Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company’s public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
Investigation of time-fractional SIQR Covid-19 mathematical model with fractal-fractional Mittage-Leffler kernel

Adnan a, Amir Ali a, Mati ur Rahman b, Muhammad Arfan a, Zahir Shah c,*, Poom Kumam d,e,*, Wejdan Deebani f

a Department of Mathematics, University of Malakand, Dir(L), Khyber Pakhtunkhwa, Pakistan
b School of Mathematical Science, Shanghai Jiao Tong University, Shanghai, PR China
c Department of Mathematical Sciences, University of Lakki Marwat, Lakki Marwat 28420, Khyber Pakhtunkhwa, Pakistan
d Fixed Point Research Laboratory, Fixed Point Theory and Applications Research Group, Center of Excellence in Theoretical and Computational Science (TaCS-CoE), Faculty of Science, King Mongkut’s University of Technology Thonburi (KMUTT), 126 Pracha Uthit Rd., Bang Mod, Thung Khru, Bangkok 10140, Thailand
e Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 40402, Taiwan
f King Abdulaziz University, College of Science & Arts, Department of Mathematics, Rabigh, Saudi Arabia

Received 2 September 2021; revised 20 December 2021; accepted 9 January 2022
Available online 20 January 2022

KEYWORDS
SIQR; COVID-19; Fractional mathematical model; Theoretical result; Fractional Adam-Bashforth method

Abstract In this manuscript, we investigate a nonlinear SIQR pandemic model to study the behavior of covid-19 infectious diseases. The susceptible, infected, quarantine and recovered classes with fractal fractional Atangana-Baleanu-Caputo (ABC) derivative is studied. The non-integer order ν and fractal dimension q in the proposed system lie between 0 and 1. The existence and uniqueness of the solution for the considered model are studied using fixed point theory, while Ulam-Hyers stability is applied to study the stability analysis of the proposed model. Further, the Adams-Bashforth numerical technique is applied to calculate an approximate solution of the model. It is observed that the analytical and numerical calculations for different fractional-order and fractal dimensions confirm better converging effects of the dynamics as compared to an integer order.

© 2022 THE AUTHORS. Published by Elsevier BV on behalf of Faculty of Engineering, Alexandria University. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
1. Introduction

The term infection is broadly familiar with the reproduction of microbes like viruses, bacteria, fungi inside the body [1]. In general, infection-related diseases are often quickly recovered, but many infectious diseases have historically adapted to societal spreading in the population. This spreading of infectious diseases such as HIV, Malaria, TB, and contagion (flu and cough) remains to be enormous, causing chaos on human populations [2]. These diseases are typically toxic, which increases their activity in the proper circumstances, such as in the atmosphere, on the surface, within the water, and in the edible food. It is hard to estimate the natural fluctuations of disease having infections across the population, so qualitative and quantitative calculations may be valuable [3].

Currently, numerous pandemic models have extensively been studied. Such as, Ahmad et al. [4] recently used the NSFD scheme to model and calculate the dynamical effects of the SEIQV reaction-diffusion pandemic model. The formulation of the HB epidemic model with saturation occurrence rate is expressed by Khan et al. [5]. Numerical schemes for the solutions of pandemic models for diseases having infections like HIV, dengue fever, and influenza are considered to study the critical points, fixed points and the stability of the models [6]. Moreover, the dynamical effects of a speculative pandemic infectious model include quarantine class, where the existence of the result and uniqueness of the global positive solutions has been investigated [7]. Similarly, the dynamical effects of current coronavirus (2019-nCoV) in terms of the mathematical models have been considered between the unknown hosts and bats, as well as among the people and the accumulation having infections [8]. The calculated central quantity, so, the formation and exploration of mathematical pandemic representation are productive and having obvious methods to investigate the dynamical properties of diseases with harmful infections.

In the current era, fractional calculus (FC) captured a great focus in several fields of mathematics, engineering, economics, control theory, and finance [9–13]. It has revealed that by using the fractional operator, one can describe many physical and biological problems associated with real processes with a higher degree of freedom [14]. The attention of modeling in fractional differential equations (FDEs), the complex real-world phenomenon is increasing to expecting its many properties which are generally absent in integer-order differential equations. It should be noted that the generalization of the integer order calculus of differential and integral equations to sensible or complex numbers is verified by modern calculus [15–20]. Currently, a lot of mathematical models have been proposed in the area of FC, such that SEIR, HIV, TB, population mathematical representation, cancer representation, predator and prey models, etc.

The investigation of fractal-dimension in FC expresses the non-integer order of the independent variable. The concept between fractional and fractal calculus is first presented by Atangana [21,22]. Since then, many applications both conditional and numerical study of fractional-order differential and integral equations for application of the fractal-fractional derivative has been extensively studied [23–32]. The fractal-fractional DEs change the order and as well as dimension of the equation to rational form. This quality generalizes differential equations to any arbitrary order and dimension. The novel coronavirus covid-19 has been discussed by using different techniques as fractional order DEs [33–37].

Here, we investigate a nonlinear SIQR pandemic model to analyze the dynamical effects of disease having infections. In the proposed model quarantine (Q) is a helpful plan to stop and control the spreading of many infectious diseases. Nowadays, investigation on the benefits of isolation and on the flow of infection has extensively discussed [38]. Similarly, the numerical scheme for structure conserving of the dynamics of infectious diseases is studied in [39]. Further, the stochastic behavior of the influenza model with a regular treatment process was introduced [40], where the dynamical behavior of the coronavirus model has been discussed in detail [41].

Motivated from the above discussion, the current manuscript describes the dynamical behavior of the proposed model [42] under $\frac{d^\alpha}{d t^\alpha}$ derivative of fractal-fractional in sense of Caputo, to obtain a greater parametric quantity than integer-order. The considered problem has a fractional-order α and fractal dimension q express phenomenon lying between 0 and 1. A good result is obtained, by having the whole density of all compartments converge rapidly for a short interval.

