Neutrino masses from SUSY breaking in radiative seesaw models

This content has been downloaded from IOPscience. Please scroll down to see the full text.
2015 J. Phys.: Conf. Ser. 631 012073
(http://iopscience.iop.org/1742-6596/631/1/012073)

View the table of contents for this issue, or go to the journal homepage for more

Download details:

IP Address: 188.184.3.52
This content was downloaded on 16/08/2015 at 19:56

Please note that terms and conditions apply.
Neutrino masses from SUSY breaking in radiative seesaw models

António J. R. Figueiredo
Centro de Física Teórica de Partículas (CFTP), Instituto Superior Técnico - University of Lisbon, Av. Rovisco Pais 1, 1049-001 Lisboa, Portugal.
E-mail: ajrf@cftp.ist.utl.pt

Abstract. We study the possibility that neutrino masses (m_ν) are proportional to small supersymmetry (SUSY) breaking effects that take place within the sector responsible for generating m_ν at the quantum level. We specifically consider the case in which lepton number (L-number) breaking is independent of SUSY breaking (SUSY), so that this connection can be seen to be a consequence of the SUSY non-renormalisation theorem. We show that the simplest one-loop models realising this idea generate $LLHH$ operators suppressed by at least $\mu m_{\text{soft}}/M_X^3$ or m_{soft}^2/M_X^3, where m_{soft} is the scale of soft-SUSY effects involving the seesaw mediators, which possess superpotential masses of order M (the L-number breaking scale). We exemplify this possibility by constructing one such model based on a one-loop type-II seesaw. This contribution summarises the work published in [1].

1. Introduction
The idea that neutrino masses (m_ν) may owe part of their smallness to small supersymmetry (SUSY) breaking effects was put forward in [2], where it relied on the observation that the R-parity conserving minimal SUSY Standard Model (MSSM) can generate non-vanishing neutrino masses if one takes into account hard SUSY breaking (SUSY) terms involving slepton doublets and Higgses, as for instance

$$m_{\text{soft}} \frac{\langle \hat{L} \hat{H}_u \rangle^2}{M_X} \subset \frac{1}{M_X} \int d^2 \theta \hat{X} \langle \hat{L} \hat{H}_u \rangle^2,$$

where M_X is the underlying scale mediating SUSY ($\langle \hat{X} \rangle \sim F_X \theta^2$) to the visible sector, and $m_{\text{soft}} \sim F_X/M_X$ is the soft-SUSY scale. Although non-standard SUSY terms are typically neglected in phenomenological analysis due to their expected smallness, this is a feature that could conceivably be responsible for $m_\nu/v \ll 1$. For example, if SUSY generates $\langle \hat{L} \hat{H}_u \rangle^2$, then LLH_uH_u arises at the one-loop level via a gaugino-slepton loop and is suppressed by m_{soft}/M_X.

A shortcoming of the idea presented in the previous paragraph is that it does not explain why the more fundamental model is able to generate the (s)lepton number violating superfield operator (superoperator) $\hat{X} \langle \hat{L} \hat{H}_u \rangle^2$ while being unable to generate SUSY conserving superoperators that, if generated, would expectedly provide dominant contributions to m_ν. For example, given $\hat{X} \langle \hat{L} \hat{H}_u \rangle^2 \subset \mathcal{W}_{\text{eff}}$ one would arguably expect that a generic model would also generate

$$\frac{1}{M_X} LLH_uH_u \subset \frac{1}{M_X} \int d^2 \theta \langle \hat{L} \hat{H}_u \rangle^2.$$

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.
A possible strategy to fix this shortcoming is to consider that \hat{X} carries L-number, so that $\hat{X}(LH_u)^2$ is symmetric, and is thus allowed, while $(LH_u)^2$ is forbidden. This kind of strategy in which the SUSY sector is postulated to share a visible sector symmetry is followed in [3]. A different strategy is to postulate a visible sector symmetry that forbids chiral superoperators while allowing non-chiral. Since non-chiral superoperators contribute to the effective action as D-terms, their contribution to neutrino masses is necessarily proportional to SUSY. For example, the authors of [4] consider an extra $U(1)$ symmetry that allows

$$\frac{\mu_{\text{soft}}^2}{M_X} LH_d^\dagger N < \frac{1}{M_X^2} \int d^4 \theta \hat{X}^\dagger \hat{L} \hat{H}_d^\dagger \hat{N}$$

but forbids the non-suppressed $LH_u N < \int d^2 \theta \hat{L} \hat{H}_u \hat{N}$.

In the aforementioned works the connection between SUSY and m_ν results from making SUSY the unique provider of:

i) L-number violating couplings suitable for a radiative seesaw with just the superfield content of the MSSM [2] or for a canonical type-I seesaw [3]; or

ii) couplings for Dirac neutrino masses [3, 4].

An alternative arises when one considers models in which neutrino masses are radiatively generated. In such models, the connection between SUSY and m_ν is a consequence of the SUSY non-renormalisation theorem, so that one may have all the required couplings at the SUSY level while the radiative structure of a SUSY QFT precludes the generation of neutrino masses. Then, one may have L-number breaking at the superpotential level, i.e. independently of SUSY, and neutrino masses will still be proportional to SUSY. This dependence on SUSY is not entirely obvious in component fields calculations. To illustrate what we mean, consider the trilinear R-parity violation contribution to neutrino masses [5], which is generated at the one-loop level. It takes the schematic form

$$\frac{m_\nu}{v^2} \sim \frac{A - \mu c_\xi t_\beta}{M^2},$$

where M is the loop mass scale, μc_ξ is the effective μ-term and A stands for holomorphic soft-SUSY trilinears. From this expression, one may erroneously think that the $\propto \mu/M^2$ contribution is a SUSY conserving one, since μ is a superpotential mass term. However, a closer inspection reveals that the μ-term contribution comes from the vacuum expectation value (VEV) of an F-term, specifically $\langle F_{H_d}^\dagger \rangle = \mu \langle H_u \rangle$, and is thus intrinsically SUSY. This is not that surprising since in the SUSY limit one has $\langle H \rangle = 0$ and therefore $\langle H_{u,d} \rangle = v_{u,d}$ are proportional to SUSY. This suggests that SUSY contributions can be classified with respect to (w.r.t.) their involvement in electroweak symmetry breaking (EWSB) as follows: SUSY$^\text{EWSB}$ contributions are those which involve SUSY VEVs of the form

$$\langle F^\dagger \rangle = \sum_H \mu_H \langle H \rangle + \sum_H \lambda_H \langle HH^\dagger \rangle \neq 0 \quad \text{or} \quad \langle D \rangle = g \sum_H \langle H^\dagger \otimes H \rangle \neq 0,$$

where Hs are fields whose VEVs break the electroweak symmetry (EWS); while SUSY$^\text{EWS}$ contributions correspond to those in which at least one SUSY VEV is unrelated to EWSB.

