INTRODUCTION

Our motivation to study deformations of noncompact complex varieties comes from mathematical physics. Among noncompact manifolds, Calabi–Yau threefolds seem to be most popular in applications. For example, deformations of CY threefolds enter as terms in the integrals defining the action of the theories of Kodaira–Spencer gravity [Be]. Furthermore, the counting of BPS states can be computed efficiently on toric CY threefolds, as we have considered in [GKMR] and [GSTV]. (Note that a toric CY threefolds are necessarily noncompact.) Perhaps the most striking occurrences of CY threefolds are in the original formulation of the Mirror Symmetry Conjecture, where a CY threefold X is conjectured to have a mirror CY partner whose Hodge diamond is obtained from the one of X by reflection on the 45° line.

Here we consider smooth Calabi–Yau threefolds W_k containing a line $\ell \cong \mathbb{P}^1$. For the applications we have in mind for future work it will be useful to observe the effect of contracting the line to a singularity. The existence of a contraction of ℓ imposes heavy
restrictions on the normal bundle \([\text{Jim}]\), namely \(N_{E/W}\) must be isomorphic to one of

\[(a) \ O_{\mathbb{P}^1}(-1) \oplus O_{\mathbb{P}^1}(1), \quad (b) \ O_{\mathbb{P}^1}(-2) \oplus O_{\mathbb{P}^1}(0), \quad \text{or} \quad (c) \ O_{\mathbb{P}^1}(-3) \oplus O_{\mathbb{P}^1}(1).\]

\(W_1\) is the space appearing in the basic flop. It is famous in algebraic geometry for being the simplest example of a rational map that is not a blow-up.

We will focus on the Calabi–Yau threefolds

\[W_k := \text{Tot}(O_{\mathbb{P}^1}(-k) \oplus O_{\mathbb{P}^1}(k-2))\]

for \(k \geq 1\).

We will also consider surfaces of the form

\[Z_k := \text{Tot}(O_{\mathbb{P}^1}(-k)).\]

Our main contributions are descriptions of the deformation theory of such varieties, constructing infinitely many non-isomorphic deformations of \(W_k\) whenever \(k > 1\) (see Cor. 1.29), and presenting the effects that deformations of these threefolds have on their moduli spaces of holomorphic vector bundles (see Thm. 2.19). We present some nontrivial holomorphic maps between the deformation spaces (see Thm. 1.24). We also discuss deformations from the point of view of affine bundles on \(\mathbb{P}^1\), obtaining infinitely many of them for a fixed threefold (see Thm. 1.21).

We make use of a new definition of commutative deformation, first presented in \([\text{GKRS}]\), which is well suited to fit the needs of the noncompact case. Our technique to find deformations goes as follows. Even though there is no well established deformation theory for noncompact manifolds, we obtain deformations by working in analogy with Kodaira’s theory for the compact case, see \([\text{Ko}]\). Namely, we calculate cohomology with coefficients in the tangent bundle, and then we proceed to identify which of such directions of infinitesimal deformations are integrable.

Naturally, when studying total spaces of rank 2 bundles on the complex line, one first ought to review the corresponding 2 dimensional case, namely, that of total spaces of rank 1 bundles. Hence, before attacking the case of threefolds, we first recall the results proved for surfaces. In the case of the complex surfaces \(Z_k\), with \(k > 0\), the main results about their commutative deformations are:

1. \([\text{GKRS}]\) proved that deformations of the surfaces \(Z_k\) can be obtained from the deformations of the (compact) Hirzebruch surfaces \(F_k\), and
2. \([\text{BG1}]\) proved that every nontrivial deformation of \(Z_k\) is affine. The latter in turn has as immediate corollary:
3. \([\text{BG1}, \text{Thm. 6.14}]\) showed that moduli spaces of vector bundles fall to dimension 0 whenever \(Z_k\) is deformed classically.

In this work we shall prove that the 3 dimensional analogues of results 1, 2, 3 are all false. Indeed, we prove that for \(k > 1\):

1. Deformation of the CY threefolds \(W_k\) are not obtained from deformations of their compactifications; this follows directly from Cor. 1.25.
2. \(W_k\) has nontrivial deformations which are not affine, see Cor. 1.14.
3. Deformations of \(W_k\) can hold positive dimensional moduli spaces of vector bundles, with some nontrivial deformations preserving all of the dimensions of moduli and others preserving fewer (or none) of the positive dimensions of the original moduli, see Thm. 2.19.

In this work we consider only classical, i.e. commutative, deformations leaving noncommutative deformations for future work. In the case of surfaces \([\text{BG2}]\) showed that
the effect of noncommutative deformations of the surfaces Z_k on moduli of vector bundles is quite the opposite of the statement of property S3, in that, noncommutative deformations can have the effect of enlarging the moduli spaces of vector bundles. We expect that a similar phenomenon might occur for threefolds, but details remain to be explored later. The study of noncommutative deformations requires very different techniques from those considered here. This paper is a part of the PhD Thesis of B. Suzuki at Universidad Católica del Norte, Chile.

1. Deformations of Noncompact Manifolds

Classical deformation theory is well understood in the compact case, as explained in the beautiful textbook of Kodaira [Ko]. However, a general theory for the noncompact case is lacking. In joint work with Köppe and Rubilar [GKRS] we studied some features of deformation theory for noncompact Calabi–Yau threefolds, and we gave a new definition of deformation of complex structure, which proved useful. We now recall the basic definitions:

Definition 1.1. A deformation of a complex manifold X is a holomorphic fiber bundle $\tilde{X} \xrightarrow{\pi} D$, where D is a complex disc centered at 0 (possibly a vector space, possibly infinite dimensional), satisfying:

- $\pi^{-1}(0) = X$,
- \tilde{X} is locally trivial in the C^∞ (but not necessarily in the holomorphic) category.

Remark 1.2. Our choice for the dimension of D is $n = h^1(X, TX)$ whenever possible. The case $n = 0$ corresponds to the following definition:

Definition 1.3. We call a manifold X formally rigid when $H^1(X, TX) = 0$.

Definition 1.4. We call a manifold X rigid if any deformation $\tilde{X} \xrightarrow{\pi} D$ is biholomorphic to the trivial bundle $X \times D \to D$.

It is too early to say for sure how this new concept will converge to a permanent one; it ought to accommodate several refinements and improvements, for instance allowing for more general base spaces, and allowing for singularities such as orbifold singularities as in [LZ] or toric degenerations such as in [GS]. Developing a solid theoretical background is a fundamental goal of our work in this theme, but clearly a large collection of examples needs to be studied first. Here we apply Definition 1.5 to CY threefolds that are the total space of vector bundles on the projective line, and construct deformations corresponding to elements of first cohomology with coefficients in the tangent bundle. We will see that this method produces large families of deformations.

1.1. The Calabi–Yau Threefolds W_k. Let us now describe those Calabi–Yau threefolds which are the total spaces of vector bundles on the projective line viewed as manifolds.

Definition 1.5. For $k \geq 1$, we set

$$W_k = \text{Tot}(\mathcal{O}_{\mathbb{P}^1}(-k) \oplus \mathcal{O}_{\mathbb{P}^1}(k-2)).$$

The complex manifold structure can be described by gluing the open sets

$$U = \mathbb{C}^3_{[z, u_1, u_2]} \quad \text{and} \quad V = \mathbb{C}^3_{[\xi, v_1, v_2]}$$

by the relation

$$\begin{align*}
(\xi, v_1, v_2) &= (z^{-1}, z^k u_1, z^{-k+2} u_2)
\end{align*}$$

whenever z and ξ are not equal to 0. We call (1) the canonical coordinates for W_k.

We will use $H^1(W_k, TW_k)$ to find deformations of W_k even tough we do not know if it will provide all deformations fitting into definition 1.1.

Example 1.6. W_1 is formally rigid. This was proved in [R] by direct calculation showing that $H^1(W_1, TW_1) = 0$.

Interestingly, $k = 1$ is the only such case, and for all other values of k the first cohomology groups with tangent coefficients are infinite dimensional.

1.2. **Infinitely many deformations of W_2.** In this section we prove Thm. 1.13 showing that the deformation space of W_2 contains infinitely many distinct isomorphism types of complex threefolds.

We observe that $W_2 = Z_2 \times \mathbb{C}$ is the product of a Calabi–Yau surface by affine space, but the surface Z_2 has one single nontrivial deformation, which is affine (see [BG1]). Therefore any deformations of the CY threefold W_2 that is not affine does not come from deforming the CY surface Z_2.

