The bottleneck 2-connected \(k \)-Steiner network problem for \(k \leq 2 \)

M. Brazil, C.J. Ras, D.A. Thomas

Abstract
The geometric bottleneck Steiner network problem on a set of vertices \(X \) embedded in a normed plane requires one to construct a graph \(G \) spanning \(X \) and a variable set of \(k \geq 0 \) additional points, such that the length of the longest edge is minimised. If no other constraints are placed on \(G \) then a solution always exists which is a tree. In this paper we consider the Euclidean bottleneck Steiner network problem for \(k \leq 2 \), where \(G \) is constrained to be 2-connected. By taking advantage of relative neighbourhood graphs, Voronoi diagrams, and the tree structure of block cut-vertex decompositions of graphs, we produce exact algorithms of complexity \(O(n^2) \) and \(O(n^2 \log n) \) for the cases \(k = 1 \) and \(k = 2 \) respectively. Our algorithms can also be extended to other norms such as the \(L_p \) planes.

Keywords: bottleneck optimisation, Steiner network, 2-connected, block cut-vertex decomposition, exact algorithm, wireless networks

1. Introduction

In communication networks a bottleneck can be any node or link at which a performance objective attains its least desirable value. For instance, in wireless sensor networks we may define a bottleneck parameter on the network as the length of the longest edge (link), where the benefit of minimising the length of a link comes from the observation that the energy consumption of the incident transmitting node, for each transmission, increases with the length of the link. Due to the requirement of prolonged autonomy in wireless sensor networks, and the subsequent use of batteries, optimisation of power in individual nodes is a primary goal. This particular bottleneck parameter is therefore a common optimisation objective in the modelling of sensor network deployments. Graph models dealing with the minimisation
of the longest edge also have wide applicability in other areas, for instance in VLSI layout, general communication network design, and location problems; see [15] for an introduction to this topic.

Previous work on the longest edge minimisation problem in graphs has centred on properties and algorithms for the construction of bottleneck Steiner trees, both in the geometric version of the problem, and in the graph version where solutions are required to be subgraphs of a given weighted graph. In all versions of the problem one is required to construct a spanning tree on a given set of \(n \) vertices such that the longest edge has minimum length (or weight), and where a set of additional points (called Steiner points) are available during the construction. In geometric versions Steiner points can generally be located anywhere in the plane, and therefore, to ensure that the bottleneck can not be made arbitrarily small, an upper bound \(k \) is placed on their total number. In the Euclidean and rectilinear planes, and also in graphs, the problem has been shown to be NP-hard; see [4, 15, 18]. Recent papers provide exact algorithms for the \(L_p \) metric and other normed planes; for instance [2, 3, 5]. In particular, in [2] Bae et al. present an \(O(f(k) \cdot (n^k + n \log n)) \) algorithm for \(L_p \) metrics with \(1 < p < \infty \), where \(n \) is the number of non-Steiner vertices and \(f(k) \) is a function of \(k \) only. They make use of a technique based on smallest colour spanning disks and farthest colour Voronoi diagrams, which we also employ for our algorithms.

As a model for wireless network deployment the bottleneck Steiner tree problem is only an initial step towards the more general (and realistic) aim of modelling networks of higher connectivity. The benefits of multi-path connectivity in networks are numerous, and include robustness and survivability of the network in the event of node failure. In wireless sensor networks another benefit of multiple available paths is the possibility of diverting traffic when a node’s available power is low, and the subsequent extension of the lifetime (or time till first maintenance) of the network.

Few results exist in the literature for the bottleneck Steiner problem when the solution graph is required to be anything other than a tree. The case when the resultant graph is required to be 2-connected, but no Steiner points are allowed, finds application as a heuristic for the bottleneck Travelling Salesman Problem, as was shown by Timofeev in [17] and by Parker and Rardin in [13]. Various authors (see [6, 11, 14]) consequently produced fast polynomial algorithms for the so called bottleneck biconnected spanning subgraph problem, the fastest of which provides an \(O(m) \) exact algorithm when the initial given graph contains \(m \) edges. This translates into an \(O(n^2) \) algorithm for
the geometric problem, where all edges of the complete graph are assumed to be available.

This paper presents algorithms for solving the bottleneck Steiner problem in the Euclidean plane when the solution graph is required to be 2-connected and contains exactly \(k = 1 \) or \(k = 2 \) Steiner points. We discover new properties of bottleneck Steiner 2-connected networks that are based on the well-known block cut-vertex decomposition of graphs. This allows us to develop an \(O(n^2) \) algorithm for solving the problem when \(k = 1 \), and an \(O(n^2 \log n) \) algorithm when \(k = 2 \). We also provide an outline of the generalisation of our techniques to other planar norms.

The paper is divided into three main parts. Section 2 deals with notation and provides a few structural results that are relevant to both cases \(k = 1 \), \(2 \). In Section 3 we focus on the case \(k = 1 \) and in Section 4 on the case \(k = 2 \).

2. Notation & Preliminaries

Throughout this paper we only consider finite, simple, and undirected graphs. Let \(X \) be a set of vertices embedded in \(\mathbb{R}^2 \). If \(G = \langle V(G), E(G) \rangle \) is a graph on \(X \) then \(V(G) = X \) is the vertex-set and \(E(G) \subseteq X^2 \) the edge-set of \(G \). If \(A \) is a set of vertices or a graph, and \(e \) is an edge incident to some vertex of \(A \) then we say \(e \) is incident to \(A \). Two graphs (or vertex sets) are adjacent if there exists an edge incident to both graphs. Two sets of vertices or edges are independent if they are not adjacent or incident to one another. If \(G, G' \) are any two graphs, \(E \subseteq E(G) \), and \(V \subseteq V(G) \), then \(G - E := \langle V(G), E(G) - E \rangle \), \(G - V := \langle V(G) - V, E(G) - \{uv \mid u \in V \text{ or } v \in V \} \rangle \), and \(G \cup G' := \langle V(G) \cup V(G'), E(G) \cup E(G') \rangle \).

A graph \(G \) is connected if there exists a path connecting any pair of vertices in \(G \). An isolated component is a maximal (by inclusion) connected subgraph. A cut-set \(A \) of \(G \) is any set of vertices such that \(G - A \) has strictly more isolated components than \(G \); if \(|A| = 1 \) then \(A \) is a cut-vertex. Set \(A \) separates \(W \) from \(Z \) in \(G \), where \(W, Z \) are subgraphs of \(G \), if every path connecting a vertex of \(W \) to a vertex of \(Z \) contains a vertex of \(A \). If \(A \) separates any subgraphs of \(G \) then \(A \) is a cut-set of \(G \).

The vertex-connectivity or simply connectivity \(c = c(G) \) of a graph \(G \) is the minimum number of vertices whose removal results in a disconnected or trivial graph. Therefore \(c \) is the minimum cardinality of a cut-set of \(G \) if \(G \) is connected but not complete; \(c = 0 \) if \(G \) is disconnected; and \(c = n - 1 \) if \(G = K_n \), where \(K_n \) is the complete graph on \(n \) vertices. A graph \(G \) is
said to be c'-connected if $c(G) \geq c'$ for some non-negative integer c'. In this paper we make an exception for the connectivity definitions of K_1, K_2: we assume that $c(K_1) = c(K_2) = 2$. If G is not K_1 or K_2 then, as a consequence of Menger’s theorem, G is c'-connected if and only if for every pair u, v of distinct vertices there are at least c' internally disjoint $u - v$ paths in G. If G is a 2-connected graph of order at least 3 then for every triple of vertices of G there exists a cycle containing them.

