Ubiquitin-dependent and independent roles of SUMO in proteostasis

Frauke Liebelt and Alfred C. O. Vertegaal*
Department of Molecular Cell Biology, Leiden University Medical Center, Leiden, the Netherlands

Submitted 31 March 2016; accepted in final form 15 June 2016

Proteostasis refers to the ability of the cell to adapt to stresses and protect the normal function of individual proteins in the proteome. Proteins are the key workforce of the cell; therefore, keeping them in a balanced equilibrium by maintaining their folding and regulating their expression and degradation is critical for proper functioning of the cell (7, 50). Multiple pathways are involved in the control of this pivotal task. Molecular chaperones assist in protein folding of newly synthesized or misfolded proteins, and their expression can be increased upon proteotoxic stresses, where they contribute to process the overload of unfolded or misfolded proteins (56). Misfolded proteins are degraded by the ubiquitin proteasome system (UPS) via the attachment of the posttranslational modifier ubiquitin, which targets proteins to the proteasome for destruction. The proteasome is a multisubunit protein complex, which is highly conserved in eukaryotes, archaea, and even present in some euacteria, indicating its importance (37). The proteasome is able to degrade misfolded proteins and recycle amino acids which can be reused for protein synthesis (47). Controlled degradation of proteins is important to prevent toxic protein aggregates and in the context of signaling (7). Chaperones and the UPS are part of a complex proteostasis network (PN) (50). Here we review how small ubiquitin-like modifiers (SUMOs) contribute to proteostasis. SUMOs are members of the family of ubiquitin-like proteins (UBLs) (31, 33). Common hallmarks of UBLs are the presence of an ubiquitin fold, a COOH-terminal Gly-Gly motif, and an enzymatic cascade which is needed for the conjugation to their substrates (Fig. 1). Although different UBLs employ distinct sets of enzymes, the mature form of SUMO is first activated by the heterodimeric SUMO activating enzyme (E1) composed of SAE1 and SAE2 (also known as UBA2), which, in an ATP-dependent two-step reaction, forms a thioester-bond with SUMO. After activation, SUMO is transferred to the single SUMO E2 conjugation enzyme UBC9 (also known as UBE2I). UBC9 is not only able to provide the activated SUMO, but is additionally involved in substrate binding and specificity. UBC9 has binding affinity to the SUMOylation consensus motif within the substrate, which is defined by the amino acids composition ΨKXE, where Ψ stands for a large hydrophobic residue and X stands for any amino acid. Some SUMOylation targets harboring a consensus motif can be SUMOylated efficiently in vitro by the addition of the E1 and E2 only.

In vivo the activity of SUMO E3 ligases is necessary for efficient conjugation of SUMO to its substrates. In yeast, four E3 ligases are identified so far, Siz1, Siz2, Mms21, and Zip3 (15, 58, 116, 148). In mammals, an ability to catalyze the conjugation of SUMO to its target proteins is demonstrated for...
proteins belonging to the Siz/protein inhibitor of activated STAT (PIAS) family, the nucleoporin RanBP2 and ZNF451. Several other proteins are proposed as SUMO E3 ligases, including the human polycomb protein Pc2/CBX4, the topoisomerase I-binding protein Topors, the tumor suppressor p14 Arf, the RWD-containing SUMOylation enhancer RSUME, the small G protein which is specifically expressed in the striatum Rhes, and the Fanconi anemia protein SLX4. SUMO E3 ligases can strengthen the interaction between UBC9 and the target substrate, or position UBC9 in a way that is beneficial for the transfer of SUMO to the substrate, thereby stimulating SUMOylation.

The conjugation of SUMO is a tightly regulated and dynamic process which can be reversed by SUMO-specific proteases. Ubiquitin-like specific proteases Ulp1 and Ulp2 are responsible for deSUMOylation of proteins of Saccharomyces cerevisiae. Ulp1 also processes the SUMO precursor protein at its COOH terminus, which is needed for the conjugation of SUMO to a target protein. Two protein families act as SUMO proteases in mammals. Members of the Ulp/sentrin-specific protease (SENPs) family process SUMO precursors and deSUMOylate conjugated targets. Members of the second family of SUMO proteases are desumoylating isopeptidase (DeSI) 1 and 2, which are primarily used for deconjugation of SUMO (reviewed in refs. 25, 43, 48). Additionally, ubiquitin-specific protease-like 1 (USPL1) has been identified as a SUMO protease (106).

In S. cerevisiae, only a single SUMO isoform has been identified, Smt3. In mammals, the SUMO family consists of three members, SUMO1, 2, and 3, encoded by three different genes. Mature SUMO2 and 3 share 97% amino acid sequence identity and are so far not distinguishable through specific antibodies and therefore often referred to as SUMO2/3. The mammalian SUMO2 and SUMO3 as well as the yeast Smt3 can form polySUMO chains owing to their intrinsic KXE-type SUMO conjugation consensus motifs. Mammalian SUMO1 shares only 47% amino acid sequence with SUMO2 and 3. Because of the absence of the intrinsic KXE-type SUMO consensus motif, SUMO1 is not efficiently incorporated in SUMO chains but can be used to terminate a SUMO2/3 chain or can be conjugated to a target substrate as single moiety (84). However, more recently, it was found that SUMO1 contains an inverted SUMOylation motif, enabling SUMO polymerization to some extent (83). SUMO1 and SUMO2/3 share substrates but also target distinct sets of proteins (10). Interestingly, SUMO1-deficient mice are viable because of the ability of SUMO2 and 3 to compensate for SUMO1 loss (146). Knockout of SUMO2 is embryonically lethal, while mice lacking SUMO3 are viable. This observation can be explained by the fact that SUMO2 is the predominantly expressed isoform (130).

SUMOylation is a modification with numerous different functions, as it can activate or repress its target proteins, it can alter protein-protein interactions or result in changes in subcellular localization (31). Interestingly, SUMOylation levels are dynamically regulated by various stresses, linking SUMO to regulation of cellular homeostasis. In this review, we will focus on the SUMO literature concentrating on the importance of SUMOylation in the homeostasis of proteins either directly or in cooperation with ubiquitin.

