The two paralogous kiwellin proteins KWL1 and KWL1-b from maize are structurally related and have overlapping functions in plant defense

Florian Altegoer1*, Paul Weiland1, Pietro Ivan Giammarinaro1, Sven Andreas Freibert2, Lynn Binnebels1, Xiaowei Han3, Alexander Lepak1, Regine Kahmann3, Marcus Lechner1, Gert Bange1*

1Philipps-University Marburg, SYNMIKRO Research Center & Dep. of Chemistry, Hans-Meerwein-Strasse, C07, 35043 Marburg, Germany
2Philipps-University Marburg, Institute for Cytobiology and Cytopathology, 35043 Marburg, Germany
3Max Planck Institute for Terrestrial Microbiology, Marburg, Germany.

*Corresponding authors: Florian Altegoer, Gert Bange
E-mails: florian.altegoer@synmikro.uni-marburg.de, gert.bange@synmikro.uni-marburg.de

Running title: Structural and functional analysis of a novel Kiwellin

Keywords: X-ray crystallography, structure-function, plant defense, fungi, carbohydrate-binding protein, KWL1-b, Zea mays, Ustilago maydis, chorismate mutase, salicylic acid pathway

ABSTRACT
Many plant-pathogenic bacteria and fungi deploy effector proteins that down-regulate plant defense responses and reprogram plant metabolism for colonization and survival in planta. Kiwellin (KWL) proteins are a widespread family of plant-defense proteins that target these microbial effectors. The KWL1 protein from maize (corn, Zea mays) specifically inhibits the enzymatic activity of the secreted chorismate mutase Cmu1, a virulence-promoting effector of the smut fungus Ustilago maydis. Besides KWL1, 19 additional KWL paralogs have been identified in maize. Here, we investigated the structure and mechanism of the closest KWL1 homolog, KWL1-b (ZEAMA_GRMZM2G305329). We solved the Cmu1–KWL1-b complex to 2.75 Å resolution, revealing a highly symmetric Cmu1–KWL1-b heterotetramer in which each KWL1-b monomer interacts with a monomer of the Cmu1 homodimer. The structure also revealed that the overall architecture of the heterotetramer is highly similar to that of the previously reported Cmu1–KWL1 complex. We found that upon U. maydis infection of Z. mays, KWL1-b is expressed at significantly lower levels than KWL1 and exhibits differential tissue-specific expression patterns. We also show that KWL1-b inhibits Cmu1 activity similarly to KWL1. We conclude that KWL1 and KWL1-b are part of a redundant defense system that tissue-specifically targets Cmu1. This notion was supported by the observation that both KWL proteins are carbohydrate-binding proteins with distinct and likely tissue-related specificities. Moreover, binding by Cmu1 modulated the carbohydrate-binding properties of both KWLs. These findings indicate that KWL proteins are part of a spatiotemporally coordinated, plant-wide defense response comprising proteins with overlapping activities.

INTRODUCTION
Addressing the food and energy demand of a constantly growing world population has become a major challenge of current generations. Crop yield and quality are directly affected by fungal pathogens causing large losses in the five most important crops (1). In the case of maize plants (Zea mays), pathogens cause an annual loss of approximately nine percent (2). Among these is the smut fungus Ustilago maydis that causes corn smut in maize leading to the formation of large tumor-like structures on the plant. The infection process is accompanied by the secretion of a plethora of fungal effector proteins that suppress defense responses and modulate the metabolism of the maize plant (3, 4). Expression and activity of effectors is regulated in a spatiotemporal manner and requires universal pathogenicity factors during plant penetration in the early stages, while more specific effectors modulate metabolic processes in different tissues in the later stages of infection (5, 6). In infected maize leaves, effector expression is differentially regulated depending on the infected plant tissue (7), which allows addressing the spatiotemporal...
regulation of the *U. maydis* effectors as well as the respective plant response (5, 8). During maize colonization, the secreted chorismate mutase 1 (Cmu1) is one example of a well-characterized and highly abundant effector that confers its activity in the cytoplasm of the host cell (9). While housekeeping chorismate mutases (CMs) are allosterically regulated by either tryptophan or tyrosine, Cmu1 lacks this allosteric regulation and constantly converts chorismate to prephenate and by this is preventing production of salicylic acid, an important signal in the immune response of the plant (9, 10). Cmu1 is a dual-function effector, which when present in the apoplast interacts with the secreted maize protein kiwellin 1 (KWL1). KWL1 has been shown to effectively inhibit Cmu1 activity by blocking the active site of the enzyme (10). Silencing of the KWL1 gene elevated virulence, supporting a function of KWL1 as a plant-defense protein. A more thorough inspection of kiwellin proteins revealed a broad conservation among various monocots and dicots, with 20 kiwellin paralogs being present in the maize genome alone. Kiwellin proteins therefore might be part of the broad defense responses triggered by microbe-associated molecular patterns (MAMPs) during pattern-triggered immunity (PTI).

Here, we describe the structure and mechanism of another maize kiwellin, named KWL1-b, which inhibits Cmu1 by a mechanism highly reminiscent to that of KWL1. Upon *U. maydis* infection the induction of KWL1-b is significantly lower than that of KWL1 and both genes show tissue-specific differences in expression. Structural comparison of both KWL proteins with each other and endoglucanase V (EGV) suggest a surface-exposed cleft as possible carbohydrate-binding site located across to the Cmu1-binding site. Biochemical studies reveal that both KWLs can indeed bind carbohydrates albeit with different preferences. Thus, our study not only clarifies an unforeseen functional feature of the KWLs, but also shows how minor structural divergences between two close homologues result in functional diversification during the course of molecular evolution.

RESULTS

KWL1-b interacts with the fungal effector Cmu1. We have recently shown that KWL1 can be efficiently co-immunoprecipitated from lysed maize leaves, which were infected with an *U. maydis* strain expressing a haemagglutinin (HA)-tagged Cmu1 (10). Mass spectrometric analysis of the resulting co-elutes reproducibly and unambiguously identified peptides belonging to KWL1, while peptides of the 19 remaining KWL proteins were not detected. However, comparison of the KWL1 sequence with those of the others suggested that another so-far uncharacterized KWL (Accession code: ZEAMA_GRMZM2G305329) is highly conserved within the regions required for interaction with Cmu1 ([Fig. S1A](#)). Thus, we hypothesized that this KWL protein might also be able to interact with Cmu1, and termed it KWL1-b.