The fractal-fractional sense of the proposed model [42] is given as under

$$\frac{d^\alpha}{d t^\alpha} S(t) = \mathcal{N} - \beta S \int_{0}^{t} S(t) \, dt,$$

$$\frac{d^\alpha}{d t^\alpha} I(t) = \beta S(t) \left(1 - \frac{I(t)}{C_0} \right) - \gamma I(t) - \nu I(t),$$

$$\frac{d^\alpha}{d t^\alpha} Q(t) = \gamma I(t) - \nu Q(t),$$

$$\frac{d^\alpha}{d t^\alpha} R(t) = \nu Q(t),$$

$$S(0) = S_0 \geq 0, \quad I(0) = I_0 \geq 0, \quad Q(0) = Q_0 \geq 0,$$

$$R(0) = R_0 \geq 0,$$

where the detail of the utilized variables for the separate classes and parameters associated with model (1) are declared below:

- **S(t):** Susceptible class at time t(those individuals that may be infected any time),
- **I(t):** Infected class for time t(those individuals who has the infection and have the capability to transfer disease to other individuals),
- **Q(t):** Quarantine compartment at time t(the isolated individuals, to control the spreading of disease from one to another individual),
- **R(t):** Recovered individuals at time t(those people who are healthy now and have develop immunity).

- \mathcal{N}: Total population in the affected region called susceptible class, b: per capita natural-mortality rate, ν: the average count minimal constants, τ: average removing rate of infected individuals from I; γ: the average removing rate of individuals who may or may not be infected from Q, where κ: coincidence rate of I and Q, and κ_2: the death rate due to disease in I and κ_2: the death rate due to disease in Q.

The manuscript is outlined as follows: In Section 2, we present the definitions and some basic notation from the fractional calculus. Section 3 is devoted to show the existence results and unique solution of the proposed problem by using fixed point theory. In Section 4, the two steps Adam-Bashforth the numerical technique is applied for the numerical solution of the SIQR epidemic model. The graphical representation is presented in the same section. Finally, we conclude our work in Section 5.
2. Preliminaries

Definition 1 [43]. Let \(\mathcal{Y}(t) \) in an open interval \((a, b)\) be a continuous function with fractional-order \(0 < \varphi \leq 1\) and fractal dimension \(0 < q \leq 1\) can be defined in \(\mathcal{A} \mathcal{B} \mathcal{C} \) as

\[
\mathcal{A} \mathcal{B} \mathcal{C}(\mathcal{Y}(t)) = \frac{d}{dt} \mathcal{A} \mathcal{B} \mathcal{C}(\mathcal{Y}(t)) - \frac{d}{dt} \mathcal{A} \mathcal{B} \mathcal{C}(\mathcal{Y}(t)) \times \int_{0}^{t} (t - s)^{\varphi - 1} \mathcal{A} \mathcal{B} \mathcal{C}(\mathcal{Y}(s)) ds,
\]

where \(\mathcal{A} \mathcal{B} \mathcal{C}(0) = 1 = \mathcal{A} \mathcal{B} \mathcal{C}(1) \) is said to be the normalized constant.

Definition 2 [43]. let us assume that \(\mathcal{Y}(t) \) in an open interval \((a, b)\) be a continuous function with fractional-order \(0 < \varphi \leq 1\) and fractal dimension \(0 < q \leq 1\) in sense of \(\mathcal{A} \mathcal{B} \mathcal{C} \) can be defined as

\[
\mathcal{A} \mathcal{B} \mathcal{C}(\mathcal{Y}(t)) = \frac{1 - \varphi}{\mathcal{A} \mathcal{B} \mathcal{C}(\mathcal{Y}(t))} \mathcal{A} \mathcal{B} \mathcal{C}(\mathcal{Y}(t)) + \frac{q\varphi}{\mathcal{A} \mathcal{B} \mathcal{C}(\mathcal{Y}(t))} \times \int_{0}^{t} (t - s)^{\varphi - 1} \mathcal{A} \mathcal{B} \mathcal{C}(\mathcal{Y}(s)) ds.
\]

Lemma 1 [44]. Let suppose a solution define for the proposed system in the form of

\[
\mathcal{A} \mathcal{B} \mathcal{C}(\mathcal{Y}(t)) = \frac{1 - \varphi}{\mathcal{A} \mathcal{B} \mathcal{C}(\mathcal{Y}(t))} \mathcal{A} \mathcal{B} \mathcal{C}(\mathcal{Y}(t)) + \frac{q\varphi}{\mathcal{A} \mathcal{B} \mathcal{C}(\mathcal{Y}(t))} \times \int_{0}^{t} (t - s)^{\varphi - 1} \mathcal{A} \mathcal{B} \mathcal{C}(\mathcal{Y}(s)) ds
\]

is supplied by

\[
\mathcal{A} \mathcal{B} \mathcal{C}(\mathcal{Y}(t)) = \frac{1 - \varphi}{\mathcal{A} \mathcal{B} \mathcal{C}(\mathcal{Y}(t))} \mathcal{A} \mathcal{B} \mathcal{C}(\mathcal{Y}(t)) + \frac{q\varphi}{\mathcal{A} \mathcal{B} \mathcal{C}(\mathcal{Y}(t))} \times \int_{0}^{t} (t - s)^{\varphi - 1} \mathcal{A} \mathcal{B} \mathcal{C}(\mathcal{Y}(s)) ds
\]

Theorem 1 [45]. Let \(\mathcal{Y} \subset \mathcal{Z} \) which is convex, assume that the two operators \(\Phi_{1} \) and \(\Phi_{2} \) with

1. \(\Phi_{1}(\mathcal{Y}) + \Phi_{2}(\mathcal{Y}) \in \mathcal{Y} \) for every \(\mathcal{Y} \in \mathcal{Z} \);
2. \(\Phi_{1} \) has contraction;
3. \(\Phi_{2} \) is compact and continuous.

having the equation \(\Phi_{1}(\mathcal{Y}) + \Phi_{2}(\mathcal{Y}) = \mathcal{Y} \), has one or many solution \(\mathcal{Y} \).

