THE DENSITY OF PRIMES DIVIDING A TERM IN THE SOMOS-5 SEQUENCE

BRYANT DAVIS, REBECCA KOTSONIS, AND JEREMY ROUSE

Abstract. The Somos-5 sequence is defined by $a_0 = a_1 = a_2 = a_3 = a_4 = 1$ and $a_m = a_{m-10m-4} + a_{m-2} - \frac{a_{m-5}}{a_{m-5}}$ for $m \geq 5$. We relate the arithmetic of the Somos-5 sequence to the elliptic curve $E : y^2 + xy = x^3 + x^2 - 2x$ and use properties of Galois representations attached to E to prove the density of primes p dividing some term in the Somos-5 sequence is equal to $\frac{5087}{10752}$.

1. Introduction and Statement of Results

There are many results in number theory that relate to a determination of the primes dividing some particular sequence. For example, it well-known that if p is a prime number, then p divides some term of the Fibonacci sequence, defined by $F_0 = 0$, $F_1 = 1$, and $F_n = F_{n-1} + F_{n-2}$ for $n \geq 2$. Students in elementary number theory learn that a prime p divides a number of the form $n^2 + 1$ if and only if $p \equiv 2 \pmod{4}$.

In 1966, Hasse proved in [4] that if $\pi_{\text{even}}(x)$ is the number of primes $p \leq x$ so that $p | 2^n + 1$ for some n, then

$$\lim_{x \to \infty} \frac{\pi_{\text{even}}(x)}{\pi(x)} = \frac{17}{24}.$$

Note that a prime number p divides $2^n + 1$ if and only if 2 has even order in \mathbb{F}_p^\times.

A related result is the following. The Lucas numbers are defined by $L_0 = 2$, $L_1 = 1$ and $L_n = L_{n-1} + L_{n-2}$ for $n \geq 2$. In 1985, Lagarias proved (see [9] and [10]) that the density of primes dividing some Lucas number is $2/3$. Given a prime number p, let $Z(p)$ be the smallest integer m so that $p | F_m$. A prime p divides L_n for some n if and only if $Z(p)$ is even. In [2], Paul Cubre and the third author prove a conjecture of Bruckman and Anderson on the density of primes p for which $m | Z(p)$, for an arbitrary positive integer m.

In the early 1980s, Michael Somos discovered integer-valued non-linear recurrence sequences. The Somos-k sequence is defined by $c_0 = c_1 = \cdots = c_{k-1} = 1$ and

$$c_m = \frac{c_{m-1} c_{m-(k-1)} + c_{m-2} c_{m-(k-2)} + \cdots + c_{m-\left\lfloor \frac{k}{2} \right\rfloor} c_{m-\left\lceil \frac{k}{2} \right\rceil}}{c_{m-k}}$$

for $m \geq k$. Despite the fact that division is involved in the definition of the Somos sequences, the values c_m are integral for $4 \leq k \leq 7$. Fomin and Zelevinsky [3] show that the introduction of parameters into the recurrence results in the c_m being Laurent polynomials in those parameters. Also, Speyer [15] gave a combinatorial interpretation of the Somos sequences in terms of the number of perfect matchings in a family of graphs.

2010 Mathematics Subject Classification. Primary 11G05; Secondary 11F80.
Somos-4 and Somos-5 type sequences are also connected with the arithmetic of elliptic curves (a connection made quite explicit by A. N. W. Hone in [5], and [6]). If \(a_n \) is the \(n \)th term in the Somos-4 sequence, \(E : y^2 + y = x^3 - x \) and \(P = (0, 0) \in E(\mathbb{Q}) \), then the \(x \)-coordinate of the denominator of \((2n - 3)P\) is equal to \(a_n^2 \). It follows from this that \(p | a_n \) if and only if \((2n - 3)P\) reduces to the identity in \(E(\mathbb{F}_p) \), and so a prime \(p \) divides a term in the Somos-4 sequence if and only if \((0, 0) \in E(\mathbb{F}_p)\) has odd order. In [8], Rafe Jones and the third author prove that the density of primes dividing some term of the Somos-4 sequence is \(\frac{1}{21} \). The goal of the present paper is to prove an analogous result for the Somos-5 sequence.

Let \(\pi'(x) \) denote the number of primes \(p \leq x \) so that \(p \) divides some term in the Somos-5 sequence. We have the following table of data.

\(x \)	\(\pi'(x) \)	\(\frac{\pi'(x)}{\pi(x)} \)
10	3	0.750000
10^2	12	0.480000
10^3	83	0.494048
10^4	588	0.478438
10^5	4539	0.473207
10^6	37075	0.472305
10^7	314485	0.473209
10^8	2725670	0.473087
10^9	24057711	0.473134
10^{10}	215298607	0.473129

Our main result is the following.

Theorem 1. We have

\[
\lim_{x \to \infty} \frac{\pi'(x)}{\pi(x)} = \frac{5087}{10752} \approx 0.473121.
\]

The Somos-5 sequence is related to the coordinates of rational points on the elliptic curve \(E : y^2 + xy = x^3 + x^2 - 2x \). This curve has \(E(\mathbb{Q}) \cong \mathbb{Z} \times \mathbb{Z}/2\mathbb{Z} \) and generators are \(P = (2, 2) \) (of infinite order) and \(Q = (0, 0) \) (of order 2). We have (see Lemma [9]) that

\[
mP + Q = \left(\frac{a_m^2 - a_m a_{m+4}}{a_{m+2}^2}, \frac{4d_m a_m + 2a_{m+4} - a_m^2 a_{m+6} - a_m^2}{a_{m+2}^3} \right).
\]

It follows that a prime \(p \) divides a term in the Somos-5 sequence if and only if the reduction of \(Q \) modulo \(p \) is in \(\langle P \rangle \subseteq E(\mathbb{F}_p) \). Another way of stating this is the following: there is a 2-isogeny \(\phi : E \to E' \), where \(E' : y^2 + xy = x^3 + x^2 + 8x + 10 \) and

\[
\phi(x, y) = \left(\frac{x^2 - 2}{y}, \frac{x^2 y + 2x + 2y}{x^2} \right).
\]

The kernel of \(\phi \) is \(\{0, Q\} \). Letting \(R = \phi(P) \) we show (see Theorem [11]) that \(p \) divides some term in the Somos-5 sequence if and only if the order of \(P \) in \(E(\mathbb{F}_p) \) is twice that of \(R \) in \(E'(\mathbb{F}_p) \).

A result of Pink (see Proposition 3.2 on page 284 of [11]) shows that the \(\ell \)-adic valuation of the order of a point \(P \) (mod \(p \)) can be determined from a suitable Galois representation attached to an elliptic curve. For a positive integer \(k \), we let \(K_k \) be the field obtained by adjoining to \(\mathbb{Q} \) the \(x \) and \(y \) coordinates of all points \(\beta_k \) with \(2^k \beta_k = P \). There is a Galois representation \(\rho_{E, 2^k} : \text{Gal}(K_k/\mathbb{Q}) \to \)
AGL₂(ℤ/2ᵏℤ) and we relate the power of 2 dividing the order of \(P \) in \(E(ℤ_p) \) to \(\rho_{E,2^k}(p) \), where \(p \) is a Frobenius automorphism at \(p \) in \(\text{Gal}(K_{k}/ℚ) \). Using the isogeny \(\phi \) we are able to relate \(\rho_{E,2^k}(p) \) and \(\rho_{E',2^k-1}(p) \), obtaining a criterion that indicates when \(p \) divides some term in the Somos-5 sequence. We then determine the image of \(\rho_{E,2^k} \) for all \(k \).

Once the image of \(\rho_{E,2^k} \) is known, the problem of computing the fraction of elements in the image with the desired properties is quite a difficult one. We introduce a new and simple method for computing this fraction and apply it to prove Theorem \(\mathbb{I} \).

Acknowledgements. The first and second authors thank the Wake Forest Undergraduate Research and Creative Activities Center for financial support. The authors used Magma \([1]\) version 2.20-6 for computations.

