Guaianolide Sesquiterpenes With Significant Antiproliferative Activities From the Leaves of *Artemisia argyi*

Wenzhuo Ming¹, Yi Zhang²†, Yiwei Sun¹, Guangming Bi¹, Jing Su², Zhutao Shao¹ and Dali Meng¹*¹

¹School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, China, ²Chongqing Institute of Food and Drug Control, Chongqing, China

Four new guaiane-type sesquiterpenes, argyin H–K (1–4), and two known analogues (5 and 6) were isolated from the leaves of *Artemisia argyi* Lévl et Vant. The new compounds were characterized by the basic analysis of the spectroscopic data obtained (¹H NMR, ¹³C NMR, HMBC, and NOESY experiments), and their absolute configurations were determined by empirical approaches, combined with the exciton chirality method and electronic circular dichroism calculations. To further understand the antitumor effects of *A. argyi*, the antiproliferative activities of these compounds against A549, MCF-7, and HepG2 cell lines were tested *in vitro* using CCK-8 assays. The results showed that these compounds had significant antiproliferative effects on MCF-7, with IC₅₀ values of 15.13–18.63 μM, which were superior to that of oxaliplatin (i.e., IC₅₀ 22.20 μM).

Keywords: Artemisia argyi, guaiane-type sesquiterpenoids, antiproliferative, configuration determination, antitumor

INTRODUCTION

Artemisia argyi Levl. et Vant, an important species in the genus of Compositae, is distributed in China, Japan, Korea, Far East of Russia, etc. (Doh et al., 2016; Ozek et al., 2014). *A. argyi* often appears in people’s life in various forms. As a common medicinal resource for curing eczema, diarrhea, hemostasis, and irregular menstruation in Chinese history, it has advantages of low price, easy access, wide application, and low toxicity (Li et al., 2018; Li et al., 2018; Wang et al., 2013). Pharmacological studies have shown that *A. argyi* is rich in terpenoids, flavonoids, and tannins (Zan et al., 2012; Tan and Jia, 1992; Dahae et al., 2018). *In vitro* experiments indicated that terpenoids exhibited various promising biological activities, including antibacterial, antivirus, and antitumor activities (Merfort, 2011; Zhang et al., 2005). In an effort to explore the structural diversity and biological activities of sesquiterpenes in *A. argyi*, a comprehensive phytochemical investigation was carried out, and all the compounds isolated were evaluated for their antiproliferative activities in A549, MCF-7, and HepG2 cell lines.

RESULTS AND DISCUSSION

Chemistry

Compound 1 gave a molecular formula of C₂₀H₂₅O₇ (HR-ESI-MS m/z 403.1728 [M + Na]⁺, calc for 403.1733), which suggested seven unsaturation degrees. The ¹H NMR signals at δ 6.04 (1H, d, J = 3.3 Hz) and 5.68 (1H, d, J = 3.3 Hz) indicated an exocyclic methylene group. In the ¹³C NMR
spectrum, apart from five characteristic carbon signals for a 3-methylbutyryl group, 15 carbon resonances were observed and indicated a sesquiterpene structure.

In the HMBC spectrum (Figure 1A), the cross-peak among H-6/C-8; H-5/C-4, C-7, and C-15; H2-2/C-3, C-4, and C-5; and H2-14/C-1, C-9, and C-10 established a guaiane-type sesquiterpene skeleton with a Δ10,14 double bond. The hydroxyl substitutions at C1 (δ 5.13, 1H, s), C3 (δ 4.80, 1H, d, J = 4.6 Hz), and C4 (δ 4.31, 1H, s) were confirmed by the correlations of 1-OH/C-2, C-5, and C-10; 3-OH/C-2, 4-OH/C-3, and C-5, respectively. The position of 3-methylbutyryl was secured by the key HMBC correlation of H-8 (δH 4.85)/C-1′ (δC 172.1). Thus, the planar framework of one was established (Figure 2; Table 1).

