HERMITE-HADAMARD TYPE INEQUALITIES FOR MAPPINGS
WHOSE DERIVATIVES ARE s–CONVEX IN THE SECOND
SENSE VIA FRACTIONAL INTEGRALS

ERHAN SET\star, M. EMIN OZDEMIR\star, M. ZEKI SARIKAYA\bullet, AND FILIZ KARAKOC\bullet

Abstract. In this paper we establish Hermite-Hadamard type inequalities for
mappings whose derivatives are s–convex in the second sense and concave.

1. Introduction

Let $f: I \subseteq \mathbb{R} \to \mathbb{R}$ be a convex function defined on the interval I of real numbers
and $a, b \in I$ with $a < b$. Then

\begin{equation}
 f\left(\frac{a+b}{2}\right) \leq \frac{1}{b-a} \int_{a}^{b} f(x)dx \leq \frac{f(a) + f(b)}{2}
\end{equation}

is known that the Hermite-Hadamard inequality for convex function. Both in-
equalities hold in the reserved direction if f is concave. We note that Hadamard’s
inequality may be regarded as a refinement of the concept of convexity and it follows
easily from Jensen’s inequality. Hadamard’s inequality for convex functions has re-
ceived renewed attention in recent years and a remarkable variety of refinements
and generalizations have been found; see, for example see ([5]-[17]).

Definition 1. ([4]) A function $f: [0, \infty) \to \mathbb{R}$ is said to be s–convex in the second
sense if

\[f(\lambda x + (1 - \lambda)y) \leq \lambda^s f(x) + (1 - \lambda)^s f(y) \]

for all $x, y \in [0, \infty)$, $\lambda \in [0, 1]$ and for some fixed $s \in (0, 1]$. This class of s–convex
functions is usually denoted by K_2^s.

In ([3]) Dragomir and Fitzpatrick proved a variant of Hadamard’s inequality which
holds for s–convex functions in the second sense:

Theorem 1. Suppose that $f : [0, \infty) \to [0, \infty)$ is an s–convex function in the
second sense, where $s \in (0, 1)$ and let $a, b \in [0, \infty), a < b$. If $f' \in L^1 ([a, b])$, then
the following inequalities hold:

\begin{equation}
 2^{s-1} f\left(\frac{a+b}{2}\right) \leq \frac{1}{b-a} \int_{a}^{b} f(x)dx \leq \frac{f(a) + f(b)}{2}
\end{equation}

The constant $k = \frac{1}{s+1}$ is the best possible in the second inequality in (1.2).

2000 Mathematics Subject Classification. 26A33, 26A51, 26D07, 26D10, 26D15.
Key words and phrases. Hermite-Hadamard type inequality, s–convex function, Riemann-
Liouville fractional integral.
The following results are proved by M.I.Bhatti et al. (see [2]).

Theorem 2. Let \(f : I \subseteq \mathbb{R} \to \mathbb{R} \) be a twice differentiable function on \(I^o \) such that \(|f''|\) is convex function on \(I \). Suppose that \(a, b \in I^o \) with \(a < b \) and \(f'' \in L[a,b] \), then the following inequality for fractional integrals with \(\alpha > 0 \) holds:

\[
\frac{|f(a) + f(b)|}{2} - \frac{\Gamma(\alpha + 1)}{2(b-a)^\alpha} \left| \int_{a}^{b} f(x) \, dx \right|
\]

\[
\leq \frac{(b-a)^2}{\alpha + 1} \beta(\alpha + 1) \frac{|f''(a)| + |f''(b)|}{2}
\]

where \(\beta \) is Euler Beta function.

Theorem 3. Let \(f : I \subseteq \mathbb{R} \to \mathbb{R} \) be a twice differentiable function on \(I^o \). Assume that \(p \in \mathbb{R}, p > 1 \) such that \(|f''|^p \) is convex function on \(I \). Suppose that \(a, b \in I^o \) with \(a < b \) and \(f'' \in L[a,b] \), then the following inequality for fractional integrals holds:

\[
\frac{|f(a) + f(b)|}{2} - \frac{\Gamma(\alpha + 1)}{2(b-a)^\alpha} \left| \int_{a}^{b} f(x) \, dx \right|
\]

\[
\leq \frac{(b-a)^2}{\alpha + 1} \beta^\frac{1}{p}(\alpha + 1) \left(\frac{|f''(a)|^q + |f''(b)|^q}{2} \right)^\frac{1}{q}
\]

where \(\beta \) is Euler Beta function.

