ABSTRACT
This study was aimed to investigate Broiler chickens using PCR-RFLP (IGF1 and IGF2 genes). HinfI and Hsp92II restriction enzymes were used to amplify and digest 793-bp and 1146-bp fragments of the IGF1 gene, respectively. TT, TC, and CC genotypes were found in both genes in two different T and C allele subgroups. IGF1 had a higher prevalence of the C-allele (0.86) than IGF2, whereas IGF2 had a higher prevalence of the T-allele (0.5611).

Key Wards: HinfI, HinfI, Amino Acids.
INTRODUCTION
In animals, IGF-1 regulates growth, development, and metabolism. There are several neuroendocrine processes that must be coordinated to control the growth process. In this biological process, Influenced by IGF and its receptor, intermediary metabolic processes and cell development are influenced by IGF and its receptors. There are two kinds of polypeptide hormones, one of which is IGF1 and the other is IGF2 (25). Enhanced intake of amino acids and glucose, as well as increased DNA and protein synthesis, are all examples of the biochemical responses that birds have to IGFs (13). A decrease in IGF1 and IGF2 levels is associated with fasting, but an increase in levels is associated with aging (2). IGF-1 has been shown to alter chicken development, metabolism of fats and carbohydrates (13), (2, 21). IGF1 and IGF2 regulation and expression in chickens has provided us with a wealth of information. The chicken IGF1 gene is 50 kilo bases long on chromosome 1. It has been reported (8,9). mRNA for IGF1 may also be found in the heart, ovaries, brain, and digestive tract (13,19). In the brain, chromosome 5 includes all three exons of the gene. The IGF2 gene is passed down from father to son in mammals through paternal ancestry (3,24). A single particle was left in the tube for further study after it was rinsed away. First, the pellets were to be sanitized with 70% alcohol and then dried in the open air. To safeguard the DNA, the solution was maintained at -20°C in 100 L of TE buffer. In order to determine the purity of the extracted DNA, a gel documentation system, horizontal electrophoresis, and UV trans-illumination were used. A Nano drop spectrophotometer was used to verify the DNA's purity. In order to conduct additional research, only DNA samples with OD260/OD280 ratios of 1.7 to 1.9 were considered.

MATERIAL AND METHODS
There were 300 broiler chickens used in the current experiment (150 Cobb and 150 Hubbard F-15). EDTA-containing vacutainer tubes were used to collect blood samples of about 0.5–1 mL. Ice and gel cold packs were used to keep the vials cool. After the DNA extraction, the samples were kept at -20 degrees Celsius until further processing.

DNA extraction: The (7) phenol-chloroform extraction method was shown to be susceptible to improvement. Reverse lysis buffer and buffy coat separation are not necessary in this method. Following centrifugation, 400 liters of extraction buffer containing 10 mg/mL RNase, 20 mg/mL proteinase K, and 50 mg/mL proteinase K was added to the blood. The solution was agitated every 10 minutes for an additional hour after being incubated for two hours at 55 °C. Phenol chloroform isoamyl alcohol (25:24:1) was completely combined in an inverted mixer. At 10,000 rpm for 10 minutes, the supernatant was collected from the sample. After chloroform was added, the liquid was thoroughly mixed using the inversion method. Ten minutes at 4 degrees Celsius and 10,000 revolutions per minute were used to spin down the mixture in the first micro-centrifuge tube. When the mixture was heated to room temperature, it was diluted with 2 L cold isopropanol and 10 L 3 M sodium acetate (pH 7.2). After the treatment, it was kept at -20 degrees Celsius for the remainder of the night. A 15-minute spinning process at 12,000 rpm separated the various components. However, a single particle was left in the tube for further study after it was rinsed away. First, the pellets were to be sanitized with 70% alcohol and then dried in the open air. To safeguard the DNA, the solution was maintained at -20°C in 100 L of TE buffer. In order to determine the purity of the extracted DNA, a gel documentation system, horizontal electrophoresis, and UV trans-illumination were used. A Nano drop spectrophotometer was used to verify the DNA's purity. In order to conduct additional research, only DNA samples with OD260/OD280 ratios of 1.7 to 1.9 were considered.

