Pleistocene isolation caused by sea-level fluctuations shaped genetic characterization of *Pampus minor* over a large-scale geographical distribution

Yuan Li¹, Cheng Liu¹², Longshan Lin¹², Yuanyuan Li¹, Jiaguang Xiao¹, Kar-Hoe Loh³

¹ Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361005, China ² College of Marine Sciences, Shanghai Ocean University, Shanghai 201306, China ³ Institute of Ocean and Earth Sciences, University of Malaya, Kuala Lumpur 50603, Malaysia

Corresponding author: Longshan Lin (lshlin@tio.org.cn)

Abstract

The southern lesser pomfret (*Pampus minor*) is an economically important fish, and its numbers are declining because of overfishing and environmental pollution. In addition, owing to the similarities of its external morphological characteristics to other species in the genus *Pampus*, it is often mistaken for grey pomfret (*P. cinereus*) or silver pomfret (*P. argenteus*) juveniles. In this study, the genetic diversity and structure of 264 *P. minor* individuals from 11 populations in China and Malaysia coastal waters were evaluated for the first time, to the best of our knowledge, using mitochondrial cytochrome b fragments. The results showed that *P. minor* had moderate haplotype diversity and low nucleotide diversity. Furthermore, two divergent lineages were detected within the populations, but the phylogenetic structure corresponded imperfectly with geographical location; thus, the populations may have diverged in different glacial refugia during the Pleistocene low sea levels. Analysis of molecular variation (AMOVA) showed that genetic variation originated primarily from individuals within the population. Pairwise F_{ST} results showed significant differentiation between the Chinese and Malaysian populations. Except for the Xiamen population, which was classified as a marginal population, the genetic differentiation among the other Chinese populations was not significant. During the Late Pleistocene, *P. minor* experienced a population expansion event starting from the South China Sea refugium that expanded outward, and derivative populations quickly occupied and adapted to the new habitat. The results of this study will provide genetic information for the scientific conservation and management of *P. minor* resources.

Citation: Li Y, Liu C, Lin L, Li Y, Xiao J, Loh K-H (2020) Pleistocene isolation caused by sea-level fluctuations shaped genetic characterization of *Pampus minor* over a large-scale geographical distribution. ZooKeys 969: 137–154. https://doi.org/10.3897/zookeys.969.52069

Copyright Yuan Li et al. This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.