Glossary

Acronym	Description
AD	Alzheimer’s disease
Aβ	Amyloid-β
Themes	SUMO AND PROTEOSTASIS
--------	------------------------
AR	Androgen receptor
APP	Amyloid precursor protein
ATO	Arsenic trioxide
Axin	Axis Inhibition protein 1
BRCA1-A	Breast cancer type 1 susceptibility protein 1-A
CDC48	Cell division control protein 48
c-Ski	v-ski avian sarcoma viral oncogene homolog
c-Myc	v-myc avian myelocytomatosis viral oncogene homolog
DeSI	DeSumoylating isopeptidase
DJ-1	Protein deglycase DJ-1
DLB	Dementia with Lewy bodies
Drp1	Dynamine-related protein 1
DRPLA	Dentatorubral-pallidolusyan atrophy
DVC	DNA damage protein targeting VCP
FANCI	Fanconi anemia group 1
FANCD2	Fanconi anemia group D 2
FUBI	Finkel-Biskis-Reilly murine sarcoma virus (FRB-MuSV) ubiquitously expressed
GR	Glucocorticoid receptor
HD	Huntington’s disease
HS	Heat shock
HSP	Heat shock protein
IκB-α	Inhibitor of nuclear factor-κB
ISG15	Interferon-induced 15-kDa protein
MAP	Mitogen-activated protein
mHTT	Mutant Huntingtin protein
mRNA	microRNA
MS	Mass spectrometry
MSA	Multiple system atrophy
NEDD8	Neural precursor cell expressed developmentally downregulated protein 8
NEMO	Nuclear factor-κB essential modulator
Nltp4	Nuclear localization protein 4 homolog
OGD	Oxygen-glucose deprivation
p14/ARF	Tumor suppressor ARF
PC2/CBX4	Polycomb 2 homolog/chromobox protein homolog 4
PCNA	Proliferating cell nuclear antigen
PD	Parkinson’s disease
PIAS	Protein inhibitor of activated STAT
PML	Promyelocytic leukemia
PN	Proteostasis network
RAD18	E3 ubiquitin ligase RAD18
RanBP2	RAN binding protein 2
RAP80	Receptor-associated protein 80
Rhes	Ras homolog enriched in striatum
RNF4	Ring-finger protein 4
RNF111	Ring-finger protein 111
RSUME	RWD-containing SUMOylation enhancer
SBMA	Spinobulbar muscular atrophy
SCA	Spinocerebellar ataxia
SAE1	SUMO-activating enzyme subunit 1
SAE2	SUMO-activating enzyme subunit 2
SDUB	SUMO deubiquitinase
SENP	Sentrin-specific protease
SHMT1	Serine hydroxymethyltransferase 1
SLX4	Structure-specific endonuclease subunit
SMAD	Mothers against decapentaplegic homolog
SnoN	SKI-like protein
STAT	Signal transducer and activator of transcription

SUMO Is Involved in Proteostasis via Crosstalk With Ubiquitin

The ubiquitin-proteasome system is the central mechanism of proteostasis and responsible for the regulated degradation of proteins and recycling of amino acids. SUMO is highly connected to this process as detailed below.

SUMO and ubiquitin can modify the same lysine residue in a protein. Recent advances in high-resolution mass spectrometry (MS) have enabled large-scale identification of SUMO acceptor lysines and ubiquitin acceptor lysines. The obtained results indicate that almost a quarter of SUMO-acceptor lysines are also used for ubiquitin conjugation, pointing towards extensive crosstalk between these modifications (44, 117). This kind of competition was first found in 1998 when Hay and coworkers showed that the inhibitor of NF-κB, IκB-α, could be SUMOylated at the same lysine residue that is also used for ubiquitination (22).

The modification of SUMO and ubiquitin of the same acceptor lysine can also act sequentially. This is illustrated by the serine hydroxymethyltransferase SHMT1, and the regulatory subunit of the IκB kinase, NEMO. For both proteins it was shown that SUMOylation stimulated their translocation to, and retention within, the nucleus. After cleavage of the SUMO moiety in the nucleus, the same lysine residue could be modified by ubiquitin, which stimulated subsequent export to the cytoplasm (4, 52). These examples illustrate that there is a tightly regulated balance, in time and space, between ubiquitin and SUMO targeting the same lysine within a protein, which determines function, localization, or stability.

The proliferating cell nuclear antigen (PCNA) is an intriguing example of the cooperative effect of SUMO and ubiquitin on the same acceptor lysine. PCNA encircles the DNA as a sliding clamp and accompanies processing DNA polymerases, additionally providing an important interaction stage for proteins involved in DNA repair (reviewed by ref. 59). In yeast, encountering a DNA lesion during replication leads to either mono- or polyubiquitination of PCNA at the lysine residue K164. While monoubiquitination stimulates the recruitment of translesion polymerases η and ζ to facilitate the error-prone DNA damage tolerance pathway, polyubiquitination of K164 promotes the error-free damage avoidance pathway (51, 110). SUMOylation of PCNA also targets K164. In contrast to the...
ubiquitination of PCNA, its modification by SUMO appears to be DNA damage independent but reliant on S-phase. In addition to the major SUMOylation site at K164, K127 is a minor SUMOylation site, increasingly used for modification after K164R mutagenesis (51). SUMOylated PCNA recruits the helicase SRS2, which was shown to promote the DNA damage tolerance pathway and inhibits unscheduled homologous recombination in multiple studies (12, 97, 127). SUMOylation of PCNA therefore promotes the ubiquitin-dependent tolerance pathway during S-phase, in case the replication fork encounters a lesion. Even though both modifications target the same lysine, the crosstalk is successive rather than competitive, comparable to the above mentioned regulation of NEMO and SHMT1.

The idea that SUMO and ubiquitin can modify the same acceptor lysine does not necessarily result in the need for successive modifications or competition. Ubiquitin and especially SUMO are only conjugated to a small subset of a given protein, making it possible for both modifiers to be present on the same lysine at the same time but in different subpopulations of the target proteins.

SUMO-targeted ubiquitin ligases. In addition to the model of exclusive occupation by either ubiquitin or SUMO at one acceptor site of a protein, there are indications that both modifications can form a hybrid chain. Site-specific mass spectrometry approaches have identified SUMOylation sites on endogenous ubiquitin at multiple positions (44). Endogenous SUMO can also be modified by ubiquitin, preferably at the K11 position, which lies within a SUMOylation consensus site (19). The establishment of SUMO-ubiquitin chains is catalyzed by a specific group of ubiquitin ligases, specifically targeting SUMOylated protein.

SUMOylation of a protein can directly serve as recognition signal for SUMO-targeted ubiquitin ligases (STUbLs) (99, 118, 124). The ability of STUbLs to recognize SUMOylated proteins is mediated by their SUMO-interaction motifs (SIMs) and a RING domain, which enables them to bind to SUMOylated proteins and an E2 ubiquitin-conjugation enzyme, respectively. The presence of multiple SIMs, within the identified STUbLs, determines their preference for substrates with SUMO chains (118, 124). In *S. cerevisiae*, three potential STUbLs have been identified, Uls1, Sls5/Sls8, and Rad18. The ubiquitin ligase for SUMOylated proteins (ULS) 1 and the heterodimeric STUbL Sls5/Sls8 are responsible for the proteolytic control of SUMOylated proteins in yeast (124, 139). Notably, Sls5/Sls8 does not necessarily require SUMOylation of its targets, but its activity is stimulated by SUMOylation. This stimulation is likely explained by an enhancement of target-enzyme interaction via SIMs on the NH2 terminus of Sls5 (134, 140). The ubiquitin ligase Rad18, which is responsible for the ubiquitination of the sliding clamp PCNA, is stimulated by the SUMOylation of PCNA in yeast. Human Rad18, however, does not show STUbL activity due to the lack of SIM motifs (98).

