Estimating the Hausdorff dimensions of univoque sets for self-similar sets

Xiu Chen, Kan Jiang* and Wenxia Li

Abstract

An approach is given for estimating the Hausdorff dimension of the univoque set of a self-similar set. This sometimes allows us to get the exact Hausdorff dimensions of the univoque sets.

Key words. Hausdorff dimension; univoque set; sets of k-codings; self-similar sets.
AMS Subject Classifications: 28A80, 28A78.

1 Introduction

Let $\{f_i\}_{i=1}^m$ be an iterated function system (IFS) of contractive similitudes on \mathbb{R}^d defined as

$$f_i(x) = r_i R_i x + b_i, \quad i \in \Omega = \{1, \ldots, m\},$$

where $0 < r_i < 1$ is the contractive ratio, R_i is an orthogonal transformation and $b_i \in \mathbb{R}^d$. Then there exists a unique nonempty compact set $K \subseteq \mathbb{R}^d$ satisfying (cf. [7])

$$K = \bigcup_{i=1}^m f_i(K). \quad (1)$$

The set K is called the self-similar set generated by the IFS $\{f_j\}_{j=1}^m$. The IFS $\{f_j\}_{j=1}^m$ is said to satisfy the open set condition (OSC) (cf. [7]) if there exists a non-empty bounded open set $V \subseteq \mathbb{R}^d$ such that

$$V \supseteq \bigcup_{i=1}^m f_i(V) \text{ with disjoint union on the right side.}$$

Under the open set condition, the Hausdorff dimension of K coincides with the similarity dimension, denoted by $\dim_S K$, which is the unique solution s of the equation $\sum_{j=1}^m r_j^s = 1$. For any $x \in K$, there exists a sequence $(i_n)_{n=1}^{\infty} \in \{1, \ldots, m\}^\mathbb{N}$ such that

$$x = \lim_{n \to \infty} f_{i_1} \circ \cdots \circ f_{i_n}(0) = \bigcap_{n=1}^{\infty} f_{i_1} \circ \cdots \circ f_{i_n}(K).$$

*Corresponding author
Such sequence \((i_n)_{n=1}^\infty\) is called a coding of \(x\). The attractor \(K\) defined by (1) may equivalently be defined to be the set of points in \(\mathbb{R}^d\) which admit a coding, i.e., one can define a surjective projection map between the symbolic space \(\{1, \ldots, m\}^\mathbb{N}\) and the self-similar set \(K\) by
\[
\Pi((i_n)_{n=1}^\infty) := \lim_{n \to \infty} f_{i_1} \circ \cdots \circ f_{i_n}(0).
\]
A point \(x \in K\) may have multiple codings. \(x \in K\) is called a univoque point if it has only one coding. The set of univoque points is called the univoque set, denoted by \(U\) or \(U_1\). Generally, for \(k \in \mathbb{N}\) we set
\[
U_k = \{x \in K : x \text{ has exact } k \text{ codings}\}.
\]
The univoque set plays a pivotal role in studying the sets of multiple codings (cf. [8, 3, 4]), e.g., we have
\[
\dim H U_k \leq \dim H U \text{ for } k \geq 2,
\]
(2) since \(U_k \subseteq \bigcup_{i \in \Omega^*} f_i(U)\) where, as usual, \(\Omega^* = \bigcup_{n=1}^\infty \Omega^n\). Therefore, it is crucial to find the Hausdorff dimension of the univoque set for self-similar sets. There are many papers about the Hausdorff dimension of \(U\) when \(K\) is an interval (cf. [2, 6, 5, 10, 11, 1, 16, 9, 15]).

In the present paper, we offer an approach to estimate \(\dim H U\) for general self-similar sets. Let \(M\) be a nonempty compact subset of \(\mathbb{R}^d\) satisfying \(f_i(M) \subseteq M\) for \(1 \leq i \leq m\) (so \(K \subseteq M\)). Let
\[
S_1 = \{k \in \Omega : f_k(M) \cap f_j(M) = \emptyset \text{ for all } j \in \Omega \setminus \{k\}\} \text{ and } T_1 = \Omega \setminus S_1.
\]
For positive integer \(i\) let
\[
S_{i+1} = \{k \in (T_i \times \Omega) : f_k(M) \cap f_j(M) = \emptyset \text{ for all } j \in (T_i \times \Omega) \setminus \{k\}\},
\]
\[
T_{i+1} = (T_i \times \Omega) \setminus S_{i+1}.
\]
Note that \(S_i\) may be empty for some \(i\). Let
\[
\Gamma = \bigcup_{i \geq 1} S_i.
\]
(4)
It is clear that \(\Gamma\) becomes largest when \(M\) is taken as \(K\). An \(i \in \Omega^N\) is said to begin with \(\Gamma\) if \(i|k \in \Gamma\) for some \(k \in \mathbb{N}\). Let
\[
V = \{i \in \Omega^\mathbb{N} : i \text{ does not begin with } \Gamma\}.
\]
(5)
In this paper we obtain

