A variety of heteroarenes and electron rich arenes can be trifluoromethylated at room temperature with TMSCF₃, catalytic silver and Ph(OAc)₂.

The trifluoromethyl group is valued for its ability to modulate the properties of diverse materials such as pharmaceuticals, agrochemicals and polymers. Aryl CF₃ groups are electron-withdrawing, hydrophobic and generally very stable, all properties that can be harnessed in the design of biologically active molecules and functional materials. Synthetic methods for aryl and heteroaryl trifluoromethylation are thus critical to the discovery and production of new molecules of high value to society. Recent developments in metal-mediated trifluoromethylation have produced significant advances in this area, with common functional groups such as aryl boronic acids and halides undergoing efficient trifluoromethylation under palladium and copper catalysis. Metal-catalysed trifluoromethylation of unactivated C–H positions, by contrast, is significantly less developed and has great potential for accelerating medicinal and agrochemical syntheses. Despite some recent groundbreaking developments in this area, there is still great demand for the development of catalytic C–H trifluoromethylation methods that function under mild and simple conditions.

We were interested in developing a catalytic trifluoromethylation based on silver; in contrast to its Group 11 neighbour copper there have been few reports on silver-mediated trifluoromethylation and none that we are aware of using silver catalysis. The redox catalysis of silver, comprising one electron steps between 0, +1, +2 and +3 oxidation states, has been scarcely exploited in synthesis relative to other late TMs and could offer productive catalytic pathways for trifluoromethylation. We have recently developed silver-catalysed decarboxylative C–H cross-coupling under oxidative radical conditions, and were keen to see if a similar approach was viable for C–H trifluoromethylation.

We started with a screen of reaction conditions based around TMSCF₃ as the trifluoromethylating agent. The groups of Sanford, Bräse and Wang have recently demonstrated the compatibility of this reagent with stoichiometric silver salts, encouraging us that it could form the basis of a catalytic system. Using 1,4-dimethoxybenzene (1a) as the substrate, we conducted an initial solvent screen using combinations of AgF, TMSCF₃ and Ph(OAc)₂ (Table 1). We worked at room temperature under air throughout, with the aim of developing a mild reaction with broad functional group tolerance as possible. The reaction proved sensitive to solvent choice with initially only MeCN from a selection of common organic solvents producing any reaction (entries 1 and 2). DMSO proved more effective still, affording the trifluoromethylated compound 2a in 51% conversion (entry 3). Fluoride was not a requirement, with Ag₂CO₃ being similarly effective at promoting reaction (entry 4). Alternative oxidants did not improve on Ph(OAc)₂ (entries 5 and 6), and the use of a...
nitrogen atmosphere led to a reduction in yield (entry 7). Crucially, sub-stoichiometric amounts of silver salts proved equally effective (entries 8–10), indicating that a catalytic reaction was feasible. We settled on conditions of AgF (25 mol%) with TMSCF₃ (2 equiv.) and PhI(OAc)₂ (2 equiv.), at room temperature (entry 9) to take forward. The use of the more stable (and expensive) TESCF₃ reagent gave only marginal improvement (entry 10), so we continued with the cheaper TMSCF₃ reagent.

Substrate scope investigations established that the procedure was effective for a variety of electron rich arenes with broad substrate scope tolerance (Table 2). For unsymmetrical substrates isomeric mixtures were generally observed, with regioselectivities consistent with radical SₐRHa d d i t i o n(vide infra). Importantly, the reaction was compatible with halogen groups, illustrating an orthogonal reactivity to conventional C–X trifluoromethylation whereby neighbouring C–H bonds undergo preferential reaction. The useful building blocks 2f, 2g, 2h and 2i were prepared in this fashion. Electron-withdrawing groups such as aldehyde (2j), ketone (2k) and ester (2l) were likewise tolerated without problem. Importantly, dialkylanilines could be trifluoromethylated, a key class of building block that has rarely featured in C–H trifluoromethylation reports.⁴,¹⁰ A slight preference for ortho over para selectivity was observed for simple dimethylamine (2m), with bromo substitution also tolerated (2n) along with N-acylation (2o). We were pleased to observe that the reaction was also effective for un-activated arenes (2p, 2q and 2r), although these substrates did require an excess of the arene and the reaction temperature raised to 70 °C.