2. Background

If \(E/F \) is an elliptic curve given in the form \(y^2 + a_1xy + a_3y = x^3 + a_2x^2 + a_4x + a_6 \), the set \(E(F) \) has the structure of an abelian group. Specifically, if \(P, Q \in E(F) \), let \(R = (x, y) \) be the third point of intersection between \(E \) and the line through \(P \) and \(Q \). We define \(P + Q = (x, y - a_1x - a_3) \). The multiplication by \(m \) map on an elliptic curve has degree \(m^2 \), and so if \(E/ℚ \) is an elliptic curve and \(\alpha \in E(ℚ) \), then there are \(m^2 \) points \(\beta \) so that \(m\beta = \alpha \).

If \(K/ℚ \) is a finite extension, let \(\mathcal{O}_K \) denote the ring of algebraic integers in \(K \). A prime \(p \) ramifies in \(K \) if \(p\mathcal{O}_K = \prod_{i=1}^{r} p_i^{e_i} \) and some \(e_i > 1 \), where the \(p_i \) are distinct prime ideals of \(\mathcal{O}_K \).

Suppose \(K/ℚ \) is Galois, \(p \) is a prime number that does not ramify in \(K \), and \(p\mathcal{O}_K = \prod_{i=1}^{g} p_i \). For each \(i \), there is a unique element \(\sigma \in \text{Gal}(K/ℚ) \) for which

\[
\sigma(\alpha) \equiv \alpha^p \pmod{p_i}
\]

for all \(\alpha \in \mathcal{O}_K \). This element is called the Artin symbol of \(p_i \) and is denoted \([K/ℚ]_p \). If \(i \neq j \), \([K/ℚ]_p \) and \([K/ℚ]_{p'} \) are conjugate in \(\text{Gal}(K/ℚ) \) and \([K/ℚ]_p := \{ [K/ℚ]_p : 1 \leq i \leq g \} \) is a conjugacy class in \(\text{Gal}(K/ℚ) \).

The key tool we will use in the proof of Theorem \(\mathbb{I} \) is the Chebotarev density theorem.

Theorem 2 ([7], page 143). If \(C \subseteq \text{Gal}(K/ℚ) \) is a conjugacy class, then

\[
\lim_{x \to \infty} \frac{\# \{ p \leq x : p \text{ prime, } [K/ℚ]_p = C \}}{\pi(x)} = \frac{|C|}{|\text{Gal}(K/ℚ)|}.
\]

Roughly speaking, each element of \(\text{Gal}(K/ℚ) \) arises as \([K/ℚ]_p \) equally often.

Let \(E[m] = \{ P \in E : mP = 0 \} \) be the set of points of order \(m \) on \(E \). Then \(ℚ(E[m])/ℚ \) is Galois and \(\text{Gal}(ℚ(E[m])/ℚ) \) is isomorphic to a subgroup of \(\text{Aut}(E[m]) \cong \text{GL}_2(ℤ/mℤ) \). Moreover, Proposition V.2.3 of [13] implies that if \(\sigma_p \) is a Frobenius automorphism at some prime above \(p \) and \(\tau : \text{Gal}(ℚ(E[m])/ℚ) \to \text{GL}_2(ℤ/mℤ) \), then \(\tau(\sigma_p) \equiv p + 1 - \#E(ℤ_p) \pmod{m} \) and \(\text{det}(\tau(\sigma_p)) \equiv p \pmod{m} \). Another useful fact is the following. If \(K/ℚ \) is a number field, \(p \) is a prime ideal in \(\mathcal{O}_K \) above \(p \), \(\text{gcd}(m, p) = 1 \) and \(P \in E(K)[m] \) is not the identity, then \(P \) does not reduce to the identity in \(E(\mathcal{O}_K/p) \). This is a consequence of Proposition VII.3.1 of [13].
We will construct Galois representations attached to elliptic curves in $\text{AGL}_2(\mathbb{Z}/2^k\mathbb{Z}) \cong (\mathbb{Z}/2^k\mathbb{Z})^2 \times \text{GL}_2(\mathbb{Z}/2^k\mathbb{Z})$. Elements of such a group can be thought of either as pairs $((\vec{v}, M))$, where \vec{v} is a row vector, and $M \in \text{GL}_2(\mathbb{Z}/2^k\mathbb{Z})$, or as 3×3 matrices

$$
\begin{bmatrix}
a & b & 0 \\
c & d & 0 \\
e & f & 1
\end{bmatrix},
$$

where $\vec{v} = [c \quad f]$ and $M = \begin{bmatrix}a & b \\ c & d\end{bmatrix}$. In the former notation, the group operation is given by

$$(\vec{v}_1, M_1) \ast (\vec{v}_2, M_2) = (\vec{v}_1 + \vec{v}_2 M_1, M_2 M_1).$$

3. Connection between the Somos-5 sequence and E

Lemma 3. Define $P = (2, 2)$ and $Q = (0, 0)$ on $E : y^2 + xy = x^3 + x^2 - 2x$. For all $m \geq 0$, we have the following relationship between the Somos-5 sequence and E:

$$mP + Q = \left(\frac{a_{m+2}^2 - a_m a_{m+4}}{a_m^2}, \frac{4a_m a_{m+2}a_{m+4} - a_m^2 a_{m+6} - a_{m+2}^3}{a_m^3} \right).$$

Proof. We will prove this by strong induction. A straightforward calculation shows that the base cases $m = 0$ and $m = 1$ are true. For simplicity’s sake, we will denote $a = a_m$, $b = a_{m+1}$, $c = a_{m+2}$, $d = a_{m+3}$, $e = a_{m+4}$, $f = a_{m+5}$ and $g = a_{m+6}$. Our inductive hypothesis is that

$$mP + Q = \left(\frac{c^2 - ae}{c^2}, \frac{4ace - a^2g - c^3}{c^3} \right).$$

We will now compute $(m+2)P + Q$.

To find the x and y coordinates of $(m+2)P + Q$, we add $2P = (1, -1)$ to $mP + Q$. If w is the slope and v is the y-intercept, the line between $2P$ and $mP + Q$ is $y = w(x + v)$ with $w = \frac{ae-3ce}{ce}$ and $v = \frac{-ae+3ce}{ce}$. Substituting this into the equation for E, we find the x-coordinate of $2P + (mP + Q)$ to be $x = \frac{a^2g^2-7aceg+ae^3+c^3g+8c^2e^2}{ce^2}$. A straightforward but lengthy inductive calculation shows that if

$$F(a, c, e, g) = a^2g^2 - 7aceg + ae^3 + c^3g + 8c^2e^2,$$

then $F(a_n, a_{n+2}, a_{n+4}, a_{n+6}) = 0$ for all n. Since $F(a, c, e, g) = 0$, we know that

$$rx = F(a, c, e, g) = 0.$$

Therefore, we know that $rx = -\frac{ae+ce}{e^2}$.

Denote the y-coordinate of $(m+2)P + Q$ as ry. We compute that $ry = \frac{a(2ae-3ce)}{ae}$. Using that $ry = ry - \frac{F(a, c, e, g)}{ae}$, we find that $ry = \frac{4ace-c^2e^3}{e^2}$. Therefore, it is evident that

$$(m+2)P + Q = \left(\frac{a_{m+4}^2 - a_m a_{m+6}}{a_m^2}, \frac{4a_m a_{m+2}a_{m+4}a_{m+6} - a_m^2 a_{m+8} - a_{m+2}^3}{a_m^3} \right).$$

□

Let E' be given by $E' : y^2 + xy = x^3 + x^2 + 8x + 10$ and let $R = (1, 4) \in E' (\mathbb{Q})$. We have a 2-isogeny $\phi : E \to E'$ given by

$$\phi(x, y) = \left(\frac{x^2 - 2}{x}, \frac{x^2y + 2x + 2y}{x^2}\right).$$

Theorem 4. If p is a prime that divides a term in the Somos-5 sequence, the order of $P = (2, 2)$ in $E(\mathbb{F}_p)$ is twice the order of $R = (1, 4)$ in $E' (\mathbb{F}_p)$. Otherwise, their order is the same.
Proof: If \(p \) divides a term in our sequence, say \(a_m \), we know from our previous lemma that the denominators \((m-2)P+Q\) are divisible by \(p \). Therefore, modulo \(p \), \((m-2)P+Q = 0 \). The point \(Q \) has order 2, so adding \(Q \) to both sides we know that \((m-2)P = Q \). Therefore, we can deduce that \(Q \in \langle P \rangle \). We have \(\ker(\phi) = \langle Q, 0 \rangle \) (see Section 3.4 of [13]). Therefore, if \(\phi \) is restricted to the subgroup generated by \(P \), we have \(|\ker(\phi)| = 2 \). Since \(\phi(P) = R \), by the first isomorphism theorem for groups, \(|\langle R \rangle| = |\langle (P) \rangle| \). It follows that \(|P| = 2 \cdot |R| \).

