The Local Mission: Improving Access to Surgical Care in Middle-Income Countries

Eric S. Nagengast1,2,3 • Naikhoba C. O. Munabi1,2,3 • Meredith Xepoleas2,3 • Allyn Auslander2,4 • William P. Magee III1,2,3,5 • David Chong6

Accepted: 15 November 2020 / Published online: 2 January 2021
© The Author(s) 2021, corrected publication 2021

Abstract

Background Billions of people lack access to quality surgical care. Short-term missions are used to supplement the delivery of surgical care in regions with poor access to care. Traditionally known for using international teams, Operation Smile has transitioned to using a local mission model, where surgical service is delivered to areas of need by teams originating within that country. This study investigates the proportion and location of Operation Smile missions that use the local mission model.

Methods A retrospective review was performed of the Operation Smile mission database for fiscal years 2014 to 2019. Missions were classified into local or international missions. Countries were also classified by their income levels as well as their specialist surgical workforce (SAO) density. As no individual patient or provider data was recorded, ethics board approval was not warranted.

Results Between 2014 and 2019, Operation Smile held an average of 144.8 (range 135–154) surgical missions per year. Local missions accounted for 97±5.6 (67%) of the missions. Of the 34 program countries, 26 (76%) used local missions. Of the countries that had only international missions, six (75%) were low-income countries and the average SAO density was 1.54 (range 0.19–5.88) providers per 100,000 people. Of the countries with local missions, 24 (92%) were middle-income, and the average SAO density was 30.9 (range 3.4–142.4).

Conclusion International investments may assist in the creation of local surgical teams. Once teams are established, local missions are a valuable way to provide specialized surgical care within a country’s own borders.
Introduction

Five billion people lack access to safe, timely, and affordable surgical care [1]. The majority of those without access to surgery live in the poorest parts of our world [2]. Many of these low-and-middle-income countries (LMICs) have a density of surgeons, anesthesiologists, and obstetricians (SAO) severely below recommended minimum level of 20 per 100,000 people [1, 3]. In addition, large proportions of the population live too far from a hospital capable of providing surgery [4–6]. Billions of people cannot afford the cost of surgical care or the cost of seeking surgical care [7, 8]. The combination of these barriers to receiving care makes innovation in the delivery of surgical care necessary.

International surgical missions are one method by which surgeons and non-governmental organizations (NGOs) attempt to improve access to surgical care. First popularized by Interplast, the surgical mission originally brought providers and supplies from resource-rich countries to resource-poor countries to provide short-term surgical services [9]. Surgical missions have been used to treat a number of conditions including hernias, congenital anomalies, burns, and obstetric fistulas among others [10–13]. Operation Smile, for example, is one of the longest running surgical NGOs that originated with a traditional surgical mission model [13]. Throughout its 38 year history, Operation Smile utilized the mission model to build partnerships and invest in the surgical health system in partner hospitals and countries [14].

Though this model provided care to thousands of patients in need, early surgical missions were met with a wide range of criticisms. Termed “humanitarian colonialism,” surgical missions were criticized for poor patient follow-up, limited local engagement, low cost effectiveness, and a paternalistic approach [15–17]. Due to these concerns, many organizations adapted their traditional mission model to improve on prior flaws primarily through increased engagement with local health care providers [18–20]. Over nearly 4 decades of evolution, Operation Smile utilized “diagonal development” in which the mission model was used to provide partner countries assistance with funding, infrastructure, and education and training [14, 15]. These investments helped local practitioners improve their skills and build their own cleft lip and palate teams and strengthen their local surgical system. Now, the organization supports those teams to carry out “local missions” in their respective countries.

We hypothesize that the local mission model is most effective in countries with a SAO density near the minimum suggested amount of 20 per 100,000. The purpose of this study is to investigate the prevalence of surgical care providers in LMICs and how that relates to the implementation of Operation Smile local surgical missions. This study also evaluates the settings in which local missions are effective and compare the utilization of local missions to the usage of international missions.

Methods

A retrospective review was performed of the Operation Smile historical mission database from fiscal years, 2014 to 2019. Operation Smile is an international not-for-profit that has been providing free cleft surgery and related care to patients since 1982. The total number of local and international surgical missions was tabulated per year. Local missions were defined as those for which greater than 50% of the medical volunteers were from the country in which the mission was taking place. International missions were those missions in which 50% or fewer of the medical volunteers were from the country in which the mission was being conducted. Program countries were classified according to mission type: local only, international only, or both local and international. Countries were also classified by their income levels as well as their SAO density as recorded by The World Bank [21, 22]. International missions were compared to local missions for length of mission as well as number of patients treated. Lastly, the volunteer data for these missions were reviewed to determine the overall percentage of medical volunteers that were from LMICs. Comparison of means for the three groups was done using one-way ANOVA. Comparison of means of two groups was done using independent Student t tests. Statistical analysis was done using Microsoft Excel (Microsoft Corp, Redmond, WA).

