Objetivo: Caracterizar o controle metabólico e verificar se existe relação entre ele, variáveis socioeconômicas, demográficas e composição corporal de crianças e adolescentes com fenilcetonúria (FNC) diagnosticada no período neonatal.

Métodos: Coorte com coleta retrospectiva de dados de 53 crianças e adolescentes fenilcetonúricos. Foram coletados dados de renda familiar, moradia, idade e escolaridade materna e realizaram-se medidas antropométricas de composição e distribuição corporal. Todas as dosagens de fenilalanina (Fal) dos últimos cinco anos (2015–2019) foram avaliadas e classificadas quanto à adequação (cortes: 0–12 anos: 2–6 mg/dL; 12–19 anos: 2–10 mg/dL). A proporção de dosagens adequadas ≥70% foi considerada como controle metabólico adequado.

Resultados: A média (±desvio padrão) de idade, no último ano, foi de 10,1 ± 4,6 anos. A maioria tinha menos de 12 anos (33/53; 62,3%) e apresentava a forma clássica da doença (39/53; 73,6%). Observou-se melhor controle metabólico entre os adolescentes (68,4% versus 51,4%; p=0,019). Excesso de peso foi encontrado em 9/53 (17%) e maiores níveis séricos de Fal foram descritos nesse grupo (p<0,001). O percentual de controle metabólico com 70% ou mais de adequação dos níveis de Fal foi decrescente de acordo com a área muscular do braço (AMB; p_tendência =0,042), sendo de 70% entre os de baixa reserva (AMB reduzida) e de 18,5% entre os com excesso (AMB elevada).

Conclusões: Observou-se controle metabólico adequado na maioria dos avaliados e os achados sugerem que, nesta amostra, os níveis de fenilalanina podem estar relacionados com alterações da composição corporal.

Palavras-chave: Erros inatos do metabolismo; Fenilcetonúrias; Estado nutricional; Composição corporal.

RESUMO

Controle metabólico e composição corporal de crianças e adolescentes com diagnóstico neonatal de fenilcetonúria

Zeni Drubi Nogueiraa,* Ney Boa-Sorteb, Maria Efigênia de Queiroz Leitea, Maria Betânia Pereira Torallesa, Tatiana Amorimc

ARTIGO ORIGINAL
INTRODUÇÃO

A fenilcetonúria (FNC) é uma doença metabólica resultante do acúmulo de fenilalanina (Fal) sanguínea, que atravessa a barreira hematoencefálica implicando neurotoxidade e caracterizando-se por deficiência intelectual (DI) quando não diagnosticada e tratada precocemente.1 O tratamento consiste em dieta restrita em Fal por toda a vida, sendo eficaz para evitar sequelas neuropsicomotoras, principalmente quando iniciado nos primeiros meses de vida.2

A equipe multidisciplinar e a família do paciente têm o desafio de propiciar meios para a adesão à dieta, que é extremamente restritiva e com pouca variedade de preparações.5 Estudos demonstram que a adesão à dieta diminui com a idade, sendo seu seguimento mais difícil para adolescentes, adultos e gestantes.6

Além dos danos neuropsicomotoros, pacientes fenilcetonúricos sem controle metabólico apresentam maior risco de excesso de peso,4,6 sendo as meninas mais propensas.7 Estudo prévio realizado em oito centros europeus sugeriu monitoramento e intervenção precoces para evitar e controlar excesso de peso.8

Ao avaliar 30 crianças e adolescentes fenilcetonúricos entre 5–18 anos, um estudo associou aumento da gordura corporal e redução de massa muscular com dieta rica em carboidratos e baixa ingestão de gordura e proteína. Adicionalmente, o controle metabólico inadequado teve correlação positiva com a gordura corporal.9 Similarmente, entre indivíduos holandeses fenilcetonúricos comparados a controles saudáveis, o percentual de gordura corporal foi significativamente maior, principalmente em meninas com 11 anos de idade ou mais, embora sem diferenças no índice de massa corpórea para idade (IMC/I).9

