Application of Septic B-Spline Collocation Method for Solving the Coupled-BBM System

Raslan KR1, EL-Danaf TS2 and Ali KK*2

1Mathematics Department, Faculty of Science, Al-Azhar University, Nasr-City, Cairo, Egypt
2Mathematics Department, Faculty of Science, Menoufia University, Shebein El-Koom, Egypt

Abstract
In the present paper, a numerical method is proposed for the numerical solution of a coupled-BBM system with appropriate initial and boundary conditions by using collocation method with septic B-spline on the uniform mesh points. The method is shown to be unconditionally stable using von-Neumann technique. To test accuracy the error norms \(L_{\infty}, L_{2}\) are computed. Furthermore, interaction of two and three solitary waves are used to discuss the effect of the behavior of the solitary waves after the interaction. These results show that the technique introduced here is easy to apply. We make linearization for the nonlinear term.

Keywords: Collocation method; Septic B-Splines method; Coupled-BBM system

Introduction
In this paper, we consider the Coupled-BBM system, which belongs to the class of Boussinesq systems, modeling two-way propagation of long waves of small amplitude on the surface of water in a channel. The system is a good candidate for modeling long waves of small to moderate amplitude. The Coupled-BBM system is given by Bona and Chen [1],

\[
\begin{align*}
 v_t + u_x + (vu)_x - \frac{1}{6}v_{xxx} &= 0, \\
 u_t + v_x + uu_x - \frac{1}{6}u_{xxx} &= 0,
\end{align*}
\]

(1)

(2)

Where subscripts \(x\) and \(t\) denote differentiation \(x\) distance and \(t\) time, is considered, \(v(x,t)\) is a dimensionless deviation of the water surface from its undisturbed position and \(u(x,t)\) is the dimensionless horizontal velocity above the bottom of the channel.

Boundary conditions

\[
\begin{align*}
 u(a,t) &= \alpha_1, & u(b,t) &= \alpha_2, \\
 v(a,t) &= \beta_1, & v(b,t) &= \beta_2, & 0 \leq t \leq T. \\
 u_x(a,t) &= 0, & u_x(b,t) &= 0, & 0 \leq t \leq T. \\
 v_x(a,t) &= 0, & v_x(b,t) &= 0, & 0 \leq t \leq T. \\
\end{align*}
\]

(3)

And initial conditions.

\[
\begin{align*}
 u(x,0) &= f(x), \\
 v(x,0) &= g(x), & a \leq x \leq b.
\end{align*}
\]

(4)

One of the advantages that equation (1) has over alternative Boussinesq-type systems is the easiness with which it may be integrated numerically [2]. Furthermore, it was proved in [2,3] that the initial value problem either for \(x \in \mathbb{R}\) or with boundary conditions \((x \in [a,b])\) for (1) is well posed in certain natural function classes. The initial-boundary value problem of the form (1) posed on a bounded smooth plane domain with homogenous Dirichlet or Neumann or reflective (mixed) boundary conditions which is locally well-posed [4]. The existence and uniqueness of the system have been proved in Bona et al. [3]. They investigated the solution of the system as integral equation, while Chen [5] in his article established the existence of solitary waves for several Boussinesq types, including the Coupled-BBM system. Various numerical techniques including the finite element method have been used for the solution of Bona-Smith system of Boussinesq type in Antonopoulos et al. [6]. SS Behzadi and A Yildirim, using Quintic B-Spline Collocation Method for Solving the Coupled-BBM System [7]. ES Al-Rawi and MAM Sallal, using finite element method to find the Numerical solution of Coupled-BBM system [8]. Chen fined the exact traveling-wave solutions to bidirectional wave equations [9]. The numerical solutions of coupled nonlinear systems are very important in applied science, for example, the hirota-satsuma coupled KDV equation which admits soliton solution and it has many applications in communication and optical fibers; this system has been discussed numerically by Raslan et al. finite element methods [10]. Also, the Hirota equation has been solving by Raslan et al. using finite element methods [11]. A finite element algorithm based on the collocation method with trial functions taken as septic B-spline functions over the elements will be constructed. The septic B-spline basis together with finite element methods are shown to provide very accurate solutions in solving some partial differential equations and have been used before by several authors. In this article we are going to derive a numerical solution of the coupled BBM-system. The brief outline of this paper is as follows. In Section 2, septic B-spline collocation scheme is explained. In Sections 3 and 4, the method is described and applied to the coupled BBM-system. In Section 5, stability of the method is discussed. In Section 6, numerical examples are included to establish the applicability and accuracy of the proposed method computationally. Conclusion is given in Section 7 that briefly summarizes the numerical outcomes.

