Supplemental Online Content

Liu K, Zhang X, Chen W, et al. Development and validation of a personalized model with transfer learning for acute kidney injury risk estimation using electronic health records. *JAMA Netw Open*. 2022;5(7):e2219776. doi:10.1001/jamanetworkopen.2022.19776

eAppendix 1. Data Extraction
eAppendix 2. Personalized Model With Transfer Learning (PMTL)
eAppendix 3. Mechanism of Transfer Learning
eAppendix 4. Detail of Benchmarking Models
eAppendix 5. Statistical Analysis
eAppendix 6. Predictor Importance Estimation
eAppendix 7. Interaction Analysis for Important Predictors in PMTL
eFigure 1. Validation Scheme of This Study
eFigure 2. AUPRC Comparison of Personalized Models With and Without Similarity Measure Learning in General Patients Based on 4 of 5 Data Folds Used for Testing
eFigure 3. Model Discrimination Comparison in General Inpatients
eFigure 4. Overall Performance of Personalized and Subgroups Modeling In and Out of Top 20 High-Risk Subgroup
eFigure 5. Calibration of Global, Subgroup and Personalized Model in Each of Top 20 High-Risk Subgroup
eFigure 6. Radar Chart of AUROC Comparison for Subgroup Models With Transfer Learning
eFigure 7. Absolute Pearson Correlation Coefficient Among Top-50 Important Predictors in Different Subgroups
eFigure 8. Average Value Changes of Top-20 Predictors Determined by Global Model in Subgroups
eFigure 9. Standard Deviation Changes of Top-20 Predictors Determined by Global Model in Subgroups
eFigure 10. Wasserstein Distance of Top-20 Predictor Distribution Between Patients in General and Subgroups
eFigure 11. Top 20 Predictors Where Their Effects Differed Between Global Model and PMTL
eFigure 12. Coefficient of Variation of the Regression Coefficients of Top-200 Features in PMTL
eFigure 13. Difference of Feature Effects Between PMTL and Other Models: A Case Study of Subgroup of Cardiac Valve Procedure With Cardiac Catheterization
eFigure 14. Difference of Feature Effects Between PMTL and Other Models: A Case Study of Subgroup of Infect & Parasitic Disease
eFigure 15. Effect Change of Factors Estimated by Subgroup Models and Meta-Regression on PMTL
eFigure 16. Comparison of Coefficients Estimated by PMTL and Subgroup Models, Cases of Age, Serum Calcium and Blood Glucose
eFigure 17. Comparison of Coefficients Estimated by PMTL and Subgroup Models, Cases of BMI, Pulse and Vancomycin
eTable 1. Variables Used in This Study
eTable 2. Characteristics of Patients
eTable 3. AUROC of Different Models in Validation Set
eTable 4. AUROC of Personalized Model Among Similar Samples in Validation Set
eTable 5. Performance of Similarity Measure Learning in Test Set
eTable 6. Performance of Sample Weighting in Test Set
eTable 7. Performance (AUROC) of Feature Selection in Dealing With Overfitting in Personalized Modeling
eTable 8. List of APR-DRG Selected as High-Risk Subgroups
eTable 9. AUROC of Models in 31 High Risk DRG Subgroups With At Least 20 AKI Patients
eTable 10. AUPRC of Models in 31 High Risk DRG Subgroups With At Least 20 AKI Patients

© 2022 Liu K et al. *JAMA Network Open.*
eTable 11. Superiority of PMTL in Recalling AKI Patients in All Top 20 High-Risk Subgroups

eTable 12. Superiority of PMTL in Recalling AKI Patients in Each of Top 20 High-Risk Subgroups

eTable 13. Details About 55 AKI Prediction Researches for Specific Subgroup Patients Can Be Identified by Our Data

eTable 14. AUPRC Comparison of Models in 20 Well-Studied Subgroups

eTable 15. List of APR-DRG Presented in Fig 4 of Main Text

eTable 16. Significant Interactions Between 6 Important Predictors and Disease in Meta-Regression and Their Verification

eTable 17. Significant Interactions Between 6 Important Predictors and Disease in Meta-Regression (Top-5 Mainly) and Their Verification

eTable 18. Top 50 Features in Patient Similarity Calculation

References

This supplemental material has been provided by the authors to give readers additional information about their work.
eAppendix 1. Data Extraction

For each inpatient encounter, we extracted 1892 structured EHR variables including demographics, vital signs, medications, medical history, admission diagnoses, and laboratory tests that represent comorbidities correlated with AKI\(^1\) (eTable 1). We did not include SCr/eGFR as predictors because they determine the outcome. Medications were normalized to RxNorm ingredients. Admission diagnoses were represented using All Patients Refined Diagnosis Related Group (APR-DRG). Medical history was captured as major diagnoses in the Clinical Classifications Software (CCS, https://www.hcup-us.ahrq.gov/toolssoftware/ccs/ccs.jsp) for ICD-9-CM mapping.

The prediction point was 1-day prior to onset for AKI patients and 1-day prior to the last SCr record for non-AKI patients. Most recent vitals and lab values recorded before the prediction point were used. Vitals were categorized using standard ranges and missing values were treated as a unique category. Labs were categorized as “unknown”, “present-and-normal”, or “present-and-abnormal”. Medication exposure was a binary variable, “true” for medications taken within 7-days before the prediction point. Medical history was represented as presence/absence of a major diagnosis before the prediction point. Demographics and admission diagnoses were also binary variables.

Vitals	Feature value
BMI	
Unknown	0
< 18.5	1
18.5 – 24.9	2
25.0 – 29.9	3
> 30.0	4
Temperature	
Unknown	0
< 95.0	1
97.7 – 99.5	2
99.5 – 100.9	3
> 104.0	4
95.0 – 97.7	5
Pulse (resting)	
Unknown	0
50 – 65	1
66 – 80	2
81 – 100	3
< 50	4
> 100	5
BP (Systolic / diastolic)	
Unknown	0
< 120 / < 80	1
120 – 139 / 80 – 89	2
140 – 159 / 90 – 99	3
> 160 / > 100	4
Laboratory Test	
Unknowns	0
Normal values	1
Abnormal values	2
eAppendix 2. Personalized Model With Transfer Learning (PMTL)

PMTL (as the figure below) mainly contains four modules: 1) Similar Sample Matching – identify similar patients for a target patient; 2) Transfer Learning – leverage general knowledge learned from the global model to initialize training of personalized models; 3) Personalized Modeling – continue learning from data on similar patients; and 4) Similarity Measure Optimization – optimize similarity measures used in Similar Sample Matching. To identify similar patients for each target patient, we applied k-nearest neighbor (k-NN) algorithm and calculated distances between patients using all 1892 variables. Each variable in the distance calculation was weighted by the Similarity Measure Optimization module that iteratively optimizes weights based on performance of personalized models on the training set. To address the diminishing sample size after Similar Sample Matching, we leveraged transfer learning. We used logistic regression (LR) as the base learner in PMTL and leveraged the global solution as a starting point for individual assessment by initializing coefficient of each variable in the personalized LR with corresponding feature’s coefficient learned from the global model. More details of PMTL are as follow:

1. Similar Sample Matching

2. Transfer Learning

3. Personalized Modeling

4. Similarity Measure Optimization

© 2022 Liu K et al. JAMA Network Open.
Similar sample matching: we utilized k-NN approach\(^1\) for finding similar samples with all 1892 features. However, not all features are of the same importance, thus, k-NN considers weights of features when calculating distances among samples.

\[
\text{Similarity Measure} = (s_1, s_2, s_3 ... s_m) \\
\text{Distance}_{i,j} = \sum_{n=1}^{m} s_n |x_{i,n} - x_{j,n}|
\]

Here, \(s\) represents the weights of the features when calculating the distance between samples, \(m\) represents number of features used for similarity sample matching, \(\text{Distance}_{i,j}\) represents the distance between samples \(i\) and \(j\), and \(x_{i,n}\) represents the \(n\)th feature of sample \(i\). We used Manhattan distance to reduce the computational complexity during optimization. As k-NN means top \(k\) nearest neighbors, the first \(k\) samples closest to the target patient form a similar sample set.

Knowledge transfer: To cope with overfitting caused by insufficient sample size, transfer learning has been widely used\(^3^4\). Its main idea is to utilize knowledge in a similar domain (source domain) to help modeling in the target domain (i.e. personalized model in this study)\(^5\). Source domain should be as relevant or similar as possible to the target domain and has enough samples to learn accurate knowledge. Thus, we selected the global model, i.e., model trained based on all training samples, as the source domain. In this phase, we used all training samples to establish a global logistic regression model. The knowledge to be transferred is the coefficients of each feature in global model.

To achieve transfer learning between global and personalized logistic regression, we proposed a method inspired by widely used Finetune method for deep learning. Specifically, logistic regression is regarded as a special case of neural network, i.e., a neural network with only one hidden layer (Supplementary Text 3). Thus, the transfer learning method is similar to Finetune for logistic regression, i.e., multiplying the sample value of each feature by the regression coefficient of the feature in the global logistic regression model:

\[
x' = \theta_{\text{global}} x
\]

Here \(x\) refers to the feature vector of the original sample, \(x'\) refers to feature vector after transfer learning, and \(\theta_{\text{global}}\) is the coefficient vector of features in the global logistic regression model, i.e., the knowledge to be transferred. Proposed transfer learning can provide a warm start for model training, that is tune learning speed and regularization loss for each feature based on its importance in the source domain. We explained these mechanisms in detail and presented experiment results in Supplementary Text 3.

Personalized modeling: Personalized logistic regression model for a patient is trained with the \(k\) similar sample selected by k-NN in similar sample matching. As samples more similar to the target patient would carry more valuable information for the risk estimation, sample weighting is considered when calculating the log-loss function. The weight of the training sample depends on its distance from the target sample, i.e.:

\[
\logloss = \sum_{j=1}^{k} w_{i,j} \left[y_j \log h_\theta(x_j) + (1 - y_j) \log (1 - h_\theta(x_j)) \right] \\
w_{i,j} = \frac{\text{Distance}_{i,j,\text{closest}} + \epsilon}{\text{Distance}_{i,j} + \epsilon}
\]

Here \(k\) represents \(k\) similar samples selected by k-NN, and \(w_{i,j}\) refers to the weight of similar samples \(j\) when modeling personalized logistic regression for target patient \(i\), \(h_\theta(x_j)\) is the predicted probability of the personalized logistic regression model for similar sample \(j\), \(\text{Distance}_{i,j,\text{closest}}\) refers to the distance between the target sample \(i\) and its most similar sample. \(\epsilon\) is a very small value to prevent the numerator or denominator from being 0.

Similarity measure optimization: In each iteration of the training process, after personalized models for each randomly selected target patient were built, we evaluated performance of the personalized models based on current similarity measure:

\[
\text{Error} = (h_\theta(x_i) - y_i)^2
\]

As personalized models are built based on similar samples calculated using the current similarity measure, we assume that Error is generated by the mismatch of similar samples for the target patient. To identify predictors of the mismatch, we calculated the average difference between each target sample and its similar samples for each feature, i.e.:

© 2022 Liu K et al. JAMA Network Open.
Here d_i records the average distance between the target patient i and all its similar samples i-similar for each feature, and $E(x_{i,m} - x_{i_{-similar,m}})$ refers to the average distance for the mth feature. For the interpretability of the measure and the complexity of optimization, we assume that the estimated Error for a target patient is linearly related to the average distance between the target and its similar sample, i.e.

$$\text{Error} = f(d) = s \ast d$$

(8)

Here s represents the coefficient of d, which reflects how many estimation errors will be generated when average distance on each feature changed. These coefficients can also reflect importance of features in sample matching. Therefore, the final similarity measure can be determined if we can determine s. Different from existing metric learning methods for classification tasks, after each iteration, we need to update the similarity measure s by rematching similar samples and rebuilding personalized model to reevaluate current similarity measure, which led to high complexity of similarity measure optimization. Thus, an efficient gradient method was used to optimize the similarity measure. The optimization target is:

$$\text{Min}(\sum \text{Error} + \frac{c}{2}s^2)$$

(9)

Where $\sum \text{Error}$ is the sum of the errors of the personalized models over all target samples, $\frac{c}{2}s^2$ is the regularization term, and c is the regularization strength. Specifically, in the $(n+1)$th iteration of training, we would randomly select N samples from the training samples as target samples, then match similar samples and build personalized models for each target using current similarity measure. After that, based on each target’s estimation Error and its average distance d to its similar sample, we would update similarity measure s using Batch Gradient Descent:

$$s_{n+1} = s_n + \alpha \left(\frac{1}{N} \sum_{i=1}^{N} (\text{Error}_{i,n} - f(d_{i,n}))d_{i,n} - cs_n \right)$$

(10)

Considering the nature of the similarity measure s, weight of each feature s in similarity measure should fulfill $s \geq 0$. Therefore, after each iteration of similarity measure optimization, if weights of a feature m, i.e., $s_m < 0$, we believe that is the result of overfitting. Therefore, at the end of each iteration:

$$s_m = \begin{cases} s_m, & \text{if } s_m \geq 0 \\ 0, & \text{if } s_m < 0 \end{cases}$$

(11)

Setting of PMTL: Logistic regression was performed using Python version 3.7.4 and scikit-learn package version 0.19.2 with default hyper-parameters. In the process of sample weighting for the weighted logistic regression, minimum ϵ was set to 0.01. According to results on the validation set, tuned hyperparameters by the gradient approach for similarity measure learning were learning rate 0.01, batch size 1000, regularization strength 0.05, and times of iteration 50. According to results showed in eTable 4 & 5, initial weights of features in similarity measure are based on their coefficients in the global logistic regression model, i.e., absolute value of each feature’s coefficient divided by the sum of absolute value of all coefficients. Considering the size of the total samples and the major types of AKI mechanisms, we evaluated the size of similar samples matched by k-NN as 20%, 10%, and 5% of training sample, and PMTL trained with 10% of training sample perform best in validation set.
eAppendix 3. Mechanism of Transfer Learning

As mentioned in Materials and Methods section, proposed transfer learning (as the figure below) can provide a warm start for modeling, increase learning speed, and tune regularization loss for each feature based on its importance in source domain. Here, we explain these mechanisms in detail.

Source Domain: Finetune in Deep Neural Network

Target Domain: Our Method in Logistics Regression

Transfer learning provides a warm start for modeling: It is straightforward that proposed transfer learning approach can provide a warm start for modeling as data in target domain is multiplied by coefficients in source domain (eFigure 2). If coefficients were not updated based on target domain, then sum of features value after transfer learning would be equal to prediction score generated by model in source domain.

Transfer learning tunes regularization strengths of features: Mechanism for tuning regularization loss can be understood through the following case. Suppose a logistic regression model is:

\[y = ax \] \hspace{1cm} (12)

Here \(a \) is coefficient of predictor \(x \) when predicting \(y \). Then we multiply \(x \) by \(b \), i.e. \(x' = bx \). To keep the two sides of the equation equal, equation should be modified to:

\[y = \left(\frac{1}{b} a \right) x' \] \hspace{1cm} (13)

That means new coefficient \(a' = \frac{1}{b} a \). In the case of multiple variable regression, it is:

\[y = \left(\frac{1}{b_1} a_1 \right) x'_1 + \left(\frac{1}{b_2} a_2 \right) x'_2 + \cdots \] \hspace{1cm} (14)

The optimization objective of logistic regression is to minimize:
Here logloss measured the prediction performance of model in training set, and regularization loss measured the complexity of coefficients. L1 regularization is \(\sum |a_i| \), and L2 regularization (used in this study) is:

\[
\text{regularization loss} = \sum a_i^2
\]

And \(c \) tunes the weight of regularization loss in optimization. Higher complexity of coefficients means more predictors are considered by a model. Ideally, the model can adapt to more complex situation, training performance will increase; but in many cases, it will cause overfitting, many ineffective factors are considered, and model performance decrease significantly in test set. Regularization loss is a common approach to avoid overfitting by punishing complexity of model.

Returning to our transfer learning, suppose vector \(a = (a_1, a_2, ..., a_l) \) is the optimized coefficients for model in target domain and \(b = (b_1, b_2, ..., b_l) \) is coefficients of model in source domain. Then, to keep optimized coefficients in target domain, regularization loss will tune to \(\sum |\frac{1}{b_i}a_i| \) for L1 regularization, and L2 regularization used in this study is:

\[
\text{regularization loss} = \sum (\frac{1}{b_i}a_i)^2
\]

We can observe that if a predictor has a higher absolute value of coefficient in source domain model, its regularization loss will be smaller when modeling in target domain. That means model will pay less attention to coefficient complexity of this predictor.

Transfer learning tune learning speeds of features: To explain how transfer learning tune learning speed for each feature, we take gradient optimization, a common and classic coefficient learning approach for logistic regression, as an example. In each iteration, change of coefficient of factor \(i \) based on training on \(n \) sample is:

\[
\Delta = \omega * \sum_{j=1}^{n}(y_{\text{true}}^j - y_{\text{predict}}^j)x_i^j - c * a_j
\]

Here, \(\omega * \sum_{j=1}^{n}(y_{\text{true}}^j - y_{\text{predict}}^j)x_i^j \) is designed to optimized coefficients based on prediction performance according to gradient of logloss, \(y_{\text{true}}^j \) is true classification (i.e. with or without AKI) of sample \(j \), and \(y_{\text{predict}}^j \) is prediction probability generated by logistic regression, \(\omega \) is learning rate for all factors. \(c * a_j \) is gradient of regularization loss as we have mentioned above. And after transfer learning, i.e. \(x_i^j = b_i x_i^j \), the \(\Delta_i \) will change to:

\[
\Delta_i' = \omega * \sum_{j=1}^{n}(y_{\text{true}}^j - y_{\text{predict}}^j)b_i x_i^j - c * a_j
\]

We can observe that if a predictor has a higher absolute value of coefficient in source domain model, its learning speed will be higher in optimization, more gradient will be assigned to this factor, and its final coefficient is probably higher.

Effect of transfer learning to overfitting: To show the effect of transfer learning to overfitting, we tuned parameter of regularization strength (i.e., \(c \)) to estimated performance of subgroup models for top-20 high-risk subgroups under different model complexity (as the figure below, coefficients in models with transfer learning are calculated by multiplying coefficients in global model and coefficients in models for data after transfer learning). We observed two phenomena. First, comparing curves of models without transfer, the peak of curves of models with transfer learning moved towards the right upper portion. In other words, the optimized complexity of models and the best performance of models under optimized complexity were both higher in the case when transfer learning is considered. That means after overfitting is mitigated by transfer learning, models can improve their performance by increasing their complexity. Second, when complexity of model excess optimized complexity (i.e. overfitting), models with transfer learning always perform better in the same complexity. The outperformance of model with transfer learning increase with higher model complexity.

Above results show that by mitigating overfitting with transfer learning, model can perform better and become more robust to parameter of model complexity. Considering parameter tuning is always time consuming, this advantage is very important for personalized modeling.
Approach for tuning source domain used for transfer learning in highly heterogeneity subgroups (used in this subsection only). According to Figure 2 and eFigure 6, effect of transfer learning with global model was small or even negative in some subgroups where global model significantly underperformed personalized or subgroup without transfer learning. That probably because patients in these subgroups were so different from general patients that knowledge learned in global could not guide their modeling. So, we tried to tune source domain for these subgroups. Our general idea (as the figure below) followed the classical transfer learning approach: samples of general patients are weighted based on their estimation error generated by subgroup model before transfer learning. A sample with less estimation error was assigned to higher weight because it is probably more similar to target domain. And model for source domain was built with the weighted samples. However, considering subgroup models with poor discrimination cannot effectively determine which sample is more similar, the strength of weighting is moderated by AUROC of the subgroup model.

Performance of this approach is showed in the radar chart below. After tuning source domain, the overall AUROC of subgroup model in top 20 high-risk subgroup increase from 0.778 to 0.789, p=0.0001; and the overall AUROC of PMTL also increase from 0.792 to 0.801, p<0.0001, p=0.0008 for comparison PMTL and subgroup model with transfer learning in this case. The improvement of both mainly come from the subgroups where transfer learning performed poor when using global model as source domain.

However, this approach is not used in other experiments in main test or supplement because we want to develop personalized model for general patients no matter if we have accurately known which subgroups they should be classified into.
Build a subgroup model without transfer

\[
\ln \left(\frac{y}{1-y} \right) = \theta X + b
\]

Cross-Validation

AUROC of subgroup model without transfer

All training patients

Weights of all training patients in modeling

\[
= 1 \div \ ^\wedge [2 \ (AUC-0.5)]
\]
eAppendix 4. Detail of Benchmarking Models

- Global Model (GM): Logistic regression model built with all training sample, or with a percentage of the whole training sample based on random sampling (result in Figure 1a).
- Global Model with Transfer Learning (GMTL): Coefficients of global logistic regression model built with 100% sample were used to initialize the whole training set or a percentage of the whole training sample according to Supplement Text 2. And global logistic regression model was built with the modified training data.
- Subgroup Model (SM): Logistic regression model built with training sample classified to a subgroup.
- Subgroup Model with Transfer Learning (SMTL): Coefficients of global logistic regression model built with 100% sample were used to initialize the training sample of the subgroup, and the subgroup logistic regression model was built with the modified training data.
- Personalized Model (PM): For each test sample, a percentage of all training sample (general patients) with highest similarity to the target test sample is matched, and a personalized logistic regression was built specifically for the target test sample based on the matched similar sample.
- Personalized Model with Transfer Learning (PMTL): For each test sample, a percentage of all training sample (general patients) with highest similarity to the target test sample is matched, coefficients of global logistic regression model built with 100% sample were used to initialize the matched similar sample, and a personalized logistic regression was built specifically for the target test sample based on the matched similar sample.
Model performance was measured by area-under-the-receiver-operating-characteristic-curve (AUROC), area-under-the-precision-recall-curve (AUPRC), and calibration (brier score). Significance of AUROC comparison on our data was calculated using Delong test. Delong test is the default AUROC comparison method in popular medical data analysis software MedCalc and also commonly used in other medical prediction modeling studies. However, Delong test cannot be used in comparison between PMTL and previous models as we do not have access to the raw data from the published studies. However, according to basic concept of Delong test, we can estimate the p value based on Z-test (two-sided) in the case AUROC variation of the two model is known. Thus, we estimated AUROC variation of PMTL based on Delong test, while AUROCs and their variation of previous models were based on reported AUROC and its 95%CI in literatures, covariations of model performances were not considered in this case, i.e.:

\[
z = \frac{\text{AUROC}_A - \text{AUROC}_B}{\sqrt{\text{AUROC}_{\text{var}}_A + \text{AUROC}_{\text{var}}_B}} \tag{20}
\]

The AUPRC comparisons were based on Z-test (two-sided), variation of AUPRC and covariation of AUPRC between models were calculated by resampling (with replacement) test data and recalculating the model performance 200 time. The final Z-score between two models was calculated as:

\[
z = \frac{\text{AUPRC}_A - \text{AUPRC}_B}{\sqrt{\text{AUPRC}_{\text{var}}_A + \text{AUPRC}_{\text{var}}_B - 2 \text{AUPRC}_{\text{covar}}_{AB}}} \tag{21}
\]

To justify the choices of the Z-test, we used normal test (null hypothesis: a sample comes from a normal distribution; based on python package: scipy.stats.normaltest) to test variation of AUPRC with resampling (with replacement) test data. We found the null hypothesis cannot be reject in most cases (see Table below, each experiment was repeated 10 times).

