The Association Between Ambient Air Pollution and Atrial Fibrillation
A Systematic Review and Meta-Analysis

Miao Chen, MD, Jianqiang Zhao, MD, Chengui Zhuo, MD and Liangrong Zheng, MD

Summary
Atrial fibrillation (AF) is the most common cardiac arrhythmia; it has been known to increase the risk of stroke and heart failure. The association between air pollutants and AF has remained to be controversial. Thus, in this study, we sought to undertake a systematic review and meta-analysis in order to assess the short- and long-term effects of ambient air pollution on AF.

We searched PubMed, Web of Science, Embase, and Ovid for all related studies up to October 2019. We used the random-effects model to estimate the excess risk percentage (ER%) and confidence intervals (CI) for particulate matter with diameter ≤2.5 (PM$_{2.5}$) and ≤10 μm (PM$_{10}$), sulfur dioxide (SO$_2$), nitrogen dioxide (NO$_2$), ozone (O$_3$), and carbon monoxide (CO). Results were further analyzed by subgroups according to location, age, outcome, and gender.

In total, 18 studies were included in our meta-analysis: 5 evaluated for long-term effects, 12 for short-term effects, and 1 for both long- and short-term effects. For the short term, ER per 10 μg/m3 increase of pollutants was 1.8% (0%-3.7%) for PM$_{2.5}$ and 1.1% (−0.2%−2.4%) for PM$_{10}$ per 10 parts per billion (ppb) increment of gaseous pollutions was 3.2% (0.6%-5.8%) for NO$_2$, 2.9% (0.3%-5.7%) for SO$_2$, 0.5% (−3.4%-4.7%) for O$_3$, and 2.0% (−1.3%-5.4%) for CO per 1000 ppb change. The subgroup analysis showed the short-term effect was significantly different by region, gender, outcome, and age. Meanwhile, in the long term, except for O$_3$, a statistically significant association was noted between AF incidence and all pollutants.

Our meta-analysis suggests that short-term exposure to part of pollutants (PM$_{2.5}$, SO$_2$, and NO$_2$) increases AF attack. Further, long-term exposure to air pollution can significantly contribute to the incidence of AF in a healthy population.

Key words: Cardiac arrhythmia, Particulate matter, Gaseous pollutions

Atrial fibrillation (AF) has been identified as the most common cardiac arrhythmia occurring in the general population and is one of the major causes of stroke, cardiac morbidity, and mortality. The underlying mechanisms for AF are complex, including inflammation, atrial fibrosis, electrical remodeling, autonomic dysfunction, calcium-handling abnormalities, and oxidative stress. A previous study has shown that advanced age, male sex, hypertension, and diabetes were well-estimated risk factors of AF. In addition, obesity, hyperuricemia, and alcohol abuse have been shown to be important contributors to AF.

Air pollution is recognized as one of the largest environmental health risks worldwide. The Global Burden of Disease, Injuries, and Risk Factor study 2017 (GBD 2017) estimated that air pollution, especially ambient particulate matter (PM) pollution, was responsible for nearly 4.9 million premature deaths globally. Previous studies suggested that air pollution is associated with an increased risk of pneumonia and stroke. Moreover, a recent study demonstrated that PM$_{2.5}$ is associated with an approximated 16% increase in the risk of heart disease mortality. A large body of literature shows that the effects of acute exposure to air pollution are thought to be mediated through oxidative stress, inflammation, and disturbance of autonomic function.

Given the putative pathophysiologic mechanisms, there seems to be a mechanistic link between air pollution and AF. Short-term exposure to air pollutants may increase AF attack in patients with AF history or those who are considered as high risk; further, long-term exposure may change electrophysiological characteristics of atria, which can result in the development of AF in healthy population. However, the findings of those studies that have evaluated the effect of ambient air pollutants on the AF remain inconsistent. Accordingly, we aim to provide a comprehensive meta-analysis to evaluate the short-term and long-term effects of air pollution on AF.

From the Department of Cardiology and Atrial fibrillation Center, The First Affiliated Hospital of Zhejiang University, Hangzhou, China. Address for correspondence: Liangrong Zheng, MD, Department of Cardiology and Atrial fibrillation Center, The First Affiliated Hospital of Zhejiang University, No. 79, Qingchun Road, Shangcheng District, Hangzhou, Zhejiang 310000, China. E-mail: 1191066@zju.edu.cn

Released in advance online on J-STAGE March 6, 2021.
doi: 10.1536/ijh.20-523
All rights reserved by the International Heart Journal Association.
Methods

Search strategy: We conducted searches indexed in PubMed, Embase, and Web of Science to identify all relevant observational studies, published until October 2019, and to further evaluate the relationship between short-term or long-term effects of outdoor air pollutants and AF. The search was restricted to studies conducted in human subjects, and there was no language restriction. Medical subject headings and free text words were combined, and the detailed search strategy was shown in the supplemental material (Supplemental Text).

