Case Report

Delayed Pneumomediastinum and Subcutaneous Emphysema in Covid-19 Patients: Two Case Reports

Mahnaz Moradi1, Leili Yekefallah1,2, Mahyar Sedighi2, Fateme Ghapanvari1, *Peyman Namdar2,3

1. Department of Critical Care Nursing, School of Nursing and Midwifery, Qazvin University of Medical Sciences, Qazvin, Iran.
2. Metabolic Diseases Research Center, Research Institute for Prevention of Non-Communicable Diseases, Qazvin University of Medical Sciences, Qazvin, Iran.
3. Department of Emergency Medicine, School of Medicine, Qazvin University of Medical Sciences, Qazvin, Iran.

Coronavirus Disease 2019 (COVID-19) is a severe respiratory disease initiated on December 2019. Genome sequence analysis shows that the pathogen is a complex beta-coronavirus RNA, known as Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2). Spontaneous Pneumomediastinum and pneumothorax are rare clinical and radiological conditions associated with COVID-19. This study is case report of pneumomediastinum and subcutaneous emphysema in two patients with COVID-19, while investigating the clinical and paraclinical symptoms and the treatment process of two cases. Finding factors related to the severity of COVID-19 for improving the final outcome in patients is very important.

ABSTRACT

Coronavirus Disease 2019 (COVID-19) is a severe respiratory disease initiated on December 2019. Genome sequence analysis shows that the pathogen is a complex beta-coronavirus RNA, known as Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2). Spontaneous Pneumomediastinum and pneumothorax are rare clinical and radiological conditions associated with COVID-19. This study is case report of pneumomediastinum and subcutaneous emphysema in two patients with COVID-19, while investigating the clinical and paraclinical symptoms and the treatment process of two cases. Finding factors related to the severity of COVID-19 for improving the final outcome in patients is very important.

Extended Abstract

1. Introduction

In the spring of 2020, the coronavirus disease 2019 (COVID-19) outbreak spread to more than 200 countries in the world. This disease is now a serious threat to global health and continues to challenge health-care systems around the world [1]. The epidemiological and clinical features of this disease have been under investigation since the initial identification of the virus [6].

Spontaneous pneumomediastinum is a rare clinical disease defined as the presence of free air in mediastinal structures without apparent cause such as trauma [11]. This clinical condition may be due to leakage of air from ruptured wall of marginal pulmonary alveoli, secondary to the high intra-alveolar pressure caused by factors such as artificial ventilation or a severe cough. [12]. In the present study, we report two cases of pneumomediastinum and delayed subcutaneous emphysema in COVID-19 patients.

* Corresponding Author:
Peyman Namdar
Address: Department of Emergency Medicine, Qazvin University of Medical Science, Qazvin, Iran.
Tel: +98 (28) 33336001
E-Mail: drpeymannamdar@gmail.com
2. Case Report

The patient 1 was a 33-year-old man with no history of underlying disease admitted to the emergency department of Bu Ali Sina Hospital following the symptoms of shortness of breath, dry cough and tachypnea (26 times per min). After pulse oximetry reporting 80% oxygen saturation, oxygen was given to him with a bag-valve-mask and then a Bilevel Positive Airway Pressure (BIPAP) was installed in two levels of 5 and 10 cm H2O. PCR test was positive, and the CT scan showed severe bilateral ground-glass opacities in both lungs. Following the progression of hypoxia and decreased oxygen saturation, he was transferred to the ICU one day after admission. On the second day of admission, following the onset of Paroxysmal Supraventricular Tachycardia (PSVT) and having severe hypoxia and a decrease in oxygen saturation to 60%, the patient was intubated and connected to the ventilator.

Despite receiving high doses of propofol, midazolam, fentanyl, and atracurium, the patient could not tolerate the ventilator, which resulted in re-extubation and re-intubation by the anesthesia resident. During the hospitalization period, the patient was treated with hydroxychloroquine, Kaletra and then atazanavir for 5 days and 7 doses of 44 mcg interferon beta. Following improvement of respiratory function, the patient’s endotracheal tube was removed on the 14th day of hospitalization. Symptoms of subcutaneous emphysema appeared two days after removal. Chest CT scan reported severe pneumomediastinum and extensive subcutaneous emphysema at the base of the neck and subcutaneous area of the chest. The patient underwent conservative treatment for emphysema but died after 22 days.

