Adenosine 2B Receptor Expression Is Post-transcriptionally Regulated by MicroRNA

Received for publication, September 17, 2009, and in revised form, April 9, 2010. Published, JBC Papers in Press, April 13, 2010, DOI 10.1074/jbc.M109.065555

Vasanth L. Kolachala1,2,3, Lixin Wang1,3, Tracy S. Obertone‡, Meena Prasad‡, Yutao Yan‡, Guillaume Dalmasso‡, Andrew T. Gewirtz‡, Didier Merlin‡, and Shanthi V. Sittaraman‡

From the 1Division of Digestive Diseases and 2Department of Pathology, Emory University School of Medicine, Atlanta, Georgia 30322

We have reported that epithelial adenosine 2B receptor (A2ßAR) mRNA and protein are up-regulated in colitis, which we demonstrated to be regulated by tumor necrosis factor α (TNF-α). Here, we examined the mechanism that governs A2ßAR expression during colitis. A 1.4-kb sequence of the A2ßAR promoter was cloned into the pFRL7 luciferase vector. Anti-microRNA (miRNA) was custom-synthesized based on specific miRNA binding sites. The binding of miRNA to the 3′-untranslated region (UTR) of A2ßAR mRNA was examined by cloning this 3′-UTR downstream of the luciferase gene in pMIR-REPORT. In T84 cells, TNF-α induced a 35-fold increase in A2ßAR mRNA but did not increase promoter activity in luciferase assays. By nuclear run-on assay, no increase in A2ßAR mRNA following TNF-α treatment was observed. Four putative miRNA target sites (miR27a, miR27b, miR128a, miR128b) in the 3′-UTR of the A2ßAR mRNA were identified in T84 cells and mouse colon. Pretreatment of cells with TNF-α reduced the levels of miR27b and miR128a by 60%. Over expression of pre-miR27b and pre-miR128a reduced A2ßAR levels by >60%. Blockade of miR27b increased A2ßAR mRNA levels by 6-fold in vitro. miR27b levels declined significantly in colitis-affected tissue in mice in the presence of increased A2ßAR mRNA. Collectively, these data demonstrate that TNF-α-induced A2ßAR expression in colonic epithelial cells is post-transcriptionally regulated by miR27b and miR128a and show that miR27b influences A2ßAR expression in murine colitis.

There are 4 adenosine receptors: A1AR, A2AAR, A2ßAR, and A3AR. A2ßAR3 is the predominant adenosine receptor that is expressed in human colonic epithelial cells and colonic epithelial-derived cell lines, such as T84 (1). In intestinal epithelial cells, A2ßAR couples with Gαq and activates adenylyl cyclase. In the colonic epithelium, A2ßAR regulates vectorial electrogenic ion secretion, a secretory pathway that results in movement of isotonic fluid into the lumen (2–4). Up-regulation of ion secretion during inflammation is believed to be an important process in inflammation-associated diarrhea (5, 6). In addition to its effect on ion transport, A2ßAR mediates luminal secretion of interleukin-6 by polarized colonic epithelial cells, which results in neutrophil activation (7). Similarly, adenosine induces apical secretion of fibronectin, which potentiates the adhesion and invasion of Salmonella typhimurium through chemokine secretion (8).

We have observed that A2ßAR mRNA and protein expression are up-regulated in human and animal models of inflammatory bowel disease (9). We have demonstrated that deletion of the A2ßAR gene protects against murine colitis (10). In addition, A2ßAR antagonists mitigate colonic inflammation in murine models of colitis (11), suggesting that A2ßAR is a therapeutic target in inflammatory bowel disease and other intestinal inflammatory diseases. In this study, we examined the regulation of A2ßAR expression in the colon by TNF-α, a critical proinflammatory cytokine that plays an important role in the pathogenesis of inflammatory bowel disease and whose agonism constitutes an effective therapeutic strategy for inflammatory bowel disease (12).

EXPERIMENTAL PROCEDURES

Materials—pFRL7 luciferase vector was a gift from Richard A. Hodin (13). TNF-α was from R&D Systems. The First-strand cDNA Synthesis kit was from Fermentas (catalogue no. K1612; Hanover, MD). Invitrogen Ncode microRNA (miRNA) First-strand cDNA Module kit was catalogue no. 45-6612. iQ SYBR Green Supermix was from Bio-Rad.

