Geopolitical species revisited: genomic and morphological data indicate that the roundtail chub *Gila robusta* species complex (Teleostei, Cyprinidae) is a single species

Joshua M Copus Curr. 1, W L Montgomery 2, Zac H Forsman 1, Brian W Bowen 1, Robert J Toonen 1

1 Hawaii Institute of Marine Biology, University of Hawaii at Manoa, Kaneohe, Hawaii, United States
2 Department of Biology, Northern Arizona University, Flagstaff, Arizona, United States

Corresponding Author: Joshua M Copus
Email address: jcopus@hawaii.edu

The *Gila robusta* species complex in the Lower Colorado River Basin has a complicated taxonomic history. Recent authors have separated this group into three nominal taxa, *G. robusta*, *G. intermedia*, and *G. nigra*, however aside from location, no reliable method of distinguishing individuals of these species currently exists. To assess relationships within this group, we examined morphology of type specimens and fresh material, and used RADseq methods to assess phylogenetic relationship among these nominal species. Maximum likelihood and Bayesian inference tree building methods reveal high concordance between tree topologies based on the mitochondrial and nuclear datasets. Coalescent SNAPP analysis resolved a similar tree topology. Neither morphological nor molecular data reveal diagnostic differences between these species as currently defined. As such, *G. intermedia* and *G. nigra* should be considered synonyms of the senior *G. robusta*. We hypothesize that climate driven wet and dry cycles have led to periodic isolation of population subunits and subsequent local divergence followed by reestablished connectivity and mixing. Management plans should therefore focus on retaining genetic variability and viability of geographic populations to preserve adaptability to changing climate conditions.
Geopolitical species revisited: genomic and morphological data indicate that the roundtail chub *Gila robusta* species complex (Teleostei, Cyprinidae) is a single species

Joshua M. Copus¹, W.L. Montgomery², Zac H. Forsman¹, Brian W. Bowen¹, Robert J. Toonen¹

¹Hawai‘i Institute of Marine Biology, University of Hawai‘i at Mānoa, Kāne‘ohe, HI 96744, USA
²Department of Biology, Northern Arizona University, Flagstaff, AZ 86011, USA

*Corresponding author: Joshua M. Copus, joshua.copus@gmail.com
Abstract
The *Gila robusta* species complex in the Lower Colorado River Basin has a complicated taxonomic history. Recent authors have separated this group into three nominal taxa, *G. robusta*, *G. intermedia*, and *G. nigra*, however aside from location, no reliable method of distinguishing individuals of these species currently exists. To assess relationships within this group, we examined morphology of type specimens and fresh material, and used RADseq methods to assess phylogenetic relationship among these nominal species. Maximum likelihood and Bayesian inference tree building methods reveal high concordance between tree topologies based on the mitochondrial and nuclear datasets. Coalescent SNAPP analysis resolved a similar tree topology. Neither morphological nor molecular data reveal diagnostic differences between these species as currently defined. As such, *G. intermedia* and *G. nigra* should be considered synonyms of the senior *G. robusta*. We hypothesize that climate driven wet and dry cycles have led to periodic isolation of population subunits and subsequent local divergence followed by reestablished connectivity and mixing. Management plans should therefore focus on retaining genetic variability and viability of geographic populations to preserve adaptability to changing climate conditions.
Introduction

The fish genus *Gila* Baird & Girard 1853 contains 20 currently recognized species in the Western United States and Mexico. Of these, *G. cypha* Miller 1946, *G. elegans* Baird & Girard 1853, *G. intermedia* (Girard 1856), *G. jordani* Tanner 1950, *G. nigra* Cope 1875, *G. robusta* Baird & Girard 1853, and *G. seminuda* Cope & Yarrow 1875 inhabit the Colorado River Basin and make up the *Gila robusta* species complex (Gerber, Tibbets & Dowling, 2001). The Lower Colorado River Basin, separated from the Upper Colorado River Basin by Glen Canyon Dam, is occupied by *G. robusta*, *G. intermedia*, and *G. nigra*. These *Gila* populations, as with many freshwater fishes within the Lower Colorado River Drainage are in decline from anthropogenic threats such as habitat destruction and modification accompanying human population growth and interactions with non-native fishes (Minckley & Marsh, 2009). These declines led to the listing of *G. intermedia* as endangered under the U.S. Endangered Species Act (USFWS, 2005) and a proposal for *G. robusta* and *G. nigra* to be listed as threatened (USFWS, 2015).

Over the past 150 years, the *G. robusta* complex within the Lower Colorado River Basin has received considerable attention in an attempt to resolve relationships among the populations that inhabit these drainages. Hypotheses such as ecophenotypic plasticity, introgression, and cryptic speciation have all been invoked to account for geographic variation in genetic structure, as well as morphological and ecological traits within and among species of *Gila* (e.g. Miller, 1946; Dowling & Demarias, 1993; Gerber, Tibbets & Dowling, 2001; Marsh, Clarkson & Dowling, 2017). Numerous molecular studies have attempted to resolve the relationships of the *Gila robusta* complex. Although interpretations of the data vary, there is no clear evidence to date that the three nominal species of *Gila* in the drainages of the Lower Colorado River basin represent reproductively isolated and distinct evolutionary units (Demarias et al., 1992; Demarias et al., 1993; Schonhuth et al., 2012; Schonhuth et al., 2014; Dowling et al., 2015; Marsh, Clarkson & Dowling, 2017), nor has a reliable method (morphological or molecular) of assigning individual fish to species been identified (Moran et al., 2017; Carter et al., 2018). The current practice of species identification for managers and researchers working with the *G. robusta* complex requires identifications based on collection locality as determined by Rinne (1969) and later revised by Minckley & Demarias (2000) based on mean morphological differences of populations rather than diagnosable morphological or molecular
characters of individuals, because no such characters have been identified. The *Gila* populations
within these localities were assigned to distinct species (*G. robusta* and *G. intermedia*) and
subspecies (*G. grahamii [=nigra]; Rinne, 1969; Rinne, 1976) based on mean morphological
differences among populations. Rinne interpreted these mean differences to represent distinct
taxonomic units (species and subspecies) but dismissed the variance in morphology that exists
within each population. Minckley & Demarias (2000) revised the geographic ranges and
taxonomic status of this group and developed a taxonomic key for the identification of the three
species. Unfortunately, the implementation of this key has been problematic for managers and
researchers attempting to assign species names to individual fish, in part due to the reliance on
population means as diagnostic characters, and in part due to confusion arising from variation
among individuals within and among locations.

A recent review of the specific status of *Gila intermedia* and *Gila nigra* as distinct from
Gila robusta was undertaken by the American Society of Ichthyologists and Herpetologists -
American Fisheries Society (ASIH-AFS) Committee on the Names of Fishes. Upon reviewing
all available literature and data, including much of the data presented here, and hosting a
symposium on the topic, the committee concluded that there was no evidence that *Gila
intermedia* and *Gila nigra* were distinct from *G. robusta* (Page et al., 2017). Since this decision
from the ASIH-AFS, the USFWS has withdrawn their proposal to list *G. robusta* and *G. nigra* as
threatened under the Endangered Species Act until a species status assessment of the newly
defined *G. robusta* taxon can be undertaken.

Here we review the systematic and taxonomic history of this group to provide a
foundation for evaluating the nomenclature within the *G. robusta* complex. We provide a
comprehensive morphological comparison of the type series of each species, as well as fresh
material from streams throughout the Lower Colorado River Basin, to test for diagnostic
characters. Finally, we use molecular phylogenomics to ascertain the evolutionary relationships
among populations and putative species.

Systematic and taxonomic review
 There has been considerable confusion regarding the systematics and taxonomy of the
Gila robusta complex within the Lower Colorado River Basin, largely due to a complex array of
phenotypes (Demarias et al., 1992). Many species within the genus *Gila* Baird & Girard 1853
have been described multiple times and the *G. robusta* complex of the Lower Colorado River Basin is no exception. We identified fifteen specific names and seven generic names applied to these fishes.

G. robusta Baird & Girard 1853

Gila robusta Baird & Girard 1853 is the type species for the genus. The type series of the species is cataloged as USNM 246, but a note included with the type specimens states, “These, the types of *Gila robusta* B.+G., are cat. No. 246. They were reentered by error as 47983 and attributed to nos. 276+273, which are cods! Nos. 276+277 were attributed as type nos. of this species, by error, by Jordan & Evermann 1896:227. R.R. Miller III: 1945” (Figure S1). This is one of a number of clerical errors uncovered in the taxonomic history of this fish and is indicative of the historic pattern of confusion surrounding the systematics of this complex.

The original description reported that the collection locality for the syntypes was the Zuni River, New Mexico, but Smith, Miller & Sable (1979) suggest that this locality is a clerical error, based on the argument that the Zuni River was unsuitable habitat for *G. robusta* during the time at which the type specimens were collected (1851). Smith, Miller & Sable (1979) suggested that the specimens were actually from another collection site of the Sitgreaves expedition, the Little Colorado River, below Grand Falls, Coconino County, Arizona. Sublette, Hatch & Sublette (1990) dispute the assertions of Smith, Miller & Sable (1979), and contend that the syntypes were collected from the Zuni River in 1851, and note that additional specimens were subsequently collected twice in 1873 and once in 1879 on the Zuni River by different collectors. It is highly unlikely that multiple clerical errors on different expeditions would have occurred at this locality with this species. Sublette, Hatch & Sublette (1990) suggest that the Zuni River represented marginal habitat that may have received recruits from the Rio Pescado and that they have since been extirpated from the Zuni River. The journal of SW Woodhouse, the naturalist who originally collected these fishes, clearly states that on Saturday the 6th of September 1851, he received these fishes while camped at the Zuni Pueblo, which were "collected from the creek." The argument that the syntypes were collected on the Little Colorado River rather than the Zuni is therefore dubious and we maintain the type locality as the Zuni River for *G. robusta*.

G. intermedia (Girard 1856)
Girard (1856) described *Tigoma intermedia* from specimens collected on the Rio San Pedro in Arizona and noted that it was morphologically intermediate between *T. pulchella* (Baird & Girard 1854) and *T. purpurea* Girard 1856 (both of which are now regarded as valid species within the genus *Gila*). Evermann & Rutter (1895) placed *T. intermedia* within the genus *Leuciscus* Cuvier 1816. Jordan & Evermann (1896) synonymized *Tigoma* and *Richardsonius* Girard 1856 with *Leuciscus*, and suggested that *L. intermedius* and *L. niger* (Cope 1875) (now *Gila nigra* Cope 1875) may be conspecific. Fowler (1924) retained this genus placement for *L. intermedius*. Snyder (1914) regarded *T. intermedia* and *G. nigra* as synonyms of *Gila gibbosa* Baird & Girard 1854, which he placed within the genus *Richardsonius* Girard 1856. Jordan & Gilbert (1883) asserted that *gibbosus* Baird & Girard 1854 was unavailable due to homonymy resulting from placement of *Leuciscus gibbosus* Ayres 1854 and *Gila gibbosa* Baird & Girard 1854 within the genus *Squalius* Bonaparte 1837 (*Gila gibbosa* Baird & Girard 1854 being the junior homonym). Jordan & Evermann (1896) placed both of these species within the genus *Leuciscus* Cuvier 1816, creating another case of homonymy, this time within *Leuciscus*. In both cases, *gibbosus* Ayres 1854 was identified as the senior homonym; however, that name was itself preoccupied by *Leuciscus* between *gibbosus* Storer 1845 and *gibbosus* Ayres 1854. In any case, *G. gibbosa* Baird & Girard 1854 is not an available name. Miller (1945) treated *intermedia* as a subspecies of *G. robusta* Baird & Girard 1853, which was followed by subsequent authors (e.g. Miller, 1946; Uyeno, 1961; Miller, 1961; LaRivers, 1962; Sigler & Miller, 1963; Miller & Lowe, 1964; Uyeno & Miller, 1965; Barber & Minckley, 1966; Miller & Lowe, 1967; Cole, 1968; Minckley & Alger, 1968; Minckley, 1969; Lee, 1980; Robins, Bailey & Bond, 1980).