To challenge this idea, we performed pull-down experiments in lysates of infected maize seedlings with purified Glutathione-S-transferase (GST)-tagged KWL1-b as bait. Subsequent liquid chromatography–mass spectrometry unambiguously identified Cmu1, suggesting that KWL1-b also interacted with Cmu1 of *U. maydis*. We could identify 8 unique peptides covering 35% of the total Cmu1 sequence ([Fig. S1B](#)).

Comparison of the transcript abundance of KWL1-b with that of its close counterpart KWL1 shows that the latter is generally 5- and 10-fold higher expressed in mesophyll-derived tumor cells when compared to bundle sheath-derived tumor cells four days post infection ([Fig. S1C](#)). In contrast, KWL1-b showed a more homogenous expression pattern in both cell types despite an overall lower expression ([Fig. S1C](#)). These differences in the transcript abundance will probably reflect back to the protein level and might thus explain why KWL1-b has not been identified as interaction partner of Cmu1 so far. Taken together, these results suggest that maize KWL1-b can interact with the fungal effector Cmu1.

KWL1-b inhibits the chorismate activity of the fungal effector Cmu1. To study the consequences of the Cmu1/KWL1-b interaction, we next performed in vitro pull-down assays employing GST-tagged KWL1-b as bait. Cmu1 and the maize-housekeeping CMs ZmCm1, ZmCm2 and ZmCm3 served as prey. All these proteins were recombinantly produced in *E. coli* BL21(DE3) and purified by two-stepped protocol consisting of a Ni-ion affinity-followed by size exclusion chromatography (SEC). This experiment confirmed that GST-KWL1-b interacts with Cmu1, while not interacting with any of the three maize CMs...
(Fig. 1A). Analytical SEC employing KWL1-b and Cmu1 further confirmed the interaction and provided an apparent molecular weight of approximately 100 kDa, which is best explained by a 2:2 stoichiometry of KWL1-b and Cmu1 in a heterotetrameric complex (Fig. 1B). Isothermal calorimetry (ITC) suggested a dissociation constant of \(1.09 \pm 0.11 \mu M\) for the Cmu1/KWL1-b interaction (Fig. 1C). Analysis of the CM activity at a substrate concentration reflecting the maximal velocity of Cmu1 showed an approximately 6-fold decrease in the presence of KWL1-b (Fig. 1D). Taken together, these data show that KWL1-b inhibits the CM activity of the fungal effector Cmu1 in a heterotetrameric complex.

Crystal structure of the Cmu1/KWL1-b heterodimer. Next, we determined the crystal structure of the Cmu1/KWL1-b complex to a resolution of 2.75 Å by molecular replacement with the structures of Cmu1 and KWL1 (PDB-ID: 6FPG) as search models (Table 1). The overall structure shows a highly symmetric Cmu1/KWL1-b heterodimer in which each KWL1-b monomer interacts with a monomer of the Cmu1 homodimer (Fig. 2A). Closer comparison of the Cmu1/KWL1-b structure (this study) with those of the Cmu1/KWL1 complex (10) revealed a nearly identical overall architecture with an RMSD of 0.5 Å in Cα atoms (Fig. 2A). The interface between KWL1-b and Cmu1 covers a surface area of approximately 1200 Å\(^2\), which compares well to those in the Cmu1/KWL1 complex (10). The interaction between the two proteins is established through a combination of polar and non-polar interactions and involves three loops (L1-L3) and the N-terminal β1/2 domain in KWL1-b (Fig. 2B). A closer inspection of the four interfaces revealed that although the overall sequence conservation is high, some of the residues interacting with Cmu1 at KWL1-b deviate from KWL1 (Figs. 2C, E).

Within the β1/2 domain at KWL1-b, polar contacts are formed by the backbone amide- and carboxyl-groups of Y42 and N201 in Cmu1 (Figs. 2C, E). The same residue in Cmu1 is contacted by the carboxyl-group of S45 within KWL1. While residue P44 at KWL1-b forms a backbone contact with W197 in Cmu1, Q49 in KWL1 interacts with E29 in Cmu1 (Fig. 2C). In addition to these differences, R69 from β2 within KWL1 establishes a salt bridge with E32 (Cmu1) but this contact is completely absent in KWL1-b (Fig. 2C). Conversely, the strong interaction of R46 (R51 at KWL1) with several negatively charged residues of Cmu1 is conserved among KWL1 and KWL1-b (Figs. 2C, D, E). Within the L1 region, the residues mediating the interaction between KWL’s and Cmu1 are again different (Fig. 2E, S2A). An interesting observation is that G93 within KWL1-b contacts N250 within the second Cmu1 monomer (Cmu1′, Fig. S2B). This leads to a large deviation within L1. Furthermore, the charged patch within L3 that protrudes into the active site of Cmu1 is conserved among the two proteins with respect to the “clamping” aspartate and glutamate (Figs. 2D, E), but differs in the residue in between being an aspartate in KWL1-b but a lysine in KWL1 (Fig. 2D). In Cmu1, important residues within the active site (R43, Q229) are tethered by both KWL1 and KWL1-b (Fig. 2D). Despite their redundant function as potent Cmu1 inhibitors, both KWLs show slight variations in their way they interact with Cmu1.

KWL1-b and KWL1 differ in a surface cleft distal to their Cmu1-binding site. We next wondered whether other relevant differences between KWL1 and KWL1-b might exist. Overall, both KWL proteins consist of nine β-strands (β1 to β9) with β3 to β9 forming the β-barrel and a short α-helical segment connecting the strands β8 and β9 (Fig. 3A). In the case of KWL1-b, β6/7 forms one large strand that closes the barrel. Five disulfide bridges formed through ten highly conserved cysteine residues stabilize both KWL proteins (Fig. S3A). Consequently, the Cα-backbones of both KWL proteins align well with an RMSD of 0.5 (Fig. 2A).

However, analysis of surface topology and electrostatic potential revealed pronounced differences between KWL1-b and its counterpart KWL1 (Fig. S3B). Both KWL proteins significantly differ in a surface cleft that localizes on the opposite side of their Cmu1-bindig site. In both KWL proteins, this cleft is formed by the β-sheets 3, 4, 6 and 7 and L3 between β6 and β7 that aligns to the β1/2-domain (Fig. 3B). While the overall volume of the cavity is comparable between KWL1-b and KWL1 with ~2400 and ~2900 Å\(^3\), respectively, they show pronounced differences at the amino acid level (Figs. 3D, S3C). More precisely, the negatively charged residues towards Cmu1 (D149, E150 and D152 at KWL1) as well as E164 and D173 “clamping” the cleft are...
conserved between KWL1 and KWL1-b while the residue “guarding” entrance to the cleft exhibits opposing charge (R168, KWL1 and D163, KWL1-b). Taken together, despite a high sequence conservation and similar binding of Cmu1, both KWL proteins display differences in a surface cleft located across to the Cmu1-binding site in both proteins.

