Expression of Cytokines and Chemokines as Predictors of Stroke Outcomes in Acute Ischemic Stroke

Sarah R. Martha1, Qiang Cheng2, Justin F. Fraser3,4,5,6,7, Liyu Gong2, Lisa A. Collier3, Stephanie M. Davis3, Doug Lukins4,5,6,7, Abdulnasser Alhajeri3,7, Stephen Grupke5,7 and Keith R. Pennypacker3,6*

1 School of Nursing, University of Washington, Seattle, WA, United States, 2 Institute for Biomedical Informatics, University of Kentucky, Lexington, KY, United States, 3 Department of Neurology, University of Kentucky, Lexington, KY, United States, 4 College of Medicine, University of Kentucky, Lexington, KY, United States, 5 Departments of Neurosurgery, University of Kentucky, Lexington, KY, United States, 6 Neuroscience, University of Kentucky, Lexington, KY, United States, 7 Radiology, University of Kentucky, Lexington, KY, United States

Introduction: Ischemic stroke remains one of the most debilitating diseases and is the fifth leading cause of death in the US. The ability to predict stroke outcomes within the acute period of stroke would be essential for care planning and rehabilitation. The Blood and Clot Thrombectomy Registry and Collaboration (BACTRAC; clinicaltrials.gov NCT03153683) study collects arterial blood immediately distal and proximal to the intracranial thrombus at the time of mechanical thrombectomy. These blood samples are an innovative resource in evaluating acute gene expression changes at the time of ischemic stroke. The purpose of this study was to identify inflammatory genes and important immune factors during mechanical thrombectomy for emergent large vessel occlusion (ELVO) and which patient demographics were predictors for stroke outcomes (infarct and/or edema volume) in acute ischemic stroke patients.

Methods: The BACTRAC study is a non-probability sampling of male and female subjects (≥18 year old) treated with mechanical thrombectomy for ELVO. We evaluated 28 subjects (66 ± 15.48 years) relative concentrations of mRNA for gene expression in 84 inflammatory molecules in arterial blood distal and proximal to the intracranial thrombus who underwent thrombectomy. We used the machine learning method, Random Forest to predict which inflammatory genes and patient demographics were important features for infarct and edema volumes. To validate the overlapping genes with outcomes, we perform ordinary least squares regression analysis.

Results: Machine learning analyses demonstrated that the genes and subject factors CCR4, IFNA2, IL-9, CXCL3, Age, T2DM, IL-7, CCL4, BMI, IL-5, CCR3, TNFα, and IL-27 predicted infarct volume. The genes and subject factor IFNA2, IL-5, CCL11, IL-17C, CCR4, IL-9, IL-7, CCR3, IL-27, T2DM, and CSF2 predicted edema volume. The overlap of genes CCR4, IFNA2, IL-9, IL-7, IL-5, CCR3, and IL-27 with T2DM predicted both infarct and edema volumes. These genes relate to a microenvironment for chemotraction and proliferation of autoimmune cells, particularly Th2 cells and neutrophils.
Conclusions: Machine learning algorithms can be employed to develop prognostic predictive biomarkers for stroke outcomes in ischemic stroke patients, particularly in regard to identifying acute gene expression changes that occur during stroke.

Keywords: ischemic stroke, machine learning, gene expression, cytokines, chemokines

INTRODUCTION

Ischemic stroke is the fifth cause of death in the United States, accounting for 87% of all strokes (1). Approximately 800,000 individuals are affected per year and ischemic stroke is the primary cause of severe long-term disability (1). When a major cerebral artery is blocked by a thrombus, the occlusion causes deprivation of oxygen, glucose, and other essential nutrients to the brain which results in necrotic cerebral tissue (2). Current treatments focused on recanalization of the occluded cerebral artery for emergent large vessel occlusions (ELVO) via intravenous administration of tissue plasminogen activator (tPA) and/or endovascular mechanical thrombectomy (3–5). Stroke patients must be given tPA within a narrow window of 4.5 h, while mechanical thrombectomy has an extended window of intervention up to 24 h post-stroke (6–8). However, ischemic stroke patients must meet particular imaging or time criteria to receive either or both treatments, and many patients are out of the “window of opportunity” and receive only supportive medical care (9).

