Anti-citrullinated peptide antibodies with interstitial lung disease in patients with rheumatoid arthritis

Amira H. Allama, Shaimaa M.A. Youssefa, Hany H. Moussab, Yasser Ezzatc

aDepartment of Pulmonary Diseases, Benha Faculty of Medicine, Benha University, Benha, bDepartment of Pulmonary Diseases, Kafr El Sheikh Faculty of Medicine, Kafr El Sheikh University, Kafr El Sheikh, cDepartment of Rheumatology and Rehabilitation, Fayoum Faculty of Medicine, Fayoum University, Fayoum, Egypt

Introduction

Rheumatoid arthritis (RA) disease is a chronic inflammatory disease that involves synovial joints and shows extra-articular manifestations, causing physical function impairment and marked morbidity and mortality [1,2].

Extra-articular manifestations are presented in \textasciitilde 40\% of the patients with the disease [3]. Among the extra-articular events of RA were pulmonary complications such as interstitial lung disease (ILD0), pleural disease, pulmonary nodules, and airway disease [4]. The prevalence of ILD is up to 61\% in patients with RA. Patients with RA with ILD had a threefold increased risk for mortality compared with RA without ILD [5,6].

Autoantibody biomarkers are valuable for assessing RA and its extra-articular manifestations. Biomarkers, such as anti-citrullinated peptide antibodies (ACPA) and rheumatoid factor (RF), have been evaluated in patients with RA [7]. ACPA is defined in the development of RA and used for evaluation of articular injury worsening [8]. Besides, ACPA has a high specificity for the appearance of extra-articular manifestations such as ischemic heart disease [9], insulin-dependent diabetes mellitus [10], serositis [11], and atherosclerosis [12]. However, little and controversial information about the association of RF and ACPA with the evolution of ILD in patients with RA is known [13,14].

Background

Rheumatoid arthritis (RA)-associated diffuse interstitial lung disease (ILD) is a common extra-articular manifestation that causes significant morbidity and mortality. Anti-citrullinated peptide antibodies (ACPA) are a valuable marker in assessing worsening of articular injury in patients with RA. We studied the correlation of ACPA in patients with RA with ILD.

Patients and methods

A randomized controlled trial involving 45 patients with RA fulfilling the American College of Rheumatology/European League Against Rheumatism criteria was conducted. Patients were grouped into two groups: group I: RA with ILD (15 cases) and group II: RA without ILD (30 cases). Data, such as disease activity score (DAS), disease duration, ACPA by enzyme-linked immunosorbent assay technique, pulmonary functions, and radiographic evidence of ILD by chest high-resolution computed tomography, with estimation of ground-glass and reticular pattern scores, were collected.

Results

A total of 34 (75.6\%) cases were ACPA positive, whereas 11 (24.4\%) cases were anti-cyclic citrullinated peptide negative. Diffusion capacity for carbon monoxide reduced significantly in RA with ILD group (P=0.002). Reticular and DAS were significantly high in the ACPA-positive group (P=0.005). Moreover, there were statistically significant increases in erythrocyte sedimentation rate, C-reactive protein, and platelets but statistically significant decrease in white blood cells in the ACPA-positive group. ACPA positively correlated with DAS (r=0.610) and erythrocyte sedimentation rate (r=0.472). RA disease duration positively correlated with the presence of ILD (P=0.000) and showed a strong negative correlation with diffusion capacity for carbon monoxide (P=0.04). The positive predictive value of positive ACPA was 78.8 for ILD, of which, 70\% for ground glass, 100\% for the reticular pattern.

Conclusion

ACPA is positively correlated with the presence of ILD in patients with RA.

Keywords:
anti-citrullinated peptide antibodies, interstitial lung diseases, rheumatoid arthritis

This is an open access journal, and articles are distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 License, which allows others to remix, tweak, and build upon the work non-commercially, as long as appropriate credit is given and the new creations are licensed under the identical terms.
Inducible bronchus-associated lymphoid tissue was identified in patients with RA-related lung disease, and it was associated with the production of inflammatory cytokines and ACPA [15]. Smoking may induce RA-ILD by stimulating citrullination of lung proteins, and development of ACPA [16]. Therefore, the study aims to test the association of ACPA levels and ILD in patients with RA and its predictive value for ILD development.

