Epidemiologic investigation supports a positive relationship between exposure to air pollution and cardiovascular disease (Rich et al. 2006), with the number of deaths from such illness estimated to exceed that for respiratory disease after exposures to elevated levels of pollutants (Dockery 2001). Air pollutants have been associated with acute cardiac events, but population-level data are not directly relevant to the clinical presentation of individual cases. To our knowledge, this is the only case report of an individual suffering an episode of atrial fibrillation after exposure to an air pollutant. The resolution of the arrhythmia with termination of the particle exposure further supports a causal relationship between the two.

RELEVANCE TO CLINICAL PRACTICE: Exposure to air pollution, including particulate matter, may cause supraventricular arrhythmias.

KEY WORDS: air pollution, arrhythmias, atrial fibrillation, atrial flutter, heart diseases, particulate matter.

Case Report: Supraventricular Arrhythmia after Exposure to Concentrated Ambient Air Pollution Particles

Andrew J. Ghio,1 Maryann Bassett,1 Tracey Montilla,1 Eugene H. Chung,2 Candice B. Smith,1 Wayne E. Cascio,1 and Martha Sue Carraway1

1Environmental Public Health Division, National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, Chapel Hill, North Carolina, USA; 2Division of Cardiology, University of North Carolina–Chapel Hill, Chapel Hill, North Carolina, USA

CONTEXT: Exposure to air pollution can result in the onset of arrhythmias.

CASE PRESENTATION: We present a case of a 58-year-old woman who volunteered to participate in a controlled exposure to concentrated ambient particles. Twenty minutes into the exposure, telemetry revealed new onset of atrial fibrillation. The exposure was discontinued, and she reverted to normal sinus rhythm approximately 2 hr later. No abnormality was evident on the volunteer’s laboratory examination or echocardiography that could explain an increased risk for supraventricular arrhythmia.

DISCUSSION: Epidemiologic evidence strongly supports a relationship between exposure to air pollutants and cardiovascular disease, but population-level data are not directly relevant to the clinical presentation of individual cases. To our knowledge, this is the only case report of an individual suffering an episode of atrial fibrillation after exposure to an air pollutant. The resolution of the arrhythmia with termination of the particle exposure further supports a causal relationship between the two.

RELEVANCE TO CLINICAL PRACTICE: Exposure to air pollution, including particulate matter, may cause supraventricular arrhythmias.

KEY WORDS: air pollution, arrhythmias, atrial fibrillation, atrial flutter, heart diseases, particulate matter. Environmental Health Perspect 120:275–277 (2012). http://dx.doi.org/10.1289/ehp.1103877

Address correspondence to A. Ghio, Campus Box 7315, Human Studies Facility, Chapel Hill, NC 27599-7315, Human Studies Facility, U.S. EPA, 104 Mason Farm Rd., Chapel Hill, NC 27599-7315 USA. Telephone: (919) 966-0670. Fax: (919) 966-4767. E-mail: ghio.andy@epa.gov

This report has been reviewed by the National Health and Environmental Effects Research Laboratory, U.S. Environmental Protection Agency, and approved for publication. Approval does not signify that the contents necessarily reflect the views and policies of the agency, nor does mention of trade names or commercial products constitute endorsement or recommendation for use. The authors declare they have no actual or potential competing financial interests.

Received 29 April 2011; accepted 6 September 2011.

Environmental Health Perspectives • VOLUME 120 | NUMBER 2 | February 2012 275
The patient was admitted to the hospital overnight for observation and telemetry. The next morning, the ECG documented normal sinus rhythm. Her serum electrolytes, blood urea nitrogen, creatinine, glucose, creatine kinase, and the MB fraction were again normal, and her complete blood count was normal except for a hematocrit of 35.7% (the lower limit of normal is 36.0%). Resting transthoracic echocardiography demonstrated normal right ventricular contraction with an ejection fraction of 55–60%, aortic sclerosis, and diastolic left ventricular dysfunction. The left atrium was considered mildly dilated; all other chambers of the heart were normal in size. She was discharged and was not prescribed a new medication. Approximately 6 weeks later, she underwent electrophysiology study, which did not provoke atrial fibrillation or significant atrial ectopy. The study did indicate a reentrant circuit of the cavotricuspid isthmus, which was ablated to prevent potential future episodes of atrial flutter.

