Reptiles are hosts of a wide variety of protozoan and metazoan parasites (Wilson and Carpenter 1996). Most of these parasites have been recorded through necropsies of specimens, although the diagnosis could be achieved by revealing parasitic elements in feces (e.g., eggs, larvae, oocysts). Even though, the latter non-invasive method only allows detecting intestinal parasites, may be useful for conservation projects, which involve knowing the health status of a reptile population in wildlife (Jorge et al. 2013).

In Mexico, 864 reptile species have been recorded (i.e., 8.7% of the reptiles of the world), of which 57% are endemic (Flores-Villela and García-Vázquez 2014). However, the inventory of their parasites is far from complete, since only a few more than 200 Mexican reptile species have been recorded as hosts of helminths, acari and crustaceans (Paredes-León et al. 2008).

Mexico holds the highest species richness of rattlesnakes, with 42 species (Heimes 2016), but wild populations have declined due to direct hunting and habitat loss caused by the expansion of croplands and urban areas. Particularly, the Mexican dusky rattlesnake, *Crotalus triseriatus* (Wagler, 1830), is restricted to the Trans-Mexican Volcanic Belt, where occupies forested regions heavily impacted (Bryson et al. 2014). This species is considered in the category of “least concern” in the IUCN and it has not received any level of protection by Mexican government due probably to a lack of knowledge in demographic and ecological aspects (Bryson et al. 2014, Sunny et al. 2015).

Translocations have increased for wildlife conservation, including the herpetofauna. One concern associated with conservation translocations is that the released individuals may suffer from parasitic diseases resulting in establishment failure. However, infectious hazards may be mitigated when diseases and/or parasites of translocated species or species at the destination are known (Bobadilla Suarez et al. 2017). Unfortunately, for *C. triseriatus* little is known about its parasites (Paredes-León et al. 2008), even though this information is essential to know the population health of this species and potentially useful in...
future translocation processes of species from one population to another. Our objective was to investigate the occurrence of parasites in feces of *C. triseriatus* to increase parasitological knowledge without affecting wild populations.

This study was conducted in Toluca Valley located in the State of Mexico, a highly anthropized area and considered the fifth largest metropolis in Mexico, with 2.1 million inhabitants (SEDESOL, CONAPO, INEGI 2004). The region has a humid temperate climate, with an annual precipitation of 500–600 mm and a range of average annual temperature between 12 and 15 °C (García 2004, Gobierno del Estado de México 2012). The sampling sites were El Cerrillo located at 5.1 km north of metropolitan area of Toluca City (19°24′27″N; 99°41′40″W; 2615 masl) and the Sierra Morelos Park located on the edge of the metropolitan area of Toluca City (19°18′39″N; 99°41′33″W; 2630 masl).

To capture individuals of *C. triseriatus* and collect individual fecal samples, during 2012 to 2014 we made 24 monthly visits at each study site, where five observers simultaneously walked five linear transects of 800 m long and separated by 300 m in a schedule of 09:00 am–13:00 pm. We capture the rattlesnakes with herpetological hooks and once subjected, we recorded total length (snout-vent length) in centimeters and weight in grams only with descriptive purposes. After we obtained fecal samples of each specimen place them in Eppendorf tubes and we released the rattlesnakes at their capture sites.

Each fecal sample was conserved in 70% alcohol and examined in the laboratory using the flotation technique (Bowman et al. 2004). Approximately 0.5 g of each sample was macerated and mixed with 9.0 ml of 0.8% saline solution. Each homogenized sample was filtered and placed in a vial, which was centrifuged for three minutes at 1500 rpm. After centrifugation, the supernatant was discarded, and a saturated glucose solution was used to re-suspend the pellet. The suspension was centrifuged for five minutes at 1000 rpm and three subsamples of top part of the flotation were obtained and examined by light microscopy. Parasitic elements (i.e., eggs and oocysts) were counted in each subsample to obtain an average per sample and to determine the levels of infection according to Rodríguez-Vivas and Cob-Galera (2013). Analysis of the fecal samples in the laboratory using the flotation technique (Bowman et al. 2004). Approximately 0.5 g of each sample was macerated and mixed with 9.0 ml of 0.8% saline solution. Each homogenized sample was filtered and placed in a vial, which was centrifuged for three minutes at 1500 rpm. After centrifugation, the supernatant was discarded, and a saturated glucose solution was used to re-suspend the pellet. The suspension was centrifuged for five minutes at 1000 rpm and three subsamples of top part of the flotation were obtained and examined by light microscopy. Parasitic elements (i.e., eggs and oocysts) were counted in each subsample to obtain an average per sample and to determine the levels of infection according to Rodríguez-Vivas and Cob-Galera (2013). Analysis of the fecal samples in the laboratory using the flotation technique (Bowman et al. 2004).

