Since January 2020 Elsevier has created a COVID-19 resource centre with free information in English and Mandarin on the novel coronavirus COVID-19. The COVID-19 resource centre is hosted on Elsevier Connect, the company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related research that is available on the COVID-19 resource centre - including this research content - immediately available in PubMed Central and other publicly funded repositories, such as the WHO COVID database with rights for unrestricted research re-use and analyses in any form or by any means with acknowledgement of the original source. These permissions are granted for free by Elsevier for as long as the COVID-19 resource centre remains active.
Mapping the variability in physical, cooking, and nutritional properties of Zamnè, a wild food in Burkina Faso

Moustapha Soungalo Draboa, b, Habtu Shumoya, Hama Cisseb, Charles Parkoudac, Fulbert Nikiémad, Ismail Odetokune, Yves Traoréb, Aly Savadogob, c, Katleen Raesa, *

a Research Unit VEG-i-TEC, Faculty of Bioscience Engineering, Ghent University, Graaf Karel de Goedeplaats 5, 8500 Kortrijk, Belgium
b Laboratory of Applied Biochemistry and Immunology, Department of Biochemistry and Microbiology, University Joseph Ki-Zerbo, BP 7021 Ouagadougou 03, Burkina Faso
c Department of Food Technologies, Institute of Research in Applied Sciences and Technologies, BP 7047 Ouagadougou 03, Burkina Faso
d Directed of Food Control and Applied Nutrition, National Laboratory of Public Health, BP 24 Ouagadougou 09, Burkina Faso
e Department of Veterinary Public Health and Preventive Medicine, University Joseph Ki-Zerbo, PMB 1515, Nigeria

\section{Introduction}

The ongoing COVID-19 pandemic emphasized the vulnerability of several parts of the world to hunger and the urgency to rethink the current food system’s sustainability. FAO/IFAD/UNICEF/WFP/WHO (2020) has reported that the lockdown compromised food supply in several hunger-prone regions of the world and might add up 83 to 132 million people to the ranks of undernourished in 2020. United Nations agenda to end hunger, reduce nutrition-associated health problems, and mitigate climate-change costs by 2030 is falling short (FAO/IFAD/UNICEF/WFP/WHO, 2020; Galanakis, 2020). Under the lockdown, people have been compelled to rely on local food supply (ECLAC/FAO, 2020; Galanakis, 2020). The concept of “local production for local consumption” can reconcile the global food system’s resilience with biodiversity preservation, environment protection, agriculture sustainability, food security, and public health (ECLAC/FAO, 2020; Galanakis, 2020). Local food resources, such as Zamnè, have then been put back in the spotlight.

Zamnè is an endogenous legume seed in Burkina Faso, which can be promoted in human diets to tackle the frequent food shortage in several West African countries or globally in the growing market for healthy foods. The name Zamnè designates both to the raw and cooked seeds from \textit{Senegalia macrostachya} (Reichenb. ex DC.) Kyal. & Boatwr. The species belongs to \textit{Acacia sensu lato} and is mainly spread in the semi-arid lands from West to Northcentral Africa (Arbonnier, 2000). To our knowledge, Zamnè is only known in Burkina Faso, where it first has been used as a famine-resilience crop but rising nowadays in traditional diets as a cultural and health-promoting food. Zamnè is eaten as a main dish or ingredient in salads or sauces.

The scarcity of research on Zamnè does not give a clear insight into...
the previously reported compositional variabilities and culinary properties. In general, *Zamnè* is considered as a wild protein-rich legume (38% dry weight (dw) on average) (Guissou, Parkouda, Ganaba, & Savadogo, 2017; Hama-Ba et al., 2017; Msika, Saunois, Leclerc-Bienfait, & Baudoin, 2017). However, in contrast, Savadogo, Ilboudo, and Traore (2011) reported significant variations in the proximate compositions (10–13 and 11–36% dw of proteins and starches, respectively). Besides, Guissou et al. (2017) surveyed the cooking practices and reported very extensive alkali hydrothermal processes. The cooking processes include highly varying alkalinization levels (between 1 and 5% m/m alkali/ cooking water), two distinct boiling steps of between 47 and 147 min each, and hot soaking (3 h or overnight) or steaming (30 min) (Guissou et al., 2017). The cooking processes’ variations suggest variability of the seed quality in terms of cookability and quality of the end food products. On the other hand, related species to *Zamnè*, known as *pseudoZamnès*, could be mixed up. The ethnic group Samo, from Burkina Faso, uses the seeds from *Senegalia senegal*, *Senegalia dudgeoni*, and *S. anuzacantha* as *pseudoZamnès* during food scarcity times. The *pseudoZamnès* are not supposed to be sold in the markets but could be a source of fraud. Compared to *Zamnè*, they are not much appreciated due to the hard-to-cook problem and the lower palatability.

