Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
Design and various in silico studies of the novel curcumin derivatives as potential candidates against COVID-19-associated main enzymes

Hakan Alici a,*, Hakan Tahtaci b, Kadir Demir a

a Department of Physics, Faculty of Arts and Sciences, Zonguldak Bulent Ecevit University, 67100 Zonguldak, Turkey
b Department of Chemistry, Faculty of Science, Karabuk University, 78050 Karabuk, Turkey

ARTICLE INFO

Keywords:
Coronavirus
SARS-CoV-2
MM-PBSA
Curcumin
Docking
Drug design
Molecular dynamic
Simulation

ABSTRACT

The novel coronavirus disease (COVID-19) is a highly contagious disease caused by the SARS-CoV-2 virus, leading severe acute respiratory syndrome in patients. Although various antiviral drugs and their combinations have been tried so far against SARS-CoV-2 and they have shown some effectiveness, there is still a need for safe and cost-effective binding inhibitors in the fight against COVID-19. Therefore, phytochemicals in nature can be a quick solution due to their wide therapeutic spectrum and strong antiviral, anti-inflammatory, and antioxidant properties. In this context, the low toxicity, and high pharmacokinetic properties of curcumin, which is a natural phytochemical, as well as the easy synthesizing of its derivatives reveal the need for investigation of its various derivatives as inhibitors against coronaviruses. The present study focused on curcumin derivatives with reliable ADME profile and high molecular binding potency to different SARS-CoV-2 target enzymes (3CLPro, PLpro, NSP7/8/12, NSP7/8/12+RNA, NSP15, NSP16, Spike, Spike+ACE). In the molecular docking studies, the best binding scores for the 22 proposed curcumin derivatives were obtained for the PLpro protein. Furthermore, MD simulations were performed for high-affinity ligand-PLpro protein complexes and subsequently, Lys157, Glu161, Asp164, Arg166, Glu167, Met208, Pro247, Pro248, Tyr264, Tyr273 and Asp302 residues of PLpro was determined to play key role for ligand binding by Molecular Mechanics Poisson-Boltzmann Surface Area (MM-PBSA) analysis. The results of the study promise that the proposed curcumin derivatives can be potent inhibitors against SARS-CoV-2 and be converted into pharmaceutical drugs. It is also expected that the findings may provide guiding insights to future design studies for synthesizing different antiviral derivatives of phytochemicals.

1. Introduction

The COVID-19, caused by the SARS-CoV-2 virus, first appeared in Wuhan, Hubei province of China, in December 2019 and lead to an unusual type of infectious pneumonia that causes severe acute respiratory syndromes in patients (Huang et al., 2020; Lu et al., 2020; Zu et al., 2020). Since the day of its pandemic situation, SARS-CoV-2 has caused 383,509,779 confirmed cases of infection, more than 5,693,824 deaths (WHO reports, 4 February 2022), and the number of newly infected and deaths is increasing day by day. For this reason, the whole world is trying to fight this coronavirus disease and scientific communities are researching for effective vaccines, drugs or treatments that can be used to combat COVID-19.

Although various antiviral drugs and their combinations have been tried for the treatment of COVID-19, no fully effective treatment has yet been found. The activity of coronaviruses can be restrained by inhibiting the virus’s binding to human cell receptors, spreading and replication of their genetic material. In this context, studies on discovering new chemical drugs that will inhibit the enzyme proteins of coronaviruses continue at a great pace. In addition to these chemical drugs, satisfactory results have been also reported for various phytochemicals in the inhibition of coronaviruses (Gangadevi et al., 2021; Kumar et al., 2020; Mitra et al., 2021; Ozdemir et al., 2020; Rajagopal et al., 2020; Singh et al., 2021; Vellingiri et al., 2020). Designing and discovering a new drug from scratch is a long process, and in this regard, derivatives of existing therapeutic molecules and phytochemicals with appropriate drug properties can be an effective and rapid solution to the COVID-19 crisis. To this end, there are a lot of theoretical efforts on COVID-19 focusing on natural compound (Adelusi et al., 2022; Badavath et al., 2020; Choudhary and Singh, 2022; Hasan et al., 2022; Mithilesh et al., 2022; Murugesan et al., 2021; Oluyori et al., 2022; Phong et al., 2022).

Curcuminoids are natural organic phytochemicals found in Turmeric...
proteolytically cleaved into 16 functional non-structural proteins (NSPs) consist of two large polyproteins named ORF1a and ORF1b (ORFs are virus (Kim et al., 2020; Malone et al., 2022). The SARS-CoV-2 proteins membrane (M), Nucleocapsid (N) spike (S) proteins)) and accessory proteins protective (Ganesh et al., 2017; Goozee et al., 2016), antimicrobial (Gupta and Ravishankar, 2005) properties and many other biological functions and activities (Badavath et al., 2016c; Jiang et al., 2017; Muniguntla et al., 2014; Rahmani et al., 2016). Moreover, it has been shown that Curcumin can act as an anti-viral compound that inhibits replication of the virus in a wide range of RNA, DNA viruses (Ali and Banerjea, 2016; Balasubramanian et al., 2019; Dai et al., 2018a; Du et al., 2017; Ferreira et al., 2015; Gao et al., 2019; Huang et al., 2018; Jeong et al., 2015; Li et al., 2019; Lin et al., 2019; Mounce et al., 2017; Randazzo et al., 2016; Richart et al., 2018; von Rhein et al., 2016; Wu et al., 2015; Yang et al., 2016, 2017). It is also very interesting that curcumin, a phytochemical whose derivatives can be synthesized easily, have not been extensively studied for the SARS-CoV-2 virus. In light of this information, modifications to curcumin derivatives could provide an important research advance to increase the efficacy of current therapies used.

SARS-CoV-2 is an enveloped, positive sense, single-stranded RNA virus (Kim et al., 2020; Malone et al., 2022). The SARS-CoV-2 proteins consist of two large polyproteins named ORF1a and ORF1b (ORFs are proteolytically cleaved into 16 functional non-structural proteins (NSPs) (Rohaim et al., 2021)), four structural proteins (Envelope (E), Membrane (M), Nucleocapsid (N) spike (S) proteins) and accessory proteins (Kim et al., 2020; Wu et al., 2020b). Most of these target proteins are considered as antiviral targets and the 3-D structure of almost all of them has been fully resolved and published in the protein data bank (PDB).

The group of non-structural proteins (NSPs) encoded by the viral genome consists of the NSP1, NSP2, NSP3 (Papain-like protease, PLpro), NSP4, NSP5 (main protease, 3CLpro), NSP6, NSP7/8/12 (RNA-dependent RNA polymerase, RdRp), NSP9 (RNA replicase), NSP10/16 (2′-O-Methyltransferase complex), NSP11, NSP13 (Helicase), NSP14 (N-terminal exoribonuclease, ExoN), NSP15 (Uridylate-specific endoribonuclease, NendoU) and NSP16 protein domains (Kim et al., 2020; Rohaim et al., 2021; Wu et al., 2020b). The main protease enzyme is also called chymotrypsin-like protease (3CLpro). The 3CLpro enzyme cleaves most of the NSP4-16 domains in polyproteins (Wu et al., 2020a) and the products are non-structural proteins (NSPs) that assemble into the replicase-transcriptase complex (RTC). On the other hand, papain-like cysteine protease (PLpro) cleaves NSPs 4–14 domains (Moustafa et al., 2021). In other words, 3CLpro and PLpro work together to cleave polyproteins into NSPs, thereby they enhance coronavirus replication and lead viral spread (Harcourt et al., 2004; Lim et al., 2019). Therefore, it can be considered that 3CLpro and PLpro are the most important target protein structures for antiviral drugs. Another important target is NSP7/NSP8/NSP12 complex. Here, RNA-dependent RNA polymerase (RdRp) NSPs also complex. NSP12 is involved in replication and transcription of the SARS-CoV-2 genome (Wang et al., 2020) and bounds to its essential cofactors, NSP7 and NSP8. On the other hand, NSP15, one of the RNA-processing enzymes encoded by the coronavirus, (Postuma et al., 2006) and NSP16, an RNA cap-modifying enzyme that is active only in the presence of its activating partner NSP10 (Rosas-Lemus et al., 2020), are also important drug target structures. In addition, as it is known, human angiotensin converting enzyme 2 (hACE2) is an enzyme bound to the membranes of cells in the heart, lungs, arteries, kidneys, and intestines (Donoghue et al., 2000; Hamming et al., 2004). The SARS-CoV-2 surface spike glycoprotein consists of three S1-S2 heterodimers. The receptor binding domain (RBD), located at the head of S1 and bound with the cellular receptor ACE2, initiates membrane fusion of virus and host cell (Hoffmann et al., 2020). During viral infection, ACE2 interacts with coronavirus spike proteins and allows the virus to enter the cell (Gao et al., 2020). Therefore, both S1 and ACE2 are considered as significant target structures for antiviral drugs.

In the light of these important literature data mentioned above, it was aimed to investigate the inhibition potentials of various curcumin derivatives on different target enzyme sites of SARS-CoV-2 in the presented study. As a result of in silico studies and analyses, it was observed that the curcumin derivatives proposed in this study had better ADME (absorption, distribution, metabolism, excretion) profiles and higher docking scores for all SARS-CoV-2 enzyme targets discussed in this paper than the reference drugs and enzyme inhibitors. Furthermore, it has been determined that curcumin derivatives have a higher affinity for the PLpro enzyme that the other SARS-CoV-2 target enzymes. To this end, molecular Dynamics (MD) simulations between curcumin derivatives with high docking score inhibitor/drug(ligand) and PLpro enzyme were performed and the binding stability of ligands to PLpro enzyme was evaluated using MM-PBSA (Molecular Mechanics Poisson-Boltzmann Surface Area) analysis. Moreover, PLpro residues that play a key role in binding have been identified. In conclusion, this study, which is the first step for drug design studies on target curcumin derivatives, is expected to be an important guidance for scientists who will conduct in vitro and in vivo studies.

