Petrography, bulk-rock geochemistry, detrital zircon U–Pb geochronology and Hf isotope analysis for constraining provenance: An example from Middle Triassic deposits (Bravaisberget Formation), Sørkappøya, Svalbard

Urszula Czarniecka, Beyene G. Haile, Alvar Braathen, Krzysztof P. Krajewski, Magnus Kristoffersen & Petras Jokubauskas

DOI: https://dx.doi.org/10.17850/njg100-3-5

Article number: 202017

Received 5. April 2020 / Accepted 21. September 2020 / Published online 18. November 2020

Refer to this publication as:
Czarniecka, U., Haile, B.G., Braathen, A., Krajewski, K.P., Kristoffersen, M. & Jokubauskas, P. 2020: Petrography, bulk-rock geochemistry, detrital zircon U–Pb geochronology and Hf isotope analysis for constraining provenance: An example from Middle Triassic deposits (Bravaisberget Formation), Sørkappøya, Svalbard. Norwegian Journal of Geology 100, 202017. https://dx.doi.org/10.17850/njg100-3-5.

©Copyright the authors.

This work is licensed under a Creative Commons Attribution 4.0 International License.
Petrography, bulk-rock geochemistry, detrital zircon U–Pb geochronology and Hf isotope analysis for constraining provenance: An example from Middle Triassic deposits (Bravaisberget Formation), Sørkappøya, Svalbard

Urszula Czarniecka¹,², Beyene G. Haile², Alvar Braathen², Krzysztof P. Krajewski¹†, Magnus Kristoffersen² & Petras Jokubauskas³

¹Institute of Geological Sciences, Polish Academy of Sciences, Twarda 51/55, 00–818 Warszawa, Poland
²Department of Geosciences, University of Oslo, P.O Box 1047 Blindern, 0316 Oslo, Norway
³Faculty of Geology, University of Warsaw, Żwirki i Wigury 93, 02–089 Warszawa, Poland
†Deceased

E-mail corresponding author (Urszula Czarniecka): u.czarniecka@gmail.com
The Bravaisberget Formation is an important succession to better understand time and facies equivalent offshore deposits of the Barents Shelf. However, few of its provenance studies were primarily based on a single-grain method. This study therefore presents new results about these Middle Triassic sandstones based on multi-method approach provenance interpretations. Bulk-rock approaches (petrography and geochemistry) and single-grain methods (detrital zircon ages and Hf isotope analysis) were combined in order to characterise potential upland sources for sediments. The analysed sandstones are quartz arenites, sublitharenites, subfeldsarenites to sublithwackes, attesting to a generally high mineralogical maturity. Trace and rare earth elements link the deposits to source rocks of a felsic composition, related to the late-melt fractionating crust. The zircon age pattern is well known from other deposits of the Arctic region and links the sandstones to a protosource of Laurentian and/or Baltic affinity. The multi-method related input data in our study highlights the importance of sedimentary reworking from older quartz-rich units. Due to the high degree of sedimentary reworking required, the information the zircon age pattern holds has no bearing on the source to sink system in the Middle Triassic in southern Spitsbergen. The Eu and Gd systematics coupled with the Hf isotope data reflect subtle changes in provenance evolution. We assume that the Somovbreen and Karentoppen members of the Bravaisberget Formation shared the same source located in NE Greenland that was a molasse basin filled with a detrital material of eroded low-grade Proterozoic successions of the Caledonides. The Karentoppen Member was additionally supplied by a sedimentary unit coming from the eroded part of an Archaean/Palaeoproterozoic basement. This study has shown that the provenance of compositionally mature sandstones is difficult to disentangle even despite the multi-method approach applied, and that in such cases any interpretations are best grounded by field constraints.

Keywords: provenance, multi-method approach, U–Pb geochronology, Middle Triassic, NW Barents Shelf
Introduction

The Mesozoic successions exposed at the Svalbard Archipelago comprise potential source and reservoir rocks equivalent to the subsurface facies in the Barents Sea. These strata have been the focus of numerous studies because they offer a unique opportunity to understand the reservoir and source-rock properties in the subsurface facies that can be tracked in the offshore of the Barents Shelf (e.g., Faleide et al., 1984; Mørk, 1999, 2013; Mørk et al., 1999; Mørk & Worsley, 2006; Krajewski et al., 2007; Riis et al., 2008; Worsley, 2008; Glørstad-Clark et al., 2010; Anell et al., 2013; Klausen & Mørk, 2014; Krajewski &
Weitschat, 2015). Provenance studies of the Triassic successions have been conducted both on Svalbard (Mørk, 1999, 2013; Bue & Andresen, 2014) and across the shelf as a whole (Omma, 2009; Soloviev et al., 2015; Fleming et al., 2016; Klausen et al., 2017; Flowerdew et al., 2019; Khudoley et al., 2019; Line et al., 2020). These studies have identified several source areas that delivered sediments to the Barents Shelf during the Triassic. The Lower and Middle Triassic sandstones of Spitsbergen are interpreted to have had a westerly source from Greenland (Mørk et al., 1982; Mørk, 1999; Bue & Andresen, 2014), whereas the Upper Triassic sediments in the eastern and southern parts of the Barents Sea have probably been delivered from the Urals, along the Timan–Pechora depression (Mørk, 1999; Fleming et al., 2016), and from the Baltic Shield (Glørstad-Clarck et al., 2010; Fleming et al., 2016; Flowerdew et al., 2019).

The Mid-Triassic Bravaisberget Formation, the focus of this study, was mapped and sampled from Sørkappøya, a small island adjacent to southernmost Spitsbergen (Figs. 1 & 2). The formation contains sandy deposits previously studied by detailed petrography coupled with geochemical data (Mørk, 1999) or a detrital single-zircon U–Pb dating method to trace sediment source terranes (Bue & Andresen, 2014). Because the studied unit seems to be sourced from the west rather than from the east (Mørk, 1999; Bue & Andresen, 2014), the southernmost Spitsbergen region is relevant for Arctic paleogeography reconstruction and for reservoir-quality sand distribution on the southwest Barents Shelf. It has been claimed that reservoir intervals comprising sediments sourced from a compositionally mature sedimentary precursor have overall better reservoir quality than reservoir intervals composed of clastic material sourced from an immature sedimentary precursor (Ryseth, 2014). The maturity and immaturity of the precursor sedimentary rock provide a specific imprint on the composition of a daughter sediment. Our study has shown that this imprint can be tracked and easily extracted from the daughter sediment using petrographic and whole-rock geochemical studies.
This study integrates different methods commonly used individually in provenance analysis studies in order to unravel sedimentary records from the stratigraphic units. Some provenance studies have advocated the advantage of an integrated approach over using just the single-grain method (Humphreys et al., 1991; von Eynatten & Gaupp, 1999; Morton et al., 2005; von Eynatten & Dunkl, 2012; Morton et al., 2012; Nie et al., 2012; Jian et al., 2013; Garzanti, 2016). The multi-method approach can help to constrain limitations solely associated with a single-grain method, for instance, the conventional U–Pb zircon age data (Chew et al., 2020). As Garzanti (2016) noted, the average content of zircon in sediments is 2 grains out of 10,000. This means there is still much to learn from the remaining 99.98% of the sample. Moreover, factors such as fertility bias, recycling, pre- and post-depositional modifications from sediment transport, and climate imprint, among others, may complicate interpretation of the conventional detrital zircon U–Pb provenance ages (e.g., Nie et al., 2012; Sláma & Košler, 2012; Flowerdew et al., 2019). That is why this study emphasises the importance of evaluating imprints in sediments using bulk-rock methods (petrography and geochemistry).

The chemical record of clastic sediments has been widely used for provenance interpretation, e.g., trace elements and their ratios are good indicators of source rocks since felsic and mafic sources can show differences in composition (McLennan et al., 1983; Taylor & McLennan, 1985; Bhatia & Crook, 1986; McLennan et al., 1990; Condie, 1993; Cullers, 1995, 2000, 2002; Akarish & El-Gohary, 2008). Rare earth elements (REE) are also considered to preserve the source-rock composition. Mafic rocks have a less fractionated chondrite-normalised REE pattern, with low (La/Yb)$_N$ ratios and little or no Eu anomalies. In contrast, the felsic rocks generally show a fractionated chondrite-normalised REE pattern, with higher (La/Yb)$_N$ ratios and prominent Eu anomalies (Taylor & McLennan, 1985; Cullers, 1995, 2002). The Eu systematics has been a useful tool for discrimination between the Archaean and Post-Archaean composition of a continental crust, as well as the (Gd/Yb)$_N$ ratio (Taylor & McLennan, 1985; McLennan et al., 1990; McLennan et al., 1993). Additionally,
the Lu–Hf isotope system in a detrital zircon study is a useful tool for analysing the crustal
and mantle evolution, with high values of $^{176}\text{Hf}/^{177}\text{Hf}$ indicating a mantle (juvenile) origin for
the magma, and low values implying a reworking of the older crustal material (Belousova et
al., 2010); thus, the Lu–Hf system is very useful for constraining provenance interpretations
inferred from the U–Pb zircon geochronology (e.g., Andersen et al., 2011; Slama et al., 2011;
Kristoffersen et al., 2014).

This study thus: 1) presents petrographic characteristics of the Bravaisberget Formation
sandstones in detail that have only been studied so far for a few samples north of the study
area (Mørk, 1999), 2) for the first time, explores the bulk-rock geochemical signature of the
Bravaisberget Formation, 3) adds new zircon U–Pb ages to the existing geochronological
database for the Lower Mesozoic of the NW Barents shelf, and 4) for the first time, extends
utility of the zircon U–Pb dating, coupled with the Lu–Hf isotopic analysis for the Mesozoic
strata of the Barents Shelf. The multi-method approach was applied in order to accomplish
the purpose of this study, which has been to constrain provenance of the studied
sandstones. Findings from this study are important for understanding that little provenance
significance can be drawn from the zircon data if they come from quartz-rich mature
sandstones, and when the recycling imprints on sediment composition, the whole-rock
studies are crucial in the provenance analysis.

Geological setting

In general, the Triassic succession of Svalbard (Fig. 1A, B) comprises marine facies of the
Sassendalen Group and paralic to deltaic facies of the Kapp Toscana Group (Mørk et al.,
1999). Two of the youngest units of the Sassendalen Group, the Botneheia and
Bravaisberget formations, both enriched in marine organic carbon, are important petroleum
source rocks in the Barents Sea (Mørk & Bjørøy, 1984; Karcz, 2010, 2014; Krajewski, 2013).
Sandstone bodies within these formations and thick sandstone units of the overlying Kapp
Toscana Group are considered to have good reservoir potential (Worsley & Mørk, 1978; Krajewski et al., 2007; Mørk, 2013).

The Bravaisberget Formation is restricted to west Spitsbergen and has been subdivided into four members: the Passhatten, Somovbreen, Karentoppen and Van Keulenfjorden (Mørk et al., 1982; Mørk et al., 1999) (Fig. 1B). The shale-dominated Passhatten Member comprises an organic-rich succession, which is related to deposition in a shallow-shelf environment (Karcz, 2010; Krajewski & Weitschat, 2015). The overlying sandy and silty deposits of the Somovbreen Member are described as a marine succession encompassing and covering wedges of deltaic sediments (Mørk et al., 1999; Krajewski & Weitschat, 2015). The latter deltaic to marine sandstones are of the Karentoppen Member and limited to the southwestern part of the Sørkapp Land (Mørk et al., 1999). The Van Keulenfjorden Member is made up of siliceous and dolomitic sandstones, shales and spiculitic deposits of prodelta and delta-top environments (Mørk et al., 1999; Krajewski et al., 2007; Krajewski & Weitschat, 2015).