Alternatively, assume \(p \) does not divide a term in the Somos-5 sequence. So, there is no \(m \) such that \(mP + Q = 0 \mod p \), which implies that \(Q \notin \langle P \rangle \). Therefore, the kernel of \(\phi \) restricted to \(\langle P \rangle \) is \(\{0\} \) and so \(|P| = |\phi(P)| = |R| \). \(\Box \)

4. Galois representations

Denote by \(E[2^r] \) the set of points on \(E \) with order dividing \(2^r \). Denote \(K_r \) as the field obtained by adjoining to \(\mathbb{Q} \) all \(x \) and \(y \) coordinates of points \(\beta \) with 2 \(\beta = P \).

For a prime \(p \) that is unramified in \(K_r \), let \(\sigma = \left[K_r/Q \right] \) for some prime ideal \(\mathfrak{p}_i \) above \(p \). Given a basis \(\langle A, B \rangle \) for \(E[2^r] \), for any such \(\sigma \in \text{Gal}(K_r/Q) \), we have \(\sigma(\beta) = \beta + eA + fB \). Also, \(\sigma(A) = aA + bB \) and \(\sigma(B) = cA + dB \). Define the map \(\rho_{E,2^r} : \text{Gal}(K_r/Q) \to \text{GL}_2(\mathbb{Z}/2^k\mathbb{Z}) \) by \(\rho_{E,2^r}(\sigma) = (\vec{v}, M) \) where \(M = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \) and \(\vec{v} = [e \ mod f] \). Let \(\tau : \text{Gal}(K_r/Q) \to \text{GL}_2(\mathbb{Z}/2^k\mathbb{Z}) \) be given by \(\tau(\sigma) = M \).

Let \(S = \{ \beta \in E(\mathbb{C}) : m \cdot \beta \in E(\mathbb{K}) \} \) and let \(L \) be the field obtained by adjoining all \(x \) and \(y \) coordinates of points in \(S \) to \(K \). Then the only primes \(p \) that ramify in \(L/K \) are those that divide \(m \) and those where \(E/K \) has bad reduction (see Proposition VIII.1.5(b) in [13]). For \(E : y^2 + xy = x^3 + x^2 - 2x \), the conductor of \(E \) is \(102 = 2 \cdot 3 \cdot 17 \) and so the only primes that ramify in \(K_r/Q \) are \(2, 3 \) and \(17 \).

Note that, if \(p \) is unramified, there are multiple primes \(\mathfrak{p}_i \) above \(p \) which could result in different matrices \(M_i \) and \(\vec{v}_i \). However, properties we consider of these \(\vec{v}_i \) and \(M_i \) do not depend on the specific choice of \(\mathfrak{p}_i \). The map depends on the choice of basis for \(E[2^r] \), we choose this basis as described below in Theorem 7.

Let \(\beta_r \in E(\mathbb{C}) \) be a point with \(2^r \beta = P \). We say that \(\beta_r \) is an \(r \)th preimage of \(P \) under multiplication by \(2 \). Let \(p \) be a prime with \(p \neq 2, 3, 17 \), \(\sigma = \left[K_r/Q \right] \), and \((\vec{v}, M) = \rho_{E,2^r}(\sigma) \). Assume that \(\det(I - M) \neq 0 \) (mod \(2^r \)). This implies that \(\#E(\mathbb{F}_p) \neq 0 \) (mod \(2^r \)).

Theorem 5. Assume the notation above. Then \(2^hP \) has odd order in \(E(\mathbb{F}_p) \) if and only if \(2^h\vec{v} \) is in the image of \(I - M \).

Proof. First, assume \(2^h\vec{v} \) is in the image of \(I - M \). This means that \(\vec{x} = 2^h\vec{v} + \vec{x}M \) for some row vector \(\vec{x} \) with coordinates in \((\mathbb{Z}/2^r\mathbb{Z})^2\). If this is true for \(\vec{x} = [e \ mod f] \), define \(C := 2^h\beta_r + eA + fB \). We know then that \(\sigma(C) = C \). We have \(2^rC = 2^h(2^r\beta_r) = 2^hP \). If \(|C| \) is odd, then clearly \(|2^rC| = |2^hP| \) is also odd.

If \(|C| \) is even, then every multiplication of \(C \) by \(2 \) cuts the order by a factor of \(2 \) until we arrive at a point of odd order. Since \(|E(\mathbb{F}_p)| \equiv \det(I - M) \neq 0 \) (mod \(2^r \)), the power of 2 dividing \(|C| \) is also less than \(r \), and so \(|2^rC| = |2^hP| \) is odd.

Conversely, assume that \(|2^hP| \) is odd. Let \(a \) be the multiplicative inverse of \(2^r \) modulo \(|2^hP| \) and define \(C := a2^hP \in E(\mathbb{F}_p) \). Then \(2^rS = 2^hP \) and so \(2^r(C - 2^h\beta_r) = 0 \). It follows that \(C = 2^h\beta_r + yA + zB \in E(\mathbb{F}_p) \) for some \(y, z \in \mathbb{Z}/2^r\mathbb{Z} \).
This implies that there is a Frobenius automorphism $\sigma \in \text{Gal}(K_r/Q)$ for which $\sigma(C) \equiv C \pmod{p_i}$ for some prime ideal p_i above p.

We claim that $\sigma(C) = C$ (as elements of $E(K_r)$). Note that $\sigma(C) - C \in E[2^r]$ and $\sigma(C) - C$ reduces to the identity modulo p_i. Since reduction is injective on torsion points of order coprime to the characteristic, and p is odd, it follows that $\sigma(C) = C$. It follows that if $\rho_{E,2^r}(\sigma) = (\vec{v}, M)$ then $2^b\vec{v} = (I - M) [y \ z]$, which implies that $2^b\vec{v}$ is in the image of $I - M$. \hfill \square

The following corollary is immediate.

Corollary 6. Let o be the smallest positive integer so that $2^o\vec{v} = (I - M)\vec{x}$ for some \vec{x} with entries in $(\mathbb{Z}/2^r\mathbb{Z})^2$. Then 2^o is the highest power of 2 dividing $|P|$.

The following theorem gives a convenient choice of basis for $E[2^k]$ and $E'[2^k]$.

Theorem 7. Given a positive integer k, there are points $A_k, B_k \in E(\mathbb{C})$ that generate $E[2^k]$ and points $C_k, D_k \in E'(\mathbb{C})$ that generate $E'[2^k]$ so that $\phi(A_k) = C_k$ and $\phi(B_k) = 2D_k$. These points also satisfy the relations:

$$2A_k = A_{k-1}, \quad 2B_k = B_{k-1}, \quad 2C_k = C_{k-1}, \quad \text{and} \quad 2D_k = D_{k-1}.$$

Proof. We will prove this by induction. Recall that $\phi : E \to E'$ is the isogeny with $\ker \phi = \{0, T\}$ where $T = (0, 0)$. Let $\phi' : E' \to E$ be the dual isogeny, and note that $\phi \circ \phi'(P) = 2P$.

Base Case: Let $k = 1$. We want to find (A_1, B_1) to generate $E[2]$ and (C_1, D_1) to generate $E'[2]$ so that $\phi(A_1) = C_1$ and $\phi(B_1) = 2D_1$. We set $B_1 = (0, 0)$, and choose A_1 to be any non-identity point in $E[2]$ other than $(0, 0)$. We set $C_1 = \phi(A_1) = (-5/4, 5/8)$ and choose D_1 to be any non-identity point in $E'[2]$ other than C_1. Note that $\phi'(D_1) = B_1$.

Inductive Hypothesis: Assume $(A_k, B_k) = E[2^k]$ and $(C_k, D_k) = E'[2^k]$ so that $\phi(A_k) = C_k$, $\phi(B_k) = 2D_k$, and $\phi'(D_k) = B_k$. Moreover, $D_k \notin \phi(E[2^k])$.

