A SIMPLE AND EFFICIENT PALLADIUM CATALYST OF NITROGEN-BASED LIGAND FOR Cu(I)- AND AMINE-FREE SONOGASHIRA REACTION

Meng-ping Guo,1,2 Shi-wen Liu,1,2 San-bao Chen,1 Yong-ju Wen,1 Hui Liang,1 and Mei-yun Lv1

1Institute of Coordination Catalysis, College of Chemistry and Bio-Engineering, Yichun University, Yichun, China
2Engineering Center of Jiangxi University for Lithium Energy, Yichun University, Yichun, China

GRAPHICAL ABSTRACT

Abstract Glycine, as a kind of commercially available and inexpensive ligand, is used to prepare an air-stable and water-soluble catalyst used in Sonogashira reaction in our study. In the presence of 1% [PdCl2(NH2CH2COOH)2] as catalyst, excellent catalytic activity towards the Sonogashira coupling of aryl iodides with terminal alkynes without using any additive such as Cu(I)-cocatalyst is observed in a mixture of water and acetone (3/3 mL) under air at 60 °C with NaOH as a base, giving products in good to excellent yields.

Keywords Catalysis; palladium complex; Sonogashira reaction; strategy

INTRODUCTION

The synthesis of alkynyl compounds has attracted considerable interest because of their appearance in many biologically active natural products (such as panaxynol,

Received August 21, 2014.
Address correspondence to Meng-ping Guo, Institute of Coordination Catalysis, College of Chemistry and Bio-Engineering, Yichun University, Yichun 336000, China. E-mail: guomengping65@163.com
Color versions of one or more of the figures in the article can be found online at www.tandfonline.com/jtsc.
panaxydol, panaxytriol, which show certain anticancer effects\[^1\]) and because they serve as key intermediates of pharmaceuticals or drug-like molecules\[^2,3\] and can even be monomers of polymer materials\[^4,5\] and liquid-crystalline material\[^6,7\] which show great application potential and have considerable economic value in the fields of medicine, organic synthesis, and materials chemistry. Thus, much attention has been focused on the development of efficient and selective methods for the synthesis of alkenes.

Transition-metal-catalyzed cross-coupling reactions can be considered as cornerstones in organic synthesis for the formation of carbon–carbon bonds. In these reactions, the coupling of aryl or alkenyl halides with terminal alkynes catalyzed by palladium in the presence of Cu(I) cocatalyst or not, commonly known as Sonogashira cross-coupling reaction, is one of the most powerful methods for straightforward sp\(^2\)-sp carbon–carbon bond formation reaction to prepare arylalkynes and conjugated enynes encountered frequently in natural products\[^8,9\], bioactive molecules\[^10,11\], molecular electronics\[^12,13\] and dendrimeric and polymeric materials\[^14,15\]. Therefore, considerable effort has been directed to the development of new and efficient palladium catalytic systems for Sonogashira cross-coupling reaction\[^16–21\].

Generally, the Sonogashira reaction is performed with palladium-phosphane ligand complex, such as Pd(PPh\(_3\))\(_2\)Cl\(_2\), Pd(dppe)Cl\(_2\), and Pd(dppf)Cl\(_2\), in the presence of Cu(I) salt as cocatalyst and an amine as a solvent, such as triethylamine, under homogeneous conditions. When these palladium species are employed, they often require high loading of palladium (usually up to 5 mol\%\)) and a larger amount of the Cu(I) salt. Additionally, many phosphine ligands are air sensitive and not environmentally friendly, significantly limiting their synthetic applications\[^22,23\]. Besides, the presence of Cu(I) salt can result in the formation of oxidative homocoupling reaction of alkynes\[^24\]. In past decades, although significant developments from the original palladium–phosphorus complexes\[^25\] to palladium-P,N or palladium-P,O complexes\[^26\], palladium–nitrogen complexes\[^27\] and N-heterocyclic carbene palladium complexes\[^28\] palladacycle catalysts\[^29\] and even the use of ligand-free palladium catalysts\[^30\] have helped achieve the Sonogashira reaction with moderate to excellent yields\[^31–34\], most systems still require high reaction temperatures in organic solvents under an inert atmosphere and even need the presence of Cu(I) salt and an amine as solvent. Therefore, achieving a more active catalyst for simpler, milder, and more effective reaction conditions with the Cu(I)-, amine-, and phosphine-free catalytic system becomes more significant and challenging for chemistry researchers.

