On Pre-generalized c*-homeomorphisms in topological spaces

S. MALATHI and S. NITHYANANTHA JOTHI

1. Introduction

Norman Levine introduced the concept of semi-continuous function in 1963. In 1980, Jain introduced totally continuous functions. In 2011, S.S. Benchalli and Umadevi I Neeli introduced the concept of semi-totally continuous functions in topological spaces. H. Maki et al. introduced and investigated generalized homeomorphisms and gc-homeomorphisms. R. Devi et al. introduced and studied semi-generalized homeomorphisms and generalized semi-homeomorphisms. In this paper, we introduce pre-generalized c*-homeomorphisms in topological spaces and study their basic properties.

Section 2 deals with the preliminary concepts. In section 3, pre-generalized c*-homeomorphisms in topological spaces are introduced and their basic properties are studied.

2. Preliminaries :

Throughout this paper X denotes a topological space on which no separation axiom is assumed. For any subset A of X, cl(A) denotes the closure of A, int(A) denotes the interior of A, pcl(A) denotes the pre-closure of A and bcl(A) denotes the b-closure of A. Further X\A denotes the complement of A in X. The following definitions are very useful in the subsequent sections.

This is an open access article under the CC BY-NC-SA license (https://creativecommons.org/licenses/by-nc-sa/4.0)
Definition: 2.1 A subset A of a topological space X is called

i. a semi-open set if $A \subseteq \text{cl}(\text{int}(A))$ and a semi-closed set if $\text{int}(\text{cl}(A)) \subseteq A$.

ii. a pre-open set if $A \subseteq \text{int}(\text{cl}(A))$ and a pre-closed set if $\text{cl}(\text{int}(A)) \subseteq A$.

Definition: 2.2 A subset A of a topological space X is said to be a c^*-open set if $\text{int}(\text{cl}(A)) \subseteq A \subseteq \text{cl}(\text{int}(A))$.

Definition: 2.3 A subset A of a topological space X is called

i. a generalized pre-regular closed set (briefly, gpr-closed) if $\text{pcl}(A) \subseteq H$ whenever $A \subseteq H$ and H is regular-open in X.

ii. a weakly closed set (briefly, w-closed) (equivalently, \tilde{g} -closed) if $\text{cl}(A) \subseteq H$ whenever $A \subseteq H$ and H is semi-open in X.

The complements of the above mentioned closed sets are their respectively open sets.

Definition: 2.4 A subset A of a topological space X is said to be a generalized c^*-closed set (briefly, gc*-closed set) if $\text{cl}(A) \subseteq H$ whenever $A \subseteq H$ and H is c^*-open. The complement of the gc*-closed set is gc*-open.

Definition: 2.5 A subset A of a topological space X is said to be a pre-generalized c^*-closed set (briefly, pgc*-closed set) if $\text{pcl}(A) \subseteq H$ whenever $A \subseteq H$ and H is c^*-open. The complement of the pgc*-closed set is pgc*-open.

Definition: 2.6 A function $f : X \to Y$ is called

i. totally-continuous if the inverse image of every open subset of Y is clopen in X.

ii. strongly-continuous if the inverse image of every subset of Y is clopen subset of X.

iii. semi-totally continuous if the inverse image of every semi-open subset of Y is clopen in X.

iv. gpr-continuous if inverse image of every closed subset of Y is gpr-closed in X.

v. w-continuous (equivalently, \tilde{g} -continuous) if inverse image of every closed subset of Y is w-closed in X.

Definition: 2.7 A function $f : X \to Y$ is said to be a \tilde{g} -open map if $f(U)$ is \tilde{g} -open in Y for every open set U of X.

Definition: 2.8 A function $f : X \to Y$ is said to be a generalized c^*-open (briefly, gc*-open) map if $f(U)$ is gc*-open in Y for every open set U of X.

Definition: 2.9 A function $f : X \to Y$ is said to be a pre-generalized c^*-open (briefly, pgc*-open) map if $f(U)$ is pgc*-open in Y for every open set U of X.

