Announcing the novel class of GABA–A receptor selective positive allosteric modulator antidepressants

Olumuyiwa John Fasipe*,1, Olalekan Ayodele Agede2 & Adenike Christiana Enikuomehin3

1Department of Clinical Pharmacology & Therapeutics, Faculty of Basic Clinical Sciences, University of Medical Sciences, Ondo City, Ondo State, Nigeria
2Department of Clinical Pharmacology & Therapeutics, Faculty of Basic Clinical Sciences, University of Ilorin, Ilorin, Kwara State, Nigeria
3Department of Internal Medicine, Faculty of Clinical Sciences, University of Medical Sciences, Ondo City, Ondo State, Nigeria

*Author for correspondence: fasipe.olumuyiwa@yahoo.com

The novel class of GABA–A receptor selective positive allosteric modulator antidepressants (GASPAMAs) has brought forth significant improvement and positive impact to the management of patients with depression disorders in clinical practice.

First draft submitted: 22 June 2020; Accepted for publication: 21 October 2020; Published online: 12 November 2020

Keywords: brexanolone • ganaxolone • neuroactive steroids • novel class of GABA–A receptor selective positive allosteric modulator antidepressants • postpartum depression disorder • premenstrual dysphoric disorder • zuranolone

The majority of currently available clinical antidepressant drugs increases serotonergic, noradrenergic and/or dopaminergic neurotransmission in the central nervous system (CNS) [1–3]. These currently available antidepressants exhibit their unique pharmacodynamics by 14 different distinct pharmacological mechanisms of actions [1–9]. Presently, 11 of the 14 different classes of antidepressants accomplish their pharmacological actions by blocking one or more of the reuptake transporter pumps and/or blocking some certain specific subtype of receptors for any of the three monoaminergic (i.e., serotonergic/noradrenergic/dopaminergic) neurotransmission systems [1–3]. The 12th class inhibits the enzyme monoamine oxidase [1–3], the 13th class works by blocking the N-methyl-D-aspartate (NMDA) glutamatergic ionoreceptor [1–5], while the 14th class works by acting as a GABA–A receptor selective positive allosteric modulator antidepressant (GASPAMA) [5–9].

The novel class of GABA–A receptor selective positive allosteric modulator antidepressants (GASPAMAs) has brought forth significant improvement and positive impact to the management of patients with depression disorders in clinical practice [5–9]. There are growing body of evidences that the extrasynaptic sites gamma aminobutyric acid (GABA) neurotransmission system (mediated via extrasynaptic GABA–A receptors on the glutamatergic principal neurons) at the cortical and subcortical neuroaxes play a major central role in the pathogenesis of depressive disorders most especially postpartum depression disorder (PPD) and certain neuropsychiatric condition such as premenstrual dysphoric disorder (PMDD), respectively [5–9].

Regarding PPD; it has been implicated that a sudden drop in the plasma level of progesterone hormone following parturition will unavoidably lead to a corresponding decrease in the level of allopregnanolone neuroactive steroid in the entire CNS, because the placenta synthesizes the vast majority and substantial amount of the progesterone hormone secreted during the late first trimester, entire second trimester and third trimester of pregnancy period. So, during the postpartum period, there is a drastic reduction in the levels of both progesterone hormone and allopregnanolone neuroactive steroid as a result of placenta extrusion during parturition process [5–9].

Concerning PMDD; it has also been implicated that a rapid decline in the plasma level of progesterone hormone after the usual peak period on the 21st day post-last menstrual period following ovulation occurrence in the absence of fertilization/conception will unavoidably lead to a corresponding decrease in the level of allopregnanolone neuroactive steroid in the entire CNS, because the ovarian corpus luteum synthesizes the vast majority and...
substantial amount of the progesterone hormone secreted during the luteal phase of menstrual cycle period. So, during the last/late second-half of the luteal phase of menstrual cycle period that commences at the end of 21st day post-last menstrual period till the appearance/manifestation of endometrial shedding with accompanied menstrual flow occurrence; there is a drastic reduction in the levels of both progesterone hormone and allopregnanolone neuroactive steroid as a result of ovarian corpus luteum degeneration to form ovarian corpus albicans (that is, luteolysis process) during this late premenstrual flow occurrence period [5–9].