Sandy facies within the Somovbreen Member were deposited in a shallow-marine environment through reworking of the Karentoppen Member deltaic sediments, which were delivered from a local source area as has been indicated by field data (Krajewski & Weitschat, 2015). The source area was located west and southwest of the present coast of Spitsbergen, probably in the land area of northern Greenland (Faleide et al., 1993; Mørk, 1999; Mørk et al., 1999; Riis et al., 2008; Worsley, 2008; Krajewski & Weitschat, 2015).

Derivation of the clastic material from the local source area in the west took place in the Early and Middle Triassic and was restricted only to the western part of Spitsbergen (Bue & Andresen, 2014). It has also been confirmed by a facies analysis of the Karentoppen Member that the deltaic sandstone bodies, observed along the western coast of the Sørkapp Land, disappear north-eastward over a distance of a few kilometres (Krajewski & Weitschat, 2015). In contrast to the Bravaisberget Formation, the sediments of the Botneheia Formation
were partly supplied from distal deltaic systems located in the southeastern part of the Barents Shelf (Glørstad-Clarck et al., 2010). On the contrary, the Upper Triassic deposits accumulated by a supply of a great amount of sediment delivered into the Barents Shelf by large prograding delta systems sourced from rivers draining the Uralides to the southeast (Mørk, 1999; Worsley, 2008; Glørstad-Clark et al., 2010; Bue & Andresen, 2014; Klausen et al., 2015). In the Late Triassic, the easterly derived material reached the present-day western Spitsbergen (Riis et al., 2008; Bue & Andresen, 2014).

Samples and methods

The studied samples were gathered during expeditions by the Polish Academy of Sciences in 2001 and 2014. Sampling covered three sections on Sørkappøya where the Bravaisberget Formation crops out: Trondsnesset, Sørkapplaguna and Sørkapp, with locations shown in Fig. 2. In total, 32 samples were analysed for petrographic data, and 37 for bulk-rock geochemistry. Two samples were used for single-grain zircon U–Pb and Lu–Hf isotopic analyses. Sample locations and logs of the studied sections are shown in Electronic supplement 1A. In addition, Electronic supplement 1B shows a list of samples coupled with analyses that have been conducted on each single sample.

Petrographic investigations of siliciclastic rocks of the Bravaisberget Formation were performed on standard uncovered polished thin-sections using a NIKON Eclipse E600POL polarising microscope. The thin-sections were blue-stained for porosity identification. A framework composition, matrix and cements were quantified by the point-counting method, and 300 points per each thin-section of sandy samples were counted. Furthermore, the size of the framework components was examined. All the studied deposits were classified based on Picard (1971), while the sorting of the framework components was determined using comparison charts (Longiaru, 1987). Sandstones were classified using combined ternary petrographic classification schemes (McBride, 1963; Dott Jr, 1964; Folk et al., 1970;
Pettijohn et al., 1972; Williams et al., 1982). The quantitative petrographic data and the description of most important textural features are listed in Electronic supplement 2A, B.

A bulk-rock geochemical analysis was conducted on 37 samples. The oxides of major elements, trace and rare earth elements were determined by inductively coupled plasma mass spectrometry (LA-ICP-MS) at the Bureau Veritas Minerals Laboratories Ltd. in Vancouver, Canada. The results of these analyses are provided in Electronic supplement 2C–F.

The detrital zircon U–Pb and Lu–Hf analyses were performed by LA-ICP-MS using a Nu Plasma HR mass spectrometer and a Cetac LSX-213 G2+ laser microprobe equipped with a HelEx cell at the Department of Geosciences, University of Oslo. The analytical protocols of Rosa et al. (2009) and Andersen et al. (2009) were used for the U–Pb geochronology. In total, 119 and 88 zircon grains from two samples were analysed. Combined histograms and probability density plots were created for a statistical presentation of the results. $^{207}\text{Pb}/^{206}\text{Pb}$ ages were plotted for zircons >600 Ma and $^{206}\text{Pb}/^{238}\text{U}$ ages for younger zircons. The histograms and probability density plots include only zircon ages that are less than 10% discordant. Datasets of the U–Pb zircon analyses are listed in Electronic supplement 2G.

For the Lu–Hf analysis, the analytical protocols of Elburg et al. (2013) were applied. A decay constant value for ^{176}Lu of 1.867×10^{-11} (Söderlund et al., 2004), and the present-day chondritic $^{176}\text{Hf}/^{177}\text{Hf} = 0.282785$ and $^{176}\text{Lu}/^{177}\text{Hf} = 0.0336$ (Bouvier et al., 2008) have been used in all εHf calculations. The depleted mantle (DM) parameters of Griffin et al. (2000) were adopted; this model, modified to the decay constant and the chondritic uniform reservoir (CHUR) parameters, gives present-day $^{176}\text{Hf}/^{177}\text{Hf} = 0.28325 (+ 16.4 \varepsilon\text{Hf},$ similar to average mid-ocean ridge basalt) from a chondritic $^{176}\text{Hf}/^{177}\text{Hf}$ at 4.56 Ga and $^{176}\text{Lu}/^{177}\text{Hf} = 0.0388$. High values of $^{176}\text{Hf}/^{177}\text{Hf}$ (positive εHf) indicate mantle-related magmas, and low
values of $^{176}\text{Hf}/^{177}\text{Hf}$ (negative εHf) point to a crustal influence (Belusova et al., 2010).

Datasets of the Lu–Hf analyses are presented in Electronic supplement 2H.

Results

Petrography

Samples of the Karentoppen Member (KM) are fine to medium grained, well to very poorly sorted sandstones. Among the framework components, quartz predominates (Fig. 3A–G).

The quartz is mostly monocrystalline. Polycrystalline quartz is also present but in small quantities. Lithic grains were observed (Fig. 3A, D–G) and the lithoclasts of crystalline rocks (mainly metamorphic, represented by schist) are the most common. The lithoclasts of sedimentary rocks, such as siltstones, fine-grained sandstones, or cherts, have a subordinate presence. K-feldspar and plagioclase were rarely observed. The other framework elements, such as micas, glauconite, bioclasts, organic matter and heavy minerals were noted only in trace amounts. An average framework composition of the KM sandstones is $\text{Q}_{93}\text{F}_{1}\text{L}_{6}$.

The deposits have very little matrix, which consists of very fine-grained detrital grains. According to a petrographic classification, the analysed sandstones are predominantly quartz arenites (Fig. 3A–C) and sublithic arenites (Fig. 3A, D–G). There are different types of cement in the KM samples. Quartz cement, which is developed mostly as overgrowths around the quartz grains, has been noted in many samples (Fig. 3B–D).

Calcite (Fig. 3D–G) and dolomitic (Fig. 3C) cements have also been observed in several samples. The total volume of cement varies in a range of $c.8–43\%$. Overall, the studied deposits have very low visible porosity (up to 1%).

Samples of the Somovbreen Member (SM) are represented by a wide group of very fine-grained rocks, as silty sandstones (Fig. 4A–D), sandy siltstones, siltstones (Fig. 4E), and mudstones (Fig. 4F). For further investigations, only the sandstones and silty sandstones were considered. A mean grain size (M_z) of the sandstones falls in a very fine sand fraction.
Sorting is varied; from well to very poorly sorted. Among the framework components, quartz is the most common (Figs. 3A & 4A, B), with monocrystalline quartz dominating. Polycrystalline quartz grains are present in small quantities. Lithic grains of crystalline and sedimentary rocks were also counted (Figs. 3A & 4B–D). K-feldspars and plagioclases are more abundant than in the KM deposits. As with the KM, micas, bioclasts, glauconite, organic matter and heavy minerals were noted in trace amounts. An average framework composition of the SM sandstones is $Q_{92}F_{3}L_{5}$. Matrix content varies from 2% to 15%. The studied sandstones are quartz arenites (Figs. 3A & 4A), sublithwackes (Figs. 3A & 4B), sublitarenites (Figs. 3A & 4C, D) and subfeldsarenites (Fig. 3A). A high diversity of cements was observed. Carbonate cements predominate (Fig. 4C–D), with an important addition of dolomite-ankerite phases (Fig. 4B–D). Iron oxides and/or hydroxides were also noted (Fig. 4A), as well as clay minerals. Visible porosity values are very low (up to 1%).

Bulk-rock geochemistry

Oxides of major elements and geochemical classification

The distribution of the oxides of major elements differs in the KM and SM samples. The most abundant element of the KM sandstones is SiO$_2$. The silica source is mostly quartz and, subordinately, also crystalline lithic grains, mainly metamorphic, as well as quartzose cement. Na$_2$O and K$_2$O contents are very low, with the Na$_2$O related to plagioclases and the K$_2$O to K-feldspars. This is consistent with the petrography, where both the plagioclases and the K-feldspars are present in small quantities among the framework components. Some of the studied samples of the KM are highly enriched in CaO, associated with the presence of the carbonate cement in all the studied KM deposits, as confirmed by the petrographic results and a low correlation between the CaO and Al$_2$O$_3$. Other oxides such as Fe$_2$O$_3$, MgO, TiO$_2$, P$_2$O$_5$ and MnO occur as only trace amounts in the KM samples.
The distribution of major elements in the SM deposits is slightly more diversified than in the KM. As in the latter, the SiO$_2$ is the most abundant component, but generally has a slightly lower content. The Na$_2$O and K$_2$O contents are very low, but slightly higher than in the KM, consistent with a slightly greater number of plagioclase and K-feldspar grains as observed in the petrographic work. Moreover, as in the KM, the number of K-feldspars is higher than the number of plagioclase grains. In contrast to the KM deposits, the Al$_2$O$_3$ content in the SM samples is visibly higher. The CaO value confirms a significant content of the carbonate cement in these deposits, and the MgO values marking the presence of the dolomitic cement, consistent with the petrographic analysis. Distributions of the Fe$_2$O$_3$, TiO$_2$ and MnO show higher contents than in the KM deposits. The distribution of the P$_2$O$_5$ is overall similar to that in the KM deposits, excluding a few samples where the enrichment is related to horizons with phosphoritic nodules.

In a geochemical classification of sedimentary rocks in Fig. 5, the KM sandstones are classified as quartz arenites, whereas most of the SM samples plot as sublitharenites. Generally, the distribution of the oxides of the major elements reflects the mineralogical composition of the studied samples and supports the results of the petrographic analysis (Figs. 3A & 5).

Trace elements

A variable depletion in the transition trace elements (TTE), such as Sc, V, Cr, Co, Ni and Cu, relative to the upper continental crust (UCC), is observed in the KM sandstones. The Zn content in these deposits is highly variable: depleted to enriched compared to UCC. The Large Ion Lithophile Elements (LILE: Rb, Ba, Cs, Sr) show a depletion, with exception of Ba which is enriched in several samples compared with the UCC. Concentrations of the High Field Strength Elements (HFSE: Y, Zr, Nb, Hf, Ta, Th, U) are depleted relative to the UCC, excluding Y and U, which are slightly enriched in several samples.
The TTE values in the SM deposits are higher than in the KM and slightly depleted compared to the UCC. The LILE are depleted but less than the KM samples. The Cs content is visibly higher than in the KM, but depleted relative to the UCC. Concentrations of the HFSE are usually much higher than in the KM. Zr and Nb are depleted relative to the UCC. Y and U contents are usually higher than in the KM samples, and their values are enriched compared to the UCC. Ta, Th, Hf show a variable low depletion; however, several samples are enriched in Hf relative to the UCC.