Selection criteria: The inclusion criteria were as follows: (1) studies examining the short- or long-term effects of ambient air pollutants (PM_{2.5}, PM_{10}, nitrogen dioxide, sulfur dioxide, carbon monoxide, and ozone) on AF; (2) studies examining the short-term association must be time-series or case-crossover studies; (3) studies providing the relative risks (RR), odds ratios (OR), or hazard ratio (HR) and the corresponding 95% confidence intervals.

The exclusion criteria were as follows: (1) studies that do not include AF as an endpoint; (2) review articles or letters; and (3) conference abstract.

Two independent (CM and ZJQ) reviewers screened the retrieved records based on the title and abstract. Then, the full texts of all potentially relevant articles were examined to assess for compliance with the inclusion criteria. Any disagreement between the two reviewers was resolved by consensus after discussing or calling upon a third reviewer (ZLR) to reach a final decision.

Data extraction: Data from each article were abstracted independently by two investigators. The extracted data elements included citation information (author and year of publication), the study design, study location or country, study period, study population, sample size, data source of outcomes, air pollutant level, and study outcomes (RR, OR, or HR and the corresponding 95% CI). All conflicts were decided by consensus between the reviewers.

Quality assessment: The quality assessment was performed using Newcastle-Ottawa Scale. To fit this study, we also took into account the similarities between the study groups on daily air level measured, methods of the studies, and covariates in the models. While abstracting the data for the analysis, CM and ZJQ independently performed the quality assessment.

Statistical analyses: Meta-analysis was performed across available studies to separately evaluate the evidence for or against an association between each air pollution (PM_{2.5}, PM_{10}, nitrogen dioxide, sulfur dioxide, carbon monoxide, and ozone) and outcome (trigger or incidence of AF). We have chosen those studies, which used either time-series or case-crossover analyses into our meta-analysis because both methods are widely used to assess the short-term effect of air pollution on the daily health condition.

Some studies have published various lags, models (single- or multi-pollution models), or subgroups by different factors. In order to avoid over-representation of a single study, we chose only one result from each study in the pooled estimate according to the following rules: (1) if the study provided several lags, the shortest one was selected; (2) if there were no single lag estimates, we used cumulative lags; (3) if results from both single- and multi-pollutant models were available, only the results from multi-pollutant models were included; (4) if results were reported for multiple seasons or temperatures, we selected an overall effect estimate.

We pooled RR or HR for a standardized increment in pollutant concentration: 10 μg/m^3 for PM_{2.5} and PM_{10}, 10 ppb for NO, SO2, and O3, and 1 part per million (ppm) for CO. In case of small relative risk or the OR value using conditional logistic regression models, the odds ratio and RR can be considered the same. As previously reported,7 we used the following formula to calculate the RR standardized or HR standardized (RR_{U} or HR_{U} is reported in the original research, and U is the increment used in the original research):

\[\text{RR(HR)}_{\text{standardized}} = \frac{\text{RR(hR)}_{0}}{U} \]

Forest plots were then conducted to evaluate the summary of RR (HR) and 95% CI of individual studies by using random-effects models. Heterogeneity was evaluated through the I^2 statistic derived from the chi-square test.13 An I^2 > 50% indicates high statistical heterogeneity. Then, the sensitivity analysis was conducted by repeating meta-analysis, which excluded study one by one to assess the consistency of the main results.16 Funnel plots and Egger’s regression test were performed to determine any publication bias. Further, we analyzed the results by subgroups according to the location, outcome, age, and gender.

The overall effect estimates are reported as the percent change (ER% = (RR-1) × 100%) with 95% CI in the occurrence of AF per increment in air pollution. All statistical analyses were conducted using Stata 13 (Stata Corp LP, College Station, TX, USA). A two-tailed P-value of <0.05 was considered statistically significant.

Results

Our initial literature search yielded 1487 records. After reviewing the titles and abstracts, majority of these records (n = 1457) were discarded, mostly because the articles were not relevant and were reviews or letters. Subsequently, the remaining 30 full-text studies were closely evaluated, and 12 studies were further excluded. Thus, in total, 18 studies were included in our meta-analysis: 5 evaluated the long-term relationship,5-19 12 evaluated the short-term relationship,20-31 and 1 both evaluated the long- and short-term relationship.32 A flowchart summarizing the literature search progress is shown in the supplemental material (Supplemental Figure 1).

