Gamma-Ray Astronomy around 100 TeV with a large Muon Detector operated at Very High Altitude

G. Di Sciascio1, T. Di Girolamo2, E. Rossi1, L. Saggese2

1 INFN, sez. di Napoli, Italy
2 Dip. Scienze Fisiche dell’Università di Napoli and INFN, sez. di Napoli, Italy
giuseppe.disciascio@na.infn.it

Abstract: Measurements at 100 TeV and above are an important goal for the next generation of high energy γ-ray astronomy experiments to solve the still open problem of the origin of galactic cosmic rays. The most natural experimental solution to detect very low radiation fluxes is provided by the Extensive Air Shower (EAS) arrays. They benefit from a close to 90\% duty cycle and a very large field of view (\sim2 sr), but the sensitivity is limited by their angular resolution and their poor cosmic ray background discrimination. Above 10 TeV the standard technique for rejecting the hadronic background consists in looking for "muon-poor" showers.

In this paper we discuss the capability of a large muon detector ($A_{\mu}=2500$ m2) operated with an EAS array at very high altitude (>4000 m a.s.l.) to detect γ-ray fluxes around 100 TeV. Simulation-based estimates of energy ranges and sensitivities are presented.

Introduction

The recent TeV results of the HESS experiment suggest the existence of a population of galactic γ-ray sources whose emission extends beyond 10 TeV in the 5 to 15\% of Crab flux range (for $E > 1$ TeV). These sources, associated with nearby shell-type or plerionic SNRs, the most probable factories of galactic cosmic rays, can be studied detecting gamma-rays (and neutrinos) emission in the VHE/UHE energy domain. Therefore, a detector capable to perform a continuous all-sky survey at a level of about a percent of the Crab flux up to 100 TeV is needed. The search and study of "Cosmic PeVatrons" and their surrounding regions is one of the main scientific issues to be addressed by the next generation of ground-based γ-ray astronomy detectors [1].

Current experiments are not able to reach 100 TeV because their limited collection area makes the required exposures too long. Extrapolating the galactic source spectra measured by HESS, it appears that future experiments need to achieve at least 100 km2·h in order to obtain meaningful measurements at 100 TeV. The most natural experimental solution that provides such a large exposure is given by the EAS arrays observing each source for \sim1500 h/year. As an example, an experiment like ARGO-YBJ already results in an exposure of \sim15 km2·h/year, with an angular resolution (\sim0.2$^\circ$ at 10 TeV) near the best value attainable by a sampling array. In addition, the EAS arrays are the only ground-based detectors allowing simultaneous and continuous coverage of a significant fraction of the sky (about all that overhead). Their large field of view and high duty cycle (>90 \%) suit to perform a γ-ray sources population survey at VHE/UHE energies. But more important is their unique potential that allows to have an effective monitoring of the γ-ray activity of a large number of highly variable sources like blazars and microquasars, as well as the possibility of independent detection and study of GRBs [1]. In addition, the recent observations of unidentified extended sources from the Galactic plane [2] and in the Cygnus region [3] reported by the Milagro Collaboration demonstrate the strength of EAS arrays in finding diffuse and extended sources. Therefore, the discovery science could be a feature of EAS arrays.
The limited sensitivity in detecting γ-ray point sources, characteristic of EAS experiments, is mainly due to their poor gamma/hadron separation power, limited angular resolution and high energy threshold. Exploiting a full coverage approach at very high altitude leads to the improvement of the angular resolution to ≈0.2° and to the reduction of the energy threshold well below the TeV region. The standard technique to perform a gamma/hadron discrimination above 10 TeV with EAS arrays consists in looking for "muon-poor" showers.

In this paper we discuss the capability of a large muon detector ($A_\mu=2500$ m2) operated with an EAS array at very high altitude (>4000 m a.s.l.) to detect γ-ray fluxes up to 100 TeV. An estimation based on the simulation of energy ranges and sensitivities is reported.

γ-hadron separation

We have simulated, via the Corsika/QGSJet code [4], proton- and γ-induced events with energy spectra [5, 6] ranging from 0.1 TeV to 1 PeV at an observational level of 4300 m asl (606 g/cm2), corresponding to the YangBaJing Cosmic Ray Laboratory (Tibet, P.R. China). Two EAS arrays there are located: the conventional Tibet ASγ experiment and the full coverage detector ARGO-YBJ. From the study of the shower phenomenology it results:

1. The muon content of proton-induced showers exceeds, as expected, that of γ showers by about two orders of magnitude.
2. The muon component in γ-induced events has a flatter lateral distribution for core distances smaller than a few tens of meters.
3. The number of low energy e.m. particles (e^\pm, γ) in γ showers exceeds the corresponding number in proton showers (see Fig. 1).
4. Inside the core region ($R<20$ m), for particle energies above about 400 MeV, the number of e^\pm and γ in proton showers is higher that in γ showers.
5. Outside the core region ($R>20$ m) the number of e.m. particles in proton showers starts exceeding that in γ showers at lower energies (about 100 MeV). For $E>1$ GeV the two components differ by more than 1 order of magnitude: high energy e.m. particles outside the core strongly indicate proton-induced showers. This number is comparable to the number of muons.

