Euglenozoa: taxonomy, diversity and ecology, symbioses and viruses

Alexei Y. Kostygov1,2,†, Anna Karnkowska3,†, Jan Votýpka4,5,†,
Daria Tashyreva4,†, Kacper Maciszewski3, Vyacheslav Yurchenko1,6
and Julius Lukeš4,7

1Life Science Research Centre, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
2Zoological Institute, Russian Academy of Sciences, St Petersburg, Russia
3Institute of Evolutionary Biology, Faculty of Biology, Biological and Chemical Research Centre, University of
Warsaw, Warsaw, Poland
4Institute of Parasitology, Czech Academy of Sciences, České Budějovice (Budweis), Czech Republic
5Department of Parasitology, Faculty of Science, Charles University, Prague, Czech Republic
6Martinsonsky Institute of Medical Parasitology, Tropical and Vector Borne Diseases, Sechenov University,
Moscow, Russia
7Faculty of Sciences, University of South Bohemia, České Budějovice (Budweis), Czech Republic

†These authors contributed equally to this study.

Euglenozoa is a species-rich group of protists, which have extremely diverse lifestyles and a range of features that distinguish them from other eukaryotes. They are composed of free-living and parasitic kinetoplastids, mostly free-living diplonemids, heterotrophic and photosynthetic euglenids, as well as deep-sea symbiontids. Although they form a well-supported monophyletic group, these morphologically rather distinct groups are almost never treated together in a comparative manner, as attempted here. We present an updated taxonomy, complemented by photos of representative species, with notes on diversity, distribution and biology of euglenozoans. For kinetoplastids, we propose a significantly modified taxonomy that reflects the latest findings. Finally, we summarize what is known about viruses infecting euglenozoans, as well as their relationships with ecto- and endosymbiotic bacteria.

1. Introduction

It is generally accepted that Euglenozoa belong to the most unusual eukaryotes [1–3]. This is based on a substantial body of evidence showing that in a number of cellular processes and structures, these almost invariably mono- or bi-flagellated protists departed from what can be considered the ‘eukaryotic consensus’. However, this consensus was defined by the studies of just a handful of model organisms, most of which are multicellular [4]. Hence, since the majority of the extant eukaryotic diversity is hidden in protists [5], we prefer to use a ‘protist-centric’ view, which postulates that these unicellular forms actually are the eukaryotic standard, while the other lineages represent departures from the norm.

The phylum Euglenozoa splits into three well-defined lineages—euglenids, kinetoplastids and diplonemids—with different life strategies and distinct morphologies, yet still unified by a number of common features [6]. Although the euglenids are sometimes further subdivided into Euglenida and Symbiontida [3], both groups are usually treated together due to their morphological similarity, and we still cannot compare their genomic features in the absence of such data from the latter taxon [7]. A recent multigene phylogenetic reconstruction pointed to the potentially sister relationship between Symbiontida and Glycomonada (Kinetoplastea + Diplonemea) [8], suggesting that Symbiontida may become a separate group when more data become available (tree A).
Euglenida

Symbiontida

Diplonema

Kinetoplastida

Tree A. Euglenozoa. A consensus tree based on multiple phylogenetic reconstructions showing relationships among major clades. The unstable position of Symbiontida is marked with a dotted line and further described in the section on euglenid taxonomy.

Apart from summarizing taxonomic works, the euglenozoans are almost never treated together in the literature. The kinetoplastid flagellates are by far the best-studied representatives (almost exclusively from a parasitology-centric perspective), with most attention given to the causative agents of serious diseases, such as sleeping sickness, Chagas disease and leishmaniases [9,10]. The diplomemids, as detailed below, were considered a marginal group with no ecological relevance. That has changed recently [11,12], but still very few molecular data other than 18S rRNA are available for this almost exclusively marine group. Finally, the photosynthetic and heterotrophic euglenids are ecologically significant, primarily in freshwater ecosystems, and have potential in biotechnologies [2,13].

The striking differences in lifestyles and cellular (ultra-)structure obscure the significant similarities in basic molecular processes. Firstly, all these groups distinguish themselves from other eukaryotes by transcribing nuclear genes in a polycistronic manner [14]. In neither case are the co-transcribed genes functionally related, which distinguishes them from the prokaryotic operons. The usually very long polycistronic mRNA is subsequently processed into monomeric transcripts, which are subject to another—trans-splicing. At the 5′ end of each monocistronic mRNA, short spliced leader (SL) RNA, already equipped with a methylated cap, becomes attached. The corresponding SL RNA gene is invariably multicopy, and highly conserved, yet with minor species-specific differences [15].

The similarities do not stop there. In their single or dual flagella, all euglenozoans evolved an extra-axonemal structure termed the paraflagellar rod, which supports their flagella [16]. The paraflagellar rod has a characteristic lattice-like structure, which is composed of dozens of proteins, phylogenetically restricted to euglenozoans. It is reduced only in the endosymbiont-containing trypanosomatids and the amastigotes of *Leishmania* [17]. Studied so far only in kinetoplastids, the paraflagellar rod not only increases propulsion of the cell [18], but also participates in morphogenetic and metabolic roles, as well as in environmental sensing [19]. While all these synapomorphies were probably present in the euglenozoan common ancestor, euglenids, diplomemids and kinetoplastids have acquired significant differences over the course of evolution. This is particularly striking in the case of *cis*-splicing, since spliceosomal introns are almost absent in the latter group [20], while they are abundantly present in euglenids and diplomemids, many being seemingly non-canonical [11,21]. Another clear difference rests in the size of both nuclear and mitochondrial genomes. The dearth of high-quality data for nuclear genomes of euglenids and their absence in the case of diplomemids are due to the large size and repetitive character of the latter. The transcriptomes from both groups contain an extremely high number of protein-coding genes, probably reflecting their metabolic versatility [6,13]. The situation is quite different in kinetoplastids, the parasitic lifestyle of which led to gene reduction and streamlining [6]. Moreover, due to their small and compact genomes, they belong to the most sequenced eukaryotes [22].

Unexpected differences among the main euglenozoan lineages recently became apparent for their mitochondrial genomes and transcriptomes. Kinetoplastids harbour in their mitochondrial DNA in the form of relaxed (rarely supercoiled) circular molecules, either catenated or free, of two types—maxicircles and minicircles, with the former carrying all protein-coding genes, while the latter encode guide RNA genes required for the editing of the maxicircle transcripts [23]. The size of maxicircles is rather uniform, while the minicircles come in different variants [24]. In diplomemids, the single type of non-catenated circles uniquely encodes fragments of protein-coding genes, the transcripts of which have to be massively *trans*-spliced and edited in order to become translatable [25]. However, in both groups, the mitochondrial DNA is inflated, and its transcripts are extensively edited [26]. This contrasts with euglenids that lack any form of editing in their mitochondrion, which also contains a small genome composed of heavily fragmented linear molecules [27]. Probably, the most important difference among these groups is the presence of a secondary green plastid solely in euglenids, which have acquired it after their divergence from other euglenozoans [2,28].

Until recently, our knowledge of different groups within euglenozoans was much influenced by the availability of full-size nuclear genome sequences. While hundreds of high-quality genomes are available for trypanosomatids [22], only one such genome is available for bodonids [29] and euglenids [13], respectively, and none for diplomemids. However, this is bound to change soon, mostly due to the ever-decreasing costs and improving sequencing technologies. Recent comparative analyses of molecular features among kinetoplastids, euglenids and diplomemids were based on transcriptomes available for all of them [30].

Future studies of euglenozoans will be heavily influenced by the accessibility of their representatives to (efficient) genetic manipulations. The amenability of trypanosomatids to a range of genetic tools turned them into arguably the functionally best-studied protozoa [31], while most other groups significantly lag behind. However, this unfavourable situation has changed recently, as first reports of genetic modifications of bodonids, diplomemids and euglenids have been published [32–36]. Anticipated improvement of the methodologies of forward and reverse genetics, which would allow medium- or high-throughput functional analyses in these taxonomic groups, almost guarantee major discoveries.
Euglenozoa is a very peculiar group, encompassing organisms strikingly dissimilar in their ecology, ranging from autotrophy to obligate parasitism. This inevitably influenced their classification in the era of the two-kingdoms-of-life paradigm. Kinetoplastids and diplonemids were historically considered predominantly as protozoa, and thus the International Code of Zoological Nomenclature (ICZN) was used for their nomenclature, while euglenids have been classified by different authors as either protozoa or algae. This ambiguity is reflected in their nomenclature, which has been governed in parallel by the ICZN as well as the International Code of Botanical Nomenclature (ICBN) and the International Code of Nomenclature for algae, fungi and plants (ICN), which replaced the latter in 2011. Apart from formal differences, such as the rules on citing authorship of names and emendations, this led to significant issues that include certain taxa having different names depending on the selected system (zoological or botanical). This concerns names of family-group taxa, which have different suffixes depending on the system and, more importantly, names of genera, which may be valid according to one code, but regarded as junior homonyms, and therefore replaced with different names. In addition, the ICZN jurisdiction does not extend above the family-group level, whereas ICN does not have such a restriction. Here, the nomenclature of kinetoplastids and diplonemids follows the ICZN, while for some euglenid groups, the ICN is used by default with the valid names according to the ICZN indicated.

2. Kinetoplastea

2.1. Biology

2.1.1. Free-living kinetoplastids

The common ancestor of Kinetoplastea apparently was a free-living benthic bacteriivorous organism using the anterior flagellum for motion and transporting food particles to the cytostome, while the posterior one ensured gliding on the substrate (plate A, 1,2,4–10,12–14). This lifestyle is still preserved by a large proportion of kinetoplastids [37]. They inhabit permanent and temporary water bodies with various levels of salinity (freshwater to hypersaline) and some species

Plate A. Bodonids. Light micrographs of cultured (1) Actuariola framvarensis (provided by Thorsten Stoeck); (2) Neobodo curvifilus (provided by Kristina Prokina and Denis Tikhonenkov); (3) Rhynchomonas nasuta (provided by Kristina Prokina and Denis Tikhonenkov); (4) Rhynchobodo sp. (provided by Kristina Prokina and Denis Tikhonenkov); (5) Azuminobodo hoyamushi (provided by Shinichi Kitamura and Euichi Hirose); (6) Dimastigella mimosa (provided by Kristina Prokina and Denis Tikhonenkov); (7) Bordamobranos tropicana (provided by Kristina Prokina and Denis Tikhonenkov); (8) Klosteria bodomorphis (provided by Kristina Prokina and Denis Tikhonenkov); (9) Bodo saltans (provided by Kristina Prokina and Denis Tikhonenkov); (10) Cruzella marina; (11) Allrobodo chlorophagus (provided by Alastair Simpson and Yana Eglit); (12) Procryptobia sarokini (provided by Kristina Prokina and Denis Tikhonenkov); (13) Parabodo caudatus (provided by Kristina Prokina and Denis Tikhonenkov); (14) Perkinsella sp. (arrow indicates its position inside Paramoeba pemaquidensis) (provided by Ivan Fiala); (15) Giemsa-stained Trypanoplasma borreli (provided by Doris Malyheva); (16) Cryptobia vaginalis (provided by Marina N. Malyheva); (17) Toluidine-stained semi-thin section of fish gill with attached Ichthyobodo necator (provided by Iva Dykova). Scale bar, 10 μm (1–8; 10–17); 5 μm (9).
were shown to tolerate the transition from marine water to freshwater, and vice versa [38–41]. Kinetoplastids are very numerous in benthic communities, where they constitute 5–20% of the total biomass of all heterotrophic flagellates, second only to euglenids, suggesting their important role in controlling bacterial growth [42]. They are abundant in seawater ice and some species can be cultured even from the pelagic zone, demonstrating their presence there at least to the cystic stage [43,44]. Recent studies using molecular methods demonstrated that in many water bodies, most of the kinetoplastid biomass is created by neobodoniids, of which Neobodo, Rhynchomonas and Dimastigella are the most frequent ones (plate A, 7, 9, 14) [45–47]. An extensive analysis of free-living kinetoplastids in hundreds of globally collected oceanic samples revealed their abundance being 0.14%, with highest abundance in the mesopelagic zone. Their community structure and richness are significantly influenced by oxygen concentration, salinity and temperature [48].

Moreover, many kinetoplastids live in the soil and readily settle on various organic substrates, such as faeces, composts, etc. [49,50]. Most of the free-living flagellates graze on bacteria with the help of cytosomal lips or, as in Rhynchomonadae, a flagellum-attached motile proboscis. In addition to bacterial cells, their digestive vacuoles can contain microalgae or detritus particles. Parabodo caudatus (plate A, 13), being a relatively large (up to 20 µm long) species, exerts both bacterivory and predation, while Rhynchobodo spp. (plate A, 4) are obligatory predators devouring other flagellates [37].

Some kinetoplastids are known to form cysts, which help them to survive adverse conditions, for example, pass through the digestive system of an animal and settle in its faeces after their discharge [37]. Moreover, some of these flagellates become very tolerant to harsh environments even at the active (non-encysted) stage. This resulted in a series of records of free-living kinetoplastids (Parabodo caudatus, Dimastigella trypaniformis and Procryptobia tremulans) from stool and urine samples or urine-impregnated animal cage bedding sometimes misinterpreted as evidence of their parasitic nature [51–54]. Interestingly, such tolerance in parabodoniids apparently preadapted them to parasitism, which originated in this group at least twice [55].

2.1.2. Parasitic, mutualistic and commensal non-trypanosomatid kinetoplastids

Multiple transitions to various forms of symbiosis can be observed in all orders of Kinetoplastidae except Eubodoniida (tree B). The earliest branch within this group, Prokinetoplastida, does not contain any described free-living forms. The ectoparasitic Ichthyobodo, affecting both freshwater and marine fish, is generally similar to free-living kinetoplastids (plate A, 17). In contrast with other symbiotic forms, it anchors on the host epithelium with its rostrum forming an insertion disc and a cytostome process, which is inserted directly into the cytoplasm of the host cell and feeds by myzocytosis [56]. Accumulation of parasites on the epithelium of gills and fins leads to tissue necrosis, which often entails the death of fish, especially fingerlings. Dissemination of Ichthyobodo spp. occurs using a free-swimming stage lacking the rostrum [57].

Another prokinetoplastid genus, Perkinsella, represents one of the most simplified symbiotic eukaryotes, permanently living in the cytoplasm of amoebae, such as Paramoeba (plate A, 14) [58]. The nature of their relationships is mutualistic as judged by reciprocal metabolic dependence of the two partners, evident from the study of their genomes [59]. Since both Ichthyobodo and Paramoeba live on fish gills, it was proposed that an ancestral Ichthyobodo-like flagellate had been engulfed, but not digested, by an amoeba, and eventually evolved into the endosymbiont Perkinsella [58]. Perkinsella is tightly associated with cosmopolitan Paramoeba, lacks any traces of flagellum (plate A, 14), and has an extremely reduced metabolism, as well as the largest known mitochondrial DNA [59].

The currently unclassified flagellate Desmomonas protomychi, a parasite of the turbellarian Protrichynia, shares two features with Ichthyobodo: polykinetoplast DNA and attachment to the host cell by an appendage at the anterior end. However, this structure performs an exclusively mechanical function, while feeding is supposed to occur via osmotrophy [60]. Another flagellate with an uncertain taxonomic position, Cephalothamnium cyclopum, is the only described colonial kinetoplastid, which attaches to freshwater copepods [61]. Like its free-living relatives, this flagellate feeds by intercepting bacterial cells with its anterior flagellum and directing them to cytostomal opening. Given that C. cyclopum uses its host only as a substrate and the only inconvenience from its presence may consist of decreased hydrodynamic characteristics of the crustacean, this kinetoplastid is considered as ectocommensal.

Azumihobodo hiyomushi is a neobodonid parasite of ascidians, of which the most important is the sea pineapple Halocynthia roretzi, a cultivated edible species popular in Korea and Japan (plate A, 5). By invading the tunic, this flagellate is responsible for the so-called soft tunic syndrome, associated with high mortality rates [62]. Being seasonal, it survives the period of high temperatures in resistant cysts attached to the substrate [63,64]. Another parasitic neobodoni is the recently described Allocerebro chlorophagus, invading the urotelium and the main filaments of the green siphonal alga Codium fragile and feeding on its chloroplasts and starch granules (plate A, 11) [65].

Parasitic parabodoniids are represented by the genera Trypanoplasma and Cryptobia, which often used to be combined into one genus due to morphological similarity. Trypanoplasma spp. are extracellular parasites of fish bloodstream transmitted by haematophagous leeches during blood-feeding (plate A, 15) [66]. However, at least two species, T. salmositica and T. bullocki, can exit to the body surface where they reside in the mucus and can be transmitted to other fish by direct contact [57]. After ingestion with the blood, parasites multiply in the leech crop without significant changes in morphology and migrate to the proboscis sheath, wherefrom they are transmitted to the bloodstream of another fish [67]. The severity of infection—acute to chronic—apparently depends more on the level of mutual adaptation as well as the individual variation of host immunity between host and parasite than on parasitaemia [68–70]. There is only a single record of a trypanoplasma in a non-fish host, namely in a salamander [71].

The genus Cryptobia can be subdivided into three distinct ecological groups: (i) ectoparasites of fish, (ii) endoparasites of invertebrates and (iii) endoparasites of fish. Members of the first group, represented by Cryptobia carassii, live on fish gills and are regarded as commensals feeding on dead
epithelium and microorganisms [57]. However, gill infections by *C. branchialis* are associated with high mortality in adult cultured carp, goldfish and catfish as well as in juvenile grass carp [72]. *Lamellasona bacillaria*, described as a monoflagellated kinetoplastid living on the fish gills, may also belong to this group of cryptobiae [73].

In invertebrates, *Cryptobia* infections are quite diverse in terms of localization within the host and taxonomic groups parasitized. Some of them (*Cryptobia helicis*, *C. innominata* and *C. carinariae*) were found attached to the epithelium of spermatheca of floating sea snails and various pulmonates [74–76]. The vagina of haematophagous leeches often serves as a habitat of *C. vaginalis* (plate A, 16) [77], while *C. adonellae* was described from the excretory system of an ectoparasitic marine worm [78]. Other species were described from the intestine of a chaetognath (*C. sagittae*) and a freshwater planarian (*C. dendrococli*), the latter of which was also detected in the eggs, pointing to a potential transovarial transmission [79,80]. It is presumed that *Cryptobia* spp. from the reproductive system are transmitted via sexual contacts [75,81], while the ectoparasites of aquatic animals should have free-swimming swarmers, although this has not been confirmed [73]. The cryptobiae found in the intestinal contents of frogs and lizards appear to be accidentally ingested parasites of invertebrates, as judged by the morphology of the flagellates and uniqueness of such records [82,83].

In the third group of cryptobiae, encompassing piscine intestinal flagellates, six out of seven described species are known as specific parasites of marine fish. These species do not display any pathogenic effect and therefore are usually considered as commensals [57]. The only known freshwater representative of this group, *C. iliobius*, infects various cichlid fishes and causes gastroenteritis often associated with invasion of other organs, leading to high mortality [84–86]. Cryptobia belonging to this group can be transmitted directly by ingestion from water and by feeding on infected corpes [57]. *Jarrelia atramenti*, a flagellate described from the blowhole mucus of a pygmy sperm whale, appears to be a harmless commensal feeding on detritus and/or bacteria [87]. Its resemblance to parasitic parabodonids, proposed to be evidence of their relatedness, may be in fact a parallelism caused by similar living conditions. Indeed, flexible body and flagellar attachment evolved independently in *Cryptobia*, *Trypanoplasma* and *Dimastigella*.

2.1.3. Trypanosomatids

The family Trypanosomatidae contains exclusively obligate parasites and represents the most diverse kinetoplastid group in terms of the number of species described and/or revealed using molecular typing [88–90]. Among parasitic protists, it has the widest host range: animals (predominantly insects and vertebrates), flowering plants and even ciliates [91]. Based on the type of life cycle, trypanosomatids are usually subdivided into two non-taxonomic groups. Monoxenous species develop in a single host, whereas dixenous switch between two, of which one serves as a vector. Molecular phylogenies suggest that the most recent common ancestor of trypanosomatids was a monoxenous parasite of insects [92,93], with the dixenous lifestyle emerging independently at least three times in distantly related lineages of these flagellates [55].

2.1.3.1. Monoxenous trypanosomatids

Most trypanosomatid genera are monoxenous and the overwhelming majority of their species parasitize two large groups of insects: Diptera and Heteroptera (i.e. flies and true bugs, respectively) [91,94]. Among other insects, used by them as hosts are Hymenoptera (bees, bumblebees, wasps and sawflies), Siphonaptera (fleas), Blattodea (cockroaches), Lepidoptera (moths) and Trichoptera (caddis flies). The single records of monoxenous trypanosomatids from a louse (Anoplura), a plant hopper (Hemiptera), a scorpion fly (Mecoptera) and a domestic cricket (Orthoptera) may refer to accidental non-specific infections [91]. The adaptation to insects, which are omnipresent, extremely diverse and abundant animals, probably predetermined the transition of these flagellates to other hosts. Trypanosomatids invaded Acari (ticks and mites) and freshwater ciliates living side-by-side with insects, vertebrates and plants. The two latter host groups are associated with dixenous trypanosomatids, although monoxenous species have also been occasionally reported from them [95,96]. The presence of trypanosomatids in nematodes and molluscs [97] may indicate a more complex evolutionary pathway of these flagellates, but first it requires confirmation with modern methods.

The ancestral and still most common lifestyle of monoxenous trypanosomatids includes stages that inhabit insect gut, usually being attached to its wall, and some either active (i.e. flagellate) or inactive (endomastigote or cyst-like amastigote) cells are discharged with faeces. Other insects become infected by feeding on contaminated substrates or directly on fresh faeces (coprophagy) [98]. In addition, the parasites can be transmitted between insects via cannibalism and predation, although the latter way is probably responsible only for the transmission of non-specific transient infections [99]. Some monoxenous trypanosomatids can migrate within insects to other locations in order to facilitate transmission [89]. Thus, parasitism in Malpighian tubules of female firebugs ensures timing the mass production of infective cyst-like amastigotes of *Blastocrithida papi* to oviposition [100]. Haemocoeal invasion allows the inheritance of *Herpetomonas sauvagei* between developmental phases of the host saw fly [101], while in the case of *Leptomonas pyrrhocoris*, this increases the efficiency of transmission by cannibalism [102]. The role of intracellular stages, which are very rare in life cycles of monoxenous trypanosomatids, is uncertain [103]. However, the potential to live intracellularly probably preconditioned transition of these flagellates to dixeny (see below) and parasitism in ciliates. The latter has been repeatedly described from various ciliate species where it was always associated with the macronucleus and, at least in some cases, effective transmission between host cells was observed pointing to specific relationships [104–107].

Although most monoxenous trypanosomatids are considered non-pathogenic or even commensals [98], this view is influenced by the fact that their effects on the hosts are poorly known and have been investigated in only a few practically important or model insect species. It was shown that trypanosomatid infections lead to elevated mortality rates in triatomine bugs, honeybees, sawflies, eye gnats, fruit flies, firebugs and water striders [101,108–112]. Other adverse consequences of trypanosomatid infections on insects include delayed development, decrease in body weight, disturbed digestion and excretion, lower endurance, impaired foraging efficiency and lower fecundity [113–118]. The above effects
have a significant impact on host fitness, and thus trypanosomalids play an important role in controlling the population sizes of their hosts.

2.1.3.2. Phytomonad

Some trypanosomalids acquired the ability to live in plants, on which their bug hosts feed and, thus, became dixenous. These flagellates belong to the genus Phytomonas and parasitize phloem, fruits, latex or seeds of various plants [119, 120]. The bug hosts serve as vectors and, since the contagiousive route of transmission to plants is not very effective, the parasites migrate from the intestine through haemocoeal to salivary glands [96]. Here, the infective endomastigotes are formed, which are inoculated into plant juices with the bug’s saliva during feeding [103, 121, 122]. Interestingly, in some species, no development occurs in the host gut, which is then used only for the transit of flagellates [103, 123]. At least one phytomonad species, *P. staheli*, described secondarily monoxenous, since it inhabits a predatory pentatomid bug [124]. The pathogenicity of *Phytomonas* for insects remains unknown, while their effect on plants ranges from asymptomatic infections to serious diseases of cultural plants [120]. *Phytomonas francai* living in lactiferous ducts of manioc is associated with root dystrophy; *P. leptosorous* causes phloem necrosis and subsequent lethal wilt of coffee trees; *P. staheli* obstructing phloem of oil and coconut palms accounts for acute wilt in these plants; and an unnamed phytomonad is responsible for the withering of red ginger [96]. These diseases have a high impact on agriculture in developing countries and result in serious economic losses [119].

2.1.3.3. Leishmania and related dixenous genera

The genera *Leishmania*, *Porscia* and *Endotrypanum* represent a monophyletic group, whose parasitism in blood-sucking sandflies (Phlebotominae) allowed them to become dixenous parasites of mammals [125]. Secondarily, some *Leishmania* spp. changed either the vertebrate host or the vector: the subgenus *Savoishmania* switched from mammals to lizards and snakes, while the subgenus *Mundinia* started using biting midges (Ceratopogonidae) instead of sandflies [126–128]. *Leishmania* is most species-rich genus and many of its members are human parasites, which drew most attention to this group, while the information about *Porscia* and *Endotrypanum* is scarce. The development of leishmaniae in vectors is confined to the intestine, although there are some differences between subgenera in the localization of the proliferative procyclic promastigotes (midgut, pylorus and/or hindgut) [127]. However, they eventually migrate to the anterior midgut, where they destroy the chitin lining of the stomodeal valve and secrete a gel plug obstructing the alimentary canal, thus disturbing the normal sucking process [129]. An infected sandfly regurgitates the plug with metacyclic flagellates into the vertebrate bloodstream and due to the inability to swallow the blood makes more attempts increasing chances of spreading the parasites [130]. In the vertebrate, the metacyclic promastigotes are quickly taken up by phagocytic cells and proliferate in their phagolysosomes as amastigotes [131]. Depending on the behaviour of infected macrophages, leishmaniasis manifests itself as either cutaneous (skin ulcers), mucocutaneous (sores in the mucosa of nose, mouth or throat) or visceral, which affects internal organs such as the liver, spleen and bone marrow and is usually fatal without treatment [127].