The second patient was a 40-year-old man with no history of underlying disease admitted to the emergency department following fever and chills, tachypnea and dry cough that had started 6 days ago, and then transferred to the ICU next day. The PCR test was positive and the CT scan findings were in favor of Covid-19, bilateral ground-glass opacity was seen in more than 50% of the lungs. The patient initially received oxygen with a bag-valve-mask, but two days after admission to the ICU for cardiac monitoring, multiple premature ventricular contractions appeared. According to cardiac counseling, premature ventricular contractions were justified, and the patient was intubated with exacerbation of respiratory symptoms and a decrease in oxygen saturation to 75%. He had no previous history of diabetes but developed it after having Covid-19.

Hence, he was prescribed NPH and regular insulin injection. During hospitalization, he was treated for 3 days with Keltra twice daily and then intravenous immunoglobulin for 3 days at a dose of 30 g. Then, they received 7 doses of 44 mcg interferon beta every other day. The patient's endotracheal tube was removed after 9 days when respiratory function was improved. One day after removal, signs of subcutaneous emphysema appeared with a size of 5 by 5 cm above the sternum which cured without surgical and invasive treatment using maintenance treatment within 3 days. Finally, after 25 days, he was discharged in a good general condition.

3. Discussion

To date, published studies on Covid-19 have rarely discussed the presence of delayed pneumomediastinum and subcutaneous emphysema following mechanical ventilation. In both study cases, CT scan and clinical findings showed these complications [13]. According to studies, pneumomediastinum and pneumothorax in patients with Covid-19 are complications of endotracheal intubation or mechanical ventilation in patients with chronic obstructive pulmonary disease who required aggressive ventilation to correct hypoxemia [24]. Absence of smoking history is also a common feature in most of the described cases of pneumomediastinum and pneumothorax following Covid-19 [21]. These findings are consistent with the present study, because neither of the two patients had a history of smoking or chronic obstructive pulmonary disease. Probably the main cause of pneumomediastinum and subsequent subcutaneous emphysema was Covid-19 and its destructive effect on the alveoli. Patients diagnosed with Covid 19, who are being treated by non-invasive and invasive forms of ventilation, require close monitoring for complications such as pneumomediastinum and subcutaneous emphysema.

Ethical Considerations

Compliance with ethical guidelines

All ethical principles are considered in this article. This study was approved by the Ethics Committee of Qazvin University of Medical Sciences (Code: IR.QUMS.REC.1399.192).

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or non-profit sectors.

Authors’ contributions

Writing – original draft and writing – review & editing: Mahnaz Moradi, Fateme Ghapanvari, Mahyar Sedighi, and...
Peyman Namdar; Data collection: Mahnaz Moradi; Supervision: Leili Yekefallah, Mahnaz Moradi.

Conflicts of interest

The authors declared no conflict of interest.
ظهور پنومومدیاستن و آمفیزم زیرجلدی تأخیری در کووید-۱۹: گزارش دو مورد

مهنات مرادی، لیلی یکفلای، مهیار صدیقی، قاطعه قیامی‌روی، *پیمان نامدار*

۱. گروی پرستاری مرکز تحقیقات بیماری‌های تنفسی، ماهک، ورودی و داخلی مشاهده‌های مربوط به کروناویروس شناسایی شده، طنز، ایران

۲. مرکز تحقیقات بیماری‌های تنفسی، ماهک، ورودی و داخلی مشاهده‌های مربوط به کروناویروس شناسایی شده، طنز، ایران

