Dental phenotype in an adolescent with osteogenesis imperfecta type XII

Joanna Yuet-ling Tung 1, Jeni Lai-in Ho, Ricky Wong, Siu-chung Fung

SUMMARY

Mutation in SP7, encoding the osteoblast-specific transcription factor SP7 (also known as osterix), has been described to cause osteogenesis imperfecta (OI) type XII. However, the exact dental phenotype has not been well described. We report the detailed dental manifestation of a boy known to have OI type XII, presented with impacted dentition, necessitating combined oral and maxillofacial surgical and orthodontic treatment. This case also highlighted the need of multidisciplinary team assessment in this group of children.

BACKGROUND

Osteogenesis imperfecta (OI) is a heterogeneous group of connective tissue disorders, characterised by bone fragility with repeated fractures and other extraskelatal features, including ligamentous laxity, blue sclerae, dentinogenesis imperfecta (DI) and other dental development disorders. The majority of individuals with OI have autosomal dominant mutations in either COL1A1 and COL1A2, which encode the α1(I) and the α2(I) chains of collagen type I—a crucial component in both bone and dentine. Other than COL1A1 and COL1A2, mutations in 20 other genes have been associated with OI phenotypes. Most of these genes are expressed in osteoblasts, and are directly involved in the metabolism of collagen type I.

Mutation in SP7, encoding the osteoblast-specific transcription factor SP7 (also known as osterix), which is essential for bone formation, has been described to cause OI type XII, resulting in bone fragility with recurrent long bone fractures since early childhood, long bone bowing, scoliosis, short stature, early onset hearing impairment and delayed tooth eruption. However, the exact dental phenotype has not been well described. Here, we report a boy known to have OI type XII, presented with impacted permanent dentition.

CASE PRESENTATION

The proband is a 17-year-old boy known to have OI type XII due to a homozygous frameshift mutation in SP7 (p.Glu351Argfs*19). Parents were healthy, non-consanguineous Chinese couple. He had recurrent long bone fractures since the age of 2 years and was started on intravenous pamidronate infusions since the age of 5 years. With decreased frequency of fractures, bisphosphonate treatment was stopped at 10 years of age. He developed vertebral collapse and another episode of long bone fracture at the age of 13 years, and hence bisphosphonate was reintiated again with 6-monthly zoledronic acid until 15 years, after the closure of growth plates. He also had repeated orthopaedic surgeries, including left tibia corrective osteotomy and modified Sofield procedures of bilateral tibiae. He was ambulatory with normal development, and he had no hearing issue at the moment. No obvious dental issue was noted until he reached his adolescence, when he reported to have delayed shedding of primary dentitions.

INVESTIGATIONS

He was eventually assessed by dental surgeon in our multidisciplinary joint bone clinic at the age of 16 years. The patient had maxillary hypoplasia in both anteroposterior and vertical dimension, resulting in overclosure of the mandible and a pseudo-class III malocclusion, as well as a small face when compared with the cranium (figure 1). The perimeters of upper and lower dental arch were small, leading to relative macroglossia. Enamel hypoplasia was observed in the primary dentition, while the permanent teeth were not affected. He had retained primary dentition with only six permanent teeth (lower incisors, upper right and lower left first premolar) erupted. The primary dentition was yellowish-brown in colour and severely worn especially at the upper anterior teeth, which further leads to the loss of vertical dimension and overclosure of mandible (figure 2). Orthopantomogram and cone-beam CT showed poor development of the upper and lower dento-alveoli, which was probably related to multiple unerupted permanent teeth. The roots of the retained primary teeth were partially resorbed, and the pulp chambers of upper and lower right primary teeth were obliterated. The permanent teeth had bulbous crown and short roots. Most of the unerupted permanent teeth positioned cervically to their retained primary predecessors. However, the lower right first molar and all second and third permanent molars were impacted (figure 3). Lower right wisdom tooth was distally angulated. The lower right second molar was mesially angulated with the crown placed inferiorly to the root of the lower right wisdom tooth. The lower right first molar was further placed apically than the adjacent teeth. The upper right wisdom tooth was mesially angulated and upper right second molar was impacted apically (figures 4 and 5). The lower left wisdom tooth was inverted and horizontally impacted the lower left second molar, it also mesially impacted the upper left wisdom, while the upper left second molar was also impacted on contralateral side.
OUTCOME AND FOLLOW-UP

A multidisciplinary therapeutic approach was adopted in view of his medical history and dental condition. In view of his unpredictable dental eruption pattern, different possible treatment modalities had been considered. One possible treatment option would be selective extraction of primary teeth to facilitate the eruption of the permanent successors. Another option would be surgical exposure of the unerupted permanent teeth with bonding of orthodontic attachments, followed by orthodontic traction to facilitate eruption. If permanent dentition fails to erupt, surgical removal of permanent teeth followed by prosthesis would be considered. He would be reviewed regularly for the treatment progress and the need of combined orthognathic and orthodontic surgery to correct the underlying dentofacial deformity in the future.