In this work, we will start by analysing the space of radiative seesaw models w.r.t. their dependence on SUSY. In order to do this in the most efficient manner, we will use supergraph techniques\(^1\) and incorporate the SUSY effects by means of considering couplings to external

\(^1\) A detailed introduction to supergraph techniques can be found in chapter 6 of [6].
SUSY spurions [7]. This will allow one to see the SUSY$_{EWS}$ contributions to neutrino masses as small SUSY effects upon a fundamentally SUSY topology.

Although L-number violation can possibly arise from SUSY, i.e. from the VEV of an auxiliary rather than scalar field, in here we assume that they are broken separately so that the non-renormalisation theorem is the only bridge between m_ν and SUSY. We thus assume that the radiative seesaw models are realised in the superpotential at a L-number breaking scale M that is higher than the scale of soft-SUSY effects involving the seesaw mediators. We will furthermore restrict ourselves to models with the low energy Higgs sector of the MSSM.

As we will see in section 2, contributions to neutrino mass operators whose dependence on SUSY arises entirely by means of SUSY$_{EWS}$ sources involved in EWSB are expected to be suppressed by some power of μ/M or be of dimension higher than 5 and involve gauge couplings. Thus, in a generic radiative seesaw model one expects m_ν to have the schematic dependence

$$
\frac{m_\nu}{v^2} \sim \frac{\mu}{M^2} \mp \frac{g^2 v^2}{M^3} + \frac{m_{\text{soft}}}{M^2},
$$

where m_{soft}/M^2 corresponds to conceivable SUSY$_{EWS}$ contributions. Exploiting the power of the SUSY non-renormalisation in the space of radiative seesaw models, we then investigate if models exist in which the pure-SUSY$_{EWS}$ contribution either vanishes or is subleading w.r.t. the contribution from SUSY$_{EWS}$. Since in such a case

$$
\frac{m_\nu^{\text{LO}}}{v^2} \sim \frac{m_{\text{soft}}}{M^2},
$$

where m_{soft} is the scale of soft-SUSY effects involving the mediators of the radiative seesaw, models in which the leading contribution comes from soft-SUSY$_{EWS}$ offer the possibility of explaining the smallness of m_ν with M in the vicinity of the TeV scale provided $m_{\text{soft}}/M \ll 1$. It should be noted that the smallness of m_{soft} is not constrained by lower-limits on the mass of new particles because the fields upon which these m_{soft}-effects are felt possess superpotential masses of order M. We catalogue one-loop topologies for such models in section 3. An explicit model example is presented in section 4 and consists of a one-loop type-II seesaw whose leading SUSY$_{EWS}$ contribution is of dimension-7 – comprising contributions $\propto \mu/M$ and $\propto g^2$, whereas the leading contribution from SUSY$_{EWS}$ is of dimension-5 and has the dimensionful dependence $\mu m_{\text{soft}}/M^3$ or m_{soft}^2/M^3, the latter corresponding to pure-SUSY$_{EWS}$ contributions.

2. Radiative seesaws in SUSY: understanding the different SUSY contributions

In order to understand the SUSY structure of radiatively generated neutrino mass operators (OP$_\nu$), it is first convenient to notice that for every OP \in OP$_\nu$ there exists a superoperator $\bar{\Omega} \in \bar{\text{OP}}_\nu$ such that OP \subset $\int d^4\theta\bar{\Omega}$. Then, since any OP \in OP$_\nu$ is of the form OP = $LL \otimes$ Higgses, one arrives at the conclusion that OP \in OP$_\nu$ belongs to one of two classes:

$$
D^2(\hat{L} \hat{L} \hat{H}^n) \otimes \hat{A} \quad \text{or} \quad \hat{L} \hat{L} \otimes \hat{B},
$$

with $\int d^4\theta \hat{A} \supset$ Higgses, $\int d^2\theta \hat{B} \supset$ Higgses,

and where $n = 0, 1, ...$ stands for conceivable insertions of superfields that yield Higgses at $\theta = 0$ (a limit hereafter denoted by $|$). Now, if we assume that only scalar and gauge vector superfields exist, we can write

$$
\hat{A} \in \hat{a} \otimes \left\{ \hat{H}, \hat{H}^\dagger, D^2 \hat{Z}, D^2 \hat{Z}^\dagger, D^2 \bar{D}^2 \hat{V} \right\}^n,
$$
$$
\hat{B} \in \hat{b} \otimes \left\{ \hat{H}, \hat{H}^\dagger, \bar{D}^2 \hat{Z}, \bar{D}^2 \hat{Z}^\dagger, \bar{D}^2 \bar{D}^2 \hat{V} \right\}^n,
$$

where \hat{a} and \hat{b} are superfields.
where \(n = 0, 1, ... \) stands for arbitrary insertions of superfields within the given set (denoted by curly braces), though constrained by internal symmetries. \(\hat{a} \) and \(\hat{V} \) (mod \(\hat{H}^\dagger, \hat{H} \)) \(\hat{b}^\dagger \) and \(\hat{Z}^\dagger \) (mod \(\hat{H}^\dagger \)) are real (anti-chiral) scalar superfields whose \(D \) (\(F \)) component is a constant or a product of Higgses\(^2\). We show in figure 1 characteristic examples of class A and B superoperators.

\[
\int d^4 \theta D^2 (\hat{L}\hat{L}) \hat{O}P
\]

\[
\int d^4 \theta \hat{L}\hat{H} \hat{O}P[\hat{L}]
\]

\[
\int d^4 \theta \hat{L}\hat{L} \hat{O}P
\]

Figure 1. Characteristic examples of supergraph topologies for radiative seesaws: type-II without a chirality flip (class A), type-I and -III, type-II with a chirality flip and 1PI seesaw, respectively.

