Optic nerve, and the crystalline lens. The global burden of disability, particularly later in life, owing to its association with both direct and indirect damage to the chorioretina, myopic macular degeneration has already become the leading cause of uncorrectable vision loss in some parts of the world.4

Myopia Institute (IMI) Pathological Myopia Report,5 its characteristics such as sex, ethnicity, and the level of myopia,7,8 ongoing changes in our behavior and environment, rather than being driven genetically. Genetic and prevalence data suggest that extreme myopia has a different origin than the more commonly seen childhood myopia, which is most likely largely driven environmentally.9–11 In this respect, studies already demonstrate a strong association between the level of refractive error and myopic maculopathy across a wide range of myopic refractive errors,7,8 and recent 6- and 12-year prospective longitudinal studies from Japan reported...
significant increases in the prevalence of different levels of myopia and associated pathology. Hence, the incidence of myopia-related ocular complications and permanent vision impairment is very likely to significantly increase alongside the growing prevalence of myopia globally.

The IMI Impact of Myopia Report summarizes recent research on the increasing prevalence of myopia, including the disproportionately greater increase in high myopia and the lifetime manifestations of myopia. In addition, it highlights the considerable direct health expenditures and indirect costs such as lost productivity and reduced quality of life associated with myopia.

Environmental Modification

The IMI Risk Factors for Myopia Report identifies the difficulties in “untangling” the risk factors for the development and progression of myopia from current research; however, education and time spent outdoors were identified as the key factors. They conclude that there is a large body of consistent evidence of a causal association between the higher prevalence and degree of myopia with an increasing intensity and duration of education, but the mechanism involved is still unclear. The current evidence implicating digital devices is sparse and far from consistent. No interventions in decreasing nearwork have been validated in controlled trials. Strong evidence has been accumulated for time spent outdoors in decreasing the impact of other risk factors such as parental myopia and higher levels of nearwork. School-based intervention trials have shown that an increase in time outdoors of 40 to 80 minutes per day produces a significant decrease in the incidence of myopia. Interestingly, one study suggested modest increases in class-room lighting strongly inhibited the development of myopia, but replication of this finding is needed.

It should be noted that, unlike other epidemics, such as the increase in obesity and diabetes, myopic environmental risk factors are driven largely by a desire to improve the prospects of children and the quality of life of nations, by increasing the level of education. In addition, the success of less divisive public health programs to decrease obesity and diabetes has been limited; hence, national public health programs focused on decreasing the impact of myopia by environmental modifications alone cannot be relied on to decrease significantly the impact of myopic epidemic, and eye care practitioners have a key role in improving the future eye health of their patients including providing holistic advice about increasing time spent outdoors.

An Evidence-Based Clinical Approach

Who to Treat and When to Start

The IMI have defined premypia as “A refractive state of an eye of ≤ +0.75 D and > −0.50 D in children where a combination of baseline refraction, age, and other quantifiable risk factors provide a sufficient likelihood of the future development of myopia to merit preventative interventions.” A cycloplegic refraction should be performed to avoid misclassification, unless the practitioner can be assured the eye is unaccommodated. Premypia can be predicted as early as 6 years of age by a refractive error of ≥ +0.75 diopters [D] (≥ +0.50 D in a 7- to 8-year-old child; ≥ +0.25 D in a 9- to 10-year-old child; and emmetropia in an 11-year-old child) with a high degree of confidence. Although the number of myopic parents is a risk factor for myopic progression (odds ratio in 6- to 8-year-olds: 1.4× for 1 parent and approximately 2.3× for 2 parents), along with harder to measure ocular biometry factors such as the AC/A ratio (approximately 1.25×), axial length (2.0–2.5×) and peripheral refraction (1.4×), a study found refractive error alone best predicts the risk of future myopia. A recent study in the UK also found axial length (>23.07 mm) at baseline (odds ratio, 2.5×) at the age of 6 years and at least one myopic parent (odds ratio 6.5×) as predictive of progression to myopia by age 16 years along with a refraction of < +0.63 D. Although binocular vision status is important in children to optimize visual clarity and minimize eye strain, and therefore should be assessed and managed if necessary, evidence for any role in myopia development and progression is limited (see the IMI Accommodation and Binocular Vision in Myopic Development and Progression report).

