STABILIZATION OF HYBRID SYSTEMS BY FEEDBACK CONTROL BASED ON DISCRETE-TIME STATE AND MODE OBSERVATIONS

Yuyuan Li, Jianqiu Lu, Xuerong Mao, and Qinwei Qiu

ABSTRACT

Recently, a kind of feedback control based on discrete-time state observations was proposed to stabilize continuous-time hybrid stochastic systems in the mean-square sense. We find that the feedback control there still depends on the continuous-time observations of the mode. However, it usually costs to identify the current mode of the system in practice. So we can further improve the control to reduce the control cost by identifying the mode at discrete times when we make observations for the state. In this paper, we aim to design such a type of feedback control based on the discrete-time observations of both state and mode to stabilize the given hybrid stochastic differential equations (SDEs) in the sense of mean-square exponential stability. Moreover, a numerical example is given to illustrate our results.

Key Words: Brownian motion, Markov chain, mean-square exponential stability, discrete-time feedback control.

1. INTRODUCTION

Hybrid stochastic differential equations (SDEs) (also known as SDEs with Markovian switching), usually used to model practical systems where they may experience abrupt changes in their structure and parameters, have been attracting a lot of attention in recent years. Particularly, as the most fundamental problem in engineering, the asymptotic analysis of stability has been studied extensively [1–18]. Here we mention that [19,20] are two of the most cited papers while [21] is the first book in this area.

One classical topic in this field is the problem of stabilization, i.e. designing a control function \(u(x(t), r(t), t) \) which usually appears in the drift part such that the controlled system

\[
\begin{align*}
\frac{dx(t)}{dt} &= [f(x(t), r(t), t) + u(x(t), r(t), t)]dt + g(x(t), r(t), t)dw(t) \\
\end{align*}
\]

will be stable though the original system (1) with \(u(x(t), r(t), t) = 0 \) is unstable, where \(t \geq 0 \), \(r(t) \) is a Markov chain, \(x(t) \in \mathbb{R}^m \) is the state, \(w(t) = (w_1(t), \cdots, w_m(t))^T \) is an \(m \)-dimensional Brownian motion and the SDE is in the Itô sense.

Wang et al. in [22] designed a state feedback controller to stabilize bilinear uncertain time-delay stochastic systems with Markovian jumping parameters in mean square sense. In [23], the problem of almost sure exponential stabilization of stochastic systems by state-feedback control had been discussed. A robust delayed-state-feedback controller that exponentially stabilizes uncertain stochastic systems was proposed in [24]. It is observed that the state feedback controllers in these papers require continuous observations of the system state \(x(t) \) for all time \(t \geq t_0 \). Recently, Mao [25] first proposed to design a discrete-time feedback control \(u(x(\delta(t, t_0, \tau)), r(t), t) \) in order to make the controlled system

\[
\begin{align*}
\frac{dx(t)}{dt} &= [f(x(t), r(t), t) + u(x(\delta(t, t_0, \tau)), r(t), t)]dt + g(x(t), r(t), t)dw(t) \\
\end{align*}
\]

become exponentially stable in mean square. Here \(\tau > 0 \) is a constant and

\[
\delta(t, t_0, \tau) = t_0 + \lfloor (t - t_0) / \tau \rfloor \tau,
\]

in which \(\lfloor (t - t_0) / \tau \rfloor \) is the integer part of \((t - t_0) / \tau \). The advantage of such a discrete-time feedback control is that it requires only state observations \(x(t_0 + k\tau) \) at discrete times \(t_0, t_0 + \tau, t_0 + 2\tau, \cdots \) and hence it will cost much less and more realistic. Despite all this, we can try a further step. We find that the feedback control in...
Mao [25] is based on the discrete-time observations of the state \(x(t_0 + kr)\) \((k = 0, 1, 2, \cdots)\) but still depends on the continuous-time observations of the mode \(r(t)\) on \(t \geq t_0\). This is perfectly fine if the mode of the system can be fully observed at no cost. However, it usually costs to identify the current mode of the system in practice. So we can further improve the control to reduce the control cost by identifying the mode at discrete times when we make observations for the state. Therefore, in this paper, we will consider an \(n\)-dimensional controlled hybrid system

\[
\begin{align*}
\, dx(t) & = [f(x(t), r(t), t) \\
& + u(x(\delta(t, t_0, \tau)), r(\delta(t, t_0, \tau), t))]dt \\
& + g(x(t), r(t), t)dw(t)
\end{align*}
\]

on \(t \geq t_0\), where our new feedback control is based on the discrete observations of state \(x(t_0 + kr)\) and mode \(r(t_0 + kr)\).

Due to the difficulties that have arisen from the discrete-time Markov chain \(r(t_0 + kr)\), the analysis in this paper will be much more complicated in comparison with the related previous papers and new techniques will be developed. Our main results will be formed in Sections III and IV after giving preliminaries in Section II. We will discuss an example in Section V to verify the effectiveness of the results and conclude our paper in Section VI.

II. NOTATION AND PROBLEM STATEMENT

In this paper, we use the following notation. Let \((\Omega, \mathcal{F}, \{\mathcal{F}_t\}_{t \geq 0}, \mathbb{P})\) be a complete probability space with a filtration \(\{\mathcal{F}_t\}_{t \geq 0}\) satisfying the usual conditions (i.e., it is increasing and right continuous with \(\mathcal{F}_0\) contains all \(\mathbb{P}\)-null sets). Let \(w(t) = (w_1(t), \cdots, w_m(t))^T\) be an \(m\)-dimensional Brownian motion defined on the probability space. If \(A\) is a vector or matrix, its transpose is denoted by \(A^T\). If \(x \in \mathbb{R}^n\), then \(|x|\) is its Euclidean norm. If \(A\) is a matrix, we let \(|A| = \sqrt{\text{trace}(A^TA)}\) be its trace norm and \(\|A\| = \max\{|Ax| : |x| = 1\}\) be the operator norm. If \(A\) is a symmetric matrix \((A = A^T)\), denote by \(\lambda_{\text{min}}(A)\) and \(\lambda_{\text{max}}(A)\) its smallest and largest eigenvalue, respectively. By \(A \leq 0\) and \(A < 0\), we mean \(A\) is non-positive and negative definite, respectively. Denote by \(L^2_{\mathbb{F}}(\mathbb{R}^n)\) the family of all \(\mathcal{F}_t\)-measurable \(\mathbb{R}^n\)-valued random variables \(\xi\) such that \(\mathbb{E}[|\xi|^2] < \infty\), where \(\mathbb{E}\) is the expectation with respect to the probability measure \(\mathbb{P}\). If both \(a, b\) are real numbers, then \(a \vee b = \max\{a, b\}\).

