A UPLC-MS/MS METHOD DEVELOPMENT AND VALIDATION FOR THE ESTIMATION OF SOFOSBUVIR FROM HUMAN PLASMA

DARSHAN BHATT1,* B. RAJKAMAL1

*Mewar University, Gangrargar, Chittorgarh 312901, Rajasthan, India, *KVK College of Pharmacy, Suramajiguda, Hyderabad 501512, Telangana, India

Email: darshanbhatt1984@gmail.com

Received: 13 Oct 2016, Revised and Accepted: 05 Dec 2016

ABSTRACT

Objective: The present work aimed to develop a simple, rapid, specific and precise ultra-performance liquid chromatography-tandem mass spectrometric (LC-MS/MS) validated method for quantification of sofosbuvir and internal standard (ISTD) Sofosbuvir-d3 in human plasma.

Methods: Samples prepared by employing liquid-liquid extraction (LLE) using 2.5 ml of ethyl acetate. Chromatographic separation was achieved on Gemini 5μ C18, 50 x 4.6 mm column using a mixture of 0.1% (v/v) formic acid in water to methanol at a ratio of 30:70 v/v as the mobile phase. The flow rate was 0.50 ml/min. The LC eluent was split, and approximately 0.1 ml/min was introduced into Tandem mass spectrometer using turbo Ion Spray interface at 325 °C. Quantitation was performed by transitions of 428.35/279.26 (m/z) for sofosbuvir and 431.38/282.37 (m/z) for sofosbuvir-d3.

Results: The concentrations of ten working standards showed linearity between 4.063 to 8000.010 ng/ml (r² ≥ 0.9985). Chromatographic separation was achieved within 2 min. The average extraction recoveries of three quality control concentrations were 75.3% for sofosbuvir and within the acceptance limits. The coefficient of variation was ≤15% for intra-and inter-batch assays. The %CV of ruggedness ranges 0.35% and 3.09%. The % stability of short term and long term stock solution stability studies was found to be 97.25% and 98.81% respectively.

Conclusion: The results obtained for specificity, linearity, accuracy, precision, ruggedness and stability studies were within the acceptance limits. Thus the validated economical method was applied for pharmacokinetic studies of sofosbuvir.

Keywords: Sofosbuvir, LC-MS/MS, Human plasma, Stability studies

INTRODUCTION

Sofosbuvir, a phosphoramide prodrug is chemically described as (S)-Isopropyl 2-((S)-(2R, 3R, 4R, 5R)-5-((2-dioxo-3,4-dihydro-pyrimidin-1(2H)-yl)-4-fluoro-3-hydroxy-4 methyl tetrahydropuran-2-yl)-methoxy)-(phenoxypyrrophosphorylamino) propanoate [1-2]. Literature survey reveals two HPLC methods for determination of sofosbuvir from its bulk and pharmaceutical dosage forms [3-4]. Three UPLC-MS/MS method were reported for quantification of sofosbuvir from its metabolites and along with other drugs from human plasma [5-7]. Described here is a simple, sensitive, and selective UPLC-MS/MS method for sofosbuvir in the human plasma concentration range of 4.063 to 8000.010 ng/ml. As there is no literature on stability and validation details of sofosbuvir estimation from human plasma, this study performed assay validations, according to the FDA guidelines [8]. While this method with validation details were economical and applied for pharmacokinetic studies of sofosbuvir.

MATERIALS AND METHODS [5]

Apparatus and software

The UPLC (Waters, Model Acquity) was coupled with Mass spectrometer (Waters Quattro Premier XE) having Turbo Ion Spray (Waters Quattro Premier XE). The chromatographic integration was performed by MassLynx V4.1 software.

Chemicals and reagents

Sofosbuvir and Sofosbuvir-d3 (IS) were procured from Mylan Laboratories Ltd, Hyderabad, Formic acid, Methanol and ethyl acetate was procured from Merck Specialities Pvt. Ltd, Mumbai, India. Water used was collected from water purification systems (Milli Q, MilliPore, USA) installed in the laboratory. Pooled drug-free expired frozen human plasma (K2-EDTA as anticoagulant) was obtained from Blood Bank, Hyderabad, was used during validation and study sample analysis. The plasma was stored into−70±5 °C.

Standards and working solutions

Calibration standard solutions

Stock solutions of sofosbuvir and Sofosbuvir-d3 internal standard (IS) were prepared in methanol. Further dilutions were carried out in 50% methanol. Calibration standards often concentration levels were prepared freshly by spiking drug-free plasma with a sofosbuvir stock solution to give the concentrations of 4.063, 8.125, 62.5, 125.0, 250, 500, 1000, 2000, 4000 and 8000ng/ml.

