RESEARCH ARTICLE

Diabetes primary prevention program: New insights from data analysis of recruitment period

Juan J. Gagliardino1 | Jorge F. Elgart1 | Marcelo Bourgeois2 | Graciela Etchegoyen2 | Gabriel Fantuzzi1 | Matías Ré1 | Juan P. Ricart1 | Silvia García1 | Cecilia Giampieri1 | Lorena González1 | Florencia Suárez-Crivaroc | Peter Kronsbein4 | Julieta M. Angelini5 | Camilo Martínez5 | Jorge Martínez5 | Alberto Ricart6 | Eduardo Spinedi1

1 Faculty of Medical Sciences (UNLP), CENEXA Center for Experimental and Applied Endocrinology (UNLP-CONICET La Plata), La Plata, Argentina
2 Chair of Epidemiology INUS Center, Faculty of Medical Sciences (UNLP), La Plata, Argentina
3 Laboratory, Secretariat of Health and Social Medicine, Municipality of La Plata, La Plata, Argentina
4 Faculty of Nutrition, Food and Hospitality Sciences, Niederrhein University of Applied Sciences, Mönchengladbach, Germany
5 Faculty of Medical Sciences, National University of La Plata (UNLP), La Plata, Argentina
6 Faculty of Humanities and Cs of Education (UNLP), IdHCS Institute of Research in Humanities and Social Sciences (UNLP-CONICET La Plata), La Plata, Argentina

Correspondence
Juan J. Gagliardino, Facultad de Ciencias Médicas UNLP, CENEXA (UNLP-CONICET La Plata), 60 y 120-4to Piso, 1900 La Plata, Argentina. Email: cenexaar@yahoo.com.ar

Funding information
Ministry of Science, Technology and Productive Innovation (MINCYT), Grant/Award Number: PID-2012-0051; National Scientific and Technical Research Council (CONICET); the Sanofi Argentina Company

Abstract

Background: Primary Prevention of Diabetes Program in Buenos Aires Province evaluates the effectiveness of adopting healthy lifestyle to prevent type 2 diabetes (T2D) in people at high risk of developing it. We aimed to present preliminary data analysis of FINDRISC and laboratory measurements taken during recruitment of people for the Primary Prevention of Diabetes Program in Buenos Aires Province in the cities of La Plata, Berisso, and Ensenada, Argentina.

Methods: People were recruited through population approach (house-to-house survey by FINDRISC in randomized areas) and opportunistic approach (FINDRISC completed by participants during consultations for nonrelated prediabetes/diabetes symptoms in public and private primary care centres of cities involved). In people with FINDRISC score ≥ 13 points, we evaluated blood concentrations of HbA1c, creatinine, lipids, and an oral glucose tolerance test (OGTT).

Results: Approximately 3415 individuals completed the FINDRISC populational survey and 344 the opportunistic survey; 43% of the 2 groups scored over 13 points; 2.8 and 75.4% of them, respectively, took the prescribed OGTT. Approximately 53.7% of the OGTT showed normal values and 5.2% unknown T2D. The remaining cases showed 69.5% impaired fasting glucose, 13.6% impaired glucose tolerance, and 16.9% both impairments. HbA1c values showed significant differences compared with normal glucose tolerance (4.96 ± 0.43%), prediabetes (5.28 ± 0.51%), and T2D (5.60 ± 0.51%). Participants with prediabetes showed a predominant increase in low-density lipoprotein-cholesterol values. In prediabetes, >50% showed insulin resistance.

Conclusions: People with prediabetes/T2D had dyslipidemia associated with insulin resistance, which promotes the development of T2D and cardiovascular disease. Thus, it merits its appropriate treatment.

