Synthesis, Characterization and Biological Activity Study of New Compounds Tetrazole Derivatives Azo-Schiff Base

Hiba Ibrahim Abdulla AL-Joubory1 and Khalid Mohamad Motny Al-janaby2

1 Department of chemistry, college of Education for pure science, University Tikrit, Tikrit, Iraq.
2 College of Petroleum and Minerals Engineering, University of Tikrit, Tikrit, Iraq.

Abstract:
This work included synthesis of azo dye (H1) by the reaction of diazonium salt to sulacetamide with 4-hydroxy benzaldehyde at (0-5) °C and synthesis of schiff base (H2-H6) through reaction substituted aromatic amine (aniline, 4-nitro aniline, 4-chloro aniline, 4-amino benzoic acid and phenyl hydrazine) with aldehyde group in azo compound (H1) in ethanol compounds (H2-H6) and tetrazole derivatives prepared by reaction schiff base with sodium azide in ethanol compounds (H7-H11) and characterization by using spectroscopic techniques Uv/Vis, FT-IR, C.H.N. and H1-NMR of some the prepared compounds using DMSO-d6 a solvent, in addition melting point and determination a purity of TLC, and this work consists a study of biological activity for the some prepared compounds against four types of pathogenic bacteria and know to be resistant to anti biotic.

Key words: Azo, Schiff's base, Tetrazole and Biological activity.
Synthesis, Characterization and Biological Activity Study of New Compounds Tetrazole Derivatives Azo-Schiff Base
Hiba Ibrahim Abdulla AL-Joubory Khalid Mohamad Motny Al-janaby

Preparation and Characterization and Biological Activity Study of New Tetrazole Derivatives Azo-Schiff Base

Hiba Ibrahim Abdulla AL-Joubory
Khalid Mohamad Motny Al-janaby

Abstract:
This research includes the preparation of azo (H1) dye through diazonium salt formation with 4-aminobenzaldehyde at 0-5°C, and then preparation of Schiff bases (H2-H6) through reaction with aromatic amines and the azo dye prepared, then preparation of a mixture of five derivatives (H6-H11) from the Schiff bases prepared with sodium hydroxide in ethanol, then characterized the prepared compounds by spectral methods such as UV and IR spectra, and NMR spectra, and determined the quantities of the elements (C.H.N.) and evaluated the biological activity for some of the prepared compounds against two types of bacterial isolates, namely, Pseudomonas aeruginosa and Staphylococcus aureus.

Keywords: Azo, Schiff base, Tetrazole, Biological activity.
Synthesis, Characterization and Biological Activity Study of New Compounds Tetrazole Derivatives Azo-Schiff Base
Hiba Ibrahim Abdulla AL-Joubory Khalid Mohamad Motny Al-janaby

Introduction:
Azo dyes are a class of compounds containing a N=N double bond and due to their ability to absorb visible light [1]. For many years, the azo compounds have been the main class of dyes used in various application such as textile fibers dyeing, coloring of different materials and advanced organic synthesis [2]. The synthesis and dyeing properties of azo compounds are assigned in many papers [3,4]. Azo compounds are widely used as dyes and pigments. Another application is analytical chemistry. On the other hand, azo compounds shown biological activities containing antibacterial [5]. Schiff bases and azo compounds are important structures in the medicinal and pharmaceutical fields [6]. The compounds carrying azomethine functional group (-C=N-) which are known as Schiff bases gain importance in medicinal [7,8] and pharmaceutical field due to the most versatile organic synthetic intermediates and also showing a broad range of biological activities [9] such as antituberculosis, anticancer, analgesic, anti-inflammatory [10], anticonvulsant, antibacterial and antifungal activities [11]. On the other hand, cyclic imides represent an important class of bioactive molecules that shows a wide range of pharmacological activities such as androgen receptor antagonistic [12]. Tetrazoles are a representative class of poly-aza-heterocyclic compounds, which consisting of a 5-membered ring of four nitrogen and one carbon atoms [13]. The first tetrazole was prepared by the Swedish chemist Bladin [14] in 1885. Katritsky et al. synthesized 1,5-disubstituted tetrazoles in high yields from imidoylbenzotriazoles includes short reaction times and mild reaction conditions [15]. Tetrazoles are unknown in the nature the ring systems of tetrazoles are very resistant to reduction [16]. Tetrazoles are a class of heterocycles with a wide range of applications including nanomaterials5 and specialty explosives [17]. The tetrazoles are representative of
active pharmacophores for several therapeutic active molecules such as antiallergic [18], anti-inflammatory, antibiotic, antihypertensive and antitubercular agents [19]. For example, the β-lactam antibiotics A of the cephalosporin class is an example of drugs containing a 1,5-disubstituted tetrazole moiety. Losartan B is sartan derivatives that was the first nonpeptide angiotensin receptor antagonist to appear on the market followed by Valsartan C which include the regulation of blood pressure and volume homeostasis [20].

