A Note on Fractional DP-Coloring of Graphs

Daniel Dominik1, Hemanshu Kaul2, and Jeffrey A. Mudrock3

May 27, 2024

Abstract

DP-coloring (also called correspondence coloring) is a generalization of list coloring introduced by Dvořák and Postle in 2015. In 2019, Bernshteyn, Kostochka, and Zhu introduced a fractional version of DP-coloring. They showed that unlike the fractional list chromatic number, the fractional DP-chromatic number of a graph G, denoted $\chi^*_\text{DP}(G)$, can be arbitrarily larger than $\chi^*(G)$, the graph’s fractional chromatic number. We generalize a result of Alon, Tuza, and Voigt (1997) on the fractional list chromatic number of odd cycles, and, in the process, show that for each $k \in \mathbb{N}$, $\chi^*_\text{DP}(C_{2k+1}) = \chi^*(C_{2k+1})$. We also show that for any $n \geq 2$ and $m \in \mathbb{N}$, if p^* is the solution in $(0,1)$ to $p = (1-p)^n$ then $\chi^*_\text{DP}(K_{n,m}) \leq 1/p^*$, and we prove a generalization of this result for multipartite graphs. Finally, we determine a lower bound on $\chi^*_\text{DP}(K_{2,m})$ for any $m \geq 3$.

Keywords. graph coloring, list coloring, fractional coloring, DP-coloring, correspondence coloring.

Mathematics Subject Classification. 05C15, 05C69

1 Introduction

In this paper all graphs are nonempty, finite, simple graphs unless otherwise noted. Generally speaking we follow West [14] for terminology and notation. The set of natural numbers is $\mathbb{N} = \{1, 2, 3, \ldots\}$. Given a set A, $\mathcal{P}(A)$ is the power set of A. For $m \in \mathbb{N}$, we write $[m]$ for the set $\{1, 2, \ldots, m\}$. If G is a graph and $S, U \subseteq V(G)$, we use $G[S]$ for the subgraph of G induced by S, and we use $E_G(S, U)$ for the subset of $E(G)$ with one endpoint in S and the other endpoint in U. For $v \in V(G)$, we write $d_G(v)$ for the degree of vertex v in the graph G, and we write $N_G(v)$ for the neighborhood of vertex v in the graph G. Also, for $S \subseteq V(G)$, we let $N_G(S) = \bigcup_{v \in S} N_G(v)$. A graph G is d-degenerate if every subgraph of G has a vertex of degree at most d. We use $K_{n,m}$ to denote the complete bipartite graphs with partite sets of size n and m. For a random variable X, we use $X \sim B(n, p)$ to indicate that X is binomially distributed with n trials each having probability of success p. For an event E, we use \overline{E} to denote the complement of E.

1Department of Applied Mathematics, Illinois Institute of Technology, Chicago, IL 60616. E-mail: ddominik@hawk.iit.edu

2Department of Applied Mathematics, Illinois Institute of Technology, Chicago, IL 60616. E-mail: kaul@iit.edu

3Department of Mathematics and Statistics, University of South Alabama, Mobile, AL 36688. E-mail: mudrock@southalabama.edu
1.1 Fractional Coloring and Fractional Choosability

Before introducing fractional DP-coloring, we review some classical notions. Given a graph G, in the classical vertex coloring problem we wish to color the elements of $V(G)$ with colors from the set $[m]$ so that adjacent vertices receive different colors, a so-called proper m-coloring. We say G is m-colorable when a proper m-coloring of G exists. The chromatic number of G, denoted $\chi(G)$, is the smallest k such that G is k-colorable.

A set coloring of a graph G is a function that assigns a set to each vertex of G such that the sets assigned to adjacent vertices are disjoint. For $a, b \in \mathbb{N}$ with $a \geq b$, an (a, b)-coloring of graph G is a set coloring f of G such that the codomain of f is the set of b-element subsets of $[a]$. We say that G is (a, b)-colorable when an (a, b)-coloring of G exists. So, saying G is a-colorable is equivalent to saying that it is $(a, 1)$-colorable. The fractional chromatic number, $\chi^*(G)$, of G is defined by $\chi^*(G) = \inf\{a/b : G$ is (a, b)-colorable\}. Since any graph G is $(\chi(G), 1)$-colorable, we have that $\chi^*(G) \leq \chi(G)$. This inequality may however be strict; for example, when $r \geq 2$, $\chi^*(C_{2r+1}) = 2 + 1/r < 3 = \chi(C_{2r+1})$ (see [11]). It is also well known that the infimum in the definition of $\chi^*(G)$ is actually a minimum [11].

List coloring is a variation on classical vertex coloring that was introduced independently by Vizing [13] and Erdős, Rubin, and Taylor [6] in the 1970’s. In list coloring, we associate with graph G a list assignment L that assigns to each vertex $v \in V(G)$ a list $L(v)$ of available colors. Graph G is said to be L-colorable if there exists a proper coloring f of G such that $f(v) \in L(v)$ for each $v \in V(G)$ (we refer to f as a proper L-coloring of G). A list assignment L is called a k-assignment for G if $|L(v)| = k$ for each $v \in V(G)$. We say G is k-choosable if G is L-colorable whenever L is a k-assignment for G. The list chromatic number of G, denoted $\chi_L(G)$, is the smallest k for which G is k-choosable. Since a k-assignment can assign the same k colors to every vertex of a graph, $\chi(G) \leq \chi_L(G)$.

