Kidney Development in the Absence of Gdnf and Spry1 Requires Fgf10

The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters

Citation	Michos, Odyssé, Cristina Cebrian, Deborah Hyink, Uta Grieshammer, Linda Williams, Vivette D’Agati, Jonathan D. Licht, Gail R. Martin, and Frank Costantini. 2010. Kidney development in the absence of Gdnf and Spry1 requires Fgf10. PLoS Genetics 6(1): e1000809.
Published Version	doi:10.1371/journal.pgen.1000809
Citable link	http://nrs.harvard.edu/urn-3:HUL.InstRepos:8191175
Terms of Use	This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
Kidney Development in the Absence of Gdnf and Spry1 Requires Fgf10

Odysse Michos1, Cristina Cebrian1, Deborah Hyink2, Uta Grieshammer3, Linda Williams1, Vivette D’Agati1, Jonathan D. Licht4, Gail R. Martin3, Frank Costantini1*

1 Department of Genetics and Development, Columbia University, New York, New York, United States of America, 2Department of Medicine, Mount Sinai School of Medicine, New York, New York, United States of America, 3Department of Anatomy, University of California San Francisco, San Francisco, California, United States of America, 4Northwestern University Feinberg School of Medicine, Department of Medicine, Chicago, Illinois, United States of America

Abstract

GDNF signaling through the Ret receptor tyrosine kinase (RTK) is required for ureteric bud (UB) branching morphogenesis during kidney development in mice and humans. Furthermore, many other mutant genes that cause renal agenesis exert their effects via the GDNF/RET pathway. Therefore, RET signaling is believed to play a central role in renal organogenesis. Here, we re-examine the extent to which the functions of Gdnf and Ret are unique, by seeking conditions in which a kidney can develop in their absence. We find that in the absence of the negative regulator Spry1, Gdnf, and Ret are no longer required for extensive kidney development. Gdnf−/−;Spry1−/− or Ret−/−;Spry1−/− double mutants develop large kidneys with normal ureters, highly branched collecting ducts, extensive nephrogenesis, and normal histoarchitecture. However, despite extensive branching, the UB displays alterations in branch spacing, angle, and frequency. UB branching in the absence of Gdnf and Spry1 requires Fgf10 (which normally plays a minor role), as removal of even one copy of Fgf10 in Gdnf−/−;Spry1−/− mutants causes a complete failure of ureter and kidney development. In contrast to Gdnf or Ret mutations, renal agenesis caused by concomitant lack of the transcription factors ETV4 and ETV5 is not rescued by removing Spry1, consistent with their role downstream of both RET and FGFRs. This shows that, for many aspects of renal development, the balance between positive signaling by RTKs and negative regulation of this signaling by SPRY1 is more critical than the specific role of GDNF. Other signals, including FGF10, can perform many of the functions of GDNF, when SPRY1 is absent. But GDNF/RET signaling has an apparently unique function in determining normal branching pattern. In contrast to Gdnf or Fgf10, Etv4 and Etv5 represent a critical node in the RTK signaling network that cannot by bypassed by reducing the negative regulation of upstream signals.

Introduction

Signaling by the secreted protein GDNF through the RET receptor tyrosine kinase (RTK) and the GFRα1 co-receptor plays a central role in the initiating event of kidney development, the outgrowth of the ureteric bud (UB) from the Wolffian duct (WD) into the metanephric mesenchyme (MM). They are also important for the subsequent growth and branching of the UB to form the renal collecting duct system. This is apparent not only from the lack of UB development in Gdnf−/−, Ret−/−, or Gfra1 mutants in mice [1–5] and humans [6], but also from the observation that most of the other genes whose absence causes renal agenesis are upstream regulators of Gdnf or Ret expression [7]. We have recently reported that expression in the UB of the ETS transcription factors ETV4 and ETV5 is upregulated by GDNF/RET signaling, and that Etv4−/−; Etv5−/− double homozygous mice fail to develop kidneys. Thus, the effects of GDNF/RET signaling on UB branching morphogenesis are largely transduced via ETV4 and ETV5 [8].

The mechanism by which GDNF/RET signaling induces epithelial branching remains to be fully elucidated. In the WD, it initially promotes cell movements that precede and lead to the formation of the UB [9], and it then induces UB outgrowth from the duct [10,11]. In the UB tips, it increases cell proliferation [12,13], a likely prerequisite for branching. Furthermore, because GDNF is capable of acting as a chemoattractant for cultured kidney cells [14,15], it has been suggested that GDNF may act as a chemoattractant for UB tips in vivo, thereby promoting and patterning their branching [10,11,16].

Here, we have further investigated the role of GDNF/RET signaling by identifying conditions under which the kidney can develop in the absence of either GDNF or RET. To achieve this, we employed a null allele of Sprouty1 (Spry1), a negative feedback inhibitor of RTK signaling, which modulates the response to GDNF during kidney development. Spry1−/− mutants show a pervasive defect in the development of the ureteric tree, including formation of supernumerary buds from the WD, which develop into multiplex ureters and kidneys, and an increase in the number and diameter of UB branches in the developing kidneys [17,18]. The molecular mechanism of Sprouty protein function is incompletely understood. Engineered expression of Sprouty in
Kidney development requires the secreted protein GDNF, which signals via its cellular receptor RET to promote growth and branching of the ureteric bud, the progenitor of the collecting duct system. The transcription factors ETV4 and ETV5 regulate gene expression in response to GDNF. We report that deleting Spry1, a feedback inhibitor downstream of RET, largely rescues kidney development in mice lacking GDNF or RET, although not in those lacking ETV4 and ETV5. Thus, GDNF and RET become dispensable in the absence of SPRY1, when their roles can be largely assumed by other signals and receptors, while ETV4 and ETV5 remain indispensable. We identify FGF10 as the signal responsible for kidney development in the combined absence of GDNF/RET signaling and SPRY1 negative regulation. But while the ureteric bud branches extensively in Gdnf−/−;Spry1−/− and Ret−/−;Spry1−/− kidneys, its pattern of branching is severely perturbed. This points to a unique function of GDNF in ureteric bud patterning.