Let \(r(t), t \geq 0\), be a right-continuous Markov chain on the probability space taking values in a finite state space \(S = \{1, 2, \cdots, N\}\) with generator \(\Gamma = (\gamma_{ij})_{N \times N}\) given by

\[
\mathbb{P}\{r(t+\Delta) = j|r(t) = i\} = \left\{ \begin{array}{ll}
\gamma_{ij}\Delta + o(\Delta) & \text{if } i \neq j, \\
1 + \gamma_{ii}\Delta + o(\Delta) & \text{if } i = j,
\end{array} \right.
\]

where \(\Delta > 0\) means time difference and \(\lim_{\Delta \to 0} \frac{o(\Delta)}{\Delta} = 0\).

We assume that the Markov chain \(r(\cdot)\) is independent of the Brownian motion \(w(\cdot)\). It is known that most almost sample paths of \(r(t)\) are piecewise constant except for a finite number of simple jumps in any finite subinterval of \(R_{\tau} \triangleq [0, \infty)\). We stress that almost all sample paths of \(r(t)\) are right continuous.

Consider an \(n\)-dimensional uncontrolled unstable linear hybrid SDE

\[
\begin{align*}
\, dx(t) & = A(r(t))x(t)dt + \sum_{k=1}^{m} B_k(r(t))x(t)dw_k(t)
\end{align*}
\]

on \(t \geq 0\), with initial data \(x(0) = x_0 \in L^2_{\mathbb{F}}(\mathbb{R}^n)\). Here \(A, B_k : S \rightarrow \mathbb{R}^{n \times n}\) and we will often write \(A(i) = A_i\) and \(B_k(i) = B_ki\). Now we are required to design a feedback control \(u(x(\delta(t)), r(\delta(t)))\) based on the discrete-time state and mode observations in the drift part so that the controlled linear SDE

\[
\begin{align*}
\, dx(t) & = [A(r(t))x(t) + u(x(\delta(t)), r(\delta(t)))]dt \\
& + \sum_{k=1}^{m} B_k(r(t))x(t)dw_k(t)
\end{align*}
\]

will be mean-square exponentially stable, where \(u\) is a mapping from \(\mathbb{R}^n \times S\) to \(\mathbb{R}^n\), \(\tau > 0\) and

\[
\delta(t) = [t/\tau]\tau \quad \text{for } t \geq 0,
\]

in which \([t/\tau]\) is the integer part of \(t/\tau\). As the given SDE (5) is linear, it is natural to use a linear feedback control. One of the most common linear feedback controls is the structure control of the form \(u(x, i) = F(i)G(i)x\), where \(F\) and \(G\) are mappings from \(S\) to \(\mathbb{R}^{n \times n}\) and \(\mathbb{R}^{n \times n}\), respectively, and one of them is given while the other needs to be designed. These two cases are known as:

- State feedback: design \(F(\cdot)\) when \(G(\cdot)\) is given;
- Output injection: design \(G(\cdot)\) when \(F(\cdot)\) is given.
Again, we will often write $F(i) = F_i$ and $G(i) = G_i$. Then the controlled system (6) becomes

$$dx(t) = [A(r(t))x(t) + F(r(\delta(t)))G(r(\delta(t)))x(\delta(t))]dt$$

$$+ \sum_{k=1}^{m} B_k(r(t))x(t)dw_k(t).$$

(8)

It is observed that equation (8) is in fact a stochastic differential delay equation (SDDE) with a bounded variable delay (see e.g. [25]). So equation (8) has a unique solution $x(t)$ such that $\mathbb{E}[|x(t)|^2] < \infty$ for all $t \geq 0$ (see e.g. [21]).

III. STABILIZATION OF LINEAR HYBRID SDES

We will first denote $F(r(\delta(t)))G(r(\delta(t))) = D(r(\delta(t)))$ and discuss the stability of the following hybrid stochastic system

$$dx(t) = [A(r(t))x(t) + D(r(\delta(t)))x(\delta(t))]dt$$

$$+ \sum_{k=1}^{m} B_k(r(t))x(t)dw_k(t)$$

(9)

in this section. And then design either $G(\cdot)$ given $F(\cdot)$ or $F(\cdot)$ given $G(\cdot)$ in order for the controlled SDE (8) to be stable.

Let us first give two lemmas for preparation.

Lemma III.1. Let $x(t)$ be the solution of system (9). Set

$$M_A = \max_{i \in S} \|A_i\|^2, \quad M_D = \max_{i \in S} \|D_i\|^2,$$

$$M_B = \max_{i \in S} \sum_{k=1}^{m} \|B_{ki}\|^2$$

and define

$$K(\tau) = [6\tau M_A + M_B] \dot{\zeta} + 3\tau^2 M_B$$

(10)

for $\tau > 0$. If τ is small enough for $2K(\tau) < 1$, then for any $t \geq 0$,

$$\mathbb{E}[|x(t) - x(\delta(t))|^2] \leq \frac{2K(\tau)}{1 - 2K(\tau)} \mathbb{E}[|x(t)|^2].$$

(11)