Quality control standards

Lowest quality control standards, Median quality control standards and highest quality control standards were prepared by spiking drug-free plasma with sofosbuvir to give a solution containing 11.488, 52.180 and 7252.503 ng/ml respectively. They were stored at −20 °C till the time analysed.

Chromatographic conditions

Chromatographic separation was performed on Gemini 5μ C18, 50 x 4.6 mm, analytical column and the mobile phase was a mixture of 0.1% (v/v) formic acid in water to methanol at a ratio of 30:70 v/v. Injection volume was 10μL. The flow rate was 0.50 ml/min. Total analysis time of single injection was 2.0 min. Column oven temperature and autosampler temperature was set to 30 °C and 10 °C, respectively.

Mass spectrometric conditions

The LC eluent was split, and approximately 0.100 ml/min was introduced via electrospray ionisation using a Turbo Ion Spray interface set at 325 °C to generate positive ions [M+H]+. The Mass spectrometric parameters were optimised as shown in table no 1.
Sample preparation method

To 250 µl of plasma, 50 µl of ISTD (1 µg/ml) and 50 µl of 0.1% formic acid was added and vortexed. The drug was extracted with 2.5 ml of ethyl acetate, followed by centrifugation at 2000 rpm/min on a cooling centrifuge for 15 min at 4 °C. The supernatant of 2 ml was withdrawn and evaporated at 50 °C 15 psi of nitrogen until dryness at LV evaporator. The residue was reconstituted with 500 µl of mobile phase, and respective samples were injected into the column.

Validation [9-13]

Specificity

A solution containing 4.063 ng/ml was injected onto the column under optimised chromatographic conditions to show the separation of sofosbuvir from impurities and plasma. The specificity of the method was checked for the interference from plasma.

Linearity

Spiked concentrations were plotted against peak area ratios of sofosbuvir to the internal standard and the best fit line was calculated. Wide range calibration was determined by solutions containing 4.063 to 8000.010 ng/ml.

Recovery studies

The % mean recoveries were determined by measuring the responses of the extracted plasma Quality control samples at HQC, MQC and LQC against un-extracted Quality control samples at HQC, MQC and LQC.

Precision and accuracy

The between-run (Inter-day) accuracy and precision evaluation were assessed by the repeated analysis of human Ks EDTA plasma samples containing different concentrations of sofosbuvir on separate occasions. A single run consisted of a calibration curve plus six replicates of the lower limit of quantitation, low, medium and high-quality control samples.

Within-run (Intraday) accuracy and precision evaluations were performed by analysing replicate concentrations of sofosbuvir in human Ks EDTA plasma. The run consisted of a calibration curve plus a total of 24 spiked samples, six replicates of each of the LLOQ, lower, medium and higher quality control samples.

Matrix effect

The matrix effect for the intended method was assessed by using chromatographically screened human plasma. Concentrations equivalent to LLOQ of Sofosbuvir were prepared with seven different plasma batches/ lots. Samples were analysed along with one set of freshly spiked QC Standards prepared in the screened biological matrix.

Ruggedness

The ruggedness of the method was assessed by analysing a precision and accuracy batch using a different column, by the different analyst in another instrument.

Stability studies

Short-term stock solution stability of sofosbuvir

Solutions of sofosbuvir were prepared in methanol (Stability Samples) and were kept at room temperature for 6 h 30 min. A freshly prepared solution of sofosbuvir (Comparison Samples) and stability samples were diluted at approximately the same analyte concentration and analysed in a single run; analyte responses were used to determine % stability over time.

Long-term stock solution stability of internal standard

Solutions of internal standard (Sofosbuvir-d3) were prepared in methanol (Stability Samples) and were kept at refrigerator (2-8 °C) for 10 D 02 H. A freshly prepared solution of internal standard (Comparison Samples) and stability samples were diluted at approximately the same analyte concentration and analysed in a single run; analyte responses were used to determine % stability over time.

Long-term stock solution stability of sofosbuvir

Solutions of Sofosbuvir were prepared in methanol (Stability Samples) and were kept at refrigerator (2-8 °C) for 10 D 02 H. A freshly prepared solution of sofosbuvir (Comparison Samples) and stability samples were diluted at approximately the same analyte concentration and analysed in a single run.

Freeze-thaw stability

Samples were prepared at low and high-quality control levels, aliquoted and frozen at -70 °C. Some of the aliquots of quality control samples were subjected to five freeze-thaw cycles (stability samples). A calibration curve and quality control samples were analysed and processed with 6 replicates of stability samples and analysed in a single run.

