COVID Isolation Eating Scale (CIES): Analysis of the impact of confinement in eating disorders and obesity—A collaborative international study

Fernando Fernández-Aranda1,2,3 | Lucero Munguía1,3 | Gemma Mestre-Bach1,4 | Trevor Steward5 | Mikel Etxandi1 | Isabel Baenas1,2 | Roser Granero2,6 | Isabel Sánchez1,2 | Emilio Ortega7,8 | Alba Andreu7 | Violeta L. Moize7,8 | Jose M Fernández-Real2,9 | Francisco J. Tinahones2,10 | Carlos Diegúez2,11 | Gema Frühbeck2,12 | Daniel Le Grange13 | Kate Tchanturia14,15 | Andreas Karwautz16 | Michael Zeiler16 | Angela Favaro17 | Laurence Claes18,19 | Koen Luyckx19,20 | Ia Shekriladze15 | Eduardo Serrano-Troncoso21 | Teresa Rangil22,23 | Maria Eulalia Loran Meler22 | Jose Soriano-Pacheco24,25 | Mar Carceller-Sindreu24,25 | Sara Bujalance-Arguijo26 | Meritxell Lozano27 | Raquel Linares27 | Carlota Gudiol28,29,3 | Jordi Carratala28,29,3 | Jessica Sanchez-Gonzalez1 | Paulo PP Machado30 | Anders Håkansson31,32 | Ferenc Túry33 | Bea Pászthy33,34 | Daniel Stein35 | Hana Papezová36 | Brigita Bax37 | Mikhail F. Borisenkov38 | Sergey V. Popov38 | Youl-Ri Kim39 | Michiko Nakazato40 | Nathalie Godart41,42,43 | Robert van Voren44 | Tetiana Ilnytska45 | Jue Chen46 | Katie Rowlands14 | Janet Treasure14 | Susana Jiménez-Murcia1,2,3

1Department of Psychiatry, Bellvitge University Hospital-IDIBELL, Barcelona, Spain
2CIBER Fisiopatología Obesidad y Nutrición (CIBERobn), Instituto de Salud Carlos III, Barcelona, Spain
3Department of Clinical Sciences, School of Medicine and Health Sciences, University of Barcelona, Barcelona, Spain
4Universidad Internacional de La Rioja, Logroño, La Rioja, Spain
5Melbourne School of Psychological Sciences, Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, Australia
6Department of Psychobiology and Methodology, School of Psychology, Universitat Autònoma de Barcelona, Barcelona, Spain
7Endocrinology and Nutrition Division, Hospital Clinic and Institut d’Investigacions Biomèdiques August Pi Sunyer (IDIBAPS), Barcelona, Spain
8Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Madrid, Spain
9Unit of Diabetes, Endocrinology and Nutrition, Hospital de Girona Dr. Josep Trueta and Institut d’Investigació Biomèdica de Girona (IDIBGI), Girona, Spain
10Department of Endocrinology and Nutrition, Virgen de la Victoria University Hospital and Instituto de Investigación Biomédica de Málaga (IBIMA), Málaga, Spain
11Department of Physiology, CIMUS, University of Santiago de Compostela-Instituto de Investigación Sanitaria, Santiago de Compostela, Spain
12Metabolic Research Laboratory, Clínica Universidad de Navarra, University of Navarra-IdiSNA, Pamplona, Spain
13Eating Disorders Program, Department of Psychiatry, University of California, San Francisco, California

Received: 3 August 2020 | Accepted: 4 August 2020
DOI: 10.1002/erv.2784
Confinement during the COVID-19 pandemic is expected to have a serious and complex impact on the mental health of patients with an eating disorder (ED) and of patients with obesity. The present manuscript has the following aims: (1) to analyse the psychometric properties of the COVID Isolation Eating Scale (CIES), (2) to explore changes that occurred due to confinement in eating symptomatology; and (3) to explore the general acceptance of the use of telemedicine during confinement. The sample comprised 121 participants (87 ED patients and 34 patients with obesity) recruited from six different centres. Confirmatory Factor Analyses (CFA) tested the rational-theoretical structure of the CIES.
Adequate goodness-of-fit was obtained for the confirmatory factor analysis, and Cronbach alpha values ranged from good to excellent. Regarding the effects of confinement, positive and negative impacts of the confinement depend on the eating disorder subtype. Patients with anorexia nervosa (AN) and with obesity endorsed a positive response to treatment during confinement, no significant changes were found in bulimia nervosa (BN) patients, whereas Other Specified Feeding or Eating Disorder (OSFED) patients endorsed an increase in eating symptomatology and in psychopathology. Furthermore, AN patients expressed the greatest dissatisfaction and accommodation difficulty with remote therapy when compared with the previously provided face-to-face therapy. The present study provides empirical evidence on the psychometric robustness of the CIES tool and shows that a negative confinement impact was associated with ED subtype, whereas OSFED patients showed the highest impairment in eating symptomatology and in psychopathology.

KEYWORDS
COVID Isolation Eating Scale, COVID-19, eating disorders, obesity

1 BACKGROUND

In just a few months, COVID-19 has become a global pandemic that has brought numerous challenges to health professionals and their patients. To stop the speed of the spread of the virus, most governments have chosen to place their populations under confinement, which has implied radical changes in social interactions and the way work was conducted. The final repercussions of confinement are still under investigation, though it is expected to have a significant impact on mental health for many.

Considering other health and humanitarian crises, such as the Ebola and H1N1 influenza epidemics, depression (Hewlett & Hewlett, 2005; Kinsman, 2012), isolation, fear of being infected, posttraumatic stress (Li et al., 2018; Raven, Wurie, & Witter, 2018; Main, 2011) and health anxiety (McDonnell, Nelson, & Schunk, 2012; Mihashi, 2009) have been some of the negative effects on mental health reported by the general population, health workers and survivors of past epidemics (Wu, 2009). Confinement has been found to increase the incidence of negative states such as irritability, insomnia, anger, depression symptoms, amongst others (Mihashi, 2009).

In response to the COVID-19 pandemic, several studies have already been carried out to explore the psychological effects of the pandemic and confinement. In the general population, anxiety, depression, stress, worry about being infected, worry about family members being infected, worry about financial stress stability, posttraumatic stress (Cao et al., 2020; Wang, Pan, et al., 2020; Wang, Di et al., 2020), but also mental health deterioration (Pierce, Hope, Ford, et al., 2020) and nutritional and activity patterns changes (Papandreou, Tsilidis, Arij, Aretouli, & Bulló, 2020), have been reported. Healthcare workers have emerged as a specific population in danger of suffering from psychological distress, depression, anxiety and insomnia (Inchausti, García-Poveda, Prado-Abril, & Sánchez-Reales, 2020; Lai et al., 2020; Rossi et al., 2020) and populations with a prior mental health condition may experience an increase in their symptomatology related to changes in the delivery of their usual treatment (De Girolamo et al., 2020; Fernández-Aranda et al., 2020).