Theorem 1.1. Let \(\Gamma\) and \(V\) be defined by (4) and (2) respectively. Then
\[
\dim H U = \max\{\dim H \Pi (\Gamma^\mathbb{N}), \dim H \Pi(V \cap \Pi^{-1}(U))\}.
\]

Let \(s\) be determined by
\[
\sum_{i \in \Gamma} r_i^s = 1.
\]
Then we have \(\dim H \Pi (\Gamma^\mathbb{N}) = s\) which will be proved in Lemma 2.1. Hence
Corollary 1.2. We have $\dim_H U \geq s$ and the equality holds if and only if $\dim_H \Pi(V \cap \Pi^{-1}(U)) \leq s$.

The OSC plays an important role in determining the Hausdorff dimension of a self-similar set. Let us recall that K is generated by the IFS $\{f_i\}_{i=1}^m$ in (I). The following fact is obvious:

$$0 < H^s(U) = H^s(K) < \infty \text{ if } \{f_i\}_{i=1}^m \text{ satisfies the OSC,}$$

where s is given by $\sum_{i=1}^m r_i^s = 1$. In fact, we have $U = K \setminus \bigcup_{i \in \Omega^*} f_i(K^*)$ with $K* = \bigcup_{i \neq j} (f_i(K) \cap f_j(K))$ and the OSC implies that $H^s(f_i(K) \cap f_j(K)) = 0$ for any $i \neq j$ (see [14]).

From (6) it follows that $\dim_H U = \dim_H K = \dim_S K$ if the IFS $\{f_i\}_{i=1}^m$ satisfies the open set condition. We shall show that under some extra condition the inverse is also true. An IFS $\{f_i\}_{i=1}^m$ is said to have an exact overlap if there exist distinct $i, j \in \Omega^*$ such that $f_i = f_j$. The notion of “general finite type” appeared in the following Lemma which was posed by Lau and Ngai in [12]. We have

Theorem 1.3. Let K be the self-similar set generated by the IFS $\{f_i\}_{i=1}^m$. Suppose that $\{f_i\}_{i=1}^m$ is of general finite type. Then $\{f_i\}_{i=1}^m$ satisfies the open set condition if and only if $\dim_H U = \dim_S K$.

This paper is organized as follows. In section 2, we give the proofs of Theorems 1.1 and 1.3. The section 3 is devoted to some examples.

2 Proof of Theorems 1.1 and 1.3

Denote by ij the concatenation of $i, j \in \Omega^*$ and i^k stands for the concatenation of i with itself k times. By $|i|$ we denote the length of $i \in \Omega^*$. For $i = i_1 \cdots i_k \in \Omega^*$ we denote by $[i]$ the cylinder set based on i, i.e., $[i] = \{(x_i) \in \Omega^N \mid x_i = i_i \text{ for } 1 \leq i \leq k\}$. For an $i = (i_k)_{k \geq 1} \in \Omega^N$ let $ip = i_1 \cdots i_p$. For $i = i_1 \cdots i_k \in \Omega^*$ denote $f_i = f_{i_1} \circ \cdots \circ f_{i_k}$ and $r_i = \prod_{i=1}^k r_i$.

Lemma 2.1. Let $\Gamma \subseteq \Omega^*$ be given by (7). Then $\Pi(G^N) \subseteq U$ and $\dim_H \Pi(G^N) = s$ where s is determined by $\sum_{i \in \Gamma} r_i^s = 1$.

Proof. Note that by the definition of Γ we have

(I) $[i], i \in \Gamma$ are pairwise disjoint;

(II) $f_i(K) \cap \Pi((\Omega^N \setminus [i]) = \emptyset$ for each $i \in \Gamma$.

