SHORT COMMUNICATION

The raccoon dog (*Nyctereutes procyonoides*) and the raccoon (*Procyon lotor*)—their role and impact of maintaining and transmitting zoonotic diseases in Austria, Central Europe

Tanja Duscher1 · Adnan Hodžić2 · Walter Glawischneg · Georg G. Duscher2

Received: 21 December 2016 / Accepted: 3 February 2017 / Published online: 23 February 2017
© The Author(s) 2017. This article is published with open access at Springerlink.com

Abstract The neozoan species raccoon dog (*Nyctereutes procyonoides*) and raccoon (*Procyon lotor*) are widespread in Europe and potential vectors of many diseases that can threaten human and domestic animal health. Facing a further spread of these species, it is important to know about (i) pathogens imported and/or (ii) pathogens acquired in the new habitat. Thus, we investigated the parasite fauna of wild raccoon dogs and raccoons from Austria, at the edge of their new distribution range. The eight examined raccoons were nearly free of pathogens including *Baylisascaris procyonis*, and thus assumed to have a low epidemiological impact, so far. Out of ten raccoon dog specimens, we found one from western Austria to be infected with *Echinococcus multilocularis* and another three from the eastern wetland regions to harbour adults of *Alaria alata*. Furthermore, we detected *Babesia cf. microti* in five of eight raccoon dog specimens all over Austria but none of our samples were tested positive for *Trichinella* spp. Nevertheless, the raccoon dog seems to be a relevant host, at least for the zoonotic pathogens *E. multilocularis* and *A. alata*, and we suggest to further monitor the raccoon dogs parasite fauna.}

Keywords *Alaria alata* · *Echinococcus multilocularis* · *Babesia cf. microti* · *Trichinella* spp. · *Baylisascaris procyonis* · Neozoa

Introduction

Two of the most widespread non-indigenous wildlife species in Europe are the raccoon dog (*Nyctereutes procyonoides*) and the raccoon (*Procyon lotor*). Both species have been introduced to Europe in the twentieth century but their origin is completely the opposite, namely the USA for the raccoon and the Far East for the raccoon dog (Lutz 1984; Nowak 1973; Stubbe 1975). In the former decades, these new carnivore species expanded their range, increased in abundance, and even became the most common carnivore species in some parts of Europe (Kowalczyk 2014; Laurimaa et al. 2015). Consequently, there is a need to spend attention to these neozoa as additional wildlife reservoir of zoonotic diseases in Europe.

The most serious problem concerning the raccoon dog invasion seems to be the transmission of zoonotic diseases (Kauhala and Kowalczyk 2011). In Europe, the raccoon dog can be infected with a minimum of 32 helminth species of which 19 are zoonotic (Laurimaa et al. 2016). Its parasite fauna is similar to that of the indigenous red fox (*Vulpes vulpes*) (Al-Sabi et al. 2013; Bružinskaite–Schmidhalter et al. 2012; Laurimaa et al. 2015; Thiess et al. 2001). The raccoon dog is assumed to be an important additional host species of *Echinococcus multilocularis* (Kauhala and Kowalczyk 2011; Schwarz et al. 2011; Tackmann et al. 2003) and moreover is highly susceptible for *Alaria alata* (Al-Sabi et al. 2013; Bružinskaite–Schmidhalter et al. 2012; Laurimaa et al. 2016). The raccoon dog is also known to be an important reservoir host of *Trichinella* spp. (Bružinskaite–Schmidhalter...
et al. 2012; Kauhala and Kowalczyk 2011; Thiess et al. 2001) and has been identified as important rabies vector in northeastern Europe (Holmala and Kauhala 2006; Singer et al. 2009). Due to broad oral vaccination campaigns, rabies is of less relevance in central Europe and is known to be eradicated in Austria since 2008 (Hirk et al. 2014). However, spill-over from neighbouring countries may still occur (Duscher et al. 2015). As the raccoon dog population is still growing and spreading, its role as a vector of this dangerous virus as well as of other zoonotic diseases may further increase in Europe (Kauhala and Kowalczyk 2011; Sutor et al. 2014).

