Electromagnetic-acoustic transducers for ultrasonic measurements, testing and diagnostics of ferromagnetic metal products

Salam Bussi, G. Suchkov, R. Mygushchenko, O. Kropachek, S. Plesnetsov
National Technical University "Kharkiv Polytechnic Institute", Kyrpychova Str., 2, 61002, Kharkiv, Ukraine
hpi.suchkov@gmail.com

Abstract
An effective type of ultrasonic method is the electromagnetic-acoustic method, especially in determining the quality of ferromagnetic products. The main factor determining the efficiency of using electromagnetic-acoustic transducers is the magnitude of the induction of a polarizing magnetic field, which is determined by the source.

The studies carried out in the framework of this activity were aimed at solving the problems of high-quality measuring testing of metal products from ferromagnetic materials by electromagnetic-acoustic transducers.

The requirements are formulated for a pulsed source of a polarizing magnetic field, inductors, and core as part of electromagnetic-acoustic transducers. Taking into account the requirements, structural solutions have been proposed for constructing electromagnetic-acoustic transducers with a flat two-window inductor and a flat high-frequency inductor.

Experimental studies aimed at improving ultrasonic electromagnetic-acoustic transducers with pulsed magnetic field sources have been performed. The possibility of providing the sensitivity of new transducers with thickness measurement, measuring control and diagnostics is shown. Technical solutions are proposed that reduce the effect on ultrasonic pulses of the received Barkhausen noise and coherent interference from the magnetostrictive conversion of electromagnetic energy into ultrasonic.

The efficiency of using electromagnetic-acoustic transducers with a pulsed polarizing magnetic field is shown for measuring quality control of ferromagnetic products made by rolling, stamping and the like.

Keywords: ultrasonic waves; electromagnetic-acoustic transducer; impulse magnetization; research material; ferromagnetic; inductance coil; measurement; testing; diagnostics; thickness measurement.

Introduction
Ultrasonic methods are widespread in measurements, control and diagnostic [1]. An effective type of ultrasonic method is the electromagnetic-acoustic (EMA) method, including in economic terms [2–3], especially when determining the quality of ferromagnetic rolled, stamped, forged products. The main factor that determines the efficiency of using EMA transducers (EMAT) is the induction magnitude of a polarizing magnetic field, which is formed by a suitable source. Often permanent magnets are used in EMAT, which leads to the strong attraction of the transducer to the ferromagnetic product, its wear, and in the case of portable devices to the difficulty of scanning the tested object (TO) by the operator, as well as to the sticking of the ferromagnetic scale, which is difficult to remove [1, 4–5].

Solving the above problems of the EMA method of measurement control is possible through using EMAT pulsed magnetic polarizing field sources [6–8]. However, when using pulsed magnetic polarizing field sources, there are a number of problems that do not significantly improve the conditions of measurement control: Barkhausen noise, coherent interference with the metallic elements of the transducer, etc. [6–8]. Therefore, studies aimed at solving the problems of quality measurement control of ferromagnetic materials of electromagnetic-acoustic transducers are relevant.

The aim of the work is to improve the EMAT for measuring control, thickness measurement and diagnostics, equipped with pulsed magnetic polarizing field sources.

The analysis of publications materials [1, 4, 8–9] made it possible to formulate the requirements for a pulsed polarizing magnetic field source in EMAT. The inductance coil (IC) of the pulsed polarizing magnetic field source should have a minimum inductance to ensure minimum pulse duration of the supply current (reducing power consumption). For this purpose, it is advisable to make such coils flat two-window from a whole plate of highly conductive and heat-conducting material. The core
Electromagnetic-acoustic transducers for ultrasonic measurements, testing and diagnostics of ferromagnetic metal products