Patients and methods
A total of 45 patients with RA were included according to American College of Rheumatology/European League Against Rheumatism, 2010 criteria [17], attending the rheumatology and pulmonology clinics in an outpatient center in Jeddah Saudi Arabia. Patients diagnosed as having asthma or pulmonary tuberculosis, patients with active respiratory infection, or patients with spirometry showing obstructive pattern or methotrexate pneumonitis were excluded from this study. Institutional ethical research approval and written consent from patients were obtained.

The activity of the disease in patients was individually evaluated by the disease activity score (DAS) [18]. The duration of the disease was considered from the initial joint swelling or tenderness. Other tests such as complete blood count, liver and kidney functions, and urine analysis were done as routine laboratory investigations. The Westergren method was used to measure the erythrocyte sedimentation rate (ESR), and nephelometry for serum C-reactive protein (CRP). Serum ACPA and RF were measured by enzyme-linked immunosorbent assay using Euroimmun, Lubeck Kits (Behring, Germany) are used to measure RF and ACPA. A positive ACPA result is defined by an ACPA2 titer of more than 20 IU.

Diagnostic criteria for RA-ILD included the following: dry cough, bilateral crackles, and breathlessness; also the restrictive pattern on spirometry, that is, a decrease in forced vital capacity (FVC) less than 80% compared with the predicted rate; and radiographic evidence of ILD on high-resolution computed tomography (HRCT).

High-resolution computed tomography
HRCT was performed using Siemens SOMATOM AR.T. equipment (Siemens, Raigarh, Chhattisgarh, India). ILD features in HRCT included reticular pattern, ground-glass pattern, interstitial thickening, and traction or bronchiectasis, mostly traction.

Table 1 Gay and colleagues scoring system; ground-glass score and reticular scores

Alveolar score	Description
0	No alveolar disease
1	Ground glass opacity involving <5% of the lobe (minimal disease)
2	Ground glass opacity involving <25% of the lobe
3	Ground glass opacity involving 25–49% of the lobe
4	Ground glass opacity involving 50–75% of the lobe
5	Ground glass opacity involving >75% of the lobe

Reticular score	Description
0	No interstitial disease
1	Interlobular septal thickening, no discrete honeycombing
2	Honeycombing ± septal thickening involving up to 25% of the lobe
3	Honeycombing ± septal thickening involving 25–49% of the lobe
4	Honeycombing ± septal thickening involving 50–75% of the lobe
5	Honeycombing ± septal thickening involving >75% of the lobe

Evaluation of chest was done in a blinded manner by an expert radiologist, as stated by the American/European Respiratory Society consensus for idiopathic interstitial pneumonia [19]. Ground-glass score and reticular scores were assessed using Gay et al. [20] (Table 1). Patients then were grouped into two groups:

(1) Group I: RA with ILD, with 15 cases.
(2) Group II: RA without ILD, with 30 cases.

Pulmonary function tests
Spirometry was performed with spiroAir pulmonary functions device (Morgan Scientific Inc., Haverhill, Massachusetts, USA) according to American/European Respiratory Society, 2005, recommendations [21]. Spirometric parameters such as forced expiratory volume in 1 s, FVC, and the forced expiratory volume in 1 s /FVC ratio were evaluated. Moreover, residual volume, total lung capacity, (residual volume/total lung capacity) ratio, and diffusion capacity of the lung for carbon monoxide were assessed.

Statistical analysis
The data were coded and registered by the mathematical package SPSS, version 17 (SPSS Inc.). The information was analyzed by descriptive statistics such as mean, SD, and values for quantitative variables, and number and percentage for qualitative values. \(\chi^2 \) test was used for qualitative variable difference between groups, and Student’s \(t \) test between two groups for quantitative normally distributed variables. Mann–Whitney test and Kruskal–Wallis test were used for nonparametric
quantitative variables. Linear relations between variables were tested as correlations. A *P* value of less than 0.05 was considered statistically significant.

