Corneal Langerhans cells in children with celiac disease

Hoda Gad1, Ibrahim Mohammed2, Saras Saraswathi3, Bara Al-Jarrah3, Maryam Ferdousi4, Ioannis N. Petropoulos1, Georgios Ponirakis1, Adnan Khan5, Parul Singh6, Souhaila Al Khodor6, Fatma Al-Mudahka8, Khaled Abouhazima3, Anthony K. Akobeng3 & Rayaz A. Malik1,4*

Celiac disease (CeD) is a common small bowel enteropathy characterized by an altered adaptive immune system and increased mucosal antigen presenting cells. This study aims to establish if quantification of corneal Langerhans cells (LCs) using corneal confocal microscopy (CCM) could act as a surrogate marker for antigen presenting cell status and hence disease activity in children with CeD. Twenty children with stable CeD and 20 age-matched controls underwent CCM and quantification of central corneal total, mature and immature LC density. There was no difference in age (11.78 ± 1.7 vs. 12.83 ± 1.9; \(P = 0.077 \)) or height (1.38 ± 0.14 vs. 1.44 ± 0.13; \(P = 0.125 \)). BMI (18.81 ± 3.90 vs. 22.26 ± 5.47; \(P = 0.031 \)) and 25 OHD levels (43.50 ± 13.36 vs. 59.77 ± 22.45; \(P = 0.014 \)) were significantly lower in children with CeD compared to controls. The total (33.33(16.67–59.37) vs. 51.56(30.21–85.42); \(P = 0.343 \)), immature (33.33(16.67–52.08) vs. 44.79(29.17–82.29); \(P = 0.752 \)) and mature (1.56(0–5) vs. 1.56(1.04–8.33); \(P = 0.752 \)) LC density did not differ between the CeD and control groups. However, immature (\(r = 0.535, P = 0.015 \)), mature (\(r = 0.464, P = 0.039 \)) and total (\(r = 0.548, P = 0.012 \)) LC density correlated with age. Immature (\(r = 0.602, P = 0.038 \)) and total (\(r = 0.637, P = 0.026 \)) LC density also correlated with tissue transglutaminase antibody (Anti-TtG) levels assessed in 12/20 subjects with CeD. There was no difference in corneal LC density between children with CeD and controls. However, the correlation between corneal LC density and anti-TtG levels suggests a relationship with disease activity in CeD and requires further study.

Celiac disease (CeD) affects ~ 0.7% of the world population1, but may be more prevalent in the Middle East2,3, especially in Qatar4. It is characterized by varying degrees of intestinal malabsorption, caused by an inappropriate immune response to ingested wheat gluten containing gliadin. Histopathological studies demonstrate villous atrophy with defective transepithelial5,6 and paracellular uptake of gliadin by the intestinal mucosa of patients with active celiac disease.

Circulating dendritic cells are recruited to the inflamed mucosa in those with active CeD, and indeed, there is a significant increase in the number of dendritic cells (DC) in the lamina propria of patients with active celiac disease, which reverts to normal with a gluten-free diet7,8. DCs isolated from patients with active celiac disease behave as APCs and transcribe IFN-gamma9, a key cytokine in the pathogenesis of CeD. The level of auto-antibodies to the enzyme transglutaminase 2 (TG2) and gliadin in gluten-consuming subjects are used as a diagnostic adjunct and marker of disease activity. Intriguingly, TG2 is expressed on most cell surfaces including monocytes and APCs, suggesting that it may facilitate the uptake of gluten10.

Corneal Langerhans cells (LC’s) are APCs which modulate the immune response in the cornea11,12. We have used corneal confocal microscopy (CCM) a rapid, non-invasive and well-tolerated ophthalmic imaging technique to quantify the number of mature and immature corneal LC’s11–15. Moreover, we and others have shown increased LC’s in patients with type 1 diabetes11,16, latent autoimmune diabetes of adults (LADA)16, multiple sclerosis (MS)12, long-COVID15, dry eye disease16, systemic lupus erythematosus (SLE)19, fibromyalgia18, thyroid-associated ophthalmopathy21, and chronic inflammatory demyelinating polyneuropathy (CIDP)22. These studies suggest that corneal immune cells are associated with a number of immune and inflammatory diseases.