Example 1.7. Computing cohomology with tangent coefficients produces a large and nontrivial family of deformations of W_2. [GKRS] computed an infinite-dimensional family of deformations W_2 of W_2 whose elements can be described by gluing $U = C^3_{\{z,u_1,u_2\}}$ and $V = C^3_{\{\xi,v_1,v_2\}}$ with the following relations:

\[
(\xi, v_1, v_2) = \left(z^{-1}, z^2 u_1 + \sum_{s \geq 0} t_s z^s u_2^s, u_2 \right).
\]

Deformations are obtained by varying the parameters t_s. [GKRS] proved that this family is nontrivial by showing that it contains both affine and non-affine deformations.

We now focus on a class of such deformations of W_2 indexed by an integer y.

Notation 1.8. Fix an integer $y \geq 0$. We denote by $W_2(y)$ the deformation of W_2 obtained by gluing the charts

$U = C^3_{\{z,u_1,u_2\}}$ and $V = C^3_{\{\xi,v_1,v_2\}}$

with the relation

$(\xi, v_1, v_2) = (z^{-1}, z^2 u_1 + z u_2^y, u_2)$

for $z \neq 0$.

We show that this family contains infinitely many distinct manifolds, that is, we prove that there are infinitely many complex isomorphism types in 2. Hence, we wish to show that for $y_1 \neq y_2$ the threefolds $W_2(y_1)$ and $W_2(y_2)$ are not isomorphic. Accordingly, we compute $H^1(W_2(y), TW_2(y))$.

Lemma 1.9. Fix $y \geq 0$. The cohomology group $H^1(W_2(y), TW_2(y))$ is generated as a complex vector space by the classes $\sigma_s = \begin{bmatrix} 0 & z^{-1} u_2^s \\ z^2 u_1 + u_2^y & z y u_2^{y-1} \end{bmatrix}$, with $s \geq 0$.

Proof. The transition matrix for the tangent bundle of $W_2(y)$ is given by

\[
J = \begin{bmatrix}
-z^{-2} & 0 & 0 \\
2z u_1 + u_2^y & z^2 & y u_2^{y-1} \\
0 & 0 & 1
\end{bmatrix}.
\]
A 1-cocycle with coefficients in $T\mathcal{W}_2(y)$ may be expressed in U coordinates by

$$\sigma = \sum_{l=-\infty}^{\infty} \sum_{i=0}^{\infty} \sum_{s=0}^{\infty} \begin{bmatrix} \alpha_1 l i s \\ \alpha_2 l i s \\ \alpha_3 l i s \end{bmatrix} z^l u_1^i u_2^s.$$

We will omit the indices $li s$ from the coefficients $\alpha_1, \alpha_2, \alpha_3$ to simplify notation. Since monomials having nonnegative powers of z are holomorphic on the U-chart, we have

$$\sigma \sim \sum_{l \leq -1} \sum_{i \geq 0} \sum_{s \geq 0} \begin{bmatrix} \alpha_1 \\ \alpha_2 \\ \alpha_3 \end{bmatrix} z^l u_1^i u_2^s,$$

where \sim denotes cohomological equivalence. Changing coordinates:

$$\Im \sigma = \sum_{l \leq -1} \sum_{i \geq 0} \sum_{s \geq 0} \begin{bmatrix} \alpha_1 (2zu_1 + u_2^s) + \alpha_2 z^2 + \alpha_3 yz u_2^{y-1} \\ \alpha_3 \end{bmatrix} z^l u_1^i u_2^s$$

$$= \sum_{l \leq -1} \sum_{i \geq 0} \sum_{s \geq 0} \begin{bmatrix} \alpha_1 \xi v_1 + \alpha_2 \xi^{-2} + \alpha_3 y \xi v_2^{y-1} \\ \alpha_3 \end{bmatrix} \xi^{-l} (\xi^2 v_2 - \xi v_2^y)^i v_2^s.$$

As the monomials that are holomorphic on V are cohomologous to 0, we obtain that

$$\Im \sigma \sim \sum_{s \geq 0} \begin{bmatrix} 0 \\ \xi^{-1} v_2^s \\ 0 \end{bmatrix},$$

which proves the lemma. □

Some of the 1-cocycles σ_s may still be null-cohomologous. The result depends on the specific deformation $\mathcal{W}_2(y)$ we consider.

Lemma 1.10. Fix $y \geq 0$. The class of σ_s in $H^1(\mathcal{W}_2(y), T\mathcal{W}_2(y))$ is cohomologous to 0 if $s \geq y - 1$.

Proof. We divide the proof into three cases.

Case 1: Assume $s \geq y \geq 1$. Then $\begin{bmatrix} -zu_2^{s-y} & 0 & -\frac{2}{y} u_2^{s-y+1} \end{bmatrix}^T$ is holomorphic in U coordinates, so σ_s is cohomologous to $\begin{bmatrix} -zu_2^{s-y} & z^{-1} u_2^s & -\frac{2}{y} u_2^{s-y+1} \end{bmatrix}^T$, which we now
show is null-cohomologous. In fact, changing coordinates we obtain

\[
J \begin{bmatrix}
-zu_2^{s-y} \\
-z^{-2}u_2^y - yu_2^{s-1} \\
-z^{-1}u_2^{s} \\
-z^{-1}u_2^{y} \\
-2u_2^{s} \\
-2u_2^{y} \\
0 \\
0 \\
2u_2^{s} \\
-2u_2^{y}
\end{bmatrix} = \begin{bmatrix}
-2z^2u_1u_2^{s-y} - zu_2^y + zu_2^y - 2zu_2^y \\
-2u_2^{s-y}(zu_1 + zu_2^y) \\
\xi v_2^{s-y} \\
-2v_1v_2^{s-y} \\
-2v_2^{s-1} + 1
\end{bmatrix}
\]

\sim 0,

since the monomials in the last vector are all holomorphic on \(V \).

Case 2: Assume \(s = y - 1 \geq 0 \). Note that \(\begin{bmatrix} 0 & 0 & -\frac{1}{y} \end{bmatrix}^T \) is holomorphic on \(U \) coordinates. Then \(\sigma_s \) is cohomologous to \(\begin{bmatrix} 0 & z^{-1}u_2^{s} & -\frac{1}{y} \end{bmatrix}^T \), which we now prove is null-cohomologous. In fact, changing coordinates we have

\[
J \begin{bmatrix}
0 \\
-z^{-2}u_2^y - yu_2^{s-1} \\
-z^{-1}u_2^{s} \\
-z^{s-2}u_2^{y} \\
2zu_1u_2^y + zu_2^y - yu_2^{s-1} \\
0 \\
0 \\
2u_2^{s} \\
-2u_2^{y} \\
0
\end{bmatrix} = \begin{bmatrix}
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0 \\
0
\end{bmatrix}
\]

\sim 0,

since the the last vector is holomorphic on \(V \).

Case 3: Assume \(y = 0 \). Note that \([zu_2^{s} \ 0 \ 0]^T \) is holomorphic on \(U \) coordinates.
In this case \(\sigma_s \) is cohomologous to \([zu^i_2 \ z^{-1}u^i_2 \ 0]^T \). Then changing coordinates:

\[
\begin{bmatrix}
zu^i_2 \\
z^{-1}u^i_2 \\
0
\end{bmatrix}
\begin{bmatrix}
-z^{-2} \\
2zu_1 + u^y_2 \\
z^{-1}u^i_2
\end{bmatrix}
= \begin{bmatrix}
-z^{-1}u^i_2 \\
2u^i_2(z^2u_1 + 1) \\
0
\end{bmatrix}
= \begin{bmatrix}
-\xi v^i_2 \\
2v^i_1v^i_2 \\
0
\end{bmatrix}
\sim 0,
\]

since the last vector is holomorphic on \(V \).

\[\square\]

Corollary 1.11. For every \(s \geq 0 \) we have the following bounds for the dimensions of the cohomology groups of deformations with coefficients on the tangent bundle:

- \(h^1(W_2(0), TW_2(0)) = h^1(W_2(1), TW_2(1)) = 0 \).
- \(h^1(W_2(y), TW_2(y)) \leq y - 1 \) for \(y \geq 2 \).

We now show that these bounds are sharp.

Theorem 1.12. For \(y \geq 2 \) we have \(h^1(W_2(y), TW_2(y)) = y - 1 \).

