Randomized Block Frank-Wolfe for Convergent Large-Scale Learning

Liang Zhang, Student Member, IEEE, Gang Wang, Student Member, IEEE,
Daniel Romero, Member, IEEE, and Georgios B. Giannakis, Fellow, IEEE

Abstract—Owing to their low-complexity iterations, Frank-Wolfe (FW) solvers are well suited for various large-scale learning tasks. When block-separable constraints are also present, randomized FW has been shown to further reduce complexity by updating only a fraction of coordinate blocks per iteration. In this context, the present work develops feasibility-ensuring step sizes, and provably convergent randomized block Frank-Wolfe (RB-FW) solvers that are flexible in selecting the number of blocks to update per iteration. Convergence rates of RB-FW are established through computational bounds on a primal sub-optimality measure, and on the duality gap. Different from existing convergence analysis, which only applies to a step-size sequence that does not generally lead to feasible iterates, the analysis here includes two classes of step-size sequences that not only guarantee feasibility of the iterates, but also enhance flexibility in choosing decay rates. The novel convergence results are markedly broadened to encompass also nonconvex objectives, and further assert that RB-FW with exact line-search reaches a stationary point at rate $O(1/\sqrt{t})$. Performance of RB-FW with different step sizes and number of blocks is demonstrated in two applications, namely charging of electrical vehicles and structural support vector machines. Simulated tests demonstrate the impressive performance improvement of RB-FW relative to existing randomized single-block FW methods.

Index Terms—Frank-Wolfe algorithm, conditional gradient descent, nonconvex optimization, parallel optimization.

I. INTRODUCTION

The FW algorithm [1], also known as conditional gradient descent [2], has well documented merits as a first-order solver especially for smooth constrained optimization tasks over convex compact sets. FW has recently received revived interest due to its simplicity and versatility in handling structured constraint sets in various signal processing and machine learning applications [3]. This growing popularity is due to the per-iteration simplicity of FW that only entails minimizing a linear objective over the feasible set, whereas competing first-order solvers, such as the projected or proximal gradient descent [4] and their accelerated versions [5], involve costly projections onto the feasible set. Clearly, solving a constrained linear optimization is considerably easier than finding the aforementioned projections per iteration.

Under ℓ_1- and nuclear-norm constraints in particular, FW offers sparse iterates by design [6], [7]. This is critical in diverse large-scale learning tasks, including matrix completion [7], multi-class classification [8], image reconstruction [8], structural support vector machines (SVMs) [9], particle filtering [10], and scheduling electric vehicle (EV) charging [11].

Despite its simplicity, FW can become prohibitively expensive when dealing with high-dimensional data. For this reason, randomized single-block FW has been advocated for large-scale convex constrained programs [9], where only a randomly selected block of variables is updated per iteration. At the price of obtaining the duality gap per iteration, convergence of the randomized single-block FW has been also improved [12]. Further, the single-block FW was recently generalized to update multiple blocks per iteration in parallel RB-FW [13]. Unfortunately, feasibility of the resultant iterates is not guaranteed by the parallel RB-FW. Moreover, all works on randomized FW focus on convex objectives, and convergence of RB-FW for nonconvex programs remains an open problem.

The present paper is the first to address feasibility and convergence of RB-FW. Specifically, we introduce a broad class of step sizes that depend on primal sub-optimality and on the duality gap, to offer: (i) guaranteed convergence and feasibility of the iterates; along with (ii) flexibility to select a step size sequence whose decay rate is attuned to the problem at hand. The novel RB-FW algorithm with this rich class of step sizes subsumes the classical FW solver as well as the randomized single-block FW, as special cases. We further broaden the scope of RB-FW by allowing for nonconvex smooth objectives over a convex compact set. Specifically, we establish that RB-FW with typical step sizes attains a stationary point at rate $O(1/\log t)$, whereas line-search-based step sizes result in an improved rate of $O(1/\sqrt{t})$. Remarkably, the latter coincides with the rate afforded by the classical FW algorithm with line search for nonconvex problems [14]. Finally, simulated tests on optimal coordination of EV charging and structural SVM classifiers corroborate the merits of RB-FW with the novel step sizes relative to the single-block FW.

The remainder of this paper is organized as follows. Section II outlines the FW and RB-FW algorithms. Section III describes two novel families of step sizes for RB-FW, and establishes the feasibility, convergence, and flexibility assertions. Section IV deals with RB-FW convergence rates for non-convex programs, whereas Section V highlights the implications of the results in Section III to the classical FW algorithm. Section VI demonstrates the merits of RB-FW in two application settings, while Section VII tests the RB-FW performance.
Algorithm 1 Frank-Wolfe [1]

1: Initialize $t = 0$, $x^0 \in \mathcal{X}$
2: while stopping_criterion not met do
3: \hspace{1em} Compute $s^t = \arg \min_{s \in \mathcal{X}} s^T \nabla f(x^t)$
4: \hspace{1em} Update $x^{t+1} = (1 - \gamma_t)x^t + \gamma_ts^t$
5: \hspace{1em} $t \leftarrow t + 1$
6: end while

Algorithm 2 Randomized Block Frank-Wolfe

1: Initialize $t = 0$, $x^0 \in \mathcal{X}$
2: while stopping_criterion not met do
3: \hspace{1em} Randomly pick $B_t \subseteq N_b$ such that $|B_t| = B$
4: \hspace{1em} Compute $s^t_n = \arg \min_{s_n \in \mathcal{X}_n} \langle s_n, \nabla_{x_n} f(x^t) \rangle$, \forall $n \in B_t$
5: \hspace{1em} Update $x^{t+1} = \begin{cases} (1 - \gamma_t)x^t_n + \gamma_ts^t_n, & \forall n \in B_t \\ x^t_n, & \forall n \in N_b \setminus B_t \end{cases}$
6: \hspace{1em} $t \leftarrow t + 1$
7: end while

where $x^T := [x_1^T, x_2^T, \ldots, x_{N_b}^T]$. Note that if $N_b = 1$, then (6) boils down to (1).

The decomposition $\mathcal{X} = \mathcal{X}_1 \times \ldots \times \mathcal{X}_{N_b}$ entails no loss of generality since any \mathcal{X} can be expressed in this form by setting $N_b = 1$. It also emerges naturally in a number of applications, including the dual of structural SVMs [9], trace-norm regularized tensor completion [16], EV charging [11], the dual of group fused Lasso [17], and structured sub-modular minimization [18]. Thanks to the separable structure of \mathcal{X}, the linear oracle in (2) decouples across N_b blocks as

$$s^t_n = \arg \min_{s_n \in \mathcal{X}_n} \langle s_n, \nabla_{x_n} f(x^t) \rangle, \ n = 1, 2, \ldots, N_b \quad (7)$$

where $\nabla_{x_n} f(x^t)$ comprises the partial derivatives of $f(x)$ with respect to the entries of x_n. Instead of solving the N_b problems in (7), RB-FW reduces complexity by solving just B of them, where $B \in \{1, \ldots, N_b\}$ is a pre-selected constant. Let $N_b := \{1, \ldots, N_b\}$ be the index set of all blocks, and let B_t be chosen at iteration t uniformly at random among all subsets of N_b with B elements. The RB-FW solver of (6) is summarized as Algorithm 2. To save computation time, step 4 of Algorithm 2 can be run in parallel [13] as illustrated in Fig. 1. In this case, B can be selected according to the number of physical processor cores in the control center.

The only step size sequence available for RB-FW is [13]

$$\gamma_t = \frac{2\alpha}{\alpha^2t + 2N_b} \quad t = 0, 1, \ldots \quad (8)$$

where $\alpha := B/N_b$ is the fraction of updated blocks. For $\alpha = 1$ and $N_b \neq 1$, note that (8) is different from (4); hence, FW is not generally a special case of the parallel RB-FW in [13]. Interestingly, we will introduce in Sec. III a family of RB-FW step sizes that reduce to those in (4).

As far as convergence of FW solvers, two quantities play instrumental roles. First one is related to the curvature constant, which for a differentiable $f(x)$ over \mathcal{X} is defined as [6], [3]

$$C_f := \sup_{x \in \mathcal{X}} \frac{2}{\gamma^2} [f(y) - f(x) - \langle y - x, \nabla f(x) \rangle] \quad (9)$$

which is a scaled difference between $f(y)$ and its linear approximation around x. Throughout, C_f will be assumed bounded. This property is closely related to the L-Lipschitz continuity of $\nabla f(x)$ over \mathcal{X}, which is defined as

$$\exists L > 0: \|\nabla f(x) - \nabla f(s)\| \leq L\|x - s\|, \ \forall x, s \in \mathcal{X}. \quad (10)$$

numerically. Finally, Section VIII concludes the paper.

Regarding notation, lower- (upper-) case boldface letters represent column vectors (matrices). Sets are denoted by calligraphic letters, $|B|$ stands for the cardinality of set B, and $\mathcal{N} \setminus B := \{x \in \mathcal{N} : x \notin B\}$ denotes set difference. Symbol T is reserved for transposition of vectors and matrices, whereas 0 and 1 denote the all-zero and all-one vectors of suitable dimensions, respectively. Operator $[x]$ returns the smallest integer that is greater than or equal to $x \in \mathbb{R}$, and $\log(x)$ returns the natural logarithm of x.

