Formins and membranes: anchoring cortical actin to the cell wall and beyond

Fatima Čvrčková*
Department of Experimental Plant Biology, Faculty of Science, Charles University, Prague, Czech Republic

INTRODUCTION
Formins (FH2 proteins) are a large family of evolutionarily conserved eukaryotic proteins participating in actin and microtubule organization. Land plants have three formin clades, with only two – Class I and II – present in angiosperms. Class I formins are often transmembrane proteins, residing at the plasmalemma and anchoring the cortical cytoskeleton across the membrane to the cell wall, while Class II formins possess a PTEN-related membrane-binding domain. Lower plant Class III and non-plant formins usually contain domains predicted to bind RHG GTPases that are membrane-associated. Thus, some kind of membrane anchorage appears to be a common formin feature. Direct interactions between various non-plant formins and integral or peripheral membrane proteins have indeed been reported, with varying mechanisms and biological implications. Besides of summarizing new data on Class I and Class II formin-membrane relationships, this review surveys such “non-classical” formin-membrane interactions and examines which, if any, of them may be evolutionarily conserved and operating also in plants. FYVE, SH3 and BAR domain-containing proteins emerge as possible candidates for such conserved membrane-associated formin partners.

Keywords: formin, actin, plasmalemma, endomembranes, cell polarity, endocytosis, vesicle trafficking

Formins are evolutionarily conserved eukaryotic proteins participating in actin and microtubule organization. Land plants have three formin clades, with only two – Class I and II – present in angiosperms. Class I formins are often transmembrane proteins, residing at the plasmalemma and anchoring the cortical cytoskeleton across the membrane to the cell wall, while Class II formins possess a PTEN-related membrane-binding domain. Lower plant Class III and non-plant formins usually contain domains predicted to bind RHG GTPases that are membrane-associated. Thus, some kind of membrane anchorage appears to be a common formin feature. Direct interactions between various non-plant formins and integral or peripheral membrane proteins have indeed been reported, with varying mechanisms and biological implications. Besides of summarizing new data on Class I and Class II formin-membrane relationships, this review surveys such “non-classical” formin-membrane interactions and examines which, if any, of them may be evolutionarily conserved and operating also in plants. FYVE, SH3 and BAR domain-containing proteins emerge as possible candidates for such conserved membrane-associated formin partners.

Keywords: formin, actin, plasmalemma, endomembranes, cell polarity, endocytosis, vesicle trafficking

VARIETY OF MECHANISMS CAN ATTACH FORMINS TO MEMBRANES
The functionality (or value, in the neo-Darwinian terms) of a protein critically depends on its (intracellular) location, reminiscent of the well-known truth concerning real estate. Aside of regulating gene expression with far-reaching downstream effects, a protein can hardly exert a membrane-related function without physically associating with membranes. This may be accomplished by diverse mechanisms: by membrane insertion in integral membrane proteins, by direct binding (possibly following a post-translational
Cvrčková

Formins associated with membranes

FIGURE 1 | Possible mechanisms of formin-membrane attachment.

Protein domains are drawn roughly to scale based on the sequences of proteins listed in parentheses (including Arabidopsis locus identifiers and/or GenBank or Uniprot accession numbers; interacting protein pairs were chosen based on cited literature). Formins are shown in shades of blue, their interactors in shades of orange, cytoplasmic side of the membrane faces down. Complex stoichiometry is speculative in the absence of data. (A) Direct insertion into the membrane, as in plant Class I formins (Arabidopsis AtFH1, At3g25500). (B) Peripheral membrane binding, as in plant Class II formins (Arabidopsis AtFH14, At1g31810). (C) Interaction with a peripheral membrane protein, such as a RHO GTPase or a FBAR protein (left: mouse mDia1, NP_031884.1 and Cdc42, NP_033991.1; right: human DAAM1, XP_005267487.1, and FB17 GMR1.2). (D) Interaction with an integral membrane protein, as in mammalian formins binding to CD21 (human FHOS, NP_037373.2, and CD21, NP_000260.5).