2. Materials and methods

2.1. Design of curcumin derivatives

We based the main mentality of our work on curcumin derivatives being the interesting class of natural compounds with great pharmacological potentials. In this regard, it is thought that the activities of curcumin will increase even more by adding heterocyclic compounds such as 2-H-pyran-4 (3 H)-one and 1-methylpiiperidin-4-one to these derivatives by (Bykhovskaya et al., 2017; Koroth et al., 2019; Murugesan et al., 2019; Roayapalley et al., 2021; Santiago-Vazquez et al., 2014). These compounds proposed in the study can be easily and quickly synthesized according to the synthesis method in the literature (Adams et al., 2004; Fawzy et al., 2015; Jha et al., 2006) (Scheme S1).

Also, the use of various electron-withdrawing (such as -F, -Cl, Br) (Nath et al., 2018; Roayapalley et al., 2021; Santiago-Vazquez et al., 2014) and donating groups (such as -OCH3) (Badavath et al., 2016a, 2016b; Murugesan et al., 2019; Santiago-Vazquez et al., 2014) in the compounds can also cause significant changes in biological activities due to steric and electronic effects. To this end, we created a library containing 68 curcumin derivatives. We then eliminated these molecules according to their ADME profiles to put our study on a solid foundation. In this elimination, we used 5 different main drug filter approaches and accordingly, curcumin derivatives that violated the criteria of any of the 5 filter approaches by more than 1 were eliminated. It was finally identified 22 curcumin derivatives with a reliable ADME profile. In this context, Scheme 1 shows the designed various 2-H-pyran-4(3 H)-one and 1-methylpiiperidin-4-one curcumin derivatives as target compounds. In addition, in this study, the ADME profiles of proposed curcumin derivatives are scrutinized in detail, and investigated antiviral drug potencies against SARS-CoV-2 main enzymes by using molecular docking based virtual screening and MD simulations.

2.2. ADME and druglikeness parameters

ACD/ChemSketch was utilized for the 2D chemical drawing and editing in the SDF format for all compounds. Then, using these 2D structures, various in silico absorption, distribution, metabolism,
excretion (ADME) and drug-likenesses properties of the compounds were investigated using the SwissADME webserver (Daina et al., 2014, 2017).

2.3. Molecular docking calculations

The docking simulations were performed using AutoDock Vina software (Trott and Olson, 2010) with the Lamarckian genetic algorithm (LGA) (Huey et al., 2007; Solis and Wets, 1981). Before the docking process, 2D structures of molecules prepared in SDF format were converted into 3D structures in MOL2 format using Open Babel, and then the energies of these 3D structures were minimized with the root mean square gradient (RMS 0.001 kcal/mol/A²) using MMFF94 Forcefield parameters in Avogadro v.1.2.060 program (Hanwell et al., 2012). Then, these optimized compounds and target structures were prepared for docking using the PyRx program (Dallakyan and Olson, 2015). This program automatically removes all water molecules, ion, and etc. contents in PDB structures and added Kollman charges for the protein and Gasteiger charges for the ligand and cofactors.

In the docking studies, it was used target PDB ID’s of the COVID-19 Docking Server (https://ncov.schanglab.org.cn/) (Kong et al., 2020). These relevant target PDB structures used in our study are generally the most preferred target structures in the literature. Similarly, for active binding pockets, Grid space values determined by the COVID-19

Scheme 1. The Representation of curcumin analogues and its 2 H-pyran-4(3 H)-one and 1-methylpiperidin-4-one derivatives.
Docking Server were used. The grid space values of the COVID-19 Docking Server corresponds and includes to the active binding pockets of the reference inhibitors of each target enzyme. Also, in order to evaluate the accuracy of the grid space values of the COVID-19 Docking Server, we first performed blind docking studies for each target. Blind docking is the docking process of a ligand by scanning the whole surface of a protein without any prior knowledge of the target pocket. These trial blind docking studies showed that ligands majority bind to active binding pockets determined by the COVID-19 Docking Server, that is, active binding regions of reference ligands. Moreover, we selected exhaustiveness value as 32 in the all docking process to obtain a more consistent docking result.

In this study, docking simulations were conducted on 6 different SARS-CoV-2 target enzyme structures. The 3D conformational structures of these target proteins were obtained from the Research Collaboratory for Structural Bioinformatics (RCSB) Protein Database (http://www.rcsb.org/) (Berman et al., 2000). The PDB accession codes of the targets are 6LU7 (Jin et al., 2020); 3C1pro with N3 inhibitor, 6WUU (Rut et al., 2020); PLpro with VIR250 inhibitor, 7BV2 (Yin et al., 2020); RdRp with triphosphate form of Remdesivir (F86), 6WLC (Kim et al., 2021); NSP15 with Uridine-5'-Monophosphate (Usp), 6WVn (Rosas-Lemus et al., 2020); NSP16 with 7-methyl-GpppA (GTA), S-Adenosylmethionine (SAM) and 7-methyl-guanosine-5'-triphosphate (MGP) inhibitors, 6MOJ (Lan et al., 2020). The receptor binding domain (RBD) located on the head of Spike S1 subunit of the SARS-CoV-2 with hACE2. In docking simulations, the selected curcumin derivatives, inhibitors of the aforementioned receptors, and various references drugs (Favipiravir, Hydroxychloroquine, Lopinavir, Remdesivir, Warfarin (Coumadin)) that have been used and still used in the treatment of COVID-19 were taken as ligands.

Our molecular docking protocol was validated by superimposing the 3D binding pose of crystallized ligand (experimental inhibitor) and its docked binding pose and by computing their RMSD values. The superimposed configurations for reference inhibitors and their RMSD values were depicted in Fig. S1. This method is one of the most commonly used methods to determine the accuracy of a docking protocol. In this context, a docking method can be considered valid if the RMSD value between superimposed configurations of ligands is ≤ 2.0 Å (Abduusalam and Murugaiyah, 2020; Azam, 2021; C et al., 2022; Elhady et al., 2021). Accordingly, our results show that all reference inhibitors overlap almost perfectly with RMSD values obtained within these limits, therefore it can be said that our docking protocol is valid.

In addition, the docking values listed in the study for each ligand are their best binding affinity values against target enzymes, and similarly, the interaction diagrams belong to their relevant conformations with best binding energy.

2.4. Molecular dynamic simulation study and MM-PBSA calculations

MD simulations of the target protein (PLpro) and ligands (8b, 8c, 8d, 8f, 8g, 8h, 8k curcumin derivatives, Remdesivir, VIR250) complexes were performed by GROMACS program version 2020.1 (Abraham et al., 2015). MD simulation was conducted for the timescale of 100 nano seconds (ns) using CHARMM36 (Huang and Mackrell Jr, 2013) force field and TIP3P (Jorgensen et al., 1983) water model were used for the protein and the explicit solvent, respectively. The CHARMM36 force field parameters for ligand were derived from CHARMM General Force Field (CGenFF) web server (Vanommeslaeghe et al., 2010; Yu et al., 2012).

In each MD simulation, the complexes were firstly centered in cubic box with dimensions 15 × 15 × 15 nm where the distance between the box and solutes was at least 1 nm. 44282 water molecules were subsequently added into the system. Then, a sufficient number of Na+ and Cl- to the system will be added to achieve system charge neutrality and a NaCl concentration of 0.150 M simultaneously.

Next, the energy of the prepared system was minimized for 4000 iteration steps by using the steepest descent method. Afterwards, the system was subjected to equilibration in two steps, each 1 ns, to stabilize both temperature and pressure of the system, respectively in NVT and NPT ensemble. Finally, the simulations of 100 ns for each complex system were performed in NPT ensemble. During the simulations, the temperature of 310 K were kept constant by a V-rescale algorithm (r = 0.1 ps)(Bussi et al., 2007) and pressure with Parinello–Rahman barostat (r = 2.0 ps)(Parinello and Rahman, 1981) was 1 bar. LINCS algorithm(Hess, 2008) and Settle algorithm(Miyamoto and Kollman, 1992) were used to constraint the hydrogens and the solvent, respectively. The time step was set to 2 fs and data were saved every 20 ps to allow for detailed analysis with the tools available.

After the final production studies, RMSF (Root-Mean-Square-Fluctuation) analyses were performed to observe the effects of ligands on enzyme conformation and compared with the wild type form of the PLpro enzyme. After MD study, binding free energy was computed using Molecular mechanics Poisson-Boltzmann surface area (MM-PBSA) method (Kumari et al., 2014).

Binding free energy of the protein-ligand complex using MM-PBSA approximation can be calculated as follows:

$$\Delta E_{\text{MM-PBSA}} = E_{\text{complex}} - (E_{\text{protein}} + E_{\text{ligand}})$$

where E_{complex} is the total MM-PBSA energy of protein-ligand complex, E_{protein} and E_{ligand} are the total free energies of the isolated protein and ligand, respectively. Each individual total free energy can (E_a) be expressed as:

$$E_a = E_{\text{MM}} + E_{\text{Solvent}}$$

where E_{Solvent} is the sum of van der Waals energy (E_{vdw}) and electrostatic energy (E_{elec}) while E_{Solvent} contains polar (E_{pol}) and nonpolar (E_{nonpol}) solvent energy contributions.

3. Results and discussion

3.1. Predictions of ADME and drug-likeness parameters

The ADME properties of the compounds allow drug developers to understand the reliable and efficacy of a drug candidate compound and thus, they accelerate the timeline for new drug submission process to the FDA. Therefore, inadequate evaluation of the ADME parameters and drug-like nature of novel compounds proposed as drug candidates causes many biologically active compounds to fail before they reach the clinic. To this end, we first evaluated the ADME parameters of the proposed curcumin derivatives and their similarities to existing drugs in order to put our study on a firm basis. For this purpose, in the presented study, we focused on curcumin derivatives that comply with a set of rules based on ADME parameters applied by various drug filters and are therefore likely to be drug candidates. Here, the similarities of new drug candidate compounds to available drugs were evaluated by considering the rules of five different filter approaches applied by major drug developers around the world. The five different drug filter approaches in our study and the criteria they apply are as follows.