Rinne (1969) recognized two distinct species within the Lower Colorado River Basin: *G. robusta* for the more broadly distributed form, and *G. intermedia* for populations principally distributed in central and southern Arizona. Within the synonymy of *G. intermedia*, he also included *G. gibbosus*, *G. nigra*, and *G. lemmoni*, noting that the former was unavailable due to homonymy, thereby asserting *G. intermedia* as the next available name. Rinne (1969) does not appear to have examined any of the type series of *G. intermedia*, but states “in all respects, they [populations he labels as *G. intermedia*] correspond to the original description of *Tigoma (=Gila) intermedia* Girard 1856”. The original description of *G. intermedia* (Girard 1856) consisted of the following text: “Intermediate between *T. pulchella* and *T. purpurea*, more closely related however to the former than to the latter. The fins are much less developed, the inferior fins
especially are quite small.” The original description did not include enough diagnostic characters to confidently conclude that the populations Rinne (1969) defines as *G. intermedia* are conspecific with the type specimens of *G. intermedia*, and there is no evidence that Rinne examined either *pulchella* or *purpurea* before asserting that *G. intermedia* was in fact, the correct name for these populations. Nevertheless, most subsequent authors followed Rinne (1969) in treating *G. intermedia* as a valid species (e.g. Stout, Bloom & Glass, 1970; Minckley, 1971; Rinne, 1976; Hocutt & Wiley, 1986; Minckley, Hendrickson & Bond, 1986; Sublette, Hatch & Sublette, 1990; Robins et al., 1991; Winfield & Nelson, 1991; Espinosa-Pérez, Gaspar-Dallanes & Fuentes-Mata, 1993; Gilbert, 1998; Minckley & DeMarias, 2000; Norris, Fischer & Minckley, 2003; Nelson et al., 2004; Scharpf, 2005; Miller, 2005; Minckley & Marsh, 2009; Page & Burr, 2011; Page et al., 2013), despite the known complex taxonomic history and a lack of any discrete identifying characteristics.

G. grahamii Baird & Girard 1853

Although *Gila grahamii* is currently recognized as a synonym of *G. robusta*, due to the complicated systematic history of this group, particularly with respect to *G. nigra*, we include this nomenclatural account to promote clarity. Baird & Girard (1853) described *Gila grahamii* (often misspelled in the literature as *grahami*) from specimens collected in the Rio San Pedro, Gila River basin. Günther (1868) placed it within the genus *Leuciscus* Cuvier 1816. Cope & Yarrow (1875) placed the species back in the genus *Gila* and recognized it as distinct from both *G. robusta* Baird & Girard 1853 and *G. nigra* Cope 1875. Evermann & Rutter (1895) treated *G. grahamii* as a synonym of *G. robusta*, and subsequent early authors followed this assignment. This synonymy remained stable until Rinne (1969), who regarded *grahamii* as a subspecies of *G. robusta*, recognized populations collected from the tributaries of the Verde River and the upper Gila River system as distinct from the subspecies *G. r. robusta* in the main stem Verde and Gila Rivers. Rinne (1969) recognized current San Pedro populations (type locality of *G. grahamii*) as belonging to the species he referred to as *G. intermedia*, even though he accepted *G. r. grahamii* for his "headwater" form (again, apparently without examining type specimens). In the years between 1969 and 2000, there was not consistent recognition of *G. r. grahamii* as a valid subspecies, but no authors treated it as a valid species, or as a synonym or subspecies of any species other than *G. robusta* (e.g., Rinne, 1976; Lee et al., 1980; Robins, 1980; Holden &
Minckley, 1980; Mayden, 1992; La Rivers, 1994; Gilbert, 1998). Minckley & Demarias (2000) regarded the populations referred to by Rinne (1969) as *G. r. grahamii* as representing a distinct species, even though they noted that it is likely of hybrid origin and paraphyletic. However, they also noted that the syntypes of *G. grahamii* belong to what Rinne (1969) regarded as the subspecies *G. r. robusta* (citing pers comm RR Miller & WL Minckley). Therefore, they recognized *G. nigra* Cope 1875, as the earliest available name for the species previously referred to by Rinne (1969) as *G. r. grahamii*.

G. nigra Cope 1875

G. nigra Cope in Cope & Yarrow 1875 was described from specimens collected in Ash Creek and at San Carlos, Arizona. Jordan & Gilbert 1883 placed it in the genus *Squalius* Bonaparte 1837, and later Jordan & Evermann (1896) placed it in the genus *Leuciscus*. They also regarded *Gila gibbosa* Baird & Girard 1854 as conspecific, but unavailable due to homonymy (see above). Gilbert & Scofield (1898) synonymized *G. nigra* with *T. intermedia*, which they placed in the genus *Leuciscus*. Snyder (1915) regarded *G. niger* as a synonym of *G. gibbosa* (within the genus *Richardsonius*), failing to recognize that the latter species name was not available due to homonymy. Fowler (1924) followed Gilbert & Scofield (1898) in treating *G. nigra* as a synonym of *intermedius*, within the genus *Leuciscus*. Subsequent treatments placed *nigra* in synonymy with *intermedia* (see above). This synonymy was broadly followed until Minckley & Demarias (2000) recognized *G. nigra* as the earliest available name to refer to the species treated by Rinne (1969) as *G. r. grahamii*.

Synonymies now considered valid

Along with the considerable synonymy of *Gila robusta* are species that were at one time considered synonyms of *G. robusta* and are now considered valid. *Gila elegans* Baird & Girard 1853 was treated as a synonym of *G. robusta* by Ellis (1914) and as a subspecies by Miller (1945) and La Rivers (1994). However, *G. elegans* was treated as valid by Vanicek (1967) and subsequent authors. *Gila jordani* Tanner 1950 was treated as a subspecies of *G. robusta* by Rinne (1976), Lee (1980), La Rivers (1994), and Gilbert (1998) but was recognized as valid by Minckley & Marsh (2009) and subsequent authors. *Clinostomus pandora* Cope 1872 was treated as a synonym of *G. robusta* by Ellis (1914) but valid as *Gila pandora* (Cope 1872) by
subsequent authors. *Tigoma egregia* Girard 1858 was treated as a synonym of *G. robusta* by Ellis (1914) but regarded as valid as *Richardsonius* Girard 1856 *egregius* (Girard 1858) by subsequent authors. Finally, *Gila seminuda* Cope & Yarrow 1875 was treated as a subspecies of *G. robusta* by Ellis (1914), Snyder (1915), Rinne (1976), and Lee (1980) but regarded as valid by Gilbert (1998) and subsequent authors.

Materials and Methods

Type material for each of the currently recognized species of the *G. robusta* complex as well as the type of the *G. robusta* synonym *G. grahamii* were obtained from the Smithsonian National Museum of Natural History (*G. robusta* (USNM 246, N=2), *G. nigra* (USNM 16972, N=3; 16987 N=2), *G. intermedia* (USNM 232, N=4), and *G. grahamii* (USNM 253, N=1).

Due to the problems associated with the taxonomic key (Moran et al., 2017; Carter et al., 2018) the current practice of species identification for managers and researchers working with the *G. robusta* complex within the Lower Colorado River Basin is based on drainage location, as assigned by Rinne (1969) and later revised by Minckley and Demarias (2000). We follow this convention because no alternative method of assignment is currently available. Morphological and molecular analysis of fresh specimens of each nominal species (*G. robusta* N=6, *G. intermedia* N=6, and *G. nigra* N=5) as well as *G. elegans* (N=1) and *G. cypha* (N=1) as out-groups were analyzed from streams throughout their range, with the exception of O'Donnell Canyon material collected from the captive population held at the International Wildlife Museum, and Eagle Creek and Verde River samples collected from the Bubbling Ponds Fish Hatchery. One individual per location across the range of each species was analyzed to capture as much within species variation as possible (Figure 1) Tissue of *G. elegans* and *G. cypha* were obtained from the Arizona Game and Fish Department Bubbling Ponds fish hatchery. Tissue samples were stored in both salt-saturated DMSO solution (20% dimethyl sulfoxide, 0.25M EDTA, pH 8.0, saturated with NaCl; Seutin, White, & Boag, 1991; Gaither et al., 2011) and RNA Later (ThermoFisher Scientific, Waltham, MA) for reduced representation genomic sequencing using the ezRAD protocol (Toonen et al., 2013; Knapp et al., 2016). Specimens were frozen prior to morphological analyses.
Morphological Analysis: Fresh specimens were thawed and radiographed to aid in morphological analysis. Species names were assigned to fresh specimens based on sampling location as designated by Rinne (1969) and Minckley and Demarias (2000) (see above). Meristic and morphometric analysis follow methods outlined in Hubbs & Lagler (1958). All statistical comparisons of morphology were implemented in R (R Core Team, 2016). Linear regression was performed on each of the morphometric characters to test for allometric growth and confirm that each of these characters scale linearly with size. Variables were then standardized by length for comparison. F-tests (to determine equal or unequal variance) and t-tests were performed on all standardized variables to test whether shrinkage due to preservation causes significant differences between type material and fresh material for any variable. We find that allometric growth and shrinkage from preservation are not significant between fresh and preserved specimens and consequently comparisons between size and preservation method were possible (Table S1). Morphometric measurements are presented as a percentage of standard length, head length, or body depth.

Reduced Representation Genomic Data Production: Genomic DNA was extracted from tissue using the Omega E.Z.N.A Tissue DNA Kit (Omega Biotek, Norcross, GA) following the manufacturer's protocol except that HPLC grade H₂O was substituted for the elution buffer. DNA aliquots were visualized following electrophoresis on a 1% agarose gel to assess quantity and quality. For extractions that did not yield > 1 μg high molecular weight DNA (>10kb), multiple extractions from the same individual were completed and extractions were pooled and concentrated using an Eppendorf Vacufuge plus (Eppendorf, Hauppauge, NY). Extractions were quantified with AccuBlue (Biotium, Inc, Hayward, CA) high sensitivity dsDNA quantification kit and measured on a SpectraMax M2 microplate reader (Molecular Devices, Sunnyvale, CA). All extractions were subsequently stored at -20°C until used for library preparation as outlined below.