It is important to consider that stay-at-home and social-distancing mandates have increased the frequency of several risk behaviours. The time available for engaging in potentially addictive behaviours, such as online gambling, gaming, and pornography (Håkansson, Fernández-Aranda, Menchón, Potenza, & Jiménez-Murcia, 2020; Király et al., 2020; Mestre-Bach, Blycker, & Potenza, 2020) has increased and these behaviours, along with the use of alcohol or other substances, may be used as coping strategies to avoid negative emotional states (Håkansson et al., 2020; King, Delfabbro, Billieux, & Potenza, 2020; Király et al., 2020; Sun et al., 2020). Although these behaviours do not constitute a risk for all individuals, the current situation may increase the risk for onset, maintenance, and relapse, especially for the most vulnerable individuals (Columb, Hussain, & O’Gara, 2020; Marsden et al., 2020), such as patients with...
an eating disorders and patients with obesity (Baenas et al., 2020; Graell et al., 2020; Cornejo-Pareja et al., 2020), as well as patients with less favourable family environments (Vintró-Alcaraz et al., 2018).

It has been hypothesised that the COVID-19 pandemic may exacerbate the risk factors for overeating and unhealthy weight gain, especially in vulnerable populations such as children and individuals with an eating disorder (ED) and obesity (Rundle, Park, Herbstman, Kinsey, & Wang, 2020, Graell et al., 2020). ED patients have already reported increased worries about the risk of being infected with COVID-19, disruptions in their work and treatment, the worsening of their ED symptoms, as well as heightened anxiety and stress (Fernández-Aranda et al., 2020). ED patients and individuals with obesity constitute vulnerable populations who require targeted approaches (Cornejo-Pareja et al., 2020). As an immediate emergency measure to address this situation, different telemedicine tools during the pandemic have been described within this population (Cooper et al., 2020; Smith, Ostinelli, Macdonald, & Cipriani, 2020), however there is a lack of studies looking at their effectiveness and acceptability by users.

New psychometric instruments have been developed to measure different features related to the Covid-19 pandemic, such as the contextual situation lived during the confinement, the changes occurring in the individuals' life and the impact on their health state. Some of these new scales are: the Fear of COVID-19 Scale (FCV-19S; Ahorsu et al., 2020; Sakib et al., 2020; Soraci et al., 2020), the COVID-19 Anxiety Scale (CAS; Chandu, Pachava, Vadapalli, & Marella, 2020), the COVID-19 Peritraumatic Distress Index (CPDI; Costantini & Mazzotti, 2020), the Coronavirus Impact Scale (CIS; Kaufman & Stoddard, 2020) and the COVID Stress Scales (CSS; Taylor et al., 2020), including COVID danger and contamination fears, COVID fears about economic consequences, COVID xenophobia, COVID compulsive checking and reassurance seeking, and COVID traumatic stress symptoms. However, to the best of our knowledge, no tool has yet been developed and validated to assess eating disorder symptomatology and treatment-related aspects in patients with an ED and obesity.

1.1 | Goals

The aims of this exploratory study were threefold: (1) to analyse the psychometric properties of the COVID Isolation Eating Scale (CIES), a newly created scale for measuring the impact of confinement; (2) to explore changes that occurred due to confinement (eating symptomatology and weight, attitudes and dysfunctional emotions, worries and concerns, anxiety and depressive symptomatology and addictive behaviours); (3) to explore the potential difficulties for participants in using telemedicine during confinement when usual health care was interrupted. Based on previous literature (Baenas et al., 2020; Fernández-Aranda et al., 2020; Temorshuizen et al., 2020; Mallorqui-Bague, 2018), we hypothesised that eating disorder subtype and obesity would achieve a moderator/interaction role in the changes occurred during the confinement: behavioural and emotional reactions, eating patterns-weight, anxiety and affective symptoms should be different depending on the ED subtype previous to the COVID-19 pandemic.

2 | METHODS

The data collection of this study was conducted between June and July 2020. Our study sample comprised 121 participants (87 ED patients and 34 patients with obesity), recruited from six different child-adolescent and adult units from the Barcelona (Spain) region. These centres are representative of the public and private sectors of ED treatment services in Barcelona. Participants were involved in ED treatment before the outbreak of COVID-19 and were asked by therapists from each centre if they were willing to voluntarily complete the study questionnaire. The ED sample was diagnosed according to DSM-5 criteria (American Psychiatric Association, 2013) by means of a semi-structured interview. Obese participants were bariatric surgery candidates who were recruited at the Endocrinological Unit at the Clinic Hospital of Barcelona.

The sex distribution was 104 women (86.0%) and 17 men (14.0%). The age range was broad (mean = 33.7, SD = 15.8), ranging from 13 to 77. The distribution of the ED diagnoses was as follows: 55 cases met criteria for anorexia nervosa (AN), 18 for bulimia nervosa (BN), 14 were diagnosed with an Other Specified Feeding or Eating Disorder (OSFED). Table S1 (supplementary material) contains the distribution of sex and age within the groups defined by diagnosis. No statistical differences by gender were obtained ($\chi^2 = 4.06, df = 3, p = .256$). However, chronological age was not equally distributed between groups ($F = 30.08, df = 3/117, p < .001$): obese patients were the oldest (mean = 48.8, SD = 12.9), followed by OSFED (mean = 36.9, SD = 16.4), BN (mean = 31.5, SD = 10.1) and AN (mean = 24.2, SD = 10.7) patients.

2.1 | Assessment

The COVID Isolation Eating Scale (CIES) is a self-report questionnaire that assesses the impact of confinement in patients with an eating disorder and/or
The study. Written and signed informed consent was obtained from all participants before taking part in the present study was approved by the Clinical Research Ethics Committee of Bellvitge University Hospital (PR239/20).

2.3 Procedure

The present study was approved by the Clinical Research Ethics Committee of Bellvitge University Hospital (PR239/20). Written and signed informed consent was obtained from all participants before taking part in the study.

2.2 Additional information

Socio-demographic/clinical information, including age, affiliation to the patient with an ED, and marital status, but also variables related to COVID and duration and type of the confinement was obtained along with the CIES questionnaire.