With early reperfusion to the cerebral artery, at risk tissue in the penumbra may be salvaged (10, 11). Even if blood flow is restored, neurons in the penumbra face major challenges to their survival, such as acidosis, ion pump failure, excitotoxicity, inflammatory response, and the breakdown the blood brain barrier (BBB) (12–14). Inflammation following an acute ischemic stroke is multifaceted, and is part of the normal pathological processes involved in the post-ischemic brain. Within the first few hours, there is a rapid activation of resident microglia that start to release proinflammatory mediators from the ischemic endothelium and brain parenchyma [including interleukin-(IL)-1β, IL-6, IL-12, IL-23, and tumor necrosis factor-α (TNF-α)] (15–17). Furthermore, there is an activation of peripheral immune cells including neutrophils and T-cells that can cross the damaged BBB and accumulate at the injury site in the microvascular environment. In this acute phase of ischemic stroke more extensive damage occurs with the associated increased intracranial pressure leading to malignant cerebral edema, neuronal death, hemorrhagic transformation, and mortality (18–21).

Mechanical thrombectomy has greatly improved the ability to restore blood flow and improve patient outcomes, even when used in selected patients up to 24 h post-stroke onset (5, 22). The process of thrombectomy permits us to extract blood directly in the vicinity of the infarct from a stroke patient to provide the first glimpse into cellular/molecular events occurring during an ischemic stroke. Through the standard thrombectomy process, we can isolate distal blood within the artery immediately downstream from the clot, peripheral blood that is proximal to the clot (systemic arterial blood in the cervical carotid artery), and the thrombus itself upon removal from the human subject (23).

Understanding of molecular and cellular changes intraluminally in ischemic stroke may provide develop deeper insights into the inflammatory pathways involved, and could lead to the identification of prognostic biomarkers in stroke patients. This information could potentially provide benchmarks to study responses to treatment and aid in development of new therapies. The purpose of this study was to identify inflammatory genes and important immune mediators at the time of mechanical thrombectomy and which patient demographics were predictors for stroke outcomes (infarct and/or edema volume) in acute ischemic stroke patients.

METHODS

Study Design

This study was developed from the Blood and Clot Thrombectomy Registry and Collaboration (BACTRAC) protocol: a prospectively enrolling tissue bank for emergent large vessel occlusion (ELVO) (clinicaltrials.gov NCT03153683) (23). The BACTRAC study is a non-probability sampling of subjects over 18 years old, conducted at a large academic comprehensive stroke center in central Kentucky, and who were treated with mechanical thrombectomy for ELVO ischemic stroke. While the BACTRAC tissue bank is continuously enrolling, data for this study was collected from subjects enrolled May 2017 through January 2019. The Institutional Review Board approved this study, and informed consent was obtained from all subjects or legally authorized representatives.

Sample Population

Subjects (≥18 years old) were eligible for inclusion if they were hospitalized with a diagnosis for an ischemic stroke and underwent thrombectomy procedure for ELVO. Subjects were candidates for inclusion if they met criteria: informed consent was signed and dated by subject or legally authorized representative within 24 h post-thrombectomy, confirmation of acute ischemic stroke based on clinical and radiographic imaging (CT and/or MRI), intra-arterial thrombectomy as determined by neurointerventional radiology (NIR) physician, an acute thromboembolus within an intracranial artery and underwent endovascular thrombectomy procedure. Subjects were excluded if baseline urine pregnancy test was positive and/or breastfeeding and/or concurrently participated in treatment studies.

Data Collection

A medical record review was conducted to collect admission clinical and demographic variables. These
variables included age, sex, ethnicity, height, weight, body mass index (BMI), comorbidities, smoking status, National Institutes of Health Stroke Scale (NIHSS), baseline computerized tomography (CT) and/or magnetic resonance imaging (MRI) scan to verify large vessel occlusion stroke/thrombectomy eligibility and CTA collateral score, and time of last known normal (LKN) symptom (prior to ischemic stroke).

Tissue removal and tissue banking protocols were previously published in detail (23). In brief, this was a collaborative effort among the NeuroInterventional Radiology (NIR) service line and our Center for Advanced Translational Stroke Science. At the beginning of the mechanical thrombectomy procedure, during initial access through the clot to the distal intracranial vessels, the NIR physician backbleeds the microcatheter to determine if they are distal to the distal end of the thrombus. Through this, 1 ml of whole arterial blood from the microcatheter (0.021 inch inner lumen diameter) was collected. Simultaneously, the collection of 7 ml of whole arterial peripheral blood was collected from the cervical parent artery (internal carotid artery or vertebral artery) during backbleeding while initially suction for thrombectomy. The distal (intracranial) and proximal (peripheral) blood samples were handed off to the on-call research associates who immediately processed the specimens in the wet laboratory adjacent to the angiography suite.