The only formins experimentally proven to be integral membrane proteins are the members of the plant Class I clade. Outside plants, secretory and transmembrane peptides were predicted only in several uncharacterized invertebrate and protist formins, without experimental proof that these proteins are membrane-located, albeit in one Caenorhabditis case there is at least cDNA evidence that the gene is expressed (Grunt et al., 2008). Some metazoan formins can also bind to membranes peripherally, similar to plant Class II formins. Drosophila Diaphanous, a prototype member of the large metazoan Diaphanous related formin (DRF) clade (Goode and Eck, 2007), directly binds PtdIns(4,5)P2 through an N-terminal basic domain. However, its membrane association requires simultaneous binding to a RHO GTPase (see below), i.e., binding a membrane phosphoinositide alone does not yet make the formin a peripheral membrane protein (Bousoo et al., 2013).

Association of fungal and metazoan formins with membranes is thus usually indirect, mediated by binding to peripheral or integral membrane proteins. Numerous formin interactors have been identified, most of them cytoplasmic (Aspenström, 2010). The best characterized membrane-associated ones are notorious formin regulators – the small GTPases of the RHO family, which can attach to membranes thanks to their hydrophobic post-translational modifications. Many formins, including fungal ones and metazoan DRFs, contain a conserved N-terminal GTPase binding domain (GBD/FH3) whose binding to an active (GTP-loaded) RHO alleviates autoinhibition mediated by a C-terminal autoinhibitory domain (Watanabe et al., 1997). The GBD/FH3 domain is probably evolutionarily ancient, although it appears to be absent in plants (Rivero et al., 2005).

Formins can bind some other peripheral membrane proteins. The N-terminal portion of mammalian FMNL1, a classical GBD/FH3 containing formin, interacts with AHNK (desmoyokin), a huge phosphoprotein binding the plasmalemma as a part of a larger multiprotein complex (Haase, 2007; Dempsey et al., 2012). Rather than attaching itself to the membrane via AHNK, the formin, bound to a RHO GTPase, participates in recruiting AHNK from the cytoplasm to the plasmalemma.
Another SH3-containing transmembrane protein, the osmosen-
that themselves can nucleate actin FYVE domain-containing proteins, including the Spir proteins
malian formins with compartments of the endomembrane system
with a coiled coiled motif in between (Roberts-Galbraith and Gould, 2010). A mammalian homolog of CIP4, a prototype protein of this family originally identified as a Cdc42 (RHO GTPase) effector, interacts with the DAAM1 formin via its SH3 domain, raising thus the possibility that other SH3-containing proteins may bind formins as well (Aspenström et al., 2006).

This is not surprising, as SH3 domains associate with proline-rich proteins (Alexandropoulos et al., 1995), and the major- ity of formins contain an extremely Pro-rich domain, termed FH1, in front of the hallmark FH2 domain. Indeed, the same study identified a Src family non-receptor tyrosine kinase as a DAAM1 binding partner, confirming thereby previous observ-
ations that other metaoxan formins can bind Src (Uetz et al., 1996).

SH3 domain-containing proteins often interact with integral
membrane proteins, and some are themselves inserted into mem-
branes, such as, e.g., the budding yeast protein Fes1p (not to be
confused with the fusion yeast formin Fusi1) which can bind to the Bni1p and Bnr1p formins via its SH3 domain (Tong et al., 2002). Another SH3-containing transmembrane protein, the osmosen-
or Sho1p, participates in a larger protein complex with Bni1p and
and can be found elsewhere (e.g., Chesarone et al., 2010; Yang
and Srivik, 2011; Vaškovitcová et al., 2013). What follows is
a summary of biological implications of the formin-membrane
interactions discussed in the previous section.

