The costs of human-induced evolution in an agricultural system

Alexa Varah, Kwadjo Ahodo, Shaun R. Coutu, Helen L. Hicks, David Comont, Laura Crook, Richard Hull, Paul Neve, Dylan Z. Childs, Robert P. Freckleton and Ken Norris

Pesticides have underpinned significant improvements in global food security, albeit with associated environmental costs. Currently, the yield benefits of pesticides are threatened as overuse has led to wide-scale evolution of resistance. Despite this threat, there are no large-scale estimates of crop yield losses or economic costs due to resistance. Here, we combine national-scale density and resistance data for the weed Alopecurus myosuroides (black-grass) with crop yield maps and an economic model to estimate that the annual cost of resistance in England is £0.4 billion in lost gross profit (2014 prices) and annual wheat yield loss due to resistance is 0.8 million tonnes. A total loss of herbicide control against black-grass would cost £1 billion and 3.4 million tonnes of lost wheat yield annually. Worldwide, there are 253 herbicide-resistant weeds, so the global impact of resistance could be enormous. Our research supports urgent national-scale planning to combat resistance and an incentive for increasing yields through food-production systems rather than herbicides.

ANALYSIS

Costing resistance at the field scale

Estimated yield loss due to BG infestation in winter wheat was, on average, 0.4 t ha⁻¹ (Table 1), or 5% of the average estimated potential wheat yield (8.3 t ha⁻¹) in the absence of BG. We estimated this by applying yield penalties due to BG infestation (Fig. 1) to the crop yield estimation component in our economic model (details in Methods and Supplementary Information). Resistance frequencies were then used (Methods) to calculate that most of this lost yield (0.38 t ha⁻¹) was due to resistant plants. At low densities of BG the yield loss was negligible, whereas at the highest weed densities mean yield loss was 1.8 t ha⁻¹, 100% of which was due to resistant plants (Table 1 and Fig. 3).

The mean economic cost of resistance (Cᵣ) defined as the production losses and additional costs due to resistant BG in winter wheat was £75 ha⁻¹ at low BG density and £450 ha⁻¹ at very high density (Table 1 and Fig. 2c). Estimates of Cᵣ will vary, potentially greatly, according to the input and output prices used. The costs calculated here using 2014 prices represent 7% and 37%, respectively, of potential gross profit from winter wheat in these fields in the absence of resistant BG and compare to average total agricultural costs (English cereal farms, 2014) of £1,076 ha⁻¹ (Farm Business Survey Region Reports, 2019). Across all density states, the mean Cᵣ in winter wheat was £155 ha⁻¹ (Table 1) or 14% of potential gross profit. Cᵣ within density states varied widely, ranging from £0–493 ha⁻¹ in winter wheat fields with low BG density to £355–773 ha⁻¹ in fields with very high densities (raw data not shown). At very high density states, 100% of the total costs of BG infestation came from resistant plants (Table 1 and Fig. 3).

Across a rotation, the mean Cᵣ in low density fields was £58 ha⁻¹, and £280 ha⁻¹ in very high density fields (Table 1). Again, 100% of the costs were due to resistant plants in fields with very high BG density, whereas in low density fields just under 70% of costs came from resistant plants. The per hectare Cᵣ in winter wheat was higher than the per hectare Cᵣ across a rotation (Table 1 and Fig. 2c, d) due to the negative impact of the weed on wheat yield (no yield penalties were applied to other crops in the rotation). Overall, as average BG density increases, so does the proportion of the cost or yield loss that is due to resistant plants (Table 1), in line with previous findings that resistance drives weed abundance. Field-scale resistance impacts are thus greater in regions with higher BG densities, especially in winter wheat crops (Fig. 2), and resistance impacts in the United Kingdom reduce along a gradient from south to north (see Fig. 4). See Methods for a discussion of the assumptions that underpin these estimations.

The use of herbicides targeting BG in winter wheat did not differ across different final (preharvest) densities of weed infestation (χ²₁ = 0.0982, P = 0.754; Fig. 3b and Supplementary Fig. 5). Thus, in fields with low final BG density, herbicide costs constituted 82% of total costs (this applies to both the cost of infestation Cᵣ and to C₀), whereas in fields with high and very high final BG densities, the biggest source of lost income was yield loss (60% and 77% respectively, Fig. 3). In some of the low density/fields, relatively intense herbicide use will be justified where high levels of susceptibility remain in the weed population and, therefore, where these herbicides are still effective in reducing yield loss potential. However, in low density fields with high levels of herbicide resistance (in our data, 75% of fields with low and medium BG density had high resistance (>60% survival) to Atlantis), intense herbicide application may be counterproductive as (1) herbicide costs will outweigh benefits of BG control, (2) it will impose an unnecessary environmental burden, and (3) it will have the unwanted effect of selecting for even higher frequencies of resistance within populations. In these situations, a reduction in herbicide use may bring economic benefits but would need to be accompanied by cultural and physical control methods to maintain low weed population sizes as part of an integrated weed management programme. We expand on this in the discussion.

The impact of resistance at a national scale

Total annual wheat yield loss for England was 0.86 million tonnes (mt; Supplementary Table 5), almost all of which (0.82 mt) was due to resistant plants (Fig. 4a and Supplementary Table 6). Sensitivity analyses suggest that annual wheat yield losses due to resistant BG (YLᵣ) in England may be as low as 0.3 mt or as high as 3 mt (Supplementary Table 11) given uncertainties in our yield penalty estimates (further details in Supplementary Information). Whichever figure we accept, our estimates run counter to global goals of increased yields and are particularly concerning in view of the current yield wheat stagnation in northwestern Europe and United Kingdom annual domestic wheat consumption hovers...
In terms of economics, the total annual cost of BG infestation in England was £0.44 billion across all crops (termed rotation cost from now on; Supplementary Table 5), £0.38 billion per year of which was due to resistant plants (Fig. 4b and Supplementary Table 6). In winter wheat crops, C^R was £0.35 billion per year, of which C^R was £0.31 billion (Fig. 4c and Supplementary Table 6). At a regional scale, some rotation costs are higher than those in winter wheat. This is because, although field-scale rotation costs are lower than those in winter wheat, the total cereal crop area is much larger than the winter wheat area and so the scaled-up rotation costs are relatively higher. In the West Midlands (WM) and South East (SE) of England, the average C^R per ha in winter wheat crops was particularly high compared to other regions (WM £387 ha$^{-1}$, SE £270 ha$^{-1}$, EM £159 ha$^{-1}$, EE £206 ha$^{-1}$, YH £88 ha$^{-1}$, abbreviations as in Fig. 4); as a result, the scaled-up costs in these two regions remained higher in winter wheat than across rotations. Values for the SE region should be treated with caution as we used just eight fields from this region in our analysis and all of them were concentrated in one area (where there are high densities of resistant BG; see Supplementary Fig. 3). The estimates for this region are therefore unlikely to be representative of the entire region.

