Scalarization of horizonless reflecting stars: neutral scalar fields non-minimally coupled to Maxwell fields

Yan Peng

1 School of Mathematical Sciences, Qufu Normal University, Qufu, Shandong 273165, China

Abstract

We analyze condensation behaviors of neutral scalar fields outside horizonless reflecting stars in the Einstein-Maxwell-scalar gravity. It was known that minimally coupled neutral scalar fields cannot exist outside horizonless reflecting stars. In this work, we consider non-minimal couplings between scalar fields and Maxwell fields, which is included to aim to trigger formations of scalar hairs. We analytically demonstrate that there is no hair theorem for small coupling parameters below a bound. For large coupling parameters above the bound, we numerically obtain regular scalar hairy configurations supported by horizonless reflecting stars.

PACS numbers: 11.25.Tq, 04.70.Bw, 74.20.-z

* yanpengphy@163.com
I. INTRODUCTION

The recent observation of gravitational waves may provide a way to test the nature of astrophysical black holes [1–3]. In classical general relativity, one famous property of black holes is no hair theorem, which states that a nontrivial static scalar field cannot exist in the exterior region of asymptotically flat black holes, see references [4]-[11] and reviews [12, 13]. However, some candidate quantum-gravity models suggested that, due to quantum effects [14–18], the classical absorbing horizon should be replaced by a reflecting surface [19–25]. Interestingly, no hair behaviors also appear for such horizonless reflecting stars [26]-[38]. In particular, even for static scalar fields non-minimally coupled to the Ricci curvature, no hair theorem still holds in backgrounds of black holes and horizonless reflecting stars [39–44].

Intriguingly, for static scalar fields non-minimally coupled to the Gauss-Bonnet invariant, scalar field hairs can exist outside asymptotically flat black holes [45–48]. Spinning hairy black holes were also numerically obtained in the scalar-Gauss-Bonnet theory [49]. In addition, analytical formula of the scalar-Gauss-Bonnet coupling parameter was explored in [50]. These scalarization models are constructed by introducing an additional term $f(\psi)R_{GB}^2$, where $f(\psi)$ is a function of the scalar field ψ and R_{GB}^2 is the Gauss-Bonnet invariant. In the scalar-Gauss-Bonnet gravity, under scalar perturbations, the bald black hole is thermodynamically unstable and it may evolve into a hairy black hole [46, 47]. This intriguing mechanism of hair formations is usually called spontaneous scalarization, which was found long ago for neutron stars in the context of scalar-tensor theories [51]. At present, lots of spontaneous scalarization models were constructed in the background of black holes [52–60].

As mentioned above, some candidate quantum-gravity models suggested that quantum effects may prevent the formation of horizons and a reflecting wall may lay above the would-be horizon position [14–21]. Interestingly, it was found that neutral scalar field hairs cannot exist outside such horizonless reflecting stars (even the star is charged) [26]. When considering scalar-Gauss-Bonnet couplings, we showed that the coupling can lead to the formation of neutral scalar field hairs in the background of horizonless reflecting stars [61]. In fact, black hole spontaneous scalarization is a very universal property, which also can be induced by another type of non-minimal couplings between scalar fields and Maxwell fields [62–67]. As a further step, it is very interesting to examine whether scalar-Maxwell couplings can trigger condensations of neutral scalar fields outside horizonless reflecting stars.
This work is organized as follows. We start by introducing a model with a neutral scalar field coupled to the Maxwell field in the charged horizonless reflecting star spacetime. For small coupling parameters, the neutral scalar field cannot exist. In contrast, for large coupling parameters, we get numerical solutions of scalar hairy horizonless reflecting stars. Main conclusions are presented in the last section.

II. INVESTIGATIONS ON THE COUPLING PARAMETER BETWEEN SCALAR FIELDS AND MAXWELL FIELDS

We take the Lagrange density with scalar fields non-minimally coupled to Maxwell fields in the asymptotically flat background. It is defined by the following expression

\[L = R - \nabla^\nu \nabla_\nu \Psi - \mu^2 \psi^2 + f(\Psi) I. \]

(1)

Here \(R \) is the scalar curvature. \(\Psi \) is the static neutral scalar field with mass \(\mu \). \(f(\Psi) \) is a function coupled to \(I = F_{\rho\sigma} F^{\rho\sigma} \). In the linearized regime, there is \(I = -\frac{Q^2}{r^4} \) and the general coupling function can be expressed as \(f(\Psi) = 1 - \alpha \Psi^2 \), where \(\alpha \) is the model parameter describing coupling strength. In the limit of \(\alpha \to 0 \), it returns to the usual Einstein-Maxwell-scalar gravity.