Easy processability and high nutritional profile of legumes are the main prerequisites for their wider acceptance as human food. The hard-to-cook trait is a common concern with legumes (Mubaiwa, Fogliano, Chidewe, & Linnemann, 2017; Shehata, 1992). It implies excessive expenditure of energy (fuel and labor) and time for cooking, the degradation of essential nutrients (associated with the required longer cooking), and the under-utilization of legumes (Mubaiwa et al., 2017; Shehata, 1992). Understanding the basis of the hard-to-cook problem, such as specific physical and chemical properties and responses to processing, allows to improve the cooking techniques and to develop alternative processing of legumes into concentrated-protein, nutritive and healthy foods (Duranti, 2006; Mubaiwa et al., 2017; Shehata, 1992). *Zamnè* is not a well-known legume, and there is scarce information on its nutritional properties and processability. Therefore, this study aimed to map the variability in the physical, chemical, and cooking properties of *Zamnè* obtained from the local markets in Burkina Faso. Besides, the differences in nutritional values and cookability between *Zamnè* and *pseudoZamnè* were identified.

2. Material and methods

2.1. Sampling

S. macrostachya seeds, as control *Zamnè*, were harvested from a wild field (GPS N 12°39’ W –3°00’, Village Kamba) in January 2018. A specimen (a branch with leaves, pods, and flowers) was identified and deposited at the herbarium (INFOBIO N 6885, University Joseph Ki-Zerbo). Five markets, namely three in Ouagadougou, one in Ouahigouya, and one in Dedougou (Burkina Faso), were inspected. Besides, two local enterprises of forest-based products were visited in Dedougou and Gassam, respectively. One sample (about 3 kg) of seeds was purchased (between January and February 2018) at each visited place. The seeds collected from the market in Dedougou were suspected as false *Zamnè* and designated as *pseudoZamnè*. All the samples were manually cleaned to remove foreign matters and damaged seeds.

2.2. Physical examination

The weight of thousand seeds was determined by counting and weighing a duplicate of 100 seeds and multiplying by 10 (Kumar, Prasad, Chandra, & Debnath, 2016). The dimensions (diameters and thickness) of 15 random seeds were measured using a digital caliper (precision = 0.01 mm). According to the shape similarity principle of Mohsenin (1986), the geometric features of the seeds were calculated using the following formulas:

\[
\text{Diameter (mm)} = \frac{\text{Major diameter} + \text{Minor diameter}}{2}
\]

\[
\text{Cylindrical ratio} = \frac{\text{Major diameter}}{\text{Minor diameter}}
\]

\[
\text{Seed surface area (mm}^2) = \pi \text{Diameter}^2 \left(\frac{\text{Diameter}}{2} + \text{Thickness} \right)
\]

Seed coat percentage and thickness were gravimetrically determined. Briefly, 50 g of samples were boiled for 90 min until the seed coats were removable by squeezing between fingers. Then, duplicates of fifteen random seeds were picked, and the coats and cotyledons were separated and dried (at 105 °C for 4 h) until constant weight. The coat percentage and thickness were calculated using the following formulas (Avola & Patane, 2010):

\[
\text{Coat} \% = \frac{100 \times \text{Coat} (g)}{(\text{Coat} (g) + \text{Cotyledon} (g))}
\]

\[
\text{Coat thickness} (mg/cm}^2) = \frac{\text{Coat} \% \times \text{Thousand seeds weight (mg)}}{1000 \times \text{Seed surface area (cm}^2)}
\]

Seed bulk density, true density, and porosity were determined, according to Mpotokwane, Gadilithathelwe, Sebaka, and Jideani (2008). A container (1000 ml cylinder) was filled with the seeds, and the content was weighed (bulk weight). Then, 10 g of seeds were accurately weighed, placed in a 100 ml measuring cylinder, and immersed with 15 ml of water. The water level was read and converted to the true volume of the seeds. The analyses were performed in duplicate, and seed densities and porosity were accounted as follows:

\[
\text{Bulk density} (mg/ml) = \frac{\text{Bulk weight} (g)}{\text{Container volume (ml)}}
\]

\[
\text{True density} (mg/ml) = \frac{\text{Sample weight} (g)}{\text{True volume (ml)}}
\]

\[
\text{Porosity} = 100 \left(1 - \frac{\text{Bulk density}}{\text{True density}}\right)
\]

2.3. Hydration tests

Fifteen g of samples (~250 raw seeds) were soaked in tap water (28 ± 1 °C), boiled water (99 ± 1 °C), and cooled potash solution (potash/water 1% m/m, 99 ± 1 °C), and cooled baking soda solution (NaHCO₃/water 1% m/m, 99 ± 1 °C). Duplicates of 10 random seeds were picked after 1, 3, and 6 h, the free water was removed using a blotting towel, and the seeds were dried (105 °C for 4 h) until constant weight. The hydration indices were calculated using the formula (Avola & Patane, 2010):

\[
\text{Hydration index} (g/100 g dv) = \frac{\text{Absorbed water (g)}}{\text{Seed dry weight (g)}}
\]

All the experiments were performed at room temperature (30 ± 1 °C). The pH and temperature drops of the soaking solutions were monitored using a digital pH meter and thermometer.