*Corresponding author: Ali KK, Mathematics Department, Faculty of Science, Al-Azhar University, Nasr-City, Cairo, Egypt, Tel: 002-01220892363; E-mail: khalidkaram2012@yahoo.com

Received October 10, 2016; Accepted November 07, 2016; Published November 15, 2016

Citation: Raslan KR, EL-Danaf TS, Ali KK (2016) Application of Septic B-Spline Collocation Method for Solving the Coupled-BBM System. J Appl Comput Math 5: 327. doi: 10.4172/2168-9679.1000327

Copyright: © 2016 Raslan KR, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution and reproduction in any medium, provided the original author and source are credited.
Septic B-spline Functions

To construct numerical solution, consider nodal points \((x_j, t_j)\) defined in the region \([a, b] \times [0, T]\) where
\[
a = x_0 < x_1 < \ldots < x_N = b, \quad h = x_{j+1} - x_j = \frac{b-a}{N}, \quad j = 0, 1, \ldots, N.
\]
0 = t_0 < t_1 < \ldots < t_{N} < T, \quad f_{t_{j+1}} = \frac{u_{t} - u_{t_{j}}}{\Delta t}, \quad t_{n} = n\Delta t, \quad n = 0, 1, \ldots, N.

The septic B-spline basis functions at knots are given by:
\[
B_j(x) = \begin{cases}
1 & x_{j-1} \leq x < x_j, \\
\frac{h^7}{24} & x_j \leq x < x_{j+1}, \\
\frac{-h^7}{24} & x_{j-1} \geq x \geq x_j, \\
0 & \text{otherwise},
\end{cases}
\]
(5)

Using septic B-spline basis function (5) the values of \(B_j(x)\) and its derivatives at the knots points can be calculated, which is tabulated in Table 1.

Solution of Coupled-BBM System

To apply the proposed method, we rewrite (1) and (2) as
\[
\begin{align*}
\frac{\partial u(x,t)}{\partial t} + \frac{\partial v(x,t)}{\partial t} &= \frac{1}{6} \left(\frac{\partial^2 v(x,t)}{\partial x^2} \right), \\
\frac{\partial u(x,t)}{\partial t} + \frac{\partial v(x,t)}{\partial t} &= \frac{1}{6} \left(\frac{\partial^2 u(x,t)}{\partial x^2} \right),
\end{align*}
\]
we take the approximations \(u(x,t) = U_j^t\) and \(v(x,t) = V_j^t\), then from famous Crank-Nicolson scheme and forward finite difference approximation for the derivative \(U(t)\), we get
\[
\begin{align*}
\frac{U_j^{t+1} - U_j^t}{\Delta t} &= \frac{1}{2} \left(\frac{U_j^t + U_j^{t+1}}{2} \right), \\
\frac{V_j^{t+1} - V_j^t}{\Delta t} &= \frac{1}{2} \left(\frac{V_j^t + V_j^{t+1}}{2} \right),
\end{align*}
\]
(6)

Where \(k\Delta t\) is the time step (Table 1).

In the Crank-Nicolson scheme, the time stepping process is half explicit and half implicit. So the method is better than simple finite difference method.