Contudo, os autores consideraram inconclusivo o efeito dos níveis de Fal no desfecho estudado.9 No Brasil, uma pesquisa não encontrou diferenças na frequência de excesso de peso, percentual de gordura e de massa magra corporal ao comparar 27 indivíduos de 6–25 anos com FNC e controles saudáveis pareados por idade e sexo. Também não foi observado efeito do controle metabólico dos níveis de Fal séria na composição corporal.10 Esses resultados também foram encontrados em adolescentes brasileiros fenilcetonúricos da região Sudeste, nos quais não foi encontrada associação entre controle metabólico adequado e percentual de gordura corporal.11 Entretanto, Almeida et al. relataram correlação positiva dos níveis de Fal com peso corporal e idade em adolescentes fenilcetonúricos brasileiros.12

Diante disso e da ausência de dados que caracterizem nutricionalmente crianças e adolescentes com FNC no Nordeste do Brasil, este estudo teve os objetivos de caracterizar o controle metabólico e verificar se existe relação entre ele, condições socioeconômicas e demográficas e composição corporal de crianças e adolescentes com FNC diagnosticada no período neonatal.

MÉTODO

Estudo de coorte com coleta retrospectiva de dados, realizado entre março e outubro de 2019. Foram elegíveis 70 crianças e adolescentes atendidos no Serviço de Referência em Triagem Neonatal (SRTN) da Bahia, a Apae Salvador, entre 2–19 anos, com diagnóstico neonatal de FNC leve ou clássica. Após aceite em participar da pesquisa, 57 indivíduos foram incluídos. Destes, três foram excluídos por não permitirem a aferição das medidas antropométricas e um por apresentar cardiopatia congênita. Os elegíveis não incluídos foram: um por recusa e 12 por terem faltado às consultas agendadas no período de estudo.

Foram utilizadas todas as dosagens de Fal registradas nos prontuários referentes ao período de janeiro de 2015 a outubro de 2019. Os pacientes acompanhados no SRTN realizam dosagens de Fal sérica em todas as consultas e são solicitadas coletas nos intervalos entre as visitas ao SRTN, as quais são realizadas na unidade de saúde mais próxima à residência da família e enviadas ao laboratório da Apae Salvador. Os dados antropométricos foram obtidos na última consulta no serviço, coletados por um único pesquisador (ZDN) e utilizados para cálculo dos indicadores estudados. Foram mensurados peso, estatura/altura, circunferência do braço (CB), pregas cutâneas tricipital (PCT) e subescapular (PCSE), circunferência da cintura (CC) e abdominal (CA). Adicionalmente, foram coletados dados socioeconômicos e demográficos (escolaridade e idade materna no dia da consulta, renda familiar, local de moradia).

Os indicadores de avaliação antropométrica foram calculados em escore Z pelo programa AnthroPlus13. Avaliaram-se para todos os indivíduos altura para idade (A/I) e IMC/I, conforme valores de referência preconizados.14 As medidas de composição corporal CB, PCT e PCSE,13 soma de PCT/PCSE,16 área muscular do braço (AMB)15 e adiposidade central, CA e CC17,18 foram classificadas conforme os pontos de corte previamente descritos. Os indicadores antropométricos de IMC/I, CB, PCT, PCSE e PCT+PCSE foram reagrupados em três categorias: baixa reserva/magreza, adequado/eutrofia e excesso, e CC e CA foram classificadas como adequada ou aumentada.

A dosagem quantitativa de Fal foi realizada pelo método enzimático colorimétrico, utilizando o kit NeoLISA®PKU Intercientifica. Todas as amostras de sangue coletadas foram analisadas pelo laboratório do SRTN. A classificação do controle metabólico considerou adequados valores dos níveis de Fal sérica entre 2–6 mg/dL para menores de 12 anos e entre 2–10 mg/dL para aqueles ≥12 anos.
Propôs-se um percentual de adequação do controle metabólico para sua classificação como adequado ou inadequado, no período avaliado (cinco anos). Um alvo mínimo de 70% das dosagens de Fal na faixa de adequação para idade foi estabelecido como adequado. Esse critério é adotado nas Diretrizes 2019–2020 da Sociedade Brasileira de Diabetes, doença crônica que também requer manejo rigoroso dos níveis de glicose sérica. Para fins comparativos, foi realizada a mesma avaliação, tendo como alvos o número de dosagens iguais ou superiores a 50% (controle metabólico ≥50%) e 90% (controle metabólico ≥90%) das dosagens de Fal na faixa de adequação.

