Optical Observations of GRB 050401 Afterglow: A case for Double Jet Model

Atish Kamble1,2,*, Kuntal Misra3,4, D. Bhattacharya1,4, Ram Sagar3

1 Raman Research Institute, Bangalore - 560 080
2 Astronomical Institute “Anton Pannekoek”, Kruislaan 403, 1098 SJ Amsterdam, The Netherlands
3 Aryabhatta Research Institute of Observational Sciences, Manora Peak, Nainital - 263 129
4 Inter University Centre for Astronomy and Astrophysics, Post Bag 4, Ganeshkhind, Pune - 411 007

Received —; accepted —

ABSTRACT

The afterglow of GRB 050401 presents several novel and interesting features:

(i) An initially faster decay in optical band than in X-rays.
(ii) A break in the X-ray light curve after \(\sim 0.06 \) day with an unusual slope after the break.
(iii) The X-ray afterglow does not show any spectral evolution across the break while the R band light curve does not show any break.

We have modeled the observed multi-band evolution of the afterglow of GRB 050401 as originating in a two component jet, interpreting the break in X-ray light curve as due to lateral expansion of a narrow collimated outflow which dominates the X-ray emission. The optical emission is attributed to a wider jet component. Our model reproduces all the observed features of multi-band afterglow of GRB 050401.

We present optical observations of GRB 050401 using the 104-cm Sampurnanand Telescope at ARIES, Nainital. Results of the analysis of multi-band data are presented and compared with GRB 030329, the first reported case of double jet.

Key words: gamma-rays: bursts - afterglow - jets - grb 050401

1 INTRODUCTION

The optical and X-ray light curves of Gamma Ray Burst (GRB) afterglows, in the simplest cases, show a power law decay with an index \(\alpha \sim 1.0 \). Deceleration of the relativistic shock wave generated by the explosion which results in GRB can explain the power law decay of the GRB afterglows. The most common deviation from the power law decay behaviour of the afterglow light curves is an achromatic break seen in the light curve. This break has been seen in a significant number of GRB afterglows and has been successfully explained as being due to the sideways expansion of the collimated ejecta from the explosion. In the post \textit{Swift} era, many more deviations from this simple behaviour of the afterglow light curve have been detected. \textit{Swift} with its capabilities of quick slewing towards the source has been able to observe GRB afterglows as early as a few tens of seconds after the burst. In this early part of the evolution the GRB afterglows commonly exhibit a steep decay with \(\alpha \sim 3 \) to 5 with the usual definition \(F_\nu(t) \propto t^{-\alpha} \nu^{-\beta} \) where \(F_\nu(t) \) is the observed afterglow flux at frequency \(\nu \) and time \(t \). The phase of steep decay lasts for about a few hundred seconds after which a slower decay, with \(\alpha \sim 0.5 \), of the afterglow starts. About a few thousands of seconds after the burst the afterglow starts decaying steeply again with \(\alpha > 1.0 \).

Many GRB afterglows observed by \textit{Swift} show puzzling features in the light curves like (1.) early steep decay \([\alpha \sim 3 \text{ to } 5] \) and (2.) Chromatic breaks (breaks seen in some wavebands but not others) with \(\Delta \alpha \sim 1.0 \) which are difficult to explain using the standard fireball model \cite{rees92, meszaros93}. It has been shown by \cite{o'brien06, willingale06} that the puzzling features of the X-ray afterglow light curves can be fitted using one or two components with exactly the same empirical functional form, viz. an exponential fall followed by a powerlaw decay of flux with time, although it has not yet resulted into any physical understanding of the behaviour of the X-ray afterglow. While there is no clear understanding of the early steep decays of GRB afterglows, a few plausible explanations have been put forward: see...
e.g. [Zhang et al. 2006; Pe’er et al. 2006]. The flat decay of X-ray afterglow light curves which follows the steep decay have been, in some cases, explained as being due to energy injection from the central engine, probably a magnetar (Zhang and Meszaros 2001, 2002). From the study of chromatic breaks seen in six well sampled afterglow light curves [Panaitescu et al. 2006] concludes that if both, the optical and the X-ray afterglows, were to arise from the same outflow then the chromaticity of light curve breaks can rule out energy injection or the structure of the jet as the possible reasons of it.