3. Theoretical Approach of the proposed model

Here, we check the existence of result, unique solution and stability analysis via fixed point approach. To prove existence and unique solution for the selected model (1), a Banach-space can be define as \(\mathcal{Y} = \mathcal{G}[0, T] \times \mathcal{R}^{1} \), where \(\mathcal{G} = G[0, T] \) and the space norm is

\[
\| \mathcal{G} \|= ||\mathcal{G}|| = \max_{t \in [0, T]} [a(t)] + ||b(t)|| + ||c(t)|| + ||d(t)||
\]

For this purpose, due to the above discussion we need the integral as differential, here we may rewrite the proposed problem (1) as

\[
\begin{align*}
\mathcal{A} \mathcal{B} \mathcal{C}(\mathcal{Y}(t)) &= \frac{1}{\mathcal{A} \mathcal{B} \mathcal{C}(\mathcal{Y}(t))} \mathcal{A} \mathcal{B} \mathcal{C}(\mathcal{Y}(t)) + \frac{q\varphi}{\mathcal{A} \mathcal{B} \mathcal{C}(\mathcal{Y}(t))} \times \int_{0}^{t} (t - s)^{\varphi - 1} \mathcal{A} \mathcal{B} \mathcal{C}(\mathcal{Y}(s)) ds, \\
\text{where } \mathcal{A} \mathcal{B} \mathcal{C}(0) &= 1 = \mathcal{A} \mathcal{B} \mathcal{C}(1) \text{ is said to be the normalized constant.}
\end{align*}
\]
Thus, the operator C is closed, hence C has contraction.

Now we show that D is compact relatively and D is bounded and equicontinuous. Clearly, the whole domain is defined for the operator D, so D is continuous, hence Ψ is continuous for arbitrary $\mathcal{Y} \in A$, as below we have

$$
\|D(\mathcal{Y})\| = \max_{t \in [0, \tau]} \left\| \int_0^t \left((1-s)^{\nu-1} \Psi(s, \mathcal{Y}(s)) \right) ds \right\|
\leq \frac{q^\nu}{\mathcal{B}(p) \Gamma(p)} \int_0^\tau (1-s)^{\nu-1} \left| (1-s)^{\nu-1} \Psi(s, \mathcal{Y}(s)) \right| ds
\leq \frac{q^\nu}{\mathcal{B}(p) \Gamma(p)} \left[\int_0^\tau (1-s)^{\nu-1} \left| (1-s)^{\nu-1} \Psi(s, \mathcal{Y}(s)) \right| ds \right].
$$

(10)

Hence, Eq. (10) shows that the operator D is bounded. Now for equicontinuity, assume that $t_1 > t_2 \in [0, \tau]$, we have

$$
\|D(\mathcal{Y}(t_2)) - D(\mathcal{Y}(t_1))\|
\leq \frac{q^\nu}{\mathcal{B}(p) \Gamma(p)} \int_0^{t_2} (t_2 - s)^{\nu-1} \left| (1-s)^{\nu-1} \Psi(s, \mathcal{Y}(s)) \right| ds
\leq \frac{q^\nu}{\mathcal{B}(p) \Gamma(p)} \left[\int_0^{t_2} (t_2 - s)^{\nu-1} \left| (1-s)^{\nu-1} \Psi(s, \mathcal{Y}(s)) \right| ds \right].
$$

Here right hand side of (11) will be zero, when $t_2 \rightarrow t_1$. And by continuity of D so $|D\mathcal{Y}(t_2) - D\mathcal{Y}(t_1)| \rightarrow 0$, as $t_2 \rightarrow t_1$.

Hence, D is bounded and uniformly continuous. By ‘Arzelá-Ascoli statement, a subset $\mathcal{Y} \in A$ of D is compact iff it is closed, bounded, and equi-continuous. As D is compact relatively and completely continuous. Through (1) and (5) we deduce that the proposed model has at least one solution.

The next result is related to uniqueness of the solutions.

Theorem 3. Due to assumption (U2), Eq. (5) has one solution, which implies that the considered model has unique solution if

$$
(1-\psi)\mathcal{B}(p) + q^\nu \frac{\mathcal{B}(p) \Gamma(p)}{\mathcal{B}(p) \Gamma(p)} < 1.
$$

Proof. Suppose the operator $J : \mathcal{Y} \rightarrow \mathcal{Y}$ by

$$
J\mathcal{Y}(t) = \mathcal{Y}_0(t) + \int_0^t \Psi(t, \mathcal{Y}(t)) - \Psi_0(t) \left((1-\psi)^{\nu-1} \mathcal{B}(p) \Gamma(p) \right) dt
\leq \frac{q^\nu}{\mathcal{B}(p) \Gamma(p)} \left[\int_0^t (t-x)^{\nu-1} \left| (1-x)^{\nu-1} \Psi(x, \mathcal{Y}(x)) \right| dx \right].
$$

(12)

Let $\mathcal{Y}, \mathcal{Y}^\prime \in \mathcal{Y}$, then

$$
\|J\mathcal{Y} - J\mathcal{Y}^\prime\| \leq \frac{q^\nu}{\mathcal{B}(p) \Gamma(p)} \left[\int_0^\tau (t-x)^{\nu-1} \left| (1-x)^{\nu-1} \Psi(x, \mathcal{Y}(x)) \right| dx \right]
\leq \frac{q^\nu}{\mathcal{B}(p) \Gamma(p)} \left[\int_0^\tau (t-x)^{\nu-1} \left| (1-x)^{\nu-1} \Psi(x, \mathcal{Y}(x)) \right| dx \right].
$$

(13)

and

$$
\Theta = \left[(1-\psi)\mathcal{B}(p) + q^\nu \frac{\mathcal{B}(p) \Gamma(p)}{\mathcal{B}(p) \Gamma(p)} \right].
$$

(14)

From (13) J has a contraction. Hence (5) has one solution. Thus the problem (1) has one solution.