2.1. Pure-\(\text{SUSY}_{\text{EWSB}} \) contributions

Pure-\(\text{SUSY}_{\text{EWSB}} \) contributions are generated by superoperators containing superfields whose auxiliary fields yield Higgses upon being integrated out. We have two possibilities:

\[
D^2 D^2 \hat{V} = D \supset g H^\dagger \otimes H,
\]

(10)

where \(\hat{V} \) is the gauge vector superfield of any symmetry under which Higgses are charged; and

\[
\bar{D}^2 \hat{Z}^\dagger = F^\dagger \supset \mu H \text{ or } \lambda H \otimes H',
\]

(11)

where \(\hat{Z}^\dagger \) is any anti-chiral scalar superfield that has a bilinear with an Higgs or a trilinear with two Higgses. For class B superoperators (cf. Eq. (9)), \(\hat{b}^\dagger \) is thus \(\hat{Z}^\dagger \) or the anti-chiral projection of \(\hat{V} \) (\(D^2 \hat{V} \)), while, for class A, \(\hat{a} \) is \(\hat{V} \) or the real product of \(\hat{b} \) (\(\hat{b}^\dagger \hat{b} \)).

Now, under the phenomenologically reasonable assumption of a superpotential mass term for \(\hat{Z} \), the contribution of a trilinear with two Higgses adds up to an overall derivative term of the form \(\Box (HH') \). Moreover,\(^2\)

\[
\langle F^\dagger \rangle = \mu_Z(Z) + \lambda \langle HH' \rangle = 0,
\]

(12)

up to \(\text{SUSY} \) effects \(\propto (m^2_{\text{soft}})_Z/|\mu_Z|^2 \). Therefore, the contribution that arises from a trilinear with two Higgses is more appropriately classified as a \(\text{SUSY}_{\text{EWSB}} \) contribution. (For a detailed discussion see the original work [1].)

Neutrino mass operators that come from a class A or B superoperator via a gauge vector superfield must have mass dimension higher than 5, since \(\hat{V} \) is an hypercharge singlet. The least is a dimension-6 operator

\[
\int d^4 \theta \left\{ \hat{V} D^2 (\hat{L}\hat{L}), D^2 \hat{V} \hat{L}\hat{L} \right\} \otimes \hat{H}' \supset LH LHH',
\]

(13)

that is conceivable if there exists a hypercharge +1 Higgs (\(H' \)). On the other hand, if the low energy Higgs sector coincides with that of the MSSM, the leading pure-\(\text{SUSY}_{\text{EWSB}} \) contributions that are independent of \(\langle F^\dagger \rangle \) correspond to the dimension-7 operators

\[
LL \otimes \left\{ H_u H_u, H_u H_d^\dagger, H_d^\dagger H_d \right\} \otimes \left\{ H_u^\dagger H_u, H_d^\dagger H_d \right\}.
\]

(14)

\(^2\) Here and throughout the text, “mod X” means modulo insertions of X.
Since realistic SUSY models have Higgs bilinears, be them dynamically generated or otherwise, it is conceivable that in general models there are pure-SUSY_{EWSB} contributions to $LLHH$. While pure-SUSY_{EWSB} contributions are indeed guaranteed to exist in any model (see section 2.3), there are models in which they appear only at a higher order of perturbation theory, while the leading order (LO) contribution is proportional to SUSY_{EWS}.

2.2. SUSY_{EWS} contributions

SUSY_{EWS} contributions are most conveniently understood by means of employing spurionic superfields: objects that are superfields at the formal level but that have constant θ-dependent values. The underlying idea is to perform perturbation theory in superspace while considering possible couplings to spurions (thus parameterising SUSY) in order to obtain the effective superoperators and see whether the θ-integration projects the spurions in a way that $\int d^4\theta \tilde{\text{OP}} \supset \text{OP} \in \text{OP}_\nu$. We can thus identify three cases:

\[a) \quad \int d^4\theta X \tilde{\text{OP}}, \quad b) \quad \int d^4\theta \tilde{X} \tilde{\text{OP}}, \quad c) \quad \int d^4\theta \tilde{Y} \tilde{\text{OP}}, \]

modulo $D^2 \tilde{X}, D^2 \tilde{X}^\dagger$ and $D^2 D^2 \tilde{Y}$ insertions, and where \tilde{X} and \tilde{Y} are F- and D-term SUSY spurions, respectively.

In this work we are strictly interested in the case in which the SUSY spurions are neutral under any symmetry of visible sector superfields. In such a framework, one expects that both $\{ \tilde{X}, \tilde{X}^\dagger, \tilde{Y} \} \tilde{\text{OP}}$ (cases a, b and c, respectively) and $\tilde{\text{OP}}$ are generated up to some order in perturbation theory. For example, if a model generates

\[\frac{1}{M^2} \int d^4\theta \left(\tilde{X} \tilde{X} \right) \tilde{L} \tilde{H}_a \tilde{H}_d^\dagger \supset \frac{m_{\text{soft}}}{M^2} LLH_a H_d^\dagger, \]

then it would most certainly also generate

\[\frac{1}{M^2} \int d^4\theta \tilde{L} \tilde{L} \tilde{H}_a \tilde{H}_d^\dagger \supset \frac{\mu}{M^2} LLH_a H_u. \]

We can now ask ourselves which instances of $\tilde{\text{OP}} \in \tilde{\text{OP}}_\nu$ do not yield an $\text{OP} \in \text{OP}_\nu$ in the absence of SUSY spurions. (This is the operational definition of superoperators that only give $\text{OP} \in \text{OP}_\nu$ from SUSY_{EWS}). The general answer is:

1. $\tilde{\text{OP}} = D^2(\tilde{L} \tilde{H}^n) \otimes \left(\text{a superoperator whose } D\text{-term is zero at } p_{\text{ext}} = 0 \right)$;
2. $\tilde{\text{OP}} = \tilde{L} \tilde{L} \otimes \left(\text{a superoperator whose } F\text{-term is zero at } p_{\text{ext}} = 0 \right)$.

For example, consider $\tilde{L} \tilde{L} \tilde{H}_a H_u$: $\tilde{X} \tilde{X} \tilde{L} \tilde{H}_a H_u$ yields an $\text{OP} \in \text{OP}_\nu$, namely $LLH_a H_u$, whereas $LLH_a H_u$ does not. For a non-trivial example, consider $D^2(\tilde{L} \tilde{L}) \tilde{H}_a H_u$ (cf. Eq. (31)).

