BMJ Open is committed to open peer review. As part of this commitment we make the peer review history of every article we publish publicly available.

When an article is published we post the peer reviewers’ comments and the authors’ responses online. We also post the versions of the paper that were used during peer review. These are the versions that the peer review comments apply to.

The versions of the paper that follow are the versions that were submitted during the peer review process. They are not the versions of record or the final published versions. They should not be cited or distributed as the published version of this manuscript.

BMJ Open is an open access journal and the full, final, typeset and author-corrected version of record of the manuscript is available on our site with no access controls, subscription charges or pay-per-view fees (http://bmjopen.bmj.com).

If you have any questions on BMJ Open’s open peer review process please email info.bmjopen@bmj.com
Canonical correlation analysis on the association between learning environment and self-directed learning ability among nursing undergraduates

Journal:	BMJ Open
Manuscript ID	bmjopen-2021-058224
Article Type:	Original research
Date Submitted by the Author:	13-Oct-2021
Complete List of Authors:	Tang, Li-qing; Wannan Medical College Zhu, Li-jun; Wannan Medical College Wen, Li-ying; Wannan Medical College Wang, An-shi; Wannan Medical College Jin, Yue-long; Wannan Medical College Chang, Wei-wei; Wannan Medical College
Keywords:	PUBLIC HEALTH, Epidemiology < ONCOLOGY, MEDICAL EDUCATION & TRAINING
I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd (“BMJ”) its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our licence.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge (“APC”) for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which Creative Commons licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author’s Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.
Canonical correlation analysis on the association between learning environment and self-directed learning ability among nursing undergraduates

Li-qing Tang*, Li-jun Zhu*, Li-ying Wen, An-shi Wang, Yue-long Jin*, Wei-wei Chang*

* The authors contributed equally to this work.

Author’s affiliations

1Department of Epidemiology and Health statistics, School of Public Health, Wannan Medical College, 241002 Wuhu, Anhui, China

Corresponding Authors:

Wei-wei Chang, School of public health, Wannan Medical College, Wuhu 241002, Anhui, China, Tel: +86-15375539736, E-mail: xiaowei8601@163.com;

Yue-long Jin, School of public health, Wannan Medical College, Wuhu 241002, Anhui, China, Tel: +86-13965178350, E-mail: jinyl0803@wnmc.edu.cn
ABSTRACT

Objectives The aim of this study was to explore the relationship between perception of the learning environment and self-directed learning (SDL) ability among nursing undergraduates.

Design, setting and participants A cross-sectional study was conducted in December 2020. The participants of this study were junior and senior undergraduate nursing students from Wannan Medical College in Anhui Province, China. A total of 1,096 students aged 16-22 years.

Outcome measures The Chinese version of the Dundee ready educational environment measure (DREEM) questionnaire and a validated Chinese version of college students' SDL ability scale were used to assess the perceptions of students about their learning environment and their SDL ability. Canonical correlation analysis was performed to evaluate their correlation.

Results The total score of learning environment was 120.60 (the scoring rate: 60.30%) and the score of SDL ability was 89.25 (the scoring rate: 63.75%). Canonical correlation analysis showed that the first canonical correlation coefficient was 0.701 and the contribution rate was 94.26%. The perception of learning environment mainly determined by students’ perception of learning (SPL) and students’ academic self-perceptions (SASP), and SDL ability mainly determined by self-management ability and cooperative learning ability. SPL and SASP have positively correlated...
with self-management ability and cooperative learning ability. Multiple linear regression analysis showed that SPL, SASP, SPA, and SSSP have a significant impact on SDL ability.

Conclusions The SDL ability of nursing undergraduates was not high. SPL and SASP have positively correlated with self-management ability and cooperative learning ability.

Key words Perception; Learning environment; Self-directed learning; Nursing; Students

Strengths and limitations of this study

1. This is the first study to explore the correlation between learning environment and SDL ability.

2. Canonical correlation analysis was performed to examine the relationship between learning environment and SDL ability.

3. This study is a cross-sectional study and cannot draw the conclusion of causality.

4. All information was obtained from self-reported questionnaires, which may lead to recall bias and reporting bias.
INTRODUCTION

Self-directed learning (SDL) refers to the initiative to judge learning needs, establish learning goals, select and implement appropriate learning strategies, and evaluate learning outcome with or without help from others.\(^1\) SDL ability is a kind of comprehensive ability that students show in the process of learning.\(^2\) Nursing is an applied discipline that requires students to have high-strength skills and nursing is a work closely related to the people's life safety and health interests.\(^3\) Clinical nursing is a profession that requires rapid knowledge update and lifelong learning.\(^4\) Nursing staff need to continuously learn new knowledge and new technologies. Relying only on the knowledge learned during school is far from meeting clinical needs and this requires nursing staff to strengthen their SDL ability to adapt to the rapid update of nursing knowledge. In order to adapt to the ever-changing social health care needs, cultivating senior nursing talents who can independently acquire knowledge has become the main goal and task of training talents for higher nursing education.\(^5\) Good SDL ability is the foundation of lifelong learning for nursing undergraduates.\(^6\) The studies in China showed that the awareness of SDL ability among nursing undergraduates was weak, and many nurses also regarded learning as a burden outside of work.\(^7\)\(^9\) The formation of SDL ability does not happen overnight, so it is particularly important to cultivate SDL ability during college.\(^10\)

The education environment is everything that happens inside a medical university, including the learning environment, perception of infrastructure, interaction between students and classmates, teachers’ attitudes and skills, and many related factors.\(^11\) Students’ perception of educational environment play a subtle role in learning and contributes positively to learning input, students’ achievement, which can stimulate students’ interest in learning, and can also dissipate their learning
The study reported by Zafar et al. found that the depression of medical students was related to the negative perception of the learning environment. For a long time, the creation of the learning environment of universities and the development of students’ SDL ability have been independent in China. The rationality of the means to create an learning environment is often valued, while the ability of students to learn independently is often ignored, which leads to disharmony between the two. How to use an advanced and effective educational methods to create a harmonious and adaptable learning environment, so that nursing students can master medical knowledge and clinical skills proficiently, and at the same time have a good sense of SDL, has become an urgent solution for universities.

Understanding students’ perception of the learning environment also helps improve the quality of learning. The purpose of this study was to investigate the correlations between learning environment and SDL ability among nursing undergraduates. First, to understand the students’ perceptions of learning environment and the levels of SDL ability. Second, because the learning environment and SDL ability are multidimensional, it is difficult to directly evaluate the relationship between them. Canonical correlation analysis is a multivariate statistical method which has been widely used to study the associations between two sets of variables. Therefore, through canonical correlation analysis, this study analyzes the correlation between learning environment and SDL ability. This is of great significance for exploring the educational reform plan to improve the SDL ability of nursing undergraduates.

METHODS

Study designs and participants
This study was a cross-sectional descriptive survey conducted in December 2020. The participants of this study were junior and senior undergraduate nursing students from Wannan Medical College in Anhui Province, China. Undergraduate nursing education lasts 3 years and is divided into 2 years each of basic sciences and clinical medicine education and 1 year of internship. The school’s nursing program has three grades, each grade has 20 classes, and each class has 25-33 students. Students in grades 3 are internships in the hospital, no questionnaire survey was conducted on them. All students in grades 1-2 (1150 students) participated in the field survey. Informed consent was obtained and anonymity was ensured from all the participants. Finally, 1,096 respondents were included in the final analysis (response rate: 1,096/1,150=95.30%).

Ethical approval for this study was granted by the Ethics Committee of Wannan Medical College(LL-2020BH2086).

Instruments

The self-designed questionnaire included three parts: sociodemographic characteristics, learning environment, and SDL ability.

Demographic characteristics

Demographic variables include gender (male, female), age, grade (first grade, second grade), and birthplace (countryside, town).

Chinese version of the Dundee ready educational environment measure (DREEM)

The Chinese version of the DREEM survey, translated by the medical education research center of China Medical University, was used to assess students’ perception of their learning environment. This scale contains 50 items, of which nine are reverse-scored. Each item was scored on a five-point Likert scale from 0 (strongly disagree) to 4 (strongly agree). The DREEM inventory has 5 sub-scales: students’

7
perceptions of learning (SPL) (12 items), students' perceptions of teachers (SPT) (11 items), students' academic self-perceptions (SASP) (8 items), students' perceptions of atmosphere (SPA) (12 items), and students' social self-perceptions (SSSP) (7 items). The total DREEM score was calculated by adding the sum score of five sub-scales (total score range: 0-200). The scale has good validity and the Cronbach α coefficient of each dimension is between 0.60-0.84. Calculation of average scoring rate (%): the actual score of the sub-scale is divided by the full score of the sub-scale. The higher the score rate, the better the learning environment.

Self-directed learning (SDL) Ability

SDL ability was measured by a validated Chinese version of College Students’ Self-directed Learning Ability Scale. This scale contained 28 items, of which five are reverse-scored and each item was rated on a 5-point Likert scale ranging from 1 (strongly disagree) to 5 (strongly agree). The scale included three dimensions: (1) self-management ability, 10 items including the ability to determine learning needs, time management ability and learning monitoring ability (e.g., “I often set learning goals”); (2) information capability, 11 items including information acquisition ability and information analysis and processing ability (e.g., “It is difficult for me to grasp the key points in my study”); and (3) cooperative learning ability, 7 items including the ability to communicate and ask for help (e.g., “When other student ask me for my learning experience, I can always say one or two points”). The total score of SDL ability was the sum of the score for each item (total score range: 0-140). A higher score indicated a higher ability of SDL. In present study, the questionnaire had good reliability and validity, and Cronbach’s α for self-management ability, information capability, and cooperative learning ability subscale was 0.802, 0.709, and 0.764, respectively.
Data Analysis

The statistical analysis was performed by SPSS 25 for Windows. Scores for total and each domain were expressed as mean ± standard deviation (SD). Categorical variables (e.g. gender, grade etc.) were expressed as frequencies or percentage. Independent samples t-test were used to compare the means between different groups. Pearson’s correlation coefficients were calculated to examine the correlation between the learning environment and SDL ability. Canonical correlation analysis was used to analyze the correlation between learning environment and SDL ability. Each dimension of learning environment are taken as X group variables, the corresponding typical variable is U. Each dimension of SDL ability are taken as group Y variables and the corresponding typical variable as V. A multiple linear regression analysis was used to analyze learning environment on SDL ability among nursing undergraduates. A value of $P < 0.05$ (two-tailed) was considered statistically significant.

RESULTS

Characteristics Description

Among the 1,096 nursing students in this study, 462 students were freshmen and 634 students were sophomores. The overall mean age was 19.34 ± 1.09 years (range: 16-22 years). In terms of gender, females accounted for 79.65% of the total respondents, and males 20.35%. Only 46.35% of students would plan to pursue their major in the future. Other basic information of 1,096 students was listed in Table 1.

The overall DREEM mean score was 120.60 (60.30%) of a maximum score of 200, indicating a relative overall satisfaction with the environment but with room for improvement (Table 2). According to sub-scale, the mean score was 29.01 ± 6.46 for SPL (60.43%), 28.63 ± 6.27 for SPT (65.07%), 17.81 ± 4.54 for SASP (55.66%),
28.92 ± 6.42 for SPA (60.25%), and 16.25 ± 3.80 for SSSP (58.04%) items. The average scoring rate of SASP is relatively lower in all dimensions, followed by SSSP (Table 2).

The overall SDL ability mean score was 89.25 (63.75%) of a maximum score of 140. According to sub-scale, the mean score was 32.81±5.56 for self-management ability (65.62%), 34.71±4.47 for information capability (63.11%), and 21.73 ± 3.65 for cooperative learning ability (62.09%) (Table 3).

Correlations between the learning environment and SDL ability

Spearman’s Correlation

The total DREEM scores were positively related with the total score of SDL ability ($r=0.680, P<0.001$). Similarly, all sub-scale scores of DREEM were positively related with three dimensions of SDL ability ($P<0.001$, Table 4). In particular, the correlations between learning environment and SDL ability scores were above 0.4 in all subscales, indicating there was a moderate level of correlation.

Canonical Correlation

For the canonical correlation analysis, the X variables represented DREEM (X1 = SPL, X2 = SPT, X3 = SASP, X4 = SPA, X5 = SSSP) and the Y variables represented SDL ability (Y1 = Self-management ability, Y2 = Information capability, and Y3 = Cooperative learning ability). Three pairs of typical variables were extracted from the results of canonical correlation analysis, and the correlation coefficients of the first two pairs (0.701 and 0.221, respectively) were statistically significant ($P < 0.05$, Figure1). The cumulative contribution rate of the first typical variables has reached 94.26%. Therefore, this study took the first typical variable for explanation.

In canonical correlation analysis, the absolute value of standardization coefficient represents the weight. The standardized linear functions of the first pair of
typical variables are listed as follows: $U_1(DREEM) = -0.377X_1 + 0.094X_2 - 0.350X_3 - 0.212X_4 - 0.240X_5$; $V_1(SDL\ ability) = -0.470Y_1 - 0.299Y_2 - 0.357Y_3$.

U_1 mainly determined by X_1 (students’ perception of learning) and X_3 (students’ academic self-perceptions), and V_1 mainly determined by Y_1 (self-management ability) and Y_3 (cooperative learning ability). Further typical structural analysis showed that X_1 and X_3 were negatively correlated with U_1, Y_1 and Y_3 were negatively correlated with V_1. So, students’ perception of learning(SPL) and students’ academic self-perceptions(SASP) have positively correlated with self-management ability and cooperative learning ability.
Multiple linear regression analysis of educational environment on SDL ability among nursing students

In multiple linear regression analysis, the total score of SDL ability was defined as the dependent variable and scores on 5 dimensions of educational environment were defined as independent variables. After adjust gender, age, class, birthplace, and professional choice, the analysis showed positive significant relationships between score of SDL ability and SPL score ($\beta=0.263$, $P<0.001$); SASP score ($\beta=0.245$, $P<0.001$); SPA score ($\beta=0.153$, $P=0.002$) (Table 7).

DISCUSSION

The score rates of self-management ability (65.62%), information capability (63.11%), and cooperative learning ability (62.09%) were all above 60%, indicating that the SDL ability of nursing undergraduates was at the middle level. Among them, the highest score was self-management ability, which was consistent with the study reported by Xu et al. in 2019.\cite{21} This might be related to the fact that nursing undergraduates were mainly females, and they had better self-planning and self-management for learning. The research showed the females had clear learning goals, strong learning motivation, and learning monitoring ability.\cite{22}

The total score of learning environment was 120.60, with a scoring rate of 60.30%, which indicated “a more positive than negative” perception of the environment among nursing undergraduates. Students are generally satisfied with the learning environment. Similar to this study, the results of two studies conducted in China and India, with scores of 121.95/200 and 119/200, respectively.\cite{23,24} Nursing undergraduates have the highest rate of SPT and the lowest rate of SASP, similar findings was seen in studies conducted by Gong et al. in 2018.\cite{25} This might be related to the teaching reform of schools attended by the subjects, including the great
adjustment of teaching content and teaching methods in recent years. In terms of
teaching courses, the case teaching and video teaching in our school provide students
with more opportunities to communicate with teachers. However, SASP had the
lowest mean score percentage, followed by SSSP for all participants. This might be
explained by the fact the students have been passive receptive learning and rely on
mechanical memory to cope with the exam. So that the academic nature of learning
has not been developed.26 Although the scores for all subscales showed positive
perceptions among nursing students, there is a need for improvement in all five
domains of the learning environment, specifically in SASP subscale. It is suggested
that for the cultivation of SDL ability of nursing students, the focus of improving the
learning environment should be on the academic perception domain.