In humans, the E3 ubiquitin ligase RNF4 targets SUMO conjugates. RNF4 contains four putative SIMs, which show binding affinity not only to SUMO2 but also to SUMO1. However, RNF4 prefers to target proteins that are modified by SUMO chains of at least three SUMO moieties (118). RNF4 regulates substrates involved in a multitude of pathways, including kinetochore assembly (87), cell survival upon hypoxic stress (125), mitogen-activated protein (MAP) kinase signaling (39), transcriptional responses to heat shock (82), ion transport (2), and the DNA damage response (91). The most extensively studied substrate of RNF4 is the promyelocytic leukemia protein (PML). SUMOylation of PML is stimulated after treatment with arsenic trioxide (ATO), and SUMOylated PML is targeted by RNF4 for ubiquitination and subsequent proteasomal degradation (71, 118, 133). Interestingly, it was shown that PML ubiquitination by RNF4 took place on PML itself but also on the SUMO moiety attached to PML, indicating the formation of a hybrid SUMO-ubiquitin chain (118). PML was not only found to be SUMOylated and targeted by RNF4, but was additionally indicated to cooperate with RNF4 in the degradation of misfolded proteins in the nucleus. The polyQ pathogenic protein ataxin 1 (Atxn1 82Q), which is the causative, aggregation prone protein for a type of spinocerebellar ataxia (SCA), was shown to be SUMOylated. This SUMOylation was enhanced by PML and subsequently Atxn1 82Q could be targeted by RNF4 for ubiquitination and proteasomal degradation. RNF4 was further shown to reduce other misfolded proteins in the nucleus, including the polyQ huntingtin (40). A general role of RNF4 in the degradation of misfolded proteins in the nucleus was proposed on the basis of this finding, highlighting the possibility of a therapeutic effect by manipulating SUMOylation in neurodegenerative diseases, which will be discussed in more detail later.

Recently, the transcription factor and oncogene c-Myc was shown to be targeted by SUMO and ubiquitin modifications, regulated by RNF4. These modifications led to the rapid degradation of c-Myc in a proteasome-dependent manner. The authors showed that mutagenesis of all SUMOylation sites which were identified by mass spectrometry did not lead to a reduced SUMOylation of c-Myc, suggesting that the attachment of SUMO to a lysine residue might be promiscuous within the protein (36). These results are compatible with the idea that SUMO and ubiquitin modifications might be arbitrary in proteins that are targeted for degradation and the exact location of the modification plays a subordinate role here.

A second human STUbL is the ubiquitin ligase RNF111, also called Arkadia. RNF111 with its three putative SIMs was identified in a bioinformatic screen for SIM-containing proteins (113). RNF111 has previously been implicated in the TGF-β signaling pathway, where it is responsible for the ubiquitination and degradation of the negative regulators SMAD7, c-Ski, and SnoN.

As multiple factors involved in the TGF-β pathway are SUMOylated, including TGF-β receptor (61), Smad3 (53), Smad4 (73), and Axin (62), the STUbL activity of RNF111 might be involved in the regulation of this pathway, but this remains largely speculative. One study showed that the SIMs of RNF111 are not needed for the degradation of c-Ski and SnoN (28). Intriguingly, like RNF4, RNF111 was shown to regulate the proteasomal degradation of SUMOylated PML upon ATO treatment, suggesting that both STUbLs are involved and important in the regulation of the PML nuclear bodies (28).

Hybrid SUMO-ubiquitin chains. The activity of STUbLs and the establishment of SUMO-ubiquitin chains on a protein can either act as a recruitment signal or can target proteins to the proteasome. Both processes seem to be especially important for the regulation of the chromatin environment (32, 128, 144).
The first identified hybrid SUMO-ubiquitin chain receptor involved in mediating recruitment of proteins to the chromatin is RAP80, a component of the BRCA1-A complex. RAP80 carries a tandem ubiquitin interaction motif (UIM) and a SIM, and it consistently shows preferential affinity for hybrid chains. The establishment of hybrid chains at DNA damage sites, through the activity of the SUMO-targeted ubiquitin ligase RNF4, recruits RAP80 and the BRCA1-A complex to DNA lesions (41). In addition, the proteasomal subunit S5a/RPN10, which has protease activity, bears UIM and SIM motifs and it is intriguing to think that this protein could be responsible for the docking of hybrid SUMO-ubiquitin chains at the proteasome (42).

Furthermore, the targeting of a substrate to the proteasome via STUbL catalyzed SUMO-ubiquitin chains might possibly involve the recruitment of proteins mediating this process. A likely candidate is the AAA-ATPase p97. P97, or its yeast homologue CDC48, is able to extract ubiquitinated protein from the chromatin (reviewed by refs. 6, 85). Interestingly, CDC48 and its cofactors Ufd1 and Npl4 cooperate with SUMO at the chromatin. Yeast Ufd1 exhibits a COOH-terminal SIM motif, which enables a noncovalent interaction between SUMO and the CDC48-Ufd1-Npl4 complex (90). Yeast Ufd1 mutants displayed subnuclear foci of accumulated SUMO-conjugates, indicating a role of Ufd1 in the degradation of SUMOylated proteins (64, 90). Furthermore, the CDC48-Ufd1-Npl4 complex was shown to physically interact with STUbLs (64). These observations strengthened the idea that STUbL-induced proteasomal targeting of SUMO-conjugates could be facilitated by the segregate activity of CDC48, especially within the chromatin context where proteins might be “stuck” to the DNA and specific forces are needed to extract them. A site-specific mass spectrometry approach making use of genetic mutants of either the yeast STUbL subunit Slx8 or the CDC48 cofactor Ufd1 identified a subset of proteins which were coordinately regulated by both. These proteins were associated with centrosomes and telomerases, showing the importance of CDC48 segregate activity on proteins bound to DNA (65). In mammalian cells, the Fanconi anemia complex FANC/FANC2 (ID complex) is a target of RNF4-triggered extraction by p97. SUMOylation of the ID complex upon treatment with agents causing replication fork stalling induced its RNF4-dependent ubiquitination. P97 together with its cofactor DVC1 was subsequently responsible for the removal of the ubiquitinated ID complex and therefore regulates the amount of activated FANC1 and FANC2 on the chromatin. Direct targeting of SUMOylated proteins by yeast CDC48 without the contribution of ubiquitin was demonstrated by Jentsch and coworkers (11). They showed that the SUMOylated DNA repair factor RAD52 physically interacted with CDC48, leading to displacement from the chromatin of RAD52 together with its binding partner RAD51. This CDC48 effect was dependent on RAD52 SUMOylation as well as the SIM motif of Ufd1 and independent of ubiquitin, showing that CDC48 is able to directly target SUMOylated proteins (11).

SUMO deubiquitinases act on SUMO-ubiquitin chains. Signal transduction by hybrid SUMO-ubiquitin chains can be counteracted by a ubiquitin-protease with the ability to reverse the action of STUbLs. The deubiquitinating enzyme USP11 was identified as a binding partner of RNF4 through mass spectrometry analysis. In vitro experiments showed that USP11 was able to deubiquitinate hybrid SUMO2-ubiquitin chains produced by RNF4. USP11 could counteract RNF4 under normal growth conditions and within the DNA damage response (45, 138). Multiple studies showed the involvement of RNF4 and USP11 in the DNA damage response and reflect the importance of reversible ubiquitination of SUMOylated proteins (32, 103, 128, 136, 144). The concept of a deubiquitination that specifically targets hybrid SUMO-ubiquitin chains was further demonstrated by the identification of USP7 as SUMO deubiquitinase (SDUB) involved in DNA replication. USP7 was shown to establish the earlier observed SUMO-rich, ubiquitin-poor surroundings of replisomes by limiting ubiquitination of SUMOylated proteins, consistently hindering their clearance from the replication site. The authors also demonstrated that the clearance of the ubiquitinated SUMO conjugates was dependent on the action of the AAA-ATPase p97 (72).

