RESEARCH ARTICLE

Intrinsic square functions and commutators on Morrey-Herz spaces with variable exponents

Afif Abdalmonem1 | Andrea Scapellato2

1Faculty of Science, Department of Mathematics, University of Dalanj, Dalanj, Sudan
2Dipartimento di Matematica e Informatica, Università degli Studi di Catania, Viale Andrea Doria 6, 95125, Catania, Italy

Correspondence
Andrea Scapellato, Dipartimento di Matematica e Informatica, Università degli Studi di Catania, Viale Andrea Doria 6, 95125, Catania, Italy.
Email: scapellato@dmi.unict.it

Communicated by: M. A. Ragusa

In this article, we will study the boundedness of intrinsic square functions on the Morrey-Herz spaces $MK_{lq)^{p}}(\mathbb{R}^{n})$. The boundedness of commutators generated by BMO functions and intrinsic square functions is also discussed on the aforementioned Morrey-Herz spaces.

KEYWORDS
BMO space, commutators, intrinsic square functions, Morrey-Herz spaces, variable exponent

MSC CLASSIFICATION
42B20; 42B25

1 INTRODUCTION

For $0 < \gamma \leq 1$, let C_{γ} be the family of all functions $\phi : \mathbb{R}^{n} \rightarrow \mathbb{R}$ such that ϕ has support contained in $\{x \in \mathbb{R}^{n} : |x| \leq 1\}$, $\int_{\mathbb{R}^{n}} \phi(x) dx = 0$, and such that for any $x_{1}, x_{2} \in \mathbb{R}$ the following inequality holds:

$$|\phi(x_{1}) - \phi(x_{2})| \leq |x_{1} - x_{2}|^{\gamma}. \quad (1)$$

For $(y, t) \in \mathbb{R}^{n+1}_{+}$ and $f \in L_{1}^{\text{loc}}(\mathbb{R}^{n})$, let us set

$$A_{\gamma}(f)(y, t) = \sup_{\phi \in C_{\gamma}} |f \ast \phi_{t}(y)| = \sup_{\phi \in C_{\gamma}} \left| \int_{\mathbb{R}^{n}} \phi_{t}(y - z)f(z) dz \right|. \quad (2)$$

The intrinsic square function of f of order γ is defined by

$$S_{\gamma}(f)(x) = \left(\int_{\Gamma(x)} \left(A_{\gamma}(f)(y, t) \right)^{2} \frac{dydt}{t^{n+1}} \right)^{\frac{1}{2}}, \quad (3)$$

where $\phi_{t}(x) = \frac{1}{t^{n}} \phi \left(\frac{x}{t} \right)$ and $\Gamma(x) = \{(y, t) \in \mathbb{R}^{n+1} : |x - y| < t\}$.

Andrea Scapellato dedicates this paper to the memory of his beloved aunt Anna Porto.
The definition of intrinsic square function S_r was first introduced by Wilson.\cite{Wilson1, Wilson2} Wilson\cite{Wilson2} proved the weighted L^p boundedness of intrinsic square functions. Lerner\cite{Lerner} proved sharp $L^p(w)$ norm inequalities for the intrinsic square function in terms of the A_p characteristic of w for all $1 < p < \infty$. The boundedness of intrinsic Littlewood-Paley functions on Musielak-Orlicz Morrey and Campanato spaces was considered in Liang et al.\cite{Liang1}

Let $b \in L^1_{\text{loc}}(\mathbb{R}^n)$ such that $b \in BMO(\mathbb{R}^n)$. The commutator generated by b and the intrinsic square function $S_r(f)(x)$ is defined by

$$[b, S_r](f)(x) = \left(\int \int \sup_{\Gamma(x) \ni y \in C_1} \left(\int_{\mathbb{R}^n} (b(y) - b(z)) \varphi_t(y - z) f(z) \, dz \right) \frac{d\gamma_t(x, t)}{t^{n+1}} \right)^{\frac{1}{2}}.$$ \hfill (4)

Wang\cite{Wang5} established the commutators of intrinsic square functions $[b, S_r]$ on weighted L^p space. Guliyev et al.\cite{Guliyev} proved the boundedness of intrinsic square function and their commutators on weighted Orlicz-Morrey space.

Moreover, Izuki\cite{Izuki} defined the Herz-Morrey spaces with one variable exponent $p(\cdot)$ and investigated the boundedness of fractional integrals on those space. Lu and Zhu\cite{Lu} considered the Morrey-Herz spaces $M^{\alpha(\cdot), \lambda}_{\gamma(\cdot)}(\mathbb{R}^n)$ with two variable exponent $\alpha(\cdot)$ and $p(\cdot)$ and obtained some boundedness results for certain sublinear operators and their commutators in these spaces. Wang\cite{Wang6} proved the boundedness of the commutator of the intrinsic square function in variable exponent spaces.

We also mention that Deringoz et al.\cite{Deringoz} studied the boundedness of intrinsic square functions and their commutators on vanishing generalized Orlicz-Morrey spaces. Deringoz et al.\cite{Deringoz} obtain some conditions for the boundedness are given in terms of Zygmund-type integral inequalities without assuming any monotonicity property.

Finally, it is interesting to point out that the boundedness of several singular integral operator on Herz-type spaces was used in the study of the regularity properties of solutions of second-order elliptic equations with discontinuous coefficients. We mention the work of Ragusa\cite{Ragusa1} in the context of homogeneous Herz spaces and the works of Scapellato\cite{Scapellato1, Scapellato2} in which the authors extended the results contained in Ragusa\cite{Ragusa1} to Herz spaces with variable exponents. Furthermore, we refer to Ragusa,\cite{Ragusa3} who studied Herz spaces endowed with a parabolic metric and proved regularity results for weak solutions to divergence form parabolic equations with discontinuous coefficients, using some boundedness results for integral operators and commutators.

The aim of this paper is to discuss boundedness properties of intrinsic square functions and their commutators on the non-homogeneous Morrey-Herz spaces $M^{\alpha(\cdot), \lambda}_{\gamma(\cdot), p(\cdot)}(\mathbb{R}^n)$ with three variable exponents.

2 | MATHEMATICAL BACKGROUND

Let E be a Lebesgue measurable set in \mathbb{R}^n with measure $|E| > 0$. Let us denote by χ_E the characteristic function of E. We mention that, throughout the paper, C denotes a positive constant, not necessarily the same at each occurrence.

We recall some definitions.

Definition 2.1 (Cruz-Uribe & Fiorenza,\cite{Cruz-Uribe} Chapter 2, p. 18). Let $p(\cdot): E \rightarrow [1, \infty)$ be a measurable function. The **variable exponent Lebesgue space** is defined by

$$L^{p(\cdot)}(E) = \left\{ f \text{ is measurable} : \int_E \left(\frac{|f(x)|}{\eta} \right)^{p(x)} \, dx < \infty \text{ for some constant } \eta > 0 \right\}.$$

The space $L^{p(\cdot)}_{\text{loc}}(E)$ is defined by

$$L^{p(\cdot)}_{\text{loc}}(E) = \{ f \text{ is measurable} : f \in L^{p(\cdot)}(K) \text{ for any compact set } K \subset E \}.$$

The Lebesgue spaces $L^{p(\cdot)}(E)$ is a Banach spaces with the norm defined by

$$\|f\|_{L^{p(\cdot)}(E)} = \inf \left\{ \eta > 0 : \int_E \left(\frac{|f(x)|}{\eta} \right)^{p(x)} \, dx \leq 1 \right\}.$$

We set $p_- = \text{ess } \inf\{p(x) : x \in E\}$, $p_+ = \text{ess } \sup\{p(x) : x \in E\}$. $P(E)$ is the set of all measurable functions $p(\cdot)$ satisfying $p_- > 1$ and $p_+ < +\infty$ and $P^0(E)$ is the set of all measurable functions $p(\cdot)$ satisfying $p_- > 0$ and $p_+ < +\infty$. For any $f \in$
the Hardy-Littlewood maximal operator M is defined by

$$
Mf(x) = \sup_{B \subseteq \mathbb{R}^n} \frac{1}{|B|} \int_B |f(y)| \, dy,
$$

being B a sphere in \mathbb{R}^n. The set $B(\mathbb{R}^n)$ consists of all $p(\cdot) \in \mathcal{P}(\mathbb{R}^n)$ such that M is bounded on $L^{p(\cdot)}(\mathbb{R}^n)$.