Population	Model	Times of H0 is rejected	Avg p
		(repeated 10 times)	
General patients	Global model	1 (10%)	0.54
	PMTL	1 (10%)	0.46
	PM	0	0.47
	PM-kNN	0	0.42
	PM-kNN & TL	2 (20%)	0.33
	PM-kNN & WS	0	0.43
	PM-kNN & TL & WS	3 (30%)	0.37
Top 20 high-risk subgroups	Global model	1 (10%)	0.47
	PMTL	1 (10%)	0.48
	PM	0	0.46
	Subgroup model	0	0.62
	Subgroup model & Transfer	0	0.57
	PM-kNN	1 (10%)	0.41
	PM-kNN & TL	0	0.42
	PM-kNN & WS	2 (20%)	0.47
	PM-kNN & TL & WS	0	0.43

Variation of brier score with resampling (with replacement) test data cannot past normal test. Thus, we directly estimate the significance of difference between two model based on bootstrapping test sample (repeated 20,000 times). Specifically, p value of brier score difference between model A and B is calculated as:

\[
p = \begin{cases}
2 \times \text{possibility}_{A>B} & \text{if possibility}_{A>B} < 0.5 \\
2 \times (1 - \text{possibility}_{A>B}) & \text{if possibility}_{A>B} \geq 0.5
\end{cases} \tag{22}
\]
Significance of result in meta-regression were based on p-value returned by PyMARE package. Significance of predictors effect changes in two subpopulations were calculated by Z-test\(^9,10\) similar to equation (20), effects of predictors were calculated based on coefficients of logistic regression model or log of OR calculated with raw data directly, and variation of predictors effect was calculated based on resampling (with replacement) training data and rebuilding models 200 times.
eAppendix 6. Predictor Importance Estimation

We used three indicators to measure effect change of predictors in heterogeneous patients. The first indicator was coefficients of predictors in the logistic regression models, which directly reflects effect of predictors estimated by the prediction model. The second was AUROC gain of predictors, calculated by AUROC change when a predictor is removed comparing against AUROC of the original model. The third was inter-class score difference. The direct output of logistic regression model for each patient is a prediction score, equal to log of OR (odds ratio) of the predicted risk. Thus, average predicted score in positive samples should be higher than negative samples. And inter-class score difference measures change of average score difference between positive and negative sample when a predictor is removed, which is somewhat similar to the Integrated Discrimination Improvement (IDI) indicator.

Predictor coefficient estimates effect of a predictor on an individual level but does not reflect its importance at a population level because sample size of the predictor is ignored. Since the coefficient estimation may be inaccurate when sample size is small and patients are heterogeneous, it is suitable for estimating effect change of important predictors in PMTL but not suitable for the global model.

Both AUROC gain and inter-class score difference reflect importance of predictors on a population level. AUROC gain is more intuitive but it is non-additive (sum of AUROC gain of all predictors is not equal to AUROC of the final model). Inter-class score difference is additive and can be used to measure cumulative effect of predictors.
To understand interactions of risk factors in the personalized models, we performed meta-regression using PyMARE: Python Meta-Analysis & Regression Engine (https://pymare.readthedocs.io/en/latest/). Each personalized model built for a target patient was treated as an independent study. The study-level effect size of each target variable was calculated based on its coefficients from the personalized models of patients that had the variable recorded. There are two rationales behind this. First, coefficient of a factor and its changes are meaningful only when the factor information is recorded for the target patient. Second, due to serious data imbalance in medical data, coefficient of a factor in a personalized model may "unexpectedly" be 0 just because a factor is missing in similar samples. The remaining variables of target patients were treated as study-level covariates because similar patients are matched based on those factors for the target patients. We did not use average value of the variables in similar patients as covariates because many factors may occur in similar samples but not in the target sample, thus many false positives may result from analysis based on averaging across samples. Further averaging across samples would increase multicollinearity among factors.

We observed that coefficients of diseases in meta-regression are often insignificant when drug information is considered because of the small sample size of admission diagnoses and collinearity between diseases and drugs. Thus, we implemented two strategies for meta-regression analyses. The first strategy was to examine potential interactions between target predictors and diseases. Thus, we excluded the 1271 medication variables, and performed meta-regression on the remaining 621 variables of demographics, vital signs, lab test, admission diagnosis, and medical history. The second strategy was to examine the potential interactions of target predictors with drugs or conditions related to drugs, and all features were considered.

With literature review, not all significant interactions are known and have been studied in existing research. However, different personalized models are not completely independent because they may share subset of similar patients. So, we used subgroup analysis to verify the interactions found by meta-regression. Specifically, we divided patients into different subgroups by controlling moderator found by meta-regression and compared the effect of target predictor between patients exposed to the moderator and the remaining according to its coefficient in logistic regression model (subgroup model in eTable 17 & 18) or odds ratio (OR) calculated from the raw data directly (subgroup analysis in eTable 17 & 18).

A major challenge in subgroup analysis for interaction between disease and target predictors (eTable 17) is the limited number of samples. So, we aggregated similar significant admission diagnoses into large subgroups. To find more significant admission diagnoses and improve the sample size, the threshold of significance was set to p<0.01 for single variable meta-regression analysis and p<0.05 for multiple variable analysis. Although many potential interactions are found, we primarily verified the large subgroups containing many significant results or show high effect (measure by estimates) in meta-regression. In cases where we are not sure to which large subgroup an admission diagnosis belongs, we performed analyses for multiple potential subgroups. In several cases where many similar admission diagnoses were significant in meta-regression, but result is not significant in the subgroup model (probably due to limited sample size), we had to include insignificant admission diagnoses that are similar to the significant ones to increase sample size.

To verified interactions between drugs and target predictors, controlling effects of diseases is necessary (eTable 18). If a drug was frequently used in patients with specific admission diagnoses, we divided patients into different subgroups by controlling the admission diagnoses. In meta-regression with medication information, the threshold of significance was set to p<0.01 for both single and multiple variable analysis. Although many potential interactions are found, as many potential subgroups need to be controlled, we mainly presented top-5 results that show highest effect in meta-regression (measure by estimates) or interesting interactions.

EFFECT OF AGE IN HETEROGENEOUS PATIENTS

Diseases related to coefficient change of age: Top-5 admission diagnoses correlated with effect improvement of age are cardiac surgeries (eTable 17). The result is also significantly verified by subgroup model and subgroup analysis. Meta-regression also showed other admission diagnoses for cardiovascular conditions to be related to effect improvement of age, but its effect was not supported by subgroup model nor subgroup analysis. This may be due to similar samples used for training personalized model for these patients containing many patients who had cardiac surgeries.

Previous research have shown infection induced AKI is more common in older adults. However, we found coefficient of age decreased in infection patients. In the meta-regression without medication, 11 admission diagnoses of infection were significant and 4 of 11 are in Top-10. Results were also verified by subgroup model and subgroup analysis even we only consider patients of “Septicemia & Disseminated Infections”.

“Bone Marrow Transplant” is the number one admission diagnoses related to decreasing coefficient of age. Other two types of admissions for major hematological disease were also significant. They were also significant in subgroup model and subgroup

© 2022 Liu K et al. JAMA Network Open.
Medication related to coefficient change of age: Aldesleukin, mainly used in chemotherapy, is the medication found to be related to effect improvement of age. When we investigated the relationship within patients on chemotherapy, the interaction was still significant in subgroup model.

Two amino acids antifibrinolytics also significantly related to effect improvement of age in meta-regression. But they are highly related to cardiac surgery. And when we verified the result in major cardiac surgery, interesting differences between them were found. As shown in eTable 18, aminocaproic acid is related effect improvement of age (verified by both subgroup model and subgroup analysis, and p=0.06 in subgroup model). However, tranexamic acid was related to decreasing effect of age (significant in subgroup model). Age distributions were nearly the same between patients who used the two drugs.

Moreover, antibiotics were significantly related to decreasing effect of age. Although not all results were significant in subgroup model, directions of the effect change were consistent in different subgroups for different antibiotics. Furthermore, used of glucose also significantly related to decreasing effect of age. It may indicate patients have no serious diabetes, a common risk factor for the older.

EFFECT OF SERUM CALCIUM IN HETEROGENEOUS PATIENTS

Diseases related to coefficient change of serum calcium: It is known that patients with abnormal serum calcium may present with various clinical signs and symptoms include cardiovascular manifestations. In meta-regression, the Top-6 admission diagnoses related to effect improvement of serum calcium are cardiac surgery. It is also significant in both subgroup model and subgroup analysis. Effect of serum calcium also increased in admissions with mechanical ventilation according to the results of all experiments. And a recent study showed patients with lower serum ionized calcium is associated with higher risk of acute respiratory failure. Burn is also related to increased effect of serum calcium. Hypocalcemia is commonly complicated with burn, its severity is related to the severity of burn. And serious burn is also related to higher risk of infection, dehydration and hypoxia. Additionally, 7 major surgeries were also significant in meta-regression, and the result was only significant in subgroup analysis.

“Cardiac Catheterization for Ischemic Heart Disease” was found to be significantly related to decreasing effect of serum calcium in all experiments. As a comparison, “PCI w/o AMI” showed significant relation to effect improvement of serum calcium in meta-regression. Existing research shows the outcome of acute myocardial infarction is better in patients with higher serum calcium. It is observed that the incidence rate of abnormal serum calcium is higher in admissions for liver diseases, orthopedic surgeries, and alimentary tract diseases. That may be because these conditions are related to absorption, decomposition, metabolism, and loss of calcium. However, the ORs of abnormal serum calcium decrease significantly in these subgroups. That means abnormal serum calcium may not increase the AKI risk. In addition, infection is a cause of hypocalcemia, but our experiment showed abnormal serum calcium will not increase AKI risk in infection patients. We found above results were supported by existing research.

Medication related to coefficient change of serum calcium: Some cardiovascular medications showed significant relation to effect improvement of serum calcium. When we assessed the result in major cardiac surgery, interesting difference between aminocaproic acid and tranexamic acid were found again. Aminocaproic acid was significantly related to effect decrease in serum calcium, while tranexamic acid was related to effect improvement of serum calcium. However, frequency of abnormal serum calcium is much higher in cardiac surgery patients exposed to aminocaproic acid. Other cardiovascular medications including prochlorperazine, protamine sulfate and atropine were also significant.

Aldesleukin is the most significant medication related to decreasing OR of serum calcium. Among patients who were exposed to aldesleukin and had normal serum calcium, AKI incidence rate is 93% (107/115); while the AKI incidence rate is only 32.2% (47/146) in patients who were exposed to aldesleukin and had abnormal serum calcium. Hypoalbuminemia is one of common side effects of aldesleukin. However, only ionized calcium, not calcium link albumin (protein-bound calcium), is physiologically active. Thus, we hypothesized that this phenomenon may be caused by two factors: 1) if calcium supplement is used to address abnormal serum calcium while taking aldesleukin, it can lead to excessive ionized calcium; 2) if hypoalbuminemia occurred while serum calcium is normal, it may mean ionized calcium is elevated. However, both hypotheses were not supported by subgroup analysis. First, in patients with normal serum calcium and used calcium supplement, AKI incidence rate is 88% (43/49); among patients with normal serum calcium and did not used calcium supplement, AKI incidence rate is 97% (64/66); in patients with abnormal serum calcium and used calcium supplement, AKI incidence rate is 25% (15/61); in patients with abnormal serum calcium and did not used calcium supplement, AKI incidence rate is 38% (32/85). Second, in patients with normal serum calcium and albumin, AKI incidence rate is 98% (63/64); in patients with normal serum calcium and abnormal albumin, AKI incidence rate is 86% (44/51); only 6 patients with abnormal serum calcium and normal albumin, 4 of them have AKI; in patients with abnormal serum calcium and albumin, AKI incidence rate is 31% (43/140). Therefore, the interaction between serum calcium and aldesleukin still need further study.
Oxycodone and Fondaparinux were also found to be related to decreasing OR of serum calcium, and their effect were verified in subgroup of patient who underwent joint replacement.

AMINOCAPROIC ACID VS TRANEXAMIC ACID

In above analyses on age and serum calcium, we observed different effects between two types of amino acids antifibrinolytics: aminocaproic acid and tranexamic acid. Here, we aim to study the influence variation of aminocaproic acid and tranexamic acid on AKI incidence. Previous research compared the two drugs and most studies compared the two drugs in cardiac surgery, and no significant difference in AKI incidence rate was found in most cases. However, in our data, among patients admitted for “Cardiac Valve Procedures w/ Cardiac Catheterization”, “Cardiac Valve Procedures w/o Cardiac Catheterization”, “Coronary Bypass w/ Cardiac Cath Or Percutaneous Cardiac Procedure”, “Coronary Bypass w/o Cardiac Cath Or Percutaneous Cardiac Procedure”, “Other Cardiothoracic Procedures”, AKI incidence rate in patients used aminocaproic acid was 40/161 (24.8%), 84/92 (21.4%), 96/428 (22.4%), 96/407 (23.6%), 13/87 (14.9%); while in patients used tranexamic acid, the incidence rate was 7/22 (31.8%), 37/200 (18.5%), 18/124 (14.5%), 35/153 (22.9%), 2/21 (9.5%). AKI risk was higher in patients who used aminocaproic acid in 4/5 subgroups. In “Cardiac Valve Procedures”, AKI incidence rates in those used aminocaproic acid and tranexamic acid were 22.4% and 19.8% (p<0.025); In “Coronary Bypass”, AKI incidence rates were 23% and 19.1% (p<0.0005). After adjusting sample weight of patients who used aminocaproic acid based on admission distribution of patients who used tranexamic acid, AKI incidence rates in patients who used aminocaproic acid in the above two cardiac surgeries were 21.8% and 23.1%. This result indicates higher all-stage AKI risk in patients who used aminocaproic acid. After excluding patients admitted for major cardiac surgery and orthopedic surgery (1100 joint replacement patients exposed to tranexamic acid but only 1 exposed to aminocaproic acid), AKI risk was still higher in remaining patients who used aminocaproic acid (18.2% or 81/446 vs 9% or 29/321). Furthermore, we adjusted sample weight of patients using aminocaproic acid based on admission distribution of patients using tranexamic acid (if no patient use aminocaproic acid in a subgroup, we will exclude this subgroup in calculation of AKI risk), we found patients using aminocaproic acid still had higher AKI risk than those using tranexamic acid. If we did not exclude patients with major cardiac surgery, the difference was smaller but more significant (21.5%, se=0.96% vs 18.3%, se=1.63%, p=0.05); while excluding patients with major cardiac surgery, the difference was larger but less significant (18%, se=2% vs 13.5%, se=3.2%, p=0.12). The significance is probably influenced by small sample size. Drug combination also cannot explain the difference because only 4 patients used both drugs. The different result between this study and existing research may be due to following reasons: (1) Primary outcome of this study is all-stage AKI but it is stage-2 or higher or RRT (renal replacement therapy) in most existing research; (2) Many existing research compared the two drugs based on RCT (randomized controlled trial) while this is a retrospective study, so further analysis is warranted. Additionally, the different interaction effect of these two drugs with age and serum calcium was not studied in previous research and requires further research.

EFFECT OF BLOOD GLUCOSE IN HETEROGENEOUS PATIENTS

Diseases related to coefficient change of blood glucose: Many surgeries were observed to be related to the effect improvement of blood glucose in personalized models. Liver transplant was the number one reason according to meta-regression. And “Major Pancreas, Liver & Shunt Procedures” was also significant. Their results were almost significant in subgroup model and subgroup analysis; thus, caution should be taken and further investigation is needed. Total 9 admission reasons of gastrointestinal surgery were significant in meta-regression, 4 of them were in top-10, their results were also significant in both subgroup model and subgroup analysis. Joint replacement was also significantly related to effect improvement of blood glucose in all experiments. Coefficients of blood glucose decreased significantly in non-surgery cardiovascular diagnoses, according to both meta-regression and subgroup model.

Impact of different insulin on coefficient of blood glucose: Different types of insulin show different interaction effects with blood glucose. In meta-regression, insulin,aspart, human/rdna is the top-1 medication related to effect improvement of blood glucose (estimate=0.03), effect of insulin regular,human buffered was much weaker (estimate=0.014), while effect of insulin, isophane was negative (estimate=-0.011). Results were supported by subgroup model, abnormal blood glucose is more dangerous in cardiac surgery patients exposed to insulin,aspart, human/rdna, and coefficient of abnormal blood glucose decrease significantly in patients used insulin, isophane in many situations. Results indicates blood glucose control strategy in different situations may need further concern.

Other medication related to coefficient change of blood glucose: Use of glucose, fentanyl, lactate, and benzoic acid showed related to effect improvement of blood glucose. Among them, glucose can directly influence blood glucose; the use of fentanyl may indicate postoperative analgesia or severe diseases. Benzoic acid belongs to salicylates which is risky for patients with renal insufficiency. Further, previous researches have shown that benzoic acid and its derivatives may influence glucose metabolism. Recent studies show combined lactate and glucose levels related to renal dysfunction and mortality. Paracetamol (includes acetaminophen) shows interesting interaction with blood glucose. In general, paracetamol is significant related to decrease coefficient of blood glucose. And existing research shows acetaminophen may influence glucose sensing. However, paracetamol significantly related to effect improvement of blood glucose in patients of joint replacement. We failed to find out research studied their interaction.

© 2022 Liu K et al. JAMA Network Open.
EFFECT OF BMI IN HETEROGENEOUS PATIENTS

Diseases related to coefficient change of BMI: Respiratory conditions were the most important factors related to increased effect of BMI according to meta-regression: totally 11 admission diagnoses were significant and 5 of them were in top-10. Existing research has summarized the complex interaction between obesity and respiratory diseases 30. However, our result was not verified by subgroup model and subgroup, which may require further study to verify the interaction. Leukemia showed significant relation to higher effect of BMI, the result was more significant when patients is overweight. Existing meta-analysis studies have also shown obesity/overweight to be significantly related to incidence of leukemia and outcome of leukemia patients 31-34.

In meta-regression, top-4 admission diagnoses related to decrease in effect of BMI were “Uterine & Adnexa Procedures”, and two other types of “Uterine & Adnexa Procedures” were also in top-10. Existing research reported relationship between obesity and complications after gynecological laparoscopic surgery as not significant 35,36. And our subgroup model showed the decrease may be due to overweight patient. But its significance is close to threshold. We suggest further studies are needed.

Medication related to coefficient change of BMI: All of our experiments showed that tazobactam can increase the effect of obesity in infection. That may because obesity infection patients required higher dose of tazobactam and faced a higher risk of nephrotoxicity 37-40. Insulin regular, human buffered was also related to effect improvement of BMI in cardiac surgery. Combination of obesity and hyperglycemia is a well-known risk factor for cardiac surgery. Rifaximin showed significantly related to decrease in coefficient of obesity. Several researches have studied effect of Rifaximin in liver disease, weight and gut microbiome, but none of these researches can directly explain this interaction.

EFFECT OF PULSE IN HETEROGENEOUS PATIENTS

Diseases related to coefficient change of pulse: In meta-regression, liver disease were top-2 admission diagnoses related to effect improvement of pulse and another 2 liver diseases also in the top-10. The result can be supported by both subgroup model and subgroup analysis when pulse is >100. Generally, increasing pulse is a common symptom in severe liver disease, and cardiovascular dysfunction often occurs as the disease progresses 31. Cerebrovascular condition is another important factor correlated with increasing effect of pulse according to meta-regression (3 of the top-10). However, results from 3 significant admission diagnoses were not supported by the subgroup model and subgroup analysis. Given that personalized models were built using similar samples from other patients with cerebrovascular condition, we further combined samples from other cerebrovascular related admissions, and found OR of pulse >100 bpm increased significantly. We found two existing studies on the relationship between heart rate and outcome of stroke, but their conclusions were inconsistent 42,43. While other studies showed that heart rate variability is significantly related to mortality of patient with head injury 44,45. In cardiac surgery, orthopedic surgery and infection, the relation between pulse and AKI is weak.

EFFECT OF VANCOMYCIN IN HETEROGENEOUS PATIENTS

Diseases related to coefficient change of vancomycin: The coefficients of vancomycin significantly increased in gastrointestinal surgery, orthopedic surgery (exclude joint replacement) and infection according to all experiments. Skin graft was also a significant moderator in meta-regression, its significance (p=0.056) in subgroup model was close to the threshold. It mainly reflects the danger of infection in these subgroups. And in gastrointestinal surgery, significant systemic absorption may occur when intestinal mucosal integrity is compromised, and risk of nephrotoxicity may increase. In admissions for cardiac procedure, cardiac device and joint replacement, coefficients of vancomycin significantly decreased. In these subgroups, we found vancomycin was used in 44% of patients, which suggests vancomycin was possibly used to prevent infection.

Medication related to coefficient change of vancomycin: The use of tazobactam showed the strongest correlation with increasing coefficient of vancomycin. A recent meta-analysis study also showed the interaction between the two drugs 46. Glucose was also significantly related to effect improvement of vancomycin in all experiment, and result of budipine hcl was supported by subgroup model. Result also showed simvastatin decreased the OR of tazobactam. Existing research has shown simvastatin to have potential antimicrobial effects 47,48.

© 2022 Liu K et al. JAMA Network Open.
All 76957 EHR samples from KUMC

Random Split

Data 1	Data 2	Data 3	Data 4	Data 5

Training set

Data 1	Data 2	Data 3	Data 4	Data 5

Tuning PMTL structure & hyperparameter

Validation set

Data 5

Test set

Data 1

Data 2

Data 1

Data 2

Data 1

Data 2

Data 1

Data 2

Data 1

Data 2

Data 3

Data 4

Data 5

Data 3

Data 4

Data 5

Data 3

Data 4

Data 5

Data 3

Data 4

Data 5

Data 3

Data 4

Data 5

Model testing and comparison

(Result section)

eFigure 1. Validation Scheme of This Study
eFigure 2. AUPRC Comparison of Personalized Models With and Without Similarity Measure Learning in General Patients Based on 4 of 5 Data Folds Used for Testing
eFigure 3. Model Discrimination Comparison in General Inpatients

a AUROC via optimized parameters

b AUPRC via optimized parameters
(a) AUROC using optimized parameters. (b) AUPRC using optimized parameters. Personalized models used 10% training sample as threshold for number of similar patients; global models used 100% training samples.
eFigure 4. Overall Performance of Personalized and Subgroups Modeling In and Out of Top 20 High-Risk Subgroup

(a) AUROC of models in 20 high risk subgroups; (b) AUPRC of models in 20 high risk subgroups; (c) AUROC of models out of 20 high risk subgroups; (d) AUPRC of models out of 20 high risk subgroups.