An additional medical chart review was conducted to gather post-thrombectomy endpoint variables: last known normal (LKN) symptom to thrombectomy completion time (infarct time), thrombectomy in cerebral infarction (TICI) scores, and NIHSS at discharge. A blinded neuroradiologist evaluated post-thrombectomy computed tomography (CT) imaging and/or magnetic resonance imaging (MRI) for infarct and edema volumes, and hemorrhagic grade. Clinical and demographic variables, along with post-thrombectomy endpoints were deidentified and maintained in our institution's REDCap software.

RNA Extraction and Amplification
The extraction of total RNA from the cellular pellet/buffy coat was collected from the stored distal and proximal arterial blood samples using the Nucleospin Blood Kit (Macherey-Nagel, Düren, Germany), per manufacturer protocol. Nanodrop Lite Spectrophotometer (Thermo-Fisher Scientific; Waltham, MA) estimated the quantity of total RNA based on the A260/A280 ratio. To validate total RNA, RNA integrity numbers (RIN) values were obtained from the hospital's Genomics Core facility. The assessment and analysis of RNA integrity was evaluated with Eukaryote Total RNA Nano assay on the Agilent 2100 Bioanalyzer expert software. The mean RIN values (±SD) for distal and proximal arterial blood samples were 8.89 ± 0.41 (range from 8.30 to 9.60) and 6.98 ± 0.29 (range from 6.60 to 7.50), respectfully. The RIN values indicate moderate to high quality RNA with minimal degradation (24).

RT² First Strand Kit (Qiagen) was used to synthesize cDNA which were analyzed for gene expression using Qiagen RT² Profiler PCR Array Human Inflammatory Cytokines & Receptors for 84 genes associated with inflammation and evaluated with StepOnePlus Real-Time PCR System interfaced with StepOne software (Applied Biosystems, Foster City, CA). Each gene array plate had five housekeeping genes (ACTB, B2M, GAPDH, HPRT1, and RPLP0) to normalize the gene expression data by using ΔΔCT method. The distal blood data for each gene was compared to proximal blood data for each subject. Proximal blood samples were used as an internal control for each patient, since there is not a true control. Since the cervical segments have circulating blood, we believe these are equivalent to arterial blood taken from peripheral arterial location.

Data Analysis
Descriptive and frequency statistics were obtained and used to characterize male and female ischemic stroke subjects. Comparisons were made for subject demographics and baseline characteristics using SPSS, version 26 software (IBM, Armonk, NY). Statistical significance (p-value of 0.05) for group differences were assessed by independent t-tests for continuous variables and Chi-square or Fisher exact tests of associations based on categorical (ordinal and binary) variables. The gene expression mean fold change values were assessed with Scikit-learn Python package (v0.21.2) for machine learning analysis (25). Statesmodels Python package (v0.10.1) was used for ordinary least squares (OLS) regression analysis (26).

Machine Learning
For machine learning analysis, the demographics data used included variables: sex, age, race/ethnicity, BMI, comorbidities (hypertension, type 2 diabetes, hyperlipidemia, previous stroke, and atrial fibrillation), and two stroke outcomes (infarct and edema volumes). The gene expression dataset included 84 inflammatory genes. Any variables in the two stroke outcome datasets were dropped if the proportion of missing values were more than 40%. After pre-processing 89 variables were in the final dataset.

Predicting Infarct Volume
Predictive analysis was performed by using the infarct volume as the response variable, and all gene expression variables as predictors. The analysis was adjusted by using demographic variables as covariates. Regression was used to perform the predictive analysis task. Since there was a relatively small sample size with a mild number of predictors (i.e., 28 subjects with 89 predictors), a widely used machine learning method, Random Forest (RF) (27, 28) was employed to complete the analysis. This method was used because of the reliable performance on small sample datasets with mixed categorical and continuous variables.

RF is an ensemble of decision trees, where each internal node represents a condition, or test, on a single predictor, aiming to split the dataset into two so that each had a similar response values. RF provides versatile, accurate, and stable predictions for supervised machine learning tasks such as regression as well as measuring the relative importance of each predictor. The importance score of a predictor is calculated by how much the variance is reduced or information gain is increased across all
nodes that were used. The importance scores were scaled so the
sum equals one.

Hyper-parameters of RF were selected in a coarse-to-fine
approach using \(k \)-fold cross-validation (CV), which partitions
the training dataset into \(k \) parts evenly, then rotationally uses
\(k-1 \) parts to train the machine learning model and tests the
model with the remaining one part. The parameters were first
selected using the 5-fold CV, then tuned the parameters around
the selected value using the 10-fold CV. Predicting performance
of RF was optimized in mean squared error (MSE), which is
minimized for the optimal model.