Taking stability and safety into consideration and from an economic and environmental viewpoint, recently we selected glycine as water-soluble nitrogen-based ligand to synthesize a catalyst with palladium chloride and found that glycine was a highly efficient ligand for the palladium-catalyzed Suzuki–Miyaura cross-coupling reaction, giving excellent yields for aryl bromides and moderate yields for aryl chlorides\[^35,36\] so that we expected to extend the use of this catalyst to other palladium-catalyzed transformations. In this article, we report a highly efficient [PdCl\(_2\)(NH\(_2\)CH\(_2\)COOH\(_2\))]\(^{-}\)-catalyzed Sonogashira cross-coupling reaction of aryl halides with terminal alkynes to form internal alkynes. In our studies, [PdCl\(_2\) (NH\(_2\)CH\(_2\)COOH\(_2\))]\(^{-}\), as a catalyst for the Sonogashira coupling reaction, has several advantages compared with those reported\[^37–39\]. First, the ligand of the catalyst is glycine, which possesses lots of properties, such as solubility, stability, and safety.
Because of the properties of the ligand, the catalyst is also water-soluble, stable, and safe, which provides the possibility of catalyzing Sonogashira reaction in water under air. Second, synthesis of the catalyst is extremely easy and it is obtained only by stirring glycine with palladium chloride \((\text{PdCl}_2)\) in ethanol and acetic acid for 24 h at room temperature under air. Third, from an economic point of view, glycine is commercially available and inexpensive, which creates feasible conditions for industrial production. Finally, the catalyst shows high efficiency to Sonogashira reaction in a mixture of water and acetone (3/3 mL) under air at 60 °C with 1% catalyst and \(\text{NaOH}\) as a base in 2 h with the Cu-, amine-, and phosphine-free catalytic system, giving products in moderate to good yields.

RESULTS AND DISCUSSION

Optimization of the Coupling Reaction Conditions

Initially, moderate yield (Scheme 1; Table 1, entries 1 and 2) was observed when iodobenzene and phenyl acetylene were selected to test the activity of the catalyst in a mixture of water and ethanol or PEG-400 under air at 60 °C with \(\text{NaOH}\) (2.0 mmol) as a base for 2h. Thus, the two compounds were chosen to establish guidelines for the optimization of our protocol as the model reaction. Because of good solubility of the catalyst in water, we continued to explore solvent systems consisting of water and another organic solvent. As shown in Table 1, when 1,4-dioxane or tetrahydrofuran (THF) was selected to be the mixed solvent with water (Table 1, entries 3 and 4), poor yield was observed. However, relatively high yield (Table 1, entry 5) was observed when acetone was chosen as solvent with water in the proportion of 3/3 mL. Next, different proportions of acetone and water were studied but the reaction did not perform well under other proportions (Table 1, entries 6–9) so that the mixed solvent of water and acetone (3/3 mL) was found to be the best reaction solvent.

After the best reaction solvent was found, other reaction conditions, such as reaction temperature or time, were studied in detail. Results of this preliminary survey are shown in Table 2 and Scheme 2. As shown in Table 2, when the effect of the amount of the catalyst on the coupling reaction was studied, we could see that lowering the amount of Pd from 2% mol to 1% mol did not affect the reaction performance (Table 2, entries 4 and 5). When the amount of the catalyst was reduced to 0.5%, it gave products in moderate yield (Table 2, entry 3), and when reduced to 0.1%, the coupling reaction could hardly be performed (Table 2, entries 1 and 2). So, 1% mol catalyst was optimal for the system. Next, we found that reaction temperature had also an important role on the coupling reaction. When increasing the reaction temperature from 30 to 60 °C (Table 2, entries 6–8), the yield also increased remarkably.

![Scheme 1. Optimization of the reaction solvent.](image-url)
It was worth noting that poor yield (34%) was obtained when reaction temperature was up to 80 °C (Table 2, entry 9), indicating that high temperature was not suitable for the reaction under this system. In addition, prolonging the reaction time from 0.5 to 2 h (Table 2, entries 10–12), the yield increased from 86% to 93%. To further optimize the reaction condition, with the amount of catalyst fixed as 1% mol, the reaction proceeded well when inorganic base NaOH was used, affording the desired coupling product in excellent yield (Table 2, entry 12) under air at 60 °C for 2 h. However, NEt₃ and K₃PO₄ used in this reaction gave moderate yield (Table 2, entries 13 and 14). In contrast, K₂CO₃ and pyridine slightly promoted the reaction (Table 2, entries 15 and 16) and organic base 1,2-propanediamine scarcely promoted the reaction (Table 2, entry 17).