A critical edge of a 2-connected graph is an edge such that its removal reduces the graph’s connectivity. From [7] we know that an edge is critical if and only if it is not a chord of any cycle. A block is a maximal 2-connected subgraph. The next result is implicit in many of the proofs in this paper.

Theorem 1. (see [12]) Let $G = \langle V, E \rangle$ be a 2-connected graph with $G' = \langle V', E' \rangle$ a subgraph of G induced by V'. Then replacing E' in G by any collection of edges E'' defined on V', where $G'' = \langle V', E'' \rangle$ is 2-connected, results in a graph $G^* = \langle V, (E \setminus E') \cup E'' \rangle$ which is 2-connected.

For any graph G we denote the longest edge of G (where ties have been broken) by $e_{\text{max}}(G)$ and its length by $\ell_{\text{max}}(G)$.

Definition 1. The Euclidean bottleneck c-connected k-Steiner network problem requires one to construct a c-connected network N_k spanning X and a set S_k of k Steiner points, such that the $\ell_{\text{max}}(N_k)$ is a minimum across all such networks. The variables are the set S_k and the topology of the network.

An optimal solution to the problem is called a minimum bottleneck c-connected k-Steiner network, or (c, k)-MBSN. Note that a $(c, 0)$-MBSN is a minimum bottleneck spanning c-connected network. For the rest of the paper we focus on the case $c = 2$ with $k = 1, 2$. We also assume throughout that $|X| = n \geq 2$.

Let $\{E_i\}$ be a partition of $E(G)$ into equivalence classes such that two edges are in the same equivalence class if and only if they belong to a common cycle of G. Let $\mathcal{Y}(G) = \{Y_i\}$ where Y_i is the subgraph of G induced by E_i. As observed in [3], the partition is well defined; each Y_i is a block of G; each non-cut-vertex of G is contained in exactly one of the Y_i; each cut-vertex of G occurs at least twice amongst the Y_i; and for each $i, j, i \neq j$, $V(Y_i) \cap V(Y_j)$ consists of at most one vertex, and this vertex (if it exists) is a cut vertex of G. The set $\mathcal{Y}(G)$ is called the block cut forest (BCF) of G. If Y_i contains
exactly one cut-vertex of G then Y_i is a leaf block. An isolated block contains no cut-vertices of G, i.e., it is a 2-connected isolated component of G. We use $\mathcal{Y}_0(G)$ to denote the set of leaf blocks of G. The interior of block Y_i, denoted Y_i^*, is the set of all vertices of Y_i that are not cut-vertices of G. The unique cut-vertex of G belonging to $Y_i \in \mathcal{Y}_0(G)$ is denoted by $\tau(Y_i)$.

Theorem 2. (see [16]) The BCF of a graph G with m edges can be constructed in time $O(m)$. As part of the construction we can calculate the connectivity of G, and all leaf blocks as well as all cut-vertices and the blocks that contain them can be specified.

We define a counter, $b(\cdot)$, as follows. Let $\{G_i\}$ be the set of isolated components of G. If G_i is an isolated block then let $b(G_i) = 2$, else let $b(G_i) = |\mathcal{Y}_0(G_i)|$. Finally, let $b(G) = \sum b(G_i)$. Essentially $b(G)$ is the number of leaf blocks plus twice the number of isolated blocks occurring in G (recall that isolated vertices and isolated edges are blocks according to our definition).

Lemma 3. If G_1 is an edge subgraph of G_2 then $b(G_1) \geq b(G_2)$.

Proof. Every leaf-block of G_2 contains a leaf-block or an isolated component of G_1. Every isolated block of G_2 contains at least two leaf-blocks or an isolated block of G_1. □

Let e be any edge of a plane embedded graph. The lune specified by e is the region of intersection of the two circles of radius $|e|$ centred at the endpoints of e. Next we define a useful graph for dealing with 2-connected bottleneck problems.

Definition 2. (see [6]) The 2-relative neighbourhood graph on X (or 2-RNG) is the graph R such that $e \in E(R)$ if and only if the lune specified by e contains (strictly within its boundary) fewer than two vertices of X.

Theorem 4. (see [6]) Let R be the 2-RNG on a given set X, with $|X| = n$. Then

1. R is 2-connected.
2. R can be constructed in time $O(n^2)$.
3. The number of edges of R is $O(n)$.
4. There exists a (2, 0)-MBSN, say N_0, on X which is a subgraph of R. If R is given N_0 can be constructed in a time of $O(n \log n)$.

The algorithms we develop in this paper for constructing (2, k)-MBSNs contain a procedure that essentially extends a subgraph G of the 2-RNG on n vertices to a (2, 0)-MBSN containing G as a subgraph and also spanning k variable Steiner points, such that the length of the longest edge is minimised across all such (2, 0)-MBSNs. We formalise this concept as follows. Let G be a graph embedded in \mathbb{R}^2 and consider the following three variable sets:

- $S_k = \{s_1, ..., s_k\}$, which is a set of k distinct Steiner points in \mathbb{R}^2;
- $E_S \subset S_k^2$; and
- $V = \{V_1, ..., V_k\}$, which is a set of subsets of $X = V(G)$. Let $H = \langle V(H), E(H) \rangle$ where $V(H) = X \cup S_k$ and $E(H) = E(G) \cup E_S \cup \{s_ix_j \mid 1 \leq i \leq k, x_j \in V_i \}$. If H is 2-connected then we call H a k-block closure of G. If $\ell_{\text{max}}(H) \leq \ell_{\text{max}}(H')$ for any k-block closure H' of G, then H is an optimal k-block closure of G. Note that there may be many distinct optimal k-block closures for G.

A k-block closure exists for any graph G when $k \geq 2$: let S_k be any set of k distinct points in the plane, let $E_S = \{(s_i, s_j) \mid i < j\}$, let $V_i = X$ for every i, and define H as before. Clearly H is k-block closure of G. No 1-block closure exists for a disconnected graph, since, for any choice of S_1, E_S and V, the resultant H will either be disconnected or the Steiner point will be a cut-vertex. Observe that N_k is an optimal k-block closure of $N_k - S_k$ whenever N_k is a (2, k)-MBSN on X with Steiner point set S_k. Therefore $N_1 - S_1$ is always connected but $N_2 - S_2$ need not be.

A Steiner edge is an edge incident to a Steiner point, and for any graph or vertex set M a Steiner M-edge is an edge incident to both S_k and M. The next lemma is fundamental to our algorithms.

Lemma 5. For every leaf-block Y of G there exists at least one Steiner Y^*-edge in any k-block closure of G.

Proof. If this is not true then $\tau(Y)$ is a cut-vertex of the k-block closure, which is a contradiction. □

In this paper the construction of an optimal k-block closure will usually involve smallest colour-spanning disks (SCSDs). Given a partition of a set X into $\{V_i\}$ where each V_i is assigned a unique colour, an SCSD is a circle of minimum radius that contains at least one point of each colour. If $|X| = n$
and $|\{V_i\}|$ is constant then an SCSD C can be found in time $O(n \log n)$; see \cite{1, 3}. Clearly C is determined by either two diametrically opposite points, or by three points. These points are referred to (in \cite{3}) as the *determinators* of C. The precise way in which one uses SCSDs to construct an optimal k-block closure depends on the value of k, and will be discussed in the relevant section.