The short-term effects of air pollution on atrial fibrillation: Among those studies examining the short-term impact of air pollutants on AF, nine used a case-crossover approach, and four used a time-series analysis. The main features of the studies included in the meta-analysis are shown in Table I. Those short-term studies were conducted in North America (n = 3), Asia (n = 7), and Europe (n = 3). Most of the studies defined the outcomes by using the International Classification of Diseases (ICD) version 9 (code 427.3) or ICD10 (code 148); three studies defined the AF episodes according to the definition of the
American Heart Association, the American College of Cardiology, and the Heart Rhythm Society. All of them adjusted for seasonality, long-term time trends, and meteorological variables, such as mean temperature; most studies also adjusted for relative humidity, whereas only half of the studies adjusted for barometric pressure (Supplemental Table I).

Daily mean pollution levels reported in short-term studies varied widely for PM$_{2.5}$ (range 8.4-91.4 μg/m3), PM$_{10}$ (20.0-121.0 μg/m3), NO$_2$ (11.7-28.4 ppb), SO$_2$ (1.1-

Table 1. Main Characteristics of All Studies Included in the Meta-Analysis

Record	Author	Year	Location	Period	Study design	Population	Outcome	Number of events
1	Rich	2006	USA	1995–2002	Case-cross-over	Patients implanted ICD* at the Tufts-New England Medical Center	ICD*-recorded episode of PAF	91
2	Bunch	2011	USA	1994–2006	Case-cross-over	People lived on the Wasatch Front	Hospital admissions for AF	10457
3	Link	2013	USA	2006–2010	Case-cross-over	ICD* patients followed at the Tufts Medical Center	ICD*-recorded episode of AF	328
4	Milojevic	2014	UK	2003–2008	Case-cross-over	Emergency admissions made to NHS hospitals in England and Wales	Emergency visits for AF (ICD**-9: 427.3)	310568
5	Sade	2015	Israel	2006–2010	Case-cross-over	Patients hospitalized in Soroka University Medical Center	Hospitalizations for new AF onset (ICD**-9: 427.3)	1458
6	Vaduganathan	2016	Italy	2004–2007	Case-cross-over	Patients hospitalized in Brigham and Women’s Hospital Heart and Vascular Center	Emergency visits for AF (ICD**-9: 427.3)	830
7	Solimini	2017	Italy	2001–2014	Time-series	Emergency visits in 51 Emergency Departments of hospitals in Rome	Emergency visits for AF (ICD**-9: 427.3)	79892
8	Li	2018	China	2013–2017	Case-cross-over	Hospital admission in all hospitals in Beijing	Hospital admissions for AF (ICD**-10: 148)	24455
9	Liu	2018	China	2012–2013	Case-cross-over	CIED patients followed in Peking Union Medical College Hospital	CIED-recorded episode of AF	353
10	Amsalu*	2019	China	2013–2017	Time-series	Hospital admission in all hospitals in Beijing	Hospital admissions for AF (ICD**-10: 148)	24455
11	Amsalu*	2019	China	2013–2017	Time-series	Hospital admission in all hospitals in Beijing	Hospital admissions for AF (ICD**-10: 148)	24455
12	Kwon†	2019	Korea	2002–2015	Time-series/ cohort†	Individuals recruited from the general population in Seoul	Emergency visits for AF/first AF occurrence (ICD**-10: 148)	1137/1903
13	Saifipour	2019	Iran	2010–2012	Case-cross-over	Hospitalization due to cardiovascular and respiratory diseases in Isfahan City	Hospital admissions for AF (ICD**-10)	451
14	Carey	2016	UK	2005–2011	Cohort	Individuals within the area bounded by the orbital M25 motorway around London	Developed atrial fibrillation (ICD**-10: 146-149)	208 049
15	Monrad	2017	Denmark	1997–2011	Cohort	Individuals recruited from the general population in Copenhagen or Aarhus	Cases with a first diagnosis of AF (ICD**-10)	2700
16	Stockfelt	2017	Sweden	1990–2011	Cohort	Individuals recruited from the general population in Gothenburg	New onset of AF (ICD**-9 or ICD**-10)	1712
17	Kim	2019	Korea	2009–2013	Cohort	Individuals who were not diagnosed with non-valvular AF in South Korea	Cases with a first diagnosis of AF (ICD**-10: 148)	5624
18	Shin	2019	Canada	2001–2015	Cohort	Individuals who were not diagnosed with AF in South Korea	Cases with a first diagnosis of AF (ICD**-9 or ICD**-10)	313,157

ICD* indicates implantable cardioverter-defibrillator; CIED, cardiac implantable electronic devices; ICD**, International Classification of Diseases. *There two different studies researched by Amsalu et al. †This study evaluates both short- and long-term relationship.
Figure. Forest plot for the short-term effect of ambient air pollution (PM$_{2.5}$, PM$_{10}$, SO$_2$, O$_3$, NO$_2$, and CO) on AF. Relative risks (RRs) are for an increase of 10 μg/m3 of PM$_{2.5}$ and PM$_{10}$; 10 ppb of SO$_2$, NO$_2$, and O$_3$; and 1000 ppb of CO.

