Title: Comparison of the antinociceptive effects of methamphetamine, buprenorphine, or both in male rats after chronic treatment or after withdrawal

Running title: Antinociceptive effects of methamphetamine and buprenorphine

Authors:

Farshid Etaee (M.D.) 1, 2, Arezoo Rezvani-Kamran (MSc) 1, Mohammad Taheri (MSc) 1, Ghazaleh Omidi (MSc) 1, Parisa Hasanein (Ph.D) 3, Alireza Komaki (Ph.D) 1*

1 Neurophysiology Research Center, Hamadan University of Medical Sciences, Hamadan, Iran

2 Rahe Sabz Addiction Rehabilitation Clinic, Hamadan University of Medical Sciences, Hamadan, Iran

3 Department of Biology, School of Basic Sciences, University of Zabol, Zabol, Iran

* Corresponding author: Prof. Alireza Komaki (Ph.D)

Mailing Address: Department of Physiology, School of Medicine, Hamadan University of Medical Sciences, Shahid Fahmideh Street, Hamadan, Iran,

E-mail: alirezakomaki@gmail.com

Komaki@umsha.ac.ir

Postal Code: 65178/518
Tel: (+98) 81-38380267
Fax: (+98) 81-38380131
URL: umsha.ac.ir

Number of pages (with figures): 24
Number of figures: 6

To appear in: Basic and Clinical Neuroscience

Received date: 2017/06/10
Revised date: 2018/04/25
Accepted date: 2018/03/4

This is a “Just Accepted” manuscript, which has been examined by the peer-review process and has been accepted for publication. A “Just Accepted” manuscript is published online shortly after its acceptance, which is prior to technical editing and formatting and author proofing. Basic and Clinical Neuroscience Journal provides “Just Accepted” as an optional and free service which allows authors to make their results available to the research community as soon as possible after acceptance. After a manuscript has been technically edited and formatted, it will be removed from the “Just Accepted” Web site and published as an ASAP article. Please note that technical editing may introduce minor changes to the manuscript text and/or graphics which may affect the content, and all legal disclaimers that apply to the journal pertain.

Please cite this article as:
Etae, F., Rezvani-Kamran, A., Taheri, M., Omidi, Gh., Hasanein, P., et all. (In Press). Comparison of the antinociceptive effects of methamphetamine, buprenorphine, or both in male rats after
chronic treatment or after withdrawal. *Basic and Clinical Neuroscience*. Just Accepted publication April 30, 2018. doi: http://dx.doi.org/10.32598/bcn.9.10.160 DOI: 10.32598/bcn.9.10.160
Abstract:

Introduction: Methamphetamine (Meth) and Buprenorphine (BUP) modulate pain perception. However, the antinociceptive effects of the interactions of these two substances, which belong to different systems, in rats, are unclear. The purpose of this study was to compare the analgesic effects of Meth, BUP, and their coadministration, and the effect of withdrawal from these substances on nociception in male rats.

Methods: In this experiment, 40 male Wistar rats (250–300 g) were categorized into four groups: control, Meth, BUP, or BUP+Meth. After seven days of once-a-day treatments, the antinociceptive effects were assessed using the hot plate and the tail-flick tests. The differences among the groups were analyzed with ANOVA and Tukey's post hoc tests, and p values less than 0.05 were considered significant.

Results: Meth and BUP increased the reaction times during the hot plate and tail-flick tests. The combination of Meth and BUP increased reaction time more than Meth and BUP alone.

Discussion: The significantly high reaction times in rats treated with Meth and BUP indicate that these substances have antinociceptive effects. In addition, Meth enhanced the antinociceptive effects of BUP. These synergistic effects might occur through the dopaminergic, serotonergic, and/or adrenergic systems.

Keywords: Methamphetamine; Buprenorphine; Pain; Hot plate; Tail-flick; Interactions

1. Introduction
Pain is an unpleasant sensory and emotional experience that is associated with an actual or potential tissue damage, and is often accompanied by the desire to stop and avoid stimuli that cause it (Ripamonti, 2012). The perception of pain and its sensitivity to analgesics are highly variable (Bulka et al., 2004). Providing postoperative pain relief and analgesia is an important facet of pain management (Garimella and Cellini, 2013), and a number of different analgesics have been used for this purpose (Flecknell et al., 1999).