While the raccoon is known to be the host of many helminth parasite species in its native range (e.g. Harkema and Miller 1964), previous studies from Germany, the country with the highest raccoon density in Europe, showed a remarkably low endoparasitic burden (e.g. Schwarz et al. 2015). The most prevalent parasites of raccoons found in recent studies were *Mesocestoides* spp. (Karamon et al. 2014; Schwarz et al. 2015). But the most serious zoonotic disease transmitted by raccoons in Europe seems to be the Larva migrans syndrome caused by *Baylisascaris procyonis*. The estimated prevalence of this parasite in European raccoon populations showed high geographical variations, ranging from 0 up to 71% (Al-Sabi et al. 2016; Gey 1998; Karamon et al. 2014; Schwarz et al. 2015; Winter et al. 2005). Concerning rabies, the raccoon is not considered to be a reservoir host in Europe, probably because of a low susceptibility for the relevant rabies virus variants (Vos et al. 2012). Among the piroplasmids, *Babesia cf. microti* was found in raccoons and raccoon dogs so far (Alvarado-Rybak et al. 2016; Han et al. 2010). This pathogen is frequently confirmed in foxes in Austria (Duscher et al. 2014), as well as in other regions of Europe sometimes infecting dogs (Camacho et al. 2004). This group comprises different clades and is also known as *Babesia microti*-like, *Babesia annae*, *Babesia “Spanish dog isolate”*, *Theileria annae* and *Babesia vulpes* (Baneth et al. 2015), but due to the lack of a valid description, it only can be informally named as the “microti group” (Harris 2016). Additionally, it has been stated that raccoons might get infected with at least three different *Babesia* species (Alvarado-Rybak et al. 2016).

The distribution and transmission of parasites depend on several environmental factors and thus differ across geographical regions (Dybing et al. 2013; Mackenstedt et al. 2015; Monello and Gompper 2011). So far, all studies concerning the parasite fauna of the raccoon dog as well as of the raccoon in Europe were conducted in the northeastern countries of its introduced range. Facing a range expansion of these neozoan species towards South Europe (Kauhala and Winter 2006; Winter 2006), further studies are needed to understand their role and impact of maintaining and transmitting zoonotic diseases in Europe’s diverse landscapes and climatic regions. Thus, we investigated the parasite fauna of wild raccoon dogs and raccoons from Austria, on the edge of both species’ geographic ranges. So far, the population densities in Austria do not reach high numbers but hunting bags are increasing (Duscher 2016). Therefore, sampling of statistical sufficient numbers to calculate parameters hardly seems possible. Nevertheless, any data of those species in the newly spread area is of great interest. It may give hints about (i) pathogens imported and/or (ii) pathogens acquired in the new habitat.

Material and methods

Raccoons and raccoon dogs were obtained via regular hunting and catching events between February 2010 and January 2016 all over Austria under the restrictions of the Austrian game laws. Samples of in total eight raccoons and 13 raccoon dogs were obtained. Due to the small number of samples collected over 6 years, this is neither a longitudinal nor a cross-sectional study design. In some cases, only parts (e.g. intestines or tissue samples) were provided by the hunters. Either the whole animal or the intestines only, which were excised under high safety standards, were frozen at −80 °C for a minimum of 14 days to inactivate *E. multilocularis* oncosphaera. The intestines of seven raccoons and ten raccoon dogs were analysed by using the “shaking in a vessel” technique which was previously described (Duscher et al. 2005) (Table 1). Muscle tissues, at least 5 g if available (diaphragm or limb muscle), were analysed for *Trichiura* spp. by artificial digestion method at the National Reference Laboratory (Institute for Veterinary Disease Control, Austrian Agency for Health and Food Safety, Innsbruck, Austria). Spleens of four raccoons and eight raccoon dogs were analysed for piroplasmids (*Babesia/Theileria* spp.) and Anaplasmataceae (*Anaplasma* spp./*Ehrlichia canis* and *Candidatus Neoehrlichia* spp.) by using a nested and a single PCR, respectively, according to a protocol previously published (Duscher et al. 2013; Hodžić et al. 2015).