Proof. Fix any integer $v \geq 0$. For $t \in [v\tau, (v+1)\tau)$, we have $\delta(t) = v\tau$. It follows from (9) that

$$x(t) - x(\delta(t)) = x(t) - x(v\tau)$$

$$= \int_{v\tau}^{t} [A(r(s))x(s) + D(r(v\tau))x(v\tau)]ds$$

$$+ \sum_{k=1}^{m} \int_{v\tau}^{t} B_k(r(s))x(s)dw_k(s).$$

Using the fundamental inequality $|a + b + c|^2 \leq 3|a|^2 + 3|b|^2 + 3|c|^2$ as well as Hölder’s inequality and Doob’s martingale inequality, we can then derive

$$\mathbb{E}[|x(t) - x(\delta(t))|^2] \leq 3(\tau M_A + M_B) \int_{v\tau}^{t} \mathbb{E}[|x(s)|^2]ds$$

$$+ 3\tau^2 M_B \mathbb{E}[|x(v\tau)|^2]$$

$$\leq 6(\tau M_A + M_B) \int_{v\tau}^{t} \mathbb{E}[|x(s) - x(\delta(s))|^2]ds$$

$$+ [6\tau M_A + M_B] + 3\tau^2 M_B \mathbb{E}[|x(v\tau)|^2].$$

By the well-known Gronwall inequality, we have

$$\mathbb{E}[|x(t) - x(\delta(t))|^2] \leq K(\tau) \mathbb{E}[|x(v\tau)|^2].$$

Consequently

$$\mathbb{E}[|x(t) - x(\delta(t))|^2] \leq 2K(\tau) \left(\mathbb{E}[|x(t) - x(\delta(t))|^2] + \mathbb{E}[|x(t)|^2] \right).$$

This implies that (11) holds for $t \in [v\tau, (v+1)\tau)$. But $v \geq 0$ is arbitrary, so the desired assertion (11) must hold for all $t \geq 0$. The proof is complete.

Lemma III.2. For any $t \geq 0, v > 0$ and $i \in S$,

$$P(r(s) \neq i) \text{ for some } s \in [t, t + v] \Rightarrow \rho_i \leq 1 - e^{-\tilde{\gamma}v},$$

(12)

in which

$$\tilde{\gamma} = \max_{i \in S} (-\gamma_i).$$

(13)

Proof. Given $r(t) = i$, define the stopping time

$$\rho_i = \inf \{ s \geq t : r(s) \neq i \},$$

where and throughout this paper we set inf $\emptyset = \infty$ (in which \emptyset denotes the empty set as usual). It is well known (see e.g. [21]) that $\rho_i - t$ has the exponential distribution
with parameter $-\gamma_i$. Hence

$$P(r(s) \neq i \text{ for some } s \in [t, t + \tau]) = m_t = 0$$

$$= 1 - e^{\alpha \tau} \leq 1 - e^{-\tau}$$

as desired.

We now state the main result on the exponential stability in mean-square of system (9).

Theorem III.3. If there exist positive definite symmetric matrices $Q_i = Q_i^T, i \in S$, such that

$$\dot{Q}(i) = \dot{Q}_i := Q_i(A_i + D_i) + (A_i + D_i)^T Q_i$$

$$+ \sum_{k=1}^{m} B_i^T Q_i B_i + \sum_{j=1}^{N} \gamma_j Q_j$$

are all negative-definite matrices. Set

$$M_{QD} = \max_{i \in S} \|Q_i - D_i\|^2, \quad N_D = \max_{i, j \in S} \|D_j - D_i\|^2$$

and $\lambda := \max_{i \in S} \lambda_{max}(\dot{Q}_i)$, (of course $\lambda > 0$). If τ is sufficiently small for $\lambda > 2 \lambda + 2 \lambda_M \mu_M$, where

$$\lambda := \sqrt{\frac{2M_QD K(\tau)}{1 - 2K(\tau)}, \quad \mu := \sqrt{\frac{2N_D (1 - e^{-\tau})}{1 - 2K(\tau)},$$

then the solution of the SDE (9) satisfies

$$E[x(t)]^2 \leq \frac{\lambda M}{\lambda_M} E[|x_0|^2] e^{-\theta t}, \quad \forall t \geq 0,$$

where $K(\tau)$ has been defined in Lemma III.1 and

$$\lambda_M = \max_{i \in S} \lambda_{max}(Q_i), \quad \lambda_m = \min_{i \in S} \lambda_{min}(Q_i),$$

$$\theta = \frac{\lambda - 2 \lambda - 2 \lambda M \mu M}{\lambda_M}.$$

In other words, the SDE (9) is exponentially stable in mean square.

Proof. Let $V(x(t), r(t)) = x^T(t)Q(r(t))x(t)$. Applying the generalized Itô formula (see e.g. [21]) to V, we get

$$dV(x(t), r(t)) = \mathcal{L}V(x(t), r(t)) dt + dM_1(t),$$

where $M_1(t)$ is a martingale with $M_1(0) = 0$ and

$$\mathcal{L}V(x(t), r(t))$$

$$= 2x^T(t)Q(r(t))[A(r(t))x(t) + D(r(\delta(t)))x(\delta(t))]$$

$$+ \sum_{k=1}^{m} x^T(t)B_k^T(r(t))Q(r(t))B_k(r(t))x(t)$$

$$+ \sum_{j=1}^{N} \gamma_j x^T(t)Q_j x(t)$$

$$= x^T(t)\dot{Q}(r(t))x(t)$$

$$- 2x^T(t)Q(r(t))D(r(t))(x(t) - x(\delta(t)))$$

$$- 2x^T(t)Q(r(t))(D(r(t)) - D(r(\delta(t))))x(\delta(t))$$

$$\leq - \lambda \|x(t)\|^2 + 2\sqrt{M_QD} \|x(t)\| |x(t) - x(\delta(t))|$$

$$- 2x^T(t)Q(r(t))(D(r(t)) - D(r(\delta(t))))x(\delta(t))$$

Applying the generalized Itô formula now to $e^{\theta t}x^T(t)Q(r(t))x(t)$, we then have

$$e^{\theta t}x^T(t)Q(r(t))x(t) = x^T(0)Q(0)x(0)$$

$$+ \int_0^t e^{\theta s} [\theta x^T(s)Q(r(s))x(s) + \mathcal{L}V(x(s), r(s))] ds$$