II. PRELIMINARIES

The classical FW algorithm [1] aims at solving the following generic constrained optimization problem

$$\begin{align*}
\min_{x \in \mathbb{R}^n} & \quad f(x) \\
\text{subject to} & \quad x \in \mathcal{X}
\end{align*} \quad (1)$$

where $f(x)$ is convex and differentiable, while the feasible set \mathcal{X} is convex and compact. A number of problems in signal processing and machine learning, e.g. ridge regression or basis pursuit [15], can be expressed in this form. Listed as Algorithm 1, FW is initialized with a feasible x^0. Given iterate x^t, it then solves the following so-termed “linear oracle”

$$s^t := \arg \min_{s \in \mathcal{X}} s^T \nabla f(x^t) \quad (2)$$

and uses a convex combination of s^t with x^t to obtain

$$x^{t+1} = (1 - \gamma_t)x^t + \gamma_ts^t \quad (3)$$

where the step size $\gamma_t \in (0, 1]$ is typically selected as [9]

$$\gamma_t = \frac{2}{t + 2} \quad (4)$$

Alternatively, γ_t is chosen via line search, which picks x^{t+1} as the best point on the line segment between x^t and s^t:

$$\gamma_t = \arg \min_{0 \leq \gamma \leq 1} f \left((1 - \gamma)x^t + \gamma s^t \right). \quad (5)$$

In either case, Algorithm 1 converges at rate $O(1/t)$ [3].

When d is large, updating all d entries of x at each t is computationally challenging. Randomized FW alleviates this challenge by updating only a subset of the d entries [9], [13]. Splitting x into N_b blocks $\{x_n\}_{n=1}^{N_b}$ with respective feasibility sets $\{\mathcal{X}_n\}_{n=1}^{N_b}$ assumed convex and compact, (1) becomes

$$\begin{align*}
\min_{x \in \mathbb{R}^d} & \quad f(x) \\
\text{subject to} & \quad x_1 \in \mathcal{X}_1, \ldots, x_{N_b} \in \mathcal{X}_{N_b}
\end{align*} \quad (6)$$
If (10) holds, it is easy to check that [3, Appendix D]

\[C_f \leq LD_X \]

(11)

where \(D_X := \sup_{x, s \in X} ||x - s|| \) is the diameter of \(X \) that is finite for \(X \) compact. Equation (11) evidences that \(C_f \) is bounded whenever \(\nabla f(x) \) is \(L \)-Lipschitz continuous over \(X \).

When it comes to RB-FW, the set curvature for an index set \(B \subseteq N_b \) is commonly used instead of the constant \(C_f \) [13]

\[C_f^B := \sup_{\gamma \in [0, 1]} \frac{2}{\gamma^2} \left(f(y) - f(x) - \sum_{n \in B} \langle y_n - x_n, \nabla_x f(x) \rangle \right) \]

(12)

where

\[y_n := \begin{cases} (1 - \gamma)x_n + \gamma s_n, & n \in B \\ x_n, & n \in N_b \setminus B \end{cases} \]

and \(y^\top := [y_1^\top, \ldots, y_{N_b}^\top] \). The expected set curvature for the uniformly randomly selected \(B \) can thus be expressed as

\[\bar{C}_f^B := E_B [C_f^B] = \frac{(N_b)}{B} \frac{1}{B \subseteq N_b} \sum_{B \subseteq N_b} C_f^B \]

(13)

with \(\frac{(N_b)}{B} := N_b!/(B!(N_b - B)!) \). It is easy to verify that \(\bar{C}_f^B \leq C_f^B \) by observing from (9) and (12) that \(C_f^B \leq C_f^B \), \(\forall B \subseteq N_b \). Note however that \(\bar{C}_f^B = C_f^B \), when \(B = N_b \).

The second quantity of interest is the so-called duality gap

\[g(x) := \sup_{s \in X} (x - s)^\top \nabla f(x), \quad x \in X \]

(14)

whose name stems from Fenchel duality; see [9, Appendix D], [3, Section 2]. Clearly, for the constrained problem (1), \(x \) is a stationary point if and only if \(g(x) = 0 \). In addition, it holds that \(g(x) \geq 0 \), \(\forall x \in X \), since \((x - s)^\top \nabla f(x) = 0 \) for \(s = x \). Thus, \(g(x) \) quantifies the distance of \(x \) from a stationary point of \(f(x) \) [14].

III. FEASIBILITY-ENSURING STEP SIZES FOR RB-FW

To motivate the need for novel step sizes with desirable properties, this section starts by showing that \(\gamma_t \) in (8) does not guarantee feasibility of the iterates \(\{x^t\} \). It then introduces two families of feasibility-ensuring step size sequences, and proves that the iterates they generate are convergent for convex objectives. Moreover, these families are shown to offer a gamut of decay rates, thereby allowing for a flexible selection of the most suitable step size for a given problem.

With e.g., \(N_b = 10^3 \) and \(\alpha = 2 \times 10^{-3} \), the step size in (8) can be \(\gamma_t > 1 \). As a result, step 5 of Algorithm 2 can generate infeasible iterates \(x^t \), which renders RB-FW unstable and hence useless since the gradient of the objective at the resulting \(x^t \) may not be even defined. For example, consider applying Algorithm 2 with \(N_b = 100, B = 10 \) and step size as in (8) to solve the smooth and convex program

\[\min_{n=1}^{100} \sum_{n=1}^{100} x_n^2 - \log x_n \]

subject to \(2 \leq x_n \leq 3, \quad n = 1, \ldots, 100 \).

Initializing with \(\{x_n^1 = 3\}_{n \in N_b} \), it is easy to verify that \(\{s_n = 2\}_{n \in N_b} \) and \(\{x_n^2 = -11/3\}_{n \in N_b} \), implying that \(f(x^2) \) and \(\nabla f(x^2) \) do not exist. Thus, the parallel RB-FW algorithm in [13], whose step size is given by (8), can not solve (15).

In a nutshell, existing step sizes do not guarantee feasibility of RB-FW iterates. To fill this gap, convergence analysis of RB-FW will be pursued first for a rich class of step sizes.

A. Convergence of RB-FW for convex programs

For randomized FW, convergence analysis typically focuses on \(f(x^t) \) and the \(g(x^t) \) in (14) [9], [13]. Let \(x^* \) denote one globally optimal solution of (6), and define the primal suboptimality of point \(x^* \) as \(h(x^*) := f(x^*) - f(x^*) \). The next lemma quantifies the improvement of \(h(x^*) \) per iteration, and it will be handy in the ensuing convergence analysis.

Lemma 1. If \(\{x_t\}_{t=0,1,\ldots} \) is generated by Algorithm 2 with \(\{\gamma_t\}_{t=0,1,\ldots} \) is an arbitrary fixed step-size sequence, then it holds that

\[\mathbb{E} [h(x^{t+1})] \leq \mathbb{E} [h(x^t)] - \alpha \gamma_t \mathbb{E} [g(x^t)] + \gamma_t^2 \bar{C}_f^B / 2 \]

(16)

for \(t \geq 0 \), where the expectation is taken over \(\{B_r\}_{r=0}^t \).

Detailed proof can be found in [9], [13]; see also part A of the Appendix for an outline. Note that Lemma 1 can be applied regardless of whether \(f(x) \) is convex or not.

Aiming to upper bound \(\mathbb{E} [h(x^t)] \), we will consider that \(\{\gamma_t\}_{t=0,1,\ldots} \) satisfy

\[0 < \gamma_t \leq 1, \quad \forall t \geq 0 \]

(17a)

\[\frac{1 - \alpha \gamma_{t+1}^2}{\gamma_{t+1}^2} \leq \frac{1}{\gamma_t^2}, \quad \forall t \geq 0. \]

(17b)

It can be easily seen that (17b) is equivalent to

\[\gamma_{t+1} \geq \frac{\gamma_t}{2} \left(\sqrt{\alpha^2 \gamma_t^2 + 4} - \alpha \gamma_t \right) \]

which implies that (17b) limits how rapidly \(\{\gamma_t\}_{t=0,1,\ldots} \) can decrease. Condition (17) is very general and subsumes existing step sizes as special cases. For example, if \(B = N_b, \) Algorithm 2 boils down to Algorithm 1, for which (4) is typically adopted [3]. For \(\gamma_t \) as in (4), it is clear that (17a) is satisfied, whereas (17b) follows from \((t+1)(t+3) \leq (t+2)^2\).

Another example arises if \(B = 1, \) in which case Algorithm 2 becomes [9, Algorithm 4]. The sequence \(\gamma_t = \frac{2N_b}{t+2N_b} \), which has been proposed for Algorithm 2, clearly satisfies (17a), and
also (17b) since it holds that \((t + 1 + 2N_0)^2 - 2(t + 1 + 2N_0) \leq (t + 2N_0)^2\). Interestingly, the step size (8) also satisfies (17b) since \(\alpha^2 t + \alpha^2 + 2/N_0^2 - 2\alpha^2(\alpha^2 t + \alpha^2 + 2/N_0) \leq (\alpha^2 t + 2/N_0)^2\). As expected, (8) fails to satisfy (17a), which ensures feasible iterates.