The reaction could be extended to heteroarenes with N–Me pyrroles in particular being excellent substrates (2s, 2t). Electron-withdrawing groups on the heteroarene nucleus were well- tolerated (2t), but on nitrogen less so (N–Boc, 2u). Furans (2v), thiophenes (2w, 2x) and indoles (2y) were all productive, indicating that the method is viable for the major classes of π-excessive heterocycle. π-Deficient heteroarenes, by contrast, were not generally effective in the reaction but could be efficiently captured by masking the azine nucleus with electron-donating groups (2aa).

We next turned to the trifluoromethylation of more complex, biologically active molecules – a major driver for the development of new methods in this area. Introduction of the CF₃ group at unactivated C–H positions represents a very versatile approach to fluorine incorporation for modulation of biological activity,⁴,⁶,d,j demanding mild reaction conditions that are tolerant of functional groups and reasonable stoichiometries with respect to the (often valuable) C–H substrate. Accordingly, we extended the reaction to trifluoromethylate some more complex molecules in the agrochemistry field, an area where the CF₃ group is particularly prevalent. We could successfully incorporate the CF₃ group into the commercial herbicides pyriftalid¹¹ and napropamide¹² (Scheme 1). The functional group tolerance of the reaction was illustrated by sulfide, lactone and β-hydroximide functionality all being stable to the reaction conditions (Scheme 1, 3 and 4).

A radical mechanism is implicated for the trifluoromethylation reaction,¹³ as radical quenching reactions using TEMPO and galvinoxyl radical both shut down the reaction, with the TEMPO–CF₃ adduct being clearly observed in the crude ¹⁹F NMR. The electrophilic CF₃ radical usually (but with some exceptions)⁴,j displays a marked preference for electron rich substrates, as seen here, underlining the likelihood of a radical pathway. A possible

Table 2 Ag-catalysed trifluoromethylation: substrate scope^{a,b}

Ar–H	TMSCF₃ (2 equiv.)	AgF (25 mol%)	PhI(OAc)₂ (2 equiv.)	DMSO, rt, 20 h	Ar–CF₃
1					
2a	MeO	OMe			
2b	Cl	OMe			
2c	Br	OMe			
2d	F	OMe			
2e	Br	MeO			
2f	F	MeO			
2g	MeO	F			
2h	MeO	Br			
2i	MeO	MeO			
2j	MeO	NHAc			
2k	MeO	Ac			
2l	MeO	NAc			
2m	MeO	Boc			
2n	MeO	MeO			
2o	MeO	MeO			
2p	MeO	MeO			
2q	MeO	MeO			
2r	MeO	MeO			
2s	MeO	MeO			
2t	MeO	MeO			
2u	MeO	MeO			
2v	MeO	MeO			
2w	MeO	MeO			
2x	MeO	MeO			
2y	MeO	MeO			
2z	MeO	MeO			
2aa	MeO	MeO			

^a 1 (0.3 mmol), TMSCF₃ (0.6 mmol), PhI(OAc)₂ (0.6 mmol), AgF (0.075 mmol), DMSO (1.0 mL), room temperature, 20 h. ^b Isolated yields. For isomer mixtures, the minor regiosymmetric position is labeled with *. ² Yields determined by ¹⁹F NMR using 4-fluoroanisole as the internal standard. ³ Reaction conducted at 70 °C, 5–10 equiv. of arene.
mechanism is shown in Scheme 2 whereby TMSOCH ≡ CH₂ is oxidised to the CF₃ radical, followed by S₅H₂ addition, then a second one electron oxidation and proton loss to give the product 2. Control experiments to investigate the role of silver in the first step of the proposed mechanism indicated that AgF alone was insufficently oxidising to generate CF₃⁺ (mixing AgF with TMSOCH ≡ CH₂ in the presence of TEMPO in DMSO at room temperature gave only trace quantities of TEMPO-CF₃). PhI(OAc)₂ alone was moderately effective (44% NMR yield of TEMPO-CF₃) and the combination of PhI(OAc)₂ and AgF highly effective (91% NMR yield). The back-oxidizing to generate CF₃⁺ activity of the hypervalent iodine reagent could be quantified in the trifluoromethylation of 1,4-dimethoxybenzene 1a in the absence of any silver salt, producing a low conversion to the trifluoromethylated product 2a (26% NMR yield).