Results

Operation Smile held an average of 144.8 ± 8.6 surgical missions per year (Table 1) in 34 different countries (Fig. 1). Local missions accounted for 97 ± 5.6 (67%) of these missions. Eight countries (24%) conducted only international missions (Table 2). Of these, six (75%) were low-income countries, while one (12.5%) was a lower-middle-income country and one (12.5%) was a high-income country. The average SAO density for the countries having only international missions was 1.5 ± 2.0 providers per 100,000 people (Fig. 2). Seven (21%) countries had only local missions. Six (86%) were upper-middle-income countries, and one (14%) was a high-income country. The average SAO density of the countries with only local missions was 47.2 ± 47.2. Of the 19 countries (56%) with both types of missions, 10 (53%) were lower-middle-
income, eight (42%) were upper-middle-income, and one (5%) was a high-income country. The average SAO density of these countries was 23.4 ± 17.5. The mean SAO densities between the three groups of countries are statistically significantly different (p = 0.01).

Local missions were significantly shorter (4.7 ± 0.4 days) than international missions (7.9 ± 1.1) (p < 0.001) (Table 3). Similarly, local missions operated on fewer patients per mission (46.1 ± 4.4) than international missions (104.1 ± 4.1) (p < 0.001). During these five years, the average percentage of medical volunteers who were from LMICS was 80.6% (Table 4).

Discussion

In order to improve the inequities that exist in our world, a major focus of the World Health Organization (WHO) is health system strengthening. The WHO framework on health systems strengthening helps nations identify weaknesses in their health system and provides building blocks to achieve a strong health system [23]. One of the key take away points of the Lancet Commission on Global Surgery is that surgery should be an “integral component of a national health system in countries at all levels of development.” [1] The National Surgical Obstetric and

Fiscal year	Local missions, n (%)	International missions, n (%)	Total missions, n
2014–2015	96 (71.1)	39 (29.9)	135
2015–2016	91 (63.2)	53 (36.8)	144
2016–2017	105 (68.2)	49 (31.8)	154
2017–2018	93 (67.4)	45 (33.6)	138
2018–2019	100 (65.4)	53 (34.6)	153
Average	97.0 (67.0)	47.8 (33.0)	144.8

Fig. 1 Operation Smile surgical mission countries
Anesthesia Plan (NSOAP) is the framework laid out to support surgical system strengthening. After modification, the NSOAP now includes human resources, service delivery, infrastructure, financing, governance, and information management [24]. Surgical NGOs should work with ministries of health in order to work within the country’s NSOAP or health plan. Synergizing activities between players with a common goal toward health system strengthening will be crucial going forward.

Regarding human resources, the WHO has declared a critical shortage of health care providers in many parts of our world [25]. The shortage extends to all subspecialties of medicine including surgery [3]. The disparity of providers exists between countries and within countries. Most often, the poor and rural areas are most in need of surgical providers. The reality is that without providers, billions lack access to care, and many live with untreated surgical conditions [26]. Hundreds of surgical NGOs work toward improving access to surgical care, and surgical NGOs can continue to play a crucial role in the provision of surgical care while surgical systems are strengthened [1, 27, 28]. Short-term surgical missions remain a viable method to supplement surgical care for those without access to care.

