Supporting Information for

A permutation approach to the assignment of the configuration to diastereomeric tetrads by comparison of experimental and ab initio calculated differences in NMR data

Przemysław J. Boratyński*¹

Address: ¹Department of Organic Chemistry, Wrocław University of Technology, Wyspiańskiego 27, 50-370 Wrocław, Poland

Email: Przemysław Boratyński - Przemyslaw.boratynski@pwr.wroc.pl
*Corresponding author

Plots of NMR spectra for new compounds, HSQC experiments for tetrad 1, supporting tables, complete reference 16, synthetic references for compounds 1–4, presentation of manual workflow and Python code for automated processing

Table of Contents
S1. Supporting references ... S2
S2. Manual workflow example ... S3
S3. Peripheral discussion .. S5
S4. Supporting tables .. S5
 S4.1. Tables of experimental NMR shifts and GIAO shieldings ... S6
 S4.2. Tables with all permutations and their scores ... S10
S5. Plots of ¹H and ¹³C NMR spectra of new compounds ... S21
S5. Plots of ¹H,¹³C HSQC experiments for tetrad 1 ... S26
S7. Computer program (python) for quick calculation of permutations and their scores S28
S8. Cartesian coordinates for gas phase optimized geometries of tetrads 1–3 S31
S1. Supporting references

Synthesis of **1a**:

Boratyński, P. J.; Kowalczyk, R. *J. Org. Chem.* **2016**, *81*, 8029-8034.

Synthesis of **2a** and **2c**:

Boratyński, P. J.; Turowska-Tyrk, I.; Skarżewski, J. *Org. Lett.* **2008**, *10*, 385–388.

Synthesis **2d** and **3a-d** including NMR calculation for tetrad **3**.

Boratyński, P. J.; Turowska-Tyrk, I.; Skarżewski, J. *Tetrahedron: Asymmetry* **2012**, *23*, 876-883.

Synthesis and NMR calculation of **4a-d**:

Boratyński, P. J.; Skarżewski, J. *J. Org. Chem.* **2013**, *78*, 4473-4482.

Complete Gaussian reference, Reference 16 from main text

Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucci, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg, J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, J. A., Jr., Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, J. M.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, O.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J. *Gaussian 09, E.01*, Gaussian, Inc.: Wallingford, CT, 2009.
S2. Manual workflow example

Here the approach is exemplified by conducting the entire process manually and stepwise on the example of three signals assigned to three atoms (C-6, C-7, and C-8) for diastereomeric tetrad 1. For automatic processing, a simple computer program can be implemented, for example see Section S6.

Part A. Initial data

Interpretation of 13C NMR data for four diastereomers 1a-1d. Assignment of chemical shifts to particular atoms.

Molecular models of diastereomers 1 of specified configurations (SS, SR, RR, RS) are made, their geometries are optimized. Populations of individual conformers are evaluated based on their energy. Calculation of GIAO isotropic shieldings, e.g. at B3LYP/6-31G(d,p) level of theory or higher.

For corresponding atoms, four individual shifts (or shieldings) are averaged. Then individual shifts are expressed as deviations from this average.

atom	1a	1b	1c	1d	average	85,9S	85,9R	8R,9R	8R,9S
C-6	141.8	144.6	136.3	136.3	140.5	-4.3	-4.1	4.2	4.2
C-7	157.3	160.0	158.2	160.7	159.0	1.8	-1.0	0.8	-1.6
C-8	126.4	127.1	126.2	126.8	126.6	0.2	-0.4	0.4	-0.2

GIAO calculation

Negative sign of deviation is used for shieldings.
Part B. Processing

24 differently ordered non-repeating assignments of four configurations to four compounds, corresponding to permutations of experimental and DFT data

And corresponding data are set together for all atoms and all isomers

Selected comparison measure (cf. Table 1 in main text) is calculated to rank all the 24 permutations. In the example below: aggregate overlap

1. IF signs of Δ exp and Δ DFT match add lower value from |Δ exp| and |Δ DFT|
2. Repeat for next item

Finally the permutations are sorted according to their scores, the highest ranking permutation reflects the assignment predicted by computation
S3. Peripheral discussion

Alternative number of stereocenters (N) and diastereomers

N = 1: For one varying stereocenter there are can be two diastereomers. The number of permutations \(P_2 = 2! = 2 \) reduces the approach to the method by Goodman and Smith of comparing two isomers (CP3), and offers no advantage.

N = 3: For three varying stereocenters and eight possible diastereomers the number of permutations increases significantly \(P_8 = 8! = 40320 \). The method could easily be applied by using the algorithm run by a computer, however both experimental and DFT computed data have to be obtained with very high precision and accuracy which is often unattainable for some compounds.

N = 4: For four varying centers and sixteen diastereomers the number of permutation becomes very large \(P_{16} = 16! = 2 \times 10^{13} \) to the point of unfeasibility.

Alternative definition of midpoint.

Referencing the data instead of averages of chemical shifts and isotropic shieldings can be done using alternatively the corresponding median values. This approach was considered, because the midpoint is unaffected by the extreme values. However, for the studied compounds 1–7 no advantage of using the median was noted, the correct permutations received slightly worse scores, and separation between two highest rating permutations did not improve. In case of assignments of four possible configurations to three compounds the application of the median had a noticeably lower success ratio.

S4. Supporting Tables

Table S1. Percentage of correctly identified configuration by highest ranking permutation for sets of three diastereomers of compounds 1–7. This is an expanded version of Table 4 from the main text

	\(^{13}\)C NMR data		\(^{1}\)H NMR data												
	1	2	3	4	5	6	7	1	2	3	4	5	6	7	
CP1	75%	100%	100%	100%	100%	100%	80%	50%	0%	100%	75%	25%	25%		
CP2	75%	75%	100%	100%	50%	75%	75%	75%	50%	100%	100%	100%	50%	25%	
CP3	75%	100%	100%	100%	100%	75%	75%	75%	25%	100%	100%	25%	25%		
OL\(^c\)	100%	100%	100%	100%	100%	100%	50%	75%	100%	25%	100%	100%	75%	50%	50%
RMS	100%	100%	100%	100%	100%	100%	100%	100%	25%	100%	100%	100%	100%	25%	25%
R\(^b\)	100%	100%	100%	100%	100%	100%	100%	100%	25%	100%	100%	25%	100%	25%	
MAE	100%	100%	100%	100%	100%	75%	100%	100%	25%	100%	100%	100%	100%	50%	25%

\(^a\) Aggregate overlap, \(^b\) Pearson correlation coefficient, \(^c\) Average for compound tetrad. Cases when some of the measures did not point to the correct assignment were highlighted in yellow or orange. Each entry corresponds to four tests, where one experimental data was taken out.
S4.1. Tables of experimental NMR shifts and GIAO shieldings

Table S2. Assignment of 13C and 1H NMR signals for tetrad 1, and calculated isotropic shieldings at the GIAO/PW1PW91/6-311+G(2d,p) level of theory

Atom label	Experimental chemical shift δ (ppm)	DFT isotropic shielding, σ (ppm)						
	1a	1b	1c	1d	8S,9S	8S,9R	8R,9R	8R,9S
13C								
C-2	56.21	55.84	47.22	49.25	127.66	128.15	137.03	136.81
C-3	39.26	39.46	39.01	39.76	141.24	140.86	140.61	140.65
C-4	27.79	27.21	27.61	27.52	153.46	154.39	153.55	154.31
C-5	27.77	27.74	26.47	26.43	156.78	156.55	158.32	158.15
C-6	41.19	41.47	49.41	48.27	144.78	144.59	136.28	136.32
C-7	27.65	25.20	26.19	24.70	157.25	160.04	158.20	160.66
C-8	58.21	57.39	58.28	57.48	126.40	127.07	126.25	126.85
C-9	60.67	61.39	59.60	60.83	122.83	122.15	123.95	122.51
C-10	141.44	141.67	140.24	140.02	34.99	35.10	37.04	36.77
C-11	114.97	114.91	115.02	115.30	68.84	69.08	68.83	68.65
C-2'	147.46	147.60	147.38	147.59	35.11	34.91	35.02	35.18
C-3'	119.45	119.93	119.52	119.69	63.26	61.57	62.89	61.97
C-4'	139.30	139.64	139.72	140.06	41.57	40.89	41.19	40.63
C-5'	100.89	100.41	100.50	100.48	83.58	83.51	83.35	84.27
C-6'	158.83	158.55	158.72	158.54	22.43	22.89	22.52	22.89
C-7'	122.53	122.20	122.50	122.21	59.43	60.34	59.69	60.31
C-8'	134.04	132.07	132.08	132.08	49.91	49.65	49.67	49.80
C-9'	128.33	128.00	128.12	128.07	53.23	54.53	53.56	54.10
C-10'	145.20	145.13	145.03	145.12	37.09	36.93	36.87	37.21
OCH$_3$	55.96	56.02	55.77	55.85	131.09	131.28	131.05	131.35
C-4''	139.26	134.58	133.81	134.44	48.66	48.10	48.61	48.18
C-5''	122.12	122.25	122.50	122.46	59.92	58.51	59.71	58.42
1H								
H-2a	2.778	2.899	3.073	2.715	29.263	29.042	28.641	29.141
H-2s	3.214	3.168	2.990	2.891	28.639	28.604	29.012	29.119
H-3	2.340	2.324	2.298	2.288	29.459	29.484	29.493	29.539
H-4	1.787	1.870	1.758	1.807	30.244	30.178	30.223	30.166
H-5n	1.627	1.564	1.642	1.651	30.245	30.314	30.223	30.232
H-5x	1.627	1.771	1.642	1.651	30.218	30.067	30.185	30.159
H-6n	2.751	2.653	2.902	2.885	29.235	29.299	28.985	28.987
H-6x	3.462	3.899	3.984	3.070	28.240	28.892	28.951	28.778
H-7n	1.937	1.182	1.436	1.685	29.726	30.187	30.413	29.873
Atom label	Experimental chemical shift δ (ppm)	DFT isotropic shielding, σ (ppm)						
------------	--	--------------------------------------						
	2a	2b	2c	2d	8S,9S	8S,9R	8R,9R	8R,9S
13C								
C-2	56.55	56.18	47.55	47.63	133.77	134.05	142.43	142.92
C-3	39.58	39.76	39.78	39.80	146.46	146.57	145.87	146.04
C-4	28.08	28.02	28.02	28.15	159.43	159.72	159.66	159.59
C-5	28.08	28.14	26.66	26.58	160.80	161.38	162.63	162.41
C-6	40.92	41.03	49.58	49.33	149.18	149.82	141.03	141.25
C-7	28.81	27.86	27.74	27.15	160.63	161.92	161.55	162.77
C-8	59.48	58.26	58.99	58.08	129.30	130.49	129.34	131.29
C-9	49.47	50.18	48.11	49.33	139.57	138.10	140.60	139.30
C-10	142.03	142.12	140.90	140.83	54.30	54.70	56.27	56.11
C-11	114.28	114.71	114.44	114.67	82.15	82.23	81.77	81.71
OCH$_3$	55.48	55.47	55.45	55.54	138.74	138.73	138.74	139.05
C-2'	147.61	147.81	147.55	147.82	50.31	50.45	50.32	50.40
C-3'	119.75	119.70	120.06	119.46	75.03	73.39	75.34	74.31
C-4'	146.76	146.93	147.16	147.20	48.77	49.90	49.04	49.22
C-5'	102.09	102.01	101.71	102.17	93.68	93.91	93.84	93.69
C-6'	157.72	157.45	157.83	157.53	39.55	40.06	39.49	40.07
C-7'	120.92	120.53	121.28	121.47	74.91	75.68	74.88	75.63
C-8'	131.91	131.87	131.88	131.83	63.90	63.98	63.90	64.00
C-9'	128.79	128.44	128.79	128.67	65.90	66.31	65.79	66.17
C-10'	144.77	144.86	144.80	144.89	51.29	51.41	51.31	51.32
C-ipso	142.16	140.71	142.32	140.73	52.68	54.14	52.59	54.25

