A DETAILED STATISTICAL ANALYSIS OF THE MASS PROFILES OF GALAXY CLUSTERS

OLE HOST1,2 AND STEEN H. HANSEN2

1 Department of Physics & Astronomy, University College London, Gower Street, London, WC1E 6BT, UK
2 Dark Cosmology Centre, Niels Bohr Institute, University of Copenhagen, Juliane Maries Vej 30, DK-2100 Copenhagen, Denmark

Received 2009 July 6; accepted 2011 May 4; published 2011 July 6

ABSTRACT

The distribution of mass in the halos of galaxies and galaxy clusters has been probed observationally, theoretically, and in numerical simulations, yet there is still confusion about which of several suggested parameterized models is the better representation, and whether these models are universal. We use the temperature and density profiles of the intracluster medium as measured by X-ray observations of 11 relaxed galaxy clusters to investigate mass models for the halo using a thorough Bayesian statistical analysis. We make careful comparisons between two- and three-parameter models, including the issue of a universal third parameter. We find that, of the two-parameter models, the Navarro–Frenk–White (NFW) is the best representation, but we also find moderate statistical evidence that a generalized three-parameter NFW model with a freely varying inner slope is preferred, despite penalizing against the extra degree of freedom. There is a strong indication that this inner slope needs to be determined for each cluster individually, i.e., some clusters have central cores and others have steep cusps. The mass–concentration relation of our sample is in reasonable agreement with predictions based on numerical simulations.

Key words: dark matter – galaxies: clusters: general – methods: statistical – X-rays: galaxies: clusters

Online-only material: color figures

1. INTRODUCTION

The potential of gravitationally bound structures in the universe, ranging in size from dwarf galaxies to galaxy clusters, is sourced by a composite mass distribution of dark matter, baryonic matter in gas form, and collapsed objects such as stars in galaxies and galaxies in clusters. The investigation of these mass distributions entails a number of questions. What is the equilibrium shape of the distributions? Is it universal across 10 mag of mass and at all redshifts? Does it depend on cosmology or on the merger history of the individual halos?

The main understanding in the distribution of matter in a self-gravitating halo have been found through numerical simulations of the formation of structure in the universe within a given cosmological model. Advances have been achieved through the improvement of numerical codes and the increase of raw computing power on one hand and a more refined understanding of which questions need to be answered on the other. Perhaps the most fundamental idea that has come out of the numerical approach is that relaxed halos have a number of universal properties, including the distribution of matter (Navarro et al. 1997; Taylor & Navarro 2001; Austin et al. 2005) and their dynamical structure (Bullock et al. 2001a; Hansen & Moore 2006). However, simulations have not been able to reach agreement about the exact behavior of the profiles in the innermost regions, where the limited force resolution sets a lower limit to the radial range that can be probed. In particular, questions have been raised about the value of the logarithmic slope and whether that value is universal or not (Moore et al. 1998; Klypin et al. 2001; Zhao et al. 2003; Navarro et al. 2004; Fukushige et al. 2004; Merritt et al. 2006; Graham et al. 2006; Voigt & Fabian 2006; Gao et al. 2008). A further complication arises when simulations are compared with observations since the gravitational potential of the baryonic component, which is very time consuming to model in simulations, cannot be neglected in the center. This complication can in principle both change the slope of the dark matter profile and alter the total mass profile (Blumenthal et al. 1986; El-Zant et al. 2001; Gnedin et al. 2004; Sommer-Larsen & Limousin 2010). Recently, Dalal et al. (2010) suggested adiabatic contraction as an approach to understanding the actual formation of halos from initially random perturbations.

Theoretically, most efforts have focused on understanding collisionless halos of dark matter only, but this approach is hampered by the fact that, even under the strongest simplifying assumptions, there are not enough constraints to obtain unique solutions to the collisionless Boltzmann equation (Binney & Tremaine 1987) which governs a dark matter structure. Some results have been obtained by considering individual halos from the statistical mechanics point of view (see Hjorth & Williams 2010, and references therein). Another approach is to take phenomenological input from numerical simulations such as the density profile itself, the pseudo-phase space density (Taylor & Navarro 2001; Dehnen & McLaughlin 2005), or the density-slope–velocity-anisotropy relation (from which Hansen & Stadel 2006 predict an inner slope of 0.8), and implement this into a Jeans equation analysis to predict the consequences of the “inspired guess” (see also Zait et al. 2008 and references therein). Alternatively, one can attempt to model the formation history of the halo including major mergers and steady accretion (e.g., Ryden & Gunn 1987; Ascasibar et al. 2004; Salvador-Solé et al. 2007; Del Popolo 2009, and references therein). While these approaches typically yield results in rough agreement with simulations, the modeling can also explore the physical connection between the static and dynamic properties of the halo and it can offer physically constrained extrapolations which are not accessible in simulations.

Observationally, there is a strong discrepancy between the numerical results and the inferred mass distributions in dwarf and low surface brightness galaxies, which are much shallower than predicted, the so-called cusp/core problem (see, e.g., Salucci et al. 2003; Spekkens et al. 2005; Gilmore et al. 2007). At the opposite end of the mass spectrum, galaxy clusters are typically found to be in rough agreement with the cuspy profiles.
through weak or strong gravitational lensing, which can yield the data. One common method is based on mass modeling are necessary in order to obtain an acceptable description of about the type of model and the number of parameters that shallower (Sand et al. 2004, 2008). Another method is based on X-ray observations of the intracluster medium (ICM) which is the cusp massive central galaxy found in most clusters which may affect again, authors find a range of inner slopes (Ettori et al. 2002; the universality of the profiles on an observational foundation. Here we consider a number of two- and three-parameter models. A whole class of models is known as “double power laws” which asymptote to power laws at very small and very large radii. These models can conveniently be summarized in Hernquist’s (α, β, γ) parameterization (Hernquist 1990; Zhao 1996),