Scope and Limitations of the Substrates

To further investigate the scope and limitations of this methodology, we carried out cross-couplings of different aryl halides including electron-neutral, electron-rich, and electron-poor aryl iodides with various terminal alkynes under optimized conditions. As shown in Table 3, although all the aryl iodides could couple smoothly with various terminal alkynes under the optimized reaction condition, aryl iodides with electron-donating groups such as 4-iodoanisole (Scheme 3; Table 3, entries 12–15) gave moderate yields (70–79%) in 2 h, showing slightly lower reactivity. In contrast, aryl iodides with electron-withdrawing groups such as 4-fluoroiodobenzene (Table 3, entries 9–11), gave good yields (78–88%) under the same reaction condition, showing slightly high reactivity. Additionally, electron-neutral aryl iodides such as iodobenzene or 4-iodotoluene coupling with terminal alkynes also gave the desired products.

![Scheme 2. Optimization of other reaction conditions.](image-url)
Table 2. Optimization of the other reaction conditions

Entry	Catalyst (mol%)	Base (2.0 mmol)	Time (h)	Temperature (°C)	Yield (%)
1	0.05	NaOH	0.5	60	0
2	0.1	NaOH	0.5	60	13
3	0.5	NaOH	0.5	60	75
4	1	NaOH	0.5	60	86
5	2	NaOH	0.5	60	88
6	1	NaOH	0.5	30	44
7	1	NaOH	0.5	45	61
8	1	NaOH	0.5	60	86
9	1	NaOH	0.5	80	34
10	1	NaOH	0.5	60	86
11	1	NaOH	1	60	89
12	1	NaOH	2	60	93
13	1	K$_2$PO$_4$	2	60	55
14	1	NEt$_3$	2	60	56
15	1	K$_2$CO$_3$	2	60	15
16	1	Pyridine	2	60	11
17	1	1,2-Propanediamine	2	60	Trace

Table 2. Optimization of the other reaction conditions

in moderate to good yields (Table 3, entries 1–8). On the other hand, the terminal alkynes also have a significant effect on the coupling reaction. As shown in Table 3, the reaction of phenylacetylene, 1-hexyne, and 3-butyn-1-ol with aryl halides gave superior yields of the products to 3,3-dimethyl-1-butyne, indicating that terminal alkynes with steric hindrance, such as 3,3-dimethyl-1-butyne, gave products in moderate yields, significantly being less than 1-hexyne or 3-butyn-1-ol without steric hindrance. Moreover, the relatively poor activity was obtained when aryl bromides coupled with various terminal alkynes.

Possible Mechanism of the Catalyst for Sonogashira Reaction

The mechanism of the copper-free Sonogashira reaction is still not well known. The possible mechanism is as follows. The first step would be the oxidative addition of aryl halides to the palladium(0) complex. However, the second step is under debate. The base employed usually makes it hard to deprotonate the alkyne for the reaction with the oxidative addition palladium(0) complex (trans-R$_1$PdXL$_2$) so that complexation of the alkyne to the complex is supposed to proceed first with displacement of one ligand to give intermediate complex (RCCH)-PdXL$_2$. The ligated alkyne would be more easily deprotonated by base such as NaOH used in the reaction, forming the new complex R$_1$Pd-(CCR$_2$L)$_2$, which gives the coupling product R$_1$-CC-R$_2$ by reductive elimination.

![Scheme 3. Sonogashira reaction under optimized conditions.](image-url)
Entry	Aryl halides	Terminal alkynes	Product	Yield (%)
1	Ph			93
2				87
3				78
4				92
5				85
6				84
Entry	Aryl halides	Terminal alkynes	Product	Yield\(^a\) (%)
-------	-------------	-----------------	---------	-----------------
13	![Aryl halide 13](image1)	![Terminal alkene 13](image2)	![Product 13](image3)	79
14	![Aryl halide 14](image4)	![Terminal alkene 14](image5)	![Product 14](image6)	70
15	![Aryl halide 15](image7)	![Terminal alkene 15](image8)	![Product 15](image9)	81
16	![Aryl halide 16](image10)	![Terminal alkene 16](image11)	![Product 16](image12)	50
17	![Aryl halide 17](image13)	![Terminal alkene 17](image14)	![Product 17](image15)	53
18	![Aryl halide 18](image16)	![Terminal alkene 18](image17)	![Product 18](image18)	42