Definition: 2.10 Let X and Y be two topological spaces. A function $f : X \to Y$ is called a generalized c^*-continuous (briefly, gc*-continuous) function if $f^{-1}(V)$ is gc*-closed in X for every closed set V of Y.

Definition: 2.11 Let X and Y be two topological spaces. A function $f : X \to Y$ is called a pre-generalized c^*-continuous (briefly, pgc*-continuous) function if $f^{-1}(V)$ is pgc*-closed in X for every closed set V of Y.

Definition: 2.12 A bijective function $f : X \to Y$ is called a \tilde{g} -homeomorphism if f is both \tilde{g} -continuous and \tilde{g} -open.

Definition: 2.13 A bijective function $f : X \to Y$ is said to be generalized c^*-homeomorphism (briefly, gc*-homeomorphism) if f is both gc*-continuous and gc*-open map.
3. Pre-generalized c*-homeomorphisms:

In this section, we introduce pre-generalized c*-homeomorphisms and study their basic properties.

Definition: 3.1 A bijective function $f : X \rightarrow Y$ is said to be pre-generalized c*-homeomorphism (briefly, pgc*-homeomorphism) if f is both pgc*-continuous and pgc*-open map.

Example: 3.2 Let $X = \{a,b,c\}$ and $Y = \{1,2,3\}$. Then, clearly $\tau = \{\emptyset, \{b\}, \{c\}, \{b,c\}, X\}$ is a topology on X and $\sigma = \{\emptyset, \{1\}, Y\}$ is a topology on Y. Define $f : X \rightarrow Y$ by $f(a) = 1$, $f(b) = 3$, $f(c) = 2$. Then f is both pgc*-continuous and pgc*-open map. Therefore, f is a pgc*-homeomorphism.

Proposition: 3.3 Let X, Y be topological spaces. Then every homeomorphism is a pgc*-homeomorphism.

Proof: Let $f : X \rightarrow Y$ be a homeomorphism. Then f is both continuous and open map. By Proposition 3.4[10], f is pgc*-continuous and by Proposition 4.4[9], f is a pgc*-open map. Therefore, f is pgc*-homeomorphism.

The converse of Proposition 3.3 need not be true which can be verified from the following example.

Example: 3.4 In Example 3.2, the image of the open set $\{b\}$ in X is $\{3\}$, which is not open in Y. Therefore, f is not homeomorphism.

Proposition: 3.5 Let X be a topological space. Then every \hat{g}-homeomorphism is a pgc*-homeomorphism.

Proof: Let $f : X \rightarrow Y$ be a \hat{g}-homeomorphism. Then f is both \hat{g}-continuous and \hat{g}-open map. By Proposition 3.4 [10], f is pgc*-continuous. Also, by Proposition 4.6 [9], f is a pgc*-open map. Therefore, f is pgc*-homeomorphism.

The converse of Proposition 3.5 need not be true as seen from the following example.

Example: 3.6 In Example 3.2, the function $f : X \rightarrow Y$ is a pgc*-homeomorphism. But the inverse image of the closed set $\{2,3\}$ in Y under f is $\{b,c\}$, which is not a \hat{g}-closed set in X. Therefore, f is not a \hat{g}-continuous function. Hence f is not a \hat{g}-homeomorphism.

Proposition: 3.7 Let X be a topological space. Then every gc*-homeomorphism is a pgc*-homeomorphism.

Proof: Let $f : X \rightarrow Y$ be a gc*-homeomorphism. Then f is both gc*-continuous and gc*-open map. By Proposition 3.4[10], f is pgc*-continuous. Since every gc*-open map is pgc*-open map, we have f is a pgc*-open map. Therefore, f is a pgc*-homeomorphism.

The following example shows that the converse of Proposition 3.7 need not be true.

