A Novel Prediction Setup for Online Speed-Scaling

Antonios Antoniadis1, Peyman Jabbarzade Ganje2, and Golnoosh Shahkarami3

1University of Twente, a.antoniadis@utwente.nl
2Sharif University of Technology, jabarzade@ce.sharif.edu
3Max Planck Institut für Informatik, Universität des Saarlandes, gshahkar@mpi-inf.mpg.de

Abstract

Given the rapid rise in energy demand by data centers and computing systems in general, it is fundamental to incorporate energy considerations when designing (scheduling) algorithms. Machine learning can be a useful approach in practice by predicting the future load of the system based on, for example, historical data. However, the effectiveness of such an approach highly depends on the quality of the predictions and can be quite far from optimal when predictions are sub-par. On the other hand, while providing a worst-case guarantee, classical online algorithms can be pessimistic for large classes of inputs arising in practice.

This paper, in the spirit of the new area of machine learning augmented algorithms, attempts to obtain the best of both worlds for the classical, deadline based, online speed-scaling problem: Based on the introduction of a novel prediction setup, we develop algorithms that (i) obtain provably low energy-consumption in the presence of adequate predictions, and (ii) are robust against inadequate predictions, and (iii) are smooth, i.e., their performance gradually degrades as the prediction error increases.

1 Introduction

Energy is a major concern in society in general and computing environments in particular. Indeed, data centers alone are estimated to consume 200 terawatt-hours (TWh) per year, which is likely to increase by a factor of 15 by year 2030 \cite{21}. Hardware manufacturers approach this problem by incorporating energy-saving capabilities into their hardware, with the most popular one being dynamic speed scaling, i.e., one can adjust the speed of the processor or device. A higher speed implies a higher energy consumption but also more processing capacity. In contrast, a lower speed incurs energy savings while being able to perform less processing per unit of time. Naturally, to take advantage of this energy-saving capability, scheduling algorithms need to decide on what speed to use at each timepoint and consider the energy consumption of the produced schedule alongside more “traditional” quality-of-service considerations.

This paper studies online, deadline-based speed-scaling scheduling, augmented with machine-learned predictions. More specifically, a set of jobs \mathcal{J}, each job $j \in \mathcal{J}$ with an associated release time r_j, deadline d_j and processing requirement w_j, arrives online and has to be scheduled on a single speed-scalable processor. A scheduling algorithm needs to decide for each timepoint t on: (i) the processor speed $s(t)$ and (ii) which job $j \in \mathcal{J}$ to execute at t ($j(t)$). Both decisions have to be made by the algorithm at any timepoint t while only having
knowledge of the jobs with a release time equal to or less than t. A schedule is said to be feasible if the whole processing requirement of every job j is executed within the respective release time and deadline interval, i.e., if $\int_{t_j(t)=j}^t s(t) dt \geq w_j$. The energy consumption of a schedule, which we seek to minimize over all feasible schedules, is given by $\int_0^{+\infty} s(t)^\alpha dt$, where $\alpha > 1$ is a constant, which in practice is between 1.1 and 3 depending on the employed technology [15, 31]. The offline setting of the problem in which the complete job set \mathcal{J} including their release times, deadlines, and workloads are known in advance was solved in the seminal paper by Yao, Demers, and Shenker [32] who gave an optimal offline algorithm called YDS. The arguably more interesting online setting in which the characteristics of a job j only become known at its release time r_j has been extensively studied [3, 10–12, 32], and the currently best known online algorithm is qOA, by Bansal et al. [11] achieving a competitive ratio of $4^\alpha/(2e^{1/2}\alpha^{1/4})$.

However, the purely online setting may be too restrictive in many practical scenarios for which one can predict – with reasonable accuracy – the characteristics of future jobs, for example, by employing a learning approach on historical data. Learning augmented algorithms is a very novel research area (arguably first introduced in 2018 by Lykouris and Vassilvitskii [23]) trying to capture such scenarios in which predictions of uncertain quality are available for future parts of the input. The goal in learning augmented algorithms is to design algorithms that are at the same time (i) consistent, i.e., obtain an improved competitive ratio in the presence of adequate predictions, (ii) robust, i.e., there is a worst case guarantee independently of the prediction accuracy (ideally within a constant factor of the competitive ratio of the best known online algorithm that does not employ any predictions) and (iii) smooth, i.e., the performance guarantee degrades gracefully with the quality of the predictions.

Previous Predictions Setups and Our Setup. Online Speed-Scaling with machine learned predictions has been investigated before by Bansal et al. [8] who consider a prediction setup in a sense orthogonal to ours; the release times and deadlines of jobs are known in advance, and there is a prediction on the processing requirement. Although any input instance (with integer release times and deadlines) can be modeled in such a way (by considering all possible pairs of release times and deadlines and a processing requirement of zero for the pairs that do not correspond to a job), this can be computationally quite expensive. Bansal et al. present a consistent, robust, and smooth algorithm for the particular case in which the interval length of each job is the same. And generalize their consistency and robustness results to the general case (in which each job can have an arbitrary interval length). For this more general setting, the proof of smoothness is omitted because “...the prediction model and the measure of error quickly get complex and notation heavy”.

In the current paper, we consider the novel prediction setup in which predictions on the release times and deadlines are provided to the algorithm. To keep the model simple, we assume that the actual processing requirement of each job $j \in \mathcal{J}$, as well as the number of jobs n are known. It may be useful for the reader to think about our setup as having as many unit-size jobs as total processing volume in the instance, and a prediction on the release time and deadline of each such job. We note, however, that our actual setup requires significantly fewer predictions than this simplified one.

In this context, the main contribution of the current paper is to introduce a natural alternative prediction setup and error measure as well as an algorithm (SwP) within that setup, which possesses the desired properties of consistency, smoothness, and robustness in
the general setting. It should be pointed out that since the two papers consider different prediction settings and in turn also error measures, the algorithms as well as their guarantees are incomparable. However one can consider the two prediction setups as complementary of each other.

Our Contribution. We show how the predictions can be used to develop an algorithm called **Scheduling with Predictions (SwP)**, that improves upon qOA when the predictions are reasonably accurate. More formally, in Section 3 we show the following theorem:

Theorem 1. Algorithm SwP achieves a competitive ratio of

\[
\min \left\{ \left(\frac{1}{1 - \mu} \right)^{\alpha - 1} \left(\frac{2\eta + 1}{1 - 2\lambda} \right)^{\alpha - 1}, 2^{\alpha - 1} \alpha - 1 \left(\frac{1}{\mu} \right)^{\alpha - 1} \right\}.
\]

Here, \(\eta\) is the error of the prediction (defined formally later) that captures the distance between the predicted and the actual input instances, and \(0 \leq \lambda < 1/2, 0 \leq \mu \leq 1\) are two hyperparameters that can be thought of as the confidence in the prediction. Theorem 1 implies that SwP is at the same time consistent, smooth and robust where the exact consistency, smoothness and robustness depend on the choice of the hyperparameters \(\lambda\) and \(\mu\).

Additionally, in Section 4 we obtain improved results for the restricted case in which all jobs have a common deadline \(d\), and we are given predictions regarding the release times of the jobs. The corresponding algorithm is called **Common-Deadline-Scheduling with Predictions (CDSwP)** and obtains the following improved competitive ratio:

Theorem 2. Algorithm CDSwP achieves a competitive ratio of

\[
\min \left\{ \left(\frac{1 + \eta}{1 - \lambda} \right)^{\alpha - 1}, 2^{\alpha} \left(\frac{1 + \lambda}{1 - \lambda} \right)^{\alpha - 1} \right\}.
\]

Although restricted, this case seems to capture the difficulty of the online setting for the problem, as supported by the fact that the strongest lower bound of \(e^{\alpha - 1}/\alpha\) on the competitive ratio for online algorithms for the problem is proven on such an instance [11].

Finally, in Section 5 we present an empirical evaluation of our results on a real-world data-set, which suggests the practicality of our algorithm. The actual results are preceded by Section 2 which contains preliminary results and observations. All omitted proofs can be found in the supplementary material.

1.1 Related Work.

1.1.1 Online Energy-Efficient Scheduling.

As already mentioned, speed-scaling was first studied from an algorithmic point of view by [32]. They studied the deadline-based version of the problem also considered here, and in addition to providing the optimal offline algorithm called YDS, two online algorithms called Optimal Available (OA) and Average Rate (AVR). OA recalculates an optimal offline schedule for the remaining instance at each release time, whereas AVR "spreads" the processing volume equally between its release time and deadline in order to determine the speed for each timepoint \(t\). The actual schedule then is simply an Earliest Deadline First (EDF) schedule.
with these speeds. They show that AVR obtains a competitive ratio of $2^{\alpha-1} \alpha^\alpha$ which is essentially tight as shown by [10]. Algorithm OA, on the other hand, was analyzed by [11] who proved a tight competitive ratio of α^α.

