RESEARCH ARTICLE

The sediment fluorescence–trophic level relationship: using water-extractable organic matter to assess past lake water quality in New Zealand

Andrew R. Pearsona, Bethany R. S. Foxa,b, Marcus J. Vandergoesc and Adam Hartland

aEnvironmental Research Institute, School of Science, Faculty of Science and Engineering, University of Waikato, Hamilton, New Zealand; bDepartment of Biological and Geographical Sciences, University of Huddersfield, Huddersfield, UK; cGNS Science, Lower Hutt, New Zealand

ABSTRACT
Lake sediments are the physical remnants of past allochthonous and autochthonous carbon and mineral inputs and therefore have the potential to illuminate both past terrestrial carbon cycling and within-lake biological productivity. However, there are currently no robust, rapid, and inexpensive methods to chemically characterise the organic matter (OM) components in lake sediments, which limits their utility for reconstructing past soil carbon export trends or trophic status. This study explores the use of 3D excitation–emission matrix (EEM) fluorescence spectroscopy of water extractable dissolved organic matter (WEDOM) from lake sediments as a method for reconstructing past soil dissolved organic matter (DOM) export and past lake water quality. Using contemporary lake sediments from 11 New Zealand lakes, we demonstrate that both overall WEDOM fluorescence and protein-like fluorescence intensity are strong functions of trophic status across lakes. We also demonstrate that protein-like fluorescence is a function of sedimentary total nitrogen concentrations in palaeo-sediments from a pristine, high-altitude lake (Adelaide Tarn). This approach has applications in the evaluation of the trophic status of infrequently monitored lakes and in palaeolimnology.

ARTICLE HISTORY
Received 20 November 2020
Accepted 11 February 2021

HANDLING EDITOR
Sebastian Naeher

KEYWORDS
Dissolved organic matter (DOM); Fourier transform infrared spectroscopy (FTIRS); 3D excitation emission matrices (EEMs); fluorescence; water quality; eutrophication; trophic level; climate change

Introduction

In the last few decades, the literature on terrestrial carbon cycling has increased in parallel to the literature on water quality science and eutrophication (Smith 2003; Cole et al. 2007; Battin et al. 2009; Abell et al. 2019). Both topics share dissolved organic matter (DOM) (including carbon) as central themes, and in both fields the debate over contemporary changes has led scientists to turn to environmental archives like lake sediments to provide longer-term perspectives (Meyer-Jacob et al. 2015). This approach allows us to establish pre-human (or pre-industrial land-use) ecological baselines (Abell et al. 2019), and to assess the relationship between concentrations and characteristics of DOM and environmental changes. In this study, we develop a rapid and inexpensive method for differentiating organic matter in New Zealand lakes based on fluorescence spectroscopy.
DOM in relation to the eutrophication of inland waters

Aquatic DOM contains a heterogeneous mixture of organic compounds, and is either allochtonous or autochtonous. Allochtonous DOM is produced outside of a waterbody, and transported into it (e.g. from plant material or soil in the surrounding catchment), while autochtonous DOM is produced within the waterbody (e.g. by algae). Humic-like DOM is generally derived from plant material and soil, and largely consists of phenolic and carboxylic moieties, although a number of functional groups are often present. Protein-like DOM is associated with microbial products and includes amino acids such as tryptophan and tyrosine.

DOM is ubiquitous in aquatic systems, including lakes. DOM is involved in the transport of nutrients (Yang et al. 2013), and has the effect of lowering of light penetration (Rae et al. 2001; Ask et al. 2009) and altering lake mixing depths (Fee et al. 1996). DOM also serves as a substrate for heterotrophs (Tranvik 1988), thereby undergoing biogeochemical alteration and producing CO₂ or CH₄. DOM that survives decomposition can then be stored within sediments indefinitely (Figure 1).

In natural waters, DOM is often the predominant form of C, N, and P (Findlay and Parr 2017). Total nitrogen and total phosphorus are important indicators of water quality (Burns et al. 2000), and concentrations of these elements have increased in New Zealand water bodies due to human activities (Abell et al. 2010). Because DOM is closely linked to nutrient transport (Findlay & Parr), DOM is likewise a major factor in contemporary lake water quality decline.

As well as DOM, particulate organic matter (i.e. OM with a particle size greater than 0.45 µm) is also found in lakes. Sediment particles may remain in suspension in the

Figure 1. DOM can enter a lake from the surrounding landscape or be produced/alterred within the waterbody itself. Lacustrine DOM can be deposited in the sediment, where it may be stored or remineralised. DOM may be lost from the waterbody as CO₂.
water-column, but can also settle on the lake bottom. Prior to, and after deposition, particulate organic matter may be subject to bacterial decomposition, potentially leading to mineralisation and release of CO$_2$ and other greenhouse gases.

DOM fluorescence and environmental monitoring

A small, yet representative fraction of DOM is fluorescent and is typically described as chromophoric dissolved organic matter (CDOM). DOM fluorescence occurs when light energy (photons) excites loosely held electrons in the molecular orbitals of DOM (Coble 1996). As the electrons return to their original ground state, energy is lost as fluorescence (emission of photons). Thus, DOM concentration can be measured by assessing fluorophore intensity, whilst constituents can be determined by observing the wavelengths at which excitation and emission occur. For example, protein-like fluorescence (produced by molecules including tryptophan and tyrosine) occurs at different wavelengths (ex 270–280 nm; em 330–368 nm) to the fluorescence signal produced by humic-like fractions (ex 320–360 nm; em 420–460 nm) (Coble et al. 1990; Coble et al. 1998; Fellman et al. 2010).

Three-dimensional (3D) excitation emission matrix (EEM) fluorescence is a rapid (>100 samples per day) and cost-effective method which requires minimal sample preparation (filtration only) (Coble 1996; Stedmon and Bro 2008). Because fluorescence methods can be used to distinguish the constituents of DOM, information on the source and biological activity of the analyte can also be gained (Mladenov et al. 2008; Fellman et al. 2010). The relationship between humic-like fluorescence and TOC concentrations is well-established (Cumberland and Baker 2007), whilst protein-like fluorescence has been used to determine water quality (Baker and Inverarity 2004), and to indicate waste-water contamination of groundwater (Hartland et al. 2011; Sgroi et al. 2017). Despite the significance of DOM in freshwater environments, and the ease and low cost of analysis, fluorescence methods have been under-utilised in New Zealand.