Experimental:
Material: All chemicals were used through this work purchased from Alfa Aesar, Chem-Lab, HIMDIA, Oxford, Aldrich, Companies and were used without further purifications.

Devices used: Melting points were recorded using a measuring device melting point type: Automatic melting point\SMP40 and were uncorrected. Thin layer chromatography (T.L.C.) was carried out using sheet polygram silica- gel as stationary phase, the spots were enhanced using UV rays. UV-Vis. spectra were recorded with spectrophotometer type: SHIMADZU UV spectrometer -1800 using Ethanol as a solvent. Infrared spectra were recorded using FT-IR-600 Fourier- Transform infrared (FT-IR) Spectrophotometer by KBr disc. \(^1\)H-NMR spectra were recorded on Fourier Transform Varian spectrophotometer operating at 400 MHz with DMSO-d\(^6\)(Ibn –Al –Hatham college).

Methods of preparation:
Synthesis of Azo dye (H1) [21]:
Azo dye was prepared in two main steps:

Step 1 / Preparation of diazonium salt: (0.04 mol, 9.44 gm) of sulfacetamide dissolved in (50 ml) 37% HCl at a temperature of
Synthesis, Characterization and Biological Activity Study of New Compounds Tetrazole Derivatives Azo-Schiff Base
Hiba Ibrahim Abdulla AL-Joubory Khalid Mohamad Motny Al-janaby

(0-5) °C with continuous stirring, then add a solution of sodium nitrite.

Step 2 / Coupling reaction: (0.04 mol, 4.88gm) of 4-hydroxy benzaldehyde dissolved in (50 ml) of the Pyridine, and cooled to (0–5) °C in an ice bath. This solution is then slowly added to the cooled diazonium salt solution to yield azo compound. Physical properties of azo is color red, M.P. (260-261) °C, yield 81% and R.f. 0.65.

Synthesis of Schiff Bases (H2-H6) [22, 23]:

A series of Schiff bases were prepared from the reaction of azo prepared (H1) (3.69 gm 0.01 mole) with (0.01 mole) from different aromatic amine (aniline, 4-nitro aniline, 4-chloro aniline, 4-amino benzoic acid and phenyl hydrazine) in (30 ml) ethanol absolute and few drops of glacial acetic acid. This mixture was refluxed for (4-9) hr. The mixture was cooled to room temperature, filtered, dry and recrystallized in absolute ethanol, physical properties, yield and R.f. are given in Table (1).

Table (1): physical properties, yield and R.f. of schiff base (H2-H6).