A random-effects summary estimate of the short-term effect of air pollutant on AF is presented in the Figure. ER per 10 μg/m3 increase of pollutants was 1.8% (0%–3.7%) for PM$_{2.5}$ and 1.1% (−0.2%–2.4%) for PM$_{10}$. These studies were significantly heterogeneous; the degree of I2 was determined to be large in pooled estimates for PM$_{2.5}$ (79.8%) and PM$_{10}$ (83.2%). Moreover, the ER per 10 ppb increment of gaseous pollutants was 3.2% (0.6%–5.8%) for NO$_2$, 2.9% (0.3%–5.7%) for SO$_2$, 0.5% (−3.4%–4.7%) for O$_3$, and 2.0% (−1.3%–5.4%) for CO per 1000 ppb change.

The outcomes of subgroup analysis were presented in Table II. As per our findings, the effect of PM$_{2.5}$ and SO$_2$ on AF attack varied by geographic locations, with Asia showing statistically significant positive associations. Besides, it suggests that the effects of air pollution on AF were different between patients with ICDs and the general population. Besides, a few studies reported the effect estimates for multiple age groups and gender; we pooled the estimate by age (< 65 and ≥ 65 years) and gender. The analyses revealed that pooled estimates from males were larger than females. Similarly, results suggested that the
Table II. Subgroup Analysis of the Associations of All Pollutants with Atrial Fibrillation

Air pollutants	Location	Gender	Age	Outcome	Hospital/ emergency admissions					
	North America	Europe	Asia	Male	Female	< 65 years	≥ 65 years	Devices		
PM2.5	Number of studies	3	2	4	5	4	3	3	6	
	ER% (95% CI)	23.2 (−9.3–67.5)	0.6 (−3.9–5.4)	2.3 (0.1–5.2)	6.5 (2.2–11.0)	2.7 (1.0–4.5)	9.5 (−0.4–20.5)	4.8 (−0.5–10.4)	23.8 (−7.3–65.4)	1.8 (0–3.7)
	F², %	78.3	92.9	77.4	82.4	68.5	83.6	77.9	75.7	76.4
	Interaction P-value	<0.001	0.006	0.048						
PM10	Number of studies	—	3	4	2	2	1	1	1	6
	ER% (95% CI)	—	2.0	1.0	2.4	1.3	−0.9	0.8	2.7	0.8
	CI, %	(−1.0–4.0)	(−1.0–3.0)	(0.1–4.6)	(0.1–2.5)	(−2.2–0.8)	(−2.3–3.3)	(0.6–4.8)	(−0.5–2.2)	
	F², %	—	92.7	62.4	53.8	0.0	—	—	—	83.5
	Interaction P-value	0.096	<0.001	—	—	0.096				
NO2	Number of studies	2	2	4	2	2	1	1	3	5
	ER% (95% CI)	16.8 (3.3–32.0)	1.6 (0.4–2.8)	10.1 (0.2–21.1)	4.5 (−4.8–14.7)	2.0 (−1.0–5.1)	7.2 (0.9–14.3)	−1.9 (−7.2–3.6)	14.8 (4.4–26.3)	3.2 (0.6–5.8)
	CI, %	(3.3–32.0)	(3.3–32.0)	(3.3–32.0)	(3.3–32.0)	(3.3–32.0)	(3.3–32.0)	(3.3–32.0)	(3.3–32.0)	
	F², %	0.0	24.5	34.3	26.1	0.0	—	—	0.0	42.4
	Interaction P-value	0.16	0.035	—	—	0.016				
SO2	Number of studies	2	1	5	2	2	2	3	2	
	ER% (95% CI)	9.1 (−25.4)	0.8 (−4.5–6.4)	3.6 (0.5–6.7)	10.9 (−11.1)	3.8 (−5.3–13.8)	5.5 (0.8–10.4)	3.5 (−3.0–10.5)	5.8 (−32.1)	
	CI, %	(−25.4)	(−4.5–6.4)	(0.5–6.7)	(−11.1)	(−5.3–13.8)	(0.8–10.4)	(−3.0–10.5)	(−32.1)	
	F², %	0.0	—	0.0	43.2	7.1	0.0	0.0	0.0	0.0
	Interaction P-value	0.031	0.018	0.013	—	0.031				
O3	Number of studies	2	1	4	1	1	1	1	3	4
	ER% (95% CI)	17.5 (−13.9)	−0.6 (−1.4–0.2)	−0.9 (−5.9–4.3)	0.2 (−17.9)	7.2 (−10.2)	−5.8 (−14.2–3.5)	−6.7 (−7.2–3.6)	−5.5 (−29.1)	
	CI, %	(−13.9)	(−1.4–0.2)	(−5.9–4.3)	(−17.9)	(−10.2)	(−14.2–3.5)	(−6.7–3.6)	(−29.1)	
	F², %	79.2	—	0.0	—	—	—	—	—	62.3
	Interaction P-value	0.796	—	—	0.796					
CO	Number of studies	1	1	5	2	2	2	2	2	
	ER% (95% CI)	−21.3 (−63.6)	−0.9 (−6.5–5.0)	2.0 (−1.3–5.4)	2.6 (−1.4–6.9)	4.3 (0.8–8.7)	7.3 (1.9–13.0)	1.5 (−2.0–5.3)	12.2 (−3.2)	
	CI, %	(−63.6)	(−6.5–5.0)	(−1.3–5.4)	(−1.4–6.9)	(0.8–8.7)	(1.9–13.0)	(−2.0–5.3)	(−3.2)	
	F², %	—	15.8	0.0	0.0	0.0	0.0	0.0	0.0	21.6
	Interaction P-value	0.232	0.024	0.074	0.232					