Some of these mechanisms may localize formins within the
plane of the plasmalemma, participating thus in the control of cell
polarity, or delimiting cell surface domains with increased mem-
brane expansion or turnover (including polar or tip growth; for
the concept of “activated cortical domains” in plant cells compare
Záskk et al., 2009). Phosphoinositide interaction of Drosophila
Diaphanous is required for targeting the formin to the epithelial
apical membrane (Rousso et al., 2013), and interaction with the
F-BAR protein CIP4 may inhibit Diaphanous in lateral and basal
membrane domains (Yan et al., 2013). However, other metaoxan F-
BAR proteins may stimulate formin activity while connecting
the plasmalemma and the cortical cytoskeleton during actin-driven membrane tubulation and ruffling (Toguchi et al., 2010) or dur-
ing formation of dendritic spines in neurons (Wakita et al., 2011). Aspergillus formin interactor MesA promotes formin localization
to growing tips of hyphae (Pearson et al., 2004), reminiscent of
the function of some plant formins in tip growth (see below). Similarly, formin-containing complexes of budding yeast Fus1p
localize at the tip of mating protrusions, or “shmoos” (Nelson
et al., 2004). In zebras, complexes involving RH3, a DTF type
formin and Antxr2a exhibit polar localization at the plasmalemma and contribute to division plane positioning (Castanon et al., 2013).

Formins also associate with the endomembrane system and
participate in vesicle trafficking. The above-described metaoxan
Supiformin complexes engage in actin-dependent vesicle trans-
port, possibly via actin nucleation on vesicle membranes (see
Kerkhoff, 2011; Dietrich et al., 2013). Formins, bound to RHO
GTPases, also participate in spatially restricted endocytosis and
in endosome dynamics in both yeasts (Gachet and Hyams, 2005;
Presser et al., 2011) and metazoa, where interaction with Src
appears to be contributing as well (Gasman et al., 2003). It has to be
noted, though, that all the endosome- and endocytosis-associated formins described so far contain the GBDFH3 domain which can
engage in endocytosis regulation also outside the formin context,
as in the Entamoeba EhNCABP166, which lacks the FH2 domain
(Campos-Parra et al., 2010). The F-BAR family formin interactors
to are also predominantly involved in endocytosis (Feng et al.,
2010), as well as in autophagy, also an endosome-dependent pro-
cess (Huet al., 2009). The F-BAR domain’s ability to increase
or stabilize membrane curvature may play an important role in
generating endocytic membrane vesicles, a process facilitated by
dynamin (Roberts-Galbraith and Gould, 2010).
While most reports on formin-endomembrane associations point to endocytotic pathways or compartments, genetic data from fission yeast suggest that the For3 formin participates in exocytosis, as a synthetic thermosensitivity phenotype was observed upon combining mutations affecting For3 and Mug33, a transmembrane protein involved in polarized secretion and co-localizing with the exocyst complex (South et al., 2011). Also the formin binding partner AHNAK has been implicated in the delivery of Ca2+-channels to the plasmalemma repair of cell membrane lesions, i.e., in processes that, on the first glance, appear to be exocytosis-driven, albeit they have a non-separable endocytotic component as well (Idone et al., 2008).

To summarize, numerous lines of evidence point to formins being involved in various aspects of endosome trafficking or endomembrane system organization. Recent reports even indicate that the ER associated formin INF2 (Chhabra et al., 2009) participates in the division of mitochondria, which involves a dynamin-related protein (Korobova et al., 2013), and other formins contribute to actin rearrangements involved in Toxoplasma apicoplast division (Jacot et al., 2013). However, as most of the reported interactions involve proteins so far found only in opisthokonts, it remains to be seen if similar mechanisms operate also in plants.

Membrane-associated Formins in Plants: The Known and the Possible

Insertion of typical plant Class I formins into membranes, as well as membrane association of PTEN domain-containing formins, is experimentally well documented. As far as biological function is concerned, plant formins, often plasmalemma-associated, participate in the division of mitochondria, which involves AHNAK and other FYVE domain-containing proteins, such as Spir (FYVE) and F-BAR-SH3. F-BAR-SH3 domains are often found in plant SH3 domain-containing proteins, such as Fus1, which has an analogous BAR-SH3 domain layout with a plant-specific shorter BAR domain instead of FBAR (see BAR-SH3).

