Trace Operators for Modulation, α-Modulation and Besov Spaces

Hans G. Feichtingera,1, Chunyan Huangb,2, Baoxiang Wangb,3

aFaculty of Mathematics, University of Vienna, Vienna A-1090, Austria.
bLMAM, School of Mathematical Sciences, Peking University, Beijing 100871, China.

Abstract. In this paper, we consider the trace theorem for modulation spaces $M_{p,q}^s$, α-modulation spaces $M_{p,q}^{s,\alpha}$ and Besov spaces $B_{p,q}^s$. For the modulation space, we obtain the sharp results.

Key words and phrases. Trace theorems; modulation spaces; α-modulation spaces; Besov spaces.

2000 Mathematics Subject Classifications. 42B35, 46E35.

1 Introduction

The α-modulation spaces $M_{p,q}^{s,\alpha}$, introduced by Gröbner in [10] are a class of function spaces that contain Besov spaces $B_{p,q}^s$ ($\alpha = 1$) and modulation spaces $M_{p,q}^s$ ($\alpha = 0$) as special cases.

There are two kinds of basic coverings on Euclidean \mathbb{R}^n which is very useful in the theory of function spaces and their applications, one is the uniform covering $\mathbb{R}^n = \bigcup_{k \in \mathbb{Z}^n} Q_k$, where Q_k denote the unit cube with center k; another is the dyadic covering $\mathbb{R}^n = \bigcup_{k \in \mathbb{N}} \{\xi : 2^{k-1} \leq |\xi| < 2^k\} \bigcup \{\xi : |\xi| \leq 1\}$. Roughly speaking, these decompositions together with the frequency-localized techniques yield the frequency-uniform decomposition operator $\Box_k \sim \mathcal{F}^{-1} \chi_{Q_k} \mathcal{F}$ and the dyadic decomposition operator $\Delta_k \sim \mathcal{F}^{-1} \chi_{\{\xi : |\xi| \sim 2^k\}} \mathcal{F}$, respectively. The tempered distributions acted on these decomposition operators and equipped with the $\ell^q (L^p(\mathbb{R}^n))$ norms, we then obtain Feichtinger’s modulation spaces and Besov spaces, respectively.

During the past twenty years, the third covering was independently found by Feichtinger and Gröbner [3, 4, 10], and Päivärinta and Somersalo [12]. This covering, so called α-covering has a moderate scale which is rougher than that of the uniform covering and is thinner than that of the dyadic covering. Applying the α-covering...
to the frequency spaces, in a similar way as the definition of Besov spaces, Gröbner [10] introduced the notion of \(\alpha \)-modulation spaces.

Let \(n \geq 2 \). For any \(x = (x_1, \ldots, x_n) \in \mathbb{R}^n \), we denote \(\bar{x} = (x_1, \ldots, x_{n-1}) \). Given a Banach function space \(X(\mathbb{R}^n) \) defined on \(\mathbb{R}^n \) and \(f \in X \), we ask for the trace of \(f \) on the hyperplane \(\{ x : x = (\bar{x}, 0) \} \). For the sake of convenience, this hyperplane will be written as \(\mathbb{R}^{n-1} \). It is clear that a clarification of this problem is of importance for the boundary value problems of the partial differential equations. Now we exactly describe the trace operators.

Definition 1.1 Let \(X \) and \(Y \) be quasi-Banach function spaces defined on \(\mathbb{R}^n \) and \(\mathbb{R}^{n-1} \), respectively. Denote
\[
\mathcal{T} : f(x) \rightarrow f(\bar{x}, 0).
\]

If \(\mathcal{T} : X \rightarrow Y \) and there exists a constant \(C > 0 \) such that
\[
\|\mathcal{T} f(x)\|_Y \leq C \|f\|_X, \quad \forall f \in X,
\]
and there exists a continuous linear operator \(\mathcal{T}^{-1} : Y \rightarrow X \) such that \(\mathcal{T} \mathcal{T}^{-1} \) is identical operator, then \(\mathcal{T} \) is said to be a retraction from \(X \) onto \(Y \).

If \(\mathcal{T} \) is a retraction from \(Y \) onto \(X \), we see that the trace of \(f \in X \) is well behaved in \(Y \). The trace theorems in modulation spaces and Besov spaces have been extensively studied. Feichtinger [5] considered the trace theorem for the modulation space \(M^{s_{p,q}} \) in the case \(1 \leq p, q \leq \infty \), \(s > 1/q' \) and he obtained that \(\mathcal{T} M^{s_{p,q}}(\mathbb{R}^n) = M^{s_{p,q}/q'}(\mathbb{R}^{n-1}) \). Frazier and Jawerth [8] proved that \(\mathcal{T} B^{s_{p,q}}(\mathbb{R}^n) = B^{s_{p,q}/p}(\mathbb{R}^{n-1}) \) in the case \(0 < p, q \leq \infty \) and \(s - 1/p > \max((n-1)(1/p - 1), 0) \).

In this paper, we will show the following:

Theorem 1.2 Let \(n \geq 2 \), \(0 < p, q \leq \infty \), \(s \in \mathbb{R} \). Then
\[
\mathcal{T} : f(x) \rightarrow f(\bar{x}, 0), \quad \bar{x} = (x_1, \cdots, x_{n-1})
\]
is a retraction from \(M^{s_{p,q}}_{p,q \land 1}(\mathbb{R}^n) \) onto \(M^{s_{p,q}}_{p,q}(\mathbb{R}^{n-1}) \).

Theorem 1.2 is sharp in the sense that \(\mathcal{T} : M^{s_{p,q,r}}_{p,q,r}(\mathbb{R}^n) \not\rightarrow M^{s_{p,q}}_{p,q}(\mathbb{R}^{n-1}) \) for some \(r > 1 \), \(p, q \geq 1 \). In view of the basic embedding \(M^{s_{p,q}}_{p,q} \subset M^{s_{2,q}}_{p,q,q_2} \) for \(s - s_2 > 1/q - 1/q_2 > 0 \), \(s \geq 0 \), we immediately have
Corollary 1.3 Let \(n \geq 2, 0 < p, q \leq \infty, s \geq 0 \). Let \(\mathcal{Tr} \) be as in (1.3). Then for any \(\varepsilon > 0 \),
\[
\mathcal{Tr} : M^{s+\frac{1}{q'}}_{p,q} (\mathbb{R}^n) \to M^s_{p,q} (\mathbb{R}^{n-1}) .
\]

One may ask if Corollary 1.3 holds for the limit case \(s = \varepsilon = 0 \), we can give a counterexample to show that \(\mathcal{Tr} : M^{1/q'}_{p,q} (\mathbb{R}^n) \not\to M^0_{p,q} (\mathbb{R}^{n-1}) \) in the case \(p, q > 1 \). Write
\[
s_p = (n-1)(1/(p \wedge 1) - 1).
\]
It is easy to see that \(s_p = 0 \) for \(p \geq 1 \) and \(s_p = (n-1)(1/p - 1) \) for \(p < 1 \). For the trace of \(\alpha \)-modulation spaces, we have the following result.

Theorem 1.4 Let \(n \geq 2, 0 < p, q \leq \infty, s \geq \alpha(n-1)/q + \alpha s_p \). Let \(\mathcal{Tr} \) be as in (1.3). Then
\[
\mathcal{Tr} : M^{s+\alpha/p}_{p,p\wedge q\wedge 1} (\mathbb{R}^n) \to M^s_{p,q} (\mathbb{R}^{n-1}) .
\]

The case \(s < \alpha(n-1)/q + \alpha s_p \) is more complicated. We have the following

Remark 1.5 Let \(n \geq 2, 0 < p, q \leq \infty, s < \alpha(n-1)/q + \alpha s_p \). Let \(\mathcal{Tr} \) be as in (1.3). Then
\[
\mathcal{Tr} : M^{s+\sigma_{\alpha,p,q}}_{p,p\wedge q\wedge 1} (\mathbb{R}^n) \to M^s_{p,q} (\mathbb{R}^{n-1}) ,
\]

where
\[
\sigma_{\alpha,p,q} = \begin{cases}
\alpha/p + (1-\alpha)[\alpha(n-1)/q + \alpha s_p - s] , & q s + (n-1)(1-\alpha) - q \alpha s_p > 0 , \\
\alpha/p + \alpha s_p - s + \varepsilon , & q s + (n-1)(1-\alpha) - q \alpha s_p = 0 , \\
\alpha/p + \alpha s_p - s , & q s + (n-1)(1-\alpha) - q \alpha s_p < 0 .
\end{cases}
\]

Theorem 1.3 is sharp in the case \(s \geq 0, p = q = 1 \). As the end of this paper, we consider the trace of Besov spaces. If \(s > s_p \), the corresponding result has been obtained in [8]. If \(s \leq s_p \), we have the following trace theorem for Besov spaces:

Theorem 1.6 Let \(n \geq 2, 0 < p, q \leq \infty, s \leq s_p \). Let \(\mathcal{Tr} \) be as in (1.3). Then we have
\[
\mathcal{Tr} : \tilde{B}^{s+1/p}_{p,p\wedge q\wedge 1} (\mathbb{R}^n) \to B^s_{p,q} (\mathbb{R}^{n-1}) ,
\]

and
\[
\mathcal{Tr} : B^{s+1/p}_{p,p\wedge q\wedge 1} (\mathbb{R}^n) \to B^s_{p,q} (\mathbb{R}^{n-1})
\]
in the case \(s < s_p \). Moreover, when \(1 < p < \infty \), we have
\[
\mathcal{Tr} : \tilde{B}^{1/p,1/p}_{p,q\wedge 1} (\mathbb{R}^n) \to B^0_{p,q} (\mathbb{R}^{n-1}) ,
\]
\[
\mathcal{Tr} : B^{1/p,s+1/p}_{p,q\wedge 1} (\mathbb{R}^n) \to B^s_{p,q} (\mathbb{R}^{n-1}), \quad s < 0 .
\]
The following are some notations which will be frequently used in this paper: \(\mathbb{R}, \mathbb{N}, \text{and} \mathbb{Z} \) will stand for the sets of reals, positive integers and integers, respectively. \(\mathbb{R}_+ = [0, \infty), \mathbb{Z}_+ = \mathbb{N} \cup \{0\} \). \(c < 1, C > 1 \) will denote positive universal constants, which can be different at different places. \(a \lesssim b \) stands for \(a \leq Cb \) for some constant \(C > 1 \), \(a \sim b \) means that \(a \lesssim b \) and \(b \lesssim a \). We write \(a \wedge b = \min(a, b), a \vee b = \max(a, b) \). We denote by \(p' \) the dual number of \(p \in [1, \infty] \), i.e., \(1/p + 1/p' = 1 \). We will use Lebesgue spaces \(L^p := L^p(\mathbb{R}^n), \| \cdot \|_p := \| \cdot \|_{L^p} \), We denote by \(\mathcal{S} := \mathcal{S}(\mathbb{R}^n) \) and \(\mathcal{S}' := \mathcal{S}'(\mathbb{R}^n) \) the Schwartz space and tempered distribution space, respectively. \(B(x, R) \) stands for the ball in \(\mathbb{R}^n \) with center \(x \) and radius \(R \), \(Q(x, R) \) denote the cube in \(\mathbb{R}^n \) with center \(x \) and side-length \(2R \). \(\mathcal{F} \) or \(\mathcal{F}^{-1} \) denotes the Fourier transform; \(\mathcal{F}^{-1} \) denotes the inverse Fourier transform. For any set \(A \) with finite elements, we denote by \(\#A \) the number of the elements of \(A \).