Table S3. Assignment of 13C NMR signals for tetrad 2, and calculated isotropic shieldings at the GIAO/B3LYP/6-31G(d,p) level of theory.
Atom label	Experimental chemical shift δ (ppm)	DFT isotropic shielding, σ (ppm)						
	$3a$	$3b$	$3c$	$3d$	$8S,9S$	$8S,9R$	$8R,9R$	$8R,9S$
C-2	57.5	57.6	48.8	49.5	127.22	126.87	135.10	134.91
C-3	39.8	39.9	39.6	39.8	140.73	140.36	141.06	140.25
C-4	28.4	28.3	29.4	29.1	153.18	153.25	152.56	152.42
C-5	27.5	27.8	26.4	26.2	157.63	157.50	157.78	158.64
C-6	43.1	43.6	50.8	50.8	143.02	141.56	134.35	135.29
C-7	25.3	25.1	24.4	23.8	158.99	160.24	159.73	161.35
C-8	62.8	61.1	63.1	61.4	120.68	124.68	119.89	124.50
C-9	78.9	79.7	78.4	79.3	103.37	101.10	103.37	99.96
C-10	141.9	142.2	139.1	139.7	35.07	34.37	37.43	35.64
C-11	115	114.7	114.6	114.4	68.39	69.79	68.66	70.09
C-2'	147.1	147.4	144	147.4	35.65	35.06	35.56	35.03
C-3'	117.6	120.4	117.5	120.5	66.23	61.51	65.70	61.37
C-4'	150	149.4	149.8	149.7	28.63	29.16	28.85	29.57
C-5'	106.3	104.8	106.3	105.1	77.09	80.02	77.48	80.31
C-6'	156.8	156.5	156.7	156.4	24.76	24.45	24.47	24.74
C-7'	121.5	121.3	121.5	121.1	61.36	61.43	61.36	61.57
C-8'	131.2	131.5	131	131.4	50.63	49.76	50.65	49.66
C-9'	128.8	126.9	127.5	127.1	54.55	55.93	54.67	56.29
C-10'	146.1	145.3	146.8	145.3	35.70	36.41	35.87	36.81
OCH3	55.4	55.3	55.3	55.3	131.85	132.06	131.88	132.04
C-ortho	143.9	145.7	146.1	145.5	35.40	31.84	35.67	32.62
C-meta	127.7	126.9	127.5	127.2	53.71	53.22	54.05	53.23
C-meta	127.6	128.5	127.7	128.6	55.58	53.81	55.63	53.76

Table S4. Assignment of 13C and 1H NMR signals for tetrad 3, and calculated isotropic shieldings at the GIAO/PW1PW91/6-311+G(2d,p) level of theory.
Atom label	Experimental chemical shift δ (ppm)	DFT isotropic shielding, σ (ppm)						
	4a	4b	4c	4d	8S,9S	8S,9R	8R,9R	8R,9S
C-2	56.1	57.4	49	49.1	134.26	133.52	141.51	141.21
C-3	39.4	39.8	40.1	39.7	146.62	145.96	146.27	146.02
C-4	27.7	27.8	28.3	28.3	159.41	159.38	158.97	159.14
C-5	27.4	27.8	26.6	26.4	161.58	161.31	162.58	162.89
C-6	42.4	42.7	49.4	50.3	148.12	147.70	141.24	140.41
C-7	20.2	24	20.1	20.9	168.32	163.98	168.73	165.13
C-8	57.5	56.1	57.6	55.5	131.30	134.72	131.41	134.87
C-9	59.1	62.8	59.2	63.2	130.45	125.81	130.07	125.91
C-10	142.1	141.8	140.7	140.3	54.40	54.69	54.58	55.85
C-11	114.5	114.4	114.1	114.5	82.06	82.09	81.82	81.84
C-2'	147.7	147.4	147.7	147.4	50.08	49.89	50.07	49.91
C-3'	119.9	120.2	120.3	120	75.61	75.32	75.49	75.38
C-4'	144.1	143.7	144.6	143.7	49.17	51.16	49.18	51.12
C-5'	102.2	102.1	102.4	102.0	94.20	93.99	94.30	93.94
C-6'	157.5	158	157.5	157.9	39.58	39.20	39.63	39.31
C-7'	120.5	121.8	120.4	121.7	74.49	74.46	74.82	74.47
C-8'	131.9	131.8	132	131.8	63.65	63.69	63.69	63.71
C-9'	126.7	126.8	126.7	126.8	68.07	68.09	68.07	68.09
C-10'	144.7	144.5	144.1	144.4	51.84	51.90	51.87	51.88
Tables with all permutations and their scores

Table S6a. Complete list of permutations with scores for comparison of experimental and calculated 13C NMR data for compound tetrad 1

Permutation	13C data score										
Perm. 1a	Perm. 1b	Perm. 1c	Perm. 1d	CP1	CP2	CP3	overlap	RMS	correl	MAE	
8S,9S	8S,9R	8R,9R	8R,9S	0.951	0.740	0.739	48.05	0.640	0.892	0.378	
8S,9S	8S,9R	8R,9S	8R,9R	0.905	0.700	0.694	43.59	0.758	0.849	0.479	
8S,9R	8S,9S	8R,9R	8R,9S	0.902	0.720	0.705	42.51	0.764	0.846	0.503	
8S,9R	8S,9S	8R,9S	8R,9R	0.855	0.640	0.600	38.05	0.864	0.802	0.605	
8S,9S	8R,9S	8R,9R	8S,9R	0.180	0.237	0.101	30.47	1.766	0.169	0.777	
8S,9S	8R,9R	8R,9S	8S,9R	0.120	0.210	0.053	26.60	1.824	0.113	0.865	
8S,9R	8R,9S	8R,9R	8S,9S	0.098	0.226	0.059	25.45	1.846	0.092	0.891	
8R,9S	8S,9R	8R,9R	8S,9R	0.085	0.124	-0.001	24.53	1.857	0.080	0.912	
8R,9R	8S,9S	8R,9R	8S,9R	0.077	0.133	-0.007	25.41	1.866	0.072	0.892	
Permutation	1a	1b	1c	1d	CP1	CP2	CP3	overlap	RMS	correl	MAE
------------	--------	--------	--------	--------	-------	-------	-------	---------	-------	--------	-------
8R,9S	8S,9R	8R,9R	8S,9S	0.052	0.134	-0.009	25.04	1.888	0.049	0.900	
8R,9R	8S,9R	8S,9S	8S,9S	0.044	0.143	-0.015	25.93	1.897	0.041	0.880	
8S,9R	8R,9R	8R,9S	8S,9S	-0.036	-0.134	-0.199	24.14	1.969	-0.034	0.921	
8S,9S	8R,9R	8S,9S	8R,9R	-0.049	-0.120	-0.201	24.72	1.981	-0.046	0.908	
8R,9R	8R,9S	8S,9S	8R,9R	-0.080	-0.143	-0.209	22.50	2.008	-0.075	0.958	
8R,9S	8S,9S	8R,9S	8R,9S	-0.087	-0.187	-0.238	27.44	2.014	-0.082	0.846	
8R,9R	8R,9S	8S,9S	8R,9R	-0.093	-0.198	-0.262	23.54	2.019	-0.087	0.934	
8R,9S	8R,9R	8S,9S	8R,9R	-0.093	-0.130	-0.122	23.08	2.019	-0.087	0.945	
8R,9S	8S,9S	8S,9S	8R,9S	-0.125	-0.236	-0.277	22.09	2.047	-0.117	0.967	
8R,9S	8S,9S	8S,9R	8R,9R	-0.130	-0.246	-0.301	18.20	2.051	-0.122	1.056	
8R,9S	8R,9S	8S,9S	8S,9R	-0.859	-0.691	-0.876	9.86	2.601	-0.806	1.245	
8R,9S	8R,9S	8S,9S	8R,9S	-0.897	-0.691	-0.908	6.48	2.627	-0.841	1.322	
8R,9S	8R,9R	8S,9S	8S,9R	-0.910	-0.726	-0.918	5.10	2.635	-0.854	1.354	
8R,9S	8S,9R	8S,9R	8S,9S	-0.948	-0.727	-0.949	1.72	2.661	-0.889	1.430	

Table S6b. Complete list of permutations with scores for comparison of experimental and calculated 1H NMR data for compound tetrad 1
Table S7. Complete list of permutations with scores for comparison of experimental and calculated 13C NMR data for compound tetrads 2

Permutation	13C data score						
	CP1	CP2	CP3	overlap	RMS	correl	MAE
8R,9R	8S,9R	8R,9R	8R,9S				
8S,9S	0.995	0.938	0.935	52.82	0.330	0.969	0.226
8S,9R	0.950	0.901	0.894	47.55	0.512	0.925	0.336
8S,9S	0.948	0.891	0.884	46.58	0.519	0.923	0.356
8S,9S	0.903	0.854	0.843	41.31	0.650	0.879	0.466
8S,9S	0.057	0.081	0.035	31.99	1.813	0.055	0.660
8R,9R	0.037	0.003	-0.014	31.11	1.831	0.036	0.678
8S,9R	0.028	0.046	-0.002	27.97	1.839	0.027	0.744
8S,9S	0.018	0.031	-0.007	26.37	1.849	0.017	0.777
8S,9R	0.015	0.001	-0.025	25.63	1.852	0.014	0.774
8R,9R	0.011	-0.001	-0.028	26.93	1.855	0.011	0.766
8S,9R	0.009	0.014	-0.025	26.88	1.857	0.009	0.767
8S,9S	0.001	-0.005	-0.032	27.40	1.865	0.001	0.756
8R,9S	-0.002	-0.002	-0.033	28.18	1.867	-0.002	0.739
8S,9S	-0.005	0.007	-0.032	27.75	1.870	-0.005	0.748
8S,9S	-0.007	-0.014	-0.046	24.72	1.872	-0.007	0.812
8S,9S	-0.011	-0.003	-0.040	22.35	1.875	-0.011	0.861
8R,9S	-0.021	-0.015	-0.051	25.97	1.884	-0.020	0.786
8R,9S	-0.021	-0.034	-0.060	27.09	1.884	-0.021	0.762
8R,9S	-0.025	-0.051	-0.072	25.74	1.887	-0.024	0.790
8R,9S	-0.083	-0.089	-0.118	21.72	1.939	-0.081	0.874
8R,9S	-0.901	-0.854	-0.914	10.28	2.556	-0.878	1.112
8R,9S	-0.954	-0.904	-0.961	5.92	2.590	-0.929	1.203
8R,9S	-0.997	-0.945	-1.001	2.76	2.618	-0.971	1.269

Data is sorted according to Pearson correlation coefficient (correl); permutation corresponding to correct assignment is highlighted in green, scores corresponding to best match of the data (highest CP1, CP2, CP3, aggregate overlap, correlation; and lowest RMS deviation and MAE) are highlighted in blue.

Table S8a. Complete list of permutations with scores for comparison of experimental and calculated 13C NMR data for compound tetrad 3

Permutation	13C data score						
	CP1	CP2	CP3	overlap	RMS	correl	MAE

S12
3a	3b	3c	3d	CP1	CP2	CP3	overlap	RMS	correl	MAE
8S,9R	8S,9R	8R,9R	8R,9S	0.986	0.806	0.797	62.86	0.703	0.881	0.522
8S,9R	8S,9R	8R,9R	8R,9R	0.780	0.707	0.641	50.74	1.104	0.697	0.775
8S,9R	8S,9S	8R,9R	8R,9S	0.747	0.697	0.612	49.75	1.157	0.667	0.795
8S,9S	8R,9S	8R,9R	8R,9R	0.541	0.599	0.456	37.63	1.437	0.483	1.048
8R,9R	8S,9S	8R,9R	8R,9S	0.295	0.135	0.108	44.98	1.711	0.264	0.895
8R,9R	8S,9R	8S,9S	8R,9S	0.141	0.055	-0.001	44.09	1.863	0.126	0.913
8S,9S	8R,9R	8S,9S	8R,9R	0.072	-0.015	-0.076	34.25	1.928	0.064	1.118
8R,9S	8S,9S	8R,9R	8R,9S	0.038	0.015	-0.086	30.96	1.959	0.034	1.187
8R,9R	8R,9R	8R,9R	8R,9S	0.029	0.046	-0.070	32.95	1.967	0.025	1.145
8S,9S	8R,9R	8R,9S	8R,9S	0.015	0.039	-0.083	32.68	1.979	0.014	1.151
8R,9S	8R,9S	8R,9R	8R,9S	0.010	0.035	-0.079	32.03	1.983	0.009	1.165
8R,9S	8R,9S	8S,9S	8R,9R	0.001	-0.010	-0.116	32.09	1.992	0.001	1.163
8R,9R	8R,9R	8S,9S	8R,9S	-0.002	-0.013	-0.111	34.07	1.994	-0.002	1.122
8R,9S	8S,9S	8R,9R	8R,9R	-0.009	-0.007	-0.119	31.76	2.000	-0.008	1.170
8R,9S	8S,9S	8R,9R	8R,9R	-0.017	-0.021	-0.125	31.17	2.008	-0.016	1.183
8R,9S	8S,9S	8R,9S	8R,9R	-0.027	-0.059	-0.146	33.15	2.016	-0.024	1.141
8R,9R	8S,9S	8R,9S	8S,9S	-0.036	0.012	-0.111	32.83	2.024	-0.033	1.148
8R,9R	8R,9R	8S,9S	8R,9S	-0.074	-0.008	-0.151	31.91	2.056	-0.066	1.167
8R,9S	8S,9S	8R,9R	8R,9R	-0.185	-0.135	-0.271	20.23	2.150	-0.166	1.410
8R,9R	8R,9S	8S,9S	8R,9R	-0.251	-0.050	-0.261	20.64	2.204	-0.225	1.402
8R,9R	8R,9S	8S,9S	8R,9R	-0.549	-0.616	-0.690	26.22	2.430	-0.491	1.286
8R,9R	8R,9S	8S,9R	8S,9S	-0.745	-0.710	-0.828	16.35	2.568	-0.665	1.491
8R,9S	8R,9R	8S,9S	8R,9R	-0.782	-0.689	-0.849	13.11	2.594	-0.699	1.559
8R,9S	8R,9R	8R,9R	8S,9S	-0.978	-0.783	-0.987	3.24	2.723	-0.873	1.764