- Lipinski (Pfizer) filter (Lipinski et al., 1997): MW ≤ 500; MLOGP ≤ 4.15; HBA ≤ 10; HBD ≤ 5
- Ghose filter (Ghose et al., 1999): 160 ≤ MW ≤ 480; − 0.4 ≤ WLOGP ≤ 5.6; 40 ≤ MR ≤ 130; 20 ≤ atoms ≤ 70
- Veber (GSK) filter (Veber et al., 2002): RB ≤ 10; TPSA ≤ 140
- Egan (Pharmacia) filter (Egan et al., 2000): WLOGP ≤ 5.88; TPSA ≤ 131.6
- Muegge (Bayer) filter (Muegge et al., 2001): 200 ≤ MW ≤ 600, −2 ≤ XLOGP ≤ 5; TPSA ≤ 157; HBA ≤ 10; HBD ≤ 5; RB ≤ 15; Number of rings ≤ 7; Number of carbons > 4; Number of heteroatoms > 1

Table 1 shows the ADME parameters related to the physicochemical
Also, all reference drugs and inhibitors (GTA (Ghose et al., 1999), is generally suggested to be in the range of 40 ≤ MW ≤ 500 for Lipinski, 200 ≤ MW ≤ 421.49 g/mol) and 506.18 for Muegge). As it is seen in the table, all curcumin derivatives other than these meet the MW criteria of at least one filter approach. In addition, for other physicochemical parameters, it can be said that the proposed curcumin derivatives meet the criteria of filter approaches whereas there are some violations for reference drugs and inhibitors.

The lipophilicity parameters in the table express the solubility of a chemical compound in fats, lipids, and non-polar solvents such as hexane or toluene and are hence a valuable parameter influencing the activity of the drug in the human body. LogP values are the most widely used measure of lipophilicity and are an indicator of the permeability of drugs to reach target tissue in the body. In this regard, the LogP values used by the various drug filters and their mean values (consensus logP) are represented in Table 1.
and inhibitors are scrutinized, it is seen that Hydroxychloroquine and FDA, obey all the rules of drug filter approaches. This supports the five different main drug filter approaches discussed in the paper. In addition, three natural curcuminoids, which are in the GRAS class by the FDA, meet all the criteria of the main five filter approach, while other reference drugs and inhibitors violate at least two drug filter approaches. The ADME properties examined in this study so far are sufficient to indicate that natural curcuminoids and 22 proposed curcumin derivatives have much better and safer ADME parameters than the vast majority of reference inhibitors and drugs.

Compounds	Lipinski	Ghose	Veber	Egan	Mueggge
7a	0	0	0	0	0
7b	0	0	0	0	0
7c	0	0	0	0	0
7d	0	0	0	0	0
7e	0	0	0	0	0
7f	MW > 500	MW > 480	0	0	XLOGP3 > 5
7g	0	0	0	0	0
7h	0	0	0	0	0
7i	0	0	0	0	0
7j	0	0	0	0	0
7k	0	0	0	0	0
8a	0	0	0	0	0
8b	0	0	0	0	0
8c	0	0	0	0	0
8d	0	0	0	0	0
8e	0	0	0	0	0
8f	MW > 500	MW > 480	0	0	XLOGP3 > 5
8g	0	0	0	0	XLOGP3 > 5
8h	0	0	0	0	0
8i	0	0	0	0	0
8j	0	0	0	0	0
8k	0	0	0	0	0
bisdemethoxycurcumin	0	0	0	0	0
demethoxycurcumin	0	0	0	0	0
F66	NorO > 10	WLOGP < -0.4	TPSA > 140	TPSA > 131.6	XLOGP3 < -2
Favipiravir	0	MW < 160	WLOGP < -0.4	MR < 40	TPSA > 131.6
GTA	MW > 500	MW > 480, WLOGP < -0.4	MR < 40	MR < 130	MR < 130
Hydroxychloroquine	0	0	0	0	0
Lopinavir	MW > 500	MW > 480	MR < 130	MR < 130	MR < 130
MGP	MW > 500	MW > 480, WLOGP < -0.4	TPSA > 140	TPSA > 131.6	XLOGP3 < -2
N3	MW > 500	MW > 480	MR < 130	MR < 130	MR < 130
Remdesivir	MW > 500	MW > 480	MR < 130	MR < 130	MR < 130
SAM	NorO > 10	WLOGP < -0.4	TPSA > 140	TPSA > 131.6	XLOGP3 < -2
U5p	NorO > 10	WLOGP < -0.4	TPSA > 140	TPSA > 131.6	XLOGP3 < -2

Brain access and gastrointestinal absorption are two decisive criteria for predicting pharmacokinetic behaviour at various stages of the drug discovery processes. For this purpose, the Brain or Intestinal. Estimated permeation method (BOILED-Egg) is suggested as a prediction model based on the polarity parameters (tPSA) and lipophilicity (WlogP) of molecules.

The BOILED-Egg map obtained from the Swiss-ADME web server for compounds was depicted in Fig. 1. On the map, the white elliptical region corresponds to the physicochemical area of molecules with both high brain penetration and high gastrointestinal absorption probability. Reference inhibitors GTA, MGP, are completely out of this map. It is also seen that reference inhibitors N3, F86, U5p, SAM, VIR250, 2012; Shen et al., 2012; Sreelakshmi et al., 2017). Accordingly, it can be stated that all of the proposed curcumin derivatives meet the criteria of the five different main drug filter approaches discussed in the paper. In addition, three natural curcuminoids, which are in the GRAS class by the FDA, obey all the rules of drug filter approaches. This supports the reasons why we prefer curcumin derivatives in our study.

When the violations of the drug filter approaches of reference drugs and inhibitors are scrutinized, it is seen that Hydroxychloroquine and Warfarin meet all the criteria of the main five filter approach, while other reference drugs and inhibitors violate at least two drug filter approach once or more than once. The ADME properties examined in this study so far are sufficient to indicate that natural curcuminoids and 22 proposed curcumin derivatives have much better and safer ADME parameters than the vast majority of reference inhibitors and drugs.
that reaches the systemic circulation unchanged (Xu et al., 2012). On the Caco-2 is a parameter indicating epithelial permeability, while OB (Oral 2013) and as it seen, curcuminoids meet these criteria. In TCMSP, Table 3. Here, our aim is to observe the correlation between the pa... parameters we have calculated so far and the values calculated by the... inhibitors. In addition to the ADMET parameters investigated so far, we have calculated different parameters for natural curcuminoids using the traditional Chinese medicine systems pharmacology database and analysis platform (TCMSP web-server) (Ru et al., 2014) and listed in Table 3. Here, our aim is to observe the correlation between the parameters we have calculated so far and the values calculated by the TCMSP server, and to get predictions for the suggested curcumin analogues about different parameters computed by TCMSP server. Fractional water accessible surface area of all atoms with negative partial charge (FASA-) is a drug-likeness parameters and Shen et al. (2012) reported that the compounds in the Traditional Chinese Medicine Compound Database can be a good source of drug-like molecules. Accordingly, the presence of curcuminoids in this library may indicate the importance of curcumin derivatives. DL (Drug-likeness), another drug similarity parameter, is a qualitative parameter that helps optimize pharmaceutical and pharmacokinetic properties of compounds such as chemical stability and solubility. The 'DL' level used as a selection criterion for compounds in traditional Chinese herbs is ≥ 0.18 (Tao et al., 2013) and as it seen, curcuminoids meet these criteria. In TCMSP, Caco-2 is a parameter indicating epithelial permeability, while OB (Oral bioavailability) represents the percentage of orally administered drug that reaches the systemic circulation unchanged (Xu et al., 2012). On the other hand, In the SwissADME webserver, the Abbott bioavailability score is a parameter that tries to predict the measurable Caco-2 permeability of a compound and the probability of having at least 10% oral bioavailability in the rat. Furthermore, this percentage score based on the total charge, the TPSA and the violation of the Lipinski filter of the compound defines four classes of compounds with probabilities of 11%, 17%, 56% or 85%. Accordingly, it was found to have a bioavailability score of 56% for natural curcuminoids, indicating that natural curcuminoids have good bioavailability. BBB (blood-brain barrier) in TCMSP web-server is a parameter used to understand and evaluate the capacity of compounds to enter the central nervous system. According to TCMSP, compounds with a BBB < 0.3 are defined as non-penetrating (BBB-) compounds (Tattersall et al., 1975). The map of BOILED-Egg in the SwissADME web server approximately corresponds to BBB parameter in TCMSP. In the map, natural curcuminoids are located in the white area in this map, which show that they can pass through the gastrointestinal tract well, but that it is less absorbed from the brain barriers. These findings almost coincide with the TMSP web server findings. On the other hand, the map predicts that the vast majority of proposed curcumin derivatives can pass through the brain barrier. The inference indicate that the proposed curcumin derivatives may have better pharmaceutical properties than natural curcuminoids.

3.2. Molecular docking studies

Molecular docking simulations were performed to determine the binding affinities between the 22 proposed curcumin derivatives and the target SARS-CoV-2 enzyme sites and to identify the molecular interactions that play a key role in binding. In order to compare the obtained values for curcumin derivatives, docking analyses were also conducted for natural curcuminoids, own inhibitors of each SARS-CoV-2 target enzyme structure, and various reference drugs whose effectiveness against COVID-19 was determined. The all values obtained as a result of the calculations are presented in Table 3. When the docking scores of the curcumin derivatives containing the 2 H-pyran-4(3 H)-one group (7a-7k) and the 1-methylpiperidin-4-one group (8a-8k) are compared among themselves, the 8a-8k compounds are generally observed to have slightly higher docking affinity values than 7a-7k compounds ones (except Spike and Spike-ACE). Also, it is seen that the affinity values for the PLpro protein enzyme target of the proposed curcumin derivatives are higher than the other target enzyme regions. This situation indicates that the proposed curcumin compounds may have a significant and strong inhibitory effect, especially on the PLpro protein enzyme. In order to better understood the above-mentioned inferences, we calculated the average binding energy values for each series of compounds and the obtained values were depicted as a bar graph in Fig. 2.

Furthermore, when the obtained docking scores are compared, it is understood that the proposed curcumin derivatives are significantly more effective on SAR-COV2 target structures than natural curcuminoids. This indicates the importance of focusing on various derivatives of natural phytochemicals to provide research progress in their current therapeutic applications.

When the docking affinity values obtained for each target protein enzyme structure in Table 4 are evaluated separately, it is seen for 3CLpro (main protease) target structure that the highest values binding affinity was obtained for 7h (−8.3 kcal/mol) and 8h (−8.4 kcal/mol) compounds. It is also observed that the affinity values of 7h and 8h

Table 3

Various ADMET parameters for natural curcuminoids obtained from TCMSP.