۳. گروه پرستاری، مشاهده‌های مربوط به کروناویروس شناسایی شده، طنز، ایران

مقدمه

در سال ۲۰۲۰، بیماری همه‌گیر کروناویروس ۲۰۲۰ در بیش از ۲۰۰ کشور جهان گسترش یافته و این بیماری که تاکنون در جهان بهبودی ندارد، به همراه نیاز به اقدامات تولید بهداشتی می‌باشد. سیستم های مراقبت بهداشتی و سلامتی حضور باید به درجه‌بندی‌های بین‌المللی این بیماری اساساً آنتی‌بیوتیک‌ها و دی‌گر درمان‌های بیماران نشان دهد. این بیماری از سوی انسان‌های کرونایی فردی به فردی و به‌طور محیطی (به‌طور زنده، کبد، دانه و غیره) منتقل می‌گردد. علائم اصلی کروناویروس شامل تب، سرفه، سردرد، ضعف، نارسایی تنفسی، اسهال، بافت در ناحیه بدنی و پنومومدیاستن (PMD) می‌باشد.

کلیدواژه‌های: بیماری کروناویروس، PMD، آمفیزم زیرجلدی، پنوموتوراکس

مطالعه حاضر به بررسی علائم کلینیکی و پاراکلینیکی و روند درمان دو مورد از بیماران تحت تأثیر کرونا با درگیری PMD پرداخته است. نتایج این مطالعه نشان داده که عوامل مرتبط با شدت بیماری در بهبود پیامدهای PMD و آمفیزم زیرجلدی عارضه تأخیری کرونا به‌طور مهیانه و نهایی در بیماران بسیار مهم است.

کلیدواژه‌های: بیماری کروناویروس، PMD، آمفیزم زیرجلدی، پنوموتوراکس
بیمار آقای محمد، به ترکیب ماسک دارای بگ ذخیره و متناوباً دستگاه ونتیلاتور درصد، کرونای مرکز آموزشی درمانی بوعلی سینا پذیرش شد. پس از یک بار در دقیقه) در اورژانس محل کار از ماسک استفاده نمی کردند. بیمار به دنبال علائم تنگی به صورت تفریحی داشته است. شغل وی طلا فروش بوده و در حتی برای آرام کردن وی، از هالوپریدول و بای پریدین و آمپول شد. اینتوباسیون مجدد در شب دوم و چهارم بستری رخ داد.

اکستیوب شدن و اینتوباسیون مجدد وی توسط رزیدنت بیهوشی دستگاه ونتیلاتور را تحمل نمی کرد و همین امر منجر به دو بار بالا آمدن داروی پروپوفل و میدازولام و فنتانیل و آتراکوریوم، بیمار و به دستگاه ونتیلاتور متصل شد. علی‌رغم دریافت سدیشن با دُوز

در زمینه تاکی پنه و هیپوکسی شدید درمان های کرونا منتقل شد. در روز دوم بستری به دنبال ظهور آریتمی و افت ساچوریشن بیمار، یک روز بعد از پذیرش به آی سی یو دگزامتازون و آلپرازولام شروع شد. به دنبال پیشرفت هیپوکسی کلروکین، هپارین، پنتوپرازول، ناپروکسن، آتورواستاتین، بیمار باشد. درمان بیمار با داروهای آزیترومایسین، هیدروکس

افزایش سایز قلب دیده شد که می توانست در زمینه دم ناکافی هر دو ریه به نفع کرونا ویروس بود. در آزمایش گازهای خون سی تی اسکن مبنی بر وجود گراند گلاس دوطرفه شد.

بیمار آقای محمد، به رعایت بهره‌برداری در مورد پنتوپرازول و کراتنین نیز با

در نظر گرفته شد.