It was previously found that removing one Spry1 allele corrected the renal hypoplasia in Gdnf−/− heterozygous mice, and that removing one Gdnf allele corrected the abnormal UB branching in Spry1−/− mice. These findings demonstrated that the balance between GDNF and SPRY1 levels is critical for normal kidney development [17,18]. We have now further tested this idea by examining the consequences of eliminating Gdnf and Spry1 (or all Ret and Spry1). Surprisingly, such doubly homozygous mutant mice developed two large and well-formed kidneys, each with a single, normally-positioned ureter. Thus, in the absence of GDNF/RET signaling, other factors must be able to support normal UB outgrowth and extensive UB branching, but only when SPRY1 is absent. We provide in vivo, genetic evidence that FGF10 is one such factor, consistent with the previous observation that exogenous FGFs are capable of inducing budding by the Wolffian duct in organ culture [21]. However, our data also reveal that the specific pattern of UB branching is abnormal in Ret−/−;Spry1−/− and Gdnf−/−;Spry1−/− double mutant kidneys. Therefore, although endogenous FGF10 and perhaps other factors can promote extensive UB branching, GDNF appears to serve a unique role in the patterning of UB branching morphogenesis. Finally, we show that, unlike the rescue of Gdnf or Ret mutations, the lack of both Etv4 and Etv5 cannot be overcome by removing Spry1. Thus, these two transcription factors represent a critical link in a signaling network downstream of Ret and other RTKs.

![Figure 1. Loss of Spry1 rescues kidney development in Gdnf−/− or Ret−/− mice.](image-url)
Results

Kidney development in the absence of Gdnf and Spry1, or Ret and Spry1

Gdnf−/− newborn (P0) mice display ~80% renal agenesis and ~20% severe renal hypoplasia [1–3] (n = 20) (Figure 1A and 1B) (for statistical purposes, we count each of the two potential kidneys as a separate sample [22]). In contrast, we found that newborn Gdnf−/−;Spry1−/− (abbreviated GGSS) mice displayed only 11% renal agenesis (n = 18) and 89% of kidneys were normally shaped and only slightly smaller than controls (cross-sectional area 70±11% of wild-type) (Figure 1E). Unlike Spry1−/− mice (Figure 1D), GGSS newborns never showed hydroureter, although the bladder was often filled with urine (Figure 1E), indicating that the ureters were correctly connected to the bladder, and thus suggesting that the site of outgrowth of the UB from the WD had been normal [23,24].

These observations raised the possibility that in the absence of Gdnf and Spry1, kidney development was supported by another GDNF-family ligand, such as Neurturin, which is expressed in the developing kidney [25]. To investigate this possibility we generated Ret−/−;Spry1−/− (RRSS) newborn mice, as RET is the common signaling receptor for all GDNF family ligands[26]. Whereas Ret−/− newborn mice display renal agenesis (~70%) or severe renal hypoplasia (~30%) (Figure 1C), 88% of the RRSS double mutants (n = 26) developed fairly large and well-formed kidneys (cross-sectional area 73±15% of wild-type) with apparently normal ureters (Figure 1H). Histological analysis of GGSS and RRSS kidneys indicated that the overall organization into renal papilla, medulla, cortex, and nephrogenic zone was essentially normal, with well differentiated collecting ducts, nephron epithelia and glomeruli in both double mutant genotypes (Figure 1F, 1G, 1I, and 1J and data not shown). Consistent with these findings, many podocalyxin-positive glomeruli were observed in the cortex of double mutant kidneys, although they were reduced in number (52±6% of wild-type in P0 RRSS mutants) (Figures 2A and 2B).

Despite their apparently functional kidneys, GGSS and RRSS mice did not survive beyond 3–4 days after birth, presumably because removing Spry1 does not correct the multiple defects in the nervous system caused by lack of Gdnf or Ret [26].

UB branching is extensive, but abnormally patterned, in Gdnf−/−;Spry1−/− and Ret−/−;Spry1−/− kidneys

As GDNF/RET signaling is important for UB growth and branching, we crossed into the mutant backgrounds a Hoxb7/myrVenus transgene, which fluorescently labels the WD and UB lineage [27], to visualize UB branching in vivo or in cultured kidneys. In P0 wild-type kidneys, branching UB tips are numerous and regularly spaced over the kidney surface (Figure 3A). In Spry1−/− kidneys, the UB tips are likewise evenly spaced, but abnormally swollen (Figure 3D). In contrast, although there were numerous UB tips on the surface of GGSS and RRSS kidneys, indicating that the UB had branched very extensively even in the absence of Gdnf or Ret, the tips were irregularly and less densely arrayed, elongated, and abnormally shaped (Figure 3B and 3C). We also examined the kidneys at E15.5, when branching is less complex and the kidneys are small enough to image by confocal microscopy and perform 3D reconstruction (Figure 3E–3P). Volume rendering of the Hoxb7/myrVenus-positive UB tree showed that the double mutants had extensively branched, but the spacing and the branching geometry of UB tips was irregular (Figure 3F and 3G). In such samples, the points where UB tips connect to nephrons could be mapped in three dimensions, and were found to be essentially normal in GGSS mutants (Figure 2C–2J), indicating that the double mutant UB tips produce the factors necessary to connect to the nephrons. Higher magnification 3D reconstructions revealed a characteristic pattern of UB branching in wild-type kidneys (Figure 3I–3M), where successive branch generations occur at regular intervals, mostly at right angles to the parental branches (yellow dashed lines). In contrast, this regular pattern was rarely observed in GGSS or RRSS kidneys, where instead the UB tips were highly irregular in shape, orientation, and branching frequency (Figure 3J, 3K, 3N, and 3O). Spry1−/− UB tips resembled the wild type, except for an increased tip diameter (Figure 3L and 3P), indicating that the branching abnormalities in RRSS and GGSS are not due simply to lack of Spry1.