For \(B \in \{2, \ldots, N_0 - 1\}\), no feasibility ensuring step size has been proposed. However, computational savings motivate parallel RB-FW to be developed with feasibility-enuring step sizes for arbitrary \(B\). Before moving to step size design and convergence rate analysis, an upper bound on \(\mathbb{E}[h(x^t)]\) for step sizes satisfying (17) will be developed.

Theorem 1 (Primal convergence). If \(\{\gamma_t\}_{t=0,1,\ldots}\) satisfies (17), the iterates of Algorithm 2 satisfy

\[
\mathbb{E}[h(x^t)] \leq \frac{1 - \alpha \gamma_0}{\gamma_0^2} \gamma_{t-1} h(x^0) + \frac{\tilde{C}_B}{2} \gamma_{t-1}, \quad t \geq 1.
\]

(Proof) Since \(f(x)\) is differentiable, convexity of \(f(x)\) implies that

\[
f(x^t) - f(x^*) \leq (x^t - x^*)^\top \nabla f(x^t)
\]

where \(x^*\) denotes any solution to (6). Combining (14) and (19) yields

\[
g(x^t) \geq f(x^t) - f(x^*) = h(x^t) \geq 0.
\]

Thus, \(\mathbb{E}[g(x^t)] \geq \mathbb{E}[h(x^t)]\) and (16) can be rewritten as

\[
\mathbb{E}[h(x^t+1)] \leq (1-\alpha \gamma_t) \mathbb{E}[h(x^t)] + \gamma_t^2 \tilde{C}_B / 2.
\]

Dividing both sides of (21) by \(\gamma_t^2\) gives rise to

\[
\frac{1}{\gamma_t^2} \mathbb{E}[h(x^t+1)] \leq \frac{1 - \alpha \gamma_0}{\gamma_0^2} \mathbb{E}[h(x^0)] + \frac{\tilde{C}_B}{2}.
\]

Utilizing successively (17b) and (22) yields

\[
\frac{1}{\gamma_t^2} \mathbb{E}[h(x^t+1)] \leq \frac{1}{\gamma_{t-1}^2} \mathbb{E}[h(x^t)] + \frac{\tilde{C}_B}{2} \\
\leq \ldots \leq \frac{1}{\gamma_0^2} \mathbb{E}[h(x^0)] + \frac{t + 1}{2} \tilde{C}_B
\]

where the last inequality uses \(\mathbb{E}[h(x^0)] = h(x^0)\). Therefore,

\[
\mathbb{E}[h(x^t+1)] \leq \frac{1 - \alpha \gamma_0}{\gamma_0^2} \gamma_{t} h(x^0) + \frac{t + 1}{2} \gamma_t^2 \tilde{C}_B
\]

which establishes (18).

Theorem 1 generalizes existing results on the convergence of Algorithm 2, which only for specific step sizes either assume \(B = 1\) [9], or, \(B = N_0\) [3]. Thus, Theorem 1 sheds light on step size design for arbitrary \(B\) by providing the computational guarantees of Algorithm 2 for any step-size sequence satisfying (17).

Another quantity of interest to characterize the convergence of Algorithm 2 is \(g(x^t)\), which can be used to assess the quality of \(x^t\) as a solution [9], [13] since \(g(x^t) \geq h(x^*)\); cf. (20). However, since finding upper bounds on \(g(x^t)\) is difficult [9], [14], [13], bounds on the minimal expected duality gap until iteration \(t\), defined as [9], [13]

\[
g_t := \min_{k \in \{0, 1, \ldots, t\}} \mathbb{E}[g(x^k)]
\]

are pursued next.

Theorem 2 (Primal-dual convergence). Let \(\{\gamma_t\}_{t=0,1,\ldots}\) satisfy (17) and \(\gamma_{t+1} \leq \gamma_t\), \(\forall t \geq 0\). If \(\{x_t\}_{t=1,2,\ldots}\) is generated by Algorithm 2, then for all \(K \in \{1, \ldots, t\}\) it holds that

\[
g_t \leq \frac{\mathbb{E}[h(x^K)]}{\alpha(t - K + 1) \gamma_t} + \frac{\tilde{C}_B}{2} \gamma_t^2 / \alpha \gamma_t.
\]

(Proof) Lemma 1 asserts that

\[
\alpha \gamma_k \mathbb{E}[g(x^k)] \leq \mathbb{E}[h(x^k)] - \mathbb{E}[h(x^{k+1})] + \gamma_k^2 \tilde{C}_B / 2.
\]

From \(g_t \leq \mathbb{E}[g(x^k)]\) and (26), it follows that

\[
\alpha g_t \sum_{k=K}^{t} \gamma_k \leq \alpha \sum_{k=K}^{t} \sum_{k=K}^{t} \gamma_k \mathbb{E}[g(x^k)] \\
\leq \sum_{k=K}^{t} \mathbb{E}[h(x^k)] - \mathbb{E}[h(x^{k+1})] + \frac{\tilde{C}_B}{2} \sum_{k=K}^{t} \gamma_k^2 \\
= \mathbb{E}[h(x^K)] - \mathbb{E}[h(x^{t+1})] + \frac{\tilde{C}_B}{2} \sum_{k=K}^{t} \gamma_k^2 \\
\leq \mathbb{E}[h(x^K)] + \frac{\tilde{C}_B}{2} (t - K + 1) \gamma_t
\]

where the last inequality follows from \(\mathbb{E}[h(x^{t+1})] \geq 0\) and \(\gamma_{t+1} \leq \gamma_t\). But since \(\gamma_k \geq \gamma_t\), \(\forall k \leq t\), one arrives at

\[
\sum_{k=K}^{t} \gamma_k \geq (t - K + 1) \gamma_t.
\]

Finally, (25) follows after combining (27) with (28), and dividing both sides of the resulting inequality by \(\alpha(t - K + 1) \gamma_t\).

Theorem 2 characterizes the convergence of RB-FW for any non-increasing step size satisfying (17). Since (25) holds for any \(K \in \{1, \ldots, t\}\), one can find the \(K\) leading to the tightest bound by minimizing the right-hand side of (25) with respect to \(K\).

B. Proposed step sizes

This section develops two classes of step sizes obeying (17) for arbitrary values of \(B\). Theorems 1 and 2 will then be invoked to derive the resulting convergence rates. To start with, consider the following general family of diminishing step-size sequences for fixed \(q \in (0, \alpha]\) and decay rate \(\rho \in (0.5, 1]\):

\[
g_t = \frac{2}{qt^q + 2}, \quad \forall t \geq 0.
\]

As will be seen, this family includes as special cases, the step size in (4) and the one in [9, Algorithm 4].

Lemma 2. If \(\{\gamma_t\}_{t=0,1,\ldots}\) is given by (29), it satisfies (17b).

(Proof) See part B of the Appendix.

Upon noticing that \(0 \leq \gamma_t \leq 1\) and \(\gamma_{t+1} \leq \gamma_t\) for \(\{\gamma_t\}_{t=0,1,\ldots}\) in (29), the convergence rate of RB-FW can be derived by appealing to Theorems 1 and 2 as follows.
Corollary 1. For \(t \geq 1 \), the iterates \(\{x^t\}_{t=1,2,...} \) of Algorithm 2 with step size (29) satisfy

\[
\mathbb{E}[h(x^t)] \leq \frac{4(1 - \alpha)h(x^0)}{[q(t-1)^{\rho} + 2]^2} + \frac{2tC_f^2}{(t+1)^2} \tag{30}
\]

and

\[
g_t \leq \frac{2\rho(q^\rho + 2)}{\alpha^q q^2(2\rho)^{2\rho}} \cdot \frac{(t + 1)C_f^2 + 2(1 - \alpha)h(x^0)}{t^{2\rho + 1}}. \tag{31}
\]

Proof: See part C of the Appendix.

Corollary 1 subsumes existing convergence results as special cases. Indeed, when \(B = N_b \), one has that \(B_t = N_b \forall t \), which implies that \(C_f^2 = C_f \), and Algorithm 2 reduces to the traditional FW solver. By selecting \(q = 1 \) and \(\rho = 1 \), the classical step size in (4) is retrieved. From Corollary 1, the sought computational bounds are

\[
h(x^t) \leq \frac{2tC_f}{(t+1)^2} \leq \frac{2C_f}{t+2} \tag{32}
\]

and

\[
g_t \leq \frac{2tC_f}{4} \cdot \frac{(t + 1)(t + 2)}{t^3}. \tag{33}
\]

Note that the resulting convergence rate of \(h(x^t) \) coincides with the one in [3, Theorem 1]. As for \(g_t \), the bound in (33) is of the same order as that in [3, Theorem 2].