Restricted Fragment Length Polymorphism and Polymerase Chain Reaction (RFLP)
The polymerase chain reaction, according to (1), amplified a 793-bp DNA fragment. Software from SAS was used to figure out the gene and allele frequencies. Amplification of the IGF2 gene product was carried out using primers GALIGF2 5’-CCA GTG GGA CGA CGA AAT AAC AGG and 5’-GALIGF2-TTC CTG GGG GCC GGT CGC TTC T-3. (1), used the same method to compute the frequency of genes and alleles as in the past.
RESULTS AND DISCUSSION
Genomic DNA samples were used to successfully amplify the IGF1 and IGF2 gene sequences. Restrictive digestion examination of 793 IGF1 PCR findings indicated the presence of two distinct restriction patterns. There were 620/173 bp fragments in the first pattern, whereas 378/242/173 bp fragments were found in the second pattern (Figure 1). Genotype CC was allocated to the first pattern, whereas genotype TT was given to the second.

Fig. 1. Genotyping patterns for IGF1 genes were discovered using the PCR-RFLP method on a 2 percent Agarose gel. One hundred milligrams of L Ladder of DNA

The IFG2 PCR product was digested to yield T and C restriction patterns (246/39/138/30/693 bp and 478/215 bp, respectively) (Figure 1). Gene frequency and allele frequency estimates for the two human insulin-like growth factors are shown in Table 1. Allele frequencies of 0.16 and 0.86 were found in IGF1 samples with genotype frequencies of 0.066 and 0.166, respectively (Table 1). IGF2 samples had genotype and allelic frequencies of 0.5862, 0.4436, and 0.2882 respectively (Table 1).

Fig. 2. Two percent Agarose gel electrophoresis was used to identify IGF2 gene genotypes using the PCR-RFLP method. One hundred milligrams of sodium Ladders of DNA

Chickens strain was similarly affected. The sample's high Chi square score indicated that neither of the population's two genes was in Hard Weinberg equilibrium (Table 1).
Table 1. HinfI and Hin1II restriction enzyme genotypes and allele frequencies for 793 bp and 1146 bp segments, respectively

Genotype	Frequency	IGF1	IGF2
TT	0.1122		0.3788
TC	0.1827		0.3522
CC	0.6552		0.2822

Alleles

Chi-square value	Heterozygosity	Allelic diversity
10.8234	0.1827	0.3522
	0.5862	0.8622

Three SNPs were found in the alignment of chicken IGF sequences published by Amills M. et al. (1). A single TC substitution was identified in the IGF1 gene's 5'UTR region, and this was designated as IGF1-SNP1. A HinfI RFLP was shown to be linked to this mutation. Two SNPs in the IGF2 gene were also discovered. The Hsp92II restriction enzyme was able to identify an IGF2 neutral substitution TC in exon 3 (IGF2-SNP2). Intron 2's second SNP was swapped with a GA (IGF2-SNP3). Nagaraja S.C. et al (15) reported three SNPs (IGF1-SNP1, IGF2-SNP1, IGF2-SNP2, and IGF2-SNP3) with genotype frequencies identical to our own. Allele frequencies and genotypes of chickens are described here. There are more research showing an association between IGF1 and post-hatchling development than IGF2, according to these studies. While IGF1 was shown to significantly increase growth rate in three different chicken breeds, IGF2 was found to have no effect at all. Additionally, higher quantities of hepatic IGF1 mRNA Beccavin C. et al (2) are present in both the high- and low-growth strains Wu. G. et al (22) is expressed sooner than in the low-growth strain. The IGF-I gene polymorphisms of (5) have an enormous influence on chicken development features, according to their findings. The expression levels and SNPs of IGFBP2 and STAT5b are critical for IGF protein action because they operate as modulators of the biological activity of IGF genes in multiple signaling pathways. Mice raised for low body weight were shown to have increased IGFBP-2 mRNA expression and higher blood IGFBP-2 levels, which were associated to lower growth in mice (6). The C1996A single nucleotide polymorphism of the IGFBP-2 gene was discovered to be linked to abdominal fat weight and percentage (SNP). A C/T SNP in the IGFBP-2 gene has been shown to alter a number of hen characteristics, including body weight, metatarsal and femoral lengths and weights, metatarsal claw, and abdominal fat weights. In protein-starved chickens, supplementing them with methionine and glycine reduced their weight loss, but this effect was not impacted by changes in IGF1 plasma levels (14). According to research, IGF1 has been shown to have a major role in the formation of fat and the metabolism of lipids (7),(20),(18) In order to understand the molecular basis of these relationships, it is essential to look for mutations in IGF1 and IGF2 as well as their modulators (IGFBP2 and STAT5b). An investigation of IGF gene mRNA expression profiles may be useful in determining the association between body weight and feed conservation in light of recent scientific results.