Sensitivity analyses showed that annual rotation C^R might be as low as £0.3 billion per year or as high as £0.8 billion per year (Supplementary Table 11). Nevertheless, even at the lower end, the costs are large. To put these figures into perspective, total income from all types of farming in England was £3.9 billion in 2014. Herbicide resistance is therefore having a severe impact on English arable farming and these results underscore the need to manage resistance through coordinated action at a national level.

Potential costs and crop losses

Because resistance is increasing over time and driving BG density', we also estimated yield losses and costs in winter wheat under a total loss of herbicide control (Fig. 2b, e) by assuming that all

Fig. 2 | Field-scale costs and yield loss due to resistant black-grass. These estimates were generated by running empirical field management and black-grass density data (number of fields = 66) through BGRI-ECOMOD. a, b, Yield loss due to resistant black-grass (Y^R_L, t ha$^{-1}$): average field-scale yield losses in winter wheat (a); maximum field-scale yield loss in winter wheat in the event of total loss of herbicide control (b). c–e, Cost of resistance (C^R, £ per ha): average field-scale C^R for years in winter wheat crops (c) and all years’ data across a rotation (d); maximum field-scale C^R in the event of total loss of herbicide control (e). Fields are overlaid on a map of modelled density (square root) of A. myosuroides averaged over 2015–2017. This density map was generated by fitting a generalized additive model to the data reported in Hicks et al., with spatial covariates representing latitude and longitude.
Table 1 | Field-scale yield loss and economic costs due to black-grass infestation (I) and resistant plants (R) at different densities of black-grass in England

Average black-grass density state of field	Average yield loss in winter wheat (t ha⁻¹)	Average cost* (£ per ha)		
	R	I	R/I	
Absent/low	0.0 (−0.1, 0.1)	0.0 (−0.1, 0.1)	ND	
		75 (56, 93)	106 (90, 123)	0.71
		58 (44, 72)	85 (73, 98)	0.68
Medium	0.3 (0.2, 0.4)	0.4 (0.2, 0.4)	0.75	
	135 (120, 149)	158 (148, 168)	0.85	
	103 (91, 115)	123 (114, 132)	0.84	
High	0.8 (0.7, 0.9)	0.9 (0.8, 1.0)	0.89	
	264 (249, 280)	276 (261, 291)	0.96	
	185 (173, 197)	193 (182, 204)	0.96	
Very high	1.8 (1.7, 1.9)	1.8 (1.7, 1.9)	1.00	
	450 (434, 466)	450 (434, 466)	1.00	
	280 (263, 297)	280 (263, 297)	1.00	
Mean across all densities	0.38 (0.2, 0.6)	0.41 (0.2, 0.6)	0.93	
	155 (135, 174)	178 (152, 204)	0.87	
	112 (92, 132)	131 (114, 148)	0.85	

*Values are means, estimated by running empirical field management and black-grass density data (number of fields = 66) through BGRI-ECOMOD, see Methods. 95% CIs (generated by bootstrapping) in brackets. *R/I gives the proportion of the cost of infestation that is due to resistance. Infestation = resistant + susceptible plants. ND, not determined.

Fig. 3 | The relative contribution of herbicide costs, lost yield and operations costs to total costs in winter wheat crops. Values are average per hectare costs estimated by running empirical field management and black-grass density data through BGRI-ECOMOD (number of fields = 66). a, b. Costs due to resistant black-grass plants (a) and costs due to infestation (b). Herbicide costs consider only those herbicide applications targeting black-grass. (Error bars intentionally omitted as the purpose is to illustrate the contribution of component parts and, when data are presented in this way, error bars of individual components influence each other and are misleading).
Here we report a national-scale estimate of the impacts of human-induced evolution of herbicide resistance. The scale of our findings illustrates that pesticide resistance has implications for national food security and economics. Annual potential losses of the order of 3 mt and £1 billion are large enough that national-scale policy measures are needed to reduce the impact and spread of resistance.

Resistance management is currently the responsibility of individual practitioners, whose collective actions constitute a national response. However, when pesticides are effective, there is an economic incentive for individual practitioners to use them and to crop mostly high-value crops such as winter wheat. This behaviour is unsustainable as it drives resistance1,30, which we show has a negative impact on crop yields and income nationally. Our results suggest that leaving resistance management to individual practitioners is inadequate and that a national, targeted response is required. There is precedent for regulating pesticide use through environmental and health policies: there is now an urgent need for national-scale policy to regulate pesticide use in relation to resistance impacts on yield and economics.

When designing resistance management policy, governments should explicitly link economic, agricultural, environmental and health aspects. Joined-up legislation could encourage this: in Europe, for example, resistance management could be incorporated into existing legislation such as the EU Directive on the Sustainable Use of Pesticides (Directive 2009/128/EC), which already legislates for reduced pesticide use based on environmental or health concerns also delivers resistance management benefits, and vice versa. From environmental and sustainability policy perspectives,
the impacts estimated here could be used to further justify, in food security and economic terms, reduced pesticide use through practices like integrated pest management (IPM).

Resistance management policy via a national action plan should aim to (1) reduce the spread of resistance into unaffected areas and (2) find and communicate, non-chemical ways of reducing high weed populations in regions that have high resistance. A key aspect will be to reduce use of, and reliance on, pesticides because use is driving resistance. Reduced use has been recommended for other classes of xenobiotics, such as in the management of insect vectors of human disease and has been implemented for prostate cancer.

Pesticide use could be reduced by improving crop rotation and using other IPM practices such as seedbed sanitation, careful choice of sowing dates and densities, direct sowing, physical control methods, field hygiene measures and regular monitoring.