Given an a-assignment L for graph G and $b \in \mathbb{N}$ such that $a \geq b$, we say that f is an (L, b)-coloring of G if f is a set coloring of G such that for each each $v \in V(G)$, $f(v) \subseteq L(v)$ with $|f(v)| = b$. We say that G is (L, b)-colorable when an (L, b)-coloring of G exists. Also, for $a, b \in \mathbb{N}$ with $a \geq b$, graph G is (a, b)-choosable if G is (L, b)-colorable whenever L is an a-assignment for G. The fractional list chromatic number, $\chi^*_L(G)$, of G is defined by $\chi^*_L(G) = \inf\{a/b : G$ is (a, b)-choosable\}. It is clear that if a graph is (a, b)-choosable, then it is (a, b)-colorable. So, $\chi^*(G) \leq \chi^*_L(G)$. In 1997, Alon, Tuza, and Voigt [1] famously proved that for any graph G, $\chi^*_L(G) = \chi^*(G)$. Moreover, they showed that for any graph G, there is an $M \in \mathbb{N}$ such that G is $(M, M/\chi^*(G))$-choosable. So, the infimum in the definition of $\chi^*_L(G)$ is also actually a minimum.

In their 1979 paper Erdős et al. [6] asked: If G is (a, b)-choosable and $c, d \in \mathbb{N}$ are such that $c/d > a/b$, must G be (c, d)-choosable? A negative answer to this question is given in [6]. Erdős et al. also asked: If G is (a, b)-choosable, does it follow that G is (at, bt)-choosable for each $t \in \mathbb{N}$? Tuza and Voigt [12] showed that the answer to this question is yes when $a = 2$ and $b = 1$. However, in general, a negative answer to this question was recently given in [1]. It was shown that for each $a \geq 4$, a graph that is $(a, 1)$-choosable but not $(2a, 2)$-choosable can be constructed. We briefly consider the fractional DP-coloring analogues of both of these questions below.
1.2 Fractional DP-coloring

In 2015, Dvořák and Postle \cite{5} introduced DP-coloring (they called it correspondence coloring) in order to prove that every planar graph without cycles of lengths 4 to 8 is 3-choosable. Intuitively, DP-coloring is a generalization of list coloring where each vertex in the graph still gets a list of colors but identification of which colors are different can vary from edge to edge. We now give the formal definition. Suppose G is a graph. A cover of G is a pair $\mathcal{H} = (L, H)$ consisting of a graph H and a function $L : V(G) \rightarrow \mathcal{P}(V(H))$ satisfying the following four requirements:

1. the set $\{L(u) : u \in V(G)\}$ is a partition of $V(H)$ with $|V(G)|$ parts;
2. for every $u \in V(G)$, the graph $L(u)$ is an independent set of vertices in H;
3. if $E_H(L(u), L(v))$ is nonempty, then $uv \in E(G)$;
4. if $uv \in E(G)$, then $E_H(L(u), L(v))$ is a matching (the matching may be empty).

Suppose $\mathcal{H} = (L, H)$ is a cover of G. We say \mathcal{H} is m-fold if $|L(u)| = m$ for each $u \in V(G)$. An \mathcal{H}-coloring of G is an independent set $I \subseteq V(H)$ such that $|I \cap L(u)| = 1$ for each $u \in V(G)$. The DP-chromatic number of a graph G, $\chi_{DP}(G)$, is the smallest $m \in \mathbb{N}$ such that G admits an \mathcal{H}-coloring for every m-fold cover \mathcal{H} of G.

Given an m-assignment L for a graph G, it is easy to construct an m-fold cover \mathcal{H} of G such that G has an \mathcal{H}-coloring if and only if G has a proper L-coloring (see \cite{2}). It follows that $\chi_L(G) \leq \chi_{DP}(G)$. This inequality may be strict since it is easy to prove that $\chi_{DP}(C_n) = 3$ whenever $n \geq 3$, but the list chromatic number of any even cycle is 2 (see \cite{2} and \cite{6}).

We are now ready to introduce fractional DP-coloring. Suppose $\mathcal{H} = (L, H)$ is an a-fold cover of G and $b \in \mathbb{N}$ such that $a \geq b$. Then, G is (\mathcal{H}, b)-colorable if there is an independent set $S \subseteq V(H)$ such that $|S \cap L(v)| \geq b$ for each $v \in V(G)$. Equivalently, one could require $|S \cap L(v)| = b$ for each $v \in V(G)$; in this case we call S an independent b-fold transversal. We refer to S as an (\mathcal{H}, b)-coloring of G. For $a, b \in \mathbb{N}$ and $a \geq b$, we say G is (a, b)-DP-colorable if for any a-fold cover \mathcal{H} of G, G is (\mathcal{H}, b)-colorable. The fractional DP-chromatic number, $\chi_{DP}^\ast(G)$, of G is defined by

$$\chi_{DP}^\ast(G) = \inf\{a/b : G \text{ is } (a, b)\text{-DP-colorable}\}.$$

It is easy to prove that if G is (a, b)-DP-colorable, then G is (a, b)-choosable. Also, any graph G must be $(\chi_{DP}(G), 1)$-DP-colorable. So, combining the facts we know, we have:

$$\chi^\ast(G) = \chi_L^\ast(G) \leq \chi_{DP}^\ast(G) \leq \chi_{DP}(G).$$

Theorem \ref{10} and Corollary \ref{7} below imply that both of the inequalities above can be strict. Furthermore, we know that $\chi_L^\ast(G) \leq \chi_L(G) \leq \chi_{DP}(G)$, and we will see below that it is possible for the list chromatic number of a graph to be either smaller ($K_{2,3}$ by Theorem \ref{10} below) or larger (odd cycles with at least five vertices by Theorem \ref{2} below) than the fractional DP-chromatic number of the graph.

In \cite{3}, the following result is proven.

Theorem 1 (\cite{3}). Let G be a connected graph. Then, $\chi_{DP}^\ast(G) \leq 2$ if and only if G contains no odd cycles and at most one even cycle. Furthermore, if G contains no odd cycles and
exactly one even cycle, then \(\chi_{DP}^*(G) = 2 \) even though 2 is not contained in the set \(\{a/b : G \text{ is } (a, b)\text{-DP-colorable}\} \).

