Systematic review of paediatric studies of adverse drug reactions from pharmacovigilance databases

Kennedy Obebi Cliff-Eribo, Helen Sammons and Imti Choonara

The University of Nottingham, Academic Division of Child Health, Derbyshire Children’s Hospital, Derby, UK

ABSTRACT

Objective: To perform a systematic review of studies describing paediatric adverse drug reactions (ADRs) conducted from national pharmacovigilance databases.

Methods: A systematic literature search of studies describing results for paediatric ADRs from national pharmacovigilance databases was performed. PubMed database, Embase and MEDLINE were searched up to March 2015. The descriptive studies included were analysed for country of origin, reporters, and ADR reporting rate, drugs, ADRs and number of fatalities.

Results: 20 studies were identified. Doctors were the largest group of reporters in all the studies, and with more consumer reports seen in USA. The studies ranged from 3 – 37 years. The highest ADR reporting rate was 1458 reports per year per million children in Cuba. Antibiotics and vaccines were the most frequently reported drugs, in almost all the studies. The most frequent ADRs were skin and nervous system disorders. The highest proportion of fatalities and serious reports was from North America. Drugs used for treating attention deficit hyperactivity disorders (ADHD) and isotretinoin were the most frequently reported drugs for ADRs in North America.

Conclusions: There were geographical differences in drugs responsible for ADRs and their seriousness, especially in North America. Very few studies were conducted in Asia and Latin America, none were found from Africa.

ARTICLE HISTORY

Received 16 October 2015
Accepted 4 August 2016
Published online 23 August 2016

KEYWORDS

Adverse drug reactions; paediatric; spontaneous reporting system; pharmacovigilance database

1. Introduction

Adverse drug reactions (ADRs) are a major problem for children in all countries [1]. One in 10 children in hospital in a high-income country (HIC) will experience an ADR [2]. A study in Cuba suggested that at least 1 in 500 children will experience an ADR each year [3]. National pharmacovigilance databases have been useful in detecting signals. They have also been helpful in describing the type of ADRs experienced by children in a country and the drugs responsible [4]. The majority of the published studies describing ADR data for children have originated from HICs in Europe. The most frequently described ADRs in children in Europe are rashes, headache, pyrexia, and gastrointestinal disorders. The medicines responsible were antibiotics and vaccines.

Antibiotics and vaccines are the most widely used medicines in children worldwide. However, there are significant differences in the use of antibiotics in different countries. Additionally, there are major differences in the use of medicines in children, even in Europe [5,6]. Therefore, one may see differences in the types of ADRs experienced. Additionally, the prevalence of diseases will be different in low-income and lower-middle-income countries. One would therefore expect the ADRs to be different. Antimalarials, for example, are infrequently used in children in Europe. Many ADRs are preventable due to inappropriate prescribing. It is only by identifying the drugs responsible for ADRs that one can determine areas where prescribing may be inappropriate. We therefore decided to look at all publications reporting ADRs in children from national pharmacovigilance databases to explore the differences between ADRs and drugs responsible in different countries.

2. Methods

A systematic literature search of published studies describing ADRs from national spontaneous reporting pharmacovigilance databases was performed. In order to capture the relevant articles, the following terms and/or keywords assigned to articles which studied ADRs from databases were used: adverse drug reaction*, adverse effect*, adverse event*, side effect*, pharmacovigilance, spontaneous reporting, ADR reporting system, ADR reporting, drug surveillance program, and adverse event reporting. The databases used were PubMed, Embase, and MEDLINE. The PubMed database was searched from when the World Health Organization (WHO) Collaborating Centre for International Drug Monitoring in Uppsala was established in 1978 to March 2015. The WHO center receives individual case safety reports of suspected ADRs from national pharmacovigilance centers around the world [7]. Embase and MEDLINE were searched from 1980 to March 2015 and 1947 to March 2015, respectively. In addition to these searches, the reference lists of publications were also searched. The search strategy is as shown in Table 1.