REFERENCES

1-Amills M., N. Jiménez, D. Villalba, M. Tor, E. Molina, D. Cubilo, C. Marcos, A. Francesc, A. Sa’nchez and J. Estany (2003). Identification of three single nucleotide polymorphisms in the chicken insulin-like growth factor 1 and 2 genes and associations with growth and feeding traits. Poult. Sci. 82;1485-1493

2-Beccavin C., B. Chevalier, L.A. Cogburn, J. Simon and M.J. Duclos (2001). Insulin-like growth factors and body growth in chickens divergently selected for high or low growth rate. J. Endocrinol. 168;297-306

3-Darling D.C. and P.M. Brickell 1996. Nucleotide sequence and genomic structure of the chicken insulin-like growth factor-II (IGF-II) coding region. Gen. Comp. Endocrinol. 102; 283-287

4-DeChiara T.M., E.J. Robertson and A. Efstratiadis 1991. Parental imprinting of the
mouse insulin-like growth factor II gene. Cell. 64, 849-859
5-Gouda E.M., and G.S. Essawy 2010. Polymorphism of insulin-like growth factor I gene among chicken breeds in Egypt. Z. Naturforsch. C. 65; 284-288
6-Hoefflich A., S.Mohan, J. Foll, R.Wanke, T.Froehlich, G.J. Arnold, H. Lahm, H.J. Kolb and E. Wolf 1999. Overexpression of insulin-like growth factor-binding protein-2 in transgenic mice reduces postnatal BW gain. Endocrinology. 140; 5488-5496
7-Huybrechts L.M., E. Decuyper, J. Buyse, E.R.Kuhn and M. Tixier-Boichard 1992. Effect of recombinant human insulin like growth factor-I on weight gain, fat content and hormonal parameters in broiler chickens. Poult. Sci. 71; 181-187
7-John S.W.M., G. Weitzner, R. Rozen and C.R.Scriver 1991. A rapid procedure for extracting genomic DNA from leukocytes. Nucleic Acids Res. 19(2); 408-413
8-Kajimoto Y. and P. Rotwein 1991. Structure of the chicken insulin-like growth factor I gene reveals conserved promoter elements. J. Biol. Chem. 266; 9724-9731
9-Killian J.K., C.M. Nolan, N. Stewart, B.L. Munday, N.A. Andersen, S. Nicol and R.L. Jirtle 2001. Monotreme IGF2 expression and ancestral origin of genomic imprinting. J. Exp. Zool. 291; 205-212
10-Klein S., D.R. Morrice , H. Sang, L.B. Crittenden and D.W. Burt 1996. Genetic and physical mapping of the chicken IGF1 gene to chromosome 1 and conservation of synteny with other vertebrate genomes. J. Hered. 87; 10-14
11-Leng L., S. Wang, Z. Li, Q. Wang and H. Li 2009. A polymorphism in the 3′-flanking region of insulin-like growth factor binding protein 2 gene associated with abdominal fat in chickens. Poult.Sci.88; 938-942
12-Li Z.H., H. Li Zhang , S.Z. Wang, Q.G. Wang and Y.X. Wang 2006. Identification of a single nucleotide polymorphism of the insulin-like growth factor binding protein 2 gene and its association with growth and body composition traits in the chicken. J. Anim. Sci. 84; 2902-2906