$$\rho(r) \equiv \rho_0 \left(\frac{r}{r_s} \right)^{-\alpha} \left[1 + \left(\frac{r}{r_s} \right)^{\gamma} \right]^{-\frac{\alpha}{\gamma}},$$ \hspace{1cm} (1)$$

where ρ_0 and r_s are scaling constants to be determined for each halo individually. The inner power-law slope is α and the outer slope is β, while the width of the transition region is controlled by γ. We consider four such two-parameter profiles: the Navarro–Frenk–White (NFW; Navarro et al. 1997), the Dehnen–McLaughlin (Dehnen & McLaughlin 2005), the Hernquist, and the Moore profile (Moore et al. 1998). The properties of these models are summarized in Table 1.

We also consider three three-parameter models: two are simply generalized NFW profiles where, in the first case, we allow the inner slope α to vary in order to measure the cuspiness of the halos. The second case, transNFW, is also a generalization of the NFW where the transition parameter γ is free. Such a profile can mimic a steeper inner slope by pushing the inner power-law behavior closer to the center. The third profile is the Sérésic (or Einasto) profile (Sérésic 1963; Einasto 1969),

$$\rho(r) = \rho_s \exp \left[-2n \left(\frac{r}{r_s} \right)^{1/n} - 1 \right],$$ \hspace{1cm} (2)$$

where the parameter n determines the shape of the profile. For $n = 4$ the de Vaucouleurs’ law describing the surface brightness of elliptical galaxies is recovered. The shape parameter is sometimes given as $a_s = n^{-1}$. Recently, the Sérésic profile has been claimed to provide a better fit than the NFW to Milky-Way-sized halos formed in numerical simulations, and, interestingly, with a shape parameter that varies significantly from halo to halo (Salvador-Solé et al. 2007; Navarro et al. 2010).

We map the scale radius r_s and scale densities ρ_s or ρ_0 of each model to the model-independent parameters r_{-2} and ρ_{-2}, which are the radius at which the slope of the density profile is -2 and the density at that radius, respectively. This mapping makes comparison of the models easier and enables us to use identical priors in the statistical analysis in all models.

3. DATA ANALYSIS

We revisit the sample of 11 highly relaxed, low-redshift ($z < 0.1$) galaxy clusters observed with *XMM-Newton* which

Table 1 Density Profile Models

Model	(α, β, γ)	r_{-2}/r_s	ρ_{-2}/ρ_0	$\mu(x = r/r_s)$
NFW	(1, 3, 1)	1	$1/2$	$\ln(1 + x) - x/(1 + x)$
D&M	($\frac{7}{3}$, $\frac{4}{3}$, $\frac{1}{3}$)	1.2399	0.0338	$\frac{2\sqrt{2}}{(1 + x^{3/2})^{1/2}}$
Hernquist	(1, 4, 1)	$1/2$	$1/3$	$x^2/[2(1 + x)^2]$
Moore	($\frac{7}{2}$, 3, 1)	1	$1/2$	$2\sinh^{-1}(\sqrt{x}) - 2\sqrt{x/(1 + x)}$

Notes. Properties of the density profiles that we consider, including the (α, β, γ) specification, the relations between (r_{-2}, ρ_{-2}) and (r_s, ρ_0), and the shape $\mu(r)$ of the mass profile $M(r) = 4\pi r_s^3 \rho_0 \mu(r)$, if analytical. $\gamma(x, a) = \int_0^1 e^{at} dx$.
we already used in Host et al. (2009) to measure the dark matter velocity anisotropy profile for the first time (see also Hansen & Piffaretti 2007). The members of this sample were selected to appear close to round on the sky and not have strong features in the temperature and density profiles. The spectral analysis, point-spread-function (PSF) correction, and deprojection of the X-ray data were carried out in Kaastra et al. (2004) and Piffaretti et al. (2005). The PSF effects degrade the quality of the signal, particularly from the central regions of the clusters, which leads to larger uncertainties on the radial temperature and density profiles. The deprojection method was non-parametric, i.e., without any parametric modeling of the radial temperature or density profiles. The outcome, and the starting point for the present analysis, was estimates of the ICM temperature T_i and electron number density $n_{e,i}$ with associated uncertainties in six or seven radial bins, for each of the clusters.

Assuming hydrostatic equilibrium, the ICM gas traces the gravitational potential according to (Cavaliere & Fusco-Femiano 1978)

$$\frac{k_B T}{\mu m_H} \left(\frac{d \ln n_e}{d \ln r} + \frac{d \ln T}{d \ln r}\right) = -\frac{GM_{tot}(r)}{r}, \quad (3)$$

where $\mu = 0.6$ is the mean molecular weight of the ICM. We calculate $M_{tot}(r_i)$ of each radial bin through a Monte Carlo (MC) analysis in order to propagate uncertainties accurately. In detail, the prescription for each MC realization is as follows: in each bin i, the best estimates of T_i and $n_{e,i}$ are added to random numbers drawn from Gaussian distributions representative of the uncertainties δT_i and $\delta n_{e,i}$. In order to apply Equation (3), we estimate the logarithmic derivative of, e.g., T at the bin radius r_i by the slope of the unique parabola that passes through $(\ln r_{i-1}, \ln T_{i-1}), (\ln r_i, \ln T_i)$, and $(\ln r_{i+1}, \ln T_{i+1})$. In this way we can calculate the total mass interior to r_i for that data realization. We impose a number of checks to determine if the data realization is physically sensible: the ICM temperature and density must be greater than zero in all bins, the total mass profile must be increasing with radius and the derived total density profile must also be positive everywhere. We also require that the mass contained in dark matter and stars (which is just the total mass with gas mass subtracted) must be positive. If these conditions are not met, the entire realization is discarded. This process is repeated until $N = 5000$ realizations have been accepted. From these the sample mean of $\ln M_i$ in each bin is determined, as well as the sample covariance matrix with elements