One such GRB afterglow with puzzling features in optical and X-ray light curves is GRB 050401. GRB 050401 triggered Swift-BAT at 14:20:15 UT on 2005 April 01 (Barbier et al. 2005). The X-ray afterglow was detected by Swift-XRT (Angelini et al. 2005) about 130 seconds after the trigger and the optical afterglow candidate was confirmed by ground based observations by Price and McNaul (2005). The burst duration T_{90} is estimated to be ~ 33 seconds (Sakamoto et al. 2005). Using the measured spectral redshift of the afterglow ($z = 2.9$) (Fynbo et al. 2005) and the fluence (Sakamoto et al. 2005, De Pasquale et al. 2005; Golenetskii et al. 2005) the isotropic equivalent energy released during the explosion turns out to be 1.4 x 10^{54} for a flat universe with $\Omega_m = 0.3, \Omega_{\Lambda} = 0.7$ and $H_0 = 70$ km s$^{-1}$ Mpc$^{-1}$.

Multiband afterglow of GRB 050401 also presents some puzzling features which can be summarized as follows:

(i) A break in the X-ray light curve after ~ 0.06 day with an unusual slope after the break (De Pasquale et al. 2006; Watson et al. 2005).

(ii) The X-ray afterglow does not show any spectral evolution across the break while the R band light curve does not show any break (De Pasquale et al. 2006; Watson et al. 2005).

(iii) A large extinction inferred from X-ray afterglow which is not consistent with the observed optical afterglow (Watson et al. 2005).

The optical observations are presented in § 2. We have done some preliminary analysis of the light curves which is discussed in § 3. We have tried to explain the multi-band behaviour of the GRB afterglow using a double jet model which is described in § 4 along with the previous attempts by others using a different model. In the Discussion section (§ 5) molecular clouds as a plausible explanation for the large extinction is presented (§ 5.1). The only other GRB afterglow which has been explained using a similar double jet model is the GRB 030329 (Berger et al. 2003; Resmi et al. 2005). We compare the physical features of GRB 030329 and GRB 050401 in § 5.2. Our conclusions are summarized in § 6.

2 OPTICAL OBSERVATIONS AND DATA REDUCTION

Optical observations of the afterglow of GRB 050401 were carried out in the broad and Johnson V and Cousins RI filters using the 104-cm Sampurnanand Telescope of ARIES, Nainital on 01 April 2005. The gain and read out noise of the CCD camera are 10 e$^-$/ADU and 5.3 e$^-$ respectively. The data have been binned in 2x2 pixel2 to improve the signal-to-noise ratio. The bias subtracted, flat fielded and cosmic ray removed images were processed and analysed using MIDAS1, IRAF2 and DAOPHOT (Stetson 1987) softwares.

The Landolt (1992) standard region SA 107 and the OA field in BVRI filters was observed on 16 May 2005 for photometric calibration during good photometric sky conditions. The values of atmospheric extinction on the night of 16/17 May 2005 determined from the observations of SA 107 bright stars are 0.26, 0.18, 0.13 and 0.10 magnitude in B, V, R and I filters respectively. The 7 standard stars in the SA 107 region cover a range of 0.339 < $(V - R) < 0.923$ in color and 12.116 < V < 14.884 in brightness.

Using these transformation coefficients we determine BVRI magnitudes of 18 secondary stars in GRB 050401 field and their average values are listed in Table 1. The (X, Y) CCD pixel coordinates were converted to $\alpha_{2000}, \delta_{2000}$ values using the astrometric positions given by Henden (2005). The 18 secondary stars in the field of GRB 050401 were observed 2 to 4 times in B, V, R and I filters. These stars have internal photometric accuracy better than 0.01 mag. The zero-point differences on comparison between our photometry and that of Henden (2005) are 0.15 ± 0.08, 0.09 ± 0.04, 0.10 ± 0.05 and 0.54 ± 0.29 magnitude in B, V, R and I filters respectively. These differences are based on the comparison of the 6 secondary stars in the GRB 050401 field.

The afterglow magnitudes were differentially calibrated with respect to the secondary stars listed in Table 1. The magnitudes derived in this way are given in Table 2.

3 LIGHT CURVES OF GRB 050401 AFTERGLOW

Along with our own observations we have used observations reported elsewhere to study the light curves of GRB 050401. The X-ray light curve of GRB 050401 was obtained from Watson et al. (2005). The optical observations by Watson et al. (2005) have been calibrated by observing a Landolt field. We do not have a detailed information about this calibration. Hence, to take into account any uncertainties associated with it, we have added an error of 0.2 magnitudes in the optical observations reported by Watson et al. (2005). Another set of optical observations is taken from Rykoff et al. (2005) the calibration of which is roughly equivalent to the R_c band system. We add a small error of magnitude 0.1 to all these observations by ROTSE-III to take into account the calibration uncertainties.

VLA reported a 4σ detection of a source at the position of GRB 050401 (Soderberg 2005) with intensity of 122 μJy at 8.46 GHz about 5.7 days after the burst. Other attempts, including by GMRT in India at 610 MHz (Chandra and Ray 2004) and by ATCA in Australia at 8.5 GHz and 4.8 GHz (Saripalli et al. 2005), to observe the radio afterglow of GRB 050401 could produce only upper limits.