ER% indicates excess risk percentage.

The short-term effect of air pollution was more prominent for the non-elderly. When we divided the population according to outcomes, it showed that the effects of PM2.5 and SO2 were more prominent among patients admitted to hospital or emergency departments. In contrast, the effect of NO2 was found to be more prominent in ICD patients.

The funnel plots and the outcomes of the Egger’s test suggested that there was no asymmetry of results for most air pollutants, except for NO2: (Egger’s test, P = 0.001) (Supplemental Figure 2). For most pollutants, the results of sensitivity analysis were largely consistent with the main analysis (Supplemental Table IV-IX).

The long-term effects of air pollution on atrial fibrillation: The evidence of the long-term association between air pollutants and AF is limited; in total, six studies were included in this meta-analysis. Among those studies, two
were conducted in Asia, three in Europe, and one in North America (Table I). They used Cox proportional hazards models to estimate the long-term associations between exposures to air pollutants and the incidence of AF, and all of them were adjusted to common variables including sex, age, income, and smoking (Supplemental Table II). The range of daily mean pollution levels in long-term studies were 1.45-25 μg/m³ for PM$_{2.5}$, 13-49.1 μg/m³ for PM$_{10}$, 8.08-34 ppb for NO$_2$, 5.2-5.5 ppb for SO$_2$, 18.0-45.8 ppb for O$_3$, and 560-600 ppb for CO (Supplemental Table III). For the long-term effect, ER per 10 μg/m³ increase of pollutants was 11.6% (3.1%-20.7%) for PM$_{2.5}$ and 3.4% (3.2%-3.5%) for PM$_{10}$; per 10 ppb increment of gaseous pollution was 1.7% (0.1%-3.3%) for NO$_2$, 0.5% (0.4%-0.7%) for SO$_2$, 0.7% (-7.3%-9.4%) for O$_3$, and 2.0% (1.3%-2.2%) for CO per 1000 ppb change (Supplemental Figure 3).

Discussion

In recent years, there has been a well-documented association between air pollutants, especially PM, and increased risk of stroke, pediatric pneumonia, and cardiovascular diseases. However, there are only a few studies examining the relationship between air pollutants and AF risk. Thus, in this study, we analyzed both the short- and long-term effects of ambient air pollutants on AF. Our results suggested that higher concentrations of air pollution (PM$_{2.5}$, SO$_2$, and NO$_2$) may increase AF occurrence in the short term in patients with AF history or those who are considered high risk. There was a trend that PM$_{10}$ increased the risk of AF, but it was not statistically significant. In the long term, all pollutants (PM$_{2.5}$, PM$_{10}$, SO$_2$, NO$_2$, and CO) were determined to be associated with AF incidence in healthy population, except for O$_3$. Our analysis confirmed that ambient air pollution was significantly associated with health problems.

