Diethylnitrosamine Causes Pituitary Damage, Disturbs Hormone Levels, and Reduces Sexual Dimorphism of Certain Liver Functions in the Rat

Dezhong Joshua Liao,1,2 Agneta Blanck,1,3 Peter Eneroth,4 Jan-Åke Gustafsson,1 and Inger Porsch Hällström1,5

Diethylnitrosamine (DEN) is a representative chemical of a family of carcinogenic N-nitroso compounds. DEN has been found in workplaces, processed meats, tobacco smoke, and whiskey (1–3). It may also be derived from metabolism of some therapeutic drugs (4). The International Agency for Research on Cancer concluded that DEN was carcinogenic in all animal species and that there was sufficient evidence of a carcinogenic effect to classify DEN as a probable human carcinogen, despite the lack of epidemiologic data (for review, see Verna et al. (3)).

Administration of DEN to animals has been widely used for liver cancer studies in many animal models of multistage hepatocarcinogenesis, various tumor promoters have been used for the promotion of initiated cells (5–7). When used as a tumor initiator, DEN is usually given at a single dose of 200 mg/kg and is recovered morphologically to the normal state after the necrogenic dose of DEN, at a time when the liver is very susceptible to toxic effects of chemicals (8). Besides inducing liver necrosis, a single necrogenic dose of DEN to rats can also cause a decrease in the level of hepatic growth hormone (GH) receptor (9), the expression of which is partly regulated by GH (10). Furthermore, degenerating and dying somatotropes have been reported in the pituitary from rats bearing malignant hepatomas induced by long-term, low-dose treatment of DEN (11). These data raise the question of whether the pituitary, otherwise shown to be refractory to toxic effects of chemicals (12), might be a target for DEN toxicity.

Spontaneous liver cancer in both humans and animals occurs predominantly in males (14–19). Also, liver cancer induced in various experimental animal models usually shows a male predominance (14,17), as exemplified by the resistant hepatocyte model (20,21). Several studies have shown that liver cancer formation induced by chemicals in animals can be affected greatly by various hormonal manipulations, such as hypophysectomy and castration, demonstrating the importance of hormones in the carcinogenic process (14,17,19–21). In addition, administration of some carcinogens has been shown to influence the hormonal environment and the sensitivity of tissues to hormones. For instance, treatment of male rats with 2-AAF decreased the serum level of testosterone (22), whereas treatment with some carcinogenic hydrocarbons, such as 3-methylcholanthrene, 2-anthramine, and benzo[a]pyrene, markedly potentiated the androgenic effects of synthetic androgens given simultaneously (23).

Expression and activities of many liver metabolic enzymes in the rat also exhibit sex differences. Such sexual differentiation is controlled mainly by the sexual dimorphism in the GH secretory pattern via the hypothalamo-pituitary-liver axis (24–27). GH secretion in male rats is characterized by low basal levels and high pulsatile levels, whereas in female rats, the levels are low and stable (24–27).

Besides inducing liver necrosis, a single necrogenic dose of DEN to rats can also cause a decrease in the level of hepatic growth hormone (GH) receptor (10), the expression of which is partly regulated by GH (11). Furthermore, degenerating and dying somatotropes have been reported in the pituitary from rats bearing malignant hepatomas induced by long-term, low-dose treatment of DEN (12). These data raise the question of whether the pituitary, otherwise shown to be refractory to toxic effects of chemicals (13), might be a target for DEN toxicity.

Spontaneous liver cancer in both humans and animals occurs predominantly in males (14–19). Also, liver cancer induced in various experimental animal models usually shows a male predominance (14,17), as exemplified by the resistant hepatocyte model (20,21). Several studies have shown that liver cancer formation induced by chemicals in animals can be affected greatly by various hormonal manipulations, such as hypophysectomy and castration, demonstrating the importance of hormones in the carcinogenic process (14,17,19–21). In addition, administration of some carcinogens has been shown to influence the hormonal environment and the sensitivity of tissues to hormones. For instance, treatment of male rats with 2-AAF decreased the serum level of testosterone (22), whereas treatment with some carcinogenic hydrocarbons, such as 3-methylcholanthrene, 2-anthramine, and benzo[a]pyrene, markedly potentiated the androgenic effects of synthetic androgens given simultaneously (23).

