COVID-19 in the WHO African Region: using risk assessment to inform decisions on public health and social measures

Benido Impouma¹,², Franck Mboussou¹, Caitlin M. Wolfe¹,³, Bridget Farham¹, George Sie Williams¹, Opeayo Ogundiran¹, Roland Ngom¹, Milse Nzingou¹, Antoine Flahault², Cláudia Torres Codeço³, Ambrose Talisuna¹, Zabulon Yoti¹, Olivia Keiser².

1. World Health Organization, Regional Office for Africa, Brazzaville, Congo
2. Institute of Global Health, University of Geneva, Switzerland
3. College of Public Health, University of South Florida, Tampa, Florida, USA
4. Fundação Oswaldo Cruz, Rio de Janeiro, Brazil

Corresponding author:
Benido Impouma
impoumab@who.int

SUMMARY
Successive waves of COVID-19 transmission have led to exponential increases in new infections globally. In this study we have applied a decision-making tool to assess the risk of continuing transmission to inform decisions on tailored public health and social measures (PHSM) using data on cases and deaths reported by Member States to the WHO Regional Office for Africa as of 31 December 2020. Transmission classification and health system capacity were used to assess the risk level of each country to guide implementation and adjustments to PHSM. Two countries out of 46 assessed met the criteria for sporadic transmission, one for clusters of cases, and 43 (93.5%) for community transmission including three with uncontrolled disease incidence (Eswatini, Namibia and South Africa). Health system response’s capacities were assessed as adequate in two countries (4.3%), moderate in 13 countries (28.3%), and limited in 31 countries (64.4%). The risk level, calculated as a combination of transmission classification and health system response’s capacities, was assessed at level 0 in one country (2.1%), level 1 in two countries (4.3%), level 2 in 11 countries (23.9%), and level 3 in 32 (69.6%) countries. The scale of severity ranged from 0 to 4, with 0 the lowest.

Community transmission coupled with limited response capacity resulted in a level 3 risk assessment in most countries. Countries at level 3 should be considered as priority focus for public health and social measures.
additional assistance, in order to prevent the risk rising to level 4, which may necessitate enforcing hard and costly lockdown measures. The large number of countries at level 3 indicate the need for an effective risk management system to be used as a basis for adjusting PHSM at national and sub-national level.

Key Words: * COVID-19* risk of spread * WHO African region

INTRODUCTION

The novel coronavirus, SARS-CoV-2, first identified in Wuhan City, Hubei Province, China in December 2019, has caused a global outbreak of the disease COVID-19 [1], formally declared a pandemic by the World Health Organization (WHO) on 11 March 2020 [2].

The WHO, the United Nations Agency lead for directing and coordinating international health [3], is grouped into six regions including the African region, which is made up of 47 countries. The African region was the last to be affected by the COVID-19 pandemic with the first case notified on 25 February 2020 in Algeria [4]. By 13 May 2020, after a confirmed case was detected in Lesotho [5], all countries in the WHO African region were affected. As of 3 January 2021, the African region remains one of the least affected regions globally, accounting for 2.4% (n=1.9 million out of 83.3 million) and 2.4% (n=43600 out of 1.8 million) of globally reported COVID-19 cases and deaths, respectively [6].

Following the notification of the first cases outside China, in Japan on 15 January 2020, countries in the African region started implementing preparedness and readiness measures to set up emergency response systems, increase their capacity to detect, care for patients, communicate on critical risks and prevention measures to all communities, and counter misinformation [7]. In March 2020, in addition to public health measures, countries began to implement physical distancing and social measures aimed at slowing down the spread of COVID-19 [8]. These measures included but were not limited to travel restrictions, curfews, school closures, and partial or full lockdowns. Such measures were implemented early, in some cases even before countries had detected cases [8]. Between 1 and 19 April 2020, almost all countries in the African region implemented full or partial lockdown measures, which may have resulted in fewer imported cases and reduced intra-country transmission [8, 9]. From late April 2020, some countries started to gradually ease lockdown measures, and at the same time increased their testing capacity. This was followed by an increase in new
infections across the region, which reached a peak by the end of July 2020 [10,11]. From this peak, new cases declined through August and September 2020, and plateauing before increasing again during November and December 2020 [10,11].