Management Approach

Advising on maximizing time spent outdoors is good for all children’s general mental health as well as decreasing the incidence and progression of myopia especially in winter when myopic progression is greater. However, as identified elsewhere in this article, this factor will have a limited effect on decreasing the incidence of myopia or its progression in those who are already myopic owing to societal factors. For those who have premypia, or who have low myopia (< −0.5 D), a refractive correction would not be suitable so advice should be given as to the need for regular eye examinations and to prepare the patient and their parents/carers. If there is ≥ −0.50 D of myopia, in consultation with the child’s caregiver, consideration for a refractive and/or pharmaceutical correction should be considered (see the IMI Prevention of Myopia and Its Progression report).

- Orthokeratology – effective from −0.50 to −4.00 D and up to −3.50 D of astigmatism, and can be used in conjunction with an optical correction worn during the day for higher myopia (>6.0 D). However, it requires overnight contact lens wear with its associated risks of microbial keratitis.
- Soft myopia control multifocal contact lenses – effective commercially available lenses are now on the market in a wide range of powers. Up to 6 years of clinical trials demonstrate good safety and efficacy. Daily disposable modality has a risk of microbial keratitis of about 10× less than that of orthokeratology treatment.
- Myopia control spectacle lenses – have become commercially available with variable efficacy reported with data for up to 2 years in clinical trials, but there has been limited research conducted to date.
- Atropine – the most appropriate dose has yet to be determined, but based on current research is within the range 0.01% to 0.05%52,53; however, the use of a pharmaceutical depends on the availability and risks, which include untested long-terms effects.
Combination therapy seems to be more effective than a single treatment approach and so should be considered if myopic progression continues. Sequential treatment modalities – the effectiveness of current treatments appears to decrease with time, providing approximately a cumulative maximum approximately 1.0 D decrease in refractive error or approximately +0.44 mm decrease in axial length. However, treatment modalities seem to have differing mechanisms of action, so it is possible that using different modalities sequentially may have a greater cumulative effect, although this has yet to be researched.

It has been argued that, to monitor myopic progression, axial length is a more reliable measure than even cycloplegic refractive error and it is the principal risk factor for myopia-associated pathology. However, instrumentation using partial coherence interferometry/optical coherence tomography or optical low coherence reflectometry (essentially the same technique, but using a laser or a superluminescent diode respectively) which have a suitable resolution of approximately 0.01 mm or <0.05 D are still relatively expensive and not yet commonplace in clinical practice.

When to Stop

There are few data on when myopia stops progressing. Progression has been noted in young adults and approximately one-third of myopia adults only develop myopia after 15 years of age. The mean age of refractive error stabilization for early childhood onset myopic seems to be around 16 years of age (perhaps about 1 year younger in females than males), but there is considerable variability. Axial length seems to take much longer to stabilize, with 90% stabilizing by 21 years of age in one longitudinal study. Hence, careful monitoring of patients after ceasing treatment is prudent. Fortunately, in controlled trials, a clinically significant rebound effect has only been observed after ceasing higher dose atropine treatment and perhaps in young children with orthokeratology.

Conclusions

There is more than sufficient evidence to warrant the adoption of myopia prevention and control measures in clinical practice. Although there remain gaps in academic knowledge about mechanism of action and long-term outcomes, the benefits outweigh the risks if they are appropriately managed. More research on the effectiveness and safety of combination and sequential treatment modalities would further enhance patient management options. Eye care practitioners have a key role to play in preventing visual impairment in future generations and must become more proactive in the identification and treatment of myopia.

Acknowledgments

Supported by the International Myopia Institute. The publication costs of the International Myopia Institute reports were supported by donations from the Brien Holden Vision Institute, Carl Zeiss Vision, Cooper Vision, Essilor, and Alcon.