In the following we give the general form of type-1 and -2 superoperators. For this, let \tilde{Z} and \tilde{V} denote any superfields whose $\tilde{Z} (\text{mod } H^\dagger)$ and $\tilde{V} (\text{mod } H, H^\dagger)$ parts satisfy Eqs. (11) and (10), respectively. Type-1 and -2 superoperators that only give OP $\in \text{OP}_\nu$ are then:

1.a) $D^2(\tilde{L} \tilde{H}^n) \otimes \left(\tilde{Z}, D^2 \tilde{V} \right) \otimes \left(\tilde{H}, D^2 \tilde{Z} \right)^n$
1.b) $D^2(\tilde{L} \tilde{H}^n) \otimes \left(\tilde{Z}, D^2 \tilde{V} \right) \otimes \left(\tilde{H}, D^2 \tilde{Z} \right)^n$
1.c) $D^2(\tilde{L} \tilde{H}^n) \otimes \left((\tilde{H})^k, (\tilde{H})^k \right) \otimes \left(D^2 \tilde{Z}, D^2 \tilde{Z} \right)^n$

3. To simplify the discussion, from now on any $\tilde{\text{OP}} \in \tilde{\text{OP}}_\nu$ is defined modulo SUSY insertions.
where \(n, n', k = 0, 1, \ldots \) stand for any number of insertions, though constrained by internal symmetries.

2.3. Are there models in which the pure-SUSY_{EWSB} subset of \(\hat{\text{OP}}_{\nu} \) is empty?

First, let us analyse possible contributions of gauge vector superfields. As there are \(U(1)_Y \) and \(SU(2)_L \) charges flowing in internal lines of any supergraph contributing to \(\hat{\text{OP}} \in \hat{\text{OP}}_{\nu} \), it seems natural to think that insertions of external \(\hat{V}_{U(1)_Y} \) and \(\hat{V}^{a}_{SU(2)_L} \) into internal lines can map any superoperator to one which yields a pure-SUSY_{EWSB} \(\hat{\text{OP}} \in \hat{\text{OP}}_{\nu} \). An example is

\[
D^2(\hat{L}\hat{L})\hat{H}_a\hat{H}_a \rightarrow D^2(\hat{L}\hat{L})\hat{H}_a\hat{H}_a\hat{V}_{U(1)_Y},
\]

as we will see in the context of the model example presented in section 4. Although supergraphs with any given number of external \(\hat{V} \)'s can be constructed from any underlying \(\hat{\text{OP}} \in \hat{\text{OP}}_{\nu} \), the so obtained \(\hat{\text{OP}} \in \hat{\text{OP}}_{\nu} \) may vanish as the supergraphs add up to zero. More generally, \(\hat{V} \)'s insertions can be seen to correspond to terms in the \(\hat{V} \)-expansion of gauge completed superoperators. For example, \(D^2(\hat{L}\hat{L})\hat{H}_a\hat{H}_a\hat{V}_{U(1)_Y} \) is a term in the \(\hat{V} \)-expansion of

\[
D^2(\hat{L}\hat{L}e^{-2gY_L\hat{V}_{U(1)_Y}})\hat{H}_a\hat{H}_a e^{-2gY_L\hat{V}_{U(1)_Y}}.
\]

Next, we will see that for models in which there exists a Higgs bilinear, there is always a pure-SUSY_{EWSB} contribution proportional to \(\mu \). First, pick a \(\hat{\text{OP}} \in \hat{\text{OP}}_{\nu} \). Now, each supergraph contributing to \(\hat{\text{OP}} \) has either at least one external Higgs locally connected to loop superfields (say, class-a) or none (class-b). Without loss of generality, say that for a particular supergraph belonging to class-a the vertex is \(\hat{H}\hat{X}_1\hat{X}_2 \), where \(\hat{X} \)'s are loop superfields. One can then see (cf. figure 2) that an insertion of \(\hat{H}^\dagger (\hat{H}) \) followed by an insertion of \(\hat{H} (\hat{H}^\dagger) \) leads to a supergraph for the superoperator

\[
\hat{H}^\dagger \hat{H} \hat{\text{OP}}.
\]

Figure 2. A \(\hat{H}\hat{X}_1\hat{X}_2 \) vertex (leftmost diagram) implies a non-vanishing \(\hat{H}^\dagger \hat{H} \hat{X}_1\hat{X}_2 \) interaction that is local in \(\theta \), i.e. “a vertex” from the D-algebra point of view (rightmost diagram).

By means of the procedure described in figure 3, each class-b supergraph can also be transformed into a supergraph for \(\hat{H}^\dagger \hat{H} \hat{\text{OP}} \).

Hence, if class-a or -b supergraphs for superoperator \(\hat{\text{OP}} \) do not add up to zero, the transformed ones do not add up to zero for \(\hat{H}^\dagger \hat{H} \hat{\text{OP}} \) either. Now, if there exists a Higgs bilinear, \(\hat{H}^\dagger \hat{H} \hat{\text{OP}} \) yields a pure-SUSY_{EWSB} \(\hat{\text{OP}} \in \hat{\text{OP}}_{\nu} \) regardless of \(\hat{\text{OP}} \in \hat{\text{OP}}_{\nu} \). One expects such contributions to \(m_\nu \) to be proportional to

\[
\chi^2 \left(\frac{\mu}{M_X} \right)^2 \text{ or } 1,
\]

for any number of insertions, though constrained by internal symmetries.
Figure 3. Schematic of a procedure to go from a class-b supergraph for $\hat{\text{OP}}$ (leftmost diagram) to a supergraph for $\hat{\text{H}} \hat{\text{H}} \hat{\text{OP}}$ (rightmost diagram) by means of a double insertion in the loop line to which the 1PR leg is attached (middle diagram). The dot at which the lines of Φ^\dagger and the two Φs meet is a vertex in the sense of figure 2. In order to describe all conceivable assignments of chiralities to external and internal superfields, the chiralities of $\hat{\text{H}}, \hat{\text{H}}', \Phi$ and Φ' are left unspecified. However, $\hat{\text{H}}, \Phi$ and Φ' have the same chirality, as is implied by the vertex. Moreover, and so that all conceivable propagators are described, we also do not specify how Φ is connected to the loop(s) (depicted by the circle), nor how Φ' is connected to $\hat{\text{H}}'$.

for class A or B superoperators, respectively, and where λ is the coupling strength of $\hat{\text{H}}s$ to the loop(s). We will see an example of this in the model example of section 4, where an insertion of $\hat{\text{H}} \hat{\text{H}}$ into the LO topologies leads to dimension-7 contributions proportional μ/M^4 and μ^2/M^5 (cf. Eq. (34)).

3. Models in which m_{ν}^{LO} is proportional to soft-SUSY involving seesaw mediators

To construct models of this kind one may first choose a set of superoperators from those identified in Eq. (19), and then postulate the existence of superfields that generate the topologies for these superoperators. Finally, one should pick an internal symmetry group that forbids all couplings that could generate a pure-SUSY$_{\text{EWSB}}$ $\hat{\text{OP}} \in \hat{\text{OP}}_{\nu}$ up to the same order of perturbation theory. We cannot think of any serious obstruction that would compromise this procedure for constructing general models of this kind. In fact, in the next section we give a proof of existence based on a one-loop type-II seesaw, also showing that this kind of models need not be complicated.