High-frequency induction coil (HFIC) of EMAT with their working parts is placed under the windows of the IC and the ends of the core, which provides excitation of in-phase ultrasonic pulses of considerable power. A simplified design of main elements of EMAT, which fulfills the requirements above defined, is shown in Fig. 1. Fig. 1 shows: 1 — flat high-frequency induction coils; 2 — pulsed polarizing magnetic field source; 3 — protecting surface; 4 — a hole in the flat HFIC; 5 and 6 — linear work sections of parallel conductors of the flat HFIC; 7 — flat IC; 8 and 9 — rectangular holes in the flat IC; 10 — laminated U-shaped ferromagnetic core; 11 and 12 — end surfaces of ferromagnetic core; 13 — thick liquid; 14 — TO. The arrows in the TO volume indicate the direction of spreading excited in-phase linearly polarized shear ultrasonic pulses normal to the surface of the metal product \(\mathbf{B} \) is the induction vector of a polarizing magnetic field, the directions of which are shown by arrows in the core.

EMAT works as follows. It is placed on the TO surface 14, so that the protecting surface 3 is adjacent to the TO surface 14. During the working process, in flat IC 7 a unipolar pulse of current \(I \) in a shape close to rectangular is generated, Fig. 2a, with an effective time \(T \). In rectangular holes 8 and 9 of the flat IC 7, pulsed magnetic polarizing fields are excited, which induction vectors \(\mathbf{B} \) are directed in opposite directions (shown by arrows) normally to the TO surface 14.

Using a laminated U-shaped ferromagnetic core 10, the induction \(\mathbf{B} \) of the polarizing magnetic fields under the end surfaces 11 and 12 of the ferromagnetic core 10 and, accordingly, in the TO surface layer 14 is increased several times. Since the sensitivity of EMAT depends on the induction magnitude of the polarizing magnetic field as \(\mathbf{B}^2 \), it also increases significantly.

Upon completing transient processes in the flat IC 7 from the start of the current pulse \(I \), Fig. 2a shows batch high-frequency pulse \(c \) is excited in the flat HFIC 1, Fig. 2b shows its orientation in the linear working sections of the parallel conductors 5 and 6 of the flat HFIC 1. Accordingly, in the TO surface layer 14 under the linear working sections of the parallel conductors 5 and 6 of the flat HFIC 1 and under the end surfaces 11 and 12 of the ferromagnetic core 10 is formed by a high-frequency batch pulse of the electromagnetic field.
The interaction of a polarizing magnetic field pulse and a high frequency electromagnetic field in the surface layer OC 14 causes the excitation of ultrasonic pulses with the same phase, which propagate in the volume TO 14 normally on its surface. The ultrasonic pulses reflected from TO 14 are received, for example, the impulse d in Fig. 2b, due to the inverse EMA transformation, by linear working sections of parallel conductors 5 and 6 of the flat HFIC1 from the area of the pulsed polarizing magnetic field created by the pulsed polarizing magnetic field source 2.

U-shaped ferromagnetic core 10 is laminated, the choice of core material 10 with a low magnetostriction coefficient and the orientation of the core plates perpendicular to the conductors of linear working sections 5 and 6 of the flat high frequency coil of inductance 1 significantly reduces the amount of interference excited at the end surfaces 11 and 12 of the ferromagnetic core 10 due to magnetostrictive transformation. The interference at the end surfaces 11 and 12 of the ferromagnetic core 10 due to the Barkhausen effect is suppressed by filling the gaps between the plates of the mixed core 10 with a viscous fluid 13, such as glycerol. The plates of the laminated core 10 should be electrically isolated from each other.

In addition, due to the short time \(T \) of the current pulse \(I \) in flat IC7, the pulling force of the EMAT to TO 14 is practically absent. As a result, damage to the EMAT is eliminated.

It is obvious that the effective operation of the developed EMAT design will be determined by the number of IC turns and its temperature regime, which is related to the significant impulse current supply power of the HFIC.

The study results on the influence of the number of IC turns on the ratio of the amplitudes of the information bottom signal and interference are shown in Table 1. The studies were performed on a sample of steel 45 and 40 mm thick without removing scale from its surface. The peak power value of the IC was 600 A. The frequency of excited high-frequency ultrasonic pulses was 2.3 MHz. The time \(T \) of the magnetization pulse was 200 \(\mu \)s. The dielectric layer between EMAT and TO was set equal to 0.2 mm.