Size-selected reduced representation genomic libraries were generated following the ezRAD protocol (Toonen et al., 2013; Knapp et al., 2016). In brief, tissue samples were cleaned with Agencourt AMPure XP beads (Beckman Coulter, Indianapolis, IN) following manufacturers' protocols. High molecular weight DNA was digested using the restriction enzyme DpnII to cleave at all GATC cut sites using a final master mix volume of 25 μl (5 μl 1 Buffer,
19 μl HPLC grade H₂O, 1 μl 1U DpnII) to 25 μl dsDNA (1 μg). Samples were incubated for 3 hours at 37°C followed by 20 minutes at 65°C to denature the enzyme. Following digestion, samples underwent a second bead cleaning with AMPure XP beads. Library preparation for Illumina sequencing was completed with the KAPA HyperPrep kit (Kapa Biosystems, Wilmington, MA) following manufacturers’ protocols. All libraries were size selected to retain 300-500 base pair (bp) fragments and passed through quality control steps (bioanalyzer and qPCR) prior to high-throughput sequencing. Illumina paired-end fragments were sequenced at the Hawaii Institute of Marine Biology Genetics Core Facility using Illumina v3 2x300 reads on the MiSeq genomic analyzer (Illumina, San Diego, CA).

Genomic analysis

Mitochondrial genome: Raw Illumina reads were paired, trimmed and mapped to the mitochondrial genome of G. robusta (Genbank DQ536424.1) using Geneious v.6.1.8 (Kearse et al., 2012). Five mapping iterations were completed at high sensitivity. For each sample, consensus sequences of all contigs that successfully mapped to the reference genome were extracted, and all consensus sequences were aligned, manually inspected and low coverage regions removed in Geneious.

Reduced representation nuclear genome: Reads were trimmed, assembled, and genotyped using the dDocent pipeline (Puritz, Hollenbeck & Gold, 2014). Any loci appearing in less than 85% of individuals were excluded from these analyses. The paired-end overlapping read algorithm was used for de novo assembly. Clustering similarity of 0.9 and mapping parameters of A (match score) = 2, B (mismatch score) = 3, and O (gap penalty) = 4 were used. dDocent processing recovered 89,896 loci with an average read depth of 227 in all 19 individuals. Complex variants were decomposed using vcflib (Garrison & Marth, 2012) to deconstruct haplotypes and insertions and deletions were removed using VCFtools (Danecek et al., 2011). Any contigs that mapped to the mtDNA were removed from the dataset using VCFtools, and the remaining contigs were considered to represent only the nuclear genome. The resulting data were then collapsed into haplotypes with the rad_haplotype pipeline (https://github.com/chollenbeck/rad_haplotype; Willis et al., 2017), which uses read alignments to record combinations of SNPs present across paired-end reads. For each individual,
rad_haplotyper removes complex loci, missing data, paralogs, and sequencing errors. Any locus
that is not present in at least 14 of 19 individuals with a depth of coverage of at least 20 is not
included in the final dataset. The rad_haplotyper method was employed to overcome many of the
problems that can arise with SNP data in the absence of a reference genome, such as inflated
homozygosity, artifacts, or inflated heterozygosity (Willis et al., 2017). Contigs were then
collapsed into genotypes for final analyses. PGDspider v.2.1.1.3 (Lischer & Excoffier, 2011)
was used to convert the dataset to the required file types for further analysis.

Phylogenetic analysis: The optimal model of sequence evolution was selected using the Akaike
Information Criterion (AIC) in JModelTest v.2.1.4 (Posada, 2008). GTR+G was found to be the
best-fit substitution model for both the mtDNA and total evidence datasets. The HKY model was
found to be the best-fit model for the nuclear dataset. To calculate posterior probabilities of
clades, MrBayes v.3.2.6 (Huelsenbeck & Ronquist, 2001; Ronquist & Huelsenbec, 2003) was
used to run a 1,000,000-generation Markov chain implementing the best-fit model for the
dataset. We used flat Dirichlet prior probability densities with an initial burn in of 250,000
generations. Trees were saved every 500 generations for a total sample size of 1,500 trees. A
majority rule consensus tree calculated from the 2,000 sampled trees was used to determine the
posterior probabilities of clades. Under these parameters standard deviations between
independent runs stabilized and were all less than 0.01. Maximum likelihood (ML) analyses
were conducted using the Randomized Accelerated Maximum Likelihood (RAxML) software
v.8 (Stamatakis, 2014). Best-fit models and 30,000 bootstrap replicates were implemented for all
datasets. Uncorrected pairwise divergence times for mtDNA were estimated using Mega v.7.0
(Kumar, Stecher & Tamura, 2016). Phylogenetic trees were constructed and visualized using
FigTree v.1.4.2 (http://tree.bio.ed.ac.uk/software/figtree/).

SNAPP Coalescent analysis: Species trees were estimated from the nuclear dataset with the
SNAPP package in BEAST v.2.3.2 (Bouckaert et al., 2014). Polymorphic loci were extracted
from the rad_haplotyper output and outgroups were removed. BEAUti (Drummond et al., 2012)
was executed with the following parameters: all taxa were treated as distinct species/populations,
the mutation rates u and v were calculated from the data, and default values were used for the
exponential priors. The data were then analyzed in BEAST (Bouchaert et al., 2014). The
MCMC chain was run for 10,000,000 generations, sampling every 1,000 generations with 300,000 preBurnin. The results of this analysis were visualized using Densitree (Bouckaert & Heled, 2014), and presented as a cludogram.

Molecular clock estimation: To estimate the time of coalescence, a Bayesian MCMC approach was implemented in BEAST on the mtDNA dataset, under a coalescent constant population model with a strict clock of 2% per million years (Brown, George & Wilson, 1979; Bowen et al. 2011; Reece et al., 2010). Simulations were run with default priors under the GTR + G model of mutation. Simulations were run for 10 million generations, sampling every 1000 generations following a 30,000 preBurnin. Ten independent runs were computed to ensure convergence and log files were combined using TRACER v.1.7 (Rambaut et al., 2018).

Tests of Introgression: Tests of introgression were performed on the total dataset using ABBA-BABA statistics implemented in HybridCheck (Ward & van Oosterhout, 2016) to assess whether introgression with G. cypha could be detected within the G. robusta clades. To ensure that our data met the assumptions of ancestry ((P1,P2)P3), required for this test, we only compared ingroups (P1,P2) separated by the distinct clades of our phylogenetic trees. Standard ABBA-BABA calculations use Patterson’s D to infer introgression, but this statistic may not be sufficient to separate introgression from ancestral population structure. Therefore, we also include an alternative statistic Fd (Martin, Davey & Jiggins, 2014), which estimates the fraction of the genome shared through complete introgression between P2 and P3, and P1 and P3 and is not subject to the same biases as the D statistic. We also report the statistical significance (p-value) that expressed the deviation from an equal number of ABBA-BABA sites. Significant admixture was determined by Z scores of 3 or higher.

Results
Taxonomic treatment

Gila robusta Baird & Girard 1853

Gila robusta Baird & Girard 1853, Zuni River, New Mexico. Syntypes: USNM 246 (USNM 47983; 3, plus 1 pharyngeal arch as #2798)

Gila gracilis Baird & Girard 1853 (Evermann & Rutter, 1895; Jordan & Evermann, 1896; Gilbert & Scofield, 1898; Gilbert, 1998)
Gila grahamii Baird & Girard 1853 (Cope, 1871; Evermann & Rutter, 1895; Jordan & Evermann, 1896; Fowler, 1924; La Rivers, 1994 [as subspecies: Rinne, 1976; Lee, 1980; Gilbert, 1998])

Gila gibbosa Baird & Girard 1854 (Jordan & Gilbert, 1883; Evermann & Rutter, 1895; Jordan & Evermann, 1896; Gilbert & Scofield, 1898; Snyder, 1915; Fowler, 1924; Gilbert, 1998)

Tigoma gibbosa (Baird & Girard 1854) (Girard, 1856; Jordan & Gilbert, 1883; Evermann & Rutter, 1895; Jordan & Evermann, 1896; Gilbert & Scofield, 1898; Gilbert & Scofield, 1898)

Richardsonius gibbosus (Baird & Girard 1854) (Snyder, 1915)

Tigoma intermedia Girard 1856 (Evermann & Rutter, 1895; Jordan & Evermann, 1896; Gilbert & Scofield, 1898; Jordan & Evermann, 1896; Fowler, 1924; Snyder, 1915; Gilbert, 1998 [as subspecies: Miller, 1945, 1946; Uyeno & Miller, 1965; Barber & Minckley, 1966; La Rivers, 1994] treated as a full species within Gila by Rinne 1969 and most subsequent authors.

Squalius intermedius (Girard 1856) (Jordan & Gilbert, 1883; Jordan & Evermann, 1896; Gilbert & Scofield, 1898)

Leuciscus intermedius (Girard 1856) (Evermann & Rutter, 1895; Jordan & Evermann, 1896; Gilbert & Scofield, 1898; Jordan & Evermann, 1896)

Ptychocheilus vorax Girard 1856 (Evermann & Rutter, 1895; Jordan & Evermann, 1896; La Rivers, 1994)

Gila affinis Abbott 1860 (Jordan & Evermann, 1896; Fowler, 1924)

Leuciscus zunnensis Günther 1868 (Jordan & Evermann, 1896; Gilbert & Scofield, 1898; La Rivers, 1994; Gilbert, 1998)

Leuciscus robustus (Baird & Girard 1853) (Günther, 1868; Jordan & Evermann, 1896; La Rivers, 1994)

Leuciscus grahami Günther 1868 (Jordan & Evermann, 1896)

Gila nacrea Cope 1871 (Evermann & Rutter, 1895; Jordan & Evermann, 1896; Gilbert, 1998)

Gila nigra Cope 1875 in Cope & Yarrow 1875 (Jordan & Gilbert, 1883; Gilbert & Scofield, 1898; Snyder, 1915; Fowler, 1924; Gilbert, 1998)

Leuciscus niger (Cope 1875) (Evermann & Rutter, 1895; Jordan & Evermann, 1896; Gilbert & Scofield, 1898)

Squalius niger (Cope 1875) (Jordan & Gilbert, 1883; Jordan & Evermann, 1896)

Squalius nigra (Cope 1875) (Gilbert & Scofield, 1898, misspelling of S. niger)

Squalius lemmoni Smith 1884 (Jordan & Evermann, 1896; Gilbert & Scofield, 1898; Gilbert, 1998)

Morphological analysis

Type material: Examination of the type series of G. robusta (n=2), G. intermedia (n=4), G. nigra (n=5), and G. grahamii (n=1) reveal differences between the types within this complex. However, similar or greater morphological dissimilarity was observed for the G. grahamii type (now considered a synonym of G. robusta; see above) when compared to each of the other type series (Table 1). Furthermore, these differences apply to only these restricted type series and
differences were not supported when the fresh material was added (see below). Unfortunately, the taxonomic key (Minckley & Demarias, 2000) used to assign the names *G. intermedia* and *G. nigra* to the populations that Rinne (1969; 1976) and Minckley & Demarias (2000) recognize as distinct species fails to correctly assign the type material to the correct species.