Protein or domain(s)	Non-plant query	Land plant candidates	Notes
AHNAK	NP_001611.1 (human AHNAK isoform 1)	N.A.	Best plant BLAST hit with E-value 5e-06 only matches a low complexity region of AHNAK
Spr (FYVE)	NP_001246101.1 (Drosophila spr isoform F)	N.A.	Many plant FYVE domain protein exist; for candidate selection see text.
other FYVE	cd00066 (FYVE domain)	A1qg33240, FAB1A A2gi4270, FAB1B	
F-BAR-SH3	NP_0042111 (human CIP4)	N.A.	No bona fide plant F-BAR domains but several proteins have an analogous BAR-SH3 domain layout with a plant-specific shorter BAR domain (cd07607) instead of FBAR (see BAR-SH3).
Fus1 (SH3)	NP_009903 (Saccharomyces cerevisiae Fus1p)	N.A.	No additional Arabidopsis paralogs identified by Blast with AtFus1 query.
other BAR-SH3	cd07607 (BAR domain of the plant SH3 domain-containing protein)	A1qg31440, AtSH3P1 A0qg34680, AtSH3P2 A0qg8060, AtSH3P9	
Antxr2	XP_005165376.1 (zebrafish Antxr2 isoform X1)	N.A.	No additional Arabidopsis paralogs identified by Blast with AtSH3P3 query.
MesA	G80BR2.2 (Aspergillus nidulans MesA)	N.A.	
Grid2	NP_0010510.2 (human Grid2)	N.A.	PDZ domain in the formin partner required for binding, not found in plant formins.
CD21	NP_0100659.1 (human CD21 isoform 1)	N.A.	PKD2 homologs found in Micromonas and volvocalcine algae.
PKD2	NP_0328873 (mouse polycystin-2)	N.A.	

GenBank/UniProt accession numbers are provided for protein sequences used as queries, and NCBI conserved domain database accessions for domains. N.A. not available (not found in standard Blast searches of the Viridiplantae section of the NCBI protein database using the listed non-plant sequences as queries). For proteins and domains where land plant candidates were found, only Arabidopsis proteins are shown (referred to using standard A. thaliana locus nomenclature), albeit non-Arabidopsis homologs without experimental data exist as well.
lacking AtFH1 have more dynamic microtubules (Rosero et al., 2013).

Similar to other eukaryotic lineages, also in plants formins may be closely involved in membrane turnover or associated with endomembranes. *Physcomitrella patens* Class II formin For2A specifically localizes to PtdIns(3,5)P2-rich sites of active plasmalemma turnover (van Gisbergen et al., 2012). Overexpressed microtubule-associated Class I Arabidopsis formin AFH4 can decorate the endoplasmic reticulum and co-align it to the microtubule cytoskeleton (Deeks et al., 2010), and its relative AtFH8 is targeted to the nuclear envelope (Xue et al., 2011). Loss of tip polarity in formin-overexpressing pollen tubes (Cheung and Wu, 2004; Cheung et al., 2010) or root hairs (Yi et al., 2005), as well as irregular cell wall thickening observed in rice mutants lacking the Class II formin FHS (Yang et al., 2011) might be understood as disturbance of the eucytosol/endocytosis co-ordination. Thus, the biological implications of formin-membrane association may be conserved, and it is worth examining the molecular mechanisms underlying membrane localization of formins.

Non-classic angiosperm formins lacking the transmembrane (in Class I) or PTEN-like (in Class II) domains might heterodimerize with their membrane-bound paralogs. Surprisingly, FH2-mediated formin heterodimerization has been neither documented nor excluded yet in any organism, albeit dimerization via other domains was reported (see Čvrčková, 2012).