The emergence of new mutant strains of SARS-CoV2 in the United Kingdom, South Africa and in Brazil and in South Africa [12,13], both of which appear to be more transmissible, make it even more critical for countries to improve their readiness to respond appropriately to the possibility of a more prolonged resurgence. However, the lockdowns in place across the region between March and May 2020 adversely affected the functioning of health systems and caused significant social and economic disruption, which negatively impacted people’s health and wellbeing [7]. As a result, countries are understandably reluctant to impose new nationwide and full lockdowns.

It is therefore critical to provide a tool that can be used to assess the risk of overwhelmed healthcare systems as result of continued spread of the pandemic, not only at national, but also at sub-national levels, in order to inform timely decisions on tailored public health and social measures (PHSM). To this end, WHO developed new guidance for implementing and adjusting PHSM in the context of the COVID-19 pandemic [14]. This uses an agile decision-making tool to assess the risk of overwhelmed healthcare systems at national and sub-national levels, using a risk/benefit approach that considers the intensity of transmission and the health system’s capacity to respond. The objective of this paper was to assess the risk of overwhelmed healthcare systems as result of continued spread of COVID-19 in the WHO African region using the WHO guidance tool for implementing and adjusting PHSM in the context of the COVID-19 pandemic. We specifically reviewed the status of COVID-19 transmission in each country, assessed the capacity of health systems to respond to an upsurge in COVID-19 cases, and estimated the risk of overwhelmed healthcare systems as result of continued spread of SARS-CoV-2.

METHODS

Criteria for assessing COVID-19 risk

We carried out the assessment of risk of overwhelmed healthcare systems as result of continued spread of COVID-19 in all but one of the WHO African region’s countries, using both the transmission scenario and the health systems’ response capacity in line with the new WHO guidance tool [14]. The risk was defined as the likelihood of occurrence of the disease...
and the probable magnitude of the consequences of an adverse event during a specified period in specific area [15].

WHO has defined seven transmission scenarios to describe the dynamic of the pandemic: no active cases, sporadic cases, clusters of cases, and community transmission with (i) low incidence, (ii) moderate incidence, (iii) high incidence, and (iv) very high incidence. Table 1 summarizes the different transmission scenarios [14].

To assign a transmission scenario to each country, we computed the number of new cases reported in the past 28 days, the proportion of imported cases and locally transmitted cases in the past 14 days, and the number of new cases reported in the past 14 days per million population. A decision scheme (Figure 1) was used to define the transmission scenario of each country.

The capacity of a health system to respond to the COVID-19 pandemic was assessed using the following three indicators: percent of change in new deaths among laboratory confirmed COVID-19 infections in the past 28 days compared to the previous 28 days, average number of tests per 100 000 population per week during the last 4 weeks, and percent change in new health worker infections in the past 28 days compared to the previous 28 days. The range and score of each indicator is summarized in Table 2.

The overall score for health system’s response capacity was derived as the sum of scores for each indicator. The overall performance of the health system was considered as adequate if the overall score ranged between 0 and 2, moderate if it was between 3 and 4, and limited for a score between 5 and 6.

A matrix combining the transmission scenario and health system’s response capacity was then used to estimate the level of risk of overwhelmed healthcare systems as result of continued spread of the pandemic in each country. Four risk levels corresponding to the situational risk level were defined, with level 1 corresponding to a situation with no known transmission of SARS-CoV-2 in the preceding 28 days and level 4 a situation of uncontrolled epidemic with limited or no additional response capacity (Table 3). The detailed interpretation of each risk level and recommended PHSM actions are summarized in Table 4.
Inclusion and exclusion criteria
All the 47 countries of the African region that have reported at least one COVID-19 laboratory confirmed cases to the WHO were considered for this analysis. A laboratory-confirmed case of COVID-19 is defined as any case that was confirmed positive for SARS-CoV-2 genetic material by reverse transcriptase polymerase chain reaction (RT-PCR) test. Countries that did not submit a formal report on new cases and deaths during the 28 days (two maximum incubation periods), including a report of zero cases, were excluded from the transmission scenario analysis, and those that did not share data on the number of tests performed (daily or cumulatively) were excluded from the health system’s response capacity and risk analysis.