Results

Concerning the human relevant parasites, we detected *A. alata* in the intestines of three raccoon dogs (30%) as well as *E. multilocularis* in one raccoon dog intestine (10%) (Table 2). The examined raccoon dogs were also infected with *Uncinaria stenocephala* (40%), *Mesocestoides* spp. (40%), *Molineus* spp. (30%), *Toxocara canis* (20%), *Taenia* spp. (20%), *Isthmiophora melis* (20%), *Dipylidium caninum* (10%) and *Toxascaris leonina* (10%). Seven examined raccoons were free of gastrointestinal parasites, and one specimen was infected with *Molineus* spp.

The results of the PCR showed no Anaplasmataceae infections of the four raccoons as well as of the eight raccoon dogs examined. However, none of the raccoons but five of eight
Table 1 Numbers of raccoons and raccoon dogs with the available material and the method used for analysis

Species/no.	Material available/method used	Collection year	Province		
	Intestines	Muscle	Spleen		
Raccoon 189	SVT	n.a.	n.a.	2010	Salzburg
Raccoon 229	SVT	n.a.	n.a.	2010	Lower Austria
Raccoon 251	SVT	n.a.	n.a.	2011	Styria
Raccoon 253	SVT	n.a.	n.a.	2010	Styria
Raccoon 311	n.a.	n.a.	PCR	2013	Lower Austria
Raccoon 328	SVT	n.a.	PCR	2015	Carinthia
Raccoon 400	SVT	Diaphragm (<5 g)	PCR	2015	Lower Austria
Raccoon 401	SVT	Diaphragm	PCR	2016	Lower Austria
Raccoon dog 211	SVT	n.a.	n.a.	2010	Burgenland
Raccoon dog 247	SVT	n.a.	n.a.	2011	Burgenland
Raccoon dog 255	SVT	Limb	n.a.	2011	Burgenland
Raccoon dog 256	SVT	Limb (<5 g)	n.a.	2011	Lower Austria
Raccoon dog 266	SVT	Limb	n.a.	2011	Lower Austria
Raccoon dog 293	SVT	n.a.	PCR	2012	Burgenland
Raccoon dog 314	SVT	n.a.	PCR	2014	Vorarlberg
Raccoon dog 321	n.a.	n.a.	PCR	2014	Lower Austria
Raccoon dog 322	n.a.	n.a.	PCR	2014	Lower Austria
Raccoon dog 324	n.a.	n.a.	PCR	2014	Lower Austria
Raccoon dog 389	SVT	Diaphragm	PCR	2015	Lower Austria
Raccoon dog 394	SVT	Diaphragm	PCR	2015	Lower Austria
Raccoon dog 397	SVT	Limb/Diaphragm	PCR	2015	Lower Austria

PCR polymerase chain reaction used for piroplasms and Anaplasmataceae, *SVT* shaking in a vessel technique, *n.a.* not available

Table 2 Parasite species detected in the examined raccoon (left) and raccoon dog (right) specimens and infestation intensity (middle intense for *Echinococcus multilocularis*: 101–1000 specimens, low intense for *Mesocestoides* sp.; below 30 specimens)

Species	Raccoon	Raccoon dog
ID		
Alaria alata		
Isthmiophora melis		
Dipylidium caninum		
Echinococcus multilocularis		
Mesocestoides sp.		
Taenia sp.		
Molineus sp.		
Toxascaris leonina		
Toxocara canis		
Trichinella sp.		
Uncinaria stenocephala		
Babesia ct. microti		
Anaplasmataceae sp.		

	189	229	251	253	311	328	400	401	211	247	255	256	266	293	314	321	322	324	389	394	397
Alaria alata	0	0	0	–	0	0	6	0	23	0	37	0	0	–	–	–	–	0	0	0	0
Isthmiophora melis	0	0	0	–	0	0	0	0	9	1	0	0	0	–	–	–	0	0	0	0	
Dipylidium caninum	0	0	0	–	0	0	0	0	0	0	0	0	0	0	–	–	–	0	0	0	
Echinococcus multilocularis	0	0	0	–	0	0	0	0	0	0	0	0	0	0	–	–	–	0	0	0	
Mesocestoides sp.	0	0	0	–	0	0	0	1	1	0	0	0	0	–	–	–	–	–	–	–	–
Taenia sp.	0	0	0	–	0	0	0	0	0	0	0	0	0	0	0	–	–	0	0	0	0
Molineus sp.	1	0	0	–	0	0	0	1	2	1	0	0	0	0	–	–	–	0	0	0	0
Toxascaris leonina	0	0	0	–	0	0	0	0	0	0	0	0	1	0	0	–	–	–	0	0	0
Toxocara canis	0	0	0	–	0	0	0	0	1	0	0	0	0	0	–	–	–	0	0	0	0
Trichinella sp.	–	–	–	–	–	–	–	0^a	0	–	0	0^a	0	–	–	–	–	–	–	–	–
Uncinaria stenocephala	–	–	–	–	–	–	–	0	0	–	0	0	1	1	1	0	1	0	1	0	1
Babesia ct. microti	–	–	–	–	–	–	–	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Anaplasmataceae sp.	–	–	–	–	–	–	–	0	0	0	0	0	0	0	0	0	0	0	0	0	0