DISCUSSION

While delayed teeth eruption has been described in OI type XII, impaction of permanent dentition necessitating combined treatment of oral maxillofacial and orthodontic surgery has not been described. This is the first case describing the detailed dental manifestation of patient with OI type XII.

For OI due to mutations in collagen 1, DI is predominantly observed in those with qualitative collagen defects with moderate–severe OI rather than those having quantitative defects with mild OI.\(^5\) Discouragement of teeth, cervical constriction and pulp obliteration were reported as frequent findings in patients with moderate–severe OI, yet these features vary between different OI populations.\(^5\)–\(^8\) DI affects both dentitions, but the primary dentition is usually more severely affected than the permanent dentition,\(^9\) and this corresponded to our observation in our patient. Other than DI, tooth agenesis is also a common observation in OI and could contribute to mandibular and maxillary dysplasia, which could lead to dental malocclusion.\(^10\)–\(^11\) Retained deciduous teeth past the normal range of exfoliation, retention of molar teeth or impaction of permanent teeth has been reported in various OI types, including classical OI due to mutations in collagen type 1, as well as OI type V.\(^12\)–\(^13\) However, it has not been reported in OI type XII.

The dentition development involves an orchestrated process with multiple signalling pathways that are also important for skeletal development,\(^14\) therefore, it is not surprising that genetic defects causing OI would also affect tooth development. However, the exact mechanism by which the variants in SP7 leading to dental impaction remained unknown.

The Sp7/Osx gene is protein coding gene that encodes a zinc finger transcription factor—osterix, which is expressed primarily by osteoblasts. It promotes the differentiation and maturation of pre-osteoblasts into functional osteoblasts and is crucial for bone formation and bone homeostasis. The clinical phenotypes of individuals with SP7 mutations include recurrent fracture, short stature, early onset hearing loss (secondary to otospongiosis and...
shown to be nates treatment, being an anti-
bisphosphonates use, remained to be elucidated. Bisphospho-
SP7 mutation, or it was, at least, partially, contributed by prior
and the permanent molars are severely impacted in four quad-
humans. However, there is only limited evidence for similar effects in

Figure 5 Cone-beam CT showed inverted lower left wisdom tooth, horizontal impacted lower left second molar, mesially impacted upper left wisdom and impacted upper left second molar.

poor mineralisation of ossicles and petrous temporal bone) and
delayed teeth eruption.4 The role of Sp7 in tooth development
remains unknown. Based on mice model, Sp7 is obligatory for the
differentiation of both ameloblasts and odontoblasts but not for
the initial tooth morphogenesis. Sp7-null mice exhibited features
of craniofacial dysmorphogenesis, completely void of alveolar
bone yet normal progression of initial tooth morphogenesis.
With reduced proliferative capacity of Sp7-deficient ectomesen-
chyme, it resulted in small and misshapen teeth with randomly
arranged cuboidal pre-odontoblasts and pre-ameloblasts. This
implies the role of Sp7 in promoting the functional maturation
and polarisation of odontoblasts.15

Eruption of permanent teeth involves resorption of the
surrounding alveolar bone and the roots of primary teeth.
Bisphosphonates, a well-established medical treatment for OI,
works by inhibiting osteoclast function and hence it could theo-
retically cause delayed tooth eruption. This phenomenon has
been observed in animals treated with bisphosphonates.16 17
However, there is only limited evidence for similar effects in
humans.

In our patient, the tooth eruption was significantly delayed, and
the permanent molars are severely impacted in four quad-
rants. Whether the dental phenotype is solely related to the
SP7 mutation, or it was, at least, partially, contributed by prior
bisphosphonates use, remained to be elucidated. Bisphospho-
nates treatment, being an anti-resorptive treatment, has been
shown to be associated with delayed dental development and
tooth eruption.18–20 However, most available evidence came
from cross-sectional observational studies with various OI types,
the association should be interpreted with caution. It could be
possible that, patients with more severe OI types would be more
likely to be treated with bisphosphonates when compared with
the milder ones, and that these patients with more severe pheno-
type could be associated with more prominent dental manifesta-
tion with delayed dental development. In addition, the so-called
‘delay in tooth eruption’ reported was only around 1 year. This
do not explain the clinical phenotype in our case.