The trans disposition of H-5 and H-6 was deduced from the large vicinal coupling constants (J5,6 = 11.6 Hz) (Wang et al., 2014). The strong NOE correlation between H-6/H3-15 and H-8, H3-15/H-3 revealed their cis relationship; H-5/H-7, C1-OH, and

![Figure 1](https://example.com/figure1.png)

Figure 1 | Key HMBC (A) and NOESY (B) correlations of compound 1.

Position	1	2	3	4
δC	δH (J in Hz)			
1	76.6	76.8	146.5	78.0
2	43.7	43.6	128.8	47.4
3	76.5	76.7	82.5	78.8
4	80.7	80.8	84.7	79.6
5	63.5	63.6	59.4	61.0
6	77.7	77.7	77.9	75.9
7	47.7	47.6	47.2	41.8
8	74.5	74.4	72.5	73.0
9	36.9	36.6	44.5	122.0
10	146.0	146.0	69.7	144.6
11	137.4	137.6	139.4	139.0
12	169.8	169.7	169.9	169.8
13	122.8	122.5	120.4	121.1
14	116.2	116.1	31.0	25.3
15	16.5	16.6	18.2	23.6
1′	172.1	175.4	167.2	167.0
2′	43.0	41.1	127.8	127.5
3′	25.7	26.3	136.6	139.0
4′	22.6	12.0	16.0	16.1
5′	22.5	17.3	20.8	20.7
1-OH	5.13	5.14	5.68	2.45
3-OH	4.80	4.81	4.81	5.26
4-OH	4.31	4.33	4.33	4.51

![Table 1](https://example.com/table1.png)

Table 1 | 1H NMR (DMSO-d6, 600 MHz) and 13C NMR (DMSO-d6, 150 MHz) spectroscopic data for compounds one to four.
C₄-OH indicated that they have co-facial orientations and assigned as α-oriented (Figure 1B). The overall pattern of the experimentally CD of one well matched the calculated ECD curve, which elucidated the absolute configuration of one was 1S, 3R, 4S, 5R, 6S, 7R, 8S, and named argyin H (Figure 3A).

The exciton chirality method in CD spectra is a very useful method to determine the absolute configuration of organic molecules. It can be used to determine not only the spatial relationship between two identical chromophores but also their absolute configuration according to the interaction of two different conjugated systems (Ying et al., 1988; Luo et al., 2011). Due to the existences of two conjugate systems in the isolated compounds, the absolute configurations could be further studied by the exciton chirality method. The ECD spectrum of one showed negative exciton chirality around the UV maximum of 234 nm; the anticlockwise array of two coupling chromophores in space (Figure 4A) and absolute configurations of two bridgehead stereogenic centers (6S, 8S) were thus determined. This result was confirmed by the unambiguous match of its experimental and calculated ECD curves.

Compound 2 gave a molecular formula of C20H28O7 (HR-ESI-MS m/z 403.1730 [M + Na]⁺, calcld for 403.1733), which also suggested seven unsaturation degrees. Apart from the resonances attributed to 2-methylbutyryloxy (δC 175.4, 41.1, 26.3, 12.0, and 17.3) instead of 3-methylbutyryloxy group, ¹H NMR, ¹³C NMR, and HMBC spectra were almost similar to those of 1, and the planar framework of two was also established by 1D NMR along with HMBC data (Figures 2, 5; Table 1).

The large vicinal coupling constants of H-5/6 (J₅,₆ = 11.5 Hz) indicated they were trans disposition (Wang et al., 2014). The strong NOE correlation between H-7/H-5 and H-9α, H-5/4-OH, and 1-OH revealed their cis α-orientation. In addition, the correlations of H₃-15/H-3, H-6, and H-8/H-9β indicated the β-oriented of H₃-15, H-3, and H-8 (Figure 5B). The experimental ECD curve of two resembled that of 1 and led to the assignment of the absolute configuration 1S, 3R, 4S, 5R, 6S, 7R, and 8S (Figure 3A). The negative exciton chirality around the UV maximum of 236 nm (Figure 4B) also illustrated the absolute configurations of 6S, 8S, and two was finally named argyin I.