2 \hspace{1cm} \alpha\text{-modulation spaces}

2.1 Definition

A countable set \(Q \) of subsets \(Q \subset \mathbb{R}^n \) is said to be an admissible covering if \(\mathbb{R}^n = \bigcup_{Q \in Q} Q \) and there exists \(n_0 < \infty \) such that \(\#\{Q' \in Q : Q \cap Q' \neq \emptyset\} \leq n_0 \) for all \(Q \in Q \). Denote

\[
\begin{align*}
 r_Q &= \sup\{r \in \mathbb{R} : B(c_r, r) \subset Q\}, \\
 R_Q &= \inf\{R \in \mathbb{R} : Q \subset B(c_R, R)\}.
\end{align*}
\]

(2.1)

Let \(0 \leq \alpha \leq 1 \). An admissible covering is called an \(\alpha \)-covering of \(\mathbb{R}^n \), if \(|Q| \sim (x)^{\alpha n} \) (uniformly) holds for all \(Q \in Q \) and for all \(x \in Q \), and \(\sup_{Q \in Q} R_Q/r_Q \leq K \) for some \(K < \infty \).

Let \(Q \) be an \(\alpha \)-covering of \(\mathbb{R}^n \). A corresponding bounded admissible partition of unity of order \(p \) (\(p \)-BAPU) \(\{\psi_Q\}_{Q \in Q} \) is a family of smooth functions satisfying

\[
\begin{align*}
 &\psi_Q : \mathbb{R}^n \rightarrow [0, 1], \supp \psi_Q \subset Q, \\
 &\sum_{Q \in Q} \psi_Q(x) \equiv 1 \quad \forall x \in \mathbb{R}^n, \\
 &\sup_{Q \in Q} |Q|^{1/(p \wedge 1) - 1} \| \mathcal{F}^{-1} \psi_Q \|_{L^{p \wedge 1}} < \infty.
\end{align*}
\]

Definition 2.1 Let \(0 < p, q, s \leq \infty, s \in \mathbb{R}, 0 \leq \alpha \leq 1 \). Let \(Q \) be an \(\alpha \)-covering of \(\mathbb{R}^n \) with the \(p \)-BAPU \(\{\psi_Q\}_{Q \in Q} \). We denote by \(M^{s, \alpha}_{p,q} \) the space of all tempered distributions \(f \) for which the following is finite:

\[
\|f\|_{M^{s, \alpha}_{p,q}} = \left(\sum_{Q \in Q} \langle \xi \rangle^{qs} \| \mathcal{F}^{-1} \psi_Q \mathcal{F} f \|_{L^p(\mathbb{R}^n)}^q \right)^{1/q},
\]

4
where $\xi_Q \in Q$ is arbitrary. For $q = \infty$, we have a usual substitution for the ℓ^q norm with the ℓ^∞ norm.

We now give an exact equivalent norm on $M_{p,q}^{s,\alpha}$. Denote

$$Q_k = Q(|k|^{\frac{\alpha}{1-\alpha}} k, r \langle k \rangle^{\frac{\alpha}{1-\alpha}}), \quad k \in \mathbb{Z}^n.$$

It is known that, there exists a constant $r_1 > 0$ such that for any $r > r_1$, $\{Q_k\}_{k \in \mathbb{Z}^n}$ is an α-covering of \mathbb{R}^n, i.e., $\mathbb{R}^n = \bigcup_{k \in \mathbb{Z}^n} Q_k$ and there exists $n_0 \in \mathbb{N}$ such that $# \{l \in \mathbb{Z}^n : Q_k \cap Q_{k+l} \neq \emptyset\} \leq n_0$. Moreover, $|Q_k| \sim \langle k \rangle^{\frac{\alpha}{1-\alpha}}$. Let $\eta : \mathbb{R} \to [0,1]$ be a smooth bump function satisfying

$$\eta(\xi) := \begin{cases}
1, & |\xi| \leq 1, \\
\text{smooth,} & 1 < |\xi| \leq 2, \\
0, & |\xi| > 2.
\end{cases} \quad (2.2)$$

We write for $k = (k_1, ..., k_n)$ and $\xi = (\xi_1, ..., \xi_n)$,

$$\phi_k(\xi) = \eta \left(\frac{\xi - |k|^{\frac{\alpha}{1-\alpha}} k}{r \langle k \rangle^{\frac{\alpha}{1-\alpha}}} \right).$$

Put

$$\psi_k(\xi) = \frac{\phi_k(\xi_1) ... \phi_k(\xi_n)}{\sum_{k \in \mathbb{Z}^n} \phi_k(\xi_1) ... \phi_k(\xi_n)}, \quad k \in \mathbb{Z}^n. \quad (2.3)$$

We have

Lemma 2.2 Let $0 \leq \alpha < 1$, $0 < p \leq \infty$ and $\{\psi_k\}_{k \in \mathbb{Z}^n}$ be as in (2.3). Then $\{\psi_k\}_{k \in \mathbb{Z}^n}$ is a p-BAPU for $r > r_1$. In the case $\alpha = 0$, we can take $r_1 = 1/2$.

Proposition 2.3 Let $0 \leq \alpha < 1$, $0 < p, q \leq \infty$, then

$$\|f\|_{M_{p,q}^{s,\alpha}} = \left(\sum_{k \in \mathbb{Z}^n} \langle k \rangle^{\frac{\alpha}{1-\alpha}} \|\mathcal{F}^{-1} \psi_k \mathcal{F} f\|_{L^p(\mathbb{R}^n)}^q \right)^{1/q}$$

is an equivalent norm on α-modulation space with the usual modification for $q = \infty$.

Proof. See [1].
2.2 Equivalent norm via a New p-BAPU

We now construct a new covering, which is of importance for the proof of Theorem 1.4. Let $j \in \mathbb{Z} \setminus \{0\}$. We divide $[-|j|^{\frac{1}{1-\alpha}}, |j|^{\frac{1}{1-\alpha}}]$ into $2|j|/\{r_1\} = 2N_j$ intervals with equal length:

$$[-|j|^{\frac{1}{1-\alpha}}, |j|^{\frac{1}{1-\alpha}}] = [r_{j-N_j}, r_{j-N_j+1}] \cup \ldots \cup [r_{j-N_j-1}, r_{j-N_j}].$$

Denote

$$\mathcal{R} = \{r_{j,s} : j \in \mathbb{N}, s = -N_j, \ldots, N_j\}.$$

We further write

$$\mathcal{K}_j^n = \{k = (k_1, \ldots, k_n) : k_i \in \mathcal{R}, \max_{1 \leq i \leq n} |k_i| = |j|^{\frac{1}{1-\alpha}}\}.$$

For any $k \in \mathcal{K}_j^n$, we write

$$Q_{kj} = Q(k, r|j|^{\frac{\alpha}{1-\alpha}}), \quad Q_{k0} = Q(0, 2).$$

We will write $\mathcal{K}_j = \mathcal{K}_j^n$ if there is no confusion.

Proposition 2.4 There exists $r_1 > 0$ such that for any $r > r_1$, $\{Q_{kj}\}_{k \in \mathcal{K}_j, j \in \mathbb{Z}_+}$ is an α-covering of \mathbb{R}^n.

Proof. Let $j \in \mathbb{N} \cup \{0\}$. We see that there exists $r_1 > 0$ such that for any $r > r_1$, $\{Q(|j|^{\frac{\alpha}{1-\alpha}}j, r|j|^{\frac{\alpha}{1-\alpha}})\}_j$ is an α-covering of \mathbb{R}. Hence we easily see that

$$\mathbb{R} \subset \bigcup_{k \in \mathcal{K}_j, j \in \mathbb{Z}_+} Q_{kj}, \quad |Q_{kj}| \sim |j|^{\frac{\alpha}{1-\alpha}} \sim \langle \xi_{Q_{kj}} \rangle_{n_0}^{\alpha}, \forall \xi_{Q_{kj}} \in Q_{kj},$$

$$\#\{Q_{kj} : Q_{kj} \cap Q_{kj'} \neq \emptyset\} \leq n_0 < \infty.$$

Now, on the basis of the α-covering constructed above, we further construct a p-BAPU. Let j be fixed. Denote for $i = 1, \ldots, n$,

$$\phi_{kj}(\xi_i) = \phi \left(\frac{\xi_i - k_i}{r(j)^{\frac{\alpha}{1-\alpha}}} \right), \quad k = (k_1, \ldots, k_n) \in \mathcal{K}_j.$$

$$\phi_{kj}(\xi) = \phi_{kj}(\xi_1) \ldots \phi_{kj}(\xi_n).$$

We put

$$\psi_{kj}(\xi) = \frac{\phi_{kj}(\xi)}{\sum_{k \in \mathcal{K}_j, j \in \mathbb{Z}_+} \phi_{kj}(\xi)}.$$

(2.4)
Figure 1: α-covering, the case of $n = 2$, $\alpha = 1/2$, $r_1 = 1$.

Proposition 2.5 Let $0 < p < \infty$, ψ_{kj} be as in (2.4). Then $\{\psi_{kj}\}_{k \in \mathcal{K}_j, j \in \mathbb{Z}^+}$ is a p-BAPU.

Noticing that $|\xi| \sim |j|^{1/(1-\alpha)}$ if $\xi \in \mathcal{K}_j$, $j \neq 0$, we immediately have

Proposition 2.6 Let $0 < \alpha < 1$, $0 < p, q \leq \infty$, then

$$
\|f\|_{M_{p,q,\alpha}^*} = \left(\sum_{j \in \mathbb{Z}^+} \sum_{k \in \mathcal{K}_j} \| \mathcal{F}^{-1} \psi_{kj} \mathcal{F} f \|_{L^p(\mathbb{R}^n)}^q \right)^{1/q}
$$

is another equivalent norm on α-modulation space.