Pre-miRNAs and anti-miRNAs for 27b, 128a, and let 7c, and the lipid-based SiPort NeoFX transfection reagent for tranfection of pre-miRNAs were purchased from Ambion (Austin, TX). The cAMP immunosassay kit was from Applied Biosystems (Bedford, MA), isobutyl-1-methylxanthine was from Biomol Research Laboratories, Inc. (Plymouth Meeting, PA), adenosine was from Research Biochemicals International (Natick, MA), and dextran sodium sulfate (DSS, molecular weight 50,000) was from ICN Biomedicals (Aurora, OH).

Prediction of miRNA Targets for A2ßAR Gene—To identify the targets of human miRNAs for the A2ßAR receptor, we used PicTar software, an algorithm that identifies miRNA targets. The miRNA target database contains all animal miRNA sequences from miRBase. The sequence database was scanned against the 3′-untranslated regions (3′-UTRs) that have been predicted in all available species in Ensemble. The interface links each miRNA to a list of predicted gene targets. A2ßAR has four putative miRNA target sites (miR27a, miR27b, miR128a, and...
miR128b) in the 3’-UTR of A2B AR mRNA. Fig. 3 shows the binding sites and target miRNA alignments for the A2B AR 3’-UTR.

Cloning of 3’-UTR of A2B AR with Predicted miRNA Target Sequences—The 402-bp 3’-UTR of A2B AR, encompassing the predicted miRNA sequences, was inserted into the multiple cloning site of the pMIR-REPORT luciferase miRNA expression reporter (Applied Biosystems catalogue no. AM5795) with HindIII and SpeI.

miRNA Reverse Transcription—Total RNA was extracted using TRI reagent (MRC, Inc.). Reverse transcription was performed per the Invitrogen Ncode miRNA first-strand cDNA module kit protocol.

Nuclear Run-on Assay—Nuclear run-on assay was performed according to the protocol of Dr. Yan (14). Briefly, nuclei were isolated from T84 cells that were untreated or treated with 10 ng/ml TNF-α for 2–4 h. Cells (5 × 10^7) were pelleted in a test tube and washed twice with ice-cold phosphate-buffered saline. Cells were then lysed on ice for 10 min in lysis buffer, containing 0.3 M sucrose, 0.4% (v/v) Nonidet P-40, 10 mM Tris-HCl at pH 7.4, 10 mM NaCl, and 3 mM MgCl₂. After centrifugation (15 min at 500 × g), the nuclear pellet was resuspended and subjected to an additional 5-min lysis to remove any remaining intact cells. Following centrifugation, the nuclei were purified by centrifugation through a 2.0 M sucrose cushion. The nuclei were resuspended in 300 μl of transcription buffer (50 mM Tris-HCl (pH 8.0), 150 mM KCl, 5 mM MgCl₂, 0.5 mM MnCl₂, 1 mM dithiothreitol, 0.1 mM EDTA, 10% glycerol).

After sequential pretreatment with 1 μl of 50 μg/ml RNase A and 2.5 μl (100 units) of RNasin (Promega, Madison, WI), the in vitro elongation reaction was initiated with 0.25 mM each ATP, GTP, CTP, and UTP. The reaction proceeded for 25 min at 30 °C. After incubation with RNase-free DNase, RNA was extracted with phenol-chloroform, precipitated with ammonium acetate and isopropyl alcohol, washed with 70% ethanol, and dissolved in water. cDNA was synthesized with the Fermentas First-strand synthesis system and amplified by real-time PCR using A2B AR-specific primers and 18S as an internal control.

Cell Culture—T84 cells were grown and maintained in culture as described (15) in a 1:1 mixture of Dulbecco’s modified Eagle’s medium and F-12 medium, supplemented with penicillin (40 mg/liter), streptomycin (90 mg/liter), and 5% fetal bovine serum. Confluent stock monolayers were subcultured by trypsinization.