Buprenorphine (BUP) is approved for use as an analgesic for various types of pain (Johnson et al., 2005). It is a clinically well-established opioid analgesic (Christoph et al., 2005) that is currently used to treat opiate addiction and chronic pain (Browne et al., 2015). BUP is a highly lipophilic derivative of oripavine (Cowan et al., 1977); it is a partial agonistic for the μ receptor, an antagonist for the δ- and κ-opioid receptors, and produces limited euphoric effects (Lelong-Boulouard et al., 2006; Mori et al., 2006). It has a rapid onset and long duration of action in rodents. Because it is a partial μ-opioid agonist, it might have a wider safety profile than full μ-agonists, especially with regard to respiratory depression (Johnson et al., 2005). The oral administration of BUP has been suggested to be convenient and effective (Leach et al., 2010). Because it is 7–10 times more potent than morphine, this may be an alternative to injected BUP for postoperative pain management (Jessen et al., 2007).

In recent years, an increasing number of studies have examined the common mechanisms of reward and the analgesic effects of addictive substances. Therefore, the brain reward circuitry has been proposed as another key target for the pharmacological treatment of pain (Yamamotová et al., 2011). Psychostimulant drugs can increase opioid-induced analgesia (Dalal and Melzack, 1998b). Accordingly, drugs of abuse are known to have analgesic effects (Yamamotová et al., 2011). In this sense, opioid and psychostimulant drugs have long been used to relieve chronic pain.
in the clinic (Altier and Stewart, 1999). Methamphetamine (Meth) is a psychostimulant drug of abuse that acts on the central nervous system (Melo et al., 2012). It has a relatively high lipid solubility, and can therefore cross the blood-brain barrier (Yamamotová et al., 2011).

Determining the drug-induced changes in the reaction times of animals exposed to heat is the most widely used measure of analgesic activity. Among the thermal methods, the hot plate and tail-flick tests are most commonly used to assess opioid analgesia (Gades et al., 2000). We tested the antinociceptive effects of Meth, BUP, and their coadministration in Wistar rats with the hot plate and tail-flick tests, in order to investigate enhancements of the antinociceptive effects of BUP. The present study investigated the use of psychostimulant drugs, including Meth, as alternatives for treating pain, instead of opioids such as BUP. Our aim was to explore ways for increasing the antinociception of opiate drugs. Thus, we tested whether Meth could increase the antinociceptive effect of BUP, how nociception was affected during withdrawal, and whether rats perceive pain differently in this state in comparison with control animals.

2. Materials and Methods

2.1. Animals

Adult male Wistar rats weighing 250–300 g were utilized in this investigation. The animals were randomly arranged within four groups (Ten rats per each group); moreover, they were maintained on a twelve hours light/dark program (lights on at 07:00) within a temperature-controlled (22 ± 2°C) place. (Shiri et al., 2016).

The rats were fed ad libitum with standard chow-diet and had access to water. During the three days before the tests, the animals were housed in groups of four. All procedures of investigation and animal care were established the Veterinary Ethics Committee of the Hamadan University of
Medical Sciences (VECHUMS) and were performed by the National Institutes of Health Guide for Care and Use of Laboratory Animals (NIH Publication No. 85-23, revised 1985).

2.2. Drugs

Meth hydrochloride was obtained from the Presidency Drug Control Headquarters (Tehran, Iran). It was dissolved in 0.9% saline (Xu et al., 2015) and administered at a dose of 2 mg/kg (Miladi-Gorji et al., 2015; Etaee et al., 2017).

BUP (Faran Shimi Pharmaceutical Co., Tehran, Iran) was dissolved in 0.9% saline (Wala and Holtman, 2011) and administered at a dose of 5 mg/kg (Thompson et al., 2006; Leach et al., 2010).

