Generalized Lyapunov Demodulator for Amplitude and Phase Estimation by the Internal Model Principle

Michael R. P. Ragazzon1, Saverio Messineo1, Jan Tommy Gravdahl1, David M. Harcombe2, Michael G. Ruppert2

1NTNU, Norwegian University of Science and Technology.
2The University of Newcastle, Australia.

IFAC Mechatronics, Vienna, Austria, September 4–6, 2019
Outline

Introduction

Generalized Lyapunov demodulator

Filter Design

Simulation Results

Conclusion
Outline

Introduction

Generalized Lyapunov demodulator

Filter Design

Simulation Results

Conclusion
Introduction

— Some applications require high-bandwidth demodulation.
Introduction

— Some applications require high-bandwidth demodulation.

Atomic force microscopy (AFM) in dynamic mode.
Introduction

— The Lyapunov demodulator already achieves a very high demodulation bandwidth.
— However, compares unfavorably in terms of off-mode rejection.
 • Requirement in e.g. multi-frequency AFM.
Introduction

The Lyapunov demodulator already achieves a very high demodulation bandwidth.

However, compares unfavorably in terms of off-mode rejection.

• Requirement in e.g. multi-frequency AFM.

Here we propose a generalized Lyapunov demodulator, enabling direct filtering design.
⇒ Achieves increased off-mode rejection by employing higher-order filters.
Outline

Introduction

Generalized Lyapunov demodulator

Filter Design

Simulation Results

Conclusion
Standard Lyapunov demodulator

Demodulation problem

\[r(t) = a(t) \sin(\omega c t + \varphi(t)) \] \hspace{1cm} (1)
Standard Lyapunov demodulator

Demodulation problem

\[r(t) = a(t) \sin(\omega_c t + \varphi(t)) \quad (1) \]

The standard Lyapunov demodulator can be written as

\[\dot{x} = \gamma c \varepsilon, \]
\[y = c^T x, \quad (2) \]

where \(\varepsilon = r - y \) and

\[c = [\cos(\omega_c t), \sin(\omega_c t)]^T. \quad (3) \]

Amplitude and phase can be recovered from

\[\hat{a} = \sqrt{x_1^2 + x_2^2}, \quad \hat{\varphi} = \text{atan2} \left(x_1, x_2 \right). \quad (4) \]
Generalized Lyapunov demodulator

Sinusoidal signal $r(t)$ generated by the output of:

$$\dot{w} = Sw$$
$$w(0) = w_0$$
$$r(t) = \Gamma^T w$$

with $\Gamma = [1, 0]^T$ and

$$S = \begin{bmatrix} 0 & \omega_c \\ -\omega_c & 0 \end{bmatrix}.$$
Generalized Lyapunov demodulator

Sinusoidal signal $r(t)$ generated by the output of:

$$\dot{w} = Sw$$
$$w(0) = w_0$$
$$r(t) = \Gamma^T w$$

with $\Gamma = [1, 0]^T$ and

$$S = \begin{bmatrix} 0 & \omega_c \\ -\omega_c & 0 \end{bmatrix}.$$ \hfill (6)

Standard Lyapunov demodulator equivalently recast by the change of coordinates $\mathbf{v} = e^{St}\mathbf{x}$, which gives

$$\dot{\mathbf{v}} = S\mathbf{v} + \gamma \Gamma \epsilon$$
$$y = \Gamma^T \mathbf{v}. \hfill (7)$$
Generalized Lyapunov demodulator

Sinusoidal signal \(r(t) \) generated by the output of:

\[
\dot{w} = Sw \\
w(0) = w_0 \\
r(t) = \Gamma^T w
\]

with \(\Gamma = [1, 0]^T \) and

\[
S = \begin{bmatrix}
0 & \omega_c \\
-\omega_c & 0
\end{bmatrix}.
\]

Standard Lyapunov demodulator equivalently recast by the change of coordinates \(\nu = e^{St} x \), which gives

\[
\dot{\nu} = Sv + \gamma \Gamma \epsilon \\
y = \Gamma^T \nu.
\]

Replace \(\epsilon \) by a filtered version, for additional design degrees-of-freedom ⇒
Generalized Lyapunov demodulator

\begin{equation}
\begin{aligned}
\dot{\eta} &= A\eta + B\varepsilon \\
\dot{v} &= S\eta + \Gamma C\eta \\
y &= \Gamma^T v.
\end{aligned}
\end{equation}

where A, B, C can be freely chosen to meet some design specifications.
Indirect filter design

— Design $K(s)$ such that the demodulator loop $T(s)$ becomes a desired bandpass shape.
— Perfect tracking is guaranteed for any stable $K(s)$.
Direct filter design
Direct filter design

- Design $T(s)$ directly as a bandpass filter.
- Perfect tracking is guaranteed by the condition $T(j\omega_c) = 1$.