So, unlike the fractional chromatic number and fractional list chromatic number, the infimum in the definition of the fractional DP-chromatic number is not always a minimum. In [3] it is also shown that if \(G \) is a graph of maximum average degree \(d \geq 4 \), then \(\chi_{DP}^*(G) \geq d/(2 \ln d) \). Since bipartite graphs have fractional chromatic number (and hence fractional list chromatic number) 2 and there exist bipartite graphs with arbitrarily high average degree, we see \(\chi_{DP}^*(G) \) and \(\chi^*(G) \) can be arbitrarily far apart and \(\chi_{DP}^*(G) \) cannot be bounded above by a function of \(\chi^*(G) \).

1.3 Outline of Results and Open Questions

We now present an outline of the results of this paper while also mentioning some open questions. In Section 2 we study the fractional DP-chromatic number of odd cycles. In 1997, Alon, Tuza, and Voigt [1] showed that \(C_{2r+1} \) is \((2r+1, r)\)-choosable. We generalize this result by showing \(\chi^*(C_{2r+1}) = \chi_{DP}^*(C_{2r+1}) = \chi_{DP}^*(C_{2r+1}) \).

Theorem 2. \(C_{2r+1} \) is \((2r+1, r)\)-DP-colorable. Consequently, \(\chi_{DP}^*(C_{2r+1}) = 2 + 1/r \).

Notice that by Theorem 2, we see it is possible for the list chromatic number of a graph to be larger than its fractional DP-chromatic number since \(\chi_{DP}^*(C_{2r+1}) < \chi^*(C_{2r+1}) = 3 \) when \(r \geq 2 \). Other classes of graphs with this strict inequality are shown by Corollary 7 and Theorem 10 below.

It is natural to ask analogues of the two questions posed about \((a, b)\)-choosability in [6].

Question 3. If \(G \) is \((a, b)\)-DP-colorable and \(c, d \in \mathbb{N} \) are such that \(c/d > a/b \), must \(G \) be \((c, d)\)-DP-colorable?

Question 4. If \(G \) is \((a, b)\)-DP-colorable, does it follow that \(G \) is \((at, bt)\)-DP-colorable for each \(t \in \mathbb{N} \)?

Question 4 is open. We suspect the answer is no because of Dvořák, Hu, and Sereni’s similar list coloring result [4]. The answer to Question 3 is no in a fairly strong sense. In particular, Corollary 1.12 in [3] implies that for any positive real number \(c \), there exist \(a, b, k \in \mathbb{N} \) such that \(k - a/b > c \), \(G \) is not \(k\)-colorable (and therefore not \((k, 1)\)-DP-colorable), and \(G \) is \((a, b)\)-DP-colorable[4]. By combining some known results, we quickly observe that the answer to Question 3 remains no even if we restrict our attention to only bipartite graphs.

Proposition 5. For each \(k \geq 149 \), there exists a \(k\)-degenerate bipartite graph \(G \), and \(a, b \in \mathbb{N} \) such that: \(k > a/b \), \(G \) is not \((k, 1)\)-DP-colorable, and \(G \) is \((a, b)\)-DP-colorable.

Proposition 5 is a consequence of two results. It follows from the randomized construction given in the proof of Theorem 1.10 in [3] that for \(d \geq 149 \), if \(G \) is a \(d\)-degenerate bipartite graph, then \(\chi_{DP}^*(G) \leq 5d/\ln(d) < d \). Note \(K_{d,t} \) is a \(d\)-degenerate bipartite graph, and it was shown in [10] that if \(t \geq 1 + (d^3/d!)(\ln(d) + 1) \), then \(\chi_{DP}(K_{d,t}) = d + 1 \).

4Thanks to an anonymous referee for this observation.
Theorem 9. If G is a d-degenerate bipartite graph, then $\chi_{DP}^*(G) \leq (1 + o(1))d/\ln(d)$ as $d \to \infty$.

\footnote{An anonymous referee provided us an elegant proof of a special case of Corollary 7 which follows from Theorem 6.}
Clearly, $1 = 0$ since it is possible that none of the cycles in our decomposition are even. We also suppose that disjoint cycles: since adding additional edges to H suppose that the vertices of B odd cycles posed by Bernshteyn, Kostochka, and Zhu [3]. Question 11 could be extended to complete example of a graph whose fractional DP-chromatic number is irrational, answering a question achieved by Theorem 6 and Corollary 7 give the asymptotically tight result as the second partite \[\frac{(d+2)^2(m+1)(1-d)^{-1}}{(d+2)(d^2)} < 1. \]

Then, $2 + d \leq \chi^*_D(G)$. For example, notice that when $m = 15$ and $d = 0.0959$, the inequality in the hypothesis is satisfied. So, by Theorems 6 and 10 we have that $2.0959 \leq \chi^*_D(K_{2,15}) \leq 2.619$. Since we suspect the probabilistic argument from Theorem 6 to be close to the truth for large values of m, we think that the lower bound provided by Theorem 10 can be improved by quite a bit for these m values. We also have that $2.025 \leq \chi^*_D(K_{2,3}) \leq 2.619$ which provides another example of a graph whose fractional DP-chromatic number is larger than its list chromatic number since $2 = \chi_l(K_{2,3}) < \chi^*_D(K_{2,3})$.

These results lead to a natural question.

Question 11. Suppose $n \in \mathbb{N}$. If p^* is the solution in $(0,1)$ to $p = (1-p)^n$, does $\chi^*_D(K_{n,m}) \rightarrow 1/p^*$ as $m \rightarrow \infty$?