Articles which described ADRs from national, international, and regional pharmacovigilance databases were considered.
Eight of the studies excluded vaccines (including all four from North America) (Table 2). The majority of the studies grouped ADRs in system organ class (SOC) and suspect drugs in anatomical therapeutic class (ATC) or drug class, and presented them in percentages of first, second, and third most frequently reported. The type of notifiers and death reports were also presented in percentages.

The period of time data was collected for the studies ranged from 3 to 37 years. The 37-year data described fatal suspected ADRs in UK between 1964 and 2000. For the studies which described seriousness of the events, the percentages of ADRs or reports ranged between 2% and 68% of the total number of ADRs or reports. The highest proportion of serious reports was from North America (42–62%). Four studies described reporting rates. The reporting rates for the other studies were calculated using an estimate of the childhood population for the year of study. The highest ADR reporting rates of 634 and 1458 reports per year per million children were described in regional studies conducted in Cuba in 2010 and 2012, respectively.

Nine studies described notifiers of ADRs (Table 3). Doctors were the largest group of reporters in eight of the studies. Pharmacists and other healthcare professionals (HCPs) (including nurses) also submitted reports in most countries. The largest proportion of reports from consumers was from the USA.

3.2. Reported ADRs

The majority of the studies reported skin disorders (rash and urticaria) as the most frequent ADRs (Table 4). Other common ADRs were nervous system disorders (headache, dizziness, and drowsiness) and pyrexia/fever. The less commonly reported ADRs were convulsions, diarrhea, and agitation. One study [19] described only fatal reports, and the most frequent fatal ADR in this study was hepatic failure. The majority of the studies which ranked the frequency of ADRs described them in SOC. Only a few studies described ADRs in lowest level terms.

3.3. Reported drugs

The most frequently reported drugs are shown in Table 5. Antibiotics and vaccines were the most frequently reported drugs in almost all the studies identified in Europe, Latin America, and Asia. Amoxicillin was the most frequently reported individual antibiotic (where this was stated) apart from in one Italian study where it was second after amoxicillin/clavulanic acid and in one Chinese study where cefuroxime was the most frequent.

In contrast, in North America, drugs used for treating attention deficit hyperactivity disorders (ADHD) (methylphenidate was named in one study) and isotretinoin were most frequently reported. There was no uniformity in the way frequency of drugs reported were described in the studies. In most studies, ATC was used and in others, specific drugs were described.

3. Results

The literature search produced a total of 6720 articles from PubMed, Embase, and MEDLINE. When the inclusion and exclusion criteria were applied, 41 articles were identified, made up of 20 for pediatric studies and 21 for general population studies (Figure 1). Only the 20 pediatric studies were analyzed.

3.1. Summary of findings

The 20 studies reviewed included 3 international, 12 national, and 5 regional studies. The majority of the studies were conducted in Europe. Four were from North America, two from Latin America, one from Asia, and none from Africa.
3.4. Deaths reported

The studies conducted in North America reported the highest fatality rates, which ranged from 3.4% to 13.0% (Table 6). These rates contrasted sharply with the rates reported in Europe, which ranged between 0.1% and 2.2% with a mean rate of 0.8%. In the UK study [19] which described 37-year data, 0.8% fatality was recorded.

4. Discussion

Systemic anti-infectives and vaccines were the group of drugs most frequently associated with ADRs in studies in Europe, Asia, and Latin America. This reflects the widespread use of anti-infectives and vaccines in children [27,28]. Many anti-infectives, however, are prescribed inappropriately [5,6]. Reducing inappropriate prescribing would reduce the number of ADRs. In contrast, in North America [21–23], drugs used for treating ADHD and isotretinoin were most often associated with the ADRs. These findings suggest that the epidemiology of the use of medicines in children in North America may be different to other countries. The diagnosis of ADHD in children visiting outpatient clinics in the USA has been on the rise since 2000 [29]. Interestingly, antiepileptic drugs were the third most frequently reported group of drugs in most countries, including North America.

The most frequently reported ADRs were skin disorders and pyrexia. The proportions of deaths in the reports were higher in North America compared with those in Europe, Asia, and Latin America. This may reflect differences in the use of medicines and also differences in attitudes toward reporting. This is an area open to further research.