Experiments were performed using cells plated for 7–8 days on permeable supports of 4.5-cm² inserts. Inserts (0.4-μm pore size; Costar, Cambridge, MA) were rested in wells that contained medium until steady-state resistance was achieved, as described (16, 17). Caco2-BBE cells and HT29-Cl.19A cells were grown in Dulbecco’s modified Eagle’s medium, supplemented with 14 mmol/liter NaHCO₃, 10% fetal bovine serum, and penicillin/streptomycin (Invitrogen).

Real-time PCR—Real-time PCR was performed using the iCycler sequence detection system (Bio-Rad). Briefly, 50 ng of reverse-transcribed cDNA was amplified (40 cycles of 95 °C for 15 s and 55 °C for 1 min), using 10 μM gene-specific primers.

The primers were: mouse A2B AR forward, ATGCAGCTAGAGACGCCAAGA; mouse A2B AR reverse, TTTACCTGAGGGGAGACAC; human A2B AR forward, TTTCGACTGACTTTCT-ACGG and reverse, TTATACCTGAGGGGACAC; mature miR27b forward, TTTCAGTGCTAAGTTCGGC and reverse, universal qPCR primer; mouse SnoRNA55 forward, TGGCAGCTCATTGTGTCTTGAGCAA and reverse, universal qPCR primer. Fold induction was calculated using the Ct method (ΔΔCT = (Ct target – Ct internal control) treatment – (Ct target – Ct internal control) non-treatment), and the final data were derived from 2∓ΔΔCT.

Experimental Animals—The Institutional Animal Care and Use Committee of Emory University approved all procedures that were performed on the animals. In addition, all experiments were conducted in accordance with the Guide for the Care and Use of Laboratory Animals, published by the U.S. Public Health Service.

Six-week-old C57BL/6 mice were purchased from Jackson Laboratories (Bar Harbor, ME) and bred at our facility. They were maintained on a 12-hour light-dark cycle and allowed free access to pelleted diet and tap water at controlled temperatures (25 ± 2 °C).

Induction of DSS-Colitis—Colitis was induced in male C57BL/6 mice by ad libitum oral administration of 3% (w/v) DSS in tap water for 6 days. Age-matched male wild-type C57BL/6 mice that received tap water served as controls. Mice were observed daily and evaluated for changes in body weight and the development of clinical symptoms.

Transient Transfection of Pre-miR and Anti-miR—To study the regulation of A2B AR by miRNA, pre-miR27b and/or pre-miR128a (A2B AR target miRNAs) and a plasmid that contained the associated miR27b and miR128a binding sites in A2B AR (pMIR-3’-UTR) were co-transfected into subconfluent Caco2-BBE cells. The binding of miRNAs to A2B AR 3’-UTR mRNA was reflected by pMIR-REPORT luciferase activity. Anti-miR27b and/or anti-miR128a was introduced into HT29 cells to study the blockade of miR27b and miR128a. Endogenous A2B AR mRNA levels were measured by real-time PCR 48 h after transfection. The positive control for blocking efficiency was anti-miR let 7c, which regulates high mobility group A2 (HMGA-2) mRNA.

cAMP Measurement—HT29-Cl.19A cells were washed and equilibrated with Hanks’ solution; then, the cells were untreated or treated with 100 μM adenosine (basolateral). cAMP measurements were made in whole cell lysates in the presence of 1 mM 3-isobutyl-1-methylxanthine using a competitive cAMP immunoassay kit according to the manufacturer’s protocol. Luminescence was read on a Luminoscan Ascent (Thermo Labsystems, Needham Heights, MA).
To study the suppression of endogenous miRNA function, anti-miR27b and anti-miR128a (Ambion AM17000, 17100) were introduced into HT29 cells, and A2BR signaling was measured by estimating the levels of adenosine-mediated cAMP production with and without transfection of the blockers.

Statistical Analysis—All data are expressed as means ± S.E. Statistical analysis was performed by Student’s t test or analysis of variance (Prism 4.0; GraphPad, San Diego, CA). A p value < 0.05 was regarded as significant.

