In Vitro Synergistic Effects of Antimicrobial Combinations on Extensively Drug-Resistant Pseudomonas aeruginosa and Acinetobacter baumannii Isolates

Hyukmin Lee, M.D.1, Kyung Ho Roh, M.D.2, Seong Geun Hong, M.D.3, Hee Bong Shin, M.D.4, Seok Hoon Jeong, M.D.5, Wonkeun Song, M.D.6, Young Uh, M.D.7, Dongeun Yong, M.D.8, and Kyungwon Lee, M.D.8

Department of Laboratory Medicine1, International St. Mary’s Hospital, Catholic Kwandong University College of Medicine, Incheon; Seegene Institute of Life Sciences2, Seoul; Department of Laboratory Medicine3, Bundang CHA Hospital, Pocheon CHA University College of Medicine, Seongnam; Department of Laboratory Medicine4, Soonchunhyang Severance Hospital, Yonsei University College of Medicine, Seongnam; Department of Laboratory Medicine5, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul; Department of Laboratory Medicine6, Gangnam Sacred Hospital, Hallym University College of Medicine, Seoul; Department of Laboratory Medicine7, Wonju Severance Christian Hospital, Yonsei University, Wonju College of Medicine, Wonju; Department of Laboratory Medicine8, Severance Hospital Yonsei University College of Medicine, Seoul, Korea

Background: Extensively drug-resistant (XDR) Pseudomonas aeruginosa and Acinetobacter baumannii are a threat to hospitalized patients. We evaluated the effects of antimicrobial combinations on XDR P. aeruginosa and A. baumannii isolates.

Methods: P. aeruginosa and A. baumannii isolates, which were resistant to all antibiotics except colistin (CL), were collected from eight hospitals in Korea. Genes encoding metallo-β-lactamases (MBLs) and OXA carbapenemases were detected by PCR in eight P. aeruginosa and 30 A. baumannii isolates. In vitro synergy of antimicrobial combinations was tested by using the checkerboard method.

Results: Minimum inhibitory concentrations of β-lactams, aminoglycosides, and fluoroquinolones were very high, while that of CL was low for majority of XDR P. aeruginosa and A. baumannii isolates. Antimicrobial combinations including Imipenem (IPM)-CL, ceftazidime (CAZ)-CL, and rifampin (RIF)-CL exerted only additive/indifferent effects on majority of XDR P. aeruginosa isolates. Proportions of XDR A. baumannii isolates that showed synergistic and additive/indifferent inhibition after treatment with antimicrobial combinations used are as follows: IPM-ampicillin-sulbactam (AMS), 17% and 80% isolates, respectively; IPM-rifampin (RIF), 13% and 81% isolates, respectively; IPM-CL, 13% and 87% isolates, respectively; and RIF-COL, 20% and 73% isolates, respectively. Significant proportion (19%) of XDR P. aeruginosa isolates produced MBLs, and majority (82%) of A. baumannii isolates produced either MBLs or OXA-23.

Conclusions: Our results suggest that combinations of IPM-AMS, IPM-RIF, IPM-CL, and RIF-CL are more useful than individual drugs for treating 13-20% of XDR A. baumannii infections.

Key Words: In vitro synergy, Combination chemotherapy, Pseudomonas aeruginosa, Acinetobacter baumannii

INTRODUCTION

Glucose nonfermentative gram-negative bacilli (GNFB) such as Pseudomonas aeruginosa and Acinetobacter baumannii are opportunistic pathogens that cause infections mainly in hospitalized patients, especially in patients in intensive care units [1, 2].
Most GNFB are naturally resistant to many antimicrobial agents and also acquire antimicrobial resistance easily. Therefore, GNFB infections are difficult to treat.

