Study on Mechanical Properties of Expand Polystyrene

Zhongkun Zhang1, *, Denghua Zuo1, Wentao Shang1, Linlin Wang1, Jianbo Zheng1, Hui Ma1, Lu Chen1, Baohuai Yang2, Yusheng Qin3, Changming Wang4

1College of Civil Engineering, Binzhou University, Binzhou, China
2Nanjing Kentop Civil Engineering Technology Co., Ltd., Nanjing, China
3Beijing Construction Engineering Group Bohai Construction Co., Ltd., Beijing, China
4Beijing Wangxing Building Group, Beijing, China

Email address: blueskylakegrass@sina.com (Zhongkun Zhang)
*Corresponding author

To cite this article:
Zhongkun Zhang, Denghua Zuo, Wentao Shang, Linlin Wang, Jianbo Zheng, Hui Ma, Lu Chen, Baohuai Yang, Yusheng Qin, Changming Wang. Study on Mechanical Properties of Expand Polystyrene. American Journal of Civil Engineering. Vol. 6, No. 1, 2018, pp. 11-15. doi: 10.11648/j.ajce.20180601.13

Received: October 27, 2017; Accepted: November 6, 2017; Published: December 6, 2017

Abstract: Expand Polystyrene is simply written as EPS, and it is newly used as a kind of embankment filler. Based on abroad studies to EPS mechanical properties, a further research on EPS has been done in this paper. The triaxial test is used for the study. Duncan-Chang parameters of EPS are studied in the test. EPS block bearing test is studied by means of finite element method, and the Duncan-Chang parameters obtained from EPS triaxial test are proved to be right. The application value and the application extent are pointed out in conclusion, as is of valuable reference to real geotechnical engineering projects.

Keywords: EPS, Traxial Test, Duncan-Chang Parameters, Finite Element Method

1. Introduction

EPS is the simplified writing of “Expand Polystyrene”. Different densities and block sizes of this material can be produced according to different demands. Its common density in embankment engineering project is 0.2 KN/m3. This new kind of chemical production is now widely used abroad (Germany, Norway, Japan, Sweden etc) in the practice of geotechnical engineering, especially in the embankment engineering project in soft ground. Geotechnical engineers in Germany and Japan have done some research for EPS, on the points of its physical, chemical and mechanical properties. In the aspects of its physical and chemical properties, special attentions have been paid to the physical and chemical features of EPS itself and its proper water soil media environment. In the mechanical aspects, studies have been done on the compressive deformation. Figure 1 shows the triaxial test results done by Japanese geotechnical researchers on EPS (density $\rho=0.2$ KN/m3). Based on EPS engineering practice and its present status of research, further researches on EPS (density $\rho=0.2$ KN/m3) have been done by means of triaxial test and big block bearing test respectively, on the purpose of finding its interior mechanical properties.

![Figure 1. EPS Triaxial Test Results in Japan.](image-url)
2. EPS Triaxial Test Results Analysis

2.1. Relation Between Stress ~ Strain Under Different Confining Pressures

In this test, the confining pressures of $\sigma_3 = 0, 10, 30, 50, 100, 150, 200, 250, 300$ kPa are put on different samples respectively. The relationship between its deviation stress $q = \sigma_1 - \sigma_3$ and its axial strain ε_a, and the relationship between its volume strain ε_v and its axial strain ε_a are shown in Figure 2.

The curves in Figure 2 shows that during the process of the increase of the confining pressure σ_3 from 0 kPa to 100 kPa, the damage stress $(\sigma_1 - \sigma_3)_d$, the derivation stress $(\sigma_1 - \sigma_3)_f$ and the lateral strain ε_t are shown in Figure 2. The process of the increase of the confining pressure σ_3 from 100 kPa to 300 kPa, the derivation stress $(\sigma_1 - \sigma_3)_f$ reduces to the damage of EPS sample structure increases, which conforms to results of the triaxial test. The process of the increase of the confining pressure σ_3 from 0 to 100 kPa can be regarded as the process of structure damage of EPS. The process of the increase of σ_3 from 100 kPa to more can be regarded as the completion of structure damage, and EPS has been compressed completely, when the completely compressed EPS is compressed again, it shows the strength increasing. Under low confining pressure condition, when $\sigma_3 = 0~100$ kPa, the test results are similar to that of Japan.

