A NOTE ON HERMITE POLYNOMIALS

TAEKYUN KIM AND DAE SAN KIM

Abstract. In this paper, we consider linear differential equations satisfied by
the generating function for Hermite polynomials and derive some new identities
involving those polynomials.

1. Introduction

The Hermite polynomials form a Sheffer sequence and are given by the generating
function
\[e^{2xt-t^2} = \sum_{n=0}^{\infty} \frac{H_n(x)}{n!} t^n, \]
(see \[1–8, 10, 13, 14\]).

By using Taylor series, we get
\[H_n(x) = \left(\frac{\partial}{\partial t} \right)^n e^{2xt-t^2} \bigg|_{t=0} \]
\[= \left(\frac{e^{x^2}}{\partial t} \right)^n e^{-(x-t)^2} \bigg|_{t=0} \]
\[= (-1)^n x^n \left(\frac{\partial}{\partial x} \right)^n e^{-(x-t)^2} \bigg|_{t=0} \]
\[= (-1)^n e^{x^2} \frac{d^n}{dx^n} e^{-x^2}, \quad (n \geq 0), \quad \text{(see \[1–15, 18\]).} \]

The probabilists’ Hermite polynomials are given by the generating function
\[H'_n(x) = (-1)^n e^{\frac{x^2}{2}} \frac{d^n}{dx^n} e^{-\frac{x^2}{2}} \]
\[= \left(x - \frac{d}{dx} \right)^n \cdot 1, \quad \text{(see \[10\]).} \]

The physicists’ Hermite polynomials are also given by
\[H_n(x) = (-1)^n e^{x^2} \frac{d^n}{dx^n} e^{-x^2} \]
\[= \left(2x - \frac{d}{dx} \right)^n \cdot 1 \quad \text{(see \[20\]).} \]

2010 Mathematics Subject Classification. 05A19, 11B83, 33C45, 34A30.

Key words and phrases. Hermite polynomials, linear differential equation.
Thus, by (1.3) and (1.4), we get
\[(1.5)\]
\[H_n(x) = 2^n H_n^\ast\left(\sqrt{2}x\right), \quad H_n^\ast(x) = 2^{-\frac{n}{2}} H_n\left(\frac{x}{\sqrt{2}}\right),\]
where \(n \geq 0\) (see [9, 11, 12, 15, 18]).

The first several Hermite polynomials are
\[H_0(x) = 1, \quad H_1(x) = 2x, \quad H_2(x) = 4x^2 - 2, \quad H_3(x) = 8x^2 - 12x, \quad H_4(x) = 16x^4 - 48x^2 + 12, \quad H_5(x) = 32x^5 - 160x^3 + 120x, \quad H_6(x) = 64x^6 - 480x^4 + 720x^2 - 120, \ldots\]

The probabilists’ Hermite polynomials are solutions of the differential equation:
\[(e^{-x^2/2} u')' + \lambda e^{-1/2} x^2 u = 0,\]
where \(\lambda\) is a constant, with the boundary conditions that \(u\) should be polynomially bounded at infinity.

The generating function of the probabilists’ Hermite polynomials is given by
\[(1.6)\]
\[e^{xt - \frac{t^2}{2}} = \sum_{n=0}^{\infty} H_n^\ast(x) \frac{t^n}{n!}, \quad (\text{see } [12, 15, 18]).\]

The Hermite polynomials \(H_n^{(\nu)}(x)\) of variance \(\nu\) form an Appell sequence and are defined by the generating function
\[(1.7)\]
\[\sum_{k=0}^{\infty} \frac{H_k^{(\nu)}(x)}{k!} t^k = e^{xt - \frac{\nu t^2}{2}}, \quad (\text{see } [12]).\]

Thus, by (1.7), we get
\[(1.8)\]
\[x^{2m+1} = \sum_{l=0}^{m} \binom{2m+1}{2l+1} \frac{(2m-2l)!}{(m-l)!} \left(\frac{\nu}{2}\right)^{m-l} H_{2l+1}^{(\nu)}(x),\]
and
\[(1.9)\]
\[x^{2m} = \sum_{l=0}^{m} \binom{2m}{2l} \frac{(2m-2l)!}{(m-l)!} \left(\frac{\nu}{2}\right)^{m-l} H_{2l}^{(\nu)}(x), \quad (\text{see } [12]).\]

The Hermite polynomials have been studied in probability, combinatorics, numerical analysis, finite element methods, physics and system theory (see [1–15, 18]).

