A Structure Based Drug Designing of Bioactive Compounds of *Gracilaria edulis* against Virulent Bacterial Enzyme Aureolysin

Abhishek Biswal R, Vivek Pazhamalai*

Department of Bio-Engineering, School of Engineering, Vels Institute of Science, Technology and Advanced Studies (VISTAS), Chennai, India

ABSTRACT

The bioactive compounds of *Gracilaria edulis* were determined by using Gas Chromatography Mass spectroscopy. The drug compounds were screened for analyzing the inhibition potential against the virulent bacterial enzyme. In this research, the protein responsible for bacterial infection was docked against the drug compounds of *Gracilaria edulis*. The data of the virulent enzymes were studied and retrieved from PDB. The bioactive compounds were screened by Lipinski rule of five and ADMET properties. Using Autodock 4.2.6 the molecular docking analysis were done against virulent enzymes and was visualized by discovery studio 3.1. The bioactive compound eugenol with binding energy -4.42 Kcal/mol followed by 2 Heptene, 2,4,4,6 tetramethyl -3.89 Kcal/mol and 1,2-Propanediol 2.77 Kcal/mol. The hydrogen and vanderwaals interaction of amino acids were studied. This research work mainly focuses on targeting the virulent enzymes that can reduce clinical costs by designing novel drug.

Keywords: Molecular docking, *Gracilaria edulis*, ADMET properties, Eugenol, Hydrogen and vanderwaals interaction.

DOI: 10.25004/IJPSDR.2019.110512

INTRODUCTION

Gracilaria edulis that comes under genus Rhodophyta serves as an edible food material for humans along with various species. The economic importance of red seaweed is agarophyte that contains numerous amount of agar. *Gracilaria edulis* (Wild) occurs in the Indian ocean (East Africa, Laccadive islands, India, Sri Lanka) and in the pacific ocean (China, Japan, Micronesia, north-eastern Australia). In South East Asia, it is found in Burma (Myanmar). In India, the Gracilariaeae represents twelve types of species. Of these, *Gracilaria corticata* commonly grows in intertidal zone on rocky part. This was recorded in India in scanty literature is available of this species. [1] In India, Gracilaria is confined to two regions of coasts. Studies on Gracilaria from the coast of south east India are mainly concentrated on localities of Madras, Mahabalipuram, Pamban, Mandapum, Tranquebar, Cape Comorin, Tuticorin, Krusadi and Andaman coasts. Geographically and ocenographically, the west coast region of India constitutes the long stretch of shore line between Karachi (Pakistan) and Cape Comorin (India).
The whole plant of *G. edulis* has excellent applications in medical and other fields. The red seaweed *Gracilaria edulis* contains various types of antimicrobial activities. This plant can be used to feed animals, as fertilizer for plants and also for water purification. The traditional use of this plant is to cure knee joints and to treat virulent microbes. [4] The biochemical characterization of carbohydrates, lipid and protein were done in *Gracilaria edulis* which shows the high presence of carbohydrate and protein. The quantitative analysis of phenol shows 250-300 mg/ml, carbohydrate shows 200-160µg/ml. [5-6]

The whole plant was dried and used for various types of medical therapies. *Gracilaria edulis* mainly cures bacterial, fungal and diabetic diseases. Various types of extract like methanol, ethanol, chloroform, hexane, isoamyl alcohol and propanol were used for performing activities against *Pseudomonas aeruginosa, Salmonella typhi, Klebsiella pneumonia and Staphylococcus aureus*. The isoamyl alcohol shows better inhibition activity against *Staphylococcus aureus* with 20µg/ml, *Salmonella typhi* as 20µg/ml, *Klebsiella pneumonia* as 40µg/ml and *Pseudomonas aeruginosaas* 20µg/ml. This plant shows good potential against various types of pathogenic infections. *Gracilaria edulis* also contains food grade agar utilized for thickening or stabilizing agents in food production industries. The whole plants involves in the treatment of constipation, thyroid disorders, enteritis and also for urinary infection. The red algae also have the quality to feed sea creatures like shrimps and fishes. Therefore the studies aimed to dock the virulent bacterial enzyme against the drug compounds determined from *Gracilaria edulis*. [7-8]