These aforementioned decrease in the level of allopregnanolone neuroactive steroid in the entire CNS during the postpartum period or during the last/late second-half of the luteal phase of menstrual cycle period in the absence of fertilization/conception will definitely result in abrupt withdrawal effect with disinhibition of the extrasynaptic GABA–A receptors located on the glutamatergic principal neuron projections at the prefrontal cortex and the hippocampal region. The malfunctioning of these glutamatergic neurotransmission circuit projections at the prefrontal cortex or hippocampal region seems to alter mood and affect control, thereby leading to depressive or anxiety state, respectively [5–9]. There are substantial evidences that GABA neurotransmitter is critically involved in the regulation of neural plasticity, resilience and neurogenesis [5–9]. The available evidences suggest that depressive disorders are significantly associated with the dysfunctional loss of efficient extrasynaptic sites GABAergic neurotransmissions inhibiting the glutamatergic principal neurons at the cortical and subcortical neuroaxes (i.e., prefrontal cortex and hippocampus); and that effective antidepressant therapy with a GABA–A receptor selective positive allosteric modulator antidepressant (GASPAMA) will increase extrasynaptic sites GABAergic neurotransmission activity, neurogenesis and synaptic connectivity across these cortical and subcortical areas [5–9]. The new class of GABA–A receptor selective positive allosteric modulator antidepressants (GASPAMAs) comprises of rapid–onset antidepressants that include novel agents such as brexanolone (also known as allopregnanolone) [8–14], zuranolone (SAGE-217 or S-812217) [8,9] and ganaxolone (CCD-1042) [5–9,15–18]. GASPAMAs have been postulated to act via positive allosteric modulation or selective activation of the allopregnanolone neuroactive steroid-allosteric binding sites localized in the extrasynaptic GABA–A receptors found on glutamatergic principal neurons at the prefrontal cortex or hippocampal neuroaxis to mediate antidepresant and anxiolytic effect, respectively. These extrasynaptic GABA–A receptors containing especially delta (δ) subunits for GASPAMA binding sites (delta [8]—GABA-A-PAMAs) exhibit the greatest potentiation in the cortical and subcortical areas involving the prefrontal cortex and hippocampus (that is, restricted brain localization), which mediate their antidepressant and anxiolytic actions, respectively; perhaps through extrasynaptic GABA-A receptor-dependent increase in coherent neuronal circuit activities with the enhancement of GABAergic inhibitory extrasynaptic potential (GABAergic IESP) output on the glutamatergic excitatory principal neurons projecting across the prefrontal cortex or hippocampal neuroaxis to mediate antidepressant or anxiolytic effect, respectively [5–9]. Furthermore, GASPAMAs bind to the allopregnanolone neuroactive steroid-allosteric binding sites of the extrasynaptic GABA–A receptors to positively modulate and open the chloride ion conduction channels, thereby resulting in the membrane hyperpolarization/hyperconduction process associated with persistent chloride anion flux through the extrasynaptic GABA-A receptors containing especially delta (δ) subunits for GASPAMA binding sites (delta [8]—GABA-A-PAMAs) that will result in the inhibition of glutamatergic neuronal excitation firing activities. This causes inhibitory effect on glutamatergic neurotransmission activities, and thereby reducing the chance of successful action potentials (depolarization) from occurring/generating [5–9].

Also, allopregnanolone has recently been found to be an agonist of the newly discovered membrane progesterone receptors (mPRs), including mPRα, mPRβ and mPRγ, with its activity at these receptors about a magnitude more potent than at the GABA–A receptor [8–14]. The action of allopregnanolone at these aforementioned mPRs may be related, in part, to its neuroprotective and antigonadotropic properties [8–14].