RESULTS

TNF-α Does Not Affect A2BR Promoter Activity—Our previous studies demonstrated that A2BR mRNA and protein were up-regulated in cells that were pretreated with TNF-α. To understand better the regulation of A2BR, we performed experiments using a luciferase reporter construct that contained the A2BR promoter (pFRL7 1.4A2BR). The 5’-flanking region of A2BR was obtained from Homo sapiens chromosome 17S from the PAC (P1-derived artificial chromosome) RPCI-1 121M24 map 17p11 (a gift from Dr. R. Reinhardt, Max Planck Institute for Molecular Genetics, Berlin, Germany) by PCR, yielding a 1.4-kb fragment of the region. The human A2BR promoter sequence was submitted to NCBI GenBank under accession number DQ 351340. The isolated 1.4-kb and 2.5-kb fragments were subsequently cloned into the pFRL7 luciferase vector (13) at the KpnI and NcoI restriction sites to yield the pFRL7 1.4 A2BR plasmid. The transcriptional start site, as determined by rapid amplification of cDNA ends using the Gene Racer kit (Invitrogen), was 119 bp upstream of the translational start site.

COS-7 or Caco2-BBe cells were transfected with pFRL7 1.4A2BR and treated 72 h later with TNF-α for 6 h. As shown in Fig. 1, the relative luciferase activity in pFRL7 1.4 A2BR total lysates (11.6 ± 1.3) was ~10 times greater than that in empty vector transfectants (1.9 ± 0.13). TNF-α, however, did not increase A2BR promoter activity (11.01 ± 0.3), despite the increase in A2BR mRNA levels (9). Also, TNF-α had no effect on luciferase activity from a longer 2.5-kb fragment of the A2BR promoter.

TNF-α Does Not Increase mRNA Transcription—To clarify the effect of TNF-α on A2BR transcription, we performed nuclear run-on assays using nuclei from vehicle- or TNF-α-treated T84 cells. After in vitro elongation with dNTPs, the RNA was extracted, and novel A2BR mRNA synthesis was quantified by real-time PCR using A2BR-specific primers. There was no significant difference in A2BR mRNA levels between vehicle- and TNF-α-treated nuclei. These data indicate that TNF-α does not affect A2BR transcription and suggest that TNF-α regulates A2BR by a post-transcriptional mechanism. This experiment was repeated three times, each yielding similar results.
TNF-α: Down-regulates miR27b and miR128a—One of the primary mechanisms by which gene expression is post-transcriptionally regulated is miRNA. We determined whether A2B(A)R was regulated by miRNA. First, we performed an on-line search of miRNAs using the picTar and targetScan databases and identified four putative miRNA target sites (miR27a, miR27b, miR128a, and miR128b) in the 3′-UTR of A2B(A)R mRNA (Fig. 2). All four miRNAs were expressed in T84 cells.

To determine the effect of TNF-α on miRNA and A2B(A)R mRNA levels, we pretreated T84 cells for various times with TNF-α (10 ng/ml). Pretreatment of T84 cells with TNF-α increased A2B(A)R mRNA levels by ~35-fold, (*p < 0.03, n = 6) (Fig. 3A) compared with untreated cells.

Pretreatment with TNF-α reduced the levels of miR27b and miR128a by 60% (*p < 0.001, n = 6) (Fig. 3B), whereas miR27a and miR128b levels were unaffected (data not shown). These data establish a direct correlation between A2B(A)R mRNA and the miR27b and miR128a miRNAs.

Pre-miR27b and -miR128a and Anti-miR27b and -miR128a Regulate A2B(A)R mRNA Levels and Function—Pre-miRNA precursors are small, partially double-stranded RNAs that mimic endogenous precursor miRNAs. To examine the regulation of A2B(A)R by miR27b and miR128a, we transfected T84 cells with pre-miR27b or pre-miR128a. Forty-eight hours after transfection, the cells were harvested, and A2B(A)R mRNA levels were determined by real-time PCR. As shown in Fig. 4A, transfection of pre-miR27b or pre-miR128a decreased A2B(A)R mRNA levels by 50% compared with untransfected cells (pre-miR27b 43.4 ± 4.83, *p < 0.001; pre-miR128a 30.3 ± 6.1, *p < 0.003), whereas 18S mRNA (control) was unaffected by pre-miR27b or pre-miR128a transfection. A commercial negative control pre-miRNA, containing a nontargeting sequence that had no homology to A2B(A)R, had no effect on A2B(A)R mRNA levels. These results demonstrate that miR27b and miR128a influence A2B(A)R mRNA levels.

