Malaria prevalence in HIV-positive children, pregnant women, and adults: a systematic review and meta-analysis

Seyyedeh-Tarlan Mirzohreh1,2, Hanieh Safarpour1,2, Abdol Sattar Pagheh3, Berit Bangoura4, Aleksandra Barac5 and Ehsan Ahmadpour6,7*

Abstract

Background: Malaria in human immunodeficiency virus (HIV)-positive patients is an ever-increasing global burden for human health. The present meta-analysis summarizes published literature on the prevalence of malaria infection in HIV-positive children, pregnant women and adults.

Methods: This study followed the PRISMA guideline. The PubMed, Science Direct, Google Scholar, Scopus and Cochrane databases were searched for relevant entries published between 1 January 1983 and 1 March 2020. All peer-reviewed original papers evaluating the prevalence of malaria among HIV-positive patients were included. Incoherence and heterogeneity between studies were quantified by the I² index and Cochran's Q test. Publication and population biases were assessed with funnel plots, and Egger's regression asymmetry test.

Results: A total of 106 studies were included in this systematic review. The average prevalence of malaria among HIV-positive children, HIV-positive pregnant women and HIV-positive adults was 39.4% (95% confidence interval [CI]: 26.6–52.9), 32.3% (95% CI = 26.3–38.6) and 27.3% (95% CI = 20.1–35.1), respectively. In adult patients with HIV, CD4⁺ (cluster of differentiation 4) count < 200 cells/µl and age < 40 years were associated with a significant increase in the odds of malaria infection (odds ratio [OR] = 1.5, 95% CI = 1.2–1.7 and OR = 1.1, 95% CI = 1–1.3, respectively). Antiretroviral therapy (ART) and being male were associated with a significant decrease in the chance of malaria infection in HIV-positive adults (OR = 0.8, 95% CI = 0.7–0.9 and OR = 0.2, 95% CI = 0.2–0.3, respectively). In pregnant women with HIV, CD4⁺ count < 200 cells/µl was related to a higher risk for malaria infection (OR = 1.5, 95% CI = 1.1–1.9).

Conclusions: This systematic review demonstrates that malaria infection is concerning common among HIV-positive children, pregnant women and adults. Among HIV-positive adults, ART medication and being male were associated with a substantial decrease in infection with malaria. For pregnant women, CD4⁺ count of < 200 cells/µl was a considerable risk factor for malaria infection.

Keywords: AIDS, Anopheles, People living with HIV, Plasmodium, Protozoan parasite

Correspondence: ehsanahmadpour@gmail.com; ahmadpoure@tbzmed.ac.ir

6 Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/. The Creative Commons Public Dedicated Waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.
Approximately 3.3 billion people are residing in malaria-endemic regions (parts of the Africa, Southeast Asia and Middle East) [5, 6].

The human immunodeficiency virus (HIV) is an emerging infectious disease agent defined by cellular immune system impairment [7]. HIV is a well-established global health burden, with > 36 million HIV-infected patients and > 1 million HIV-related deaths in 2017 [8]. While *Plasmodium* parasites causing human malaria are transmitted mainly by mosquitoes (*Anopheles* spp.) serving as biological vectors, malaria can also be transmitted directly via blood transfusion, needle sticks with contaminated needles and vertical transmission [9, 10]. The infection routes bypassing the biological vector are transmission routes shared by HIV and malaria [11]. Since HIV infection affects the immune system, the infected individuals are more susceptible to other infections [12–15]. Therefore, people living with HIV (including children, pregnant women and adults) are at risk for significant disease and may have fatal complications following infection [11, 16]. The vertical transmission option for both malaria and HIV facilitates co-transmission from infected pregnant women to their infants [17]. Since the co-infections of malaria and HIV can induce anemia, blood transfusion is often required, but blood transfusion can also contribute to the transmission of HIV and malaria [18, 19].

Although numerous studies have highlighted malaria prevalence in patients with HIV, there has been no comprehensive meta-analysis to demonstrate this prevalence in children, adults and pregnant women. Therefore, the aims of this systematic review and meta-analysis are to summarize malaria prevalence among HIV-positive children, pregnant women and adults, and to identify risk factors that increase the probability of HIV-positive patients being infected with malaria.

Methods

Search strategy

For inclusion in the present systematic review, the PubMed, Science Direct, Google Scholar, Scopus and Cochrane databases were searched for relevant English-language, full-text articles and abstracts published between 1 January 1983 (date of HIV discovery) and 1 March 2020. As the aim was to evaluate the prevalence of positive test results for malaria among HIV-positive and HIV-negative individuals, the following Medical Subject Headings (MeSH) terms were used: “Malaria” OR “*Plasmodium*” AND “prevalence” OR “epidemiology” OR “co-infection” AND “HIV” OR “AIDS” OR “acquired immune deficiency syndrome” OR “immunocompromised” OR “immunosuppressed” OR “immunodeficiency” AND “pregnancy women” OR “children” OR “adult” alone OR combined using “OR” and/or “AND”.

Study selection and data extraction

After an initial search of the databases, subject-related topics and their abstracts were double-checked, and then full texts of potentially eligible articles were selected for downloading. All potentially relevant full texts were reviewed by three independent reviewers (TM, HS, ASP). Discrepancies were resolved by discussion and consensus. The studies were assessed for quality using the Joanna Briggs Institute (JBI) checklist (Additional files 2, 3, 4, 5: Tables S1–S4). The required data were extracted by the reviewers and then re-checked. The criteria for inclusion in the review were: (i) peer-reviewed original research papers; (ii) cross-sectional and cohort studies that estimated the prevalence of malaria infection in HIV-positive and HIV-negative individuals; (iii) published papers in English; (iv) published online before 1 March 2020; and (v) sufficient sample size (n > 10). Any article that did not satisfy the above criteria were excluded. The reference lists of the eligible articles were also browsed manually to identify relevant papers that were not initially identified in the database search. Finally, details of each study were extracted using a data extraction form, including country, year of publication, first author, number of HIV+ and malaria-positive cases, education status of patients, alcohol consumption status, number of partners, marital status, level of CD4+ (cluster of differentiation 4) in HIV-positive patients, ART (antiretroviral therapy) status, sex protection status and diagnostic method (microscopy, serology or molecular). The Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines were used to report the findings [20].

Meta-analysis

The point estimate and corresponding confidence interval (CI) for the prevalence of malaria in HIV-positive individuals for each study were calculated. Incoherence and heterogeneity among studies were assessed using the I² index and Cochran’s Q test, respectively, and the random-effects model (DerSimonian-Laird) was used for analysis. The heterogeneity among subgroups was tested by meta-regression analysis. The relationship between prevalence, year of publication and sample size was estimated by meta-regression. Additionally, a funnel plot relying on the Egger’s regression asymmetry test was used to assess the small effects of the study and the population bias. For the meta-analysis, the included studies were evaluated as a random sample of each study population, and the analyses were performed using StatsDirect.
(version 2.7.2) statistical software (StatsDirect Ltd., Altrincham, UK).

Results

The systematic search of the electronic databases identified 24,311 potentially relevant papers. The full-text of 212 articles was assessed, resulting in exclusion from the study of 106 papers due to their small sample size, the review or case report nature of the report, duplication and insufficient data. The remaining 106 papers fulfilled the inclusion criteria and were included in the present systematic review and meta-analysis. All of these 106 articles were published between 1983 and 2020 and present data from malaria-endemic regions in Africa \((n = 103) \) and Asia \((n = 3) \). The inclusion/exclusion criteria at each step of screening and eligibility and the number of selected papers are shown in Fig. 1.