^a Less than 5 g of muscle available
Raccoon dogs were tested positive for *B. cf. microti* (Genbank® accession number [KY246306]). The sequence (partial 18S rRNA) were 100% identical to each other and to the sequences found in foxes from Austria (e.g. [KM115972]). The *Trichinella* analysis showed all of the investigated raccoon and raccoon dog samples were free of *Trichinella* spp.—although, two of the samples consisted of less than 5 g and thus were probably not representative.

The *A. alata* infected raccoon dogs originated from eastern Austria, precisely from the Lake Neusiedl and the Danube floodplain areas (Fig. 1), while the *E. multilocularis* positive raccoon dog was shot in the northwestern edge of the country. Tissues of the raccoon dogs infested with *B. cf. microti* were sampled in the east as well as in the west.

Discussion

Interestingly, the *E. multilocularis* appeared in the western areas of Austria, those areas of known high endemicity of this cestode in foxes (Duscher et al. 2006). The host competence of the raccoon dog for *E. multilocularis* is in accordance with studies from other countries (e.g. Al-Sabi et al. 2013; Laurimaa et al. 2015; Schwarz et al. 2011; Thiess et al. 2001). But, due to its feeding habits, the raccoon dog seems to play a minor role as a reservoir of *E. multilocularis* than the red fox does (Al-Sabi et al. 2013; Bružinskaité-Schmidhalter et al. 2012).

In contrast, the trematode *A. alata* was found in the eastern parts surrounding the Lake Neusiedl, and in the Danube floodplains where this parasite was also found in foxes (Duscher 2011), and where the densities of paratenic hosts are high. These wetlands are also the areas with a high probability of raccoon dog presence (Duscher and Nopp-Mayr under review), and where future population densities are expected to be high. Our results confirm previous European studies that showed a high abundance of *A. alata* in raccoon dogs and thus a probable high susceptibility of the raccoon dog for this gastrointestinal parasite with high zoonotic relevance (Al-Sabi et al. 2013).

Furthermore, *B. cf. microti* was found in five out of eight investigated raccoon dogs. To our knowledge, this is the first evidence of a *B. cf. microti* infection of raccoon dogs in Europe and is in accordance with the idea of sharing the fox parasites, as seen for the gastrointestinal parasites. In this context, the raccoon dog may be seen as additional reservoir of *B. cf. microti* as already suggested by Han et al. (2010). Contrary to that, the raccoons were negative for this pathogen, although the *B. cf. microti* species found in Austrian foxes is closely related to those found in raccoons in Japan (Baneth et al. 2015). So, in this case, the same type of pathogen also could circulate among the host species. Unfortunately, the sample size is too low to either confirm or reject this assumption.

No Anaplasmataceae were found, which might have occurred in the raccoons, e.g. the raccoon-associated bacteria *Candidatus Neoehrlichia lotoris* (CNL) as stated in previous works (Hodžić et al. 2015, 2016). These bacteria were found and described in raccoons from the USA (Yabsley et al. 2008), but recently were accidentally found in foxes from Austria and the Czech Republic (Hodžić et al. 2015, 2016), far away from the US distribution. Likewise, all examined raccoon and raccoon dog samples were free of *Trichinella* spp., but due to the small sample size, no clear declaration can be made.
Generally, our examined raccoons were almost pathogen free, which also was observed in other studies within their introduced range (e.g. Schwarz et al. 2015). The idea is that in some regions, introduced raccoons were originating from fur farms and dewormed in regular manner. Thus, geographical differences in the worm prevalence, e.g. B. procyonis, within their introduced range are supposed to depend on the source population (Schwarz et al. 2015; Winter et al. 2005). In opposite to the raccoon dog, the raccoon is not that suitable for fox parasites (Schwarz et al. 2015; Thiess et al. 2001). This might be the explanation for the overall lower prevalence in the investigated raccoons in this study.