The countries which have established programs of ADR reporting in their health-care system are likely to have more reports in national ADR databases. The size of the country, population, and duration of time of data collected for the study may also influence the number of reports in the database. The combination of these factors may have contributed to the higher number of reports or rates of reporting per population observed in the national studies conducted in UK [14,19], Denmark [15], Sweden [16], and USA [21,24]. The high reporting rates recorded from the
Table 2. Type of study and annual reporting frequency.

Author/continent	Country	Children population (years)	Study duration (years)	Number of reports	Percentage of serious reports/ADRs	Population estimate *	ADR Reporting rate	Source of data/description of reports
International								
Aagaard et al. 2014 [9]	International	≤17	5	240	68	2.2 billion	0.02	VigiBase (Consumer reports)
Star et al. 2011 [7]	International	≤17	10	268,145	–	2.2 billion	12	VigiBase (Vaccines excluded)
Europe								
Blake et al. 2014 [10]	International	<18	18.5	279,359	–	742.8 million	20	EudraVigilance (European study)
Ferrajolo et al. 2014 [11]	Italy	<18	12	8338	39	10.3 million	67	National study (Vaccines excluded)
Carnovale et al. 2014 [12]	Italy	≤17	4	3539	17	10.3 million	86	Regional study
Aldea et al. 2012 [13]	Spain	≤17	6	4279	37	8.4 million	85	National study
Hawcutt et al. 2012 [14]	UK	<17	10	31,726	–	13.3 million	238	National study
Aagaard et al. 2010 [15]	Denmark	≤17	10	2437	42	1.1 million**	222**	National study
Kimland et al. 2005 [16]	Sweden	≤15	15	5771	13	1.7 million**	226**	National study
Schirm et al. 2004 [17]	Netherlands	≤16	7	773	7	3.6 million	31	National study (Vaccines excluded)
Clarkson et al. 2004 [18]	UK	≤16	3	456	33	13.2 million	11	Regional study
Clarkson et al. 2002 [19]	UK	≤14	37	43,755	–	11.0 million	107	National study (Vaccines excluded) (Fatal ADR reports only)
Morales-Olivas et al. 2000 [20]	Spain	≤14	10	1419	27	5.9 million	24	National study
Lee et al. 2014 [21]	USA	<18	5.7	78,623	42	75.2 million	183	National study (Vaccines excluded)
Johann-Liang et al. 2009 [22]	USA	<18	5	36,241	62	75.1 million	97	National study (Vaccines excluded)
Carleton et al. 2007 [23]	Canada	≤19	4.5	1193	61	7.0 million	38	National study (Vaccines excluded)
Moore et al. 2002 [24]	USA	<2	3	5976	61	7.8 million	255	National study (Vaccines excluded)
Latin America								
Arencibia et al. 2012 [3]	Cuba	≤18	2	533	31	183,105**	1458**	Regional study
Arencibia et al. 2010 [25]	Cuba	≤18	1	124	15	195,504**	634**	Regional study
Asia								
Li et al. 2014 [26]	China	≤17	1	3848	2	301.2 million	13	Regional study

*Population estimates were taken from United Nations Population Division, World Population Prospects: The 2012 Revision [8] to calculate the reporting rates.

**Population and rate as reported in study.

ADR: adverse drug reaction.

Table 3. Notifiers of reports.

Author/continent	Country	Physicians/doctors (%)	Pharmacists (%)	Nurses and other HCPs (%)	Consumers (%)	Comments
Star et al. 2011 [7]	International	55	3	3	4	VigiBase reports
Europe						
Ferrajolo et al. 2014 [11]	Italy	83	10	6	1	National
Aldea et al. 2012 [13]	Spain	63	11	24	–	National
Hawcutt et al. 2012 [14]	UK	35	5	59	1	National
Aagaard et al. 2010 [15]	Denmark	89	1	7	4	National
Latin America						
Arencibia et al. 2012 [3]	Cuba	73	15	10	1	Regional
Arencibia et al. 2010 [25]	Cuba	60	16	24	–	Regional
Asia						
Li et al. 2014 [26]	China	52	24	16	3	Regional
North America						
Lee et al. 2014 [21]	USA	31	6	22	31	National
Table 4. Most frequently reported ADRs.