Data source and analysis
All data contained in our analysis are based on official COVID-19 data reported to the World Health Organization by the respective Ministries of Health between February and December 2020. These include but are not limited to data on cases and deaths, data on RT-PCR tests performed by each country, and indicators used to assess transmission and health system’s response capacity. We used R version 4.0.3 [16] for statistical analysis and using ESRI 2017 ArcGIS Pro 2.1.0 [17] for mapping.

RESULTS
Transmission scenarios
Between 1 and 31 December 2020, 46 countries out of 47 meeting the study inclusion criteria reported a total of 387493 confirmed cases and 8875 deaths, giving a case fatality ratio of 2.3%. Tanzania was the only country that did not formally report new cases to WHO during the period and was therefore excluded.

Of the 46 countries included, the COVID-19 transmission was classified as sporadic cases in two countries (4.3%), clusters of cases in one country (Seychelles) (2.2%) and community transmission in the remaining 43 countries (93.5%). Mauritius and Eritrea experienced sporadic transmission of cases and Seychelles experienced clusters of cases. Of the 43 countries experiencing community transmission (CT), eight experienced CT with low incidence (17.4%), 22 CT with moderate incidence (47.8%), ten CT with high incidence...
(21.7%), and three CT with very high incidence (6.5%). The geographical distribution of countries by transmission scenario is illustrated in Figure 2.

Health system’s response capacity
The health system’s response capacity was assessed as adequate in two countries (4.3%), moderate in 13 countries (28.3%), and limited in the remaining 31 countries (64.4%).

The percentage of change in number of COVID-19 deaths recorded in the past 28 days was 20% or above in 40 countries (87.0%), above 50% or less than 20% in 5 countries (10.9%) and less than 50% in one country (2.1%).

In terms of testing performance, 10 countries performed a weekly average of 20 tests per 100000 population (21.7%), two countries performed between 10 and 20 tests per 100000 population (4.3%) and 34 countries performed below 10 tests per 100000 population (73.9%).

The percentage of change in new health workers infections reported in the past 28 days was 20% or above in 10 countries out of 46 assessed (21.7%), above 50% or less than 20% in 35 countries (76.2%) and less than 50% in one country (2.1%).

COVID-19 Risk level
The overwhelmed healthcare system as result of continued spread of COVID-19, using the transmission scenario and the health system response’s capacity, was graded at level 0 for one country out of 46 (2.1%), level 1 for two countries (4.3%), level 2 for 11 countries (23.9%) and level 3 for the remaining 32 countries (69.6%). None of the countries assessed met the criteria of level 4. The risk level assigned to each country and the geographical distribution of countries in the WHO African region by COVID-19 risk level are shown in Table 4 and Figure 5, respectively.

DISCUSSION
The response and rapid control of COVID-19 pandemic in the WHO African region depends on the ability and capacity of countries to closely monitor the changes in COVID-19 transmission pattern, the ability of public health and health system infrastructure to adapt, and use by national authorities (decision makers) of PHSMs that are informed by scientific data and analysis.
Through the application of WHO guidance on considerations for adjusting PHSM in the context of COVID-19, our study reveals that the majority of countries in the WHO African region were experiencing community transmission (93.5%, n=43) at the end of 2020, have a health system capacity to respond graded as limited (64.4%, n=31) and a risk of overwhelmed healthcare systems as result of continued COVID-19 spread at level 3 (69.6%, n=32).

Although at present the WHO African region is the least affected, the high number of countries experiencing community transmission coupled with the slow vaccination rollout might result in a prolonged outbreak in the region and possible increase in the number of cases and deaths in the coming months [18]. Also, the emergence of more lethal variants of concern due to the persistent circulation of SARS-CoV-2 may make the situation more tragic for African countries

Long-distance truck drivers are an example in Africa, where COVID-19 controls at points of entry increase the time spent at border crossings, which has recently been addressed in the East African sub-region by introduction of specific guidelines to harmonize the strategy for points of entry surveillance, laboratory testing, and transnational response to COVID-19 for Cross border truck drivers [19,20]. This involves a package of infection prevention and control interventions at different stages of their journey.