Because resistance management could be a contentious issue, a national action plan should be formulated after public consultation, consensus-building and collaboration. Providing the public with high-quality evidence and information is crucial to the success of these consultations: an assessment of the economic outcomes of reducing herbicide use and of the cost-effectiveness of a range of potential policies or mitigation strategies, would be a useful next step, both for the consultation process and subsequent policy design.

Statutory limits on pesticide use will probably be necessary and incentives and enforcement will be required to change behaviour. Agricultural policy could be used to incentivize and support farmers to change their management practices, for example, by stipulating improved crop rotation to qualify for income support or by providing support payments during the initial phase of reducing pesticide use and increasing IPM. This would be especially important where resistance is not currently a problem and it would be useful to estimate the short-term opportunity cost to individual practitioners of reducing pesticide use in areas with low resistance. Alternatively, governments could incorporate resistance management into Payments for Ecosystem Services schemes (or set up schemes where none exist) whereby farmers are rewarded for outcomes such as improved water quality or biodiversity, or maintenance of pesticide susceptibility in pest populations. Governments could also leverage commercial interest, for example, by introducing tax incentives for water companies to set up farmer advisory or support schemes to reduce pesticide use. Enforcement could take the form of caps on pesticide use and fines for breaking those limits or for spreading resistant weed seeds. Additionally, governments could legislate for disincentives to the herbicide manufacturing industry—for example, by higher taxation rates on sales over a threshold volume—and could reduce the influence of the agrochemicals industry by allocating public money to fund farm advisory services as well as research and development.

Finally, any pesticide resistance policy must also target glyphosate-resistant weeds. Glyphosate-resistant weeds are found on most continents but are not yet in the United Kingdom. However, English farmers are increasingly reliant on glyphosate to control herbicide-resistant BG and there has been a dramatic increase in its use, ramping up the evolutionary pressure on BG to develop resistance to glyphosate, too. In the United States, glyphosate resistance is widespread and the problem dwarfs that being faced with BG in England. A US-wide assessment of resistance-related costs and yield losses would inform national food-security planning. Worldwide there are many pesticide-resistant species. Our findings should be a catalyst to other countries to develop national-scale estimates of the impacts of resistance as a first step in assessing the need for their own pesticide resistance strategies.

Methods
Field data. Field management data was obtained for years 2004–2014. Black-grass density and resistance, and winter wheat yield, were sampled from 2014–2017. For details see ref. 1. Black-grass density states are given in Supplementary Table 10. To estimate costs of resistance, we used a subset of 66 fields from the full dataset (138 fields) and field management histories up to 2014. This subset comprised fields grown on historical history to 2014 with complete historical data for tillage operations and herbicide applications. Where soil type was not specified by the farmer, we extracted soil type from the National Soil Resources Institute NATuRe SuSTAiNAbiLiTy database (Soils Data, Cranfield University (NSRI) and for the Controller of HMSO, 2016). We used BG density data from all 138 fields in the scaling-up process.

The cost of BG infestation (C) comes mainly from two factors: (1) the direct impact of BG on wheat yield through competition; (2) the cost of herbicides targeting BG (which may also be applied in crops other than wheat) and their application. There are also some additional, lesser costs, for example those incurred for an inversion plough. With respect to herbicides, we were interested only in calculating costs related directly to BG infestation; in the field management dataset, we therefore identified all herbicide applications specifically targeting BG. For all other herbicide costs (adjuvants, desiccants and applications not specifically targeting BG) we calculated an average value per crop from our dataset and incorporated this into the sundry costs in BGRI-ECOMOD. For the 13 observations where farmers had input prices, we used proxy costs. Spring oilseed rape was the proxy for borage, millet and mustard (one observation of each); ware potatoes were the proxy for onions (one observation); and barley was the proxy for oats (seven observations) and triticale (two observations).

Economic model. We custom-built an economic model, BGRI-ECOMOD, capable of incorporating a wide range of farm management options and including a user-specified yield penalty for varying levels of weed infestation. The model code supplied incorporates the mean yield penalties from our data (see Fig. 1 and Supplementary Information); however, we enable users to specify yield penalties based on different weed species, or be updated in light of new BG yield penalty data, or for running sensitivity analyses on the yield loss–weed density function. The model performs gross margin analysis (see equations (3–16) Supplementary Methods) and incorporates the effect of variables such as soil type, sowing date, tillage practices and yield penalties associated with crop sequences. This allows us to estimate the costs associated with a range of management practices aimed at reducing BG populations. It is built in R (ref. 45) and uses a simple data-entry system. For further details see Supplementary Information and Code availability.

The baseline for this analysis was harvest 2014 because this was the first year in which we undertook field surveys of BG density and crop yield. All costs were therefore made using 2014 prices (£1, which was the average for feed wheat (£155 t−1), and milling wheat (£173 t−1) in 2014). Prices given on GitHub, see Data availability. For herbicide prices we calculated mean values from our dataset: selective herbicides targeting BG=£19.50 l−1, glyphosate=£2.45 l−1. Estimates of the cost of resistance will vary, potentially greatly, as input prices (especially herbicide) and output prices (especially winter wheat) change each year.

The model can be run for multiple fields and years. This makes it useful for estimating economic impacts of current and historical weed infestations, for working with very large datasets—thereby enabling more reliable up-scaling to policy-relevant scales—and for aiding within-year decision-making at the field scale or multiyear planning at a farm or landscape scale.

Estimating yield loss due to black-grass. High-resolution yield data, available for 17 fields from years 2014–2017 (Supplementary Fig. 1), were used to estimate the BG density–yield relationship (Fig. 1a and Supplementary Table 1) using a mixed effects model fitted using the lme4() function in the lme4 library in R (ref. 45; model details in Supplementary Methods and Supplementary Fig. 2). From this model we predicted mean yield at each density state in an ‘average’ field (Fig. 1a and Supplementary Table 2). Parametric bootstrap 95% confidence intervals (CIs) around these means were estimated from 10,000 resamples from our data. We then looked at how well the percent reduction in yield (Fig. 1b) from the reference state (‘low’) for the other three density states using 1–predicted yield for state D/ reference state yield. These estimates of yield loss are in line with published yield loss estimates due to BG in controlled plot experiments (Supplementary Table 3). We generated 95% CIs on the percentage reduction (used to inform limits in sensitivity analyses) by calculating the percentage reduction for each density state for each of the 10,000 bootstrap samples, then taking the 95% quantiles of those distributions of estimated percentage reductions. The resultant yield penalties applied in BGRI-ECOMOD are given in Supplementary Table 2. Further methodological details in Supplementary Information.