The currently best known algorithm for the problem, at least for modern processors which satisfy $\alpha = 3$ is the aforementioned qOA algorithm, which for any parameter $q \geq 1$ sets the speed of the processor to be q times the speed that the optimal offline algorithm would run the jobs in the current state. Algorithm qOA attains a competitive ratio of $4^\alpha/(2e^{1/2} \alpha^{1/4})$, for $q = 2 - 1/\alpha \approx 1.667$.

The multiprocessor version of online, deadline-based, speed-scaling has also been studied, see [3, 5] as well as other objectives, for example, flow time [4, 13]. We refer the interested reader to surveys [2, 20].

1.1.2 Further Results on Learning Augmented Algorithms.

[23] was arguably the seminal paper in the area, considered the online caching problem. Subsequently, [27] considered the ski-rental problem as well as non-clairvoyant scheduling. Similar to the current work, the robustness and consistency guarantees were given as a function of a hyperparameter that is part of the input to the algorithm. Both the caching and the ski-rental problem have since been extensively studied in the literature (see for example [6, 28, 30] and [18, 29]).

Several other online problems have been investigated through the lens of learning-augmented algorithms and results of similar flavor were obtained. Examples include scheduling and queueing problems [24, 26], online selection and matching problems [7, 16], or the more general framework of online primal-dual algorithms [9]. We direct the interested reader to a recent survey [25].

2 Preliminaries

We consider online, deadline-based speed-scaling as described in the introduction. Given a scheduling algorithm A on the set jobs J, the energy consumption of A on J is denoted by $E_A(J)$. When clear from the context, we may write E_A instead of $E_A(J)$ to simplify the notation.

As usual for online problems, the performance guarantees are given by employing competitive analysis. Following the speed-scaling literature (see for example [11]) we use the strict competitive ratio. Formally, the (strict) competitive ratio of algorithm A for the online, deadline-based speed-scaling problem, on input instance I is given by

$$\max_I \frac{E_A(I)}{E_{YDS}(I)},$$

were $E_A(I)$ is the cost that algorithm A incurs on instance I, and the maximum is taken over all possible input instances I. The competitive ratio in many cases will depend on the prediction error.

Prediction Setup. The algorithm initially gets information about the number of jobs n, the corresponding processing volumes $w_j, \forall j \in J$, as well as for every job $j \in J$ a prediction p_j for the release time r_j and another prediction q_j for the deadline d_j. Again, the actual values
of \(r_j \) and \(d_j \) only become known at timepoint \(r_j \). Let \(R = \{r_1, \ldots, r_n\} \), \(D = \{d_1, \ldots, d_n\} \), \(P = \{p_1, \ldots, p_n\} \) and \(Q = \{q_1, \ldots, q_n\} \). Note that in the special case where all jobs have a common deadline \(d \) we naturally only obtain predictions for the release times.

The quality of the prediction is measured in terms of a prediction error \(\eta \), which intuitively \(\eta \) measures the distance between the predicted values and the actual ones. We start by defining the individual prediction error \(\eta_i \) for each job \(i \in J \).

Definition 1. Let the prediction error for job \(i \) be \(\eta_i = \max \left\{ \left| p_i - r_i \right|, \left| q_i - p_i \right|, \left| q_i - d_i \right| \right\} \).

Note that we implicitly assume that \(p_i \leq q_i \) for all \(i \in J \) since otherwise, it is immediately obvious that the quality of the predictions is low, and one could just run a classical online algorithm for the problem. Furthermore, if the instance has a common deadline then \(\eta_i \) simplifies to \(\eta_i = \frac{|p_i - r_i|}{d - p_i} \).

The (total) prediction error \(\eta \) of an input instance is then given by \(\eta = \max_i \eta_i \). We call this max-norm-error.

Definition 2. We say that the total error \(\eta \) is a max-norm-error if \(\eta \) is given by the infinity norm of the vector of the respective errors for each job. More formally,

\[
\eta = \|\eta\|_{\infty} = \max(\eta_1, \eta_2, \ldots, \eta_n).
\]

Performance Guarantees. In the following we formalize the performance guarantees used to evaluate our algorithms.

Definition 3. We say that an algorithm within the above prediction setup is:

- **Consistent**, if its competitive ratio is strictly better than that of the best online algorithm without predictions for the problem, whenever \(\eta = 0 \).
- **Robust**, if its competitive ratio is within a constant factor from that of the best online algorithm without predictions for the problem. Note that Robustness is independent of the prediction quality.
- **Smooth**, if its competitive ratio is a smooth function of \(\eta \).

Shrinking of Intervals. The most straightforward way to consider the predictions would arguably be to blindly trust the predictions, i.e., schedule jobs assuming that the predicted instance is the actual instance.

Consider the instance \(J_{PQ} \) (resp. \(J_{RD} \)) in which every job has the corresponding predicted (resp. actual) release time and deadline. The naive algorithm would compute the optimal offline schedule \(YDS(J_{PQ}) \) and try to schedule tasks according to it. If the predictions are perfectly accurate, then this clearly is an optimal schedule, and the best one can do. However, if the predictions are even slightly inaccurate, then the resulting schedule may be infeasible. Moreover, our goal is to have a robust algorithm, which cannot be obtained by following the predictions blindly. For these reasons, one has to trust the predictions more cautiously and not blindly.

One of our crucial ideas is to slightly shrink the interval between each job’s release time and deadline before scheduling it. The intuition is that if the predictions are only slightly off, then a YDS schedule for the newly obtained instance will be feasible at a slight increase in
energy consumption over the YDS schedule of the predicted instance. The following lemmas formalize this intuition. We note that a similar result is also presented in [3]; however, given that the actual setups are different new proofs are required (the proofs of these lemmas can be found in the supplementary material).

Lemma 1. Consider a common deadline instance \mathcal{J}, and another common deadline instance $\hat{\mathcal{J}}$ constructed from \mathcal{J} such that every job $\hat{j}_i \in \hat{\mathcal{J}}$ has workload $\hat{w}_i = w_i$, $\hat{d} = d$, and $\hat{r}_i = r_i + (1 - c_i) \cdot (d - r_i)$ for some shrinking parameter $0 \leq c_i < 1$. Set $c = \max_i c_i$. Then,

$$E_{YDS}(\hat{\mathcal{J}}) \leq (1/c)^{\alpha-1} E_{YDS}(\mathcal{J}).$$

Lemma 2. Consider a (general) instance \mathcal{J}, and another instance $\hat{\mathcal{J}}$ in which every job $j_i \in \mathcal{J}$ corresponds to a job $\hat{j}_i \in \hat{\mathcal{J}}$ with workload $\hat{w}_i = w_i$, $\hat{r}_i = r_i + \frac{1-c}{2} \cdot (d_i - r_i)$ and $\hat{d}_i = d_i - \frac{d_i}{2} \cdot (d_i - r_i)$ for some shrinking parameter $0 \leq c < 1$. Then,

$$E_{YDS}(\hat{\mathcal{J}}) \leq (1/c)^{\alpha-1} E_{YDS}(\mathcal{J}).$$

It will be useful to bound the energy consumption of (the possibly infeasible for the original input instance) schedule $YDS(J_{PQ})$. We compute the energy consumption of schedule $YDS(J_{PQ})$ in the following lemma.

Lemma 3. For any $\eta \geq 0$ there holds

$$E_{YDS}(J_{PQ}) \leq (2\eta + 1)^{\alpha-1} E_{YDS}(J_{RD}).$$

Proof. Consider two sets $P^* = \{p_1^*, \ldots, p_n^*\}$ and $Q^* = \{q_1^*, \ldots, q_n^*\}$, with $p_i^* = p_i - \eta_i(q_i - p_i)$ and $q_i^* = q_i + \eta_i(q_i - p_i)$.

By the definition of η_i, p_i^* and q_i^*, we have $(r_i, d_i) \subseteq (p_i^*, q_i^*)$, and therefore

$$E_{YDS}(J_{P^*Q^*}) \leq E_{YDS}(J_{RD}).$$

By having $c = \frac{1}{(2\eta + 1)}$, and $J = J_{P^*Q^*}$ $(r_i = p_i^*, d_i = q_i^*)$ in Lemma 2 we obtain $J' = J_{PQ}$ and therefore,

$$E_{YDS}(J_{PQ}) \leq (2\eta + 1)^{\alpha-1} E_{YDS}(J_{P^*Q^*}).$$

Using Lemma 1 we can obtain a similar result for common deadline instances.

Corollary 1. In common deadline instances for any parameter $\eta \geq 0$, there holds

$$E_{YDS}(J_{P}) \leq (\eta + 1)^{\alpha-1} \cdot E_{YDS}(J_{RD}).$$

The idea of shrinking intervals as described above will be useful for the general case as well as the restricted common deadline case.