In New Zealand, trophic level index (TLI) is used to assess lake water quality (Burns et al. 2000). TLI is calculated from the measurement of total nitrogen (TN), total phosphorus (TP) and chlorophyll a (Chla) concentrations, as well as Secchi disc depth (SDD). Measurements of TN, TP and Chla concentrations require chemical preparation. SDD is designed to measure the transparency of lake water; however, water transparency can be influenced by several independent factors (e.g. suspended sediment, cloud cover). To address these problems, several studies have suggested that water quality characterisation should incorporate the nutrient-colour paradigm (which includes spectroscopic analysis of CDOM) (Webster et al. 2008; Zhang et al. 2018). Indeed, Zhang et al. (2018) observed a strong correlation between CDOM optical properties and trophic gradients in 800 surface water samples from 22 Chinese lakes, thus demonstrating that fluorescence methods may complement conventional water quality monitoring.

Lake sediments as archives of DOM

Lakes act as sediment sinks, accumulating ecological, physical, biological, and chemical information that can inform our understanding of past environmental changes (Lowe and Walker 2014). Of the organic carbon that is deposited into sediments, a proportion will be remineralised, with remainder being incorporated in surficial sediments, eventually
being buried (Gudasz et al. 2010). Because lakes are subject to hydrological and geomorphological influence, correlations between lake sediment properties and climatic and environmental change may be non-linear, and variable between individual lakes (Fritz 2008). However, with sufficient characterisation lake sediments can inform questions of past lake productivity and catchment DOM influxes.

Aims and objectives

This study aims to highlight 3D EEM fluorescence as a method that may complement the trophic level index paradigm used to assess water quality in New Zealand lakes. However, rather than using lake surface water samples, this research focuses on sedimentary water-extractable dissolved organic matter (WEDOM), to demonstrate that water quality and sedimentary DOM are related, and that DOM sources from the past may be reconstructed using sedimentary WEDOM fluorescence.

We establish this relationship by comparing WEDOM fluorescence to water quality parameters from contemporary monitoring data from 11 lakes in New Zealand. To assess the potential of 3D EEM fluorescence analysis of WEDOM over longer timescales and in a pristine environment, this study also analysed 3D EEM fluorescence of 10 WEDOM samples (with an age range of 270–13,234 cal. year BP) from Adelaide Tarn, a small, sub-alpine lake. In Adelaide Tarn, these analyses are compared to sedimentary Fourier transform infrared spectroscopy (FTIRS) inferred TOC measurements and conventional total carbon and total nitrogen measurements.

We also present an NZ-specific calibration for the determination of total organic carbon (TOC) by Fourier-transform infrared spectroscopy (FTIRS) (sample \(n = 141 \)) of conventionally measured non-purgeable organic carbon (NPOC) concentrations from modern sediments in 13 lakes. FTIRS has been successfully deployed to reconstruct past lacustrine TOC concentrations elsewhere (Rosén et al. 2010; Meyer-Jacob et al. 2014).

Materials and methods

Lake sediment WEDOM training set

Surface sediments (maximum depth 4 cm) were sampled from 11 New Zealand lakes to build a fluorescence training dataset (Figure 2; Supplementary Table 1). Lakes in the training set are monitored by their respective regional councils, with data compiled by LAWA (Land Air Water Aotearoa). These lakes cover a latitudinal gradient spanning approximately 7.7° and are characterised by differing climate, land-use regimes, and trophic levels. A survey of New Zealand lake (112 lakes) water quality (2005–2009) (Verburg et al. 2010) revealed that the highest water quality is found in alpine lakes in catchments with high native vegetation cover, whilst poor water quality (eutrophy) is associated with warmer lakes in catchments dominated by pastoral land use (Verburg et al. 2010). To capture the widest range of trophic levels, the training set includes lakes from all points along this continuum.

Lakes Rotoiti (mesotrophic), Rotorua (eutrophic), Rotoehu (mesotrophic), Rotomanhina (mesotrophic), Taupō (oligotrophic) and Tarawera (oligotrophic) are in the Central Volcanic Plateau of the North Island (Figure 2). These lakes (most notably
Rotomahana) are of volcanic origin, and several are influenced by geothermal inflows (Mazot et al. 2014). Anthropogenic activities (predominantly urbanisation and agriculture) also affect several of these lakes, especially Rotorua. Lake Rotorua’s catchment land use is 39% forest, 52% pasture, and 8% urban, and includes the city of Rotorua (Verburg et al. 2014). The nearby catchments of Okataina, Rotoehu, Rotoiti, Tarawera and Rotomahana have predominantly native vegetation (Verburg et al. 2010). Within the catchment of Lake Taupō, there is a mixture of native vegetation and pastoral land, as well as a town located on its northern shore. Lakes Aviemore and Benmore (both oligotrophic) are man-made reservoirs created in the 1960s in Canterbury, South Island, and their catchment land-use is principally pastoral (Verburg et al. 2010). Lake Ohau is a microtrophic glacial lake, located in Canterbury, which is fed by rivers with sources on the Southern Alps. Ohau’s catchment contains low intensity pasture and native vegetation. Lake Pearson’s catchment (Canterbury) has a mix of low intensity pasture and native vegetation.

Sediments from Aviemore, Benmore, Ohau and Pearson were collected in the deepest part of each lake using a gravity corer in November 2011. Core samples from Lakes Rotorua and Rotoehu were collected using a gravity corer in 2016. Sediments from Lake Okataina, Rotomahana, Tarawera and Taupō were collected using a gravity corer in multiple years between 2006 and 2011. All samples were freeze-dried prior to storage.