About 20 species of *Leishmania*, belonging to the subgenera *Leishmania*, *Viannia* and *Mundinia* parasitize humans. They are responsible for up to one million new cases of leishmaniasis annually, of which up to 90,000 correspond to the visceral form [132]. The visceral form of the disease can be spread even outside the endemic areas either venerally or congenitally [133–136]. In addition to humans, *Leishmania* was reported to infect about 70 species of mammals (rodents, carnivores, xenarthans, hyraxes, marsupials, chiropterans, ungulates lagomorphs and primates), with most cases being asymptomatic. The only notable exceptions are canine visceral leishmaniasis, with severe symptoms in over 50% of cases [137], and rare cases of atypical cutaneous leishmaniasis in cows and horses [138, 139]. *Porcisia* living in porcupines and *Endotrypanum* parasitizing sloths and squirrels do not appear to produce any symptoms [125]. However, *Leishmania colombiensis* (now assigned to *Endotrypanum*) is known to cause both cutaneous and visceral leishmaniasis-like diseases in humans [140, 141].

2.1.3.4. Trypanosoma

Trypanosoma is a very speciose genus enclosing approximately 500 species or over 60% of all described species of the family Trypanosomatidae (plates B and C, 18–40). While the frog-infecting type species (T. sanguinis = T. rotatorium) described by Gruby already in 1843 may be of marginal importance, ever since trypanosomes become the best-known protists. Life cycles of these flagellates vary considerably as they parasitize all classes of vertebrates (from agnathans to mammals) and are transmitted by a wide range of vectors including blood-sucking insects (flies, bugs, fleas and lice), ticks, leeches and even vampire bats [9, 91]. In vertebrates, they occur most frequently as trypomastigotes, rarely as epimastigotes or amastigotes, while in invertebrates, they predominantly exhibit most trypomastigote or epimastigote morphology, or infrequently occur as promastigotes and amastigotes [92].

From the practical point of view, the most important mammalian trypanosomes were traditionally subdivided into two sections or intrageneric taxa that follow distinct developmental programmes [142]: Salivaria (derived from saliva), with the best-known member being the *Trypanosoma brucei* complex causing human African sleeping sickness and nagana in live-stock and other animals (plate C, 32–34), terminate development in the salivary glands mouthparts of the vector and are transmitted to a vertebrate host by bite. Stercoraria (stercus = dung) exemplified by *Trypanosoma cruzi* complex species causing Chagas disease (plate C, 37–38), terminate development in the rear part of the digestive tract of the vector with the transmission to the vertebrate host being contaminative by excrements. With the advent of molecular phylogenetics, it became obvious that neither mammalian trypanosomes in general nor any of the two proposed sections represent monophyletic groups, and therefore they do not deserve a taxonomic status [89, 143, 144]. Nevertheless, the words salivarian/stercorarian still can refer to the type of development within the vector. Non-mammalian trypanosomes generally follow the stercorarian developmental programme, but in leeches, parasites migrate to the proboscis sheath to be transmitted during blood-sucking [57].
Trypanosoma brucei evansi and T. b. equiperdum are two notable exceptions (plate C, 33–34), as they lost the capacity to survive in the gut of an insect vector [145]. The former subspecies therefore switched to mechanical transmission, which allowed it to use non-specific vectors, while the latter adapted to the direct (veneral) transmission and thus became a monoxenous parasite [146]. In other species, direct transmission can also occur, but is facultative [147–150]. The most (in)famous species are Trypanosoma brucei and T. cruzi, which cause serious human diseases—sleeping sickness and Chagas disease, respectively [151]. The first one is transmitted by tsetse flies in Africa and invades various tissues, but primarily the blood and adipose tissue [152], as free-swimming trypomastigotes and eventually infects cerebrospinal fluid with fatal consequences [153]. Being a serious public health threat in the past, this disease is now on the way to elimination [154]. *Trypanosoma cruzi* is transmitted by triatomine bugs among a wide range of mammalian hosts, in which it develops in various organs and tissues as intracellular amastigotes [155]. In most cases, the disease does not manifest clinical signs at the beginning, but during the prolonged chronic phase, it significantly undermines health in the human population of South and Central America leading to increased mortality rates [156]. *Trypanosoma rangeli* has the same geographical distribution and vectors as *T. cruzi* and is also able to infect humans but appears to be non-pathogenic [157]. Some tsetse-transmitted African trypanosomes, such as *T. vivax*, *T. congolense* and *T. brucei brucei*, cause serious diseases in livestock, collectively named African animal trypanosomiasis. These diseases are associated with high mortality rates and lead to significant damage in animal husbandry, although some local breeds and wild animals acquired tolerance to them [158]. For the overwhelming majority of trypanosome species, their effects on the host are not known and they are often considered as non- or subpathogenic and can cause observable disease only under stress conditions. This is exemplified by piscine trypanosomes, which seem to be well tolerated in wild fish populations [159]. However, in farmed fish or wild juvenile individuals, infections are associated with high mortality rates due to anaemia, anoxia and tissue damage [160–163].

2.2. Taxonomy

This section contains nomenclatural changes and according to the ICZN requirements for publications in online-only journals, this work has been registered in Zoobank: urn:lsid:zoobank.org:pub:81EA01C5-8989-4BBD-9C64-04D8132307D.

Class Kinetoplastea Honigberg, 1963 emend. Vickerman, 1976 (tree B).

Possess kinetoplast, represented by one or several large masses of mitochondrial DNA termed kinetoplast DNA (kDNA). Four kinetoplast types are distinguished: eukinetoplast—dense network of interlocked DNA circles, prokinetoplast—single compact mass not organized into a network, polykinetoplast—several clusters scattered over the mitochondrial lumen, and pankinetoplast—a diffuse mass occupying a large portion of a mitochondrial lumen [164]. Ancestrally, kinetoplastids bear two heterodynamic flagella, of which one or both were lost in some lineages; mitochondrial RNA undergoes editing represented by deletions and insertions of uridine residues. Some features considered for a long time to be defining (e.g. polycistronic transcription of nuclear genes, trans-splicing via spliced leader RNA, compartmentalized glycolysis, base J etc.) were recently shown to be present also in other euglenozoan lineages [6].

Note: Until relatively recently, all kinetoplastids have been classified into two large groups—bodonids (free-living, ectocommensals, ecto- or endoparasitic biflagellate species) and trypanosomatids (exclusively endoparasitic unflagellate species). However, the 18S rRNA gene-based molecular phylogenetic analysis showed paraphyly of bodonids, which were subsequently separated into four orders
Thus, now the term ‘bodonids’ for the designation of non-trypanosomatid kinetoplastids is deprecated. As judged by available environmental sequences, the diversity of kinetoplastids is much broader than that described to date, and there are some undiscovered lineages potentially representing new high-level taxa (up to the subclass) [166].

- Subclass Prokinetoplastia Vickerman, 2004. The phylogenetic group enclosing the genera *Ichthyobodo* and *Perkinsela* as judged by 18S rRNA gene-based trees [165].
- Order Prokinetoplastida Vickerman, 2004. With the same definition as the subclass.
- Family Ichthyobodonidae Isaksen et al., 2007. Ectoparasitic on freshwater and marine fish; polykinetoplastid; biflagellate; the flagellar pocket extends to the lateral cell surface as a longitudinal groove; the modified anterior end (rostrum), present in trophozoites, is used for attachment [167]. Single genus.
- Genus *Ichthyobodo* Pinto, 1928. With the same definition as the family.
- Type species: *Costia necatrix* Henneguy, 1883 (= *Ichthyobodo necator*) (plate A, 17).
- Family Perkinselidae Kostygov, fam. nov.
 - Diagnosis: The phylogenetic group comprising *Perkinsela Dyková, Fiala and Pecková*, 2008 (type genus) and related endosymbiotic forms as judged from 18S rRNA gene-based trees [168,169].
 - Genus *Perkinsela* Dyková, Fiala and Pecková, 2008. Permanently endosymbiotic in the cytoplasm of various amoebae (*Paramoeba, Neoparamoeba, Janickina*, etc.),

Plate C. *Trypanosoma* (terrestrial clade). Light micrographs of Giemsa-stained (24) *T. (Trypanomorpha) avium* ex *Lanius collurio*; (25) *T. (Ornithotrypanum) everetti* (provided by Gediminas Valkiūnas); (26) *T. (Avitrypanum) culicivorus* (experimental infection) (provided by Milena Svobodová); (27) *T. (Megatrypanum) theileri* ex cattle (provided by Andrei Mihalca); (28) *T. (Squamatrypanum) casavelli* ex *Crocuta durissus* (provided by Erney Camargo and Marta Teixeira); (29) *T. (Crocotrypanum) terena* ex *Caiman vajari* (provided by Erney Camargo and Marta Teixeira); (30) *T. (Australotrypanum) copemani* ex *Bettongia penicillata* (provided by Sarah Keatley and Andrew Thompson); (31) *Trypanosoma livingstonei* ex African bat (provided by Erney Camargo and Marta Teixeira); (32) *T. (Trypanozoon) brucei brucei* ex mouse (experimental infection); (33) *T. (Trypanozoon) brucei equiperdum* ex mouse (experimental infection); (34) *T. (Trypanozoon) brucei evansi* ex mouse (experimental infection); (35) *T. (Herpetosoma) lewisi* ex *Rattus* sp.; (36) *T. (Aneza) vespreri* ex *Pipistrellus pipistrellus*; (37) *T. (Schizotrypanum) cruzi* (S-shape; experimental infection); (38) *T. (Schizotrypanum) cruzii* (S-shape; experimental infection); (39) *T. (Duttonella) vivax*; (40) *T. (Nannomonas) congolense*. Scale bar, 10 µm (24–40).
parasitophorous vacuole not formed; oval aflagellate cells; massive prokinetoplast; usually binucleate; microtubular corset reduced and present only in a thin layer on both sides of the kinetoplast; no oral apparatus, no flagellum [58, 169].

Type species: *Perkinsiella amoebae* Hollande, 1980 (= *Perkinsiella amoebae*).

Monotypic (plate A, 14).

Note: Axenic cultivation is impossible, but can be grown in the host amoebae.

- **Subclass Metakinetoplastia** Vickerman, 2004. The phylogenetic group enclosing Neobodonida, Parabodonida, Eubodonida and Trypanosomatida as judged by 18S rRNA gene-based trees [165].

- Order Eubodonida Vickerman 2004. Free-living; biflagellate, with non-tubular mastigonemes on the anterior flagellum; prokinetoplasy; phagotrophic, with anterolateral cytostome bordered by lappets and no conspicuous preoral ridge, cytopharynx traversing body [165]. Single family.

- Family Bodonidae Bütschli, 1883. With the same definition as the order. Single genus.

- Genus *Bodo* Ehrenberg, 1830. Solitary, free-living; phagotrophic; prokinetoplasy; free recurrent flagellum; non-prominent rostrum; lateral cytostome—cytopharynx complex without prismatic rod [165].

 Type species: *Bodo saltans* Ehrenberg, 1830 (plate A, 9).

- Order Neobodonida Vickerman, 2004. Free-living, or parasitic; solitary; biflagellate, usually without mastigonemes, both flagella free or the posterior one attached to the cell body; pro- or polykinetoplasy; apical cytostome on preflagellar rostrum; phagotrophic [3, 165].

- Family Allobodonidae Goodwin et al., 2018. The phylogenetic group enclosing *Allobodo* and related forms on 18S rRNA gene-based trees [65].

- Genus *Allobodo* Goodwin et al., 2018. Parasitic in seaweeds; both flagella free; with apical rostrum; phagotrophic, short tubular cytopharynx not supported by a microtubular rod; pankinetoplasy [65].

 Type species: *Allobodo chlorophagus* Goodwin, Lee, Kugrens and Simpson, 2018. Monotypic (plate A, 11).
Family Neobodonidae Cavalier-Smith, 2016. Free-living or parasitic in animals; biflagellate, flagella free or attached; rostrum rigid; pro-, poly- or pankinetoplastic; phagotrophic, bacterivorous or eukaryovorous [170].

Note: There is no evidence that the family is monophyletic.

- **Genus Actuariola** Stoeck, Schwarz, Boenigk, Schweikert, von der Heyden and Behnke, 2005. Free-living; solitary, phagotrophic; both flagella free and without mastigonemes; prokinetoplastic; cytopharynx supported by a non-prismatic microtubular rod [171].

 Type species: *Actuariola framwarensis* Stoeck, Schwarz, Boenigk, Schweikert, von der Heyden and Behnke, 2005. Monotypic (plate A, 1).

- **Genus Azumiobodo** Hirose, Nozawa, Kumagai and Kitamura, 2012. Parasitic in ascidians; anterior flagellum attached to the rostrum in basal part, posterior flagellum usually attached to the cell body; polykinetoplastic; cytostome at the apex of the long rostrum; curved cytopharynx, presence of supporting rod not assessed; unique gloular bodies with electron-dense bands of various shapes [62].

 Type species: *Azumiobodo hayamushi* Hirose, Nozawa, Kumagai and Kitamura, 2012. Monotypic (plate A, 5).

- **Genus Cruzella** Faria, Cunha and Pinto, 1922. emend Kostygov.

 Diagnosis: Free-living, solitary, two mastigoneme-free flagella originating under beak-shaped rostrum; phagotrophic, cytostome on rostrum tip, well-developed tubular cytopharynx without supporting microtubular rod; polykinetoplastic; intensive metaboly [172–174].

 Type species: *Cruzella marina* Faria, Cunha and Pinto, 1922. Monotypic (plate A, 10).

- **Genus Cryptaulaxella** Kostygov, nom. nov.

 Diagnosis: Free-living, solitary; both flagella free; prominent spiral groove on the surface; the presence of extrusomes questionable; ultrastructure not studied; type of kinetoplast uncertain [49,175].

 Type species: *Spiromonas akopos* Skuja, 1939 (= *Cryptaulaxella akopos* comb. nov.).

 Justification: This newly proposed name refers to the genus previously known as: (i) *Spiromonas* Skuja, 1939—homonym of *Spiromonas* Perty, 1852 [176] (Dinoflagellata); (ii) *Crypaulax* Skuja, 1948—homonym of *Cryptaulax* Tate, 1869 [177] (Gastropoda) and *Cryptaulax* Cameron, 1906 [178] (Insecta); and (iii) *Cryptaulaxoides* Novarino, 1996—homonym of *Cryptaulaxoides* Uchida 1940 (Insecta).

 Etymology: The new name and the two previous ones share the Greek roots κρυπτός (hidden) and σωκός (furrow), referring to the distinctive feature of the genus, and the feminine gender.

Note: All described species were once assigned to *Rhynchobodo* and the diplonemid *Hemistasia* based on light microscopy [179]. Molecular phylogenetic inference showed that flagellates identified as *Rhynchobodo* and *Cryptaulax/Cryptaulaxoides* are unrelated [180].

- **Genus Klosteria** Mylnikov and Nikolaev, 2003. Free-living, solitary; both flagella free, arise from a subapical flagellar pocket and bear short acronemes, anterior one with mastigonemes; rostrum not prominent; phagotrophic, cytopharynx tubular, without supporting microtubular rod; cytostome lips absent; pankinetoplastic; trichocysts near ventral side of the flagellar pocket [181].

 Type species: *Klosteria bodomorphis* Mylnikov and Nikolaev, 2003. Monotypic (plate A, 8).

- **Genus Neobodo** Vickerman, 2004. Free-living; solitary; flagella exit subapically and bear acronemes; phagotrophic; well-developed rostrum with apical cytostome, tubular cytopharynx and multisegments; conspicuous spiral groove on the body surface; polykinetoplastic [182] (plate A, 4).

 Type species: *Crypaulax taeniata* Skuja, 1956 (= *Rhynchobodo taeniata*).

 Note: Authorship of this name is often attributed to Lackey who mistakenly used it instead of *Rhynchomonas* [183]. However, only Vörs made the name available by providing the genus description and specifying the type species [182].

- Family Rhyynchomonadinae Cavalier-Smith, 2016. Solitary, free-living; biflagellate, the anterior flagellum adheres to the flexible proboscis and they move together, the posterior flagellum is used for gliding and attached to the body at least in its proximal part; cytopharynx not supported by a microtubular rod [170].

- **Genus Dimastigella** Sandon, 1928. Free-living, in soil or freshwater; anterior flagellum significantly longer than the proboscis, posterior flagellum attached to the cell body across the whole length of the latter; cytostome on or under rostrum; phagotrophic; polykinetoplastic [184,185] (plate A, 6).

 Type species: *Dimastigella trypansiformis* Sandon, 1928.

- **Genus RHynchnomonas** Klebs, 1892. Free-living, short anterior flagellum is attached to a long rostrum representing a motile proboscis, posterior flagellum attached to the cell body in the proximal part, both flagella...
with mastigonemes; phagotrophic; prokinetoplastic [186].

Type species: *Heteromita nasuta* Stokes, 1888 (= *Rhynchomonas nasuta*) (plate A, 3).

○ Order Parabodoniida Vickerman, 2004. Clade enclosing the genera *Cryptobia*, *Parabodo*, *Procryptobia* and *Trypanoplasma*. Free-living, commensal or parasitic; biflagellate, without mastigonemes, posterior flagellum attached or free; pro-, poly- or pankinetoplastic; phagotrophic or osmotrophic; anterolateral cytostome with or without developed cytopharynx [3,165]. Previously, parasitic representatives of this group were considered a single lineage and often lumped into one genus (*Cryptobia*), but molecular phylogenetic analyses showed their polyphyly [187].

- Family Cryptobiidae Poche, 1911 emend. Kostygov. Clade uniting the genera *Cryptobia* and *Parabodo* based on 18S rRNA gene phylogeny [68,188].

 - Genus *Cryptobia* Leidy, 1846. Parasites/commensals of fish (on gills or in the gut) or various invertebrates (in the lumen of reproductive, digestive or excretory organs) [73,78,189]; recurrent flagellum attached to cell body without the formation of undulating membrane, its posterior part is used for attachment to host epithelium; conspicuous ventral furrow; phagotrophic with well-developed but miniaturized cytopharynx in most species; subpellicular microtubules extend to whole-cell length; pro- or pankinetoplastic [81,164] (plate A, 16).

 Type species: *Cryptobia helicis* Leidy, 1846.

 Note: The genus may be paraphyletic with respect to *Parabodo* as judged by sequence data on two species from invertebrates and fish, although the relationships are poorly resolved [190].

 - Genus *Parabodo* Skuja, 1939 emend. Vickerman, 2004. Free-living, solitary; posterior flagellum free; the cytostome is placed at the anterior end of the cell making the latter bifurcate, well-developed cytopharynx; subpellicular microtubules extend to whole-cell length; pro- or pankinetoplastic [191,192] (plate A, 16).

 Type species: *Parabodo nitrophilus* Skuja, 1939.

- Family Trypanoplasmataeae Hartmann and Chagas, 1910 emend. Kostygov. The clade uniting the genera *Procryptobia* and *Trypanoplasma* based on 18S rRNA gene phylogeny [68,188].

 - Genus *Procryptobia* Vickerman, 1978. Solitary, free-living, pankinetoplastic; recurrent flagellum attached to the cell surface, ventral groove absent; short anterolateral rostrum; cell bears subpellicular microtubules only in the anterior portion and easily changes shape; phagotrophic [52,193] (plate A, 12).

 Type species: *Procryptobia conus* Vickerman, 1978.

 - Genus *Trypanoplasma* Laveran and Mesnil, 1901. Leech-transmitted obligate hemoparasites of fish; posterior flagellum attached to the cell body forming a conspicuous undulating membrane bordering a ventral furrow; osmotrophic, cytopharynx reduced; subpellicular microtubules extend to whole-cell length; megakinetoplastic [66,164].

 Type species: *Trypanoplasma borelli* Laveran and Mesnil, 1901 (plate A, 15).

○ Order Trypanosomatidae Kent, 1880. Monoxenous or dixenous obligatory endoparasites of arthropods, leeches, vertebrates, plants and ciliates; single flagellum, emerging from flagellar pocket apically or laterally, is mastigoneme-free and oriented anteriorly; eukinetoplastic with the kDNA network attached to the basal body of the flagellum [194]; phagotrophic or osmotrophic; cytostome-cytopharyngeal complex fully developed only in a few representatives, while the majority has no cytopharynx, and cytostome is present as a shallow pit or completely absent [195,196]. For a long time, the classification was based on the presence of the following morphotypes in the cell cycle: promastigote (elongated with apical flagellum and prenuclear kinetoplast), choanomastigote (shortened, with apical flagellum and prenuclear kinetoplast), opisthomastigote (elongated, with apical flagellum and postnuclear kinetoplast), opisthomastigote (shortened, with apical flagellum and postnuclear kinetoplast), epimastigote (with lateral flagellum attached to the cell body and prenuclear kinetoplast), trypomastigote (with lateral flagellum attached to the cell body and postnuclear kinetoplast), amastigote/ endomastigote (flagellum not emerging from the pocket, the first variant predominantly used when flagellum is very short) and cyst-like amastigote (compact cells with dense cytoplasm, completely lacking flagellum). Single family. The taxonomic changes introduced here follow the guidelines specified for this group previously [197].

- Family Trypanosomatidae Doflein, 1901. With the same definition as the order (tree C).

 Note: Historically, all monoxenous genera were often termed ‘lower trypanosomatids’, but after the switch to the phylogeny-oriented paradigm, this concept has been abandoned [92]. As an alternative, a colocation ‘insect trypanosomatids’, which has no evolutionary connotations, is often used.

- Subfamily Trypanosomatinae Doflein, 1901. A distinct clade on phylogenetic trees is based on 18S rRNA, gGAPDH and multiple protein-coding genes enclosing the genus *Trypanosoma* [10]. Single genus.

Genus *Trypanosoma* Gruby, 1843. Dixenous parasites of all classes of vertebrates (in blood and tissues) transmitted by blood-sucking arthropods or leeches (digestive tract and salivary glands); trypomastigotes and amastigotes (in vertebrates) or epimastigotes and trypomastigotes (in invertebrates) (plates B and C, 18–40 (tree D).

Type species: *Trypanosoma sanguinis* Gruby, 1843 (junior subjective synonym of *T. rotatorium* (Mayer, 1843)).

Note: Historically, mammalian trypanosomes were subdivided into the sections Stercoraria (*Hepetosoma*, *Megatrypanum* and *Schizotrypanum*) and Salvaria (*Duttonella*, *Nannomonas*, *Puscimonas* and *Trypanozoon*). Being long-established and of practical importance for the community of medical and veterinary doctors, this mammalian-centred classification is incorrect from the phylogenetic point of view (see Biology of Kinetoplastea), as it not only does not
correspond with the known diversity of trypanosomes but also cannot accommodate species transmitted by other modes. Moreover, mammalian trypanosomes are not monophyletic and the names stercoraria and salivaria, which were proposed to reflect the differences between the modes of transmission, are non-taxonomical and have only historical value.

In parallel, the genus *Trypanosoma* was divided into several subgenera based on rather subtle morphological differences. Interestingly, this historical taxonomical classification in general corresponds well with the current phylogenetic analysis. However, despite the indisputable usefulness of this classification, in recent decades, the usage of subgenera was largely omitted (probably because of anticipated—but not materialized—conflicts between the morphology- and phylogeny-based systems). As a consequence, newly emerging clades in the expanding phylogenetic trees were named after the best-known representatives, causing confusion. Here, we revive the original subgeneric concept, and by erecting several new subgenera achieve mutual harmonization of the old morphological and the modern phylogenetic approaches. We believe that this taxonomical system reflects best the true diversity of these important parasites.

Species for which only morphological but no sequence information is available are marked with an asterisk (*). We have mapped the hosts (classes of vertebrates) onto the phylogenetic trees, highlighting associations among clades and their vertebrate host.

- ‘the aquatic clade’ (monophyletic) (plate B, 18–23).

Note: Molecular phylogeny confirmed the monophyly of the genus *Trypanosoma* [198] and its subdivision into the aquatic and terrestrial clades [199–201]. In most reconstructions, the aquatic clade was further split into the ‘fish/turtle’ and ‘amphibian’ subgroups. While the
former was invariably monophyletic, depending on the taxonomic set used, the latter appeared either as monophyletic or unresolved until an analysis including some key frog species demonstrated its clear paraphyly [202–204]. The ‘fish/turtle’ subgroup, which also includes trypanosomes from a platypus (T. binneyi Mackerras, 1959) and a crocodile (T. clandestinus Teixeira and Camargo, 2015) is here designated as the subgenus Haematomonas. The remaining aquatic trypanosomes, mostly parasitizing frogs (with T. therezieni Bryggo, 1963 infecting chameleons being a single known exception), fall into the paraphyletic subgenus Trypanosoma.

- Subgenus Haematomonas Mitrophanov, 1883 emend. Votyǔk and Kostygov. Diagnosis: Leech-transmitted parasites of aquatic vertebrates. Morphologically variable medium to large conspicuously elongated trypanomastigotes with a notably bent body, undulating membrane including free flagellum, and with the kinetoplast situated close to the posterior end of the body. Defined by 18S rRNA-based phylogenetic analyses.

Type species: Haematomonas cobitis Mitrophanov, 1883 (= Trypanosoma cobitis).

Note: Mitrophanov described two monoflagellates from the European freshwater fish and placed them into the new genus Haematomonas as H. cobitis (from a weatherfish, Misgurnus fossilis; formerly genus Cobitis) and H. carassii (from a crucian carp, Carassius carassius) which were both later reclassified into the genus Trypanosoma [205]. Since then, more than 190 trypanosome species have been described from both marine and freshwater jawless, cartilaginous and bony fish worldwide [206]. Phylogenetic analyses [202,204,207,208] revealed three monophyletic clades within this subgenus: (i) freshwater fish trypanosomes (including T. clandestinus Teixeira and Camargo, 2016 from coccodiles); (ii) marine fish trypanosomes (including T. rajae Laveran and Mesnil, 1902 from rays); (iii) turtle trypanosomes (including T. binneyi from a platypus). The following species are included in published phylogenetic trees: T. abeli, T. binneyi, T. boissonti, T. cobitis, T. chelodinae, T. clandestinus, T. epinepheli, T. fulviceps, T. granulosum, T. moccaciticum, T. murmannensis, T. nudigobii, T. ophiocephali, T. pleuroactidium, T. pseudoebagri, T. rajae, T. sinipercaec and T. triglae.