Carbapenem is the only available drug for treating GNFB infections in many cases. However, the recent increase of carbapenem resistance in GNFB has become a serious problem worldwide, particularly in Korea [3]. Most carbapenem-resistant \(P. \) aeruginosa and \(A. \) baumannii strains identified in Korea are also extensively drug-resistant (XDR) [4]. Few treatment options are currently available for treating infections caused by these notorious pathogens. Colistin (CL) and polymyxin B can be used for treating infections caused by XDR \(P. \) aeruginosa and \(A. \) baumannii; however, these drugs are associated with severe side effects, including nephrotoxicity and neurotoxicity [5]. Moreover, identification of appropriate therapeutic concentrations of these drugs in the blood is difficult [6, 7]. Tigecycline is another promising antibiotic [8]. However, it cannot be used for treating \(P. \) aeruginosa infections due to natural resistance [9]. Furthermore, some researchers have reported the emergence of tigecycline-resistant \(A. \) baumannii in some countries [10, 11]. One classical treatment method often used for treating infections caused by multi-drug resistant (MDR) pathogens is administration of combinations of several antibiotics [12-15]. Some evidence suggests that these combinations are effective for treating infections caused by XDR GNFB.

In this study, we determined the extent of synergistic effects exerted by antimicrobial combinations on XDR \(P. \) aeruginosa and \(A. \) baumannii isolates collected from hospitals in Korea.

METHODS

In all, 77 XDR GNFB isolates (43 \(P. \) aeruginosa and 34 \(A. \) baumannii isolates), which were resistant to all tested antibiotics, except CL, were collected from eight university hospitals in Korea in 2007. Antimicrobial susceptibilities of these isolates were initially tested at each hospital by using CLSI disk diffusion method or Vitek 2 system (bioMerieux, Marcy l’Etoile, France).

The species of each isolate was determined at a coordinating laboratory, and minimum inhibitory concentration (MIC) of each antibiotic (piperacillin, piperacillin-tazobactam, ampicillin-sulbactam [AMS], ceftaxime, ceftazidime [CAZ], cefepime, aztreonam, imipenem [IPM], meropenem, gentamicin, amikacin, ciprofloxacin, trimethoprim-sulfamethoxazole, and CL) was determined by using CLSI agar dilution method [16].

The ability of each isolate to produce carbapenemases and metallo-\(\beta \)-lactamases (MBLs) was screened by Hodge test [17] and IPM-EDTA sodium mercaptoacetic acid double-disk synergy test [18], respectively. Results of these tests were confirmed by PCR to determine the presence of \(\text{bla}_{\text{IM}} \), \(\text{bla}_{\text{IMP}} \), \(\text{bla}_{\text{BBM}} \), and \(\text{bla}_{\text{OXA}} \) \((\text{bla}_{\text{OXA-23}}, \text{bla}_{\text{OXA-24}}, \text{bla}_{\text{OXA-51}}, \) and \(\text{bla}_{\text{OXA-58}} \) [19]. DNA was extracted from whole-cell lysates by boiling bacterial colonies. Amplification was performed in a 20-μL reaction mixture containing 1-μL heat-extracted DNA template, 10 pmol of each primer, and PreMix (Bioneer, Cheongwon, Korea) containing 1 U Taq DNA polymerase. Sizes of amplified products were confirmed by performing electrophoresis, and each confirmed amplified product was sequenced twice by using an automatic sequencer (model 3730xl; Applied Biosystems, Weiterstadt, Germany).

Checkerboard method was used to determine the degree of in vitro synergistic effects exerted by antimicrobial combinations used on 30 randomly selected isolates of XDR \(P. \) aeruginosa and \(A. \) baumannii each [20]. Antimicrobial combinations tested were IPM and CL, rifampin (RIF) and CL, and CAZ and CL for \(P. \) aeruginosa and IPM and CL, IPM and AMS, IPM and RIF, and RIF and CL for \(A. \) baumannii. Fractional inhibitory concentration index (FICI) was calculated by using the following formulae:

\[
\text{FICI} = \frac{\text{MIC of drug A in combination}}{\text{MIC of drug A alone}} - \frac{\text{MIC of drug B in combination}}{\text{MIC of drug B alone}}
\]

FICI were interpreted as follows: ≤0.5, synergistic effect; 0.5-4, additive/indifferent effect; and ≥4, antagonistic effect. \(\text{Escherichia coli} \) (ATCC 25922) and \(P. \) aeruginosa (ATCC 27853) strains were used for quality control.