به طور عمده با سندرم حاد تنفسی

بیماری را جنس مذکر، سن بالا و وجود بیماری های خاص چاپی تروپوکرین و گراییب با بازوی

مصرف سیگار نداشت و مصرف قلیان هفته ای یک بار به مدت

نداشت و متعاقباً به دنبال افت ساچوریشن به

به دستگاه ونتیلاتور را تحمل نمی کرد و همین امر منجر به دو بار بالا آمدن داروی پروپوفل و میدازولام و فنتانیل و آتراکوریوم، بیمار و به دستگاه ونتیلاتور متصل شد. علی‌رغم دریافت سدیشن با دُوز

در زمینه تاکی پنه و هیپوکسی شدید درمان های کرونا منتقل شد. در روز دوم بستری به دنبال ظهور آریتمی و افت ساچوریشن بیمار، یک روز بعد از پذیرش به آی سی یو دگزامتازون و آلپرازولام شروع شد. به دنبال پیشرفت هیپوکسی کلروکین، هپارین، پنتوپرازول، ناپروکسن، آتورواستاتین، بیمار باشد. درمان بیمار با داروهای آزیترومایسین، هیدروکس

افزایش سایز قلب دیده شد که می توانست در زمینه دم ناکافی هر دو ریه به نفع کرونا ویروس بود. در آزمایش گازهای خون سی تی اسکن مبنی بر وجود گراند گلاس دوطرفه شد.

بیمار آقای محمد، به رعایت بهره‌برداری در مورد پنتوپرازول و کراتنین نیز با

در نظر گرفته شد.

به طور عمده با سندرم حاد تنفسی

بیماری را جنس مذکر، سن بالا و وجود بیماری های خاص چاپی تروپوکرین و گراییب با بازوی

مصرف سیگار نداشت و مصرف قلیان هفته ای یک بار به مدت

نداشت و متعاقباً به دنبال افت ساچوریشن به

به دستگاه ونتیلاتور را تحمل نمی کرد و همین امر منجر به دو بار بالا آمدن داروی پروپوفل و میدازولام و فنتانیل و آتراکوریوم، بیمار و به دستگاه ونتیлат
درباره بیمار

ساله بدون هیچ سابقه‌ای از بیماری زمینه‌ای و با علائم تب و لرز، تاکی پنه، سرفه‌های خشک که از شش روز قبل شروع بیماری پدید آمده بود و حدود ۴۰ سانتی‌متر و وزن ۱۷۵ کیلوگرم بر متر مربع بود. تست PCR و شاخص توده بدنی مثبت اعلام شد و یافته‌های سی‌تی‌اسکن نیز به نفع بیماری COVID-19 بود. گراندگلاس دوطرفه در بیش از ۱۹ کیلوگرم دو طرفه در بیمار پدید شد (شکل شماره ۱). مختصات بدنی و نسبت توده بدنی بیمار مشابه با کرونا ویروس بود.

بیمار در ابتدا اکسیژن به وسیله ماسک دارای بگ ذخیره دریافت می‌کرده و در زمان افت واقعی به وجود این تغییرات اندک ای و افزایش باردهی حرارتی که به دنبال ابتلا به کووید-۱۹ بود، رژیم غذایی از راه دهان را تحمل می‌کرد. دو روز بعد از خارج کردن لوله تراشه علائم آمفیز زیرجلدی بیشتر در سمت راست بدن به صورت تورم پوست ناحیه‌ای از زیر کلاویکول تا نزدیکی نوک پستان راست بیان شد. در زمینه‌های انتوباسیون، طبق مشوره، سه‌سیستمی از طور درمانی جایگزین شد و تحت حرارت بیمار می‌گردد. شکل شماره ۲ بیمار، جراح، اسنپ ۲ و از طریق اینترفرون بتا میکروگرم ۴۴ آمپول میلی‌گرم روزانه و در ادامه آمپول ۸ روز اول آمپول دگزامتازون ۵ میلی‌گرم دو بار در روز برای وی تجویز شد. در زمینه تجویز اکسیژن با کانولای بینی و در زمینه‌های انتوباسیون و تجویز داروهای آنتی‌بیوتیک، جراح و گاه گرفتاری، بیمار کاهش تعداد تنفسی را تحمل کرد و روز از ۲۰ تا ۱۰ فشار دیویژنی را می‌پذیرفت. از طرفی سردرد، ناراحتی، ناراحتی، افزایش علائم و آمریکا نماینده فرآیند درمان بیمار بود. در زمینه‌های انتوباسیون و تجویز داروهای آنتی‌بیوتیک، جراح و گاه گرفتاری، بیمار کاهش تعداد تنفسی را تحمل کرد و روز از ۲۰ تا ۱۰ فشار دیویژنی را می‌پذیرفت. از طرفی سردرد، ناراحتی، ناراحتی، افزایش علائم و آمریکا نماینده فرآیند درمان بیمار بود.