To examine the initial branching events, we explanted the WD, ureter and kidney at E12.5. Consistent with what was observed in newborn GGSS and RRSS mutants, the ureter and kidney were...
nearly always present (88%, n = 26 and 100%, n = 16, respectively). In contrast, few Gdnf2/2 or Ret2/2 mutants had ureter and kidney at this stage (20%, n = 30 and 8%, n = 12, respectively). In none of the GGSS or RRSS mutants were duplicated ureters present, as they are in many Spry12/2 mutants. UB branching was somewhat delayed in the GGSS and RRSS kidneys compared to controls (Figure 4A versus Figure 4D, 0 hours; and data not shown). Several of the wild type, Spry1−/−, and GGSS E12.5 kidneys were cultured to examine the subsequent branching events. While the GGSS kidneys branched extensively in culture, some of the tips elongated abnormally without branching (Figure 4D, asterisks) and some tips grew too slowly (Figure 4D, arrowheads), resulting in an irregularly patterned tree. Thus, while GDNF/RET signaling is not required for the UB to undergo extensive growth and branching when Spry1 is also absent, it is necessary to impose a regular pattern on UB branching.

Differentiation of the UB into tip and trunk domains occurs in the absence of Gdnf/Ret and Spry1

The UB tips and trunks maintain different patterns of gene expression throughout kidney development, with many genes expressed specifically in one domain or the other [12,28,29].
Many tip-specific genes can be upregulated by exogenous GDNF, and their expression is reduced in a Ret hypomorphic mutant [8,12,30], suggesting that GDNF/RET signaling may be required to maintain the tip-specific pattern. However, we found that three tip-specific markers, Ret, Wnt11, and Etv4, normally require wild-type levels of GDNF/RET signaling for expression in the UB, continued to be expressed in a tip-specific pattern in GGSS or RRSS double mutants (Figure 5A–5F). The trunk-specific marker Wnt7b [31] also retained its normal expression pattern in GGSS double mutants (Figure 5G and 5H), indicating that the lack of Wnt7b expression in the UB tip does not require GDNF/RET signaling. Therefore, there must be other, Ret-independent mechanisms that can establish and maintain tip/trunk differences in gene expression.

Figure 4. Abnormal branching of double mutant kidneys in organ culture. Kidneys of wild-type (A) and mutant genotypes (B–D), carrying Hoxb7/myrVenus, were excised at E12.5, cultured in vitro, and photographed at the indicated times. The Ret/– Wolffian duct (B) failed to develop a ureter or kidney, while the Spry1/– kidney (C) has multiple ureters (arrowheads), swollen UB tips and an enlarged common nephric duct (cnd). (D), in two examples of Gdnf/–; Spry1/– mutant kidneys, UB branching is retarded at E12.5, and subsequent branching in culture displays abnormal patterns (asterisks and arrowheads – see text) compared to wild-type. doi:10.1371/journal.pgen.1000809.g004

Figure 5. Differential gene expression in tip and trunk domains is retained in Gdnf/–;Spry1/– and Ret/–;Spry1/– double mutant kidneys. Whole mount in situ hybridization for the UB tip markers Ret, Wnt11 and Etv4 and the trunk marker Wnt7b, in wild-type (A,C,E,G) and double mutant E12.5 kidneys (B,F and H, Gdnf/–; Spry1/–; D, Ret/–;Spry1/–). Solid arrows indicate UB tips and open arrows indicate trunks. Scale bars 100 μm. doi:10.1371/journal.pgen.1000809.g005

Fgf10 cooperates with Gdnf to promote UB outgrowth and branching morphogenesis, and can largely compensate for the loss of Gdnf/Ret in the absence of Spry1.

We next sought to determine what signaling molecule(s) support ureteric bud outgrowth from the WD, and subsequent growth and branching, in the absence of Gdnf/Ret and Spry1. The observation that kidney development is rescued in Gdnf/2/2 or Ret/2/2 embryos only when Spry1 is absent suggests that the signaling responsible for the rescue must itself be negatively regulated by Spry1. Since Sprouty genes are negative regulators of RTK signaling, the rescue most likely occurs through a RTK. According to this reasoning, FGF signaling is a strong candidate. Genetic studies in the mouse have identified FGF7 and FGF10, signaling through FGFR2, as important factors for normal UB branching [32,33]; however, the effects of Fgf7 or Fgf10 knockouts (KO) are far less severe than those caused by loss of Gdnf or Ret, indicating that these FGFs play a secondary role under normal conditions. Fgf7 mRNA was not detected in the kidney before E14.5 [34],
whereas *Fgf10*, like *Gdnf*, is expressed in the MM at least as early as E10.5 (Figure 6A–6D), making *Fgf10* a good candidate to participate in UB outgrowth and early branching morphogenesis. *Fgf10*−/− mice [35] have small kidneys at birth [33], and we found this to be reflected in reduced UB branching during kidney development (Figure 6E and 6F). The reduction in UB branching was comparable to that in kidneys lacking *Fgf2* (or both *Fgf1* and *Fgf2*) in the UB lineage [36], suggesting that FGF10 is the major FGF signaling through FGFR2 in the UB. Furthermore, this defect could be corrected by deletion of one *Spry1* allele (Figure 6G), indicating that *Spry1* negatively regulates FGF10 (as well as GDNF) signaling.