Disclosure: J.S. Wolffsohn, Alcon (R), Allergan (R), Atia Vision (C), Contamac (C), CooperVision (C), Essilor (C), Johnson & Johnson (R), Nevakar (C), Novartis (C), Rayner (C), Théa pharmaceuticals (C); M. Jong, None; E.L. Smith III, Essilor of America (C), Treehouse Eyes (C), SightGlass Vision (C), Acucela (C), Nevakar (C), Zeiss (P), S.R. Resnikoff, Nevakar (C), Brien Holden Vision Institute (C); J.B. Jonas, Europäische Patentanmeldung 16 720 043.5 and Patent application US 2019 0085065 A1 „Agents for use in the therapeutic or prophylactic treatment of myopia or hyperopia”; N.S. Logan, CooperVision (F, R), Essilor (R), ZEISS (P), Hoya (F); I. Morgan, None; P. Sankardurg, BHVI (E), co-inventor on multiple patents related to myopia (P); K. Ohno-Matsui, Santen (C), Nevakar (C)

References

1. Acheson ED. On the state of the public health [the fourth Duncan lecture]. Public Health. 1988;102:431–7.
2. Flitcroft DI. The complex interactions of retinal, optical and environmental factors in myopia aetiology. Prog Retin Eye Res. 2012;31:622–60.
3. Holden BA, Fricke TR, Wilson DA, et al. Global prevalence of myopia and high myopia and temporal trends from 2000 through 2050. Ophthalmology. 2016;11:00025–7.
4. Naikoo KS, Fricke TR, Frick KD, et al. Potential lost productivity resulting from the global burden of myopia: systemic review, meta-analysis, and modeling. Ophthalmology. 2019;126:338–46.
5. Ohno-Matsui K, Wu P-C, Yamashiro K, et al. IMI pathologic myopia. Invest Ophthalmol Vis Sci. 2021;62(5):5.
6. Brennan NA, Toubouti YM, Cheng X, Bullimore MA. Efficacy in myopia control. Prog Retin Eye Res. 2020;27:100923.
7. Xia O, Guo X, Wang D, et al. Distribution and severity of myopic maculopathy among highly myopic eyes. Invest Ophthalmol Vis Sci. 2018;59:4880–5.
8. Coco-Martin RM, Belani-Raju M, de la Fuente-Gomez D, Sanabria MR, Fernandez I. Progression of myopic maculopathy in a Caucasian cohort of highly myopic patients with long follow-up: a multistate analysis. Graefes Arch Clin Exp Ophthalmol. 2020;259:81–92.
9. Jonas JB, Xu L, Wang YX, et al. Education-related parameters in high myopia: adults versus school children. PLoS One. 2016;11:e0154554.
10. Meguro A, Yamane T, Takeuchi M, et al. Genome-wide association study in Asians identifies novel loci for high myopia and highlights a nervous system role in its pathogenesis. Ophthalmology. 2020;127:1612–24.
11. Nakao SY, Miyake M, Hosoda Y, et al. myopia prevalence and ocular biomeetry features in a general Japanese population: the Nagahama study. Ophthalmology. 2020 Aug 21 [Epub ahead of print].
12. Ueda E, Yasuda M, Fujiwara K, et al. Trends in the prevalence of myopia and myopic maculopathy in a Japanese population: the Hisayama study. Invest Ophthalmol Vis Sci. 2019;60:2781–6.
13. Igarashi-Yokoi T, Shinohara K, Fang Y, et al. Prognostic factors for axial length elongation and posterior staphyloma in adults with high myopia: a Japanese observational study. Am J Ophthalmol. 2020;225:76–85.
14. Sankardurg P, Tahhan N, Kandel H, et al. IMI Impact of myopia. Invest Ophthalmol Vis Sci. 2021;62(5):2.
15. Morgan I, Wu P-C, Ostrin L, et al. IMI risk factors for myopia. Invest Ophthalmol Vis Sci. 2021;62(5):3.
16. Eppenberger LS, Sturm V. The role of time exposed to outdoor light for myopia prevalence and progression: a literature review. Clin Ophthalmol. 2020;14:1875–90.
17. French AN, Ashley RS, Morgan IG, Rose KA. Time outdoors and the prevention of myopia. Exp Eye Res. 2013;114:58–68.
24. Jin JX, Hua WJ, Jiang X, et al. Effect of outdoor activity on future myopia. Investig. Ophthalmol Vis. Sci. 2017;58:4524–32.