Figure 2. Relationship: between $q = \sigma_1 - \sigma_3$ and σ_3; between ε_v and σ_3.

2.2. Relation Between Volume Strain ε_v and Axial Strain ε_a

As is shown in Figure 2, when axial strain $\varepsilon_a < 5\%$, the relation between ε_v and ε_a shows that the volume strain approaches axial strain, that means lateral strain is small, or we can say the Poisson’s ratio of EPS is small. When $\varepsilon_a > 5\%$ and $\sigma_3 = 0$, the straight line deviates to curve. The reason is the lack of restriction of lateral pressure loads for lateral deformation. Although the other straight lines curved more or less, the former straight line relationship is still maintained. The above characteristics are quite different from the mechanical properties of soil.

3. Determination of Duncan-Chang Parameters of EPS

3.1. Brief Introduction to Duncan-Chang Model

Duncan-Chang Model was raised by James M. Duncan and Chin-Yung Chang in 1970. It is nonlinear—elasticity model for soil and widely used in Nonlinear Analysis of Stress and Strain in Soils. Based on the curve of strain–stress relationship from normal triaxial test, in the model, the curve of $(\sigma_1 - \sigma_3)$–ε_a relationship got from soil normal triaxial test is regarded as a hyperbola, and the elastic parameters E and v are substituted by tangent line elastic module E_t and tangent line Poisson’s ratio v_t. The important formulas of Duncan-Chang model are as follows:

$$E_t = \left[1 - R_d \left(1 - \sin \phi \right) \left(\sigma_1 - \sigma_3\right) \right]^{2} \frac{K}{\mu} \left(\frac{\sigma_1}{\sigma_3} \right)^{n}$$

$$v_t = \frac{G - F \log \left(\frac{\sigma_3}{\sigma_1}\right)}{1 - A}$$

$$A = D \left(\sigma_1 - \sigma_3\right) \left[1 - R_d \left(1 - \sin \phi \right) \left(\sigma_1 - \sigma_3\right) \right]$$

In the above formulas, there are eight parameters in Duncan-Chang model: C, ϕ, K, n, R_d, G, F, D, and they are measured by traxial test.

Where:

$E = $ tangent modulus as a function of confining stress σ_3

$K = $ loading modulus number

$\sigma_3 =$ confining stress

$n =$ exponent for defining the influence of the confining pressure on modulus

3.2. C and ϕ Values

As it is shown in Figure 2, EPS traxial test results illustrate that when $\sigma_3 = 0~100$ kPa, $(\sigma_1 - \sigma_3) – \varepsilon_a$ relationship curves are hyperbolas. Thus, when the surrounding pressure σ_3 is less than 100 kPa ($\sigma_3 \leq 100$ kPa), Dunce model is suitable for EPS. Duncan-Chang parameters of EPS can be determined by traxial test. The Duncan-Chang parameters of EPS discussed below are only under the condition of low σ_3 pressures.

In Figure 3, the strength envelope line of EPS between point A and point B is a straight line, at which the confining pressure $\sigma_3 = 0~100$ KPa and the cohesive force $C = 122$ KPa, and the friction angle $\phi = -23^\circ$. Because the damaged degree of EPS becomes more and more heavier with the increasing of confining pressure $\sigma_3 = 0~100$ KPa, so the friction angle is of minus value, as differs from that of soil. The strength envelop line between point B and point D is a curve, at which the confining pressure σ_3 increases from 100 KPa, and the compaction density of EPS getting greater and greater, so the
strength envelop curve appears. The above phenomenon can be explained as follows: AB straight line is the damage process of EPS structure; BD curve line is the repress stage of EPS after enough EPS compaction degree has been gotten. The \(c, \phi \) value to the AB envelop line are suitable for \(\sigma_3 \leq 100\text{kPa} \).

\[
\text{Figure 3. Limiting Mohr's Circle and Strength Envelope.}
\]

3.3. K and n Values

According to the \(\frac{E_a}{\sigma_1 - \sigma_3} \sim \varepsilon_a \) straight line relationship figures under different surrounding pressures, the initial elastic modulus \(E_i \) corresponding to different surrounding pressures can be determined. The relationship of \(\ln \frac{E_i}{P_a} \sim \ln \frac{\sigma_3 + P_a}{P_a} \) is shown in Figure 4. The figure shows A→B is a straight line. From the straight line of AB, \(\frac{\sigma_3 + P_a}{P_a} \leq 2.0 \), i.e. \(\sigma_3 \leq P_a=100\text{kPa} \), the K and n value can be fixed, \(K=37.87 \), \(n=-0.21 \). The values of K and n are suitable to \(\sigma_3 \leq 100\text{kPa} \).