- Subgenus Trypanosoma Gruby, 1843 emend. Votyǔk and Kostygov.

Diagnosis: Morphologically variable medium to large trypanomastigotes characterized by a wide range of forms with remarkable morphological plasticity; besides classical fusiform trypanomastigotes, there are rounded, oval, claviform, fan-shaped, leaf-like, or irregular cells with or without a free flagellum, and longitudinal or spiral striations. Defined by 18S rRNA-based phylogenetic analyses.

Type species: Trypanosoma sanguinis Gruby, 1843 (junior subjective synonym of T. rotatorium [209]).

Note: Mayer in 1843 found in the blood of a frog (Rana esculenta) captured in Germany two organisms that he named Amoeba rotatoria and Paramacium loricatun, which were later recognized as first-ever described trypanosomes [209]. Gruby published later the same year a description of a haemoflagellate from the blood of a frog in France and named it Trypanosoma sanguinis (from Greek trypanon, an auger; soma, body) [210]. In 1901, Doflein created the familyTrypanosomidae, in which the genus Trypanosoma was subdivided into three subgenera including the nominotypical one—Trypanosoma with T. sanguinis Gruby 1843 as a type [205]. In 1926, International Commission on Zoological Nomenclature accepted T. rotatorium Mayer 1843 as the senior synonym of T. sanguinis Gruby 1843 [211].

The following described species are included in published phylogenetic trees: T. chattoni, T. fallisi, T. herthameyeri, T. loricatum, T. mega, T. nevulaeae, T. perca, T. ranarum, T. rotatorium, T. therezieni and T. tungane.

- ‘the terrestrial clade’ (monophyletic) (plate C, 24–40).

Note: The internal classification of trypanosomes from terrestrial hosts is rather confusing. Mammalian trypanosomes, subdivided into the sections stercoraria and salivaria, were mostly singled out, followed by the avian trypanosome branch(es). Additionally, new clades appeared gradually in phylogenetic studies, the inclusion of which is a significant problem. Moreover, these above-mentioned groups are not monophyletic, making the internal system of the terrestrial clade unstable. We have attempted to rectify the situation by building a system that accommodates taxonomic units, for which sequence information is available.

- avian subgenera (paraphyletic)

Based on comparative morphology and developmental cycles, avian trypanosomes were hypothesized to be closely related to the subgenus Megatrypanum that infects ruminants [212,213]. This assumption is now supported by phylogenetic and phylogenomic studies that have also shown paraphyly of avian trypanosomes, represented by at least three distinct lineages (T. avium, T. corvi and T. bennetti clades) [144,214,215]. These groups are distinguishable by the morphology of bloodstream stages and the kinetoplast thickness [216,217].

- Subgenus Trypanomorpha Woodcock, 1906 emend. Votyǔk

Diagnosis: Medium to large size trypanomastigotes (40–100 μm) with longitudinal striations (myonemes), central oval nucleus, prominent undulating membrane and small kinetoplast to which the free flagellum is anterior. Cells in culture have kinetoplast exceptionally thick (greater than 500 nm). Defined by 18S rRNA-based phylogenetic analyses; cosmopolitan distribution.

Type species: Trypanosoma noctuae Schaudinn, 1904 (junior subjective synonym of T. avium Danilewsky, 1885; see note).

Note: For the type species described from a European little owl Athene noctua [218], neither culture nor sequence data are available. Both exist for T. thomashuyncki Šlapeta, 2016 and also for less clearly defined T. avium Danilewsky, 1885 and T. gallinarum Bruce et al., 1911 [214–217,219]. The vaguely defined species Trypanosoma avium was described in 1885 by Danilewsky from birds, but the type material was not preserved [220]. In 1903, Laveran proposed to restrict this species name to parasites of owls [221]; however, the name was often used to designate any bird trypanosome.
Subgenus *Avitypanum* Votýpka, subgen. nov.

Diagnosis: Medium to large trypomastigotes (about 40–80 μm) in the bloodstream of bird hosts with longitudinal striations (myonemes), nucleus positioned centrally and posterior kinetoplast; the thickness of kinetoplast in cultured cells is less than 500 nm. Defined by 18S rRNA-based phylogenies; cosmopolitan distribution.

Type species: *Trypanosoma corvi* Stephens and Christophers, 1908, here designated.

Etymology: The generic name refers to the fact that trypanosomes come from bird hosts, the order Aves (the Latin name for a bird is avis).

Note: Baker [222] emended *T. corvi* and restricted the use of the name to large trypanosomes from non-American corvids and also from other bird families. The species was re-described [223] and phylogenetically characterized [214] and forms the *T. corvi* clade along with *T. culicivorum* Votýpka *et al.*, 2012. Although morphologically indistinguishable from the subgenus *Trypanomorpha* (*T. avium* clade), *Avitypanum* (*T. corvi* clade) is not directly related to it [144,216,217], justifying separate treatment.

Subgenus *Ornithotrypanum* Votýpka, subgen. nov.

Diagnosis: Small to medium-size non-striated avian trypanosomes (less than 40 μm in length) with kinetoplast situated close to the posterior end of the body. Kinetoplast thickness of cells in culture below 500 nm. Defined by 18S rRNA-based phylogenies; cosmopolitan distribution.

Type species: *Trypanosoma bennetti* Kirkpatrick, Terway-Thompson and Iyengar, 1986, here designated.

Etymology: The generic name refers to the fact that trypanosomes come from bird hosts, the order Aves (the ancient Greek name for a bird is ὀρνίς; ὀρνις).

Note: Out of a number of morphologically described species parasitizing wild birds, for five of them (*T. anguiformis* Valkiušas *et al.*, 2011, *T. bennetti*, *T. everetti* Molyneux, 1973, *T. naviformis* Sehgal *et al.*, 2015 and *T. polygranularis* Valkiunas *et al.*, 2011) sequence data are available [144,224,225]. Their divergence justifies the establishment of a new subgenus—*Ornithotrypanum*.

Phylogenomic approach revealed that the *T. bennetti* (= *Ornithotrypanum*) and *T. avium* (= *Trypanomorpha*) clades are nested within the mammalian clade and are paraphyletic with respect to the ruminants-infecting *Trypanosoma theileri* Laveran, 1902 [144], thus breaking the monophyly of mammalian
trypanosomes. Interestingly, the host generalism of avian trypanosomes contrasts with the host specificity observed for some mammalian flagellates.

- Subgenus Herpetosoma Doflein, 1901.

 Diagnosis: Medium-size trypomastigotes (20–40 µm) with long pointed posterior extremity; large rod-like subterminal kinetoplast but well away from the posterior end and long free flagellum. Parasitizing a wide range of rodents and lagomorphs, as amastigote and/or epimastigotes.

 Type species: Herpetosoma lewisi Kent, 1880 (= Trypanosoma lewisi).

 Note: This globally distributed species found in more than 100 rodent species (predominantly Rattus spp.) and rarely also in humans [226], is transmitted by the ingestion of fleas Xenopsylla cheopis and Nosopsyllus fasciatus or in their faeces. Considered largely non-pathogenic for rodents, it can cause serious disease in unnatural hosts. After its introduction in synanthropic rats to Christmas Island, it drove the endemic rat Rattus macleari to extinction, being the only known cases of a trypanosomatid responsible for the extinction of its host species.

 Molecular phylogenies revealed the polyphyletic of Herpetosoma [143,227–229], excluding T. rangeli Tejera, 1920 into a newly established subgenus Tejernia (now Anzea), keeping Herpetosoma (also named T. lewisi-like clade) monophyletic. 18S rRNA sequences are available for the following species: T. niiviventerae (rat, Niviventer confusianus), T. musculi (mouse, Mus musculus/domesticus), T. grosi (field mouse, Apodemus spp.), T. microti (vole, Microtus spp.), T. evolmys (bank vole, Clethrionomys glareolus), T. tuberoinuques (hamster, Cricetus cricetus), T. blancardi (dormouse, Eliomys quercinus), T. kuseli (squirrel, Pteromys volans), T. ostospermophilii (squirrel, Urocitellus spp.) and T. nubisi (rabbit, Oryctolagus cuniculus), while molecular data are not available for approximately 30 more species, including *T. acomys*, *T. acouchii*, *T. ellobi* and *T. lemani*.

 The questions whether three phylogenetically related species with Megatrypanum-like morphology and basal phylogenetic position, T. talpae (European mole, Talpa europaea), T. sapaensis (white-toothed shrew, Crocidura danaud) and T. anourosoricus (mole shrew, Anourosorex yamashinae) should be included into the subgenus Herpetosoma remains unresolved [230].

- Subgenus Megatrypanum Hoare, 1964

 Diagnosis: Large trypomastigotes (40–100 µm) with long pointed posterior extremity; medium non-terminal kinetoplast located near the nucleus and far from the posterior end of the body; long free flagellum; reproduction as epimastigotes in the mammalian host.

 Type species: Trypanosoma theileri Laveran, 1902; a cosmopolitan non-pathogenic bovine trypanosome transmitted by tabanids.

 Note: Other members are ovine T. melophagium Flu, 1908 using a sheep ked (Melophagus ovinus) as a vector, while caprine *T. theodori Hoare, 1931 is transmitted by a goat ked (Lипоптера capreoli). Two species of cervid trypanosomes, European and North American T. cervi Kingston and Morton, 1975 and newly described Pan-American T. trinaperroni Teixeira, Camargo and Garcia, 2020, are transmitted by deer keds (Lипоптера cervi and L. nuzae) [231]. Tabanids probably transmit *T. stefanski Kingston et al., 1992 from a roe deer (Capreolus capreolus) [232] and *T. ingens Bruce et al., 1909 from African antelopes [233]. Vectors remain unknown for the closely related simian T. cyclops Weinman, 1972 and *T. lucknowi Weinman, White and Antipa, 1984 from Macaca monkeys. Morphological [234,235] and phylogenetic studies [199,236] justify inclusion of these two species into the subgenus Megatrypanum.

 Note: Probably least settled within the former stercoraria is the taxonomy within the so-called T. cruzi superclade. Its members have been hypothesized to primarily be parasites of bats (Chiroptera), from which they have expanded into other mammals. Two species, T. cruzi Chagas, 1909 and T. rangeli, both restricted to the New World, are capable of infecting humans. The majority of known invertebrate vectors of these trypanosomes belong to true bugs (Heteroptera). The T. cruzi superclade incorporates two subgenera: Schizotrypanum and Anzea, as well as several (un)named clades and species complexes [237–239].

 Trypanosoma wauwatou Limia et al., 2015 from Pteronotus bats in South America constitutes a potentially novel subgenus, now termed the T. wauwatou clade. Other members of this clade are unnamed species from the Neotropical bats, T. janseni Lopes et al., 2018 from inner organs of a Brazilian opossum Didelphis aurita, and T. madeine Battos et al., 2019 from a Neotropical vampire Desmodus rotundus. The other two candidate subclades are represented by Trypanosoma noyesi Botero and Cooper, 2016 found in Australian marsupials (woylie, wallabies, kangaroos and possums) and the genetically highly diverse (a complex of species) infecting various African bats with the only described member, Trypanosoma livingstoni Teixeira and Camargo, 2013.

- Subgenus Schizotrypanum Chagas, 1909

 Diagnosis: Relatively small trypomastigotes (15–25 µm), typically C- or S-shaped in blood smears with short pointed posterior extremity, a large subterminal kinetoplast and long free flagellum. In mammals, reproduction takes place in form of the intracellular amastigotes.

 Type species: Trypanosoma cruzi Chagas, 1909; a causative agent of Chagas disease in humans, transmitted by triatomine bugs (e.g. Triatoma, Rhodnius) [240].

 Note: Trypanosoma cruzi (also known as T. cruzi cruzi or T. cruzi sensu stricto) has a very high molecular and phenotypic heterogeneity, reflected by the existence of seven genetically distinct lineages (or discrete typing units, DTUs) termed Tcl–TcVI and Tcbat [241]. An impartial comparison of this conspicuous genetic diversity, which corresponds very well with life cycles, clinical manifestations and host specificity, with the situation of the T. brucei complex, reveals a striking and untenable discrepancy between these two key species complexes. While in the T. brucei complex, five DTUs have the status of five different
(sub)species (see below), the T. cruzi complex has so far not been split into subspecies and sticks to the DTU code. Therefore, we propose that the same system, based on subspecies, should be applied for both species complexes. We urge our colleagues working with T. cruzi to implement such a system.

The current T. cruzi complex is accompanied by three (sub)species from bats with typical Schizotrypanum morphology: T. marinskellei Baker et al., 1978 (restricted to South America), T. diminutum Bettencourt and Frana, 1905 (occurring in the Old and New World) and T. erneyi Lima and Teixeira, 2012 (found in Africa).

- **Subgenus Anza Özdimen**, 2009 (= Tejerina Áñez, 1982 [preoccupied]).
 Diagnosis: Small to medium-size trypomastigotes (25–35 µm) with long pointed posterior extremity, medium subterminal kinetoplast and long free flagellum, all are similar to the subgenus *Herpetosoma*. At least, some species (e.g. *T. rangeli*) produce metacyclic stages in the salivary glands of its triatomine bug vectors, and therefore are not strictly speaking stercorarians (although transmission via faeces also occurs).

 Type species: *Trypanosoma rangeli* Tejera, 1920.

 Note: *T. rangeli* is restricted to South America and has a wide mammalian host range including humans, for which it is non-pathogenic; the only known vectors are triatomine bugs of the genus *Rhodnius*. While another member of the subgenus, *T. conorhini* Donovan, 1909, is found worldwide in rats and Indonesian primates and is transmitted by triatomine bug *T. vespertilionis* Ednond and Etienne Sargent, 1905 infecting bats is widely distributed in Africa and Europe, where it is transmitted by *Cimex* spp. Sequence data are also available for *T. teixeirae* Barbosa et al., 2016 found in the blood of Australian flying foxes.

- **Subgenus Duttonella Chalmers, 1908**
 Diagnosis: Small to medium-size trypomastigotes (21–26 µm) with large and usually terminal kinetoplast, small to rounded posterior extremity and long free flagellum. Development in the insect vector is confined to the proboscis and the adjacent cibarial pump.

 Type species: *Trypanosoma vivax* Ziemann, 1905; a causative agent of somnambulism in cattle and other ungulates in Africa and South America (following its import from western Africa).

 Note: Although only one described species has been formally assigned to this subgenus, phylogenetic analyses revealed a complex of species related to *T. vivax* [242]. Previously described *T. uniforme* Bruce et al., 1911 and *T. vivax ellipsiprymni* Keymer, 1969, termed *T. vivax-like* may be a part of this complex.

- **Subgenus Nannomonas Hoare, 1964**
 Diagnosis: Small trypomastigotes (12–20 µm) with medium-sized subterminal marginal kinetoplast, blunt posterior extremity and free flagellum either absent or very short. Vector development takes place in the midgut and proboscis.

 Type species: *Trypanosoma congolense* Broden, 1904; a causative agent of nagana in cattle and other ungulates.

 Note: *T. congolense* is further split into three types/‘subspecies’ (Savannah, Forest and Kilifi) that are, arguably, sufficiently different to warrant species status due to different virulency for domestic animals. Other species infect ungulates and monkeys (*T. simiae* Bruce et al., 1909 which is represented by two ‘good’ species) or were detected in tsetse flies like *T. godfreyi* McNamara, Mohammed and Gibson, 1994 and several unnamed species [243,244].

 - **Subgenus Pycnomonas Hoare, 1964**
 Diagnosis: Small trypomastigotes (8–20 µm) with very short pointed posterior extremity, small subterminal kinetoplast and short free flagellum. Vector development takes place in the midgut and salivary glands of tsetse flies (*Glossina* spp.).

 Type species: *Trypanosoma suis* Ochmann, 1905; a causative agent of chronic porcine trypanosomiasis, infects Suidae in sub-Saharan Africa.

 Note: Although this subgenus contains only one described species, two unnamed species were found in tsetse flies [243] and in a wide variety of domestic and free-living ungulates [244].

- **Subgenus Trypanozoon Lühe, 1906**
 Diagnosis: Pleomorphic trypomastigotes represented by long slender (mean length 30 µm) with long free flagellum and short stumpy forms (mean length 18 µm) with no free flagellum; both have a small subterminal kinetoplast.

 Type species: *Trypanosoma brucei* Plimmer and Bradford, 1899.

 Note: According to the life cycle, transmission mode, vertebrate hosts and clinical manifestations, five (sub)species are recognized and widely accepted: *Trypanosoma brucei* brucei (in ungulates, the causative agent of nagana in cattle; transmitted by tsetse that restrict its distribution to sub-Saharan Africa), *T. brucei rhodesiense* (causative agent of acute sleeping sickness in humans; game animals and livestock are primary reservoir; vectored by tsetse, sub-Saharan Africa), *T. brucei gambiense* (chronic sleeping sickness in humans; some domestic animals are reservoir; vectored by tsetse, sub-Saharan Africa), *T. brucei evansi* (causative agent of trypanosomiasis in camels, horses, cattle, buffalo, dogs and pigs, called surra in Africa and Asia and murrina in South America; transmitted mechanically by blood-sucking insects and viruses) and *T. brucei equiperdum* (causes dourine in horses in Asia, South America and Europe; transmitted sexually). The latter two subspecies are closely related and are unique in being so-called petite mutants of *T. brucei* [145].

- **‘other terrestrial subgenera’ (paraphyletic)**

 - **Subgenus Australotrypanum Votýpka and Kostygov, subgen. nov.**
 Diagnosis: Morphologically highly variable trypomastigotes in the blood of marsupials and bats in Australia. Defined by 18S rRNA-based phylogenetic analyses.

 Type species: *Trypanosoma copemani* Austen, Jeff- eries, Friend, Ryan, Adams and Reid, 2009, here designated.

 Etymology: The generic name refers to the origin from Australian mammals.
Note: A distinct monophyletic clade composed of *T. copenani*, *T. gilletti* McInnes et al., 2011, and *T. veyrondis* Thompson et al., 2013 that infect marsupials and bats (in case of *T. copenani*) [245–248]. They seem to be transmitted by ticks [249] and have been implicated in the decreased survival of koalas (*Phascolarctos cinereus*) [248]. *T. copenani* exhibits polymorphic ‘slender’ and ‘broad’ trypanomastigote stages in the bloodstream [245] and intracellular amastigotes [250]. Sphaeromastigotes, amastigotes and promastigotes were present *in vitro*. On the other hand, *T. veyrondis* is believed to be the smallest species formally described from mammals, with trypanomastigotes below 10 µm of length [247]. *Trypanosoma gilletti*, described from koalas based on 18S rRNA sequences only, is 50 µm long [246].

Subgenus Croctrypanum

Not: The unusual combination of hosts (see below) was used for the subgenus name combining the Latin name of reptiles (Squamata) and mammals (Mammalia).

Note: This clade comprises genera *Crithidia*, *Leptomonas*, *Lotmaria*, *Novynomas* and *Zelonia*, as well as the dixenous genera *Endotrypanum*, *Phascolarctos* (order Rodentia) and *Australotrypanum* (order Tylopoda) [255]. The latter species also survives in the blood of Neotropical marsupials [261]. *T. freitasi* and *T. gennarii* Marcelli, 2017, were described from *Didelphis* and *Monodelphis* opossums, respectively [262,263], yet their host spectrum is even broader [261]. Finally, *T. lainsoni*, originally described from Amazonian rodents [264], can infect South American marsupials and bats [261].

○ ‘incertae sedis species’

Note: Three species—*Trypanosoma irwini* McInnes et al., 2009, *T. pestanae* Bettencourt and Franca, 1905 and *T. terrestris* Marcelli, 2013—do not fall into any of the above-listed subgenera and constitute separate branches.

Trypanosoma irwini from Australian koala (*Phascolarctos cinereus*), with middle-sized (approx. 40 µm) trypanomastigotes with prominent kinetoplast, undulating membrane, pointed posterior end and long free flagellum [265], is closely related to the avian trypanosomes of the subgenus *Ornithotrypanum* [265,266].

Trypanosoma pestanae from Eurasian badgers was, based on morphology (middle-sized trypanomastigotes approx. 35 µm long, subterminal kinetoplast) [267,268], associated with the subgenus *Megatrypanum*, yet phylogenetic analyses indicate its affiliation rather with the subgenus *Austrottrypanum* [266,269].

Finally, *T. terrestris* infecting South American lowland tapir (Perissodactyla) is not closely related to any subgenera [270].

Subfamily Leishmaniinae

Not: The taxonomic classification does not reflect their phylogenetic position. While *T. vanini* Wenyon, 1908 described from a Nile monitor lizard (*Varanus niloticus*) in Sudan [256] and later found in a Ghanian ball python (*Python regius*) [257] represents the only Afrotoprogenetic species, other three species within this subgenus were described in American reptiles: *T. serpentis* Viola et al., 2009 from Brazilian snake *Pseudoboa nigra* [258], *T. scelopori Ayala, 1970 from North American western fence lizard (*Sceloporus occidentalis*) [259] and *T. cocciveli* Persoea and Da Biasi, 1971 from a South American rattlesnake (*Crotalus durissus*) [260]. The latter species also survives in the blood of Neotropical marsupials [261]. *T. freitasi* and *T. gennarii* Marcelli, 2017, were described from *Didelphis* and *Monodelphis* opossums, respectively [262,263], yet their host spectrum is even broader [261]. Finally, *T. lainsoni*, originally described from Amazonian rodents [264], can infect South American marsupials and bats [261].
hymenopterans); choanomastigotes as the only motile form [94] (plate D, 41).

Type species: *Crithidia thermophila* Léger, 1902.

- **Genus Lotmaria** Evans and Schwarz, 2014. The clade comprising *Lotmaria passim* and related species, based on the concatenation of 18S rRNA and gGAPDH genes; promastigotes in the gut of bees [272] (plate D, 43).

 Type species: *Lotmaria passim* Schwarz, 2014.

 Monotypic (see note).

 Note: Only the type species is currently assigned to this genus. The referred tree topology is strongly gGAPDH-dependent, prone to artefacts due to compositional bias in nucleotide sequences of this gene [103,273–275].

 ○ Infrafamily Leishmaniatae Maslov and Lukeš, 2012. Comprises the dixenous genera of the subfamily along with *Novymonas*, *Zelonia* and *Borovskyia* [271].

- **Genus Leishmania** Ross, 1903. Dixenous parasites of mammals and reptiles infecting cells of the mononuclear phagocyte system, where they multiply as amastigotes. Widely distributed in tropical and subtropical regions. In mammals, depending on the preferred type(s) of phagocytes, they cause different clinical forms of the disease: cutaneous, mucocutaneous and visceral. Transmitted predominantly by phlebotomine sandflies (Diptera: Psychodidae: Phlebotominae), in whose gut they develop as promastigotes [127] (plate D, 49,50).

 Type species: *Piroplasma donovani* Laveran and Mesnil, 1903 (= *Leishmania donovani*).

- **Subgenus Leishmania** Ross, 1903. Cause cutaneous and visceral forms of leishmaniasis in mammals. Distributed in Africa, Eurasia and Americas. Transmitted by sandflies, in which they develop in the midgut [127].

 Type species: same as for the genus.
• Subgenus Vianinia Lainson and Shaw, 1987. Cause cutaneous and mucocutaneous forms of leishmaniasis in mammals; restricted to South America; transmitted by sandflies, in which they develop in the midgut and hindgut [127].

Type species: Leishmania braziliensis Vianna, 1911.

• Subgenus Sauroleishmania Ranque, 1973. Live in the blood cells of lizards and snakes, predominantly in the mononuclear phagocyte system, but reported also from erythrocytes and thrombocytes [276]. Transmitted by sandflies, in which they develop in the hindgut [127].

Type species: Leishmania tarentolae Wenyon, 1920.

• Subgenus Mundinia Shaw, Camargo and Teixeira, 2016. Cause cutaneous and visceral leishmaniasis in mammals [125,277]; recorded on all continents except Antarctica; transmitted by biting midges [126,278].

Type species: Leishmania enriettii Muniz and Medina, 1948.

Genus Porcisia Shaw, Camargo and Teixeira, 2016. Leishmania-like dixenous flagellates parasitizing skin and visceral organs of porcupines as intracellular amastigotes; transmitted by phlebotomine sand flies as promastigotes [125,279,280] (plate D, 46).

Type species: Leishmania hertigi Herrer, 1971 (= Porcisia hertigi).

Genus Endotrypanum Mesnil and Brimont, 1908. May represent a mixture of two distinct dixenous taxa, one of which is defined morphologically (intracytoplasmic trypomastigotes and/or epimastigotes in sloths) and another phylogenetically (Leishmania-like flagellates related to former L. herreri and parasitizing skin and visceral organs of various mammals as amastigotes [125,271,281]. The latter is transmitted by phlebotomine sand flies as promastigotes [125] (plate D, 48).

Type species: Endotrypanum schaudinni Mesnil and Brimont, 1908.

Genus Noctynomas Kostygov and Yurchenko, 2020. Monoxenous; insect host unknown; promastigotes and choanomastigotes; the only known species bears multiple vacuole-enclosed β-proteobacterial cells in the cytoplasm [275].

Type species: Noctynomas esmeraldas Votýpka, Kostygov, Maslov and Lukeš, 2020. Monotypic (plate D, 44).

Genus Zelonia Shaw, Camargo and Teixeira, 2017. Monoxenous; promastigotes parasitizing true bugs and dipterans; represent a distinct lineage that cannot be associated with any other described genus [125].

Type species: Leptomonas costaricensis Yurchenko, Lukeš, Jirků, Zeledon and Maslov, 2006 (= Zelonia costaricensis) (plate D, 45).

Genus Borovskyia Kostygov and Yurchenko, 2017. Monoxenous; parasites of true bugs; only promastigotes are known; represents the earliest branch within Leishmaniatae [271].

Type species: Leptomonas barrae Maskov and Lukeš, 2010 (= Borovskyia barrae). Monotypic.