3.1. Ulam-Hyers stability

In this part we define and take some useful consequences on stability for problem (1), the perturb parameter $\psi(t) \in C[0, T]$, which is solution dependent if satisfy $\psi(0) = 0$ as

- $|\psi(t)| \leq \epsilon$ for $\epsilon > 0$;
- $|\psi(t)| \leq \epsilon$ for $\epsilon > 0$.

Lemma 2. The perturb problem has a solution

$$
\mathcal{Y}_0(t) + \int_0^t \Psi(t, \mathcal{Y}(t)) + \psi(t),
$$

(15)

fulfill the given relation

$$
\left| \mathcal{Y}(t) - \mathcal{Y}_0(t) \right| \leq \left| \mathcal{Y}(t) - \mathcal{Y}_0(t) \right| + \left| \psi(t) \right| \leq \left| \mathcal{Y}(t) - \mathcal{Y}_0(t) \right| + \left| \psi(t) \right|.
$$

(16)

Theorem 4. Utilizing assumption (U2) and Eq. (14), solution of Eq. (5) has UH stability and accordingly, systematic solution of the proposed system is UH-stable if $\Theta < 1$, as given in (14)

Proof. Consider $\mathcal{Y} \in \mathcal{Y}$ be solution and $\mathcal{T} \in \mathcal{Y}^\prime$ be a unique solution of Eq. (5), then

$$
\left| \mathcal{T}(t) - \mathcal{T}(t) \right| = \left| \mathcal{T}(t) - \mathcal{T}_0(t) \right| + \left| \Psi(t, \mathcal{T}(t)) - \Psi_0(t) \right|
\leq \frac{(1-\psi)^{\nu-1} \mathcal{B}(p) \Gamma(p)}{\mathcal{B}(p) \Gamma(p)} \left[\int_0^\tau (t-x)^{\nu-1} \left| (1-x)^{\nu-1} \Psi(x, \mathcal{Y}(x)) \right| dx \right].
$$

(14)
\[
\begin{align*}
&+ \frac{q^\varphi}{\mathcal{B}(\varphi)\Gamma(\varphi)} \int_0^t (t-x)^{\nu-1} x^{\alpha-1} \Psi(x, \mathcal{S}(x))dx, \\
&\leq \nu_{\varphi, q} \left\| \frac{(1 - \varphi)^{1/\varphi}}{\mathcal{B}(\varphi)} (\mathcal{S}_{\mathcal{A}}(\varphi)) \right\| \mathcal{S}(x) \mathcal{T}(\mathcal{S}(x))dx, \\
&+ \frac{q^\varphi}{\mathcal{B}(\varphi)\Gamma(\varphi)} \mathcal{B}(\varphi)\Gamma(\varphi) \| \mathcal{S}(x) \mathcal{T}(\mathcal{S}(x))dx, \\
&\leq \nu_{\varphi, q} \Theta \mathcal{S}(x) \mathcal{T}(\mathcal{S}(x))dx.
\end{align*}
\]

(17)

From (17), maybe written as
\[
\mathcal{S}(x) \mathcal{T}(\mathcal{S}(x))dx \leq \nu_{\varphi, q} \Theta \mathcal{S}(x) \mathcal{T}(\mathcal{S}(x))dx.
\]

(18)

Hence which is the result of the determined stability. □

4. Qualitative analysis

In this section of the manuscript we have to determine the numerical approximate solution for fractal-fractional order of the proposed model (1), using \(\mathcal{A} \mathcal{B} \) derivative in sense of Caputo with famous fractal-fractional Adam-Bashforth iterative approximate scheme for approximate solution. Moreover, we apply the fractal-fractional \(\mathcal{A} \mathcal{B} \) approach to Interpreter the obtain approximate solution [46] of the system (1). According (3), the proposed system maybe written as:

\[
\begin{align*}
\mathcal{A} \mathcal{B} \mathcal{D}^\varphi(\mathcal{S}(t)) &= q^{\alpha-1} \mathcal{I}_1^\varphi(\mathcal{S}(t), t), \\
\mathcal{A} \mathcal{B} \mathcal{D}^\varphi(\mathcal{I}(t)) &= q^{\alpha-1} \mathcal{I}_2^\varphi(\mathcal{I}(t), t), \\
\mathcal{A} \mathcal{B} \mathcal{D}^\varphi(\mathcal{Q}(t)) &= q^{\alpha-1} \mathcal{I}_3^\varphi(\mathcal{Q}(t), t), \\
\mathcal{A} \mathcal{B} \mathcal{D}^\varphi(\mathcal{R}(t)) &= q^{\alpha-1} \mathcal{I}_4^\varphi(\mathcal{R}(t), t),
\end{align*}
\]

where \(\mathcal{I}_i, i = 1, 2, 3, 4 \) are discussed in (3), apply anti-derivative of random non-integer order \(\varphi \) and fractal-dimension \(q \) for the \(\alpha^\varphi \) equation of (3) using \(\mathcal{A} \mathcal{B} \mathcal{D} \), we get

\[
\mathcal{S}(t) - \mathcal{S}(0) = (1 - \varphi)^{1/\varphi} \mathcal{I}_1^\varphi(\mathcal{S}(t), t) + \frac{q^\varphi}{\mathcal{B}(\varphi)\Gamma(\varphi)} \int_0^t \frac{(t-x)^{\nu-1} x^{\alpha-1} \mathcal{I}_1^\varphi(\mathcal{S}(x), x)}{dx}.
\]

