THE ROLE OF BAFILOMYCIN AS A THERAPEUTIC AGENT IN THE MODULATION OF ENDO-LYSOSOMAL STORE OF RAT HEPATOCYTES

Ivan Franko National University of Lviv 1
Universytetska str., 1, Lviv, 79000, Ukraine

Danylo Halytsky Lviv National Medical University 2
Perarska str., 69, Lviv, 79010, Ukraine

Львівський національний університет імені Івана Франка 1
вул. Університетська, 1, Львів, 79000, Україна

Львівський національний медичний університет імені Данила Галицького 2
вул. Пекарська, 69, Львів, 79010, Україна

e-mail: s.bychkova@gmail.com

Abstract. The role of bafilomycin as a therapeutic agent in the modulation of endo-lysosomal store of rat hepatocytes. Bychkova S.V., Stasyshyn A.R., Bychkov M.A. Endo-lysosomal system through the process of autophagy is involved in the pathogenesis of many diseases. Acidification of these organelles is carried out by V-type H+ -ATPases, which is inhibited by bafilomycin A1. Endosomes and lysosomes are also important Ca2+-storage in a cell. Nicotinic acid adenine dinucleotide phosphate (NAADP) releases Ca2+ from endo-lysosomes. The main purpose of the study was to found out the effect of bafilomycin A1 and NAADP on stored Ca2+ and on the ATPase activity of rat hepatocytes. The stored Ca2+ was estimated using chlorotetracycline in permeabilized hepatocytes of rats. ATPase activity was determined by level of orthophosphate spectrophotometrically. It was found that bafilomycin A1 reduces stored Ca2+ in permeabilized hepatocytes of rats in the micromolar range of concentration (20 and 0.04 mkM) and averted the effect of NAADP on Ca2+-ATPase and basal Mg2+-ATPase activities and reduced Na+/K+-ATPase activity. Preincubation of the subcellular fraction with bafilomycin A1 completely averts any changes in the activity of estimated ATPases by means of NAADP. It was concluded that the bafilomycin-sensitive store in hepatocytes of rats is NAADP-sensitive endo-lysosomal Ca2+-store. Using of bafilomycin A1 may be useful in treating autophagy-dependent diseases.

Key words: autophagy, hepatocytes, bafilomycin A1, ATPases, NAAD, Ca2+-store

Ключові слова: автофагія, гепатоцити, бафіломіцин А1, АТФази, НААДФ, Ca2+-депо

Reферат. Роль бафіломіціну як терапевтичного агента в модуляції ендоловізосомального депо генатотиців шкур. Бичкова С.В., Стасишін А.Р., Бичков М.А. Ендоловізосомальна система через процес автофагії береть участь у патогенезі багатьох захворювань. Н+-АТФази V-типу відіграють за закислення цих органел. Бафіломіцин А1 є інгібітором виходячих Н+-АТФаз. Ендоловізосомальна система також має важливе значення як депо Ca2+ в клітині. Нікотинову кислоту адениндинуклеотид фосфат (НААДФ) вивільнює Ca2+ з ендоловізосом. Головним завданням роботи було встановити дію бафіломіціну А1 та НААДФ на рівень Ca2+ всередині внутрішньоклітинних органел пермеабілізованих гепатоцитів шкур та на активність АТФаз. Вміст Ca2+ у гепатоцитах шкур контролювали за допомогою хронофотометричної АТФазну активність досліджували спектрофотометрично, визначаючи вміст ортофосфату, який виділяється після гідролізу АТФ субцією фенілів шкур. Було встановлено, що бафіломіцин А1 зніжує вміст Ca2+ у пермеабілізованих гепатоцитах шкур за дії в мікромолярному діапазоні концентрацій (20 та 0,04 мкмоль/л) і повністю запобігає індукуваному НААДФ ви威尔нюванням депонованого Ca2+. Більш незначні концентрації бафіломіціну А1 (0,001 мкмоль/л) не змінювали вміст депонованого кальцію, але також запобігали впливу НААДФ. Показано, що бафіломіцин А1 (0,001 мкмоль/л) підвищує активність Ca2+-АТФази, а також базальної Mg2+-АТФази та зніжує активність Na+-K+-АТФази субцією фенілів шкур. Попередня інкубація з бафіломіціном А1 повністю запобігає будь-яким змінам активності оцінюваних АТФаз за дії НААДФ у субцією фенілів шкур. Було зроблено висновок, що запобігання бафіломіціну депо генатотиців шкур є одночасно чутливим до НААДФ ендоловізосомним Ca2+-депо. Заиснування бафіломіціну А1 у такому разі може бути дуже прийнятним для лікування захворювань, що залежать від автофагії.
The endosomes and lysosomes or the so-called cell acid store, is a heterogeneous term that includes organoids having an acidic content. These include lysosomes (primary and secondary), autophagosomes, secretory granules, endosomes. The acidic content of these organoids is provided by the vacuolar H+-pump [8], which is inhibited by bafilomycin A1 [7]. This macrolide antibiotic causes the accumulation of protons inside the cells, inhibiting the V0 subunit of the pump. It causes cellular acidosis and is therefore potent to use in anti-cancer therapy [3, 6]. In addition, bafilomycin A1 is used as an inhibitor of autophagy, since it inhibits the infusion between lysosomes and autophagosomes, and as an inhibitor of lysosomal degradation. Autophagy involves lysosomal degradation and recycling of organelles and is thus considered an important mechanism for the survival of both normal and cancer cells. Therefore, the cell constantly converts acidic organoids, which are both Ca2+-containing cell store. The NAADP releases calcium from this store. NAADP/Ca2+ signalling mechanism may serve as a potential target for T cell- or cardiomyocyte-related diseases such as multiple sclerosis or arrhythmia [9].