As for the treatment, one possible option would be selective
extraction of the primary teeth to facilitate the eruption of
their permanent successors. However, it would be technically
challenging in view of complex impactions and closed apices
with low eruption potential. Surgical exposure of unerupted
permanent teeth and bonding of orthodontic attachments might
be necessary, followed by orthodontic traction to facilitate eru-
pition. Forced eruption of impacted teeth would be needed and
the teeth could be treated as abutments for future dental pros-
thesis. Similar successful orthodontic treatments in patients with
different OI types have been reported.21 However, the treatment
time could be considerably longer, and the goal of tooth move-
ment might not be achieved with the history of bisphosphonates
use.22 If the eruption of permanent dentition could not be facil-
itated, surgical removal of permanent teeth followed by pros-
thesis would be needed. The underlying jaw discrepancy would
be ultimately corrected by combined orthognathic/orthodontic
treatment approach. This combined therapy for patients with
severe malocclusion has been reported to lead to satisfactory
aesthetic and functional outcome.22

Our case highlighted the importance of multidisciplinary
assessment in managing children with OI, and that the
complaint of ‘delayed shedding of primary dentitions’ should
be taken seriously with proper assessment by dental special-
ists. However, it could be challenging practically. Clark et
al reported the real-life challenges in referring individuals
with OI to a tertiary dental clinic for further assessment,
with the main barrier being geographic factors and need of
extra travel.23 In addition, individuals with OI usually have
relatively short neck and some extent of immobility, which
makes routine dental examination even more challenging.24
This underscored the advantage of joint assessment in a
combined multidisciplinary clinic with orthopaedic surgeons,
paediatric endocrinologist/paediatric bone specialist, geneti-
cist and dental specialists of oral and maxillofacial surgeon
and orthodontist. This does not just save patients from
another visit to the hospital, but also enhance communication
between various disciplines. This also allows concentration of
expertise to identify abnormalities and recommend for timely
interventions, which, in the long run, would help to optimise
the overall health outcomes of these individuals.

In conclusion, we described the detailed dental manifesta-
tion of a boy with OI type XII. While delayed teeth eruption
has been described in OI type XII, impaction of dentition
necessitating combined oral and maxillofacial surgical and
orthodontic treatment has not been described. The case high-
lighted the need of multidisciplinary team assessment in this
group of children.

Learning points

► This case described the detailed dental manifestation in a
patient with osteogenesis imperfecta due to mutation in SP7
gene.
► Delayed dental eruption in a child with osteogenesis
imperfecta would have functional implication in the long run.
► In managing children with osteogenesis imperfecta
presenting with delayed dental eruption, early
multidisciplinary team assessment would be beneficial to
decide on the most appropriate and personalised treatment
plan.

Acknowledgements This study was previously presented as an abstract at the
International Conference on Children’s Bone Health (ICCBH) Virtual Forum Meeting
on Bone Fragility Disorders in Children, 18–20 November 2020.
Contributors JT and JL-H prepared the manuscript for publication. All authors contributed to clinical care of the patient and critically revised the manuscript and approved the final version of the manuscript for submission.

Funding The authors have not declared a specific grant for this research from any funding agency in the public, commercial, or not-for-profit sectors.

Competing interests None declared.

Patient consent for publication Consent obtained directly from patient(s).

Provenance and peer review Not commissioned; externally peer reviewed.

Open access This is an open access article distributed in accordance with the Creative Commons Attribution Non Commercial (CC BY-NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license their derivative works on different terms, provided the original work is properly cited and the use is non-commercial. See: http://creativecommons.org/licenses/by-nc/4.0/

Case reports provide a valuable learning resource for the scientific community and can indicate areas of interest for future research. They should not be used in isolation to guide treatment choices or public health policy.