© 2022 Liu K et al. JAMA Network Open.
eFigure 5. Calibration of Global, Subgroup and Personalized Model in Each of Top 20 High-Risk Subgroup

Brier scores are shown in legend.
a Subgroup Models with vs. without Transfer learning

Condition	Global AUROC
Post-Op, Post-Trauma, Other Device Infections W O.R. Procedure	0.754
Cystic Fibrosis - Pulmonary Disease	
Kidney & Urinary Tract Malignancy	
Major Stomach, Esophageal & Duodenal Procedures	
Bone Marrow Transplant	
Septicemia & Disseminated Infections	
Major Small & Large Bowel Procedures	
Infectious & Parasitic Diseases Including HIV W O.R. Procedure	
Extensive Procedure Unrelated To Principal Diagnosis	
Acute Leukemia	

Performance: Global = 0.754 Subgroup & TL = 0.778 Subgroup = 0.754

Difference to Subgroup & TL: ▲ P-value < 0.05 ▲ P-value < 0.01 ▲ P-value < 0.001

b Best Personalized Models vs. Best Subgroup Models

Condition	Global AUROC
Post-Op, Post-Trauma, Other Device Infections W O.R. Procedure	0.754
Cystic Fibrosis - Pulmonary Disease	
Kidney & Urinary Tract Malignancy	
Major Stomach, Esophageal & Duodenal Procedures	
Bone Marrow Transplant	
Septicemia & Disseminated Infections	
Major Small & Large Bowel Procedures	
Infectious & Parasitic Diseases Including HIV W O.R. Procedure	
Extensive Procedure Unrelated To Principal Diagnosis	
Acute Leukemia	

Performance: Global = 0.754 PMTL_Best = 0.797 Subgroup_Best = 0.780

Difference to PMTL_Best: ▲ P-value < 0.05 ▲ P-value < 0.01 ▲ P-value < 0.001

eFigure 6. Radar Chart of AUROC Comparison for Subgroup Models With Transfer Learning

(a) Comparison of subgroup modeling with and without transfer learning; (b) Comparison of best personalized model and best subgroup modeling, i.e. for each subgroup, best personalized and subgroup models between models with and without transfer learning are selected for evaluation.
Liver Transplant
Tracheostomy W Long Term Mechanical Ventilation W Extensive Procedure
Cardiac Valve Procedures w/ Cardiac Catheterization
Cardiac Valve Procedures w/o Cardiac Catheterization

Coronary Bypass w/ Cardiac Cath Or Percutaneous Cardiac Procedure
Coronary Bypass w/o Cardiac Cath Or Percutaneous Cardiac Procedure
Kidney & Urinary Tract Procedures for Nonmalignancy

Pulmonary Edema & Respiratory Failure
Acute Leukemia
Extensive Procedure Unrelated To Principal Diagnosis
Percutaneous Coronary Intervention

Infectious & Parasitic Diseases Including HIV W O.R Procedure
Septicemia & Disseminated Infections
Major Small & Large Bowel Procedures

eFigure 7. Absolute Pearson Correlation Coefficient Among Top-50 Important Predictors in Different Subgroups

(a) cases in subgroups where both PMTL and subgroup models perform well, and their performance difference is insignificant. (b) cases in subgroups where PMTL performed much better than subgroup models.
eFigure 8. Average Value Changes of Top-20 Predictors Determined by Global Model in Subgroups
Figure 9. Standard Deviation Changes of Top 20 Predictors Determined by Global Model in Subgroups
eFigure 10. Wasserstein Distance of Top-20 Predictor Distribution Between Patients in General and Subgroups
eFigure 11. Top 20 Predictors Where Their Effects Differed Between Global Model and PMTL
eFigure 12. Coefficient of Variation of the Regression Coefficients of Top-200 Features in PMTL

To avoid extreme value, we omit results of coefficient of variation higher than the result of 90% of features.
eFigure 13. Difference of Feature Effects Between PMTL and Other Models: A Case Study of Subgroup of Cardiac Valve Procedure With Cardiac Catheterization

Meaning of inter-class score difference is introduced in eAppendix 6. “Cumulative % of inter-class score diff.” (y-axis) is calculated by current inter-class score difference of a model/ final inter-class score different of the same model. To better visualize the impact of features at either extreme of ranking, figures are plotted against split horizontal axes. (a) Features are ranked by their effects in the global model when estimating general patients. We observe the most important predictors for global model are harmful to its estimation in this subgroup (negative values in y-axis), but these errors are well corrected by personalized model. (b) Features are ranked by their effects in the subgroup model. We can
observe effect change of “cardiac valve procedure with cardiac catheterization” (feature used to determine this subgroup) is important for estimation in PMTL, but both global and subgroup model cannot learn it.
eFigure 14. Difference of Feature Effects Between PMTL and Other Models: A Case Study of Subgroup of Infect & Parasitic Disease

This figure shows inter-class risk score different provide by Top 10 features (union) of subgroup, global and personalized model in subgroup of infect & parasitic disease. PMTL significantly outperformance global, subgroup model in this subgroup (0.765 vs 0.713 and 0.681, p<0.01 for both comparisons). If feature of infect & parasitic disease is deleted from the PMTL, AUROC of PMTL will decrease to 0.758, but still significantly outperformance global and subgroup model (p<0.02). That means in addition to “infect & parasitic disease” itself, heterogeneities introduced by other features are also captured by PMTL.
eFigure 15. Effect Change of Factors Estimated by Subgroup Models and Meta-Regression on PMTL

© 2022 Liu K et al. *JAMA Network Open.*
eFigure 16. Comparison of Coefficients Estimated by PMTL and Subgroup Models, Cases of Age, Serum Calcium and Blood Glucose

Solid and dotted lines stand for coefficients in large and small subgroups respectively. Trends of feature effect change in large subgroups were similar between PMTL and subgroup models. However, PMTL provided more stable effect estimation in granular subgroups.
eFigure 17. Comparison of Coefficients Estimated by PMTL and Subgroup Models, Cases of BMI, Pulse and Vancomycin

Solid and dotted lines stand for coefficients in large and small subgroups respectively. Trends of feature effect change in large subgroups were similar between PMTL and subgroup models. However, PMTL provided more stable effect estimation in granular subgroups.
Variable Table 1. Variables Used in This Study

Feature category	# of Variables	Detail
Demographics	7	Age, race, gender
Vital signs	5	BMI, Diastolic BP, Systolic BP, Pulse, Temperature
Lab test	14	Albumin, ALT, AST, Ammonia, Blood Bilirubin, BUN, Ca, CK-MB, CK, Glucose, Lipase, Platelets, Troponin, WBC
Admission diagnosis	315	APR-DRG from the University Health System Consortium (UHC) / Vizient
Inpatient Medication	1271	All medications are mapped to RxNorm at the ingredient level
Medical History	280	ICD9 codes grouped into major diagnoses with Clinical Classifications Software (CCS)
AKI stage	1	Label = 0 or 1 (AKI did not occur or occurred during encounter)
eTable 2. Characteristics of Patients

Feature	Class	Non-AKI (n = 69698)	AKI (n = 7259)
Age			
18 – 25		4596 (6.59%)	357 (4.92%)
26 – 35		7339 (10.53%)	581 (8.00%)
36 – 45		8601 (12.34%)	812 (11.19%)
46 – 55		14374 (20.62%)	1410 (19.42%)
56 – 64		16192 (23.23%)	1906 (26.26%)
>65		18596 (26.68%)	2193 (30.21%)
Male		37850 (54.31%)	4309 (59.36%)
Race			
Caucasian		53177 (76.30%)	5408 (74.50%)
African American		9336 (13.39%)	1065 (14.67%)
Asian		600 (0.86%)	54 (0.74%)
Other Races (American Indian or Alaska Native, Native Hawaiian or Other Pacific Islander, Two Races, and not reported)		6585 (9.45%)	732 (10.09%)
Vitals			
BMI > 30		25347 (36.37%)	3095 (42.64%)
Diastolic > 90		6053 (8.68%)	570 (7.85%)
Systolic > 140		14706 (21.10%)	1677 (23.10%)
Abnormal labs			
Serum calcium		23140 (33.20%)	3059 (42.14%)
Blood glucose		10476 (15.03%)	1594 (21.96%)
Platelets		17352 (24.90%)	2323 (32.00%)
WBC		20189 (28.97%)	3121 (42.99%)
Admission reasons			
Liver Transplant		147 (0.21%)	157 (2.16%)
Long Term Mechanical Ventilation		130 (0.19%)	142 (1.96%)
Cardiac Valve Procedures		630 (0.90%)	206 (2.84%)
Coronary Bypass		867 (1.24%)	325 (4.48%)
Chemotherapy		1544 (2.22%)	267 (3.68%)
Septicemia & Disseminated Infections		2420 (3.47%)	425 (5.85%)
Medications			
Vancomycin		14266 (20.47%)	2403 (33.10%)
Tazobactam		11385 (16.33%)	2276 (31.35%)
Aldesleukin		107 (0.15%)	154 (2.12%)
eTable 3. AUROC of Different Models in Validation Set

Risk ranking model calculates patient similarity based on difference in estimated AKI risk, i.e., estimated risk in the global logistic regression model. For PM-kNN, similar sample are matched based on k-Nearest Neighbor (similarity measure is based on features’ coefficient in global logistic regression); for PM-Kmeans, similar sample are matched based on K-means. WS, weighted sample; SL, similarity measure learning same as PMTL; TL, transfer learning. PMTL, proposed personalized model with transfer learning (same as PM-kNN & TL & SL & WS).

Models	Sample Size or num. of groups	AUROC	AUPRC			
	0.05 or 20	0.1 or 10	0.2 or 5	0.05 or 20	0.1 or 10	0.2 or 5
Global model	0.655	0.684	0.713	0.173	0.206	0.24
Risk-ranking	0.724	0.708	0.698	0.242	0.262	0.291
PM-Kmeans	0.718	0.721	0.732	0.253	0.267	0.277
PM-Kmeans & TL	0.76	0.759	0.756	0.325	0.334	0.331
PM-kNN	0.714	0.732	0.752	0.278	0.294	0.302
PM-kNN & WS	0.717	0.738	0.759	0.289	0.307	0.319
PM-kNN & TL	0.765	0.769	0.772	0.348	0.347	0.341
PM-kNN & TL & WS	0.767	0.771	0.775	0.352	0.352	0.35
PM-kNN & WS & SL	0.718	0.744	0.758	0.299	0.319	0.337
PMTL	0.776	**0.779**	0.779	0.371	**0.374**	0.371

© 2022 Liu K et al. *JAMA Network Open.*
eTable 4. AUROC of Personalized Model Among Similar Samples in Validation Set

AUROCs presented in this table are averages of models’ performance intra groups. Averages are weighted by sample size. Note that average AUC of the Risk-ranking models for samples within each group is only about 0.5. That means Risk-ranking models cannot distinguish risk difference of patients in the same group, and its performance depends on the global model. As a comparison, global model performance within each random group is consistent with its performances in all patients, because samples in random groups have a similar distribution to the overall samples. Transfer learning can further improve the discrimination on similar samples, illustrating the effectiveness of transfer learning.

Models	Num. of groups		
	5 groups	10 groups	20 groups
Risk-ranking	0.511	0.503	0.502
Global model	0.708	0.68	0.648
Global model & TL	0.743	0.735	0.724
PM-Kmeans	0.727	0.707	0.684
PM-Kmeans & TL	0.752	0.744	0.73
eTable 5. Performance of Similarity Measure Learning in Test Set

We can see models with similarity measure learning always have higher performance. WS, weighted sample; TL, transfer learning. For PM-kNN, similar sample are matched based on k-Nearest Neighbor (similarity measure is based on features’ coefficient in global logistic regression).

Measure	Population	Basic model	With similarity measure learning	Without similarity measure learning	P value
AUROC	General patients	PM-kNN & WS & TL	0.778	0.773	0.001
	Top-20 subgroups	PM-kNN & WS & TL	0.792	0.783	0.001
	General patients	PM-kNN & WS	0.740	0.738	0.57
	Top-20 subgroups	PM-kNN & WS	0.769	0.761	0.057
AUPRC	General patients	PM-kNN & WS & TL	0.373	0.358	<0.0001
	Top-20 subgroups	PM-kNN & WS & TL	0.576	0.553	<0.0001
	General patients	PM-kNN & WS	0.318	0.314	0.31
	Top-20 subgroups	PM-kNN & WS	0.532	0.521	0.081
eTable 6. Performance of Sample Weighting in Test Set

We can see models with sample weighting always have higher performance. TL, transfer learning. For PM-kNN, similar sample are matched based on k-Nearest Neighbor (similarity measure is based on features’ coefficient in global logistic regression).

Measure	Population	Based model	With sample weighting	Without sample weighting	P value
AUROC	General patients	PM-kNN & TL	0.773	0.773	0.22
		PM-kNN	0.738	0.731	<0.0001
	Top-20 subgroups	PM-kNN & TL	0.783	0.782	0.36
		PM-kNN	0.761	0.750	<0.0001
AUPRC	General patients	PM-kNN & TL	0.358	0.356	0.12
		PM-kNN	0.314	0.302	<0.0001
	Top-20 subgroups	PM-kNN & TL	0.553	0.549	0.046
		PM-kNN	0.521	0.501	<0.0001

© 2022 Liu K et al. JAMA Network Open.
eTable 7. Performance (AUROC) of Feature Selection in Dealing With Overfitting in Personalized Modeling

Feature selection is performed after similar sample matching. For feature selection with chi-square test and logistic regression, top 200 ranked features are selected according to our previous AKI study; for PCA, we referred to the general practice and set the variance needed to be explained as >95%. When combining transfer learning with PCA, we performed transfer learning first and then PCA, while combining transfer learning with chi-square test and logistic regression, we performed feature selection before transfer learning. TL, transfer learning; chi2, chi-square test; PCA, principal component analysis; LR, logistic regression

Class	Models	Sample size or num. of groups		
		20% or 5 groups	10% or 10 groups	5% or 20 groups
Feature Selection Only	PM-Kmeans	0.732	0.721	0.718
	PM-Kmeans & chi2	0.735	0.732	0.724
	PM-Kmeans & PCA	0.722	0.718	0.71
	PM-Kmeans & LR	0.702	0.71	0.712
	PM-kNN	0.752	0.732	0.714
	PM-kNN & chi2	0.752	0.733	0.716
	PM-kNN & PCA	0.742	0.728	0.712
	PM-kNN & LR	0.74	0.73	0.721
Feature Selection + Transfer Learning	PM-Kmeans & TL	0.756	0.759	0.76
	PM-Kmeans & chi2 & TL	0.742	0.747	0.747
	PM-Kmeans & PCA & TL	0.755	0.758	0.758
	PM-Kmeans & LR & TL	0.716	0.73	0.741
	PM-kNN & TL	0.772	0.769	0.765
	PM-kNN & chi2 & TL	0.763	0.759	0.76
	PM-kNN & PCA & TL	0.771	0.768	0.765
	PM-kNN & LR & TL	0.755	0.759	0.763
eTable 8. List of APR-DRG Selected as High-Risk Subgroups

Abbreviations	Presented in RESULT (AKI cases ≥ 50)	APR-DRG
LIVER TRANSPLANT	√	Liver Transplant
BONE MARROW TRANSPLANT	√	Bone Marrow Transplant
TRACH W/DMV W EXTEN PROC	√	Trachoeostomy W Long Term Mechanical Ventilation W Extensive Procedure
TRACH W/DMV W/O ENTEN PROC		Trachoeostomy W Long Term Mechanical Ventilation W/O Extensive Procedure
RESPIRATORY SYSTEM DIAG		Respiratory System Diagnosis w/ Ventilator Support 96+ Hours
CYSTIC FIBROSIS	√	Cystic Fibrosis - Pulmonary Disease
PULMONARY EDEMA & RESP FAIL	√	Pulmonary Edema & Respiratory Failure
MAJOR RESPIRATORY INFECTIONS		Major Respiratory Infections & Inflammations
CARDIAC VALVE PROC W/CATH	√	Cardiac Valve Procedures w/ Cardiac Catheterization
CARDIAC VALVE PROC W/O CATH	√	Cardiac Valve Procedures w/o Cardiac Catheterization
CORONARY BYPASS W/ CARD CATH	√	Coronary Bypass w/ Cardiac Cath Or Percutaneous Cardiac Procedure
COR BYPASS W/O CARD CATH	√	Coronary Bypass w/o Cardiac Cath Or Percutaneous Cardiac Procedure
OTHER CARDIOTHORACIC PROC		Other Cardi thoracic Procedures
MAJ THORACIC & ABDOMEN PROC		Major Thoracic & Abdominal Vascular Procedures
HEART FAILURE	√	Heart Failure
OTH CIRCULATORY SYSTEM DIAG		Other Circulatory System Diagnoses
MAJ STOM, ESOPH, DUOD PROC	√	Major Stomach, Esophageal & Duodenal Procedures
MAJ SMALL & LARGE BOWEL PROC	√	Major Small & Large Bowel Procedures
AMPUTATION OF LOWER LIMB		Amputation of Lower Limb Except Toes
OTHER SKIN & SUBCUT PROC		Other Skin, Subcutaneous Tissue & Related Procedures
MAJOR BLADDER PROC		Major Bladder Procedures
KIDNEY/URINARY TRACT MALIG	√	Kidney & Urinary Tract Malignancy
KIDNEY/URIN TRACT-NONMALIG	√	Kidney & Urinary Tract Procedures for Nonmalignancy
ACUTE LEUKEMIA	√	Acute Leukemia
CHEMOTHERAPY	√	Chemotherapy
INFECT & PARASITIC DISEASE	√	Infectious & Parasitic Diseases Including HIV W O.R. Procedure
POST-OP/TRAUMA INFECT PROC	√	Post-Op,Post-Trauma, Other Device Infections W O.R. Procedure
SEPTICEMIA & DISSEM INFECT	√	Septicemia & Disseminated Infections
FULL THICK BURNS W GRAFT		Full Thickness Burns W Skin Graft
HIV W MULTIPLE MAJOR HIV		HIV W Multiple Major HIV Related Conditions
EXTENSIVE PROC UNREL PDX	√	Extensive Procedure Unrelated To Principal Diagnosis

© 2022 Liu K et al. JAMA Network Open.
eTable 9. AUROC of Models in 31 High Risk DRG Subgroups With At Least 20 AKI Patients

* ** ** *** means models’ performances are different to PMTL’s in significance of P<0.1, P<0.01, P<0.001 respectively. WS, weighted sample; TL, transfer learning. PMTL, personalized model with transfer learning (proposed model). For PM-kNN, similar sample are matched based on k-Nearest Neighbor (similarity measure is based on features’ coefficient in global logistic regression). The subgroups presented in Result section are those with at least 50 AKI patients. Full names of the APR-DRG for all subgroups are in eTable 8.

Drg	% of AKI	Num of AKI	PMTL	Global model	PM	PM-kNN & TL & WS	PM-kNN & WS	PM-kNN & TL	PM-kNN	Subgroup model & TL	Subgroup model
LIVER TRANSPLANT	51.6%	121	0.935	0.841***	0.915*	0.917*	0.879**	0.905***	0.862***	0.914	0.917
BONE MARROW TRANSPLANT	23.7%	101	0.713	0.652**	0.700	0.705	0.666*	0.686*	0.652*	0.697	0.658
TRACH W/DMV W EXTUREN PROC	58.3%	89	0.885	0.769***	0.770***	0.879	0.809*	0.869	0.804*	0.868	0.900
TRACH W/DMV W/O ENTUREN PROC	37.5%	23	0.649	0.690	0.688	0.663	0.668	0.672	0.678*	0.788	0.837*
RESPIRATORY SYSTEM DIAG	46.6%	26	0.573	0.518	0.544	0.519	0.578	0.505	0.558	0.657	0.632
CYSTIC FIBROSIS	17.3%	124	0.666	0.652	0.668	0.670	0.677	0.665	0.664	0.648	0.666
PULMONARY EDEMA & RESP FAIL	12.6%	61	0.798	0.760*	0.771	0.785	0.723*	0.776	0.705**	0.692***	0.692**
MAJOR RESPIRATORY INFECTIONS	13.1%	31	0.712	0.608**	0.601*	0.696	0.728	0.683	0.725	0.563*	0.518**
CARDIAC VALVE PROC W/CATH	33.2%	59	0.924	0.738***	0.910	0.854***	0.867*	0.852***	0.833**	0.850**	0.918
CARDIAC VALVE PROC W/O CATH	21.9%	117	0.829	0.734***	0.842	0.813	0.816	0.807*	0.790	0.805	0.819
CORONARY BYPASS W/CARD CATH	27.2%	136	0.848	0.722***	0.821*	0.821**	0.799**	0.819**	0.782***	0.836	0.817*
COR BYPASS W/O CARD CATH	27.4%	128	0.827	0.719***	0.865**	0.796***	0.800	0.797***	0.783*	0.810	0.831
OTHER CARDIOTHORACIC PROC	17.2%	26	0.767	0.761	0.759	0.735	0.694	0.736	0.679	0.703	0.764
MAJ THORACIC & ABDOMEN PROC	18.2%	32	0.787	0.832	0.823	0.793	0.788	0.803	0.787	0.799	0.753
HEART FAILURE	21.5%	119	0.634	0.593*	0.607	0.619	0.585*	0.612	0.569*	0.623	0.610
OTH CIRCULATORY SYSTEM DIAG	14.2%	35	0.658	0.568*	0.564*	0.618	0.55*	0.611*	0.530**	0.581*	0.527
MAJ STOM, ESOPH,DUOD PROC	14.7%	65	0.711	0.686	0.661*	0.688*	0.641*	0.679*	0.630*	0.695	0.675
MAJ SMALL & LARGE BOWEL PROC	15.0%	143	0.76	0.735	0.732*	0.769	0.728*	0.767	0.722*	0.773	0.679***
AMPUTATION OF LOWER LIMB	15.1%	29	0.676	0.721	0.667	0.691	0.695	0.694	0.695	0.676	0.584
OTHER SKIN & SUBCUT PROC	14.8%	26	0.717	0.780*	0.664	0.733	0.729	0.743	0.734	0.677	0.774
MAJOR BLADDER PROC	14.8%	34	0.775	0.731	0.722	0.709*	0.726	0.713*	0.709	0.678	0.67*
KIDNEY/URINARY TRACT MALIG	18.5%	50	0.692	0.661	0.662	0.675	0.670	0.680	0.656	0.680	0.640
KIDNEY/URIN TRACT-NONMALIG	18.9%	72	0.835	0.680*	0.862*	0.832	0.854	0.827	0.835	0.816	0.817
ACUTE LEUKEMIA	20.7%	51	0.790	0.784	0.724*	0.770	0.714*	0.776	0.711*	0.717	0.660**

© 2022 Liu K et al. JAMA Network Open.
Drg	% of AKI	Num of AKI	PMTL	Global model	PM	PM-kNN & TL & WS	PM-kNN & WS	PM-kNN & TL	PM-kNN	Subgroup model & TL	Subgroup model
CHEMOTHERAPY	14.7%	211	0.869	0.844**	0.855	0.858*	0.839**	0.858*	0.830***	0.855	0.836*
INFECT & PARASITIC DISEASE	31.3%	121	0.765	0.713**	0.724*	0.742*	0.701**	0.741*	0.692**	0.689***	0.681**
POST-OP/TRAUMA INFECT PROC	18.4%	74	0.645	0.642	0.592	0.686*	0.632	0.678	0.618	0.645	0.606
SEPTICEMIA & DISSEM INFECT	14.9%	349	0.744	0.718*	0.689***	0.745	0.699***	0.744	0.689***	0.726*	0.666***
FULL THICK BURNS W GRAFT	14.0%	43	0.788	0.781	0.712*	0.764	0.705*	0.763	0.710*	0.748	0.705*
HIV W MULTIPLE MAJOR HIV	27.7%	20	0.586	0.520	0.535	0.575	0.571	0.565	0.532	0.538	0.681
EXTENSIVE PROC UNREL PDX	19.2%	50	0.778	0.749	0.721*	0.754	0.725	0.756	0.716*	0.705*	0.652**
Above 31 subgroups	19.4%	-	0.783	0.750***	0.759***	0.775***	0.753***	0.775***	0.742***	0.769***	0.744***
Remaining	6.8%	-	0.732	0.704***	0.687***	0.726***	0.687***	0.725**	0.681***	-	
Num. of Drgs where PMTL outperform	-	-	-	27 (87.10%)	25 (80.65%)	23 (74.19%)	23 (74.19%)	24 (77.42%)	25 (80.65%)	25 (80.65%)	24 (77.42%)

© 2022 Liu K et al. JAMA Network Open.
eTable 10. AUPRC of Models in 31 High Risk DRG Subgroups With At Least 20 AKI Patients

* *, **, *** means models’ performances are different to PMTL’s in significance of P<0.1, P<0.01, P<0.001 respectively. WS, weighted sample; TL, transfer learning. PMTL, personalized model with transfer learning (proposed model). For PM-kNN, similar sample are matched based on k-Nearest Neighbor (similarity measure is based on features’ coefficient in global logistic regression). The subgroups presented in Result section are those with at least 50 AKI patients. Full names of the APR-DRG for all subgroups are in eTable 8.