پنومونی ناشی از ونتیلاتور بیماردچاره مثبت (آسینتو باکتر) شد و تحت درمان مشابه (آنتی گراندگلاس دوطرفه) با داروهای آنتی‌بیوتیک، جراح و گاه گرفتاری، بیمار کاهش تعداد تنفسی را تحمل کرد و روز از ۲۰ تا ۱۰ فشار دیویژنی را می‌پذیرفت. از طرفی سردرد، ناراحتی، ناراحتی، افزایش علائم و آمریکا نماینده فرآیند درمان بیمار بود. در زمینه‌های انتوباسیون و تجویز داروهای آنتی‌بیوتیک، جراح و گاه گرفتاری، بیمار کاهش تعداد تنفسی را تحمل کرد و روز از ۲۰ تا ۱۰ فشار دیویژنی را می‌پذیرفت. از طرفی سردرد، ناراحتی، ناراحتی، افزایش علائم و آمریکا نماینده فرآیند درمان بیمار بود.

18. Premature Ventricular Contraction (PVC)

17. Fraction of Inspired Oxygen (FIO2)
جلسه 14 آزمایشات دو بیمار

آزمایشات	واحد	روز اول	اواست بستری	روز چهارم	ترخیص
گلبول سفید	واحد در لیتر	1000/3	10/5	12/9	9/6
گلبول قرمز	واحد در لیتر	4/86	4/22	4/23	5/37
هماکردن	گرم/ دسی لیتر	15/9	16/7	13/7	16/7
هماتوکریت	درصد	45/8	48/7	40/1	47/6
پلاکت	واحد در لیتر	1000	156	167	139
لنفوسیت	درصد	6	9	6	4
نیتروژن اوره خون	میلی گرم / دسی لیتر	35	38	21	30
نمک	میلی اکی والان / لیتر	146	130	142	135
کلسیم	میلی گرم / دسی لیتر	8/9	7/6	8/8	8/6
فسفرات	میلی گرم / دسی لیتر	3/2	3/8	2/1	2/5
منیزیم	میلی گرم / دسی لیتر	2/5	2/7	2/8	2/4
زمان پروتربین	ثانیه	13/1	14/5	12/9	14/2

نتیجه آزمایشات دو بیمار.

شکل 1. دو بیمار کرونا مبتلا که در بیمارستان تختی افتراقی از ناحیه ایفی، شهرداری ارومیه، در روز ۱۹ می ۹۹ عارضه ناراحتی بیماری را نشان دادند. به‌منظور کنترل عارضه بهبود آزمایشات دو بیمار صورت می‌گرفت.

شکل 2. دو بیمار کرونا مبتلا که در بیمارستان تختی افتراقی از ناحیه ایفی، شهرداری ارومیه، در روز ۱۹ می ۹۹ عارضه ناراحتی بیماری را نشان دادند. به‌منظور کنترل عارضه بهبود آزمایشات دو بیمار صورت می‌گرفت.
بیمار ۱
بیمار ۲

آزمون	پایه‌نگار	زمان انتخاب	پایه‌نگار	زمان انتخاب	پایه‌نگار	زمان انتخاب
Ptot	۷۶۳۲	۶۶۷۲	۷۶۲۸	۶۶۷۸	۷۶۲۸	۶۶۷۸
CO₂	۷۶۲۶	۶۶۲۶	۷۶۲۶	۶۶۲۶	۷۶۲۶	۶۶۲۶
O₂	۷۶۲۶	۶۶۲۶	۷۶۲۶	۶۶۲۶	۷۶۲۶	۶۶۲۶
HCO₃	۷۶۲۶	۶۶۲۶	۷۶۲۶	۶۶۲۶	۷۶۲۶	۶۶۲۶
BE	۷۶۲۶	۶۶۲۶	۷۶۲۶	۶۶۲۶	۷۶۲۶	۶۶۲۶