KWL1-b and KWL1 differ in their carbohydrate binding properties. Our structural analysis identified pronounced clefts at the surfaces of KWL1 and KWL1-b, which differed in their calculated electrostatic properties (Fig. S3B). DALI search for structural relatives of the KWL proteins identified barwins, expansins and cerato-platanins (10, 11), but also revealed similarity to several glycoside hydrolases (GH) such as endoglucanase V (EGV) from Humicola insolens (PDB-ID: 4ENG), which cleaves the β-1,4-linkage of cellulose as primary component of plant cell walls (12, 13). KWL1-b and KWL1 superimpose well with EGV with RMSD values of 1.26 and 2.66 Å over 188 and 184 atoms, respectively. Closer structural comparison showed that the cleft conserved between the two KWL proteins can also be found on the surface of EGV, albeit smaller (Fig. 4A). The central β-barrel that forms one side of the cleft is present in both EGV and kiwelin proteins, but the opposite side of the cleft is tightly closed at EGV while β1/2 and L3 generate a larger surface groove within the KWL’s. In the GH enzyme EGV, the cleft is required for binding of the cellohexaose sugar substrate (Fig. 4B).

To estimate of whether the clefts of both KWL proteins would allow carbohydrate binding, we superposed EGV bound to a cellohexaose in the “-4 to -2 side” (pre-cleavage sides, Fig. 4B). The superposition clearly suggested that cellohexaose binding to either KWL1-b and KWL1 should generally be possible from a structural point of view (Fig. 4C). Therefore, we analyzed the carbohydrate-binding ability of KWL1 and KWL1-b by microscale thermophoresis (MST). Due to decreased solubility of higher-order carbohydrates, we employed glucose, xylose, galactose, arabinose and mannose. While KWL1 showed specific binding to galactose with a dissociation constant (K_d) of 41 ± 8 µM, KWL1-b preferred mannose and xylose over the other sugars with K_d's of 29 ± 10 and 31 ± 14 µM, respectively (Tab. 2, Figs. S4B, D, E). In addition to monosaccharides, we further examined the binding of mannotriose and xylotriose to KWL1-b. To our surprise, the K_d of mannotriose was comparable to mannose and xylose with 45 ± 7 µM while binding of xylotriose could not be observed (Tab. 2, Fig. S6A). Thus, our results suggest that KWL1 and KWL1-b are capable of sugar binding but differ in their specificity.

Next, we wondered of whether Cmu1-binding to KWL1 or KWL1-b would impact their ability to interact with sugars. Thus, we analyzed the ability of the Cmu1-KWL1-b and Cmu1-KWL1 complexes to interact with glucose, xylose, galactose, arabinose and mannose. To our surprise, Cmu1-binding to KWL1 and KWL1-b abolished the interaction with galactose and xylose, respectively. However, Cmu1-bound KWL1-b could still interact with mannose and mannotriose (Tab. 2, Figs. S4D, E, S5A). From our results, we conclude that Cmu1 binding modulates the sugar-binding abilities of KWL1 and KWL1-b.

In a next step, we aimed at a more thorough investigation of residues at KWL1 and KWL1-b potentially involved in carbohydrate binding. Based on EGV co-crystallized with cellohexaose, we varied three acidic amino acids in close vicinity to the cellohexaose and conserved among KWL1 and KWL1-b. At KWL1, D149, E164 and D173 were varied to alanine, corresponding to D144, E159 and D168 at KWL1-b (Figs. 4C, D). All variants at KWL1 significantly decreased the affinity of galactose towards KWL1 by approx. 10-fold (Tab. 2, Fig. S5B). Varying D144 and E159 to alanine at KWL1-b completely abolished binding of both mannose and mannotriose, while exchanging the central D168 to alanine did not affect the binding (Tab. 2, Figs. S5C, D). Similarly, xylose could still bind to the D168A variant of KWL1-b although the interaction was weakened (168 ± 28 µM). A residual binding of xylose was also observed towards KWL1-bD144A but considered not trustworthy due to bad fitting and a high standard deviation (Fig. S5E).

We conclude that conserved acidic residues at KWL1 and KWL1-b contribute differently to carbohydrate binding, providing a potential explanation for a difference in substrate specificity by the two proteins.

DISCUSSION

KWL1 and KWL1-b are structurally and functionally divergent. In a recent study, we could demonstrate that KWL1 protein might be...
part of the PTI as it is secreted from plant cells into the apoplastic space after pathogen attack to counteract *U. maydis* (10, 14). The secreted chorismate mutase (Cmu1) from *U. maydis* was shown to target KWL1 from *Z. mays* (10). We now show that a second KWL protein, termed KWL1-b, specifically interacts with Cmu1 of *U. maydis*. Our structural and biochemical analysis shows that KWL1-b employs an identical mechanism as its counterpart KWL1 to inhibit the CM activity of Cmu1, albeit Kwl1-b employs other amino acid than KWL1 to so. More precisely, only four residues tethering charged residues in the active site of Cmu1 are identical between KWL1 and KWL1-b, albeit the overall architecture of both complexes is almost identical. This observation might be the reason for the differences in the interaction strengths between of KWL1 and KWL1-b for Cmu1 (i.e. 80 nM and 1 µM, respectively), accompanied by a slightly less efficient inhibition of Cmu1 by KWL1-b. The reason for the apparent functional redundancy of KWL1 and KWL1-b can at this point only be answered at the speculative level. One idea could be that KWL1-b might more efficiently counteract the activity of closely related Cmu1 proteins of another maize-specific pathogen or represents an earlier less-efficient version of KWL1. Another possibility could be considered from transcriptome datasets that revealed *U. maydis* cell-type specific gene expression upon *Z. mays* infection (7). During plant infection, hyphae of *U. maydis* first proliferate within the mesophyll of *Z. mays* leaves and then colonize bundle sheath cells allowing entry in the veins and more efficient spread (7, 15) (Fig. 5A). The analysis revealed a high abundance of transcripts corresponding to *KWL1*, but *KWL1-b* was only poorly resolved. Interestingly, *KWL1* was significantly enriched in mesophyll cells compared to bundle sheath cells, indicating a role in the early defense response towards *U. maydis* colonization. Despite the overall low transcript abundance, *KWL1-b* showed similar transcript abundance in both tissues. Therefore, KWL1-b could also just play a role during the later stages of infection.