Rare earth elements

The average content of total rare earth elements (REE) in the KM deposits is 55.07 ppm and depleted relative to the UCC (148.14 ppm; Rudnick & Gao, 2003). In the SM samples, the average of the total REE is 291.17 ppm, pointing to an enrichment in comparison to the UCC. The light rare earth elements (LREE; avg. 47.70) and the heavy rare earth elements (HREE; avg. 7.37) in the KM are depleted relative to the UCC (133.80 and 14.34, respectively; Rudnick & Gao, 2003). In the SM, the average of the LREE and HREE values is enriched relative to the UCC (252.24 and 38.93, respectively). The average of the LREE/HREE ratio is nearly similar in both the studied members (avg. 7.05 for the KM and 6.38 for the SM), and the values are lower than in the UCC (9.33; Rudnick & Gao, 2003). In Fig. 6, the mean chondrite-normalised REE patterns for both members are variably enriched in the LREE, and the enrichment is significantly higher for the SM deposits. The HREE patterns are flat, with a higher enrichment in the SM deposits. The Eu negative anomaly (Eu/Eu*) is variable, and for the KM and SM samples the values are 0.46–0.83 (avg. 0.66) and 0.54–0.75 (avg. 0.68), respectively.

U–Pb geochronology and Hf isotope of detrital zircon

The U–Pb analysis of a detrital zircon was undertaken on the sample SO-13.1 from the SM and the sample SO-23 from the KM. In total, 210 zircon grains were studied for the U–Pb geochronology, the results of which are presented as combined histograms and probability density plots, and kernel density estimation plots (Fig. 7).
Sample SO-13.1, SM, Sørkapp section. In total, 88 zircons were analysed, of which 26 grains were more than 10% discordant, and these were excluded from the analysis. The youngest dated grain is Devonian in age (385 Ma) and the oldest is Archaean (2815 Ma) (Fig. 7A). The Archaean ages are minor (3.2%) and focused in the range 2700–2850 Ma. The age spectra are dominated by the Palaeoproterozoic ages (51.5%) which fall in a range of 1608–1940 Ma. There is also one grain of c. 2064 Ma. The Mesoproterozoic ages are also very common (35.5%) and fall in the range 1039–1546 Ma. Neoproterozoic ages make up 3.2% of all the analysed zircons in this sample, yielding ages of c. 580 and 955 Ma. Zircon grains with Palaeozoic ages comprise 6.5% of the population and fall in the range c. 385–505 Ma. There are two gaps, at c. 600–950 Ma and 2100–2700 Ma, and one smaller one at c. 1950–2050 Ma.

Sample SO-23, KM, Sørkapplaguna section. Of the 122 zircon grains analysed in this sample, 77 have less than 10% of discordance. The distribution of the zircon age population is quite similar to the other sample, with the youngest age of 397 Ma, and the oldest age of 3188 Ma (Fig. 7B). The Archaean ages represent 8% of all grains and fall mostly in a range of c. 2500–2800 Ma, and one grain of c. 3200 Ma is present. The Palaeoproterozoic ages are the most common (62.3%) and fall in the ranges 1615–2025 Ma and 2420–2474 Ma. The Mesoproterozoic ages are mostly focused in the range 1002–1474 Ma comprising 26% of all the zircon age spectra, whereas the Neoproterozoic ages represent only 1.3% of the whole age population, represented by just one grain of c. 948 Ma. Palaeozoic ages comprise 2.6% of the zircon age spectra and are represented by grains of c. 397 Ma and 447 Ma. A lack of ages in the range c. 450–945 Ma was noted. Other gaps span the age intervals of c. 1500–1600 Ma, 2050–2400 Ma and 2800–3100 Ma.

The Lu–Hf isotopic analysis was carried out on the same zircon samples as were used for the U–Pb dating and a total number of 115 analyses were performed. The Hf isotope data
are presented in εHf vs. time diagrams (Fig. 7A, B). In general, the SM and KM samples show a similar pattern and only one difference is noted. The rare Caledonian grains show the low εHf values, from c. -3 to -25. The Neo- and Mesoproterozoic ages yield similar patterns with, in general, positive values, ranging from c. -2 to +8 for the SM and c. -13 to +8 for the KM. The pattern for the Paleoproterozoic zircons in part looks the same for both samples, and mainly positive εHf values are noted in a range from ca. -5 to +7. Additionally, in the KM sample there is also a frequent group of zircon ages of c. 1600–1900 Ma, with very low εHf values ranging from c. -5 to -27. The very few Archaean grains are present in both samples, and the general trend is that they show slightly negative values, despite of that they plot in a broad range varying from ca. 0 to -19.

Discussion and interpretation

The bulk-rock geochemical data obtained in this study allow us to constrain the composition of the potential uplands sourcing the sediments of the studied area in the Middle Triassic. The trace element data show that the geochemical signature of all the studied Bravaisberget Formation samples is compatible with a felsic source-rock composition (Fig. 8A–E; Tab. 1), i.e., similar to the late-melt fractionating crust (Hiscot, 1984; Bhatia & Crook, 1986; Condie & Woronkiewicz, 1990; Condie, 1993; Cullers, 2002; Cullers & Podkovyrov, 2002; Rudnick & Gao, 2003; Armstrong-Altrin et al., 2004; Bracialli et al., 2007). In general, the chondrite-normalised mean REE patterns of the studied samples are variably enriched in the LREE, and the HREE patterns are flattened (Fig. 6). This is expressed by the (La/Sm)_N ratio with average values of 3.14 and 3.98 for the SM and KM sandstones, and the (Gd/Yb)_N ratio with average values of 1.99 and 2.13, respectively. Moreover, the (La/Yb)_N ratio shows fractionation of the total REE with averages of 8.00 and 10.39 for the SM and KT samples. These results, together with the Eu anomalies with averages of 0.64 and 0.66, respectively, fit with the general characteristics of felsic source rocks.
On the diagram of Fig. 8F, all samples of the SM are related to post-Archaean sources. Accordingly, the KM may be linked to both post-Archaean and Archean felsic sources (Fig. 8F). Hence, the KM samples may reflect: (1) exhumation of the Archean crystalline rocks in a source area, in addition to a post-Archaean source, (2) recycling of the sedimentary units enriched in the Archean component. Along a similar line, the SM deposits probably do not have a connection with an Archean protolith and accordingly contain only the post-Archean signature. Based on the results we may assume that some tectonic movements took place in the source area which resulted in deposition of the KM. These inferred movements would have led to an exhumation of the Archean crystalline basement block or sedimentary sequences containing a redeposited Archean component. Because there is no appreciable Archean zircon population in the KM sample (Fig. 7B), we may assume that the latter alternative is more probable. This inferred tectonic activity was probably of a short-lived event type because the same Archean signature is not present anymore in the SM samples (Fig. 8F), which have been interpreted as a product of redeposition of the KM (Krajewski & Weitschat, 2015). On the other hand, if the SM is the product of the KM reworking, in the SM samples there should be at least a minimal fingerprint linked to the Archean signature. The lack of such a fingerprint argues against the idea of recycling. We therefore assume that the SM and KM shared predominantly the same source, but that the KM was additionally supplied from another source that shows the Archean affinity.

The petrographic studies show that the Bravaisberget Formation sandstones have a high mineralogical maturity. That is reflected in the petrofacies, among which the quartz arenite, sublitharenite and subfeldsarenite are the most common (Fig. 3A). The analysed sandstones are similar in their composition to other petrographically studied, westerly sourced, Triassic deposits from West Spitsbergen and Arctic Canada (Fig. 3A; Mørk, 1999; Omma, 2009). The mineralogical maturity is a pattern expected from recycling of older sedimentary rocks. The monocristalline non-undulatory quartz grains are the most common in all the studied samples and this also favours recycling, as the monocristalline quartz can be an effect of a
disintegration of grains, which primarily were polycrystalline; and the probability that the
disintegration would have increased with the length of transport from a source to a sink, the
number of sedimentary cycles involved, and is dependent on the energy of the sedimentary
environment (Zaid, 2012). On the other hand, the mineralogical maturity of daughter
sediments may also be related to an intensive weathering of the crystalline source rocks
under humid climatic conditions. The highly positive correlation of the TiO$_2$ with the Al$_2$O$_3$ in
the studied samples indicates that chemical weathering in the source area was the main
process controlling the mineralogy (Jorge et al., 2013), and such chemical weathering is an
indicator of climatic conditions. A humid climate in a source area tends to produce the quartz
arenitic composition of sandstones by a chemical destruction of unstable grains (Suttner &
Dutta, 1986; Dutta & Wheat, 1993). The very low content of feldspars, limited number of
lithoclasts, and domination of quartz in the framework composition of the Bravaisberget
Formation sandstones suggest that the source rocks could have been in an area with a
humid climate. Furthermore, the positive correlation of the Na$_2$O and K$_2$O with the Al$_2$O$_3$ has
been stated in the studied samples, suggesting an accumulation of these elements, being an
effect of feldspar weathering, with clay minerals among the finest fraction. The Al$_2$O$_3$ content
is very low, suggesting a very low presence of the feldspar alteration products even among
the finest clayey particles; thus, it is unlikely that the studied deposits were sourced directly
from crystalline felsic rocks, such as granites or gneisses. These datasets provide evidence
that the composition of the Bravaisberget Formation sandstones was controlled primarily by
the mature character of the source rocks that had likely experienced the humid climate. The
climatic interpretation in our study is consistent with the paleoclimatic literature data, which
point to hot and humid conditions in Mesozoic time in Svalbard and adjacent areas (Preto et
al., 2010).

The bulk-rock trace element geochemistry is also strongly supportive of high degrees of
sedimentary reworking. In the Th/Sc vs. Zr/Sc ratio diagram (McLennan et al., 1993) of Fig.
9A, there are two trends. The first trend shows a compositional variation that correlates with
a direct influx from primary sources. The second trend, expressed by a rise of the Zr/Sc ratio,
is related to sedimentary processes affecting the composition of the deposits. The Zr content
reflects the abundance of heavy minerals, particularly zircon, and therefore is used as an
indicator of sediment recycling (McLennan et al., 1993). The Bravaisberget Formation
sandstones do not vary much according to their source composition, but the data are
scattered parallel to the line of the second trend, pointing to the heavy mineral accumulation
by sediment recycling (Fig. 9A). This is also confirmed in the diagram of Fig. 9B, where the
SM and KT samples plot parallel to the zircon addition arrow.

Based on the paleogeographic reconstructions of the Triassic period (Doré, 1991; Smelror et
al., 2009), the present Barents Sea was flanked by the following main geological provinces
that could supply the basin with sediments:

1) Greenland and Arctic Canada (Fig. 10A) containing zircon signatures related to the
Archaean and Proterozoic igneous and metamorphic rocks of northern Laurentia (Henriksen
et al., 2009), as well as to their sedimentary cover (e.g., Higgins, 1988; Kalsbeek et al., 1993,
2000; Strachan et al., 1995; Watt et al., 2000; Leslie & Nutman, 2003; Dhuime et al., 2007;
Røhr et al., 2008, 2010; Henriksen et al., 2009; Kirkland et al., 2009; Slama et al., 2011;
Anfinson et al., 2012a, 2012b, 2016; Malone et al., 2014) (e.g., Fig. 7C.3, C.7);

2) The Caledonian nappes and intrusions (Early Palaeozoic ages) of eastern Greenland
(e.g., Tucker et al., 1993; Strachan et al., 1995; Watt et al., 2000; Kalsbeek et al., 2001,
2008; Collinson et al., 2008; Henriksen et al., 2009; Fossen, 2010; Slama et al., 2011) (Figs.
7C.8 & 10A), Svalbard (Witt-Nilsson et al., 1998; Johansson et al., 2001, 2004; Pettersson et
al., 2010; Braathen et al., 2018; Beranek et al., 2020) (Figs. 7C.6 & 10A) and Fennoscandia
(e.g., Kirkland et al., 2005, 2007, 2008; Zhang et al., 2015) (Figs. 7C.4 & 10A), as well as the
Ellesmerian Fold Belt (the Middle/Late Palaeozoic) of northern Greenland and Arctic Canada
(Embry, 1988, 1991; Anfinson et al., 2012b; Fig. 10A) with the zircon signatures that point to
the recycled basement of Laurentian and/or Baltic affinity, and/or an influx of juvenile
magmatic components related to the tectonic activity during these events;
3) Eastern and southeastern source areas relate to the Baltic zircon signature (Archaean-Proterozoic ages) (e.g., Kirkland et al., 2007, 2008; Figs. 7C.4 & 10A) that also includes the Timanian source (the Late Neoproterozoic–Early Palaeozoic ages) (e.g., Gee & Pease, 2004; Kirkland et al., 2008; Andresen et al., 2014; Zhang et al., 2015; Figs. 7C.5 & 10A), and to the Uralides (Late Palaeozoic–Early Mesozoic) (e.g., Bue & Andresen, 2014; Soloviev et al., 2015; Fleming et al., 2016; Klausen et al., 2017; Line et al., 2020; Fig. 10A). The Timanian ages are rather exotic to northeastern Laurentia (Fig. 10A); however, they have been recorded also from North Greenland (Rosa et al., 2016) and Arctic Canada (Anfinson et al., 2016).