Allopregnanolone is an endogenous inhibitory pregnane neuroactive steroid. It is biosynthesized from progesterone into 5α-dihydroprogesterone by 5α-reductase type I enzyme. After that, 3α-hydroxysteroid dehydrogenase converts this intermediate into allopregnanolone. Allopregnanolone in the brain starts with the conversion of progesterone into 5α-dihydroprogesterone by 5α-reductase type I enzyme. After that, 3α-hydroxysteroid dehydrogenase converts this intermediate into allopregnanolone. Allopregnanolone in the brain is produced by cortical and hippocampus pyramidal neurons and pyramidal-like neurons of the basolateral amygdala [8–14].

Regarding biological functions, allopregnanolone and its other synthetic structural congeners such as zuranolone (SAGE-217 or S-812217) and ganaxolone (CCD-1042) possesses a wide array of effects, including, in no particular order: antidepressant, anxiolytic-sedative, anticonvulsant, stress-reducing, rewarding, prosocial, antiaggressive, prossexual, sedative, prosleep, cognitive, memory-impairment, analgesic, general anaesthetic, neuroprotective and neurogenic effects [5–14]. Fluctuations in the levels of allopregnanolone and the other neurosteroids seem to play an important role in the pathophysiology of mood, anxiety, PMDD, premenstrual syndrome, catamenial epilepsy and...
various other neuropsychiatric conditions [5–14]. During pregnancy, allopregnanolone and pregnanolone are involved in sedation and anesthesia of the fetus [5–14]. In fact, the novel class of GASPAMAs is the first class of antidepressant agents with the all in one combine pharmacologic properties of antidepressant, anxiolytic-sedative, anticonvulsant and general anesthetic effects in each of its member agents [5–14].

Brexanolone (allopregnanolone) [8–14] is a neurosteroid that has recently been approved by the US FDA in the year 2019 for use in the treatment of only PPD via intravenous infusion over a 60-h period under thorough medical supervision because of the risk of severe sedation, hypnosis, loss of consciousness and profound respiratory arrest. The commercial sales began in June 2019. The long hours of administration time, as well as the cost of US$34,000, have raised concerns about accessibility for many women with PPD [8–14]. While zuranolone (SAGE-217 or S-812217) [8,9] and ganaxolone (CCD-1042) [5–9,15–18] are presently still undergoing clinical trial for the treatment of PPD and major unipolar depression disorder (MDD) [5–9,15–18]. Also, these GASPAMAs will likely be effective for the treatment PMDD too; but clinical trials are yet to be conducted on this neuropsychiatric condition using any of these highlighted GASPAMA agents [5–14]. Ganaxolone (CCD-1042) is administered intravenously [5–9,15–18]. Zuranolone (SAGE-217 or S-812217) was developed as an improvement of allopregnanolone (brexanolone) with high oral bioavailability and a biological half-life suitable for once-daily administration [8,9]. As of October 2019, zuranolone is in Phase III clinical trials for MDD, PPD and insomnia and is in Phase II clinical studies for bipolar depression, essential tremor, and Parkinson’s disease [8,9]. It is also in the preclinical trial stage for dyskinesias [8,9].

At this juncture, we want to emphatically reiterate from the clinical psycho-neuropharmacologic point of view that these novel GASPAMAs [5–14] will likely be of more immense benefit for females with PPD or females with MDD or females with PMDD than male counterparts with MDD because of the different fluctuating levels of endogenous allopregnanolone neurosteroid influence and the varied expressions of extrasynaptic GABA–A receptors containing particularly the delta (δ) subunits having allopregnanolone neuroactive steroid-allosteric binding sites localized on them during the pregnancy–postpartum phase period or follicular–luteal phase of menstrual cycle period; as males do not biosynthesize physiologically significant neuroactive levels of endogenous allopregnanolone neurosteroid [5–14]. This gender-based benefit will likely be applicable to the observed anxiolytic-sedative, anticonvulsant and general anaesthetic effects of the GASPAMA agents too [5–14].

Conclusion

In conclusion, based on these evidences of interference with the extrasynaptic sites GABAergic neurotransmission system located on the glutamatergic principal neurons, it has become imperative to reaffirm and substantiate the GABAergic deficit hypothesis of depression disorders previously postulated and proposed by Luscher et al.; as obviously revealed by the described mechanism of action for the GASPAMA agents [19].

