Cost-Effective Quantum Mechanical Approach for Predicting Thermodynamic and Mechanical Stability of Pure-Silica Zeolites

Michele Cutini, Bartolomeo Civalleri, and Piero Ugliengo*

*University of Turin, Department of Chemistry and NIS (Nanostructured Interfaces and Surfaces) Center, Via P. Giuria 5-7, 10125 Turin – ITALY

* e-mail: piero.ugliengo@unito.it

Supporting Information
Computational details

Table S1. Shrinking factor used in all calculations.

NAME	HF-3c // B3LYP/SVP and VTZP // PBE/VTZP	PBEh-3c
FAU	2 2	2 2
ISV	2 2	2 2
AFI	4 4	4 4
AST	2 2	4 4
FER	2 2	4 4
MEL	2 2	4 4
CFI	4 4	4 4
CHA	2 2	6 6
IFR	2 2	6 6
ITE	2 2	6 6
MTW	4 4	6 6
MWW	2 2	6 6
MFI	2 2	2 2
STT	2 2	2 2
QUA	6 6*	8 8

*10 10 in the B3LYP/VTZP case

Table S2. TOLINTEGR values used in the calculations.

TOLINTEGR	B3LYP/SVP and VTZP	HF-3c	PBEh-3c	PBE/VTZP
T1	8 7 7 7 25	7 7 7 18	7 7 9 30	6 6
T2				
T3				
T4				
T5				

Statistical functions adopted in the paper

\[
\text{MAE} = \frac{1}{N} \cdot \sum |\delta_i|, \quad \text{MARE} = \frac{1}{N} \cdot \sum |\delta_i|\% \quad \delta_i = |x_i| - |x_i^{\text{exp}}|, \quad \delta_i\% = 100 \cdot \frac{|x_i| - |x_i^{\text{exp}}|}{|x_i^{\text{exp}}|} \quad \text{ME} = \frac{1}{N} \cdot \sum |\delta_i|
\]

\[
, \quad \text{MRE} = \frac{1}{N} \cdot \sum |\delta_i|\% , \quad SD = \sqrt{\frac{\Sigma (\delta_i - \bar{\delta})^2}{N - 1}} , \quad SD\% = \sqrt{\frac{\Sigma (\delta_i - \bar{\delta})^2}{N - 1}} \quad \text{with } i=1, \ldots, N,
\]

\[
P = \frac{\Sigma (x_i - \bar{x})(y_i - \bar{y})}{\Sigma (x_i - \bar{x})^2(y_i - \bar{y})^2}
\]
Basis sets

B3LYP SVP basis set

14 5
0 0 8 2 0 1.0
149866.0 0.0001215
22080.6 0.0009770
4817.5 0.0055181
1273.5 0.0252000
385.11 0.0926563
128.429 0.2608729
45.4475 0.4637538
16.2589 0.2952000
0 1 8 8 0 1.0
881.111 -0.0003 0.0006809
205.84 -0.0050 0.0059446
64.8552 -0.0368 0.0312000
23.9 -0.1079 0.1084000
10.001 0.0134 0.2378000
4.4722 0.3675 0.3560066
1.0780 0.0050 0.0059446
0 1 3 4 0 1.0
2.6668 -0.0491 0.0465000
1.0780 -0.1167 -0.1005000
0.3682 0.2300 -1.0329000
0 1 1 0 1.0
0.193 1.0 1.0
0 3 1 0 1.0
0.610 1.0
8 5
0 0 8 2 0 1.0
8966.29 0.0010
1240.17 0.0091
252.114 0.0513
70.359 0.1702
23.9025 0.3662
9.2075 0.3859
3.9847 0.1471
1.2266 0.0695
0 1 4 6 0 1.0
44.9344 -0.0098 0.0107
10.3978 -0.0893 0.0670
3.2970 -0.0373 0.2100
1.2340 0.3730 0.3542
0 1 1 0 1.0
0.4536 1.0 1.0
0 1 1 0 1.0
0.1810 1.0 1.0
0 3 1 0 1.0
0.60 1.0