KWL1 and KWL1-b have different carbohydrate binding properties. Our structural comparison between KWL1 and KWL1-b identified a pronounced surface cleft, which both proteins share with the structurally related glycoside hydrolase EGV. Indeed, our biochemical analysis shows that KWL1 and KWL1-b specifically recognize the monosaccharides galactose and mannose/xylose, respectively. EGV proteins have several adjacent carbohydrate binding sites within their active site that allow oligosaccharide binding and subsequent cleavage between the -1 and +1 sites (Fig. 4B) (13). Cellulases of this type belong to the glycoside hydrolase (GH) family and cleave the β,1,4-linkage of cellulose, which is the primary component of plant cell walls. In these enzymes, the catalytic activity is mediated by two aspartic acids and a stabilizing tyrosine on either side of an open groove in the surface of the protein (13, 16, 17). However, only one aspartate of three catalytically relevant residues is conserved between EGV and the two KWLs (Fig. S6). From our structural analysis and biochemical evidence, we conclude that the two studied KWL proteins are carbohydrate-binding proteins, which might have lost their glycoside hydrolase activity. Similar observations were made for the structurally related family of the cerato-platanins, which also exhibit carbohydrate binding properties, while lacking glucosidase activity (18, 19). This idea is furthermore supported by the fact that KWL proteins were initially isolated from cell wall extracts of Kiwi fruit (20, 21).

We show that several residues within the potential binding cleft at KWL1 and KWL1-b contribute differently to carbohydrate binding. While mutation of three acidic residues at KWL1 reduces the affinity for galactose by 10-fold, variation of two of their conserved counterparts at KWL1-b abolish mannose and mannotriose binding (Figs. 4C, D, S5B, C, D). However, an exchange of D168 to alanine neither affects the binding of mannose nor mannotriose. Moreover, this variation impacts xylose binding only moderately. We therefore conclude that carbohydrate binding at KWL1-b occurs slightly different to KWL1 (Fig. 5C).

We also show that the presence of Cmu1 inhibits the binding of galactose and xylose to KWL1 and KWL1-b, respectively, while it does not affect the binding of mannose and mannotriose to KWL1-b. Combining these results with our mutational studies, we predict that the galactose and xylose-binding sites of KWL1 and KWL1-b overlap at least partially with their Cmu1 binding sites, while this cannot be true for the binding of mannose and mannotriose to KWL1-b (Figs. 5B, C). A superposition of the Cmu1/KWL1 (or Cmu1/KWL1-b) complex and cellohexaose-bound EGV showed that Cmu1-binding
generates a sterical clash with the cellohexaose within the post-catalytic pocket (Fig. 5C). The galactose and xylose binding sites possibly overlap with this region of KWL1 and KWL1-b, respectively, preventing carbohydrate binding when Cmu1 is present. We also predict that mannose/mannotriose preferentially binds to a position at KWL1-b equivalent to the pre-catalytic site at EGV, because its binding affinity remains largely unaffected by Cmu1 binding (Fig. 5C).

In all likelihood, both KWLs bind oligosaccharides rather than the tested monosaccharides. Thus, future research needs to identify the cognate oligosaccharides to which KWL1 and KWL1-b bind. It could well be that these oligosaccharides will be found in the context of the cell wall. At this point, we cannot exclude that KWL proteins also address oligosaccharides of the fungal cell wall. However, our data suggest that Cmu1- and sugar-binding might be mutually exclusive. Thus, we favor the idea that KWL proteins reside tethered to specific oligosaccharides of the plant cell wall and release upon binding to the fungal effector Cmu1 to inhibit its activity. The carbohydrate specificity of KWL proteins might be due to tissue-specific properties of cell walls per se or cell wall remodeling during fungal infection.

EXPERIMENTAL PROCEDURES

Molecular cloning. The gene encoding KWL1-b was amplified from genomic DNA of *Zea mays* EGB without the signal peptide (KWL1-b[31-193]) and cloned into pEMGB1 (22) and pGAT3 (Novagen) vectors yielding in pEMGB1-KWL1-b and pGAT3-KWL1-b, respectively. Single amino acid variations were obtained using a modified quick change protocol. Briefly, the entire backbone of pEMGB1-ZmKWL1-b and pET28a-ZmKWL1 was amplified with the respective primers in a single step, digested with BsaI-HFv2 (NEB) and ligated to obtain the final plasmids (Tabs. S1, S2). Plasmids encoding Cmu1, KWL1 and the three CMs from *Z. mays* were obtained from an earlier study (10).

Protein production and purification. Protein production and purification was performed as described earlier (23). Briefly; proteins were produced in *E. coli* SHuffle T7 (NEB) and BL21(DE3) (Novagen). *E. coli* SHuffle T7 were transformed with plasmids encoding GB1-KWL1-b. Cultures were grown in lysogeny broth (LB)-media in the presence of ampicillin (100 µg/ml) at 30°C under constant shaking to an optical density (OD₆₀₀) of 0.5; the temperature shifted to 20°C and induced with 0.5 mM IPTG. Cultures were harvested by centrifugation after 20 h. In the case of Cmu1 and KWL1, *E. coli* BL21(DE3) were transformed with the respective plasmids. Protein production was performed in auto inductive LB media containing 1 % (w/v) of lactose and incubated at 30°C under constant shaking for 20 hours.

After cell lysis by a microfluidizer (M110-L, Microfluidics), cell debris was removed by high-speed centrifugation and proteins were purified by Ni-ion affinity- (FF-HisTrap columns, GE Healthcare) and size exclusion chromatography (SEC) as described recently (23). The SEC buffer consisted of 20 mM Hepes-Na (pH 7.5), 200 mM NaCl, 20 mM KCl. In the case of GB1-KWL1-b, elution fractions were collected after SEC, pooled and incubated with 0.2 mg of TEV protease (NEB) in the presence of 1 mM EDTA at ambient temperature for 10 hours. Proteolytic cleavage was analyzed by SDS-PAGE and the TEV and cleaved KWL1-b retrieved by reverse Ni-ion affinity purification. Protein containing fractions were pooled and concentrated in Amicon Ultra-10K centrifugal filters. The Cmu1-KWL1-b complex was reconstituted by mixing both proteins in a molar 1:2 ratio und subjected the mixture to another SEC. Fractions containing the Cmu-KWL1-b complex were pooled and concentrated for crystallization experiments.