\[
\text{Figure 4. Relationship Of } \ln \left(\frac{E_i}{P_a} \right) \text{ and } \ln \left(\frac{\sigma_3 + P_a}{P_a} \right).
\]

3.4. G and F Values

According to the relationship line of \(\frac{-\varepsilon_a}{\varepsilon_a} \sim -\varepsilon_a \). Under different surrounding pressures, the initial tangent line Poisson’s ratio \(\nu \sim \ln \left(\frac{\sigma_3 + P_a}{P_a} \right) \) in Figure 5, \(\frac{\sigma_3 + P_a}{P_a} \leq 2 \), i.e. \(\sigma_3 \leq P_a=100\text{kPa} \), G and F value can be calculated, \(G=0.095 \), \(F=0.00 \). The G and F value is suitable for \(\sigma_3 \leq 100\text{kPa} \).

\[
\text{Figure 5. Relationship Between } \nu \text{ and } \ln \left(\frac{\sigma_3 + P_a}{P_a} \right).
\]

3.5. Rf and D Values

The value of Rf and D are determined from the average values of Rf and D under different surrounding pressures. The formula of Rf indicator is: \(Rf = \frac{\left(\sigma_1 - \sigma_3 \right)_f}{\left(\sigma_1 - \sigma_3 \right)_n} \), in which \(\left(\sigma_1 - \sigma_3 \right)_n \) indicates the value of \(\left(\sigma_1 - \sigma_3 \right) \) when \(\varepsilon_a \to \infty \), i.e., the gradually increased value of \(\left(\sigma_1 - \sigma_3 \right) \) in the \(\left(\sigma_1 - \sigma_3 \right) \sim \varepsilon_a \) hyperbola. In the straight line of \(\frac{\varepsilon_a}{\sigma_1 - \sigma_3} \sim -\varepsilon_a \) relationship, the physical meaning of the slope
b in the straight line is the reciprocal of \((\sigma_1 - \sigma_3)\) in hyperbola. So \(R_f = b(\sigma_1 - \sigma_3)\), the \(R_f\) value in different surrounding pressures is averaged to be: \(R_f = 0.85\).

In the straight line relationship of \(-\frac{\varepsilon}{\varepsilon_0} = -\varepsilon_r\), \(D\) is the line slope. In the hyperbola of \(\varepsilon_a - \varepsilon_r\), \(D\) is the reciprocal of gradually advancing value of \(\varepsilon_a\), \(D = \left(\frac{1}{\varepsilon_a}\right)_{\varepsilon_a \to \infty}\). The value of \(D\) indicates the shape of the hyperbola of \(\varepsilon_a - \varepsilon_r\). The curving degree increases with the increasing of \(D\) value. \(D\) values are different in different hyperbolas, but the differences are not great, they can be averaged as \(D = -0.01\).

The \(F\) and \(D\) values are suitable to the confining pressure \(\sigma_3 \leq 100kP_a\).

4. Block bearing test to EPS and Finite Element Analysis

4.1. Introduction to the Test

The size of the tested EPS block is: length \(\times\) width \(\times\) height=3\(\times\)2\(\times\)1.8m\(^3\), shown in Figure 7. The EPS block based in concrete ground, and nine pressure boxes are fixed on its one side. At the two opposite sides, two concrete retaining walls are formed. The EPS block end faces, the pressure boxes and the concrete retaining walls are combined tightly. In the test, the loads are put in the top surface of the EPS block, and the pressure boxes indicate the pressure in the interface of EPS block side and retaining wall. There are four stages of vertical load to the test. In the four loading stages, the vertical pressures of the EPS block top surface are as follows: 2kPa, 22kPa, 44kPa and 50.33kPa.

4.2. Finite Analysis to the EPS Block Bearing Test

The test can be simplified as a plane strain problem for finite analysis. According to the symmetry, only half of the middle section is needed for the finite analysis. Rectangle elements are used in the finite element mesh. There are pressure boxes at the node 33, node 77 and node 121, shown in Figure 7.
Duncan model is used in the finite element analysis, all the Duncan parameters are the results discussed above. The horizontal stress σ_x on the interference of EPS block and retaining wall can be calculated values of σ_x at the node 33, 77 and 121 for contrast.