Conclusion

Due to the low population densities of the raccoon and the raccoon dog in Austria (Duscher 2016), our sample size is quite low and varying. Nevertheless, our results support the thesis of Michler and Michler (2012) that the epidemiological meaning of the raccoon in Europe is still low. However, a further spread and population increase of this non-indigenous species will obviously lead to an admixture of the different founder populations (Biedrzycka et al. 2014; Fischer et al. 2015), and therewith to a further spread of B. procyonoides as well. In the case of the raccoon dog, our results confirm it as a host of E. multilocularis as well as a probable indicator species of A. alata. As the origins of A. alata positive samples are also the regions with expected high raccoon dog population densities (Duscher and Nopp-Mayr under review), A. alata infections is an increasing risk. Moreover, our study confirms the raccoon dog as an additional host of B. cf. microti with a relevant impact as a reservoir. Concerning its epidemiological impact and facing a further spread in Europe, the raccoon dog should be monitored more intensively in the matters of vector-borne diseases (Sutor et al. 2014).

Acknowledgement Open access funding is provided by the University of Veterinary Medicine Vienna, Austria. We thank all hunters, preparators and museums staff who provided specimen, gastrointestinal tracts and/or tissue sample for our examination. Furthermore, we thank the team of the pathology lab at the Research Institute of Wildlife Ecology for their help.

Compliance with ethical standards

Conflict of interest The authors declare that they have no conflict of interest.

Ethical approval All applicable international, national and/or institutional guidelines for the care and use of animals were followed.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

References

Al-Sabi MNS, Chriel M, Enemark HL (2013) Endoparasites of the raccoon dog (Nyctereutes procyonoides) and the red fox (Vulpes vulpes) in Denmark 2009–2012—a comparative study. In: J Parasiol. Parasite Wildlife 2:144–151. doi: 10.1016/j.jppaw.2013.04.001

Al-Sabi MNS, Chriel M, Hansen MS, Enemark HL (2016) Baylisascaris procyonis in wild raccoons (Procyon lotor) in Denmark. Veterinary Parasitology: Regional Studies and Reports 1-2:55–58. doi:10.1016/j.vprsr.2016.03.001

Alvarado-Rybákov M, Solano-Gallego L, Millan J (2016) A review of piroplasm infections in wild carnivores worldwide: importance for domestic animal health and wildlife conservation. Parasit Vectors 9:538. doi:10.1186/s13071-016-1808-7

Baneth G, Florin-Christensen M, Cardoso L, Schnittger L (2015) Reclassification of Theileria annae as Babesia vulpes sp. nov. Parasit Vectors 8:207. doi:10.1186/s13071-015-0830-5

Biedrzycka A, Zalewski A, Bartoszewicz M, Okarma H, Jędrezejewska E (2014) The genetic structure of raccoon introduced in Central Europe reflects multiple invasion pathways. Biol Invasions 16:1611–1625. doi:10.1007/s10530-013-0595-8

Brużynská-Schmidhalter R, Šarkůnás M, Malakauskas A, Mathis A, Torgerson PR, Deplazes P (2012) Helminths of red foxes (Vulpes vulpes) and raccoon dogs (Nyctereutes procyonoides) in Lithuania. Parasitology 139:120–127. doi:10.1017/S0031182011001715

Camacho AT et al (2004) Azotemia and mortality among Babesia microti-like infected dogs. J Vet Intern Med 18:141–146

Duscher GG (2011) Der Dachdecker der menschlichen—Alaria alata beim Rotfuchs in Österreich in Relation zum Vorkommen von Wildschweinen. Wiener Tierärztliche Monatsschrift 98:251–254

Duscher T (2016) The current status of the raccoon (Procyon lotor) and the raccoon dog (Nyctereutes procyonoides) in Austria. Beitr Jagd Wildsforsch 41:285–293