Proposition 7, below, essentially specifies a useful canonical form for a $(2, k)$-MBSN for any set X. The corollaries to this proposition allow us to greatly minimise the time-complexity of our algorithm for $(2, k)$-MBSN construction later in this section. Before proving the proposition we require the following lemma.

Lemma 6. Let $N = \langle V, E \rangle$ be a 2-connected graph. Let $v \in V$ be a vertex of degree 3 or more in N, with neighbours x_1 and x_2 such that vx_1 and vx_2 are critical. Then $x_1x_2 \notin E$; and replacing vx_1 by x_1x_2 in N results in a graph that is also 2-connected.

Proof. Suppose $x_1x_2 \in E$. Since N is 2-connected and $|V| \geq 4$ it follows that either vx_1 or vx_2 is a chord of a cycle in N, contradicting the assumption that both edges are critical. Thus, by contradiction, $x_1x_2 \notin E$.

Let x_3 be a third neighbour of v in N, other than x_1 and x_2. Since N is 2-connected, there exists a path P_{12} between x_1 and x_2 in N not containing v and there exists a path P_{23} between x_2 and x_3 in N not containing v. The paths P_{12} and P_{23} are not internally disjoint, since otherwise vx_2 would be a chord of the cycle formed by P_{12}, P_{23}, x_3v and vx_1, contradicting the assumption that vx_2 is critical. It follows that replacing vx_1 in G by x_1x_2 does not create a cut-vertex at x_2. Clearly no other vertices can become cut-vertices after the replacement, hence the new graph is also 2-connected. □

Proposition 7. There exists a $(2, k)$-MBSN N_k on X, such that N_k is a subgraph of the 2-RNG on $V(N_k)$ and the degree of v is at most 5 for every $v \in V(N_k)$.

Proof. Let N be any $(2, k)$-MBSN on X such that every edge of N is critical. We also assume that $|V(N_k)| > 3$, since otherwise the proposition is trivially true. The proof is based on running two modification procedures on the edges of N, neither of which reduces the connectivity of the graph: the
first reduces the degree of every vertex to at most 5; the second replaces each edge of \(N \) not in the 2-RNG on \(V(N_k) \) by up to four shorter edges. After each procedure the property of every edge being critical can be maintained by simply deleting any non-critical edges. We will see that the first procedure does not increase the length of the longest edge in \(N \), while, in the second, each edge removed from \(N \) is replaced by shorter edges. It follows that if we alternately run these two modification procedures on \(N \), the process must stop after a finite series of steps, at which point both properties in the proposition have been achieved. It remains to describe the two procedures and show that each results in a graph that is still 2-connected.

Modification Procedure 1. Let \(v \) be a vertex of \(N \) of degree 6 or more, and let \(x_1 \) and \(x_2 \) be two neighbours of \(v \) for which \(\angle x_1vx_2 \) is minimum. We assign the labels to these two neighbours so that \(|x_1v| \geq |x_2v| \). Suppose that either \(\angle x_1vx_2 < 60^\circ \) or \(\angle x_1vx_2 = 60^\circ \) and \(|x_1v| > |x_2v| \). Then in either case \(|x_1x_2| < |x_1v| \), so replacing the edge \(x_1v \) by \(x_1x_2 \) reduces the degree of \(v \) and does not increase the length of the longest edge in \(N \), but maintains the 2-connectivity of \(N \), by Lemma 6. Repeating this replacement for every suitable triple \(v, x_1, x_2 \) results in a graph where a vertex \(v \) can only have degree 6 if its six neighbours are all equidistant, and each angle between neighbouring pairs of incident edges at \(v \) is 60°. For such a vertex \(v \) we call the subgraph induced by \(v \) and its six neighbours a **regular 6-star**. We need to show that we can replace an edge in \(N \) to reduce the degree of the vertex at the centre of a regular 6-star, without creating another regular 6-star elsewhere in the new graph. Suppose \(x_1, x_2 \) and \(x_3 \) are neighbouring vertices in anti-clockwise order to \(v \), which is the centre of a regular 6-star, such that \(\angle x_1vx_2 = 60^\circ, \angle x_2vx_3 = 60^\circ \) and the edges \(vx_i, i \in \{1, 2, 3\} \) are critical. Note that the latter condition implies that \(x_1x_2 \not\in E(N) \) and \(x_2x_3 \not\in E(N) \). Suppose we replace \(vx_1 \) by \(x_1x_2 \); then, by Lemma 6, the new graph is still 2-connected and clearly has the same bottleneck length and total edge length as \(N \). But there is no longer a regular 6-star at \(v \), nor has a regular 6-star been created at \(x_2 \) since \(x_2x_3 \not\in E(N) \).

Modification Procedure 2. The second procedure replaces an edge by a 4-cycle if and only if the lune determined by the edge contains at least 2 nodes. This procedure replaces the edge by edges of length strictly less than the original edge (see Fig. 1). The process is described in more detail in [6], where it is also shown that the procedure maintains the 2-connectivity of \(N \).

Therefore the alternation between these two procedures must eventually terminate and produce a block \(N' \) satisfying both conditions. At this stage
we let $N_k = N'$, completing the proof. □

![Figure 1: Lune edge-replacement procedure](image)

In the rest of this paper we assume that N_k is a $(2, k)$-MBSN on X, with Steiner point set S_k, satisfying the Proposition 7. An external Steiner edge is a Steiner edge with one end-point not in S_k. Let d be the number of external Steiner edges of N_k. For any G we denote the edge-subgraph of G containing all edges of G of length at most r by $G(r)$. Let R be the 2-RNG on X and let $N_k := N_k - S_k$. Clearly N_k is a subgraph of $R(\ell_{\text{max}}(N_k))$.

Corollary 8. $b(R(\ell_{\text{max}}(N_k))) \leq b(N_k) \leq d \leq 5k$

Proof. The first inequality holds by Lemma 3 and the second by Lemma 5. The final inequality holds since the degree of any Steiner point in N_k is at most 5. □

Corollary 9. Let $G = R(\ell_{\text{max}}(N_k))$ and let G^+ be any optimal k-block closure of G. Then G^+ is a $(2, k)$-MBSN on X.

Proof. Since N_k is a subgraph of G, any k-block closure of N_k is a k-block closure of G. Therefore N_k is a k-block closure of G, so that $\ell_{\text{max}}(G^+) \leq \ell_{\text{max}}(N_k)$. This, together with the fact that G^+ is a 2-connected spanning network on X utilising k Steiner points implies that G^+ is a $(2, k)$-MBSN. □
3. Algorithm for $k = 1$

For any connected graph G that is not a block, let $r(G)$ be the radius of the SCSD $C(G)$ on the set of vertices $\bigcup_{Y_i \in \mathcal{Y}_0(G)} V(Y_i^*)$, where two vertices are the same colour if and only if they belong to the same leaf-block of G. Let G^{SD} be the graph that we obtain from G by introducing a Steiner point s_0 as follows. We locate s_0 at the centre of $C(G)$, and for each $Y_i \in \mathcal{Y}_0(G)$ we add an edge s_0x for some $x \in Y_i^*$ where $|s_0x| \leq |s_0y|$ for all $y \in Y_i^*$. If G is 2-connected then, to get G^{SD}, we place s_0 at the midpoint of any edge e of G and add edges incident to s_0 and the endpoints of e; in other words $C(G)$ will be the circle centred at the midpoint of e with $r(G) = \frac{1}{2}|e|$. Similarly to Lemma 8 we have the following lemma.