Table S8b. Complete list of permutations with scores for comparison of experimental and calculated 1H NMR data for compound tetrad 3
Table S9a. Complete list of permutations with scores for comparison of experimental and calculated 13C NMR data for compound tetrad 4

Permutation	13C data score						
	CP1	CP2	CP3	overlap	RMS	correl	MAE
8S,9R 8S,9S	0.006	0.059	-0.274	5.90	0.357	0.004	0.237
8R,9R 8S,9S	-0.099	-0.113	-0.369	4.20	0.368	-0.064	0.274
8S,9S 8R,9R	-0.102	0.019	-0.320	5.20	0.368	-0.065	0.252
8S,9S 8R,9R	-0.111	0.080	-0.277	5.12	0.369	-0.071	0.254
8R,9R 8S,9S	-0.139	-0.038	-0.369	4.20	0.372	-0.089	0.274
8R,9R 8S,9S	-0.186	-0.111	-0.419	4.18	0.377	-0.119	0.275
8S,9R 8S,9S	-0.248	-0.096	-0.458	4.59	0.383	-0.159	0.266
8S,9R 8S,9S	-0.257	-0.035	-0.416	4.51	0.384	-0.165	0.267
8R,9R 8S,9S	-0.371	-0.158	-0.538	3.63	0.395	-0.238	0.287
8S,9R 8S,9S	-0.545	-0.321	-0.735	3.03	0.411	-0.351	0.299
8R,9R 8S,9S	-0.642	-0.259	-0.743	2.93	0.420	-0.412	0.302
8R,9R 8S,9S	-0.643	-0.285	-0.732	1.73	0.420	-0.413	0.328
8R,9R 8S,9S	-1.089	-0.493	-1.098	0.56	0.458	-0.700	0.353

Data is sorted according to Pearson correlation coefficient (correl), permutation corresponding to correct assignment is highlighted in green, scores corresponding to best match of the data (highest CP1, CP2, CP3, aggregate overlap, correlation; and lowest RMS deviation and MAE) are highlighted in blue.
Table S9b. Complete list of permutations with scores for comparison of experimental and calculated 1H NMR data for compound tetrad 4

Permutation	1H data score						
	CP1	CP2	CP3	overlap	RMS	correl	MAE
8S,9R	1.528	0.655	0.654	6.59	0.089	0.952	0.056
8S,9R	0.836	0.366	0.233	4.95	0.169	0.521	0.093
8S,9R	0.799	0.320	0.197	4.68	0.173	0.498	0.099
8S,9R	0.596	0.210	0.005	4.85	0.190	0.371	0.096
8S,9R	0.593	0.314	0.076	4.06	0.190	0.370	0.114
8S,9R	0.168	0.029	-0.309	3.57	0.221	0.105	0.125
8S,9R	0.107	0.031	-0.224	3.04	0.225	0.067	0.137
8S,9R	0.076	0.066	-0.299	3.49	0.227	0.047	0.127
8S,9R	0.067	0.010	-0.312	2.89	0.228	0.042	0.140
8S,9R	0.064	0.004	-0.356	3.33	0.228	0.040	0.130
8S,9R	0.006	0.118	-0.299	2.93	0.232	0.004	0.139
8S,9R	0.001	-0.042	-0.384	3.13	0.232	0.000	0.135
8S,9R	-0.003	-0.116	-0.426	3.29	0.232	-0.002	0.131
8S,9R	-0.035	-0.002	-0.377	2.82	0.234	-0.022	0.142
8S,9R	-0.042	-0.089	-0.402	2.81	0.235	-0.026	0.142
8S,9R	-0.070	-0.079	-0.424	3.13	0.237	-0.044	0.135
8S,9R	-0.104	-0.134	-0.429	2.62	0.239	-0.065	0.146
8S,9R	-0.127	0.035	-0.368	2.74	0.240	-0.079	0.144
8S,9R	-0.339	-0.130	-0.572	2.32	0.253	-0.211	0.153
8S,9R	-0.520	-0.186	-0.688	1.77	0.264	-0.324	0.166
8S,9R	-0.670	-0.405	-0.855	1.58	0.272	-0.417	0.170
8S,9R	-0.802	-0.389	-0.933	1.35	0.279	-0.500	0.175
8S,9R	-0.833	-0.364	-0.958	1.27	0.281	-0.519	0.177
8S,9R	-1.297	-0.622	-1.318	0.31	0.305	-0.808	0.199

Data is sorted according to Pearson correlation coefficient (correl), permutation corresponding to correct assignment is highlighted in green, scores corresponding to best match of the data (highest CP1, CP2, CP3, aggregate overlap, correlation; and lowest RMS deviation and MAE) are highlighted in blue.

Table S10a. Complete list of permutations with scores for comparison of experimental and calculated 13C NMR data for compound tetrad 5

Permutation	13C data score

S15
Table S10b. Complete list of permutations with scores for comparison of experimental and calculated 1H NMR data for compound tetrad 5

Permutation	1H data score						
	CP1	CP2	CP3	overlap	RMS	correl	MAE
1S,3R 1R,3R 1S,3S 1R,3S	1.260	0.657	0.654	1.61	0.116	0.827	0.081
1S,3R 1S,3S 1R,3R 1R,3S	0.927	0.524	0.476	1.24	0.157	0.608	0.118
1R,3R 1S,3R 1S,3S 1S,3R	0.822	0.313	0.303	1.16	0.168	0.539	0.126
1R,3R 1S,3R 1S,3S 1R,3S	0.621	0.187	0.081	0.95	0.187	0.408	0.148
1S,3R 1R,3S 1S,3S 1R,3R	0.530	0.293	0.117	0.96	0.195	0.347	0.146
1R,3S 1S,3S 1R,3R 1S,3R	0.489	0.180	0.125	0.79	0.199	0.321	0.163
1R,3S 1S,3S 1R,3S 1R,3S	0.407	0.027	-0.106	0.73	0.205	0.267	0.170
1R,3R 1R,3S 1S,3S 1S,3R	0.306	0.109	-0.047	0.73	0.214	0.201	0.169
1R,3R 1S,3S 1S,3R 1R,3S	0.196	-0.102	-0.182	0.65	0.222	0.128	0.177
1S,3S 1S,3S 1R,3S 1R,3R	0.108	-0.003	-0.177	0.85	0.229	0.071	0.157
1R,3S 1S,3S 1S,3R 1R,3R	-0.018	-0.262	-0.370	0.43	0.238	-0.012	0.199
1S,3R 1R,3S 1R,3R 1S,3S	-0.068	0.276	-0.176	0.80	0.241	-0.045	0.162
Data is sorted according to Pearson correlation coefficient (correl), permutation corresponding to correct assignment is highlighted in blue.

Permutation	CP1	CP2	CP3	overlap	RMS	correl	MAE
1R,3R 1S,3S	-0.116	-0.187	-0.341	0.62	0.245	-0.076	0.180
1S,3S 1R,3R	-0.130	0.049	-0.334	0.61	0.246	-0.085	0.181
1S,3S 1R,3R	-0.157	0.114	-0.292	1.05	0.247	-0.103	0.137
1R,3R 1R,3R	-0.190	0.011	-0.399	0.56	0.250	-0.125	0.186
1S,3S 1R,3R	-0.223	-0.107	-0.419	0.68	0.252	-0.146	0.174
1R,3S 1R,3R	-0.283	-0.145	-0.484	0.64	0.256	-0.186	0.179
1R,3R 1R,3R	-0.446	-0.029	-0.462	0.39	0.266	-0.292	0.203
1S,3S 1R,3R	-0.535	-0.191	-0.578	0.64	0.272	-0.351	0.178
1R,3R 1R,3S	-0.796	-0.355	-0.865	0.39	0.288	-0.522	0.203
1R,3R 1R,3R	-0.799	-0.349	-0.834	0.21	0.288	-0.524	0.221
1S,3S 1R,3S	-0.950	-0.477	-0.987	0.21	0.296	-0.623	0.221
1S,3S 1R,3R	-0.953	-0.471	-0.956	0.03	0.297	-0.625	0.239

Table S11a. Complete list of permutations with scores for comparison of experimental and calculated 13C NMR data for compound tetrad 6
Data is sorted according to Pearson correlation coefficient (correl), permutation corresponding to correct assignment is calculated.

Table S11b.
Complete list of permutations with scores for comparison of experimental and calculated 1H NMR data for compound tetrad 6

Permutation	1H data score									
	CP1	CP2	CP3	overlap	RMS	correl	MAE			
6a	6b	6c	6d							
2R,4R	2S,4R	2S,4S	2R,4S	1.817	0.435	0.303	1.32	0.131	0.713	0.096
2R,4S	2S,4R	2S,4S	2R,4R	1.508	0.417	0.196	1.20	0.141	0.591	0.102
2R,4R	2S,4R	2R,4S	2S,4S	1.432	0.327	0.080	1.22	0.143	0.561	0.101
2R,4S	2R,4R	2S,4S	2R,4R	1.090	0.371	0.048	1.16	0.153	0.428	0.104
2R,4R	2R,4R	2S,4S	2R,4S	1.001	0.353	-0.030	1.11	0.156	0.393	0.107
2R,4S	2R,4R	2R,4S	2R,4R	0.841	0.287	-0.196	0.95	0.160	0.330	0.115
2R,4S	2R,4R	2R,4S	2S,4S	0.615	0.245	-0.252	1.01	0.166	0.241	0.112
2R,4S	2R,4R	2R,4S	2S,4R	0.604	0.178	-0.360	0.91	0.167	0.237	0.117
2R,4S	2R,4R	2R,4S	2S,4R	0.423	0.241	-0.344	0.91	0.171	0.166	0.117
2R,4S	2R,4R	2S,4R	2S,4S	0.390	0.233	-0.381	0.98	0.172	0.153	0.113
2R,4S	2S,4R	2R,4R	2R,4S	0.322	0.157	-0.530	0.76	0.174	0.126	0.124
2R,4S	2R,4S	2S,4S	2S,4S	0.108	0.212	-0.550	0.83	0.179	0.042	0.121
2R,4S	2R,4S	2S,4S	2S,4S	-0.075	-0.210	-0.890	0.86	0.184	-0.029	0.119
2R,4S	2S,4S	2R,4S	2R,4R	-0.238	-0.130	-0.965	0.88	0.188	-0.093	0.118
2R,4S	2R,4S	2S,4S	2R,4R	-0.474	-0.246	-1.074	0.69	0.193	-0.186	0.128
2R,4S	2S,4S	2S,4R	2R,4S	-0.553	-0.159	-1.171	0.80	0.195	-0.217	0.122
2R,4S	2S,4S	2S,4R	2R,4R	-0.637	-0.166	-1.150	0.71	0.197	-0.250	0.127
2R,4S	2S,4S	2S,4R	2S,4S	-0.775	-0.347	-1.318	0.68	0.200	-0.304	0.128
2R,4S	2S,4S	2S,4R	2R,4R	-0.862	-0.178	-1.279	0.68	0.202	-0.338	0.128
2R,4S	2S,4S	2R,4R	2R,4R	-1.066	-0.279	-1.406	0.57	0.206	-0.418	0.134
2R,4S	2S,4S	2R,4R	2R,4S	-1.156	-0.297	-1.483	0.52	0.208	-0.453	0.136
2S,4S	2R,4S	2S,4S	2R,4R	-1.366	-0.387	-1.595	0.41	0.213	-0.536	0.142
2S,4S	2R,4S	2R,4R	2S,4S	-1.378	-0.485	-1.630	0.40	0.213	-0.540	0.142
2S,4S	2R,4S	2R,4R	2S,4R	-1.571	-0.488	-1.722	0.30	0.217	-0.616	0.147

Data is sorted according to Pearson correlation coefficient (correl), permutation corresponding to correct assignment is highlighted in green, scores corresponding to best match of the data (highest CP1, CP2, CP3, aggregate overlap, correlation; and lowest RMS deviation and MAE) are highlighted in blue.

