Measurement-device-independent entanglement detection for continuous-variable systems

Paolo Abiuso, Stefan Bäuml, and Daniel Cavalcanti
ICFO – Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, 08860 Castelldefels (Barcelona), Spain

Antonio Acín
ICFO – Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, 08860 Castelldefels (Barcelona), Spain and ICREA - Institució Catalana de Recerca i Estudis Avançats, Passeig Lluís Companys 23, 08010 Barcelona, Spain

(Dated: April 26, 2021)

We study the detection of continuous-variable entanglement, for which most of the existing methods designed so far require a full specification of the devices, and we present protocols for entanglement detection in a scenario where the measurement devices are completely uncharacterised. We first generalise, to the continuous variable regime, the seminal results by Buscemi [PRL 108, 200401 (2012)] and Branciard et al. [PRL 110, 060405 (2013)], showing that all entangled states can be detected in this scenario. Most importantly, we then describe a practical protocol that allows for the measurement-device-independent certification of entanglement of all two-mode entangled Gaussian states. This protocol is feasible with current technology as it makes only use of standard optical setups such as coherent states and homodyne measurements.

I. INTRODUCTION

Entanglement is the main resource for a broad range of applications in quantum information science, among which are quantum key distribution [1], quantum computation [2], and quantum metrology [3]. It is therefore crucial to develop methods to detect entanglement that are reliable and practical. The most common method to detect entanglement is given by entanglement witnesses [4]. However, to be reliable this technique requires a perfect implementation of the measurements. Indeed, small calibration errors can lead to false-positive detection of entanglement [5][6], which can be critical when using the wrongly detected entangled state for quantum information purposes. A possible way of circumventing this problem is to move into the so called device-independent (DI) scenario [7]. In this framework measurements do not need to be characterised, since entanglement is detected through the violation of Bell inequalities, which only use the statistics provided by the experiment, without making any assumptions on the real implementation. The DI scenario is however stringent from an experimental point of view, requiring low levels of noise and high detection efficiencies. This is why other approaches requiring intermediate level of trust on the devices have been developed. In particular, there exist methods that do not require any characterization of the measurement implemented for entanglement detection, known as measurement-device-independent (MDI) [8][9].

Here, we consider the problem of entanglement detection in continuous-variable (CV) systems, for which very little is known about methods not requiring a full characterization of measurement devices. A fully DI approach is complex because of the difficulty of finding useful Bell tests for continuous-variable states. For instance, in the Gaussian regime, which is the most feasible experimentally, DI entanglement detection is impossible because no Bell inequality can be violated [7], hence intermediate approaches are necessary. The main goal of this work is to provide methods for MDI entanglement detection in CV systems. We first demonstrate that, in principle, all entangled states can be detected in this scenario. Then, we describe a MDI protocol that can detect the entanglement of all two-mode Gaussian states. Our protocol only relies on the use of trusted, well-calibrated, sources of coherent states, the easiest to prepare in the lab.

An entanglement detection scenario where two parties, Alice and Bob, do not assume a particular description of their measurement but use trusted sources of states was first introduced by Buscemi [8]. Namely, let us consider that Alice and Bob can produce states ψ_A^μ and ψ_B^ν, according to some distributions $P_A(\mu)$, $P_B(\nu)$ respectively. Alice and Bob can use these states as inputs to their measurement devices, which return outcomes a and b respectively. These outcomes occur with probability $P(a,b|\psi_A^\mu,\psi_B^\nu) = \text{Tr}[M_{AA'}^a \otimes N_{BB'}^b(\psi_A^\mu \otimes \rho_{AB} \otimes \psi_B^\nu)]$, where $M_{AA'}^a$ and $N_{BB'}^b$ are unknown measurement operators defining a Positive-Operator Valued Measure (POVM). The main goal of Alice and Bob is to determine if ρ_{AB} is entangled based on the knowledge of ψ_A^μ, ψ_B^ν, $P_A(\mu)$, $P_B(\nu)$, and $P(a,b|\psi_A^\mu,\psi_B^\nu)$. Besides the calibration issue discussed before, this scenario is motivated by cryptographic tasks in which Alice and Bob do not trust the provider of the measurement devices they are using [10][11].

For finite dimensional Hilbert spaces, Buscemi has

* paolo.abiuso@icfo.eu
shown that any entangled state ρ_{AB} can be certified in this scenario, but his proof is not constructive [8]. The authors of [9] have shown how to construct MDI entanglement witness from standard entanglement witnesses. A different route was considered in [14, 15], where the question was formulated as a convex optimisation problem that can be efficiently solved numerically.

In what follows we first generalise the results of [8, 9] and show that the entanglement of every CV entangled state can in principle be detected in a MDI scenario. We then move to the experimentally relevant case of Gaussian states and operations and show a MDI protocol that is able to certify the entanglement of all two-mode Gaussian entangled states. This protocol is feasible with current technology in that it only requires the production of coherent states and the implementation of homodyne measurements. Moreover, our approach provides an interesting connection between MDI entanglement detection and quantum metrology.

II. REDUCTION TO PROCESS TOMOGRAPHY

In this section, we show that it is possible to detect the entanglement of any entangled state in a MDI scenario where Alice and Bob use coherent states as trusted inputs (the proof is presented for two-mode bipartite states but can be generalized to n-modes, see [16]).