Discussion

The volunteer demonstrated evidence of increased supraventricular ectopy immediately preceding her exposure to CAPs, but there was no evidence of atrial arrhythmias. She then suffered the onset of atrial fibrillation a very short time after being exposed to CAPs. Within 2–3 hr after the exposure stopped, the arrhythmia resolved and she returned to normal sinus rhythm. Atrial fibrillation is the most common supraventricular arrhythmia, affecting 1–2% of the general population (Falk 2001). This arrhythmia is uncommon in people < 60 years of age, but it afflicts about 10% of the population by 80 years of age. Risk factors for atrial fibrillation include hypertension, (especially uncontrolled), coronary artery disease, heart failure, cerebrovascular disease, diabetes, thyroid conditions, sleep apnea, obesity, a past history of rheumatic heart disease and congenital heart defects, pericarditis, sick sinus syndrome, a family history of atrial fibrillation, and echocardiographic abnormalities (Kannel and Benjamin 2008, 2009). In addition, cigarette smoking, alcohol use, caffeine consumption, and stimulant drugs can help trigger atrial fibrillation. Of these defined risk factors, the volunteer had a history of well-controlled hypertension, and her body mass index was consistent with obesity. Her history of premature atrial contractions may also have increased her risk for atrial fibrillation (Binici et al. 2010). In a similar manner, preexisting cardiovascular disease, diabetes and impaired glucose tolerance, chronic obstructive pulmonary disease, and current cigarette smoking all increase susceptibility for cardiovascular disease associated with air pollution (Chen et al. 2006; Liao et al. 2009; Mills et al. 2007; Wheeler et al. 2006; Whitesel et al. 2009; Zareba et al. 2009). There was no obvious explanation for her onset of a supraventricular arrhythmia during the exposure. Although coincident atrial fibrillation cannot be excluded, the onset of her arrhythmia was associated with her exposure to ambient air pollution particles. The correlation between the resolution of the arrhythmia and the termination of the CAP exposure further supports a causal relationship between the two.

Systemic inflammation and underlying oxidative stress may increase the risk of atrial fibrillation (Kumagai et al. 2004). Patients with atrial fibrillation demonstrate evidence of inflammation, with elevated levels of inflammatory markers, including C-reactive protein, interleukin-6, and tumor necrosis factor-α (Chung et al. 2001; Gaudino et al. 2003). Some evidence suggests that statin treatment may potentially alter the risk for this arrhythmia by modifying oxidative stress (Siu et al. 2003). The specific association between increased arrhythmia induction and air pollution may reflect oxidant generation and inflammation after exposure, consistent with mechanisms involved in the initiation and maintenance of some other forms of atrial fibrillation (Mazzoli-Rocha et al. 2010). The oxidative stress and inflammation associated with the pollutant have been postulated to affect coronary perfusion and consequently enhance the propensity for such arrhythmias through tissue ischemia. However, the rapid onset of this volunteer’s atrial fibrillation after CAP exposure suggests that the basis for the arrhythmia may be a disruption of the normal cardiac autonomic control rather than a systemic inflammation, because the latter would require a longer period of time to develop (Routledge and Ayres 2005). In an animal model, diesel exhaust increased the sensitivity of the heart to triggered arrhythmias via an activation of airway sensory receptors [e.g., TRPA1 (transient receptor potential cation channel A1)] (Hazari et al. 2011). Several researchers have suggested that this leads to autonomic imbalance and a predisposition for arrhythmia development. A comparable mechanism has been proposed to explain the cardiac response to ozone and cigarette smoke (Joad et al. 1998; Mutoh et al. 2000).