While most countries in the region demonstrate community transmission, the study showed that Eritrea, Seychelles and Mauritius met the criteria of sporadic cases (with all active cases imported) or clusters of cases (with most active cases locally transmitted linked to known confirmed cases or clusters) in the last 28 days of the year 2020. However, in the absence of data from SARS-CoV2 seroprevalence surveys studies, it is possible that these three countries have experienced community transmission at some point during the course of the pandemic. In addition, they demonstrated adequate response capacity and remained at risk level 0 or 1. Seychelles and Mauritius are small, isolated island states, with populations of 98000 and 1.3 million people respectively [21] and had the ability to close their borders. These two island states, mirroring many other African countries, responded early in the pandemic, mapping fiscal and social protection policy responses to COVID-19 as early as March 2020 [22,23]. Both countries established treatment and quarantine centres at various locations, as well as setting up response funding, risk communication and community engagement and daily public reports of COVID-19 statistics.
Health system response capacity is a crucial factor in COVID-19, affecting case management, infection prevention and control and overall ability to contain the pandemic. Should case numbers continue to rise, health resource availability will soon be exceeded and the health care workforce, already grossly under supported and ill-equipped, will be exhausted [24]. The high proportion of countries with moderate or limited capacity to respond to an upsurge of COVID-19 cases in the region underscores the urgent need for countries to be supported in strengthening health systems through the implementation of national health policies, strategies and plans, which play an essential role in improving health system capacity and which WHO has recently updated to include specific COVID-19 guidance for COVID-19 response and recovery in fragile settings [25].

The COVID-19 pandemic is the first time since WHO’s Emergency Framework was established in 2013 [28] that all 47 Member States have been simultaneously affected by an infectious disease outbreak, challenging the capacity of the WHO Regional Office to provide the required support. Countries with a current risk graded at level 3 should be considered as priority countries for the WHO Regional Office with the aim of preventing the evolution of the situation to level 4, where it may be necessary to enforce hard and costly lockdown measures [26,27]. The risk assessment tool has been shown to be effective in identifying risk at national level. However, in order to avoid imposition of potentially costly restrictive measures across the whole country, the tool should also be used at sub-national level, focusing on local transmission and response capacity, in order to provide a more targeted and localised response.

LIMITATIONS
In this study, we used the change in new cases, health workers infections, and the number of tests conducted per 100000 population reported in the past 28 days to assess the health system’s response capacity. These indicators were chosen for the areas of the health system they represent (case management for new cases, health care workforce for health care worker infections, and detection capacity for number of tests conducted per 100000 population) and considering the available data for most countries of the region. While adding the hospitalization rate or intensive care unit beds occupancy would improve the accuracy of this metric, these data points were not as widely available across the region. Further, some countries in the WHO African region are under-reporting health workers infections, which may have resulted in over-estimated health system response capacity. Additionally, delays in
reporting new cases and deaths in some countries may have resulted in an under-estimated attack rate over the last 28 days, resulting in a lower community transmission classification than accurately reflects the current situation. Lastly, new cases are determined through testing, so asymptomatic or mild cases who did not seek clinical care or testing are not captured in these metrics. Since most cases have no symptoms, or only mild symptoms, under-detection of COVID-19 cases may not necessarily result in missed deaths to the same extent. These assessments used the best currently available data to guide real-time decision-making, however the interpretation of the results presented here should take these limitations into account.