With the selected hyper-parameters, the importance of
features using RF were ranked. Ranking may be affected by
randomness of RF due to the correlations between some features.
Therefore, we programed RF 100 times and collected the mean
values of the feature importance. The number of possible orders
of the features is combinatorially large, this approach can
effectively reduce but cannot fully eliminate the effect of the
correlation between features.

Predicting Edema Volume

Similar to the prediction of infarct volumes, this was a regression
task by using edema volumes as a response variable and the
remaining gene variables as predictors. The analysis was adjusted
using the demographic variables as covariates as done for the
analysis of infarct volumes. Using similar preprocessing and cross
validation with RF, the negative MSE was used as a score and
maximized for optimal RF model. The relative importance of the
predictors were also obtained for this task.

Stroke Outcomes of Infarct and Edema Volumes

Noncontrast head CT and CTA of the head and neck were
obtained upon presentation to the emergency department during
initial assessment for acute ischemic stroke. Siemens SOMATOM
Definition Edge and SOMATOM Force CT scanners were used
for all CT studies. CTA collateral scores were determined
using maximum intensity projection images from CTA of the
head with a scoring system described in previous work by
Souza et al. (29). MRI and CT of the head without contrast
were obtained following thrombectomy. MRI was performed
using Siemens MAGNETOM Aera and MAGNETOM Skyra
machines at magnetic field strength of 1.5 and 3.0 Tesla,
respectively. Hemorrhage grade, infarct volume, and edema
volume were determined on post-thrombectomy MRI of the
head or CT of the head if MRI was unavailable. Hemorrhage
grade was determined using a grading scale described by
Hacke et al. (30). Infarct volumes and edema volumes were
calculated using post-thrombectomy MRI, or using CT if MRI
was unavailable. Imaging included the entire brain on both
MRI and CT examinations, and all images/slices were visually
assessed for infarction or edema. When MRI was available,
diffusion weighted images (DWI) were used to calculate infarct
volumes, and T2 FLAIR images were used to calculate edema
volumes. The areas of abnormal signal (restricted diffusion
on DWI or hyperintense signal on T2 FLAIR) were manually
segmented and analyzed to determine volume using ITK-SNAP
software (www.itksnap.org) (31). When MRI was unavailable,
CT of the head was used to calculate both infarct and edema
volume. As infarct and edema were indistinguishable on CT,
the same value was used for both after manually segmenting
the area of abnormal hypointensity using ITK-SNAP. All imaging
assessment, including hemorrhage grade, CTA collateral
score, infarct volume, and edema volume was performed by an
experienced neuroradiologist in a blinded fashion.

RESULTS

Sample Characteristics

Twenty-eight subjects underwent mechanical thrombectomy
during the study period. The mean age of our subjects were 66
± 15.48 years, primarily female (61%), and the majority were
Caucasian (86%). Table 1 presents baseline subject characteristics
and comparisons based on sex. Similarities were exhibited
between the subjects for BMI, comorbidities (hypertension, atrial
fibrillation, type 2 diabetes, hyperlipidemia, previous stroke,
chronic obstructive pulmonary disease, and coronary artery
disease), smoking status, stroke location, hemorrhagic grade,
CTA collateral scores, infarct and edema volumes. The NIHSS
average went from admission score of 17 ± 6.56 to discharge
score of 11 ± 9.54 post-thrombectomy. More males (81.8%) than
females (41.2%) exhibited full perfusion to the occluded artery
post-thrombectomy with a TICI score of 3 (\(p = 0.034 \)). The mean
infarct time (LKN to thrombectomy completion time) for males
was ~7 h vs. almost 10 h for females (\(p = 0.093 \)).

Prediction of Infarct Volume With Machine Learning

For predicting infarct volume, the covariates including all 84
genes and the 10 demographic variables are all ranked in
importance scores. For the ranked top \(k \), \(k = 1–84 \), covariates we
perform 5-fold CVs to find the optimal RF model and obtain the
respecting optimal performance, which is scored in negative
MSE. The importance values of the top 10 covariates, 10 for
predictive analysis of infarct volume are given in Table 2. They
are in descending order as follows: CCR4, IFNA2, IL-9, CXCL3,
age, type 2 diabetes (T2DM), IL-7, CCL4, BMI, IL-5, CCR3,
TNFalpha, and IL-27.

Prediction of Edema Volume With Machine Learning

For predictive analysis of edema volume, in a similar way to
the predictive analysis of infarct volume, we obtain the optimal
performance for the top \(k \) covariates, \(k = 1–84 \). The importance
values of the top 10 most important covariates are shown in
Table 3. They are in descending order as follows: IFNA2, IL-
5, CCL11, IL-17C, CCR4, IL-9, IL-7, CCR3, IL-27, T2DM,
and CSF2.