Expression and activities of many liver metabolic enzymes in the rat also exhibit sex differences. Such sexual differentiation is controlled mainly by the sexual dimorphism in the GH secretory pattern via the hypothalamo-pituitary-liver axis (24–27). GH secretion in male rats is characterized by low basal levels and high pulsatile levels, whereas in female rats, the levels are low and stable (24–27).

Diethylnitrosamine (DEN) is a representative chemical of a family of carcinogenic N-nitroso compounds. DEN has been found in workplaces, processed meats, tobacco smoke, and whiskey (1–3). It may also be derived from metabolism of some therapeutic drugs (4). The International Agency for Research on Cancer concluded that DEN was carcinogenic in all animal species and that there was sufficient evidence of a carcinogenic effect to classify DEN as a probable human carcinogen, despite the lack of epidemiologic data (for review, see Verna et al. (3)).

Administration of DEN to animals has been widely used for liver cancer studies in many animal models of multistage hepatocarcinogenesis, various tumor promoters have been used for the promotion of initiated cells (5–7). When used as a tumor initiator, DEN is usually given at a single dose of 200 mg/kg and is recovered morphologically to the normal state after the necrogenic dose of DEN, at a time when the liver is very susceptible to toxic effects of chemicals (8). Besides inducing liver necrosis, a single necrogenic dose of DEN to rats can also cause a decrease in the level of hepatic growth hormone (GH) receptor (9), the expression of which is partly regulated by GH (10). Furthermore, degenerating and dying somatotropes have been reported in the pituitary from rats bearing malignant hepatomas induced by long-term, low-dose treatment of DEN (12). These data raise the question of whether the pituitary, otherwise shown to be refractory to toxic effects of chemicals (13), might be a target for DEN toxicity.

Spontaneous liver cancer in both humans and animals occurs predominantly in males (14–19). Also, liver cancer induced in various experimental animal models usually shows a male predominance (14,17), as exemplified by the resistant hepatocyte model (20,21). Several studies have shown that liver cancer formation induced by chemicals in animals can be affected greatly by various hormonal manipulations, such as hypophysectomy and castration, demonstrating the importance of hormones in the carcinogenic process (14,17,19–21). In addition, administration of some carcinogens has been shown to influence the hormonal environment and the sensitivity of tissues to hormones. For instance, treatment of male rats with 2-AAF decreased the serum level of testosterone (22), whereas treatment with some carcinogenic hydrocarbons, such as 3-methylcholanthrene, 2-anthramine, and benzo[a]pyrene, markedly potentiated the androgenic effects of synthetic androgens given simultaneously (23).

Expression and activities of many liver metabolic enzymes in the rat also exhibit sex differences. Such sexual differentiation is controlled mainly by the sexual dimorphism in the GH secretory pattern via the hypothalamo-pituitary-liver axis (24–27). GH secretion in male rats is characterized by low basal levels and high pulsatile levels, whereas in female rats, the levels are low and stable (24–27).
level with regular surges, whereas in females the secretion is manifested by higher basal levels with smaller and more irregular pulses (24–27). The sex differences in the GH secretory pattern and in liver metabolism are established mainly by androgen imprinting at the hypothalamic level soon after birth in male animals (24–27). Maintenance of these sex differences during adulthood also requires a normal level of circulating androgen in males. Without the male level of circulating androgen, as in the normal females, GH secretion and liver metabolism will follow the female pattern (24–27).

To understand the effects of DEN on the endocrine system and the mechanisms for the sex differences in the animal hepatocarcinogenesis initiated by DEN, we designed the present experiment to study the effects of DEN on the pituitary ultrastructure, serum levels of several hormones, as well as expression and activities of several sex-differentiated liver enzymes. The results showed that DEN, when given to male rats at a dose of 200 mg/kg, can cause pituitary damage, disturb the serum hormone levels, and reduce the sexual dimorphism of certain liver functions.