If $p(\cdot) \in \mathcal{P}(\mathbb{R}^n)$ satisfies the following inequalities,

$$
|p(x) - p(y)| \leq \frac{C}{\log(|x - y|)}, \quad \text{if } |x - y| \leq 1/2,
$$

$$
|p(x) - p(y)| \leq \frac{C}{\log(e + |x|)}, \quad \text{if } |y| \geq |x|,
$$

then we have $p(\cdot) \in B(\mathbb{R}^n)$.

Let us now recall the definition of space $BMO(\mathbb{R}^n)$. This space consists of all locally integrable functions f such that

$$
\|f\|_{BMO(\mathbb{R}^n)} := \|f\|_\infty = \sup_{Q} |Q|^{-1} \int_{Q} |f(x) - f_Q| \, dx < \infty,
$$

where $f_Q = |Q|^{-1} \int_Q f(y) \, dy$, the supremum is taken over all cubes $Q \subseteq \mathbb{R}^n$ with sides parallel to the coordinate axes, and $|Q|$ denotes the Lebesgue measure of Q.

Now, we give the definition of Morrey-Herz space with variable exponents $q(\cdot), p(\cdot), \alpha(\cdot)$.

Let $B_k = \{ x \in \mathbb{R}^n : |x| \leq 2^k \}$, $C_k = B_k \setminus B_{k-1}$, $\chi_k = \chi_{C_k}$, $k \in \mathbb{Z}$.

Definition 2.2 (Wang & Tao). Let $q(\cdot), p(\cdot) \in \mathcal{P}(\mathbb{R}^n)$, $0 \leq \lambda < \infty$ and $\alpha(\cdot) : \mathbb{R}^n \to \mathbb{R}$ with $\alpha \in L^\infty(\mathbb{R}^n)$. The nonhomogeneous Morrey-Herz space with variable exponents $MK^{\alpha(\cdot),\lambda}(\mathbb{R}^n)$ is defined by

$$
MK^{\alpha(\cdot),\lambda}(\mathbb{R}^n) = \{ f \in L^{p(\cdot)}_{\text{loc}}(\mathbb{R}^n \setminus \{0\}) : \|f\|_{MK^{\alpha(\cdot),\lambda}(\mathbb{R}^n)} < \infty \},
$$

where

$$
\|f\|_{MK^{\alpha(\cdot),\lambda}(\mathbb{R}^n)} = \inf \left\{ \beta > 0 : \sup_{k \in \mathbb{Z}} 2^{-k \lambda} \left\| \sum_{k \in \mathbb{Z}} \left(\frac{2^k \alpha(\cdot) \chi_k}{\beta} \right) f \chi_k \right\|_{L^{p(\cdot)}_{\text{loc}}(\mathbb{R}^n)} < 1 \right\}.
$$

The homogeneous Morrey-Herz space with variable exponents $MK^{\alpha(\cdot),\lambda}(\mathbb{R}^n)$ is defined by

$$
MK^{\alpha(\cdot),\lambda}(\mathbb{R}^n) = \{ f \in L^{p(\cdot)}_{\text{loc}}(\mathbb{R}^n \setminus \{0\}) : \|f\|_{MK^{\alpha(\cdot),\lambda}(\mathbb{R}^n)} < \infty \},
$$

where

$$
\|f\|_{MK^{\alpha(\cdot),\lambda}(\mathbb{R}^n)} = \inf \left\{ \beta > 0 : \sup_{k \in \mathbb{Z}} 2^{-k \lambda} \left\| \sum_{k \in \mathbb{Z}} \left(\frac{2^k \alpha(\cdot) \chi_k}{\beta} \right) f \chi_k \right\|_{L^{p(\cdot)}_{\text{loc}}(\mathbb{R}^n)} < 1 \right\}.
$$

Remark 1. If $q(\cdot)$ is a constant, then $MK^{\alpha(\cdot),\lambda}_{q(\cdot),p(\cdot)}(\mathbb{R}^n) = MK^{\alpha(\cdot),\lambda}_{q(\cdot),p(\cdot)}(\mathbb{R}^n)$. If both $\alpha(\cdot), q(\cdot)$ are constants, then $MK^{\alpha(\cdot),\lambda}_{q(\cdot),p(\cdot)}(\mathbb{R}^n) = MK^{\alpha(\cdot),\lambda}_{q(\cdot),p(\cdot)}(\mathbb{R}^n)$. If the variable exponents $\alpha(\cdot), p(\cdot), q(\cdot)$ are constants, then $MK^{\alpha(\cdot),\lambda}_{q(\cdot),p(\cdot)}(\mathbb{R}^n) = MK^{\alpha(\cdot),\lambda}_{q(\cdot),p(\cdot)}(\mathbb{R}^n)$. Moreover, if $\lambda = \alpha(\cdot) \equiv 0$ and $p(\cdot) = q(\cdot)$, then $MK^{\alpha(\cdot),\lambda}_{q(\cdot),p(\cdot)}(\mathbb{R}^n) = MK^{\alpha(\cdot),\lambda}_{q(\cdot),p(\cdot)}(\mathbb{R}^n) = L^{p(\cdot)}(\mathbb{R}^n)$.

Next, we need some lemmas that will be used in the proofs of our main results.

Lemma 2.3 (Cruz-Uribe & Fiorenza). (Generalized Hölder’s inequality) If $p(\cdot) \in \mathcal{P}(\mathbb{R}^n)$, then there exists a constant C such that, for all $f \in L^{p(\cdot)}(\mathbb{R}^n)$ and all $g \in L^{p(\cdot)}(\mathbb{R}^n)$, the following inequality holds:

$$
\int_{\mathbb{R}^n} |f(x)g(x)| \, dx \leq C \|f\|_{L^{p(\cdot)}(\mathbb{R}^n)} \|g\|_{L^{p(\cdot)}(\mathbb{R}^n)},
$$
where $C = 1 + \frac{1}{p} - \frac{1}{p^*}$.

Lemma 2.4 (Izuki17). Let $p(\cdot) \in B(\mathbb{R}^n)$. Then, there exists a constant $C > 0$ such that for any ball $B \subset \mathbb{R}^n$, the following inequality holds:

$$\frac{1}{|B|} \|\chi_B\|_{L^p(\mathbb{R}^n)} \|\chi_B\|_{L^{p^*}(\mathbb{R}^n)} \leq C.$$

Lemma 2.5 (Izuki17). Let $p(\cdot) \in B(\mathbb{R}^n)$. For $h = 1, 2$, there exist constants $\delta_{h1}, \delta_{h2}, C > 0$ such that for all balls $B \subset \mathbb{R}^n$ and all measurable $S \subset B$ the following inequalities hold:

$$\frac{\|\chi_S\|_{L^{p_{h1}}(\mathbb{R}^n)}}{\|\chi_S\|_{L^{p_{h2}}(\mathbb{R}^n)}} \leq \frac{C|B|}{|S|} \frac{\|\chi_S\|_{L^{p_{h1}}(\mathbb{R}^n)}}{\|\chi_S\|_{L^{p_{h2}}(\mathbb{R}^n)}} \leq C \left(\frac{|S|}{|B|}\right)^{\delta_{h1}}, \ \frac{\|\chi_S\|_{L^{p_{h1}}(\mathbb{R}^n)}}{\|\chi_S\|_{L^{p_{h2}}(\mathbb{R}^n)}} \leq C \left(\frac{|S|}{|B|}\right)^{\delta_{h2}}.$$