MATERIALS ANS METHODS

Determination of bioactive compounds from *Gracilaria edulis* by Gas Chromatography Mass Spectroscopy

Gracilaria edulis, which is mainly an edible plant, contains bioactive organic compounds. GCMS is carried out using the Shimadzu QP2000 A equipment. The phytoconstituents obtained from *Gracilaria edulis* are Phthalic acid, Nonane, 1,2-Propanediol, Sulfurous acid, Undecane, Eugenol and 2 Heptene 2,4,4,6 tetramethyl compounds reported by Abimannan et. al., 2018. [9] These compounds have the potential might play a major role for antibacterial and antioxidant activities. The major group of compounds consists of phenolic stretches, straight hydrocarbon and ester stretches. No reports are available for *Gracilaria edulis* against the virulent bacterial enzyme Aureolysin. The bioactive compounds were analyzed for its drug properties by docking against the virulent enzyme. The structure based ligand shows the potential docking interaction against the drug molecules. The active sites of the docked compound were visualized by visualize software. The Lipinski rule of five plays a major role in screening the drug ability. The rule comprises of five criteria namely logP (<±5.6), Number of hydrogen donors (<10), Number of hydrogen donors (<5), molecular weight (<500) and molar refractivity (40-130). It elucidate the drug likeness of a compound based on the consuming the drug orally. [10]

Enzyme targets

Enzyme Aureolysin (PDB Id: IBQB) is a drug target implemented for docking. The chain A is used for docking by removing the water molecules and heteroatoms. Confirmational search of the structure was done for predicting the chainsuming discovery studio.

Staphylococcus aureus Aureolysin enzyme

Aureolysin is an extracellular metalloprotei

These compounds might play a major role for antibacterial and antioxidant activities. The major group of compounds consists of phenolic stretches, straight hydrocarbon and ester stretches. No reports are available for *Gracilaria edulis* against the virulent bacterial enzyme Aureolysin. The bioactive compounds were analyzed for its drug properties by docking against the virulent enzyme. The structure based ligand shows the potential docking interaction against the drug molecules. The active sites of the docked compound were visualized by visualize software. The Lipinski rule of five plays a major role in screening the drug ability. The rule comprises of five criteria namely logP (<±5.6), Number of hydrogen donors (<10), Number of hydrogen donors (<5), molecular weight (<500) and molar refractivity (40-130). It elucidate the drug likeness of a compound based on the consuming the drug orally. [10]

Enzyme targets

Enzyme Aureolysin (PDB Id: IBQB) is a drug target implemented for docking. The chain A is used for docking by removing the water molecules and heteroatoms. Confirmational search of the structure was done for predicting the chainsuming discovery studio.

Staphylococcus aureus Aureolysin enzyme

Aureolysin is an extracellular metalloprotei

These compounds might play a major role for antibacterial and antioxidant activities. The major group of compounds consists of phenolic stretches, straight hydrocarbon and ester stretches. No reports are available for *Gracilaria edulis* against the virulent bacterial enzyme Aureolysin. The bioactive compounds were analyzed for its drug properties by docking against the virulent enzyme. The structure based ligand shows the potential docking interaction against the drug molecules. The active sites of the docked compound were visualized by visualize software. The Lipinski rule of five plays a major role in screening the drug ability. The rule comprises of five criteria namely logP (<±5.6), Number of hydrogen donors (<10), Number of hydrogen donors (<5), molecular weight (<500) and molar refractivity (40-130). It elucidate the drug likeness of a compound based on the consuming the drug orally. [10]

Enzyme targets

Enzyme Aureolysin (PDB Id: IBQB) is a drug target implemented for docking. The chain A is used for docking by removing the water molecules and heteroatoms. Confirmational search of the structure was done for predicting the chainsuming discovery studio.