In addition, with \(B = 1 \), \(q = 1/N_b \), and \(\rho = 1 \), the algorithm in [9, Algorithm 4] is recovered. From Corollary 1, the primal computational bound is

\[
\mathbb{E}[h(x^t)] \leq \frac{4(N_b^2 - N_b)h(x^0)}{(t-1 + 2N_b)^2} + \frac{2tN_b^2C_f}{(t-1 + 2N_b)^2} \leq \frac{4(N_b^2 - N_b)h(x^0)}{(t-1 + 2N_b)^2} + \frac{2N_b^2C_f}{t + 4N_b - 2} \tag{34}
\]

where the last inequality comes from the fact that

\[
\frac{t}{t + 2N_b - 1} \leq \frac{t + 2N_b - 1}{t + 4N_b - 2}.
\]

Meanwhile, \(g_t \) is bounded by

\[
g_t \leq \frac{2tN_b(t + 2N_b)}{4t^3} \left((t + 1)N_bC_f^2 + 2(N_b - 1)h(x^0) \right). \tag{35}
\]

Notably, the bound in (34) is tighter than the one reported in [9, Theorem 2], while the bound on \(g_t \) in (35) is of the same order as that in [9, Theorem 2].

The decreasing rates of the bounds in Theorems 1 and 2 are determined by the decay rates of the step size sequence. The faster \(\gamma_t \) diminishes, the more rapidly the upper bound in Theorem 1 vanishes. However, the sequence in (29) decreases at most as fast as \(2/(\alpha t + 2) \). To obtain a more rapidly vanishing bound in Theorem 1, a faster vanishing sequence is proposed next. Specifically, consider the sequence

\[
\gamma_0 = 1, \quad \text{and} \quad \gamma_{t+1} = \frac{\sqrt{\alpha^2 \gamma_t^2 + 4\gamma_t^2} - \alpha \gamma_t^2}{2}, \quad \forall t \geq 0. \tag{36}
\]

It is then possible to establish the following.

Lemma 3 (Recursive step size). If \(\{\gamma_t\}_{t=0,1,...} \) is chosen as in (36), it then holds that

\[
\frac{1}{\alpha t + 1} \leq \gamma_t \leq \frac{2}{\alpha t + 2}, \quad \forall t \geq 0. \tag{37a}
\]

\[
\gamma_{t+1} \leq \gamma_t, \quad \forall t \geq 0. \tag{37b}
\]

Proof: See part D of the Appendix.

To recap, this section put forth two families of step sizes for Algorithm 2 with arbitrary \(B \), namely (29) and (36). Corollaries 1 and 2 establish convergence of Algorithm 2 for these step sizes, which also guarantee feasibility of the iterates since they satisfy (17a). When \(\{\gamma_t\}_{t=0,1,...} \) is given by (29) with \(q = \alpha \) and \(\rho = 1 \) or when it is defined as in (36), the convergence rates of Algorithm 2 are in the order of \(O(1/t) \), thus matching those of the traditional FW algorithm.

Remark 1. At this point, it is worth discussing the choice of the step size leading to the fastest convergence in a given problem. Even though the bounds in this section suggest that rapidly vanishing step sizes will lead to a quick decrease of \(h(x^t) \), this is not always the case in practice. This is because step sizes with large decay rates become small after the first few iterations, and small step sizes lead to slow changes in \(h(x^t) \).

Conversely, small decay rates tend to yield rapidly decreasing \(h(x^t) \) in the first few iterations since the step sizes remain relatively large. Hence, it is difficult to provide universal guidelines since rapidly or slowly diminishing step sizes may be preferred depending on the specific optimization problem at hand. For example, if optimal solutions lie in the interior of the feasible set, rapidly diminishing step sizes can help reduce oscillations around optimal solutions, thus improving the overall convergence rates. On the other hand, if \(f(x) \) is monotone on \(X \), the solution lies on the boundary, which means that no oscillatory behavior is produced; and hence, slowly diminishing step sizes will be preferable.

IV. RB-FW FOR NONCONVEX PROGRAMS

The objective function of (6) is nonconvex in certain applications, such as constrained multilinear decomposition [19], or power system state estimation [20], [21]. Yet, convergence of RB-FW has never been investigated for this case. The rest of this section fills this gap by analyzing the convergence rate of...
RB-FW in problems involving a nonconvex objective. Similar to Sec. III, computational bounds are first derived for a wide class of step sizes, and are subsequently tailored for γ_t as in (29), and also for the exact line search.

Recall that Section II introduced $g(x)$ as a non-stationarity measure of point x with respect to $f(x)$. In the sequel, RB-FW with be analyzed in terms of upper bounds on g_t [cf. (24)].

Theorem 3. If $\{\gamma_t\}_{t=0,1,...}$ satisfy $0 \leq \gamma_t \leq 1$ for all t, it holds for the iterates $\{x^t\}_{t=0,1,...}$ of Algorithm 2 that

$$ g_t \leq \frac{h(x^0)}{\alpha \sum_{k=0}^{t-1} \gamma_k} + \frac{\bar{C}_B}{2} \sum_{k=0}^{t} \gamma_k^2, \quad t \geq 0. \tag{40} $$

Proof: Using $0 \leq g_t \leq E[g(x^k)]$ and (26), we deduce that

$$\alpha g_t \sum_{k=0}^{t} \gamma_k \leq \alpha \sum_{k=0}^{t} \gamma_k E[g(x^k)] \leq \sum_{k=0}^{t} \left(E[h(x^k)] - E[h(x^{k+1})] \right) + \frac{\bar{C}_B}{2} \sum_{k=0}^{t} \gamma_k^2 $n=0 \leq E[h(x^k)] - E[h(x^{k+1})] + \frac{\bar{C}_B}{2} \sum_{k=0}^{t} \gamma_k^2 \leq h(x^0) + \frac{\bar{C}_B}{2} \sum_{k=0}^{t} \gamma_k^2,$$

where the last inequality follows from $E[h(x^{k+1})] \geq 0$. Dividing both sides by $\alpha \sum_{k=0}^{t-1} \gamma_k$ leads to (40).

Clearly, Theorem 3 affirms that $\lim_{t \to \infty} g_t = 0$ if the step-size sequence $\{\gamma_t\}_{t=0,1,...}$ satisfies

$$ \lim_{t \to \infty} \sum_{k=0}^{t} \gamma_k \to \infty, \quad \text{and} \quad \lim_{t \to \infty} \sum_{k=0}^{t} \gamma_k^2 \to S $$

for some finite $S > 0$. In other words, if $\{\gamma_t\}_{t=0,1,...}$ is not summable and $\{\gamma_t\}_{t=0,1,...}$ is summable, then either x_t is a stationary point for some t, or a subsequence of $\{x_t\}_{t=0,1,...}$ converges to a stationary point. For any given step size, the convergence rates of RB-FW can be derived by plugging that sequence into (40).

To start with, consider the $\{\gamma_t\}_{t=0,1,...}$ in (29) with $q = \alpha$, $\rho = 1$; that is, $\gamma_t = 2/(\alpha t + 2)$, and note that

$$ \sum_{k=0}^{t} \frac{2}{\alpha k + 2} \geq \frac{\alpha}{\alpha x^2 + 2} dx = \frac{2}{\alpha} \log \left(\frac{\alpha t + 2}{2} \right) \tag{41a} $$

$$ \sum_{k=0}^{t} \frac{(\alpha k + 2)^2}{\alpha x^2 + 2} \leq \int_{x=\infty}^{x=\frac{2}{\alpha t + 2}} \frac{4}{\alpha x^2} dx = \frac{4}{\alpha} \left(\frac{1}{2} \cdot \frac{1}{\alpha t + 2} \right) \tag{41b} $$

By substituting (41) into Theorem 3, it follows that Algorithm 2 attains a stationary point of a nonconvex program at rate $O(1/\log t)$.

This rather slow rate can be substantially improved upon adopting exact line search for RB-FW, which yields

$$ \gamma_t = \arg \min_{0 \leq s \leq 1} \left((1 - s) x^t + s \hat{s}^t \right) \tag{42} $$

with $\hat{s}^t := \left[\hat{s}_1^T, \ldots, \hat{s}_{N_b}^T \right]$ and

$$ \hat{s}_n^t := \begin{cases} s_n^t, & n \in B_t \\ x_n^t, & n \in N_b \setminus B_t. \end{cases} $$

Theorem 4. If $\{\gamma_t\}_{t=0,1,...}$ is chosen as in (42), it holds for the iterates $\{x^t\}_{t=0,1,...}$ of Algorithm 2, that

$$ g_t \leq \frac{2\bar{C} \hat{h}(x^0)}{\alpha^2 (t + 1)}, \quad t \geq 0. \tag{43} $$

Proof: The right-hand side of (16) is minimized for

$$ \gamma_k = \arg \min_{\gamma \in [0,1]} \left(\alpha \hat{E}[h(x^k)] - \alpha \gamma \hat{E}[g(x^k)] + \gamma^2 \frac{\bar{C} \hat{B}}{2} \right) $n=0 \leq \alpha \hat{E}[g(x^k)] / \bar{C} \hat{B} \right) \tag{44} $$

Since (16) holds for any γ_k, substituting (44) into (16) yields

$$ \hat{E}[h(x^{k+1})] \leq \hat{E}[h(x^k)] - \alpha^2 \hat{E}[g(x^k)]^2 / \bar{C} \hat{B}. \tag{45} $$

Clearly, $h(x^{k+1})$ is smaller when γ_k is given by (42) with $t = k$ than when $\gamma_k = \gamma_k^*$. Therefore, (45) still holds in the former case. Thus, for $\{\gamma_k\}_{k=0,1,...}$ as in (42), it follows that

$$ \alpha^2 \hat{E}[g(x^k)] / \bar{C} \hat{B} \leq \hat{E}[h(x^k)] - \hat{E}[h(x^{k+1})]. \tag{46} $$

Summing (46) from $k = 0$ to t, results in

$$ \alpha^2 (t + 1) g_t / \bar{C} \hat{B} \leq \alpha (t + 1) \sum_{k=0}^{t} \hat{E}[g(x^k)] \leq h(x^0) - \hat{E}[h(x^{k+1})] \leq h(x^0) $$

which concludes the proof.