RESULTS AND DISCUSSION

The chromatography observed during the course of validation was acceptable and representative chromatograms of standard blank, HQC, MQC, LQC and LLOQ are shown in fig. 1-3.
Fig. 1: Chromatograms of standard blank and HQC matrix

Fig. 2: Chromatograms of MQC and LQC

Fig. 3: Chromatograms of LLOQ
The method developed was validated for specificity, accuracy and precision, linearity, ruggedness and stability as per FDA guidance [9-11]. The results of validating parameters are given below.

Specificity

Nine different lots of plasma were analysed to ensure that no endogenous interferences were present at the retention time of sofosbuvir and Sofosbuvir-d3. Nine LLOQ (4.063 ng/ml) level samples along with plasma blank from the respective plasma lots were prepared and analysed. (table 2). In all plasma blanks, the response at the retention time of sofosbuvir was less than 20% of LLOQ response and at the retention time of IS, the response was less than 5% of mean IS response in LLOQ. The typical chromatogram of plasma blank and the chromatogram of LLOQ was shown in (fig. 1).

S. No.	Drug response	ISTD response								
	STD BL Area	LLOQ Area	STD BL RT	LLOQ RT	% Interference	STD BL Area	LLOQ Area	STD BL RT	LLOQ RT	% Interference
01	0	298	0.800	NIL	0	61776	0.800	NIL	0	66613
02	0	290	0.800	NIL	0	70621	0.800	NIL	0	67694
03	0	334	0.800	NIL	0	64807	0.800	NIL	0	65249
04	0	267	0.807	NIL	0	67694	0.800	NIL	0	68774
05	0	271	0.800	NIL	0	62927	0.800	NIL	0	62927
06	0	303	0.800	NIL	0	37012	0.800	NIL	0	37012
07	0	281	0.800	NIL	0	66441	0.800	NIL	0	66441
08	0	255	0.800	NIL	0	62927	0.800	NIL	0	62927
09	0	147	0.800	NIL	0	37012	0.800	NIL	0	37012
10	0	283	0.800	NIL	0	66441	0.800	NIL	0	66441

Linearity

The calibration curve (peak area ratio Vs Concentration) was linear over working range of 4.063 to 8000.010ng/ml with ten point calibration used for quantification by linear regression, shown in (fig. 2). The regression equation for the analysis was:

\[Y=0.0011227x-0.000164437 \]

\[r^2 = 0.9985 \]

Recovery

The % mean recovery for sofosbuvir in LQC, MQC and HQC was 75.47%, 74.37% and 76.26% respectively (table 3).

S. No.	HQC Aqueous area ratio	MQC Aqueous area ratio	LQC Aqueous area ratio	HQC Extracted area ratio	MQC Extracted area ratio	LQC Extracted area ratio
01	13.466	8.226	0.981	0.598	0.021	0.013
02	13.541	8.082	1.010	0.590	0.022	0.013
03	13.318	7.995	0.995	0.571	0.021	0.012
04	13.133	8.248	1.001	0.599	0.021	0.013
05	12.997	7.994	0.985	0.600	0.021	0.013
Mean	13.291	8.109	0.994	0.597	0.021	0.012
SD	0.2265	0.12243	0.0178	0.0128	0.00045	0.00045
% CV	1.70	1.51	1.18	2.06	2.11	3.49
% Mean Recovery	76.26	74.37	75.47	75.36		
Intraday (within run) and Inter-day (between run) precision and accuracy

The within-run coefficients of variation ranged between 1.06% and 5.06% for sofosbuvir. The within-run percentages of nominal concentrations ranged between 97.21% and 105.93% for sofosbuvir. Results are presented in table 4.

The between-run coefficients of variation ranged between 2.04% and 5.48% for sofosbuvir. The between-run percentages of nominal concentrations ranged between 98.34% and 100.58% for sofosbuvir. Results are presented in table 4.

Matrix effect

The % accuracy of LLOQ samples prepared with the different biological matrix lots were found within the range of 89.49% to 97.49% which were found within the range of 80.00-120.00% for the seven different plasma lots. % CV for LLOQ samples was observed as 2.87% which are within 20.00% of the acceptance criteria. Results are presented in table 5.