2.4. Determination of hydration indices and cooking times

Samples (50 g each) were placed in boiling distilled water and continuously boiled (99 ± 2 °C). The hydration indices were determined at different time points up to 6 h of cooking, as described above. Accordingly to Avola and Patane (2010), the hydration capacity and rate were defined as the maximum water absorption after 6 h and the slope in the linear phase between 0 and 60 min, respectively. Besides, the softening degree was continuously monitored using the finger-pressing method. The cooking times were determined when the seeds were perceived well-soften (Kinyanjui et al., 2015).
2.5. Cooking trial and preparation of samples

The traditional cooking process of Zamnê was performed in the laboratory, as summarized in Fig. 1. Briefly, 500 g of selected Zamnê and pseudoZamnê samples were separately precooked (first step boiling) in ~1.5% m/m of cooking aid/water for 90 and 150 min, respectively. Then, half of the precooked and cooked seeds were dried in a ventilated oven (50 °C for 20 h). The precooking and cooking wastewaters were pooled and dried at 105 °C for 24 h). After all, the recovered leached solids and the cooked, precooked, and raw seeds were finely ground to pass 0.5 mm mesh (IKA M20, 25000 rpm) and further dried overnight (50 °C for 16 h).

![Cooking process diagram](image)

Fig. 1. Traditional cooking process of Zamnê and pseudoZamnê. Adapted according to Guissou et al. (2017) and the cooking time as determined above.

2.6. Compositional analysis

Total moisture, ash, nitrogen, and fat contents were determined according to AOAC 925.09, AOAC 923.03, AOAC 979.09 (AOAC, 1995), and Thiex, Anderson, and Gildemeister (2003), respectively. Total protein was calculated by converting the nitrogen content using the general factor 6.25. Dietary fiber composition (total and insoluble) was analyzed following AOAC 991.43 (AOAC, 1995). Total carbohydrate, digestible carbohydrate, and soluble dietary fiber contents were calculated according to the differential methods. The effect of the cooking on the protein dispersibility index (PDI%) was assessed following AOCs Ba 10–65 (AOCS, 1996). All the analyses were performed in duplicate.

2.7. Cooking loss analysis

The leached solid’s proximate compositions (total dry weight, ash, fat, protein, and carbohydrate) were determined as described above. The nutrient losses were calculated, according to Murphy, Criner, and Gray (1975):

\[
\text{Loss} = \frac{100 \times \text{Nutrient % of leached solid} \times \text{total leached solid dw (g)}}{\text{Nutrient % of used raw seeds} \times \text{total used raw seeds dw (g)}}
\]

2.8. Data analysis

The data were analyzed using R program version 3.6.1. The results were expressed as means ± standard deviations and subjected to one or two way ANOVA. The differences among the means were determined using Tukey’s HSD post-hoc analyses at p-value ≤ 0.05, and the principal component analysis was performed to examine the distribution. The interrelationships among the parameters were investigated by determining the coefficients r of Pearson.

3. Results and discussion

3.1. Variability in the chemical properties

The proximate compositions of the raw Zamnê seeds are shown in Table 1. The fat and ash contents were similar to previous reports (Guissou et al., 2017; Hama-Ba et al., 2017; Msika et al., 2017). The total dietary fiber content varied significantly between the samples. Still, the values were in between the values reported by Msika et al. (2017) (38% dw) and Hama-Ba et al. (2017) (15–16% dw). This study showed that 20–35% of the total dietary fiber is present in the soluble form and is comparable with the content in soybeans but higher than in faba beans (El-shemy, Abdel-rahim, Shaban, Ragab, & Fujita, 2000). Subsequently, the carbohydrate composition significantly varied, suggesting a difference in carbohydrate digestibility among the samples and probably hard-to-cook defects (Gwala et al., 2019). Seeds’ hard-to-cook defects have been attributed to their harvest maturity and storability (Iliadis, 2001; Mubawia et al., 2017; Shehata, 1992). Further research is needed to determine the impact of harvest maturity and the storability of Zamnê on the hard-to-cook phenomena.

Compared to the collected pseudoZamnê (Table 1), Zamnê had higher fat and protein contents but lower ash and dietary fiber contents. While the protein contents of both Zamnê and pseudoZamnê were similar to the values (35–40% dw) in recent literature on Zamnê (Guissou et al., 2017; Hama-Ba et al., 2017; Msika et al., 2017), there is a huge discrepancy with the values (10–13% dw) reported by Savadogo et al. (2011). Furthermore, both Zamnê and pseudoZamnê exhibited higher or comparable protein, fat, dietary fibers, and ash contents, but lower or similar digestible carbohydrate contents to most staple legumes (FAO/INFOOD, 2017).
Z, spZ, (W, O, TG, TK, D), and the indices (1
M.S. Drabo et al.

`Zamn
1.1, diameter
Fedoruk, Caron, Vandenberg, (Due
Fortune, 2010).