Results

The mean patient age was 56.64±11.8. Thirteen (28.9%) cases were males, whereas 32 (71.1%) were females. The duration of the disease was 14.4±2.05 years. Thirty-four (75.6%) cases were ACPA positive, whereas 11 (24.4%) cases were anti-cyclic citrullinated peptide (CCP) negative. Descriptive criteria of patients are presented in Table 2.

HRCT scan of the chest results are as follows: ILD in 15 (33.3%) cases and ground glass opacity was present in 10 (22.2%) cases, of which eight (17.8%) cases showed minimal ground glass, whereas two (4.4%) cases showed diffuse ground glass (Fig. 1). Ground glass opacity was pure in four cases and overlapped with reticular opacities in six cases. The ground glass score was 2.47±4.88, with minimum score 0 and maximum 18. Reticular opacities were present in 10 (22.2%) cases, with subpleural reticular opacities in four (8.89%) cases, subpleural and interlobular opacities in three (6.7%) cases, and three (6.7%) cases showed extensive reticular opacities, including honeycombing in two (4.4%) of cases. The reticular pattern score was 3.53±5.54, with minimum score of 0 and maximum 20 (Table 3, Fig. 2).

Comparing group I (patients with RA with ILD) with group II (patients with RA without ILD) showed no significance in the age and sex distribution; however, in

Variables	RA-ILD (N=15)	RA only (N=30)	*P* value
Age (years)	58.07±15.06	55.93±10	0.625
Female [n (%)]	11 (24.44)	21 (46.67)	
Male [n (%)]	4 (8.89)	9 (20)	
Disease duration (years)	7.0 (1.0–35.0)	8.4±5.3 (2–26)	
Cigarette smoking [n (%)]	35 (77.8)	10 (22.2)	
DAS28 [mean (SD)]	5.2 (1.8)	5.5 (1.7)	
Laboratory test [n (%)]			
Positive rheumatoid factor	15 (100)	30 (100)	
ACPA +ve	13 (28.9)	21 (46.67)	
ESR mm/1st hour	56.2 (34.5)	56.1 (35.0)	
CRP [mean (SD)] (mg/dl)	39.4 (48.5)	40.2 (56.3)	
DMARDs [n (%)]			
Methotrexate	1 (6.6)	30 (100)	
Azathioprine	9 (60)	2 (6.6)	
Prednisone	11 (73)	8 (26)	
Biological DMARD	3 (20)	6 (20)	

ACPA, anti-citrullinated peptide antibodies; CRP, C-reactive protein; DAS, disease activity score; ESR, erythrocyte sedimentation rate; ILD, interstitial lung disease; RA, rheumatoid arthritis.

Figure 1

A 30-year-old female patient with RA. HRCT shows diffuse ground-glass opacities. HRCT, high-resolution computed tomography; RA, rheumatoid arthritis.
Comparing the age of RA with positive ACPA patients (58.53±11.58 years) with RA with negative ACPA patients (50.82±11 years) showed no significant difference (P=0.062); similarly, there was no significance in sex distribution between the groups.

There was no significant difference in pulmonary function results except for DLCO (P=0.049). ILD was found in ACPA-positive group in 13 cases out of 34, whereas in the ACPA-negative group, ILD was found in only two cases of 11 cases. Ground-glass score

Table 3 Variations between cyclic citrullinated peptide-positive and cyclic citrullinated peptide-negative cases as well as interstitial lung disease and no interstitial lung disease cases