1Department Medicine, Weill Cornell Medicine-Qatar, Doha, Qatar. 2Department of Internal Medicine, Albany Medical Center Hospital, Albany, NY, USA. 3Division of Gastroenterology, Hepatology, and Nutrition, Sidra Medicine, Doha, Qatar. 4Institute of Cardiovascular Medicine, University of Manchester, Manchester, UK. 5Faculty of Health Sciences, Khyber Medical University, Peshawar, Pakistan. 6Research Department, Sidra Medicine, Doha, Qatar. 7Division of Endocrinology, Sidra Medicine, Doha, Qatar. 8General Pediatrics Department, Sidra Medicine, Doha, Qatar. *email: ram2045@qatar-med.cornell.edu
In the present study we have quantified mature, immature and total numbers of LCs and related them to clinical parameters and anti-TtG level in children with CeD.

Results

There was no significant difference in age, height, or tissue transglutaminase antibody between children with CeD and the control group. BMI and vitamin D were significantly lower in children with CeD compared to the control group (Table 1).

Langerhans cells. The total, immature and mature LC density in the central cornea did not differ between children with CeD and controls (Fig. 1a,b) (Table 2).

Age	Controls (n=20)	CeD (n=20)	P-value
Duration of disease			
Height (m)	1.44±0.13	1.38±0.14	0.125
Body Mass Index (kg/m²)	22.26±5.47	18.81±3.90	0.031
Tissue Transglutaminase antibody (U/mL)	0–3	12.90(1–165)*	-
Hemoglobin (g/dl)	125.50±7.84	125.63±7.45	0.963
Platelets x 10⁹/L	333.75±73.20	325.42±77.51	0.768
WBC x 10⁹/L	7.72±1.98	6.73±1.89	0.171
25 OHD (ng/mL)	59.77±22.45	43.50±13.36	0.014
Vitamin B₁₂ (ng/mL)	180–914	321.84±89.40	-
Folic acid (nmol/L)	11.3–47.6	18.60(12.20–45.50)	-
Serum Iron (μmol/L)	13.65±2.76	11.46±7.67	0.709

Table 1. Clinical demographic and laboratory measures in control subjects and children with CeD. Data is presented as mean ± SD or median (range), Anti TtG, vitamin B12 and folic acid levels were compared with the normal laboratory range. CeD: Celiac Disease, BMI: Body Mass Index, WBC: White blood Cell Count. *Anti-TtG was available in 12/20 children with CD. Significant differences between groups are highlighted in bold.

Figure 1. (a) A CCM image of the sub-basal nerve plexus in a healthy control and (b) a child with celiac disease (CeD) with mature (red arrow) and immature LCs (green arrow).

Density (no./mm²)	Controls	Celiac Disease	P-value
Immature LC	44.79(29.17–82.29)	33.33(16.67–52.08)	0.752
Mature LC	1.56(1.04–8.33)	1.56(0–5)	0.752
Total LC	51.56(30.21–85.42)	33.33(16.67–59.37)	0.343

Table 2. Langerhans cells in children with Celiac Disease and controls. *Data is presented as mean ± SD, CeD: celiac disease, LC: Langerhans cells.
Methods

Children with a confirmed diagnosis of celiac disease and a positive serology test for anti-TtG antibodies (available in 12/20) with a disease duration of 4.49 ± 4.02 years and 20 healthy controls were recruited. Inclusion criteria were age between 8 and 17 years and a diagnosis of CeD. Exclusion criteria were any history of a cause of neuropathy, malignancy, vitamin B12 or folate deficiency, liver, or renal dysfunction. Participants were also excluded in they had corneal pathology, allergy to the eye-drops or previous ocular trauma or surgery in the past six months. Participants with a history of or current contact lens use were excluded. The study was approved by the Ethics Committee of Weill Cornell Medicine-Qatar (IRB 1700032) and Sidra Medicine (IRB 1500758–3) and was undertaken according to the principles of the Helsinki Declaration. Written informed consent and assent were obtained from all participants and their parents.