Subfamily Herpetomonadinae Alexeieff, 1911, stat. nov., emend. Kostygov and Yurchenko (= Phytomonadinae Yurchenko, Kostygov, Votýpka and Lukeš, 2015; unavailable name).

Diagnosis: Clade of monoxenous parasites of insects and dixenous parasites of insects and plants defined by phylogenetic analyses based on 18S rRNA and gGAPDH gene sequences; promastigotes or choanomastigotes are dominant morphotypes; may also form opisthomastigotes, opisthomorphs and endomastigotes. Arginase absent.

Type genus: Herpetomonas Kent, 1880.

Note: Herpetomonas was designated as a type genus of the subfamily Phytomonadinae [282], making the latter unavailable according to article 11.7.1.1 of ICZN. At the same time, the name Herpetomonadiniae, a synonym of Trypanosomatidae Doflein, 1901 at the family level, is available as a name of the subfamily (with the ending -inae), being the only suitable one for a clade containing its type genus.

Genus Herpetomonas Kent, 1880. Monoxenous; parasites of dipterans, true bugs, fleas, cockroaches and ciliates; polymorphic: predominant promastigotes varying in size and shape as well as non-mandatory opisthomastigotes, opisthomorphs and endomastigotes [106,282,283] (plate D, 51,52).

Type species: Bodo muscarum Leidy, 1856 (= Herpetomonas muscarum).

Genus Lafontella Kostygov and Yurchenko, 2015. Monoxenous; parasitic in the gut of flies; promastigotes, opisthomastigotes and long endomastigotes with elongated coiled flagellum [282,284].

Type species: Herpetomonas mariadeanei Yoshida, Freymuller and Wallace, 1978 (= Lafontella mariadeanei). Monotypic.

Genus Phytomonas Donovan, 1909 emend. Kostygov.

Diagnosis: long (often twisted) promastigotes and endomastigotes; most species alternate between plants and phytophagous true bugs, some switched to predatory bugs and became secondary monoxenous; obligate development in salivary glands [103,119,122,123] (plate D, 53,54).

Type species: Leptomonas davidi Lafont, 1909 (= Phytomonas davidi).

Subfamily Strigomonadinae Votýpka, Yurchenko, Kostygov and Lukeš, 2014. Monoxenous, with several apomorphic traits: single β-proteobacterial endosymbiont not enclosed in a vacuole, extensively branched mitochondrion disrupting subpellicular corset of microtubules, rudimentary parflagellar rod [274].

Genus Angomonas Souza and Corte-Real, 1991. Monoxenous parasites in the gut of blowflies; choanomastigotes and opisthomorphs; kinetoplast nearly rectangular, with kinetoplast minicircles greater than 4 kb [285].

Type species: Crithidia deanei Carvalho, 1973 (= Angomonas deanei) (plate D, 56).

Genus Strigomonas Lwoff and Lwoff 1931. Monoxenous parasites of the gut of dipterans and true
bugs; polymorphic: epimastigotes and trypomastigotes or chaoanastigotes and opisthomorphs; kinetoplast lens-shaped, usually with only one side convex and another flat or concave; minicircles less than 3 kb [285].

Type species: *Strigomonas oncopelti* Lwoff and Lwoff, 1931 (plate D, 58).

- **Genus Kentomonas** Votýpka, Yurchenko and Lukeš, 2014. Monoxenous parasites of the gut of flies; mitochondrial branches press on the plasmatic membrane forming ridges on the cell surface; kinetoplast nearly rectangular [274].

Type species: *Kentomonas sarsoenicus* Votýpka and Lukeš, 2014. Monotypic (plate D, 57).

- **Subfamily Blastocrithidiinae** Votýpka, Yurchenko and Lukeš, 2021. A well-supported monophyletic group (as judged by the analyses based on 18S rRNA gene) of monoxenous trypanosomatids inhabiting the gut of true bugs (Heteroptera) [286].

- **Genus Blastocrithidia** Laird, 1959. Monoxenous parasites of the gut of true bugs; epimastigotes form resistant cyst-like straphangers [94]; some members have non-canonical genetic code with all three stop codons coding for amino acids [287] (plate D, 63). Type species: *Crithidia gerridis* Patton, 1908 (= *Blastocrithidia gerridis*).

- **Genus Obscuromonas** Votýpka and Lukeš, 2021. In 18S rRNA-based phylogenies, a sister group to *Blastocrithidia*; monoxenous parasites in different organs of heteropterans; some members produce cyst-like straphangers [286] (plate D, 64). Type species: *Obscuromonas modryi* Votýpka and Lukeš, 2021.

- **Subfamily Blechomonadinae** Votýpka and Suková, 2013. A clade comprising the genus *Blechomonas* according to phylogeny inferred using 18S rRNA and gGAPDH genes [288].

- **Genus Blechomonas** Votýpka and Suková, 2013. Monoxenous parasites in the gut of fleas; epimastigotes, chaoanastigotes and amastigotes significantly varying in size [288] (plate D, 66).

Type species: *Blechomonas ayalai* Votýpka and Suková, 2013.

- **Subfamily Paratrypanosomatinae** Votýpka and Lukeš, 2013. The earliest-branched lineage within the family as judged by the phylogenies inferred using 18S rRNA and multiple protein-coding genes [289]. Single genus.

- **Genus Paratrypanosoma** Votýpka and Lukeš, 2013. Monoxenous parasites of the gut of dipterans; promastigotes; well-developed oral apparatus with cytostome on the outer cell surface [290].

Type species: *Paratrypanosoma confusum* Votýpka and Lukeš, 2013. Monotypic (plate D, 62).

- Genera not assigned to subfamilies

- **Genus Janimonas** Votýpka and Hamilton, 2020. Distinct monoxenous lineage in 18S rRNA and gGAPDH gene-based phylogenies; parasite of the gut of fruit flies; monotypic [112].

Type species: Janimonas drosophilae Votýpka and Hamilton, 2020 (plate D, 60).

- **Genus Vickermania** Kostygov and Yurchenko, 2020. Monoxenous parasites of the gut of flies; promastigotes with two anteriorly oriented flagella of unequal length, typically attached to each other and separated during cell division; uniflagellate cells appear only shortly after division; flagellar tips have rounded or elongated apex and lateral extensions; large and loosely arranged kDNA [291].

Type species: *Herpetomonas muscarum ingenioplastis* Rogers and Wallace, 1971 (= *Vickermania ingenioplastis*) (plate D, 65).

- **Genus Sergeiavia** Svobodová et al., 2007. Distinct monoxenous lineage in 18S rRNA and gGAPDH gene-based trees; parasite of the gut of biting midges; promastigotes as the only motile stage [292].

Type species: *Sergeiavia podliapaevi* Svobodová et al., 2007. Monotypic (plate D, 59).

- **Genus Wallacemonas** Kostygov and Yurchenko, 2014. Distinct monoxenous lineage in 18S rRNA and gGAPDH gene-based trees; parasites of dipterans and true bugs; promastigotes as well as non-mandatory opisthomorphs and endomastigotes [293,294].

Type species: *Leptomonas collosoma* Wallace, Clark, Dyer and Collins, 1960 (= *Wallacemonas collosoma*) (plate D, 61).

- **Trypanosomatidae incertae sedis** (none is available in culture)

- **Genus Cercoplasma** Roubaud, 1911. Monoxenous; in the gut of flies; epimastigotes and trypomastigotes; flagellum without free part, accompanied by a filamentous cell processus [295].

Type species: *Cercoplasma caulleryi* Roubaud, 1911. Monotypic.

- **Genus Malacozoomonas** Nicoli, Penaud and Timon-David, 1971. Monoxenous; in the gut and hepatopancreas of molluscs; promastigotes and amastigotes [296].

Type species: *Herpetomonas patellae* Porter, 1914 (= *Malacozoomonas patellae*).

- **Genus Nematodomonas** Nicoli, Penaud and Timon-David, 1971. Monoxenous; in the gut of nematodes; promastigotes only [297].

Type species: *Nematodomonas goodeyi* Nicoli, 1971. Monotypic.

- **Genus Rhynchoidomonas** Patton, 1910 (= *Cystotrypanosoma* Roubaud, 1911). Monoxenous; in the gut and Malpighian tubules of flies; trypomastigotes without free flagellum and conspicuous undulating membrane; cyst-like amastigotes observed in some species [94,298].

Type species: *Rhynchomonas luciliae* Patton, 1910 (= *Rhynchoidomonas luciliae*).

- Protists erroneously assigned to Kinetoplastea (none is available in culture)

- **Genus Trypanophis** Keysselitz, 1904 emend. Kostygov.

Diagnosis: Parasites of the gastrovascular cavity of siphonophores; biflagellate, with striated
rootlet, short free anterior flagellum, long posterior flagellum attached to the cell body and situated in shallow longitudinal groove; subpellicular microtubules present only under groove; membranous sacs under plasmalemma; micro pores; elongated mitochondrion parallel to the flagellar groove, with tubular cristae, possesses anterior dilation (‘kinetoplast’) with multiple osmiophilic bodies; no traces of oral apparatus [299].

Type species: *Trypanosoma grobbeni* Poche, 1903 (≡ *Trypanophys grobbeni*).

Note: Assignment of this genus to kinetoplastids is not justified, since its ‘kinetoplast’, as judged by Feuling staining, does not contain DNA. The presence of cortical membranous sacs, micro pores and a striated rootlet [299] strongly suggest that this flagellate is a member of Alveolata Cavalier-Smith, 1991.

- **Kinetoplastea incertae sedis**
 - **Genus Bordnamonas** Larsen and Patterson, 1990. Free-living, solitary, with pliable body; biflagellate, anterior flagellum forms arc extending in front of the cell, while posterior flagellum is trailing; phagotrophic, cytostome is anterior to flagella [300]; fine structure and type of kinetoplast unknown.

 Type species: *Bordnamonas tropicana* Larsen and Patterson, 1990. Monotypic (plate A, 7).

 Note: although many features of the genus are reminiscent of kinetoplastids, it was also considered to be a stramenopile [182,301].

 - **Genus Cephalothamnium** Stein, 1878. Ectocommensal on freshwater copepods; biflagellate, both flagella with mastigemes, the posterior flagellum attached to cell body; forms sedentary colonies with up to 30 cells attached to secreted stalk by the distal end of the recurrent flagellum; large prokinetoplast; subpellicular microtubules only in the anterior part; phagotrophic, with apical cytostome and funnel-shaped cytopharynx [61].

 Type species: *Cephalothamnium cyclopum* Stein, 1878. Monotypic.

 - **Genus Desmonononas** Williams, 1999. Parasitic in turbellarian parenchyma, either free or attached to host cell masses via anterior processus with desmosomes; biflagellate, both flagella unattached to the cell body, oriented posteriorly and lacking prominent paraflagellar rod; corset of subpellicular microtubules has breaches allowing body shape changes; no cytostome detected (osmotrophic); compact mitochondrion with polykinetoplast distant from the flagellar base; microneme-like osmiophilic bodies [60].

 Type species: *Desmonononas prorhynci* Williams, 1999. Monotypic.

 - **Genus Jarrelia** Poynton, Whitaker and Heinrich, 2001. Parasite of blowhole mucus of pygmy sperm whale; biflagellate, posterior flagellum forms undulating membrane and can attach to host material by its tip; polykinetoplasmic; osmotrophic [87].

 Type species: *Jarrelia atramenti* Poynton, Whitaker and Heinrich, 2001. Monotypic.

 Note: previously assigned to Parabodonida based on superficial resemblance with *Trypanoplasm* [3]; however, no reliable evidence supporting such an assignment is available.

 - **Genus Lanellusoma** Davis, 1947. Parasite of fish gills; uniflagellate, single flagellum oriented posteriorly and attached to cell body; type of kinetoplast uncertain; epibiotic bacteria on the surface [81].

 Type species: *Lanellusoma bacillaria* Davis, 1947. Monotypic.

 Note: May represent an unusual species of piscine *Cryptobia* with a very short or completely reduced anterior flagellum [81].

3. Diplonemea

3.1. Biology

The body of knowledge on the biology of diplonemids comprises a large number of environmental 18S rRNA sequences, few cultured and sequenced species, as well as several formally described species lacking sequence data and not available in culture. Until recently, diplonemids have been perceived as a small and unimportant group of euglenozans. However, deep-sea sampling and extensive metabarcoding surveys in the past two decades uncovered extraordinary diversity of marine planktonic diplonemids [12,302,303]. Their discovery began with the recovery of environmental 18S rRNA sequences from deep-sea planktonic and hydrothermal samples, which together formed a novel well-supported clade, sister to Diplonemidae [304,305]. Subsequently, a diplonemid-focused study of several oceanic regions uncovered considerable diversity within the new clade by amplifying 18S rRNA, designated as deep-sea pelagic diplonemids (DSPD I clade [302]. The same study identified another small lineage called DSPD II.

A breakthrough came with a V9 region metabarcoding survey by the *Tara* Oceans expedition, which uncovered remarkable abundance and diversity of DSPD in the tropical and subtropical sunlit ocean, expanding the number of potential diplonemid species to over 12,300 [303]. Further analysis of combined datasets from photic and mesopelagic zones identified as many as approximately 45,000 diplonemid species, thus qualifying them among the most species-rich planktonic eukaryotes in the ocean [12]. In the most recent study, extended with smaller datasets from the Arctic, Adriatic Sea and anoxic Cariaco Basin, the number of species increased to approximately 67,000, designating diplonemids as deep-sea pelagic diplonemids (DSPD I clade [302]. A breakdown identified another small lineage called DSPD II.

Analysis of extended *Tara* Oceans datasets identified that 97% of diplonemid diversity is confined to the DSPD I clade, or eupelagonemids, whereas classic diplonemids (or Diplonemeidae), hemistsasiids and DSPD II accounted for 1% each [12,48]. The distribution of eupelagonemids showed clear depth stratification: although their sequences were recovered from the surface water down to the abyssopelagic zone [309],
they are most diverse and abundant in the mesopelagic zone. However, multiple lineages of eupelagonemids show cosmopolitan distribution without a clear biogeographic pattern and a rather weak relation to abiotic factors [310]. Eupelagonemids generally show preference for dark and moderately oxygenated environments, but were occasionally detected under anoxic conditions [48]. It is still not known what drives the high diversity of eupelagonemids given the relative homogeneity of the physico-chemical conditions in the deep ocean, especially in dysphotic and aphotic zones. It has been suggested that different species might use different nutrient resources [302]. Indeed, the co-occurrence analyses showed very few obvious patterns of interaction with other components of marine plankton, among which are positive correlations with parasitic dinoflagellates and stramenopiles as well as with bacteria and bacterivorous stramenopiles, indicating possible bacterivory and parasitic lifestyle of some eupelagonemids [12] (plate E, 67–76).

Unlike the deep-sea planktonic clades, which inhabit nutrient-poor, dark and cold ocean zones [12,302], classic diplonemids seem to prefer a variety of nutrient-rich environments, such as benthos, coastal surface waters, artificial water bodies and aquaria [311]. Classical diplonemids have been widely considered as benthic organisms [11] apparently due to the sampling bias. Their sequences have been indeed recovered from various benthic environments, including cold anoxic seeps [312], hydrothermal vents [304] and the sea floor [302], in addition to several species that were observed in tropical shallow-water [300,313] and deep-sea sediments [311]. However, diplonemids are also a common component of the plankton in photic layer of the temperate zones [12]. In addition, their representatives are known from coastal planktonic communities, including Rhynchopus coscinodiscivorus [314], Diplonema breviciiliata [315], D. papillatum [316], D. nigricans [317], Lacrimia lanifica, Rhynchopus serpens and Sulcionema specki [311]. Classical diplonemids were also frequently isolated from aquaria, such as D. japonicum, D. aggregatum, D. ambulator ATCC 50223, Rhynchopus humris, Flectonema neradi and Rhynchopus ATCC 50230 [311] (plate E, 67–70,72–76).

Diplonemids have been occasionally reported from freshwater ecosystems, such as the case of Rhynchopus anitius [318] and Diplonema ambulator from a freshwater aquarium [319]. Subsequently, metabarcoding approach identified a low number of diplonemids in geographically isolated deep lakes, such as Baikal [320], and lakes in Japan [321], Switzerland and the Czech Republic [322]. Further systematic metabarcoding screening of lakes using diplonemid-specific primers might uncover so far overlooked diversity of freshwater diplonemids.

The fourth diplonemid clade, Hemistasiidae, is represented by several hundred species, so far found in the photic zone [12]. Hemistasia-like flagellates have been frequently detected in coastal waters of North and Baltic seas, Mediterranean, the Sea of Japan and around Australia and Antarctica [313,315,323–325], pointing to their cosmopolitan distribution from cold to tropical regions. All hemistasiids were described from planktonic samples, except for Artemidia motanka isolated from an aquarium [311] and a hemistasiid associated with shallow-water sediments [313].

Classic diplonemids and hemistasiids are exclusively heterotrophic organisms, mostly known as eukaryovores, and displaying a wide array of lifestyles, such as ectocommensalism, predation, scavenging and opportunistic endoparasitism. Several species were found to parasitize lobsters, clams [180,326] and plants [319], while others were referred to as epibionts of crustaceans [327], lobsters [180], plants [300,315,316] and algae (Diplonema sp. 4 ATCC 50232). Another common trophic mode for both groups is predation and/or scavenging on planktonic algae and small invertebrates, including diatoms, dinoflagellates, green algae, prymnesiophytes and copepods [314,315,318,323]. Bacteriovory was described from only two species and seems rather uncommon [300,328].
3.2. Taxonomy

Class Diplonemaea and order Diplonemida Cavalier-Smith, 1993 (tree E).

Naked colourless biflagellates with apical papilla; subapical flagellar pocket; plasma membrane subtended by dense microtubular corset; peripheral mitochondria with giant lamellar cristae and multiple interspersed DNA aggregates; equally thick flagella; tubular extrusomes in several species; likely phagotrophic feeding.

- Family Diplonemidae Cavalier-Smith, 1993; also known as classic diplonemids with metaboly always present.
 - Genus Diplonema Griesmann, 1914. Based on 18S rRNA gene, the genus is paraphyletic [180]; morphological and 18S rRNA discrepancies (D. papillatum is 87% different from D. ambulator) justify possible division of this genus into two genera. Elongated body with constricted anterior end; equal to subequal flagella; gliding movement and ambulation of flagella in trophic stage; tubular Euglenozoa-type extrusomes and heterodynamic flagella with paraflagellar rods (PFR) in swimming stage (if present) (applies to Diplonema ambulator, D. japonicum and D. aggregatum).
 Type species: Diplonema (Isonema) papillatum Porter, 1973 (short flagella of equal length lacking PFR; nearly apical flagellar pocket; big papilla) (plate E, 67).
 - Genus Rhynchopus Skuja, 1948. Flagellar stubs with disorganized axoneme microtubules, concealed inside flagellar pocket and gliding motion in trophic stage; flagella are gradually built in actively gliding cells; long heterodynamic flagella with PFR in swimming stage, anterior flagellum forming a lasso and the posterior one stretched along the body (plate E, 68).
 Type species: Rhynchopus amitus Skuja, 1948.

- Genus Lacrinia Tasyrevva, Prokopchuk, Horák and Lukěs, 2018. Permanently long subequal flagella with PFR; teardrop-shaped body; big posterior digestion vacuole; rotation movement and oscillating swimming pattern.
 Type species: Lacrinia lanifica Tasyrevva, Prokopchuk, Horák and Lukěs, 2018 (plate E, 73).
 - Genus Flectonema Tasyrevva, Prokopchuk, Horák and Lukěs, 2018. Short flagella of equal length; elongated, slender, crooked body reminiscent to D. ambulator type; distinguished by the presence of PFR in trophic stage; gliding and rotation motion, swimming absent, dispersal swimming stage not described.
 Type species: Flectonema neradi Tasyrevva, Prokopchuk, Horák and Lukěs, 2018 (plate E, 74).
 - Genus Sulcionema Tasyrevva, Prokopchuk, Horák and Lukěs, 2018. Short flagella of equal length, containing PFR; long flat body with conspicuous cytoplasmic inclusions, pleomorphic; writhing motion, but swimming and gliding absent; highly metabolic.
 Type species: Sulcionema specii Tasyrevva, Prokopchuk, Horák and Lukěs, 2018 (plate E, 69).

- Family Hemistasiidae Cavalier-Smith, 2016. Fast swimming, long flagella with prominent PFR; tubular Euglenozoa-type extrusomes; peripheral lacunae; highly asymmetrical apex with flexible pointy rostrum; metaboly always present; anterior groove; subapically inserted flagella inside a deep invagination; large posterior digestion or lipid vacuole is common; cylindrical to pyriform body; establishment of three genera is justified by substantial differences in 18S rRNA gene [325].
 - Genus Hemistasia Griesmann, 1914. Invariable presence of tubular extrusomes; distinguished from related genera by acute rostrum and smaller body.
 Type species: Oxyrrhis phaeocysticola Scherffel, 1900 (= Hemistasia phaeocystica) (plate E, 76).
Genus *Namystinia* Prokopchuk, Tashyreva and Lukeš, 2019. Broader rostrum; tubular extrusomes only in starved cells; morphologically indistinguishable from *Artemidia*.

Type species: *Namystinia karyoxenos* Prokopchuk, Tashyreva and Lukeš, 2019 (plate E, 75).

- Genus *Artemidia* Prokopchuk, Tashyreva and Lukeš, 2019. Broader rostrum; invariable presence of tubular extrusomes.

Type species: *Artemidia motanka* Prokopchuk, Tashyreva and Lukeš, 2019 (plate E, 77).

- Family Eupelagonemidae Okamoto and Keeling, 2019.

Formerly known as ‘deep sea pelagic diplonemids I’ (DSPD I), possibly non-metabolic.

- Genus *Eupelagonema* Okamoto and Keeling, 2019.

Elongated elliptical body, round on one end and constricted on the other (plate E, 71).

Type species: *Eupelagonema oceaniae* Okamoto and Keeling, 2019.

Note: DSPD II (deep sea pelagic diplonemids II)—small planktonic clade, well-supported phylogenetically, known exclusively from sequences of the V9 region of 18S rRNA [12], without cultured or formally described representatives; morphology and ultrastructure not known.

4. Euglenida and Symbiontida

4.1. Biology

Since most of the 18S rRNA phylogenies placed symbiontids either within euglenids, or as a sister clade to them (e.g. [170,329,330]), they are often regarded as derived euglenids (e.g. [329,331]). For those reasons, here we discuss the biology...
of euglenids and symbiontids together. However, a recent phylogenomic reconstruction [8] placed the latter group as a sister to diplonemid-kinetoplastid clade (Glycomonada), suggesting that they should be treated as a separate group within Euglenozoa.

Euglena (plate F, 77–96) and Symbiontida (plate F, 97) inhabit aquatic environments, but they dominate in different ecological niches. Phagotrophic euglenids (plate F, 88–96) are widespread in shallow marine, brackish and freshwater sediments, and are presumably important predators in these ecosystems [42,332,333]. Recently, they have also been reported from deep-sea samples [334]. Osmotrophic (plate F, 82) and phototrophic euglenids (euglenophytes; plate F, 77–81, 83–87) mainly inhabit the water column of freshwater environments. In the temperate zone, euglenophytes are abundant in small eutrophic reservoirs where the water warms up quickly. They might form blooms, including toxic blooms caused by Euglena sanguinea [335,336]. In the tropical climate, euglenophyte blooms are also commonly reported, especially from aquaculture ponds [337,338]. Several lineages of typically freshwater genera—Discoplastis (plate F, 83), Phacus (plate F, 79), Lepocinclis (plate F, 78), Euglena (plate F, 85) and Euglenaria, have been detected in the coastal environments in low abundances [339]. Moreover, some species (Euglena rustica and E. obtusa) have been reported to migrate vertically in marine sand in coordination with tidal and diurnal cycles. They are usually highly abundant and form green patches in marine sand during low tides [340]. The three earliest-branching lineages of photosynthetic euglenids, Rapaza (plate F, 87), Eutreptia and Eutreptiella (plate F, 86), belong to marine plankton. Although the known diversity of marine species of euglenophytes is low, blooms of Eutreptiales have been reported from eutrophic coastal waters, where they can make up to approximately 46% of the total biomass of the phytoplankton population [341,342]. Symbiontids, inhabiting both shallow and deep anoxic marine sediments, host sulfur-oxidizing or sulfide-oxidizing epsilonproteobacterial epibionts, which detoxify their immediate surrounding environment [41]. They might be a dominant group in certain environments, such as in the protist community associated with bacterial mats in oxygen-depleted sediment in Monterey Bay [343].

It has been demonstrated that both phagotrophic (e.g. Distigma) and photosynthetic euglenids (e.g. Euglena gracilis; plate F, 85) are remarkably tolerant to various kinds of pollution with heavy metals such as cadmium, chromium or lead, as well as capable to remove these ions from the environment, making these protists potentially suitable for use in bioremediation of heavy metal-rich industrial wastewater [344,345]. The genetic background of heavy metal resistance in euglenids has been examined in detail only in the genus Peranema. Interestingly, although the investigated Peranema sp. strain exhibited the capability for efficient removal of cadmium from wastewater samples, the study revealed that it possesses genes responsible for resistance to a variety of other heavy metals, but not cadmium [346]. Euglenophytes have also been found in waters polluted with diesel oil [347], phenol [348], herbicides and insecticides [349,350], and can survive in highly radioactive water [351]. Some Euglenophytes are also extremophiles (e.g. Euglena mutabilis), as they tolerate very high salinity [352] in extremely acidic environments [353] or in hot mud pools [354].

Euglenids and symbiontids are predominantly free-living, exhibiting a remarkably wide range of nutrition modes, including phagotrophy, osmotrophy and photoautotrophy. Phagotrophic euglenids consume bacteria or microbial eukaryotes, and their prey size correlates with the euglenids’ cell size and flexibility. Some photrophs are capable of pinocytosis, or even phagotrophy of algae in the case of the deep-branching phototroph Rapaza [355] (plate F, 87). Symbiontids are marine heterotrophs, presumably phagotrophs, as suggested by their ultrastructure. Additionally, the bacteria on their surface probably exchange metabolites with the hosts’ mitochondria-related organelles, and it is also possible that they provide a food source for the symbiontids [7].