Taken together, the ability of cells to form hybrid chains between ubiquitin and SUMO, possibly branched or including different SUMO family member, opens up numerous possibilities of cooperative SUMO and ubiquitin signaling. Specific proteins are needed for the catalysis, recognition, and destabilization of hybrid chains, and only a few have been identified so far.

Ubiquitin-stimulated SUMOylation could be involved in stress responses. Multiple studies showed that, upon inhibition of the proteasome, ubiquitinated proteins as well as SUMO2/3-conjugated proteins accumulated (101, 119). The inability to degrade a SUMOylated protein via the ubiquitin-proteasome pathway after proteasome inhibition could be explanatory for the increase of SUMO conjugates. This explanation, however, implies a simultaneous increase of SUMO and ubiquitin conjugates, whereas it was shown that the increase of SUMO2/3 targets is delayed compared with ubiquitin accumulation (101, 119). A possible explanation for this observation is the direct stimulation of SUMOylation after proteasome inhibition. This possibility is supported by the finding that the accumulation of SUMO2/3-modified proteins after proteasome inhibition was likely triggered by newly synthesized misfolded proteins which failed to be degraded (119). Interestingly, the authors of this paper showed that ubiquitin associated with the SUMO2/3 conjugates first decreased after proteasomal inhibition and then increased again with an enrichment of K63-linked ubiquitin chains, which were previously shown to be involved in the regulation of misfolded proteins. Therefore the accumulation of SUMO substrates in the cell upon proteasome inhibition is possibly only partly a result of the stabilization of SUMO substrates and might be explained by an active SUMOylation response upon misfolded protein stress. This hypothesis is also supported by the finding that a significant amount of proteins that are SUMOylated upon heat shock, a stress which induces unfolding of proteins, overlap with proteins that were SUMO modified after proteasome inhibition (44, 119). These data suggest a possible ubiquitination-stimulated SUMOylation of a subset of proteins.

SUMOylation Regulates Proteostasis at the Chromatin Level

Transcription factors and chromatin bound proteins are common targets of SUMOylation, and the modification of these...
The direct and indirect roles of SUMO in proteostasis are increasingly of interest in diseases characterized by a deregulation of proteostasis, such as neurodegenerative diseases. A hallmark of neurodegenerative diseases is the progressive loss of neurons. While neurodegenerative diseases are clinically diverse, depending on the group of neurons affected, these diseases share some underlying impairments. Common compromised processes are mitochondrial function upon oxidative stress, RNA function and metabolism, the UPS system, and the altered solubility of specific disease-associated proteins (14, 105, 126). The UPS system is being extensively investigated in this context, and failure of proper protein degradation plays an important part in the pathogenesis of neurodegenerative diseases (149). SUMOylation is involved in multiple neurodegenerative diseases, where key proteins were found to be SUMO modified. Together with the ubiquitin system, or independently, SUMO affects protein-protein interaction, protein activity, and most importantly, stability and solubility of several disease-associated proteins (Table 1) (67). Unraveling the influence of SUMO in these diseases can potentially lead to the development of novel drugs and treatment strategies.

Alzheimer’s disease. The molecular characteristics of Alzheimer’s disease (AD) are extracellular senile plaques and intracellular neurofibrillary tangles, composed of aggregated amyloid-β (Aβ) peptides and aggregates of the microtubule-associated protein tau, respectively (70, 121). The particular molecular causes of AD are still under investigation, but it is clear that AD is a complex, multifactorial disease.

SUMOylation of the amyloid precursor protein (APP) was reported at two lysine residues, which were close to the cleavage site important for the production of Aβ. Interestingly, in the Swedish early-onset familiar form of AD, one of the identified SUMOylation sites is mutated, which indicates a potential role of SUMOylation in AD. Additionally, multiple studies reported changes in Aβ processing or production, because of manipulation of the SUMO pathway. However, the observed results are conflicting. While the RNAi knockdown of SUMO1 and SUMO2 does not affect Aβ production in HEK293 cells, it was shown that the SUMOylation of APP in HeLa cells negatively influenced the aggregation of Aβ (24, 147). Also, the effect of overexpressing SUMO3 was shown to either reduce (78) or increase (24) the production of Aβ. Dissimilarities can be explained by different experimental methods, partial redundancy of SUMO isoforms, indirect effects of manipulating the SUMO pathway, or overexpression effects. Nevertheless, involvement of SUMOylation in Aβ regulation is worth investigating in further detail.

Neurofibrillary tangles, the second hallmark of AD, are aggregates of the hyperphosphorylated form of the microtubule-associated, natively unfolded protein tau, which in its nonhyperphosphorylated form is promoting tubulin stability (3, 54). The SUMOylation of tau at lysine residue K340 promoted its hyperphosphorylation, resulting in a reduced ubiquitination, therefore potentially stabilizing tau and promoting aggregation. In line with these findings, inhibiting the proteasome led to an increase in ubiquitination of tau and a decrease in SUMOylation, suggesting that crosstalk between SUMOylation, ubiquitin-
nation, and phosphorylation plays a pivotal role during tau aggregation (23, 80).

The SUMOylation pathway seems to be involved in AD, although the precise molecular mechanism must be further elucidated. The establishment of a mouse model for AD which expresses tagged versions of SUMO isoforms would enable the elucidation of the global role of SUMO in the disease pathogenesis.

Parkinson’s disease. Like tau, α-synuclein is a natively unfolded protein that is subject to protein modification by SUMO and is an important constituent of Lewy bodies. Lewy bodies are inclusions of proteins, including α-synuclein, which are hallmarks of Parkinson’s disease (PD) and other so-called synucleinopathies, like dementia with Lewy bodies (DLB) and multiple system atrophy (MSA) (23, 66). In contrast to tau where SUMOylation was shown to promote aggregation, SUMOylation of α-synuclein seems to increase solubility and protects against the cytotoxic effect of α-synuclein inclusions (1, 66).

Other proteins proposed to contribute to the pathogenesis of PD were reported to be SUMOylated. DJ-1, a multifunctional protein with a role in cytoprotection upon UV and oxidative stress, is strongly expressed in reactive astrocytes of patients with a sporadic form of PD and notably also in astrocytes adjacent to brain infarct regions (9, 88). SUMO1 can modify DJ-1 at K130 and consequently stimulate cell transformation and growth (115). Mutagenesis of the K130 abolished DJ-1 function. Additionally, it was shown that a mutant form of DJ-1, found in a small subset of PD patients, was improperly SUMOylated, which led to insolubility of DJ-1 (108). This shows that SUMOylation cannot only lead to an increased solubility of its targets, but SUMOylation at different sites can have opposite effects.

Parkin, an E3 ubiquitin ligase mutated in many cases of early-onset PD and immune-reactive with Lewy bodies in other forms of PD, was shown to selectively bind to SUMO1 (63, 102, 123). This interaction stimulated Parkin’s translocation to the nucleus and its proteasomal degradation through an enhanced autoubiquitination (123). Whether the interaction of SUMO and Parkin promotes or impedes cell survival is not yet completely understood as Parkin targets misfolded proteins and is involved in multiple processes dependent on its localization.