First we show that $\Pi(G^N) \subseteq U$. For an $x \in \Pi(G^N)$ let $x = \Pi((x_k)_{k \geq 1})$ with $(x_k)_{k \geq 1} \in G^N$. Suppose that $(y_k)_{k \geq 1} \in G^N$ satisfies that $x = \Pi((y_k)_{k \geq 1})$. We claim that $(y_k)_{k \geq 1} = (x_k)_{k \geq 1}$. On the contrary, let ℓ be the smallest integer such that $y_{\ell} \neq x_{\ell}$. Let $(x_k)_{k \geq 1} = (i_k)_{k \geq 1}$ with $i_k \in \Gamma$. Let γ be smallest integer such that $\ell \leq |i_1 \cdots i_{\gamma}|$. Then

$$\Pi((x_k)_{k \geq \delta}) = \Pi((y_k)_{k \geq \delta})$$

where $\delta = |i_1 \cdots i_{\gamma}| - |i_{\gamma}| + 1$.

3
However, $\Pi((x_k)_{k \geq \delta}) \in f_k(K)$, $i_r \in \Gamma$ and $(y_k)_{k \geq \delta} \notin [i_r]$. This leads to a contradiction to the fact $f_k(K) \cap \Pi(\Omega^N \setminus [i_r]) = \emptyset$.

In what follows we prove that $\dim_H \Pi(\Gamma^N) = s$. If Γ is finite, then $\Pi(\Gamma^N)$ is a self-similar set generated by the IFS $\{f_i : i \in \Gamma\}$. This IFS satisfies the OSC since $K \supseteq \bigcup_{i \in \Gamma} f_i(K)$ with disjoint union. Thus $\dim_H \Pi(\Gamma^N) = s$.

In the following we assume that Γ is infinite. Denote $\Gamma_k = \{i \in \Gamma : |i| \leq k\}$, $k \in \mathbb{N}$. Then Γ_k is finite (we assume k is big enough such that $\Gamma_k \neq \emptyset$). Thus

$$\dim_H \Pi(\Gamma^N_k) = s_k \text{ where } \sum_{i \in \Gamma_k} r_i^{s_k} = 1.$$

Therefore, $\dim_H \Pi(\Gamma^N) \geq \sup_k s_k = \lim_{k \to \infty} s_k = s$ where the last equality can be obtained by the equation $\sum_{i \in \Gamma} r_i^s = 1$ and $\Gamma = \bigcup_{k \geq 1} \Gamma_k$.

Arbitrarily fix a $t > s$. For any $\delta > 0$ one can take a big integer n such that each set in $\{f_i(K) : i \in \Gamma^n\}$ has diameter less that δ. Note that

$$\sum_{i \in \Gamma^n} |f_i(K)|^t = |K|^t \left(\sum_{i \in \Gamma} r_i^t\right)^n \leq |K|^t,$$

which implies that $\dim_H \Pi(\Gamma^N) \leq t$. □

Proof of Theorem 1.4 Note that

$$\Omega^N = V \cup V^c = V \cup \Gamma^N \cup \{ui : u \in \Gamma^*, \ i \in V\}.$$

Thus

$$\Pi^{-1}(U) = \Gamma^N \cup (V \cap \Pi^{-1}(U)) \cup \{uj : u \in \Gamma^*, \ j \in V \cap \Pi^{-1}(U)\},$$

which implies the desired result. □

Now we turn to proving Theorem 1.3. We need following

Lemma 2.2. [18, Theorem 2.1] An IFS $\{f_i\}_{i=1}^m$ satisfies the open set condition if and only if it is of general finite type and has no exact overlaps.

Proof of Theorem 1.3 The necessity follows from (6). We now prove the sufficiency. Note that $\{f_i\}_{i=1}^m$ is of general finite type. Thus by Lemma 2.2 it suffices to show that the IFS $\{f_i\}_{i=1}^m$ has no exact overlaps. Otherwise, there exist distinct $i, j \in \Omega^*$ such that $f_i = f_j$. Let K_1 be the self-similar set generated by the IFS $\{f_k : k \in \Omega^N\}$ and $k \neq i$. Then $\dim_H K_1 \leq \dim_H K < \dim_S K$. On the other hand, for any $x \in U$ its unique coding cannot contain the block i and so $x \in K_1$. Thus, $\dim_H U \leq \dim_H K_1 \leq \dim_H K < \dim_S K$, a contradiction! □

3 Examples

The result in the following example was obtained in [17] by giving a lexicographical characterization of the unique codings. Now we reprove it by applying Theorem 1.1 which provides a quite different way from that in [17].
Example 3.1. (see [17]) Let K be the self-similar set generated by the IFS

\[\{ f_1(x) = \rho x, f_2(x) = \rho x + \rho, f_3(x) = \rho x + 1 \} \text{ where } 0 < \rho < (3 - \sqrt{5})/2.\]

Then \(\dim_H U = \frac{\log \lambda}{\log \rho} \), where \(\lambda \approx 2.3247 \) is the appropriate solution of

\[x^3 - 3x^2 + 2x - 1 = 0.\]