Next, we sought to determine the effect of inhibition of miR27b or miR128a on A2B(A)R mRNA. Cells were transfected with custom-synthesized blockers of the miR27b or miR128a binding sites, and A2B(A)R mRNA levels were measured by real-time PCR.

As shown in Fig. 4B, anti-miR27b and anti-miR128a increased A2B(A)R mRNA levels by 5.3 ± 0.9-fold (*p < 0.01) and 2.2 ± 0.02-fold (*p < 0.005), respectively, compared with vector-transfected cells. 18S mRNA did not change, demonstrating the specificity of the miR blockers for A2B(A)R mRNA. These data support the results of the pre-miRNA experiments and further demonstrate that miR27b and miR128a regulate A2B(A)R mRNA levels.

To determine whether the effects of miR27b and miR128a on A2B(A)R mRNA levels were reflected in functional alterations in A2B(A)R, we measured adenylate cyclase activity in HT29-Cl.19A cells that were transfected with anti-miR27b or anti-miR128a. Forty-eight hours after transfection, cells were treated...
Regulation by MicroRNA A2BAR

FIGURE 5. Increased levels of A2BAR mRNA during colitis correlate with decreased miR27b levels. Age-and gender-matched C57BL/6 mice were fed with 3% DSS for 7 days, after which mice were killed and examined for severity of colitis. Total RNA was extracted from the colons of these mice. A2BAR mRNA (A) and miR27b (B) levels were measured compared with control mice. Data are represented as A2BAR mRNA normalized to 18S, and miR27b is normalized to SnRNA55. Data are represented as mean ± S.E. (error bars) of two independent experiments; *p < 0.05.

FIGURE 6. Pre-miR27b and pre-miR128a decrease A2BAR 3′-UTR luciferase activity, and addition of A2BAR promoter to 3′-UTR does not influence luciferase activity. The 3′-UTR of the A2BAR-predicted miRNA binding target was inserted into the multiple cloning site of the pMIR-REPORT luciferase miRNA expression reporter vector. Pre-miR27b and pre-miR128a were co-transfected with A2BAR 3′-UTR pMIR-REPORT. As shown in Fig. 6, A and B, introduction of pre-miR27b or pre-miR128a significantly inhibited 3′-UTR-dependent A2BAR luciferase activity in a dose-dependent manner (25–100 nM, n = 8, *p < 0.0001). Further, co-transfection of pre-miR27b (50 nM) and pre-miR128a (50 nM) produced a robust additive inhibitory effect on luciferase activity (Fig. 6C). We performed the luciferase assay with an additional group, in which we co-transfected the A2BAR 3′-UTR and the A2BAR promoter. We observed no additional increase in luciferase activity beyond that induced by the 3′-UTR alone (Fig. 6D), suggesting that A2BAR expression is regulated by miRNA.

DISCUSSION

miRNAs are short RNAs in introns and intergenic regions that regulate gene expression. A large primary miRNA (pre-miRNA) is transcribed and processed to a pre-miRNA hairpin, which is converted in the cytoplasm into a mature miRNA that

basolaterally with adenosine (100 μM), and cAMP levels were measured. As shown in Fig. 4C, cAMP levels were significantly higher in miR27b (0.07 ± 0.01, *p < 0.02) and miR128a transfectants (0.08 ± 0.01, *p < 0.016) compared with untransfected cells (0.04 ± 0.004), suggesting that the up-regulation of A2BAR mRNA in anti-miR27b- and anti-miR128a-transfected cells effects an increase in A2BAR levels.

Elevations in A2BAR mRNA Levels During Colitis Correlate with Decreased miR27b Levels—We have shown that A2BAR mRNA and protein levels are increased during colitis. To determine whether miR27b or miR128a levels correlate inversely with A2BAR mRNA during colitis, we measured miR27b, miR128a, and A2BAR mRNA levels by real-time PCR in a DSS model of colitis. All mice that were fed 3% DSS for 7 days developed signs of severe colitis (clinical score: 9.4 ± 1.0; histological score: 9.1 ± 2.3), presented as bloody diarrhea and weight loss. Consistent with our previous observations (9), A2BAR mRNA levels increased 2.3 ± 0.3-fold (*p < 0.05), compared with control mice that received water (Fig. 5A). Notably, miR27b levels decreased 33.4 ± 6.6-fold (*p < 0.005) in colitic mice compared with control mice that received water (Fig. 5B). There was no change in miR128a levels (data not shown). These data demonstrate that there is an inverse correlation between miR27b and A2BAR mRNA, supporting evidence for a post-transcriptional mechanism of A2BAR regulation by miRNA.