Author/continent	Country	1st most frequent ADR	2nd most frequent ADR	3rd most frequent ADR	Comments
International					
Aagaard et al. 2014 [9]	International	General disorders (20%)	Nervous system disorders (14%)	Injury, poison & procedural complications (7%)	VigiBase data
Star et al. 2011 [7]	International	Skin disorders (35%)	General disorders (20%)	Nervous system disorders (19%)	VigiBase data
Blake et al. 2014 [10]	International	Pyrexia (13%)	Vomiting (6%)	Convulsion (4%)	EudraVigilance data
Ferrajolo et al. 2014 [11]	Italy	Skin disorders (52%)	Gastrointestinal disorders (17%)	Nervous system disorders (12%)	
Carnovale et al. 2014 [12]	Italy	Skin disorders (26%)	General disorders (24%)	Gastrointestinal disorders (11%)	
Aldea et al. 2012 [13]	Spain	Pyrexia (7%)	Application site reaction (4%)	Gastrointestinal disorders (11%)	
Hawcutt et al. 2012 [14]	UK	Headache (10%)	Dizziness (9%)	Pyrexia (7%)	
Aagaard et al. 2010 [15]	Denmark	General disorders (31%)	Skin disorders (18%)	Nervous system disorders (15%)	
Kimland et al. 2005 [16]	Sweden	Application site reaction (24%)	Fever (12%)	Rash (exanthema) (7%)	
Schirmit et al. 2004 [17]	Netherlands	Tooth discoloration (6%)	Rash (5%)	Agitation (3%)	
Clarkson et al. 2004 [18]	UK	Not reported	Not reported	Not reported	
Morales-Olivas et al. 2000 [20]	Spain	Not reported	Not reported	Urticaria (6%)	
North America					
Lee et al. 2014 [21]	USA	Not reported	Not reported	Not reported	
Johann-Liang et al. 2009 [22]	USA	Not reported	Not reported	Not reported	
Carleton et al. 2007 [23]	Canada	Not reported	Not reported	Not reported	
Moore et al. 2002 [24]	USA	Not reported	Not reported	Not reported	
Latin America					
Arencibia et al. 2012 [23]	Cuba	Urticaria/angiodysema (29%)	Drowsiness (11%)	Vomiting (9%)	
Arencibia et al. 2010 [25]	Cuba	Drowsiness (14%)	Headache (11%)	Respiratory distress/failure (10%)	
Asia					
Li et al. 2014 [26]	China	Rash (exanthema) (29%)	Fever (21%)	Application site reaction (9%)	

ADR: adverse drug reaction.

5. Conclusions

The majority of the studies reviewed were from Europe and North America, no study was identified from Africa. ADR reporting rates are higher in Europe, North America, and Latin America compared to Asia. Physicians and doctors reported more ADRs compared to pharmacists and nurses.

Vaccines and anti-infectives were most frequently associated with ADRs in children, with the exception of North America. The reported fatality rate was higher in North America.

6. Expert opinion

ADRs are underreported worldwide. The highest reporting rate was 1458 reports per year per million children in Cuba. Reporting rates in Europe (the continent with most studies) were considerably lower. Education about ADRs and their reporting is needed in Europe. Antibiotics and vaccines were the most frequently reported groups of drugs in most studies. They are also the most frequently prescribed groups of drugs to young children. Antibiotics are often prescribed inappropriately and efforts to improve rational prescribing are needed. In contrast, in North America, drugs for ADHD were the most frequently reported drugs. This may be related to the widespread use of these drugs in North America. More reports of...
Table 5. Most frequently reported drugs.
Author/continent