The scalar field differential equation is

\[\nabla^\nu \nabla_\nu \Psi - \mu^2 \Psi + \frac{f' \psi I^2}{2} = 0. \]

(2)

The charged static spherically symmetric background is

\[ds^2 = -N(r) dt^2 + \frac{dr^2}{N(r)} + r^2 (d\theta^2 + \sin^2 \theta d\phi^2). \]

(3)

In the weak-field limit, the metric function \(N(r) \) is

\[N(r) = 1 - \frac{2M}{r} + \frac{Q^2}{r^2} \]

(4)

with \(M \) and \(Q \) representing the star mass and star charge respectively. We point out that this background metric is valid on the condition \(\alpha \psi^2 \ll 1 \).

We take the scalar field decomposition

\[\Psi(r, \theta, \phi) = \sum_{lm} e^{im\phi} S_{lm}(\theta) R_{lm}(r). \]

(5)

For simplicity, we label \(R_{lm}(r) \) as \(\psi(r) \). With relations (2), (3), (5) and \(I = -\frac{Q^2}{r^4} \), we derive the ordinary differential equation

\[\psi'' + \left(\frac{2}{r} + \frac{N'}{N} \right) \psi' + \left(\frac{\alpha Q^2}{r^2 N} - \frac{l(l + 1)}{r^2 N} - \frac{\mu^2}{N} \right) \psi = 0. \]

(6)
Here \(l \) is the spherical harmonic index and \(l(l+1) \) is the characteristic eigenvalue of the angular scalar eigenfunction \(S_{lm}(\theta) \).

We label \(r_s \) as the radial coordinate of the star surface. Since we focus on the compact star without a horizon, the star surface is outside the gravitational radius, which can be expressed as \(r_s > M + \sqrt{M^2 - Q^2} \).

At the star surface, we take scalar reflecting surface boundary conditions \(\psi(r_s) = 0 \). In the far region, the physical massive static scalar fields asymptotically behave as \(\psi(r \to \infty) \sim \frac{1}{r} e^{-\mu r} \). So the scalar field satisfies bound-state conditions

\[
\psi(r_s) = 0, \quad \psi(\infty) = 0. \tag{7}
\]

According to boundary conditions (7), one concludes that the function \(\psi(r) \) must possess (at least) one extremum point \(r = r_{\text{peak}} \) between the star surface \(r = r_s \) and spatial infinity. It can be a positive maximum extremum point or a negative minimum extremum point. With the symmetry \(\psi \to -\psi \) of equation (6), without loss of generality, we can only study the case of positive maximum extremum points. Then the scalar field around the extremum point is characterized by

\[
\psi(r_{\text{peak}}) > 0, \quad \psi'(r_{\text{peak}}) = 0, \quad \psi''(r_{\text{peak}}) \leq 0. \tag{8}
\]

(6) and (8) yield the relation

\[
\frac{\alpha Q^2}{r_{\text{peak}}^4 N} - \frac{l(l+1)}{r_{\text{peak}}^2 N} - \frac{\mu^2}{N} \geq 0 \quad \text{for} \quad r = r_{\text{peak}}. \tag{9}
\]

Since we concentrate on horizonless stars, the extremum point is outside the gravitational radius satisfying

\[
N(r_{\text{peak}}) = 1 - \frac{2M}{r_{\text{peak}}} + \frac{Q^2}{r_{\text{peak}}^2} > 0. \tag{10}
\]

With (9) and (10), we get the relation

\[
\frac{\alpha Q^2}{r_{\text{peak}}^4} - \frac{l(l+1)}{r_{\text{peak}}^2} - \mu^2 \geq 0. \tag{11}
\]

