PHENOTYPICAL CONSOLIDATION OF FIRSTBORN COWS OF UKRAINIAN RED-AND-WHITE DAIRY BREED OF DIFFERENT GENEALOGICAL FORMATIONS BY CONFORMATION TYPE

Khmelnyczyi Leontii Mykhailovych
Doctor of Agricultural Sciences, Professor
Sumy National Agrarian University
ORCID: 0000-0001-5175-1291
E-mail: khmelnyczhy@ukr.net

Anisimova Olha Anatoliivna
Master's student of the Faculty of Biology and Technology
Sumy National Agrarian University
ORCID: 0000-0003-1744-5455
E-mail: olhaanisimovaz@gmail.com

Kompanets Ihor Olehovych
Master's student of the Faculty of Biology and Technology
Sumy National Agrarian University
ORCID: 0000-0002-3153-1491
E-mail: igorokkompanets@gmail.com

Lemeshko Dymytrii Oleksandrovych
Master's student of the Faculty of Biology and Technology
Sumy National Agrarian University
ORCID: 0000-0003-4730-6202
E-mail: ldmitry2724@gmail.com

Perekuta Oleksandra Ivanivna
Master's student of the Faculty of Biology and Technology
Sumy National Agrarian University
ORCID: 0000-0003-3019-1859
E-mail: Alexandra.Perekuta@gmail.com

The phenotypic consolidation of firstborn cows Ukrainian Red-and-White dairy breed of different lines by conformation type was studied. Cows were evaluated according to the method of linear classification in the herd of breeding farm PAE “Piskivs’ke” Bakhmatsky district of Chernihiv region. The degree of phenotypic consolidation of lines was determined by formulas of Yu. P. Polupan (2005).

Regardless of the line representation, the highest degree of phenotypic consolidation was found in the set of traits that characterize udder with coefficients ranging from K = 0.200 (Inganse line) to K = 0.393 (Kevelie line). According to the complex of conformation traits that characterize expression of dairy type in cows, the best were consolidated daughter descendants of Inganse (K = 0.309) and Kevelie lines (K = 0.335). Offsprings of two pedigree lines Siteishn (K = 0.015) and R. Sovering (K = 0.049) have a low degree of phenotypic consolidation by set of dairy-type body parts. A similar situation in determining the degree of phenotypic consolidation was observed for a group of body parts characterizing body development. The best consolidated were animals Inganse (K = 0.267) and Kevelie (K = 0.395), and the worst - Siteishn (K = 0.048) and Valiant (K = 0.042) lines. According to the assessment of descriptive traits within studied lines, following body parts were distinguished by positive values of phenotypic consolidation coefficients: rump height (K = 0.127-0.273), body depth (K = 0.092-0.328), rear width (K = 0.033-0.363), front udder part attachment (K = 0.041-0.227), dairy type (K = 0.143-0.385), and negative - hooves condition (K = -0.264…-0.046). Analyzing the results of research, it can be argued that practical application of phenotypic consolidation coefficients as objective evaluation criteria will allow in the future to control consolidation of genealogical formations and other breeding groups of animals both by conformation type and another selection traits.

Key words: Ukrainian Red-and-White dairy breed, line, firstborn cow, phenotypic consolidation, linear assessment, conformation.

DOI: https://doi.org/10.32845/bsnau.lvst.2020.4.2

Phenotypic and genetic specificity and a certain degree of consolidation are important characteristics and prerequisites for approbation and further genetic progress of breeds and their structural selection units [9, 16, 13, 15]. Achieving the desired level of phenotypic consolidation of intrabreed selection formations first of all required presence of a genetically grounded and, at the same time, simple and affordable to calculate its evaluation criteria. Such were proposed by Yu. P. Polupan [14] coefficients of phenotypic consolidation, based on the assessment of relative narrowing of intragroup variability, are gradually gaining recognition and becoming more widespread for practical evaluation of this biological population process. The effectiveness of improving effect of evaluated traits of a particular selection group of animals was determined not only by better value
estimates and level of phenotypic consolidation, depending on the
degree of genetic variability of traits. The use of phenotypic
consolidation coefficients allowed to objectively differentiate
different selection groups of animals according to the degree of
phenotypic consolidation of selection traits that characterize
reproductive ability [6, 12, 24], milk productivity [5, 26], lifetime
use [1], constitutional types [18] and conformation of animals
[10, 11, 20, 23, 21].

According to one of classical definitions, line - an objec-
tively existing group of breeding animals with certain valuable
qualities, which come from a high-value breeder and for many
generations retain the type of ancestor, its productive and
breeding qualities [2]. That is, the main feature of line was its
inherent consolidation in economically useful traits due to kin-
ship and targeted selection, making the line somewhat different
from others. Conformation-constitutional features in this regard
were one of indicators by which representatives of lines often
differ from each other [4, 7, 8, 11, 20, 25].