Suppose Alice and Bob are in possession of trusted sources producing coherent states $|\alpha\rangle_{A'}$ and $|\beta\rangle_{B'}$, respectively, according to some distribution. The shared entangled state is ρ_{AB}. The systems AA' and BB' are then projected onto respective two-mode squeezed vacuum (TMSV) states, i.e. the measurement $\{\langle\phi^{(r)}|\phi^{(r)}\rangle, 1-\langle\phi^{(r)}|\phi^{(r)}\rangle\}$ is performed on both AA' and BB' (r is the squeezing parameter). Conditioned on α and β, the probability of both measurements obtaining output ‘1’, corresponding to the projector $|\Phi^{(r)}\rangle\langle\Phi^{(r)}| \equiv \Phi^{(r)}$, can be expressed as

$$P_p(1, 1|\alpha, \beta) = \text{Tr} \left[\Phi^{(r)}_{AA'} \otimes \Phi^{(r)}_{BB'} \right] (|\alpha\rangle\langle\alpha|_{A'} \otimes \rho_{AB} \otimes |\beta\rangle\langle\beta|_{B'})$$

$$= \text{Tr} \left[M^{(r)}_{AB'} |\alpha\rangle\langle\alpha|_{A'} \otimes |\beta\rangle\langle\beta|_{B'} \right],$$

where we have defined

$$M^{(r)}_{AB'} := \text{Tr}_{AB} \left[\Phi^{(r)}_{AA'} \otimes \Phi^{(r)}_{BB'} \right] (\rho_{AB} \otimes |1\rangle\langle1|_{A'B'}),$$

which is a POVM element by construction. Our main observation in this section is that non-separability of the POVM element defined by (2) is equivalent to the underlying state being entangled. Namely, we have

Proposition 1 For any $r > 0$, the POVM element $M^{(r)}_{AB'}$ defined by eq. (2) is entangled if and only if ρ_{AB} is entangled.

Proof. Let us assume ρ_{AB} is separable, i.e.

$$\rho_{AB} = \sum_{\mu} p_{\mu} \rho^{\mu}_{A} \otimes \sigma^{\mu}_{B}.$$ \hspace{1cm} (3)

We can then define

$$M^{(r)}_{A'B'} := \text{Tr}_{A} \left[\Phi^{(r)}_{AA'} (\rho^{\mu}_{A} \otimes I_{A'}) \right],$$

$$N^{(r)}_{BB'} := \text{Tr}_{B} \left[\Phi^{(r)}_{BB'} (\sigma^{\mu}_{B} \otimes I_{B'}) \right],$$

which are POVM elements by construction. It is easy to see that $M^{(r)}_{A'B'} = \sum_{\mu} p_{\mu} M^{(r)}_{A'B'} \otimes N^{(r)}_{BB'}$, which is separable. It remains to be shown that the POVM element defined by Eq. (2), which can be rewritten as

$$M^{(r)}_{A'B'} = (1 - \lambda^2)\lambda^{\hat{n}_A + \hat{n}_B} \rho_{AB}^T \lambda^{\hat{n}_A - \hat{n}_B},$$

(5)

(6)

(7)

(8)

(9)

It is then easy to see that

$$\text{Tr}[M^{(r)}_{A'B'} \hat{W}] = (1 - \lambda^2)\text{Tr}[\rho \hat{W}] < 0 .$$

For separable POVMs, on the other hand, it holds

$$\sum_{\mu} p_{\mu} \text{Tr} \left[\hat{W} (\hat{M}^{\mu}_{A} \otimes \hat{N}^{\mu}_{B}) \right] = \sum_{\mu} p_{\mu} \text{Tr} \left[\hat{W} (\hat{M}^{\mu}_{A} \otimes \hat{N}^{\mu}_{B}) \right] \geq 0 ,$$

(10)

which finishes the proof. \[\]

We show in [19] that the violation of the derived witness scales as $1/N$, where N is the energy scale (number of photons) defined by the original witness, which is to be compared with the $1/d$ scaling found in [9] (d being the Hilbert space dimension of ρ_{AB}).

As a consequence of Proposition 3 Alice and Bob can certify the entanglement of ρ_{AB} in a MDI way, if their output statistics allow them to fully reconstruct the POVM element $M^{(r)}_{A'B'}$. As in the case of discrete variables [14], this can be achieved by means of process tomography [19, 20]. The set of all coherent states form a
Corollary 1. For every entangled state \(\rho_{AB} \), if \(|\alpha\rangle\) and \(|\beta\rangle\) are chosen from tomographically complete sets, Alice and Bob can certify the entanglement of \(\rho_{AB} \) in a measurement-device-independent way.

The results presented in this section suffer from practical problems in their realization: firstly, they rely on performing the POVM that projects on the two mode squeezed states defined in Eq. (1). A typical scheme for such measurement involves photodetection [16], which typically has low efficiency and high cost. Secondly, the full tomography could be in general experimentally inefficient. Therefore, the previous proof is mostly a proof-of-principle result. Next, we show that feasible schemes for MDI entanglement detection are possible. In fact, we propose an experimentally-friendly MDI entanglement detection protocol which is based solely on homodyne measurements and can detect all two-mode Gaussian entangled states.

III. MDI ENTANGLEMENT WITNESS FOR ALL TWO-MODE GAUSSIAN STATES

In this section we present a practical method for MDI entanglement certification of Gaussian states that can be implemented using readily available optical components. Our method is inspired by the entanglement witness introduced in a seminal paper by Duan et al. [28] (see also Simon [29]). In that work, it was proven that the inequality

\[
\langle EW,\kappa \rangle = \langle \Delta^2\hat{u}_\kappa \rangle + \langle \Delta^2\hat{v}_\kappa \rangle \geq \frac{\kappa^2 + \kappa^{-2}}{2},
\]

(10)

where \(\langle \Delta^2\hat{O} \rangle \) is the variance of the operator \(\hat{O} \), and

\[
\hat{u}_\kappa = \left(\kappa\hat{x}_A - \frac{\hat{x}_B}{\kappa} \right), \quad \hat{v}_\kappa = \left(\kappa\hat{p}_A + \frac{\hat{p}_B}{\kappa} \right),
\]

(11)