\(^a\)Isolated yield was based on aryl halides.
Reagents and Machines

All reagents employed in the reaction were analytical grade, obtained commercially from J&K China Chemical Ltd. and used without further purification. 1H and 13C NMR spectra were recorded on a Bruker Avance III (400-MHz) spectrometer using tetramethylsilane (TMS) as the internal standard and CDCl$_3$ as the solvent. Elemental analyses (C, H, N) were carried out on a Perkin-Elmer model 240 C automatic instrument. Electrospray mass spectra (ES-MS) were recorded on a Finnigan LCQ mass spectrometer.

Synthesis of the Catalyst

A mixture of glycine (10.2 mmol, 0.765 g), palladium chloride (5.0 mmol, 0.886 g), ethanol (30 mL), and acetic acid (5 mL) was stirred at room temperature under air for 24 h in a round-bottomed flask. After 24 h, large amounts of light brown precipitate emerged in the solution. Then, the precipitate was filtered and washed with ethanol. Lastly, a light brown compound was obtained after drying by vacuum. On the basis of elemental analysis, the complex was found to have the composition of C (14.90\%), H (3.10\%), N (8.56\%); ESI-MS (m/z): 326.8 [M + 1]. Yield: 0.93 g, 57\%.

Recovery and Recycling of the Catalyst

The palladium catalyst can be easily recovered by simple extraction. Because the catalyst is water soluble and the reaction solvent consists of water and acetone, the catalyst can be separated from products and recovered by simple extraction. In addition, the catalyst used in the reaction is recyclable, but the catalytic efficiency decreases gradually with recycling time, from 93\% to 53\%. From Table 4, the recycling of catalyst was investigated using iodobenzene and phenyl acetylene as model substrates. We can see that the efficiency of catalyst recycling decreases apparently, even with prolonging the reaction time.

General Procedure for the Synthesis

The aryl halides (1.0 mmol), terminal alkynes (1.2 mmol), catalyst (1\% mol, 0.003268 g), NaOH (2.0 mmol, 0.08 g), and water/acetone (3/3 mL) were added to a flask and stirred under air at 60 °C for 2 h. Then, the 5 mL brine was added to quench the reaction and the mixture was extracted with ethyl acetate (3 × 15 mL). The

Entry	Run	Time (h)	Isolated yield (%)
1	1	2	93
2	2	2	77
3	3	4	80
4	4	16	53
5	5	24	14

Table 4. Recycling of catalyst for Sonogashira reaction of iodobenzene with phenyl acetylene
combined organic phase was dried with Na$_2$SO$_4$ for 3 h. Next, the organic phase was filtrated and removed on a rotary evaporator. Finally, the product was isolated by thin-layer chromatography (TLC) and the purified products were identified by 1H and 13C NMR.

CONCLUSION

In summary, it has been shown that the use of [PdCl$_2$(NH$_2$CH$_2$COOH)$_2$] as catalysts in a mixture of water and acetone (3/3 mL) under air at 60 °C with NaOH as a base is a very convenient way to carry out Sonogashira coupling reaction with the Co-, amine-, and phosphine-free catalytic system, which gives an extremely fast, highly efficient, and much more green approach to obtain alkynyl compounds found easily in natural products, bioactive molecules, and dendrimeric and polymeric materials, demonstrating great industrial application perspective and considerable economic value in the field of medicine, organic synthesis, and material chemistry.

FUNDING

This work was supported by the Scientific Research Fund of Jiangxi Provincial Education Department [Grant Number 10703].

SUPPORTING INFORMATION

Supplemental data for this article can be accessed on the publisher’s website.