Recently, Kim has studied nonlinear differential equations arising from Frobenius-Euler numbers and polynomials.

In this paper, we consider linear differential equations arising from Hermite polynomials of variance \(\nu\) and give some new and explicit identities for those polynomials.

2. HERMITE POLYNOMIALS OF VARIANCE \(\nu\)

Let
\[(2.1)\]
\[F = F(t : x, \nu) = e^{xt - \frac{\nu t^2}{2}}.\]

From (2.1), we note that
\[(2.2)\]
\[F^{(1)} = \frac{d}{dt} F(t : x, \nu) = (x - \nu t) e^{xt - \frac{\nu t^2}{2}} = (x - \nu t) F,\]
(2.3) \[F^{(2)} = \frac{d}{dt} F^{(1)} = \left(-\nu + (x - t\nu)^2\right) F, \]
(2.4) \[F^{(3)} = \frac{d}{dt} F^{(2)} = \left(-3\nu (x - t\nu) + (x - t\nu)^3\right) F, \]
and
(2.5) \[F^{(4)} = \frac{d}{dt} F^{(3)} = \left(3\nu^2 - 6\nu (x - t\nu)^2 + (x - t\nu)^4\right) F. \]

Continuing this process, we set
(2.6) \[F^{(N)} = \left(\frac{d}{dt}\right)^N F(t : x, \nu) \]
\[= \left(\sum_{i=0}^{N} a_i (N, \nu) (x - t\nu)^i\right) F, \]
where \(N \in \mathbb{N} \cup \{0\} \).

From (2.6), we have
(2.7) \[F^{(N+1)} = \frac{d}{dt} F^{(N)} \]
\[= \sum_{i=0}^{N} a_i (N, \nu) i (x - t\nu)^{i-1} (-\nu) F \]
\[+ \sum_{i=0}^{N} a_i (N, \nu) (x - t\nu)^i F^{(1)}. \]

By (2.2) and (2.7), we easily get
(2.8) \[F^{(N+1)} = \left\{-\nu a_1 (N, \nu) + a_N (N, \nu) (x - t\nu)^N + a_{N-1} (N, \nu) (x - t\nu)^{N-1} \right. \]
\[+ \sum_{i=1}^{N-1} (-i + 1) \nu a_{i+1} (N, \nu) + a_{i-1} (N, \nu) \left(x - t\nu\right)^i \} F. \]

By replacing \(N\) by \((N + 1)\) in (2.6), we get
(2.9) \[F^{(N+1)} = \left(\sum_{i=0}^{N+1} a_i (N + 1, \nu) (x - t\nu)^i\right) F. \]

From (2.8) and (2.9), we can derive the following equations:
(2.10) \[a_0 (N + 1, \nu) = -\nu a_1 (N, \nu), \]
(2.11) \[a_N (N + 1, \nu) = a_{N-1} (N, \nu), \]
(2.12) \[a_{N+1} (N + 1, \nu) = a_N (N, \nu) \]
and
(2.13) \[a_i (N + 1, \nu) = -(i + 1) \nu a_{i+1} (N, \nu) + a_{i-1} (N, \nu), \]
where \(1 \leq i \leq N - 1.\)

It is not difficult to show that
(2.14) \[F = F^{(0)} = a_0 (0, \nu) F. \]

Thus, by (2.14), we get
(2.15) \[a_0 (0, \nu) = 1. \]
From (2.2) and (2.6), we note that
\[(2.16) \quad (x - \nu t) F = F^{(1)} = (a_0 (1, \nu) + a_1 (1, \nu) (x - \nu t)) F.\]

Thus, by comparing the coefficients on both sides of (2.16), we get
\[(2.17) \quad a_0 (1, \nu) = 0, \quad a_1 (1, \nu) = 1.\]

From (2.11), (2.12), (2.15) and (2.17), we have
\[(2.18) \quad a_N (N + 1, \nu) = a_{N-1} (N, \nu) = \cdots = a_0 (1, \nu) = 0,\]
and
\[(2.19) \quad a_{N+1} (N + 1, \nu) = a_N (N, \nu) = \cdots = a_1 (1, \nu) = 1.\]

Therefore, we obtain the following theorem.