Lemma 10. If G_1 is a connected edge subgraph of G_2 then $r(G_1) \geq r(G_2)$.

Proposition 11. For any connected graph G, G^{SD} is an optimal 1-block closure of G.

Proof. This is clearly true if G is a block, so assume that G is connected but not a block. We first show that G^{SD} is 2-connected. Let u_1, u_2 be any two vertices of G^{SD}. If u_1 and u_2 are contained in the same block of G then clearly there exists a cycle in G^{SD} containing them both. Suppose next that u_1 and u_2 are contained in different leaf-blocks of G. Let u'_i be a neighbour of s_0 in the interior of the block of G, say Y_i, containing u_i. We assume that $u_i, u'_i, \tau(Y_i)$ are distinct, but the reasoning is similar if any of them coincide. Let C_i be a cycle in Y_i containing $u_i, u'_i, \tau(Y_i)$. Then there exists a path P_i in C_i connecting u'_i and $\tau(Y_i)$ and containing u_i. Let P be a path in G connecting $\tau(Y_1)$ and $\tau(Y_2)$ (note that P may consist of a single vertex). Therefore the cycle formed by P_1, P, P_2 and the two Steiner edges incident to u'_1 and u'_2 contains u_1 and u_2. The case when one of the u_i coincides with s_0 or is contained in a non-leaf-block is similar, and therefore for every pair of vertices of G^{SD} there exists a cycle containing them. Therefore G^{SD} is 2-connected.

Let G^+ be any optimal 1-block closure of G with Steiner point s. Now suppose to the contrary that $\ell_{\text{max}}(G^+) < \ell_{\text{max}}(G^{SD})$. Then $\ell_{\text{max}}(G) \leq \ell_{\text{max}}(G^+) < \ell_{\text{max}}(G^{SD})$. Then s_0 must be an endpoint of $e_{\text{max}}(G^{SD})$, and therefore $\ell_{\text{max}}(G^{SD}) = r(G)$. Let C be the circle centred at s_0 and of radius $r' = \max\{|sx| : sx \text{ is an edge of } G^+\}$. Then, by Lemma 8, C is
a colour-spanning disk on the interiors of the leaf-blocks of G. Therefore
\[\ell_{\text{max}}(G^{\text{SD}}) = r(G) \leq r' \leq \ell_{\text{max}}(G^{+}), \] which is a contradiction. \qed

Algorithm \ref{alg:1} constructs a $(2,1)$-MBSN on a set X of vertices embedded in the Euclidean plane.

Algorithm 1 Construct a $(2,1)$-MBSN

Input: A set X of n vertices embedded in the Euclidean plane

Output: A $(2,1)$-MBSN on X

1: Construct the 2-RNG R on X
2: Let L be the ordered set of edge-lengths occurring in R, where ties have been broken randomly
3: Let t be a median of L // a binary search now commences
4: repeat
5: Construct the BCF of $G_t = R(t)$
6: if $b(G_t) > 5$ or G_t is not connected then
7: Exit the loop and let t be the median of the next larger interval
8: Construct $C(G_t)$
9: if $r(G_t) \leq t$ then
10: Let t be the next smaller median
11: else
12: Let t be the next larger median
13: until no smaller value of $\max\{r(G_t), t\}$ can be found
14: Let $t^* \in L$ be the value that produces the minimum $\max\{r(G_t), t\}$, and let s^* be the centre of $C(G_{t^*})$.
15: Construct a $(2,0)$-MSBN on $X \cup \{s^*\}$ and output this as the final solution

Theorem 12. Algorithm \ref{alg:1} correctly computes a $(2,1)$-MBSN on X in a time of $O(n^2)$.

Proof. Observe first that by Proposition \ref{prop:1} for every G_t Algorithm \ref{alg:1} correctly computes the location of the Steiner point and the length of the longest edge in an optimal 1-block closure of G_t. Let $t_{\text{opt}} = \ell_{\text{max}}(N_1)$ and let $G_{\text{opt}} = R(t_{\text{opt}})$. Note that $t_{\text{opt}} \in L$, G_{opt} is connected since N_1 is connected, and (by Corollary \ref{cor:8}) $b(G_{\text{opt}}) \leq 5$. By Corollary \ref{cor:9}, $G_{\text{opt}}^{\text{SD}}$ is a $(2,1)$-MBSN on X. Any $t \in L$ such that G_t is connected, $b(G_t) \leq 5$, and G_t^{SD} is a $(2,1)$-MBSN on X is referred to as feasible.
Now let \(t \in L \) be some value considered in the binary search. If \(G_t \) is not connected or \(b(G_t) > 5 \) then, by Lemma \(\text{[3]} \) there exists a feasible \(t' \) such that \(t' > t \). If \(r(G_t) \leq t \) then clearly there exists a feasible \(t' \) such that \(t' \leq t \), and if \(r(G_t) > t \) then, by Lemma \(\text{[10]} \) there exists a feasible \(t' \) such that \(t' \geq t \). Therefore a feasible \(t' \) will be located by the binary search by decreasing \(t \) if \(r(G_t) \leq t \) and \(G_t \) is connected, and increasing \(t \) otherwise.

To prove the required complexity, note that the constructions of the 2-RNG and the \((2,0)\)-MBSN in Lines (1) and (15) respectively each requires \(O(n^2) \) time. The binary search in Lines (4)–(13) is on \(O(n) \) elements and therefore terminates in \(O(\log n) \) steps. In each step a BCF on \(G_t \) is constructed in Line (5), requiring \(O(n) \) time, and an SCSD is constructed in Line (8), requiring \(O(n \log n) \) time. Therefore the total time for the search to terminate is \(O(n \log^2 n) \), and the total complexity is \(O(n^2) \). □

4. Algorithm for \(k = 2 \)

Let \(G \) be any graph on \(X \) and let \(G^+ \) be any optimal 2-block closure of \(G \) with Steiner point set \(S_2 = \{s_1, s_2\} \). For any \(i \in \{1,2\} \) we denote \(3 - i \) by \(\overline{i} \). If \(G \) is a block then the construction of an optimal 2-block closure of \(G \) is easily achieved. If \(G \) is not a block but \(G^+ - s_i \) is a block for some \(i \) (in which case \(G \) is connected) then the following modification to \(G^+ \) will destroy this property without changing the length of the longest edge. Let \(e = s_i y \) be any Steiner edge of \(G^+ - s_i \). We remove \(s_i \) and edge \(e \) from \(G^+ \), then reintroduce \(s_i \) at the midpoint of line segment \(s_i y \) by adding edges \(s_1 s_2 \) and \(s_i y \). Therefore throughout this section we assume that neither \(G \) nor \(G^+ - s_i \) are blocks for any \(i \).

4.1. Critical edges of \(G^+ \)

We begin by proving a lemma that, combined with Lemma \(\text{[4]} \), specifies a set of Steiner edges that necessarily occur in \(G^+ \). These edges together with \(G \) induce a subgraph of \(G^+ \) with a simple structure, which we then use to determine additional critical edges of \(G^+ \). The benefit of knowing the critical edges becomes apparent in Section \(\text{[4.2]} \) where we present a method for locating the Steiner points of an optimal 2-block closure by constructing SCSDs on the blocks of \(G \) containing the endpoints of the critical edges.