2.3. Groups

In this experiment, the 40 male rats were divided into the following four groups. The control group was administered saline by intragastric (IG) gavage once a day for seven days. The Meth group was intraperitoneally (IP) administered 2 mg/kg of Meth hydrochloride once a day (Chiang et al., 2014) for seven days (Miladi-Gorji et al., 2015; Etaee et al., 2017).

The BUP group was administered 5 mg/kg of BUP by IG gavage once a day for seven days (Wala and Holtman, 2011). The BUP+Meth group was administered BUP [IG; 5 mg/kg once a day for seven days (prior to Meth)] and Meth hydrochloride (IP; 2 mg/kg once a day for seven days). On the day of behavioral testing, Meth and BUP were administered 30 (Schutová et al., 2009) and 60 minutes (min) (Wala and Holtman, 2011), respectively before the tests. The withdrawal tests were conducted seven days after the first round of behavioral tests, which included the hot plate and the tail-flick test. Both tests were conducted on the same rats.

2.4. Hot plate test
The hot plate device consisted of an electrically heated surface and an open Plexiglas tube (17 cm high × 22 cm in diameter), which was used to confine the animals to the heated surface (Co. Burj Sanat). The rats were placed on the surface of the hot plate, which was maintained at 50 ± 0.1°C, to induce noxious thermal stimuli (Taheri Azandaryani et al., 2015). Licking of the hind limb was noted as a nociceptive response (Shirafkan et al., 2013). The cut-off time was 30 seconds (s) in order to avoid tissue damage (Bulka et al., 2004). The animals were tested after being treated with the drug/drugs once a day for seven days and seven days after the abstinence period.

2.5. Tail-flick test

To evaluate the antinociceptive effects, a tail-flick apparatus was employed (Co. Burj Sanat). The tip, base, and middle part of the tails of the rats were placed on a radiant heat source, which was set at 5, and the reaction time of the animals was recorded. The mean of three measures were calculated and used in the analysis. The lamp intensity was 30% (Shirafkan et al., 2013). The tail-flick latency was defined as the time (in s) for the rat to withdraw its tail from the radiant heat source. The cut-off time was 12 s in order to prevent tissue damage. The maximum possible antinociceptive effect was considered to have been induced when the animals did not show a tail-flick reaction within the cut-off time (Christoph et al., 2005). The animals were tested after the drugs were administered once a day for seven days and seven days after the abstinence period. The tail-flick test was conducted after the hot plate test, because the animals needed to be gently immobilized in a small Plexiglas restrainer during the measurements (Yamamotová et al., 2011).

2.6. Statistical Analysis

The mean of three measures during the tail-flick (time for the tip, base, and middle of the tail) and hot plate tests (time until hind limb licking) were calculated with computerized analyses. The
differences between the groups were determined by one-way analysis of variance (ANOVA), which was accompanied by the Tukey’s post-hoc test. The differences with p values lower than 0.05 were considered significant. The data were expressed as mean ± standard error of the mean (SEM). We used the Student’s t-test to compare the results of the behavioral tests before and after seven days of abstinence.

3. Results

3.1. Hot plate test
Meth administration significantly increased the reaction time during the hot plate test (Meth group, 7.91 ± 0.12 s; Control group, 3.99 ± 0.25 s; $p < 0.001$). The rats in the BUP group reacted faster (11.19 ± 0.33 s) than those in the Meth ($p < 0.001$) or control ($p < 0.001$) groups. The coadministration of BUP and Meth resulted in a significantly higher (14.08 ± 1.23 s) reaction time than the one induced by the single administration of BUP ($p < 0.01$), Meth ($p < 0.001$), or saline ($p < 0.001$) (Fig. 1).

3.2. Tail-flick test
Meth administration significantly increased the reaction time during the tail-flick test (Meth group, 5.87 ± 0.56 s; control group, 2.70 ± 0.23 s; $p < 0.001$). Rats in the BUP group showed a slower response (10.15 ± 0.27 s) than those in the Meth ($p < 0.001$) or control ($p < 0.001$) groups. The coadministration of BUP and Meth resulted in a significantly higher tail-flick test reaction time (11.95 ± 0.43 s) than that obtained after single administration of BUP ($p < 0.05$), Meth ($p < 0.001$), or saline ($p < 0.001$) (Fig. 2).