Comp. No.	Ar	Molecular Formula/ M.Wt g/mol	Color	M.P (°C)	T. Ref. (hr.)	Yield (%)	R.f.
H2	![H2 Ar](image)	C_{21}H_{16}N_{4}O_{4}SNa 444.44	Dark Brown	125-127	5	92	0.87
H3	![H3 Ar](image)	C_{21}H_{16}N_{5}O_{6}SNa 489.44	Orang	159-161	9	73	0.50
H4	![H4 Ar](image)	C_{21}H_{16}N_{4}O_{4}SClNa 478.88	Brown	147-150	6	86	0.69
H5	![H5 Ar](image)	C_{22}H_{17}N_{4}O_{3}SNa 488.45	Yellow	136-138	7	79	0.43
H6	![H6 Ar](image)	C_{21}H_{17}N_{4}O_{4}SNa 456.44	Light Brown	-177, 177	9	91	0.75
Synthesis, Characterization and Biological Activity Study of New Compounds Tetrazole Derivatives Azo-Schiff Base
Hiba Ibrahim Abdulla AL-Joubory Khalid Mohamad Motny Al-janaby

Synthesis of Tetrazole derivatives (H7-H11) [24]:
Compound (H2-H6) (0.02 mole) was added to solution of (0.02 mole, 1.3 gm) of sodium azide in (25ml) of ethanol. The reaction mixture was refluxed for (5-9) hrs. The mixture was cooled to room temperature, filtered, dry and rec-rystallized in absolute ethanol, physical properties, yield and R.f. are given in Table (2).

Table (2): physical properties, yield and R.f of 1,3-oxazepine derivatives (H6-H9).

Comp. No.	Ar	Molecular Formula/ M.Wt g/mol	Color	M.P (°C)	T. Ref. (hr.)	Yiel d (%)	R.f.
H 7	H2N	C21H18N7O4SNa 487.47	Light Yellow	232-234	8	89	0.60
H 8	H2N-NO2	C21H17N8O6SNa 532.47	Dark Brown	263-265	7	67	0.82
H 9	H2N-Cl	C21H17N5O4SClNa 521.91	Orang	167-169	6	74	0.93
H 10	H2N-COOH	C22H18N7O6SNa 531.48	Yellow	248-250	5	73	0.66
H11	H2N-NH2	C21H17N5O4SNa 456.44	Brown	216-218	5	70	0.85

The biological activity [25]:
The bacteria species used are listed in tables (7). All strains were obtained from College of Science department of Biology, Tikrit University. They were grown up to the stationary phase nutrient bath at 37 °C and a sample of 0.5 ml of each bacteria was spread over a surface of a nutrient agar plate.

Antibacterial assay [26]:
DMSO was used as a solvent for compounds (H1, H2, H4, H6, H9, H11). The same solvent was used for antibiotics
Synthesis, Characterization and Biological Activity Study of New Compounds Tetrazole Derivatives Azo-Schiff Base

Hiba Ibrahim Abdulla AL-Joubory Khalid Mohamad Motny Al-janaby

(Aloxicillin, Ampicillin, Ciprofloxacine). Blank discs of DMSO was used as control. The inoculated plates are incubated at 37 °C for 24 hrs., and the inhibition zone (mm) were measured. In all experiments the mean of each triplicate was measured.

Results and Discussion:
In this work many compounds were synthesized azo, Schiff bases derivatives and tetrazole derivatives and as in the following Scheme:

![Scheme (1): synthesis of compounds (H1-H11).](image)

Characterization of Azo dye (H1) [27, 28]:
Azo dye has synthesized from the reaction of diazonium salt with 4-hydroxy benzaldehyde.

UV spectra show the transitions n-π* (255 nm) and π-π* (371 nm) which have confirmed the presences of the un-bonded pair electrons on nitrogen, oxygen atoms and aromatic system (double bond).
Synthesis, Characterization and Biological Activity Study of New Compounds Tetrazole Derivatives Azo-Schiff Base
Hiba Ibrahim Abdulla AL-Joubory Khalid Mohamad Motny Al-janaby

The FT-IR spectra of azo dye general showed disappearance of (NH$_2$) absorption of sulfacetamide and appearances of (N=N) absorption band in 1468 cm$^{-1}$, besides bands in 1658 cm$^{-1}$ is due to (C=O) aldehyde and band at 3435 cm$^{-1}$ due to (OH) of salsaldehyde. IR spectra is given in fig (1).