Proof. Fix \(y \geq 2 \). First we show that the cocycles \(\sigma_s = [0 \ z^{-1}u^i_2 \ 0]^T \) are nontrivial for \(s = 0, \ldots, y - 2 \).

Suppose \(\sigma_s \) is a coboundary. Then there exist functions \(\alpha \) holomorphic on \(U \) and \(\beta \) holomorphic on \(V \) such that

\[
\sigma_s = \alpha + T^{-1}\beta.
\]

Thus, omitting indices \(li s \) from the coefficients of \(\alpha \) and \(\beta \) we have an expression of the form:

\[
\begin{bmatrix}
0 \\
z^{-1}u^i_2 \\
0
\end{bmatrix}
= \sum_{l,i,s \geq 0} \begin{bmatrix}
\alpha^l \alpha^i \alpha^s \\
\alpha^l \beta^i \beta^s \\
\alpha^l \beta^i \beta^s
\end{bmatrix} \begin{bmatrix}
z^l u^i_1 u^s_2 \\
z^l (zu_1 + u^y_2)^i u^s_2 \\
z^l (zu_1 + u^y_2)^i u^s_2
\end{bmatrix}
\begin{bmatrix}
-\xi^{-2} \\
-\beta^1 \xi^{-2} \\
-\beta^1 \xi^{-2}
\end{bmatrix}
\begin{bmatrix}
0 \\
\xi^2 \\
\beta^2 \xi^2 - \beta^3 j \xi \nu^{-1}
\end{bmatrix}
\begin{bmatrix}
0 \\
0 \\
1
\end{bmatrix}
\begin{bmatrix}
\beta^1 \\
\beta^2 \\
\beta^3
\end{bmatrix}
\begin{bmatrix}
\xi^i v^i_1 v^i_2 \\
\xi^i v^i_1 v^i_2 \\
\xi^i v^i_1 v^i_2
\end{bmatrix}
\begin{bmatrix}
\beta^1 \\
\beta^2 \\
\beta^3
\end{bmatrix}
\begin{bmatrix}
\xi^i v^i_1 v^i_2 \\
\beta^1 z^2 \\
\beta^1 z^2
\end{bmatrix}
\begin{bmatrix}
\beta^1 (zu_1 + u^y_2)^i u^s_2 \\
\beta^1 (zu_1 + u^y_2)^i u^s_2 \\
\beta^1 (zu_1 + u^y_2)^i u^s_2
\end{bmatrix}
\begin{bmatrix}
\frac{-\beta^1 z^2}{\beta^3} \\
\frac{-\beta^1 z^2}{\beta^3} \\
\frac{-\beta^1 z^2}{\beta^3}
\end{bmatrix}
\begin{bmatrix}
z^{-1}(zu_1 + u^y_2)^i u^s_2 \\
z^{-1}(zu_1 + u^y_2)^i u^s_2 \\
z^{-1}(zu_1 + u^y_2)^i u^s_2
\end{bmatrix}
\]

But on the right-hand side of the equation the monomials of the form \(z^{-1}u^i_0 u^i_2 \) appear only for \(s \geq y - 1 \). So it is impossible to solve for \(\alpha \) and \(\beta \). Hence, we have showed that each \(\sigma_s \) is nonzero in cohomology. It remains to show that they linearly independent.
Assume otherwise, that there is a linear dependence among the cohomology classes of the σ_i. Such a relation would then be given by a polynomial on these classes whose class is a coboundary. Let p be any polynomial on u_2 that has degree at most $y - 2$ and let $\sigma_p = [0 \; z^{-1}p(u_2) \; 0]^T$. We wish to show that σ_p is not a coboundary. Suppose there exist functions α holomorphic on U and β holomorphic on V such that

$$\sigma_p = \alpha + T^{-1}\beta.$$

Analogously to the first part of the proof, in coordinates we would have

$$z^{-1}p(u_2) = \sum_{l, i, z \geq 0} \left[\frac{a_1^3}{a^3} \right] z^l u_1^i u_2^z + \left[\frac{-\beta_1^3 z^2}{\beta^3} \right] u_2^z.$$

But on the right-hand side of the equation the monomials of the form $z^{-1}u_1^0u_2^s$ appear only for $s \geq y - 1$. So it is impossible to solve for α and β. It follows that the sections $\sigma_0, \ldots, \sigma_{y-2}$ are pairwise non cohomologous. \hfill \square

We have thus proved the following result:

Theorem 1.13. Let $y_1, y_2 \geq 2$. Then $\mathcal{W}_2(y_1)$ is isomorphic to $\mathcal{W}_2(y_2)$ if and only if $y_1 = y_2$. Hence the family (2) contains infinitely many distinct isomorphism classes of complex manifolds.

Observe that Theorem 1.12 also implies:

Corollary 1.14. For $y \geq 2$ the threefolds $W_2(y)$ are not affine.

1.3. **Deformations of W_3 as affine bundles.** We use $H^1(W_3, TW_3)$ to parametrise formal infinitesimal deformations of W_3. In this section we will regard these deformations as affine line bundles on the surface Z_{-1}, as defined in 1.20. Even though in a certain sense the results of this section on affine bundles are somewhat weaker then those of section 1.5 which study their total spaces, the former do not follow from the latter, and they are of independent interest, so we have decided to present both points of view. The reader interested only on deformations of manifolds may skip this subsection. Recall from definition 1 that W_3 can be covered by $U = ((z, u_1, u_2))$ and $V = ((\zeta, v_1, v_2))$, with $U \cap V = \mathbb{C} - \{0\} \times \mathbb{C}^2$ and transition function given by:

$$\left(\zeta, v_1, v_2 \right) = \left(z^{-1}, z^3 u_1, z^{-1} u_2 \right)$$

An infinite dimensional family parametrising deformations of W_3 is given by:

Lemma 1.15. [GKMR, Thm. 20] There is a semiuniversal deformation space \mathcal{W} for W_3 parametrised by cocycles of the form

$$\begin{pmatrix}
 a_{ljs} \\
 b_{ljs} \\
 c_{ljs}
\end{pmatrix} z^l u_1^i u_2^s$$

But, it is a priori still possible that the family produces only finitely many isomorphism types. We first show that the family given in lemma 1.15 does indeed produce infinitely many integrable directions.

Lemma 1.16. A cocycle of the form

$$\begin{pmatrix}
 0 \\
 z^l u_1^i u_2^s \\
 0
\end{pmatrix}$$
defines a deformation of W_3 if and only if $i = 0$.

Proof. The deformation is given by
\[
\begin{bmatrix}
\xi \\
v_1 \\
v_2
\end{bmatrix}
= \begin{bmatrix}
z^{-2} & 0 & 0 \\
0 & z^3 & 0 \\
0 & 0 & z^{-1}
\end{bmatrix}
\begin{bmatrix}
z \\
u_1 \\
u_2
\end{bmatrix}
+ \begin{bmatrix}
0 \\
z^l u_1^i u_2^j \\
0
\end{bmatrix}
\]
\[
= \begin{bmatrix}
z^{-1} \\
z^3 u_1 + z^{l+3} u_1^i u_2^j \\
z^{-1} u_2
\end{bmatrix}.
\]

This rule defines a change of coordinates (an invertible function) if and only if $i = 0$.

Indeed, we have $z = \xi^{-1}$ and $u_2 = \xi^{-1} v_2$.