$$+ M_2(t),$$

where $M_2(t)$ is also a martingale with $M_2(0) = 0$. Combining this with (18) yields

$$\lambda_M e^{\theta t} E[|x(t)|^2]$$

$$\leq E(e^{\theta t}x^T(t)Q(r(t))x(t))$$

$$\leq \lambda_M E[|x_0|^2] + \int_0^t (\theta \lambda_M - \lambda) e^{\theta s} E[|x(s)|^2] ds$$

$$+ \int_0^t 2e^{\theta s} \sqrt{M_QD} E[|x(s)||x(s) - x(\delta(s))|] ds$$

$$- \int_0^t 2e^{\theta s} E[|x^T(s)Q(r(s))(D(r(s)) - D(r(\delta(s))))x(\delta(s))|] ds.$$
But, by Lemma III.1 and III.2, we have

\[-2e^{\theta s}\mathbb{E}\left(x^T(s)Q(r(s))(D(r(s)) - D(r(\delta(s))))x(\delta(s))\right) \leq e^{\theta s}\mathbb{E}\left(\lambda_M \mu_s |x(s)|^2 + \frac{\lambda_M}{\mu_s} \|D(r(s)) - D(r(\delta(s)))\|^2 |x(\delta(s))|^2\right) \]

\[= e^{\theta s} \lambda_M \left\{ \mu_s \mathbb{E}[|x(s)|^2] + \frac{1}{\mu_s} \mathbb{E}\left(|x(\delta(s))|^2 \sum_{r(\delta(s)) \neq i} \max_{D_j - D_j} \|D_j\|^2 \right) \right\} \]

\[\leq e^{\theta s} \lambda_M \left\{ \mu_s \mathbb{E}[|x(s)|^2] + \frac{N_D(1 - e^{-\gamma r})}{\mu_s} \mathbb{E}[|x(\delta(s))|^2] \right\} \]

The following two corollaries provide us with an LMI method to design the controller based on discrete-time observations of both state and mode to stabilize the unstable system (5). Corollary III.4 and III.5 demonstrate the case of state feedback and output injection, respectively.

Corollary III.4. Assume that there are solutions \(Q_i = Q_i^T > 0\) and \(Y_i (i \in S)\) to the following LMIs

\[Q_i A_i + A_i^T Q_i + G_i^T Y_i + Y_i^T G_i + \sum_{k=1}^N B_k^T Q_k B_k + \sum_{j=1}^m \gamma_j Q_j < 0. \]

(22)

Then by setting \(F_i = Q_i^{-1} Y_i\) and \(D_i = F_i G_i\), the controlled SDE (8) will be exponentially stable in mean square if \(\tau > 0\) is sufficiently small for \(\lambda > 2\lambda_r + 2\lambda_M \mu_s\).

Proof. Recalling \(F_i = Q_i^{-1} Y_i\) and \(D_i = F_i G_i\), we find that (22) is equivalent to the condition that matrices in (14) are all negative-definite. So the required assertion follows directly from Theorem III.3.

Corollary III.5. Assume that there are solutions \(X_i = X_i^T > 0\) and \(Y_i (i \in S)\) to the following LMIs

\[
\begin{bmatrix}
M_{i1} & M_{i2} & M_{i3} \\
M_{i2} & -M_{i4} & 0 \\
M_{i3} & 0 & -M_{i5}
\end{bmatrix}
< 0,
\]

(23)

where

\[M_{i1} = A_i X_i + F_i Y_i + X_i A_i^T + Y_i^T F_i^T + Y_i X_i,\]

\[M_{i2} = [X_i B_{ik}^T, \ldots, X_i B_{m_k}^T],\]

\[M_{i3} = [\sqrt{r_{i1}} X_i, \ldots, \sqrt{r_{i(i-1)}} X_i, \sqrt{r_{i(i+1)}} X_i, \ldots, \sqrt{r_{iN}} X_i],\]

\[M_{i4} = \text{diag}[X_i, \ldots, X_i],\]

\[M_{i5} = \text{diag}[X_1, \ldots, X_{i-1}, X_{i+1}, \ldots, X_N].\]

Then by setting \(Q_i = X_i^{-1}, G_i = Y_i X_i^{-1}\) and \(D_i = F_i G_i\), the controlled SDE (8) will be exponentially stable in mean square if \(\tau > 0\) is sufficiently small for \(\lambda > 2\lambda_r + 2\lambda_M \mu_s\).

Proof. We first observe that by the well-known Schur complements (see [21]), the LMIs (23) are equivalent to the following matrix inequalities

\[A_i X_i + F_i Y_i + X_i A_i^T + Y_i^T F_i^T + Y_i X_i + \sum_{k=1}^m X_i B_{ik}^T X_i^{-1} B_{ik} + \sum_{j=1}^N \gamma_j X_j^{-1} X_j < 0.\]

(24)
Recalling that \(G_i = Y_iX_i^{-1} \) and \(X_i = X_i^T \), we have
\[
A_iX_i + F_iG_iX_i + X_iA_i^T + X_iG_i^TF_i^T
\]
\[+
\sum_{k=1}^{m} X_k B_k^T X_i^{-1} B_k X_i + \sum_{j=1}^{N} \gamma_j X_j X_j^{-1} X_i < 0.
\]

Multiplying \(X_j^{-1} \) from left and then from right, and noting \(Q_j = X_j^{-1}, D_j = F_jG_j \), we see that the matrix inequalities (26) are equivalent to the following matrix inequalities
\[
Q_i A_i + Q_i D_i + A_i^T Q_i + D_i^T Q_i
\]
\[+
\sum_{k=1}^{m} B_k^T Q_i B_k + \sum_{j=1}^{N} \gamma_j Q_j < 0.
\]

which yields matrices in (3.6) are all negative-definite. Again, the required assertion follows directly from Theorem III.3.