Environment is a huge stimulus, which provides a strong driving force for
educational objects. Sayed et al. indicated that a collaborative, academy, and
supportive environment may increase the participation of nursing students, while an
environment of competition, pressure or threats may reduce the motivation of students
to learn and weaken their interest in the learning process.27 This is the first study to
explore the correlation between learning environment and SDL ability. The results of
linear correlation analysis showed that subscales of learning environment were
positively correlated with subscales of SDL ability among nursing students, indicating
that students with higher score of learning environment have a better SDL ability.
Further canonical correlation analysis showed that learning environment mainly
determined by SPL and SASP, and SDL ability mainly determined by
self-management ability and cooperative learning ability. SPL and SPA have
positively correlated with self-management ability and cooperative learning ability,
suggesting that nursing students with better perception of learning and academic have
the stronger self-management ability and cooperative learning. The above results
indicates that changing some aspects of the learning environment can significantly
improve the learning enthusiasm and initiative of nursing undergraduates.
Students with high satisfaction with the learning environment have a high sense of happiness, which can improve students’ learning passion. Teachers can improve students’ perception of learning environment by changing traditional teaching methods, so as to improve their SDL ability. Alshawish et al. found that case-based blended teaching can improve students’ perception of learning environment. In order to actively participate in classroom teaching and master the knowledge points of learning, students consciously do a good job of pre class preview and post class review, which can improve the self-management ability of students. Zu et al. changed the nursing education environment through case teaching method and fully mobilized students’ interest in autonomous learning. Students actively participated in learning, and their subjective initiative was mobilized to the greatest extent.

When nursing undergraduates who have high thirst for knowledge and actively participate in classroom teaching encounter difficulties in the learning process, they will acquire this knowledge through communication and exchange with classmates and teachers, reflecting their good learning and cooperation ability. A quasi-experimental study concluded that the training program based on maker education improved students' creativity, learning interest, and cooperative learning ability. The learning environment directly affected students’ learning methods and academic achievements, and students’ satisfaction with the learning environment could in turn encourage students to learn happily. Therefore, to improve the SDL ability of nursing students, it is indispensable to create an adaptive learning environment. The state of “teacher-centered in the teaching process” should be changed, and nursing students should be placed at the center of education. Teachers should adopt exploratory and innovative teaching methods to change the learning role of nursing students based on “listening, memorizing, and memorizing”, and maximize the enthusiasm and initiative of nursing students in learning, which can improve their SDL ability.
LIMITATIONS

Some limitations should be taken into account when interpreting these findings in this paper. Firstly, this study is a cross-sectional study and can not draw the conclusion of causality. Secondly, all information was obtained from self-reported questionnaires, which may lead to recall bias and reporting bias. In addition, the nursing undergraduates in this study come from one medical college, and the results should be extrapolated carefully.

CONCLUSION

In summary, the learning environment of nursing students is at the middle level, and SDL ability is not high. SPL and SASP have positively correlated with self-management ability and cooperative learning ability. Nursing education management departments and nursing educators should learn advanced teaching experience at home and abroad, stimulate nursing students’ learning enthusiasm to the greatest extent and improve nursing students’ SDL ability by changing the learning and academic education environment.

Abbreviations

DREEM: Dundee Ready Educational Environment Measure; SPL: Students' Perceptions of Learning; SPT: Students' Perceptions of Teachers; SASP: Students' Academic Self-Perceptions; SPA: Students' Perceptions of Atmosphere; SSSP: Students' Social Self-Perceptions; SD: Standard Deviation; ANOVA: Analysis of variance

Acknowledgments The authors thank all the participating students for their willingness to complete the questionnaires. The authors would also like to thank the editors of this manuscript.
Contributors TLQ and CWW : Writing-original draft, preparation, Investigation. CWW, JYL and ZLJ : Writing-review & editing. WAS and WLY: Conceptualization, Methodology, Supervision. All authors read and approved the final manuscript.

Funding This study was supported by the key projects of Anhui Province Quality Engineering (2020jyxm2086; 2015zjhh017); Wannan Medical College Quality Project (2020jyxm18).

Competing interests None declared.

Patient and Public Involvement No patient involved

Patient consent for publication Not applicable.

Ethics approval This study was approved by the Ethics Committee of Wannan Medical College(LL-2020BH2086). Written informed consent forms were obtained from the subjects that participated in this study.

References

Levett-Jones TL. Self-directed learning: implications and limitations for undergraduate nursing education. Nurse Educ Today 2005;25(5):363-8.

2 Cadorin L, Bressan V, Palese A. Instruments evaluating the self-directed learning abilities among nursing students and nurses: a systematic review of psychometric properties. BMC Med Educ 2017;17(1):229.

3 Chen YC. Chinese values, health and nursing. J Adv Nurs 2001;36(2):270-3.

4 Kaulback MK. Correlating Self-directed Learning Abilities to Lifelong Learning Orientation in Baccalaureate Nursing Students. Nurse Educ 2020;45(6):347-351.

5 Al-Alawi R, Alexander GL. Systematic review of program evaluation in baccalaureate nursing programs. J Prof Nurs 2020;36(4):236-244.

6 Al Moteri MO. Self-Directed and Lifelong Learning: A Framework for Improving
Nursing Students' Learning Skills in the Clinical Context. Int J Nurs Educ Scholarsh 2019;16(1):10.

7 Chen JH, Björkman A, Zou JH, et al. Self-regulated learning ability, metacognitive ability, and general self-efficacy in a sample of nursing students: A cross-sectional and correlational study. Nurse Educ Pract 2019;37:15-21.

8 Chen J, Guo XJ, Bai L, et al. Self-directed learning ability and its influencing factors among nursing undergraduates. Nursing of Integrated Traditional Chinese and Western Medicine 2020; 6(09):206-209. Chinese

9 Wang PL, Yang YW, Li JH, et al. Study on the status and correlation of self-directed learning ability and hardiness personality for undergraduate nursing students in Lanzhou. Chinese Journal of Nursing Education 2019; 16(12):913-917. Chinese

10 Cheng SF, Kuo CL, Lin KC, et al. Development and preliminary testing of a self-rating instrument to measure self-directed learning ability of nursing students. Int J Nurs Stud 2010;47(9):1152-8.

11 Akdeniz M, Kavukcu E, Ilhanlı N. DREEM in primary care: students' perspectives on educational environment of family medicine internship in primary care centres: experiences at Akdeniz University Faculty of Medicine in Turkey. Postgrad Med 2019;131(6):397-404.

12 Wasson LT, Cusmano A, Meli L, et al. Association Between Learning Environment Interventions and Medical Student Well-being: A Systematic Review. JAMA 2016;316(21):2237-2252.

13 van Vendeloo SN, Prins DJ, Verheyen CCPM, et al. The learning environment and resident burnout: a national study. Perspect Med Educ 2018;7(2):120-125.

14 Li DZ, Wang P. Effect of a medical education environment on medical students' learning engagement: the mediating effect of academic self-efficacy. Journal of China Medical University 2020; 49(04):357-361. Chinese

15 Zafar U, Daud S, Khalid A. Determinants of depression among undergraduate medical students of a private medical college in Lahore. J Pak Med Assoc 2020;70(3):467-471.
16 Tao Y, Li L, Xu Q, et al. Development of a nursing education program for improving Chinese undergraduates' self-directed learning: A mixed-method study. Nurse Educ Today 2015;35(11):1119-24.

17 Qin Y, Wang Y, Floden RE. The Effect of Problem-Based Learning on Improvement of the Medical Educational Environment: A Systematic Review and Meta-Analysis. Med Princ Pract 2016;25(6):525-532.

18 Laessig RE, Duckett EJ. Canonical correlation analysis: potential for environmental health planning. Am J Public Health 1979;69(4):353-9.

19 Sun BZ, Zhao YH. The Introduction and Application of Theories and Methods of Measuring Medical Education Environment. Researches in Medical Education 2003; 04:13-16+19. Chinese

20 Lin Y, Jiang A. Developing a Measure Scale of Autonomous Learning Competencies of Nursing Undergraduates. Nursing Journal of Chinese People’s Liberation Army 2004; (06):1-4. Chinese

21 Xu ZY, Li MJ. Influencing factors of undergraduate nursing students' autonomous learning ability. Journal of Nursing Science 2019;34(23):12-15. Chinese

22 Lin YK, Lin CD, Lin BY, et al. Medical students' resilience: a protective role on stress and quality of life in clerkship. BMC Med Educ 2019;19(1):473.

23 Abraham R, Ramnarayan K, Vinod P, et al. Students' perceptions of learning environment in an Indian medical school. BMC Med Educ 2008;8:20.

24 Wang T, Wang XM. Investigation and Analysis of the Perception of Educational Environment by Medical College Students. China Higher Medical Education 2019; (05):36-37. Chinese

25 Gong DE, Wan PL, Han LF, et al. A Comparative Study on the Perception of Educational Environment between Five-year and Eight-year Medical Students. China Higher Medical Education 2018; 3:16-17. Chinese

26 Zeng Y, Wang G, Xie C, et al. Prevalence and correlates of depression, anxiety and symptoms of stress in vocational college nursing students from Sichuan, China: a cross-sectional study. Psychol Health Med 2019;24(7):798-811.

27 Sayed HY, El-Sayed NG. Students' perceptions of the educational environment of the nursing program in Faculty of Applied Medical Sciences at umm Al Qura
University, KSA. J Ame Sci 2012;8(4):69-75.

28 Dunham L, Dekhtyar M, Gruener G, et al. Medical Student Perceptions of the Learning Environment in Medical School Change as Students Transition to Clinical Training in Undergraduate Medical School. Teach Learn Med 2017;29(4):383-391.

29 Alshawish E, El-Banna MM, Alrimawi I. Comparison of blended versus traditional classrooms among undergraduate nursing students: A quasi-experimental study. Nurse Educ Today 2021;106:105049.

30 Wang Y, Ma J, Gu Y, et al. How does group cooperation help improve self-directed learning ability in nursing students? A trial of one semester intervention. Nurse Educ Today 2021;98:104750.

31 Zhu X, Xiong Z, Zheng T, et al. Case-based learning combined with science, technology, engineering and math (STEM) education concept to improve clinical thinking of undergraduate nursing students: A randomized experiment. Nurs Open 2020;8(1):415-422.

32 Männistö M, Mikkonen K, Kuivila HM, et al. Digital collaborative learning in nursing education: a systematic review. Scand J Caring Sci 2020;34(2):280-292.

33 Posey L, Pintz C. Online teaching strategies to improve collaboration among nursing students. Nurse Educ Today 2006;26(8):680-7.

34 Yang KH, Jiang ZX, Chavez F, et al. Effectiveness of a training program based on maker education for baccalaureate nursing students: A quasi-experimental study. Int J Nurs Sci 2018;6(1):24-30.

35 Chung S, Lee J, Lee HK. Personal Factors, Internet Characteristics, and Environmental Factors Contributing to Adolescent Internet Addiction: A Public Health Perspective. Int J Environ Res Public Health 2019;16(23):4635.

36 Schaefer KM, Zygmont D. Analyzing the teaching style of nursing faculty. Does it promote a student-centered or teacher-centered learning environment? Nurs Educ Perspect 2003;24(5):238-45.

37 Alamrani MH, Alammar KA, Alqahtani SS, et al. Comparing the Effects of Simulation-Based and Traditional Teaching Methods on the Critical Thinking Abilities and Self-Confidence of Nursing Students. J Nurs Res
Huang HM, Cheng SF. Application of Flipped Classroom Teaching Strategy in Nursing Education. Hu Li Za Zhi 2018;65(6):5-12. Chinese
Variables	Category	Frequency	Percentage (%)
Gender	Male	223	20.35
	Female	873	79.65
Class	Freshman	462	42.15
	Sophomore	634.00	57.85
Age	Mean ± SD: 19.34 ± 1.09, Range (16–22)		
Birthplace	Countryside	802	73.18
	Town	294	26.82
Do you plan to pursue this major in the future?	Yes	508	46.35
	No	141	12.86
	Uncertain	447	40.79
Table 2 Mean (SD) subscale and total DREEM scores for nursing undergraduates

DREEM Domains	Full marks	Mean (SD)	Average scoring rate(%)	
SPL	48	29.01(6.46)	60.43	
SPT	44	28.63(6.27)	65.07	
	SASP	SPA	SSSP	Total DREEM score
---	--------	--------	--------	------------------
	32	48	28	200
	17.81(4.54)	28.92(6.42)	16.25(3.80)	120.60(24.72)
	55.66	60.25	58.04	60.30

SPL: Students’ Perception of Learning; SPT: Students’ Perception of Teaching;
SASP: Students’ Academic Self-Perceptions; SPA: Students’ Perceptions of Atmosphere; SSSP: Students’ Social Self-Perceptions
Table 3 Mean (SD) subscale and total score of SDL ability for nursing undergraduates

Latitude	Full marks	Mean (SD)	Average scoring rate (%)
Self-management ability	50	32.81 (5.56)	65.62
Information capability	55	34.71 (4.47)	63.11
Cooperative learning ability	35	21.73 (3.65)	62.09
Total score	140	89.25 (12.12)	63.75
Table 4 Spearman’s correlation coefficients between learning environment and SDL ability among nursing undergraduates

Latitude	Self-management ability	Information capability	Cooperative learning ability	Total score
SPL	0.608**	0.549**	0.555**	0.648**
SPT	0.532**	0.427**	0.411**	0.525**
SASP	0.565**	0.529**	0.585**	0.630**
SPA	0.590**	0.546**	0.546**	0.636**
SSSP	0.574**	0.520**	0.565**	0.625**
Total DREEM score	0.639**	0.570**	0.585**	0.680**

There was a significant correlation at 0.01 level (bilateral)
Table 5 Outcomes of canonical correlation analysis and likelihood ratio test

Correlation	Proportion(%)	Cumulative	F	P
1	0.701	94.26	61.110	<0.001
2	0.221	4.96	7.976	<0.001
3	0.087	0.78	2.754	0.041
Table 6 Standardized coefficients of the first and second pairs of typical variables

SDL ability	Variables	typical variable 1	typical variable 2
DREEM (X)	SPL (X1)	-0.377	-0.122
	SPT (X2)	0.094	1.467
	SASP (X3)	-0.350	-0.491
	SPA (X4)	-0.212	-0.160
	SSSP (X5)	-0.240	-0.443
SDL ability (Y)	Self-management ability (Y1)	-0.470	1.287
	Information capability (Y2)	-0.299	-0.004
	Cooperative learning ability (Y3)	-0.357	-1.309
Table 7 Multiple linear regression analysis of educational environment on SDL ability among nursing students

Independent variables	B	SE	β	t	P*
Constant	48.820	2.659	18.360	<0.001	
SPL	0.493	0.095	0.263	5.208	<0.001
SPT	-0.140	0.079	-0.073	-1.780	0.075
SASP	0.654	0.098	0.245	6.695	<0.001
SPA	0.289	0.092	0.153	3.141	0.002
SSSP	0.535	0.126	0.168	4.253	<0.001

*The adjustment factors: gender, age, class, birthplace, and planning to pursue this major in the future.

SPL: Students’ Perception of Learning; SPT: Students’ Perception of Teaching;
SASP: Students’ Academic Self-Perceptions; SPA: Students’ Perceptions of Atmosphere; SSSP: Students’ Social Self-Perceptions; B: unstandardized coefficient; SE: standard error; β: standardized coefficient.
Figure 1 Structure coefficient of canonical factors among nursing undergraduates

SPL: Students’ Perception of Learning; SPT: Students’ Perception of Teaching; SASP: Students’ Academic Self-Perceptions; SPA: Students’ Perceptions of Atmosphere; SSSP: Students’ Social Self-Perceptions; SDL: Self-directed learning
The association of learning environment and self-directed learning ability among nursing undergraduates-a cross-sectional study using canonical correlation analysis

Journal:	BMJ Open
Manuscript ID	bmjopen-2021-058224.R1
Article Type:	Original research
Date Submitted by the Author:	05-May-2022
Complete List of Authors:	Tang, Li-qing; Wannan Medical College Zhu, Li-jun; Wannan Medical College Wen, Li-ying; Wannan Medical College Wang, An-shi; Wannan Medical College Jin, Yue-long; Wannan Medical College Chang, Wei-wei; Wannan Medical College,
Primary Subject Heading:	Medical education and training
Secondary Subject Heading:	Medical education and training, Medical management, Nursing, Public health
Keywords:	PUBLIC HEALTH, Epidemiology < ONCOLOGY, MEDICAL EDUCATION & TRAINING
I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd (“BMJ”) its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our licence.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge (“APC”) for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which Creative Commons licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author’s Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.
The association of learning environment and self-directed learning ability among nursing undergraduates—a cross-sectional study using canonical correlation analysis

Li-qing Tang*, Li-jun Zhu*, Li-ying Wen*, An-shi Wang*, Yue-long Jin*, Wei-wei Chang*

* The authors contributed equally to this work.

