How grim is hepatocellular carcinoma?

Elroy P. Weledji a,*, George Enow Oroko b, Marcelin N. Ngowe a, Dickson Shey Nsagha c

a Department of Surgery, Faculty of Health Sciences, University of Buea, Buea, Cameroon
b Department of Pathology, Faculty of Health Sciences, University of Buea, Buea, Cameroon
c Department of Public Health, Faculty of Health Sciences, University of Buea, Buea, Cameroon

ARTICLE INFO

Article history:
Received 4 March 2014
Received in revised form 7 May 2014
Accepted 25 June 2014

Keywords:
Resection
Ablation
Transplantation
Sorafenib
Prevention

ABSTRACT

Hepatocellular carcinoma (HCC) is a complex disease and a major cause of death in high endemic areas of hepatitis B virus (HBV) or hepatitis C virus (HCV) infection. HCC has gone from being a universal death sentence to a cancer that can be prevented, detected at an early stage and effectively treated. Liver resection or tumour ablation techniques may be effective bridge to liver transplantation if they fulfill the Milan criteria. The areas of progress in HCC are in the control of HBV or HCV and the development of adjuvant or neoadjuvant therapies.

© 2014 The Authors. Published by Elsevier Ltd on behalf of Surgical Associates Ltd. This is an open access article under the CC BY-NC-SA license (http://creativecommons.org/licenses/by-nc-sa/3.0/).

1. Introduction

Hepatocellular carcinoma (HCC) represents more than 90% of primary liver cancers and is a major global health problem within excess of 1 million cases per year. More than 80% of cases are found in Africa or East Asia (100 cases per 100,000 population in S. Africa and S.E. Asia) [1,2]. The rising incidence in the West is due to Hepatitis C (HCV) epidemic and the increase in prevalence of chronic alcoholic liver disease [3]. It usually affects patients in their early fifties but earlier onset (25–40 years) in Africa. This is probably related to their earlier exposure to HBV or HCV viruses with men having a three- to eight-fold greater risk of developing HCC than women [4]. Treatments share a high incidence of tumour recurrence due to the persistence of the underlying cirrhosis that represents a preneoplastic condition [5,6]. The early enthusiasm for transplantation for large, non-resectable primary malignancy was dampened by the high recurrence rate. It is the small HCC in the setting of cirrhosis which is better treated by transplantation than resection [7]. The enormous progress of liver transplantation with the widening spectrum of disease processes amenable to it have added to the organ shortage and need for alternatives [8]. The problem of using chemotherapy in HCC stems from the coexistence of two diseases (HCC and liver cirrhosis) and the chemoresistant nature of HCC [9].

2. Aetiology/pathogenesis of HCC

A total of 70–90% of HCC develop on a background of cirrhosis particularly in relation to the post hepatitis liver (HBV and HCV infection), alcohol and haemochromatosis (Fig. 1). In cirrhosis, HCC occurs due to chronic injury, regeneration and dysplasia [5]. A total of 7–20% of primary liver malignancies occur in non-cirrhotic liver and the prevalence of HBV infection is less than 10% in these cases. This fibrolamellar variant (FLC) is most frequently observed in the Western hemisphere, and at younger age (between 20 and 30 years) than HCC [10]. Ingestion of aflatoxin by Aspergillus flavus contamination of imperfectly stored crops causes the mutation of the P53 suppressor gene and is an independent risk factor. [11] The HBV is directly oncogenic by incorporating into host genetic material even in the absence of cirrhosis. It takes 10 years to develop chronic hepatitis, 20 years to develop cirrhosis and 30 years to develop HCC which explains why it usually affects patients in the 50–70-year age group [12]. Macroscopically, HCC can be solitary or multifocal, nodular or diffuse. It has a great tendency to spread locally and to invade blood vessel particularly the portal vein (32–70%) [5,12]. It may directly invade the diaphragm and colon, rupture and bleed into peritoneal cavity or spread via blood stream leading to distal metastases, in bone, lung, brain, adrenal glands [12]. Tumour differentiation and vascular invasion are important
2.3. Staging systems