Duscher T, Nopp-Mayr U (under review) Species distribution modelling for the invasive raccoon dog (Nyctereutes procyonoides) in Austria and first range predictions for alpine environments. Arch Biol Sci

Duscher GG, Prosl H, Joachim A (2005) Scraping or shaking—a comparison of methods for the quantitative determination of Echinococcus multilocularis in fox intestines. Parasitol Res 95:40–42. doi:10.1007/s00436-004-1260-z

Duscher GG, Pleydell D, Prosl H, Joachim A (2006) Alaria alata in Austria. Int J Parasitol: Parasite Wildlife 4:88-96. doi:10.1016/j.ijppaw.2014.12.001

Duscher GG, Kubber-Heiss A, Richter B, Buchentrunk F (2013) A golden jackal (Canis aureus) from Austria bearing Hepatozoon canis—import due to immigration into a non-endemic area? Ticks and tick-borne diseases 4:133–137. doi:10.1016/j.ttbdis.2012.10.040

Duscher GG, Fuehrer H-P, Kubber-Heiss A (2014) Fox on the run—molecular surveillance of fox blood and tissue for the occurrence of tick-borne pathogens in Austria. Parasite Vectors 7:521. doi:10.1186/s13071-014-0521-7

Duscher GG, Leschkik M, Fuehrer HP, Joachim A (2015) Wildlife reservoirs for vector-borne canine, feline and zoonotic infections in Austria. Int J Parasitol: Parasite Wildlife 5:138. doi:10.1016/j.ijppaw.2015.04.004

Dybing NA, Fleming PA, Adams PJ (2013) Environmental conditions predict helminth prevalence in red foxes in Western Australia. Int J Parasitol: Parasite Wildlife 2:165–172. doi:10.1016/j.jppaw.2013.04.004

Fischer ML et al (2015) Historical invasion records can be misleading: genetic evidence for multiple introductions of invasive raccoons (Procyon lotor) in Germany. PLoS One 10:e0125441. doi:10.1371/journal.pone.0125441
Gey AB (1998) Synopsis der Parasitenfauna des Waschbären (Procyon lotor) unter Berücksichtigung von Befunden aus Hessen. Dissertation, Justus Liebig-Universität Gießen.

Han J-I, Lee S-J, Jang H-J, Na K-J (2010) Asymptomatic Babesia microti-like parasite infection in wild raccoon dogs (Nyctereutes procyonoides) in South Korea. J Wildl Diseases 46:632–635

Harkema R, Miller GC (1964) Helminth parasites of the raccoon, Procyon lotor in the southeastern United States. J Parasitol 50:60–66

Harris DJ (2016) Naming no names: comments on the taxonomy of small mammals. J Mammal 97:389–397

Hodžić A, Cézanne R, Duscher GG, Harl J, Glawischögner W, Fuehrer H-P (2015) Candidatus Neoehrlichia sp. in an Austrian fox is distinct from Candidatus Neoehrlichia mikurensis, but closer related to Candidatus Neoehrlichia lotoris. Parasit Vectors 8:539. doi:10.1186/s13071-015-1163-0

Hodžić A, Mikušová B, Modrý D, Juránková J, Forejtek P, Steinbauer V, Duscher GG (2016) A new case of the enigmatic Candidatus Neoehrlichia sp. (FU98) in a fox from the Czech Republic. Mol Cell Probe. doi:10.1016/j.mcp.2016.02.005

Holmala K, Kauhala K (2006) Ecology of wildlife rabies in Europe. Mammal Rev 36:17–36

Karamon J, Kochanowski M, Cencek T, Bartoszewicz M, Kusyk P (2014) Gastrointestinal helminths of raccoons (Procyon lotor) in western Poland (Lubuskie province) - with particular regard to Baylisascaris procyonis. Bull Vet Inst Pulawy 58:547–552. doi:10.2478/bvip-2014-0084

Kauhala K, Kowalczyk R (2011) Invasion of the raccoon dog Nyctereutes procyonoides in Europe: history of colonization, features behind its success, and threats to native fauna. Curr Zool 57:584–598

Kauhala K, Winter M (2006) Nyctereutes procyonoides. Species factsheet. DAISIE - Delivering Alien Invasive Species Inventories for Europe. http://www.europe-aliens.org/pdf/Nyctereutes_procyonoides.pdf. Accessed 15 Nov 2016