Author’s affiliations

1 Department of Epidemiology and Health statistics, School of Public Health, Wannan Medical College, 241002 Wuhu, Anhui, China

Corresponding Authors:

Wei-wei Chang, School of public health, Wannan Medical College, Wuhu 241002, Anhui, China, Tel: +86-15375539736, E-mail: xiaowei8601@163.com;

Yue-long Jin, School of public health, Wannan Medical College, Wuhu 241002, Anhui, China, Tel: +86-13965178350, E-mail: jinyl0803@wnmc.edu.cn
ABSTRACT

Objectives: This study explores the relationship between perception of the learning environment and self-directed learning (SDL) ability among nursing undergraduates.

Design, setting, and participants: A cross-sectional study was conducted in December 2020. The participants were 1,096 junior and senior undergraduate nursing students (aged 16-22) from Wannan Medical College in Anhui Province, China.

Outcome measures: The Chinese version of the Dundee Ready Educational Environment Measure (DREEM) questionnaire and a validated Chinese version of college students’ SDL ability scale were used to assess students’ perceptions about their learning environment and their SDL ability. Canonical correlation analysis was performed to evaluate their correlation.

Results: The total score of learning environment was 120.60 (scoring rate: 60.30%) and the score of SDL ability was 89.25 (scoring rate: 63.75%). Analysis indicated that the first canonical correlation coefficient was 0.701 and the contribution rate was 94.26%. The perception of learning environment was mainly determined by students’ perception of learning (SPL) and academic self-perceptions (SASP), and SDL ability mainly determined by self-management ability and cooperative learning ability. SPL and SASP are positively correlated with self-management ability and cooperative learning ability. Multiple linear regression analysis revealed that SPL, SASP, SPA, and SSSP have a significant impact on SDL ability.

Conclusions: The SDL ability of nursing undergraduates was not high. SPL and SASP are positively correlated with self-management ability and cooperative learning ability. Nursing educators can improve students’ SDL ability by changing their learning environment, such as new student-centered teaching methods.

Key words Perception; Learning environment; Self-directed learning; Nursing; Students

Strengths and limitations of this study

1. This is the first study to explore the correlation between learning environment and SDL ability among nursing undergraduates in China.

2. An advanced statistical method (Canonical Correlation Analysis) was used to evaluate the reportedly unexplored relationship between the multiple dimensions of learning environment and self-directed learning.

3. A cross-sectional study approach was adopted and causality cannot be clearly proven.

4. The nursing undergraduates come from one medical college in western Anhui Province in China and the nationwide generalizability was limited.
INTRODUCTION

Self-directed learning (SDL) refers to the initiative to judge learning needs, establish learning goals, select and implement appropriate learning strategies, and evaluate learning outcome with or without help from others.\(^1\) SDL ability is a form of comprehensive ability that students exhibit in the process of learning.\(^2\) Nursing is an applied discipline that requires students to have high-strength skills and is closely related to life safety and health interests.\(^3\) Clinical nursing is a profession that requires rapid knowledge update and lifelong learning.\(^4\) Nursing staff need to continuously learn new knowledge and new technologies. Relying only on the knowledge learned during school does not meet clinical needs and nursing staff are required to strengthen their SDL ability to adapt to the rapid update of nursing knowledge. To adapt to the ever-changing social health care needs, cultivating senior nursing talents who can independently acquire knowledge has become the main goal and task of training talents for higher nursing education.\(^5\) Good SDL ability is the foundation of lifelong learning for nursing undergraduates.\(^6\) Research in China revealed that the awareness of SDL ability among nursing undergraduates was weak, and many nurses also regarded learning as a burden outside of work.\(^7-9\) The formation of SDL ability does not happen overnight, so it is particularly important to cultivate SDL ability during college.\(^10\)

The education environment is everything that happens inside a medical university, including the learning environment, perception of infrastructure, interaction between students and classmates, teachers’ attitudes and skills, and many related factors.\(^11\) Students’ perception of the educational environment plays a subtle role in learning and contributes positively to learning input, students’ achievement, which can stimulate students’ interest in learning, and can also impact their motivation.\(^12-14\) Understanding students’ perception of the learning environment also helps improve the quality of learning.\(^15\) Dundee Ready Education Environment Measure (DREEM) is an educational tool based on questionnaire survey, which can be used to “quantify” the educational environment.\(^16\) It was translated into a variety of
languages and has been used worldwide17-19. An educational experiment in an Iranian medical sciences university revealed DREEM helps reduce students’ cognitive deficiencies in many aspects of the educational environment and helps identify problems in improvement20.

A survey of nursing and emergency medical services majors at King Saud University21 shows that a supportive learning environment, including good teaching, clear goals and standards, appropriate assessment, appropriate workload and emphasis on independence, encourages students to participate in the SDL process, so as to improve their academic performance. Padugupati et al.22 found the flipped classroom learning environment was a dynamic and more social space, which could effectively improve students’ learning behavior, including deep learning, self-efficacy, SDL, and so on. A mixed approach study involving Indian medical students highlighted that given the importance of SDL in medicine, curriculum design should increase learning activities to promote SDL and provide strategies to change the learning environment conducive to SDL23. At present, the formed educational environment in Chinese colleges and universities is not conducive to the cultivation and development of students’ SDL ability24. How to use advanced and effective educational methods to create a harmonious and adaptable learning environment, so that nursing students can master medical knowledge and clinical skills proficiently, and at the same time have a good sense of SDL, has become an urgent issue for universities.

This study investigated the correlations between learning environment and SDL ability among nursing undergraduates. The first purpose of this study is to understand students’ perceptions of the learning environment and the levels of SDL ability. The learning environment and SDL ability are multidimensional, it is difficult to directly evaluate the relationship between them. While, canonical correlation analysis is a multivariate statistical method that has been widely used to study the associations between two sets of variables.25 Therefore, the second purpose of this study is to evaluate the relationship between learning environment and SDL ability by using canonical correlation analysis. This is of great significance for exploring the
METHODS

Study designs and participants

This study was a cross-sectional descriptive survey conducted in December 2020. The participants were junior and senior undergraduate nursing students from Wannan Medical College in Anhui Province, China. Undergraduate nursing education lasts three years and is divided into two years basic sciences and clinical medicine education and one year of internship. The school’s nursing program has three grades, each grade has 20 classes, and each class has 25-33 students. As students in grade 3 are interns, no questionnaire survey was conducted on them. All students in grades 1-2 (1150 students) participated in the field survey.

The trained investigators distributed questionnaires to students in class. After the investigators read out the unified guidance and told the students to fill in the precautions, the students completed the questionnaire anonymously in the classroom, and the investigators took back the questionnaire on site. Informed consent was obtained and anonymity was ensured from all the participants. Finally, 1,096 respondents were included in the final analysis (response rate: 1,096/1,150=95.30%). Ethical approval for this study was granted by the Ethics Committee of Wannan Medical College (LL-2020BH2086).

Instruments

The self-designed questionnaire included three parts: sociodemographic characteristics, learning environment, and SDL ability.

Demographic characteristics

Demographic variables include gender (male, female), age, grade (first grade, second grade), and birthplace (countryside, town).

Chinese version of the Dundee Ready Educational Environment Measure (DREEM)

The Chinese version of the DREEM survey, translated by the medical education
research center of China Medical University, was used to assess students’ perception of their learning environment. This scale contains 50 items, of which nine are reverse-scored. Each item was scored on a five-point Likert scale from 0 (strongly disagree) to 4 (strongly agree). The DREEM inventory has 5 sub-scales: students’ perceptions of learning (SPL) (12 items) (e.g., “I am encouraged to participate in class”, “Long-term learning is emphasized over short-term learning”), students’ perceptions of teachers (SPT) (11 items)(e.g., “The teachers are knowledgeable”, “The teachers give clear examples”), students’ academic self-perceptions (SASP) (8 items) (e.g., “ Much of what I have to learn seems relevant to a career in health care”, “My problem-solving skills are being well developed”), students’ perceptions of atmosphere (SPA) (12 items)(e.g., “The atmosphere is relaxed during consultation teaching”, “The atmosphere motivates me as a learner”), and students’ social self-perceptions (SSSP) (7 items)(e.g.,“I have good friends in this school”, “I seldom feel lonely ”). The total DREEM score was calculated by adding the sum score of five sub-scales (total score range: 0-200). Calculation of average scoring rate (%): the actual score of the sub-scale is divided by the full score of the sub-scale. The higher the score rate, the better the learning environment. The DREEM has good validity and has been widely used among college students in China. Cronbach’s alpha values of SPL, SPT, SASP, SPA, and SSSP was 0.818, 0.864, 0.786, 0.834, and 0.675 in this study, respectively.

Self-directed learning (SDL) Ability

SDL ability was measured by a validated Chinese version of college students’ Self-directed Learning Ability Scale. This scale contained 28 items, of which five are reverse-scored and each item was rated on a 5-point Likert scale ranging from 1 (strongly disagree) to 5 (strongly agree). The scale included three dimensions: (1) self-management ability, 10 items including the ability to determine learning needs, time management ability and learning monitoring ability (e.g., “I often set learning goals”); (2) information capability, 11 items including information acquisition ability and information analysis and processing ability (e.g., “It is difficult for me to grasp
the key points in my study”); and (3) cooperative learning ability, 7 items including
the ability to communicate and ask for help (e.g., “When other student ask me for my
learning experience, I can always say one or two points”). The total score of SDL
ability was the sum of the score for each item (total score range: 0-140). A higher
score indicated a higher ability of SDL. Calculation of average scoring rate (%): the
actual score of the sub-scale is divided by the full score of the sub-scale. In present
study, Cronbach’s α for self-management ability, information capability, and
cooperative learning ability subscale was 0.802, 0.709, and 0.764, respectively.

Patient and public involvement
No patient involved in this study.

Data Analysis
The statistical analysis was performed by SPSS 25 for Windows. Scores for total and
each domain were expressed as mean ± standard deviation (SD). Categorical variables
(e.g. gender, grade etc.) were expressed as frequencies or percentage. Pearson’s
correlation coefficients were calculated to examine the correlation between the
learning environment and SDL ability. Canonical correlation analysis was used to
analyze the correlation between learning environment and SDL ability. Each
dimension of learning environment are taken as X group variables, the corresponding
typical variable is U. Each dimension of SDL ability are taken as group Y variables
and the corresponding typical variable as V. A multiple linear regression analysis was
used to analyze learning environment on SDL ability among nursing undergraduates.
A value of $P < 0.05$ (two-tailed) was considered statistically significant.

RESULTS
Characteristics Description
Among the 1,096 nursing students in this study, 462 were freshmen and 634
were sophomores. The overall mean age was $19.34 ± 1.09$ years (range: 16-22 years).
In terms of gender, females accounted for 79.65% of the total respondents, and males
20.35%. Only 46.35% of students would plan to pursue their major in the future.
Other basic information of 1,096 students was listed in Table 1. The overall DREEM mean score was 120.60 (60.30%) of a maximum score of 200, indicating a relative overall satisfaction with the environment but with room for improvement (Table 2). According to sub-scale, the mean score was 29.01 ± 6.46 for SPL (60.43%), 28.63 ± 6.27 for SPT (65.07%), 17.81 ± 4.54 for SASP (55.66%), 28.92 ± 6.42 for SPA (60.25%), and 16.25 ± 3.80 for SSSP (58.04%) domains. The average scoring rate of SASP (55.66%) is relative lower in all dimensions, followed by SSSP (58.04%) (Table 2).

The overall SDL ability mean score was 89.25 (63.75%) of a maximum score of 140. According to sub-scale, the mean score was 32.81±5.56 for self-management ability (65.62%), 34.71±4.47 for information capability (63.11%), and 21.73 ± 3.65 for cooperative learning ability (62.09%) (Table 3).

Correlations between the learning environment and SDL ability

Pearson’s Correlation

The total DREEM scores were positively related with the total score of SDL ability ($r=0.680$, $P<0.001$). Similarly, all sub-scale scores of DREEM were positively related with three dimensions of SDL ability ($P<0.001$, Table 4). In particular, the correlations between learning environment and SDL ability scores were above 0.4 in all sub-scales, indicating there was a moderate level of correlation.

Canonical Correlation

For the canonical correlation analysis, the X variables represented DREEM (X1 = SPL, X2 = SPT, X3 = SASP, X4 = SPA, X5 = SSSP) and the Y variables represented SDL ability (Y1 = Self-management ability, Y2 = Information capability, and Y3 = Cooperative learning ability). Three pairs of typical variables were extracted from the results of canonical correlation analysis, and the correlation coefficients of the first two pairs (0.701 and 0.221, respectively) were statistically significant ($P < 0.05$, Figure1) (Table 5). The cumulative contribution rate of the first typical variables has reached 94.26% (Table 5). Therefore, this study took the first typical variable for explanation.
In canonical correlation analysis, the absolute value of standardization coefficient represents the weight. The standardized linear functions of the first pair of typical variables are listed as follows: U_1 (DREEM) = $-0.377X_1 + 0.094X_2 - 0.350X_3 - 0.212X_4 - 0.240X_5$; V_1 (SDL ability) = $-0.470Y_1 - 0.299Y_2 - 0.357Y_3$ (Table 6).

U_1 mainly determined by X_1 (students’ perception of learning) and X_3 (students’ academic self-perceptions), and V_1 mainly determined by Y_1 (self-management ability) and Y_3 (cooperative learning ability). Further typical structural analysis showed that X_1 and X_3 were negatively correlated with U_1, Y_1 and Y_3 were negatively correlated with V_1. So, students’ perception of learning (SPL) and students’ academic self-perceptions (SASP) have positively correlated with self-management ability and cooperative learning ability.

Multiple linear regression analysis of educational environment on SDL ability among nursing students

In multiple linear regression analysis, the total score of SDL ability was defined as the dependent variable and scores on 5 dimensions of educational environment were defined as independent variables. After adjust gender, age, class, birthplace, and professional choice, the analysis showed positive significant relationships between score of SDL ability and SPL score ($\beta=0.263, P<0.001$); SASP score ($\beta=0.245, P<0.001$); SPA score ($\beta=0.153, P=0.002$) (Table 7).