RESULTS

None of the XDR GNFB isolates examined was susceptible to any of the tested antibiotic, except CL. The MICs of \(\beta \)-lactams, aminoglycosides, and fluoroquinolones were very high for majority of XDR \(P. \) aeruginosa and \(A. \) baumannii isolates (Table 1). However, 38% (3/8) of MBL-producing \(P. \) aeruginosa isolates were immediately sensitive to aztreonam and 86% (6/7) of OXA-23-negative \(A. \) baumannii isolates were immediately sensitive to IPM.

Of the 43 XDR \(P. \) aeruginosa isolates, four were IMP-1- and VIM-2-producing isolates. Of the 34 XDR \(A. \) baumannii isolates, two were IMP-1-, VIM-2-, and SIM-1-producing isolates. Most MBL-negative XDR \(A. \) baumannii isolates yielded positive results for \(\text{bla}_{\text{OXA-23}} \) (82%), and all the \(A. \) baumannii isolates yielded positive results for \(\text{bla}_{\text{OXA-51}} \).
In the synergy test, FICI values for the antimicrobial combinations used could not be calculated for three P. aeruginosa isolates and five A. baumannii isolates because their MICs exceeded the expected values. Three antimicrobial combinations exerted only additive/indifferent effects on all XDR P. aeruginosa isolates irrespective of their MBL production status (Table 2).

The proportions of XDR A. baumannii isolates that showed synergistic and additive/indifferent inhibition after treatment with the antimicrobial combinations used are as follows: IPM-AMS, 17% and 80% isolates, respectively; IPM-RIF, 13% and 81% isolates, respectively; IPM-CL, 13% and 87% isolates, respectively; and RIF-CL, 20% and 73% isolates, respectively (Table 3).

In the synergy test, FICI values for the antimicrobial combinations used could not be calculated for three P. aeruginosa isolates and five A. baumannii isolates because their MICs exceeded the expected values. Three antimicrobial combinations exerted only additive/indifferent effects on all XDR P. aeruginosa isolates irrespective of their MBL production status (Table 2).

The extent of decrease of MICs in A. baumannii isolates ranged from one quarter to one sixteenths (FICI, 0.25-5). MICs of most antimicrobial concentrations tested decreased from high-level resistance range to susceptible and intermediate range (Table 4). None of the tested combinations exerted antagonistic effects.

DISCUSSION

The recent increase in XDR GNFB infections in health-care settings has threatened public health in many countries. In Korea,
Table 3. Effects of antimicrobial combinations on extensively drug-resistant *A. baumannii* isolates

Carbapenemase type	N of tested	N of isolates (%) with synergistic effect on	Imipenem-Ampicillin-Sulbactam*	Imipenem-Rifampin†	Imipenem-Colistin	Rifampin-Colistin†							
		Syn	Ad/In	Ant									
MBL negative	24	1 (4)	22 (92)	0 (0)	1 (4)	23 (96)	0 (0)	2 (8)	22 (92)	0 (0)	3 (13)	21 (87)	0 (0)
OXA-23 positive	16	1 (6)	15 (94)	0 (0)	1 (6)	15 (94)	0 (0)	2 (13)	14 (87)	0 (0)	3 (18)	13 (82)	0 (0)
OXA-23 negative	8	0 (0)	7 (88)	0 (0)	0 (0)	4 (50)	0 (0)	0 (0)	8 (100)	0 (0)	0 (0)	8 (100)	0 (0)
MBL positive	6	4 (67)	2 (33)	0 (0)	3 (50)	1 (17)	0 (0)	2 (33)	4 (67)	0 (0)	3 (50)	1 (17)	0 (0)
IMP positive	2	1 (50)	1 (50)	0 (0)	1 (50)	1 (50)	0 (0)	1 (50)	1 (50)	0 (0)	2 (100)	0 (0)	0 (0)
VIM positive	2	2 (100)	0 (0)	0 (0)	2 (100)	0 (0)	0 (0)	1 (50)	1 (50)	0 (0)	1 (50)	1 (0)	0 (0)
SIM positive	2	1 (50)	1 (50)	0 (0)	0 (0)	0 (0)	0 (0)	0 (0)	2 (100)	0 (0)	0 (0)	0 (0)	0 (0)
Total	30	5 (17)	24 (80)	0 (0)	4 (13)	24 (81)	0 (0)	4 (13)	26 (87)	0 (0)	6 (20)	22 (73)	0 (0)

*FICI value of one isolate in OXA-23-positive group could not be calculated; †FICI values of two isolates in SIM-positive group could not be calculated.