Previously, Shao, et al. also did a meta-analysis on the association between air pollution and the development of AF, which only included four studies. Their results showed there was a statistically significant association between AF occurrence and all air pollutants (PM$_{2.5}$, SO$_2$, NO$_2$, O$_3$, and CO), which was partly different from our findings. The primary explanations for the difference may be the number of included studies; further, the different lags we selected may have also contributed to this discrepancy. Although we fail to find an apparent effect of short-term exposure to PM$_{10}$, O$_3$, and CO on AF, the results showed that ambient exposure to those pollutants increases the risk for atrial fibrillation development in the long term. The discrepancy might be explained by the different time windows, which addressed the cumulative effect of past exposures on outcomes. Time-series analyses usually capture the most immediate acute effect of a few days of exposure in the following days. In contrast, the cumulative long-term effect of air pollution is of a different order of magnitude compared to acute effects.

Remarkably, the short-term effect of ambient air pollutants on AF was different by region, with Asia showing a more prominent trend. This may be due to the different levels of air pollutants in different regions. Therefore, further investigation is needed to determine if there is a concentration-response function between the levels of air pollutant and AF risk. The individuals with ICDs or pacemakers represent different base populations concerning the baseline risk of AF. The subgroup analysis suggested the effect of air pollution on AF is different between patients with ICDs and the general population. Surprisingly, it showed that the effects of PM$_{2.5}$ and SO$_2$ were more prominent in patients admitted to hospitals or emergency departments. In contrast, the effect of NO$_2$ was more prominent among ICD patients. Patients with ICDs or pacemakers may have more underlying diseases, thus, having a higher rate of AF incidence compared to the general population. AF has been considered a heterogeneous disease, and the incidence of AF varies by age and gender, so we have to analyze the effect of air pollutants on AF in different population stratification by age or gender. Surprisingly, we found that the effect of air pollutants was more prominent among males and the non-elderly. It is possible that different populations have different sensitivities to air pollutants, but this mechanism is hypothetical and requires further research.

Although recent studies have shown that air pollution and air PM are associated with AF, the underlying mechanisms of this association remain to be unknown. There are several possible reasons that might explain this association. First, acute autonomic nervous system dysfunction has been demonstrated in air pollution study, which could lead to decreased heart rate variability, thus, AF may be triggered by autonomic imbalance. This mechanism was thought to be the most plausible reason for the short-term effect. Second, exposure to air PM can elicit an acute-phase response and an increase right heart pressure. Third, irritants can cross the pulmonary epithelium directly into circulation, which may affect blood coagulability. Besides, acute exacerbations of pulmonary diseases such as COPD during short-term exposure to air pollutants might potentiate the risk of arrhythmia. We believe these pathophysiologic changes can provide a good rationale for the hypothesis that short-term exposure to air pollutants can trigger AF in patients with AF history or those who are considered as high risk. The underlying mechanisms for AF are complex, mainly including atrial fibrosis, altered calcium homeostasis, inflammation, and oxidative stress. An increasing body of studies indicated that air pollutant involves several pathophysiology processes of AF such as inflammation, oxidative stress, and autonomic imbalance. Thus, long-term exposures to air pollutants might increase the risk of AF.

Study limitations: This study has several limitations. First, we found significant heterogeneity in the relationship between PM$_{2.5}$, PM$_{10}$, and AF, but we failed to decrease the heterogeneity in any subgroup analysis. The differences in other factors such as individual patient characteristics, sample size, and study design may be the cause of the observed heterogeneity. Second, data from monitoring sites represents the average levels of air pollutants of regions, so it did not reflect the personal exposure situation. Moreover, the source of air pollutants was different between regions where these studies were conducted. For example, PM$_{2.5}$ and NO$_2$ may mainly be used
as proxies for traffic-related air pollution in some regions. Third, most studies reported effect for single air pollutants, and only two studies provided the effect estimates for multiple pollutants model. Those single-pollutant models did not consider the potential additive effects of multiple pollutants, which may overestimate the effect of a single pollutant. However, most of these studies adjusted for meteorological factors, such as temperature, humidity, and seasonality. Fourth, although we did some subgroup analysis according to location, outcomes, age, and gender, the number of studies in some subgroup was too little. Thus, the results of our subgroup analysis need to be further confirmed in the future. Fifth, we did not perform a subgroup analysis according to different AF types because of insufficient data. Finally, those studies included in our meta-analysis were all observational studies. Thus, they may carry over uncontrolled biases such as selection bias and information bias.

Conclusion
Our meta-analysis indicated that short-term change in ambient air pollution, as measured by the concentrations of PM$_{2.5}$, NO$_2$, and SO$_2$, is associated with AF within days. Besides, it is suggested long-term exposure to air pollutants was found to be associated with the increased incidence of AF. To better understand those relationships and the related public health impact in the most polluted regions of the world, more high-quality studies are needed in the future.

Disclosure
Conflicts of interest: The authors declare no conflict of interest.