	CCP positive	CCP negative	P value	ILD	No ILD	P value
Age	58.53±11.58	50.82±11	0.062	58.07±15.06	55.93±10	0.625
Sex [n (%)]						
Male	11 (24.44)	2 (4.44)	0.467	4 (8.89)	9 (20)	0.816
Female	22 (48.89)	9 (20)		11 (24.44)	21 (46.67)	
FEV1	2.18±0.71	2.46±0.55	0.177	2.11±0.46	2.32±0.77	0.275
FEV1%	94.85±20.85	100.45±8.21	0.209	98.53±11.34	95.07±21.48	0.488
FVC	2.640±2.09	3.087±0.87	0.161	2.53±0.65	2.87±1	0.179
FVC%	95.52±20.28	102.82±15.98	0.235	98.67±16.89	96.66±20.8	0.732
FEV1/FVC	98.67±21.5	98.18±12.64	0.928	104.13±15.1	95.66±21.12	0.133
FEV25–75	2.79±0.97	2.8±0.96	0.962	2.76±1.06	2.84±0.92	0.833
FEV25–75%	92.15±25.48	87.55±29.95	0.654	94.67±31.97	89.10±23.39	0.557
RV	1.98±0.97	1.69±0.33	0.151	1.89±1.23	1.92±0.82	0.940
RV%	106.2±4.11	105.55±32.36	0.957	106.87±51.43	105.62±31.77	0.933
TLC	4.53±1.25	4.93±1.17	0.340	4.17±0.98	4.86±1.1	0.057
TLC%	96±24.8	100.36±24.03	0.611	92.1±22.94	99.66±25.15	0.326
RV/TLC	104.3±27.9	97.7±8.9	0.240	103.79±19.63	102.14±27.13	0.825
DLCO	5.83±2.25	7.2±1.82	0.049	4.88±1.73	6.96±2.16	0.002
DLCO%	80.82±28.09	106.38±47.36	0.114	68.93±21.65	96.66±35.57	0.003

ILD by HRCT [n (%)]

	ILD	No ILD	P value		
CCP Positive	13 (28.9)	2 (4.44)			
Negative	2 (4.44)	9 (20)	0.288		
Ground-glass score	1.73±2.76	4.5±3.3	0.385		
Reticular score	4.64±6.1	0.5±0.93	0.005		
Biological [n (%)]					
Biological	19	3	0.165		
No biological	15	8	10 (22.22)	13 (28.89)	0.14

CCP, cyclic citrullinated peptide; CRP, C-reactive protein; DAS, disease activity score; DLCO, diffusion capacity for carbon monoxide; ESR, erythrocyte sedimentation rate; FEF, forced expiratory flow; FEV1, forced expiratory volume in 1 s; FVC, forced vital capacity; HBG, hemoglobin; HRCT, high-resolution computed tomography; ILD, interstitial lung disease; RV, residual volume; TLC, total lung capacity; WBC, white blood cell. The bold values are significant value less than 0.05.

Both groups, females were more than males. Pulmonary functions showed a significant reduction in diffusion capacity for carbon monoxide (DLCO) in group I (RA with ILD group) (P=0.002). In both groups, the numbers of ACPA-positive cases were higher than ACPA negative (13 vs. 2 in the ILD group with 22 vs. 9 in no ILD group; P=0.22). The results of laboratory tests were similar between both groups and also the distribution of patients regarding biological versus nonbiological treatment (Table 3).
was similar between ACPA-positive and ACPA-negative groups. The reticular score was significantly higher in the CCP-positive group ($P=0.005$). DAS was considerably more in the positive group ($P=0.000$). Moreover, ESR, C-reactive protein, and platelets were increased but white blood cells were decreased in the positive group. However, there were no significant variations in the rest of the laboratory tests and even in the distribution of treatment, either biological or nonbiological (Table 3).

On studying the correlations of ACPA with other variables, there was a strong positive correlation with DAS and ESR, whereas other relationships were weak. There was a strong positive association between ILD and disease duration, with P value 0.000, and a strong negative correlation with DLCO ($P=0.04$); other relationships were weak (Table 4). The positive predictive value of positive ACPA was 78.8% for ILD, 70% for ground glass, and 100% for reticular pattern (Table 5).

Discussion

Half a century ago was the first time to report pulmonary manifestations in patients with RA [22]. Approximately 10–20% of patients with RA had pulmonary manifestations, with the association of increased mortality [23]. HRCT-chest is the standard noninvasive mean for diagnosis and follow-up of ILD in patients with RA [24]. HRCT results are now correlated closely with those of open lung biopsy [2]. In the present study, HRCT showed ILD in 15 (33.3%) of 45 patients with RA, and their patterns were ground-glass opacity in 10 cases, reticular opacities in 10 cases, and honeycombing in two cases. RA with ILD group showed higher DAS and increased disease duration than the group of RA with no ILD. DLCO was significantly reduced in the RA with ILD group, whereas other pulmonary function test (PFT) results were similar and showed no significant differences. RA with ILD group was highly correlated with disease duration, and negatively with DLCO. In contrast, Karazincir et al. [25] studied the HRCT findings, disease activity, RF positivity, PFT results, and disease duration correlations and declared no significant association between them. However, a subsequent study done in Kuwait on 60 patients with RA found substantial variations between a group of patients with ILD than those with no ILD regarding disease duration and PFT with restrictive pattern and lower DLCO in the RA-ILD group [26].