Analysis of the data in Table 1 shows that based on the number of turns of the flat inductance coil of the magnetic field source with a ferromagnetic core, it is advisable to choose equal to 3. Further increase in the number of turns does not practically give additional growth.

Table 1

Influence of the number of turns of a flat IC HFIC EMAT with a laminated ferromagnetic core on the amplitude of the first bottom pulse

No	The number of turns, pcs	The amplitude ratio of the first bottom pulse to the noise amplitude, dB
1	1	24±2
2	2	32±2
3	3	38±2
4	4	40±2
5	5	41±2
The frequency influence of the TO sounding on the temperature IC HFIC with a mixed ferromagnetic core is studied. The results of the studies are shown in Table 2. The results indicated in Table 2 were obtained at an ambient temperature of 22 °C. The current in the IC HFIC was 600 A. The time T of the magnetization pulse was 200 µs. The dielectric layer between the EMAT and the test sample of steel 45 with a thickness of 40 mm was set equal to 0.2 mm.

Table 2

No	Sounding frequency, Hz	Temperature, °C
1	10	22
2	30	22
3	50	29
4	60	34
5	70	44
6	80	58
7	100	86

Analysis of Table 2 shows that for the sounding frequencies of TO up to 100 Hz, when using heat-resistant insulation, EMAT cooling is not required. At 100 Hz sounding frequencies, it is possible to perform both section diagnostic of the TO volume as well as its sounding.

It should be noted that using EMAT model with a flat inductance coil of the magnetic field source with a ferromagnetic core allowed to preserve the duration of the probing impulse with interference (Fig. 3, position 1) in comparison with the EMAT design at work [8] and to significantly improve the ratio of the bottom pulse amplitude to the noise amplitude, Fig. 3 (positions 2, 3 and 4 are the first, second and third bottom pulses, respectively).

The data shown in Fig. 3 were obtained at a sounding frequency of 40 Hz, ultrasonic oscillations frequency of 2.3 MHz, a peak high-frequency current in the HFIC 120 A, pulse duration of the magnetization current 200 µs, magnetization current 600 A. Measurements were taken from a sample of steel 45 through a mylar spacer 0.2 mm thick between the EMAT layout and the TO.

Analysis of the data shown in Fig. 3 in comparison with the data from [9] shows that with virtually the same duration of the sounding pulse with interference, the amplitude of the bottom pulses increased...
Салах Бусси, Г. Сухков, Р. Мигушченко, О. Кропачек, С. Плеснетов

более 5 раз. Такую амплитуду полезных импульсов следует считать достаточной для контроля размеров ферромагнитных металлов.

Было проведено исследование и разработка метода измерения, который позволяет выделить следующий список операций, необходимых для эффективной работы EMAT с импульсной магнитизацией:

- получение двух неперекрывающихся напряженных областей в поверхностном слое ферромагнитного материала, противоположных по направлению магнитной индукции поля поляризации;
- возбуждение в области магнитного поля последовательных импульсов электромагнитного поля противоположного направления, длиной в несколько периодов высокочастотного наполнения;
- импульсы электромагнитного поля должны быть переданы в моменты времени, равные моментам переходных процессов, необходимых для установления рабочего значения индукции поля поляризации;
- получение ультразвуковых импульсов, отраженных от образца в период времени \(t_{pr} \), который определяется выражением

\[
T - t_1 - t_2 - t_3 < t_{pr} = t_1 + t_2 + t_3 + \frac{2H}{C},
\]

где \(T \) — длительность магнитизирующего импульса; \(t_1 \) — время импульса магнитного поля при заполнении; \(t_2 \) — время возбуждения поляряции магнитного поля в области; \(t_3 \) — время сопротивления в область высокочастотного индуктивного элемента; \(H \) — толщина образца или расстояние в объеме образца, мм; \(C \) — скорость распространения ультразвукового волны в контролируемом материале, мм/мкс.