2.3 Modulation spaces

In the case $\alpha = 0$, we get an equivalent norm on modulation spaces $M_{p,q}^*$:

$$
\|f\|_{M_{p,q}^*} = \left(\sum_{k \in \mathbb{Z}^n} \| \mathcal{F}^{-1} \psi_k \mathcal{F} f \|_{L^p(\mathbb{R}^n)}^q \right)^{1/q}.
$$

(2.5)
The modulation spaces $M_{p,q}$ in the case $0 < p, q < 1$ was studied in [17, 18, 19] by using the norm (2.5). Soon after, Kobayashi [11] independently considered such a generalization in the case $0 < p, q < 1$.

Recalling that $\bar{x} = (x_1, \ldots, x_{n-1})$, we also define the following anisotropic modulation spaces $M_{p,q,r}^s$ for which the norm is defined as

$$\|f\|_{M_{p,q,r}^s} = \left(\sum_{k_n \in \mathbb{Z}} \left(\sum_{\bar{k} \in \mathbb{Z}^{n-1}} \langle \bar{k} \rangle^{qs} \|\mathcal{F}^{-1} \psi_k \mathcal{F} f\|_{L^p_\mathbb{R}^n} \right)^{r/q} \right)^{1/r}.$$

This anisotropic version is of importance for the trace of modulation spaces.

2.4 Besov spaces

Write $\varphi(\cdot) = \eta(\cdot) - \eta(2\cdot)$ and $\varphi_k := \varphi(2^{-k} \cdot)$ for $k \geq 1$. $\varphi_0 := 1 - \sum_{k \geq 1} \varphi_k$. For simplicity, we write $\Delta_k = \mathcal{F}^{-1} \varphi_k \mathcal{F}$. The norm on Besov spaces $B_{p,q}^s(\mathbb{R}^n)$ are defined as follow:

$$\|f\|_{B_{p,q}^s} = \left(\sum_{j=0}^{\infty} 2^{sjq} \|\Delta_j f\|_{L^p_\mathbb{R}^n}^q \right)^{1/q}.$$

For our purpose, we also need the following

$$\tilde{B}_{p,q}^s(\mathbb{R}^n) = \left(\sum_{k=0}^{\infty} k\cdot 2^{skq} \|\Delta_k f\|_{L^p_\mathbb{R}^n}^q \right)^{1/q}.$$

In the case $1 < p < \infty$, using Lizorkin’s decomposition of \mathbb{R}^n, we have an equivalent quasi-norm on $B_{p,q}^s(\mathbb{R}^n)$. Let

$$K_k = \{x : |x_j| < 2^k, j = 1, 2, \ldots, n\} \setminus \{x : |x_j| < 2^{k-1}, j = 1, 2, \ldots, n\}$$

where $k \in \mathbb{Z}^+$ and

$$K_0 = \{x : |x_j| \leq 1, j = 1, 2, \ldots, n\}$$

Subdivide K_k with $k = 1, 2, 3, \ldots$, by the $3n$ hyper-planes $\{x : x_m = 0\}$ and $\{x : x_m = \pm 2^{k-1}\}$, where $m = 1, \ldots, n$, into cubes $P_{k,t}$. If k is fixed, we obtain $T = 4^n - 2^n$ cubes. The cubes near the n-th axis are numbered by $t = 1, \ldots, 2^n$ in an arbitrary way and the others are numbered by $t = 2^n + 1, \ldots, T$. Let $P_{0,t} = K_0$, if $t = 1, \ldots, T$. Then

$$\mathbb{R}^n = \bigcup_{k=0}^{\infty} K_k = \bigcup_{k=0}^{\infty} \bigcup_{t=1}^{T} P_{k,t}.$$
Let $\chi_{k,t}$ be a characteristic function on $P_{k,t}$. Then

$$\|f\|_{B_{p,q}^s(\mathbb{R}^n)} \asymp \left(\sum_{k=0}^{\infty} \sum_{t=1}^{T} 2^{skq} \|\mathcal{F}^{-1}\chi_{k,t} \mathcal{F} f\|_{L^p(\mathbb{R}^n)}^q \right)^{1/q}.$$

We construct two new norms. For simplicity, we write

$$\Delta_{k,t} = \mathcal{F}^{-1}\chi_{k,t} \mathcal{F}.$$

Define

$$B_{p,q}^{s_1,s_2} = \left(\sum_{k=0}^{\infty} \left(\sum_{t=1}^{2^n} 2^{s_1kq} \|\Delta_{k,t} f\|_{L^p(\mathbb{R}^n)}^q + \sum_{t=2^n+1}^{T} 2^{s_2kq} \|\Delta_{k,t} f\|_{L^p(\mathbb{R}^n)}^q \right)^{1/q} \right),$$

$$\tilde{B}_{p,q}^{s_1,s_2} = \left(\sum_{k=0}^{\infty} \left(\sum_{t=1}^{2^n} k2^{s_1kq} \|\Delta_{k,t} f\|_{L^p(\mathbb{R}^n)}^q + \sum_{t=2^n+1}^{T} 2^{s_2kq} \|\Delta_{k,t} f\|_{L^p(\mathbb{R}^n)}^q \right)^{1/q} \right).$$

3 Proof of Theorem 1.2

If there is no explanation, we always assume $r = 1/2$ in the p-BAPU for the case of modulation spaces. To show our main theorem, we will use the following
Lemma 3.1 (Triebel, [14]) Let Ω be a compact subset of \mathbb{R}^n and $0 < p \leq \infty$. Denote $L^p_\Omega = \{ f \in L^p : \text{Supp} \hat{f} \subset \Omega \}$. Let $0 < r < p$. Then
\[
\left\| \sup_{z \in \mathbb{R}^n} \frac{f(\cdot - z)}{1 + |z|^{n/r}} \right\|_{L^p(\mathbb{R}^n)} \lesssim \| f \|_{L^p(\mathbb{R}^n)},
\]
holds for any $f \in L^p_\Omega$.

Assume that $\text{Supp} \hat{f} \subset B(\xi_0, R)$. It is easy to see that for $g = e^{ix\xi_0} f(R^{-1})$, $\hat{g} = R^n \hat{f}(R(\xi - \xi_0))$. It follows that $\text{Supp} \hat{g} \subset B(0, 1)$. Taking $\Omega = B(0, 1)$ in Lemma 3.1, we find that
\[
\left\| \sup_{z \in \mathbb{R}^n} g(\cdot - z) \right\|_{L^p(\mathbb{R}^n)} \lesssim \| g \|_{L^p(\mathbb{R}^n)},
\]
By scaling, we have
\[
\left\| \sup_{z \in \mathbb{R}^n} \frac{f(\cdot - z)}{1 + |Rz|^{n/r}} \right\|_{L^p(\mathbb{R}^n)} \leq C \| f \|_{L^p(\mathbb{R}^n)} \tag{3.1}
\]
Note that the constant C in (3.1) is independent of $f \in L^p_{B(\xi_0, R)} = \{ f \in L^p : \text{Supp} \hat{f} \subset B(\xi_0, R) \}$. It is also independent of $\xi_0 \in \mathbb{R}^n$.

For convenience, we write
\[
\Box_k = \mathcal{F}^{-1} \psi_k \mathcal{F}, \quad k \in \mathbb{Z}^n.
\]

We define the maximum function $M^*_k f$ as follows:
\[
M^*_k f = \sup_{y \in \mathbb{R}^n} \frac{\Box_k f(x - y)}{1 + |y|^{n/r}}. \tag{3.2}
\]

Taking $y_1 = \ldots = y_{n-1} = 0$, $y_n = x_n$ in (3.2), we have for $|x_n| \leq 1$,
\[
|(\Box_k f)(\bar{x}, 0)| \lesssim |M^*_k f(x)|, \quad \bar{x} = (x_1, \ldots, x_{n-1})
\]
Hence
\[
\|(\Box_k f)(\cdot, 0)\|_{L^p(\mathbb{R}^{n-1})} \lesssim \|M^*_k f(\cdot, x_n)\|_{L^p(\mathbb{R}^{n-1})}, \tag{3.3}
\]
Integrating (3.3) over $x_n \in [0, 1]$, one has that
\[
\|(\Box_k f)(\cdot, 0)\|_{L^p(\mathbb{R}^{n-1})} \lesssim \int_{\mathbb{R}} \|M^*_k f(\cdot, x_n)\|_{L^p(\mathbb{R}^{n-1})}^p dx_n,
\]
Hence
\[
\|(\Box_k f)(\cdot, 0)\|_{L^p(\mathbb{R}^{n-1})} \lesssim \|M^*_k f\|_{L^p(\mathbb{R}^n)}. \tag{3.4}
\]
We denote by \(\mathcal{F}_\xi (\mathcal{F}_\xi^{-1}) \) the partial (inverse) Fourier transform on \(\bar{x} (\bar{\xi}) \). Write \(\psi_k(\bar{x}) \) as the \(p \)-BAPU functions in \(\mathbb{R}^{n-1} \) as in (2.3), i.e.,

\[
\psi_k(\bar{\xi}) = \frac{\phi_{k_1}(\xi_1) \cdots \phi_{k_{n-1}}(\xi_{n-1})}{\sum_{\bar{k} \in \mathbb{Z}^{n-1}} \phi_{k_1}(\xi_1) \cdots \phi_{k_{n-1}}(\xi_{n-1})}, \quad \bar{k} \in \mathbb{Z}^{n-1}.
\]

(3.5)

Then we have

\[
(\mathcal{F}_\xi^{-1} \psi_k \mathcal{F}_\xi)(\bar{x}, 0) = \sum_{\bar{l} \in \mathbb{Z}^n} (\mathcal{F}_\xi^{-1} \psi_k \mathcal{F}_\xi^{-1} \psi_l \mathcal{F}) (\bar{x}, 0) = \sum_{\bar{l} \in \mathbb{Z}^n} (\mathcal{F}_\xi^{-1} \psi_k) \ast (\mathcal{F}_\xi^{-1} \mathcal{F}_\xi \mathcal{F}_l) (\bar{x}, 0)
\]

From the support property of \(\psi_l \) as in (2.3), we find that

\[
\psi_k \psi_l = 0, \quad \text{if } |\bar{l} - \bar{k}| \geq C.
\]

Hence

\[
(\mathcal{F}_\xi^{-1} \psi_k \mathcal{F}_\xi)(\bar{x}, 0) = \sum_{\bar{l} \in \mathbb{Z}^n, |\bar{l} - \bar{k}| \leq C} (\mathcal{F}_\xi^{-1} \psi_k) \ast ((\mathcal{F}_\xi^{-1} \mathcal{F}_\xi \mathcal{F}_l) (\cdot, 0))
\]