Fresh material: Analysis of fresh material of specimens assigned to the three species reveals extensive overlap in characters, prohibiting any definable difference between groups (Table 2). There is no single diagnostic character that can be used for species identification of fresh material, with considerable overlap among species in every morphological character. Likewise no suite of characters can distinguish the fresh material by species unambiguously.

Comparisons of fresh specimens to type material: Morphological comparisons of type material (Table 1) to fresh specimens (Table 2) also failed to resolve the species as currently recognized (Table 3). Type specimens as well as fresh material exhibit as much or more variation within species as between species. As such, it is impossible to assign any of the fresh specimens back to the type material and thus to species, without location information. No character in putative *G. robusta* specimens could be uniformly assigned back to the type of *G. robusta* but instead each character was assigned to multiple type series. Only 28% of the time did a morphological character (Table 1, 2) align correctly to the types of *G. robusta*, while 63% of the time the characters aligned to *G. nigra* types and 51% to *G. intermedia*, with many of the characters aligning with multiple type series (Table 3). Similar patterns are observed with both *G. nigra* and *G. intermedia*.

Molecular analysis: Mapping of the mitochondrial genome resulted in recovery of 14,892 base pairs (bp) of the 16,595 bp reference mtDNA genome. Filtering and haplotyping of the nuclear DNA resulted in a final dataset of 1,292 RAD contigs containing 4,821 haplotypes across all individuals, which consisted of 6,658 polymorphisms across 52,483 total bp of nuclear DNA. Analysis of the mitochondrial genome and nuclear datasets revealed high concordance between tree topologies constructed for each of the datasets using both maximum likelihood and bayesian tree building methods. Only a single discrepancy was observed between the nuclear dataset and mtDNA dataset: the O'Donnell Canyon specimen is assigned to clade 2 in the nuclear tree and
clade 4 in the mtDNA tree (Figure 2, 3), which may be the result of accidental mixing of captive stocks. The results of these molecular analysis are consistent with the morphological finding; *G. intermedia* and *G. nigra* are not distinct evolutionary units and not distinguishable from *G. robusta*. Likewise, the SNAPP coalescent analysis results plotted as a cluocogram reveal high concordance between tree topologies (Figure 4). Similarly, STRUCTURE (Pritchard, Stephens & Donnelly, 2000) analysis and discriminate analysis of principle components (DAPC; Jombart, 2008) fail to discriminate the nominal taxa (Figure S2).

Morphological analysis of phylogeny: Comparison of morphological characters to the phylogenetic trees revealed nearly 100% overlap of morphological characters between each clade (i.e. there was no differentiation in any morphological character between phylogenetic clades; Table 4) and no diagnostic morphological character was identified that could align with the phylogenetic lineages resolved in this study.

Test of introgression: The ABBA-BABA test between the *G. robusta* complex and *G. cypha* revealed significant introgression between many of the locations (Table S2) using Patterson's D statistic. However, as expected, the alternative, F_d suggests far fewer locations exhibiting significant introgression. There is evidence for introgression in populations from the Verde River (133), Aravaipa Creek (141), Hot Springs Canyon (125), and Spring Creek-Tonto (132) for both D and F_d.

Discussion

Taxonomy and nomenclature

G. robusta, G. intermedia, and *G. nigra* were originally proposed as distinct species based on the differences observed in the type material, during a time when the natural distribution and variation within this group was unknown. Over the years that followed their description, *G. intermedia* and *G. nigra* encountered a complicated history of synonymy. However, once the synonymy stabilized, the consensus was to treat *G. intermedia* and *G. nigra* within *G. robusta* (see systematic and taxonomic review). This synonymy was widely accepted until Rinne (1969; 1976) removed *G. intermedia* from synonymy and Minckley & Demarias (2000) subsequently removed *G. nigra* from synonymy.
We find no evidence, morphological or genetic, to support the current taxonomy. Examination of fresh material revealed that the morphological variability within each of the currently accepted species precluded any distinguishable differences between groups, and individual specimens could not be unambiguously assigned to any type series. The potential characteristic differences observed between each type series, which were originally thought to represent distinct species, reflects the fact that the number of types within a series does not capture the total morphological variation within populations and therefore does not represent what is observed in nature, where no single sample could be unambiguously assigned to a type series. Different morphological characters assign each individual examined to multiple name-bearing types. This finding is concordant with a robust morphological analysis by Moran et al. (2017), which also could not resolve these fish into nominal taxa and found that morphometrics and meristics failed to distinguish the three species. Their principal components analysis using geometric morphometrics also could not separate out the three species. After removing outliers and assigning specimens to *a priori* groups Moral et al. (2017) were able to resolve most of the specimens into groups using a canonical variate analysis (CVA). However, the CVA resolved two separate groups of *G. robusta* and appears to be driven by geographic location rather than by evolutionary relationships. The two locations that overlap between Moran et al. (2017) and the data presented here show that the *G. robusta* from the Verde River fall out in clade 1 and Aravaipa Creek appear in Clade 3 (Figure 2, 3) in our data.

We find no evidence to support the validity of *Gila robusta*, *G. intermedia*, and *G. nigra* under any of the more prominent species concepts (i.e. biological species concept, morphological species concept, evolutionary species concept, phenetic species concept, phylogenetic species concept; Mayr, 1942; Simpson, 1961; Cronquist, 1978; Ridley, 1993; De Queiroz, 2007). Instead, our data appear consistent with phenotypic plasticity for *G. robusta*, and highlight the importance of undertaking a study to test this hypothesis for this species.

It might be argued that introgression within the habitats examined in this study is responsible for the observed morphological and molecular results, but in this regard the International Code of Zoological Nomenclature is clear: "The application of each species-group name is determined by reference to the name-bearing type [Arts. 61, 71-75] of the nominal taxon denoted by the combination in which the species-group name was established" (ICZN, 1999, Article 45.3). In this case, the morphology of the name-bearing types do not correspond with the
forms to which the names have been applied in natural populations. Likewise genetic approaches (both STRUCTURE and DAPC) fail to discriminate among the nominal species groups (Figure S2) and these nominal species do not resolve as monophyletic in the phylogenetic analyses (Figures 2-4). Because there are no diagnostic morphological or molecular characters that consistently distinguish the populations to which the names have been applied, the species names should not be applied. The data presented here indicate either a single morphologically plastic species, extant populations that consist almost entirely of hybrid individuals of mixed ancestral lineages, or a combination of both. Thus, based on the inability to unambiguously assign individuals to a single taxonomic category, our corresponding conclusion is to synonymize G. nigra and G. intermedia with G. robusta (the name with priority). This conclusion is reinforced by our findings that the taxonomic key and underlying data used to distinguish G. intermedia and G. nigra from G. robusta fail to assign even the type specimens unambiguously to a single species. Using mean differences between populations to justify species distinction subsumes the extent of natural variation within conspecific populations, but also, (as is the case here) can lead to polyphyly within nominal species.

Patterns and drivers of variation

Gila intermedia and G. nigra were regarded as distinct species based on mean differences between populations inhabiting different streams (Rinne, 1969; Rinne, 1976; Minckley and Demarias, 2000). Some authors suggest that these patterns are based on environmental differences such as water depth and speed (Miller, 1946; but see Rinne, 1976). Plasticity resulting in a gradation of characters by stream size and current is observed in many species of freshwater fishes (Hubbs, 1940). For example, the bluehead sucker, Catostomus discobolus, varies morphologically according to size and flow of the water it inhabits (Sigler & Sigler, 1979). Similarly, the blottail shiner, Cyprinella venusta, exhibits morphological variation between streams and reservoirs and the magnitude of morphological change is correlated with size of the reservoir (Haas, Blum & Heins, 2010). The brook charr, Salvelinus fontinalis, exhibits variation in caudal fin size and body shape with water velocity (Imre, McLaughlin & Noakes, 2002). In each of these cases, the population mean differences in morphology are responses to environmental conditions indicating morphological plasticity rather than diagnostic evolutionary traits that could define species.
The morphological and molecular patterns observed across the geographic range of these nominal species have prompted a number of hypotheses. First, present-day taxa may be relics from the last pluvial period when the wetter climate resulted in higher connectivity, with subsequent post-glaciation aridity resulting in local divergence via selection and genetic drift (Williams et al., 1985; Meffe & Vrijenhoek, 1988). In this case, selection would drive a phenotypic response in current taxa irrespective of evolutionary history, while drift should result in a geographic component to the phylogeny. Alternatively, perhaps current taxa were once isolated and are now hybridizing, yielding the morphological variation observed today (Gerber, Tibbets & Dowling, 2001; Osborne et al., 2015; DiBattista et al., 2016). Finally, current taxa may be the result of ancient admixture and subsequent isolation resulting in conflicting morphological and molecular signals for distinguishing species. It is difficult to separate these alternate hypotheses (e.g., Eaton & Ree, 2013; Merrill et al., 2015; Eaton et al., 2015; Martin et al., 2015) but in the case of G. robusta it is likely that a combination of these hypotheses is responsible for the observed patterns. Additional research that focuses on testing each of these alternative hypotheses in a robust way would be necessary to fully understand the mechanisms responsible for the morphological variation observed in this species.

Phylogenomics and hybridization

With the exception of clade 5, no lineage recovered from the phylogenetic analyses (Figure 2) consists of a single species as currently defined. However, the fact that clade 5 consists exclusively of G. nigra may be an artifact of the small geographic area and proximity of sampling locations (Figure 1). Individuals identified as G. nigra also occur in clade 3 with G. robusta, so while it is possible clade 5 represents a geographically restricted lineage, additional geographical sampling will similarly likely erode the unity of this clade. In any case, whatever the finding with clade 5, our data are consistent with previous studies based on allozyme, mtDNA, and microsatellite markers that likewise failed to find diagnostic characters among these nominal species (DeMarais, 1992; DeMarais et al., 1992; Dowling & DeMarais, 1993; Dowling et al., 2015, Marsh, Clarkson & Dowling, 2017).

The average most recent common ancestor of each of the clades resolved in this study is 63 kya (51 kya to 76 kya 95% HPD interval) with the most recent common ancestor of all populations 119 kya (97 kya to 140 kya 95% HPD interval). The divergence times of this group
fall well within the last glacial cycle and with such recent divergence of the populations, it seems likely to be linked to post glacial warming and subsequent transitions from the wetter climate of the Last Glacial Maximum to the more arid climate of today (Williams et al., 1985; Meffe & Vrijenhoek, 1988).

Tests of genomic admixture (hybridization) indicate that *G. cypha* historically interbred with all three nominal species of the *G. robusta* complex, or interbred with the recent common ancestor of each of these populations. Despite the fact that *G. cypha* and *G. elegans* are currently highly endangered, with ranges restricted to the main stem of the Colorado River, evidence suggests that at one time their ranges may have overlapped. The type locality of both *G. robusta* and *G. elegans* is the Zuni River, New Mexico, and types were collected on the same expedition at the same locality. Unfortunately, due to the nature of the ABBA BABA test, we were unable to test for significant introgression between *G. elegans* and *G. robusta*.