The physical properties of the
nas, Hern
e had a lower weight, true density, and bulk density than
&
andez, & Abatte, 2009), but similar to lupins (22
Protein 43.27
Code ZWr1 ZWr2 ZWr3 ZOr ZTGr ZTKr ZDr spZDr

min)
Hydration capacity
(g H₂O /100 g dw.
min)
Hydration capacity
(g H₂O /100 g dw.

1.1, diameter
Fedoruk, Caron, Vandenberg, (Due
Fortune, 2010).

The physical properties of the
nas, Hern
e had a lower weight, true density, and bulk density than
&
andez, & Abatte, 2009), but similar to lupins (22
Protein 43.27
Code ZWr1 ZWr2 ZWr3 ZOr ZTGr ZTKr ZDr spZDr

min)
Hydration capacity
(g H₂O /100 g dw.
min)
Hydration capacity
(g H₂O /100 g dw.

1.1, diameter
Fedoruk, Caron, Vandenberg, (Due
Fortune, 2010).

The physical properties of the
nas, Hern
e had a lower weight, true density, and bulk density than
&
andez, & Abatte, 2009), but similar to lupins (22
Protein 43.27
Code ZWr1 ZWr2 ZWr3 ZOr ZTGr ZTKr ZDr spZDr

min)
Hydration capacity
(g H₂O /100 g dw.
min)
Hydration capacity
(g H₂O /100 g dw.

1.1, diameter
Fedoruk, Caron, Vandenberg, (Due
Fortune, 2010).

The physical properties of the
nas, Hern
e had a lower weight, true density, and bulk density than
&
andez, & Abatte, 2009), but similar to lupins (22
Protein 43.27
Code ZWr1 ZWr2 ZWr3 ZOr ZTGr ZTKr ZDr spZDr

min)

2. Variability in the physical properties and the processability

The physical properties of the Zamnë samples and the collected pseudoZamnë are summarized in Table 1. Both Zamnë and pseudoZamnë were dry, round, and flattened seeds (~5% moisture, cylindrical ratio = 1.1, diameter = 7–9 mm, and thickness = 1.7 mm), and had brown seed coats and yellow dicotyledons. The seeds were both marked by a sickle-
form areole on both sides and were difficult to differentiate visually. Zamnë had a lower weight, true density, and bulk density than pseudoZamnë. The porosity of both seed species, for instance, were comparable. Seed coat percentage and thickness were found to be almost twice higher for pseudoZamnë than Zamnë. The morphological characteristics of Zamnë have high similarities to brown lentils (Kharazi, Fedourak, Caron, Vandenberg, & Bett, 2018; Kumar et al., 2016). Both seed species had lower or similar porosity to Bambara groundnut (Mubaiwa et al., 2017), Jack bean (Mpotokwane et al., 2008), and lentil (Kumar et al., 2016). The grain weight percentage of Zamnë was higher compared to chickpeas (5–7%) (Avola & Patane, 2010), lentils (8–11%) (Duetas, Hernandez, & Estrella, 2002), and faba beans (15–17%) (Avola, Gresta, & Abbate, 2009), but similar to lupins (22–32%) (Miao, Fortune, & Gallagher, 2001). Still, the seed thickness of Zamnë (9–12 mg/cm²) was lower compared to faba beans (16–28 mg/cm²) (Avola et al., 2009) but similar to chickpeas (8–12 mg/cm²) (Avola & Patane, 2010).

The different physical properties are directly associated with the processability of seeds. The moisture content indicates Zamnë as hard and dry seeds, which must have good storability (Mubaiwa et al., 2017; Shehata, 1992). The physical dimensions will determine operations for the grading, sorting, and storage of Zamnë. For instance, the flat shape will enable Zamnë seeds to slide and occupy less volume or space, which is interesting for designing storage facilities. Bulk density is useful for monitoring the seeds’ quality, while true density will support cleaning and grading operations (Kumar et al., 2016; Mpotokwane et al., 2008; Mubaiwa et al., 2017). Porosity is supposed to ease fluid, air, and heat flow through seed bulk during processing operations (Kumar et al., 2016; Mpotokwane et al., 2008; Mubaiwa et al., 2017). The low porosity of Zamnë may, therefore, pose constraints in operations such as soaking, heating, cooling, and drying. Finally, the coat may provide numerous functional properties to Zamnë, such as biofunctional nutrients and protection against insect attacks during storage (Dueñas et al., 2002; Miao et al., 2001; Mubaiwa et al., 2017). Besides, the coat can pose hard-shell concerns, such as low digestibility, hydration properties, and processability or cookability (Miao et al., 2001; Mubaiwa et al., 2017) - which is discussed in sections below.

3.3. Variability in the cooking properties

PseudoZamnë were twice harder to cook than Zamnë (Table 1) and
were associated with darker (Fig. 1) and hard coat after cooking. Nonetheless, both seed species were identified as hard-to-cook legumes (cooking time more than 120 min) (Kinyanjui et al., 2015). Guissou et al. (2017) reported that Zamnè is traditionally cooked by boiling for 140–300 min in an alkaline solution. The cooking times’ differences may be associated with either the seed qualities (like hard-to-cook defects), a mix-up of Zamnè with pseudoZamnè, or the culinary practices. Zamnè showed a comparable cooking time to several staple legumes, i.e. lentils (75–180 min), cowpeas (~145 min), common beans (90–450 min), soybeans (~220 min), and Bambara groundnuts (180–240 min) (de León, Elías, & Bressani, 1992; Iliadis, 2001; Kinyanjui et al., 2015; Mubaiwa et al., 2017). As cited, staple legumes also require variable cooking intensity according to the seeds’ quality and cooking techniques.