KEYWORDS
diabetes primary prevention, dyslipidemia in prediabetes, FINDRISC score, prediabetes

1 | INTRODUCTION

Diabetes prevalence in Argentina grew from 8.4 to 9.8% between 2005 and 2013, mainly conditioned by type 2 diabetes (T2D). The frequent association of T2D with other cardiovascular risk factors facilitates development/progression of chronic complications responsible for their high morbidity and mortality and economic cost. Type 2 diabetes develops in people with genetic predisposition exposed to unhealthy diets and physical inactivity; therefore, adoption of healthy lifestyles is the most effective way to prevent the disease, a concept supported by the successful reduction, up to 58%, of T2D development through implementation of primary prevention programmes in different countries and ethnic groups. Based on such experience, there is a strong European movement towards promoting diabetes prevention programme implementation.
in their region that even has developed a tool kit to use for that purpose.6 Despite strong evidence of the preventive effectiveness of lifestyle changes in people at high risk of developing T2D, before implementing such programmes at national level, it is necessary to verify how they work in our environment, identify potential difficulties/barriers to preventive goals to avoid or neutralize them, and estimate the programme’s cost.

Consequently, and given the lack of national evidence, we initiated the Pilot Program for Primary Prevention of Diabetes of Buenos Aires Province (PPDBA), aiming to evaluate the effectiveness of healthy lifestyle adoption on the clinical manifestation of T2D in people at increased risk of developing the disease. This report shows preliminary analysis of data obtained during recruitment of people for the PPDBA in 3 cities of Buenos Aires province.

2 MATERIALS AND METHODS

The characteristics of the PPDBA were previously reported.7 Briefly, it is a prospective, randomized cohort study to evaluate the benefits of adopting healthy lifestyles (healthy meal plan and regular practice of physical activity) on the transition from prediabetes (impaired glucose tolerance [IGT], impaired fasting glycaemia [IFG], or both) to T2D. This study recruits men and women between 45 and 75 years of age with prediabetes according to the American Diabetes Association (ADA) and European Association for the Study of Diabetes (EASD)8 in 3 municipalities of Buenos Aires province (La Plata, Berisso, and Ensenada). For recruitment, we used 2 different procedures:

1. **Populational approach**: We randomly selected census areas in each municipality as explained in the previous publication;7 in these areas, previously trained students of the last year of the School of Medicine of La Plata National University visited homes to administer the Finnish Diabetes Risk Score (FINDRISC).9

2. **Opportunistic approach**: This scheme was used previously for prediabetes and cardiovascular risk factor detection10; in our case, people visiting a physician’s office for reasons other than prediabetes/diabetes filled out the FINDRISC. To facilitate this approach, we invited physicians in primary care centres of the participant municipalities and in private groups in La Plata. Consequently, the sample included persons from both public health and social security sectors.

In both approaches, people with a FINDRISC score \(\geq 13 \) points (cut-off value indicated by Prof Jakko Tuomilho, PPDBA advisor) were invited to receive free of charge an oral glucose tolerance test (OGTT) following WHO recommendations.11 In the OGTT fasting blood sample, we also measured concentrations of HbA1c (by high-performance liquid chromatography technique), creatinine, total cholesterol, high-density lipoprotein (HDL)-cholesterol, low-density lipoprotein (LDL)-cholesterol, and triglyceride by using commercial kits. All blood samples were processed in a single laboratory (CentraLab, CABA, Argentina) within 24 hours after extraction.

People with normal glucose tolerance (NGT) were advised to repeat the OGTT in 1 year, whereas those with a diagnosis of T2D were referred to their own physician for appropriate treatment. Those who presented prediabetes (IFG, IGT, or both) and met the PPDBA inclusion criteria were invited to participate in the PPDBA after acceptance and signing of the informed consent. Thereafter, these people were randomly assigned to one of our 2 study groups (intensified and self-administered intervention) as previously reported.7

2.1 Ethical issue

The study protocol was analysed and approved by the Bioethical Committee of the National University of La Plata and the Central Ethics Committee of the Ministry of Health of the province of Buenos Aires. The study was developed according to the Good Practice Recommendations (International Harmonization Conference) and the ethical guidelines of the Helsinki Declaration. All subjects gave their written informed consent to participate in the study, and this was signed before blood samples were collected.