Several systems have been used, including the TNM, Cancer of the Liver Italian Program (CLIP), Barcelona Clinic Liver cancer (BCLC), Okuda and Japan Integrated Staging (JIS). Several factors have been incorporated into each system, and relate to tumour load and biology (size, number, presence of extrahepatic disease, and presence of vascular invasion), liver reserve (Child-Pugh score or its components, Table 2), and performance status [23,24]. A modified TNM classification still has several limitations. Pathological information is required to assess microvascular invasion which is only available in the 20% of patients treated by surgery. It does not capture information regarding liver function studies or health status [25]. The BCLC staging system (Table 3) is recommended as it has been externally validated in different clinical settings. It is an evolving system that links tumour stage with treatment strategy in a dynamic manner that enables the incorporation of novel advancements in the understanding of the prognosis or management of HCC [26]. Although these systems predict survival, they do not specifically allow selection of patients for potentially curative treatment (resection or liver transplantation). In 1996, the Milan criteria were the first to be published that defined a subgroup of patients who were suitable for liver transplantation with a 5-year survival exceeding 70% [7]. The Milan criteria are: (a) single HCC <5 cm, (b) three tumours < 3 cm, in the absence of extrahepatic disease and vascular invasion. The expanded University of California, San Francisco (UCSF) criteria: a single HCC <6.5 cm; three

Table 2
Calculating Child-Pugh score and classification.

Variable	Score
Bilirubin μmol/l	1
Ascertes	2
INR	3
Albumin, g/l	4
Encephalopathy	5

彩图：Child-Pugh classification

Child-Pugh classification	Score	1-Year survival (%)
A – well compensated	5–6	100
B – significant functional compromise	7–9	80
C – decompensated	10–15	45

INR, international normalized ratio.
tumours <4.5 cm, in the absence of extrahepatic disease and vascular invasion were not associated with a reduced disease-free survival after liver transplantation [27].

2.3.1. Localized disease

(a) Liver resection: resection is the only treatment that can offer cure although it is feasible in less than 20% of patients because of local spread and severity of pre-existing cirrhosis. The indications are absence of extrahepatic disease in a patient with no underlying liver disease or Child A cirrhosis [4,28,29]. Minor resections may be considered in patients with early Child B without portal hypertension (i.e. hepatic vein pressure <10 mmHg or platelet count >100,000). Surgery is limited by how much to resect in a cirrhotic liver with poor regenerative capacity (Child B/C) and multifocality. Thus resection is not encouraged for Child B/C cirrhosis with HCC [4]. Due to cadaveric organ shortage liver resection could be used as a bridge to transplantation [30]. Nowadays, the selection of candidates for resection has been refined and both the surgical technique and pre-existing imaging planning and immediate post-operative management have been optimized [10,31]. The perioperative mortality in most referral units for Child A cirrhosis with HCC is expected to be 2–3%, with blood transfusion requirements of less than 10% due to ultrasonic dissector, intermittent pringle manoeuvre and low central venous pressure maintenance. An overall 5-year survival of 60% is expected [4,28,29]. Disease-free survival is better after anatomical (5-year 63%) than non-anatomical resection (35%) (Figs. 2 and 3). There is a high risk of recurrence in the remnant liver distant from the resection margin. The pattern of recurrence influences subsequent therapy allocation and outcome [32–35]. The patient will be reassessed by BCLC staging and re-treated accordingly [26,29,32]. The operative mortality in the non-cirrhotic liver (FLC) is less than 2% and the 5-year survival following resection is 75%. It is unclear whether the histology alone, the absence of underlying chronic liver disease or the greater resectability rate account for the better prognosis of FLC [10].