ORCID ID Joanna Yuet-Ling Tung http://orcid.org/0000-0001-7897-716X

REFERENCES
1. Van Dijk FS, Silence DO. Osteogenesis imperfecta: clinical diagnosis, nomenclature and severity assessment. Am J Med Genet A. 2014;164:1470–81.
2. Forino A, Marinii JC. Osteogenesis imperfecta. Lancet. 2016;387:1657–71.
3. Tauer JT, Robinson M-E, Rauch F. Osteogenesis imperfecta: new perspectives from clinical and translational research. JBMR Plus. 2019;3. doi:10.1017.
4. Fiscaletti M, Biggin A, Bennett B, et al. Novel variant in Sp7/Osx associated with recessive osteogenesis imperfecta with bone fragility and hearing impairment. Bone. 2018;110:66–75.
5. Thuesen KJ, Gjerup H, Hald JD, et al. The dental perspective on osteogenesis imperfecta in a Danish adult population. BMC Oral Health. 2018;18:175.
6. Retrouvey J-M, Taqi D, Tamimi F, et al. Oro-dental and cranio-facial characteristics of osteogenesis imperfecta type V. Eur J Med Genet. 2019;62:103606.
7. Scaramuzza L, Raffaelli L, Spinelli MS, et al. Orthopedic and dental abnormalities in osteogenesis imperfecta: a review of the literature. J Biol Regul Homeost Agents. 2011;25:313–21.
8. Waltimo-Sirén J, Tuurala H, Säämäki E, et al. Dental and dentoalveolar dimensions in individuals with osteogenesis imperfecta. Acta Odontol Scand. 2021;79:390–5.
9. O’Connell AC, Marinii JC, A. C. O’Connell. Evaluation of oral problems in an osteogenesis imperfecta population. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 1999;87:189–96.
10. Malmgren B, Andersson K, Lindahl K, et al. Tooth agenesis in osteogenesis imperfecta related to mutations in the collagen type I genes. Oral Dis. 2017;23:42–9.
11. Rizkallah J, Schwartz S, Rauch F, et al. Evaluation of the severity of malocclusions in children affected by osteogenesis imperfecta with the peer assessment rating and discrepancy indexes. Am J Orthod Dentofacial Orthop. 2013;143:336–41.
12. Andersson K, Dahlöf G, Lindahl K, et al. Mutations in COL1A1 and COL1A2 and dental aberrations in children and adolescents with osteogenesis imperfecta - A retrospective cohort study. PloS One. 2017;12, e0176466.
13. Retrouvey J-M, Taqi D, Tamimi F, et al. Oro-dental and cranio-facial characteristics of osteogenesis imperfecta type V. Eur J Med Genet. 2019;62;103606.
14. Juuri E, Balic A. The biology underlying abnormalities of tooth number in humans. J Dent Res. 2017;96:1248–56.
15. Bae JM, Clarke JC, Rashid H, et al. Specifcity protein 7 is required for proliferation and differentiation of ameloblasts and odontoblasts. J Bone Miner Res. 2018;33:1126–40.
16. Hiraga T, Ninomiya T, Hosaoya A, et al. Administration of the bisphosphonate zoledronic acid during tooth development inhibits tooth eruption and formation and induces dental abnormalities in rats. Calcif Tissue Int. 2010;86:502–10.
17. Bradaschia-Correa V, Massa LF, Arau-Chavez VE. Effects of alendronate on tooth eruption and molar root formation in young growing rats. Cell Tissue Res. 2007;320:475–85.
18. Malmgren B, Tallifornia G, Monsef-Johnsson N, et al. Bisphosphonate therapy and tooth development in children and adolescents with osteogenesis imperfecta. Calcif Tissue Int. 2020;107:143–50.
19. Marçal FF, Ribiero EM, Costa FWG, et al. Dental alterations on panoramic radiographs of patients with osteogenesis imperfecta in relation to clinical diagnosis, severity, and bisphosphonate regimen aspects: a STROBE-compliant case-control study. Oral Surg Oral Med Oral Pathol Oral Radiol. 2019;128:621–30.
20. Vuorimies I, Arponen H, Valta H, et al. Timing of dental development in osteogenesis imperfecta patients with and without bisphosphonate treatment. Bone. 2017;94:29–33.
21. Hartsfield JK, Hohlt WF, Roberts WE. Orthodontic treatment and Orthognathic surgery for patients with osteogenesis imperfecta. Semin Orthod. 2006;12:254–71.
22. Friedrich RE, Scheuer HA, Höftje W. The effect of bisphosphonate medication on orthodontics and orthognathic surgery in patients with osteogenesis imperfecta. GMS Interdiscip Plast Reconstr Surg DGPV. 2019;8:Doc06.
23. Clark R, Burren CP, John R. Challenges of delivery of dental care and dental pathologies in children and young people with osteogenesis imperfecta. Eur Arch Paediatr Dent. 2019;20:473–80.