Given the existing problem, a methodological aspect
emerged, which consisted in the development and use of an
objective criterion for determining the degree of consolidation
of selection formations on the leading economically useful fea-
tures, which was proposed to use phenotypic consolidation
coefficients. Which allowed the real selection material to suffi-
ciently differentiate different selection groups of animals accord-
ing to the degree of phenotypic consolidation of economically
useful traits that are important for animal breeding [3, 17, 19].

Given the problem, we consider it necessary to continue
the practical testing of methods to determine the degree of
phenotypic consolidation of leading genealogical formations in
Ukrainian Red-and-White dairy breed for linear traits that char-
acterize conformation type of animals.

The degree of phenotypic consolidation of genealogical formations of Ukrainian Red-and-White dairy breed
by 100-score type classification system

Conformation's trait	Linear affiliation	Valiant 1650414	R. Sovering 0198998	Inganse 343514	Heneve 1629391	Siteishn 267150	Kevelie 1620273
Number of animals, heads	155	39	33	78	115	39	
Set of traits that characterizes:							
dairy type	0.103	0.049	0.309	0.113	0.015	0.335	
body	0.042	0.100	0.267	0.172	0.048	0.395	
limbs	0.100	0.086	0.294	0.300	0.110	0.179	
udder	0.220	0.355	0.200	0.203	0.224	0.393	
Final score	0.259	0.145	0.309	0.314	0.266	0.385	

Regardless of line representation, the highest degree of
phenotypic consolidation was found in firstborn cows of Ukraini-
an Red-and-White dairy breed according to a set of morphologi-
cal traits characterizing the udder with coefficients ranging from
K = 0.200 (Inganse line) to K = 0.393 (Kevelie line).

According to complex of conformation traits that charac-
terize expression of cows dairy type, the best consolidated
daughter descendants of Inganse (K = 0.309) and Kevelie (K = 0.335) lines. Offspring of two pedigree lines Siteishn (K = 0.015)
and R. Sovering (K = 0.049) have a low degree of phenotypic
consolidation by the set of dairy-type body parts.

A similar situation in determining the degree of pheno-
typic consolidation was observed for a group of body parts
characterizing body development. Animals of Inganse (K = 0.267) and Kevelie (K = 0.395) lines were better consolidated,
and Siteshn (K = 0.048) and Valiant (K = 0.042) lines were the
worst.

According to the main conformation traits of descriptive
system of linear estimation within a separate representation of
experimental lines, there was a significant variation, (Table 2).
Only two groups of firstborn cows from the six estimated lines of
Ukrainian Red-and-White dairy breed belonging to Inganse 343514 and Kevelie 1620273 lines have an absolute advantage
over the others in the phenotypic consolidation of all assessed
traits, with variability of phenotypic coefficients from 0.3 and
0.385, on the basis of dairy type, to K = 0.067 and 0.101 - on
the basis of hock joint angle.

Materials and research methods. Classification
dughters of sires of different lines was performed in the herd of
pedigree farm PAE "Piskivske" Bakhmatsky district of Chernihiv
region for breeding Ukrainian Red-and-White dairy breed. The
firstborn cows were evaluated according to the method [22], by
a 100-score system of linear classification with a separate
presentation of estimates of four sets of conformation traits that
characterize the expression of dairy type, body development,
limb condition and udder quality, and nine-score a scale of
individual descriptive body parts of the conformation.

The degree of phenotypic consolidation of lines was de-
termined using the formula of Yu. P. Polupan [13]:

\[K = 1 - \frac{\sigma_g}{\sigma_o} \]

where: \(\sigma_g \) - standard deviation estimated group of ani-
mals on a particular trait,
\(\sigma_o \) - the same indicator of general population.

Research results. The experimental groups included
the most numerous offspring of sires of six lines - Valiant
1650414, R. Sovering 0198998, Inganse 343514, Heneve
1629391, R. Siteishn 267150 and Kevelie 1620273.

From the literature it is known that the main feature of
line is the inherent consolidation of its representatives by certain
economically useful traits due to kinship and targeted selection,
which makes the line somewhat different from others. Confor-
mation type in this regard is one of indicators by which lines
often differ from each other. According to the 100-scale classifi-
cation system, which includes the assessment of four sets of
conformation traits that characterize the dairy type, body de-
velopment, limb condition and udder morphological traits, some
of them have the desired level of phenotypic consolidation of
animals within lines and conformation complexes (Table 1).