Parkin as well as SUMOylation seem to be involved in mitochondrial fusion and fission, processes with particular importance in brain cells and neurodegeneration. Here, it was shown that the dynamin-related protein 1 (Drp1) is a target for conjugation by SUMO1, SUMO2, and SUMO3 (30). The modification of Drp1 by SUMO1 led to an increased mitochondrial fission, and SENP5 was shown to be the responsible SUMO protease in this process (150). Drp1 is also a reported target of Parkin, which is responsible for Drp1 ubiquitination and subsequent degradation (129). SUMOylation is thus involved in multiple processes of PD pathogenesis, and complex interplay between SUMO targets complicates the prediction of overall contribution of SUMOylation (reviewed by ref. 26).

Disease	Affected Protein	Consequence of Aggregation	Influence of SUMO	Proposed Net Effect of SUMO on Cell Viability	Reference
Alzheimer’s disease	Amyloid-β	Unknown if causal or consequential	Increases Aβ secretion	Negative	Dorval et al., 2007 (24)
			Reduces aggregation	Positive	Li et al., 2003 (78)
			Reduces Aβ secretion	Positive	Yun et al., 2013 (145)
			Reduces solubility and inhibits degradation	Positive	Luo et al., 2014 (80)
Parkinson’s disease	τ	Cytotoxic	Increases solubility	Positive	Krumova et al., 2011 (66)
	DJ-1	Associated with inclusions	Incorrect SUMOylation decreases solubility	Positive and negative	Shinbo et al., 2006 (108)
Huntington’s disease	mHtt	Cytoprotective	Associates with aggregates	Negative	O’Rourke et al., 2013 (93)
			Stabilizes pathogenic fragment of HTT and reduces aggregation	Negative	Steffan et al., 2004 (109)
Spinobulbar muscular atrophy	Androgen receptor	Cytotoxic	Increases solubility	Positive	Mukherjee et al., 2009 (86)
Spino cerebellar ataxin type 1	Ataxin-1	Cytotoxic	Reduces aggregation	Positive	Guo et al., 2014 (40)
Spino cerebellar ataxin type 7	Ataxin-7	Cytotoxic	Increases solubility	Positive	Janer et al., 2010 (55)
Dentatorubral-pallidoluysian atrophy	Atrophin 1	Cytotoxic	Reduces aggregation	Positive	Terashima et al., 2002 (120)
Familiar amyotrophic lateral sclerosis	SOD1	Cytotoxic	Increases aggregation	Negative	Fei et al., 2006 (29)
Polyglutamine disorders. Protein aggregation and disruption of protein homeostasis is a common feature of polyglutamine disorders, characterized by the CAG repeat extension of genes which influences the gain of toxicity of their protein counterparts and their loss of normal function (69). These diseases include Huntington’s disease (HD), spinobulbar muscular atrophy (SBMA), dentatorubral-pallidoluysian atrophy (DRPLA), and spinocerebellar ataxias (SCA). SUMOylation of the toxic proteins appears to reduce their aggregation potential (Table 1) (55, 86, 109, 120).

In Huntington’s disease (HD), however, it is debated if the formation of inclusions of the causative mutant huntingtin protein (mHTT) is neurotoxic, with strong indications that this is a neuroprotective event (5, 68, 100). Even though mHTT is found to be expressed in different cell types throughout the body, degeneration is restricted to the brain’s corpus striatum. A proposed explanation for this observation is the presence of the SUMO E3 ligase Rhes in the corpus striatum. Rhes was able to stimulate the SUMOylation of mHTT, but not the wild type, and mHTT SUMOylation led to a decrease in aggregate formation and an increase of cytotoxicity in vitro and in vivo (109, 112). Rhes is an unusual SUMO E3 ligase, which shows no structural similarity with other SUMO E3s, but was shown to enhance cross-SUMOylation between the SUMO E1 and UBC9 as well as thioester transfer from E1 to Ubc9 (111).

The observation that mHTT is subject to modification by SUMO and that even though SUMOylation reduces aggregates, it has a cytotoxic rather than a cytoprotective role, illustrates that SUMOylation has diverse consequences on different disease-associated proteins in distinct neurodegenerative diseases.

Taken together, these neurodegenerative diseases, discussed above, all show the accumulation of proteins into aggregates and the involvement of SUMO in the regulation of this processes. It is, however, debatable whether those aggregates are causal or consequential, neurotoxic, or even neuroprotective. In addition, the contribution of SUMO seems to have diverse effects on different aggregates and various cellular outcomes which precludes attributing a general consequence to SUMOylation (Table 1). The range of mechanisms employed by SUMO to regulate the homeostasis of proteins is broad. The examples reviewed above show that SUMO can negatively affect protein aggregation, which is consistent with the findings that the fusion of SUMO to a protein enhances their solubility and is therefore often used as a method to produce recombinant proteins in *Escherichia coli* (81). On the other hand, SUMOylation can stimulate the formation of protein complexes. Because of the existence of SIMs on proteins, which have a binding affinity to SUMO moieties attached to another protein, SUMO can stimulate complex formation. These SUMO-SIM interactions within a complex are proposed to be redundant, indicating that the overall SUMOylation status of protein complexes might be more important than SUMOylation of a single group member (reviewed by ref. 57).

SUMO Plays a Protective Role in Brain Ischemia

In addition to SUMO’s upcoming role in neurodegenerative diseases, the role of SUMO is explored in other brain-related diseases which are connected to the distortion of proteostasis. Brain ischemia is characterized by a restriction of blood supply to a region of the brain, leading to oxygen and nutrient deprivation of cells. This shortage of supplies results in the damaging of macromolecules and a general imbalance of proteostasis including reduced production of new proteins which can ultimately lead to cell death of neurons and severe brain damage (135). Natural resistance against ischemia can be observed in hibernating animals. Interestingly, it was observed that SUMO2/3 conjugation is massively increased in brains of hibernating thirteen-lined ground squirrels (*Ictidomys tridecemlineatus*) during torpor (76). Consistently, multiple studies showed a high increase of SUMO conjugation after transient ischemia in vitro and in vivo (18, 76, 79, 131, 142, 143). This raises the intriguing question about the functional contribution of SUMOylation to protect cells from damage during ischemia. Below, we review multiple studies aiming to answer this question.

In vitro the consequences of SUMOylation during ischemia were studied using the oxygen-glucose deprivation (OGD) model in combination with a neuroblastoma cell line or in primary neurons isolated from mice or rats (17, 49). By using these models, it was shown that stimulating SUMOylation by overexpression of UBC9, SUMO1, and SUMO2 increased the resistance of cells towards OGD (74, 76). Consistently, decreasing global SUMOylation by expressing a dominant negative mutant of UBC9, silencing of each of the endogenous SUMO isoforms, or the overexpression of the sentrin-specific peptidase 1 (SENP1) caused sensitization of the cells towards OGD (17, 20, 74, 76). These findings all argue for a cytoprotective role of SUMOylation during OGD in vitro.

In vivo it was shown that the overexpression of UBC9 in mice subjected to focal cerebral ischemia contributed to the protection against brain damage, as infarct size inversely correlated with the level of UBC9 overexpression (77). Further investigation of SUMOs potential neuroprotective role against ischemic damage in vivo is hampered by the challenges of establishing conditional knockout mice of the SUMO-conjugating machinery, since the SUMO E1 and E2 enzymes are essential for embryonic development. Also the differential roles of the SUMO isoforms are difficult to establish in vivo because of the redundancy of the SUMO isoforms SUMO1 and SUMO3.