The nonlinear terms in Eqs. (6) and (7) is linearized using the form given by Rubin and Graves [13] as: we take linearization of the nonlinear term as follows
\[
\begin{align*}
(U_j V_j V_j) &= U_j V_j V_j - U_j V_j V_j, \\
(U_j V_j V_j) &= U_j V_j V_j - U_j V_j V_j, \\
(U_j V_j V_j) &= U_j V_j V_j - U_j V_j V_j.
\end{align*}
\]
(8)

Expressing \(u(x,t)\) and \(v(x,t)\) by using septic B-spline functions \(B_j(x)\) and the time dependent parameters \(c_1(t)\) and \(\delta(t)\), for \(u(x,t)\) and \(v(x,t)\) respectively, the approximate solution can be written as:
\[
\begin{align*}
U_N(x,t) &= \sum_{j=3}^{N+3} c_j(t) B_j(x), \\
V_N(x,t) &= \sum_{j=3}^{N+3} \delta_j(t) B_j(x),
\end{align*}
\]
(9)

Using approximate function (9) and septic B-spline functions (5), the approximate values \(U(x), V(x)\) and their derivatives up to second order are determined in terms of the time parameters \(c(t)\) and \(\delta(t)\), respectively, as
\[
U_j = U(t_j) = c_{1j}, U_{t_j} = c_{2j}, U_{tt_j} = c_{3j}, \quad U_j^t = c_{1j} + c_{2j} + c_{3j}, \quad U_j^{tt} = c_{1j} + 2c_{2j} + c_{3j},
\]
(10)

On substituting the approximate solution for \(U, V\) and its derivatives from Eq. (10) at the knots in Eqs. (6) and (7) yields the following difference equation with the variables \(c(t)\) and \(\delta(t)\),
\[
\begin{align*}
A_1 c_{1j} + A_2 c_{2j} + A_3 c_{3j} &= A_1 c_{1j} + A_2 c_{2j} + A_3 c_{3j}, \\
A_4 c_{1j} + A_5 c_{2j} + A_6 c_{3j} &= A_4 c_{1j} + A_5 c_{2j} + A_6 c_{3j}, \\
B_1 c_{1j} + B_2 c_{2j} + B_3 c_{3j} &= B_1 c_{1j} + B_2 c_{2j} + B_3 c_{3j}, \\
B_4 c_{1j} + B_5 c_{2j} + B_6 c_{3j} &= B_4 c_{1j} + B_5 c_{2j} + B_6 c_{3j},
\end{align*}
\]
(11)

where
\[
\begin{align*}
A_1 &= 1, \quad A_2 = 1, \quad A_3 = 1, \\
A_4 &= 7\frac{\Delta t}{2 h}, \quad A_5 = 1, \quad A_6 = 1, \\
B_1 &= 1, \quad B_2 = 1, \quad B_3 = 1, \\
B_4 &= 7\frac{\Delta t}{2 h}, \quad B_5 = 1, \quad B_6 = 1.
\end{align*}
\]
(12)

The system thus obtained on simplifying Eqs. (11) and (12) consists of \((2N + 2)\) linear equations in \((2N + 4)\) unknowns \((c_{1j}, c_{2j}, \ldots, c_{3j}, \delta_{1j}, \delta_{2j}, \ldots, \delta_{3j})\). To obtain a unique solution to the resulting system six additional constraints are required. These are obtained by imposing boundary conditions.
conditions. Eliminating $c_j, c_{j+1}, c_{j+2}, \ldots, c_{j+n}$ and $d_{j}, d_{j+1}, d_{j+2}, \ldots, d_{j+n}$ the system get reduced to a matrix system of dimension $(2N+2) \times (2N+2)$ which is the septic-diagonal system that can be solved by any algorithm.