$$C_{ij} = \frac{1}{1-N} \sum_{k=1}^{N} (\ln M_{ik} - \langle \ln M_i \rangle)(\ln M_{jk} - \langle \ln M_j \rangle), \quad (4)$$

where N is the number of MC realizations. Even though we sample the ICM temperature and density in each bin independently, the covariance matrix is not diagonal since the derivatives and physical consistency checks induce bin-to-bin correlations in the accepted sample. We use the mean and covariance of $\ln M$ rather than M since, by inspection, the former is closer to being Gaussian distributed.

Figure 1 shows the resulting non-parametric mass profiles measured from the data and their uncertainties, as well as the best fits of the models we consider. Note that the models shown serve only illustrative purposes and the statistical analysis is not limited to the best fits, as discussed below. The vertical dashed line of each panel indicates the K-band half-light radius of the central brightest cluster galaxy (BCG) galaxy. The radii are taken from the Two Micron All Sky Survey (2MASS) Extended Source Catalog (Skrutskie et al. 2006) data products, specifically the de Vaucouleurs’ fits to the K-band photometry. We take these radii to indicate the likely onset of significant baryonic effects and note that this is typically only an issue in the innermost bin.

4. STATISTICAL ANALYSIS

We take a Bayesian approach to the statistical analysis and the usual starting point is the likelihood function, which we calculate in the following manner: it requires less manipulation of the data to calculate the mass profile from the observations than to calculate the density profile. Therefore, we integrate the density profile analytically or numerically for each model to obtain the mass distribution and compare with the data in mass space, not density space. Further, as mentioned above, we have found in the MC analysis that the mass samplings in each bin are close to being log-normally distributed. Therefore, we construct the likelihood $\mathcal{L}(M_i) = \exp(-\chi^2/2)$ from the χ^2 function,

$$\chi^2 = \sum_{i,j} (\ln M_i - \ln M(r_j))C_{ij}^{-1}(\ln M_j - \ln M(r_j)), \quad (5)$$

where $M(r_i)$ is the model mass profile at the radial center r_i of bin i, and $\ln M_i$ and C_{ij} are determined by the MC analysis.

The main goal is to decide which model is the better representation of the data. We do this by calculating the Bayesian evidence of each model, which is a quantitative measure of the agreement between model and data (Trotta 2008). First, we calculate the likelihoods of each model on a grid in the parameter space $\theta = (\log r_{-2}, \log \rho_{-2})$. Next, we construct the posterior probability distribution by combining the likelihood function with a prior probability distribution $\pi(\theta)$ which resembles our knowledge of $\log r_{-2}$ and $\log \rho_{-2}$ before taking the data into account. We discuss the choice of prior below. We then integrate the posterior to obtain the Bayesian evidence,

$$E = \int d\theta \pi(\theta)\mathcal{L}(\theta, \ln M_i), \quad (6)$$

which is essentially the weighted average of the likelihood over the prior volume. The evidence of a model, given the data and a prior, quantifies how well that model explains the data. It is important to stress that the comparison is made over all of the parameter space contained by the assumed priors, not just at the best fitting set of parameters. When comparing models the Bayes factor $B_{12} = E_1/E_2$ shows how much more (or less) probable model 1 is than model 2, in light of the data. Traditionally, this is gauged on Jeffreys’ scale where a Bayes factor of $\ln B_{12} < 1$ is labeled “inconclusive” evidence for model 1 over model 2 while “weak,” “moderate,” and “strong” evidence corresponds to $\ln B_{12}$ values <2.5, <5, and >5, respectively.

We choose priors which are constant in the logarithms of r_{-2} and ρ_{-2}. The flat logarithmic prior is the uninformative prior for scaling parameters (Trotta 2008) since it reflects ignorance about the magnitude of the parameter. However we restrict the range of the priors, so that we end up with top-hat priors in $\log r_{-2}$ and $\log \rho_{-2}$. As a reference point we first assume a top-hat prior relative to the best estimate of r_{2500} as determined in the MC analysis. The scale radius r_{2500} is defined as the radius within which the mean density is 2500 times the critical density of the universe. The top-hat prior in $\log r_{-2}$ ranges from 1.5 magnitudes below r_{2500} to 0.5 above. The basic idea behind this
prior is that the transition or “roll” of a model should occur close to r_{2500}, as it does in halos in numerical simulations, and also to prevent the model from behaving as a simple power law by pushing the transition from the inner to the outer power law far away from the range of the data. We emphasize that this is still a conservative prior, as current simulations typically resolve 2–3 radial orders of magnitude with r_{-2} located about one order of magnitude below the virial radius (Bullock et al. 2001b). The prior in log ρ_{-2} is also a top-hat in the range 10^{-26}–10^{-21} kg m$^{-3}$, which in practice means that the likelihood is vanishingly small at the boundaries of the prior.

4.1. Two-parameter Model Results

The result of the model comparison is summarized in Table 2, where the NFW model is compared against each of the other two-parameter models. A positive Bayes factor indicates that the NFW model is preferred. This does not imply any bias on the NFW since any two models can be compared by subtracting the Bayes factors we give for them from one another. We find that, individually, the clusters yield strong constraints only against the Moore model, while the evidences for or against the D&M and Hernquist models are either weak or inconclusive on Jeffrey’s scale. If instead we consider the cumulative Bayes factor summed over the full sample, the NFW is found to be the preferred model overall, i.e., as a universal two-parameter profile our sample favors the NFW model. The Hernquist profile and the D&M profile are weakly and moderately disfavored, respectively, with cumulative Bayes factors of 2.6 and 3.8 while the Moore profile is convincingly ruled out with a factor of 59. The weak constraint on the Hernquist profile is not surprising as data extending out to the virial radius would likely be needed to properly distinguish this model from the NFW.