All analyses were conducted in three subgroups: children \((n=17; \text{Table 1; Fig. 2}) \), adults \((n=57; \text{Table 2; Fig. 3}) \) and pregnant women \((n=32; \text{Table 3; Fig. 4}) \). The pooled malaria prevalence among HIV-positive children was 39.4\% (95\% CI = 26.6–52.9). The combined prevalence of malaria in HIV-positive adults was 27.3\% (95\% CI = 20.1–35.1), and the collective malaria prevalence among HIV-positive pregnant women was 32.3\% (95\% CI = 26.3–38.6) (Figs. 2, 3, 4). The funnel plot showing a statistically significant Egger’s regression suggests the possibility of publication bias (Additional file 1: Figure S1). The published risk factors associated with HIV and malaria, namely CD4\(^+\) level, ART consumption, sex, education, gravidity and age, were analyzed (Table 4). In adult patients with HIV, CD4\(^+\) count < 200 cells/\(\mu\)l predisposes the patient to malaria infection (odds ratio [OR] = 1.5, 95\% CI = 1.2–1.7). In adult HIV-positive patients, age < 40 years old was found to be associated with a significant increase in the odds of being infected with malaria (OR = 1.1, 95\% CI = 1–1.3). Also, for adult HIV-positive patients, being male and being treated with ART medication have been associated with a significant decrease in the odds of being infected with malaria (OR = 0.8, 95\% CI
Discussion

Although extensive studies have been conducted on both HIV and Plasmodium spp. infections, a comprehensive meta-analysis aimed at precisely evaluating the prevalence of malaria infections among HIV-positive patients and related risk factors is lacking. Therefore, the aim of the present meta-analysis was to provide the pooled prevalence of malaria infection in HIV-positive children, pregnant women and adults and evaluate the related risk factors. The included studies represent African and Asian regions where both HIV and Plasmodium spp. are endemic. The pooled malaria prevalence in HIV-positive children, pregnant women and adults and evaluate the related risk factors. The included studies represent African and Asian regions where both HIV and Plasmodium spp. are endemic. The pooled malaria prevalence in HIV-positive children, adults and pregnant women included in these studies was 39.4% (95% CI = 26.6–52.9), 27.3% (95% CI = 20.1–35.1) and 32.3% (95% CI = 26.3–38.6), respectively. In adult patients with HIV, receiving ART and having CD4+ count > 200 cells/µl were two factors significantly associated with malaria infection ($P < 0.05$).

Due to widespread ART coverage, mortality due to HIV as the main cause of death has decreased drastically over the years [8]. Notwithstanding the extensive efforts to end the acquired immunodeficiency syndrome (AIDS) epidemic by 2030 (set down in the Joint United Nations Program on HIV/AIDS), a lot of the work remains to be done [122]. The troublesome high prevalence of HIV, the increased life expectancy of affected patients, the common co-transmission of HIV and malaria and a remarkable geographical overlap between malaria and HIV high prevalence areas have paved the way for higher rates of co-infections in HIV-positive individuals [123].

Although the incidence of malaria and mortality due to malaria declined significantly by 62% and 41%, respectively, between 2000 and 2015, WHO reported that malaria remained an endemic disease in 76 countries at the beginning of 2016 [124], with approximately 216 million malaria cases in that year. Fifteen countries of the sub-Saharan African region alone were reported to be responsible for 80% of the total malaria burden [125]. Therefore, it is believed that many challenges remain to be overcome in order to eliminate malaria [126]. Regarding the burden of HIV and malaria and the immunosuppressive nature of HIV, there is an urgent need to clarify malaria prevalence in HIV-infected patients and the related risk factors.

According to the results of this systematic review and meta-analysis, the majority of published HIV/malaria studies to date have been in African countries. Socio-economic conditions and a desirable climate for the biological vector, both of which can facilitate malaria transmission, may be the main reasons underlying this result [127]. Based on our findings, more than

No.	Year of publication	Country/region	Study design	No. of HIV-positive patients	No. of malaria-positive patients	Laboratory diagnostic method	Quality assessment	Reference
1	1987	Zaire (Democratic Republic of Congo)	Case–control	40	15	Blood smear	6/10	[21]
2	2003	Tanzania	Cross-sectional	44	5	Blood smear	6/8	[22]
3	2006	Kenya	Cross-sectional	23	15	Blood smear	7/8	[23]
4	2007	Kenya	Cohort	73	16	Blood smear	8/11	[24]
5	2008	Uganda	Cohort	35	31	Blood smear	8/11	[25]
6	2009	Kenya	Case–control	262	133	Blood smear	8/10	[26]
7	2010	Uganda	Prospective cohort	135	120	Blood smear	8/11	[27]
8	2011	Uganda	Case–control	15	12	Blood smear	9/10	[28]
9	2012	Tanzania	Cohort	255	4	Blood smear	7/11	[29]
10	2013	Ghana	Cross-sectional	443	108	Rapid Test Kit	6/8	[30]
11	2014	Malawi	Cohort	45	26	Blood smear	9/11	[31]
12	2015	Malawi	Cohort	19	15	Autopsy	8/11	[32]
13	2016	Tanzania	Prospective cohort	52	20	Blood smear; rapid diagnostic test; PCR	8/11	[33]
14	2016	Cameroon	Cross-sectional	234	58	Blood smear	8/8	[34]
15	2017	Cameroon	Cross-sectional	15	4	Blood smear	6/8	[35]
16	2017	Nigeria	Cross-sectional	162	56	Blood smear	7/8	[36]
17	2017	Nigeria	Cross-sectional	67	67	Blood smear	5/8	[37]
Table 2 Baseline characteristics of the included studies on malaria and human immunodeficiency virus co-infection in adults