A total 16 Mexican dusky rattlesnakes were caught, 6 in El Cerrillo with 46–66 cm (56.42 ± 6.56) and 71–270 g (190.17 ± 73.7), and 10 in Sierra Morelos Park with 43–67 cm (55.03 ± 7.47) and 70–350 g (202.78 ± 78.19). Ten of the 16 fecal samples showed the presence of parasitic elements: nematode eggs of Capillariidae sp. and coccidian oocysts of *Eimeria* sp. Ixobioides sp., and *Opionyxus naticris* (Gervais, 1844) were recorded in *C. triseriatus*. Thus, findings of Capillariidae sp. and *Eimeria* sp. represent new host records and this study is the first on the parasites of wild reptilians in Mexico using fecal samples.

The eggs of Capillariidae sp. found in *C. triseriatus* were not identified at specific level, since capillarid eggs are morphologically almost identical even among species of different genera (see Moravec 1994). Therefore, we cannot know if the nematode is a parasite or a pseudoparasite for Mexican dusky rattlesnakes, i.e., a parasite of the rodents on which hosts feed (personal observation of hair follicles in all fecal samples). In this context, Fuehrer (2014) recognized that endo- and ectoparasites of potential prey animals can be recorded as transiting parasites in the intestinal tract of reptiles, for example eggs of *Capillaria hepaticum* (Bancroft, 1893), a parasite species in mammals, have been documented in fecal samples from reptiles fed with infected rodents. On the other, Šlapeta et al. (2018) pointed out that the nematodes of *Capillaria* (Zeder, 1800) are the only known trichurids affecting reptiles, infecting primarily the intestine and secondarily other organs as the liver and gonads. It is known that their life cycle is direct, unfortunately the life cycles of snakes capillarids have not been investigated (Anderson 2000).

An examination of fecal samples of captive reptiles, including specimens of *Crotalus Linnaeus*, 1758, from Campania region in southern Italy revealed the most frequent parasites were species of groups of Oxyurida, *Rhadbias Stiles & Hassall*, 1905, *Kalicephalus* Molin, 1861, *Capillaria* and *Eimeriidae Minchin*, 1903 (Rinaldi et al. 2012). The oocysts of *Eimeria* sp. were not identified at specific level, because we did not observe some taxonomic characteristics. But it is known that *Eimeria* Schneider, 1875 is the most numerous group of snake coccidian with more than 80 species, which differ in both the morphology of exogenous stages (oocysts) and in endogenous development (Modrý 2004). Most species of *Eimeria* inhabit the intestine of reptiles, which become infected after ingesting oocysts. Schizogony occurs in the epithelial lining of intestine, depending on parasite species. Oocysts are shed with the feces following gametogony. The pathologic effects of coccidian appear mild for most reptiles; however, more severe cases resulting in epithelial ulceration and fibrosis, and septicemia from the loss of epithelial integrity, may occur (Mitchell 2007).
Parasites of Crotalus triseriatus

Jorge et al. (2013) found the detectability of nematodes was significantly lower in feces than in the intestine of reptiles, suggesting a large number of fecal samples and temporal replication to increase the likelihood of detection of intestinal parasites. Undoubtedly, parasitological studies based solely on feces most probably underestimate the true species richness present in a given host population and/or locality. However, such studies may be important for wildlife conservation purposes mainly when the translocations are employed, since the released individuals or individuals within the destination ecosystem may suffer from parasitic disease linked to the translocation process (Bobadilla Suarez et al. 2017). Specifically, it has been shown the vulnerability of populations of C. triseriatus in the Toluca Valley, due to the proximity to urban areas (Sunny et al. 2015), therefore, a complete parasitological record would aid wellbeing of snakes by receiving appropriate treatment plan and/or quarantine procedures. That allow to move the rattlesnakes outside the urban area, without the danger of infecting other populations with any diseased.