IV. STABILIZATION OF NONLINEAR HYBRID SDES

Let us now develop our theory to cope with the more general nonlinear stabilization problem. For an unstable nonlinear hybrid SDE
\[
dx(t) = f(x(t), r(t), t)dt + g(x(t), r(t), t)dw(t)
\]
on \(t \geq 0 \) with the initial data \(x(0) = x_0 \in L^2_{\mathbb{F}} (\mathbb{R}^n) \). Here, \(f : \mathbb{R}^n \times S \times R_+ \to \mathbb{R}^n \) and \(g : \mathbb{R}^n \times S \times R_+ \to \mathbb{R}^{n\times n} \). Assume that both \(f \) and \(g \) are locally Lipschitz continuous and obey the linear growth condition (see e.g. [21]).

Assumption IV.1. Assume that the coefficients \(f \) and \(g \) are all locally Lipschitz continuous (see e.g. [21, 26–28]). That is, for each integer \(k \geq 1 \), we have a positive constant \(L_k \), such that
\[
| f(x, i, t) - f(y, i, t) | \vee | g(x, i, t) - g(y, i, t) | \leq L_k | x - y |.
\]
for \(x, y \in \mathbb{R}^n \) with \(| x | \vee | y | \leq k \) and \((i, t) \in S \times R_+ \).

We also assume that \(f, g \) satisfy the following linear growth condition
\[
| f(x, i, t) | \leq K_1 | x | \quad \text{and} \quad | g(x, i, t) | \leq K_2 | x |
\]
(29)

It is easy to see that \(f(0, i, t) = 0 = g(0, i, t) \) for all \(i \in S \) and \(t \geq 0 \) so that \(x = 0 \) is an equilibrium point for (27).

We are required to design a linear feedback control \(F(r(\delta(t)))G(r(\delta(t)))x(\delta(t)) \) based on the discrete-time state and mode observations in the drift part so that the controlled system
\[
dx(t) = [f(x(t), r(t), t) + F(r(\delta(t)))G(r(\delta(t)))x(\delta(t))]dt
\]
\[+
g(x(t), r(t), t)dw(t)
\]
will be mean-square exponentially stable. Defining \(\zeta \) as
\[
\zeta(t) = t - vr \quad \text{for} \quad vr \leq t < (v + 1)r,
\]
and \(v = 0, 1, 2, \ldots, \), then we see that the SDE (30) can be written as an SDDE
\[
dx(t) = [f(x(t), r(t), t)
\]
\[+
F(r(t - \zeta(t)))G(r(t - \zeta(t)))x(t - \zeta(t))]dt
\]
\[+
g(x(t), r(t), t)dw(t).
\]
(32)

It is therefore known (see e.g. [21]) that equation (30) has a unique solution \(x(t) \) such that \(\mathbb{E}|x(t)|^2 < \infty \) for all \(t \geq 0 \).

In order to stabilize a nonlinear system by a linear control, we impose some conditions on the nonlinear coefficients \(f \) and \(g \) as follows.

Assumption IV.2. For each \(i \in S \), there is a pair of symmetric \(n \times n \)-matrices \(Q_i \) and \(\hat{Q}_i \) with \(Q_i \) being positive-definite such that
\[
2x^T Q_i f(x, i, t) + g^T(x, i, t)Q_i g(x, i, t) \leq x^T \hat{Q}_i x
\]
for all \((x, i, t) \in \mathbb{R}^n \times S \times R_+ \).

Assumption IV.3. There is a pair of positive constants \(\delta_1 \) and \(\delta_2 \) such that
\[
| f(x, i, t) |^2 \leq \delta_1 | x |^2 \quad \text{and} \quad | g(x, i, t) |^2 \leq \delta_2 | x |^2
\]
for all \((x, i, t) \in \mathbb{R}^n \times S \times R_+ \).

Let us first present a useful lemma.

Lemma IV.4. Let Assumption IV.3 hold. Set
\[
\delta_3 = \max_{i \in S} \sum_{k=1}^{m} \| F_i G_i \|^2,
\]
and define
\[
H(\tau) = [6\tau(\delta_1 + \delta_2) + 3\tau^2 \delta_3]e^{6\tau(\delta_1 + \delta_2)}
\]
(33)
for \(r > 0 \). If \(r \) is sufficiently small for \(2H(r) < 1 \), then the solution \(x(t) \) of the SDE (30) satisfies

\[
\mathbb{E}[x(t) - x(\delta(t))]^2 \leq \frac{2H(r)}{1 - 2H(r)} \mathbb{E}[x(t)]^2
\]

for all \(t \geq 0 \).

This lemma can be proved in the same way as Lemma III.1 was proved so we omit the proof.

Theorem IV.5. Let Assumptions IV.2 and IV.3 hold. Assume that the following LMIs

\[
U_i := \hat{Q}_i + Q_i F_i G_i + G_i^T F_i^T Q_i + \sum_{j=1}^{N} \gamma_{ij} Q_j < 0, \quad i \in S,
\]

have their solutions \(F_i \) (i.e. \(G_i \)’s are given), or their solutions \(G_i \) in the case of output injection (i.e. \(F_i \)’s are given). Set

\[
-\gamma := \max_{i \in S} \lambda_{\max}(U_i) \quad \text{and} \quad \delta_4 := \max_{i \in S} \|Q_i F_i G_i\|^2, \\
\delta_5 := \max_{i \in S} \|F_i G_i - F_j G_j\|^2.
\]

If \(r \) is sufficiently small for \(\gamma > 2\gamma_r + 2\lambda_M \eta_r \), where

\[
\gamma_r := \sqrt{\frac{2\delta_5 H(r)}{1 - 2H(r)}}, \quad \eta_r := \sqrt{\frac{2\delta_5 (1 - e^{-\gamma r})}{1 - 2H(r)}},
\]

then the solution of the SDE (30) satisfies

\[
\mathbb{E}[x(t)]^2 \leq \frac{\lambda_M}{\lambda_m} \mathbb{E}[x(0)]^2 e^{-\theta t}, \quad \forall t \geq 0,
\]

where \(H(r) \) has been defined in Lemma IV.4 and

\[
\lambda_M = \max_{i \in S} \lambda_{\max}(Q_i), \quad \lambda_m = \min_{i \in S} \lambda_{\min}(Q_i),
\]

\[
\theta = \frac{\gamma - 2\gamma_r - 2\lambda_M \eta_r}{\lambda_M}.
\]