Lemma 13. For every isolated component \(W \) of \(G \) there exists a pair of Steiner \(W \)-edges in \(G^+ \). If \(W \) is not a vertex there exists a pair of independent Steiner \(W \)-edges in \(G^+ \).
Proof. Clearly there exist at least two Steiner W-edges. Suppose that W is not an isolated vertex and that no pair of independent Steiner W-edges exist. Without loss of generality let $e = xs_1$ be any Steiner W-edge. Then either (1) all Steiner W-edges are incident to x or (2) they are all incident to s_1. If (1) is true then x separates W from S_2 in G^+, and if (2) is true then s_1 separates W from s_2 in G^+. In either case G^+ is not 2-connected, which is a contradiction. Therefore an independent pair of Steiner W-edges must exist. □

Let E_0 be a maximal set of external Steiner edges of G^+ such that: (1) every $e \in E_0$ is incident to Y^* for some $Y \in \mathcal{Y}_0(G)$ or to an isolated block of G, (2) no two edges of E_0 are incident to the same leaf-block, (3) for every isolated block W of G there exists exactly two edges of E_0 incident to W which, unless W is a vertex, are independent. The set E_0 is referred to as a base edge-set for G^+, and its existence is guaranteed by the previous lemma and Lemma 5. Let E'_0 be the set of Steiner edges not in E_0 and let $M_0 = G^+ - E'_0$. If, for a given (non-block) isolated component W of G, each edge of E_0 incident to W is also incident to the same Steiner point s_i for some $i \in \{1, 2\}$, then W is called an s_i-covered component. Note that G itself cannot be s_i-covered for some i since then $G^+ - s_i$ would be a block. Let M'_0 be the subgraph of M_0 induced by S_2 and all components of G that are not s_i-covered for any i.

Proposition 14. One of the following is true: (1) M'_0 consists of two isolated Steiner points, (2) M'_0 is a block, or (3) the BCF of M'_0 is a path with end-blocks Y_1, Y_p such that $s_1 \in Y_1^*$ and $s_2 \in Y_p^*$.

Proof. If G is not connected and every component is s_i-covered for some i then clearly M_0 consists of exactly two isolated components and therefore (1) holds. So let us assume that some component W of G is not s_i-covered (note that W may be an isolated block). Then s_1 and s_2 are connected in M'_0 by a path with all its internal vertices contained in W. Since every component of G is adjacent to at least one of the s_i through an edge of E_0, we see that M'_0 (and indeed M_0) is connected. Now suppose that M'_0 is not a block and that there exists a leaf-block of M'_0, say Y, such that neither s_1 nor s_2 are in Y^*. Since Y is a leaf-block it contains at most one cut-vertex of M_0. If this cut-vertex is a Steiner point, say s_1, then $Y - s_1$ is an isolated component of G which is adjacent only to s_1 in E_0; this contradicts the definition of M'_0.

13
Otherwise, if \(Y \cap S_2 \) is empty then \(Y \) is a leaf-block of some component of \(G \), and no edge in \(E_0 \) is incident to \(Y^* \); this contradicts the choice of \(E_0 \). Therefore (3) holds and the proposition follows. □

Corollary 15. If \(G \) is connected then either \(M_0 \) is 2-connected or its BCF is a path.

Proof. Observe that \(M'_0 = M_0 \) in this case. □

Corollary 16. If \(G \) is not connected then either \(G \) contains an \(s_i \)-covered component or \(M_0 \) is 2-connected.

Proof. If \(G \) contains at least two components that are not \(s_i \)-covered then, using similar reasoning to the proof of Proposition 11 where it was shown that \(G^{SD} \) is 2-connected, we can show that \(M'_0 \) is 2-connected. □

In Figs. 2 and 3 we illustrate the case when \(G \) is connected. Depending on the choice of \(E_0 \) we either attain an \(M_0 \) that has a path BCF as in Fig. 2 or we attain an \(M_0 \) which is a block as in Fig. 3. An example where \(G \) is not connected and contains an \(s_2 \)-covered component is shown in Fig. 4. In this figure \(G \) also contains two isolated blocks \(W_1, W_2 \). In all three figures the Steiner points are represented by unfilled circles, vertices of \(G \) by black filled circles, edges of \(G \) by solid lines, and edges of \(E_0 \) by broken lines.

\[
Y_1 e_1 = Y_p e_2 e_3 s_2
\]

Figure 2: \(E_0 = \{e_1, e_2, e_3\} \) and the BCF of \(M_0 = M'_0 \) is a path

As we will prove later, all critical edges of \(G^+ \) are specified by Lemma 5 and Lemma 13, barring one particular case. The following notation is used
for this case throughout the rest of the paper. Suppose that G is connected but that M_0 is not a block. As per Proposition 14 let $Y_1, ..., Y_p$ be the blocks of M_0 as they appear in the path of the BCF, with $s_1 \in Y_1^*$ and $s_2 \in Y_p^*$, and recall that E'_0 is the set of Steiner edges of G^* not contained in E_0. For every $i \in \{1, ..., p - 1\}$ let $\tau_i = V(Y_i) \cap V(Y_{i+1})$, i.e., τ_i is the unique cut-vertex of M_0 common to Y_i and Y_{i+1}. Let $B_1, ..., B_p$ be the sequence of subgraphs of M_0 such that $B_1 = Y_1$ and for every $i \in \{2, ..., p\}$, $B_i = Y_i - \tau_{i-1}$. Note then that $B_p = Y_p^*$; every B_i contains at most one cut-vertex of M_0, and $\{V(B_i)\}$ partitions $V(M_0)$.

Lemma 17. E'_0 contains at least one of the following.

1. An edge s_1x where $x \in Y_p^*$,
2. An edge s_2y where $y \in Y_1^*$,
3. Two edges s_1x_1, s_2x_2 where $x_1 \not\in Y_1 \cup Y_p^*; x_2 \not\in Y_p \cup Y_1^*$; x_1 and x_2 are not the same cut-vertex of M_0; and if $x_1 \in B_{j_1}$ and $x_2 \in B_{j_2}$, then $j_2 \leq j_1$.

15
Proof. Observe that the case when s_1s_2 is an edge of E'_0 is contained in (1) or (2). Since M_0 is not a block E'_0 cannot be empty. Let $i \in \{1, ..., p - 1\}$. Then τ_i separates $H_1 = \bigcup_{j \geq i + 1} B_j$ from $H_2 = \bigcup_{j \leq i} B_j - \tau_i$ in M_0, and therefore in G^+ there exists an edge connecting H_1 and H_2. Since this edge must belong to E'_0 (i.e., it is a Steiner edge), and there exists an edge like this for every cut-vertex of M_0, the result follows.

This subsection described a number of edges (or rather, types of edges) that are necessary for a 2-block closure of G. In the next subsection we will prove that these types of edges are also sufficient.

4.2. Constructing an optimal 2-block closure of G

The construction of an optimal 1-block closure described in Algorithm 1 consists of locating the Steiner point at the centre of the SCSD on the interiors of the leaf-blocks of G. We can also view this construction in another way. Suppose that G is connected and let M be a graph topology containing G, a Steiner point s, and exactly one Steiner edge for each leaf-block of G. The location and precise neighbours of s in G are not yet specified, yet we know that if the interior of every leaf-block of G contains an endpoint of a Steiner edge of M then M must be 2-connected. Any 1-block closure of G must contain M, therefore by optimally embedding M (i.e., by determining the precise neighbours and location of s) we produce an optimal 1-block closure of G. Our generalisation to 2-block closures also defines M in this informal sense, but M can be defined formally by, for instance, replacing each block-interior by a unique vertex (note that block cut-vertex decompositions are often considered in this way, see [17]). Since M is essentially the topology of a graph that is obtained by removing all non-critical Steiner edges from some 2-block closure of G, we refer to M as a critical topology.