Example: 3.8 Let $X = \{a,b,c,d,e\}$ and $Y = \{1,2,3,4,5\}$. Then, clearly $\tau = \{\emptyset, \{a,b\}, \{c,d\}, \{a,b,c,d\}, X\}$ is a topology on X and $\sigma = \{\emptyset, \{1\}, \{2\}, \{1,2\}, \{1,2,3\}, \{1,2,3,4\}, \{1,2,3,5\}, Y\}$ is a topology on Y. Define $f : X \rightarrow Y$ by $f(a) = 1$, $f(b) = 2$, $f(c) = 3$, $f(d) = 4$, $f(e) = 5$. Then f is a pgc*-homeomorphism. But f is not a gc*-homeomorphism, since the inverse image of the closed set $\{4\}$ in Y under f is $\{d\}$, which is not a gc*-closed set in X. Therefore, f is not a gc*-homeomorphism.

The composition of two pgc*-homeomorphisms need not be a pgc*-homeomorphism. For example, let $X = \{a,b,c\}$, $Y = \{1,2,3\}$ and $Z = \{p,q,r\}$. Then, clearly $\tau = \{\emptyset, \{b\}, \{c\}, \{b,c\}, X\}$ is a topology on X and $\sigma = \{\emptyset, \{1\}, Y\}$ is a topology on Y. Define $f : X \rightarrow Y$ by $f(a) = 1$, $f(b) = 3$, $f(c) = 2$ and define $g : Y \rightarrow Z$ by $g(1) = q$, $g(2) = p$, $g(3) = r$. Then f and g are pgc*-homeomorphisms. Consider the closed set $\{r\}$ in Z. Then $(g \circ f)^{-1}(\{r\}) = f^{-1}(g^{-1}(\{r\})) = f^{-1}(\{3\}) = \{b\}$, which is not a pgc*-closed set in X. Therefore, $g \circ f$ is not a pgc*-homeomorphism.

Proposition: 3.9 Let X, Y, Z be topological spaces. If $f : X \rightarrow Y$ and $g : Y \rightarrow Z$ are homeomorphisms, then $g \circ f : X \rightarrow Z$ is a pgc*-homeomorphism.

Proof: Assume that $f : X \rightarrow Y$ and $g : Y \rightarrow Z$ are homeomorphisms. Then f and g are both continuous and
open maps. By Proposition 3.10, \(g \circ f \) is a pgc*-continuous function. Also, by Proposition 4.9, \(g \circ f \) is a pgc*-open map. Hence \(g \circ f \) is a pgc*-homeomorphism.

Proposition: 3.10 Let \(X, Y \) be topological spaces. If \(f : X \rightarrow Y \) is strongly continuous and image of every subset of \(X \) is a clopen subset of \(Y \), then \(f \) is pgc*-homeomorphism.

Proof: Let \(f : X \rightarrow Y \) be a strongly continuous function. Then by Proposition 3.4, \(f \) is a pgc*-continuous function. Now, let \(U \) be a open set in \(X \). By our assumption, \(f(U) \) is a clopen in \(Y \). By Proposition 3.7, \(f(U) \) is gc*-open in \(Y \). This implies, \(f(U) \) is pgc*-open in \(Y \). Therefore, \(f \) is a pgc*-open map. Hence \(f \) is a pgc*-homeomorphism.

Proposition: 3.11 Let \(X, Y \) be topological spaces. If \(f : X \rightarrow Y \) is a semi-totally continuous function and image of every semi-open subset of \(X \) is clopen in \(Y \), then \(f \) is pgc*-homeomorphism.

Proof: Let \(f : X \rightarrow Y \) be a semi-totally continuous function. Then by Proposition 3.4, \(f \) is a pgc*-continuous function. Now, let \(U \) be a open set in \(X \). Then \(U \) is semi-open in \(X \). By our assumption, \(f(U) \) is a clopen in \(Y \). By Proposition 3.7, \(f(U) \) is gc*-open in \(Y \). This implies, \(f(U) \) is pgc*-open in \(Y \). Therefore, \(f \) is a pgc*-open map. Hence \(f \) is a pgc*-homeomorphism.

Proposition: 3.12 Let \(X, Y \) be topological spaces. If \(f : X \rightarrow Y \) is a totally continuous function and image of every open subset of \(X \) is clopen in \(Y \), then \(f \) is pgc*-homeomorphism.