DISCUSSION

The score rates of self-management ability (65.62%), information capability (63.11%), and cooperative learning ability (62.09%) were all above 60%, indicating that the SDL ability of nursing undergraduates was not high. Among them, the highest score rate was self-management ability, which was consistent with the results in Xu et al. (2019). This may be related to the fact that nursing undergraduates were mainly females, and they had better self-planning and self-management for learning. Female’s management learning goals are significantly more positive than males, because they use more learning self-regulation strategies and display a more positive learning attitude. And another research indicated the females had clear learning
goals, strong learning motivation, and learning monitoring ability. The total score of learning environment was 120.60, with a scoring rate of 60.30%, indicating “a more positive than negative” perception of the environment among nursing undergraduates. Students are generally satisfied with the learning environment. Similarly, the results of two studies conducted in China and India, revealed scores of 121.95/200 and 119/200, respectively. Nursing undergraduates have the highest rate of SPT and the lowest rate of SASP, and Gong et al. (2018) derived similar findings. This may be related to the teaching reform of schools attended by the subjects, including the significant adjustment of teaching content and teaching methods in recent years. In terms of teaching courses, the case teaching and video teaching in our school provide students with more opportunities to communicate with teachers. However, SASP had the lowest score rate, followed by SSSP for all participants. This may be explained by the fact the students have been passive receptive learning and rely on mechanical memory, an inefficient learning technique of rote memorization, to cope with the exam. As a result, the academic nature of learning has not been developed. In addition, self-generation of knowledge can activate deeper cognitive processing and improve long-term retention compared to the passive reception of information. It can allow students to not only acquire content knowledge, but also an understanding of inquiry skills. Some new teaching models focus on cultivating students’ SDL and in-depth learning rather than rote learning, which is conducive to improving the quality of teaching and promoting the development of education. Sahu et al. find that the SSSP correlates significantly with subjective happiness and suggest that institutions promote not only students’ academic development but also their happiness by fostering an appropriate educational environment. Although the scores for all subscales indicated positive perceptions among nursing students, there is a need for improvement in all five domains of the learning environment, specifically in SASP subscale. The possible reason is the individual’s perception and misperception of their academic ability. If people are accurate at judging their own abilities, then self-perception would have an
important role in the acquisition of education and skills. For the cultivation of nursing students’ SDL ability, the focus of improving the learning environment should be on the academic perception domain.

Environment is a major stimulus, which provides a strong driving force for educational objects. Sayed et al. indicated that a collaborative, academic, and supportive environment may increase the participation of nursing students, while an environment of competition, pressure, or threats may reduce the motivation to learn and weaken their interest in the learning process.\(^{44}\) To the best of our knowledge, this is the first study to explore the correlation between learning environment and SDL ability among nursing undergraduates. The results of linear correlation analysis revealed that subscales of learning environment were positively correlated with those of SDL ability among nursing students, indicating that students with higher scores for learning environment have a better SDL ability. Studies revealed that an SDL environment will produce a learner who is self-directed that can be a contributing factor to enhance the individual’s quality of life or in learning.\(^ {45}\) Further canonical correlation analysis indicated that learning environment was mainly determined by SPL and SASP, and SDL ability was mainly determined by self-management ability and cooperative learning ability. A survey of 4257 college students in research universities demonstrates that effective instructor facilitation can influence both students’ self-assessment of learning and perceived utility of the learning activities, and can improve SPL by improving teachers’ teaching ability.\(^ {46}\) Some studies have highlighted that psychological distress and low peer social support work together to reduce medical student SASP.\(^ {47}\) Further, a multiwave longitudinal study of Chinese children determined that contributions between SASP and achievement occurred in a progressive cascading manner.\(^ {48}\) Therefore, it is suggested that steps be taken to cultivate positive psychological states and students’ sense of achievement to improve SASP. SPL and SPA are positively correlated with self-management ability and cooperative learning ability, suggesting that nursing students with better perception of learning and academia have the stronger self-management ability and cooperative
The above results indicate that changing some aspects of the learning environment can significantly improve the learning enthusiasm and initiative of nursing undergraduates.

Students with high satisfaction with the learning environment have a high sense of happiness, which can improve students’ passion for learning. Teachers can improve students’ perception of the learning environment by changing traditional teaching methods, so as to improve their SDL ability. Alshawish et al. found that case-based blended teaching can improve students’ perception of the learning environment. Liu et al. revealed that the teaching model combining virtual simulation technology and network teaching can effectively cultivate the “student-centered” autonomous learning ability and promote the development of nursing students’ autonomous inquiry learning behavior. To actively participate in classroom teaching and master the knowledge points of learning, students consciously engage in pre-class and post-class review, which can improve their self-management ability. Zu et al. changed the nursing education environment through a case teaching method and fully mobilized students’ interest in autonomous learning. Therefore, teachers should constantly explore new education and teaching methods (such as flipped classroom, seminar and problem-based learning) to stimulate nursing students’ learning enthusiasm and promote them to adopt in-depth learning methods, so as to achieve the purpose of ability training.

When nursing undergraduates who have high thirst for knowledge and actively participate in classroom teaching encounter difficulties in the learning process, they will acquire knowledge through communication and exchange with classmates and teachers, reflecting their good learning and cooperation abilities. A quasi-experimental study concluded that the training program based on maker education improved students’ creativity, learning interest, and cooperative learning ability. The learning environment directly affected students’ learning methods and academic achievements, and satisfaction with the learning environment could in turn encourage students to adopt a more positive approach to learning. Therefore, to
improve the SDL ability of nursing students, it is indispensable to create an adaptive
learning environment. First, the instructional process is personalized in terms of
different instructional parameters such as sequence of tasks and task difficulty, time
and type of feedback, pace of learning speed, reinforcement plan, and so on. Second,
the school can provide more social and the communication opportunity for the nursing
undergraduate student in education and teaching. The teachers guide the nursing
undergraduates to use the new social platform to strengthen the unity and build a good
interpersonal relationship and communication environment. Third, the state of
“teacher-centered in the teaching process” should be changed, and nursing students
should be placed at the center of education. Hong et al. revealed that the application
of the combination model of Small Private Online Course and Objective Structured
Clinical Examination in pediatric nursing training teaching was conducive to
stimulate students’ learning interest and improve students’ professional
comprehensive ability, including interpersonal communication ability. So, teachers
should adopt exploratory and innovative teaching methods to change the learning role
of nursing students based on “listening and memorizing”, and maximize the
enthusiasm and initiative of nursing students in learning, which can improve their
SDL ability.

LIMITATIONS
When interpreting the findings of this study, some limitations should be taken into
account. First, a cross-sectional study approach was adopted and causality cannot be
clearly proven. Second, all information was obtained from self-reported questionnaires,
which may lead to recall and reporting bias. Third, the nursing undergraduates come
from one medical college in western Anhui Province and the nationwide
generalizability was still limited. A muti-institutional design from more areas is
highly prioritized in the follow-up research. Finally, this study adopted a single
quantitative data survey method. Qualitative data derived from focus groups could
help explore how nursing students approach self-directed learning, what they value in
the learning environment, and why self-perception of academic performance scores
were low. A mixed-method study (qualitative interview and quantitative survey) is highly prioritized in the follow-up research.

CONCLUSION

In summary, SDL ability of nursing undergraduates was not high. SPL and SASP are positively correlated with self-management ability and cooperative learning ability. Nursing educators can improve students’ SDL ability by changing their learning environment, such as new student-centered teaching methods. A multi-institutional and mixed-method design from more areas is highly prioritized in the follow-up research.

Abbreviations

DREEM: Dundee Ready Educational Environment Measure; SPL: Students’ Perceptions of Learning; SPT: Students’ Perceptions of Teachers; SASP: Students’ Academic Self-Perceptions; SPA: Students' Perceptions of Atmosphere; SSSP: Students’ Social Self-Perceptions; SD: Standard Deviation; SDL: Self-directed learning

Acknowledgments The authors thank all the participating students for their willingness to complete the questionnaires. The authors would also like to thank the editors of this manuscript.

Contributors TLQ and CWW: Writing-original draft, preparation, Investigation. CWW, JYL, WLY and ZLJ: Writing-review & editing. WAS and WLY: Conceptualization, Methodology, Supervision. All authors read and approved the final manuscript.

Funding This study was supported by the key projects of Anhui Province Quality Engineering (2020jyxm2086; 2015zjjh017); Wannan Medical College Quality Project (2020jyxm18).

Competing interests None declared.

Patient and public involvement No patient involved in this study.
Patient consent for publication Not applicable.

Ethics approval This study was approved by the Ethics Committee of Wannan Medical College(LL-2020BH2086). Written informed consent forms were obtained from the subjects that participated in this study.

Data availability statement Data can be obtained from the corresponding author upon reasonable request.

References

1. Levett-Jones TL. Self-directed learning: implications and limitations for undergraduate nursing education. Nurse Educ Today 2005;25(5):363-8.
2. Cadorin L, Bressan V, Palese A. Instruments evaluating the self-directed learning abilities among nursing students and nurses: a systematic review of psychometric properties. BMC Med Educ 2017;17(1):229.
3. Chen YC. Chinese values, health and nursing. J Adv Nurs 2001;36(2):270-3.
4. Kaulback MK. Correlating Self-directed Learning Abilities to Lifelong Learning Orientation in Baccalaureate Nursing Students. Nurse Educ 2020;45(6):347-51.
5. Al-Alawi R, Alexander GL. Systematic review of program evaluation in baccalaureate nursing programs. J Prof Nurs 2020;36(4):236-44.
6. Al Moteri MO. Self-Directed and Lifelong Learning: A Framework for Improving Nursing Students' Learning Skills in the Clinical Context. Int J Nurs Educ Scholarsh 2019;16(1):10.
7. Chen JH, Björkman A, Zou JH, et al. Self-regulated learning ability, metacognitive ability, and general self-efficacy in a sample of nursing students: A cross-sectional and correlational study. Nurse Educ Pract 2019;37:15-21.
8. Chen J, Guo XJ, Bai L, et al. Self-directed learning ability and its influencing factors among nursing undergraduates. Nursing of Integrated Traditional Chinese and Western Medicine 2020; 6(9):206-9. Chinese
9. Wang PL, Yang YW, Li JH, et al. Study on the status and correlation of self-directed learning ability and hardiness personality for undergraduate nursing students in Lanzhou. Chinese Journal of Nursing Education 2019; 16(12):913-7. Chinese
10. Cheng SF, Kuo CL, Lin KC, et al. Development and preliminary testing of a self-rating instrument to measure self-directed learning ability of nursing students. Int J Nurs Stud 2010;47(9):1152-8.
11. Akdeniz M, Kavukcu E, Ilhan I. N. DREEM in primary care: students' perspectives on educational environment of family medicine internship in primary care centres: experiences at Akdeniz University Faculty of Medicine in Turkey. Postgrad Med 2019;131(6):397-404.
12 Wasson LT, Cusmano A, Meli L, et al. Association Between Learning Environment Interventions and Medical Student Well-being: A Systematic Review. JAMA 2016;316(21):2237-52.
13 van Vendeloo SN, Prins DJ, Verheyen CCPM, et al. The learning environment and resident burnout: a national study. Perspect Med Educ 2018;7(2):120-5.
14 Li DZ, Wang P. Effect of a medical education environment on medical students' learning engagement: the mediating effect of academic self-efficacy. Journal of China Medical University 2020; 49(4):357-61. Chinese
15 Boukhris K, Zedini C, El Ghardallou M. Nurse students' perception of the academic learning environment in Tunisian institutes of nursing sciences: A multisite cross-sectional study. Nurse Educ Today 2022;111:105316.
16 Rothman AI, Ayoade F. The development of a learning environment: a questionnaire for use in curriculum evaluation. J Med Educ 1970;45(10):754-9.
17 Seco-Calvo J, Lantaron E, Martinez J, et al. Spanish version of the Dundee Ready Education Environment Measure (DREEM) applied to undergraduate physical therapy students in Spain using Google Form. Med Teach 2022;1-2.
18 Mao H, Wang L, Qin M, et al. Exploring the perceptions of the educational environment in online acupuncture learning during the COVID-19 pandemic. Acupunct Med 2022;40(2):186-90.
19 Kim H, Jeon P, Kim S, et al. Cross-Cultural Adaptation and Validation of the Korean Version of the Dundee Ready Education Environment Measure (DREEM). Evid Based Complement Alternat Med 2021;2021:5591911.
20 Bakhshialiabad H, Bakhshi G, Hashemi Z, et al. Improving students' learning environment by DREEM: an educational experiment in an Iranian medical sciences university (2011-2016). BMC Med Educ 2019;19(1):397.
21 Alotaibi KN. The learning environment as a mediating variable between self-directed learning readiness and academic performance of a sample of saudi nursing and medical emergency students. Nurse Educ Today 2016;36:249-54.
22 Padugupati S, Joshi KP, Chacko TV, et al. Designing flipped classroom using Kemp's instructional model to enhance deep learning and self-directed collaborative learning of basic science concepts. J Educ Health Promot 2021;10(1):187.
23 Premkumar K, Vinod E, Sathishkumar S, et al. Self-directed learning readiness of Indian medical students: a mixed method study. BMC Med Educ 2018;18(1):134.
24 Su ZP, Zhao T, Ye P, et al. Research on the adaptability of self-regulated learning ability of medical students and educational environment. China Higher Medical Education 2014(8):12-7. Chinese
25 Laessig RE, Duckett EJ. Canonical correlation analysis: potential for environmental health planning. Am J Public Health 1979;69(4):353-9.
26 Sun BZ, Zhao YH. The Introduction and Application of Theories and Methods of Measuring Medical Education Environment. Researches in Medical Education 2003; 4:13-9. Chinese
27 Xu FR, Yang Y. Public Health Graduates' Perceptions of the Educational Environment Measured by the DREEM. Front Public Health 2022;10:738098.

28 Xu X, Wu D, Zhao X, et al. Relation of perceptions of educational environment with mindfulness among Chinese medical students: a longitudinal study. Med Educ Online 2016;21:30664.

29 Lin Y, Jiang A. Developing a Measure Scale of Autonomous Learning Competencies of Nursing Undergraduates. Nursing Journal of Chinese People's Liberation Army 2004; (6):1-4. Chinese

30 Xu ZY, Li MJ. Influencing factors of undergraduate nursing students' autonomous learning ability. Journal of Nursing Science 2019; 34(23):12-5. Chinese

31 Cadorin L, Grassetti L, Paoletti E, et al. Evaluating self-directed learning abilities as a prerequisite of health literacy among older people: Findings from a validation and a cross-sectional study. Int J Older People Nurs 2020; 15(1):e12282.

32 Li XL. Assessment for learning in classroom and students' management of their own learning goals. Modern Foreign Languages 2016, 39(03):399-407.

33 Lin YK, Lin CD, Lin BY, et al. Medical students' resilience: a protective role on stress and quality of life in clerkship. BMC Med Educ 2019; 19(1):473.

34 Abraham R, Ramnarayan K, Vinod P, et al. Students' perceptions of learning environment in an Indian medical school. BMC Med Educ 2008;8:20.

35 Wang T, Wang XM. Investigation and Analysis of the Perception of Educational Environment by Medical College Students. China Higher Medical Education 2019; (5):36-7. Chinese

36 Gong DE, Wan PL, Han LF, et al. A Comparative Study on the Perception of Educational Environment between Five-year and Eight-year Medical Students. China Higher Medical Education 2018; 3:16-7. Chinese

37 Yu L, Huang L, Tang HR, et al. Analysis of factors influencing the network teaching effect of college students in a medical school during the COVID-19 epidemic. BMC Med Educ 2021;21(1):397.

38 Fang S, Li M, Zhang C, et al. Application of distant live broadcast in clinical anesthesiology teaching. Am J Transl Res 2022;14(3):2073-80.

39 Chang WW, Zhu LJ, Wen LY, et al. Effectiveness of seminar-case learning for use in practice teaching of statistics for undergraduates majoring in preventive medicine: a prospective cluster-randomized controlled trial. BMC Med Educ 2022;22(1):237.

40 Tan PL. Towards a Culturally Sensitive and Deeper Understanding of “Rote Learning” and Memorisation of Adult Learners. Journal of Studies in International Education 2011;15(2):124-45.

41 Kaiser I, Mayer J, Malai D. Self-Generation in the Context of Inquiry-Based Learning. Front Psychol 2018;9:2440.

42 van der Vleuten CPM, Schuwirth LWT. Assessment in the context of problem-based learning. Adv Health Sci Educ Theory Pract 2019;24(5):903-14.
43 Sahu PK, Phillips Savage ACN, Sa B. Exploring Students' Perceptions of the Educational Environment in a Caribbean Veterinary School: A Cross-Sectional Study. J Vet Med Educ 2020;47(6):668-77.