How much each algorithm will shrink the predicted job intervals will depend on the confidence. This will be denoted by a confidence parameter $0 < \lambda \leq 1/2$ that will be given as input to the respective algorithm. In the following, we define the shrunk prediction set of release times and deadlines parametrized by this λ, and use the above lemmas to argue about how this "shrinking" actually affects the energy consumption of the corresponding YDS-schedule.
Definition 4. Let $P' = \{p'_1, \ldots, p'_n\}$ and $Q' = \{q'_1, \ldots, q'_n\}$ be the shrunk prediction set of release times and deadlines respectively in which $p'_i = \lfloor p_i + \lambda(q_i - p_i) \rfloor$ and $q'_i = \lceil q_i - \lambda(q_i - p_i) \rceil$ for all $i \in [n]$.

We first observe that any schedule that considers the sets P' and Q' as the actual release times and deadlines of the jobs will be feasible, as long as the error η is not larger than λ.

Observation 1. Under the assumption that $\eta \in (0, \lambda)$, it follows that $r_i \leq p'_i$ and $q'_i \leq d_i$ hold for every job i.

Proof. If $p_j \geq r_j$ the observation directly follows because $p'_j \geq p_j$.

If $p_j < r_j$, let $p''_i = p_i + \lambda(q_i - p_i)$. By the assumption and the definitions of η, and η_i, we have

$$|p_i - r_i| \leq \lambda(q_i - p_i) = p''_i - p_i.$$

Then the above equation gives

$$-p_i + r_i \leq p''_i - p_i,$$

and therefore $r_i \leq p''_i$. Since $p'_i = \lfloor p''_i \rfloor$ and r_i is an integer, we can also conclude $r_i \leq p'_i$.

The same holds for the deadlines and their shrunk predictions. \qed

Therefore, the schedule $YDS(J_{P'Q'})$ is feasible. Although shrinking the intervals and then running YDS is not a robust algorithm, it will be useful to bound its energy consumption when $\eta \leq \lambda$ holds.

Lemma 4. For any $\eta \in (0, \lambda)$ there holds

$$\mathcal{E}_{YDS(J_{P'Q'})} \leq \left(\frac{2\eta + 1}{1 - 2\lambda}\right)^{\alpha - 1} \cdot \mathcal{E}_{YDS(J_{RD})}.$$

Proof.

$$\mathcal{E}_{YDS(J_{P'Q'})} \leq \frac{1}{(1 - 2\lambda)^{\alpha - 1}} \cdot \mathcal{E}_{YDS(J_{PQ})} \leq \left(\frac{2\eta + 1}{1 - 2\lambda}\right)^{\alpha - 1} \cdot \mathcal{E}_{YDS(J_{RD})}. \quad (1)$$

By Lemma 2 we have the first inequality in (1), and the second inequality holds because of Lemma 3. \qed

Similarly for common deadline instances, since we shrink from one side, we obtain a better competitive ratio.

Corollary 2. For any $\eta \in (0, \lambda)$ in common deadline instances there holds

$$\mathcal{E}_{YDS(J_{P'})} \leq \left(\frac{1 + \eta}{1 - \lambda}\right)^{\alpha - 1} \cdot \mathcal{E}_{YDS(J_{R})}.$$
Proof.

\[\mathcal{E}_{YDS}(J_{\mu'}) \leq \frac{1}{(1 - \lambda)^{(a-1)}} \cdot \mathcal{E}_{YDS}(J_{\mu}) \]

\[\leq \left(\frac{1 + \eta}{1 - \lambda} \right)^{a-1} \cdot \mathcal{E}_{YDS}(J_{R}). \]

By Lemma 1 we have the first inequality in (2), and the second inequality holds because of Corollary 1.

\[\square \]

3 General Case

In this section we present algorithm **ScheduleWithPredictions**(λ, μ) (**SwP**(λ, μ) for short) for the general learning-augmented speed-scaling setting. Parameter $0 \leq \lambda < 1/2$ describes for which range of prediction errors we would like to obtain an improved competitive ratio. The smaller the λ, the smaller that range but the better the corresponding competitive ratio for $\eta < \lambda$. On the other hand, parameter $0 \leq \mu \leq 1$ allows us to set the desired trade-off between consistency and robustness. As we will see, perfect predictions and $\lambda = \mu = 0$ would give a competitive ratio of 1.

Inspired by [8] algorithm **SwP** begins by partitioning each time slot $I_t = [t, t + 1), t \in \mathbb{Z}$ into two parts: $I_t^L = [t, t + (1 - \mu))$ and $I_t^R = [t + (1 - \mu), t + 1)$. We call I_t^L the left part, and I_t^R the right part of time slot I_t. The idea is to reserve the left parts of time-slots for following the prediction, and the right parts of the time-slots are, roughly speaking, intended for safeguarding against inaccurate predictions. A key component of our algorithm consists of elegantly and dynamically distributing the processing volume of each job upon its arrival among the two parts. This distribution is crucial in order to obtain a trade-off between consistency and robustness, based on the parameters λ and μ. The algorithm consists of two steps, the *preprocessing* and the *online* step which we now describe in more detail.

Preprocessing: Partition left parts into intervals and assign jobs to them. Upon receiving the predictions (P, Q), SwP computes a YDS-schedule S' for instance (P', Q') - which is obtained by "shrinking" (P, Q) as described above. Although S' may not be feasible for the actual instance (R, D), it will be used to partition the left parts into intervals and subsequently assign each such interval of the partition to a specific job.

To this end, let $I_t(j) := [t + a_t(j), t + b_t(j)) \subseteq I_t$ be the maximal subinterval of I_t during which j is executed under S'. Note that $I_t(j)$ could be empty for some combinations of j and t. Furthermore, since by definition there are no release times or deadlines within I_t, and YDS schedules according to EDF, there can be at most one execution interval of j within I_t. Let, for every job j and left part I_t^L, $I_t^L(j) := [t + a_t^L(j), t + b_t^L(j))$, where $a_t^L(j) = a_t(j)/(1 - \mu)$ and $b_t^L(j) = b_t(j)/(1 - \mu)$, be the subinterval of I_t^L assigned to job j.

To obtain some intuition, scheduling the whole processing volume of each job j at a uniform speed throughout intervals $I_t^L(j)$ would result in a "compressed" version of $YDS(P', Q')$ where each time-slot is sped-up by a factor of $1/(1 - \mu)$ to fit in the left part only, thus having an energy consumption increased by a factor of $(1/(1 - \mu))^a$ over that of $YDS(P', Q')$. Although (as we will see) such a compressed schedule would be consistent, it may not be robust (or even feasible) in the presence of subpar predictions. For this reason, we will eventually only
schedule part of the volume of each job in the associated left parts whenever feasible, and the remaining volume will be processed on right parts.

Online Step: Job arrivals and processing
SwP needs to decide exactly when each job is to be processed within each time-slot and at what speed. This is done by (i) distributing the processing volume of each job \(j \) to right parts of different time-slots \(I_t \) and associated left parts \(I_t^l(j) \) upon its arrival, and (ii) feasibly scheduling the whole volume assigned to the current time-slot (both to its left and right part), within the time-slot itself. In the following we discuss how this is accomplished.

(i) **Job Arrivals:** Upon arrival of job \(j \) at \(r_j \), let \(\delta_j = w_j/(d_j - r_j) \) be its density and
\[
\ell(j) := \sum_{t \in [r_j, d_j]} |I_t(j)|
\]
be the total processing time reserved for job \(j \) on the left parts during the preprocessing step that can actually be feasibly used for job \(j \). Furthermore let \(V_t(j) \) be the total volume currently (from jobs 1, 2, \ldots, \(j - 1 \)) assigned to \(I_t^r \), for all \(t \) (thus \(V_t(1) = 0 \)).

The algorithm assigns some amount of volume \(y_t^j \) (to be determined later) of job \(j \) to interval \(I_t^r \) (thus \(V_t(j + 1) := V_t(j) + y_t^j \)), for all \(t \in [r_j, d_j] \), with \(0 \leq y_t^j \leq \delta_j \). Finally the remaining volume \(X_j := w_j - \sum_t y_t^j \) is assigned to the left parts \(I_t^l(j) \) with \(t \in [r_j, d_j] \), proportionally to their length, i.e., an interval \(I_t^l(j) \) with \(t \in [r_j, d_j] \) receives an \(|I_t^l(j)|/\ell(j)|\)-fraction of \(X_j \) which implies that the average speed within \(I_t^l(j) \) must be \(X_j/\ell(j) \). To gain some intuition on the values of \(y_t^j \), it is useful to think of the algorithm as waterfilling the volume of \(j \) to both the left and the right parts such that no right part receives more than \(\delta_j \) amount of volume. More formally, the \(y_t^j \), with \(0 \leq y_t^j \leq \delta_j \) and \(t \in [r_j, d_j] \) are defined such that they satisfy the following inequalities:

\[
\frac{V_t(j)}{\mu} \geq X_j/\ell(j) \quad \forall t \in [r_j, d_j] \text{ with } y_t^j = 0 \quad (3)
\]
\[
\frac{V_t(j) + y_t^j}{\mu} = X_j/\ell(j) \quad \forall t \in [r_j, d_j] \text{ with } 0 < y_t^j < \delta_j \quad (4)
\]
\[
\frac{V_t(j) + y_t^j}{\mu} \leq X_j/\ell(j) \quad \forall t \in [r_j, d_j] \text{ with } y_t^j = \delta_j. \quad (5)
\]

Note that the left hand side in each of the above inequalities corresponds exactly to \(V_t(j + 1)/\mu \) and therefore to the average speed required to process the volume assigned to \(t \) before the arrival of job \(j + 1 \) within \(I_t^r \). We prove the existence of such \(y_t^j \) and describe how they can be computed in Appendix B.