No.	Year of publication	Country/region	Study design	No. of HIV-positive patients	No. of malaria-positive patients	Laboratory diagnostic method	Quality assessment	Reference
1	2001	Uganda	Case–control	65	14	Blood smear and ELISA	7/10	[38]
2	2002	Nigeria	Cross-sectional	91	23	Blood smear	6/8	[39]
3	2005	Nigeria	Cross-sectional	490	103	Serology	6/8	[40]
4	2005	Malawi	Cross-sectional	83	12	Blood smear	7/8	[41]
5	2006	Malawi	Cross-sectional	660	325	Blood smear and serology	7/8	[42]
6	2007	Nigeria	Cross-sectional	81	72	Blood smear	6/8	[43]
7	2007	Nigeria	Prospective study	149	28	RDT	7/11	[44]
8	2008	Cameroon	Prospective cohort	258	201	Blood smear	6/11	[45]
9	2009	Nigeria	Cross-sectional	560	476	Blood smear	7/8	[46]
10	2011	Nigeria	Cross-sectional	300	79	RDT	6/8	[47]
11	2012	India	Cohort	460	45	PCR	7/11	[48]
12	2012	Cameroon	Cross-sectional	312	7	Blood smear	8/8	[49]
13	2012	Nigeria	Cross-sectional	285	6	Blood smear	7/8	[50]
14	2012	Nigeria	Cross-sectional	2000	87	Blood smear	7/8	[51]
15	2012	Nigeria	Cross-sectional	1080	343	Blood smear	6/8	[52]
16	2012	Nigeria	Cross-sectional	97	24	Blood smear	8/8	[53]
17	2013	Nigeria	Cross-sectional	65	31	Blood Smear and ELISA	6/8	[54]
18	2013	Nigeria	Cohort	317	31	Blood smear and PCR	7/11	[55]
19	2013	Ethiopia	Retrospective	377	73	Blood smear	9/11	[56]
20	2013	Nigeria	Cross-sectional	342	254	Blood smear	7/8	[57]
21	2013	Nigeria	Cross-sectional	387	74	RDT	8/8	[58]
22	2013	Ghana	Cross-sectional	933	15	Blood smear	7/8	[59]
23	2013	Nigeria	Case–control	68	17	Blood smear	8/10	[60]
24	2013	Nigeria	Cross-sectional	363	117	Blood smear	7/8	[61]
25	2014	Mozambique	Cross-Sectional	128	70	Serology and PCR	6/8	[62]
26	2014	Nigeria	Cross-sectional	200	37	PCR	7/8	[63]
27	2015	Kenya	Cross-sectional	46	27	ELISA and blood Smear	7/8	[64]
28	2015	Ethiopia	Cross-Sectional	1819	13	Blood smear and serology	6/8	[65]
29	2015	Uganda	Cross-sectional	160	30	Blood smear	6/8	[66]
30	2015	Nigeria	Cross-sectional	350	159	Blood smear	8/8	[67]
31	2015	Ghana	Cross-sectional	400	47	Blood smear and serology	7/8	[68]
32	2016	Niagara	Cross-sectional	83	53	Blood smear	7/8	[69]
33	2016	Uganda	Cross-sectional	131	26	LAMP and serology	7/8	[70]
34	2016	Cameroon	Cross-sectional	35	6	Blood smear	7/8	[71]
35	2016	Niagara	Cross-sectional	226	56	Blood smear	6/8	[72]
36	2017	Uganda	Case–control	179	61	PCR and serology	8/10	[73]
37	2017	Equatorial Guinea	Cross-sectional	101	14	Blood smear and ELISA	8/8	[74]
38	2017	Ethiopia	Cross-sectional	528	92	RDT	8/8	[75]
39	2017	India	Prospective cohort	202	14	Blood smear and PCR	8/11	[76]
40	2017	India	Prospective cohort	131	8	Blood smear and PCR	8/11	[76]
one-third of pregnant and HIV-positive women have been infected by malaria, which is worrisome because of the vertical transmission nature of malaria and HIV, which predisposes neonates to other infectious diseases [128, 129]. Indeed, pregnant women are among the most susceptible and vulnerable groups infected with malaria due to the altered immune system during pregnancy [3, 130]. The weakened immune response and HIV infection can lead to even deeper attenuation of the immune system. It is well-recognized that a decline in CD4+ cell numbers is associated with attenuation of the cell immune system and an increased vulnerability to being infected with other infections [131]. Our finding that CD4+ cell count < 200 cells/µl is linked to increased susceptibility to malaria infection (OR = 1.5, 95% CI = 1.1–1.9) confirms this association. In essence, AIDS and malaria are each controlled by adaptive and innate immune mechanisms, and declining immunity caused by HIV infection will cause an increase in malaria severity. CD4+ cells are depleted by the HIV virus, which leads to an impaired immune response to many pathogens, including Plasmodium spp. [43]. This pattern was corroborated by Grimwade et al. [132] who observed that malaria incidence in persons with CD4+ T cell count ≥ 500/µl, between 200 and 499/µl and < 200/µl was 57, 93 and 140 per 1000 person-year, respectively, in Uganda. It has been postulated that HIV increases malaria incidence in adults based on CD4+ cell count categories [133].

This meta-analysis also revealed the worrying situation of malaria infection among HIV-positive children. Approximately 39.4% of HIV-positive children in the analyzed studies were infected with malaria. This is a much higher prevalence than that observed in several studies investigating general children populations in African countries, with the prevalence in these studies ranging from 1% in Kenya to 22% in Uganda, with 14.5% prevalence in Tanzania and 20% in the Democratic Republic of Congo [134, 135]. The observation of increased malaria prevalence in HIV-positive children supports our assumption that susceptibility to co-infection is high in HIV-positive individuals. It is interesting to note that much of the pathogenesis of malaria during pregnancy is mediated by the accumulation of Plasmodium-infected red blood cells in the placental intervillous space, termed ‘placental malaria.’ The placenta is also the key interface in mother-to-child transmission of HIV, especially that involving in utero transfer [136]. No remarkable association between receiving ART and HIV infection status has been noted in HIV-positive children (OR = 1.3, 95% CI = 0.2–6.6). Moreover, there has been no significant association between the CD4+ cell count and the probability of malaria infection (P > 0.05), possibly due to the small number of studies that have considered this factor.

Table 2 (continued)

No.	Year of publication	Country/region	Study design	No. of HIV-positive patients	No. of malaria-positive patients	Laboratory diagnostic method	Quality assessment	Reference
41	2017	Ethiopia	Cross-sectional	172	86	Blood smear	7/8	[77]
42	2017	Nigeria	Cross-sectional	761	211	RDT	7/8	[78]
43	2017	Gabon	Cross-sectional	856	61	Blood smear	6/8	[79]
44	2018	Nigeria	Case-control	35	5	PCR and serology	6/8	[80]
45	2018	Ethiopia	Cross-sectional	53	12	Blood smear	7/8	[81]
46	2018	Nigeria	Cross-sectional	324	254	Blood smear	7/8	[82]
47	2018	Nigeria	Cross-sectional	200	130	Blood smear	8/8	[83]
48	2018	Mozambique	Retrospective	701	232	RDT	8/11	[84]
49	2018	Ghana	Cross-sectional	466	64	Blood smear	8/8	[85]
50	2018	Cameroon	Cross-sectional	12	5	Blood smear	7/8	[86]
51	2019	Nigeria	Cross-sectional	262	60	Blood smear	8/8	[87]
52	2019	Sudan	Cross-sectional	70	1	PCR	6/8	[88]
53	2019	Cameroon	Cross-sectional	309	24	Blood smear	8/8	[89]
54	2019	Nigeria	Cross-sectional	268	116	Blood smear	7/8	[90]
55	2020	Niagara	Retrospective	1472	1101	n.a	7/11	[91]
56	2020	Nigeria	Cross-sectional	94	40	Serology	8/8	[92]
57	2020	Malawi	Cohort	30	11	Blood smear	8/11	[93]

ELISA enzyme-linked immunosorbent assay, LAMP loop-mediated isothermal amplification, n.a. information not available, RDT rapid diagnostic test
The present meta-analysis reveals that, on average, 27.3% of HIV-positive adults are infected with malaria in endemic countries. One of the consequences of this alarmingly high figure can be manifested in blood transfusion. With the ever-increasing need for a blood transfusion due to environmental and heredity diseases such as sickle cell anemia [137], the prevalence of transfusion-transmitted HIV/malaria can be expected to be high. A study conducted in the sub-African region has demonstrated that about 10–15% of HIV transmission is related to blood transfusion [138]. Ahmadpour et al. [19] reported that transfusion-transmitted malaria is a significant challenge in sub-Saharan African regions. In terms of risk factors, CD4+ cell count of < 200 cells/µl predisposes HIV-positive adults to Plasmodium spp. infection (OR = 1.5, 95% CI = 1.2–1.7). However, the association between malaria and HIV is more complex than expected. Some studies have corroborated that CD4+ T cells, as the prime targets for reproduction by HIV-1, play a vital role in immune responses to malaria.