Table 1
The degree of phenotypic consolidation of genealogical formations of Ukrainian Red-and-White dairy breed by 100-score system of describing linear traits

Conformation's trait	Valiant 1650414	R. Soevering 0198698	Inganse 343514	Heneve 1620391	Siteishn 267150	Kevelie 1620273	
Number of animals, heads	155	39	33	78	115	39	
Height	0.263	-0.127	0.210	0.273	0.147	0.263	
Chest width	0.186	-0.142	0.213	-0.197	0.132	0.388	
Body depth	0.128	0.081	0.307	0.105	0.092	0.328	
Angularity	0.285	0.259	0.367	0.143	0.074	0.385	
Rump angle	0.040	-0.066	0.120	-0.035	0.145	0.240	
Rear width	0.227	0.363	0.255	0.138	0.033	0.227	
Hock angle	0.101	0.053	0.067	-0.107	0.034	0.114	
Pelvic limbs posture	0.212	0.152	0.152	0.047	0.073	0.128	
Foot angle	-0.264	-0.255	0.395	0.210	-0.046	0.264	
Front udder part attachment	0.227	0.041	0.214	0.207	0.089	0.227	
Height of rear udder part attachment	0.272	-0.343	0.201	-0.297	0.315	0.272	
Central ligament	0.157	0.139	0.273	-0.123	0.193	0.257	
Udder depth	0.130	0.051	0.291	-0.281	0.258	0.230	
Teats position	front	0.257	0.021	0.186	-0.192	0.132	0.257
	rear	0.263	0.035	0.199	-0.177	0.184	0.196
Teats length	0.296	0.233	0.130	0.205	-0.035	0.296	
Locomotion	0.235	0.215	0.141	0.196	-0.044	0.287	
Body condition	0.316	0.244	0.174	0.233	0.015	0.261	

If we consider each individual descriptive trait of conformation type within the studied lines, following values differed in the positive values of coefficients of phenotypic consolidation: rump height (K = 0.127-273), body depth (K = 0.092-0.328), rear width (K = 0.033-0.363), front udder part attachment (K = 0.041-0.227), dairy type (K = 0.143-0.385), and negative - foot condition (K = -0.264... -0.046).

A high level of consolidation was found in the groups of descendants of pedigree lines Inganse 343514 and Kevelie 1620273 for development of morphological traits that characterize the quality of udder. The highest degree of phenotypic consolidation was observed by the trait of front udder part attachment (K = 0.207 and 0.227), and height of rear udder part attachment (K = 0.201 and 0.272). Sufficiently high levels of phenotypic consolidation were observed for severity of central ligament (K = 0.273 and 0.257), udder depth (K = 0.291 and 0.230) and teats position (K = 0.186 and 0.257). However, these genealogical formations were mostly consolidated by body structure strength (K = 0.213 and 0.386) and dairy type (K = 0.367 and 0.385).

Thus, the use of proposed coefficients in practice allowed to reliably and simply differentiate animal lines by the degree of phenotypic consolidation, but for final decision on the prospects of a genealogical formation, it is desirable to supplement the selection information with quantitative indicators.

In this particular case, when significant interlinear variability of phenotypic consolidation indicators was detected, there is a corresponding variability in absolute indicators of conformation traits, positive (desirable) or negative (undesirable) development of which was almost always combined with positive or negative coefficients.

This conclusion was confirmed by most indicators of linear classification (Table 3).

Descendants of pedigree line Kevelie 1620273, which with high levels of consolidation coefficients for complexes of conformation body parts by 100-score rating (K = 0.179-0.385) were consolidated on the same traits, expressed in absolute terms, which amounted to 82.3-84.3 score out of 88 possible for cows firstborn.

Animals of Inganse line 343514, which also had the highest coefficients of phenotypic consolidation in terms of complex linear traits, were better estimated in scores, which amounted to 82.1-83.9 score.

According to linear estimation of 9-score scale of descriptive traits, the same pattern was observed when the highest scores were obtained in the groups of cows firstborn of pedigree lines Kevelie 1620273 and Inganse 343514, which had the best phenotypic consolidation coefficients, (Table 4).

In terms of body depth, descendants of pedigree lines Kevelie 1620273 and Inganse 343514 with an assessment of 6.9-7.4 score prevailed animals of other lines on 1.0-2.2 score with a reliability at P <0.01-0.001.
Characteristics firstborns of estimated lines Ukrainian Red-and-White dairy breed by 100-score system of type classification, (x ± S.E., score)

Conformation's trait	Valiant 1650414	R. Sovering 0198998	Inganse 343514	Heneve 1629391	Siteishn 267150	Kevelie 1620273
Number of animals, heads	155	39	33	78	115	39
Set of traits that characterizes:						
Dairy type	80,7 ± 0,19	78,8 ± 0,21	82,1 ± 0,36	79,9 ± 0,34	79,1 ± 0,21	83,3 ± 0,37
Body	81,6 ± 0,19	81,4 ± 0,22	83,1 ± 0,32	81,1 ± 0,31	79,8 ± 0,20	84,2 ± 0,37
Limbs	81,4 ± 0,17	79,7 ± 0,19	82,3 ± 0,25	80,6 ± 0,26	80,6 ± 0,18	82,3 ± 0,34
Udder	80,5 ± 0,21	82,3 ± 0,24	83,9 ± 0,35	80,2 ± 0,29	81,3 ± 0,19	84,1 ± 0,30
Final score	81,0 ± 0,15	80,9 ± 0,25	83,5 ± 0,22	80,4 ± 0,20	80,6 ± 0,16	84,3 ± 0,29