B3LYP and PBE VTZP basis set

14 13
0 0 5 2 0 1.0
79079.4340000 0.26431386E-03
11855.0100000 0.20485143E-02
2697.7051000 0.10637241E-01
762.8722700 0.43082477E-01
247.2845500 0.13898279
0 0 1 2.0 1.0
87.9312400 1.000000
0 0 2 2.0 1.0
33.8232840 0.44071543
13.8681080 0.20091165
0 0 1 0.0 1.0
3.9920017 1.000000
0 0 1 0.0 1.0
1.4659925 1.000000
0 0 1 0.0 1.0
0.25271086 1.000000
0 0 1 0.0 1.0
0.92491673E-01 1.000000
0 2 5 6.0 1.0
483.2035200 0.19161547E-02
114.2508100 0.15309765E-01
36.3877860 0.71094358E-01
13.4117040 0.21243244
5.2884033 0.38976302
0 2 1 2.0 1.0
2.1374219 1.000000
0 2 1 0.0 1.0
0.86468463 1.000000
0 2 1 0.0 1.0
0.25489855 1.000000
0 2 1 0.0 1.0
0.79397031E-01 1.000000
0 3 1 0.0 1.0
0.3500000 1.000000
8 10
0 0 5 2.0 1.0
15902.6474590 0.51499803703E-03
2384.9537829 0.39819764428E-02
542.71957182 0.20476971922E-01
153.40407874 0.80262367915E-01
49.545716140 0.23766839947
0 0 1 2.0 1.0
17.339649897 1.000000
0 0 1 0.0 1.0
6.3303355272 1.000000
0 0 1 0.0 1.0
1.6995882201 1.000000
0 0 1 0.0 1.0
0.68954491271 1.000000
0 0 1 0.0 1.0
0.23936028181 1.000000
0 2 4 4.0 1.0
63.270524011 0.60709205960E-02
14.623312295 0.41947688723E-01
4.4489518003 0.16156883988
1.5281513180 0.35682779292
0 2 1 0.0 1.0
0.52997315870 1.000000
0 2 1 0.0 1.0
0.17509445998 1.000000
0 3 1 0.0 1.0
1.2000000 1.000000
Results and Discussion

Table S3. Zeolite optimized volume at the B3LYP-D2/VTZP, PBE-D2/VTZP, PBE0-D2/VTZP, HF-3c, HF-3c-027 and PBEh-3c levels of theory. Results in cm3 mol$^{-1}$ per SiO$_2$ unit.

name	exp	B3LYP-D2 VTZP	PBE0-D2 VTZP	PBE-D2 VTZP	HF-3c	HF-3c-027	PBEh-3c
AFI	33.83	36.79	36.41	37.06	33.81	34.01	35.97
AST	34.83	39.63	39.22	40.19	35.71	35.89	38.76
CFI	32.94	37.53	37.15	37.98	34.03	34.24	36.69
CHA	39.10	41.43	39.68	39.42	37.85	38.07	40.59
FAU	44.77	47.53	46.97	47.61	43.67	43.95	46.17
FER	32.67	35.57	35.22	36.04	32.18	32.37	34.78
IFR	35.36	36.37	36.10	36.28	34.43	34.74	35.52
ISV	39.21	41.46	41.01	41.64	38.44	38.69	40.59
ITE	37.04	38.56	38.19	38.38	36.13	36.37	37.40
MEL	33.83	35.87	35.80	35.70	33.35	33.57	34.76
MFI2	33.51	34.43	34.21	34.37	33.22	33.45	33.29
MTW	31.06	34.57	34.29	35.00	32.15	32.35	33.48
MWW	36.47	39.22	38.81	39.63	35.75	35.98	38.33
STT	35.78	37.29	36.97	37.08	35.16	35.42	36.09
QUARTZ	22.71	22.47	22.54	22.67	23.22	23.41	22.44
Table S4. Calculated and experimental energy and enthalpy of formation of zeolites with respect to α-quartz in kJ·mol⁻¹ per SiO₂ unit. B refers to B3LYP. P refers to PBE.

Zeolite	ΔH	±Δ	ZPE (HF-3c-027) SCALED	E₂ 298.15K(HF-3c-027)	ΔE (quasi-exp.)
AFI	7.2	0.9	1.2	1.2	4.9
AST	10.9	1.2	1.0	0.9	9.0
CFI	8.8	0.8	0.8	1.1	6.8
CHA	11.4	1.5	1.3	0.8	9.3
FAU	13.6	0.7	1.5	1.2	11.0
FER	6.6	1.0	1.2	1.2	4.3
IFR	10.0	1.2	1.3	1.0	7.7
ISV	14.4	1.1	1.4	1.1	11.9
ITE	10.1	1.2	1.3	1.2	7.5
MEL	8.2	1.3	1.3	1.4	5.6
MFI2	6.8	0.8	1.1	1.0	4.7
MTW	8.7	0.8	0.8	1.3	6.5
MWW	10.4	1.5	1.4	1.3	7.7
STT	9.2	1.2	1.3	1.0	6.9

Zeolite	SP-P/VTZP-D3ABCD	SP-P/VTZP-D2	SP-Ph-3c	SP-B/SVP-D*	SP-B/SVP-D3ABCD	SP-B-D*/VTZP	SP-B-D3ABCD/VTZP
AFI	5.2	4.5	6.7	10.5	14.0	6.4	9.8
AST	9.6	8.6	10.9	13.1	17.5	10.2	14.6
CFI	6.4	5.8	7.4	11.6	15.2	7.4	10.9
CHA	8.3	7.1	10.0	12.6	17.0	9.9	14.4
FAU	9.8	8.4	11.3	14.0	18.3	11.6	15.9
FER	4.5	3.9	6.2	8.7	11.8	5.4	8.5
IFR	5.9	5.1	8.0	10.3	13.5	7.7	10.9
ISV	8.9	7.8	10.5	13.1	16.7	10.4	14.0
ITE	6.5	5.7	8.3	11.2	15.1	7.9	11.8
MEL	4.8	4.2	6.2	9.2	12.4	5.8	9.1
MFI2	4.6	4.0	5.9	9.0	12.2	5.5	8.7
MTW	4.7	4.2	5.7	9.4	12.7	5.5	8.8
MWW	6.8	5.9	8.2	10.3	13.6	7.8	11.0
STT	7.2	6.3	8.8	11.7	15.4	8.4	12.1