No.	Year of publication	Country/region	Study design	Number of HIV-positive patients	Number of malaria-positive patients	Laboratory diagnostic method	Quality assessment	Reference
1	1999	Malawi	Cross-sectional	159	90	Blood smear	8/8	[94]
2	2002	Rwanda	Cohort	228	19	Blood smear	7/11	[95]
3	2003	Kenya	Cross-sectional	599	179	Blood smear	7/8	[96]
4	2004	Malawi	Cross-sectional	480	61	Blood smear	7/8	[97]
5	2004	Kenya	Cross-sectional	512	128	Blood smear	7/8	[17]
6	2004	Malawi	Cross-sectional	205	44	Blood smear	8/8	[98]
7	2005	Kenya	Cohort	83	34	Smear and/or PCR	7/11	[99]
8	2008	Uganda	Cohort	170	63	IHC	8/11	[100]
9	2008	Uganda	Cohort	170	52	ICT	7/11	[100]
10	2009	Uganda	Cross-sectional	161	30	Blood smear	6/8	[101]
11	2009	Ethiopia	Cross-sectional	92	41	RDT and smear	6/8	[102]
12	2010	Tanzania	Cross-sectional	1006	185	Blood smear	8/8	[103]
13	2011	Malawi	Clinical trial	251	108	Blood smear	11/13	[104]
14	2012	Malawi	Cross-sectional	185	70	Blood smear	8/8	[105]
15	2012	Nigeria	Cross-sectional	82	43	Blood smear	6/8	[106]
16	2013	Ethiopia	Cross-sectional	23	2	Blood smear	7/8	[107]
17	2013	Nigeria	Cohort	203	145	Blood smear	8/10	[108]
18	2013	Rwanda	Cross-sectional	980	130	Blood smear	7/8	[109]
19	2013	Nigeria	Cross-sectional	44	34	Blood smear	7/8	[110]
20	2013	Kenya	Cohort	489	119	Blood smear	8/11	[111]
21	2013	Ghana	Prospective	443	60	RDT	7/11	[30]
22	2014	Nigeria	Cohort	432	45	Smear or RDT	8/11	[112]
23	2014	Tanzania	Cross-sectional	420	19	RDT	8/8	[113]
24	2014	Nigeria	Cross-sectional	159	53	Blood smear	7/8	[114]
25	2014	Nigeria	Cross-sectional	28	28	Blood smear	7/8	[115]
26	2014	Nigeria	Cross-sectional	301	150	Blood smear	6/8	[116]
27	2014	Africa	Randomized controlled trial	973	54	Blood smear	13/13	[117]
28	2015	Congo	Cross-sectional	25	19	Smear and PCR	8/8	[118]
29	2015	Zambia	Cross-sectional	140	49	Blood smear	8/8	[119]
30	2015	Zambia	Cross-sectional	138	90	PCR	7/8	[119]
31	2015	Tanzania	Prospective	2378	376	Clinical	8/11	[120]
32	2015	Benin	Cross-sectional	432	87	Blood smear	7/8	[121]

ICT Immunochromatography, IHC immunohistochemistry
Malaria infection leads to upregulation of pro-inflammatory cytokines and stimulates CD4+ cell activation, thus providing the ideal microenvironment for the spread of the HIV virus among the CD4+ cells. On the other hand, the selective infection of CD4+ cells by HIV leads to the loss of these cells [140]. It is assumed that the increased susceptibility of HIV-seropositive individuals to malaria is related to some immune system-modulating mechanisms, such as depletion of CD4+ cells [131, 141].

Age < 40 years has also been associated with a significant increase in the chance of HIV-positive adults becoming infected with malaria (OR = 1.1, 95% CI = 1–1.3). In HIV-positive adults, being male and receiving ART have been associated with a significant decrease in the risk of being infected with Plasmodium spp. (OR = 0.8, 95% CI = 0.7–0.9 and OR = 0.2, 95% CI = 0.2–0.3, respectively). This is an interesting finding when compared to individual studies that described a higher risk of malaria infections in males compared to females in the general population in north-east Tanzania, irrespective of their HIV status [134]. Thus, it appears that HIV status may potentially alter malaria susceptibility differently in male patients than in female patients. It is worth emphasizing that the reported figures may not reflect the current status of this co-infection because these endemic areas are limited in terms of healthcare resources, and testing may not be conducted on all people unless they show clinical symptoms. Furthermore, there is insufficient evidence to determine whether or not malaria-induced changes in CD4+ T cell counts or viral loads translate to accelerated HIV disease progression or death in areas of stable malaria transmission.

Fig. 2 Forest plot diagram of malaria prevalence in human immunodeficiency virus-positive children (first author, year and country)
This is the first meta-analysis on malaria prevalence among HIV-positive patients. We broke down the data into three categories, namely infancy, pregnancy and adulthood, and identified the available risk factors for each group. Since there has been little research on the prevalence of malaria in HIV patients in malaria endemic areas, further studies are needed in this regard. Also, due to the incomplete data in the studies included in our meta-analysis, we were unable to evaluate some risk factors, including duration of illness, time of diagnosis and response to treatment. Unfortunately, no data on the health status of individuals having both malaria and HIV infection were provided in these studies. On the other hand, publication bias is one of the main concerns in systematic review studies. As expected, publication bias was observed in the analyzed studies. The main limitation of this systematic review and meta-analysis is related to the different study designs and varying laboratory methods used to determine infection status. Diagnostic methods have varying sensitivity and specificity and, therefore, the heterogeneous prevalence data reported may partially be caused by flaws in methodology. The use of an accurate, reliable and uniform diagnostic techniques would support the correct interpretation of results.

Conclusions

The current systematic review has revealed concerning prevalence data for malaria among HIV-positive persons, including children, adults and pregnant women. In view of the fact that malaria can quickly become a life-threatening condition in risk groups (e.g. people living with HIV), prevention, chemoprophylaxis, early diagnosis and treatment of clinical malaria are recommended. Recent information also indicates that malaria is associated with the availability of ART and CD4+ cell count numbers in adults. Therefore, the related risk factors should be given appropriate attention in HIV/malaria co-infected patients. As HIV infection affects the host immune response, future studies are needed to elucidate the pathogenesis aspects of this co-infection, as well as the severity of its complications, and to investigate possible drugs and drug effectiveness.
Fig. 4 Forest plot diagram of malaria prevalence in human immunodeficiency virus-positive pregnant women (first author, year, and country)
Table 4 Risk factors associated with malaria infection in human immunodeficiency virus-positive patients

Risk factors	Categories	No. study	Odds ratio (95% CI)	P-value	I^2 (inconsistency), %	Cochran Q	Egger regression test (bias)	P-value
Children								
ART	Yes	2	1.3 (0.2–6.6)	0.7342	-	7.3	-	0.0069
	No							
CD4+	< 200 cells/µl	2	1.8 (0.8–3.8)	0.1195	-	1.8	-	0.1681
	≥ 200 cells/µl							
Adults								
Sex	Male	24	0.8 (0.7–0.9)	0.1393	81.4 (72.9–86.3)	123.4	0.6	0.007
	Female	20	1.1 (1.1–1.3)	0.4716	53 (10.8–70.6)	40.3	0.04	0.0148
Age (years)	< 40	7	0.2 (0.2–0.3)	0.0029*	82.5 (49.5–90.8)	92.9	1.09	< 0.0001
	≥ 40	12	1.5 (1.2–1.7)	0.0428*	90.4 (85.7–93.1)	114.9	1.1	< 0.0001
ART	Yes	7	0.2 (0.2–0.3)	0.0029*	82.5 (49.5–90.8)	92.9	1.09	< 0.0001
	No	12	1.5 (1.2–1.7)	0.0428*	90.4 (85.7–93.1)	114.9	1.1	< 0.0001
CD4+	< 200 cells/µl	4	1.5 (1.1–1.9)	0.7949	92.3 (83.2–95.4)	38.7	—	0.0012
	≥ 200 cells/µl							
Education	Primary level	3	0.9 (0.7–1.2)	0.8935	0 (0–72.9)	0.5	—	0.9389
	Higher-level							
Pregnant women								
Gravidity	Primigravida	9	0.96 (0.7–1.2)	0.9758	38.2 (0–70.2)	12.9	0.2	0.7916
	Multigravida							
ART	Yes	4	1.06 (0.7–1.5)	0.96	51.8 (0–82.3)	6.2	0.01	0.1012
	No							
CD4+	< 200 cells/µl	4	1.5 (1.1–1.9)	0.7949	92.3 (83.2–95.4)	38.7	—	0.0012
	≥ 200 cells/µl							

ART Antiretroviral therapy, **CD4** Cluster of differentiation 4, **CI** confidence interval

*Significant association ($P = 0.05$) with malaria infection

Abbreviations

AIDS: Acquired immunodeficiency syndrome; ART: Antiretroviral therapy; CD4: Cluster of differentiation 4; HIV: Human immunodeficiency virus.