Estimating field-scale CG and YLp. Our aim was to estimate the average cost and yield loss per hectare for different densities of resistant BG at a baseline point in time (2014, see above). Costs were calculated using 2014 prices (and so will differ if using prices from other years).

Stage 1 was to estimate costs and yield losses due to BG infestation (f). First, we derived a yield penalty for each weed density state as described above and...
applied them as parameters in BGR-ECOMOD. We then ran the historical field management data and BG density data from the 66 fields through BGR-ECOMOD to estimate (1) yield loss due to BG infestation (YLR), and (2) costs due to spraying operations (C). The model (Fig. 3) uses cost data from BG infestation (C), for every field in every year (maximum date range 2004–2014). We did this by running the model both with and without BG infestation, then subtracting the estimated gross profit or yield obtained in the presence of BG from that estimated in the absence of BG (the potential profit or yield).

For each field, the model with BG infestation involved four model runs because different BG density states resulted in different yield penalties, so we had to run our field management history through the model once for each density state: in subsequent model runs, BG density for all fields was set at absent/low, then medium, then high and then very high states, each time using the observed herbicide and spraying data. For each field we then calculated mean gross profit and yield loss when across-field BG density was set to each state of the model (see Supplementary Fig. 3). Finally, the model was run without BG infestation, so the density state of all fields was set to absent/low and herbicide applications and spraying operations targeting BG were set to zero. The weighted mean gross profit (or yield) was then subtracted from the potential profit (or yield) to give a cost and yield loss estimate for each field. For other crops the process was simpler as BG density and yield were not surveyed. Therefore, to estimate C across all crops (which, for any given field, is effectively C across a rotation), the model was run only twice, with and without BG infestation, and then the calculated costs were averaged over the number of years' management history for each field.

Stage 2 was the estimation of costs and yield losses due to resistant (R) plants. For each field, the frequency of resistance to mesosulfuron was then used to calculate the proportion of costs or yield losses that were due to R plants, giving a cost of resistance (CRR) and yield loss due to resistance (YLR). We chose the frequency of resistance to mesosulfuron because, of the three active tested, mesosulfuron (an AOS) was the strongest driver of BG abundance in our fields in 2014 (D.C. et al., manuscript in preparation). Furthermore, ALS target-site resistance was identified as a particular concern back in 2007.

Using these field-scale estimates, for both winter wheat crops and rotations, we derived an average CRR and YLR per hectare for each of the four weed density states. This was our baseline CRR and YLR. Further methodological details given in Supplementary Fig. 3.

To estimate the worst-case scenario in winter wheat crops (cost and yield loss under a total loss of herbicide control), we used the methodology described in (2) above but assumed in the second model run that all quadrats in every field were in a very high density state. Because at very high density 100% of costs and yield losses were due to resistant plants, we assumed 100% of costs and yield loss were due to resistance. Herbicide applications remained unchanged—we used the herbicide application data from the management history—although, in reality, where BG was initially absent herbicide applications would have been likely to increase. The resulting per hectare costs differ very slightly to those calculated previously for very high density states because the management history data of all fields was used in this worst-case estimate, rather than the data from just those fields with very high average density states. We also made two more-conservative estimates of a worst-case scenario by scaling up the average costs and yield losses from fields in the top decile and top quintile of observed BG density states. This is a simplification of the model, as it is impossible to predict which fields will have the highest density for any year. However, this increase in density is not at a magnitude to change the categorical density state of a field unless over a fairly long timescale and could well simply represent normal inter-annual fluctuations. To test the validity of using the entire time span, we re-ran the analysis on just the later part of the time series (2010–2014 inclusive). Although this gave slightly higher costs (Supplementary Table 9), the costs estimated using 2010–2014 data fell within the 95% CIs estimated using 2004–2014 data, indicating that the assumption holds here.

To estimate the worst-case scenario in winter wheat crops, we assumed all quadrats in every field were at very high density state and that resistant plants were responsible for 100% of costs and yield losses. This scenario would arise only if no action were taken to address current problems of herbicide resistance. Farmers assume that farmers keep applying herbicide even once its efficacy is limited. Although there is evidence for these types of behaviours and this scenario is not anticipated and we present it only to highlight the worst possible effects of inaction.

Scaling up the cost of resistance. Fields were chosen to be representative of UK arable farming. Farms were predominantly arable, the geographic range (Oxfordshire to Yorkshire) encompassed the main winter wheat-growing areas of the United Kingdom, and a range of farm sizes was included. Within farms, field selection was based on those that were in winter wheat in the first survey year. Farmers were asked to select their 'best' and 'worst' fields in terms of BG infestation. We therefore assumed fields to be representative of both arable farming and BG resistance and density distributions within our wider study area and in England as a whole (evidence for which can be seen in that ECOMOD provides similar gross profit estimates to those in the Farm Business Survey).

In winter wheat, CRR and YLR were scaled up to regional winter wheat areas (DEFRA, 2014). For each region, we estimated the area of wheat at each BG density state by taking the proportion of that region’s surveyed fields at each density state, then multiplying the regional wheat area by these proportions (Supplementary Fig. 3; all 138 fields in the dataset were used in this process). Next, for each density state and region, these wheat cropping areas were used to scale up the per hectare CRR and YLR (Supplementary Methods, equation (1)). For each region, costs for each density state were summed to give a regional total (Supplementary Methods, equation (2)). This met the specification that the sum of costs and yield losses in winter wheat better reflects regional differences in BG density. The costs across rotations were scaled up directly to regional cereal cropping areas (DEFRA, 2014) as we have no data on BG density in crops other than wheat. Further details in Supplementary Methods.

Assumptions. We assume that the herbicide-resistant BG phenotype is present in every field, based on previous work which found that only 1% of fields in our dataset had no resistance to any of the three herbicides tested. Furthermore, of the 126 fields from our dataset with the best-quality phenotyping data (these include northern fields, where resistance is less of a problem), only one field had <10% resistance because crop was applied at field rate. We are confident that there is some level of herbicide survival in almost every field. In terms of the effect of herbicide, we assume that resistant (R) plants survive a field-relevant dose of herbicide. At the individual scale this means that R is binary (0 | 1) after herbicide. At the population scale it is more continuous (0–1): herbicide reduces BG abundance by the proportion of susceptible (S) individuals.