Theorem 4. Let \(f : I \subseteq \mathbb{R} \to \mathbb{R} \) be a twice differentiable function on \(I^o \). Assume that \(q \geq 1 \) such that \(|f''|^q \) is convex function on \(I \). Suppose that \(a, b \in I^o \) with \(a < b \) and \(f'' \in L[a,b] \), then the following inequality for fractional integrals holds:

\[
\frac{|f(a) + f(b)|}{2} - \frac{\Gamma(\alpha + 1)}{2(b-a)^\alpha} \left| \int_{a}^{b} f(x) \, dx \right|
\]

\[
\leq \frac{\alpha(b-a)^2}{4(\alpha + 1)(\alpha + 2)} \left[\left(\frac{3\alpha + 5}{3\alpha + 9} |f''(a)|^q + \frac{3\alpha + 5}{3\alpha + 9} |f''(b)|^q \right)^\frac{1}{q} \right]
\]

where \(\beta \) is Euler Beta function.

Theorem 5. Let \(f : I \subseteq \mathbb{R} \to \mathbb{R} \) be a twice differentiable function on \(I^o \). Assume that \(p \in \mathbb{R}, p > 1 \) with \(q = \frac{p}{p-1} \) such that \(|f''|^q \) is concave function on \(I \). Suppose that \(a, b \in I^o \) with \(a < b \) and \(f'' \in L[a,b] \), then the following inequality for fractional integrals holds:

\[
\frac{|f(a) + f(b)|}{2} - \frac{\Gamma(\alpha + 1)}{2(b-a)^\alpha} \left| \int_{a}^{b} f(x) \, dx \right|
\]

\[
\leq \frac{(b-a)^2}{\alpha + 1} \beta^\frac{1}{p}(\alpha + 1) \left| f'' \left(\frac{a + b}{2} \right) \right|
\]

where \(\beta \) is Euler Beta function.

We will give some necessary definitions and mathematical preliminaries of fractional calculus theory which are used further this paper.

Definition 2. Let \(f \in L[a,b] \). The Reimann-Liouville integrals \(J_{a+}^\alpha f(x) \) and \(J_{b-}^\alpha f(x) \) of order \(\alpha > 0 \) with \(\alpha \geq 0 \) are defined by
HERMITE-HADAMARD TYPE INEQUALITIES VIA FRACTIONAL INTEGRALS

\[J^\alpha_{a+} f(x) = \frac{1}{\Gamma(\alpha)} \int_a^x (x-t)^{\alpha-1} f(t) \, dt, \ x > \alpha \]

and

\[J^\alpha_{b-} f(x) = \frac{1}{\Gamma(\alpha)} \int_x^b (t-x)^{\alpha-1} f(t) \, dt, \ x < b \]

respectively. Where \(\Gamma(\alpha) = \int_0^\infty e^{-u} u^{\alpha-1} \, du \) is the Gamma function and \(J^0_{a+} f(x) = J^0_{b-} f(x) = f(x) \).

In the case of \(\alpha = 1 \) the fractional integral reduces to the classical integral.

For some recent results connected with fractional integral inequalities, (see [18]-[27]).

In this paper, we establish fractional integral inequalities of Hermite-Hadamard type for mappings whose derivatives are \(s \)-convex and concave.

2. Main Results

In order to prove our main theorems we need the following lemma (see [2]).