It is possible that introgression may have resulted in phenotypic traits passed from *G. cypha* to *G. robusta*, contributing to the morphological variation observed here. However, no study assessing the heritability of phenotypes between these species has been conducted to test this hypothesis. Similarly, no test of morphological plasticity with regard to stream condition has been conducted. These deficiencies need to be addressed in order to fully understand the patterns observed within natural populations of this species.

Management implications

Our data do not support the current taxonomy of *Gila robusta*, *G. intermedia*, and *G. nigra*. Instead, we find evidence that may correspond to environmental condition and geography more than currently accepted taxonomy and given the propensity of the cyprinids for introgression (Briolay et al., 1998; Rosenfeld & Wilkinson, 1989; Demarias et al., 1992; Dowling & Demarias, 1993; Gerber, Tibbets & Dowling, 2001), speciation within the Lower Colorado River Basin seems unlikely. Hybridization in fishes is a common occurrence (Allendorf & Leary, 1988). About 30% of known hybrids in freshwater fish species belong to the Cyprinidae, with ongoing intergeneric hybridization continuing between species that diverged 10-15 million years ago (Briolay et al., 1998). The *G. robusta* species complex is no different; hybridization producing viable offspring is a common occurrence (Gerber, Tibbets & Dowling, 2001; Marsh, Clarkson & Dowling, 2017). This history, coupled with the cyclical nature of
glacially driven pluvial periods makes it unlikely that evolutionary forces will induce speciation in the absence of permanent barriers to gene flow. Instead, these populations have likely experienced repeated cycles of isolation during dryer periods, followed by connectivity during wetter periods. At each phase, selective forces could favor different phenotypes in different isolated regions, but without reproductive isolation, these lineages could mix during each cycle. These fluctuating selection regimes combined with introgression could result in the complex array of morphological variation observed within this species. In these circumstances, management should focus on maintaining genetic diversity to ensure long-term persistence. Greater genetic diversity is associated with enhanced mean fitness (Quattro & Vrijenhoek, 1989; Reed & Frankham, 2003) and decreased extinction risk (Frankham, 2005a; Evans & Sheldon, 2008), so management should focus on preventing the loss of genetic diversity upon which long-term persistence and adaptability depend (Vrijenhoek, Douglas & Meffe, 1985; Quattro & Vrijenhoek, 1989; Frankham, 2005b; Hancock et al., 2011).

Why have the nominal *G. intermedia* and *G. nigra* persisted as taxonomic entities in the face of much evidence to the contrary? In addition to legitimate uncertainties about evolutionary partitions, these may be examples of geopolitical species (*sensu* Karl & Bowen, 1999), with species defined by geography, and taxonomic status subsequently maintained to support conservation priorities. There is currently a heated debate in the literature between conservationists and taxonomists regarding the need for fixed taxonomic entities on which to apply conservation priorities versus the dynamic nature of taxonomy that allows for revision of taxonomic hypotheses with new data, methodology, or insights (Garnett & Christidis, 2017; Thomson et al., 2018). This situation is likely exacerbated by legislation that emphasizes protections of fixed species, such as the Endangered Species Act, but does not allow for taxonomic revision and advancement. For instance, during heated debate over the taxonomy of the endangered green sea turtle (*Chelonia mydas*), Karl & Bowen (1999; see also Bowen & Karl, 1999) observed that there are scientifically sound reasons for conservation of isolated populations (which is also true within *G. robusta* in this case), but nominal taxonomy is not one of them. Conservation priorities may change over time to allow adaptive management, but taxonomy should only be influenced by scientific data as applied through the rules of the ICZN. As with the green sea turtle, the conservation status of these fishes remains a separate issue, but taxonomic assignments that do not meet the standards of the Code should be put aside to allow
researchers to reassess the true relationships within the Gila of the Lower Colorado River Basin. Range-wide genetic surveys should be undertaken to fully identify genetically distinct units, and their geographic extent, in conjunction with thorough morphological analyses to determine species boundaries in this system, which will be facilitated by first purging the incorrectly assigned nomenclature and starting with a clean slate.

Conclusions

The results of this study question the validity of the taxonomic names, but do not indicate that protections for this species should cease. Instead our results indicate the need for protection at a population level, to maintain genetic diversity and morphological variation, rather than three nominal species for which no diagnostic morphological or genetic characters exist. The Endangered Species Act defines a species to include "any subspecies of fish or wildlife or plants, and any distinct population segment of any species of vertebrate fish and wildlife which interbreeds when mature" (Section 3(15), ESA 1973, 1978). Neither our data, nor that of previous studies, indicate a single well-mixed population across the Lower Colorado River Basin. In fact, based on previous work, genetic structure may exist among many of the populations analyzed, but this population structure is not aligned with the three currently recognized taxonomic units; the shallow divergences between samples is indicative of population differences, but no species level genetic divergence has been observed. Our study was designed to examine a phylogenetic question and sampling was not sufficient for addressing population level questions. Thus, while these data indicate such population genetic studies are warranted, we caution against inferring population level conclusions until such robust surveys are completed. We recommend that this species be managed as distinct population segments until the additional studies outlined herein are completed.

Acknowledgements

We thank Richard Pyle of the Bishop Museum for assistance with taxonomy and nomenclature as well as his knowledge of the ICZN Code. We also thank Matthew O’Neill, Clay Crowder, and Julie Carter of the Arizona Game and Fish Department; Cassie Ka'apu-Lyons, Emily Conklin, Mykle Hoban, Ingrid Knapp, Mahdi Belcaid, Anne Lee and the ToBo Lab members at the Hawaii Institute of Marine Biology; Jon Puritz at University of Rhode Island for his help with
dDocent; Anthony Montgomery at the USFW; and Sandra Raredon and Jeff Williams of the National Museum for their assistance with the type material. Thanks to editors James Reimer and two anonymous reviewers for comments and suggestions that greatly improved the manuscript. This is University of Hawaii School of Ocean and Earth Science and Technology contribution XXXX and Hawaii Institute of Marine Biology contribution xxxx.

Reference

Abbott CC. 1860. Description of four new species of North American Cyprinidae. Proceedings of the Academy of Natural Sciences of Philadelphia 12:473-474.

Allendorf FW, Leary RF. 1988. Conservation and distribution of genetic variation in a polytypic species, the cutthroat trout. Conservation Biology 2:170-184.

Ayres WO. 1854. Description of new fishes from California. The Pacific [newspaper] v.3 and 4 (thru no. 6).

Baird SF, Girard CF. 1853a. Descriptions of some new fishes from the River Zuni. Proceedings of the Academy of Natural Sciences, Philadelphia 6:368-369.

Baird SF, Girard CH. 1853b. Descriptions of new species of fishes collected by Mr. John H. Clark, on the US and Mexican boundary Survey, under Lt. Col. Jas. D. Graham. Proceedings of the Academy of Natural Sciences, Philadelphia 6:387-390.

Baird SF, Girard CF. 1854. Descriptions of new species of fishes collected in Texas, New Mexico and Sonora, by Mr. John H. Clark, on the US and Mexican boundary survey and in Texas by Capt. Stewart Van Vliet, USA. Proceedings of the Academy of Natural Sciences, Philadelphia 7:24-29.

Barber WE, Minckley WL. 1966. Fishes of Aravaipa Creek, Graham and Pinal Counties, Arizona. The Southwestern Naturalist 11:313-324.

Baxter GT, Stone MD. 1995. Fishes of Wyoming. Cheyenne: Wyoming Game and Fish Department.

Bonaparte CL. 1837. Iconographia della fauna Italica per le quattro classi degli animali vertebrati. (Vol.3) Salviucci.

Bouckaert R, Heled J. 2014. DensiTree 2: Seeing trees through the forest. bioRxiv. http://dx.doi.org/10.11.01/012401

Bouckaert R, Heled J, Kühnert D, Vaughan T, Wu C, Xie D, Suchard MA, Rambaut A, Drummond AJ. 2014. BEAST 2: a software platform for Bayesian evolutionary analysis. PLoS computational biology 10:e1003537.

Bowen BW. 2016. The three domains of conservation genetics: Case histories from Hawaiian waters. Journal of Heredity 107:309-317.

Bowen BW, Karl SA. 1999. In war, truth is the first casualty. Conservation Biology 13:1013-1016.

Bowen BW, Bass A, Rocha L, Grant W, Robertson DR. 2001. Phylogeography of the trumpetfishes (Aulostomus): ring species complex on a global scale. Evolution 55:1029-1039.

Briolay J, Galtier N, Brito RM, Bouvet Y. 1998. Molecular phylogeny of cyprinidae inferred from cytochrome bDNA Sequences. Molecular phylogenetics and evolution 9:100-108.
Brown WM, George M, Wilson AC. 1979. Rapid evolution of animal mitochondrial DNA. *Proceedings of the National Academy of Sciences* 76:1967-1971.

Carter JM, Clement MJ, Makinster AS, Crowder CD, Hickerson BT. 2018. Classification Success of Species within the *Gila robusta* Complex Using Morphometric and Meristic Characters—A Reexamination. *Copeia* 106:279-291.

Cole GA. 1968. Desert limnology. In: Brown GW, ed. *Desert biology*: Elsevier.

Cope ED. 1871. Recent reptiles and fishes. Report on the reptiles and fishes obtained by the naturalists of the expedition. *U.S. Geological Survey of Wyoming & Contiguous Territories*. 4: 432-442.

Cope ED. 1872. Report on the recent reptiles and fishes of the survey collected by Campbell, Carrington, and CB Dawes. Preliminary report of the US Geological Survey of Territories, 1872. *US Geological Survey, Washington, DC* 5: 467-476.

Cope ED, Yarrow HC. 1875. Report upon the collections of fishes made in portions of Nevada, Utah, California, Colorado, New Mexico, and Arizona, during the years 1871, 1872, 1873, and 1874. Engineer Department, United States Army. *Report upon the Geographical and Geological Explorations and Surveys west of the one hundredth Meridian v. 5 (Zoology)* Chapter 6: 635-703.

De Queiroz K. 2007. Species concepts and species delimitation. *Systematic biology* 56:879-886.

DeMarais BD. 1992. Genetic relationships among fishes allied to the genus *Gila* (Teleostei: Cyprinidae) from the American Southwest. PhD dissertation, Arizona State University.

DeMarais, BD, Dowling TE, Douglas ME, Minckley WL, Marsh PC. 1992. Origin of *Gila seminuda* (Teleostei: Cyprinidae) through introgressive hybridization: implications for evolution and conservation. *Proceedings of the National Academy of Sciences*, 89: 2747-2751.

DiBattista JD, Gaither MR, Hobbs JA, Rocha LA, Bowen BW. 2016. Angelfishes, Paper Tigers, and the Devilish Taxonomy of the Centropyge flavissima complex. *Journal of Heredity* 107:647-653.

Dowling TE, DeMarais BD. 1993. Evolutionary significance of introgressive hybridization in cyprinid fishes. *Nature* 362:444.

