The complete chloroplast genome of Chinese medicinal herb *Belamcanda chinensis* (L.) Redouté (Iridaceae)

Cuicui Li, Saiwen Hu, Yining Ding, Guangyao Bi, Chun Su and Zhi Xia

College of Agronomy, Henan Agricultural University, Zhengzhou, Henan, China; College of Life Sciences, Northwest A&F University, Yangling, Shanxi, China

ABSTRACT

The species of *Belamcanda chinensis* (L.) Redouté is one of the Chinese traditional medicinal herbs. In this study, we first report the complete chloroplast (cp) genome of *B. chinensis*. The chloroplast (cp) genome was determined to be 153,735 bp and the GC content was 37.9%. The sequence includes a large single-copy (LSC) region of 83,199 bp, a small single-copy (SSC) region of 18,168 bp, and two separated inverted regions of 26,184 bp each. It contains 132 genes, including 86 protein-coding genes, 38 tRNA genes, and 8 rRNA genes. Based on 10 chloroplast genomes data, the maximum likelihood phylogenetic analysis revealed that *B. chinensis* was sister to *Iris* (Bootstrap = 100%) within Iridaceae. This result will be helpful for the conservation and breeding programs of the *B. chinensis*.

ARTICLE HISTORY

Received 2 October 2020
Accepted 14 December 2020

KEYWORDS

Belamcanda chinensis; chloroplast genome; medicine herb; phylogenetics; Iridaceae

CONTACT Zhi Xia xiazhiemail@126.com College of Agronomy, Henan Agricultural University, Zhengzhou, Henan, China

2021 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group.

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
to the genus *Iris* with BS = 100% (Figure 1). The chloroplast genomes resource may be utilized for DNA barcoding, conservation genetics, and breeding of cultivar *B. chinensis* in the future.

Disclosure statement

No potential conflict of interest was reported by the author(s).

Funding

This study was supported by the National Natural Science Foundation of China [Grant No. 31770370], the Scientific Research projects of Henan Provincial Education Department [Grant No. 18A360006].

Data availability statement

The complete chloroplast genome sequence of *Belamcanda chinensis* has been submitted to the GenBank (https://www.ncbi.nlm.nih.gov/genbank/), and the accession number is MW039136. This sequence will be released immediately after process by the NCBI staff. Then, the data that support the findings of this study is openly available in GenBank.

References

Dierckxsens N, Mardulyn P, Smits G. 2017. NOVOPlasty: de novo assembly of organelle genomes from whole genome data. Nucleic Acids Res. 45(4):e18.

Doyle JJ, Doyle JL. 1987. A rapid DNA isolation procedure for small quantities of fresh leaf tissue. Phytochem Bull. 19:11–15.

Katoh K, Standley DM. 2013. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol. 30(4):772–780.

Kearse M, Moir R, Wilson A, Stones-Havas S, Cheung M, Sturrock S, Buxton S, Cooper A, Markowitz S, Duran C, et al. 2012. Geneious basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics. 28(12):1647–1649.

Laslett D, Canback B. 2004. ARAGORN, a program to detect tRNA genes and tmRNA genes in nucleotide sequences. Nucleic Acids Res. 32(1):11–16.

Lee JW, Lee C, Jin Q, Lee MS, Kim Y, Hong JT, Lee MK, Hwang BY. 2015. Chemical constituents from *Belamcanda chinensis* and their inhibitory effects on nitric oxide production in RAW 264.7 macrophage cells. Arch Pharm Res. 38(6):991–997.

Stamatakis A. 2014. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics. 30(9):1312–1313.