Staphylococcus aureus Aureolysin enzyme

Aureolysin is an extracellular metalloprotei

These compounds might play a major role for antibacterial and antioxidant activities. The major group of compounds consists of phenolic stretches, straight hydrocarbon and ester stretches. No reports are available for *Gracilaria edulis* against the virulent bacterial enzyme Aureolysin. The bioactive compounds were analyzed for its drug properties by docking against the virulent enzyme. The structure based ligand shows the potential docking interaction against the drug molecules. The active sites of the docked compound were visualized by visualize software. The Lipinski rule of five plays a major role in screening the drug ability. The rule comprises of five criteria namely logP (<±5.6), Number of hydrogen donors (<10), Number of hydrogen donors (<5), molecular weight (<500) and molar refractivity (40-130). It elucidate the drug likeness of a compound based on the consuming the drug orally. [10]

Enzyme targets

Enzyme Aureolysin (PDB Id: IBQB) is a drug target implemented for docking. The chain A is used for docking by removing the water molecules and heteroatoms. Confirmational search of the structure was done for predicting the chainsuming discovery studio.

Staphylococcus aureus Aureolysin enzyme

Aureolysin is an extracellular metalloprotei

These compounds might play a major role for antibacterial and antioxidant activities. The major group of compounds consists of phenolic stretches, straight hydrocarbon and ester stretches. No reports are available for *Gracilaria edulis* against the virulent bacterial enzyme Aureolysin. The bioactive compounds were analyzed for its drug properties by docking against the virulent enzyme. The structure based ligand shows the potential docking interaction against the drug molecules. The active sites of the docked compound were visualized by visualize software. The Lipinski rule of five plays a major role in screening the drug ability. The rule comprises of five criteria namely logP (<±5.6), Number of hydrogen donors (<10), Number of hydrogen donors (<5), molecular weight (<500) and molar refractivity (40-130). It elucidate the drug likeness of a compound based on the consuming the drug orally. [10]

Enzyme targets

Enzyme Aureolysin (PDB Id: IBQB) is a drug target implemented for docking. The chain A is used for docking by removing the water molecules and heteroatoms. Confirmational search of the structure was done for predicting the chainsuming discovery studio.

Staphylococcus aureus Aureolysin enzyme

Aureolysin is an extracellular metalloprotei

These compounds might play a major role for antibacterial and antioxidant activities. The major group of compounds consists of phenolic stretches, straight hydrocarbon and ester stretches. No reports are available for *Gracilaria edulis* against the virulent bacterial enzyme Aureolysin. The bioactive compounds were analyzed for its drug properties by docking against the virulent enzyme. The structure based ligand shows the potential docking interaction against the drug molecules. The active sites of the docked compound were visualized by visualize software. The Lipinski rule of five plays a major role in screening the drug ability. The rule comprises of five criteria namely logP (<±5.6), Number of hydrogen donors (<10), Number of hydrogen donors (<5), molecular weight (<500) and molar refractivity (40-130). It elucidate the drug likeness of a compound based on the consuming the drug orally. [10]

Enzyme targets

Enzyme Aureolysin (PDB Id: IBQB) is a drug target implemented for docking. The chain A is used for docking by removing the water molecules and heteroatoms. Confirmational search of the structure was done for predicting the chainsuming discovery studio.

Staphylococcus aureus Aureolysin enzyme

Aureolysin is an extracellular metalloprotei
dosage of human as well as a rat. The evaluation was done by Swiss Institute of Bioinformatics (http://www.sib.swiss) to calculate the behaviour of drug with Lipophilicity. [13]

Discovery studio 3.1 visualizer

This software is mainly used to visualize the interactions of docked images with conformational search. The 2D interactions and 3D interactions of the docking analysis will be visualized along with the surface image. The ligand interactions with amino acid coding that contains vanderwaals interaction and hydrogen bonding will be visualized in 2D interactions. The surface images were also visualized which shows the confirmations of structure based ligand docking against bacterial enzyme.