Authors’ Contributions: Liangrong Zheng conceived of the idea for this review. Miao Chen and Jianqiang Zhao independently did the literature search and data extraction. Miao Chen and Chengui Zhuo did the statistical analyses. Jianqiang Zhao interpreted the statistical analyses. Miao Chen wrote the first draft of the manuscript. All authors revised and approved the final manuscript.

References
1. Benjamin EJ, Levy D, Vaziri SM, D’Agostino RB, Belanger AJ, Wolf PA. Independent risk factors for atrial fibrillation in a population-based cohort. The Framingham Heart Study. JAMA 1994; 271: 840-4.
2. Lavie CJ, Pandey A, Lau DH, Alpert MA, Sanders P. Obesity and atrial fibrillation prevalence, pathogenesis, and prognosis: effects of weight loss and exercise. J Am Coll Cardiol 2017; 70: 2022-35.
3. Kauwbara M, Niwa K, Nishihara S, et al. Hyperuricemia is an independent competing risk factor for atrial fibrillation. Int J Cardiol 2017; 231: 137-42.
4. Gallagher C, Hendriks JML, Elliott AD, et al. Alcohol and incident atrial fibrillation - A systematic review and meta-analysis. Int J Cardiol 2017; 246: 46-52.
5. Forouzanfar MH, Alexander L, Anderson HR, et al. Global, regional, and national comparative risk assessment of 79 behavioural, environmental and occupational, and metabolic risks or clusters of risks in 188 countries, 1990-2013: a systematic analysis for the Global Burden of Disease Study 2013. Lancet 2015; 386: 2287-323.
6. Xia Y, Wu Q, Wang H, et al. Global, regional, and national comparative risk assessment of 84 behavioural, environmental and occupational, and metabolic risks or clusters of risks for 195 countries and territories, 1990-2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet 2018; 392: 1923-94.
7. Nhug NT, Amini H, Schindler C, et al. Short-term association between ambient air pollution and pneumonia in children: a systematic review and meta-analysis of time-series and case-crossover studies. Environ Pollut 2017; 230: 1000-8.
8. Wang Y, Eliot MN, Wennelius GA. Short-term changes in ambient particulate matter and risk of stroke: a systematic review and meta-analysis. J Am Heart Assoc 2014; 3: e000983.
9. Parker JD, Kravets N, Vaidyanathan A. Particulate matter air pollution exposure and heart disease mortality risks by race and ethnicity in the United States: 1997 to 2009 National Health Interview Survey with mortality follow-up through 2011. Circulation 2018; 137: 1688-97.
10. Gold DR, Litonjua A, Schwartz J, et al. Ambient pollution and heart rate variability. Circulation 2000; 101: 1267-73.
11. van Eeden SF, Hogg JC. Systemic inflammatory response induced by particulate matter air pollution: the importance of bone-marrow stimulation. J Toxicol Environ Health Part A 2002; 65: 1597-613.
12. Fiorito G, Vlaanderen J, Polidoro S, et al. Oxidative stress and inflammation mediate the effect of air pollution on cardio- and cerebrovascular disease: a prospective study in nonsmokers. Environ Mol Mutagen 2018; 59: 234-46.
13. DerSimonian R, Laird N. Meta-analysis in clinical trials. Control Clin Trials 1986; 7: 177-88.
14. Normand SL. Meta-analysis: formulating, evaluating, combining, and reporting. Stati Med 1999; 18: 321-59.
15. Shin S, Burnett RT, Kwong JC, et al. Ambient air pollution and the risk of atrial fibrillation and stroke: a population-based cohort study. Environ Health Perspect 2019; 127: 87009.
16. Kim IS, Yang PS, Lee J, et al. Long-term exposure of fine particulate matter air pollution and incident atrial fibrillation in the general population: a nationwide cohort study. Int J Cardiol 2019; 283: 178-83.
17. Stockfelt L, Andersson EM, Molnár P, et al. Long-term effects of total and source-specific particulate air pollution on incident cardiovascular disease in Gothenburg, Sweden. Environ Res 2017; 158: 61-71.
18. Mourad M, Sajadieh A, Christensen JS, et al. Long-term exposure to traffic-related air pollution and risk of incident atrial fibrillation: a cohort study. Environ Health Perspect 2017; 125: 422-7.
19. Carey IM, Anderson HR, Atkinson RW, et al. Traffic pollution and the incidence of cardiorespiratory outcomes in an adult cohort in London. Occup Environ Med 2016; 73: 849-56.
20. Rich DQ, Mittelman MA, Link MS, et al. Increased risk of paroxysmal atrial fibrillation episodes associated with acute increases in ambient air pollution. Environ Health Perspect 2006; 114: 120-3.
21. Bunch TJ, Horne BD, Asirvatham SJ, et al. Atrial fibrillation hospitalization is not increased with short-term elevations in exposure to fine particulate air pollution. Pacing Clin Electrophysiol 2011; 34: 1475-9.
22. Link MS, Luttmann-Gibson H, Schwartz J, et al. Acute exposure to air pollution triggers atrial fibrillation. J Am Coll Cardiol 2013; 62: 816-25.
23. Milojevic A, Wilkinson P, Armstrong B, Bhaskaran K, Smeeth L, Hajat S. Short-term effects of air pollution on a range of cardiovascular events in England and Wales: case-crossover analysis of the MINAP database, hospital admissions and mortality. Heart 2014; 100: 1093-8.
24. Sade MY, Vodonos A, Novack V, et al. Can air pollution trigger
an onset of atrial fibrillation: a population-based study. Air Qual Atmos Health 2015; 8: 413-20.