Adelaide Tarn – a pristine lake with a palaeo-environmental archive

Adelaide Tarn (Lat: −40.941; Long: 172.544) is a small (0.06 km², maximum depth 7.6 m) low-alpine lake (1250 m altitude) with one inlet and one outlet, located in the Douglas
Range of the Tasman Mountains, NW Nelson Region, on New Zealand’s South Island (Figure 2) (Jara et al. 2015). The lake is situated in a glacial cirque (3.8 km²) with steep slopes and thin soil and was formed when permanent ice retreated from the catchment around ∼16,100 cal. years BP (Jara et al. 2015). Adelaide Tarn is currently located above the treeline, with nearby forest being mainly composed of mountain beech (Fuscospora cliffortioides) with low-shrub species including Coprosma and Griselinia spp. forming the sub-canopy. The low alpine ground cover is mainly herbaceous flora including Astelia, Uncinia, Apiaceae, Plantaginaceae, and Asteraceae. Adelaide Tarn has an estimated mean annual temperature of 6.2°C and annual precipitation of 2,500 mm (Jara et al. 2015).

Two overlapping sediment cores (AT 1115 and AT 1116) were collected from an anchored platform using a 5 cm diameter square-rod piston corer (Wright 1967) from the deepest part (7.6 m) of the tarn. Both cores consist of multiple overlapping 1 m length core sections. A gravity core was taken to collect the water-sediment interface. A single composite succession was constructed by cross correlating common stratigraphic units (Jara et al. 2015). The age model was reported previously by Jara et al. (2015), and the sedimentary chronology was constructed from 16 accelerator mass spectrometer (AMS) radiocarbon dates and calibrated using the SH Cal13 dataset (Hogg et al. 2013).

Water quality monitoring data

Monitoring data were collected by the respective regional councils and compiled by LAWA (Land Air Water Aotearoa; LAWA 2014). The TLI score can be calculated via two different techniques, either as TLI3 or TLI4. TLI4 is calculated from log-transformed values of four variables: total phosphorus (TP), total nitrogen (TN), chlorophyll a (Chl-a) and Secchi disc depth (SDD) (a measure of water clarity), whilst TLI3 ignores SDD. Each lake is assigned a TLI score between 1 and 7, where the lower the number, the higher the water quality. This study used the TLI3 method, as SDD data are not available for every lake in the training set.

To characterise each lake, mean TN, TP, Chl-a and TLI values for the three years prior to core extraction were calculated from the LAWA database. The number of measurements, the number of within-lake sampling sites and the number of years of measurements used in this study are listed in the supplementary information (Supplementary Table 1). Total nitrogen is the sum of all inorganic and organic forms (NO₃, NO₂, NH₄, amino acids and plant tissues). Total phosphorus includes dissolved reactive phosphorus, orthophosphate and organic P bound to sediments. Chlorophyll a is measured to estimate the biomass of phytoplankton suspended in the water column.

Water extraction of sedimentary OM

A water extraction protocol commonly used in soil analysis (Guigue et al. 2014) was used to solubilise DOM (as WEDOM) for fluorescence analysis. Briefly: 10 mg of freeze-dried, homogenised sediment was added to 7 mL of distilled-deionised (18 MΩ) water in a polypropylene tube and shaken vigorously for 60 min, before being centrifuged for 30 min at 3600 rpm. Traditionally, assessments of water extractable OM are limited to
alkaline extractions from sediments (Corvasce et al. 2006). However, Lehmann and Kleber (2015) suggested that analysis should focus on water-soluble (and therefore bioavailable) OM, since an alkaline treatment at pH 13 ionises compounds that would never dissolve in a natural pH range (pH 3.5 to pH 8.5).

Freeze-drying prior to WEDOM extraction for fluorescence analysis has rarely been reported in the literature but is known to alter pore structure and to cause stress to the microbial community within the sample (Zsolnay 2003). However, air drying can eliminate interesting differences in DOM quality and quantity (Zsolnay 2003). For this reason, freeze-drying was undertaken in sample preparation.

3D EEM fluorescence measurements of water extractable dissolved organic matter (WEDOM)

3D EEM fluorescence is a routine approach to assessing water quality in lakes and rivers (Baker et al. 2004; Hudson et al. 2007). The wavelengths at which fluorescence excitation and emission occurs allow the biochemical characteristics and sources of DOM to be distinguished (Fellman et al. 2010). Following water extraction, supernatants were filtered through 0.45 μm cellulose acetate syringe filters (Microanalytix Pty Ltd, Australia). The extracts were then analysed using a Horiba Jobin Yvon Aqualog® fluorescence spectrometer with a 0.5 s integration time, a step-size of 3 nm, and a measurement range of 240–600 nm excitation and 245–800 nm emission. To correct for instrument specific biases (Stedmon and Bro 2008), each matrix was corrected for inner-filter effects, scatter lines were Rayleigh masked, and spectra were then Raman normalised to the mean Raman peak area of distilled de-ionised water.

PARAFAC (parallel factor analysis) of components of WEDOM fluorescence

Fluorescence data in this study were processed using parallel factor analysis of components (PARAFAC) using the N-way toolbox (Andersson and Bro 2000), a multivariate modelling technique developed in MATLAB® 2013. PARAFAC provides multi-way analysis through which fluorescence signals can be distinguished and separated into statistically valid independent components. PARAFAC thus provides estimates of the relative contribution of each component to the total fluorescence signal and can quantify common fluorophores present in natural samples as statistical components (Fellman et al. 2010). The model was validated using the drEEM toolbox (Stedmon and Bro 2008).

FTIRS (Fourier transform infrared spectroscopy)

FTIRS spectra from New Zealand lake sediments (Figure 2, Supplementary Table 2) were related to conventionally measured TOC using a PLSR (partial least square regression) approach (Rosén et al. 2011). Many FTIRS-TOC studies have established local/regional calibrations, and these can differ substantially depending on local variations in sediment character (Meyer-Jacob et al. 2014). For conventional TOC measurement, samples first underwent acid pre-treatment to remove carbonates, followed by catalytic combustion (900°C, O₂) and separation, before analysis in a thermal conductivity detector (Elementar Analyser). Splits of the same samples were also analysed via FTIRS using a Perkin-Elmer
Spectrum 100 spectrometer. Prior to analysis, samples were freeze-dried overnight, ground and homogenised using a pestle and mortar. Aliquots of 2 mg (±2.5%) of each sub-sample were extracted, mixed, and homogenised with 1 g of oven-dried (100°C) KBr, before being compressed to form translucent discs. Discs were kept in desiccators prior to analysis. After recording a blank (no disc in the cell), the discs were measured under controlled conditions, with blank measurements taken every 15 measurements to avoid possible spectral drift. The absorption of infrared (IR) light with wavenumbers of 3750–400 cm\(^{-1}\) was recorded through 64 scans per sample.