Supplementary Information

The online version contains supplementary material available at https://doi.org/10.1186/s13071-022-05432-2.

Additional file 1: Figure S1. Funnel plot of standard error by logit event rate to assess publication or other types of bias across prevalence studies. Studies based on the prevalence of malaria in HIV patients: children (A), adults (B), and pregnant women (C).

Additional file 2: Table S1. Summary score for methodological quality of analytic cross-sectional studies.

Additional file 3: Table S2. Summary score for methodological quality of analytic case–control studies.

Additional file 4: Table S3. Summary score for methodological quality of analytic cohort studies.

Additional file 5: Table S4. Summary score for methodological quality of analytic RCT studies.

Acknowledgements

Not applicable.

Author contributions

TM, EA and AB designed the study. TM, HS, MAS and ASP were involved in searching the databases. TM, HS, MAS, ASP and BB screened the papers and extracted the data. AB and EA performed the statistical analysis. MAS, ASP and BB wrote the manuscript, with revision by EA and AB. All authors read and approved the final manuscript.

Funding

The authors received no financial support for the research.

Availability of data and materials

The data that support the findings of this study are available from the corresponding author upon reasonable request.

Declarations

Ethics approval and consent to participate

Not applicable.

Consent for publication

Not applicable.

Competing interests

The authors declare that they have no competing interests.

Author details

1 Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran. 2 Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran. 3 Department of Veterinary Sciences, College of Agriculture and Natural Resources, University of Wyoming, Laramie, WY, USA. 4 Clinic for Infectious and Tropical Diseases, Clinical Centre of Serbia, 11000 Belgrade, Serbia. 5 Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran. 6 Department of Parasitology and Mycology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
References

1. Huerga H, Lopez-Velez R. Infectious diseases in sub-Saharan African immigrant children in Madrid, Spain. Pediatr Infect Dis J. 2002;21:830–4.
2. Stärger K, Legros F, Krause G, Low N, Bradley D, Desai M, et al. Imported malaria in children in industrialized countries, 1992–2002. Emerg Infect Dis. 2009;15:185–91.
3. Nikumama IN, O'Meara WP, Oiser FH. Changes in malaria epidemiology in Africa and new challenges for elimination. Trends Parasitol. 2013;33:128–40.
4. Qureshi NA, Fatima H, Afzal M, Khattak AA, Nawaz MA. Occurrence and seasonal variation of human Plasmodium infection in Punjab Province, Pakistan. BMC Infect Dis. 2019;19:935.
5. Murray CJ, Rosenfeld LC, Lim SS, Andrews KG, Foreman KJ, Haring D, et al. Global malaria mortality between 1980 and 2010: a systematic analysis. Lancet. 2012;379:413–31.
6. Alencar Filho AC, Lacerda MVG, Okoski K, Okoski MP. Malaria and vascular endothelium. Arq Bras Cardiol. 2014;103:165–9.
7. Weiss RA. How does HIV cause AIDS? Science. 1993;260:1273–9.
8. Frank TD, Carter A, Jahagirdar D, Biehl MH, Douwes-Schultz D, Larson SL, et al. Global, regional, and national incidence, prevalence, and mortality effects on malaria transmission. elife. 2018;7:e32625.
9. Ashley EA, Phyo AP, Woodrow CJ. Malaria. Lancet. 2018;391:1608–21.
10. Ashley EA, Phyo AP, Woodrow CJ. Malaria. Lancet. 2018;391:1608–21.
11. Chen Q, Zeng D, She Y, Luo Y, Gong X, Feinstein MJ, et al. Different transmission routes and the risk of advanced HIV disease: a systematic review and network meta-analysis of observational studies. eClinicalMedicine. 2019;16:121–8.
12. Ahmadpour E, Saifpour H, Xiao L, Zarean M, Hatam-Nahavandi K, Barac A, et al. Cryptosporidiosis in HIV-positive patients and related risk factors: a systematic review and meta-analysis. Parasite. 2020;27:27.
13. Ghate M, Deshpande S, Tripathy S, Nene M, Gedam P, Godbole S, et al. Incidence of common opportunistic infections in HIV-infected patients and associated risk factors in people living with HIV. J Acquir Immune Defic Syndr. 2013;63:113–7.
14. Saifpour H, Cevik M, Zarean M, Barac A, Hatam-Nahavandi K, Rahimi MT, et al. Global status of Toxoplasma gondii infection and associated risk factors in people living with HIV. AIDS. 2020;34:469–74.
15. Ahmadpour E, Ghanizadegan MA, Razavi A, Kangari M, Seyfi R, Shahdust M, et al. Strongyloides stercoralis infection in human immunodeficiency virus-infected patients and related risk factors: a systematic review and meta-analysis. Transbound Emerg Dis. 2019;66:2233–43.
16. Alemu A, Shiferaw Y, Addis Z, Mathewos B, Birhan W. Effect of malaria on HIV/AIDS transmission and progression. Parasit Vectors. 2013;6:18.
17. Ayisi JG, Van Eijk AM, Newman RD, Ter Kuile FO, Shi YY, Yang C, et al. Maternal malaria and perinatal HIV transmission, western Kenya. Emerg Infect Dis. 2004;10:643–52.
18. Naing C, Sandhu NK, Wai VN. The effect of malaria and HIV co-infection on anaemia: a meta-analysis. Medicine. 2016;95:e3205.
19. Ahmadpour E, Foroutan-Rad Majidiani H, Moghadam SM, Hatam-Nahavandi K, Hosseini S-A, et al. Transfusion–transmitted malaria: a systematic review and meta-analysis. Open Forum Infect Dis. 2019;11:ofz283.
20. Moher D, Shamseer L, Clarke M, Ghersi D, Liberati A, Petticrew M, et al. Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P) 2015 statement. Syst Rev. 2015;4:1.
21. Nguyen-Dinh P, Greenberg A, Mann JM, Kabote N, Francis H, Colebunders R, et al. Absence of association between Plasmodium falciparum malaria and human immuno-deficiency virus infection in children in Kinshasa, Zaire. Bull World Health Organ. 1987;65:607–13.
22. Villamar E, Fabris MR, Mbise RL, Fouzi WW. Malaria parasitaemia in relation to HIV status and vitamin A supplementation among pre-school children. Trop Med Int Health. 2003;8:1051–61.
23. Otieno RO, Ouma C, Ongecha JM, Keller CC, Were T, Wandi EN, et al. Increased severe anaemia in HIV-1-exposed and HIV-1-positive infants and children during acute malaria. AIDS. 2006;20:275–80.
24. van Eijk AM, Ayisi JG, Ter Kuile FO, Slutsker L, Shi YP, Udhayakumar V, et al. HIV, malaria, and infant anaemia as risk factors for postneonatal infant mortality among HIV-seropositive women in Kisumu, Kenya. J Infect Dis. 2007;196:30–7.
25. Gasasira AF, Kamya MR, Acham J, Mebrahtu T, Kalyango JN, Ruel T, et al. High risk of neutropenia in HIV-infected children following treatment with artesunate plus amodiaquine for uncomplicated malaria in Uganda. Clin Infect Dis. 2008;46:985–91.
26. Berkley JA, Bejon P, Mwangi T, Gwer S, Maitland K, Williams TN, et al. HIV infection, malnutrition, and invasive bacterial infection among children with severe malaria. Clin Infect Dis. 2009;49:336–43.
27. Kiyisingi HS, Egwia TG, Nanyonoga M. Prolonged elevation of viral loads in HIV-1-infected children in a region of intense malaria transmission in Northern Uganda: a prospective cohort study. Pan Am Med J. 2010;7:11.
28. Imani PO, Musoke P, Byarugaba J, Tumwine JH. Human immunodeficiency virus infection and cerebral malaria in children in Uganda: a case–control study. BMC Pediatr. 2011;11:15.
29. Ezeamaoma AE, Spiegelman D, Hertzmark E, Bosch RJ, Manji KP, Duggan C, et al. HIV infection and the incidence of malaria among HIV-exposed children from Tanzania. J Infect Dis. 2012;205:1486–91.
30. Laar AK, Grant FE, Addo Y, Sojiri Y, Niansah B, Abugri J, et al. Predictors of fetal anemia and cord blood malaria parasitemia among newborns of HIV-positive mothers. BMC Res Notes. 2013;6:350.
31. Kuyeune FX, Calis JC, Phiri KS, Faragher B, Kathala D, Brabin BJ, et al. The interaction between malaria and human immunodeficiency virus infection in severely anaemic Malawian children: a prospective longitudinal study. Trop Med Intern Health. 2014;19:698–705.
32. Hochman SE, Madaline TF, Wassmer SC, Mbale E, Chongu P, Seppey KB, et al. Fatal pediatric cerebral malaria is associated with intravascular monocytes and platelets that are increased with HIV coinfection. MBio. 2015;6:e01390-e1415.
33. Smart LR, Ogénes N, Mazigo HD, Minde M, Holozeru A, Shaker M, et al. Malaria and HIV among pediatric inpatients in two Tanzanian referral hospitals: a prospective study. Acta Trop. 2016;159:36–43.
34. Bate A, Kimbi HK, Lum E, Lehman LG, Onyoh EF, Ndip LM, et al. Malaria infection and anaemia in HIV-infected children in Mutengene, South-west Cameroon: a cross sectional study. BMC Infect Dis. 2016;16:523.
35. Kwenti TE, Edo E, Ayuk BS, Kwenti TD. Prevalence of coinfection with malaria and HIV among children in Yaoundé, Cameroon: a cross-sectional survey performed in three communities in Yaoundé, Yangtze Med. 2017;1:178–88.
36. Eki-Udoko FE, Sadoc AH, Ibadin MO, Omoigbiere AA. Prevalence of congenital malaria in newborns of mothers co-infected with HIV and malaria in Benin city. Infect Dis (Lond). 2017;49:609–16.
37. Onankpa BO, Jya NM, Yusuf T. Malaria parasitaemia in HIV-infected children attending antiretroviral therapy clinic in a teaching hospital. Sahel Med J. 2017;20:30–2.
38. Francesconi P, Fabiani M, Dente MG, Lukwya M, Okwery R, Ouma J, et al. Malaria parasitaemia, and acute febrile episodes in Ugandan adults: a case–control study. AIDS. 2001;15:2445–50.
39. Ahmed S, Ibrahim U. Malaria parasitaemia in patients with acquired immune deficiency syndrome and opportunistic infections. Niger J Exp Biol. 2002;2:339–43.
40. Uneke C, Ogbu O, Inyama P, Anyanwu G. Malaria infection in HIV-seropositive and HIV-seronegative individuals in Jos-Nigeria. J Vector Borne Dis. 2005;42:151–4.
41. Lewis DK, Whitty CJ, Walsh AL, Epino H, Brock NRVD, Letsko EA, et al. Treatable factors associated with severe anaemia in adults admitted to medical wards in Blantyre, Malawi, at an area of high HIV seroprevalence. Trans R Soc Trop Med Hyg. 2005;99:561–7.
42. Lauber MK, van Oosterhout JJ, Thesing PC, Thumba F, Zijlstra EE, Graham SM, et al. Impact of HIV-associated immunosuppression on malaria infection and disease in Malawi. J Infect Dis. 2006;193:872–8.
43. Taffa Y, Hengobe J, Okodu M, Ou K, Issa J, Tchougang S, et al. CD4 count, viral load and parasite density of HIV positive individuals undergoing malaria treatment with dihydroartemisinin in Benin City, Edo State, Nigeria. J Vector Borne Dis. 2007;44:111–5.
44. Onyenekwe C, Ukibe N, Meludu S, Iluika A, Abok N, Ofaeni N, et al. Prevalence of malaria as co-infection in HIV-infected individuals in a malaria endemic area of southeastern Nigeria. J. Vector Borne Dis. 2007;44:250–4.