Lemma 1. Let \(f : I \subseteq \mathbb{R} \to \mathbb{R} \) be a twice differentiable function on \(I^o \), the interior of \(I \). Assume that \(a, b \in I^o \) with \(a < b \) and \(f'' \in L[a,b] \), then the following identity for fractional integral with \(\alpha > 0 \) holds:

\[
\frac{f(a) + f(b)}{2} - \frac{\Gamma(\alpha + 1)}{2(b-a)^{\alpha}} \left[J^\alpha_{a+} f(b) + J^\alpha_{b-} f(a) \right] = \frac{(b-a)^{2\alpha}}{2(\alpha+1)^2} \int_0^1 t (1-t^\alpha) \left[f''(ta+(1-t)b) + f''((1-t)a+tb) \right] \, dt
\]

where \(\Gamma(\alpha) = \int_0^\infty e^{-u} u^{\alpha-1} \, du \).

Theorem 6. Let \(f : I \subseteq \mathbb{R} \to \mathbb{R} \) be a twice differentiable function on \(I^o \) and let \(a, b \in I^o \) with \(a < b \) and \(f'' \in L[a,b] \). If \(|f''| \) is \(s \)-convex in the second sense on \(I \) for some fixed \(s \in (0,1] \), then the following inequality for fractional integrals with \(\alpha > 0 \) holds:

\[
\left| \frac{f(a) + f(b)}{2} - \frac{\Gamma(\alpha + 1)}{2(b-a)^{\alpha}} \left[J^\alpha_{a+} f(b) + J^\alpha_{b-} f(a) \right] \right| \leq \frac{(b-a)^{2\alpha}}{2(\alpha+1)^2} \left\{ \alpha \left[\frac{\beta(2,s+1)}{(s+2)(\alpha+s+2)} + \beta(\alpha+2,s+1) \right] \left[|f''(a)| + |f''(b)| \right] \right\}
\]

where \(\beta \) is Euler Beta function.

Proof. From Lemma 1 since \(|f''| \) is \(s \)-convex in the second sense on \(I \), we have
\[
\left| \frac{f(a) + f(b)}{2} - \frac{\Gamma(\alpha + 1)}{2(b-a)^\alpha} \left[J_{a^+}^\alpha f(b) + J_{b^-}^\alpha f(a) \right] \right| \\
\leq \frac{(b-a)^2}{2(\alpha + 1)} \int_0^1 |t(1-t^\alpha)| \left[|f''(ta + (1-t)b)| + |f''((1-t)a + tb)| \right] \, dt \\
\leq \frac{(b-a)^2}{2(\alpha + 1)} \left[\int_0^1 t(1-t^\alpha) \left[t^s |f''(a)| + (1-t)^s |f''(b)| \right] \, dt + \int_0^1 (t(1-t^\alpha)(1-t)^s \left[|f''(a)| + |f''(b)| \right] \right] \\
= \frac{(b-a)^2}{2(\alpha + 1)} \left[\frac{\alpha}{(s+2)(\alpha + s + 2)} + \beta(2, s + 1) - \beta(\alpha + 2, s + 1) \right] \left[|f''(a)| + |f''(b)| \right]
\]

where we used the fact that

\[
\int_0^1 t^{s+1}(1-t^\alpha) \, dt = \frac{\alpha}{(s+2)(\alpha + s + 2)}
\]

and

\[
\int_0^1 t(1-t^\alpha)(1-t)^s \, dt = \beta(2, s + 1) - \beta(\alpha + 2, s + 1)
\]

which completes the proof. \(\square\)

Remark 1. In Theorem 6 if we choose \(s = 1\) then \((2.2)\) reduces the inequality \((1.3)\) of Theorem 4.

Theorem 7. Let \(f : I \subseteq \mathbb{R} \to \mathbb{R}\) be a twice differentiable function on \(I^o\). Suppose that \(a, b \in I^o\) with \(a < b\) and \(f'' \in L[a,b]\). If \(|f''|^q\) is \(s\)-convex in the second sense on \(I\) for some fixed \(s \in (0,1]\), \(p,q > 1\) then the following inequality for fractional integrals holds:

\[
(2.3) \quad \left| \frac{f(a) + f(b)}{2} - \frac{\Gamma(\alpha + 1)}{2(b-a)^\alpha} \left[J_{a^+}^\alpha f(b) + J_{b^-}^\alpha f(a) \right] \right| \\
\leq \frac{(b-a)^2}{\alpha + 1} \beta \left(p + 1, \alpha p + 1 \right) \left[\frac{|f''(a)|^q + |f''(b)|^q}{s + 1} \right]^{\frac{1}{q}}
\]

