Urban Computing collects heterogeneous data from diverse sources, integrates it and analyzes it to deal with the challenges faced by the Urban cities. Due to rapid urbanization it has emerged as an important research area. Urban computing connects unobtrusive and ubiquitous sensing technologies, advanced data management and analytics models, and novel visualization methods, to create win-win-win solutions that improve urban environment, human life quality, and city operation systems. It has various areas of application include cultural archiving, energy consumption, health, social interaction, transportation and environment. In this paper we discuss various key challenges and issues related to traffic management in urban cities.

References

1. Urban Computing: Concepts, Methodologies, and Applications by YU ZHENG, (Microsoft Research), LICIA CAPRA, (University College London), OURI WOLFSON, (University of Illinois at Chicago), HAI YANG, (Hong Kong University of Science and Technology).
2. www.slideshare.net/Mining In The Middle Of The City: The need of Big Data for Smart city.
3. S. Castro, D. Zhang, C. Chen, S. Li, and G. Pan. 2013. From taxi GPS traces to social and community dynamics: A survey. ACM Computer Survey 46, 2, Article 17, 34 pages
4. Y. Zheng, and J. Hu. 2012. Inferring the root cause in road traffic anomalies. In Proceedings of the 2012 IEEE International Conference on Data Mining. IEEE, 141–150.
5. C. Gonz´alez, C. A. Hidalgo, and A. L. Barab´asi. 2008. Understanding individual human mobility patterns. Nature 453, 7196, 779–782.
6. Y. Zheng, and O. Wolfson. 2013. T-Share: A large-scale dynamic taxi ridesharing service. In Proceedings of IEEE International Conference on Data Engineering IEEE.
7. X. Pang, S. Chawla, W. Liu, and Y. Zheng. 2013. On Detection of Emerging Anomalous Traffic Patterns Using GPS Data. Data and Knowledge Engineering (DKE) 87, 357–373.
8. J. Yuan, Y. Zheng, X. Xie, and G. Sun. 2011b. Driving with knowledge from the physical world. In Proceedings of 17th SIGKDD Conference on Knowledge Discovery and Data Mining. ACM, 316–324
9. J. Yuan, Y. Zheng, C. Zhang, W. Xie, X. Xie, G. Sun, and Y. Huang. 2010a. T-Drive: Driving directions based on taxi trajectories. In Proceedings of ACM SIGSPATIAL Conference on Advances in Geographical Information Systems. ACM, 99–108. J. Yuan, Y. Zheng, C. Zhang, X. Xie, and G. Sun. 2010
10. J. Yuan, Y. Zheng, X. Xie, and G. Sun. 2013b. T-Drive: Enhancing driving directions with taxi drivers’ intelligence. Transactions on Knowledge and Data Engineering 25, 1, 220.
11. Y. Zheng, Y. Chen, Q. Li, X. Xie, and W. Y. Ma. 2010b. Understanding transportation modes based on GPS data for web applications. ACM Transactions on the Web 4, 1, 1–36.
12. Y. Xue, R. Zhang, Y. Zheng, X. Xie, J. Huang, and Z. Xu. 2013. Destination prediction by sub-trajectory synthesis and privacy protection against such prediction. In Proceedings of the 29th IEEE International Conference on Data Engineering. IEEE, 254–265.
13. Thiagarajan, L. Ravindranath, K. LaCurts, S. Madden, H. Balakrishnan, S. Toledo, and J. Eriksson. 2009. VTrack: Accurate, energy-aware road traffic delay estimation using mobile phones. In Proceedings of the 7th ACM Conference on Embedded Networked Sensor Systems.
14. Lee, H. Wang, R. Cheu, and S. Teo. 2004. Taxi dispatch system based on current demands and real-time traffic conditions. Transportation Research Record: Journal of the Transportation Research Board, 1882(-1):193–200.
15. Yuan, Y. Zheng, L. Zhang, X. Xie, and G. Sun. 2011a. Where to find my next passenger? In Proceedings of 13th ACM International Conference on Ubiquitous Computing. ACM, 109–118.

Index Terms

Computer Science Information Sciences

Keywords
Urban computing, urban informatics, big data, human mobility, urban sensing, knowledge fusion, computing with heterogeneous data.