Characteristics firstborns of estimated lines Ukrainian Red-and-White dairy breed by 9-score system describing linear traits, (x ± S.E., score)

Conformation's trait	Valiant 50414	R. Sovering 0198998	Inganse 343514	Heneve 1629391	Siteishn 267150	Kevelie 1620273
Number of animals, heads	155	39	33	78	115	39
Rump height	4,8 ± 0,10	5,1 ± 0,16	6,0 ± 0,17	3,6 ± 0,16	5,5 ± 0,11	6,9 ± 0,22
Body depth	5,9 ± 0,10	6,4 ± 0,17	6,9 ± 0,18	5,2 ± 0,16	5,2 ± 0,12	7,4 ± 0,21
Rear position	4,9 ± 0,07	4,7 ± 0,14	4,6 ± 0,19	5,3 ± 0,11	5,0 ± 0,10	4,4 ± 0,16
Rear width	4,9 ± 0,13	5,2 ± 0,19	6,4 ± 0,26	3,6 ± 0,23	5,4 ± 0,14	6,6 ± 0,23
Hock angle	5,2 ± 0,07	5,4 ± 0,17	5,0 ± 0,15	5,4 ± 0,11	5,0 ± 0,11	4,9 ± 0,13
Feet	4,9 ± 0,06	5,1 ± 0,10	5,0 ± 0,11	4,8 ± 0,12	4,7 ± 0,09	5,0 ± 0,18
Front udder part attachment	6,0 ± 0,08	6,2 ± 0,13	6,9 ± 0,14	5,9 ± 0,13	5,5 ± 0,10	6,8 ± 0,19
Height of rear udder part attachment	4,4 ± 0,13	4,8 ± 0,21	5,1 ± 0,34	4,9 ± 0,16	4,6 ± 0,14	5,2 ± 0,38
Central ligament	4,9 ± 0,13	5,5 ± 0,26	6,0 ± 0,35	4,9 ± 0,20	5,2 ± 0,16	6,3 ± 0,27
Udder depth	5,5 ± 0,10	5,6 ± 0,19	6,7 ± 0,22	5,6 ± 0,13	5,4 ± 0,12	6,6 ± 0,21
Teats position	3,5 ± 0,12	5,1 ± 0,17	5,4 ± 0,21	4,7 ± 0,19	5,7 ± 0,13	6,7 ± 0,20
Teats length	5,7 ± 0,08	5,2 ± 0,16	6,1 ± 0,15	5,6 ± 0,15	5,3 ± 0,11	5,2 ± 0,13
Strength	5,6 ± 0,11	6,1 ± 0,19	6,7 ± 0,24	5,9 ± 0,17	6,4 ± 0,12	6,8 ± 0,27
Dairy type	5,5 ± 0,10	6,0 ± 0,20	7,0 ± 0,19	4,9 ± 0,16	5,8 ± 0,14	7,1 ± 0,18

Group of animals of estimated best lines Kevelie 1620273 and Inganse 343514 was distinguished by high scores for traits, which had a high degree of consolidation: rear width (6.4 and 6.6 score), feet condition (5.0 score), front udder part attachment (6.9 and 6.8 score), central ligament (6.0 and 6.3 score), udder depth (6.7 and 6.6 score), strength (6.7 and 6.8 score) and dairy type (7.0 and 7.1 score).

Analyzing the results of research, it can be argued that the practical application of phenotypic consolidation coefficients as objective evaluation criteria will allow in the future control the consolidation of genealogical formations and other breeding groups of animals both by conformation type and other selection traits.

Conclusions. 1. The introduction into the practice of selection work of the method of determining the degree of phenotypic consolidation of animal’s selection groups will allow to objectively differentiate the genealogical formations of controlled herds according to the features of conformation type.

2. The phenotypic manifestation of conformation traits, expressed by positive and negative coefficients of phenotypic consolidation, characterizes the hereditary qualities of sires of evaluated line.

3. The prospect of further research on this issue should be aimed at the wider application of phenotypic consolidation coefficients involving different breeding groups of animals and to determine the optimal (desired) level of consolidation in the structural units of breeds.