(ii) **Processing:** For each \(I_t, t = r_j, \ldots, r_{j+1} - 1 \) the algorithm processes job \(j' \leq j \) within every \(I_t^l(j') \) at a speed of \(X_j'/\ell(j') \), and the assigned volume to \(I_t^l \) is processed within \(I_t^r \) at a speed of \(V_t(j + 1)/\mu \), with the order of the jobs within each \(I_t^r \) being determined by EDF.

The online step gets repeated upon the arrival of each job. We next show that the resulting schedule is feasible.

Lemma 5. In the schedule output by SwP(\(\lambda, \mu \)) a volume of \(w_j \) is fully processed for each job \(j \) within \([r_j, d_j] \).
Figure 1: The speed profile corresponds to an instance with $\mu = 0.25$. Job i arrives at $r_i = 2$, with $d_i = 9$, and $w_i = 7$. Hence, $\delta_i = \frac{w_i}{d_i - r_i} = 1$. For this instance, $YDS(P'Q')$ runs job i only in 3 blocks, so we have $\ell(i) = 3 \cdot 0.75 = 2.25$. For the first four blocks we have $y_{i1} = 0$ and inequality (3) holds. In the fifth and sixth blocks, $0 < y_{i5} < \delta_i$ and inequity (4) holds. And in the last block, $y_{i9} = \delta_i = 1$ and inequality (5) holds.

Proof. It is relatively easy to see that a total volume of w_j is assigned to left and right parts of I_t’s with $t \in [r_j, d_j)$: Indeed, by the algorithm definition volume of w_j only gets assigned to $I_t^L \subset I_t$ or $I_t \subset I_t$ with $t \in [r_j, d_j)$. In addition, a volume of $\sum_t y_{jt}^j$ gets assigned to the right parts and $w_j - \sum_t y_{jt}^j$ to the left parts for a total volume assignment of w_j. It therefore remains to show that all the assigned volume is feasibly processed in the processing step.

Consider some I_t with $r_j \leq t < r_j + 1$ and the corresponding I_t^L and I_t^R. Note that by the above argument, for any such t no job with an index greater than j will assign any volume, and that only job $j' \leq j$ may be assigned to $I_t^L(j')$. Therefore a speed of $X_{jt}/\ell(j')$ throughout every such $I_t^L(j)$ is sufficient to schedule all volume assigned to it. Finally, since there are no release times or deadlines within each individual interval, the total volume of $V_t(j + 1)$ can be feasibly scheduled within I_t^R at a speed of $V_t(j + 1)/\mu$.

We next show consistency and robustness of the algorithm.

Lemma 6 (Consistency). For any $\eta \in (0, \lambda)$ there holds

$$\mathcal{E}_{\text{SWP}} \leq \left(\frac{1}{1 - \mu} \right)^{\alpha - 1} \left(\frac{2\eta + 1}{1 - 2\lambda} \right)^{\alpha - 1} \mathcal{E}_{YDS(RD)}.$$

Proof. We can express \mathcal{E}_{SWP} as:

$$\mathcal{E}_{\text{SWP}} = \sum_{j=1}^{n} \left(\frac{X_j^\alpha}{\ell(j)^{\alpha - 1}} + \sum_{t \in [r_j, d_j)} \left(\frac{V_t(j + 1)^\alpha}{\mu^{\alpha - 1}} - \frac{V_t(j)^\alpha}{\mu^{\alpha - 1}} \right) \right)$$

$$= \sum_{j=1}^{n} \left(\frac{X_j^\alpha}{\ell(j)^{\alpha - 1}} + \sum_{t \in [r_j, d_j)} \left(\frac{(V_t(j) + y_{jt})^\alpha}{\mu^{\alpha - 1}} - \frac{V_t(j)^\alpha}{\mu^{\alpha - 1}} \right) \right)$$

$$\leq \sum_{j=1}^{n} \frac{w_j^\alpha}{\ell(j)^{\alpha - 1}} = \left(\frac{1}{1 - \mu} \right)^{\alpha - 1} \mathcal{E}_{YDS(J_{P'Q'})}.$$
The inequality holds by convexity of the power function and by the fact that $V_t(j+1)/\mu \leq X_j/\ell(j)$ for each t such that $y_t^j > 0$ (Equations 4 and 5). The last equality follows since for $\eta \in (0, \lambda)$, for every job j there holds $[r_j, d_j] \supseteq [p_j^\eta, q_j^\eta]$ (Observation 1), and because by construction $\ell(j)$ is $1/(1-\mu)$ times the total processing time reserved for job j under YDS($P'Q'$).

The lemma directly follows, since by Lemma 4,

$$E_{YDS(J_{P'Q'})} \leq \left(\frac{2\eta + 1}{1 - 2\lambda}\right)^{\alpha-1} E_{YDS(J_{RD})}.$$

\[\square \]

Lemma 7 (Robustness). For any instance, we have

$$E_{SwP} \leq 2^{\alpha-1} \alpha \left(\frac{1}{\mu}\right)^{\alpha-1} E_{YDS(J_{RD})}.$$

Proof. Note that by the algorithm definition there holds that $V_t(j) \geq V_t(i)$, for $j > i$ and any t, since upon each release time new volume gets assigned but volume never gets removed. We therefore have

$$E_{SwP} \leq \sum_{j=1}^{n} \left(\frac{X_j^\alpha}{\ell(j)^{\alpha-1}}\right) + \sum_{t} \left(\frac{V_t(n+1)^\alpha}{\mu^{\alpha-1}}\right)
\leq \sum_{t} \left(\frac{\left(\sum_{j:t \in [r_j,d_j]} \delta_j\right)^\alpha}{\mu^{\alpha-1}}\right)
= \left(\frac{1}{\mu}\right)^{\alpha-1} E_{AVR}.$$

The second inequality follows by the convexity of the power function and the fact that $V_t(n+1)/\mu \geq V_t(j+1)/\mu \geq X_j/\ell(j)$ for each t such that $y_t^j < \delta_j$ (Equations 4 and 5). The lemma follows by the competitive ratio of AVR [10].

\[\square \]

Lemmas 6 and 7 together directly imply Theorem 1. Note that Theorem 1 not only implies consistency and robustness, but also smoothness: the competitive ratio gracefully degrades as the error increases.

4 All Jobs Have a Common Deadline

In this section, we present a simpler algorithm that achieves improved consistency and robustness over SwP for the special case in which all jobs have the same deadline, i.e., $d_j = d$ for all $j \in J$. Since the deadline is the same for all jobs, we only consider predictions on the n release times $R = \{r_1, \ldots, r_n\}$ and denote these by a set $P = \{p_1, \ldots, p_n\}$.

We begin by analyzing a framework for combining different algorithms before presenting an algorithm in Subsection 4.1 that is based on combining two different algorithms: the classic online algorithm qOA that has a worst-case guarantee independent of the prediction error, and a second one, that considers the predictions and has a good performance in the case of small prediction error.
The general idea of combining online algorithms has been repeatedly employed in the past in the areas of online algorithms and online learning, see, for example, the celebrated results of Fiat et al. [17], Blum and Burch [14], Herbster and Warmuth [19], Littlestone and Warmuth [22]. Such a technique has also been used in the learning augmented setting, see Antoniadis et al. [6] for an explicit framework for combining algorithms, and Lykouris and Vassilvitskii [23] as well as Rohatgi [28] for implicit uses of such algorithm combinations. However, as we will see, the specific problem considered in this paper allows for way more flexibility in such algorithm combinations since it is possible to simulate the parallel execution of different algorithms by increasing the speed. This allows us to obtain a much more tailored result with at most one switch between the different algorithms and more straightforward analysis. We start with the following structural lemma.

Lemma 8. Consider a partition of the job set of instance \(J \) into \(m \) job sets \(J_1, J_2, \ldots, J_m \), and furthermore consider \(m \) schedules \(C_1, C_2, \ldots, C_m \) with speed functions \(s_1(t), s_2(t), \ldots, s_m(t) \) respectively, such that \(C_i \) is a feasible schedule for \(J_i \) for all \(i = 1, \ldots, m \). Then there exists a schedule \(C \) with speed function \(s_C(t) = \sum_i s_i(t) \) that is feasible for the complete job set \(J \) and has an energy consumption of \(E_C \leq m^{\alpha-1} \sum_i E_i \), where for each \(i \), \(E_i = \int s_i(t)^\alpha dt \) is the energy consumption of the respective schedule.