In vivo proteomics reveals SUMOylation targets on ischemia. A different strategy to obtain insight in the role of SUMOylation in ischemia is the identification of SUMOylated proteins. Recent advances in proteomics and the generation of mice expressing tagged versions of the SUMO isoforms enabled the identification of the SUMO3 proteome in mice subjected to ischemia (141).

The proteomic data suggest a global upregulation of cross-talk between SUMO and ubiquitin during ischemia, as many proteins are shown to be targets for both modifications on different lysines. Upon silencing of SUMO2 and 3, a decrease in ubiquitin conjugation in response to ischemia is detected. This observation implies a pivotal role for SUMO-dependent ubiquitination, which is regulated by SUMO-targeted ubiquitin ligases (STUbL) and reflects the involvement of SUMO in protein homeostasis (141).

Additionally, SUMO targets were enriched for proteins involved in posttranscriptional modification of RNA. Notably, after heat shock, a distinct kind of proteotoxic stress, a large group of targets increased for SUMOylation play a role in
RNA posttranscriptional modification. Moreover, SUMOylated proteins were shown to be recruited to promoters of genes involved in RNA processing (35, 92, 107). Taken together, those results indicate that SUMOylation might be involved, on multiple levels, in global regulation of RNA processes after different proteotoxic stresses.

Although the effect of SUMOylation for a single target protein is sometimes challenging to identify, SUMOylation of several important SUMO targets could contribute to the survival of neurons after deprivation of oxygen and nutrients. One of the major SUMOylation targets after ischemic stress, identified in the proteomic study by Paschen and coworkers, is the glucocorticoid receptor (GR) (141). The increased activity of GR, during chronic stress, was shown to increase the size of brain lesions after transient ischemia (8). GR SUMOylation leads to repression of its transcriptional activity and could therefore be involved in promoting cell survival (21). However, whether SUMOylation of GR directly contributes to the observed protective effect of global SUMOylation after ischemia is still unclear.

Other ubiquitin-like proteins are highly expressed on ischemia. SUMO was not the only UBL that was upregulated during torpor in hibernating squirrels. Protein modification by ISG15, NEDD8, UFM1, and FUB1, but interestingly not ubiquitin, was increased, which suggests that posttranslational modifications are an important regulatory mechanism when energy is scarce. Possibly, this regulation facilitates the intriguing natural tolerance against ischemic conditions observed in hibernating animals (75).

The global upregulation of UBL conjugation involves two families of microRNAs, miR-200 and mi-R182, which were downregulated during hibernation torpor. Inhibiting these miRNAs led to an increase in UBL conjugation while overexpression led to a decrease in conjugates, suggesting an important role of miRNAs in regulation of UBL conjugation (75).

In conclusion, SUMOylation is suggested as a global protective mechanism against the damaging effects of oxygen and nutrient deprivation. Because of the vast bio-complexity that underlies brain injuries due to ischemia, SUMOylation with its broad variety of target proteins would be an attractive drug target. Stimulating SUMOylation could potentially have a positive effect on neuronal cell survival. Conversely, inhibition of SUMOylation was indicated to potentially promote cell death of cancer cells. The role of the SUMOylation machinery and SUMOylation targets in cancer cells was recently reviewed by Eifler and Vertegaal (27).

Conclusion and Future Perspectives

SUMO can either alone or in cooperation with ubiquitin regulate proteostasis in the cell. Independently and directly, SUMO is involved in the regulation of protein aggregation or solubility in neurodegenerative diseases (Table 1). The consequences of SUMOylation regarding solubility of proteins are diverse and requires additional investigation. Possibly, SUMO
regulates multiple processes in those diseases and the overall cellular outcome of SUMOylation might be difficult to predict. For example, the SUMOylation of the polyQ androgen receptor (AR) was shown to decrease aggregation, but on the other hand, inhibiting SUMO increased AR transcriptional activity and ameliorated harmful properties of polyQ AR (16, 86). Combining the existing in vivo mouse models expressing tagged versions of SUMO (122, 141) with neurodegenerative disease mouse models would allow a global identification of SUMO conjugates. This would improve the understanding of SUMO’s contribution to the diseases with SUMO cycle enzymes as potential drug targets (122, 141).

In addition to the direct effect of SUMOylation on proteostasis, SUMO can also influence proteostasis indirectly. One example is the regulation of transcription factors by SUMOylation, which can alter expression levels of proteins involved in maintaining proteostasis (89, 92, 107).

The main contribution of SUMO in protein homeostasis is, however, its complex interplay with ubiquitin (Fig. 2). The ubiquitin-proteasome system (UPS) is involved in multiple signaling pathways and plays a major role in quality control of proteins (34). After synthesis, around 30% of proteins are misfolded and need to be degraded to prevent a constitutive unfolded protein response and subsequent apoptosis (104). It is critical that protein quality control is tightly regulated. SUMOylation was shown to either inhibit or promote ubiquitination of targets and their subsequent degradation and therefore is a component of the tightly controlled UPS. The process of SUMO-dependent ubiquitination is being extensively explored, leading to the identification of enzymes involved in this cross-talk, like STUB1s and SUMO-targeted deubiquitinases. In mammals, two enzymes of each class have been identified (45, 72, 113, 118). Proteins that are misfolded or unfolded during stress are ubiquitinated and targeted to the proteasome. It was found that those stresses also strongly induce SUMOylation of targets (44, 101, 119). Yet, it is unclear why and how this increase in SUMOylation upon heat stress or inhibition of the proteasome takes place, but it cannot only be explained by the accumulation of SUMO-conjugates. The possibility that SUMO is actively conjugated to ubiquitin targets opens a whole new area to be explored. Do ubiquitin-targeted SUMO ligases exist? Which consequence has the SUMOylation of ubiquitin-tagged proteins? Does this involve the ability of SUMO to alter solubility and therefore stimulates cell survival by giving the UPS time to catch up with the load of misfolded proteins? These questions need to be answered in the future and could lead to the exploration of SUMO enzymes as potential drug targets in diseases that are characterized by an unbalanced proteostasis, including neurodegenerative diseases.

GRANTS

The authors are grateful for support from the European Research Council, Grant 310913 (A.C.O. Vertegaal).

DISCLOSURES

No conflicts of interest, financial or otherwise, are declared by the author(s).

AUTHOR CONTRIBUTIONS

F.L. prepared figures; F.L. drafted manuscript; F.L. and A.C.O.V. approved final version of manuscript; A.C.O.V. edited and revised manuscript.