Abbreviations: FICI, fractional inhibitory concentration index; Syn, synergistic (FICI, ≤0.5); Ad/In, additive/indifferent (FICI, 0.5-4); Ant, antagonistic (FICI, ≥4); MBL, metallo-β-lactamase.

Table 4. Concentrations of antibiotic combinations that exerted synergistic effects on extensively drug-resistant *A. baumannii* isolates

Combination (N of isolates tested)	Strain No.	MICs of individual antimicrobials (μg/mL)	MICs in combination (μg/mL)	Effect of combination		
Imipenem-Colistin (4)		Imipenem	Colistin	Imipenem	Colistin	FICI
9		32	2	4	1	0.375
11		16	2	4	1	0.5
25		32	0.5	8	0.12	0.5
26		64	4	8	0.5	0.25
Imipenem-Ampicillin-Sulbactam (6)		Imipenem	Ampicillin-Sulbactam	Imipenem	Ampicillin-Sulbactam	FICI
19		32	64	8	16	0.5
25		32	>128	8	32	0.5
27		32	8	8	1	0.375
28		8	4	2	1	0.5
29		16	4	4	1	0.5
30		64	8	16	2	0.5
Imipenem-Rifampin (4)		Imipenem	Rifampin	Imipenem	Rifampin	FICI
12		64	32	16	8	0.5
25		32	4	8	0.5	0.375
28		16	8	4	2	0.5
29		16	4	1	1	0.3125
Rifampin-Colistin (6)		Rifampin	Colistin	Rifampin	Colistin	FICI
2		4	0.5	1	0.12	0.5
9		32	2	1	0.5	0.156
11		32	1	8	0.25	0.5
25		4	0.5	1	0.12	0.5
26		64	2	8	0.5	0.375
29		4	0.5	0.5	0.12	0.375

Abbreviations: MIC, minimum inhibitory concentration; FICI, fractional inhibitory concentration index.
the recent rates of carbapenem resistance are moderate to high for \textit{P. aeruginosa} and \textit{A. baumannii}. Moreover, MDR and XDR \textit{P. aeruginosa} and \textit{A. baumannii} isolates are commonly identified in Korea. Carbapenem resistance can result from enzyme production, porin loss, and active efflux. However, it is difficult to determine the exact mechanisms underlying carbapenem resistance, except enzyme production. Mechanisms underlying carbapenem resistance could not be determined for most \textit{P. aeruginosa} isolates, except eight (19%) MBL-producing isolates (Table 2). Porin loss and active efflux might be the reasons for carbapenem resistance in most \textit{P. aeruginosa} isolates examined in this study. Majority of XDR \textit{A. baumannii} isolates produced β-lactamases, including MBLs and OXA-23 (Table 3).