Proof: Let \(f : X \rightarrow Y \) be a totally continuous function. Then by Proposition 3.4, \(f \) is a pgc*-continuous function. Now, let \(U \) be a open set in \(X \). By our assumption, \(f(U) \) is a clopen in \(Y \). By Proposition 3.7, \(f(U) \) is gc*-open in \(Y \). This implies, \(f(U) \) is pgc*-open in \(Y \). Therefore, \(f \) is a pgc*-open map. Hence \(f \) is a pgc*-homeomorphism.

Proposition: 3.13 Let \(X, Y \) be topological spaces. If \(f : X \rightarrow Y \) is a pgc*-homeomorphism, then \(f \) is gpr-continuous and image of every closed subset of \(X \) is gpr-closed in \(Y \).

Proof: Assume that \(f \) is a pgc*-homeomorphism. Then \(f \) is both pgc*-continuous and pgc*-open map. Then by Proposition 3.6, \(f \) is gpr-continuous. Now, let \(V \) be a closed set in \(Y \). Since \(f \) is a pgc*-open map, by Proposition 4.3, \(f(V) \) is a pgc*-closed set in \(Y \). Therefore, by Proposition 3.15, \(f(V) \) is gpr-closed in \(X \). Hence the proof.

Proposition: 3.14 Let \(X, Y \) be a topological space. A bijective function \(f : X \rightarrow Y \) is a pgc*-homeomorphism if and only if \(f \) is pgc*-continuous and \(f^{-1} : Y \rightarrow X \) is pgc*-continuous.

Proof: Assume that \(f \) is a pgc*-homeomorphism. Then \(f \) is pgc*-continuous and pgc*-open map. By Proposition 3.8, \(f^{-1} : Y \rightarrow X \) is a pgc*-continuous function. Conversely, assume that \(f \) is pgc*-continuous and \(f^{-1} \) is pgc*-continuous. Then by Proposition 3.8, \(f : X \rightarrow Y \) is a pgc*-open map. Hence \(f \) is a pgc*-homeomorphism.

Proposition: 3.15 Let \(X, Y \) be topological spaces. If \(f : X \rightarrow Y \) is pgc*-homeomorphism and \(g : Y \rightarrow Z \) is totally-continuous and if \(g(U) \) is pgc*-open for every pgc*-open set \(U \) in \(Y \), then \(g \circ f : X \rightarrow Z \) is pgc*-homeomorphism.

Proof: Let \(V \) be an open set in \(Z \). Then \(g^{-1}(V) \) is clopen in \(Y \). This implies, \(g^{-1}(V) \) is open in \(Y \). Since \(f \) is pgc*-continuous, we have \(f^{-1}(g^{-1}(V)) \) is pgc*-open. That is, \((g \circ f)^{-1}(V) \) is pgc*-open in \(X \). Therefore, \(g \circ f \) is pgc*-continuous. Let \(U \) be an open set in \(X \). Then \(f(U) \) is pgc*-open in \(Y \). This implies, \(g(f(U)) \) is pgc*-open in \(Z \). That is, \((g \circ f)(U) \) is pgc*-open in \(Z \). Therefore, \(g \circ f \) is pgc*-open map. Hence \(g \circ f \) is pgc*-homeomorphism.
Proposition: 3.16 Let X, Y and Z be topological spaces. If $f : X \to Y$ is pgc*-homeomorphism and $g : Y \to Z$ is semi-totally continuous and if $g(U)$ is pgc*-open for every pgc*-open set U in Y, then $g \circ f : X \to Z$ is pgc*-homeomorphism.

Proof: Let V be an open set in Z. Then V is semi-open in Z. This implies, $g^{-1}(V)$ is clopen in Y. Since f is pgc*-continuous, we have $f^{-1}(g^{-1}(V))$ is pgc*-open. That is, $(g \circ f)^{-1}(V)$ is pgc*-open in X. Therefore, $g \circ f$ is pgc*-continuous. Let U be an open set in X. Then $f(U)$ is pgc*-open in Y. This implies, $g(f(U))$ is pgc*-open in Z. That is, $(g \circ f)(U)$ is pgc*-open in Z. Therefore, $g \circ f$ is pgc*-open map. Hence $g \circ f$ is pgc*-homeomorphism.