45. Nkwo-Akeneri T, Tevoouffe ET, Nfanz G, Nguof N, Fon E. High prevalence of HIV and malaria co-infection in urban Douala, Cameroon. Afr. J. AIDS Res. 2008;7:229–35.

46. Agwu E, Ihongbe J, Okogun G, Inyang N. High incidence of co-infection with malaria and typhoid in febrile HIV infected and AIDS patients in Ekpoma, Edo State, Nigeria. Braz J Microbiol. 2009;40:329–32.

47. Wariso KT, Nwauche CA. The prevalence of malaria antigen in the serum of HIV seropositive patients in port harcourt. Niger Health J. 2011;11:120–2.

48. Bharti AR, Saravanan S, Madhavan V, Smith DM, Sharma J, Balakrishnan P, et al. Correlates of HIV and malaria co-infection in Southern India. Mal. J. 2012;3:106.

49. Njunda LA, Kangwa H-LF, Nsagha DS, Assob J-CN, Kwenti TE. Low malaria prevalence in HIV-positive patients in Bamenda, Cameroon. J. Microbiol. Res. 2012;6:56–9.

50. Akinbo FO, Omoriegbe R. Plasmodium falciparum infection in HIV-infected patients on highly active antiretroviral therapy (HAART) in Benin City, Nigeria. J. Res Health Sci. 2012;12:8–15.

51. Akinbo FO, Okaka CE, Omoriegbe R. Plasmodium falciparum and intestinal parasitic infections in HIV-infected patients in Benin City, Edo State, Nigeria. J. Infect Dev Ctries. 2012;6:430–5.

52. Akyalashaku A, Amuta E, Abiodun P, Agieni A. Malaria parasitaemia among seropositive drug naive and drug experience HIV patient attending Federal Medical Center, Keffi, Nasarawa State-Nigeria. J. Microbiol. Immunol. Res. 2012;1:6–9.

53. Ireezindu MO, Agaba EI, Okeke EN, Dianyam CA, Obaseto DK, Isi SE, et al. Prevalence of malaria parasitaemia in adult HIV-infected patients in Jos, north-central Nigeria. Niger J Med. 2012;21:209–13.

54. Sanyaolu AO, Fagbenro-Beyioku A, Oyibo W, Badaru O, Onyeabor O, et al. Prevalence of malaria in people living with HIV/AIDS in Nigeria. Afr. J Health Sci. 2013;13:295–300.

55. Akinbo FO, Anate PJ, Akinbo DB, Omoriegbe R, Okosse O, Abdul Salami A, et al. Prevalence of malaria among HIV patients on highly active antiretroviral therapy in Kogi State, North Central Nigeria. Ann. Nig. Med. 2016;10:11.

56. Wondimenehay Y, Ferede G, Atnafu A, Muluye D. HIV-malaria co-infection and their immunomorphological profiles. Eur J Exp Biol. 2013;3:497–502.

57. Omoti CE, Ojede CK, Lofor PV, Eze E, Eze JC. Prevalence of parasitemia and associated immunodeficiency among HIV-positive adult patients with highly active antiretroviral therapy. Asian Pac. J. Trop. Med. 2013;6:126–30.

58. Falade C, Adeisa-Adewole B, Dada-Adegbola H, Ajayi I, Akinyemi J, Ademowo O, et al. Evaluation of Paracheck-Pf TM rapid malaria diagnostic test for the diagnosis of malaria among HIV-positive patients in Ibadan, south-western Nigeria. Pathog Glob Health. 2013;107:69–77.