where \(\beta\) is Euler Beta function and \(\frac{1}{p} + \frac{1}{q} = 1\).
Proof. From Lemma\[1\] using the well known Hölder inequality and $|f''|^q$ is $s-$convex in the second sense on $I,$ we have

\[
\begin{align*}
&\left| \frac{f(a) + f(b)}{2} - \frac{\Gamma (\alpha + 1)}{2 (b-a)^\alpha} [J_b^{\alpha} f(b) + J_a^{\alpha} f(a)] \right| \\
&\leq \frac{(b-a)^2}{2 (\alpha + 1)} \int_0^1 |t (1 - t^\alpha)| |f''(ta + (1-t)b)| dt \\
&\leq \frac{(b-a)^2}{2 (\alpha + 1)} \left(\int_0^1 t^p (1 - t^\alpha)^p dt \right)^{1-\frac{1}{q}} \left[\left(\int_0^1 |f''(ta + (1-t)b)|^q dt \right)^{\frac{1}{q}} + \left(\int_0^1 |f''((1-t)a + tb)|^q dt \right)^{\frac{1}{q}} \right] \\
&\leq \frac{(b-a)^2}{2 (\alpha + 1)} \left(\int_0^1 t^p (1 - t^\alpha)^p dt \right)^{1-\frac{1}{q}} \left[\left(\int_0^1 (t^s |f''(a)|^q + (1-t)^s |f''(b)|^q) dt \right)^{\frac{1}{q}} + \left(\int_0^1 (1-t)^s |f''(a)|^q + t^s |f''(b)|^q) dt \right)^{\frac{1}{q}} \right] \\
&\leq \frac{(b-a)^2}{\alpha + 1} \beta^+ (p + 1, \alpha p + 1) \left[\frac{|f''(a)|^q + |f''(b)|^q}{s + 1} \right]^{\frac{1}{q}}
\end{align*}
\]

where we used the fact that

\[
\int_0^1 t^s dt = \int_0^1 (1-t)^s dt = \frac{1}{s + 1}
\]

and

\[
\int_0^1 t^p (1 - t^\alpha)^p dt \leq \int_0^1 t^p (1 - t)^p dt = \beta^+ (p + 1, \alpha p + 1)
\]

which completes the proof. \[\Box\]

Remark 2. In Theorem\[3\] if we choose $s = 1$ then \[(2.3)\] reduces the inequality \[(1.4)\] of Theorem\[5\].

Theorem 8. Let $f : I \subseteq \mathbb{R} \rightarrow \mathbb{R}$ be a twice differentiable function on I. Suppose that $a, b \in I$ with $a < b$ and $f'' \in L[a, b]$. If $|f''|^q$ is $s-$convex in the second sense on I for some fixed $s \in (0, 1]$ and $q \geq 1$ then the following inequality for fractional integrals holds:

\[
(2.4) \quad \left| \frac{f(a) + f(b)}{2} - \frac{\Gamma (\alpha + 1)}{2 (b-a)^\alpha} [J_b^{\alpha} f(b) + J_a^{\alpha} f(a)] \right|
\]

\[
\leq \frac{\alpha (b-a)^2}{4 (\alpha + 1) (\alpha + 2)} \times \left[\left(|f''(a)|^q \left(\frac{2s+4}{(s+2)(\alpha+2+s+2)} \right) + |f''(b)|^q \left(\frac{2s+4}{(s+2)(\alpha+2+s+2)} \right) \right)^{\frac{1}{q}} \right]
\]

\[
\left[\left(|f''(a)|^q \left(\frac{2s+4}{(s+2)(\alpha+2+s+2)} \right) + |f''(b)|^q \left(\frac{2s+4}{(s+2)(\alpha+2+s+2)} \right) \right)^{\frac{1}{q}} \right]
\]