It was shown that bafilomycin A1 (1 mM) inhibited NAADP induced Ca2+ signaling in permeabilized rat hepatocytes [2]. Such as bafilomicine A1 is potent chemotherapeutic agent for cancer treatment [3, 6] it is important to establish the effect of bafilomycin A1 in different concentration on stored Ca2+ and ATPase activity in rat liver and its role in NAADP/Ca2+ signalling mechanism.

By bafilomycin A1 we estimated the H+ pump localization in rat hepatocytes and their correlation to other ATPases in plasmatic membrane (PM) and endoplasmatic reticulum (EPR). The practical significance of these results will be to understand the influence of bafilomycin A1 on healthy liver cells when used in anticancer therapy.

MATERIALS AND METHODS OF RESEARCH

All procedures with animals were performed in accordance with the “International Convention for Working with Animals” under approval of the Bioethics Committee of Biological Faculty at the Ivan Franko National University of Lviv, protocol No. 10/12, 2019. Nonlinear type male rats (180-200 g) were anaesthetized with an inhalation of chloroform and subsequently decapitated. The liver was isolated and fermented with the “two step” collagenase II type (Sigma, USA) perfusion method as described early for the preparation of isolated hepatocytes [2]. Stored calcium was measured by fluorescence of Ca2+-chlotetacycline complex. This Ca2+-sensitive is used to monitor the stored Ca2+ concentration [2] in the lumen of organelle. Isolation of subcellular postmitochondrial fraction of the rat liver was made as described previously [1, 3, 5]. Assay of ATPase activity was carried out basing on determining the content of inorganic phosphorus by the spectrophotometric method. Statistical processing of information was performed using the Software SPSS Statistics 17.0. Wilcoxon-Mann-Whitney test [4] was used in the ATPase activity analysis when a data distribution was not normal, while Student’s t-test was used when a data distribution was normal. p≤0.05 was considered to be statistically significant.

RESULTS AND DISCUSSION

Firstly we estimated the influence of bafilomycin and NAADP on calcium content in permeabilized rat hepatocytes. It was found that bafilomycin A1 (0.04 mM) caused a significant decrease of stored calcium by (77.95±1.44)% (p<0.001), at a higher concentration (20 mM) only by (9.66±4.65) % (p>0.01), and no changes of stored calcium in rat’s permeabilizing hepatocytes was observed by applying lower concentration of bafilomycin A1 (0.001 mM) (Fig. 1). We think that the decreasing of stored calcium by the bafilomycin (20 and 0.04 mM) reflects a change of its content mainly in the EPR and/or endosomes. As it was shown [2], CTC is used for monitoring the Ca2+-signal from the EPR (pH 7.2), as well as from weakly acidic organelles presented by endosomes with a pH between 6 and 6.4. Lysosomes are known to have much lower pH values in the range of 4.5 to 5 [8]. No changes of calcium content by bafilomycin (0.001 mM) may explain that its effect at this concentration is limited only by lysosomes and does not involve other Ca2+-stores, and therefore does not change the fluorescence intensity of the Ca2+-CTC complex.

We also examined effect of bafilomycine A1 on NAADP-induced calcium release in permeabilized rat hepatocytes to determine the role of acid store. It is known that NAADP is able to release Ca2+ from acid store [4], which has been confirmed for various tissues, including hepatocytes [1].