In this study, 34 cases were ACPA positive, whereas 11 cases were ACPA negative. In the ACPA-positive group, ILD was found in 13 cases, whereas in the ACPA-negative group, ILD was

Table 4 Correlations of anti-citrullinated peptide antibodies and interstitial lung disease with other variables

	ACPA	P	ILD	P
Age	0.284	0.059	0.086	0.547
FEV1	−0.184	0.23	−0.145	0.348
FVaC	−0.217	0.157	−0.182	0.236
FEV1/FVC	0.011	0.944	0.208	0.157
FEF25–75	0.007	0.962	−0.034	0.825
RV	0.146	0.346	−0.014	0.926
TLC	−0.145	0.349	−0.268	0.079
RV/TLC	0.118	0.447	0.031	0.841
DLCO	−0.279	0.067	−0.430	0.004
Ground glass	0.055	0.718		
Ground glass score	−0.255	0.173		
Reticular score	0.336	0.07		
ILD	0.183	0.229		
Disease activity score	0.610	0.000	0.313	0.036
CCP	0.183	0.229		
ESR	0.472	0.011	0.245	0.105
CRP	0.365	0.014	0.006	0.968
SGPT	0.209	0.168	−0.159	0.297
SGOT	−0.045	0.770	−0.198	0.192
Creatinine	0.064	0.675	0.172	0.258
Hemoglobin	0.145	0.343	0.169	0.268
WBCs	−0.445	0.002	−0.201	0.158
Platelets	0.361	0.011	−0.115	0.920
Biological	−0.066	0.665	0.220	0.146
Disease duration	0.246	0.103	0.558	0.000

ACPA, anti-citrullinated peptide antibodies; CCP, cyclic citrullinated peptide; CRP, C-reactive protein; DLCO, diffusion capacity for carbon monoxide; ESR, erythrocyte sedimentation rate; FEF, forced expiratory flow; FEV1, forced inspiratory volume in 1 s; FVC, forced vital capacity; ILD, interstitial lung disease; RV, residual volume; TLC, total lung capacity; WBC, white blood cell.
found in only two. Ground-glass score was similar between both groups, but the reticular score was considerably higher in the ACPA-positive group. Fadda and colleagues found that ACPA titer was higher in the bad prognostic UIP pattern than the good prognostic (NSIP, COP) pattern. Moreover, they found a strong correlation between ACPA titer and fibrosis score [27]. In the present study, regarding DAS, the score was considerably higher among the anti-CCP positive group and was firmly in a positive correlation with ACPA titer. Similarly, Pérez-Dórame et al. [28] declared a significant correlation between DAS and ground-glass score and not the fibrosis score. Kelly et al. [29] stated that ACPA titer was the most relevant factor correlated with ILD in RA. The meta-analysis study by Fan et al. [30], which involved 14 reviews, involving 702 patients, suggested that both ACPA antibodies and RF were highly correlated with ILD in RA in both Asian and white populations. This comes in accordance with our study, as the positive predictive value of anti-CCP was 78.8% for ILD (70% for ground glass and 100% for reticular pattern). In contrast, Korkmaz et al. [31] could not demonstrate this positive correlation between ACPA and extra-articular manifestations; they explained the negative results by sample size, disease duration, and treatment.

Table 5 Predictive value of anti-cyclic citrullinated peptide

	Positive ACPA (%)	Negative ACPA (%)	P value
ILD			0.442
Yes	78.6	21.4	
No	71	29	
Ground glass pattern			0.539
Yes	70	30	
No	74.3	25.7	
Reticular pattern			0.029
Yes	100	0	
No	65.7	34.3	

ACPA, anti-citrullinated peptide antibodies; ILD, interstitial lung disease.

Conflicts of interest

There are no conflicts of interest.