QC ID	HQC	MQC	LQC	LLOQ QC	
Concentration (ng/ml)	725.2503	522.180	11.488	4.136	
Within Batch Precision and Accuracy	Calculated Concentration (ng/ml)	691.0342	511.080	11.360	4.290
	700.9484	518.984	10.484	3.998	
	718.9506	514.176	11.501	4.116	
	715.6740	511.840	11.892	4.132	
	698.4985	504.031	11.887	4.477	
Mean	705.0211	512.0222	11.4788	4.2026	
SD	118.5622	5.42876	0.58102	0.18526	
% CV	1.68	1.06	5.06	4.41	
% Mean Accuracy	97.21	98.05	99.92	101.61	
PandA I					
Concentration (ng/ml)	723.4610	533.680	12.086	4.263	
Mean	719.2185	531.929	12.605	4.266	
SD	727.2508	523.890	12.1690	4.2034	
% CV	1.08	1.11	2.94	1.99	
% Mean Accuracy	100.47	101.39	105.93	101.63	
PandA II					
Concentration (ng/ml)	735.1433	522.452	11.705	4.172	
Mean	730.8960	529.4556	12.1690	4.2034	
SD	78.93435	5.88296	0.35753	0.08377	
% CV	1.08	1.11	2.94	1.99	
% Mean Accuracy	97.35	98.65	95.88	103.39	
PandA III					
Concentration (ng/ml)	716.1887	520.892	11.414	4.123	
Mean	703.6505	514.024	11.006	4.395	
SD	696.0208	497.103	10.554	4.354	
% CV	1.51	2.06	2.79	2.86	
% Mean Accuracy	97.35	98.65	95.88	103.39	
Between Batch Precision and Accuracy					
Mean	705.9597	515.1164	11.0150	4.2764	
SD	106.7109	10.58730	0.30752	0.12214	
% CV	1.51	2.06	2.79	2.86	
% Mean Accuracy	97.35	98.65	95.88	103.39	

Ruggedness

The coefficients of variation ranged between 0.35% and 3.09% for sofosbuvir. The percentages of nominal concentrations ranged between 93.2% and 99.29% for sofosbuvir. Results are presented in table 6.

Stability studies

Short-term stock solution stability of sofosbuvir and internal standard

Sofosbuvir and internal standard were found to be stable in methanol for 6 h 30 min at room temperature with a % stability of 97.25% and 97.0% respectively. Results are presented in table 7.

Long-term stock solution stability of sofosbuvir and internal standard

Sofosbuvir and internal standard were found to be stable in methanol with 10 D 02 H at refrigerator (2-8 °C) with a % stability of 98.81% and 107.96% respectively. Results are presented in table 8.

 Freeze-thaw stability

Sofosbuvir is found to be stable in human K3 EDTA plasma after five freeze-thaw cycles at-70 °C with coefficients of variation of 3.27% (LQC) and 3.86% (HQC) for sofosbuvir, and the percentages of nominal concentrations for sofosbuvir were found to be 103.17% (LQC) and 101.23% (HQC). Results are presented in table 9.
Table 6: Results of ruggedness with different column

QC ID	HQC	MQC	LQC	LLOQ QC
Conc.(ng/ml)	7252.503	522.180	11.488	4.136
Panda ID	Calculated concentration (ng/ml)			
Column	Acquisition batch ID: 031008PandADC01			
Mean	7128.3884	521.3342	11.4070	3.8546
SD	145.55342	4.13570	0.06040	0.11925
% CV	2.04	0.79	0.53	3.09
% Mean Accuracy	98.29	99.84	99.29	93.20

Table 7: Short-term stock solution stability of drug and ISTD

S. NO.	Drug	ISTD	Nominal Conc (ng/ml)	Nominal Conc (µg/ml)	
Area ratio	Comparison samples	Stability samples	Area ratio	Comparison samples	Stability samples
01	9.134	9.076	0.116	0.115	
02	9.181	8.829	0.117	0.114	
03	9.147	9.090	0.115	0.117	
04	9.082	8.973	0.117	0.113	
05	9.231	8.946	0.114	0.111	
06	9.197	8.969	0.117	0.112	
Mean	9.1620	8.9850	0.1160	0.1137	
SD	0.05245	0.09532	0.00126	0.00216	
% CV	0.57	1.06	1.09	1.90	
% Mean Stability	97.25	97.00			

Table 8: Long-term stock solution stability of drug and internal standard

S. NO.	Drug	ISTD	Nominal Conc (ng/ml)	Nominal Conc (µg/ml)	
Area ratio	Comparison samples	Stability samples	Area ratio	Comparison samples	Stability samples
01	9.219	9.049	0.108	0.111	
02	9.116	9.111	0.107	0.110	
03	9.228	9.026	0.108	0.115	
04	8.918	9.141	0.112	0.119	
05	9.208	9.073	0.111	0.119	
06	9.138	9.022	0.113	0.114	
Mean	9.1378	9.0703	0.1098	0.1147	
SD	0.11700	0.04777	0.00248	0.00383	
% CV	1.28	0.53	2.26	3.34	
% Mean Stability	98.81	107.96			