When using infarct and edema volumes as outcome variables,
we observed selected gene subsets for these two predictive
analysis have a significant overlap. The intersection of the top
10 genes from the two stroke outcomes are seven genes with
T2DM, these include CCR4, IFNA2, IL-9, IL-7, IL-5, CCR3, and
TABLE 1 | Baseline demographics and characteristics for ischemic stroke subjects.

	Males (n = 11)	Females (n = 17)	p-value
Age (years)	68 ± 17.07	64 ± 14.77	0.606
Ethnicity			
African-American	2 (18.2)	0 (0.0)	0.072
Caucasian	9 (81.8)	15 (88.2)	0.650
Unknown	0 (0.0)	2 (11.8)	0.254
BMI			
Under/normal weight	4 (36.4)	6 (52.9)	0.409
Overweight	6 (54.5)	6 (35.3)	0.333
Obese	0 (0.0)	0 (0.0)	
Morbidly obese	1 (9.1)	2 (11.8)	0.831
Comorbidities			
Hypertension	4 (36.4)	11 (64.7)	0.346
Atrial fibrillation	3 (27.3)	5 (29.4)	0.907
Diabetes	1 (9.1)	6 (35.3)	0.127
Hyperlipidemia	3 (27.3)	2 (11.8)	0.313
Previous stroke	2 (18.2)	3 (17.6)	0.973
COPD	1 (9.1)	3 (17.6)	0.545
CAD	3 (27.3)	1 (5.9)	0.123
Smoking status			
Never	5 (45.5)	11 (64.7)	0.333
Currently	4 (36.4)	4 (23.5)	0.481
Previously (>6 months)	2 (18.2)	2 (11.8)	0.650
NIHSS on admission	17 ± 8.04	16 ± 5.65	0.732
Minor stroke (1-4)	2 (18.2)	1 (5.9)	0.322
Moderate stroke (5-15)	3 (27.3)	6 (35.3)	0.671
Moderate/severe (16-20)	2 (18.2)	6 (35.3)	0.346
Severe stroke (≥21)	4 (36.4)	4 (23.5)	0.481
NIHSS at discharge	14 ± 14.21	9 ± 7.32	0.249
Minor stroke (1-4)	4 (36.4)	6 (35.3)	0.808
Moderate stroke (5-15)	4 (36.4)	7 (41.2)	0.818
Moderate/severe (16-20)	1 (9.1)	2 (11.8)	0.838
Severe stroke (≥21)	2 (18.2)	1 (5.9)	0.322
TICI score			
2A ≤ 50% Perfusion	0 (0.0)	1 (5.9)	0.432
2B ≥ 50% Perfusion	2 (18.2)	9 (52.9)	0.070
3 = Full perfusion	9 (81.8)	7 (41.2)	0.034
LKN to thrombectomy completion time (minutes)	416 ± 231.88	582 ± 249.06	0.093
Stroke location			
Left MCA	4 (36.4)	8 (47.1)	0.576
Right MCA	6 (54.5)	8 (47.1)	0.699
Basilar	1 (9.1)	1 (5.9)	0.747
Infarct volume (cm³)	87.90 ± 104.58	48.33 ± 62.30	0.219
Edema volume (cm³)	98.60 ± 116.01	48.52 ± 61.23	0.147
Hemorrhagic grade	4 (36.4)	4 (23.5)	0.481

(Continued)
the machine learning model was capable of capturing potentially highly non-linear relationship between the outcome and the covariates (32, 33). Therefore, OLS may partially capture the association between the outcomes and the covariates. IL-9 and T2DM were predictors for infarct volume \(F(8, 27) = 5.396, p = 0.001 \). These predictors for infarct volume explained 53% of the total variance in the model (Table 4). Similarly, we performed the OLS analysis for predictors of edema volume. IL-9 was a predictor for edema volume \(F(8, 27) = 2.938, p = 0.028 \). IL-9 explains 33% of the total variance found in the model (Table 5).

DISCUSSION

Our results revealed insights to the initial inflammatory response to ischemic stroke in stroke patients. Arterial blood samples were collected at one of the earliest timepoints (~8 h and 35 min from LKN to thrombectomy completion time or infarct time) during an ongoing stroke. Expression of 13 cytokines and chemokines were induced over 2-fold in the distal blood relative to levels in the proximal blood. Machine learning identified 10 genes, along with age, T2DM, and BMI for predictors of infarct volume and 10 genes with T2DM for predictors of edema volume. In addition, there was an overlap with seven genes and T2DM as predictors for both stroke outcomes.