Pre-miR27b and Pre-miR128a Decrease A2BAR 3′-UTR Luciferase Activity—To confirm that miRNA functions through an interaction with the A2BAR 3′-UTR, we co-transfected pre-miR27b and/or pre-miR128a with the A2BAR 3′-UTR luciferase reporter construct pMIR-REPORT. As shown in Fig. 6, A and B, introduction of pre-miR27b or pre-miR128a significantly inhibited 3′-UTR-dependent A2BAR luciferase activity in a dose-dependent manner (25–100 nM, n = 8, *p < 0.0001). Further, co-transfection of pre-miR27b (50 nM) and pre-miR128a (50 nM) produced a robust additive inhibitory effect on luciferase activity (Fig. 6C). We performed the luciferase assay with an additional group, in which we co-transfected the A2BAR 3′-UTR and the A2BAR promoter. We observed no additional increase in luciferase activity beyond that induced by the 3′-UTR alone (Fig. 6D), suggesting that A2BAR expression is regulated by miRNA.
targets genes that harbor complementary sites in their 3′- or 5′-UTRs (18, 19). miRNAs are up- and down-regulated in several disease conditions. We have demonstrated that A28AR protein levels increase after treatment with proinflammatory cytokines but that A28AR promoter activity is unaltered. We also examined miRNAs in bioinformatics databases that were complementary to the A28AR 3′-UTR to determine whether miR27b and miR128a regulated the levels of A28AR mRNA and protein.

In our previous studies, we observed the up-regulation of A28AR by TNF-α in colonic epithelial cells and in the DSS mouse model of colitis (9). Using a pFIR7 promoter-reporter construct that contained either the 1.4-kb and 2.5-kb fragments of the A28AR promoter, we found that TNF-α did not increase A28AR promoter activity (Fig. 1). A28AR, however, has been shown to be transcriptionally regulated during hypoxia through hypoxia inducible factor (HIF)-binding elements (20) and by b-myb (21) in endothelial cells and vascular smooth muscle cells, respectively. Our luciferase assays were performed with whole cell lysates, which should have harbored all of the transcription factors that regulate the promoter. Studies by our laboratory and others have noted the transcriptional regulation of genes by TNF-α by 4–6 h, suggesting that the transcriptional mechanism is active in our luciferase assay (22–24). Similarly, by nuclear run-on assay, we observed no increase in A28AR transcription in response to TNF-α. Although the involvement of other cis- or trans-elements and signaling pathways that regulate A28AR transcription further upstream of the 2.5-kb element cannot be ruled out with these assays, these data strongly suggest that TNF-α up-regulates A28AR through a post-transcriptional mechanism. Thus, we speculated that A28AR regulation was mediated by A28AR-specific miRNAs. A search of bioinformatics databases identified miR27b and miR128a as containing target sequences in the 3′-UTR of A28AR. Treatment of colonic epithelial cells with TNF-α inhibited miR27b and miR128a by 60%, which was associated with a 5-fold increase in A28AR mRNA levels (Fig. 4A and B). Colonic tissue from mice with DSS-induced colitis experienced a 50% reduction in miR27b levels (Fig. 5B). These findings implicated miR27b and miR128a in the regulation of A28AR mRNA. Our studies were unable to determine the relative contribution of miR27b and miR128a because the consensus binding sites for miR27b and miR128a were complementary to the A28AR 3′-UTR and the A28AR promoter overlap significantly (Fig. 2).

