Rate-distance Tradeoff and Resource Costs for All-Optical Quantum Repeaters

arXiv:1603.01353

Mihir Pant1,2, Hari Krovi2, Dirk Englund1 and Saikat Guha2

1Massachusetts Institute of Technology

2Raytheon BBN Technologies
The limit of repeaterless QKD

1.44 X 10^-20 bits/mode or 1 bit/2000y with 10^9 modes/s

Repeaterless bound
= -log₂(1-η) ≈ 1.44η = 1.44e⁻^αL

Pirandola, S., Laurenza, R., Ottaviani, C., & Banchi, L. Fundamental limits of repeaterless quantum communications. October 2015. arXiv preprint arXiv: 1510.08863.

Takeoka, M., Guha, S., & Wilde, M. M. (2014). Fundamental rate-loss tradeoff for optical quantum key distribution. Nature communications, 5.
Quantum Repeaters

\[\text{Repeaterless} \approx 1.44 \eta = 1.44e^{-\alpha L} \]

With repeaters
\[\sim \eta^s \sim e^{-s\alpha L}, \ s = 0.28 \]

Challenges with Quantum memories
- Coupling with photonics
- Dilution fridge
- Error Corrected Memories

Sinclair et. al., *Physical review letters*, 113(5), 053603 (2014).
Guha et. al., *Physical Review A*, 92(2), 022357 (2015).
All-Optical Repeaters

Simpler components
- Sources
- Detectors
- Beamsplitter
- Phase Shifters

But how practical is it?

Azuma, K., Tamaki, K., & Lo, H. K. (2015). All-photonic quantum repeaters. *Nature communications*, 6.

Varnava, M., Browne, D. E., & Rudolph, T. (2006). Loss tolerance in one-way quantum computation via counterfactual error correction. *Physical review letters*, 97(12), 120501.
Detailed analysis of the Scheme

Account for losses in all components

Optimize number of repeaters, number of communication channels

Smallest cluster that beats the repeaterless bound: **208 photons**

Number of repeater stations $N = \begin{cases} 300 \\ 50 \\ 100 \\ 200 \end{cases}$

BUT

10^{11} photons required for cluster creation

200 parallel communication channels

Can this be made practical?

Pant, M., Krovi, H., Englund, D., & Guha, S. (2016). Rate-distance tradeoff and resource costs for all-optical quantum repeaters. arXiv preprint arXiv:1603.01353.
Improvements

- Store “memory” photons locally
- “Boosted” Bell measurement
 - Increasing success probability of Bell measurement to 75% using ancilla single photons*
- Better multiplexing
- Applying measurements in the beginning

Ewert, F., & van Loock, P., PRL, 113(14), 140403 (2014)
Improved performance

Pant, M., Krovi, H., Englund, D., & Guha, S. (2016). Rate-distance tradeoff and resource costs for all-optical quantum repeaters. arXiv preprint arXiv:1603.01353.

Repeaterless

Analytical Result: Optimum repeater spacing independent of total distance

k	size of state	# of single-photon-sources	# 3-GHZ state sources
7	113	3 M	15 k
8	237	10 M	50 k
9	489	36 M	180 k
10	993	120 M	600 k
One way repeater based on Quantum Parity Code

\[|\pm\rangle^{(n,m)} = \left(\frac{|0\rangle \otimes^m \pm |1\rangle \otimes^m}{\sqrt{2}} \right)^{\otimes n} \]

5 X 10^{-3} bits/mode @ 5000km

Bell measurement success probability = 1 - 1/2^n

Ewert, F., Bergmann, M., & van Loock, P. (2015). arXiv preprint arXiv: 1503.06777.

(m,n)	size of state	# of single-photon-sources	# 3-GHZ state sources
(8,3)	48	200k	1k
(9,3)	54	700k	3.5k
(12,4)	96	2M	10k
(18,5)	180	4.4M	22k

with Sreraman Muralidharan and Liang Jiang (in preparation)
Conclusion

• A 48 photon entangled state source can beat the repeaterless bound
 • Reduction from 10^{11} to 10^5 single photon sources (1000 3 photon GHZ sources): lots of room for further improvement
 – Better error correction,
 – Efficient cluster creation
 – Fair comparison: error corrected quantum memory
• Similar ideas would also be useful for reducing resource costs in LOQC in general
 – Li, Benjamin: 10^{10} components/logical qubit
 – Repeaters: a nearer term target compared to full blown LOQC