Molecule ID	Molecule name	MW	HBD	HBA	RB	TPSA	Caco-2	BBB	DL	FASA-	OB
MOL002581	Curcumin	368.41	2	6	8	93.06	0.32	-0.60	0.41	0.34	4.37
MOL001603	Demethoxycurcumin	338.38	2	5	7	83.83	0.34	-0.59	0.33	0.41	4.37
MOL009945	Bisdemethoxycurcumin	308.35	2	4	6	74.60	0.35	-0.48	0.26	0.46	3.55
The obtained docking scores (kcal/mol) against various SARS-COV-2 target structures of all compounds.

Compounds	3CLpro	PLpro	RdRp	RdRp + RNA	Nsp15	Nsp15/GTA	Nsp15/MGP	Nsp15/SAM	Spike	Spike + ACE
7a	-7.9	-9.3	-7.5	-7.6	-8.1	-8.6	-7.8	-8.6	-6.9	-9.0
7b	-7.9	-9.3	-7.2	-7.6	-8.4	-8.5	-7.6	-8.6	-7.0	-9.2
7c	-7.9	-9.3	-7.2	-7.7	-8.4	-8.5	-8.0	-8.6	-6.9	-9.1
7d	-8.0	-9.3	-7.3	-7.9	-8.4	-8.5	-8.1	-8.5	-6.9	-9.2
7e	-7.7	-9.2	-7.2	-7.8	-8.2	-8.4	-7.8	-8.4	-6.7	-8.9
7f	-8.0	-9.4	-7.4	-7.6	-8.4	-8.8	-7.9	-8.6	-7.1	-9.4
7g	-8.0	-9.3	-7.4	-8.0	-8.4	-8.7	-8.1	-8.8	-6.8	-9.4
7h	-8.3	-9.3	-7.6	-8.0	-8.5	-8.8	-8.3	-8.7	-6.8	-9.4
7i	-7.8	-9.2	-7.5	-7.7	-7.9	-8.6	-7.7	-8.6	-7.0	-9.2
7j	-7.5	-9.0	-7.0	-7.5	-7.8	-8.7	-7.6	-8.7	-6.6	-8.9
7k	-7.9	-9.1	-7.4	-8.0	-8.1	-8.5	-7.8	-8.5	-6.9	-8.9
7h	-7.9	-9.2	-7.5	-7.6	-8.2	-8.7	-8.0	-8.7	-6.7	-9.0
8a	-8.0	-9.4	-7.2	-7.6	-8.6	-8.6	-8.0	-8.5	-6.7	-9.3
8b	-8.0	-9.4	-7.2	-8.0	-8.6	-8.6	-8.2	-8.6	-6.6	-9.2
8c	-8.0	-9.5	-7.5	-8.0	-8.6	-8.7	-8.4	-8.6	-6.7	-9.1
8d	-8.9	-9.5	-7.5	-8.0	-8.6	-8.7	-8.4	-8.6	-6.7	-9.1
8e	-8.8	-9.4	-7.3	-7.8	-8.3	-8.5	-8.0	-8.4	-6.8	-8.9
8f	-8.2	-9.5	-7.6	-7.8	-8.5	-8.9	-8.0	-8.9	-6.8	-8.8
8g	-8.1	-9.6	-7.4	-7.8	-8.6	-8.9	-8.3	-8.9	-7.0	-8.9
8h	-8.4	-9.6	-7.6	-8.1	-8.6	-8.8	-8.5	-8.8	-7.0	-9.4
8i	-7.9	-9.1	-7.9	-7.8	-8.1	-8.7	-7.9	-8.7	-6.9	-8.9
8j	-7.6	-9.2	-7.0	-7.5	-8.0	-8.8	-7.7	-8.8	-6.8	-8.9
8k	-8.1	-9.4	-7.8	-7.8	-8.2	-8.6	-8.0	-8.5	-7.1	-8.9
bisdemethoxycurcumin	-7.3	-7.5	-6.7	-7.2	-7.4	-8.1	-7.1	-7.3	-6.4	-7.7
curcumin	-7.3	-8.0	-7.2	-6.3	-7.2	-7.6	-7.1	-8.2	-7.1	-8.1
demethoxycurcumin	-7.4	-7.9	-6.8	-7.1	-7.4	-7.7	-7.2	-7.5	-6.6	-8.2
Favipiravir	-5.6	-5.7	-6.3	-5.2	-5.0	-6.1	-4.9	-6.0	-5.4	-6.6
Hydroxychloroquine	-6.4	-6.7	-5.2	-5.9	-6.1	-6.6	-6.0	-6.3	-4.9	-6.1
Remdesivir	-8.1	-8.8	-7.9	-7.6	-7.6	-8.0	-7.0	-8.4	-7.0	-8.8
Warfarin(coumadin)	-6.9	-8.0	-7.3	-6.7	-7.6	-7.7	-6.8	-7.7	-6.7	-7.7
Lopinavir	-7.9	-8.7	-7.4	-7.2	-8.1	-7.9	-7.5	-8.1	-6.8	-7.6
N3	-8.0	-7.7	-7.6	-7.2	-8.1	-7.9	-7.5	-8.1	-6.8	-7.6
VIR250	-8.0	-7.6	-6.9	-6.6	-6.6	-10.4	-6.5	-7.4	-8.9	-9.8
F86	-8.0	-7.6	-6.9	-6.6	-6.6	-10.4	-6.5	-7.4	-8.9	-9.8
GTA	-8.0	-7.6	-6.9	-6.6	-6.6	-10.4	-6.5	-7.4	-8.9	-9.8
MGP	-8.0	-7.6	-6.9	-6.6	-6.6	-10.4	-6.5	-7.4	-8.9	-9.8
SAM	-8.0	-7.6	-6.9	-6.6	-6.6	-10.4	-6.5	-7.4	-8.9	-9.8
Kobophenol A	-8.0	-7.6	-6.9	-6.6	-6.6	-10.4	-6.5	-7.4	-8.9	-9.8
proposed curcumin derivatives. Also, it can be concluded according to the value trend of docking score that proposed curcumin derivatives can have a more inhibition effect on the NSP16 enzyme than the 3CLpro and RdRp target enzymes.

Another target structure in the study is Spike protein, and docking simulations were also performed using both alone Spike and Spike+ACE complex targets. When trend of docking score for these targets is examined in the Table 3, it is seen that docking values obtained for the Spike+ACE complex are the higher than values obtained for alone Spike region is targeted. According to the docking results obtained using alone Spike enzyme as a target, it was observed that the natural curcumin, 8f and 8g compounds has the highest affinity values with – 8.1 kcal/mol. Here, it is noteworthy that natural curcumin is among the compounds with the highest affinity for docking simulations used alone Spike protein as target. For natural curcumin, this case is unique among docking studies on 10 different target SARS-CoV-2 targets. On the other hand, the highest affinity values for Spike+ACE complex were obtained for compounds 7f, 7g, 7h and 8h with – 9.4 kcal/mol. Here, Kobophenol A, first natural inhibitor, appear as the compound with the highest docking score for these target structures. Gangdevi et al. (2021) reported that Kobophenol A inhibited ACE2 binding to SARS-CoV-2 S1-RBD in vitro with an IC50 of 1.81 ± 0.04 μM. According to docking findings in the same study, it was found that Kobophenol A bound to the ACE2/spike interface with – 11.15 kcal/mol while Curcumin bound with – 8.42 kcal/mol. Accordingly, these results are in good coherence with our findings.

Finally, when the docking scores obtained for the PLpro target, which has the highest value trend for curcumin derivatives among all target regions, are scrutinized in detail, the 22 proposed curcumin derivatives are significantly higher affinity values than all other reference drugs, PLpro enzyme inhibitor VIR250 (–7.6 kcal/mol) of and natural curcuminoinds. Here, although the binding affinity values obtained for the curcumin derivatives are quite close to each other, the highest values were obtained for 8g and 8h compounds (–9.6 kcal/mol), followed by 8d and 8f compounds (–9.5 kcal/mol). Following these, some curcumin derivatives with the highest values are 8b, 8c and 8k. When all these findings for PLpro are evaluated together, it is seen that the all of high-affinity curcumin derivatives 8b, 8c, 8d, 8f, 8g, 8h and 8k have in the 1-methylpiperidin-4-one group and include 4-bromo, 4-chloro, 4-fluoro, 3,4-dibromo, 3,4-difluoro and 3,4-hydroxyl substituents of this group. These inferences may be key insights in future compound designs with high affinity. Hence, it is expected that these findings obtained as a result of the analyses will be a guide for other working groups that will design inhibitors for the PLpro enzyme in the future.

In addition, it has been reported that inhibitor N3 in the first X-ray structure published (PDB ID:6LUT) for the main protease (3CLpro) exhibited inhibition against SARS-CoV-2 with individual half-maximum effective concentration (EC50) values of 16.77 μM (Jin et al., 2020). On the other hand, it was not reported experimental value such as IC50 or EC50 for VIR250, the inhibitor of the first reported x-ray structure (PDB ID: 6WUU) for PLpro, however it can be estimated from the inhibition curve that the IC 50 for VIR250 is around 10 μM (Rut et al., 2020). When the docking scores obtained for N3 against the 3CLpro and VIR250 against PLpro target structure are compared with the docking scores obtained for the proposed curcumin derivatives, it reveals an important prediction about the high inhibition potentials of the proposed curcumin derivatives for 3CLpro, PLpro and other SARS-CoV-2 target enzymes. In addition, it is displayed 2D molecular interaction diagrams between the dimeric PLpro target enzyme and all compounds (Fig. S2-S32). From the diagrams, the types of molecular interactions, the interacting atoms of the compounds and the interacting residues of the dimeric PLpro chains can be clearly seen.

Comparing the highest binding affinity curcumin derivatives 8b, 8c, 8d, 8f, 8g, 8h and 8k for PLpro with the PLpro enzyme inhibitor VIR250 and the reference drug Remdesivir reference drug can be a good method for in-depth inferences. In this regard, in order to be easier and clearer understanding, we also listed the interacting residues of the dimeric PLpro enzyme with the relevant compounds mentioned above, molecular interaction types and their properties in Table 5.