2.2 Statistical analysis

With the FINDRISC and laboratory data collected during the early recruitment period (2014-2015), a descriptive and inferential statistical analysis was performed by using SPSS (Statistical Package for Social Sciences), version 15.0 for Windows (SPSS Inc, Chicago, IL, USA). Continuous variables are presented as means and standard deviations and categorical variables as proportions. Differences in continuous variables were assessed by using parametric and nonparametric tests according to the normal distribution of the variables (Kolmogorov-Smirnoff test), using the \(\chi^2 \) test to evaluate the differences in proportions. Differences with \(P \) values <.05 were considered significant.

3 RESULTS

Finnish Diabetes Risk Score: 3415 questionnaires were completed with the populational approach and 344 with the opportunistic one. Their results showed a normal distribution with 43% of participants scoring \(\geq 13 \) points; 23% and 3%, respectively, had high and very high scores of risk (FINDRISC criteria)9 of developing T2D (Figure 1). Whereas in the populational approach, only 2.8% of people prescribed the OGTT did it, 75.4% of people in the opportunistic approach in the same condition took the OGTT.

Comparing FINDRISC results from people below and above 13 points, we found an asymmetric percentage distribution of each of the 8 questions within the 2 groups: people in the latter group had a higher percentage of physical inactivity, medication taken to control blood pressure, age (were older), BMI corresponding to overweight/obesity, waist circumference above the normal cut-off value, low daily consumption of fruits and vegetables, and history of hyperglycaemia.

The largest percentage corresponded to waist circumference (81%) and physical inactivity (74%), while history of hyperglycaemia was recorded only in 20% of the this group.
According to the OGTT results and cut-off values suggested by the ADA-EASD, our sample included 3 categories of people: (1) with NGT, (2) with prediabetes (IFG/IGT or both), and (3) with undiagnosed/untreated T2D (Figure 2). Although we only prescribed OGTT for people with a score ≥ 13, 53.7% of them showed normal results.

Figure 2 also shows that 5.2% of the individuals evaluated had unknown/undiagnosed and consequently untreated T2D. Further data analysis showed that in 63% of cases of T2D and in 62% of prediabetes identified, diagnosis was based on the fasting blood glucose value of the OGTT.

HbA1c values recorded to date showed significant differences when comparing the 3 following groups: people with NGT (4.96 ± 0.43%), with prediabetes (5.28 ± 0.51%), and with T2D (5.60 ± 0.51%; Figure 3). Participants with prediabetes and T2D showed a similar abnormal lipid profile characterized by total cholesterol, LDL-c, and triglyceride levels above those recommended by international guidelines (Table 1). Increased LDL-c levels were the most frequently detected change in the prediabetes group, this frequency comparable with that observed in people with T2D.

We did not measure insulinaemia; therefore, we have no direct indicator of insulin resistance (IR) in people with prediabetes. We instead used 2 indirect measures: a clinical (waist circumference) and a laboratory test (triglyceride/HDL-c ratio) using cut-off values validated in our population. According to waist circumference (men > 102 and women > 88 cm), 78% of participants with prediabetes had IR, whereas that figure was 51% for the triglyceride/HDL-c ratio (values >3.5 and >2.5 for men and women, respectively). Thus, independent of the index applied, more than half of our prediabetes population displayed IR.

4 | DISCUSSION

Current PPDBA data show barriers to the participants’ recruitment, evidence of diabetes diagnostic inefficiency in our care system, and some novel data.

While the FINDRISC data show similar results for the 2 collection approaches, adherence to OGTT prescription was significantly higher with the opportunistic approach (75.4 vs 2.8%). Adherence failure could be attributed to (a) subjectively “healthy” persons reject the diagnosis of a serious but asymptomatic disease after a medical student asked 8 questions; (b) inadequate population and health system promotion of preventive practices considering the absence of symptoms (especially pain); and (c) the subjective inclination to follow their physician’s prescriptions more readily than those of an unfamiliar health agent. Therefore, the opportunistic rather than the populational approach is more advisable for use in similar studies implemented in our culture.