The Rop GTPases represent a plant branch of RHO proteins (see Mucha et al., 2011), often understood as general formin regulators. However, plant formins lack the RHO-binding GB5/FH3 domain, and the only putative RHO interaction motif found in land plant FH2 proteins is a RHO GTPase activating protein (RhoGAP)-related domain in non-angiosperm Class III formins (Grunt et al., 2008). Thus, Rops are unlikely to provide the means for direct formin-membrane binding in angiosperms, albeit they may participate in larger multi-subunit complexes.

Few, if any, clear homologs of other non-plant membrane associated formin homologs can be identified in database searches (Table 1). Two protein families may, nevertheless, deserve a closer look.

While there is no direct plant homolog of Sprt, numerous plant proteins harbor FYVE domains. The 15 FYVE-containing proteins of *A. thaliana* can be divided into five groups according to their domain architecture (Wvijal and Singh, 2010). Most of these proteins are experimentally uncharacterized, and none exhibit a significant match to any of the previously described formin interactors in BLAST searches. However, the only two experimentally characterized Arabidopsis FYVE-containing proteins encoded by the FAB1A and FAB1B genes are members of type III phosphatidylinositol 3-phosphate 5-kinase, or PIKfyve, family which has been implicated in endocytosis and actin dynamics in metazoan cells, albeit with no evidence for direct formin-membrane binding in angiosperms, albeit they may be upregulated in pollen tubes, whose growth is formin-dependent (Wang et al., 2008). Intriguingly, these proteins contain a N-terminal BAR domain, a plant-specific variant of a shorter version of the F-BAR domain; and perhaps they might represent a plant counterpart of the yeast and metazoan F-BAR formin interactors.

Last but not least, plant formins may be attached to membranes by lineage-specific mechanisms. A gene encoding a protein with unique combination of FH2 and Sec10 domains, physically linking a formin and a subunit of the membrane-associated Exocyst complex, exists in *Physcomitrella* (Grunt et al., 2008; Čvrcková et al., 2012), and the first identified plant formin interactor, FIP2 (*AtFG50000; Banno and Chua, 2000) contains a domain corresponding to the oligomerization interface of voltage-gated potassium channels, and might perhaps interact with them.

In summary, there may be more to the association of plant formins with membranes than just the transmembrane and PTEN-like domains characterizing the two angiosperm formin clades, and a comparison with non-plant systems does provide some candidates that may be worth closer investigation.

ACKNOWLEDGMENTS

The author thanks Viktor Záříček for critical reading of the manuscript and helpful suggestions, and the Grant Agency of the Czech Republic (MSM 0021620858) for financial support.

REFERENCES

Alexandropoulos, K., Cheng, G., and Baltimore, D. (1995). Proline-rich sequences that bind to Src homology 3 domains with individual specificities. Proc. Natl. Acad. Sci. U.S.A. 92, 5110–5114. doi: 10.1073/pnas.92.8.5110

Aspenström, P. (2010). Formin-binding proteins modulators of formin-dependent actin polymerization. Biochem. Biophys. Acta 1803, 174–182. doi: 10.1016/j.bbamcr.2009.06.002

Aspenström, P., Richnau, N., and Johansson, A. S. (2006). The diaphanous-related protein Fus1p (a transmembrane G-protein-coupled receptor) is essential for formin-dependent polarization of Dictyostelium Dictyostelium discoideum. Proc. Natl. Acad. Sci. U.S.A. 103, 13841–13846. doi: 10.1073/pnas.0602467103

Bai, X., He, T., Sun, T., Yeo, G. O., and Xu, H. (2013). Rapid structural changes and acidification of guard cell vacuoles during stomatal closure require phosphatidylinositol 3,5-bisphosphate. Plant Cell 25, 2203–2216. doi: 10.1105/tpc.113.115411