Figure 6. *Fgf10* expression and function in early ureter and kidney development. (A,B) *In situ* hybridization in transverse sections of E10.5 wild type embryos reveals that *Fgf10* and *Gdnf* are expressed in metanephric mesenchyme (arrows). (C,D) Whole-mount *in situ* hybridization at E11.0 (dorsal view) shows that *Fgf10* and *Gdnf* are expressed in metanephric mesenchyme (MM) surrounding the UB epithelium. The schematic diagram illustrates *Fgf10* expression, with purple indicating where the hybridization signal was detected. (E–G) Visualization of *Hoxb7/myrVenus* shows (E) normal UB branching in an *Fgf10*+/− kidney, (F) reduced branching in an *Fgf10*−/− kidney, and (G) rescue of UB branching in an *Fgf10*−/− kidney when *Spry1* dosage is reduced (*Spry1*/−/−). Scale bars, 100 μm. (H–J) Induction of ectopic budding from the Wolffian duct by FGF10. Dissected E10.5 urogenital regions were cultured with control PBS-soaked beads (H) or beads soaked in FGF10 ([I] and [J]) placed between the two Wolffian ducts (dotted yellow circles). FGF10 induces multiple ectopic UB outgrowths (marked by asterisks) in both control *Gdnf*+/− (I) and *Gdnf*−/− (J) samples. Open arrowhead in H, Wolffian duct; arrows in H-I, normal ureteric buds.

doi:10.1371/journal.pgen.1000809.g006
To examine the relationship between FGF10 and GDNF in kidney development, we performed gain- and loss-of-function studies. FGF10-soaked beads placed next to the UD of E10.5 embryos induced the formation of multiple ectopic buds (Figure 6H and 6I), as do GDNF beads [10]. To test whether FGF10 induced the ectopic buds indirectly, by up-regulating Gdnf, we performed the same experiment in Gdnf−/− embryos, but the result was similar (Figure 6J). Therefore, FGF10 is capable of inducing UB outgrowth, presumably by acting directly on the UB. The role of Fgf10 was also examined by performing genetic crosses between Fgf10 and Gdnf KO mice, and examining UB formation at early stages (E11.5–12.5) and kidney development in late fetal or newborn mice. Fgf10 heterozygotes always had normal ureters and kidneys (Figure 7A and 7B), whereas Gdnf heterozygotes had a low frequency (7–10%) of defective UB outgrowth or renal agenesis (Figure 7A). However, in Fgf10+/−;Gdnf+/- double heterozygotes, 81% of the UBs were missing or severely delayed at E11.5–E12.5 (e.g., Figure 7A and 7C–7E), and 58% of kidneys were absent at E17.5–P0 (e.g., Figure 7A, 7F, and 7G), roughly equivalent to what is observed in Gdnf null homozygotes with normal Fgf10 dosage (Figure 7A). Furthermore, although renal agenesis was rare in Fgf10 homozygotes (15%), removing one Gdnf allele (Fgf10+/−;Gdnf+/−) caused 100% agenesis (e.g., Figure 7A and 7H). Thus, while the consequences of deleting both Fgf10 alleles in a wild-type background are relatively mild, in a Gdnf−/− background the loss of even one Fgf10 allele causes more severe defects, and loss of both Fgf10 alleles is catastrophic, indicating that Fgf10 and Gdnf normally cooperate to promote UB outgrowth from the UD.

To ask if it is Fgf10 that rescues kidney development in Gdnf+/−;Spry1−/− mice, we next examined Gdnf−/−;Spry1−/− mice in which Fgf10 gene dosage was reduced. We found that removal of either one or both Fgf10 alleles resulted in 100% renal agenesis (Figure 8). These data conclusively demonstrate that Fgf10 supports the extensive kidney development that occurs in Gdnf−/−;Spry1−/− mice.

Expression of the ETS transcription factors ETV4 and ETV5 in the UB in vivo requires normal levels of GDNF/RET signaling, and they can also be upregulated in kidney cultures by exogenous GDNF, suggesting that they function downstream of both RET and FGF2 [8]. If ETV4 and ETV5 are needed to transduce both FGF10, suggesting that they function downstream of both RET and they can also be upregulated in kidney cultures by exogenous Etv4 Etv5 the UB in vivo accordance with this prediction, the three triple mutant (Etv4/−;Etv5/−;Spry1−/−) caused 100% absence of UBs and kidney development (Figure 8).