Theorem 4 generalizes the recent result in [14], which only applies to the classical FW method. The improved bound in (43) is attained at the price of performing exact line search, which requires the solution to a potentially nonconvex univariate optimization subproblem (42). It is worth mentioning that an optimal solution to this subproblem can be readily found in a number of cases. For example, if $f((1 - \gamma)x^t + \gamma \hat{s}^t)$ is quadratic in γ, then γ_t can be readily found by evaluating this function at three points.

All in all, the main contribution here is convergence rate analysis of RB-FW for minimizing (6) with nonconvex $f(x)$. Interestingly, when RB-FW relies on step sizes obtained using line search, a stationary point is reached with rate $O(1/\sqrt{t})$.

V. Generalized Step Sizes for FW

The availability of desirable step sizes for FW is rather limited. Indeed, besides line search, convergence rate of FW has only been established for $\gamma_t = 1 / \sqrt{t}$ [3], and $\gamma_t = 1 / \sqrt{t}^2$ [22]. This limits the user’s control on convergence of FW iterates; cf. Remark 1. To alleviate this limitation, this section applies the step sizes in (29) and (36) to the classical FW solver, namely Algorithm 1. Since the latter can be viewed as a special case of Algorithm 2 with $B = N_b$, Corollaries 1 and 2 can be leveraged to derive the convergence rates of FW for convex programs with the novel step sizes. Specifically, the ensuing computational bounds hold.
Corollary 3. If the step size sequence \{\gamma_t\}_{t=0,1,\ldots} is chosen as in (29) with \alpha = 1, q \in (0, 1] and \rho \in (0.5, 1], the successive iterates \{x^t\}_{t=1,2,\ldots} of Algorithm 1 then satisfy for \text{t} \geq 1

\begin{equation}
 h(x^t) \leq \frac{2tC_f}{[q(t - 1)^\rho + 2]^2}
\end{equation}

and

\begin{equation}
 g_t \leq \frac{(2\rho + 1)^{2\rho + 1}(gt^p + 2)(t + 1)C_f}{q^2(2\rho)^{2\rho}}.
\end{equation}

Proof: This is a special case of Corollary 1 for \alpha = 1. ■

Corollary 4. If the step-size sequence \{\gamma_t\}_{t=0,1,\ldots} is chosen as in (36) with \alpha = 1, the successive iterates \{x^t\}_{t=1,2,\ldots} of Algorithm 1 then satisfy for \text{t} \geq 1

\begin{equation}
 h(x^t) \leq \frac{2tC_f}{(t + 1)^2}
\end{equation}

and

\begin{equation}
 g_t \leq \frac{2t(t + 1)^2C_f}{2t^4}.
\end{equation}

Proof: Corollary 4 follows directly from Corollary 2. ■

Corollaries 3 and 4 establish convergence rates in terms of both \(h(x^t)\) and \(g_t\) for the classical FW method with step sizes of different decay rates. For a given problem, the most suitable step size can be selected following the guidelines in Remark 1. Interestingly, comparing Corollaries 3 and 4 with Corollaries 1 and 2 reveals that the initial optimality gap \(h(x^0)\) no longer affects the bounds for FW.

VI. APPLICATIONS

Two applications where RB-FW exhibits significant computational advantages over existing alternatives will be delineated in this section.

A. Coordination of EV charging

The convex setup of optimal schedules for EV charging in [23] is briefly reviewed next. Suppose that a load aggregator coordinates the charging of \(N\) EVs over the \(T\) consecutive time slots \(T := \{1, \ldots, T\}\) of length \(\Delta_t\). Let \(T_n \subseteq T\) denote the time slots in which vehicle \(n\) is connected to the power grid, and let \(p_n(\tau)\) be the charging rate of EV \(n\) at time \(\tau\) to be scheduled by the load aggregator. If \(\bar{p}_n\) is the charging rate limitation imposed by the battery of vehicle \(n\), then \(p_n(\tau)\) should lie in the interval \([0, \bar{p}_n(\tau)]\) with

\[\bar{p}_n(\tau) = \begin{cases} \bar{p}_n, & \tau \in T_n, \\ 0, & \text{otherwise.} \end{cases}\]

The charging profile for vehicle \(n\), denoted by \(p_n := [p_n(1) \ldots p_n(T)]^T\), should therefore belong to the convex and compact set

\[\mathcal{P}_n := \{p_n : \Delta_T p_n 1 = R_n, \ 0 \leq p_n(\tau) \leq \bar{p}_n(\tau), \ \forall \tau \in T \}\]

where \(R_n\) represents the total energy needed by EV \(n\).

Given \(\{R_n\}_{n=1}^N\), \(\{\bar{p}_n\}_{n=1}^N\), and \(\{T_n\}_{n=1}^N\), the problem solved by the aggregator is to find the charging profiles minimizing its electricity cost [23]; that is,

\[\begin{align*}
 \min_{p_n} & \quad f(p) \\
 \text{subject to} & \quad p_n \in \mathcal{P}_n, \forall n \in \mathcal{N}
\end{align*}\]

Algorithm 3 EV charging coordination solver

Input: \(\{R_n\}_{n=1}^N\), \(\{\bar{p}_n\}_{n=1}^N\), \(\{T_n\}_{n=1}^N\), and \(B\)

1: Initialize \(\{p_n^0\}\) and \(t = 0\)
2: while stopping criterion not met do
3: Randomly pick \(B_i \subseteq \mathcal{N}\) such that \(|B_i| = B\)
4: Evaluate \(c^i\) via (54)
5: Calculate \(\{s^i_n\}_{n \in B_i}\) via (55) and (56)
6: Update \(\{p_n^{t+1}\}_{n \in \mathcal{N}}\) via
\[p_n^{t+1} = \begin{cases} (1 - \gamma_t)p_n^t + \gamma ts^i_n, & \forall n \in B_i \\ p_n^t, & \forall n \in \mathcal{N} \setminus B_i \end{cases}\]
7: \(t \leftarrow t + 1\)
8: end while

where \(p := [p_1^T \ldots p_N^T]^T\) and \(\mathcal{N} := \{1, \ldots, N\}\). With \(\{D(\tau)\}_{\tau=1}^T\) denoting unmodeled loads, the total cost \(f(p)\) is

\[f(p) = \sum_{\tau=1}^T \left(D(\tau) + \sum_{n=1}^N p_n(\tau)\right)^2.\]

Note that \(f(p)\) is convex but not strongly convex in \(p\). The feasible set for (51) is the Cartesian product \(P := P_1 \times \ldots \times P_N\), which is convex and compact. Thus, problem (51) is convex and of the form (6).

Assuming that the aggregator can only afford updating the charging profiles of \(B\) out of the \(N\) vehicles in parallel due to a limited number of processors, the ensuing \(B\) linear subproblems arise when solving (51) via Algorithm 2:

\[s^i_n \in \arg \min_{s_n \in P_n} \langle s_n, c^i \rangle, \ \forall n \in B_i\]

where \(|B_i| = B\) and \(c^i := \nabla_{p_n} f(p^i)\). The latter does not depend on \(n\) since the gradient \(\nabla_{p_n} f(p^i)\) is identical across the \(N\) vehicles. Its \(\tau\)-th entry is given by

\[c^i(\tau) := 2(D(\tau) + \sum_{n=1}^N p_n^i(\tau)).\]

The subproblem (53) can be solved in closed form [24]. To find a solution, sort the entries of \(c^i\) in non-decreasing order by finding \(\{\tau^i_1, \ldots, \tau^i_T\}\) such that \(c^i(\tau^i_1) \leq c^i(\tau^i_2) \leq \ldots \leq c^i(\tau^i_T)\). Subsequently, one needs to find the index \(\tau^i_n \geq 1\) for which

\[\sum_{i=1}^{\tau^i_n} \bar{p}_n(\tau^i_1) \leq R_n \text{ and } \sum_{i=1}^{\tau^i_n} \bar{p}_n(\tau^i_1) > R_n.\]

Finally, the entries of the minimizer \(s^i_n\) are found as

\[s^i_n(\tau^i_i) = \begin{cases} \bar{p}_n(\tau^i_1), & i = 1, \ldots, \tau^i_n - 1 \\ R_n - \sum_{j=1}^{\tau^i_n} \bar{p}_n(\tau^i_j), & i = \tau^i_n \\ \bar{p}_n(\tau^i_1) + 1, \ldots, T. \end{cases}\]

The computational advantage of RB-FW for solving (51) stems from the fact that the solution to the subproblems (53) can be obtained efficiently via (56), whereas competing alternatives require expensive projections per iteration [11]. Our RB-FW-based charging scheme is summarized in Algorithm 3.
B. Structural SVMs

The term structured prediction comprises a family of machine learning problems, where the output to the predictors have variable sizes [25]. An example is the optical character recognition (OCR) task, where one is given a vector \(z \in \mathbb{R}^P \) containing the \(P \)-pixel image of an \(M \)-letter word. The goal is to produce a vector \(y \in \{1, \ldots, 26\}^M \), whose \(m \)-th entry indicates which of the 26 letters of the alphabet corresponds to the \(m \)-th character in that word. This problem is challenging because the output \(y \) may take \(26^M \) values, and also the same predictor must work for different values of \(M \).