Proof. First one can check that \(f_1 \circ f_3 = f_2 \circ f_1 \). Take \(M = [0, (1 - \rho)^{-1}] \). Then

\[f_1(M) \cap f_2(M) = [0, \rho/(1 - \rho)] \cap [\rho, (2\rho - \rho^2)/(1 - \rho)] = [\rho, \rho/(1 - \rho)]\]

and

\[f_1(M) \cap f_3(M) = f_2(M) \cap f_3(M) = \emptyset.\]

Thus one has that \(S_1 = \{3\} \) and \(S_2 = \{23\} \). For \(k \geq 3 \) the sets \(S_k \) becomes a bit complicated. However, it is not so difficult to find out that \(|S_k| = k - 1 \) by noting that \(f_1 \circ f_3 = f_2 \circ f_1 \), where \(|A| \) denotes the cardinality of set \(A \). Let \(\Gamma = \bigcup_{k \geq 1} S_k \). Thus by Lemma 2.1

\[\dim_H \Pi(\Gamma^\mathbb{N}) = s, \text{ where } s = \frac{\log \lambda}{\log \rho} \text{ and } \lambda \approx 2.3247 \text{ is the appropriate solution of } x^3 - 3x^2 + 2x - 1 = 0.\]

It is an easy exercise to check that \(s = \frac{\log \lambda}{\log \rho} \) where \(\lambda \approx 2.3247 \) is the appropriate solution of \(x^3 - 3x^2 + 2x - 1 = 0.\)

Now we show that \(\dim_H \Pi(V) \leq s \), where \(V = \{i \in \Omega^\mathbb{N} : i \text{ does not begin with } \Gamma\} \) is as that in Theorem 1.1. By the geometric structure of \(K \) one can see that for each positive integer \(k \), the set \(\Pi(V) \) can be covered by \(2^k \) many number of intervals of length \(\rho^k(\rho - 1)^{-1}. \) Thus

\[\mathcal{H}_{\rho^k(\rho - 1)^{-1}}(\Pi(V)) \leq (1 - \rho)^{-s}(2\rho^s)^k \to 0 \text{ as } k \to \infty\]

since \(2\rho^s < 1 \). Thus, \(\dim_H U = \frac{\log \lambda}{\log \rho} \) by Theorem 1.1.

Example 3.2. Take \(0 < \lambda < (3 - \sqrt{5})/2 \). Let \(K \) be the self-similar set generated by the IFS \(\{ f_1, \cdots, f_3 \} \) where

\[f_i(x, y) = (\lambda x, \lambda y) + (a_i, b_i)\]

with \((a_1, b_1) = (0, 0), (a_2, b_2) = (1 - \lambda, 0), (a_3, b_3) = (1 - \lambda, 1 - \lambda), (a_4, b_4) = (0, 1 - \lambda) \) and

\((a_5, b_5) = (\lambda(1 - \lambda), (1 - \lambda)^2). \) Then \(\dim_H U = s \approx \frac{\log 4.61347}{-\log \lambda} \), where \(\lambda^3 - 2\lambda^2 + 5\lambda - 1 = 0.\)
Proof. First one can check that $f_4 \circ f_2 = f_5 \circ f_4$. Among the squares $f_i([0,1]^2), 1 \leq i \leq 5$, only $f_4([0,1]^2) \cap f_5([0,1]^2) \neq \emptyset$ (see Figure 2). Thus $S_1 = \{1,2,3\}$ and $S_2 = \{41,43,51,52,53\}$. As in above example, for $k \geq 3$ the sets S_k becomes a bit complicated. However, it is not so difficult to find out that $|S_k| = 3^k - 1$ by noting that $f_4 \circ f_2 = f_5 \circ f_4$. Let $\Gamma = \bigcup_{k \geq 1} S_k$. Thus by Lemma 2.1 we have $\dim H(\Gamma \cap [\Omega^N]) = s \approx \log 4.61347 - \log \lambda$ where

$$3\lambda^s + 5\lambda^{2s} + \sum_{k=3}^{\infty} (3k - 1)\lambda^{ks} = 1,$$

which is equivalent to $\lambda^{3s} - 2\lambda^{2s} + 5\lambda^s - 1 = 0$.