(b) Local therapy: if HCC is unresectable or not technically feasible due to local spread, alternative therapies such as radiofrequency ablation (RFA), percutaneous ethanol injection (PEI) which induce coagulative tumour necrosis and transarterial chemo-embolisation (TACE) are considered [36]. Percutaneous ablation (RFA, PEI) is the best treatment option for patients with early stage An HCC (BCLC staging) who are not suitable for resection or transplantation and in some Japanese centres this is offered as the first therapeutic option [26]. Complete ablation in more than 90% of cases with local recurrence rate of less than 1% for tumours less than 2 cm is reported [37]. RFA has a higher anticancer effect than PEI leading to a better local control of the disease as the energy generated eliminates small undetected satellites in the peritumoral tissue. Thus PEI is recommended in the few cases where RFA is not technically feasible [10]. It is uncertain whether these local ablative techniques can be considered as competitive alternatives to resection [36].

Stage	Child-Pugh	Treatment	5-Year survival
0	PS A	Resection (30–40%)	Overall survival (>60 months) 40–70%
Early	PS A	Transplantation (if no assoc disease) RF/PEI (if assoc diseases)	Overall survival (>60 months) 40–70%
Intermediate	Multinodular	TACE target 20%	Overall survival (20 months)
Stage B	PS > 2	Best supporting care target 10%	Overall survival (<3 months)

PS, performance score.
TACE is a safe and effective measure for intermediate stage B (BCLC) and, controls tumour progression with a 40% response rate prior to liver transplantation for patients fulfilling Milan criteria [26,38]. The response rate to TACE may predict disease-free survival after liver transplantation [10,39].

(c) Liver transplantation: liver transplantation is the only hope for cure if tumour is small (<5 cm diameter) in a cirrhotic liver and considered to be the first line treatment option. It allows radical resection of tumour and treatment of underlying liver disease including Child B/C cirrhosis, if within Milan (or UCSF) criteria and no anaesthetic or surgical contraindications [7]. Limitations of liver transplantation apart from donor shortage include the risk of drop out while waiting (4% per month) and the perioperative mortality rate [6,7]. The operative mortality albeit low may arise from technical and infectious complications. The technical complications include haemorrhage, hepatic artery thrombosis, venous outflow obstruction, portal vein stenosis/thrombosis, bile leak, and biliary stricture. These may cause poor early graft function. Other shortcomings include rejection (hyperacute, acute cellular, or chronic) and disease recurrence. The latter may be a late cause of graft dysfunction. Improved results have emanated from better pre- and post transplant management, improved anaesthesia, innovative surgical strategies, early detection and treatment of infective complications and the further progress in immunosuppression [6]. Currently there is excellent long-term disease-free survival exceeding 70% at 5 years [30,40]. However, 30% of patients will exceed Milan criteria on histological examination of the explanted liver, and adverse histological features (multifocal disease, vascular invasion, and poorly differentiated tumours) carry a poor prognosis [41]. Pre-transplant tumour biopsy is recommended by a few centres in order to incorporate tumour histology into selection of patients for transplant in addition to size criteria [40,41].

Living donor transplantation of the right hepatic lobe is an alternative to the cadaveric organ shortage, but this approach is hindered by the risks of donor morbidity (20–40%) and mortality (0.3–0.5%). It would benefit patients with a lower expectancy, around 50% at 5 years and with thus a high risk of tumour progression if the waiting time is expected to be long [6]. Pre-transplant TACE or RFA is considered in borderline cases and like liver resection (0.3%) it helps in downstaging if the waiting time is expected to be long [6]. Pre-transplant TACE or RFA is considered in borderline cases and like liver resection (0.3%) it helps in downstaging if the waiting time is expected to be long [6].