To construct the optical light curve we have corrected

1 MIDAS is distributed by the European Southern Observatories. Visit: www.eso.org/esomidas/
2 IRAF is distributed by the National Optical Astronomy Observatories, USA. Visit: http://iraf.noao.edu/
The X-ray and optical (R band) afterglow of GRB 050401 is very well sampled over a wide period of observation. The available R band observations cover a duration from 36 s to 13 days after the burst while the X-ray observations range from ≈ 130 s to 12 days after the burst.

The X-ray afterglow light curve shows a prominent break near 0.06 day while the optical afterglow does not show any such break in the light curve. We analyse this behaviour in detail below.

1. The X-ray light curve shows a clear break near 0.06 day. The change of slope across the break is significant. Fitting Equation 1 to the data yield the decay slopes

$$\alpha_{X1} = 0.58 \pm 0.02 \text{ for } \Delta t < 0.06 \text{ day;}$$

$$\alpha_{X2} = 1.37 \pm 0.03 \text{ for } \Delta t > 0.06 \text{ day;}$$

The change of slope across the break, $\Delta \alpha_X \sim 0.8$, is therefore quite substantial.

2. The optical afterglow shows a monotonic decay with decay index $\alpha_R = 0.82 \pm 0.02$ over the entire period of observation (up to 13 days). There is no evidence of a break simultaneous with that in the X-ray light curve.

3. According to the standard fireball model of GRB afterglows the X-ray light curve is expected to decay at least as fast as the optical light curve which is indeed true for the majority of GRB afterglows observed so far. In the case of GRB 050401, we find that the X-ray afterglow shows a decay slower than optical light curve till ~ 0.06 day after which it decays at a much faster rate as described above.

Thus, the relatively slow initial decay of optical and X-ray light curves, presence of a break in X-ray light curve and absence of such a break in optical, and initially slower decay of the light curve in X-rays than in optical bands makes the afterglow of GRB 050401 an unusual and interesting one.

4 MODELING OF GRB 050401 AFTERGLOW

The change in slope across the break in the X-ray light curve $\Delta \alpha_X \sim 0.8$ is too large to be explained by the passage of a spectral break. In the standard fireball model of GRB afterglows the passage of the cooling break ν_c through the observing band leads to a steepening of light curve by an amount $\Delta \alpha_X = 0.25$, much smaller than that is observed for GRB 050401 afterglow, along with the change of spectral slope by $\Delta \beta_X = 0.5$. The X-ray spectrum of GRB 050401 does not exhibit any change in the spectral slope across the break. We thus rule out the possibility of ν_c passing through the X-ray band at the time of break. De Pasquale et al. (2006) explains the initial flatter decay and the break in the X-ray light curve based on a model by Zhang and Meszaros (2001, 2002). According to this model, the central engine of GRB remains active for several thousand seconds after the burst, continuously injecting energy into the fireball. If the central engine is injecting energy above a certain critical rate then it can slow down deceleration of the shock wave which results in a shallow decay of the light curve. The break in the light curve occurs when the central engine stops injecting sufficient amount of energy into the fireball. After this epoch the afterglow can be

Table 1. The identification number (ID), (α, δ) for epoch 2000, standard V, $(B-V)$, $(V-R)$ and $(V-I)$ photometric magnitudes of the stars in the GRB 05401 region are given.

ID	α_{2000} (h m s)	δ_{2000} (deg m s)	V (mag)	$B-V$ (mag)	$V-R$ (mag)	$V-I$ (mag)
1	16 31 20.01	02 06 52.9	17.28	0.64	0.35	0.84
2	16 31 23.84	02 07 44.3	16.87	0.77	0.52	0.98
3	16 31 29.22	02 08 13.8	17.66	1.14	0.75	1.40
4	16 31 37.63	02 08 07.3	16.78	0.69	0.46	0.87
5	16 31 40.12	02 10 30.1	16.35	0.58	0.38	0.73
6	16 31 36.96	02 11 36.5	18.23	0.97	0.62	1.12
7	16 31 32.61	02 12 38.7	17.68	0.41	0.34	0.67
8	16 31 24.79	02 13 35.4	19.56	1.37	1.08	2.29
9	16 31 18.94	02 13 12.1	19.21	1.26	0.83	1.60
10	16 31 18.56	02 12 40.8	15.30	0.85	0.51	0.93
11	16 31 22.46	02 11 13.7	15.61	0.69	0.46	0.87
12	16 31 21.38	02 10 43.0	15.51	0.88	0.53	0.99
13	16 31 19.42	02 09 56.3	14.60	0.55	0.36	0.69
14	16 31 15.08	02 09 19.1	14.34	0.61	0.38	0.74
15	16 31 23.42	02 09 13.7	16.39	0.66	0.44	0.83
16	16 31 17.26	02 07 58.9	16.17	0.63	0.41	0.81
17	16 31 15.93	02 07 36.6	18.91	1.16	0.89	1.75
18	16 31 14.79	02 07 14.6	17.54	0.74	0.47	0.93