ACKNOWLEDGEMENTS

We thank Cruz Armida Olmeda Espinoza for the processing of the samples as laboratory technician in Facultad de Medicina Veterinaria y Zootecnia of the Universidad Autónoma de Tamaulipas.

Table 1. Infection levels of parasitic elements in feces of Crotalus triseriatus from two localities in the State of Mexico, Mexico. Range of oocysts/eggs per gram of feces and infection levels slightly modified of Rodríguez-Vivas and Cob-Galera (2005): 2–9 very low (+), 8–18 Low (++), 20–30/10–15 Medium (+++), 32–50 High (++++).

Localities	Host	Collection date	Eimeria sp.	Capillariidae sp.
SMP1	43.0 cm	May 26, 2012	+	Negative
SMP2	57.0 cm	July 12, 2012	Negative	Negative
SMP3	63.0 cm	September 15, 2012	Negative	Negative
SMP4	59.0 cm	September 15, 2012	++	Negative
SMP5	53.0 cm	April 27, 2014	++	Negative
SMP6	53.0 cm	September 20, 2014	Negative	Negative
SMP7	51.8 cm	October 18, 2014	+++	Negative
SMP8	55.0 cm	August 30, 2014	+++	Negative
SMP9	67.0 cm	November 01, 2014	++++	Negative
SMP10	58.5 cm	November 01, 2014	++++	Negative
CE1	66.0 cm	October 20, 2012	++++	Negative
CE2	54.5 cm	December 08, 2012	+++	+
CE3	54.0 cm	December 08, 2012	+	Negative
CE4	55.0 cm	August 30, 2014	+	Negative
CE5	58.0 cm	November 08, 2014	+++	Negative
CE6	59.0 cm	November 08, 2014	Negative	Negative

Figures 1–2. Parasitic elements in feces of Crotalus triseriatus from Mexico: (1) Egg of Capillariidae sp. with one larva (L), brown color, thick and rough wall (W), one operculum at each pole (Op), which are asymmetrical. (2) Sporulated oocyst of Eimeria sp., spheroidal type, rough outer wall (W), absence of micropyle, ovoid sporocysts (S). Scale bars: 10 µm.
Table 2. Records of metazoan parasites for *Crotalus* spp. in Mexico.