The answer to Question 11 is clearly yes when $n = 1$. If the answer is yes for some $n \geq 2$, then Theorem 9 and Corollary 7 give the asymptotically tight result as the second partite set grows large. We could further ask whether, for some $n \geq 2$, there is an $m \in \mathbb{N}$ where we achieve $\chi^*_D(K_{n,m}) = 1/p^*$? If the answer to this follow-up question is yes it would give an example of a graph whose fractional DP-chromatic number is irrational, answering a question posed by Bernshteyn, Kostochka, and Zhu [3]. Question 11 could be extended to complete multipartite graphs where the sizes of all but one of the partite sets are held constant.

2 Odd Cycles

We now prove Theorem 2.

Proof. Suppose that the vertices of G in cyclic order are: $v_1, v_2, \ldots, v_{2r+1}$. Suppose that $\mathcal{H} = (L, H)$ is an arbitrary $(2r + 1)$-fold cover of G. We must show that there is an (\mathcal{H}, r)-coloring of G. We may assume that $E_H(L(u), L(v))$ is a perfect matching whenever $uv \in E(G)$ since adding additional edges to H only makes it harder to find an (\mathcal{H}, r)-coloring.

Clearly, H is a 2-regular graph. This means that H can be decomposed into vertex disjoint cycles: B_1, B_2, \ldots, B_p. The size of each of these cycles is a multiple of $2r + 1$. Let us suppose that B_1, \ldots, B_l are even cycles and B_{l+1}, \ldots, B_p are odd cycles (Note: we allow $l = 0$ since it is possible that none of the cycles in our decomposition are even. We also know the number of odd cycles in our decomposition must be odd since $|E(H)| = (2r + 1)^2$).

Clearly, $1 \leq p \leq 2r + 1$, and $|L(v_i) \cap V(B_j)| \geq 1$ for each $i \in [2r + 1]$ and $j \in [p]$.

Let H' be the graph obtained from H as follows: for each $j \in [p]$ we delete a vertex $d_j \in L(v_j) \cap V(B_j)$. We let $L'(v_j) = L(v_j) - \{d_j\}$ for each $j \in [p]$ and $L'(v_i) = L(v_i)$ for each
Let $t > p$. So, H^* consists of p vertex disjoint paths, and for each $j \in [p]$, let $P_j = B_j - \{d_j\}$. Note that if $1 < j < 2r + 1$, the endpoints of P_j are in $L'(v_{j-1})$ and $L'(v_{j+1})$. Also for each $j \in [p]$, $|V(P_j)| = (2r + 1)k_j + 2r$ where k_j is a nonnegative integer that is odd when $j \leq l$ and even when $j > l$. It is easy to see:

$$|V(H^*)| = (2r + 1)^2 - p = \sum_{j=1}^{p}((2r + 1)k_j + 2r) = 2rp + (2r + 1)\sum_{j=1}^{p}k_j.$$

Thus, $\sum_{j=1}^{p}k_j = 2r + 1 - p$. Now, we name the vertices of each path of H^*. Specifically, for $j \in [p]$ let the vertices of P_j (in order) be: $a_1^j, a_2^j, \ldots, a_{(2r+1)k_j+2r}^j$ so that $a_1^j \in L'(v_{j+1})$ if $j < 2r + 1$ and $a_1^j \in L'(v_1)$ if $j = 2r + 1$. We call a vertex $a_m^j \in V(H^*)$ odd if m is odd. Let S consist of all the odd vertices in H^*. Clearly, S is an independent set of H. We claim that $|S \cap L'(v_i)| \geq r$ for each $i \in [2r + 1]$.

In the case that $p = 1$, P_1 is a path of length $(2r + 1)^2 - 2$, and we have that for $i \in [2r + 1]$, $|S \cap V(P_1) \cap L'(v_i)| = r + 1$ when i is even, and $|S \cap V(P_1) \cap L'(v_i)| = r$ when i is odd. In the case that $p = 2r + 1$, each of P_1, \ldots, P_{2r+1} is a path of length $2r - 1$, and we have that for $i \in [2r + 1]$, $|S \cap L'(v_i)| = r$.

So, we turn our attention to the case where $2 \leq p \leq 2r$. For each $j \in [l]$ notice that P_j is a path with an odd number of vertices. So, when $j \in [l]$, $|S \cap V(P_j)| = (2r + 1)(k_j + 1)/2$. Moreover, since G is an odd cycle, for each $j \in [l]$ and $i \in [2r + 1]$, we have that $|S \cap V(P_j) \cap L'(v_i)| = (k_j + 1)/2$.

Now, let $L = \{l + 1, l + 3, \ldots, p - 2\}$ (Note: L is empty if $l + 1 > p - 2$ and $|L| \leq r - 1$). For each $j \in L$ we consider P_j and P_{j+1} together. Note P_j and P_{j+1} are paths with an even number of vertices. So, when $j \in L$, $|S \cap (V(P_j) \cup V(P_{j+1}))| = (2r + 1)(k_j + k_{j+1})/2 + 2r$. Therefore, when $j \in L$ and $i \in [2r + 1] - \{j\}$, $|S \cap (V(P_j) \cup V(P_{j+1})) \cap L'(v_i)| = (k_j + k_{j+1})/2$, and for each $j \in L$, $|S \cap (V(P_j) \cup V(P_{j+1})) \cap L'(v_j)| = (k_j + k_{j+1})/2$ (since $a_1^j \in L'(v_{j+1})$ and $a_{(2r+1)k_{j+1}+2r}^j \in L'(v_j)$). Thus, for $i \in [2r + 1] - L$, we have:

$$\left| \bigcup_{j=1}^{p-1} (V(P_j) \cap S \cap L'(v_i)) \right| = \sum_{j=1}^{l} \frac{k_i + 1}{2} + \sum_{j \in L} \frac{k_j + k_{j+1} + 2}{2} = \frac{1}{2} \sum_{j=1}^{p-1} (k_i + 1) = \frac{p - 1}{2} + \frac{1}{2} \sum_{j=1}^{p-1} k_i = \frac{p - 1 + 2r + 1 - p - k_p}{2} = \frac{r - k_p}{2}.$$