Table 2. The optical observations of the afterglow of GRB 050401 using the 104-cm Sampurnanand Telescope at ARIES, Nainital. \(\Delta T\) in column 2 refers to the time after the burst in days. The effective exposure time after combining all the images turns out to be 900 s for individual passbands reported here.

Date (UT)	ΔT (days)	Magnitude (mag)	Passband
2005 April	0.2850	22.33 ± 0.347	V
	0.2850	21.43 ± 0.231	R
	0.2724	20.51 ± 0.207	I
described using standard fireball model giving $\alpha = (3/2)\beta$. Being a dynamical effect, the end of energy injection episode would result in an achromatic break in the afterglow light curves. Although this model seem to explain the X-ray light curve reasonably well, absence of a similar break in optical afterglow light curve is sufficient to rule this model out for GRB 050401.

Watson et al. (2005) point out another puzzle: the soft X-ray absorption implies an equivalent optical extinction of $A_v = 9.1^{+1.4}_{-1.5}$ magnitudes in the host galaxy, assuming solar abundance.

However, if the optical and the X-ray emission are part of the same synchrotron spectrum, then A_v is constrained to be ~ 1.45 for no spectral break between optical and X-rays and $A_v < 0.67$ if a cooling break exists in between (an SMC extinction law is assumed). These values are highly discordant with that predicted from X-ray absorption. Watson et al. (2005) suggests that this may indicate a non-universal dust to metals ratio which they estimate to be more than a factor of 10 less than that in the SMC.

Watson et al. (2005) remark that the only alternative to this highly anomalous dust to metal ratio is separate emission regions for the optical and X-rays. We explore this possibility assuming that two distinct jet components give rise to the observed emission in these two (X-ray and optical) wavelength bands. The jet contributing to the X-ray emission is narrow, exhibiting an early break while that contributing to the optical emission is wider. The optical contribution from the narrow jet is strongly diminished due to the presence of high extinction $A_v \sim 9$ along the line of sight, while the wider jet suffers from a smaller degree of average extinction.

4.1 Spectral Parameters of the Afterglow of GRB 050401

The radiation spectrum of a GRB afterglows exhibits a power law spectrum characterised by three break frequencies - the self absorption frequency ν_c, the peak frequency ν_m corresponding to the lower cutoff (γ_m) in the electron energy distribution ($n(\gamma_e) \propto \gamma_e^{-p}$, $\gamma_e > \gamma_m$ where γ_e is the Lorentz factor of the radiating electrons) and the synchrotron cooling frequency ν_c. The flux F_m at ν_m provides the normalisation of the spectrum (Sari et al. 1998).

The photon index (Γ) of the X-ray afterglow is related to its spectral index (β), $\Gamma - 1 = \beta$, which in turn is related to the electron energy distribution index p in any given spectral regime ($\beta = p/2$ if $\nu_c < \nu_X$ and $\beta = (p - 1)/2$ if $\nu_X < \nu_c$). The corresponding temporal decay index α_X would be $3(p - 2)/4$ and $3(p - 1)/4$ respectively before the jet break and p in both spectral regimes after the jet break, according to the standard fireball model for an afterglow expanding in a homogeneous interstellar medium. In the present case, the observed values of α_X are consistent with $p = 1.42$ and a jet break around 0.06 days after the burst. However, we note that the observed value of the spectral photon index $\Gamma \sim 1.85 \pm 0.03$ (Watson et al. 2005) implies a steeper $p \sim 1.7 \pm 0.06$. It should also be noted that from analysis of the same data set of X-ray observations, De Pasquale et al. (2006) infer $\beta = 0.75 \pm 0.15$ for PC mode data after the break at 0.06 days. This β is consistent with $p = 1.42$ that we inferred above.

The optical (R-band) afterglow, on the other hand, exhibits a temporal slope $\alpha_R = 0.82$ which, in the commonly encountered spectral regime of $\nu_m < \nu_R < \nu_c$, implies $p = 2.1$. This is different from that inferred for the X-ray afterglow, and indeed regardless of the choice of spectral regimes it is not possible to produce both α_X and α_R from the same underlying power-law energy distribution of injected electrons. One possibility, therefore, is that the optical and the X-ray afterglows originate in physically distinct outflows. We consider two physically distinct components of the outflow, such as the co-axial jets, one having a dominant contribution in the optical and the other in the X-rays, giving rise to the observed afterglow of GRB 050401.