Now we show that $\dim H(V \cap \Pi^{-1}(U))) \leq s$, where

$$V = \{i \in \Omega^N : i \text{ does not begin with } \Gamma\}$$

is as that in Theorem 1.1. By the geometric structure of K one can see that for each positive integer k, the set $\Pi(V \cap \Pi^{-1}(U)))$ can be covered by 2^k many number of squares with diameter $\sqrt{2}\lambda^k$. Thus

$$H^{s}_{\sqrt{2}\lambda^k}(K_\alpha) \leq 2^k \sqrt{2} \lambda^{sk} \to 0 \text{ as } k \to \infty$$

since $2\lambda^s < 1$. Thus, $\dim H U = s$ by Theorem 1.1. \hfill \square

In the above we change the map f_5 by letting

$$(a_5,b_5) = (\lambda - \lambda^{u+1}, 1 - 2\lambda + \lambda^{u+1}) \text{ with } u \in \mathbb{N},$$

where we require that $\lambda^{u+1} - 3\lambda + 1 > 0$. Then $\dim_H U$ can be also obtained by the same way as in Example 3.2 and so $\dim H U_k, k \geq 2$ can be obtained as well. In fact, we have

Example 3.3. Suppose that $\lambda \in (0,1), u \in \mathbb{N}$ satisfy $\lambda^{u+1} - 3\lambda + 1 > 0$. Let K be the self-similar set generated by the IFS $\{f_1, \cdots, f_5\}$ where

$$f_i(x, y) = (\lambda x, \lambda y) + (a_i, b_i)$$

with $(a_1,b_1) = (0,0), (a_2,b_2) = (1 - \lambda, 0), (a_3,b_3) = (1 - \lambda, 1 - \lambda), (a_4,b_4) = (0,1 - \lambda)$ and $(a_5,b_5) = (\lambda - \lambda^{u+1}, 1 - 2\lambda + \lambda^{u+1})$. Then

$$\dim H U_{k+1} = \dim H U \text{ for any } k \in \mathbb{N}.$$
Proof. By (2) we only need to show that \(\dim H U_{k+1} \geq \dim H U \). This will be done by showing
\[
f_{42^{u+1}}(U) \subseteq U_{k+1} \text{ for each } k \geq 1.
\]
Now arbitrarily fix a point \(c \in U \) with the unique coding \((c_i) \). We prove that \(f_{42^{u+1}}(c) \in U_{k+1}, k \geq 1 \) by induction.

Let \(k = 1 \). Note that \(x_1 = f_{42^{u+1}}(c) = f_{54^{u+1}}(c) \in f_{42^u}([0, 1]^2) = f_{54^u}([0, 1]^2) \) and
\[
f_i([0, 1]^2) \cap f_{42^u}([0, 1]^2) = \emptyset \text{ for all } i \in \{ 1, 2, 3, 4, 5 \} \cup \{ 42^u, 54^u, 54^{u-15} \}.
\]
Hence any coding \((d_i) \) of \(x_1 \) has to begin with \(42^u, 54^u \) or \(54^{u-15} \). We claim that \((d_i) \) cannot begin with \(54^{u-15} \). Otherwise, we have \(f_{41}(c) = f_{51}(c) \in f_{41}([0, 1]^2) \cap f_{51}([0, 1]^2) = \emptyset \). On the other hand, we have \(\pi(\sigma^{u+1}(d_i)) = \pi(1(c_i)) = f_1(c) \in U \) where \(\sigma \) is the left shift on \(\Omega^\mathbb{N} \). Thus, \((d_i) \) has to be \(42^u 1(c_i) \) or \(54^u 1(c_i) \), i.e., \(x_1 \in U_2 \).

Suppose that \(x_k = f_{42^{u+1}}(c) = \pi(2^{4k+1}(c_i)) \in U_{k+1} \). Let \((d_i) \) be a coding of \(x_{k+1} := f_{42^{u+k+1}}(c) \). As before we know that \((d_i) \) has to begin with \(42^u, 54^u \) or \(54^{u-15} \), and so \((d_i) \) has to begin with \(42^{u-1} \) or \(54^{u-15} \). Note that
\[
x_{k+1} = f_{42^u}(\pi(2^{4k+1}(c_i))) = f_{54^u}(\pi(2^{4k+1}(c_i))) = f_{54^{u-1}}(\pi(2^{4k+1}(c_i))) = f_{54^{u-1}}(x_k).
\]
For the case that \((d_i) \) begins with \(42^{u-1} \) we have that \((d_i) = 42^{u+1}(c_i) \) since \(\pi(\sigma^u(d_i)) = \pi(2^{u+1}(c_i)) \in U \). For the case that \((d_i) \) begins with \(54^{u-1} \) we have that \((d_i) \) has exactly \(k+1 \) many choices since
\[
\pi((d_i)_{i \geq u}) = \pi(\sigma^u(d_i)) = \pi(2^{4k}(c_i)) = x_k \in U_{k+1}.
\]
Hence we complete the proof. \(\square \)

In the last example we try to describe \(\Gamma \) by a way which was developed in \[13, 12\].