Update on the current antidepressants classification nomenclature

Fasipe classified antidepressant agents based on their different unique pharmacologic mechanisms of actions. Currently, the updated version for the various classes of clinically available antidepressants include [1–14]:

- **Tricyclic antidepressants (TCAs)** such as amitriptyline, imipramine, desipramine, nortriptyline, clomipramine, trimipramine, protriptyline and doxepin.
- **Monoamine oxidase inhibitors (MAOIs)** such as phenelzine, nialamide, isocarboxazid, hydrazine, translycypromine, moclobemide, *bifemelane, *pirlindole, *tolfazone, *selegiline, *rasagiline and *safinamide.
- **Selective serotonin reuptake inhibitors (SSRIs)** such as fluoxetine, sertraline, paroxetine, citalopram, escitalopram and fluvoxamine.
- **Serotonin-norepinephrine reuptake inhibitors (SNRIs)** such as venlafaxine, desvenlafaxine, duloxetine, *anoxafine, *nefopam and *levomilnacipran.
- **Norepinephrine-dopamine reuptake inhibitor (NDRI)** such as bupropion.
- ††Selective norepinephrine reuptake inhibitors (NRIs) such as *reboxetine, *atomoxetine,*viloxazine and *venlafaxine (also known as sulfoxazine or sulfoxazine).
- **Serotonin receptors antagonist with serotonin reuptake inhibition (SARI)** such as trazodone, nefazodone and *vortioxetine.
- ††Serotonin 5-HT1A autoreceptor partial agonist with serotonin reuptake inhibition (SPARI) such as *vilazodone
- **Noradrenergic 2 receptors antagonist with specific serotonergic receptors-2 and -3 antagonism (NASSA)** such as mirtazapine and *mianserin.
• ††Norepinephrine reuptake inhibitor with serotonin receptors antagonism (NRISA) such as maprotiline.

• ††Serotonin-norepinephrine reuptake inhibitor and serotonin receptors antagonism antidepressant with potent antipsychotic dopaminergic D2 receptor blockade/antagonism (SNRISA with potent antipsychotic dopaminergic D2 receptor blockade/antagonism) such as amoxapine.

• ††Atypical antipsychotics that exhibit potentely strong serotonin 5-HT2A/2C receptor blockade with or without dopaminergic D2 receptor weak antagonism/partial agonism such as *asenapine, *paliperidone, *sertindole, *ziprasidone, *zotepine, *amisulpride, *sulpiride, *cariprazine, *olanzapine, *quetiapine, *clozapine, *risperidone, *lurasidone, *aripiprazole, *brexipiprazole and *pimavanserin.

• ††N-methyl-D-aspartate (NMDA) glutamatergic ionoceptor blockers that exhibit a direct action on the excitatory glutamatergic neurotransmission system such as *ketamine, *CP-101,606 (traxoprodil), *GLYX-13 (rapastinel), *NRX-1074 (apimostin) and riluzole.

• ††GABA–A receptor selective positive allosteric modulator antidepressants (GASPAMAs) such as *brexanolone (also known as allopregnanolone), *zuranolone (SAGE-217 or S-812217) and *ganaxolone (CCD-1042).

• §Melatonergic MT1 and MT2 receptors agonist with selective serotonergic 5-HT2B and 5-HT2C receptors antagonism (MASSA) class such as *agomelatine.

NOTE: ††Emerging antidepressant classes using mechanisms of action based classification [1–14]; *Novel/emerging antidepressant drug(s) in a particular class [1–14];

®Drug approval was rejected/denied by the FDA due to the submission of fraudulent data regarding its clinical trial by the investigators but had been approved for the treatment of depression disorders long time ago in the European Union and other countries [1–3];

§MASSA has not been universally accepted as an antidepressant class as there are controversies over it [2,3];

†Agomelatine has not been universally accepted as an antidepressant agent as there are controversies over it [2,3].