Polymyxin B and polymyxin E (CL) are regarded as the last resort for treating infections caused by MDR or XDR gram-negative pathogens because of the recent spread of antibiotic resistance in many gram-negative bacilli even though severe toxicity. Two studies have suggested that polymyxin B and CL are good treatment options because many XDR \textit{P. aeruginosa} and \textit{A. baumannii} isolates were susceptible to these drugs [21, 22], which was consistent with the present results (Table 1). Resistance to polymyxins has been rarely observed recently; however, several mechanisms through which bacteria may acquire resistance to polymyxin B and CL have been proposed [23, 24]. A study by Matthaiou et al. [25] showed a relationship between inappropriate use of CL and development of resistance in \textit{P. aeruginosa} and \textit{A. baumannii}. Furthermore, Kim et al. [26] recently reported that mutations in \textit{pmrB} could induce in vivo emergence of CL resistance in \textit{A. baumannii} clinical isolates of sequence type 357. Thus, the threat of increasing resistance to polymyxin B and CL is a problem because these drugs need to undergo susceptibility testing before their use in clinical settings. Moreover, limitation of susceptibility method to these drugs may be problematic in clinical microbiology laboratories [27, 28]. Treatment with polymyxin B and CL has resulted in frequent nephrotoxicity and neurotoxicity, especially in patients with deteriorated renal function. Therefore, close monitoring and caution are often requested during their use. Combination therapy with antibiotics is often used for treating infections caused by MDR or XDR pathogens [12-15]. Because antimicrobial combinations exerting synergistic effects enable the use of reduced concentrations of individual drugs, such combinations may decrease the possible toxicities associated with high drug concentrations. Polymyxins act primarily on the cell wall by inducing rapid changes in the permeability of the cytoplasmic membrane of gram-negative bacilli, thereby permitting the entry of other antimicrobial agents into the cell. Various antimicrobial agents can be used in combination with CL. Antibiotics that are most frequently combined with CL include β-lactam antibiotics such as carbapenem and RIF. Landman et al. [29] reported that the combination of polymyxin B with IPM or RIF exerted synergistic effects in 80% and 90% cases, respectively, in a time-kill study on \textit{P. aeruginosa}. In a study by Gunderson et al. [30], the combination of CL with CAZ exerted synergistic effects on two CL-susceptible MDR \textit{P. aeruginosa} isolates. However, inconsistent results have been obtained by using the combination of carbapenems with CL for treating infections caused by MDR \textit{P. aeruginosa}. Two studies have found that the combination of CL with meropenem only exerted additive/indifferent effects on MDR \textit{P. aeruginosa} [31, 32]. A recent meta-analysis by Zusman et al. [15] involving 39 publications and 15 conference proceedings related to the \textit{in vitro} examination of the combinations of polymyxins with carbapenems showed that the combination of polymyxins with IPM exerted synergistic effects on 60% \textit{P. aeruginosa} isolates tested and antagonistic effects on 21% \textit{P. aeruginosa} isolates tested.

Use of combination therapy can suppress the development of resistance \textit{in vitro}. In this study, both IPM-CL and CAZ-CL only exerted additive/indifferent effects and did not exert synergistic effects on all XDR \textit{P. aeruginosa} isolates irrespective of their MBL production status (Table 3). The combination of CL with RIF is generally recommended in regimens for treating infections caused by MDR and XDR gram-negative pathogens. However, the rates of synergy exerted by RIF-CL against different \textit{P. aeruginosa} isolates ranged from 5.7% (2/35) to 16.6% (1/6) [31, 33]. Moreover, RIF-CL did not exert synergistic effects on any \textit{P. aeruginosa} isolate in the present study (Table 2). The reason for this discrepancy is unknown, and further evaluation may be required to completely determine the effect of RIF-CL on various \textit{P. aeruginosa} isolates.

The combination of sulbactam, which is effective against \textit{A. baumannii} [34], with IPM exerted a synergistic effect on approximately 17% (5/30) XDR \textit{A. baumannii}, of which four isolates produced MBLs. RIF exhibits bactericidal activity against \textit{A. baumannii in vitro}. A study by Tramurkeyn et al. [31] showed that 64% of 25 MDR \textit{A. baumannii} isolates were susceptible to RIF. Combinations of RIF with β-lactam antibiotics were effective in mouse model of \textit{A. baumannii}-induced pneumonia [35, 36]. However, IPM-RIF only exerted a synergistic effect on as low as 13% (4/30) XDR \textit{A. baumannii} isolates in our study. Many studies have shown that CL monotherapy is effective against MDR and XDR \textit{A. baumannii} and that CL-RIF exerts synergistic and
bactericidal effects [37, 38]. In this study, the rates of synergy exerted by IPM-RIF and RIF-CL were 13% and 20%, respectively (Table 3).