Results

Fourier transform infrared spectroscopy (FTIRS)-TOC calibration

Partial-least squares regression (PLSR) modelling of FTIRS data vs conventionally measured TOC resulted in a 5-component model, with an \(R^2\) value of 0.88 (Figure 3). Higher TOC values (>10%) are less accurately estimated by this model due to the under-representation of this sample type in the FTIRS-TOC training set. The regression line has the equation \(y = 0.9375x + 0.3774\). In subsequent discussion and presentation of results we have used this equation to calculate TOC concentrations from FTIRS measurements.

3D EEM fluorescence of WEDOM

Figure 4 shows that most of the lake sediments exhibit C, A, and T fluorescence peaks (Coble 1996), and that the intensities of each peak vary considerably between lakes. Peaks C and A are commonly associated with humic-like fluorescence from higher plant matter and soil (Fellman et al. 2010), whilst peak T is associated with biomolecules containing amino acids (Baker and Inverarity 2004).

![Figure 3](image-url) **Figure 3.** FTIRS-TOC calibration for 13 New Zealand lakes based on PLSR.
Figure 5 shows the first three components from a PARAFAC model that included all WDOM samples.

Components 1 and 2 are both humic-like but are atypical in shape. Typically, maximum fluorescence intensities for humic-like peaks occur at wavelengths of Ex: 237-260; Em: 400–500 nm (peak A), or Ex: 300–370; Em: 400–500 (peak C) (Coble 1996). The unusual peak shape of Components 1 and 2 is explained by the diverse range of fluorescence peak shapes at the different sites, which the components are fitted to. Given that the main focus of this study is the quantification of autochthonous vs allochthonous contributions to the lake carbon reservoir, and given that two humic-like peaks have overlapping properties, we henceforth consider humic-like components 1 and 2 together (described as ‘Total humic-like fluorescence’).

If a two-component model was generated, then a protein-like peak was not produced. However, for the three-component model, the third component was clearly protein-like. This component spans a relatively wide range of emission wavelengths, consistent with red shifting (exhibiting emission at longer wavelengths) of this peak due to the variety of conjugated biomolecules found at different sites.

Comparing trophic level index scores and parameters against WDOM fluorescence intensity

Figure 6 shows correlations between various measures of lake water quality, sedimentary FTIRS-TOC, and sedimentary WDOM fluorescence. All fluorescence components are strongly positively correlated with each other and with FTIRS-TOC, indicating that...
increases in allochthonous input are not independent of increases in autochthonous production.

Regression values and statistics for fluorescence components vs trophic level indicators are reported in Table 1 and the regression of protein-like fluorescence vs TLI is shown in Figure 7. Residuals for Figure 7 passed the Shapiro–Wilk test (Shapiro and Wilk 1965) for homoscedasticity with a p-value of 0.445. The relationships between humic-like fluorescence and Chl-a, TN and TP are not statistically significant at the $p < 0.05$ level. The relationship between humic-like fluorescence and TLI is statistically significant but explains a relatively low proportion of the variation. Protein-like fluorescence has a statistically significant relationship ($p < 0.05$) with all trophic level indicators, and particularly with TLI and TP, and a relatively high R^2 in all cases (again, especially TLI and TP). This indicates that TLI is the trophic level indicator that can be most usefully predicted by WEDOM fluorescence measurements. Although both humic-like and protein-like fluorescence have statistically significant relationships with TLI, these variables are highly collinear.

Fluorescence and sedimentary OM in Adelaide Tarn

Table 2 gives the results of conventional and optical measurements of OM characteristics in the 10 sub-samples from the Adelaide Tarn core. Figure 8 shows correlations between the conventional and optical measurements for these subsamples. Protein-like fluorescence is positively correlated with total nitrogen (0.93), total carbon (0.86), and TC/ TN (0.64). Total humic-like fluorescence is also positively correlated with total carbon (0.73) and total nitrogen (0.84). FTIRS-TOC is positively correlated with each fluorescence component but has the strongest correlations with protein-like fluorescence (0.79) and total humic-like fluorescence (0.74).
Discussion

The relationship between WEDOM fluorescence components and TLI parameters

Protein-like fluorescence is very strongly correlated with total nitrogen, total phosphorus, trophic level index, and chlorophyll a (Figure 6). All these correlations are statistically significant ($p < 0.05$; Table 1). Conversely, humic-like fluorescence (indicating allochthonous OM) is significantly less correlated to indicators of trophic level, and the correlation

Table 1. Regression statistics (multiple R^2) for WEDOM fluorescence components vs water-column trophic level indicators in the training-set lakes.

3D EEM fluorescence component signal	Chl-a	Total nitrogen	Total phosphorus	Trophic level index score	TOC	
	R^2	p-Value	R^2	p-Value	R^2	p-Value
Total humic-like	0.22	0.148	0.25	0.1209	0.57	0.007122
Protein-like	0.43	0.0273	0.49	0.0159	0.81	0.0001745

Figure 6. Pearson correlation matrix of averaged monitoring water-column data and fluorescence intensities for WEDOM total humic-like fluorescence (C1 + C2), total protein-like fluorescence (C3) and total fluorescence (C1 + C2 + C3). Chl-a = chlorophyll a, TN = total nitrogen, TP = total phosphorus from the training set of New Zealand lakes.
with TN and chlorophyll \(a \) is not statistically significant at \(p < 0.05 \). This indicates that, although both parameters can tell us something about lake trophic state, the sedimentary protein-like fluorescence signal is more useful in this regard (Figure 6).