Country	Classification	SAO density	Mission types
Bolivia	Lower middle income	33.87	Both
Brazil	Upper middle income	55.47	Both
Cambodia	Lower middle income	4.2	Both
China	Upper middle income	40.13	Both
Dominican Republic	Upper middle income	NA	Both
Egypt	Lower middle income	50.08	Both
Ghana	Lower middle income	NA	Both
Guatemala	Upper middle income	3.4	Both
Honduras	Lower middle income	13.68	Both
India	Lower middle income	6.82	Both
Jordan	Upper middle income	24.49	Both
Mexico	Upper middle income	NA	Both
Morocco	Lower middle income	3.66	Both
Nicaragua	Lower middle income	15.47	Both
Panama	High income	26.22	Both
Paraguay	Upper middle income	20.53	Both
Peru	Upper middle income	42.88	Both
Philippines	Lower middle income	9.56	Both
Vietnam	Lower middle income	NA	Both
DRC	Low income	0.19	International
Ethiopia	Low income	0.54	International
Haiti	Low income	5.88	International
Madagascar	Low income	0.78	International
Malawi	Low income	0.43	International
Mozambique	Low income	0.56	International
Myanmar	Lower middle income	2.42	International
UAE	High income	NA	International
Colombia	Upper middle income	22.71	Local
Ecuador	Upper middle income	59.39	Local
Italy	High income	142.4	Local
Russia	Upper middle income	63.12	Local
South Africa	Upper middle income	11.42	Local
Thailand	Upper middle income	13.09	Local
Venezuela	Upper middle income	18.13	Local
and they can be combined with concomitant surgical system strengthening efforts.

The gold standard for cleft care is longitudinal multidisciplinary care carried out in a cleft unit that can provide both comprehensive and complete care. Though this is the ultimate goal, it is not yet attainable in all settings. Operation Smile missions, both local and international, attempt to provide comprehensive care in a number of ways. All missions are carried out with a team of cleft surgeons, anesthesiologists, operating room nurses, recovery room nurses, surgical ward nurses, pediatricians, dentists, medical records specialists, medical photography, biomedical technicians, speech language pathologists, and child life specialists. Some missions add otolaryngologists, nutritionists, geneticists, or occupational and physical therapists [29]. Almost every partner country has a local office with local staff to help with patient coordination and team building. To help with the longitudinal aspect of care, medical records are kept on patients. All missions have a scheduled post-operative screening, and missions are carried out primarily in the same location at a similar time each year, and patient recruitment efforts exist to bring patients back for screening or further treatment.

In the poorest countries with the lowest SAO densities, Operation Smile utilizes international missions. 6 of the 8 countries where Operation Smile had only international missions are low income countries, and 5 of the 8 countries have SAO densities less than 1 per 100,000 people. No low-income countries had local missions. In these environments, subspecialty surgeons are extremely rare. The demand for cleft surgery far exceeds the capacity of the local health system [30]. Outside help is needed to provide surgical services, but surgical missions do not need to, and should not, exist without involving local health providers. Short-term, high-repetition training is an optimal environment to develop specialized surgical skills. Thus, Operation Smile created targeted training programs designed for this setting [31]. These programs are combined with education for patients, investments in infrastructure, and donations of supplies [31–33]. In fact, most Operation Smile program countries started as hosts of international missions and through diagonal development have since grown into largely self-sustained organizations.

Through listening to and investing in local partners, Operation Smile’s volunteer pool now consists of over 80% of medical volunteers from LMICs. Because of this volunteer distribution, 76% of Operation Smile program countries utilize local missions. These countries are typically middle-income countries with higher SAO densities than the low-income countries. Though many of these countries have SAO densities greater than the minimum recommendation of 20, middle-income countries often have regional disparities in health care providers [4–6, 34]. Local missions can take medical volunteers from urban areas to conduct cleft care in more rural settings where access to specialized surgical care remains limited. For example, Operation Smile has a center in Bogota, the largest and most densely populated city in Colombia, that runs continually and serves as the organizational hub (Fig. 3). Local missions are used to mobilize the country’s

Table 3 Number of patients treated and length of missions by mission type

	Local missions	International missions	p value
n	478	237	
Length of missions (days) (mean ± SD)	4.7 ±0.41	7.9 ± 1.11	p = 0.0003
Patients treated per mission (mean ± SD)	46.1 ±4.42	104.1 ±4.10	p < 0.0001

Table 4 Percentage of medical providers from LMICs

Year	Percent of medical providers from LMICs
2015	73
2016	81
2017	81
2018	85
2019	83
cleft surgeons to areas of need in a “hub and spokes” model.

Local missions have a number of advantages and improve upon many of the criticisms of surgical missions. For a start, local missions allow health care providers to care for patients in their own country. Patients who have complications or are too complex to receive care in the mission setting can be integrated into existing health facilities in the urban centers. Most local mission are staffed purely by local providers though some positions are scarce in certain countries and need to be supplemented with an international volunteer, most commonly speech pathologist and child life specialists. These international providers can continue to train in areas of need for the country, while the majority of care is provided by local practitioners. Local missions are shorter in duration with shorter travel time, making participation less of a burden for providers. In addition, local missions have less travel costs and less equipment shipping which has previously been shown to decrease cost per patient [35, 36].