Since $|\ker \phi| = 2$, we have that $\phi(E[2^{k+1}]) \supseteq E'[2^k]$. Hence, we can choose B_{k+1} so that $\phi(B_{k+1}) = D_k$. Then $2B_{k+1} = \phi'(\phi(B_{k+1})) = \phi'(D_k) = B_k$. We choose D_{k+1} so that $\phi'(D_{k+1}) = B_{k+1}$. Note that $2D_{k+1} = \phi(B_{k+1}) = D_k$ and so $D_{k+1} \in E'[2^{k+1}]$. Now we pick A_{k+1} so that $2A_{k+1} = A_k$ and define $C_{k+1} = \phi(A_{k+1})$.

By our Inductive Hypothesis, $(A_k, B_k) = E[2^k]$. This implies that $(A_k) \cap (B_k) = 0$, which in turn implies that $(2A_{k+1}) \cap (2B_{k+1}) = 0$. Let $C \in (A_{k+1}) \cap (B_{k+1})$. Then, $C = aA_{k+1} + bB_{k+1}$. Because $|g|^m = \frac{|g|}{\gcd(m, |g|)}$, $|c| = \frac{2^{k+1}}{2^{k+1} + 1} = \frac{2^{k+1}}{2^{k+1} + 1}$, where $\ord_2(n)$ is the highest power of 2 dividing n, it follows that either a and b are both even, or they are both odd. If a and b are even, then $C \in (A_k) \cap (B_k) = 0$, which is a contradiction. If a and b are odd, then $|C| = 2^{k+1}$ but $2C \in (A_k) \cap (B_k) = 0$, which is also a contradiction. It follows that $(A_{k+1}) \cap (B_{k+1}) = 0$, which gives that $E[2^{k+1}] = (A_{k+1}, B_{k+1})$.

Now we show that $(C_{k+1}, D_{k+1}) = E'[2^{k+1}]$, by way of showing that $(C_{k+1}) \cap (D_{k+1}) = 0$. We have shown that $(A_{k+1}, B_{k+1}) = E[2^{k+1}]$, and so $\phi(E[2^{k+1}]) = (C_{k+1}, 2D_{k+1})$. We want to show that $D_{k+1} \notin \phi(E[2^{k+1}])$.

If $D_{k+1} \in \phi(E[2^{k+1}])$, then $D_{k+1} = aC_{k+1} + 2bD_{k+1}$. So, $aC_{k+1} + (2b-1)D_{k+1} = 0$. Since $(2b-1)$ is odd, $(2b-1)D_{k+1}$ has order dividing 2^{k+1}. Hence, aC_{k+1} has
order dividing 2^{k+1}. We can then see that
\[
2aC_{k+1} + 2(2b-1)D_{k+1} = 0
\]
\[
aC_k + (2b-1)D_k = 0
\]

which is a contradiction. This implies that $\phi(E[2^{k+1}])$ is an index 2 subgroup of $\langle C_{k+1}, D_{k+1} \rangle$ of order 2^{2k+1}, and so $\langle C_{k+1}, D_{k+1} \rangle = E'[2^{k+1}]$. This proves the desired claim.

Recall the maps $\rho_{E,2^k} : \text{Gal}(K_k/\mathbb{Q}) \to \text{AGL}_2(\mathbb{Z}/2^k\mathbb{Z})$ and $\tau : \text{Gal}(K_k/\mathbb{Q}) \to \text{GL}_2(\mathbb{Z}/2^k\mathbb{Z})$, defined at the beginning of this section. In [12], an algorithm is given to compute the image of the 2-adic Galois representation τ. Running this algorithm shows that the image of τ (up to conjugacy) is the index 6 subgroup of $\text{GL}_2(\mathbb{Z}/2^k\mathbb{Z})$ generated by $\begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} 7 & 0 \\ 2 & 1 \end{bmatrix}$, and $\begin{bmatrix} 5 & 0 \\ 2 & 1 \end{bmatrix}$. Moreover, the subgroup generated by the aforementioned matrices is the unique conjugate that corresponds to the basis chosen in Theorem 7.

Theorem 8. If $\rho_{E,2^k}(\sigma) = (\tilde{v}, M)$ where $\tilde{v} = (e, f)$, then $e \equiv 0 \pmod{2}$ if and only if $M \equiv 1, 7 \pmod{8}$.

Proof. We will show that $e \equiv 0 \pmod{2}$ and $M \equiv 1, 7 \pmod{8}$ if and only if $\sigma(\sqrt{2}) = \sqrt{2}$.

Let β_1 be a point in $E(K_1)$ so that $2\beta_1 = (2, 2)$. We pick a basis $\langle A_1, B_1 \rangle$ according to Theorem 7. We have $\sigma(\beta_1) = \beta_1 + eA_1 + fB_1$, where $e, f \in \mathbb{Z}/2^k\mathbb{Z}$.

Let $\phi : E \to E'$ be the usual isogeny and note that $B_1 \in \ker \phi$. Thus, $\phi(\sigma(\beta_1)) = \phi(\beta_1 + eA_1 + fB_1) = \phi(\beta_1) + e\phi(A_1)$. It follows that $e \equiv 0 \pmod{2}$ if and only if $\sigma(\phi(\beta_1)) = \phi(\sigma(\beta_1)) = \phi(\beta_1)$. A straightforward computation shows that the coordinates of $\phi(\beta_1)$ generate $\mathbb{Q}(\sqrt{2})$. It follows that $e \equiv 0 \pmod{2}$ if and only if $\sigma(\sqrt{2}) = \sqrt{2}$.

Finally, suppose that σ is the Artin symbol associated to a prime ideal p above a rational prime p. By properties of the Weil pairing (see [13], Section III.8), we have that $\zeta_{2k} = e^{2\pi i / 2^k} \in \mathbb{Q}(E[2^k])$, and that $\sigma(\zeta_{2k}) = \zeta_{2k}^{\det(M)} = \zeta_{2k}^p$. Since $\sqrt{2} = \zeta_8 + \zeta_8^{-1}$, it follows easily that $\sigma(\sqrt{2}) = \sqrt{2} \iff p \equiv 1, 7 \pmod{8}$ and hence $\sigma(\sqrt{2}) = \sqrt{2}$ if and only if $\det(M) \equiv 1, 7 \pmod{8}$. \hfill \qed

For $k \geq 3$, define I_k to be the subgroup of $\text{AGL}_2(\mathbb{Z}/2^k\mathbb{Z})$ whose elements are ordered pairs $\langle (\tilde{v}, M) \rangle$ where $\tilde{v} = [e \ f]$, the reduction of M mod 8 is in the group generated by $\begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix}, \begin{bmatrix} 7 & 0 \\ 2 & 1 \end{bmatrix}$, and $e \equiv 0 \pmod{2}$ if and only if $\det(M) \equiv 1$ or 7 (mod 8). By Theorem 8 and the discussion preceding it, we know that the image of $\rho : \text{Gal}(K_k/\mathbb{Q}) \to \text{AGL}_2(\mathbb{Z}/2^k\mathbb{Z})$ is contained in I_k.

We now aim to show that the map $\rho_{E,2^k} : \text{Gal}(K_k/\mathbb{Q}) \to I_k$ is surjective for $k \geq 3$. By [13] (page 105), if we have an elliptic curve $E : y^2 = x^3 + Ax + B$, the division polynomial $\psi_m \in \mathbb{Z}[A, B, x, y]$ is determined recursively by:

\[
\psi_1 = 1, \psi_2 = 2y, \psi_3 = 3x^4 + 6Ax^2 + 12Bx - A^2,
\]
\[
\psi_4 = 4y(x^6 + 5Ax^4 + 20Bx^3 - 5A^2x^2 - 4ABx - 8B^2 - A^3),
\]
\[
\psi_{2m+1} = \psi_m + 2\psi_m^3 - \psi_{m-1}^3
\]
\[
2y\psi_{2m} = \psi_m(\psi_{m+1}\psi_{m-1} - \psi_{m-2}\psi_{m+2}).
\]
We then define ϕ_m and ω_m as follows:

$$
\phi_m = x\psi_m^2 - \psi_{m+1}\psi_{m-1} \\
4\omega_m = \psi_{m+2}\psi_{m-1} - \psi_m^2\psi_{m+1}.
$$

If $\Delta = -16(4A^3 + 27B^2) \neq 0$, then $\phi_m(x)$ and $\psi_m(x)^2$ are relatively prime. This also implies that, for $P = (x_0, y_0) \in E$,

$$
[m]P = \left(\frac{\phi_m(P)}{\psi_m(P)^2}, \frac{\omega_m(P)}{\psi_m(P)^3}\right).
$$

Lemma 9. The map $\rho_{E,8} : \text{Gal}(K_3, \mathbb{Q}) \to I_3$ is surjective.