Case 1. \(1 \leq p \leq \infty \). Using Young’s inequality, (3.1) and (3.4), we obtain

\[
\| \mathcal{F}_\xi^{-1} \psi_k \mathcal{F}_\xi f (\bar{x}, 0) \|_{L^p(\mathbb{R}^{n-1})} \lesssim \sum_{\bar{l} \in \mathbb{Z}^n, |\bar{l} - \bar{k}| \leq C} \| \mathcal{F}_\xi^{-1} \psi_k \|_{L^1(\mathbb{R}^{n-1})} \| \mathcal{F}_\xi^{-1} \psi_l \mathcal{F}_\xi f \|_{L^p(\mathbb{R}^{n-1})} \lesssim \sum_{\bar{l} \in \mathbb{Z}^n, |\bar{l} - \bar{k}| \leq C} \| M^*_{l} f \|_{L^p(\mathbb{R}^n)} \lesssim \sum_{\bar{l} \in \mathbb{Z}^n, |\bar{l} - \bar{k}| \leq C} \| \Box_l f \|_{L^p(\mathbb{R}^n)}.
\]

Hence,

\[
\| f (\bar{x}, 0) \|_{M^{p,q}_{\Box} (\mathbb{R}^{n-1})} \lesssim \left(\sum_{\bar{k} \in \mathbb{Z}^{n-1}} \langle \bar{k} \rangle^{sq} \left(\sum_{\bar{l} \in \mathbb{Z}^n, |\bar{l} - \bar{k}| \leq C} \| \Box_l f \|_{L^p(\mathbb{R}^n)} \right)^q \right)^{1/q}.
\]

If \(0 < q \leq 1 \), then

\[
\| f (\bar{x}, 0) \|_{M^{p,q}_{\Box} (\mathbb{R}^{n-1})} \lesssim \left(\sum_{\bar{l} \in \mathbb{Z}^n} \sum_{\bar{k} \in \mathbb{Z}^{n-1}} \langle \bar{k} \rangle^{sq} \chi_{(|\bar{l} - \bar{k}| \leq C)} \| \Box_l f \|_{L^p(\mathbb{R}^n)}^q \right)^{1/q} \lesssim \left(\sum_{\bar{l} \in \mathbb{Z}^n} \| \Box_l f \|_{L^p(\mathbb{R}^n)}^q \right)^{1/q} = \| f \|_{M^{p,q}_{\Box} (\mathbb{R}^n)}.
\]
If $1 \leq q \leq \infty$, using Minkowski’s inequality together with Hölder’s inequality,

$$\|f(\cdot, 0)\|_{M^p_{q,1}(\mathbb{R}^{n-1})} \lesssim \left(\sum_{\vec{k}, \vec{l} \in \mathbb{Z}^{n-1}} \left(\sum_{k \in \mathbb{Z}} \chi_{(|\vec{k} - \vec{l}| \leq C)} \|\Box_l f\|_{L^p(\mathbb{R}^n)} \right)^q \right)^{1/q} \lesssim \sum_{k \in \mathbb{Z}} \left(\sum_{l \in \mathbb{Z}^{n-1}} \langle \vec{k} \rangle^q \chi_{(|\vec{k} - \vec{l}| \leq C)} \|\Box_l f\|_{L^p(\mathbb{R}^n)}^q \right)^{1/q} = \|f\|_{M^p_{q,1}}.$$

To begin with the proof for the case $0 < p < 1$, we need the following lemma:

Lemma 3.2 Let $0 < p \leq 1$. Suppose that $f, g \in L^p_{B(x_0, R)}$, then there exists a constant $C > 0$ which is independent of $x_0 \in \mathbb{R}^n$ and $R > 0$ such that

$$\|f * g\|_p \leq CR^{n(\frac{1}{p} - 1)}\|f\|_p \|g\|_p.$$

Proof. In the case $f, g \in L^p_{B(0, 1)}$, we have

$$\|f * g\|_p \lesssim \|f\|_p \|g\|_p.$$

Taking $f_\lambda = f(\lambda \cdot)$ and $g_\lambda = g(\lambda \cdot)$, we see that

$$f_{R^{-1}}, g_{R^{-1}} \in L^p_{B(0, 1)}, \quad \text{if } f, g \in L^p_{B(0, R)}.$$

Hence, for any $f, g \in L^p_{B(0, R)}$,

$$\|f_{R^{-1}} * g_{R^{-1}}\|_p \lesssim \|f_{R^{-1}}\|_p \|g_{R^{-1}}\|_p.$$

By scaling, we have

$$\|f * g\|_p \lesssim R^{n(\frac{1}{p} - 1)}\|f\|_p \|g\|_p.$$

By a translation $e^{2\pi x_0 \xi} f = \hat{f}(\xi - x_0)$, we immediately have the result, as desired. \[\square\]

Case 2. $0 < p < 1$. By Lemma 3.2, (3.1) and (3.4),

$$\|\mathcal{F}_\xi^{-1} \psi_k \mathcal{F}_x f(\cdot, 0)\|_{L^p(\mathbb{R}^{n-1})} \lesssim \sum_{l \in \mathbb{Z}^{n-1}, |\vec{k} - \vec{l}| \leq C} \|\mathcal{F}_\xi^{-1} \psi_k\|_{L^p(\mathbb{R}^{n-1})} \|\mathcal{F}_\xi^{-1} \psi_l \mathcal{F}_x f(\cdot, 0)\|_{L^p(\mathbb{R}^{n-1})}.$$

12
\[
\lesssim \sum_{l \in \mathbb{Z}^n, |k-l| \leq C} \| (\mathcal{F}^{-1} \psi_l \mathcal{F} f)(\cdot, 0) \|_{L^p(\mathbb{R}^{n-1})}^p \lesssim \sum_{l \in \mathbb{Z}^n, |k-l| \leq C} \| \Box_t f \|_{L^p(\mathbb{R}^n)}^p.
\]

It follows that
\[
\| f(\bar{x}, 0) \|_{M^{s,0}_{p,q}} \lesssim \left(\sum_{k \in \mathbb{Z}^n} \langle \vec{k} \rangle^{sq} \left(\sum_{l \in \mathbb{Z}^n} \| \Box_t f \|_{L^p(\mathbb{R}^n)}^q \chi(|k-l| \leq C) \right) \right)^{q/p} \frac{1}{q}
\]

If \(q \leq p \), one has that
\[
\| f(\bar{x}, 0) \|_{M^{s,0}_{p,q}(\mathbb{R}^{n-1})} \lesssim \left(\sum_{l \in \mathbb{Z}^n} \sum_{k \in \mathbb{Z}^n} \langle \vec{k} \rangle^{sq} \| \Box_t f \|_{L^p(\mathbb{R}^n)}^q \chi(|k-l| \leq C) \right)^{1/q}
\]
\[
\lesssim \| f \|_{M^{s,0}_{p,q}}.
\]

If \(q \geq p \), using Minkowski’s inequality, we have
\[
\| f(\bar{x}, 0) \|_{M^{s,0}_{p,q}(\mathbb{R}^{n-1})} \lesssim \left(\sum_{l \in \mathbb{Z}^n} \left(\sum_{k \in \mathbb{Z}^n} \langle \vec{k} \rangle^{sq} \| \Box_t f \|_{L^p(\mathbb{R}^n)}^q \chi(|k-l| \leq C) \right) \right)^{p/q} \frac{1}{p}
\]
\[
\lesssim \left(\sum_{l \in \mathbb{Z}^n} \left(\sum_{k \in \mathbb{Z}^n} \langle \vec{k} \rangle^{sq} \| \Box_t f \|_{L^p(\mathbb{R}^n)}^q \right) \right)^{1/p}
\]
\[
= \| f \|_{M^{s,0}_{p,q,p}}.
\]

In order to show \(\mathcal{T} \mathcal{R} \) is a retraction, we need to show the existence of \(\mathcal{T} \mathcal{R}^{-1} \). Let \(\eta \) be as in (2.2) satisfying \(\langle \mathcal{F}^{-1} \eta \rangle(0) = 1 \). For any \(f \in M^{s,0}_{p,q}(\mathbb{R}^{n-1}) \), we define
\[
g(x) = [(\mathcal{F}^{-1} \eta)(x_n)] f(\bar{x}) := (\mathcal{T} \mathcal{R}^{-1} f)(x).
\]

It is easy to see that \(g(\bar{x}, 0) = f(\bar{x}) \) and \(\Box_k g = 0 \) for \(|k_n| \geq 3 \). Hence,
\[
\| g \|_{M^{s,0}_{p,q,\wedge q \land 1}(\mathbb{R}^n)} \lesssim \left(\sum_{k_n \in \mathbb{Z}} \left(\sum_{k \in \mathbb{Z}^{n-1}} \langle \vec{k} \rangle^{sq} \| \Box_k g \|_{L^p(\mathbb{R}^n)}^q \right) \right)^{p \wedge q \land 1} \frac{1}{p \wedge q \land 1}
\]
\[
= \sum_{|k_n| \leq 2} \left(\sum_{k \in \mathbb{Z}^{n-1}} \langle \vec{k} \rangle^{sq} \| \Box_k f \|_{L^p(\mathbb{R}^n)}^q \| \mathcal{F}^{-1} \eta \|_{L^p(\mathbb{R})}^q \right)^{1/q}
\]

13
\[\lesssim \|f\|_{M^s_{p,q}(\mathbb{R}^{n-1})}. \]

It follows that \(\text{Tr}^{-1} : M^s_{p,q}(\mathbb{R}^{n-1}) \to M^s_{p,q,p\wedge 1}(\mathbb{R}^{n}) \). \[\square \]

As the end of this section, we show that Theorem 1.2 and Corollary 1.3 are sharp conclusions. First, we show that \(\text{Tr} : M^0_{p,q,r}(\mathbb{R}^{n}) \nrightarrow M^0_{p,q}(\mathbb{R}^{n-1}) \) if \(r > 1 \). Let \(\eta \) be as in \((2.2)\), \(f = \mathcal{F}^{-1}(\eta(2\xi_1)\ldots\eta(2\xi_n)) \). For \(k = (k_1, \ldots, k_n) \), we denote

\[F(x) = \sum_{|k_n| \leq 2^N} \langle k_n \rangle^{-1} e^{i k_n x} f(x). \]

It is easy to see that \(\mathcal{F} F(\xi) = \sum_{|k_n| \leq 2^N} \langle k_n \rangle^{-1} \eta(2\xi_1)\ldots\eta(2(\xi_n - k_n)). \)

Hence, \(\Box_k F = 0 \) if \(\max_{i=1,\ldots,n-1} |k_i| > 2 \) or \(|k_n| > 2^N + 1 \). In view of the definition

\[\|F\|_{M^0_{p,q,r}(\mathbb{R}^{n})} \lesssim \left(\sum_{|k_n| \leq 2^N + 1} \left(\sum_{|k_i| \leq 2, 1 \leq i \leq n-1} \|\Box_k F\|_{L^p(\mathbb{R}^{n})}^q \right)^{r/q} \right)^{1/r} \]

\[\lesssim \sum_{|k_i| \leq 2, 1 \leq i \leq n-1} \left(\sum_{|k_n| \leq 2^N + 1} \|\Box_k F\|_{L^p(\mathbb{R}^{n})}^r \right)^{1/r} \]

\[\lesssim \left(\sum_{|k_n| \leq 2^N + 1} \langle k_n \rangle^{-r} \right)^{1/r} \lesssim 1. \]