Set \(t = \mathcal{I}_i, \) for \(i = 0, 1, 2, 3 \ldots \),

\[
\begin{align*}
\mathcal{S}(t_{\mathcal{I}_i}) - \mathcal{S}(0) &= (1 - \varphi)^{1/\varphi} \mathcal{I}_1^\varphi(\mathcal{S}(t_{\mathcal{I}_i}), t_{\mathcal{I}_i}) + \frac{q^\varphi}{\mathcal{B}(\varphi)\Gamma(\varphi)} \int_0^{t_{\mathcal{I}_i}} \frac{(t_{\mathcal{I}_i}-x)^{\nu-1} x^{\alpha-1} \mathcal{I}_1^\varphi(\mathcal{S}(x), x)}{dx}, \\
&= (1 - \varphi)^{1/\varphi} \mathcal{I}_1^\varphi (t_{\mathcal{I}_i}) + \frac{q^\varphi}{\mathcal{B}(\varphi)\Gamma(\varphi)} \int_0^{t_{\mathcal{I}_i}} (t_{\mathcal{I}_i}-x)^{\nu-1} x^{\alpha-1} \mathcal{I}_1^\varphi(\mathcal{S}(x), x)dx.
\end{align*}
\]

The estimated function \(\mathcal{I}_1 \) in \([t_{\mathcal{I}_i}, t_{\mathcal{I}_{i+1}}] \) by the interpolation polynomial as follows

\[
\mathcal{I}_1 \approx \frac{\mathcal{I}_1}{h} (t - t_{\mathcal{I}_i}) - \frac{\mathcal{I}_1}{h} (t - t_{\mathcal{I}_{i+1}})
\]

and

\[
\mathcal{S}(t_{\mathcal{I}_i+1}) = \mathcal{S}(0) + \left(1 - \frac{\varphi}{\mathcal{B}(\varphi)\Gamma(\varphi)} \right) \frac{t_{\mathcal{I}_i}^{\nu-1}}{h} \left[\mathcal{I}_1 \left(\mathcal{S}(t_{\mathcal{I}_i}), t_{\mathcal{I}_i} \right) + \frac{q^\varphi}{\mathcal{B}(\varphi)\Gamma(\varphi)} \sum_{i=0}^\beta \frac{t_{\mathcal{I}_i}^{\nu-1}}{h} \mathcal{I}_1 \left(\mathcal{S}(t_{\mathcal{I}_i}), t_{\mathcal{I}_i} \right) \right].
\]

(20)

Calculate \(I_{t_{\mathcal{I}_i+1}}, \) \(I_{t_{\mathcal{I}_i}} \), and \(I_{t_{\mathcal{I}_i+1}} \) we obtain

\[
\begin{align*}
\mathcal{S}(t_{\mathcal{I}_i}) &= \mathcal{S}(0) + \frac{1}{\mathcal{B}(\varphi)\Gamma(\varphi)} \left(t_{\mathcal{I}_i} - t_{\mathcal{I}_{i-1}} \right) \left(t_{\mathcal{I}_i} - t_{\mathcal{I}_{i-1}} \right)^{\nu-1}, \\
&= \frac{1}{\mathcal{B}(\varphi)\Gamma(\varphi)} \left(t_{\mathcal{I}_i} - t_{\mathcal{I}_{i-1}} \right) \left(t_{\mathcal{I}_i} - t_{\mathcal{I}_{i-1}} \right)^{\nu-1} - \left(t_{\mathcal{I}_i} - t_{\mathcal{I}_{i-1}} \right)^\varphi, \\
&= \frac{1}{\mathcal{B}(\varphi)\Gamma(\varphi)} \left(t_{\mathcal{I}_i} - t_{\mathcal{I}_{i-1}} \right) \left(t_{\mathcal{I}_i} - t_{\mathcal{I}_{i-1}} \right)^{\nu-1} - \left(t_{\mathcal{I}_i} - t_{\mathcal{I}_{i-1}} \right)^\varphi, \\
&= \frac{1}{\mathcal{B}(\varphi)\Gamma(\varphi)} \left(t_{\mathcal{I}_i} - t_{\mathcal{I}_{i-1}} \right) \left(t_{\mathcal{I}_i} - t_{\mathcal{I}_{i-1}} \right)^{\nu-1} - \left(t_{\mathcal{I}_i} - t_{\mathcal{I}_{i-1}} \right)^\varphi.
\end{align*}
\]

(21)
In parallel, we calculate same numerical scheme for the other classes. The dynamical behavior of the susceptible compartment S for the domain t, where $t = 50$ and $t = 5$ respectively are presented in Fig. 1a and b. Fig. 1b is the magnified form of Fig. 1a. It is obvious that initially the susceptible class S shows the rise with the passage of time and then goes to a stable state, while the other three compartments Figs. 2, 3, a show decay and then converges to their equilibrium points at various fractional-order φ and fractal dimension q for $\eta = 0.5$.

The dynamical representation of the infected class I shows in Fig. 2a and b for the domain $t = 50$ to $t = 5$ respectively.

The magnified portion of Fig. 2a is the Fig. 2b. Initially, this class decay rapidly and then goes to stable and converges to the equilibrium points at different fractional-order φ and q for $\eta = 0.5$. Accordingly, the infection is controlled or tends to zero.