Alternative mechanisms were investigated by treating dimethoxyanisole 1a with in situ prepared AgCF₃ in both MeCN and DMSO as solvents. No reaction could be observed in each case, suggesting organometallic AgCF₃ intermediates are not participating under our reaction conditions. A further control experiment with Togni's reagent was in operation.

In conclusion, we have developed a silver-catalysed trifluoromethylation: (a) M. S. Wernick, E. V. Vinogradova and A. Togni, J. Fluorine Chem., 2009, 131, 951; (b) Y. K. Akiyama, L. Truesdale and J. Q. Yu, J. Am. Chem. Soc., 2010, 132, 3648; (c) J. H. Ji, T. Brueckl, R. D. Baxter, Y. Fujiwara, I. B. Seiple, S. Su, D. G. Blackmond and P. S. Baran, Proc. Natl. Acad. Sci. U. S. A., 2011, 108, 14411; (d) A. R. Agib and D. W. C. MacMillan, Nature, 2011, 480, 224; (e) R. N. Loy and M. S. Sanford, Org. Lett., 2011, 13, 2548; (f) X. Mu, S. Chen, X. Zhen and G. Liu, Chem.–Eur. J., 2011, 17, 6609; (g) T. Liu and M. S. Sanford, Org. Lett., 2011, 13, 5464; (h) L. Chu and F.-L. Qing, J. Am. Chem. Soc., 2012, 134, 1298; (i) E. Mejia and A. Togni, ACS Catal., 2012, 2, 521; (j) J. Fujiwara, J. A. Dixon, F. O’Hara, E. D. Funder, D. D. Dixon, R. A. Rodriguez, R. D. Baxter, B. Herlé, N. Sach, M. R. Collins, Y. Ishihara and P. S. Baran, Nature, 2012, 492, 95; (k) H. A. Hafner and S. Bräse, Angew. Chem., Int. Ed., 2012, 51, 3713; (l) J.-X. Zhang, H.-X. Dair, M. Wasa and J.-Q. Yu, J. Am. Chem. Soc., 2012, 134, 11948; (m) X. Wu, L. Chu and F.-L. Qing, Tetrahedron Lett., 2013, 54, 249.

Recent C–H Trifluoromethylation of arenes: (a) M. S. Wernick, E. V. Vinogradova and A. Togni, J. Fluorine Chem., 2009, 131, 951; (b) Y. K. Akiyama, L. Truesdale and J. Q. Yu, J. Am. Chem. Soc., 2010, 132, 3648; (c) J. H. Ji, T. Brueckl, R. D. Baxter, Y. Fujiwara, I. B. Seiple, S. Su, D. G. Blackmond and P. S. Baran, Proc. Natl. Acad. Sci. U. S. A., 2011, 108, 14411; (d) A. R. Agib and D. W. C. MacMillan, Nature, 2011, 480, 224; (e) R. N. Loy and M. S. Sanford, Org. Lett., 2011, 13, 2548; (f) X. Mu, S. Chen, X. Zhen and G. Liu, Chem.–Eur. J., 2011, 17, 6609; (g) T. Liu and M. S. Sanford, Org. Lett., 2011, 13, 5464; (h) L. Chu and F.-L. Qing, J. Am. Chem. Soc., 2012, 134, 1298; (i) E. Mejia and A. Togni, ACS Catal., 2012, 2, 521; (j) J. Fujiwara, J. A. Dixon, F. O’Hara, E. D. Funder, D. D. Dixon, R. A. Rodriguez, R. D. Baxter, B. Herlé, N. Sach, M. R. Collins, Y. Ishihara and P. S. Baran, Nature, 2012, 492, 95; (k) H. A. Hafner and S. Bräse, Angew. Chem., Int. Ed., 2012, 51, 3713; (l) J.-X. Zhang, H.-X. Dair, M. Wasa and J.-Q. Yu, J. Am. Chem. Soc., 2012, 134, 11948; (m) X. Wu, L. Chu and F.-L. Qing, Tetrahedron Lett., 2013, 54, 249.