REFERENCES

1. Kim, J. Y.; Lee, K. W.; King, S. H. *Planta Med.* 2002, 68(2), 119.
2. Barry, M. T.; Zachary, T. B. *J. Am. Chem. Soc.* 2004, 126(43), 13942.
3. Binh, G. V.; Kim, S. H.; Abraham, S.; Theodorakis, E. A. *Angew. Chem. Int. Ed.* 2004, 43(30), 3947.
4. Li, J.-Z.; Ambroise, A.; Lindsey, J. S. *J. Am. Chem. Soc.* 1999, 121(38), 8927.
5. Strachan, J. P.; Gentemann, S.; Seth, J. *Inorg. Chem.* 1998, 37, 1191.
6. Jacky, W. Y. L.; Tang, B. Z. *Acc. Chem Res.* 2005, 38(9), 745–754.
7. Liu, J. Z.; Jacky, W. Y. L.; Tang, B. Z. *Chem Rev.* 2009, 109(11), 5799.
8. Robert, D. M. D.; Marquez, R. *Angew. Chem. Int. Ed.* 2001, 40(3), 603.
9. Toyota, M.; Komori, C.; Ihara, M. *J. Org. Chem.* 2000, 65(21), 7110.
10. Gary, A.; Hügel, H. M.; Nurlawis, F. *Synlett* 2002, 3, 495.
11. Tehrani, L.; Roppe, J.; Schweiger, E. *J. Med. Chem.* 2003, 46(2), 204.
12. Mongin, O.; Moreaux, L.; Mertz. *J. Org. Lett.* 2002, 4(5), 719.
13. Wong, K.-T.; Chun, C. H. *Org. Lett.* 2001, 3(2), 173.
14. Wagner, R. W.; Kim, D.; Bocian, D. F. *J. Org. Chem.* 1998, 63(15), 5042.
15. Strachan, J.-P.; Gentemann, S.; Seth, J.; Kalsbeck, W. A.; Lindsey, J. S.; Holten, D.; Bocian, D. F. *Inorg. Chem.* 1998, 37, 1191.
16. Arques, A.; Auñon, D.; Molina, P. *Tetrahedron Lett.* 2004, 45(22), 4337.
17. Cheng, J.; Sun, Y.-H.; Wang, F. *J. Org. Chem.* 2004, 69(16), 5428.
18. Wolf, C.; Lerebours, R. *Org. Biomol. Chem.* 2004, 2, 2161.
19. Méry, D.; Heuzé, K.; Astruc, D. *Chem. Commun.* 2003, 15, 1934.
20. Alami, M.; Ferri, F.; Linstrumelle, G. *Tetrahedron Lett.* 1993, 34(40), 6403.
21. Heidenreich, R. G.; Klaus, K.; Krauter, J. G. E. Synlett 2002, 7, 1118.
22. Matthew, R. N.; Gregory, C. F. Org. Lett. 2001, 3(26), 4295.
23. Gelman, D.; Buchwald, S. L. Angew. Chem. Int. Ed. 2003, 42(48), 5993.
24. Siemsen, P.; Livingston, R. C.; Diederich, F. Angew. Chem. Int. Ed. 2000, 39(15), 2632.
25. Heuzé, K.; Méry, D.; Gauss, D. Chem. Eur. J. 2004, 10(16), 3936.
26. Nishide, K.; Liang, H.; Yoshifuji, M. J. Organomet. Chem. 2005, 690, 4809.
27. Gronnow, M.-J.; Luque, R.; Duncan, J.-M. Green Chem. 2005, 7, 552.
28. Wolfgang, A.-H. Angew. Chem. Int. Ed. 2002, 41(8), 1290.
29. Beletskaya, I.-P., Cheprakov, A. V. K. J. Organomet. Chem. 2004, 690(17), 4055.
30. Urgaonkar, S.; Verkade, J.-G. J. Org. Chem. 2004, 69, 5752.
31. Lin, B.-N.; Huang, S.-H.; Wu, W.-Y. Molecules 2010, 15, 9157.
32. Bahman, T.; Fatemeh, F.; Soheila, G.; Hamed, A. New J. Chem. 2013, 37, 2011.
33. Li, J.-H.; Liang, Y.; Xie, Y.-X. J. Org. Chem. 2005, 70, 4393.
34. Li, P.-H.; Wang, L. Synlett 2006, 14, 2261.
35. Liu, S.-W.; Guo, M.-P.; Li, X.-G. Org. Biomol. Chem. 2014, 12(25), 4511.
36. Guo, M.-P.; Liu, S.-W.; Zhou, X.-L. Molecules 2014, 19(5), 6524.
37. Tyrrell, E.; Whiteman, L.; Williams, N. Synthesis 2009, 5, 829.
38. Urgaonkar, S.; Verkade, J.-G. J. Org. Chem. 2004, 69, 5752.
39. Irina, P.-B.; Gennadij, V.-L.; Nikolai, V.-L. Tetrahedron Lett. 2003, 44, 5011.