Materials and Methods

Male and female Wistar rats (ALAB, Sollentuna, Sweden) were kept under standardized conditions (light from 0600 hr to 1800 hr, 21 ± 1°C) with food and water supplied ad libitum. At 7 weeks of age, rats received an intraperitoneal injection of DEN (200 mg/kg; Fluka, Buchs, Switzerland) or saline. Male rats (four to five per group) were sacrificed by decapitation between 0930 and 1030 hr 1, 3, 7, and 35 days after dosing. Age-matched, untreated males were also used for day 3. DEN-treated and untreated females (five per group) were sacrificed on day 7 and day 35.

At sacrifice the pituitaries were carefully isolated. Anterior pituitary tissue was cut into about 1-mm³ blocks, immediately immersed in precooled fixative (1.5% glutaraldehyde, 0.3% paraformaldehyde, 3 mM CaCl₂, 0.1 M sodium cacodylate buffer), and embedded with Epon LX112 by routine procedures. Semithin sections were stained with toluidine blue or hematoxylin-eosin for light microscopy. Ultrathin sections were made from areas selected under light microscope and analyzed under a Philips 400-T model electron microscope (Philips Nederland B.V., Business Communications, Boschdijk, The Netherlands).

We allowed blood samples collected from a determined sequence of the Pituitary Program, National Institute of Arthritis, Diabetes and Digestive and Kidney Diseases, National Institutes of Health (29,30).

Liver tissue collected at sacrifice was frozen in liquid nitrogen and stored at −70°C. Total nucleic acids (TNA) were prepared according to Durnam and Palmiter (31). We measured mRNA expression by hybridization of TNA samples to [³²P]UTP-labeled cRNA probes in solution and at conditions described previously (28–30), using commercial antibody kits (Diagnostic Products Corporation, Los Angeles, CA, USA) for GH, corticosterone, and testosterone. We measured the serum level of prolactin with the same method by using an antibody kit from the Pituitary Program, National Institute of Arthritis, Diabetes and Digestive and Kidney Diseases, National Institutes of Health (29,30).

We synthesized cDNA. The mRNA expression of both CYPs was presented as attomole (amol; 10⁻¹⁸ mole) per microgram TNA; the methods for calibration and standardization of the expression of CYP2C11 and CYP2C12 mRNA are described in detail by Mode et al. (32).

We prepared microsomal fractions from the liver of male rats 7 days after DEN treatment as previously described (35), froze them in liquid nitrogen, and stored them at −70°C. We measured in vitro microsomal metabolism of 4-[(4-C₁₄)]androstene-3,17-dione (Amersham, Uppsala, Sweden) as previously described (35). We performed Western blot analyses using monoclonal antibodies against CYP2C11 and CYP2C12 (33) and goat anti-mouse IgG conjugated with horseradish peroxidase (Bio-Rad, Richmond, CA, USA). Twenty and 40 µg microsomal proteins per lane for CYP2C11 and CYP2C12, respectively, were fractionated...
Cells were of the storage type, characterized from control rats at all time points after DEN injection. Follicle-stimulating hormone (FSH) and luteinizing hormone (LH) are severely degenerated, one of them showing dilated endoplasmic reticula (ER) and Golgi complex (G) at the corresponding time points. The pituitary ultrastructures looked normal on day 7. The degenerative alterations were characterized by sparse and degraded organelles, increased number of secondary lysosomes or lysosomal residuals, frequently appearing crinophagy, lytic or pyknotic nuclei, and disrupted cell membranes and cellular structures. The secretory granules in degenerating cells were often located along the cell membrane and sometimes projected out, indicating partial exocytosis before degeneration. In severely affected areas we observed small clusters of lytic cells.