3.3. Hot plate test after seven days of drug abstinence
The abstinence from Meth, BUP (11.19 ± 0.33 s), or BUP and Meth (14.08 ± 1.23 s) resulted in significantly higher hot plate latencies than the respective saline values (Meth, 7.91 ± 0.12 s; BUP, 11.19 ± 0.33 s; BUP+Meth, 14.08 ± 1.23 s; saline, 3.99 ± 0.25 s; p < 0.001). Additionally, the combined withdrawal from BUP and Meth resulted in longer reaction times than that obtained after abstinence from Meth alone. No significant changes were seen among the other groups (p > 0.05) (Fig. 3).

3.4. Tail-flick test after seven days of drug abstinence
The abstinence from Meth, and BUP and Meth combined significantly increased the tail-flick test times in comparison to the respective saline values (Meth, 6.06 ± 0.74 s; BUP, 6.15 ± 0.19 s; BUP+Meth, 6.70 ± 0.03 s; saline, 2.27 ± 0.107 s; p < 0.001). There were no significant changes in the reaction times of the other groups (p > 0.05) (Fig. 4).

3.5. Comparison of the hot plate test reaction times between Meth and BUP treatment and after their withdrawal
As revealed by t-test analysis, there were no significant differences in the reaction times of the different groups between treatment and withdrawal from any of the drugs tested. (p > 0.05) (Fig. 5).

3.6. Comparison of the tail-flick test reaction times between Meth and BUP treatment and after their withdrawal
The t-test analysis showed that the BUP and BUP+Meth groups exhibited significant decreases in the tail-flick test reaction times between treatment and after abstinence (p < 0.001 for both). No significant differences were observed for the Meth and control groups (p > 0.05 for both) (Fig. 6).
4. Discussion

The results from the two behavioral tests revealed that chronic injections of Meth in healthy rats significantly prolong their reaction time to the delivered stimulus compared to saline administration. Therefore, the dose of Meth used in this study exhibited antinociceptive effects. In addition, similar results were obtained in the case of BUP administration, indicating the analgesic effects of this drug. The coadministration of BUP and Meth resulted in an even more pronounced increase in the reaction times. Therefore, Meth enhanced the antinociceptive effects of BUP.

Our analyses showed that the tail-flick test latency times seven days after drug abstinence was significantly lower than those after seven days of drug treatment in the BUP and BUP+Meth groups. However, we did not detect any significant differences in the case of the hot plate test. The withdrawal from Meth, BUP, or BUP and Meth combined significantly increased the latency times in both behavioral tests. Therefore these drugs, during treatment or during the state of abstinence, have analgesic effects.