In Table 3 we present the effects of varying the priors. The evidence against the D&M profile becomes strong when we

Figure 1. Mass profile of each cluster with 68% uncertainties and best-fit models. The radial axis has been scaled to the best estimate of r_{2500} from the MC analysis, and the mass axis has been scaled by r^{-1}. The dashed vertical lines indicate the estimated extent of the BCG and the solid vertical lines show the best-fit estimate of the NFW scale radius r_{-2}.

(A color version of this figure is available in the online journal.)
Figure 2. Bar chart of the Bayes factors ln B for the various models considered, relative to the NFW, as given in Tables 2 and 4. The Bayes factors are additive, so the contribution of individual clusters to the total Bayes factor is easily assessed. The values shown are based on the fiducial priors discussed in the text.

(A color version of this figure is available in the online journal.)

Table 2
Bayes Factor ln B for the Two-parameter Models, Relative to the NFW Profile

Cluster	z	D&M	Hernq	Moore
A262	0.015	−2.1	0.9	−2.9
NGC 533	0.018	−1.8	1.2	−3.1
A496	0.032	−1.4	0.6	−0.8
2A0335+096	0.034	0.5	−0.1	14.7
A2052	0.036	1.9	−0.3	6.6
MKW9	0.040	0.5	−0.1	1.5
MKW3s	0.046	1.8	−0.2	6.7
A4059	0.047	1.6	−0.4	10.8
Sérsic 159–3	0.057	−0.5	1.7	3.4
A1795	0.064	2.6	−0.6	20.8
A1837	0.071	0.5	−0.2	1.4
Total	...	3.8	2.6	59

Notes. A positive value of ln B indicates that the NFW profile is preferred over the considered model. Note that this does not imply any bias toward the NFW as the Bayes factor of any two other models is just the difference between the respective Bayes factors given here.

Table 3
Total Bayes Factor ln B for the Two-parameter Models Assuming Various Priors, Relative to the NFW Profile

Prior	Range log r_{−2}	D&M	Hernq	Moore
Top-hat in ln r_{−2}	(−1.5,0.5)	3.8	2.6	59
Top-hat in log r_{−2}	(−3.3)	3.0	2.6	42
Top-hat in log r_{−2}	(−0.75,0.25)	7.8	2.4	74
Top-hat in (r_{−2}, \rho_{−2})	(−1.5,0.5)	9.2	1.4	68
Gaussian in log r_{−2}	...	5.3	2.4	57

Notes. The top line is the fiducial prior used in Table 2. In the next two cases the range of the prior in log r_{−2} (in units of r_{2500}, see the text) is varied, and in the following case top-hat priors in both r_{−2} and \rho_{−2} are applied. The final case assumes a Gaussian prior in log r_{−2} with mean −0.25 and width 0.5.

limit the range of the prior in log r_{−2} to the smaller interval (−0.75, 0.25). The same is true if we choose top-hat priors in (r_{−2}, \rho_{−2}) instead of the logarithmic priors. Finally, the D&M model is also disfavored slightly more if we apply a “soft” Gaussian prior in log r_{−2}. The Bayes factor for the Hernquist model is robust under such variations, while the Moore profile is very strongly ruled out in all cases. We conclude that our two-parameter model selection results are stable against variation among reasonable choices of priors, which means that the data are of sufficient quality to make robust conclusions.

A more interesting issue to consider than the priors is that the preference for the NFW profile over the Hernquist and D&M profiles is somewhat susceptible to “jackknife” resampling: if we recompute the cumulative Bayes factor 11 times, systematically leaving a single cluster out each time, then there are a few cases where the strength of the evidence is reduced to inconclusive but also cases where it is increased to strong (against the D&M). This is largely due to the fact that our sample is somewhat inhomogeneous in terms of the relative statistical uncertainty on the mass profile. For example, a comparison of the error bars of MKW9 with those of A1795 or Sérsic 159–3 (see Figure 1) immediately shows that the former is much less constraining than the latter two. This means that our sample is a mixture of strongly and weakly constraining clusters and this is reflected in Figure 2 where the contributions from individual clusters clearly vary. There appears to be a trend that the clusters A262, NGC 533, and A496, which are the lowest redshift and some of the least massive in our sample, stand out by preferring the D&M and the Moore profiles. However, such trends may just as likely be spurious effects caused by the relatively small sample size. The D&M profile can easily be preferred by clusters that also prefer the Moore profile since, by extending the transition region, the D&M profile can push the inner asymptotic power law well inside the radial range of the data.

Finally, we note that the minimum \chi^2 values for the models support the more detailed analysis: for 53 degrees of freedom we get minimum \chi^2’s of 84 for the NFW, 97 for the D&M, 86 for the Hernquist, and 208 for the Moore profile. Major contributions to these \chi^2 values come from the two clusters MKW3s with \chi^2 = 13.5 and A4059 with \chi^2 = 13.7 for the NFW model and similar or larger values for the other models. The corresponding p-values imply that the D&M \chi^2 is about 20 times less likely to have occurred by chance (if the D&M model is correct) than the NFW model is (if the NFW model is correct). Compare this with the Bayesian odds that the NFW is ~40 times more probable than the D&M. Note that the actual best fits are slightly smaller since we evaluate the \chi^2 on a grid instead of minimizing it with a dedicated search. The \chi^2 values also show that, in terms of goodness-of-fit, our sample is rather inhomogeneous.

