Effect of gamma irradiation on the osteoinductivity of morphogenetic protein extract from reindeer bone

Tarmo Pekkarinen¹, Oili Hietala¹, Timo Jämsä² and Pekka Jalovaara¹

¹Bone Transplantation Research Group, Department of Orthopaedic and Trauma Surgery, University of Oulu, Oulu, ²Department of Medical Technology, University of Oulu, Oulu, Finland
Correspondence TP: Tarmo.Pekkarinen@uta.fi
Submitted 04-02-24. Accepted 04-09-21

Background Bone morphogenetic proteins (BMPs), which are capable of stimulating the production of new bone, must be sterilized before preclinical and clinical use to reduce the risk of infections and associated complications. In this study, we investigated the effects of gamma sterilization on the osteoinductivity of native reindeer BMP extract in the Balb/C mouse thigh muscle pouch model.

Methods 5 mg of native reindeer BMP extract and 5 mg of bovine serum albumin were administered separately either in gelatine capsules or mixed with gelatine as injections. The dose of gamma irradiation was 4.1 Mrad. Unsterile capsules and injections served as controls. New bone formation was evaluated based on the incorporation of Ca⁴⁵ and also radiographically 3 weeks after implantation.

Results Albumin-containing implants and injections did not induce new bone formation, as monitored in radiographs. Gamma sterilization did not reduce the osteoinductivity of native BMP extract in capsules, but a significant decrease in osteoinductivity—measured as area (50%) and Ca⁴⁵ incorporation of new bone (27%)—was seen after injection. Gamma sterilization had no effect on the optical density of new bone induced by native BMP extract administered in capsules or by injection.

Interpretation We conclude that, as gamma irradiation did not reduce the osteoinductivity of reindeer BMP extract in gelatine capsules, this method appears to be suitable for sterilization of BMPs to be given in capsule form. Native reindeer BMP extract was more sensitive to irradiation in soluble collagen (gelatine) than BMP in gelatine capsules. This finding must be given serious consideration regarding treatment of patients, but the remaining activity may be sufficient for the induction of bone formation in preclinical and clinical situations.
BMPs (Munting et al. 1988, Wientroub and Reddi 1988, Wientroub et al. 1990, Zhang et al. 1997 Andriano et al. 2000, Ripamonti et al. 2000). There has only been one paper considering the effects of gamma sterilization on native purified BMP (Ijiri et al. 1994).

We investigated the effects of gamma sterilization on reindeer BMP extract administered either as a separate substance in gelatine capsules or mixed with gelatine as injections in the mouse thigh muscle pouch model.

Materials and methods

Preparation of native reindeer (Rangifer tarandus tarandus) BMP extract

Native reindeer BMP extract was prepared from reindeer diaphyseal bone. Cortical bones from each animal were chilled immediately after death. The epiphyseal ends, bone marrow and periosteum were removed mechanically, and after freezing in liquid nitrogen, the cleaned cortical bones were ground to a particle size of 1.0 mm³. The pulverized bone was demineralized in 0.6 M HCl and extracted in 4 M guanidine hydrochloride (GuHCl) at 4°C. The GuHCl-extracted solution was filtered with a tangential flow system and concentrated. The concentrated solution was dialyzed against deionized water, and the water-insoluble material was collected. After re-dissolution in 4 M GuHCl solution, the water-insoluble material was dialyzed against 0.25 M citrate buffer, pH 3.1. The citrate-buffer-insoluble material was washed with deionized water and lyophilized. (Jortikka et al. 1993)

Reconstitution of test materials and sterilization

Implants. 5 mg of BMP extract was introduced into each gelatine capsule (no. 1). The control implants contained 5 mg bovine serum albumin (BSA).

Injection. 75 mg BMP extract and 150 mg gelatine (type A from porcine skin, Bloom 300, Sigma, St. Louis, MO) were mixed with 0.9% saline to obtain 1.5 mL homogenized emulsion. 100 μL of this emulsion was used per injection, and each injection thus contained 5 mg BMP extract. The control injections contained 5 mg BSA. The preparation of implants and injections was done aseptically.

Gamma sterilization of the test materials was performed by a specialized company (Isotron Ltd., Swindon, UK). The dose was 4.10 MRad.

Groups

1. Gelatine capsule + native reindeer BMP (n = 15), non-sterilized BMP group.
2. Gelatine capsule + native reindeer BMP, irradiated (n = 15), sterilized BMP group.
3. Gelatine + native reindeer BMP injection (n = 15), non-sterilized BMP/injection group.
4. Gelatine + native reindeer BMP injection, irradiated (n = 15), sterilized BMP/injection group.
5. Gelatine capsule + albumin (n = 6), non-sterilized BSA group.
6. Gelatine capsule + albumin, irradiated (n = 6), sterilized BSA group.
7. Gelatine + albumin injection (n = 6), non-sterilized BSA/injection group.
8. Gelatine + albumin, irradiated (n = 6), sterilized BSA/injection group.