In contrast with the dominant free-living euglenids, there is an assemblage of eight heterotrophic genera incertae sedis (Michaëljovastasia, Parasastiella, Dinemula, Paradinemula, Monanema, Oovicola, Naupliicola and Embryocola) that exhibit obligate parasitic lifestyles. Although their host range is rather narrow, encompassing exclusively freshwater, free-living copepods (specifically the eggs, larvae and digestive tracts of adults), their geographical range spans across the eutrophic freshwater bodies of all continents and nearly all climate zones, covering the range of their host group. Unfortunately, the phylogeny of these eight genera remains unresolved, as virtually all studies of the parasitic euglenids, however extensive, were carried out in the pre-sequencing era [356]. Occasionally, other photosynthetic (Euglenanomorph) and heterotrophic (Heteronema) euglenids have been identified in the gastrointestinal tracts of a very wide range of vertebrate and invertebrate animal hosts; however, it remains disputed whether they are symbionts or parasites [357,358]. Several species of euglenophytes (mainly genus Colacium) have been recognized as parasites or more likely, epibions of zooplankton [359–363], while others (e.g. Euglena mutabilis, Trachelomonas hispida) have also been identified in the traps of carnivorous plants, such as Genlisea [364] or Utricularia [365]. Whether euglenophytes are prey, accidental inhabitants, or a part of the specialized community of the carnivorous plants’ traps, remains unresolved.

As most aquatic microbial eukaryotes, euglenids and symbiontids are considered cosmopolitan. Our understanding of their distribution is hampered by the limited number of environmental sequencing projects focused on those groups. Despite clear microscopic evidence of phagotrophic euglenids in sediments and phototrophic euglenids in ponds, they are suspiciously rare in environmental sequencing datasets [166,366–368]. It was suggested that euglenids’ 18S rRNA is divergent and often longer than the typical eukaryotic one [369,370], and the universal primers are not working efficiently for euglenids. Environmental sequences might be, however, obtained with specific primers designed for a certain group [371]. The same as for diplomomids, the V9 region of 18S rRNA seems to be a more suitable metabarcoding marker, and phototrophic euglenids have been surveyed in the environmental sequences from the TARA Oceans dataset and OSD dataset [339]. Although euglenophytes are overall quite rare in the marine plankton, their distribution is quite broad in the global ocean, with preference for the coastal upwelling zones, where the nutrient availability is higher than in other parts of the ocean [372]. Symbiontids have been investigated in several environmental 18S rRNA-based surveys in different geographical regions, suggesting their cosmopolitan distribution [166,373–376].
4.2. Taxonomy

Class Euglenida Bütschli, 1884 emend. Simpson, 1997 (tree F).

Euglenids’ synapomorphy is a pellicle build of proteinaceous strips beneath the plasma membrane. The strips can be fused together in certain genera; otherwise, the organisms are capable of characteristic ‘euglenoid motion’ also known as ‘metaboly’. Another characteristic feature, shared with Kinetoplastida, is the presence of flagella inserted at the base of the flagellar pocket, and the flagella are conspicuously thickened due to the presence of paraxonemal (paraflagellar) rods. Additionally, the main storage polymer of most euglenids is paramylon, a distinctive β-1,3-glucan.

Note: Historically, species belonging to class Euglenida were described according to the rules of the ICZN or the ICN due to the presence of photosynthetic organisms within this ancestrally non-photosynthetic group. This has created some confusion, as several taxa bear two different, equally valid names. Moreover, many clades are unstable and assigning a rank and a name to them would be unproductive, since these names are likely to become obsolete very soon. The taxonomy proposed here is a consensus between a strictly organized taxonomy for stable clades and informal nomenclature. Additionally, Euglenophyceae and their subordinate taxa are treated as algae and classified according to ICN (with alternative names consistent with ICZN provided in notes), while all other subordinate taxa of Euglenida are classified according to ICZN (with alternative names consistent with ICN provided in notes).

- Clade Olkaspira Lax and Simpson, 2020. This robustly supported monophyletic clade includes organisms with pellicle composed of S-shaped proteinaceous strips with overhangs, and chisel-shaped feeding apparatus (if the
apparatus is present; see below) [8]. Flexible cells belong to the subordinate clade Spirocuta; rigid cells belong to the subordinate genus *Okasia*:

- **Genus Okasia** Lax, Lee, Egli and Simpson, 2019. Rigid, flattened, biflagellate cells with 10 pellicle strips; consists of only one species (*O. polycarbonatea*), formerly classified as *Placonia* [377].

 Type species: *Okasia polycarbonatea* Lax, Lee, Egli and Simpson, 2019 (plate f, 93). No culture available; several sequences of SSU rDNA and transcriptomes obtained from single-cell isolates.

- **Clade Spirocuta** Cavalier-Smith, 2016. The monophyletic group encompassing all flexible Euglenids including phototrophs (Euglenophyceae), primary osmotrophs (Aphaga) and various phagotrophs [378]. The synapomorphy of this group is the capability for metaboly also known as ‘euglenoid motion’.

 Note: The other name used for this assemblage is Helicalae [170,330,379,380].

- **Genus Euglenophyceae** Schoenichen, 1925 emend. Marin and Melkonian, 2003. The monophyletic group [170,381–383] comprising the basal monotypic genus *Rapaza* [355]. A predominantly photosynthetic group with plastids derived from secondary endosymbiosis with green alga, some species secondarily osmotic, most species with photosensory eyespot.

 Note: The other name used for this group is Euglenea Bütschli, 1884 emend. Busse and Preisfeld, 2002; however, as pointed out by Cavalier-Smith in the work cited above, this name is shared with a beetle genus.

- **Order Euglenales** Leedale, 1967 emend. Marin and Melkonian, 2003. Cells with one emergent flagellum and one vestigial within the cell; feeding by phototrophy or secondarily by osmotrophy, mostly freshwater [3]; 18S rRNA gene has C in the first position of the Helix 7/8 spacer [381]; introns highly abundant in the plastid genome (always more than 28 and usually more than 51); intron maturase mat1/cycl1 always present in the plastid genome, with mat2, mat5 or both of them usually present [384].

 - **Family Euglenaceae** Dujardin, 1841 emend. Kim et al., 2010. Solitary or colonial, mostly free-living, but some inhabit the digestive tracts of animals; usually possess one emergent flagellum and one non-emergent; some may possess mineralized external shells (lorica); size, number and presence of pyrenoids in chloroplasts varies with the species [3]; ribosomal operon may be present in the plastid genome in one copy or in consecutive, tandemly repeated copies [384]; mitochondrial genome consists of seven linear chromosomes and encodes seven proteins which constitute components of complexes I, III and IV of the respiratory chain [27]. Type species: *Cercaria viridis* O.F. Müller, 1786 (= *Euglena viridis*).

 Note: the genus *Euglena* is polyphyletic—on the phylogenetic trees *Euglena archaeplastidiata* and *Euglena velata* do not group with the main clade of *Euglena* [382,383]. Type species and other species available in culture collections, multiple sequences of 18S rDNA available; nuclear genome, plastid genome and mitochondrial genome of *E. gracilis* (non-type species), as well as multiple plastid genomes of other species, are available.

 - **Genus Eugleniformis** Bennett and Triemer, 2014. Cryptic genus, morphologically undistinguishable from *Euglena*, but phylogenetically basal to all Euglenaceae; ribosomal operon present in the plastid genome in one copy [388]. *Eugleniformis* is a monospecific genus.

 Type species: *Euglena proxima* Dangeard, 1902 (= *Eugleniformis proxima*) (plate F, 84). Available in culture collections; 18S rDNA and a full plastid genome sequence of the type species are available.

 - **Genus Euglenaria** Karnowska, Linton and Kwiatowski, 2010. Solitary, metabolic cells with parietal, lobed chloroplasts with single pyrenoids and bilateral paramylon caps; distinguished from the genus *Euglena* by its distant phylogenetic position, sister to *Monomorpha* [389]; ribosomal operon present in the plastid genome in one copy [390].

 Type species: *Euglena caudata* Hübner, 1886 (= *Euglenaria caudata*). Type species and other species available in culture collections; 18S rDNA of multiple species and a full plastid genome sequence of *Ea. anabaena* (non-type species) are available.
Genus Monomorpha Mereschkovsky, 1877. Rigid or slightly metabolic cells with pellicle-formed tail, 2–4 large paramylon plates and one or few large, spherical chloroplasts [381,391] (plate E, 81); 18S rRNA gene has T in the third position of the terminal loop of the Helix 27 [381]; ribosomal operon present in the plastid genome in one copy [390].

Type species: Euglena pyram Ehrenberg, 1832 (= Monomorpha pyrum). Type species and other species available in culture collections; 18S rRNA of multiple species and two full plastid genome sequences (M. aenigmatica and M. parapyrum; non-type species) are available.

Genus Strombomonas Deflandre, 1930. Cells of variable shape and size with discoid or flat chloroplasts with pyrenoids and smooth lorica without collar [392]; ribosomal operon present in the plastid genome in one full and one incomplete copy with opposite orientation [387].

Type species: Trachelomonas hispida var. verrucosa E. Daday, 1905 (= Strombomonas verrucosa). Type species and other species available in culture collections; 18S rRNA of multiple species and a full plastid genome sequence of S. acuminata (non-type species) are available.

Genus Trachelomonas Ehrenberg, 1834. Cells of variable shape and size, with ornamented lorica with collar (plate F, 80); some species osmotrophic [381]; ribosomal operon present in the plastid genome in one copy [390].

Type species: Microglena volvocina Ehrenberg, 1831 (= Trachelomonas volvocina). Type species and other species available in culture collections; 18S rRNA of multiple species and a full plastid genome sequence of the type species are available.

- Family Phacaceae Kim, Triemer and Shin 2010. Solitary, free-living, with large paramylon grains and numerous small, discoid chloroplasts without pyrenoids.

Note: valid name under ICZN is Phacidae Kim, Triemer and Shin 2010.

- Genus Discoplastis Triemer, 2006. Cells capable of metabolism, with a sharp, colourless tail [393,394]; two ribosomal operon-containing inverted repeats present in the plastid genome [384].

Type species: Euglena spathirhyncha Skuja, 1948 (= Discoplastis spathirhyncha) (plate F, 83). Type species and other species available in culture collections; 18S rRNA of multiple species and a full plastid genome sequence of the type species are available.

- Genus Flexiglena Zakryś and Łukomska, 2020. Highly metabolic cells with numerous small paramylon grains and a distinct large, single grain located near the stigma [394].

Type species: Euglena variabilis Klebs, 1883 (= Flexiglena variabilis). Currently not available in culture collections, but deposition of the type species in a culture collection is in progress; 18S rRNA of multiple species available.

- Genus Lepocinclis Perty, 1849. Rigid, unflattened cells with ring-shaped paramylon grains (plate F, 78); some (L. cyclidiopsis) secondarily non-photosynthetic, feeding by osmotrophy; 18S rRNA gene has GC base pair in the sixth position from the end of the Helix 12 and T in the second position of the Helix 23/27 spacer [381]; two ribosomal operon-containing inverted repeats present in the plastid genome [384].

Type species: Lepocinclis globulus Perty, 1849. Type species and other species available in culture collections; 18S rRNA and full plastid genome sequences of multiple non-type species are available.

- Genus Phacus Dujardin, 1841. Rigid, laterally or triangurally compressed cells with ring-shaped paramylon grains (plate F, 79); some (P. ocellatus) secondarily non-photosynthetic, feeding by osmotrophy [381]; ribosomal operon present in one copy in the plastid genome [384].

Type species: Euglena longicauda Ehrenberg, 1830 (= Phacus longicauda). Type species and other species available in culture collections; 18S rRNA and full plastid genome sequences of multiple non-type species are available.

- Order Eutreptiales Leedale, 1967 emend. Marin and Melkonian, 2003. Solitary, free-living cells with two or four flagella of equal or unequal length, capable of metabolism [3]. Predominantly marine. Introns are present in their plastid genomes, but not abundant (usually fewer than 28 and never more than 51); intron maturase mat1/gef13 always present in the plastid genome, but mat2 and mat5 absent [384].

- Family Eutreptiaceae Hollande, 1942. With the same definition as the order.

Note: valid name under ICZN is Eutreptiidae Hollande, 1942.

- Genus Eutreptia Perty, 1852. Two emergent flagella of almost equal length [395]; ribosomal operon present in one copy in the plastid genome [384].

Type species: Eutreptia viridis Perty, 1852. Type species and other species available in culture collections; 18S rRNA and a full plastid genome sequence of the type species are available.

- Genus Eutreptiella da Cunha, 1914. Two emergent flagella of notably unequal length [395] or four flagella composed of longer and shorter pairs [396] (plate F, 86); may possess epi- or endobiotic bacteria [397]; mostly psychrotolerant or psychrophilic [342,396]; 18S rRNA gene possesses a CA insertion after the second position in the loop of Helix 18 [381]; ribosomal operon present in two copies with opposite orientation in the plastid genome, but one copy may be split [170,381].

Type species: Eutreptiella marina da Cunha, 1914. Type species and other species available
in culture collections; 18S rRNA sequences of multiple non-type species, two full plastid genome sequences (Etl. gymnastica and Etl. penuquetensis; non-type species) and a transcriptomic dataset of Etl. gymnastica (non-type species) are available.

Note: the genus Eutreptiella is often paraphyletic in 18S phylogenies [170,381].

- Order Rapazida Cavalier-Smith, 2016. Solitary, free-living cells with two flagella of unequal length, feeding by phagotrophy on microalgae such as Tetraselmis; marine, capable of metaboly [355].
- Family Rapazidae Cavalier-Smith, 2016. With the same definition as the order.
- Genus Rapaza Yamaguchi, 2012. With the same definition as the family.
- Type species: Rapaza viridis Yamaguchi, 2012 (plate F, 87); 18S rRNA sequence of the type species available.

- Euglenophyceae incertae sedis—genera with unresolved position due to lack of molecular data, and therefore questionable status, are:
 - Genus Ascoglea Stein, 1878. Small, solitary cells with lorica, often sessile (attached to filamentous algae) [392].
 - Type species: Ascoglea vaginica Stein, 1878.
 - Genus Euglenamorpha Wenrich, 1924. Elongated, metabolic cells of highly variable size with 3–6 flagella of equal length; inhabit the intestinal tracts of Rana spp. tadpoles [357].
 - Type species: Euglenamorpha hegneri Wenrich, 1924.
 - Genus Euglenopsis Klebs, 1892. Sessile cells with four long flagella and transverse cell division, forming colonies of branched filaments attached to the surface [398].
 - Type species: Euglenopsis viridis Klebs, 1892.
 - Genus Glenoclosterium Carter, 1869. Spindle-shaped cells with visible eyespot and at least four longitudinally elongated chloroplasts, but without a notable emergent flagellum [399].
 - Type species: Glenoclosterium varium Carter, 1869.
 - Genus Hegneria Brumpt and Lavier, 1924. Elongated, colourless cells with six flagella of equal length; inhabits the intestinal tract of tadpoles [400].
 - Type species: Hegneria leptodactyli Brumpt and Lavier, 1924.
 - Genus Klebsia Silva, 1961. Sessile, loricate cells, inhabiting marine habitats; originally described as Klebsiella [392], renamed by Silva due to conflicting name with a bacterial genus [401].
 - Type species: Klebsiella alligata Pascher, 1931 (= Klebsia alligata).
 - Genus Euglenocapsa Steinecke, 1932. Small, oval-shaped, faintly coloured cells with multiple disc-shaped, pyrenoid-lacking chloroplasts adjacent to the cell wall and a single emergent flagellum of length up to three times the length of the cell [402].
- Type species: Euglenocapsa ochracea Steinecke, 1932.

Note: No representative of the incertae sedis genera is available in culture collections.

- Clade Anisonemia Cavalier-Smith, 2016. The monophyletic group comprising predominantly flexible (metabolic), mostly biflagellate heterotrophs (phago- and osmotrophs), capable of skidding motility or gliding using posterior flagellum [378].
- Order Anisonemida Cavalier-Smith, 2016. Feeding by phagotrophy, capable of gliding motility using posterior flagellum; paraphyletic with respect to Aphagea [8,378].
- Family Anisonemidae Kent, 1880. With the same definition as the order.
- Genus Anisonema Dujardin, 1841. Weakly metabolic cells with two unequal flagella (posterior one is longer), occurs in brackish waters (plate E, 90); during mitosis, basal body duplication and replication occurs in the late stages [403]; many species/morphotypes distinguished [377].
 - Type species: Anisonema acinus Dujardin, 1841. Not available in culture collections; 18S rRNA sequence of the type species and single-cell transcriptomes of multiple species are available.
 - Genus Dinema Perty, 1852. Usually strongly metabolic cells (with few weakly metabolic or rigid species, e.g. Dinema inaequale) with a thick pellicle and two unequal flagella [300] (plate F, 92); paraphyletic with respect to Anisonema [378].
 - Type species: Dinema griseolum Perty, 1852. 18S rRNA and single-cell transcriptomic data of several species available.
 - Note: valid name under ICN is Dinematomonas Silva, 1960, since the name Dinema Perty, 1852 is a synonym of Dinema Lindley, 1826 (Plantae: Magnoliophyta).
- Clade Aphagea Cavalier-Smith, 1993 emend. Busse and Preisfeld, 2002. Feeding by osmotrophy, without ingestion apparatus; monophyletic.
 - Genus Astasia Dujardin, 1830. Cells without ingestion apparatus or stigma, with one emergent flagellum and visible metaboly; paraphyletic [170,404,405].
 - Type species: Astasia limpida Dujardin, 1841. Multiple non-type species available in culture collections; 18S rRNA sequences of multiple non-type species are available.
 - Genus Distigma Ehrenberg, 1831. Cells without ingestion apparatus, with two emergent flagella and intense metaboly; some (D. proteus) possess endobiotic bacteria; despite the name, no stigma present [170,379,404,405]; paraphyletic.
 - Type species: Distigma proteus Ehrenberg, 1831. Type species and other species available in culture collections; 18S rRNA sequences of multiple species, including the type species, are available.
 - Genus Gyropaigne Skuja, 1939. Rigid cells with prominent keels, fused pellicle and one emergent flagellum with hairs [404]; microtubule scroll present [404].
 - Type species: Gyropaigne kosmos Skuja, 1939. G. leferei (non-type species) available in culture collections.
Order Peranemida Cavalier-Smith, 1993. Uniflagellate or informally referred to as ‘genetic uncertainties, these organisms have been but with very weak support [8]. Regardless of the phylogenetic resolution, encompassing four clades (themselves monophyletic); polyphyletic, with two strains (ABL1N and WBF1) branching separately, with weak support, from the otherwise monophyletic sister clade to Teloprocta [378]; resolved as monophyletic in a recent multigene phylogeny, still unresolved as monophyletic, but both clades are placed within the monophyletic Peranemida [8].

Genus Parvulina Perty, 1852. Rigid, flattened and elongated cells with fused pellicle and one emergent flagellum without hairs [407]; microtubule scroll present [404] (plate F, 82).

Type species: Parvulina circulare Christen, 1962. Type species and other species available in culture collections; 18S rRNA sequence of the type species and single-cell transcriptomes of multiple non-type species strains are available.

Genus Parmidium Christen, 1962. Rigid cells with deep indentations, fused pellicle and one emergent flagellum without hairs [407]; microtubule scroll present [404].

Type species: Parmidium circulare Christen, 1962. Type species and other species available in culture collections; 18S rRNA sequences of multiple species, including the type species, are available.

Genus Parmidium Christen, 1962. Rigid cells with fused pellicle and one emergent flagellum; microtubule scroll present; a rather disputable, paraphyletic genus with no distinct synapomorphy, encompassing multiple species sharing different traits of other genera [404].

Type species: Parmidium incurva Fresenius, 1858. Type species and other species available in culture collections; 18S rRNA sequences of multiple species, including the type species, are available.

Order Peranemida Cavalier-Smith, 1993. Uniflagellate or biflagellate cells, capable of gliding motility using anterior (or single) flagellum

Note: this clade is resolved on some trees as polyphyletic; encompasses multiple species sharing different traits of other genera [404]. Regardless of the phylogenetic uncertainties, these organisms have been informally referred to as ‘peranemids’ due to their common morphological traits.

Genus Peranema Dujardin, 1841. Biflagellate, highly metabolic cells with longer and thicker anterior flagellum and protruding feeding apparatus, capable of cutting into other cells and sucking in its contents (plate F, 89); can and will attempt to feed on anything, including bacteria, yeast, microalgae, ink, raw starch and other euglenids [408]; very rapid response to light by rhodopsin-mediated phototaxis [409]; in recent phylogeny resolved as monophyletic [378].

Type species: Peranema globulosum Dujardin, 1841. Non-type species (P. trichophorum) available in an educational resources repository (Carolina Biological Supply Co.), but not in culture collections; 18S rRNA sequence and single-cell transcriptomes of P. trichophorum (non-type species) are available. Note: valid name under ICN is Pseudoperanema Christen, 1962, since Peranema Dujardin, 1841 is synonym of Peranema D. Don 1825 (Plants: Polypodiopsida).

Genus Chasmotoma Massart, 1920. Uniflagellate, metabolic cells with a pronounced flagellar cavity [378,410]. Type species: Chasmotoma nieuportense Massart, 1920. Not available in culture collections; a single-cell transcriptome of the type species is available.

Genus Jenningsia Schaeffer, 1918. Uniflagellate, metabolic cells [410] (plate F, 88); polyphyletic, currently comprising two separate monophyletic clades: one (Jenningsia fusiforme) branching at the base of Euglenophyceae, and another branching at the base of all non-peranemid Spirocuta [378]; in a recent multigene phylogeny, still resolved as polyphyletic, but both clades are placed within the monophyletic Peranemida [8]. Type species: Jenningsia diatomophaga Schaeffer, 1918. Not available in culture collections; 18S rRNA sequences and single-cell transcriptomes of multiple non-type species strains are available.

Genus Teloprocta Cavalier-Smith, 2016. Cylindrical or spindle-shaped cells with two long flagella (ventral and dorsal) and 28 pellicle strips; consists of species formerly classified as Heteronema, e.g. Teloprocta scaphurum [411]. Type species: Heteronema scaphurum Skuja, 1934 (= Teloprocta scaphurum). Not available in culture collections; 18S rRNA sequence of the type species available.

Genus Urceolus Mereschkowsky, 1877. Highly metabolic, sack-shaped cells with one emergent flagellum and a flattened anterior collar [300,378]; polyphyletic genus, with two strains (ABL1N and WBF1) branching separately, with weak support, from the otherwise monophyletic sister clade to Teloprocta [378]; resolved as monophyletic in a recent multigene phylogeny; however, the two divergent strains mentioned above were not included in the analysis [8]. Type species: Urceolus alenizinii Mereschkowsky, 1879. Not available in culture collections; 18S rRNA sequences and single-cell transcriptomes of multiple non-type species strains are available.

Genera unassigned to any subordinate taxa within Spirocuta:

Genus Neometanema Lee and Simpson, 2014. Biflagellate, flattened cells with two equally long flagella, visible feeding apparatus, weak metaboly and 22 helical pellicle strips; distinguished from Heteronema/Anisonema by skidding motility involving the use of both flagella; a taxonomic replacement for Metanema [331,378]. Type species: Neometanema parvulum Lee and Simpson, 2014. Not available in culture collections; single-cell transcriptomes of multiple species, including the type species, are available.

Genus Heteronema Dujardin, 1841. Biflagellate cells, capable of metaboly and gliding movement using the longer and thicker anterior flagellum, freshwater (plate F, 91).
Type species: *Heteronema marina* Dujardin, 1841. Not available in culture collections; 18S rRNA sequences and single-cell transcriptomes of multiple non-type species strains are available.

Note: *Heteronema* is a highly disputable genus, comprising species with varied morphological features [331,411]; recent phylogeny resolves this taxon as polyphyletic, with *Heteronema globuliferum* branching within *Peranemida*, and *Heteronema vittatum* (monophyletic) branching within *Anisonemida*, neither of which is the type species [378].