Discussion

To investigate the roles of GDNF/RET signaling and negative regulation by Sprouty1 in branching morphogenesis of the Wolffian duct and ureteric bud during ureter and kidney development, we generated mice that lacked Spry1 or Gdnf or Ret. We found, unexpectedly, that nearly all the double homozygous mutants developed two large, well-organized kidneys, with normal ureters, a highly branched collecting duct system, and extensive nephrogenesis. Thus, it appears that for many aspects of ureter and kidney development, the balance between positive signaling via GDNF/RET and negative regulation via SPRY1 is more critical than the specific role of GDNF. These observations suggested that other signaling molecules, whose activity like that of GDNF is negatively regulated by SPRY1, must be able to perform many of the functions of GDNF, but only when SPRY1 is absent. We identified FGF10 as one such factor; although knockout of Fgf10 normally has relatively minor effects on kidney development, FGF10 plays a critical role when GDNF/RET signaling is reduced or absent. Close examination of Gdnf−/−;Spry1−/− and Ret−/−;Spry1−/− double mutant kidneys revealed that while the UB branches extensively, and proximal-distal UB patterning is retained, the characteristic branching pattern is significantly disrupted. Thus, although GDNF/RET signaling is not required for UB growth or branching per se (when SPRY1 is also absent), it has an apparently unique role in determining the normal branching pattern.
In a wild-type background (i.e., in the presence of SPRY1), GDNF/RET signaling is essential for the positioning and normal outgrowth of the UB from the WD. Not only does the UB usually fail to emerge in Ret−/− or Gdnf−/− mice, but when it does, its position is often abnormal, resulting in the lack of a normal connection to the bladder [37]. Furthermore, ectopic expression of Gdnf causes ectopic UBs to form along the WD [38–40]. This led to the model that the specific domain of Gdnf expression in the nephrogenic cord is critical for positioning the UB in the correct location [5,16]. However, in the absence of SPRY1, mice lacking GDNF or RET make a normal UB that develops into a normal ureter connected to the bladder, as indicated by the absence of hydronephrosis. Therefore, signaling via another ligand/receptor that is also negatively regulated by SPRY1 must be able to properly position and induce outgrowth of the UB in the absence of GDNF or RET. We found that FGF10, presumably signaling via FGFR2, is an essential component of this alternative signaling, as removing either one or two Fgf10 alleles in a Gdnf−/−;Spry1−/− background caused failure of UB emergence, leading to renal agenesis. Moreover we showed that this FGF10/GFGR2 signaling is not dependent on GDNF signaling because FGF10 induces WD budding of the cultured mouse urogenital system, even in a Gdnf−/− embryo. The possibility remains that other factors (other FGFs, or other signaling molecules) are also involved in this process. It has been shown that several FGFs can induce UB outgrowth from cultured rat WD, and in this assay FGF10 had relatively weak activity whereas FGF7 and other FGFs were more active [21]. The ability of FGF7 to cooperate with or replace GDNF in this process remains to be tested genetically. Other mechanisms, such as the local inhibition of BMP4 by Gremlin1 [41,42], also contribute to the normal positioning of the UB.

Unlike Gdnf−/− or Ret−/− ureteric buds on a wild-type (Spry1+/+) background, which grow and branch minimally if at all, the double mutant UBs (GGSS or RRSS) grew and branched extensively, leading to a kidney that was often close to normal in size, with an extensive collecting duct system, normal overall histoarchitecture and large numbers of nephrons connected to the collecting ducts. Therefore, GDNF/RET signaling does not have a unique ability to induce UB branching, including the predominant terminal bifurcations, nor is it required for the UB tips to induce nephrogenesis. As in the case of UB outgrowth from the WD, it appears that other factors are potentially redundant with GDNF in their ability to promote UB branching. Since loss of Fgf10 in a Gdnf−/−;Spry1−/− double mutant background eliminated initial UB outgrowth, it could not be determined to what extent FGF10 contributes to later UB branching in the absence of GDNF. However, the reduced UB branching in Fgf10−/− kidneys shows that FGF10 normally contributes significantly to UB branching, and is likely to be at least one of the factors that can promote this process in GGSS or RRSS double mutant mice. Other factors that might also be involved include HGF and EGF [43].
It was recently reported that the effects of a Ret-Y1062F point mutation, which causes renal agenesis or hypoplasia similar to that observed in Ret knockout mice, can be rescued by removal of Spry1 [44]. The double mutant mice had kidneys of normal size, with normal glomerular number. The Y1062F mutation abolishes signaling through the PI3K-AKT and RAS-MAPK pathways, but does not affect signaling through PLC-γ or other pathways that potentially act downstream of RET (e.g., SRC) [45]. The authors speculated that in the double mutants, the ERK MAPK pathway might be activated by RET via an alternative pathway involving PLC-γ, allowing kidney development to proceed normally, and they did not suggest that other signaling molecules might substitute for GDNF under these conditions. However, in our Ret−/−; Spry1−/− double mutant mice, the ability of RET to signal through alternative pathways was eliminated, which revealed the ability of other signaling molecules, including FGF10, to support kidney development in the absence of RET or GDNF.

Based on our findings, we propose a model (Figure 10) in which GDNF, FGF10 and probably other signaling molecules expressed in the MM signal through their cognate receptor tyrosine kinases in the UB epithelium to collectively promote budding from the Wolffian duct and subsequent growth and branching during kidney development. RET and FGFR2 (and probably other RTKs) activate a series of shared downstream signaling pathways, including RAS-MAPK, PI3K-AKT and PLC-γ-Ca++ [46], which together support UB branching morphogenesis. Spry1 expression is upregulated by these signals, and SPRY1 then provides negative feedback by regulating one or more of the shared signaling pathways downstream of RET and FGFR. In early kidney development, GDNF is the predominant signal, while FGF10 is much weaker (presumably due to lower expression) (Figure 10A). Expression of Etv4 and Etv5 is upregulated by these signals, thus controlling transcription of downstream genes required for UB growth and branching. Loss of Gdnf (Figure 10B) causes renal agenesis because in the presence of SPRY1 the level of FGF10 signaling via FGFR2 is not sufficient to produce the necessary responses, such as an appropriate level of Etv4 and Etv5 expression. Normally, loss of Fgf10 has relatively mild consequences because of the high level of GDNF signaling. When Spry1 is absent there is no brake on signaling via FGFR2 (Figure 10C), and GDNF can be removed without causing renal agenesis, due (at least in part) to the effects of FGF10, and to the restoration of Etv4/Etv5 expression; however, UB branching pattern is abnormal. If Fgf10 is also removed (Figure 10D) any remaining factors are insufficient to rescue kidney development, resulting in renal agenesis. In the absence of Etv4 and Etv5, removal of Spry1 is unable to rescue kidney development (Figure 10E). This suggests that Etv4 and Etv5 normally mediate the combined effects of several RTKs (RET, FGFR2 and probably others), and therefore elevated RTK signaling due to lack of SPRY1 cannot bypass the requirement for these transcription factors.