44 Sayed HY, El-Sayed NG. Students' perceptions of the educational environment of the nursing program in Faculty of Applied Medical Sciences at umm Al Qura University, KSA. J Ame Sci 2012;8(4):69-75.

45 Noorriati Din, Shireen Haron, Rahmah Mohd Rashid. Can Self-directed Learning Environment Improve Quality of Life? Procedia-Social and Behavioral Sciences 2016;222:219-27.

46 Park ES, Harlow A, AghaKouchak A, et al. Instructor facilitation mediates students' negative perceptions of active learning instruction. PLoS One 2021;16(12):e0261706.

47 Yamada Y, Klugar M, Ivanova K, Oborna I. Psychological distress and academic self-perception among international medical students: the role of peer social support. BMC Med Educ 2014;14:256.

48 Fu R, Lee J, Chen X, Wang L. Academic Self-Perceptions and Academic Achievement in Chinese Children: A Multiwave Longitudinal Study. Child Dev 2020;91(5):1718-32.

49 Dunham L, Dekhtyar M, Gruener G, et al. Medical Student Perceptions of the Learning Environment in Medical School Change as Students Transition to Clinical Training in Undergraduate Medical School. Teach Learn Med 2017;29(4):383-91.

50 Alshawish E, El-Banna MM, Alrimawi I. Comparison of blended versus traditional classrooms among undergraduate nursing students: A quasi-experimental study. Nurse Educ Today 2021;106:105049.

51 Liu Q, Liu GY, Su LX, et al. A Study on the Effect of Virtual Simulation Technology Combined with Network Teaching on Improving the Independent Learning Ability of Nursing Students. Popular Science & Technology 2020;22(1):90-3. Chinese

52 Wang Y, Ma J, Gu Y, et al. How does group cooperation help improve self-directed learning ability in nursing students? A trial of one semester intervention. Nurse Educ Today 2021;98:104750.

53 Zhu X, Xiong Z, Zheng T, et al. Case-based learning combined with science, technology, engineering and math (STEM) education concept to improve clinical thinking of undergraduate nursing students: A randomized experiment. Nurs Open 2020;8(1):415-22.

54 Wong FMF, Kan CWY. Online Problem-Based Learning Intervention on Self-Directed Learning and Problem-Solving through Group Work: A Waitlist Controlled Trial. Int J Environ Res Public Health 2022;19(2):720.

55 Männistö M, Mikkonen K, Kuivila HM, et al. Digital collaborative learning in nursing education: a systematic review. Scand J Caring Sci 2020;34(2):280-292.

56 Posey L, Pintz C. Online teaching strategies to improve collaboration among nursing students. Nurse Educ Today 2006;26(8):680-7.
Yang KH, Jiang ZX, Chavez F, et al. Effectiveness of a training program based on maker education for baccalaureate nursing students: A quasi-experimental study. Int J Nurs Sci 2018;6(1):24-30.

Chung S, Lee J, Lee HK. Personal Factors, Internet Characteristics, and Environmental Factors Contributing to Adolescent Internet Addiction: A Public Health Perspective. Int J Environ Res Public Health 2019;16(23):4635.

Schaefer KM, Zygmont D. Analyzing the teaching style of nursing faculty. Does it promote a student-centered or teacher-centered learning environment? Nurs Educ Perspect 2003;24(5):238-45.

Hong K, Chen WQ, Zou Y. Application of SPOC and OSCE model in Pediatric Nursing Practice Teaching. Health Vocational Education 2022;40(02):100-2. Chinese

Alamrani MH, Alammar KA, Alqahtani SS, et al. Comparing the Effects of Simulation-Based and Traditional Teaching Methods on the Critical Thinking Abilities and Self-Confidence of Nursing Students. J Nurs Res 2018;26(3):152-7.

Huang HM, Cheng SF. Application of Flipped Classroom Teaching Strategy in Nursing Education. Hu Li Za Zhi 2018;65(6):5-12. Chinese
Table 1 Demographic characteristics of the participants (n=1,096)

Variables	Category	Frequency	Percentage (%)
Gender	Male	223	20.35
	Female	873	79.65
Class	Freshman	462	42.15
	Sophomore	634.00	57.85
Age	Mean ± SD: 19.34 ± 1.09, Range (16–22)		
Birthplace	Countryside	802	73.18
	Town	294	26.82
Do you plan to pursue this major in the future?	Yes	508	46.35
	No	141	12.86
	Uncertain	447	40.79
Table 2 Mean (SD) subscale and total DREEM scores for nursing undergraduates

DREEM Domains	Full marks	Mean (SD)	Average scoring rate(%)
SPL	48	29.01(6.46)	60.43
SPT	44	28.63(6.27)	65.07
SASP	32	17.81(4.54)	55.66
SPA	48	28.92(6.42)	60.25
SSSP	28	16.25(3.80)	58.04
Total DREEM score	200	120.60(24.72)	60.30

SPL: Students’ Perception of Learning; SPT: Students’ Perception of Teaching; SASP: Students’ Academic Self-Perceptions; SPA: Students’ Perceptions of Atmosphere; SSSP: Students’ Social Self-Perceptions
Table 3 Mean (SD) subscale and total score of SDL ability for nursing undergraduates

Sub-scales	Full marks	Mean (SD)	Average scoring rate (%)
Self-management ability	50	32.81 (5.56)	65.62
Information capability	55	34.71 (4.47)	63.11
Cooperative learning ability	35	21.73 (3.65)	62.09
Total score	**140**	**89.25 (12.12)**	**63.75**
Table 4 Pearson’s correlation coefficients between learning environment and SDL ability among nursing undergraduates

Sub-scales	Self-management ability	Information capability	Cooperative learning ability	Total score
SPL	0.608**	0.549**	0.555**	0.648**
SPT	0.532**	0.427**	0.411**	0.525**
SASP	0.565**	0.529**	0.585**	0.630**
SPA	0.590**	0.546**	0.546**	0.636**
SSSP	0.574**	0.520**	0.565**	0.625**
Total DREEM score	0.639**	0.570**	0.585**	0.680**

There was a significant correlation at 0.01 level (bilateral)
Table 5 Outcomes of canonical correlation analysis and likehood ratio test

Correlation	Proportion(%)	Cumulative	F	P	
1	0.701	94.26	94.26	61.110	<0.001
2	0.221	4.96	99.22	7.976	<0.001
3	0.087	0.78	100.00	2.754	0.041
Table 6 Standardized coefficients of the first and second pairs of typical variables

SDL ability	Variables	typical variable 1	typical variable 2
DREEM (X)	SPL (X1)	-0.377	-0.122
	SPT (X2)	0.094	1.467
	SASP (X3)	-0.350	-0.491
	SPA (X4)	-0.212	-0.160
	SSSP (X5)	-0.240	-0.443
SDL ability (Y)	Self-management ability (Y1)	-0.470	1.287
	Information capability (Y2)	-0.299	-0.004
	Cooperative learning ability (Y3)	-0.357	-1.309
Table 7 Multiple linear regression analysis of educational environment on SDL ability among nursing students

Independent variables	B	SE	β	t	P*
Constant	48.820	2.659	18.360	<0.001	
SPL	0.493	0.095	0.263	5.208	<0.001
SPT	-0.140	0.079	-0.073	-1.780	0.075
SASP	0.654	0.098	0.245	6.695	<0.001
SPA	0.289	0.092	0.153	3.141	0.002
SSSP	0.535	0.126	0.168	4.253	<0.001

*The adjustment factors: gender, age, class, birthplace, and planning to pursue this major in the future.

SPL: Students’ Perception of Learning; SPT: Students’ Perception of Teaching; SASP: Students’ Academic Self-Perceptions; SPA: Students’ Perceptions of Atmosphere; SSSP: Students’ Social Self-Perceptions; B: unstandardized coefficient; SE: standard error; β: standardized coefficient.
Figure legend/caption

Figure 1 Structure coefficient of canonical factors among nursing undergraduates

SPL: Students’ Perception of Learning; SPT: Students’ Perception of Teaching; SASP: Students’ Academic Self-Perceptions; SPA: Students’ Perceptions of Atmosphere; SSSP: Students’ Social Self-Perceptions; SDL: Self-directed learning
STROBE Statement—Checklist of items that should be included in reports of cross-sectional studies

Item No	Recommendation	Page/line numbers
Title and abstract	1 (a) Indicate the study’s design with a commonly used term in the title or the abstract	Lines 1-3, Page 1
	(b) Provide in the abstract an informative and balanced summary of what was done and what was found	Page 2
Introduction		
Background/rationale	2 Explain the scientific background and rationale for the investigation being reported	Pages 3-4
Objectives	3 State specific objectives, including any prespecified hypotheses	Lines 112-117, Page 4
Methods		
Study design	4 Present key elements of study design early in the paper	Line 124, Page 5
Setting	5 Describe the setting, locations, and relevant dates, including periods of recruitment, exposure, follow-up, and data collection	Line 124, Page 5
Participants	6 (a) Give the eligibility criteria, and the sources and methods of selection of participants	Lines 124-131, Page 5
Variables	7 Clearly define all outcomes, exposures, predictors, potential confounders, and effect modifiers. Give diagnostic criteria, if applicable	Pages 5-7
Data sources/measurement	8* For each variable of interest, give sources of data and details of methods of assessment (measurement). Describe comparability of assessment methods if there is more than one group	Pages 5-7
Bias	9 Describe any efforts to address potential sources of bias	Lines 132-135, Page 5
Study size	10 Explain how the study size was arrived at	Lines 132-135, Page 5
Quantitative variables	11 Explain how quantitative variables were handled in the analyses. If applicable, describe which groupings were chosen and why	Lines 190-193, Page 7
Statistical methods	12 (a) Describe all statistical methods, including those used to control for confounding	Lines 190-197, Page 7
	(b) Describe any methods used to examine subgroups and interactions	
	(c) Explain how missing data were addressed	NA
	(d) If applicable, describe analytical methods taking account of sampling strategy	NA
	(e) Describe any sensitivity analyses	NA
Results

Participants 13*

(a) Report numbers of individuals at each stage of study—eg numbers potentially eligible, examined for eligibility, confirmed eligible, included in the study, completing follow-up, and analysed

(b) Give reasons for non-participation at each stage

(c) Consider use of a flow diagram

Descriptive data 14*

(a) Give characteristics of study participants (eg demographic, clinical, social) and information on exposures and potential confounders

(b) Indicate number of participants with missing data for each variable of interest

Outcome data 15*

Report numbers of outcome events or summary measures

Main results 16

(a) Give unadjusted estimates and, if applicable, confounder-adjusted estimates and their precision (eg, 95% confidence interval). Make clear which confounders were adjusted for and why they were included

(b) Report category boundaries when continuous variables were categorized

(c) If relevant, consider translating estimates of relative risk into absolute risk for a meaningful time period

Other analyses 17

Report other analyses done—eg analyses of subgroups and interactions, and sensitivity analyses

Discussion

Key results 18

Summarise key results with reference to study objectives

Limitations 19

Discuss limitations of the study, taking into account sources of potential bias or imprecision. Discuss both direction and magnitude of any potential bias

Interpretation 20

Give a cautious overall interpretation of results considering objectives, limitations, multiplicity of analyses, results from similar studies, and other relevant evidence

Generalisability 21

Discuss the generalisability (external validity) of the study results

Other information

Funding 22

Give the source of funding and the role of the funders for the present study and, if applicable, for the original study on which the present article is based

*Give information separately for exposed and unexposed groups.
Note: An Explanation and Elaboration article discusses each checklist item and gives methodological background and published examples of transparent reporting. The STROBE checklist is best used in conjunction with this article (freely available on the Web sites of PLoS Medicine at http://www.plosmedicine.org/, Annals of Internal Medicine at http://www.annals.org/, and Epidemiology at http://www.epidem.com/). Information on the STROBE Initiative is available at www.strobe-statement.org.
Figure 1: Structure coefficient of canonical factors among nursing undergraduates

SPL: Students’ Perception of Learning; SPT: Students’ Perception of Teaching; SASP: Students’ Academic Self-Perceptions; SPA: Students’ Perceptions of Atmosphere; SSSP: Students’ Social Self-Perceptions; SDL: Self-directed learning

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml
Item No	Recommendation	Page/line numbers
Title and abstract	1. (a) Indicate the study’s design with a commonly used term in the title or the abstract	
(b) Provide in the abstract an informative and balanced summary of what was done and what was found	Lines 1-3, Page 1	
Introduction	Background/rationale	2. Explain the scientific background and rationale for the investigation being reported
Objectives	3. State specific objectives, including any prespecified hypotheses	Lines 112-117, Page 4
Methods	Study design	4. Present key elements of study design early in the paper
Setting	5. Describe the setting, locations, and relevant dates, including periods of recruitment, exposure, follow-up, and data collection	Line 124, Page 5
Participants	6. (a) Give the eligibility criteria, and the sources and methods of selection of participants	Lines 124-131, Page 5
Variables	7. Clearly define all outcomes, exposures, predictors, potential confounders, and effect modifiers. Give diagnostic criteria, if applicable	Pages 5-7
Data sources/measurements	8. For each variable of interest, give sources of data and details of methods of assessment (measurement). Describe comparability of assessment methods if there is more than one group	Pages 5-7
Bias	9. Describe any efforts to address potential sources of bias	Lines 132-135, Page 5
Study size	10. Explain how the study size was arrived at	Lines 132-135, Page 5
Quantitative variables	11. Explain how quantitative variables were handled in the analyses. If applicable, describe which groupings were chosen and why	Lines 190-193, Page 7
Statistical methods	12. (a) Describe all statistical methods, including those used to control for confounding	
(b) Describe any methods used to examine subgroups and interactions		
(c) Explain how missing data were addressed		
(d) If applicable, describe analytical methods taking account of sampling strategy		
(e) Describe any sensitivity analyses	Lines 190-197, Page 7	
Results	Participants	13. (a) Report numbers of individuals at each stage of study—eg numbers potentially eligible, examined for eligibility, confirmed eligible, included in the study, completing follow-up, and analysed
(b) Give reasons for non-participation at each stage		
(c) Consider use of a flow diagram	Lines 203-206, Page 7; Table 1	
Descriptive data	14. (a) Give characteristics of study participants (eg demographic, clinical, social) and information on exposures and potential confounders	
(b) Indicate number of participants with missing data for each variable of interest | Lines 203-206, Page 7; Table 1
Line 203, Page 7; Table 1 |
Outcome data

15*

Report numbers of outcome events or summary measures

Line 203, Page 7; Table 1

Main results

16

(a) Give unadjusted estimates and, if applicable, confounder-adjusted estimates and their precision (eg, 95% confidence interval). Make clear which confounders were adjusted for and why they were included

Pages 8-9

(b) Report category boundaries when continuous variables were categorized

NA

(c) If relevant, consider translating estimates of relative risk into absolute risk for a meaningful time period

NA

Other analyses

17

Report other analyses done—eg analyses of subgroups and interactions, and sensitivity analyses

Pages 8-9

Discussion

Key results

18

Summarise key results with reference to study objectives

Lines 256-258, Page 9; Lines 266-268, Page 10; Lines 303-311, Page 11

Limitations

19

Discuss limitations of the study, taking into account sources of potential bias or imprecision. Discuss both direction and magnitude of any potential bias

Lines 361-372, Page 13

Interpretation

20

Give a cautious overall interpretation of results considering objectives, limitations, multiplicity of analyses, results from similar studies, and other relevant evidence

Pages 10-13

Generalisability

21

Discuss the generalisability (external validity) of the study results

Lines 374-376, Page 13

Other information

Funding

22

Give the source of funding and the role of the funders for the present study and, if applicable, for the original study on which the present article is based

Lines 404-406, Page 14

*Give information separately for exposed and unexposed groups.