- **Clade Alistosa Lax et al., 2020.** Oval-shaped, biflagellate cells, usually with 10–12 pellicle strips with keels; using the longer posterior flagellum for gliding motility; monophyletic [8,377].
 - **Genus Plœotia** Dujardin, 1841. Rigid, biflagellate cells (posterior one trailing against the substrate) without non-protrusive ingestion apparatus [300,412].
 - Type species: *Plœotia vitrea* Dujardin, 1841. Not available in culture; 18S rRNA sequences of multiple strains and two single-cell transcriptomes, both including the type species, are available.
 - **Genus Serpenomomas** Triemer, 1986. Small, slightly flattened cells with two flagella (posterior one is longer) and a non-retractive feeding apparatus, inhabiting salt marshes [413].
 - Type species: *Serpenomomas costata* Triemer, 1986. Type species available in culture; 18S rRNA sequences of multiple strains of the type species are available.
 - Note: due to having a stable sister relationship, the genera *Plœotia* and *Serpenomomas* are often referred to by a collective name *Plœotidiidae* [377,378].
 - **Genus Keelungia** Chan, 2013. Biflagellate, very small cells [414] with 10 flat pellicle strips [377].
 - Type species: *Keelungia pulix* Chan and Moestrup, 2013. Not available in culture; 18S rRNA sequences of multiple species, including the type species, are available.
 - **Genus Lentomonas** Farmer and Triemer, 1994. Rigid biflagellate cells with thicker and longer posterior flagellum, and straight, longitudinal pellicle strips [415], out of which seven dorsal strips are prominent, while three ventral strips are flat [377] (plate F, 96).
 - Type species: *Entosiphon planctonicum* Preisig, 1979 (= *Lentomonas planctonicum*). Not available in culture, 18S rRNA sequences of multiple non-type species are available.
 - **Genus Decastava** Cavalier-Smith, 2016. Long anterior flagellum and short posterior flagellum; 10 longitudinal pellicle strips [411].
 - Type species: *Decastava adiaphtica* Cavalier-Smith and Vickerman, 2016. Type species available in culture; 18S rRNA sequences of multiple species, including type species, are available.
 - **Order Petalomonadida** Cavalier-Smith, 1993. Uniflagellate or biflagellate cells, using the longer, anterior flagellum (or the single flagellum) for gliding motility; recent phylogeny resolves *Petalomonadida* as monophyletic with strong support [378].
 - **Genus Petalomonas** Stein, 1859. Rigid, flattened cells with one emergent gliding flagellum, mostly freshwater [300].
 - Type species: *Cycladion abesis* Dujardin 1841 (= *Petalomonas abesis*). *P. cantuscoggi* (non-type species) available in culture collection; 18S rRNA sequences and single-cell transcriptomes of multiple non-type species are available.
 - **Genus Scytomonas** Steiner, 1878. Possesses five pellicle strips, a single flagellum and centriole, feeds when sessile [411].
 - Type species: *Scytomonas pusilla* Stein, 1878. *Sc. saepesendens* (non-type species) available in culture collection; 18S rRNA sequence of the same species is available.
 - **Genus Notoleson Stokes, 1884.** Rigid, flattened cells with long anterior and short posterior flagellum [300] (plate F, 94).
 - Type species: *Notoleson apocamptus* Stokes, 1884 (= *Notoleson apocamptus*). Not available in culture collections; 18S rRNA sequences of multiple non-type species strains and a single-cell transcriptome of *N. urceolatus* (non-type species) are available.
 - **Genus Biundula** Cavalier-Smith, 2016. Possesses a single emergent flagellum, consists of four species formerly classified as *Petalomonas*, e.g. *Biundula sphagnophila*, *Biundula sulcata*, distinguished by pellicle structure (2–8 smooth undulations on dorsal and ventral surface, continuous pellicle without sutures between strips) [411].
 - Type species: *Petalomonas sphagnophila* Christen, 1962 (= *Biundula sphagnophila*). Not available in culture collections; 18S rRNA sequence of the type species available.
 - **Genus Sphenomonas** Stein, 1878. Small, rigid, biflagellate cells with a large hyaline inclusion [378] (plate F, 95); no phagotrophy observed, probably osmotrophic [416].
 - Type species: *Sphenomonas quadrangularis* Stein, 1878. Not available in culture collections; a single-cell transcriptome of the type species is available.
 - **Genus Notosolenus Stokes, 1884.** Small, rigid, biflagellate cells with one emergent gliding flagellum, mostly freshwater [300].
 - Type species: *Anisonema glaciale* Dujardin, 1987 (= *Hemiolia trepidum*). Not available in culture collections; 18S rRNA sequences of multiple strains of the type species are available.
 - **Genus *Hemiolia* Lax, Lee, Eglit and Simpson, 2019.** Oblong, moderately flattened cells with very long (over three times cell length) posterior flagellum, hardly notable pellicle strips and feeding apparatus not visible in light microscopy; consists of only one species (*H. trepidum*), formerly classified as *Anisonema* [377].
 - Type species: *Anisonema trepidum* J. Larsen, 1987 (= *Hemiolia trepidum*). Not available in culture; 18S rRNA sequences of multiple strains of the type species are available.
 - **Genus Liburra** Lax, Lee, Eglit and Simpson, 2019. Rigid, oblong cells with very long (about three times cell length), hooked posterior flagellum, hardly noticeable pellicle strips and feeding apparatus not visible in light microscopy; consists of only one species (*L. glaciale*), formerly classified as *Anisonema* [377].
 - Type species: *Anisonema glaciale* Lax and

Note: due to having a stable sister relationship, the genera *Plœotia* and *Serpenomomas* are often referred to by a collective name *Plœotidiidae* [377,378].
Euglenida incertae sedis—15 genera with unresolved position due to lack of molecular data, and therefore questionable status, are:

- **Genus Entosiphon** Stein, 1878. Cells with protrusive ingestion apparatus and 12 pellicle strips [377].
 Type species: *Entosiphon sulcatum* Dujardin, 1841 (*= Entosiphon sulcatum*). Two species, including the type species, available in culture; 18S rRNA sequences of multiple species, including the type species, are available.
 Note: the position of this genus is neither strongly supported nor stable, as depending on methods and datasets used for phylogeny, it may either branch off together with *Hemiadia* and *Liburna*, or form a separate branch in various positions among ‘rigid’ euglenids (i.e. Euglenida excluding Olkaspirea). Therefore, despite the abundance of molecular data, *Entosiphon* cannot be classified as a member of any major group within Euglenida, and should be regarded as orphan genus among phagotrophic euglenids [8,377,378].

- **Genus Atraktomonas** Christen, 1962. Possesses a single emergent flagellum, closely related to *Petalomonas* [331,417].
 Type species: *Atraktomonas laevis* Christen, 1962.

- **Genus Calycimonas** Christen, 1959. Non-metabolic cells, possesses a single emergent flagellum [417,418].
 Type species: *Calycimonas physaloides* Christen, 1959.

- **Genus Dolium** Larsen and Patterson, 1990. Rigid, sessile cells with one emergent flagellum [300]; generic name shared with an animal genus—*Dolium* Lamarck, 1801 (Mollusca: Gastropoda).
 Type species: *Dolium sedentarium* Larsen and Patterson, 1990.

- **Genus Dylakosoma** Skuja, 1964. Distinguished from *Petalomonas* due to the presence of epibiotic bacteria [419].
 Type species: *Dylakosoma pelophillum* Skuja, 1964.

- **Genus Peranemopsis** Lackey, 1940. Uniflagellate, metabolic, wedge-shaped cells, with only one rod in the feeding apparatus and no eyespot [183].
 Type species: *Peranemopsis striata* Lackey, 1940.

- **Genus Tropidoscyphus** Stein, 1878. Slightly plastic cells with eight strips and two unequal flagella, but both are described as anterior [420].
 Type species: *Tropidoscyphus octocostatus* Stein, 1878.

- **Genus Michajlowastasia** Krell and Shabalin, 2008. Organisms with two-stage life cycle: a free-living reproductive phase, and a parasitic feeding phase, taking place in the intestines or other body cavities of copepods and ending with formation of cyst-like structures. In free-living stage, cells are indistinguishable from genus *Astasia*; in parasitic stage, cells lose the emergent flagellum, become larger in size and enriched with paramylon grains [356].
 Type species: *Astasia cyclopis* Michajlow, 1956 (*= Michajlowastasia cyclopis*).
 Note: this genus had been originally described by Michajlow under the name *Parastasia* in order to distinguish the assemblage of parasitic forms from the exclusively free-living *Astasia* spp. That name, however, was recognized as invalid due to its homonymity with an earlier described beetle genus *Parastasia* Westwood, 1841 (Coleoptera: Scarabaeidae), and subsequently renamed by Krell & Shabalin [356,421].

- **Genus Parastasiella** Michajlow, 1965. Organisms with two-stage life cycle, similar to *Michajlowastasia*, but the parasitic stage involves copepod eggs and larvae (nauplii) as hosts instead of adults. Cells are among the smallest of all known euglenids, reaching a maximum length of 5 μm, and form heterogenous paramylon grains of different size [356].
 Type species: *Astasiella velox* Michajlow, 1965 (*= Parastasiella velox*).

- **Genus Dinemula** Michajlow, 1965. Organisms with two-stage life cycle (see *Parastasiella*). Sindle-shape cells with two unequal flagella; the anterior flagellum is the longer one and is formed earlier (during parasitic stage), while the posterior one is formed during the free-living stage [356].
 Type species: *Dinemula celer* Michajlow, 1965.

- **Genus Paradinemula** Monchenko, 1967. Organisms with two-stage life cycle (see *Parastasiella*). Morphologically similar to *Dinemula*, but more oval-shaped, with longer anterior flagellum, a stiff, laterally protruding flagellum turned to the back, and a large translucent nucleus [356].
 Type species: *Paradinemula polonica* Monchenko, 1967.

- **Genus Mononema** Michajlow, 1967. Organisms with two-stage life cycle (see *Parastasiella*). Similar to *Paradinemula*, but with a single emergent flagellum, protruding from a swelling in the anterior part of the cell and directed towards the back of the cell [356].
 Type species: *Mononema reptans* Michajlow, 1967.

- **Genus Ovicola** Michajlow, 1965. Organisms with two-stage life cycle, similar to *Parastasiella*, but reproduction occurs in parasitic stage within copepod eggs, with the free-living stage’s role limited only to invasion of new hosts. Egg-shaped, uniflagellate cells with a thick, arched flagellum which makes rowing movements only with its distal part. In free-living stage, each cell contains only one large paramylon grain [356].
 Type species: *Ovicola abyssinicus* Michajlow, 1965.

- **Genus Nauplicola** Michajlow, 1965. Organisms with two-stage life cycle, similar to *Ovicola*, but reproduction occurs in body cavities of
copepod nauplii instead of eggs. Morphologically similar to Ovicola, but with multiple paramylon grains in free-living stage [356].

Type species: Nauphlicola necans Michałłow, 1965.

- Genus Embryocola Michałłow, 1969. Organisms with two-stage life cycle, similar to Nauphlicola. Morphologically similar to Nauphlicola, but develops specifically inside the eyes of copepod nauplii in the parasitic stage of its life cycle [356].
 Type species: Embryocola acelli Michałłow, 1969.

- Genus Copromonas Dobell, 1908. Rigid, pyriform, colourless cells with one long emergent flagellum and clearly visible cytopharynx, feeding by phagotrophy; isolated from intestines of frogs (Rana temporaria) and toads (Bufo vulgaris); described as resembling Petalomonas and Scytomonas, but also observed to conjugate, which makes its affiliation to Euglenida disputable [422].
 Type species: Copromonas subtilis Dobell, 1908.

- Note: no representative of the incertae sedis genera is available in culture collections.

Class Symbiontida Yubuki, Edgcomb, Bernhard and Leander, 2009.

This group has two shared synapomorphies: a thick mantle of rod-shaped epibiotic bacteria covering almost the entire cell, and a layer of mitochondria-derived organelles with reduced or absent cristae located beneath the cell membrane. Despite superficially similar morphology (with the exception of the pellicle strips), their relationship with euglenids has not been fully resolved. Most commonly found in hypoxic zones of marine habitats.

- Genus Bihospites Breglia, Yubuki, Hoppenrath and Leander, 2010. Cells with a rudimentary pellicle, robust feeding rod and two morphotypes of epibiotic bacteria (large, rod-shaped ones arranged in longitudinal bands and small, spherical ones with extrusive apparatuses) [329,423].
 Type species: Bihospites bacati Breglia, Yubuki, Hoppenrath and Leander, 2016. Not available in culture; 18S rRNA sequence of the type species available.

- Genus Calkinsia Lackey, 1960. Cells with reduced feeding rod and without pellicle, but with elaborate extracellular matrix, orange in colour; only rod-shaped epibiotic bacteria present [423,424].
 Type species: Calkinsia aureus Lackey, 1960 (plate F, 97). Not available in culture; 18S rRNA sequence of the type species available.

- Genus Postgaardi Fenschel, Bernard, Esteban, Findlay, Hansen and Iversen, 1995. Cells with complex feeding apparatus with an oval-shaped gutter, covered by the anterior lip overlapping a reinforced ridge, but with less developed extracellular matrix [423,425]; phylogenetic position unresolved due to lack of molecular data.
 Type species: Postgaardi mariagerensis Fenschel, Bernard, Esteban, Findlay, Hansen and Iversen, 1995. Not available in culture; no sequence data available.

5. Viruses in Euglenozoa

Viruses are the most abundant and widespread life form on our planet. During several billion years of coevolution, viruses have developed specific mechanisms allowing them to infect virtually any cellular organism [426]. It was estimated that viruses lyse about 20% of oceanic protists daily and, thus, play a major role in regulating the Earth’s biogeochemical cycle [427]. Euglenozoa are no exception to this rule, although viral diversity was thoroughly investigated only in kinetoplastids [428]. The reason for such discrepancy is obvious — this is by far the best-studied group, which includes several parasites of medical or economic importance [10]. There is no doubt that representatives of Euglenida, Diplonema and Symbiontida can be infected by viruses, but this has not been verified experimentally.

Kinetoplastids possess DNA and RNA viruses. The only documented case of a DNA virus is the one infecting free-living Bodo saltans [429]. This Bodo saltans virus belongs to the family Miniviridae and its genome of about 1.39 Mb is among the largest described genomes of giant viruses. The functional role this virus may play in the biology of bodonids remains to be elucidated, but the plethora of acquired adaptation traits (such as the mechanism to facilitate membrane fusion, interference competition, contracted translation machinery and inflated genome with numerous genome rearrangements) makes this virus an interesting model for future studies. Also of note is that the abundance of such nucleo-cytoplasmic large DNA viruses was estimated at 10^4–10^5 genomes ml^-1 in the photic zone and 10^2–10^3 genomes ml^-1 of water in the oxygen minimum zone of the World Ocean [430].

The situation with RNA viruses is more complex. Here, we will only discuss viruses with known genetic structure and will not cover older reports of the mere presence of virus-like particles (reviewed by Grybchuk et al. [428]). The best-studied cases are of Leishmania RNA viruses (Leishmanivirus spp., LRVs of the family Totiviridae). Discovered in the late 1980s in representatives of the Leishmania subgenus Viannia [431], the very first Leishmanivirus LRV1 was sequenced in the early 1990s [432], and its biological role was uncovered about 20 years later [433]. Its presence is linked to the increased metastatic potential, parasite burden, immune response in mouse models of leishmaniasis and frequent treatment failures [434,435]. Notably, Old World leishmanias L. (Leishmania) possess a phylogenetically related Leishmanivirus, LRV2, which is widespread in isolates of L. major [436,437], but its role in the disease progression is unknown. The phylogenies of viruses and their respective hosts are mainly congruent, suggesting long-term coevolution [438]. In addition to Leishmania, representatives of Leishmanivirus LRV3 and LRV4 have been documented in another group of trypanosomatids, Blechomonas spp. [439]. These viruses have probably been acquired from Leishmania during co-infections.

The most successful group of viruses infecting trypanosomatids are bunyaviruses (LBVs, proposed family Leishbunyaviiridae). They infect multiple Crithidia and Leptonomas spp. [440,441], Leishmania (Mundinia) martiniquensis [442], and at least one isolate of Phytomonas sp. [441]. The wide distribution of these viruses can be explained by their encapsulated structure, which promotes easy dispersion in co-infections.

Narnaviruses (family Narnaviridae) were detected in Leptonomas seymouri and Phytomonas serpens [95,441,443].
The viral load in *L. seymouri* is extremely high, indicating that this virus may enhance *Leishmania* virulence in the case of *Leishmania donovani–Leptomonas seymouri* co-infections [444]. Other viruses are less widespread and, in many instances, appear to be restricted to a particular trypanosomatid host, as can be exemplified by Tombus-like viruses and *Ostravirus* in *Leptomonas pyrrhocoris* [441].

6. Endo- and ectosymbioses in Euglenozoa

6.1. Kinetoplastid endosymbionts

Reports on endosymbionts in kinetoplastids are rare, but a few cases have been described in detail. Endosymbiosis between a bacterium and a trypanosomatid host occurred independently at least twice in the evolutionary history of trypanosomatids, in which neither hosts nor bacteria are closely related. The members of subfamily Strigomonadinae engaged in endosymbiotic relationship with *Ca. Kinetoplastibacterium* spp., representatives of Alcaligenaceae family (Burkholderiales; β-proteobacteria). Three genera of Strigomonadinae—*Angomonas*, *Strigomonas* and *Kentonomas*—are considered to share an endosymbiont-bearing ancestor, in which the reductive evolution of the endosymbiont genome occurred prior to the radiation of the host genera [274,445]. Each member of Strigomonadinae carries a different *Kinetoplastibacterium* species, which co-evolved together with its host [285]. Another trypanosomatid, *Novymonas esmeraldas* (most closely related to *Leishmania*), established endosymbiosis with *Ca. Pandoraea novymonadis*, representing another family (Burkholderiaceae) of Burkholderiales [275].

The presence of endosymbionts in all these cases likely compensates for the inability of their hosts to synthesize certain metabolites, such as haem, nucleotides, and several amino acids and vitamins, which are provided by the bacteria [275,285,445]. Both *P. novymonadis* and *Kinetoplastibacterium* spp. feature genomes, which are strongly reduced compared to related free-living β-proteobacteria, nevertheless preserving genes necessary for nutritional provisioning of their hosts [195]. Both endosymbiotic associations are permanent with bacteria being transmitted vertically; however, the association between *Kinetoplastibacterium* and Strigomonadinae is considered more ancient than that of *N. esmeraldas* and *P. novymonadis* [89,195]. The latter partnership is characterized by the lack of stringent control over the number of bacteria, less extensive genome reduction, higher GC content, and the presence of TCA and amino acid synthesis pathways [89].

Outside of these two systems, the presence of endosymbiotic bacteria was reported from a free-living freshwater kinetoplastid *Bodo curvifilis* [446], while the recently studied endosymbionts of *Bodo saltans* have been assigned to *Pimacutibacter*, with possible role in defensive endosymbiosis [447]. Finally, the trypanosomatid *Phytomonas boraalis* isolated from the midgut of spiked shieldbugs also harbours endosymbionts [448], although their taxonomic identity and function remain unknown.

6.2. Diplonemid endosymbionts

Diplonemids are known for establishing symbiosis with members of Holosporaceae and Rickettsiaceae families, which are exclusively parasitic/endosymbiotic lineages of α-proteobacteria [449]. At present, there are only two reports on endosymbionts in diplonemids: Holosporaceae bacteria inside two *Diplonema* species [450], and a hemistasiid *Namys tinia karyoxenos* with a Rickettsiaceae endosymbiont [325]. While *D. aggregatum* and *N. karyoxenos* contain a single endosymbiont, *D. japonicum* harbours two species of bacteria from closely related genera, the genomes of which have been sequenced, assembled and analysed [451]. They are severely reduced with similar gene content retained, and lack all energy metabolism pathways, including glycolysis, pentose-P pathway, the TCA cycle and oxidative phosphorylation. Although complete synthesis pathways for amino acids or vitamins are absent, the nutritional role of the endosymbionts cannot be ruled out due to the large number of proteins without known functions. A large portion of their highly reduced genomes is dedicated to secreted proteins that are possibly involved in manipulation of the host metabolism. Similar to Holosporaceae and Rickettsiaceae in other protist hosts, the role of the diplonemid endosymbionts is not clear. However, it was hypothesized that due to the presence of various secretion/toxin systems, the endosymbionts might take part in Defence against bacterial pathogens [451].

6.3. Symbioticid symbionts

As suggested by their very name, the distinctive trait of the Symbioticidae is their capability of forming permanent, probably obligatory symbiotic relationships [7,41]. Thus far, three distinctive kinds of epibiotic bacteria have been described to thrive on the surface of symbioticids cells: rod-shaped, sulfide-oxidizing ε-proteobacteria associated with symbioticid genera *Calkinsia* and *Bihospites* [41], extrusive apparatus-bearing cocci with strong resemblance to hypotrich ciliate-associated Verrucomicrobia, endemic to the genus *Bihospites* [329], and magnetotactic Delta-proteobacteria, associated with multiple unclassified environmental strains of symbioticids [452].

Although the role of magnetosome-bearing, but non-motile δ-proteobacterial symbionts is clearly to provide their hosts with magnetotaxis [452], the functions of other microorganisms in their relationships with symbioticids seem to be more complex. It has been suggested that the ε-proteobacterial symbionts detoxify the local surroundings to limit the inhibitory effect of sulfide on the cellular respiration of the symbioticids [41], while the Verrucomicrobia-like bacteria provide their hosts with a Defence mechanism against predators [329]. Additionally, the epibiotic bacteria can be used by their hosts as an auxiliary food source [329,452]. In exchange, the eukaryotic hosts’ role is to provide their epibionts with various metabolites, such as hydrogen, as all symbioticids possess hydrogenosomes [7], and to serve as efficient means of transport along the oxycline in the deep-sea environment [41]. It remains uncertain, however, whether the metabolic coupling between the symbioticids and ε-proteobacteria is limited to the outward hydrogen flux, and, perhaps more importantly, if any metabolic exchange occurs between the Verrucomicrobia-like bacteria and their symbioticid hosts.

6.4. Euglenid symbionts

Curiously, the observable affinity of the symbioticids towards prokaryotic partners is, to some extent, shared by their
postulated close relatives—the euglenids. In their case, the tight relationships with bacteria are not as widespread, as a majority of the described euglenid genera have never been observed to harbour any symbionts, but the diversity of these relationships may be substantially greater [397]. Unfortunately, our knowledge of the euglenid–bacteria associations remains superficial due to the fact that they have mostly been reported in the pre-genomics and transcriptomics era [419,453,454]. Nonetheless, it is undeniably possible that these relationships are widespread, as they involve both phagotrophic (genera Petalomonas and Dylakosoma; [419,455]) and photosynthetic euglenids (genera Euglena, Phacus, Lepocinclis and others; [454]), and of rather diverse nature, as euglenids have been observed to harbour bacteria within their cells [389,454], on their surface [419,456], or even both [397]. What is more, a single heterotrophic euglenid species (Anisomera platysomum) has been observed to harbour magnetosomes. It remains unclear whether this typically prokaryotic trait has been acquired by Anisomera from magnetotactic bacteria (similar to those associated with symbionts), or evolved independently [457].

As indicated by the so far most elaborate studies of euglenid–bacteria associations, involving a phagotrophic euglenid Petalomonas sphagnophila and a strain of photosynthetic Eutreptiella sp., it is evident that euglenids are capable of harbouring multiple different bacterial symbionts simultaneously [397,455]. Petalomonas sphagnophila from Canadian peatlands has been observed to carry six different bacteria within its cells, namely two strains of Rickettsiales, one representative of Firmicutes, one γ-proteobacterium and one enigmatic, pigmented prokaryote with unidentified affiliation [455]. Moreover, Eutreptiella from the Long Island Sound possesses epibionts classified as Roseovarius, Oceanicaulis (Alphaproteobacteria) and Marinobacter (Gammaproteobacteria), as well as an endobiotic representative of Rickettsiales, though phylogenetically distant from those associated with P. sphagnophila [397]. Unfortunately, except for the hypothesis that the epibiotic bacteria of Eutreptiella supply their host with vitamin B12, well supported by cultivation experiments and transcriptomic data, very little is known about the nature and purpose of the relationships between bacteria and the two aforementioned euglenid hosts [397,455]. In fact, it is uncertain whether these associations are symbiotic at all, especially considering that Rickettsiales are common intracellular parasites of a vast variety of eukaryotes [458].

Note added in proof

After the acceptance of this paper for publication, a taxonomic description of two new kinetoplastid flagellates, marine Papus ankaliazontas and freshwater Apiculatamorpha spiralis, has been published [459]. These new taxa represent free-living representatives of the order Prokinetoplastida. The available 18S rRNA gene-based phylogeny does not allow estimating reliably the relationships of these flagellates with the previously characterized genera Perkinsela and Ichthyobodo due to low statistical supports [459]. Moreover, the inferred position of these new taxa contradicts with the well-supported topology of the recently published phylogenomic tree, which, however, does not include Ichthyobodo [30]. Thus, it is currently premature to classify the two new genera and they are considered as Prokinetoplastida incertae sedis. Below is a short characterization of these forms.

P. ankaliazontas: free-living, solitary, eukaryvorous; two unattached flagella, the anterior one with thin undulate mastigonemes; flagellar pocket connected to oblique groove; pronounced rostrum with apical cytosome, tubular cytopharynx supported by prismatic microtubular rod; trichocysts at the anterior end.

A. spiralis: free-living, solitary, eukaryvorous; two unattached flagella the anterior one with fine fiber layer; cell surface with spherical and lamellate scales; pronounced rostrum with apical cytosome, tubular cytopharynx supported by prismatic microtubular rod; trichocysts at the anterior end.

Data accessibility. This article has no additional data.

Authors’ contributions. J.L. wrote the abstract and Introduction, conceived the idea for this manuscript and supervised the work. A.Y.K. prepared plate D and trees B–D, and wrote the section on Kinetoplastea except the section on taxonomy of Trypanosoma, which was written by J.V. J.V. also prepared plates B and C. V.Y. wrote the section on Viruses in Euglenozoa. D.T. and J.L. wrote the section on Diplonemea and subsections on diplomonad and kinetoplastid endosymbionts, and prepared plates A and E and tree F. A.K. and K.M. wrote the section on Euglenida and Symbiontida, and subsections on euglenid symbionts and symbiontid symbionts, and prepared plate F and trees A and F. All authors reviewed, corrected and accepted the manuscript.

Competing interests. We declare we have no competing interests.

Funding. This work was supported by the Czech Science Foundation grants 20-07186S, 20-22689S and 18-15962S (to V.Y. and J.L.), ERC CZ grant LL1601 (to J.L.), ZIN RAS State Assignment A6A-A19-11903120042-9 (to AYK), the ERD funds of the Czech Ministry of Education (16_019/0000759) (to J.L., D.T., A.Y.K., J.V. and V.Y.), the Czech Bioimaging grant LM2018129 (to D.T.), National Science Centre, Poland Sonata grant 2016/21/D/NZ8/01288 (to A.K.), Prerudium grant 2018/31/N/NZ8/01840 (to K.M.), EMBO Installation Grant (to A.K.) and L’Oreal Poland—UNESCO Scholarship for Women in Science (to A.K.).

