: p. 1171-1180.