On the other hand, we may assume that \((\mathcal{F}_{\xi}^{-1}\eta(2\cdot))(0) = 1 \). We have

\[F(\bar{x},0) = \left(\sum_{|k_n| \leq 2^N} \langle k_n \rangle^{-1} \right) \mathcal{F}_{\xi}^{-1}[\eta(2\xi_1)\ldots\eta(2(\xi_n - 1))]. \]

So,

\[\|F\|_{M^0_{p,q}(\mathbb{R}^{n-1})} \gtrsim \left(\sum_{|k_n| \leq 2^N} \langle k_n \rangle^{-1} \right) \left(\sum_{|k_i| \leq 2, 1 \leq i \leq n-1} \|\mathcal{F}_{\xi}^{-1}\psi_\xi \eta(2\xi_1)\ldots\eta(2\xi_{n-1})\|_{L^p(\mathbb{R}^{n-1})}^q \right)^{1/q} \]

\[\gtrsim N. \]

Let \(N \to \infty \), we have \(\text{Tr} : M^0_{p,q,r}(\mathbb{R}^{n}) \nrightarrow M^0_{p,q}(\mathbb{R}^{n-1}) \).
Next, we show that $T_{\frac{1}{D}}: M^{1/q'}_{p,q}(\mathbb{R}^n) \not\rightarrow M^0_{p,q}(\mathbb{R}^{n-1})$ as $q > 1$. For $k = (k_1, \ldots, k_n)$, we denote
\[F(x) = \sum_{|k_n| \leq 2^N} \frac{1}{\langle k_n \rangle \ln \langle k_n \rangle} e^{ik_n x_n} f(x). \]
Similarly as in the above, we have
\[
\|F\|_{M^{1/q'}_{p,q}(\mathbb{R}^n)} \lesssim \left(\sum_{|k_n| \leq 2^{N+1}} \sum_{|k_i| \leq 2, 1 \leq i \leq n-1} \langle k_n \rangle^{q-1} \|\Box_k F\|_{L^p(\mathbb{R}^n)}^q \right)^{1/q} \lesssim \left(\sum_{|k_n| \leq 2^{N+1}} \frac{1}{\langle k_n \rangle \ln \langle k_n \rangle} \right)^{1/q} \lesssim 1.
\]
On the other hand,
\[
\|F\|_{M^0_{p,q}(\mathbb{R}^{n-1})} \gtrsim \left(\sum_{|k_n| \leq 2^N} \frac{1}{\langle k_n \rangle \ln \langle k_n \rangle} \right) \rightarrow \infty, \quad N \rightarrow \infty.
\]

4 Proof of Theorem 1.4 and Remark 1.5

For convenience, we write
\[
\Box_{k,j}^\alpha = \mathcal{F}^{-1} \psi_{k,j} \mathcal{F}, \quad k \in \mathcal{K}_j, \; j \in \mathbb{Z}_+.
\]
We define the maximum function $M^*_{k,j} f$ as follows:
\[
M^*_{k,j} f = \sup_{y \in \mathbb{Z}^n} \frac{|\Box_{k,j}^\alpha f(x - y)|}{1 + |(j)^{\alpha/(1-\alpha)} y|^n/r}. \tag{4.1}
\]
Taking $y_1 = \ldots = y_{n-1} = 0$, $y_n = x_n$ in (4.1), we have for $(j)^{-\alpha/(1-\alpha)} \leq |x_n| \leq 2(j)^{-\alpha/(1-\alpha)}$,
\[
|(\Box_{k,j}^\alpha f)(\bar{x},0)| \lesssim |M^*_{k,j} f(x)|, \quad \bar{x} = (x_1, \ldots, x_{n-1}).
\]
Hence
\[
\|((\Box_{k,j}^\alpha f)\cdot,0)\|_{L^p(\mathbb{R}^{n-1})} \lesssim \|M^*_{k,j} f(\cdot,x_n)\|_{L^p(\mathbb{R}^{n-1})}, \tag{4.2}
\]
Integrating (4.2) over $x_n \in [(j)^{-\alpha/(1-\alpha)}, 2(j)^{-\alpha/(1-\alpha)}]$, one has that
\[
\|((\Box_{k,j}^\alpha f)\cdot,0)^p\|_{L^p(\mathbb{R}^{n-1})} \lesssim (j)^{\alpha/(1-\alpha)} \int_{\mathbb{R}} \|M^*_{k,j} f(\cdot,x_n)\|_{L^p(\mathbb{R}^{n-1})}^p dx_n.
\]
Hence
\[\| (\Box_{k,j}^\alpha f) (\cdot, 0) \|_{L^p(\mathbb{R}^{n-1})} \lesssim (j)^{\alpha/p(1-\alpha)} \| M_{k,j}^\alpha f \|_{L^p(\mathbb{R}^n)}. \] (4.3)

We denote by \(\mathcal{F}_x (\mathcal{F}_x^{-1}) \) the partial (inverse) Fourier transform on \(\bar{x} = (x_1, \ldots, x_{n-1}) \) \((\bar{\xi} = (\xi_1, \ldots, \xi_{n-1})) \). Write \(\psi_{m,l}(\bar{x}) \) as the \(p \)-BAPU functions in \(\mathbb{R}^{n-1} \) as in (2.4). So, by the definition,
\[\| f \|_{M_{p,q}^{\alpha}(\mathbb{R}^{n-1})} = \left(\sum_{l \in \mathbb{Z}^n} \sum_{m \in \mathcal{X}_l^{n-1}} \langle l \rangle^{\frac{aq}{p}} \| \mathcal{F}_x^{-1} \psi_{m,l}(\bar{x}) \mathcal{F}_x f \|_{L^q(\mathbb{R}^{n-1})} \right)^{1/q}. \] (4.4)

In order to have no confusion, we always denote by \(\psi_{m,l} \) the \(p \)-BAPU function in \(\mathbb{R}^{n-1} \) and by \(\psi_{k,j} \) the \(p \)-BAPU function in \(\mathbb{R}^n \). From the support property of \(\psi_{k,j} \), we find that
\[(\mathcal{F}_x^{-1} \psi_{m,l} \mathcal{F}_x f)(\bar{x}, 0) = \sum_{j \geq |l-C, k \in \mathcal{X}_j^n} (\mathcal{F}_x^{-1} \psi_{m,l} \mathcal{F}_x^{-1} \psi_{k,j} \mathcal{F} f)(\bar{x}, 0). \] (4.5)

For our purpose we further decompose \(\mathcal{X}_j^n \). Denote
\[\mathcal{X}_{j,\lambda} = \{ k \in \mathcal{X}_j^n : \max_{1 \leq i \leq n-1} | k_i | = \lambda \}, \quad \lambda = r_{j0}, r_{j1}, \ldots, r_{jN_j}, \quad r_{j0} = 0. \]

We easily see that \(\sum_{k \in \mathcal{X}_j^n} = \sum_{\lambda=0}^{r_{j1} \ldots r_{jN_j}} \sum_{\lambda \in \mathcal{X}_{j,\lambda}^n}, N_j \sim \langle j \rangle \). Now we divide our discussion into the following four cases.

Case 1. \(1 \leq p \leq \infty \) and \(0 < q \leq 1 \). By (4.4) and (4.5),
\[\| f (\cdot, 0) \|_{M_{p,q}^{\alpha}(\mathbb{R}^{n-1})} \lesssim \sum_{j \in \mathbb{Z}^n} \sum_{\lambda=0}^{r_{j1}, \ldots, r_{jN_j}} \sum_{k \in \mathcal{X}_{j,\lambda}^n} \sum_{l \leq j+C} \sum_{m \in \mathcal{X}_l^{n-1}} \langle l \rangle^{\frac{aq}{p}} \times \| (\mathcal{F}_x^{-1} \psi_{m,l}) * (\mathcal{F}_x^{-1} \psi_{k,j} \mathcal{F} f)(\cdot, 0) \|_{L^p(\mathbb{R}^n)}. \] (4.6)

In order to control (4.6) by \(\| f \|_{M_{p,q}^{\alpha/p,\alpha}} \), we need to bound the sum \(\sum_{l \leq j+C} \sum_{m \in \mathcal{X}_l^{n-1}} \).

It is easy to see that for fixed \(k, j \),
\[\# \{ m \in \mathcal{X}_l^{n-1} : \text{supp } \psi_{m,l} \cap \text{supp } \psi_{k,j} (\cdot, 0) \neq \emptyset \} \lesssim \min \left(\langle l \rangle^{n-2}, \langle j \rangle^{\alpha/n-2} \right) \left(\langle l \rangle^{\alpha/n-1}/\langle l \rangle^{\alpha/n-1} \right). \] (4.7)

Moreover, \(k \in \mathcal{X}_{j,\lambda}^{n-1} \) means that \(\text{supp } \psi_{m,l} \cap \text{supp } \psi_{k,j} (\cdot, 0) \neq \emptyset \) only if \(a^{1-\alpha} (\langle j \rangle^{\alpha} \lesssim l \lesssim (1+a)^{1-\alpha} \langle j \rangle^{\alpha} \). Hence, in view of Young’s inequality, (4.3),
\[\Delta_{ja} := \sum_{k \in \mathcal{X}_{j,\lambda}^{n-1}} \sum_{m \in \mathcal{X}_l^{n-1}} \langle l \rangle^{\frac{aq}{p}} \| (\mathcal{F}_x^{-1} \psi_{m,l}) * (\mathcal{F}_x^{-1} \psi_{k,j} \mathcal{F} f)(\cdot, 0) \|_{L^p(\mathbb{R}^n)}^q \]
We discuss the following four subcases.

Case 1A. \(\alpha(n - 1) \leqs q s \). If \(a = 0 \), one has that

\[
\Delta_{ja} \les \sum_{k \in \mathcal{X}_{j,ja}} \sum_{0 \le l \le (j)^{a}} \langle l \rangle^{\frac{aq}{p} + (a - 2)} \langle j \rangle^{\frac{aq}{p(1 - a)} + \frac{a(n - 2)}{1 - a}} \| \Box_{k,j} f \|_{L^p(R^n)}^q
\]

\[
\les \sum_{k \in \mathcal{X}_{j,ja}} \langle j \rangle^{\frac{aq}{p} + (a - 2)} \langle n^{a + \frac{a(n - 1)}{2}} \rangle \| \Box_{k,j} f \|_{L^p(R^n)}^q
\]

(4.9)

If \(a \geq 1 \), we have

\[
\Delta_{ja} \les \sum_{k \in \mathcal{X}_{j,ja}} \sum_{a1 - \alpha(j)^{a} \le l \le (1 + a)1 - \alpha(j)^{a}} \langle l \rangle^{\frac{aq}{p} + (a - 2)} \langle j \rangle^{\frac{aq}{p(1 - a)} + \frac{a(n - 2)}{1 - a}} \| \Box_{k,j} f \|_{L^p(R^n)}^q
\]

\[
\les \sum_{k \in \mathcal{X}_{j,ja}} a^{q_{s} - a(n - 1)} \langle j \rangle^{\frac{aq}{p} + (a - 2)} \langle n^{a + \frac{a(n - 1)}{2}} \rangle \| \Box_{k,j} f \|_{L^p(R^n)}^q.
\]

(4.10)

It follows from \(qs \geq \alpha(n - 1) \) that \(\Delta_{ja} \) takes the maximal value as \(a = N_j \sim \langle j \rangle \).