Structural SVMs have been widely adopted to carry out the aforementioned structured prediction tasks [26], [27]. Upon defining the application-dependent feature map \(\phi \) [27] that encodes the relevant information for the input-output pair \((z, y)\) in the \(d \)-dimensional vector \(\phi(z, y) \), a vector \(w \) is learned so that \(\langle w, \phi(z, y) \rangle \) when seen as a function of \(y \) is maximized at the correct \(y \) for a given input \(z \). Given \(N \) training pairs \(\{(z_n, y_n)\}_{n=1}^N \), \(w \) is learned by solving

\[
\begin{align*}
\text{minimize} & \quad \frac{\lambda}{2} \|w\|^2 + \frac{1}{N} \sum_{n=1}^N \xi_n \\
\text{subject to} & \quad \langle w, \psi_n(\hat{y}) \rangle \geq L_n(y) - \xi_n \quad \forall \hat{y} \in \mathcal{Y}_n, \forall n \in \mathcal{N}
\end{align*}
\]

(57a)

where \(\mathcal{N} := \{1, \ldots, N\} \), \(\psi_n(y) := \phi(z_n, y_n) - \phi(z_n, \hat{y}) \), \(L_n(\hat{y}) \) is the incurred loss by predicting \(\hat{y} \) instead of the given label \(y_n \), \(\{\xi_n\}_{n=1}^N \) are slack variables, \(\lambda \) is a nonnegative constant, and \(\mathcal{Y}_n \) is the set of all possible outputs for input \(z_n \).

In the OCR example, \(\mathcal{Y}_n = \{1, \ldots, 26\}^M \), where \(M \) is the number of characters of the \(n \)-th word.

Problem (57) is difficult since the number of constraints explodes with \(|\mathcal{Y}_n| \). If \(\beta_n(y) \) is the Lagrange dual variable associated with (57b), \(\beta_n \) is formed with entries \(\{\beta_n(y)\}_{y \in \mathcal{Y}_n} \), and vector \(\beta \) has entries \(\{\beta_n\}_{n \in \mathcal{N}} \), the dual of (57) is [9]

\[
\begin{align*}
\text{minimize} & \quad \frac{\lambda}{2} \|A\beta\|^2 - b^T \beta \\
\text{subject to} & \quad 1^T \beta_n = 1, \quad \forall n \in \mathcal{N}
\end{align*}
\]

(57b)

where \(m := \sum_n |\mathcal{Y}_n| \), \(A \in \mathbb{R}^{d \times m} \) is formed with columns \(\{1, \psi_n(y)\}_{y \in \mathcal{Y}_n, n \in \mathcal{N}} \), and vector \(b \in \mathbb{R}^m \) has entries \(\{\frac{1}{N} L_n(y)\}_{y \in \mathcal{Y}_n, n \in \mathcal{N}} \).

A randomized single-block FW is adopted by [9], to solve (58). Extending this approach to \(B > 1 \) yields Algorithm 4. To avoid storing the high-dimensional vector \(\beta^t \), auxiliary variables \(\tilde{w}^t := A\beta^t \), \(t = 0, 1, \ldots \) are introduced. It can be shown that iterates \(\{\tilde{w}^t\}_{t=0}^\infty \) converge to the global minimizer of (57); see [9] for additional details.

VII. SIMULATED TESTS

This section demonstrates the efficacy of the novel step sizes, and our parallel RB-FW solvers, in the context of the large-scale applications of Sec. VI.

A. Coordination of EV charging

In the first experiment, 63 EVs with maximum charging power \(\bar{p}_n = 3.45 \text{kW} \) \(\forall n \), were scheduled. The simulation comprises \(T = 96 \) time slots ranging from 12:00 pm to 12:00 pm of the next day. The values of \(\{T_n\}_{n=1}^N \) and \(\{R_n\}_{n=1}^N \) were set according to real travel data of the National Household Travel Survey [28], [11]. The base load \(\{D_t\}_{t=1}^T \) were obtained by averaging the 2014 residential load data from Southern California Edison [29].

Convergence is assessed in terms of the relative error \(e(p^t) := (f(p^t) - f(p^*))/f(p^*) \), where \(p^* \) is obtained using the off-the-shelf solver SeDuMi.

The following step-size sequences were compared.

\[
\begin{align*}
& (S1) : \quad \gamma_t := \frac{2}{\alpha t + 2}, \\
& (S2) : \quad \gamma_t := \frac{\sqrt{\alpha^2 + 2} - 1}{2}, \quad \gamma_0 = 1, \\
& (S3) : \quad \gamma_t := \frac{2}{0.5 \alpha t + 2}, \\
& (S4) : \quad \gamma_t := \frac{2}{0.5 \alpha 0.9 + 2}, \\
& (S5) : \quad \gamma_t := \frac{2}{0.5 \alpha 0.8 + 2}.
\end{align*}
\]

S2 is the sequence in (36), whereas S1 and S3-S5 are special cases of (29). Sequences S1-S5 cover a wide range of decay rates. S2 vanishes faster than S1 [cf. (37a)], whereas the decay rates of S3-S5 are smaller than that of S1. Note that S1 boils down to the step size of [9, Algorithm 4] when setting \(S = 1 \). For all \(n = 1, \ldots, N \), \(p_n(0) \) was initialized as

\[
p_n(0) = \begin{cases}
\bar{p}_n(\tau), & \tau = 1, \ldots, \tau_n - 1 \\
R_n - \sum_{j=1}^{\tau_n} \bar{p}_n(j), & \tau = \tau_n \\
0, & \tau = \tau_n + 1, \ldots, T
\end{cases}
\]

where the index \(\tau_n \geq 1 \) was found as

\[
\sum_{\tau=1}^{\tau_n} \bar{p}_n(\tau) \leq R_n \quad \text{and} \quad \sum_{\tau=1}^{\tau_n} \bar{p}_n(\tau) > R_n.
\]
The first experiment assumed that only one vehicle was randomly selected to update its charging profile per iteration. Algorithm 3 with $B = 1$ was run with the step sizes S1-S5 for 1,000 iterations. Fig. 2 depicts the evolution of $\epsilon(p^t)$ across the iteration index t for Algorithm 3 with step sizes S1-S5 when $B = 1$. It is observed that the algorithm converges towards a global minimum for all the tested step sizes. In this scenario, the more slowly the step size diminishes, the faster the relative error decreases. Since $B = 1$ and Algorithm 3 is a special instance of Algorithm 2, Fig. 2 therefore highlights how randomized single-block FW can benefit from the proposed step sizes. Specifically, the proposed step sizes S3-S5 lead to a much faster convergence than S1, which coincides with the step size in [9, Algorithm 4] since $B = 1$.

The second experiment tested Algorithm 3 with $B = 10$. Fig. 3 further confirms that slowly diminishing step sizes lead to fast convergence in the first few iterations. However, as the iterates approach a minimum, the slowly diminishing step sizes yield larger oscillations; see e.g. S5 in Fig. 3. This phenomenon has already been described in Remark 1. Comparing Figs. 2 and 3 reveals that considerably less iterations are required to achieve a target accuracy for larger B. For example, about one fifth of iterations are now required for Algorithm 3 with S5 to reach $\epsilon(p) \leq 10^{-5}$. Thus, if the ten blocks can be processed in parallel, setting $B = 10$ roughly reduces the computation time by a factor of five, which further corroborates the merits of parallel RB-FW.

The next experiment highlights the impact of B on the convergence of Algorithm 3. Five copies of Algorithm 3, each one with a different step size S1-S5, are executed for 100 independent trials. The minimum value of t such that at least one of these copies satisfies $\epsilon(p^t) \leq 10^{-5}$ is recorded. Fig. 4 represents the sample mean and standard derivation of this minimum t averaged over the 100 trials for different values of B. It is observed that both mean and standard derivation decrease for increasing B. If each iteration of Algorithm 3 is run in B cores in parallel, then the number of iterations constitutes a proxy for computation time. Therefore, Fig. 4 showcases the significant benefit of adopting $B > 1$. Nonetheless, observe that the influence of B on the number
of iterations decreases for large B. Fig. 5 depicts the fraction of trials that each copy of Algorithm 3 is the first among the five copies in achieving $\epsilon(p_t^i) \leq 10^{-5}$. This figure reveals that slowly diminishing step sizes are preferable for small values of B.