Пояснение выбора величины \(t_{pr} \) приведено на рис. 4.

Проверка эффективности контроля размеров в форме плоских-круглых рефлекторов была проведена на образце с размерами моделей диаметрами 3, 5 и 8 мм, рис. 5.

Контроль размеров производился при частоте звучания 40 Гц, частоте ультразвуковых колебаний 2.3 МГц, пиковой током высокочастотного источника 120 А, длительностью импульса тока в 6 периодов наполнения, током поляризации 200 мкс, магнитным током 600 А. Результаты измерений были приняты через пленку разделяющую 0.2 мм между схемой EMAT и образцом. Методологические аспекты обнаружения дефектов представлены на рис. 5.

Рис. 5: 1 — возбужденные ультразвуковые импульсы; 2 — импульсы, отраженные от поверхности образца; 3 — импульсы, отраженные от модели диаметром 3 мм плоского-круглого дефекта.
Fig. 6 shows a time-base sweep without information processing obtained during measurement control of the sample volume with a 3 mm flat-bottom drilling model according to Fig. 5.

![Fig. 6. Time-base sweep obtained from 09G2C steel with defect model in the form of a 3 mm flat-bottom reflector](image)

Fig. 6 shows: 1 — sounding impulse with interference; 2 — lunar pulse reflected from the defect model; 3 — first bottom pulse; 4 — second bottom pulse; 5 — third bottom pulse; 6 and 7 — additional impulses reflected from the flat-bottom defect when the first and second bottom pulses are received, respectively.

Analysis of the data shown in Fig. 6 indicates the amplitudes ratio of the lunar pulse from a flat-bottomed defect with a diameter of 3 mm and noise is about 3/1. Accordingly, for a flat-bottomed defect with a diameter of 5 mm, the amplitudes ratio of the lunar pulse and noise is about 7/1, and from the reflector with a diameter of 8 mm, about 20/1. That is, it can be concluded that the measurement control of defect models is sufficiently effective.

The amplitude ratio of the reflected impulse due to the defect to the noise amplitude not less than 20 dB (10 times) is set at a similar check detecting the model with a flat-bottomed defect with a diameter of 2 mm, the model of EMAT under the above conditions, in the head of the reinforced rail, which material is substantially transparent for the shifting ultrasonic pulses.

It should be noted that between the first and second and between the second and third bottom pulses, the pulses are observed that are reflected from a defect of insignificant amplitude, which may be an additional sign of the presence of a reflector-defect. The additional use of such signals can significantly increase possibility of TO diagnostics.

Thus, it is possible to conclude that the use of pulsed sources of magnetic polarizing fields in EMAT with sufficient amplitude of the useful signal can provide measurement of the defects size in the amplitude magnitude of the received ultrasonic pulses, thus determining the quality of metal product.

Analysis of the developed type of EMA transducer from the metrological point of view showed that the results of its functioning are affected by a number of factors: random changes in the amplitude of the signals from the gap between the transducer and metal surface (exponential dependence); changes in inductance of the high frequency coil from distance to metal; stability of peak value of high-frequency power supply current; stability of peak value of magnetizing current; changes of surface condition of TO; presence or absence of scale on the surface of TO; duration of the probe pulse; “dead” zone of testing. This is a significant issue that requires further detailed studies to determine the impact of these factors on testing results.