In here, we shall identify the simplest of such model-topologies. To be precise, we consider one-loop topologies that generate the lowest dimension superoperators that can only give $\hat{\text{OP}} \in \hat{\text{OP}}_{\nu}$ from SUSY$_{\text{EWS}}$. From Eq. (19) one can see that the candidate superoperators are

\begin{align}
1.a) & \quad D^2(\bar{\text{d}}\bar{\text{d}})\hat{\text{H}}_{\hat{\text{d}}} \otimes \left\{ \hat{\text{H}}_{\hat{\text{d}}}, \hat{\text{H}}_{\hat{\text{d}}}^\dagger, D^2\hat{\text{H}}_{\hat{\text{d}}} \right\} \cup D^2(\bar{\text{d}}\bar{\text{d}}\hat{\text{H}}_{\hat{\text{d}}})\hat{\text{H}}_{\hat{\text{d}}}^\dagger, \\
1.b) & \quad D^2(\bar{\text{d}}\bar{\text{d}})\hat{\text{H}}_{\hat{\text{u}}} \otimes \left\{ \hat{\text{H}}_{\hat{\text{u}}}, \hat{\text{H}}_{\hat{\text{u}}}^\dagger, D^2\hat{\text{H}}_{\hat{\text{u}}} \right\} \cup D^2(\bar{\text{d}}\bar{\text{d}}\hat{\text{H}}_{\hat{\text{u}}})\hat{\text{H}}_{\hat{\text{u}}}; \\
1.c) & \quad D^2(\bar{\text{d}}\bar{\text{U}}) \otimes \left\{ D^2\hat{\text{H}}_{\hat{\text{u}}} \otimes \left\{ \hat{\text{H}}_{\hat{\text{u}}}, \hat{\text{H}}_{\hat{\text{u}}}^\dagger, D^2\hat{\text{H}}_{\hat{\text{d}}} \right\}, D^2\hat{\text{H}}_{\hat{\text{d}}} \right\}, \\
& \quad D^2(\bar{\text{d}}\bar{\text{U}}\hat{\text{H}}_{\hat{\text{u}}}) \cup D^2(\bar{\text{d}}\bar{\text{U}}\hat{\text{H}}_{\hat{\text{u}}}) \cup 1.a \cup 1.b; \\
2.b) & \quad \bar{\text{d}}\bar{\text{d}} \otimes \left\{ \hat{\text{H}}_{\hat{\text{u}}} \otimes \left\{ \hat{\text{H}}_{\hat{\text{u}}}, \hat{\text{H}}_{\hat{\text{u}}}^\dagger, D^2\hat{\text{H}}_{\hat{\text{d}}} \right\}, D^2\hat{\text{H}}_{\hat{\text{u}}} \otimes \left\{ D^2\hat{\text{H}}_{\hat{\text{u}}}, \hat{\text{H}}_{\hat{\text{u}}}^\dagger \right\}, \\
& \quad D^2\hat{\text{H}}_{\hat{\text{d}}} \right\} \cup D^2(\bar{\text{d}}\bar{\text{d}}\hat{\text{H}}_{\hat{\text{u}}} \hat{\text{H}}_{\hat{\text{u}}}); \\
& \quad \bar{\text{d}}\bar{\text{d}} \otimes \left\{ \hat{\text{H}}_{\hat{\text{u}}} \otimes \left\{ \hat{\text{H}}_{\hat{\text{u}}}, \hat{\text{H}}_{\hat{\text{u}}}^\dagger, D^2\hat{\text{H}}_{\hat{\text{d}}} \right\}, D^2\hat{\text{H}}_{\hat{\text{d}}} \right\}.
\end{align}
Then, from D-algebra considerations, and discarding topologies with self-energies\(^4\), one obtains the following list of possibilities:

- \(D^2(\hat{L}\hat{L})\hat{H}_u\hat{H}_u\), \(\hat{L}\hat{L}\hat{D}^2(\hat{H}_u\hat{H}_u)\), \(D^2(\hat{L}\hat{L})\hat{H}_d^\dagger\hat{H}_d^\dagger\) and \(\hat{L}\hat{L}\hat{D}^2(\hat{H}_d^\dagger\hat{H}_d^\dagger)\)
- type-II without a chirality flip;
- \(\hat{L}\hat{L}\hat{H}_u\hat{H}_u\) (1PR)
- type-II with a chirality flip, type-I and -III;
- \(\hat{L}\hat{L}\hat{H}_u\hat{H}_u\) (1PI).

The corresponding supergraph topologies are depicted in figure 4.

\[\text{Figure 4. One-loop supergraph topologies that are identified in the text. From left to right:}\]
\[D^2(\hat{L}\hat{L})\hat{H}_u\hat{H}_u \text{ or } \hat{L}\hat{L}\hat{D}^2(\hat{H}_u\hat{H}_u),\]
\[D^2(\hat{L}\hat{L})\hat{H}_d^\dagger\hat{H}_d^\dagger,\]
\[\hat{L}\hat{L}\hat{D}^2(\hat{H}_d^\dagger\hat{H}_d^\dagger),\]
\[\hat{L}\hat{L}\hat{H}_u\hat{H}_u \text{ (1PR) and } \hat{L}\hat{L}\hat{H}_u\hat{H}_u \text{ (1PI).}\]

We calculated the contribution of these topologies to \(\text{OP}_\nu\) up to order 3 in \(m_{\text{soft}}\), finding three kinds of leading dimensionful suppression factors:

- \(\mu m_{\text{soft}}/M^3\) or \(m_{\text{soft}}^2/M^3\) – for \(D^2(\hat{L}\hat{L})\hat{H}_u\hat{H}_u\) and \(\hat{L}\hat{L}\hat{D}^2(\hat{H}_u\hat{H}_u)\);
- \(\mu m_{\text{soft}}^2/M^4\) or \(m_{\text{soft}}^3/M^4\) – for \(\hat{L}\hat{L}\hat{D}^2(\hat{H}_d^\dagger\hat{H}_d^\dagger)\);
- \(m_{\text{soft}}^2/M^3\) – for \(D^2(\hat{L}\hat{L})\hat{H}_d^\dagger\hat{H}_d^\dagger\) and \(\hat{L}\hat{L}\hat{H}_u\hat{H}_u\) (both 1PR and 1PI).