25. Vaduganathan M, De Palma G, Manerba A, et al. Risk of cardiovascular hospitalizations from exposure to coarse particulate matter (PM10) below the European Union Safety Threshold. Am J Cardiol 2016; 117: 1231-5.

26. Solimini AG, Renzi M. Association between air pollution and emergency room visits for atrial fibrillation. Int J Environ Res Public Health 2017; 14: 661.

27. Li H, Wu J, Wang A, et al. Effects of ambient carbon monoxide on daily hospitalizations for cardiovascular disease: a time-stratified case-crossover study of 460,938 cases in Beijing, China from 2013 to 2017. Environ Health 2018; 17: 1.

28. Liu X, Kong D, Liu Y, et al. Effects of the short-term exposure to ambient air pollution on atrial fibrillation. Pacing Clin Electrophysiol 2018; 41: 1441-6.

29. Amsalu E, Guo YM, Li HB, et al. Short-term effect of ambient sulfur dioxide (SO2) on cause-specific cardiovascular hospital admission in Beijing, China: a time series study. Atmos Environ 2019; 208: 74-81.

30. Amsalu E, Wang T, Li H, et al. Acute effects of fine particulate matter (PM2.5) on hospital admissions for cardiovascular disease in Beijing, China: a time-series study. Environment Health 2019; 18: 1-2.

31. Saifipour A, Azhari A, Pourmogpaddas A, et al. Association between ambient air pollution and hospitalization caused by atrial fibrillation. ARYA Atheroscler 2019; 15: 106-12.

32. Kwon OK, Kim SH, Kang SH, et al. Association of short- and long-term exposure to ambient air pollution on atrial fibrillation. Eur Prev Cardiol 2019; 26: 1208-16.

33. Shao Q, Liu T, Korantzopoulos P, Zhang Z, Zhao J, Li G. Association between air pollution and development of atrial fibrillation: a meta-analysis of observational studies. Heart Lung 2016; 45: 557-62.

34. Kunzli N, Medina S, Kaiser R, Quenel P, Horak F Jr, Studnicka M. Assessment of deaths attributable to air pollution: should we use risk estimates based on time series or on cohort studies? Am J Epidemiol 2001; 153: 1050-5.

35. Watkins A, Danilewitz M, Kusha M, et al. Air pollution and arrhythmic risk: the smog is yet to clear. Can J Cardiol 2013; 29: 734-41.

36. Pope 3rd CA, Hansen ML, Long RW, et al. Ambient particulate air pollution, heart rate variability, and blood markers of inflammation in a panel of elderly subjects. Environment Health Perspect 2004; 112: 339-45.

37. Peters A, Fröhlich M, Döring A, et al. Particulate air pollution is associated with an acute phase response in men; results from the MONICA-Augsburg Study. Eur Heart J 2001; 22: 1198-204.

38. Rich DQ, Freudenberger RS, Ohman-Strickland P, Cho Y, Kipen HM. Right heart pressure increases after acute increases in ambient particulate concentration. Environmental Health Perspect 2008; 116: 1167-71.

39. Lucking AJ, Lundback M, Mills NL, et al. Diesel exhaust inhalation increases thrombus formation in man. Eur Heart J 2008; 29: 3043-51.

40. Nattel S, Harada M. Atrial remodeling and atrial fibrillation: recent advances and translational perspectives. J Am Coll Cardiol 2014; 63: 2335-45.

41. Korantzopoulos P, Kolettis TM, Galaris D, Goudevenos JA. The role of oxidative stress in the pathogenesis and perpetuation of atrial fibrillation. Int J Cardiol 2007; 115: 135-43.

Supplemental Files

Supplemental Text
Supplemental Figures 1-3
Supplemental Tables I-IX

Please see supplemental files; https://doi.org/10.1536/ihj.20-523