The hydration kinetics and indices of selected Zamnè and pseudoZamnè samples during cooking were assessed, and the results are presented in Fig. 2 and Table 1, respectively. The hydration kinetics of the selected Zamnè samples overlapped and reached maximum hydration after 45 min of boiling. In contrast, the pseudoZamnè showed a twice slower hydration rate but reached a similar hydration capacity after 2 h.

The hydration capacity has been reported to be between 80 and 200 g H₂O/100 g dw for common legumes (Avola et al., 2009; Kinyanjui et al., 2015; Kumar et al., 2016; Mubaiwa et al., 2017; Uzogara, Morton, & Daniel, 1988). The higher hydration capacity of Zamnè and pseudoZamnè can be explained in that Acacia species can develop superior drought tolerance through high cell wall elasticity and large cell sizes with high water holding capacity (Dialogo, Nielsen, Kjaer, Petersen, & Rabbild, 2016). Moreover, Kinyanjui et al. (2015) reported a slower hydration rate (<1.5 g H₂O / 100 g dw.min) during the cooking of both selected easy- and hard-to-cook beans. These observations mean that Zamnè had quite good hydration properties and that the hard-to-cook problem was not only associated with the hydration ability (Avola & Patane, 2010; Kigel, 1999; Shehata, 1992).

3.4. Mapping of the overall variability in the physicochemical properties

As mapped in Fig. 3, Zamnè had low overall variability, and most of the samples (ZKr, ZOr, ZWr1, ZWr2, and ZWr3) formed a cluster. Only ZTGr and ZDr were isolated due to the difference in their carbohydrate digestibility. The pseudoZamnè sample (spZDr) was separated from Zamnè through fat and ash contents, seed weight, seed density, hydration rate, coat percentage, and coat thickness. The visual identification of the collected pseudoZamnè was not conclusive. In line with indigenous people’s assertion, pseudoZamnès are mainly identified through their hard-to-cook characteristics compared to Zamnè. The case of the fraudulent seeds (spZDr) let us suppose that people can be easily fooled with pseudoZamnès for Zamnè. The compositional properties and the edibility for humans of pseudoZamnès are scarcely substantiated. Since the toxicological profiles of Acacia seeds are not well documented, consumers must be cautious not to eat the not well-known species (Rinaudo, Patel, & Thomson, 2002).

3.5. Hard-to-cook phenomenon examination

Table 2 designates Pearson’s correlations between the chemical, physical and cooking properties of the purchased Zamnè and pseudoZamnè. The correlations were explored to identify interrelationships that may indicate the development of the hard-to-cook phenomenon. Only few parameters showed significant (p < 0.01) correlations. Protein content, insoluble dietary fiber content, seed diameter, seed weight, coat percentage, and coat thickness were strongly correlated negatively. Also, fat content, ash content, seed diameter, seed weight, seed densities, coat percentage, and coat thickness were strongly correlated negatively. On the other hand, ash content, seed diameter, seed weight, seed bulk density, coat percentage, coat thickness, and cooking time were strongly correlated positively. The hydration rate, for instance, strongly correlated positively with fat content but negatively

![Fig. 2. Compared hydration kinetics of Zamnè and pseudoZamnè. The values are expressed as the means ± SD (n = 2). ZTKr, ZTGr, ZOr, and ZDr represent harvested control Zamnè from the field in Toma-Kamba and purchased Zamnè samples from the local markets in Toma-Gassam, Ouahigouya, and Dedougou. spZDr represents the pseudoZamnè purchased from the local market in Dedougou.](image-url)
The relationships between the physicochemical and cooking properties of legumes vary (Avola & Patane, 2010). Nonetheless, comparable correlations have been reported for chickpeas and faba beans (Avola et al., 2009; Avola & Patane, 2010). Several of the correlations suggest that Zamnë is exposed to the development of the hard-to-cook phenomenon. For instance, the negative correlation of the hydration rate and the positive correlation of the cooking time with the ash content suggest that the seeds might have accumulated different divalent cations (i.e., calcium and magnesium) contents. The cations can complex with cell wall structures (including pectins, phytate, and lignins) and render the seeds resistant to water hydration and cooking (Kigel, 1999; Mubaiwa et al., 2017; Shehata, 1992). Also, the negative correlations between protein content, insoluble fiber content, and the coat thickness indicate hard-to-cook traits that can develop during the storage. In fact, during storage, seeds undergo critical changes, which implicate hard-to-cook defects, protein degradation, lignification, and accumulation of several insoluble and indigestible polymers (Gwala et al., 2019; Iliadis, 2001; Kigel, 1999; Mubaiwa et al., 2017; Shehata, 1992). Zamnë is a famine-resilience commodity that can be stored for several years before consumption. There is, therefore, a need to further assess the development of the hard-to-cook phenomenon in Zamnë.