2.4 Statistical analysis

Statistical analyses were carried out with Stata16 for Windows (Stata Press, 2019). Based on the theoretical-rational method used to develop the CIES, confirmatory factor analyses (CFA) was used to verify the factor structure of the questionnaire. CFA was implemented through structural equation modelling, defining the maximum likelihood, and considering adequate goodness of fit for Root Mean squared Error of Approximation RMSEA < 0.08, Comparative Fit Index CFI > 0.90, Tucker-Lewis Index TLI > 0.90 and Standardised Root Mean Squared Residuals SRMR<0.10 (Barrett, 2007).

An initial CFA assumed the existence of five latent theoretical factors: Factor 1 was defined by 10 items measuring eating related symptoms (such as concerns about weight, attempts to reduce eating quantities and meals, presence of bingeing/purging, use of laxatives/diuretics, and exercise or other activities to control weight); Factor 2 was defined by 10 items measuring the effects of confinement on the eating related style (such as being unable to stop eating during the day, or between meals or certain foods); Factor 3 was defined by 11 items assessing anxiety and depressive symptoms (sleep problems, upsetting thoughts, loneliness, limited social contact, health concerns related to COVID-19, or sexual problems); Factor 4 was defined by five items related to emotion regulation (emotional control/awareness, anger/shame, aggressive behaviours and irritability); and Factor 5 was defined by 10 items to evaluate telemedicine (adequacy, motivation, satisfaction and usefulness). Factors F1, F2, F3 and F4 were also developed to allow for assessment prior and following COVID-19 confinement. However, it was not possible to test the initial single CFA for the five-dimension model, because the sample size was too small to verify this complex structure (fit was not obtained). According to the sample size, separate models were tested for each dimension, programming within the same model the measures for the pre- and the post-confinement to account for the expected correlations between both periods. Figure S1 (supplementary material) contains the path diagrams for the individual constructs tested in this manuscript.

The pre-post changes in the quantitative variables of the study were based on paired-sample t-tests for interval scaled variables, and on the McNemar test for categorical measures. The comparison between groups defined by the diagnosis (AN, BN, OSFED and obese) was based on analysis of variance analyses (ANOVA), with post-hoc pairwise comparisons estimated via Bonferroni’s procedure. For all these analyses, significant tests were
complemented with the estimation of the effect size through Cohen’s-\(d\) coefficient, considering null effect for \(|d| < 0.20\), low-poor for \(|d| > 0.20\), mild-medium for \(|d| > 0.50\) and large-high for \(|d| > 0.80\) (Cohen, 1988; Kelley & Preacher, 2012; Granero, 2020).

3 │ RESULTS

3.1 │ Characteristics of the participants during the COVID-19 confinement

During the lockdown period, 30 (24.8%) participants lived alone, and 32 (26.4%) lived with one or two people at home, 29 (24.0%) lived with three people, and the remaining 30 participants (24.8%) lived with more than three people. Most participants were not infected by COVID-19 (\(n = 115, 95.0\%\)) and most had no infections amongst people close to them (\(n = 94, 77.7\%\)). Most participants did not report a caring role during the confinement (\(n = 84, 69.4\%\)). 58% (70 participants) continued to work and 69% (83 participants) had no financial loss. No statistical differences between groups were observed for these contextual variables during lockdown (Table S1, supplementary material, contains the frequency distribution within the groups).

3.2 │ Psychometric properties of the CIES

The factorial analyses confirmed the rational-theoretical structure for the CIES. All the items obtained significant factor loadings for their specific factor (Table S2, supplementary material, includes the standardised coefficients, standard errors, \(p\)-values and 95% confidence intervals). The upper block of Table 1 includes the fit indices of the CFAs and the internal consistency coefficients of the factors/scales: adequate goodness-of-fit was obtained, and Cronbach alpha coefficients ranged from good (\(\alpha = 0.81\), for the factor F1-impacts at pre-confinement) to excellent (\(\alpha = 0.92\), for F2-changes in eating at pre-confinement). The bottom block of Table 1 contains the correlation matrix for the factor scores. Relevant positive correlations (with \(|R|\) coefficients above 0.24) were obtained for the factors F1, F2, F3 and F4, for both at pre-confinement and after the confinement, with the only exception of F1-post which did not correlate with F3-pre and F4-pre. However,

| TABLE 1 │ Internal consistency, fitting indexes in the CFA and correlation-matrix for CIES scores |
|-----------|---|
| | Cronbach-alpha | Fitting indices | Correlation-matrix |
| | Pre | Post | RMSEA | CFI | TLI | SRMR |
| F1. Impact on ED symptoms | .805 | .806 | .061 | .937 | .917 | .088 |
| F2. Changes - eating | .922 | .910 | .072 | .941 | .924 | .080 |
| F3. Changes- anxiety/depression | .865 | .857 | .093 | .961 | .950 | .089 |
| F4. Changes- emotion regulation | .826 | .836 | .012 | .999 | .998 | .042 |
| F5. Evaluation telemedicine | .939 | | .033 | .983 | .964 | .036 |
| F1. Pre-impact on ED symptoms | F2pre | F3pre | F4pre | F1post | F2post | F3post | F4post | F5 |
| F2. Pre-changes—eating | — | — | .401 | .547 | .480 | .278 | .256 | .006 |
| F3. Pre-changes—anxiety/depression | — | — | .498 | .451 | .657 | .341 | .338 | .160 |
| F4. Pre-changes—emotional regulation | — | — | .736 | .144 | .345 | .729 | .549 | -.032 |
| F1. Post-impact on ED symptoms | — | — | .656 | .365 | .331 | — | .120 |
| F2. Post-changes—eating | — | — | .528 | .444 | — | .746 | — | -.208 |
| F3. Post-changes—anxiety/depression | — | — | — | .765 | — | — | .183 |
| F4. Post-changes—emotion regulation | — | — | — | — | — | |
| F5. Evaluation telemedicine | — | — | — | |

Abbreviations: CFI, comparative fit index; RMSEA, root mean squared error of approximation; SRMR, standardised root mean squared residual; TLI, Tucker-Lewis Index.