The main abnormality observed in the Ggss and Rrss double mutant kidneys was in the specific pattern of branching. Instead of the regular terminal bifurcations in wild-type kidneys, which typically occur at right angles to the previous branching event, the double mutant branching UB tips were heterogeneous in shape, spacing, orientation, branch angle and frequency of branching. The defects were distinct from those caused by loss of Spry1 alone, which causes the UB tips to swell but does not alter branch orientation or tip spacing. Therefore, it appears that these specific defects in branching pattern are a consequence of the loss of GDNF/RET signaling, and reflect a function that cannot be replaced by FGF10 or other factors present in the double mutant kidneys.
growth, but not later branching, can occur independently of Etv4/
Etv5. Insets in a and c show the pattern of branching UB tips in stage
P0 wild-type and double mutant kidneys.
doi:10.1371/journal.pgen.1000809.g010

How may GDNF/RET signaling influence the specific pattern of
UB branching? One possibility is that GDNF in the
metanephric mesenchyme acts as a chemoattractant to direct
the growth of the UB tips toward local foci of GDNF expression
[10,14,16], similar to the way in which FGF10 is thought to
direct the branching of the developing lung epithelium [47,48].
We have previously argued against such a model for several
reasons [40]; First, the distribution of Gdnf mRNA in the MM is
extremely diffuse; however, it remains possible that the protein is
more limited in its spatial distribution than the mRNA. Second,
we found that kidneys developed rather normally in Gdnf null
mice in which Gdnf was misexpressed in the UB epithelium,
suggesting that it is the presence, not the location, of GDNF
that is important [40]. However, the specific pattern of UB
branching was not closely examined in those mutant/transgenic
mice, and it remains possible that they had subtle branching
defects similar to the
GGSS mice, and it remains possible that they had subtle branching
defects similar to the
RRSS double mutant kidneys. Methods to locally and precisely manipulate the pattern of Gdnf
expression will be needed to better test this model. If not through
chemoattraction, then GDNF/RET signaling must in some other
way influence the specific pattern of growth and branching of the
UB tips.

Methods

Ethics statement

All work on animals was conducted under PHS guidelines and
approved by the relevant Institutional Animal Care and Use
Committees.

Mouse strains

Ret [4], Gdnf [3], Spy1 [17], Fgfl0 [35], Etv4 [49], Etv5 [50] and
HoxB7/myrVenus [27] mutant mice have been described. These
mice were maintained on a mixed background (129S1/
SvJ;C57BL/6). Embryo stage was estimated by considering
noon of the day of the vaginal plug as embryonic day (E) 0.5, and
more accurate staging was determined by counting somites. PCR
genotyping of mice and embryos was done as described previously
[3,4,8,17,35].

Whole-mount in situ hybridization

Whole-mount and section RNA in situ hybridization and
detection of β-galactosidase activity were performed as described
previously [38,51] using digoxigenin-UTP-labeled anti-sense
riboprobes.

Histological analysis and nephron counting

Newborn mice were sacrificed according to Institutional and
NIH guidelines. Whole kidneys and urogenital tracts were
dissected in PBS. Kidney cross-sectional area was determined

from whole-mount photographs of 28 wt, 16 GGSS and 12 RRSS
P0 kidneys using ImageJ. For histological analysis, 7–10 μm
sections were prepared from paraffin-embedded samples fixed in
4% paraformaldehyde (PFA). De-waxed sections were stained with
either hematoxylin and eosin (H&E) or Periodic Acid Schiff
(PAS). To count glomeruli, five evenly-spaced sections across each
kidney (two wild-type and four RRSS mutants) were stained with
podocalyxin, and the number of glomeruli per section was
averaged for each kidney.

Metanephric kidney explant cultures and
immunohistochemistry

Intermediate mesoderm or metanephric kidneys were dissected
from E10.5 to E14.5 embryos in PBS +Ca +Mg (Invitrogen).
Explants were cultured at 37°C in DMEM/F12 (Invitrogen)
supplemented with Glutamax, 100 U/ml penicillin, 100 μg/ml
streptomycin, and 10% fetal bovine serum in a 5% CO2,
humidified atmosphere at the medium-air interface on Costar
Transwell filters (0.4 μm). After culture, explants were fixed in 4%
PFA. For immunostaining, explants were incubated with goat anti-
podocalyxin antibodies (R&D Systems), followed by Cy2 or Cy3
anti-goat Ig (Jackson Immunoresearch). Images were captured on
a Zeiss Axio Observer Z1.

For FGF bead experiments, posterior intermediate mesoderm
was dissected from embryos at the 29 to 33 somite stage in Hanks
Balanced Salt Solution, with 1% FBS. Two heparin acrylic beads
(Sigma) soaked in FGF10 (R&D Systems), reconstituted in PBS at
1mg/ml or in PBS were inserted between the WDs, and
rudiments were cultured on Whatman Nuclepore Track-Etch
Membrane filters (3 micron pore size) in 44% F12, 44% DMEM,
10% FBS, 1% glutamine, 1% Penstrep at the air-liquid
interphase for 48–55 hours. Samples were fixed in cold 100%
methanol and stained with anti-pan cytokeratin antibody (Sigma
C9687).

Confocal imaging and 3D analysis

E15.5 metanephric kidneys were dissected in PBS and fixed
night in 4% PFA. After clearing using FocusClear (CelExplorer),
kidneys were mounted in MountClear (CelExplorer) and
scanned using a Leica LS5 confocal microscope, and 3D rendering
was performed using Volocity software.