Os dados foram analisados no Stata®, versão 13.0. Utilizou-se estatística descritiva para caracterizar as variáveis estudadas. A variação das médias das dosagens de Fal nos cinco anos de análise foi representada por boxplots seriados, estratificados por ano e faixa etária. Os níveis médios (desvio padrão) das dosagens de Fal sérica foram comparados segundo as variáveis sociodemográficas e antropométricas por meio do teste t de Student não pareado ou a análise de variância (ANOVA), respectivamente, para dois ou três grupos. Análises post hoc para avaliar diferenças intragrupos foram feitas com o teste de Bonferroni.

A adequação do controle metabólico (adequado/inadequado) foi comparada entre os grupos com o uso do teste do qui-quadrado ou o teste exato de Fisher. Qui-quadrado de tendência linear foi utilizado para avaliar tendências em caso de variáveis com três categorias. Valores de p<0,05 foram considerados significativos.

Este estudo foi aprovado pelo Comitê de Ética em Pesquisa do Instituto de Ciências da Saúde, Universidade Federal da Bahia, parecer nº 3.181.463/2019.

RESULTADOS

Foram estudados 53 indivíduos entre 2–19 anos, com média (desvio padrão) de 10,1 (4,6) anos, sendo 33 (62,3%) menores de 12 anos. A maioria era de meninas (34/53; 64,1%) e 39 (73,6%) tinham FNC clássica. Obtiveram-se 2.242 dosagens de Fal sérica, com média (desvio padrão) de 8,4 (2,1) exames/paciente/ano, sem diferença entre os grupos por faixa etária (<12 anos: 8,3 [2,0] vs. ≥12 anos: 8,7 [2,2]; p=0,525). Observou-se que a mediana (p25–p75) dos níveis de Fal sérica pouco oscilou no período estudado entre os grupos etários (Gráfico 1), porém foi maior

Gráfico 1 Boxplots seriados dos níveis séricos das 2.242 dosagens de fenilalanina sérica (em mg/dL) nos últimos cinco anos de 53 crianças e adolescentes com fenilcetonúria. SRTN/Apae Salvador, 2019.
entre os adolescentes de 12–19 anos (p<0.001). O percentual global de adequação (mínimo–máximo) observado correspondeu a 57,8% (2,5–100), sendo maior na faixa etária de 12-19 anos (68,4 vs. 51,4%; p=0,019) e com melhor controle metabólico nesse grupo (p=0,003; Tabela 1).

Observou-se que o grupo com menor renda familiar teve maior média [desvio padrão] de Fal sérica (6,72[3,66] mg/dL vs. 5,63[3,68]mg/dL; p<0,001), mas sem diferença na adequação do controle metabólico (26,1 vs. 45,8%; p=0,159, Tabela 2).

Baixa estatura foi observada em 1/53 (1,9%) participante (menino de 10 anos). Magreza, segundo o indicador IMC/I, foi observada em 2/53 (3,8%), sendo duas meninas, de dois e 12 anos. Excesso de peso foi encontrado em 9/53 (17%), sendo seis meninas (quatro adolescentes) e três meninos (um adolescente).

Quanto à composição corporal, independentemente da medida antropométrica utilizada, no grupo de crianças e adolescentes classificado como adequado predominaram indivíduos de até 12 anos, mas sem significância estatística (Tabela 3). Para os níveis médios de Fal sérica, observou-se tendência consistente e significativa de aumento desses níveis entre as categorias baixa reserva, adequado e excesso/acima da média (Tabela 3). O percentual de controle metabólico com 70% ou mais de adequação dos níveis de Fal foi decrescente de acordo com o indicador AMB (qui-quadrado de tendência linear; p=0,042), sendo de 70% entre os de baixa reserva e de 18,5% entre os com excesso (Tabela 3). Para os índices de adiposidade, 1/52 (1,9%) indivíduo foi classificado como tendo CC elevada e 5/48 (10,4%) CA aumentada. Esses participantes apresentaram maiores níveis médios [desvio padrão] séricos de Fal (7,77 [4,17] vs. 5,72 [3,18]mg/dL; p<0,001).

DISCUSSÃO

Em nosso conhecimento este é o primeiro estudo brasileiro a descrever o controle metabólico de crianças e adolescentes com FNC no Nordeste do país. Observamos que quase 60% das dosagens de Fal sérica estavam nos limites de adequação preconizados,19 percentual significativamente maior entre adolescentes, atingindo mais de 68% das dosagens realizadas. Diferentemente de outros trabalhos em nosso meio, que consideram as dosagens de Fal sérica dos últimos 12 meses para avaliar o controle metabólico,11,12 neste foram consideradas as dosagens dos últimos cinco anos. O total de 2.242 dosagens (média de 8,4 dosagens paciente/ano) foi utilizado para as análises de adequação.