According to the inequality (11), we deduce a bound on the coupling parameter

\[
\alpha \geq \frac{\mu^2 r_{\text{peak}}^4 + l(l+1)r_{\text{peak}}^2}{Q^2} = \frac{\mu^2 r_s^4 + l(l+1)r_s^2}{Q^2} > \frac{\mu^2(M + \sqrt{M^2 - Q^2})^4 + l(l+1)(M + \sqrt{M^2 - Q^2})^2}{Q^2}. \tag{12}
\]

If compact reflecting stars are surrounded with static neutral scalar hairs, the parameter \(\alpha \) should be above the bound (12). In other words, we obtain a no hair theorem for small coupling parameters

\[
\alpha \leq \frac{\mu^2(M + \sqrt{M^2 - Q^2})^4 + l(l+1)(M + \sqrt{M^2 - Q^2})^2}{Q^2}. \tag{13}
\]
It implies that neutral massive static exterior scalar fields usually cannot exist in cases of large field mass, large spherical harmonic index, large star mass or small star charge. In particular, for $\alpha = 0$, the no hair condition (13) always holds, which means that charged stars cannot support minimally coupled neutral scalar hairs. In the following, we numerically show that scalar hairs can be induced by large non-minimal coupling parameters satisfying (12).

III. NEUTRAL SCALAR FIELD HAIRS NON-MINIMALLY COUPLED TO MAXWELL FIELDS

We numerically solve the equation (6) together with boundary conditions (7). Besides parameters r_s, M, Q, l and α, we also need initial values of $\psi(r_s)$ and $\psi'(r_s)$ to integrate the equation. The reflecting condition of (7) gives the value $\psi(r_s) = 0$. According to the symmetry $\psi \rightarrow k\psi$ of equation (6), we firstly set $\psi'(r_s) = 1$ without loss of generality. Since the equation (6) also satisfies the symmetry $r \rightarrow \gamma r, \mu \rightarrow \mu/\gamma, M \rightarrow \gamma M, Q \rightarrow \gamma Q$, we use dimensionless parameters $\mu r_s, \mu M, \mu Q, l$ and α to describe the system. For given values of $\mu r_s, \mu M, \mu Q$ and l, using standard shooting methods, we search for the proper α with the vanishing condition $\psi(\infty) = 0$. The equation of motion of the scalar field is linear with respect to ψ and the solution is scale free. After getting numerical solutions, we modify the boundary condition $\psi'(r_s) = 1$ so that $\alpha\psi^2 \ll 1$ holds. In this work, we take very small $\alpha\psi^2$ satisfying $\alpha\psi^2 < 10^{-7}$.

In the case of $\mu r_s = 2.7, \mu M = 1.5, \mu Q = 1.0$ and $l = 0$, we choose various α to try to get the physical solution with $\psi(\infty) = 0$. As shown by red curves in Fig. 1, if we choose $\alpha = 322$, the solution diverges quickly to be ∞. For green curves in Fig. 1, if we choose a little larger value $\alpha = 323$, then the solution decreases to be $-\infty$ in the larger r region. It turns out that $\alpha = 322$ and $\alpha = 323$ are not related to the physical scalar field solution with decaying behaviors at infinity.

![FIG. 1: (Color online) We show behaviors of $\psi(r)$ in cases of $\mu r_s = 2.7, \mu M = 1.5, \mu Q = 1.0, l = 0$ and different values of α. The red line corresponds to $\alpha = 322$ and the green line is with $\alpha = 323$.](image)
In fact, general mathematical solutions of equation (6) behave as $\psi \approx A \cdot \frac{1}{r_1 e^{-\mu r}} + B \cdot \frac{1}{r_1 e^{\mu r}}$ with $r \to \infty$. The red line of Fig. 1 corresponds to $B > 0$ and the green line of Fig. 1 represents the case of $B < 0$. As the value B should change continuously with α, indicating the existence of a critical α corresponding to $B = 0$. For this critical α, physical scalar fields asymptotically decay as $\psi \propto \frac{1}{r} e^{-\mu r}$ at infinity. With $\mu r_s = 2.7$, $\mu M = 1.5$, $\mu Q = 1.0$ and $l = 0$, we numerically obtain a discrete value $\alpha \approx 322.083016$, which corresponds to the solution satisfying $\psi(\infty) = 0$. We plot the physical solution with blue curves in Fig. 2, which asymptotically approaches zero in the far region. For higher modes $l \geq 1$, we showed physical solutions with discrete α in Fig. 3. Similarly, in other cases of black holes, scalar hairy configurations are also characterized by discrete coupling parameters in the linearized regime.