⇒ Approach taken in this work.
Outline

Introduction

Generalized Lyapunov demodulator

Filter Design

Simulation Results

Conclusion
Filter design considerations

- Bandwidth.
- Relative filter order.
- Phase delay.
- Group delay.
Example filter implementations I

Higher-order Lyapunov demodulators

The standard Lyapunov demodulator represented in the generalized scheme:

\[T_1(s) = \frac{\gamma s}{s^2 + \gamma s + \omega_c^2}. \]

(9)
Example filter implementations I

Higher-order Lyapunov demodulators

The standard Lyapunov demodulator represented in the generalized scheme:

\[T_1(s) = \frac{\gamma s}{s^2 + \gamma s + \omega_c^2}. \]

(9)

The higher order Lyapunov demodulators are then formulated as

\[T_i(s) = T_1(s)^i \]

(10)

where \(i \) represents the relative order of the filter.
Example filter implementations II

Bandpass form of the standard filters

— Butterworth filter
— Bessel filter
— Chebyshev type-I filter
Outline

Introduction

Generalized Lyapunov demodulator

Filter Design

Simulation Results

Conclusion
Simulation Procedure

Compare 3 kHz and 30 kHz bandwidth settings of:

— Relative order 1 Lyapunov filter (standard).
— Relative order 3 Lyapunov filter (higher-order).
— Relative order 3 Butterworth, Bessel, Chebyshev filters.

With carrier frequency 50 kHz.
Simulation Procedure

Compare 3 kHz and 30 kHz bandwidth settings of:
- Relative order 1 Lyapunov filter (standard).
- Relative order 3 Lyapunov filter (higher-order).
- Relative order 3 Butterworth, Bessel, Chebyshev filters.

With carrier frequency 50 kHz.

In terms of:
- Off-mode rejection.
- Transient tracking performance.
Bode plot $T(s)$

3 kHz bandwidth
Tracking frequency response

![Frequency response diagram](image)

- Lyap1
- Lyap3
- Butter
- Bessel
- Cheby

3 kHz bandwidth

30 kHz bandwidth
Step response

![Graph showing step response with different filter types and bandwidths.](image)
Off-mode rejection

![Error norm, $\|a_0 - a\|$ vs. Filters](chart.png)

Attenuation of harmonic frequency components outside the tracking bandwidth
Outline

Introduction

Generalized Lyapunov demodulator

Filter Design

Simulation Results

Conclusion
Conclusion

— Lyapunov demodulator recast and generalized.
 ● The internal model principle ensures perfect tracking conditions.
Conclusion

— Lyapunov demodulator recast and generalized.
 ● The internal model principle ensures perfect tracking conditions.
— Generalized Lyapunov demodulator combines
 ● high bandwidth
 ● large off-mode rejection
 ● simplicity of implementation
suitable for applications such as multifrequency AFM.
Conclusion

— Lyapunov demodulator recast and generalized.
 • The internal model principle ensures perfect tracking conditions.
— Generalized Lyapunov demodulator combines
 • high bandwidth
 • large off-mode rejection
 • simplicity of implementation
 suitable for applications such as multifrequency AFM.
— Highly flexible. LTI filters can be designed to meet application’s demands.
Conclusion

— Lyapunov demodulator recast and generalized.
 • The internal model principle ensures perfect tracking conditions.
— Generalized Lyapunov demodulator combines
 • high bandwidth
 • large off-mode rejection
 • simplicity of implementation
suitable for applications such as multifrequency AFM.
— Highly flexible. LTI filters can be designed to meet application’s demands.

Questions?
Bibliography

Ragazzon, Michael R P et al. (2019). “Generalized Lyapunov Demodulator for Amplitude and Phase Estimation by the Internal Model Principle”. In Proc. IFAC Mechatronics. Vienna, Austria.