Adicionalmente, propusemos uma nova forma de definir adequação, considerando como “meta-alvo” de bom controle metabólico a presença de pelo menos 70% das dosagens no limite de adequação preconizado para idade. Esse critério é adotado nas Diretrizes da Sociedade Brasileira de Diabetes, para considerar bom controle glicêmico em indivíduos diabéticos.20
Tabela 2 Descrição das dosagens de fenilalanina sérica (em mg/dL) e do controle metabólico adequado ≥70% em 53 crianças e adolescentes com fenilcetonúria, estratificados por sexo, classificação da doença e variáveis demográficas e socioeconômicas. SRTN Apae Salvador, 2019.

	Todas as dosagens de FAL (mg/dL)	Controle metabólico adequado ≥70%								
	n (%)	Média (DP)	Média (DP)	Total n (%)	n (%)	p-valor	Faixa etária (anos)	n (%)	p-valor	
		Média (DP)	Média (DP)	n (%)			0–12	12–19		
Geral	2.242 (100,0)	6,0 (3,5)	5,6 (3,3)	53	8	0,004	<0,001	7,2 (4,0)	13 (61,9)	0,004
Sexo										
Feminino	1.387	6,1 (3,5)	5,6 (3,2)	34	5	0,035	0,757	7,5 (3,7)	9 (64,3)	<0,001
Masculino	855	7,8 (3,6)	6,5 (5,7)	19	3	0,129		5,6 (3,4)	4 (57,1)	0,129
Tipo de FNC										
Clássica	1.659	6,7 (3,7)	7,5 (4,0)	39	6	0,002	0,118	13 (33,3)	11 (84,6)	<0,001
Leve	583	4,0 (2,0)	3,8 (1,1)	14	6	0,473		8 (57,1)	2 (25,0)	<0,001
Renda familiar (SM)										
Menos de 1 SM	892	6,7 (4,0)	6,0 (3,4)	23	1	0,069	0,159	7 (26,1)	5 (83,3)	0,002
1 SM ou mais	1.088	5,6 (3,1)	5,5 (3,2)	24	5	0,023		11 (45,8)	6 (54,6)	<0,001
Idade materna (em 2019)										
Até 39 anos	1.099	5,5 (3,2)	5,6 (3,3)	27	1	0,103	0,340	9 (33,3)	2 (22,2)	<0,001
40 anos ou mais	1.143	6,4 (3,7)	5,5 (3,3)	26	1	0,036		12 (46,1)	1 (8,3)	<0,001
Escolaridade materna										
≤5 anos	518	5,8 (3,1)	5,8 (3,4)	12	6	0,061	0,176	10 (28,6)	4 (40,0)	0,221
>5 anos	1.470	6,2 (3,7)	5,7 (3,3)	35	3	0,179		10 (41,7)	7 (70,0)	0,017
Local de moradia										
Zona rural	991	6,3 (3,6)	5,8 (3,3)	23	3	0,175	0,627	10 (41,7)	7 (70,0)	0,017
Zona urbana	1.000	5,8 (3,4)	5,3 (3,1)	24	3	0,020		10 (41,7)	7 (70,0)	0,017

SRTN: Serviço de Referência em Triagem Neonatal; Apae: Associação de Pais e Amigos dos Excepcionais; DP: desvio padrão; FNC: fenilcetonúria; SM: salário mínimo; *p-valores relativos à comparação entre as faixas etárias; **testes exatos de Fisher.

Com base nele, adolescentes de 12–19 anos apresentaram melhor controle metabólico quando comparados aos de 0–12 anos (65 vs. 24,2%). Em outros países, são descritos achados de pior controle metabólico na adolescência, divergindo do nosso estudo.4