Note: Bold values indicate correlation coefficient with an effect size in the moderate (\(|R| > 0.24\)) to high (\(|R| > 0.37\)) range.
| | Pre | | | Post | | | p | |d| |
|----------------------|-----|--------|------------------|------|--------|------------------|-----|---|
| | Mean | SD | | Mean | SD | | | |
| Anorexia (n = 55) | | | | | | | | |
| Weight (kg) | 49.16| 6.91 | | 50.27| 6.52 | | .056| .17|
| BMI (kg/m²) | 18.25| 2.25 | | 18.67| 2.14 | | .058| .19|
| CIES-F1 impact ED symptoms | 11.87| 6.79 | | 9.40 | 5.61 | .015 | .40 |
| CIES-F2 changes—eating | 8.76 | 9.61 | | 6.11 | 6.94 | .023 | .32 |
| CIES-F3 changes—anxiety-depression | 18.29| 9.69 | | 17.80| 9.64 | .662 | .05 |
| CIES-F4 changes—emotion regulation | 9.47 | 4.63 | | 8.33 | 4.86 | .046 | .24 |
| Tobacco | 15 | 27.3% | | 15 | 27.3% | 1.00 | 0 | 0.00 |
| Alcohol | 6 | 10.9% | | 5 | 9.1% | 1.00 | 1.00| 0.06 |
| Other illegal drugs | 4 | 7.3% | | 3 | 5.5% | 1.00 | 0.00| 0.07 |
| Addictive behaviours | 25 | 45.5% | | 31 | 56.4% | .180 | 0.22| 0.05 |
| Bulimia (n = 18) | | | | | | | | |
| Weight (kg) | 65.26| 10.93 | | 66.22| 11.81 | .230 | 0.08| 0.09 |
| BMI (kg/m²) | 24.13| 3.75 | | 24.47| 4.02 | .243 | 0.09| 0.08 |
| CIES-F1 impact ED symptoms | 15.72| 6.31 | | 14.94| 6.04 | .617 | 0.13| 0.13 |
| CIES-F2 changes—eating | 19.50| 9.75 | | 17.72| 7.51 | .306 | 0.20| 0.20 |
| CIES-F3 changes—anxiety-depression | 18.61| 8.89 | | 20.22| 7.12 | .125 | 0.20| 0.20 |
| CIES-F4 changes—emotion regulation | 9.33 | 4.19 | | 9.56 | 4.26 | .521 | 0.05| 0.05 |
| Tobacco | 5 | 27.8% | | 5 | 27.8% | 1.00 | 0 | 0.00 |
| Alcohol | 6 | 33.3% | | 6 | 33.3% | 1.00 | 1 | 0.00 |
| Other illegal drugs | 1 | 5.6% | | 1 | 5.6% | 1.00 | 1 | 0.00 |
| Addictive behaviours | 12 | 66.7% | | 13 | 72.2% | .180 | 0.12| 0.12 |
| OSFED (n = 14) | | | | | | | | |
| Weight (kg) | 63.07| 8.99 | | 62.91| 8.48 | .926 | 0.02| 0.02 |
| BMI (kg/m²) | 23.40| 3.38 | | 23.30| 2.84 | .886 | 0.03| 0.03 |
| CIES-F1 impact ED symptoms | 12.29| 6.60 | | 13.14| 8.37 | .602 | 0.11| 0.11 |
| CIES-F2 changes—eating | 11.57| 10.80 | | 13.36| 12.68 | .140 | 0.15| 0.15 |
| CIES-F3 changes—anxiety-depression | 14.07| 10.23| | 18.21| 10.54 | .071 | 0.40| 0.40 |
| CIES-F4 changes—emotion regulation | 5.14 | 4.28 | | 6.36 | 4.80 | .066 | 0.27| 0.27 |
| Tobacco | 6 | 42.9% | | 6 | 42.9% | 1.00 | 0 | 0.00 |
| Alcohol | 3 | 21.4% | | 4 | 28.6% | 1.00 | 1.00| 0.17 |
| Other illegal drugs | 0 | 0.0% | | 0 | 0.0% | 1.00 | 1.00| 0.00 |
| Addictive behaviours | 7 | 50.0% | | 9 | 64.3% | .500 | 0.29| 0.29 |
| OBESE (n = 34) | | | | | | | | |
| Weight (kg) | 109.62| 20.51 | | 106.46| 19.61 | .035 | 0.16| 0.16 |
| BMI (kg/m²) | 41.15| 7.37 | | 39.94| 6.86 | .037 | 0.17| 0.17 |
| CIES-F1 impact ED symptoms | 13.29| 6.06 | | 13.56| 6.21 | .645 | 0.04| 0.04 |
| CIES-F2 changes—eating | 14.00| 10.40 | | 9.82 | 9.40 | .017 | 0.42| 0.42 |
| CIES-F3 changes—anxiety-depression | 14.29| 9.80 | | 14.00| 10.33 | .765 | 0.03| 0.03 |
| CIES-F4 changes—emotion regulation | 4.65 | 4.69 | | 4.06 | 4.36 | .280 | 0.13| 0.13 |

(Continues)
3.3 | Impact of the COVID-19 on eating related behaviours

Table 2 contains the main changes in weight, BMI, CIES factors F1 to F4, the consumption of substances and the presence of other addictive behaviours. Separate analyses were performed according to the diagnostic subtype, since it was hypothesised that the diagnosis could influence pre-post differences. Within AN patients, significant decreases after the confinement due to COVID-19 were found for the factors F1 (impact on eating symptoms), F2 (changes in eating style) and F4 (changes in emotion regulation). Obese patients also reported a significant decrease in weight, BMI and changes in the eating style. However, no significant changes emerged for the BN and OSFED patients.

Table 2 (Continued)

Anorexia (n = 55)	Pre	Post				
	Mean	SD	Mean	SD	p	d
Tobacco	5	14.7%	4	11.8%	1.00	0.09
Alcohol	6	17.6%	4	11.8%	.500	0.17
Other illegal drugs	1	2.9%	0	0.0%	1.00	0.34
Addictive behaviours	23	67.6%	23	67.6%	1.00	0.00

Table 4 contains information about the evaluation of alternatives to face to face therapy. Patients with AN, found these alternatives the least acceptable whereas people with obesity and OSFED patients were more satisfied with these alternatives.

4 | DISCUSSION

This study was prompted by the need to assess the effects of confinement due to the COVID-19 pandemic in vulnerable patients with ED and obesity (Cornejo-Pareja et al., 2020; Fernández-Aranda et al., 2020; Todisco & Donini, 2020). The three main aims were to first establish the psychometric properties of the specifically developed assessment measure (CIES), second to measure the changes in eating and general symptomatology, and thirdly to establish the acceptability of remote interventions.

The CFA confirmed the rational-theoretical structure of CIES into five-factors (impact on eating symptoms, changes in eating style, changes in anxiety/depression symptoms, changes in emotion regulation and evaluation of telemedicine), obtaining adequate goodness-of-fit.
Other attributes of validity of this tool should be analysed in future research (such as the convergent, discriminant and predictive validity, assessing the relationship between the CIES scores with other external measures related with eating behaviours).