RESULTS AND DISCUSSION

The molecular docking analysis of each compound differentiates the binding energy and drug likeness against virulent bacterial enzymes. The bioactive compounds were subjected to Lipinski rule of five as shown in Table 1. As the plant is edible every compound satisfies the Lipinski rule of five. The compound sulfuric acid and 1, 2-propanediol have low lipophilicity that can be easily suitable for gastrointestinal absorption.

ADMET properties

The bioactive compounds were screened for ADMET properties which state the standard of the drug molecules present. The intestinal absorption parameters of the compound were observed which results the solubility of water in the intestine. The compound 2 Heptene 2,4,4,6 tetramethyl shows the least absorption of water solubility. The p-glycoprotein inhibitor and substrate have no response against the drug a shown in Table 2.

The distribution properties of the compounds were screened in which the blood brain permeability shows the better result with less permeability. The central nervous system shows the negative result which means the compounds have poor permeability which was shown in Table 3.

The metabolism factor of cytochrome p450 was screened to metabolize potential toxic compounds. The compounds were screened for the drug likeness against the liver cells. The results were shown in Table 4 with both substrate and inhibitor of compounds.

The excretion and the toxicity of the compounds were screened by analyzing the dosage of the drug for human and rat. The hepatotoxicity level as well as skin sensitization level was checked which was shown in Table 5. The dosage level of each compound varies in which the compound 1,2-propanediol shows the highest dosage level in rat as well as human.

Table 1: Screening of compounds by Lipinski rule of five
Compound Name

Eugenol
Nonane
Undecane
2 Heptene
2,4,4,6 tetramethyl Sulfurous acid
Phthalic acid
1,2-Propanediol

| Table 2: Absorption criteria of bioactive compounds |
|-----------------|----------------|-----------------|-----------------|----------------|----------------|
Compound Name	Water solubility (log mol/L)	Caco2 permeability (log Papp in 10^-6 cm/sec)	GI absorpt ion (%)	Skin permeability (log Kp)	P-glycoprotein inhibitor
Eugenol	-2.25	1.559	92.04	-2.207	No
Nonane	-4.69	1.381	93.45	-0.933	No
Undecane	-6.15	1.379	92.76	-1.115	No
2 Heptene	-5.119	1.423	94.06	-0.985	No
2,4,4,6 tetramethyl Sulfurous acid	0.859	1.803	87.69	-2.77	No
Phthalic acid	-2.668	0.641	75.06	-2.735	No
1,2-Propanediol	1.045	1.554	86.47	-4.000	No

| Table 3: Distribution criteria of bioactive compounds |
|-----------------|----------------|----------------|-----------------|----------------|----------------|
Compound Name	VDs (human) (log (L/kg))	Fraction unbound (human) (Fu)	BBB permeability (log BB)	CNS permeability (log PS)	
Eugenol	0.24	0.251	0.374	-2.007	
Nonane	0.425	0.357	0.807	-1.799	
Undecane	0.537	0.247	0.844	-1.690	
2 Heptene	0.369	0.324	0.759	-1.711	
2,4,4,6 tetramethyl Sulfurous acid	-0.923	0.808	-0.469	-3.083	
Phthalic acid	-1.775	0.497	-0.038	-2.891	
1,2-Propanediol	-0.341	0.824	-0.302	-2.962	

| Table 4: Metabolism criteria of bioactive compounds |
|-----------------|----------------|----------------|----------------|----------------|----------------|
Compound Name	CYP2 D6 substr ate	CYP3 A4 substrate	CYP1 A2 inhibitor	CYP2 C19 inhibitor	CYP2 C9 inhibitor
Eugenol	No	No	Yes	No	No
Nonane	No	No	No	No	No
Undecane	No	No	No	No	No
2 Heptene	No	No	No	No	No
2,4,4,6 tetramethyl Sulfurous acid	No	No	No	No	No
Phthalic acid	No	No	No	No	No
1,2-Propanediol	No	No	No	No	No
Table 5: Excretion and Toxicity criteria of bioactive compounds