Parasite	Stage	Habitat	Host	State	Reference
Cestoda					
Mesocestoides sp.	Tetratridium	Body cavity	*C. enyo* (Cope, 1861)	Baja California Sur	Goldberg et al. (2003)
			C. molossus Baird & Girard, 1853	Undetermined	Goldberg and Bursey (1999)
			C. price Van Denburgh, 1895		
			C. willardi Meek, 1905		
Oochoristica sp.	Adult	Intestine	*C. basiliscus* (Cope, 1864)	Chihuahua, Sonora	Goldberg and Bursey (2000)
Ophiotaenia perspicua	Adult	Intestine	*C. cinerens*	Colima	Paredes-León et al. (2008)
Acanthocephala			*C. basiliscus*	Chihuahua, Sonora	Goldberg and Bursey (2000)
Oligacanthorhynchidae sp.	Cystacanth	Body cavity	*C. basiliscus*	Michoacán	Goldberg et al. (2006)
			C. enyo	Baja California Sur	Goldberg and Bursey (2003)
			C. lepidus (Kennicott, 1861)	Undetermined	Goldberg and Bursey (1999)
			C. tigris Kennicott, 1859		
Nematoda					
Hastospiculum onchocercum	Adult	Stomach	*C. tzabcan* Klauber, 1952	Quintana Roo	Carbajal-Márquez et al. (2018)
Hexametra boddaertii (Baird, 1860)	Adult	Body cavity	*C. basiliscus*	Yucatán	Carabajal-Márquez et al. (2018)
Kalicephalus inermis coronellae	Adult	Intestine	*C. basiliscus*	Sinaloa	Goldberg et al. (2006)
Kalicephalus inermis macrovulvus (Caballero, 1954)	Adult	Intestine	*C. molossus*	Ciudad de México	Goldberg and Bursey (1999)
Ophidascaris labiaporillosa Walton, 1927	Adult	Post vena cava	*C. basiliscus*	Colima	Telford (1965)
Ozolaimus ctenosauri Caballero, 1938	Adult	Body cavity	*C. molossus*	Durango	Klauber (1972)
Physocephalus sp.	Larva	Mesentry	*C. michelli* (Cope, 1861)	Baja California	Goldberg et al. (2013)
**Travassoscaris araujoi* (Schneider, 1866)	Adult	Liver	*C. tzabcan*	Quintana Roo	Carabajal-Márquez et al. (2018)
Acari					
Amblyomma dissimile Koch, 1844	Adult	Body surface	*C. durissus Linnaeus, 1758	Guerrero	Paredes-León et al. (2008)
Argasidae sp.	Adult	Body surface	*C. triseriatus*	Chihuahua	Gatica-Colima et al. (2014)
Ixobioides sp.	Adult	Body surface	*C. triseriatus*	Ciudad de México	Paredes-León et al. (2008)
Ophionyssus natrix	Adult	Body surface	*C. durissus*	Ciudad de México	Paredes-León et al. (2008)
			C. cereas cercobombus Savage & Cliff, 1953	Nuevo León	Rodríguez and Lazcano (1992)
			C. lepidus Kennicott, 1861	Puebla	Paredes-León et al. (2008)
			*C. atrox Baird & Girard, 1853		
			C. raus Cope, 1865		
**Ornithodoros turicata* (Dugès, 1876)	Larva		*C. michelli*	Baja California	Gutsche and Mutschmann (2011)
			C. ruber Cope, 1892		
Crustacea					
Porocephalus basiliscus Riley & Self, 1979	Adult		*C. basiliscus*	Colima	Riley and Self (1979)
Porocephalus crotali Humbolddt, 1812	Adult		*C. atrox*	Nuevo León	Pala and Julia (1983)
			C. basiliscus	Colima	Pala and Julia (1983)
			C. catalinensis Cliff, 1954	Santa Catalina Island, Baja California Sur	Goldberg et al. (2003)
			C. culminatus Klauber, 1952	Guerrero	Pala and Julia (1983)
			C. durissus	Tamaulipas	Pala and Julia (1983)
			C. tzabcan	Campeche, Quintana Roo	Carabajal-Márquez et al. (2018)
Porocephalus tortugensis Riley and Self, 1979	Adult		*C. tortugensis* Van Denburgh & Slevin, 1921	Tortuga Island-Baja California Sur	Riley and Self (1979)
railletii crotalii Ali, Riley and Self, 1984	Adult	Lung	*C. ruber*	Pond Island, Baja California	Ali et al. (1984)
railletii furcocercum (Diesing, 1836)	Adult	Lung	*C. atrox tortugensis* Baird & Girard, 1853	Tortuga Island-Baja California Sur	Ali et al. (1984), Klauber (1972)
LITERATURE CITED

Ali JH, Riley J, Self JT (1984) A revision of the taxonomy of pentastomid parasites (genus Raillietiella Sambon, 1910) from American snakes and amphisbaenians. Systematic Parasitology 6: 87–97. https://doi.org/10.1007/BF02185516

Anderson RC (2000) Nematode parasites of vertebrates. Their development and transmission. Wallingford, CAB International, 650 pp.

Bobadilla Suarez M, Ewen JG, Groombridge JJ, Beckmann K, Shotton J, Masters N, Hopkins T, Sainsbury AW (2017) Using qualitative disease risk analysis for herpetofauna conservation translocations transgressing ecological and geographical barriers. EcoHealth 14: S47–S60. https://doi.org/10.1007/s10393-015-1086-4

Bowman D, Lynn RC, Eberhard ML (2004) Georgis parasitología para veterinarios. Madrid, Elsevier, 453 pp.