Table 9: Freeze-thaw stability at-70 °C

S. No.	HQC	LQC	Nominal Conc (ng/ml)	Nominal Conc (ng/ml)	% accuracy	% accuracy
7252.503	11.488					
Calculated Conc (ng/ml)						
1	7255.363	100.04	11.571	100.72		
2	6985.35	96.32	11.547	100.51		
3	7017.724	96.76	12.168	105.92		
Calculated Conc (ng/ml)						

CONCLUSION

Chromatographic separation was performed on Gemini 5µ C18, 50 x 4.6 mm, analytical column and the mobile phase was a mixture of 0.1% (v/v) formic acid in water to methanol at a ratio of 30:70 v/v. The drug was extracted from the sample with 2.5 ml of ethyl acetate. The specificity of the method was checked for the interference from plasma. Wide range calibration was determined by solutions containing 4.063 to 8000.010ng/ml. The % mean recovery for sofosbuvir in LQC, MQC and HQC was 75.47%, 74.37% and 76.26% respectively. The within-run coefficients of variation ranged between 1.06% and 5.06% for sofosbuvir. The between-run coefficients of variation ranged between 2.04% and 5.48% for sofosbuvir the % accuracy of LLOQ samples prepared with the different biological matrix lots were found within the range of 89.49 to 97.49%. Stability test were performed to assess the long term and short term stability of sofosbuvir sample solutions,
internal standard solutions. The developed method was validated for the quantitative determination of sofosbuvir from plasma was simple, rapid, specific, sensitive, accurate and precise. Hence, the method is quite suitable to detect the drug from plasma samples of human volunteers.

ACKNOWLEDGEMENT

I am also grateful to my scholars and my friends for their kind help from time to time at each and every step of my project work.

CONFLICT OF INTERESTS

Declared none

REFERENCES

1. https://pubchem.ncbi.nlm.nih.gov/compound/45375808. Last accessed on 12 Jun 2016
2. Hoofnagle J, Di Bisceglie A. The treatment of chronic viral hepatitis. N Engl J Med 1997;336:347-56.
3. Ravikumar V, Subramanyam CVS, Veerabhadram G. Estimation and validation of sofosbuvir in bulk and tablet dosage form by RP-HPLC. Int J Pharm 2016;6:121-7.
4. Mohan Vikas P, Satyanarayana T, Vinod Kumar E, Mounika E, Sri Latha M, Anusha R, et al. Development and validation of new RP-HPLC method for the determination of sofosbuvir in pure form. World J Pharm Pharm Sci 2016;5:775-81.
5. Rezk MR, Basalous EB, Karim IA. Development of a sensitive UPLC-ESI-MS/MS method for quantification of sofosbuvir and its metabolite, GS-331007, in human plasma: application to a bioequivalence study. J Pharm Biomed Anal 2015;114:97-104.
6. Rezk MR, Basalous EB, Amin ME. Novel and sensitive UPLC-MS/MS method for quantification of sofosbuvir in human plasma: application to a bioequivalence study. Biomed Chromatogr 2016;30:1354-62.
7. Shi X, Zhu D, Lou J, Gan D. Evaluation of a rapid method for the simultaneous quantification of ribavirin, sofosbuvir and its metabolites in rat plasma by UPLC-MS/MS method. J Chromatogr B: Anal Technol Biomed Life Sci 2015;1002:353-7.
8. Analytical procedures and methods validation for drugs and biologics guidance for industry. U.S. Department of Health and Human Services, Food and Drug Administration Center for Drug Evaluation and Research (CDER), Center for Biologics Evaluation and Research (CBER); 2015.
9. Sindhusri M, Swetha T, Ramadevi A, Ashok Kumar A. A novel rapid rp-hplc method development and validation for the quantitative estimation of balofloxacin in tablets. Int J Pharm Pharm Sci 2014;7:21-22.
10. Raveendr Babu G, Lakshmana Rao A, Venkateswara Rao J. A rapid RP-HPLC method development and validation for the quantitative estimation ribavirin in tablets Int J Pharm Pharm Sci 2014;7:60-3.
11. Srinidhi M, Mushabbar Basha MD, V Raj Kumar, Rajendra Kumar J. Stability indicating RP-HPLC method development and validation for the estimation of sumatriptan in bulk and pharmaceutical dosage form. J Appl Pharm Sci 2016;6:20-5.

How to cite this article

- Darshan Bhatt, B Rajkamal. A UPLC-MS/MS method development and validation for the estimation of sofosbuvir from human plasma. Int J Appl Pharm 2017;9(1):30-36.