4.1 Algorithm CommonDeadlineScheduleWithPredictions (CDSwP)

At a high level CDSwP(\(\lambda \)) (almost) follows the optimal schedule for the predicted instance as long as the prediction error is not higher than \(\lambda \) and switches to a classical online algorithm (i.e., one without predictions) in case the prediction error becomes higher than \(\lambda \).

More formally, the algorithm can reside in one of two modes: follow the prediction (FtP) mode, and recovery mode. Initially, before the release time \(r_1 \) of the first job the algorithm is in the FtP-mode and has an associated speed-profile given by \(s(FtP(0), t) = 0 \) for all \(t \in [0, d] \). Upon each release time \(r_i \), \(i = 1, \ldots, n \), and while in the FtP-mode, CDSwP(\(\lambda \)) does the following:

- If \(\eta_i \leq \lambda \), CDSwP remains in the FtP-mode and updates the speed profile from \(s(FtP(i-1), t) \) to \(s(FtP(i), t) \) for \([r_i, d] \) with the help of a job instance \(J' \). Instance \(J' \) consists of:
 - One job \(i' \) with release time \(r_{i'} = r_i \), workload \(w_{i'} \) equal to the total amount of unfinished at \(r_i \) workload that was released at any timepoint \(t \leq r_i \), and deadline \(d \).
 - For each job \(j \) not yet released at \(r_j \), include job \(j \) with a release time of \(p_j' \), a deadline of \(d \) and a volume of \(w_j \) in \(J' \).

The new speed-profile \(s(FtP(i), t) \) is given for any \(t \in [r_i, d] \) by

\[
s(FtP(i), t) := \begin{cases}
s(YDS(J'), t), & \text{if } YDS(J') \text{ runs job } i' \text{ at } t, \\
0, & \text{otherwise.} \end{cases}
\]

Algorithm CDSwP now runs at \(s(FtP(i), t) \) for any \(t \in [r_i, r_{i+1}) \), and remains in the FtP-mode.
• Otherwise, if \(\eta_i > \lambda \) then CDSWP switches to the recovery-mode, and sets \(k := i \).

When in recovery-mode, the algorithm runs at speed \(s(t) = s(FtP(k - 1), t) + s(qOA(k), t) \) at each timepoint \(t \) until \(d \), where \(s(FtP(k - 1), t) \) is the last speed-profile generated in the FtP-mode, and \(s(qOA(k), t) \), is the speed that the online algorithm \(qOA \) would have at timepoint \(t \) when presented (in an online fashion) with (the actual) jobs \(k, \ldots, n \).

Note that defining the speed at any timepoint \(t \) is sufficient in order to fully describe the algorithm. Indeed, since all jobs have a common deadline of \(d \), it is irrelevant which job (among the active jobs) is being processed at any timepoint \(t \). Nevertheless, to simplify the presentation we will implicitly assume in the following that at timepoint \(t \) the currently active and unfinished job with the earliest release time is the one being processed – and ties are broken arbitrarily. We first prove that the algorithm produces feasible schedules:

Observation 2. Algorithm CDSWP fully processes the whole processing volume of each job \(w_j \), within \([r_j, d] \).

Proof. Note that by the algorithm definition, no job starts being processed before its arrival in any mode. So it suffices to show that the complete processing volume of each job is completed before its deadline. Assume first that the algorithm remains in the FtP-mode until \(d \). By the definition of the job instances \(J^i \), any still unfinished processing volume \(w_{n'} \) will be assigned to job \(n' \) at timepoint \(r_n \) and YDS will schedule it within \([r_n, d] \) according to YDS at a speed of \(w_{n'}/(d - r_n) \). So the resulting schedule is feasible in that case. If the algorithm switches to the recovery mode at some \(r_k \), then by the above argument the speed profile \(s(FtP(k - 1), t) \) is sufficient to finish jobs \(1, \ldots, k - 1 \), and furthermore speed profile \(s(qOA(k), t) \) is feasible for for jobs \(k, \ldots, n \), by the feasibility of algorithm \(qOA \). So the overall speed profile \(s(FtP(k - 1), t) + s(qOA(j), t) \) is sufficient for processing the whole volume. \(\square \)

We begin by showing the following theorem which will imply consistency and smoothness.
Lemma 9 (Consistency & Smoothness). Under the assumption that \(\eta \in (0, \lambda) \), there holds

\[
\mathcal{E}_{CDSwP} \leq \left(\frac{1 + \eta}{1 - \lambda} \right)^{\alpha - 1} \cdot \mathcal{E}_{YDS(J_R)}.
\]

Before proving Lemma 9, we show the following intermediate result.

Lemma 10. Assuming that \(\eta \in (0, \lambda) \), there holds

\[
\mathcal{E}_{CDSwP} \leq \mathcal{E}_{YDS(J_{\rho'})}
\]

Proof. Consider job instance \(J' \) which consists of:

- A job \(j_{i-1} \) with release time \(r_i \), deadline \(d \) and volume \(w_{j_{i-1}} := w'_i - w_i \) equal to the total volume of jobs \(1, \ldots, i-1 \) that is still unfinished at \(r_i \),
- Job \(i \) with release time at \(p'_i \) (and still deadline \(d \) and processing volume \(w_i \)),
- For each job \(j \) not yet released at \(r_j \), include job \(j \) with a release time of \(p'_j \), a deadline of \(d \) and a volume of \(w_i \) in \(J' \).

Note that, instance \(J' \) differs from \(J_i \) only in that job \(i \) is considered separately, and not together with all previously released jobs that are still not finished. By Observation 1, a YDS schedule for the former is a feasible schedule for the later, and therefore by optimality of YDS,

\[
\mathcal{E}_{CDSwP}(J_i) \leq \mathcal{E}_{CDSwP}(J_{i}')
\]

where \(\mathcal{E}_{A(J)}^{[a,b]} \) refers to the energy consumption that the schedule produced by algorithm \(A \) on instance \(J \) has within interval \([a,b]\).

Using this notation, we can express the total energy-consumption of the \(CDSwP \) as

\[
\mathcal{E}_{CDSwP} = \sum_{i=1}^{n} \mathcal{E}_{CDSwP}^{[r_i,r_{i+1}]}(J_i)
\]

\[
= \sum_{i=1}^{n-2} \mathcal{E}_{CDSwP}^{[r_i,r_{i+1}]}(J_i) + \mathcal{E}_{CDSwP}^{[r_{n-1},r_n]}(J_{n-1}) + \mathcal{E}_{CDSwP}^{[r_n,d]}(J_n)
\]

\[
\leq \sum_{i=1}^{n-2} \mathcal{E}_{CDSwP}^{[r_i,r_{i+1}]}(J_i) + \mathcal{E}_{CDSwP}^{[r_{n-1},r_n]}(J_{n-1}) + \mathcal{E}_{CDSwP}^{[r_n,d]}(J_{n-1})
\]

\[
= \sum_{i=1}^{n-2} \mathcal{E}_{CDSwP}^{[r_i,r_{i+1}]}(J_i) + \mathcal{E}_{CDSwP}^{[r_{n-1},d]}(J_{n-1})
\]

\[
\vdots
\]

\[
\leq \mathcal{E}_{CDSwP}^{[r_1,d]}(J_1) \leq \mathcal{E}_{YDS(J_{\rho'})},
\]

where the inequalities follow by applying Equation (6).
Proof of Lemma 9. By combining Lemmas 10 and 2 we have,
\[\mathcal{E}_{CDSwP} \leq \mathcal{E}_{YDS(J_{p'})} \leq \left(\frac{1 + \eta}{1 - \lambda} \right)^{\alpha - 1} \cdot \mathcal{E}_{YDS(J_R)}, \]
and the lemma directly follows. \(\square \)

We note that the above proof also works in exactly the same way when only a subset \(A \) of the job set is processed.

Corollary 3. Consider a set of jobs \(A \subseteq J \) and assume that \(\eta_i \in (0, \lambda) \) holds for every job \(i \in A \). Then
\[\mathcal{E}_{CDSwP(A)} \leq \mathcal{E}_{YDS(J_{p'}(A))} \]

We next analyze the case of inadequate predictions.

Lemma 11. (Robustness) With a parameter \(\eta \notin (0, \lambda) \), we have
\[\mathcal{E}_{CDSwP} \leq 2^\alpha \left(\frac{1 + \lambda}{1 - \lambda} \right)^{\alpha - 1} \cdot \mathcal{E}_{qOA}. \]

Proof. As in the definition of CDSwP, let \(k \) be the smallest index, such that \(\eta_k > \lambda \). Hence, the algorithm switches to the recovery mode at \(r_k \). We partition the job set into two subsets \(A = \{1, \ldots, k - 1\} \) and \(B = \{k, \ldots, n\} \). By Lemma 8 and by the fact that by Corollary 3 the energy consumption for set \(B \) is at most the energy consumption of \(qOA \) for the whole job instance, it suffices to upper bound the energy consumption required for set \(A \) by the total energy that \(qOA(k) \) uses.