CONCLUSIONS
While some countries in the European region are experiencing a second and third wave of the COVID-19 pandemic, the trend in incidence is still declining or plateauing in most countries of the African region. The exception being several Southern Africa countries. Nevertheless, a region-wide resurgence of the pandemic cannot be ruled out. Applying the COVID-19 risk-based approach provided by the WHO to countries of the African region has shown that most countries are at risk level 3, the second-highest level of severity on a scale ranging from 0 to 4. This should serve as a reminder to Member States of the African region of the need to maintain an effective risk management system, adjust response strategy to the pattern of the pandemic and continue to apply physical distancing measures. Building on and learning from the experiences in responding to Ebola Virus Disease and Human Immunodeficiency Virus, it is critical at the current stage of the pandemic, marked by new infections kept relatively low in the past two months and a population fatigue, to have communities as partners for higher buy-in and support of PHSM in every locality. The use of the WHO risk-based approach by Member States at the lowest administrative level can serve as tool for adjusting and tailoring specific PHSMs.

Data Availability Statements
The datasets generated during and/or analysed during the current study are available from the corresponding author on reasonable request.

REFERENCES
1. Zhu N, et al. A novel coronavirus from patients with pneumonia in China, 2019. The New England Journal of Medicine 2020; 382: 727-733.
2. Cucinotta C, Vanelli M. WHO Declares COVID-19 a Pandemic. Acta Biomedica 2020; 91: 157-160.

3. World Health Organization. Basic Documents, Forty-eighth edition, 2014. (http://apps.who.int/gb/bd/PDF/bd48/basic-documents-48th-edition-en.pdf?page=1). Accessed 15 January 2021.

4. World Health Organization Algeria. A second COVID-19 case is confirmed in Africa. (https://www.afro.who.int/news/second-covid-19-case-confirmed-africa). Accessed 15 January 2021.

5. World health Organization Regional Office for Africa. COVID 19 external situation report 11. (https://apps.who.int/iris/bitstream/handle/10665/332078/SITREP_COVID-19_WHOAFRO_20200513-eng.pdf). Accessed 15 January 2021.

6. World Health Organization. Coronavirus disease 2019 (COVID-19) weekly epidemiological updates, data as of 03 January 2021. (https://www.who.int/publications/m/item/weekly-epidemiological-update---5-january-2021). Accessed 6 January 2021.

7. Rosenthal PJ, et al. COVID-19: Shining the Light on Africa. The American Journal of Tropical Medicine and Hygiene 2020; 102: 1145–1148.

8. Mbow M, et al. COVID-19 in Africa: Dampening the storm? Science 2020; 369: 624-626.

9. Mun-Keat Looi. Covid-19: Is a second wave hitting Europe? British Medical Journal 2020; 371: m4113. doi: https://doi.org/10.1136/bmj.m4113.

10. Maeda JM, Nkengasong NJ. The puzzle of the COVID-19 pandemic in Africa. Science 2021; 371: 27-28.

11. Africa Center for Strategic Studies. Analyzing Africa’s Second Wave of COVID-19. 2021. (https://reliefweb.int/sites/reliefweb.int/files/resources/africacenter.org-Analyzing%20Africas%20Second%20Wave%20of%20COVID-19.pdf). Accessed 15 January 2021.

12. Leung K, et al. Early transmissibility assessment of the N501Y mutant strains of SARS-CoV-2 in the United Kingdom, October to November 2020. Eurosurveillance 2021. Published online 7 January 2021. doi.org/10.2807/1560-7917.ES.2020.26.1.2002106.

13. Centre for Disease Control and Prevention. Emerging SARS-CoV-2 Variants. (https://www.cdc.gov/coronavirus/2019-ncov/more/science-and-research/scientific-brief-emerging-variants.html). Accessed 15 January 2021.
14. **World Health Organization**. Considerations for implementing and adjusting public health and social measures in the context of COVID-19. (https://www.who.int/publications/i/item/considerations-in-adjusting-public-health-and-social-measures-in-the-context-of-covid-19-interim-guidance). Accessed 7 November 2020.

15. **World Health Organization**. Rapid Risk Assessment of Acute Public Health Events. (https://www.who.int/csr/resources/publications/HSE_GAR_ARO_2012_1/en/). Accessed 7 November 2020.

16. **R Core Team**. The R Project for Statistical Computing. (https://www.r-project.org). Accessed 13 September 2020.

17. **ESRI**. *ArcGIS*: The mapping and analytics platform. (https://www.esri.com/en-us/arcgis/about-arcgis/overview). Accessed 20 September 2020.