No Brasil, em 94 adolescentes entre 10 e 20 anos com FNC neonatal no Sudeste do país, 53,2% das dosagens de FAL estavam adequadas, assim consideradas quando a média das dosagens estava no intervalo entre 2–10 mg/dL nos últimos 12 meses.11 Esse achado está próximo aos do presente estudo em termos
Controle metabólico e composição corporal em fenilcetonúria

de magnitude do controle metabólico, contudo dois aspectos devem ser ressaltados. Primeiramente, Camatta et al.11 consideram o mesmo ponto de corte de níveis de Fal para os adolescentes de 10–12 anos e maiores de 12 anos, fato que pode ter aumentado a frequência de adequação, pois o protocolo brasileiro preconiza corte menor para pacientes de 0–12 anos (2–6 mg/dL).19 Em segundo lugar, se usarmos o mesmo critério (média dos últimos 12 meses e limites de 2–10 mg/dL para idades de 10 anos em diante), obteríamos controle metabólico adequado em 90% dos indivíduos entre 10 e 19 anos (dados não mostrados). Isso pode ser explicado pelo grande número de dosagens de Fal entre 6–8 mg/dL obtido entre 10–12 anos, que seriam considerados adequados para os limiares preconizados entre 12–19 anos.

Na região Sul, entre 27 pacientes com FNC leve e clássica de 6–25 anos e diagnóstico tardio em sua maioria (16/27; 59%), foi descrito 48% de controle metabólico adequado, empregando como critério a média de pelo menos três em até 12 dosagens de Fal dos últimos 12 meses de até 6 e 10 mg/dL, respectivamente, para indivíduos de até 12 anos e acima dessa idade.10 Também nessa região, foram estudados 84 crianças e adolescentes fenilcetonúricos com idade de 2,4–19,9 anos,12 utilizando como critério de adequação a média das três últimas dosagens de Fal nos limites preconizados pelo Ministério da

Tabela 3 Indicadores antropométricos e de composição corporal em 53 crianças e adolescentes com fenilcetonúria, estratificados por faixa etária, dosagens de fenilalanina sérica e controle metabólico, variáveis demográficas e socioeconômicas. SRTN APAE Salvador, 2019.

	n (%)	Faixa etária (anos)	P-valor	Fenilalanina sérica (mg/dL)	Controle Metabólico ≥70%				
		0–12	12–19	Média (DP)	p-valor	n (%)	p-valor	n (%)	p-valor
IMC/I (n=53)									
Magreza	02 (3,8)	1 (50,0)	1 (50,0)	3,7 (2,1)a	<0,001*	21 (39,6)	1 (50,0)	0,881*	
Eutrofia	42 (79,2)	27 (64,3)	15 (35,7)	5,9 (3,4)b	<0,001a,b	17 (40,5)			
Excesso	09 (17,0)	5 (55,6)	4 (44,4)	6,9 (3,9)c	<0,001a,b,c	3 (33,3)			

SRTN: Serviço de Referência em Triagem Neonatal; APAE: Associação de Pais e Amigos dos Excepcionais; DP: desvio padrão; IMC: índice de massa corpórea; PCT: prega cutânea tricipital; PCSE: prega cutânea subescapular; AMB: área muscular do braço. *indica p-valor para ANOVA de comparação entre as três categorias de cada medida antropométrica; a,b indica comparação entre categoria a vs. categoria b; a,c indica comparação entre categoria a vs. categoria c; b,c indica comparação entre categoria a vs. categoria b; **qui-quadrado de tendência linear.

Rev Paul Pediatr. 2021;39:e2020095
Saúde.19 Esses autores descreveram percentual global de adequação de 65,5%, sem estratificar por faixa etária.12

O presente estudo incluiu indivíduos com diagnóstico e tratamento precoces, características que provavelmente diminuem as variações dietéticas do grupo, favorecendo melhor controle metabólico e baixa frequência de deficit nutricionais observados. Pacientes tratados tardiamente podem ter diferentes graus de dependência para se alimentar, a depender da magnitude da sequela neurológica, além de dificuldade em modificar seus hábitos alimentares pré-tratamento. Isso provavelmente exerce efeito sobre o controle metabólico21 e pode explicar parte das diferenças entre os estudos realizados no Brasil.

Estudos prévios relatam que pacientes com FNC sem controle da dieta apresentam maior risco de excesso de peso.5,6 Em nosso estudo, esse achado foi encontrado em 17% dos pacientes, sendo 20% entre adolescentes. Observou-se similitude em relação ao controle metabólico, na comparação com os grupos com eutrofia, e magreza. Excesso de gordura corporal foi menos frequente na amostra estudada, de acordo com os indicadores PCT e PCSE isolados ou somados, sem diferenças estatísticas entre os grupos ao se avaliar o controle metabólico. Além disso, a presente investigação encontrou baixa frequência de adipozidade central, fator de proteção para a síndrome metabólica nesses pacientes.