Kowalczyk R (2014) Nyctereutes procyonoides. NOBANIS – Invasive Alien Species Fact Sheet. https://www.nobanis.org/globalassets/speciesinfo/n/nyctereutes-procyonoides/nyctereutes_procyonoides-final.pdf. Accessed 03 Feb 2016

Laurimaa L, Suld K, Davison J, Moks E, Valdmann H, Saarma U (2016) Alien species and their zoonotic parasites in native and introduced ranges: the raccoon dog example. Vet Parasitol 219:24–33. doi:10.1016/j.vetpar.2016.01.020

Lutz W (1984) Die Verbreitung des Waschbären (Procyon lotor, Linne 1758) im mitteleuropäischen Raum. Z Jagdwiss 30:218–228

Mackenstedt U, Jenkins D, Rombi T (2015) The role of wildlife in the transmission of parasitic zoonoses in peri-urban and urban areas internationally. J Parasitol: Parasite Wildlife 4:71–79. doi:10.1016/j.ipppaw.2015.01.006

Michler F, Michler B (2012) Ökologische, ökonomische und epidemiologische Bedeutung des Waschbären (Procyon lotor) in Deutschland–eine aktuelle Übersicht. Beitr Jagd Wildforsch 37:389–397

Monello RJ, Gompper ME (2011) Effects of resource availability and social aggregation on the species richness of raccoon endoparasite infracomunities. Oikos 120:1427–1433

Nowak E (1973) Ansiedlung und Ausbreitung des Marderhundes (Nyctereutes procyonoides GRAY) in Europa. Beitr Jagd Wildforsch 8:351–383

Schwarz S, Sutor A,斯塔巴赫 C, Mattis R, Tackmann K, Conraths FJ (2011) Estimated prevalence of Echinococcus multilocularis in raccoon dogs Nyctereutes procyonoides in northern Brandenburg, Germany. Curr Zool 57:655–661

Schwarz S, Sutor A, Mattis R, Conraths FJ (2015) Der Waschbärsphäulwurm (Baylisascaris procyonis)-kein Zoonoserisiko für Brandenburg? Berl Munch Tierarztl Wochenschr 128:34–38

Singer A, Kauhala K, Holmala K, Smith GC (2009) Rabies in northeastern Europe—the threat from invasive raccoon dogs. J Wildl Diseases 45:1121–1137

Stubb M (1975) Der Waschbär Procyon lotor (L., 1758) in der DDR. Hercynia 12:80–91

Sutor A, Schwarz S, Conraths FJ (2014) The biological potential of the raccoon dog (Nyctereutes procyonoides, Gray 1834) as an invasive species in Europe-new risks for disease spread? Acta Theriol 59:49–59. doi:10.1007/s13364-013-0138-9

Tackmann K, Goretzki J, Conraths FJ (2003) Das Neozoon Marderhund für Brandenburg? Berl Munch Tierarztl Wochenschr 114:273–276

Thiess A, Schuster R, Nöckler K, Mix H (2001) Helminthenfunde beim einheimischen Marderhund Nyctereutes procyonoides (Gray, 1834). Berl Munch Tierarztl Wochenschr 114:273–276

Vos A, Ortmann S, Kretzschmar AS, Köhnemann B, Michler F (2012) The raccoon (Procyon lotor) as potential rabies reservoir species in Germany: a risk assessment. Berl Munch Tierarztl Wochenschr 125:228–235

Winter M (2006) Procyon lotor. Species factsheet. DAISIE - Delivering Alien Invasive Species Inventories for Europe. http://www.europe-aliens.org/pdf/Procyon_lotor.pdf. Accessed 15 Nov 2016

Winter M, Stubb M, Heidecke D (2005) Zur Ökologie des Waschbären (Procyon lotor) in Sachsen-Anhalt. Beitr Jagd Wildforsch 45:1121–1137

Yabsley MJ, Murphy SM, Luttrell MP et al (2008) Characterization of “Candidatus Neoehrlichia lotoris” (family Anaplasmataceae) from raccoons (Procyon lotor). Int J Syst Evol Microbiol 58:2794–2798. doi:10.1016/j.ijsem.2008.07.011