In this study, BUP exhibited antinociceptive effects, in agreement with previous studies (Johnson et al., 2005). In addition, our results revealed that chronic Meth injections induce antinociceptive effects in rats. Consistent with these findings, psychostimulant drugs have been reported to induce analgesic effects (Dalal and Melzack, 1998b) and potentiate opioid analgesia (Dalal and Melzack, 1998a). The analgesic and reinforcing effects of drugs of abuse are mediated by similar receptors, similar sites of action, and overlapping neural substrates. Recent studies have suggested that
activation of the mesolimbic dopamine neurons that originate from the ventral tegmental area (VTA) and go to the nucleus accumbens (NAc) plays an important role in mediating the suppression of tonic pain (Altier and Stewart, 1999). These similarities suggest that the reinforcing effects of these drugs may also produce analgesia by transforming the aversive affective states evoked by pain into more positive states (Franklin, 1998). Central dopamine systems have been implicated in reward-related behavior (Bubenikova-Valesova et al., 2009). Partial agonists of μ-opioid receptors, such as BUP, increase the extracellular concentrations of dopamine in the NAc (Nantwi et al., 1998) and striatum when they are administered systemically or into the VTA or substantia nigra (SN) (Johnson and North, 1992; Chefer et al., 2009). Accordingly, the dopaminergic neurons in the VTA that project to various forebrain sites, including the NAc, are involved in this process. The dopamine-containing neurons of the VTA play a critical role in the reinforcing effects of drugs of abuse, including opiates, and their turnover in the NAc, suggesting that these effects are mediated by an increased output of dopamine (Nantwi et al., 1998). Most of the afferents to the SN dopaminergic neurons are GABAergic, while dopaminergic neurons express GABA receptors and μ-opioid receptor mRNA is found both in the SN and VTA in rats (Mori et al., 2016). The opioid-induced release of dopamine in the NAc and striatum is probably caused by the inhibition of GABA interneurons, which subsequently disinhibit the dopaminergic neurons (Chefer et al., 2009). Accordingly, the systemic administration of opiates has been shown to increase the firing of VTA dopamine neurons, as shown by in vivo recordings (Johnson and North, 1992). Substantial evidence indicates that psychostimulant drugs directly increase the levels of extracellular dopamine. In line with this, Meth has been reported to increase the release of dopamine (Yamamotová and Slamberova, 2012) and its extracellular concentration partly by reversing the dopamine transporter and depleting cytoplasmic as well as vesicular dopamine stores.
Consistent with these reports, the onset of Meth-induced analgesia, occurring 30 min after administration of the drug, correlates with the peak of the extracellular dopamine concentrations in the striatum. In order to understand the analgesic effects of psychostimulants, it is important to take into account that VTA neurons receive nociceptive information and are involved in pain modulation (Yamamotová et al., 2011). Psychostimulants and opioids both increase the extracellular concentrations of dopamine in the NAc (Mori et al., 2016).

Moreover, besides dopamine, Meth also increases the levels of 5-hydroxytryptamine (serotonin) and norepinephrine in several brain regions in adult rats (Bubeníková-Valesová et al., 2009). Serotonin and norepinephrine are considered important modulators of pain transmission, especially in the descending antinociceptive system (Jacobs et al., 2002). A large body of evidence implicates the serotonin pathway, especially the serotonergic neurons that are localized in the nucleus raphe magnus (NRM) and that directly project to the dorsal horn of the spinal cord, in analgesia (Jacobs et al., 2002). Both opiate and stimulus-induced analgesia appear to depend on these descending connections to the spinal cord. NRM has been suggested to regulate the relief and the transmission of spinal pain induced by opiates or by stimulation of the periaqueductal gray (Basbaum et al., 1976).

The reinforcement of noradrenergic neurotransmission might, therefore, add to the efficacy of opioids, while, at the same time, norepinephrine uptake inhibitors have been shown to enhance the antinociceptive actions of systemically or centrally administered opioids in rats (Driessen et al., 1993). The μ receptors, located at discrete and anatomically distant brain sites, mediate opioid peptide-induced catecholamine secretion through activation of the central sympathetic outflow to the adrenal medulla and sympathetic nerve terminals (Appel et al., 1986). Increased extracellular norepinephrine increases pain thresholds by acting on α2-adrenergic receptors (Bohn et al., 2000).
The descending noradrenergic system and nociceptive system are closely related in the spinal cord of rats (Kuraishi et al., 1985). In addition, most psychostimulants increase norepinephrine neurotransmission (Drouin et al., 2002). Accordingly, the involvement of norepinephrine has been suggested in the arousal-promoting actions of psychostimulants (Berridge, 2008).

The results of the present study strongly support the hypothesis that psychostimulants, such as Meth, have analgesic effects and can increase the antinociception effects of opiate drugs. Based on former investigations, we postulate that the dopaminergic, serotonergic, and noradrenergic systems perform important functions in the enhancement of the antinociceptive effects of BUP by Meth. Although Meth and BUP both increase the extracellular concentrations of dopamine in the NAc, serotonin in the NRM, and norepinephrine in the brainstem, their exact mechanisms of action should be further investigated in order to better understand their different analgesic effects.