References:
1. Boiko, Yu. M., 2011. Fenotypova konsolidatsiia linii ukrainskoi buro mołchońi porody po oznakam dovichnogo vy-korystannia [Phenotypic consolidation of lines Ukrainian Brown dairy breed by traits of longevity use]. Visnyk Sumskoho NAU. Seria: “Tvarynnystvo”. Sumy, issue 7(18), pp. 101–103.
2. Borisenko, E. Ya., 1967. Razvedenie sel’skokhozyaystvennykh zhivotnykh [Breeding of farm animals], Moskva: Kolos.
3. Verbych, I. V. and Dubyna, O. V., 2000. Konsolidatsiia he nealohichnykh formovan u podiskomu zavodskomu typi ukrains’koi chmero-riabo mołchońi porody [Consolidation of genealogical formations in the Podolsk pedigree type of Ukrainian Black-And-White dairy breed]. Mizhvidnomchyi tem. zb. nauk. prats Cherkaskoho instytutu APV. K.: Ahrama nauka, issue 2, pp. 38–40.
4. Ignatov, A. V. and Kokhanov, M. A., 2009. Osobennosti ekster’era korov-privetelok raznykh linii [Conformation features of firstborn cows of different lines]. Izvestiya Nizhnevolzhskogo agrouniversitetskogo kompleksa, issue 3(15), pp. 77–80.
5. Ivanov, I. A. and Malenivska, S. P., 2012. Prohnozuvannia dovichnoi molochnoi produktivnosti koriv ukrainskoi chorno-riaboi molochnoi porody [Prediction of lifetime milk productivity of cows Ukrainian Black-and-White dairy breed]. Suchasni problemy selektsii, rozvedennia ta hihieny tvaryntv. : zb. nauk. prats Vinnyts’koho NAU. Vinnytsia, issue 5(67), pp. 111–114.

6. Iliashenko, H. D., 2012. Konsolidatsiia za osnovnymy hospodarsko korysnymy oznakamy u stadalakh ukrainskoi chervonoi i chorno-riaboi molochnykh porid [Consolidation by the main economically useful traits in the herds of Ukrainian Red- and Black-and-White dairy breeds]. Rozvedennia i henetyka tvaryntv. K. : Naukovyi svit, issue 46, pp. 126–128.

7. Kibkalo, L. I., Tkacheva, N. I. and Goncharova, N. A., 2015. Ekster’ernye osobennosti i molochnaya produktivnost’ golshinskikh korovollandskoy i nemetskoy selektsii [Conformation features and milk productivity of Holstein cows Dutch and German selection] Vestnik Kurskoy GSA. Kursk, issue 3, pp. 51–58.

8. Kohut, M. I. and Bratiuk, V. M., 2013. Kharakterystyka eksterieru koriv osnovnykh linii zakhidnoi vnutrishnoporodnoi populii ukrainskoi molochnoi chorno-riaboi porody [Characteristics of cows conformation of the main lines of Western intrabreed population Ukrainian Black-and-White dairy breed]. Peredhime ta hirske zemlerobstvo i tvarynnystv. Lviv, issue 55(2), pp. 138–141.

9. Burkat, V. P. and Polupan, Yu. P., eds., 2002. Konsolidatsiia selektsiinykh hrup tvaryntv: teoretychnyi ta metodychnyi aspekty. Materiały tvornoi dyskusii. K.: Ahrama nauka.

10. Kochuk-Yashchenko, O. A., 2016. Linear assessment of cows conformation of Ukrainian Black- and Red-and-White dairy breeds and its relationship with productivity. Abstract of Ph.D. dissertation : spets. 06.02.01 „Rozvedennia ta selektsiia tvaryntv“. Chubynske.

11. Kochuk-Yashchenko, O. A., 2014. Lininia otsinka typu i molochna produktivnist’ koriv ukrainskoi chorno-riaboi molochnoi porody riznoi linini noi nalezhnosti [Linear assessment of the type and dairy productivity of cows Ukrainian Black-and-White Dairy breed of different linear affiliation]. Zbirnyk naukovykh prats’ Vinnyts’koho NAU, issue 1(83), pp. 139–149.

12. Plekehatyi, M. S. and Kochuk-Yashchenko, O. A., 2014. Vplyv henotypu koriv-pervistok ukrainskoi chorno-riaboi molochnoi porody na ykh eksterierniy typ, molochnu produktivnist’ i vidtvornu zdatnist’ [Genotype influence of cows firstborn Ukrainian Black-and-White dairy breed on their conformation type, milk productivity and reproductive ability]. Nauk. visnyk LNUVMB im. S. Z. Hzytskoho. Lviv, no. (3), pp. 143–158.

13. Polupan, Yu. P., 2005. Metody vyznachennia stupenia fenotypovoi konsolidatsii selektsiinykh hrup tvaryntv [Methods for determining the degree of phenotypic consolidation of breeding groups of animals]. Metodyky naukovykh doslidzhen iz selektsii, henetyky ta biotekhnolohii u tvarynnystvi. K.: Ahrama nauka, pp. 52–60.