(i) holds for any two-mode separable state, real number \(\kappa \), where \(\kappa > 0 \) without loss of generality, and pairs of orthogonal quadratures of the bosonic modes \(A \) and \(B \) [30], while (ii) for any entangled Gaussian state there exist a value of \(\kappa \) and pairs of quadratures such that Eq. (10) is violated.

\[\begin{array}{cccc}
a_1 & a_2 & b_2 & b_1 \\
\end{array}\]

\[\begin{array}{cccc}
\hat{\rho}_A - \hat{\rho}_B \sqrt{2} & \\
\frac{\hat{x}_A + \hat{x}_B}{\sqrt{2}} & \\
\frac{\hat{p}_A + \hat{p}_B}{\sqrt{2}} & \\
\end{array}\]

FIG. 1. Experimental setup for the MDI entanglement detection of a 2-mode state. Fiduciary coherent states are prepared by the parties and measured together with the corresponding subsystems of the unknown state \(\rho_{AB} \). To compute the bound of the entanglement witness \(\langle EW,\kappa \rangle \), measurements should be seen as uncharacterized black boxes producing the outputs. To obtain a violation, the following specific measurements are implemented: the coherent states are mixed with the respective modes of \(\rho_{AB} \) in a 50:50 beam splitter and homodyne measurements of \(\hat{x} \) and \(\hat{p} \) are performed on the two outputs.

Our main result is an experimentally-friendly method for MDI entanglement detection inspired by the witness (10) and given by the following proposition:

Proposition 2 Let \(|\alpha\rangle\) and \(|\beta\rangle\) be coherent states prepared by Alice and Bob according to the Gaussian probability distribution

\[P(\alpha) = \frac{1}{\pi\sigma^2}e^{-|\alpha|^2/\sigma^2} \quad \alpha \equiv \alpha_x + i\alpha_p\]

(12)

(for different choices of input distribution, see [17]). Consider the setup in Fig. 1, in which uncharacterized local measurements are applied jointly on these states and half of an unknown state \(\rho_{AB} \), producing as a result two real numbers \((a_1, a_2)\) for Alice and \((b_1, b_2)\) for Bob. For all local measurements and all separable states one has

\[
\langle MDIEW,\kappa \rangle \equiv \langle U_\kappa^2 \rangle + \langle V_\kappa^2 \rangle \geq \frac{\kappa^2 + \kappa^{-2} - \sigma^2}{2(1 + \sigma^2)}.
\]

(13)

where \(U_\kappa \) and \(V_\kappa \) are

\[
U_\kappa = \kappa a_1 - \frac{b_1}{\kappa} - \frac{\kappa a_2 - \beta_\kappa}{\sqrt{2}},
\]

\[
V_\kappa = \kappa a_2 + \frac{b_2}{\kappa} - \frac{\kappa a_1 + \beta_\kappa}{\sqrt{2}}.
\]

(14)

For any two-mode entangled Gaussian state, there exist local measurements acting jointly on the state and the input coherent states violating inequality (13).

Looking at its definition, the operational meaning of the witness is clear: Alice and Bob results should be such that their difference and sum, weighted by \(\kappa \), are
as close as possible to the same difference and sum of the quadratures of the coherent states, divided by \(\sqrt{2}\). Note also that expectation values in (13) are computed with respect to the quantum state and the distribution of coherent states.

Proof of (13). To prove the inequality we need to minimize the value of the witness over all separable states \(\rho_{AB} = \sum_i p_i \rho_A^{(i)} \otimes \rho_B^{(i)}\). We can restrict the analysis to product states because the witness is linear on the state. It follows that the output probability factorises

\[
p(a_1, a_2, b_1, b_2|\alpha, \beta) = \text{Tr} \left[M_{a_1, a_2}^A |\alpha\rangle \langle \alpha| \right] \text{Tr} \left[M_{b_1, b_2}^B |\beta\rangle \langle \beta| \right],
\]

and we are left with two independent POVMs on the input states to be optimised. Using \((U_2^\kappa) + (V_2^\kappa) \geq (\Delta^2 U_\kappa) + (\Delta^2 V_\kappa)\) and the fact that the distribution is completely factorised between the two sides it follows that the value of the witness is lower bounded by the minimum of

\[
\frac{1}{2} \left(\kappa^2 + \frac{1}{\kappa^2} \right) \left(\langle \Delta^2 \left[\sqrt{2} \alpha_1 - \alpha_x \right] \rangle + \langle \Delta^2 \left[\sqrt{2} \alpha_2 - \alpha_x \right] \rangle \right).
\]

That is: in the absence of correlations, the best Alice and Bob can do is to separately perform the optimal measurements to estimate the input coherent states.

Minimizing the expression in the second parenthesis in (16) looks essentially like a metrology problem. A lower bound, in turn, can be obtained using a multi-parameter Bayesian version of the quantum Cramér-Rao bound [31]. The simultaneous estimation of the position and momentum quadratures has been studied thoroughly and is optimized for coherent states by measuring \(\hat{x}\) and \(\hat{p}\) on two different modes after a 50:50 beam-splitter [32, 33]. In particular, after a Gaussian prior distribution, like in our case, the minimal sum of variances is equal to \(\sigma^2/(1+\sigma^2)\) [32], which provides the bound for the entanglement witness.