Example 3.4. Let \(K \) be the self-similar set generated by the IFS
\[
\begin{align*}
\left\{ f_1(x) &= \frac{x}{4}, \\ f_2(x) &= \frac{x}{4} + \frac{9}{17}, \\ f_3(x) &= \frac{x + 3}{4} \right. \end{align*}
\]
Then \(\dim H U = s \), where \(s \) is the unique solution of the following equation:
\[
\frac{1}{4^s} + \frac{1}{4^{2s}} + \sum_{n=2}^{\infty} (a_n + c_n) \frac{1}{4^{(n+1)s}} = 1,
\]
where \(a_n, c_n \) for \(n \geq 2 \) are determined by
\[
\begin{pmatrix}
a_n \\
b_n \\
c_n \\
d_n \\
e_n
\end{pmatrix}
= \begin{pmatrix}
0 & 1 & 0 & 0 & 1 \\
0 & 1 & 0 & 1 & 1 \\
1 & 0 & 1 & 0 & 0 \\
1 & 0 & 1 & 0 & 0 \\
0 & 1 & 0 & 1 & 0
\end{pmatrix}^{n-2}
\begin{pmatrix}
1 \\
1 \\
1 \\
1 \\
1
\end{pmatrix}
\]
(7)

Proof. We take \(M = [0, 1] \) (one can check that \(f_i(M) \subseteq M \) for \(i \in \Omega := \{ 1, 2, 3 \} \)) and label it by \(T_1 \). Its offspring are
\[
f_1(M) = [0, 1/4], \ f_2(M) = [9/17, 53/68] \text{ and } f_3(M) = [3/4, 1].
\]
Figure 3: The location of $f_i(M), i = 1, 2, 3$.

Then (see Figure 3)

$S_1 = \{1\}$ and $T_1 = \{2, 3\}$.

Note that the offspring of $f_1(M)$ have the same geometric location as the offspring of M. So $f_1(M)$ is labeled by T_1 as well. We label $f_2(M)$ and $f_3(M)$ by T_2 and T_3, respectively. Thus one can simply denote M and its offspring as follows:

$$(M, T_1) \rightarrow (f_1(M), T_1) + (f_2(M), T_2) + (f_3(M), T_3).$$

Now let us calculate $f_i(M)$:

$$(M, T_1) \rightarrow (f_1(M), T_1) + (f_2(M), T_2) + (f_3(M), T_3).$$

Thus we have (see Figure 4)

$S_2 = \{21\}$ and $T_2 = (T_1 \times \Omega) \setminus S_2 = \{22, 23, 31, 32, 33\}$.

By the same argument as above the offspring $f_2(M)$ of $f_2(M)$ has label T_1, while the other two offspring $f_{22}(M), f_{23}(M)$ of $f_2(M)$ will obtain new labels T_4, T_5, respectively. This can be simply denoted by

$$(f_2(M), T_2) \rightarrow (f_2(M), T_1) + (f_{22}(M), T_4) + (f_{23}(M), T_5).$$

Similarly, for the $f_3(M)$ and its offspring we have

$$(f_3(M), T_3) \rightarrow (f_3(M), T_6) + (f_{32}(M), T_2) + (f_{33}(M), T_3).$$

Figure 4: The location of $f_i(M), i \in T_1 \times \Omega$.

$f_{21}(M)$	$f_{22}(M)$	$f_{31}(M)$	$f_{32}(M)$
$\frac{9}{17}$, $\frac{9}{17}$ + $\frac{1}{16}$	$\frac{45}{68}$, $\frac{45}{68}$ + $\frac{1}{16}$	$\frac{195}{272}$, $\frac{195}{272}$ + $\frac{1}{16}$	$\frac{15}{16}$, $\frac{15}{16}$
Thus we have (see Figure 5)

\[f_{221}(M) = \begin{bmatrix} 45 & 45 & 1 \ \\ 68 & 68 & 64 \end{bmatrix}, \quad f_{222}(M) = \begin{bmatrix} 189 & 189 & 1 \ \\ 272 & 272 & 64 \end{bmatrix}, \quad f_{223}(M) = \begin{bmatrix} 771 & 771 & 1 \ \\ 1088 & 1088 & 64 \end{bmatrix}, \quad f_{311}(M) = \begin{bmatrix} 1 \ 1 \ 1 \ 1 \ 1 \ 1 \ 1 \ 1 \ \end{bmatrix}, \quad f_{312}(M) = \begin{bmatrix} 5 \ 5 \ 5 \ 5 \ 5 \ 5 \ 5 \ 5 \ \end{bmatrix}, \quad f_{313}(M) = \begin{bmatrix} 64 \ 64 \ 64 \ 64 \ 64 \ 64 \ 64 \ 64 \ \end{bmatrix}. \]