Significant relationships between trophic level indicators and fluorescence components support the hypothesis that protein-like fluorescence is a faithful proxy for the trophic level of the lake. Chlorophyll \(a \) is a proxy for algal biomass (Boyer et al. 2009), and therefore the significant relationship between protein-like fluorescence and chlorophyll \(a \) indicates that sedimentary protein-like fluorescence is sensitive to autochthonous productivity. Meanwhile, the lack of a significant correlation between chlorophyll \(a \) and sedimentary humic-like fluorescence indicates that humic-like fluorescence is not directly related to within-lake productivity. Similarly, total nitrogen is affected by the source of OM. Carbon–nitrogen ratios are higher in allochthonous OM than in autochthonous OM, so in a mixed system, changes in the amount of autochthonous input will have a greater effect on total nitrogen than changes in the amount of allochthonous input. The relationships shown in Figure 6 and Table 1 thus provide support for the use of protein-like fluorescence from sedimentary WEDOM as a measure of lake trophic state.

The relationships between the different fluorescence components and FTIRS-TOC tell a different story. In this case, humic-like fluorescence is significantly and strongly

\[
R^2 = 0.74 \\
y = 0.5423x + 1.2951
\]

Figure 7. Regression of trophic-level index (water-column) against protein-like fluorescence intensity (WEDOM) for the 10 training-set New Zealand lakes. See Table 2 for regression values and statistics.
Table 2. Conventional measurements of sediment organic carbon and optical measurements of WEDOM from 10 subsamples from the Adelaide Tarn core.

Depth (cm)	Age (Cal. year BP)	Sediment Total nitrogen (%)	Sediment Total carbon (%)	Sediment C:N ratio	Sediment FTIRS-inferred TOC (%)	WEDOM PARAFAC C1 score (humic-like)	WEDOM PARAFAC C2 score (humic-like)	WEDOM PARAFAC C1 + C2 score (total humic-like)	WEDOM PARAFAC C3 score (protein-like)
4	276	0.44	5.83	13.28	6.0	2.94	3.69	6.63	1.29
44	1,306	0.52	7.66	14.66	7.2	2.90	3.40	6.3	1.26
97	2,756	0.58	8.39	14.49	10.9	4.63	5.14	9.77	1.50
204	5,992	0.58	8.98	15.58	7.1	5.23	6.15	11.38	1.61
257	8,410	0.66	11.59	17.45	11.7	5.33	4.54	9.87	1.55
299	9,674	0.74	13.61	18.42	14.9	7.69	5.90	13.59	2.01
338	10,869	0.80	13.03	16.38	12.6	10.49	10.72	21.21	2.10
366	11,858	0.59	9.22	15.58	9.7	5.97	5.01	10.98	1.56
395	12,726	0.61	8.80	14.39	9.5	5.31	5.34	10.65	1.69
417	13,234	0.58	8.47	14.53	9.8	6.23	7.34	13.57	1.65
correlated with FTIRS-TOC, while the correlation between protein-like fluorescence and FTIRS-TOC is weak and not statistically significant (Figure 6; Table 1). Overall, protein-like fluorescence has relatively low absolute values and variance across lakes, while in all but the microtrophic Lake Ohau, humic-like fluorescence has higher absolute values and variance (Supplementary Figure 1). This indicates a generally greater contribution of allochthonous OM to the overall lacustrine OM pool in these lakes, and thus explains the strong and significant correlation between humic-like fluorescence and FTIRS-TOC, as well as the lack of significance in the relationship between protein-like fluorescence and FTIRS-TOC. Thus, even in a set of lakes where autochthonous OM input plays a relatively minor role in between-lake carbon-cycle variability, protein-like fluorescence can still be used to predict trophic level.

The fluorescence components are strongly positively correlated with each other, indicating that increases in allochthonous input are not independent of increases in autochthonous production (Figure 6). This is to be expected, as nutrients associated with allochthonous DOM can stimulate lake productivity (Karlsson et al. 2009). One shortcoming of our data is the under-representation of mesotrophic and (especially) eutrophic lakes.

Figure 8. Pearson correlation matrix of conventional sediment measurements and optical WEDOM measurements from 10 Adelaide Tarn sediment sub-samples (Table 2).
Monitoring data in New Zealand has demonstrated that TLI has a moderate negative correlation with the percentage of native/alpine vegetation cover ($R^2 = -0.55$) (Verburg et al. 2010), and lakes in very cold climates had the lowest median TLI score (2.3: oligotrophic) compared to lakes from other climate regimes in New Zealand. Verburg et al. (2010) extrapolated their findings to suggest that New Zealand lakes are mesotrophic on average, and alpine lakes with native vegetation are typically microtrophic or oligotrophic (Verburg et al. 2010), being representative of pre-human lake conditions in New Zealand (Abell et al. 2019). Because even low-TLI lakes are likely to experience increased DOM loads due to changes in catchment land cover (Rae et al. 2001), and because sedimentary protein-like fluorescence appears to be sensitive to trophic level changes even at low levels of productivity, a fluorescence-based investigation into recent and ongoing perturbations of DOM might be fruitful in detecting subtle shifts in lake trophic status in New Zealand’s still pristine lake systems.

A comparison of sediment fluorescence to geochemical data in Adelaide Tarn

We do not have information about total phosphorous or chlorophyll a in Adelaide Tarn sediments. The only measure of productivity corresponding to the indicators used for the training set lakes is total nitrogen. Notably, the values reported here are of total sedimentary nitrogen, not of nitrogen in the water column. Furthermore, the Adelaide Tarn dataset represents within-lake variability, while the modern lakes dataset represents between-lake variability. Having said this, the pattern observed is similar to that seen in the modern lakes: while both humic-like and protein-like fluorescence are statistically significantly correlated with total nitrogen at $p < 0.05$, protein-like fluorescence both shows a stronger correlation and a lower p-value than humic-like fluorescence. Protein-like fluorescence is also significantly correlated to carbon–nitrogen ratio, a measure of the contribution of aquatic OM to the overall carbon pool (Meyers and Benson 1988), although in this case the correlation is only moderate. Humic-like fluorescence does not have a statistically significant relationship with carbon–nitrogen ratio at $p < 0.05$ (Table 3). This pattern of correspondences supports the hypothesis that protein-like fluorescence can be used as a proxy for lake productivity in ancient as well as modern lake sediments.