Similarly, for $i \in L$, we have:

$$\left| \bigcup_{j=1}^{p-1} (V(P_j) \cap S \cap L'(v_i)) \right| = r - 1 - \frac{k_p}{2}.$$
It is easy to see that $|S \cap V(P_p) \cap L'(v_i)| \geq k_p/2$ for each $i \in [2r + 1]$. If $|\mathcal{L}| \geq 1$, notice that $a_{(2r + 1)k_p + 2r}^p \in L'(v_{p-1})$. So, when $|\mathcal{L}| \geq 1$, the last odd vertex in $V(P_p)$ is in $L'(v_{p-2})$. So, we know that for each $i \in \mathcal{L}$,

$$|S \cap V(P_p) \cap L'(v_i)| = \frac{k_p}{2} + 1.$$

It follows that $|S \cap L'(v_i)| \geq r$ for each $i \in [2r + 1]$ which implies that S is an (\mathcal{H}, r)-coloring of G. \qed

3 Multpartite Graphs

We now work toward proving our bounds on the fractional DP-chromatic number of complete bipartite graphs. In order to prove Theorem 6 we will use two lemmas.

Lemma 12. Suppose G is a graph where $\{U, W\}$ is a partition of $V(G)$, $d = \max_{w \in W} |N_G(w) \cap U|$, $p \in (0, 1)$, and $\epsilon > 0$. There is an $N \in \mathbb{N}$ such that for any $a \geq N$, if $\mathcal{H} = (L, H)$ is an a-fold cover of G, then there must exist $U' \subseteq \bigcup_{v \in U} L(v)$ and $W' \subseteq \bigcup_{w \in W} L(w)$ such that the following three conditions hold:

1. $|E_H(U', W')| = 0$,
2. $|U' \cap L(u)| \geq (p - \epsilon)a$ for all $u \in U$,
3. $|W' \cap L(w)| \geq ((1 - p)^d - \epsilon)a$ for all $w \in W$.

Proof. Let $n = |V(G)|$. We will now give a random procedure for constructing $C \subseteq \bigcup_{u \in U} L(u)$ and $D \subseteq \bigcup_{w \in W} L(w)$ which we will use to guarantee the existence of sets U' and W' as described in the statement. As in the proof of Theorem 2 we may assume that $E_H(L(u), L(v))$ is a perfect matching whenever $uv \in E(G)$.

For each $u \in U$ and each $x \in L(u)$ include x in C independently with probability p. For each $w \in W$ and each $y \in L(w)$ include y in D if y is not adjacent to any of the vertices in C.

The probability that, for any $w \in W$, a vertex from $L(w)$ is included in D is at least $(1 - p)^d$. For each $u \in U$, let X_u be the random variable that is the number of vertices included in C from $L(u)$. For each $w \in W$, let Y_w be the random variable that is the number of vertices included in D from $L(w)$. Let E_{X_u} be the event that $X_u \geq (p - \epsilon)a$ and E_{Y_w} be the event that $Y_w \geq ((1 - p)^d - \epsilon)a$. Since $X_u \sim B(a, p)$ and $Y_w \sim B(a, p_w)$ for some $p_w \geq (1 - p)^d$, we know that for any $u \in U$ and $w \in W$

$$\mathbb{P}(E_{X_u}) = \mathbb{P}(X_u < (p - \epsilon)a) \leq e^{-2ap^2},$$

$$\mathbb{P}(E_{Y_w}) = \mathbb{P}(Y_w < ((1 - p)^d - \epsilon)a) \leq \mathbb{P}(Y_w < (p_w - \epsilon)a) \leq e^{-2ap^2}.$$

By the union bound, we know the probability that $|C \cap L(u)| \geq (p - \epsilon)a$ for each $u \in U$ and that $|D \cap L(w)| \geq ((1 - p)^d - \epsilon)a$ for each $w \in W$ is

$$\mathbb{P}\left(\bigcap_{u \in U} E_{X_u} \bigcap \bigcap_{w \in W} E_{Y_w}\right) = 1 - \mathbb{P}\left(\bigcup_{u \in U} \overline{E_{X_u}} \bigcup \bigcup_{w \in W} \overline{E_{Y_w}}\right) \geq 1 - ne^{-2ap^2}.$$
We now show that this probability is positive for large enough \(a \). Let \(N \) be any integer larger than \(\ln(n)/(2e^2) \). For any \(a \geq N \) we see

\[
1 - ne^{-2a^2} > 1 - ne^{-2(\ln(n)/(2e^2))^2} = 0.
\]

Therefore, there must be sets \(U' \) and \(W' \) as described in the statement. \(\square \)

Lemma 13. Suppose \(G \) is a graph where \(\{U,W\} \) is a partition of \(V(G) \) and \(U \) is an independent set of vertices. Let \(d = \max_{w \in W} |N_G(w) \cap U| \). Fix \(p' \in (0,1] \) and suppose \(G[W] \) has the property that for any \(\epsilon' \in (0,p') \) there is an \(N_{\epsilon'} \in \mathbb{N} \) such that \(G[W] \) is \((a',[(p' - \epsilon')a'])\)-DP-colorable for all \(a' \geq N_{\epsilon'} \).

Suppose \(p^* \) is the unique element in \((0,1)\) satisfying \(p = p'(1 - p)^d \). Then \(G \) has the property that for any \(\epsilon \in (0,p^*) \) there is an \(N \in \mathbb{N} \) such that \(G \) is \((a,[(p - \epsilon)a])\)-DP-colorable for all \(a \geq N \). Consequently, \(\chi_{DP}(G) \leq 1/p^* \).