3. Prevention of HCC

Once cirrhosis is established, the benefits of antiviral therapy in preventing HCC development are not robustly demonstrated [4]. The inhibition of viral replication by lamivudine resulted in significant improvement in liver function in patients with compensated HBV induced cirrhosis considered not to be candidates for liver transplantation [47]. Other nucleoside analogues under development may have therapeutic potency. Vaccination against hepatitis B virus is recommended to all newborns and high risk groups, although there is evidence that they have accelerated the accumulation of mutations [48]. DNA-based immunization may induce humoral and cellular responses with the potential to eradicate the virus [49]. Current public health measures for preventing HCV/HBV transmission including testing blood donors for hepatitis disease [43]. It is indicated for patients with well-preserved liver function (Child-Pugh A disease), with advanced tumours (BCLC stage C) or those patients who have failed TACE or other ablative therapy. Its role in an adjuvant setting is however currently unknown [44]. External beam radiation therapy has been of limited value since HCC is relatively radioreistant whereas the normal liver parenchyma is very radiosensitive. However, selective internal radiotherapy (SIRT) for inoperable HCC by injection of radioisotopes (Yttrium-90 bound to glass beads or resin) as microspheres into the hepatic artery offers the advantage of increased delivery of isotope within the tumour and decreased systemic toxicity. As the hepatic artery primarily provides the blood supply to HCC and portal vein to liver parenchyma, the mean cumulative radiation dose in the tumour has been shown to be 6240 cGy as compared to 555 cGy in the normal liver and 290 cGy in the lungs [45]. The limitations are that the tumour has to be hypervascular but devoid of arteriovenous shunts and to be of small size less than 5 cm if using low energy Iodine. An objective tumour response is observed in 40% of the patients; reduction in tumour size in 75% and complete necrosis for smaller lesions. This was associated with a 6 months survival rate of 48% as compared to 0% in a control group receiving only medical support [46]. The BCLC stage D patients with massive tumour burden, macroscopic invasion or extrahepatic spread and deeply impaired physical status (performance score >2), should receive symptomatic treatment that includes pain management, nutrition, and psychological support [4,10,26].
B and C, needle exchange programmes, encouraging life styles that prevent alcohol abuse, and surveillance of high-risk individuals may see marked decline of the disease in future generations [50].

4. Conclusions

The future of hepatocellular carcinoma would still rely on prevention, effective treatment of the causative hepatitis B and C infections and surveillance of high-risk individuals for early diagnosis and management. There is the need for provision of therapy that is most appropriate for the stage of disease. A better understanding of molecular hepatocarcinogenesis may identify novel targets for oncogenic therapy.

Conflicts of interest

No conflicts of interest have been declared by the authors.

Funding

None.

Ethical approval

No ethical approval required for this publication.

Author contribution

EPW is the main author, GE made pathological research. MNN gave advice and performed some literature search. DSN did public health literature search.

Key learning points

- Fifth most common cancer world wide.
- 70–90% of HCC develop on a background of cirrhosis but Hepatitis B virus is directly oncogenic and can cause HCC in the absence of cirrhosis.
- Serum alpha-feto protein is elevated in only 50–60% of cases but is useful as a baseline prior to treatment.
- Disease free survival is better after anatomical than non-anatomical resection (5 years survival 63% versus 35%).
- It is the small HCC in the setting of cirrhosis which is better treated by transplantation than resection.
- Excellent long term disease-free post-transplant survival if restricting patients to Milan or UCSF criteria.
- Tumor differentiation and vascular invasion are important predictors of survival after surgical resection or liver transplantation.
- Response rate to TACE may predict disease-free survival after liver transplantation.
- Need for provision of therapy that is most appropriate for the stage of the disease.
- The outcome of patients with HCC may remain poor because of late diagnosis.