Table S12a.
Complete list of permutations with scores for comparison of experimental and calculated 13C NMR data for compound tetrad 7

Permutation	13C data score									
	CP1	CP2	CP3	overlap	RMS	correl	MAE			
7a	7b	7c	7d							
2R,4S	2S,4S	2R,4S	2R,4R	-0.519	-0.402	-0.670	7.39	2.322	-0.397	1.790
2S,4R	2R,4S	2R,4R	2S,4S	-0.579	-0.429	-0.732	7.88	2.359	-0.444	1.766
2S,4S	2R,4S	2R,4R	2S,4R	-0.779	-0.451	-0.836	6.07	2.478	-0.597	1.856

S18
Table S12b. Complete list of permutations with scores for comparison of experimental and calculated 1H NMR data for compound tetrad 7

Permutation	1H data score										
7a 7b 7c 7d	CP1 CP2 CP3 overlap RMS correl MAE										
3R,5R 3R,5S 3S,5S 3S,5R	0.698 0.435 0.365 0.98 0.058 0.469 0.042										
3R,5R 3R,5S 3S,5S 3S,5R	0.608 0.120 0.101 0.99 0.061 0.409 0.041										
3S,5S 3R,5S 3S,5R 3R,5R	0.371 0.196 0.125 0.78 0.068 0.249 0.049										
3S,5R 3R,5R 3S,5S 3R,5S	0.364 0.395 0.168 0.84 0.068 0.244 0.047										
3S,5R 3S,5S 3R,5S 3R,5R	0.268 0.181 -0.003 0.77 0.070 0.180 0.050										
3S,5S 3R,5R 3S,5S 3S,5R	0.225 0.157 -0.034 0.76 0.071 0.151 0.050										
3R,5R 3S,5S 3S,5R 3S,5S	0.215 -0.047 -0.163 0.79 0.072 0.144 0.049										
3R,5S 3S,5S 3R,5S 3S,5R	0.178 -0.134 -0.267 0.78 0.073 0.120 0.050										
3S,5S 3R,5S 3R,5R 3S,5S	0.173 0.178 -0.039 0.73 0.073 0.116 0.051										
3S,5R 3R,5R 3R,5S 3S,5S	0.158 0.228 -0.058 0.76 0.073 0.106 0.050										
3S,5R 3R,5S 3S,5S 3R,5S	0.106 0.250 -0.063 0.73 0.074 0.071 0.051										
3R,5R 3S,5R 3S,5S 3R,5S	0.057 -0.109 -0.254 0.62 0.076 0.039 0.056										
	3S,5S	3R,5R	3S,5R	3R,5S	0.036	0.156	-0.072	0.63	0.076	0.025	0.055
-----	-------	-------	-------	-------	-------	-------	--------	-------	-------	-------	-------
3S,5S	0.008	-0.032	-0.193	0.53	0.077	0.006	0.059				
3R,5S	0.076	0.025	0.055	0.056							
3R,5R	3S,5S	3S,5R	3R,5S	3R,5S	-0.119	0.163	-0.205	0.59	0.080	-0.080	0.057
3R,5R	3S,5S	3R,5S	3S,5S	3S,5S	-0.321	-0.306	-0.534	0.47	0.084	-0.216	0.061
3S,5S	3S,5R	3R,5R	3R,5S	3R,5S	-0.378	-0.050	-0.395	0.35	0.086	-0.254	0.066
3R,5S	3S,5S	3S,5R	3S,5R	3R,5R	-0.389	-0.332	-0.584	0.51	0.086	-0.261	0.060
3R,5S	3S,5R	3S,5R	3S,5S	3S,5S	-0.498	-0.284	-0.639	0.50	0.088	-0.335	0.060
3R,5S	3S,5S	3S,5R	3S,5R	3S,5R	-0.587	-0.349	-0.748	0.46	0.090	-0.394	0.062
3R,5S	3S,5R	3R,5R	3S,5S	3S,5S	-0.913	-0.491	-0.962	0.22	0.096	-0.613	0.071

Data is sorted according to Pearson correlation coefficient (correl), permutation corresponding to correct assignment is highlighted in green, scores corresponding to best match of the data (highest CP1, CP2, CP3, aggregate overlap, correlation; and lowest RMS deviation and MAE) are highlighted in blue.
Figure S1. 1H and 13C NMR spectra for 9R-(4-trimethylsilyl-1,2,3-triazol-1-yl)-9-deoxyquinidine. Sample contains approx. 10 %mol of tBuOH (1H NMR: 1.24 ppm (s))
Figure S2. 1H and 13C NMR spectra for 1b
Figure S3. 1H and 13C NMR spectra for 1c
Figure S4. 1H and 13C NMR spectra for 1d
Figure S5. 1H and 13C NMR spectra for 2b. Trace contamination with 2a is visible.
S5. Plots of 1H, 13C HSQC experiments for tetrad 1.
S7. Computer program (python) for quick calculation of permutations and their scores

Prerequisites: python 2.7, open source libraries: openpyxl, numpy. Excel file (Book1.xlsx) arranged as in the example below.

Program code (filename: code.py, intended for Public-domain):
```python
# Required libraries: numpy - for calculations and openpyxl - for handling excel files
# Use python code.py [filename] [-1 (for shieldings)], otherwise program
# will take Book1.xlsx
from openpyxl import Workbook
from openpyxl import load_workbook
from itertools import permutations
from operator import itemgetter
from statistics import mean
import sys
import numpy

def comparison_measure(x, y, z):
    # main comparison routine returns a/b from input lists
    # x[] - experimental list, y[] - dft list;
    # comparison_measure: z=0 sum product, z = 1 CP1, z = 2 CP2, Z = 3 CP3,
    # Z = 4 overlap, Z = 5 RMS deviation, Z = 6 correlation coefficient, Z = 7 MAE
    a = 0
    b = 0
    if (z == 6):
        a = numpy.corrcoef(x, y)[0, 1]
        b = 1
    elif (z == 0):
        for i in range (min(len(x),len(y))):
            a += x[i]*y[i]
            b = 1
    elif (z == 1):
        for i in range (min(len(x),len(y))):
            b += x[i]*x[i]
        a += x[i]*y[i]
    elif (z == 2):
        for i in range (min(len(x),len(y))):
            if (x[i]<>0 and y[i]<>0):
                if (abs(y[i]/x[i])<>1):
                    a += x[i]*x[i]*y[i]/y[i]
                else:
```

1C Data

1H Data

1D Data

1E Data

1F Data

1G Data

1H Data

1I Data

1J Data

Column A:

keyword H

indicates change from 13C to 1H data

Cell F1:

keyword shieldings

indicates type of DFT data

S28
elif (z == 3):
 # for overlap
 for i in range(min(len(x),len(y))):
 if (x[i]>0 and y[i]<0):
 a += x[i]*x[i]/y[i]
 b += y[i]
 else:
 a += x[i]*y[i]
elif (z == 4):
 # for overlap
 for i in range(min(len(x),len(y))):
 if (x[i]*y[i]>0):
 # if signs are equal
 a += min (abs(x[i]), abs(y[i]))
 count report min absolute value
 b = 1

e1f (z == 5):
 for i in range(min(len(x),len(y))):
 b = 1
 a += (x[i]-y[i])*(x[i]-y[i])
 a = a**.5
 b = b**.5
else:
 return a/b

shf = 1

if len(sys.argv)<2:
 excelfilename=sys.argv[1]
else:
 excelfilename=sys.argv[1]
if len(sys.argv)>2:
 if sys.argv[2]==-1:
 shf=1
 excelfile = load_workbook(excelfilename, data_only=True)
 sheet = excelfile.active
 split_row=0
 if sheet.cell(row=1, column=6).value=='shieldings':
 # cell F1 keyword "shieldings"
 shf=1
 for row in range (2, sheet.max_row+1):
 xtab,otab,xabs,yabs=[0], [0], 0, 0
 for col in range (1,6):
 if (sheet.cell(row=row, column=col).value == None):
 break
 xtab.append(float(sheet.cell(row=row, column=col+1).value))
 otab.append(float(sheet.cell(row=row, column=col+6).value))
 sheet.cell(row=row, column=12).value=mean(xtab)
 sheet.cell(row=row, column=13).value=mean(otab)
 for col in range (1,5):
 sheet.cell(row=row, column=14+col).value=
 sheet.cell(row=row, column=14+col).value=mean(sheet.cell(row=row, column=12).value)
 sheet.cell(row=row, column=14+col).value=
 sheet.cell(row=row, column=15).value=mean(sheet.cell(row=row, column=13).value)*shf
 sheet.cell(row=1, column=12).value="avg exper"
 sheet.cell(row=1, column=13).value="avg dft"
 sheet.cell(row=1, column=15).value="dev exper"
 sheet.cell(row=1, column=20).value="dev dft"
 sheet.append ("H","experiment",",",",",",",","dft")
 xc,xh,yh=[0], [0], [0], [0], [0]
 if (x[i]<0 and y[i]<0):
 a += x[i]*x[i]/y[i]
 b += y[i]
 a += x[i]*y[i]
 else:
 a += x[i]*y[i]

elif (z == 4):
 # for overlap
 for i in range(min(len(x),len(y))):
 if (x[i]*y[i]>0):
 # if signs are equal
 a += min (abs(x[i]), abs(y[i]))
 count report min absolute value
 b = 1

e1f (z == 5):
 for i in range(min(len(x),len(y))):
 b = 1
 a += (x[i]-y[i])*(x[i]-y[i])
 a = a**.5
 b = b**.5
else:
 return a/b

shf = 1

if len(sys.argv)<2:
 excelfilename=sys.argv[1]
else:
 excelfilename=sys.argv[1]
if len(sys.argv)>2:
 if sys.argv[2]==-1:
 shf=1
 excelfile = load_workbook(excelfilename, data_only=True)
 sheet = excelfile.active
 split_row=0
 if sheet.cell(row=1, column=6).value=='shieldings':
 # cell F1 keyword "shieldings"
 shf=1
 for row in range (2, sheet.max_row+1):
 xtab,otab,xabs,yabs=[0], [0], 0, 0
 for col in range (1,6):
 if (sheet.cell(row=row, column=col).value == None):
 break
 xtab.append(float(sheet.cell(row=row, column=col+1).value))
 otab.append(float(sheet.cell(row=row, column=col+6).value))
 sheet.cell(row=row, column=12).value=mean(xtab)
 sheet.cell(row=row, column=13).value=mean(otab)
 for col in range (1,5):
 sheet.cell(row=row, column=14+col).value=
 sheet.cell(row=row, column=14+col).value=mean(sheet.cell(row=row, column=12).value)
 sheet.cell(row=row, column=14+col).value=
 sheet.cell(row=row, column=15).value=mean(sheet.cell(row=row, column=13).value)*shf
 sheet.cell(row=1, column=12).value="avg exper"
 sheet.cell(row=1, column=13).value="avg dft"
 sheet.cell(row=1, column=15).value="dev exper"
 sheet.cell(row=1, column=20).value="dev dft"
 sheet.append ("H","experiment",",",",",",",","dft")
 xc,xh,yh=[0], [0], [0], [0], [0]
 if (x[i]<0 and y[i]<0):
 a += x[i]*x[i]/y[i]
 b += y[i]
 a += x[i]*y[i]
 else:
 a += x[i]*y[i]
```python
sheet.cell(row=k, column=19+i).value == None):
    continue
x.append(sheet.cell(row=k, column=14+i).value)
y.append(sheet.cell(row=k, column=19+i).value)
x.append(x)
y.append(y)
x,y=[[],[]]
for k in range(split_row,sheet.max_row):
    if (sheet.cell(row=k, column=14+i).value == None or \
        sheet.cell(row=k, column=19+i).value == None):
        continue
    x.append(sheet.cell(row=k, column=14+i).value)
y.append(sheet.cell(row=k, column=19+i).value)
xh.append(x)
yh.append(y)
permu=[] #create permutation indexed list permu
permu = list(permutations("1234")) #create permutation list
for i in range (0, len(permu)):
    x=[] #create permutation list
    for j in range (0,4):
        k.append(int(permu[i][j])) #create permutation list
        permu[i]=k
for i in range (len(permu)):
    x,y=[],[[]]
    for j in range (4):
        for t in range (len(xc[j])):
            x.append(xc[j][t])
y.append(yc[permu[i][j]-1][t])
    for met in range(5):
        permu[i].append(comparison_measure(x,y,met))
for i in range (len(permu)):
    x,y=[],[[]]
    for j in range (4):
        for t in range (len(xc[j])):
            x.append(xh[j][t])
y.append(yh[permu[i][j]-1][t])
    for met in range(5):
        permu[i].append(comparison_measure(x,y,met))
permu = sorted(permu, key=itemgetter(10), reverse = True)
name_of_operation=["product", "CP1", "CP2", "CP3", "overlap", "RMS", "correl", "MAE","H_product", "H_CP1", "H_CP2", "H_CP3", "H_overlap", "H_RMS", "H_correl", "H_MAE",]
resultsheet=excelfile.create_sheet("Result")
resultsheet.sheet_properties.tabColor = "00FFFF"
for j in range (len(name_of_operation)):
    resultsheet.cell(row=1, column=j+1).value=sheet.cell(row=1, column=2+j).value
for j in range (len(name_of_operation)):
    resultsheet.cell(row=1, column=j+5).value=name_of_operation[j]
for i in range (len(permu)):
    for j in range (len(permu[i])):
        if j<1:
            resultsheet.cell(row=i+2, column=j+1).value=sheet.cell(row=1, column=6+permu[i][j]).value
        else:
            resultsheet.cell(row=i+2, column=j+1).value=permu[i][j]
excelfile.save(excelfilename.replace(".xlsx","-result.xlsx"))
```
S8. Cartesian coordinates for gas phase optimized geometries of tetrads 1–3