5. Conclusion

The clinical implications of the results of the present study are that psychostimulant drugs, such as Meth, are good candidates for enhancing antinociceptive effects. This is crucial for reducing opiate drug doses and preventing their adverse effects while at the same time enhancing their analgesic effects. Future studies are required to examine the effects of different doses, different routes of administration, and different treatment duration of these drugs.

Conflict of interest

The authors declare that there is no conflict of interest.
Acknowledgements

The authors would like to express their gratitude to the staff of the Neurophysiology Research Center for their help in carrying out this project. This research was supported by a grant from the Hamadan University of Medical Sciences, Hamadan, Iran.

References

Altier N, Stewart J. 1999. The role of dopamine in the nucleus accumbens in analgesia. Life sciences 65:2269-2287.
Appel NM, Kiritsty-Roy JA, Van Loon GR. 1986. Mu receptors at discrete hypothalamic and brainstem sites mediate opioid peptide-induced increases in central sympathetic outflow. Brain research 378:8-20.
Basbaum A, Clanton C, Fields H. 1976. Opiate and stimulus-produced analgesia: functional anatomy of a medullospinal pathway. Proceedings of the National Academy of Sciences 73:4685-4688.
Berridge CW. 2008. Noradrenergic modulation of arousal. Brain research reviews 58:1-17.
Bohn LM, Xu F, Gainetdinov RR, Caron MG. 2000. Potentiated opioid analgesia in norepinephrine transporter knock-out mice. The Journal of Neuroscience 20:9040-9045.
Browne CA, van Nest DS, Lucki I. 2015. Antidepressant-like effects of buprenorphine in rats are strain dependent. Behavioural brain research 278:385-392.
Bubenikova-Valesova V, Kacer P, Syslova K, Rambousek L, Janovsky M, Schutova B, Hruba L, Slambero R. 2009. Prenatal methamphetamine exposure affects the mesolimbic dopaminergic system and behavior in adult offspring. International Journal of Developmental Neuroscience 27:525-530.
Bulka A, Kouya PF, Böttiger Y, Svensson J-O, Xu X-J, Wiesenfeld-Hallin Z. 2004. Comparison of the antinociceptive effect of morphine, methadone, buprenorphine and codeine in two substrains of Sprague–Dawley rats. European journal of pharmacology 492:27-34.
Chefer V, Denoroy L, Zapata A, Shippenberg T. 2009. Mu opioid receptor modulation of somatodendritic dopamine overflow: GABAergic and glutamatergic mechanisms. European Journal of Neuroscience 30:272-278.
Chiang YC, Hung TW, Ho IK. 2014. Development of sensitization to methamphetamine in offspring prenatally exposed to morphine, methadone and buprenorphine. Addiction biology 19:676-686.
Christoph T, Kögel B, Schiene K, Méen M, De Vry J, Friderichs E. 2005. Broad analgesic profile of buprenorphine in rodent models of acute and chronic pain. European journal of pharmacology 507:87-98.
Cowan A, Lewis J, Macfarlane I. 1977. Agonist and antagonist properties of buprenorphine, a new antinociceptive agent. British journal of pharmacology 60:537-545.
Dalal S, Melzack R. 1998a. Potentiation of opioid analgesia by psychostimulant drugs: a review. Journal of pain and symptom management 16:245-253.