The impact of confinement was mixed and varied by diagnosis. In contrast to other studies (Rodgers et al., 2020), the disordered eating improved during the COVID-19 pandemic. Patients with obesity had a significant decrease both in weight/BMI and in eating psychopathology. This may be due to the fact that candidates for bariatric surgery were receiving ongoing nutritional management, and were selected based on minimal psychopathology. Also the findings from AN and BN patients do not align with previous studies which found a worsening in dietary restriction (Temorshuizen et al., 2020) and heightened psychological distress (Clark Bryan et al., 2020; Pierce et al., 2020). In the present study, AN and BN participants, did not present significant changes in weight/ BMI. In this study people with AN, reported a significant decrease in ED symptomatology and in emotion dysregulation after confinement. Factors such as younger age and how participants were dealing with external control environments, might be associated (Darrow, Accurso, Nauman, Goldschmidt, & Le Grange, 2017; Treasure, Gavan, Todd, & Schmidt, 2003). Interestingly, OSFED patients reported most adverse effects on eating behaviours and anxiety-depressive symptoms after confinement. As reported previously in the literature (Riesco et al., 2018), clinicians may need to pay special attention to subthreshold cases, who may be more sensitive to adverse environments (Claes, Boekaerts, Verschueren, Boukaert, & Luyckx, 2019; Strand, von Hausswolff-Juhlin, Fredlund, & Lager, 2019; Vanzhula, Calebs, Fewell, & Levinson, 2019).

Finally, although most patients reported being satisfied with the remote treatment used during the pandemic, in concordance with previous studies (Linardon, Shatte, Tepper, & Fuller-Tyszkiewicz, 2020), patients with AN were the least comfortable with the change. Other studies have reported on the distress caused by premature discharge from inpatient care.

Table 3
Comparison of the differences (post-pre changes) for the weight and the CIES factor scores

	Anorexia (AN)	Bulimia (BN)	OSFED	Obesity (OBES)	Significant Pairwise
N = 55	N = 18	N = 14	N = 34		
Weight (kg)	1.11	4.23	0.96	3.27	−0.16 6.48 −3.16 8.38 OBES ≠ (AN=BN=OSFED)
BMI (kg/m²)	0.43	1.63	0.35	1.22	−0.10 2.51 −1.21 3.24 OBES ≠ (AN=BN=OSFED)
CIES-F1 impact ED symptoms	−2.47	7.31	−0.78	6.48	0.86 6.00 0.26 3.31 AN ≠ (BN=OSFED = OBES)
CIES-F2 changes—eating	−2.65	8.38	−1.78	7.14	1.79 4.25 −4.18 9.70 OSFED ≠ (AN=BN) ≠ OBES
CIES-F3 changes—anx-dep.	−0.49	8.29	1.61	4.23	4.14 7.89 −0.29 5.70 OSFED ≠ (AN=BN=OBES)
CIES-F4 changes—emotion	−1.15	4.15	0.22	1.44	1.21 2.26 −0.59 3.12 OSFED ≠ (AN=BN=OBES)

Abbreviations: OSFED, other specified feeding eating disorder.

Table 4
Comparison of the CIES F5 evaluation of telemedicine between the groups

	Anorexia (AN)	Bulimia (BN)	OSFED	Obesity
n = 55	n = 18	n = 14	n = 34	
Mean	25.58	28.61	29.50	28.97
SD	10.40	6.46	9.53	7.25
Pairwise	p	d		
Anorexia vs bulimia	.218	0.35		
Anorexia vs OSFED	.148	0.39		
Anorexia vs obesity	.047*	0.38		
Bulimia vs OSFED	.782	0.11		
Bulimia vs obesity	.891	0.05		
OSFED vs obesity	.853	0.06		

Abbreviation: OSFED, other specified feeding eating disorder.
with a lack of preparation (Clark Bryan et al., 2020). This sensitivity to change may be related with specific temperamental traits, such as managing uncertainty and may be specific therapy targets in future interventions (Baenas et al., 2020; Brown et al., 2017; Kannarkat, Smith, & McLeod-Bryant, 2020).

4.1 | Limitations

Despite the novelty of this study, several limitations should be considered in the present study: memory bias due to the retrospective nature of the assessment, limited sample size and heterogeneity of the patient groups analysed.

5 | CONCLUSIONS

The present study provides empirical evidence on the psychometric robustness of the CIES tool. The effects of confinement, varied by ED subtype. Patients with AN and those with obesity endorsed a positive response whereas OSFED patients showed the highest deterioration in eating symptomatology and in psychopathology. Furthermore, AN patients expressed the greatest dissatisfaction with adjustment to remote therapy.

The administration of the CIES in populations with ED and obesity may inform clinicians about how to prepare for adjustments to future environmental challenges. Further studies may need to be conducted in different countries with larger samples in order to be able to generalise these results.

ACKNOWLEDGEMENTS

We thank CERCA Programme/Generalitat de Catalunya for institutional support. This manuscript and research was supported by grants from the Ministerio de Economía y Competitividad (PSI2015-68701-R), Instituto de Salud Carlos III (ISCIII) (INT19/00046 and PI17/01167) and co-funded by FEDER funds /European Regional Development Fund (ERDF), a way to build Europe. CIBERobn, CIBERSam and CIBERDEM are all initiatives of ISCIII. GMB is supported by a postdoctoral grant from FUNCIVA. This initiative is supported by Generalitat de Catalunya. LM is supported by a postdoctoral grant of the Mexican institution Consejo Nacional de Ciencia y Tecnología (CONACYT). PPM was supported, in part, by a Portuguese Foundation for Science and Technology grant (POCI-01-0145-FEDER-028145). IB was partially supported by a Post-Residency Grant from Research Committee of the University Hospital of Bellvitge (HUB; Barcelona, Spain) 2019-2020. The funders had no role in the study design, data collection and analysis, decision to publish, or preparation of the manuscript.