Acknowledgements. Some photos (as indicated in the plates) were kindly provided by the following colleagues: Euchi Hirose (University of Ryukyus, Okinawa, Japan), Thorsten Stoeck (University of Kaiserslautern, Kaiserslautern, Germany), Alastair Simpson and Yana Eglit (Dalhousie University, Halifax, Canada), Shinichi Kitamura (Ehime University, Matsuyama, Japan), Kristina Prökena and Denis Tichonovsky (Papanin Institute for Biology of Inland Waters, Borok, Russia), Ivan Fiala (Institute of Parasitology, České Budejovice, Czech Republic), Iva Dyková (Masaryk University, Brno, Czech Republic), Gordon Lax, Noriko Okamoto and Patrick Keeling (University of British Columbia, Vancouver, Canada), Gediminas Valkūnas (Nature Research Centre, Vilnius, Lithuania), Andrei Mihalca (University of Agricultural Sciences and Veterinary Medicine, Cluj-Napoca, Romania), Erney Pleuron dan Camargo & Marta telescope (University of Sao Paolo, Brazil), Sydney Keating and Andrew Thompson (Murdoch University, Perth, Australia), Božena Zakryš (University of Warsaw, Warsaw, Poland), Naoki Yubuki (Paris-Sud University, Orsay, France), Anna I. Ganyukova, Marina N. Malysheva and Alexander O. Frolov (Zoological Institute, St Petersburg, Russia) and Milena Svozilová, Jovana Sádlová, Tereza Leščinová and Klára Poloprudská (Charles University, Prague, Czech Republic). We are also grateful to Andreu Saura (University of Ostrava, Ostrava, Czech Republic) for the preparation of smears of some trypanosomatid species as well as Alexander O. Frolov, Petr Kment (National Museum, Prague, Czechia) and Alastair Simpson (Dalhousie University, Halifax, Canada) for the discussion of some issues, which arose during the work on the manuscript.
49. Flegontova O, Flegontov P, Londoño PAC, Mukherjee I, Hodoki Y, Nakano S-I. 2015
45. Flegontova O, Flegontov P, Malviya S, Poulain J, de Vørs N, Buck KR, Chavez FP, Eikrem W, Hansen LE, von der Heyden S, Cavalier-Smith T. 2005 Culturing
50. von der Heyden S, Cavalier-Smith T. 2012 Analysis of the community
41. Edgcomb VP, Breglia SA, Yubuki N, Beaudoin D, Patterson DJ, Leander BS, Bernhard JM. 2011 Identity of epibiotic bacteria on symbiontoid
euglenozoans in O₂-depleted marine sediments: evidence for symbiont and host
co-evolution. ISME J. 5, 231–243. (doi:10.1038/isme.2010.121)
42. Boenigk J, Amdt H. 2002 Bacterivory by
eheterotrophic flagellates: community structure and feeding strategies. Antonie van Leeuwenhoek, Int. J. Gen. Mol. Microbiol. 81, 465–480. (doi:10.1007/ S00253-004-00265-3)
43. Patterson DJ, Nygaard K, Steinberg G, Turley CM.
57. Woo PTK. 1994 Flagellate parasites of fish. In
58. Vickerman K. 1978 The free-living trypanoplasms: descriptions of three species of the genus
59. Tanifuji G
62. Hirose E, Nozawa A, Kumagai A, Kitamura SI. 2012
63. Nam KW, Shin YK, Park KI. 2015 Seasonal variation
64. Nawata A, Hirose E, Kitamura SI, Kumagai A. 2015
65. Goodwin JD, Lee TF, Kugrens P, Simpson AGB. 2018
66. Lom J. 1979 Biology of the trypanosomases and trypanoplasmas of fish. In Biology of the kinetoplastida, vol. 2 (eds WR Lumsden, DA Evans), pp. 269–337. London, UK: Academic Press London.
67. Kruis P, Steinhagen D, Körting W. 1989 Development of Trypanoplasma barreti (Mastigophora: Kinetoplastida) in the leech vector Piscicola geometra and its infectivity for the common carp, Cyprinus carpio. J. Parasitol. 75, 527–530. (doi:10.2307/3282901)
68. Losev A, Gribukh-Ieremenko A, Kostyagov AY, Lukej I, Yurchenko V. 2015 Host specificity, pathogenicity, and mixed infections of trypanoplasmas from freshwater fishes. Parasitol. Res. 114, 1071–1078. (doi:10.1007/s00436-014-4277-y)
69. Steinhagen D, Kruis P, Körting W. 1990 Some haematological observations on carp, Cyprinus carpio L., experimentally infected with Trypanoplasma barreti Laveran & Mesnil, 1901 (Protozoa: Kinetoplastida). J. Fish Dis. 13, 157–162. (doi:10.1116/J.1385-2761.1990.tb00768.x)
70. Saeij JIP, Sté RUM, De Vries BJ, van Muiswinkel WB, Wiegertjes GF. 2003 Molecular and functional characterization of carp TNF: a link between TNF polymorphism and trypanotolerance? Dev. Comp. Immunol. 27, 29–41. (doi:10.1016/S0145-2126(02)00064-2)
71. Rankin JS. 1937 An ecological study of parasites of some North Carolina pulmonate snails. Ecol. Monogr. 7, 169–269. (doi:10.2307/1934239)
72. Woo PTK. 1987 Cryptobia and cryptobia in fishes. Adv. Parasitol. 26, 199–237. (doi:10.1016/S0065-268X(08)80297-3)
73. Vickerman K. 1976 The diversity of the kinetoplastid flagellates. In Biology of the kinetoplastidae, vol. 1 (eds WR Lumsden, DA Evans), pp. 1–34. London, UK: Academic Press.
74. Bradbury PC. 1994 Parasitic protozoa of molluscs and crustaceae. In Parasitic protozoa, vol. 8 (ed. JP Kreier), pp. 139–264. Amsterdam, The Netherlands: Elsevier.
75. Kazoff EN. 2004 Redescription of Dimastigella trypanoplasma Sandon, with notes on their relevance to the microscopical diagnosis of disease in man and animals. Trans. Am. Microsc. Soc. 97, 485–502. (doi:10.2307/3321615)
76. Vandersaeve MW, Berkenheuer AJ, Litaker RW, Vaden SL, Renschler JS, Gookin JL. 2015 Identification of Parabodo caudatus (dass Kinetoplastidae) in urine voided from a dog with hematuria. J. Vet. Diag. Invest. 27, 117–120. (doi:10.1177/ 104063714562827)
77. Kaczmarek A, Slędz A, Gielecka D, Salamatin R. 2019 Diagnostic traps: Parabodo cf. caudatus. Ann. Parasitol. 65, s133.
78. Lukš J, Skalický T, Votýpka J, Yurchenko V. 2014 Evolution of parasitism in kinetoplastid flagellates. Mol. Biochem. Parasitol. 195, 115–122. (doi:10.1016/j.molbiopara.2014.05.007)
79. Ishakken TE, Karlbakk E, Watanabe K, Hylund A. 2011 Ilyichyohydro salmonis sp. n. (Ilyichyohydrodinae, Kinetoplastidae), an euryhaline ectoparasite infecting Atlantic salmon (Salmo salar L.). Parasitology 138, 1164–1175. (doi:10.1017/S0033582911000916)
80. Vickerman K. 1976 The diversity of the kinetoplastid flagellates. In Biology of the kinetoplastidae, vol. 1 (eds WR Lumsden, DA Evans), pp. 1–34. London, UK: Academic Press.
81. Behrens J, Votýpka J, Yurchenko V. 2015 Host specificity, pathogenicity, and mixed infections of trypanoplasmas from freshwater fishes. Parasitol. Res. 114, 1071–1078. (doi:10.1007/s00436-014-4277-y)
82. Steinthagen D, Kreis P, Körting W. 1990 Some haematological observations on carp, Cyprinus carpio L., experimentally infected with Trypanoplasma barreti Laveran & Mesnil, 1901 (Protozoa: Kinetoplastida). J. Fish Dis. 13, 157–162. (doi:10.1116/J.1385-2761.1990.tb00768.x)
83. Saeij JIP, Sté RUM, De Vries BJ, van Muiswinkel WB, Wiegertjes GF. 2003 Molecular and functional characterization of carp TNF: a link between TNF polymorphism and trypanotolerance? Dev. Comp. Immunol. 27, 29–41. (doi:10.1016/S0145-2126(02)00064-2)
84. Rankin JS. 1937 An ecological study of parasites of some North Carolina pulmonate snails. Ecol. Monogr. 7, 169–269. (doi:10.2307/1934239)
85. Vickerman K. 1976 The diversity of the kinetoplastid flagellates. In Biology of the kinetoplastidae, vol. 1 (eds WR Lumsden, DA Evans), pp. 1–34. London, UK: Academic Press.
86. Bradbury PC. 1994 Parasitic protozoa of molluscs and crustaceae. In Parasitic protozoa, vol. 8 (ed. JP Kreier), pp. 139–264. Amsterdam, The Netherlands: Elsevier.
87. Kazoff EN. 2004 Redescription of Cryptobia helicis Ledy, 1846 (Kinetoplasta: Bodonidae: Cryptobiaidae), disposition of flagellates mistakenly assigned to this species, and description of a new species from a North American pulmonate snail. Acta Protozool. 43, 123–132.
88. Lukej I, Jirků M, Avilyakulov N, Benada O. 1998 Pankinetoplast DNA structure in a primitive boidonid flagellate, Cryptobia helicis. EMBO J. 17, 838–846. (doi:10.1093/embo/j.17.3.838)
89. Hesse E. 1910 Trypanoplasma vaginalis n., parasite du vagin de la sangsue. C. R. Hebld. Sénées Acad. Sci. Paris 151, 504–505.
125. Dougall AM, Alexander B, Holt DC, Harris T, Sultan A, Dostálová A, Volf P. 2012 Int. J. Parasitol. 32, 225–229. (doi:10.1017/ijs.2012.002)

126. Espinosa OA, Serrano MG, Camargo EP, Teixeira MMG, Shaw JJ. 2018 An appraisal of the taxonomy and nomenclature of trypanosomatids presently classified as Leishmania in sand flies: parasite-vector interactions overview. J. Glob. Infect. Dis. 10, 340–442. (doi:10.1017/S0074-027619840002092)

127. Akhoundi M, Butler C, Preston G, Kelly S. 2015 Phytophthora: trypanosomatids adapted to plant environments. PLoS Pathog. 11, e1004484. (doi:10.1371/journal.ppat.1004484)

128. Schwelm A et al. 2018 Not in your usual Top 10: protists that infect plants and algae. Mol. Plant Pathol. 19, 1029–1044. (doi:10.1111/mpp.12580)

129. Butenko A, Kuhls K, Cannet A, Votýpka J, Marty P, Antoine JC, Prina E, Courret N, Lang T. 2004 Proc. Natl Acad. Sci. USA 101, 1999–2004. (doi:10.1073/pnas.0711799105)

130. Jankevicius IV, Jankevicius S, Campaner M, Conchon J, Maeda LA, Teixeira MMG, Freymüller E, Camargo EP. 1989 Life cycle and culturing of Phytophthora serpens (Gibbs), a trypanosomatid parasite of tomatoes. J. Protozool. 36, 265–271. (doi:10.1111/j.1550-7408.1989.tb50361.x)

131. Dostálová A, Volf P. 2012 Int. J. Parasitol. 32, 225–229. (doi:10.1017/ijs.2012.002)

132. Seward EA, Votýpka J, Kment P, Lukej AY. 2016 Back to monoxeny: Leishmania and nomenclature of trypanosomatids presently classified as Leishmania in sand flies: parasite-vector interactions overview. J. Glob. Infect. Dis. 10, 340–442. (doi:10.1017/S0074-027619840002092)

133. Kirchhoff LV. 2011 Epidemiology of American trypanosomiasis (Chagas disease). Adv. Parasitol. 77, 1–108. (doi:10.1016/S0065-308X(10)00001-6)

134. Galen SC, Borner J, Perkins SL, Weckstein JD. 2020 Phylogenomics from transcriptomic bycatch: clarify the origins and diversity of avian trypanosomes in North America. PLoS ONE 15, e0240062. (doi:10.1371/journal.pone.0240062)

135. Lai DH, Hashimi H, Lun ZR, Ayala FJ, Lukej A. 2008 Adaptations of Trypanosoma brucei to gradual loss of kinetoplast DNA: Trypanosoma equiperdum and Trypanosoma evansi are petite mutants of T. brucei. Proc. Natl Acad. Sci. USA 105, 1999–2004. (doi:10.1073/pnas.0711799105)

136. Deane MP, Lenzi HL, Jansen A. 1984 Trypanosoma cruzi: vertebrate and invertebrate cycles in the same mammal host, the opossum Didelphis marsupialis. Mem. Inst. Oswaldo Cruz. 79, 513–515. (doi:10.1590/S0071-828X1984000000021)

137. Roche G, Martins A, Gama G, Brandão F, Atouguia J. 2004 Possible cases of sexual and congenital transmission of sleeping sickness. Lancet 363, 247. (doi:10.1016/S0140-6736(03)15545-7)

138. Howard EL, Xiong X, Carrell Y, Sosa-Estani S, Buekers P. 2014 Frequency of the congenital transmission of Trypanosoma cruzi: a systematic review and meta-analysis. JBU 121, 22–33. (doi:10.1111/jpu.12146.20160418.2396.Frequency)

139. Gomes C, Almeida AB, Rosa KC, Araújo PF, Teixeira ARL. 2019 American trypanosomiasis and Chagas disease: sexual transmission. Int. J. Infect. Dis. 81, 81–84. (doi:10.1016/j.ijid.2019.01.021)

140. Stuart K, Brun R, Croft S, Fairbamb A, Gurtler RE, McKerrow J, Reed S, Tarleton R. 2008 Kinetoplastids: related protozoan pathogens, different diseases. J. Clin. Invest. 118, 1301–1310. (doi:10.1172/JCI331945)

141. Trindade S et al. 2016 Trypanosoma brucei parasites occupy and functionally adapt to the adipose tissue in mice. Cell Host Microbe 19, 837–848. (doi:10.1016/j.chom.2016.05.002)

142. Kennedy PGE. 2013 Clinical features, diagnosis, and treatment of human African trypanosomiasis (sleeping sickness). Lancet Neurol. 12, 186–194. (doi:10.1016/S1474-4422(12)70296-X)

143. Barrett MP. 2018 The elimination of human African trypanosomiasis is in sight: from the report of the third WHO stakeholders meeting on elimination of gambiense human African trypanosomiasis. PLoS Negl. Trop. Dis. 12, e0006925. (doi:10.1371/journal.pntd.0006925)

144. Pérez-Molina JA, Molina I. 2018 Chagas disease. Lancet 391, 82–94. (doi:10.1016/S0140-6736(17)31612-4)

145. Kirchhoff LV. 2011 Epidemiology of American trypanosomiasis (Chagas disease). Adv. Parasitol. 75, 1–18. (doi:10.1016/S0065-308X(10)00001-6)

146. Gubl F, Valjeff GA. 2003 Trypanosoma (Herpetosoma) rangeli Tejera, 1920—an updated review. Mem. Inst. Oswaldo Cruz 98, 435–442. (doi:10.1590/S0071-828X2006260000001)

147. Yaro M, Munyadr KA, Stear MU, Geho DM. 2016 Combatting African Animal Trypanosomiasis (AAT) in livestock: the potential role of trypanotolerance. Vet. Parasitol. 225, 43–52. (doi:10.1016/j.vetpar.2016.05.003)

148. Becker CD. 1977 Flagellate parasites of fish. In Parasitic protozoa Vol. 8. Taxonomy, kinetoplastids,
hosts deduced from ribosomal RNA and protein-coding gene phylogenies. Mol. Phylog. Evol. 44, 15–25. (doi:10.1016/j.ympev.2007.03.023)

201. Fermino BR et al. 2015 Field and experimental evidence of a new caiman trypanosome species closely phylogenetically related to fish trypanosomes and transmitted by leeches. Int. J. Parasitol. Parasit. Wild. 5, 368–378. (doi:10.1016/j.ijppaw.2015.10.005)

202. Dovžáková N, Čepička I, Qablan MA, Gibson W, Blázek R, Širóký P. 2015 Phylogeny and morphological variability of trypanosomes from African pelomedusid turtles with redescription of Trypanosoma mocambicum Pinauer, 1962. Protist 166, 599–608. (doi:10.1016/j.protis.2015.10.002)

203. Bernal XE, Pinto CM. 2016 Sexual differences in parasites. Parasitol. Vectors 589. (doi:10.1186/s13071-015-1193-7)

204. Spodareva VV, Grybchuk-Ieremenko A, Losev A, Živaljević D, Tuncer V, Kostyugov VF. 2018 Diversity and evolution of anuran trypanosomes: insights from the study of European species. Parasit. Vectors 11, 447. (doi:10.1186/s13071-018-3023-1)

205. Doffein F. 1901 Die Protozoen als Parasiten und Krankheitserreger nach biologischen Gesichtspunkten Dargestellt. Jena, Germany: Fischer.

206. Woo PTK. 2006 Diplomonadida (Phylum Parabasalia) and Kinetoplastea (Phylum Euglenozoa). In Fish diseases and disorders, Vol. 1: protozoan and metazoon infections (ed. PTK Woo), pp. 46–114. Wallingford, UK: CABI.

207. Gibson WC, Lom J, Pecková H, Blázek R, Širóký P. 2015 Phylodynamics analysis of freshwater trypanosomes from Europe using SSU rRNA gene sequences and random amplification of polymorphic DNA. Parasitology 143, 1027–1027. (doi:10.1017/S003118201600329)

208. Lemos M, Fermino BR, Simas-Rodrigues C, Hoffmann L, Silva R, Camargo EP, Teixeira MMG. 2020 Pan-American Trypanosoma (Megatrypanum) trinaperronei n. sp. in the deer ked Lipoptena mazamae (Megatrypanum) trinaperronei n. sp. in the deer ked Lipoptena mazamae (Megatrypanum) trinaperronei n. sp.: a new species of deer ked transmitted to its deer ked host. J. Helminthol. Soc. Washington 85, 105–110. (doi:10.1111/j.1749-6648.2009.tb00055.x)

209. Mafie E, Saito-Ito A, Kasai M, Hatta M, Rivera PT, Ma XH, Chen ER, Sato H, Takada N. 2019 Integrative taxonomic approach of trypanosomes in the rodent’s and sorid’s in Asian countries, with the description of three new species. Parasitol. Res. 118, 97–109. (doi:10.1007/s00436-018-6120-3)

210. García HA, Blanco PA, Rodrigues CMF, Takata CS, Campaner M, Camargo EP, Teixeira MMG. 2020 Pan-American Trypanosoma (Megatrypanum) trinaperronei n. sp. in the white-tailed deer Odocoileus virginianus Zimmermann and its deer ked Lipoptena mazamae Rondani, 1878: morphological, developmental and phylogeographical characterisation. Parasit. Vectors 13, 308. (doi:10.1186/s13071-020-04169-0)

211. Kingston N, Bobek B, Pasztorowski K, Wita I, Maki L. 1992 Description of Trypanosoma (Megatrypanum) stefanski sp. n. from the M. ira sp. n. (in the family Trypanosomatidae) in the red squirrel (Callosciurus capraeus) in Poland. J. Helminthol. Soc. Washington 59, 89–95.

212. Bruce D, Hamerton AE, Bateman HR, Mackie FP. 2009 Trypanosoma ingens, n. sp. Proc. R. Soc. Lond. B 276, 323–324. (doi:10.1098/rspb.2009.0930)

213. Weinman D. 1972 Trypanosoma cyclops n. sp.: a pigmented trypanosome from the Malaysian primates Macaca nemestrina and M. irus. Trans. R. Soc. Trop. Med. Hyg. 66, 628–638. (doi:10.1016/0035-9203(72)90076-9)

214. Weinman D, White EA, Antipa GA. 1984 Trypanosoma lucknowi, a new species of trypanosome from Macaca mulatta with observations on its fine structure. J. Protozool. 31, 429–433. (doi:10.1111/j.1550-7408.1984.tb02990.x)

215. Stevens J, Noyes H, Gibson W. 1998 The evolution of trypanosomes infecting monkeys and primates. Mem. Inst. Oswaldo Cruz 93, 669–676. (doi:10.1590/S0071-828X1998000400019)

216. Clément L et al. 2020 Out of Africa: the origins of the protozoan blood parasites of the Trypanosoma cruzi clade found in bats from Africa. Mol. Phylogenet. Evol. 145, 106705. (doi:10.1016/j.ympev.2019.106705)
trypanosomes in Australia. Adv. Parasitol. 97, 47–109. (doi:10.1016/bs.apar.2016.06.001)
249. Krige AS, Thompson RCA, Cleave PL. 2019 ‘Hang on a Tick’—are ticks really the vectors for Australian trypanosomes? Trends Parasitol. 35, 596–606. (doi:10.1016/j.pt.2019.05.008)
250. Cooper C, Thompson RCA, Rigby P, Buckley A, Peacock C, Cleave PL. 2018 The marsupial trypanosome Trypanosoma copemani is not an obligate intracellular parasite, although it adversely affects cell health. Parasit. Vectors 11, 521. (doi:10.1186/s13071-019-3902-1)
251. Novy FG. 1906 The trypanosomes of the tsetse flies. J. Infect. Dis. 3, 394–411. (doi:10.1093/infdis/3.3.394)
252. Hoare CA. 1933 Studies on Trypanosoma gravi. III. Life-cycle in the tsetse-fly and in the crocodile. Parasitology 23, 449–484. (doi:10.1017/S0031182000013585)
253. Hoare CA. 1929 Studies on Trypanosoma gravi. II. Experimental transmission to the crocodile. Trans. R. Soc. Trop. Med. Hyg. 23, 39–56. (doi:10.1016/S0033-0000(29)90381-2)
254. Fermino BR et al. 2013 The phylogeny of trypanosomes from South American alligatorids and African crocoddils is consistent with the geological history of South American river basins and the transoceanic dispersal of Crocodylus at the Miocene. Parasit. Vectors 6, 313–327. (doi:10.1186/1756-3305-6-313)
255. Fermino BR et al. 2019 Shared species of crocodian trypanosomes carried by tabanid flies in Africa and South America, including the description of a new species from caimans, Trypanosoma kaiowai n. sp. Parasit. Vectors 12, 225. (doi:10.1186/s13071-019-3463-2)
256. Wenyon CM. 1908 Report of travelling pathologist and protozoologist. In Third report of the Wellcome Research Laboratories at the Gordon Memorial College, Khartoum (ed. A Ballfour), pp. 121–168. London, UK: Balliere, Tindall and Cox.
257. Sato H, Takano A, Watanabe H, Une Y, Kawabata H. 2009 Trypanosoma cruzi var. in an imported ball python (Python regius) from Ghana. J. Parasitol. 95, 1029–1033. (doi:10.1111/GE-1816.1)
258. Viola LB, Attias M, Takata CSA, Campaner M, de Souza W, Camargo EP, Teixeira MMG. 2009 Phylogenetic analyses based on small subunit rRNA and glycosomal glyceraldehyde-3-phosphate dehydrogenase genes and ultrastructural characterization of two snake trypanosomes: Trypanosoma serpentina n. sp. from Pesoaedus nigra and Trypanosoma casavelli from Crotalus durissus terrificus. J. Eukaryot. Microbiol. 56, 594–602. (doi:10.1111/j.1550-7408.2009.00444.x)
259. Ayala SC. 1970 Two new trypanosomes from California toads and lizards. J. Protozool. 17, 370–373. (doi:10.1111/j.1550-7408.1970.tb04786.x)
260. Pesoiu SB, de Biasi P. 1972 Trypanosoma casavelli n. sp. parasita da cascavel: Crotalus durissus terrificus (Laurenti). Atlas Soc. Biol. Rio de Janeiro 15, 67–70.
261. Rodrigues MS, Lima L, Xavier SC das C, Herrera HM, Rocha FL, Roque ALR, Teixeira MMG, Jansen AM. 2019 Uncovering Trypanosoma spp. diversity of wild mammals by the use of DNA from blood clots. Int. Parasitol. Parasit. Wild. 8, 171–181. (doi:10.1016/j.ipppaw.2019.02.004)
262. Rêgo SFM, Magalhães AEA, Siqueira AF. 1957 Um novo trypanosoma do gamba, Trypanosoma frentazi n. sp. Rev. Brasil Malaria 9, 277–284.
263. Ferreira JGS, da Costa AP, Nunes PH, Ramirez D, Fournier GFR, Saraiva D, Tonhosolo R, Marcili A. 2017 New Trypanosoma species, Trypanosoma gennarii sp. nov., from South American marsupial in Brazil. Cerrado. Acta Trop. 176, 249–255. (doi:10.1016/j.actatropica.2017.08.018)
264. Naiff RD, Barrett TV. 2013 Trypanosoma (Megatrypanum) lamae n. sp. from Mesamys hispidus (Rodentia: Echimyidae) in Brazil: trypanastigotes described from experimentally infected laboratory mice. Parasite 20, 51–56. (doi:10.1051/parasite/2013049)
265. Mcllnes LM, Gillett A, Ryan UM, Austen J, Campbell RSF, Hanger J, Reid SA. 2009 Trypanosoma irwini n. sp. (Sarcostomatigophora: Trypanosomatidae) from the koala (Phascolarctos cinereus). Parasitology 136, 875–885. (doi:10.1017/S0031182009006313)
266. Ortiz-Baez AS et al. 2020 Meta-transcriptomic identification of Trypanosoma spp. in native wildlife species from Australia. Parasit. Vectors 13, 447. (doi:10.1186/s13071-020-04325-6)
267. Peirce MA, Neal C. 1974 Trypanosoma (Megatrypanum) pestanai in British badgers (Meles meles). Int. J. Parasitol. 4, 439–440. (doi:10.1016/0020-7519(74)90055-1)
268. Ideouz EJ, Whiteoak AM, Tomlinson AJ, Robertson A, Delahay RJ, Hide G. 2015 High prevalence of trypanosomes in European badgers detected using ITS-PCR. Parasit. Vectors 8, 480–485. (doi:10.1186/s13071-015-1088-7)
269. Dyachenko V, Steinmann B, Bangoura B, Selzer M, Fournier GFR, Saraiva D, Tonhosolo R, Marcili A. 2017 The phylogeography of Trypanosoma cruzi (Trypanosomatidae). Folio Parasitol. 64, 020. (doi:10.14411/fp.2017.020)
270. Schwcz RS, Bauchan GR, Murphy CA, Rawett J, de Graaf DC, Evans JD. 2015 Characterization of two species of Trypanosomatidae from the honey bee Apis mellifera: Crithidia mellifica Langridge and McMhee, and Latomaria passim n. gen., n. sp.
284. Yoshida N, Freymüller E, Wallace FG. 2010 Herpetomonas trimorpha sp. nov. (Trypanosomatidae, Kinetoplastida), a parasite of the biting midge Culicoides trivittatus (Diptera: Ceratopogonidae, Diptera). Int. J. Syst. Evol. Microbiol. 60, 2236–2246. (doi:10.1099/ijs.0.014555-0)

285. Kostygov AV, Dobáková E, Grybchuk-Ieremenko A, Váhala D, Maslov DA, Votýpka J, Lukeš M. 2016 An unprecedented non-canonical nucleic genetic code with all three termination codons reassigned as sense codons. Curr. Biol. 26, 2364–2369. (doi:10.1016/j.cub.2016.06.064)

286. Votýpka J, Suková E, Kraeva N, Ishemgulova A, Lukšová M, Lukeš M. 2016 An unprecedented non-canonical nucleic genetic code with all three termination codons reassigned as sense codons. Curr. Biol. 26, 2364–2369. (doi:10.1016/j.cub.2016.06.064)

287. Záhonová K, Kostygov AY, Srivastava B, Yurchenko V. 2021 Characterization of a new cosmopolitan genus of trypanosomatid parasites, Obscurocercis n. gen. Eur. J. Protistol. 2021, 125778. (doi:10.1016/j.ejop.2021.125778)

288. Votýpka J, Suková E, Kraeva N, Ishemgulova A, Lukšová M, Lukeš M. 2016 An unprecedented non-canonical nucleic genetic code with all three termination codons reassigned as sense codons. Curr. Biol. 26, 2364–2369. (doi:10.1016/j.cub.2016.06.064)

289. Flegontov P et al. 2013 Pantrypansoma is a novel early-branching trypanosomatid. Curr. Biol. 23, 1787–1793. (doi:10.1016/j.cub.2013.07.045)

290. Skalicky T et al. 2017 Extensive flagellar remodeling during the complex life cycle of Paratrypanosoma, an early-branching trypanosomatid. Proc. Natl. Acad. Sci. USA 114, 11 757–11 762. (doi:10.1073/pnas.1712131114)

291. Kostygov AV et al. 2020 Vickermonia gen. nov., trypanosomatids that use two joined flagella to resist midgut peristaltic flow within the fly host. BMC Biol. 18, 187. (doi:10.1186/s12915-020-00916-y)

292. Svbodová M, Žítková L, Čeperička I, Oborník M, Lukeš M. 2007 Sergeiia podlipovae gen. nov., sp. nov. (Trypanosomatidae, Kinetoplastida), a parasite of biting midges (Ceratopogonidae, Diptera). Int. J. Syst. Evol. Microbiol. 57, 423–432. (doi:10.1099/ijs.0.04557-0)

293. Yurchenko V, Votýpka J, Tesaróvá M, Klepetková H, Kraeva N, Jirka M, Lukeš M. 2014 Ultrastructure and molecular phylogeny of four new species of monoxenous trypanosomatids from flies (Diptera: Brachycera) with redefinition of the genus Waxellaeina. Folia Parasitol. 61, 97–112. (doi:10.14411/fp.2014.0233)

294. Kostygov AV, Grybchuk-Ieremenko A, Malyshova MN, Fronov AO, Yurchenko V. 2014 Molecular revision of the genus Waxellaeina. Protist 165, 594–604. (doi:10.1016/j.protis.2014.07.001)

295. Ruubau E. 1911 Encyclopaedia (n. gen.) caulleryi (n. sp.); nouveau flagellé à formes trypanosomiennes de l’intestinal d’Acanthocheilonema lupinaria Fabr. (Musciidae). C. R. Séances Soc. Biol. 71, 503–505.