Lemma 2.6 (Wang & Tao18). Let $p(\cdot), q(\cdot) \in P^0(\mathbb{R}^n)$ and $f \in L^{p(\cdot)}(\mathbb{R}^n)$. Then,

$$\min(\|f\|_{L^{q_{+}}(\mathbb{R}^n)}, \|f\|_{L^{q_{-}}(\mathbb{R}^n)}) \leq \|f\|_{L^{p(\cdot)}} \leq \max(\|f\|_{L^{q_{+}}(\mathbb{R}^n)}, \|f\|_{L^{q_{-}}(\mathbb{R}^n)}).$$

Lemma 2.7 (Izuki17). Let us assume that $b \in BMO(\mathbb{R}^n)$ and that n is a positive integer. Then, there exists a constant $C > 0$, such that for any $k, j \in \mathbb{Z}$ with $k > j$, the following inequalities hold:

1. $C^{-1}\|b\|_s \leq \sup_B \left(\frac{1}{|B|} \|b - b_B\|_{L^{p_{s}}(\mathbb{R}^n)} \right) \leq C\|b\|_s$,
2. $\|\chi_B \|_{L^{p_{s}}(\mathbb{R}^n)} \leq C(k - j)\|b\|_s \|\chi_B \|_{L^{p_{s}}(\mathbb{R}^n)}.$

3 BOUNDEDNESS OF THE INTRINSIC SQUARE FUNCTIONS

Let $1 < p < \infty, p' = \frac{p}{p-1}$ and let w be a weight (i.e., a nonnegative locally integrable function on \mathbb{R}^n). We say that $w \in A_p$ if there exists $C > 0$ such that for every cube $Q \subset \mathbb{R}^n$, the following inequality holds:

$$\left(\frac{1}{|Q|} \int_Q w(x)dx\right) \left(\frac{1}{|Q|} \int_Q w(x)^{1-p'}dx\right)^{p-1} \leq C < \infty.$$

Wilson1 proved the following weighted $(L^p - L^{p'})$ boundedness of the intrinsic square functions.

Lemma 3.1 (Wilson1). Let $1 < p < \infty, 0 < \gamma \leq 1$ and $w \in A_p$. Then, there exists a constant $C > 0$ such that

$$\|S_{\gamma}(f)\|_{L^p} \leq C\|f\|_{L^w_p}.$$

Lemma 3.2. (Cruz-Uribe et al.19). Given a family of functions F, assume that for $p_0, 1 < p_0 < \infty, p_0 \leq p_{-\infty}$, and \(\left(\frac{p_0}{p_0}, \frac{p_0}{p_0}\right) \in B(E)\) and every $w_0 \in A_{p_0}$,

$$\int_{\mathbb{R}^n} f(x)^{p_0} w_0(x)dx \leq \int_{\mathbb{R}^n} g(x)^{p_0} w_0(x)dx, \quad (f, g) \in F.$$

If $p(\cdot) \in P(E)$, then for all $(f, g) \in F$ and $f \in L^{p(\cdot)}(E)$, we have

$$\|f\|_{L^{p(\cdot)}(E)} \leq C\|g\|_{L^{p(\cdot)}(E)}.$$

Since $A_{p'd'} \subset A_{\infty}$, by applying Lemmas 3.1 and 3.2, it is easy to get the boundedness of the intrinsic square functions S_{γ} on $L^{p(\cdot)}$.

Theorem 3.3. Let us assume that $p(\cdot) \in B(\mathbb{R}^n)$, $q_1(\cdot), q_2(\cdot) \in P(\mathbb{R}^n)$ with $(q_2)_{-} \geq (q_1)_{+}$ and $0 < \gamma \leq 1$. If $(\lambda_1)(q_2)_{-} = (\lambda_2)(q_1)_{-}$ and $-n\delta_{12} < \alpha_{+} < n\delta_{11} + (\lambda_1)/(q_1)_{-}$, where δ_{11} and δ_{12} are the constants in Lemma 2.5, then, the operator S_f is bounded from $MK^{\alpha_+, \lambda_1}_{q_1(\cdot), p(\cdot)}(\mathbb{R}^n)$ to $MK^{\alpha_+, \lambda_2}_{q_2(\cdot), p(\cdot)}(\mathbb{R}^n)$.

Before starting the proof of Theorem 3.3, we state a simple inequality that will be used in the proof.

Remark. Let $h \in \mathbb{N}$, $a_h \geq 0$, $1 \leq p_h < \infty$. We have

$$\sum_{h=0}^{\infty} a_h^{p_h} \leq \left(\sum_{h=0}^{\infty} a_h \right)^{p_*},$$

where

$$p_* = \begin{cases} \min_{h\in\mathbb{N}} p_h & \text{if } \sum_{h=0}^{\infty} a_h \leq 1, \\ \max_{h\in\mathbb{N}} p_h & \text{if } \sum_{h=0}^{\infty} a_h > 1. \end{cases}$$

Proof. Let $f \in MK^{\alpha_+, \lambda_1}_{q_1(\cdot), p(\cdot)}(\mathbb{R}^n)$. We decompose f as follows:

$$f(x) = \sum_{j=0}^{\infty} f(x) \chi_j(x) = \sum_{j=0}^{\infty} f_j(x).$$

By the definition of the norm in $MK^{\alpha_+, \lambda_1}_{q_1(\cdot), p(\cdot)}(\mathbb{R}^n)$, we have

$$\|S_f\|_{MK^{\alpha_+, \lambda_1}_{q_1(\cdot), p(\cdot)}(\mathbb{R}^n)} = \inf \left\{ \beta > 0 : \sup_{k_0 \in \mathbb{Z}} 2^{-k_0 \lambda_1} \sum_{k=0}^{k_0} \left(\frac{2^{k_0 \lambda_1} |S_f(\chi_k)|}{\beta} \right)^{q_2(\cdot)} \right\} \leq 1.$$

For any $k_0 \in \mathbb{Z}$, we get

$$2^{-k_0 \lambda_1} \sum_{k=0}^{k_0} \left(\frac{2^{k_0 \lambda_1} |S_f(\chi_k)|}{\beta} \right)^{q_2(\cdot)} \leq 2^{-k_0 \lambda_1} \sum_{k=0}^{k_0} \left(\frac{2^{k_0 \lambda_1} |S_f(\chi_k)|}{\beta_{11} + \beta_{12} + \beta_{13}} \right)^{q_2(\cdot)} \leq C 2^{-k_0 \lambda_1} \sum_{k=0}^{k_0} \left(\frac{2^{k_0 \lambda_1} |S_f(\chi_k)|}{\beta_{11}} \right)^{q_2(\cdot)} + C 2^{-k_0 \lambda_1} \sum_{k=0}^{k_0} \left(\frac{2^{k_0 \lambda_1} |S_f(\chi_k)|}{\beta_{12}} \right)^{q_2(\cdot)}.$$
where

\[
\beta_{11} = \frac{\beta_2}{\beta_1} \sum_{j=0}^{k-2} S_j(f_j) \mathcal{X}_k \| \text{MK}_{\alpha, \lambda_2}^{(0,1)} (R^n) \quad \| \leq 1
\]

\[
= \inf \left\{ \beta > 0 : \sup_{k_0 \in \mathbb{Z}} 2^{-k_0} k_0 \sum_{k=0}^{k_0} \left(\frac{2^k}{\beta} \sum_{j=0}^{k-2} S_j(f_j) \mathcal{X}_k \right)^{q_2} \right\} \| \leq 1
\]

\[
\beta_{12} = \frac{\beta_2}{\beta_1} \sum_{k=1}^{k-1} S_k(f_k) \mathcal{X}_k \| \text{MK}_{\alpha, \lambda_2}^{(0,1)} (R^n) \quad \| \leq 1
\]

\[
= \inf \left\{ \beta > 0 : \sup_{k_0 \in \mathbb{Z}} 2^{-k_0} k_0 \sum_{k=0}^{k_0} \left(\frac{2^k}{\beta} \sum_{j=0}^{k-1} S_j(f_j) \mathcal{X}_k \right)^{q_2} \right\} \| \leq 1
\]

\[
\beta_{13} = \frac{\beta_2}{\beta_1} \sum_{j=k+2}^{\infty} S_j(f_j) \mathcal{X}_k \| \text{MK}_{\alpha, \lambda_2}^{(0,1)} (R^n) \quad \| \leq 1
\]

\[
= \inf \left\{ \beta > 0 : \sup_{k_0 \in \mathbb{Z}} 2^{-k_0} k_0 \sum_{k=0}^{k_0} \left(\frac{2^k}{\beta} \sum_{j=0}^{k+1} S_j(f_j) \mathcal{X}_k \right)^{q_2} \right\} \| \leq 1
\]