25. Hua WJ, Jin JX, Wu XL, et al. Elevated light levels in schools have a protective effect on myopia. Ophthalmic Physiol. Opt. 2015;35:252–62.

26. Fleming-Milici F, Harris JL. Food marketing to children in the United States: can industry voluntarily do the right thing for children’s health? Physiol. Behav. 2020;227:113398.

27. Maula A, Kendrick D, Kai J, Griffiths F. Evidence generated from a realist synthesis of trials on educational weight loss interventions in type 2 diabetes mellitus. Diabet. Med. 2020;38:e14394.

28. Flitcroft DI, He M, Jonas JB, et al. IMI - Defining and classifying myopia: a proposed set of standards for clinical and epidemiologic studies. Invest. Ophthalmol Vis. Sci. 2019;60:M20–M30.

29. Zhu D, Wang Y, Yang X, et al. Pre- and post-cycloplegic refractions in children and adolescents. PLoS One. 2016;11:e0167628.

30. Gifford KL, Richdale K, Kang P, et al. IMI - clinical management guidelines report. Investig. Ophthalmol Vis. Sci. 2019;60:M18–M203.

31. Jong M, Jonas JB, Wolffsohn JS, et al. IMI 2021 yearly digest. Invest. Ophthalmol Vis. Sci. 2021;62(5):7.

32. Zadnik K, Sinnott LT, Mutti DO, Mitchell GL, Moeschberger ML, Zadnik K. Parental history of myopia, sports and outdoor activities, and future myopia. Investig. Ophthalmol Vis. Sci. 2007;48:3524–32.

33. Rose KA, Morgan IG, Ip J, et al. Outdoor activity reduces the prevalence of myopia in children. Ophthalmology. 2008;115:1279–85.

34. He M, Xiang F, Zeng Y, et al. Effect of time spent outdoors on childhood and binocular vision in myopia development and progression. Investig. Ophthalmol Vis. Sci. 2019;60:M18–M30.

35. Larouche R, Garriguet D, Gunnell KE, Goldfield GS, Tremblay MS. Outdoor time, physical activity, sedentary time, and health indicators at ages 7 to 14: 2012/2013 Canadian Health Measures Survey. Health Rep. 2016;27:3–13.

36. Donovan L, Sankardurg P, Ho A, et al. Myopia progression in Chinese children is slower in summer than in winter. Optom. Vis. Sci. 2012;89:1196–202.

37. Jonas JB, Ang M, Cho P, et al. IMI prevention of myopia and its progression. Invest. Ophthalmol Vis. Sci. 2021;62(5):6.

38. Cho P, Cheung SW. Retardation of myopia in Orthokeratology (ROMIO) study: a 2-year randomized clinical trial. Invest. Ophthalmol Vis. Sci. 2012;53:7077–85.

39. Santodomingo-Rubido J, Villa-Collar C, Gilmartin B, Gutierrez-Ortega R. Myopia control with orthokeratology contact lenses in Spain: refractive and biometric changes. Invest. Ophthalmol Vis. Sci. 2012;53:5060–5.

40. Chen C, Cheung SW, Cho P. Myopia control using toric-orthokeratology (TO-SEE study). Invest. Ophthalmol Vis. Sci. 2013;54:6510–7.

41. Charm J, Cho P. High myopia-partial reduction orthokeratology (HM-PRO): study design. Cont Lens Anterior Eye. 2013;36:164–70.