According to the table, it is observed that compounds 8d and 8h form a halogen type interaction with PLpro enzyme via 4-fluorine and 3,4-difluorine substituents, on the other hand 8b, 8c, 8f and 8g compounds, form alkyl type hydrophobic interaction with PLpro enzyme via their 4-bromo, 3-chloro 3,4-dibromo and 3,4-dichloro substituents. Also, it is remarkable that 8k compound form conventional hydrogen bond with PLpro enzyme via their 4-hydroxyl substituents. In this regard, these interactions between the substituents of 8b, 8c, 8d, 8f, 8g, 8h and 8k compounds and the PLpro enzyme may be the main reason that allows them to have higher docking scores compared with other curcumin derivatives.

When the hydrogen bond interactions, which are a significant factor for a compound to be a drug, are scrutinized, it is seen that all of 8b, 8d, 8f, 8g and 8h curcumin derivatives form carbon hydrogen bonds with the Pro248 residue of PLpro. Hence it can be considered that Pro248 has a key role in the binding of curcumin derivatives to PLpro enzyme. Moreover, it is striking point that both 8d and 8h compounds containing 4-fluorine and 3,4-difluorine substitutes, respectively, have 4 hydrogen bond interactions with PLpro while 8b and 8k compound containing 4-bromo and 3,4-hydroxy substitutes, respectively, have 3 hydrogen bond interactions with PLpro. On the other hand, each of 8f and 8g compounds containing 3,4-dibromo and 3,4-dichloro substitutes, respectively, have only 1 hydrogen bond interaction. While the reference drug Remdesivir has 4 conventional hydrogen bonds, on the other hand, the fact that the PLpro inhibitor VIR250 has 9 Hydrogen bond interactions and 5 of them are with the Arg166 residue of the PLpro enzyme can be very critical for this inhibitor. Here, although VIR250 has such a large number of hydrogen bond interactions, the low binding affinity of VIR250 can be attributed to the relatively lower electrostatic and hydrophobic interactions of VIR250 compared to other compounds. It can be also said that another reason for the low affinity of VIR250 is the unfavourable interaction of VIR250 with the Arg106 residue of PLpro. Similarly, although the reference drug Remdesivir has very high hydrophobic and 4 hydrogen bond interactions, it has lower binding affinity than curcumin derivatives such as VIR250. As it can be clearly understood from the table, the reason for this situation can be considered as 3 unfavourable interactions of Remdesivir with the Arg166 residue of PLpro. In the light of the findings obtained so far, it can be inferred that the curcumin derivatives have no unfavourable interactions with PLpro compared to reference drugs and hence this highlights curcumin derivatives for high docking scores.

For the electrostatic interactions according to the table, it can be said that the Glu161 and Asp164 residues of PLpro have very critical roles. On the other hand, examining the hydrophobic interactions, it is observed that there are common hydrophobic interactions between all of the curcumin derivatives discussed and the Tyr264, Tyr207, Pro248 residues of the PLpro enzyme. This indicates that these residues play a key role in the hydrophobic interactions between curcumin derivatives and the PLpro enzyme.

Moreover, in order to better envision the active binding sites on the PLpro enzyme conformation of the above-mentioned compounds, their binding sites on PLpro are displayed in Fig. 3. The PLpro chain discussed in the study has two homo anti-parallel chains named Chain A and C, in other words, it is in a dimeric form. It is observed from the figure that compounds of all binds to a region close to the A chain region of dimeric PLpro, while compounds 8b, 8c, 8f, 8g, 8h and 8k bind more closely to the A chain region of PLpro. It is noteworthy that the binding orientations of these three compounds are almost identical. The binding orientation of compound 8d is in the same direction as these three compounds, but in opposite directions due to its binding to the A chain region, as expected. In a brief, it can be said that the binding orientations of the curcumin derivatives on the PLpro monomer chain are very similar. On the other hand, examining the binding orientations of the
The target protein structures are kept rigid while the ligands move during these kinds of simulations. However, in physiological conditions, both binding orientation of curcumin derivatives with high affinity. In sum and VIR250 is similar each other, they are almost perpendicular to the seen that they interact with both monomer (chain A and chain C) chains.

3.3. MD simulations and MM-PBSA analysis

Docking simulations are performed in a vacuum environment, and the target protein structures are kept rigid while the ligands move during these kinds of simulations. However, in physiological conditions, both target proteins and ligands interact dynamically in the solution environment. Therefore, MD simulations need to be performed in environments close to physiological conditions for protein-ligand complexes obtained as a result of docking simulations. Thanks to the simulations, it is possible to investigate the effect of ligands (small molecules) on the conformation of the target structure. In addition, MM-PBSA analysis using simulation data enables it possible to evaluate binding stability, dominant interaction types in binding, and the residues that play a critical role in binding.

In this context, the dimeric PLpro enzyme, which has the highest docking affinity value trend for curcumin derivatives, was selected as the reference drug Remdesivir and the PLpro enzyme inhibitor VIR250, it is seen that they interact with both monomer (chain A and chain C) chains of dimeric PLpro. Thus, although the binding orientation of Remdesivir and VIR250 is similar each other, they are almost perpendicular to the binding orientation of curcumin derivatives with high affinity. In summary, when it is considered together with these observed findings regarding binding orientations and the fact that compounds 8b, 8c, 8d, 8f, 8g, 8h and 8k have higher affinity for the PLpro enzyme than Remdesivir and VIR250, the results point out that it is necessary to focus on compounds and their derivatives that will interact with a single monomer chain of PLpro to design more effective PLpro enzyme inhibitors in future studies.

Table 5

Compounds	Binding Affinity	Hydrogen Bond	Electrostatic	Hydrophobic	Halogen	Unfavourable
8b		1 A:Gly163\text{Gly}	1 A:Asp164\text{Gly}	1 A:Pro248\text{Gly}		
		1 A:Gly163\text{Gly}	1 A:Asp164\text{Gly}	1 A:Pro248\text{Gly}		
8c	-9.5	1 C:Glu170\text{Glu}	1 C:Asp164\text{Glu}	1 A:Pro248\text{Glu}		
		1 A:Tyr207\text{Gyr}	1 C:Thr301\text{Thr}			
8d	-9.5	1 C:Glu161\text{Glu}	1 A:Asp164\text{Glu}	1 A:Pro248\text{Glu}		
8f	-9.5	1 A:Glu161\text{Glu}	1 A:Asp164\text{Glu}	1 A:Pro248\text{Glu}		
8g	-9.6	1 A:Pro248\text{Glu}	1 A:Asp164\text{Glu}	1 A:Pro248\text{Glu}		
8h	-9.6	1 A:Gly163\text{Gly}	1 A:Asp164\text{Glu}	1 A:Pro248\text{Glu}		
Remdesivir	-8.8	1 A:Glu161\text{Glu}	1 A:Asp164\text{Glu}			
VIR250	-7.6	2 C:Asp164\text{Glu}	2 A:Asp164\text{Glu}			

CaHB: Carbon Hydrogen Bond, CoHB: Conventional Hydrogen Bond, PdHB: Pi-Donor Hydrogen Bond, Att: Attractive Charge, PiA: Pi-Anion, PiCa: Pi-Cation, PS: Pi-Pi Stacked, PIS: Pi-Sigma, PT: Pi-Pi T-shaped, A: Alkyl, PA: Pi-Alkyl.

In addition, the wild-type (wt) form of the PLpro enzyme was simulated to make a comparison with the PLpro-ligand complexes.
Firstly, RMSF analysis was performed with the data obtained from the MD simulation to examine the effect of ligands on the conformation of the dimeric PLpro enzyme. This analysis gives a measure of how far each residue in the PLpro enzyme moves away from its reference location, on average, over the course of the simulations. In other words, performing this analysis makes it possible to detect mobile and stable residues or residue regions in the enzyme. Accordingly, Fig. 4 shows the RMSF values per residue calculated for each monomer chain of PLpro, separately. The figure also includes the 3D structure of the dimeric and monomeric PLpro enzymes to better understand the mobile and stable regions, based on the RMSF results.

The results show that the 1–75 residue region (N-terminal) in both PLpro chains has quite high RMSF values and thus indicating that this residue region is very flexible. As can be seen from the 3D figure (residues shown in green), this residue region is located farther outside the central (core/buried) amino acid regions where monomers interact with each other, and conformation stabilizes due to these interactions. In other words, this region, which is outside the core region of the protein, has a surface area that can interact more with the solution. For this reason, it can be an expected result that this residue region will be more mobile and flexible. Upon examination of the RMSF values of other amino acids and amino acid regions, it can be assumed that the 186–196, 222–231, and 268–270 residue regions are mobile since they exceed the RMSF value of 0.2 nm for both chains of PLpro enzyme. These mobile regions are depicted in Fig. 4 in blue, red, and pink, respectively. Here, the ligand binding cavity region located between 2 monomer chains, depicted with the black circle on the 3D figure, seems to be more stable in the dimeric PLpro structure.

In addition, Fig. 5 represents the relative RMSF values calculated to examine the inhibition effect of the ligands on the conformational structure of the PLpro enzyme in more detail. For these calculations, RMSF values per residue obtained for each ligand-PLpro complex were subtracted from RMSF values per residue obtained for wt-PLpro. Accordingly, the high positive and negative values obtained in the relative RMSF chart can be considered as an indicator of deterioration or inhibition in the PLpro conformation. It is seen in the figure that the majority of relative RMSF values obtained for the entire ligand-PLpro complex are positive. Many shoulders on the figure are also seen, corresponding to regions where ligands have greater effect on PLpro conformation. Here, significant shoulder areas are circled and named in

![3D representations of the interactions of compounds 8b, 8c, 8d, 8f, 8g, 8h, 8k, Remdesivir, and VIR250, and 3D superimposed representations of their binding sites on the dimeric PLpro target structure.](image-url)
All findings indicate that all ligands have a significant inhibitory effect on the conformation of the PLpro enzyme. MM-PBSA analysis was then performed using MD simulation data to determine the dominant interaction types in dynamic binding. Table 6 shows the binding energy values calculated for each ligand-PLpro enzyme system and its components. The negative energy values in the table correspond to favorable contributions in binding energy, while the positive values correspond to unfavorable contributions. In this context, only the polar solvation energy \(\Delta E_{ps} \) contributes negatively to ligand binding, while all other energy components contribute positively.