Drg	PMTL	Global model	PM	PM-kNN & TL & WS	PM-kNN & WS	PM-kNN & TL	PM-kNN model & TL	Subgroup model & TL	Subgroup model
LIVER TRANSPLANT	0.949	0.83***	0.926*	0.933*	0.884**	0.918**	0.874***	0.94	0.931
BONE MARROW TRANSPLANT	0.419	0.392	0.417	0.401	0.386	0.385*	0.369	0.386	0.37
TRACH W/DMV W EXTEN PROC	0.926	0.836**	0.865*	0.925	0.883*	0.921	0.881*	0.919	0.933
TRACH W/DMV W/O ENTEN PROC	0.544	0.547	0.604	0.476	0.548	0.469	0.553	0.633	0.777*
RESPIRATORY SYSTEM DIAG	0.594	0.544	0.578	0.516	0.506	0.51	0.517	0.623	0.652
CYSTIC FIBROSIS	0.358	0.312*	0.346	0.374	0.371	0.368	0.345	0.329	0.277*
PULMONARY EDEMA & RESP FAIL	0.387	0.358	0.401	0.365	0.345	0.354	0.306*	0.281*	0.296
MAJOR RESPIRATORY INFECTIONS	0.253	0.198*	0.186*	0.268	0.32	0.292	0.313	0.162*	0.128**
CARDIAC VALVE PROC W/CATH	0.866	0.611***	0.85	0.737***	0.802	0.735***	0.771*	0.77**	0.876
CARDIAC VALVE PROC W/0 CATH	0.661	0.493***	0.665	0.583***	0.595*	0.571***	0.555***	0.572**	0.629
CORONARY BYPASS W/CARD CATH	0.763	0.525***	0.728*	0.72***	0.696**	0.717***	0.667***	0.746	0.751
COR BYPASS W/O CARD CATH	0.716	0.506***	0.749	0.667***	0.662*	0.65***	0.619***	0.688	0.745
OTHER CARDIOTHORACIC PROC	0.492	0.4	0.466	0.369*	0.32*	0.392	0.304*	0.402	0.468
MAJ THORACIC & ABDOMEN PROC	0.460	0.513	0.541	0.43	0.511	0.454	0.527	0.512	0.532
HEART FAILURE	0.328	0.298	0.291	0.33	0.296	0.325	0.292	0.318	0.291
OTH CIRCULATORY SYSTEM DIAG	0.197	0.166	0.148*	0.202	0.151	0.197	0.144*	0.195	0.13*
MAJ STOM, ESOPH,DUOD PROC	0.376	0.386	0.331	0.335*	0.291*	0.322*	0.288*	0.329	0.322
MAJ SMALL & LARGE BOWEL PROC	0.466	0.414*	0.428	0.458	0.406*	0.451	0.384*	0.499	0.348***
AMPUTATION OF LOWER LIMB	0.360	0.373	0.377	0.402	0.344	0.402	0.35	0.281	0.264
OTHER SKIN & SUBCUT PROC	0.308	0.343	0.215	0.326	0.311	0.332	0.317	0.328	0.417
MAJOR BLADDER PROC	0.444	0.353*	0.436	0.363*	0.376	0.372*	0.363	0.254***	0.297*
KIDNEY/URINARY TRACT MALIG	0.341	0.335	0.311	0.317	0.302	0.317	0.289	0.333	0.312
KIDNEY/URIN TRACT-NONMALIG	0.583	0.275***	0.628	0.557	0.661	0.553	0.584	0.665*	0.666
ACUTE LEUKEMIA	0.582	0.588	0.42**	0.592	0.437**	0.584	0.426**	0.492*	0.314***
CHEMOTHERAPY	0.664	0.566***	0.653	0.663	0.642	0.643*	0.603**	0.673	0.629

© 2022 Liu K et al. JAMA Network Open.
Drg	PMTL	Global model	PM	PM-kNN & TL & WS	PM-kNN & WS	PM-kNN & TL	PM-kNN	Subgroup model & TL	Subgroup model
INFECT & PARASITIC DISEASE	0.608	0.573	0.575	0.598	0.551*	0.6	0.54*	0.508***	0.514*
POST-OP/TRAUMA INFECT PROC	0.350	0.321	0.317	0.391	0.332*	0.377	0.314	0.324	0.256*
SEPTICEMIA & DISSEM INFECT	0.364	0.331*	0.299***	0.355	0.324*	0.358	0.318*	0.326**	0.251***
FULL THICK BURNS W GRAFT	0.435	0.416	0.384	0.36*	0.367	0.359*	0.371	0.352	0.325
HIV W MULTIPLE MAJOR HIV	0.330	0.259	0.299	0.338	0.345	0.323	0.307	0.337	0.387
EXTENSIVE PROC UNREL PDX	0.447	0.396	0.39	0.411	0.37	0.424	0.352*	0.364	0.313*
Times of PMTL outperforming	-	25 (80.65%)	24 (77.42%)	22 (70.97%)	24 (77.42%)	26 (83.87%)	23 (74.19%)	22 (70.97%)	

Times of PMTL outperforming:
- **INFECT & PARASITIC DISEASE**: 25 times (80.65%)
- **POST-OP/TRAUMA INFECT PROC**: 24 times (77.42%)
- **SEPTICEMIA & DISSEM INFECT**: 22 times (70.97%)
- **FULL THICK BURNS W GRAFT**: 24 times (77.42%)
- **HIV W MULTIPLE MAJOR HIV**: 26 times (83.87%)
- **EXTENSIVE PROC UNREL PDX**: 23 times (74.19%)

© 2022 Liu K et al. JAMA Network Open.
eTable 11. Superiority of PMTL in Recalling AKI Patients in All Top 20 High-Risk Subgroups

There are total 2241 (19.8%) AKI patients in these subgroups. In this experiment, according to estimation of different model, we predict top-k patients with highest estimated risk as AKI patients (and the remaining were predicted as non-AKI), then calculated the recall with different model and different thresholds.

Thresholds	GM	SM	PMTL	PMTL/GM	PMTL/SM
Top-500 from all subgroups	15.98%	18.03%	19.32%	120.95%	107.18%
Top-1120 from all subgroups	29.00%	31.33%	34.18%	117.85%	109.12%
Top-2241 from all subgroups	46.59%	48.33%	52.16%	111.97%	107.94%
Top-10% from each subgroup	26.24%	26.55%	30.12%	114.80%	113.45%
Top-20% from each subgroup	42.57%	43.60%	47.93%	112.58%	109.93%
Top-50% AKI incidence rate from each subgroup	27.35%	28.96%	32.17%	117.62%	111.09%
Top-AKI incidence rate from each subgroup	46.36%	48.15%	52.34%	112.90%	108.71%
eTable 12. Superiority of PMTL in Recalling AKI Patients in Each of Top 20 High-Risk Subgroups

In this experiment, according to estimation of different model, for each subgroups, we predict top-k (k is equal to the number of AKI patients in the subgroup) patients with highest estimated risk as AKI patients (and the remaining were predicted as non-AKI), then calculated the recall with different model and different thresholds.

Subgroups	GM	SM	PMTL	PMTL / GM	PMTL / SM
Liver Transplant	79.34%	84.30%	86.78%	109.38%	102.94%
Bone Marrow Transplant	38.61%	36.63%	41.58%	107.69%	113.51%
Tracheostomy W Long Term Mechanical Ventilation W Extensive Procedure	77.53%	86.52%	86.52%	111.59%	100.00%
Cystic Fibrosis - Pulmonary Disease	31.45%	31.45%	36.29%	115.38%	115.38%
Pulmonary Edema & Respiratory Failure	36.07%	32.79%	40.98%	113.64%	125.00%
Cardiac Valve Procedures w/ Cardiac Catheterization	57.63%	77.97%	77.97%	135.29%	100.00%
Cardiac Valve Procedures w/o Cardiac Catheterization	51.28%	58.97%	59.83%	116.67%	101.45%
Coronary Bypass w/ Cardiac Cath Or Percutaneous Cardiac Procedure	51.47%	66.91%	65.44%	127.14%	97.80%
Coronary Bypass w/o Cardiac Cath Or Percutaneous Cardiac Procedure	51.56%	62.50%	60.16%	116.67%	96.25%
Heart Failure	26.89%	31.09%	35.29%	131.25%	113.51%
Major Stomach, Esophageal & Duodenal Procedures	36.92%	33.85%	40.00%	108.33%	118.18%
Major Small & Large Bowel Procedures	44.06%	39.16%	49.65%	112.70%	126.79%
Kidney & Urinary Tract Malignancy	38.00%	28.00%	28.00%	73.68%	100.00%
Kidney & Urinary Tract Procedures for Nonmalignancy	29.17%	61.11%	56.94%	195.24%	93.18%
Acute Leukemia	54.90%	37.25%	52.94%	96.43%	142.11%
Chemotherapy	55.92%	62.09%	58.77%	105.08%	94.66%
Infectious & Parasitic Diseases Including HIV W O.R. Procedure	53.72%	47.93%	60.33%	112.31%	125.86%
Post-Op,Post-Trauma, Other Device Infections W O.R. Procedure	32.43%	27.03%	32.43%	100.00%	120.00%
Septicemia & Disseminated Infections	35.82%	28.37%	37.25%	104.00%	131.31%
Extensive Procedure Unrelated To Principal Diagnosis	50.00%	36.00%	50.00%	100.00%	138.89%

© 2022 Liu K et al. *JAMA Network Open.*
eTable 13. Details About 55 AKI Prediction Researches for Specific Subgroup Patients Can Be Identified by Our Data

To compare PML with models reported in existing literatures, we identified 136 AKI prediction studies published before 2021 in Web of Science and PubMed using keywords related to “AKI”, “prediction” and “machine learning”, 104/136 used all-stage AKI as the target. We could not confirm subgroups in 49/104 studies (because absence of corresponding features to identify these subgroups in our data). The remaining 55 papers are summarized in this Table. Research presented in Table 1 of the main text are highlighted in bold (at least one study per subgroup was selected, but studies with similar race distribution and AKI definition to ours, large sample size and independent validation are preferred). PCI, AMI, CABG, TKA, and GI stand for percutaneous coronary intervention, acute myocardial infarction, coronary artery bypass grafting, total knee arthroplasty, and gastrointestinal respectively. Bs, CV, DV, EV, EVR, IV stands for bootstrap validation, cross-validation, derivation validation, external validation, external validation research (verify performance of models presented in other researches), and internal validation respectively. For researches studies multiple modeling approaches, we just report AUROC of logistic regression and the best model. Default modeling method is Logistic Regression. LR, BN, GBM, RF stand for Logistic Regression, Bayesian networks, Gradient Boosting Machine, and Random Forest respectively.

Subgroup	Cohorts	Region	Data sources	AKI definition	Sample size	AUROC	Ref.	
Liver Transplant	Orthotopic LT without venovenous	China	1 center	SCr>0.5 mg/dL and ↑ ≥50% or RRT	146	IV: 0.908, 0.765	50	
	bypass							
	Living-donor liver transplantation	Korea	1 center	AKIN	1211	IV: GBM: 0.90	51	
	Living donor liver transplantation	Korea	1 center	RIFLE	538	CV: 0.86-0.85	52	
PCI	PCI	Canada	Provincial registry	KDIGO	7888	EVR: 0.65-0.76	53	
PCI	China	1 center		SCr↑ ≥25% or ≥0.5 mg/dL	2500	IV: 0.82	54	
PCI	Japan	16-center registry		AKIN	5936	IV: 0.799, 0.789	55	
PCI	Japan	16-center registry		AKIN	11041	EVR: 0.76	56	
	The NCDR Cath-PCI registry	U.S.	National registry	AKIN	9.5*10^5	IV: 0.71	57	
	PCI	U.S.	National registry	AKIN	1.9*10^6	IV: LR: 0.717-0.733	58	
						IV: GBM: 0.715-0.752		
						EV: 0.785		
	PCI	U.S.	National registry	SCr increase > 0.3 mg/dL	3*10^6	IV: GBM: 0.777	59	
						EV: GBM: 0.794		
	PCI and eGFR < 60 mL/min/1.73 m2	Vietnam	1 center	AKIN	135	EVR: 0.64, 0.68	60	
	PCI or Cardiac Catheterization	Cardiac catheterization or PCI	U.S.	1 center	AKIN	1507	EVR: 0.73-0.74	61
Subgroup	Cohorts	Region	Data sources	AKI definition	Sample size	AUROC	Ref.	
------------------------------	--	----------	--------------	----------------	-------------	----------------	------	
PCI & AMI	Primary PCI for STEMI	Brazil	1 center	AKIN	347	DV: 0.733, EVR: 0.649	62	
	STEMI undergoing primary PCI	China	1 center	SCR↑ ≥50% or ≥0.3 mg/dL	251	EVR: 0.723, 0.688	63	
	PCI with drug-eluting stents	South Korea	8-center registry	AKIN	2189	DV: 0.768	64	
	Diagnostic angiography and PCI for acute STEMI	U.S.	1 center	RIFLE	1144	IV: 0.76	65	
	STEMI patients in the NCDR Cath-PCI registry	U.S.	National registry	AKIN	1.5x10^5	IV: 0.74	60	
PCI & non-AMI	Non-STEMI/unstable angina patients in the NCDR Cath-PCI registry	U.S.	National registry	AKIN	2.7x10^5	IV: 0.7	60	
AMI	AMI	China	1 center	KDIGO	1495	IV: RF: 0.72-0.817, IV: GBM: 0.74, IV: LR: 0.681	66	
	AMI	China	1 center	AKIN	6014	IV: 0.81-0.79, EVR: 0.73	67	
CABG	LVEF< 50% and underwent isolated CABG	China	7 centers	KDIGO	1748	EV: 0.738	68	
	Isolated CABG were enrolled	Taiwan	1 center	KDIGO	353	EVR: 0.78-0.697	69	
	Coronary artery surgery	Turkey	1 center	RIFLE	193	EVR: 0.84, 0.5	70	
CABG or VS	Elective CABG, valve surgery, or both	Brazil	1 center	Baseline Cr<1.5 mg/dL: Cr>2 mg/dL. Baseline 1.5≤Cr≤3 mg/dL: Cr↑≥50%	818	IV: 0.847	71	
	Valve or coronary artery bypass grafting	Canada	1 center	KDIGO	350	DV: 0.78, 0.69	72	
	CABG alone, mitral or aortic valve surgery alone, or combination of CABG and aortic or mitral valve surgery with CPB	China	1 center	KDIGO	1587	EVR: 0.61	73	
	CABG, off-pump coronary artery bypass, valve surgery, or valve combined with CABG	China	1 center	KDIGO	8385	IV: 0.82-0.74	74	
	CABG or valve surgery	Singapore	2 centers	AKIN	2885	DV: 0.70, IV: 0.75	75	
	CABG or valve replacement surgery	Taiwan	1 center	KDIGO	671	IV: LR: 0.806, IV: Ensemble: 0.843	76	
CABG or VS and Older	Aged ≥ 60, underwent valve surgery or CABG with CPB	China	1 center	KDIGO	848	IV: 0.801, EVR: 0.627, 0.670	77	

© 2022 Liu K et al. *JAMA Network Open.*
Subgroup	Cohorts	Region	Data sources	AKI definition	Sample size	AUROC	Ref.
Cardiac Surgery	Cardiac surgery	Australia and New Zealand	33 centers	KDIGO	22731	IV: 0.67-0.72	78
	On-pump cardiac surgery	Belgium	1 center	KDIGO	283	EVR: 0.80, 0.75	79
	Elective cardiac surgery, exclusion planned off-pump procedure	Canada	1 center	KDIGO	289	DV: 0.78, 0.74 EVR: 0.72-0.6	80
	Cardiac surgery	Canada	1 center	KDIGO	2316	EVR: 0.61	81
	Cardiac surgery	China	1 center	KDIGO	1900	IV: 0.789	82
	Cardiac surgeries	China	1 center	KDIGO	5533		83
	Cardiac surgery	Croatia	1 center	KDIGO	1056	DV: 0.78 EVR: 0.73-0.634	84
	Cardiac surgery with CPB, admitted to ICU	Holland	1 center	RIFLE	1388	EVR: 0.75-0.65	85
	Cardiac surgery with CPB	Italy	1 center	KDIGO	7675	EVR: 0.59-0.54	86
	Cardiac surgery with CPB	Norway	1 center	AKIN	1015	Bs: 0.81, 0.83	87
	Open heart surgery	Norway	1 center	AKIN	5029	Bs: 0.819	88
	Cardiac surgery with CPB	Spain	2 centers	RIFLE	1542	IV: 0.81	89
	Cardiac surgery, including thoracic aorta	U.K.	3 centers	KDIGO	30854	EV: 0.74 EVR: 0.74-0.68	90
TKA	Unilateral or bilateral TKA	Korea	3 centers	KDIGO	5757	CV: GBM: 0.78 EV: GBM: 0.89	91
Orthopaedic surgery	Replacement or Fusion of joint, reduction of fracture	U.K.	3 centers	KDIGO	10615	Bs: 0.73 EV: 0.70	92
GI Surgery	Elective or emergency GI resection, liver resection or stoma reversal	UK and Ireland	173 centers	KDIGO	4544	Bs: 0.65	93
GI Cancers	GI cancers	China	1 center	KDIGO	6495	IV: BN: 0.79 IV: LR: 0.7	94
Hematologic Malignancies	Lymphoma, leukemia or multiple myeloma	China	1 center	KDIGO	2395	CV: BN: 0.812 DV: LR: 0.763	95
Cisplatin	Received cisplatin	U.S.	2 registries	AKIN	4481	EV: 0.70	96
Vancomycin	Received vancomycin ≥48h	China	1 center	KDIGO	524	EV: 0.788	97
Vancomycin & Older	aged ≥ 60, received vancomycin ≥48h	China	1 center	KDIGO	255	IV: 0.736	98

© 2022 Liu K et al. JAMA Network Open.
Subgroup	Cohorts	Region	Data sources	AKI definition	Sample size	AUROC	Ref.
Sepsis	Sepsis in ICU	China	1 center	KDIGO	410	Bs: 0.969	99
						EV: 0.957	
	Sepsis in ICU	China	1 center	AKIN	2331	IV: 0.857	100
	Sepsis in ICU	U.S.	MCMC III	KDIGO	2917	IV:0.79	101
	Sepsis in ICU	U.S.	MCMC III	KDIGO	15726	IV: 0.712	102
Older	Age > 60	U.S.	15 centers	AKIN	25521	CV: Ensemble: 0.664	103
						CV: LR: 0.660	
	Age > 60	U.S.	15 centers	AKIN	44691	CV: 0.57-0.724	104
eTable 14. AUPRC Comparison of Models in 20 Well-Studied Subgroups

PCI, percutaneous coronary intervention; AMI, acute myocardial infarction; CABG, coronary artery bypass grafting; VS, valve surgery; TKA, total knee arthroplasty; Orthop., orthopedic; GI, gastrointestinal. For studies that used multiple modeling approaches, we only report the AUROC of the logistic regression model and the best model. *P<0.05 compared with PMTL. GM = Global Model; SM = Subgroup Model; SMTL = Subgroup Model with Transfer Learning; PMTL = Personalized Model with Transfer Learning.

Subgroups in literature	PMTL	GM	SM	SMTL
Liver Transplant	0.949	0.83*	0.931	0.94
PCI	0.235	0.22	0.236	0.278
PCI or Cardiac Catheterization	0.233	0.222	0.256	0.301*
PCI & AMI	0.263	0.203*	0.307	0.232
PCI & non-AMI	0.232	0.26	0.189	0.24
AMI	0.263	0.199*	0.23	0.244
CABG	0.738	0.513*	0.748	0.742
CABG or VS	0.738	0.52*	0.774*	0.738
CABG or VS and age:55-65	0.741	0.577*	0.706	0.641*
CABG or VS and age>65	0.737	0.515*	0.777	0.708
Cardiac Surgery	0.725	0.511*	0.726	0.729
TKA	0.096	0.09	0.08	0.085
Orthop. surgery	0.194	0.181	0.176	0.206
GI Surgery	0.397	0.352*	0.299*	0.381
GI Cancers	0.338	0.252	0.15	0.21
Hematologic Malignancies	0.385	0.357	0.302*	0.37
Cisplatin	0.189	0.177	0.149	0.208
Vancomycin	0.380	0.326*	0.308*	0.346*
Vancomycin & age:55-65	0.384	0.336*	0.254*	0.325*
Vancomycin & age>65	0.389	0.321*	0.265*	0.347*
Sepsis	0.364	0.331*	0.251*	0.326*
Age:55-65	0.395	0.347*	0.298*	0.337*
Age>65	0.371	0.305*	0.284*	0.323*
Times of PMTL outperforming	-	22	16	15
		(95.65%)	(69.57%)	(65.22%)
Times of PMTL significantly better vs worse	-	15 : 0	8 : 1	7 : 1
Table 15. List of APR-DRG Presented in Fig 4 of Main Text

Abbreviations	APR-DRG
Cardiac surgery	
CARDIAC VALVE PROC W/CATH	Cardiac Valve Procedures w/ Cardiac Catheterization
COR BYPASS W/O CARD CATH	Coronary Bypass w/o Cardiac Cath Or Percutaneous Cardiac Procedure
CORONARY BYPASS W/CARD CATH	Coronary Bypass w/ Cardiac Cath Or Percutaneous Cardiac Procedure
CARDIAC VALVE PROC W/O CATH	Cardiac Valve Procedures w/o Cardiac Catheterization
OTHER CARDIOTHORACIC PROC	Other Cardiothoracic Procedures
PCI & Cardiac catheter	
PERCUT CARDIOVASC PROC W/AMI	Percutaneous Cardiovascular Procedures w/ AMI
PERCUT CARDIOVASC W/O AMI	Percutaneous Cardiovascular Procedures w/o AMI
CARD CATHET EXC ISCHEMIA	Cardiac Catheterization w/ Circ Disord Exc Ischemic Heart Disease
CARD CATHET W/ISCHEMIA	Cardiac Catheterization for Ischemic Heart Disease
Other cardiac disease	
OTH CIRCULATORY SYSTEM DIAG	Other Circulatory System Diagnoses
HYPERTENSION	Hypertension
PERIPHERAL & OTH VASC DIS	Peripheral & Other Vascular Disorders
ANGINA PECT & CORONARY ATH	Angina Pectoris & Coronary Atherosclerosis
CARD ARRHYTHMIA & CONDUCTION	Cardiac Arrhythmia & Conduction Disorders
Pulmonary vascular	
PULMONARY EMBOLISM	Pulmonary Embolism
MAJOR CHEST & RESP TRAUMA	Major Chest & Respiratory Trauma
Respiratory failure	
TRACH W/DMV W EXTEN PROC	Tracheostomy W Long Term Mechanical Ventilation W Extensive Procedure
TRACH W/DMV W/O ENTEN PROC	Tracheostomy W Long Term Mechanical Ventilation W/O Extensive Procedure
PULMONARY EDEMA & RESP FAIL	Pulmonary Edema & Respiratory Failure
Respiratory infection	
CYSTIC FIBROSIS	Cystic Fibrosis - Pulmonary Disease
MAJOR RESPIRATORY INFECTIONS	Major Respiratory Infections & Inflammations
OTHER PNEUMONIA	Other Pneumonia
CHRONIC OBSTRUCTIVE PULM DIS	Chronic Obstructive Pulmonary Disease
Systemic infection	
INFECT & PARASITIC DISEASE	Infectious & Parasitic Diseases Including HIV W O.R. Procedure
POST-OP/TRAUMA INFECT PROC	Post-Op,Post-Trauma, Other Device Infections W O.R. Procedure
SEPTICEMIA & DISSEM INFECT	Septicemia & Disseminated Infections
OTH INFECT & PARASITIC DIS	Other Infectious & Parasitic Diseases
POST-OP/POST-TRAUM INFEC	Post-Operative, Post-Traumatic, Other Device Infections
CELLULITIS & OTHER BACT INF	Cellulitis & Other Bacterial Skin Infections
KIDNEY/URIN TRACT INFECT	Kidney & Urinary Tract Infections
Cerebrovascular	
EXTRACRANIAL VASCULAR PROC	Extracranial Vascular Procedures
INTRACRANIAL HEMORRHAGE	Intracranial Hemorrhage

© 2022 Liu K et al. *JAMA Network Open.*
Abbreviations	APR-DRG
HEAD TRAUMA W COMA >1 HR	Head Trauma w/ Coma > 1 Hr or Hemorrhage
CVA W INFARCT	CVA & Precerebral Occullusion w/ Infarct
CRANIO TOMY EXC FOR TRAUMA	Craniotomy Except for Trauma

Cranial nerve

Abbreviations	APR-DRG
PERIPHERAL & CRANIAL NERV	Peripheral, Cranial & Autonomic Nerve Disorders
DEGENERATIVE NERV SYST DIS	Degenerative Nervous System Disorders Exc Mult Sclerosis
SEIZURE	Seizure
OTH DISORDERS NERVOUS SYS	Other Disorders of Nervous System
MIGRAINE & OTHER HEADACHE	Migraine & Other Headaches

Hepatobiliary surgery

Abbreviations	APR-DRG
LIVER TRANSPLANT	Liver Transplant
OTH HEPATOBILI/PANCREAS PROC	Other Hepatobiliary, Pancreas & Abdominal Procedures
MAJ PANCREAS/LIVER/SHUNT PROC	Major Pancreas, Liver & Shunt Procedures
MAJOR BILIARY TRACT PROC	Major Biliary Tract Procedures

Hepatobiliary disease

Abbreviations	APR-DRG
MALIGNANCY-HEPATOBILIA SYS	Malignancy of Hepatobiliary System & Pancreas
HEPATIC COMA/OTH MAJ LIV DIS	Hepatic Coma & Other Major Acute Liver Disorders
OTHER DISORDERS OF LIVER	Other Disorders Of The Liver
ALCOHOLIC LIVER DISEASE	Alcoholic Liver Disease

Gastrointestinal surgery

Abbreviations	APR-DRG
MAJ SMALL & LARGE BOWEL PROC	Major Small & Large Bowel Procedures
MAJ STOM, ESOPH,DUOD PROC	Major Stomach, Esophageal & Duodenal Procedures
OTH SMALL & LARGE BOWEL PROC	Minor Small & Large Bowel Procedures

Joint replacement

Abbreviations	APR-DRG
HIP JOINT REPLACEMENT	Hip Joint Replacement
KNEE JOINT REPLACEMENT	Knee Joint Replacement

Other orthopeadic surgery

Abbreviations	APR-DRG
AMPUTATION OF LOWER LIMB	Amputation of Lower Limb Except Toes
HIP & FEMUR PROC NONTRAUMA	Hip & Femur Procedures for Non-Trauma Except Joint Replacement
HIP & FEMUR PROC TRAUM	Hip & Femur Procedures for Trauma Except Joint Replacement
SHOULDER,UP ARM,FOREARM PROC	Shoulder, Upper Arm & Forearm Procedures
KNEE & LOWER LEG PROC	Knee & Lower Leg Procedures Except Foot

Hematology and immunology

Abbreviations	APR-DRG
BONE MARROW TRANSPLANT	Bone Marrow Transplant
ACUTE LEUKEMIA	Acute Leukemia
LYMPH/MYELO/NON-AC LEUK	Lymphoma & Non-acute Leukemia
MAJ HEMATOLOGIC/IMMUNOL DX	Major Hematologic/Immunologic Diag Exc Sickle Cell Crisis & Coagul
OTHER ANEMIA/BLOOD DISORD	Other Anemia & Disorders Of Blood & Blood Forming Organs

© 2022 Liu K et al. *JAMA Network Open.*
eTable 16. Significant Interactions Between 6 Important Predictors and Disease in Meta-Regression and Their Verification

OR change is calculated by the OR of target predictor when moderators is happened dividing by the OR of target predictor in remaining patients and subtract 100%. In subgroup analysis, when target factor is age, exposed group contains patients with age>65, unexposed group contains patients with age<45; when target factor is BMI or pulse, unexposed group contains patients with BMI:18.5-25 and pulse: 50-80 respectively; when target factor is lab test, exposed group contains patients with abnormal result, unexposed group contains patients with normal result. Moderators significantly (p ≤ 0.05) verified by subgroup model, subgroup analysis and both are marked with #, †, and * respectively. Significant interactions or interactions we suggest need to be concerned are shown in bold.