To prove the violation claimed in Proposition 2 it suffices to show that for any entangled two-mode Gaussian state there exist local measurements and values of \((\kappa, \sigma)\) that lead to it. Consider now the optical setup depicted in Fig. 1. Alice and Bob, upon receiving their respective subsystems of \(\rho_{AB}\), first mix them with local coherent states in a balanced beam splitter, and then measure the position and momentum quadratures in the output ports. The output observables are thus

\[
\hat{A}_1 = \frac{\hat{x}_A + \hat{x}_B}{\sqrt{2}}, \quad \hat{A}_2 = \frac{\hat{p}_a - \hat{p}_A}{\sqrt{2}},
\]

\[
\hat{B}_1 = \frac{\hat{x}_B}{\sqrt{2}}, \quad \hat{B}_2 = \frac{\hat{p}_b - \hat{p}_B}{\sqrt{2}}.
\]

The quadratures \(\hat{x}_A, \hat{p}_A, \hat{x}_B, \hat{p}_B\) are those used in the standard witness (10). Observables (17) are used to define the measurement outputs needed for the computation of our MDI witness (13). More precisely, consider first the case in which the average values of the state’s quadratures are null, \(\langle \hat{x}_A \rangle = \langle \hat{p}_A \rangle = \langle \hat{x}_B \rangle = \langle \hat{p}_B \rangle = 0\). Then, by taking \((a_1, a_2, b_1, b_2)\) equal to the statistical output of \((\hat{A}_1, \hat{A}_2, \hat{B}_1, \hat{B}_2)\) respectively, it follows by substituting in (14)

\[
\langle U_2^\kappa \rangle = \left\langle \left(\kappa \frac{\hat{x}_\alpha + \hat{x}_A}{\sqrt{2}} - \frac{\hat{p}_A - \hat{p}_x}{\sqrt{2}} - \kappa \alpha_x - \frac{\hat{p}_x}{2} \right)^2 \right\rangle
\]

\[
= \frac{1}{2} \left(\kappa^2 \langle \Delta^2 \hat{x}_\alpha \rangle + \langle \Delta^2 \hat{u}_x \rangle \right)
\]

\[
= \frac{1}{2} \left(\kappa^2 + \kappa^{-2} - \frac{\kappa^2}{4} + \langle \Delta^2 \hat{u}_x \rangle \right).
\]

Similarly, \(\langle V_2^\kappa \rangle = \frac{1}{2} \left(\kappa^2 + \kappa^{-2} + \langle \Delta^2 \hat{v}_\kappa \rangle \right)\), and consequently we find that in the proposed scheme

\[
\langle \text{MDIEW}_k \rangle = \frac{1}{2} \left(\kappa^2 + \kappa^{-2} + \langle \text{EW}_k \rangle \right).
\]

The generalization to states that have non-zero averages of the quadratures is obtained by simply offsetting the outputs accordingly as follows: \(a_1 = \text{out of } \hat{A}_1 - (\hat{x}_A)/\sqrt{2}, a_2 = \hat{A}_2 - (\hat{p}_A)/\sqrt{2}\) and so on.

The violation of the inequality (13) is therefore found for any entangled Gaussian state; indeed, for any such state there exist quadratures and a value of \(\kappa\) such that \(\langle \text{EW}_k \rangle < \frac{\kappa^2 + \kappa^{-2}}{2}\), which implies from Eq. (19) that in the proposed scheme \(\langle \text{MDIEW}_k \rangle < \frac{\kappa^2 + \kappa^{-2}}{2}\). It is then sufficient to choose \(\sigma\) large enough to violate (13).

IV. TWO-MODE SQUEEZED STATE CASE, WITH NOISE TOLERANCE

At last, to illustrate the feasibility of our scheme, we apply it to the case of \(\rho_{AB}\) being a TMSV state. By including noise tolerance, we pave the way for an experimental realization of our MDI entanglement witness. A TMSV state can be described as the mixing of two single-mode squeezed states (one squeezed in \(\hat{p}\) and one in \(\hat{x}\)) [35]. In the Heisenberg picture, this results in

\[
\hat{x}_A = e^{r} \hat{x}_1(0) + e^{-r} \hat{x}_2(0), \quad \hat{p}_A = \frac{e^{-r} \hat{p}_1(0) + e^{r} \hat{p}_2(0)}{\sqrt{2}},
\]

\[
\hat{x}_B = e^{r} \hat{x}_1(0) - e^{-r} \hat{x}_2(0), \quad \hat{p}_B = \frac{e^{-r} \hat{p}_1(0) - e^{r} \hat{p}_2(0)}{\sqrt{2}},
\]

where the superscript \(\{\hat{x}^{(0)}, \hat{p}^{(0)}\}\) represents operators acting on the vacuum. Consider now the two operators \(\hat{u}_{k=1} = \hat{x} - \hat{x}_B\) and \(\hat{v}_{k=1} = \hat{p}_A + \hat{p}_B\). From Eq. (10) we see, by choosing \(\kappa = 1\), that these operators satisfy for any separable state \((\Delta^2 \hat{u}_{k=1}) + (\Delta^2 \hat{v}_{k=1}) \geq 1\). If we compute the above combination for the two-mode squeezed state, we obtain \(\hat{u}_{k=1} = \sqrt{2} e^{-r} \hat{x}_2(0)\) and \(\hat{v}_{k=1} = \sqrt{2} e^{-r} \hat{p}_1(0)\). Consequently, it holds

\[
\langle \text{EW}_{k=1} \rangle_{\text{TMSV}} = e^{-2r} < 1.
\]
This is not surprising: as soon as there is squeezing $r > 0$ the state is entangled. Substituting this value into expression \((23)\), we obtain the entangled score for the MDI witness $\langle \text{MDIEW}_{\kappa=1} \rangle = \frac{1}{2} \left(1 + e^{-2r}\right)$.