14. Polupan, Yu. P., 1996. Otseinka stepeni fenotipicheskoi konsolidatsii genealogicheskikh grupp zhivotnykh [Assessment of the degree of phenotypic consolidation genealogical groups of animals]. Zootekhniya, issue 10, pp. 13–15.

15. Polupan, Yu. P., 2001. Problemy konsolidatsii riznykh selektsiinykh hrup tvaryntv [Problems of consolidation of different breeding groups of animals]. Visyorky Ahromau, no. 12, pp. 42–46.

16. Polupan, Yu. P., Rieznikova, N. L. and Havrylenko, M. S., 2010. Vyznachennia fenotypovoi konsolidovannosti selektsiiynykh hrup tvaryntv na populatsiiniomu rivni [Determination of phenotypic consolidation of selection groups of animals at the population level]. Metodolohiia naukovykh doslidzhen z pytian selektsii, henetyky ta biotekhnolohii u tvarynnystvi : materialy nauk.-teoret. konf., prysvichennoi pamiati akad. UAAAN V. P. Burkata. K.: Ahrama nauka, pp. 98–100.

17. Polupan, Yu. P., 2000. Povtoryaemost’ i vzaimosvyaz’ instrumental’noy i glazomernoy otsenki ekster’era krupnogo rogatogo skota [Repeatability and interrelation of instrumental and visual assessment of the cattle conformation]. Sel’skokhozyaystvenna biologiya, no. 2, pp. 108–114.

18. Stoliar, Zh., V., 2014. Fenotypova konsolidatsiia koriv riznykh typiv konstytutsii [Phenotypic consolidate groups of cows of different types of constitution]. Rozvedennia i henetyka tvaryntv : mizhvid. temat. nauk. zb. K.: Ahrama nauka, issue 48, pp. 129–136.

19. Suprun, I. O., 2003. Konsolidovannist selektsiinykh oznak koriv vysokoproductivnogo stada ukrainskoi chervonoi-riaboi molochnoi porody [Consolidation of cow’s breeding traits of highly productive herd of Ukrainian Red-and-White dairy breed]. Visnyk Sumskoho NAU. Seria “Tvarynnostv”. Sumy, issue 7, pp. 237–241.

20. Khmelnychyi, L. M., 2013. Fenotypova konsolidatsiia koriv ukrainskoi chervonoi-riaboi molochnoi porody riznykh linii za eksteriernym typom [Phenotypic consolidation of Ukrainian Red-and-White dairy cows of different lines by conformation type]. Visnyk Sumskoho NAU. Seria “Tvarynnostv”. Sumy, issue 1, pp. 5–9.

21. Khmelnychyi, L. M., 2006. Fenotypova konsolidatsiia selektsiinykh hrup tvaryntv ukrainskoi chervonoi-riaboi molochnoi porody za eksteriernym typom [Phenotypic consolidation of animal’s selection groups of Ukrainian Red-and-White dairy breed by conformation type]. Visnyk Cherkasko ho instytutu APV. Cherkaasy, issue 6, pp. 101–115.

22. Khmelnychyi, L. M., Ladyka, V. I., Polupan, Yu. P. and Salohub, A. M., 2008. Metodyka liniinykh klyasifikatsii koriv molochnykh i molochno-miasnykh porid za typom [The method of linear classification cows of dairy and dairy-beef breeds by type]. Sumy: VVP “Mria−1” TOV.

23. Khmelnychyi, L. M., Khmelnychyi, S. L., Loboda, A. V. and Klymenko, O. I., 2019. Phenotypic consolidation of genealogical formations of Sumy intrabreed type of Ukrainian Black-and-White dairy breed on the lines of linear conformation assessment [Fenotypova konsolidovannist’ henealohichnykh formuan sumskoho vnutrishnoporochnoho typu ukrainskoi chorno-riaboi molochnoi porody za oznakamy liniiny otsinky eksterierniu]. Rozvedennia i henetyka tvaryntv. K., issue 58, pp. 72–79. DOI: https://doi.org/10.31073/abq.58.1079.

24. Tserenuk, O. M., Martnyuk, I. M., Akimov, O. V., Shkavro, N. M. and Khmelnychyi, L. M., 2019. Phenotypic consolidation coefficients of fertility index of Welsh sows [Koeftisients fenotypovoi konsolidatsii pokaznyku bahatoplidnosti kissing okazali siho oznak u koriv ukrainskoi chervonoi-riaboi molochnoi porody]. Visnyk Sumskoho NAU. Seria “Tvarynnostv”. Sumy, issue 1, pp. 76–81.

25. Yashchenko, O. A., 2016. Repetitivnost’ i vazymvosvaz’ instrumental’noy i glazomernoy otsenki ekster’era krupnogo rogatogo skota [Repeatability and correlation of instrumental and visual assessment of the cattle conformation]. Sel’skokhozyaystvenna biologiya, no. 2, pp. 108–114.
Список використаної літератури:

1. Бойко Ю. М. Фенотипова консолідація ліній української бурої молочної породи за ознаками довічного використання. Вісник Сумського НАУ. Серія: "Тваринництво". Суми, 2011. Вип. 7(18). С. 101–103.