Proof. Consider an arbitrary \(a \)-fold cover \(H = (L,H) \) of \(G, \epsilon' \in (0,p') \), and \(\epsilon^* \in (0,p^*) \).

By Lemma 12 there exists some \(N_{\epsilon'} \) such that if \(a \geq N_{\epsilon'} \) then we must be able to get a set \(U' \subseteq \bigcup_{u \in U} L(u) \) that contains a \([(p^* - \epsilon')a]\)-fold transversal of \(H_U \), and a set \(W' \subseteq \bigcup_{w \in W} L(w) \) that contains a \([(1 - p^*)^d - \epsilon^*)a]\)-fold transversal of \(H_W \). Note that \([(1 - p^*)^d - \epsilon^*)a]\) = \((p^*/p' - \epsilon^*)a\). Moreover, \(|E_H(U',W')| = 0\).

By the lemma statement, there is an \(N_{\epsilon'} \in \mathbb{N} \) such that \(G[W] \) is \((a',[(p' - \epsilon')a'])\)-DP-colorable for all \(a' \geq N_{\epsilon'} \).

For each \(w \in W \) let \(L'(w) = W' \cap L(w) \). If \(a \geq N_{\epsilon'} \) then we know that \((L',H[W'])\) contains a \([(p^*/p' - \epsilon^*)a]\)-fold cover of \(G[W] \). So \((L',H[W'])\) must have an independent \([(p' - \epsilon')p'/p' - \epsilon^*)a]\)-fold transversal if \(a \) also satisfies \([(p^*/p' - \epsilon^*)a]\) \(\geq N_{\epsilon'} \). Let \(N'_{\epsilon'} \) \(\equiv \frac{(N_{\epsilon'} + 1)}{(p^*/p' - \epsilon^*)} \). Note that \([(p^*/p' - \epsilon^*)a]\) \(\geq N'_{\epsilon'} \) is satisfied if \(a \geq N'_{\epsilon'} \).

Notice

\[
[(p' - \epsilon')(p^*/p' - \epsilon^*)a]\) \(\geq (p' - \epsilon')(p^*/p' - \epsilon^*)a - 2 \geq (p^*/p' - \epsilon^*)a - 2.
\]

Given \(\epsilon \in (0,p^*) \) we can fix an \(\epsilon' \in (0,p') \) and an \(\epsilon^* \in (0,\epsilon) \) such that

\[
\epsilon > \epsilon^* + \epsilon'p^*/p' \geq \epsilon.
\]

Therefore, there must be some \(N^* \in \mathbb{N} \) such that for all \(a \geq N^* \),

\[
[(p' - \epsilon')(p^*/p' - \epsilon^*)a]\) \(\geq (p^*/p' - \epsilon^*)a - 2 \geq (p^*/p' - \epsilon^*)a - 2 \geq (p^*/p' - \epsilon^*)a.
\]

If \(a \geq \max\{N_{\epsilon'},N'_{\epsilon'},N^*\} \) we know that \(W' \) must contain an independent \([(p^*/p' - \epsilon^*)a]\)-fold transversal of \(H_W \). Call this \([(p^*/p' - \epsilon^*)a]\)-fold transversal \(T_W \). And since we chose \(\epsilon^* \) to be less than \(\epsilon \), we also know that \(U' \) must contain a \([(p^*/p' - \epsilon^*)a]\)-fold transversal of \(H_U \). Call this \([(p^*/p' - \epsilon^*)a]\)-fold transversal \(T_U \). Since \(U \) is an independent set of vertices, we know the vertices in \(T_U \) form an independent set of vertices of \(H_U \). We know \(|E_H(U',W')| = 0\). Therefore, \(T_U \cup T_W \) is an independent \([(p^*/p' - \epsilon^*)a]\)-fold transversal of \(H \) and \(G \) is \((a,[p^*/p' - \epsilon^*)a]\)-DP-colorable.

For each \(\epsilon > 0 \) suppose \(M_\epsilon \) satisfies: \(G \) is \((a,[(p^*/p' - \epsilon^*)a]\)-DP-colorable for any \(a \geq M_\epsilon \), consider the sequences \(\epsilon_k = 1/k \) and \(a_k = \max\{k,M_\epsilon k\} \). For sufficiently large \(k \), guaranteeing \((p^*/p' - 1/k)k - 1 > 0\), we know

\[
\chi_{DP}(G) \leq \frac{a_k}{[(p^*/p' - \epsilon_k)a_k]} \leq \frac{a_k}{(p^*/p' - \epsilon_k)a_k - 1} = \frac{1}{p^*/p' - 1/a_k - 1/a_k} \leq \frac{1}{p^*/p' - 1/k - 1/k} = \frac{1}{p^*/p' - 1/2/k}.
\]
By taking the limit as \(k \to \infty \), it follows that \(\chi_{DP}^*(G) \leq 1/p^* \).

We are now ready to prove Theorem 6.

Theorem 6. Suppose \(G \) is an \(m \)-partite graph with partite sets \(A_1, A_2, \ldots, A_m \). Let

\[
d_j = \max \left\{ |N_G(v) \cap A_j| : v \in \bigcup_{k=j+1}^m A_k \right\},
\]

\(p^*_m = 1 \) and \(p^*_j \) be the unique solution in \((0, 1)\) to \(p = p^*_j(1-p)^{d_j} \) for all \(j \in [m-1] \). Then \(\chi_{DP}^*(G) \leq \frac{1}{p^*_1} \).