Results

Pituitary ultrastructure. In the pituitaries from control rats at all time points after DEN administration, most of the granular cells were of the storage type, characterized by many secretory granules and an inactive appearance, with poor development of endoplasmic reticula (ER) and Golgi complex (Figure 2), as described in detail by others (13,37). We observed moderate congestion and hemorrhage under light and electron microscopy in some areas at 1 and 3 days after DEN treatment of male rats (Figure 2). Cellular degeneration, which seemed to involve all cell types containing secretory granules, was evident on days 1 and 3, but was less severe on day 7 and disappeared on day 35. The degenerative alterations were characterized by sparse and degraded organelles, increased number of secondary lysosomes or lysosomal residuals, frequently appearing crinophagy, lytic or pyknotic nuclei, and disrupted cell membranes and cellular structures (Figures 2–5). The secretory granules in degenerating cells were often located along the cell membrane and sometimes projected out, indicating partial exocytosis before degeneration (Figure 3). In severely affected areas we observed small clusters of lytic cells (Figure 4).

Many degenerating and nondegenerated gonadotropes, somatotropes, and lactotropes showed dilated ER (Figures 3 and 5) and hypertrophic Golgi areas, occasionally with some lightly dense granules inside. These changes were more evident on days 1 and 3 but were less severe on day 7. The rare cell types, including corticotropes and thyrrotropes (Figure 3), showed similar changes at the corresponding time points. The pituitary ultrastructures looked normal on day 35. The pituitaries from DEN-treated female rats on day 7 showed changes similar to those in the pituitaries in the males at the same time point, and on day 35 the pituitaries looked normal.

Serum levels of GH, prolactin, corticosterone, and total testosterone. In DEN-treated male rats, the serum level of total testosterone decreased below the detection limit, whereas the corticosterone level increased 1 day after DEN treatment (Figure 6). The GH level decreased, but the prolactin level increased on day 3. We observed no changes in levels of these hormones at later time points (data not shown). The GH level in DEN-treated female rats (26.8 ± 6.5 ng/mL, mean ± SEM) was significantly lower than the control level (78.6 ± 15.2 ng/mL) on day 7, but not on day 35 (data not shown). We found no significant differences between treated and control females in the serum levels of prolactin and corticosterone (data not shown).

Hepatic CYP expression and androstenedione metabolism. In male liver, mRNA expression of male-specific CYP2C11 decreased to about 1–5% of the respective control levels during the first week after DEN treatment and was still less than half of the control level on day 35 (Figure 7). According to the literature (6,7,38) and our experience, liver from DEN-treated rats should have recovered to almost morphologically normal 1 week after the treatment. Therefore, we prepared microsomal proteins at this time point to study whether the decrease in CYP2C11 mRNA was associated with a reduction at the protein level. Western blot analysis revealed a corresponding decrease in CYP2C11 protein level on day 7.
The mRNA expression of the female-specific CYP2C12 in control males was below the detection limit (0.5 amol/µg TNA) and was also undetectable in DEN-treated males on days 1 and 35. However, CYP2C12 expression levels increased slightly to 4.8 ± 2.8 amol/µg TNA and 10.4 ± 2.4 amol/µg TNA (mean ± SEM) on days 3 and 7, respectively, which were still much lower than the level in control females (86.1 ± 5.0 amol/µg TNA). The appearance of a faint CYP2C12 protein band in a Western blot with microsomes from DEN-treated males on day 7, compared with the undetectable amounts in microsomes from control males, indicated a slight increase also at the protein level (data not shown). Expression of β-actin mRNA in DEN-treated males increased slightly but significantly on day 7, but showed no differences from the controls at other time points (data not shown).

The in vitro metabolism of androstenedione with microsomes prepared from male liver on day 7 is presented in Figure 9. The CYP2C11-catalyzed 16α-hydroxylation decreased to about 10% of the control level, whereas the other male-predominant reactions, such as 6β and 16β-hydroxylation, showed about 50% decreases. However, the non-sex-differentiated 7α-hydroxylation and the female-predominant 5α-reduction remained unaffected.

The expression of CYP2C12 mRNA in DEN-treated versus control female rats was 0.49 ± 0.04 versus 86.1 ± 5.0 amol/µg TNA on day 7, and 57.0 ± 8.7 versus 87.0 ± 5.7 amol/µg TNA on day 35, respectively; the differences at both time points were significant (p < 0.05). The expression of CYP2C11 in both DEN-treated and control females was at or below the detection limit. We observed no differences in β-actin expression in the female animals either at day 7 or day 35 (data not shown).