2. Борисенко Е. Я. Развитие сельскохозяйственных животных. М.: Колос. 1967. 463 с.

3. Вербицька І. В. Дубина О. В. Консолідація генеалогічних формувань у подільському заводському типі української чорно-рябої молочної породи. Міждержавний з. з. наук. к. нар. праця Черкаського інституту АПВ. К.: Аграрна наука, 2000. Вип. 2. С. 38–40.

4. Игнатор І. В., Коханов М. А. Особенности экстерьера коров-первотелок разных линий. Известия Нижневолжского аграрного университетского комплекса. 2009. Вип. 3(15). С. 77–80.

5. Іванов І. А., Маленівська С. П. Прогнозування довічної молочної продуктивності корів української чорно-рябої молочної породи. Сучасні проблеми селекції, розвиток та генетичні тварин. К.: Науковий світ, 2012. Вип. 5(67). С. 111–114.

6. Ілішенко Г. Д. Консолідація за основними господарсько корисними ознаками у стадах української червоної і чорно-рябої молочної породи. Розведення і генетика тварин. К.: Науковий світ, 2012. Вип. 46. С. 126–128.

7. Кибіло Л. І., Ткачева Н. І., Гончарова Н. А. Екстерьерне особливості і молочна продуктивність голштинських корів голодської урославської породи. Вестник Курської ГСА. Курск, 2015. Вип. 3. С. 51–58.

8. Когут М. І., Братюк В. М. Характеристика екстерьера корів основних ліній західної внутрішньопородної популяції української молочної чорно-рябої породи. Передгірне та гірське землеробство і тваринництво. Львів, 2013. Вип. 55(2). С. 138–141.

9. Консолідація селекційних груп тварин: теоретичні та методичні аспекти. Матеріали творчої дискусії / За ред. В. П. Бурката і Ю. П. Полупана. К.: Аграрна наука, 2002. 58 с.

10. Кочук-Яшенко О. А. Лінійна оцінка екстерьеру корів українських чорно-рябої і червоно-рябої молочної пород д т її зв'язок з продуктивністю : автореф. дис. на здобуття наук. ступеня канд. с. – р. наук : спец. 06.02.01 «Розвиток та селекція тварин». Чубинське, 2016. 21 с.

11. Кочук-Яшенко О. А. Лінійна оцінка типу і молочна продуктивність корів української чорно-рябої молочної породи різного лінійного складу. Збірник наук. праця Вінницького НАУ. Вінниця, 2014. Вип. 1(83), т. 2. С. 139–149.

12. Полупан Ю. П. Повторяемость и взаимосвязь инструментальной и глазомерной оценки экстерьера крупного рогатого скота. Сельскохозяйственная биология. 2000. № 2. С. 108-114.

13. Полупан Ю. П. Оценка степени фенотипической консолидации генеалогических групп животных. Зоотехния. 1996. Вып. 10. С. 13–15.

14. Полупан Ю. П. Методы консолидации селекционных групп тварин. Методичні наукові дослідження з історії, генетики та біотехнології у тваринництві. К.: Аграрна наука, 2005. С. 52-60.

15. Полупан Ю. П. Оценка степени фенотипической консолидации генеалогических групп животных. Зоотехния. 1996. Вып. 10. С. 13–15.

16. Полупан Ю. П. Методы консолидации селекционных групп тварин. Вісник аграрної науки. 2001. № 12. С. 42-46.

17. Полупан Ю. П., Гвиленко М. С. Визначення фенотипової консолідованості селекційних груп тварин на популяційному рівні. Методологія наукових досліджень з питання селекції, генетики та біотехнології у тваринництві : матеріали наук.-теорет. конф., присвячені пам’яті акад. УААН В. П. Бурката. (Чубинське, 25 лютиого 2010 р.). К.: Аграрна наука, 2010. С. 98–100.

18. Полупан Ю. П. Повторяемость и взаимосвязь инструментальной и глазомерной оценки экстерьера крупного рогатого скота. Сельскохозяйственная биология. 2000. № 2. С. 108-114.

19. Полупан Ю. П. Методы консолидации селекционных групп тварин. Система ускоренного селекционного и генетического оздоровления и математики. Темат. наук. зб. К.: Аграрна наука, 2014. Вип. 48. С. 129–136.

20. Полупан Ю. П. Консолідація селекційних груп корів української червоно-рябої молочної породи різних ліній на екстерьерному типі. Вісник Сумського НАУ. Серія "Тваринництво". Суми, 2003. Вип. 7. С. 237-241.