4.2. Three-parameter Model Results

For the three-parameter models we again want to test whether the models represent the data better than the NFW. In this case
the comparison is slightly more involved to evaluate since there is the freedom of an additional parameter to take into account.

This naturally yields a lower value of the evidence if the extra parameter does not provide a better description of the data, or, to put it otherwise, the third parameter must improve the fit over a significant volume of parameter space in order to be preferred over the NFW. It is important to stress that there is no assumption about the third parameter being universal. On the contrary, we ask whether the data require the additional freedom of an extra parameter which is determined individually for each cluster.

The model comparison proceeds as before: we calculate the evidence for each of the three-parameter models with the same priors in $\log r_{-2}$ and $\log \rho_{-2}$ as in the fiducial two-parameter analysis for all models. For the slopeNFW we choose a top-hat prior for α which ranges from 0 to 1.75, i.e., from a cored profile to a profile slightly steeper than the Moore profile. We do not want to go all the way to -2 since r_{-2} tends toward zero and eventually becomes undefined as α approaches -2. For the transNFW, we choose a logarithmic prior with r_{-2} which ranges from 0.1 to 1.75, i.e., from a cored profile to a profile slightly steeper than the Moore profile. We do not want to go all the way to -2 since r_{-2} tends toward zero and eventually becomes undefined as α approaches -2. For the Sérsic, we use a logarithmic prior with n which ranges from 0 to 2, which is the best fit for the Sérsic profile.

We marginalize over the third parameter and attempt to identify that value. We use the same priors as in the previous analysis for the third parameter of each model, but now we marginalize over the one-dimensional posterior probability distribution for the third parameter for each cluster. Then we combine the results from the individual clusters into a joint posterior which is the product of the individual ones. We calculate 95% credible intervals for both the individual and the joint posterior. However, we know from the previous analysis that each three-parameter model is preferred by some clusters but not by others. Therefore, we also use the method of hyper-parameters (Lahav et al. 2000) which allows the contribution from individual data sets to the joint posterior to be weighted. These weights are marginalized over assuming logarithmic priors with the result that in the joint likelihood one replaces

$$\sum_{i} \chi_{i}^{2} \rightarrow \sum_{i} N_{i} \ln \chi_{i}^{2},$$

where N_{i} is the number of data points in data set i. The result is that clusters that are not described well by the model do not constrain the parameters as strongly as clusters that are well described. The price to pay is that the effective sample size is reduced which, all else being equal, will lead to wider and more conservative credible intervals.

The results are shown in Figure 3, where in each panel the fully drawn line is the joint posterior, the dotted line is the hyper-parameters posterior, and the dashed lines are the posteriors of the individual clusters. The generalized NFW models are slightly different from, but not in disagreement with, the NFW with 95% credible intervals of (0.98, 1.30) for α and (0.70, 1.08) for γ. The interval for the Sérsic n parameter is (4.3, 6.1), in good agreement with the values reported by the Aquarius numerical simulations for Milky-Way-sized halos (Navarro et al. 2010). The intervals derived using the method of hyper-parameters are wider, as expected: (0.91, 1.30) for α, (0.52, 1.20) for γ, and (3.8, 7.4) for n. The difference between the hyper-parameters method and the conventional calculation illustrates the need for a cautious approach to inhomogeneous data sets. We believe the hyper-parameters method yields the more trustworthy results in the case at hand, while, on the other hand, we acknowledge that they are not very constraining.

An inspection of the contribution from individual clusters reveals some issues: it is clear that for each model a number of clusters provides very little information about the third parameter, i.e., the model describes the mass profile almost equally well regardless of the third parameter value. This is actually expected, given the varying size of the Bayes factors in Table 4. There are also a few cases, particularly for the transNFW model, where the posterior peaks very close to or on the bounds of the prior.

Table 4

Cluster	slopeNFW	transNFW	Sérsic
A262	−2.1	−1.7	−2.0
NGC 533	−1.9	−2.0	−1.9
A406	−1.1	−0.6	−0.8
2A0335+096	1.1	0.6	1.0
A2052	0.1	1.3	0.5
MKW9	0.2	0.4	0.3
MKW3s	1.4	1.7	1.6
A4059	−2.7	−1.5	−2.0
Sérsic 159–3	0.4	0.9	0.5
A1795	1.7	1.2	2.4
A1837	−0.1	0.2	0.2
Total	−3.1	0.6	−0.2

Notes. A positive value of $\ln B$ indicates that the NFW profile is preferred over the considered model. A top-hat prior in $\log r_{-2}$ of (−1.5, 0.5) around the best estimate of r_{2500} for each cluster is assumed.
Figure 3. Probability distributions for the third parameter in each of the three-parameter models: slopeNFW α (left), transNFW γ (middle), and Sérsic n (right). In each panel, the solid line shows the joint posterior for all clusters combined while the dot-dashed line shows the joint posterior obtained using the method of hyper-parameters (see the text). The dashed lines show the probability density functions (pdfs) of individual clusters. Note that each posterior is normalized to unity so it is not possible to draw conclusions about the quality of fit of the individual clusters from this plot. The standard 95% credible intervals are (0.98, 1.19) for α, (0.70, 1.08) for γ, and (4.3, 6.1) for n. With the hyper-parameters, the intervals are instead (0.91, 1.30) for α, (0.52, 1.20) for γ, and (3.8, 7.4) for n. We assume top-hat priors in α, $\ln \gamma$, and $\ln n$.

(A color version of this figure is available in the online journal.)

Figure 4. The individual clusters’ constraints on the third parameter in each of the three-parameter models. In this case we show the 68% credible intervals, and the horizontal lines indicate the 68% range of the joint posterior calculated using the method of hyper-parameters. Refer to Table 2 for the redshifts of each cluster.