The sandstones of the SM and KM have significant similarities in their zircon U–Pb dating patterns, even though there are some differences (Fig. 7A, B), with the most common zircon ages focused in the range c. 900–2100 Ma (Fig. 7C.1). Our study shows that the zircon patterns recorded in the samples from the Bravaisberget Formation are non-unique. A pattern similar to this is seen in Proterozoic successions from Svalbard (Pettersson et al., 2009; Beranek et al., 2020; Fig. 7C.2), East Greenland (Strachan et al., 1995; Watt et al., 2000; Leslie & Nutman, 2003; Fig. 7C.3) and northern Norway (Kirkland et al., 2007; 2008; Fig. 7C.4, C.5), and indicates a Late Palaeoproterozoic–Late Mesoproterozoic derivation from the same source terranes (Malone et al., 2014) with affinities to both Laurentia and Baltica. This similarity, noted over wide regions, became grounds for indicating that zircon patterns fail to separate Baltic and Laurentian units (Slagstad & Kirkland, 2017). To further complicate this fact, the pattern is recycled through the younger geological periods. It can be seen, among others, in the Silurian and Devonian sediments on Svalbard (Pettersson et al., 2010; Beranek et al., 2020; Fig. 7C.6), the Silurian and Devonian strata of the Franklinian Basin of Arctic Canada (Anfinson et al., 2012a, 2012b; Fig. 7C.7) and the Devonian and Carboniferous deposits of East Greenland (Slama et al., 2011; Fig. 7C.8). Furthermore, the same or very similar zircon pattern is recorded from the Mesozoic successions throughout the Arctic region: both from those interpreted as having been supplied by the western (i.e.,
Laurentia; Fig. 7C.9) and the southern (i.e., Baltica; Fig. 7C.10) source areas. The westerly-derived zircon age pattern has been reported from the Lower Triassic sediments of East Greenland (Slama et al., 2011), the Triassic–Cretaceous strata of the Sverdrup Basin (Røhr et al., 2010; Omma et al., 2011; Anfinson et al., 2016; Midwinter et al., 2016) and the Lower Cretaceous units of the Wandel Sea Basin of North Greenland (Røhr et al., 2008). The Neoarchaean and Proterozoic age range linked to the southern source area is widely recorded from the Triassic and Jurassic sediments of the Barents Sea (Fleming et al., 2016; Klausen et al., 2017, 2018; Flowerdew et al., 2019; Line et al., 2020). Deposits of the Triassic Kobbe Formation of the southwestern Barents Shelf are interpreted as time and facies equivalents of the Bravaisberget Formation of this study (Fig. 1B). Zircon age ranges recorded from these two samples are presented on Fig. 7C.1, C.10. Excluding the Timanian zircon ages, which are commonly noted in the Kobbe Formation sample, the zircon patterns of the Kobbe and Bravaisberget formations are similar. In consideration of the paleogeography of the Arctic region during the Triassic period, there was a vast ocean between Baltica and Laurentia, and the Bravaisberget and Kobbe formations were deposited on the opposite sides of this ocean. As has been claimed (Mørk, 1999; Bue & Andresen, 2014), the sediment supply from the southeastern source had not reached the present western Svalbard by the Middle Triassic. Paleocurrent observations of the successions in Sørkapp Land suggest that the sediment transport was from the SW and W. Hence, Baltica as a source for the zircon grains from the Bravaisberget Formation seems unlikely. Both the compared samples, however, have a common Laurentian–Baltican protosource, and the zircon pattern is non-indicative of the direct source for these deposits. Thus, our study shows that the repeated sedimentary reworking has revealed that the information the zircon signature holds is no longer directly relevant to the source to sink system in the Middle Triassic of Svalbard.

Lu–Hf isotope analysis was applied to extend the utility of the U–Pb zircon geochronology. The εHf for the SM sample displays mostly positive values and they are linked to the
dominant zircon age range, i.e., Meso- and Palaeoproterozoic (Fig. 7A). Contrary to this, the
KM sample contains also a group of Palaeoproterozoic zircons (c. 1700–1900 Ma) displaying
prominently low εHf values (Fig. 7B), i.e., it has a non-mantle-like zircon Hf signature,
pointing to reworking of the older crustal material during the protosource formation. The age
of the extraction of the zircons from their parent mantle-magmas is linked to Archaean
(mostly the Neo- and Mesoarchaean) time (Fig. 7B). Signs of any Archaean affinity are not
present among the Palaeoproterozoic zircons of the SM (Fig. 7A). This is consistent with the
trend from the Eu/Eu* and Gd/Yb systematics (Fig. 8F), and indicates that the KM deposits
are composed of the Archaean component that was affected by Palaeoproterozoic
orogenesis. The Lu–Hf data, together with the trace element geochemical data, may reflect
subtle provenance differences between the KM and SM deposits. In comparison with other
known Hf isotope data from the Arctic region, the Hf isotope pattern recorded in the KM is
quite similar to the pattern from the Lower Triassic sandstones of East Greenland (Slama et
al., 2011). The Hf isotope signature of the SM is similar to the Neoproterozoic Eleonore Bay
Supergroup of the East Greenland Caledonides (Slama et al. 2011). However, the
differences are not very distinctive, and both the studied Hf isotope patterns can be linked to
the basement rocks of the Canadian–Greenland Shield and East Greenland Caledonides
(Røhr et al., 2008, 2010; Slama et al., 2011). The similar Hf pattern can be tracked
throughout the Neoproterozoic to Cretaceous successions from East Greenland (Slama et
al., 2011), the Cretaceous deposits of the Wandel Sea Basin of northern Greenland (Røhr et
al., 2008), the Cretaceous sediments of the Sverdrup Basin of Arctic Canada (Røhr et al.,
2010), and the Silurian and Devonian strata of NW Svalbard (Beranek et al., 2020).
Moreover, this Laurentian-related Hf isotope pattern mimics the Hf pattern recorded from
Fennoscandian granitoids (Andersen, 2013). Hence, the Hf isotope pattern follows the trend
of the U–Pb zircon pattern, i.e., it is non-unique. Even though the U–Pb and Lu–Hf isotopes
of zircon fail to indicate the direct potential source areas, the Hf pattern together with the
Eu/Eu* vs. Gd/Yb systematics may be used for tracking the subtle changes in provenance
evolution. Whilst the Eu/Eu* vs. Gd/Yb systematics show the primary age signature, the Hf
isotope analysis indicates whether the primary crustal signature was overprinted by subsequent tectono-thermal events.

The bulk-rock techniques applied in our study, i.e., the petrography and bulk-rock geochemistry, allow us to state that the potential source rocks were the quartz-rich sedimentary rocks linked to the composition of the felsic protosource. From the zircon age pattern alone we can only infer the protosource rock terranes. Because the pattern is non-unique, i.e., widely encountered in Proterozoic successions through to younger sediments, little provenance significance can be drawn from the zircon data. The petrography and the geochemical data are indicative of a high degree of sedimentary reworking. Due to the degree of sedimentary reworking required, the original source of the zircon mineral has no bearing on the source to sink system in the Middle Triassic of Svalbard. The clastics of the Bravaisberget Formation could have been supplied from a source located somewhere in NE Greenland. This source could be molasse deposits composed of units eroded from the Caledonides. The molasse basin fill did not apparently comprise eroded material from the internal high-grade metamorphic and granite-bearing parts of the orogen, but reworked low-grade Proterozoic successions with a zircon pattern common to that recorded from the studied Middle Triassic rocks. Later sedimentary reworking of such molasse deposits occurred episodically, and is recorded in the Triassic of southern Spitsbergen (this study) and the Cretaceous of the Wandel Basin of NE Greenland (Røhr et al., 2008), among others. Differences between the geochemistry of the Somovbreen and Karentoppen members may reflect a subtle provenance evolution, where the Karentoppen Member is also composed of detrital material derived from the eroded part of an Archaean/Palaeoproterozoic basement. This model is in line with the palaeotopography of Greenland and adjacent areas in the Middle Triassic (Fig. 10B) as proposed by Andrews & Decou (2018).

Our study has shown that even with a multi-proxy approach, the provenance of compositionally mature sandstones, as those of the Bravaisberget Formation, is inherently
difficult to unravel. In such cases, where possible, any interpretations are best grounded by field constraints on the size of the sedimentary systems and direction of sediment transport.

Conclusions

1) A combination of the bulk-rock and single-mineral techniques has been utilised for provenance studies of the Bravaisberget Formation (Middle Triassic) from Sørkappøya, Svalbard. This multi-proxy approach adds value to the provenance interpretation in such aspects as the mineralogy of the potential source rocks, the protosource ages, tracking the crustal evolution of the potential source terranes, as well as tracking the recycling and climatic fingerprints.

2) The analysed sandstones have a quartz-dominated framework composition, and the identified petrofacies, which are quartz arenites, sublitharenites, subfeldsarenites and sublithwackes, point to a high mineralogical maturity. The content and distribution of the major element oxides confirm the results of the petrographic studies.

3) The bulk-rock trace element analysis, together with the REE and Eu anomalies, indicate that the geochemical signature of the Bravaisberget Formation sandstones is compatible with a felsic composition for the protosource, i.e., similar to the late-melt fractionating crust.

4) The integrated approach from our study adds the following evidence for multiple recycling of the clastic material of the Bravaisberget Formation sandstones from older sedimentary units: 1) a high mineralogical maturity highlighted by the monocrystalline quartz-dominated framework composition, 2) the mineralogical and bulk-rock geochemical features linking a potential source to quartz-rich strata, 3) a bulk-rock trace element pattern expressed by a rise of the Zr/Sc ratio values in relation to the UCC, and 4) a broad and relatively continuous range of detrital zircon ages.

5) The zircon age signatures are dominated by Palaeo- and Mesoproterozoic ages, with a significant content of Neoarchaean ages, and only a minor quantity of Neoproterozoic and Palaeozoic grains. The zircon age pattern is non-unique, i.e., it is widely present in sedimentary rocks across the Arctic region, from the Proterozoic successions through to
younger sediments. Given the degree of sedimentary reworking required, the information the
zircons hold is no longer directly relevant to the last episode of erosion, transport and
deposition in the Middle Triassic of southern Spitsbergen.

(6) The Hf isotope pattern follows the trend of the U–Pb zircon pattern, i.e., it is non-unique.
Even though little provenance significance can be drawn from the Hf isotope pattern, this
pattern coupled with the Eu/Eu* vs. Gd/Yb systematics are good indicators of the subtle
differences in provenance evolution between the SM and the KM deposits. Both the
members were in general supplied from the same post-Archaean source, but the KM also
displays an Archaean contribution.

(7) The provenance of compositionally mature sandstones of the Bravaisberget Formation in
southern Spitsbergen is inherently difficult to unravel and no more constrained than the
original field data may have suggested. The deposits could have been supplied from a
molasse basin located in NE Greenland, and filled with detrital material eroded from the
reworked Proterozoic successions of the Caledonides.