Then
\[
v_1 = \xi^{-3} u_1 + \xi^{-l-s} u_1^i v_2,
\]
which does not admit a unique solution for u_1 if $i \neq 0$.

\begin{lemma}
A cocycle of the form
\[
\begin{bmatrix}
0 \\
0 \\
z^l u_1^i u_2^j
\end{bmatrix}
\]
defines a deformation of W_3 if and only if $s = 0$.
\end{lemma}

Proof. The deformation is given by
\[
\begin{bmatrix}
\xi \\
v_1 \\
v_2
\end{bmatrix}
= \begin{bmatrix}
z^{-2} & 0 & 0 \\
0 & z^3 & 0 \\
0 & 0 & z^{-1}
\end{bmatrix}
\begin{bmatrix}
z \\
u_1 \\
u_2
\end{bmatrix}
+ \begin{bmatrix}
0 \\
z^l u_1^i u_2^j \\
0
\end{bmatrix}
\]
\[
= \begin{bmatrix}
z^{-1} \\
z^3 u_1 + z^{l-1} u_1^i u_2^j \\
z^{-1} u_2
\end{bmatrix}.
\]

This rule defines a change of coordinates (an invertible function) if and only if $s = 0$. The proof is analogous to the proof of Lemma 1.16.

\begin{lemma}
The cocycles
\[
\begin{bmatrix}
0 \\
z^l u_1^i u_2^j \\
0
\end{bmatrix}
\]
are nonzero in $H^1(W_3, TW_3)$ for $l = -1, -2$ and $s \geq 0$, and pairwise distinct.
\end{lemma}

Proof. A general 1-coboundary τ is given by
\[
\tau = \sum_{l \geq 0} \sum_{i \geq 0} \sum_{j \geq 0} \begin{bmatrix}
\alpha_1 \\
\alpha_2 \\
\alpha_3
\end{bmatrix}
\begin{bmatrix}
z^l u_1^i u_2^j \\
3 \xi^2 v_1 \\
-\xi^{-2} v_2
\end{bmatrix}
+ \begin{bmatrix}
-\xi^{-2} \\
3 \xi^2 v_1 \\
-\xi^{-2} v_2
\end{bmatrix}
\begin{bmatrix}
\beta_1 \\
\beta_2 \\
\beta_3
\end{bmatrix}
\xi^l v_1^i v_2^j
\]
\[
= \sum_{l \geq 0} \sum_{i \geq 0} \sum_{j \geq 0} \begin{bmatrix}
\alpha_1 \\
\alpha_2 \\
\alpha_3
\end{bmatrix}
\begin{bmatrix}
z^l u_1^i u_2^j \\
3 \beta_1^3 u_1 + \beta_2^2 z^{-3} \\
-\beta_1^3 z u_2 - \beta_3^2 z
\end{bmatrix}
\begin{bmatrix}
-\beta_1 z \\
3 \beta_1^3 u_1 + \beta_2^2 z^{-3} \\
-\beta_1^3 z u_2 - \beta_3^2 z
\end{bmatrix}
\xi^l u_1^i u_2^j.
\]

So we see that on the second entries of the matrices the monomials $z^{-1} u_2^j$ and $z^{-2} u_2^j$ do not appear.
Proposition 1.19. The following infinite-dimensional family of deformations of W_3 is obtained by integrating cocycles in \mathcal{W}:

$$(\xi, v_1, v_2) = \left\{ z^{-1}, z^3 u_1 + \sum_{j=0} t_j z^j \right\} u_2, z^{-1} u_2 \right\}.$$

Proof. This family is obtained from the cocycles of the form

$$\begin{bmatrix} 0 \\ z^{-2} u_2^2 \\ 0 \\ z^{-1} u_2^2 \end{bmatrix} \text{ and } \begin{bmatrix} 0 \\ z^{-1} u_2^2 \end{bmatrix}.$$

We now present a result about the deformations of W_3 given in Proposition 1.19 regarded as affine rank 1 bundles over a surface. Recall that for each integer k the surface Z_k can be described in charts by gluing two copies of \mathbb{C}^2 with coordinates (z, u) and (ξ, v) and with change of coordinates on $\mathbb{C}^* \times \mathbb{C}$ given by $(\xi, v) = (z^{-1}, z^k u)$. In particular the surface Z_{-1} can be described by gluing $(\xi, v) = (z^{-1}, z^{-1} u)$. We now consider deformations $\mathcal{W}_3(j)$ which may also be regarded as the total space of an affine line bundle over the surface Z_{-1}.

Notation 1.20. Fix j a positive integer. Then by $\mathcal{W}_3(j)$ we mean the deformation of W_3 given by the transition function

$$(\xi, v_1, v_2) = \left\{ z^{-1}, z^3 u_1 + z^2 u_2^j, z^{-1} u_2 \right\}. $$

The threefold $\mathcal{W}_3(j)$ can also be regarded as the total space of the rank 1 affine bundle $E(j) \overset{\pi}{\to} Z_{-1}$, where π is the projection on the first and third coordinates and the transition function for $E(j)$ is given in canonical coordinates by $u_1 \to z^3 u_1 + z^2 u_2^j$.

To identify the structure of affine bundle, we just write (z, u_2) and (ξ, v_2) as the coordinates of Z_{-1}.

Theorem 1.21. If $j_1 \neq j_2$ then $E(j_1)$ and $E(j_2)$ are not isomorphic as affine bundles.

Proof. We may assume, without loss of generality, that $j_1 < j_2$. Suppose the bundles were isomorphic, and let $T : E(j_1) \to E(j_2)$ be an affine bundle isomorphism. Then T is an affine transformation on each fiber, i.e., there exist holomorphic functions

$$\begin{align*}
A^U : C^2_{z,u_2} &\to GL(1) = \mathbb{C} - \{0\} \\
A^V : C^2_{\xi,v_2} &\to GL(1) = \mathbb{C} - \{0\} \\
b^U : C^2_{z,u_2} &\to \mathbb{C} \\
b^V : C^2_{\xi,v_2} &\to \mathbb{C}
\end{align*}$$

such that

$$(4) \quad T_{z,u_2}(u_1) = A^U_{z,u_2}(u_1) + b^U_{z,u_2},$$

$$(5) \quad T_{\xi,v_2}(v_1) = A^V_{\xi,v_2}(v_1) + b^V_{\xi,v_2}.$$

Let ψ_U and ψ_V denote the transition functions from (z, u_1, u_2) coordinates to (ξ, v_1, v_2) coordinates of $E(j_1)$ and $E(j_2)$, respectively. The relations 4 and 5 should agree on the
Intersection of U and V, i.e., Diagram 1 must commute. Then

\[T \circ \phi_U(z, u_1, u_2) = \phi_U \circ T(z, u_1, u_2) \]

\[T(z^{-1}, z^3 u_1 + z^2 u_2^j) = \phi_U(z, A^U_z u_1 + b^U_{z, u_2}, u_2) \]

\[(z^{-1}, A^V_{z, 1, u_2}(z^3 u_1 + z^2 u_2^j) + b^V_{z, -1, u_2}, u_2) = (z^{-1}, z^3 (A^U_{z, u_2}(u_1) + b^U_{z, u_2}) + z^2 u_2^j, u_2). \]

By comparing the second coordinates on both sides of the equations we have:

\[A^V_{z, 1, u_2}(z^3 u_1 + z^2 u_2^j) + b^V_{z, -1} = z^3 (A^U_{z, u_2}(u_1) + b^U_{z, u_2}) + z^2 u_2^j \]

\[A^V_{z, 1, u_2} z^3 u_1 + A^V_{z, -1, u_2} z^2 u_2^j + b^V_{z, -1} = A^U_{z, u_2} z^3 u_1 + b^U_{z, u_2} z^3 + z^2 u_2^j. \]

By comparing the linear and affine parts we get:

\[A^V_{z, -1, u_2} z^3 = A^U_{z, u_2} z^3 \]

(6)

(7)

The only solution is $b^U_{z, u_2} = b^V_{z, -1, u_2} = 0$ and $A^V_{z, -1, u_2} = A^U_{z, u_2} = u_2^{h-j}$, which is not possible because A^U and A^V vanish on $u_2 = 0$ and $v_2 = 0$ respectively.

We conclude that the bundles $E(j_1)$ and $E(j_2)$ are not isomorphic.

\[\square \]

1.4. Holomorphic maps between the W_k's. We describe holomorphic maps between W_2 and W_3 and between their deformation families. Existence of such holomorphic maps is not at all a priori guaranteed.

Lemma 1.22. The map $\varphi: W_2 \to W_3$ defined by

\[\varphi|_U(z, u_1, u_2) = (z, z u_1^2, u_2) \]

\[\varphi|_V(\xi, v_1, v_2) = (\xi, v_1^2, \xi v_2) \]

is holomorphic.

Proof. We prove that $T_3 \circ \varphi_U = \varphi_V \circ T_2$:

\[T_3 \circ \varphi_U(z, u_1, u_2) = T_3(z, z u_1^2, u_2) \]

\[= (z^{-1}, z^4 u_1^2, z^{-1} u_2) \]

\[= \varphi_V(z^{-1}, z^2 u_1, u_2) \]

\[= \varphi_V \circ T_2(z, u_1, u_2). \]

In a diagram:
Lemma 1.23. The map $\psi: W_3 \to W_2$ defined by

$$
\psi|_U(z, u_1, u_2) = (z, u_1, z^2 u_1 u_2) \\
\psi|_V(\xi, v_1, v_2) = (\xi, v_1, v_1 v_2)
$$

is holomorphic.