Dalal S, Melzack R. 1998b. Psychostimulant drugs potentiate morphine analgesia in the formalin test. Journal of pain and symptom management 16:230-239.
Driessen B, Reimann W, Giertz H. 1993. Effects of the central analgesic tramadol on the uptake and release of noradrenaline and dopamine in vitro. British journal of pharmacology 108:806-811.
Drouin C, Darraq L, Trovero F, Blanc G, Glowinski J, Cotecchia S, Tassin J-P. 2002. α1b-Adrenergic receptors control locomotor and rewarding effects of psychostimulants and opiates. The Journal of neuroscience 22:2873-2884.
Etaee F, Asadbegi M, Taslimi Z, Shahidi S, Sarihi A, Asl SS, Komaki A. 2017. The effects of methamphetamine and buprenorphine, and their interaction on anxiety-like behavior and locomotion in male rats. Neuroscience Letters 655:172-178.
Flecknell P, Roughan J, Stewart R. 1999. Use of oral buprenorphine ('buprenorphine jello') for postoperative analgesia in rats-a clinical trial. Laboratory animals 33:169-174.
Franklin K. 1998. Analgesia and abuse potential: an accidental association or a common substrate? Pharmacology Biochemistry and Behavior 59:993-1002.
Gades NM, Danneman PJ, Wixson SK, Tolley EA. 2000. The magnitude and duration of the analgesic effect of morphine, butorphanol, and buprenorphine in rats and mice. Journal of the American Association for Laboratory Animal Science 39:8-13.
Garimella V, Cellini C. 2013. Postoperative pain control. Clinics in colon and rectal surgery 26:191-196.
Jacobs BL, Martin-Cora FJ, Fornal CA. 2002. Activity of medullary serotonergic neurons in freely moving animals. Brain Research Reviews 40:45-52.
Jessen L, Christensen S, Bjerrum O. 2007. The antinociceptive efficacy of buprenorphine administered through the drinking water of rats. Laboratory animals 41:185-196.
Johnson RE, Fudala PJ, Payne R. 2005. Buprenorphine: considerations for pain management. Journal of pain and symptom management 29:297-326.
Johnson S, North R. 1992. Opioids excite dopamine neurons by hyperpolarization of local interneurons. The Journal of neuroscience 12:483-488.
Kuraishi Y, Hirota N, Satoh M, Takagi H. 1985. Antinociceptive effects of intrathecal opioids, noradrenaline and serotonin in rats: mechanical and thermal algesic tests. Brain research 326:168-171.
Leach MC, Forrester AR, Flecknell PA. 2010. Influence of preferred foodstuffs on the antinociceptive effects of orally administered buprenorphine in laboratory rats. Laboratory animals 44:54-58.
Lelong-Boulouard V, Quentin T, Moreaux F, Debruyne D, Boulouard M, Coquerel A. 2006. Interactions of buprenorphine and dipotassium clorazepate on anxiety and memory functions in the mouse. Drug and alcohol dependence 85:103-113.
Melo P, Magalhães A, Alves CJ, Tavares MA, de Sousa L, Summavielle T, Moradas-Ferreira P. 2012. Methamphetamine mimics the neurochemical profile of aging in rats and impairs recognition memory. Neurotoxicology 33:491-499.
Miladi-Gorji H, Fadaei A, Bigdeli I. 2015. Anxiety assessment in methamphetamine-sensitized and withdrawn rats: immediate and delayed effects. Iranian journal of psychiatry 10:150.
Mori T, Ito S, Kita T, Narita M, Suzuki T, Sawaguchi T. 2006. Effects of μ-, δ- and κ-opioid receptor agonists on methamphetamine-induced self-injurious behavior in mice. European journal of pharmacology 532:81-87.