Proof. This theorem can be proved in a similar way as Theorem III.3 was proved so we only give the key steps. Applying the generalized Itô formula to \(x^T(t)Q(r(t))x(t) \)

we get

\[
d[x^T(t)Q(r(t))x(t)] = \left(x^T(t)U(r(t))x(t) \\
- 2x^T(t)Q(r(t))F(r(t))G(r(t))x(t) - x(\delta(t)) \right)dt \\
+ 2x^T(t)Q(r(t))F(r(t)) \left(r(\delta(t)) - r(\delta(t)) \right) \frac{dM_i(t)}{\tau}.
\]

where \(M_i(t) \) is a martingale with \(M_i(0) = 0 \). Applying the generalized Itô formula further to \(e^{\theta t}x^T(t)Q(r(t))x(t) \), we can then obtain

\[
\lambda_M e^{\theta t} \mathbb{E}[x(t)]^2 \leq \lambda_M \mathbb{E}[x(0)]^2 + \int_0^t (\theta \lambda_M - \gamma) e^{\theta s} \mathbb{E}[x(s)]^2 ds \\
+ \int_0^t 2e^{\theta s} \sqrt{\delta_5} \mathbb{E}[|x(s)||x(s) - x(\delta(s))]|] ds \\
+ \int_0^t 2 \mathbb{E}(e^{\theta s} x^T(s)Q(r(s))(F(r(s))G(r(s))) \\
- F(r(\delta(s)))G(r(\delta(s)))x(\delta(s))) ds.
\]

But, by Lemma IV.4, we can show

\[
2\sqrt{\delta_5} \mathbb{E}[|x(s)||x(s) - x(\delta(s))]|] \leq 2\gamma_r \mathbb{E}[x(s)]^2,
\]

while by Lemma III.2 and (36) we can prove that

\[
2 \mathbb{E}(e^{\theta s} x^T(s)Q(r(s))(F(r(s))G(r(s))) \\
- F(r(\delta(s)))G(r(\delta(s)))x(\delta(s))) \leq 2e^{\theta s} \lambda_M \eta_r \mathbb{E}[x(s)]^2.
\]

Substituting this into (39) yields

\[
\lambda_M e^{\theta t} \mathbb{E}[x(t)]^2 \leq \lambda_M \mathbb{E}[x(0)]^2,
\]

which implies the desired assertion (37). The proof is complete.

To apply Theorem IV.5, we need two steps:

1. we first need to look for the \(2N \) matrices \(Q_i \) and \(\hat{Q}_i \) for Assumption IV.2 to hold;
2. we then need to solve the LMIs in (35) for their solutions \(F_i \) (or \(G_i \)).

There are available computer softwares e.g. MATLAB for step 2 so in the remaining part of this section we will develop some ideas for step 1. To make our ideas more clear, we will only consider the case of feedback control, but the same ideas work for the case of output injection.

© 2017 Chinese Automatic Control Society and John Wiley & Sons Australia, Ltd
In theory, it is flexible to use $2N$ matrices Q_i and \hat{Q}_i in Assumption IV.2. But, in practice, it means more work to be done in finding these $2N$ matrices. It is in this spirit that we introduce a stronger assumption.

Assumption IV.6. There are $N + 1$ symmetric $n \times n$-matrices Z and $Z_i (i \in S)$ with $Z > 0$ such that

$$2x^T Z f(x, i, t) + g^T(x, i, t) Z g(x, i, t) \leq x^T Z x$$

for all $(x, i, t) \in \mathbb{R}^n \times S \times R_+.$

Under this assumption, if we let $Q_i = q_i Z$ and $\hat{Q}_i = \hat{q}_i Z$, for some positive numbers q_i, then Assumption IV.2 holds. Moreover, the LMIs in (35) become

$$q_i Z_i + q_i Z F_i G_i + q_i G_i^T F_i^T Z$$

$$+ \sum_{j=1}^{N} \gamma_j q_j Z < 0, \quad i \in S.$$

If we set $Y_i := q_i F_i$, then these become the following LMIs in q_i and Y_i:

$$q_i Z_i + Z Y_i G_i + G_i^T Y_i^T Z$$

$$+ \sum_{j=1}^{N} \gamma_j q_j Z < 0, \quad i \in S.$$

(42)

We hence have the following corollary.

Corollary IV.7. Let Assumptions IV.6 and IV.3 hold. Assume that the LMIs (42) have their solutions $q_i > 0$ and $Y_i (i \in S)$. Then Theorem IV.5 holds by setting $Q_i = q_i I$, $\hat{Q}_i = q_i Z_i I$ and $F_i = q_i^{-1} Y_i$. In other words, the controlled SDE (30) will be exponentially stable in mean square if we set $F_i = q_i^{-1} Y_i$ and make sure $\tau > 0$ be sufficiently small for $\gamma > 2\gamma_c + 2\lambda_M \eta_r$.

An even simpler (but in fact stronger) condition is:

Assumption IV.8. There are constants $z_i (i \in S)$ such that

$$2x^T f(x, i, t) + |g(x, i, t)|^2 \leq z_i |x|^2$$

for all $(x, i, t) \in \mathbb{R}^n \times S \times R_+.$

Under this assumption, if we let $Q_i = q_i I$ and $\hat{Q}_i = q_i z_i I$ for some positive numbers q_i, where I is the $n \times n$ identity matrix, then Assumption IV.2 holds. Moreover, the LMIs in (35) become

$$q_i z_i I + q_i F_i G_i + q_i G_i^T F_i^T$$

$$+ \sum_{j=1}^{N} \gamma_j q_j I < 0, \quad i \in S.$$

If we set $Y_i := q_i F_i$, then these become the following LMIs in q_i and Y_i:

$$q_i z_i I + Y_i G_i + G_i^T Y_i^T$$

$$+ \sum_{j=1}^{N} \gamma_j q_j I < 0, \quad i \in S.$$

(43)

We hence have another corollary.