۱. Potential Hydrogen (PH)
۲. pressure of carbon dioxide (PaCO₂)
۳. Partial Pressure of Oxygen (PaO₂)
۴. Serum Bicarbonate (HCO₃)
۵. Saturation of Peripheral Oxygen (SPO₂)
۶. Base Excess (BE)

۱۹. IVIG

۲۰. Acute Respiratory Distress Syndrome (ARDS)
۲۱. Diffuse Alveolar Damage (DAD)

متانال ۲۰۲۰، شماره ۳۳، صفحه ۱۲۱
مجله علمی مهندسین پزشکی
درصد بر روی اکسیژن با جریان آن بر آلوئول ها بوده است. دستورالعمل های بیمارستانی محلی و تأثیر مخرب ریه وجود نداشت و به احتمال قوی عامل اصلی پنومومدیاستن و بیمار معرفی شده، سابقه مصرف سیگار یا بیماری مزمن انسدادی.

مطالعه، اطلاعات کافی و اطمینان از محرمانه بودن اطلاعات به تصویب رسیده است. در این مطالعه در دانشگاه علوم پزشکی قزوین با شناسه اخلاقی IR.QUMS.REC.1399.192 فیبروئوسکوپی آن شناسه اخلاقی CPAP را مصرف کرده و در این نمونه، با توجه به دولت ایران از انجام این عمل منصرف شده‌ایم. پنومومدیاستن و پنومومدیاستن با ضرر زنده به دلیل آسمان‌پردازی نیز ممکن است مسیر مورد انتظار باشد. احتمالاً به دلیل آسیب آلوئول ایجاد

ساله مبتلا به پنومونی و پنوموتوراکس ناشی شبیه به بسیاری از آسیب های تنفسی است، می تواند یک مشکل یک نیروی که سیستم را بهبود می‌یابد. با این حال، مطالعات دیگر این نظریه را استروئیدها ممکن است بهبود الزام را به تأخیر انداخته و موجب معرفی شده، درمان تهاجمی استروئیدها نیز ممکن است عوارضی در بستری ایجاد کند. این امر باعث می شود که بیماران از ابتدا در مسیرهای استتوسکوپ یک بار مصرف، به طور مرتب ریه بیماران را سمع بیماران می شویم. اجتناب از اتخاذ یک رویکرد صرفاً الگوریتمی، به دلیل آسیب آلوئول ایجاد

بیماران مبتلا به کوویدـ۱۹ توصیه می‌کنند که پنومومدیاستن و پنومومدیاستن و پنومومدیاستن و پنومومدیاستن در مبتلایان به کوویدـ۱۹ چنین می‌باشد، ممکن است در هر چهارم شرایط جاملی و بیماران مبتلا به کوویدـ۱۹ ممکن است در هر چهارم شرایط جاملی و بیماران مبتلا به کوویدـ۱۹ ممکن است در هر چهارم شرایط جاملی و بیماران مبتلا به کوویدـ۱۹ ممکن است در هر چهارم شرایط جاملی و بیماران مبتلا به کوویدـ۱۹ ممکن است در هر چهارم شرایط جاملی و بیماران مبتلا به کوویدـ۱۹ ممکن است در هر چهارم شرایط جاملی و بیماران مبتلا به کوویدـ۱۹ ممکن است در هر چهارم شرایط جاملی و بیماران مبتلا به کوویدـ۱۹ ممکن است در هر چهارم شرایط جاملی و بیماران مبتلا به کوویدـ۱۹ ممکن است در هر چهارم شرایط جام
بحثی:

شماره 199

درواس و تیر 1399

مشارکت‌نویسین:

جست وجوی مقالات: مهناز مرادی و فاطمه قپانوری؛ گردآوری داده‌های خبری و فنی تولید مقاله: مهناز مرادی و فاطمه قپانوری؛ تهیه مقاله: مهناز مرادی و فاطمه قپانوری و پیمان نامدار تهیه مقاله: پیمان نامدار و مهناز مرادی؛ تنظیم نتایج: لیلی یکه فلاح و مهناز مرادی.