18. **Cabore JW, et al.** The potential effects of widespread community transmission of SARS-CoV-2 infection in the World Health Organization African Region: a predictive model. *BMJ Global Health*. Published online: 25 May 2020. doi: 10.1136/bmjgh-2020-002647.

19. **World Health Organization**. Harmonized sub-regional essential infection prevention and control (IPC) services at points of entry and within-country IPC interventions for transnational truck drivers within East African community. (https://www.afro.who.int/health-topics/coronavirus-covid-19/technical-documents). Accessed 20 September 2020.

20. **Bajunirwe F, Izudi J, Asiimwe S.** Long-distance truck drivers and the increasing risk of COVID-19 spread in Uganda. *International Journal of Infectious Diseases* 2020; 98: 191-193.

21. **The World Bank**. United Nations Population Division. World Population Prospects: 2019 Revision. (https://data.worldbank.org/indicator/SP.POP.TOTL?locations=ZG). Accessed 17 September 2020.

22. **UNDP**. Mapping of fiscal and social protection policy responses to COVID-19 – Mauritius and Seychelles (20 March 2020). Accessed 21 January 2020

23. **Mamode Khan N, Soobhug AD, Heenaye-Mamode KM.** Studying the trend of the novel coronavirus series in Mauritius and its implications. *PLoS One*. Published online: 10 July 2020. doi: 10.1371/journal.pone.0235730.

24. **Mezue K, et al.** Sub-Saharan Africa Tackles COVID-19: Challenges and Opportunities. *Ethnicity & Disease* 2020; 30: 693-694. doi: 10.18865/ed.30.4.693.
25. **World Health Organization.** National health policies, strategies and plans. 2021. (https://www.who.int/nationalpolicies/nationalpolicies/en). Accessed 21 January 2021.

26. Lone AS, Ahmad A. COVID-19 pandemic – an African perspective. *Emerging Microbes & Infection* 2020; 9: 1300-1308.

27. Nkengasong JN, Mankoula W. Looming threat of COVID-19 infection in Africa: act collectively, and fast. 2020. *Lancet;* 395: 841-842.

28. **World Health Organization.** Emergency Response Framework. (https://www.who.int/hac/about/erf_.pdf). Accessed 21 January 2021.

Transmission scenario	Definition Countries/Territories/areas with:
No active cases	No new cases detected for at least 28 days (two times the maximum incubation period), in the presence of a robust surveillance system. This implies a near-zero risk of infection for the general population.
Sporadic cases	Cases detected in the past 14 days are all imported, sporadic (e.g. laboratory acquired or zoonotic) or are all linked to imported/sporadic cases, and there are no clear signals of further locally acquired transmission. This implies minimal risk of infection for the general population.
Clusters of cases	Cases detected in the past 14 days are predominantly limited to well-defined clusters that are not directly linked to imported cases but, which are all linked by time, geographic location and common exposures. It is assumed that there are a number of unidentified cases in the area. This implies a low risk of infection to others in the wider community if exposure to these clusters is avoided.
Community transmission – level 1 (CT1)	**Low incidence** of locally acquired, widely dispersed cases detected in the past 14 days, with many of the cases not linked to specific clusters; transmission may be focused in certain population sub-groups. Low risk of infection for the general population.
Community transmission – level 2 (CT2)	**Moderate incidence** of locally acquired, widely dispersed cases detected in the past 14 days; transmission less focused in certain population sub-groups. Moderate risk of infection for the general population.
Community transmission – level 3 (CT3)	**High incidence** of locally acquired, widely dispersed cases in the past 14 days; transmission widespread and not focused in population sub-groups. High risk of infection for the general population.
Community transmission – level 4 (CT4)	**Very high incidence** of locally acquired, widely dispersed cases in the past 14 days. Very high risk of infection for the general population.
Table 2: Indicators and proposed ranges for assessing health system response capacity