![FIG. 2: (Color online) We show the function $\psi(r)$ in the case of $\mu r_s = 2.7$, $\mu M = 1.5$, $\mu Q = 1.0$, $l = 0$ and $\alpha = 322.083016$.](image1)

![FIG. 3: (Color online) We Plot the function $\psi(r)$ in the case of $\mu r_s = 2.7$, $\mu M = 1.5$ and $\mu Q = 1.0$. The left panel corresponds to $l = 1$ and $\alpha = 347.375787$. The right panel is with $l = 2$ and $\alpha = 397.388732$. The two physical solutions with different l behave very similarly to each other.](image2)

Now we study how parameters μr_s, μM, μQ and l can affect the discrete coupling parameter α, which corresponds to the decaying scalar field. In Table I, for $\mu M = 1.5$, $\mu Q = 1.0$ and fixed l, we show effects of μr_s on discrete α. It can be seen that a larger radius μr_s corresponds to a larger discrete α. With $\mu r_s = 2.7$, $\mu Q = 1$ and fixed l, according to data in Table II, the discrete α decreases as we choose a larger star mass.
In Table III, we see that the discrete α decreases as a function of the star charge μQ. Results in Table III also implies that α becomes smaller when we choose a small $\sqrt{\frac{Q^2}{\mu^2} - \frac{\mu^2}{\mu M}} = \frac{\mu Q}{\mu M}$, which is qualitatively the same as cases of black holes expressed by analytical formula (17) in [64]. From data in Tables I, II and III, we see that larger spherical harmonic index l leads to a larger discrete coupling parameter α.

TABLE I: The parameter $\alpha(l)$ with $\mu M = 1.5, \mu Q = 1.0$ and various μr_s

μr_s	2.62	2.66	2.70	2.74	2.78
$\alpha(l = 0)$	258.102979	298.304665	322.083016	343.522473	364.215671
$\alpha(l = 1)$	280.963138	322.681432	347.375787	369.638470	391.118639
$\alpha(l = 2)$	326.150845	370.872697	397.388732	421.291276	444.340681

TABLE II: The parameter $\alpha(l)$ with $\mu r_s = 2.7, \mu Q = 1.0$ and various μM

μM	1.48	1.49	1.50	1.51	1.52
$\alpha(l = 0)$	329.865858	326.322158	322.083016	316.754944	309.433789
$\alpha(l = 1)$	355.357693	351.725147	347.375787	341.903046	334.372292
$\alpha(l = 2)$	405.760364	401.953940	397.388732	391.632426	383.690319

TABLE III: The parameter $\alpha(l)$ with $\mu r_s = 2.7, \mu M = 1.5$ and various μQ

μQ	0.92	0.96	1.00	1.04	1.08
$\alpha(l = 0)$	351.506957	339.345528	322.083016	304.458791	287.540951
$\alpha(l = 1)$	380.541786	366.508043	347.375787	328.019191	309.520394
$\alpha(l = 2)$	437.965671	420.222598	397.388732	374.603527	352.976403

IV. CONCLUSIONS

We investigated formations of neutral scalar field hairs outside asymptotically flat spherical horizonless reflecting stars. We considered scalar fields non-minimally coupled to Maxwell fields. We showed that the coupling parameter plays an important role in scalar condensations. We analytically got a bound on the coupling parameter expressed in the form $\alpha \leq \frac{\mu^2(M + \sqrt{M^2 - Q^2})^l + (l+1)(M + \sqrt{M^2 - Q^2})^2}{\sqrt{Q^2}}$, where α is the coupling parameter, μ is the scalar field mass, M is the star mass, Q is the star charge and l is the spherical harmonic index. For α below this bound, no neutral scalar hair theorem holds. In contrast, for large α above this bound, with shooting methods, we obtained regular scalar hairy configurations with a horizonless reflecting
star in the center. We also examined effects of star radii, star mass, star charge and spherical harmonic index on condensations of neutral scalar fields.