Fig. 3a and b shows the dynamical effect of Quarantine compartment Q for the domain $t = 50$ to $t = 5$ respectively. Fig. 3b is the magnified portion of Fig. 3a. This compartment shows rise initially for a short period of time and then converges to their equilibrium points at various fractional orders of φ and fractal dimension q for $\eta = 0.5$. It is concluded that with the passage of time the infection decreases due to the quarantine compartment, the said class rise and then goes to stable and converges to the equilibrium points at various fractional-order φ and fractal dimension q for $\eta = 0.5$.

In parallel, we calculate same numerical scheme for the other classes I, Q, and R respectively as

$$\mathbb{S}(t_{\varphi+1}) = \left\{ \begin{array}{l}
\mathbb{S}(0) + \frac{1}{\varphi \Gamma(\varphi)} \left(\varphi_{\varphi+1} \right) \left[t_1(\mathbb{S}(t), t_0) \right] + \sum_{n=0}^{\varphi} \frac{\varphi_{\varphi+1} t_1(\mathbb{S}(t), t_0)}{n!} \\
\quad \times \left[\varphi_{\varphi+1} \left[(\beta + 1 - \alpha)\varphi(\beta - \alpha + 2 + \varphi) - (\beta - \alpha)\varphi(\beta - \alpha + 2 + 2\varphi) \right] \right] \\
- \frac{1}{\varphi \Gamma(\varphi)} \left(\varphi_{\varphi+1} \right) \left[t_1(\mathbb{S}(t), t_0) \right] \left[(\beta + 1 - \alpha)^{\varphi+1} - (\beta - \alpha)^{\varphi}(\beta - \alpha + 1 + \varphi) \right] \right\},
\right.\nonumber$$

(23)

The dynamical representation of the infected class I shows in Fig. 2a and b for the domain $t = 50$ to $t = 5$ respectively.

The magnified portion of Fig. 2a is the Fig. 2b. Initially, this class decay rapidly and then goes to stable and converges to the equilibrium points at different fractional-order φ and q for $\eta = 0.5$. Accordingly, the infection is controlled or tends to zero.

$$\mathbb{I}(t_{\varphi+1}) = \left\{ \begin{array}{l}
\mathbb{I}(0) + \frac{1}{\varphi \Gamma(\varphi)} \left(\varphi_{\varphi+1} \right) \left[t_2(\mathbb{I}(t), t_0) \right] + \sum_{n=0}^{\varphi} \frac{\varphi_{\varphi+1} t_2(\mathbb{I}(t), t_0)}{n!} \\
\quad \times \left[\varphi_{\varphi+1} \left[(\beta + 1 - \alpha)\varphi(\beta - \alpha + 2 + \varphi) - (\beta - \alpha)\varphi(\beta - \alpha + 2 + 2\varphi) \right] \right] \\
- \frac{1}{\varphi \Gamma(\varphi)} \left(\varphi_{\varphi+1} \right) \left[t_2(\mathbb{I}(t), t_0) \right] \left[(\beta + 1 - \alpha)^{\varphi+1} - (\beta - \alpha)^{\varphi}(\beta - \alpha + 1 + \varphi) \right] \right\},
\right.\nonumber$$

(24)

the equilibrium points at different fractional-order φ and q for $\eta = 0.5$. Accordingly, the infection is controlled or tends to zero.

Fig. 3a and b shows the dynamical effect of Quarantine compartment Q for the domain $t = 50$ to $t = 5$ respectively. Fig. 3b is the magnified portion of Fig. 3a. This compartment shows rise initially for a short period of time and then converges to their equilibrium points at various fractional orders of φ and fractal dimension q for $\eta = 0.5$. It is concluded that with the passage of time the infection decreases due to the quarantine compartment, the said class rise and then goes to stable and converges to the equilibrium points at various fractional-order φ and fractal dimension q.
Fig. 1 Numerical simulation for the initial value $S_0 = 0.5$ of the susceptible class S for the proposed model (1) at four different arbitrary orders of ψ and q for $\eta = 0.5$.

Fig. 2 Numerical simulation for the initial value $I_0 = 0.1$ of the susceptible class I for the proposed model (1) at four different arbitrary orders of ψ and q for $\eta = 0.5$.

Fig. 3 Numerical simulation for the initial value $Q_0 = 0.00$ of the susceptible class Q for the proposed model (1) at four different arbitrary orders of ψ and q for $\eta = 0.5$.

Fig. 4 Numerical simulation for the initial value $R_0 = 0.00$ of the susceptible class R for the proposed model (1) at four different arbitrary orders of ψ and q for $\eta = 0.5$.
The dynamical behavior of the recovered class R for the domain $t = 50$ to $t = 5$ respectively are in Fig. 4a and b. where Fig. 4b is the magnified portion of Fig. 4a. The recovered class R get a rise and become stable when the infected class I and quarantine class Q decreases at various fractional orders φ and q for $\eta = 0.5$. As infected I and quarantine Q classes decrease the recovery class R rises and then become decreases. The stability occurs quickly at low fractional order of φ and q.

5. Conclusion

We have studied the nonlinear dynamics of the SIQR model with the fractal-fractional derivative. The existence and uniqueness of the solution of the proposed model are investigated by fixed point theory. For the stability analysis, the Ulam-Hyers stability approach is applied. To provide the analytical estimated solution we apply the Adams-Bashforth numerical scheme. Using values of the parameters from Table 1 we interpret the numerical solution and its behavior for the different transmission parameters for several arbitrary orders with fractal dimensions. The Quarantine class Q plays a vital role in the proposed model (1) to control the spreading of pandemic disease. It is noted that when the transmission rate decreases the infection also decreases the speed of spreading of Covid-19 infection. As a conclusion from the numerical results that quarantine individuals have a great influence on the transmission of Covid-19 infection. Since transmission of Covid-19 increase due to humans interactions though the first source of the disease was an animal or unknown host. Therefore, the minimization of the infection is subjected to the application of a quarantine policy. The investigation herein suggests that, that if the quarantine strategy is implemented in a true spirit, the infection will be certainly reduced.