The absence of a contribution linear in \(m_{\text{soft}}\) for some topologies is most easily seen to stem from the fact that one-loop topologies for \(\hat{L}\hat{L}\hat{H}_u\hat{H}_u\), as well as the one-loop 1PI parts of \(D^2(\hat{L}\hat{L})\hat{H}_d^\dagger\hat{H}_d^\dagger\) and \(\hat{L}\hat{L}\hat{D}^2(\hat{H}_d^\dagger\hat{H}_d^\dagger)\), use vertices of a single chirality. Moreover, and in regard to \(\hat{L}\hat{L}\hat{D}^2(\hat{H}_d^\dagger\hat{H}_d^\dagger)\), the leading contributions from the \(D^2(\hat{H}_d^\dagger\hat{H}_d^\dagger)\) piece are \(\mu H_u H_d^\dagger\) and \(A^* H_d^\dagger H_d^\dagger\).

We also found that one-loop realisations with self-energies had leading dimensionful suppression factors that ranged from \(\mu m_{\text{soft}}/M^3\) or \(m_{\text{soft}}^2/M^3\) to \(\mu m_{\text{soft}}^2/M^4\) or \(m_{\text{soft}}^3/M^4\).

If we take \(\mu \sim m_{\text{soft}}\), we may say that in one-loop models of this kind \(\hat{L}\hat{L}\hat{H}\hat{H}\) operators have a dimensionful suppression of at least \(m_{\text{soft}}^2/M^3\). This result is naively expected for type-II seesaws without a chirality flip, since \(\int d^4\theta D^2(\hat{L}\hat{L})\hat{H}\hat{H}\) has mass dimension 7. For other realisations this dependence is not trivial, since for an underlying superoperator \(\hat{L}\hat{L}\hat{H}\hat{H}\) one in general expects a \(m_{\text{soft}}/M^2\) dependence. It is worthy to mention that at higher loops there are topologies that lead to the naively expected dimensionful suppression of \(m_{\text{soft}}/M^2\). Indeed, the one-loop exception

\(^4\) They are analysed in appendix C of [1].
can be seen to be a consequence of the fact that the holomorphy of the superpotential restricts
the non-trivial 1PI parts of one-loop topologies in a way that all couplings and masses involved
must have the same chirality.

4. A model example
To construct a model example we follow the recipe outlined at the beginning of the previous
section and choose a model based on an one-loop topology for the superoperator $D^2(\hat{L}\hat{L})\hat{H}_u\hat{H}_u$
(cf. figure 4). As the most general set of scalar superfields and superpotential terms in this
topology has size 7 and 5, respectively, we can choose to supplement the model with a new $U(1)$
symmetry, say U_X, that is carried by the superfields in the loop (say \hat{X}_s). These will be
responsible for communicating L-number breaking to the actual leptons via the exchange of a
type-II seesaw mediator, say $\hat{\Delta}$.

In order to make the coupling $\hat{\Delta}^\dagger\hat{H}_u\hat{H}_u$ genuinely radiative, while allowing for a mass term for $\hat{\Delta}$, we have to link it to the VEV of a superoperator of at least dimension 4 in superfields.
One simple example is

$$\hat{\rho}^\dagger\hat{\Delta}^\dagger\hat{H}_u\hat{H}_u \rightarrow \langle \hat{\rho}^\dagger \rangle \hat{\Delta}^\dagger\hat{H}_u\hat{H}_u + \hat{\rho}^\dagger\hat{\Delta}^\dagger\hat{H}_u\hat{H}_u .$$

(25)

To achieve this we will postulate a $U(1)$ L-number symmetry that gets broken by the VEV of the
scalar component of $\hat{\rho}$. We leave unspecified the actual mechanism driving $\langle \rho \rangle \neq 0$. Now, being
L-number breaking communicated by X_s, the simplest choice is then to couple X_s directly to $\hat{\rho}$ by making a $\hat{\rho}^\dagger$ insertion in the loop line where chirality flips. This leads to the the left-hand
side diagram of figure 5. We will furthermore take \hat{X}_1 and \hat{X}_2 to possess superpotential mass
terms already at the L-number symmetric phase, even though it is not required by the topology.

![Figure 5. Leading order subset of $\hat{\text{OP}}_\nu$ in the model example.](image)

A model consistent with this description is summarised in table 1 and its most general
renormalisable superpotential is given by5

$$\mathcal{W} := \mathcal{W}_{\text{MSSM}} + M_\Delta \hat{\Delta} \hat{\Delta}^\dagger + \sum_{i=1}^2 M_{\hat{X}_i} \hat{X}_i \hat{\bar{X}}_i + \lambda \hat{\rho} \hat{X}_3 \hat{\bar{X}}_3 + \hat{H}_u \left(\lambda_1 \hat{X}_1 \hat{\bar{X}}_3 + \lambda_2 \hat{X}_2 \hat{\bar{X}}_3 \right) + \hat{\Delta} \left(\lambda_L \hat{L}\hat{L} + \lambda_X \hat{X}_1 \hat{X}_2 \right) + \lambda_X \hat{\Delta} \hat{\bar{X}}_1 \hat{\bar{X}}_2 .$$

(26)

In the absence of the last term the model acquires the R-symmetry shown in the last column
of table 1. This term allows for a chirality flipped type-II seesaw of superoperator $\hat{L}\hat{L}\hat{H}_u\hat{H}_u$, as shown in the right-hand side supergraph of figure 5. The broken L-number phase corresponds to

$$\lambda \hat{\rho} \hat{X}_3 \hat{\bar{X}}_3 \rightarrow M_{\hat{X}_3} \hat{X}_3 \hat{\bar{X}}_3 + \lambda \hat{\rho} \hat{X}_3 \hat{\bar{X}}_3 , \quad M_{\hat{X}_3} := \lambda(\rho) .$$

(27)

5 We assume that the $\hat{u}^c\hat{d}^c\hat{d}^c$ term is forbidden by, for instance, R-parity or baryon number conservation.
In the SUSY limit we have
\[\langle \Delta \rangle \text{VEV, since } \langle F_{H_u} \rangle = \mu \langle H_d^0 \rangle \neq 0 \text{ gives a (tadpole) contribution to } F_\Delta^3 \supset M_{\Delta \Delta}. \]
However, such a VEV has no effect upon \(m_{\nu} \) in the absence of \(\Delta - \Delta \) mixing. This VEV is no

Table 1. Extension of the MSSM in the model example. We omitted the conjugates of \(\hat{\Delta} \) and \(X_{1,2} \). \(U(1)_R \) stands for an \(R \)-symmetry that is acquired as \(\lambda_X \to 0 \).