Hence,

\[
\Delta_{ja} \les \sum_{k \in \mathcal{X}_{j,ra}} \langle j \rangle^{\frac{aq}{p} + (s + \frac{a}{p})} \| \Box_{k,j} f \|_{L^p(R^n)}^q.
\]

(4.11)

Inserting the estimates of \(\Delta_{ja} \) as in (4.9) and (4.11) into (4.6), we have

\[
\| f(\cdot,0) \|_{M_{p,q}^s(R^n)}^{q_{s} - a(n - 1)} \les \sum_{j \in \mathbb{Z}_{+}} \sum_{k \in \mathcal{X}_{j,n}} \langle j \rangle^{\frac{aq}{p} + (s + \frac{a}{p})} \| \Box_{k,j} f \|_{L^p(R^n)}^q = \| f \|_{M_{p,q}^{s + a/p,\alpha}}^q.
\]

Case 1B. \(\alpha(n - 1) > qs \) and \(q s + (1 - \alpha)(n - 1) > 0 \). If \(a \geq 1 \), from (4.10) and \(\alpha(n - 1) > qs \) we have

\[
\Delta_{ja} \les \sum_{k \in \mathcal{X}_{j,ra}} \langle j \rangle^{\frac{aq}{p} + (a - 2)} \langle j \rangle^{\frac{aq}{p(1 - a)} + \frac{a(n - 2)}{1 - a}} \| \Box_{k,j} f \|_{L^p(R^n)}^q.
\]

(4.12)
Since $qs + (1 - \alpha)(n - 1) > 0$, similar to (4.9), we see that (4.12) also holds for the case $a = 0$. It follows that

$$\|f(\cdot, 0)\|_{M_{p,q}^{r,0}(\mathbb{R}^{n-1})} \lesssim \|f\|_{M_{p,q}^{\alpha + (1 - \alpha)\frac{n(n-1)}{q} + \alpha/p, \alpha}(\mathbb{R}^n)}.$$

Case 1C. $qs = -(n - 1)(1 - \alpha)$. Using the first estimate as in (4.9), we have for $a = 0$,

$$\Delta_j a \lesssim \sum_{k \in \mathcal{X}_{j,r}^n} \langle j \rangle^{\frac{qa}{1 - \alpha} + \frac{q\alpha}{p(1 - \alpha)} + \alpha(n - 1)} \|\Box_k^a f\|_{L^p(\mathbb{R}^n)}^q. \quad (4.13)$$

For $a \geq 1$,

$$\Delta_j a \lesssim \sum_{k \in \mathcal{X}_{j,r}^n} \langle j \rangle^{\frac{qa}{1 - \alpha} + \frac{q\alpha}{p(1 - \alpha)} + \alpha(n - 1)} \|\Box_k^a f\|_{L^p(\mathbb{R}^n)}^q. \quad (4.14)$$

This implies that

$$\|f(\cdot, 0)\|_{M_{p,q}^{r,0}(\mathbb{R}^{n-1})} \lesssim \|f\|_{M_{p,q}^{r,0}(\mathbb{R}^{n-1})}.$$

Case 1D. $qs < -(n - 1)(1 - \alpha)$. It is easy to see that $\ln(j)$ can be removed in (4.13). So, we have the result, as desired.

Case 2. $1 \leq p, q \leq \infty$. Using Minkowski’s inequality, we have

\[
\begin{align*}
\|f(\cdot, 0)\|_{M_{p,q}^{r,0}(\mathbb{R}^{n-1})} & \lesssim \left(\sum_{l \in \mathbb{Z}_+} \sum_{m \in \mathcal{X}_l^{n-1}} \langle l \rangle^{\frac{qa}{1 - \alpha}} \left(\sum_{j \in \mathbb{Z}_+, k \in \mathcal{X}_j^n} \|(\mathcal{F}_l^{-1} \psi_{m,l}) * (\mathcal{F}_l^{-1} \psi_{k,j} \mathcal{F} f)(\cdot, 0)\|_{L^p(\mathbb{R}^{n-1})} \right) \right)^{1/q} \\
& \lesssim \left(\sum_{j \in \mathbb{Z}_+} \sum_{a=0}^{N_j} \sum_{k \in \mathcal{X}_{j,r}^n} \left(\sum_{l \in \mathbb{Z}_+} \sum_{m \in \mathcal{X}_l^{n-1}} \langle l \rangle^{\frac{qa}{1 - \alpha}} \|(\mathcal{F}_l^{-1} \psi_{m,l}) * (\mathcal{F}_l^{-1} \psi_{k,j} \mathcal{F} f)(\cdot, 0)\|_{L^p(\mathbb{R}^{n-1})} \right)^q \right)^{1/q}.
\end{align*}
\]

(4.15)

Using the same way as in Case 1, we can get that for any $k \in \mathcal{X}_{j,r}^n$,

\[
\begin{align*}
\sum_{l \in \mathbb{Z}_+} \sum_{m \in \mathcal{X}_l^{n-1}} \langle l \rangle^{\frac{qa}{1 - \alpha}} \|(\mathcal{F}_l^{-1} \psi_{m,l}) * (\mathcal{F}_l^{-1} \psi_{k,j} \mathcal{F} f)(\cdot, 0)\|_{L^p(\mathbb{R}^{n-1})}^q & \lesssim \sum_{a \geq (1 + \alpha)j} \langle l \rangle^{\frac{qa}{1 - \alpha}} \langle j \rangle^{\frac{q\alpha}{p(1 - \alpha) - \alpha(1 - \alpha)}} \langle j \rangle^{\frac{q\alpha}{p(1 - \alpha) - \alpha(1 - \alpha)}} \langle j \rangle \langle l \rangle^{\frac{qa}{1 - \alpha}} \|\Box_k^a f\|_{L^p(\mathbb{R}^n)}^q.
\end{align*}
\]

(4.16)
For convenience, we write

\[
\|F^{-1}\psi_{m,l}F f(\cdot,0)\|_{L^p_{\mathbb{R}^n-1}}^p \lesssim \sum_{j \geq l-C, k \in \mathcal{X}_j^n} \|F^{-1}\psi_{m,l}F^{-1}\psi_{k,j}F f(\cdot,0)\|_{L^p_{\mathbb{R}^n-1}}^p.
\]

(4.17)

It follows that

\[
\|f(\cdot,0)\|_{M^{a,j}_{p,q}'(\mathbb{R}^{n-1})}
\lesssim \left(\sum_{l \in \mathbb{Z}^+} \sum_{m \in \mathcal{X}_l^{n-1}} \|l\|^{1-\alpha} \sum_{j \in \mathbb{Z}^+} \sum_{k \in \mathcal{X}_j^n} \|F^{-1}\psi_{m,l} \ast (F^{-1}\psi_{k,j}F f)(\cdot,0)\|_{L^p_{\mathbb{R}^n-1}}^p \right)^{1/q}.
\]

For convenience, we write

\[
\Upsilon_{ja} := \sum_{k \in \mathcal{X}_j^n, l \leq j+C, m \in \mathcal{X}_l^{n-1}} \sum_{r \neq j} \sum_{\alpha \leq a} \langle l \rangle^{\frac{sq}{1-\alpha}} \|F^{-1}\psi_{m,l} \ast (F^{-1}\psi_{k,j}F f)(\cdot,0)\|_{L^p_{\mathbb{R}^n-1}}^q.
\]

(4.19)

It follows from Lemma 3.2, the property of p-BAPU and (4.17) that

\[
\Upsilon_{ja} \lesssim \sum_{k \in \mathcal{X}_j^n, r \neq j} a^{1-\alpha} \langle r \rangle^{\alpha} \sum_{\alpha \leq a} \sum_{m \in \mathcal{X}_l^{n-1}} \langle l \rangle^{\frac{sq}{1-\alpha}} \|F^{-1}\psi_{m,l}\|_{L^p_{\mathbb{R}^{n-1}}}^q \|F^{-1}\psi_{k,j}F f(\cdot,0)\|_{L^p_{\mathbb{R}^n-1}}^q
\]

\[
\times \min \left(\langle l \rangle^{n-2}, \langle j \rangle^{\frac{\alpha(a-n)}{1-\alpha}}, \langle l \rangle^{\frac{\alpha(n-2)}{1-\alpha}}, \langle j \rangle^{\frac{qa}{p(1-\alpha)}} \right) \|\square_{k,j} f\|_{L^p_{\mathbb{R}^n}}^q.
\]

(4.20)

If $a \geq 1$, then we have

\[
\Upsilon_{ja} \lesssim \sum_{k \in \mathcal{X}_j^n, r \neq j} a^{sq-\alpha(a-1)q(a-n)(1-1)} \langle j \rangle^{\frac{qa}{p(1-\alpha)}} \|\square_{k,j} f\|_{L^p_{\mathbb{R}^n}}^q.
\]

(4.21)
If $a = 0$,
\[
\Upsilon_{ja} \lesssim \sum_{k \in \mathcal{K}^n_{j,ja}} \sum_{0 \leq l \leq \langle j \rangle^\alpha} \langle l \rangle^{\frac{aq}{n} + \frac{a(n-1)}{1-p} + (n-2)} \langle j \rangle^{\frac{a(n-1)}{1-p} + \frac{aq}{p}} \| \Box_{k,j} f \|_{L^p(\mathbb{R}^n)}^q.
\]

(4.22)

Now we divide our discussion into the following four subcases.

Case 3A. $qs - \alpha(n-1) - qa(n-1)(1/p - 1) \geq 0$. If $a \geq 1$, we see that the upper bound in (4.21) will be attained at $a \sim \langle j \rangle$. If $a = 0$, the summation on l in (4.22) can be easily controlled. Anyway, we have
\[
\Upsilon_{ja} \lesssim \sum_{k \in \mathcal{K}^n_{j,ja}} \langle j \rangle^{\frac{aq}{n} + \frac{a(n-1)}{1-p} + \frac{aq}{p}} \| \Box_{k,j} f \|_{L^p(\mathbb{R}^n)}^q.
\]

(4.23)

Combining (4.18) and (4.23), we immediately have the result, as desired.