Declaration of Competing Interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Acknowledgements

“The authors acknowledge the financial support provided by the Center of Excellence in Theoretical and Computational Science (TaCS-CoE), KMUTT”. Moreover, this research project is supported by Thailand Science Research and Innovation (TSRI) Basic Research Fund: Fiscal year 2021 under project number 64A306000005.

Table 1 Calculated numerical value of the parameters [42] utilized in proposed model (1).

Cases	γ	b	λ	τ	κ	κ_1	κ_2	η	
1	3	2.29	1.5	0.5	3.1	0.01	0.03	0.02	0.5
2	3	2.29	1.5	0.5	3.1	0.01	0.03	0.02	0.6
3	3	2.29	1.5	0.5	3.1	0.01	0.03	0.02	0.7
4	3	2.29	1.5	0.5	3.1	0.01	0.03	0.02	0.8
5	3	2.29	1.5	0.5	3.1	0.01	0.03	0.02	0.9

References

[1] A.H. Balmaseda, M.A. Pérez, R. Cuadra, S. Solano, J. Rocha, E. Harri, Assessment of the World Health Organization scheme for classification of dengue severity in Nicaragua, Am. J. Trop. Med. Hyg. 73 (6) (2005) 1059–1062.
[2] R. Mebha, S.R. Kumar, P. Yadav, P.V. Barde, P.N. Yergolkar, B.R. Erickson, et al, Recent ancestry of Kyasanur Forest disease virus, Emerg. Infect Dis. 15 (9) (2009) 1431.
[3] N. Nirwani, V.H. Badshah, R. Khandelwal, Dynamical study of an SIQR model with saturated incidence rate, nonlinear analysis and differential equations 6 (10) (2015) 564–570.
[4] N. Ahmad, N. Shahid, Z. Iqbal, M. Jawaz, M. Rafiq, S.S. Akram, M.K. Butt, A. Khaliq, S. Azam, Numerical treatment of stochastic heroin epidemic model, Adv. Differ. Eqs. 2019 (1) (2019) 1–17.
[5] Z. Cao, W. Feng, X. Wen, L. Zu, M. Cheng, Dynamics of a stochastic SIQR epidemic model with standard incidence, Phys. A Stat. Mech. Appl. 527 (2019) 121180.
[6] M. Derouich, A. Boutayeb, Dengue fever Mathematical modelling and computer simulation, Appl. Math. Comput. 177 (2) (2006) 528–544.
[7] M. Rafi, A. Raza, M.U. Iqbal, Z. Butt, H.A. Naseem, M.A. Akram, M.K. Butt, A. Khaliq, S. Azam, Numerical treatment of stochastic heroin epidemic model, Adv. Differ. Eqs. 2019 (1) (2019) 1–17.
[8] Z. Cao, W. Feng, X. Wen, L. Zu, M. Cheng, Dynamics of a stochastic SIQR epidemic model with standard incidence, Phys. A Stat. Mech. Appl. 527 (2019) 121180.
[9] M.A. Khan, A. Atangana, Modeling the dynamics of novel coronavirus (219-nCov) with fractional derivative, Alexandria Eng. J. 59 (4) (2020) 2379–2389.
[10] T. Lakshmikantham, S. Leela, Nagumo-type uniqueness result for fractional differential equations, Nonlinear Anal. 71 (7–8) (2009) 2886–2889.
[11] I. Podlubny, Fractional differential equations, mathematics in science and engineering, Academic Press, New York, 1999, p. 340.
[12] R. Hilfer, Applications of fractional calculus in physics, World scientific, 2000.
[13] D. Baleanu, Z. Zibaei, M. Namjoo, A. Jajarmi, A nonstandard finite difference scheme for the modeling and nonidentical synchronization of a novel fractional chaotic system, Adv. Difference Eqs. 2021 (1) (2021) 308.
[14] A.J. Peter, A.S. Shaikh, M.O. Ibrahim, K.S. Nisar, D. Baleanu, I. Khan, A.I. Abioye, Analysis and dynamics of fractional order mathematical model of COVID-19 in nigeria using atangana-baleanu operator, Comput. Mater. Continua (2021) 1823–1848.
[15] R.L. Magin, Fractional Calculus in Bioengineering, vol. 2, no. 6, Begell House, Redding, 2006.
[16] H. Singh, R.K. Pandey, H.M. Srivastava, Solving non-linear fractional variational problems using Jacobi polynomials, Mathematics 7 (3) (2019) 224.
[17] H. Singh, H.M. Srivastava, Numerical investigation of the fractional-order Liénard and Duffing equations arising in oscillating circuit theory, Front. Phys. 8 (2020) 120.
Investigation of time-fractional SIQR Covid-19 mathematical model

[17] H. Singh, M.R. Sahoo, O.P. Singh, Numerical method based on Galerkin approximation for the fractional advection-dispersion equation, Int. J. Appl. Computat. Math. 3 (3) (2017) 2171–2187.

[18] D. Baleanu, S.S. Sajjadi, J.H. Asad, A. Jajarmi, E. Estiri, Hyperchaotic behaviors, optimal control, and synchronization of a nonautonomous cardiac conduction system, Adv. Difference Eqs. 2021 (1) (2021) 157.

[19] I. Abdullahi, B.A. Babu, B. Nasiid, Optimal control model for the transmission of novel COVID-19, Comput. Mater. Continua (2021) 3089–3106.

[20] S. Qureshi, Effects of vaccination on measles dynamics under fractional conformable derivative with Liouville-Caputo operator, Eur. Phys. J. Plus 135 (1) (2020) 1–20.

[21] A. Atangana, Fractal-fractional differentiation and integration connecting fractal calculus and fractional calculus to predict complex system, Chaos Solitons Fct. 102 (2017) 396–406.