\section*{Initial Values}

To find the initial parameters c_0 and d_0, the initial conditions and the derivatives at the boundaries are used in the following way:

\begin{align*}
(U')(t_0, 0) &= \frac{7}{h} \delta_{c_i} - 56 \delta_{c_i} - 243 h_i + 243 c_i + 56 c_i + c_i = f(x_i), \\
(U')(t_0, 0) &= \frac{42}{h} (c_i - 24c_i + 15c_i - 80c_i + 15c_i + 24c_i + c_i) = f(x_i), \\
(U')(t_0, 0) &= \frac{210}{h} (-c_i - 8c_i - 19c_i - 19c_i + 8c_i + c_i) = f(x_i), \\
(U')(t_0, 0) &= c_i + 120c_i - 1191c_i + 2416c_i + 1191c_i + 120c_i + c_i = f(x_i), \\
(U')(t_0, 0) &= \frac{7}{h} (-c_i - 56c_i - 245c_i + 245c_i + 56c_i + c_i) = f(x_i), \\
(U')(t_0, 0) &= \frac{42}{h} (c_i + 24c_i + 15c_i - 80c_i + 15c_i + 24c_i + c_i) = f(x_i), \\
(U')(t_0, 0) &= \frac{210}{h} (-c_i - 8c_i - 19c_i - 19c_i + 8c_i + c_i) = f(x_i), \\
\end{align*}

Which forms a linear block septic-diagonal system for unknown initial conditions c_0 and d_0, of order $(2N+2)$ after eliminating the functions values of c and δ. This system can be solved by any algorithm. Once the initial vectors of parameters have been calculated, the numerical solution of coupled BBM system U and V can be determined from the time evolution of the vectors c_0 and d_0, by using the recurrence relations

\begin{align*}
U(t, c_i) &= c_j + 120c_j + 1191c_j + 2416c_j + 1191c_j + 120c_j + c_j, \\
V(t, c_i) &= \delta_j + 120\delta_j + 1191\delta_j + 2416\delta_j + 1191\delta_j + 120\delta_j + \delta_j, \\
\end{align*}

\section*{Stability Analysis of the Method}

The stability analysis of nonlinear partial differential equations is not easy task to undertake. Most researchers copy with the problem by linearizing the partial differential equation. Our stability analysis will be based on the Von-Neumann concept in which the growth factor of a typical Fourier mode defined as

\begin{equation}
\gamma = \frac{\sum_{i=1}^{N} c_i A_i e^{i\phi_i}}{c_i A_i e^{i\phi_i}}, \quad (13)
\end{equation}

where A and B are the harmonics amplitude, $\phi = kh$, k is the mode number, $f = \sqrt{-1}$ and g is the amplification factor of the schemes. We will be applied the stability of the septic schemes by assuming the nonlinear term as a constants λ_1, λ_2. This is equivalent to assuming that all the c_j and d_j as a local constants λ_1, λ_2, respectively. At $x=x_0$, systems (11) and (12) can be written as

$$
\begin{align*}
\delta_j^{(n)} &= a_1\delta_j^{(n-1)} + a_2\delta_j^{(n-2)} + a_3\delta_j^{(n-3)} + a_4\delta_j^{(n-4)} + a_5\delta_j^{(n-5)} + a_6\delta_j^{(n-6)} + a_7\delta_j^{(n-7)}, \\
\delta_j^{(n)} &= a_1\delta_j^{(n-1)} + a_2\delta_j^{(n-2)} + a_3\delta_j^{(n-3)} + a_4\delta_j^{(n-4)} + a_5\delta_j^{(n-5)} + a_6\delta_j^{(n-6)} + a_7\delta_j^{(n-7)},
\end{align*}
$$

(14)

where

\begin{align*}
\lambda_1 &= 1 - \frac{7\lambda}{2B}, \quad \lambda_2 = 1 - \frac{7\lambda}{2B}, \\
\lambda_1 &= 1 - \frac{7\lambda}{2B}, \quad \lambda_2 = 1 - \frac{7\lambda}{2B}, \quad \lambda_1 = 1 - \frac{7\lambda}{2B}, \quad \lambda_2 = 1 - \frac{7\lambda}{2B}, \\
\lambda_1 &= 1 - \frac{7\lambda}{2B}, \quad \lambda_2 = 1 - \frac{7\lambda}{2B}, \quad \lambda_1 = 1 - \frac{7\lambda}{2B}, \quad \lambda_2 = 1 - \frac{7\lambda}{2B}, \\
\end{align*}