Drummond AJ, Suchard MA, Xie D, Rambaut A. 2012. Bayesian phylogenetics with BEAUti and the BEAST 1.7. *Molecular biology and evolution* 29:1969-1973.

Eaton DA, Ree RH. 2013. Inferring phylogeny and introgression using RADseq data: an example from flowering plants (Pedicularis: Orobanchaceae). *Systematic biology* 62:689-706.
Eaton, DA, Hipp A, Gonzalez-Rodriguez A, Cavender-Bares J. 2015. Historical introgression among the American live oaks and the comparative nature of tests for introgression. *Evolution*, 69:2587-2601.

Ellis MM. 1914. Fishes of Colorado: *University of Colorado studies* 11:1-135.

Espinosa-Pérez H, Gaspar-Dillanes M, Fuentes-Mata P. 1993. Listados Faunísticos de Mexico III Los peces dulceacuícolas mexicanos. *Instituto de Biología Univ Nac Auton Mex, Mexico*:62.

Evans SR, Sheldon BC. 2008. Interspecific patterns of genetic diversity in birds: correlations with extinction risk. *Conservation Biology* 22:1016-1025.

Evermann BW, Rutter C. 1895. The fishes of the Colorado Basin. *US Fish Commission Bulletin* 14:473-486.

Fowler HW. 1924. Notes on North American cyprinoid fishes. *Proceedings of the Academy of Natural Sciences of Philadelphia* 76:389-416.

Frankham R. 2005a. Genetics and extinction. *Biological conservation* 126:131-140.

Frankham R. 2005b. Stress and adaptation in conservation genetics. *Journal of evolutionary biology* 18:750-755.

Gaither MR, Szabó Z, Crepeau MW, Bird CE, Toonen RJ. 2011. Preservation of corals in salt-saturated DMSO buffer is superior to ethanol for PCR experiments. *Coral Reefs* 30:329-333.

Garnett ST, Christidis L. 2017. Taxonomy anarchy hampers conservation. *Nature News* 546:25.

Gilbert CR. 1998. *Type catalogue of recent and fossil North American freshwater fishes: families Cyprinidae, Catostomidae, Ictaluridae, Centrarchidae and Elassomatidae*: Florida Museum of Natural History, University of Florida.

Gerber AS, Tibbets CA, Dowling TE. 2001. The role of introgressive hybridization in the evolution of the *Gila robusta* complex (Teleostei: Cyprinidae). *Evolution* 55:2028-2039.

Gilbert CH, Scofield NB. 1898. Notes on a collection of fishes from the Colorado Basin in Arizona. *Proceedings of the United States National Museum* 20:487-499.

Gilbert CR. 1998. *Type catalogue of recent and fossil North American freshwater fishes: families Cyprinidae, Catostomidae, Ictaluridae, Centrarchidae and Elassomatidae*: Florida Museum of Natural History, University of Florida.

Girard C. 1856. Researches upon the cyprinoid fishes inhabiting the fresh waters of the United States, west of the Mississippi Valley, from specimens in the museum of the Smithsonian Institution. *Proceedings of the Academy of Natural Sciences of Philadelphia* 8:165-213.

Girard C. 1858. Fishes. General report upon zoology of the several Pacific railroad routes, 1857. In: Reports of explorations and surveys, to ascertain the most practicable and economical route for a railroad from the Mississippi River to the Pacific Ocean, v. 10. Beverley Tucker, Washington, D.C. [Part of Senate Ex. Doc. No. 78 (33rd Congress, 2nd Sess.).

Günther A. 1868. Catalogue of the Physostomi, Containing the Families Heteropygii, Cyprinidae, Gonorhynchidae, Hyodontidae, Osteoglossidae, Clupeidae, Chirocentridae, Alepocephalidae, Notopteridae, Halosauridae, in the Collection of the British Museum. *Catalog of fishes* 7:1-512

Haas TC, Blum MJ, Heins DC. 2010. Morphological responses of a stream fish to water impoundment. *Biology letters* 6:803-806.

Hancock AM, Brachi B, Faure N, Horton MW, Jarymowycz LB, Sperone FG, Toomajian C, Roux F, Bergelson J. 2011. Adaptation to climate across the Arabidopsis thaliana genome. *Science* 334:83-86.
Hocutt CH, Wiley EO. 1986. *The zoogeography of North American freshwater fishes*: Wiley-Interscience, New York.

Holden P, Minckley W. 1980. *Gila cypha* Miller, humpback chub. *Atlas of North American freshwater fishes* North Carolina Museum of Natural History, Raleigh:165.

Hubbs CL. 1940. Speciation of fishes. *The American Naturalist* 74:198-211.

Hubbs CL, Lagler KF. 1958. Fishes of the Great Lakes region (revised). *Cranbrook Inst Sci Bull* 26:1-213.

Hulsenbeck JP, Ronquist F. 2001. MrBayes: Bayesian inference of phylogeny. *Bioinformatics* 17:754-755.

Imre I, McLaughlin RL, Noakes DL. 2002. Phenotypic plasticity in brook charr: changes in caudal fin induced by water flow. *Journal of Fish Biology* 61:1171-1181.

International Commission of Zoological Nomenclature 1999 International code of zoological nomenclature. Fourth edition. The International Trust for Zoological Nomenclature, c/o Natural History Museum, London. i–xxix, + 306 pp.

Jombart T. 2008. adegenet: a R package for the multivariate analysis of genetic markers *Bioinformatics* 24:1403-1405. doi: 10.1093/bioinformatics/btn129

Jordan DS, Gilbert CH. 1883. *Synopsis of the fishes of North America*: US Government Printing Office.

LaRivers I. 1962. *Fish and fisheries of Nevada*. Nevada State Fish and Game Commission, Carson City. Republished 1994. University of Nevada Press, Reno.

La Rivers I. 1994. *Fishes and fisheries of Nevada*: University of Nevada Press.

Lee DS, Gilbert CR, Hocutt CH, Jenkins RE, McAllister DE, Stauffer Jr JR. 1980. *Atlas of North American freshwater fishes*. Publication of the North Carolina biological survey 12:1-867.

Lischer HE, Excoffier L. 2011. PGDSpider: an automated data conversion tool for connecting population genetics and genomics programs. *Bioinformatics* 28:298-299.

Marsh PC, Clarkson RW, Dowling TE. 2017. Molecular genetics informs spatial segregation of two desert stream *Gila* species. *Transactions of the American Fisheries Society* 146:47-59.

Martin CH, Cutler JS, Friel JP, Dening Touokong C, Coop G, Wainwright PC. 2015. Complex histories of repeated gene flow in Cameroon crater lake cichlids cast doubt on one of the clearest examples of sympatric speciation. *Evolution* 69:1406-1422.
Martin SH, Davey JW, Jiggins CD. 2014. Evaluating the use of ABBA–BABA statistics to locate introgressed loci. *Molecular biology and evolution* 32:244-257.

Mayden RL. 1992. *Systematics, historical ecology, and North American freshwater fishes*. Stanford: Stanford University Press.

Mayr E. 1942. *Systematics and the origin of species*. Columbia University. Press.

Meffe GK, Vrijenhoek RC. 1988. Conservation genetics in the management of desert fishes. *Conservation Biology* 2:157-169.

Merrill RM, Dasmahapatra KK, Davey JW, Dell'Aglio D, Hanly J, Huber B, Jiggins CD, Joron M, Kozak K, Llaurens V. 2015. The diversification of *Heliconius* butterflies: what have we learned in 150 years? *Journal of evolutionary biology* 28:1417-1438.

Miller RR. 1945. A new cyprinid fish from southern Arizona, and Sonora, Mexico, with the description of a new subgenus of Gila and a review of related species. *Copeia* 1945:104-110.

Miller RR. 1946. *Gila cypha*, a remarkable new species of cyprinid fish from the lower Colorado River basin, Arizona. *Journal Washington Academy Science* 36:206-212.

Miller RR. 1961. Man and the changing fish fauna of the American Southwest. *Michigan Academy of Science, Arts, and Letters* 46:365-404.

Miller RR. 2005. *Freshwater fishes of México*. Chicago: University of Chicago Press.

Miller RR, Lowe CH. 1964. Annotated checklist of the fises of Arizona. In: *The vertebrates of Arizona*. Tucson: University of Arizona Press.

Miller RR, Lowe CH. 1967. Fishes of Arizona. In: *The Vertebrates of Arizona* Tuscon: University of Arizona Press, 133-151.

Minckley WL. 1969. *Aquatic biota of the Sonoita Creek basin, Santa Cruz County, Arizona*. *Nature Conservancy, Ecological Studies Leaflet* 15:1-8.

Minckley W. 1971. Keys to native and introduced fishes of Arizona. *Journal of the Arizona Academy of Science* 6:183-188.

Minckley WL. 1973. *Fishes of Arizona*. Publication of the Arizona Game and Fish Department.

Minckley WL, Alger NT. 1968. Fish remains from an archaeological site along the Verde River, Yavapai County, Arizona. *Plateau* 40:91-97.

Minckley WH, Hendrickson DA; Bond CE. 1986. Geography of western North American freshwater fishes: description and relationships to intracontinental tectonism. *The zoogeography of North American freshwater fishes*:519-613.

Minckley WL, DeMarais BD. 2000. Taxonomy of chubs (Teleostei, Cyprinidae, Genus *Gila*) in the American southwest with comments on conservation. *Copeia* 2000:251-256.

Minckley W, Marsh PC. 2009. *Inland fishes of the greater Southwest: chronicle of a vanishing biota*: University of Arizona Press.

Moran C, O'Neill M, Armbruster J, Gibb A. 2017. Can members of the southwestern *Gila robusta* species complex be distinguished by morphological features? *Journal of Fish Biology* 91:302-316.

Nelson JS, Crossman EJ, Espinosa-Pérez H, Findley LT, Gilbert CR, Lea RN, Williams JD. 2004. *Common and scientific names of fishes from the United States, Canada and Mexico*: American Fisheries Society.

Norris S, Fischer J, Minckley W. 2003. *Gila brevicauda* (Teleostei: Cyprinidae), a new species of fish from the Sierra Madre Occidental of Mexico. *Ichthyological Exploration of Freshwaters* 14:19-30.
Osborne MJ, Diver TA, Hoagstrom CW, Turner TF. 2016. Biogeography of Cyprinella lutrensis: intensive genetic sampling from the Pecos River ‘melting pot’ reveals a dynamic history and phylogenetic complexity. Biological journal of the Linnean Society 117:264-284.

Page LM, Burr BM. 2011. Peterson field guide to freshwater fishes of North America north of Mexico: Second Edition. San Diego:Houghton Mifflin Harcourt.

Page LM, Espinosa-Pérez H, Findley LD, Gilbert CR, Lea RN, Mandrak NE, Mayden RL, Nelson JS. 2013. Common and scientific names of fishes from the United States, Canada, and Mexico, Bethesda, Maryland: American Fisheries Society 7th edition, Special Publication 34.