Corneal confocal microscopy procedure. Corneal confocal microscopy was undertaken using the Heidelberg Retina Tomograph Cornea Module (Heidelberg Engineering, Germany). Anesthetic drops Bausch & Lomb Minims® (Oxybuprocaine hydrochloride 0.4% w/v) were used to numb both eyes to limit irritation and discomfort during the examination. A drop of hypotears gel (Carbomer 0.2% eye gel) was placed on the tip of
the objective lens and a sterile disposable TomoCap was placed over the lens, allowing optical coupling of the objective lens to the cornea. Images were captured from the central cornea to quantify corneal Langerhans cells in the sub-basal layer. The investigator (HG) was blind to the study group when performing CCM and analyzing CCM images.

Image selection and quantification. Six images were selected from the central cornea, excluding those with pressure lines and out of focus images. Langerhans cells were identified as white, bright structures. Total, mature (with dendrites) and immature (without dendrites and a total end-to-end length less than 25 µm) L.C.s were counted manually using CCMetrics software. The investigator was blind to disease and control group during selection and quantification of the CCM images using anonymized codes for each participant.

Statistical analysis. All statistical analyses were performed using IBM SPSS Statistics software Version 27 and P < 0.05 was considered statistically significant. Normality of the data was assessed using the Shapiro–Wilk test, histograms and normal Q-Q plot. Data are expressed as mean ± SD for the normally distributed variables and as median(range) for the skewed variables. Inferential analyses were conducted for the corneal nerve parameters and clinical demographics using both parametric (T-test) and non-parametric (Mann–Whitney U) tests, with post-hoc adjustment. To investigate the association between corneal nerve metrics and clinical variables, Pearson and Spearman correlation were performed as appropriate. Grayphad prism version 9 was used to build dot plots.

Data availability

Data is available upon reasonable request to the corresponding author.

Received: 26 June 2022; Accepted: 13 October 2022
Published online: 31 October 2022