Acknowledgments

This work was supported by the Shandong Provincial Natural Science Foundation of China under Grant No. ZR2018QA008. This work was also supported by a grant from Qufu Normal University of China under Grant No. xkjje201906.

[1] B. P. Abbott et al. (Virgo and LIGO Scientific Collaborations), Phys. Rev. Lett. 116(2016)061102.
[2] B. P. Abbott et al. (Virgo and LIGO Scientific Collaborations), Phys. Rev. Lett. 116(2016)211103.
[3] B. P. Abbott et al. (Virgo and LIGO Scientific Collaborations), Phys. Rev. X 6(2016)041015.
[4] J. D. Bekenstein, Transcendence of the law of baryon-number conservation in black hole physics, Phys. Rev. Lett. 28, 452 (1972).
[5] J. E. Chase, Event horizons in Static Scalar-Vacuum Space-Times, Commun. Math. Phys. 19, 276 (1970).
[6] C. Tretiakhin, Nonmeasurability of the baryon number of a black-hole, Lett. Nuovo Cimento 3, 326 (1972).
[7] R. Ruffini and J. A. Wheeler, Introducing the black hole, Phys. Today 24, 30 (1971).
[8] J.D. Bekenstein, Novel “no-scalar-hair” theorem for black holes, Phys. Rev. D 51(1995)no.12,R6608.
[9] D. Núñez, H. Quevedo, and D. Sudarsky, Black Holes Have No Short Hair, Phys. Rev. Lett. 76, 571 (1996).
[10] S. Hod, Hairy Black Holes and Null Circular Geodesics, Phys. Rev. D 84,124030(2011).
[11] Yan Peng, Hair mass bound in the black hole with non-zero cosmological constants, Physical Review D 98,104041,(2018).
[12] J. D. Bekenstein, Black hole hair: 25-years after, arXiv:gr-qc/9605059.
[13] Carlos A. R. Herdeiro, Eugen Radu, Asymptotically flat black holes with scalar hair: a review, Int. J. Mod. Phys. D 24(2015)09,1542014.
[14] Paweł O. Mazur, Emil Mottola, Gravitational condensate stars: An alternative to black holes, arXiv:gr-qc/0109035.
[15] Cecilia B.M.H. Chirenti, Luciano Rezzolla How to tell a gravastar from a black hole, Class. Quant. Grav. 24(2007)4191-4206.
[16] Kostas Skenderis, Marika Taylor, The fuzzball proposal for black holes, Phys. Rept. 467(2008)117-171.
[17] Vitor Cardoso, Lus C. B. Crispino, Caio F. B. Macedo, Hirotada Okawa, Paolo Pani, Light rings as observational evidence for event horizons: long-lived modes, ergoregions and nonlinear instabilities of ultracompact objects Phys. Rev. D 90(2014)no.4,044069.
[18] Mehdi Saravani, Niayesh Afshordi, Robert B. Mann Empty black holes, firewalls, and the origin of Bekenstein-Hawking entropy, Int. J. Mod. Phys. D 23(2015)no.13,1443007.
[19] Vitor Cardoso, Paolo Pani, Testing the nature of dark compact objects: a status report, Living Rev. Rel. 22(2019)no.1,4.
[20] Carlos Barceló, Raúl Carballo-Rubio, Luis J. Garay Gravitational wave echoes from macroscopic quantum gravity effects, JHEP 1705(2017)054.
[21] S. Hod, Stationary bound-state scalar configurations supported by rapidly-spinning exotic compact objects, Physics Letters B 770(2017)186.
[22] Jahed Abedi, Hannah Dykaar, Niayesh Afshordi, Echoes from the Abyss: Tentative evidence for Planck-scale structure at black hole horizons, Phys. Rev. D 96(2017)no.8,082004.
[23] Bob Holdom, Jing Ren, Not quite a black hole, Phys. Rev. D 95(2017)no.8,084034.
[24] Elisa Maggio, Paolo Pani, Valeria Ferrari, Exotic Compact Objects and How to Quench their Ergoregion Instability, Phys. Rev. D 96(2017)no.10,104047.
[25] Paolo Pani, Emanuele Berti, Vitor Cardoso, Yanbei Chen, Richard Norte, Gravitational wave signatures of the absence of an event horizon. I. Nonradial oscillations of a thin-shell gravastar, Phys. Rev. D 80(2009)124047.
[26] S. Hod, No-scalar-hair theorem for spherically symmetric reflecting stars, Physical Review D 94(2016)104073.
[27] Yan Peng, No hair theorem for massless scalar fields outside asymptotically flat horizonless reflecting compact stars, Eur. Phys. J. C 79(2019)no.10,850.
[28] Srijit Bhattacharjee, Sudipta Sarkar, No-hair theorems for a static and stationary reflecting star, Physical Review D 95(2017)084027.
[29] S. Hod, Charged massive scalar field configurations supported by a spherically symmetric charged reflecting shell, Physics Letters B 763(2016)275.
[30] S. Hod, Marginally bound resonances of charged massive scalar fields in the background of a charged reflecting shell, Physics Letters B 768(2017)97-102.