3.6. Cooking aids properties

Zamnë is traditionally boiled in an alkaline solution (traditional potash or baking soda) to facilitate the cooking. The influence of the cooking aids and the heat on the hydration properties were examined (Fig. 4). In most soaking conditions, Zamnë showed higher hydration indices than pseudoZamnë, except for the first hour of soaking in the fresh and boiled tap water. As an effect of the initial soaking water temperature, the hydration was accelerated (after 3 h of soaking) for both seed species. In contrast, the hydration capacity (after 6 h of soaking) was improved for only Zamnë. Kumar et al. (2016) and Kinyanjui et al. (2015) also reported that the water temperature improved the hydration rate and capacity. The heat loosens the seeds’ tissue structures and, thus, triggers and accelerates the hydration (Kinyanjui et al., 2015; Kumar et al., 2016). The non-improvement in the hydration capacity of the pseudoZamnë provided evidence that hydration and hardness are more dependent on the cotyledon hardness and permeability than the coat hardness and permeability. Moreover, the

![Fig. 3. Mapping of the variability in the physicochemical characteristics of Zamnë and pseudoZamnë purchased from the local markets in Burkina Faso Z, spZ, (W, O, TG, TK, D), and the indices (1–3) designate Zamnë, pseudoZamnë, towns (Ouagadougou, Ouahigouya, Toma-Gassan, Toma-Kamba, and Dedougou), and the number of the markets inspected, respectively. ZTKr represents the control sample harvested from field.](image)
cooking aids, synergistically with the heat, improved the hydration activation (after 1 h of soaking), rate, and capacity for Zamnë. The cooking aids, similar to the heat, have also been shown to induce cell wall constituents’ release and, thus, improve hydration, too (Kinyanjui et al., 2015; Mubaiwa et al., 2017). The hydration ability of the pseudoZamnë was, contrary, hampered by the use of the traditional potash. In agreement, Avola and Patane (2010) noted a slight decrease in chickpeas’ hydration capacity when soaked in a sodium bicarbonate solution. The different effects suggest that the actions of cooking aids depend on the seed species, probably related to their intrinsic chemical compositions and the ion compositions of the cooking aids (de León et al., 1992; Kigel, 1999; Kinyanjui et al., 2015; Mubaiwa et al., 2017; Shehata, 1992).

Compared to the traditional potash, the baking soda elicited a more considerable improvement in both seed species’ hydration. The baking soda has a lower (trace) amount of divalent cations (i.e. calcium and magnesium) and a higher amount of carbonate anions compared to the traditional potash (unpublished data), which would have favored the water absorption. It has been proposed that divalent cations permeate into the seeds, induce stable cross-links between cell wall structures (pectins, phytate, phenolics, proteins), and thus prone hardness and resistance to hydration (de León et al., 1992; Kigel, 1999; Kinyanjui et al., 2015; Mubaiwa et al., 2017; Shehata, 1992). Moreover, alkali has been demonstrated to induce protein denaturation and cross-links (Guo, Wei, & Zhu, 2017; Mubaiwa et al., 2017), which can also result in the tightness of the tissue structures of the seeds (Kigel, 1999; Shehata, 1992). Conversely, mono-valent cations have been shown to alter pectins or cell wall structures and facilitate the soaking and cooking of seeds (de León et al., 1992; Kigel, 1999; Kinyanjui et al., 2015; Mubaiwa et al., 2017; Shehata, 1992). The carbonate anions, for instance, play a buffer role, prevent protein denaturation, and partially with the alkaline condition reduce the hard-to-cook problem (Mubaiwa et al., 2017; Shehata, 1992). These observations mean that one must be cautious in choosing the alkali salt as a cooking aid - taking into account the seeds’ specific response to the cooking process and the alkali salt pH, buffer systems, and ion compositions.