References

1. Glissen Brown, J. R. & Singh, P. Coeliac disease. Pediatr. Int. Child Health 39, 23–31. https://doi.org/10.1080/20469047.2018.1504431 (2019).
2. Aljebreen, A. M., Almadi, M. A., Alhamad, A. & Al Faleh, E. Z. Seroprevalence of celiac disease among healthy adolescents in Saudi Arabia. World J. Gastroenterol. 19, 2374–2378. https://doi.org/10.3748/wjg.v19.i23.2374 (2013).
3. Abu-zeid, Y. A., Jasem, W. S., Lebwohl, B., Green, P. H. & Elghazali, G. Seroprevalence of celiac disease among United Arab Emirates healthy adult nationals: A gender disparity. World J. Gastroenterol. 20, 15830–15836. https://doi.org/10.3748/wjg.v20.i42.15830 (2014).
4. Haris, B. et al. The prevalence, immune profile, and clinical characteristics of children with celiac disease and type 1 diabetes mellitus in the state of Qatar. J. Pediatr. Endocrinol. Metab. 34, 1457–1461. https://doi.org/10.1515/jpem-2021-0452 (2021).
5. Schulzke, J. D., Bentzel, C. J., Schulzke, J., Riecken, E. O. & Fromm, M. Epithelial tight junction structure in the jejunum of children with acute and treated celiac sprue. Pediatr. Res. 43, 435–441. https://doi.org/10.1203/00006460.19980400-00001 (1998).
6. Schumann, M. et al. Mechanisms of epithelial translocation of the alpha(2)-gladin-33mer in coeliac sprue. Gut 57, 747–754. https://doi.org/10.1136/gut.2007.136368 (2008).
7. Raki, M. et al. A unique dendritic cell subset accumulates in the celiac lesion and efficiently activates gluten-reactive T cells. Gastroenterology 101, 428–438. https://doi.org/10.1038/gastro.2006.002 (2006).
8. Di Sabatino, A. et al. Evidence for the role of interferon-alfa production by dendritic cells in the Th1 response in celiac disease. Gastroenterology 133, 1175–1187. https://doi.org/10.1053/gastro.2007.08.018 (2007).
9. Kim, S. Y., Jeong, E. J. & Steinert, P. M. IFN-γ induces transglutaminase 2 expression in rat small intestinal cells. J. Interferon Cytokine Res. 22, 677–682. https://doi.org/10.1089/1079990026100169 (2002).
10. Akinov, S. S. & Belkin, A. M. Cell surface tissue transglutaminase is involved in adhesion and migration of monocytic cells on fibronectin. Blood 98, 1567–1576. https://doi.org/10.1182/blood.v98.5.1567 (2001).
11. Ferdousi, M. et al. Early corneal nerve fibre damage and increased Langerhans cell density in children with type 1 diabetes mellitus. Sci. Rep. 9, 8758. https://doi.org/10.1038/s41598-019-45116-z (2019).
12. Khan, A. et al. Corneal immune cells are increased in patients with multiple sclerosis. Transl. Vis. Sci. Technol. 10, 19. https://doi.org/10.1167/tvst.10.4.19 (2021).
13. Zhov, A., Stave, I., Vollmar, B. & Guthoff, R. In vivo confocal microscopic evaluation of Langerhans cell density and distribution in the normal human corneal epithelium. Graefes Arch. Clin. Exp. Ophtalmol. 243, 1056–1061. https://doi.org/10.1007/s00417-004-1075-8 (2005).
14. Rosenberg, M. E., Tervo, T. M., Muller, L. J., Moilanen, J. A. & Vesaluoma, M. H. In vivo confocal microscopy after herpes keratitis. Cornea 21, 265–269. https://doi.org/10.1097/00003226-20020400-00006 (2002).
15. Mastropassqua, L. et al. Epithelial dendritic cell distribution in normal and inflamed human cornea: In vivo confocal microscopy study. Am. J. Ophthalmol. 142, 736–744. https://doi.org/10.1016/j.ajo.2006.06.057 (2006).
16. D’Onofrio, L. et al. Small nerve fiber damage and langerhans cell damage and LADA measured by corneal confocal microscopy. Invest. Ophthalmol. Vis. Sci. 62, 5. https://doi.org/10.1167/iovs.02.62.6.5 (2021).
17. Bittinger, G. et al. Corneal confocal microscopy identifies corneal nerve fibre loss and increased dendritic cells in patients with long COVID. Br. J. Ophthalmol. https://doi.org/10.1136/bjo-2021-319450 (2021).
18. Machetta, F. et al. In vivo confocal microscopic evaluation of corneal langerhans cells in dry eye patients. Open Ophthalmol. J. 8, 51–59. https://doi.org/10.2174/1874364101409010051 (2014).
19. Resch, M. D. et al. Dry eye and corneal langerhans cells in systemic lupus erythematosus. J. Ophthalmol. 2015, 543835. https://doi.org/10.1155/2015/543835 (2015).
20. Klitsch, A. et al. Reduced association between dendritic cells and corneal sub-basal nerve fibers in patients with fibromyalgia syndrome. J. Peripher. Nerv. Syst. 25, 9–18. https://doi.org/10.1111/jns.12360 (2020).
21. Wu, L. Q. et al. Observation of corneal langerhans cells in thyroid-associated ophthalmopathy. Curr. Eye Res. 41, 927–932. https://doi.org/10.3109/02713683.2015.1133833 (2016).
22. Stettner, M. et al. Corneal confocal microscopy in chronic inflammatory demyelinating polynoepathy. Ann. Clin. Transl. Neurol. 3, 88–100. https://doi.org/10.1002/acn3.273 (2016).
23. Pitarokoilis, K. et al. Neuroimaging markers of clinical progression in chronic inflammatory demyelinating polyradiculoneuropathy. Ther. Adv. Neurol. Disord. 12, 1756286419855485. https://doi.org/10.1177/1756286419855485 (2019).
24. Motte, J. et al. Corneal inflammatory cell infiltration predicts disease activity in chronic inflammatory demyelinating polyneuropathy. *Sci. Rep.* **11**, 15150. https://doi.org/10.1038/s41598-021-94605-7 (2021).