Proof. The curve E is isomorphic to $E_2 : y^2 = x^3 - 3267x + 45630$. The isomorphism that takes E to E_2 takes $P = (2, 2)$ on E to $P_2 = (87, 648)$ on E_2.

We use division polynomials to construct a polynomial $f(x)$ whose roots are the x-coordinates of points β_3 on E_2 so that $8\beta_3 = P_2$. By the above formulas, $8P_2 = \left(\frac{\phi_8(P_2)}{\psi_8(P_2)^2}, \frac{\omega_8(P_2)}{\psi_8(P_2)^3}\right)$. Since $P_2 = (87, 648)$,

$$
f(x) = \phi_8(P_2) - 87\psi_8(P_2)^2 = 0
$$

will yield the equation with roots that satisfy our requirement. This is a degree 64 polynomial. By using Magma to compute the Galois Group of $f(x)$, we find the order to be 8192. A simple calculation shows that I_3 has order 8192 and since $f(x)$ splits in K_3/\mathbb{Q}, we have that $\text{Gal}(K_3/\mathbb{Q}) \cong I_3$. \hfill \square

To prove the surjectivity of $\rho_{E,2^k}$, we will consider the Frattini subgroup of I_k.

This is the intersection of all maximal subgroups of I_k. Since I_k is a 2-group, every maximal subgroup is normal and has index 2. It follows from this that if $g \in I_k$, then $g^2 \in \Phi(I_k)$.

Lemma 10. For $3 \leq k$, $\Phi(I_k)$ contains all pairs (\vec{v}, M) such that $\vec{v} \equiv \vec{0}$ (mod 4) and $M \equiv I$ (mod 8).

Proof. We begin by observing that for $r = k$, $(0, I) \in \Phi(I_k)$. We prove the result by backwards induction on r.

Inductive Hypothesis: $\Phi(I_k)$ contains all pairs $(0, M), M \equiv I$ (mod 2^r). Let $g = I + 2^{r-2}N$, and let $h = I + 2^{r-1}N$. If $r \geq 5$, then a straightforward calculation shows that $(0, g) \in I_k$. So, $(0, g)^2 = (0, g^2) \in \Phi(I_k)$. Therefore, for $r > 3$,

$$
g^2 = I + 2^{r-1}N + 2^{2r-4}N^2 = h \pmod{2^{2r-4}}.
$$

By the induction hypothesis, $(0, g^2h^{-1}) \in \Phi(I_k)$, and so $(0, h) \in \Phi(I_k)$.

So, for $k \geq r \geq 4$, all pairs $(0, M), M \equiv I$ (mod 2^r) $\in \Phi(I_k)$. We will now construct I_4, compute $\Phi(I_4)$, and determine if $\Phi(I_4) \in \{(\vec{v}, M) : \vec{v} \equiv 0 \pmod{8} , M \equiv I \pmod{8}\}$. A computation with Magma shows that

$$
I_4 = \begin{bmatrix}
1 & 1 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{bmatrix}, \begin{bmatrix}
7 & 0 & 0 \\
2 & 1 & 0 \\
0 & 0 & 1
\end{bmatrix}, \begin{bmatrix}
5 & 0 & 0 \\
2 & 1 & 0 \\
1 & 0 & 1
\end{bmatrix}.
$$

We then construct $\Phi(I_4)$ and then $\phi : \Phi(I_4) \to \text{GL}_3(\mathbb{Z}/8\mathbb{Z})$. We check that ker ϕ has order 64 and this proves the desired claim about $\Phi(I_4)$.

Now, observe that if \(\vec{v}_1 = (2x, 2y) \), then \((\vec{v}_1, I) \in I_k \) and so \((2\vec{v}_1, I) = (\vec{v}_1, I)^2 \in \Phi(I_k) \), and so \(\Phi(I_k) \) contains all pairs \((\vec{v}, I) \) with \(\vec{v} \equiv 0 \) (mod 4). Finally, for any matrix \(M \equiv I \) (mod 8), we have
\[
(\vec{v}_1, I) \ast (0, M) = (\vec{v}_1, M) \in \Phi(I_k)
\]
and this proves the desired claim. \(\square \)

Finally, we prove the desired surjectivity.

Theorem 11. The map \(\rho_{E,2^k} : \text{Gal}(K_k/\mathbb{Q}) \to I_k \) is surjective for all \(k \geq 3 \).

Proof. Suppose to the contrary the map is not surjective. Lemma 10 implies that if \(\rho_{E,2^k} \) is not surjective, the image lies in a maximal subgroup \(M \) which contains the kernel of the map from \(I_k \to I_3 \), and so the image of \(\rho_{E,8} \) must lie in a maximal subgroup of \(I_3 \). This contradicts Lemma 9 and shows the map is surjective. \(\square \)

Now, we indicate the relationship between \(\rho_{E,2^k} \) and \(\rho_{E',2^k} \). Let \(\sigma \in \text{Gal}(K_k/\mathbb{Q}) \).
If \(\beta_k \) is chosen so \(2^k \beta_k = P \), then
\[
\begin{align*}
\sigma(A_k) &= aA_k + bB_k, \\
\sigma(B_k) &= cA_k + dB_k, \\
\sigma(\beta_k) &= \beta_k + eA_k + fB_k.
\end{align*}
\]
Applying \(\phi \) to these equations, we have
\[
\begin{align*}
\phi(\sigma(A_k)) &= aC_k + 2bD_k = \sigma(\phi(A_k)) = \sigma(C_k), \\
\phi(\sigma(B_k)) &= cC_k + 2dD_k = \sigma(\phi(B_k)) = \sigma(2D_k), \\
\phi(\sigma(\beta_k)) &= \phi(\beta_k) + eC_k + 2fD_k = \sigma(\phi(\beta_k)) = \sigma(\beta'_k),
\end{align*}
\]
where \(2^k \beta'_k = R \) on \(E' \). Using the relations from Theorem 7 we have that \(2D_k = D_{k-1} \) and \(2C_k = C_{k-1} \). This gives
\[
\begin{align*}
\sigma(C_{k-1}) &= aC_{k-1} + 2bD_{k-1}, \\
\sigma(D_{k-1}) &= \frac{c}{2}C_{k-1} + dD_{k-1}.
\end{align*}
\]
Thus, the vector-matrix pair associated with \(\rho_{E',2^k-1} \) is \((\vec{v}', M') \), where \(\vec{v}' = [e \ 2f] \) and \(M' = \begin{bmatrix} a/2 & 2b \\ d & 2 \end{bmatrix} \).

Let \((\vec{v}, M) \) be a vector-matrix pair in \(I_k \). Suppose that \(o \) is the smallest non-negative integer so that \(2^o \vec{v} \) is in the image of \((I - M) \). Thus there are integers \(c_1 \) and \(c_2 \) (not necessarily unique) so that \(2^o \vec{v} = c_1 \vec{x}_1 + c_2 \vec{x}_2 \), where \(\vec{x}_1 \) and \(\vec{x}_2 \) are the first and second rows of \(I - M \).

Lemma 12. Assume that \(\det(M - I) \neq 0 \) (mod \(2^k \)). If \(c_1 \vec{x}_1 + c_2 \vec{x}_2 = d_1 \vec{x}_1 + d_2 \vec{x}_2 \), then \(c_1 \equiv d_1 \) (mod 2).

Proof. The assumption on \(\det(M - I) \) implies that \(\ker(M - I) \) has order dividing \(2^{k-1} \). However, if \(c_1 \vec{x}_1 + c_2 \vec{x}_2 = d_1 \vec{x}_1 + d_2 \vec{x}_2 \), then \([c_1 - d_1, c_2 - d_2] \) is an element of \(\ker(M - I) \). If \(c_1 \not\equiv d_1 \) (mod 2), then this element has order \(2^k \), which is a contradiction. \(\square \)

The above lemma makes it so we can speak of \(c_1 \mod 2 \) unambiguously. We now have the following result.
Theorem 13. Assume the notation above. Let \(o' \) be the smallest positive integer so that \(2^o o' \) is in the image of \(I - M \). If \(\det(M - I) \equiv 0 \pmod{2^k-1} \), then \(o = o' \) if and only if \(c_1 \) is even.