If \(\beta = \beta_{11} + \beta_{12} + \beta_{13} \), thus,

\[
2^{-k_0} k_0 \left(\frac{2^k}{\beta} \sum_{j=0}^{k-2} S_j(f_j) \mathcal{X}_k \right)^{q_2} \| \leq C
\]

Then,

\[
\| S_j(f) \mathcal{X}_k \| \text{MK}_{\alpha, \lambda_2}^{(0,1)} (R^n) \leq C \beta \leq C[\beta_{11} + \beta_{12} + \beta_{13}].
\]
Hence, if we prove that

\[\beta_{11} \leq C \| f \|_{MK^{\alpha,\lambda_1}_{q_1,\lambda_1}(\mathbb{R}^n)}, \quad \beta_{12} \leq C \| f \|_{MK^{\alpha,\lambda_1}_{q_1,\lambda_1}(\mathbb{R}^n)}, \quad \beta_{13} \leq C \| f \|_{MK^{\alpha,\lambda_1}_{q_1,\lambda_1}(\mathbb{R}^n)}, \]

we are done. Let us set \(\beta_1 = \| f \|_{MK^{\alpha,\lambda_1}_{q_1,\lambda_1}(\mathbb{R}^n)} \).

We consider \(\beta_{12} \) first. From Lemma 2.6 and the boundedness of \(S_\gamma \) on \(L^p(\mathbb{R}^n) \), it follows that

\[
2^{-k_0 \lambda_2} \sum_{k=0}^{k_0} \left(\frac{2^{k \alpha} \sum_{j=k-1}^{k+1} S_\gamma(f_j)X_k}{ \beta_1} \right)^{(q_2^1)_k} \leq 2^{-k_0 \lambda_2} \sum_{k=0}^{k_0} \left(\frac{2^{k \alpha} \sum_{j=k-1}^{k+1} S_\gamma(f_j)X_k}{ \beta_1} \right)^{(q_2^1)_k} \]

\[
\leq C 2^{-k_0 \lambda_2} \sum_{k=0}^{k_0} \left(\frac{2^{k \alpha} \sum_{j=k-1}^{k+1} \left| S_\gamma(f_j)X_k \right|}{ \beta_1} \right)^{(q_2^1)_k} \]

\[
\leq C 2^{-k_0 \lambda_2} \sum_{k=0}^{k_0} \left(\frac{2^{k \alpha} \sum_{j=k-1}^{k+1} \left| f_j \right|}{ \beta_1} \right)^{(q_2^1)_k},
\]

where

\[
(q_2^1)_k = \begin{cases}
(q_2^-)_k & \text{if } \left(\frac{2^{k \alpha} \sum_{j=k-1}^{k+1} S_\gamma(f_j)X_k}{ \beta_1} \right)^{(q_2^-)_k} \leq 1, \\
(q_2^+)_k & \text{if } \left(\frac{2^{k \alpha} \sum_{j=k-1}^{k+1} S_\gamma(f_j)X_k}{ \beta_1} \right)^{(q_2^+)_k} > 1.
\end{cases}
\]

Since \(f \in MK^{\alpha,\lambda_1}_{q_1,\lambda_1}(\mathbb{R}^n) \), then we have

\[
2^{-k_0 \lambda_1} \left(\frac{2^{k \alpha} \sum_{j=k-1}^{k+1} \left| f_j \right|}{ \beta_1} \right)^{(q_2^1)_k} \leq 1.
\]
From this, and again applying Lemma 2.6, if \((q_1)_+ \leq (q_2)_- \) and \(\lambda_1(q_2)_+ = \lambda_2(q_1)_- \), we obtain that

\[
2^{-k_0} \sum_{k=0}^{k_0} \left\| \frac{2^{kn} \left| \sum_{j=k-1}^{k+1} S_j(f_j) x_k \right|}{\beta_1} \right\|^{q_2^{(1)}} \leq C 2^{-k_0} \sum_{k=0}^{k_0} \left\| \frac{2^{kn} |f_k|}{\beta_1} \right\|_{L^p(x)}^{(q_2)_k} \leq C 2^{-k_0} \sum_{k=0}^{k_0} \left\| \frac{2^{kn} |f_k x_k|}{\beta_1} \right\|_{L^p(x)}^{(q_2)_k} \leq C 2^{-k_0} \sum_{k=0}^{k_0} \left\| \frac{2^{kn} |f_k x_k|}{\beta_1} \right\|_{L^p(x)}^{(q_2)_k} \leq C \sum_{k=0}^{k_0} \left\| \frac{2^{kn} |f_k x_k|}{\beta_1} \right\|_{L^p(x)}^{(q_2)_k} \leq C,
\]

where

\[
(q_2)_k = \begin{cases} (q_1)_+ & \text{if } \left\| \frac{2^{kn} |f_k|}{\beta_1} \right\|_{L^p(x)} \leq 1, \\ (q_1)_- & \text{if } \left\| \frac{2^{kn} |f_k|}{\beta_1} \right\|_{L^p(x)} > 1. \end{cases}
\]

The previous calculations imply that

\[
\beta_{12} \leq C \beta_1 \leq C \| f \|_{M_{\delta^i_0}^{q_1^{(1)}p}(\mathbb{R}^n)}.
\]

Next, we estimate \(\beta_{11} \). If \(x \in C_k, (y, t) \in \Gamma(x), z \in C_j \cap \{z: |y - z| \leq t\}, j \leq k - 2, \) then

\[
t \geq \frac{1}{2} |x - y| + |y - z| \geq \frac{1}{2} |x - z| \geq \frac{1}{4} |x|.
\]

Thus, we have

\[
|A_v(f_j)(x)| = \left(\int \int \sup_{\Gamma(x) \cap \partial C_j} \int_{\mathbb{R}^n} \phi_t(y - z) f_j(z) dz \left\| \int_{\mathbb{R}^n} \phi_t(y - z) f_j(z) dz \right\|_{L^{p+1}}^{\frac{1}{2}} \right)^{\frac{1}{2}} \leq C \left(\int_{\mathbb{R}^n} \left(\int_{\mathbb{R}^n} \phi_t(y - z) f_j(z) dz \right) \left\| \int_{\mathbb{R}^n} \phi_t(y - z) f_j(z) dz \right\|_{L^{p+1}} \right)^{\frac{1}{2}} \leq C \left(\int_{C_j} |f_j(z)| dz \right) \left(\int_{\mathbb{R}^n} \frac{dt}{t^{n+1}} \right)^{\frac{1}{2}} \leq C 2^{-kn} \int_{C_j} |f_j(z)| dz \leq C 2^{-kn} \| f_j \|_{L^1(\mathbb{R}^n)}.
\]
Then, by using Lemma 2.6, we deduce that

\[
2^{-k_0 \lambda_2} \sum_{k=0}^{k_0} \left(\frac{2^{k\alpha} \left| \sum_{j=0}^{k-2} S_j(f_j) \chi_k \right|}{\beta_1} \right)^{q_2^{(1)}} \leq 2^{-k_0 \lambda_2} \sum_{k=0}^{k_0} \left(\frac{2^{k\alpha} \left| \sum_{j=0}^{k-2} S_j(f_j) \chi_k \right|}{\beta_1} \right)^{q_2^{(1)}},
\]

where

\[
(q_2)_- = \begin{cases} (q_2)_-, & \text{if } \left(\frac{2^{k\alpha} \left| \sum_{j=0}^{k-2} S_j(f_j) \chi_k \right|}{\beta_1} \right)^{q_2^{(1)}} \leq 1, \\ (q_2)_+, & \text{if } \left(\frac{2^{k\alpha} \left| \sum_{j=0}^{k-2} S_j(f_j) \chi_k \right|}{\beta_1} \right)^{q_2^{(1)}} > 1. \end{cases}
\]