Note: An Explanation and Elaboration article discusses each checklist item and gives methodological background and published examples of transparent reporting. The STROBE checklist is best used in conjunction with this article (freely available on the Web sites of PLoS Medicine at http://www.plosmedicine.org/, Annals of Internal Medicine at http://www.annals.org/, and Epidemiology at http://www.epidem.com/). Information on the STROBE Initiative is available at www.strobe-statement.org.
The association of learning environment and self-directed learning ability among nursing undergraduates—a cross-sectional study using canonical correlation analysis

Journal:	BMJ Open
Manuscript ID	bmjopen-2021-058224.R2
Article Type:	Original research
Date Submitted by the Author:	27-Jul-2022
Complete List of Authors:	Tang, Li-qing; Wannan Medical College Zhu, Li-jun; Wannan Medical College Wen, Li-ying; Wannan Medical College Wang, An-shi; Wannan Medical College Jin, Yue-long; Wannan Medical College Chang, Wei-wei; Wannan Medical College,
Primary Subject Heading:	Medical education and training
Secondary Subject Heading:	Medical education and training, Medical management, Nursing, Public health
Keywords:	PUBLIC HEALTH, Epidemiology < ONCOLOGY, MEDICAL EDUCATION & TRAINING
I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd (“BMJ”) its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our licence.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge (“APC”) for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which Creative Commons licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author’s Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.
The association of learning environment and self-directed learning ability among nursing undergraduates-a cross-sectional study using canonical correlation analysis

Li-qing Tang*, Li-jun Zhu*, Li-ying Wen*, An-shi Wang*, Yue-long Jin*, Wei-wei Chang*

* The authors contributed equally to this work.

Author’s affiliations
1Department of Epidemiology and Health statistics, School of Public Health, Wannan Medical College, 241002 Wuhu, Anhui, China

Corresponding Authors:
Wei-wei Chang, School of public health, Wannan Medical College, Wuhu 241002, Anhui, China, Tel: +86-15375539736, E-mail: xiaowei8601@163.com;

Yue-long Jin, School of public health, Wannan Medical College, Wuhu 241002, Anhui, China, Tel: +86-13965178350, E-mail: jinyl0803@wnmc.edu.cn
ABSTRACT

Objectives: This study explores the relationship between the perception of the learning environment and self-directed learning (SDL) ability among nursing undergraduates.

Design, setting, and participants: A cross-sectional study was conducted in December 2020 with 1,096 junior and senior undergraduate nursing students (aged 16–22) from Wannan Medical College in Anhui Province, China.

Outcome measures: The Chinese version of the Dundee Ready Educational Environment Measure questionnaire and a validated Chinese version of college students’ SDL ability scale were used to assess students’ perceptions about their learning environment and their SDL ability. Canonical correlation analysis was performed to evaluate their correlation.

Results: The total score for the learning environment was 120.60 (scoring rate: 60.30%), and the score for SDL ability was 89.25 (scoring rate: 63.75%). Analysis indicated that the first canonical correlation coefficient was 0.701 and the contribution rate was 94.26%. The perception of the learning environment was mainly determined by students’ perception of learning (SPL) and academic self-perceptions (SASP), with SDL ability mainly determined by self-management ability and cooperative learning ability. SPL and SASP were positively correlated with self-management ability and cooperative learning ability. Multiple linear regression analysis revealed that SPL, SASP, SPA, and students’ social self-perceptions (SSSP) had a significant impact on SDL ability.

Conclusions: The SDL ability of nursing undergraduates was not high. SPL and SASP were positively correlated with self-management ability and cooperative learning ability. Nursing educators can improve students’ SDL ability by changing their learning environment, using, for example, new student-centered teaching methods.

Key words Perception; Learning environment; Self-directed learning; Nursing; Students
Strengths and limitations of this study

1. This is the first study to explore the correlation between learning environment and SDL ability among nursing undergraduates in China.

2. An advanced statistical method (Canonical Correlation Analysis) was used to evaluate the reportedly unexplored relationship between the multiple dimensions of learning environment and self-directed learning.

3. A cross-sectional study approach was adopted and causality cannot be clearly proven.

4. The nursing undergraduates come from one medical college in western Anhui Province in China and the nationwide generalizability was limited.
INTRODUCTION

Self-directed learning (SDL) refers to an individual’s the initiative in judging their learning needs, establishing their learning goals, selecting and implementing appropriate learning strategies, and evaluating learning outcomes, with or without help from others.[1] SDL ability is a form of comprehensive ability that students exhibit in the process of learning.[2] Nursing is an applied discipline that requires students to have a strong skillset and is closely related to life safety and health interests.[3] Clinical nursing is a profession that requires rapid knowledge updates and lifelong learning.[4] Nursing staff need to continuously learn new knowledge and new technologies. Reliance on the knowledge learned during school is insufficient to meet clinical needs, and nursing staff are required to strengthen their SDL ability to adapt to the rapid updating of nursing knowledge. To adapt to the ever-changing social healthcare needs, the cultivation of senior nursing talents who can independently acquire knowledge has become the main goal and task of training talents for higher nursing education.[5] Good SDL ability is the foundation of lifelong learning for nursing undergraduates.[6] Research in China has revealed that the awareness of SDL ability among nursing undergraduates is weak, and many nurses also regard learning as a burden outside of work.[7-9] The formation of SDL ability does not happen overnight, so it is particularly important to cultivate SDL ability as part of nursing education in college.[10]

The education environment is everything that happens inside a university, including the learning environment, perception of infrastructure, interaction between students and classmates, teachers’ attitudes and skills, and many other related factors.[11] Students’ perception of the educational environment plays a subtle role in learning and contributes positively to learning input and students achievement, which can stimulate students’ interest in learning and affect their motivation.[12-14] Understanding students’ perception of the learning environment also helps improve the quality of learning.[15] The Dundee Ready Education Environment Measure (DREEM) is an educational tool based on a questionnaire survey that can be used to “quantify” the educational environment.[16] It has been translated into a variety of languages and has been used worldwide.[17-19] An educational experiment in an Iranian medical sciences university revealed that DREEM helps to reduce students’
Cognitive deficiencies in many aspects of the educational environment and to identify problems that hinder their improvement.[20]

A survey of nursing and emergency medical services majors at King Saud University showed that a supportive learning environment, including good teaching, clear goals and standards, appropriate assessment, appropriate workload, and emphasis on independence, encouraged students to participate in the SDL process, consequently improving their academic performance.[21] Padugupati et al. found that a flipped classroom learning environment was a dynamic and more social space that could effectively improve students’ learning behavior, including deep learning, self-efficacy, and SDL.[22] A mixed approach study involving Indian medical students highlighted that, given the importance of SDL in medicine, curriculum design should increase learning activities to promote SDL and provide strategies to make the learning environment more conducive to SDL.[23] At present, the formed educational environment in Chinese colleges and universities is not conducive to the cultivation and development of students’ SDL ability.[24] The use of advanced and effective educational methods to create a harmonious and adaptable learning environment so that nursing students can master medical knowledge and clinical skills proficiently while at the same time having a good sense of SDL has become an urgent issue for colleges and universities.

This study investigated the correlations between learning environment and SDL ability among nursing undergraduates. The first purpose of the study was to understand students’ perceptions of the learning environment and the levels of SDL ability. The learning environment and SDL ability are multidimensional, and therefore it is difficult to directly evaluate the relationship between them. And that canonical correlation analysis is a multivariate statistical method, which has been widely used to study the associations between two sets of variables.[25] Therefore, the second purpose of the study was to evaluate the relationship between learning environment and SDL ability by using canonical correlation analysis. This is of great significance for exploring the educational reform plan to improve the SDL ability of nursing undergraduates.
METHODS

Study designs and participants

The study was a cross-sectional descriptive survey conducted in December 2020. The participants were junior and senior undergraduate nursing students from Wannan Medical College in Anhui Province, China. Undergraduate nursing education lasts three years and is divided into two years basic sciences and clinical medicine education and one year internship. The school’s nursing program is composed of three grades; each grade has 20 classes, and each class has 25-33 students. As the students in grade 3 are interns, no questionnaire survey was conducted with them. All students in grades 1 and 2 (1,150 students) participated in the field survey.

The trained investigators distributed questionnaires to students in class. After the investigators read out the unified guidance and told the students to fill in the precautions, the students completed the questionnaire anonymously in the classroom, and the investigators took back the questionnaire on site. Informed consent was obtained and anonymity was ensured from all the participants. Finally, 1,096 respondents were included in the final analysis (response rate: 1,096/1,150=95.30%). Ethical approval for this study was granted by the Ethics Committee of Wannan Medical College (LL-2020BH2086).

Instruments

The self-designed questionnaire included three parts: sociodemographic characteristics, learning environment, and SDL ability.

Demographic characteristics

Demographic variables include gender (male, female), age, grade (first grade, second grade), and birthplace (countryside, town).

Chinese version of the Dundee Ready Educational Environment Measure (DREEM)

The Chinese version of the DREEM survey, translated by the medical education research center of China Medical University, was used to assess students’ perception of their learning environment.[26] This scale contains 50 items, of which nine are reverse-scored. Each item is scored on a five-point Likert scale from 0 (strongly disagree) to 4 (strongly agree). The DREEM inventory has 5 sub-scales: students’ perceptions of learning (SPL; 12 items; e.g., “I
am encouraged to participate in class,” “Long-term learning is emphasized over short-term learning”); students’ perceptions of teachers (SPT; 11 items; e.g., “The teachers are knowledgeable,” “The teachers give clear examples”); students’ academic self-perceptions (SASP; 8 items; e.g., “Much of what I have to learn seems relevant to a career in health care,” “My problem-solving skills are being well developed”); students’ perceptions of atmosphere (SPA; 12 items; e.g., “The atmosphere is relaxed during consultation teaching,” “The atmosphere motivates me as a learner”); and students’ social self-perceptions (SSSP; 7 items; e.g., “I have good friends in this school,” “I seldom feel lonely”). The total DREEM score is calculated by adding the sum score of five sub-scales (total score range: 0-200). Calculation of average scoring rate (%): the actual score of the sub-scale is divided by the full score of the sub-scale. The higher the score rate, the better the learning environment. The DREEM has good validity and has been widely used among college students in China.[27, 28] Cronbach’s alpha values of SPL, SPT, SASP, SPA, and SSSP was 0.818, 0.864, 0.786, 0.834, and 0.675 in this study, respectively.

Self-directed learning (SDL) Ability

SDL ability was measured by a validated Chinese version of college students’ Self-directed Learning Ability Scale.[29] This scale contains 28 items, of which five are reverse-scored and each item is rated on a 5-point Likert scale ranging from 1 (strongly disagree) to 5 (strongly agree). The scale includes three dimensions: (1) self-management ability, 10 items including the ability to determine learning needs, time management ability and learning monitoring ability (e.g., “I often set learning goals”); (2) information capability, 11 items including information acquisition ability and information analysis and processing ability (e.g., “It is difficult for me to grasp the key points in my study”); and (3) cooperative learning ability, 7 items including the ability to communicate and ask for help (e.g., “When other student ask me for my learning experience, I can always say one or two points”). The total score of SDL ability is the sum of the score for each item (total score range: 0-140). A higher score indicated a higher ability of SDL. Calculation of average scoring rate (%): the actual score of the sub-scale is divided by the full score of the sub-scale. In present study, Cronbach’s α for self-management ability, information capability, and cooperative learning ability subscale was...
0.802, 0.709, and 0.764, respectively.

Patient and public involvement
None.

Data Analysis
The statistical analysis was performed by SPSS 25 for Windows. Scores for total and each domain were expressed as mean ± standard deviation (SD). Categorical variables (e.g., gender, grade etc.) were expressed as frequencies or percentage. Pearson’s correlation coefficients were calculated to examine the correlation between the learning environment and SDL ability. Canonical correlation analysis was used to analyze the correlation between learning environment and SDL ability. Each dimension of learning environment is taken as X group variables, the corresponding typical variable is U. Each dimension of SDL ability is taken as group Y variables and the corresponding typical variable as V. A multiple linear regression analysis was used to analyze the effect of learning environment on SDL ability among nursing undergraduates. A value of \(P < 0.05 \) (two-tailed) was considered statistically significant.

RESULTS

Characteristics Description
Among the 1,096 nursing students in this study, 462 were freshmen and 634 were sophomores. The overall mean age was 19.34 ± 1.09 years (range: 16-22 years). In terms of gender, females accounted for 79.65% of the total respondents, and males 20.35%. Only 46.35% of students would plan to pursue their major in the future. Other basic information of 1,096 students was listed in Table 1.

The overall DREEM mean score was 120.60 (60.30%) of a maximum score of 200, indicating a relative overall satisfaction with the environment but with room for improvement (Table 2). According to sub-scale, the mean score was 29.01 ± 6.46 for SPL (60.43%), 28.63 ± 6.27 for SPT (65.07%), 17.81 ± 4.54 for SASP (55.66%), 28.92 ± 6.42 for SPA (60.25%), and 16.25 ± 3.80 for SSSP (58.04%) domains. The average scoring rate of SASP (55.66%) is relative lower in all dimensions, followed by SSSP (58.04%) (Table 2).

The overall SDL ability mean score was 89.25 (63.75%) of a maximum score of 140. According to sub-scale, the mean score was 32.81±5.56 for self-management ability (65.62%),
34.71±4.47 for information capability (63.11%), and 21.73 ± 3.65 for cooperative learning ability (62.09%) (Table 3).

Correlations between the learning environment and SDL ability

Pearson’s Correlation

The total DREEM scores were positively related with the total score of SDL ability (r=0.680, P<0.001). Similarly, all sub-scale scores of DREEM were positively related with three dimensions of SDL ability (P<0.001, Table 4). It was worth noting that the correlation coefficients between learning environment and SDL ability scores were above 0.4 in all sub-scales, indicating a moderate level of correlation between them.

Canonical Correlation

For the canonical correlation analysis, the X variables represented DREEM (X1 = SPL, X2 = SPT, X3 = SASP, X4 = SPA, and X5 = SSSP) and the Y variables represented SDL ability (Y1 = Self-management ability, Y2 = Information capability, and Y3 = Cooperative learning ability). Three pairs of typical variables were extracted from the results of canonical correlation analysis, and the correlation coefficients of the first two pairs (0.701 and 0.221, respectively) were statistically significant (P < 0.05, Figure 1). The cumulative contribution rate of the first typical variables has reached 94.26% (Table 5). Therefore, this study took the first typical variable for explanation.

In canonical correlation analysis, the absolute value of standardization coefficient represents the weight. The standardized linear functions of the first pair of typical variables are listed as follows: U1(DREEM) = -0.377X1 + 0.094X2 - 0.350X3 - 0.212X4 - 0.240X5; V1(SDL ability) = -0.470Y1 - 0.299 Y2 - 0.357Y3 (Table 6).

U1 mainly determined by X1 (students’ perception of learning, SPL) and X3 (students’ academic self-perceptions, SASP), and V1 mainly determined by Y1 (self-management ability) and Y3 (cooperative learning ability). Further typical structural analysis showed that X1 and X3 were negatively correlated with U1, Y1 and Y3 were negatively correlated with V1. Therefore, SPL and SASP are positively correlated with self-management ability and cooperative learning ability.

Multiple linear regression analysis of educational environment on SDL ability among
nursing students

In multiple linear regression analysis, the total score of SDL ability was defined as the dependent variable and scores on 5 dimensions of educational environment were defined as independent variables. After adjusting gender, age, class, birthplace, and professional choice, the analysis showed positive significant relationships between score of SDL ability and SPL score ($\beta=0.263$, $P<0.001$); SASP score ($\beta=0.245$, $P<0.001$); SPA score ($\beta=0.153$, $P=0.002$) (Table 7).