Aagaard et al. 2014 [9]
Star et al. 2011 [7]
Blake et al. 2014 [10]
Ferrajolo et al. 2014 [11]
Carnovale et al. 2014 [12]
Aldea et al. 2012 [13]
Hawcutt et al. 2012 [14]
Aagaard et al. 2010 [15]
Kimland et al. 2005 [16]
Schirm et al. 2004 [17]
Clarkson et al. 2004 [18]
Clarkson et al. 2002 [19]
Morales-Olivas et al. 2000 [20]
Lee et al. 2014 [21]
Lee et al. 2014 [21]
Johann-Liang et al. 2009 [22]
Carleton et al. 2007 [23]
Moore et al. 2002 [24]
Latin America
Arecia et al. 2010 [25]
Asia

ADHD: attention deficit hyperactivity disorders.
pharmacovigilance are needed from low- and middle-income countries in Africa, Asia, and Latin America.

Funding

This paper was not funded.

Declaration of interest

The authors have no relevant affiliations or financial involvement with any organization or entity with a financial interest in or financial conflict with the subject matter or materials discussed in the manuscript. This includes employment, consultancies, honoraria, stock ownership or options, expert testimony, grants or patents received or pending, or royalties.

References

Papers of special note have been highlighted as either of interest (∗) or of considerable interest (∗∗) to readers.

1. Pirmohamed M, James S, Meakin S, et al. Adverse drug reactions as cause of admission to hospital: prospective analysis of 18 820 patients. BMJ. 2004;329(7456):15–19.

2. Clavenna A, Bonati M. Adverse drug reactions in childhood: a review of prospective studies and safety data. Arch Dis Child. 2009;94(9):724–728.

3. Bárzaga Arencibia Z, López Leyva A, Mejías Peña Y, et al. Pharmacovigilance in children in Camagüey Province, Cuba. Eur J Clin Pharmacol. 2012;68(7):1079–1084.

4. Neubert A, Sturkenboom MCM, Murray ML, et al. Databases for pediatric medicine research in Europe—assessment and critical appraisal. Pharmacoepidemiol Drug Saf. 2008;17(12):1155–1167.

5. Bénard-Larière A, Jové J, Lassalle R, et al. Drug use in French children: a population-based study. Arch Dis Child. 2015;100 (10):960–965.

6. Bozic B, Bajcetic M. Use of antibiotics in paediatric primary care settings in Serbia. Arch Dis Child. 2015;100(10):966–969.

7. Star K, Nørén GN, Nordin K, et al. Suspected adverse drug reactions reported for children worldwide: an exploratory study using Vigibase. Drug Saf. 2011;34(5):415–428.

8. United Nations. Department of Economic and Social Affairs, Population Division (2013). World Population Prospects: The 2012 Revision, DVD Edition. 2013 [Cited 2015 Jun 04]; Available from: http://esa.un.org/unpd/wpp/Excel-Data/Interpolated.htm.

9. Aagaard L, Hansen EH. Adverse drug reactions in children reported by European consumers from 2007 to 2011. Int J Clin Pharm. 2014;36(2):295–302.

10. Blake KV, Zaccaria C, Domergue F, et al. Comparison between paediatric and adult suspected adverse drug reactions reported to the European medicines agency: implications for pharmacovigilance. Pediatric Drugs. 2014;16:309–319.

∗∗ This study included ADR reports from countries in Europe.

11. Ferrajolo C, Capuano A, Trifirò G, et al. Pediatric drug safety surveillance in Italian pharmacovigilance network: an overview of adverse drug reactions in the years 2001-2012. Expert Opin Drug Saf. 2014;13 Suppl 1(Suppl 1):59–20.

12. Carnovale C, Brusadelli T, Zuccotti G, et al. The importance of monitoring adverse drug reactions in pediatric patients: the results of a national surveillance program in Italy. Expert Opin Drug Saf. 2014;13 Suppl 1(Suppl 1):51–8.

13. Aldea A, García Sánchez-Colomer M, Fernández Quintana E, et al. Paediatric adverse drug reactions reported to the Spanish Pharmacovigilance System from 2004 to 2009. Eur J Clin Pharmacol. 2012 Sep;68(9):1329–1338.

14. Hawccutt DB, Mainie P, Riordan A, et al. Reported paediatric adverse drug reactions in the UK 2000-2009. Br J Clin Pharmacol. 2012;73(3):437–446.