The combined action of bafilomycinA1 (20 and 0.04 mM) and NAADP (7 mM), did not change the calcium content of permeabilized hepatocytes as compared to the medium with bafilomycin A1. Simultaneous effect of lower concentration of bafilomycin (0.001 mMK) and NAADP (7 mM) caused a statistically significant increase in stored calcium by (40.23±3.47)%, (p<0.001), which we believe is due to its accumulation in the EPR (Fig. 2). This is possible because in the series the "nominally calcium-free" cell incubation medium was used, to which no calcium salts were added, but no chelators were used.
In order to control the calcium content of the incubation medium more effectively, we conducted the following series of experiments, setting different concentrations of free calcium in the incubation medium using EGTA-Ca\(^{2+}\) buffers.

Medium \(A\) contained high concentrations of EGTA (0.100 mM) and Ca\(^{2+}\) salts (0.050 mM), while medium \(B\) contained a lower concentrations of EGTA (0.05 mM) and Ca\(^{2+}\) salts (0.025 mM). In both cases, the concentration of free calcium was maintained by EGTA-Ca\(^{2+}\) buffer solution at the level of 240 nM, which is physiological level at rest.

Bafilomycin A1 (0.001 mM) did not alter the stored calcium content of rat hepatocytes at any mediums. NAADP (7 mM) caused a decrease stored calcium only in medium \(B\) with low EGTA content by (33.21±4.16)\%, \((p\geq0.001)\). Combined influence of bafilomycin A1 (0.001 mM) and NAADP (7 mM) causes an increase in calcium content by (41.36±3.92)\%, \((p\geq0.001)\) versus NAADP alone. However, this effect is not statistically significant as compared to control or bafilomycin A1. Thus we established that bafilomycin A1 (0.001 mM) prevents the effects of NAADP.

This is indirectly evidenced by the fact that the combined action of bafilomycin A1 and NAADP prevents NAADP-induced release of calcium from the acidic store. This is also a confirmation that the NAADP-sensitive hepatocyte store contains a bafilomycin-sensitive H\(^+\)-pump, and thus being an acid store corresponding to the endo-lysosomal cell system.

We observed that bafilomycin A1 (0.001 mM) significantly increased total activity of Ca\(^{2+}\)-ATPases in subcellular fraction of rat liver, which was due to 3-fold increased EPR Ca\(^{2+}\)-pump activity \((p\leq0.05)\). However, it did not change PM Ca\(^{2+}\)-ATPase activity. We assume the close co-localization of the bafilomycin-sensitive acid store to the EPR, but not to PM, because bafilomycin A1 caused an increasing activity of EPR Ca\(^{2+}\)-ATPase activity but not PM Ca\(^{2+}\)-ATPase. The bafilomycinA1 (0.001 mM) significantly reduced the Na\(^+\)/K\(^+\)-ATPase activity. We explained the effect of bafilomycin A1 on Na\(^+\)/K\(^+\)-ATPase by its presence in the membranes of the endo-

Fig. 1. Bafilomycin (20; 0.04; 0.001 mM) effect on calcium content in ermeabilized rat hepatocytes
lysosomal store, which may enter the endosomes as a result of PM invagination. We found that bafilomycin A1 (0.001 mkM) increased basal Mg\(^{2+}\)-ATPase more than 2 folds (p≤0.05). Most likely, the influence of bafilomycin A1 on these two ATPases is realized through a change in pH.

Fig. 2. Simultaneous effect of bafilomycin (20; 0,001mkM) and NAADP on calcium content in permeabilized rat hepatocytes

The combined influence of bafilomycin A1 and NAADP did not change activity of Ca\(^{2+}\)-ATPases in subcellular fraction of rat liver, but caused even more potent inhibition on the activity of Na\(^+/K\(^+\)\)-pumps and completely prevented any changes of Mg\(^{2+}\)-ATPase basal activity as compared to NAADP influence alone. Although it was previously established that NAADP caused a significant increase in Ca\(^{2+}\)-ATPase activity in the subcellular fraction of rat liver [3] due to the increase in Ca\(^{2+}\)-ATPase of EPR. The combined influence of bafilomycin A1 and NAADP inhibited the H\(^+\)-pump of the acid store, prevented the H\(^+\)-gradient on its membranes, which is the driving force for the transport of Ca\(^{2+}\) ions, and therefore NAADP did not release calcium and therefore did not change Ca\(^{2+}\) activity of the EPR pump. This confirms that NAADP-sensitive receptors localized in the endo-lysosomal store are closely associated with the EPR. Apparently, a certain morphological contact is formed between the EPR and the endo-lysosomal store, which persists even after receiving the subcellular fraction after centrifugation.