From Hölder’s inequality and applying Lemmas 2.4-2.6, it follows that

\[
2^{-k_0 \lambda_2} \sum_{k=0}^{k_0} \left(\frac{2^{k\alpha} \left| \sum_{j=0}^{k-2} S_j(f_j) \chi_k \right|}{\beta_1} \right)^{q_2^{(1)}},
\]

\[
\leq 2^{-k_0 \lambda_2} \sum_{k=0}^{k_0} \left[\sum_{j=0}^{k-2} 2^{k(\alpha_n - n)} \left| \frac{f_j}{\beta_1} \right|_{L^{p_1}(\mathbb{R}^n)} \left| \chi_{B_k} \right|_{L^{p_1}(\mathbb{R}^n)} \left| X_{B_k} \right|_{L^{p_1}(\mathbb{R}^n)} \right]^{q_2^{(1)}},
\]

\[
\leq 2^{-k_0 \lambda_2} \sum_{k=0}^{k_0} \left[\sum_{j=0}^{k-2} 2^{k(\alpha_n - n)} \left| \frac{f_j}{\beta_1} \right|_{L^{p_1}(\mathbb{R}^n)} \left| \chi_{B_k} \right|_{L^{p_1}(\mathbb{R}^n)} \left| X_{B_k} \right|_{L^{p_1}(\mathbb{R}^n)} \left| X_{B_k} \right|_{L^{p_1}(\mathbb{R}^n)} \left| X_{B_k} \right|_{L^{p_1}(\mathbb{R}^n)} \left| X_{B_k} \right|_{L^{p_1}(\mathbb{R}^n)} \left| B_k \right| \right]^{q_2^{(1)}},
\]

\[
\leq C^{-k_0 \lambda_2} \sum_{k=0}^{k_0} \left[\sum_{j=0}^{k-2} 2^{k(\alpha_n - n)} \left| \frac{f_j}{\beta_1} \right|_{L^{p_1}(\mathbb{R}^n)} \left| \chi_{B_k} \right|_{L^{p_1}(\mathbb{R}^n)} \left| X_{B_k} \right|_{L^{p_1}(\mathbb{R}^n)} \right]^{q_2^{(1)}},
\]

\[
\leq C^{-k_0 \lambda_2} \sum_{k=0}^{k_0} \left[\sum_{j=0}^{k-2} 2^{k(\alpha_n - n)} \left| \frac{f_j}{\beta_1} \right|_{L^{p_1}(\mathbb{R}^n)} \left| \chi_{B_k} \right|_{L^{p_1}(\mathbb{R}^n)} \left| X_{B_k} \right|_{L^{p_1}(\mathbb{R}^n)} \left| X_{B_k} \right|_{L^{p_1}(\mathbb{R}^n)} \right]^{q_2^{(1)}},
\]

\[
\leq C^{-k_0 \lambda_2} \sum_{k=0}^{k_0} \left[\sum_{j=0}^{k-2} 2^{k(\alpha_n - n)} \left| \frac{f_j}{\beta_1} \right|_{L^{p_1}(\mathbb{R}^n)} \left| \chi_{B_k} \right|_{L^{p_1}(\mathbb{R}^n)} \left| X_{B_k} \right|_{L^{p_1}(\mathbb{R}^n)} \left| X_{B_k} \right|_{L^{p_1}(\mathbb{R}^n)} \right]^{q_2^{(1)}},
\]
Notice that $f \in MK^{\alpha_+;\lambda_+}_{q_1}(\mathbb{R}^n)$, $(\lambda_2)/(q_2)_+ = (\lambda_1)/(q_1)_-$, and $\alpha_+ < n\delta_{11} + (\lambda_1)/(q_1)_-$. Then, we have

$$2^{-k_0} \sum_{k=0}^{k_0} \left\| \frac{2^{k\alpha_+} \sum_{j=0}^{k-2} S_j(f_j X_k)}{\beta_1} \right\|_{L^{\frac{q_2}{q_2_k}}(\mathbb{R}^n)} \leq C 2^{-k_0} \sum_{k=0}^{k_0} \left[\sum_{j=0}^{k-2} 2^{j(\alpha_+ - n\delta_{11} - \lambda_1)/(q_1)_- + \lambda_0} \left\| \frac{2^{k\alpha_+} |f_j X_k|}{\beta_1} \right\|_{L^{\frac{q_2}{q_2_k}}(\mathbb{R}^n)} \right]^{\frac{1}{q_2_k}} q_2_k \leq C \sum_{k=0}^{k_0} 2^{k-k_0}\lambda_2 \left[\sum_{j=0}^{k-2} 2^{j(\alpha_+ - n\delta_{11} - \lambda_1)/(q_1)_- + \lambda_0} \right]^{\frac{1}{q_2_k}} q_2_k \leq C \sum_{k=0}^{k_0} 2^{k-k_0}\lambda_2 \left[\sum_{j=0}^{k-2} 2^{j(\alpha_+ - n\delta_{11} - \lambda_1)/(q_1)_- + \lambda_0} \right]^{\frac{1}{q_2_k}} q_2_k \leq C,$$

where

$$(q_2)_j = \begin{cases} (q_1)_- & \text{if } \left\| \frac{2^{k\alpha_+} |f_j X_k|}{\beta_1} \right\|_{L^{\frac{q_2}{q_2_k}}(\mathbb{R}^n)} \leq 1, \\ (q_1)_+ & \text{if } \left\| \frac{2^{k\alpha_+} |f_j X_k|}{\beta_1} \right\|_{L^{\frac{q_2}{q_2_k}}(\mathbb{R}^n)} > 1. \end{cases}$$

Then, from the above calculations, it follows that

$$\beta_{11} \leq C \beta_1 \leq C \|f\|_{MK^{\alpha_+;\lambda_+}_{q_1}(\mathbb{R}^n)} .$$

Finally, we estimate β_{13}. If $x \in C_k$, $(y, t) \in \Gamma(x)$, $z \in C_j \cap \{z : |y-z| \leq t\}$, $j \geq k + 2$, then

$$t \geq \frac{1}{2}(|x-y| + |y-z|) \geq \frac{1}{2} |x-z| \geq \frac{1}{2} |z| - |x| \geq \frac{1}{4} |z|. $$
Thus, we have

\[|A_r(f_j)(x)| = \left(\int \int \sup_{\Gamma(y) \in C_j} \left| \varphi(y - z)f_j(z)dz \right|^2 \frac{dydt}{t^{n+1}} \right)^{\frac{1}{2}} \]

\[\leq C \left(\int_i^\infty \int \left| \frac{\varphi(y) - \varphi(z)}{z} f_j(z)dz \right|^2 \frac{dydt}{t^{n+1}} \right)^{\frac{1}{2}} \]

\[\leq C \left(\int_{C_j} |f_j(z)|dz \right) \left(\int_i^\infty \frac{dt}{t^{2n+1}} \right)^{\frac{1}{2}} \]

\[\leq C 2^{-jn} \int_{C_j} |f_j(z)|dz \]

\[= C 2^{-jn} \|f_j\|_{L^1(\mathbb{R}^n)}. \]