\[
\left[\left(|f''(a)|^q \left(\frac{2s+4}{(s+2)(\alpha+2+s+2)} \right) + |f''(b)|^q \left(\frac{2s+4}{(s+2)(\alpha+2+s+2)} \right) \right)^{\frac{1}{q}} \right]
\]
Proof. From Lemma 4 using power mean inequality and \(f'' \) is \(s \)-convex in the second sense on \(I \) we have
\[
\begin{align*}
\left| \frac{f(a) + f(b)}{2} - \frac{\Gamma(\alpha + 1)}{2(b - a)^\alpha} [J_a^\alpha f(b) + J_a^\alpha f(a)] \right| & \leq \frac{(b - a)^2}{2(\alpha + 1)} \int_0^1 |t(1 - t^\alpha)| \left[|f''(ta + (1 - t)b)| + |f''((1 - t)a + tb)| \right] dt \\
& \leq \frac{(b - a)^2}{2(\alpha + 1)} \left(\int_0^1 t(1 - t^\alpha) dt \right)^{1 - \frac{1}{q}} \left[\left(\int_0^1 |f''(ta + (1 - t)b)|^q dt \right)^{\frac{1}{q}} + \left(\int_0^1 |f''((1 - t)a + tb)|^q dt \right)^{\frac{1}{q}} \right] \\
& \leq \frac{(b - a)^2}{2(\alpha + 1)} \left(\int_0^1 t(1 - t^\alpha) dt \right)^{1 - \frac{1}{q}} \left[\left(\int_0^1 |f''(a)|^q |\beta(2s + 1) - \beta(\alpha + 2, s + 1)| + |f''(b)|^q |\beta(2s + 1) - \beta(\alpha + 2, s + 1)| \right)^{\frac{1}{q}} \right] \\
& \leq \frac{\alpha(b - a)^2}{4(\alpha + 1)(\alpha + 2)} \left(\int_0^1 t(1 - t^\alpha) dt \right)^{1 - \frac{1}{q}} \left[\left(\int_0^1 |f''(a)|^q |\beta(2s + 1) - \beta(\alpha + 2, s + 1)|^{\frac{2\alpha + 4}{\alpha}} + |f''(b)|^q |\beta(2s + 1) - \beta(\alpha + 2, s + 1)|^{\frac{2\alpha + 4}{\alpha}} \right)^{\frac{1}{q}} \right]
\end{align*}
\]
where we used the fact that
\[
\int_0^1 t^{s + 1}(1 - t^\alpha) dt = \frac{\alpha}{(s + 2)(\alpha + s + 2)}
\]
and
\[
\int_0^1 t(1 - t^\alpha)(1 - t)^s dt = \beta(2s + 1) - \beta(\alpha + 2, s + 1)
\]
which completes the proof. \(\square\)

Remark 3. In Theorem 8 if we choose \(s = 1 \) then (2.4) reduces the inequality (1.5) of Theorem (4).

The following result holds for \(s \)-concavity.

Theorem 9. Let \(f : I \subseteq \mathbb{R} \to \mathbb{R} \) be a twice differentiable function on \(I^\circ \). Suppose that \(a, b \in I^\circ \) with \(a < b \) and \(f'' \in L[a, b] \). If \(f'' \) is \(s \)-concave in the second sense on \(I \) for some fixed \(s \in (0, 1] \) and \(p, q > 1 \) then the following inequality for fractional integrals holds:
\[
(2.5) \quad \left| \frac{f(a) + f(b)}{2} - \frac{\Gamma(\alpha + 1)}{2(b - a)^\alpha} [J_a^\alpha f(b) + J_a^\alpha f(a)] \right| \leq \frac{(b - a)^2}{\alpha + 1} \frac{1}{\beta^p (p + 1, \alpha p + 1)} 2^{\frac{s - 1}{s}} \left| f'' \left(\frac{a + b}{2} \right) \right|
\]
where $\frac{1}{p} + \frac{1}{q} = 1$ and β is Euler Beta function