Compound Name	Renal OCT2 substrate	AMES toxicity	Max. tolerated dose (human) (Log mg/kg/day)	hERG I inhibitor	Oral Rat Acute Toxicity (LD50) (mol/kg)	Oral Rat Chronic Toxicity (LOAEL) (Log mg/kg)	Liver Toxicity	Skin Sensitisation
Eugenol	No	Yes	1.024	No	2.118	2.049	No	Yes
Nonane	No	No	0.549	No	1.683	2.528	No	No
Undecane	No	No	0.389	No	1.597	2.698	No	Yes
2-Heptene 2,4,4,6-tetramethyl	No	No	0.667	No	1.658	2.565	No	Yes
Sulfurous acid	No	No	1.394	No	1.963	2.594	No	No
Phthalic acid	No	No	0.582	No	1.449	2.165	No	No

Table 6: Docking confirmation of bioactive compounds of *Gracilaria edulis*

Compound Name	Binding energy	Vanderwaals Interaction	No. of hydrogen bonds	Hydrogen interactions	Total no of residues
Eugenol	-4.42	ALA 116, ASN 114, GLU 145, VAL 414, HIS 144, MET 185, LEU 199, ARG 200, HIS 148, TYR 159, GLU 168	2	HIS 228, ALA 115	ALA 116, ASN 114, GLU 145, VAL 414, HIS 144, MET 185, LEU 199, ARG 200, HIS 148, TYR 159, GLU 168
Nonane	-2.71	TRP 117, ALA 115, ALA 116, GLU 145, ARG 200, HIS 148, LEU 199, VAL 141, MET 185, HIS 144, HIS 228, GLU 168, TYR 159	0	0	TRP 117, ALA 115, ALA 116, GLU 145, ARG 200, HIS 148, LEU 199, VAL 141, MET 185, HIS 144, HIS 228, GLU 168, TYR 159
Undecane	-2.77	VAL 141, GLU 145, MET 185, ARG 200, LEU 199, HIS 148, TRP 117, ALA 116, HIS 228, ALA 115, ASN 114, HIS 144	0	0	VAL 141, GLU 145, MET 185, ARG 200, LEU 199, HIS 148, TRP 117, ALA 116, HIS 228, ALA 115, ASN 114, HIS 144
2-Heptene 2,4,4,6-tetramethyl	-3.89	ALA 116, ASN 114, HIS 148, ALA 115, ARG 200, HIS 228, HIS 144, LEU 144, LEU 199, MET 185, VAL 141, GLU 145, TYR 159	0	0	ALA 116, ASN 114, HIS 148, ALA 115, ARG 200, HIS 228, HIS 144, LEU 144, LEU 199, MET 185, VAL 141, GLU 145, TYR 159
Sulfurous acid	-3.82	HIS 228, LEU 145, LEU 148, GLU 145, VAL 141, TYR 148	0	0	HIS 228, LEU 145, LEU 148, GLU 145, VAL 141, TYR 148
Phthalic acid	-0.50	HIS 148, LEU 199, ASN 114, ALA 115, VAL 141, HIS 144	4	MET 185, GLU 168, ARG 200, HIS 228	MET 185, GLU 168, ARG 200, HIS 228
1,2-Propanediol	-2.88	GLU 145, HIS 144, HIS 228	4	TYR 159, GLU 168, ARG 200, HIS 228	TYR 159, GLU 168, ARG 200, HIS 228

All the compounds encouraged the binding strategies among the virulent protein target. The best docking score observed was in eugenol at -4.42 Kcal/mol. The interaction shows the better hydrogen interactions with 2 bond formation and the hydrogen interaction amino acids are HIS 228, ALA 115 followed by 2-Heptene 2,4,4,6 tetramethyl with binding score -3.89 Kcal/mol. The maximum hydrogen interactions were found in Phthalic acid and 1,2-Propanediol. The compound named eugenol exhibit inhibitory activity when compared to standard drug. The standard drug used here is vancomycin with binding score +2.78. The docking studies also imply that the amino acids ASP,
THR, TYR LEU have better binding interactions. These studies will illustrate the novel drug design against the virulent bacterial enzymes as shown in Table 6 and Figure 2-4. These drug compounds imply the action of novel drug antibiotic that target the Aureolysin from staphylococcus aureus.