miRNAs constitute a prominent class of regulatory genes in animals, representing ~1% of all predicted genes, suggesting that sequence-specific, post-transcriptional regulatory mechanisms that are mediated by these small RNAs are ubiquitous (25–27). We tested this hypothesis using synthetic pre-miRNAs (miRNA precursor molecules) and a reciprocal set of anti-miRNAs. Pre-miRNAs are small, chemically modified, double-stranded RNA molecules that mimic endogenous mature miRNA molecules. These molecules are incorporated into the RNA-induced silencing complex, which is also responsible for miRNA activity. In contrast to miRNA expression vectors, pre-miRNAs can be used in dose-response studies because they can be introduced directly into the cell by transfection. Inside cells, pre-miRNAs up-regulate miRNA activity (28), enabling one to analyze miRNA function. Transfection of pre-miRNA reduced A28AR mRNA levels in T84 cells (Fig. 4A). In reciprocal experiments, blockade of miR27b and miR128a, as a result of the introduction of specific anti-miRNAs, increased A28AR mRNA levels (Fig. 4B). Anti-miRNAs also enhanced adenosine-mediated CAMP production (Fig. 4C), indicating an increase in A28AR function and directly linking miR27b and miR128a to the regulation of A28AR expression (29). miRNAs have important functions in the regulation of genes. Several studies have demonstrated that miRNAs govern basic cellular functions. Studies by Care et al. (30, 31) noted that miR133 and miR1 regulate cardiomyocyte hypertrophy. In our experiments, co-transfection of pre-miR27b or pre-miR128a with an A28AR 3′-UTR reporter construct increased luciferase activity in a dose-dependent manner (Fig. 6, A and B). Co-transfection of pre-miR27b and pre-miR128a resulted in the additive inhibition of luciferase activity (Fig. 6C). By luciferase assay, co-transfection of the 3′-UTR of A28AR and the A28AR promoter resulted in no additional increase in luciferase activity beyond that induced by 3′-UTR alone, suggesting that miRNA plays the significant role in the regulation of A28AR expression (Fig. 6D).

Recent bioinformatic and experimental evidence suggests that a substantial proportion of genes (>30%) are subject to miRNA-mediated regulation (32). Our studies on the possible function of miRNAs in colonic inflammation demonstrate that miR27b and miR128a are critical regulators of A28AR expression. Because A28AR antagonism ameliorates colitis, our results suggest that the regulation of A28AR expression by targeting miRNAs might be an effective therapeutic strategy for colitis.

References
1. Strohmeier, G. R., Reppert, S. M., Lencer, W. I., and Madara, J. L. (1995) J. Biol. Chem. 270, 2387–2394.
2. Barrett, K. E., Huott, P. A., Shah, S. S., Dharmathathrophorn, K., and Wasserman, S. I. (1989) Am. J. Physiol. Cell Physiol. 256, C197–C203.
3. Barrett, K. E., Cohn, J. A., Huott, P. A., Wasserman, S. I., and Dharmathathrophorn, K. (1990) Am. J. Physiol. Cell Physiol. 258, C902–C912.
4. Huang, P., Lazarowski, E. R., Tarran, R., Milgram, S. L., Boucher, R. C., and Stutts, M. J. (2001) Proc. Natl. Acad. Sci. U.S.A. 98, 14120–14125.
5. Sugiyama, M., Musch, M. W., Field, M., and Chang, E. B. (2001) Gastroenterology 120, 1393–1403.
6. Hecht, G., Marrero, J. A., Danilkovich, A., Matkowskyj, K. A., Savovic, S. D., Koutsouris, A., and Benya, R. V. (1999) J. Clin. Invest. 104, 253–262.
7. Sitaraman, S. V., Merlin, D., Wang, L., Wong, M., Gewirtz, A. T., Si-Tahar, M., and Madara, J. L. (2001) J. Clin. Invest. 107, 861–869.
8. Walia, B., Castaneda, E. F., Wang, L., Colakula, V. L., Baja, R., Roman, J., Merlin, D., Gewirtz, A. T., and Sitaraman, S. V. (2004) Biochem. J. 382, 589–596.
9. Colakula, V., Asamoah, V., Wang, L., Obertone, T. S., Ziegler, T. R., Merlin, D., and Sitaraman, S. V. (2005) Cell Mol. Life Sci. 62, 2647–2657.
10. Colakula, V. L., Vijay-Kumar, M., Dalmasso, G., Yang, D., Linden, I., Wang, L., Gewirtz, A., Ravid, K., Merlin, D., and Sitaraman, S. V. (2008) Gastroenterology 135, 861–870.
11. Colakula, V., Ruble, B., Vijay-Kumar, M., Wang, L., Mwangi, S., Figler, H., Figler, R., Srivnasav, S., Gewirtz, A., Linden, I., Merlin, D., and Sitaraman, S. (2008) Br. J. Pharmacol. 155, 127–137.
12. D’Haens, G. (2003) Curr. Pharm. Des. 9, 289–294.
13. Malo, M. S., Mozumder, M., Chen, A., Mostafa, G., Zhang, X. B., and Hodin, R. A. (2006) Anal. Biochem. 350, 307–309.
14. Yan, Y., Dalmasso, G., Nguyen, H. T., Obertone, T. S., Sitaraman, S. V., and Merlin, D. (2009) PLoS One 4, e5049.
15. Sitaraman, S. V., Wang, L., Wong, M., Bruewer, M., Hobert, M., Yun, J. W., and Hodin, R. A. (2006) Gastroenterology 131, 18189–18200.
Regulation by MicroRNA A2BAR