Bryson RW Jr, Linkem CW, Dorsca ME, Lathrop A, Jones JM, Alvarado-Díaz J, Grünwald CI, Murphy RW (2014) Multi-locus species delimitation in the Crotalus triseriatus species group (Serpentes: Viperidae: Crotalinae), with the description of two new species. Zootaxa 3826: 475–496. https://doi.org/10.11646/zootaxa.3826.3.3

Caballero y Caballero E (1939) Nemátodos de los reptiles de México III. Anales del Instituto de Biología, Universidad Nacional Autónoma de México, Serie Zoología 10: 73–82.

Carbajal-Márquez RA, González-Solis D, Cedeño-Vázquez JR (2018) Endoparasites of Crotalus txaícan (Serpentes: Viperidae), with a checklist in rattlesnakes. Journal of Parasitic Diseases 42: 303–314. https://doi.org/10.1007/s12639-018-1001-3

Comroe DB (1948) Kalicephalus conoidus, n. sp. (Strongylata), a nematode from the rattlesnake Crotalus triseriatus. Transactions of the American Microscopical Society 67: 280–284. https://www.jstor.org/stable/3223195

Flores-Barroeta L, Hidalgo-Escalante E, Montero-Gei F (1961) Céstodos de Vertebrados. VIII. Revista de Biología Tropical 9: 187–207.

Flores-Villela O, García-Vázquez UO (2014) Biodiversity of reptiles in Mexico. Revista Mexicana de Biodiversidad 85: 467–547. https://doi.org/10.7550/rmb.43236

Fuehrer HP (2014) An overview of the host spectrum and distribution of Calodium hepaticum (syn. Capillaria hepatica); part 2 – Mammalia (excluding Muroidea). Parasitology Research 113: 641–651. https://doi.org/10.1007/s00436-013-3692-9

García E (2004) Modificaciones al sistema de clasificación climática de Köppen. Serie Libros Núm. 6. Instituto de Geografía, Mexico, Universidad Nacional Autónoma de México, 90 pp.

Gatica-Colima A, Macias-Rodríguez EF, Paredes-León R (2014) Crotalus viridis viridis (Prairie Rattlesnake). Ectoparasites. Herpetological Review 45: 143–144.

Gobierno del Estado de México (2012) Programa para Mejorar la Calidad del Aire del Valle de Toluca (2012-2017). Mexico, Gobierno del Estado de México, Secretaría del Medio Ambiente, 105 pp.

Goldberg SR, Bursey CR (1999) Crotalus lepidus (Rock Rattlesnake), Crotalus molossus (Blacktall Rattlesnake), Crotalus pricei (Twin-spotted Rattlesnake), Crotalus tigris (Tiger Rattlesnake). Endoparasites. Herpetological Review 30: 44–45.

Goldberg SR, Bursey CR (2000) Crotalus mitchelli (Speckled rattlesnake) and Crotalus willardi (Ridgenose rattlesnake). Endoparasites. Herpetological Review 31: 104.

Goldberg SR, Bursey CR, Beaman KR (2003) Crotalus enyo (Baja California Rattlesnake). Endoparasites. Herpetological Review 34: 64–65.

Goldberg SR, Bursey CR, Beaman KR, Dugan EA (2006) Crotalus basiliscus (Mexican West Coast Rattlesnake). Endoparasites. Herpetological Review 37: 94.

Goldberg SR, Bursey CR, Glaudas X (2013) Helminths of the Speckled Rattlesnake, Crotalus mitchelli (Squamata: Viperidae), Western North American Naturalist 73: 533–535. https://doi.org/10.3398/064.073.0407

Gutsche A, Mutschmann F (2011) Crotalus mitchelli (Speckled Rattlesnake) and Crotalus ruber (Red Diamond Rattlesnake). Ectoparasites. Herpetological Review 42: 287–288.

Heimes P (2016) Herpetofauna Mexicana. Frankfurt am Main, Edition Chimaera, vol. 1, 572 pp.

Jorge F, Carretero MA, Roca V, Poulin R, Perera A (2013) What you get is what they have? Detectability of intestinal parasites in reptiles using faeces. Parasitology Research 112: 4001–4007. https://doi.org/10.1007/s00436-013-3588-8

Klauber LM (1972) Rattlesnakes: their habits, life histories, and influence on mankind. Berkeley, University of California Press, 1533 pp.