A comparison between the binding energy \(\Delta E_{binding} \) values in each system shows that compounds 8b, 8c, 8d, 8f, 8g, 8h, and 8k have significantly higher values than Remdesivir and VIR250. On the other hand, the highest \(\Delta E_{vdw} \) values (\(\Delta E_{vdw} \) is an energy component that makes up \(\Delta E_{binding} \) values) were obtained for Remdesivir, while the lowest values were obtained for VIR250. Also, a comparison among the curcumin derivatives themselves shows that their \(\Delta E_{vdw} \) values increased (8f>8g>8h with double substituents and 8b>8c>8d with single substituents) with increasing van der Waals diameter (Br>Cl>F).

The highest values for the \(\Delta E_{elec} \) energy contribution were also obtained for Remdesivir, and the second largest value was obtained for VIR250. Here, 8k is the compound with the highest electrostatic energy contribution among the curcumin derivatives. This situation can be attributed to the fact that the double hydroxy substituent of 8k compound enhances the hydrogen bond interactions.

As is known, the sum of \(\Delta E_{vdw} \) (van der Waals energy) and \(\Delta E_{elec} \) (electrostatic energy) energy contributions results in molecular mechanical energy \(\Delta E_{mm} = \Delta E_{vdw} + \Delta E_{elec} \). When these terms making up the \(\Delta E_{mm} \) are compared, it can be said that the van der Waals interaction energy contribution is more dominant for the systems studied. Moreover, although Remdesivir has the highest value for \(\Delta E_{mm} \) energy contribution, it does not have the highest \(\Delta E_{binding} \) value due to its considerably higher \(\Delta E_{ps} \) negative contributions than other systems. On the other hand, it seems that the higher \(\Delta E_{elec} \) value and the lower \(\Delta E_{vdw} \) value of VIR250, compared to the curcumin derivatives, allow it
to have a close ΔE_{mm} energy value to the derivatives. However, VIR250 has a lower $\Delta E_{\text{binding}}$ energy than the curcumin derivatives due to its higher negative ΔE_{ps} contribution. In summary, it can be said that the less unfavorable ΔE_{ps} energy contributions of curcumin derivatives enable them to have higher binding energies ($\Delta E_{\text{binding}}$) than Remdesivir and VIR250.

In addition, binding energy contribution values per residue were calculated, as shown in Fig. S33-41 separately, for each system in order to observe the energy contributions in ligands binding of each residue in the dimeric form of the PLpro enzyme. Here, it can be said that ligands play a key role in binding to target enzymes for residues with values of $\geq +0.5$ or ≤ -0.5 kcal/mol. This is because these relatively high positive and negative energy contributions, provided by residues in binding, can be directly associated with the conformational inhibition of the target structure. Residues with an energy contribution of $\geq +0.5$ or ≤ -0.5 kcal/mol are shown by their names on Fig. S33-41. Accordingly, residues with an energy contribution of $\geq +0.5$ kcal/mol are henceforth named hot residues and those with an energy contribution ≥ -0.5 kcal/mol are termed un-hot residues in this study. According to the Fig. S33-S41, it is observed that there are many common hot and un-hot residues that interact with the PLpro enzyme for all ligands.

In this regard, Table 7 lists the hot and un-hot residues in each monomer chain of PLpro in the systems in order to show a more detailed and convenient examination of hot and un-hot residues in the dimeric PLpro enzyme. Here, if any residue of the PLpro in a complex system is hot/un-hot, the energy contribution values of that residue in all ligand-PLpro complexes were also added to Table 6. The purpose here is to make it easier to understand common hot/un-hot PLpro residues in the complexes and to identify differences between the complex systems. In addition, the detection of common hot and un-hot residuals in the ligand-dimeric PLpro enzyme systems is of great importance for identifying key residues in ligand binding to the dimeric PLpro enzyme. In this study, we focused on the assumption that residues exceeding the threshold of $\geq +0.5$ or ≤ -0.5 kcal/mol in common at least 5 of the 9 systems may be key residues.

Accordingly, as shown in Table 6, the residue Lys157 is an un-hot residue in binding to compounds 8b, 8d, 8f, 8h and 8k, while it is a hot residue in binding to compound 8g and Remdesivir; hence, it can be considered as one of the residues that play a key role in ligand binding to PLpro as both a hot and an un-hot residue.

Examining the commonly hot residues, it seems that the residue Asp164 has negative energy contributions with all of 9 systems. Also, the Arg166 has un-hot negative energy contributions with 8 of 9 systems except for 8g. On the other hand, the Glu167 has negative energy contributions with 7 of 9 systems in all systems (except for 8g and Remdesivir). Furthermore, the residue Glu161 has un-hot energy contributions with 6 of 9 systems (8b, 8c, 8d, 8f, 8h, and 8k), similarly Asp302 is an un-hot residue with 6 of 9 systems (8b, 8c, 8f, 8h, Remdesivir, and VIR250). In addition, the residues Tyr273 appear to be un-hot residues with negative contributions to 8c, 8d, 8f, 8h and 8k.

Examining the hot residues, which positively contribute to binding

Table 6

The binding free energy values and its components (kcal/mol) between ligands and dimeric PLpro complex.

System	ΔE_{vdw}	ΔE_{ele}	ΔE_{sasa}	ΔE_{ps}	ΔE_{ele}	$\Delta E_{\text{binding}}$
8b	-220.3	-38.9	-259.2	203.5	-18.3	-74.0
8c	-211.4	-28.7	-250.1	203.4	-18.5	-65.2
8d	-194.1	-29.3	-223.4	172.8	-20.1	-71.1
8f	-223.0	-59.3	-262.3	203.8	-22.2	-80.8
8g	-217.1	-38.9	-256.1	203.3	-22.6	-75.3
8 h	-197.9	-30.1	-228.0	167.4	-17.2	-77.4
8 k	-228.5	-44.3	-272.8	233.3	-24.1	-63.6
Remdesivir	-241.4	-87.9	-329.3	312.5	-28.0	-46.9
VIR250	-163.6	-58.6	-222.2	205.9	-20.5	-40.2

ΔE_{vdw}: van der Waals energy, ΔE_{ele}: electrostatic energy, $\Delta E_{\text{mm}} = \Delta E_{\text{vdw}} + \Delta E_{\text{ele}}$, ΔE_{ps}: polar solvation energy, ΔE_{sasa}: sasa energy, $\Delta E_{\text{binding}}$: calculated binding free energy.

Fig. 5. The calculated relative RMSF values per-residue for dimeric PLpro enzymes in Protein and 8b/8c/8d/8 f/8 g/8 h/8k/Remdesivir/VIR250 complexes.
H. Alici et al.

Hot and unhot residues in each monomer chain of PLpro in protein-ligand complexes.

Residue	Arg82	Asp164	Arg166	Pro248	Tyr264	Cys270	Tyr273	Thr301	Cys270
Energy	0.09	0.65	0.14	0.28	-0.79	-0.91	0.59	0.49	0.08
energy	-0.24	0.12	0.08	0.28	0.47	0.25	0.49	0.49	0.06
energy	0.06	0.08	0.07	0.07	0.34	0.47	0.49	0.49	0.04
energy	0.12	0.12	0.12	0.12	0.12	0.12	0.12	0.12	0.12
energy	-0.24	0.25	-0.16	-0.50	-0.32	-0.32	-0.32	-0.32	-0.32
energy	-0.66	0.39	0.39	0.39	0.39	0.39	0.39	0.39	0.39
energy	-0.66	0.39	0.39	0.39	0.39	0.39	0.39	0.39	0.39
energy	0.12	0.12	0.12	0.12	0.12	0.12	0.12	0.12	0.12
energy	-0.48	0.43	0.43	0.43	0.43	0.43	0.43	0.43	0.43
energy	-0.66	0.21	0.21	0.21	0.21	0.21	0.21	0.21	0.21
energy	-0.66	0.21	0.21	0.21	0.21	0.21	0.21	0.21	0.21
energy	0.39	0.39	0.39	0.39	0.39	0.39	0.39	0.39	0.39
energy	0.39	0.39	0.39	0.39	0.39	0.39	0.39	0.39	0.39
energy	0.39	0.39	0.39	0.39	0.39	0.39	0.39	0.39	0.39
energy	0.39	0.39	0.39	0.39	0.39	0.39	0.39	0.39	0.39
energy	0.39	0.39	0.39	0.39	0.39	0.39	0.39	0.39	0.39
energy	0.39	0.39	0.39	0.39	0.39	0.39	0.39	0.39	0.39
energy	0.39	0.39	0.39	0.39	0.39	0.39	0.39	0.39	0.39
energy	0.39	0.39	0.39	0.39	0.39	0.39	0.39	0.39	0.39
energy	0.39	0.39	0.39	0.39	0.39	0.39	0.39	0.39	0.39
energy	0.39	0.39	0.39	0.39	0.39	0.39	0.39	0.39	0.39
energy	0.39	0.39	0.39	0.39	0.39	0.39	0.39	0.39	0.39
energy	0.39	0.39	0.39	0.39	0.39	0.39	0.39	0.39	0.39
energy	0.39	0.39	0.39	0.39	0.39	0.39	0.39	0.39	0.39
energy	0.39	0.39	0.39	0.39	0.39	0.39	0.39	0.39	0.39
energy	0.39	0.39	0.39	0.39	0.39	0.39	0.39	0.39	0.39
energy	0.39	0.39	0.39	0.39	0.39	0.39	0.39	0.39	0.39
energy	0.39	0.39	0.39	0.39	0.39	0.39	0.39	0.39	0.39
energy	0.39	0.39	0.39	0.39	0.39	0.39	0.39	0.39	0.39
energy	0.39	0.39	0.39	0.39	0.39	0.39	0.39	0.39	0.39
energy	0.39	0.39	0.39	0.39	0.39	0.39	0.39	0.39	0.39
energy	0.39	0.39	0.39	0.39	0.39	0.39	0.39	0.39	0.39
energy	0.39	0.39	0.39	0.39	0.39	0.39	0.39	0.39	0.39
energy	0.39	0.39	0.39	0.39	0.39	0.39	0.39	0.39	0.39
energy	0.39	0.39	0.39	0.39	0.39	0.39	0.39	0.39	0.39
energy	0.39	0.39	0.39	0.39	0.39	0.39	0.39	0.39	0.39
energy	0.39	0.39	0.39	0.39	0.39	0.39	0.39	0.39	0.39
energy	0.39	0.39	0.39	0.39	0.39	0.39	0.39	0.39	0.39
energy	0.39	0.39	0.39	0.39	0.39	0.39	0.39	0.39	0.39
energy	0.39	0.39	0.39	0.39	0.39	0.39	0.39	0.39	0.39
energy	0.39	0.39	0.39	0.39	0.39	0.39	0.39	0.39	0.39
energy	0.39	0.39	0.39	0.39	0.39	0.39	0.39	0.39	0.39
Pro248, Tyr264, Tyr273, and Asp302 of PLpro played a key role in ligand binding to PLpro.