We transform the schedule obtained by CDSwP for job set \(A \) through three intermediate steps to the schedule produced by \(YDS^J(R) \). Since \(\mathcal{E}_{YDS^J(R)} \leq \mathcal{E}_{qOA^J(R)} \) this will imply the theorem.

Step 1: Let \(J^A \) be the job instance that contains all jobs in \(A \), along with jobs \(j = k, k + 1, \ldots n \) with respective release time \(p'_j \), deadline \(d \) and processing volume \(w_j \).

Let \(\mathcal{E}_{CDSwP}^A \), and \(\mathcal{E}_{YDS(J^A)}^A \) be the energy consumptions incurred while scheduling the subset of jobs \(A \) for CDSwP(\(J \)) and YDS(\(J^A \)) respectively.

By Corollary 3
\[\mathcal{E}_{CDSwP}^A \leq \mathcal{E}_{YDS(J_{p'})}^A. \]

Let \(J^A_P \) be the job instance, consisting of the predicted release times \((p_i) \) of jobs in set \(A \) and the "shrunk" predicted release times \((p'_i) \) for the remaining jobs. Note that \(J^A_P \) differs from \(J^A \) only in the release-times of jobs in set \(A \). Since \(\eta_i \leq \lambda \) for any \(i \in A \), there holds for any such \(i \) that \(d - p'_i = 1/(1 - \lambda)(d - p_i) \). By Lemma 11 there therefore holds
\[\mathcal{E}_{YDS(J_{p'})}^A \leq \left(\frac{1}{1 - \lambda} \right)^{\alpha - 1} \cdot \mathcal{E}_{YDS(J^A_P)}^A. \]
Consider set $P^* = \{p^*_1, \ldots, p^*_k, p'_k, \ldots, p'_n\}$ with $p^*_i = p_i - \eta_i(q_i - p_i)$ for all $j \in [k-1]$.

There holds

$$E_{YDS(J^*_P)} \leq (1 + \lambda)^{a-1} E_{YDS(J^*_P)} \leq (1 + \lambda)^{a-1} E_{YDS(J^*_A)}.$$ \hspace{1cm} (7)

By having $c = \frac{1}{1+\lambda}$, and $J = J^*_P$ ($r_i = p'_i$) in Lemma 11 we obtain $J' = J_P$. Since we have $\eta_j < \lambda$ for all $j < k$, the first inequality in (7) holds. For every job $i \in A$ there holds $(r_i, d) \subseteq (p^*_i, d)$. More specifically, a feasible schedule for J^*_A is feasible for J^*_P as well. The second inequality in (7) then directly follows by the optimality of YDS.

Putting things together we therefore have

$$E_{\text{CDSwP}} \leq (\frac{1 + \lambda}{1 - \lambda})^{a-1} E_{YDS(J^*_A)}.$$ \hspace{1cm} (8)

Step 2: In this step, we want to compare $E_{YDS(J^*_A)}$ with the energy of YDS algorithm for a new job instance in which we consider the real release times for some jobs in set B that their shrinking predictions are after their real release times.

A job instance J^l is defined, consisting of the real release times of jobs in set A, the real release times of job j in set B for which $r_j \leq p'_j$, and the shrunk prediction (p'_j) for the rest.

Since moving the release times of the future jobs to the left could increase the speed (and hence increases energy) in the first part,

$$E_{YDS(J^*_A)} \leq E_{YDS(J^l)}.$$

Step 3: In the last step, we want to compare $E_{YDS(J^l)}$ with the optimum offline algorithm (YDS) for the complete job instance J and their real release time J_R. We want to show

$$E_{YDS(J^l)} \leq E_{YDS(J^*_l)} \leq E_{YDS(J^*_R)}.$$

The first inequality holds because $A \subseteq J$. Consider the difference between two job instances J_R and J^l. Since for each job i, its available time in J_R is a subset of its available time in J^l, $YDS(J_R)$ is a feasible algorithm for job instance J^l. Therefore, the second inequality holds.

So far we proved that

$$E_{\text{CDSwP}} \leq (\frac{1 + \lambda}{1 - \lambda})^{a-1} E_{YDS(J^*_R)}.$$

Since we run qOA for the job set B,

$$E_{\text{CDSwP}} = E_{qOA(J_R)} \leq E_{qOA(J_R)}.$$

16
And by Lemma 8

\[\mathcal{E}_{CDSwP} \leq 2^{\alpha - 1} \cdot \left(\frac{1 + \lambda}{1 - \lambda} \right)^{\alpha - 1} \cdot \mathcal{E}_{YDS(J_R)} + \mathcal{E}_{qOA(J_R)}. \]

Since \(\mathcal{E}_{YDS(J_R)} \leq \mathcal{E}_{qOA(J_R)} \),

\[\mathcal{E}_{CDSwP} \leq 2^{\alpha - 1} \cdot \left(\frac{1 + \lambda}{1 - \lambda} \right)^{\alpha - 1} \cdot \mathcal{E}_{qOA(J_R)} \cdot (1 + \lambda) \]

\[\leq 2^{\alpha} \left(\frac{1 + \lambda}{1 - \lambda} \right)^{\alpha - 1} \cdot \mathcal{E}_{qOA}. \]

\[\square \]

Lemmas 9 and 11 together imply Theorem 2.

5 Discussion on Confidence Parameters \(\lambda \) and \(\mu \)

In order to give some intuition on how the confidence parameters \(\mu \) and \(\lambda \) affect the obtained performance guarantees of SwP, we perform some numerical experiments for different settings. Moreover, we compare our algorithm with the currently best-known online algorithm qOA and the optimum offline algorithm YDS using real-world data. All experiments were run on a typical laptop computer.

We only consider \(\alpha = 3 \) for the experiments, as this is the typical value of \(\alpha \) for real-world processors, see for example [15,31]. Furthermore for qOA, we only consider \(q = 2 - \frac{1}{\alpha} \approx 1.667 \) since this is the value that minimizes the competitive ratio [11].

The input data for our experiments is the same as in [1]. There, jobs are generated from http requests received on EPAs web-server. For practical reasons, we limit our input instances to the first 1000 jobs of their sample. In order to generate predictions for the input, we use a normal distribution with a mean of 0, and a standard deviation of 0.01, 0.05, or 0.1. For each job, two samples from this distribution are taken and each of them is scaled by the real interval length of the job. The result is then added to each job’s actual release time and deadline to obtain predictions for them.

In order to illustrate the effect of parameters \(\lambda \) and \(\mu \), we run SwP for different combinations of these values. In particular we consider \(\lambda = 0, 0.1, 0.2, 0.3 \) and \(\mu = 0.1, 0.2, \ldots, 1 \). Our results with standard deviations 0.01, 0.05, 0.1 can be found in Figure 3, Figure 4, and Figure 5 respectively.

To gain some intuition on the results, recall that \(\mu \) denotes the portion of each block for which AVR is run. In particular, for \(\mu = 1 \) the SwP algorithm becomes identical to the AVR algorithm and disregards the predictions, whereas the smaller \(\mu \)’s value the more the predictions are trusted. This explains why the competitive ratio increases with \(\mu \). Similarly, recall that \(\lambda \) defines how much the predicted interval will be shrunk and that the improved competitive ratio is only proven for \(\eta \leq \lambda \) but on the other hand the bigger \(\lambda \) gets the smaller that improvement in the competitive ratio will be. Although the best choices for \(\lambda \) and \(\mu \) depend on the quality and/or structure of the predictions, our experiments highlight that for appropriate such choices, one can significantly improve upon the energy-consumption of qOA.

To summarize, in practice the most sensible settings of \(\lambda \) and \(\mu \) will depend on the quality
Figure 3: Prediction set 1, stddev=0.01

Figure 4: Prediction set 2, stddev=0.05.
as well as structure of the predictions and it may be worthwhile experimenting with different such settings.

6 Conclusion

In this paper, we have presented a consistent, smooth, and robust algorithm for the general classical, deadline-based, online speed-scaling problem using ML predictions for release times and deadlines.

We can remove the assumption of knowing the number of jobs \(n \), by slightly adapting the error definition, so that the prediction is considered to be inadequate if the predicted number of jobs is wrong.

It remains an interesting open question on whether a similar robust, consistent and smooth algorithm exists for the more general setup in which the workloads of the jobs are not known in advance but predicted along with their release times and deadlines. Although we were able to extend SwP under the assumption that it satisfies a natural monotonicity property, it is unclear if that property holds in general.

References

[1] A. Abousamra, D. P. Bunde, and K. Pruhs. An experimental comparison of speed scaling algorithms with deadline feasibility constraints. CoRR, abs/1307.0531, 2013.