(A color version of this figure is available in the online journal.)

In such cases the results, e.g., the individual credible intervals, are of course very prior-dependent which again indicates that the data are not very discriminatory with respect to the prior. On the other hand, rather drastic priors or small subsamples must be used in order to significantly affect the credible intervals of the joint posterior, especially for the hyper-parameter method.

Figure 4 shows the individual clusters’ constraints on α, γ, and n. There is perhaps the slightest of hints of a redshift dependence in the constraints but the sample size does not allow us to probe such an issue in detail. It should also be noted that any hint of a redshift dependence could actually be caused by a mass dependence instead since, e.g., the two clusters at the lowest redshifts are also the least massive.

A different picture emerges when we consider the overlap of the individual clusters’ credible intervals for the slopeNFW model. For example, no value of α is contained in all 11 95% credible intervals, and only the very short range (1.08, 1.10) is contained in all but two intervals. Likewise the NFW $\alpha = 1$ case is excluded from four of the eleven intervals. These results, as well as a visual inspection of Figure 3, do not seem to support a universal shape parameter. The situation is not quite as compelling for the transNFW and Sérsic models which is likely the reason that they do not stand out from the NFW in the model selection. In fact, we believe it is a reasonable statement that the success of the slopeNFW model is precisely due to the hyper-parameters (see the text). The dashed lines show the probability density functions (pdfs) of individual clusters. Note that each posterior is normalized to unity so it is not possible to draw conclusions about the quality of fit of the individual clusters from this plot. The standard 95% credible intervals are (0.98, 1.19) for α, (0.70, 1.08) for γ, and (4.3, 6.1) for n. With the hyper-parameters, the intervals are instead (0.91, 1.30) for α, (0.52, 1.20) for γ, and (3.8, 7.4) for n. We assume top-hat priors in α, $\ln \gamma$, and $\ln n$.

(A color version of this figure is available in the online journal.)

5. BIASES

So far we have discussed the interpretation of our results with respect to the statistical evidence. However, a number of biases, or systematic uncertainties, can be thought of that may affect our results. Loosely, these can be grouped into biases that affect both the individual cluster mass modeling and the combined analysis, and selection effects that only influence the latter.

The analysis rests on the ability to produce deprojected temperature and density profiles with uncertainties that correctly mirror the uncertainties in the spectral analysis of the X-ray data. This has been discussed extensively in Kaastra et al. (2004).

The basic assumption in determining the mass distribution...
of a galaxy cluster is that the cluster is relaxed, and obeys the equation of hydrostatic equilibrium. Numerical simulations indicate that the additional pressure associated with turbulence and bulk motion in the ICM yields an underestimate of the mass in the region of 5%–20% with the larger values corresponding to large radii, r_{2500} and greater (Nagai et al. 2007; Piffaretti & Valdarnini 2008; Lau et al. 2009). We do not expect this bias to exceed 10% in the present case since we do not model further out than to $\sim r_{2500}$. On the other hand, the same numerical simulations indicate that if the turbulent pressure is accounted for, an accurate mass reconstruction is possible. This point demonstrates that deviations from spherical symmetry are not a major concern in the error budget.

A related question is whether the parameterized profiles should be tested against the total mass distribution or the dark matter mass profile only. While the predictions of numerical simulations are founded in dark-matter-only simulations, it is not clear how much a simulated dark-matter-only mass profile is modified by the presence of baryons. Observationally, the ICM contributes about 5%–15% of the total density in a cluster, again increasing with radius in the range of interest here, so formally there is a difference between the total and the dark matter profile’s radial dependence. To test the impact of this, we have rerun the statistical analyses described above, but with an additional step in which the ICM mass is subtracted from the mass estimate of Equation (3) so that we compare the parametric models to the mass profile of dark matter and stars. We find only minor differences: For the two-parameter models, the total Bayes factors relative to the NFW profile assuming the fiducial prior as in Table 2 are 3.6 (D&M), 2.4 (Hernquist), and 51 (Moore), i.e., there is no significant change in the interpretation of the results. For the three-parameter models, the total Bayes factors become -2.6 (slopesNFW), 0.7 (transNFW), and -0.1 (Sérsic), which are in good agreement with the results in Table 4. Finally, the constraints on the third parameters for the three-parameter models are virtually identical. The fact that the results are virtually identical is not surprising since the ICM is a minor and smoothly distributed contribution to the mass profile.

We have also attempted to account for the stellar mass. This is a very subdominant component except close to the center of a cluster where the mass of the BCG galaxy can be significant. The likely range where the BCG should be accounted for is indicated in Figure 1 and can clearly affect the measurement of the inner slope of the dark matter mass profile. We have attempted to account for the BCG mass by first using the 2MASS K-band photometry to determine the luminosity profile (Kochanek et al. 2001) and then convert this to a mass profile by assuming a mass-to-light ratio, M/L. Longhetti & Saracco (2009) find that the K-band mass-to-light ratio is about unity. This prescription yields a rough and very model-dependent estimate of the stellar mass but it is useful to investigate the feasibility of measuring the dark matter mass distribution. We immediately find consistency issues, however, since it turns out that the total mass profiles we have measured for A2052 and A4059 cannot accommodate such a stellar mass component unless we reduce the M/L ratio significantly. For A2052, we suspect that the mass measured in the innermost radial bin is a low outlier since all models predict a significantly greater mass in that bin, but that does not help us in determining a physically consistent mass model with both stars, ICM gas and dark matter. We conclude that a more detailed measurement of the BCG stellar mass is necessary to separate that from the dark matter. Such a measurement is outside the scope of this work, so we have restricted ourselves to determining the total mass profiles.