[22] J.F. Gómez-Aguilar, J.J. Rosales-García, J.J. Bernal-Alvarado, T. Córdova-Fraga, R. Guzmán-Cabrera, Fractional mechanical oscillators, Revista mexicana de física 58 (4) (2012) 348–352.

[23] Z. Ali, F. Rabiei, K. Shah, T. Khodadadi, Modeling and analysis of novel COVID-19 under fractal-fractional derivative with case study of Malaysia, Fractals 29 (1) (2021) 2150020.

[24] A. Atangana, Modelling the spread of COVID-19 with new fractal-fractional operators: can the lockdown save mankind before vaccination?, Chaos Solitons Fract 136 (2020) 109860.

[25] S. Qureshi, A. Atangana, Fractal-fractional differentiation for the modeling and mathematical analysis of nonlinear diarrhea transmission dynamics under the use of real data, Chaos Solitons Fract. 136 (2020) 109812.

[26] Z.A. Khan, M. ur Rahman, K. Shah, Study of a Fractal-Fractional Smoking Models with Relapse and Harmonic Mean Type Incidence Rate, J. Funct. Spaces (2021).

[27] A. Atangana, S. İğret Araz, Mathematical model of COVID-19 spread in Turkey and South Africa: theory, methods, and applications, Adv. Difference Eqs. 2020 (1) (2020) 1–89.

[28] W. Gao, P. Veeresha, D.G. Prakasha, H.M. Baskonus, G. Yel, New approach for the model describing the deathly disease in pregnant women using Mittag-Leffler function, Chaos Solitons Fract. 134 (2020) 109696.

[29] A. Atangana, Fractional discretization: the African’s tortoise walk, Chaos Solitons Fract. 130 (2020) 109399.

[30] W. Gao, P. Veeresha, H.M. Baskonus, D.G. Prakasha, Pushpendra Kumar, A new study of unreported cases of 2019-nCOV epidemic outbreaks, Chaos Solitons Fract. 138 (2020) 109929.

[31] M. Arfan, H. Alrabaiah, M. ur Rahman, Y.L. Sun, A.S. Hashim, B.A. Pansera, A. Ahmadian, S. Salahshour, Investigation of fractal-fractional order model of COVID-19 in Pakistan under Atangana-Baleanu Caputo (ABC) derivative, Res. Phys. 24 (2021) 104046.

[32] M.S. Hashemi, M. Inc, A. Yusuf, On three-dimensional variable order time fractional chaotic system with nonsingular kernel, Chaos Solitons Fract. 133 (2020) 109628.

[33] S. Qureshi, A. Yusuf, A.A. Shaikh, M. Inc, D. Baleanu, Mathematical modeling for adsorption process of dye removal nonlinear equation using power law and exponentially decaying kernels, Chaos: Interdiscipl. J. Nonlinear Sci. 30 (4) (2020) 043106.

[34] Z. Feng, H.R. Thieme, Recurrent outbreaks of childhood disease revisited: the impact of isolation, Math. Bio. Sci. 128 (1995) 93–130.

[35] M. ur Rahman, S. Ahmad, R.T. Matoog, N.A. Alshehri, T. Khan, Study on the mathematical modelling of COVID-19 with Caputo-Fabrizio operator, Chaos Solitons Fract. (2021) 111121.

[36] D. Baleanu, S.S. Sajjadi, A. Jajarmi, Ö. Deferli, On a nonlinear dynamical system with both chaotic and nonchaotic behaviors: a new fractional analysis and control, Adv. Difference Eqs. 2021 (1) (2021) 234.

[37] N.H. Tuan, V.V. Tri, D. Baleanu, Analysis of the fractional corona virus pandemic via deterministic modeling, Math. Methods Appl. Sci. 44 (1) (2021) 1086–1102.

[38] M.S. Arif, A. Raza, M. Rafiq, M. Bibi, A reliable numerical analysis for stochastic hepatitis B virus epidemic model with the migration effect, Iran. J. Sci. Technol. Trans. A 43 (5) (2019) 2477–2492.

[39] M.S. Arif, A. Raza, M. Rafiq, M. Bibi, R. Fayyaz, M. Naz, et al, A reliable stochastic- tic numerical analysis for typhoid fever incorporating with protection against infection, Comput. Mater. Continua 59 (3) (2019) 787–804.

[40] D. Baleanu, A. Raza, M. Rafiq, M.S. Arif, M. Asghar, Competitive analysis for stochastic influenza model with constant vaccination strategy, IET Syst. Biol. 13 (6) (2019) 316–326.

[41] M. Naveed, M. Rafiq, A. Raza, N. Ahmed, I. Khan, K.S. Nisar, A.H. Soori, Mathematical analysis of novel coronavirus (2019-nCov) delay pandemic model, Comput. Mater. Continua 64 (3) (2020) 1401–1414.

[42] N. Ahmed, A. Raza, M. Rafiq, A. Ahmadian, N. Batool, S. Salahshour, Numerical and bifurcation analysis of SIQR model, Chaos Solitons Fract. 150 (2021) 111133.

[43] A. Atangana, Modelling the spread of COVID-19 with new fractal-fractional operators: can the lockdown save mankind before vaccination?, Chaos Solitons Fract. 136 (2020) 109860.

[44] T. Abdeljawad, D. Baleanu, Discrete fractional differences with nonsingular discrete Mittag-Leffler kernels, Adv. Difference Eqs. 1 (2016) 1–18.

[45] T.A. Burton, Krasnoselskii N-tupled fixed point theorem with applications to fractional nonlinear dynamical system, Adv. Math. Phys. 2019 (2019).

[46] J. Singh, H.K. Jassim, D. Kumar, An computational technique for local fractional Fokker Planck equation, Phys. A Statist. Mech. Appl. 555 (1) (2020) 124525.