Implantation and injection techniques

We used male Balb/C mice aged 10–12 weeks, and the administration of capsules and injections was done under neuroleptic analgesia (Hypnorm Janssen, Belgium; Dormicum Roche, Switzerland).

Implantation. Capsules were introduced under sterile conditions into the thigh muscle pouches in the bilateral hind legs. After the implantation, the muscle was closed with 5-0 resorbable sutures, and the skin with 3-0 resorbable sutures.

Injections. 100 μL emulsion was injected under sterile conditions into both thigh muscles using a 1-mL syringe and 20-G needle.

All animals were killed in a chamber with carbon dioxide 21 days later, and the hind legs were harvested (Reddi 1981, Jortikka et al. 1993). The study protocol was accepted by our institutional Ethics Committee.

Radiographic evaluation of area and density of new bone

After harvest, standard lateral position radiographs (100 mA, 20 kV, 0.08 s/exp; Mamex de Maq, Sorex, Orion, Finland) were taken of all hind legs. The radiographic images were transferred into a computer by using an optical scanner (HP Laserjet/Desk Scan). New bone formation was evaluated as
the area (in mm2) of calcified tissue visible in the radiographs, defined by using Scion Image Beta 4.02 software (Scion Corp., Maryland). The mean optical density (mm Al) of the defined area was measured with the same equipment. Calibration of the equipment for the measurement of optical density was performed using an aluminium wedge.

Ca45 activity

24 h before killing, all mice received an intraperitoneal injection of diluted carrier-free Ca45 solution (Amersham, UK; 40 µCi/kg of body weight). The muscle tissue of each harvested hind leg, including the implant and the newly formed bone, was taken en bloc for a specimen immediately after the radiography. A piece of intact foreleg muscle was used as reference (10 samples). All specimens were weighed and digested in a mixture of 0.2 mL 70% perchloric acid and 0.4 mL 33% peroxide at 70°C for 3 h. 0.6 mL of the digested solution was pipetted into a diffuse scintillation vial, and 5 mL scintillation cocktail (OptiPhase Hi-safe 3; Wallac, Finland) was added. The samples were counted in a liquid scintillation counter (Wallac 1410, Pharmacia, Finland) with an internal spectrum library. Ca45 incorporation into tissue was expressed as DPM/mg tissue.

Statistics

We performed statistical analysis using the SPSS statistical package version 9.0 (SPSS Inc., Illinois). The non-parametric Kruskall-Wallis test was used to evaluate the statistical differences between the groups and the Mann-Whitney test was used for pairwise comparison. Values of $p \leq 0.05$ were considered statistically significant.

Results

The injections and implantations were well tolerated by the mice, and no complications occurred during or after the procedures.

Area of new bone formation evaluated radiographically

There was no new radiographically detectable bone formation in the control groups, whereas there was an abundance of new bone in the groups that received BMP extract (Table 1, Figure).

There was no difference in the new bone area between the non-sterilized BMP group and the sterilized BMP group ($p = 0.4$). A decrease in new bone area could be seen in the sterilized BMP/injection group compared to the non-sterilized BMP/injection group ($p < 0.001$) (Table 1).

Optical density of new bone formation evaluated radiographically

Because the control groups showed no new bone formation radiologically, their optical density could not be measured. There were no differences in optical density between the non-sterilized and sterilized BMP groups ($p = 0.3$) or between the non-sterilized and sterilized BMP/injection groups ($p = 0.2$) (Table 1).

Ca45 incorporation

The mean Ca45 incorporation was manifold in all groups containing BMP extract compared with the corresponding control groups ($p < 0.001$) (Table 2). There was no difference in Ca45 incorporation between the non-sterilized BMP group and
the sterilized BMP group (p = 0.7). A decrease in
Ca45 incorporation could be seen in the sterilized
BMP/injection group compared to the non-steril-
ized BMP/injection group (p = 0.05).

Discussion

An important problem in the clinical application of
BMPs and their carriers is sterilization. Ethylene
oxide gas is used in many protocols, but it reduces
the osteoinductive activity of BMPs, and the for-
mation of free radicals during ethylene oxide
sterilization is a further cause for concern (Munting
1988, Aspemberg et al. 1990, Aspemberg and
Lindqvist 1998, Ijiri et al. 1994, Zhang et al. 1997,
Pekkarinen et al. 2004). Many reports have sug-
gested that gamma sterilization is less harmful in
these respects, and it would thus be a better alterna-
tive for the sterilization of BMPs (Wientroub and
Reddi 1988, Wientroub et al. 1990, Andriano et al.
2000, Ripamonti et al. 2000).