Banno, H., and Chua, N. H. (2000). Characterization of the Arabidopsis formin-like protein AFH1 and its interacting protein. Plant Cell Physiol. 41, 617–626. doi: 10.1093/pcp/41.5.617

Bartolini, F., and Gundersen, G. G. (2010). Formins and microtubules. Biochem. Biophys. Acta 1803, 164–173. doi: 10.1016/j.bbamcr.2009.07.006

Bennett, W. H., and Chua, N. H. (2001). A nucleocytoplasmic actin-binding protein from *Emmenia hawaiiensis*. Mol. Biochem. Parasitol. 127, 19–30. doi: 10.1016/j.molbiopara.2010.03.010

Table 1

Formin	Membrane Localization
FYVE-containing proteins	Unknown
PIKfyve	Membrane-associated Exocyst complex
FIP2	Membrane-associated Exocyst complex
Other formin interactors	Unknown

www.frontiersin.org

November 2013 | Volume 4 | Article 436 | 5
Gasman, S., Kalaidzidis, Y., and Zerial, M. (2003). RhoD regulates endosome dynamics. Curr. Biol. 13, 2713–2718. doi: 10.1016/j.cub.2003.10.037.

Chládil, D., Nikolaidis, N., Makai, M., Klein, J., and Hnášel, M. (2008). Origin and evolution of the formin multigene family that is involved in the formation of actin filaments. Mol. Biol. Evol. 25, 2713–2733. doi: 10.1093/molbev/msn253.

Chlouberová, M., Dufau, A. G., and Goode, B. L. (2010). Unlinking formins to remodel the actin and microtubule cytoskeletons. Nat. Rev. Mol. Cell Biol. 11, 62–74. doi: 10.1038/nrm3104.

Cheung, A. Y., and Wu, H. (2004). Overexpression of an Arabidopsis FAB1A/B is possibly involved in the recycling of auxin transporters. Plant Signal. Behav. 155, 797–807. doi: 10.1104/pp.110.167981.

Chlouberová, F. (2000). Are plant formins integral membrane proteins? Plant Sci. 157, 259–261. doi: 10.1016/S0168-9452(00)00052-6.

Chlouberová, F. (2005). Proteomic investigation of the interactome of FMNL1 in hematopoietic cells unveils a role in calcium-dependent membrane plasticity. J. Proteomics 72, 72–82. doi: 10.1016/j.jprot.2012.11.015.

Chlouberová, F., Grunt, M., Brozová, R., Hila, M., Kukal, I., Růžička, A., et al. (2012). Evolution of the land plant exosome complex. Front. Plant Sci. 3:157. doi: 10.3389/fpls.2012.00157.

Chlouberová, F., Grunt, M., Brozová, R., Hila, M., Kukal, I., Růžička, A., et al. (2012). Role of plant formins in dynamic plant cell cortex. Front. Plant Sci. 3:158. doi: 10.3389/fpls.2012.00158.

Chlouberová, F., Martiniere, A., Lavagi, I., Nageswaran, G., Rolfe, D. J., Maneta-Peyret, L., Luu, T. V., et al. (2011). Building bridges: a new role for formins involved in pollen tube cell membrane remodeling. Proc. Natl. Acad. Sci. U.S.A. 108, 5221–5226. doi: 10.1073/pnas.1015386108.

Chlouberová, F., Grunt, M., Brozová, R., Hila, M., Kukal, I., Růžička, A., et al. (2012). Plant formins emerging players in the dynamic plant cell cortex. Front. Plant Sci. 3:159. doi: 10.3389/fpls.2012.00159.

Chlouberová, F., Novotný, M., Picková, D., and Žárský, V. (2004). Formin homology 2 domains occur in multiple contexts in angiosperms. JBC Genomics 5, 544. doi: 10.1074/jbc.G400000200.