In terms of measures of total carbon in Adelaide Tarn, the picture is somewhat mixed. While both humic-like and protein-like fluorescence show statistically significant correlations to both conventionally measured total carbon (TC) and FTIRS-TOC, the strength and significance of the correlation varies depending on which measure of total carbon is used. Protein-like fluorescence is more strongly correlated with TC, while humic-like fluorescence is more strongly correlated with FTIRS-TOC. The reason for this discrepancy is not clear. However, as with our modern lakes, the fact that both fluorescence measures correlate with both measures of total carbon is likely due to the fact that nutrients associated with or transported by allochthonous DOM (primarily humic-like) can stimulate autotroph productivity (Karlsson et al. 2009) and thus drive elevated protein-like fluorescence.

In Adelaide Tarn, a simple catchment with limited anthropogenic influence, changes in allochthonous inputs must be associated with natural environmental change. Indeed, the impacts of future climate change on lakes are expected to be most pronounced at high elevations (Bradley et al. 2004), where treeline advancement and vegetation change occurs due to temperature and precipitation changes (Roush et al. 2007).
One possible issue with using protein-like fluorescence to reconstruct past changes in productivity is the question of how faithfully sediments preserve autochthonous OM. Because autochthonous OM is less refractory on average than allochthonous OM, it is more likely to be respired and therefore there is likely to be a preservation bias against autochthonous OM. Furthermore, preservation may vary with climate, with warmer conditions leading to increased rates of respiration and therefore reduced preservation of protein-like fluorophores, obscuring the signal of productivity changes. However, there is evidence that even in highly degraded OM, organic components can survive in sufficient quantities to allow reconstruction of past productivity changes (Sobek et al. 2009).

In Adelaide Tarn, the intensity of protein-like fluorescence ranges from 1.26 to 2.1 fluorescence units, with a median value of 1.59. This median falls at the lower end of the range of protein-like fluorescence values shown in the modern lakes. Specifically, it is close to values shown by Lake Aviemore (1.54) and Lake Benmore (1.78) (both oligotrophic), and higher than the value shown by Lake Ohau (1.35) (microtrophic). Presently, Adelaide Tarn is microtrophic/oligotrophic, and has never been subject to high levels of anthropogenic nutrient input. The downcore protein-like fluorescence scores are consistent with protein-like fluorescence as an indicator of past trophic level. Only two protein-like fluorescence scores fall outside of the range of scores shown by modern oligotrophic/microtrophic lakes, and these are the most recent samples which would be expected to have undergone the least degradation. There is therefore no evidence of significant degradation of the proteinaceous OM in the Adelaide Tarn samples.

A further piece of evidence supporting protein-like fluorescence as a proxy for past lake productivity is the observed downcore pattern of variability in protein-like fluorescence at Adelaide Tarn (Figure 9B). Notably, the highest protein-like fluorescence intensities correspond to an interval ∼10.8–9.7 kyr BP. These sediments were deposited during the Holocene climatic optimum (HCO, 10.5–9 kyr BP), when climate was inferred to be 1.5-2 °C warmer than the intervening period (Barrows et al. 2007). If preservation of proteinaceous DOM was not uniform in time, we would expect that preservation would be lower under warmer conditions due to enhanced respiration of DOM, and thus we would see a decrease in protein-like fluorescence at the HCO. High protein-like fluorescence suggests that protein-like fluorescence signals in sediment archives can be faithful indicators of productivity changes.

Implications and recommendations for future research

This study makes the first link between New Zealand lake systems and the large body of international research on fluorescence and water quality. We demonstrate a strong and coherent link between protein-like fluorescence and within-lake productivity via the TLI

Adelaide Tarn 3D EEM fluorescence components signal (WEDOM)	TC (Sediment)	TN (Sediment)	TC:TN (Sediment)	FTIRS-TOC (Sediment)
	R^2 p-Value	R^2 p-Value	R^2 p-Value	R^2 p-Value
Total humic-like	0.53 0.02	0.73 0.02	0.21 0.18	0.64 0.06
Protein-like	0.75 0.001	0.86 0.0001	0.43 0.04	0.4 0.053
indicator for modern lakes, and find evidence that sedimentary fluorescence may also be a faithful recorder of palaeo-productivity and trophic status in more ancient lake sediments.

The application of water quality indices in contemporary monitoring is somewhat flawed, as the indices are constructed using independent variables that may not co-vary (e.g. TN concentration may increase, but TP may decline), potentially resulting in similar TLI scores representing quite different ecosystem properties. There is potential for further investigation into the potential of fluorescence measurements to improve water quality measurements in such situations.

Further research should continue to test the relationship between 3D EEM fluorescence in contemporary water samples and in recently deposited sediments and/or suspended sediments. Microbial reworking of OM during sinking and early sedimentation may diminish the total OM concentration whilst replacing many primary organic compounds with secondary ones, and therefore the DOM contained in sediment may be altered compared to DOM contained in the surface waters (Meyers and Ishiwatari 1993).

Water extraction of DOM may also have limitations in its power to delineate stratigraphic differences in a sediment core. The extraction of DOM will always be incomplete; even in NaOH extractions, 50%–70% of the OM is left unextracted (Lehmann and Kleber 2015). Post-deposition, DOM mobility and degradation is poorly understood, however, the vigorous shaking required to extract CDOM (after freeze-drying) indicates that the WEDOM was strongly bound to the sediment particles (Meyers and Ishiwatari 1993). The consistent results from Adelaide Tarn suggest that WEDOM analyses have stratigraphic integrity, but this finding should be investigated further.

Conclusions

This study demonstrated that protein-like sedimentary WEDOM fluorescence is related to water quality indicators (particularly TP and TLI in modern lake sediments, and TN in Adelaide Tarn), whilst humic-like WEDOM fluorescence corresponds with TOC concentrations. This approach may compliment reconstructions of past trophic status and provide a means of evaluating the contemporary water quality of more remote and/or infrequently monitored lake systems.
Acknowledgements

We thank Dr Carsten Meyer-Jacob (Paleoecological Environmental Assessment and Research Laboratory, Queen’s University Canada/ Department of Ecology and Environmental Science, University of Umeå) for PLSR modelling of FTIRS-TOC data.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Funding

This study was made possible by Marsden Fund Grant UOW1403 and public research funding from the Government of New Zealand via contract C05X1702 to GNS Science. AH was also supported by a Rutherford Discovery Fellowship award [grant number RDF-UOW1601]. Collection of Adelaide Tarn samples was funded by Marsden Fund Grant GNS1001: Bacterial geo-thermometer: A new, precise indicator of climate change. MJV was also supported by the Ministry of Business, Innovation and Employment, New Zealand (Programme: ‘Our Lake’s Health; Past, Present and Future’; grant number C05X1707).