(15)

Substituting (13) into the difference (14), we get

\begin{align*}
\gamma &= \frac{1}{2} \left(1 - \frac{7\lambda}{2B} \right) \cos \phi + \frac{1}{2} \left(1 - \frac{7\lambda}{2B} \right) \cos \phi + \frac{1}{2} \left(1119 - \frac{15\lambda}{2B} \right) \cos \phi \left(\lambda_1 \right) \sin \phi \\
\gamma &= \frac{1}{2} \left(1 - \frac{7\lambda}{2B} \right) \cos \phi + \frac{1}{2} \left(1 - \frac{7\lambda}{2B} \right) \cos \phi + \frac{1}{2} \left(1119 - \frac{15\lambda}{2B} \right) \cos \phi \left(\lambda_1 \right) \sin \phi \\
\gamma &= \frac{1}{2} \left(1 - \frac{7\lambda}{2B} \right) \cos \phi + \frac{1}{2} \left(1 - \frac{7\lambda}{2B} \right) \cos \phi + \frac{1}{2} \left(1119 - \frac{15\lambda}{2B} \right) \cos \phi \left(\lambda_1 \right) \sin \phi \\
\end{align*}

(16)

where

\begin{align*}
X &= \frac{1}{2} \left(1 - \frac{7\lambda}{2B} \right) \cos \phi + \frac{1}{2} \left(1 - \frac{7\lambda}{2B} \right) \cos \phi + \frac{1}{2} \left(1119 - \frac{15\lambda}{2B} \right) \cos \phi \\
Y &= \frac{1}{2} \left(1 - \frac{7\lambda}{2B} \right) \cos \phi + \frac{1}{2} \left(1 - \frac{7\lambda}{2B} \right) \cos \phi + \frac{1}{2} \left(1119 - \frac{15\lambda}{2B} \right) \cos \phi \\
\end{align*}

and

\begin{align*}
\lambda_1 &= 1 - \frac{7\lambda}{2B}, \quad \lambda_2 = 1 - \frac{7\lambda}{2B}, \quad \lambda_1 = 1 - \frac{7\lambda}{2B}, \quad \lambda_2 = 1 - \frac{7\lambda}{2B}, \\
\lambda_1 &= 1 - \frac{7\lambda}{2B}, \quad \lambda_2 = 1 - \frac{7\lambda}{2B}, \quad \lambda_1 = 1 - \frac{7\lambda}{2B}, \quad \lambda_2 = 1 - \frac{7\lambda}{2B}, \\
\lambda_1 &= 1 - \frac{7\lambda}{2B}, \quad \lambda_2 = 1 - \frac{7\lambda}{2B}, \quad \lambda_1 = 1 - \frac{7\lambda}{2B}, \quad \lambda_2 = 1 - \frac{7\lambda}{2B}, \\
\end{align*}

(15)
In this section, we present some numerical examples to test validity of our scheme for solving coupled-BBM system.

The norms \(L_{\infty} \)-norm and \(L_{2} \)-norm are used to compare the numerical solution with the analytical solution [14].

\[
L_{2} = \left\| u - u^{h} \right\|_{2} = \sqrt{\frac{1}{N} \sum_{j=1}^{N} (u_{j} - u_{j}^{h})^2}, \\
L_{\infty} = \max_{j=1}^{N} |u_{j} - u_{j}^{h}|,
\]

From (16) and (17) we get \(|g| \leq 1 \), hence the schemes are unconditionally stable. It means that there is no restriction on the grid size, i.e. on \(h \) and \(\Delta t \), but we should choose them in such a way that the accuracy of the scheme is not degraded.

Numerical Tests and Results of Coupled-BBM system

In this section, we present some numerical examples to test validity of our scheme for solving coupled-BBM system.