Acknowledgements. This work has been (partially) funded by the Trias North project
“Reconstructing the Triassic Northern Barents shelf; basin infill patterns controlled by gentle
sags and faults” (www.mn.uio.no/triasnorth/) under grant 234152 from the Research Council
of Norway (RCN) in partnership with Tullow Oil Norge, Lundin Norway, Equinor, Edison Norge
and RWE Dea Norge. Michael Flowerdew and Mai Britt Mørk are thanked for their
constructive reviews.

References

Akarish, A.I.M. & El-Gohary, A.M. 2008: Petrography and geochemistry of lower Paleozoic
sandstones, East Sinai, Egypt: Implications for provenance and tectonic setting. Journal of
African Earth Sciences 52, 43–54. https://doi.org/10.1016/j.jafrearsci.2008.04.002.
Andersen, T. 2013: Age, Hf isotope and trace element signatures of detrital zircons in the Mesoproterozoic Eriksfjord sandstone, southern Greenland: are detrital zircons reliable guides to sedimentary provenance and timing of deposition? *Geological Magazine* 150, 426–440. https://doi.org/10.1017/S0016756812000623.

Andersen, T., Andersson, U.B., Graham, S., Åberg, G. & Simonsen, S. L. 2009: Granitic magmatism by melting of juvenile continental crust: new constraints on the source of Palaeoproterozoic granitoids in Fennoscandia from Hf isotopes in zircon. *Journal of the Geological Society of London* 166, 233–248. https://doi.org/10.1144/0016-76492007-166.

Andersen, T., Sayeed, A., Gabrielsen, R.H. & Olaussen, S. 2011: Provenance characteristics of the Brumunddal sandstone in the Oslo Rift derived from U–Pb, Lu–Hf and trace element analyses of detrital zircons by laser ablation ICMPS. *Norwegian Journal of Geology* 91, 1–19.

Andresen, A., Agyei-Dwarko, N.Y., Kristoffersen, M. & Hanken, N.M. 2014: A Timanian foreland basin setting for the late Neoproterozoic–early Palaeozoic cover sequences (Dividal Group) of Northeastern Baltica. *Geological Society Special Publication* 390, 157–175. https://doi.org/10.1144/SP390.29.

Andrews, S.D. & Decou, A. 2018: The Triassic of Traill Ø and Geographical Society Ø, East Greenland: Implications for North Atlantic palaeogeography. *Geological Journal* 54, 2124–2144. https://doi.org/10.1002/gj.3287.

Anell, I., Braathen, A., Olaussen, S. & Osmundsen, P. 2013: Evidence of faulting contradicts a quiescent northern Barents Shelf during the Triassic. *First Break* 31, 67–76. https://doi.org/10.3997/1365-2397.2013017.

Anfinson, O.A., Leier, A.L., Embry, A.F. & Dewing, K. 2012a: Detrital zircon geochronology and provenance of the Neoproterozoic to Late Devonian Franklinian Basin, Canadian Arctic Islands. *Geological Society of America Bulletin* 124, 415–430. https://doi.org/10.1130/B30503.1.
Anfinson, O.A., Leier, A.L., Gaschnig, R., Embry, A.F. & Dewing, K. 2012b: U–Pb and Hf isotopic data from Franklinian Basin strata: insights into the nature of Crockerland and the timing of accretion, Canadian Arctic Islands. *Canadian Journal of Earth Science* 49, 1316–1328. https://doi.org/10.1139/e2012-067.

Anfinson, O.A., Embry, A.F. & Stockli, D.F. 2016: Geochronologic constraints on the Permian–Triassic Northern Source Region of the Sverdrup Basin, Canadian Arctic Islands. *Tectonophysics* 691, 206–219. https://doi.org/10.1016/j.tecto.2016.02.041.

Armstrong-Altrin, J.S., Lee, Y.I., Verma, S.P. & Ramasamy, S. 2004: Geochemistry of sandstones from the Upper Miocene Kudankulam Formation, southern India: Implications for provenance, weathering and tectonic setting. *Journal of Sedimentary Research* 7, 285–297. https://doi.org/10.1306/082803740285.

Belousova, E.A., Kostitsyn, Y.A., Griffin, W.L., Begg, G.C., O'Reilly, S.Y. & Pearson, N.J. 2010: The growth of the continental crust: Constraints from zircon Hf-isotope data. *Lithos* 119, 457–466. https://doi.org/10.1016/j.lithos.2010.07.024.

Beranek, L.P., Gee, D.G. & Fisher, Ch.M. 2020: Detrital zircon U-Pb-Hf isotope signatures of Old Red Sandstone strata constrain the Silurian to Devonian paleogeography, tectonics, and crustal evolution of the Svalbard Caledonides. *Geological Society of America Bulletin* 132, 1987–2003. https://doi.org/10.1130/B35318.1.

Bhatia, M.R. & Crook, K.A.W. 1986: Trace element characteristics of greywackes and tectonic setting discrimination of sedimentary basins. *Contributions to Mineralogy and Petrology* 92, 181–193. https://doi.org/10.1007/BF00375292.

Bouvier, A., Vervoort, J.D. & Patchett, P.J. 2008: The Lu–Hf and Sm–Nd isotopic composition of CHUR: Constraints from unequilibrated chondrites and implications for the bulk composition of terrestrial planets. *Earth and Planetary Science Letters* 273, 48–57. https://doi.org/10.1016/j.epsl.2008.06.010.
Braathen, A., Osmundsen, P.T., Maher, H. & Ganerød, M. 2018: The Keisarhjelmen detachment records Silurian–Devonian extensional collapse in Northern Svalbard. *Terra Nova* 30, 34–39. https://doi.org/10.1111/ter.12305.

Bracciali, L., Marroni, M., Pandolfi, L. & Rocchi, S. 2007: Geochemistry and petrography of Western Tethys Cretaceous sedimentary covers (Corsica and Northern Apennines): from source areas to configuration of margins. *In* Arribas, J., Critelli, S. & Johnsson, M.J. (eds.): *Sedimentary Provenance and Petrogenesis: Perspectives from Petrography and Geochemistry*, Geological Society of America Special Paper 420, pp. 73–93. https://doi.org/10.1130/2006.2420(06).

Bue, E.P. & Andresen, A. 2014: Constraining depositional models in the Barents Sea region using detrital zircon U–Pb data from Mesozoic sediments in Svalbard. *In* Scott, R.A., Smyth, H.R., Morton, A.C. & Richardson, N. (eds.): *Sediment Provenance Studies in Hydrocarbon Exploration and Production*, Geological Society of London Special Publications 386, pp. 261–279. https://doi.org/10.1144/SP386.14.

Chew, D., O’Sullivan, G., Caracciolo, L., Mark, Ch. & Tyrrell, S. 2020: Sourcing the sand: Accessory mineral fertility, analytical and other biases in detrital U-Pb provenance analysis. *Earth-Science Reviews* 202, 103093. https://doi.org/10.1016/j.earscirev.2020.103093.

Collinson, J.D., Kalsbeek, F., Jespen, H.F., Pedersen, S.A.S. & Upton, B.G.J. 2008: Paleoproterozoic and Mesoproterozoic sedimentary and volcanic successions in the northern parts of the East Greenland Caledonian orogen and its foreland. *In* Higgins, A.K., Gilotti, J.A. & Smith, M.P. (eds.): *The Greenland Caledonides: Evolution of the Northeast Margin of Laurentia*, Geological Society of America Memoir 202, pp. 73–98. https://doi.org/10.1130/2008.1202(04).

Condie, K.C. 1993: Chemical composition and evolution of the upper continental crust: contrasting results from surface samples and shales. *Chemical Geology* 104, 1–37. https://doi.org/10.1016/0009-2541(93)90140-E.
Condie, K.C. & Woronkiewicz, D.J. 1990: The Cr/Th ratio in Precambrian pelites from the Kaapvaal craton as an index of craton evolution. *Earth Planetary Science Letters* 97, 256–267. https://doi.org/10.1016/0012-821X(90)90046-Z.

Cullers, R.L. 1995: The controls on the major- and trace-element evolution of shales, siltstones and sandstones of Ordovician to tertiary age in the Wet Mountains region, Colorado, U.S.A. *Chemical Geology* 123, 107–131. https://doi.org/10.1016/0009-2541(95)00050-V.

Cullers, R.L. 2000: The geochemistry of shales, siltstones and sandstones of Pennsylvanian–Permian age, Colorado, USA: implications for provenance and metamorphic studies. *Lithos* 51, 181–203. https://doi.org/10.1016/S0024-4937(99)00063-8.

Cullers, R.L. 2002: Implications of elemental concentrations for provenance, redox conditions, and metamorphic studies of shales and limestones near Pueblo, CO, USA. *Chemical Geology* 191, 305–327. https://doi.org/10.1016/S0009-2541(02)00133-X.

Cullers, R.L. & Podkovyrov, V.N. 2002: The source and origin of terrigenous sedimentary rocks in the Mesoproterozoic Ui group, southeastern Russia. *Precambrian Research* 117, 157–183. https://doi.org/10.1016/S0301-9268(02)00079-7.

Dallmann, W.K. (ed.). 2015: *Geoscience atlas of Svalbard*. Norsk Polarinstitutt, Tromsø.

Dhuime, B., Bosch, D., Bruguier, O., Caby, R. & Pourtales, S. 2007: Age, provenance, and post-deposition metamorphic overprint of detrital zircons from the Nathorst Land group (NE Greenland) – a LA-ICP-MS and SIMS study. *Precambrian Research* 155, 24–46. https://doi.org/10.1016/j.precamres.2007.01.002.

Doré, A.G. 1991: The structural foundation and evolution of Mesozoic seaways between Europe and the Arctic. *Palaeogeography, Palaeoclimatology, Palaeoecology* 87, 441–492. https://doi.org/10.1016/0031-0182(91)90144-G.
Dott, R.H., Jr. 1964: Wacke, greywacke, and matrix – what approach to immature sandstone classification? *Journal of Sedimentary Petrology* 34, 625–632. https://doi.org/10.1306/74D71109-2B21-11D7-8648000102C1865D.

Dutta, P.K. & Wheat, R.W. 1993: Climatic and tectonic control on sandstone composition in the Permo–Triassic Sydney foreland basin, eastern Australia. In Johnsson, M.J. & Basu, A. (eds.): *Processes Controlling the Composition of Clastic Sediments: Boulder, Colorado*, Geological Society of America Special Paper 284, pp. 187–202. https://doi.org/10.1130/SPE284-p187.

Elburg, M.A., Andersen, T., Bons, P.D., Simonsen, S.L. & Weisheit, A. 2013: New constraints on Phanerozoic magmatic and hydrothermal events in the Mt Painter Province, South Australia. *Gondwana Research* 24, 700–712. https://doi.org/10.1016/j.gr.2012.12.017.

Embry, A.F. 1988: Middle–Upper Devonian Sedimentation in the Canadian Arctic Islands and the Ellesmerian Orogeny. In MacMillan, N.J., Embry, A.F. & Glass, D.J. (eds.): *Devonian of the World*, Canadian Society of Petroleum Geology 2, pp. 15–28.

Embry, A.F. 1991: Middle–Upper Devonian Clastic Wedge of the Arctic Islands. In Trettin, H.P. (ed.): *Geology of the Innuitian Orogen and Arctic Platform of Canada and Greenland*, Geological Survey of Canada, Ottawa, Canada, pp. 263–279. https://doi.org/10.4095/100309.

Faleide, J.I., Gudlaugsson, S.T. & Jacquart, G. 1984: Evolution of the western Barents Sea. *Marine and Petroleum Geology* 1, 123–150. https://doi.org/10.1016/0264-8172(84)90082-5.