Proof. We will prove the stronger statement: \(G \) has the property that for any \(\epsilon \in (0, p^*_1) \) there is an \(N \in \mathbb{N} \) such that \(G \) is \((a, \lfloor (p^*_1 - \epsilon) a \rfloor)\)-DP-colorable for all \(a \geq N \), and consequently \(\chi_{DP}^*(G) \leq 1/p^*_1 \). This follows from induction on the number of partite sets \(m \) using Lemma 13. For the base case, when \(m = 2 \), \(G \) is the bipartite graph with partite sets \(A_1 \) and \(A_2 \). Let \(U = A_1 \) and \(W = A_2 \). Since \(G[W] \) is an independent set, it has the property that every \(a' \)-fold cover of \(G[W] \) has an independent \(a' \)-fold transversal (satisfying the requirement for Lemma 13 with \(p' = 1 \)). Let \(d = d_1 = \max_{w \in W}|N_G(w) \cap U| \) and \(p^*_1 \) be the unique element in \((0, 1)\) satisfying \(p = 1(1-p)^d \). Applying Lemma 13 completes the base case.

Next, we assume that our result holds for any given \(k \)-partite graph for some fixed \(k \geq 2 \).

Consider \(G \), a \((k+1)\)-partite graph with partite sets \(A_1, A_2, \ldots, A_{k+1} \). Let \(U = A_1 \) and \(W = \bigcup_{i=2}^{k+1} A_i \). Notice by the induction hypothesis that \(G[W] \) is a \(k\)-partite graph with partite sets \(A_2, \ldots, A_{k+1} \) that satisfies the hypothesis of Lemma 13 with \(p' = p^*_2 \). Applying Lemma 13 with \(d = d_1 \) and \(p^* = p^*_1 \) shows that the statement holds for \(G \).

Therefore, our result holds for any \(m \)-partite graph with \(m \geq 2 \) by induction.

Corollary 7 follows immediately from Theorem 6.

4 Lower Bound for Complete Bipartite Graphs

From this point forward, when considering a copy of the complete bipartite graph \(K_{n,m} \), we will always assume that the partite sets are \(A = \{v_1, \ldots, v_n\} \) and \(B = \{u_1, \ldots, u_m\} \). We will now use a probabilistic argument to prove Theorem 10.

Proof. Throughout this proof suppose \(m \in \mathbb{N} \) is fixed and \(m \geq 3 \). Since \(G \) contains more than one even cycle we know that \(\chi_{DP}^*(G) \geq 2 \) by Theorem 10. Our goal for this proof is to show that \(\chi_{DP}^*(G) \geq 2 + d \). So, suppose that \(a \) and \(t \) are arbitrary natural numbers such that \(2 < a/t \leq 2 + d \). Also, let \(r = a/t \) and \(\delta = r - 2 \) so that \(\delta \in (0, d) \). To prove the result, it is sufficient to show that \(G \) is not \((a, t)\)-DP-colorable.

We form an \(a \)-fold cover \((L, H)\) of \(G \) by the following (partially random) process. We begin by letting \(L(v_i) = \{(v_i, l) : l \in [a]\} \) and \(L(u_j) = \{(u_j, l) : l \in [a]\} \) for each \(i \in [2] \) and \(j \in [m] \). Let the graph \(H \) have vertex set

\[
\left(\bigcup_{i=1}^2 L(v_i) \right) \cup \left(\bigcup_{j=1}^m L(u_j) \right).
\]
Let $L(v)$ be an independent set of vertices in H for each $v \in V(G)$. Finally, for each $i \in [2]$ and $j \in [m]$, uniformly at random choose a perfect matching between $L(v_i)$ and $L(u_j)$ from the $a!$ possible perfect matchings. It is easy to see that $\mathcal{H} = (L, H)$ is an a-fold cover of G.

We want to show that with positive probability there is no (\mathcal{H}, t)-DP-coloring of G. For $i = 1, 2$, let A_i be the set of t-element subsets of $L(v_i)$. We say $(A_1, A_2) \in A_1 \times A_2$ is good for u_j if $|L(u_j) \cap (N_H(A_1 \cup A_2))| \geq t$, meaning there is a t-element subset of $L(u_j)$ that is independent of $A_1 \cup A_2$. We know we can find a (\mathcal{H}, t)-coloring of G if $(A_1, A_2) \in A_1 \times A_2$ is good for each vertex in $\{u_j : j \in [m]\}$. Let E_j be the event that (A_1, A_2) is good for u_j. In order for E_j to occur we need at least $3t - a$ of the vertices in $N_H(A_1) \cap L(u_j)$ to also be in $N_H(A_2) \cap L(u_j)$. So,

$$P[E_j] = \binom{a}{t}^{-1} \sum_{i=3t-a}^{t} \binom{t}{i} \binom{a-t}{t-i} = \binom{a}{t}^{-1} \sum_{i=0}^{a-2t} \binom{t}{i} \binom{a-t}{t-i}$$

$$= \binom{a}{t}^{-1} \binom{a-2t}{t} \sum_{i=0}^{a-2t} \binom{a-t}{i}.$$

Since $r \leq 2.125 < 2.5$, it easily follows that $a-2t < r/2$ and $a-2t < (a-t)/2$. Using a well known bound on the partial sum of binomial coefficients (see [2] Thm 3.1), we obtain:

$$P[E_j] = \binom{a}{t}^{-1} \sum_{i=0}^{a-2t} \binom{t}{i} \binom{a-t}{i} \leq \binom{a}{t}^{-1} \left(\sum_{i=0}^{a-2t} \binom{t}{i} \right) \left(\sum_{i=0}^{a-2t} \binom{a-t}{i} \right)$$

$$\leq \binom{a}{t}^{-1} \left(\frac{t}{a-2t} \right)^{a-2t} \left(\frac{t}{3t-a} \right)^{3t-a} \left(\frac{a-t}{a-2t} \right)^{a-2t} \left(\frac{a-t}{t} \right)^t$$

$$= \binom{a}{t}^{-1} \left(\frac{r-1}{(r-2)^2} \right)^{t(r-2)} \left(\frac{1}{3-r} \right)^{t(3-r)} (r-1)^t$$

$$= \binom{a}{t}^{-1} \left(\frac{\delta+1}{\delta^2} \right)^{t\delta} \left(\frac{1}{1-\delta} \right)^{t(1-\delta)} (\delta+1)^t.$$