![Figure 1. The volunteer’s ECG (12 lead and rhythm strip) before (A) and immediately after (B) exposure to concentrated ambient particles. The ECG before the exposure (A) reveals a regular sinus rhythm with defined P waves (arrows); the ECG after the exposure (B) is irregular, with “flutter” waves (arrows).](image-url)
Kannel WB, Benjamin EJ. 2008. Status of the epidemiology of atrial fibrillation. Med Clin North Am 92(1):17–40.
Kannel WB, Benjamin EJ. 2009. Current perceptions of the epidemiology of atrial fibrillation. Cardiol Clin 27(1):13–24.
Kumagai K, Nakashima H, Saku K. 2004. The HMG-CoA reductase inhibitor atorvastatin prevents atrial fibrillation by inhibiting inflammation in a canine sterile pericarditis model. Cardiovasc Res 62(1):105–111.
Liao D, Whitsel EA, Duan Y, Lin HM, Quibera PM, Smith R, et al. 2009. Ambient particulate air pollution and ectopy—the environmental epidemiology of arrhythmogenesis in Women’s Health Initiative Study, 1999–2004. J Toxicol Environ Health A 72(1):30–38.
Link MS, Dockery DW. 2010. Air pollution and the triggering of cardiac arrhythmias. Curr Opin Cardiol 25(1):16–22.
Lijngman PL, Berglind N, Holmgren C, Gadler F, Edvardsson N, Pershagen G, et al. 2008. Rapid effects of air pollution on ventricular arrhythmias. Eur Heart J 29(23):2894–2901.
Mazzoli-Rocha F, Fernandes S, Einicker-Lamas M, Zin WA. 2010. Roles of oxidative stress in signaling and inflammation induced by particulate matter. Cell Biol Toxicol 26(5):481–498.
Menzger KB, Klein M, Peel JD, Multiholland JA, Langberg JJ, et al. 2007. Ambient air pollution and cardiac arrhythmias in patients with implantable defibrillators. Epidemiology 18(5):585–592.
Mills NL, Turnqvist H, Gonzalez MC, Vink E, Robinson SD, Soderberg S, et al. 2007. Ischemic and thrombotic effects of dilute diesel-exhaust inhalation in men with coronary heart disease. N Engl J Med 357(1):1075–1082.
Mutoh T, Joasd JP, Bonham AC. 2009. Chronic passive cigarette smoke exposure augments branchiopulmonary C-fibre inputs to nucleus tractus solitarii neurones and reflex output in young guinea-pigs. J Physiol 582(pt 1):223–233.
Peters A, Liu E, Vermeire PA, Gold DR, Mittleman M, et al. 2000. Air pollution and incidence of cardiac arrhythmia. Epidemiology 11(1):11–17.
Rich DQ, Kim MH, Turner JR, Mittleman MA, Schwartz J, Catalano PJ, et al. 2006. Association of ventricular arrhythmias detected by implantable cardioverter defibrillator and ambient air pollutants in the St Louis, Missouri metropolitan area. Occup Environ Med 63(9):591–596.
Rich DQ, Schwartz J, Mittelman MA, Link M, Luttmann-Gibson H, Catalano PJ, et al. 2005. Association of short-term ambient air pollution concentrations and ventricular arrhythmias. Am J Epidemiol 161(12):1123–1132.
Rosenthal FS, Carney JP, Olinger ML. 2008. Out-of-hospital cardiac arrest and airborne fine particulate matter: a case-crossover analysis of emergency medical services data in Indianapolis, Indiana. Environ Health Perspect 116:631–636.
Routledge HC, Ayres JG. 2005. Air pollution and the heart. Occup Med (Lond) 55(6):439–447.
Santos UP, Terra-Filho M, Lin CA, Pereira LA, Vieira TC, Saldiva PH, et al. 2008. Cardiac arrhythmia emergency room visits and environmental air pollution in Sao Paulo, Brazil. J Epidemiol Community Health 62(3):267–272.
Sarnat SE, Suh HH, Cauli BA, Schwartz J, Stone PH, Gold DR. 2006. Ambient particulate air pollution and cardiac arrhythmia in a panel of older adults in Steubenville, Ohio. Occup Environ Med 63(10):700–706.
Siu CW, Lau CP, Tee HF. 2003. Prevention of atrial fibrillation recurrence by statin therapy in patients with lone atrial fibrillation after successful cardioversion. Am J Cardiol 90(11):1343–1345.
Wheeler A, Zanobetti A, Gold DR, Schwartz J, Stone P, Suh HH. 2006. The relationship between ambient air pollution and heart rate variability differs for individuals with heart and pulmonary disease. Environ Health Perspect 114:560–566.
Whitsel EA, Quibera PM, Christ SL, Liao D, Prineas RJ, Anderson GL, et al. 2009. Heart rate variability, ambient particulate matter air pollution, and glucose homeostasis: the environmental epidemiology of arrhythmogenesis in the Women’s Health Initiative. Am J Epidemiol 169(6):693–703.
Zanobetti A, Schwartz J. 2005. The effect of particulate air pollution on emergency admissions for myocardial infarction: a multi-center case-crossover analysis. Environ Health Perspect 113:978–982.
Zareba W, Couderc JP, Oberdorster G, Chalupa D, Cox C, Huang LS, et al. 2009. ECG parameters and exposure to carbon ultratrue particles in young healthy subjects. Inhial Toxicol 21(3):223–233.