No	Indicator	Score		
1	Percent of change in new deaths in the past 28 days compared to the previous 28 days	\(\leq -50\% \)	\(>-50\% \) and \(<20\% \)	\(\geq 20\% \)
2	Average number of tests per 100 000 population per week during the last 4 weeks	\(>200 \)	100-200	\(<100 \)
3	Percent change in new health worker infections in the past 28 days compared to the previous 28 days	\(\leq -50\% \)	\(>-50\% \) and \(<20\% \)	\(\geq 20\% \)

Table 3: COVID-19 risk for pandemic to continue spreading matrix [11]

Transmission level	Response capacity		
Adequate	Level 0	Level 0	Level 1
Moderate	Level 0	Level 1	Level 1
Limited	Level 1	Level 2	Level 2
No cases	Level 0	Level 1	Level 1
Imported/sporadic cases	Level 0	Level 1	Level 1
Clusters of cases	Level 1	Level 2	Level 2
Community transmission with low incidence	Level 1	Level 2	Level 2
Community transmission with moderate incidence	Level 2	Level 2	Level 3
Community transmission with high incidence	Level 2	Level 3	Level 3
Community transmission with very high incidence	Level 3	Level 3	Level 4
Table 4: COVID-19 risk levels interpretation and actions recommended

Risk level	Corresponding situation	Actions recommended
Level 0	Situation with no known transmission of SARS-CoV-2 in the preceding 28 days	The health system and public health authorities should be ready to respond and there should be no restrictions on daily activities.
Level 1	Situation where the epidemic is controlled through effective measures around the cases or clusters of cases, with limited and transient localised disruption to social and economic life.	Surveillance should ensure that any new case can be detected and managed as early as possible, but there should be no restrictions on daily activities.
Level 2	Situation with low community incidence or a risk of community transmission beyond clusters.	Measures should be applied to limit the number of social encounters in the community while ensuring services can remain open with safety measures in place.
Level 3	Situation of community transmission with limited additional capacity to respond and a risk of health services becoming overwhelmed	Need to strengthen all PHSM to avoid more stringent restrictions on movement and other related measures applied under level 4. All individuals should reduce their social contacts, and some activities may need to close while allowing for essential services, and in particular schools, to remain open.
Level 4	Situation of uncontrolled epidemic with limited or no additional response capacity requiring strong measures for control to avoid large excess mortality and for health services to be overwhelmed.	More stringent movement restrictions and related measures may need to be put in place to significantly reduce the time-bound and aimed to be as short as reasonably possible.
Figure 1: Decision scheme on transmission pattern for countries in the WHO African region
Figure 2: Geographical distribution of countries in the WHO African region by transmission scenario.
Figure 3: Geographical distribution of countries in the WHO African region by health system's response capacity
Table 5: Indicators and reports used to assign a COVID-19 risk level by country in the WHO African region

Country	Cumulative number of cases	New cases in the past 28 days	All cases reported in the last 14 days are imported?	At least 80% of cases reported in the last 14 days are locally transmitted	epi-link known for at least 80% of cases reported in the last 14 days	Number of cases reported in the past 14 days by million population	% change in new deaths in the past 28 days	Average number of tests per 100,000 population per week during the last 4 weeks**	Transmission scenario	Health System’s response capacity	Risk level
Algeria	99610	13683	No	Yes	No	132	10.1	30	CT High incidence	Limited level_3	level_3
Angola	17553	2192	No	Yes	No	37	13.5	57	CT Moderate incidence	Limited level_3	level_3
Benin	3251	196	No	Yes	No	8	0	29	CT low incidence	Moderate level_2	level_2
Botswana	14805	3884	No	Yes	No	705	16.7	1427	CT High incidence	Limited level_3	level_3
Burkina Faso	6828	3737	No	Yes	No	97	20.5	27	CT Moderate incidence	Limited level_3	level_3
Burundi	822	130	No	Yes	No	5	50	34	CT low incidence	Limited level_3	level_3
Cameroon	26848	2096	No	Yes	No	43	1.1	20	CT Moderate incidence	Limited level_3	level_3
Cape Verde	11840	902	No	Yes	No	615	7.1	366	CT High incidence	Limited level_3	level_3
CAR	4963	36	No	Yes	No	3	0	6	CT low incidence	Moderate level_3	level_3