Faleide, J.I., Vågnes, E. & Gudlaugsson, S.T. 1993: Late Mesozoic–Cenozoic evolution of the southwestern Barents Sea in a regional rift-shear tectonic setting. *Marine and Petroleum Geology* 10, 186–214. https://doi.org/10.1016/0264-8172(93)90104-Z.

Fleming, E.J., Flowerdew, M.J., Smyth, H.R., Scott, R.A., Morton, A.C., Omma, J.E., Frei, D. & Whitehouse, M.J. 2016: Provenance of Triassic sandstones on the southwest Barents
Shelf and the implication for sediment dispersal patterns in northwest Pangaea. *Marine and Petroleum Geology* 78, 516–535. https://doi.org/10.1016/j.marpetgeo.2016.10.005.

Flowerdew, M.J., Fleming, E.J., Morton, A.C., Frei, D., Chew, D.M. & Daly, J.S. 2019: Assessing mineral fertility and bias in sedimentary provenance studies: examples from the Barents Shelf. In Dowey, P., Osborne, M. & Volk, H. (eds.): *Application of Analytical Techniques to Petroleum Systems*, Geological Society, London, Special Publication 484. https://doi.org/10.1144/SP484.11.

Folk, R.L., Andrews, P.B. & Lewis, D.W. 1970: Detrital sedimentary rock classification and nomenclature for use in New Zealand. *New Zealand Journal of Geology and Geophysics* 13, 937–968. https://doi.org/10.1080/00288306.1970.10418211.

Fossen, H. 2010: Extensional tectonics in the North Atlantic Caledonides: a regional view. In Law, R.D., Butler, R.W.H., Holdsworth, R.E., Krabbendam, M. & Strachan, R.A. (eds.): *Continental Tectonics and Mountain Building: The Legacy of Peach and Home*, Geological Society of London Special Publications 335, pp. 767–793. https://doi.org/10.1144/SP335.31.

Garcia, D., Fonteilles, M. & Moutte, J. 1994: Sedimentary fractionations between Al, Ti, and Zr and the genesis of strongly peraluminous granites. *Journal of Geology* 102, 411–422. https://doi.org/10.1086/629683.

Garzanti, E. 2016: From static to dynamic provenance analysis – Sedimentary petrology upgraded. *Sedimentary Geology* 336, 3–13. https://doi.org/10.1016/j.sedgeo.2015.07.010.

Gee, D.G. & Pease, V. (eds.) 2004: *The Neoproterozoic Timanide orogen of Eastern Baltica*. Geological Society of London Memoir 30, 248 pp. https://doi.org/10.1144/GSL.MEM.2004.030.01.01.

Glørstad-Clark, E., Faleide, J.I., Lundschien, B.A. & Nystuen, J.P. 2010: Triassic seismic sequence stratigraphy and paleogeography of the western Barents Sea area. *Marine and Petroleum Geology* 27, 1448–1475. https://doi.org/10.1016/j.marpetgeo.2010.02.008.
Griffin, W.L., Pearson, N.J., Belousova, E.A., Jackson, S.R., van Achterberg, E., O'Reilly, S.Y. & Shee, S.R. 2000: The Hf isotope composition of cratonic mantle: LAM-MC-ICPMS analysis of zircon megacrysts in kimberlites. *Geochimica et Cosmochimica Acta* 64, 133–147. https://doi.org/10.1016/S0016-7037(99)00343-9.

Henriksen, N., Higgins, A.K., Kalsbeek, F. & Pulvertaft, T.Ch.R. 2009: *Greenland from Archaean to Quaternary, Descriptive text to the Geological map of Greenland 1995*, scale 1:2,500,000, 2nd edition. Geological Survey of Denmark and Greenland Bulletin 18, 126 pp. https://doi.org/10.34194/geusb.v18.4993.

Herron, M.M. 1988: Geochemical classification of terrigenous sands and shales from core or log data. *Journal of Sedimentary Petrology* 58, 820–829. https://doi.org/10.1306/212F8E77-2B24-11D7-8648000102C1865D.

Higgins, A.K. 1988: The Krummedal supracrustal sequence in East Greenland. In *Winchester, J.A. (ed.): Later Proterozoic stratigraphy of the northern Atlantic regions*, Blackie and Son, Glasgow, pp. 86–96. https://doi.org/10.1007/978-1-4615-7344-9_7.

Hiscott, R.N., 1984: Ophiolitic source rocks for Taconic-age flysch: trace element evidence. *Geological Society of America Bulletin* 95, 1261–1267. https://doi.org/10.1130/0016-7606(1984)95<1261:OSRFTF>2.0.CO;2.

Humphreys, B., Morton, A.C., Hallsworth, C.R., Gatliiff, R.W. & Riding, J.B. 1991: An integrated approach to provenance studies: a case example from the Upper Jurassic of the Central Graben, North Sea. In Morton, A.C., Todd, S.P. & Haughton, P.D.W. (eds.): *Developments in Sedimentary Provenance Studies*, Geological Society Special Publication 57, pp. 251–262. https://doi.org/10.1144/GSL.SP.1991.057.01.19.

Jian, X., Guan, P., Zhang, D.-W., Zhang, W., Feng, F., Liu, R.-J. & Lin, S.-D. 2013: Provenance of Tertiary sandstone in the northern Qaidam basin, northeastern Tibetan Plateau: Integration of framework petrography, heavy mineral analysis and mineral
chemistry. *Sedimentary Geology* 290, 109–125.

https://doi.org/10.1016/j.sedgeo.2013.03.010.

Johansson, Å., Maluski, H. & Gee, D.G. 2001: Ar–Ar dating of Caledonian and Grenvillian rocks from northeasternmost Svalbard; evidence of two stages of Caledonian tectono-thermal activity in the High Arctic? *Norwegian Journal of Geology* 81, 263–281.

Johansson, Å., Larionov, A.N., Gee, D.G., Ohta, Y., Tebenkov, A.M. & Sandelin, S. 2004: Grenvillian and Caledonian tectono-magmatic activity in northeasternmost Svalbard. In Gee, D.G. & Pease, V. (eds.): *The Neoproterozoic Timanide Orogen of Eastern Baltica*, Geological Society of London Memoir 30, pp. 207–232.

https://doi.org/10.1144/GSL.MEM.2004.030.01.17.

Jorge, R.C.G.S., Fernandes, P., Rodrigues, B., Pereira, Z. & Oliveira, J.T. 2013: Geochemistry and provenance of the Carboniferous Baixo A Alentejo Flysch Group, South Portuguese Zone. *Sedimentary Geology* 284/285, 133–148.

https://doi.org/10.1016/j.sedgeo.2012.12.005.

Kalsbeek, F., Nutman, A.P. & Taylor, P.N. 1993: Palaeoproterozoic basement province in the Caledonian Fold Belt of Northeast Greenland. *Precambrian Research* 63, 163–178.

https://doi.org/10.1016/0301-9268(93)90010-Y.

Kalsbeek, F., Thrane, K., Nutman, A.P. & Jepsen, H.F. 2000: Late Mesoproterozoic to early Neoproterozoic history of the East Greenland Caledonides: evidence for Grenvillian orogenesis? *Journal of the Geological Society of London* 157, 1215–1225.

https://doi.org/10.1144/jgs.157.6.1215.

Kalsbeek, F., Jepsen, H.F. & Jones, K.A. 2001: Geochemistry and petrogenesis of S-type granites in the East Greenland Caledonides. *Lithos* 57, 91–109.

https://doi.org/10.1016/S0024-4937(01)00038-X.
Kalsbeek, F., Higgins, A.K., Jepsen, H.F., Frei, R. & Nutman, A.P. 2008: Granites and granites in the East Greenland Caledonides. In Higgins, A.K., Gilotti, J.A. & Smith, M.P. (eds.): The Greenland Caledonides: Evolution of the Northeast Margin of Laurentia, Geological Society of America Memoir 202, pp. 227–249. https://doi.org/10.1130/2008.1202(09).

Karcz, P. 2010: Relationships between development of organic-rich shallow shelf facies and variation in isotopic composition of pyrite (Middle Triassic, Spitsbergen). Polish Polar Research 31, 239–254. https://doi.org/10.2478/v10183-010-0005-1.

Karcz, P. 2014: Depositional conditions and petroleum potential of the Middle Triassic Passhatten Member (Bravaisberget Formation), Spitsbergen. Polish Polar Research 35, 41–71. https://doi.org/10.2478/popore-2014-0004.

Khudoley, A.K., Sobolev, N.N., Petrov, E.O., Ershova, V.B., Makariev, A.A., Makarieva, E.V., Gaina, C. & Sobolev, P.O. 2019: A reconnaissance provenance study of Triassic–Jurassic clastic rocks of the Russian Barents Sea. GFF 141, 263–271. https://doi.org/10.1080/11035897.2019.1621372.

Kirkland, C.L., Daly, J.S. & Whitehouse, M.J. 2005. Early Silurian magmatism and the Scandian evolution of the Kalak Nappe Complex, Finnmark, Arctic Norway. Journal of the Geological Society of London 162, 985–1003. https://doi.org/10.1144/0016-764904-124.

Kirkland, C.L., Daly, J.S. & Whitehouse, M.J. 2007: Provenance and terrane evolution of the Kalak Nappe Complex: implications for Neoproterozoic paleogeography and tectonics. Journal of Geology 115, 21–41. https://doi.org/10.1086/509247.

Kirkland, C.L., Daly, J.S. & Whitehouse, M.J. 2008: Basement-cover relationships of the Kalak Nappe Complex, Arctic Norwegian Caledonides and constraints on Neoproterozoic terrane assembly in the North Atlantic region. Precambrian Research 160, 245–276. https://doi.org/10.1016/j.precamres.2007.07.006.
Kirkland, C.L., Pease, V., Whitehouse, M.J. & Ineson, J.R. 2009: Provenance record from Mesoproterozoic–Cambrian sediments of Peary Land, North Greenland: Implications for the ice-covered Greenland Shield and Laurentian palaeogeography. *Precambrian Research 170*, 43–60. https://doi.org/10.1016/j.precamres.2008.11.006.

Klausen, T.G. & Mørk, A. 2014: The upper Triassic paralic deposits of the De Geerdalen Formation on Hopen: outcrop analog to the subsurface Snadd Formation in the Barents Sea. *American Association of Petroleum Geologists Bulletin 98*, 1911–1941. https://doi.org/10.1306/02191413064.

Klausen, T.G., Ryseth, A.E., Helland-Hansen, W., Gawthorpe, R. & Laursen, I. 2015: Regional development and sequence stratigraphy of the Middle to Late Triassic Snadd Formation, Norwegian Barents Sea. *Marine and Petroleum Geology 62*, 102–122. https://doi.org/10.1016/j.marpetgeo.2015.02.004.

Klausen, T.G., Müller, R., Sláma, J. & Helland-Hansen, W. 2017: Evidence for Late Triassic provenance areas and Early Jurassic sediment supply turnover in the Barents Sea Basin of northern Pangea. *Lithosphere 9*, 14–28. https://doi.org/10.1130/L556.1.

Klausen, T.G., Müller, R., Sláma, J., Olaussen, S., Rismyhr, B. & Helland-Hansen, W., 2018: Depositional history of a condensed shallow marine reservoir succession: stratigraphy and detrital zircon geochronology of the Jurassic Stø Formation, Barents Sea. *Journal of the Geological Society of London 175*, 130–145. https://doi.org/10.1144/jgs2017-024.

Krajewski, K.P. 2013: Organic matterapatite-pyrite relationships in the Botneheia Formation (Middle Triassic) of eastern Svalbard: Relevance to the formation of petroleum source rocks in the NW Barents Sea shelf. *Marine and Petroleum Geology 45*, 69–105. https://doi.org/10.1016/j.marpetgeo.2013.04.016.