Proof. We prove that $T_2 \circ \psi|_U = \psi|_V \circ T_3$:

$$
T_2 \circ \psi|_U(z, u_1, u_2) = T_2(z, u_1, z^2 u_1 u_2) \\
= (z^{-1}, z^2 u_1, z u_1 u_2) \\
= \psi|_V(z^{-1}, z^3 u_1, z^{-1} u_2) \\
= \psi|_V(z^{-1}, z^3 u_1, z^{-1} u_2).
$$

In a diagram:

$$
\begin{array}{c}
(z, u_1, u_2) \xrightarrow{\psi|_U} (z, z^2 u_1 u_2) \\
T_3 \downarrow \quad \downarrow T_2
\end{array}
\begin{array}{c}
(z^{-1}, z^2 u_1, u_2) \xrightarrow{\psi|_V} (z^{-1}, z^4 u_1^2, z^{-1} u_2) \\
(\xi, v_1, v_2) \xrightarrow{\psi|_V} (\xi, v_1^2, \xi v_2)
\end{array}
$$

Extending the map to deformations and repeating a proof similar to the one of Lemma 1.23 we obtain a holomorphic map between deformation spaces:

Proposition 1.24. The map $\overline{\psi}: W_3 \to W_2$

$$
\overline{\psi}|_U(z, u_1, u_2) = \left(z, u_1, z^2 u_1 u_2 + z \sum_{i=0}^{k_1} t_i u_1^{i+1}\right) \\
\overline{\psi}|_V(\xi, v_1, v_2) = (\xi, \xi v_1, v_1 v_2)
$$

is holomorphic.

1.5. Infinitely many deformations of W_k. In further generality we might consider

$W_{k_1, k_2} = \text{Tot}(\Theta_{p_1}(-k_1) \oplus \Theta_{p_1}(-k_2))$, with $k_1 \geq k_2$.

Using the same methods from the previous sections we deduce the following results:

- If $0 \geq k_1 \geq k_2$ then the threefold is formally rigid, i.e., $H^1(W_{k_1, k_2}, TW_{k_1, k_2}) = 0$.
- If $k_1 \geq k_2 > 0$ then the threefold has a finite dimensional deformation space.
- If $k_1 > k_2 = 0$, then the threefold has an infinite dimensional deformation space.
- If $k_1 > 0 > k_2$, then the threefold has an infinite dimensional deformation space.

Using Theorem 1.13 we will now also construct infinitely many deformations for all cases $k > 2$, thus proving:

Theorem 1.25. There are infinitely many distinct deformations of W_k for $k > 1$.

The idea of the proof comes from observing deformations of vector bundles of \(\mathbb{P}^1 \) as illustrated in the following example.

Example 1.26. Consider the family of rank 2 vector bundles on \(\mathbb{P}^1 \) parametrised by \(t \), described by transition functions in canonical coordinates as

\[
\begin{bmatrix}
 z^3 & tz^2 \\
 0 & z^{-1}
\end{bmatrix}.
\]

Taking total spaces of these deformations, when \(t = 0 \) we obtain \(W_3 \) and when \(t = 1 \) we obtain \(W_2 \). Indeed, making a change of coordinates

\[
\begin{bmatrix}
 z^3 & z^2 \\
 0 & z^{-1}
\end{bmatrix} \begin{bmatrix}
 1 & 0 \\
 -z & 1
\end{bmatrix} = \begin{bmatrix}
 0 & z^2 \\
 -1 & z^{-1}
\end{bmatrix} \begin{bmatrix}
 z^2 & 0 \\
 0 & -1
\end{bmatrix}.
\]

Changing of coordinates again

\[
\begin{bmatrix}
 1 & 0 \\
 -z^{-3} & 1
\end{bmatrix} \begin{bmatrix}
 z^2 & 0 \\
 z^{-1} & -1
\end{bmatrix} = \begin{bmatrix}
 z^2 & 0 \\
 0 & -1
\end{bmatrix}.
\]

This example is just a concrete way to write in coordinates a family of extensions of the form

\[
0 \to \mathcal{O}(3) \to E_t \to \mathcal{O}(1) \to 0
\]

such that

\[
W_1 = \text{Tot}(E_t).
\]

This implies that deformations of \(W_2 \) induce deformations on \(W_3 \). Similarly, we can use this method to induces deformations on \(W_k \) with \(k > 2 \) using deformations on \(W_2 \).

We now formalize this argument.

Proposition 1.27. Let \(k > q > 0 \) be 2 positive integers. Then in \(H^1(W_k, TW_k) \) the class of the section

\[
\begin{bmatrix}
 0 \\
 z^{-k+q} u_2
\end{bmatrix}
\]

is not zero.

Proof. This lemma also follows from Thm. 1.28 but we present an independent proof for completeness. A 1-coboundary with values in \(TW_k \) is given by

\[
\tau = \sum_{l \geq 0} \sum_{r \geq 0} \sum_{s \geq 0} \begin{bmatrix}
 \xi^{-2} \\
 k \xi^{-1} v_1
\end{bmatrix} \begin{bmatrix}
 0 & 0 \\
 \xi^k & 0
\end{bmatrix} \begin{bmatrix}
 \beta_{rs}^1 \\
 \beta_{rs}^2
\end{bmatrix} \xi^{l} v_1' v_2 + \begin{bmatrix}
 a_1 \\
 a_2
\end{bmatrix} z^l u_1' u_2',
\]

\[
= \sum_{l \geq 0} \sum_{r \geq 0} \sum_{s \geq 0} \begin{bmatrix}
 \beta_{rs}^1 z^{-2} \\
 k \beta_{rs}^1 z^{-1} u_1 + \beta_{rs}^2 z^{-k}
\end{bmatrix} \begin{bmatrix}
 0 & 0 \\
 (-k+2) \xi^{-k+1} v_2
\end{bmatrix} \begin{bmatrix}
 0 & \xi^{-k+2} \\
 \xi^{l} v_1' v_2
\end{bmatrix} + \begin{bmatrix}
 a_1 \\
 a_2
\end{bmatrix} z^l u_1' u_2'.
\]

(in the second line we omitted the subindices \(l r s \)). Now we see that it is not possible to obtain \(\begin{bmatrix}
 0 \\
 z^{-k+q} u_2
\end{bmatrix} \) as a coboundary. Indeed, the possibilities for having \(z^m u_2 \) for \(m < 0 \) would be obtained from the monomials with coefficients \(\beta_{rs}^2 \), for which the power of \(z \) is \(-2k+2-l\), and thus impossible to be equal to \(-k+q\).
By using the cocycles from Proposition 1.27 we obtain a \((k-1)\)-parameter deformation family for \(W_k\):

\[
(\xi, v_1, v_2) = \left(z^{-1}, z^k u_1 + \sum_{q=0}^{k-1} t_q z^q u_2, z^{-k+2} u_2 \right).
\]

Theorem 1.28. Let \(k > q > 0\). Then the deformation of \(W_k\) given by

\[
(\xi, v_1, v_2) = \left(z^{-1}, z^k u_1 + z^q u_2, z^{-k+2} u_2 \right).
\]

is isomorphic to \(W_q\).

Proof. Consider the vector bundle over \(\mathbb{P}^1\) given by

\[
\begin{bmatrix}
 z^k & z^q \\
 0 & z^{-k+2}
\end{bmatrix}.
\]

Changing coordinates we have:

\[
\begin{bmatrix}
 z^k & z^q \\
 0 & z^{-k+2}
\end{bmatrix} \sim \begin{bmatrix}
 1 & 0 & -1 \\
 0 & z^k - q + 2 & 0
\end{bmatrix} \begin{bmatrix}
 z^k & z^q \\
 0 & z^{-k+2}
\end{bmatrix} \begin{bmatrix}
 1 & 0 \\
 1 & -z^k + q
\end{bmatrix} = \begin{bmatrix}
 z^q & 0 \\
 0 & z^{-q+2}
\end{bmatrix}.
\]

Replacing the extension class with \(tz^q\) we also obtain a deformation family from \(W_k\) to \(W_q\). We may reinterpret this isomorphism as:

\[
\mathcal{W}_k \to W_q
\]

\[
\begin{bmatrix}
 z, u_1 \\
 u_2
\end{bmatrix} \to \begin{bmatrix}
 z, 0 & 1 & -1 \\
 1 & -z^k + q
\end{bmatrix}^{-1} \begin{bmatrix}
 u_1 \\
 u_2
\end{bmatrix}
\]

\[
\begin{bmatrix}
 \xi, v_1 \\
 v_2
\end{bmatrix} \to \begin{bmatrix}
 \xi, 1 & 0 \\
 1 & -z^k + q - 2
\end{bmatrix} \begin{bmatrix}
 v_1 \\
 v_2
\end{bmatrix}
\]

where \(\mathcal{W}_k\) denotes the deformation of \(W_k\) given by Equation 9. \(\Box\)

Corollary 1.29. For \(k > 1\) the threefold \(W_k\) has infinitely many distinct deformations.