Compound 3 gave a molecular formula of C20H26O7 with an HR-ESI-MS ion at m/z 401.1553 [M + Na]⁺ (calcld for 401.1576), which suggested eight unsaturation degrees. The ¹H NMR signals at δ 5.98 (1H, d, J = 3.4 Hz) and 5.40 (1H, d, J = 3.4 Hz) indicated an exocyclic methylene group. The 1D NMR and HMBC data were similar to 3α,4α,10β-trihydroxy-...
8α-acetoxyguai-1,11 (13)-dien-6α,12-olide (Ahmed et al., 2004). The difference was the angeloyloxy substitution at C-8 instead of acetoxyl in the known compound (Figure 2; Table 1).

In the HMBC spectrum (Figure 6A), the cross-peak between H-5/C-1, C-2; H$_3$-14/C-1 determined the location of 1,2-double bond. The HMBC correlation of H-8 (δ$_H$ 5.13)/C-1$^\prime$ (δ$_C$ 167.2) confirmed the substituent group at C-8. $J_{5,6} = 11.2$ Hz and $J_{6,7} = 9.6$ Hz indicated that H-5, H-6, and H-7 were reciprocal trans oriented (Ahmed et al., 2004). The NOESY correlations (Figure 6B) between H-3/H-5 suggested that they were α-oriented. Additionally, H-6/H$_3$-14 and H$_3$-15, H$_3$-14/H-8 correlations and the lack of NOE cross-peak between H-5/H$_3$-15 indicated that H-6, H-8, H$_3$-14, and H$_3$-15 were on the same side. The negative exciton chirality of its ECD spectrum (Figure 4C) combined with the experimental and calculated ECD curves (Figure 3B) led to the assignment of the absolute configuration 3,4,5,6S,7R,8S,10R of 3, which was named as argyin J.

Compound 4 had a molecular formula of C$_{20}$H$_{26}$O$_7$ (HR-ESI-MS m/z 401.1571 [M + Na]$^+$, calcd for 401.1576), which suggested eight unsaturation degrees. 1H NMR signals at δ
6.04 and 5.48 (each 1H, d, J = 3.0 Hz) indicated the presence of an exocyclic methylene group. In 13C NMR, apart from five characteristic carbon signals (angeloyloxy group) at C8, other 15 carbon resonances were found to be similar to those of the previously published compound (Reinhardt et al., 2019), argyinolide N (5) and argyinolide M (6), indicating their similar structures (Figure 2; Table 1).

The HMBC cross-peak among H-6/C-4, C-5, and C-8; H3-15/C-3 and C-5; and H3-14/C-1, C-9, and C-10 confirmed the above planar structure deduction. H-8 (δH 5.31)/C-1′ (δC 167.0) revealed the presence of the angeloyloxy group at C-8 (Figure 7A).

The relative configuration of H-5 and H-6 was assigned to be α-, β-oriented based on their coupling constants of $J_{5,6} \approx 9.6$ Hz (Reinhardt et al., 2019). H-7 and OH-1 were α-oriented owing to the NOESY correlations of OH-1/H-5 and H-5/H-7, while H-6/H-8 correlation indicated the α-orientation for the 8-angeloyloxy group. Besides, H2-14/H-2β and H-3, H-3/H2-15 suggested H-3 and H3-15 were β-oriented (Figure 7B). In addition, the consistency of the experimental CD curve of 4 at 196 nm (+), 209 nm (−), 218 (+), and 232 nm (−) with those of argyinolide M and argyinolide N were reported previously (Reinhardt et al., 2019). Around the UV maximum of 232 nm, the ECD spectrum of 4 showed negative exciton chirality, the two carbon atoms (6, 8) were anticlockwise array, and the absolute configurations of these two carbon atoms (6S, 8S) were thus determined (Figure 7D). This result was confirmed by the match of its experimental and calculated ECD curves. Thus, 4 was established as (1S,3R,4S,5R,6S,7R,8S)-8-angeloyloxy-1,3,4-trihydroxy-guai-9 (10)-en-6,12-olide and named as argyin K.