These seven genes are related to the Th2 response, which is a T-cell response associated with allergy, cancer, and autoimmunity (35, 36). One study has shown a systemic shift of the immune system toward Th2 response at the late post-acute phase in stroke patients after examining their peripheral venous blood (37). IFNA2 is primarily produced by dendritic cells (38). This cytokine is targeted as a treatment for the autoimmune disease.

Figure 1

Ingenuity pathway analysis predicts the upstream and downstream effects of activation or inhibition of the 13 genes from the distal blood in a network. A red box indicates the gene is more extreme in the dataset, while different shades of pink mean the gene is measured less in the dataset. An orange box indicates the gene has more confidence in predicted activation. Directional orange arrows indicate which gene leads to activation of another gene. Yellow arrows indicate the findings are inconsistent with downstream gene.

Gene Expression of Inflammatory Markers and Ingenuity Pathways Analysis

Ten inflammatory genes (CCR4, IFNA2, IL-9, CXCL3, IL-7, CCL4, IL-5, CCR3, TNFα, and IL-27) were recognized as predictors for infarct volume had mean fold change ranging from 2.56 to 35.06. While the inflammatory genes (IFNA2, IL-5, CCL11, IL-17C, CCR4, IL-9, IL-7, CCR3, IL-27, and CSF2) that were identified as predictors for edema volume had mean fold change ranging from 3.98 to 42.61. The seven important predictor genes (CCR4, IFNA2, IL-9, IL-7, IL-5, CCR3, and IL-27) that overlapped both stroke outcomes had mean fold change ranging from 3.98 to 35.06.

The mean fold changes for the 13 genes were analyzed through the use of Ingenuity Pathway Analysis (IPA) software (Qiagen Inc., https://www.qiagenbioinformatics.com/products/ingenuity-pathway-analysis) (34). IPA predicts the upstream and downstream effects of activation or inhibition of the 13 genes from the distal blood in a pathway network. The overall inflammatory chemokine/cytokine pattern from the distal blood characterizes a microenvironment for chemoattraction and proliferation of immune cells, particularly in Th2 response and neutrophils (Figure 1).

Variable	β	P-value
CCR4	−0.733	0.740
IFNa2	−0.104	0.793
IL-9	12.146	0.017
Type 2 diabetes	69.942	0.026
IL-7	−5.277	0.217
IL-5	1.205	0.233
CCR3	−0.084	0.855
IL-27	−0.683	0.549

\(R^2 = 0.654, \text{ adjusted } R^2 = 0.533, df = 8, F = 5.396, p = 0.001. \)

Durbin-Watson = 1.83.

Variable	β	P-value
CCR4	−1.987	0.486
IFNa2	−0.099	0.848
IL-9	13.127	0.040
Type 2 Diabetes	57.469	0.140
IL-7	−8.326	0.134
IL-5	2.109	0.110
CCR3	0.083	0.889
IL-27	−0.729	0.693

\(R^2 = 0.507, \text{ adjusted } R^2 = 0.334, df = 8, F = 2.938, p = 0.028. \)

Durbin-Watson = 1.69.
systemic lupus erythematosus (39). Exposure to INFA2 has been linked to causing edema and been shown to induce the production of cytokine IL-7 (40–42). IL-7 is required for T-cell development and function (43, 44). The expression of IL-4, a classic marker for Th2 cells, is increased by IL-7 and is a direct cause of edema (45, 46). This cytokine's activity is targeted for diseases related to pathogenic T-cells (47). Th2 cells express both CCR3 and CCR4 receptors that bind chemokines to direct their migration to the site of injury or infection (48, 49). CCR3 is a chemokine receptor that has been shown to mediate neuronal injury after ischemic insult (50). At least eight different chemokines recognize this receptor and has shown that its activation enhances choroidal neovascularization and trafficking of eosinophils (51). Pharmaceutical companies have targeted this receptor for the treatment of severe asthma (52). CCR4 is another chemokine receptor and CCL17 and CCL22 are identified as high affinity ligands (53). This receptor is highly expressed in thymus and peripheral blood leukocytes, and is targeted for treatment in T-cell leukemia and peripheral T-cell lymphoma (54). The cytokines, IL-5 and IL-9 are both expressed and secreted by Th2 cells and are linked to edema and infarct volume, respectively (55, 56). IL-5 is produced in female mice express higher levels in the spleen relative to males (57). Antagonists to IL-5 have been produced for the treatment of severe asthma (58). Patients suffering from asthma have higher levels of IL-9 producing T-cells in their peripheral blood (59). While not targeted in a current treatment, systemically applied neutralizing antibodies reduces infarct (56). Cytokine, IL-27 has both pro- and anti-inflammatory effects and the main source of activation is by antigen-presenting cells (60). IL-27 activates an inflammatory response by inducing CD4+ T-cells into a Th1 response (61–64). However, IL-27 can also suppress Th17 differentiation and inhibit inflammation enhancing a Th2 response (65–68). In an experimental stroke model, mice were administered IL-27 injections post-intracranial hemorrhage (ICH) and demonstrated improved behavior tests, mobility, and reduced edema around the hemorrhage sites (69).