1H-NMR spectrum of compound (H2) showed singlet signal at $\delta= 2.84$ ppm due to (CH$_3$), multiple signal (6.65-7.99) ppm due to aromatic rings, singlet signal at $\delta= 9.09$ ppm due to (CH) and singlet signal (9.61) ppm due to (OH). 1H-NMR spectrum of compound (H2) is given in fig (11).

Characterization of Schiff Bases (H2-H6):

Schiff Bases derivatives have synthesized from the reaction of azo prepared (H1) with different aromatic amine (aniline, 4-nitro aniline, 4-chloro aniline, 4-amino benzoic acid and phenyl hydrazine). Beside UV spectra show the transions n-π^* and π-π^* which have confirmed the presences of the un-bonded pair electrons on nitrogen, oxygen atoms and aromatic system (double bond). UV absorbance spectra is given in table (3). The FT-IR spectra of Schiff Bases derivatives in general showed disappearance of (C=O) absorption of azo prepared (H1) and appearances of (C=N) absorption band in (1647-1684) cm$^{-1}$. IR spectra is given in table (3) see fig. (2) and fig. (3). 1H-NMR spectrum of compound (H$_2$) showed singlet signal at $\delta= 2.50$ ppm due to DMSO-d6 solvent, multiple signal (8.20 - 9.02) ppm due to aromatic rings, singlet signal at $\delta= 10.01$ ppm due to N-H amic acid, and singlet signal (13.03) ppm due to O-H carboxylic acid. 1H-NMR spectrum of compound (H$_{11}$) is given in fig (12).
Synthesis, Characterization and Biological Activity Study of New Compounds Tetrazole Derivatives Azo-Schiff Base
Hiba Ibrahim Abdulla AL-Joubory Khalid Mohamad Motny Al-janaby

Table (3): FT-IR and UV/Vis. data of Schiff Bases (H2-H6).

Comp. No.	Ar	λ1 max (nm)	λ max (nm)	IR (KBr) cm⁻¹	Others
H2		219 310	3469 3053	1684 1490 1599	1439 1135
H3	NO₂	269 332	3479 3059	1658 1475 1581	1441 1155
H4	Cl	261 308	3469 3057	1658 1496 1599	1441 1155
H5	COOH	226 359	3377 3072	1647 1473 1576	1437 1169
H6		248 340	3442 3061	1674 1512 1614	1454 1161

Characterization of tetrazole derivatives (H7-H11):

tetrazole derivatives (H7-H11) have synthesized from the reaction of compound (H2-H6) with sodium azide. UV spectra show the transions n-π* and π-π* which have confirmed the presences of the un-bonded pair electrons on nitrogen, oxygen atoms and aromatic system (double bond). UV absorbance spectra is given in table (4). The FT-IR spectra of tetrazole derivatives in general showed disappearance of (C=N) absorption band in (1647-1684) cm⁻¹ of schiff bases derivatives and appearances of (N-H) absorption band in (3221-3276) cm⁻¹, appearances of (C-N) absorption band of tetrazole in (1232-1290) cm⁻¹ and appearances of (N-N) absorption band of tetrazole in (1111-1157) cm⁻¹. IR spectra is given in table (4) see fig (4), (5) and (6).

¹H-NMR spectrum of compound (H11) showed singlet signal at δ= (2.89) ppm due to (CH₃), singlet signal at δ= (4.71) ppm due to (CH), singlet signal at δ= (5.02) ppm due to (NH), multiple signal (6.84-8.42) ppm due to aromatic rings, singlet signal at δ= (8.67) ppm due to (NH) and singlet signal (9.72)
Synthesis, Characterization and Biological Activity Study of New Compounds Tetrazole Derivatives Azo-Schiff Base
Hiba Ibrahim Abdulla AL-Joubory Khalid Mohamad Motny Al-janaby

ppm due to (OH). \(^1\)H-NMR spectrum of compound (H11) is given in fig (12).