21. Полупан Ю. П. Методы консолидации селекционных групп тварин. Вісник Сумського НАУ. Серія: "Тваринництво". Суми, 2003. Вип. 7. С. 237-241.

22. Полупан Ю. П., Резникова Н. Л., Гвиленко М. С. Визначення фенотипової консолідованості селекційних груп тварин на популяційному рівні. Методологія наукових досліджень з питання селекції, генетики та біотехнології у тваринництві : матеріали наук.-теорет. конф., присвячені пам’яті акад. УААН В. П. Бурката. (Чубинське, 25 лютиого 2010 р.). К.: Аграрна наука, 2010. С. 98–100.

23. Полупан Ю. П. Повторяемость и взаимосвязь инструментальной и глазомерной оценки экстерьера крупного рогатого скота. Сельскохозяйственная биология. 2000. № 2. С. 108-114.

24. Полупан Ю. П. Методы консолидации селекционных групп тварин. Вісник Сумського НАУ. Серія: "Тваринництво". Суми, 2011. Вип. 7(18). С. 101–103.

25. Черняк, Н. Н. и Honcharuk, О. Р., 2011. Eksterier koriv chorno-riaboi molokhoi porody riznykh linii [Conformation cows of Black-and-White dairy breed of different lines]. Tvranyntstvo Ukraїny, issue 12(21), pp. 22–25.

26. Scherbatyi, Z. Ye., Pavliv, B. A. and Bodnar, P. V., 2010. Stupin konsolidatsii selektsiinykh oznak koriv okremykh linii stada ukraїnskoi chorno-riaboi molokhoi porody [The degree of consolidation breeding traits of cows individual lines herd Ukrainian Black-and-White dairy breed]. Nauk. visnyk LNUVM im. S. Z. Hzytskoho. Lviv, no. 2(44), pp. 275–279.
24. Церенюк О. М., Мартинюк І. М., Акімов О. В., Шкавро Н. М., Хмельничий Л. М. Коєфіцієнти фенотипової консолідації показники багатоплідності свиноматок уельської породи. Вісник Сумського національного аграрного університету. Серія «Тваринництво». – 2019. – Вип. 1(2)(36-37). – С.102-106. DOI: https://doi.org/10.32845/bsnau.lvst.2019.1-2.15

25. Черняк Н. Г., Гончарук О. П. Екстер'єр корів чорно-рябії молочної породи. Тваринництво України. – 2011. Вип. 1/2(21). С.22–25.

26. Щербатий З. Є., Павлів Б. А., Боднар П. В. Ступінь консолідації селекційних ознак корів окремих ліній стада української чорно-рябії молочної породи. Наук. вісник ЛНУВМ ім. С. З. Гжицького. Львів, 2010. Т. 12, № 2(44), ч. 3. С. 275–279.

Фенотипова консолідованість корів-первісток української червоно-рябії молочної породи різних генеалогічних формувань за екстер'єрним типом

Досліджувалася фенотипова консолідованість корів-первісток української червоно-рябії молочної породи різних ліній за екстер'єрним типом. Оцінювали корів за методикою лінійної класифікації у стаді племінного заводу ПСП „Пісківське” Бахмацького району Чернігівської області.

Зважаючи на можливість визначення висоти корів за різними коефіцієнтами, був вибраний комплекс ознак, який характеризує вим’яні з коефіцієнтами у межах від K=0,200 (лінія Інгансе) до K=0,393 (лінія Кевеліе).

За комплексом екстер'єрних ознак, що характеризують вим’я з коефіцієнтами у межах від K=0,200 (лінія Інгансе) до K=0,393 (лінія Кевеліе). За комплексом статей молочного типу відрізняються нащадки двох заводських ліній Сітейшна (K=0,015) і Р.Соверінга (K=0,049). Аналогічна ситуація при визначенні ступені харacterизується за групою статей, що характеризують розвиток тулуба. Краще консолідовані тварини лінії Інгансе (K=0,267) та Кевеліе (K=0,395), а найгірше – лінії Валіанта (K=0,042). За оцінкою описових ознак у межах досліджуваних ліній додатними значеннями коефіцієнтів фенотипової консолідованості вирізняються наступні статі: висота у крижах (K=0,127–273), глибина тулуба (K=0,092–328), ширина заду (K=0,033–363), прикріплення передньої частини виміні (K=0,041–022), молочний характер (K=0,143–385), від’ємні – стан ратиць (K=0,264–0,046). Аналогічні результати досліджень, можна стверджувати, що випадаюча застосування коефіцієнтів фенотипової консолідованості у якості об’єктивних критеріїв оцінки дозволяє інші селекційні групи тварин як за екстер’єрним типом, так і за іншими селекційними ознаками.

Ключові слова: українська червоно-рябія молочна порода, лінія, корова-первістка, фенотипова консолідованість, екстер'єр.

Дата надходження до редакції: 09.11.2020 р.