Several limitations to this study should be noted. The sample for this study was small and subjects were mostly Caucasian due to hospital location. There was a potential for sampling bias since this was a non-probability strategy and based on completed mechanical thrombectomy procedures. A more diverse and larger sample size is warranted in future studies. Standard of care imaging for infarct and edema volume were based on CT and/or MRI imaging post-thrombectomy. Additional imaging at discharge for comparison is warranted to understand how thrombectomy relates to these stroke outcomes. Follow-up assessment would be helpful to address subject's long-term recovery and functional status.

CONCLUSION

The machine learning (ML) algorithm has uncovered a molecular/cellular signaling pathway that the literature supports its relationship with the facilitation of infarct volume and edema. Despite significant funding for stroke drug discovery, tPA and mechanical thrombectomy are the only treatments. Identifying the initial activators of the inflammatory response to stroke could be therapeutic targets for treatment. The inhibition of these early inflammatory events has the potential to block the inflammatory cascade that occurs after a stroke that recruits the peripheral immune system, which is involved in neurodegeneration that lasts days afterward. The ML method has determined several related genes are predictors of edema and infarct volume in acute ischemic stroke patients. Thus, the use of ML to determine molecular predictors from ischemic blood could initiate a new approach for drug discovery in the field of stroke. Future studies will utilize ML methods and examine expression of genes that predict long-term functional outcomes.

DATA AVAILABILITY STATEMENT

The datasets generated for this study are available on request to the corresponding author.

ETHICS STATEMENT

The studies involving human participants were reviewed and approved by UK HealthCare Office of Research Integrity IRB # 17-0019-F1V clinicaltrials.gov NCT03153683. The patients/participants provided their written informed consent to participate in this study.

AUTHOR CONTRIBUTIONS

SM, JF, and KP: conceptualization, review, and editing. SM, LC, SD, QC, LG, DL, AA, SG, JF, and KP: methodology. QC and LG: formal analysis. SM, QC, LG, DL, and KP: written original draft. All authors made a substantial and intellectual contribution to the work.

FUNDING

This study was supported by small grant award by University of Kentucky's Center for Clinical and Translational Science (CCTS) and in part, by the National Institutes of Health, National Institute of Nursing Research Omics and Symptom Science Training Program at the University of Washington as fellowship to SM (Grant No. T32NR016913). The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.

ACKNOWLEDGMENTS

The authors would like to thank the Blood and Clot Thrombectomy Registry and Collaboration (BACTRAC) team and to the Departments of Neurology and Neurosurgery at the University of Kentucky.
43. ElKassar N, Gress RE. An overview of IL-7 biology and its use in immunotherapy. *J Immunotoxicol.* (2010) 7:1–7. doi: 10.3109/15476910903453296

44. Moors M, Vadattu NK, Abel J, Kramer U, Rane L, Ulfig N, et al. Interleukin-7 (IL-7) and IL-7 splice variants affect differentiation of human neural progenitor cells. *Genes Immun.* (2010) 11:11–20. doi: 10.1038/gene.2009.77

45. Hameg A, Gouarin C, Gombert JM, Hong S, van Kazer L, Bach JF, et al. IL-7 up-regulates IL-4 production by splenic NK1.1+ and NK1.1- MHC class I-like/CD1-dependent CD4+ T cells. *J Immunol.* (1999) 162:7067–74.

46. Wang XM, Zhang YG, Li AL, Long ZH, Wang D, Li XX, et al. Expressions of serum inflammatory cytokines and their relationship with cerebral edema in patients with acute basal ganglia hemorrhage. *Eur Rev Med Pharmacol Sci.* (2016) 20:2868–71.