Krajewski, K.P. & Weitschat, W. 2015: Depositional history of the youngest strata of the Sassendalen Group (Bravaisberget formation, Middle Triassic–Carnian) in southern
Spitsbergen, Svalbard. *Annales Societatis Geologorum Poloniae* 85, 151–175.

https://doi.org/10.14241/asgp.2014.005.

Krajewski, K.P., Karcz, P., Woźny, E. & Mørk, A. 2007: Type section of the Bravaisberget Formation (Middle Triassic) at Bravaisberget, western Nathrost Land, Spitsbergen, Svalbard. *Polish Polar Research* 28, 79–122.

Kristoffersen, M., Andersen, T. & Andresen A. 2014: U–Pb age and Lu–Hf signatures of detrital zircon from Palaeozoic sandstones in the Oslo Rift, Norway. *Geological Magazine* 151, 816–829. https://doi.org/10.1017/S0016756813000885.

Leslie, A.G. & Nutman, A.P. 2003. Evidence for Neoproterozoic orogenesis and early high temperature Scandian deformation events in the southern East Greenland Caledonides. *Geological Magazine* 140, 309–333. https://doi.org/10.1017/S0016756803007593.

Line, L.H., Müller R., Klausen, T.G., Jahren, J. & Hellevang, H. 2020: Distinct petrographic responses to basin reorganization across the Triassic–Jurassic boundary in the southwestern Barents Sea. *Basin Research*. https://doi.org/10.1111/bre.12437.

Longiaru, S. 1987: Visual comparators for estimating the degree of sorting from plane and thin section. *Journal of Sedimentary Petrology* 57, 791–794. https://doi.org/10.1306/212F8C60-2B24-11D7-8648000102C1865D.

Malone, S.J., McClelland, W.C., von Gosen, W. & Piepjohn, K. 2014: Proterozoic evolution of the North Atlantic–Arctic Caledonides: Insights from detrital zircon analysis of metasedimentary rocks from the Pearya Terrane, Canadian High Arctic. *The Journal of Geology* 122, 623–648. https://doi.org/10.1086/677902.

McBride, E.F. 1963: A classification of common sandstones. *Journal of Sedimentary Petrology* 34, 664–669.
McLennan, S.M., Taylor, S.R. & Eriksson, K.A. 1983: Geochemistry of Archean shales from the Pilbara Supergroup, Western Australia. *Geochimica et Cosmochimica Acta* 47, 1211–1222. https://doi.org/10.1016/0016-7037(83)90063-7.

McLennan, S.M., Taylor, S.R., McCulloch, M.T. & Maynard, J.B. 1990: Geochemical and Nd–Sr isotopic composition of deep-sea turbidites – crustal evolution and plate tectonic associations. *Geochimica et Cosmochimica Acta* 54, 2015–2050. https://doi.org/10.1016/0016-7037(90)90269-Q.

McLennan, S.M., Hemming, S., McDaniel, D.K. & Hanson, G.N. 1993: Geochemical approaches to sedimentation, provenance and tectonics. In Johnsson, M.J. & Basu, A. (eds.): *Processes Controlling the Composition of Clastic Sediments*, Geological Society of America Special Paper 284, pp. 21–40. https://doi.org/10.1130/SPE284-p21.

Midwinter, D., Hadlari, T., Davis, W.J., Dewing, K. & Arnott, R.W.C. 2016: Dual provenance signatures of the Triassic northern Laurentian margin from detrital-zircon U–Pb and Hf–isotope analysis of Triassic–Jurassic strata in the Sverdrup Basin. *Lithosphere* 8, 668–683. https://doi.org/10.1130/L517.1.

Mørk, A. & Bjorøy, M. 1984: Mesozoic source rocks in Svalbard. In Spencer, A.M. (ed.): *Petroleum Geology of the North European Margin*, Graham & Trotman, London, pp. 371–382. https://doi.org/10.1007/978-94-009-5626-1_28.

Mørk, A. & Worsley, D. 2006: Triassic of Svalbard and the Barents Shelf. *Norsk Geologisk Forening, Abstracts and Proceedings* 3, pp. 23–29.

Mørk, A., Knarud, R. & Worsley, D. 1982: Depositional and diagenetic environments of the Triassic and Lower Jurassic succession of Svalbard. In Embry, A.F. & Balkwill, H.R. (eds.): *Arctic Geology and Geophysics*, Canadian Society Petroleum Geologists Memoir 8, pp. 371–398.
Mørk, A., Dallmann, W., Dypvik, H., Johannessen, E., Larssen, G., Nagy, J., Nøttvedt, A., Olaussen, S., Pčelina, T. & Worsley, D. 1999: Mesozoic Lithostratigraphy. In Dallmann, W. (ed.): A Lithostratigraphic Lexicon for Svalbard, Norwegian Polar Institute, Tromsø, pp. 127–214.

Mørk, M.B.E. 1999: Compositional variations and provenance of Triassic sandstones from the Barents Shelf. Journal of Sedimentary Research 69, 690–710. https://doi.org/10.2110/jsr.69.690.

Mørk, M.B.E. 2013: Diagenesis and quartz cement distribution of low-permeability Upper Triassic–Middle Jurassic reservoir sandstones, Longyearbyen CO2 lab well site in Svalbard, Norway. American Association of Petroleum Geologists Bulletin 97, 577–596. https://doi.org/10.1306/10031211193.

Morton, A.C., Whitham, A.G. & Fanning, C.M. 2005: Provenance of Late Cretaceous to Paleocene submarine fan sandstones in the Norwegian Sea: Integration of heavy mineral, mineral chemical and zircon age data. Sedimentary Geology 182, 3–28. https://doi.org/10.1016/j.sedgeo.2005.08.007.

Morton, A.C., Ellis, D., Fanning, M., Jolley, D. & Whitham, A. 2012: The importance of an integrated approach to provenance studies: A case study from the Paleocene of the Faroe-Shetland Basin, NE Atlantic. In: Rasbury, E.T., Hemming, S.R. & Riggs, N.R. (eds.): Mineralogical and Geochemical Approaches to Provenance, Geological Society of America Special Paper 487, pp. 1–12. https://doi.org/10.1130/2012.2487(01).

Nie, J., Horton, B.K., Saylor, J.E., Mora, A., Mange, M., Garzione, C.N., Basu, A., Moreno, Ch.J., Caballero, V. & Parra, M. 2012: Integrated provenance analysis of a convergent retroarc foreland system: U–Pb ages, heavy minerals, Nd isotopes, and sandstone compositions of the Middle Magdalena Valley basin, northern Andes, Colombia. Earth-Science Reviews 110, 111–126. https://doi.org/10.1016/j.earscirev.2011.11.002.
Omma, J.E. 2009: Provenance of Late Paleozoic and Mesozoic sediment to key Arctic basins: implications for the opening of the Arctic Ocean. PhD thesis. Department of Earth Sciences, University of Cambridge, 222 pp.

Omma, J.E, Pease, V. & Scott, R.A. 2011: U–Pb SIMS zircon geochronology of Triassic and Jurassic sandstones on northwestern Axel Heiberg Island, northern Sverdrup Basin, Arctic Canada. In Spencer, A.M., Embry, A.F., Gautier, D.L., Stoupakova, A.V. & Sørensen, K. (eds.): Arctic Petroleum Geology, Geological Society of London Memoir 35, pp. 559–566. https://doi.org/10.1144/M35.37.

Pettersson, C.H., Pease, V. & Frei, D. 2009: U–Pb zircon provenance of metasedimentary basement of the Northwestern Terrane, Svalbard: Implications for the Grenvillian–Sveconorwegian orogeny and development of Rodinia. Precambrian Research 175, 206–220. https://doi.org/10.1016/j.precamres.2009.09.010.

Pettersson, C.H., Pease, V. & Frei, D. 2010: Detrital zircon-Pb ages of Silurian–Devonian sediments from NW Svalbard: a fragment of Avalonia and Laurentia? Journal of the Geological Society of London 167, 1019–1032. https://doi.org/10.1144/0016-76492010-062.

Pettijohn, F.J., Potter, P.E. & Siever, R. 1972: Sand and Sandstones. New York, Springer-Verlag, 241 pp. https://doi.org/10.1007/978-1-4615-9974-6.

Picard, M.D. 1971: Classification of fine-grained sedimentary rocks. Journal of Sedimentary Petrology 41, 179–195. https://doi.org/10.1306/74D7221B-2B21-11D7-8648000102C1865D.

Preto, N., Kustatscher, E. & Wignall, P.B. 2010: Triassic climates – State of the art and perspectives. Palaeogeography, Palaeoclimatology, Palaeoecology 290, 1–10. https://doi.org/10.1016/j.palaeo.2010.03.015.

Riis, F., Lundschiend, B.A., Høy, T., Mørk, A. & Mørk, M.B.E. 2008: Evolution of the Triassic shelf in the northern Barents region. Polar Research 27, 318–337. https://doi.org/10.1111/j.1751-8369.2008.00086.x.
Røhr, T.S., Andersen, T. & Henning, D. 2008: Provenance of Lower Cretaceous sediments in the Wandel Sea Basin, North Greenland. *Journal of the Geological Society of London* 165, 755–767. https://doi.org/10.1144/0016-76492007-102.

Røhr, T.S., Andersen, T., Henning, D. & Embry, A.F. 2010: Detrital zircon characteristics of the Lower Cretaceous Isachsen Formation, Sverdrup Basin: source constraints from age and Hf isotope data. *Canadian Journal of Earth Sciences* 47, 255–271. https://doi.org/10.1139/E10-006.

Rosa, D.R.N., Finch, A.A., Andersen, T. & Inverno, C.M.C. 2009: U–Pb geochronology and Hf isotope ratios of magmatic zircons from the Iberian Pyrite Belt. *Mineralogy and Petrology* 95, 47–69. https://doi.org/10.1007/s00710-008-0022-5.

Rosa, D., Majka, J., Thrane, K. & Guarnieri, P. 2016: Evidence for Timanian-age basement rocks in North Greenland as documented through U–Pb zircon dating of igneous xenoliths from the Midtkap volcanic centers. *Precambrian Research* 275, 394–405. https://doi.org/10.1016/j.precamres.2016.01.005.

Rudnick, R.L. & Gao, S. 2003: Composition of the continental crust. In Holland, H.D. & Turekian, K.K. (eds.): *Treatise on Geochemistry*, Elsevier-Pergamon, Oxford-London, 3, pp. 1–64. https://doi.org/10.1016/B0-08-043751-6/03016-4.

Ryseth, A. 2014: Sedimentation at the Jurassic–Triassic boundary, south–west Barents Sea. In Martinius, A.W., Ravnås, R., Howell, J.A., Steel, R.J. & Wonham, J.P. (eds.): *From Depositional Systems to Sedimentary Successions on the Norwegian Continental Margin*, International Association of Sedimentologists Special Publication 46, pp. 187–214. https://doi.org/10.1002/9781118920435.ch9.

Slagstad, T. & Kirkland, Ch.L. 2017: The use of detrital zircon data in terrane analysis: A nonunique answer to provenance and tectonostratigraphic position in the Scandinavian Caledonides. *Lithosphere* 9, 1002–1011. https://doi.org/10.1130/L663.1.
Slama, J., Walderhaug, O., Fonneland, H., Kosler, J. & Pedersen, R.B. 2011: Provenance of Neoproterozoic to Upper Cretaceous sedimentary rocks, eastern Greenland: Implications for recognizing the sources of sediments in the Norwegian Sea. Sedimentary Geology 238, 254–267. https://doi.org/10.1016/j.sedgeo.2011.04.018.

Sláma, J. & Košler, J. 2012: Effects of sampling and mineral separation on accuracy of detrital zircon studies. Geochemistry, Geophysics, Geosystems 13, Q05007. https://doi.org/10.1029/2012GC004106.