Cytotoxic Activity

In order to test the cytotoxic activities of compounds 1–6 isolated from A. argyi, CCK-8 assay was used to evaluate the inhibitory effects against HepG2, A549, and MCF-7 cell lines (Table 2). These six guaianolide sesquiterpenes showed
strong inhibitory effect in a dose-dependent manner against three cell lines, and the most sensitive cell line is MCF-7, in which the IC_{50} of 1–6 (15.13–21.62 μM) was lower than that of the positive control, oxaliplatin (22.20 μM). It can be seen that the angeloyloxy substitution could strengthen the inhibitory effects compared with others.

CONCLUSION

In our continuing investigation on A. argyi, four undescribed guaiane-type sesquiterpenes were isolated from the Artemisia argyi Lévl. et Van. The antiproliferative activities of these compounds against A549, MCF-7, and HepG2 cell lines were tested in vitro using CCK-8 assays. Notably, these compounds could induce more cell death than positive control (oxaliplatin). Among them, compounds 3 and 4 with angeloyloxy substitution displayed the most potent antiproliferative effects, which could offer a promising lead structure with anticancer activity.

EXPERIMENTAL

General

HPLC separation was performed on SHIMADZU LC-20AR pump and a SHIMADZU SPD-20A detector (Tokyo, Japan), using the CO	extsc{S}MOSIL C_{18} preparative column (250 × 20 mm) and YMC-pack Prep-ODS column (250 × 20 mm). HR-ESI-MS spectra (Agilent 6200 series Q-TOF spectrometer, United States) were in the m/z mode. Column chromatography: silica gel (SiO_{2}, 100—230 meshes), Sephadex LH-20 (Qingdao, China), and reversed-phase ODS (Kyoto, Japan). The 1D- and 2D-NMR spectra (Agilent 6200 series Q-TOF spectrometer, United States) were in the m/z mode. Column chromatography: silica gel (SiO_{2}, 100—230 meshes), Sephadex LH-20 (Qingdao, China), and reversed-phase ODS (Kyoto, Japan). The 1D- and 2D-NMR spectra (Agilent 6200 series Q-TOF spectrometer, United States) were in the m/z mode. Column chromatography: silica gel (SiO_{2}, 100—230 meshes), Sephadex LH-20 (Qingdao, China), and reversed-phase ODS (Kyoto, Japan). The 1D- and 2D-NMR spectra (Agilent 6200 series Q-TOF spectrometer, United States) were in the m/z mode.
the statistical analysis. WM and YS wrote the first draft of the manuscript. WM, DM, YZ, and GB wrote sections of the manuscript. All authors contributed to manuscript revision, read, and approved the submitted version.

FUNDING
This work was supported by the National Natural Science Foundation of China (Grant No. 81573694), and the National Drug Standard Improvement Project in 2021 (General Technology) (Grant No. 2021Z01). The project was also sponsored by “Liaoning BaiQianWan Talents Program in 2018.”

REFERENCES
Ahmed, A. A., El-Moghazy, S. A., El-Shanawany, M. A., Abdel-Ghani, H. F., Karchesy, J., Sturtz, G., et al. (2004). Polyl Monoterpenes and Sesquiterpene Lactones from the Pacific Northwest Plant Artemisia sulfordii. J. Nat. Prod. 67, 1705–1710. doi:10.1021/np049954j

Doh, E. J., Paek, S. H., Lee, G., Lee, M. Y., and Oh, S. E., (2016). Application of Partial Internal Transcribed Spacer Sequences for the Discrimination of Artemisia Capillaris from Other Artemisia Species. Evid. Based Complement. Alternat Med. 2016, 7043436–7043602. doi:10.1155/2016/7043436

Du, K., Yang, X., Li, J., and Meng, D., (2020). Antiproliferative Diterpenoids and Acetophenone Glycoside from the Roots of euphorbia Fischeriana. Phytochemistry. 177, 112437. doi:10.1016/j.phytochem.2020.112437