[2] S. Albers. Energy-efficient algorithms. Commun. ACM, 53(5):86–96, 2010.

[3] S. Albers, A. Antoniadis, and G. Greiner. On multi-processor speed scaling with migration. J. Comput. Syst. Sci., 81(7):1194–1209, 2015.

[4] S. Albers and H. Fujiwara. Energy-efficient algorithms for flow time minimization. ACM Trans. Algorithms, 3(4):49, 2007.
[5] E. Angel, E. Bampis, F. Kacem, and D. Letsios. Speed scaling on parallel processors with migration. *J. Comb. Optim.*, 37(4):1266–1282, 2019.

[6] A. Antoniadis, C. Coester, M. Elias, A. Polak, and B. Simon. Online metric algorithms with untrusted predictions. In *International Conference on Machine Learning*, pages 345–355. PMLR, 2020.

[7] A. Antoniadis, T. Gouleakis, P. Kleer, and P. Kolev. Secretary and online matching problems with machine learned advice. In *NeurIPS*, 2020.

[8] É. Bamas, A. Maggiori, L. Rohwedder, and O. Svensson. Learning augmented energy minimization via speed scaling. In *NeurIPS*, 2020.

[9] É. Bamas, A. Maggiori, and O. Svensson. The primal-dual method for learning augmented algorithms. In *NeurIPS*, 2020.

[10] N. Bansal, D. P. Bunde, H. Chan, and K. Pruhs. Average rate speed scaling. *Algorithmica*, 60(4):877–889, 2011.

[11] N. Bansal, H. Chan, D. Katz, and K. Pruhs. Improved bounds for speed scaling in devices obeying the cube-root rule. *Theory Comput.*, 8(1):209–229, 2012.

[12] N. Bansal, T. Kimbrel, and K. Pruhs. Speed scaling to manage energy and temperature. *J. ACM*, 54(1), Mar. 2007.

[13] N. Bansal, K. Pruhs, and C. Stein. Speed scaling for weighted flow time. *SIAM J. Comput.*, 39(4):1294–1308, 2009.

[14] A. Blum and C. Burch. On-line learning and the metrical task system problem. *Machine Learning*, 39(1):35–58, 2000.

[15] D. L. Critchlow, R. H. Dennard, and S. Schuster. Design and characteristics of n-channel insulated-gate field-effect transistors. *IBM J. Res. Dev.*, 44(1):70–83, 2000.

[16] P. Dütting, S. Lattanzi, R. P. Leme, and S. Vassilvitskii. Secretaries with advice. In *EC*, pages 409–429. ACM, 2021.

[17] A. Fiat, Y. Rabani, and Y. Ravid. Competitive k-server algorithms. *Journal of Computer and System Sciences*, 48(3):410–428, 1994.

[18] S. Gollapudi and D. Panigrahi. Online algorithms for rent-or-buy with expert advice. In K. Chaudhuri and R. Salakhutdinov, editors, *Proceedings of the 36th International Conference on Machine Learning*, volume 97 of *Proceedings of Machine Learning Research*, pages 2319–2327. PMLR, 09–15 Jun 2019.

[19] M. Herbster and M. K. Warmuth. Tracking the best expert. *Machine learning*, 32(2):151–178, 1998.

[20] S. Irani and K. Pruhs. Algorithmic problems in power management. *SIGACT News*, 36(2):63–76, 2005.
[21] N. Jones. How to stop data centers from gobbling up the world’s electricity. https://www.nature.com/articles/d41586-018-06610-y, 2018. [Online; accessed 02-August-2021].

[22] N. Littlestone and M. Warmuth. The weighted majority algorithm. Information and Computation, 108(2):212–261, 1994.

[23] T. Lykouris and S. Vassilvitskii. Competitive caching with machine learned advice. In International Conference on Machine Learning, pages 3296–3305. PMLR, 2018.

[24] M. Mitzenmacher. Scheduling with predictions and the price of misprediction. In ITCS, volume 151 of LIPIcs, pages 14:1–14:18. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2020.

[25] M. Mitzenmacher and S. Vassilvitskii. Algorithms with predictions. In Beyond the Worst-Case Analysis of Algorithms, pages 646–662. Cambridge University Press, 2020.

[26] B. Moseley, S. Vassilvitskii, S. Lattanzi, and T. Lavastida. Online scheduling via learned weights. In SODA 2020, 2020.

[27] M. Purohit, Z. Svitkina, and R. Kumar. Improving online algorithms via ml predictions. In S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, and R. Garnett, editors, Advances in Neural Information Processing Systems, volume 31. Curran Associates, Inc., 2018.

[28] D. Rohatgi. Near-optimal bounds for online caching with machine learned advice. In Proceedings of the Fourteenth Annual ACM-SIAM Symposium on Discrete Algorithms, pages 1834–1845. SIAM, 2020.

[29] S. Wang and J. Li. Online algorithms for multi-shop ski rental with machine learned predictions. In AAMAS, pages 2035–2037. International Foundation for Autonomous Agents and Multiagent Systems, 2020.

[30] A. Wei. Better and simpler learning-augmented online caching. In APPROX/RANDOM, volume 176 of LIPIcs, pages 60:1–60:17. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2020.

[31] A. Wierman, L. L. H. Andrew, and A. Tang. Power-aware speed scaling in processor sharing systems: Optimality and robustness. Perform. Evaluation, 69(12):601–622, 2012.

[32] F. F. Yao, A. J. Demers, and S. Shenker. A scheduling model for reduced CPU energy. In FOCS, pages 374–382. IEEE Computer Society, 1995.
A Energy of the Shrunk Instances

Lemma 1. Consider a common deadline instance J, and another common deadline instance \hat{J} constructed from J such that every job $\hat{j}_i \in \hat{J}$ has workload $\hat{w}_i = w_i$, $\hat{d} = d$, and $\hat{r}_i = r_i + (1 - c_i) \cdot (d - r_i)$ for some shrinking parameter $0 \leq c_i < 1$. Set $c = \max_i c_i$. Then,

$$E_{YDS}(\hat{J}) \leq (1/c)^{\alpha - 1} E_{YDS}(J).$$

Proof. In order to prove the theorem, we start with schedule $C_{YDS}(J)$, in which each job j_i runs at a speed s_i. It suffices to show that there exists a feasible to schedule $C'(\hat{J})$ for the jobs of \hat{J} in which each job \hat{j}_i runs at speed of $\hat{s}_i = \frac{1}{c} \cdot s_i$. The theorem then directly follows by the definitions of the energy and the power function.

It is without loss of generality to assume that both $C_{YDS}(J)$ and $C'(\hat{J})$ are earliest release time first schedules. Let a_i be the timepoint at which j_i starts being processed in $C_{YDS}(J)$, and let $\hat{a}_i = d - c(d - a_i) = d(1 - c) + ca_i$. Note that by construction, feasibility of $C_{YDS}(J)$ and because $c < 1$, we have that $a_i \geq r_i$ and therefore $\hat{a}_i = d(1 - c) + ca_i \geq d(1 - c) + cr_i = \hat{r}_i$. Consider earliest release time first schedule $C(J)$ in which every job j_i is processed at a speed of \hat{s}_i.

In the remainder of this proof we show by induction, that in $C'(\hat{J})$ every job \hat{j}_i starts at \hat{a}_i. For the base case, it can be easily shown than in the optimal EDF schedule j_1 starts at r_1 and therefore $a_1 = r_1$. It follows that $\hat{a}_1 = \hat{r}_1$ and the job can feasibly start executing at \hat{a}_1. Assume that in $C'(\hat{J})$ the first (according to release time) i many jobs start at their respective \hat{a}_i’s. Then, in order to show that \hat{j}_i+1 starts at \hat{a}_{i+1} it suffices to show that \hat{j}_i finishes its execution before \hat{a}_{i+1}. Clearly j_i finishes its execution no later than a_{i+1}. Therefore, $a_i + w_i/s_i \leq a_{i+1}$. In turn,

$$\hat{a}_i + w_i/s_i' = d_i(1 - c) + ca_i + c(w_i/s_i) \leq d_i(1 - c) + ca_i + c(w_i/s_i) = \hat{a}_{i+1},$$

and \hat{j}_{i+1} can start at \hat{a}_{i+1}. A similar argument shows that \hat{j}_n finishes before \hat{d} and feasibility and therefore the proof of the theorem follows. \square

Lemma 2. Consider a (general) instance J, and another instance \hat{J} in which every job $j_i \in J$ corresponds to a job $\hat{j}_i \in \hat{J}$ with workload $\hat{w}_i = w_i$, $\hat{r}_i = r_i + \frac{1 - c}{2} \cdot (d_i - r_i)$ and $\hat{d}_i = d_i - \frac{1 - c}{2} \cdot (d_i - r_i)$ for some shrinking parameter $0 \leq c < 1$. Then,

$$E_{YDS}(\hat{J}) \leq (1/c)^{\alpha - 1} E_{YDS}(J).$$

Proof. We may assume that $C_{YDS}(J)$ is an earliest deadline first schedule in which every job j_i runs at a speed of s_i. It suffices to show that there exists a feasible schedule $C'(\hat{J})$ for the jobs of \hat{J} in which each job \hat{j}_i runs at a speed of $\hat{s}_i = \frac{1}{c} \cdot s_i$. Let the jobs be ordered by their deadlines.