Target factor	Effect change in meta	Class of moderator	Detail of moderator	Subgroup model	Subgroup analysis				
				OR (se) OR change (p-value) Risk in exposed group	Risk in unexposed group OR (se) OR change (p-value)				
Age ↑	*Cardiac surgery	Cardiac Valve, Coronary Bypass, Cardiopulmonary Procedures	1.430 (0.140) 31.6% (0.0052) 31.0% (298/960) 13.5% (33/244) 2.878 (0.575) 130.1% (0.0000)						
Age ↑	Other cardiovascular	Hypertension, Chest Pain, Angina Pectoris & Coronary Atherosclerosis, Cardiac Arrhythmia & Conduction Disorders, PCI w/o AMI	1.093 (0.061) -0.7% (0.8860) 10.7% (350/3273) 8.8% (63/717) 1.243 (0.178) -10.3% (0.4618)						
Age ↑	Pregnancy	Cesarean and Vaginal Delivery, Other Antepartum Diagnoses	0.899 (0.216) -20.8% (0.2925) 4.6% (4/87) 5.8% (35/599) 0.777 (0.420) -35.0% (0.4279)						
Age ↑	Delivery	Cesarean and Vaginal Delivery	0.968 (0.269) -15.3% (0.4722) 5.9% (4/68) 7.2% (32/443) 0.803 (0.439) -33.3% (0.4607)						
Age ↑	Cerebrovascular	Head Trauma with/ Commaor Hemorrhage; Intracranial Hemorrhage; Concussion, Closed Skull FX Nos; CVA & Precerebral Occlusion w/ Infarct	1.125 (0.105) 2.2% (0.8523) 7.5% (49/652) 4.0% (15/379) 1.972 (0.596) 42.3% (0.2461)						
Age ↑	Intracranial Hemorrhage	All Intracranial Hemorrhage admission (contain insignificant admission)	1.128 (0.122) 2.1% (0.8893) 8.9% (61/686) 4.5% (15/337) 2.095 (0.621) 51.6% (0.1630)						
Age ↓	*Infection	Cellulitis & Other Bacterial Skin Infections, Cystic Fibrosis, Infectious & Parasitic Diseases, HIV, Respiratory Infections or Pneumonia, Post-Operative, Post-Traumatic, Other Device Infections	0.978 (0.038) -13.3% (0.0005) 12.5% (227/1823) 15.7% (475/3026) 0.764 (0.066) -53.2% (0.0000)						
Age ↓	*Infection (Exc HIV and Cystic Fibrosis)	Cellulitis & Other Bacterial Skin Infections, Infectious & Parasitic Diseases, Respiratory Infections or Pneumonia, Post-Operative, Post-Traumatic, Other Device Infections	0.985 (0.038) -12.1% (0.0021) 12.5% (227/1818) 14.6% (314/2148) 0.833 (0.078) -44.7% (0.0000)						
Age ↓	*Septicemia & Disseminated Infections	Septicemia & Disseminated Infections	0.905 (0.065) -18.6% (0.0044) 13.4% (103/771) 16.6% (150/906) 0.777 (0.108) -46.1% (0.0000)						
Target factor	Effect change in meta	Class of moderator	Detail of moderator	Subgroup model	Subgroup analysis				
---------------	-----------------------	--------------------	---------------------	---------------	------------------				
				OR (se)	OR change (p-value)	Risk in exposed group	Risk in unexposed group	OR (se)	OR change (p-value)
Age	↓	*Major hematological disease	Bone Marrow Transplant, Acute Leukemia, Major Hematologic/Immunologic Diag Exc Sickle Cell Crisis & Coagul	0.833 (0.076)	-25.2% (0.0013)	12.3% (42/341)	17.0% (72/424)	0.687 (0.144)	-51.4% (0.0007)
Age	↓	*Bone Marrow Transplant	Bone Marrow Transplant	0.866 (0.110)	-21.9% (0.0467)	12.2% (12/98)	29.8% (42/141)	0.329 (0.118)	-76.7% (0.0001)
Age	↓	Orthopedic surgery	Foot & Toe Procedures; Knee & Lower Leg Procedures; Amputation of Lower Limb; Tendon, Muscle & Other Soft Tissue Procedures; Other Musculoskeletal System & Connective Tissue Procedures	1.037 (0.125)	-6.1% (0.5623)	10.3% (43/417)	5.6% (39/696)	1.937 (0.446)	41.3% (0.1378)
Age	↓	Orthopedic surgery	Foot & Toe Procedures; Tendon, Muscle & Other Soft Tissue Procedures; Amputation of Lower Limb	1.016 (0.192)	-8.0% (0.5846)	11.8% (16/136)	12.5% (26/208)	0.933 (0.316)	-32.9% (0.2411)
Age	↓	Gastrointestinal surgery	Small & Large Bowel Procedures, Major Biliary Tract Procedures	0.989 (0.112)	-10.5% (0.3006)	17.9% (79/442)	10.7% (36/338)	1.826 (0.394)	33.4% (0.1870)
Age	↓	Gastrointestinal surgery	Small & Large Bowel Procedures, Major Biliary Tract Procedures; Stomach, Esophageal & Duodenal Procedures (contain insignificant admission)	0.985 (0.099)	-11.3% (0.2202)	16.6% (102/616)	11.4% (50/438)	1.540 (0.285)	12.4% (0.5363)
Serum calcium	↑	*Cardiac surgery	Cardiac Valve, Coronary Bypass, Cardiothoracic Procedures	4.404 (0.761)	290.1% (0.0000)	36.1% (365/1010)	16.7% (234/1401)	2.822 (0.274)	105.9% (0.0000)
Serum calcium	↑	*Mechanical Ventilation	Mechanical Ventilation	3.163 (0.679)	160.7% (0.0000)	69.9% (86/123)	37.6% (56/149)	3.860 (1.001)	167.5% (0.0002)
Serum calcium	↑	*Burn	Extensive 3rd Degree Burns, Full Thickness Burns	2.976 (0.969)	145.8% (0.0089)	25.0% (41/164)	9.5% (23/241)	3.159 (0.897)	117.2% (0.0065)
Serum calcium	↑	†Major surgery	Major Cranial/Facial Bone Procedures; Major Stomach, Esophageal & Duodenal Procedures; Major Respiratory & Chest Procedures; Major Small & Large bowel Procedures	1.676 (0.353)	38.1% (0.1517)	18.2% (169/928)	9.7% (122/1262)	2.081 (0.266)	44.7% (0.0046)
Serum calcium	↑	Percutaneous Cardiovascular Procedures w/o AMI	Percutaneous Cardiovascular Procedures w/o AMI	1.329 (0.413)	9.0% (0.8997)	8.8% (24/272)	7.4% (70/946)	1.211 (0.299)	-17.4% (0.4413)
Serum calcium	↓	*Cardiac Catheterization for Ischemic Heart Disease	Percutaneous Cardiovascular Procedures w/ AMI, Cardiac Catheterization for Ischemic Heart Disease	0.414 (0.115)	-66.4% (0.0001)	4.3% (9/210)	5.9% (68/1144)	0.709 (0.257)	-51.6% (0.0462)
Serum calcium	↓	Other cardiovascular admission	Cardiac Congenital & Valvular Disorders; Chest Pain; Hypertension; Acute Myocardial Infarction; Cardiac Catheterization w/ Circ Disord Exc Ischemic Heart Disease; Angina Pectoris & Coronary Atherosclerosis; Heart Failure; Perm	1.285 (0.303)	5.3% (0.9105)	12.2% (74/606)	9.3% (331/3569)	1.361 (0.186)	-8.0% (0.5516)
Target factor	Effect change in meta	Class of moderator	Detail of moderator	Subgroup model	Subgroup analysis				
---------------	-----------------------	--------------------	--------------------	----------------	------------------				
Serum calcium	↓	Other cardiovascular (EXC Cardiac Arrhythmia & Conduction Disorders)	Cardiac Pacemaker Implant w/o AMI, Heart Failure or Shock; Other Circulatory System Diagnoses; Cardiac Arrhythmia & Conduction Disorders	1.031 (0.245)	14.2% (63/443)	12.7% (295/2328)	1.143 (0.171)	-23.9% (0.0723)	
Serum calcium	↓	*Liver disease	Alcohol Liver Disease; Hepatic Coma & Other Major Acute Liver Disoders; Other Disorders Of The Liver; Malignancy of Hepatobiliary System & Pancreas; Other Hepatobiliary, Pancreas & Abdominal Procedures	0.545 (0.136)	9.2% (91/986)	11.3% (93/820)	0.795 (0.124)	-46.6% (0.0001)	
Serum calcium	↓	*Orthopedic	Fracture of Pelvis or Dislocation of Hip; Other Musculoskeletal System & Connective Tissue Diagnoses; Hip Joint Replacement; Fracture or Dislocation; Knee & Lower Leg Procedures Except Foot; Hip & Femur Procedures; Shoulder, Upper Arm & Forearm Procedures; Intervertebral Disc Excision & Decompression; Other Musculoskeletal System & Connective Tissue Procedures; Dorsal & Lumbar Fusion Proc Except for Curvature of Back	0.846 (0.126)	5.7% (211/3715)	5.7% (242/4233)	0.993 (0.096)	-36.3% (0.0000)	
Serum calcium	↓	*Orthopedic (EXC lumbar & back)	Fracture of Pelvis or Dislocation of Hip; Other Musculoskeletal System & Connective Tissue Diagnoses; Hip Joint Replacement; Fracture or Dislocation Except Back; Knee Joint Replacement; Knee & Lower Leg Procedures Except Foot; Hip & Femur Procedures; Shoulder, Upper Arm & Forearm Procedures; Other Musculoskeletal System & Connective Tissue Procedures	0.720 (0.119)	5.3% (161/3025)	5.8% (202/3512)	0.921 (0.100)	-40.4% (0.0000)	
Serum calcium	↓	*Respiratory diagnoses	COPD; Asthma; Pneumonia; Embolism; Edema & Respiratory Failure; Trauma; Cystic Fibrosis	0.850 (0.138)	10.7% (111/1039)	10.0% (338/3376)	1.075 (0.124)	-28.1% (0.0053)	
Target factor	Effect change in meta	Class of moderator	Detail of moderator	Subgroup model	Subgroup analysis				
---------------	-----------------------	--------------------	---------------------	----------------	------------------				
Serum calcium	↓	*Alimentary tract diseases	Gastrointestinal Vascular Insufficiency; Diverticulitis & Diverticulosis; Other & Unspecified Gastrointestinal Hemorrhage; Abdominal Pain; Peptic Ulcer & Gastritis; Inflammatory Bowel Disease; Major Esophageal Disorders; Other Digestive System Diagnoses; Major Gastrointestinal & Peritoneal Infections; Other Esophageal Disorders; Intestinal Obstruction; Digestive Malignancy; Non-Bacterial Gastroenteritis, Nausea & Vomiting	OR (se) 0.585 (0.121)	OR change (p-value) -53.5% (0.0001) Risk in exposed group 4.2% (93/2198) Risk in unexposed group 4.8% (149/3127) OR (se) 0.883 (0.119)	OR change (p-value) -41.8% (0.0001)			
Serum calcium	↓	Abuse	Cocaine, Opioid, Drug & Alcohol	OR (se) 0.870 (0.238)	OR change (p-value) -28.8% (0.1834) Risk in exposed group 2.1% (3/141) Risk in unexposed group 2.7% (16/591) OR (se) 0.781 (0.497)	OR change (p-value) -46.5% (0.3260)			
Serum calcium	↓	Cranial nerve	Migraine & Other Headaches; Viral Meningitis; Peripheral, Cranial & Autonomic Nerve Disorders; Multiple Sclerosis & Other Demyelinating Diseases; Seizure	OR (se) 1.181 (0.372)	OR change (p-value) -3.3% (0.7967) Risk in exposed group 6.6% (24/362) Risk in unexposed group 4.8% (71/1493) OR (se) 1.422 (0.347)	OR change (p-value) -2.3% (0.9257)			
Serum calcium	↓	Mental disease	Acute Anxiety & Delirium States; Depression; Schizophrenia; Bipolar Disorders; Organic Mental Health Disturbances	OR (se) 0.947 (0.243)	OR change (p-value) -22.4% (0.2789) Risk in exposed group 4.8% (3/63) Risk in unexposed group 2.8% (18/651) OR (se) 1.758 (1.122)	OR change (p-value) 20.9% (0.7600)			
Serum calcium	↓	Mental disease	All Mental disease admission (contain insignificant admission)	OR (se) 0.963 (0.271)	OR change (p-value) -21.2% (0.3351) Risk in exposed group 4.2% (3/71) Risk in unexposed group 3.0% (21/709) OR (se) 1.445 (0.911)	OR change (p-value) -0.6% (0.9926)			
Serum calcium	↓	*Infection	Viral Meningitis; Kidney & Urinary Tract Infections; Respiratory Infections; Cystic Fibrosis; COPD; Major Gastrointestinal & Peritoneal Infections; Non-bacterial Infections of Nervous System; Osteomyelitis, Septic Arthritis & Other Musculoskeletal Infections; Cellulitis & Other Bacterial Skin Infections; Other Infectious & Parasitic Diseases	OR (se) 0.640 (0.103)	OR change (p-value) -49.9% (0.0000) Risk in exposed group 8.4% (117/1385) Risk in unexposed group 10.1% (405/4028) OR (se) 0.825 (0.091)	OR change (p-value) -45.8% (0.0000)			
Blood glucose	↑	Major Pancreas, Liver & Shunt Procedures	Liver Transplant; Major Pancreas, Liver & Shunt Procedures	OR (se) 2.357 (0.641)	OR change (p-value) 68.0% (0.0774) Risk in exposed group 40.1% (61/152) Risk in unexposed group 23.0% (158/686) OR (se) 2.240 (0.423)	OR change (p-value) 42.4% (0.0646)			
Blood glucose	↑	*Gastrointestinal surgery	Small & Large Bowel Procedures; Hernia Procedures; Major Stomach, Esophageal & Duodenal Procedures; Procedures for Obesity; Peritoneal Adhesiolsis; Cholecystectomy Except Laparoscopic; Major Biliary Tract Procedures; Other Digestive System & Abdominal Procedures	OR (se) 2.416 (0.609)	OR change (p-value) 73.5% (0.0392) Risk in exposed group 24.3% (90/371) Risk in unexposed group 10.7% (279/2608) OR (se) 2.674 (0.365)	OR change (p-value) 71.6% (0.0001)			

© 2022 Liu K et al. JAMA Network Open.
Target factor	Effect change in meta	Class of moderator	Detail of moderator	Subgroup model	Subgroup analysis			
Blood glucose	↑	Uterine & Adnexa Procedures	Uterine & Adnexa Procedures; Pelvic Evisceration, Radical Hysterectomy & Radical GYN Procs	1.710 (0.395) 19.0% (0.5301) 17.7% (14/79) 7.9% (42/529) 2.497 (0.838) 57.5% (0.1775)	Risk in exposed group	Risk in unexposed group	OR (se)	OR change (p-value)
Blood glucose	↑	Uterine & Adnexa Procedures	All Uterine & Adnexa Procedures (contain insignificant admission)	2.027 (0.658) 42.2% (0.3515) 12.3% (20/162) 5.4% (69/1279) 2.470 (0.664) 56.4% (0.0984)	Risk in exposed group	Risk in unexposed group	OR (se)	OR change (p-value)
Blood glucose	↑	Urological surgery	Major Bladder Procedures; Kidney & Urinary Tract Procedures	1.680 (0.484) 17.8% (0.6717) 25.9% (49/189) 16.1% (150/932) 1.825 (0.344) 15.2% (0.4586)	Risk in exposed group	Risk in unexposed group	OR (se)	OR change (p-value)
Blood glucose	↑	*Joint Replacement	Hip Joint Replacement; Knee Joint Replacement 2.876 (0.864) 102.4% (0.0294) 11.5% (30/261) 5.0% (157/3167) 2.490 (0.524) 59.8% (0.0276)	Risk in exposed group	Risk in unexposed group	OR (se)	OR change (p-value)	
Blood glucose	↓	Nervous disorder (non-surgery)	Vertigo & Other Labyrinth Disorders; Syncope & Collapse; Transient Ischemia; Multiple Sclerosis & Other Demyelinating Diseases; Degenerative Nervous System Disorders; Migraine & Other Headaches; Seizure; Other Disorders of Nervous System	0.937 (0.261) -34.6% (0.0908) 6.0% (28/469) 3.8% (94/2451) 1.592 (0.353) -0.1% (0.9981)	Risk in exposed group	Risk in unexposed group	OR (se)	OR change (p-value)
Blood glucose	↓	#Cardiovascular condition (non-surgery)	Hypertension; Cardiac Arrhythmia & Conduction Disorders; Chest Pain; Other Circulatory System Diagnoses; Angina Pectoris & Coronary Atherosclerosis; Cardiac Catheterization for Ischemic Heart Disease	0.751 (0.191) -47.5% (0.0090) 7.4% (31/421) 5.2% (141/2693) 1.439 (0.296) -9.5% (0.6310)	Risk in exposed group	Risk in unexposed group	OR (se)	OR change (p-value)
BMI>30	↑	Respiratory System	Mechanical Ventilation; Pulmonary Edema & Respiratory Failure; Respiratory Infections or Pneumonia; Cystic Fibrosis; Major Chest & Respiratory Trauma; Respiratory Malignancy; COPD	0.978 (0.221) -29.5% (0.1018) 16.1% (194/1208) 14.0% (222/1589) 1.178 (0.126) -14.2% (0.1702)	Risk in exposed group	Risk in unexposed group	OR (se)	OR change (p-value)
BMI 25-30	↑	Respiratory System	Mechanical Ventilation; Pulmonary Edema & Respiratory Failure; Respiratory Infections or Pneumonia; Cystic Fibrosis; Major Chest & Respiratory Trauma; Respiratory Malignancy; COPD	1.276 (0.270) 8.3% (0.7817) 15.1% (128/850) 14.0% (222/1589) 1.092 (0.131) -6.2% (0.6110)	Risk in exposed group	Risk in unexposed group	OR (se)	OR change (p-value)
BMI>25	↑	Respiratory System	Mechanical Ventilation; Pulmonary Edema & Respiratory Failure; Respiratory Infections or Pneumonia; Cystic Fibrosis; Major Chest & Respiratory Trauma; Respiratory Malignancy; COPD	1.131 (0.203) -10.2% (0.5003) 15.6% (322/2058) 14.0% (222/1589) 1.142 (0.108) -11.0% (0.2399)	Risk in exposed group	Risk in unexposed group	OR (se)	OR change (p-value)
BMI>30	↑	Infection	Septicemia & Disseminated Infections; Infectious & Parasitic Diseases Including HIV W O.R. Procedure; Kidney & Urinary Tract Infections; Cystic Fibrosis; COPD; Respiratory Infections or Pneumonia	1.685 (0.264) 25.7% (0.1868) 15.6% (320/2048) 13.5% (318/2355) 1.186 (0.102) -14.7% (0.0854)	Risk in exposed group	Risk in unexposed group	OR (se)	OR change (p-value)