B. Structural SVMs

The structural SVMs experiment was conducted on a subset of the OCR dataset [26], [30]. The feature mapping $\phi(z, y)$, loss function $L_n(y)$, and solution to the subproblems in step 5 of Algorithm 4 were evaluated using the open source code [31] released by the authors in [9]. The dimension of $\phi(z, y)$ is $d = 4,028$, and the number of training examples is $N = 6,251$. To initialize each β^0_n, one of its entries chosen uniformly at random was set to one, whereas all the remaining entries were set to zero. Algorithm 4 with $\lambda = 0.1$ and step sizes S1-S5 was run for six passes through all the training examples. The duality gap $g(\beta^t)$ in (14) is depicted in Figs. 6 and 7 for $B = 1$ and $B = 2$, respectively. In both cases, Algorithm 4 with S5 outperforms all other variants in the first few iterations. Furthermore, it can be seen that the required number of iterations to achieve a target accuracy almost halves when increasing B from one to two.

VIII. Concluding Summary

The randomized block Frank-Wolfe (RB-FW) algorithm is especially suited to solve high-dimensional constrained learning problems whose feasible set is block separable. For convex programs, the present contribution developed feasibility-ensuring step sizes that enable parallel updates of provably convergent RB-FW iterates. The novel step sizes admit various decay rates, leading to flexible convergence rates of RB-FW. Convergence of RB-FW is also established for constrained nonconvex problems. Numerical tests using real-world datasets corroborated the speed-up advantage of parallel RB-FW with the proposed step sizes over randomized single-block FW. In addition, single-block FW with the developed slowly diminishing step sizes converges markedly faster than that with existing step sizes.

Appendix

A. Proof of Lemma 1

Using (12) together with steps 4 and 5 of Algorithm 2, we find

\[
\begin{align*}
 f(x^{t+1}) &\leq f(x^t) + \sum_{n \in B_t} \langle x^t_n - x^t_n, \nabla x_n f(x^t) \rangle + \gamma_t^2 C_f^B / 2 \\
 &= f(x^t) + \sum_{n \in B_t} \gamma_t \langle s^t_n - x^t_n, \nabla x_n f(x^t) \rangle + \gamma_t^2 C_f^B / 2.
\end{align*}
\]

Subtracting $f(x^*)$ from both sides yields

\[
\begin{align*}
 h(x^{t+1}) &\leq h(x^t) + \sum_{n \in B_t} \gamma_t \langle s^t_n - x^t_n, \nabla x_n f(x^t) \rangle + \gamma_t^2 C_f^B / 2.
\end{align*}
\]

Taking conditional expectation with respect to B_t, we arrive for a given x^t at

\[
\begin{align*}
 \mathbb{E}_{B_t} [h(x^{t+1} | x^t)] &\leq h(x^t) + \alpha \sum_{n \in N_t} \gamma_t \langle s^t_n - x^t_n, \nabla x_n f(x^t) \rangle + \gamma_t^2 C_f^B / 2 \\
 &= h(x^t) + \alpha \gamma_t |B_t|^{-1} \langle \bar{x}^t - x^t, \nabla f(x^t) \rangle + \gamma_t^2 C_f^B / 2 \\
 &= h(x^t) - \alpha \gamma_t g(x^t) + \gamma_t^2 C_f^B / 2
\end{align*}
\]

where the last equality follows from (14) and step 4 of Algorithm 2. Since x^t is determined by $\{B_t\}_{t=0}^{T-1}$, taking expectations in (60) with respect to $\{B_t\}_{t=0}^{T-1}$ yields (16).

B. Proof of Lemma 2

Plugging (29) into the left-hand side of (17b) yields

\[
\begin{align*}
 \frac{1 - \alpha \gamma_{t+1}}{\gamma_{t+1}^2} &= \frac{[q(t + 1)^\rho + 2 - \alpha]^2 - \alpha^2}{4} \\
 &\leq \frac{[q(t + 1)^\rho + 2 - \alpha]^2}{4} \\
 &\leq \frac{[q(t + 1)^\rho - q + 2]^2}{4}.
\end{align*}
\]
where the last inequality follows from $q \leq \alpha \leq 1$. Consider the auxiliary function $\varphi(x) := (x + c)^p - x^p - c$, $x \geq 0$ for some constant $c \geq 1$, and its first-order derivative
\[\varphi'(x) = p(x + 1)^{p-1} - px^{p-1}, \quad x \geq 0. \]
Since $p \leq 1$, it holds that $\varphi'(x) \leq 0$, and thus,
\[\varphi(x) \leq \varphi(0) = c^p - c \leq 0, \quad \forall x \geq 0 \]
or,
\[(x + c)^p - c \leq x^p, \quad \forall x \geq 0. \]
(62)
Multiplying both sides of (62) by q, and setting $c = 1$ and $x = t$ gives rise to
\[0 \leq q(t + 1)^p - q \leq qt^p, \quad \forall t \geq 0. \]
(63)
Combining (61) and (63) yields
\[\frac{1 - \alpha^2 t}{\gamma_{t+1}^2} \leq \frac{[qt^p + 2]^2}{4} = \frac{1}{\gamma_t^2}, \]
which concludes the proof.

C. Proof of Corollary 1

Expression (30) follows directly by substituting (29) into (18). To show (31), apply Theorem 2 to verify that
\[
\alpha t \leq \frac{\mathbb{E}[h(x^K)]}{\gamma_0^2(t - K + 1)\gamma_t} + \frac{\bar{C}_B^p}{2\gamma_t} \leq \frac{(1 - \alpha \gamma_0)\gamma_{K-1}^2 h(x^0)}{\gamma_0^2(t - K + 1)\gamma_t} + \frac{K^B p\gamma_{K-1}^2}{2\gamma_t} \\
\leq \frac{(1 - \alpha)\gamma_{K-1}^2 h(x^0)}{\gamma_0^2(t - K + 1)\gamma_t} + \frac{\gamma_{K-1}^2 p\bar{C}_B^p}{2\gamma_t} \leq \frac{(1 - \alpha)\gamma_{K-1}^2 h(x^0)}{(t - K + 1)\gamma_t} + \frac{\gamma_{K-1}^2}{\gamma_t} \leq \frac{2}{(t - K + 1)\gamma_t} \leq \frac{2}{2\gamma_t} \leq \frac{2}{\gamma_t}.
\]
(64)
for all $K \in \{1, \ldots, t\}$, where the second inequality stems from (18) and the third one follows from $\gamma_{K-1}^2 \leq \gamma_{K-1}$ and $\gamma_0 = 1$. The next step is to bound the first quotient in the right-hand side of (64). To this end, set $c = 2/q$ and $x = K-1$ in (62) to deduce that
\[\gamma_{K-1} \leq \frac{2}{q(K - 1)\rho + 2} \leq \frac{2}{q(K - 1 + 2/q)\rho}. \]
(65)
Now set $K = [\mu(t + 2/q)]$, where μ is an arbitrary constant. Since $K \in \{1, \ldots, t\}$, μ needs to satisfy
\[0 < \mu \leq \frac{t}{t + 2/q}. \]
(66)
Since
\[[\mu(t + 2/q)] - 1 + 2/q \geq \mu(t + 2/q) - 2 + 2/q \geq \mu(t + 2/q) > 0 \]
it follows from (65) that
\[\gamma_{K-1} \leq \frac{2}{q\mu^p(t + 2/q)^p}. \]
Therefore,
\[\frac{\gamma_{K-1}}{t - K + 1} \leq \frac{4}{q^2(t - K + 1)\mu^{2p}(t + 2/q)^{2p}} \leq \frac{4}{q^2\mu(t - K + 2/q)^p\mu^{2p}(t + 2/q)^{2p}}. \]
Minimizing the right-hand side with respect to μ in the interval (66) yields
\[\frac{\gamma_{K-1}^2}{t - K + 1} \leq \frac{4(2\rho + 1)^{2p+1}}{q^{2p}(2\rho)^{2p+1}} \]
for $\mu = \frac{2\rho}{2\rho + 1 + 2\rho_0}$. From (64), g_t can be upper bounded as
\[g_t \leq \frac{\gamma_{K-1}^2}{t - K + 1} \leq \frac{(t + 1)\bar{C}_B^p + 2(1 - \alpha)\rho h(x^0)}{2\alpha\gamma_t} \leq \frac{(2\rho + 1)^{2p+1}(qt^p + 2)}{\alpha q^{2p}(2\rho)^{2p+1}} (t + 1)\bar{C}_B^p + 2(1 - \alpha)\rho h(x^0). \]
(67)
where the second inequality follows from (68) and (29).