REFERENCES

1. Abeywardana T, Pratt MR. Extent of Inhibition of alpha-synuclein aggregation in vitro by SUMOylation is conjugation site- and SUMO isoform-selective. Biochemistry 54: 959–961, 2015.
2. Ahner A, Gong X, Frizzell RA. Cystic fibrosis transmembrane conductance regulator degradation: cross-talk between the ubiquitination and SUMOylation pathways. FERB J 280: 4430–4438, 2013.
3. Alonso AC, Li B, Grundke-Iqbal I, Iqbal K. Mechanism of tau-induced neurodegeneration in Alzheimer disease and related tauopathies. Curr Alzheimer Res 5: 375–384, 2008.
4. Anderson DD, Eom JY, Stover PJ. Competition between sumoylation and ubiquitination of serine hydroxymethyltransferase 1 determines its nuclear localization and its accumulation in the nucleus. J Biol Chem 287: 4790–4799, 2012.
5. Arrasate M, Mitra S, Schweitzer ES, Segal MR, Finkbeiner S. Inclusion body formation reduces levels of mutant huntingtin and the risk of neuronal death. Nature 431: 805–810, 2004.
6. Baek GH, Cheng H, Choe Y, Bao X, Shao J, Luo S, Rao H. Cdc48: a Swiss army knife of cell biology. J Amino Acids 2013: 183421, 2013.
7. Balch WE, Morimoto RI, Dillin A, Kelly JW. Adapting proteostasis for disease intervention. Science 319: 916–919, 2008.
8. Balkaya M, Prinz V, Custodis F, Gertz K, Kronenberg G, Kroebner J, Fink K, Pfehln H, Gass P, Laufs U, Endres M. Stress worsens endothelial function and ischemic stroke via glucocorticoids. Stroke 42: 3258–3264, 2011.
9. Bandopadhyay R, Kingsbury AE, Cookson MR, Reid AR, Evans IM, Hope AD, Plemm AM, Lashley T, Canet-Aviles R, Miller DW, McLendon C, Strand C, Leonard AJ, Ahern-Shuman PM, Heady DG, Ariga H, Wood NW, de Silva R, Revesz T, Hardy JA, Lees AJ. The expression of DJ-1 (PARK7) in normal human CNS and idiopathic Parkinson’s disease. Brain 127: 420–430, 2004.
10. Becker J, Barysch SV, Karaca S, Dittner C, Hsiao HH, Berriel DM, Herzog S, Urlaub H, Melchor F. Detecting endogenous SUMO targets in mammalian cells and tissues. Nat Struct Mol Biol 20: 525–531, 2013.
11. Benazet SA, Ammon T, Kern M, Schermelel H, Leonard H, Hetzsch S. Role of Cdc48/p97 as a SUMO-targeted segregase curbing Rad51-Rad52 interaction. Nat Cell Biol 15: 526–532, 2013.
12. Burkovics P, Sebesta M, Sisakova A, Plaut N, Szukacsov V, Robert T, Pinter L, Marin V, Kolesar P, Haracska L, Gangloff S, Krejci L. Src2 mediates PCNA-SUMO-dependent inhibition of DNA repair synthesis. EMBO J 32: 742–755, 2013.
13. Carbia-Nagashima A, Gerez J, Perez-Castro C, Paez-Pereda M, Arrasate M, Mitra S, Schweitzer ES, Segal MR, Finkbeiner S. Srs2 mediates PCNA-SUMO-dependent inhibition of DNA repair synthesis. EMBO J 32: 742–755, 2013.
14. Carvalho C, Correia SC, Cardoso S, Placido AI, Canedias E, Duarte AI, Moreira PI. The role of mitochondrial disturbances in Alzheimer, Parkinson and Huntington diseases. Expert Rev Neurother 15: 867–884, 2015.
15. Cheng CH, Lo YH, Liang SS, Ti SC, Lin FM, Yeh CH, Huang HY, Wang TF. SUMO modifications control assembly of synaptonemal complex and polypolymer complexes in meiosis of Saccharomyces cerevisiae. Genes Dev 20: 2067–2081, 2006.
16. Chua JP, Reddy SL, Yu Z, Giorgietti E, Montie HL, Mukherjee S, Higgins J, McEachin RC, Robins DM, Merry DE, Iniguez-Lluhi JA, Lieberman AP. Disrupting SUMOylation enhances transcriptional function and ameliorates polyglutamine androgen receptor-mediated disease. J Clin Invest 125: 831–845, 2015.
17. Cimaroa H, Ashikaga J, Jaffari N, Dearden L, Rubin P, Wilkinson KA, Henley JM. Enhanced SUMOylation and SENP-1 protein levels following oxygen and glucose deprivation in neurones. J Cereb Blood Flow Metab 32: 17–22, 2012.
18. Cimaroa H, Lindberg C, Bomholt SF, Ronn LC, Henley JM. Increased protein SUMOylation following focal cerebral ischemia. Neuropharmacology 54: 280–289, 2008.
19. Danielsen JM, Sylvesteren KB, Bekker-Jensen S, Szklarczyk D, Poulsen JW, Horn H, Jensen LJ, Mailand N, Nielsen ML. Mass spectrometric analysis of lysine ubiquitylation reveals promiscuity at site level. Mol Cell Proteomics 10: M110, 2011.
20. Dautry AL, Lattig-Tunnemann G, Yang W, Paschen W, Lee SL, Drihn Y, Endres M, Harms C. SUMO2/3 conjugation is an endogenous neuroprotective mechanism. J Cereb Blood Flow Metab 31: 2152–2159, 2011.
SUMO and PROTEOSTASIS

21. Davies L, Karthikeyan N, Lynch JT, Sia EK, Gkoutsa A, Democas N, Krstic-Democas N. Cross talk of signaling pathways in the regulation of the glucocorticoid receptor function. Mol Endocrinol 22: 1331–1344, 2008.

22. Desterro JM, Rodriguez MS, Hay RT. SUMO-1 modification of IkappaBalpha inhibits NF-kappaB activation. Mol Cell 2: 233–239, 1998.

23. Dorval V, Fraser PE. Small ubiquitin-like modifier (SUMO) modification of natively unfolded proteins tau and alpha-synuclein. J Biol Chem 281: 9919–9924, 2006.

24. Dorval V, Mazzella MJ, Mathews PM, Hay RT, Fraser PE. Modulation of Abeta generation by small ubiquitin-like modifiers does not require conjugation to target proteins. Biochem J 404: 309–316, 2007.

25. Drag M, Salvesen GS. DeSUMOylating enzymes—SNEPs. iUBMB Life 60: 734–742, 2008.

26. Eckenmann K. SUMO and Parkinson’s disease. Neuroaccumul Med 15: 737–759, 2013.

27. Eifler K, Vertegaal AC. SUMOylation-mediated regulation of cell cycle progression and cancer. Trends Biochem Sci 40: 779–793, 2015.

28. Erker Y, Neyret-Kehl S, Heeler JS, Dejean A, Atfi A, Levy L. Arkadia, a novel SUMO-targeted ubiquitin ligase involved in PML degradation. Mol Cell Biol 33: 2163–2177, 2013.

29. Fei E, Jia N, Yan M, Ying Z, Sun Q, Wang H, Zhang T, Ma X, Ding H, Yao X, Shi Y, Wang G. SUMO-1 modification increases human SOD1 stability and aggregation. Biochem Biophys Res Commun 347: 406–412, 2006.

30. Figuerola-Romero C, Iniguez-Lluhi JA, Stadler J, Chang CR, Arndt D, Keller PJ, Hong Y, Blackstone C, Feldman EL. SUMOylation of the mitochondrial fission protein Drp1 occurs at multiple non-consensus sites within the B domain and is linked to its activity cycle. FASEB J 23: 3917–3927, 2009.

31. Flotho A, Melchior F. SUMOylation: a regulatory protein modification in health and disease. Annu Rev Biochem 82: 357–385, 2013.

32. Galanty Y, Belotserkovskaya R, Coates J, Jackson SP. RNF4, a SUMO-targeted ubiquitin E3 ligase, promotes DNA double-strand break repair. Genes Dev 26: 1179–1195, 2012.

33. Gareau JR, Lima CD. The SUMO pathway: emerging mechanisms that shape specificity, conjugation and recognition. Nat Rev Mol Cell Biol 11: 861–871, 2010.