The topology of M when $k = 1$ can only take one general form, but when $k = 2$ we will need to consider a number of candidate critical topologies, and calculate an optimal pair of Steiner point locations for each one. The process of building a critical topology begins with the selection of a base edge-set E_0. If s_i is incident to e in E_0, and V_e is the block containing the other end-point of e, then both s_i and e are said to be associated with V_e. With M_0 defined as before we utilise Proposition 14 to determine whether additional Steiner edges are necessary for completing the critical topology M.

16
Once M is specified, the Steiner points are located using SCSDs and farthest colour Voronoi diagrams (FCVDs). The FCVD is defined in [1] as follows. Let $C = \{P_1, ..., P_q\}$ be a collection of q sets of n coloured points. If $p \in P_i$, i.e., p is a point of colour i, we put all points of the plane in the region of p for which i is the farthest colour, and p the nearest i-coloured point. In other words, z belongs to the region of p if and only if the closed circle centred at z that passes through p contains at least one point of each colour, but no point of colour i is contained in its interior. The FCVD for C is the decomposition of the plane into these regions; in other words the edges and vertices of the FCVD are the intersections of boundaries of regions.

Theorem 18. (see [1]) For constant q an FCVD on C can be computed in $O(n^2)$ time, and its structural complexity is $O(n)$.

Corollary 19. (see [1]) Given the FCVD, an SCSD on C can be found in $O(n)$ time.

Proof. The centre of the SCSD is either a vertex or the midpoint of an edge of the FCVD. □

Let C be an SCSD on C and let x be the centre of C.

Lemma 20. A set $D(x)$ of cardinality q containing a closest point of each colour to x can be constructed in $O(n \log n)$ time.

Proof. A closest point of P_i is found by constructing a standard Voronoi diagram on P_i and then performing point-location on x. □

Due to the previous result we assume in the rest of this section that the set $D(x)$ is known after any construction of an SCSD. It will be seen later that the purpose of $D(x)$ is to specify the neighbours of the Steiner points.

Recall that we are assuming that G is not a block. In order to choose a candidate base edge-set E_0 we partition the set $Y_0(G)$ into two sets $P = \{Y^1, Y^2\}$, where one of the sets may be empty if G is not connected. Let Z be the set of isolated blocks of G. In E_0 we then associate s_1 with each member of Y^1, and s_2 with each member of Y^2. Each s_i is also associated with every member of Z. The edge-set E_0 defines the graph M_0 (as in the previous subsection) We now discuss three different cases depending on the structure and connectivity of M_0. In each case we show how to construct a
critical topology M and how to embed M optimally.

Case 1: M_0 is 2-connected.

In this case no additional edges are required for an optimal 2-block closure of G, therefore we let $M = M_0$. Suppose first that $|Z| = 0$. We assign a unique colour to each Y^* where $Y \in \mathcal{Y}^1$. Let s_1 be the centre of the SCSD on these colour sets. We then perform a similar operation in order to find the location of s_2. When $|Z| = 0$ we need to make sure that $V(Z) \cap D(s_1) \cap D(s_2) = \emptyset$ for every $Z \in Z$ with $|V(Z)| > 1$. This is because $D(s_i)$ specifies the neighbours of s_i in the optimal embedded version of M, and, by the choice of E_0, if Z is not a vertex then s_1 and s_2 must have distinct neighbours in Z. If Z is an isolated vertex then it will be assigned a unique colour along with the leaf-blocks of \mathcal{Y}^i when locating each s_i, therefore for the remainder of Case 1 we assume that none of the members of Z are vertices.

Next suppose that $|Z| = 1$. We proceed exactly as before in order to locate s_1. Let $Z \in Z$ and let $y = V(Z) \cap D(s_1)$. When locating s_2 we proceed as before, but this time we do not include y when colouring Z. Next the entire process is repeated, but this time s_2 is located before s_1. The cheapest of these two solutions (determined by the largest radius of the two SCSDs) is picked as the final solution.

The final subcase we consider is when $|Z| = 5$, so that each \mathcal{Y}^i is empty. Our method is essentially a generalisation of the previous subcase, and all other subcases are subsumed by it. Suppose that $D(x) = \{y_i \in Z_i\}$, where $Z = \{Z_i\}$ and x is the centre of the SCSD on Z.

Claim: For some $i \in \{1, 2\}$ there exists an SCSD C_i such that the optimal location of s_i is the centre of C_i, and such that at least one member of $D(s_i)$ is contained in $\{y_i\}$. By symmetry we may assume that $i = 1$.

Proof. If this were not true then we could relocate s_2 at x, and let the neighbour-set of s_2 be $\{y_i\}$ in the embedded version of M. Clearly this will not increase the length of any edge and $V(Z_i) \cap D(s_1) \cap D(s_2)$ will be empty for every Z_i. \square

For every $j \in \{1, ..., 5\}$ we perform the following process. Suppose without loss of generality that $j = 1$. Let C'_1 be the SCSD, with centre x_1, on $\{y_1\}, Z_2, ..., Z_5$ and let C'_2 be the SCSD, with centre x_2, on $Z_1 - \{y_1\}, Z_2, ..., Z_5$. Similarly to the previous claim, we may assume that $D(s_i) \cap D(x_{j_1}) \cap V(Z_{j_2}) \neq \emptyset$ for some $i, j_1 \in \{1, 2\}$, and some $j_2 \in \{2, ..., 5\}$, where s_i is an optimal
Steiner point location. We perform the following process for every such
\(j_1, j_2 \) and \(y' \in D(x_{j_1}) \cap V(Z_{j_2}) \). Suppose without loss of generality that
\(y' \in D(x_1) \cap V(Z_2) \). Let \(C''_1 \) be the SCSD on \(\{y_1\}, \{y'\}, Z_3, ..., Z_5 \) and let
\(C''_2 \) be the SCSD on \(Z_1 - \{y_1\}, Z_2 - \{y'\}, Z_3, ..., Z_5 \), and continue the process as before. The process ends when we have located \(s_1 \) and \(s_2 \) such that
\(D(s_1) \cap D(s_2) = \varnothing \). The optimal embedded version of \(M \) is selected as a cheapest solution of all the various iterations. The total time-complexity in
Case 1 is \(O(n \log n) \).

Case 2: \(M_0 \) is not 2-connected and there are no \(s_j \)-covered components of \(G \) for any \(j \in \{1, 2\} \).
By Corollary [16] this case only arises when \(G \) is connected. There are two subcases here, and we consider both before picking a cheapest solution.

Subcase 2.1: Edge \(s_1 s_2 \) is not included in \(M \).
We use the notation from Lemma [17]. If \(Y_1 \) consists of a single edge then let \(J_1 = 1 \), else let \(J_1 = \emptyset \); similarly if \(Y_p \) consists of a single edge then let \(J_2 = p \), else let \(J_2 = \emptyset \). If \(i = p \) then let \(E'_0 \) consist of a single edge incident to \(s_1 \) and associated with \(Y^*_p - s_2 \). If \(i = 1 \) then let \(E'_0 \) consist of a single edge incident to \(s_2 \) and associated with \(Y^*_1 - s_1 \). Otherwise, let \(E'_0 \) consist of two edges \(e_1, e_2 \), where \(e_1 \) is incident to \(s_1 \) and associated with \(B_i \), and \(e_2 \) is incident to \(s_2 \) and associated with \(\bigcup_{j \leq i} B_j - \tau_i \).