\(SU(2)_L \otimes U(1)_Y \)	\(U(1)_X \)	\(U(1)_L \)	\(U(1)_R \)	
\(\hat{\Delta} \)	(3, 1)	0	-2	4
\(\hat{\rho} \)	(1, 0)	0	2	0
\(\hat{X}_1 \)	(2, -1/2)	1	1	-2
\(\hat{X}_2 \)	(2, -1/2)	-1	1	0
\(\hat{X}_3 \)	(1, 0)	1	-1	0
\(\overline{X}_3 \)	(1, 0)	-1	-1	2

The set of LO superoperators that break \(L \)-number proceed from the two supergraphs of figure 5 and are
\[D^2(\hat{L}L)\hat{H}_u\hat{H}_u, \quad \hat{L}\hat{L}\hat{H}_u\hat{H}_u. \] (28)

To see that there is indeed no other contributions up to the same order of perturbation theory, notice that a suitably defined \(L \)-number symmetry is recovered as any coupling in \(\{\lambda_1, \lambda_2, \lambda_L\} \), or both \(\lambda_X \) and any in \(\{\lambda_X, M_\Delta, M_{X_1}, M_{X_2}\} \), goes to zero. Thus, any superoperator that breaks \(L \)-number is proportional to \(a := \lambda_1 \lambda_2 \lambda_L \lambda_X^* \) or \(M_{\Delta} M_{X_1} M_{X_2} b := \lambda_1 \lambda_2 \lambda_L \lambda_X^* M_\Delta M_{X_1} M_{X_2} \). (29)

In the \(p_{\text{ext}} \to 0 \) limit the LO coefficients for these operators read
\[-\left(\frac{a M_{X_3}}{32\pi^2 M_\Delta^2} \right) C_0, \quad \left(\frac{b M_{X_3} M_{X_1} M_{X_2}}{32\pi^2 M_\Delta^2} \right) D_{0,0}, \] (30)
respectively, and where \(C_0 \) and \(D_0 \) are abbreviations of scalar one-loop 3- and 4-point integrals. Then, in the SUSY limit we have
\[\int d^4 \theta D^2(\hat{L}L)\hat{H}_u\hat{H}_u = -\Box(\hat{L}L) \Big[\hat{H}_u\hat{H}_u + 2F_{H_u}H_u \Big] - \Box(\hat{H}_uH_u) \Big[LL + 2F_L\hat{L} \Big] \\
+ 4(p_L + p_{\ell})^2 L\hat{H}_u\hat{H}_u, \] (31)
with \(\int d^4 \theta \hat{L}\hat{L}\hat{H}_u\hat{H}_u = 0 \). Hence, there is no pure-SUSY\textsubscript{EWSB} contribution to neutrino masses at LO. To arrive at this same conclusion by a different route, consider the following. First, we note that only the first supergraph has a non-vanishing 1PI part:
\[\int d^4 \theta \hat{\Delta}^\dagger \hat{H}_u\hat{H}_u = 2\hat{\Delta}^\dagger \left(p_{\hat{R}_u} + p_{\hat{H}_u}\right) \beta_\alpha \hat{H}_u^\dagger \hat{H}_u + 2F_\Delta^3 \left(\hat{H}_u\hat{H}_u + 2F_{H_u}H_u \right) - \Delta^\dagger \Box(\hat{H}_uH_u). \] (32)

Then, by adding these operators to the classical Lagrangian, one concludes that \(\overline{\Delta} \) acquires a VEV, since \(\langle F_{H_u} \rangle = \mu \langle H_d^0 \rangle \neq 0 \) gives a (tadpole) contribution to \(F_\Delta^3 \supset M_{\Delta \Delta}. \) However, such a VEV has no effect upon \(m_\nu \) in the absence of \(\Delta - \Delta \) mixing. This VEV is no
longer inconsequential when SUSY\textsubscript{EWS} contributions are considered because the B-term $B_{\Delta} \Delta \bar{\Delta}$ provides the mixing, so that $\langle \Delta \rangle \rightarrow \langle \bar{\Delta} \rangle$.

Due to its instructive value, we will now analyse in terms of component fields the reason behind the absence of pure-SUSY\textsubscript{EWSB} contributions to $LLHH$. In order for the left-hand side supergraph of figure 5 to contribute to $LLHH$, the three-scalar coupling $\Delta\bar{\Delta}H_uH_u$ would have to be generated. At LO there are in fact three topologies contributing to this coupling as we show in figure 6. However, in the $p_{\text{ext}} \rightarrow 0$ limit, the spinor loop topology cancels exactly the scalar loop topologies. This result can also be understood to be a consequence of the fact that one cannot draw diagrams for $\Delta\bar{\Delta}H_uH_u$ that are both holomorphy compliant and have at least an external $F^\dagger - F$ pair. In the case of the second supergraph, one can see that it would require the generation of the coupling $F_{\bar{X}}H_uH_u$, whereas the holomorphy of the superpotential makes it impossible to to draw any component field diagram for such a coupling.

![Figure 6](image-url)

Figure 6. Leading order diagrams for $\Delta\bar{\Delta}H_uH_u$ in the model example.

The pure-SUSY\textsubscript{EWSB} subset of OP\textsubscript{v} can be most easily identified by reminding the analysis carried out in section 2.3. One may then see that it comprises the superoperators

$$D^2(\bar{L}\bar{L})\hat{H}_u\hat{H}_u\hat{V}_{U(1)}^{(1)}, \quad D^2(\bar{L}\bar{L})\hat{H}_u\hat{H}_u\hat{V}_{SU(2)_L}, \quad D^2(\bar{L}\bar{L})\hat{H}_u\hat{H}_u\hat{H}_u, \quad \hat{L}\hat{L}\hat{H}_u\hat{H}_u\hat{H}_u,$$

which generate the dimension-7 operators

$$-\frac{1}{64\pi^2M_X^2} \left[a \left(\frac{g^2}{2c_w^2} (LH_u) (LH_u) H_u^\dagger H_u + \frac{g^2c_w}{2c_w^2} + \frac{|\mu|^2(|\lambda_1|^2 + |\lambda_2|^2)}{6M_X^2} \right) (LH_u) (LH_u) H_d^\dagger H_d + \frac{g^2 - \frac{|\mu|^2(|\lambda_1|^2 + |\lambda_2|^2)}{3M_X^2}}{6M_X^2} \right],$$

where we have taken the simplifying limit $M_{X,1,2,3} = M_X$.