Crystallization and structure determination. Crystallization was performed by the sitting-drop method at 20 °C in 0.5 µl drops consisting of equal parts of protein and precipitation solutions. Cmu1-KWL1-b crystallized at 161 µM concentration within 24 h days in 0.1 M Hepes pH 7.0 and 8 % (w/v) PEG 8000. Prior data collection, crystals were flash-frozen in liquid nitrogen employing a cryo-solution that consisted of mother-liquor supplemented with 30 % glycerol. Data were collected under cryogenic conditions at the European Synchrotron Radiation Facility at beamline ID30A-1 (MASSIF-1) (24).

Data were integrated and scaled with XDS (25) and merged with XSCALE (25). Structures were determined by molecular replacement with PHASER (26), manually built in COOT (27), and refined with PHENIX (28). The
structure of the Cmu1-KWL1-b complex was determined by molecular replacement using the crystal structures of KWL1 and Cmu1 of the *U. maydis* Cmu1-KWL1 complex (PDB-ID: 6FPG) as search models. Figures were prepared with PYMOL (29) and Chimera (30).

Glutathione-S-transferase (GST) binding assays. GST interaction assays were performed with SEC buffer + 0.05 % Tween (20 mM HEPES PH 7.5, 200 mM NaCl, 20 mM KCl, 0.05% Tween) at 4 °C using mobicol “classic” spin columns (MoBiTec). A total amount of 4 nmol of SEC-purified GST-tagged protein was immobilized on 25 μl Glutathione Sepharose (GE Healthcare) and incubated on a turning wheel for 5 minutes. 2 equivalents of putative interaction partner proteins were added to the beads and incubated for 20 minutes on a turning wheel. After removal of residual protein by centrifugation (4 °C, 4000 rpm, 1 minute), the column was washed three times with SEC buffer + 0.05% Tween. Proteins were eluted with 80 μl of GSH elution buffer (20 mM HEPES PH 8.0, 200 mM NaCl, 20 mM KCl, 0.05% Tween, 20 mM glutathione) and analyzed by Coomassie-stained SDS-PAGE.

Isothermal titration calorimetry (ITC). Prior to the measurement, the Cmu1 and KWL1-b protein solutions were dialyzed against the identical buffer, which consisted of 20 mM HEPES-Na (pH 7.5), 200 mM NaCl, 20 mM KCl. Titration was carried out at a temperature of 25 °C with a MicroCal ITC200 (Malvern Panalytical Ltd). 280 µL of KWL1-b at 25 µM were placed in the sample cell and the syringe was fully loaded with 25 µM of Cmu1. A first injection of 0.3 µL was followed by 19 injections of 2 µL to generate the thermogram representing the interaction. Data were processed with the MicroCal PEAQ-ITC Analysis Software (Malvern Panalytical Ltd).

CM-activity assay. Analysis of the CM activity of Cmu1 was carried out as described earlier (16). Briefly, the assay monitored the disappearance of chorismate at a wavelength of 274 nm (OD274; the extinction coefficient of chorismate is ε274 nm = 2630 M⁻¹·cm⁻¹). The OD274 was measured using a TECAN Infinite 200 PRO plate reader (Tecan Trading AG). Standard assays were performed at 30 °C in 250 μl of reaction buffer composed of 40 mM Tris-HCl (pH 7.0) and 100 mM NaCl. In a standard reaction, chorismate mutase activity was measured with 100 ng of Cmu1 protein (i.e. 13 nM concentration) and 0.5 mM chorismate (Sigma).

Measurements of binding constants by microscale thermophoresis (MST). MST experiments were performed in a buffer containing 20 mM HEPES pH 7.5, 20 mM KCl and 200 mM NaCl using a Monolith NT.115 with red LED power set to 50% and infrared laser power to 75 % (31). KWL1, KWL1-b, Cmu1-KWL1 and Cmu1-KWL1-b and all mutant proteins (50 μM) were each labeled according to the supplier’s instructions (dye NT 647, Nano Temper technologies). Subsequently, 500 nM of each protein was titrated with increasing amounts of galactose, glucose, mannose, xylose or arabinose starting from 6 mM each. At least three independent MST experiments were recorded at 680 nm and processed by NanoTemper Analysis 1.2.009 and Origin8G.

RNA-Seq data analysis. RNA-Seq data for runs SRR6202430-SRR6202441 (NCBI BioProject PRJNA415355) were downloaded from the Short Read Archive (7, 32). They comprise three replicates each for infected as well as mock-treated maize mesophyll and bundle sheath tumor cells (*Z. mays* infected with *U. maydis* strain SG200, four days post infection). Quality trimming and adapter removal were performed using Trim Galore, a wrapper tool around cutadapt (33). A Phred score threshold of 20 was used. Processed reads with at least 20 bp were mapped to the *Zea mays* transcriptome B73 RefGen v4 (GCF_000005005.2) using segemehl (34) with an e-value threshold of 1. Here we identified transcripts XM_008646524.3 and XM_008665441.3 as KWL1 (ZEAMA_GRMZM2G073114) and KWL1-b (ZEAMA_GRMZM2G305329), respectively (best reciprocal blast hit). The RPKM was calculated based on all reads that uniquely mapped to these transcripts (readCounts / (transcriptLength/1000 * mappedReads/1,000,000)). Significance was evaluated using a one-sided Wilcoxon rank-sum test in R.

Acknowledgements

We are grateful for excellent beamline access and support by the European Synchrotron Radiation facility (ESRF). F. A. thanks the Peter und Traudl Engelhorn foundation for financial support. G.B. thanks the Deutsche
Forschungsgemeinschaft (DFG) for support through the Sonderforschungsbereich (SFB) 987.

Author contributions
F.A. and G.B. conceived of the project, designed the study and wrote the paper. F.A., P.W., P. I.G., L.B. and X.H. performed experiments. M.L., S.A.F. and F.A. and A.L. analyzed data. R. K. and G. B. contributed funding and resources. All authors read and commented on the manuscript.

Data availability
Coordinates and structure factors have been deposited within the protein data bank (PDB) under accession code: 6TI2. The authors declare that all other data supporting the findings of this study are available within the article and its supplementary information files.

Competing interests
The authors declare no competing interests.