ORCID

Adam Hartland http://orcid.org/0000-0002-1864-5144

References

Abell JM, Özkundakci D, Hamilton DP. 2010. Nitrogen and phosphorus limitation of phytoplankton growth in New Zealand lakes: implications for eutrophication control. Ecosystems. 13 (7):966–977.
Abell JM, Özkundakci D, Hamilton DP, van Dam-Bates P, McDowell RW. 2019. Quantifying the extent of anthropogenic eutrophication of lakes at a national scale in New Zealand. Environmental Science & Technology. 53(16):9439–9452.
Andersson CA, Bro R. 2000. The N-way toolbox for MATLAB. Chemometrics and Intelligent Laboratory Systems. 52(1):1–4.
Ask J, Karlsson J, Persson L, Ask P, Byström P, Jansson M. 2009. Terrestrial organic matter and light penetration: effects on bacterial and primary production in lakes. Limnology and Oceanography. 54(6):2034–2040.
Baker A, Inverarity R. 2004. Protein-like fluorescence intensity as a possible tool for determining river water quality. Hydrological Processes. 18(15):2927–2945.
Baker A, Ward D, Lieten SH, Periera R, Simpson EC, Slater M. 2004. Measurement of protein-like fluorescence in river and waste water using a handheld spectrophotometer. Water Research. 38 (12):2934–2938.
Barrows TT, Lehman SJ, Fifield LK, De Deckker P. 2007. Absence of cooling in New Zealand and the adjacent ocean during the Younger Dryas chronozone. Science. 318(5847):86–89.
Battin TJ, Luyssaert S, Kaplan LA, Aufdenkampe AK, Richter A, Tranvik LJ. 2009. The boundless carbon cycle. Nature Geoscience. 2(9):598–600.
Boyer JN, Kelble CR, Ortner PB, Rudnick DT. 2009. Phytoplankton bloom status: chlorophyll a biomass as an indicator of water quality condition in the southern estuaries of Florida, USA. Ecological Indicators. 9(6):S56–S67.
Bradley RS, Keimig FT, Diaz HF. 2004. Projected temperature changes along the American cordillera and the planned GCOS network. Geophysical Research Letters. 31(L16210):1–4.
Burns N, Bryers G, Bowman E. 2000. Protocol for monitoring trophic levels of New Zealand lakes and reservoirs. Wellington: Ministry for the Environment.

Coble PG. 1996. Characterization of marine and terrestrial DOM in seawater using excitation-emission matrix spectroscopy. Marine Chemistry. 51(4):325–346.

Coble PG, Del Castillo CE, Avril B. 1998. Distribution and optical properties of CDOM in the Arabian Sea during the 1995 Southwest Monsoon. Deep Sea Research Part II: Topical Studies in Oceanography. 45(10):2195–2223.

Coble PG, Green SA, Blough NV, Gagosian RB. 1990. Characterization of dissolved organic matter in the Black Sea by fluorescence spectroscopy. Nature. 348:432–435.

Cole JJ, Prairie YT, Caraco NF, McDowell WH, Tranvik LJ, Striegl RG, ... Melack J. 2007. Plumbing the global carbon cycle: integrating inland waters into the terrestrial carbon budget. Ecosystems. 10(1):172–185.

Corvasce M, Zsolnay A, D’Orazio V, Lopez R, Miano TM. 2006. Characterization of water extractable organic matter in a deep soil profile. Chemosphere. 62(10):1583–1590.

Cumberland SA, Baker A. 2007. The freshwater dissolved organic matter fluorescence–total organic carbon relationship. Hydrological Processes: An International Journal. 21(16):2093–2099.

Fee E, Hecky R, Kasian S, Crukishank D. 1996. Effects of lake size, water clarity, and climatic variability on mixing depths in Canadian Shield lakes. Limnology and Oceanography. 41(5):912–920.

Fellman JB, Hood E, Spencer RGM. 2010. Fluorescence spectroscopy opens new windows into dissolved organic matter dynamics in freshwater ecosystems: a review. Limnology and Oceanography. 55(6):2452–2462.

Findlay SE, Parr TB. 2017. Dissolved organic matter. In: Richard Hauer F., Lamberti G., editors. Methods in stream ecology. Academic Press; p. 21–36. https://www.elsevier.com/books/methods-in-stream-ecology/hauer/978-0-12-332908-0

Fritz SC. 2008. Deciphering climatic history from lake sediments. Journal of Paleolimnology. 39(1):5–16.

Gudasz C, Bastviken D, Steger K, Premke K, Sobek S, Tranvik LJ. 2010. Temperature-controlled organic carbon mineralization in lake sediments. Nature. 466:478–481.

Guigue J, Mathieu O, Lévêque J, Mounier S, Laffont R, Maron PA, Navarro N, Chateau C, Amiotte-Suchet P, Lucas Y. 2014. A comparison of extraction procedures for water-extractable organic matter in soils. European Journal of Soil Science. 65(4):520–530.

Hartland A, Fairchild IJ, Lead JR, Zhang H, Baalousha M. 2011. Size, speciation and lability of NOM–metal complexes in hyperalkaline cave dripwater. Geochimica et Cosmochimica Acta. 75(23):7533–7551.

Hogg AG, Hua Q, Blackwell PG, Niu M, Buck CE, Guilderson TP, Heaton TJ, Palmer JG, Reimer PJ, Reimer RW. 2013. SHCal13 Southern Hemisphere calibration, 0–50,000 years cal BP. Radiocarbon. 55(4):1889–1903.

Hudson N, Baker A, Reynolds D. 2007. Fluorescence analysis of dissolved organic matter in natural, waste and polluted waters – a review. River Research and Applications. 23(6):631–649.