Proof. Combine theorems 1.13 and 1.28. \(\Box\)

2. Moduli of Vector Bundles

2.1. Background on moduli spaces

Moduli space of vector bundles over complex varieties are a classical theme of study in algebraic geometry, with many applications in various areas of mathematics and physics. The definition of moduli spaces used in algebraic geometry, though powerful, is rather abstract. Given an algebraically closed field \(k\) one requires a moduli functor \(\text{Bun}_X^r : (\text{Sch}/k)_{\text{op}} \to \text{Sets}\) which associates to a scheme \(T \in \text{Sch}/k\) the set \(\text{Bun}_X^r(T)\) of isomorphism classes of families of rank \(r\) vector bundles on \(X\) parametrized by \(T\). If the functor \(\text{Bun}_X^r\) is representable in the category of schemes, then \(\mathcal{M}_X^r\) is called a fine moduli space for the moduli problem. However, in most situations fine moduli spaces do not exist. Instead the notion of a coarse moduli space is used, which is a scheme \(\mathcal{M}_X^r\) which corepresents \(\text{Bun}_X^r\), and such that \(\varphi(\text{Spec}k) : \text{Bun}_X^r(\text{Spec}k) \to \text{Hom}_{\text{Sch}/k}(\text{Spec}k, \mathcal{M}_X^r)\) is a bijection, see for instance [Se].

Even moduli spaces of well-behaved objects can be “arbitrarily bad”, i.e. moduli spaces are governed by a kind of “Murphy’s law”. The case of moduli of holomorphic vector bundles on the surfaces \(W_k\) seems to be no exception, but we will see that simple choices can provide us with well behaved moduli spaces that fit under the definition of
coarse moduli. We will however continue to work with the analytic topology, not the Zariski one.

2.2. The threefolds W_k and their moduli of vector bundles. We wish to describe rank 2 vector bundles over W_k in the simplest possible way, as extensions of line bundles. Hence, the first step is to study filtrability, which is a property that holds true for bundles over W_1 and W_2 but not for the cases when $k \geq 3$. We summarize the results of [K] about filtrability.

Lemma 2.1. [K, Thm. 3.10] Every holomorphic vector bundle on W_1 is filtrable and algebraic.

Proof. Direct application of the more general theorem proved in [BGK1] which uses ampleness of the conormal bundle of a subvariety, in this case \mathbb{P}^1 inside W_1. □

For W_2 we have a slightly weaker result, proving filtrability only for algebraic bundles.

Lemma 2.2. [K, Thm. 3.11] Every algebraic vector bundle on W_2 is filtrable.

Proof. Köppe uses the fact that an algebraic bundle on W_2 is determined by its restriction to a finite formal neighborhood of \mathbb{P}^1 inside W_2. □

Problem 2.3. Prove (or disprove) filtrability for all holomorphic bundles on W_2.

We focus our attention on rank 2 vector bundles with vanishing first Chern class on W_k. If E is such a bundle, then by Grothendieck’s splitting principle $E|_{\mathbb{P}^1} = \mathcal{O}(j) \oplus \mathcal{O}(-j)$ for some integer j, which we call the splitting type of E. We can then naively define a “space” of isomorphism classes of rank 2 vector bundles over W_k of splitting type j as a set by considering the quotient

$$
M_j(W_k) = \text{Ext}^1_{W_k}(\Theta(j),\Theta(-j))/\sim
$$

where \sim denotes bundle isomorphism.

Such a quotient is rather badly behaved, as expected. Nevertheless, there is a simple way to extract a moduli space out of it that is a quasi-projective variety. This can be done by restricting ourselves to the subset $\mathcal{M}_j(W_k)$ of bundles with splitting type j that are defined over the first formal neighborhood of \mathbb{P}^1 inside W_k (extended trivially to higher neighborhoods). In other words, in $\mathcal{M}_j(W_k)$ only extension classes that vanish to order exactly one on \mathbb{P}^1 (and contain no higher order terms on u_1u_2) are considered.

We formalize this notation:

Notation 2.4. We denote by $\mathcal{M}_j(W_k)$ the subset of $M_j(W_k)$ consisting of those bundles with splitting type j defined by extension classes of order exactly 1 over \mathbb{P}^1.

Köppe described the generic part of such moduli spaces:

Theorem 2.5. [K, Prop. 3.20] For $k = 1, 2, 3$, the generic part of the moduli of algebraic bundles $\mathcal{M}_j(W_k)$ is smooth of dimension $4j - 5$.

Proof. In canonical coordinates elements of $\mathcal{M}_j(W_k)$ are given by transition matrices

$$
\begin{pmatrix}
z^j & p \\ 0 & z^{-j}
\end{pmatrix}, \quad p = p_1(z,z^{-1})u_1 + p_2(z,z^{-1})u_2,
$$

and isomorphism is given by projectivization. Calculating $\text{Ext}^1_{W_k}(\Theta(j),\Theta(-j))$ we show that the expression of p has $4j - 4$ coefficients, and projectivization lowers the dimension by 1. □
Problem 2.6. Describe moduli spaces of algebraic bundles on W_k for $k > 3$.

Using canonical coordinate charts for the Calabi–Yau threefolds $W_k = \text{Tot}(\cO_{\mathbb{P}^1}(-k) \oplus \cO_{\mathbb{P}^1}(k-2))$ as in 1, we can represent an element E_p of $M_j(W_k)$ by a transition matrix:

$$
\begin{pmatrix}
 z^j & p \\
 0 & z^{-j}
\end{pmatrix},
$$

where $p = p(z, z^{-1}, u)$. Those bundles belonging to the generic part are then the ones having p homogeneous of degree 1 on u_1, u_2 (because $u_1 = u_2 = 0$ cut out the \mathbb{P}^1 inside W_k on the U-chart). Then, by upper semicontinuity every element near E_p can also be represented by an element of $\text{Ext}^1(\cO(j), \cO(-j))$. That is, there is a small disk D around p over which the family on bundles near E_p may be represented by

$$
\begin{pmatrix}
 z^j & p_a \\
 0 & z^{-j}
\end{pmatrix},
$$

with $p_a \in \text{Ext}^1(\cO(j), \cO(-j))$.

Therefore, there existence of the maps:

$$
D \to \text{Hom}(D, \cU^j \dot{\times})
$$

$$
\alpha \mapsto (j, \alpha) \equiv \begin{pmatrix}
 z^j & p_a \\
 0 & z^{-j}
\end{pmatrix}
$$

imply that our naively defined quotients satisfy the definition of of coarse moduli space if regarded from the point of view of algebraic geometry.

The behaviour of moduli changes quite a bit iff we consider all holomorphic bundles at once (instead of only algebraic). We have:

Theorem 2.7. W_2 has infinite-dimensional moduli spaces of holomorphic bundles.

Proof. Rank 2. Consider in general, all holomorphic bundles that correspond to elements of $\text{Ext}^1_{W_2}(\cO(j), \cO(-j))/\sim$. Then the result follows from the fact that

$$
\dim \text{Ext}^1_{W_2}(\cO(j), \cO(-j)) = h^1(W_2, \cO(-2j)) = \infty,
$$

by choosing different monomials on u_1, u_2 of order n, these define bundles that split to neighborhood $n - 1$ but do not split on neighborhood n.

Rank 3. For brevity we give just an example. Consider the moduli space that contains the tangent bundle of W_2. The Zariski tangent space of this moduli space at TW_2 is given by the cohomology $H^1(W_2, \text{End}(TW_2))$, which is infinite-dimensional. Indeed, Čech cohomology calculations show that $H^1(W_2, \text{End}(TW_2))$ is generated as a C-vector space by the following cocycles:

$$
(0, \ldots, 0, z^{-i} u_{4i}, 0, \ldots, 0), (0, \ldots, 0, z^{-i} u_{2i}, 0, \ldots, 0) \text{ for } i = 1, 2, 3, \text{ and } 4,
$$

$$
(0, \ldots, 0, z^{-s} u_{3s}, 0, \ldots, 0), (0, \ldots, 0, z^{-s} u_{3i}, 0, \ldots, 0) \text{ for } s \geq 0.
$$

Problem 2.8. Describe moduli spaces of holomorphic bundles on W_k for $k > 1$.