This is an Open Access article, distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives licence (http://creativecommons.org/licenses/by-nc-nd/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is unaltered and is properly cited. The written permission of Cambridge University Press must be obtained for commercial re-use or in order to create a derivative work.
Country	Population	Mean Annual Temperature	Guinea Pig Importations	TB Prevalence - 1990	Mean Annual Precipitation	Annual Incidence Rate	CT Incidence Level	
Chad	2113	405	No	Yes	No	18	2.1	18
Comoros	765	150	No	Yes	No	143	22.2	8
Congo	6200	426	No	Yes	No	0	1.1	43
Cote d'Ivoire	22250	817	No	Yes	No	19	3.6	36
DRC	17658	4377	No	Yes	No	28	17.5	4
Eq Guinea	5277	118	No	Yes	Not applicable	46	1.2	58
Eritrea	1320	726	Yes	Not applicable	Not applicable	180	100	72
Eswatini	9358	2884	No	Yes	Not applicable	1973	43.5	948
Ethiopia	124264	12685	No	Yes	Not applicable	52	11.2	33
Gabon	9571	332	No	Yes	Not applicable	91	6.5	1274
Gambia	3800	32	No	Yes	No	6	10	48
Ghana	54930	2656	No	Yes	No	42	27.8	52
Guinea	13738	552	No	Yes	No	18	6.2	41
Guinea-Bissau	2447	6	No	Yes	No	0	2.2	21
Kenya	96458	10075	No	Yes	No	58	10.8	71
Lesotho	2577	432	No	Yes	No	137	4.3	66

CT Incidence Level:
- **Limited**
- **Moderate**
- **High**
- **Sporadic**
| Country | Population | Imports | Treatment Available | HIC | CT Incidence | Treatment Level | | |
|---|---|---|---|---|---|---|---|---|
| Liberia | 1800 | 124 | No | Yes | No | Limited level 2 |
| Madagascar | 17714 | 241 | No | Yes | No | Limited level 2 |
| Malawi | 6583 | 540 | No | Yes | No | Limited level 3 |
| Mali | 7090 | 2210 | No | Yes | No | Limited level 3 |
| Mauritania | 13642 | 4283 | No | Yes | No | Limited level 3 |
| Mauritius | 527 | 22 | Yes | Not applicable | 2 | Sporadic Adequate level 0 |
| Mozambique | 18642 | 2724 | No | Yes | No | Limited level 2 |
| Namibia | 24545 | 9765 | No | Yes | No | Limited level 3 |
| Niger | 3208 | 1568 | No | Yes | No | Limited level 3 |
| Nigeria | 87510 | 19207 | No | Yes | No | Limited level 3 |
| Rwanda | 8383 | 2372 | No | Yes | No | Limited level 3 |
| Sao Tome & Principe | 1014 | 17 | No | Yes | No | Limited level 3 |
| Senegal | 19140 | 2923 | No | Yes | No | Limited level 3 |
| Seychelles | 267 | 86 | No | Yes | Yes | Limited level 3 |
| Sierra Leone | 2560 | 144 | No | Yes | No | Limited level 3 |
| South Africa | 1057561 | 25668 | No | Yes | No | Limited level 3 |
| Country | Cases | Deaths | Imported Case | Active Case | Incidence | CT Incidence | Control Measure | Level |
|-------------|--------|--------|---------------|-------------|-----------|--------------|-----------------|-------|
| South Sudan | 3558 | 404 | No | Yes | No | 30 | 3.2 | 34 |
| Togo | 3633 | 594 | No | Yes | No | 37 | 3.4 | 81 |
| Uganda | 35511 | 13613 | No | Yes | No | 123 | 23 | 64 |
| Zambia | 20725 | 2995 | No | Yes | No | 124 | 9.3 | 249 |
| Zimbabwe | 13867 | 3443 | No | Yes | No | 137 | 24.4 | 74 |

* Last 28 days (4-31 December 2020)
** Last 14 days (18-31 December 2020)
CT: Community transmission
Figure 4: Geographical distribution of countries in the WHO African region by COVID-19 risk level.