Table (4): FT-IR and UV/Vis. Characterization of tetrazole derivatives (H7-H11).

Comp. No.	Ar	\(\lambda_{\text{max}}\)	\(\lambda_{\text{max}}\)	IR (KBr) cm\(^{-1}\)
H7		258 377	3408	1438 1269 1123
H8		245 380	3477	1442 1232 1111
H9		221 339	3473	1441 1290 1157
H10		208 383	3388	1421 1252 1153
H11		230 367	3386	1441 1284 1144

Table (5): Elemental analysis of some of the prepared compounds.

Comp. No.	Molecular Formula	Found	Calculated						
		C%	H%	N%	O%	C%	H%	N%	O%
H1	C\(_{15}\)H\(_{12}\)N\(_{3}\)O\(_5\)SNa	48.67 3.20 11.40 21.64	48.78 3.28 11.38 21.66						
H2	C\(_{21}\)H\(_{17}\)N\(_{4}\)O\(_6\)SNa	56.81 3.82 12.70 14.43	56.75 3.86 12.61 14.40						
H5	C\(_{22}\)H\(_{17}\)N\(_{4}\)O\(_6\)SNa	54.11 3.59 11.34 19.67	54.10 3.51 11.47 19.65						
H7	C\(_{21}\)H\(_{17}\)N\(_{3}\)O\(_5\)SNa	47.42 3.17 20.95 18.08	47.37 3.22 21.04 18.03						
H8	C\(_{21}\)H\(_{17}\)N\(_{7}\)O\(_4\)SNa	48.26 3.27 18.83 12.30	48.33 3.28 18.79 12.26						
H11	C\(_{21}\)H\(_{19}\)N\(_{8}\)O\(_3\)SNa	50.10 3.74 22.39 4.55	50.20 3.81 22.30 4.58						

Biological activity [32]:

The antimicrobial activity of the synthesized compounds (H1-H11) were examined by the agar diffusion method using two different bacterial species *Staphylococcus aureus* and *Pseudomonas aeruginosa*. The results indicated that some of the assayed compounds showed antimicrobial activity against
Synthesis, Characterization and Biological Activity Study of New Compounds Tetrazole Derivatives Azo-Schiff Base

Hiba Ibrahim Abdulla AL-Joubory Khalid Mohamad Motny Al-janaby

the used bacterial. Antibacterial activity of compounds (H1 and H9) is given in fig (13) and (14).

Table (6): Antibacterial activity of some of the prepared compounds.

Comp. No.	Conc. mg/ml	Pseudomonas aeruginosa	Staphylococcus aurous
H1	0.0001	-	-
	0.001	+	-
	0.01	++	-
H2	0.0001	+	-
	0.001	++	+
	0.01	+++	++
H3	0.0001	+	+
	0.001	+++	++
	0.01	++	++
H4	0.0001	+	+
	0.001	+++	++
	0.01	+++	++
H5	0.0001	-	-
	0.001	+	+
	0.01	++	+
H6	0.0001	-	-
	0.001	+	+
	0.01	++	+
H7	0.0001	+	-
	0.001	++	+
	0.01	+++	++
H8	0.0001	-	-
	0.001	-	+
	0.01	-	+++
H9	0.0001	+	-
	0.001	++	-
	0.01	++	-
H10	0.0001	+	-
	0.001	++	+
	0.01	++	+++
H11	0.0001	+	-
	0.001	++	+
	0.01	+++	+++

(-) = No inhibition
(++) = Inhibition zone (15-25) mm
(++) = Inhibition zone (10-15) mm
(++) = Inhibition zone (25-30) mm
Synthesis, Characterization and Biological Activity Study of New Compounds Tetrazole Derivatives Azo-Schiff Base

Hiba Ibrahim Abdulla AL-Joubory Khalid Mohamad Motny Al-janaby

Table (7): Antibacterial efficacy of control treatments (antibiotics) in the growth of a number of negative and positive bacteria (mm).