The probability (A_1, A_2) is good for each vertex in $\{u_j : j \in [m]\}$ is then $(P[E_1])^m$. Since $|A_1 \times A_2| = \binom{a}{2}$, we can guarantee the existence of an a-fold cover, \mathcal{H}^*, for G such that there is no (\mathcal{H}^*, t)-coloring of G if

$$\binom{a}{t}^2 (P[E_1])^m < 1.$$

Using a well known bound on binomial coefficients, we compute

$$\binom{a}{t}^2 (P[E_1])^m \leq \binom{a}{t}^{2-m} \left(\frac{\delta+1}{\delta^2} \right)^{mt\delta} \left(\frac{1}{1-\delta} \right)^{mt(1-\delta)} (\delta+1)^{mt}$$

$$\leq \left(\frac{t}{a} \right)^{t(m-2)} \left(\frac{\delta+1}{\delta^2} \right)^{mt\delta} \left(\frac{1}{1-\delta} \right)^{mt(1-\delta)} (\delta+1)^{mt}$$
Thus, to prove the desired it suffices to show that:

\[
\left(\frac{\delta + 2}{\delta + 2}(\delta + 1)^{\delta + 1}(1 - \delta)^{\delta - 1} \right) < 1.
\]

Consider the function \(f : (0, 1) \to (0, \infty) \) given by \(f(x) = \frac{(x + 2)^{2/m(x + 1)^{x + 1}(1 - x)^{x - 1}}}{(x + 2)(x^2)} \). It is easy to verify that \(f \) is increasing on \((0, 0.5)\). So, since \(0 < \delta \leq d < 0.5 \),

\[
\left(\frac{\delta + 2}{\delta + 2}(\delta + 1)^{\delta + 1}(1 - \delta)^{\delta - 1} \right) = f(\delta) \leq f(d) = \frac{(d + 2)^{2/m(d + 1)^{d + 1}(1 - d)^{d - 1}}}{(d + 2)(d^2)} < 1
\]
as desired. \(\square \)

Notice that in our argument above the upper bound: \(\left(\binom{a}{t} \right)^{-1} \left(\sum_{i=0}^{a-2t} \binom{t}{i} \right) \left(\sum_{i=0}^{a-2t} \binom{a-t}{i} \right) \) used for \(\left(\binom{a}{t} \right)^{-1} \sum_{i=0}^{a-2t} \binom{t}{i} \left(\binom{a-t}{i} \right) \) is a fairly weak upper bound. So, our result may be able to be improved significantly with a better upper bound on \(\left(\binom{a}{t} \right)^{-1} \sum_{i=0}^{a-2t} \binom{t}{i} \left(\binom{a-t}{i} \right) \). For a concrete application of Theorem 10, notice that when \(m = 15 \) and \(d = 0.0959 \), the inequality in the hypothesis is satisfied. So, by Corollary 7 and Theorem 10, we have that \(2.0959 \leq \chi^*_{DP}(K_{2, 15}) \leq 2.619 \).

Acknowledgment. The authors would like to thank Doug West for helpful conversations regarding this paper.

References

[1] N. Alon, Z. Tuza, and M. Voigt, Choosability and fractional chromatic numbers, Discrete Mathematics 165-166 (1997), 31-38.

[2] A. Bernshteyn and A. Kostochka, On differences between DP-coloring and list coloring, Siberian Advances in Mathematics 29 (2019), 183-189.

[3] A. Bernshteyn, A. Kostochka, and X. Zhu, Fractional DP-colorings of sparse graphs, Journal of Graph Theory 93:2 (2020), 203-221.

[4] Z. Dvořák, X. Hu, and J.-S. Sereni, A 4-choosable graph that is not \((8 : 2)\)-choosable, Advances in Combinatorics 5 (2019), 9 pp.

[5] Z. Dvořák and L. Postle, Correspondence coloring and its application to list-coloring planar graphs without cycles of lengths 4 to 8, J. Combinatorial Theory Series B 129 (2018), 38-54.

[6] P. Erdős, A. L. Rubin, and H. Taylor, Choosability in graphs, Congressus Numerantium 26 (1979), 125-157.
[7] D. Galvin, Three tutorial lectures on entropy and counting, arXiv: 1406.7872 (preprint), 2014.

[8] S. Gutner and M. Tarsi, Some results on (a : b)-choosability, *Discrete Mathematics* 309 (2009), 2260-2270.

[9] H. Kaul and J. Mudrock, On the chromatic polynomial and counting DP-colorings of graphs, *Advances in Applied Mathematics* 123 (2021), article 102131.

[10] J. Mudrock, A note on the DP-chromatic number of complete bipartite graphs, *Discrete Mathematics* 341 (2018) 3148-3151.

[11] E.R. Scheinerman and D.H. Ullman, *Fractional Graph Theory*. John Wiley & Sons, 1997. URL: https://www.ams.jhu.edu/ers/wp-content/uploads/sites/2/2015/12/fgt.pdf

[12] Z. Tuza and M. Voigt, Every 2-choosable graph is (2m, m)-choosable, *Journal of Graph Theory* 22 (1996), 245-252.

[13] V. G. Vizing, Coloring the vertices of a graph in prescribed colors, *Diskret. Analiz.* no. 29, *Metody Diskret. Anal. v Teorii Kodovi Skhem* 101 (1976), 3-10.

[14] D. B. West, (2001) *Introduction to Graph Theory*. Upper Saddle River, NJ: Prentice Hall.