Wientroub et al. (1988, 1990) used allogenic
demineralized bone matrix with endogenous native
BMPs and reported that samples could tolerate
up to 5–7 MRad of gamma irradiation as long as
appropriate temperatures (4°C or less) were main-
tained. Andriano et al. (2000) showed that gamma
irradiation at doses of 1.5–2.5 MRad did not reduce
the activity of a combination of polymeric and
bovine-derived BMPs, and thus appeared to be a
promising method for sterilization of BMPs. These
authors even reported that irradiation of the poly-
mer matrix actually improved the extent of new
bone formation, but this trend was not supported
by statistical analysis (Andriano et al. 2000).

Ripamonti et al. (2000) investigated the effects of
gamma irradiation at doses of 2.5–3.0 MRad on
the osteoinductivity of human OP-1, and observed
that gamma-irradiated human OP-1 combined with
irradiated xenogeneic bovine collagenous matrix
carrier is effective in regenerating and maintain-
ing the architecture of induced bone. Our results
are, by and large, in accordance with these studies.
We have shown that gamma irradiation at a dose of
4.1 MRad does not reduce the osteoinductivity of
BMP extract in gelatine capsules.

There have also been reports with results that
conflict with ours. Zhang et al. (1997) and Munting
et al. (1988) reported that gamma irradiation at a
dose of 2.5 Mrad reduced the osteoinductive capac-
ity of demineralized bone matrix (DBM) by about
40–50%. Ijiri et al. (1994) reported that exposure
of bovine-derived BMP with type-I collagen car-
rier to 2.5 MRad of gamma irradiation reduced the
activity of BMP to 4.4% of that of the controls.
Moreover, these authors suggested that irradiation
of bovine type-I collagen carrier alone with 2.5
MRads dramatically reduced the osteoinductivity
of non-irradiated bovine-derived BMP released

Study groups	n	Bone area (mm2)	Optical density of new bone (mm Al)
BMP group			
Non-sterilized	15	79 (33)	0.39 (0.11)
Sterilized	15	74 (23)	0.41 (0.09)
BMP/injection group			
Non-sterilized	15	55 (13)	0.41 (0.09)
Sterilized	15	27 (14)	0.39 (0.12)

a p = 0.000 for non-sterilized BMP/injection group vs. sterilized BMP/injection group.

Study groups	n	Ca45 incorporation (DPM/mg)
Non-sterilized BMP group	15	313 (256)
Sterilized BMP group	15	281 (120)
Non-sterilized BMP/injection group	15	489 (498) a,d
Sterilized BMP/injection group	15	343 (543) a,e
Non-sterilized BSA group	6	2.4 (2.0) b
Sterilized BSA group	6	5.7 (3.8) c
Non-sterilized BSA/injection group	6	3.6 (2.1) d
Sterilized BSA/injection group	6	5.0 (3.4) e

* a p = 0.045 non-sterilized BMP/injection vs. sterilized BMP/injection group.
* b p = 0.000 non-sterilized BMP group vs. non-sterilized BSA group.
* c p = 0.000 sterilized BMP group vs. sterilized BSA group.
* d p = 0.000 non-sterilized BMP/injection group vs. non-sterilized BSA/injection group.
* e p = 0.000 sterilized BMP/injection group vs. sterilized BSA/injection group.
from this carrier. Here, we observed a reduction in the osteoinductivity of BMP extract when it was exposed to 4.1 MRad of gamma irradiation in an injectable mixture with soluble gelatine.

It has been shown that irradiation changes the consistency of collagen. Buring (1970) reported that gamma irradiation in excess of 2.0 MRad increased the solubility of collagen and destroyed the fibrillar network of the bone matrix. It is possible that these changes have harmful effects on BMPs, or that collagen potentiates these detrimental effects of irradiation on BMPs by some unknown mechanism.

Currently, the standard dose recommended by the Food and Drug Administration (Rockville, MD) is 2.5 MRad. However, even when we used a larger dose (4.1 MRad) here, BMP maintained its osteoinductivity well. Because the safety requirements allow the use of even lower doses than the one used here, gamma irradiation can be recommended for the sterilization of BMP material for clinical purposes.