Proof. Let \(\vec{y}_1 \) and \(\vec{y}_2 \) be the first two rows of \(I - M' \). A straightforward calculation shows that if \(2^o \vec{v} = c_1 \vec{x}_1 + c_2 \vec{x}_2 \), then \(2^o \vec{v}' = c_1 \vec{y}_1 + 2c_2 \vec{y}_2 \). If \(c_1 \) is even, then it follows that \(2^{o-1} \vec{v}' = (c_1/2) \vec{y}_1 + 2c_2 \vec{y}_2 \) and so \(o \neq o' \).

Conversely, if \(o \neq o' \), then \(o' = o - 1 \) and so \(2^{o-1} \vec{v}' = d_1 \vec{y}_1 + d_2 \vec{y}_2 \). We have then that

\[
2^o \vec{v} \equiv 2d_1 \vec{x}_1 + d_2 \vec{x}_2 \pmod{2^k-1}.
\]

So if \(\vec{x} = \begin{bmatrix} 2d_1 \\ d_2 \end{bmatrix} \) we have \(\vec{x}(I - M) \equiv 2^o \vec{v} \pmod{2^k-1} \). If there is a vector \(\vec{x}' \) with \(\vec{x}' \neq \vec{x} \pmod{2} \) so that \(\vec{x}'(I - M) \equiv 2^o \vec{v} \pmod{2^k-1} \), then \(\vec{x} - \vec{x}' \) is in the kernel of \(I - M \pmod{2^k-1} \). However, the order of \(\vec{x} - \vec{x}' \) is \(2^{k-1} \) and this contradicts the condition on the determinant. This proves the desired result. \(\square \)

5. Proof of Theorem 4

Theorem 4 states that a prime \(p \) divides a term in the Somos-5 sequence if and only if \((2, 2) \in E(Q) \) is different than the order of \((1, 4) \in E'(Q) \). Recall that \(o \), the power of two dividing the order of \(P \), is the smallest positive integer such that \(2^o \vec{v} \in \text{im}(I - M) \), and \(o' \) is the power of two dividing the order of \(R \).

Suppose that \(\det(I - M) \equiv 0 \pmod{2^k-1} \). We have \(2^o \vec{v} \in \text{im}(I - M) \) if and only if \(c_1 \vec{x}_1 + c_2 \vec{x}_2 = 2^o \vec{v} \), where \(M = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \), \(\vec{x}_1 = [1 - a, -b] \), and \(\vec{x}_2 = [-c, 1 - d] \). We know that \(o \neq o' \) if and only if \(c_1 \) is even. For the remainder of the argument, we will consider elements of \(I_k \) as \(3 \times 3 \) matrices

\[
\begin{bmatrix}
\alpha & \beta & 0 \\
\gamma & \delta & 0 \\
e & f & 0
\end{bmatrix}
\]

and define \(A = \gamma f - \delta e, B = \alpha f - \beta e, \) and \(C = \alpha \delta - \beta \gamma \). We define \(M^0_{3}(\mathbb{Z}/2^k \mathbb{Z}) \) to be the set of \(3 \times 3 \) matrices with entries in \(\mathbb{Z}/2^k \mathbb{Z} \) whose third column is zero. We will use \(\text{ord}_2(r) \) to denote the highest power of 2 dividing \(r \) for \(r \in \mathbb{Z}/2^k \). If \(r = 0 \in \mathbb{Z}/2^k \), we will interpret \(\text{ord}_2(r) \) to have an undefined value, but we will declare the inequality \(\text{ord}_2(r) \geq k \) to be true.

Solving the equation \(c_1 \vec{x}_1 + c_2 \vec{x}_2 = 2^o \vec{v} \) using Cramer’s rule gives that \(c_1 C = -2^a A \) and \(c_2 C = 2^b B \). Assuming that \(c_1 \) is even and \(o > 0 \) implies that \(c_2 \) must be odd, and this implies that \(\text{ord}_2(B) < \text{ord}_2(C) \). Moreover, since the power of 2 dividing \(c_1 C \) must be higher than that dividing \(c_2 C \) it follows that \(\text{ord}_2(B) < \text{ord}_2(A) \). Conversely, if \(\text{ord}_2(B) < \text{ord}_2(A) \) and \(\text{ord}_2(B) < \text{ord}_2(C) \), then \(o > 0 \) and \(c_1 \) is even. Therefore, our goal is counting of elements of \(I_k \) with \(\text{ord}_2(A) > \text{ord}_2(B) \) and \(\text{ord}_2(C) > \text{ord}_2(B) \). For an \(M_0 \in M^0_{3}(\mathbb{Z}/2^k \mathbb{Z}) \), define

\[
\eta(M_0, r, k) = \# \left\{ M \in M^0_{3}(\mathbb{Z}/2^k \mathbb{Z}) : M \equiv M_0 \pmod{2^r}, \text{ord}_2(A), \text{ord}_2(C) > \text{ord}_2(B) \right\},
\]

\[
\mu(M_0, r) = \lim_{k \to \infty} \frac{\eta(M_0, r, k)}{|I_k| \cdot 64^{k-3}}.
\]
Roughly speaking, \(\mu(M_0, r) \) is the fraction of matrices \(M \equiv M_0 \pmod{2^r} \) in \(I_k \) with the property that \(\rho_{E, 2^k}(\sigma_p) = M \) implies that \(p \) divides a term of the Somos-5 sequence.

Theorem 14. We have
\[
\lim_{x \to \infty} \frac{\pi'(x)}{\pi(x)} = \sum_{M \in I_3} \mu(I - M, 3).
\]

Before we start the proof, we need some lemmas. The first is straightforward, and we omit its proof.

Lemma 15. If \(a \in \mathbb{Z}/2^k\mathbb{Z} \), then the number of pairs \((x, y) \in (\mathbb{Z}/2^k\mathbb{Z})^2 \) with \(xy \equiv a \pmod{2^k} \) is \((\text{ord}_2(a) + 1)2^{k-1} \), where if \(a \equiv 0 \pmod{2^k} \), we take \(\text{ord}_2(a) = k + 1 \).

Lemma 16. The number of matrices \(M \in M_2(\mathbb{Z}/2^k\mathbb{Z}) \) with \(\det(M) \equiv 0 \pmod{2^k} \) is \(3 \cdot 2^{3k-1} - 2^{2k-1} \).

Proof. We counting quadruples \((a, b, c, d) \) with \(ad \equiv bc \pmod{2^k} \). By Lemma 15, this number is equal to
\[
\sum_{a \in \mathbb{Z}/2^k\mathbb{Z}} \left((\text{ord}_2(a) + 1)2^{k-1} \right)^2,
\]
which can easily be shown to equal \(3 \cdot 2^{3k-1} - 2^{2k-1} \).

Proof of Theorem 14. For \(k \geq 1 \), let \(G = \text{Gal}(K_k/\mathbb{Q}) \) and \(\sigma \in G \) have the property that \(\sigma = [K_k/\mathbb{Q}]_p \) for some prime ideal \(p \subseteq O_{K_k} \) with \(p \cap \mathbb{Z} = (p) \). Assume that \(p \) is unramified in \(K_k/\mathbb{Q} \) and \(E/F_p \) has good reduction at \(p \). Let \(M \) be the \(3 \times 3 \) matrix corresponding to \(\rho_{E, 2^k}(\sigma) \), and \(A, B \) and \(C \) be the corresponding minors of \(I - M \). Then one of three alternatives occurs:

(a) \(B \not\equiv 0 \pmod{2^k} \), and a higher power of 2 divides both \(A \) and \(C \).

In this situation (the good case), previous results ensure that the order of \(P \) in \(E(F_p) \) is twice the order of \(R \) in \(E'(F_p) \), and hence \(p \) divides some term in the Somos-5 sequence.

(b) One of \(A \) or \(C \) is not congruent to 0 mod \(2^k \) and the power of 2 dividing \(B \) is equal or higher than for \(A \) or \(C \).