Thus we have (see Figure 5)

\[
(f_{22}(M), T_4) \rightarrow (f_{221}(M), T_1) + (f_{222}(M), T_4) + (f_{223}(M), T_5) \\
(f_{23}(M), T_5) \rightarrow (f_{231}(M), T_6) + (f_{232}(M), T_2) + (f_{233}(M), T_3) \\
(f_{31}(M), T_6) \rightarrow (f_{311}(M), T_2) + (f_{312}(M), T_2) + (f_{313}(M), T_3)
\]

(10)

It is important to notice that no more labels occur in the above expression. Note that

\[
\begin{array}{cccc}
f_{221}(M) & f_{222}(M) & f_{223}(M) & f_{311}(M) \\
45 & 189 & 771 & 1 \\
68 & 272 & 1088 & 1 \\
\end{array}
\]

Figure 5: The location of \(f_1(M) \), \(i \in (T_2 \setminus \{32, 33\}) \times \Omega \)

we have \(f_{232} = f_{311} \). Thus \(f_{232}(M) \) and \(f_{311}(M) \) contribute nothing to \(\Gamma \). Therefore, we replace (10) by

\[
(f_{22}(M), T_4) \rightarrow (f_{221}(M), T_1) + (f_{222}(M), T_4) + (f_{223}(M), T_5) \\
(f_{23}(M), T_5) \rightarrow (f_{231}(M), T_6) + (f_{232}(M), T_2) + (f_{233}(M), T_3) \\
(f_{31}(M), T_6) \rightarrow (f_{311}(M), T_2) + (f_{312}(M), T_2) + (f_{313}(M), T_3)
\]

(11)

It follows from (8), (9) and (11) that only \(T_2 \) and \(T_4 \) have contribution to \(\Gamma \). Together with (3) one knows that the cardinality of \(S_{n+1} \) \((n \geq 2) \) equals to the number of \(T_2 \) and \(T_4 \) occurring in the \(n \)-th generation offspring. By \(a_n, b_n, c_n, d_n, \) and \(e_n \) we denote the number of \(T_2, T_3, T_4, T_5 \) and \(T_6 \) occurring in the \(n \)-th generation offspring. By (8), (9) and (11) we have

\[
\begin{pmatrix}
a_{n+1} \\
b_{n+1} \\
c_{n+1} \\
d_{n+1} \\
e_{n+1}
\end{pmatrix}
= \begin{pmatrix}
0 & 1 & 0 & 0 & 1 \\
0 & 1 & 0 & 1 & 1 \\
1 & 0 & 1 & 0 & 0 \\
1 & 0 & 1 & 0 & 0 \\
0 & 1 & 0 & 1 & 0
\end{pmatrix}
\begin{pmatrix}
a_n \\
b_n \\
c_n \\
d_n \\
e_n
\end{pmatrix}
:= A
\begin{pmatrix}
a_n \\
b_n \\
c_n \\
d_n \\
e_n
\end{pmatrix}, \quad n \geq 2.
\]

By (8) and (9) we have

\[
a_2 = b_2 = c_2 = d_2 = e_2 = 1,
\]

and so (7) is obtained. Therefore, we have \(\dim_H \Pi (\Gamma^N) = s \), where \(s \) is the unique solution of the following equation:

\[
1 = \frac{1}{4^s} + \frac{1}{4^{2s}} + \sum_{n=2}^{\infty} |S_{n+1}| \frac{1}{4^{(n+1)s}} = \frac{1}{4^s} + \frac{1}{4^{2s}} + \sum_{n=2}^{\infty} (a_n + c_n) \frac{1}{4^{(n+1)s}}.
\]
In what follows we will show that $\dim_H \Pi(V \cap \Pi^{-1}(U)) \leq s$. One can check that the spectral radius of A is about $\lambda \approx 2.2775$. We claim that $\lambda < 4^s$. In fact, we have $4^s > 4^t \approx 2.4693$ where t is determined by

$$\frac{1}{4^t} + \frac{1}{4^{2t}} + \sum_{n=2}^{5} (a_n + c_n) \frac{1}{4^{(n+1)t}} = \frac{1}{4^t} + \frac{1}{4^{2t}} + \frac{2}{4^{3t}} + \frac{4}{4^{4t}} + \frac{9}{4^{5t}} + \frac{21}{4^{6t}} = 1.$$