We assume that herbicide does not drive the BG seedbank to zero before the field evolves resistance. Weed eradication using herbicide alone is almost always impossible due to spatial and temporal refuges from herbicide treatments (for example, field margins, seedbank, asynchronous germination and transfer of weed seeds between fields). Additionally, BG is a rotator so there is no field scale 'escapes' capable of maintaining a population. More broadly, feasibility studies of general weed eradication programmes have highlighted the concerted and prolonged effort required for eradication to be successful. Despite relatively small field sizes, this degree of effort is unlikely to be met for most farms, particularly using herbicide alone.

We assume that the resistant BG phenotype has the same impact on yield as the susceptible wildtype. There is good evidence illustrating how limiting the effects of both non-target-site resistance (NTSR) and some predominant target-site resistance (TSR) mutations are on relative performance of R and S BG biotypes and thus any influence on competition with the crop is likely to be negligible. Comparisons of NTSR and susceptible BG found no consistent fitness costs, either when grown alone or in competition with winter wheat. In a study of three ACCase TSR mutations in B. avenae, one mutant allele (Gly-2078) did result in a small reduction in biomass and seed production; however, this mutation is rare, with a frequency of only 0.34% based on previous genotyping of 8,256 haplotypes from UK BG. Additionally, there is some evidence that the small fitness costs associated with this mutation are rapidly lost in BG populations due to compensatory evolution. Two mutations (Leu-1781 and Asn-2041), which are considerably more common in UK BG, had no effect on vegetative biomass, height or seed production compared to S wildtype plants. We are thus confident in our assumption that R phenotypes of BG have the same impact on yield as the S wildtype.

To calculate C across the time span of our dataset (2004–2014) we assumed that the density state of a field as recorded in 2014 also applied to all the preceding years for which we had management history data (we had no density data pre-2014). Hicks et al. found slight evidence for a within-field increase in density between 2004 and 2014, but this is not significant. However, this increase in density is not at a magnitude to change the categorical density state of a field unless over a fairly long timescale and could well simply represent normal inter-annual fluctuations. To test the validity of using the entire time span, we re-ran the analysis on just the later part of the time series (2010–2014 inclusive). Although this gave slightly higher costs (Supplementary Table 9), the costs estimated using 2010–2014 data fell within the 95% CIs estimated using 2004–2014 data, indicating that the assumption holds here.

To estimate the worst-case scenario in winter wheat crops, we assumed all quadrats in every field were at very high density state and that resistant plants were responsible for 100% of costs and yield losses. This scenario would arise only if no action were taken to address current problems of herbicide resistance. Farmers assume that farmers keep applying herbicide even once its efficacy is limited. Although there is evidence for these types of behaviours and this scenario is not anticipated and we present it only to highlight the worst possible effects of inaction.

Model testing and evaluation. Model tests were carried out on yield and gross margin. For evaluation of yield estimates, we first removed from the dataset any observations (n=13) where a farmer grew a crop not modelled by BGR-ECOMOD. The model accurately estimated yield both with (R²=0.91, slope=1.05; Supplementary Fig. 4) and without (R²=0.97, slope=1.05, Supplementary Fig. 4) failed crops in the dataset (BGR-ECOMOD is unable to predict crop failure). We calculated yield estimation error using the heavy crops (potatoes, sugar beet) to remove their influence on the relationship: the model still estimated yield well (R²=0.74, slope=1.01). Estimated regional gross margin fell within the 95% CIs for the regional values obtained from Farm Business Survey data (Supplementary Table 4). Furthermore, the model was robust to sensitivity testing on tractor work rates during different tillage operations, which was the management variable for
which published data were lacking. We varied the proportions used to calculate tillage work rates in relation to ploughing work rate: the range tested was +30% to −30% (±7%, ±10%, ±20% and ±30%) of initial values. There was no effect on the
per hectare C_N (results not shown).

The model was, however, sensitive to the yield penalty applied for BG infestation. We observed considerable variability in the yield loss–weed density relationship (Supplementary Fig. 1), especially at the highest density, and so ran a sensitivity analysis based on the extremes from our data and the literature (Supplementary Table 10). The consequences of using different yield penalties are given in the results and in Supplementary Table 11. Full details of model tests and sensitivity analyses are given in Supplementary Methods.

Reporting Summary. Further information on research design is available in the Nature Research Reporting Summary linked to this article.

Data availability
Model data and input template are available at https://github.com/alexavarah/BGRI-ECOMOD. Data used to generate the yield penalty can be accessed at https://github.com/alexavarah/BGcosts. The field management dataset has been deposited in the University of Sheffield Online Research data archive (ORDA) and can be accessed at https://figshare.com/s/e621f4d18627f41d50cebf.

Code availability
Model code is available at https://github.com/alexavarah/BGRI-ECOMOD.

Received: 16 October 2018; Accepted: 12 November 2019;

References

1. Hicks, H. L. et al. The factors driving evolved herbicide resistance at a national scale. *Nat. Ecol. Evol.* 2, 529–536 (2018).

2. Herrmann, J., Hess, M., Strek, H., Richter, O. & Beffa, R. Linkage of the current ALS-resistance status with field history information of multiple fields infested with blackgrass (*Alopecurus myosuroides Huds.*) in southern Germany. In *Proc. 27th German Conference on Weed Biology and Weed Control* 42–49 (Julius-Kühn-Archiv, 2016); doi:10.5073/jka.2016.452.006.

3. Levy, S. B. & Marshall, R. Antibacterial resistance worldwide: causes, challenges and responses. *Nat. Med.* 10, S122–S129 (2004).

4. Sandermann, H. Plant biotechnology: ecological case studies on herbicide resistance. *Trends Plant Sci.* 11, 324–328 (2006).

5. Smith, R. & Cost, J. The true cost of antimicrobial resistance. *BMJ* 346, f1493 (2013).

6. Fisher, M. C., Hawkins, N. J., Sanglard, D. & Gurr, S. J. Worldwide emergence of resistance to antifungal drugs challenges human health and food security. *Science* 360, 739–742 (2018).

7. Laxminarayan, R. et al. Antimicrobials: access and sustainable effectiveness. 1. Access to effective antimicrobials: a worldwide challenge. *Lancet* 387, 168–175 (2016).