Furthermore, the new justifiable antidepressant classes [1–14] are selective norepinephrine reuptake inhibitors (NRIs), serotonin 5-HT1A autoreceptor partial agonist with serotonin reuptake inhibition (SPARI), atypical antipsychotics, NMDA-glutamatergic ionoceptor blockers and GABA–A receptor selective positive allosteric modulator antidepressants (GASPAMAs). While the class being referred to as melatonergic MT1 and MT2 receptors agonist with selective serotonin 5-HT2B and 5-HT2C receptors antagonism (MASSA) class, that presently has agomelatine as the only member agent remains a paradoxical class that does not fit appropriately into the antidepressants classification nomenclature and its pharmacological properties also deemed it unfit and inappropriate to be accepted and announced as another separate novel class of antidepressants contrary to the reports published in some previous reference literatures [1–14].

In addition, the two different distinct classes of N-methyl-D-aspartate (NMDA) glutamatergic ionoceptor blockers and GABA–A receptor selective positive allosteric modulator antidepressants (GASPAMAs) belonged to the category of rapid–onset antidepressants [1–14].

Future perspective
Future research study to regularly update the classification system of clinically available classes of antidepressants is required. Also, detail future researches will be needed to fully elucidate how the GABAergic, monoaminergic and glutamatergic neurotransmission systems interact together to regulate mood and affective disorders, particularly in depressed patients.

Author contributions
The authors alone are responsible for writing the contents in this research article. We jointly contributed to the study conception and design, writing of introduction, carried out the literature review search, wrote the letter protocol, conducted the research, worked on associated data collection, data analysis, data interpretation, manuscript presentation, writing of discussion, conclusion, recommendations, future perspective, appropriate referencing and approval of the final version of this research article.

Financial & competing interests disclosure
The authors have no relevant affiliations or financial involvement with any organization or entity with a financial interest in or financial conflict with the subject matter or materials discussed in the manuscript. This includes employment, consultancies, honoraria, stock ownership or options, expert testimony, grants or patents received or pending, or royalties.

No writing assistance was utilized in the production of this manuscript.
Open Access
This work is licensed under the Attribution-NonCommercial-NoDerivatives 4.0 Unported License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-nd/4.0/

References
Papers of special note have been highlighted as: ● of interest; ●● of considerable interest

1. Fasipe OJ. Neuropharmacological classification of antidepressant agents based on their mechanisms of action. Arch. Med. Health Sci. 6(1), 81–94 (2018).
 ● Provides an elaborate meta-analysis review of many studies on this subject matter, it was a repository of reference.

2. Fasipe OJ. Moving from the old monoaminergic theory toward the emerging hypothesis in the rational design of rapid-onset novel antidepressants. Med. J. DY Patil Vidyapeeth 12(4), 292–315 (2019).
 ●● Provides an elaborate meta-analysis review of many studies on this subject matter, it was a repository of reference.

3. Fasipe OJ. The emergence of new antidepressants for clinical use: agomelatine paradox versus other novel agents. IBRO Rep. 6(1), 95–110 (2019).
 ●● Provides an elaborate meta-analysis review of many studies on this subject matter, it was a repository of reference.

4. Fasipe OJ, Akhideno PE, Owhin OS, Ibiyemi-Fasipe OB. Announcing the first novel class of rapid-onset antidepressants in clinical practice. J. Med. Sci. 39(5), 205–216 (2019).
 ●● Provides an elaborate meta-analysis review of many studies on this subject matter, it was a repository of reference.

5. Wilkinson ST, Sanacora G. "A new generation of antidepressants: an update on the pharmaceutical pipeline for novel and rapid-acting therapeutics in mood disorders based on glutamate/GABA neurotransmitter systems". Drug Discov. Today 24(2), 606–615 (2019).
 ●● Provides an elaborate meta-analysis review of many studies on this subject matter, it was a repository of reference.

6. Zorumski CF, Paul SM, Covey DF, Mennerick S. "Neurosteroids as novel antidepressants and anxiolytics: GABA–A receptors and beyond". Neurobiol. Stress 11, 100196 (2019).
 ●● Provides an elaborate meta-analysis review of many studies on this subject matter, it was a repository of reference.