The fact that our results are stable whether we test the mass models against the total or ICM-subtracted mass profiles allows us to gauge how important the mass bias caused by turbulent pressure is. The point is that the turbulent pressure is expected to contribute the same amount (or less) to the total mass estimate as the ICM mass: both contributions are at the 5%–15% level and radially increasing, and at the maximum radius we consider $\sim r_{2500}$ the gas fraction ($\sim 10\%$) is likely larger than the pressure bias. Since our results are the same whether we account for ICM mass or not, we conclude that this systematic offset is likely much smaller than the statistical uncertainty.

6. Mass–Concentration Relation

An important consequence of the “bottom-up” scenario of structure formation is that smaller halos are denser in the center, since they formed earlier when the density of the Universe was higher. This effect is observed in numerical simulation and it can be expressed as a relation between the halo mass and the concentration parameter. The concentration parameter is defined for a given overdensity as $c_{\Delta} = r_{\Delta}/r_{200}$ (often r_{200} is used instead of r_{Δ} but for the NFLW this is unimportant). Simulations usually consider the mass–concentration relation at the virial radius r_{200} but as discussed above we can only reach that radius by model-dependent extrapolation. Therefore, in Figure 5, we show the mass–concentration relation of our sample calculated within the NFLW model at both r_{2500} and extrapolated to r_{200}. Note that our sample is not necessarily representative of the population of clusters.

As can be seen in Figure 5, our sample is not ideally suited to derive a relation from, given that six sample members cluster at almost identical values of M_{Δ}. Instead we compare with the mass–concentration relation of the dark-matter-only
simulations presented in Macciò et al. (2008), which are in reasonable agreement with our sample. We emphasize that the orientation of the uncertainty ellipses is related only to the parameter degeneracies present in the combination of model and mass profile data and has nothing to do with the slope of the mass–concentration relation. The agreement between our observed mass–concentration relation and the model and mass profile data and has nothing to do with the orientation of the uncertainty ellipses is related only to reasonable agreement with our sample. We emphasize that preference steep cusps. The shape-parameters of the Sérsic and values for the inner slope, some prefer flat cores while others shape parameter must be determined individually.

it to be close to that of the NFW but our data suggest that the data require an additional free parameter that alters the shape of the mass profile and according to our analysis the best choice is a model similar to the NFW but with a freely varying inner slope. If we assume this slope to be universal, we can constrain it to be close to that of the NFW but our data suggest that the shape parameter must be determined individually.

Significantly, the clusters in our sample prefer quite different values for the inner slope, some prefer flat cores while others prefer steep cusps. The shape-parameters of the Sérsic and transNFW models also show considerable scatter across our sample. We conclude that there is a strong indication in our data that the total mass profile is not universal but suffers considerable halo-to-halo scatter. The limited size of our sample means that we cannot state whether this is in disagreement with the results of numerical simulations. However, when the goodness-of-fit of each cluster is taken into account using the method of Bayesian hyper-parameters, the credible interval becomes significantly larger, partly due to the smaller effective sample size, but also because of the lack of universality. Alternatively if, against best efforts, some clusters in our sample are not relaxed, that may cause the lack of universality we find.

This analysis stands out from the numerous observational results that claim significant discrepancies from simulations based on only one or a few observed clusters. We acknowledge that our sample size is still limited, but it allows us to discuss the issue of universality. Given that halos in numerical simulations which include baryons are still not readily mass produced with sufficient resolution, which makes the question of halo to halo scatter difficult to assess, it is not possible to decide if the indication of a non-universal model that we see is at odds with the numerical predictions, nor to assess how the central galaxy affects the simulated mass profiles.

We thank Rocco Piffaretti for sharing data with us and for comments on the manuscript, and Andrea Macciò for providing the mass–concentration relation of his numerical simulations. The Dark Cosmology Centre is funded by the Danish National Research Foundation. This publication makes use of data products from the Two Micron All Sky Survey, which is a joint project of the University of Massachusetts and the Infrared Processing and Analysis Center/California Institute of Technology, funded by the National Aeronautics and Space Administration and the National Science Foundation. This research has made use of the NASA/IPAC Extragalactic Database (NED) which is operated by the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration. Facility: XMM