8. Ooze, E. -C. Crop losses to pests. *J. Agric. Sci.* 144, 31–43 (2006).

9. Godfray, H. C. J. & Garnett, T. Food security and sustainable intensification. *Philos. Trans. R. Soc. B* 369, 20120273 (2014).

10. Pretti, J. & Bharucha, Z. P. Sustainable intensification in agricultural systems. *Ann. Bot.* 114, 1571–1596 (2014).

11. Wilson, C. & Tisdell, C. Why farmers continue to use pesticides despite environmental, health and sustainability costs. *Ecol. Econ.* 39, 449–462 (2001).

12. Geiger, F. et al. Persistent negative effects of pesticides on biodiversity and biological control potential on European farmland. *Basic Appl. Ecol.* 11, 97–105 (2010).

13. Pretti, J. N. et al. Resource-conserving agriculture increases yields in developing countries. *Environ. Sci. Technol.* 40, 1114–1119 (2006).

14. Hallmann, C. A., Foppen, R. P. B., van Turnhout, C. A. M., de Kroon, H. & Tattini, C. A. M. Persistent negative effects of pesticides on biodiversity and intensive production practices. *Nature* 418, 671–677 (2002).

15. Dar, O. A. et al. Exploring the evidence base for national and regional policy interventions to combat resistance. *Lancet* 387, 285–295 (2016).

16. Moss, S. R., Perryman, S. A. M. & Tattini, C. A. M. Managing herbicide-resistant blackgrass (*Alopecurus myosuroides*): theory and practice. *Weed Technol.* 21, 300–309 (2007).

17. Baron, G. L., Jansen, V. A. A., Brown, M. J. F. & Raine, N. E. C. Pesticide resistance reduces bumblebee colony initiation and increases probability of population extinction. *Nat. Ecol. Evol.* 1, 1308–1316 (2017).

18. Goulson, D., Nicholls, E., Botias, C. & Boreham, F. E. Bee declines driven by combined stress from parasites, pesticides, and lack of flowers. *Science* 347, 1255957 (2015).

19. Pimentel, D. Environmental and economic costs of the application of pesticides primarily in the United States. *Environ. Dev. Sustain.* 7, 229–252 (2005).

20. Comont, D. et al. Evolutionary epidemiology predicts the emergence of glyphosate resistance in a major agricultural weed. *New Phytol.* 223, 1584–1594 (2019).

21. Tilman, D., Balzer, C., Hill, J. & Befort, B. L. Global food demand and the sustainable intensification of agriculture. *Proc. Natl Acad. Sci. USA* 108, 20260–20264 (2011).

22. Godfray, H. C. J. et al. Food security: the challenge of feeding 9 billion people. *Science* 327, 812–818 (2010).

23. IAAASTD. *Agriculture at a Crossroads: The Global Report* (Island Press, 2009).

24. Ray, D. K., Ramankutty, N., Mueller, N. D., West, P. C. & Foley, J. A. Recent patterns of crop yield growth and stagnation. *Nat. Commun.* 3, 1293 (2012).

25. Lin, M. & Haybers, P. Reckoning wheat yield trends. *Environ. Res. Lett.* 7, 024016 (2012).

26. Sternberg, E. D. & Thomas, M. B. Insights from agriculture for the management of insecticide resistance in disease vectors. *Evol. Appl.* 11, 404–414 (2018).

27. Zhang, J., Cunningham, J. J., Brown, J. S. & Gatenby, R. A. Integrating evolutionary dynamics into treatment of metastatic castrate-resistant prostate cancer. *Nat. Commun.* 8, 1816 (2017).

28. Mézière, D., Lucas, P., Granger, S. & Colbach, N. Does integrated weed management affect the risk of crop diseases? A simulation case study with blackgrass weed and take-all disease. *Eur. J. Agron.* 47, 33–43 (2013).

29. Dar, O. A. et al. Exploring the evidence base for national and regional policy interventions to combat resistance. *Lancet* 387, 181–183 (2016).

30. Chikowo, R., Faloye, V., Petit, S. & Munier-Jolain, N. M. Integrated weed management systems allow reduced reliance on herbicides and long-term weed control. *Agric. Ecosyst. Environ.* 132, 237–242 (2009).

31. Maxwell, S. et al. Environmental science. Being smart about SMART environmental targets. *Science* 347, 1075–1076 (2015).

32. Davies, L. R. & Neve, P. Interpopulation variability and adaptive potential for reduced glyphosate sensitivity in *Alopecurus myosuroides*. *Weed Res.* 57, 323–332 (2017).

33. Dewar, A. & Foster, S. Overuse of pyrethroids may be implicated in the recent BYDV epidemics in cereals. *Outlooks Pest Manag.* 28, 7–12 (2017).

34. Bowles, S. J. & Yu, Q. Evolution in action: plants resistant to herbicides. *Annu. Rev. Plant Biol.* 61, 317–347 (2010).

35. Godfray, H. C. J. et al. Food security: the challenge of feeding 9 billion people. *Science* 327, 812–818 (2010).

36. Nix, J. F. *Management Pocketbook* (Agro Business Consultants, 2014).

37. *The Agricultural Budgeting & Costing Book* (Agro Business Consultants, 2014).

38. Bates, D., Mächler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. *J. Stat. Softw.* 61, 1–48 (2015).

39. Davison, A. C., Anthony C. & Hinkley, D. V. *Bootstrap Methods and Their Applications* (Cambridge University Press, 1997).

40. Duchy College, Rural Business School Farm Business Survey, 2013–2014: *Special Licence Access* [data collection] 3rd edn (UK Data Service, 2016); doi:10.5255/UKDA-SN-7659-3.

41. Panetta, F. D. Weed eradication feasibility: lessons of the 21st century. *Weed Res.* 55, 226–238 (2015).

42. Keshkta, E., Mathiassen, S. K. & Kudsk, P. No vegetation and fecundity fitness cost associated with acetyl-coenzyme a carboxylase non-target-site resistance in a black-grass (*Alopecurus myosuroides*) population. *Front. Plant Sci.* 8, 1117 (2017).
Author contributions
Data were collected by H.H., D.C., L.C. and R.H. BGR-ECOMOD was designed by A.V. and K.A. and built by K.A. A.V. did all analysis. S.C. and D.C. generated the yield penalty estimates and associated figures, and S.C. contributed to sensitivity analysis work. R.F. contributed the density map in Fig. 2. A.V. drafted the initial manuscript and H.H, D.C., S.C., P.N., D.Z.C., R.F. and K.N. contributed to refining it. Funding was acquired by R.F., D.Z.C., P.N. and K.N.