[31] Yan Peng, Bin Wang, Yunqi Liu, Scalar field condensation behaviors around reflecting shells in Anti-de Sitter spacetimes, Eur.Phys.J. C 78 (2018) no.8, 680.

[32] Yan Peng, Scalar field configurations supported by charged compact reflecting stars in a curved spacetime, Physics Letters B 780(2018)144-148.

[33] S. Hod, Charged reflecting stars supporting charged massive scalar field configurations, European Physical Journal C 78(2017)173.

[34] Yan Peng, Static scalar field condensation in regular asymptotically AdS reflecting star backgrounds, Phys. Lett. B 782(2018)717-722.

[35] Yan Peng, On instabilities of scalar hairy regular compact reflecting stars, JHEP 10(2018)185.

[36] Yan Peng, Hair formation in the background of noncommutative reflecting stars, Nucl. Phys. B 938(2019)143-153.

[37] M. Khodaei, H. Mohseni Sadjadi, No skyrmion hair for stationary spherically symmetric reflecting stars, Physics Letters B 797(2019)134922.

[38] Bartłomiej Kiczk, Marek Rogatko, Ultra-compact spherically symmetric dark matter charged star objects, JCAP 1909(2019)09.049.

[39] Avraham E. Mayo, Jacob D. Bekenstein, No hair for spherical black holes: Charged and nonminimally coupled scalar field with selfinteraction, Phys. Rev. D 54(1996)5059-5069.

[40] S. Hod, No nonminimally coupled massless scalar hair for spherically symmetric neutral black holes, Phys. Lett. B 771(2017)521-523.

[41] S. Hod, No hair for spherically symmetric neutral black holes: Nonminimally coupled massive scalar fields, Phys. Rev. D 96(2017) no.12,124037.

[42] S. Hod, No nonminimally coupled massless scalar hair for spherically symmetric neutral reflecting stars, Phys. Rev. D 96(2017)024019.

[43] S. Hod, No hair for spherically symmetric neutral reflecting stars: Nonminimally coupled massive scalar fields, Physics Letters B 773(2017)208-212.

[44] Yan Peng, No scalar hair theorem for neutral Neumann stars: static massive scalar fields nonminimally coupled to gravity, Nucl. Phys. B 947(2019)114730.

[45] Thomas P. Sotiriou and Shuang-Yong Zhou, Black Hole Hair in Generalized Scalar-Tensor Gravity, Phys. Rev. Lett. 112(2014)251102.

[46] Daniela D. Doneva and Stoytcho S. Yazadjiev, New Gauss-Bonnet black holes with curvature induced scalarization in the extended scalar-tensor theories, Phys. Rev. Lett. 120(2018)131103.

[47] Hector O. Silva, Jeremy Sakstein, Leonardo Gualtieri, Thomas P. Sotiriou, Emanuele Berti, Spontaneous scalarization of black holes and compact stars from a Gauss-Bonnet coupling, Phys. Rev. Lett. 120(2018)131104.

[48] G. Antoniou, A. Bakopoulos, P. Kanti, Evasion of No-Hair Theorems and Novel Black-Hole Solutions in Gauss-Bonnet Theories, Phys. Rev. Lett. 120(2018)131102.