© 2022 Liu K et al. JAMA Network Open.
Target factor	Effect change in meta	Class of moderator	Detail of moderator	Subgroup model	Subgroup analysis				
BMI 25-30	↑	Infection	Septicemia & Disseminated Infections; Infectious & Parasitic Diseases Including HIV W.O.R. Procedure; Kidney & Urinary Tract Infections; Cystic Fibrosis; COPD; Respiratory Infections or Pneumonia	OR (se) 1.444 (0.231) OR change (p-value) 22.8% (0.2263)	Risk in exposed group 12.9% (201/1561) Risk in unexposed group 13.5% (318/2355) OR (se) 0.947 (0.092) OR change (p-value) -20.4% (0.0276)				
BMI>25	↑	Infection	Septicemia & Disseminated Infections; Infectious & Parasitic Diseases Including HIV W.O.R. Procedure; Kidney & Urinary Tract Infections; Cystic Fibrosis; COPD; Respiratory Infections or Pneumonia	OR (se) 1.444 (0.193) OR change (p-value) 16.2% (0.3051)	Risk in exposed group 14.4% (521/3609) Risk in unexposed group 13.5% (318/2355) OR (se) 1.081 (0.083) OR change (p-value) -17.2% (0.0233)				
BMI>30	↑	Major Hematologic/ Immunologic Diag	Acute Leukemia; Lymphatic & Other Malignancies & Neoplasms Of Uncertain Behavior; Other Anemia & Disorders Of Blood & Blood Forming Organs; Lymphoma; Major Hematologic/Immunologic Diag Exc Sickle Cell Crisis & Coagul	OR (se) 1.042 (0.336) OR change (p-value) -23.6% (0.2881)	Risk in exposed group 13.5% (65/483) Risk in unexposed group 9.1% (43/475) OR (se) 1.562 (0.325) OR change (p-value) 18.6% (0.4184)				
BMI 25-30	↑	Major Hematologic/ Immunologic Diag	Acute Leukemia; Lymphatic & Other Malignancies & Neoplasms Of Uncertain Behavior; Other Anemia & Disorders Of Blood & Blood Forming Organs; Lymphoma; Major Hematologic/Immunologic Diag Exc Sickle Cell Crisis & Coagul	OR (se) 1.367 (0.348) OR change (p-value) 16.5% (0.6274)	Risk in exposed group 11.2% (50/445) Risk in unexposed group 9.1% (43/475) OR (se) 1.272 (0.279) OR change (p-value) 13.4% (0.5709)				
BMI>25	↑	Major Hematologic/ Immunologic Diag	Acute Leukemia; Lymphatic & Other Malignancies & Neoplasms Of Uncertain Behavior; Other Anemia & Disorders Of Blood & Blood Forming Organs; Lymphoma; Major Hematologic/Immunologic Diag Exc Sickle Cell Crisis & Coagul	OR (se) 1.243 (0.321) OR change (p-value) -0.8% (0.8788)	Risk in exposed group 12.4% (115/928) Risk in unexposed group 9.1% (43/475) OR (se) 1.421 (0.268) OR change (p-value) 15.2% (0.4590)				
BMI>30	↑	Leukemia	Admission and history of leukemia	OR (se) 1.713 (0.486) OR change (p-value) 26.1% (0.4849)	Risk in exposed group 16.9% (112/664) Risk in unexposed group 10.3% (73/710) OR (se) 1.770 (0.286) OR change (p-value) 34.9% (0.0691)				
BMI 25-30	↑	*Leukemia	Admission and history of leukemia	OR (se) 2.172 (0.555) OR change (p-value) 88.7% (0.0189)	Risk in exposed group 17.5% (120/685) Risk in unexposed group 10.3% (73/710) OR (se) 1.853 (0.295) OR change (p-value) 68.8% (0.0013)				
BMI>25	↑	†Leukemia	Admission and history of leukemia	OR (se) 1.482 (0.475) OR change (p-value) 36.1% (0.4157)	Risk in exposed group 17.2% (232/1349) Risk in unexposed group 6.1% (4/66) OR (se) 3.219 (1.677) OR change (p-value) 222.0% (0.0260)				
BMI>30	↑	Liver Transplant	Liver Transplant	OR (se) 1.643 (0.298) OR change (p-value) 20.9% (0.3438)	Risk in exposed group 63.1% (77/122) Risk in unexposed group 44.6% (33/74) OR (se) 2.126 (0.637) OR change (p-value) 61.9% (0.1101)				
BMI 25-30	↑	Liver Transplant	Liver Transplant	OR (se) 1.226 (0.230) OR change (p-value) 4.7% (0.8778)	Risk in exposed group 42.4% (42/99) Risk in unexposed group 44.6% (33/74) OR (se) 0.915 (0.284) OR change (p-value) -18.5% (0.5123)				
BMI>25	↑	Liver Transplant	Liver Transplant	OR (se) 1.608 (0.329) OR change (p-value) 28.7% (0.2736)	Risk in exposed group 53.8% (119/221) Risk in unexposed group 44.6% (33/74) OR (se) 1.449 (0.391) OR change (p-value) 17.7% (0.5495)				
Target factor	Effect change in meta	Class of moderator	Detail of moderator	Subgroup model	Subgroup analysis				
---------------	-----------------------	--------------------	---------------------	----------------	------------------				
				OR (se)	OR change (p-value)	Risk in exposed group	Risk in unexposed group	OR (se)	OR change (p-value)
BMI>30	↑	Cerebrovascular	Head Trauma; CVA & Precerebral Occlusion w/ Infarct; Intracranial Hemorrhage	1.380 (0.401)	1.2% (0.9228)	6.8% (34/497)	5.7% (25/441)	1.222 (0.332)	-7.4% (0.7778)
BMI 25-30	↑	Cerebrovascular	Head Trauma; CVA & Precerebral Occlusion w/ Infarct; Intracranial Hemorrhage	1.535 (0.435)	31.4% (0.4190)	7.4% (34/460)	5.7% (25/441)	1.328 (0.362)	18.4% (0.5378)
BMI>25	↑	Cerebrovascular	Head Trauma; CVA & Precerebral Occlusion w/ Infarct; Intracranial Hemorrhage	1.614 (0.465)	29.9% (0.4266)	7.1% (68/957)	5.7% (25/441)	1.273 (0.307)	3.0% (0.9027)
BMI>30	↓	Uterine & Adnexa Procedures	Uterine & Adnexa Procedures; Pelvic Evisceration, Radical Hysterectomy & Radical GYN Proc; Other Female Reproductive System & Related Procedures	1.373 (0.479)	0.7% (0.8863)	7.9% (53/670)	5.5% (16/293)	1.487 (0.438)	12.4% (0.6931)
BMI 25-30	↓	Uterine & Adnexa Procedures	Uterine & Adnexa Procedures; Pelvic Evisceration, Radical Hysterectomy & Radical GYN Proc; Other Female Reproductive System & Related Procedures	0.773 (0.199)	-34.2% (0.0746)	5.3% (16/303)	5.5% (16/293)	0.965 (0.351)	-14.3% (0.6728)
BMI>25	↓	Uterine & Adnexa Procedures	Uterine & Adnexa Procedures; Pelvic Evisceration, Radical Hysterectomy & Radical GYN Proc; Other Female Reproductive System & Related Procedures	1.309 (0.515)	5.7% (0.9770)	7.1% (69/973)	5.5% (16/293)	1.321 (0.378)	6.7% (0.8218)
Pulse>100	↑	*Liver disease	Alcoholic Liver Disease; Malignancy of Hepatobiliary System & Pancreas; Malignancy of Hepatobiliary System & Pancreas; Hepatic Coma & Other Major Acute Liver Disorders	2.942 (0.936)	113.1% (0.0313)	17.6% (29/165)	8.0% (72/898)	2.446 (0.584)	65.7% (0.0368)
Pulse 80-100	↑	Liver disease	Alcoholic Liver Disease; Malignancy of Hepatobiliary System & Pancreas; Malignancy of Hepatobiliary System & Pancreas; Hepatic Coma & Other Major Acute Liver Disorders	1.290 (0.313)	16.5% (0.6116)	9.8% (57/582)	8.0% (72/898)	1.246 (0.232)	5.4% (0.7776)
Pulse>80 or <50	↑	Liver disease	Alcoholic Liver Disease; Malignancy of Hepatobiliary System & Pancreas; Malignancy of Hepatobiliary System & Pancreas; Hepatic Coma & Other Major Acute Liver Disorders	1.906 (0.464)	62.0% (0.0648)	11.9% (90/757)	8.0% (72/898)	1.548 (0.258)	23.3% (0.2127)
Pulse>100	↑	Cerebrovascular	Extracranial Vascular Procedures; Craniotomy Except for Trauma; Head Trauma	1.476 (0.422)	7.3% (0.9119)	9.2% (12/130)	5.6% (84/1487)	1.699 (0.549)	14.7% (0.6742)
Pulse 80-100	↑	Cerebrovascular	Extracranial Vascular Procedures; Craniotomy Except for Trauma; Head Trauma	0.916 (0.235)	-17.5% (0.3840)	5.7% (35/617)	5.6% (84/1487)	1.004 (0.208)	-14.8% (0.4439)
Pulse>80 or <50	↑	Cerebrovascular	Extracranial Vascular Procedures; Craniotomy Except for Trauma; Head Trauma	0.962 (0.201)	-18.7% (0.2667)	6.1% (47/773)	5.6% (84/1487)	1.081 (0.203)	-13.9% (0.4287)
Pulse>100	↑	*Cerebrovascular	All Cerebrovascular admission (contain insignificant admission)	2.594 (0.768)	89.9% (0.0494)	13.7% (31/226)	5.5% (134/2425)	2.718 (0.578)	87.1% (0.0038)

© 2022 Liu K et al. JAMA Network Open.
Target factor	Effect change in meta	Class of moderator	Detail of moderator	Subgroup model	Subgroup analysis			
				OR (se)	OR change (p-value)			
				Risk in exposed group	Risk in unexposed group	OR (se)	OR change (p-value)	
Pulse 80-100	↑ Cerebrovascular	All Cerebrovascular admission (contain insignificant admission)	1.199 (0.242)	7.7% (0.7773)	6.6% (69/1053)	5.5% (134/2425)	1.199 (0.183)	2.4% (0.8807)
Pulse>80 or <50	↑ Cerebrovascular	All Cerebrovascular admission (contain insignificant admission)	1.393 (0.257)	18.7% (0.4019)	7.9% (105/1334)	5.5% (134/2425)	1.461 (0.197)	17.4% (0.2423)
Pulse>100	↓ Cardiac surgery	Cardiac Valve; Coronary Bypass; Other Cardiothoracic Procedures	1.205 (0.402)	-11.0% (0.6174)	29.1% (23/79)	25.7% (378/1469)	1.185 (0.302)	-26.0% (0.2421)
Pulse 80-100	↓ ↑ Cardiac surgery	Cardiac Valve; Coronary Bypass; Other Cardiothoracic Procedures	0.967 (0.186)	-13.1% (0.4139)	24.2% (157/650)	25.7% (378/1469)	0.919 (0.101)	-25.9% (0.0078)
Pulse>80 or <50	↓ ↑ Cardiac surgery	Cardiac Valve; Coronary Bypass; Other Cardiothoracic Procedures	1.001 (0.182)	-14.7% (0.3434)	24.8% (183/737)	25.7% (378/1469)	0.953 (0.099)	-28.4% (0.0018)
Pulse>100	↓ ↑ Orthopedic Surgery	Joint Replacement; Amputation of Lower Limb Except Toes; Knee & Lower Leg Procedures Except Foot; Tendon, Muscle & Other Soft Tissue Procedures	1.156 (0.374)	-19.0% (0.4464)	5.8% (24/411)	6.0% (146/2434)	0.972 (0.221)	-35.8% (0.0543)
Pulse 80-100	↓ ↑ Orthopedic Surgery	Joint Replacement; Amputation of Lower Limb Except Toes; Knee & Lower Leg Procedures Except Foot; Tendon, Muscle & Other Soft Tissue Procedures	0.958 (0.176)	-15.0% (0.3257)	5.5% (109/1997)	6.0% (146/2434)	0.905 (0.118)	-24.8% (0.0325)
Pulse>80 or <50	↓ ↑ Orthopedic Surgery	Joint Replacement; Amputation of Lower Limb Except Toes; Knee & Lower Leg Procedures Except Foot; Tendon, Muscle & Other Soft Tissue Procedures	0.946 (0.172)	-21.0% (0.1714)	5.5% (133/2426)	6.0% (146/2434)	0.909 (0.112)	-29.1% (0.0063)
Pulse>100	↓ #Infection	COPD; Post-Operative, Post-Traumatic, Other Device Infections; Cellulitis & Other Bacterial Skin Infections	0.796 (0.225)	-44.2% (0.0286)	11.0% (37/337)	10.4% (158/1514)	1.058 (0.205)	-30.2% (0.0684)
Pulse 80-100	↓ #Infection	COPD; Post-Operative, Post-Traumatic, Other Device Infections; Cellulitis & Other Bacterial Skin Infections	0.738 (0.151)	-35.1% (0.0302)	9.7% (118/1219)	10.4% (158/1514)	0.920 (0.118)	-23.1% (0.0457)
Pulse>80 or <50	↓ #Infection	COPD; Post-Operative, Post-Traumatic, Other Device Infections; Cellulitis & Other Bacterial Skin Infections	0.799 (0.168)	-33.5% (0.0395)	10.1% (158/1567)	10.4% (158/1514)	0.962 (0.114)	-24.6% (0.0203)
Vancomycin	↑ #Gastrointestinal surgery	Peritoneal Adhesiolysis; Major Small & Large Bowel Procedures; Anal Procedures; Malfunction, Reaction & Complication Of G.I. Device Or Procedure; Major Stomach, Esophageal & Duodenal Procedures	4.515 (1.548)	203.4% (0.0027)	29.1% (57/196)	11.7% (215/1843)	3.105 (0.538)	61.3% (0.0064)
Vancomycin	↑ Skin Graft	Skin Graft for Skin & Subcutaneous Tissue Diagnoses; Full Thickness Burns W Skin Graft	3.008 (0.980)	98.6% (0.0556)	21.9% (23/105)	10.8% (48/446)	2.326 (0.654)	21.1% (0.4980)
Target factor	Effect change in meta	Class of moderator	Detail of moderator	Subgroup model	Subgroup analysis			
---------------	----------------------	--------------------	---------------------	----------------	------------------			
Vancomycin	↑	*Orthopedic Surgery	Musculoskeletal & Other Procedures For Multiple Significant Trauma; Hip & Femur Procedures Except Joint Replacement; Amputation of Lower Limb Except Toes; Shoulder, Upper Arm & Forearm Procedures; Knee & Lower Leg Procedures Except Foot	2.874 (0.719)	90.4% (0.0196)	Risk in exposed group		
			Risk in unexposed group	12.4% (78/630)	5.4% (116/2148)	OR (se)		
			OR change (p-value)	2.475 (0.381)	29.6% (0.0975)			
Vancomycin	↑	*Infection	Post-Op, Post-Trauma, Other Device Infections; Infectious & Parasitic Diseases	3.761 (1.033)	151.3% (0.0005)	Risk in exposed group		
			Risk in unexposed group	22.4% (244/1087)	11.7% (74/632)	OR (se)		
			OR change (p-value)	2.183 (0.313)	18.3% (0.2513)			
Vancomycin	↓	†Cardiac Procedure or Device	Cardiac Defibrillator & Heart Assist Anomaly; Cardiac Valve; Coronary Bypass; Other Cardiothoracic Procedures; Perm Cardiac Pacemaker Implant w/o AMI, Heart Failure or Shock	1.325 (0.225)	-15.5% (0.3036)	Risk in exposed group		
			Risk in unexposed group	20.8% (260/1250)	23.5% (357/1520)	OR (se)		
			OR change (p-value)	0.856 (0.079)	-56.1% (0.0000)			
Vancomycin	↓	†Joint Replacement	Hip Joint Replacement; Knee Joint Replacement	1.319 (0.350)	-15.1% (0.4411)	Risk in exposed group		
			Risk in unexposed group	4.7% (94/1999)	6.5% (93/1429)	OR (se)		
			OR change (p-value)	0.709 (0.107)	-66.6% (0.0000)			
eTable 17. Significant Interactions Between 6 Important Predictors and Disease in Meta-Regression (Top-5 Mainly) and Their Verification

Direction of effect change in meta is based on result of meta-regression in general patients. OR change is calculated by the OR of target predictor when moderators is happened in controlled population dividing by the OR of target predictor in remaining patients of controlled population and subtract 100%. In subgroup analysis, when target factor is age, exposed group contains patients with age>65, unexposed group contains patients with age<45; when target factor is BMI or pulse, unexposed group contains patients with BMI:18.5-25 and pulse: 50-80 respectively; when target factor is lab test, exposed group contains patients with abnormal result, unexposed group contains patients with normal result. Moderators significantly (p≤0.05) verified by subgroup model, subgroup analysis and both are marked with #, †, and * respectively. Significant interactions or interactions we suggest need to be concerned are shown in bold.

Target factor	Effect change in meta	Moderator	Controlled population	% of sample account for	Subgroup model	Risk in exposed group	Risk in unexposed group	Subgroup analysis	OR (se)	OR change (p-value)	OR (se)	OR change (p-value)
Age	↑	Aldesleukin	#General	-	2.059 (0.307)	87.1% (0.0000)	58.8% (10/17)		1.286 (0.720)	-8.2% (0.8790)		
			#Chemotherapy	98.50%	2.032 (0.303)	43.5% (0.0512)	58.8% (10/17)		1.286 (0.720)	-68.9% (0.0633)		
Age	↑	Aminocaproic acid	*General	-	1.472 (0.148)	34.4% (0.0040)	27.0% (199/737)		2.689 (0.605)	106.3% (0.0015)		
			Major cardiac surgery	76.80%	1.684 (0.215)	45.2% (0.0602)	29.4% (169/574)		3.728 (1.071)	78.8% (0.1793)		
Age	↑	Tranexamic acid	General	-	1.016 (0.134)	-7.5% (0.5091)	11.6% (92/792)		1.793 (0.535)	30.3% (0.3777)		
			Joint replacement	54.70%	1.014 (0.204)	0.8% (0.9868)	4.0% (17/428)		3.640 (3.770)	26.7% (0.8328)		
			Major cardiac surgery	25.90%	1.020 (0.176)	-42.3% (0.0068)	26.9% (58/216)		2.508 (1.162)	-20.2% (0.6644)		
Age	↑	Prochlorperazine	†General	-	1.256 (0.089)	14.7% (0.0621)	19.7% (291/1474)		2.682 (0.430)	108.8% (0.0000)		
			Major cardiac surgery	46.40%	1.414 (0.158)	-36.6% (0.0169)	29.9% (215/719)		3.093 (0.780)	2.9% (0.9520)		
			Respiratory & Chest Procedures	9.80%	1.164 (0.160)	5.5% (0.7886)	7.9% (11/140)		1.933 (1.292)	107.5% (0.3555)		

© 2022 Liu K et al. *JAMA Network Open.*
Target factor	Effect change in meta	Moderator	Controlled population	% of sample account for	Subgroup model	Subgroup analysis				
					OR (se)	OR change (p-value)	Risk in exposed group	Risk in unexposed group	OR (se)	OR change (p-value)
Age	↑	Protamine sulfate	#General	-	1.326 (0.092)	21.2% (0.0073)	17.0% (276/1624)	11.4% (49/429)	1.588 (0.263)	20.6% (0.2690)
		Major cardiac surgery	49.50%	1.436 (0.167)	-26.1% (0.1785)	25.2% (182/722)	10.6% (19/179)	2.838 (0.730)	-31.4% (0.4342)	
		PCI w/o AMI	14.60%	0.969 (0.205)	-3.1% (0.8675)	6.9% (23/331)	6.7% (3/45)	1.045 (0.664)	-34.9% (0.6627)	
Age	↓	Rifaximin	*General	-	0.759 (0.085)	-31.5% (0.0008)	12.0% (26/216)	16.3% (52/320)	0.705 (0.182)	-49.8% (0.0081)
		Liver disease	32.10%	0.831 (0.120)	-8.1% (0.6798)	4.9% (3/61)	11.8% (11/93)	0.386 (0.260)	-52.2% (0.3690)	
		Liver surgery	10.70%	0.850 (0.125)	-22.6% (0.1916)	33.3% (6/18)	30.3% (10/33)	1.150 (0.721)	46.4% (0.5820)	
		Liver disease or surgery	42.90%	0.899 (0.128)	-17.1% (0.2817)	11.4% (9/79)	16.7% (21/126)	0.643 (0.275)	-34.1% (0.3912)	
Age	↓	Levofloxacin	*General	-	1.007 (0.024)	-12.1% (0.0000)	12.0% (663/5546)	12.5% (634/5080)	0.952 (0.056)	-40.8% (0.0000)
		Infection	26.10%	0.904 (0.050)	-9.0% (0.2357)	11.6% (169/1460)	16.6% (241/1453)	0.658 (0.071)	-18.4% (0.0226)	
Age	↓	Glucose	*General	-	1.074 (0.019)	-8.5% (0.0019)	13.1% (1364/10396)	10.8% (1193/11061)	1.249 (0.053)	-24.8% (0.0001)
		*General	-	1.001 (0.024)	-13.9% (0.0000)	15.7% (655/4844)	15.5% (654/4153)	0.837 (0.050)	49.6% (0.0000)	
		Systemic infection	15.50%	0.899 (0.068)	-10.9% (0.3522)	17.9% (108/603)	21.2% (165/780)	0.813 (0.112)	-22.5% (0.2501)	
		Joint replacement	12.00%	0.938 (0.120)	-14.0% (0.4297)	4.8% (37/770)	1.8% (3/169)	2.793 (1.694)	-9.9% (0.8975)	
Age	↓	Tazobactam	*General	-	0.976 (0.026)	-15.8% (0.0000)	15.1% (515/3407)	17.0% (716/4207)	0.868 (0.055)	-50.7% (0.0000)
		*Systemic infection	19.20%	0.871 (0.062)	-19.0% (0.0482)	18.0% (121/674)	22.7% (188/829)	0.746 (0.097)	-41.6% (0.0226)	
		Other common infection	13.40%	0.895 (0.083)	-4.7% (0.7104)	11.4% (50/438)	18.0% (122/679)	0.588 (0.106)	14.2% (0.6158)	
		#Infection	32.60%	0.889 (0.046)	-15.0% (0.0439)	15.4% (171/1112)	20.6% (310/1508)	0.702 (0.074)	-11.2% (0.4853)	
Serum calcium	↑	Aminocaproic acid	*General	-	3.687 (0.092)	218.2% (0.0000)	32.6% (298/914)	11.1% (112/1007)	3.866 (0.474)	182.3% (0.0000)
		Major cardiac surgery	76.80%	4.060 (0.888)	-53.9% (0.0267)	33.9% (250/738)	10.7% (79/737)	4.267 (0.607)	27.0% (0.2961)	
Serum calcium	↑	Prochlorperazine	*General	-	3.489 (0.490)	209.4% (0.0000)	25.2% (406/1610)	8.6% (194/2259)	3.589 (0.339)	167.2% (0.0000)

© 2022 Liu K et al. JAMA Network Open.
Target factor	Effect change in meta	Moderator	Controlled population	% of sample account for	Subgroup model	Subgroup analysis											
					OR (se)	Risk in unexposed group											
					OR change (p-value)	Risk in unexposed group											
					OR (se)	Risk in unexposed group											
					OR change (p-value)	Risk in unexposed group											
Serum calcium	†	Protamine sulfate	*General	-	3.258	84.6%	(0.0656)	9.2%	(14/153)	5.4%	(21/386)	1.751	(0.629)	83.0%	(0.2365)	254.2%	(0.0000)
			*Major cardiac surgery	49.50%	5.292	84.6%	(0.0656)	8.7%	(91/1048)	5.218	(0.697)	254.2%	(0.0000)				
			PCI w/o AMI	14.60%	1.481	48.4%	(0.2949)	9.2%	(14/153)	5.4%	(21/386)	1.751	(0.629)	83.0%	(0.2365)	254.2%	(0.0000)
Serum calcium	†	Atropine	*General	-	2.748	143.2%	(0.0000)	23.5%	(458/1946)	9.2%	(299/3260)	3.048	(0.246)	127.0%	(0.0000)		
			*Major cardiac surgery	39.10%	5.925	314.5%	(0.0000)	35.9%	(317/882)	10.7%	(124/1155)	4.665	(0.551)	195.1%	(0.0180)		
			Cardiac Catheterization	13.10%	0.841	-8.1%	(0.7966)	5.9%	(9/152)	5.3%	(28/530)	1.128	(0.445)	14.5%	(0.7588)		
Serum calcium	†	Tranexamic acid	*General	-	3.933	229.4%	(0.0000)	12.6%	(85/674)	6.0%	(80/1337)	2.268	(0.371)	56.4%	(0.0069)		
			Joint replacement	54.70%	0.968	39.8%	(0.3594)	2.6%	(12/457)	3.0%	(19/643)	0.886	(0.331)	38.8%	(0.4234)		
			*Major cardiac surgery	25.90%	9.344	123.8%	(0.0295)	47.3%	(62/131)	9.5%	(37/389)	8.548	(2.102)	280.1%	(0.0000)		
Serum calcium	†	Oxycodone	†General	-	1.232	2.9%	(0.6636)	10.6%	(1875/17622)	8.1%	(2343/29089)	1.359	(0.044)	-20.4%	(0.0000)		
			*Joint replacement and common orthopedic surgery	12.90%	0.701	-60.8%	(0.0021)	4.7%	(143/3024)	5.7%	(172/3009)	0.819	(0.095)	-64.6%	(0.0048)		
Serum calcium	†	Spironolactone	*General	-	0.944	-23.7%	(0.0379)	16.7%	(361/2160)	15.0%	(477/3184)	1.139	(0.087)	-23.5%	(0.0009)		
			Liver disease	13.60%	0.405	-48.2%	(0.0999)	8.5%	(39/460)	11.2%	(30/269)	0.738	(0.189)	-25.3%	(0.4361)		
			Heart fail, cardiac catheterization exc ischemic heart disease, cardiac defibrillator & heart assist	12.00%	1.207	0.4%	(0.9888)	24.7%	(23/93)	19.1%	(105/549)	1.389	(0.366)	18.0%	(0.5999)		
Serum calcium	†	Fondaparinux	*General	-	0.711	-43.0%	(0.0112)	5.7%	(96/1697)	6.1%	(96/1577)	0.925	(0.138)	-38.8%	(0.0012)		
			#Joint replacement	76.70%	0.580	-48.8%	(0.0547)	4.1%	(59/1432)	5.6%	(60/1080)	0.731	(0.137)	-22.7%	(0.4132)		

© 2022 Liu K et al. JAMA Network Open.
Target factor	Effect change in meta	Moderator	Controlled population	% of sample account for	Subgroup model	Subgroup analysis				
Serum calcium	↓	Rifaximin	*General	-	0.729 (0.174)	-41.1% (0.0169)	14.2% (148/1041)	14.2% (106/746)	1.001 (0.137)	-31.8% (0.0061)
			Liver disease	32.10%	0.562 (0.160)	-1.0% (0.9981)	6.8% (23/337)	9.7% (23/237)	0.682 (0.210)	-30.5% (0.3472)
			Liver surgery	10.70%	0.940 (0.155)	28.9% (0.3470)	32.8% (45/137)	38.2% (21/55)	0.792 (0.263)	-22.2% (0.5026)
			Liver disease or surgery	42.90%	0.612 (0.156)	-10.0% (0.7623)	14.3% (68/474)	15.1% (44/292)	0.944 (0.198)	-5.9% (0.8087)
Serum calcium	↓	Aldesleukin	*General	-	0.132 (0.033)	-89.5% (0.0000)	32.2% (47/146)	93.0% (107/115)	0.035 (0.014)	-97.6% (0.0000)
			*Chemotherapy	98.50%	0.125 (0.026)	-89.6% (0.0000)	32.2% (47/146)	96.4% (107/111)	0.018 (0.010)	-98.9% (0.0000)
Blood glucose	↑	Insulin, aspart, human/rDNA	General	-	1.395 (0.073)	2.6% (0.7325)	14.9% (1041/6977)	11.9% (1926/16182)	1.298 (0.054)	-11.4% (0.0571)
			Major cardiac surgery	8.30%	1.522 (0.467)	46.6% (0.3463)	32.8% (62/189)	17.1% (298/1743)	2.367 (0.396)	-3.7% (0.9548)
Blood glucose	↑	Glucose	#General	-	1.509 (0.077)	18.6% (0.0330)	16.6% (1057/6366)	11.5% (3716/32426)	1.538 (0.058)	-5.5% (0.3772)
Blood glucose	↑	Fentanyl	*General	-	1.498 (0.065)	20.6% (0.0395)	13.7% (1180/8616)	8.7% (4315/49729)	1.670 (0.059)	19.9% (0.0087)
Blood glucose	↑	Lactate	↑ General	-	1.564 (0.110)	14.6% (0.1019)	13.5% (573/4254)	7.8% (2076/26702)	1.847 (0.093)	27.5% (0.0001)
			Joint replacement and common orthopedic surgery	19.80%	2.441 (0.585)	71.2% (0.1160)	10.3% (54/524)	4.6% (259/5597)	2.368 (0.372)	15.1% (0.7501)
Blood glucose	↑	Benzoic acid	#Heart fail, cardiac catheterization exc ischemic heart disease, cardiac defibrillator & heart assist	8.80%	1.722 (0.393)	96.1% (0.0452)	24.3% (75/309)	14.5% (222/1527)	1.884 (0.285)	55.3% (0.3247)
Blood glucose	↑	Insulin regular, human buffered	General	-	1.755 (0.512)	101.9% (0.0629)	31.3% (50/160)	19.8% (310/1591)	1.878 (0.342)	-11.8% (0.7224)
			Major cardiac surgery	8.40%	1.567 (0.179)	15.1% (0.2549)	18.3% (391/2136)	16.7% (934/5758)	1.114 (0.074)	-29.9% (0.0000)