15. Aagaard L, Weber CB, Hansen EH. Adverse drug reactions in the paediatric population in Denmark: a retrospective analysis of reports made to the Danish Medicines Agency from 1998 to 2007. Drug Saf. 2010;33(4):327–339.

16. Kimland E, Rane A, Ufer M, et al. Paediatric adverse drug reactions reported in Sweden from 1987 to 2001. Pharmacoepidemiol Drug Saf. 2005;14(7):493–499.

17. Schirm E, Tobi H, Van Puijenbroek EP, et al. Reported adverse drug reactions and their determinants in Dutch children outside the hospital. Pharmacoepidemiol Drug Saf. 2004;13(3):159–165.

18. Clarkson A, Conroy S, Burroughs K, et al. Surveillance for adverse drug reactions in children: a paediatric regional monitoring centre. Paediatr Perinat Drug Ther. 2004;6(1):20–23.

19. Clarkson A, Choounara I. Surveillance for fatal suspected adverse drug reactions in the UK. Arch Dis Child. 2002;87(6):462–466.

20. Morales-Olivas FJ, Martínez-Mir I, Ferrer JM, et al. Adverse drug reactions in children reported by means of the yellow card in Spain. J Clin Epidemiol. 2000;53(10):1076–1080.

21. Lee W-J, Lee TA, Pickard AS, et al. Drugs associated with adverse events in children and adolescents. Pharmacotherapy. 2014;34(9):918–926.
22. Johann-Liang R, Wyeth J, Chen M, et al. Pediatric drug surveillance and the Food and Drug Administration’s adverse event reporting system: an overview of reports, 2003-2007. Pharmacoepidemiol Drug Saf. 2009;18(1):24–27.
23. Carleton BC, Smith MA, Gelin MN, et al. Paediatric adverse drug reaction reporting: understanding and future directions. Can J Clin Pharmacol. 2007;14(1):e45–57.
24. Moore TJ, Weiss SR, Kaplan S, et al. Reported adverse drug events in infants and children under 2 years of age. Pediatrics. 2002;110(5):e53.
25. Arencibia ZB, Sotomayor DN, Mollinedo NC, et al. Adverse drug reactions in children in Camagüey Province, Cuba. Arch Dis Child. 2010;95(6):474–477.
26. Li H, Guo X-J, Ye X-F, et al. Adverse drug reactions of spontaneous reports in Shanghai Pediatric Population. Plos One. 2014;9(2):e89829.
27. Granström M, Voordouw AC. Registration of influenza vaccines for children in Europe. Vaccine. 2011;29(43):7572–7575.
28. Shann F, Steinhoff MC. Vaccines for children in rich and poor countries. The Lancet. 1999;354:5117–5111.
29. Garfield CF, Dorsey ER, Zhu S, et al. Trends in attention deficit hyperactivity disorder ambulatory diagnosis and medical treatment in the United States, 2000-2010. Acad Pediatr. 2012;12(2):110–116.
30. Backstrom M, Ekman E, Mjömdal T. Adverse drug reaction reporting by nurses in Sweden. Eur J Clin Pharmacol. 2007;63(6):613–618.
31. Ulfvarson J, Meijr S, Bergman U. Nurses are increasingly involved in pharmacovigilance in Sweden. Pharmacoepidemiol Drug Saf. 2007;16(5):532–537.
32. Cliff-Eribo KO, Sammons H, Star K, et al. Adverse drug reactions in Nigerian children: a retrospective review of reports submitted to the Nigerian Pharmacovigilance Centre from 2005 to 2012. Paediatr Int Child Health. 2015;0(0):2046905515Y.0000000059.
33. Cliff-Eribo KO, Choonara I, Dodoo A, et al. Adverse drug reactions in Ghanaian children: review of reports from 2000 to 2012 in VigiBase. Expert Opin Drug Saf. 2015;14(12):1827–1833.

- This is the first study of pediatric ADRs from a national pharmacovigilance database in Africa.
- This is the second study of pediatric ADRs from a national pharmacovigilance database in Africa.