[49] Pedro V. P. Cunha, Carlos A. R. Herdeiro, Eugen Radu, Spontaneously scalarised Kerr black holes, Phys. Rev. Lett. 123(2019)011101.

[50] S. Hod, Spontaneous scalarization of Gauss-Bonnet black holes: Analytic treatment in the linearized regime, Phys. Rev. D 100(2019)064039.

[51] T. Damour and G. Esposito-Farese, Nonperturbative strong-field effects in tensor-scalar theories of gravitation, Phys. Rev. Lett. 70(1993)2220.

[52] Yves Brihaye, Carlos Herdeiro, Eugen Radu, The scalarised Schwarzschild-NUT spacetime, Phys. Lett. B 788(2019)295-301.

[53] Yves Brihaye, Betti Hartmann, Charged scalar-tensor solitons and black holes with (approximate) Anti-de Sitter asymptotics, JHEP 1901(2019)142.

[54] Carlos A. R. Herdeiro, Eugen Radu, Black hole scalarisation from the breakdown of scale-invariance, Phys. Rev. D 99(2019)084039.

[55] Daniela D. Doneva, Stella Kiorpelidi, Petya G. Nedkova, Eleftherios Papantonopoulos, Stoytcho S. Yazadjiev, Charged Gauss-Bonnet black holes with curvature induced scalarization in the extended scalar-tensor theories, Phys. Rev. D 98(2018)104056.

[56] Hayato Motohashi, Shinji Mukohyama, Shape dependence of spontaneous scalarization, Phys. Rev. D 99(2019)044030.

[57] Masato Minamitsuji, Taishi Ikeda Scalarized black holes in the presence of the coupling to Gauss-Bonnet gravity, Phys. Rev. D 99(2019)044017.

[58] De-Cheng Zou, Yun Soo Myung, Scalarized charged black holes with scalar mass term,[arXiv:1909.11859][gr-qc].

[59] Caio F. B. Macedo, Jeremy Sakstein, Emanuele Berti, Leonardo Gualtieri, Hector O. Silva, Thomas P. Sotiriou, Self-interactions and Spontaneous Black Hole Scalarization, Phys. Rev. D 99(2019)104041.

[60] Jose Luis Biazquez-Salcido, Daniela D. Doneva, Jutta Kunz, Stoytcho S. Yazadjiev Radial perturbations of the scalarized EGB black holes, Phys. Rev. D 98(2018)084011.

[61] Yan Peng, Scalarization of compact stars in the scalar-Gauss-Bonnet gravity, JHEP 1912(2019)064.

[62] Carlos A.R. Herdeiro, Eugen Radu, Nicolas Sanchis-Gual, José A. Font, Spontaneous Scalarization of Charged Black Holes, Phys. Rev. Lett. 121(2018)101102.

[63] Pedro G.S. Fernandes, Carlos A.R. Herdeiro, Alexandre M. Pombo, Eugen Radu, Nicolas Sanchis-Gual, Sponta-
neous Scalarisation of Charged Black Holes: Coupling Dependence and Dynamical Features, Class. Quant. Grav. 36(2019)no.13,134002.

[64] S. Hod, Spontaneous scalarization of charged Reissner-Nordström black holes: Analytic treatment along the existence line, Physics Letters B 798(2019)135025.

[65] Yun Soo Myung, De-Cheng Zou, Instability of Reissner-Nordström black hole in Einstein-Maxwell-scalar theory, Eur. Phys. J. C 79(2019)no.3,273.

[66] Yun Soo Myung, De-Cheng Zou, Stability of scalarized charged black holes in the Einstein-Maxwell-Scalar theory, Eur. Phys. J. C 79(2019)no.8,641.

[67] De-Cheng Zou, Yun Soo Myung, Scalar hairy black holes in Einstein-Maxwell-conformally coupled scalar theory, arXiv:1911.08062[gr-qc].

[68] S. Hod, Onset of superradiant instabilities in rotating spacetimes of exotic compact objects, JHEP 1706(2017)132.

[69] S. Hod, Ultra-spinning exotic compact objects supporting static massless scalar field configurations, Phys. Lett. B 774(2017)582.