REFERENCES
1. Fisher, M. C., Henk, D. A., Briggs, C. J., Brownstein, J. S., Madoff, L. C., McCraw, S. L., and Gurr, S. J. (2012) Emerging fungal threats to animal, plant and ecosystem health. *Nature* **484**, 186–194
2. Oerke, E. (2006) Crop losses to pests. *J. Agric. Sci.* 10.1017/S0021859605005708
3. Lanver, D., Tollot, M., Schweizer, G., Lo Presti, L., Reissmann, S., Ma, L.-S., Schuster, M., Tanaka, S., Liang, L., Ludwig, N., and Kahmann, R. (2017) Ustilago maydis effectors and their impact on virulence. *Nat. Rev. Microbiol.* **15**, 409–421
4. Lo Presti, L., Lanver, D., Schweizer, G., Tanaka, S., Liang, L., Tollot, M., Zuccaro, A., Reissmann, S., and Kahmann, R. (2015) Fungal Effectors and Plant Susceptibility. *Annu. Rev. Plant Biol.* **66**, 513–545
5. Skibbe, D. S., Doehlemann, G., Fernandes, J., and Walbot, V. Maize Tumors Caused by Ustilago maydis Require Organ-Specific Genes in Host and Pathogen. *Science (80-.).* **328**, 89–92
6. Schilling, L., Matei, A., Redkar, A., Walbot, V., and Doehlemann, G. (2014) Virulence of the maize smut Ustilago maydis is shaped by organ-specific effectors. *Mol. Plant Pathol.* **15**, 780–789
7. Matei, A., Ernst, C., Günl, M., Thiele, B., Altmüller, J., Walbot, V., Usadel, B., and Doehlemann, G. (2018) How to make a tumour: cell type specific dissection of Ustilago maydis-induced tumour development in maize leaves. *New Phytol.* **217**, 1681–1695
8. Walbot, V., and Skibbe, D. S. (2010) Maize host requirements for Ustilago maydis tumor induction. *Sex. Plant Reprod.* **23**, 1–13
9. Djamei, A., Schipper, K., Rabe, F., Ghosh, A., Vincon, V., Kahnt, J., Osorio, S., Tohge, T., Fernie, A. R., Feusnn, I., Feusnner, K., Meinicke, P., Stierhof, Y.-D., Schwarz, H., Macek, B., Mann, M., and Kahmann, R. (2011) Metabolic priming by a secreted fungal effector. *Nature*. 10.1038/s41586-018-0857-9
10. Han, X., Altegoer, F., Steinchen, W., Binnebesel, L., Schuhmacher, J., Glatter, T., Giammarinaro, P. I., Djamei, A., Rensing, S. A., Reissmann, S., Kahmann, R., and Bange, G. (2019) A kiwellin disarms the metabolic activity of a secreted fungal virulence factor. *Nature*. 10.1038/s41586-018-0857-9
11. Sampedro, J., and Cosgrove, D. J. (2005) The expansin superfamily. *Genome Biol.* **6**, 242
12. Castillo, R. M., Mizuguchi, K., Dhanaraj, V., Albert, A., Blundell, T. L., and Murzin, A. G. (1999) A six-stranded double-psi beta barrel is shared by several protein superfamilies. *Structure.* **7**, 227–36
13. Davies, G. J., Dodson, G., Moore, M. H., Tolley, S. P., Dauter, Z., Wilson, K. S., Rasmussen, G., and Schülein, M. (1996) Structure determination and refinement of the Humicola insolens endoglucanase V at 1.5 A resolution. *Acta Crystallogr. D. Biol. Crystallogr.* **52**, 7–17
14. Bange, G., and Altegoer, F. (2019) Plants strike back: Kiwellin proteins as a modular toolbox for plant defense mechanisms. *Commun. Integr. Biol.* **12**, 31–33
15. Villajuana-Bonequi, M., Matei, A., Ernst, C., Hallab, A., Usadel, B., and Doehlemann, G. (2019) Cell type specific transcriptional reprogramming of maize leaves during Ustilago maydis induced tumor formation. *Sci. Rep.* **9**, 10227
16. Davies, G. J., Tolley, S. P., Henriassat, B., Hjort, C., and Schülein, M. (1995) Structures of
oligosaccharide-bound forms of the endoglucanase V from Humicola insolens at 1.9 Å resolution. *Biochemistry*. **34**, 16210–20

17. Davies, G. J., Dodson, G. G., Hubbard, R. E., Tolley, S. P., Dautert, Z., Wilson, K. S., Hjortt, C., Mikkelson, J. M., Rasmussent, G., and Schillemt, M. (1993) Structure and function of endoglucanase V. *Nature*. **365**, 362–364

18. de Oliveira, A. L., Gallo, M., Pazzagli, L., Benedetti, C. E., Cappugi, G., Scala, A., Pantera, B., Spisni, A., Pertinhez, T. A., and Cicero, D. O. (2011) The Structure of the Elicitor Cerato-platanin (CP), the First Member of the CP Fungal Protein Family, Reveals a Double ψβ-Barrel Fold and Carbohydrate Binding. *J. Biol. Chem.* **286**, 17560–17568

19. Pazzagli, L., Seidl-Seiboth, V., Barsottini, M., Vargas, W. A. A., Scala, A., and Mukherjee, P. K. (2014) Cerato-platanins: Elicitors and effectors. *Plant Sci.* **228**, 79–87

20. Hamiaux, C., Maddumage, R., Middleditch, M. J., Prakash, R., Brummell, D. A., Baker, E. N., and Atkinson, R. G. (2014) Crystal structure of kiwellin, a major cell-wall protein from kiwifruit. *J. Struct. Biol.* **187**, 276–281

21. Tamburrini, M., Cerasuolo, I., Carratore, V., Stanziola, A. A., Zofra, S., Romano, L., Camardella, L., and Ciardiello, M. A. (2005) Kiwellin, a Novel Protein from Kiwi Fruit. Purification, Biochemical Characterization and Identification as an Allergen*. *Protein J.* **24**, 423–429

22. Zhou, P., and Wagner, G. (2010) Overcoming the solubility limit with solubility-enhancement tags: successful applications in biomolecular NMR studies. *J. Biomat. NMR*. **46**, 23–31

23. Schuhmacher, J., Rossmann, F., Dempwolff, F., Knauer, C., Altegoer, F., Steinchen, W., Dorrich, A., Klingl, A., Stephan, M., Linne, U., Thomann, K., and Bange, G. (2015) MinD-like ATPase FlhG effects location and number of bacterial flagella during C-ring assembly. *Proc. Natl. Acad. Sci.* **112**, 201419388