Smelror, M., Petrov., O., Larssen, G.B., & Werner, S., (eds). 2009: Geological history of the Barents Sea – Atlas. Norwegian Geological Survey, Trondheim, 135 pp.

Söderlund, U., Patchett, J.P., Vervoort, J.D. & Isachsen, C.E. 2004: The \(^{176}\)Lu decay constant determined by Lu–Hf and U–Pb isotope systematics of Precambrian mafic intrusions. Earth and Planetary Science Letters 219, 311–324. https://doi.org/10.1016/S0012-821X(04)00012-3.

Soloviev, A.W., Zaionchek, A.V., Suprunenko, O.I., Brekke, H., Faleide, J.I., Rozhkova, D.W., Khisamutdinova, A.I., Stolbov, N.M. & Hourigan, J.K. 2015: Evolution of the provenances of Triassic rocks in Franz Josef Land: U/Pb LA-ICP-MS dating of the detrital zircon from well Severnaya. Lithology and Mineral Resources 50, 102–116. https://doi.org/10.1134/S0024490215020054.

Strachan, R.A., Nutman, A.P. & Friderichsen, J.D. 1995: SHRIMP U–Pb geochronology and metamorphic history of the Smallefjord sequence, NE Greenland Caledonides. Journal of the Geological Society of London 152, 779–784. https://doi.org/10.1144/jgs.152.5.0779.

Suttner, L.J. & Dutta, P.K. 1986: Alluvial sandstone composition and paleoclimate. I. Framework mineralogy. Journal of Sedimentary Petrology 56, 329–345. https://doi.org/10.1306/212F8909-2B24-11D7-8648000102C1865D.
Taylor, S.R. & McLennan, S.M. 1985: *The continental crust: its composition and evolution.* Blackwell Scientific Publications, Oxford, 312 pp.

Tucker, R.D., Dallmeyer, R.D. & Strachan, R.A. 1993: Age and tectonothermal record of Laurentian basement, Caledonides of NE Greenland. *Journal of the Geological Society of London* 150, 371–379. https://doi.org/10.1144/gsjgs.150.2.0371.

von Eynatten, H. & Dunkl, I. 2012: Assessing the sediment factory: The role of single grain analysis. *Earth-Science Reviews* 115, 97–120. https://doi.org/10.1016/j.earscirev.2012.08.001.

von Eynatten, H. & Gaupp, R. 1999: Provenance of Cretaceous synorogenic sandstones in the Eastern Alps: constraints from framework petrography, heavy mineral analysis and mineral chemistry. *Sedimentary Geology* 124, 81–111. https://doi.org/10.1016/S0037-0738(98)00122-5.

Watt, G.R., Kinny, P.D. & Friderichsen, J.D. 2000: U–Pb geochronology of Neoproterozoic and Caledonian tectonothermal events in the East Greenland Caledonides. *Journal of the Geological Society of London* 157, 1031–1048. https://doi.org/10.1144/jgs.157.5.1031.

Williams, H., Turner, F.J. & Gilbert C.M. 1982: *Petrography, an introduction to the study of rocks in thin sections,* 2nd ed. Freeman, W.H. San Francisco, CA, 626 pp.

Witt-Nilsson, P., Gee, D.G. & Hellman, F. 1998: Tectonostratigraphy of the Caledonian Atomfjella Antiform of northern Ny Friesland, Svalbard. *Norwegian Journal of Geology* 78, 67–80.

Worsley, D. 2008: The post-Caledonian development of Svalbard and the western Barents Sea. *Polar Research* 27, 298–317. https://doi.org/10.1111/j.1751-8369.2008.00085.x.

Worsley, D. & Mørk, A. 1978: *The Triassic stratigraphy of southern Spitsbergen.* Norsk Polarinstittutt Årbok, pp. 43–60.
Zaid, S.M. 2012: Provenance, diagenesis, tectonic setting and geochemistry of Rudies sandstone (Lower Miocene), Warda Field, Gulf of Suez, Egypt. *Journal of African Earth Sciences* 66/67, 56–71. https://doi.org/10.1016/j.jafrearsci.2012.03.008.

Zhang, W., Roberts, D. & Pease, V. 2015: Provenance characteristics and regional implications of Neoproterozoic, Timanian-margin successions and a basal Caledonian nappe in northern Norway. *Precambrian Research* 268, 153–167. https://doi.org/10.1016/j.precamres.2015.07.006.
Table 1. Range of elemental ratios of the Bravaisberget Formation (Somovbreen and Karentoppen members) compared to the ratios in similar fractions sourced from felsic and mafic rocks, and the upper continental crust (Condie & Woronkiewicz, 1990; Cullers, 2002; Armstrong-Altrin et al., 2004; Rudnick & Gao, 2003).

Elemental ratio	Range of sediment from Somovbreen Mb. (n=20)*	Range of sediment from Karentoppen Mb. (n=17)*	Range of sediment from felsic sources**	Range of sediment from mafic sources**	Upper continental crust***
La/Sc	2.81-6.50	7.15-20.20	2.50-16.30	0.43-0.86	2.21
Th/Sc	0.66-1.90	0.80-2.10	0.84-20.50	0.05-0.22	0.75
La/Co	3.72-83.79	4.56-44.50	1.80-13.80	0.14-0.38	1.79
Th/Co	1.00-2.23	0.25-3.00	0.67-19.40	0.04-1.40	0.61
Cr/Th	6.65-10.53	0.00-14.66	4.00-15.00	25.00-500.00	8.76
Th/Cr	0.10-0.15	0.07-0.15	0.13-2.70	0.018-0.046	0.11
Eu/Eu*	0.54-0.75	0.46-0.83	0.40-0.94	0.71-0.95	0.69
(La/Lu)N	6.02-20.96	9.00-18.96	3.00-27.00	1.10-7.00	10.39

*This study; **Condie & Woronkiewicz (1990); Cullers (2002); Armstrong-Altrin et al. (2004); ***Rudnick & Gao (2003).
Figure 1. (A) Simplified geological map of Svalbard showing the distribution of lithostratigraphic groups and simplified structural elements (based on data from the Norwegian Polar Institute; Dallmann, 2015). (B) Lithostratigraphy of the Triassic of Svalbard and the Barents Sea region (modified from Mørk et al., 1999).

Figure 2. Detailed map of Sørkappøya and the most important parts of the studied sections (the red lines) of the Bravaisberget Formation (whole logs are presented in Electronic Supplement 1A). Samples for zircon dating and links to the thin-section images of Figs. 3 & 4 are plotted on the logs.

Figure 3. (A) Petrographic classification of sandstones of the Karentoppen and Somovbreen members in a QFL triangular diagram (the diagram is compiled and modified after: McBride, 1963; Dott Jr, 1964; Folk et al., 1970; Pettijohn et al., 1972; Williams et al., 1982). Q – quartz, F – feldspars, L – lithoclasts. The literature data for the Triassic sandstones of West Spitsbergen (Mørk, 1999) and the Sverdrup Basin (Omma, 2009) are plotted for comparison. (B–G) The petrofacies distinguished in the Karentoppen Member sandstones: (B) Poorly sorted quartzose cemented quartz arenite (Q – quartz grains, q – quartz overgrowths, Lt – lithoclasts); sample 2001-SO-23; (C) Moderately well sorted quartzose cemented quartz arenite (Q – quartz grains, q – quartz overgrowths); dolomitic cement (d, red arrows) has also been noted; sample 2014-SO-7.1; (D) Well sorted quartzose cemented sublitharenite (Lt – lithoclasts); calcite cement (c) has been sparsely noted; sample 2001-SO-14A; (E–G) Poorly sorted carbonate cemented sublitharenite (Q – quartz grains, Lt – lithoclasts, c – calcite cement); sample 2001-SO-8B (E) and 2001-SO-8A (F, G). Cross-polarised light: B–E, G; plane-polarised light: F.
Figure 4. Petrofacies of the Somovbreen Member deposits: (A) Very fine-grained, moderately well sorted, Fe-carbonate cemented quartz arenite (Q – quartz grains, fe – iron oxides and/or hydroxides); sample 2014-SO-13.2; (B) Poorly sorted carbonate cemented sublithic wacke (Q – quartz grains, Lt – lithoclasts, d – dolomitic cement); sample 2001-SO-26; (C, D) Very poorly sorted carbonate cemented sublitharenite (Lt – lithoclast, c – calcitic cement, d – dolomitic cement, om – organic matter); the lithic fragment is a chert; sample 2001-SO-24; (E, F) Very fine grained petrofacies: (E) siltstone; sample 2014-SO-11.2; (F) mudstone; sample 2001-SO-10. Cross-polarised light: A, B, D–F; plane-polarised light: C.

Figure 5. Geochemical classification of the deposits of the Bravaisberget Formation from Sørkappøya (diagram after Herron, 1988).

Figure 6. Patterns of the mean chondrite-normalised rare earth elements of the Bravaisberget Formation from Sørkappøya (the chondrite values are from e, 1985). The UCC and PAAS values are plotted for comparison (UCC values are from Rudnick & Gao, 2003; PAAS values are from Taylor & McLennan, 1985). UCC – upper continental crust, PAAS – post-Archaean Australian shale.

Figure 7. (A, B) Combined probability density plots and histograms of detrital zircon U–Pb ages, and plots of U–Pb ages (time) vs. initial εHf of the Middle Triassic samples from Sørkappøya: (A) Somovbreen Member; (B) Karentoppen Member. The histograms and probability density plots show only ages that are less than 10% discordant; n = 61(88) presents the number of grains of less than 10% discordance relative to the total number of analysed grains. Shaded areas represent the most important zircon age ranges. CHUR – chondritic uniform reservoir, DM – depleted mantle. The reference line is the εHf growth curve for rocks with an upper crustal 176Lu/177Hf of 0.015, anchored at 2.5 Ga. Values below the line indicate the Archaean protolith;
(C) KDE plots (C1-3 & C6-10) and PDP (C4 & 5) for this study and for literature data discussed in the text. PDP of C4 & C5 taken from Fleming et al. (2016).

Figure 8. Selected trace elements and their ratios applied for the characteristic potential source rocks: (A) Th/Co vs. La/Sc diagram (Cullers, 2002) showing a felsic composition of the Bravaisberget Formation source rocks; (B) Cr/V vs. Y/Ni diagram (Hiscott, 1984) showing the samples plotted between the granitic and UCC compositions; (C) La–Th–Sc ternary diagram (Bhatia & Crook, 1986; Cullers, 2002) displaying the felsic composition of potential source rocks. Average compositions of basalt, andesite and granite are plotted for comparison; (D) The potential source rocks composition based on the V–Ni–Th*10 ratio (Bracciali et al., 2007); (E) Th/Sc vs. Eu/Eu* diagram (Cullers & Podkovyrov, 2002) linking potential sources to felsic rocks, mostly ranging between the granodiorite-tonalitic and granitic compositions; (F) Eu/Eu* vs. (Gd/Yb)N diagram (McLennan et al., 1990) showing the Archaean and post-Archaean rocks as sources for the siliciclastic material of the Bravaisberget Formation deposits. More explanation is given in the text.

Figure 9. (A) Th/Sc vs. Zr/Sc diagram (McLennan et al., 1993) showing datapoints for the studied deposits. All samples are distributed parallel to the same line of the sediment recycling trend; (B) The figure shows the diagram of 15*Al2O3–Zr–300*TiO2 ratio (Garcia et al., 1994) displaying accumulation of the studied samples along the zircon addition arrow, pointing to sediment recycling.

Figure 10. (A) General geography of the Arctic region with potential source areas and other places discussed or mentioned in the text (modified after Rosa et al., 2016). (B) Paleogeographic reconstruction of the North Atlantic region in the Middle Triassic (Andrews &
Decou, 2018), with paleotopography of the potential source area for the studied sandstones discussed in the text.