34. Goldberg AL. Protein degradation and protection against misfolded or damaged proteins. Nature 426: 895–899, 2003.

35. Golecbiowski F, Matic I, Tatham MH, Cole C, Yin Y, Nakamura A, Cox J, Barton GJ, Mann M, Hay RT. System-wide changes to SUMO modifications in response to heat shock. Cell Signal 21: 289–299, 2009.

36. Gonzalez-Prieto R, Cuijpers SA, Kumar R, Hendriks IA, Vertegaal AC. c-Myc is targeted to the proteasome for degradation in a SUMO-dependent manner, regulated by PIAS1, SENP7 and RNF4. Oncogene 28: 4892–4905, 2009.

37. Gu ZC, Enenkel C. Proteasome assembly. Cell Mol Life Sci 71: 4729–4745, 2014.

38. Guerardely JH, Takedachi A, Naim V, Scaglione S, Chawhan C, Lovera Y, Despras E, Kuraoka I, Kannouche P, Rosselli F, Gaillard PH. The SLX4 Complex is a SUMO E3 ligase that impacts on replication stress outcome and genome stability. Mol Cell 57: 123–137, 2015.

39. Guo B, Sharracks AD. Extracellular signal-regulated kinase mitogen-activated protein kinase signaling initiates a dynamic interplay between sumoylation and ubiquitination to regulate the activity of the transcriptional activator p53. Mol Cell Biol 29: 3204–3218, 2009.

40. Guo L, Glasson BI, Glavis-Bloom A, Brewer MD, Shorter J, Gitler AD, Yang X. A cellular system that degrades misfolded proteins and protects against neurodegeneration. Mol Cell 55: 15–30, 2014.

41. Guzzo CM, Berndsen CE, Zhu J, Gupta V, Datta A, Greenberg RA, Wolberger C, Matunis MJ. RNF4-dependent hybrid SUMO-ubiquitin chains are signals for RAP80 and thereby mediate the recruitment of BRCA1 to sites of DNA damage. Sci Signal 5: ra88, 2012.

42. Guzzo CM, Matunis MJ. Expanding SUMO and ubiquitin-mediated signaling through hybrid SUMO-ubiquitin chains and their receptors. Cell Cycle 12: 1015–1017, 2013.

43. Hay RT. SUMO-specific proteases: a twist in the tail. Trends Cell Biol 17: 370–376, 2007.

44. Hendriks IA, D’Souza RC, Yang B, Verlaan-de Vries M, Mann M, Vertegaal AC. Surviving global SUMOylation signaling networks in a site-specific manner. Nat Struct Mol Biol 21: 927–936, 2014.

45. Hendriks IA, Schimmel J, Eifler K, Olsen JV, Vertegaal AC. Ubiquitin-specific protease 11 (USP11) deubiquitinates hybrid small ubiqui-
SUMO and proteostasis

71. Lallemand-Breitenbach V, Jeanne M, Benhenda S, Nasr R, Lei M, Peres L, Zhou J, Zhu J, Raught B, De The H. Arsenic degrades PML or PML-RARalpha through a SUMO-triggered RNF4/ubiquitin-mediated pathway. Nat Cell Biol 10: 547–555, 2008.

72. Lecona E, Rodriguez-Acebes S, Specks J, Lopez-Contreras AJ, Ruppen I, Muruga M, Munoz J, Mendez J, Fernandez-Capetillo O. USP7 is a SUMO deubiquitinase essential for DNA replication. Nat Struct Mol Biol 23: 270–277, 2016.

73. Lee PS, Chang C, Liu D, Derynck R.

74. Lee YJ, Chang C, Liu D, Derynck R.

75. Lee PS, Chang C, Liu D, Derynck R.

76. Lee PS, Chang C, Liu D, Derynck R.

77. Lee PS, Chang C, Liu D, Derynck R.

78. Lee PS, Chang C, Liu D, Derynck R.

79. Lee PS, Chang C, Liu D, Derynck R.

80. Lee PS, Chang C, Liu D, Derynck R.

81. Lee PS, Chang C, Liu D, Derynck R.

82. Lee PS, Chang C, Liu D, Derynck R.

83. Lee PS, Chang C, Liu D, Derynck R.

84. Lee PS, Chang C, Liu D, Derynck R.

85. Lee PS, Chang C, Liu D, Derynck R.

86. Lee PS, Chang C, Liu D, Derynck R.

87. Lecona E, Rodriguez-Acebes S, Specks J, Lopez-Contreras AJ, Ruppen I, Muruga M, Munoz J, Mendez J, Fernandez-Capetillo O. USP7 is a SUMO deubiquitinase essential for DNA replication. Nat Struct Mol Biol 23: 270–277, 2016.

88. Lecona E, Rodriguez-Acebes S, Specks J, Lopez-Contreras AJ, Ruppen I, Muruga M, Munoz J, Mendez J, Fernandez-Capetillo O. USP7 is a SUMO deubiquitinase essential for DNA replication. Nat Struct Mol Biol 23: 270–277, 2016.

89. Lee PS, Chang C, Liu D, Derynck R.

90. Lecona E, Rodriguez-Acebes S, Specks J, Lopez-Contreras AJ, Ruppen I, Muruga M, Munoz J, Mendez J, Fernandez-Capetillo O. USP7 is a SUMO deubiquitinase essential for DNA replication. Nat Struct Mol Biol 23: 270–277, 2016.

91. Lee PS, Chang C, Liu D, Derynck R.

92. Lee PS, Chang C, Liu D, Derynck R.

93. Lee PS, Chang C, Liu D, Derynck R.

94. Lee PS, Chang C, Liu D, Derynck R.

95. Lee PS, Chang C, Liu D, Derynck R.

96. Lee PS, Chang C, Liu D, Derynck R.

97. Lee PS, Chang C, Liu D, Derynck R.

98. Lee PS, Chang C, Liu D, Derynck R.

99. Lee PS, Chang C, Liu D, Derynck R.

100. Lee PS, Chang C, Liu D, Derynck R.

101. Lee PS, Chang C, Liu D, Derynck R.

102. Leona E, Rodriguez-Acebes S, Specks J, Lopez-Contreras AJ, Ruppen I, Muruga M, Munoz J, Mendez J, Fernandez-Capetillo O. USP7 is a SUMO deubiquitinase essential for DNA replication. Nat Struct Mol Biol 23: 270–277, 2016.

103. Lee PS, Chang C, Liu D, Derynck R.

104. Lee PS, Chang C, Liu D, Derynck R.

105. Lee PS, Chang C, Liu D, Derynck R.

106. Lee PS, Chang C, Liu D, Derynck R.

107. Lee PS, Chang C, Liu D, Derynck R.

108. Lee PS, Chang C, Liu D, Derynck R.

109. Lee PS, Chang C, Liu D, Derynck R.

110. Lee PS, Chang C, Liu D, Derynck R.

111. Lee PS, Chang C, Liu D, Derynck R.

112. Lee PS, Chang C, Liu D, Derynck R.

113. Lee PS, Chang C, Liu D, Derynck R.

114. Lee PS, Chang C, Liu D, Derynck R.

115. Lee PS, Chang C, Liu D, Derynck R.

116. Lee PS, Chang C, Liu D, Derynck R.

117. Lee PS, Chang C, Liu D, Derynck R.

118. Lee PS, Chang C, Liu D, Derynck R.