REFERENCES

Ascasibar, Y., Yepes, G., Gottlöber, S., & Müller, V. 2004, MNRAS, 352, 1109
Austin, C. G., Williams, L. L. R., Barnes, E. I., Babul, A., & Dalcanton, J. J. 2005, ApJ, 634, 756
Binney, J., & Tremaine, S. 1987, Galactic Dynamics (Princeton, NJ: Princeton Univ. Press)
Blumenthal, G. R., Faber, S. M., Flores, R., & Primack, J. R. 1986, ApJ, 301, 27
Broadhurst, T., Takada, M., Umetu, K., Kong, X., Arimoto, N., Chiba, M., & Futamase, T. 2005, ApJ, 619, L143
Broadhurst, T., Umetu, K., Medezinski, E., Oguri, M., & Rephaeli, Y. 2008, ApJ, 685, L9
Bullock, J. S., Dekel, A., Kolatt, T. S., Kravtsov, A. V., Klypin, A. A., Porciani, C., & Primack, J. R. 2001a, ApJ, 555, 240
Bullock, J. S., Kolatt, T. S., Sigad, Y., Somerville, R. S., Kravtsov, A. V., Klypin, A. A., Primack, J. R., & Dekel, A. 2001b, MNRAS, 321, 559
Buote, D. A., Gastaldello, F., Humphrey, P. J., Zappacosta, L., Bullock, J. S., Brighten, F., & Mathews, W. G. 2007, ApJ, 664, 123
Cañaveral, & Fusco-Femiano, R. 1978, A&A, 70, 677
Comerford, J. M., Meneghetti, M., Bartelmann, M., & Schärmer, M. 2006, ApJ, 652, 39
Dalal, N., Lithwick, Y., & Kuhlen, M. 2010, ApJ, submitted (arXiv:1010.2539)
Dehnen, W., & McLaughlin, D. E. 2005, MNRAS, 363, 1057
Del Popolo, A. 2009, ApJ, 698, 2093
Einasto, Y. I. 1969, Astrophysics, 5, 67
El-Zant, A., Shlosman, I., & Hoffman, Y. 2001, ApJ, 560, 636
Ettori, S., Fabian, A. C., Allen, S. W., & Johnstone, R. M. 2002, MNRAS, 331, 635
Fukushige, T., Kawai, A., & Makino, J. 2004, ApJ, 606, 625
Gao, L., Navarro, J. F., Cole, S., Frenk, C. S., White, S. D. M., Springel, V., Jenkins, A., & Neto, A. F. 2008, MNRAS, 387, 536
Gilmore, G., Wilkinson, M. I., Wyse, R. F. G., Klyena, Y. T., Koch, A., Evans, N. W., & Grebel, E. K. 2007, ApJ, 663, 948
Gnedin, O. Y., Kravtsov, A. V., Klypin, A. A., & Nagai, D. 2004, ApJ, 616, 16
Graham, A. W., Merritt, D., Moore, B., Diemand, J., & Terzić, B. 2006, AJ, 132, 2701
Hansen, S. H., & Moore, B. 2006, New Astron., 11, 333
Hansen, S. H., & Piffaretti, R. 2007, A&A, 476, L37
Hansen, S. H., & Stadel, J. 2006, J. Cosmol. Astropart. Phys., JCAP05(2006)014
Hernquist, L. 1990, ApJ, 356, 359
Hjorth, J., & Williams, L. L. R. 2010, ApJ, 722, 851
Host, O., Hansen, S. H., Piffaretti, R., Morandi, A., Ettori, S., Kay, S. T., & Valdarnini, R. 2009, ApJ, 690, 358
Kaastra, J. S., et al. 2004, A&A, 413, 415
Klypin, A., Kravtsov, A. V., Bullock, J. S., & Primack, J. R. 2001, ApJ, 554, 913
Kochanek, C. S., et al. 2001, ApJ, 560, 566
Lahav, O., Bridle, S. L., Hobson, M. P., Lasenby, A. N., & Sodré, L. 2000, MNRAS, 315, L45
Lau, E. T., Kravtsov, A. V., & Nagai, D. 2009, ApJ, 705, 1129
Lewis, A. S., Buote, D. A., & Stocke, J. T. 2003, ApJ, 586, 135
Linoussis, M., et al. 2008, A&A, 499, 23
Longhetti, M., & Saracco, P. 2009, MNRAS, 394, 774
Macciò, A. V., Dutton, A. A., & van den Bosch, F. C. 2008, MNRAS, 391, 1940
Merritt, D., Graham, A. W., Moore, B., Diemand, J., & Terzić, B. 2006, AJ, 132, 2685
Moore, B., Governato, F., Quinn, T., Stadel, J., & Lake, G. 1998, ApJ, 499, L5
Nagai, D., Vikhlinin, A., & Kravtsov, A. V. 2007, ApJ, 655, 98
Navarro, J. F., Frenk, C. S., & White, S. D. M. 1997, ApJ, 490, 493
Navarro, J. F. et al. 2004, MNRAS, 349, 1039
Navarro, J. F. et al. 2010, MNRAS, 402, 21
Piffaretti, R., Jetzer, P., Kaarst, J. S., & Tamura, T. 2005, A&A, 433, 101
Piffaretti, R., & Valdarnini, R. 2008, A&A, 491, 71
Richard, J., Pei, E., Lumioussis, M., Jullo, E., & Kneib, J. P. 2009, A&A, 498, 37
Ryden, B. S., & Gunn, J. E. 1987, ApJ, 318, 15
Saha, P., & Read, J. I. 2009, ApJ, 690, 154
Salucci, P., Walter, F., & Borriello, A. 2003, A&A, 409, 53
Salvador-Solé, E., Manrique, A., González-Casado, G., & Hansen, S. H. 2007, ApJ, 666, 181
Sand, D. J., Treu, T., Ellis, R. S., Smith, G. P., & Kneib, J.-P. 2008, ApJ, 674, 711
Sand, D. J., Treu, T., Smith, G. P., & Ellis, R. S. 2004, ApJ, 604, 88
Schmidt, R. W., & Allen, S. W. 2007, MNRAS, 379, 209
Sérsic, J. L. 1963, Boletin de la Asociacion Argentina de Astronomia La Plata Argentina, 6, 41
Skrutskie, M. F., et al. 2006, AJ, 131, 1163
Sommer-Larsen, J., & Limousin, M. 2010, MNRAS, 408, 1998
Spekkens, K., Giovanelli, R., & Haynes, M. P. 2005, AJ, 129, 2119
Taylor, J. E., & Navarro, J. F. 2001, ApJ, 563, 483

Trotta, R. 2008, Contemp. Phys., 49, 71
Voigt, L. M., & Fabian, A. C. 2006, MNRAS, 368, 518
Zait, A., Hoffman, Y., & Shlosman, I. 2008, ApJ, 682, 835
Zappacosta, L., Buote, D. A., Gastaldello, F., Humphrey, P. J., Bullock, J., Brighenti, F., & Mathews, W. 2006, ApJ, 650, 777
Zhao, D. H., Jing, Y. P., Mo, H. J., & Börner, G. 2003, ApJ, 597, L9
Zhao, H. 1996, MNRAS, 278, 488