To check noise tolerance, we consider losses in the modes A and B modelled as a beam splitter

$$
\hat{a}_A(\eta_A) = \sqrt{1 - \eta_A} \hat{a}_A(0) + \sqrt{\eta_A} \hat{a}^{(0)}_{N_A},
\hat{a}_B(\eta_B) = \sqrt{1 - \eta_B} \hat{a}_B(0) + \sqrt{\eta_B} \hat{a}^{(0)}_{N_B}, \quad (22)
$$

where $\hat{a}^{(0)}_{N_X}$ is a vacuum mode acting as a noise on mode X, while $\hat{a}_X(0)$ is the corresponding noiseless mode. We focus on a natural scenario in which the source producing the two-mode squeezed state is between Alice and Bob and losses affect the two modes, not necessarily in a symmetric way. At the same time, the same loss noise \((22)\) applied to the input coherent states would lead only to a renormalization of α and β and can be compensated by increasing the variance σ. Using Eqs. \((20)\) and \((22)\) we can accordingly compute

$$
\langle \text{EW}_x \rangle_{\text{TMSV}, \eta_A, \eta_B} = \left\langle \Delta^2 \left(\kappa \hat{x}_A(\eta_A) - \frac{\hat{x}_B(\eta_B)}{\kappa}\right) + \Delta^2 \left(\kappa \hat{p}_A(\eta_A) + \frac{\hat{p}_B(\eta_B)}{\kappa}\right) \right\rangle
= \frac{1}{2} \left(\kappa^2 \eta_A + \frac{\eta_B}{\kappa^2}\right) + \frac{e^{2r}}{4} \left(\kappa \sqrt{1 - \eta_A} - \frac{\sqrt{1 - \eta_B}}{\kappa}\right)^2 + \frac{e^{-2r}}{4} \left(\kappa \sqrt{1 - \eta_A} + \frac{\sqrt{1 - \eta_B}}{\kappa}\right)^2. \quad (23)
$$

Notice that it is always possible to choose κ such that $\kappa \sqrt{1 - \eta_A} - \kappa^{-1} \sqrt{1 - \eta_B} = 0$ and r big enough to nullify the last term of \((23)\), and obtain a score \((19)\)

$$
\langle \text{MDIEW}_x \rangle = \frac{1}{4} \left(\kappa^2 \eta_A^2 + 1 + (\eta_B^2 + 1)\kappa^{-2}\right),
$$

which is lower than the separable bound $\frac{1}{2} \left(\kappa^2 + \kappa^{-2}\right) \left(\frac{\sigma^2}{1 + \sigma^2}\right)$ for large enough σ. In this sense the entanglement witness we analysed here is loss-resistant. In Figure 2 we plot the trade-off between noise, entanglement, and variance of the prior distributions σ for the MDI detection of entanglement in the case of symmetric losses ($\eta_A = \eta_B$, $\kappa = 1$).

V. DISCUSSION

In this work we have promoted the task of measurement-device-independent entanglement certification to the continuous-variable regime. We first generalised the results of \cite{DBLP:journals/corr/abs-1904-07216, DBLP:journals/corr/abs-2004-03850} and proved that all continuous-variable entangled state can in principle be detected in this scenario. Then, we showed a simple MDI test able to detect the entanglement of all two-mode Gaussian entangled states. Most importantly, the test only relies on the preparation of coherent states and uses standard experimental setups, thus being readily available with current technology.

Our work also opens up a series of interesting directions. From a general perspective, our work opens the path to the use of CV quantum systems for MDI tasks beyond entanglement detection, such as randomness generation or secure communication. Another possible research direction would be to investigate the possible generality of the connection between entanglement detection and metrology exploited here. In particular, can all MDI entanglement tests be translated into a parameter estimation problem? We are therefore confident that our results will motivate further studies in the field of quantum information with continuous variables.

FIG. 2. Contourplot of the obtainable value \((19)\) of $\langle \text{MDIEW}_{\kappa=1} \rangle$, for a two-mode squeezed vacuum state with squeezing parameter r, under the presence of losses with parameter $\eta_A = \eta_B \equiv \eta$ (cf. \((23)\)). The contours are chosen to match the separable bound \((13)\) for different values of σ, which corresponds to the width of the Gaussian prior used in the experiment. Therefore the area under each σ-contour defines the range of parameters for which MDI entanglement is certified.
ACKNOWLEDGMENTS

We thank Roope Uola for insightful discussions. This work was supported by the Government of Spain (FIS2020-TRANQI and Severo Ochoa CEX2019-000910-S), Fundació Cellex, Fundació Mir-Puig, Generalitat de Catalunya (CERCA, AGAUR SGR 1381 and QuantumCAT). A.A. is supported by the ERC AdG CERQUTE and the AXA Chair in Quantum Information Science. P. A. is supported by “la Caixa” Foundation (ID 100010434, Grant No. LCF/BQ/D119/11730023). S.B. acknowledges funding from the European Union’s Horizon 2020 research and innovation program, grant agreement No. 820466 (project CiViQ). D.C. is supported by a Ramon y Cajal Fellowship (Spain).