Finnish Diabetes Risk Score, with low cost and easy performance, decreased the prescription of OGTT (57%), thereby optimizing resources. Although the weakness of this assumption is that the
FINDRISC has not yet been validated in our local population, it has been used in Caucasian, Spanish, and other Latin American populations; these studies also yielded data comparable with those currently recorded. In any case, the cut-off value currently used rendered 53.7% of normal OGTT; thus, it would require an adaptation of this value to our population to optimize outcomes. This assumption is supported by some European authors’ conclusions that the FINDRISC is currently the best available tool for use in clinical practice being, the FINDRISC with its current score is still a useful and effective tool at the primary care level.

Another important aspect of our FINDRISC data analysis is that family history of diabetes, which represents the effect of inheritance of prediabetes/T2D development, is reported by people at high risk in a markedly lower proportion than waist circumference, blood pressure, and frequency of dyslipidemia and metabolic modulators released by physical activity. These data support the concept that epigenetic alterations facilitate the development of prediabetes and its progression to T2D.

The 3 different prediabetes stages identified by OGTT (IFG, IGT, and both) have a different annual transition rate to T2D: 12% for the third stage and 4 and 6% for the other 2, respectively. Therefore, the implementation of preventive strategies is correspondingly more or less imperative. In our case, most people with dysglycaemia presented IFG (69.5%); a finding also reported by other authors who showed that these people have significantly larger values of waist circumference, blood pressure, and frequency of dyslipidemia and cardiovascular disease (CVD). It has been also reported that they have already lost 50% of their β-cell mass. Thus, when planning to implement a primary prevention intervention and having low availability of human and economic resource, systematic measurement of fasting blood glucose might be an incomplete but still reasonable approach to identify people with prediabetes.

Using the sequence FINDRISC-OGTT, we identified 5% of people with T2D who were unaware of their disease and untreated; these results could suggest the advisability of systematic prescription of OGTT for diabetes detection. However, 63% of people with undiagnosed with T2D and 62% of those with prediabetes were identified by fasting glycaemia values. Therefore, ongoing awareness of health care team members concerning the importance of careful analysis of fasting blood glucose values by searching for diagnostic values recommended by national and international guidelines could overcome the problem. The importance of this awareness is further supported by the report that late diagnosis increases the risk of cardiovascular morbidity and mortality more than late treatment.

Based on the recommendations of the Experts Committee convened by ADA, EASD, and International Diabetes Federation to redefine diabetes diagnosis by HbA1c values, different countries established their own cut-off values for prediabetes and T2D diagnosis. Current HbA1c values result from the first local study of this type.

Participants with prediabetes and T2D displayed similar dyslipidemia characterized by abnormal changes in all lipid fractions; an increase in the LDL-c fraction was the most frequently detected, indicating a high risk for developing atherosclerotic CVD. Thus, prediabetes stage is a risk for developing T2D but also for CVD. Because we found no marked differences between the frequency of increased LDL-c in people with prediabetes and T2D, its presence in the former stage could be more a cause than a consequence of β-cell dysfunction. Identification of plasma lipoprotein receptor in pancreatic β cells involved in their binding/processing and the report that LDL particles reduce insulin mRNA levels and β-cell proliferation and induce a dose-dependent increase in their apoptotic rate support this assumption. Conversely, HDL-c particles antagonize the proapoptotic effect of LDL-c. Therefore, the deleterious effect of increased LDL-c on β-cell function/mass could be potentiated by the simultaneous decrease in HDL-c concentration.

Finally, using 2 indirect measurements (waist circumference and TG/HDL-c ratio), we demonstrated that most people with prediabetes have IR.

We recognize that although our evidence is clear, it is based on certain circumstances and on a low number of cases. However, its...
statistical significance suggests that it is unlikely to be the result of chance.