Proof. From Lemma 1 and using the Hölder inequality we have

\[
\begin{align*}
(2.6) & \quad \frac{1}{2} \left| f(a) + f(b) \right| - \frac{\Gamma(\alpha + 1)}{2(\beta - \alpha)} \left| J_{a+}^{\alpha} f(b) + J_{b-}^{\alpha} f(a) \right| \\
& \leq \frac{(b-a)^2}{2(\alpha + 1)} \int_0^1 |t(1-t^\alpha)| |f''(ta + (1-t)b)| + |f''((1-t)a + tb)| \, dt \\
& \leq \frac{(b-a)^2}{2(\alpha + 1)} \left(\int_0^1 t^\alpha (1-t^\alpha)^p \, dt \right)^{\frac{1}{p}} \left[\left(\int_0^1 |f''(ta + (1-t)b)|^q \, dt \right)^{\frac{1}{q}} + \left(\int_0^1 |f''((1-t)a + tb)|^q \, dt \right)^{\frac{1}{q}} \right]
\end{align*}
\]

Since $|f''|^q$ is s-concave using inequality (1.2) we get (see [1])

\[
(2.7) \quad \int_0^1 |f''(ta + (1-t)b)|^q \, dt \leq 2^{s-1} \left| f'' \left(\frac{a+b}{2} \right) \right|^q
\]

and

\[
(2.8) \quad \int_0^1 |f''((1-t)a + tb)|^q \, dt \leq 2^{s-1} \left| f'' \left(\frac{b+a}{2} \right) \right|^q
\]

Using (2.7) and (2.8) in (2.6), we have

\[
\begin{align*}
& \frac{1}{2} \left| f(a) + f(b) \right| - \frac{\Gamma(\alpha + 1)}{2(\beta - \alpha)} \left| J_{a+}^{\alpha} f(b) + J_{b-}^{\alpha} f(a) \right| \\
& \leq \frac{(b-a)^2}{\alpha + 1} \beta^\frac{1}{\alpha} (p+1, \alpha p+1) 2^{\frac{\alpha+1}{\alpha+1}} \left| f'' \left(\frac{a+b}{2} \right) \right|
\end{align*}
\]

which completes the proof. \(\square\)

Remark 4. In theorem 4 if we choose $s = 1$ then (2.5) reduces inequality (1.6) of theorem 3.

REFERENCES

[1] M. Alomari, M. Darus, S.S. Dragomir, P. Cerone, Ostrowski type inequalities for functions whose derivatives are s-convex in the second sense, Appl. Math. Lett. 23 (2010) 1071-1076.

[2] S.S.Dragomir, M.I.Bhatti and M.Iqbal Some new fractional integral Hermite-Hadamard type inequalities, RGMIA Res. Rep. Coll., 16 (2013), Article 2.

[3] S.S.Dragomir, S.Fitzpatrick, The Hadamard’s inequality for s-convex functions in the second sense, Demonstratio Math 32 (4) (1999) 687-696.

[4] H. Hudzik, L. Maligranda, Some remarks on s-convex functions, Aequationes Math. 48 (1994) 100–111.

[5] M. Alomari, M. Darus, On the Hadamard’s inequality for log-convex functions on the co-ordinates, J. Inequal. Appl. 2009 (2009) 13. Article ID 283147.

[6] A.G. Azpeitia, Convex functions and the Hadamard inequality, Revista Colombiana Mat. 28 (1994) 7–12.
[7] M.K. Bakula, M.E. Özdemir, J. Pečarić, Hadamard type inequalities for m-convex and \((\alpha, m)\)-convex functions, J. Ineq. Pure Appl. Math. 9 (4) (2008) Art. 96.

[8] M.K. Bakula, J. Pečarić, Note on some Hadamard-type inequalities, J. Ineq. Pure Appl. Math. 5 (3) (2004) Article 74.

[9] S.S. Dragomir, C.E.M. Pearce, Selected topics on Hermite–Hadamard inequalities and applications, RGMIA Monographs, Victoria University, 2000.

[10] S.S. Dragomir, R.P. Agarwal, Two inequalities for differentiable mappings and applications to special means of real numbers and to trapezoidal formula, Appl. Math. lett. 11 (5) (1998) 91–95.