3.7. Impact of the traditional cooking on the nutritional values

The compositional changes associated with the traditional alkaline and hydrothermal cooking of selected Zamnë and pseudoZamnë samples are summarized in Table 3. Total protein contents were significantly increased only after cooking (second boiling) for Zamnë while it was observed through the precooking (first boiling) in the case of pseudoZamnë. As a consequence of the cooking, the protein dispersibility index in water significantly decreased by 4–6% and 13% for Zamnë and pseudoZamnë, respectively. The protein dispersibility indexes of the cooked Zamnë and pseudoZamnë were comparable to the values reported for adequately heat processed soybean meal (40–45%), suggesting protein digestibility improvement (Batal, Douglas, Engram, & Parsons, 2000). In contrast, the cooking process highly decreased carbohydrate digestibility. The digestible carbohydrates and soluble dietary fibers were almost all lost, and only insoluble dietary fibers were left. Similarly, Guissou et al. (2017) reported a significant decrease in total carbohydrate content and an increase in crude fiber content after Zamnë cooking. Only fat content showed to be affected by the cooking aid choice. Processing Zamnë in baking soda showed significant improvements in fat content compared to the processing in potash solution. The fat content increased stepwise between precooking and cooking for pseudoZamnë while it first increased after precooking and then decreased after cooking for Zamnë. Guissou et al. (2017) had reported a much higher decrease (more than 85%) in fat content in potash-cooked Zamnë. Nonetheless, the fat content has been well preserved in most of the legumes after boiling (FAO/INFOOD, 2017; Murphy et al., 1975). Moreover, an increase has also been reported for related Acacia seeds (10.9 to
should probably be composed of soluble fibers and digestible carbohydrates, despite the longer boiling time, compared to \textit{pseudoZamn} seeds. Retention during cooking of legumes can significantly vary depending on leaching (Deng et al., 2015). For instance, the leached carbohydrate nutrient solubility was also demonstrated essential in the loss through leaching (Mubaiwa et al., 2017). In the present study, the hardness composed mainly of carbohydrates (57\% of the total dry matter, protein, carbohydrate, and ash have been, generally, reported to be higher leaching of total dry matter, protein, carbohydrate, and ash leaching, restructuration, and destruction of nutrients (Deng et al., 2017; Shehata, 1992) and apply to \textit{Zamn}. Moreover, the recycling of nutrients from food wastewater receives more attention in food processing (Galanakis, 2012). The enzymatic hydrolysate of \textit{Zamn} carbohydrate and protein extracts have already been exploited in formulations of nutraceuticals and cosmetics against hair loss, adipose tissue alterations, and vascular disorders (Miska et al., 2017). The wastewater after \textit{Zamn} cooking is, as shown, a source of nutrients, including dietary fibers and proteins. Further processing of \textit{Zamn} wastewater can recover the fibers and proteins, valuable as nutraceuticals and cosmetics supplements.

4. Conclusion

This study showed low variability in the physical, chemical, and cooking properties among \textit{Zamn} seeds and confirmed a mix-up of \textit{Zamn} and \textit{pseudoZamn}. The collected \textit{pseudoZamn} exhibited low cooking quality, harder coat, and longer cooking time, while \textit{Zamn} showed comparable cooking quality traits to several common legumes. However, the traditional cooking process of \textit{Zamn} exhibited over processing defects, including fat destruction and extensive leaching of nutrients. It would be useful to investigate other processing alternatives, such as milling into flour or fermentation, to increase the acceptability of \textit{Zamn}. Moreover, further research is needed to identify the factors that influence the variability in the physicochemical properties of \textit{Zamn}.

Table 4

Proximate composition of the combined leached solids after the precooking and cooking of \textit{Zamn} and \textit{pseudoZamn}.

Samples	Cook aid	Dry matter	Protein	Total carbohydrate	Fat	Ash
\textit{Zamn} (ZTKr)	Potash	49.24	45.29 ± 0.40\(\%\) (51.20)	40.75 ± 0.03\(\%\) (47.49)	0.20 ± 0.03\(\%\) (0.97)	13.76 ± 0.09\(\%\)
	Baking soda	50.40	45.21 ± 0.76\(\%\) (52.32)	42.11 ± 0.50\(\%\) (50.23)	0.63 ± 0.11\(\%\) (3.08)	12.06 ± 0.15\(\%\)
\textit{pseudoZamn} (spZDKr)	Potash	32.38	46.46 ± 1.06\(\%\) (41.81)	45.57 ± 0.24\(\%\) (45.57)	0.24 ± 0.06\(\%\) (1.66)	7.72 ± 0.05\(\%\)
	Baking soda	39.48	44.71 ± 1.01\(\%\) (49.04)	47.28 ± 0.31\(\%\) (47.28)	0.31 ± 0.09\(\%\) (2.59)	7.71 ± 0.13\(\%\)

The values are expressed as the means ± SD (n = 2) per 100 dry weight. The values in the same row with the different superscripts are significantly different (p < 0.05). The parentheses represent % nutrient loss (dry weight) from the used raw seeds for the cooking trial.
CRediT authorship contribution statement

Moustapha Soungalo Drabo: Conceptualization, Investigation, Methodology, Formal analysis, Writing - original draft. Habtu Shumony: Formal analysis, Writing - review & editing. Hama Cisse: Resources.

Charles Parkouda: Resources. Fulbert Nikiema: Resources. Ismael Odetokun: Resources. Yves Traore: Resources. Aly Savadogo: Conceptualization, Validation, Writing - review & editing, Supervision.

Katleen Raes: Validation, Formal analysis, Writing - review & editing, Supervision.

Declaration of Competing Interest

The authors declared that there is no conflict of interest.

Acknowledgments

The authors are grateful to the National Laboratory of Public Health (Burkina Faso) for the laboratory facilities and reagents. The first author is granted by UEMOA, Burkina Faso national, and Ghent University - BOF Ph.D. scholarships.