Zeolite	B-D2/VTZP	PO-D2/VTZP	HF-3c	HF-3c-027	Ph-3c	P/VTZP-D2
AFI	15.6	11.6	14.5	10.6	14.4	14.3
AST	19.9	15.2	18.8	14.2	19.4	19.3
CFI	16.5	12.5	14.2	10.0	16.1	16.0
CHA	19.3	14.0	21.7	17.6	17.0	16.1
FAU	20.6	15.4	25.6	21.9	17.1	17.3
FER	14.7	10.9	13.0	9.4	14.2	14.2
IFR	15.6	11.6	19.4	16.3	13.2	12.8
ISV	18.8	14.3	20.6	17.2	17.3	16.6
ITE	16.4	12.0	18.4	14.4	14.3	14.0
MEL	14.3	10.6	13.4	9.6	12.9	13.1
MFI2	13.2	9.5	12.6	8.7	11.2	12.0
MTW	13.9	10.2	11.8	7.8	13.0	13.3
MWW	16.7	12.5	17.8	14.4	15.6	15.4
STT	16.5	12.2	18.3	14.5	14.6	14.3
Figure S1 Correlation between dispersion energy as computed with both D* and D3 corrections (to the PBE functional) and the density of the SiO₂ polymorphs.
Figure S2 IR spectra of the zeolite set at the HF-3c-027 level of theory.

Table S5. Statistical analysis (in %) of the calculated mechanical properties of zeolites at the HF-3c and HF-3c-027 levels with respect to B3LYP/SVP-D2, taken from Ref. 4.

E and G components	ME	MARE	SD
Emin	18	18	13
Emax	31	31	9
Gmin	16	20	19
Gmax	34	34	21

HF-3c-027			
Emin	28	29	16
Emax	35	35	12
Gmin	22	26	22
Gmax	38	38	20
Table S6. Minimum and maximum values for the Young's modulus (E) and shear modulus (G) values for the zeolite set.

Zeolite	Emin (GPa)	Emax (GPa)	Gmin (GPa)	Gmax (GPa)
B3LYP/SVP-D2				
AFI	84.7	182.1	32.8	50.4
AST	28.4	97.4	9.8	36.2
CFI	78.6	116.9	25.5	39.5
CHA	19.1	80.8	8.3	30.5
FAU	45.7	53.2	16.6	19.6
FER	67.0	162.1	26.0	48.2
IFR	41.2	95.4	17.1	37.5
ITE	43.1	81.5	13.3	35.9
MTW	44.5	108.1	14.4	54.4
HF-3c				
AFI	86.3	234.7	27.2	60.2
AST	35.7	124.2	12.4	46.3
CFI	93.9	151.3	31.9	65.4
CHA	25.3	102.9	11.7	39.1
FAU	58.6	64.9	21.4	23.9
FER	83.1	207.8	25.4	84.8
IFR	42.8	119.7	17.6	47.8
ITE	55.7	115.3	17.5	43.9
MTW	45.2	161.0	15.0	64.8
HF-3c-027				
AFI	96.7	233.7	31.2	62.7
AST	39.8	122.6	13.3	46.6
CFI	99.8	153.2	33.9	66.6
CHA	28.2	105.9	12.8	40.3
FAU	59.4	67.6	21.7	25.0
FER	87.3	209.1	27.3	85.5
IFR	53.0	125.7	20.1	49.3
ITE	59.0	120.1	18.6	45.4
MTW	41.3	174.4	12.7	67.9
Figure S3 Emin, Emax, Gmin and Gmax computed at the HF-3c and HF-3c-027 levels of theory.

Bibliography

1. Nada, R., Nicholas, J. B., McCarthy, M. I. & Hess, A. C. Basis Sets for ab initio Periodic Hartree-Fock Studies of Zeolite/Adsorbate Interactions: He, Ne, and Ar in Silica Sodalite. *Int. J. Quantum Chem.* **60**, 809–820 (1996).

2. Schäfer, A., Horn, H. & Ahlrichs, R. Fully optimized contracted Gaussian basis sets for atoms Li to Kr. *J. Chem. Phys.* **97**, 2571–2577 (1992).

3. Román-Román, E. I. & Zicovich-Wilson, C. M. The role of long-range van der Waals forces in the relative stability of SiO2-zeolites. *Chem. Phys. Lett.* **619**, 109–114 (2015).

4. Coudert, F.-X. Systematic investigation of the mechanical properties of pure silica zeolites: stiffness, anisotropy, and negative linear compressibility. *Phys. Chem. Chem. Phys* **15**, 16012–16018 (2013).