We then fit the full, multi-band light curves of GRB050401 with those predicted by a double jet model using linear least square method. Results of this fit are displayed in Figure 1 and the best fit values of various spectral parameters are listed in Table 3. We note that the contribution of the narrow jet to the optical afterglow is strongly suppressed due to large extinction. The X-ray afterglow, on the other hand, is modified as a sum of the emission from both the jets, with the narrow jet being the dominant contributor. For the narrow jet we find a best fit value of $p = 1.42$. For the wider jet, which dominates the optical afterglow of GRB 050401, we estimate $p = 2.1$. The extinction that the radiation from the narrow jet encounters is fixed at $A_v = 9.1$ as derived from the soft X-ray absorption (Watson et al. 2005), while that for the wide jet is treated as a fit parameter.

Parameter	Narrow Jet	Wider Jet
ν_m (Hz)	$2.0^{+1.2}_{-0.81} \times 10^{13}$	$1.1^{+1.53}_{-0.83} \times 10^{13}$
ν_c (Hz)	$4.1 \pm 0.9 \times 10^{14}$	$5.25^{+3.0}_{-1.95} \times 10^{15}$
F_{peak} (μJy)	2140^{+210}_{-230}	1750^{+590}_{-950}
t_{jet} (day)	0.06 ± 0.03	$2.1^{+0.2}_{-0.2}$
p	1.42 ± 0.02	$2.1^{+0.2}_{-0.2}$
E(B−V)$_{\text{Host}}$	4.1	0.23$^{+0.03}_{-0.02}$
χ^2_{red}(dof)	1.2 (85)	---

Table 3. Best fit Spectral Parameters for the afterglow of GRB 050401 assuming two component jet model described in §4. Light curves generated using these parameters and their subsequent evolution according to the standard fireball model are plotted in Figure 4. All the parameters are calculated at 0.01 day after the burst. GRB 050401 was at redshift $z = 2.9$.

4.2 Physical Parameters for GRB 050401

Four spectral parameters (ν_a, ν_m, ν_c and F_{peak}) are related to four physical parameters viz. n (number density of the circum-burst medium), E (total energy content of the fireball), energy fraction in relativistic electrons ϵ_e and that in magnetic field ϵ_B. The typical value of self absorption frequency ν_a lies in radio-mm waves and hence is best estimated only if the afterglow is well observed in these bands. Unfortunately, the afterglow of GRB 050401 was detected only once at the radio band (Soderberg 2005) which is not sufficient to determine ν_a accurately. We therefore converted the three remaining spectral parameters into the four physical parameters using $\epsilon_e = \sqrt{n_e}$ as an additional constraint. The choice of this relation is motivated by Medvedev (2003). When $p < 2.0$, as
Figure 1. The observed optical & X-ray light curves (left panel) and radio light curves (right panel) of GRB 050401 afterglow compared with the double jet model fit (solid lines). The steepening of X-ray afterglow light curves at 0.06 day after the burst is explained as a jet break due to the lateral expansion of a narrow jet which has a dominant contribution in X-rays. The surrounding wider jet contributes dominantly in optical. Since, no break in the optical light curves is observed till 13 days after the burst, the wider jet is expected to be greater than 29°. Our best fit model gives the value of electron energy distribution index within the narrow jet to be $p = 1.42$ and that within the wider jet to be $p = 2.1$. The peak in the optical light curves corresponds to the passage of ν_m through the observing band. The radio upper limits are indicated by filled triangles in the right panels. The sole radio detection at 8.5 GHz is indicated by a filled circle. The solid lines in the right panels are the light curves expected from the best fit spectral parameters. The corresponding frequencies are listed in a rectangle at the top right corner of each box.

it is in the present case of narrow jet, a high energy cut-off for the electron energy distribution is required and the expressions for spectral parameters, as given in Wijers and Galama (1999), have to be modified accordingly. The modifications have been provided by Bhattacharya (2001) which we have used for estimating the physical parameters in the present case. We estimate the density of the circumburst medium to be $n \approx 10$ and $\epsilon_e = \sqrt{\epsilon_B} = 0.03$ for both the jets. The physical parameters estimated for both the jets are listed in Table 4. Using the E_{iso} and n, and the jet break time in X-rays, $t_j = 0.06$ days, we find the opening angle of the narrow jet to be quite small, 1.15°. Since there is no jet break seen in the optical light curve till ~13 days, a lower limit on the opening angle of the wider jet is derived to be 29°. The collimation corrected kinetic energies are $E_{corr} > 6.5 \times 10^{50}$ ergs and $E_{narrow} = 1.1 \times 10^{50}$ ergs.