Proposition: 3.17 Let X, Y and Z be topological spaces. If $f : X \to Y$ is both open and strongly-continuous and $g : Y \to Z$ is pgc*-homeomorphism, then $g \circ f : X \to Z$ is pgc*-homeomorphism.

Proof: Let V be an open set in Z. Then $g^{-1}(V)$ is pgc*-open in Y. Since f is strongly-continuous, we have $f^{-1}(g^{-1}(V))$ is clopen in X. That is, $(g \circ f)^{-1}(V)$ is pgc*-open in X. Therefore, $g \circ f$ is pgc*-continuous. Let U be an open set in X. Then $f(U)$ is open in Y. This implies, $g(f(U))$ is pgc*-open in Z. That is, $(g \circ f)(U)$ is pgc*-open in Z. Therefore, $g \circ f$ is pgc*-open map. Hence $g \circ f$ is pgc*-homeomorphism.

Conclusion

In this paper we have introduced pgc*-homeomorphisms in topological spaces. Also, we have studied the relationship between pgc*-homeomorphism and other continuous functions already exist.

References

1. S.S. Benchalli and U. I Neeli, Semi-totally Continuous function in topological spaces, Inter. Math. Forum, 6, 10, 479-492 (2011).
2. Y. Gnanambal, On generalized pre regular closed sets in topological spaces, *Indian J. Pure Appl. Math.*, 28, 351-360 (1997).
3. R.C. Jain, The role of regularly open sets in general topological spaces, Ph.D. thesis, Meerut University, Institute of advanced studies, Meerut-India, (1980).
4. N. Levine, Semi-open sets and semi-continuity in topological space, Amer. Math. Monthly., 70, 39-41 (1963).
5. S. Malathi and S. Nithyanantha Jothi, On c^*-open sets and generalized c^*-closed sets in topological spaces, Acta ciencia indica, Vol. XLIII M, No.2, 125, 125-133 (2017).
6. S. Malathi and S. Nithyanantha Jothi, On generalized c^*-open sets and generalized c^*-open maps in topological spaces, Int. J. Mathematics And its Applications, Vol. 5, issue 4-B, 121-127 (2017).
7. S. Malathi and S. Nithyanantha Jothi, On generalized c^*-continuous functions and generalized c^*-irresolute functions in topological spaces, Turkish Journal of Analysis and Number Theory, (Accepted).
8. S. Malathi and S. Nithyanantha Jothi, On pre-generalized c^*-closed sets in topological spaces, *Journal of Computer and Mathematical Sciences* Vol. 8 (12), 720-726 (2017).
9. S. Malathi and S. Nithyanantha Jothi, On pre-generalized c^*-open sets and pre-generalized c^*-open maps in topological spaces, Int. J. Mathematical Archive, Vol. 8 (12), 66-70 (2017).
10. S. Malathi and S. Nithyanantha Jothi, On pre-generalized c^*-continuous functions and pre-generalized c^*-
irresolute functions in topological spaces, Mathematical Sciences *International Research Journal*, Vol. 7, Spl issue 4, 17-22 (2018).

11. S. Malathi and S. Nithyanantha Jothi, On generalized c*-neighbourhoods and generalized c*-homeomorphisms in topological spaces, Proceedings of National Conference on Innovation in Mathematics (NCIM-2018), 87-95.

12. A.S. Mashhour, M.E. Monsef and S.N. El-Deep, On precontinuous mapping and weak precontinuous mapping, Proc. Math. Phy. Soc. Egypt, 53, 47-53 (1982).

13. M. Stone, Application of the theory of Boolean rings to general topology, Trans. Amer. Math. Soc., 41, 374-481 (1937).

14. P. Sundaram and M. Sheik John, Weakly closed sets and weak continuous functions in topological spaces, Proc. 82nd Indian Sci. cong., 49, 50-58 (1995).

15. P. Sundaram, M. Sheik John, On w-closed sets in topology, Acta ciencia indica, 4, 389-392 (2000).

16. M.K.R.S. Veera kumar, On \hat{g}–closed sets in topological spaces, Bull. Allah. Math. Soc, 18, 99-112 (2003).