A study conducted in the UK by Wareham et al. [39] reported that combinations of polymyxin B with IPM, RIF, or azithromycin did not exert any synergistic effect on OXA-23-producing MDR A. baumannii isolates. However, we also observed that the rates of synergy of antimicrobial combinations were higher in MBL-producing A. baumannii isolates than in MBL-negative A. baumannii isolates (Table 3). However, a recent meta-analysis showed that combinations of polymyxins with IPM exerted synergistic effects on 56% A. baumannii isolates tested [15]. Among the antimicrobial combinations that exerted synergistic effects, MICs of IPM, AMS, and RIF decreased from resistant or intermediate range to susceptible range (Table 4). However, the MIC of CL when used in combination decreased by 2-8 times compared with that when used alone. This finding implies that infections caused by isolates that are susceptible to the synergistic effects of antimicrobial combination can be treated by using conventional treatment regimens even when these isolates are resistant to individual drugs. This also means that the possibility of CL toxicity can be reduced. A recent retrospective cohort study involving 236 patients with XDR A. baumannii-induced pneumonia found that survival rates (in terms of 28-day mortality) of patients treated with combinations of CL with sulbactam, tigecycline, or carbapenem were superior to those of patients in the control group who were not treated with any active agent against XDR A. baumannii [40].

In conclusion, significant proportion of XDR P. aeruginosa isolates produced MBLs and majority of A. baumannii isolates produced MBL or OXA-23. All the three antimicrobial combinations, i.e., IPM-CL, RIF-CL, and CAZ-CL, exerted additive/indifferent effects on majority of or all XDR P. aeruginosa isolates. And, all the four antimicrobial combinations, i.e., IPM-CL, IPM-AMS, IPM-RIF, and RIF-CL, exerted synergistic or additive/indifferent effects on majority of A. baumannii isolates. However, clinical studies should be performed to validate the application of these in vitro results in patients because in vitro synergy may not be the same as in vivo synergy and to determine the exact mechanisms underlying in vivo synergy.

Acknowledgments

This work was supported by the Korean Centers for Disease Control and Prevention.

REFERENCES

1. Lister PD, Wolter DJ, Hanson ND. Antibacterial-resistant Pseudomonas aeruginosa: clinical impact and complex regulation of chromosomally encoded resistance mechanisms. Clin Microbiol Rev 2009;22:582-610.
2. Peleg AY, Seifert H, Paterson DL. Acinetobacter baumannii: emergence of a successful pathogen. Clin Microbiol Rev 2008;21:538-82.
3. Lee K, Kim MN, Kim JS, Hong HL, Kang JO, Shin JH, et al. Further increase in carbapenem-, amikacin-, and fluoroquinolone-resistant isolates of Acinetobacter spp. and P. aeruginosa in Korea: KONSAR study 2009. Yonsei Med J 2011;52:793-802.
4. Huh K, Kim J, Cho SY, Ha YE, Joo EJ, Kang CI, et al. Continuous increase of the antimicrobial resistance among gram-negative pathogens causing bacteremia: a nationwide surveillance study by the Korean Network for Study on Infectious Diseases (KONSID). Diagn Microbiol Infect Dis 2013;76:477-82.
5. Koch-Weser J, Sidel VW, Federman LP, Virgili CA, Benner DR, Eaton AE. Adverse effects of sodium colistimethate. Manifestations and specific rates during 317 courses of therapy. Ann Intern Med 1970;72:857-68.
6. Li J and Nation RL. Old polymyxins are back: is resistance close? Clin Infect Dis 2006;43:663-4.
7. Bergen PJ, Li J, Nation RL. Dosing of colistin-back to basic PK/PD. Curr Opin Pharmacol 2011;11:464-9.
8. Tauccone FS, Rodríguez-Villalobos H, De Backer D, De Moor V, Deviere J, Vincent JL, et al. Successful treatment of septic shock due to pan-resistant Acinetobacter baumannii using combined antimicrobial therapy including tigecycline. Eur J Clin Microbiol Infect Dis 2006;25:257-60.
9. Dean CR, Visalli MA, Projan SJ, Sum PE, Bradford PA. Eflux-mediated resistance to tigecycline (GAR-936) in Pseudomonas aeruginosa PA01. Antimicrob Agents Chemother 2003;47:972-8.
10. Navon-Venezia S, Leavitt A, Carmeli Y. High tigecycline resistance in multidrug-resistant Acinetobacter baumannii. Antimicrob Agents Chemother 2007;51:2065-9.
11. Peleg AY, Adams J, Paterson DL. Tigecycline efflux as a mechanism for nonsusceptibility in Acinetobacter baumannii. J Antimicrob Chemother 2009;59:722-4.
12. Petrosillo N, Ioannidou E, Falagas ME. Colistin monotherapy vs. combination therapy: evidence from microbiological, animal and clinical studies. Clin Microbiol Infect 2008;14:816-27.
13. Tamma PD, Cosgrove SE, Maragakis LL. Combination therapy for treatment of infections with gram-negative bacteria. Clin Microbiol Rev 2012;25:450-70.
14. Zavascki AP, Bultita JB, Landersdorfer CB. Combination therapy for carbapenem-resistant Gram-negative bacteria. Expert Rev Anti Infect Ther 2013;11:1333-53.
15. Zusman O, Avni T, Leibovici L, Adler A, Friberg L, Stergiopoulou T, et al. Systematic review and meta-analysis of in vitro synergy of polymyxins and carbapenems. Antimicrob Agents Chemother 2013;57:5104-11.
16. Clinical and Laboratory Standards Institute. Performance standard for antimicrobial susceptibility testing. Twenty-third Informational supplement; approved guideline, M100-S23. Wayne, PA: Clinical and Laboratory Standards Institute, 2013.
17. Lee K, Kim CK, Yong D, Jeong SH, Yum JH, Seo YH, et al. Improved