25. Athanasopoulos, D. et al. Longitudinal study on nerve ultrasound and corneal confocal microscopy in NF155 paranodopathy. *Ann. Clin. Transl. Neurol.* **7**, 1061–1068. https://doi.org/10.1002/acn3.51061 (2020).

26. Bizzaro, N. et al. IgA and IgG tissue transglutaminase antibody prevalence and clinical significance in connective tissue diseases, inflammatory bowel disease, and primary biliary cirrhosis. *Dig. Dis. Sci.* **48**, 2360–2365. https://doi.org/10.1023/b:ddas.0000078757.72236.e8 (2003).

27. Picarelli, A. et al. Anti-tissue transglutaminase antibodies in arthritic patients: A disease-specific finding?. *Clin. Chem.* **49**, 2091–2094. https://doi.org/10.1373/clinchem.2003.023234 (2003).

28. Vecchi, M. et al. High rate of positive anti-tissue transglutaminase antibodies in chronic liver disease. Role of liver decompensation and of the antigen source. *Scand. J. Gastroenterol.* **38**, 50–54 (2003).

29. Mizrta, A. et al. A role for tissue transglutaminase in hepatic injury and fibrogenesis, and its regulation by NF-kappaB. *Am. J. Physiol.* **272**, G281–288. https://doi.org/10.1152/ajpgi.1997.272.2.G281 (1997).

30. Seth, A., Kumar, P. & Jain, A. Prevalence and management of vitamin D deficiency in children with newly diagnosed coeliac disease: cohort study. *Paediatr. Int. Child Health* **41**, 247–252. https://doi.org/10.1080/20469047.2021.1996089 (2021).

31. Andres Aronsson, C. et al. 25(OH)D levels in infancy is associated with celiac disease autoimmunity in at-risk children: A case-control study. *Front. Nutr.* **8**, 720041. https://doi.org/10.3389/fnut.2021.720041 (2021).

32. Sulimani, R. A. Celiac disease and severe vitamin D deficiency: The case for anti-tissue transglutaminase antibody screening. *Arch. Osteoporos.* **14**, 30. https://doi.org/10.1007/s11657-018-0554-1 (2019).

33. Arnold, E. P. et al. Urodynamics of female incontinence: Factors influencing the results of surgery. *Am. J. Obstet. Gynecol.* **117**, 805–813. https://doi.org/10.1016/0002-9378(73)90496-1 (1973).

34. Shetty, R. et al. Corneal dendritic cell density is associated with subbasal nerve plexus features, ocular surface disease index, and serum vitamin D in evaporative dry eye disease. *Biomed. Res. Int.* **2016**, 4369750. https://doi.org/10.1155/2016/4369750 (2016).

35. Lagali, N. S. et al. Dendritic cell maturation in the corneal epithelium with onset of type 2 diabetes is associated with tumor necrosis factor receptor superfamily member 9. *Sci. Rep.* **8**, 14248. https://doi.org/10.1038/s41598-018-32410-5 (2018).

Author contributions

R.A.M. and A.K.A. were the guarantors and designed the study; H.G., I.M., I.N.P., G.P., A.K., S.S., B.A., M.E., W.A., H.A., P.S., S.A. H.A., K.H., M.A.H., F.A., and K.A. participated in the data acquisition; H.G. and M.F. undertook the image analysis. H.G. undertook data analysis, data interpretation and drafted the initial manuscript; R.A.M., A.K.A., and K.H. revised the article critically for important intellectual content.

Funding

This study was funded by the Sidra Internal Research Fund (SIRF 5011029001) and a Biomedical Research Program [BMRP-5726113101] Grant from the Qatar National Research Fund (QNRF).

Competing interests

The authors declare no competing interests.

Additional information

Correspondence and requests for materials should be addressed to R.A.M.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

© The Author(s) 2022