Theorem 1. The linear differential equations
\[F^{(N)} = \left(\frac{d}{dt} \right)^N F (t : x, \nu) = \left(\sum_{i=0}^{N} a_i (N, \nu) (x - \nu t)^i \right) F, \quad (N \in \mathbb{N} \cup \{0\})\]
has a solution
\[F = F (t : x, \nu) = e^{xt - \frac{\nu t^2}{2}},\]
where
\[a_0 (N, \nu) = -\nu a_1 (N - 1, \nu),\]
\[a_{N-1} (N, \nu) = a_{N-2} (N - 1, \nu) = \cdots = a_1 (2, \nu) = a_0 (1, \nu) = 0,\]
\[a_N (N, \nu) = a_{N-1} (N - 1, \nu) = \cdots = a_1 (1, \nu) = a_0 (0, \nu) = 1,\]
and
\[a_i (N, \nu) = -(i + 1) \nu a_{i+1} (N - 1, \nu) + a_{i-1} (N - 1, \nu), \quad (1 \leq i \leq N - 2).\]

Example.
1. \(N = 3, i = 1.\) By (2.13), we get
 \[a_1 (3, \nu) = -2\nu a_2 (2, \nu) + a_0 (2, \nu) = -2\nu - \nu = -3\nu.\]
2. \(N = 4, 1 \leq i \leq 2.\) By (2.13), we have
 \[a_1 (4, \nu) = 0, \quad a_2 (4, \nu) = -6\nu.\]
3. \(N = 5, 1 \leq i \leq 3.\) By (2.13), we get
 \[a_1 (5, \nu) = 15\nu^2, \quad a_2 (5, \nu) = 0, \quad a_3 (5, \nu) = -10\nu.\]
4. \(N = 6, 1 \leq i \leq 4.\) From (2.13), we have
 \[a_1 (6, \nu) = 0, \quad a_2 (6, \nu) = 45\nu^2, \quad a_3 (6, \nu) = 0, \quad a_4 (6, \nu) = -15\nu.\]

Thus, we obtain the following result.
Remark. The matrix \((a_{i,j}(j, \nu))_{0 \leq i,j \leq 6}\) is given by

\[
\begin{bmatrix}
0 & 1 & 2 & 3 & 4 & 5 & 6 \\
0 & 1 & -\nu & 0 & 3\nu^2 & 0 & -15\nu^3 \\
1 & 0 & -3\nu & 0 & 15\nu^2 & 0 & \\
2 & 1 & 0 & -6\nu & 0 & 45\nu^2 & 0 \\
3 & 1 & 0 & -10\nu & 0 & & \\
4 & 1 & 0 & & -15\nu & & \\
5 & 0 & 1 & 0 & & & \\
6 & & & & & & 1 \\
\end{bmatrix}.
\]

From (1.7), we note that

\[
F = F(t : x, \nu) = e^{xt - \nu t^2} = \sum_{k=0}^{\infty} H_{k}^{(\nu)}(x) \frac{t^k}{k!}.
\]

Thus, by (2.20), we get

\[
F^{(N)}(t : x, \nu) = \left(\frac{d}{dt}\right)^N F(t : x, \nu) = \sum_{k=0}^{\infty} H_{k}^{(\nu)}(x) (k)_N \frac{t^{k-N}}{k!}.
\]

By Theorem 1, we easily get

\[
F^{(N)}(t : x, \nu) = \left(\sum_{i=0}^{N} a_i(N, \nu) (x - \nu t)^i\right) F
\]

\[
= \sum_{k=0}^{\infty} H_{k+N}^{(\nu)}(x) k! \frac{t^k}{(n+k)!}
\]