To conclude, the findings in the present computational study can be adapted and/or guide experimental research for the development of antiviral drugs with more potential for various enzyme receptors of SARS-CoV-2, primarily PLpro.

CRedit authorship contribution statement

Hakan Aliche: Conceptualization, Methodology, Software, Investigation, Formal analysis, Visualization, Supervision Kadir Demir: Writing – review & editing Hakan Tahtacı: Conceptualization, Writing – review & editing.

Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Data Availability

Data will be stored in our computer lab for 2 years and will be provided if anyone in need.

Acknowledgments

This work was supported by the Scientific Research Fund of Zonguldak Bülent Ecevit University with project number 2015-22794455-03, and the numerical calculations reported in this paper were performed at TUBITAK ULARBIM, High Performance and Grid Computing Center (TRUBA resources).

Docking data

ACD/ChemSketch was utilized for the 2D chemical drawing and editing in the SDF format for all compounds. Then, using these 2D structures, various in silico absorption, distribution, metabolism, excretion (ADME) and drug-likeness properties of the compounds were investigated using the SwissADME webserver and TCMSP webserver.

Molecular simulation (MD) data

MD simulations were performed by GROMACS program version 2020.1. In the MD simulations, CHARMM36 force field and TIP3P(Jorgensen et al., 1983) water model were used for the protein and the explicit solvent, respectively. The CHARMM36 force field parameters for ligand were derived from CHARMM General Force Field (CGenFF) web server.

Appendix A. Supporting information

Supplementary data associated with this article can be found in the online version at doi:10.1016/j.compbiolchem.2022.107657.

References

Abdusalam, A.A., Murugaiyah, V., 2020. Identification of potential inhibitors of 3CLpro serine protease of SARS-CoV-2 from ZINC database by molecular docking-based virtual screening. Front. Mol. Biosci. 7, 600307.

Abraham, M.J., Murtola, T., Schulz, R., Páll, S., Smith, J.C., Hess, B., Lindahl, E., 2015. GROMACS: high performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX 1–2, 19–25.

Adam, K.K., Ferdi, E.M., Davis, M.C., Herold, M., Kurtkaya, S., Camalier, R.F., Hollingshead, M.G., Kaur, G., Sausville, E.A., Rickles, F.R., Snyder, J.P., Liotta, D.C., Shoji, M., 2004. Synthesis and biological evaluation of novel curcumin analogs as anti-cancer and anti-angiogenesis agents. Bioorg. Med. Chem. 12, 3871–3883.

Adelusi, T.L., Oyede, A.-Q.K., Monday, O.E., Boyenle, I.D., Idris, M.O., Ogunlana, A.T., Ayoola, A.M., Fatoki, J.O., Kolawole, O.E., David, K.B., Olayemi, A.A., 2022. Dietary polyphenols mitigate SARS-CoV-2 main protease (Mpro)-Molecular dynamics, molecular mechanics, and density functional theory investigations. J. Mol. Struct. 1250, 131879.

Aggarwal, B.B., Shishodia, S., Takada, Y., Banerjee, S., Newman, R.A., Bueno-Ramos, C.E., Price, J.E., 2005. Curcumin suppresses the paclitaxel-induced nuclear factor-κB pathway in breast cancer cells and inhibits lung metastasis of human breast cancer in nude mice. Clin. Cancer Res. 11, 7490–7498.

Ak, T., Güçgün, İ., 2008. Antioxidant and radical scavenging properties of curcumin. Chem. Biol. Interact. 174, 27–37.

Ali, A., Banerjea, A.C., 2016. Curcumin inhibits HIV-1 by promoting Tat protein degradation. Sci. Rep. 6, 27539.

Anand, P., Kunnumakkara, A.B., Newman, R.A., Aggarwal, B.B., 2007. Bioavailability of curcumin: problems and promises. Mol. Pharm. 4, 807–818.

Aristides, F., Ramí, Y., Kheradmand, F., Karimipour, M., Rabbahzai, R., Aramviri, P., Nasirzadeh, M., Daeihassani, B., Shirpoor, A., Gholinejad, Z., Saboory, E., 2019. Curcumin inhibits angiogenesis in endothelial cells using downregulation of the FDS/Akt signaling pathway. Food Biosci. 29, 86–93.

Azm, F., 2021. Elucidation of tecloplam interactions with drug targets related to COVID-19. Antibiotics 10, 10.

Badavath, V.N., Baykal, I., Ucar, G., Sinha, B.N., Jayaprakash, V., 2016a. Monoamine oxidase inhibitory activity of novel pyrazoline analogues: curcumin based design and synthesis. ACS Med. Chem. Lett. 7, 56–61.

Badavath, V.N., Baykal, I., Ucar, G., Mondal, S.K., Sinha, B.N., Jayaprakash, V., 2016b. Monoamine oxidase inhibitory activity of ferulic acid amides: curcumin-based design and synthesis. Arch. Pharm. 349, 9–19.

Badavath, V.N., Ucar, G., Sinha, B.N., Mondal, S.K., Jayaprakash, V., 2016c. Monoamine oxidase inhibitory activity of novel pyrazoline analogues: curcumin based design and synthesis-II. ChemistrySelect 1, 5879–5884.

Badavath, V.N., Kumar, A., Samanta, P.K., Maje, S., Das, A., Bhum, G., Jha, A., Sen, A., 2020. Determination of potential inhibitors based on isatin derivatives against SARS-CoV-2 main protease (mpro): a molecular docking, molecular dynamics and structure-activity relationship studies. J. Biomol. Struct. Dyn. 1–19, https://doi.org/10.1080/07391102.2020.1845580.

Balanubrainanjan, A., Pläiknack, R., Teramoto, T., Sojith, A.M., Nwulia, E., Kulkarni, A., Padmanabhan, R., 2019. Inhibition of dengue virus by curcuminoids. Antivir. Res. 162, 71–78.

Benet, L.Z., Hoyer, C.M., Unru, O., Oprea, T.L., 2016. BDDCS, the rule of 5 and drugliability. Adv Drug Deliv. Rev. 101, 89–98.

Berman, H.M., Westbrook, J., Feng, Z., Gilliland, G., Bhat, T.N., Weissig, H., Shindyalov, I.N., Bourne, P.E., 2000. The protein data bank. Nucleic Acids Res. 28, 235–242.

Bickerton, G.R., Polofig, G.V., Bensard, J., Miresan, S., Hopkins, A.L., 2012. Quantifying the chemical beauty of drugs. Nat. Chem. 4, 90–98.

Bussi, G., Donadio, D., Parrinello, M., 2007. Canonical sampling through velocity rescaling. J. Chem. Phys. 126, 014101.
H. Alici et al.

Computational Biology and Chemistry 98 (2022) 107657

Bylkovskaya, O.V., Aladsehva, I.M., Makarov, M.V., Byalkvina, E.Y., Klenzovka, S.B., 2015. Synthets and study of antimicrobial activity of 4H-pyranes(3,2-c/pyrid-yl) based on N-(chloromethyl)- and N-propargyl-5,5-bis(arylidenepiperidin-4)- ones. Russ. Chem. Bull. 66, 104–110.

C. S., S. D.K, Ragunathan, V., Tiwari, P., A. S., P. B., D. 2022. Molecular docking, validation, dynamics simulations, and pharmacokinetic prediction of natural compounds against the SARS-CoV-2 main-protease. J. Biomol. Struct. Dyn. 40, 505–611.

Cao, Y., Li, L., Feng, Z., Wan, S., Huang, P., Sun, X., Wen, F., Huang, X., Ning, G., Wang, W., 2020. Comparative genetic analysis of the novel coronavirus (2019-nCoV) receptor ACE2 in different populations. Cell Discov. 6, 11.

Choudhary, N., Singh, V., 2017. Computational biology of antiviral drug-design and development in drug discovery and development settings. J. Med. Chem. 43, 3867–3877.

Elhady, S.S., Abdelhameed, R.F.A., Malatani, R.T., Alahdal, A.M., Bogari, H.A., Ferreira, V.H., Nazli, A., Dizzell, S.E., Mueller, K., Kaushic, C., 2015. The anti-viral mechanism of action of curcumin against SARS-CoV-2. J. Med. Chem. 58, 71–80.

Fawzy, I.M., Youssef, K.M., Ismail, N.S.M., Gullbo, J., Abouzid, K.A.M., 2015. Design, synthesis and biological evaluation of novel curcumin analogues as anti-neoplastic agents. Lett. Drug Des. Discov. 3, 304–310.

Ganesh, P., Karthikeyan, R., Muthukumaraswamy, A., Anand, J., 2017. A potential role of curcumin in insulin signalling pathway in diabetic mice. J. Med. Chem. 43, 3867–3877.

Gao, Y., Tai, W., Wang, N., Li, X., Jiang, S., Debnath, A.K., Du, L., Chen, S., 2019. Molecular docking, validation, dynamics simulations and pharmacokinetic prediction of natural compounds against the SARS-CoV-2 main-protease. J. Biomol. Struct. Dyn. 40, 505–611.

Harcourt, B.H., Jukneliene, D., Kanjanahaluethai, A., Bechill, J., Severson, K.M., Hanwell, M.D., Curtis, D.E., Lonie, D.C., Vandermeersch, T., Zurek, E., Hutchison, G.R., Ghose, A.K., Viswanadhan, V.N., Wendoloski, J.J., 1999. A knowledge-based approach in drug design. J. Med. Chem. 42, 1832–1838.