© 2022 Liu K et al. JAMA Network Open.
Target factor	Effect change in meta	Moderator	Controlled population	% of sample account for	Subgroup model	Subgroup analysis			
Blood glucose	↓ Insulin, isophane	*General	-	0.988 (0.193)	12.2% (138/1134)	11.9% (133/1114)			
		Diabetes	8.40%	0.589 (0.065)	2.8% (4/141)	8.3% (4/48)			
		*Infection	17.80%	0.579 (0.144)	11.3% (24/212)	14.8% (28/189)			
		#Liver disease or surgery	7.30%	0.956 (0.212)	-56.2% (0.0112)	13.3% (10/75)	10.0% (9/90)	1.385 (0.677)	-20.3% (0.6559)
Blood glucose	↓ Tazobactam	General	-	1.294 (0.098)	21.3% (524/2458)	15.6% (1752/11203)			
		Systemic infection	19.20%	0.971 (0.201)	-40.1% (0.2154)	25.0% (127/508)	19.6% (414/2115)	1.370 (0.159)	-16.3% (0.4060)
		Other common infection	13.40%	1.471 (0.345)	27.5% (0.4712)	21.7% (81/374)	13.0% (189/1459)	1.858 (0.275)	19.9% (0.4024)
		Infection	32.60%	1.157 (0.177)	22.0% (0.2919)	23.6% (208/882)	16.9% (603/3574)	1.521 (0.138)	-1.7% (0.9085)
Blood glucose	↓ Aluminium hydroxide	General	-	1.414 (0.101)	13.6% (451/3231)	9.6% (1970/20618)			
		Joint replacement	7.80%	2.121 (0.773)	-27.4% (0.5779)	11.2% (15/134)	4.2% (73/1744)	2.885 (0.863)	35.2% (0.4748)
		General	-	1.408 (0.057)	12.3% (1098/8921)	13.4% (4190/49991)			
		Infection	12.70%	1.310 (0.163)	6.2% (0.8757)	16.5% (228/1385)	11.7% (715/6093)	1.482 (0.123)	-14.1% (0.3510)
		Joint replacement and common orthoepedic surgery	10.30%	2.691 (0.613)	142.7% (0.0081)	11.1% (60/542)	4.7% (260/5541)	2.528 (0.382)	29.1% (0.6751)
Blood glucose	↓ Paracetamol	General	-	1.305 (0.113)	13.0% (493/2500)	13.5% (1910/14169)			
		Systemic infection	15.50%	1.127 (0.232)	-27.1% (0.3896)	23.7% (116/489)	18.9% (395/2090)	1.335 (0.160)	-23.9% (0.1809)
		Joint replacement	12.00%	1.738 (0.628)	-46.6% (0.2190)	8.1% (11/136)	4.5% (83/1863)	1.887 (0.630)	-36.7% (0.2922)
		†General	-	1.385 (0.057)	12.4% (1257/10150)	8.5% (4788/56258)			
		Infection	12.50%	1.265 (0.150)	-30.0% (0.3072)	16.5% (256/1555)	11.9% (797/6715)	1.463 (0.114)	-28.0% (0.0863)
		Joint replacement and common orthopedic surgery	9.40%	2.596 (0.582)	208.4% (0.0000)	11.4% (63/553)	4.8% (274/5668)	2.531 (0.373)	158.4% (0.3899)

© 2022 Liu K et al. JAMA Network Open.
Target factor	Effect change in meta	Moderator	Controlled population	% of sample account for	Subgroup model	Subgroup analysis
BMI>30	↑	Tazobactam	General	-	1.380 (0.128)	2.8% (0.8126)
					20.4% (905/4426)	14.8% (646/4365)
					1.480 (0.084)	5.9% (0.4035)
BMI>30	↑	Systemic infection	19.30%		2.155 (0.460)	87.0% (0.0839)
					25.2% (235/933)	19.2% (147/764)
BMI>30	↑	Systemic infection	19.30%		2.155 (0.460)	87.0% (0.0839)
BMI>30	↑	Other common infection	13.40%		1.291 (0.399)	-25.0% (0.4393)
BMI>30	↑	Other common infection	13.40%		1.291 (0.399)	-25.0% (0.4393)
BMI>30	↑	Infection	32.70%	1.772 (0.316)	16.9% (0.5652)	
BMI 25-30	↑	Tazobactam	General	-	1.060 (0.089)	-12.4% (0.1736)
BMI 25-30	↑	Systemic infection	18.60%		1.190 (0.261)	1.3% (0.9571)
BMI 25-30	↑	Systemic infection	18.60%		1.190 (0.261)	1.3% (0.9571)
BMI 25-30	↑	Other common infection	13.10%		1.243 (0.359)	32.9% (0.4745)
BMI 25-30	↑	Other common infection	13.10%		1.243 (0.359)	32.9% (0.4745)
BMI 25-30	↑	Infection	31.70%	1.176 (0.223)	1.2% (0.9535)	
BMI>25	↑	Tazobactam	General	-	1.193 (0.092)	-5.4% (0.5213)
BMI>25	↑	Systemic infection	19.50%		1.364 (0.263)	12.0% (0.6932)
BMI>25	↑	Systemic infection	19.50%		1.364 (0.263)	12.0% (0.6932)
BMI>25	↑	Other common infection	12.60%		1.155 (0.295)	-8.7% (0.8219)
BMI>25	↑	Other common infection	12.60%		1.155 (0.295)	-8.7% (0.8219)
BMI>25	↑	Infection	32.10%	1.310 (0.199)	4.5% (0.8331)	
BMI>30	↑	Benzimidazole	General	-	1.404 (0.082)	3.7% (0.6698)
BMI>30	↑	Benzimidazole	General	-	1.404 (0.082)	3.7% (0.6698)
BMI>25	↑	Benzimidazole	General	-	1.227 (0.076)	8.9% (0.3265)
BMI>30	↑	Calcium gluconate	General	-	2.178 (0.401)	63.7% (0.0112)
BMI>30	↑	Calcium gluconate	General	-	2.178 (0.401)	63.7% (0.0112)
BMI 25-30	↑	Calcium gluconate	General	-	1.552 (0.308)	35.5% (0.1486)
BMI 25-30	↑	Calcium gluconate	General	-	1.552 (0.308)	35.5% (0.1486)

© 2022 Liu K et al. JAMA Network Open.
Target factor	Effect change in meta	Moderator	Controlled population	% of sample account for	Subgroup model	Subgroup analysis
BMI>25	↑	Calcium gluconate				
*General	-		Cerebrovascular	24.00%	1.349	1.520
			BMI>25		1.254	
BMI>30	↑	Insulin regular, human buffered	General	-	1.642	1.723
			Cerebrovascular	25.00%	1.330	
BMI 25-30	↑	Insulin regular, human buffered	General	-	2.059	1.520
			Major cardiac surgery	28.80%	1.349	
BMI>25	↑	Insulin regular, human buffered	General	-	1.413	1.723
			#Major cardiac surgery	26.50%	1.349	
BMI>30	↑	Levofoxcain	General	-	1.413	
			Infection	26.30%	1.254	
BMI 25-30	↑	Levofoxcain	General	-	1.349	
			Infection	25.40%	1.349	
BMI>25	↑	Levofoxcain	General	-	1.349	
			Infection	25.40%	1.254	
BMI>30	↓	Rifaximin	#Liver disease	31.60%	1.082	
			Liver surgery	11.20%	1.254	
			Liver disease or surgery	42.70%	1.254	
BMI 25-30	↓	Rifaximin	General	-	1.254	

© 2022 Liu K et al. JAMA Network Open.
Target factor	Effect change in meta	Moderator	Controlled population	% of sample account for	Subgroup model	Subgroup analysis				
					OR (se)	OR change (p-value)	Risk in exposed group	Risk in unexposed group	OR (se)	OR change (p-value)
Liver disease	32.80%				(0.309)	-7.1% (0.8206)	(69/532)	(60/484)	(0.199)	9.7% (0.8598)
Liver surgery	9.70%				(0.309)	9.7% (0.8206)	(7.6% (12/158)	(1.309)	9.7% (0.8598)	
Liver disease or surgery	42.50%				(0.309)	-7.1% (0.8206)	(69/532)	(60/484)	(0.199)	9.7% (0.8598)
BMI>25	▼ Rifaximin		General	-	(0.323)	1.342 (0.8653)	15.3% (187/12020)	12.4% (60/484)	1.279 (0.204)	3.6% (0.8293)
Liver disease	32.00%		General	-	(0.323)	8.0% (31/387)	7.6% (12/158)	1.059 (0.375)	-32.5% (0.3908)	
Liver surgery	10.80%		General	-	(0.323)	37.7% (52/138)	26.1% (12/46)	1.713 (0.649)	31.7% (0.5211)	
Liver disease or surgery	42.80%		General	-	(0.323)	15.8% (83/525)	11.8% (24/204)	1.408 (0.349)	-2.5% (0.9329)	
BMI>30	▼ 1-(4-(4-chlorophenyl)-3-phenyl-2-butenyl)-pyrrolidine 1,5-naphthalenedisulfonate	General	-	1.393 (0.069)	1.342 (0.8653)	15.3% (187/12020)	12.4% (60/484)	1.279 (0.204)	3.6% (0.8293)	
Liver disease	32.00%		General	-	(0.323)	1.393 (0.069)	11.3% (2365/21021)	8.7% (1062/12202)	1.330 (0.052)	7.2% (0.3109)
BMI 25-30	▼ 1-(4-(4-chlorophenyl)-3-phenyl-2-butenyl)-pyrrolidine 1,5-naphthalenedisulfonate	General	-	1.172 (0.056)	1.393 (0.069)	11.3% (2365/21021)	8.7% (1062/12202)	1.330 (0.052)	7.2% (0.3109)	
BMI>25	▼ 1-(4-(4-chlorophenyl)-3-phenyl-2-butenyl)-pyrrolidine 1,5-naphthalenedisulfonate	General	-	1.254 (0.055)	1.393 (0.069)	11.3% (2365/21021)	8.7% (1062/12202)	1.330 (0.052)	7.2% (0.3109)	
BMI>30	▼ Paracetamol	General	-	1.350 (0.073)	1.393 (0.069)	11.3% (2365/21021)	7.8% (1062/12202)	1.330 (0.052)	7.2% (0.3109)	
BMI 25-30	▼ Paracetamol	General	-	1.135 (0.056)	1.350 (0.073)	11.3% (2365/21021)	8.7% (1062/12202)	1.330 (0.052)	7.2% (0.3109)	
BMI>25	▼ Paracetamol	General	-	1.221 (0.056)	1.350 (0.073)	11.3% (2365/21021)	8.7% (1062/12202)	1.330 (0.052)	7.2% (0.3109)	
BMI>30	▼ 3-{[(1-methyl)oxy] propane-1,2-diol}	Joint replacement and common orthopaedic surgery	18.40%	-1.307 (0.131)	-2.8% (0.3659)	6.4% (107/1666)	3.7% (24/651)	1.793 (0.414)	11.8% (0.7388)	
Target factor	Effect change in meta	Moderator	Controlled population	% of sample accounted for	Subgroup model	Subgroup analysis				
---------------	----------------------	-----------	-----------------------	--------------------------	----------------	------------------				
					OR (se)	OR change (p-value)	Risk in exposed group	Risk in unexposed group	OR (se)	OR change (p-value)
BMI 25-30	↓ 3-(l-methyl)oxy) propane-1,2-diol	General	-		1.087 (0.114)	-9.3% (0.3816)	7.3% (408/5596)	6.8% (323/4744)	1.076 (0.083)	-6.5% (0.4343)
		Joint replacement and common orthopeadic surgery	15.80%		0.860 (0.241)	-43.6% (0.1128)	3.4% (34/987)	3.7% (24/651)	0.932 (0.253)	-26.7% (0.4140)
BMI>25	↓ 3-(l-methyl)oxy) propane-1,2-diol	General	-		1.180 (0.095)	-7.0% (0.1432)	7.9% (1064/13418)	6.8% (323/4744)	1.179 (0.078)	-7.3% (0.3061)
		Joint replacement and common orthopeadic surgery	18.20%		1.315 (0.397)	-29.5% (0.3253)	5.3% (141/2653)	3.7% (24/651)	1.466 (0.330)	-0.9% (0.9789)
BMI>30	↓ Benzodiazepine	†General	-		1.377 (0.072)	-0.8% (0.9438)	10.6% (2033/19158)	8.6% (1089/12636)	1.259 (0.050)	-13.0% (0.0357)
		Joint replacement and common orthopeadic surgery	12.00%		1.916 (0.550)	42.7% (0.3415)	6.2% (175/2834)	3.4% (33/982)	1.893 (0.366)	8.0% (0.8478)
BMI 25-30	↓ Benzodiazepine	General	-		1.143 (0.055)	-9.3% (0.3223)	9.2% (1283/13913)	8.6% (1089/12636)	1.077 (0.046)	-11.5% (0.0914)
		Joint replacement and common orthopeadic surgery	9.90%		1.320 (0.330)	38.2% (0.3284)	3.9% (64/1643)	3.4% (33/982)	1.166 (0.254)	-5.6% (0.8964)
BMI>25	↓ Benzodiazepine	†General	-		1.237 (0.049)	-4.1% (0.5780)	10.0% (3316/33071)	8.6% (1089/12636)	1.182 (0.043)	-12.3% (0.0319)
		Joint replacement and common orthopeadic surgery	11.90%		1.612 (0.374)	27.0% (0.4662)	5.3% (239/4477)	3.4% (33/982)	1.622 (0.307)	6.3% (0.8729)
Pulse>100	↑ Fentanyl	General	-		1.420 (0.088)	10.8% (0.4532)	12.3% (708/5740)	8.4% (2592/30704)	1.526 (0.069)	8.8% (0.3572)
Pulse 80-100	↑ Fentanyl	General	-		1.116 (0.041)	1.1% (0.8667)	9.9% (2123/21549)	8.4% (2592/30704)	1.185 (0.036)	0.9% (0.8865)
Pulse>80 or <50	↑ Fentanyl	General	-		1.184 (0.038)	0.4% (0.9385)	10.5% (2895/27587)	8.4% (2592/30704)	1.272 (0.036)	3.5% (0.5458)
Pulse>100	↑ Potassium chloride	General	-		1.372 (0.084)	-4.7% (0.7650)	12.2% (776/6375)	8.7% (2790/32080)	1.455 (0.063)	-12.7% (0.1936)
Pulse 80-100	↑ Potassium chloride	General	-		1.126 (0.038)	13.7% (0.1700)	10.1% (2353/23380)	8.7% (2790/32080)	1.175 (0.035)	-1.3% (0.8509)

© 2022 Liu K et al. JAMA Network Open.
Target factor	Effect change in meta	Moderator	Controlled population	% of sample account for	Subgroup model	Subgroup analysis				
					OR (se)	OR change (p-value)	Risk in exposed group	Risk in unexposed group	OR (se)	OR change (p-value)
Joint replacement and common orthopedic surgery	10.20%	0.859 (0.137)	14.0% (0.6069)	4.7% (124/2611)	5.8% (176/3036)	0.810 (0.098)	27.3% (0.6451)			
Pulse>80 or <50	↑	Potassium chloride	General	-	1.191 (0.041)	8.1% (0.3581)	10.6% (3197/30062)	8.7% (2790/32080)	1.249 (0.034)	-2.9% (0.6535)
Joint replacement and common orthopedic surgery	10.10%	0.897 (0.134)	12.8% (0.6277)	4.9% (158/3213)	5.8% (176/3036)	0.840 (0.095)	25.5% (0.6467)			
Pulse>100	↑	Benzimidazole	General	-	1.309 (0.091)	-14.8% (0.1340)	12.3% (520/4235)	8.9% (1767/19838)	1.431 (0.076)	-8.1% (0.2858)
Pulse 80-100	↑	Benzimidazole	General	-	1.155 (0.053)	7.7% (0.2791)	10.6% (1559/14695)	8.9% (1767/19838)	1.214 (0.044)	6.7% (0.2297)
Pulse>80 or <50	↑	Benzimidazole	General	-	1.191 (0.045)	2.0% (0.7182)	11.1% (2127/19136)	8.9% (1767/19838)	1.279 (0.043)	4.1% (0.4167)
Vancomycin	↑	Tazobactam	*General	-	1.968 (0.154)	53.8% (0.0000)	21.8% (1426/6542)	11.9% (850/7119)	2.056 (0.097)	56.9% (0.0000)
Vancomycin	↑	Tazobactam	*Systemic infection	19.20%	2.776 (0.580)	119.3% (0.0185)	24.4% (413/1692)	13.7% (128/931)	2.026 (0.224)	78.5% (0.0018)
Vancomycin	↑	Tazobactam	Other common infection	13.40%	2.555 (0.697)	77.9% (0.1168)	17.8% (163/917)	11.7% (107/916)	1.634 (0.220)	27.1% (0.2326)
Vancomycin	↑	Tazobactam	*Infection	32.60%	2.354 (0.383)	102.9% (0.0049)	12.7% (235/1847)	1.943 (0.164)	1.009 (0.0029)	49.0% (0.0000)
Vancomycin	↑	Lactate	#General	-	1.792 (0.108)	19.8% (0.0183)	11.5% (1012/8808)	7.4% (1637/22148)	1.626 (0.069)	-30.3% (0.0009)
Joint replacement and common orthopedic surgery	19.80%	1.362 (0.270)	7.8% (0.7895)	5.4% (165/3044)	4.8% (148/3077)	1.134 (0.132)	30.6% (0.5118)			
Vancomycin	↑	Glucose	*General	-	1.590 (0.070)	33.0% (0.0195)	16.9% (2246/13267)	9.9% (252/25525)	1.855 (0.058)	175.3% (0.0000)
Vancomycin	↑	Budipine hcl	#General	-	1.831 (0.133)	25.1% (0.0132)	12.4% (901/7245)	8.5% (1617/1967)	1.533 (0.068)	-31.1% (0.0000)
Joint replacement and common orthopedic surgery	17.60%	1.435 (0.313)	18.6% (0.5973)	5.3% (132/2491)	5.3% (112/2132)	1.009 (0.133)	-10.1% (0.6558)			
Vancomycin	↑	Morphine	General	-	1.688 (0.110)	16.9% (0.0699)	14.2% (1149/8065)	7.6% (1912/25061)	2.011 (0.080)	7.5% (0.1774)
†Joint replacement and common orthopedic surgery	12.10%	1.414 (0.321)	5.0% (0.8605)	6.6% (116/1763)	5.4% (120/2236)	1.242 (0.167)	76.0% (0.0135)			
Vancomycin	↓	Simvastatin	General	-	1.350	-14.6%	15.8%	9.3%	1.824	-5.9%

© 2022 Liu K et al. JAMA Network Open.
Target factor	Effect change in meta	Moderator	Controlled population	% of sample account for	Subgroup model	Subgroup analysis				
					OR (se)	OR change (p-value)	Risk in exposed group	Risk in unexposed group	OR (se)	OR change (p-value)
					(0.137)	(0.1424)	(427/2710)	(818/8797)	(0.117)	(0.3929)
Cardiac Catheterization	8.90%		1.164 (0.322)	78.2% (0.2016)	12.2% (5/41)	6.6% (65988)	1.972 (0.975)	105.9% (0.2455)		
Major cardiac surgery	8.30%		1.510 (0.416)	55.5% (0.2305)	22.9% (112/489)	28.3% (133/470)	0.753 (0.112)	20.2% (0.3548)		
†Joint replacement and common orthopeadic surgery	9.00%		1.031 (0.293)	-33.8% (0.2378)	5.8% (29/501)	9.0% (48/534)	0.622 (0.152)	-45.4% (0.0264)		
Vancomycin	↓	Aminobutyrate	*General	-	1.295 (0.111)	-19.0% (0.0267)	15.7% (546/3467)	10.0% (1192/11947)	1.687 (0.094)	-15.5% (0.0080)
			Cerebrovascular	12.50%	2.201 (0.746)	18.0% (0.7242)	9.6% (24/250)	5.9% (98/1673)	1.707 (0.407)	-58.0% (0.0258)
Vancomycin	↓	Magnesium hydroxide	*General	-	1.401 (0.073)	-28.4% (0.0001)	12.2% (133/10921)	7.5% (2322/30950)	1.714 (0.062)	-29.2% (0.0000)
			Joint replacement and common orthopeadic surgery	14.10%	1.278 (0.244)	-10.6% (0.7548)	5.3% (158/3000)	5.0% (143/2885)	1.066 (0.126)	-34.1% (0.2102)
Vancomycin	↓	Benzoic acid	#General	-	1.366 (0.086)	-21.7% (0.0044)	19.8% (1163/5864)	12.8% (1912/14962)	1.689 (0.069)	-9.5% (0.0652)
			Infection	13.00%	1.649 (0.381)	-26.4% (0.2474)	21.2% (305/1439)	12.9% (162/1260)	1.823 (0.193)	-6.9% (0.5844)
			Heart fail, cardiac catheterization exc ischemic heart disease, cardiac defibrillator & heart assist	8.80%	1.407 (0.411)	9.8% (0.8343)	20.1% (51/254)	15.5% (246/1582)	1.364 (0.234)	-43.7% (0.2408)
			Major cardiac surgery	8.40%	1.149 (0.280)	33.0% (0.4082)	20.7% (195/941)	20.4% (165/810)	1.022 (0.121)	171.9% (0.0001)

© 2022 Liu K et al. JAMA Network Open.
These features affect the similar sample matching. To calculate importance of features in similar sample matching, we multiply weight of features in similarity measure by their standard deviation. According to the AUROC change of PMTL, we found sample matching were mainly affected by 50 features and among them, 46 features were modifiable.