Conclusions

Based on the analysis of the performed research and developments, the following conclusions can be formulated:

1. The method of ultrasonic electromagnetic-acoustic control of ferromagnetic products is developed, the essence of which is to excite ultrasonic pulses by forming in the surface layer of a ferromagnetic product two adjacent short-wave magnetized sections with opposite directed vectors of intensity lasting several periods of high frequency filling, the excitation of the electromagnetic field pulses is performed at a time equal to the time of transient processes with working value of the polarizing magnetic field induction, and the reception of ultrasonic pulses reflected from the product is performed in the time period \(t_{pr} \), which is determined by the expression

\[
T - t_1 - t_2 - t_3 < t_{pr} = t_1 + t_2 + t_3 + 2H/C,
\]

where \(T \) — magnetization pulse duration; \(t_1 \) — time of transient processes to establish induction working value of the polarizing magnetic field; \(t_2 \) — time of batch pulse of electromagnetic field; \(t_3 \) — time of damping current oscillations in a flat high frequency inductance coil; \(H \) — product thickness or the distance in the product volume that are subject to ultrasonic measurement control, mm; \(C \) — velocity of spreading shear ultrasonic waves in the product material is subject to control, mm/\(\mu \)s.

2. It is determined that the interference in the ferromagnetic core due to the Barkhausen effect and magnetostrictive transformation of electromagnetic energy into ultrasonic during excitation of ultrasonic pulses is virtually eliminated due to the production of the laminated magnetic field core, the material of electrically insulated core plates should have low magnetostrictive conversion factor and such plated should be oriented perpendicular to the conductors of the working areas of the flat high frequency coil, and filled with liquid having significant density, such as glycerin in the gaps between core plates.
3. Based on the analysis results of the performed research, the requirements for the creation of EMAT with pulsed magnetization are formulated. The induction coils of the magnetic field source in the EMAT should be flat two-window and made of a whole plate of highly conductive and heat-conducting material and be three-turn. They should be used in conjunction with high frequency induction coils with two linear working sections. The windows of such coils of the magnetic field source should be located above the working areas of the high frequency induction coils. It is also necessary to use ferromagnetic laminated U-shape core.

4. It is determined that direct EMAT with flat magnet coils and ferromagnetic cores can provide ultrasonic non-contact measuring control of ferromagnetic products by shadowing, mirror-shadowing and echo methods with sensitivity close to traditional piezoelectrics. It is shown that the sensitivity of direct EMAT with pulsed magnetization provide detection of flat-bottom reflectors with a diameter of 2 mm and more at a sounding frequency of 40 Hz, a frequency of linear polarized ultrasonic vibrations of 2.3 MHz, a peak batch pulse of high frequency currents of 120 A, three-frequency current of 120 A, the duration of the batch current in 6 periods of the filling frequency, magnetization pulse duration 200 µs, magnetization current 600 A and at the gap between the EMAT and the product 0.2 mm. The amplitude of the echo momentum from the defect with respect to the noise amplitude reaches 20 dB.
Электромагнитно-акустические преобразователи для ультразвуковых измерений, контроля и диагностики ферромагнитных металлоизделий

Салам Бусси, Г.М. Сучков, Р.П. Мигушенко, О.Ю. Кропачек, С.Ю. Плеснецов

Национальный технический университет "Харьковский политехнический институт", ул. Кирпичева, 2, 61002, Харьков, Украина

hpi.suchkov@gmail.com

Аннотация
Ультразвуковые методы широко распространены при измерениях, контроле и диагностике. Эффективным видом ультразвукового метода является электромагнитно-акустический метод, особенно при определении качества ферромагнитных изделий.

Исследования, выполненные в рамках данной работы, направлены на решение проблем качественного измерительного контроля металлоизделий из ферромагнитных материалов электромагнитно-акустическими преобразователями.

Выполнены экспериментальные исследования, направленные на совершенствование ультразвуковых электромагнитно-акустических преобразователей с импульсными источниками магнитного поля. Показана возможность обеспечения чувствительности новых преобразователей при толщинометрии, измерительном контроле и диагностике. Предложены технические решения, которые уменьшают влияние на ультразвуковые импульсы принимаемых шумов Баркгаузена и когерентных помех от магнитострикционного преобразования электромагнитной энергии в ультразвуковую.

Исследовано влияние формы сердечника, количества витков катушки, характеристики формирования магнитного поля на помехи в сигнале, который генерируется и принимается электромагнитно-акустическим преобразователем.