[1] A. K. Ekert, Quantum cryptography based on bell’s theorem, Phys. Rev. Lett. 67, 661 (1991).
[2] R. Jozsa and N. Linden, On the role of entanglement in quantum-computational speed-up, Proc. R. Soc. Lond. A 459, 2011–2032 (2003).
[3] G. Tóth and I. Apellaniz, Quantum metrology from a quantum information science perspective, Journal of Physics A: Mathematical and Theoretical 47, 424006 (2014).
[4] O. Gilán and G. Tóth, Entanglement detection, Physics Reports 474, 1–75 (2009).
[5] D. Rosset, R. Ferretti-Schöbitz, J.-D. Bancal, N. Gisin, and Y.-C. Liang, Imperfect measurement settings: Implications for quantum state tomography and entanglement witnesses, Phys. Rev. A 86, 062325 (2012).
[6] T. Moroder, O. Günlke, N. Beaudry, M. Piani, and N. Lütkenhaus, Entanglement verification with realistic measurement devices via squashing operations, Phys. Rev. A 81, 052342 (2010).
[7] N. Brunner, D. Cavalcanti, S. Pirandola, V. Scarani, and S. Wehner, Bell nonlocality, Rev. Mod. Phys. 108, 419 (2014).
[8] F. Buscemi, All entangled quantum states are nonlocal, Physical review letters 108, 200401 (2012).
[9] C. Branciard, D. Rosset, Y.-C. Liang, and N. Gisin, Measurement-device-independent entanglement witnesses for all entangled quantum states, Physical review letters 110, 060405 (2013).
[10] H.-K. Lo, M. Curty, and B. Qi, Measurement-device-independent quantum key distribution, Physical review letters 108, 130503 (2012).
[11] S. Pirandola, C. Ottaviani, G. Spedalieri, C. Weedbrook, S. L. Braunstein, S. Lloyd, T. Gehring, C. S. Jacobsen, and U. L. Andersen, High-rate measurement-device-independent quantum cryptography, Nature Photonics 9, 397 (2015).
[12] Z. Li, Y.-C. Zhang, F. Xu, X. Peng, and H. Guo, Continuous-variable measurement-device-independent quantum key distribution, Physical Review A 89, 052301 (2014).
[13] X.-C. Ma, S.-H. Sun, M.-S. Jiang, M. Gui, and L.-M. Liang, Gaussian-modulated coherent-state measurement-device-independent quantum key distribution, Physical Review A 89, 042335 (2014).
[14] I. Šupić, P. Skrzypczyk, and D. Cavalcanti, Measurement-device-independent entanglement and randomness estimation in quantum networks, Physical Review A 95, 042340 (2017).
[15] D. Rosset, A. Martin, E. Verbanis, C. C. W. Lim, and R. Thew, Practical measurement-device-independent entanglement quantification, Physical Review A 98 (2018).
[16] See Appendix.
[17] Here we used the well-known decomposition of two-mode squeezed states in the Fock basis

\[
|\Phi^{(r)}\rangle = \sqrt{1 - \tanh^2 r} \sum_{i=0}^{\infty} (\tanh r)^i |ii\rangle
\]

[18] Such a witness always exists, as the set of separable states is defined to be closed for operational consistence, see e.g. [39, 37].
[19] M. Lobino, D. Korystov, C. Kupchak, E. Figueroa, B. C. Sanders, and A. Lvovsky, Complete characterization of quantum-optical processes, Science 322, 563 (2008).
[20] G. M. D’Ariano, L. Maccone, and M. G. Paris, Quorum of observables for universal quantum estimation, Journal of Physics A: Mathematical and General 34, 93 (2001).
[21] E. Sudarshan, Equivalence of semiclassical and quantum mechanical descriptions of statistical light beams, Physical Review Letters 10, 277 (1963).
[22] R. J. Glauber, Coherent and incoherent states of the radiation field, Physical Review 131, 2766 (1963).
[23] J. Janszky and A. V. Vinogradov, Squeezing via one-dimensional distribution of coherent states, Physical review letters 64, 2771 (1990).
[24] J. Janszky, P. Domokos, S. Szabó, and P. Adám, Quantum-state engineering via discrete coherent-state superpositions, Physical Review A 51, 4191 (1995).
[25] J. Lundeen, A. Feito, H. Coldenstrodt-Ronge, K. Peggell, C. Silberhorn, T. Ralph, J. Eisert, M. Plenio, and I. Walmsley, Tomography of quantum detectors, Nature Physics 5, 27 (2009).
[26] L. Zhang, H. B. Coldenstrodt-Ronge, A. Datta, G. Fuentes, J. S. Lundeen, X.-M. Jin, B. J. Smith, M. B. Plenio, and I. A. Walmsley, Mapping coherence in measurement via full quantum tomography of a hybrid optical detector, Nature Photonics 6, 364 (2012).
[27] S. Grandi, A. Zavatta, M. Bellini, and M. G. Paris, Experimental quantum tomography of a homodyne detector, New Journal of Physics 19, 053015 (2017).
[28] L.-M. Duan, G. Giedke, J. I. Cirac, and P. Zoller, Inseparability criterion for continuous variable systems, Physical Review Letters 84, 2722 (2000).
[29] R. Simon, Peres-horodecki separability criterion for continuous variable systems, Phys. Rev. Lett. 84, 2726 (2000).
[30] We use here a notation similar to [35]. In particular the quadratures are defined as

\[
\hat{a} = \hat{x} + i\hat{p}, \hspace{1cm} \hat{a}^\dagger = \hat{x} - i\hat{p}
\]
such that
\[[\hat{x}, \hat{p}] = \frac{1}{4\hbar} [\hat{a} + \hat{a}^\dagger, \hat{a} - \hat{a}^\dagger] = \frac{i}{2}. \]

Note for example that the variances of the quadratures will have a factor 1/2 with respect to the normalization choice of \(2\).

[31] H. Yuen and M. Lax, Multiple-parameter quantum estimation and measurement of nonselfadjoint observables, IEEE Transactions on Information Theory 19, 740 (1973).

[32] M. Genoni, M. Paris, G. Adesso, H. Nha, P. Knight, and M. Kim, Optimal estimation of joint parameters in phase space, Physical Review A 87, 012107 (2013).

[33] S. Morelli, A. Usui, E. Agudelo, and N. Friis, Bayesian parameter estimation using gaussian states and measurements, Quantum Science and Technology 6, 025018 (2021).