296. Nicoli RM, Penaud A, Timon-David P. 1971 Recherches systématiques sur les trypanosomiodes, II. Le genre Malacocœmonos n. gen. Bull. Soc. zool. France 96, 415–419.

297. Nicoli RM, Penaud A, Timon-David P. 1971 Recherches systématiques sur les trypanosomiodes. I. Le genre Nemotadomonas n. gen. Bull. Soc. zool. France 96, 405–415.

298. Page AM, Canning EU, Barker RJ, Nicholas JP. 1986 A new species of Rhynchoidomonas Patton, 1910 (Kinetoplastida: Trypanosomatida) from Ophoperastra bramata (Lepidoptera: Geometridae). Parasit. Vectors 8, 101–105. (doi:10.1186/1756-0500-13-101)

299. Cachon J, Cachon M, Charnier M. 1972 Ultrastructure of the bodonid Trypanoprasphacron Poche, parasite des siphonophores. Protistol. 8, 223–236.

300. Larsen J, Patterson DJ. 1990 Some flagellates (Protista) from tropical marine sediments. J. Nat. Hist. 24, 801–937. (doi:10.1080/00222993900707571)

301. Patterson DJ, Vars N, Simpson AGG, O’Kelly C. 2000 Residual free-living and predatory heterotrophic flagellates. In An illustrated guide to the protozoa (eds. JI Lee, GF Leedale, P Bradbury), pp. 1302–1328. Lawrence, KS: Society of Protozoologists/Allen Press.

302. Lara E, Moreira D, Varechaska A, López-García P. 2009 Pan-oceanic distribution of new highly diverse clades of deep-sea diplomons. Environ. Microbiol. 11, 47–55. (doi:10.1111/j.1462-2920.2008.01717.x)

303. de Vargas C et al. 2015 Ocean plankton. Eukaryotic plankton diversity in the sunlit ocean. Science 348, 1261605. (doi:10.1126/science.1261605)

304. López-García P, Varechaska A, Moreira D. 2007 Eukaryotic diversity associated with carbonates and fluid–seawater interface in Lost City hydrothermal field. Environ. Microbiol. 9, 546–554. (doi:10.1111/j.1462-2920.2006.00158.x)

305. López-García P, Rodríguez-Valera F, Pedrós-Alió C, Moreira D. 2001 Unexpected diversity of small eukaryotes in deep-sea Antarctic plankton. Nature 409, 603–607. (doi:10.1038/35054537)

306. Morgan-Smith D, Clouse MA, Herndl GJ, Bochdansky AB. 2013 Diversity and distribution of microbial eukaryotes in the deep tropical and subtropical North Atlantic Ocean. Deep Sea Res. Part I 78, 58–69. (doi:10.1016/j.dsr.2013.04.010)

307. Massana R et al. 2015 Marine protist diversity in European coastal waters and sediments as revealed by high-throughput sequencing. Environ. Microbiol. 17, 4035–4049. (doi:10.1111/1462-2902.12955)

308. Pernice MC, Giner CR, Logares R, Perera-Bel J, Acinas SG, Duarte CM, Gasol JM, Masina R. 2016 Large variability of benthic microeukaryotic microbial eukaryotic communities across the world’s oceans. ISME J. 10, 945–958. (doi:10.1038/ismej.2015.170)

309. Elloe EA, Shulze CH, Fadrows DW, Williamson SJ, Allen EE, Bartlett DH. 2011 Compositional differences in particle-associated and free-living microbial assemblages from an extreme deep-ocean environment. Environ. Microbiol. Rep. 3, 449–458. (doi:10.1111/j.1758-2229.2010.00223.x)

310. Okamoto N, Grawytk RMR, del Campo J, Strassert JFH, Lukeš J, Richards TA, Worden AZ, Santoro AE.
320. Yi Z, Berney C, Hartikainen H, Mahamdallie S, Triemer RE, Ott DW. 1990 Ultrastructure of Isonema papillatum. J. Eukaryot. Microbiol. 37, 76–86. (doi:10.1111/j.1550-7408.1990.00047.x)

321. Al-Qassab S, Lee WJ, Murray S, Simpson AGB, et al. 2019 Harmful marine algal blooms. Protistologica 57, 2019–2066.

322. Mukherjee I, Hodzki Y, Okazaki Y, Fujinaga S, Ohbayashi K, Nakano St. 2019 Widespread dominance of kinetoplastids and unexpected presence of diplomonds in deep freshwater lakes. Front. Microbiol. 10. (doi:10.3389/fmicb.2019.02375)

323. Mukherjee I et al. 2020 A freshwater radiation of diplomonds. Environ. Microbiol. 22, 4658–4668. (doi:10.1111/1462-2920.15209)

324. Elbrachtner M, Schnepp E, Balzer I. 1996 Hemistasia phytoflagellata. (Schegel) comb. nov., redescription of a free-living, marine, phagotrophic kinetoplastid flagellate. Arch. Protistenk. 147, 125–136. (doi:10.1007/s00035-966(96)80028-5)

325. Yabuki A, Tame A. 2015 Phylogeny and reclassification of Hemistasia phytoflagellata (Scherffel) Elbrachtner & Schnepp, 1996. J. Eukaryot. Microbiol. 62, 426–429. (doi:10.1111/jeu.12191)

326. Prokopchuk G, Tashyryeva D, Yabuki A, Horák A, Masalfara P, Lukes J. 2019 Morphological, ultrastructural, motility and evolutionary characterization of two new Hemistasidae species. Protist 170, 259–282. (doi:10.1007/jprot.2019.04.001)

327. Kent ML, Eston RA, Nerad TA, Sawyer TK. 1987 An Isonema-like flagellate (Protozoa: Mastigophora) infection in larval geoduck clams, Panope abrupta. J. Invertebr. Pathol. 50, 221–229. (doi:10.1007/s00227-005-0806-3)

328. Bodamer JJ, Sawyer TK. 1981 Aufwuchs protozoa and bacteria on the gills of the rock crab, Cancer irroratus Say: a survey by light and electron microscopy. J. Protozool. 28, 35–46. (doi:10.1111/j.1550-7408.1981.tb02801.x)

329. Roy J, Faktorová D, Benoda O, Lukes J, Burger G. 2007 Description of Rhynchosoma euleeides n. sp. (Diplonema), a free-living marine euglenozoon. J. Eukaryot. Microbiol. 54, 137–145. (doi:10.1111/j.1550-7408.2007.00244.x)

330. Breglia SA, Yubuki N, Hoppenrath M, Leander BS. 2017 High-throughput sequencing of microbial mats and surrounding sediments in Shark Bay, Western Australia. Acta Protozool. 46, 91–144.

331. Porter D. 1973 Ultrastructure of a flagellate, Diplonema ambulator. J. Protozool. 20, 351–356. (doi:10.1111/j.1550-7408.1973.tb0095x)

332. Schnepp E. 1994 Light and electron microscopic observations in Rhynchosoma coscodivisorum spec. nov., a colorless, phagotrophic euglenozoon with concealed flagella. Arch. Protistenk. 144, 63–74. (doi:10.1007/s00035-996(96)00225-3)

333. Griesmann K. 1914 Über marine Flagellaten. Arch. Protistenk. 32, 1–78.

334. Triemer RE, Ott DW. 1990 Ultrastructure of Diplonema ambulator Larsen & Patterson (Euglenozoa) and its relationship to Isonema. Eur. J. Protistol. 25, 316–326. (doi:10.1016/0932-4739(91)80123-9)

335. Li Z, Berney C, Hartikainen H, Mahamdallie S, Gardner M, Boenigk J, Cavalier-Smith T, Bass D. 2017 High-throughput sequencing of microbial eukaryotes in Lake Baikal reveals ecologically differentiated communities and novel evolutionary radiations. REMS Microbiol. Ecol. 93, 0073. (doi:10.1093/femsec/fiy073)

336. Hill RJ. 1948 Taxonomie des Phytoplanktons einiger Seen in Upland, Schweden. Symb. Bot. Ups. 9, 1–399.

337. Schnepp E. 1988 A revised taxonomy of diplomonds including the Eupelegomonadidae n. fam. and a type species, Eupelegonema oceaniae n. gen. & sp. J. Eukaryot. Microbiol. 66, 519–524. (doi:10.1111/jeu.12679)

338. Takishita K, Kakizoe N, Yoshida T, Maruyama T. 2010 Molecular evidence that phylogenetically diverged ciliates are active in microbial mats of deep-sea cold-seep sediment. J. Eukaryot. Microbiol. 57, 76–86. (doi:10.1111/j.1550-7408.2009.00047.x)

339. Al-Qassab S, Lee WJ, Murray S, Simpson AGB, Patterson DJ. 2002 Flagellates from stromatolites and surrounding sediments in Shark Bay, Western Australia. Acta Protozool. 41, 91–144.

340. Schnepp E. 1994 Light and electron microscopic observations in Rhynchosoma coscodivisorum spec. nov., a colorless, phagotrophic euglenozoon with concealed flagella. Arch. Protistenk. 144, 63–74. (doi:10.1007/s00035-996(96)00225-3)

341. Porter D. 1973 Ultrastructure of a flagellate, Diplonema ambulator. J. Protozool. 20, 351–356. (doi:10.1111/j.1550-7408.1973.tb0095x)

342. Schnepp E. 1994 Light and electron microscopic observations in Rhynchosoma coscodivisorum spec. nov., a colorless, phagotrophic euglenozoon with concealed flagella. Arch. Protistenk. 144, 63–74. (doi:10.1007/s00035-996(96)00225-3)

343. Triemer RE, Ott DW. 1990 Ultrastructure of Diplonema ambulator Larsen & Patterson (Euglenozoa) and its relationship to Isonema. Eur. J. Protistol. 25, 316–326. (doi:10.1007/1550-4739(91)80123-9)

344. Yi Z, Berney C, Hartikainen H, Mahamdallie S, Gardner M, Boenigk J, Cavalier-Smith T, Bass D. 2017 High-throughput sequencing of microbial eukaryotes in Lake Baikal reveals ecologically differentiated communities and novel evolutionary radiations. REMS Microbiol. Ecol. 93, 0073. (doi:10.1093/femsec/fiy073)

345. Mukherjee I, Hodzki Y, Okazaki Y, Fujinaga S, Ohbayashi K, Nakano St. 2019 Widespread dominance of kinetoplastids and unexpected presence of diplomonds in deep freshwater lakes. Front. Microbiol. 10, 2375. (doi:10.3389/fmicb.2019.02375)

346. Mukherjee I et al. 2020 A freshwater radiation of diplomonds. Environ. Microbiol. 22, 4658–4668. (doi:10.1111/1462-2920.15209)

347. Elbrachtner M, Schnepp E, Balzer I. 1996 Hemistasia phytoflagellata. (Schegel) comb. nov., redescription of a free-living, marine, phagotrophic kinetoplastid flagellate. Arch. Protistenk. 147, 125–136. (doi:10.1007/s00035-9366(96)80028-5)

348. Yabuki A, Tame A. 2015 Phylogeny and reclassification of Hemistasia phytoflagellata (Scherffel) Elbrachtner & Schnepp, 1996. J. Eukaryot. Microbiol. 62, 426–429. (doi:10.1111/jeu.12191)
351. Lackey JB. 1968 Ecology of Euglena. In The biology of Euglena, vol. 1 (ed. DE Buettow), pp. 27–244. New York, NY: Academic Press.

352. Jones DT. 1944 Two protozoans from Great Salt Lake. Bull. Univ. Utah, Biol. Ser. 35: 1–10.

353. Lane AE, Burris JE. 1981 Effects of environmental pH on the internal pH of Chlorella pyrenoidosa, Scenedesmus quadricauda, and Euglena mutabilis. Plant Physiol. 68, 439–442. (doi:10.1104/pp.68.2.439)

354. Sittenfeld A et al. 2002 Characterization of a photosynthetic Euglena strain isolated from an acidic hot mud pool of a volcanic area of Costa Rica. FEMS Microbiol. Ecol. 42, 151–161. (doi:10.1111/j.1574-6941.2002.tb01004.x)

355. Yamasuchi A, Yubuki N, Leander BS. 2012 Morphogenesis in a novel eukaryote illuminates the evolutionary transition from photophagy to photosynthesis: description of Rupaka viridis n. gen. et sp. (Euglenozoa, Euglenida). BMC Evol. Biol. 12, 29. (doi:10.1186/1471-2148-12-29)

356. Michajłow W. 1972 Euglenoidina parasitica inCOPEPODA: an outline monograph. Warsaw: PWN—Polish Scientific Publishers.

357. Wenrich DH. 1924 Studies on Euglenamorphus hegneri n. g., n. sp., a euglenoid flagellate found in tadpoles. Biol. Bull. (Woods Hole) 47, 149–175. (doi:10.2307/1536494)

358. Kiselevska G, Kolicka M, Zawierucha K. 2015 Prey or parasite? The first observations of live Euglenida in the intestine of Gastrotricha. Eur. J. Protistol. 51, 138–141. (doi:10.1016/j.ejeprot.2014.12.003)

359. Hall SR. 1931 Observations on Euglena leucas, sp. nov., a parasite of Stenostomum, with special reference to nuclear division. Biol. Bull. 60, 327–344. (doi:10.2307/1536678)

360. Michajłow W. 1978 Dinema interrupts a Euglenopsis n. sp., a new genus of eukaryote with unusual flagellum. J. Protozool. 35, 1–11. (doi:10.1111/j.1557-1271.1988.tb01603.x)

361. Wita I, Sukhanova KM. 1986 Seasonal modifications of transcripts encoding ribosomal rRNA in Copepoda: an outline monograph. Ser. Sci. Biol. 11, 30–37. (doi:10.5586/asbp.2008.011)

362. Bennett MS, Wiegert KE, Triemer RE, Zakry B, Triemer RE. 2015 Phylodynamic relationships and morphological character evolution of photosynthetic euglenids (Excavata) inferred from taxon-rich analyses of five genes. J. Eukaryot. Microbiol. 62, 362–373. (doi:10.1111/j.1325-8741.2012.12192)

363. Kamkowski A, Bennett MS, Watza D, Kim JI, Zakry B. 2016 DNA barcoding in eukaryotic microbes below the chemocline of the anoxic Mariager Fjord, Denmark. FEMS Microbiol. Ecol. 92, fiw120. (doi:10.1093/femsec/fiw120)

364. Busse I, Presleifeld A. 2002 Unusually expanded SSU ribosomal DNA of primary oomycete euglenoids: molecular evolution and phylogenetic inference. J. Mol. Evol. 55, 757–767. (doi:10.1007/s00239-002-2371-8)

365. Karnkowska A, Bennett MS, Watza D, Kim JI, Zakry B. 2013 A redescription of morphologically similar species from the genus Euglena: E. iaxitica, E. sanguinea, E. socialis, and E. splendidissima. J. Phycol. 49, 616–622. (doi:10.1111/j.1365-3020.2012.01702.x)

366. Marin B, Palm A, Klingberg M, Melkonian M. 2003 Phylogeny and taxonomic revision of plastid-containing euglenophytes based on SSU rDNA sequence comparisons and synapomorphy signatures in the SSU rRNA secondary structure. Protist 154, 99–145. (doi:10.1147/14344610.3764928251)

367. Linton EW, Karnkowska-Ishikawa A, Kim JI, Shin W. 2014 Phylogenetic relationships of the epibiotic flagellate Astasia in the life cycle of the cladoceran Chydorus. Protist 165, 1–5. (doi:10.1016/j.protis.2014.09.001)

368. Lax G, Simpson AGB. 2020 The molecular diversity of the epibiotic flagellate Astasia in the life cycle of the cladoceran Chydorus. Protist 170, 233–257. (doi:10.1016/j.protis.2019.03.001)

369. Lax G, Simpson AGB. 2020 The molecular diversity of the epibiotic flagellate Astasia in the life cycle of the cladoceran Chydorus. Protist 170, 233–257. (doi:10.1016/j.protis.2020.125757)

370. Lax G, Simpson AGB. 2020 The molecular diversity of the epibiotic flagellate Astasia in the life cycle of the cladoceran Chydorus. Protist 170, 233–257. (doi:10.1016/j.protis.2020.125757)

371. Lax G, Simpson AGB. 2020 The molecular diversity of the epibiotic flagellate Astasia in the life cycle of the cladoceran Chydorus. Protist 170, 233–257. (doi:10.1016/j.protis.2020.03.001)
435. Brettman EA et al. 2016 Tilting the balance between RNA interference and replication eradicates Leishmania RNA virus 1 and mitigates the inflammatory response. Proc. Natl Acad. Sci. USA 113, 11 998–12 005. (doi:10.1073/pnas.1615085113)

436. Kurt Ö, Mansur N, Çavuş I, Özcan O, Batir MB, Gündüz C, Sezerman Ü, Üzümlü A. 2019 First report and in silico analysis of Leishmania virus (LRV2) identified in an autochthonous Leishmania major isolate in Turkey. New Microbiol. 42, 62–67.

437. Kleschenko Y, Grybchuk D, Matveeva NS, Macedo DH, Yurchenko V. 2019 Molecular characterization of Leishmania RNA virus 2 in Leishmania major from Uzbekistan. Genes 10, 830. (doi:10.3390/genes10100830)

438. Widmer G, Dooley S. 1995 Phylogenetic analysis of Leishmania RNA virus and Leishmania suggests ancient virus-parasite association. Nucleic Acids Res. 23, 2300–2304. (doi:10.1093/nar/23.12.2300)

439. Grybchuk D, Kostyogov AV, Macedo DH, Votýpka J, Lukeš J, Yurchenko V. 2018 RNA viruses in Blechomonas (Trypanosomatidae) and evolution of Leishmaniaivirus. mBio 9, e01932-18. (doi:10.1128/mBio.01932-18)

440. Akopyants NS, Lye LF, Dobson DE, Lukeš J, Beverley SM. 2016 A novel bunyavirus-like virus of trypanosomatid protist parasites. Genome Announc. 4, e00715-16. (doi:10.1128/genomeA.00715-16)

441. Grybchuk D et al. 2018 Viral discovery and diversity in trypanosomatid protozoa with a focus on relatives of the human parasite Leishmania. Proc. Natl Acad. Sci. USA 115, E506–E515. (doi:10.1073/pnas.1717801115)

442. Grybchuk D et al. 2020 The first non-LRV RNA virus in Leishmania. Viruses 12, 168. (doi:10.3390/v12020168)

443. Akopyants NS, Lye LF, Dobson DE, Lukeš J, Beverley SM. 2016 A Namavirus in the trypanosomatid plant pathogen Phytophthora serpens. Genome Announc. 4, e00711-16. (doi:10.1128/genomeA.00711-16)

444. Sukla S, Roy S, Sundar S, Biswas S. 2017 Leptomonas seymouri nanka–like virus 1 and not leishmanianviruses detected in kala-azar samples from India. Arch. Virol. 162, 3827–3835. (doi:10.1007/s00705-017-3559-y)

445. Alves JMP et al. 2013 Endosymbiosis in trypanosomatids: the genomic cooperation between bacterium and host in the synthesis of essential amino acids is heavily influenced by multiple horizontal gene transfers. BMC Evol. Biol. 13, 190. (doi:10.1186/1471-2148-13-190)

446. Burrell LA. 1975 Fine structure of Bodo curvifilus. J. Protozool. 22, 35–39. (doi:10.1111/j.1550-7408.1975.tb00942.x)

447. Midha S, Rigden D, Siozios S, Hurst G, Jackson A. In press. The Paracoccidiobacter-like endosymbiont of Bodo saltans (Kinetoplastida) uses multiple putative toxin-antitoxin systems to maintain its host association. ISME J. (doi:10.1038/s41396-020-00879-6)

448. Ganyukova AI, Frolov AO, Malysheva MN, Spodareva VV, Yurchenko V, Kostyogov AV. 2020 A novel endosymbiob–containing trypanosomatid Phytophama borealis sp. n. from the predatory bug Pimocerus bidens (Hemiptera: Pentatomidae). J. Parasitol. 67, 004. (doi:10.14411/JP.2020.004)

449. Muñoz-Gómez SA, Hess S, Burger G, Lang BF, Susko E, Slamovits CH, Roger AJ. 2019 An updated phylogeny of the Alphaproteobacteria reveals that the parasitic Rickettsiales and Holosporales have independent origins. eLife 8, e42535. (doi:10.7554/eLife.42535)

450. Tashyrev D, Prokopchuk G, Votýpka J, Yabuki A, Horák A, Lukeš J. 2018 Life cycle, ultrastructure, and phylogeny of new diplomemids and their endosymbiotic bacteria. mBio 9, e02447-e17. (doi:10.1128/mBio.02447-17)

451. George EE, Husnik F, Tashyrev D, Prokopchuk G, Horák A, Kwong WK, Lukeš J, Keeling PJ. 2020 Highly reduced genomes of protist endosymbionts show evolutionary convergence. Curr. Biol. 30, 925–933. (doi:10.1016/j.cub.2019.12.070)

452. Monteil CL et al. 2019 Ectosymbiotic bacteria at the origin of magnetoreception in a marine protist. Nat. Microbiol. 4, 1088–1095. (doi:10.1038/s41564-019-0432-7)

453. Leedale GF. 1969 Observations on endonuclear bacteria in euglenoid flagellates. Öster. Z. 116, 279–294. (doi:10.1007/BF01379628)

454. Surek B, Melkonian M. 1983 Intracellular bacteria in the Euglenophyceae: prolonged axenic culture of an alga-bacterial system. In Endocytobiology, vol. 2 (eds H.EA Schenk, W Schwemmler), pp.475–486. Berlin, Germany: de Gruyter.

455. Kim E, Park JS, Simpson AGB, Munsang S, Watanabe M, Munakami A, Sommerfeld K, Onodera NT, Archibald JJA. 2010 Complex array of endosymbionts in Petaulosis spliphagophila, a large heterotrophic euglenoid protist from Sphagnum-dominated peatlands. ISME J. 4, 1108–1120. (doi:10.1038/ismej.2009.107)

456. Leander BS, Farmer MA. 2000 Eubacterial bacteria and a novel pattern of strip reduction on the pellicle of Euglena helioidea (Bermard) Lemmermann. Eur. J. Protistol 36, 405–413. (doi:10.1016/S0932-4739(00)00406-2)

457. Torres de Araujo FF, Pires MA, Frankel RB, Bicudo CEM. 1986 Magnetite and magnetotaxis in algae. Physiol. 50, 375–378. (doi:10.1006/pbio.2002958)

458. Klings JG et al. 2019 Phylogenetic, genomic, and biogeographic characterization of a novel and ubiquitous marine invertebrate-associated Rickettsiales parasite, Candidatus Aquarickettsia rhwerti, gen. nov., sp. nov. ISME J. 13, 2938–2953. (doi:10.1038/s41475-019-0482-0)

459. Tikhonenkov DV et al. 2021 First finding of free-living representatives of Prokinetoplastina and their nuclear and mitochondrial genomes. Sci. Rep. 11, 2946. (doi:10.1038/s41598-021-82369-z)