Case 3B. $q\alpha s_p - (1 - \alpha)(n-1) < qs < q\alpha s_p + \alpha(n-1)$. In this case, using (4.21) and (4.22), we can repeat the procedure as in Case 1B to get the result and we omit the details of the proof.

Case 3C. $q\alpha s_p - (1 - \alpha)(n-1) = qs$. This case is similar to Case 1C.

Case 3D. $q\alpha s_p - (1 - \alpha)(n-1) > qs$. We can deal with this case by following the same way as in Case 1D.

Case 4. $0 < p < 1, q > p$. By Minkowski’s inequality, we have
\[
\|f(\cdot, 0)\|_{M^{\alpha}_{p,q}(\mathbb{R}^{n-1})} \lesssim \left(\sum_{l \in \mathbb{Z}_+} \sum_{m \in \mathcal{K}^n_l} \langle l \rangle^{\frac{aq}{n}} \left(\sum_{j \in \mathbb{Z}_+} \sum_{k \in \mathcal{K}^n_j} \| (\mathcal{F}^{-1}_{\xi} \psi_{m,l}) \ast (\mathcal{F}^{-1}_{\psi_{k,j}} f)(\cdot, 0) \|_{L^p(\mathbb{R}^{n-1})}^p \right)^{q/p} \right)^{1/q}.
\]

(4.24)

Then we can repeat the procedures as in the proof of Theorem 1.2 and the above techniques in Case 3 to have the result, as desired. The details of the proof are omitted.
5 Proof of Theorem 1.6

Now we prove Theorem 1.6. Now we define the maximum function \(M^*_k f \) as follows:

\[
M^*_k f = \sup_{y \in \mathbb{Z}^n} \frac{|\Delta_k f(x - y)|}{1 + |2^k y|^n/r}.
\]

(5.1)

Taking \(y_1 = \ldots = y_{n-1} = 0, \ y_n = x_n \) in (5.1), we have for \(2^{-k-1} \leq |x_n| \leq 2^{-k} \),

\[
|\Delta_k f(x, 0)| \lesssim |M^*_k f(x)|, \quad x = (x_1, \ldots, x_{n-1})
\]

Hence

\[
\|\Delta_k f(\cdot, 0)\|_{L^p(\mathbb{R}^{n-1})} \lesssim \|M^*_k f(\cdot, x_n)\|_{L^p(\mathbb{R}^{n-1})},
\]

(5.2)

Integrating (5.2), one has that

\[
\|\Delta_k f(\cdot, 0)\|_{L^p(\mathbb{R}^{n-1})} \lesssim 2^k \int_{\mathbb{R}} \|M^*_k f(\cdot, x_n)\|_{L^p(\mathbb{R}^{n-1})} \, dx_n,
\]

Hence

\[
\|\Delta_k f(\cdot, 0)\|_{L^p(\mathbb{R}^{n-1})} \lesssim 2^{k/p} \|M^*_k f\|_{L^p(\mathbb{R}^n)}.
\]

(5.3)

Write \(\varphi'_k(\bar{x}) \) as the BAPU functions in \(\mathbb{R}^{n-1} \). Then for fixed \(k \), we have

\[
(\mathcal{F}_\xi^{-1} \varphi'_k \mathcal{F}_\bar{x}) (\bar{x}, 0) = \sum_{l=k-1}^{\infty} (\mathcal{F}_\xi^{-1} \varphi'_k \mathcal{F}_\bar{x} \mathcal{F}^{-1} \varphi_l \mathcal{F})(\bar{x}, 0) = \sum_{l=k-1}^{\infty} (\mathcal{F}_\xi^{-1} \varphi'_k) * (\mathcal{F}^{-1} \varphi_l \mathcal{F})(\bar{x}, 0)
\]

Case 1. \(1 \leq p \leq \infty \). Using Young’s inequality, (5.1) and (5.3), we obtain

\[
\|\mathcal{F}_\xi^{-1} \varphi'_k \mathcal{F}_\bar{x} f(\bar{x}, 0)\|_{L^p(\mathbb{R}^{n-1})} \lesssim \sum_{l=k-1}^{\infty} \|\mathcal{F}_\xi^{-1} \varphi'_k\|_{L^1(\mathbb{R}^{n-1})} \|\mathcal{F}^{-1} \varphi_l \mathcal{F} f\|_{L^p(\mathbb{R}^{n-1})}
\]

\[
\lesssim \sum_{l=k-1}^{\infty} \|M^*_l f\|_{L^p(\mathbb{R}^n)}
\]

\[
\lesssim \sum_{l=k-1}^{\infty} 2^{l/p} \|\Delta_l f\|_{L^p(\mathbb{R}^n)}.
\]

Hence,

\[
\|f(\bar{x}, 0)\|_{B^{p,q}_{\mathbb{R}^{n-1}}} \lesssim \left(\sum_{k=0}^{\infty} 2^{skq} \left(\sum_{l=k-1}^{\infty} 2^{l/p} \|\Delta_l f\|_{L^p(\mathbb{R}^n)} \right)^q \right)^{1/q}.
\]

21
If $0 < q \leq 1$, then
\[
\|f(\bar{x}, 0)\|_{B^s_{p,q}(\mathbb{R}^{n-1})} \lesssim \left(\sum_{l=0}^{\infty} \sum_{k=0}^{l+1} 2^{skq} 2^{lq/p} \|\Delta_l f\|_{L^p(\mathbb{R}^n)}^q \right)^{1/q}.
\]

If $s = 0$, then
\[
\|f(\bar{x}, 0)\|_{B^s_{p,q}(\mathbb{R}^{n-1})} \lesssim \left(\sum_{l=0}^{\infty} 2^{lq/p} \|\Delta_l f\|_{L^p(\mathbb{R}^n)}^q \right)^{1/q} \lesssim \|f\|_{B^{1/p}_{p,q}(\mathbb{R}^n)}.
\]

In the case $s < 0$,
\[
\|f(\bar{x}, 0)\|_{B^s_{p,q}(\mathbb{R}^{n-1})} \lesssim \left(\sum_{l=0}^{\infty} 2^{lq/p} \|\Delta_l f\|_{L^p(\mathbb{R}^n)}^q \right)^{1/q} \lesssim \|f\|_{B^{1/p}_{p,q}(\mathbb{R}^n)}.
\]

If $1 \leq q \leq \infty$, using Minkowski's inequality,
\[
\|f(\bar{x}, 0)\|_{B^s_{p,q}(\mathbb{R}^{n-1})} \lesssim \sum_{l=0}^{\infty} \left(\sum_{k=0}^{l+1} 2^{skq} 2^{lq/p} \|\Delta_l f\|_{L^p(\mathbb{R}^n)}^q \right)^{1/q}
\]
then
\[
\|f(\bar{x}, 0)\|_{B^s_{p,q}(\mathbb{R}^{n-1})} \lesssim \begin{cases}
\|f\|_{B^{1/p}_{p,q}(\mathbb{R}^n)} & s = 0, \\
\|f\|_{B^{1/p}_{p,q}(\mathbb{R}^n)} & s < 0.
\end{cases}
\]

Case 2. $0 < p < 1$.
\[
\|\mathcal{F}_{\xi}^{-1} \varphi_k \mathcal{F}_{\xi} f(\bar{x}, 0)\|_{L^p(\mathbb{R}^{n-1})} \lesssim \sum_{l=k-1}^{\infty} 2^{l(n-1)(1/p-1)} \|\mathcal{F}_{\xi}^{-1} \varphi_k\|_{L^p(\mathbb{R}^{n-1})} \|\mathcal{F}_{\xi} f\|_{L^p(\mathbb{R}^{n-1})}^p \lesssim \sum_{l=k-1}^{\infty} 2^{l(n-1)(1-p)} 2^{k(n-1)(p-1)} 2^l \|M^n f\|_{L^p(\mathbb{R}^n)} \lesssim \sum_{l=k-1}^{\infty} 2^{l(n-1)(1-p)} 2^{k(n-1)(p-1)} 2^l \|\Delta_l f\|_{L^p(\mathbb{R}^n)}.
\]

It follows that
\[
\|f(\bar{x}, 0)\|_{B^s_{p,q}(\mathbb{R}^{n-1})} \lesssim \left(\sum_{k=0}^{\infty} 2^{skq} \left(\sum_{l=k-1}^{\infty} 2^{l(n-1)(1-p)} 2^{k(n-1)(p-1)} 2^l \|\Delta_l f\|_{L^p(\mathbb{R}^n)}^p \right)^{q/p} \right)^{1/q}.
\]
If \(q \leq p \), one has that
\[
\| f(\bar{x}, 0) \|_{B^{s}_{p,q}(\mathbb{R}^{n-1})}^q
\lesssim \sum_{k=0}^{\infty} \sum_{l=k-1}^{\infty} 2^{l(n-1)(1/p-1)q} 2^{k(s+(n-1)(1-1/p))q} 2^{l/q/p} \| \Delta_l f \|_{L^p(\mathbb{R}^n)}^q.
\]
Therefore,
\[
\| f(\bar{x}, 0) \|_{B^{s}_{p,q}(\mathbb{R}^{n-1})} \lesssim \left\{ \begin{array}{ll}
\| f \|_{B^{s}_{p,q}(\mathbb{R}^{n-1})}^s & s = s_p, \\
\| f \|_{B^{s}_{p,q}(\mathbb{R}^{n-1})}^s & s < s_p.
\end{array} \right.
\]

If \(q \geq p \), using Minkowski’s inequality, we have
\[
\| f(\bar{x}, 0) \|_{B^{s}_{p,q}(\mathbb{R}^{n-1})}
\lesssim \left\{ \begin{array}{ll}
\sum_{l=1}^{\infty} \left(\sum_{k=0}^{\infty} (\chi(k < l))^2 \left(2^{l(n-1)(1/p-1)q} 2^{k(s+(n-1)(1-1/p))q} 2^l \right) (\| \Delta_l f \|_{L^p(\mathbb{R}^n)}^p)^{q/p} \right)^{1/p} \\
\sum_{l=1}^{\infty} \sum_{k=0}^{\infty} 2^{l(n-1)(1/p-1)p} 2^{k(s+(n-1)(1-1/p)p)q} 2^l \| \Delta_l f \|_{L^p(\mathbb{R}^n)}^q \right\}^{1/p}
\]

Therefore,
\[
\| f(\bar{x}, 0) \|_{B^{s}_{p,q}(\mathbb{R}^{n-1})} \lesssim \left\{ \begin{array}{ll}
\| f \|_{B^{s}_{p,q}(\mathbb{R}^{n-1})}^s & s = s_p, \\
\| f \|_{B^{s}_{p,q}(\mathbb{R}^{n-1})}^s & s < s_p.
\end{array} \right.
\]