Consider an earliest deadline first schedule $C'(\hat{J})$ in which every job \hat{j}_i runs at a speed of \hat{s}_i. For a job k and a job $i \leq k$, let $t_i(k)$ be the amount of time during which i is processed within (r_k, d_k). Similarly we can define $t_i(k)$. It suffices to show that for every job j_k and every $i < k$ there holds

$$\hat{t}_i(k) \leq c \cdot t_i(k).$$
Assume for the sake of contradiction that this does not hold, and let j_k and j_i be the first pair of jobs for which it is not true. For this to be the case we must have $r_i \leq r_k \leq d_i \leq d_k$ and $\hat{r}_i \leq \hat{r}_k \leq \hat{d}_i \leq \hat{d}_k$. The reason is that if the intervals are disjoint or the interval of one job contains the other in any schedule then the inequality directly holds. So let $z = r_k - r_i$ and $\hat{z} = \hat{r}_k - \hat{r}_i$. By construction it must be that $\hat{z} \geq cz$. Therefore and by the assumption that k and i are the first such pair, more of job \hat{j}_i runs in \hat{z} than of job j_i in z. This leads to a contradiction since there is less of job \hat{j}_i left to run after \hat{r}_k.

\[\square\]

B Calculating the y^t_i’s

First we show the following lemma.

Lemma 12. For any given $0 \leq X \leq \ell(j) \max_{t \in [r_j, d_j]} (V_t(j) + \delta_j)/\mu$ there exist values y^t_j, with $0 \leq y^t_j \leq \delta_j$ so that equations (4), (5) and (3) are satisfied for all $t \in [r_j, d_j]$, with X in place of X_j. Furthermore for any t, t' with $y^t_j \leq y^{t'}_j$ there holds $V_{t'}(j) \leq V_t(j)$, and $\sum y^t_j$ is a continuous and non-decreasing function in X.

Proof. If $X/\ell(j) < \min_{t \in [r_j, d_j]} V_t(j)/\mu$, then it is easy to verify that $y^t_j = \delta_j$ for all $t \in [r_j, d_j]$ satisfies all equations. So we assume for the remainder of this proof that $\min_{t \in [r_j, d_j]} V_t(j)/\mu \leq X/\ell(j) \leq \max_{t \in [r_j, d_j]} (V_t(j) + \delta_j)/\mu$.

For any $t \in [r_j, d_j]$, let

\[
y^t_j := \begin{cases}
0, & \text{if } V_t(j)/\mu \geq X/\ell(j), \\
\delta_j, & \text{if } V_t(j) + \delta_j/\mu \leq X/\ell(j), \\
\mu X/\ell(j) - V_t(j), & \text{otherwise.}
\end{cases}
\]

(9)

It is easy to verify that for the above definition of y^t_j, equations (4), (5) and (3) are satisfied with X in place of X_j, and that for any t, t' with $y^t_j \leq y^{t'}_j$ there holds $V_{t'}(j) \leq V_t(j)$. Finally, $\sum y^t_j$ is a continuous function as a sum of a finite number of continuous functions, and non-decreasing in X (as each y^t_j is by definition a non-increasing function of X).

Lemma 13. For any set of values $V_t(j)$, there exist values y^t_j, with $0 \leq y^t_j \leq \delta_j$ so that equations (4), (3) and (3) are satisfied for all $t \in [r_j, d_j]$.

Proof. Note that it suffices to show that there exists $X_j = w_j - \sum_t y^t_j$ where the y^t_j are as defined in the proof of Lemma 12 since then by Lemma 12 the equations (4), (5), and (3) would hold for $X_j = w_j - \sum_t y^t_j$.

First, let $X = w_j$ and compute the values of y^t_j via (9). If $\sum_t y^t_j = 0$, then we have found the desired X and are done. Assume therefore, that $0 < \sum_t y^t_j \leq w_j$. By Lemma 12 $\sum_t y^t_j$ is a non-decreasing and continuous function of X within $[0, w_j]$ that obtains value 0 for $X = 0$, and a value $\leq w_j$ for $X = w_j$. Equivalently the function $w_j - \sum_t y^t_j$ is non-increasing and continuous in X within $[0, w_j]$ and obtains value w_j for $X = 0$ and a value ≥ 0 for $X = w_j$. Therefore, by the intermediate value theorem there must exist an $X_j \in [0, w_j]$, such that $w_j - \sum_t y^t_j$ obtains a value of X_j, which concludes the proof of the lemma.

\[\square\]
B.1 Algorithm

Lemmas 12 and 13 directly imply an algorithm for identifying such values of \(y_j' \). In particular, since for any \(t, t' \) with \(y_j' \leq y_j'' \) there holds \(V_t(j) \leq V_{t'}(j) \), we can order all relevant \(t \)'s by \(V_t(j) \) and find (through enumeration) \(t', t'' \) such that for any \(V_t(j) \geq V_{t'}(j) \) we have \(y_j' = 0 \), for any \(V_t(j) \leq V_{t'}(j) \), \(y_j' = \delta_j \) and for all other \(t \) there holds \(0 < y_j' < \delta_j \). Let \(N \) be the number of \(t \)'s such that \(y_j' = \delta_j \), and \(Z = w - N \delta_j \) be the remaining processing volume that needs to be assigned through the \(y_j' \)'s for \(t \)'s with \(V_{t'}(j) < V_t(j) \). In other words we need to find \(0 < y_j' < \delta_j \) so that \(Z - \sum_t y_j' = X_j, \) and for each individual such \(y_j' \), we have \(y_j' = \mu X_j / \ell(j) - V_t(j) \). This implies a system of \(k + 1 \) equations (for some \(k \)) with \(k + 1 \) unknowns, that by Lemma 13 has a solution assuming that \(t', t'' \) were chosen correctly.

C Combining Online Scheduling Algorithms

The proof of the following lemma is an adaptation of the proof of a similar result used in the analysis of the Average Rate algorithm for the problem (see [10, 32]). However we reprove it here, since (i) we obtain a more general result, and (ii) our respective schedules do not necessarily satisfy all the properties of the corresponding schedules in [10, 32].

Lemma 8. Consider a partition of the job set of instance \(J \) into \(m \) job sets \(J_1, J_2, \ldots J_m \), and furthermore consider \(m \) schedules \(C_1, C_2, \ldots C_m \) with speed functions \(s_1(t), s_2(t), \ldots s_m(t) \) respectively, such that \(C_i \) is a feasible schedule for \(J_i \) for all \(i = 1, \ldots m \). Then there exists a schedule \(C \) with speed function \(s_C(t) = \sum_i s_i(t) \) that is feasible for the complete job set \(J \) and has an energy consumption of \(E_C \leq m^{\alpha-1} \sum_i E_i, \) where for each \(i, E_i = \int t \ s_i(t)^\alpha \ dt \) is the energy consumption of the respective schedule.

Proof. Regarding feasibility, consider a partitioning of the time horizon defined by the points \(T = \cup_i \{ r_i, d_i \} \). Let \(t_1, t_2, \ldots \) be the points of \(T \) ordered from left to right. By definition of \(s_C(t) \) we have that \(\int t_{i+1} t \ s_C(t) \ dt = \sum_i \int t_{i+1} t \ s_i(t) \ dt \). Consider schedule \(C \) that processes in every interval \((t_i, t_{i+1}) \) the same amount of volume for each job \(j \) as the corresponding schedule \(C_k \) with \(j \in C_k \) does in this interval. The jobs inside such an interval \((t_i, t_{i+1}) \) are processed in an arbitrary order (this is possible because the interval does not contain any release times or deadlines). Assume for the sake of contradiction that \(C \) is not feasible for \(J \). Then there must exist a job \(j \in C_k \) that misses its deadline \(d_j = t_i \). This contradicts the feasibility of \(C_k \) since \(C \) processes exactly the same amount of job \(j \) in every interval \((t_i, t_{i+1}) \) for \(i = 0, \ldots \ell - 1 \) as \(C_k \).

With respect to the energy consumption, we have:

\[
E_C = \int t \left(\sum_i s_i(t) \right)^\alpha \ dt.
\]

Note that for all \(i, \int t \ s_i(t)^\alpha \ dt \leq E_i. \) The lemma now follows since

\[
\int t \left(\sum_i s_i(t) \right)^\alpha \ dt \leq m^{\alpha-1} \int t \left(\sum_i s_i(t)^\alpha \right) \ dt = m^{\alpha-1} \left(\sum_i E_i \right),
\]

where the first inequality follows by Jensen’s inequality. \(\square \)