Lee, D., Kim, C. E., Park, S. Y., Kim, K. O., Hiep, N. T., Lee, D., et al. (2018). Protective Effect of Artemisia Argyi and its Flavonoid Constituents against Contrast-Induced Cytotoxicity by Ioxidanol in LLC-PK1 Cells. Int. J. Mol. Sci. 19, 1387–1405. doi:10.3390/ijms19051387

Li, S., Zhou, S., Yang, W., and Meng, D., (2018). Gastro-protective Effect of Edible Plant Artemisia Argyi in Ethanol-Induced Rats via Normalizing Inflammatory Responses and Oxidative Stress. J. Ethnopharmacology 214, 207–217. doi:10.1016/j.jep.2017.12.023

Luo, J., Wang, J.-S., Wang, X.-B., Luo, J.-G., and Kong, L.-Y. (2011). Phragmalin-Type Limonoid Orthoesters from Chukrasia Tabularis Var. Velutina. Chem. Pharm. Bull. 59, 225–230. doi:10.1248/cpb.59.225

Merfort, I., (2011). Perspectives on Sesquiterpene Lactones in Inflammation and Cancer. Cdt 12, 1560–1573. doi:10.2174/138945011798109437

Ozek, G., Suleimen, Y., Tabanca, N., Doudkin, R., Gorovoy, P. G., and Goger, F., (2014). Chemical Diversity and Biological Activity of the Volatiles of Five Artemisia Species from Far East Russia. Res. Nat. Prod. 3, 242–261.

Reinhardt, J. K., Klemd, A. M., Danton, O., De Mier, M., Smielik, M., Huber, R., et al. (2019). Sesquiterpene Lactones from Artemisia Argyi: Absolute Configuration and Immunosuppressant Activity. J. Nat. Prod. 82, 1424–1433. doi:10.1021/acs.jnatprod.8b00791

SUPPLEMENTARY MATERIAL
The Supplementary Material for this article can be found online at: https://www.frontiersin.org/articles/10.3389/fchem.2021.698700/full#supplementary-material

Sun, Y. W., Ju, Y., Liu, C. H., Du, K. C., and Meng, D. L., (2019). Polyhydroxyl Guaianolide Terpenoids as Potential NF-κB Inhibitors Induced Cytotoxicity in Human Gastric Adenocarcinoma Cell Line. Bioorg. Chem. 95, 103551. doi:10.1016/j.bioorg.2019.103551

Tan, R., and Jia, Z., (1992). Eudesmanolides and Other Constituents from Artemisia Argyi. Planta Med. 58, 370–372. doi:10.1055/s-2006-961488

Wang, S., Li, J., Sun, J., Zeng, K.-w., Cui, J.-r., Jiang, Y., et al. (2013). NO Inhibitory Guaianolide-Derived Terpenoids from Artemisia Argyi. Fitoterapia. 85, 169–175. doi:10.1016/j.jfito.2012.12.005

Wang, S., Sun, J., Zeng, K., Chen, X., Zhou, W., Zhang, C., et al. (2014). Sesquiterpenes from Artemisia Argyi: Absolute Configurations and Biological Activities. Eur. J. Org. Chem. 2014, 973–983. doi:10.1002/ejoc.201301445

Ying, B. P., Xu, R. S., Mi, J. F., and Han, J., (1988). The Absolute Configuration of Pseudolaric Acid B. J. Chem. 1, 87–88.

Zan, K., Chai, X.-Y., Chen, X.-Q., Wu, Q., Fu, Q., Zhou, S.-X., et al. (2012). Arternomadimers A-F: Six New Dimeric Guaianolides from Artemisia Anoma. Tetrahedron. 68, 5060–5065. doi:10.1016/j.tet.2012.04.046

Zhang, S., Won, Y.-K., Ong, C.-N., and Shen, H.-M., (2005). Anti-Cancer Potential of Sesquiterpene Lactones: Bioactivity and Molecular Mechanisms. Cmcaca 5, 239–249. doi:10.2174/1560011053765976

Conflict of Interest: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2021 Ming, Zhang, Sun, Bi, Su, Shao and Meng. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.