References

Adewusi, S. R. A., Falade, O. S., & Harwood, C. (2003). Chemical composition of Acacia colae and Acacia tumida seeds — potential food sources in the semi-arid tropics. Food Chemistry, 80(2), 187–195. https://doi.org/10.1016/S0308-8146(02)00353-4.

AOAC. (1990). Association of Official Analytical Chemists - Methods 920.39, 923.03, 925.09, 979.09 & 991.43 (16th ed). AOAC. Aocs. (1990). American Oil Chemists’ Society. Method Ba 10-65 (2nd ed). Aocs.

Aronnion, M. (2006). Arbres, arbustes et lames des zones arides d’Afrique de l’Ouest (1st ed). Paris: CIRAD-MINR-UCN.

Avola, G., Gresta, F., & Abbate, V. (2009). Diversity examination based on physical, AOCS. (1990). American Oil Chemists. (11), 1582. https://doi.org/10.1007/s00726-011-0915-1.

Batal, A. B., Douglas, M. W., Engram, A. E., & Parsons, C. M. (2000). Protein dispersibility index as an indicator of adequately processed soybean meal. Journal of Food Science and Technology, 45(2), 257–2572. https://doi.org/10.1011/936-9669 (09200154-W).

Deng, Q., Zinoviadou, K. G., Galanakis, C. M., Orlien, V., Grimi, N., Vorobiev, E., & Adewusi, S. R. A., Falade, O. S., & Harwood, C. (2003). Chemical composition of Acacia macrostachya et compositions le comprenant. The Plant Genome, 11(1), 1-7. https://doi.org/10.3837/plantgeno2017.06.0051.

Eldredge, N. J., Anderson, S., & Gildemeister, B. (2003). Crude fat, diethyl ether extraction, Mohsenin, N. N. (1986). Textural properties of a pulse. Food Research International, 120, 1-11. https://doi.org/10.1016/j.foodre.2019.02.022.

Hou, F., Ding, W., Qu, W., Oladejo, A. O., Xiong, F., Zhang, W., ... Ma, H. (2017). Alkali solution extraction of rice residue protein isolates: Influence of alkali concentration on protein functional, structural properties and lysinoolamin formation. Food Chemistry, 218, 207–215. https://doi.org/10.1016/j.foodchem.2016.09.064.

Kriz, G. (2001). Analysis of quality changes and mineral composition of cowpea (Vigna unguiculata L. Walp) seeds processed with alkaline salt. Food Chemistry, 30(2), 131–136. https://doi.org/10.1016/0308-8146(88)90015-8.

Kumara, M. H., Prasad, K., Chandra, T. S., & Debnath, S. (2016). Evaluation of physical and hydrodynamic characteristics of red lentil (Lens culinaris) at different processed levels and soaking temperatures. Journal of the Science of Food and Agriculture, 37(3), 390–398. https://doi.org/10.1002/jsfa.6551.

Miao, Z. H., Fortune, J. A., & Gallager, J. (2001). Anatomical structure and nutritive value of lupin seed coats. Australian Journal of Agricultural Research, 42(4), 269–281. https://doi.org/10.1071/AR999001452019.

Mobinen, N. (1986). Physical properties of plant and animal materials (2nd ed. r.). New York: Gordon and Breach Science Publisher.

Mpsokwane, S. M., Gaditlhatlhelwe, E., Sebaka, A., & Jideani, V. A. (2008). Physical properties of bambara groundnuts from Botswana. Journal of Food Engineering, 89(1), 93–98. https://doi.org/10.1016/j.jfoodeng.2008.04.006.

Murphy, E. W., Criner, P. E., & Gray, B. C. (1975). Comparisons of methods for calculating retention of nutrients in cooked foods. Journal of Agricultural and Food Chemistry, 23(6), 1153–1157. https://doi.org/10.1021/jf00202a021.

Rinaudo, A., Patel, P., & Thomson, L. A. J. (2002). Potential of Australian Acacias in combating hunger in semi-arid lands. International Journal of Food Science and Technology, 37(1), 1–194. https://doi.org/10.1111/1365-2621.2009.00820.x.

Savadogo, A., Ilboudo, A., & Traore, S. A. (2011). Nutritional potentials of Acacia macrostachya (Reichend) ex Desm. of Burkina Faso: Determination of chemical composition and functional properties. Journal of Applied sciences Research, 7(7), 1057–1062.

Shehata, A. M. E. T. (1992). Hard to - cook phenomenon in legumes. Food Reviews International, 8(2), 191–221. https://doi.org/10.1080/87559210295440938.

Thier, N. J., Anderson, S., & Gildemeister, B. (2003). Crude fat, diethyl ether extraction, in feed, cereal grain, and forage (Randal/Soxtec/Submission method). Collaborative study. Journal of AOAC International, 86(5), 888–889. https://doi.org/10.1093/jaoacint/86.5.888.

Uzogara, S. G., Morton, I. D., & Daniel, J. W. (1988). Quality changes and mineral content of cowpea (Vigna unguiculata L. Walp) seeds processed with ‘Kanwa’ alkaline salt. Food Chemistry, 30(1), 1–18. https://doi.org/10.1016/0308-8146(88)90019-2.