1a-conformer 1 [mPW1PW91/6-311+G(2d,p)]

atom	X	Y	Z
C	-0.13643	0.853889	-0.411364
C	0.925017	0.886628	0.684104
C	0.725448	1.657693	1.806586
C	1.691079	1.681519	2.829064
N	2.811200	0.996361	2.789955
C	3.042206	0.230229	1.694486
C	4.257371	-0.503390	1.651683
C	4.568814	-1.293910	0.586546
C	3.672450	-1.395171	-0.506665
C	2.483438	-0.793089	-0.503063
C	2.131658	0.130757	0.595652
N	2.811200	0.996361	2.789955
C	3.271322	-2.369005	-2.654078
C	1.425654	0.122413	0.025513
C	-2.012964	-1.079446	-2.018652
C	-2.037849	-2.469298	-1.316643
C	-2.762415	-2.227701	0.182367
C	-1.180027	-1.266723	0.680998
C	-3.699218	-1.685975	0.343222
C	-3.703283	-0.290297	-0.520164
N	-2.381852	0.005190	-1.093178
C	-4.083762	-1.362909	1.770158
C	-5.088174	-1.965912	2.397211
H	0.267854	0.353916	-1.287627
H	-0.164086	2.267224	1.900433
H	1.524426	2.292344	3.710132
H	4.925873	-0.407953	2.497785
H	5.493682	-1.855366	0.545364
H	1.814615	-0.798125	-1.343888
H	2.303409	-2.805194	-2.388543
H	3.803775	-3.048927	-3.315210
H	3.115374	-1.413790	-3.164912
H	-1.904741	0.779238	0.752437
H	-1.026037	-0.867884	-2.435437
H	-2.711004	-1.049593	-2.857461
H	-1.095154	-3.002021	-1.465108
H	-2.830000	-3.101765	-1.728153
H	-2.227793	-3.168501	0.733980
H	-0.284087	-1.676881	0.407272
H	-1.182806	-1.183204	1.768667
H	-4.486730	-2.317876	-0.879457
H	-4.17907	-0.381841	-1.340704
H	-4.012282	0.566425	0.881421
H	-3.502618	-0.622386	2.316234
H	-5.706781	-2.795606	1.898635
H	-5.339820	-1.741497	3.428980
N	-0.462521	2.297574	-0.883198
C	-0.020774	2.826642	-2.001113
C	-0.594598	4.072213	-1.954817
H	0.636301	2.351952	-2.708819
H	-0.516400	4.891227	-2.649655
N	-1.266629	3.027822	-0.180541
N	-1.347506	4.156804	-0.827772

Energies in solvent (SMD)

	SCF	Sum of electronic and zero-point Energies	Sum of electronic and thermal Energies	Sum of electronic and thermal Enthalpies	Sum of electronic and thermal Free Energies
		-1202.3757735	-1201.930975	-1201.907832	-1201.983488

Number of imaginary frequencies: 0
Energies in solvent (SMD)

Energy Type	Value
SCF	\(-1202.37770714\)
Sum of electronic and zero-point	\(-1201.932427\)
Energies	
Sum of electronic and thermal	\(-1201.909437\)
Enthalpies	
Sum of electronic and thermal	\(-1201.984540\)
Free Energies	
Number of imaginary frequencies	0

Conformer 2 [mPW1PW91/6-311+G(2d,p)]

Atom	X	Y	Z
C	0.127840	0.212899	0.209910
C	-0.755780	1.010111	0.441003
C	-0.291963	2.146307	1.061591
C	-1.142117	3.255253	1.246539
N	-2.392442	3.286969	0.851093
C	-2.889886	2.178843	0.243412
C	-4.244710	2.207786	\(-0.178857\)
C	-4.817547	1.125237	\(-0.777223\)
C	-4.061792	0.956697	0.805934
C	-7.402560	-1.072737	\(-1.566364\)
C	-4.073130	-2.309718	\(-1.781333\)
C	1.646316	0.064721	0.248036
C	2.351993	\(-1.821764\)	-1.138553
C	2.864102	\(-0.870648\)	-2.260739
C	3.399174	0.445184	\(-1.601708\)
C	2.093672	1.050006	\(-0.876453\)
C	4.484184	0.116943	\(-0.598756\)
C	3.831471	\(-0.853499\)	0.473815
N	2.429662	\(-1.818557\)	0.187613
C	5.080678	1.327086	0.819655
C	6.352514	1.684333	\(-0.125090\)
H	-0.112217	\(-0.618429\)	\(-0.773034\)
H	0.728791	2.221761	1.410793
H	-0.760595	4.147225	1.735845
H	-4.804609	3.117334	\(-0.002391\)
H	-5.852011	1.134535	\(-1.097135\)
H	-2.184323	\(-1.033353\)	\(-0.742101\)
H	-3.234982	\(-2.183814\)	\(-2.472521\)
H	-4.810828	\(-2.975945\)	\(-2.221848\)
H	-3.708689	\(-2.731332\)	\(-0.841488\)
H	1.881860	0.495972	1.224541
H	1.327118	\(-2.145916\)	\(-1.315360\)
H	2.953716	\(-2.730916\)	\(-1.087583\)
H	2.077517	\(-0.669148\)	\(-2.993589\)
H	3.698225	\(-1.320573\)	\(-2.805589\)
H	3.676453	1.144655	\(-2.355343\)
H	1.298169	1.210585	\(-1.601727\)
H	2.329813	2.032734	\(-0.464885\)
H	5.227072	\(-0.414095\)	\(-1.154636\)
H	4.399117	\(-1.785183\)	0.514002
H	3.881399	\(-0.465387\)	1.469374
H	4.438760	1.944739	0.646086
H	7.840118	1.182851	\(-0.731027\)
H	6.753431	2.568239	0.356418
N	-0.244351	\(-1.293699\)	1.130511
C	-0.257439	\(-1.317991\)	2.480811
C	-0.653196	\(-2.593874\)	2.796841
H	-0.006952	\(-0.463986\)	3.084949
H	-0.799999	\(-3.046549\)	3.762933
N	-0.613550	\(-2.493689\)	0.635674
N	-0.863369	\(-3.279933\)	1.643141
Energies in solvent (SMD)

\[
\text{SCF} = -1202.37403101
\]

Sum of electronic and zero-point Energies = -1201.928856

Sum of electronic and thermal Energies = -1201.905837

Sum of electronic and thermal Enthalpies = -1201.904893

Sum of electronic and thermal Free Energies = -1201.980948

Number of imaginary frequencies: 0
1b - conformer 1 [mPW1PW91/6-311+G(2d,p)]

C	-0.136787	-0.898596	1.063386
C	1.072882	-1.391897	0.276761
C	1.290871	-2.749988	0.242832
C	2.361587	-3.289775	-0.493575
N	3.288150	-2.556240	-1.175882
C	3.037973	-1.208658	-1.151228
C	3.965248	-0.420787	-1.881772
C	3.878723	0.939289	-1.894747
C	2.851859	1.591319	-1.167390
C	1.922946	0.863378	-0.458768
C	1.986679	-0.554992	-0.432617
O	2.884508	2.947955	-1.235035
C	1.912398	3.685183	-0.498928
C	-1.258684	-0.244716	0.217812
C	-2.379007	-2.276249	-0.565471
C	-3.726474	-1.888519	0.893664
C	-3.764515	-0.357335	0.222063
C	-2.537514	0.081872	1.041932
C	-3.722975	0.241123	-1.210152
C	-2.391559	-0.273901	-1.871735
N	-1.588675	-1.086218	-0.946760
C	-3.839625	1.735826	-1.242502
C	-4.833598	2.411524	-1.809362
H	-0.566965	-1.779164	1.544557
H	0.629659	-3.425318	0.774371
H	2.513864	-4.365443	-0.516059
H	4.745361	-0.942117	-2.742169
H	4.585704	1.548623	-2.443828
H	1.162088	1.373731	0.108024
H	0.901634	3.472376	-0.858460
H	2.145061	4.733607	-0.676040
H	1.976247	3.464041	0.569477
H	-0.857946	0.680622	-0.193607
H	-1.769923	-2.896836	0.101865
H	-2.824051	-2.846062	-1.472055
H	-3.827653	-2.347807	1.081094
H	-4.568819	-2.239718	-0.508388
H	-4.681089	-0.038680	0.722506
H	-2.548310	-0.456471	1.996099
H	-2.579565	1.141416	1.289891
H	-4.575972	-0.169147	-1.759466
H	-2.615402	-0.881515	-2.750929
H	-1.778769	0.564753	-2.208935
H	-3.834021	2.295999	-0.771275
H	-5.659147	1.983853	-2.298269
H	-4.859105	3.494673	-1.806092
N	0.241158	-0.018427	2.187614
C	0.815592	-0.387880	3.355916
C	0.998444	0.786091	4.843226
H	1.050016	-1.411840	3.589545
H	1.411229	0.954408	5.020066
N	0.872388	1.319720	2.155870
N	0.523568	1.806457	3.277136

Energies in solvent (SMD)

SCF	-1202.37463188
Sum of electronic and zero-point Energies	-1201.929464
Sum of electronic and thermal Energies	-1201.906468
Sum of electronic and thermal Enthalpies	-1201.905523
Sum of electronic and thermal Free Energies	-1201.981352

Number of imaginary frequencies: 0
1b - conformer 2 [mPW1PW91/6-311+G(2d,p)]

C -0.139418 0.216002 -0.135754
C 0.787779 -0.946680 -0.467126
C 0.345745 -2.074182 -0.135754
C 2.513781 -3.184563 -1.085886
C 2.985398 -2.006227 -0.441736
C 4.360102 -1.985267 -0.088300
C 2.762882 -0.228159 -0.109088
C 2.168939 -0.881931 -0.182638
N 2.513781 -3.104563 -1.085886
C 2.985398 -2.006227 -0.441736
C 4.360102 -1.985267 -0.088300
C 4.906631 -0.910978 0.548415
C 4.102368 0.213071 0.866265
C 2.762882 0.228159 0.548428
C 2.168939 -0.881931 -0.109088
O 4.764193 1.226919 1.481456
C 4.037475 2.407181 1.810741
C -1.659155 -0.071965 -0.182638
C -1.950714 -0.823441 2.128583
C -2.915373 -0.351511 2.457800
C -3.618395 -0.781082 1.154928
C -4.435701 -1.425954 0.633267
C -3.409181 -1.598935 0.383356
N -2.08952 -1.196327 0.696690
C -5.259959 -0.117913 -0.580796
C -5.86481 -0.171818 -0.638063
H 0.104685 0.582528 0.861784
H -0.693826 -2.193334 -1.384420
H 0.879688 -4.007797 -1.922296
H 4.955821 -2.851728 -0.346015
H 5.954739 -0.883775 0.819134
H 2.168683 1.100005 0.773035
H 3.607749 2.870695 0.919243
H 4.759849 3.082318 2.263499
H 3.248403 2.190759 2.527841
H -1.895437 -0.399795 -1.199060
H -0.917751 -0.572648 2.364668
H -2.194388 -1.715528 2.700486
H -2.368575 1.197264 2.882441
H -3.658691 0.046612 3.199608
H -4.276393 1.625997 1.340322
H -1.907417 1.978447 0.586581
H -2.954854 1.607729 -0.761095
H -5.121810 -0.721332 1.432494
H -3.662986 -2.457341 0.994919
H -3.444192 -1.912183 -0.660315
H -4.713756 0.155687 -1.482055
H -7.181852 -0.444850 0.227486
H -7.125816 0.054578 -1.550045
N -0.163639 1.365593 -1.004859
C 0.195075 1.440446 -2.354578
C 0.584739 2.751716 -2.618505
H 0.823587 0.590234 -2.991100
H 0.636197 3.247899 -3.565285
N 0.444064 2.570928 -0.462035
N 0.650065 3.408371 -1.437924

Energies in solvent (SMD)

```
SCF = -1202.37742888
Sum of electronic and zero-point Energies= -1201.932469
Sum of electronic and thermal Energies= -1201.909423
Sum of electronic and thermal Enthalpies= -1201.908479
Sum of electronic and thermal Free Energies= -1201.984658
Number of imaginary frequencies: 0
```
1b - conformer 3 [mPW1PW91/6-311+G(2d,p)]

Atom	x	y	z
C	0.151152	0.718440	-0.441897
C	-0.899844	0.843554	0.655181
C	-0.649021	1.652825	1.739375
C	-1.601924	1.776624	2.765415
N	-2.768435	1.157377	2.761913
C	-3.846269	0.364365	1.699027
C	-4.306372	-0.290135	1.690127
C	-4.678271	-1.093232	0.654195
C	-3.801061	-1.287351	-0.441689
C	-2.569610	-0.675468	0.599800
C	-2.152392	-1.287351	-0.441689
O	-4.289574	-2.195785	-1.415496
C	-3.484109	-2.359791	-2.558400
C	1.475812	0.086642	0.046719
C	1.016626	-2.278710	-0.360066
C	2.258018	-2.461826	-1.282457
C	3.274615	-1.367986	0.654228
C	3.735459	-1.617561	1.019052
C	4.781684	-0.653461	1.372814
C	6.018480	-0.986604	1.372814
H	-0.235730	0.115310	-1.260067
H	0.276133	2.210512	1.806464
H	-1.392099	2.414843	3.619080
H	-4.959784	-0.122526	2.536793
H	-5.638023	-1.594195	0.638126
H	-1.916776	-0.838891	-1.312546
H	-3.266325	-1.436383	-3.101800
H	-4.865095	-3.042773	-3.190574
H	-2.546454	-2.851256	-2.278496
H	1.839732	0.725961	0.850828
H	0.130423	-2.019466	-0.940140
H	0.775431	-3.202594	0.169028
H	1.978263	-2.377137	-2.336438
H	2.709291	-3.451797	-1.149546
H	4.138822	-1.411432	-1.584479
H	2.132051	0.067689	-2.855356
H	3.278840	0.825336	-0.965050
H	4.169829	-2.621344	0.581007
H	2.270074	-2.564707	1.891903
H	2.544356	-0.865865	2.245269
H	4.48240	0.391964	1.086332
H	6.363325	-2.015115	1.331716
H	6.738286	-0.245733	1.716685
N	0.428595	2.030561	-1.858196
C	-0.172567	2.597458	-2.121965
C	0.396317	3.842367	-2.217644
H	-0.928340	2.099380	-2.699377
H	0.215841	4.627224	-2.932587
N	1.318351	2.885843	-0.506468
N	1.302420	3.979894	-1.214864
1c - conformer 1 [mPW1PW91/6-311+G(2d,p)]