Corollary IV.9. Let Assumptions IV.8 and IV.3 hold. Assume that the LMIs (43) have their solutions $q_i > 0$ and $Y_i (i \in S)$. Then Theorem IV.5 holds by setting $Q_i = q_i I$, $\hat{Q}_i = q_i z_i I$ and $F_i = q_i^{-1} Y_i$. In other words, the controlled SDE (30) will be exponentially stable in mean square if we set $F_i = q_i^{-1} Y_i$ and make sure $\tau > 0$ be sufficiently small for $\gamma > 2\gamma_c + 2\lambda_M \eta_r$.

V. EXAMPLE

Let us consider an unstable linear hybrid SDE

$$dx(t) = A(r(t))x(t)dt + B(r(t))x(t)dw(t)$$

(44)

on $t \geq t_0$. Here $w(t)$ is a scalar Brownian motion; $r(t)$ is a Markov chain on the state space $S = \{1, 2\}$ with the generator

$$\Gamma = \begin{bmatrix} -1 & 1 \\ 1 & -1 \end{bmatrix};$$

and the system matrices are

$$A_1 = \begin{bmatrix} 1 & -1 \\ 1 & 5 \end{bmatrix}, \quad A_2 = \begin{bmatrix} -5 & -1 \\ 1 & 1 \end{bmatrix};$$

$$B_1 = \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix}, \quad B_2 = \begin{bmatrix} -1 & -1 \\ 1 & 1 \end{bmatrix}.$$

The computer simulation (Fig. 1) shows this hybrid SDE is not mean square exponentially stable.

Let us now design a discrete-time-state feedback control to stabilize the system. Assume that the controlled hybrid SDE has the form

$$dx(t) = [A(r(t))x(t) + F(r(\delta(t)))G(r(\delta(t)))x(\delta(t))]dt$$

$$+ B(r(t))x(t)dw(t),$$

(45)
Fig. 1. Computer simulation of the paths of $r(t)$, $x_1(t)$ and $x_2(t)$ for the hybrid SDE (44) using the Euler–Maruyama method with step size 10^{-6} and initial values $r(0) = 1$, $x_1(0) = -2$ and $x_2(0) = 1$.

Our aim is to find F_1 and F_2 in $\mathbb{R}^{2 \times 1}$ and then make sure τ is sufficiently small for this controlled SDE to be exponentially stable in mean square. To apply Corollary III.4, we first find that the following LMIs

$$
\bar{Q}_i := Q_i A_i + Y_i G_i + A_i^T Q_i + G_i^T Y_i + B_i^T Q_i B_i \\
+ \sum_{j=1}^{2} Y_j Q_j < 0, \quad i = 1, 2,
$$

have the following set of solutions

$$
Q_1 = \begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix}, \quad Q_2 = \begin{bmatrix} 2 & 0 \\ 0 & 1 \end{bmatrix},
$$

and

$$
Y_1 = \begin{bmatrix} -10 \\ 0 \end{bmatrix}, \quad Y_2 = \begin{bmatrix} 0 \\ -10 \end{bmatrix},
$$

and for these solutions we have

$$
\bar{Q}_1 = \begin{bmatrix} -7 & 0 \\ 0 & -1 \end{bmatrix}, \quad \bar{Q}_2 = \begin{bmatrix} -1 & 0 \\ 0 & -7 \end{bmatrix}.
$$

Hence, we have

$$
-\lambda = \max_{i=1,2} \lambda_{\text{max}}(\bar{Q}_i) = -1, \quad M_{YG} = \max_{i=1,2} \| Y_i G_i \|^2 = 100.
$$

It is easy to compute that

$$
M_A = 27.42, \quad M_B = 2, \quad M_D = 100.
$$

Hence

$$
\lambda_1 = \sqrt{\frac{200K(\tau)}{1 - 2K(\tau)}}, \quad \mu_1 = \sqrt{\frac{200(1 - e^{-\gamma \tau})}{1 - 2K(\tau)}},
$$

where $K(\tau) = [6\tau (27.42 \tau + 2) + 300 \tau^2]e^{6\tau (27.42 \tau + 2)}$. By calculating, we get that $\lambda > 2\lambda_1 + 2\lambda_2 \mu_1$, whenever $\tau < 0.000015$. By Corollary III.4, if we set $F_1 = Y_1$ and $F_2 = Y_2$, and make sure that $\tau < 1.5 \times 10^{-5}$, then the discrete-time-state feedback controlled hybrid SDE (45) is mean-square exponentially stable. The computer simulation (Fig. 2) supports this result clearly.

VI. CONCLUSION

In this paper, we have proved that unstable linear hybrid SDEs, in the form of (5), can be stabilized by a feedback control based on discrete-time state and mode observations. Moreover, we have generalised the theory to a class of nonlinear systems.

REFERENCES

1. Basak, G. K., A. Bisi, and M. K. Ghosh, “Stability of a random diffusion with linear drift,” *J. Math. Anal. Appl.*, Vol. 202, No. 2, pp. 604–622 (1996).
2. Gao, H., C. Wang, and L. Wang, “On H_∞ performance analysis for continuous-time stochastic systems with polytopic uncertainties,” *Circ. Syst. Signal Process.*, Vol. 24, No. 4, pp. 415–429 (2005).
3. He, H., D. W. C. Ho, and J. Lam, “Stochastic stability analysis of fuzzy Hopfield neural networks with time-varying delays,” *IEEE Trans. Circuits Syst. I: Express Briefs*, Vol. 52, No. 5, pp. 251–255 (2005).

4. Ji, Y. and H. J. Chizeck, “Controllability, stabilizability and continuous-time Markovian jump linear quadratic control,” *IEEE Trans. Autom. Control*, Vol. 35, No. 7, pp. 777–788 (1990).

5. Mao, X., “Stability and stabilization of stochastic differential delay equations,” *IET Contr. Theory Appl.*, Vol. 1, No. 6, pp. 1551–1566 (2007).

6. Mao, X., A. Matasov, and A. B. Piunovskiy, “Stochastic differential delay equations with Markovian switching,” *Bernoulli*, Vol. 6, No. 1, pp. 73–90 (2000).