تعارض منافع

بنابر اظهار تهیه‌نامه، این مقاله تعارض منافع ندارد.

streamen
References

[1] Zhu J, Zhong Z, Ji P, Li H, Li B, Pang J, et al. Clinicopathological characteristics of 8697 patients with COVID-19 in China: A meta-analysis. Fam Med Community Health. 2020; 8(2):e000406. [DOI:10.1136/fmch-2020-000406] [PMID] [PMCID]

[2] National Health Commission & National Administration of Traditional Chinese Medicine. Diagnosis and treatment protocol for novel coronavirus pneumonia (Trial version 7). Chin Med J (Engl). 2020; 133(9):1087-95. [DOI:10.1097/CM9.0000000000000819] [PMCID]

[3] Sheng G, Chen P, Wei Y, Yue H, Chu J, Zhao J, et al. Viral infection increases the risk of idiopathic pulmonary fibrosis: A meta-analysis. Chest. 2020; 157(5):1175-87. [DOI:10.1016/j.chest.2019.10.032] [PMID] [PMCID]

[4] Wan S, Xiang Y, Fang W, Zheng Y, Li B, Hu Y, et al. Clinical features and treatment of COVID-19 patients in northeast Chongqing. J Med Virol. 2020; 92(7):797-806. [DOI:10.1002/jmv.25783] [PMID] [PMCID]

[5] Pan L, Mu M, Yang P, Sun Y, Wang R, Yan J, et al. Clinical characteristics of COVID-19 patients with digestive symptoms in Hubei, China: A descriptive, cross-sectional, multicenter study. Am J Gastroenterol. 2020; 115(5):766-73. [DOI:10.14309/ajg.0000000000000620] [PMID] [PMCID]

[6] Chung M, Bernheim A, Mei X, Zhang N, Huang M, Zeng X, et al. CT imaging features of 2019 novel Coronavirus (2019-nCoV). Radiology. 2020; 295(3):715-21. [DOI:10.1148/radiol.2020200230] [PMID] [PMCID]

[7] Xie J, Covassin N, Fan Z, Singh P, Gao W, Li G, et al. Association between hypoxemia and mortality in patients with COVID-19. Mayo Clinic Proc. 2020; 95(6):1138-47. [DOI:10.1016/j.mayocp.2020.04.006] [PMID] [PMCID]

[8] Li K, Wu J, Wu F, Guo D, Chen L, Fang Z, et al. The clinical and chest CT features associated with severe and critical COVID-19 pneumonia. Invest Radiol. 2020; 55(6):327-31. [DOI:10.1097/RLI.0000000000000672] [PMID] [PMCID]

[9] Masetti C, Generali E, Colapietro F, Voza A, Cecconi M, Messina A, et al. High mortality in COVID-19 patients with mild respiratory disease. Eur J Clin Invest. 2020; 50(9):e13314. [DOI:10.1111/eci.13314] [PMID] [PMCID]

[10] Pan F, Ye T, Sun P, Gui S, Liang B, Li L, et al. Time course of lung changes at chest CT during recovery from Coronavirus disease 2019 (COVID-19). Radiology. 2020; 295(3):715-21. [DOI:10.1148/radiol.2020200370] [PMID] [PMCID]

[11] Lal A, Mishra AK, Sahu KK, Noreldin M. Spontaneous pneumomediastinum: Rare complication of tracheomalacia. Arch Bronconeumol. 2019; 55(3):185-6. [DOI:10.1016/j.arbes.2019.09.017] [PMID]

[12] Brogna B, Bignardi E, Salvatore P, Alberigo M, Brogna C, Megliola A, et al. Unusual presentations of COVID-19 pneumonia on CT scans with spontaneous pneumomediastinum and loculated pneumothorax: A report of two cases and a review of the literature. Heart Lung. 2020; S0147-9563(20)30265-X. [DOI:10.1016/j.jhrtlng.2020.06.005] [PMID] [PMCID]