2.3. Moduli of bundles on deformations of W_2.

Notation 2.9. Fix $\tau = \sum t_s u_s^2 \in \mathcal{O}(C)$. Then by $\mathcal{W}_2(\tau)$ we mean the deformation of W_2 given by

$$(\zeta, v_1, v_2) = (z^{-1}, z^2 u_1 + z \tau, u_2).$$

Lemma 2.10. $\text{Pic}(\mathcal{W}_2(\tau)) = \mathbb{Z}$.

Proof. It follows from the exponential sheaf sequence and the facts that $H^1(\mathcal{W}_2(\tau), \mathcal{O}) = H^2(\mathcal{W}_2(\tau), \mathcal{O}) = 0$ and $H^1(\mathcal{W}_2(\tau), \mathbb{Z}) = \mathbb{Z}$. □

Assume $\tau(0) = 0$, then by the moduli $\mathcal{M}_j(\mathcal{W}_2(\tau))$ of rank 2 bundles over the surface $\mathcal{W}_2(\tau)$ with splitting type j we mean:

$$\mathcal{M}_j(\mathcal{W}_2(\tau)) = \text{Ext}^1_{\mathcal{W}_2(\tau)}(\mathcal{O}(j), \mathcal{O}(-j))/\sim,$$

where \sim denotes bundle isomorphism, i.e., $p \sim q$ if the vector bundles defined by $$\begin{bmatrix} z^j & p \\ 0 & z^{-j} \end{bmatrix}$$ and $$\begin{bmatrix} z^j & q \\ 0 & z^{-j} \end{bmatrix}$$ are isomorphic, and recall that (to obtain a moduli space) we are considering only extension classes of first order, that is of the form $p = p_1(z, z^{-1}) u_1 + p_2(z, z^{-1}) u_2$, otherwise considering all order we would have obtained moduli stacks in the sense of [BeG].

Remark 2.11. For special values of τ we have:

- If there exists $u \in \mathbb{C}$ such that $\tau(u) = 0$, then $\mathcal{W}_2(\tau)$ contains a \mathbb{P}^1. The inclusion if given by:

 $$f_u: \mathbb{P}^1 \hookrightarrow \mathcal{W}_2(\tau)$$

 $$z \mapsto (z, 0, u)$$

 $$\zeta \mapsto (\zeta, 0, u)$$

- For $\tau \equiv 1$, we have that $\mathcal{W}_2(\tau) = \mathcal{Z}_2 \times \mathbb{C}$, where \mathcal{Z}_2 is the nontrivial (affine) deformation of \mathbb{Z}_2.

Assumption: in what follows we consider only those deformations $\mathcal{W}_2(\tau)$ that contain a \mathbb{P}^1 as a subvariety (algebraically or analytically). In particular, such deformations are not affine varieties, allowing for the possibility of positive dimensional extension groups.

Lemma 2.12. Elements of $H^1(\mathcal{W}_2(\tau), \mathcal{O}(-j))$ can be expressed in the form

$$\sum_{i=0}^{j-1} \sum_{l=0}^{j-i-1} \sigma_{1i} z^{-l} u_1^i u_2^l.$$

Proof. A 1-cocycle can be expressed in the form

$$\sigma = \sum_{l=-\infty}^{\infty} \sum_{i=0}^{j} \sum_{l=0}^{j-i} \sigma_{1i} z^l u_1^l u_2^i.$$

Then

$$\sigma \sim \sum_{l=-1}^{\infty} \sum_{i=0}^{j} \sum_{l=0}^{j-i} \sigma_{1i} z^l u_1^l u_2^i.$$
because monomial with positive powers of z are coboundaries. Changing coordinates we have $v_2 = u_2$ and $v_1 = z^2 u_1 + z \tau$, hence $u_1 = \xi^2 v_1 - \xi \tau$, so the expression for σ transforms to

$$T \sigma = \sum_{l=1}^{\infty} \sum_{i=0}^{\infty} \sum_{j=0}^{\infty} \sigma_{ilj} z^{l+j} u_1^i u_2^j \xi^2.$$

$$= \sum_{l=1}^{\infty} \sum_{i=0}^{\infty} \sum_{j=0}^{\infty} \sigma_{ilj} \xi^{l-j} (\xi^2 v_1 - \xi \tau)^i v_2^j \xi^2.$$

$$= \sum_{l=1}^{\infty} \sum_{i=0}^{\infty} \sum_{j=0}^{\infty} \sigma_{ilj} \xi^{l-j+i} (\xi v_1 - \tau)^i v_2^j \xi^2.$$

To improve the notation we change l to $-l$ so that we have

$$T \sigma = \sum_{l=1}^{\infty} \sum_{i=0}^{\infty} \sum_{j=0}^{\infty} \sigma_{ilj} \xi^{l-j+i} (\xi v_1 - \tau)^i v_2^j.$$

The holomorphic terms on the V chart are those in which the power of ξ is greater than of equal to 0, so we can remove those terms. The ones that remain satisfy the condition

$$l + i < j$$

for $l \geq 1$ and $i \geq 0$. Therefore, we can rewrite (11) as

$$T \sigma = \sum_{l=0}^{\infty} \sum_{i=0}^{\infty} \sum_{j=0}^{\infty} \sigma_{ilj} \xi^{l-j+i} (\xi v_1 - \tau)^i v_2^j.$$

By changing back to the U chart we have

$$\sigma \sim \sum_{l=0}^{\infty} \sum_{i=0}^{\infty} \sum_{j=0}^{\infty} \sigma_{ilj} z^{-l} u_1^i u_2^j.$$

Lemma 2.13. [Har, III.6.3.(c), III.6.7] There is an isomorphism between $\text{Ext}^{1}_{\mathcal{W}_2(\tau)}(\mathcal{O}(j_2), \mathcal{O}(j_1))$ and $H^1(\mathcal{W}_2(\tau), \mathcal{O}(j_1 - j_2))$ given by:

$$\text{Ext}^{1}_{\mathcal{W}_2(\tau)}(\mathcal{O}(j_2), \mathcal{O}(j_1)) \to H^1(\mathcal{W}_2(\tau), \mathcal{O}(j_1 - j_2))$$

$$\begin{pmatrix} z^{-j_1} & p \\ 0 & z^{-j_2} \end{pmatrix} \to \begin{pmatrix} z^j p \end{pmatrix}.$$

Corollary 2.14. Elements of $\text{Ext}^{1}_{\mathcal{W}_2(\tau)}(\mathcal{O}(j), \mathcal{O}(-j))$ can be expressed in the form

$$\sum_{s=0}^{\infty} \sum_{l=0}^{\infty} \sum_{i=0}^{\infty} \sigma_{ilj} z^{-l+2} u_1^i u_2^j.$$

Proof. It follows from Proposition 2.12 and Lemma 2.13.

Proposition 2.15. Let $\mathcal{W}_2(\tau)$ be a deformation of \mathcal{W}_2 that contains a \mathbb{P}^1 an a subvariety. Then every algebraic vector bundle on $\mathcal{W}_2(\tau)$ is filtrable.

Proof. The transition matrix for the cotangent bundle of $\mathcal{W}_2(\tau)$ is given by:

$$\begin{pmatrix} -z^2 & 0 & 0 \\ 2z u_1 + \tau(u_2) & z^{-2} & -z^{-1} \tau'(u_2) \\ 0 & 0 & 1 \end{pmatrix}$$

We then have that the conormal bundle $\mathcal{N}^*_{\mathbb{P}^1, \mathcal{W}_2(\tau)} = \mathcal{O}_{\mathbb{P}^1}(-2) \oplus \mathcal{O}_{\mathbb{P}^1}$. And we use the same proof as [K, Thm. 3.11, Corollary 3.12].
Example 2.16. An application of lemmas 2.12 and 2.13 shows that \(\text{Ext}^1_{\mathcal{W}_2(1)}(\mathcal{O}(2), \mathcal{O}(-2)) \) is generated by cocycles of the form \(z^{-1}, u_1, u_2, zu_1, u_2, z^{-1}u_1, u_2 \).