Acknowledgments

We thank Scott Simonet (Amgen) for the Fgfl0 KO mice, Mariano
Barbacid for the Gdnf KO mice, Silvia Arber for Etv4 KO mice, Ken
Murphy for Etv5 KO mice, and Albert Basson for stimulating and fruitful
discussions.

Author Contributions

Conceived and designed the experiments: OM GRM FC. Performed the
experiments: OM CC DH UG LW VD. Analyzed the data: OM CC DH
Conceived and designed the experiments: OM GRM FC. Performed the
experiments: OM CC DH UG LW VD. Analyzed the data: OM CC DH

References

1. Moore MW, Klein RD, Farinas I, Sauer H, Armanini M, et al. (1996) Renal and
neuronal abnormalities in mice lacking GDNF. Nature 382: 76–79.
2. Pichel JG, Shen L, Sheng HZ, Granholm AC, Drago J, et al. (1996) Defects in
enteric innervation and kidney development in mice lacking GDNF. Nature 382:
73–76.
3. Sanchez MP, Silos-Santiago I, Frisen J, He R, Lira SA, et al. (1996) Renal
agenesis and the absence of enteric neurons in mice lacking GDNF. Nature 382:
76–79.

4. Schuchardt A, D’Agati V, Larsson-Blomberg L, Costantini F, Pachnis V (1994)
Defects in the kidney and enteric nervous system of mice lacking the tyrosine
kinease receptor Ret. Nature 367: 380–383.
5. Costantini F, Shakya R (2006) GDNF/Ret signaling and the development of the
kidney. Bioessays 28: 117–127.
6. Skinner MA, Safford SD, Reeves JG, Jackson ME, Frenerman AJ (2008) Renal
aplasia in humans is associated with RET mutations. Am J Hum Genet 82:
344–351.
7. Scheffl A (2007) Renal abnormalities and their developmental origin. Nat Rev Genet 8: 791–802.
8. Lu B, et al. (2009) Etv4 and Etv5 are required downstream of GDNF and Ret for kidney branching morphogenesis. Nat Genet 41: 1295–302.
9. Chi X, Michos O, Shakya R, Raccio P, Enomoto H, et al. (2009) Ret-dependent cell rearrangements in the Wolffian duct epithelium initiate ureteric bud morphogenesis. Dev Cell 17: 199–209.
10. Sainio K, Suvanto P, Davies J, Varriaoa J, Varriaoa K, et al. (1997) Glial-cell-line-derived neurotrophic factor is required for bud initiation from the epithelium. Development 124: 807–808.
11. Sainio H, Sainio K (1997) The tip-top branching ureter. Curr Opin Cell Biol 9: 477–484.
12. Pepeicelli CV, Kispanert A, Rowitch DH, McMahon AP (1997) GDNF induces branching and increased cell proliferation in the ureter of the mouse. Dev Biol 192: 193–198.
13. Michael L, Davies JA (2004) Pattern and regulation of cell proliferation during marine ureteric bud development. J Anat 204: 241–253.
14. Tang MJ, Worley D, Sanicola M, Dressler GR (1998) The RET-gial cell-derived neurotrophic factor (GDNF) pathway stimulates migration and chemotraction of epithelial cells. J Cell Biol 142: 1337–1345.
15. Tang MJ, Cai Y, Tsai SJ, Wang YK, Dressler GR (2002) Ureteric bud outgrowth in response to RET activation is mediated by phosphorylithinolostic 3-kinase. Dev Biol 243: 128–136.
16. Norioka H, Saarina M (2003) Novel functions and signalling pathways for GDNF. J Cell Sci 116: 3855–3862.
17. Basson MA, Akbultu S, Watson-Johnson J, Simon R, Carroll TJ, et al. (2005) Sprouty1 is a critical regulator of GDNF/RET-mediated kidney induction. Dev Cell 8: 229–239.
18. Basson MA, Watson-Johnson J, Shakya R, Akbultu S, Hyink D, et al. (2006) Branching morphogenesis of the urteric epithelium during kidney development is coordinated by the opposing functions of GDNF and Sprouty1. Dev Biol 299: 466–477.
19. Mason JM, Morrison DJ, Basson MA, Licht JD (2006) Sprouty proteins: multifaceted negative-feedback regulators of receptor tyrosine kinase signaling. Trends Cell Biol 16: 43–54.
20. Ayada T, Taniguchi K, Okamoto F, Kato R, Komune S, et al. (2009) Sprouty4 negatively regulates protein kinase C activation by inhibiting phosphorylithinolostic 4,5-bisphosphate hydrolysis. Oncogene 28: 1076–1088.
21. Marushima A, Sakurai H, Choi Y, Kitamura S, Vaugha DA, et al. (2007) Glial cell-derived neurotrophic factor independent ureteric bud outgrowth from the Wolffian duct. J Am Soc Nephrol 18: 3147–3155.
22. Schuchardt A, D’Agati V, Pachnis V, Costantini F (1996) Renal agenesis and Wolffian duct. J Anat 192: 193–198.
23. Sainio K, Suvanto P, Davies J, Wartiovaara J, Wartiovaara K, et al. (1997) Glial-cell-line-derived neurotrophic factor independent ureteric bud outgrowth from the Wolffian duct epithelium. Curr Opin Cell Biol 9: 477–484.
24. Ichikawa I, Kuwayama F, Pope JCt, Stephens FD, Miyazaki Y (2002) Paradigm shift from classic anatomic theories to contemporary cell biological views of CAKUT Kidney Int 61: 899–898.
25. Davies JA, Millar CB, Johnson EM, Jr., Milbrandt J (1999) Neurturin: an autocrine regulator of renal collecting duct development. Dev Genet 24: 284–292.