By using Lemma 2.6 and applying Hölder's inequality, it follows that

\[2^{-k_0} \sum_{k=0}^{k_0} \left\| \frac{2^k \left(\sum_{j=k+2}^{\infty} S_r(f_j) \chi_k \right)}{\beta_1} \right\|_{L^p(\mathbb{R}^n)}^{q_2} \]

\[\leq 2^{-k_0} \sum_{k=0}^{k_0} \left\| \frac{2^k \left(\sum_{j=k+2}^{\infty} S_r(f_j) \chi_k \right)}{\beta_1} \right\|_{L^p(\mathbb{R}^n)}^{q_2} \]

\[\leq C 2^{-k_0} \sum_{k=0}^{k_0} \left[2^k \left(\sum_{j=k+2}^{\infty} 2^{-jn} \|f_j\|_{L^1(\mathbb{R}^n)} \chi_k \right) \right] \] \[\left\| \frac{\chi_{B_j}}{\|\chi_{B_j}\|_{L^p(\mathbb{R}^n)}} \right\|_{L^p(\mathbb{R}^n)} \]

\[\leq C 2^{-k_0} \sum_{k=0}^{k_0} \left(q_2 \right)_k \]

where

\[(q_2)_- = \left\| \frac{\left(\sum_{j=k+2}^{\infty} S_r(f_j) \chi_k \right)}{\beta_1} \right\|_{L^p(\mathbb{R}^n)} \]

\[(q_2)_+ = \left\| \frac{\left(\sum_{j=k+2}^{\infty} T_{\chi_{B_j}} \chi_k \right)}{\beta_1} \right\|_{L^p(\mathbb{R}^n)} \]

\[(q_2)_k = \begin{cases} (q_2)_- & \text{if } (q_2)_- \leq 1, \\ (q_2)_+ & \text{if } (q_2)_+ > 1. \end{cases} \]
Therefore, applying Lemmas 2.4 and 2.5, we get

\[
2^{-k_0 \lambda_j} \sum_{k=0}^{k_1} \left\| 2^{k \alpha} \left(\sum_{k+2}^{\infty} S_j(f_j) \chi_k \right) \right\|_{L^{p_j}(\mathbb{R}^n)}^{q_1} \leq C^2 2^{-k_0 \lambda_j} \sum_{k=0}^{k_1} \left[2^{k \alpha} \sum_{j=k+2}^{\infty} 2^{-j \alpha} f_{j} \beta_1 \left\| \frac{f_{j} \chi_j}{\beta_1} \right\|_{L^{p_j}(\mathbb{R}^n)} \left\| \chi B_j \right\|_{L^{p_j}(\mathbb{R}^n)} \left| B_j \right| \right]^{q_2^j},
\]

where

\[
(q_1^j) = \begin{cases} (q_1)_- & \text{if } \| \frac{2^{\alpha_k} f_{j}}{\beta_1} \|_{L^{p_j}(\mathbb{R}^n)} \leq 1, \\ (q_1)_+ & \text{if } \| \frac{2^{\alpha_k} f_{j}}{\beta_1} \|_{L^{p_j}(\mathbb{R}^n)} > 1. \end{cases}
\]

Notice that \(f \in MK_{q_1}^{\alpha, \lambda_j}([1, \infty), \mathbb{R}^n), (\lambda_2)/(q_2)_+ = (\lambda_1)/(q_1)_-, \) and \(\alpha > -n \delta_2 + (\lambda_1)/(q_1)_- \). Then, we have

\[
2^{-k_0 \lambda_j} \sum_{k=0}^{k_1} \left\| 2^{k \alpha} \left(\sum_{k+2}^{\infty} S_j(f_j) \chi_k \right) \right\|_{L^{p_j}(\mathbb{R}^n)}^{q_1} \leq C \sum_{k=0}^{\infty} 2^{(k-k_0) \lambda_j} \left[\sum_{j=k+2}^{\infty} 2^{(k-j) (\alpha_j + n \delta_2 - (\lambda_j)_-) / (q_1)_+} \left(2^{-j \alpha} \sum_{j=0}^{\infty} \left(\frac{2^{\alpha_k} f_{j} \chi_j}{\beta_1} \right) \right) \right]^{q_2^j},
\]

\[
\leq C \sum_{k=0}^{\infty} 2^{(k-k_0) \lambda_j} \left[\sum_{j=k+2}^{\infty} 2^{(k-j) (\alpha_j + n \delta_2 - (\lambda_j)_-) / (q_1)_+} \right]^{q_2^j} \leq C.
\]

The above calculations imply that \(\beta_{13} \leq C \beta_1 = C \| f \|_{MK_{q_1}^{\alpha, \lambda_j}([1, \infty), \mathbb{R}^n)}. \)

This completes the proof of Theorem 3.3.

4 | BMO ESTIMATE FOR THE COMMUTATOR OF INTRINSIC SQUARE FUNCTIONS

Let \(b \in BMO(\mathbb{R}^n). \) Wang\(^5\) obtained some boundedness results for the commutator \([b, S_j]\) in the framework of weighted Morrey spaces.
Lemma 4.1. Let $1 < p < \infty$, $0 < \beta \leq 1$, and $w \in A_p$. Suppose that $b \in \text{BMO}(\mathbb{R}^n)$, then there exists a constant $C > 0$, independent of f, such that

$$\| [b, S_r](f) \|_{L^p_w} \leq C \| f \|_{L^p_w}.$$

We can apply Lemmas 4.1 and 3.2 to get the boundedness of the commutator $[b, S_r]$ in $L^p(\cdot)$.

Theorem 4.2. Let $b \in \text{BMO}(\mathbb{R}^n)$. Suppose that $p(\cdot) \in B(\mathbb{R}^n)$, $q_1(\cdot), q_2(\cdot) \in P(\mathbb{R}^n)$ with $(q_2)_- \geq (q_1)_+$ and $0 < \gamma \leq 1$. If $(\lambda_1)(q_2)_+ = (\lambda_2)(q_1)_-$ and $-n\delta_{12} < \alpha_+ < n\delta_{11} + (\lambda_2)/(q_2)_-$, where δ_{11} and δ_{12} are the constants in Lemma 2.5, then the operator $[b, S_r]$ is bounded from $\text{MK}^{\alpha, \gamma}_{q_1(\cdot), p(\cdot)}(\mathbb{R}^n)$ to $\text{MK}^{\alpha, \gamma}_{q_2(\cdot), p(\cdot)}(\mathbb{R}^n)$.

Proof. Let $b \in \text{BMO}(\mathbb{R}^n)$, $f \in \text{MK}^{\alpha, \gamma}_{q_1(\cdot), p(\cdot)}(\mathbb{R}^n)$. Let us decompose f as follows:

$$f(x) = \sum_{j=0}^{\infty} f(x) \chi_j(x) = \sum_{j=0}^{\infty} f_j(x).$$

By the definition of the norm in $\text{MK}^{\alpha, \gamma}_{q_1(\cdot), p(\cdot)}(\mathbb{R}^n)$, we have

$$\| [b, S_r](f) \|_{\text{MK}^{\alpha, \gamma}_{q_1(\cdot), p(\cdot)}(\mathbb{R}^n)} = \inf \left\{ \beta > 0 : \sup_{k_0 \in \mathbb{Z}} 2^{-k_0 \lambda_2} \sum_{k=0}^{k_0} \left(\frac{2^{k_0}}{\beta} \right)^{q_1(\cdot)} \| [b, S_r](f) \chi_k \|_{L^{q_1(\cdot)}} \right\} \leq 1.$$