As pesquisas realizadas no Sul e Sudeste do Brasil descreveram maiores percentuais de excesso de peso, respectivamente, 28,5,12 22 10 e 19,1%.11 Dados recentes acerca da transição nutricional no Brasil mostram que existem diferenças regionais importantes na magnitude do excesso de peso22 e que há influência de fatores como renda familiar e local de moradia23 sobre tais indicadores. Embora controverso, o excesso de peso e eutrofia.10-12

Em nosso estudo, esse achado foi encontrado em 17% dos pacientes, sendo 20% entre adolescentes. Observou-se similitude em relação ao controle metabólico, na comparação com os grupos com eutrofia, e magreza. Excesso de gordura corporal foi menos frequente na amostra estudada, de acordo com os indicadores PCT e PCSE isolados ou somados, sem diferenças estatísticas entre os grupos ao se avaliar o controle metabólico. Além disso, a presente investigação encontrou baixa frequência de adipozidade central, fator de proteção para a síndrome metabólica nesses pacientes.

As pesquisas realizadas no Sul e Sudeste do Brasil descreveram maiores percentuais de excesso de peso, respectivamente, 28,5,12 22 10 e 19,1%.11 Dados recentes acerca da transição nutricional no Brasil mostram que existem diferenças regionais importantes na magnitude do excesso de peso22 e que há influência de fatores como renda familiar e local de moradia23 sobre tais indicadores. Embora controverso, o excesso de peso na população com FNC parece tender a seguir o curso da população com FNC entre 5–18 anos revelou correlação significativamente negativa entre percentual de gordura corporal e ingestão de proteína e fórmula de aminosícaros.25

Embora não significante, indivíduos de famílias com renda de um ou mais salários-mínimos (SM) apresentaram melhor controle metabólico, o que pode ter relação com o maior acesso a alimentos hipoproteicos industrializados e, consequentemente, maior variação da dieta. Diferentemente de países europeus e da América do Norte, no Brasil inexistem subsídios governamentais para a aquisição desses alimentos. Enquanto conduzido na Espanha concluiu que o alto custo da dieta e a dificuldade de adquirir alimentos especiais hipoproteicos têm efeito sobre a má adesão ao tratamento.26

De modo similar, não foi observada associação estatisticamente significante entre escolaridade materna e controle metabólico. No entanto, entre as mães/cuidadores que estudaram até o 5º ano, 50% dos pacientes estavam adequados, contra apenas 28,6% entre aqueles cujos cuidadores tinham mais escolaridade, divergindo de estudo prévio.22 O dado é inusitado, tendo em vista que escolaridade tem forte relação com a renda. Supomos que parcela desses indivíduos também esteja inserida no grupo com renda acima de um SM, pois algumas famílias recebem benefício de prestação continuada (BPC) e outros benefícios sociais, como Bolsa Família, de modo que a renda variável pode estar interferindo nesse resultado. Outra hipótese é que a mãe menos escolarizada não se insira frequentemente no mercado de trabalho, ofertando maior dedicação à criança, o que inclui maior vigilância do consumo e disponibilidade em preparar alimentos hipoproteicos com farinhas de baixo custo mediante orientação da equipe de saúde. Isso porque uma singularidade da população estudada é a oficina culinária como parte do acompanhamento interdisciplinar, local especialmente projetado para o preparo de alimentos hipoproteicos, com menor custo.

A presente investigação apresenta a limitação de não ter avaliado dados dietéticos. A maioria da população examinada não reside no município de tratamento e desloca-se por grandes distâncias, o que inviabiliza a aplicação do recordatório alimentar de 24 horas. Além disso, muitos pacientes e familiares têm dificuldade em realizar registro alimentar de três dias. Apesar de não haver consenso, a natureza do tratamento dietético e a biodisponibilidade dos L-aminosícaros na fórmula metabólica provavelmente têm efeitos sobre o crescimento e a composição biodisponibilidade e é a principal fonte de proteínas (75–85%) da dieta. Entretanto, AMB classificada como acima da média ou adequada associou-se com piores percentuais de controle metabólico. Esse fato também pode sugerir, além de boa adesão ao uso da fórmula metabólica, eventuais transgressões, com consumo de proteínas não permitidas. Avaliação de 37 pessoas com FNC entre 5–18 anos revelou correlação significativamente negativa entre percentual de gordura corporal e ingestão de proteína e fórmula de aminosícaros.25
corporal nessa população.5,6,24,27 Adicionalmente, informações sobre a rotina alimentar dependem do relato do indivíduo e/ou cuidador, que muitas vezes omite as transgressões alimentares à equipe de saúde.