7. Reddy DS. Neurosteroids: endogenous role in the human brain and therapeutic potentials. Prog. Brain Res. 186, 113–137 (2010).
 ●● Provides an elaborate meta-analysis review of many studies on this subject matter, it was a repository of reference.

8. Martinez Botella G, Salturo FG, Harrison BL et al. "Neuroactive Steroids. 2. 3α-Hydroxy-3β-methyl-21-(4-cyano-1H-pyrazol-1’-yl)-19-nor-5β-pregnan-20-one (SAGE-217): a clinical next generation neuroactive steroid positive allosteric modulator of the gamma-aminobutyric acid–A receptor". J. Med. Chem. 60(18), 7810–7819 (2017).
 ●● Provides an elaborate meta-analysis review of many studies on this subject matter, it was a repository of reference.

9. Frierd A, Fesh M, Hainline R, Deligiannidis KM. "Pharmacotherapy of postpartum depression: current approaches and novel drug development". CNS Drugs 33(3), 265–282 (2019).
 ●● Provides an elaborate meta-analysis review of many studies on this subject matter, it was a repository of reference.

10. Kaminski RM, Livingood MR, Rogawski MA. "Allopregnanolone analogs that positively modulate GABA receptors protect against partial seizures induced by 6-Hz electrical stimulation in mice". Epilepsia 45(7), 864–867 (2004).
11. Pinna G, Uzunova V, Matsumoto K et al. "Brain allopregnanolone regulates the potency of the GABA–A receptor agonist muscimol". Neuropharmacology 39(3), 440–448 (2000).
 ●● Provides an elaborate meta-analysis review of many studies on this subject matter, it was a repository of reference.

12. DailyMed. Zulresso- brexanolone injection, solution. (2019).
 ●● Provides an elaborate meta-analysis review of many studies on this subject matter, it was a repository of reference.

13. Scott LJ. "Brexanolone: first global approval". Drugs 79(7), 779–783 (2019).
 ●● Provides an elaborate meta-analysis review of many studies on this subject matter, it was a repository of reference.

14. Press release. "FDA approves first treatment for postpartum depression”. US FDA (2019).
 ●● Provides an elaborate meta-analysis review of many studies on this subject matter, it was a repository of reference.

15. Kokate TG, Svensson BE, Rogawski MA. "Anticonvulsant activity of neurosteroids: correlation with gamma-aminobutyric acid-evoked chloride current potentiation”. J. Pharmacol. Exp. Ther. 270(3), 1223–1229 (1994).
 ●● Provides an elaborate meta-analysis review of many studies on this subject matter, it was a repository of reference.

16. Carter RB, Wood PL, Wieland S et al. "Characterization of the anticonvulsant properties of ganaxolone (CCD 1042; 3α-phosphoryl-3β-methyl-5β-pregnan-20-one), a selective, high affinity, steroid modulator of the references gamma-aminobutyric acid-A receptor". J. Pharmacol. Exp. Ther. 280(3), 1284–1295 (1997).
 ●● Provides an elaborate meta-analysis review of many studies on this subject matter, it was a repository of reference.

17. Monaghan EP, Navalta LA, Shum L, Ashbrook DW, Lee DA. "Initial human experience with ganaxolone, a neuroactive steroid with antiseizure activity". Epilepsia 38(9), 1026–1031 (1997).
- Provides an elaborate meta-analysis review of many studies on this subject matter, it was a repository of reference.

18. Pieribone VA, Tsai J, Soufflet C. et al. "Clinical evaluation of ganaxolone in pediatric and adolescent patients with refractory epilepsy". *Epilepsia* 48(10), 1870–1874 (2007).

- Provides an elaborate meta-analysis review of many studies on this subject matter, it was a repository of reference.

19. Luscher B, Shen Q, Sahir N. The GABAergic deficit hypothesis of major depressive disorder. *Mol. Psychiatry* 16(4), 383–406 (2011).

- Provides an elaborate meta-analysis review of many studies on this subject matter, it was a repository of reference.