	Narrow Jet	Wider Jet
n	14.7$_{-5.34}^{+10.5}$	20$_{-19.3}^{+2583}$
ϵ_e	(2.3 ± 0.6) $\times 10^{-2}$	(1.4$_{-0.9}^{+1.4}$) $\times 10^{-2}$
ϵ_B	5$_{-2}^{+4} \times 10^{-4}$	1.4$_{-0.9}^{+1.4}$ $\times 10^{-3}$
E_{iso}^{52}	53.25 ± 16.2	1.34$_{-0.82}^{+1.36}$
θ_j	1.15° ± 0.15°	> 29°
E_{corr}^{52}	(1.1 ± 0.2) $\times 10^{50}$	> 6.5 $\times 10^{50}$

Table 4. The physical parameters for the afterglow of GRB 050401 assuming a two component jet model described in §4. The quantity E_{iso}^{52} is the isotropic equivalent energy in units of 10^{52} ergs. The corresponding collimation corrected energy is E_{corr}^{52} in units of 10^{52} ergs.
The intervening molecular cloud, of size larger than 5 to 55 parsecs, responsible for the observed large extinction is sitting at a distance we measured change in the value of reduced

By changing the fractional coverage of wide jet by the cloud

ular cloud so aligned that it covers the narrow jet of GRB

the double jet of GRB 050401 being obscured by a molec-

ray spectrum. We consider the possibility of radiation from

which can explain the large extinction inferred from the X-

galaxy of GRB 050401 happens to fall along our line of sight

(Shore 2002). It is possible that one such cloud in the host

regions e.g. Woosley and Bloom (2006). The massive star

forming regions host large molecular clouds. Typical col-

umn densities of cold molecular clouds are \(> 10^{22} \text{ cm}^{-2}\)

densities \(100 - 10^3 \text{ cm}^{-3}\) and sizes \(\sim 20 \text{ pc}\). Giant molecular clouds are even denser \((10^3 - 10^5 \text{ cm}^{-3})\) and larger \((\sim 100 \text{ pc})\)

(Shore 2002). It is possible that one such cloud in the host

galaxy of GRB 050401 happens to fall along our line of sight

which can explain the large extinction inferred from the X-

ray spectrum. We consider the possibility of radiation from

the double jet of GRB 050401 being obscured by a molecular

cloud so aligned that it covers the narrow jet of GRB

050401 completely while the wide jet is partially covered.

By changing the fractional coverage of wide jet by the cloud

we measured change in the value of reduced \(\chi^2\) of the fit.

In effect, this amounts to adjusting the intrinsic luminos-

ity of the wide jet upwards with increasing covering factor
to match the observed optical flux. This results in the rel-

eative contribution of the wide jet to the X-ray afterglow to

increase, affecting the fit quality. Keeping all other parameters fixed at their best fit values obtained for zero coverage, we find that a covering fraction of 60% can be accomodated within a range of \(\Delta \chi^2 / \text{dof} = 1\). Beyond this the reduced \(\chi^2\) rises sharply and reaches \(\Delta \chi^2 / \text{dof} > 15\) for a covering factor of \(\sim 90\%\). For the observed column density of \(1.7 \times 10^{22} \text{ cm}^{-2}\)

\(\text{De Pasquale et al. 2006}\), and assuming typical densities \((100 - 1000 \text{ cm}^{-3})\) of the molecular clouds, the size of the molecular cloud could be estimated to be around 5 - 55 parsecs. It is therefore probable that one such molecular cloud partially obscures our view of GRB 050401. This situation is illustrated in Figure 2. At this point, we would like to point out two possible caveats in the double jet model proposed here:

The separation of the optical and X-ray emitting regions, as proposed in the present model, is motivated by the large discrepancy of about 8 magnitudes between the amount of optical extinction inferred from soft X-ray absorption and that from observed optical-IR spectrum of the GRB050401 afterglow. It should, however, be kept in mind that the Predehl and Schmitt (1995) relation used to predict \(A_V\) from X-ray absorbing column \(N_H\) is an empirical one, and cannot be considered fully reliable in all circumstances. For example, a metallicity higher than solar by a factor of 10, or a dust-to-gas ratio lower by a similar factor, can reconcile the X-ray absorption with observed optical extinction. Such explanations in this case cannot be ruled out, and have been already discussed by Watson et al. (2003).