No.	Name	*Pseudomonas aeruginosa*	*Staphylococcus aureus*
1	Amoxicillin	17	\(\checkmark \)
2	Ampicillin	18	15
3	Ciprofloxacine	12	16
4	Blank disk	\(\checkmark \)	\(\checkmark \)

Fig (1): FT-IR spectrum of compound [H1].

Fig (2): FT-IR spectrum of compound [H2].
Synthesis, Characterization and Biological Activity Study of New Compounds Tetrazole Derivatives Azo-Schiff Base
Hiba Ibrahim Abdulla AL-Joubory Khalid Mohamad Motny Al-Janaby

Fig (3): FT-IR spectrum of compound [H3].

Fig (4): FT-IR spectrum of compound [H4].
Synthesis, Characterization and Biological Activity Study of New Compounds Tetrazole Derivatives Azo-Schiff Base
Hiba Ibrahim Abdulla AL-Joubory Khalid Mohamad Motny Al-janaby

Fig (5): FT-IR spectrum of compound [H5].
Synthesis, Characterization and Biological Activity Study of New Compounds Tetrazole Derivatives Azo-Schiff Base
Hiba Ibrahim Abdulla AL-Joubory Khalid Mohamad Motny Al-janaby

Fig (6): FT-IR spectrum of compound [H6].
Synthesis, Characterization and Biological Activity Study of New Compounds Tetrazole Derivatives Azo-Schiff Base
Hiba Ibrahim Abdulla AL-Joubory Khalid Mohamad Motny Al-janaby

Fig (7): FT-IR spectrum of compound [H8].
Synthesis, Characterization and Biological Activity Study of New Compounds Tetrazole Derivatives Azo-Schiff Base
Hiba Ibrahim Abdulla AL-Joubory Khalid Mohamad Motny Al-janaby

Fig (8): FT-IR spectrum of compound [H9].
Fig (9): FT-IR spectrum of compound [H10].
Synthesis, Characterization and Biological Activity Study of New Compounds Tetrazole Derivatives Azo-Schiff Base
Hiba Ibrahim Abdulla AL-Joubory Khalid Mohamad Motny Al-Janaby

Fig (10): FT-IR spectrum of compound [H11].

Fig (11): 1H-NMR spectrum of compound [H2].
Synthesis, Characterization and Biological Activity Study of New Compounds Tetrazole Derivatives Azo-Schiff Base

Hiba Ibrahim Abdulla AL-Joubory Khalid Mohamad Motny Al-janaby

Fig (12): 1H-NMR spectrum of compound [H11].

Fig (13): Antibacterial activity of compounds compounds [H1] against *Pseudomonas aeruginosa*.