DISCUSSION

The score rates for self-management ability (65.62%), information capability (63.11%), and cooperative learning ability (62.09%) were all just above 60%, indicating that the SDL ability of nursing undergraduates was not high. The highest score rate was for self-management ability, which was consistent with the results in previous studies.[30,31] This may be related to the fact that the nursing undergraduates were mainly females, and they had better self-planning and self-management for learning. Females’ management learning goals are significantly more positive than males’, because they use more learning self-regulation strategies and display a more positive learning attitude.[32] Other studies have shown that females have clear learning goals, strong learning motivation, and a strong ability to monitor their learning.[33]

The total score for the learning environment was 120.60, with a scoring rate of 60.30%, indicating “a more positive than negative” perception of the environment among nursing undergraduates. The students were generally satisfied with the learning environment. Similarly, the results of two studies conducted in China and India revealed scores of 121.95/200 and 119/200, respectively.[34, 35] The nursing undergraduates had the highest rate for SPT and the lowest rate for SASP, similar to the findings of Gong et al.[36] This may be related to the teaching reforms in the schools attended by the participants, including a significant adjustment to teaching content and methods in recent years.[37, 38] In terms of teaching courses, the case teaching and video teaching in our school (Wannan Medical College) provide students with more opportunities to communicate with teachers.[39] However, SASP had the lowest score rate, followed by SSSP, for all participants. This may be explained by the fact that the students have been engaged in passive receptive learning and...
rely on mechanical memory, an inefficient learning technique of rote memorization, to cope with the exams.[40] As a result, the academic nature of learning has not been developed. In addition, self-generation of knowledge can activate deeper cognitive processing and improve long-term retention compared to the passive reception of information.[41] It can enable students to not only acquire content knowledge but also an understanding of inquiry skills.[41]

Some new teaching models focus on cultivating students’ SDL and in-depth learning rather than rote learning, which is conducive to improving the quality of teaching and promoting the development of education.[42] Sahu et al. reported that the SSSP significantly correlates with subjective happiness and suggested that institutions should promote not only students’ academic development but also their happiness by fostering an appropriate educational environment.[43] Although the scores for all subscales indicated positive perceptions among nursing students, there is a need for improvement in all five domains of the learning environment, particularly in the SASP subscale. One possible reason is the individuals’ perceptions and misperceptions of their academic ability. If people could accurately judge their own abilities, then self-perception would play an important role in the acquisition of education and skills. In order to cultivate the SDL ability of nursing students, the focus in improving the learning environment should be included in the academic perception domain.

To the best of our knowledge, this is the first study to explore the correlation between learning environment and SDL ability among nursing undergraduates. The results of the linear correlation analysis revealed that subscales of the learning environment were positively correlated with those of SDL ability among nursing students, indicating that students with higher scores for learning environment have a better SDL ability. The environment is a major stimulus, providing a strong driving force for educational objects. As we all know, an educational environment affects students’ achievements, happiness, motivation, and success. Sayed et al. showed that a collaborative, academic, and supportive environment might increase the participation of nursing students, while an environment of competition, pressure, or threats might reduce their motivation to learn and weaken their interests in the learning process.[44] Studies have shown that an SDL environment will produce a learner who is self-directed, which can be a contributing factor to enhancing that individual’s quality of life or in learning.[45] In addition, students’ motivation and opportunities for the development of
deep understanding are important in creating a positive self-directed learning experience, which can affect SDL ability.\cite{46} In recent years, colleges and universities have devoted considerable attention to developing educational programs to promote the self-directed learning capacity necessary to prepare students for lifelong learning. However, traditional academic structures may not effectively promote SDL, and there is growing recognition of the importance of an academic climate or environment for students to learn effectively.\cite{22, 23, 47, 48} Our findings suggest that students’ SDL ability can be improved by changing their learning environment, such as a new student-centered teaching method. One survey of 4,257 college students in research universities demonstrated that effective instructor facilitation can influence both students’ self-assessment of learning and their perceived utility of the learning activities, and can improve SPL by improving teachers’ teaching ability.\cite{49} Some studies have highlighted that psychological distress and low peer social support work together to reduce medical students’ SASP.\cite{50} Furthermore, a multi-wave longitudinal study of Chinese children demonstrated that contributions by SASP to achievement occurred in a progressive, cascading manner.\cite{51} Therefore, it is suggested that steps should be taken to cultivate positive psychological states and students’ sense of achievement to improve SASP. SPL and SASP are positively correlated with self-management ability and cooperative learning ability, suggesting that nursing students with a better perception of learning and academia have a stronger self-management ability and stronger cooperative learning. The above results indicate that changing some aspects of the learning environment can significantly improve the learning enthusiasm and initiative of nursing undergraduates.

The canonical correlation analysis indicated that the learning environment was mainly determined by SPL and SASP, and SDL ability was mainly determined by self-management ability and cooperative learning ability. And then, SPL and SASP are positively correlated with self-management ability and cooperative learning ability, suggesting that students’ self-management ability and cooperative learning ability can be improved by changing the environment of SPL and SASP, so as to improve SDL ability. Students reporting high satisfaction with the learning environment have a high sense of happiness, which can improve students’ passion for learning.\cite{52} Teachers can improve students’ perception of the learning
environment by changing traditional teaching methods to improve students’ SDL ability. Alshawish et al. found that case-based blended teaching can improve students’ perception of the learning environment.[53] Liu et al. revealed that the teaching model combining virtual simulation technology and network teaching can effectively cultivate the “student-centered” autonomous learning ability and promote the development of nursing students’ autonomous inquiry learning behavior.[54] To actively participate in classroom teaching and master the knowledge points of learning, students consciously engage in pre-class and post-class reviews, which can improve their self-management ability.[55] Zu et al. changed the nursing education environment using a case teaching method and fully mobilized students’ interest in autonomous learning.[56] Therefore, teachers should constantly explore new education and teaching methods (such as flipped classroom, seminar and problem-based learning) to stimulate nursing students’ learning enthusiasm and promote them to adopt in-depth learning methods, so as to achieve the purpose of ability training.[57]

When nursing undergraduates who have a high thirst for knowledge and actively participate in classroom teaching encounter difficulties in the learning process, they will acquire knowledge through communication and exchange with classmates and teachers, reflecting their good learning and cooperation abilities.[58,59] A quasi-experimental study concluded that a training program based on maker education improved students’ creativity, learning interest, and cooperative learning ability.[60] The learning environment directly affected students’ learning methods and academic achievements, and satisfaction with the learning environment could in turn encourage students to adopt a more positive approach to learning.[61] Therefore, to improve the SDL ability of nursing students, it is indispensable to create an adaptive learning environment. Comparatively strong infrastructure, experienced faculty, competent administration, and leadership, as well as an environment that is student-friendly might have contributed to a better learning environment.[62] Universities and colleges have been faced with the daunting task of having to grapple with the inevitable change by re-adjusting and reorganizing themselves in preparation for the transformation and reconstruction of the traditional higher education model.[63] We suggest the following measures, first, the instructional process is personalized in terms of different instructional
parameters such as sequence of tasks and task difficulty, time and type of feedback, pace of
learning speed, reinforcement plan, and so on. Second, the school can provide more social and
the communication opportunity for the nursing undergraduate student in education and
teaching. The teachers guide the nursing undergraduates to use the new social platform to
strengthen the unity and build a good interpersonal relationship and communication
environment. Third, teacher- centeredness in the teaching process should be changed, and
nursing students should be placed at the center of education.[64] Hong et al. revealed that the
application of the combination model of Small Private Online Course and Objective
Structured Clinical Examination in pediatric nursing training teaching was conducive to
stimulate students’ learning interest and improve students’ professional comprehensive ability,
including interpersonal communication ability.[65] Teachers should therefore adopt
exploratory and innovative teaching methods to change the learning role of nursing students
based on “listening and memorizing.” Moreover, to improve students’ SDL ability, teachers
should maximize the enthusiasm and initiative of nursing students in learning. [66,67]

LIMITATIONS

When interpreting the findings of this study, some limitations should be taken into account.
First, a cross-sectional study approach was adopted and causality cannot be clearly proven.
Second, all information was obtained from self-reported questionnaires, which may lead to
recall and reporting bias. Third, the nursing undergraduates came from one medical college in
western Anhui Province and the nationwide generalizability was still limited. A
muti-institutional design from more areas is highly prioritized in the follow-up research.
Finally, this study adopted a single quantitative data survey method. Qualitative data derived
from focus groups could help explore how nursing students approach self-directed learning,
what they value in the learning environment, and why self-perception of academic
performance scores was low. A mixed-method study (qualitative interview and quantitative
survey) is highly prioritized in the follow-up research.

CONCLUSION

In summary, the SDL ability of nursing undergraduates was not high. SPL and SASP are
positively correlated with self-management ability and cooperative learning ability. Nursing
educators can improve students’ SDL ability by changing their learning environment to include new student-centered teaching methods. A multi-institutional and mixed-method design based in other areas should be highly prioritized in follow-up research.

Abbreviations

DREEM: Dundee Ready Educational Environment Measure; SPL: Students’ Perceptions of Learning; SPT: Students’ Perceptions of Teachers; SASP: Students’ Academic Self-Perceptions; SPA: Students' Perceptions of Atmosphere; SSPP: Students’ Social Self-Perceptions; SD: Standard Deviation; SDL: Self-directed learning

Acknowledgments The authors thank all the participating students for their willingness to complete the questionnaires. We would like to thank the editors of this manuscript and Editage (www.editage.cn) for English language editing.

Contributors TLQ and CWW: Writing-original draft, preparation, Investigation. CWW, ZLJ, WLY and WAS: Writing-review & editing. CWW and JYL: Conceptualization, Methodology, Supervision. All authors read and approved the final manuscript.

Competing interests None declared.

Funding This work was supported by the projects of Anhui Province Quality Engineering (2020jyxm2086; 2015zjjh017); Talent Project of Education Department of Anhui Province (gxyqZD2017066), and Talents Program for Academic Leaders and Reserve Candidates of Wannan Medical College (No. School Administration Letter [2021] No. 46); Wannan Medical College Quality Project (2020jyxm18).

Patient and public involvement None.

Patient consent for publication Not applicable.

Ethics approval This study was approved by the Ethics Committee of Wannan Medical College (LL-2020BH2086). Written informed consent forms were obtained from the subjects that participated in this study.

Data availability statement Data are available upon reasonable request.
References

1 Levett-Jones TL. Self-directed learning: implications and limitations for undergraduate nursing education. Nurse Educ Today 2005;25(5):363-8.

2 Cadorin L, Bressan V, Palese A. Instruments evaluating the self-directed learning abilities among nursing students and nurses: a systematic review of psychometric properties. BMC Med Educ 2017;17(1):229.

3 Chen YC. Chinese values, health and nursing. J Adv Nurs 2001;36(2):270-3.

4 Kaulback MK. Correlating Self-directed Learning Abilities to Lifelong Learning Orientation in Baccalaureate Nursing Students. Nurse Educ 2020;45(6):347-51.

5 Al-Alawi R, Alexander GL. Systematic review of program evaluation in baccalaureate nursing programs. J Prof Nurs 2020;36(4):236-44.

6 Al Moteri MO. Self-Directed and Lifelong Learning: A Framework for Improving Nursing Students' Learning Skills in the Clinical Context. Int J Nurs Educ Scholarsh 2019;16(1):10.

7 Chen JH, Björkman A, Zou JH, et al. Self-regulated learning ability, metacognitive ability, and general self-efficacy in a sample of nursing students: A cross-sectional and correlational study. Nurse Educ Pract 2019; 37:15-21.

8 Chen J, Guo XI, Bai L, et al. Self-directed learning ability and its influencing factors among nursing undergraduates. Nursing of Integrated Traditional Chinese and Western Medicine 2020; 6(9):206-9. Chinese

9 Wang PL, Yang YW, Li JH, et al. Study on the status and correlation of self-directed learning ability and hardiness personality for undergraduate nursing students in Lanzhou. Chinese Journal of Nursing Education 2019; 16(12):913-7. Chinese

10 Cheng SF, Kuo CL, Lin KC, et al. Development and preliminary testing of a self-rating instrument to measure self-directed learning ability of nursing students. Int J Nurs Stud 2010;47(9):1152-8.

11 Akdeniz M, Kavukcu E, Ilhanli N. DREEM in primary care: students' perspectives on educational environment of family medicine internship in primary care centres: experiences at Akdeniz University Faculty of Medicine in Turkey. Postgrad Med 2019;131(6):397-404.

12 Wasson LT, Cusmano A, Meli L, et al. Association Between Learning Environment Interventions and Medical Student Well-being: A Systematic Review. JAMA 2016;316(21):2237-52.

13 van Vendeloo SN, Prins DJ, Verheyen CCPM, et al. The learning environment and resident burnout: a national study. Perspect Med Educ 2018;7(2):120-5.

14 Li DZ, Wang P. Effect of a medical education environment on medical students' learning engagement: the mediating effect of academic self-efficacy. Journal of China Medical University 2020; 49(4):357-61. Chinese

15 Boukhris K, Zedini C, El Ghardallou M. Nurse students' perception of the academic learning environment in Tunisian institutes of nursing sciences: A multisite cross-sectional study. Nurse Educ Today 2022; 111:105316.

16 Rothman AI, Ayoade F. The development of a learning environment: a questionnaire for use in curriculum evaluation. J Med Educ 1970;45(10):754-9.
17 Seco-Calvo J, Lantaron E, Martinez J, et al. Spanish version of the Dundee Ready Education Environment Measure (DREEM) applied to undergraduate physical therapy students in Spain using Google Form. Med Teach 2022;1-2.

18 Mao H, Wang L, Qin M, et al. Exploring the perceptions of the educational environment in online acupuncture learning during the COVID-19 pandemic. Acupunct Med 2022;40(2):186-90.

19 Kim H, Jeon P, Kim S, et al. Cross-Cultural Adaptation and Validation of the Korean Version of the Dundee Ready Education Environment Measure (DREEM). Evid Based Complement Alternat Med 2021; 2021:5591911.

20 Bakhshialiabad H, Bakhshi G, Hashemi Z, et al. Improving students' learning environment by DREEM: an educational experiment in an Iranian medical sciences university (2011-2016). BMC Med Educ 2019;19(1):397.

21 Alotaibi KN. The learning environment as a mediating variable between self-directed learning readiness and academic performance of a sample of saudi nursing and medical emergency students. Nurse Educ Today 2016; 36:249-54.

22 Padugupati S, Joshi KP, Chacko TV, et al. Designing flipped classroom using Kemp's instructional model to enhance deep learning and self-directed collaborative learning of basic science concepts. J Educ Health Promot 2021;10(1):187.

23 Premkumar K, Vinod E, Sathishkumar S, et al. Self-directed learning readiness of Indian medical students: a mixed method study. BMC Med Educ 2018;18(1):134.

24 Su ZP, Zhao T, Ye P, et al. Research on the adaptability of self-regulated learning ability of medical students and educational environment. China Higher Medical Education 2014(8):12-7. Chinese

25 Laessig RE, Duckett EJ. Canonical correlation analysis: potential for environmental health planning. Am J Public Health 1979;69(4):353-9.

26 Sun BZ, Zhao YH. The Introduction and Application of Theories and Methods of Measuring Medical Education Environment. Researches in Medical Education 2003; 4:13-9. Chinese

27 Xu FR, Yang Y. Public Health Graduates' Perceptions of the Educational Environment Measured by the DREEM. Front Public Health 2022; 10:738098.

28 Xu X, Wu D, Zhao X, et al. Relation of perceptions of educational environment with mindfulness among Chinese medical students: a longitudinal study. Med Educ Online 2016; 21:30664.

29 Lin Y, Jiang A. Developing a Measure Scale of Autonomous Learning Competencies of Nursing Undergraduates. Nursing Journal of Chinese People’s Liberation Army 2004; (6):1-4. Chinese

30 Xu ZY, Li MJ. Influencing factors of undergraduate nursing students' autonomous learning ability. Journal of Nursing Science 2019; 34(23):12-5. Chinese

31 Cadorin L, Grassetti L, Paoletti E, et al. Evaluating self-directed learning abilities as a prerequisite of health literacy among older people: Findings from a validation and a cross-sectional study. Int J Older People Nurs 2020; 15(1): e12282.