47. Ellis J, van Maurik A, Fortunato L, Gisbert S, Chen K, Schwartz A, et al. Anti-IL-7 receptor alpha monoclonal antibody (GSK2618960) in healthy subjects - a randomized, double-blind, placebo-controlled study. *Br J Clin Pharmacol.* (2019) 85:304–15. doi: 10.1111/bcp.13748

48. Xia MQ, Qin SX, Wu LJ, Mackay CR, Hyman BT. Immunohistochemical study of the beta-chemokine receptors CCR3 and CCR5 and their ligands in normal and Alzheimer's disease brains. *Am J Pathol.* (1998) 153:31–7. doi: 10.1016/S0002-9440(10)65542-3

49. Yamamoto S, Matsuo K, Nagakubo D, Higashiyama S, Nishiwaki K, Oiso H. The effects of a CCR3 inhibitor, AXP1275, on allergen-induced airway inflammatory endothelium in shear flow. *J Pharmacol Sci.* (2015) 127:11–20. doi: 10.1093/jphs/jew079

50. Zhang J, Wang H, Sherbini O, Ling-Lin Pai E, Kang SU, Kwon JS, et al. Interleukin 9 ameliorates experimental stroke by repairing the blood-brain barrier via down-regulation of astrocyte-derived vascular endothelial growth factor-A. *FASEB J.* (2019) 33:4376–87. doi: 10.1096/fj.201801595RR

51. Kouro T, Takatsu K. IL-5- and eosinophil-mediated inflammation: from discovery to therapy. *Int Immunol.* (2009) 21:1303–9. doi: 10.1093/intimm/dxp102

52. Roufosse F. Targeting the interleukin-5 pathway for treatment of eosinophilic conditions other than asthma. *Front Med.* (2018) 5:49. doi: 10.3389/fmed.2018.00049

53. Jia L, Wang Y, Li J, Li S, Zhang Y, Shen J, et al. Detection of IL-9 producing T cells in the PBMCs of allergic asthmatic patients. *BMC Immunol.* (2017) 18:38. doi: 10.1186/s12865-017-0220-1

54. Pflanz S, Timans JC, Cheung J, Rosales R, Kanzler H, Gilbert J. IL-27, a heterodimeric cytokine composed of EBI3 and p28 protein, induces proliferation of naive CD4+ T cells. *Immunology.* (2002) 106:779–90. doi: 10.1111/j.1365-2567.2002.tb01324.x

55. Takeda A, Hamano S, Yamazaki A, Hanada T, Ishibashi T, Mak TW, et al. Cutting edge: role of IL-27/WSX-1 signaling for induction of T-bet through activation of STAT1 during initial Th1 commitment. *J Immunol.* (2003) 170:4886–90. doi: 10.4049/immunol.170.4886

56. Lucas S, Ghilardi N, Li J, de Sauvage FJ. IL-27 regulates IL-12 responsiveness of naive CD4+ T cells through Stat1-dependent and -independent mechanisms. *Proc Natl Acad Sci USA.* (2003) 100:15047–52. doi: 10.1073/pnas.2536517100

57. Batten M, Ghilardi N. The biology and therapeutic potential of interleukin 27. *J Mol Med.* (2007) 85:661–72. doi: 10.1007/s00109-007-0164-7

58. Tait Wojno ED, Hunter CA, Stumhofer JS. The immunobiology of the interleukin-12 family: room for discovery. *Immunity.* (2019) 50:851–70. doi: 10.1016/j.immuni.2019.03.011

59. Batten M, Li J, Yi S, Kljavin NM, Danilenko DM, Lucas S, et al. Interleukin 27 limits autoimmune encephalomyelitis by suppressing the development of interleukin 17-producing T cells. *Nat Immunol.* (2006) 7:929–36. doi: 10.1038/ni.1375

60. Stumhofer JS, Laurence A, Wilson EH, Huang E, Tato CM, Johnson LM. Interleukin 27 negatively regulates the development of interleukin 17-producing T helper cells during chronic inflammation of the central nervous system. *Nat Immunol.* (2006) 7:937–45. doi: 10.1038/ni.1376

61. Diveu C, McGeachy MJ, Cua DJ. Cytokines that regulate autoimmunity. *Curr Opin Immunol.* (2008) 20:663–8. doi: 10.1016/j.coi.2008.09.003

62. Trinchieri G, Pflanz S, Kastelein RA. The IL-12 family of heterodimeric cytokines: new players in the regulation of T cell responses. *Immunity.* (2003) 19:641–4. doi: 10.1016/S1074-7613(03)00296-6

63. Zhao X, Ting SM, Liu CH, Sun G, Kruzel M, Roy-O'Reilly M, et al. Neutrophil polarization by IL-27 as a therapeutic target for intracerebral hemorrhage. *Nat Commun.* (2017) 8:602. doi: 10.1038/s41467-017-00770-7

Conflict of Interest: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2020 Martha, Cheng, Fraser, Gong, Collier, Davis, Lukins, Alhajeri, Grupke and Pennypacker. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.