References

1. Young A, Koduri G. Extra-articular manifestations and complications of rheumatoid arthritis. Best Pract Res Clin Rheumatol 2007; 21:907–927.
2. Brown KK. Rheumatoid lung disease. Proc Am Thorac Soc 2007; 4:443–448.
3. Myasoedova E, Crowson CS, Turesson C, Gabriel SE, Matteson EL. Incidence of extraarticular rheumatoid arthritis in Olmsted County, Minnesota, in 1995e2007 versus 1985e1994: a population-based study. J Rheumatol 2011; 38:983–989.
4. Nannini C, Ryu JH, Matteson EL. Lung disease in rheumatoid arthritis. Curr Opin Rheumatol 2008; 20:340e6.
5. Chen J, Shi Y, Wang X, Huang H, Ascherman D. Asymptomatic preclinical rheumatoid arthritis-associated interstitial lung disease. Clin Dev Immunol 2013; 2013:406927.
6. Borgartz T, Nannini C, Medina-Velasquez YF, Achenbach SJ, Crowson CS, Ryu JH, et al. Incidence and mortality of interstitial lung disease in rheumatoid arthritis—a population-based study. Arthritis Rheumatol 2010; 62:1583–1591.
7. Zeng X, Al M, Tian X, Gan X, Shi Y, Song Q, et al. Diagnostic value of anti-cyclic citrullinated peptide antibody in patients with rheumatoid arthritis. J Rheumatol 2013; 30:1451–1455.
8. Reparón-Schuijt CC, van Esch WJ, van Kooten C, Schellekens GA, de Jong BA, van Venrooij WJ, et al. Secretion of anti-citrulline-containing peptide antibody by B lymphocytes in rheumatoid arthritis. Arthritis Rheum 2001; 44:41–47.
9. Lopez-Longo FJ, Oliver-Minano D, de la Torre I, Gonzalez-Diaz de Rabago E, Sanchez-Ramon S, Rodriguez-Mahou M, et al. Association between anti-cyclic citrullinated peptide antibodies and ischemic heart disease in patients with rheumatoid arthritis. Arthritis Rheum 2009; 61:419–424.
10. Liao KP, Gunnarsson M, Kalberg H, Ding B, Plenge RM, Padyukov L, et al. Specific association of type 1 diabetes mellitus with anti-cyclic citrullinated peptide positive rheumatoid arthritis. Arthritis Rheum 2009; 60:653–660.
11. Alexiou I, Germanis A, Koutroumpas A, Kontogianni A, Theodoridou K, Sakkas Li. Anti-cyclic citrullinated peptide-2 (CCP2) autoantibodies and extraarticular manifestations in Greek patients with rheumatoid arthritis. Clin Rheumatol 2008; 27:511–513.
12. Gerli R, Bartolini Bocci E, Sherry R, Vaudo G, Moscatteli S, Oenfeld Y. Association of anti-cyclic citrullinated peptide antibodies with subclinical atherosclerosis in patients with rheumatoid arthritis. Ann Rheum Dis 2008; 67:724–725.
13. Inui N, Enomoto N, Suda T, Kageyama Y, Watanabe H, Chida K. Anti-cyclic citrullinated peptide antibodies in lung diseases associated with rheumatoid arthritis. Clin Biochem 2008; 41:1074–1077.
14. Aubart F, Crestani B, Nicaise-Roland P, Tubach F, Bollet C, Dawidowicz K. High levels of anti-cyclic citrullinated peptide autoantibodies are associated with co-occurrence of pulmonary diseases with rheumatoid arthritis. J Rheumatol 2011; 38:979–982.
15. Rangel-Moreno J, Hartson L, Navarro C, Gaxiola M, Selman M, Randall TD. Inducible bronchus-associated lymphoid tissue (iBALT) in patients with pulmonary complications of rheumatoid arthritis. J Clin Invest 2006; 116:3183–3194.
16. Klaireskog L, Stolt P, Lundberg K, Källberg H, Bengtsson C, Grunewald J, et al. A new model for an etiology of rheumatoid arthritis: smoking may trigger modified by citrullination. Arthritis Rheum 2006; 54:38–46.
17. Aletha D, Neogi T, Silman AJ, Funovits J, Felson DT, Bingham ILICO. Rheumatoid arthritis classification criteria: an American College of Rheumatology/European League against Rheumatism collaborative initiative. Arthritis Rheum 2010; 62:2569–2581.
18. Van der Heijde DM, Van ‘t Hof MA, Van Riel PL, Theunsse LA, Lubberts EW, van Leeuwen MA, et al. Judging disease activity in clinical practice in rheumatoid arthritis: the first step in the development of a disease activity score. Ann Rheum Dis 1990; 49:916–920.
19. American Thoracic Society, European Respiratory Society. American Thoracic Society/European Respiratory Society International Multidisciplinary Consensus Classification of the Idiopathic Interstitial Pneumonias. This joint statement of the American Thoracic Society (ATS), and the European Respiratory Society (ERS) was adopted by the ATS board of directors, June 2001 and by the ERS Executive Committee, June 2001. Am J Respir Crit Care Med 2002; 165:277–304.