ORCID

Fernando Fernández-Aranda https://orcid.org/0000-0002-2968-9898
Lucero Munguía https://orcid.org/0000-0002-9751-810X
Gemma Mestre-Bach https://orcid.org/0000-0001-5345-0484
Trevor Steward https://orcid.org/0000-0003-3116-8175
Isabel Baenas https://orcid.org/0000-0001-7415-0616
Roser Granero https://orcid.org/0000-0001-6308-3198
Isabel Sánchez https://orcid.org/0000-0001-5874-8204
Emilio Ortega https://orcid.org/0000-0002-2217-8905
Jose M Fernández-Real https://orcid.org/0000-0002-7442-9323
Francisco J. Tinahones https://orcid.org/0000-0001-6871-4403
Carlos Diegüez https://orcid.org/0000-0002-0919-4337
Gema Frühbeck https://orcid.org/0000-0002-8305-7154
Daniel Le Grange https://orcid.org/0000-0001-7293-9496
Kate Tchanturia https://orcid.org/0000-0001-8988-3265
Andreas Karwautz https://orcid.org/0000-0001-9053-998X
Michael Zeiler https://orcid.org/0000-0002-7087-6134
Angela Favaro https://orcid.org/0000-0002-6540-5194
Laurence Claes https://orcid.org/0000-0002-2287-3158
Koen Luyckx https://orcid.org/0000-0001-8862-5598
Eduardo Serrano-Troncoso https://orcid.org/0000-0002-4935-7348
Jose Soriano-Pacheco https://orcid.org/0000-0002-5995-6977
Carlota Gudiol https://orcid.org/0000-0003-3095-4422
Jordi Carratala https://orcid.org/0000-0003-3209-2563
Paulo PP Machado https://orcid.org/0000-0003-4277-9203
Anders Håkansson https://orcid.org/0000-0002-5800-8975
Hana Papezová https://orcid.org/0000-0001-8145-3295
Mikhail F. Borisenkow https://orcid.org/0000-0002-4310-2010
Youl-Ri Kim https://orcid.org/0000-0002-5538-7180
Nathalie Godart https://orcid.org/0000-0002-7233-6991
Robert van Voren https://orcid.org/0000-0001-9010-3115
Janet Treasure https://orcid.org/0000-0003-0871-4596
Susana Jiménez-Murcia https://orcid.org/0000-0002-3596-8033
REFERENCES
Ahorsu, D. K., Lin, C. Y., Imani, V., Saffari, M., Griffiths, M. D., & Pakpour, A. H. (2020). The fear of COVID-19 scale: Development and initial validation. *International Journal of Mental Health and Addiction*, 27, 1–9. https://doi.org/10.1007/s11469-020-00270-8

American Psychiatric Association. (2013). *Diagnostic and statistical manual of mental disorders* (5th ed.). Arlington, VA: American Psychiatric Publishing.

Baenas, I., Caravaca-Sanz, E., Granero, R., Sánchez, I., Riesco, N., Testa, G., ... Fernández-Aranda, F. (2020). COVID-19 and eating disorders during confinement: Analysis of factors associated with resilience and aggravation of symptoms (2020). *European Eating Disorders Review*. https://doi.org/10.1002/erv.2771

Barrett, P. (2007). Structural equation modelling: Adjudging model fit. *Personality and Individual Differences*, 42(5), 815–824. https://doi.org/10.1016/j.paid.2006.09.018

Brown, M., Robinson, L., Campione, G. C., Wuensch, K., Hildebrandt, T., & Miccai, N. (2017). Intolerance of uncertainty in eating disorders: A systematic review and meta-analysis. *European Eating Disorders Review*, 25, 329–343. https://doi.org/10.1002/erv.2523

Cao, W., Fang, Z., Hou, G., Han, M., Xu, X., Dong, J., & Zheng, J. (2020). The psychological impact of the COVID-19 epidemic on college students in China. *Psychiatry Research*, 287, 112934. https://doi.org/10.1016/j.psychres.2020.112934

Chandu, V. C., Pachava, S., Vadapalli, V., & Marella, Y. (2020). Development and initial validation of the COVID-19 anxiety scale. *Indian Journal of Public Health*, 64, S201–S204. https://doi.org/10.4103/ijph.IJPJH_492_20

Claes, L., Boekaerts, E., Verschuereen, M., Boukaert, W., & Luyckx, K. (2019). Identity statuses in prehospital patients with obesity: Associations with eating disorder symptoms, psychological complaints, and coping behaviour? *European Eating Disorders Review*, 27, 410–420. https://doi.org/10.1002/erv.2681

Clark Bryan, D., Macdonald, P., Ambwani, S., Cardi, V., Rowlands, K., Willmott, D., & Treasure, J. (2020). Exploring the ways in which COVID-19 and lockdown has affected the lives of adult patients with anorexia nervosa and their carers. *European Eating Disorders Review*. https://doi.org/10.1002/erv.2762

Cohen, J. (1988). *Statistical power for the behavioral sciences* (2nd ed.). Hillsdale, NJ: Lawrence Erlbaum and Associates.

Columb, D., Hussain, R., & O’Gara, C. (2020). Addiction psychiatry and COVID-19-impact on patients and service provision. *Irish Journal of Psychological Medicine*, 21, 1–5. https://doi.org/10.1017/ipm.2020.47

Cooper, M., Reilly, E. E., Siegel, J. A., Coniglio, K., Sadeh-Sharvit, S., Pseysky, E. M., & Anderson, L. M. (2020). Eating disorders during the COVID-19 pandemic and quarantine: An overview of risks and recommendations for treatment and early intervention. *Eating Disorders*, 9, 1–23. https://doi.org/10.1080/10640266.2020.1790271

Cornejo-Pareja, I.M., Gómez-Pérez, A.M., Fernández-Garcia, J.C., Barahona San Millan, R., Aguilera Luque, A., de Hollandia, A., Jiménez, A., Jiménez-Murcia, S., Munguia, L., Ortega, E., Fernandez-Aranda, F., Fernández Real, J.M. and Tinahones, F. (2020). Coronavirus disease 2019 (COVID-19) and obesity. Impact of obesity and its main comorbidities in the evolution of the disease. *European Eating Disorders Review*, 28; https://wiley.eproofing.in/Proof.aspx?token=2c878bf8630444d9e53479a04fd632001224623

Costantini, A., & Mazzotti, E. (2020). Italian validation of CoViD-19 Peritraumatic distress index and preliminary data in a sample of general population. *Rivista di Psichiatria*, 55(3), 145–151. https://doi.org/10.1708/3382.33570

Darrow, S. M., Accurso, E. C., Nauman, E. R., Goldschmidt, A. B., & Le Grange, D. (2017). Exploring types of family environments in youth with eating disorders. *European Eating Disorders Review*, 25, 389–396. https://doi.org/10.1002/erv.2531

De Girolamo, G., Cerveri, G., Clerici, M., Monzani, E., Spinozatti, F., Starace, F., ... Vita, A. (2020). Mental health in the coronavirus disease 2019 emergency – the Italian response. *JAMA Psychiatry*. https://doi.org/10.1001/jamapsychiatry.2020.1276

Fernández-Aranda, F., Casas, M., Claes, L., Bryan, D. C., Favaro, A., Granero, R., ... Treasure, J. (2020). COVID-19 and implications for eating disorders. *European Eating Disorders Review*, 28(3), 239–245. https://doi.org/10.1002/erv.2738