Chlouberová, F., Sunko, J., Fitze, P., Martiniere, A., Lavagi, I., Nageswaran, G., Rolfe, D. J., Maneta-Peyret, L., Luu, T. V., et al. (2011). Formin AtFH6 is a plasma membrane-associated protein upregulated in giant cells induced by parasitic nematodes. J. Proteomics 74, 374–380. doi: 10.1016/j.jprot.2010.10.011.

Chlouberová, F., Grunt, M., Brozová, R., Hila, M., Kukal, I., Růžička, A., et al. (2012). Structures of symmetric ternary protein complexes provide insights for membrane interaction. Science 339, 775–780. doi: 10.1126/science.1228147.

Chlouberová, F., Novotný, M., Picková, D., and Žárský, V. (2004). Formin homology 2 domains occur in multiple contexts in angiosperms. JBC Genomics 5, 544. doi: 10.1074/jbc.G400000200.

Chlouberová, F., Martiniere, A., Lavagi, I., Nageswaran, G., Rolfe, D. J., Maneta-Peyret, L., Luu, T. V., et al. (2011). Building bridges: a new role for formins involved in pollen tube cell membrane remodeling. Proc. Natl. Acad. Sci. U.S.A. 108, 5221–5226. doi: 10.1073/pnas.1015386108.

Chlouberová, F., Martiniere, A., Lavagi, I., Nageswaran, G., Rolfe, D. J., Maneta-Peyret, L., Luu, T. V., et al. (2011). Building bridges: a new role for formins involved in pollen tube cell membrane remodeling. Proc. Natl. Acad. Sci. U.S.A. 108, 5221–5226. doi: 10.1073/pnas.1015386108.

Chlouberová, F., Martiniere, A., Lavagi, I., Nageswaran, G., Rolfe, D. J., Maneta-Peyret, L., Luu, T. V., et al. (2011). Building bridges: a new role for formins involved in pollen tube cell membrane remodeling. Proc. Natl. Acad. Sci. U.S.A. 108, 5221–5226. doi: 10.1073/pnas.1015386108.

Chlouberová, F., Martiniere, A., Lavagi, I., Nageswaran, G., Rolfe, D. J., Maneta-Peyret, L., Luu, T. V., et al. (2011). Building bridges: a new role for formins involved in pollen tube cell membrane remodeling. Proc. Natl. Acad. Sci. U.S.A. 108, 5221–5226. doi: 10.1073/pnas.1015386108.

Chlouberová, F., Martiniere, A., Lavagi, I., Nageswaran, G., Rolfe, D. J., Maneta-Peyret, L., Luu, T. V., et al. (2011). Building bridges: a new role for formins involved in pollen tube cell membrane remodeling. Proc. Natl. Acad. Sci. U.S.A. 108, 5221–5226. doi: 10.1073/pnas.1015386108.
Musha, E., Frick, I., Schafer, A., Wittinghofer, A., and Beren, A. (2011). Role of proteins of plant-filament cycle and regulation of cytoskeletal dynamics. FEBS Lett. 585, 984–986. doi: 10.1016/j.febslet.2011.09.009

Nelson, B., Parsons, A. B., Evangelista, M., Schafer, K., Kenney, K., Ritchie, S., et al. (2004). Fasly interacts with components of the Hog1 mitogen-activated protein kinase and Gsl42p morphogenic signaling pathways to control cell fusion during yeast mating. Genetics 168, 67–77. doi: 10.1534/genetics.168.1.67

Otomo, T., Tomchick, D. R., Otomo, C., Panchal, S. C., Machius, M., and Rosen, M. (2011). The F-BAR protein Rap21p regulates dendritic spine formation in hippocampal neurons. J. Biol. Chem. 286, 32672–32683. doi: 10.1074/jbc.M111.236265

Wang, J., Xue, X., and Ren, H. (2012). New insights into the role of plant formins: regulating the organization of the actin and microtubule cytoskeleton. Proteomics 12, 910–927. doi: 10.1002/pmic.201000830