Table 1. The Contrast of Calculated Value and Measured Value.
load
node
σ_x, calculated value
σ_x, measured value

In table 1, the results of finite elements analysis are very close to the measured values, as shows Duncan-Chang can be used for the nonlinear elastic analysis of EPS block. The Duncan parameters are obtained from the traxial test under low confining pressure ($\sigma_x \leq 100\sigma_x^0$). The geotechnical embankment engineering projects are of low confining pressure.

5. Conclusion

Through the traxial test research on EPS samples and the finite elements analysis on ESP block bearing test, the conclusions can be drawn as follows:

The relationship curve of ($\sigma_x - \sigma_3$) ~ e_y shows the structure strength of EPS decreases with the increasing of confining pressure σ_3 (under the condition of $\sigma_x \leq 100\sigma_x^0$). It shows that EPS blocks used in geotechnical embankment should under low confining pressure.

Under the condition of low confining pressure σ_3, the Poisson’s ratio is small ($\nu < 0.1$). The volume density of EPS is small ($\rho = 0.2kN/m^3$). EPS is of valuable reference in the shallow soft ground embankment. When EPS blocks are used as fillers in road embankment, the upper load on EPS block should be small ($\sigma_x - \sigma_3 < 50kPa$), the traxial strain is small ($e_y < 3\%$). Not only the compressed vertical deformation of EPS blocks is small, but also the settlement of roadbed is small, so the total settlement of road surface can be decreased.

The relationship of $\sigma_1 - \sigma_3$ ~ e_y obtained from the traxial test of EPS shows: when $\sigma_x < 150kPa$, it is a hyperbola, and Duncan-Chang model is suitable, and Duncan parameters exist. Through the EPS block bearing test, the measured results are very close to the results calculated, as indicates that the Duncan-Chang parameters obtained from the traxial tests are confirmed.

References

[1] Zhongkun Zhang, Studies on Lightweight Embankment and Composite Foundation of Highway, Doctoral Dissertation of Hohai University, 1998.4.

[2] Byeung Sik Chun, Development of Hyperbolic Constitutive Model for Expanded Polystyrene (EPS) Geofoam under Triaxial Compression Tests, Geotextiles and Geomembranes 22(2004)223-237.

[3] Weihua Fan, The Characters of Expanded Polystyrene (EPS) Foam in Construction, Chinese Journal of Highway and Communication, 2007(2/3):107-109.

[4] Technical Report of Construction Using Expanded Polystyrene, EPS Construction Method Development Organization, Tokyo, 1991.

[5] Shuncun Wang, Light Filling Material- Expanded Polystyrene, Chinese Journal of Highway, 1989, (9): 39-41.

[6] Thomas A. Coleman, Polystyrene Foam Is Competitive, Lightweight Fill, Civil Engineering-ASCE, FEB., 1974.

[7] A. Sorlic, Use of Expanded Polystyrene in Road Congress, Vienna, 1979.

[8] Expanded Polystyrene Used in Road Embankment, Norwegian Road Research Laboratory, 1992.

[9] Byeung Sik Chun, Hae-Sik, Myung Sagong, Kyungmin Kim, Development of hyperbolic constitutive model for expanded polystyrene (EPS) geofoam under triaxial compression tests, Geotextile and Geomembranes 22(2004)223-237.

[10] Kulhawy, F. H., Duncan, J. M., 1972. Stresses and movements in Oroville dam. Journal of the Soil Mechanics and Foundation Division, ASCE 98(SM1), 115-143.

[11] Rui Chen, Large Scale Shaking Table Test Study on EPS Light Mixed Soil Retaining Wall, Master Thesis of Nanjing University of Technology, 2015.

[12] Songlin Xu, Chunyan Fang, Weida Zhou, Elastic Wave Propagation in EPS Concrete under Loadings, Journal of Vibration and Shock, Vol. 35-No. 7-2016.

[13] Fengling Ji, Qiong Li, Study on Isotropic Compression Deformation Characteristics of Dredged Silt EPS Particles Lightweight soil, Environmental Science and Technology, s1, 16-19, 2016.