References

[1] Bosch FX, Ribes J, Diaz M, Clieres R. Primary liver cancer: world-wide incidence and trends. Gastroenterology 2004;127:55–16.
[2] Yuen MF, Tanaka Y, Fong DY, Fung J, Wong DK. Independent risk factors and predictive score for the development of hepatocellular carcinoma in chronic hepatitis B. J Hepatol 2009;50:80–8.
[3] Lok AS, Seeff LB, Morgan TR, Di Bisceglie AM, Sterling RK, Curto TM, et al. Incidence of hepatocellular carcinoma and associated risk factors in hepatitis C-related advanced liver disease. Gastroenterology 2009;136:138–48.
[4] European Association for the study of the liver. European organization for research and treatment of cancer. EASL/EORTC Clinical practice guidelines management of hepatocellular carcinoma. Eur J Cancer 2012;5:S5–64.
[5] International Working Party. Pathologic diagnosis of early hepatocellular carcinoma: a report of the international consensus group for hepatocellular neoplasia. Hepatology 2009;49:658–64.
[6] Pomfret E, Washburn K, Wald C, Nalesnik M, Douglass D, Russo M, et al. Report of a national conference on liver allocation in patients with hepatocellular carcinoma in the United States. Liver Transpl 2010;16:262–78.
[7] Mazzaferrro V, Regalia E, Doci R, Andreola S, Pulvirenti A, Bozzetti F, et al. Liver transplantation for the treatment of small hepatocellular carcinomas in patients with cirrhosis. N Engl J Med 1996;334:693–9.
[8] Sumbarka CA, Vacanti JP. Alternatives to liver transplantation: from hepatocyte transplantation to tissue engineered organs. Gastroenterology 2000;118:438–42.
[9] Lai C, Wu P, Chan G, Lok K, Lin H, Ngkan H, et al. Doxorubicin versus no antitumour therapy in inoperable hepatocellular carcinoma: a prospective randomized trial. Br J cancer 1989;60:928–33.
[10] Farges O, Belghiti J. Primary tumours of the liver. In: James Garden O, editor. Hepatobiliary and pancreatic surgery. A companion to specialist surgical practice. WB Saunders; 2000.
[11] Peers FJ, Boach FX, Kalder JM. Aflatoxin exposure, hepatitis B virus and liver cancer in Swaziland. Int J Cancer 1987;39:345–53.
[12] Fattovich G, Brollo L, Giustina G. Natural history and prognostic factors for chronic hepatitis type B. Gut 1991;32:294–9.
[13] Forner A, Vilana R, Ayuso C, Biancha L, Sole M, Ayuso J, et al. Diagnosis of hepatic nodules 20 mm or smaller in cirrhosis: prospective validation of the noninvasive diagnostic criteria for hepatocellular carcinoma. Hepatology 2008;47:97–104.
[14] Sangiovanni A, Manini MA, Lavarone M, Romeo R, Forzenigo LV, Fraquelli M, et al. The diagnostic and economic impact of contrast imaging techniques in the diagnosis of small hepatocellular carcinoma in cirrhosis. Gut 2010;59:638–44.
[15] Silva MA, Hegab B, Hyde C, Guo B, Buckels JAC, Mirza DF, et al. Needle track seeding following biopsy of liver lesions in the diagnosis of hepatocellular cancer: a systematic review and meta-analysis. Gut 2008;57:592–6.
[16] Child CG, Turtoccey JG. Surgery and portal hypertension. In: Child CG, editor. The liver and portal hypertension. Philadelphia: Saunders; 1964. pp. 50–64.
[17] Pugh RN, Murray-Lyon IM, Dawson JL. Transection of the oesophagus for bleeding oesophageal varices. Br J Surg 1973;60:646–9.
[18] Kamath PS, Wiesner RH, Malinchoc M. A model to predict survival in patients with end-stage liver disease. Hepatology 2001;33:464–70.
[19] Barber K, Madden S, Allen J, Collett D, Neuberger J, Gimson A, United Kingdom Liver Transplant Selection and Allocation Working Party. Elective liver transplant linct list mortality: development of a United Kingdom end-stage liver disease score. Transplantation 2011;92(4):469–76.
[20] Lok AS, Sterling RK, Everhart JE, Wright EG, Hoefs JC, Di Bisceglie AM, et al., HALT-C Trial Group. Des-gamma-carboxy prothrombin and alpha-fetoprotein as biomarkers for the early detection of hepato-cellular carcinoma. Gastroenterology 2010;138:493–502.
[21] Forner A, Reig M, Bruix J. Alpha-fetoprotein for hepatocellular carcinoma diagnosis: the demise of a brilliant star. Gastroenterology 2009;137:26–9.
[22] Levy I, Greg PD, Callinger S. Rejection of the United Kingdom end-stage liver disease score. Transplantation 2011;92(4):469–76.
[23] Marrero JA, Fontana RJ, Barrat A, Aiskar F, Conjeevaram HS, Su GL, et al. Prognosis of hepatocellular carcinoma: comparison of 7 staging systems in an American cohort. Hepatology 2005;41:707–16.
[24] Marrero JA, Su GL, Wei W. Performance status assessment in cancer patients. Cancer 1990;65:1864–6.
[25] Blumens DJ. AJCC/TNM cancer staging, present and future. J Surg Oncol 2001;77:233–6.
[26] Forner A, Reig ME, de Lope CR, Bruix J. Current strategy for staging and treatment: the BCLC update and future prospects. Semin Liver Dis 2010;30:204–18.
[27] Yuen MF, Tanaka Y, Fong DY, Fung J, Wong DK. Independent risk factors and predictive score for the development of hepatocellular carcinoma in chronic hepatitis B. J Hepatol 2009;50:80–8.
[28] Sumbarka CA, Vacanti JP. Alternatives to liver transplantation: from hepatocyte transplantation to tissue engineered organs. Gastroenterology 2000;118:438–42.
[29] Poon RT, Fan ST, Lo CM, Liu CL, Wong J. Long-term survival and pattern of recurrence after resection of small hepatocellular carcinoma in patients with preserved liver function: implications for a strategy of salvage transplantation. Ann Surg 2002;235:373–82.
[30] Mazzaferrro V, Bhoori S, Sposito C, Bongini M, Langer M, Miceli R, et al. Milan criteria in liver transplantation for hepatocellular carcinoma: an evidence-based analysis of 15 years of experience. Liver Transplant 2011;17(Suppl. S2):S44–57.
Ishizawa T, Hasegawa K, Aoki T, Takahashi M, Inoue Y, Sano K, et al. Neither multiple tumors nor portal hypertension are surgical contraindications for hepatocellular carcinoma. Gastroenterology 2008;134:1908–16.