Page LM, Baldwin CC, Espinosa-Pérez H, Findley LT, Gilbert CR, Hartel KE, Lea RN, Mandrak NE, Schmitter-Soto JJ, Walker Jr H. 2017. Taxonomy of Gila in the Lower Colorado River Basin of Arizona and New Mexico: Committee on Names of Fishes, a joint committee of the American Fisheries Society and the American Society of Ichthyologists and Herpetologists. Fisheries 42:456-460.

Posada D. 2008. jModelTest: phylogenetic model averaging. Molecular biology and evolution 25:1253-1256.

R Core Team 2016. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL http://www.R-project.org/.

Rambaut A. 2014. TreeAnnotator v. 2.3. 0. Part of the BEAST package.

Reece JS, Bowen BW, Smith DG, Larson A. 2010. Molecular phylogenetics of moray eels (Muraenidae) demonstrates multiple origins of a shell-crushing jaw (Gymnomuraena, Echidna) and multiple colonizations of the Atlantic Ocean. Molecular phylogenetics and evolution 57:829-835.

Rosenfeld MJ, Wilkinson JA. 1989. Biochemical genetics of the Colorado River Gila complex (Pisces: Cyprinidae). The Southwestern Naturalist:232-244.
Scharpf C. 2005. Annotated checklist of North American freshwater fishes, including subspecies and undescribed forms. *Part I: Petromyzontidae through Cyprinidae Am Curr* 31:1-44.

Schönhuth S, Shiozawa DK, Dowling TE, Mayden RL. 2012. Molecular systematics of western North American cyprinids (Cypriniformes: Cyprinidae). *Zootaxa* 3586:281-303.

Schönhuth S, Perdices A, Lozano-Vilano L, García-de-León FJ, Espinosa-Pérez H, Mayden RL. 2014. Phylogenetic relationships of North American western chubs of the genus *Gila* (Cyprinidae, Teleostei), with emphasis on southern species. *Molecular phylogenetics and evolution* 70:210-230.

Seutin G, White BN, Boag PT. 1991. Preservation of avian blood and tissue samples for DNA analyses. *Canadian Journal of Zoology* 69:82-90.

Sigler W, Miller R. 1963. *Fishes of Utah*: Salt Lake City, Utah Dept Fish and Game.

Sigler WF, Sigler JW. 1996. *Fishes of Utah: a natural history*: Salt Lake City, University of Utah Press.

Simpson GG. 1961. Principles of animal taxonomy.

Smith GR, Miller RR, Sable W. 1979. Species relationships among fishes of the genus *Gila* in the upper Colorado River drainage. *Ann Arbor* 1001:48109.

Smith R. 1884. Description of a new species of *Squalius* Bonaparte 1837. *Bulletin of the California Academy of Sciences* 1:3-4.

Snyder JO. 1915. Notes on a collection of fishes made by Dr. Edgar A. Mearns from rivers tributary to the Gulf of California. *Proceedings of the United States National Museum* 49:573-586.

Stamatakis A. 2014. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. *Bioinformatics* 30:1312-1313.

Storer D. 1845. Descriptions of species of fishes. *Boston Journal of Natural History* 2:48-49.

Stout GG, Bloom EC, Glass JK. 1970. The fishes of Cave Creek, Maricopa County, Arizona. *Journal of the Arizona Academy of Science* 6:109-113.

Sublette E, Hatch D, Sublette M. 1990. *The fishes of New Mexico*: University of New Mexico Press.

Tanner VM. 1950. A new species of *Gila* from Nevada (Cyprinidae). *The Great Basin Naturalist* 10:31-36.

Thomson SA, Pyle RL, Ahyong ST, Alonso-Zarazaga M, ..., Copus JM, 2018. Taxonomy based on science is necessary for global conservation. *PLoS biology* 16:e2005075.

Toonen RJ, Puritz JB, Forsman ZH, Whitney JL, Fernandez-Silva I, Andrews KR, Bird CE. 2013. ezRAD: a simplified method for genomic genotyping in non-model organisms. *PeerJ* 1:e203.

USFWS. 2005. Endangered and threatened wildlife and plants: Listing Gila Chub as endangered with critical habitat; Final rule. *Federal Register* 70:66664–66721.

USFWS. 2015. Endangered and threatened wildlife and plants: threatened species status for the Headwater Chub and a distinct population segment of the Roundtail Chub. *Federal Register* 80:60754–60783.

Uyeno T. 1961. *Osteology and phylogeny of the American cyprinid fishes allied to the genus Gila*. University of Michigan.

Uyeno T, Miller RR. 1965. Middle Pliocene cyprinid fishes from the Bidahochi formation, Arizona. *Copeia*:28-41.

Vanicek CD. 1967. Ecological Studies of Native Greenriver Fishes Below Flaming Gorge Dam, 1964-1966. Unpubl. Ph.D. diss.
Tables and Figures

Table 1: Morphometric and meristic analysis of the type series of *G. robusta*, *G. nigra*, *G. intermedia*, and *G. grahamii* for 32 morphological variables presented as a proportion of standard length\(^1\), head length\(^2\), or body depth\(^3\).

Table 2: Morphometric and meristic analysis of the fresh samples of *G. robusta*, *G. nigra*, *G. intermedia*, and *G. grahamii* for 36 morphological variables presented as a proportion of standard length\(^1\), head length\(^2\), or body depth\(^3\).

Table 3: Proportion of 22 variables that were assigned to each of the type series for each of the fresh specimens examined with proportion that were unable to assign being labeled as unclassified. Due to overlap in morphometrics, proportions can add up to greater than 1.

Table 4: Range of morphometrics and meristics by phylogenetic clade for 31 variables. Morphometrics presented as a proportion of standard length\(^1\), head length\(^2\), or body depth\(^3\).

Figure 1: Map of collecting locations. Circles indicate collecting location of fresh material; squares represent locality of type series for *G. robusta* (red) *G. intermedia* (black) and *G. nigra* (blue) and *G. grahamii* (green). Collecting locations of type material are approximations based on original reports. Grey shaded areas with black outline indicate the upper Colorado River basin (dark grey) and lower Colorado River Basin (light grey) and currently recognized ranges based on IUCN Red List maps are for *G. robusta* (red) *G. nigra* (blue) and *G. intermedia* (black diagonal stripes) are also printed.

Figure 2: Phylogenetic tree of mtDNA genome resulting from Bayesian Inference for each specimen. Color indicates taxonomic assignment of each sample for *G. robusta* (red) *G. intermedia* (black) and *G. nigra* (blue). Tree rooted with *G. cypha* and *G. elegans*. Node labels are Bayesian probabilities and Maximum likelihood bootstraps.
Figure 3: Phylogenetic tree of nuclear DNA dataset resulting from Bayesian Inference for each specimen. Color indicates taxonomic assignment of each sample for *G. robusta* (red) *G. intermedia* (black) and *G. nigra* (blue). Tree rooted with *G. cypha* and *G. elegans*. Node labels are Bayesian probabilities and Maximum likelihood bootstraps.

Figure 4: This cloudogram represents the posterior distribution of lineage trees from the Bayesian phylogenetic analysis program SNAPP. Higher density areas indicate greater agreement in tree topologies. Color labels indicate taxonomic assignment of each sample for *G. robusta* (red) *G. intermedia* (black) and *G. nigra* (blue).

Supplementary Material

Supplementary Figure S1: Photo of note written by R.R. Miller in 1945 explaining error in catalog numbers of *G. robusta* reported by Jordan and Evermann 1896:227. This note is included with the type specimens of this species.

Supplementary Figure S2: Results of the STRUCTURE analysis and discriminate analysis of principle components of the genetic data for this study. File includes figures and methods for each analysis.

Supplementary Table S1: Results of linear regression test of allometric growth in type material and fresh material examined in this study. Results indicate that variables exhibit isometric scaling, so specimens of different sizes can be compared. F-tests indicate whether each variable has an equal or unequal variance between type material and fresh material. T-test type was selected based on this result. T-tests results were to verify that shrinkage due to preservation was not significant for comparisons of type material and fresh material. No significant difference was observed.

Supplementary Table S2. ABBA-BABA test between each population separated by each of the phylogenetic clades in this study. Where the p-value represents a significant deviation of ABBA and BABA negative value of D means H1 is closer to H3 than H2 a positive means that H2 is closer to H3 than H1, and the Z scores for D and the alternate measure of introgression F_d indicate significant deviations from the mean. We use a Z value of 3 to indicate significant introgression.
Figure 1 (on next page)

Map of collecting locations

Circles indicate collecting location of fresh material; squares represent locality of type series for *G. robusta* (red) *G. intermedia* (black) and *G. nigra* (blue) and *G. grahamii* (green). Collecting locations of type material are approximations based on original reports. Grey shaded areas with black outline indicate the upper Colorado River basin (dark grey) and lower Colorado River Basin (light grey) and currently recognized ranges based on IUCN Red List maps are for *G. robusta* (red) *G. nigra* (blue) and *G. intermedia* (black diagonal stripes) are also printed.
Figure 2 (on next page)

mtDNA phylogenetic reconstruction

Phylogenetic tree of mtDNA genome resulting from Bayesian Inference for each specimen. Color indicates taxonomic assignment of each sample for *G. robusta* (red) *G. intermedia* (black) and *G. nigra* (blue). Tree rooted with *G. cypha* and *G. elegans*. Node labels are Bayesian probabilities and Maximum likelihood bootstraps.
Figure 3 (on next page)

Nuclear phylogenetic reconstruction

Phylogenetic tree of nuclear DNA dataset resulting from Bayesian Inference for each specimen. Color indicates taxonomic assignment of each sample for *G. robusta* (red) *G. intermedia* (black) and *G. nigra* (blue). Tree rooted with *G. cypha* and *G. elegans*. Node labels are Bayesian probabilities and Maximum likelihood bootstraps.
Location	Species	Clade
100 Walker Creek	*G. robusta*	1
105 Boulder Creek	*G. intermedia*	1
100/100		
150 Spring Creek-Verde	*G. robusta*	2
152 Wilder Creek	*G. intermedia*	2
122 O'Donnell Canyon	*G. robusta*	2
112 Sabino Creek	*G. robusta*	2
68/54		
162 Fossil Creek	*G. nigra*	3
68 East Verde River	*G. nigra*	3
141 Aravaipa Creek	*G. intermedia*	3
145 Eagle Creek	*G. intermedia*	3
96/40		
145 East Clear Creek	*G. intermedia*	4
125 Hot Springs Canyon	*G. robusta*	4
155 Silver Creek	*G. robusta*	4
140 Rock Creek	*G. nigra*	4
132 Spring Creek-Tonto	*G. nigra*	5
121 Haigler Creek	*G. nigra*	5
100/50		
133 Verde River	*G. intermedia*	5

Clade 1

Clade 2

Clade 3

Clade 4

Clade 5
Figure 4 (on next page)

SNAPP phylogenetic reconstruction

This cludogram represents the posterior distribution of lineage trees from the Bayesian phylogenetic analysis program SNAPP. Higher density areas indicate greater agreement in tree topologies. Color labels indicate taxonomic assignment of each sample for G. robusta (red) G. intermedia (black) and G. nigra (blue).
Clade 1
- 100 Walker Creek
- 121 Haigler Creek
- 132 Spring Creek-Tonto
- 140 Rock Creek
- 112 Sabino Creek
- 122 O’Donnell Canyon
- 105 Boulder Creek
- 152 Wilder Creek
- 150 Spring Creek-Verde
- 141 Aravaipa Creek
- 162 Fossil Creek
- 68 East Verde River
- GR1 East Clear Creek
- 125 Hot Springs Canyon
- 145 Eagle Creek
- 155 Silver Creek
Table 1 (on next page)