C. H., Merlin, D., and Madara, J. L. (2002) J. Biol. Chem. 277, 33188–33195
16. Kolachala, V., Asamoah, V., Wang, L., Srinivasan, S., Merlin, D., and Sitaraman, S. V. (2005) J. Biol. Chem. 280, 4048–4057
17. Merlin, D., Jiang, L., Strohmeier, G. R., Nusrat, A., Alper, S. L., Lencer, W. I., and Madara, J. L. (1998) Am. J. Physiol. Cell Physiol. 275, C484–C495
18. Lytle, J. R., Yario, T. A., and Steitz, J. A. (2007) Proc. Natl. Acad. Sci. U.S.A. 104, 9667–9672
19. Lai, E. C. (2002) Nat. Genet. 30, 363–364
20. Kong, T., Westerman, K. A., Faigle, M., Eltzschig, H. K., and Colgan, S. P. (2006) FASEB J. 20, 2242–2250
21. St. Hilaire, C., Yang, D., Schreiber, B. M., and Ravid, K. (2008) J. Cell. Biochem. 103, 1962–1974
22. Theiss, A. L., Jenkins, A. K., Okoro, N. I., Klapproth, J. M., Merlin, D., and Sitaraman, S. V. (2009) Mol. Biol. Cell 20, 4412–4423
23. Jobin, C., Hellerbrand, C., Licato, L. L., Brenner, D. A., and Sartor, R. B. (1998) Gut 42, 779–787
24. Yu, Y., Zeng, H., Lyons, S., Carlson, A., Merlin, D., Neish, A. S., and Gewirtz, A. T. (2003) Am. J. Physiol. Gastrointest. Liver Physiol. 285, G282–G290
25. Lau, N. C., Lim, L. P., Weinstein, E. G., and Bartel, D. P. (2001) Science 294, 858–862
26. Lai, E. C. (2003) Curr. Biol. 13, R925–R936
27. Lagos-Quintana, M., Rauhut, R., Lendeckel, W., and Tuschl, T. (2001) Science 294, 853–858
28. Lewis, B. P., Shih, I. H., Jones-Rhoades, M. W., Bartel, D. P., and Burge, C. B. (2003) Cell 115, 787–798
29. Meister, G., Landthaler, M., Dorsett, Y., and Tuschl, T. (2004) RNA 10, 544–550
30. Carè, A., Catalucci, D., Felicetti, F., Bonci, D., Addario, A., Gallo, P., Bang, M. L., Segalini, P., Gu, Y., Dalton, N. D., Elia, L., Latronico, M. V., Høydal, M., Autore, C., Russo, M. A., Dorn, G. W., 2nd, Ellingsen, O., Ruiz-Lozano, P., Peterson, K. L., Croce, C. M., Peschle, C., and Condorelli, G. (2007) Nat. Med. 13, 613–618
31. Chen, J. F., Mandel, E. M., Thomson, J. M., Wu, Q., Callis, T. E., Hammond, S. M., Conlon, F. L., and Wang, D. Z. (2006) Nat. Genet. 38, 228–233
32. Nilsen, T. W. (2007) Trends Genet. 23, 243–249