Now we turn to the LO subset of OP\textsubscript{v}, which is made of dimension-5 operators that come from SUSY\textsubscript{EWS}. In figure 7 we illustrate some of the soft-SUSY insertions behind such operators. Complete expressions for them up to order 3 in m_{soft} are given in appendix F of [1]. In here
we take the simplifying limit \(M_{X_{1,2,3}} = M_X \), \((m_{\text{soft}})^2_{X_{1,2,3}} = (m_{\text{soft}})^2_X = m_{\text{soft}}^2 \), \(A_{1,2} = A \) and \(B_{X_{1,2,3}} = B_X \), which gives

\[
\frac{1}{64\pi^2 M_X^2} \left(a \left[\frac{2m_{\text{soft}}}{M_X} + \frac{2A}{M_X} \left(\frac{A_X - B_\Delta}{M_\Delta} \right) - \frac{A_X B_X}{M_X^2} \right] + b M_\Delta \frac{B_X}{M_X^2} \right) LLH_u H_u
\]

\[
- \frac{a}{32\pi^2 M_X^2} \left(\frac{\mu^*}{M_X} \right) \left[A_X \left(1 - \frac{m_{\text{soft}}^2}{M_X^2} \right) - \frac{(m_{\text{soft}})^2_\Delta}{M_\Delta^2} - \frac{B_\Delta}{M_\Delta} \right] LLH_u H_d^\dagger
\]

\[
- \frac{a}{192\pi^2 M_X^2} \left(\frac{\mu^*}{M_X} \right)^2 \frac{A_X B_X}{M_X^2} LLH_u^\dagger H_d^\dagger .
\]

(35)

Let us briefly discuss the origin of some of the terms. First, the contributions of \(m_{\text{soft}}^2 \) (i.e. non-holomorphic mass) terms. These induce mass differences between scalar and spinor components of chiral scalar superfields while preserving the chirality flow of the line into which they are inserted. Therefore, they invalidate the conclusions related to figure 6 by introducing a mismatch in the cancellation between spinor and scalar loops, thus leading to a non-vanishing contribution to \(m_\nu \). Unlike \(m_{\text{soft}}^2 \), \(B \)-term insertions reverse the chirality flow, thus enabling the construction of diagrams for \(\bar{F}_{\Sigma} H_u H_u \). This is indeed the reason behind the \(B_X \)-term contribution proportional to \(b \). Finally, the \(B_\Delta \) contributions. As commented above, EWSB induces a VEV for \(\Sigma \) which, through \(B_\Delta \), induces a VEV for \(\Delta \), thus leading to \(LLH_u H_d^\dagger \subset LL(\Delta) \subset \int d^2 \theta \mathcal{W} \). To obtain the \(B_\Delta \) coefficient of \(LLH_u H_u \) one must take into consideration the shift in \(\langle \Sigma \rangle \) induced by \(A_1 + A_2 \).

We summarise in table 2 the contributions to \(m_\nu \) that we have been discussing, and where we take the simplifying limit of \(\lambda_X = \lambda_\Sigma = \lambda_{1,2} = \lambda \), \(M_X = M_\Delta = M \) and a common scale \(m \) for all the soft-SUSY effects involving \(\Delta s \) or \(\bar{X}s \).

Type	Intrinsic factor		
One-loop dim-5	\(\frac{\mu m}{M^2} c_\beta - \frac{v}{2} \left(\frac{m}{M} \right)^2 s_\beta \)		
\(\hat{V} \)	\(- \frac{g^2}{4\pi^2} \left(\frac{v}{M} \right)^2 \left(\frac{c_\beta^2 - s_\beta^2}{2} \right) s_\beta \)		
One-loop dim-7	\[\hat{H}^\dagger \hat{H} \text{ Class A} \] \[\frac{	\lambda	^2}{4} \left(\frac{v}{M} \right)^2 c_\beta^2 s_\beta \]
\[\hat{H}^\dagger \hat{H} \text{ Class B} \]	\[- \frac{	\lambda	^2}{6} \left(\frac{v}{M} \right)^2 \frac{\mu m c_\beta s_\beta^2}{M} \]

Table 2. Contributions to \(m_\nu \) (see text) up to an overall factor of \(\frac{\lambda^2}{16\pi^2} \frac{v^2 s_\beta}{M} \).
5. Conclusions
In this work we studied the connection between m_ν and SUSY that arises when neutrino masses are radiatively generated. We started by distinguishing the different SUSY contributions w.r.t. their involvement in EWSB. This allowed us to identify a subset of superoperators that could only contribute to m_ν through SUSY effects unrelated to EWSB and which involved the mediators of the radiative seesaw. An interesting aspects of these effects is that they can be quite small without being in conflict with experimental data. One may then conjecture that they are (at least partially) responsible for the smallness of neutrino masses, thus allowing for a seesaw scale within foreseeable experimental reach.

We analysed the simplest (one-loop) topologies that may underlie models with this interesting feature and found that they all generated $LLHH$ operators with a leading dimensionful dependence that ranged from $\mu m_{\text{soft}}/M^3$ or m_{soft}^2/M^3 to $\mu m_{\text{soft}}^2/M^4$ or m_{soft}^3/M^4.

As an application of this more abstract analysis, we constructed a model example based on a one-loop type-II seesaw, which also served as a proof of existence of such interesting models. A phenomenological analysis of this model will be presented elsewhere.

Acknowledgments
This work has been partially funded by Fundação para a Ciência e a Tecnologia (FCT) through the fellowship SFRH/BD/64666/2009. We also acknowledge the partial support from the projects EXPL/FIS-NUC/0460/2013, PEST-OE/FIS/UI0777/2013 and CERN/FP/123580/2011 financed by FCT.

References
[1] Figueiredo A J R 2015 *Eur.Phys.J.* C75 99 (Preprint 1406.0557)
[2] Frere J M, Libanov M V and Troitsky S V 2000 *Phys.Lett.* B479 343–346 (Preprint hep-ph/9912204)
[3] Arkani-Hamed N, Hall L J, Murayama H, Tucker-Smith D and Weiner N 2001 *Phys.Rev.* D64 115011 (Preprint hep-ph/0006312)
[4] Demir D A, Everett L L and Langacker P 2008 *Phys.Rev.Lett.* 100 091804 (Preprint 0712.1341)
[5] Hall L J and Suzuki M 1984 *Nucl.Phys.* B231 419
[6] Gates S J, Grisaru M T, Rocek M and Siegel W 1983 *Front.Phys.* 58 1–548 (Preprint hep-th/0108200)
[7] Girardello L and Grisaru M T 1982 *Nucl.Phys.* B194 65