Appendix A: On the feasibility of Proposition 1

The proof of principle realisation of a MDI entanglement witness proposed in Sec. II is based on the possibility of performing the POVM defined by the projection on the two-mode squeezed vacuum state \(\Phi^{(r)}\). Here we show that in principle this is realisable using photodetectors, single mode squeezing and a beam splitter. Indeed, it is known that a two-mode squeezed vacuum can be obtained by applying the following unitaries on a two-mode vacuum \(\ket{0}_n\):

\[|\Phi^{(r)}\rangle = \hat{B}_{12} S_{12}^{(r)} S_{12}^{(-r)} |00\rangle_{12}. \] \(\text{(A1)}\)

Here \(S_{12}^{(r)}\) represents a single-mode squeezing operation with squeezing parameter \(r\) on mode \(X\), which satisfies \(\hat{S}_{12}^{(r)\dagger} = S_{12}^{(-r)}\). The following unitary \(\hat{B}_{12}\) is induced by a 50:50 beamsplitter. Therefore, for any two mode state \(\ket{\psi}_{12}\), the projection on \(\Phi^{(r)}\) can be simulated by a photodetection preceded by the corresponding inverse unitary

\[12 (\Phi^{(r)}|\psi\rangle) = 12 (00) S_{12}^{(-r)} S_{12}^{(r)} \hat{B}_{12}\ket{\psi}. \] \(\text{(A2)}\)

Additionally, the result of a projection on the vacuum might in principle simulated by double homodyne measurement of \(\hat{x}\) and \(\hat{p}\) on the incoming mode mixed with a vacuum mode in a 50:50 beam splitter. Indeed the statistics of such a continuous measurement (also called heterodyne measurement) is described by the Husimi Q-function \(\text{Q}\).

\[P \left(\frac{x}{\sqrt{2}}, \frac{p}{\sqrt{2}} \right) dx dp = \frac{\rho(x + ip)}{\pi} dx dp, \] \(\text{(A3)}\)

therefore the projection \(\langle 0|\rho|0 \rangle\) can be approximated by counting the statistical outputs of \((x, p)\) being close to \((0, 0)\). The drawback of such a method of simulating photodetection would be discarding all the measurement that are outside the confidence-interval approximating 0 on all the modes.

We notice as well that the energy scale defined by the original entanglement witness \(W_{\rho_{AB}}\) sets a bound on the violation of the POVM-entanglement-witness \(\mathcal{F}\) proposed in the main text. Recall that \(W = \lambda^{-\hat{n}_A - \hat{n}_B} W\), where \(\hat{n}_X = a_X^\dagger a_X\) is the photon-number operator of mode \(X\). Therefore, for \(\tilde{W}_{\rho} = \hspace{1pt} W\) to be bounded, \(W\) needs to have finite energy as well. Suppose \(W \lesssim e^{-(\hat{n}_A + \hat{n}_B)/N}\) for large energies. The value of \(N\) is an upperbound on the energy scale of \(W\). Then, from \[\mathcal{F}\], we see that for \(\tilde{W}\) to be bounded as well, it is necessary that \(\lambda^{-1}e^{-1/N} < 1\) (recall that \(0 < \lambda < 1\)), hence good values for \(\lambda\) are

\[e^{-1/N} < \lambda < 1, \] \(\text{(A4)}\)

and so

\[1 - e^{-2/N} > 1 - \lambda^2 > 0. \] \(\text{(A5)}\)

Confronting this last bound with \[\mathcal{F}\], we notice that for large energies \(O(N)\) of the original witness, the proposed violation is dampened by a factor \(\sim \frac{1}{N}\).
Appendix B: Generalization of Proposition 1 to N modes

Proposition 1 can be easily generalised to states having any number of modes. To be explicit how this can be done, we show the generalisation to a bipartite state having two modes on Alice side, \(A_1, A_2 \), and one mode on Bob side, \(B \). In such a case we substitute Eq. (1) by

\[
P_p(1, 1 | \alpha_1, \alpha_2, \beta) = \text{Tr} \left[(\Phi^{(r)}_{A_1 A_1'} \otimes \Phi^{(r)}_{A_2 A_2'} \otimes \Phi^{(r)}_{B B'}) \langle |\alpha_1\rangle |\alpha_1'\rangle \otimes |\alpha_2\rangle |\alpha_2'\rangle \otimes |\beta\rangle |\beta'\rangle \right]
\]

where it is defined

\[
M^{(r)}_{A_1' A_2' B'} := \text{Tr}_{A_1 A_2 B} \left[(\Phi^{(r)}_{A_1 A_1'} \otimes \Phi^{(r)}_{A_2 A_2'} \otimes \Phi^{(r)}_{B B'}) \left(\rho_{A_1 A_2 B} \otimes 1_{A_1' A_2' B} \right) \right].
\]

That is, for the generalization, each party generates a number of coherent states equal to the number of modes of his side of the partition; projections on TMSV states are performed accordingly. The derivation then follows in the same way as presented in the main text, that is, noticing that

\[
M^{(r)}_{A_1' A_2' B'} = (1 - \lambda^2) \frac{3}{2} \lambda^{\hat{n}_{A_1} + \hat{n}_{A_2} + \hat{n}_B} \rho_{A_1 A_2 B}^T \lambda^{\hat{n}_{A_1} + \hat{n}_{A_2} + \hat{n}_B},
\]

and defining the entanglement witness \(\tilde{W} \) for \(M^{(r)}_{A_1' A_2' B'} \) in terms of the original entanglement witness \(W \) of \(\rho_{A_1 A_2 B} \),

\[
\tilde{W} = \lambda^{-\hat{n}_{A_1} - \hat{n}_{A_2} - \hat{n}_B} W^T \lambda^{-\hat{n}_{A_1} - \hat{n}_{A_2} - \hat{n}_B}.
\]