59. Adu-Gyasi D, Fanello CI, Baiden F, Porter JD, Korbel D, Adjei G, et al. Prevalence of malaria parasites among HIV/AIDS patients attending hospitals in Yola, Adamawa State Nigeria. J. Med Lab Sci. 2016;1:215–20.

60. Akyalashaku A, Amuta E, Abiodun P, Agieni A. Malaria parasitaemia among seropositive drug naive and drug experience HIV patient attending Federal Medical Center, Keffi, Nasarawa State-Nigeria. J. Res Health Sci. 2012;12:8–15.

61. Akinbo FO, Anate PJ, Akinbo DB, Omoriegbe R, Okosse O, Abdul Salami A, et al. Prevalence of malaria among HIV patients on highly active antiretroviral therapy in Kogi State, North Central Nigeria. Ann. Nig. Med. 2016;10:11.

62. Wondimenehay Y, Ferede G, Atnafu A, Muluye D. HIV-malaria co-infection and their immunomorphological profiles. Eur J Exp Biol. 2013;3:497–502.

63. Omoti CE, Ojede CK, Lofor PV, Eze E, Eze JC. Prevalence of parasitemia and associated immunodeficiency among HIV-positive adult patients with highly active antiretroviral therapy. Asian Pac. J. Trop. Med. 2013;6:126–30.

64. Rutto EK, Nyagol J, Oyugi J, Ndege S, Onyango N, Obala A, et al. Effects of HIV-1 infection on malaria parasitemia in milo sub-location, western Kenya. BMC Res. Notes. 2015;8:303.

65. Alemayehu G, Melaku Z, Abreha T, Alemayehu B, Girma S, Tadesse Y, et al. Burden of malaria among adult patients attending general medical outpatient department and HIV care and treatment clinics in Oromo, Ethiopia. A comparative cross-sectional study. Mal. J. 2015;14:501.

66. Agwu E, Nyakerario E, Moazzam M. Updates on Malaria parasites distribution among HIV infected and AIDS patients in Comboni Hospital, Uganda. Spec. Parasit Pathog J. (SPP). 2015;1:29–35.

67. Unata IM, Bunza NM, Akintoye OF, Abubakar A, Faruk N. Prevalence of malaria parasites among HIV/AIDS patients attending HIV clinic in Usman Danfodiyo university teaching hospital and Sokoto State specialist hospital Sokoto, Nigeria. Int J Nov Res Life Sci. 2015;2:39–43.

68. Tay SC, Badru K, Mensah AA, Gbedema SY. The prevalence of malaria among HIV seropositive individuals and the impact of the co-infection on their hemoglobin levels. Ann Clin Microbiol Antimicrob. 2015;14:10.

69. Edet U, Ebana R, Etok C, Nwamuo L. Prevalence of human immunodeficiency virus and Plasmodium falciparum dual infection amongst residents of Kaduna South in northern Nigeria. Int J Trop Dis Health. 2016;1:7–17.

70. Katrak S, Day N, Ssememondo E, Kwarsipina D, Mideksia A, Greenhouse B, et al. Community-wide prevalence of malaria parasitemia in HIV-infected and uninfected populations in a high-transmission setting in Uganda. J Infect Dis. 2016;213:1971–8.

71. Njunda AL, Njumkeng C, Nsagha SD, Assob JCN, Kwenti TE. The prevalence of malaria in people living with HIV in Yaounde, Cameroon. BMC. Public Health. 2016;1:694.

72. Daniel L, Chessed G, Joseph R, Haruna Y, Yako A, Atinga A. Malaria and HIV co-infection among HIV patients attending hospitals in Yola, Adamawa State Nigeria. J. Med Lab Sci. 2016;1:215–20.

73. Okonkwo I, Ibadin M, Sadoh W, Omoigibare A. A study of malaria parasite density in HIV-1 positive under-fives in Benin City, Nigeria. J. Trop Pediatr. 2018;64:289–96.

74. Zheng X, Lin M, Xie DD, Li J, Chen JT, Eyi UM, et al. Prevalence of HIV and malaria: a cross-sectional study on Bioko Island, Equatorial Guinea. Afr J AIDS Res. 2017;16:65–70.

75. Beyene HB, Tadesse M, Disassa H, Beyene MB. Concurrent Plasmodium infection, anemia and their correlates among newly diagnosed people living with HIV/AIDS in Northern Ethiopia. Acta Trop. 2017;169:13–18.

76. Mohapatra PK, Pachaua E, Kumar C, Borkakoty B, Zomawia E, Singh A, et al. HIV-malaria interactions in North-East India: a prospective cohort study. Indian J Med. Res. 2017;14:387–94.

77. Sahle T, Yeman T, Gedefaw L. Effect of malaria infection on hematological profiles of people living with human immunodeficiency virus in Gambella, southwest Ethiopia. BMC. Hematol. 2017;1:72.

78. Jegede FE, Oyeyi TI, Abdulrahman SA, Mbab HA, Badru T, Agbakwuru C, et al. Effect of HIV and malaria parasites co-infection on immune-hematological profiles among patients attending anti-retroviral treatment (ART) clinic in Infectious Disease Hospital Kano, Nigeria. PLoS ONE. 2017;12:e0174233.

79. Bouyou-Akotet MK, Lengongo JVK, Mboumba DPM, Ondounda M, Kendjo E, Nkoumou MO. Comparison of asymptomatic and clinical malaria frequencies between HIV positive and HIV negative individuals living in Gabon. Am. J Trop Med Hyg. 2017;95:546.

80. Amadi CP, Ikon GM, Inyang UC. Current prevalence of Plasmodium falciparum malaria infection among HIV positive individuals in Nigeria. J. Med Microbiol. 2018;11:1–6.
84. Di Gennaro F, Marotta C, Pizzol D, Chhaganlal K, Monno L, Putoto G, et al. Prevalence and predictors of malaria in human immunodeficiency virus infected patients in Beira, Mozambique. Int J Environ Res Public Health. 2018;15:2032.

85. Owusu ED, Donkor SK, Brown CA, Grobusch MP, Mens PF. Plasmodium falciparum diagnostic tools in HIV-positive under-5-year-olds in two ART clinics in Ghana: are there missed infections? Malar J. 2018;17:17–92.

86. Mbah-Mbole FG, Tufon KA, Meriki DH, Enow-Orock G, Mbah-Mbole P, Njunda LA, et al. Malaria and human immunodeficiency virus co-infection in febrile patients attending the Regional Hospital of Buea, Southwest region, Cameroon. Int J Adv Med Health Res. 2019;6:46–51.

87. Gumel S, Ibrahim A, Olayinka A, Ibrahim M, Balogun M, Dahiri U, et al. HIV-malaria co-infection and its determinants among patients attending antiretroviral treatment clinic in Zania, Kaduna state, Nigeria. Int J Epidemiol Public Health. 2021;4:2.

88. Al-Nahari W, Abdelrehem E, Abduzeini S, Omer A, Estimation of Plasmodium falciparum among HIV patients in Khartoum-Sudan. Int J Sci Res. 2019;18:15–7.

89. Sandie SM, Sumbelle IUN, Tahash MM, Kimbi HK. Malaria parasite prevalence and Haematological parameters in HIV seropositive patients attending the regional hospital Limbe, Cameroon: a hospital-based cross-sectional study. BMC Infect Dis. 2019;19:988.

90. Okparaku S, Emekwe E, Ejiejiere E, Okoni O, Akorien C, Airhomwambor K, Eni E. Malaria parasites burden at various stages of human immunodeficiency virus (HIV) infection. J Med Lab Sci. 2019;29:61–71.