Lemma 2.17. Cocycles of the form \(z^{-1}u_1u_2 \) are zero in \(\text{Ext}^1_{\mathcal{W}_2(1)}(\mathcal{O}(2), \mathcal{O}(-2)) \) for any \(i, j \).

Proof. The equivalent cocycle in \(H^1(\mathcal{W}_2, \mathcal{O}(2)) \) is \(zu_1u_2 \) which is zero in cohomology by lemma 2.12.

Lemma 2.18. Let \(E \) be an algebraic rank 2 bundle over \(\mathcal{W}_2(\tau) \) with splitting type 2. Let \(E^{(1)} \) be the restriction of \(E \) to the first formal neighborhood of \(\mathbb{P}^1 \) in \(\mathcal{W}_2(\tau) \). Then \(E^{(1)} \) is generated as an extension of \(\mathcal{O}(2) \) by \(\mathcal{O}(-2) \) by a linear combination of the cocycles \(u_2, zu_1 \) and \(zu_2 \).

Proof. Using example 2.16 we obtain generators \(z^{-1}, u_1, u_2, zu_1 \), but then lemma 2.17 gives us that \(z^{-1} \) is null-cohomologous, and we conclude that \(E^{(1)} \) is generated by a linear combination of the cocycles \(u_1, u_2, zu_1 \).

Theorem 2.19. Some deformations of \(\mathcal{W}_2 \) have the effect of decreasing the dimension of \(\mathcal{M}_2(W_2) \) while keeping it positive.

Proof. In this proof we will denote by \(\mathcal{W}_2 \) the deformation given by \(\tau(u_2) = u_2 \). We will show that the deformed space \(\mathcal{M}_2(\mathcal{W}_2(\tau)) \) is strictly smaller than the original \(\mathcal{M}_2(W_2) \).

We will use the isomorphism

\[
\begin{bmatrix}
 z^j & p \\
 0 & z^{-j}
\end{bmatrix} \sim \begin{bmatrix}
 1 & \beta \\
 0 & 1
\end{bmatrix} \begin{bmatrix}
 z^j & p \\
 0 & z^{-j}
\end{bmatrix} \begin{bmatrix}
 1 & b \\
 0 & 1
\end{bmatrix} = \begin{bmatrix}
 z^j & p + z^j b + z^{-j} \beta \\
 0 & z^{-j}
\end{bmatrix},
\]

where \(b \) is a holomorphic function on \(U \) and \(\beta \) is a holomorphic function on \(V \). It implies that the cocycles \(p \) and \(p + z^j b + z^{-j} \beta \) define isomorphic vector bundles.

The space \(\text{Ext}^1_{\mathcal{W}_2(1)}(\mathcal{O}(2), \mathcal{O}(-2)) \) is generated by the non-zero cocycles \(zu_1, z^{-1}u_2, u_2, zu_2 \). The space \(\text{Ext}^1_{\mathcal{W}_2(1)}(\mathcal{O}(2), \mathcal{O}(-2)) \) of a deformation \(\mathcal{W}_2(\tau) \) is generated by the same cocycles, but in these cases we will find out that there are further relations among them.

In the case of \(\mathcal{W}_2 \), by choosing \(b = 0 \) and \(\beta = -v_1 = -z^2 u_1 - zu_2 \) we have that \(u_1 \) and \(z^{-1}u_2 \) define isomorphic bundles, i.e.,

\[
\begin{bmatrix}
 z^2 & z^{-1}u_2 \\
 0 & z^{-2}
\end{bmatrix} \sim \begin{bmatrix}
 z^2 & u_1 \\
 0 & z^{-2}
\end{bmatrix},
\]

but

\[
\begin{bmatrix}
 z^2 & 0 \\
 0 & z^{-2}
\end{bmatrix} \sim \begin{bmatrix}
 1 & 0 \\
 0 & z^{-2}
\end{bmatrix} \begin{bmatrix}
 z^2 & u_1 \\
 0 & z^{-2}
\end{bmatrix} \begin{bmatrix}
 1 & -u_1 \\
 0 & 0
\end{bmatrix} = \begin{bmatrix}
 z^2 & u_1 \\
 0 & z^{-2}
\end{bmatrix},
\]

i.e., \(u_1 \) defines the split bundle.

We conclude that the dimension of \(\mathcal{M}_2(\mathcal{W}_2(\tau)) \) is smaller than the dimension of \(\mathcal{M}_2(W_2) \). In fact, the corresponding bundles on \(\mathcal{W}_2 \) are generated by the set of 3 extension classes \(zu_1, u_2, zu_2 \), and these are distinct as shown by lemma 2.18.

Acknowledgements

We completed this paper during a gathering of the Research and Pairs Group on Deformation Theory supported by the Centro Internazionale per la Ricerca Matematica, of Fondazione Bruno Kessler, in Povo, Trento. We are very thankful to CIRM for the hospitality and wonderful working conditions. Our special thanks to the director Marco Andreatta.
Ballico was partially supported by MIUR and GNSAGA of INdAM (Italy). Gasparim was partially supported by a Simons Associateship from the Abdus Salam International Centre for Theoretical Physics, Italy and the Vicerrectoría de Investigación y Desarrollo Tecnológico de la Universidad Católica del Norte (Chile). Suzuki acknowledges support from Beca Doctorado Nacional CONICYT – Folio 21160257.

REFERENCES

[ABCG] Amilburu, C.C., Barmeier, S., Callander, B., Gasparim, E., Isomorphisms of moduli spaces, Matemática Contemporânea, 41 (2012) 1–16.

[BV] Balaji, V., Vishwanath, P.A., On the deformations of certain moduli spaces of vector bundles, American Journal of Mathematics, 115 no. 2 (1993) 279–303.

[Be] Bershadsky, M. Kodaira–Spencer theory of gravity, Quantum Field Theory and String Theory, NATO ASI Series 328 (1995) 23–38.

[Ba] Barmeier, S. Moduli of vector bundles on non-compact surfaces and their deformations, PhD. Thesis, Westfälischen Wilhelms-Universität Münster (2018).

[BBGGS] Ballico, E., Barmeier, S., Gasparim, E., Grama, L., San Martin, L.A.B., A Lie theoretical Construction of a Landau-Ginzburg model without projective mirrors, Manuscripta Math. 158 no. 1-2 (2019) 85–101.

[Ben-Bassat, O., Gasparim, E., Moduli stacks of bundles on local surfaces, in R. Castano-Bernard, E Catanese, M. Kontsevich, T. Pantev, Y. Soibelman & I. Zharkov (eds.) Homological Mirror Symmetry and Tropical Geometry, Lecture Notes of the Unione Matematica Italiana 15 (2014) 1–32.

[BG1] Barmeier, S., Gasparim, E., Classical deformations of local surfaces and their moduli spaces of instantons, J. Pure and Applied Algebra, 223 no. 6 (2019) 2543–2561.

[BG2] Barmeier, S., Gasparim, E., Quantization of local surfaces and rebel instantons, arXiv:1904.09455.

[BaG] Barmeier, S., Grama, L., San Martin, L. A. B., Symplectic Lefschetz fibrations on adjoint orbits, Forum Math. 28 no. 5, 967–980 (2016).

[GG] Gross, M., Siebert, B. Affine manifolds, log structures, and mirror symmetry, Turkish J. Math. 27 (2003), 33–60.

[G] Hartshorne, R., Algebraic Geometry, Springer-Verlag, New York, Graduate Texts in Mathematics 52 (1977).

[Ja] Jiménez, J., Contraction of nonsingular curves, Duke Math. J. 65 no. 2 (1992) 313–332.

[Ko] Kodaira, K., Complex manifolds and deformations of complex structures, Grundlehren der mathematischen Wissenschaften 283, Berlin: Springer (1986).

[K] Köppe, T., Moduli of bundles on local surfaces and threefolds, Ph. D. Thesis, The University of Edinburgh (2010).

[LZ] Liu, K., Zhuang, X., Deformations of complex orbifolds and the period maps, Sci. China Math. (2018) 1–18.

[M] Manetti, M., Lectures on deformations of complex manifolds (deformations from differential graded viewpoint), Rend. Mat. Appl. 24 no. 7 (2004) 1-183.
Rubilar, F. Deformaciones de estructuras complejas de 3-variedades Calabi-Yau, Tesis de Magister, Universidad Católica del Norte, Chile (2017).

Seshadri, C. S., Theory of Moduli, Proceedings of Symposia in Pure Mathematics, Vol. XXIX (Algebraic Geometry - Arcata 1974), pp. 263-304.