It follows that

\[
\text{Tr}[M^{(r)}_{A_1' A_2' B'} \tilde{W}] = (1 - \lambda^2) \frac{3}{2} \text{Tr}[\rho_{A_1 A_2 B} W] < 0,
\]

while for separable POVMs, it holds

\[
\sum_\mu p_\mu \text{Tr}[\tilde{W} M^{(r)}_{\mu A_1 A_2} \otimes N^{(r)}_{\mu B}] = \sum_\mu p_\mu \text{Tr}[W \tilde{M}^{(r)}_{\mu A_1 A_2} \otimes \tilde{N}^{(r)}_{\mu B}],
\]

where \(\tilde{M}^{(r)}_{\mu A_1 A_2} = \lambda^{\hat{n}_{A_1} + \hat{n}_{A_2}} (M^{(r)}_{\mu A_1 A_2})^T \lambda^{\hat{n}_{A_1} + \hat{n}_{A_2}} \), \(\tilde{N}^{(r)}_{\mu B} = \lambda^{\hat{n}_B} (N^{(r)}_{\mu B})^T \lambda^{\hat{n}_B} \). Following the same reasoning as in the main text, the operators \(\tilde{M}^{(r)}_{\mu A_1 A_2} \) and \(\tilde{N}^{(r)}_{\mu B} \) are positive, and can be seen as representing unnormalized states, thus generating a separable state \(\rho' \) such that \(\text{Tr}[\rho' W] \geq 0 \).

Hence we see that the proof of Proposition 1 works for the case in which Alice has two modes. The generalisation to any number of modes is straightforward.

Appendix C: Fisher information matrix of the prior distribution, and possible prior choices.

The separable lower bound \[16\] of Proposition 2 in the main text, is derived from the multi-parameter quantum Cramér Rao bound based on the right logarithmic derivative (RLD) \[37\], in its Bayesian form with additional prior information \[31\]. Such bound, when applied to the minimization of the sum of the single parameter variances (in our case \(\alpha_x \) and \(\alpha_p \), cf. Eq. \[16\]), is presented in Eq.(14) of Ref.\[32\]. The information associated to the prior distribution \(P(\alpha_x, \alpha_p) \) is encoded in the prior’s Fisher Information Matrix (FIM) defined in Eq.(10) of the same Ref.\[32\], that is

\[
A_{ij} := \int d\alpha_x d\alpha_p P(\alpha_x, \alpha_p) \frac{\partial \log P(\alpha_x, \alpha_p)}{\partial \alpha_i} \frac{\partial \log P(\alpha_x, \alpha_p)}{\partial \alpha_j},
\]

where \(i \) and \(j \) can be equal to \(x \) and \(p \). For the Gaussian distribution used in the main text \[12\] \(P(\alpha_x, \alpha_p) = \frac{1}{\pi \sigma^2} \exp \left[-(\alpha_x^2 + \alpha_p^2)/\sigma^2\right] \) it is not difficult to obtain that \(A \) is diagonal

\[
A^{\text{Gauss}} = \begin{pmatrix}
\frac{2}{\sigma^2} & 0 \\
0 & \frac{2}{\sigma^2}
\end{pmatrix}.
\]
The property of A being diagonal holds for any distribution in the form $P(\alpha_x, \alpha_p) = P(\alpha_x)P(\alpha_p)$ which is symmetric. In such a case $A_{ij} = F_i \delta_{ij}$, where F_i is the single parameter Fisher information relative to $P(\alpha_i)$,

$$A^{\text{symm}} = \begin{pmatrix} F_x & 0 \\ 0 & F_p \end{pmatrix}, \quad F_i = \int d\alpha_i P(\alpha_i) \frac{\partial \log P(\alpha_i)}{\partial \alpha_i}.$$ \hspace{1cm} (C3)

As an example, it is possible to choose an almost-flat distribution on a square of size l, defined as

$$P(\alpha_x, \alpha_p) = 1_{\delta,l}(\alpha_x)I_{\delta,l}(\alpha_p)$$ \hspace{1cm} (C4)

where $I_{\delta,l}$ is a smooth version of the indicator function on the interval $[-l/2, +l/2]$,

$$I_{\delta,l} = \begin{cases}
0 & x \leq -\frac{l}{2} - \frac{\delta}{2} \\
\frac{1}{2} + \frac{1}{2} \sin\left(\frac{\pi}{\delta}(x + \frac{l}{2})\right) & -\frac{l}{2} - \frac{\delta}{2} \leq x \leq -\frac{l}{2} + \frac{\delta}{2} \\
1 & -\frac{l}{2} + \frac{\delta}{2} \leq x \leq \frac{l}{2} - \frac{\delta}{2} \\
\frac{1}{2} - \frac{1}{2} \sin\left(\frac{\pi}{\delta}(x - \frac{l}{2})\right) & \frac{l}{2} - \frac{\delta}{2} \leq x \leq \frac{l}{2} + \frac{\delta}{2} \\
0 & x \geq \frac{l}{2} + \frac{\delta}{2}
\end{cases}$$ \hspace{1cm} (C5)

Note that for consistency it is needed $\delta \leq l$, and the limit cases $\delta = 0$ and $\delta = l$, correspond respectively to $I_{\delta,l}$ being the indicator function and $I_{\delta,l}$ being a single symmetric cosinusoidal wave between $-l$ and $+l$. For such a choice of $P(\alpha_x, \alpha_p)$ the corresponding fisher information matrix is easily computed as

$$A^{(\delta,l)} = \begin{pmatrix} \frac{\pi^2}{\delta^2} & 0 \\ 0 & \frac{\pi^2}{\delta^2} \end{pmatrix}.$$ \hspace{1cm} (C6)

We see that in the limit $\delta \to 0$ the FIM diverges and becomes useless for computing Cramér Rao bounds, which become trivial in such limit. This is related to the fact that the multi-parameter Cramér Rao bounds are not tight in general [37] (notice that in case of Gaussian prior it can be saturated [32]). In the limit $\delta = l$, we see that such a prior distribution is equivalent to the Gaussian case [C2], provided

$$\frac{l}{\pi} = \frac{\sigma}{\sqrt{2}}.$$ \hspace{1cm} (C7)