The norms \(L_{\infty} \)-norm and \(L_{2} \)-norm are used to compare the numerical solution with the analytical solution [14].

\[
L_{2} = \left\| u - u^{h} \right\|_{2} = \sqrt{\frac{1}{N} \sum_{j=1}^{N} (u_{j} - u_{j}^{h})^2}, \\
L_{\infty} = \max_{j=1}^{N} |u_{j} - u_{j}^{h}|,
\]

Where \(u^{h} \) is the exact solution and \(u^{N} \) is the approximation solution \(U_{N}^{N} \).

Now we can study our scheme from this problem.

Single soliton

Consider the coupled-BBM system (1) and (2) with the following initial and boundary conditions:

\[
u(x,0) = f(x), \\
\nu(x,0) = g(x), \quad a \leq x \leq b.
\]

And

\[
u(a,t) = 0, \quad \nu(b,t) = 0, \\
v^{\prime}(a,t) = 0, \quad v^{\prime}(b,t) = 0, \\
u_{x}(a,t) = 0, \quad u_{x}(b,t) = 0, \quad 0 \leq t \leq T.
\]

The exact solution is

\[
u(x,t) = \frac{1}{6} \frac{g}{h^{2}} \left[1 + 3 \frac{\sec \left(\sqrt{\frac{g}{2}} (x + x_{0} - ct) \right)}{2} \right], \quad v(x,t) = -1,
\]

Now, for comparison, we consider a test problem where, \(g = 6, c = \frac{1}{3}, x_{0} = 0, k = 0.001 \) and \(-20 \leq x \leq 40 \). The Errors, at time 5 are satisfactorily small \(L_{\infty} \)-error=7.11457×10^{-4} and \(L_{2} \)-error=9.35827×10^{-4} for approximation solution of \(u(x,t) \) and \(L_{\infty} \)-error and \(L_{2} \)-error approach to zero for approximation solution of \(v(x,t) \) at \(h=0.1 \). The Errors, at time 5 are satisfactorily small \(L_{\infty} \)-error=1.4783910^{-7} and \(L_{2} \)-error=1.47839×10^{-7} for approximation solution of \(u(x,t) \) and \(L_{\infty} \)-error and \(L_{2} \)-error approach to zero for approximation solution of \(v(x,t) \) at \(h=0.1 \). Our results are recorded in Table 2. The motion of solitary wave using our scheme is plotted at times \(t=0,10,20 \) in Figure 1. These results illustrate that the scheme has a highest accuracy (Table 2 and Figure 1).

\[
-20 \leq x \leq 40 \text{ at } t=5.
\]

In Table 3 we show that our results are better than the results in [7] (Table 3).

Interaction of two solitary waves

The interaction of two solitary waves having different amplitudes and traveling in the same direction is illustrated. We consider Coupled-BBM system with initial conditions given by the linear sum of two well separated solitary waves of various amplitudes.

\[
x \quad x_{x4} \quad x_{x2} \quad x_{x3} \quad x_{x1} \quad x_{x1t} \quad x_{x2t} \quad x_{x3t} \quad x_{x4t} \\
B_{j} \quad 0 \quad 1 \quad 120 \quad 1191 \quad 2416 \quad 1191 \quad 120 \quad 1 \quad 0 \\
B_{j}^{p} \quad 0 \quad -\frac{7}{h} \quad -\frac{392}{h} \quad -\frac{1715}{h} \quad 0 \quad \frac{392}{h} \quad \frac{392}{h} \quad 7 \quad 0 \\
B_{j}^{q} \quad 0 \quad \frac{42}{h} \quad \frac{1008}{h} \quad \frac{630}{h} \quad \frac{3360}{h} \quad \frac{630}{h} \quad \frac{1008}{h} \quad \frac{42}{h} \quad 0
\]

Table 1: The values of solitons B-spline and its first and second derivatives at the knots points.