For any $k_0 \in \mathbb{Z}$, we see that

$$2^{-k_0 \lambda_2} \sum_{k=0}^{k_0} \left(\frac{2^{k_0}}{\beta} \right)^{q_1(\cdot)} \| [b, S_r](f) \chi_k \|_{L^{q_1(\cdot)}} \leq C 2^{-k_0 \lambda_2} \sum_{k=0}^{k_0} \left(\frac{2^{k_0}}{\beta_{21}} \right)^{q_1(\cdot)} \| [b, S_r](f) \chi_k \|_{L^{q_1(\cdot)}} + C 2^{-k_0 \lambda_2} \sum_{k=0}^{k_0} \left(\frac{2^{k_0}}{\beta_{22}} \right)^{q_1(\cdot)} \| [b, S_r](f) \chi_k \|_{L^{q_1(\cdot)}} \leq C \left(2^{-k_0 \lambda_2} \sum_{k=0}^{k_0} \left(\frac{2^{k_0}}{\beta_{21}} \right)^{q_1(\cdot)} \| [b, S_r](f) \chi_k \|_{L^{q_1(\cdot)}} + C \left(2^{-k_0 \lambda_2} \sum_{k=0}^{k_0} \left(\frac{2^{k_0}}{\beta_{22}} \right)^{q_1(\cdot)} \| [b, S_r](f) \chi_k \|_{L^{q_1(\cdot)}} \right).$$
Let
\[
\beta_{21} = \left\| \sum_{j=0}^{k-2} [b, S_r](f_j) \chi_k \right\|_{MK^{s,\frac{1}{4},4}_q(L^p_2)}(\mathbb{R}^n)
\]
\[
= \inf \left\{ \beta > 0 : \sup_{k_e \in \mathbb{Z}} 2^{-k_e \alpha_2} \sum_{k=0}^{k_e} \frac{2^{k_0} \sum_{j=0}^{k-2} [b, S_r](f_j) \chi_k}{\beta} \right\} \leq 1, \]
\[
\beta_{22} = \left\| \sum_{j=k+1}^{k+1} [b, S_r](f_j) \chi_k \right\|_{MK^{s,\frac{1}{4},4}_q(L^p_2)}(\mathbb{R}^n)
\]
\[
= \inf \left\{ \beta > 0 : \sup_{k_e \in \mathbb{Z}} 2^{-k_e \alpha_2} \sum_{k=0}^{k_e} \frac{2^{k_0} \sum_{j=k+1}^{k+1} [b, S_r](f_j) \chi_k}{\beta} \right\} \leq 1, \]
\[
\beta_{23} = \left\| \sum_{j=k+2}^{\infty} [b, S_r](f_j) \chi_k \right\|_{MK^{s,\frac{1}{4},4}_q(L^p_2)}(\mathbb{R}^n)
\]
\[
= \inf \left\{ \beta > 0 : \sup_{k_e \in \mathbb{Z}} 2^{-k_e \alpha_2} \sum_{k=0}^{k_e} \frac{2^{k_0} \sum_{j=k+2}^{\infty} [b, S_r](f_j) \chi_k}{\beta} \right\} \leq 1, \]

and
\[
\beta = \beta_{21} + \beta_{22} + \beta_{13}.
\]

That is,
\[
[b, S_r](f)\right\|_{MK^{s,\frac{1}{4},4}_q(L^p_2)}(\mathbb{R}^n) \leq C \beta \leq C[\beta_{21} + \beta_{22} + \beta_{23}].
\]

Hence, once we prove that
\[
\beta_{21} \leq C\|b\|_* \|f\|_{MK^{s,\frac{1}{4},4}_q(L^p_2)}(\mathbb{R}^n), \quad \beta_{22} \leq C\|b\|_* \|f\|_{MK^{s,\frac{1}{4},4}_q(L^p_2)}(\mathbb{R}^n), \quad \beta_{23} \leq C\|b\|_* \|f\|_{MK^{s,\frac{1}{4},4}_q(L^p_2)}(\mathbb{R}^n),
\]
we are done. Let us set \(\beta_1 = \|f\|_{MK^{s,\frac{1}{4},4}_q(L^p_2)}(\mathbb{R}^n). \)

For \(\beta_{22} \), by the boundedness of \([b, S_r] \) on \(L^p_\chi \), and using an argument similar to that in the estimate for \(\beta_{12} \), it follows that
\[
2^{-k_e \alpha_2} \sum_{k=0}^{k} \frac{2^{k_0} \sum_{j=k}^{k+1} [b, S_r](f_j) \chi_k}{\beta_1 \|b\|_*} \leq C,
\]
which implies that
\[
\beta_{22} \leq \beta_1 \|b\|_* \leq C\|b\|_* \|f\|_{MK^{s,\frac{1}{4},4}_q(L^p_2)}(\mathbb{R}^n).\]
Now let us deal with the estimate for β_{21}. Let $x \in C_k, j \leq k - 2$. By the estimate of $S_j(f_j)(x)$ in the proof of Theorem 3.3, we have

$$S_j(f_j)(x) \leq C2^{-kn}\|f_j\|_{L^1(\mathbb{R}^*)}.$$

From this inequality, we obtain that

$$[b, S_j(f_j)(x)] = |S_j((b(x) - b)f_j)(x)| \leq C2^{-kn}\|b(-) - b\|f_j\|_{L^1(\mathbb{R}^*)}.$$

Thus, using Lemma 2.6, we have

$$2^{-kq_2} \sum_{k=0}^{k_n} \left\| \frac{2^{k\alpha_k} \sum_{j=0}^{k-2} |b, S_j(f_j)(x)|}{\beta_1 \|b\|_*} \right\|_{L^{q_2(k)}} \leq \left(\frac{2^{k\alpha_k} \sum_{j=0}^{k-2} (b - b_j)f_j}{\beta_1 \|b\|_*} \right) \left(\frac{1}{\|b\|_*} \right)^{(q_2)_k} \left(\frac{\|b - b_j\|L^1(\mathbb{R}^*)}{\|b\|_*} \right)^{(q_2)_k},$$

where

$$(q_2)_- = \begin{cases} (q_2)_{-1} & \text{if } \left\| \frac{2^{k\alpha_k} \sum_{j=0}^{k-2} |b, S_j(f_j)(x)|}{\beta_1 \|b\|_*} \right\|_{L^{q_2(k)}} \leq 1, \\ (q_2)_{+} & \text{if } \left\| \frac{2^{k\alpha_k} \sum_{j=0}^{k-2} |b, S_j(f_j)(x)|}{\beta_1 \|b\|_*} \right\|_{L^{q_2(k)}} > 1. \end{cases}$$
Applying the generalized Hölder’s inequality (Lemma 2.3) and Lemmas 2.4, 2.5, and 2.7, we get that

\[
2^{-k_0d_2} \sum_{k=0}^{k_0} \left[2^{k_0r} \frac{\left\| \sum_{j=0}^{k-2} [b, S_j](f_j \chi_k) \right\|_{1/L^p(\mathbb{R}^n)}}{\beta_1 \|b\|_*} \right]^{q_2(1)} \leq C 2^{-k_0d_2} \sum_{k=0}^{k_0} \left(2^{k} \sum_{j=0}^{k-2} \left\| \frac{f_j}{\beta_1} \right\|_{L^p(\mathbb{R}^n)} \|b\|_* \right) \left\| \frac{(b - b_j) \chi_{B_j}}{\|b\|_*} \|X_{B_j}\|_{L^p(\mathbb{R}^n)} \right\|_{L^p(\mathbb{R}^n)}^{(q_2)_k}
\]

\[
+ C 2^{-k_0d_2} \sum_{k=0}^{k_0} \left(2^{k} \sum_{j=0}^{k-2} \left\| \frac{f_j}{\beta_1} \right\|_{L^p(\mathbb{R}^n)} \|X_{B_j}\|_{L^p(\mathbb{R}^n)} (k - j) \|X_{B_j}\|_{L^p(\mathbb{R}^n)} \right) \left\| \frac{2^{ja_+} |f| \chi_{B_j}}{\beta_1} \right\|_{L^p(\mathbb{R}^n)}^{(q_2)_k}
\]

\[
\leq C 2^{-k_0d_2} \sum_{k=0}^{k_0} \left(2^{k} \sum_{j=0}^{k-2} (k - j) 2^{(k - j)(a_+ - n\delta_1)} \left\| \frac{2^{ja_+} (f_j \chi_k)}{\beta_1} \right\|_{1/L^p(\mathbb{R}^n)}^{q_1(1)} \left\| \frac{2^{ja_+} f \chi_{B_j}}{\beta_1} \right\|_{L^p(\mathbb{R}^n)}^{(q_1)_k} \right)^{q_2(1)}
\]

\[
\leq C 2^{-k_0d_2} \sum_{k=0}^{k_0} \left(2^{k} \sum_{j=0}^{k-2} (k - j) 2^{(k - j)(a_+ - n\delta_1) - \lambda_1/(q_2)_+} \left\| \frac{2^{ja_+} f \chi_{B_j}}{\beta_1} \right\|_{L^p(\mathbb{R}^n)}^{(q_1)_k} \right)^{q_2(1)}
\]