Huang, C., Wang, Y., Li, X., Ren, L., Zhao, J., Hu, Y., Zhang, L., Fang, G., Xu, J., Gu, X., Cheng, Z., Yu, T., Xie, J., Wei, W., Wu, X., Xie, Y., Lin, H., Liu, M., Xiao, Y., Gao, H., Guo, L., Xie, J., Wang, G., Jiang, R., Gao, Z., Jin, Q., Wang, J., Cao, B., 2020. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet 395, 497–506.

Huang, L., Chu, C.-C., Lin, J.-Y., 2018. Inhibition of EV71 by curcumin in intestinal epithelial cells. PLoS One 13, e0191617.

Huang, J., Mackreller Jr, A.D., 2013. CHARMm36 all-atom additive protein force field. Validation based on comparison to NMR data. J. Comput. Chem. 34, 2135–2145.

Huang, Y., Rors, M.G., Osm, A., Goodsell, D.S., 2007. A semicrystalline free energy force field with charge based dissolution. J. Comput. Chem. 28, 1145–1152.

Kanjianahaluethai, A., Bechill, J., Severson, K.M., Hanwell, M.D., Curtis, D.E., Lonie, D.C., Vandermeersch, T., Zurek, E., Hutchison, G.R., Ghose, A.K., Viswanadhan, V.N., Wendoloski, J.J., 1999. A knowledge-based approach in drug design. J. Med. Chem. 42, 1832–1838.
Richart, S.M., Li, Y.-L., Mizushina, Y., Chang, Y.-Y., Chung, T.-Y., Chen, G.-H., Tzen, J.T.-C., von Rhein, C., Weidner, T., Hen, R., Rajagopal, K., Varakumar, P., Baliwada, A., Byran, G., 2020. Activity of phytochemicals against SARS-CoV-2 main protease and RNA dependent-RNA polymerase. J. Biomol. Struct. Dyn. 27, 1–16. https://doi.org/10.1080/07391102.2021.1873185.

Miyamoto, S., Kollman, P.A., 1992. Settle: an analytical version of the SHAKE and RATTLE algorithm for rigid water models. J. Comput. Chem. 13, 952–1046. doi:10.1080/07391102.2021.1873185.

Malone, B., Urakova, N., Snijder, E.J., Campbell, E.A., 2022. Structures and functions of Phyllanthus niruri Linn. (Bhumi Amla) and Tinospora cordifolia (Giloy) through Virtual Screening. Proceedings of the National Academy of Sciences, India Section B: Biological Sciences.

Mitra, D., Verma, D., Mahabuk, A., Kamboj, A., Srivastava, R., Gupta, S., Pandey, A., Arora, B., Pant, K., Panneerselvam, P., Ghosh, A., Barik, D.P., Mohapatra, P.K.D., 2020. Molecular docking and simulation studies of novel compounds of Viola negundo L against papain-like protease (PLpro) of SARS-CoV-2 (coronavirus) to conquer the pandemic situation in the world. J. Biomol. Struct. Dyn. 1–22. https://doi.org/10.1080/07391102.2021.1873185.

Miyamato, S., Kollman, P.A., 1992. Settle: an analytical version of the SHAKE and RATTLE algorithm for rigid water models. J. Comput. Chem. 13, 952–962.

Moustafi, M., Oulivier, E., Chiu, H.-P., Van Tol, S., Suddof, P., Stevens, C., Bhumak, A., Hunter, D.J.B., Freeberg, A.N., Jacques, D., Lee, B., Sierrecki, E., Gambin, Y., 2021. SARS-CoV-2 proteases Plpro and 3CLpro cleave RBF and critical modulators of inflammatory pathways (NLRP2 and TAI): implications for disease presentation across species. Emerg. Microb. Infect. 10, 178–195.

Muegge, I., Heald, S.L., Brittelli, D., 2001. Simple selection criteria for drug-like chemical compounds. J. Med. Chem. 44, 1841–1846.

Munigunti, R., Gathiaka, S., Acevedo, O., Sahu, R., Tekwani, B., Calder, H., Alici et al., 5270. propyl]-4-piperidone oximes and related quaternary ammonium salts. Molecules 26, 5270.

Murugesan, K., Koroth, J., Srinivasan, P.P., Singh, A., Mukundan, S., Karki, S.S., Muegge, I., Heald, S.L., Brittelli, D., 2001. Simple selection criteria for drug-like chemical compounds. J. Med. Chem. 44, 1841–1846.

Munigunti, R., Gathiaka, S., Acevedo, O., Sahu, R., Tekwani, B., Calder, H., Alici et al., 5270. propyl]-4-piperidone oximes and related quaternary ammonium salts. Molecules 26, 5270.

Murugesan, K., Kottek, S., Crasta, L., Sreevatsan, S., Usharani, D., Perumal, M.K., Mudlair, S.N., 2021. Targeting COVID-19 (SARS-CoV-2) main protease through active phytochemicals of ayurvedic medicinal plants – Emblica officinalis (Amla), Phyllanthus niruri Linn. (Bhumi Amla) and Tinospora cordifolia (Giloy) – a molecular docking and simulation study. J. Med. Chem. 54, 104653–104663.

Nath, C., Badavath, V.N., Thakur, A., Ucar, G., Acededo, O., Mohd Siddiqui, M., Jayaprakash, V., 2018. Curcumin-based pyrazoline analogues as selective inhibitors of human monomeric cancer cells (HeLa) in vitro and EAC tumor bearing mice models. Int. J. Nanomed. 14, 5257–5270.

Munigunti, R., Gathiaka, S., Acevedo, O., Sahu, R., Tekwani, B., Calder, H., Alici et al., 5270. propyl]-4-piperidone oximes and related quaternary ammonium salts. Molecules 26, 5270.

Munigunti, R., Gathiaka, S., Acevedo, O., Sahu, R., Tekwani, B., Calder, H., Alici et al., 5270. propyl]-4-piperidone oximes and related quaternary ammonium salts. Molecules 26, 5270.

Munigunti, R., Gathiaka, S., Acevedo, O., Sahu, R., Tekwani, B., Calder, H., Alici et al., 5270. propyl]-4-piperidone oximes and related quaternary ammonium salts. Molecules 26, 5270.

Munigunti, R., Gathiaka, S., Acevedo, O., Sahu, R., Tekwani, B., Calder, H., Alici et al., 5270. propyl]-4-piperidone oximes and related quaternary ammonium salts. Molecules 26, 5270.

Munigunti, R., Gathiaka, S., Acevedo, O., Sahu, R., Tekwani, B., Calder, H., Alici et al., 5270. propyl]-4-piperidone oximes and related quaternary ammonium salts. Molecules 26, 5270.

Munigunti, R., Gathiaka, S., Acevedo, O., Sahu, R., Tekwani, B., Calder, H., Alici et al., 5270. propyl]-4-piperidone oximes and related quaternary ammonium salts. Molecules 26, 5270.

Munigunti, R., Gathiaka, S., Acevedo, O., Sahu, R., Tekwani, B., Calder, H., Alici et al., 5270. propyl]-4-piperidone oximes and related quaternary ammonium salts. Molecules 26, 5270.

Munigunti, R., Gathiaka, S., Acevedo, O., Sahu, R., Tekwani, B., Calder, H., Alici et al., 5270. propyl]-4-piperidone oximes and related quaternary ammonium salts. Molecules 26, 5270.

Munigunti, R., Gathiaka, S., Acevedo, O., Sahu, R., Tekwani, B., Calder, H., Alici et al., 5270. propyl]-4-piperidone oximes and related quaternary ammonium salts. Molecules 26, 5270.

Munigunti, R., Gathiaka, S., Acevedo, O., Sahu, R., Tekwani, B., Calder, H., Alici et al., 5270. propyl]-4-piperidone oximes and related quaternary ammonium salts. Molecules 26, 5270.

Munigunti, R., Gathiaka, S., Acevedo, O., Sahu, R., Tekwani, B., Calder, H., Alici et al., 5270. propyl]-4-piperidone oximes and related quaternary ammonium salts. Molecules 26, 5270.

Munigunti, R., Gathiaka, S., Acevedo, O., Sahu, R., Tekwani, B., Calder, H., Alici et al., 5270. propyl]-4-piperidone oximes and related quaternary ammonium salts. Molecules 26, 5270.

Munigunti, R., Gathiaka, S., Acevedo, O., Sahu, R., Tekwani, B., Calder, H., Alici et al., 5270. propyl]-4-piperidone oximes and related quaternary ammonium salts. Molecules 26, 5270.

Munigunti, R., Gathiaka, S., Acevedo, O., Sahu, R., Tekwani, B., Calder, H., Alici et al., 5270. propyl]-4-piperidone oximes and related quaternary ammonium salts. Molecules 26, 5270.

Munigunti, R., Gathiaka, S., Acevedo, O., Sahu, R., Tekwani, B., Calder, H., Alici et al., 5270. propyl]-4-piperidone oximes and related quaternary ammonium salts. Molecules 26, 5270.
Yang, X.X., Li, C.M., Li, Y.F., Wang, J., Huang, C.Z., 2017. Synergistic antiviral effect of curcumin functionalized graphene oxide against respiratory syncytial virus infection. Nanoscale 9, 16086–16092.

Yin, W., Mao, C., Luan, X., Shen, D.-D., Shen, Q., Su, H., Wang, X., Zhou, F., Zhao, W., Gao, M., Chang, S., Xie, Y.-C., Tian, G., Jiang, H.-W., Tao, S.-C., Shen, J., Jiang, Y., Jiang, H., Xu, Y., Zhang, S., Xu, H.E., 2020. Structural basis for inhibition of the RNA-dependent RNA polymerase from SARS-CoV-2 by remdesivir. Science 368, 1499–1504.

Yu, W., He, X., Vanommeslaeghe, K., MacKerell Jr., A.D., 2012. Extension of the CHARMM general force field to sulfanyl-containing compounds and its utility in biomolecular simulations. J. Comput. Chem. 33, 2451–2468.

Zu, Z.Y., Jiang, M.D., Xu, P.P., Chen, W., Ni, Q.Q., Lu, G.M., Zhang, L.J., 2020. Coronavirus disease 2019 (COVID-19): a perspective from China. Radiology 296, E15–E25.