Sala M, Fuster J, Llovet JM, Navasa M, Sole M, et al. High pathological risk of recurrence after surgical resection for hepatocellular carcinoma: an indication for salvage liver transplantation. Liver Transpl 2004;10:1294–300.

Takayasu K, Muramatsu Y, Moriyama N, Hasegawa H, Makuuchi M, Okazaki N, et al. Clinical and radiologic assessments of the results of hepatectomy for small hepatocellular carcinoma and therapeutic arterial embolization for postoperative recurrence. Cancer 1989;64:1848–52.

Majno PE, Sarasin FP, Mentha G, Hadengue A. Primary liver resection and salvage transplantation or primary liver transplantation in patients with single, small hepatocellular carcinoma and preserved liver function: an outcome-oriented decision analysis. Hepatology 2000;31:959–906.

Rev ZG, Gan YH, Fan J. Treatment of postoperative recurrence of hepatocellular carcinoma with radiofrequency ablation comparing with repeated surgical resection. Zhonghua Wu Ke Za Zhi 2008;40(21):1614–6.

Livraghi T, Meloni F, Di Stasi M, Rolle E, Solbiati L, Tinelli C, et al. Sustained complete response and complications rates after radiofrequency ablation of very early hepatocellular carcinoma in cirrhosis: is resection still the treatment of choice? Hepatology 2008;47:82–9.

Sutherland LM, Williams JA, Padbury RT. Radiofrequency ablation of liver tumours: a systematic review. Arch Surg 2006;141(2):181–90.

Varela M, Real MJ, Burrell M. Chemoembolization of hepatocellular carcinoma with drug eluting beads: efficacy and doxorubicin pharmacokinetics. J Hepatol 2007;46:474–81.

Toso C, Trotter J, Wei A, Bigam DL, Shah S, Lancaster J, et al. Total tumor volume predicts risk of recurrence following liver transplantation in patients with hepatocellular carcinoma. Liver Transpl 2008;14:1107–15.

Herrero J, Sangro B, Pardo F. Liver transplantation in patients with hepatocellular carcinoma across Milan criteria. Liver Transpl 2008;14:272–8.