Notice that \(f \in \mathcal{M}K^{a_+\delta_1}_{q_1, q_2}(\mathbb{R}^n) \), \((\lambda_2)/(q_2)_+ = (\lambda_1)/(q_1)_-\), and \(a_+ < n\delta_1 + (\lambda_1)/(q_1)_-\). Then, we have

\[
2^{-k_0d_2} \sum_{k=0}^{k_0} \left[2^{k_0r} \frac{\left\| \sum_{j=0}^{k-2} [b, S_j](f_j \chi_k) \right\|_{1/L^p(\mathbb{R}^n)}}{\beta_1 \|b\|_*} \right]^{q_2(1)} \leq C \left(k_0 \right)
\]

where

\[
(q_1)_k = \begin{cases} (q_1)_- & \text{if } \left\| \frac{2^{ja_+} f_j}{\beta_1} \right\|_{L^p(\mathbb{R}^n)} \leq 1, \\
(q_1)_+ & \text{if } \left\| \frac{2^{ja_+} f_j}{\beta_1} \right\|_{L^p(\mathbb{R}^n)} > 1.
\end{cases}
\]

This implies that

\[
\beta_{21} \leq C \beta_1 \|b\|_* \leq C \|b\|_* \|f\|_{\mathcal{M}K^{a_+\delta_1}_{q_1, q_2}(\mathbb{R}^n)}.
\]
Finally, we estimate β_{23}. Let $x \in C_k, j \geq k + 2$. By the estimation of $S_r(f_j)(x)$ in the proof of Theorem 3.3, we have

$$S_r(f_j)(x) \leq C 2^{-jn} \| f_j \|_{L^1(\mathbb{R}^n)}.$$

From the above inequality, we obtain that

$$[b, S_r](f_j)(x) = | S_r((b(x) - b) f_j)(x) | \leq C 2^{-jn} \| (b(-) - b) f_j \|_{L^1(\mathbb{R}^n)}.$$

Thus, when $\alpha_+ > -n\delta_{12} + \lambda_1/(q_1)$, proceeding as in the estimate of β_{21}, we get that

\[
2^{-k_2 \alpha_2} \sum_{k=0}^{k_0} 2^{k_2 \alpha_2} \sum_{j=k+2}^{\infty} 2^{-jn} \| (b - b_k) f_j \|_{L^1(\mathbb{R}^n)} \| \chi_k \|_{L^p(\mathbb{R}^n)} \]

where

\[
(q_2)_- = \left\{ \begin{array}{ll}
2^{-k_2 \alpha_2} \sum_{j=k+2}^{\infty} \left(\frac{\| S_r \|_{L^1(\mathbb{R}^n)}}{\beta_1 \| b \|_*} \right)^{q_1(\cdot)} & \leq 1, \\
(q_2)_+ & > 1.
\end{array} \right.
\]

The above calculations imply that

$$\beta_{23} \leq C \beta_1 \| b \|_* \leq C \| b \|_* \| f \|_{M_{\mathfrak{B}}^{q_1(\cdot), k_2}(\mathbb{R}^n)}.$$

This completes the proof of Theorem 4.2.
AUTHOR CONTRIBUTIONS
All authors contributed equally to this work. All authors read and approved the final manuscript.

CONFLICT OF INTEREST
The authors declare that there is no conflict of interest regarding the publication of this article.

ORCID
Afif Abdalmonem https://orcid.org/0000-0002-6391-4243
Andrea Scapellato https://orcid.org/0000-0002-7271-9546

REFERENCES
1. Wilson M. Weighted Littlewood-Paley Theory and Exponential-Square Integrability. Berlin: Springer; 2007.
2. Wilson M. The intrinsic square function. Rev Math Iberoam. 2007;23:771-791.
3. Lerner AK. Sharp weighted norm inequalities for Littlewood-Paley operators and singular integrals. Adv Math. 2011;226:3912-3926.
4. Liang Y, Nakai E, Yang D, Zhang J. Boundedness of intrinsic Littlewood-Paley functions on Musielak-Orlicz Morrey and Campanato spaces. Banach J Math Anal. 2014;8:221-268.
5. Wang H. Intrinsic square functions on the weighted Morrey spaces. J Math Anal Appl. 2012;396:302-314.
6. Guliyev V, Omarova M, Sawano Y. Boundedness of intrinsic square functions and their commutators on generalized weighted Orlicz-Morrey spaces. Banach J Math Anal. 2015;9(2):44-62.
7. Izuki M. Fractional integrals on Herz-Morrey spaces with variable exponent. Hiroshima Math J. 2010;40:343-355.
8. Lu Y, Zhu YP. Boundedness of some sublinear operators and commutators on Morrey-Herz spaces with variable exponents. Czechoslov Math J. 2014;64(139):969-987.
9. Wang L. Boundedness of the commutator of the intrinsic square function in variable exponent spaces. J Korean Math Soc. 2018;55(4):939-962.
10. Deringoz F, Guliyev VS, Ragusa MA. Intrinsic square functions on vanishing generalized Orlicz-Morrey spaces. Set-Valued Var Anal. 2017;25(4):807-828.
11. Ragusa MA. Homogeneous Herz spaces and regularity results. Nonlinear Anal-Theory Methods Appl. 2009;71(12):e1909-e1914.
12. Scapellato A. Homogeneous Herz spaces with variable exponents and regularity results. Electron J Qual Theory Differ Equ. 2018;82:1-11. https://doi.org/10.14232/ejqtde.2018.1.82
13. Scapellato A. Regularity of solutions to elliptic equations on Herz spaces with variable exponents. Bound Value Probl. 2019;2019:2. https://doi.org/10.1186/s13661-018-1116-6
14. Ragusa MA. Parabolic Herz spaces and their applications. Appl Math Lett. 2012;25(10):1270-1273.
15. Cruz-Uribe D, Fiorenza A. Variable Lebesgue Spaces. Foundations and Harmonic Analysis. New York: Appl. Numer. Harmon. Anal. Springer; 2013.
16. Wang L, Tao S. Parameterized Littlewood-Paley operators and their commutators on Morrey- Herz spaces with variable exponents. To appear.
17. Izuki M. Commutators of fractional integrals on Lebesgue and Herz spaces with variable exponent. Rend Circ Mat Palermo. 2010;2(59):461-472.
18. Wang L, Tao S. Parameterized Littlewood-Paley operators and their commutators on Herz spaces with variable exponents. Turk J Math. 2016;40:122-145.
19. Cruz-Uribe D, Fiorenza A, Martell J, Pérez C. The boundedness of classical operators on variable Lp spaces. Ann Acad Sci Fenn Math. 2006;31(1):239-264.

How to cite this article: Abdalmonem A, Scapellato A. Intrinsic square functions and commutators on Morrey-Herz spaces with variable exponents. Math Meth Appl Sci. 2021;44(17):12408–12425. https://doi.org/10.1002/mma.7487