Apesar das limitações, diferentemente das regiões Sul e Sudeste do Brasil e dos países europeus e dos EUA, a população estudada é predominantemente de baixa renda e, seguramente, tem acesso limitado a alimentos hipoproteicos industrializados. Por isso, os níveis sanguíneos de Fal são os indicadores mais exatos disponíveis para investigar a adesão ao tratamento. Ressalte-se que os níveis de Fal séricos refletem o consumo alimentar recente, e não existem exames que possam estimar suas flutuações. Assim, o retorno à dieta alguns dias antes do exame é suficiente para normalizar os níveis de Fal, mascarando o controle metabólico inadequado.

REFERÊNCIAS

1. van Wegberg AM, MacDonald A, Ahring K, Bélanger-Quintana A, Blau N, Bosch AM, et al. The complete European guidelines on phenylketonuria: diagnosis and treatment. Orphanet J Rare Dis. 2017;12:162. https://doi.org/10.1186/s13023-017-0685-2

2. Blau N, Spronsen FJ, Levy HL. Phenylketonuria. Lancet. 2010;376:1417-27. https://doi.org/10.1016/s0140-6736(10)60961-0

3. Green B, Browne R, Firman S, Hill M, Rahman Y, Hansen KK, et al. Nutritional and metabolic characteristics of UK adult phenylketonuria patients with varying dietary adherence. Nutrients. 2019;11:2459. https://doi.org/10.3390/nu1102459

4. García MI, Araya G, Coo S, Waisbren SE, Parra A. Treatment adherence during childhood in individuals with phenylketonuria: early signs of treatment discontinuation. Mol Genet Metab Rep. 2017;11:54-8. https://doi.org/10.1016/j.mgmr.2017.04.006

5. Hammons MM. Nutrient intake and body composition in children with phenylketonuria. Scholar Archive. 2015;paper 3644.

6. Rocha JC, Spronsen FJ, Almeida MF, Soares G, QueIJas D, Ramos E, et al. Dietary treatment in phenylketonuria does not lead to increased risk of obesity or metabolic syndrome. Mol Genet Metab. 2012;107:659-63. https://doi.org/10.1016/j.ymgme.2012.10.006

7. Burrage LC, McConnell J, Haesler R, O’Riordan MA, Sutton VR, Kerr DS, et al. High prevalence of overweight and obesity in females with phenylketonuria. Mol Genet Metab. 2012;107:43-8. https://doi.org/10.1016/j.ymgme.2012.07.006

8. Ozel HG, Ahring K, Bélanger-Quintana A, Dokoupil K, Lammardo AM, Robert M, et al. Overweight and obesity in PKU: The results from 8 centres in Europe and Turkey. Mol Genet Metab Rep. 2014;1:483-6. https://doi.org/10.1016/j.ymgmr.2014.11.003

9. Albersen M, Bonthuis M, Roos NM, Hurk DA, Weber EC, Hendriks MM, et al. Whole body composition analysis by the BodPod air-displacement plethysmography method in children with phenylketonuria shows a higher body fat percentage. J Inherit Metab Dis. 2010;33 (Suppl 3):283-8. https://doi.org/10.1007/s10545-010-9149-8

10. Mazzola PN, Nalin T, Castro K, Rijn M, Derks TG, Perry ID, et al. Analysis of body composition and nutritional status in Brazilian phenylketonuria patients. Mol Genet Metab Rep. 2016;6:16-20. https://doi.org/10.1016/j.ymgmr.2015.12.003

11. Camatta GC, Kanufre VC, Alves MR, Soares RD, Norton RD, Aquirar MJ, et al. Body fat percentage in adolescents with phenylketonuria and associated factors. Mol Genet Metab Rep. 2020;23:100595. https://doi.org/10.1016/j.ymgmr.2020.100595

12. Almeida BN, Laufer JA, Mezzomo TR, Shimada NC, Furtado IH, Dias MR, et al. Nutritional and metabolic parameters of children and adolescents with phenylketonuria. Clin Nutr ESPEN. 2020;37:44-9. https://doi.org/10.1016/j.clnesp.2020.03.024

13. World Health Organization. Growth reference 5-19 years. Application tools. WHO AnthroPlus software. Geneva: WHO; 2019 [cited 2019 Mar 13]. Available from: https://www.who.int/growthref/tools/en/

14. World Health Organization. Multicentre Growth Reference Study Group. WHO child growths standards: length/height-for-age, weight-for-age, weight-for-length, weight-for-height and body mass index-for-age: methods and development. Geneva: WHO; 2006.