In addition, the high energy tail of secondary e.m. particles in proton-induced showers is responsible for non-uniformity in the spatial distribution of shower particles. Consequently, an appropriate muon detector operated outside the shower core region ($R>30$ m), evaluating all available high energy ($E>300$ MeV) secondary components of air showers (μ, e^\pm, γ), allows a γ/hadron discrimination which goes considerably beyond ordinary muon counting [7]. The layout for the muon detector investigated in this preliminary study consists of 4 detectors each large 24×26 m2 (total area 2500 m2) symmetrically distributed on the boundary of a 150×150 m2 large EAS array (for example, out of the four sides of the main building of the ARGO-YBJ experiment [8]). The envisaged de-

![Figure 1: Integral energy spectra of electromagnetic particles (e^\pm, γ) produced at 4300 m asl by proton- (dotted red lines) and γ-induced (full black lines) showers in two different distance ranges from the core.](image-url)
Figure 2: Q-factor vs. minimum multiplicity for different cuts (2, 3, 4, 5 μ). Only muon detectors outside the shower core region (R > 30 m) have been taken into account.

Sensitivity to γ-ray sources

In order to evaluate the Minimum Detectable Flux (MDF) improvement due to the calculated Q-factors, we considered as a reference sensitivity the ARGO-YBJ MDF calculated for internal events, at 5 standard deviations in one year of observation for a Crab-like source [8] (red curve of Fig. 3). The results of these calculations with procedure (2) are shown in Fig.3 by the blue curve. For a conservative estimation of the MDF we exclude cuts at very low (0, 1 and 2) muon content, where there is a potential background from mismatched events, and we consider that only the showers with <3 muons on the detectors are due to a γ-ray. At 30 (80) TeV the improvement in the MDF due to the rejection of showers with \geq 3 detected muons, is a factor 25 (100), because at sufficiently high energy the γ-ray measurement is background-free.

The rejection power for diffuse γ-rays

The detection of an isotropic diffuse flux of UHE photons depends not only on the size and the sophistication of the detectors but also on the properties of the γ-ray showers. In fact, if these events have the same muon content as hadronic showers the detection of any diffuse γ-ray fluxes would be impossible. In order to evaluate the rejection power for proton-induced showers we have studied how frequently hadronic showers fluctuate in such a way to have a low muon content indistinguishable from γ-induced events. In Fig.4 we show the probability that a photon or proton shower generates a given number of muons on the simulated detector, assuming for both primaries the same spectral index -2.7. We note that the fluctuations about the mean values do not follow the Poisson statistics. The inclusive probability distributions are reported in the lower panel of the figure. For proton (photon) showers the histograms bars in the in-
Figure 3: Minimum Detectable Flux (1 year, 5σ) compared with the Crab spectrum (black line). The red curve shows the ARGO-YBJ sensitivity, the blue one the MDF due to a 2500 m² µ-detector.

Figure 4: (a) Probability that a photon or proton shower generates a given number of muons. (b) Inclusive probability for the histogram shown in (a).

N_{μ}	<3	<4	<5
Fraction of γ-ray retained	85%	94%	97%
Background level	10^{-5}	$6\cdot10^{-5}$	$2\cdot10^{-4}$

Table 1:

Conclusions

Recent discoveries in the TeV γ-ray astronomy provide strong motivations for extending the measurements to energies >100 TeV where γ-ray emission models can be better discriminated. EAS arrays naturally provide large exposures allowing simultaneous and continuous coverage of ~2 sr without facing serious technological challenges. A suitable large muon detector operated with an EAS array at very high altitude permits a γ measurement essentially background-free for $E>50$ TeV.

References

[1] F. Aharonian, astrop-ph/0511139.
[2] R. Atkins et al., Phys. Rev. Lett. 95 (2005) 251103.
[3] A.A. Abdo et al., ApJ 658 (2007) L33.
[4] D. Heck et al., Report FZKA 6019 Forschungszentrum Karlsruhe (1998).
[5] F. Aharonian et al., astro-ph/0407118.
[6] Gaisser, T.K. et al., Proc. 27th ICRC, Hamburg (2001) p. 1643.
[7] W. Rhode et al., NIM A378 (1996) 399.
[8] http://argo.na.infn.it
[9] T.K. Gaisser et al., Phys. Rev. D43 (1991) 314.
This figure "logoback.png" is available in "png" format from:

http://arXiv.org/ps/0710.1941v1