32 Li XL. Assessment for learning in classroom and students' management of their own learning goals. Modern Foreign Languages 2016, 39(03):399-407.
33 Lin YK, Lin CD, Lin BY, et al. Medical students’ resilience: a protective role on stress and quality of life in clerkship. BMC Med Educ 2019;19(1):473.
34 Abraham R, Ramnarayan K, Vinod P, et al. Students’ perceptions of learning environment in an Indian medical school. BMC Med Educ 2008; 8:20.
35 Wang T, Wang XM. Investigation and Analysis of the Perception of Educational Environment by Medical College Students. China Higher Medical Education 2019; (5):36-7. Chinese
36 Gong DE, Wan PL, Han LF, et al. A Comparative Study on the Perception of Educational Environment between Five-year and Eight-year Medical Students. China Higher Medical Education 2018; 3:16-7. Chinese
37 Yu L, Huang L, Tang HR, et al. Analysis of factors influencing the network teaching effect of college students in a medical school during the COVID-19 epidemic. BMC Med Educ 2021;21(1):397.
38 Fang S, Li M, Zhang C, et al. Application of distant live broadcast in clinical anesthesiology teaching. Am J Transl Res 2022;14(3):2073-80.
39 Chang WW, Zhu LJ, Wen LY, et al. Effectiveness of seminar-case learning for use in practice teaching of statistics for undergraduates majoring in preventive medicine: a prospective cluster-randomized controlled trial. BMC Med Educ 2022;22(1):237.
40 Tan PL. Towards a Culturally Sensitive and Deeper Understanding of “Rote Learning” and Memorisation of Adult Learners. Journal of Studies in International Education 2011;15(2):124-45.
41 Kaiser I, Mayer J, Malai D. Self-Generation in the Context of Inquiry-Based Learning. Front Psychol 2018; 9:2440.
42 van der Vleuten CPM, Schuwirth LWT. Assessment in the context of problem-based learning. Adv Health Sci Educ Theory Pract 2019;24(5):903-14.
43 Sahu PK, Phillips Savage ACN, Sa B. Exploring Students' Perceptions of the Educational Environment in a Caribbean Veterinary School: A Cross-Sectional Study. J Vet Med Educ 2020;47(6):668-77.
44 Sayed HY, El-Sayed NG. Students' perceptions of the educational environment of the nursing program in Faculty of Applied Medical Sciences at umm Al Qura University, KSA. J Ame Sci 2012;8(4):69-75.
45 Noorriati Din, Shireen Haron, Rahmah Mohd Rashid. Can Self-directed Learning Environment Improve Quality of Life? Procedia-Social and Behavioral Sciences 2016;222:219-27.
46 Stolk J, Somerville M, Geddes J, Martello R. Work in Progress: Understanding Discomfort: Student Responses to Self-Direction. Proceedings-Frontiers in Education Conference.2006;12,15-16.
47 Zheng B, Zhang Y. Self-regulated learning: the effect on medical student learning outcomes in a flipped classroom environment. BMC Med Educ 2020;20(1):100.
48 Wang Y, Ji Y. How do they learn: types and characteristics of medical and healthcare student engagement in a simulation-based learning environment. BMC Med Educ 2021;21(1):420.
49 Park ES, Harlow A, AghaKouchak A, et al. Instructor facilitation mediates students'
negative perceptions of active learning instruction. PLoS One 2021;16(12): e0261706.
50 Yamada Y, Klugar M, Ivanova K, Oborna I. Psychological distress and academic self-perception among international medical students: the role of peer social support. BMC Med Educ 2014; 14:256.
51 Fu R, Lee J, Chen X, Wang L. Academic Self-Perceptions and Academic Achievement in Chinese Children: A Multiwave Longitudinal Study. Child Dev 2020;91(5):1718-32.
52 Dunham L, Dekhtyar M, Gruener G, et al. Medical Student Perceptions of the Learning Environment in Medical School Change as Students Transition to Clinical Training in Undergraduate Medical School. Teach Learn Med 2017;29(4):383-91.
53 Alshawish E, El-Banna MM, Afrimawi I. Comparison of blended versus traditional classrooms among undergraduate nursing students: A quasi-experimental study. Nurse Educ Today 2021; 106:105049.
54 Liu Q, Liu GY, Su LX, et al. A Study on the Effect of Virtual Simulation Technology Combined with Network Teaching on Improving the Independent Learning Ability of Nursing Students. Popular Science & Technology 2020;22(1):90-3. Chinese
55 Wang Y, Ma J, Gu Y, et al. How does group cooperation help improve self-directed learning ability in nursing students? A trial of one semester intervention. Nurse Educ Today 2021; 98:104750.
56 Zhu X, Xiong Z, Zheng T, et al. Case-based learning combined with science, technology, engineering and math (STEM) education concept to improve clinical thinking of undergraduate nursing students: A randomized experiment. Nurs Open 2020;8(1):415-22.
57 Wong FMF, Kan CWY. Online Problem-Based Learning Intervention on Self-Directed Learning and Problem-Solving through Group Work: A Waitlist Controlled Trial. Int J Environ Res Public Health 2022;19(2):720.
58 Männistö M, Mikkonen K, Kuivila HM, et al. Digital collaborative learning in nursing education: a systematic review. Scand J Caring Sci 2020;34(2):280-292.
59 Posey L, Pintz C. Online teaching strategies to improve collaboration among nursing students. Nurse Educ Today 2006;26(8):680-7.
60 Yang KH, Ji X, Chavez F, et al. Effectiveness of a training program based on maker education for baccalaureate nursing students: A quasi-experimental study. Int J Nurs Sci 2018;6(1):24-30.
61 Chung S, Lee J, Lee HK. Personal Factors, Internet Characteristics, and Environmental Factors Contributing to Adolescent Internet Addiction: A Public Health Perspective. Int J Environ Res Public Health 2019;16(23):4635.
62 Arora G, Nawabi S, Uppal M, Javed MQ, Yakub SS, Shah MU. Dundee Ready Education Environment Measure of Dentistry: Analysis of Dental Students' Perception about Educational Environment in College of Dentistry, Mustaqbal University. J Pharm Bioallied Sci 2021;13(Suppl 2): S1544-S1550.
63 Mapuva J, Musyengwa L. Conquering the barriers to learning in higher education through e-learning). International Journal of Teaching and Learning in Higher Education,2009,21(2):221-227.
64 Schaefer KM, Zygmont D. Analyzing the teaching style of nursing faculty. Does it
promote a student-centered or teacher-centered learning environment? Nurs Educ Perspect 2003;24(5):238-45.

65 Hong K, Chen WQ, Zou Y. Application of SPOC and OSCE model in Pediatric Nursing Practice Teaching. Health Vocational Education 2022;40(02):100-2. Chinese

66 Alamrani MH, Alammar KA, Alqahtani SS, et al. Comparing the Effects of Simulation-Based and Traditional Teaching Methods on the Critical Thinking Abilities and Self-Confidence of Nursing Students. J Nurs Res 2018;26(3):152-7.

67 Huang HM, Cheng SF. Application of Flipped Classroom Teaching Strategy in Nursing Education. Hu Li Za Zhi 2018;65(6):5-12. Chinese
Table 1 Demographic characteristics of the participants (n=1,096)

Variables	Category	Frequency	Percentage (%)
Gender	Male	223	20.35
	Female	873	79.65
Class	Freshman	462	42.15
	Sophomore	634.00	57.85
Age	Mean ± SD: 19.34 ± 1.09, Range (16–22)		
Birthplace	Countryside	802	73.18
	Town	294	26.82
Do you plan to pursue this major in the future?	Yes	508	46.35
	No	141	12.86
	Uncertain	447	40.79
DREEM Domains	Full marks	Mean (SD)	Average scoring rate (%)
---------------	------------	-------------	--------------------------
SPL	48	29.01(6.46)	60.43
SPT	44	28.63(6.27)	65.07
SASP	32	17.81(4.54)	55.66
SPA	48	28.92(6.42)	60.25
SSSP	28	16.25(3.80)	58.04
Total DREEM score	200	120.60(24.72)	60.30

SPL: Students’ Perception of Learning; SPT: Students’ Perception of Teaching; SASP: Students’ Academic Self-Perceptions; SPA: Students’ Perceptions of Atmosphere; SSSP: Students’ Social Self-Perceptions
Table 3 Mean (SD) subscale and total score of SDL ability for nursing undergraduates

Sub-scales	Full marks	Mean (SD)	Average scoring rate (%)
Self-management ability	50	32.81 (5.56)	65.62
Information capability	55	34.71 (4.47)	63.11
Cooperative learning ability	35	21.73 (3.65)	62.09
Total score	140	89.25 (12.12)	63.75
Table 4 Pearson’s correlation coefficients between learning environment and SDL ability among nursing undergraduates

Sub-scales	Self-management ability	Information capability	Cooperative learning ability	Total score
SPL	0.608**	0.549**	0.555**	0.648**
SPT	0.532**	0.427**	0.411**	0.525**
SASP	0.565**	0.529**	0.585**	0.630**
SPA	0.590**	0.546**	0.546**	0.636**
SSSP	0.574**	0.520**	0.565**	0.625**
Total DREEM score	0.639**	0.570**	0.585**	0.680**

There was a significant correlation at 0.01 level (bilateral)
Table 5 Outcomes of canonical correlation analysis and likelihood ratio test

	Correlation	Proportion (%)	Cumulative	F	P
1	0.701	94.26	94.26	61.110	<0.001
2	0.221	4.96	99.22	7.976	<0.001
3	0.087	0.78	100.00	2.754	0.041
Table 6 Standardized coefficients of the first and second pairs of typical variables

SDL ability	Variables	typical variable 1	typical variable 2
DREEM (X)	SPL (X1)	-0.377	-0.122
	SPT (X2)	0.094	1.467
	SASP (X3)	-0.350	-0.491
	SPA (X4)	-0.212	-0.160
	SSSP (X5)	-0.240	-0.443
SDL ability (Y)	Self-management ability (Y1)	-0.470	1.287
	Information capability (Y2)	-0.299	-0.004
	Cooperative learning ability (Y3)	-0.357	-1.309
Table 7 Multiple linear regression analysis of educational environment on SDL ability among nursing students

Independent variables	B	SE	β	t	P*
Constant	48.820	2.659	18.360	<0.001	
SPL	0.493	0.095	0.263	5.208	<0.001
SPT	-0.140	0.079	-0.073	-1.780	0.075
SASP	0.654	0.098	0.245	6.695	<0.001
SPA	0.289	0.092	0.153	3.141	0.002
SSSP	0.535	0.126	0.168	4.253	<0.001

*The adjustment factors: gender, age, class, birthplace, and planning to pursue this major in the future. SPL: Students’ Perception of Learning; SPT: Students’ Perception of Teaching; SASP: Students’ Academic Self-Perceptions; SPA: Students’ Perceptions of Atmosphere; SSSP: Students’ Social Self-Perceptions; B: unstandardized coefficient; SE: standard error; β: standardized coefficient.
Figure legend/caption

Figure 1 Structure coefficient of canonical factors among nursing undergraduates

SPL: Students’ Perception of Learning; SPT: Students’ Perception of Teaching; SASP: Students’ Academic Self-Perceptions; SPA: Students’ Perceptions of Atmosphere; SSSP: Students’ Social Self-Perceptions; SDL: Self-directed learning
Figure 1 Structure coefficient of canonical factors among nursing undergraduates

SPL: Students’ Perception of Learning; SPT: Students’ Perception of Teaching; SASP: Students’ Academic Self-Perceptions; SPA: Students’ Perceptions of Atmosphere; SSSP: Students’ Social Self-Perceptions; SDL: Self-directed learning
STROBE Statement—Checklist of items that should be included in reports of cross-sectional studies

Item No	Recommendation	Page/line numbers
1	(a) Indicate the study’s design with a commonly used term in the title or the abstract	Lines 1-3, Page 1
	(b) Provide in the abstract an informative and balanced summary of what was done and what was found	Page 2
2	Explain the scientific background and rationale for the investigation being reported	Pages 4-5
3	State specific objectives, including any prespecified hypotheses	Lines 25-28, Page 5
4	Present key elements of study design early in the paper	Line 3, Page 6
5	Describe the setting, locations, and relevant dates, including periods of recruitment, exposure, follow-up, and data collection	Line 3, Page 6
6	(a) Give the eligibility criteria, and the sources and methods of selection of participants	Lines 4-10, Page 6
7	Clearly define all outcomes, exposures, predictors, potential confounders, and effect modifiers. Give diagnostic criteria, if applicable	Pages 6-7
8*	For each variable of interest, give sources of data and details of methods of assessment (measurement). Describe comparability of assessment methods if there is more than one group	Pages 6-7
9	Describe any efforts to address potential sources of bias	Lines 11-15, Page 6
10	Explain how the study size was arrived at	Lines 9-10, Page 6
11	Explain how quantitative variables were handled in the analyses. If applicable, describe which groupings were chosen and why	Lines 3-4, Page 8
12	(a) Describe all statistical methods, including those used to control for confounding	Lines 5-14, Page 8
	(b) Describe any methods used to examine subgroups and interactions	Lines 5-14, Page 8
	(c) Explain how missing data were addressed	NA
	(d) If applicable, describe analytical methods taking account of sampling strategy	NA
(e) Describe any sensitivity analyses

Results

Participants 13*
(a) Report numbers of individuals at each stage of study—e.g., numbers potentially eligible, examined for eligibility, confirmed eligible, included in the study, completing follow-up, and analysed
Lines 17-21, Page 8; Table 1
(b) Give reasons for non-participation at each stage
NA
(c) Consider use of a flow diagram
NA

Descriptive data 14*
(a) Give characteristics of study participants (e.g., demographic, clinical, social) and information on exposures and potential confounders
Lines 17-21, Page 8; Table 1
(b) Indicate number of participants with missing data for each variable of interest
NA

Outcome data 15*
Report numbers of outcome events or summary measures
Lines 28-29, Page 8; Lines 1-2, Page 9; Table 3

Main results 16
(a) Give unadjusted estimates and, if applicable, confounder-adjusted estimates and their precision (e.g., 95% confidence interval). Make clear which confounders were adjusted for and why they were included
Pages 8-10
(b) Report category boundaries when continuous variables were categorized
NA
(c) If relevant, consider translating estimates of relative risk into absolute risk for a meaningful time period
NA

Other analyses 17
Report other analyses done—e.g., analyses of subgroups and interactions, and sensitivity analyses
Pages 8-10

Discussion

Key results 18
Summarise key results with reference to study objectives
Lines 19-23, Page 10; Lines 18-22, Page 11; Lines 22-27, Page 12

Limitations 19
Discuss limitations of the study, taking into account sources of potential bias or imprecision. Discuss both direction and magnitude of any potential bias
Lines 16-26, Page 14

Interpretation 20
Give a cautious overall interpretation of results considering objectives, limitations, multiplicity of analyses, results from similar studies, and other relevant evidence
Pages 10-14

Generalisability 21
Discuss the generalisability (external validity) of
Lines 19-21, Page 14

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml
y the study results

Other information

Funding 22 Give the source of funding and the role of the funders for the present study and, if applicable, for the original study on which the present article is based. Lines16–20, Page15

*Give information separately for exposed and unexposed groups.

Note: An Explanation and Elaboration article discusses each checklist item and gives methodological background and published examples of transparent reporting. The STROBE checklist is best used in conjunction with this article (freely available on the Web sites of PLoS Medicine at http://www.plosmedicine.org/, Annals of Internal Medicine at http://www.annals.org/, and Epidemiology at http://www.epidem.com/). Information on the STROBE Initiative is available at www.strobe-statement.org.