Note that

$$\lim_{n \to \infty} \mathcal{H}_{4-n-2}^t(\Pi(V \cap \Pi^{-1}(U))) \leq \lim_{n \to \infty} (a_{n+1} + b_{n+1} + c_{n+1} + d_{n+1} + e_{n+1})4^{(-n-2)s} < \infty,$$

where the last inequality holds since all the $a_{n+1}, b_{n+1}, c_{n+1}, d_{n+1}, e_{n+1}$ are bounded by $c\lambda^n$ for some $c > 0$, and the fact $\lambda < 4^s$.

\begin{acknowledgment}
The first author is granted by the China Scholarship Council grant No. 201606140059. The third author was supported by NSFC No. 11671147, 11571144 and Science and Technology Commission of Shanghai Municipality (STCSM) grant No. 13dz2260400.
\end{acknowledgment}

\begin{thebibliography}{9}
[1] Simon Baker. Generalized golden ratios over integer alphabets. \textit{Integers}, 14:Paper No. A15, 28, 2014.
[2] Simon Baker, Karma Dajani, and Kan Jiang. On univoque points for self-similar sets. \textit{Fund. Math.}, 228(3):265–282, 2015.
[3] Karma Dajani, Kan Jiang, Derong Kong, and Wenxia Li. Multiple expansions of real numbers with digits set \{0, 1, q\}. \textit{arXiv:1508.06138}, 2015.
[4] Karma Dajani, Kan Jiang, Derong Kong, and Wenxia Li. Multiple codings for self-similar sets with overlaps. \textit{arXiv:1603.09304}, 2016.
[5] Martijn de Vries and Vilmos Komornik. Unique expansions of real numbers. \textit{Adv. Math.}, 221(2):390–427, 2009.
[6] Paul Glendinning and Nikita Sidorov. Unique representations of real numbers in non-integer bases. \textit{Math. Res. Lett.}, 8(4):535–543, 2001.
[7] John E. Hutchinson. Fractals and self-similarity. \textit{Indiana Univ. Math. J.}, 30(5):713–747, 1981.
[8] K. Jiang and K. Dajani. Subshifts of finite type and self-similar sets. \textit{Nonlinearity}, 30(2):659–686, 2017.
[9] Vilmos Komornik. Expansions in noninteger bases. \textit{Integers}, 11B:Paper No. A9, 30, 2011.
\end{thebibliography}
[10] Vilmos Komornik, Derong Kong, and Wenxia Li. Hausdorff dimension of univoque sets and devil’s staircase. *Adv. in Math.*, 305(2017), 165–196, 2016.

[11] Derong Kong and Wenxia Li. Hausdorff dimension of unique beta expansions. *Nonlinearity*, 28(1):187–209, 2015.

[12] Ka-Sing Lau and Sze-Man Ngai. A generalized finite type condition for iterated function systems. *Adv. in Math.*, 208(2):647–671, 2007.

[13] Ngai S M, Wang Y. Hausdorff dimension of overlapping self-similar sets. *J London Math Soc.*, 63(2): 655-672, 2001.

[14] Andreas Schief. Separation properties for self-similar sets. *Proc. Amer. Math. Soc.*, 122(1):111–115, 1994.

[15] Nikita Sidorov. Almost every number has a continuum of β-expansions. *Amer. Math. Monthly*, 110(9):838–842, 2003.

[16] Nikita Sidorov. Expansions in non-integer bases: lower, middle and top orders. *J. Number Theory*, 129(4):741–754, 2009.

[17] Yuru Zou, Jian Lu, and Wenxia Li. Unique expansion of points of a class of self-similar sets with overlaps. *Mathematika*, 58(2):371–388, 2012.

[18] Yuru Zou, Yuanyuan Yao, and Wenxia Li. A class of Sierpinski carpets with overlaps. *J. Math. Anal. Appl.*, 340(2):1422–1432, 2008.

Department of Mathematics, Shanghai Key Laboratory of PMMP, East China Normal University, Shanghai 200241, People’s Republic of China

E-mail address: chenxiu1216@163.com.

Department of Mathematics, Ningbo University, Ningbo, Zhejiang, People’s Republic of China

E-mail address: kanjiangbunnik@yahoo.com

Department of Mathematics, Shanghai Key Laboratory of PMMP, East China Normal University, Shanghai 200241, People’s Republic of China

E-mail address: wxli@math.ecnu.edu.cn.