15. Frisancho AR. Anthropometric standards for the assessment of growth and nutritional status. Michigan: University of Michigan Press; 1990.

16. National Center for Health Statistics. Anthropometric reference data and prevalence of overweight. United States, 1976-80. Hyattsville, MD: Vital & Health Statistics; 1987.
17. Freedman DS, Serdula MK, Srinivasan SR, Berenson GS. Relation of circumference and skinfold thicknesses to lipid and insulin concentrations in children and adolescents: the Bogalusa Heart Study. Am J Clin Nutr. 1999;69:308-17. https://doi.org/10.1093/ajcn/69.2.308

18. McDowell MA, Fryar CD, Ogden CL, Flega KM [homepage on the Internet]. Anthropometric reference data for children and adults: United States, 2003-2006. Hyattsville, MD: National Center for Health Statistics; 2008 [cited 2019 Mar 13]. Available from: www.cdc.gov/nchs/data/nhrs/nhrs010.pdf

19. Brazil - Ministério da Saúde [homepage on the Internet]. Secretaria de Ciência, Tecnologia e Insumos Estratégicos. Protocolo clínico e diretrizes terapêuticas. Fenilcetonúria. Relatório de Recomendações nº 16, março de 2019. Brasília: Ministério da Saúde; 2019 [cited 2019 May 10]. Available from: http://conitec.gov.br/images/Consultas/Relatorios/2019/Relatorio_PCDT_Fenilcetonuria_CP16_2019.pdf

20. Sociedade Brasileira de Diabetes [homepage on the Internet]. Diretrizes da Sociedade Brasileira de Diabetes 2019-2020. São Paulo: SBD; 2019 [cited 2020 Jun 1]. Available from: https://www.diabetes.org.br/profissionais/images/DIRETRIZES-COMPLETA-2019-2020.pdf.

21. Vieira TA, Nalin T, Krug BC, Bittar CM, Netto CB, Schwartz IV. Adherence to treatment of phenylketonuria: a study in southern Brazilian patients. J Inborn Errors Metab Screen. 2015;3:e140006. https://doi.org/10.1177/2326409815579861

22. Santos PC, Silva KS, Silva JA, Santos CE, Duca GF, Lopes AS, et al. Change in overweight and obesity over a decade according to sociodemographic factors in Brazilian adolescents. Cienc Saude Colet. 2019;24:3335-44. https://doi.org/10.1590/1413-81232018249.29052017

23. Conde WL, Mazzeti CM, Silva JC, Santos IK, Santos AM. Nutritional status of Brazilian schoolchildren: National Adolescent School-based Health Survey 2015. Rev Bras Epidemiol. 2018;21:e180008. https://doi.org/10.1590/1980-549720180008.supl.1

24. Rocha JC, Rijn M, Dam E, Ahring K, Bélanger-Quintana A, Dokoupil K, et al. Weight management in phenylketonuria: what should be monitored? Ann Nutr Metab. 2016;68:60-5. https://doi.org/10.1159/000442304

25. Evans M, Truby H, Boneh A. The relationship between dietary intake, growth and body composition in phenylketonuria. Mol Genet Metab. 2017;122:36-42. https://doi.org/10.1016/j.ymgme.2017.07.007

26. Tejada-Ortigosa EM, Moreno-Quintana L, Muñoz-Villanueva MC, Pérez-Navero JL, Gil-Campos M. Health and socio-educational needs of the families and children with rare metabolic diseases: Qualitative study in a tertiary hospital. An Pediatr (Barc). 2019;90:42-50. https://doi.org/10.1016/j.anpedi.2018.03.003

27. Moretti F, Pellegrini N, Salvaticia E, Rovellia V, Banderalia G, Radaellia G, et al. Dietary glycemic index, glycemic load and metabolic profile in children with phenylketonuria. Nutr Metab Cardiovasc Dis. 2017;27:176-82. https://doi.org/10.1016/j.numecd.2016.11.002