Energies in solvent (SMD)

SCF	-1202.37640527
Sum of electronic and zero-point Energies	-1201.931598
Sum of electronic and thermal Energies	-1201.908547
Sum of electronic and thermal Enthalpies	-1201.907603
Sum of electronic and thermal Free Energies	-1201.983615

Number of imaginary frequencies: 0
Energies in solvent (SMD)

Term	Value
SCF	-1202.37785436
Sum of electronic and zero-point Energies	-1201.932744
Sum of electronic and thermal Energies	-1201.909740
Sum of electronic and thermal Enthalpies	-1201.908795
Sum of electronic and thermal Free Energies	-1201.984868
Energies in solvent (SMD)

\[
\text{SCF} = -1202.37483053
\]

Sum of electronic and zero-point Energies = -1201.929744

Sum of electronic and thermal Energies = -1201.906718

Sum of electronic and thermal Enthalpies = -1201.905774

Sum of electronic and thermal Free Energies = -1201.981822

Number of imaginary frequencies: 0
1d - conformer 1 [mPW1PW91/6-311+G(2d,p)]

Atom	X	Y	Z
C	0.230097	0.918341	0.344773
C	-1.184043	1.061087	-0.379872
C	-1.332275	2.172087	-1.158210
C	-2.551176	2.318507	-1.843653
N	-3.526570	1.440536	-1.789924
C	-3.338880	0.338890	-1.020560
C	-4.399982	-0.602218	-0.954345
C	-4.297749	-1.730431	-0.197334
C	-3.115624	-1.982278	0.542653
C	-2.063178	-1.097955	0.501899
C	-2.140462	0.087777	-0.280656
C	-1.997704	-3.477996	2.037444
C	1.423792	0.726661	-0.621036
C	2.116707	-0.326564	-2.639774
C	3.587284	-0.081659	-2.183774
C	3.669850	-0.374149	-0.673498
C	2.088738	0.658449	0.879937
C	3.101157	-1.798741	-0.447780
C	1.569524	-1.693544	-0.759665
N	1.221956	-0.460535	-1.474474
C	3.366963	-2.365705	0.913045
C	4.003932	-3.567617	1.156560
C	0.194265	0.068732	1.022841
H	-0.582834	2.949378	-1.238780
H	-2.719510	3.198455	-2.458076
H	5.293004	-0.386125	-1.526847
H	-1.169407	-1.312818	1.065685
H	-1.11184	-3.603102	1.408571
H	-2.346755	-4.424186	2.518754
H	-1.80068	-2.721564	2.803544
H	1.413174	1.586863	-1.290919
H	1.752476	0.491122	-3.264299
H	2.032379	-1.243139	-3.227466
H	3.889526	0.951006	-2.378290
H	4.278057	-0.725306	-2.734440
H	4.704740	-0.325738	-0.329652
H	3.284035	1.640016	0.869408
H	2.709365	0.376452	1.132487
H	3.579632	-2.464563	-1.178994
H	1.244763	-2.547986	-1.363691
H	0.995419	-1.743399	0.167301
H	2.992348	-1.792642	1.759867
H	4.397930	-4.120711	0.352921
H	4.157968	-3.867381	2.166645
N	0.479843	2.075685	1.219790
C	0.163073	2.216838	2.528082
C	0.544279	3.496703	2.839528
H	-0.294117	1.430085	3.103642
H	0.488245	4.024131	3.776223
N	1.022571	3.215758	0.745441
N	1.085494	4.073834	1.725709

Energies in solvent (SMD)

Description	Value
SCF	-1202.3764241
Sum of electronic and zero-point	-1201.931236
Energies	-1201.908229
Sum of electronic and thermal	-1201.907285
Enthalpies	-1201.907285
Sum of electronic and thermal Free	-1201.983282
Energies	-1201.983282
Number of imaginary frequencies:	0
Energies in solvent (SMD)

Source	Value
SCF	-1202.37786413
Sum of electronic and zero-point Energies	-1201.932886
Sum of electronic and thermal Energies	-1201.909877
Sum of electronic and thermal Enthalpies	-1201.908933
Sum of electronic and thermal Free Energies	-1201.984886
Number of imaginary frequencies:	0

1d - conformer 2 [mPW1PW91/6-311+G(2d,p)]

Atoms	X	Y	Z
C	0.256544	0.153640	0.492778
C	-0.823486	1.180425	0.177998
C	-0.633468	2.528043	0.367224
C	-1.668272	3.437980	0.874044
N	-2.842224	3.082168	-0.393003
C	-3.964211	1.758831	-0.595952
C	-4.331266	1.369153	-1.104515
C	-4.628762	0.057048	-1.323895
C	-2.426708	-0.611205	-0.531325
C	-2.090405	0.749463	-0.321657
O	-4.087581	-2.215932	-1.286108
C	-3.192084	-3.289351	-1.018728
C	1.700477	0.686211	0.650944
C	3.358770	2.179342	-0.198395
C	4.460351	1.289351	-1.314808
C	4.003948	-0.205309	0.196868
C	2.719604	-0.437605	1.013444
C	3.512902	-1.837306	-1.717835
C	4.247561	-2.488184	-2.613892
H	0.258447	0.598423	0.296294
H	0.313228	2.915989	0.714055
H	-1.505918	4.501260	0.228021
H	-5.050700	2.152486	-1.308768
H	-5.593151	0.250080	-1.708839
H	-1.714754	-0.387901	0.319774
H	-2.293065	-3.219773	-1.629866
H	-3.734988	-4.198141	-1.259709
H	-2.906511	-3.308127	0.843993
H	1.689950	1.420483	1.461185
H	3.080485	2.964171	0.509402
H	3.707810	2.676712	-1.105665
H	4.609989	1.451277	1.459478
H	5.426298	1.421651	-0.899233
H	4.782543	-0.897967	0.521722
H	2.945025	-0.419349	2.082187
H	2.307643	-1.426660	0.806559
H	4.586031	-0.032738	-1.866354
H	2.683592	1.081627	-2.544877
H	1.683857	-0.127021	1.863247
H	2.688189	-2.364604	-1.241817
H	5.078801	-2.010553	-3.123032
H	4.045297	-3.520874	-2.871545
N	-0.113935	-0.612925	1.694406
C	-0.438585	-0.173218	2.931284
C	-0.657292	-1.318542	3.656071
H	-0.587131	0.871875	3.180550
H	-0.944654	-1.432391	4.687724
N	-0.134008	-1.963552	1.656914
N	-0.462653	-2.389538	2.842983
1d - conformer 3 [mPW1PW91/6-311+G(2d,p)]

Energies in solvent (SMD)

SCF = -1202.37512148

Sum of electronic and zero-point Energies = -1201.930141

Sum of electronic and thermal Energies = -1201.907122

Sum of electronic and thermal Enthalpies = -1201.906178

Sum of electronic and thermal Free Energies = -1201.982132

Number of imaginary frequencies: 0
2a - conformer 1 [B3LYP/6-31G(d,p)]

Atom	X	Y	Z
C	-0.266105	2.278815	-0.331469
C	0.682419	2.390532	-1.132513
H	1.466980	2.346963	-1.608768
C	0.644345	4.311577	-1.319764
H	1.391155	4.792855	-1.945518
C	-0.351225	5.071860	-0.705004
H	-0.37197	6.147749	-0.848998
C	-1.303984	4.435990	0.931178
H	-2.089501	5.016256	0.567039
C	-1.263659	3.052781	0.274325
H	-2.031289	2.576856	0.873779
C	-0.131146	0.768382	-0.128523
H	0.217992	0.364852	-1.081811
C	0.936561	0.463444	0.929330
C	0.779735	0.946803	2.215308
H	-0.075267	1.564958	2.467256
C	1.737376	0.663823	3.211888
H	1.593319	1.053477	4.219133
N	2.825579	-0.048843	3.003872
C	3.013851	-0.530656	1.746212
C	4.201008	-1.294620	1.517400
H	4.865519	-1.443701	2.361719
H	4.482480	-1.815249	0.283771
C	5.378739	-2.397565	0.897707
C	3.588684	-1.594878	-0.798973
C	2.432793	-0.860653	-0.618423
H	1.765332	-0.698861	-1.453212
C	2.112368	-0.308750	0.657091
C	3.980275	-2.159574	-1.977082
C	3.151083	-1.986232	-3.114796
H	2.154808	-2.419805	-2.957917
H	3.646994	-2.510769	-3.932670
H	3.042840	-0.926020	-3.377399
C	-1.448362	0.025444	0.220038
H	-1.776125	0.383796	1.202277
C	-2.335583	-0.207144	-2.045611
H	-1.441217	0.244169	-2.484300
H	-3.176646	0.107961	-2.671880
C	-2.228015	-1.763315	-1.990693
H	-1.259162	-2.106171	-2.373696
H	-2.999209	-2.234315	-2.611382
C	-2.380747	-2.197981	-0.519745
C	-2.312664	-3.287086	-0.434858
C	-1.264602	-1.527415	0.298363
H	-0.296789	-1.832949	-0.114538
H	-1.273551	-1.868941	1.337867
C	-3.788297	-1.734746	-0.829637
H	-4.532192	-2.160841	-0.715594
C	-3.804490	-0.165583	-0.157850
H	-4.626400	0.155392	-0.806625
H	-3.972963	0.296532	0.821632
N	-2.550061	0.367361	-0.706479
C	-4.130049	-2.201362	1.358138
H	-3.504232	-1.817407	2.165465
C	-5.135414	-3.022232	1.665412
C	-5.794127	-3.427527	0.906626
H	-5.338852	-3.320057	2.689680

Energies in solvent (SMD)

SCF = -1192.38180481

Sum of electronic and zero-point Energies= -1191.895611

Sum of electronic and thermal Energies= -1191.871940

Sum of electronic and thermal Enthalpies= -1191.870996

Sum of electronic and thermal Free Energies= -1191.950792

Number of imaginary frequencies: 1 (-7 cm⁻¹)

Frequencies in vacuum

Number of imaginary frequencies: 0
Atom	X	Y	Z
C	0.628422	2.032271	-0.410046
C	1.706631	2.587630	-1.055224
H	2.003856	2.158418	-2.058149
C	2.429382	3.668211	-0.599988
H	3.257144	4.075470	-1.151454
C	2.664822	4.220557	0.648711
H	5.061454	1.846456	3.668419
H	0.984345	3.684419	1.339337
C	0.866684	4.112711	2.292722
C	0.264916	2.605335	0.818280
H	-0.601972	2.234196	1.349089
C	-0.011211	0.839993	-1.047960
C	-0.540602	1.216688	-1.983059
C	-0.865636	-0.257851	-1.485799
C	0.931999	-0.603790	-2.822765
H	0.320917	-0.079399	-3.552497
H	0.993231	-0.363379	3.502665
C	1.777139	-1.647484	-3.260697
H	1.809732	-1.904806	-4.318812
N	2.540826	-2.356283	-2.455572
C	2.511972	-2.032968	-1.131610
C	3.351013	-2.790914	-0.261452
H	3.942102	-3.584090	-0.706637
C	3.407968	-2.521111	1.679408
H	4.044462	-3.087445	1.751200
C	2.632317	-1.461722	1.622827
C	1.800627	-0.711535	0.813731
H	1.242786	-0.079399	-3.552497
C	1.712374	-0.980740	-0.581590
O	2.795781	-1.269391	2.961996
C	2.075956	-0.210166	3.578216
H	2.331282	0.760866	3.135888
H	2.376104	-0.219697	4.628999
H	0.993231	-0.363379	3.502665
C	-1.296517	0.233206	-0.237639
H	-0.902747	-0.082745	0.734004
C	-3.154383	1.577587	-1.105935
H	-2.509510	2.024111	-1.860146
H	-3.856211	2.362182	-0.804448
C	-3.907070	0.332674	-1.669342
H	-3.661638	0.169652	-2.725150
H	-4.993362	0.468600	-1.612329
C	-3.477911	-0.892138	-0.837924
H	-3.946971	-1.801157	-1.228249
C	-1.943058	-1.009530	-0.931920
H	-1.663145	-1.058949	-1.989761
H	-1.581980	-1.938088	-0.479399
C	-3.935523	-0.662849	0.629856
H	-5.021991	-0.507745	0.616271
C	-3.232113	0.663855	1.105358
H	-3.980531	1.419662	1.366568
H	-2.636754	0.479112	2.007066
N	-2.347161	1.232743	0.677770
C	-3.651036	-1.824659	1.540835
H	-2.599945	-2.077380	1.688485
C	-4.576626	-2.541033	2.176094
H	-5.637828	-2.331322	2.067709
H	-4.310972	-3.371692	2.827026
The document contains a table and some text. Here is the representation of the content in a plain text format:

Energies in solvent (SMD)

Term	Value
SCF	-1192.38253744
Sum of electronic and zero-point Energies=	-1191.896613
Sum of electronic and thermal Energies=	-1191.871975
Sum of electronic and thermal Enthalpies=	-1191.871031
Sum of electronic and thermal Free Energies=	-1191.955438
Number of imaginary frequencies:	0

The table includes atomic coordinates for the molecule, with columns for carbon (C), hydrogen (H), oxygen (O), and nitrogen (N) atoms. The coordinates are given in angstroms (Å) with x, y, and z components.
2b - conformer 1 [B3LYP/6-31G(d,p)]

	x	y	z
	0.147498	1.632802	-0.574126
C	0.402927	2.688043	0.311329
C	0.488189	2.498337	1.382215
C	0.647830	3.980328	-0.157361
H	0.843324	4.782147	0.549098
C	0.624348	4.239132	-1.527438
H	0.835010	5.242216	-1.896200
C	0.392720	3.196275	-2.421641
H	0.392851	3.385089	-3.491360
C	0.150042	3.196275	-2.421641
H	0.082459	0.223111	1.015466
C	0.762130	2.540329	-0.719683
C	0.334059	-1.623188	-1.758372
H	-0.693502	-1.595151	-2.089178
C	1.221334	-2.540329	-2.355837
H	0.862334	-3.172846	-3.167883
N	2.478520	-2.701496	-1.996652
C	2.936296	-1.916879	-0.981569
C	4.292636	-2.084915	-0.584038
H	4.874930	-2.833888	-1.110199
C	4.837184	-1.328547	0.418587
H	5.870322	-1.445381	0.728601
C	4.044660	-0.351378	1.687964
C	2.722320	-0.163141	0.726820
H	2.135428	0.598182	1.219381
C	2.129938	-0.942578	0.307439
O	4.702165	0.349026	2.048105
C	3.990253	1.361318	2.741093
H	3.631589	2.141646	2.657796
H	4.696547	1.797044	3.449162
C	3.135109	0.947582	3.291602
C	-1.674218	-0.072037	-0.178171
H	-1.942007	0.036309	-1.235805
C	-1.859118	-1.722875	1.614692
H	-0.801980	-1.618031	1.874430
H	-2.115958	-2.773038	1.788185
C	-2.757654	-0.775580	2.468978
H	-2.151574	-0.154193	3.139158
H	-3.444120	-1.348495	3.103191
C	-3.551254	0.125636	1.501574
H	-4.196493	0.899895	2.062387
C	-2.540014	0.929115	0.658709
H	-1.914523	1.523545	1.333480
H	-3.847193	1.646809	0.006638
C	-4.426538	-0.787854	0.597809
H	-5.042116	-1.411493	1.258582
C	-3.424988	-1.706698	-0.196773
H	-3.651457	-2.762801	-0.815992
H	-3.526437	-1.538611	-1.275182
N	-2.023498	-1.465822	0.173884
C	-5.354635	-0.030882	-0.318420
H	-4.882224	0.608164	-1.058080
C	-6.686249	-0.099113	0.276974
H	-7.206737	-0.726645	0.443846
H	-7.306158	0.466785	-0.965973

Energies in solvent (SMD)

SCF	-1192.38311966
Sum of electronic and zero-point Energies=	-1191.896829
Sum of electronic and thermal Energies=	-1191.872367
Sum of electronic and thermal Enthalpies=	-1191.871423
Sum of electronic and thermal Free Energies=	-1191.953213

Number of imaginary frequencies: 0
2c - conformer 1 [B3LYP/6-31G(d,p)]

C	-0.866526	2.070947	0.755787
C	-0.171573	2.467730	1.907169
H	0.623414	1.833842	2.293045
C	-0.473914	3.662133	2.559251
H	0.079937	3.945726	3.449743
C	-1.485298	4.488991	2.865818
H	-1.726446	5.419857	2.573337
C	-2.187584	4.195684	0.926390
H	-2.982973	4.735774	0.539319
C	-1.882701	2.620725	-0.594707
H	-2.459313	2.620725	2.293045
H	-1.485298	3.662133	2.559251

Energies in solvent (SMD)

SCF	-1192.38192999
Sum of electronic and zero-point Energies	-1191.895873
Sum of electronic and thermal Energies	-1191.872260
Sum of electronic and thermal Enthalpies	-1191.871316
Sum of electronic and thermal Free Energies	-1191.950242
Number of imaginary frequencies:	1 (-20 cm⁻¹)

Frequencies in vacuum

Number of imaginary frequencies:	0

S47
2c - conformer 2 [B3LYP/6-31G(d,p)]

C	0.114562	1.854656	-0.817191
C	0.058010	2.365973	1.285069
H	-0.251174	1.713722	2.108771
C	0.356585	3.700600	1.559884
H	0.299488	4.074526	2.569467
C	0.739296	4.552879	0.511358
H	0.979511	5.592391	0.714485
C	0.796336	4.056761	-0.791045
H	1.090920	4.794957	-1.607995
C	0.495140	2.719354	-1.858782
H	0.571736	2.342565	-2.066384
C	-0.244491	0.391801	-0.293413
H	-0.223070	-0.131417	0.669221
C	0.803456	-0.281757	-1.178804
C	0.629663	-0.451229	-2.539617
H	-0.276058	-0.119099	-3.033841
C	1.628035	-1.076138	-3.321673
H	1.466192	-1.282520	-4.391652
N	2.762861	-1.536375	-2.838353
C	2.978971	-1.372671	-1.502686
C	2.080309	-1.856176	-0.973201
H	4.892465	-2.336751	-1.664384
C	4.514042	-1.710997	0.353278
H	5.450005	-2.070143	0.768110
C	3.597978	-1.063895	1.226085
C	2.388562	-0.593149	0.752178
H	1.710260	-0.078233	1.416951
C	2.043513	-0.740603	-0.620579
O	4.024162	-0.959635	2.516531
C	3.180018	-0.302648	3.449905
H	2.222823	-0.827426	3.565463
H	3.714439	-0.315666	4.400676
H	2.985314	0.736131	3.155243
C	-1.695857	0.249566	-0.832769
H	-1.747573	0.810952	-1.773027
C	-2.973137	0.092607	1.242000
H	-2.034079	-0.146218	1.750543
H	-3.559499	0.695914	1.943169
C	-3.740457	-1.227240	0.877995
H	-4.805118	-1.181141	1.114499
C	-3.616252	-1.378320	-0.664163
H	-4.004476	-2.348132	-0.978094
C	-2.139554	-1.225828	-1.890405
H	-1.506277	-1.927313	-0.534620
H	-2.027822	-1.490516	-2.146356
C	-4.430988	-0.232099	-1.307331
H	-5.501334	-0.370961	-1.117007
C	-3.922364	1.113687	-0.700090
H	-4.662575	1.541873	-0.815447
H	-3.739662	1.859637	-1.488019
N	-2.674536	0.915842	0.859026
H	-4.296584	-0.248201	-2.395573
C	-3.241165	-2.412296	1.656266
C	-3.975257	-3.139908	2.498654
H	-2.189927	-2.670692	1.522062
H	-3.556232	-3.981339	3.042402
H	-5.026029	-2.921242	2.675088

Energies in solvent (SMD)

SCF	-1192.38305994
Sum of electronic and zero-point Energies	-1191.896593
Sum of electronic and thermal Energies	-1191.872186
Sum of electronic and thermal Enthalpies	-1191.871242
Sum of electronic and thermal Free Energies	-1191.952513
Number of imaginary frequencies:	0
2d - conformer 1 [B3LYP/6-31G(d,p)]

C 0.146283 1.527018 -0.974424
C 0.172896 2.661873 -0.151957
H -0.068045 2.561395 0.904021
C 0.508365 3.917560 -0.664731
H 0.514703 4.781808 -0.066676
C 0.808632 4.069960 -2.817209
H 1.066262 5.036938 -2.419851
C 0.789749 2.938912 -2.847835
H 1.035654 3.037937 -3.901252
C 0.464367 1.685459 -2.339835
H 0.474753 0.817207 -2.982826
C -0.249814 0.156800 -0.412882
H -0.255546 0.253471 0.679217
C 0.787084 -0.908082 -0.770187
C 0.584339 -1.833107 -1.775484
H -0.349897 -1.866751 -2.321477
C 1.582753 -2.780280 -2.092834
H 1.400374 -3.495451 -2.896667
N 2.742970 -2.867616 -1.475352
C 2.978724 -1.973093 -0.475351
C 4.228070 -2.060940 0.207026
H 4.912025 -2.839821 -0.119324
C 4.558351 -1.195299 1.210942
H 5.499962 -1.250926 1.732730
C 3.630460 -0.183689 1.597485
C 2.405713 -0.069147 0.969030
H 1.722846 0.717640 1.254278
C 2.043632 -0.961619 -0.879712
O 4.070356 0.624753 2.604744
C 3.228219 1.673394 3.840085
H 2.995937 2.374937 2.226477
H 3.763858 2.195615 3.828640
H 2.277428 1.284910 3.447153
C -1.704684 -0.188496 -0.840696
H -1.711754 -0.253293 -1.934872
C -2.498023 -1.481803 1.866160
H -1.645624 -1.090800 1.630228
H -2.659604 -2.589448 1.411978
C -3.781181 -0.615797 1.335552
H -4.638835 -1.283884 1.488278
C -4.038959 0.183628 0.826213
H -4.836965 0.915260 0.188858
C -2.743507 0.896760 -0.414998
H -2.357880 1.515214 0.402414
H -2.947207 1.582803 -1.243612
C -4.444563 -0.828302 -1.065384
H -5.419056 -1.272814 -0.833253
C -3.332219 -1.919950 -1.133115
H -3.687333 -2.871539 -0.723184
H -3.028825 -2.112261 -2.168522
N -2.141918 -1.519543 -0.361057
H -4.558320 -0.312981 -2.927413
C -3.649071 0.236436 2.556523
C -4.436240 0.160273 3.639818
H -2.830334 0.957821 2.569532
H -4.286642 0.797866 4.506855
H -5.261883 -0.545786 3.692325
Energies in solvent (SMD)

SCF	-1267.605955
Sum of electronic and zero-point Energies	-1267.115934
Sum of electronic and thermal Energies	-1267.090569
Sum of electronic and thermal Enthalpies	-1267.089625
Sum of electronic and thermal Free Energies	-1267.169544

Number of imaginary frequencies: 0

Conformer 1 [mPW1PW91/6-311+G(2d,p)]

C	0.259217	0.344363	-1.313185
C	-0.758041	-0.814178	-1.274837
C	-0.738113	-1.735455	-2.299774
C	-1.667595	-2.791460	-2.339716
N	-2.689055	-2.969080	-1.443975
C	-2.669593	-2.081842	-0.417051
C	-3.686340	-2.278702	0.558669
C	-3.819663	-1.451329	1.626085
C	-2.983962	-0.376832	1.793981
C	-1.985645	-0.148220	0.876620
O	-3.113149	0.371266	2.913557
C	-2.265968	1.491828	3.141976
C	1.577069	0.114903	-0.485802
C	1.189390	-1.369866	1.445688
C	2.345106	-2.339569	1.077438
C	3.304172	-1.583279	0.988366
C	2.476032	-1.082199	1.012943
C	3.949788	-0.441538	0.979536
N	1.460855	0.012927	0.988366
C	4.950790	0.375472	0.217100
C	6.242923	0.468215	3.141976
O	0.727527	0.395868	-2.687879
H	-0.023565	-1.636933	-3.102755
H	-1.629157	-3.506306	-3.157463
H	-4.357511	-3.114578	0.399805
H	-4.585624	-1.594465	2.368724
H	1.202265	0.650683	1.035099
H	-1.222924	1.182362	3.255608
H	-2.615482	1.943176	4.067736
H	-2.341325	2.215806	2.326607
H	2.121177	1.047653	-0.654532
H	0.253134	-1.783921	1.012943
H	1.037134	-1.326129	2.526181
H	1.954319	-3.227511	0.574270
H	2.874763	-2.684169	1.970295
H	4.086026	-2.248221	-0.224632
H	1.878522	-1.838492	-1.451295
H	3.112883	-0.661752	-1.833015
H	4.477975	-0.906762	1.817936
H	2.709170	0.320755	2.633824
H	2.924352	1.479886	1.331057
H	4.576197	0.937962	-0.636342
H	6.671778	-0.067156	1.355439
H	6.918911	1.079979	-0.871368
C	0.409354	1.706145	1.033378
C	-1.525615	2.043636	-1.828624
C	0.887099	2.659606	0.163448
C	-2.126916	3.289454	-1.716599
H	-1.924066	1.319329	2.528372
C	-0.515779	3.911314	-0.850828
H	0.926386	2.425417	0.474555
C	-1.623181	4.231965	0.823849
H	-2.992003	3.524323	-2.325422
H	-0.113935	4.634556	0.658198
H	-2.091140	5.285180	-0.733816
H	1.813170	1.299797	-2.861038
3a - conformer 2 [mPW1PW91/6-311+G(2d,p)]