References

1. Chennumbhotla VS, Kaliaperumal N, Kalimuthu S. Culture of *Gracilaria edulis* in the inshore waters of Gulf of Mannar (Mandapam). Indian Journal of Fisheries. 1978;25(1&2):228-9.
2. Chennumbhotla VS, Kaliaperumal N, Ramalingam JR, Kalimuthu S. Growth, reproduction and spore output in *Gracilaria foliifera* (Forskal) Boergesen and Gracilariosis sjostedtii (Kylin) Dawson around Mandapam. Indian Journal of Fisheries. 1986;33(1):76-84.
3. Kolanjinarthan K, Saranraj P. Pharmacological efficacy of marine seaweed *Gracilaria edulis* extracts against clinical pathogens. Global Journal of Pharmacology. 2014;8(2):268-74.
4. Arulkumar A, Rosemary T, Paramasivam S, Rajendran RB. Phytochemical composition, *in vitro* antioxidant, antibacterial potential and GC-MS analysis of red seaweeds (*Gracilaria corticata* and *Gracilaria edulis*) from Palk Bay, India. Biocatalysis and agricultural biotechnology. 2018 Jul 1;15:63-71.
5. Sakhthivel R, Muniasamy S, Archunan G, Devi KP. *Gracilaria edulis* exhibit antiproliferative activity against human lung adenocarcinoma cell line A549 without causing adverse toxic effect on *in vitro* and *in vivo*. Food & function. 2016;7(2):1155-65.
6. De Almeida CL, Falcio DS, Lima DM, Gedson R, Montenegro DA, Lira NS, Athayde-Filho D, Petronio F, Rodrigues LC, De Souza MD, Barbosa-Filho JM. Bioactivities from marine algae of the genus Gracilaria. International journal of molecular sciences. 2011 Jul;12(7):4550-73.
7. Sivanandhan G, Arunachalam C, Selvaraj N, Sulaiman AA, Lim YP, Ganapathi A. Expression of important pathway genes involved in withanolides biosynthesis in hairy root culture of Withania somnifera upon treatment with *Gracilaria edulis* and Sargassum wightii. Plant Physiology and Biochemistry. 2015 Jun 1;91:61-4.
8. Eahamban K, Marimuthu J. Preliminary phytochemical, UV-VIS, HPLC and anti-bacterial studies on *Gracilaria corticata* J. Ag. Asian Pacific Journal of Tropical Biomedicine. 2012 Feb 1;2(2):5568-74.
9. Bhal SK, Kassam K, Peirson IG, Pearl GM. The Rule of Five revisited: applying log D in place of log P in drug likeness filters. Molecular pharmacoeutics. 2007 Aug 6;4(4):556-60.
10. Banbula A, Potempa J, Travis J, Fernandez-Catalan C, Mann K, Huber R, Bode W, Medrano FJ. Amino-acid sequence and three-dimensional structure of the Staphylococcus aureus metalloproteinase at 1.72 Å resolution. Structure. 1998 Sep 15;6(9):1185-93.
11. da Silva CH, Campo VL, Carvalho I, Taft CA. Molecular modeling, docking and ADMET studies applied to the design of a novel hybrid for treatment of Alzheimer's disease. Journal of molecular graphics and modelling. 2006 Oct 1;25(2):169-75.
12. Biswal AR, Mirunalini K, Jayshree P, Pazhamalai V. Molecular Docking Analysis of Bioactive Compounds of *Acacia concinna* against Fungal Protein. Journal of Pharmaceutical Sciences and Research. 2019 Apr 1;11(4):1216-22.

HOW TO CITE THIS ARTICLE: Biswal RA, Pazhamalai V. A Structure Based Drug Designing of Bioactive Compounds of *Gracilaria edulis* against Virulent Bacterial Enzyme Aureolysin. Int. J. Pharm. Sci. Drug Res. 2019; 11(5): 226-230. DOI: 10.25004/IJPSDR.2019.110512