\[
\begin{array}{|c|c|c|c|c|c|c|c|c|c|}
\hline
h & T & u(x,t) & v(x,t) \\
\hline
L_{\infty} & L_{2} & L_{\infty} & L_{2} & L_{\infty} & L_{2} \\
\hline
1.0 & 0.00000000 & 0.00000000 & 0.00000000 & 0.00000000 & 0.00000000 & 0.00000000 \\
2.0 & 4.97658E-6 & 7.92096E-6 & 4.97658E-6 & 7.92096E-6 & 4.97658E-6 & 7.92096E-6 \\
3.0 & 6.53347E-6 & 9.35827E-6 & 6.53347E-6 & 9.35827E-6 & 6.53347E-6 & 9.35827E-6 \\
4.0 & 6.84312E-6 & 7.04553E-6 & 6.84312E-6 & 7.04553E-6 & 6.84312E-6 & 7.04553E-6 \\
5.0 & 7.11457E-6 & 7.86296E-6 & 7.11457E-6 & 7.86296E-6 & 7.11457E-6 & 7.86296E-6 \\
\hline
1.0 & 0.00000000 & 0.00000000 & 0.00000000 & 0.00000000 & 0.00000000 & 0.00000000 \\
2.0 & 4.70516E-7 & 1.19222E-7 & 4.70516E-7 & 1.19222E-7 & 4.70516E-7 & 1.19222E-7 \\
3.0 & 9.30378E-7 & 1.12545E-7 & 9.30378E-7 & 1.12545E-7 & 9.30378E-7 & 1.12545E-7 \\
4.0 & 1.23402E-7 & 1.24181E-7 & 1.23402E-7 & 1.24181E-7 & 1.23402E-7 & 1.24181E-7 \\
5.0 & 1.47839E-7 & 1.49968E-7 & 1.47839E-7 & 1.49968E-7 & 1.47839E-7 & 1.49968E-7 \\
\hline
\end{array}
\]

Table 2: \(L_{\infty} \)-norm and \(L_{2} \)-norm for \(h=0.2 \), \(g = 6, c = \frac{1}{3}, x_{0} = 0, k = 0.001 \) and \(-20 \leq x \leq 40 \).
\[u(x,0) = \sum_{j=1}^{3} \left(1 - \frac{g_j}{6}\right)c_j + \frac{c_j}{2}\sec h \left(\frac{\sqrt{2}}{2}(x-x_j)\right), \quad v(x,0) = -1, \]

(19)

Where \(j=1,2,3 \) and \(c_j \) are arbitrary constants. In our computational work. Now, we choose \(g_1 = 6, g_2 = 6, c_1 = 1, c_2 = \frac{1}{4}, c_3 = \frac{1}{3} \).

\(x_1 = 0, x_2 = -10, h = 0.1, k = 0.01 \) with interval \([-20, 40] \). In Figure 2, the interactions of these solitary waves are plotted at different time levels (Figure 2).

Interaction of three solitary waves

The interaction of three solitary waves having different amplitudes and traveling in the same direction is illustrated. We consider Coupled-BBM system with initial conditions given by the linear sum of three well separated solitary waves of various amplitudes

\[u(x,0) = \sum_{j=1}^{3} \left(1 - \frac{g_j}{6}\right)c_j + \frac{c_j}{2}\sec h \left(\frac{\sqrt{2}}{2}(x-x_j)\right), \quad v(x,0) = -1, \]

(20)

Where \(j=1,2,3 \), \(g_j \), \(x_j \) and \(c_j \) are arbitrary constants. In our computational work. Now, we choose \(g_1 = 6, g_2 = 6, c_1 = 1, c_2 = \frac{1}{4}, c_3 = \frac{1}{3} \), \(x_1 = 0, x_2 = -5, x_3 = -10, h = 0.1, k = 0.01 \) with interval \([-20, 40] \). In Figure 3, the interactions of these solitary waves are plotted at different time levels (Figure 3).