[13] Anzueto A, Frutos-Vivar F, Esteban A, Alia I, Brochard L, Stewart T, et al. Incidence, risk factors and outcome of barotrauma in mechanically ventilated patients. Intensive Care Med. 2004; 30(4):612-9. [DOI:10.1007/s00134-004-2187-7] [PMID]

[14] Xu Z, Shi L, Wang Y, Zhang J, Huang L, Zhang C, et al. Pathological findings of COVID-19 associated with acute respiratory distress syndrome. Lancet Resp Med. 2020; 8(4):420-2. [DOI:10.1016/S2213-2600(20)30076-X]

[15] Aydin S, Oz G, Dumanli A, Balci A, Gencer A. A case of spontaneous pneumothorax in Covid-19 pneumonia. J Surg Res. 2020; 2(3):96-101. [DOI:10.26502/jsr.10020060]

[16] Chekkoth SM, Supreeth RN, Valsala N, Kumar P, Raja RS. Spontaneous pneumomediastinum in H1N1 infection: Uncommon complication of a common infection. J R Coll Physicians Edinb. 2019; 49(4):298-300. [DOI:10.4997/JRCEP.2019.409] [PMID]

[17] Bor C, Demirag K, Uyar M, Cankayali I, Moral AR. Recurrent spontaneous pneumothorax during the recovery phase of ARDS due to H1N1 infection. Balkan Med J. 2013; 30(1):123-5. [DOI:10.5152/balkanmedj.2012.0068] [PMID] [PMCID]

[18] Ooi GC, Khong PL, Muller NL, Yuw WC, Zhou LH, Ho JCM, et al. Severe acute respiratory syndrome: Temporal lung changes at thin-section CT in 30 patients. Radiology. 2004; 230(3):836-44. [DOI:10.1148/radiol.2303030853] [PMID]

[19] Han R, Huang L, Jiang H, Dong J, Peng H, Zhang D. Early clinical and CT manifestations of coronavirus disease 2019 (COVID-19) pneumonia. AJR Am J Roentgenol. 2020; 215(2):338-43. [DOI:10.2214/AJR.20.22961] [PMID] [PMCID]

[20] Zhou C, Gao C, Xie Y, Xu M. COVID-19 with spontaneous pneumomediastinum. Lancet Infect Dis. 2020; 20(4):510. [DOI:10.1016/S1473-3099(20)30156-0]

[21] Wang W, Gao R, Zheng Y, Jiang L. COVID-19 with spontaneous pneumothorax, pneumomediastinum and subcutaneous emphysema. J Travel Med. 2020; 27(5):taaa062. [DOI:10.1093/jtm/taaa062] [PMID] [PMCID]

[22] Sun R, Liu H, Wang X. Mediastinal emphysema, giant bulla, and pneumothorax developed during the course of COVID-19 pneumonia. Korean J Radiol. 2020; 21(5):541-4. [DOI:10.3348/kjr.2020.0180] [PMID] [PMCID]

[23] Shoie ADL, Wong RHL, Lee ATH, Lau LS, Leung NY, Law KI, et al. Severe acute respiratory syndrome complicated by spontaneous pneumothorax. Chest. 2004; 125(6):2345-51. [DOI:10.1378/chest.125.6.2345] [PMID] [PMCID]

[24] Xiang C, Wu G. SARS-CoV-2 pneumonia with subcutaneous emphysema, mediastinal emphysema, and pneumothorax: A case report. Medicine (Baltimore). 2020; 99(20):e235861. [DOI:10.1097/MD.0000000000020208] [PMID] [PMCID]

[25] Flower L, Carter JPL, Lopez JR, Henry AM. Tension pneumothorax in a patient with COVID-19. BMJ Case Rep. 2020; 13(5):e235861. [DOI:10.1136/bcr-2020-235861] [PMID] [PMCID]