The second caveat is that the model presented here requires a rather special geometrical alignment - the two jets of the GRB should shine through the outer edge of a molecular cloud, much larger in size than the transverse extent of the jet working surface, in such a manner as to provide large extinction to the inner jet but much less to at least half the outer component. This requires that the outer edge of the cloud be dense, and have a strong density gradient to differentially affect the two jet components. An elongated, cigar-shaped cloud with its axis nearly parallel to the line of sight, would also help such a scenario. We also note that the size of the cloud required, as estimated by us using an average density, is prone to large uncertainties if its shape is unusual or if large density gradients are present.

5.2 GRB 050401 and GRB 030329: A comparison

The only other GRB whose afterglow has been explained as being due to double jet is the GRB 030329 (Berger et al. 2003; Resmi et al. 2005). optical and X-ray light curves of GRB 030329 afterglow showed a near simultaneous break at

Figure 2. A side view of the double jet (not to scale). The observer is on the axis of the jets and at a distance of 24 Gpc (which can be considered as at infinity for geometric purposes in this figure). The arrows indicate the afterglow light rays emanating from the jets. The intervening molecular cloud, of size larger than 5 to 55 parsecs, responsible for the observed large extinction is sitting at a distance of about 100-1000 parsecs from the GRB. The estimated diameters of the jets around 0.05 days turn out to be about 2 \times 10^{-3} \text{ pc} and > 2 \times 10^{-2} \text{ pc} respectively for the narrow and the wide jet. The large cloud covers a significant portion of the central narrow jet and partially covers the wide jet when seen from the observer's point of view. As a result, the optical radiation from the narrow jet is completely extincted. Most of the optical radiation from the wide jet does not suffer from this extinction.
0.55 day whereas the radio light curves had a break at about 10 days after the burst. Berger et al. (2003) have explained the two breaks as being due to lateral expansion of the two co-axial jets of different opening angles (∼ 5° and ∼ 17°).

In the case of GRB 050401, afterglow light curves do not show the presence of two different breaks. Instead, absence of a break at optical frequencies till late times (∼ 13 days after the burst) leads us to infer the presence of a wider jet with opening angle larger than 29° while a steep break (∆α ∼ 0.8) at 0.06 day after the burst in X-ray light curve can be explained as a jet break due to lateral expansion of a narrow jet of opening angle 1.15°.

The wider jet of GRB 030329 was estimated to be marginally more energetic than the narrower jet (Berger et al. 2003; Resmi et al. 2005). Similarly, in the case of GRB 050401, we find, that the wider jet is marginally more energetic than the narrower jet.

5.3 GRB 050401 and the Ghirlanda Relation:

It has been found that the collimation corrected energies (E_γ) of the GRBs are correlated with the peak energy of the GRB spectrum as measured in the frame of reference of the source (E_{peak}^{γ}). This correlation is also called as the Ghirlanda relation (Ghirlanda et al. 2004). Unfortunately, the E_{peak}^{γ} for GRB 050401 is not available as it falls outside the energy range of BAT. However, Sato et al. (2007) have used the Konus-Wind spectral data to find E_{peak}^{γ}. From their analysis, Sato et al. (2007) finds that in order to satisfy the Ghirlanda relation the afterglow light curve of GRB 050401 should exhibit a jet break $\sim 10^4$ s after the burst. This lower limit of the allowed range for jet break time is close to the break seen at 0.06 day in the X-ray light curve of GRB 050401, which we interpret as a jet break corresponding to the narrow jet in our model.

Sato et al. (2007) quantifies the Ghirlanda relation as $E_{\text{peak}}^{\gamma} = A E_\gamma^{0.705}$ where E_γ is the collimation corrected energy released in γ rays during the burst, in units of 10^{52} ergs. Using a sample of a large number of GRBs Sato et al. (2007) constrains the value of the proportionality constant A : 1950 $\leq A \leq$ 4380. Using the estimated value of $E_{\text{iso}} = 10^{54}$ ergs and the 1.15° as the opening angle of the narrow jet in our double jet model, the E_γ turns out to be 2×10^{50} ergs. Using $E_{\text{peak}}^{\gamma} = 447_{-75}^{+64}keV$ for GRB 050401 as reported by Sato et al. (2007) along with $E_\gamma = 2 \times 10^{50}$ ergs we estimate $A = 707_{-1270}^{+2097}$. This value of A is within 2 σ of A = 4380, the higher limit on A obtained considering the sample of GRBs satisfying the Ghirlanda relation. Having discussed this, we would also like to point out that the Ghirlanda relation has sometimes been criticized as being due to selection effects rather than being an intrinsic correlation (Butler et al. 2008).