Authors’ Disclosures of Potential Conflicts of Interest

No potential conflicts of interest relevant to this article were reported.
performance of the modified Hodge test with MacConkey agar for screening carbapenemase-producing Gram-negative bacilli. J Microbiol Methods 2010;83:149-52.

18. Lee K, Lim YS, Yong D, Yum JH, Chong Y. Evaluation of the Hodge test and the imipenem-EDTA double-disc synergy test for differentiating metallo-beta-lactamase-producing isolates of Pseudomonas spp. and Acinetobacter spp. J Clin Microbiol 2003;41:4623-9.

19. Lee K, Kim MN, Choi TY, Cho SE, Lee S, Whang DH, et al. Wide dissemination of OXA-type carbapenemases in clinical Acinetobacter spp. isolates from South Korea. Int J Antimicrob Agents 2009;33:520-4.

20. Hindler JF and Munro S. Evaluating antimicrobial susceptibility test. In: Garcia LS and Isenberg HD, eds. Clinical microbiology procedures handbook. 3rd ed. Washington DC: ASM Press, 2010:5.0.1-5.18.2.1.

21. Biswas S, Brunel JM, Dubus JC, Reynaud-Gaubert M, Rolain JM. Colistin: an update on the antibiotic of the 21st century. Expert Rev Anti Infect Ther 2012;10:917-34.

22. Dharwad AK and Tullu MS. Colistin: re-emergence of the ‘forgotten’ antimicrobial agent. J Postgrad Med 2013;59:208-15.

23. García-Quintanilla M, Pulido MR, Moreno-Martínez P, Martín-Peña R, López-Rojas R, Pachón J, et al. Activity of host antimicrobials against multidrug-resistant Acinetobacter baumannii acquiring colistin resistance through loss of lipopolysaccharide. Antimicrob Agents Chemother 2014;58:2972-5.

24. Lee JY, Na IY, Park YK, Ko KS. Genomic variations between colistin-resistant Pseudomonas aeruginosa clinical isolates and their effects on colistin resistance. J Antimicrob Chemother 2014;69:1248-56.

25. Matthaiou DK, Michalopoulos A, Rafailidis PI, Karageorgopoulou DE, Papaioannou V, Ntani G, et al. Risk factors associated with the isolation of colistin-resistant gram-negative bacteria: a matched case-control study. Crit Care Med 2008;36:807-11.

26. Kim Y, Bae IK, Lee H, Jeong SH, Yong D, Lee K. In vivo emergence of colistin resistance in Acinetobacter baumannii clinical isolates of sequence type 357 during colistin treatment. Diagn Microbiol Infect Dis 2014;79:362-6.

