Initializing Convolutional Filters with Semantic Features for Text Classification

Shen Li1,2 \hspace{1cm} Zhe Zhao4,5
shen@mail.bnu.edu.cn \hspace{1cm} helloworld@ruc.edu.cn

Tao Liu4,5 \hspace{1cm} Renfen Hu3,† \hspace{1cm} Xiaoyong Du4,5
tliu@ruc.edu.cn \hspace{1cm} irishere@mail.bnu.edu.cn \hspace{1cm} duyong@ruc.edu.cn

1 Institute of Chinese Information Processing, Beijing Normal University
2 UltraPower-BNU Joint Laboratory for Artificial Intelligence, Beijing Normal University
3 College of Chinese Language and Culture, Beijing Normal University
4 School of Information, Renmin University of China
5 Key Laboratory of Data Engineering and Knowledge Engineering, MOE

Appendix

The crux of our initialization technique is n-gram selection, which assists neural networks to extract important n-gram features at the beginning of the training process. In the following tables, we illustrate those selected n-grams of different classes and datasets to understand our technique intuitively. Since all of MR, SST-1, SST-2, CR, and MPQA are sentiment classification datasets, we only report the selected n-grams of SST-1 (Table 1). N-grams selected by our method in SUBJ and TREC are shown in Table 2 and Table 3.

Class	Very Positive	Positive	Neutral	Negative	Very Negative
Unigram	standout	heartening	kin	choppiness	flopped
	perfection	virtuosic	reworked	woozy	indescrimably
	releases	affectionately	michelle	meager	atrocity
Bigram	mesmerizing	with raw	man vs	left slightly	definitely meaningless
	music	remarkable about	kin ’s	been conjured	wasted nearly
	satisfying evenings	this much	the sides	ridiculous wig	is meaningless
Trigram	best films of	grounded in an	even one word	conjured up only	devoid of substance
	making it one	enjoyable and satisfying	pleasant enough and	difficult to fathom	is definitely meaningless
	enjoyable and satisfying		than to receive	dumbed down approach	with this silly

Table 1: Examples of the selected n-grams in SST-1 dataset. The results are self-explanatory. There are five classes in SST-1 dataset. The polarities of n-grams selected from very positive texts to very negative texts change smoothly. Adjectives with positive sentiment are easily selected in positive texts, e.g. “enjoyable”, “beautiful” and “satisfying”. Obviously, n-grams indicating negative emotions are more likely to be selected in negative texts such as “wasted” and “meaningless”.

Class	Subjective	Objective
Unigram	amusing	discovers
	laughs	233
	i	decide
	entertaining	boyfriend
Bigram	movie that	his father
	it does	him to
	but it	he finds
	the performances	where he
Trigram	but it’s	is the story
	a movie that	the help of
	if you ‘re	falls in love
	it’s not	in order to

Table 2: Examples of the selected n-grams in Subj dataset. We can observe that adjectives such as “amusing” and “entertaining” are more likely to be selected in subjective reviews, and neutral words such as “his” and “him” are more likely to be selected in objective reviews.
Table 3: Examples of the selected n-grams in TREC dataset. Strong indicators of question types are selected by NB weights. For example, “acronym”, “stand for”, and “the abbreviation of” are selected for the abbreviation question type. The n-grams that are related to entities’ attributes such as “disease” and “animal” are selected for the entity question type. Human’s actions (e.g. “portrayed”, “who invented”) are selected for the human question type. “what country” and “what city” possess large NB weights in questions about location. In questions of the number type, “how many” and “when was” are selected.