It has been previously found that NAADP decreased the activity of the basal Mg\(^{2+}\)-ATPase and the activity of Na\(^+/K\(^+\)\)-ATPase [3]. The combined effect of bafilomycin A1 and NAADP caused even more potent inhibition on the activity of Na\(^+/K\(^+\)\)-pumps and completely prevented any changes in basal Mg\(^{2+}\)-ATPase activity as compared to NAADP. Therefore, NAADP, like bafilomycin A1, exerts a unidirectional effect on this system of active ion transport, apparently altering the pH and / possibly the concentration.
of sodium in the medium. Therefore, our assumption is correct: the effect of NAADP and bafilomycin A1 on the activity of basal Mg\(^{2+}\)-ATPase is realized through a change in pH.

CONCLUSIONS

Bafilomycin A1 was found to effectively reduce the stored calcium, preventing effect of NAADP on this finding. Bafilomycin A1 increases the EPR Ca\(^{2+}\)-ATPase and basal Mg\(^{2+}\)-ATPase activities and reduces Na\(^{+}\)/K\(^{+}\)-ATPase activity in subcellular fraction of rat liver. The combined action of bafilomycin A1 and NAADP completely prevents any changes of Ca\(^{2+}\)-ATPase and basal Mg\(^{2+}\)-ATPase activities as compared to the medium with NAADP. Therefore, the bafilomycin-sensitive store has a close functional and physical contact with the EPR Ca\(^{2+}\)-ATPases and at the same time is NAADP-sensitive. In addition, some fraction of bafilomycin-sensitive store, which may be represented by endosomes, contains Na\(^{+}\)/K\(^{+}\)-ATPase. We have confirmed that the in hepatocytes Ca\(^{2+}\)-store is simultaneously sensitive to NAADP and bafilomycin A1 and is represented by the endo-lysosomal cell system.

Contributors:

Bychkova S.V. – conceptualization, investigation, writing – original draft;
Stasyshyn A. R. – formal analysis, resources;
Bychkov M.A. – conceptualization, supervision, writing - review & editing.

Funding. This research received no external funding.

Conflict of interests. The authors declare no conflict of interest.

REFERENCES

1. Bychkova S. Influence of NAADP and bafilomycin A1 on activity of ATPase in liver postmitochondrial fraction. Studia Biologica. 2015;9(3-4):31-40. doi: https://doi.org/10.30970/sbi.0903.445
2. Bychkova S, Chorna T. NAADP-sensitive Ca\(^{2+}\) stores in permeabilized rat hepatocytes. Ukr. Biochem. J. 2014;86(5):65-73. doi: https://doi.org/10.15407/ubj86.05.065
3. Bychkova S, Hreniuh V. Activity of ATPases in postmitochondrial fraction of lymphoma NK/Ly cells under bafilominic and NAADP presence mitochondria. Studia Biologica. 2015;9(2):31-38. doi: https://doi.org/10.30970/sbi.0902.413
4. Fay MP, Proschan MA. Wilcoxon-Mann-Whitney or t-test? On assumptions for hypothesis tests and multiple interpretations of decision rules. Stat Surv. 2010;4:1-39. doi: https://doi.org/10.1214/09-SS051
5. Ferents IM, Bychkova SV, Bychkov MA. Peculiarities of the effects of bile acids on apatase activity of the colon mucosa in patients with overweight and irritable bowel syndrome. Wiadomosci lekarskie. 2020;73(3):574-7. doi: https://doi.org/10.36740/WLek202003133
6. Hreniukh V, Bychkova S, Kulachkovsky O, Babsky A. Effect of bafilomycin and NAADP on membrane associated ATPases and respiration of isolated mitochondria of the murine Nemeth-Kellner lymphoma. Cell biochemistry and function. 2016;34(8):579-87. Epub 2016 Nov 8. doi: https://doi.org/10.1002/cbf.3231
7. Mauvezin C, Neufeld TP. Bafilomycin A1 disrupts autophagic flux by inhibiting both V-ATPase-dependent acidification and Ca-P60A/SERCA-dependent autophagosome-lysosome fusion. Autophagy. 2015;11(8):1437-8. doi: https://doi.org/10.1080/15548627.2015.1066957
8. Mindell, Joseph A. Lysosomal Acidification Mechanisms. Annual Review of Physiology. 2012;74:69-86. doi: https://doi.org/10.1146/annurev-physiol-012110-142317
9. Zhang B, Watt JM, Cordiglieri C, et al. Small Molecule antagonists of NAADP-induced Ca\(^{2+}\) release in T-Lymphocytes suggest potential therapeutic agents for autoimmune disease. Nature: Scientific reports: 2018;8:16775. doi: https://www.nature.com/articles/s41598-018-34917-3

Стаття надійшла до редакції
22.01.2021