In conclusion, early results of PPDBA implementation demonstrate that (1) sequential performance of FINDRISC-OGTT is an effective strategy to identify people with prediabetes or T2D who were unaware of their disease; (2) people with prediabetes present a state of IR associated with dyslipidemia that favours development of T2D and CVD; thus, this is a stage of disease rather than predisease stage that merits its immediate treatment; (3) in our media, and probably in other ones with similar socioeconomic characteristics, the opportunistic approach implemented through primary care physicians was a more effective strategy to identify people with prediabetes; (4) health authorities must be aware of prediabetes and T2D underestimation occurring at the primary care level to correct this deficiency; and (5) final PPDBA data will more accurately define national HbA1c cut-off values for prediabetes and T2D diagnosis. Our data contribute to develop effective strategies to decrease the diabetes burden.

ACKNOWLEDGEMENTS

The authors thank Adriana Di Maggio, Lucas Bertulo, and Marcelo Lopez for their collaboration in the logistics and communication of the PPDBA, the health care teams, the authorities of the Health Secretariats of La Plata, Berisso and Ensenada cities, and the Health Ministry of Buenos Aires Province for their valuable cooperation. GF, MR, and JPR are fellows/theses of MINCYT (PID-2012-0051). LG is a PhD fellow from CONICET. JJG, GE, JFE, and ES are CONICET career researchers.

FUNDING

The PPDBA is supported by PID-2012-0051, which shares contributions from the Ministry of Science, Technology and Productive Innovation (MINCYT); National Scientific and Technical Research Council (CONICET); and the Sanofi Argentina Company.

CONFLICT OF INTEREST

None of the authors has any conflict of interest related to this project.