In the case \(1 < p < \infty \), we define the maximum function \(M_{k,t}^* f \) as follows:
\[
M_{k,t}^* f = \sup_{y \in \mathbb{Z}^n} \frac{|\Delta_{k,t} f(x-y)|}{1 + |2^k y|^{n/p}}.
\] (5.4)

Taking \(y_1 = \ldots = y_{n-1} = 0, y_n = x_n \) in (5.4), we have for \(2^{-k-1} \leq |x_n| \leq 2^{-k},
\[
| (\Delta_{k,t} f)(\bar{x}, 0) | \lesssim | M_{k,t}^* f (x) |, \quad \bar{x} = (x_1, \ldots, x_{n-1})
\]

Hence
\[
\| (\Delta_{k,t} f)(\cdot, 0) \|_{L^p(\mathbb{R}^{n-1})} \lesssim \| M_{k,t}^* f (\cdot, x_n) \|_{L^p(\mathbb{R}^{n-1})},
\] (5.5)

Integrating (5.5), one has that
\[
\| (\Delta_{k,t} f)(\cdot, 0) \|_{L^p(\mathbb{R}^{n-1})}^p \lesssim 2^k \int_{\mathbb{R}} \| M_{k,t}^* f (\cdot, x_n) \|_{L^p(\mathbb{R}^{n-1})}^p dx_n,
\]
Hence

\[\| (\Delta_{k,t} f)(\cdot, 0) \|_{L^p(\mathbb{R}^{n-1})} \lesssim 2^{k/p} \| M_{k,t} f \|_{L^p(\mathbb{R}^n)}. \]

(5.6)

Let \(\chi'_{k,t}(\bar{x}) \) as the characteristic functions in \(\mathbb{R}^{n-1} \). Then for fixed \(k \) and \(t \), we have

\[
(F^{-1}_y \chi'_{k,t} \mathcal{F}_x)(\bar{x}, 0) = \sum_{l=k}^{\infty} (F^{-1}_y \chi'_{k,t} \mathcal{F}_x F^{-1}_y \chi_{l,t} \mathcal{F})(\bar{x}, 0)
\]

\[
= \sum_{l=k}^{\infty} (F^{-1}_y \chi'_{k,t}) \ast (F^{-1}_y \chi_{l,t} \mathcal{F})(\bar{x}, 0)
\]

Using Young’s inequality, (3.1) and (5.6), we obtain

\[
\| F^{-1}_y \chi'_{k,t} \mathcal{F}_x f(\bar{x}, 0) \|_{L^p(\mathbb{R}^{n-1})}
\]

\[
\lesssim \sum_{l=k}^{\infty} \| F^{-1}_y \chi'_{k,t} \|_{L^1(\mathbb{R}^{n-1})} \| F^{-1}_y \chi_{l,t} \mathcal{F} f \|_{L^p(\mathbb{R}^{n-1})}
\]

\[
\lesssim \sum_{l=k}^{\infty} \| M_{l,t} f \|_{L^p(\mathbb{R}^n)}
\]

\[
\lesssim \sum_{l=k}^{\infty} 2^{l/p} \| \Delta_{l,t} f \|_{L^p(\mathbb{R}^n)}.
\]

Hence,

\[
\| f(\bar{x}, 0) \|_{B^{s,q}_{p,q}(\mathbb{R}^{n-1})} \lesssim \left(\sum_{k=0}^{\infty} \sum_{t=1}^{T} 2^{skq} \left(\sum_{l=k}^{\infty} 2^{l/p} \| \Delta_{l,t} f \|_{L^p(\mathbb{R}^n)} \right)^q \right)^{1/q}.
\]

If \(0 < q \leq 1 \), then

\[
\| f(\bar{x}, 0) \|_{B^{s,q}_{p,q}(\mathbb{R}^{n-1})}
\]

\[
\lesssim \left(\sum_{l=0}^{\infty} \sum_{k=0}^{2^n} \sum_{t=1}^{2^n} 2^{skq} 2^{lq/p} \| \Delta_{l,t} f \|_{L^p(\mathbb{R}^n)}^q + \sum_{l=0}^{\infty} \sum_{k=1}^{2^n+1} \sum_{t=2^{n+1}}^{T} 2^{skq} 2^{lq/p} \| \Delta_{l,t} f \|_{L^p(\mathbb{R}^n)}^q \right)^{1/q}.
\]

If \(s = 0 \), then

\[
\| f(\bar{x}, 0) \|_{B^{s,q}_{p,q}(\mathbb{R}^{n-1})} \lesssim \left(\sum_{l=0}^{\infty} \sum_{t=1}^{2^n} 2^{lq/p} \| \Delta_{l,t} f \|_{L^p(\mathbb{R}^n)}^q + \sum_{l=0}^{\infty} \sum_{t=2^{n+1}}^{T} 2^{lq/p} \| \Delta_{l,t} f \|_{L^p(\mathbb{R}^n)}^q \right)^{1/q}.
\]

In the case \(s < 0 \),

\[
\| f(\bar{x}, 0) \|_{B^{s,q}_{p,q}(\mathbb{R}^{n-1})} \lesssim \left(\sum_{l=0}^{\infty} \sum_{t=1}^{2^n} 2^{lq/p} \| \Delta_{l,t} f \|_{L^p(\mathbb{R}^n)}^q + \sum_{l=0}^{\infty} \sum_{t=2^{n+1}}^{T} 2^{skq} 2^{lq/p} \| \Delta_{l,t} f \|_{L^p(\mathbb{R}^n)}^q \right)^{1/q}.
\]
\[\| f \|_{B_{p,q}^{1/p,1/p}(R^n)} \leq \| f \|_{\tilde{B}_{p,q}^{1/p,1/p}(R^n)} \]

If \(1 \leq q \leq \infty \), using Minkowski’s inequality,

\[\| f(\bar{x}, 0) \|_{B_{p,q}^{s}(R^{n-1})} \leq \sum_{l=0}^{\infty} \left(\sum_{k=0}^{T} \sum_{t=1}^{2^n} 2^{skq_2^{lq/p}} \| \Delta_l,t f \|_{L^q(R^n)} \right)^{1/q} \]

\[\leq \sum_{l=0}^{\infty} \left(\sum_{k=0}^{l-1} \sum_{t=1}^{2^n} 2^{skq_2^{lq/p}} \| \Delta_l,t f \|_{L^q(R^n)} + \sum_{k=l}^{T} \sum_{t=2^{n+1}}^{2^n} 2^{skq_2^{lq/p}} \| \Delta_l,t f \|_{L^q(R^n)} \right)^{1/q} \]

then

\[\| f(\bar{x}, 0) \|_{B_{p,q}^{s}(R^{n-1})} \leq \begin{cases} \| f \|_{\tilde{B}_{p,q}^{1/p,1/p}(R^n)} & s = 0, \\ \| f \|_{B_{p,q}^{1/p,1/p}(R^n)} & s < 0. \end{cases} \]

\[\square \]

Acknowledgment. This work is partially supported by the Marie Curie Excellence Project EUCETIFA, MEXT-CT-2004-517154 of the European Commission. The second and third named authors are supported in part by the National Science Foundation of China, grant 10571004; and the 973 Project Foundation of China, grant 2006CB805902.

References

[1] L. Borup, M. Nielsen, Banach frames for multivariante \(\alpha \)-modulation spaces, J. Math. Anal. Appl., 321 (2006), 880-895.

[2] J. Bergh and J. Löfström, Interpolation Spaces, Springer–Verlag, 1976.

[3] H. G. Feichtinger and P. Gröbner, Banach spaces of distributions defined by decomposition methods. I, Math. Nachr. 132 (1985) 207-237.

[4] H. G. Feichtinger, Banach spaces of distributions defined by decomposition methods. II, Math. Nachr. 123 (1987) 97-120.

[5] H. G. Feichtinger, Modulation spaces on locally compact Abelian group, Technical Report, University of Vienna, 1983. Published in: “Proc. Internat. Conf. on Wavelet and Applications”, 99–140. New Delhi Allied Publishers, India, 2003. http://www.unive.ac.at/nuhag-php/bibtex/open_files/fe03-1_modspa03.pdf.

[6] H. G. Feichtinger, Banach spaces of distributions of Wiener’s type and interpolation, Proceedings on Functional Analysis and Approximation (Oberwilfach, 1980), 153–165. Internat. Ser. Numer. Math., 60 Birkhäuser, Basel-Boston, Mass., 1981.
[7] Massimo Fornasier, Banach frames for α-modulation spaces, Appl. Comput. Harmon. Anal., Vol. 22 No. 2, (2007) p. 157–175.

[8] M. Frazier and B. Jawerth, Decomposition of Besov spaces, Indiana Univ. Math. J. 34 (1985), 777-799.

[9] Yevgeniy V. Galperin and Salti Samarah, Time-frequency analysis on modulation spaces M^p_q, Appl. Comput. Harmon. Anal., Vol. 16 No. 1, (2004) p. 1–18.

[10] P. Gröbner, Banachräume Glatter Funktionen und Zerlegungsmethoden, Doctoral thesis, University of Vienna, 1992.

[11] M. Kobayashi, Modulation spaces $M^{p,q}$ for $0 < p, q \leq \infty$, J. of Funct. Spaces and Appl. 4 (2006) no. 3, 329–341.

[12] L. Päivärinta and E. Somersalo, A generalization of the Calderón-Vaillancourt theorem to L^p and h^p, Math. Nachr. 138 (1988) 145-156.

[13] H. Rauhut, Coorbit Space Theory for Quasi-Banach Spaces, Studia Math., Vol. 180, No. 3, (2007) p. 237-253.

[14] H. Triebel, Theory of Function Spaces, Birkhäuser–Verlag, 1983.

[15] H. Triebel, Complex interpolation and Fourier multiplier for the spaces $B^{p,q}_{r,q}$ and $F^{\alpha}_{r,q}$ of Besov–Hardy–Sobolev Type: The case $0 < p, q \leq \infty$, Math. Z., 176 (1981), 495–510.

[16] H. Triebel, Modulation spaces on the Euclidean n-spaces, Z. Analysis Anwendungen, 2 (1983), 443–457.

[17] Baoxiang Wang, Lifeng Zhao and Boling Guo, Isometric decomposition operators, function spaces $E^{\lambda}_{p,q}$ and applications to nonlinear evolution equations, J. Funct. Anal., 233 (2006), 1–39.

[18] Baoxiang Wang and Henryk Hudzik, The global Cauchy problem for the NLS and NLKG with small rough data, J. Differential Equations, 231 (2007), 36–73.

[19] Baoxiang Wang and Chunyan Huang, Frequency-uniform decomposition method for the generalized BO, KdV and NLS equations J. Differential Equations, 231 (2007), 36–73.