Discussion

The pituitary is refractory to the toxicity of most substances other than hormone analogues or antagonists (13). So far, hexadimethrine bromide has been the only substance shown to cause acute pituitary damage by inducing the rupture of pituitary blood capillaries (39). In addition, degenerating and dying somatotrophs, in parallel with a slight decrease in serum GH level, have been observed in rats with malignant hepatomas induced by long-term administration of DEN at a low dose (12). However, it is unclear from this earlier report whether the pituitary damage is restricted to somatotrophs and results from the tumor burden or from the chronic toxicity of DEN. The present study clearly shows that DEN treatment at a necrogenic dose can cause acute toxicity to various cell types in the adenohypophysis and alter serum levels of several hormones. However, further investigation is still needed to clarify whether the toxicity is a direct effect of DEN on the pituitary or an indirect result of DEN-induced liver damage. In addition, we observed for its first time that the rat pituitary can recover from severe cell death to morphologically normal within 5 weeks. The implications of this finding are currently unclear, and further study is required to determine whether this finding means that the rat pituitary can regenerate.

In addition to cellular damage and cell death, we observed dilated ER, hypertrophic Golgi complex, and peripheral localization of secretory granules in the nondegenerated gonadotropes, lactotropes, and somatotrophs in male DEN-treated rats, in association with transient increase in serum prolactin level. Similar alterations have been reported in the pituitary from male rats one to several days after partial hepatectomy (40,41) and from the male rats receiving chronic feeding of liver carcinogen 2-AAF (12) or 3- methyl-4-dimethylaminoazobenzene (42). In these other reports, these alterations were considered signs of increased cellular activities and exocytosis in the pituitary cells. Therefore, it is possible that the similar changes observed in the present study may reflect increased cellular activities of nondegenerated pituitary cells and may be caused by the loss of liver tissue or the need for liver regeneration, both of which occur after partial hepatectomy or treatment with DEN, 2-AAF, or 3'-methyl-4-dimethylaminoazobenzene. In addition, the transient but dramatic decrease in the circulating level of testosterone may stimulate cellular activities of gonadotropes.

DEN treatment specifically decreases the expression and activities of several male-predominant enzymes in the male liver and decreases the CYP2C12 expression in the female liver. Thus, it is likely that acute DEN treatment can reduce the sexual differentiation of certain liver functions. These alterations are not likely attributable to liver necrosis because the non-sex-differentiated 7α-hydroxylation and the female-specific 5α-reduction of androstenedione were unaffected in the male liver. Because these results somewhat resemble the effects of hypophysectomy (43), the observed attenuation of sex differentiation is more likely related to the pituitary damage, although it is difficult to interpret why the GH level is decreased only slightly on day 3 without analysis of its secretory pattern. In addition, it cannot be excluded at this point that DEN may affect the hypothalamus and/or gonads, which in turn influences the sex differentiation of certain liver metabolism.

Although the morphologic changes seen in liver from DEN-treated rats should have recovered within 1 or 2 weeks (6,7,38),

![Figure 8](image8.png)

Figure 8. Western blot analysis of CYP2C11 protein expression in microsomes prepared from male livers 7 days after DEN treatment. Lanes 1 and 2, samples from two individual DEN-treated animals (DEN); lanes 3 and 4, samples from two individual untreated control animals. Twenty micrograms of microsomal proteins was loaded in each lane; roughly equal loading was confirmed by staining the gel with Coomassie blue (not shown).

![Figure 9](image9.png)

Figure 9. Microsomal 7α-, 6β-, 16β- and 16α-hydroxylation and 5α-reduction of 4-[14C]-androstene-3,17-dione in male rats 7 days after DEN injection. Data represent mean ± SEM of four four animals per group.