6 SUMMARY

We have reported VRI band observations of GRB 050401 afterglow on 1st Apr. 2005. Also, we have modeled the afterglow of GRB 050401 as due to two physically distinct collimated outflows, using our own VRI band photometry along with the observations available in the literature, and compared with GRB 030329. Our main conclusions about GRB 050401 are as follows:

1. We showed that the light curves of GRB 050401 afterglow can not be explained under the assumption of continuous energy injection. The flatter decay, which appealed for the continuous energy injection model, can instead be explained by low values of electron energy distribution index p.

2. The afterglow of GRB 050401 can be well fit by the double jet model with the interpretation that the break in the X-ray light curve at ~ 0.06 day after the burst is due to a narrow collimated jet expanding sideways. The obscured optical emission is attributed to a wider which did not undergo significant sideways expansion until at least ~ 13 days after the burst.

3. Kinematically, we find that the wider jet is slightly more energetic than the narrow jet. This result is similar to what was found in the double jet of GRB 030329.

4. Our interpretation of the break in the X-ray light curve at 0.06 days after the burst as a jet break is consistent with the Ghirlanda relation.

ACKNOWLEDGEMENTS

We are thankful to the anonymous referee for his/her detailed comments which have improved the paper significantly. This research has made use of data obtained through the High Energy Astrophysics Science Archive Research Center Online Service, provided by the NASA/Goddard Space Flight Center. We acknowledge the use of public data from the Swift data archive. Two of the authors AK and KM acknowledge the support received from Dept. of Science and Technology, Govt. of India.

REFERENCES

Angelini L., Racusin J.L., Hunsberger S. et al., 2005, GCN 3161
Barbier L., Barthelmy S., Cummings J. et al., 2005, GCN 3162
Berger E., Kulkarni S.R., Pooley G. et al., 2003, Nature, 426, 154
Bessell M.S., Castelli F. and Plez B., 1998, A&A, 333, 231
Blattacharya D., 2001, Bulletin of the Astronomical Society of India, 29, 107
Butler N.R., Kociski, D. and Bloom J., 2008, arXiv:0802.3396
Chandra P. and Ray A., 2005, GCN 3178
De Pasquale M., Beardmore A.P., Barthelmy S.D. et al., 2006, MNRAS, 365, 1031
Fynbo J.P.U., Jensen B.L., Hjorth J. et al., 2005, GCN 3176
Ghirlanda G., Ghisellini G. and Lazzati D., 2004, ApJ, 616, 331
Golenetskii S., Aptekar R., Mazets E. et al., 2005, GCN 3179
Henden A., 2005, GCN 3454
Landolt A.U., 1992, AJ, 104, 340
Mathis J.S., 1990, ARA&A, 28, 37
Medvedev M.V., 2006, ApJL, 651, L9
Kamble et al.

Meszaros P. and Rees M.J., 1993, ApJL, 418, L59
O’Brien P.T., Willingale R., Osborne J. et al., 2006, ApJ, 647, 1213
Panaitescu A., Mészáros P., Burrows D. et al., 2006, MNRAS, 369, 2059
Pe’er A., Mészáros P. and Rees M.J., 2006, ApJ, 652, 482
Predehl, P. and Schmitt, J. H. M. M., 1995, A&A, 293, 889
Price P.A. and McNaught R., 2005, GCN 3164
Rees M.J. and Meszaros P., 1992, MNRAS, 258, 41P
Resmi L., Ishwara-Chandra C.H., Castro-Tirado A.J. et al., 2005, A&A, 440, 477
Rykoff E.S., Yost S.A., Krimm H.A. et al., 2005, ApJL, 631, L121
Sakamoto T., Barthelmy S., Barbier L. et al., 2005, GCN 3173
Sari R., Piran T. and Narayan R., 1998, ApJL, 497, L17
Saripalli L., Wu K., Ghosh K.K., Swartz D.A. and Tennant A.F., 2005, GCN 3177
Sato G., Yamazaki R., Ioka K. et al., 2007, ApJ, 657, 359
Schlegel D.J., Finkbeiner D.P. and Davis M., 1998, ApJ, 500, 525
Shore S.N., 2002, The tapestry of modern astrophysics, John Wiley & Sons, New York
Soderberg A.M., 2005, GCN 3187
Stetson P.B., 1987, PASP, 99, 191
Wass D., Fynbo J.P.U., Ledoux C. et al., 2006, ApJ, 652, 1011
Wijers R.A.M.J. and Galama T.J., 1999, ApJ, 523, 177
Willingale R., O’Brien P.T., Osborne J.P. et al., 2007, ApJ, 662, 1093
Woosley S.E. and Bloom J.S., 2006, ARA&A, 44, 507
Zhang B., Fan Y.Z., Dyks J. et al., 2006, ApJ, 642, 354
Zhang B. and Mészáros P., 2001, ApJL, 552, L35
Zhang B. and Mészáros P., 2002, ApJ, 566, 712