7. Mao, X., G. Yin, and C. Yuan, “Stabilization and destabilization of hybrid systems of stochastic differential equations,” *Automatica*, Vol. 43, No. 2, pp. 264–273 (2007).

8. Martinon, M., *Jump Linear Systems in Automatic Control*, Marcel Dekker, New York (1990).

9. Niu, Y., D. W. C. Ho, and J. Lam, “Robust integral sliding mode control for uncertain stochastic systems with time-varying delay,” *Automatica*, Vol. 41, No. 5, pp. 873–880 (2005).

10. Shaikhet, L., “Stability of stochastic hereditary systems with Markov switching,” *Theory Stochastic Process.*, Vol. 2, No. 18, pp. 180–184 (1996).

11. Shi, P., M. S. Mahmoud, J. Yi, and A. Ismail, “Worst case control of uncertain jumping systems with multi-state and input delay information,” *Inf. Sci.*, Vol. 176, No. 2, pp. 186–200 (2006).

12. Sun, M., J. Lam, S. Xu, and Y. Zou, “Robust exponential stabilization for Markovian jump systems with mode-dependent input delay,” *Automatica*, Vol. 43, No. 10, pp. 1799–1807 (2007).

13. Willsky, A. S. and B. C. Levy. Stochastic stability research for complex power systems. *Technical Report Report No.: ET-76-C-01-2295*, DOE Contract, LDS, MIT, 1979.

14. Wu, L., P. Shi, and H. Gao, “State estimation and sliding mode control of Markovian jump singular systems,” *IEEE Trans. Autom. Control*, Vol. 55, No. 5, pp. 1213–1219 (2010).

15. Wu, L., X. Su, and P. Shi, “Sliding mode control with bounded l∞ gain performance of Markovian jump singular time-delay systems,” *Automatica*, Vol. 48, No. 8, pp. 1929–1933 (2012).

16. Wei, G., Z. Wang, H. Shu, and J. Fang, “Robust H∞ control of stochastic time-delay jumping systems with nonlinear disturbances,” *Optim. Control Appl. Methods*, Vol. 27, No. 5, pp. 255–271 (2006).

17. Xu, S., J. Lam, J. L. Wang, and G. H. Yang, “Stabilization and H∞ control for uncertain stochastic time-delay systems via non-fragile controllers,” *Asian J. Control*, Vol. 8, No. 2, pp. 197–200 (2006).

18. Yue, D. and Q. Han, “Delay-dependent exponential stability of stochastic systems with time-varying delay, nonlinearity, and Markovian switching,” *IEEE Trans. Autom. Control*, Vol. 50, No. 2, pp. 217–222 (2005).

19. Mao, X., “Stability of stochastic differential equations with Markovian switching,” *Stoch. Process Their Appl.*, Vol. 79, No. 1, pp. 45–67 (1999).

20. Mao, X., “Exponential stability of stochastic delay interval systems with Markovian switching,” *IEEE Trans. Autom. Control*, Vol. 47, No. 10, pp. 1604–1612 (2002).

21. Mao, X. and C. Yuan, *Stochastic Differential Equations with Markovian Switching*, Imperial College Press, London (2006).

22. Wang, Z., H. Qiao, and K. J. Burnham, “On stabilization of bilinear uncertain time-delay stochastic systems with Markovian jumping parameters,” *IEEE Trans. Autom. Control*, Vol. 47, No. 4, pp. 640–646 (2002).

23. Hu, L. and X. Mao, “Almost sure exponential stabilization of stochastic systems by state-feedback control,” *Automatica*, Vol. 44, No. 2, pp. 465–471 (2008).

24. Mao, X., J. Lam, and L. Huang, “Stabilisation of hybrid stochastic differential equations by delay feedback control,” *Syst. Control Lett.*, Vol. 57, No. 11, pp. 927–935 (2008).

25. Mao, X., “Stabilization of continuous-time hybrid stochastic differential equations by discrete-time feedback control,” *Automatica*, Vol. 49, No. 12, pp. 3677–3681 (2013).

26. Mao, X., *Stability of Stochastic Differential Equations with Respect to Semimartingales*, Longman Scientific and Technical, London (1991).

27. Mao, X., *Exponential Stability of Stochastic Differential Equations*, Marcel Dekker, New York (1994).

28. Mao, X., *Stochastic Differential Equations and Their Applications*, 2nd Edition, Horwood Pub., Chichester (2007).

Yuyuan Li received the B.Sc degree from Guangxi Normal University, Guilin, Guangxi, China, in 2011. She started the master study at Donghua University, Shanghai, China from 2012, and then became an MD-PhD based student in 2014. She is currently still working...
toward the Ph.D. degree. Her research is mainly concerned with stability and stabilization of stochastic systems.

Jianqiu Lu received the B.Sc degree in Mathematics and Statistics From University of Strathclyde, Glasgow, UK in 2013. At the same year, she also received the B.Sc degree in Applied Mathematics from Donghua University, Shanghai, China. She started her PhD project in 2013 at University of Strathclyde, Glasgow, UK. Her main research interests lie in the field of stochastic analysis including stochastic stability, stabilization and control.

Xuerong Mao received the Ph.D. degree from Warwick University, Coventry, U.K., in 1989. He was SERC (Science and Engineering Research Council, U.K.) Post-Doctoral Research Fellow from 1989 to 1992. Moving to Scotland, he joined the University of Strathclyde, Glasgow, U.K., as a Lecturer in 1992, was promoted to Reader in 1995, and was made Professor in 1998 which post he still holds. He was elected as a Fellow of the Royal Society of Edinburgh (FRSE) in 2008. He has authored five books and over 200 research papers. His main research interests lie in the field of stochastic analysis including stochastic stability, stabilization, control, numerical solutions and stochastic modelling in finance, economic and population systems. He is a member of the editorial boards of several international journals.

Qinwei Qiu received the Ph.D. degree from Donghua University, Shanghai, China, in 2016. His main research interests lie in the field of stochastic analysis including stochastic stability, stabilization and numerical solutions of stochastic systems.