In this situation (the bad case), previous results ensure that the order of \(P \) in \(E(F_p) \) is equal to the order of \(R \) in \(E'(F_p) \) and \(p \) does not divide any term in the Somos-5 sequence.

(c) \(A \equiv B \equiv C \equiv 0 \pmod{2^k} \).

In this situation (the inconclusive case), we do not have enough information to determine if \(p \) divides a term in the Somos-5 sequence or not.

Fix \(\epsilon > 0 \) and choose a \(k \) large enough so that both of the following conditions are satisfied:

(i) \(\sum_{M \in I_k} \n_{I_k} - M, 3, k < \epsilon/3 \), and

(ii) the fraction of elements \(M \) in \(I_3 \) with \(C \equiv \det(I - M) \equiv 0 \pmod{2^k} \) is less than \(\epsilon/3 \). (This fraction tends to zero by Lemma 15.)

Let \(C \subseteq I_k \) be the collection of “good” elements of \(I_k \) and let \(C' \) be the collection of “good or inconclusive” elements.

By the statements above, we have that
\[
\sum_{M \in I_3} \mu(I - M, 3) - 2\epsilon < \frac{|C|}{|I_k|}
\]
and

\[
\frac{|C'|}{|I_k|} < \sum_{M \in I_3} \mu(I - M, 3) + \epsilon/3.
\]

By the Chebotarev density theorem, we have

\[
\lim_{x \to \infty} \frac{\#\{p \text{ prime}: p \leq x \text{ is unramified in } K_k \text{ and } \frac{[K_k/\mathbb{Q}]}{p} \subseteq C\}}{\pi(x)} = \frac{|C|}{|I_k|},
\]

and the same with \(C'\).

Let \(r\) be the number of primes that either ramify in \(K_k/\mathbb{Q}\) or for which \(E/\mathbb{Q}\) has bad reduction. Then there is a constant \(N\) so that if \(x > N\), then

\[
\sum_{M \in I_3} \mu(I - M, 3) - \epsilon + \frac{r}{\pi(x)} < \frac{\#\{p \text{ prime}: p \leq x \text{ is unramified in } K_k \text{ and } \frac{[K_k/\mathbb{Q}]}{p} \subseteq C\}}{\pi(x)},
\]

and

\[
\frac{\#\{p \text{ prime}: p \leq x \text{ is unramified in } K_k \text{ and } \frac{[K_k/\mathbb{Q}]}{p} \subseteq C'\}}{\pi(x)} < \sum_{M \in I_3} \mu(I - M, 3) + \epsilon - \frac{r}{\pi(x)}.
\]

It follows from these inequalities that for \(x > N\), then

\[
-\epsilon < \frac{\pi'(x)}{\pi(x)} - \sum_{M \in I_3} \mu(I - M, 3) < \epsilon.
\]

This proves that

\[
\lim_{x \to \infty} \frac{\pi'(x)}{\pi(x)} = \sum_{M \in I_3} \mu(I - M, 3).
\]

\(\square\)

Our goal is now to compute \(\sum_{M \in I_3} \mu(I - M, 3)\). To do this, we will develop rules to compute \(\mu(M, r)\) for any matrix \(M \in M_3(\mathbb{Z}/2^r\mathbb{Z})\) whose third column is zero. Observe that \(\mu(M_0, r) \leq \frac{\#\{M \in M_3^0(\mathbb{Z}/2^r\mathbb{Z}) : M \equiv M_0 \text{ (mod } 2^r)\}}{|I_3|_{64^r-3}} = \frac{1}{2^{64^r-3}}\).

Also, if all the entries in \(M\) are even, then \(\mu(M, r) = \frac{1}{64}\mu(M/2, r-1)\). This allows us to reduce to matrices where at least one entry is odd. If \(M \in M_3^0(\mathbb{Z}/2^r\mathbb{Z})\) is the zero matrix, we have

\[
\mu(M, 1) = \frac{1}{64}\mu(M/2, 0) = \frac{1}{64} \sum_{N \in M_3^0(\mathbb{Z}/2^r\mathbb{Z})} \mu(N, 1) = \frac{1}{64} \mu(M, 1) + \sum_{N \in M_3^0(\mathbb{Z}/2^r\mathbb{Z})} \mu(N, 1).
\]

It follows that \(\mu(M, 1) = \frac{1}{64} \sum_{N \in M_3^0(\mathbb{Z}/2^r\mathbb{Z})} \mu(N, 1)\).

In order to determine \(\mu(M_0, r)\), it is necessary to consider a matrix \(M \in M_3(\mathbb{Z}/2^k\mathbb{Z})\) and examine the behavior of matrices \(M' \in M_3(\mathbb{Z}/2^{k+1}\mathbb{Z})\) with \(M' \equiv M \text{ (mod } 2^k)\).

We refer to these as ‘lifts’ of \(M\). We define \(A, B\) and \(C\) to be functions defined on a matrix \(M = \begin{bmatrix} \alpha & \beta & 0 \\ \gamma & \delta & 0 \\ e & f & 0 \end{bmatrix}\), given by \(A = \gamma f - \delta e, B = \alpha f - \beta e\) and \(C = \alpha \delta - \beta \gamma\).
Theorem 17. Let $M = \begin{bmatrix} \alpha & \beta & 0 \\ \gamma & \delta & 0 \\ e & f & 0 \end{bmatrix} \in M_3 \left(\mathbb{Z}/2^k \mathbb{Z} \right)$ and suppose $A \equiv B \equiv C \equiv 0 \pmod{2^k}$.

(1) If γ or δ is odd, then $\mu(M, k) = 0$.
(2) If γ and δ are both even, but one of α, β, e or f is odd, then $\mu(M, k) = \frac{1}{64^{k-1}}$.

Proof. Suppose that $M \in M_3 \left(\mathbb{Z}/2^k \mathbb{Z} \right)$ is a matrix with γ or δ odd and with $A \equiv C \equiv 0 \pmod{2^k}$. In the case that γ is odd, the congruences $A \equiv 0 \pmod{2^k}$ and $C \equiv 0 \pmod{2^k}$ imply that $f \equiv \frac{\alpha}{\gamma} \pmod{2^k}$ and $\beta \equiv \frac{\alpha}{\gamma} \pmod{2^k}$. We then find that $B \equiv \alpha f - \beta e \equiv \alpha \left(\frac{\alpha}{\gamma}\right) - \left(\frac{\alpha}{\gamma}\right) e \equiv 0 \pmod{2^k}$. It follows that none of the lifts of M have $\text{ord}_2(B) < \min\{\text{ord}_2(A), \text{ord}_2(C)\}$ and so $\mu(M, k) = 0$. A similar argument applies in the case that δ is odd.

Suppose now that γ and δ are both even. Consider M' to be a lift of M mod 2^{k+1}. Then we have

$$M' = \begin{bmatrix} \alpha' & \beta' & 0 \\ \gamma' & \delta' & 0 \\ e' & f' & 0 \end{bmatrix} = \begin{bmatrix} \alpha + \alpha_1 2^k & \beta + \beta_1 2^k & 0 \\ \gamma + \gamma_1 2^k & \delta + \delta_1 2^k & 0 \\ e + \epsilon_1 2^k & f + f_1 2^k & 0 \end{bmatrix},$$

where $\alpha_1, \beta_1, \gamma_1, \delta_1, e_1, f_1 \in \mathbb{F}_2$. If A', B' and C' are the values of A, B, and C associated to M', then

$$A' \equiv A + 2^k (\gamma_1 f - \delta_1 e) \pmod{2^{k+1}},$$
$$B' \equiv B + 2^k (\alpha f + \alpha_1 f_1 - \beta_1 e - \beta e_1) \pmod{2^{k+1}},$$
$$C' \equiv C + 2^k (\alpha e_1 - \beta_1 \gamma_1) \pmod{2^{k+1}}.$$