Jara IA, Newnham RM, Vandergoes MJ, Foster CR, Lowe DJ, Wilmhurst JM, Moreno PI, Renwick JA, Homes AM. 2015. Pollen–climate reconstruction from northern South Island, New Zealand (41°S), reveals varying high- and low-latitude teleconnections over the last 160,000 years. Journal of Quaternary Science. 30(8):817–829.

Karlsson J, Byström P, Ask J, Ask P, Persson L, Jansson M. 2009. Light limitation of nutrient-poor lake ecosystems. Nature. 460(7254):506–509.

LAWA. 2014. Land Air Water Aotearoa website, 2014. [accessed 2017 Nov 16]. www.lawa.org.nz.

Lehmann J, Kleber M. 2015. The contentious nature of soil organic matter. Nature. 528:60–68.

Lowe JJ, Walker MJ. 2014. Reconstructing quaternary environments. New York: Routledge.

Mazot A, Schwandner FM, Christenson B, Ronde CE, Ingaggiato S, Scott B, Graham D, Britten K, Keeman J, Tan K. 2014. CO2 discharge from the bottom of volcanic Lake Rotomahana, New Zealand. Geochemistry, Geophysics, Geosystems. 15(3):577–588.
Meyer-Jacob C, Tolu J, Bigler C, Yang H, Bindler R. 2015. Early land use and centennial scale changes in lake-water organic carbon prior to contemporary monitoring. Proceedings of the National Academy of Sciences. 112(21):6579–6584.

Meyer-Jacob C, Vogel H, Gebhardt C, Wennrich V, Melles M, Rosén P.. 2014. Biogeochemical variability during the past 3.6 million years recorded by FTIR spectroscopy in the sediment record of Lake El’gygytgyn, Far East Russian Arctic. Climate of the Past. 10:209–220. https://doi.org/10.5194/cp-10-209-2014.

Meyers PA, Benson LV. 1988. Sedimentary biomarker and isotopic indicators of the paleoclimatic history of the Walker Lake basin, western Nevada. Organic Geochemistry. 13(4-6):807–813.

Meyers PA, Ishiwatari R. 1993. Lacustrine organic geochemistry – an overview of indicators of organic matter sources and diagenesis in lake sediments. Organic Geochemistry. 20(7):867–900.

Mladenov N, Huntsman-Mapila P, Wolski P, Masamba WR, McKnight DM. 2008. Dissolved organic matter accumulation, reactivity, and redox state in ground water of a recharge wetland. Wetlands. 28(3):747–759.

Rae R, Howard-Williams C, Hawes I, Schwarz A-M, Vincent WF. 2001. Penetration of solar ultraviolet radiation into New Zealand lakes: influence of dissolved organic carbon and catchment vegetation. Limnology. 2(2):79–89.

Rosén P, Vogel H, Cunningham L, Hahn A, Hausmann S, Pienitz R, Zolitschka B, Wagner B, Persson P. 2011. Universally applicable model for the quantitative determination of lake sediment composition using Fourier transform infrared spectroscopy. Environmental Science & Technology. 45(20):8858–8865.

Rosén P, Vogel H, Cunningham L, Reuss N, Conley DJ, Persson P. 2010. Fourier transform infrared spectroscopy, a new method for rapid determination of total organic and inorganic carbon and biogenic silica concentration in lake sediments. Journal of Paleolimnology. 43(2):247–259.

Roush W, Munroe JS, Fagre DB. 2007. Development of a spatial analysis method using ground-based repeat photography to detect changes in the alpine treeline ecotone, Glacier National Park, Montana, USA. Arctic, Antarctic, and Alpine Research. 39(2):297–308.

Sgroi M, Roccaro P, Korshin GV, Vagliasindi FGA. 2017. Monitoring the behavior of emerging contaminants in wastewater-impacted rivers based on the use of fluorescence excitation emission matrixes (EEM). Environmental Science & Technology. 51(8):4306–4316.

Shapiro SS, Wilk MB. 1965. An analysis of variance test for normality (complete samples). Biometrika. 52(3/4):591–611.

Smith VH. 2003. Eutrophication of freshwater and coastal marine ecosystems a global problem. Environmental Science and Pollution Research. 10(2):126–139.

Sobek S, Durisch-Kaiser E, Zurbrügg R, Wongfun N, Wessels M, Pasche N, Wehrli B. 2009. Organic carbon burial efficiency in lake sediments controlled by oxygen exposure time and sediment source. Limnology and Oceanography. 54(6):2243–2254.

Stedmon CA, Bro R. 2008. Characterizing dissolved organic matter fluorescence with parallel factor analysis: a tutorial. Limnology and Oceanography: Methods. 6(11):572–579.

Tranvik LJ. 1988. Availability of dissolved organic carbon for planktonic bacteria in oligotrophic lakes of differing humic content. Microbial Ecology. 16(3):311–322.

Verburg P, Hamill K, Unwin M, Abell J. 2010. Lake water quality in New Zealand 2010: status and trends. Hamilton: National Institute of Water & Atmospheric Research Ltd.

Verburg P, Hickey CW, Phillips N. 2014. Mercury biomagnification in three geothermally-influenced lakes differing in chemistry and algal biomass. Science of the Total Environment. 493:342–354.

Webster KE, Soranno PA, Cheruvil KS, Bremigan MT, Downing JA, Vaux PD, Asplund TR, Bacon LC, Connor J. 2008. An empirical evaluation of the nutrient-color paradigm for lakes. Limnology and Oceanography. 53(3):1137–1148.

Wright H. 1967. A square-rod piston sampler for lake sediments. Journal of Sedimentary Research. 37(3):975–976.

Yang Y, He Z, Wang Y, Fan J, Liang Z, Stoffella PJ. 2013. Dissolved organic matter in relation to nutrients (N and P) and heavy metals in surface runoff water as affected by temporal variation...
and land uses – a case study from Indian River Area, south Florida, USA. Agricultural Water Management. 118:38–49.

Zhang Y, Zhou Y, Shi K, Qin B, Yao X, Zhang Y. 2018. Optical properties and composition changes in chromophoric dissolved organic matter along trophic gradients: Implications for monitoring and assessing lake eutrophication. Water Research. 131:255–263.

Zsolnay Á. 2003. Dissolved organic matter: artefacts, definitions, and functions. Geoderma. 113 (3):187–209.