Wang, Y., Zhang, W. Z., Song, L. F., Zou, J. J., Su, Z., and Wu, H. W. (2008). Transcriptional analyses show changes in gene expression to accompany pollen germination and tube growth in Arabidopsis. Plant Physiol. 148, 1223–1231. doi: 10.1104/pp.108.128575

Mukasa, N., Marahé, F., Reu, T., Ikizaki, T., Watanabe, G., Kakizuka, A., et al. (1997). p140mDia, a mammalian homolog of Drosophila diahous, is a target protein for Bim small GTPase and is a ligand for profilin. J. Biol. Chem. 272, 3048–3056. doi: 10.1074/jbc.198.16.334

Whitley, P., Hulse, S., and Dougherty, B. J. (2009). Arabidopsis FMIK/FPSX proteins are essential for development of viable pollen. Plant Physiol. 151, 1812–1822. doi: 10.1104/pp.109.146159

Webb, E., and Singh, S. M. (2010). Identification and structural characterization of FYVE domain-containing proteins of Arabidopsis thaliana. BMC Plant Biol. 10, 157. doi: 10.1186/1471-2229-10-157

Xu, X., Mosley, D., Jost, D., Pry, F., Fullman, D., Goode, L. B., et al. (2004). Crystal structures of a formin homology-2 domain reveal a tethered dimer architecture. Cell 116, 711–723. doi: 10.1016/S0092-8674(04)00210-7

Xue, X., Ge, C., Dai, F., Lu, Q. Z., Zhang, C., and Ren, H. (2011). AFH1 is involved in root development under effect of low-dose Latrunculin B in dividing cells. Mol. Plant 4, 264–278. doi: 10.1093/mp/sqs095

You, S., Li, Z., Winterhoff, M., Wenzel, C., Zobel, B., Fains, J., et al. (2013). The F-BAR protein Cip4/Toca-1 antagonizes the formin Diaphanous in membrane stabilization and compartmentalization. J. Cell Sci. 126, 1798–1805. doi: 10.1242/jcs.118422

Yang, C., and Svitkina, T. (2011). Filopodia initiation: focus on the Arp2/3 complex and formins. Cell Adh. Migr. 5, 402–408. doi: 10.4161/cam.5.5.16971

Wang, W., Ren, S., Zhang, X., Guo, M., Xu, S. Q., et al. (2011). BENT UPERMOST INTERACTION ENHANCES the class II formin Fh5 crucial for actin organization and rice development. Plant Cell 23, 661–680. doi: 10.1105/tpc.110.081802

Xu, J., Zhang, X., Yan, A., Chen, N., Wang, Z., Huang, S., et al. (2009). Arabidopsis formin Diaphanous regulates the formation of actin cables and polarized growth in pollen tubes. Plant Cell 21, 3868–3884. doi: 10.1105/tpc.108.067500

Wang, J., Guo, C., Chen, D. Z., Zou, B., Yang, B., and Han, H. (2005). Cloning and functional characterization of a formins-like protein (AFH5) from Arabidopsis. Plant Biol. 7, 1071–1082. doi: 10.1007/s11759-005-0368-6

Yoshida, M., Nakamura, Y., Tanaka, M., and Sakakibara, H. (2004). Rapid formin-mediated actin-filament elongation is essential for polarized plant cell growth. Proc. Natl. Acad. Sci. U.S.A. 101, 13543–13546. doi: 10.1073/pnas.0901770101

Wyvial, E., and Singh, S. M. (2010). Identification and structural characterization of FYVE domain-containing proteins of Arabidopsis thaliana. BMC Plant Biol. 10, 157. doi: 10.1186/1471-2229-10-157

Zhang, Z., Zhang, Y., Tan, H., Wang, Y., Li, G., Liang, W., et al. (2011). Spire is an actin nucleation factor. J. Cell Sci. 124, 2187–2199. doi: 10.1242/jcs.084038

"fpls-04-00436" — 2013/11/5 — 11:40 — page 7 — #7