27. Galani I, Kontopidou F, Souli M, Rakitasina PD, Koratzanis E, Dellionis J, et al. Colistin susceptibility testing by Etest and disk diffusion methods. J Int Antimicrob Agents 2008;31:434-9.

28. Hindler JA and Humphries RM. Colistin MIC variability by method for contemporary clinical isolates of multidrug-resistant Gram-negative bacilli. J Clin Microbiol 2013;51:1678-84.

29. Landman D, Bratu S, Alam M, Quale J. Citywide emergence of Pseudomonas aeruginosa strains with reduced susceptibility to polymyxin B. J Antimicrob Chemother 2005;55:954-7.

30. Gunderson BW, Ibrahim KH, Hovde LB, Fromm TL, Reed MD, Rotschafer JC. Synergistic activity of colistin and ceftazidime against multiantibiotic-resistant Pseudomonas aeruginosa in an in vitro pharmacodynamic model. Antimicrob Agents Chemother 2003;47:905-9.

31. Timurkaynak F, Can F, Azap OK, Demirbilek M, Arslan H, Karaman SO. In vitro activities of non-traditional antimicrobials alone or in combination against multidrug-resistant strains of Pseudomonas aeruginosa and Acinetobacter baumannii isolated from intensive care units. Int J Antimicrob Agents 2006;27:224-8.

32. Ciriioni O, Ghiselli R, Silvestri C, Kamysz W, Orlando F, Moccogianì F, et al. Efficacy of tachyplesin III, colistin, and imipenem against a multiresistant Pseudomonas aeruginosa strain. Antimicrob Agents Chemother 2007;51:2005-10.

33. Tascini C, Gemignani G, Ferranti S, Tagliferri E, Leonardi A, Lucarini A, et al. Microbiological activity and clinical efficacy of a colistin and rifampin combination in multidrug-resistant Pseudomonas aeruginosa infections. J Chemother 2004;16:282-7.

34. Choi JY, Park YS, Cho CH, Park YS, Shin SY, Song YG, et al. Synergic in-vitro activity of imipenem and sulbactam against Acinetobacter baumannii. Clin Microbiol Infect 2004;10:1098-101.

35. Song JY, Cheong HJ, Lee J, Sung AK, Kim WJ. Efficacy of monotherapy and combined antibiotic therapy for carbapenem-resistant Acinetobacter baumannii pneumonia in an immunosuppressed mouse model. Int J Antimicrob Agents 2009;33:33-9.

36. Pachón-Ibáñez ME, Docobo-Pérez F, Jiménez-Mejías ME, Ibáñez-Martínez J, García-Curiel A, Pichardo C, et al. Efficacy of rifampin, in monotherapy and in combinations, in an experimental murine pneumonia model caused by panresistant Acinetobacter baumannii strains. Eur J Clin Microbiol Infect Dis 2011;30:895-901.

37. Liang W, Liu XF, Huang J, Zhu DM, Li J, Zhang J. Activities of colistin and minocycline-based combinations against extensive drug resistant Acinetobacter baumannii isolates from intensive care unit patients. BMC Infect Dis 2011;11:109.

38. Lee HJ, Bergen PJ, Bulitta JB, Tsuji B, Forrest A, Nation RL, et al. Synergistic activity of colistin and rifampin combination against multidrug-resistant Acinetobacter baumannii in an in vitro pharmacokinetic/pharmacodynamic model. Antimicrob Agents Chemother 2013;57:3738-45.

39. Wareham DW and Bean DC. In vitro activity of polymyxin B in combination with imipenem, rifampicin and azithromycin versus multidrug resistant strains of Acinetobacter baumannii producing OXA-23 carbapenemases. Ann Clin Microbiol Antimicrob 2006;5:10.

40. Khawcharoenporn T, Pruetpongpun N, Tiamsak P, Rutschanawech S, Mundy LM, Apsinthalanarak A. Colistin-based treatment for extensively drug-resistant Acinetobacter baumannii pneumonia. Int J Antimicrob Agents 2014;43:378-82.