Mori T, Iwase Y, Saeki T, Iwata N, Murata A, Masukawa D, Suzuki T. 2016. Differential activation of dopaminergic systems in rat brain basal ganglia by morphine and methamphetamine. Neuroscience 322:164-170.

Nantwi K, Hicks S, Bradener D, Schoener E. 1998. Interactions of buprenorphine and selective dopamine receptor antagonists in the rat nucleus accumbens. General Pharmacology: The Vascular System 31:425-429.

Ripamonti C. 2012. Pain management. Annals of Oncology 23:x294-x301.

Schutová B, Hrubá L, Pometlová M, Šlamberová R. 2009. Impact of prenatal and acute methamphetamine exposure on behaviour of adult male rats. Prague Med Rep 110:67-78.

Shirafkan T, Sarihi A, Komaki A. 2013. Role of capsaicin receptors in periaqueductal gray on pain modulation in diabetic rats. Feyz Journals of Kashan University of Medical Sciences 17.

Shiri M, Komaki A, Oryan S, Taheri M, Komaki H, Ette F. 2016. Effects of cannabinoid and vanilloid receptor agonists and their interaction on learning and memory in rats. Canadian journal of physiology and pharmacology 95:382-387.

Taheri Azandaryani M, Sarihi A, Komaki A, Emam AH. 2015. Effect of capsaicin (TRPV1 receptor agonist) injection into the periaqueductal gray region on morphine antinociception in streptozotocin induced diabetic rats using tail flick test. Iranian Journal of Physiology and Pharmacology 1:159-153.

Thompson AC, DiPirro JM, Sylvester AR, Martin LB, Kristal MB. 2006. Lack of analgesic efficacy in female rats of the commonly recommended oral dose of buprenorphine. Journal of the American Association for Laboratory Animal Science 45:13-16.

Wala EP, Holtman JR. 2011. Buprenorphine-induced hyperalgesia in the rat. European journal of pharmacology 651:89-95.

Wallace TL, Gudelsky GA, Vorhees CV. 1999. Methamphetamine-induced neurotoxicity alters locomotor activity, stereotypic behavior, and stimulated dopamine release in the rat. The Journal of neuroscience 19:9141-9148.

Xu P, Qiu Y, Zhang Y, Bai Y, Xu P, Liu Y, Kim JH, Shen H-w. 2015. The effects of 4-methylethcatinone on CPP, locomotor sensitization, and anxiety-like behavior: a comparison with methamphetamine. International Journal of Neuropsychopharmacology:pyv120.

Yamamotová A, Hrubá L, Schutová B, Rokyta R, Šlamberová R. 2011. Perinatal effect of methamphetamine on nociception in adult Wistar rats. International Journal of Developmental Neuroscience 29:85-92.

Yamamotová A, Slamberova R. 2012. Behavioral and antinociceptive effects of different psychostimulant drugs in prenatally methamphetamine-exposed rats. Physiological Research 61:S139.

Figure Legends:
Fig. 1. Effects of Meth (2 mg/kg, IP) and BUP (5 mg/kg, IG) administration on the reaction time during the hot plate test. The data are presented as the mean ± SEM (n = 10). The comparisons were made with one-way ANOVA and Tukey's post-hoc test. ***: \(p < 0.001 \), for all groups in comparison to the control group; $$: p < 0.01 \), for comparison of the BUP+Meth to the BUP group; ###: \(p < 0.001 \), for comparison of the BUP+Meth to the Meth group.

Fig. 2. Effects of Meth and BUP on the latency time during the tail-flick test. ***: \(p < 0.001 \), for all groups in comparison to the control group; $: p < 0.05 \), for comparison of the BUP+Meth to the BUP group; ###: \(p < 0.001 \), for comparison of the BUP+Meth to the Meth group.

Fig. 3. Effects of abstinence from Meth and BUP for seven days on the latency time during the hot plate test. ***: \(p < 0.001 \), for all groups in comparison to the control group; #: \(p < 0.05 \), for comparison of the BUP+Meth to the Meth group.

Fig. 4. Effects of abstinence from Meth and BUP for seven days on the latency time during the tail-flick test. ***: \(p < 0.001 \), for all groups in comparison to the control group.

Fig. 5. Comparison of the latency time during the hot plate test between the periods of Meth and BUP treatment and abstinence. \(p > 0.05 \) for all groups.

Fig. 6. Comparison of the latency time during the tail-flick test between the periods of Meth and BUP treatment and abstinence. ***: \(p < 0.001 \), for the BUP and BUP+Meth groups.
Fig. 1

Hot Plate Time (Sec)

- Control
- Meth
- BUP
- Meth + BUP

Fig. 2

Tail flick Time (Sec)

- Control
- Meth
- BUP
- Meth + BUP
Fig. 3

![Hot Plate Time (Sec) graph]

Fig. 4

![Tail Flick Time (Sec) graph]
After 7 days of drug treatment
After 7 days of drug abstinence

Fig. 5
Fig. 6

After 7 days of drug treatment

After 7 days of drug abstinence

Tail flick Time (sec)