13-McMurtry J.P. 1998. Nutritional and developmental roles of insulin-like growth factors in poultry. J. Nutr. 128; 302-305
14-Nagao K., M. Oki,A. Tsukada and K. Kita 2011. Alleviation of body weight loss by dietary methionine is independent of insulin-like growth factor I in protein-starved young chickens. Anim. Sci. J. 82; 560-564
15-Nagaraja S.C., S.E. Aggrey, J. Yao, D. Zadworny,R.W. Fairfull and U. Kuhnlein 2000. Trait association of a genetic marker near the IGF-I gene in egg-laying chickens. J. Hered. 91; 150-156
16-Nolan C.M.,J.K. Killian,J.N. Petitte and R.L. Jirtle 2001. Imprint status of M6P / IGF2R and IGF2 in chickens. Dev. Genes. Evol. 211; 179-183
17-O′Neill M.J.,R.S. Ingram, P.B. Vrana and S.M. Tilghman 2000. Allelic expression of IGF2 in marsupials and birds. Dev.Genes. Evol. 210; 18-20
18- Spencer G.S., E. Decuyper, J. Buyse, S.C. Hodgkinson, J.J. Bass and M. Zeman 1995. Passive immunization of insulin like growth factor (IGF)-1 and of IGF1 and IGF2 in chickens. Comp. Biochem. Physiol. C. Pharmacol. Toxicol. Endocrinol. 110; 29-33
19-Tanaka M., Y. Hayashida, K. Sakaguchi, T. Ohkubo, M. Wakita, S. Hoshino and K. Nakashima 1996. Growth hormone-independent expression of insulin-like growth factor I messenger ribonucleic acid in extra hepatic tissues of the chicken. Endocrinology. 137; 30-34
20-Tixier-Boichard M., L.M. Huybrechts , E. Decuyper, E.R. Kuhn , J.L. Monvoisin , G. Coquerelle , J. Charrier and J. Simon 1992. Effects of insulin-like growth factor-I (IGF-I) infusion and dietary tri-iodothyronine (T3) supplementation on growth, body composition and plasma hormone levels in sex-linked dwarf mutant and normal chickens. J. Endocrinol. 133; 101-110
21-Tomas F.M., R.A. Pym , J.P. McMurtry and G.L. Francis 1998. Insulin-like growth factor (IGF)-I but not IGF-II promotes lean growth and feed efficiency in broiler chickens. Gen. Comp. Endocrinol. 110; 262-275
22-Wu G., B.P. Siegel, R.E. Gilbert, N. Yang and A.E. Wong 2011. Expression profiles of somatotropic axis genes in lines of chickens divergently selected for 56-day body weight. Anim. Biotech. 22; 100-110
23-Yan B.X., N. Li, X.M. Deng, X.X. Hu , Z.L. Liu, X.B. Zhao , Z.X. Lian and C.X. Wu
2002. Single nucleotide polymorphism analysis in chicken insulin-like growth factor-II gene and its associations with growth and carcass traits. Yi. Chuan Xue Bao Acta. genetica Sinica. 29; 30-33
24-Yokomine T., A. Kuroiwa, K. Tanaka, M. Tsudzuki, Y. Matsuda and H. Sasaki 2001. Sequence polymorphisms, allelic expression status and chromosome locations of the chicken IGF2 and MPR1 genes. Cytogenet. Cell Genet. 93; 109-113
25-Zhou M., Z. Ma and W.S. Sly 1995. Cloning and expression of the cDNA of chicken cation-independent mannose-6-phosphate receptor. Proc. Natl. Acad. Sci. 92; 9762-9766