Competing interests
P.N. supervises a PhD student cofunded by Bayer (not part of this project). All other authors have no competing interests.

Additional information
Supplementary information is available for this paper at https://doi.org/10.1038/s41893-019-0450-8.
Correspondence and requests for materials should be addressed to A.V.
Reprints and permissions information is available at www.nature.com/reprints.

Publisher's note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
© The Author(s), under exclusive licence to Springer Nature Limited 2019

Acknowledgements
We thank the farmers who allowed their fields to be surveyed and provided field management data. This work was funded by BBSRC (grant no. BB/L001489/1) and the Agriculture and Horticulture Development Board (Cereals and Oilseeds).
QUERY FORM

Nature Sustainability

Manuscript ID	[Art. Id: 450]
Author | Alexa Varah

AUTHOR:
The following queries have arisen during the editing of your manuscript. Please answer by making the requisite corrections directly in the e.proofing tool rather than marking them up on the PDF. This will ensure that your corrections are incorporated accurately and that your paper is published as quickly as possible.

Query No.	Nature of Query
Q1:	Please note that affiliations have been re-numbered for sequential order.
Q2:	Please check your article carefully, coordinate with any co-authors and enter all final edits clearly in the eproof, remembering to save frequently. Once corrections are submitted, we cannot routinely make further changes to the article.
Q3:	Note that the eproof should be amended in only one browser window at any one time; otherwise changes will be overwritten.
Q4:	Author surnames have been highlighted. Please check these carefully and adjust if the first name or surname is marked up incorrectly. Note that changes here will affect indexing of your article in public repositories such as PubMed. Also, carefully check the spelling and numbering of all author names and affiliations, and the corresponding email address(es).
Q5:	You cannot alter accepted Supplementary Information files except for critical changes to scientific content. If you do resupply any files, please also provide a brief (but complete) list of changes. If these are not considered scientific changes, any altered Supplementary files will not be used, only the originally accepted version will be published.
Q6:	In the paragraph beginning, ‘National- and global-scale economic costs...’ please confirm that the dollars referred to are US$.
Q7:	In the paragraph beginning, ‘The likely sizes of the social, economic and environmental costs ...’ please include the three references in the reference list with full details: World Bank Open Data, 2018; FAOStat, 2019; Guidelines ... FAO, 2012).
Q8:	In the sentence beginning, ‘This is despite (1)...’ please move the two references in the text to the reference list and provide full details for them.
Q9:	In the sentence ‘Here, we combine a national-scale...’ abbreviation BG for black-grass has been introduced following the style used in Methods.
Q10:	As per journal style, claims of priority are not allowed. The sentence ‘Using this approach we provide ...’ has been amended by removing the word first to avoid the claim. The same has been done in other similar places.
Q11:	In Table 1, NA changed to ND and added as footnote (ND, not determined.) to comply with journal style. Please confirm.
QUERY FORM

Nature Sustainability

Manuscript ID	[Art. Id: 450]
Author	Alexa Varah

AUTHOR:

The following queries have arisen during the editing of your manuscript. Please answer by making the requisite corrections directly in the e.proofing tool rather than marking them up on the PDF. This will ensure that your corrections are incorporated accurately and that your paper is published as quickly as possible.

Query No.	Nature of Query
Q12:	In the sentence beginning, 'The costs calculated here using 2014 prices...' please move the two references from text to reference list and provide full details.
Q13:	The sentence 'United Kingdom annual domestic wheat...' appears to include a reference citation - please add date and details and move to reference list.
Q14:	In the sentence, 'To contextualize these costs...' please provide full details of the reference and move to the reference list.
Q15:	In the sentence, 'In Europe, resistant black-grass...' please provide full reference details and move to reference list.
Q16:	In the sentence beginning, 'Joined-up legislation could encourage this...' please provide details for the Directive and move to the reference list.
Q17:	In the sentence beginning, 'Where soil type was not specified by the farmer ...' please provide full details for the reference and move to reference list.
Q18:	In the sentence, 'In winter wheat, CR and YLR...' please provide full details for the reference (DEFRA, 2014) and move to reference list. The same reference appears in the sentence 'The costs across rotations...'
Q19:	Ref. 2: please check details added and provide editors name(s) if possible.
Q20:	Ref. 17: the url provided is not correct here. Please add the correct one and also the publishers name. O'Neill appears to be the chair not the author of this booklet.
Q21:	Ref. 18: please confirm editor added.
Q22:	Ref. 27: please check new volume and page numbers added.
Reporting Summary

Nature Research wishes to improve the reproducibility of the work that we publish. This form provides structure for consistency and transparency in reporting. For further information on Nature Research policies, see Authors & Referees and the Editorial Policy Checklist.

Statistical parameters

When statistical analyses are reported, confirm that the following items are present in the relevant location (e.g. figure legend, table legend, main text, or Methods section).

- The exact sample size (n) for each experimental group/condition, given as a discrete number and unit of measurement
- An indication of whether measurements were taken from distinct samples or whether the same sample was measured repeatedly
- Only common tests should be described solely by name; describe more complex techniques in the Methods section.
- A description of all covariates tested
- A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons
- A full description of the statistics including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient) AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)
- For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted
- For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings
- For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes
- Clearly defined error bars
- State explicitly what error bars represent (e.g. SD, SE, CI)

Our web collection on statistics for biologists may be useful.

Software and code

Policy information about availability of computer code

Data collection: The economic model was built in R with custom code, available at https://github.com/alexavarah/BGRI-EConMOD.

Data analysis: Statistical analyses were carried out in R version 3.6.1. Mixed effects models were fit in package lme4. Maps produced in R version 3.4.4.

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors/reviewers upon request. We strongly encourage code deposition in a community repository (e.g. Github). See the Nature Research guidelines for submitting code & software for further information.

Data

Policy information about availability of data

All manuscripts must include a data availability statement. This statement should provide the following information, where applicable:

- Accession codes, unique identifiers, or web links for publicly available datasets
- A list of figures that have associated raw data
- A description of any restrictions on data availability

Data used to generate the yield penalty can be accessed at https://github.com/alexavarah/Bgcosts.