*Significantly different from the control (p < 0.05).
expression of CYP2C11 in males and CYP2C12 in females was still subnormal after 5 weeks. Similarly, Carr et al. (44) reported that DEN-induced decreases in hepatocarcinogenesis that are initiated by a necrogenic dose of DEN, promoting agents might better be started at least 5 weeks after DEN treatment, not 2 weeks as originally designed (5), when sex difference is one concern of the study.

In conclusion, a single intraperitoneal injection of DEN at a dose of 200 mg/kg is used for the initiation in many animal models of multistaged hepatocarcinogenesis. This dose of DEN may cause pituitary damage, disturb serum levels of several hormones, and induce a long-lasting reduction of certain sex-differenntiated functions, indicating a profound impact on the endocrine system.

References and Notes

1. Schuller MM, Nitrosamine-induced lung carcinogenesis and Ca2+/calmodulin antagonists. Cancer Res 52(suppl 9):2723-2726 (1992).

2. Pariser MC, Beland FA. DNA adduct measurements and tumor incidence during chronic carcogen exposure in rodents. Environ Health Perspect 100(suppl 6):161-165 (1994).

3. Verna L, Whysner J, Williams GM. Mechanisms of hepatocarcinogenesis that are initiated by a necrogenic dose of DEN, promoting agents might better be started at least 5 weeks after DEN treatment, not 2 weeks as originally designed (5), when sex difference is one concern of the study.

4. In conclusion, a single intraperitoneal injection of DEN at a dose of 200 mg/kg is used for the initiation in many animal models of multistaged hepatocarcinogenesis. This dose of DEN may cause pituitary damage, disturb serum levels of several hormones, and induce a long-lasting reduction of certain sex-differenntiated functions, indicating a profound impact on the endocrine system.

5. References and Notes

6. Conclusions

7. Acknowledgement

8. Funders

9. Author Contributions

10. References

11. Tables

12. Figures

13. Appendix

14. Supplementary Material

15. Conflict of Interest

16. Ethical Approval

17. Consent to Participate

18. Consent for Publication

19. Data Availability

20. Acknowledgments

21. Funding

22. Author Contributions

23. References

24. Tables

25. Figures

26. Appendix

27. Supplementary Material

28. Conflict of Interest

29. Ethical Approval

30. Consent to Participate

31. Consent for Publication

32. Data Availability

33. Acknowledgments

34. Funding

35. Author Contributions

36. References

37. Tables

38. Figures

39. Appendix

40. Supplementary Material

41. Conflict of Interest

42. Ethical Approval

43. Consent to Participate

44. Consent for Publication

45. Data Availability

46. Acknowledgments

47. Funding

48. Author Contributions

49. References

50. Tables

51. Figures

52. Appendix

53. Supplementary Material

54. Conflict of Interest

55. Ethical Approval

56. Consent to Participate

57. Consent for Publication

58. Data Availability

59. Acknowledgments

60. Funding

61. Author Contributions

62. References

63. Tables

64. Figures

65. Appendix

66. Supplementary Material

67. Conflict of Interest

68. Ethical Approval

69. Consent to Participate

70. Consent for Publication

71. Data Availability

72. Acknowledgments

73. Funding

74. Author Contributions

75. References

76. Tables

77. Figures

78. Appendix

79. Supplementary Material

80. Conflict of Interest

81. Ethical Approval

82. Consent to Participate

83. Consent for Publication

84. Data Availability

85. Acknowledgments

86. Funding

87. Author Contributions

88. References

89. Tables

90. Figures

91. Appendix

92. Supplementary Material

93. Conflict of Interest

94. Ethical Approval

95. Consent to Participate

96. Consent for Publication

97. Data Availability

98. Acknowledgments

99. Funding

100. Author Contributions

101. References

102. Tables

103. Figures

104. Appendix

105. Supplementary Material

106. Conflict of Interest

107. Ethical Approval

108. Consent to Participate

109. Consent for Publication

110. Data Availability

111. Acknowledgments

112. Funding

113. Author Contributions

114. References

115. Tables

116. Figures

117. Appendix

118. Supplementary Material

119. Conflict of Interest

120. Ethical Approval

121. Consent to Participate

122. Consent for Publication

123. Data Availability

124. Acknowledgments

125. Funding