Conclusions

In this paper a numerical treatment for the nonlinear Coupled-BBM system is proposed using a collection method with the septic B-splines. The stability analysis of the method is shown to be unconditionally stable. We make linearization for the nonlinear term. We tested our schemes through a single solitary wave in which the analytic solution

\[
\text{(19)}
\]

\[
\text{(20)}
\]

\[u(x,0) = \sum_{j=1}^{3} \left(1 - \frac{g_j}{6}\right)c_j + \frac{c_j}{2}\sec h \left(\frac{\sqrt{2}}{2}(x-x_j)\right), \quad v(x,0) = -1,
\]

Figure 1: Single solitary wave with \(g = 6, c = \frac{1}{3}, x_0 = 0, k = 0.001 \) and \(-20 \leq x \leq 40\) at times \(t=0, 10, 20 \) respectively.
Figure 2: Interaction two solitary waves with $g_1 = -6, g_2 = -6, c_1 = -1, c_2 = -\frac{1}{3}$, $\hat{h} = 0.1$, $-20 \leq x \leq 40$ for values at times $t = 0, 10, 20, 30$ respectively.

Figure 3: Interaction three solitary waves with $g_1 = 6, g_2 = 6, g_3 = 6, c_1 = 1, c_2 = \frac{2}{3}, c_3 = \frac{1}{3}$, $x_1 = 0$, $x_2 = -5, x_3 = -10$, $\hat{h} = 0.1$, $k = 0.01$, $-20 \leq x \leq 40$ for values at times $t = 0, 10, 20, 30$ respectively.
is known, then extend it to study the interaction of solitons where no analytic solution is known during the interaction. The accuracy of our scheme was shown by calculating error norms L_2 and L_{∞}.

References

1. Bona JL, Chen M (1998) A Boussinesq system for two way propagation of Nonlinear dispersive waves. Physica D 116: 191-224.
2. Bona JL, Chen M, Saut JC (2002) Boussinesq equations and other Systems for small amplitude long waves in nonlinear dispersive media. Derivation and linear theory. Journal of Nonlinear Science 12: 283-318.
3. Bona JL, Chen M, Saut JC (2004) Boussinesq equations and other Systems for small amplitude long waves in nonlinear dispersive media II. The Nonlinear theory. Nonlinearity 17: 925-952.
4. Dougalis VA, Mitsotakis DE, Saut JC (2009) On initial boundary value problem for Boussinesq system of BBM - BBM type in plane domain. Discrete and Continuous Dynamical Systems 23: 1191-1204.
5. Chen M (2000) Solitary Wave and multi pulsed traveling wave solutions of Boussinesq systems. Applicable Analysis 75: 213-240.
6. Antoropoulos DC, Dougalis VA, Mitsotakis DE (2010) Numerical Solution of Boussinesq systems of Bona-Smith family. Applied Numerical Mathematics 30: 314-336.
7. Behzadi SS, Yildirim A (2013) Application of Quintic B-Spline Collocation Method for Solving the Coupled-BBM System. Middle-East Journal of Scientific Research 15: 1478-1486.
8. Al-Rawi ES, Salal MAM (2012) Numerical solution of BBM-system using finite element method. International Journal of recent scientific research 3: 1026-1029.
9. Chen M (1998) Exact Traveling-Wave Solutions to Bidirectional Wave Equations. International Journal of Theoretical Physics 37: 5.
10. Raslan KR, EL-Danaf TS, Ali KA (2016) Collocation method with quintic b-spline method for solving hirota-satsuma coupled KDV equation. International Journal of Applied Mathematical Research 5: 123-131.
11. Raslan KR, EL-Danaf TS, Ali KA (2016) Collocation Method with Quintic B-Spline Method for Solving the Hirota equation. Journal of Abstract and Computational Mathematics 1: 1-12.
12. EL-Danaf TS, Raslan KR, Ali KK (2016) Collocation method with cubic B-Splines for solving the GRLW equation. Int J of Num Meth and Appl 15: 39-59.
13. Rubin SG, Graves RA (1975) Cubic spline approximation for problems in fluid mechanics. NASA TRR-436. Washington, DC.
14. EL-Danaf TS, Raslan KR, Ali KK (2014) New Numerical treatment for the Generalized Regularized Long Wave Equation based on finite difference scheme. Int J of S Comp and Eng 4: 16-24.