Suppose that e or f is odd. Then the map $\mathbb{F}_2^5 \to \mathbb{F}_2^3$ given by $(\alpha_1, \beta_1, \gamma_1, \delta_1, e_1, f_1) \mapsto (\gamma_1 f - \delta_1 e, \alpha f + \alpha_1 f_1 - \beta_1 e - \beta e_1)$ is surjective. It follows that of the 64 lifts of M', one quarter have $(A' \mod 2^{k+1}, B' \mod 2^{k+1})$ equal to each of $(2^k, 2^k)$, $(0, 2^k)$, $(2^k, 0)$ and $(0, 0)$. Moreover, if $A' \equiv 0 \pmod{2^{k+1}}$, then we must have $C' \equiv 0 \pmod{2^{k+1}}$. This is because if e' is odd, then $\delta' \equiv \frac{\gamma f'}{\beta e'} \pmod{2^{k+1}}$, and $\beta' \equiv \frac{\alpha - B'}{\epsilon e'} \pmod{2^{k+1}}$. Plugging these into $C' = \alpha' e - \beta' \gamma'$ gives $C' \equiv \frac{B'}{e'} \pmod{2^{k+1}}$. Since γ' is even, it follows that $C' \equiv 0 \pmod{2^{k+1}}$. A similar argument shows that $C' \equiv 0 \pmod{2^{k+1}}$ if f' is odd. As a consequence, of the 64 lifts of M, 32 have $\mu(M', k+1) = 0$, 16 have $\text{ord}_2(B') < \text{ord}_2(A')$ and $\text{ord}_2(B') < \text{ord}_2(A')$. For these, we have $\mu(M', k+1) = \frac{1}{2 \cdot 64^{k-1}}$. The remainder have $A' \equiv B' \equiv C' \equiv 0 \pmod{2^{k+1}}$. It follows that

$$\mu(M, k) = \frac{1}{2 \cdot 64^{k-1}} \cdot \frac{1}{4} + \sum_{M' \equiv M} \sum_{A' \equiv B' \equiv C' \equiv 0 \pmod{2^{k+1}}} \mu(M', k + 1).$$

Applying the above argument repeatedly gives

$$\mu(M, k) = \frac{1}{2 \cdot 64^{k-1}} \cdot \left(\frac{1}{4} + \frac{1}{16} + \cdots + \frac{1}{4^\ell} \right) + \sum_{M' \equiv M} \sum_{A' \equiv B' \equiv C' \equiv 0 \pmod{2^{k+1}}} \mu(M', k + \ell).$$
Using the bound $0 \leq \mu(M', k + \ell) \leq \frac{1}{2^{64^{k+1}}}$, noting that the sum contains 16ℓ terms, and taking the limit as $\ell \to \infty$ yields that $\mu(M, k) = \frac{1}{2^{64^{k+1}}} \sum_{r=1}^{\infty} \frac{1}{4^r} = \frac{1}{6^{64^{k-1}}}.

The case when α or β is odd is very similar. In that case, one can show that the 64 lifts M' have $(B' \bmod 2^{k+1}, C' \bmod 2^{k+1})$ divided equally between $(2^k, 2^k), (0, 2^k), (2^k, 0)$ and $(0, 0)$, and that $C' \equiv 0 \pmod {2^{k+1}}$ implies that $A' \equiv 0 \pmod {2^{k+1}}$. Again, one quarter of the lifts M' have $B' \equiv 2^k \pmod {2^{k+1}}$ and $A' \equiv C' \equiv 0 \pmod {2^{k+1}}$, and $\mu(M, k) = \frac{1}{6^{64^{k-1}}}$. \hfill \Box

Let $M = M_3^0(\mathbb{Z}/2\mathbb{Z})$ be the zero matrix. We have that $\mu(M, 3) = \frac{1}{63} \mu(M, 1) = \frac{1}{63} \cdot \frac{1}{64^2} \sum_{N \in M_3^0(\mathbb{Z}/2\mathbb{Z})} \mu(N, 1)$. Of the 63 nonzero matrices in $M_3^0(\mathbb{Z}/2\mathbb{Z})$ we find that 6 have B odd and A and C even, while 36 have A or C odd. Of the remaining 21, there are 12 that have γ or δ odd, and the remaining 9 have γ and δ both even. It follows that

$$\mu(M, 3) = \frac{1}{63} \cdot \frac{1}{64^2} \cdot \frac{1}{2} \left[6 + 36 \cdot 0 + 12 \cdot 0 + 9 \cdot \frac{1}{3} \right] = \frac{1}{8192} \cdot \frac{1}{7} = \frac{1}{57344}.$$ (Note that in the denominator of $\mu(N, 1)$ we have $|I_3|64^{-2} = 8192 \cdot (1/4096) = 2.$)

For each of the 8191 non-identity elements M of I_3, we divide $I - M$ by the highest power of 2 dividing all of the elements, say 2^r. In 3754 cases, we have $\text{ord}_2(B) < \text{ord}_2(A)$ and $\text{ord}_2(B) < \text{ord}_2(C)$. For each of these, $\mu(I - M, 3) = \frac{1}{8192}$. In 4036 cases, we have $\text{ord}_2(B) \geq \text{ord}_2(A)$ or $\text{ord}_2(B) \geq \text{ord}_2(C)$ and not all of A, B, and C are congruent to 0 modulo 2^{3-r}. For each of these, $\mu(I - M, 3) = 0$.

In 365 cases, we have $A = B = C = 0 \pmod {2^{3-r}}$ and γ and δ are both even. In each of these cases, $\mu(I - M, 3) = \frac{1}{8192}$ by Theorem 17.

In the remaining 36 cases, we have $A = B = 0 \pmod {2^{3-r}}$ and one of γ or δ is odd. By Theorem 17, $\mu(I - M, 3) = 0$.

It follows that

$$\sum_{M \in I_3} \mu(I - M, 3) = 3754 \cdot \frac{1}{8192} + 365 \cdot \frac{1}{3 \cdot 8192} + \frac{1}{57344} = 5087 \quad 10752.$$ This concludes the proof of Theorem 11.

References

[1] W. Bosma, J. Cannon, and C. Playoust. The Magma algebra system. I. The user language. J. Symbolic Comput., 24(3-4):235–265, 1997. Computational algebra and number theory (London, 1993).

[2] Paul Cubre and Jeremy Rouse. Divisibility properties of the Fibonacci entry point. Proc. Amer. Math. Soc., 142(11):3771–3785, 2014.

[3] Sergey Fomin and Andrei Zelevinsky. The Laurent phenomenon. Adv. in Appl. Math., 28(2):119–144, 2002.

[4] Helmut Hasse. Über die Dichte der Primzahlen p, für die eine vorgegebene ganzzahlige Zahl $a \neq 0$ von gerader bzw. ungerader Ordnung mod. p ist. Math. Ann., 166:19–23, 1966.

[5] A. N. W. Hone. Elliptic curves and quadratic recurrence sequences. Bull. London Math. Soc., 37(2):161–171, 2005.

[6] A. N. W. Hone. Sigma function solution of the initial value problem for Somos 5 sequences. Trans. Amer. Math. Soc., 359(10):5019–5034, 2007.

[7] Henryk Iwaniec and Emmanuel Kowalski. Analytic number theory, volume 53 of American Mathematical Society Colloquium Publications. American Mathematical Society, Providence, RI, 2004.

[8] Rafe Jones and Jeremy Rouse. Galois theory of iterated endomorphisms. Proc. Lond. Math. Soc. (3), 100(3):763–794, 2010. Appendix A by Jeffrey D. Achter.
[9] J. C. Lagarias. The set of primes dividing the Lucas numbers has density 2/3. *Pacific J. Math.*, 118(2):449–461, 1985.

[10] J. C. Lagarias. Errata to: “The set of primes dividing the Lucas numbers has density 2/3” [Pacific J. Math. 118 (1985), no. 2, 449–461; MR0789184 (86i:11007)]. *Pacific J. Math.*, 162(2):393–396, 1994.

[11] Richard Pink. On the order of the reduction of a point on an abelian variety. *Math. Ann.*, 330(2):275–291, 2004.

[12] Jeremy Rouse and David Zureick-Brown. Elliptic curves over \mathbb{Q} and 2-adic images of Galois. To appear in *Research in Number Theory*.

[13] Joseph H. Silverman. *The arithmetic of elliptic curves*, volume 106 of *Graduate Texts in Mathematics*. Springer-Verlag, New York, 1992. Corrected reprint of the 1986 original.

[14] Joseph H. Silverman and John Tate. *Rational points on elliptic curves*. Undergraduate Texts in Mathematics. Springer-Verlag, New York, 1992.

[15] David E. Speyer. Perfect matchings and the octahedron recurrence. *J. Algebraic Combin.*, 25(3):309–348, 2007.