Forte, G., Favieri, F., Tambelli, R., & Casagrande, M. (2020). COVID-19 pandemic in the Italian population: Validation of a post-traumatic stress disorder questionnaire and prevalence of PTSD symptomatology. *International Journal of Environmental Research and Public Health*, 17(11), 4151. https://doi.org/10.3390/ijerph17114151

Granero, R., Treasure, J., Claes, L., Favaro, A., Jiménez-Murcia, S., Karwautz, A., ... Fernández-Aranda, F. (2020). Null hypothesis significance tests, a misleading approach to scientific knowledge: Some implications for eating disorders research. *European Eating Disorders Review*, 28(3), 483–491. http://dx.doi.org/10.1002/erv.2782

Græll, M., Morón-Nozaleda, M. G., Camarneiro, R., Villaseñor, Á., Yañez, S., Muñoz, ... Faya, M. (2020). Children and adolescents with eating disorders during COVID-19 confinement: Difficulties and future challenges. *European Eating Disorders Review*, http://dx.doi.org/10.1002/erv.2763.

Håkansson, A., Fernández-Aranda, F., Menchón, J. M., Potenza, M. N., & Jiménez-Murcia, S. (2020). Gambling during the COVID-19 crisis - a cause for concern? *Journal of Addiction Medicine, Publish Ahead of Print*, 14, e10–e12. https://doi.org/10.1097/adm.0000000000000690

Hewlett, B. L., & Hewlett, B. S. (2005). Providing care and facing death: Nursing during Ebola outbreaks in Central Africa. *Journal of Transcultural Nursing*, 16(4), 289–297. https://doi.org/10.1177/104365905278935

Inchausti, F., García-Poveda, N. V., Prado-Abril, J., & Sánchez-Reales, S. (2020). La Psicología Clínica ante la Pandemia COVID-19 en España. *Clínica y Salud*, 31, 105–107. https://doi.org/10.5093/clysa2020a11

Kannarkat, J. T., Smith, N. N., & McLeod-Bryant, S. A. (2020). Mobile psychiatry services in America: An overview of risks and recommendations for treatment and early intervention. *Journal of Psychological Medicine*, 52(16), 1677/1043659605278935

Kornreich-Krakowski, E., Lev, R., & Meron, H. (2020). Mobilization of Telepsychiatry in response to COVID-19—Moving toward 21st century access to care. *Administration and Policy in Mental Health and Mental Health Services Research*, 47(4), 489–491. https://doi.org/10.1007/s10488-020-01044-z
Kaufman J, Stoddard J. (2020). The Coronavirus Impact Scale. Retrieved from https://disasterinfo.nlm.nih.gov/search/?source=2587.

Kelley, K., & Preacher, K. (2012). On effect size. Psychological Methods, 17(2), 137–152. https://doi.org/10.1037/a0028086

King, D. L., Delfabbro, P. H., Billieux, J., & Potenza, M. N. (2020). Problematic online gaming and the COVID-19 pandemic. Journal of Behavioral Addictions, 9, 184–186. https://doi.org/10.1556/2006.2020.00016

Kinsman, J. (2012). “A time of fear”: Local, national, and international responses to a large Ebola outbreak in Uganda. Globalization and Health, 8, 1–12. https://doi.org/10.1186/1744-8603-8-15

Király, O., Potenza, M. N., Stein, D. J., King, D. L., Hodgins, D. C., Saunders, J. B., ... Demetrovics, Z. (2020). Preventing problematic internet use during the COVID-19 pandemic: Consensus guidance. Comprehensive Psychiatry, 100, 152180. https://doi.org/10.1016/j.comppsych.2020.152180

Li, Y., Wang, H., Jin, X. R., Li, X., Pender, M., Song, C. P., ... Wang, Y. G. (2020). Experiences and challenges in the health protection of medical teams in the Chinese Ebola treatment center, Liberia: A qualitative study. Infectious Diseases of Poverty, 7, 1–12. https://doi.org/10.1186/s40249-018-0468-6

Linardon, J., Shatte, A., Tepper, H., & Fuller-Tyszkiewicz, M. (2020). A survey study of attitudes toward, and preferences for, e-therapy interventions for eating disorder psychopathology. International Journal of Eating Disorders, 53(6), 907–916. https://doi.org/10.1002/eat.23268

Main, A., Zhou, Q., Ma, Y., Luecken, L. J., & Liu, X. (2011). Relations of sars-related stressors and coping to chinese college students’ psychological adjustment during the 2003 Beijing sars epidemic. Journal of Counseling Psychology, 58(3), 410–423. https://doi.org/10.1037/a0023632

Malloquí-Bagué, N., Vintró-Alcaraz, C., Sánchez, I., Riesco, N., Agüera, Z., Granero, R., ... Fernández-Aranda, F. (2018). Emotion regulation as a Transdiagnostic feature among eating disorders: Cross-sectional and longitudinal approach. European Eating Disorders Review, 26(1), 53–61. https://doi.org/10.1002/erv.2570

Marsden, J., Darke, S., Hall, W., Hickman, M., Holmes, J., Humphreys, K., ... West, R. (2020). Mitigating and learning from the impact of COVID-19 infection on addictive disorders. Addiction, 115(6), 1007–1010. https://doi.org/10.1111/add.15080

McDonnell, W. M., Nelson, D. S., & Schunk, J. E. (2012). Should we fear “flu fear” itself? Effects of H1N1 influenza fear on ED use. American Journal of Emergency Medicine, 30(2), 275–282. https://doi.org/10.1016/j.ajem.2010.11.027

Mestre-Bach, G., Blyccker, G. R., & Potenza, M. N. (2020). Pornography use in the setting of the COVID-19 pandemic. Journal of Behavioral Addictions, 9, 181–183. https://doi.org/10.1556/2006.2020.00015

Mihashi, M., Otsubo, Y., Yinjuan, X., Nagatomi, K., Hoshiko, M., & Ishitate, T. (2009). Predictive factors of psychological disorder development during recovery following SARS outbreak. Health Psychology, 28(1), 91–100. https://doi.org/10.1037/a0013674

Papandreou, C., Tsilidis, K. K., Arjia, V., Aretoul, E., & Bulló, M. (2020). Comparing eating behaviours, and symptoms of depression and anxiety between Spain and Greece during the COVID-19 outbreak: Cross-sectional analysis of two different confinement strategies. European Eating Disorders Review. https://doi.org/10.1002/erv.2772