42. Bullimore MA, Sinnott LT, Jones-Jordan LA. The risk of microbial keratitis with overnight corneal reshaping lenses. Optom. Vis. Sci. 2013;90:937–44.

43. Wang XY, Yang B, Liu Q, Cho P. Analysis of parental decisions to use orthokeratology for myopia control in successful wearers. Ophthalmic Physiol. Opt. 2021;41:3–12, https://doi.org/10.1111/opo.12744.

44. Chamberlain P, Back A, Lazon de la Jara P, et al. Effectiveness of a dual-focus 1 day soft contact lens for myopia control. British Contact Lens Association Clinical Conference. Liverpool, UK; 2017.

45. Chamberlain P, Logan N, Jones D, Gonzalez-Mejione J, Saw S-M, Young G. Clinical evaluation of a dual-focus myopia control 1 day soft contact lens: 6-year results. American Academy of Optometry Annual Meeting. Virtual. 2020.

46. Chamberlain P, Peixoto-de-Matos SC, Logan NS, Ngo C, Jones D, Young G. A 3-year randomized clinical trial of MiSight lenses for myopia control. Optom. Vis. Sci. 2019;96:556–67.

47. Sankardurg P, Bakaraju RC, Naduvilath T, et al. Myopia control with novel central and peripheral plus contact lenses and extended depth of focus contact lenses: 2 year results from a randomised clinical trial. Ophthalmic Physiol. Opt. 2019;39:294–307.

48. Cooper J, O’Connor B, Watanabe R, et al. Case Series analysis of myopic progression control with a unique extended depth of focus multifocal contact lens. Eye Cont. Lens. 2018;44:e16–e24.

49. Bullimore MA. The safety of soft contact lenses in children. Optom. Vis. Sci. 2017;94:638–46.
device for ocular biometry in cataract patients. *Br J Ophthalmol.* 2009;93:949–53.

58. Parssinen O, Kauppinen M, Viljanen A. The progression of myopia from its onset at age 8-12 to adulthood and the influence of heredity and external factors on myopic progression. A 23-year follow-up study. *Acta Ophthalmol.* 2014;92:730–9.

59. Bullimore MA, Reuter KS, Jones LA, Mitchell GI, Zoz J, Rah MJ. The Study of Progression of Adult Nearsightedness (SPAN): design and baseline characteristics. *Optom Vis Sci.* 2006;83:594–604.

60. COMET Group. Myopia stabilization and associated factors among participants in the Correction of Myopia Evaluation Trial (COMET). *Invest Ophthalmol Vis Sci.* 2013;54:7871–84.

61. Goss DA, Winkler RL. Progression of myopia in youth: age of cessation. *Am J Optom Physiol Opt.* 1983;60:651–8.

62. Hou W, Norton TT, Hyman L, Gwiazda J, COMET Group. Axial elongation in myopic children and its association with myopia progression in the Correction of Myopia Evaluation Trial. *Eye Contact Lens.* 2018;44:248–59.

63. Chia A, Chua WH, Cheung YB, et al. Atropine for the treatment of childhood myopia: safety and efficacy of 0.5%, 0.1%, and 0.01% doses (Atropine for the Treatment of Myopia 2). *Ophthalmology.* 2012;119:547–54.

64. Tong L, Huang XL, Koh AL, Zhang X, Tan DT, Chua WH. Atropine for the treatment of childhood myopia: effect on myopia progression after cessation of atropine. *Ophthalmology.* 2009;116:572–9.

65. VanderVeen DK, Kraker RT, Pineles SL, et al. Use of orthokeratology for the prevention of myopic progression in children: a report by the American Academy of Ophthalmology. *Ophthalmology.* 2019;126:623–36.

66. Gifford KL. Childhood and lifetime risk comparison of myopia control with contact lenses. *Cont Lens Anterior Eye.* 2020;43:26–32.

67. Wolffsohn JS, Calossi A, Cho P, et al. Global trends in myopia management attitudes and strategies in clinical practice - 2019 Update. *Cont Lens Anterior Eye.* 2020;43:9–17.