24. Bowler, M. W., Nurizzo, D., Barrett, R., Betteva, A., Bodin, M., Caserotto, H., Delagenière, S., Dobias, F., Flot, D., Giraud, T., Guichard, N., Guijarro, M., Lentini, M., Leonard, G. A., McSweeney, N., Oskarsson, M., Schmidt, W., Snigirev, A., von Stetten, D., Surr, J., Svensson, O., Theveneau, P., Mueller-Dieckmann, C., and IUCr (2015) MASSIF-1: a beamline dedicated to the fully automatic characterization and data collection from crystals of biological macromolecules. *J. Synchrotron Radiat.* **22**, 1540–1547

25. Schrödinger, L. (2015) The JyMOL Molecular Graphics Development Component, Version 1.8.

26. Kabsch, W. (2010) XDS. *Acta Crystallogr. D. Biol. Crystallogr*. **66**, 125–32

27. Emsley, P., and Cowtan, K. (2004) Coot: model-building tools for molecular graphics. *Acta Crystallogr. D. Biol. Crystallogr* **60**, 2126–32

28. Adams, P. D., Afonine, P. V, Bunkóczi, G., Chen, V. B., Davis, I. W., Echols, N., Headd, J. J., Hung, L.-W., Kapral, G. J., Grosse-Kunstleve, R. W., McCoy, A. J., Moriarty, N. W., Oeffner, R., Read, R. J., Richardson, D. C., Richardson, J. S., Terwilliger, T. C., and Zwart, P. H. (2010) PHENIX: a comprehensive Python-based system for macromolecular structure solution. *Acta Crystallogr. D. Biol. Crystallogr*. **66**, 213–21

29. Schrödinger, L. (2015) The JyMOL Molecular Graphics Development Component, Version 1.8.

30. Pettersen, E. F., Goddard, T. D., Huang, C. C., Couch, G. S., Greenblatt, D. M., Meng, E. C., and Ferrin, T. E. (2004) UCSF Chimera?A visualization system for exploratory research and analysis. *J. Comput. Chem.* **25**, 1605–1612

31. Jerabek-Willemsen, M., Wienken, C. J., Braun, D., Baaske, P., and Duhr, S. (2011) Molecular interaction studies using microscale thermophoresis. *Assay Drug Dev. Technol*. **9**, 342–53

32. Leinonen, R., Sugawara, H., Shumway, M., and International Nucleotide Sequence Database Collaboration (2011) The Sequence Read Archive. *Nucleic Acids Res.* **39**, D19–D21

33. Martin, M. (2011) Cutadapt removes adapter sequences from high-throughput sequencing reads. *EMBnet.journal*. **17**, 10

34. Hoffmann, S., Otto, C., Kurtz, S., Sharma, C. M., Khaitovich, P., Vogel, J., Stadler, P. F., and Hackermüller, J. (2009) Fast mapping of short sequences with mismatches, insertions and deletions using index structures. *PLoS Comput. Biol*. **5**, e1000502
FIGURE LEGENDS

Figure 1. KWL1-b binds to Cmu1 and inhibits its activity. A. GST-interaction assay employing a GST-tagged KWL1-b, *Um*Cmu1 and the three housekeeping chorismate mutases *Zm*CM1, *Zm*CM2 and *Zm*CM3. B. Size-exclusion chromatograms of Cmu1 (green), KWL1-b (grey) and the Cmu1-KWL1-b complex (red). The inset shows a Coomassie-stained SDS-PAGE of the peak fractions. C. Isothermal titration calorimetry (ITC) of Cmu1 and KWL1-b yielding a K_d of 1.1 ± 0.1 µM. KWL1-b was added to the sample cell and titrated with Cmu1. D. KWL1-b inhibits the CM activity of Cmu1. CM activity was determined with the chorismate activity assay. Error bars represent the SD of three technical replicates.

Figure 2. KWL1-b forms a heterotetrameric complex with Cmu1. A. KWL1-b and KWL1 form highly similar complexes with the fungal effector Cmu1. *Left*: Crystal structure of two KWL1-b proteins (orange) bound to the Cmu1 homodimer (green; *this study*); *Middle*: Crystal structure of two KWL1 proteins (blue) bound to the Cmu1 homodimer (green; PDB-ID: 6FPG). *Right panel*: Superimposition of both complexes shown in the left and middle panels. B. Close-up of the interaction between Cmu1 (green) and KWL1-b (orange; grey surface). The interacting loops at KWL1-b are highlighted in red. C-D. Detailed view on residues involved in the interaction with Cmu1 at KWL1-b and KWL1 within the $\beta_{1/2}$ domain and L3, respectively. KWL1-b is colored in orange, KWL1 is colored in blue while Cmu1 is colored in grey across all images. Dotted lines represent polar interactions. E. Sequence alignment of KWL1 and KWL1-b with secondary structures according to the KWL1-b structure. β-strands and α-helices are indicated in yellow and red, respectively. Residues involved in the interaction are marked with an asterisk and colored according to whether they are involved in interactions between KWL1 and KWL1-b to Cmu1, respectively.

Figure 3. KWL1-b and KWL1 differ in a pronounced surface cleft distal to their Cmu1-binding sites. A. KWL1-b consists of a central β-barrel and two short antiparallel β-strands at the N-terminus termed $\beta_{1/2}$. The loops L1-L3 together with the $\beta_{1/2}$ domain confer interaction with Cmu1. The structure has been colored in rainbow colors from N- to C-terminus. B-C. Both KWL’s have pronounced cleft on the rear of the protein distal of the Cmu1 binding site that is formed between $\beta_{1/2}$-L3 and the β-strands 3, 4, 7 and 8. D. Residues within the cleft are conserved between KWL1 and KWL1-b with the exception of Arg168 (KWL1) and Asp163 (KWL1-b).

Figure 4. KWL1 and KWL1-b share structural homology to endoglucanases. A. Side-by-side view of endoglucanase V (EGV; PDB-ID: 4ENG), KWL1-b and KWL1 in surface representation. The cleft is highlighted with a dashed line. EGV is colored in dark red, KWL1-b is colored in orange and KWL1 is colored in blue. B. EGV bound to cellohexaose. The different carbohydrate binding sites are highlighted. C-D. Superposition of EGV-bound to cellohexaose and KWL1-b/KWL1 shows that cellohexaose *per se* fits into the cleft at KWL1-b and KWL1. Residues in the cleft varied to alanine are highlighted.