Local missions serve to strengthen the surgical system beyond the delivery of surgical care. By bringing together local health care leaders, local missions promote camaraderie and governance. Participants work together to

Fig. 3 Map of Operation Smile Colombia surgical activity
tackle problems in their country’s health system. Many organizations also include residents or fellows on these programs to improve their educational opportunities. Though they receive financial assistance from the international organization, local foundations fundraise for local missions providing valuable funding for surgical care in their countries where many cannot afford the cost of care. This further engages the population in advocating and improving surgical services in the country.

The ability to successfully run local missions does not necessarily make international missions obsolete, which is why so many of the countries utilize both program formats. International missions can still be utilized to help care for the existing backlog of untreated patients, especially given the greater volume of patients cared for in that setting. International missions can offer expanded educational opportunities; international experts can help with more complex cases, revisional cases, or cases not typically performed in a country. In partnership with local providers, international visitors may also contribute to identifying further opportunities for engagement. The exchange of volunteers from different backgrounds and cultures promotes teamwork and multiculturalism, which add intangible value to any organization.

This study’s main limitation is that it does not address patient outcomes between local and international mission. Previous studies have shown significant complication rates in mission settings from both international and local surgeons [37, 38]. We also do not present data on patient follow-up. This study also does not address care that takes place at Operation Smile surgical centers which play a big part in many surgical NGOs including Operation Smile. Lastly, this study is not a cost effectiveness analysis. Future investigation should focus on the economic aspects of the local mission model.

Until now, most of the discourse around supplementing surgical care has focused on international missions, mobile surgery units, or investing in surgical centers [35, 36, 39, 40]. The local mission is a concept that capitalizes on many of the benefits of investing in local surgical centers while also utilizing the flexibility of the mission model. Like other surgical missions, local missions are a concept that can be utilized for a vast array of elective surgical procedures, not just cleft lip and palate. The concept of transporting specialized surgical workforce from resource-rich to resource poor regions within a country can be used going forward by NGOs and national health care teams under the direction of the ministry of health. Local missions can act as a temporizing measure to improve access to care in middle-income countries, while the economy and the surgical health system continue to strengthen.

Conclusion

Most of our world lacks access to quality surgical care. Surgical missions remain a valuable way to provide surgical care to those in need. International missions can be used as a means to invest in local providers, staff and infrastructure in order to build surgical capacity and strengthen the health system. Once in-country teams are created, local missions can be used as a valuable way to provide specialized surgical care within a country’s own borders. International support can still be beneficial in countries able to run local missions. This local mission model is most useful in countries where the specialized surgical workforce is strong in the urban areas, but many more rural parts of the country are without access to specialized surgical care.

Compliance with ethical standards

Conflict of interest The authors have no conflict of interest to declare.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