Financial support and sponsorship

Nil.
20 Gay SE, Kazeroomi EA, Toews GB, Lynch III JP, Gross BH, Cascade PN, et al. Idiopathic pulmonary fibrosis: predicting response to therapy and survival. Am J Respir Crit Care Med 1998; 157:1063–1072.

21 Miller MR, Hankinson J, Brusasco V, Burgos F, Casaburi R, Coates A. ATS/ERS Task Force. Standardization of spirometry. Eur Respir J 2005; 26:319–338.

22 Elman P, Ball RE. Rheumatoid disease with joint and pulmonary manifestations. Br Med J 1998; 2:816–820.

23 Biederer J, Schnabel A, Muhle C, Gross WL, Heller M, Reuter M. Correlation between HRCT findings, pulmonary function tests and bronchoalveolar lavage cytology in interstitial lung disease associated with rheumatoid arthritis. Radiology 2004; 14:272–280.

24 Kim EJ, Ellicker BM, Maldonado F, Webb WR, Ryu JH, Van JH, et al. Usual interstitial pneumonia in rheumatoid arthritis-associated interstitial lung disease. Eur Respir J 2010; 35:1322–1328.

25 Karazincir V, Akoglu S, Guler H, Balci A, Babayigit C, Eglimez E. The evaluation of early pulmonary involvement with high-resolution computerized tomography in asymptomatic and non-smoker patients with rheumatoid arthritis. Tuberk Toraks 2009; 57:14–21.

26 Altara NK, Refaat AM, Elgawish MH, Zakaria MA, Khaledah A. Dashti high-resolution CT and pulmonary function tests in rheumatoid arthritis patients with subclinical interstitial lung disease in Kuwait. Egypt Rheumatol 2015; 62:2.

27 Fadda S, Khairy N, Fayed H, Mousa H, Taha R. Interstitial lung disease in Egyptian patients with rheumatoid arthritis: Frequency, pattern, and correlation with clinical manifestations and anti-citrullinated peptide antibodies level. Egypt Rheumatol 2018; 40:155–160.

28 Pérez-Dórame R, Mejia M, Mateos-Toledo H, Rojas-Serrano J. Rheumatoid arthritis-associated interstitial lung disease: lung inflammation evaluated with high resolution computed tomography scan is correlated to rheumatoid arthritis disease activity. Reumatrolog Clin 2015; 11:12–16.

29 Kelly C, Saravanan V, Nisar M, Arthanari S, Woodhead F, Price-Forbes A, et al. Rheumatoid arthritis-related interstitial lung disease: associations, prognostic factors, and physiological and radiological characteristics—a large multicenter UK study. Rheumatology (Oxford) 2014; 53:1676–1682.

30 Fan W, Chen J, Bao C. An updated meta-analysis of the association of rheumatoid arthritis-related interstitial lung disease with anti-cyclic citrullinated peptide antibody or rheumatoid factor. Int J Clin Exp Med 2016; 9:10333–10343.

31 Korkmaz C, Us T, Kasifoglu T, Akgun Y. Anti-cyclic citrullinated peptide (CCP) antibodies in patients with long-standing rheumatoid arthritis and their relationship with extra-articular manifestations. Clin Biochem 2006; 39:961–965.