[11] S.S. Dragomir, On some new inequalities of Hermite–Hadamard type for m-convex functions, Tamkang J. Math. 3 (1) (2002).

[12] P.M. Gill, C.E.M. Pearce, J. Pečarić, Hadamard’s inequality for r-convex functions, J. Math. Anal. Appl. 215 (2) (1997) 461–470.

[13] U.S. Kırmacı, M.K. Bakula, M.E. Özdemir, J. Pečarić, Hadamard-type inequalities for s-convex functions, Appl. Math. Comput. 193 (2007) 26–35.

[14] M.E. Özdemir, M. Avci, E. Set, On some inequalities of Hermite–Hadamard type via m-convexity, Appl. Math. Lett. 23 (9) (2010) 1065–1070.

[15] E. Set, M.E. Özdemir, S.S. Dragomir, On the Hermite–Hadamard inequality and other integral inequalities involving two functions, J. Inequal. Appl. (2010) 9. Article ID 148102.

[16] E. Set, M.E. Özdemir, S.S. Dragomir, On Hadamard-type inequalities involving several kinds of convexity, J. Inequal. Appl. (2010) 12. Article ID 286845.

[17] J.E. Pečarić, F. Proschan, Y.L. Tong, Convex Functions, Partial Orderings and Statistical Applications, Academic Press, Boston, 1992.

[18] G. Anastassiou, M.R. Hooshmandasl, A. Ghasemi, F. Moftakhazadeh, Montgomery identities for fractional integrals and related fractional inequalities J. Ineq. Pure Appl. Math. 10 (4) (2009) Art 97.

[19] S. Belarbi, Z. Dahmani, On some new fractional integral inequalities, J. Ineq. Pure Appl. Math. 10 (3) (2009) Art. 86.

[20] Z. Dahmani, New inequalities in fractional integrals, Int. J. Nonlinear Sci. 9 (4) (2010) 493–497.

[21] Z. Dahmani, On Minkowski and Hermite–Hadamard integral inequalities via fractional integration, Ann. Funct. Anal. 1 (1) (2010) 51–58.

[22] Z. Dahmani, L. Tabharit, S. Taf, Some fractional integral inequalities, Nonlinear. Sci. Lett. A 1 (2) (2010) 155–160.

[23] Z. Dahmani, L. Tabharit, S. Taf, New generalizations of Gruss inequality using Riemann–Liouville fractional integrals, Bull. Math. Anal. Appl. 2 (3) (2010) 93–99.

[24] M.Z. Sarikaya, H. Ogunmez, On new inequalities via Riemann–Liouville fractional integration, Abstract and Applied Analysis, Volume 2012, Article ID 428983, 10 pages, doi:10.1155/2012/428983.

[25] M.Z. Sarikaya and H. Yaldız, On weighted Montgomery identities for Riemann-Liouville fractional integrals, Konuralp Journal of Mathematics, 1 (1) (2013) 48–53.

[26] M.Z. Sarikaya, E. Set, H. Yaldız and N. Basak, Hermite-Hadamard’s inequalities for fractional integrals and related fractional inequalities, Mathematical and Computer Modelling, doi:10.1016/j.mcm.2011.12.048, in press.

[27] E. Set, New inequalities of Ostrowski type for mappings whose derivatives are s-convex in the second sense via fractional integrals, Comp. Math. Appl., 63(7) (2012), 1147-1154.
HERMITE-HADAMARD TYPE INEQUALITIES VIA FRACTIONAL INTEGRALS

*Department of Mathematics, Faculty of Science and Arts, Düzce University, Düzce-TURKEY
E-mail address: erhanset@yahoo.com

*Atatürk University, K.K. Education Faculty, Department of Mathematics, 25240, Campus, Erzurum, Turkey
E-mail address: emos@atauni.edu.tr

■Department of Mathematics, Faculty of Science and Arts, Düzce University, Düzce-TURKEY
E-mail address: sarikayamz@gmail.com

♣Department of Mathematics, Faculty of Science and Arts, Düzce University, Düzce-TURKEY
E-mail address: filinz41@hotmail.com