1. Meara JG, Leather AJ, Hagander L et al (2015) Global Surgery 2030: evidence and solutions for achieving health, welfare, and economic development. Lancet 386:569–624
2. Alkire BC, Raykar NP, Shrime MG et al (2015) Global access to surgical care: a modelling study. Lancet Glob Health 3:e316-323
3. Holmer H, Lantz A, Kunjumen T et al (2015) Global distribution of surgeons, anaesthesiologists, and obstetricians. Lancet Glob Health 3(Suppl 2):S9-11
4. Hanna JS, Herrera-Almario GE, Pinilla-Roncancio M et al (2020) Use of the six core surgical indicators from the Lancet Commission on Global Surgery in Colombia: a situational analysis. Lancet Glob Health 8:699–e710
5. Stewart BT, Tansley G, Gyedu A et al (2016) Mapping population-level spatial access to essential surgical care in Ghana using availability of bellwether procedures. JAMA Surg 151:e161239
6. Stewart BT, Wong E, Gupta S et al (2015) Surgical need in an ageing population: a cluster-based household survey in Nepal. Lancet 385(Suppl 2):S5
26. Shrime MG, Bickler SW, Alkire BC et al (2015) Catastrophic expenditure to pay for surgery worldwide: a modelling study. Lancet Glob Health 3(Suppl 2):S38–44
25. Massenburg BB, Jenny HE, Saluja S et al (2016) Barriers to cleft lip and palate repair around the world. J Craniofac Surg 27:1741–1745
24. Roa L, Jumbam DT, Makasa E et al (2019) Global surgery and equitable access to cleft lip and palate care in sub-Saharan Africa: a cross-sectional study. J Craniofac Surg 30:1221–1229
23. World Health Organization (2007) Everybody business: strengthening health systems to improve health outcomes. Mil Med 172:1050–1052
22. The World Bank World Bank Country and Lending Groups (2014) The World Bank’s framework for action: leveraging assets from the United States Agency for international development and the department of defense to address a health care crisis in a developing nation. Mil Med 185:162–169
21. World Bank Group Specialist surgical workforce (per 100,000 population) (2017) Measure of national capacity to provide surgical care. J Geriatr Rehabil Nurs 51:1–10
20. Hollier LH Jr, Sharabi SE, Koshy JC et al (2010) Surgical misadventures: a provider perspective. Plast Reconstr Surg 128:216e–222e
19. Schneider WJ, Migliori MR, Gosain AK et al (2011) Volunteers in resource-limited settings: cleft lip and palate care: a brief review. Plast Reconstr Surg Global Open 39:10–20. https://doi.org/10.1007/s00268-014-2516-0
18. Schneider WJ, Politis GD, Gosain AK et al (2012) Effectiveness, sustainability, and role training. World J Surg 39:47–53. https://doi.org/10.1007/s00268-013-2395-9
17. Dupuis CC (2004) Humanitarian missions in the third world: a polite dissent. Plast Reconstr Surg 113:433–435
16. Schneider WJ, Migliori MR, Gosain AK et al (2011) Volunteers in plastic surgery guidelines for providing surgical care for children in the less developed world. Plast Reconstr Surg 127:2477–2486
15. Schneider WJ, Migliori MR, Gosain AK et al (2011) Volunteers in plastic surgery guidelines for providing surgical care for children in the less developed world: part II. Ethical considerations. Plast Reconstr Surg 128:216e–222e
14. Massenburg BB, Jenny HE, Saluja S et al (2016) Barriers to cleft lip and palate repair around the world. J Craniofac Surg 27:1741–1745
13. Magee WP Jr (2010) Evolution of a sustainable surgical delivery model. J Craniofac Surg 21:1321–1326
12. Magee WP, Raimondi HM, Beers M et al (2012) Effectiveness of international surgical program model to build local sustainability. Plast Surg Int 2012:185725
11. Patel PB, Hoyler M, Maine R et al (2012) An opportunity for diagonal development in global surgery: cleft lip and palate care in resource-limited settings. Plast Surg Int 2012:892437
10. Patel A, Sawh-Martinez RF, Sinha I et al (2013) Establishing sustainable international burn missions: lessons from India. Ann Plast Surg 71:31–33
9. Samuels SI, Wyner J, Brodsky JB et al (1984) Interplast. A sustainable international surgical program model to build local sustainability. J Craniofac Surg 21:1321–1326
8. Massenburg BB, Jenny HE, Saluja S et al (2016) Barriers to cleft lip and palate repair around the world. J Craniofac Surg 27:1741–1745
7. Shrime MG, Dare AI, Alkire BC et al (2015) Catastrophic expenditure to pay for surgery worldwide: a modelling study. Lancet Glob Health 3(Suppl 2):S38–44
6. Shrivastava S, Patil T, Sreekanth V et al (2018) Impact of medical interventions on in-hospital mortality in resource-limited settings: a systematic review of their effectiveness, cost-effectiveness, sustainability, and role training. World J Surg 42:646–651. https://doi.org/10.1007/s00268-017-4205-2
5. McCullough M, Campbell A, Siu A et al (2018) Scalable, sustainable cost-effective surgical care: a model for safety and quality in the developing world, part II: program development and quality care. J Craniofac Surg 25:1680–1684
4. Zafar SN, Fatmi Z, Iqbal A et al (2013) Disparities in access to surgical care within a lower income country: an alarming inequity. World J Surg 37:1470–1477. https://doi.org/10.1007/s00268-012-1732-8
3. Nagengast ES, Caterson EJ, Magee WP Jr et al (2014) Providing more than health care: the dynamics of humanitarian surgery efforts on the local microeconomy. J Craniofac Surg 25:1622–1625
2. Hackenberg B, Ramos MS, Campbell A et al (2015) Measuring and comparing the cost-effectiveness of surgical care delivery in low-resource settings: cleft lip and palate as a model. J Craniofac Surg 26:1121–1125
1. McCullough M, Campbell A, Siu A et al (2018) Scalable, sustainable cost-effective surgical care: a model for safety and quality in the developing world, part I: program development and quality care. J Craniofac Surg 25:1680–1684

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.