26. Airaksinen MS, Tissievsky A, Saarina M (1999) GDNF family neurotrophic factor signaling: four masters, one servant? Mol Cell Neurosci 13: 313–325.
27. Chi X, Hadjantonakis AK, Wu Z, Hyink D, Costantini F (2009) A transgenic mouse that reveals cell shape and arrangement during ureteric bud branching. Genesis 47: 61–66.
28. Schmidt-Ott KM, Yang J, Chen X, Wang H, Paragas N, et al. (2005) Novel regulators of kidney development from the tips of the ureteric bud. J Am Soc Nephrol 16: 1997–2002.
29. Ceruana G, Cullen-McIven L, Nelson AL, Kostoulas X, Woods K, et al. (2006) Spatial gene expression in the T-stage mouse metanephros. Gene Expr Patterns 6: 807–825.
30. de Graaf E, Srinivas S, Kilkenny C, D’Asgii V, Mankoo BS, et al. (2001) Differential activities of the RET tyrosine kinase receptor isoforms during mammalian embryogenesis. Genes Dev 15: 2433–2444.
31. Yu J, Carroll TJ, Rajagopal J, Kobayashi A, Ren Q, et al. (2009) A Wnt7b-dependent pathway regulates the orientation of epithelial cell division and establishes the cortico-medullary axis of the mammalian kidney. Development 136: 161–171.
32. Qiao J, Bash KT, Steer DL, Staart RO, Sakurai H, et al. (2001) Multiple fibroblast growth factors support growth of the ureteric bud but have different effects on branching morphogenesis. Mech Dev 109: 123–135.
33. Ohuchi H, Hori Y, Yamazaki M, Harada H, Sekine K, et al. (2000) FGFR10 acts as a major ligand for FGFR receptors 2 IIIb in mouse multi-organ development. Biochem Biophys Res Commun 277: 643–649.
34. Qiao J, Uzzo R, Obara-Ishihara T, Degenstein L, Fuchs E, et al. (1999) FGFR-7 modulates ureteric bud growth and nephron number in the developing kidney. Development 126: 547–554.
35. Min H, Danilenko DM, Scully SA, Bolon B, Ring BD, et al. (1998) Fgfr-10 is required for both limb and lung development and exhibits striking functional similarity to Drosophila branchless. Genes Dev 12: 3156–3161.
36. Zhao H, Kegg H, Gready S, Truong HT, Robinson ML, et al. (2004) Role of fibroblast growth factor receptors 1 and 2 in the ureteric bud. Dev Biol 276: 403–415.
37. Batourina E, Choi C, Paragas N, Bello N, Hensle T, et al. (2002) Distal ureter morphogenesis depends on epithelial cell remodeling mediated by vitamin A and Ret. Nat Genet 32: 109–113.
38. Grieshammer U, Le M, Pumph AS, Wang F, Tessier-Lavigne M, et al. (2004) SLIT2-mediated ROBO2 signaling restricts kidney induction to a single site. Dev Cell 6: 709–717.
39. Kume T, Deng K, Hogan BL (2000) Murine forkhead/winged helix genes Foxc1 (Mf1) and Foxc2 (Mf2) are required for the early organogenesis of the kidney and urinary tract. Development 127: 1307–1395.
40. Shaaya R, Jho EH, Kotka P, Wu Z, Khodolov N, et al. (2005) The role of GDNF in patterning the excretory system. Dev Biol 283: 70–84.
41. Michos O, Goncalves A, Lopez-Rio J, Tiecke E, Naillat F, et al. (2007) Distal ureteric bud morphogenesis. Cytokine Growth Factor Rev 12: 361–373.
42. Michos O, Goncalves A, Lopez-Rio J, Tiecke E, Naillat F, et al. (2007) Met and the Ret-kinase receptor: multifaceted negative-feedback regulators of receptor tyrosine kinase signaling. Trends Cell Biol 16: 45–54.
43. Ishibe S, Karilalvo A, Ma H, Zhang J, Marlier A, et al. (2009) Met and the epidermal growth factor receptor act cooperatively to regulate final nephron number and maintain collecting duct morphology. Development 136: 337–345.
44. Rozen Ej, Schmidt H, Dolzet X, Basson MA, Jain S, et al. (2009) Loss of Sprouty1 rescues renal agenesis caused by Ret mutation. J Am Soc Nephrol 20: 255–259.
45. Jain S, Encinas M, Johnson EM, Jr., Milbrandt J (2006) Critical and distinct roles for key RET tyrosine docking sites in renal development. Genes Dev 20: 321–333.
46. Takahashi M (2003) The GDNF/RET signaling pathway and human diseases. Cytokine Growth Factor Rev 12: 361–373.
47. Bellucci S, Grindley J, Emoto H, Iishi N, Hogan BL (1997) Fibroblast growth factor receptor 10 (FGF10) and branching morphogenesis in the embryonic mouse lung. Development 124: 4967–4978.
48. Weaver M, Dunn NR, Hogan BL, et al. (2000) Bmp4 and Fgfr10 play opposing roles during lung bud morphogenesis. Development 127: 2095–2094.
49. Livet J, Sjogren M, Stroechel S, De Paola V, Price SR, et al. (2002) ETS gene pea3 controls the central position and terminal arterIALIZATION of specific motor neuron pools. Neuron 35: 857–892.
50. Chen C, OuYang W, Grigura V, Zhou Q, Carnes K, et al. (2005) ERM is required for transcriptional control of the spermagional stem cell niche. Nature 436: 1030–1034.
51. Zuniga A, Michos O, Spitz F, Haramis AP, Panman L, et al. (2004) Mouse limb deformity mutations disrupt a global control region within the large regulatory landscape required for Gremlin expression. Genes Dev 18: 1553–1564.