Feature	Weight *Std	Weight	Rank	Feature	Weight *Std	Weight	Rank
Demo				**Drug-Antiinfectives**			
Age	7.94	2.43	1	Tazobactam	2.25	2.77	8
Female	1.57	1.48	16	Vancomycin	1.98	2.26	11
Male	1.52	1.44	18	Levofloxacin	1.58	1.71	15
White	1.27	1.40	28	Lactate	1.17	1.12	36
Vital				**Drug-Other**			
Pulse	6.00	2.60	2				
Temp	4.50	1.85	3	Heparin,porcine	1.50	1.48	20
Bmi	4.30	1.75	4	Enoxaparin	1.25	1.21	29
Systolic	3.71	2.13	5				
Diastolic	1.51	1.04	19	Oxycodone	1.40	1.34	21
Label				**Drug-Antithrombotic**			
Troponin I	2.38	1.92	6	Paracetamol	1.04	1.15	48
Albumin	2.26	1.46	7				
Calcium	1.54	1.53	17				
Drug-Alimentary Tract				**Drug-Irrigating solutions/ Nutrients**			
Platelets	1.33	1.42	24	Glucose	1.62	1.52	14
Glucose	1.15	1.49	37	Hexanetriol	1.24	1.18	30
BUN	1.12	1.20	40	Calcium chloride	1.22	1.16	32
Total Bilirubin	1.03	0.98	49				
Drug-Analgesics				**Drug-Psycholeptics**			
Magnesium sulf ate	1.36	1.31	23	Insulin,aspart, human/rdna	1.73	1.77	13
Sennosides	1.23	1.16	31	Benzimidazole	1.39	1.30	22
Magnesium hydrox ide	1.19	1.12	35	Docosapentaenoic acid	1.31	1.25	26
Bisacodyl	1.10	1.05	42	Budipine hcl	1.20	1.19	33
Polyethylene glycol 3350	1.10	1.09	43	Diphenhydramine	1.19	1.13	34
Famotidine	1.09	1.07	45	Aminobutyrate	1.05	1.24	47
Drug-Other				Pyrrolidine naphthalenedisulfonate	1.00	1.00	50
eReferences

1. Matheny ME, Miller RA, Ikizler TA, et al. Development of inpatient risk stratification models of acute kidney injury for use in electronic health records. Medical Decision Making. 2010;30(6):639-650.
2. Pan SJ, Yang Q. A survey on transfer learning. IEEE Transactions on knowledge and data engineering. 2009;22(10):1345-1359.
3. Wettschureck D, Aha DW, Mohri T. A review and empirical evaluation of feature weighting methods for a class of lazy learning algorithms. Artificial Intelligence Review. 1997;11(1-5):273-314.
4. Yosinski J, Clune J, Bengio Y, Lipson H. How transferable are features in deep neural networks? 2014:3320-3328.
5. Moutafis P, Leng M, Kakadiaris IA. An overview and empirical comparison of distance metric learning methods. IEEE transactions on cybernetics. 2016;47(3):612-625.
6. DeLong ER, DeLong DM, Clarke-Pearson DL. Comparing the areas under two or more correlated receiver operating characteristic curves: a nonparametric approach. Biometrics. 1988:837-845.
7. Churpek MM, Carey KA, Edelson DP, et al. Internal and external validation of a machine learning risk score for acute kidney injury. JAMA network open. 2020;3(8):e2012892-e2012892.
8. Lei VJ, Luong T, Shan E, et al. Risk stratification for postoperative acute kidney injury in major noncardiac surgery using preoperative and intraoperative data. JAMA network open. 2019;2(12):e1916921-e1916921.
9. Agresti A. An introduction to categorical data analysis (2nd edition). John Wiley & Sons; 2018:106-108.
10. Agresti A. Categorical data analysis (2nd edition). John Wiley & Sons; 2003:70-71.
11. Liu K, Yuan B, Zhang X, et al. Characterizing the Temporal Changes in Association Between Modifiable Risk Factors and Acute Kidney Injury with Multi-view Analysis. International Journal of Medical Informatics. 2022:104785.
12. Anderson S, Eldadah B, Halter JB, et al. Acute kidney injury in older adults. Journal of the American Society of Nephrology. 2011;22(1):28-38.
13. Li Q, Zhao M, Zhou F. Hospital-acquired acute kidney injury in very elderly men: clinical characteristics and short-term outcomes. Aging clinical and experimental research. 2019:1-8.
14. Popplewell L, Forman S. Is there an upper age limit for bone marrow transplantation? Bone marrow transplantation. 2002;29(4):277-284.
15. Thongprayoon C, Cheungpasitporn W, Chewcharat A, Mao MA, Kashani KB. Serum ionised calcium and the risk of acute respiratory failure in hospitalised patients: A single-centre cohort study in the USA. BMJ open. 2020;10(3):e034325.
16. Klein GL. Burns: where has all the calcium (and vitamin D) gone? Advances in nutrition. 2011;2(6):457-462.
17. Klein GL. Burn-induced bone loss: importance, mechanisms, and management. Journal of burns and wounds. 2006;5
18. Yan Sd, Liu Xj, Peng Y, et al. Admission serum calcium levels improve the GRACE risk score prediction of hospital mortality in patients with acute coronary syndrome. *Clinical cardiology*. 2016;39(9):516-523.
19. Lu X, Wang Y, Meng H, et al. Association of admission serum calcium levels and in-hospital mortality in patients with acute ST-elevated myocardial infarction: an eight-year, single-center study in China. *PloS one*. 2014;9(6):e99895.
20. Gai P, Sun H, Sui L, Wang G. Hypocalcaemia after total knee arthroplasty and its clinical significance. *Anticancer research*. 2016;36(3):1309-1311.
21. Aderka D, Schwartz D, Dan M, Levo Y. Bacteremic hypocalcemia: A comparison between the calcium levels of bacteremic and nonbacteremic patients with infection. *Archives of internal medicine*. 1987;147(2):232-236.
22. Gerstein NS, Brierley JK, Windsor J, et al. Antifibrinolytic agents in cardiac and noncardiac surgery: a comprehensive overview and update. *Journal of cardiothoracic and vascular anesthesia*. 2017;31(6):2183-2205.
23. Lacko L, Wittke B, Zimmer G. Interaction of benzoic acid derivatives with the transport system of glucose in human erythrocytes. *Biochemical pharmacology*. 1981;30(12):1425-1431.
24. Gayathri M, Kannabiran K. Effect of 2-hydroxy-4-methoxy benzoic acid isolated from Hemidesmus indicus on erythrocyte membrane bound enzymes and antioxidant status in streptozotocin-induced diabetic rats. *Indian journal of pharmaceutical sciences*. 2012;74(5):474.
25. Mineo H, Ohdate T, Fukumura K, et al. Effects of benzoic acid and its analogues on insulin and glucagon secretion in sheep. *European journal of pharmacology*. 1995;280(2):149-154.
26. Jorge PF, Wieringa N, de Felice E, van der Horst IC, Lansink AO, Nijsten MW. The association of early combined lactate and glucose levels with subsequent renal and liver dysfunction and hospital mortality in critically ill patients. *Critical Care*. 2017;21(1):1-11.
27. Sotello D, Yang S, Nugent K. Glucose and lactate levels at admission as predictors of inhospital mortality. *Cureus*. 2019;11(10).
28. Basu A, Veettil S, Dyer R, Peysor T, Basu R. Direct evidence of acetaminophen interference with subcutaneous glucose sensing in humans: a pilot study. *Diabetes technology & therapeutics*. 2016;18(S2):S2-43-S2-47.
29. Maahs DM, DeSalvo D, Pyle L, et al. Effect of acetaminophen on CGM glucose in an outpatient setting. *Diabetes Care*. 2015;38(10):e158-e159.
30. Zammit C, Liddicoat H, Moonsie J, Makker H. Obesity and respiratory diseases. *International journal of general medicine*. 2010;3:335.
31. Reagan JL, Ingham RR, Dalia S, et al. Association between obesity/overweight and leukemia: A meta-analysis of prospective cohort studies. American Society of Hematology; 2011.
32. Li S, Chen L, Jin W, et al. Influence of body mass index on incidence and prognosis of acute myeloid leukemia and acute promyelocytic leukemia: A meta-analysis. *Scientific reports*. 2017;7(1):1-10.
33. Castillo JJ, Reagan JL, Ingham RR, et al. Obesity but not overweight increases the incidence and mortality of leukemia in adults: a meta-analysis of prospective cohort studies. *Leukemia research*. 2012;36(7):868-875.
34. Castillo JJ, Mulkey F, Geyer S, et al. Relationship between obesity and clinical outcome in adults with acute myeloid leukemia: A pooled analysis from four CALGB (alliance) clinical trials. *American journal of hematology*. 2016;91(2):199-204.
35. Thomas D, Ikeda M, Deepika K, Medina C, Takacs P. Laparoscopic management of benign adnexal mass in obese women. *Journal of minimally invasive gynecology*. 2006;13(4):311-314.
36. Eltabbakh GH, Piver MS, Hempling RE, Recio FO. Laparoscopic surgery in obese women. *Obstetrics & Gynecology*. 1999;94(5):704-708.
37. Meng L, Mui E, Holubar MK, Deresinski SC. Comprehensive guidance for antibiotic dosing in obese adults. *Pharmacotherapy: The Journal of Human Pharmacology and Drug Therapy*. 2017;37(11):1415-1431.
38. Veillette JJ, Winans SA, Maskiewicz VK, Truong J, Jones RN, Forland SC. Pharmacokinetics and Pharmacodynamics of High-Dose Piperacillin–Tazobactam in Obese Patients. *European journal of drug metabolism and pharmacokinetics*. 2021;46(3):385-394.
39. Chung EK, Cheatham SC, Fleming MR, Healy DP, Shea KM, Kays MB. Population pharmacokinetics and pharmacodynamics of piperacillin and tazobactam administered by prolonged infusion in obese and nonobese patients. *The Journal of Clinical Pharmacology*. 2015;55(8):899-908.
40. Zakrison TL, Hille DA, Namias N. Effect of body mass index on treatment of complicated intra-abdominal infections in hospitalized adults: comparison of ertapenem with piperacillin-tazobactam. *Surgical infections*. 2012;13(1):38-42.
41. Fede G, Privitera G, Tomasselli T, Spadaro L, Purrello F. Cardiovascular dysfunction in patients with liver cirrhosis. *Annals of Gastroenterology: Quarterly Publication of the Hellenic Society of Gastroenterology*. 2015;28(1):31.
42. Ritter MA, Rohde A, Heuschmann PU, et al. Heart rate monitoring on the stroke unit. What does heart beat tell about prognosis? An observational study. *BMC neurology*. 2011;11(1):1-8.
43. Lee K-J, Kim BJ, Han M-K, et al. Effect of Heart Rate on Stroke Recurrence and Mortality in Acute Ischemic Stroke With Atrial Fibrillation. *Stroke*. 2020;51(1):162-169.
44. Rapenne T, Moreau D, Lenfant F, et al. Could heart rate variability predict outcome in patients with severe head injury?: A pilot study. *Journal of neurosurgical anesthesiology*. 2001;13(3):260-268.
45. Winchell RJ, Hoyt DB. Analysis of heart-rate variability: a noninvasive predictor of death and poor outcome in patients with severe head injury. *Journal of Trauma and Acute Care Surgery*. 1997;43(6):927-933.
46. Luther M, Caffrey A, Dosa D, Lodise TP, Laplante K. Vancomycin plus piperacillin/tazobactam and acute kidney injury in adults: a systematic review and meta-analysis. Oxford University Press; 2016:
47. Thangamani S, Mohammad H, Abushahba MF, et al. Exploring simvastatin, an antihyperlipidemic drug, as a potential topical antibacterial agent. *Scientific reports*. 2015;5(1):1-13.
48. Graziano TS, Cuzzullin MC, Franco GC, et al. Statins and antimicrobial effects: simvastatin as a potential drug against Staphylococcus aureus biofilm. *PloS one*. 2015;10(5):e0128098.
49. Wu L, Hu Y, Liu X, et al. Feature Ranking in Predictive Models for Hospital-Acquired Acute Kidney Injury. *Scientific reports*. 2018;8(1):17298.
50. Xu X, Ling Q, Wei Q, et al. An effective model for predicting acute kidney injury after liver transplantation. *Hepatobiliary & pancreatic diseases international: HBPD INT*. 2010;9(3):259-263.
51. Lee H-C, Yoon S, Yang S-M, et al. Prediction of acute kidney injury after liver transplantation: Machine learning approaches vs. logistic regression model. *Journal of clinical medicine*. 2018;7(11):428.

52. Park MH, Shim HS, Kim WH, et al. Clinical risk scoring models for prediction of acute kidney injury after living donor liver transplantation: a retrospective observational study. *PLoS One*. 2015;10(8):e0136230.

53. Ma B, Allen DW, Graham MM, et al. Comparative Performance of Prediction Models for Contrast-Associated Acute Kidney Injury After Percutaneous Coronary Intervention. *Circulation-Cardiovascular Quality and Outcomes*. Nov 2019;12(11)e005854. doi:10.1161/circoutcomes.119.005854

54. Chen YL, Fu NK, Xu J, et al. A simple preprocedural score for risk of contrast - induced acute kidney injury after percutaneous coronary intervention. *Catheterization and Cardiovascular Interventions*. 2014;83(1):E8-E16.

55. Inohara T, Kohsaka S, Abe T, et al. Development and validation of a pre-percutaneous coronary intervention risk model of contrast-induced acute kidney injury with an integer scoring system. *The American journal of cardiology*. 2015;115(12):1636-1642.

56. Inohara T, Kohsaka S, Miyata H, et al. Performance and validation of the US NCDR acute kidney injury prediction model in Japan. *Journal of the American College of Cardiology*. 2016;67(14):1715-1722.

57. Tsai TT, Patel UD, Chang TI, et al. Validated contemporary risk model of acute kidney injury in patients undergoing percutaneous coronary interventions: insights from the National Cardiovascular Data Registry Cath - PCI Registry. *Journal of the American Heart Association*. 2014;3(6):e001380.

58. Huang C, Murugiah K, Mahajan S, et al. Enhancing the prediction of acute kidney injury risk after percutaneous coronary intervention using machine learning techniques: A retrospective cohort study. *PLoS medicine*. 2018;15(11):e1002703.

59. Huang C, Li S-X, Mahajan S, et al. Development and Validation of a Model for Predicting the Risk of Acute Kidney Injury Associated With Contrast Volume Levels During Percutaneous Coronary Intervention. *Jama Network Open*. Nov 2019;2(11)e1916021. doi:10.1001/jamanetworkopen.2019.16021

60. Hoang Van S, Nguyen Minh K, Tran Nguyen Phuong H, Mai Tri L, Luu Truc P, Chau Ngoc H. Comparison Between Two Risk Models for Predicting Contrast-Induced Acute Kidney Injury in Patients with Reduced Glomerular Filtration Rate Undergoing Percutaneous Coronary Intervention. *Journal of Complementary Medicine Research*. 2020 2020;11(3):30-39. doi:10.5455/jcmr.2020.11.03.05

61. Blanco A, Rahim F, Nguyen M, et al. Performance of a pre-procedural Mehran score to predict acute kidney injury after percutaneous coronary intervention. *Nephrology (Carlton, Vic)*. Jan 2021;26(1):23-29. doi:10.1111/nep.13769

62. Araujo GN, Junior FP, Fuhr B, et al. Simplifying contrast-induced acute kidney injury prediction after primary percutaneous coronary intervention: the age, creatinine and ejection fraction score. *Cardiovascular intervention and therapeutics*. 2018;33(3):224-231.

63. Liu YH, Liu Y, Tan N, et al. Predictive value of GRACE risk scores for contrast-induced acute kidney injury in patients with ST-segment elevation myocardial infarction before undergoing primary percutaneous coronary intervention. *International urology and nephrology*. 2014;46(2):417-426.
64. Park HS, Kim CJ, Yi J-E, et al. Contrast volume/raw eGFR ratio for predicting contrast-induced acute kidney injury in patients undergoing percutaneous coronary intervention for myocardial infarction. *Cardiorenal medicine*. 2015;5(1):61-68.
65. Zambetti BR, Thomas F, Hwang I, et al. A web-based tool to predict acute kidney injury in patients with ST-elevation myocardial infarction: Development, internal validation and comparison. *PloS one*. 2017;12(7):e0181658.
66. Sun L, Zhu W, Chen X, et al. Machine Learning to Predict Contrast-Induced Acute Kidney Injury in Patients With Acute Myocardial Infarction. *Frontiers in Medicine*. Nov 13 2020;7592007. doi:10.3389/fmed.2020.592007
67. Xu F-b, Cheng H, Yue T, Ye N, Zhang H-j, Chen Y-p. Derivation and validation of a prediction score for acute kidney injury secondary to acute myocardial infarction in Chinese patients. *Bmc Nephrology*. May 30 2019;20195. doi:10.1186/s12882-019-1379-x
68. Lin H, Hou J, Tang H, et al. A novel nomogram to predict perioperative acute kidney injury following isolated coronary artery bypass grafting surgery with impaired left ventricular ejection fraction. *Bmc Cardiovascular Disorders*. Dec 10 2020;20(1)517. doi:10.1186/s12872-020-01799-1
69. Chen S-W, Chang C-H, Fan P-C, et al. Comparison of contemporary preoperative risk models at predicting acute kidney injury after isolated coronary artery bypass grafting: a retrospective cohort study. *BMJ open*. 2016;6(6):e010176.
70. Gursoy M, Hokenek AF, Duygu E, Atay M, Yavuz A. Clinical SYNTAX score can predict acute kidney injury following on-pump but not off-pump coronary artery bypass surgery. *Cardiorenal medicine*. 2015;5(4):297-305.
71. Palomba H, De Castro I, Neto A, Lage S, Yu L. Acute kidney injury prediction following elective cardiac surgery: AKICS Score. *Kidney international*. 2007;72(5):624-631.
72. Ho J, Reslerova M, Gali B, et al. Serum creatinine measurement immediately after cardiac surgery and prediction of acute kidney injury. *American Journal of Kidney Diseases*. 2012;59(2):196-201.
73. Jiang W, Xu J, Shen B, Wang C, Teng J, Ding X. Validation of four prediction scores for cardiac surgery-associated acute kidney injury in Chinese patients. *Brazilian journal of cardiovascular surgery*. 2017;32(6):481-486.
74. Jiang W, Teng J, Xu J, et al. Dynamic predictive scores for cardiac surgery–associated acute kidney injury. *Journal of the American Heart Association*. 2016;5(8):e003754.
75. Nah CW, Ti LK, Liu W, Ng RRG, Shen L, Chew STH. A clinical score to predict acute kidney injury after cardiac surgery in a Southeast-Asian population. *Interactive cardiovascular and thoracic surgery*. 2016;23(5):757-761.
76. Tseng P-Y, Chen Y-T, Wang C-H, et al. Prediction of the development of acute kidney injury following cardiac surgery by machine learning. *Critical Care*. Jul 31 2020;24(1)478. doi:10.1186/s13054-020-03179-9
77. Hu P, Chen Y, Wu Y, et al. Development and validation of a model for predicting acute kidney injury after cardiac surgery in patients of advanced age. *Journal of Cardiac Surgery*. Mar 2021;36(3):806-814. doi:10.1111/jocs.15249
78. Coulson T, Bailey M, Pilcher D, et al. Predicting Acute Kidney Injury After Cardiac Surgery Using a Simpler Model. *J Cardiothorac Vasc Anesth*. Mar 2021;35(3):866-873. doi:10.1053/j.jvca.2020.06.072

© 2022 Liu K et al. *JAMA Network Open.*
79. Hougardy J-M, Revercez P, Pourcelet A, et al. Chronic kidney disease as major determinant of the renal risk related to on-pump cardiac surgery: a single-center cohort study. *Acta Chirurgica Belgica*. 2016;116(4):217-224.

80. Crosina J, Lerner J, Ho J, et al. Improving the prediction of cardiac surgery–associated acute kidney injury. *Kidney international reports*. 2017;2(2):172-179.

81. Wong B, Onge JS, Korkola S, Prasad B. Validating a scoring tool to predict acute kidney injury (AKI) following cardiac surgery. *Canadian journal of kidney health and disease*. 2015;2(1):3.

82. Guan C, Li C, Xu L, et al. Risk factors of cardiac surgery-associated acute kidney injury: development and validation of a perioperative predictive nomogram. *Journal of Nephrology*. Dec 2019;32(6):937-945. doi:10.1007/s40620-019-00624-z

83. Li Y, Xu J, Wang Y, et al. A novel machine learning algorithm, Bayesian networks model, to predict the high-risk patients with cardiac surgery-associated acute kidney injury. *Clinical Cardiology*. Jul 2020;43(7):752-761. doi:10.1002/clc.23377

84. Kristovic D, Horvatic I, Husedzinovic I, et al. Cardiac surgery-associated acute kidney injury: risk factors analysis and comparison of prediction models. *Interactive cardiovascular and thoracic surgery*. 2015;21(3):366-373.

85. Kiers HD, van den Boogaard M, Schoenmakers MC, et al. Comparison and clinical suitability of eight prediction models for cardiac surgery-related acute kidney injury. *Nephrology Dialysis Transplantation*. 2012;28(2):345-351.

86. Ranucci M, Aloisio T, Cazzaniga A, Di Dedda U, Gallazzi C, Pistuiddi V. Validation of renal-risk models for the prediction of non-renal replacement therapy cardiac surgery-associated acute kidney injury. *International journal of cardiology*. 2018;272:49-53.

87. Enger TB, Pleyhm H, Stenseth R, Greiff G, Wahba A, Videm V. A preoperative multimarker approach to evaluate acute kidney injury after cardiac surgery. *Journal of cardiothoracic and vascular anesthesia*. 2017;31(3):837-846.

88. Berg KS, Stenseth R, Wahba A, Pleyhm H, Videm V. How can we best predict acute kidney injury following cardiac surgery?: a prospective observational study. *European Journal of Anaesthesiology (EJA)*. 2013;30(11):704-712.

89. Jorge-Monjas P, Bustamante-Munguira J, Lorenzo M, et al. Predicting cardiac surgery–associated acute kidney injury: The CRATE score. *Journal of critical care*. 2016;31(1):130-138.

90. Birnie K, Verheyden V, Pagano D, et al. Predictive models for kidney disease: improving global outcomes (KDIGO) defined acute kidney injury in UK cardiac surgery. *Critical Care*. 2014;18(6):606.

91. Ko S, Jo C, Chang CB, et al. A web-based machine-learning algorithm predicting postoperative acute kidney injury after total knee arthroplasty. *Knee Surgery Sports Traumatology Arthroscopy*. 2020;doi:10.1007/s00167-020-06258-0

92. Bell S, Dekker FW, Vadiveloo T, et al. Risk of postoperative acute kidney injury in patients undergoing orthopaedic surgery—development and validation of a risk score and effect of acute kidney injury on survival: observational cohort study. *Bmj*. 2015;351

93. Patel M, Robinson C, Smith R, Collaborative ST. Prognostic model to predict postoperative acute kidney injury in patients undergoing major gastrointestinal surgery based on a national prospective observational cohort study (vol 2, pg 400, 2018). *Bjs Open*. Aug 2019;3(4):549-549. doi:10.1002/bjs5.50199
94. Li Y, Chen X, Shen Z, et al. Prediction models for acute kidney injury in patients with gastrointestinal cancers: a real-world study based on Bayesian networks. *Renal Failure*. Jan 1 2020;42(1):869-876. doi:10.1080/0886022x.2020.1810068
95. Li Y, Chen X, Wang Y, Hu J, Shen Z, Ding X. Application of group LASSO regression based Bayesian networks in risk factors exploration and disease prediction for acute kidney injury in hospitalized patients with hematologic malignancies. *Bmc Nephrology*. May 5 2020;21(1):162. doi:10.1186/s12882-020-01786-w
96. Motwani SS, McMahon GM, Humphreys BD, Partridge AH, Waikar SS, Curhan GC. Development and Validation of a Risk Prediction Model for Acute Kidney Injury After the First Course of Cisplatin. *Journal of Clinical Oncology: Official Journal of the American Society of Clinical Oncology*. 2018;36(7):682-688.
97. Xu N, Zhang Q, Wu G, Lv D, Zheng Y. Derivation and Validation of a Risk Prediction Model for Vancomycin-Associated Acute Kidney Injury in Chinese Population. *Therapeutics and Clinical Risk Management*. 2020 2020;16:539-550. doi:10.2147/tcrm.S253587
98. Pan C, Wen A, Li X, et al. Development and Validation of a Risk Prediction Model of Vancomycin-Associated Nephrotoxicity in Elderly Patients: A Pilot Study. *Clinical and translational science*. 2020;13(3):491-497.
99. Xie Y, Zhang Y, Tian R, et al. A prediction model of sepsis-associated acute kidney injury based on antithrombin III. *Clinical and Experimental Medicine*. Feb 2021;21(1):89-100. doi:10.1007/s10238-020-00656-x
100. Zhou J, Bai Y, Wang X, et al. A simple risk score for prediction of sepsis associated-acute kidney injury in critically ill patients. *Journal of Nephrology*. Dec 2019;32(6):947-956. doi:10.1007/s40620-019-00625-y
101. Deng F, Peng M, Li J, Chen Y, Zhang B, Zhao S. Nomogram to predict the risk of septic acute kidney injury in the first 24 h of admission: an analysis of intensive care unit data. *Renal Failure*. Jan 1 2020;42(1):428-436. doi:10.1080/0886022x.2020.1761832
102. Fan C, Ding X, Song Y. A new prediction model for acute kidney injury in patients with sepsis. *Annals of Palliative Medicine*. Feb 2021;10(2):1772-1778. doi:10.21037/apm-20-1117
103. Kate RJ, Perez RM, Mazumdar D, Pasupathy KS, Nilakantan V. Prediction and detection models for acute kidney injury in hospitalized older adults. *BMC Medical Informatics and Decision Making*. 2016;16(1):39.
104. Kate RJ, Pearce N, Mazumdar D, Nilakantan V. A continual prediction model for inpatient acute kidney injury. *Computers in Biology and Medicine*. Jan 2020;116103580. doi:10.1016/j.compbioimed.2019.103580

© 2022 Liu K et al. *JAMA Network Open*.