Figure 5. Functional and structural diversity of two redundant KWL proteins. A. Illustration of the early infection stages of maize leaves by *U. maydis*. Fungal hyphae: brown; epidermal layer: light brown; mesophyll cells: light green; bundle sheath cells: dark green; veins: dark brown. B. The superimposition of Cmu1/KWL1-b (this study), Cmu1/KWL1 (PDB-ID: 6FPG) and cellohexaose-bound EGV (PDB-ID: 4ENG) shows that Cmu1 binding to KWL1 could interfere with oligosaccharide binding in the post-catalytic pocket. C. Schematic representation of monosaccharide binding sites in EGV (left) and their putative equivalents in KWL1 (middle) and KWL1-b (right). “-4, -3, -2” and “+1, +2, +3” refer to the monosaccharide binding sites at the pre- and post-catalytic sites, respectively. The Cmu1-binding area is indicated in red. Position of the catalytic aspartates and their equivalent in the KWLs is indicated. Potential carbohydrate binding sites at KWL1 and KWL1-b are indicated with hexagonal models.
Table 1: Data collection and refinement statistics for the Cmu1/KWL1-b complex. Values in parentheses are for the outer shell.

Data collection	Cmu1/KWL1-b
Space group	$P2_1$
Cell dimensions	a, b, c (Å) 57.74 124.58 98.21
α, β, γ (°)	90 96.216 90
Resolution (Å)	48.82 - 2.7 (2.796 - 2.7)
R_{merge}	0.0896 (0.8243)
$I / \sigma I$	7.91 (1.12)
Completeness (%)	98.46 (99.73)
Redundancy	3.0 (3.1)

Refinement	
Resolution (Å)	47.99 - 2.75 (2.85 – 2.75)
No. reflections	35373 (3546)
R_{work} / R_{free}	0.22/0.26
No. atoms	
Protein	6594
Ligand/ion	0
Water	19
B-factors	
Protein	73.82
Ligand/ion	0
Water	64.16
Ramachandran statistics	
Favored (%)	94.66
Allowed (%)	4.99
Outlier (%)	0.36
R.m.s. deviations	
Bond lengths (Å)	0.006
Bond angles (°)	0.98
Table 2: Carbohydrate binding of KWL1 and KWL1-b. The table summarizes the dissociation constants (K_d) of KWL1, KWL1-b and variants in the absence and presence of Cmu1 for various carbohydrates, as determined by microscale thermophoresis (MST). All experiments have been performed in three technical replicates. Values are given in µM. The standard deviation (SD) is given on the right side of the table. N.d.: no fitting possible; - not measured; * bad fitting. Original data can be found in the supplementary figures S4 and S5.

	galactose	glucose	mannose	mannotriose	xylose	xylotriose	arabinose
KWL1	41 ± 8	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.
KWL1_{D149A}	463 ± 183	-	-	-	-	-	-
KWL1_{E164A}	422 ± 272	-	-	-	-	-	-
KWL1_{D173A}	192 ± 79	-	-	-	-	-	-
Cmu1/KWL1	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.	n.d.
KWL1-b	n.d.	n.d.	29 ± 10	49 ± 13	31 ± 14	n.d.	n.d.
KWL1-b_{D144A}	-	-	n.d.	n.d.	80±54*	-	-
KWL1-b_{E159A}	-	-	n.d.	n.d.	n.d.	-	-
Cmu1/KWL1-b	n.d.	n.d.	31 ± 5	43 ± 18	135 ± 28	-	-

12
Figure 1

A

B

C

D

Figure 1A: Gel electrophoresis of protein samples. "input" indicates the input of the samples.

Figure 1B: Graph showing elution volume (ml) vs. Absorption 280 nm (mAU). Peaks correspond to different protein complexes: Cmu1/KWL1-b, KWL1-b, Cmu1, and Cmu1/KWL1-b.

Figure 1C: Heat of injection (kcal/mol) vs. molar ratio. The equation $K_c: 1.09 \pm 0.11 \mu M$ is provided, along with $\Delta H: -27.0$ kcal/mol and $\Delta S: -63.2$ cal/mol·K. The residuals are also shown.

Figure 1D: Graph showing enzyme activity (µmol min⁻¹ mg⁻¹) for Cmu1, Cmu1+KWL1, and Cmu1+KWL1-b. Error bars indicate the standard deviation.
Figure 2

A

KWL1-b

KWL1-b'

KWL1

KWL1'

Superposition

Cmu1 Cmu1' Cmu1 Cmu1'

B

KWL1-b

KWL1

C

D

E

KWL1-b	KWL1
1	11
MA G V A V A A	M F M F L L V A L S
MA T V G G - N R A	L Y A V V A L P L L

KWL1-b	KWL1
61	71
D P D C E D G K M	Y P Q Y R C S P P V
G S E C K E K G R R	Y T T Y G S P P V

KWL1-b	KWL1
121	141
T G W F S N M A R C	G H R I K I S A A N
T G W Y N G G S R C	R K H I M I H A G N

KWL1-b	KWL1
181	191
D A L G L D N V G	M V D I T W S E Q
D A L G L N K D D G	Q A G I T W S D E

KWL1-b	KWL1
21	31
A P H T A S S L R P	G A S - - - - - L
A T L L H G P M R L	S H A F P Y R S L L

KWL1-b	KWL1
41	51
G T C R A S G Y L P	G R S G N C E K S N
O T C Q P S G S I Q	G R S G N C N T E N

KWL1-b	KWL1
81	91
T A S T R A V L T L	N S F E K G K D D G
T G S T R A V L T L	N S F A E G D D G

KWL1-b	KWL1
101	
G A A A C T G K F Y	S D Q E K V V A L S
D S S K K V V A L S	

* residues at both kiwellins involved in Cmu1 interaction
* residues at KWL1 involved in Cmu1 interaction
* residues at KWL1-b involved in Cmu1 interaction

β-strand

α-helix

180°
Figure 3
Figure 4

A

EGV

KWL1-b

KWL1

B

cleft

cleavage site

cellohexaose

EGV

pre-catalytic site

post-catalytic site

C

D168

D144

E159

KWL1-b

cellohexaose

E164

KWL1

D

D173

D149

Downloaded from http://www.jbc.org/ by guest on July 9, 2020
The two paralogous kiwellin proteins KWL1 and KWL1-b from maize are structurally related and have overlapping functions in plant defense

Florian Altegoer, Paul Weiland, Pietro Ivan Giammarinaro, Sven-Andreas Freibert, Lynn Binnebesel, Xiaowei Han, Alexander Lepak, Regine Kahmann, Marcus Lechner and Gert Bange

J. Biol. Chem. published online April 28, 2020

Access the most updated version of this article at doi: 10.1074/jbc.RA119.012207

Alerts:
- When this article is cited
- When a correction for this article is posted

Click here to choose from all of JBC's e-mail alerts