We conclude that gamma irradiation does not reduce the osteoinductivity of native reindeer BMP extract in gelatine capsules and is a suitable sterilization method for BMPs administered in this way. Reindeer BMP extract in soluble collagen (gelatine) for injections seemed to be more sensitive to irradiation than BMP in gelatine capsules, and this difference must be given serious consideration.

The remaining activity may, however, be sufficient for the induction of bone formation in preclinical and clinical situations.

The authors wish to express their thanks to Mrs. Marja Juustila for her kind assistance in preparation of the implants and the nucleic techniques.

No competing interests declared.

Andriano K P, Chandrashekar B, McEnery K, Dunn R L, Moyer K, Balliu C M, Holland K M, Garrett S, Huffer W E. Preliminary in vivo studies on the osteogenic potential of bone morphogenetic proteins delivered from an absorbable puttylike polymer matrix. J Biomed Mater Res 2000; 53: 36-43.

Aspenberg P, Lindqvist S B. Ethene oxide and bone induction. Controversy remains. Acta Orthop Scand 1998; 69: 173-6.

Aspenberg P, Johnsson E, Thorgreen K G. Dose-dependent reduction of bone inductive properties by ethylene oxide. J Bone Joint Surg (Br) 1990; 72: 1036-7.

Buring K. Ionizing radiation for sterilization of bone. In: Sterilization and preservation of biological tissues for transplantation. Vienna, International Atomic Energy Agency 1970: 71-8.

Ijiri S, Yamamuro T, Nakamura T, Kotani S, Notoya K. Effect of sterilization on bone morphogenetic protein. J Orthop Res 1994; 12: 628-36.

Jortikka L, Marttinen A, Lindholm T S. Purification of monocomponent bovine morphogenetic protein in a water-soluble form. Ann Chir Gyn 1993; 82: 25-30.

Kujala S, Raatikainen T, Ryhänen J, Kaarela O, Jalovaara P. Composite implant of native bovine bone morphogenetic protein (BMP) and biocoral in the treatment of scaphoid nonunions. A preliminary study. Scand J Surg 2002; 9: 186-90.

Kujala S, Raatikainen T, Ryhänen J, Kaarela O, Jalovaara P. Composite implant of native bovine bone morphogenetic protein (BMP), collagen carrier and biocoral in the treatment of resistant ulnar nonunions: report of five preliminary cases. Arch Orthop Trauma Surg 2004; 1: 26-30.

Munting E, Wilmart J-F, Wijne A, Hennebert P, Delloye C. Effect of sterilization on osteoinduction. Comparison of five methods in demineralized rat bone. Acta Orthop Scand 1988; 59: 34-8.

Pekkarinen T, Lindholm T S, Hietala O, Jalovaara P. New bone formation induced by injection of native reindeer BMP. Scand J Surg 2003; 92: 227-30.

Pekkarinen T, Lindholm T S, Hietala O, Jalovaara P. Influence of ethylene oxide sterilization on the activity of native reindeer bone morphogenetic protein. Int Orthop 2004; 28: 97-101.

Reddi A H. Cell biology and biochemistry on endochondral bone development. Coll Relat Res 1981; 1: 209-26.

Ripamonti U, Van Den Heever B, Crooks J, Tucker M M, Sampath T K, Raeger D C, Reddi A H. Long-term evaluation of bone formation by osteogenic protein-1 in the baboon and relative efficacy of bone-derived bone morphogenetic proteins delivered by irradiated xenogenic collagenous matrix. J Bone Miner Res 2000; 15: 1798-809.

Sigholm G, Gendler E, McKellop H, Marshall G J, Moore T M, Sarmiento A. Graft perforations favor osteoinduction. Studies of rabbit cortical grafts sterilized with ethylene oxide. Acta Orthop Scand 1992; 63: 177-82.

Tuominen T, Jämäsi T, Tuukkanen J, Nieminen P, Lindholm T C, Lindholm T S, Jalovaara P. Native bovine bone morphogenetic protein improves the potential of biocoral to heal segmental canine ulnar defects. Int Orthop 2000; 24: 289-94.

Wientroub S, Reddi A H. Influence of irradiation on the osteoinductive potential of demineralised bone matrix. Calcif Tissue Int 1988; 42: 255-60.

Wientroub S, Weiss J F, Catravas G N, Reddi A H. Influence of whole body radiation on local shielding on matrix-induced endochondral bone differentiation. Calcif Tissue Int 1990; 46: 38-45.
Wozney J M. Overview of bone morphogenetic proteins. Spine 2002; 27 (16S): 2-8.

Zhang Q, Cornu O, Delloye C. Ethylene oxide does not extinguish the osteoinductive capacity of demineralized bone. A reappraisal in rats. Acta Orthop Scand 1997; 68: 104-8.