Mehlhorn H, Düwel D, Raether W (1993) Manual de Parasitología Veterinaria. Bogotá, Grass-Iatros, 436 pp.

Mitchell MA (2007) Parasites of reptiles. In: Baker DG (Ed) Flynn’s parasites of laboratory animals. Iowa, Blackwell Publishing, 177–216.

Modry D, Ne as P, Mazuch T, Kamlé M (2004) Eimeria atheridis n. sp. (Apicomplexa: Eimeriidae), a new coccidium from the western bush viper Atheris chlorechis (Pel, 1851) from tropical Africa. Systematic Parasitology 59: 71–74. https://doi.org/10.1023/B:SYPA.0000038444.21384.93

Moravec F (1994) Parasitic Nematodes of Freshwater Fish of Europe. The Netherlands, Kluwer Academic Publishers, 473 pp.

Paredes-León R, García-Prieto L, Guzmán-Cornejo C, León-Restrepo J, Paredes León R, Paredes Sánchez O (2001) El parasitismo de los reptiles en México. In: (eds) Measuring Biodiversity: Papers of the workshop held at the National Autonomous University of Mexico, 113: 641–651. https://www.jstor.org/stable/3223195

Parasites of Crotalus triseriatus
Riley J, Self JT (1979) On the systematics of the pentastomid genus *Porocephalus* (Humboldt, 1811) with descriptions of two new species. Systematic Parasitology 1: 25–42. https://doi.org/10.1007/BF00009772

Rinaldi L, Mihalca AD, Cirillo R, Maurelli MP, Montesano M, Capasso M, Cringoli G (2012) FLOTAC can detect parasitic and pseudoparasitic elements in reptiles. Experimental Parasitology 130: 282–284. https://doi.org/10.1016/j.exppara.2012.01.011

Rodríguez ML, Lazcano D (1992) Primer reporte de ácaro *Ophionyssus natricis* (Acarina: Macronyssidae) para México. The Southwestern Naturalist 37: 426. https://www.jstor.org/stable/3671798

Rodríguez-Vivas RI, Cob-Galera LA (2005) Técnicas diagnósticas en parasitología veterinaria. Mérida, Universidad Autónoma de Yucatán, 306 pp.

Schad GA (1962) Studies on the genus *Kalicephalus* (Nematoda: Diaphanocephalidae). II. A taxonomic revision of the genus *Kalicephalus* Molin, 1861. Canadian Journal of Zoology 40:1035–1165. https://doi.org/10.1139/z62-090

SEDESOL, CONAPO, INEGI (2004) Delimitación de las zonas metropolitanas de México. Mexico, Secretaría de Desarrollo Social, Consejo Nacional de Población, Instituto Nacional de Estadística, Geografía e Informática, 169 pp.

Šlapeta J, Modrý D, Johnson R (2018) Reptile parasitology in health and disease. In: Doneley B, Monks D, Johnson R, Carmel B (Eds) Reptile medicine and surgery in clinical practice. Sussex, Wiley Blackwell, West 425–439.

Sunny A, Monroy-Vilchis O, Zarco-González MM, Mendoza-Martínez GD, Martínez-Gómez D (2015) Genetic diversity and genetic structure of an endemic Mexican Dusky Rattlesnake (*Crotalus triseriatus*) in a highly modified agricultural landscape: implications for conservation. Genetica 143: 705–716. https://doi.org/10.1007/s10709-015-9868-8

Telford SR (1965) A study of filariasis in Mexican snakes. Japanese Journal of Experimental Medicine 35: 565–586.

Wilson SC, Carpenter JW (1996) Endoparasitic diseases of reptiles. Seminars in Avian and Exotic Pet Medicine 5: 64–74. https://doi.org/10.1016/S1055-937X(96)80019-3

Wolf D, Vrhovec M, Failing K, Rossier C, Hermosilla C, Pantchev N (2014) Diagnosis of gastrointestinal parasites in reptiles: comparison of two coprological methods. Acta Veterinaria Scandinavica 56: 44. https://doi.org/10.1186/s13028-014-0044-4