Atom	X	Y	Z
C	0.174748	1.231091	-0.829705
C	-1.187951	0.659379	-1.317280
C	-1.659684	1.077455	-2.548062
C	-2.844243	0.545659	-3.828211
N	-3.578371	-0.371949	-2.498442
C	-3.155541	-0.796333	-1.269077
C	-3.958795	-1.771125	-0.619764
C	-3.649265	-2.230500	0.624569
C	-2.568416	-1.727387	1.296260
C	-1.691348	-0.799126	0.691465
C	-1.980559	-0.307918	-0.614440
O	-2.328354	-2.232300	2.548948
C	-1.239627	-1.755441	3.326719
C	1.158586	-0.097973	-0.507120
C	3.407774	0.611923	-1.338073
C	4.143170	0.119339	-0.856152
C	3.198474	-0.851274	0.666399
C	1.856292	-0.115085	0.896934
C	3.043728	-2.107153	-0.237982
C	2.531366	-1.597395	-1.635291
N	2.171644	-0.169882	-1.585520
C	2.164252	-3.173170	0.348290
C	2.582123	-4.372036	0.740751
O	0.763484	1.965829	-1.897845
H	-1.106332	1.817183	-3.100024
H	-3.196084	0.891214	-4.053229
H	-4.833941	-2.124068	-1.150192
H	-4.262251	-2.965690	1.130841
H	-0.846066	-0.403586	1.229578
H	-0.281036	-2.016525	2.868776
H	-1.322834	-2.251429	4.291307
H	-1.295262	-0.672224	3.467470
H	0.530234	-0.891016	-0.607494
H	3.135007	1.661668	-1.250569
H	4.039114	0.513730	-2.216423
H	4.393231	0.960492	0.595340
H	5.082131	-0.381055	-0.308398
H	3.613781	-1.148420	1.631326
H	2.055589	0.861255	1.313227
H	1.221073	-0.649615	1.577701
H	4.042150	-2.537469	-0.361722
H	3.307339	-1.725216	-2.394668
H	1.661418	-2.166989	-1.961712
H	1.105042	-2.939422	0.439649
H	3.624487	-4.664498	0.661294
H	1.898721	-5.105701	1.151327
C	0.013777	2.253205	0.308312
C	-1.166324	2.424056	1.831976
C	1.083681	3.198826	0.598017
C	-1.263587	3.388039	2.034183
H	-2.834910	1.821475	0.811827
C	0.991095	4.070395	1.594771
H	1.990051	3.040117	0.812619
C	-0.184849	4.210419	2.326322
H	-2.216041	3.499916	2.575057
H	1.835958	4.719782	1.792998
H	-0.261822	4.962881	3.102223
H	1.241264	1.295736	-2.424085

Energies in solvent (SMD)

- SCF = -1267.60510711
- Sum of electronic and thermal Energies = -1267.114524
- Sum of electronic and thermal Energies = -1267.089528
- Sum of electronic and thermal Energies = -1267.168329
- Number of imaginary frequencies: 0
3b - conformer 1 [mPW1PW91/6-311+G(2d,p)]

	X	Y	Z
C	-0.097119	1.084338	-0.946738
C	0.828762	-0.113359	-1.508663
C	0.864117	-0.338224	-2.856849
C	1.643343	-1.381280	-3.393639
N	2.364640	-2.203490	-2.668681
C	2.364775	-2.084525	-1.322245
C	3.155899	-2.886101	-0.539681
C	3.235257	-2.753268	0.814293
C	2.524083	-1.714315	1.462876
C	1.738663	-0.845418	0.740837
C	1.624612	-0.966928	-0.672015
O	2.700174	-1.664692	2.812192
C	2.041963	-0.637654	3.542011
C	-1.278381	0.291372	-0.208549
C	-3.272188	1.727683	-0.517326
C	-4.072949	0.599936	-1.229799
C	-3.501804	-0.749235	-0.766126
C	-1.999908	-0.763423	-1.101762
C	-3.740697	-0.870152	0.762794
C	-3.009288	0.356294	1.420366
N	-2.286111	1.172316	0.432363
C	-3.301311	-2.181577	1.341796
C	-4.102321	-3.063597	1.930938
O	-0.681662	1.723545	-2.052363
H	0.277019	0.280909	-3.519579
H	1.655994	-1.541365	-4.468558
H	3.697293	-3.663898	-1.063062
H	3.840422	-3.413070	1.417632
H	1.238693	-0.041345	1.246088
H	2.354791	0.353841	3.202959
H	2.333994	-0.777192	4.580505
H	0.954696	-0.725627	3.455404
H	-0.811738	-0.240037	0.621238
H	-2.747239	2.350231	-1.234335
H	-3.936675	2.374731	0.860205
H	-3.978153	0.687273	-2.315163
H	-5.139075	0.661324	-0.992861
H	-4.004001	-1.572721	-1.278343
H	-1.880385	-0.524537	-2.159619
H	-1.565388	-1.753507	-0.951621
H	-4.817245	-0.776449	0.935678
H	-3.733486	1.000317	1.924315
H	-2.299466	0.016648	2.179254
H	-2.238966	-2.410499	1.276951
H	-5.168973	-2.886273	2.827403
H	-3.722863	-3.993986	2.336417
C	0.726439	2.019177	-0.128767
C	0.285926	2.689230	1.858718
C	1.962014	2.428039	-0.648719
C	1.864128	3.565154	1.707254
H	-0.681269	2.335432	1.454431
C	2.731869	3.391177	-0.007567
H	2.339755	1.973484	-1.557273
C	2.286843	3.962356	1.179830
H	0.702172	4.008100	2.628169
H	3.685346	3.684319	-0.430928
H	2.887071	4.708682	1.668756
H	-0.136985	2.499646	-2.225907

Energies in solvent (SMD)

SCF =	-1267.6096191
Sum of electronic and zero-point Energies=	-1267.119875
Sum of electronic and thermal Energies=	-1267.094466
Sum of electronic and thermal Enthalpies=	-1267.093522
Sum of electronic and thermal Free Energies=	-1267.173866

Number of imaginary frequencies: 0
3b - conformer 2 [mPW1PW91/6-311+G(2d,p)]

C	-0.259472	0.800208	-0.380773									
C	0.827292	0.675863	0.728690									
C	0.479881	1.192840	1.968887									
C	1.338451	1.009386	3.065577									
N	2.517551	0.516742	3.014310									
C	2.907145	0.081436	1.821354									
C	4.185864	-0.616182	1.784258									
C	4.672129	-1.173405	0.641139									
C	3.891066	-1.139788	-0.539291									
C	2.648729	-0.552816	-0.558576									
C	2.108575	0.041795	0.627276									
O	4.479200	-1.725618	-1.621740									
C	3.772149	-1.726350	-2.853625									
C	-1.360587	-0.251597	-0.056666									
C	-2.237337	-1.187522	-2.207729									
C	-1.998735	-2.597883	-1.831937									
C	-1.924038	-2.682476	-0.300537									
C	-0.836827	-1.695487	0.168735									
C	-3.321357	-2.298639	0.257257									
C	-3.642195	-0.861256	-0.300354									
N	-2.495337	-0.274011	-1.013027									
C	-3.420002	-2.378597	1.751804									
C	-4.232959	-3.190253	2.420025									
O	0.328516	0.530821	-1.671037									
H	-0.463552	1.766252	2.891917									
H	1.035481	1.565934	4.022859									
H	4.755410	-0.625212	2.704752									
H	5.646273	-1.645060	0.605544									
H	2.079065	-0.520866	-1.454806									
H	2.827767	-2.272334	-2.769283									
H	4.419959	-2.229322	-3.568482									
H	3.579401	-0.707182	-3.196198									
H	-1.793108	0.888888	0.886218									
H	-1.379345	-0.708402	-2.739999									
H	-3.104167	-1.000335	-2.863344									
H	-1.067118	-2.962508	-2.272395									
H	-2.083341	-3.235628	-2.209185									
H	-1.671460	-3.696300	0.816353									
H	0.072706	-1.873111	-0.407224									
H	-0.579644	-1.851267	1.217374									
H	-4.844080	-3.006645	-0.158419									
H	-4.485493	-0.984847	-0.993186									
H	-3.932751	-0.193258	0.514442									
H	-2.777999	-1.708327	2.320349									
H	-4.897906	-3.877522	1.906236									
H	-4.263455	-3.198916	3.503025									
C	-0.755712	2.256262	-0.416943									
C	-2.053143	2.648985	-0.891264									
C	0.157106	3.245448	-0.805417									
C	-2.427067	3.990231	-0.149251									
H	-2.792791	1.914601	0.188631									
C	-0.215591	4.581137	-0.869568									
H	1.173774	2.962960	-1.859200									
C	-1.513641	4.960466	-0.539314									
H	-3.442131	4.270964	0.106363									
H	0.510749	5.327552	-1.168976									
H	-1.807649	6.062330	-0.585091									
H	-0.186557	1.029993	-2.314820									

Energies in solvent (SMD)

SCF = -1267.60699133

Sum of electronic and zero-point Energies = -1267.117158

Sum of electronic and thermal Energies = -1267.091805

Sum of electronic and thermal Enthalpies = -1267.090861

Sum of electronic and thermal Free Energies = -1267.171387

Number of imaginary frequencies: 0
Energies in solvent (SMD)

Term	Value
SCF	-1267.61548151
Sum of electronic and zero-point Energies	-1267.124704
Sum of electronic and thermal Energies	-1267.09869
Sum of electronic and thermal Enthalpies	-1267.09825
Sum of electronic and thermal Free Energies	-1267.177890
3c - conformer 2 [mPW1PW91/6-311+G(2d,p)]

Energies in solvent (SMD)

SCF	-1267.606455
Sum of electronic and zero-point Energies	-1267.115897
Sum of electronic and thermal Energies	-1267.09054
Sum of electronic and thermal Enthalpies	-1267.09001
Sum of electronic and thermal Free Energies	-1267.169545

Number of imaginary frequencies: 0
3d - conformer 1 [mPW1PW91/6-311+G(2d,p)]

Energies in solvent (SMD)

SCF = -1267.61045435

Sum of electronic and zero-point Energies= -1267.120661

Sum of electronic and thermal Energies= -1267.095303

Sum of electronic and thermal Enthalpies= -1267.094359

Sum of electronic and thermal Free Energies= -1267.174507

Number of imaginary frequencies: 0
3d - conformer 2 [mPW1PW91/6-311+G(2d,p)]

C -0.608379 -0.728490 -0.261253
C 0.615266 -1.186394 0.572033
C 0.344527 -2.072686 1.594986
C 1.353169 -2.521497 2.460853
N 2.688166 -2.151144 2.361450
C 2.924584 -1.285877 1.365806
C 4.287471 -0.896389 1.272976
C 4.713324 -0.025653 0.316951
C 3.782372 0.507246 -0.607334
C 2.454030 0.159229 -0.555411
N 4.322271 1.365320 -1.519931
C 3.465509 1.931283 -2.501179
C -1.419661 0.276349 0.618856
C -3.558143 1.238137 1.008930
C -2.855907 2.130248 2.076489
C -1.528279 2.624631 1.471052
C -0.587905 1.419290 1.257647
C -1.867508 3.265714 0.101319
C -2.284348 2.075600 -0.823776
N -2.680736 0.854006 -0.856872
C -0.759986 4.080560 -0.492465
C -0.845763 5.367192 -0.814983
O -0.172889 -0.090118 -1.475390
H -0.658081 -2.455845 1.735015
H 1.107779 -3.218148 3.257420
H 4.971638 -1.321526 1.996152
H 5.750838 0.274677 0.239389
H 1.758220 0.557795 -1.269591
H 3.002581 1.156324 -3.118978
H 4.098680 2.562083 -3.121503
H 2.682606 2.541276 -2.840738
H -1.815338 -0.329327 1.436694
H -3.972343 0.334441 1.463278
H -4.389604 1.766866 0.537470
H -2.661962 1.565374 2.992924
H -3.489701 2.976748 2.352889
H -1.857744 3.360940 2.125149
H -0.161152 1.093603 2.208053
H 0.258500 1.763066 0.619488
H -2.725134 3.930888 0.246183
H -3.168375 2.344691 -1.418129
H -1.477278 1.851116 -1.515912
H 0.176460 3.558588 -0.679490
H -1.757465 5.934168 -0.654700
H -0.009186 5.981422 -1.249479
C -1.412154 -1.974910 -0.686609
C -0.785784 -2.876976 -1.557889
C -2.712427 -2.255551 -0.278442
C -1.448341 -4.028646 -1.995721
H 0.225124 -2.679471 -1.887148
C -3.368130 -3.405692 -0.705943
H -3.238696 -1.574217 0.380415
C -2.737724 -4.291473 -1.569227
H -0.933842 -4.705127 -2.665424
H -4.379894 -3.601875 -0.370227
H -3.249823 -5.184445 -1.907423
H -0.916788 -0.149580 -2.893565

Energies in solvent (SMD)

SCF = -1267.60817842

Sum of electronic and zero-point Energies= -1267.118010

Sum of electronic and thermal Energies= -1267.092762

Sum of electronic and thermal Enthalpies= -1267.091818

Sum of electronic and thermal Free Energies= -1267.171997

Number of imaginary frequencies: 0