Therefore, by (2.21) and (2.22), we obtain the following theorem.
Theorem 2. For \(k, N \in \mathbb{N} \cup \{0\} \), we have

\[
H_{k+N}^{(\nu)}(x)
= \sum_{i=0}^{N} a_i(N, \nu) \sum_{l=\max\{0,k-i\}}^{k} \binom{k}{l} (i)_{k-l} (-\nu)^{k-l} x^{i+k-l} H_{i}^{(\nu)}(x).
\]

It is easy to show that

\[
(2.23) \quad H_{k+1}^{(\nu)}(x) = \left(x - \nu \frac{\partial}{\partial x}\right) H_{k}^{(\nu)}(x).
\]

Thus, by (2.23), we have

\[
(2.24) \quad H_{k+N}^{(\nu)}(x) = \left(x - \nu \frac{\partial}{\partial x}\right)^N H_{k}^{(\nu)}(x), \quad (N \in \mathbb{N} \cup \{0\}).
\]

From Theorem 2 we note that

\[
(2.25) \quad \left(x - \nu \frac{\partial}{\partial x}\right)^N H_{k}^{(\nu)}(x)
= \sum_{i=0}^{N} a_i(N, \nu) \sum_{l=\max\{0,k-i\}}^{k} \binom{k}{l} (i)_{k-l} (-\nu)^{k-l} x^{i+k-l} H_{i}^{(\nu)}(x),
\]

where \(\frac{\partial}{\partial x}x - x \frac{\partial}{\partial x} = \text{identity} \).

Now, we observe explicit determination of \(a_i(j, \nu) \).

From (2.12) and (2.13), we can derive the following equations:

\[
(2.26) \quad a_N(N, \nu) = 1,
\]

\[
(2.27) \quad a_{N-2}(N, \nu) = -(N-1) \nu a_{N-1}(N-1, \nu) + a_{N-3}(N-1, \nu)
= -(N-1) \nu a_{N-1}(N-1, \nu) - (N-2) \nu a_{N-2}(N-2, \nu) + a_{N-4}(N-2, \nu)
\]

\[
\vdots
= -(N-1) \nu a_{N-1}(N-1, \nu) - (N-2) \nu a_{N-2}(N-2, \nu) - 2 \nu a_2(2, \nu) + a_0(2, \nu)
= -(N-1) \nu a_{N-1}(N-1, \nu) - (N-2) \nu a_{N-2}(N-2, \nu) - 2 \nu a_2(2, \nu) - \nu a_1(1, \nu)
\]

\[
= -\nu \sum_{i=1}^{N-1} ia_i(i, \nu),
\]

\[
(2.28) \quad a_{N-4}(N, \nu) = -(N-3) \nu a_{N-3}(N-1, \nu) + a_{N-5}(N-1, \nu)
= -(N-3) \nu a_{N-3}(N-1, \nu) - (N-4) \nu a_{N-4}(N-2, \nu) + a_{N-6}(N-2, \nu)
\]

\[
\vdots
= -(N-3) \nu a_{N-3}(N-1, \nu) - (N-4) \nu a_{N-4}(N-2, \nu)
\]
A NOTE ON HERMITE POLYNOMIALS 7

\[- \cdots - 2\nu a_2 (4, \nu) + a_0 (4, \nu) \]
\[= - (N - 3) \nu a_{N-3} (N - 1, \nu) - (N - 4) \nu a_{N-4} (N - 2, \nu) \]
\[- \cdots - 2\nu a_2 (4, \nu) - \nu a_1 (3, \nu) \]
\[= - \nu \sum_{i=0}^{N-3} ia_i (i + 2, \nu), \]

and

\[a_{N-6} (N, \nu) = - (N - 5) \nu a_{N-5} (N - 1, \nu) + a_{N-7} (N - 1, \nu) \]
\[= - (N - 5) \nu a_{N-5} (N - 1, \nu) - (N - 6) \nu a_{N-6} (N - 2, \nu) \]
\[+ a_{N-8} (N - 2, \nu) \]
\[\vdots \]
\[= - (N - 5) \nu a_{N-5} (N - 1, \nu) - (N - 6) \nu a_{N-6} (N - 2, \nu) \]
\[- \cdots - 2\nu a_2 (6, \nu) - \nu a_1 (5, \nu) \]
\[= - \nu \sum_{i=1}^{N-5} ia_i (i + 4, \nu). \]