ORCID

Jorge F. Elgart http://orcid.org/0000-0002-6101-1219

REFERENCES

1. Galante M, Konfino J, Ondarsuhu D, et al. Principales resultados de la tercera Encuesta Nacional de Factores de Riesgo de enfermedades no transmisibles en Argentina. Rev Argent Salud Pública. 2015;6(24):22-29.
2. Morasanutto A, Berto P, Lapatiello S, et al. Major complications have an impact on total annual medical costs of diabetes: results of a database analysis. J Diabetes Complications. 2006;20:165-169.
3. Elgart JF, Astezazarán S, De la Fuente J, Camilucci C, Brown JB, Gagliardino JJ. Direct and indirect costs associated to type 2 diabetes and its complications measured in a social security institution of Argentina. Int J Public Health. 2014;59(5):851-857.
4. DeFronzo RA. Pathogenesis of type 2 diabetes mellitus. Med Clin North Am. 2004;88:787-835.
5. Baker MK, Simpson K, Lloyd B, Bauman AE, Fiatarone Singh MA. Behavioral strategies in diabetes prevention programs: a systematic review of randomized controlled trials. Diabetes Res Clin Pract. 2011;91:1-12.
6. Lindström J, Neumann A, Sheppard KE, et al. Take action to prevent diabetes—the IMAGE toolkit for the prevention of type 2 diabetes in Europe. Horm Metab Res. 2010;42(Suppl 1):S37-555.
7. Gagliardino JJ, Etchegoyen G, Bourgeois M, et al. Prevención primaria de diabetes tipo 2 en Argentina: estudio piloto en la provincia de Buenos Aires. Rev Argent Endocrinol Metab. 2016;53:135-141.
8. Inzucchi SE, Bergenstal RM, Buse JB, et al. Management of hyperglycemia in type 2 diabetes: a patient-centered approach. Position statement of the American Diabetes Association (ADA) and the European Association for the Study of Diabetes (EASD). Diabetes Care. 2012;35:1364-1379.
9. Saaristo T, Peltonen M, Lindström J, et al. Cross-sectional evaluation of the Finnish Diabetes Risk Score: a tool to identify undetected type 2 diabetes, abnormal glucose tolerance and metabolic syndrome. Diab Vasc Dis Res. 2005;2(2):67-72.
10. Zhang Y, Hu G, Zhang L, Mayo R, Chen L. A novel testing model for opportunistic screening of pre-diabetes and diabetes among U.S. adults. PLoS One. 2015;10(3):e0120382.
11. WHO Consultation. Definition, diagnosis and classification of diabetes mellitus and its complications. Part 1: diagnosis and classification of diabetes mellitus. Geneva: World Health Organisation; 1999. Report No 99.2.
12. Alberti KG, Eckel RH, Grundy SM, et al. International Diabetes Federation Task Force on Epidemiology and Prevention; National Heart, Lung, and Blood Institute; American Heart Association; World Heart Federation; International Atherosclerosis Society; International Association for the Study of Obesity. Harmonizing the metabolic syndrome: a joint interim statement of the International Diabetes Federation Task Force on Epidemiology and Prevention; National Heart, Lung, and Blood Institute; American Heart Association; World Heart Federation; International Atherosclerosis Society; and International Association for the Study of Obesity. Circulation 2009; 120(16):1640-1645.
13. Salazar MR, Carbajal HA, Espeche WG, et al. Comparison of the abilities of the plasma triglyceride/high-density lipoprotein cholesterol ratio and the metabolic syndrome to identify insulin resistance. Diab Vasc Dis Res. 2013;10(4):346-352.
14. Barengo NC, Tamayo DC, Tono T, Tuomilehto J. A Colombian diabetes risk score for detecting undiagnosed diabetes and impaired glucose regulation. Prim Care Diabetes. 2016; pii: S1751-9918(16)30100-0. https://doi.org/10.1016/j.pcd.2016.09.004.
15. Schwarz PE, Li J, Lindstrom J, Tuomilehto J. Tools for predicting the risk of type 2 diabetes in daily practice. Horm Metab Res. 2009;41(2):86-97.
16. Reddy MA, Zhang E, Natarajan R. Epigenetic mechanisms in diabetic complications and metabolic memory. Diabetologia. 2015;58:443-455.
17. Rönn T, Ling C. DNA methylation as a diagnostic and therapeutic target in the battle against type 2 diabetes. Epigenomics. 2015;7:451-460.
18. Gerstein HC, Santaguida P, Raina P, et al. Annual incidence and relative risk of diabetes in people with various categories of dysglycemia: a systematic overview and meta-analysis of prospective studies. Diabetes Res Clin Pract. 2007;78(3):305-312.
19. Sinnott M, Kinsley BT, Jackson AD, et al. Fasting plasma glucose as initial screening for diabetes and prediabetes in Irish adults: the Diabetes Mellitus and Vascular Health Initiative (DMVhi). PLoS One. 2015;10(4):e0122704.
20. Butler AE, Janson J, Bonner-Weir S, Ritzel R, Rizza RA, Butler PC. Cell deficit and increased-cell apoptosis in humans with type 2 diabetes. Diabetes. 2003;52:102-110.
21. Herman WH, Ye W, Griffin SJ, et al. Early detection and treatment of type 2 diabetes reduce cardiovascular morbidity and mortality: a simulation of the results of the Anglo-Danish-Dutch Study of Intensive Treatment in People With Screen-Detected Diabetes in Primary Care (ADDITION-Europe). Diabetes Care. 2015;38:1449-1455.
22. International expert committee report on the role of the A1C assay in the diagnosis of diabetes. Diabetes Care. 2009;32:1327-1334.
23. DeFronzo RA, Abdul-Ghani M. Assessment and treatment of cardiovascular risk in prediabetes: impaired glucose tolerance and impaired fasting glucose. *Am J Cardiol*. 2011;108(suppl):3B-24B.

24. Kruit JK, Brunham LR, Verchere CB, Hayden MR. HDL and LDL cholesterol significantly influence beta-cell function in type 2 diabetes mellitus. *Curr Opin Lipidol*. 2010;21:178-185.

25. Abderrahmani A, Niederhauser G, Favre D, et al. Human high-density lipoprotein particles prevent activation of the JNK pathway induced by human oxidised low-density lipoprotein particles in pancreatic beta cells. *Diabetologia*. 2007;50(6):1304-1314.

How to cite this article: Gagliardino JJ, Elgart JF, Bourgeois M, et al. Diabetes primary prevention program: New insights from data analysis of recruitment period. *Diabetes Metab Res Rev*. 2018;34:e2943. https://doi.org/10.1002/dmrr.2943