Fig (14): Antibacterial activity of [H9] against *Staphylococcus aurous*.
Refrains:
1. Yan,L; Patrick,O and Dolphin,D.J.(2009).Org.Chem.; 74(9):5237-5243.
2. Turcas,C.V and Sebe,I.(2012). U.P.B.Sci.Bull.; 74(3):109-118.
3. Karic,F; Sener,I and Deligoz,H.(2004). Dyes and Pigments.; 62(7)133-141.
4. El-Sonbati,A.Z; Belal,A.A.M; El-Wakeel,I.S and Hussien,M.A.(2004). Spectrochim.Acta; 60(5)965-970.
5. Jarraphour,A and Zare, M.(2004). ;Molbank, 377(16) 1-3 .
6. Jarraphour, A;Motamedifar, M;Pakshir, K; Hadi, N and Zarei,M.(2004).Molecules; 9 (1)815-824 .
7. Chandra, K.B and Kaushik, A.(2012).;J. Ph, ; 4(5) 1873-1878.
8. Anita, S and Manish, K.S.(2013). ; Chem. Sci. Trans; 2(3) 871-876.
9. Abdel-Salam ,F.H.(2010). ;J. S. D.; 13(7) 423-431.
10.Santosh, K;Niranjan, M.S; Chaluvaraju ,K.C; Jamakhandi C.M. and Dayanand,K.(2010).; J. C. Ph. Res.; 1(11), 39-42.
11.Kumar, P.P and Rani, B.L.(2011); Int. J. Chem. Tech. Res; 3(1) 155-160.
12.Sathe, B.S; Jayachandran, E and Jagrap, V.A.(2011).; Res. J. Pharm. Bio. And Chem. Sci.; 2(8) 510-515.
13.Butler, R. N; Katritzky, A.R.; Rees, C.W; Scriven, E. F. V.(1996).;Heterocyclic Chemistry II, p.94, Pergamon, Oxford, UK.
14.Bladin, J. A.(1885).; Berichte der deutschen chemischen Gesellschaft; 18(1) 1544-1551.
15.Katritzky, A. R.; Cai, C; Meher, N. K.(2007).; Synthesis, 8(4) 1204-1208.
16.Joule, J. A;Mills, K.(2010).;Heterocyclic Chemistry, 5th Et., John Wiley & Sons Ltd, United Kingdom , 561(2010).
Synthesis, Characterization and Biological Activity Study of New Compounds Tetrazole Derivatives Azo-Schiff Base
Hiba Ibrahim Abdulla AL-Joubory Khalid Mohamad Motny Al-janaby

17. Xue, H; Gao, Y; Twamley, B; Shreeve, J. N. M.(2005); Adv. Mater.; 17(17) 2142–2146.
18. Sabatini, J. J; Raab, J. M; Hann Jr, R. K.; Damavarapu, R.; Klapçtke, T.M.(2012); Chem. Asian. J;7(8) 1657-1663.
19. Ford, R. E; Knowles, P; Lunt, E; Marshall, S. M; Penrose, A. J; Ramsden, C. A; Summers, J. H; Walker, J. L.; Wright, D. E.(1986); J. Med. Chem., 29(3) 538-549.
20. Rajasekaran, A; Thampi, P.P.(2004); Eu. J.O. M. Ch; 39(9) 273–279.
21. Uchida, M; Komatsu, M; Morita, S; Kanbe, T; Yamasaki, K; Nakagawa, K.(1989) Chemical & Pharmaceutical Bulletin; 37(4) 958-961.
22. Al-Hassani, M.A.(2016); B.Sc. J; 13(4) 793-805
23. Faraj, F.L; Ali, W.B; Jassim, A.S and Ali, R.T.(2017); D. J. P. Sc.; 2(1) 262-277.
24. Chenjie, B.(2017); C. O. Sy; 14(4) 582-589.
25. Mahmood, W.A.R..(2017); B. Sc. J; 14(3) 564-574.
26. Garrol, L; Lambert, H; Grady, D and Water Worth, P. (1981); Antibiotic and Chemotherapy 5th Ed., Churchill Livingstone New York.
27. Mahendra, K.R.(2017); J. O. Ch. Bio .Ph. Sc; 7(2) 334.
28. Roa, C.R.N.(1961); Ultra Violet and Visible Spectroscopy Chemical Application, Butter – Woths Ltd, 52.
29. Sorates, G.(1980); Infrared Characteristic group Frequencies, John Wiely and Sons. Ltd.
30. Vogle, I.(1972); Text-book for practical organic chemistry Third addition Longman.
31. Silverstein, M.R.(1998); Spectrometric Identification of Organic Compounds, 7th ed., John Wiley and Sons, New York.
32. Parikh, M.V.(1973); Absorption spectroscopy of organic molecules, Weslely Publ. Co., London.