D. Proof of Lemma 3

To prove (37a) by induction, it clearly holds for $t = 0$, and assume that it holds also for a fixed $t \geq 0$. Then, one needs to show that
\[\frac{1}{\alpha t + 1 + \alpha} \leq \gamma_{t+1} \leq \frac{2}{\alpha t + 2 + \alpha}. \]
(69)
To this end, define the auxiliary function
\[\hat{\varphi}(x) := \sqrt{\alpha^2 x^4 + 4x^2 - \alpha x^2}, \quad x \geq 0 \]
which is monotonically increasing since
\[\hat{\varphi}'(x) = (\alpha^2 x^2 + 2) - \alpha x \sqrt{x^2 + 4} > 0. \]
Thus, by the induction hypothesis we have
\[\hat{\varphi}\left(\frac{1}{\alpha t + 1}\right) \leq \gamma_{t+1} = \hat{\varphi}(\gamma_t) \leq \hat{\varphi}\left(\frac{2}{\alpha t + 2}\right). \]
(70)
Note that
\[1 - \frac{2\alpha}{\alpha t + 2 + \alpha} \leq \left(1 - \frac{\alpha}{\alpha t + 2 + \alpha}\right)^2 = \left(\frac{\alpha^2 + 2}{\alpha t + 2 + \alpha}\right)^2 \]
or, equivalently,
\[1 \leq \frac{2\alpha}{\alpha t + 2 + \alpha} + \left(\frac{\alpha^2 + 2}{\alpha t + 2 + \alpha}\right)^2 = \left(\frac{\alpha}{\alpha t + 2 + \alpha}\right)^2 - \frac{\alpha^2}{(\alpha t + 2 + \alpha)^2}. \]
(71)
This inequality implies that
\[\frac{2}{\alpha t + 2} \leq \frac{1}{\alpha} \sqrt{\frac{4\alpha^2}{(\alpha t + 2)^2} + 4} - \frac{2\alpha}{(\alpha t + 2)^2} \leq \frac{2}{\alpha t + 2 + \alpha}. \]
(72)
Combining (72) with the second inequality in (70) proves the second inequality in (69).
On the other hand, since $(\alpha t + 1 + \alpha)^2 \geq \alpha(\alpha t + 1 + \alpha) + (\alpha t + 1)^2$, it holds that
\[\frac{\alpha^2}{(\alpha t + 1)^2} + 4 \geq \frac{\alpha^2}{(\alpha t + 1)^2} + \frac{4\alpha}{\alpha t + 1 + \alpha} + \frac{4(\alpha t + 1)^2}{(\alpha t + 1 + \alpha)^2} = \left(\frac{\alpha}{\alpha t + 1 + \alpha}\right)^2. \]
(73)
Thus,

\[
\varphi \left(\frac{1}{\alpha t + 1} \right) = \frac{1}{2(\alpha t + 1)} \sqrt{\frac{\alpha^2}{(\alpha t + 1)^2}} + 4 - \frac{\alpha}{2(\alpha t + 1)^2} \geq \frac{1}{\alpha t + 1 + \alpha}.
\]

(74)

Combining (74) with the first inequality in (70) proves the first inequality in (69), thus concluding the proof of (37a).

To prove (37b), one can also proceed by induction. First, \(\gamma_i \leq \gamma_0 \) since \(\frac{\sqrt{\alpha t + 1} - 1}{2} \leq 1 \). Assuming \(\gamma_{k-1} \leq \gamma_k \), it follows that \(\gamma_k \leq \gamma_{k+1} \) since \(\varphi(x) \) is nondecreasing.

E. Proof of Corollary 2

Inequality (38) readily follows from (18) and (37a). To prove (39), note that (64) holds because of \(\gamma_0 = 1 \) and (37). Meanwhile, by the second inequality in (37a), the step size in (36) satisfies (68) for \(\eta = \alpha \) and \(\rho = 1 \), that is

\[
\frac{\gamma_{k-1}^2}{t - K + 1} \leq \frac{27}{\alpha^2 t^3}.
\]

(75)

Plugging (37a) together with (75) into (64), yields (39).

REFERENCES

[1] M. Frank and P. Wolfe, “An algorithm for quadratic programming,” Naval Research Logistics Quarterly, vol. 3, no. 1–2, pp. 95–110, 1956.

[2] V. F. Deminaov and A. M. Rubinov, Approximate Methods in Optimization Problems. Amsterdam, Netherlands: Elsevier, 1970.

[3] M. Jaggi, “Revisiting Frank-Wolfe: Projection-free sparse convex optimization,” in Proc. Int. Conf. on Machine Learning, Atlanta, GA, Jun. 2013.

[4] D. P. Bertsekas, Nonlinear Programming, 2nd ed. Belmont, MA: Athena Scientific, 1999.

[5] Y. Nesterov, Introductory Lectures on Convex Optimization. Boston, MA: Kluwer, 2004.

[6] K. L. Clarkson, “Coregisers, sparse greedy approximation, and the Frank-Wolfe algorithm,” ACM Trans. Algorithms, vol. 6, no. 4, p. 63, July 2010.

[7] M. Jaggi and M. Sulovsk, “A simple algorithm for nuclear norm regularized problems,” in Proc. Int. Conf. on Machine Learning, Haifa, Israel, Jun. 2010.

[8] Z. Harchaoui, A. Juditsky, and A. Nemirovski, “Conditional gradient algorithms for norm-regularized smooth convex optimization,” Math. Program., vol. 152, no. 1-2, pp. 75–112, 2015.

[9] S. Lacoste-Julien, M. Jaggi, M. Schmidt, and P. Pletscher, “Block-coordinate Frank-Wolfe optimization for structural SVMs,” in Proc. Int. Conf. on Machine Learning, Atlanta, GA, Jun. 2013.

[10] S. Lacoste-Julien, F. Lindsten, and F. R. Bach, “Sequential kernel herding: Frank-Wolfe optimization for particle filtering,” in Intl. Conf. Artificial Intelligence and Statistics, San Diego, CA, May 2015.

[11] L. Zhang, V. Kekatos, and G. B. Giannakis, “Scalable electric vehicle charging protocols,” IEEE Trans. Power Syst., 2016, (early access).

[12] A. Osoin, J.-B. Alayrac, I. Lukasewitz, P. K. Dokania, and S. Lacoste-Julien, “Minding the gaps for block Frank-Wolfe optimization of structured SVMs,” in Proc. Int. Conf. on Machine Learning, New York City, NY, Jun. 2016.

[13] Y. Wang, V. Sadhanala, W. Dai, W. Neiswanger, S. Sr, and E. P. Xing, “Parallel and distributed block-coordinate Frank-Wolfe algorithms,” in Proc. Int. Conf. on Machine Learning, New York City, NY, Jun. 2016.

[14] S. Lacoste-Julien, “Convergence rate of Frank-Wolfe for non-convex objectives,” 2016. [Online]. Available: https://arxiv.org/abs/1607.00345

[15] S. S. Chen, D. L. Donoho, and M. A. Saunders, “Atomic decomposition by basis pursuit,” SIAM Review, vol. 43, no. 1, pp. 129–159, Feb. 2001.

[16] J. Liu, P. Musialski, P. Wonka, and J. Ye, “Tensor completion for estimating missing values in visual data,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 35, no. 1, pp. 208–220, Jan. 2013.

[17] C. M. Alnaiz, A. Barbero, and J. R. Dorronsoro, “Group fused lasso,” in Proc. Int. Conf. on Artificial Neural Networks, Sofia, Bulgaria, Mar. 2013, pp. 66–73.

[18] S. Jegelka, F. Bach, and S. Sra, “Reflection methods for user-friendly submodular optimization,” in Adv. Neural Inf. Process. Syst., Stateline, NV, Dec. 2013, pp. 1313–1321.

[19] E. E. Papalexakis, N. D. Sidiropoulos, and R. Bro, “From k-means to higher-way co-clustering: Multilinear decomposition with sparse latent factors,” IEEE Trans. Signal Process., vol. 61, no. 2, pp. 493–506, Dec. 2013.

[20] G. B. Giannakis, V. Kekatos, N. Gatsis, S.-J. Kim, H. Zhu, and B. Wollenberg, “Monitoring and optimization for power grids: A signal processing perspective,” IEEE Signal Processing Mag., vol. 30, no. 5, pp. 107–128, Sep. 2013.

[21] G. Wang, A. S. Zamzam, G. B. Giannakis, and N. D. Sidiropoulos, “Power system state estimation via feasible point pursuit,” in IEEE Global Conf. Signal and Inf. Process., Washington, D.C., USA, 2016.

[22] R. M. Freund and P. Grigas, “New analysis and results for the Frank-Wolfe method,” Math. Program., vol. 155, no. 1-2, pp. 199–230, Jan. 2016.

[23] L. Zhang, V. Kekatos, and G. B. Giannakis, “A generalized Frank-Wolfe approach to decentralized control of vehicle charging,” in Proc. Conf. on Decision and Control, Las Vegas, NV, Dec. 2016.

[24] S. Boyd and L. Vandenberghe, Convex Optimization. New York, NY: Cambridge University Press, 2004.

[25] G. Bakr, T. Hofmann, B. Schölkopf, A. J. Smola, B. Taskar, and S. V. Vishwanathan, Predicting Structured Data. Cambridge, MA: MIT press, 2007.

[26] B. Taskar, C. Guestrin, and D. Koller, “Max-margin Markov networks,” in Adv. Neural Inf. Process. Syst., Vancouver, Canada, Dec. 2003.

[27] I. Tsochantaridis, T. Joachims, T. Hofmann, and Y. Altun, “Large margin methods for structured and interdependent output variables,” J. Mach. Learn. Res., vol. 6, pp. 1453–1484, Sep. 2005.

[28] M. Jaggi, R. M. Freund and P. Grigas, “New analysis and results for the Frank–Wolfe method,” in Proc. Conf. on Artificial Intelligence and Statistics, San Diego, CA, May 2015.

[29] S. Lacoste-Julien, M. Jaggi, M. Schmidt, and P. Pletscher. Block-coordinate Frank-Wolfe solver for structural SVMs. [Online]. Available: https://github.com/ppletscher/BCFWstruct