The field management data set has been deposited in the University of Sheffield Online Research data archive (ORDA) and can be accessed at https://figshare.com/s/eb21fd7b6218e74d50ce4.
Field-specific reporting

Please select the best fit for your research. If you are not sure, read the appropriate sections before making your selection.

- Life sciences
- Behavioural & social sciences
- Ecological, evolutionary & environmental sciences

For a reference copy of the document with all sections, see nature.com/authors/policies/ReportingSummary.pdf

Ecological, evolutionary & environmental sciences study design

All studies must disclose on these points even when the disclosure is negative.

Study description	We used large-scale farm management data and black-grass (Alopecurus myosurideus) density survey data, plus a small yield loss survey dataset which was partly from a previously published study (Hicks, H. L. et al. Nat. Ecol. Evol. 2, 529–536 (2018)), and a dataset of resistance frequencies in the black-grass populations used in the study. From the yield loss survey data we estimated a yield penalty due to black-grass and used this, together with the farm management and weed density data, to estimate the costs and yield losses due to black-grass infestation using a custom-built economic model. We then applied resistance frequencies to model output to calculate the proportion of losses due to herbicide-resistant black-grass in England.
Research sample	As in Hicks et al. (2018, Nature Eco & Evol): The sample sizes for the survey work were based on previous surveys of similar size and scope. The sample size for the experiments were based on previous experiments in other species that yielded reliable results. FARM MANAGEMENT DATA: we used a subset of 66 fields on 35 farms from a previously published study (Hicks et al. 2018, Nature Eco & Evol). WEED DENSITY SURVEYS: 338 fields. See Hicks et al. (2018, Nature Eco & Evol) for details. YIELD LOSS DUE TO BLACK-GRASS: 17 fields over 4 years (2014–2017) for which high resolution yield data was available - for each of these fields the entire field was surveyed. RESISTANCE FREQUENCY DATA: frequency of resistance to mesosulfuron was assessed for the black-grass population in each of the 66 fields used.
Sampling strategy	FARM MANAGEMENT DATA: from Hicks et al (Nature Eco & Evol, 2018): "Study sites were selected to cover a large geographic range, and to include a variety of farm sizes, crop rotations and management strategies within each region. Two fields were selected on each farm, one known to have large black-grass populations and one with a smaller weed population. For accurate comparison, all fields selected were cropped with winter wheat for harvest in 2014. ..." WEED DENSITY SURVEYS: from Hicks et al (Nature Eco & Evol, 2018): "One hundred and thirty-eight fields with black-grass present were censused in a six-week period from July 2014. Fields were divided into contiguous 20 x 20 m grid squares and weed density was estimated in each grid square. The surveys followed a density-structured approach, recording the density state of black-grass rather than numerical abundance." YIELD LOSS DUE TO BLACK-GRASS: Entire field sampled by obtaining yield maps from combine harvester data, plus black-grass density surveys as described above. See Hicks et al. (2018, Nature Eco & Evol). RESISTANCE TESTING: from Hicks et al (Nature Eco & Evol, 2018): "Black-grass seeds were collected from ten different locations within each field surveyed in 2014, using a semi-random seed collection strategy..."
Data collection	FARM MANAGEMENT DATA: from Hicks et al (Nature Eco & Evol, 2018): "Historical field management data were requested for each of the 138 fields that we surveyed for weed density. Data were available for 96 fields and up to 10 years of data were collated for each field. For each year, we recorded the following: crop, first cultivation type and herbicide applications (product name and date of application)." We extracted soil type for each field from the National Soil Resources Institute NATMAP1000 database. WEED DENSITY SURVEYS: From Hicks et al (Nature Eco & Evol, 2018): "Fields were divided into contiguous 20 x 20 m grid squares and weed density was estimated in each grid square. The surveys followed a density-structured approach, recording the density state of black-grass rather than numerical abundance. Each grid square was assigned to 1 of 5 density states that correspond to the number of plants per 20m x 20m square: 0 (absent), 1 (1–150 plants), 2 (150–450 plants), 3 (450–1,450 plants) and 4 (1,450+ plants). These density states have been shown to accurately capture the variation within field populations and the 20 x 20 m grid size sufficient to be representative of 1 m2 subplots where black-grass plants were physically counted. Areas within fields that were sprayed off or cut early were classified as state 4, to reflect management for very high levels of black-grass infestation." YIELD LOSS DUE TO BLACK-GRASS: combine harvester data. See Hicks et al. (2018, Nature Eco & Evol). RESISTANCE ASSAYS: from Hicks et al (2018, Nature Eco & Evol): "A. myosurtideus seedlings were germinated and allowed to grow for 18–21 days until reaching the 3-leaf stage before spraying with herbicide. We tested for resistance to 3 herbicides at the following rates: Atlantis (mesosulfuron + iodosulfuron at 500 g ha⁻¹), Clethra (IX40 at 1.25 l ha⁻¹) and Laser (cyloxidim at 0.75 l ha⁻¹). Plants remained in the greenhouse for 3 weeks following herbicide treatment, at which point plant mortality was recorded before harvesting above-ground biomass from each pot. Plant material was dried at 80°C for 48 h before weighing..."
Timing and spatial scale	138 fields across England were surveyed during a six-month period from January 2014. Field management history ranged from 3 years to 10 years. Yield penalty was estimated from data from 17 fields, from 2014–2017, across counties from Oxfordshire to Yorkshire in the north and Norfolk in the east.
Data exclusions	Of the fields for which we obtained management history, those with fewer than 3 years’ management history and those lacking yield, tillage or herbicide application data were excluded from the modelling. Density data from all 138 fields were used in the scaling-up process.
Reproducibility	Not relevant.
Randomization: Observational study; we did not assign to groups.

Blinding: As above; this is an observational study.

Did the study involve field work? □ Yes □ No

Field work, collection and transport

Field conditions: Wheat fields, summers of 2014-2017

Location: 138 wheat fields across England, exact locations not available for privacy reasons.

Access and import/export: Not applicable

Disturbance: None

Reporting for specific materials, systems and methods

Materials & experimental systems	Methods
n/a	Involved in the study
□ Unique biological materials	□ ChiP-seq
□ Antibodies	□ Flow cytometry
□ Eukaryotic cell lines	□ MRI-based neuroimaging
□ Palaeontology	
□ Animals and other organisms	
□ Human research participants	