Continuing in this fashion, for \(l \) with \(1 \leq l \leq \left\lfloor \frac{N-1}{2} \right\rfloor \),

\[a_{N-2l} (N, \nu) = - \nu \sum_{i=1}^{N-2l+1} ia_i (i + 2l - 2, \nu). \]

By (2.26), (2.27), (2.28), (2.29) and (2.30), we get

\[a_{N-2l} (N, \nu) = (-\nu)^l \sum_{i_1=1}^{N-2l+1} \sum_{i_2=1}^{i_1+1} \cdots \sum_{i_l=1}^{i_{l-1}+1} i_1 \cdot i_2 \cdot \cdots \cdot i_l, \]

where \(1 \leq l \leq \left\lfloor \frac{N-1}{2} \right\rfloor \).
By (2.11) and (2.13), we easily get
\begin{align}
\tag{2.35}
a_{N-1}(N, \nu) &= a_{N-2}(N-1, \nu) = a_{N-3}(N-2, \nu) = \cdots = a_0(1, \nu) = 0, \\
\tag{2.36}
a_{N-3}(N, \nu) &= -(N-2)\nu a_{N-2}(N-1, \nu) + a_{N-4}(N-1, \nu) \\
&= a_{N-4}(N-1, \nu) \\
&\vdots \\
&= a_0(3, \nu) = -\nu a_1(2, \nu) = -\nu a_0(1, \nu) = 0, \\
\tag{2.37}
a_{N-5}(N, \nu) &= -(N-4)\nu a_{N-4}(N-1, \nu) + a_{N-6}(N-1, \nu) = a_{N-6}(N-1, \nu) \\
&\vdots \\
&= a_0(5, \nu) = -\nu a_1(4, \nu) = 0, \\
\tag{2.38}
a_{N-7}(N, \nu) &= -(N-6)\nu a_{N-6}(N-1, \nu) + a_{N-8}(N-1, \nu) \\
&\vdots \\
&= a_0(7, \nu) = -\nu a_1(6, \nu) = 0, \\
\end{align}
and
\begin{align}
\tag{2.39}
a_{N-(2l-1)}(N, \nu) &= 0, \quad (1 \leq l \leq \left\lfloor \frac{N}{2} \right\rfloor).
\end{align}

Therefore, we obtain the following theorem.

Theorem 3. For \(N \in \mathbb{N} \cup \{0\} \), we have
\[a_{N-2l}(N, \nu) = (-\nu)^l \sum_{i_1=1}^{N-2l+1} \sum_{i_{l-1}=1}^{i_{l-1}+1} \cdots \sum_{i_1=1}^{i_1+i_{l-1}} \cdot i_1, \]
where \(1 \leq l \leq \left\lfloor \frac{N-1}{2} \right\rfloor. \)

Also,
\[a_{N-(2l-1)}(N, \nu) = 0, \quad \text{if} \ 1 \leq l \leq \left\lfloor \frac{N}{2} \right\rfloor. \]