91. Alaofit OS, Naidoo K, Sibanda W. Socio-economic determinants of HIV-malaria co-infection among adults in the North Central Zone, Nigeria. Glob J Health Sci. 2020;12:1–9.

92. Kelechi NC, Ositadinma I, Isaac N. Selected immunoglobulins (IgA, IgG, IgM) and lambda free light chain levels in persons with HIV-malaria co-infection. Int J Health Sci Res. 2020;10:134–44.

93. Munyenyembu AU, Gausi K, Hiestand J, Mallewa J, Mandala W. The effect of frequent exposure to P. falciparum, HIV-infection and other co-morbidities on development of severe malaria in Malawian Adults. Infect Drug Resist. 2020;13:62–8.

94. Verhoeven FH, Brabin BJ, Hart CA, Chimssuka L, Kazembe P, Broadhead RL. Increased prevalence of malaria in HIV-infected pregnant women and its implications for malaria control. Trop Med Int Health. 1999;4:5–12.

95. Ladner J, Leroy V, Simonon A, Karita E, Bogaerts J, De Clercq A, et al. HIV-malaria co-infection and its determinants among patients attending antiretroviral treatment clinic in Zaria, Kaduna state, Nigeria. Int J Clin Res. 2014;5:1015–9.

96. Mount AM, Mwapasa V, Elliott SR, Beeson JG, Tadesse E, Lema VM, et al. Impairment of humoral immunity to Plasmodium falciparum malaria in pregnancy by HIV infection. Lancet. 2004;363:1860–7.

97. Gallagher M, Malhotra I, Mungai PL, Wamachi AN, Kioko JM, Ouma JH, et al. The effects of maternal helminth and malaria infections on perinatal and placental HIV-1 RNA concentrations in pregnant Malawian women. AIDS. 2004;18:1015–9.

98. Thiggen MC, Filler SJ, Kazembe PN, Parise ME, Macheso A, Campbell CH, et al. Associations between peripheral Plasmodium falciparum malaria parasitemia, human immunodeficiency virus, and concurrent helminthic infection among pregnant women in Malawi. Am J Trop Med Hyg. 2011;84:379–85.

99. Nkhoma ET, Kalilani-Phiri L, Mwapasa V, Rogerson SJ, Meshnick SR. Effect of HIV infection and Plasmodium falciparum parasitaemia on pregnancy outcomes in Malawi. Am J Trop Med Hyg. 2012;87:29–34.

100. Adeoti O, Animudu C, Nwuba R, Awobode H, Olaniyi M, Olajuyin O, et al. Prevalence of HIV and malaria parasites co-infection in pregnant mothers and their babies post delivery. J Biol Agric Healthcare. 2012;5:59–64.

101. Asmamaw T, Alemu A, Alemu A, Unaka C. Prevalence of malaria and HIV among pregnant women attending antenatal clinics at Felege Hiwot referral hospital and Addis Zemen health center. Int J Life Sci Biotech Pharm Res. 2013;2:81–91.

102. Ibitokou SA, Denoeud-Ndam L, Ezinmegnon S, Ladékpo R, Zannou I, et al. Malaria and human immunodeficiency virus (HIV) infection. J Med Lab Sci. 2019;29:61–71.

103. Houmsou R, Wama B, Oluwase A, Garba L, Hile T, Bingbeng J, et al. Malaria parasitemia and CD4 T cell count, viral load, and adverse pregnancy outcomes in Malawi. Am J Trop Med Hyg. 2010;82:556–62.
2030? The cost and impact of the fast-track approach. PLoS ONE. 2016;11:e0154893.

123. Hochman S, Kim K. The impact of HIV and malaria coinfection: what is known and suggested venues for further study. Interdiscip Perspect Infect Dis. 2009;2009:617954.

124. WHO. World malaria report 2018. 2018. https://www.who.int/malaria/publications/world-malaria-report-2018/report/en/. Accessed 3 Feb 2019.

125. Dhiman S. Are malaria elimination efforts on right track? An analysis of gains achieved and challenges ahead. Infect Dis Poverty. 2019;8:14.

126. Karunamoorthy K. Vector control: a cornerstone in the malaria elimination campaign. Clin Microbiol Infect. 2011;17:1608–16.

127. Wang X, Zhao X-Q. A climate-based malaria model with the use of bed nets. J Math Biol. 2018;77:1–25.

128. Malhotra I, Dent A, Mungai P, Wamachi A, Ouma JH, Narum DL, et al. Can prenatal malaria exposure produce an immune tolerant phenotype?: A prospective birth cohort study in Kenya. PLoS Med. 2009;6:e1000116.

129. Rubio EV, Gahona RG. Vertical transmission of HIV—medical diagnosis, therapeutic options and prevention strategy. In: Okechukwu IB, editor. Trends in basic and therapeutic options in HIV infection: towards a functional cure. London: IntechOpen; 2015. https://doi.org/10.5772/61202.

130. Morelli SS, Mandal M, Goldsmith LT, Kashani BN, Ponzoio NM. The maternal immune system during pregnancy and its influence on fetal development. Res Rep Biol. 2015;6:171–89.

131. Van Geertruyden JP. Interactions between malaria and human immunodeficiency virus anno 2014. Clin Microbiol Infect. 2014;20:278–85.

132. Grimwade K, French N, Ntibatwa DD, Zungu DD, Dedicoat M, Gilks CF. Childhood malaria in a region of unstable transmission and high human immunodeficiency virus prevalence. Pediatr Infect Dis J. 2003;22:1057–63.

133. Kimbi HK, Njoh D, Ndamukong K, Lehman L. Malaria in HIV/AIDS patients at different CD4+ T cell levels in Limbe, Cameroon. J Bacteriol Parasitol. 2013;4:164.

134. Winskill P, Rowland M, Mtove G, Malima RC, Kirby MJ. Malaria risk factors in north-east Tanzania. Malar J. 2011;10:98.

135. Mfueni E, Devleesschauwer B, Rosas-Aguirre A, Van Malderen C, Brandt PT, Ogutu B, et al. True malaria prevalence in children under five: Bayesian estimation using data of malaria household surveys from three sub-Saharan countries. Malar J. 2018;17:65.

136. Ned RM, Moore JM, Chasavanayakom S, Udhayakumar V. Modulation of immune responses during HIV–malaria co-infection in pregnancy. Trends Parasitol. 2005;21:284–91.

137. Fortin PM, Hopewell S, Estcourt LJ. Red blood cell transfusion to treat or prevent complications in sickle cell disease: an overview of Cochrane reviews. Cochrane Database Syst Rev. 2018;8:CD012082.

138. Fleming AF. HIV and blood transfusion in sub-Saharan Africa. Transfus Sci. 1997;18:167–79.

139. Artavanis-Tsakonas K, Tongren J, Riley E. The war between the malaria parasite and the immune system: immunity, immunoregulation and immunopathology. Clin Exp Immunol. 2003;133:145–52.

140. Lawn S. AIDS in Africa: the impact of coinfections on the pathogenesis of HIV-1 infection. J Infect. 2004;48:1–12.

141. Patnaik P, Jere CS, Miller WC, Hoffman IF, Wirima J, Pendame R, et al. Effects of HIV-1 serostatus, HIV-1 RNA concentration, and CD4 cell count on the incidence of malaria infection in a cohort of adults in rural Malawi. J Infect Dis. 2005;192:984–91.

Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Ready to submit your research? Choose BMC and benefit from:
- fast, convenient online submission
- thorough peer review by experienced researchers in your field
- rapid publication on acceptance
- support for research data, including large and complex data types
- gold Open Access which fosters wider collaboration and increased citations
- maximum visibility for your research: over 100M website views per year

At BMC, research is always in progress.
Learn more biomedcentral.com/submissions