Morphometrics and meristics of type material
	G. robusta	G. nigra	G. intermedia	G. graminii
USNM 246, USNM 16972, USNM 232, USNM 253	USNM 16987			
Body depth³	5.2-5.4	4.1-4.6	3.7-4.0	4.5
Head length³	3.5-3.6	3.5-3.6	3.1-3.4	3.6
Head width³	1.3-1.4	1.4-1.8	1.4-1.6	1.7
Head depth³	1.1	1.2-1.4	1.3-1.4	1.5
Snout length²	3.0-3.2	3.0-3.7	3.0-4.0	3.5
Mandible length	2.1-2.2	2.4-2.9	2.3-2.7	2.5
Orbit diameter²	5.5-8.1	4.0-6.3	3.6-5.3	2.9
Interorbital width²	3.1-3.2	3.0-3.9	3.2-3.3	3.1
Upper-jaw length²	2.5-2.9	3.1-3.5	2.4-4.0	-
Caudal-peduncle depth³	2.3-2.6	2.2-2.7	2.3-2.7	2.9
Caudal peduncle length¹	2.9-4.0	4.5-5.2	4.9-6.1	4.6
Predorsal length¹	1.8-1.9	1.7-1.8	1.7-1.8	2
Preanal length¹	1.5-1.6	1.4-1.5	1.4-1.5	1.4
Pectoral insertion to pelvic insertion¹	4.0-4.5	3.4-4.6	1.8-2.1	3.8
Anal to Caudal length¹	3.0-3.1	2.9-3.7	3.3-3.9	3.4
Origin of anal fin to hypural plate¹	2.7-3.0	3.1-3.3	3.0-3.2	3.2
Prepelvic length¹	1.9-2.2	1.8-2.0	1.5-1.9	1.9
Pectoral-fin length¹	3.9-5.7	4.8-6.4	4.5-6.8	5.3
Anal fin height¹	4.9-7.4	6.1-7.0	4.9-4.9	5.8
Pelvic-fin height¹	5.5	5.8-7.9	5.7-6.9	6.6
Dorsal fin height¹	4.4-6.0	4.5-6.1	4.1-5.8	5
Caudal peduncle length/depth	1.1-1.7	1.9-2.4	1.9-2.4	1.6
Head length/caudal peduncle depth	1.3-1.5	2.8-2.1	1.2-1.5	1.2
Dorsal rays	1,9	1,8	1,8	1,9
Anal rays	1,9	1,8	1,8	1,9
Pectoral rays	13-15	14-15	13-14	14
Pelvic rays	1,9	1,8-9	1,9	1,9
Principal caudal rays	19-23	19-22	23-25	23
Upper procurent caudal rays	8	7-9	7	6
Lateral line scales	89-92	73-93	59-71	92
Scales above lateral line	21-23	18-23	16-18	25
Scales below lateral line	14	12-16	11-13	17
Table 2 \(\text{(on next page)} \)

Morphometrics and meristics of fresh material
Measurement	G. robusta	G. nigra	G. intermedia
Greatest Body depth	3.9-5.3	3.7-5.0	3.9-4.8
Head length	3.4-3.9	3.3-3.8	3.5-3.8
Head width	1.5-2.1	1.6-2.0	1.4-2.1
Head depth	1.1-1.6	1.3-1.6	1.2-1.6
Snout length	3.2-3.8	3.1-3.6	3.0-4.0
Mandible length	2.5-2.8	2.3-2.8	2.4-2.6
Orbit diameter	3.1-4.9	4.4-6.1	3.8-6.0
Interorbital width	3.3-3.9	3.1-3.6	3.0-3.8
Head length	3.4-3.9	3.3-3.8	3.5-3.8
Head width	1.5-2.1	1.6-2.0	1.4-2.1
Head depth	1.1-1.6	1.3-1.6	1.2-1.6
Snout length	3.2-3.8	3.1-3.6	3.0-4.0
Mandible length	2.5-2.8	2.3-2.8	2.4-2.6
Orbit diameter	3.1-4.9	4.4-6.1	3.8-6.0
Interorbital width	3.3-3.9	3.1-3.6	3.0-3.8
Upper-jaw length	3.0-3.3	1.5-3.4	2.5-3.2
Caudal peduncle length	5.0-5.7	4.1-4.9	4.5-6.1
Predorsal length	1.8-2.0	1.8-2.0	1.8-2.0
Preanal length	1.4-1.6	1.4-1.5	1.4-1.6
Pectoral insertion to pelvic insertion	3.6-4.0	3.5-4.0	3.3-4.0
Anal to Caudal length	2.9-4.2	3.0-3.5	3.1-3.8
Origin of anal fin to hypural plate	2.9-3.6	2.9-4.8	3.0-4.0
Prepelvic length	1.8-2.1	1.9-3.5	1.9-2.0
Caudal-fin length	3.5-4.2	3.9-5.2	3.9-4.6
Caudal concavity	1.8-3.0	2.6-3.5	2.1-3.0
Pectoral-fin length	5.3-7.2	5.2-6.4	5.5-8.5
Anal fin length	5.5-6.7	5.7-6.6	5.6-7.8
Pelvic-fin length	6.7-7.8	6.3-7.7	6.5-8.8
Dorsal fin length	4.4-5.4	4.5-5.5	4.6-6.6
Caudal fin length	4.0-4.7	4.4-6.1	4.3-5.2
Caudal peduncle length/depth	1.6-2.5	1.5-2.1	1.5-2.6
Head length/caudal peduncle length	1.2-1.7	1.2-1.7	1.2-1.5
Dorsal rays	1,8-9	1,8-9	1,8-9
Anal rays	1,8-9	1,8-9	1,8-9
Pectoral rays	14-16	14-16	13-15
Pelvic rays	1,9	1,9	1,9
Principal caudal rays	19	19	19
Upper procurrent caudal rays	8-10	6-11	7-10
Lateral line scales	82-95	82-89	65-87
Scales above lateral line	23-26	20-23	17-21
Scales below lateral line	11-15	11-15	10-14
Gill rakers	7-8,2	6-7,2	7-9,2
Table 3 (on next page)

Assignment of samples to type material
Types	G. robusta	G. nigra	G. intermedia	Average
	105 133 141 145 152	68 121 132 140 162	100 112 122 125 150 155	
G. robusta	0.22 0.22 0.26 0.35 0.26 0.39	0.35 0.35 0.30 0.35 0.22	0.22 0.26 0.22 0.35 0.30 0.30	0.29
G. nigra	0.57 0.65 0.70 0.61 0.61 0.65	0.65 0.70 0.70 0.65 0.57	0.65 0.65 0.57 0.78 0.26 0.35	0.61
G. intermedia	0.52 0.57 0.57 0.39 0.57 0.48	0.43 0.52 0.48 0.43 0.57	0.39 0.65 0.43 0.43 0.48 0.39	0.49
unclassified	0.17 0.26 0.13 0.22 0.17 0.09	0.13 0.09 0.17 0.22 0.30	0.22 0.13 0.26 0.09 0.13 0.39	0.19
Table 4 (on next page)

morphology by phylogenetic clade
	Clade 1	Clade 2	Clade 3	Clade 4	Clade 5
Body depth\(^1\)	3.7-5.0	3.8-5.2	4.2-4.6	4.0-5.2	3.9-5.3
Head length\(^1\)	3.3-3.8	3.7-3.8	3.4-3.6	3.4-3.8	3.4-3.8
head width\(^4\)	1.5-2.0	1.6-2.1	1.6-1.9	1.6-2.1	1.4-2.1
head depth\(^4\)	1.3-1.6	1.3-1.6	1.3-1.4	1.1-1.4	1.2-1.6
Snout length\(^5\)	3.3-3.6	3.3-3.7	3.1-3.5	3.0-3.8	3.1-4.0
mandible length\(^2\)	2.3-2.7	2.5-2.8	2.4-2.8	2.5-2.8	2.4-2.6
Orbit diameter\(^2\)	4.7-6.1	4-4.1	4.4-4.8	3.7-4.5	3.1-6.0
Interorbital width\(^2\)	3.1-3.5	3.3-3.5	3.5-3.6	3.3-3.6	3.0-3.9
Upper-jaw length\(^2\)	2.8-3.4	3.0-3.3	1.5-3.2	3.1-3.2	2.5-3.3
Caudal-peduncle depth\(^6\)	2.3-2.8	2.2-3.1	2.4-2.8	2.1-2.8	2.3-3.2
Caudal peduncle length\(^1\)	4.1-5.7	4.5-4.9	4.5-4.9	4.8-5.4	4.5-6.1
Predorsal length\(^1\)	1.8-2.0	1.8-2.0	1.8-1.9	1.8-1.9	1.8-2.0
Preanal length\(^1\)	1.5	1.5	1.4-1.5	1.4-1.6	1.4-1.6
pectoral insertion to pelvic insertion\(^1\)	3.7-3.9	3.7-3.8	3.6-4.0	3.5-3.9	3.3-4.0
Anal to Caudal length\(^1\)	3.3-3.7	3.2-3.4	3.0-3.5	3.0-3.4	2.9-4.2
origin of anal fin to hypural plate\(^1\)	3.3-3.6	3.1-3.4	2.9-4.8	3.2-3.6	2.9-4.1
Prepelvic length\(^1\)	1.9-2.1	2	1.9-3.5	1.8-2.0	1.9-2.0
Pectoral-fin length\(^1\)	5.8-6.3	4.9-7.2	5.2-6.4	5.4-6.3	5.3-8.5
Anal fin height\(^1\)	1.7-1.9	1.5-1.6	1.6-1.9	1.5-1.7	1.5-2.2
Pelvic-fin height\(^1\)	1.7-2.0	1.7-2.0	1.8-2.2	1.8-2.0	1.9-2.5
Dorsal fin height\(^1\)	1.5-1.6	1.4	1.3-1.5	1.3	1.3-1.9
caudal peduncle length/depth	1.5-2.5	1.6-2.0	1.7-1.9	1.8-2.4	1.5-2.6
head length/caudal peduncle depth	1.2-1.7	1.3-1.7	1.3-1.5	1.2-1.7	1.2-1.5
Dorsal rays	1,8	1,8-9	1,9	1,8-9	1,8-9
Anal Rays	1,8-9	1,8-9	1,8-9	1,8-9	1,8
Pectoral rays	14-15	14-15	14-16	14-15	13-16
Principal caudal rays	19	19	19	19	19
Upper procurent caudal rays	7-11	9-10	6-11	8-9	7-10
Lateral line scales	82-86	85-87	85-89	72-82	65-95
Scales above lateral line	20-23	21-26	21-23	18-25	17-24
Scales below lateral line	14-15	10-14	11-14	11-15	10-14