References

1. P. Barry, *Eulerian polynomials as moments, via exponential Riordan arrays*, J. Integer Seq. **14** (2011), no. 9, Article 11.9.5, 14. MR 2859989
2. L. Carlitz, *The Product of Two Eulerian Polynomials*, Math. Mag. **36** (1963), no. 1, 37–41. MR 1571266
3. G. Ferraro, *Euler’s treatises on infinitesimal analysis: Introductio in analysin infinitorum, institutiones calculi differentialis, institutionum calculi integralis*, Euler reconsidered, Kendrick Press, Heber City, UT, 2007, pp. 39–101. MR 2384378
4. D. Foata, *Eulerian polynomials: from Euler’s time to the present*, The legacy of Alladi Ramakrishnan in the mathematical sciences, Springer, New York, 2010, pp. 253–273. MR 2744266 (2012f:01013)
5. ______, *Les polynômes euleriens, d’Euler à Carlitz*, Leonhard Euler, Sci. Musique Ser. Etudes, CNRS Éd., Paris, 2015, pp. 413–432. MR 3379324
6. B. Harris and C. J. Park, *A generalization of the Eulerian numbers with a probabilistic application*, Statist. Probab. Lett. 20 (1994), no. 1, 37–47. MR 1294802 (95k:11020)
7. L. C. Hsu and P. J.-S. Shiue, *On certain summation problems and generalizations of Eulerian polynomials and numbers*, Discrete Math. 204 (1999), no. 1-3, 237–247. MR 1691872 (2000d:11026)
8. J. H. Jin, T. Mansour, E.-J. Moon, and J.-W. Park, *On the (r,q)-Bernoulli and (r,q)-Euler numbers and polynomials*, Adv. Stud. Contemp. Math. (Kyungshang) 22 (2012), no. 3, 379–389. MR 2976596
9. D. S. Kim and T. Kim, *A note on nonlinear changhee differential equations*, Russian J. Math. Phys. (communicated).
10. ______, *A note on q-Eulerian polynomials*, Proc. Jangjeon Math. Soc. 16 (2013), no. 4, 445–450. MR 3136923
11. D. S. Kim, T. Kim, W. J. Kim, and D. V. Dolgy, *A note on Eulerian polynomials*, Abstr. Appl. Anal. (2012), Art. ID 269640, 10. MR 2947765
12. D. S. Kim, T. Kim, Y.-H. Kim, and D. V. Dolgy, *A note on Eulerian polynomials associated with Bernoulli and Euler numbers and polynomials*, Adv. Stud. Contemp. Math. (Kyungshang) 23 (2013), no. 2, 243–251. MR 3088755
13. D. S. Kim, T. Kim, and H. Y. Lee, *p-adic q-integral on \mathbb{Z}_p associated with Frobenius-type Eulerian polynomials and umbral calculus*, Adv. Stud. Contemp. Math. (Kyungshang) 23 (2013), no. 2, 243–251. MR 3088755
14. D. S. Kim, T. Kim, and S.-H. Rim, *Frobenius-type Eulerian polynomials and umbral calculus*, Proc. Jangjeon Math. Soc. 16 (2013), no. 2, 285–292. MR 3097742
15. T. Kim, *Identities involving Frobenius-Euler polynomials arising from nonlinear differential equations*, J. Number Theory 132 (2012), no. 12, 2854–2865. MR 2965196
16. ______, *Degenerate Euler zeta function*, Russ. J. Math. Phys. 22 (2015), no. 4, 469–472. MR 3431170
17. T. Kim, D. S. Kim, S.-H. Rim, and D. V. Dolgy, *Some identities of Frobenius-type Eulerian polynomials arising from umbral calculus*, Int. J. Math. Anal. (Ruse) 7 (2013), no. 53–56, 2637–2644. MR 3152977
18. T. Kim and T. Mansour, *Umbral calculus associated with Frobenius-type Eulerian polynomials*, Russ. J. Math. Phys. 21 (2014), no. 4, 484–493. MR 3284958
19. M. V. Koutras, *Eulerian numbers associated with sequences of polynomials*, Fibonacci Qua. 32 (1994), no. 1, 44–57. MR 1259181 (94k:11024)
20. J. Riordan, *An introduction to combinatorial analysis*, Wiley Publications in Mathematical Statistics, John Wiley & Sons, Inc., New York; Chapman & Hall, Ltd., London, 1958. MR 0096594 (20 #3077)
21. C. S. Ryoo, H. I. Kwon, J. Yoon, and Y. S. Jang, *Representation of higher-order Euler numbers using the solution of Bernoulli equation*, J. Comput. Anal. Appl. 19 (2015), no. 3, 570–577. MR 3307420
22. T. Xiong, H.-P. Tsao, and J. I. Hall, *General Eulerian numbers and Eulerian polynomials*, J. Math. (2013), Art. ID 629132, 9. MR 3097204
Department of Mathematics, Kwangwoon University, Seoul 139-701, Republic of Korea
E-mail address: tkkim@kw.ac.kr

Department of Mathematics, Sogang University, Seoul 121-742, Republic of Korea
E-mail address: dskim@sogang.ac.kr