Lemma 21. **Critical topology** \(M = M_0 + E'_0 \) is 2-connected for any \(i \in \{1, ..., p\} - J_1 - J_2 \).

Proof. Clearly \(M \) is connected. Since \(M_0 \) is a connected edge-subgraph of \(M \), if \(x \) is a cut-vertex of \(M \) then \(x \) is also a cut-vertex of \(M_0 \). Therefore, if \(x \) is a cut-vertex of \(M \) then \(x = \tau_j \) for some \(j \in \{1, ..., p - 1\} \), so that \(x \) separates \(H_1 = \bigcup_{j_0 \geq j + 1} B_{j_0} \) from \(H_2 = \bigcup_{j_0 \leq j} B_{j_0} - x \) in \(M \). But by the definition of \(E'_0 \) either \(i \geq j + 1 \) and \(e_1 \in E'_0 \) is associated with \(B_i \), or \(i \leq j \) and \(e_2 \in E'_0 \) is associated with \(\bigcup_{j_0 \leq i} B_{j_0} - \tau_i \). In either case there is an edge of \(E'_0 \) connecting a vertex of \(H_1 \) and a vertex of \(H_2 \). Therefore no such separating vertex \(x \) exists. \(\square \)
For locating the Steiner points we assume that $|E_0'| = 2$, the other case is similar. Let $I_0 = \{1, \ldots, p\} - J_1 - J_2$. We perform a binary search on I_0 in order to find the cheapest solution of the following form. Let $a \in I_0$, let $H_1^{a} = \bigcup_{j\geq a} B_j$, and let s_1 be located at the centre of the SCSD on the members of \mathcal{Y}^1 and on H_1^{a}. To locate s_2 suppose that $D(s_1) \cap H_1^{a}$ lies in B_b, where $b = b(a) \geq a$. Let $H_2^{b} = \bigcup_{j\leq b} B_j - \tau_b$ and locate s_2 at the centre of the SCSD on the members of \mathcal{Y}^2 and on H_2^{b}. For $i = 1, 2$ let r_i^a be the radius of the SCSD constructed for s_i. The binary search on I_0 will find the value of a for which $r_1^a = \max\{r_1^a, r_2^a\}$ is a minimum. Observe that there must exist an $a \in I_0$ such that the Steiner point locations constructed by this method for a are optimal for a 2-block closure of the current type.

We begin the search with a median value of I_0. Suppose that the current iteration of the search is $a \in I_0$. If $r_1^a \geq r_2^a$ then we decrease a for the next iteration, otherwise we increase a. We repeat this until no smaller value of r_a is found. To see why the search will terminate at an optimal value of a suppose first that $r_1^a \geq r_2^a$ at some iteration. Now let $a' \in I_0$ such that $a' \geq a$. Then since $H_1^{a'} \subseteq H_1^{a}$ we must have $r_1^{a'} \geq r_1^a \geq r_a$. Therefore $a^0 \leq a$ for some optimal a^0. Next suppose that $r_1^a < r_2^a$. Then, by similar reasoning for H_2^{b}, $b(a^0) \geq b(a)$ for some optimal a^0. But b is a non-decreasing function of a, and therefore we may assume that $a^0 \geq a$.

Since $|I_0| \in O(n)$ the search will terminate in $O(\log n)$ steps. At each step we construct two SCDS, and therefore the total time to locate the optimal Steiner point pair is $O(n \log^2 n)$.

Subcase 2.2: Edge s_1s_2 is included in M.

Similarly to the previous subcase we have the following result:

Lemma 22. Critical topology $M = M_0 + s_1s_2$ is 2-connected.

When embedding M there are a few possibilities depending on the locations and the number of determinators of the SCSDs for each Steiner point, but these cases are all similar to the results of [3] and will therefore not be discussed in much detail.

We briefly look at one of the cases. When each Steiner point is a determinant of the other Steiner point’s SCSD and both SCSDs have three determinators, we may locate the Steiner points by constructing two FCVDs,
one on the leaf-blocks in Y_1 and another on the leaf-blocks in Y_2. We then select an edge of each FCVD before solving a quartic equation to locate the Steiner points. This is possible since each of the two edges contains one of the Steiner points, and the distance between the Steiner points is equal to the common radius of the SCSDs. The maximum time for locating two adjacent Steiner points is $O(n^2)$ since we need to consider every pair of $O(n)$ edges.

Case 3: M_0 is not 2-connected and G contains at least one s_i-covered component for some $i \in \{1, 2\}$.

This case only occurs when G is not connected. For $j = 1, 2$ and a set of integer indices I_j let $\{W^j_i : i \in I_j\}$ be the set of s_j-covered components of G. Let E_j be the set of edges containing exactly one edge e_i for each $i \in I_j$ such that e_i is incident to s_j and is associated with W^j_i. Observe by Lemma 13 that E_1 and E_2 are necessarily in a 2-block closure of G.

Lemma 23. *Critical topology* $M = M_0 + E_1 + E_2$ is 2-connected.

Proof. Observe that M is connected since the addition of any edge of E_1 or E_2 to M_0 creates a path connecting s_1 and s_2. Suppose to the contrary that M has a cut-vertex x. Then x is also a cut-vertex of M_0 and is therefore one of the following vertices: (1) a cut-vertex of M'_0, (2) a Steiner point, (3) a non-Steiner end-point of a Steiner V-edge in E_0, where V is an s_i-covered component. Suppose that (1) holds and suppose without loss of generality that W is an s_2-covered component of G. Note that x separates s_1 and s_2 in M_0, and therefore also separates these vertices in M. Let $e \in E_2$ be a Steiner W-edge incident to s_1, and let $e' \in E_0$ be a Steiner W-edge incident to s_2. Let P_1 be a path in W connecting the non-Steiner end-points of e and e', and let P_2 be a path in M_0 connecting s_1 and s_2 (and therefore containing x). Then P_1, P_2 and the edges e, e' form a cycle in M containing s_1, s_2 and x, which contradicts the fact that x separates s_1 and s_2. Cases (2) and (3) are handled similarly since in these cases the cut-vertices lie on the same type of cycle. Therefore the lemma follows. □

To find the location of s_i we assign a unique colour to every W^7_j and to each $Y \in Y^n$ and $Z \in Z$. We then proceed similarly to Case 1, and again consider subcases depending on the cardinality of $|Z|$. The sets W^7_j are treated exactly as leaf-blocks are in Case 1. The total run-time is therefore also $O(n \log n)$.

21
The above three cases cover all possibilities. To close this section we observe that the pair of Steiner point locations $S_2 = \{s_1, s_2\}$ produced in the relevant case will be optimal for the embedded version of M. In other words, for any optimal 2-block closure G^+ of G such that G^+ contains the critical topology M (and note that we have shown it must contain M for one of the cases), the embedded version of M is an optimal 2-block closure of G. The proof of this fact is similar to the second part of the proof of Proposition 11, and we therefore do not provide further details.

For any given G and some M let $r(M)$ be the maximum radius of an SCSD used to optimally embed M. Let $r(G) = \min\{r(M)\}$ and let G^{SD2} be an optimally embedded M attaining $r(G)$. Then clearly G^{SD2} is an optimal 2-block closure of G. Similarly to Lemma 10 we have the following result.

Lemma 24. If G_1 is an edge subgraph of G_2 then $r(G_1) \geq r(G_2)$.