Pierce, M., Hope, H., Ford, T., Hatch, S., Hotopf, M., John, A., ... Abel, K. M. (2020). Mental health before and during the COVID-19 pandemic: a longitudinal probability sample survey of the UK population. The Lancet Psychiatry. http://dx.doi.org/10.1016/s2215-0366(20)30308-4

Raven, J., Wurie, H., & Witter, S. (2018). Health workers’ experiences of coping with the Ebola epidemic in Sierra Leone’s health system: A qualitative study. BMC Health Services Research, 18, 1–9. https://doi.org/10.1186/s12913-018-3072-3

Riesco N., Agüera, Z., Granero, R., Jiménez-Murcia, S., Menchón, J. M., Fernández-Aranda, F. (2018). Other Specified Feeding or Eating Disorders (OSFED): Clinical heterogeneity and cognitive-behavioral therapy outcome. European Psychiatry, 54, 109–116. http://dx.doi.org/10.1016/j.eurpsy.2018.08.001

Rodgers, R. F., Lombardo, C., Cerolini, S., Franko, D. L., Omori, M., Fuller-Tyszkiewicz, M., ... Guillaume, S. (2020). The impact of the COVID-19 pandemic on eating disorder risk and symptoms. International Journal of Eating Disorders, 53(7), 1166–1170. https://doi.org/10.1002/eat.23318

Rossi, R., Socci, V., Pacitti, F., Di Lorenzo, G., Di Marco, A., Siracusano, A., & Rossi, A. (2020). Mental health outcomes among frontline and second-line health care workers during the coronavirus disease 2019 (COVID-19) pandemic in Italy. JAMA Network Open, 3(5), e2010185. https://doi.org/10.1001/jamanetworkopen.2020.10185

Rundle, A. G., Park, Y., Herbstman, J. B., Kinsey, E. W., & Wang, Y. C. (2020). COVID-19-related school closings and risk of weight gain among children. In Obesity (Vol. 28, Issue 6, pp. 1008–1009). Blackwell Publishing Inc. https://doi.org/10.1002/oby.22813

Sakib, N., Bhuiyan, A. K. M. I., Hossain, S., Al Mamun, F., Hosen, I., Abdullah, A. H., ... Mamun, M. A. (2020). Psychometric validation of the Bangla fear of COVID-19 scale: Confirmatory factor analysis and Rasch analysis. International Journal of Mental Health and Addiction. https://doi.org/10.1007/s11469-020-00289-x

Smith, K., Ostinelli, E., Macdonald, O., & Cipriani, A. (2020). COVID-19 and telepsychiatry: An evidence-based guidance for clinicians. JMIR Mental Health. https://doi.org/10.2196/21108

Soraci, P., Ferrari, A., Abbiati, F. A., Del Fante, E., De Pace, R., Urso, A., & Griffiths, M. D. (2020). Validation and psychometric evaluation of the Italian version of the fear of COVID-19 scale. International Journal of Mental Health and Addiction, 1–10. https://doi.org/10.1007/s11469-020-00277-1

Stata Press. (2019). Stata statistical software: Release 16. Texas: StataCorp LLC.
Sun, Y., Li, Y., Bao, Y., Meng, S., Sun, Y., Schumann, G., ... Shi, J. (2020). Brief report: Increased addictive internet and substance use behavior during the COVID-19 pandemic in China. *The American Journal on Addictions*, 29(4), 268–270. https://doi.org/10.1111/ajad.13066

Taylor, S., Landry, C. A., Paluszek, M. M., Fergus, T. A., McKay, D., & Asmundson, G. J. G. (2020). Development and initial validation of the COVID stress scales. *Journal of Anxiety Disorders*, 72, 102232. https://doi.org/10.1016/j.janxdis.2020.102232

Termorshuizen, J. D., Watson, H. J., Thornton, L. M., Borg, S., Flatt, R. E., MacDermot, C. M., ... Bulik, C. M. (2020). Early impact of COVID -19 on individuals with self-reported eating disorders: A survey of ~1,000 individuals in the United States and the Netherlands. *International Journal of Eating Disorders*, http://dx.doi.org/10.1002/eat.23353.

Todisco, P., & Donini, L. M. (2020). Eating disorders and obesity (ED&O) in the COVID-19 storm. *Eating and Weight Disorders*. https://doi.org/10.1007/s40519-020-00938-z

Treasure, J., Gavan, K., Todd, G., & Schmidt, U. (2003). Changing the environment in eating disorders: Working with care-rs/families to improve motivation and facilitate change. *European Eating Disorders Review*, 11, 25–37. https://doi.org/10.1002/erv.485

Vanzhula, I. A., Calebs, B., Fewell, L., & Levinson, C. A. (2019). Illness pathways between eating disorder and post-traumatic stress disorder symptoms: Understanding comorbidity with network analysis. *European Eating Disorders Review*, 27, 147–160. https://doi.org/10.1002/erv.2634

Vintró-Alcaraz, C., Mestre-Bach, G., Steward, T., Lozano-Madrid, M., Agüera, Z., Jiménez-Murcia, S., ... Fernández-Aranda, F. (2018). Validation of the Caregiver Skills (CASK) scale in Catalonia: Concordance between caregivers in attitudes and behaviours. *European Eating Disorders Review*, 26, 329–336. https://doi.org/10.1002/erv.2604

Wang, C., Pan, R., Wan, X., Tan, Y., Xu, L., Ho, C. S., & Ho, R. C. (2020). Immediate psychological responses and associated factors during the initial stage of the 2019 coronavirus disease (COVID-19) epidemic among the general population in China. *International Journal of Environmental Research and Public Health*, 17(5), 1729. https://doi.org/10.3390/ijerph17051729

Wang, Y., Di, Y., Ye, J., & Wei, W. (2020). Study on the public psychological states and its related factors during the outbreak of coronavirus disease 2019 (COVID-19) in some regions of China. *Psychology, Health and Medicine*, 1–10. https://doi.org/10.1080/13548506.2020.1746817

Wu, P., Fang, Y., Guan, Z., Fan, B., Kong, J., Yao, Z., ... Hoven, C. (2009). The psychological impact of the SARS epidemic on hospital employees in China: Exposure, risk perception, and altruistic acceptance of risk NIH public access. *Canadian Journal of Psychiatry*, 54(5), 302–311.

SUPPORTING INFORMATION

Additional supporting information may be found online in the Supporting Information section at the end of this article.

How to cite this article: Fernández-Aranda F, Munguía L, Mestre-Bach G, et al. COVID Isolation Eating Scale (CIES): Analysis of the impact of confinement in eating disorders and obesity—A collaborative international study. *Eur Eat Disorders Rev*. 2020;28:871–883. https://doi.org/10.1002/erv.2784