Показана эффективность использования электромагнитно-акустических преобразователей с импульсным поляризующим магнитным полем при измерительном контроле качества ферромагнитных изделий, изготовленных прокаткой, штамповкой и т. п.

Ключевые слова: ультразвуковые волны; электромагнитно-акустический преобразователь; импульсное намагничивание; материал для исследований; ферромагни́тный; катушка индуктивности; измерение; контроль; диагностика; толщинометрия.

References
1. Yermolov I. N., Lange Yu.V. Nerazrushayushhij kontrol': spravochnik. Ultrazvukovoj control [Non-destructive testing: guide. Ultrasonic testing]. Ed. by V. V. Klyuev. Vol. 3. Moscow, Mashinostroenie, 2004, 864 p. (in Russian).
2. Sudakova K. V., Kazjukevich I. L. O povyshenii effektivnosti kontrola kachestva metallurgicheskoy produktsii [On improving the quality testing of metallurgical products]. NDT World, 2004, no. 3, pp. 8‒10 (in Russian).
3. Semerenko A. V. Primenenie EMAP dla kontrolya korrozi i erozi paronagrevateley kotelnih ustanovok [Application of EMAT to test for corrosion and erosion of boiler heaters]. Territorija NDT, 2014, vol. 1, pp. 42‒43 (in Russian).
4. Suchkov G. M. Rozvytok teorii i praktyky stvoren-nia pryladiv dla elektromahnitno-akustychnoho kontroliu metalovyrobiv [Development of theory and practice of creating devices for electromagnetic-acoustic testing of metal products]. Author’s abstract of Doctor’s thesis. Kharkiv, NTU KhPI Publ., 2005. 37 p. (in Ukrainian).
5. Migushchenko R. P., Suchkov G. M., Radev H. K. et al. Elektromagnitno-akusticheskij preobrazovat- el dlya ultrazvukovoj tolshinometrii ferromagnit- nych metalloizdelij bez udaleniya dielektricheskogo pokrytiya [Electromagnetic-acoustic transducer for ultrasonic thickness measurement of ferromagnetic metal products without removing the dielectric coating]. Tekhnichna Elektrodynamika, 2016, no. 2, pp. 78‒82 (in Russian).
6. Mihajlov A. V., Gobov Ju.L., Smorodinskij Ja.G., Shherbinin S. V. Elektromagnitno-akusticheskij preobrazovatel s impulsnym podmagnichivaniem [Electromagnetic-acoustic transducer with pulse magnetization]. Defektoskopija, 2015, no. 8, pp. 14‒23 (in Russian).
7. Suchkov G. M., Salam Bussi. Modeliuvannia po-liaryzuïtchoho mahnitnoho polia elektromahnitno-akustychnoho peretvoruvachha elektromahnitnoi enerhii v ultrazvukovu [Modeling of the polarizing magnetic field of an electromagnetic-acoustic transducer of electromagnetic energy into ultrasonic]. Proceedings of 19th International Scientific and Technical Conference "Problems of Informatics and Mo-
8. Salam Bussi et al. Ultrazvukovyj peretvoriuvach dla bezkontaktnoho kontroliu vyrobiv z feromahnitnykh materialiv [Ultrasonic transducer for contactless testing of ferromagnetic products]. Proceedings of the 1st International Scientific and Practical Internet Conference “Integration of Education, Science and Business in the Modern Environment: Summer Debates” (Dnipro, August 1–2, 2019), pp. 620–624 (in Ukrainian).

9. Salam Bussi et al. Potuzhnyi elektromahnitno-akustichnyi peretvoriuvach dla ultrazvukovoho kontroliu metalovyrobiv [Powerful electromagnetic-acoustic transducer for ultrasonic testing of ferromagnetic products]. Non-Destructive Testing in Context of the Associated Membership of Ukraine in the European Union (NDT-UA 2019): Conference proceedings of the 3rd scientific conference with international participation (Kyiv, September 17–19, 2019), USNDT Publ., 2019, no. 3, pp. 50–51 (in Ukrainian).