We present Algorithm 2 for constructing a (2, 2)-MBSN.
Algorithm 2 Construct a (2, 2)-MBSN

Input: A set X of n vertices embedded in the Euclidean plane

Output: A (2, 2)-MBSN on X

1. Construct the 2-RNG R on X
2. Let L be the ordered set of edge-lengths occurring in R, where ties have been broken randomly
3. Let t be a median of L
4. repeat
 5. Construct the BCF of $G_t = R(t)$
 6. if $b(G_t) > 10$ then
 7. Exit the loop and let t be the median of the next larger interval
 8. for all valid partitions $P = \{Y_1, Y_2\}$ of $Y_0(G_t)$ do
 9. Let E_0 be the base edge-set determined by P and the isolated blocks of G_t
 10. Construct the BCF of M_0
 11. Use the structure of the BCF of M_0 to determine the critical topology M and its optimal embedding, by calling the relevant procedure from Case 1 – 3
 12. if $r(G_t) \leq t$ then
 13. Let t be the next smaller median
 else
 15. Let t be the next larger median
 until no smaller value of $\max\{r(G_t), t\}$ can be found
17. Output the embedded M producing the minimum $\max\{r(G_t), t\}$

Theorem 25. Algorithm 2 correctly computes a (2, 2)-MBSN on X in a time of $O(n^2 \log n)$.

Proof. The correctness proof is similar to that of Theorem 12. Let $t_{opt} = \ell_{max}(N_2)$ and $G_{opt} = R(t_{opt})$. Then G_{opt}^{SD2} is a (2, 2)-MBSN on X and we proceed as before.

To prove complexity we note that the longest time that arises during the binary search is $O(n^2)$ in Line (11), Subcase 2.2 when the Steiner points are adjacent to each other. Iterating through all valid partitions in Line (8) requires constant time, and constructing the BCF of M_0 in Line (10) takes at most $O(n)$ time.

It should be noted that it is possible to replace all occurrences of the
2-RNG in Algorithm 2 with the complete graph on X, without altering the essential nature of the algorithm. Since each iteration of the algorithm already requires $O(n^2)$ time, and the main difference in complexity in the two versions is the time required to produce the BCFs, the final complexity would still be $O(n^2 \log n)$. Even though the limiting complexity remains unchanged, using the complete graph will become an issue during practical implementations because the BCF is constructed so often. For this reason, and for the sake of symmetry with the $k = 1$ case, we make use of the 2-RNG here.

5. Conclusion

By using properties of 2-connected graphs, 2-relative neighbourhood graphs, and smallest colour spanning disks, we produced two fast and exact polynomial time algorithms for solving the Euclidean bottleneck 2-connected k-Steiner network problem when $k = 1, 2$. Fundamental to our algorithms is the fact that any graph can be uniquely decomposed into blocks such that the resulting graph is a forest. This allowed us to characterise the set of edges which occur in an optimal solution. The properties of these edges are crucial in determining the colour sets upon which the spanning disks should be constructed. In turn, the spanning disks determine the locations of the optimal Steiner points. In the $k = 1$ case this gave us an algorithm of complexity $O(n^2)$, and $O(n^2 \log n)$ when $k = 2$.

Regarding the $k \leq 2$ problem on other planar norms, observe that our connectivity related results are based on topological properties, and therefore hold for all metrics. Smallest colour-spanning disks and farthest colour Voronoi diagrams find analogs the L_p planes: see [1, 9]. A generalisation of the 2-relative neighbourhood graph to L_p norms has not been considered in the literature, however algorithms do exist for the construction of 1-relative neighbourhood graphs in these planes (see [10]). It might be possible to extend the results of [10], but, irrespectively, replacing all occurrences of the 2-RNG in our algorithms by the complete graph on X leads to an increase in complexity of only a $\log n$ factor when $k = 1$, and no increase when $k = 2$.

A future goal is to extend our results to general values of k and also to graphs of higher connectivity. We believe that this can be achieved through more sophisticated methods based on the ones developed in this paper; this is one of our current topics of research.
References

[1] M. Abellanas, F. Hurtado, C. Icking, R. Klein, E. Langetepe, L. Ma, B. Palop, V. Sacristan, The farthest color Voronoi diagram and related problems, Technical Report 002, Institut fur Informatik I, Rheinische Friedrich-Wilhelms-Universitat, Bonn, 2006.

[2] S.W. Bae, S. Choi, C. Lee, S. Tanigawa, Exact algorithms for the bottleneck Steiner tree problem (Extended Abstract), in: The 20th International Symposium on Algorithms and Computation, LNCS 5878, Hawaii, USA, December 2009, pp. 24–33.

[3] S.W. Bae, C. Lee, S. Choi, On exact solutions to the Euclidean bottleneck Steiner tree problem, Information Processing Letters 110 (2010) 672–678.

[4] P. Berman, A.Z. Zelikovsky, On approximation of the power-p and bottleneck Steiner trees, in: D. Du, J.M. Smith, J.H. Rubinstein (Eds.), Advances in Steiner trees, Kluwer Academic Publishers, Netherlands, 2000, pp. 117–135.

[5] M. Brazil, C.J. Ras, K. Swanepoel, D.A. Thomas, Generalised k-Steiner tree problems in normed planes, Submitted for publication.

[6] M.S. Chang, C.Y. Tang, R.C.T. Lee, Solving the Euclidean bottleneck biconnected edge subgraph problem by 2-relative neighborhood graphs, Discrete Applied Mathematics 39 (1992) 1–12.

[7] G.A. Dirac, Minimally 2-connected graphs, Journal fur die reine und angewandte Mathematik 228 (1967) 204-216.

[8] J.E. Hopcroft, R.E. Tarjan, Dividing a graph into triconnected components, SIAM Journal of Computing 2 (1973) 135–158.

[9] D.P. Huttenlocher, K. Kedem, M. Sharir, The Upper Envelope of Voronoi Surfaces and Its Applications, Discrete Computational Geometry 9 (1993) 267–291.

[10] J.W. Jaromczyk, M. Kowaluk, A note on relative neighborhood graphs, in: Proceedings of the third annual symposium on Computational geometry, Waterloo, ON, Canada, June 1987, pp. 233-241.
[11] G.S. Manku, A linear time algorithm for the Bottleneck Biconnected Spanning Subgraph problem, Information Processing Letters 59 (1996) 1–7.

[12] C.L. Monma, B.S. Munson, W.R. Pulleyblank, Minimum-weight two-connected spanning networks, Mathematical Programming 46 (1990) 153–171.

[13] R.G. Parker, R.L. Rardin, Guaranteed performance heuristics for the bottleneck traveling salesman problem, Operations Research Letters 2 (1984) 269–272.

[14] A.P. Punnen, K.P.K. Nair, A fast and simple algorithm for the bottleneck biconnected spanning subgraph problem, Information Processing Letters 50 (1994) 283–286.

[15] M. Sarrafzadeh, C.K. Wong, Bottleneck Steiner trees in the plane, IEEE Transactions on Computers 41 (1992) 370–374.

[16] R. Tarjan, Depth first search and linear graph algorithms, SIAM Journal of Computing 1 (1972) 146–160.

[17] E.A. Timofeev, Minimax 2-connected subgraphs and the bottleneck traveling salesman problem, Cybernetics and Systems Analysis 15 (4) (1980) 516–521.

[18] L. Wang, D.Z. Du, Approximations for a bottleneck Steiner tree problem, Algorithmica 32 (2002) 554–561.